# Dielectric Constant and Loss Data

W. B. Westphal and A. Sils Massachusetts Institute of Technology

C VIEW IN THE COLUMN TO D. D. C.

Technical Report AFML-TR-72-39

April 1972

Approved for Public Release, Distribution Unlimited

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
US Department of Commerce
Springfield VA 22131

Air Force Materials Laboratory
Air Force Systems Command
Wright-Patterson Air Force Base, Ohio

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.



Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

| Security Classification                                                    |                                                          |                                    |                                       |  |
|----------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------|---------------------------------------|--|
| DOCUMENT CONTI                                                             | ROL DATA - R 8                                           | , D                                |                                       |  |
| (Security classification of title, body of abstract and indexing a         | nnotation must be e                                      | ntered when the c                  | overall report is classified)         |  |
| I. ORIGINATING ACTIVITY (Corporate author)                                 |                                                          | 28. REPORT SECURITY CLASSIFICATION |                                       |  |
| Laboratory for Insulation Research                                         |                                                          | Unclassified                       |                                       |  |
| Massachusetts Institute of Technology                                      |                                                          | 2b. GROUP                          |                                       |  |
| Cambridge, Mass. 02139                                                     |                                                          |                                    |                                       |  |
| 3. REPORT TITLE                                                            | <del></del>                                              | L                                  |                                       |  |
| Dielectric Constant and Loss Data                                          |                                                          |                                    |                                       |  |
|                                                                            |                                                          |                                    |                                       |  |
|                                                                            |                                                          |                                    |                                       |  |
| 4. DESCRIPTIVE MOTES (Type of report and inclusive dates) Technical Report |                                                          | ,                                  |                                       |  |
|                                                                            |                                                          |                                    |                                       |  |
| 5. AUTHOR(S) (First name, m.ddlo initial, last name)                       |                                                          | /                                  |                                       |  |
| William B. Westphel and Aina Sils                                          |                                                          |                                    |                                       |  |
| •                                                                          |                                                          |                                    |                                       |  |
| 6. REPORT DATE                                                             |                                                          |                                    |                                       |  |
| April 1972                                                                 | 74. TOTAL NO. 01                                         | PAGES                              | 7b. NO. OF REFS None                  |  |
| Sa, CONTRACT OR GRANT NO.                                                  |                                                          |                                    |                                       |  |
| •                                                                          | 9n. ORIGINATOR'S                                         | REPORT NUME                        | ER(5)                                 |  |
| F33615-/1C-1274                                                            |                                                          |                                    |                                       |  |
| b. PROJECT NO.                                                             |                                                          |                                    |                                       |  |
| 737101                                                                     |                                                          |                                    | · · · · · · · · · · · · · · · · · · · |  |
| c.                                                                         | 9b. OTHER REPOR                                          | RT NO(\$) (Any of                  | her numbers that may be assigned      |  |
| d.                                                                         | AFML-TR-7                                                | AFML-TR-72-39                      |                                       |  |
| 10. DISTRIBUTION STATEMENT                                                 | <u> </u>                                                 |                                    |                                       |  |
| THE DESIGNATION OF A CONCENT                                               |                                                          |                                    |                                       |  |
| Distribution Unlimited                                                     |                                                          |                                    |                                       |  |
|                                                                            |                                                          |                                    |                                       |  |
| 11. SUPPLEMENTARY NOTES                                                    | 12. SPONSORING                                           | HLITARY ACYIN                      | /ITY                                  |  |
|                                                                            | Air Force                                                | Materials                          | Laboratory                            |  |
|                                                                            | Air Force Materials Laboratory Air Force Systems Command |                                    |                                       |  |
|                                                                            |                                                          | •                                  | r Force Base, Ohio                    |  |
| 13. ABSTRACT                                                               | 1 "*** 8 11 1 1 4                                        | COLUMN 114                         | 1 Torce base, onto                    |  |
|                                                                            |                                                          |                                    |                                       |  |

The main body of this report includes data on high-temperature materials, primarily organic crystals, ceramics and glasses. Additional sections include plastics and materials with less heat resistance.

This report is mainly a recompilation of data on dielectric materials measured after Vol. VI of <u>Tables of Dielectric Materials</u>, 1958. Data from progress reports and the following L.I.R. and Air Force technical reports are included: Tech. Rep. 114, Tech. Rep. 182, Tech. Rep. 203, AFML-TR-65-396, AFML-TR-70-138, AFML-TR-71-66.

Data on ferroelectrics measured following the <u>Tables of Dielectric Materials</u> are excluded. The index is intended to be a complete reference to Vols. IV, V, and VI of <u>Tables</u> as well as the present report (P.R. in index).

DD FORM 1473

Unclassified
Security Classification

Security Classification

| 4. KEY WORDS  |               |   | LINK A |    | LINK B |    | LINK C |     |
|---------------|---------------|---|--------|----|--------|----|--------|-----|
|               | KCT HURUS     |   | ROLE   | wr | ROLE   | wr | ROLE   | r w |
|               |               |   |        |    |        |    |        |     |
|               |               | · |        |    |        |    |        |     |
| ielectric co  |               |   | 1 1    |    |        |    |        |     |
| ielectric lo  |               |   |        |    |        |    |        |     |
| lectrical pe  | rmittivity    | • |        |    |        |    |        |     |
| ligh-temperat | ure materials |   |        |    |        |    |        | i   |
| Inorganics    |               |   |        |    |        |    | İ      |     |
| Minerals      |               |   |        |    | 1      |    |        |     |
| Rocks         |               |   |        |    |        |    | 1      |     |
| Organic mater | isle          |   |        |    |        |    |        |     |
| Plastics      | <b>262.</b> 0 |   |        |    |        |    |        |     |
| Liquids       |               |   | 1      |    |        |    |        |     |
| ridaras       |               |   | 1      |    |        |    |        | 1   |
|               |               |   | 1 1    |    |        |    |        |     |
|               |               |   |        |    |        |    |        |     |
|               |               |   |        |    |        |    | ]      | 1   |
|               |               |   |        |    |        |    |        | l   |
|               |               |   | ] [    |    |        |    |        |     |
|               |               |   |        |    |        |    |        |     |
|               |               |   | 1      |    |        |    |        |     |
|               |               |   |        |    |        |    |        |     |
|               |               |   | 1 1    |    |        |    |        |     |
|               |               |   |        |    |        |    |        |     |
|               |               |   |        |    |        |    |        |     |
|               |               |   |        |    |        |    |        |     |
|               |               |   |        |    |        |    |        |     |
|               |               |   |        |    |        |    |        |     |
|               |               |   |        |    |        |    |        |     |
|               |               |   |        |    |        |    |        |     |
|               |               |   |        |    |        |    | 1      |     |
|               |               |   |        |    | 1      |    |        |     |
|               |               |   | 1      |    | }      |    |        |     |
|               |               |   | 1      |    |        |    |        |     |
|               | •             |   | 1 !    |    |        |    |        |     |
|               | •             |   |        |    |        |    | ) l    |     |
|               |               |   |        |    |        |    | ] ]    |     |
|               |               |   |        |    |        |    |        |     |
|               |               |   |        |    |        |    |        |     |
|               |               |   | 1      |    |        |    |        |     |
|               |               |   |        | ļ  |        |    |        |     |
|               |               |   |        | ł  |        |    |        |     |
|               |               |   | i i    |    | 1      |    | [      |     |
|               |               |   |        | i  | I      |    |        |     |
|               |               |   |        | 1  |        |    |        |     |
|               |               |   |        |    |        |    |        |     |
|               |               |   | 1      |    | 1      |    |        |     |
|               |               |   |        |    | 1      |    |        |     |
|               |               |   |        |    |        |    |        |     |
|               |               |   |        | ŀ  |        |    |        |     |
|               |               |   | 1      |    | 1      |    |        |     |
|               |               |   |        | Ì  |        |    |        |     |
|               |               |   |        | 1  | }      |    |        |     |
|               |               |   | ] [    |    | İ      |    |        |     |
|               |               |   |        |    | į      |    |        |     |
|               |               |   |        |    | 1      |    |        |     |
|               |               |   |        |    | ĺ      |    |        |     |
|               |               |   | 1 1    |    | 1      |    | 1      |     |

Unclassified
Security Classification

DIELECTRIC CONSTANT AND LOSS DATA

W. B. Westphal and A. Sils

Approved for Public Release; Distribution Unlimited

#### **FOREWORD**

This report was prepared by the Massachusetts Institute of
Technology, Laboratory for Insulation Research, Cambridge, Massachusetts,
under USAF Contract F33615-71C-1274. This Contract was initiated under
Project No. 7371, "Exploratory Development in Electrical, Electronic,
and Magnetic Materials," Task No. 737101, "Dielectric Materials."
The work was administered under direction of the AF Materials Laboratory,
with Mr. W.G.D. Frederick (AFML/LPE) acting as project engineer.

This report was compiled from February 1, 1971 to January 31, 1972, and was submitted in February 1972 by the authors for publication.

This technical report has been reviewed and is approved.

Charles E. EHRENFRIED

Major, USAF

Chief, Electromagneti. Meterials Br.

Materials Physics Division

Air Force Materials Laboratory

#### ABSTRACT -

The main body of this report includes data on hightemperature materials, primarily organic crystals, ceramics
and glasses. Additional sections include plastics and
materials with less heat resistance.

This report is mainly a recompilation of data on dielectric materials measured after Vol. VI of <u>Tables of</u>

<u>Dielectric Materials</u>, 1958. Data from progress reports and the following L.I.R. and Air Force technical reports are included: Tech. Rep. 114, Tech. Rep. 182, Tech. Rep. 203, AFML-TR-65-396, AFML-TR-70-138, AFML-TR-71-66.

Data on ferroelectrics measured following the <u>Tables</u>
of <u>Dielectric Materials</u> are excluded. The index is intended
to be a complete reference to Vols. IV, V, and VI of <u>Tables</u>
as well as the present report (P.R. in index).

# Preceding page blank

# TABLE OF CONTENTS

|    |                                                 | Page     |
|----|-------------------------------------------------|----------|
| I. | Inorganic Compounds                             | 1        |
|    | Aluminum nitride                                | _        |
|    | Carborundum, hot-pressed                        | 1        |
|    | Aluminum oxide                                  |          |
|    | Single-crystal sapphire, Linde                  | 2,3      |
|    | " " , Union Carbide                             | 4        |
|    | Alberox A-935                                   | 5        |
|    | " A-950                                         | 5        |
|    | " A-962                                         | 5        |
|    | American Lava AlSiMag 576                       | 6        |
|    | " " 614                                         | 6        |
|    | " " 719                                         | 6        |
|    | Armour Research, density 3.32 g/cm <sup>3</sup> | 7,8      |
|    | " " density 3.23 g/cm <sup>3</sup>              | 9,10     |
|    | " density 3.84 g/cm <sup>3</sup>                | 12,13    |
|    | " hot-pressed, in graphite                      | 14       |
|    | " " with 10% titanate addition                  | 15,16,17 |
|    | Mixtures                                        | 18       |
|    | Centralab 205                                   | 19       |
|    | 206                                             | 19       |
|    | Carborundum 1542                                | 19       |
|    | Coors AD-99                                     | 19       |
|    | " AD-995                                        | 20       |
|    | " MC-2014                                       | 20       |
|    | ** RR                                           | 20       |
|    | " NBS 10F2                                      | 20       |
|    | Diamonite B-890-2                               | 21       |
|    | " P-3662                                        | 21       |
|    | " P-3142-1                                      | 21       |
|    | Frenchtown 7225                                 | 21       |
|    | General Flactric AT-100                         | 22       |

Preceding page blank

٧

|   |         |            |                   |        |       |      |                    | Page  |
|---|---------|------------|-------------------|--------|-------|------|--------------------|-------|
|   | inum ox |            | ont.)<br>cic Luca | alox   |       |      |                    | 23,24 |
| , | n<br>n  | 11         |                   | ticrys | tal1: | ine  | A-919              | 25    |
|   | **      | 11         |                   | 11     |       |      | A-923              | 26    |
|   | **      | 11         |                   | 11     |       |      | A-976              | 27    |
|   | 11      | 11         |                   | ŧŧ     |       |      | A-1000             | 28    |
|   | 11      | **         |                   | tt     |       |      | A-1004             | 29    |
| ] | Interna | tional     | Pipe a            | nd Cer | amic  | TC-  | -301               | 30    |
|   | 11      | •          | **                |        | **    | TC-  | -302-н             | 30    |
|   | 11      |            | Ħ                 |        | 11    | TC-  | -351               | 30    |
|   | 11      |            | Ħ                 |        | **    | V-(  | 59                 | 30    |
| 1 | Kearfot | t high-    | -purity           |        |       |      |                    | 31    |
| 1 | Minneap | olis H     | oneywel           | 1 A-12 | 7 an  | d A  | -203               | 31    |
| ] | Nationa | 1 Bery     | llia Al           | жо     |       |      |                    | 31    |
| 1 | Norton  | Compan     | y 99.5%           |        |       |      |                    | 31    |
| ! | Raythec | n          |                   |        |       |      |                    | 32    |
|   | Steatit | -Magne     | sia A-l           | 8      |       |      |                    | 32,33 |
| 1 | v.s. st | onewar     | e A-212           |        |       |      |                    | 34    |
|   | 11      | **         | A-216             |        |       |      |                    | 34    |
|   | **      | 11         | A-312             |        |       |      |                    | 34    |
|   | Ħ       | ŧŧ         | 610               |        |       |      |                    | 34    |
|   | tt      | **         | Std.              | 3050°I | 7     |      |                    | 35    |
|   | Westerr | Gold       | and Pla           | tinum  | AL-3  | 00   |                    | 36    |
|   | H       | 11         | 11                | **     | AL-3  | 00   | (modified)         | 36    |
|   | **      | ++         | tt                | Ħ      | A14   | 00   |                    | 37    |
|   | **      | **         | <b>\$1</b>        | Ħ      | AL-5  | 00   |                    | 37    |
|   | **      | <b>}</b> † | tt .              | н      | AL-9  | 95   |                    | 37    |
|   | **      | **         | **                | tı     | AL-1  | 1009 |                    | 37    |
|   | um fluc |            |                   |        |       |      |                    |       |
|   | -       | -          | 1, M.I.           | T. Cr  | ystal | . Ph | ysics Laboratory   | 38,39 |
| • | llium   |            |                   |        |       |      |                    |       |
|   | -       | -          |                   |        |       |      | nic Space Products |       |
|   |         | •          | ine, A            | erica  | n Lav | /a 7 | <b>'</b> 24        | 40    |
|   | Brush   |            |                   |        |       |      |                    | 40    |
|   |         | B-7-6      |                   |        |       |      |                    | 40    |
|   | ** 1    | B-7-37     |                   |        |       |      |                    | 40    |

|                                                                      | Page  |
|----------------------------------------------------------------------|-------|
| Beryllium oxide (cont.)                                              |       |
| Brush F-1                                                            | 41    |
| Coors BD98                                                           | 41    |
| National Beryllia cold-pressed, high-purity BeO                      | 41    |
| " " Berlcx                                                           | 41    |
| Multicrystal, translucent, North American Aviation                   | 42,43 |
| Beryllium silicate crystal KSC 7013, Electronic Space Product        | s 44  |
| Bismuth silicate ceramic, M.I.T., Laboratory for Insulation Research | 44    |
| Boron nitride                                                        |       |
| Average K' versus density                                            | 45    |
| Hot-pressed, Battelle Memorial Institute                             | 45    |
| " " Carborundum Company                                              | 46    |
| " , Grade A, Carborundum Company                                     | 47    |
| " " , Grade HP, " "                                                  | 48    |
| " ", Grade M, " "                                                    | 49    |
| Pyrolytically deposited, Union Carbide Boralloy                      | 50,51 |
| Pyrolytic, Raytheon                                                  | 52,53 |
| " laminate, Union Carbide                                            | 54    |
| Hot-pressed, Grade HD0056, Union Carbide                             | 54    |
| " " , Grade HD0086, " "                                              | 54    |
| " " , Grade HD0092, " "                                              | 55    |
| " " , Grade HD0093, " "                                              | 55    |
| " " , Grade HD0094, " "                                              | \$5   |
| " " , Grade HBN, " "                                                 | 56    |
| " " , Grade HBR, " "                                                 | 57    |
| Cold-pressed, Union Carbide                                          | 57    |
| Calcium carbonate, single crystal mineral (Calcite)                  | 58    |
| Calcium fluoride                                                     |       |
| Single crystal, M.I.T., Crystal Physics Laboratory                   | 59    |
| Doped with Y203, N.I.T., Department of Netallurgy                    | 60    |
| Cerium fluoride                                                      |       |
| Multicrystal, M.I.T., Laboratory for Insulation Research             | 61    |

### Table of Contents (cont.) Page Chromium oxide Single crystal, hexagonal, m.p. 1990°C, Linde 62 Cobalt oxide Cobalt oxide/nickel oxide mixed crystal, M.I.T., 63 Crystal Physics Laboratory Copper halides Pressed powders, M.I.T., Laboratory for Insulation 63 Research Hafnium oxide 64 Multicrystal, Zircoa Y-790 Lanthanum aluminate, Single crystal, National Lead 65 Lead halides, M.I.T., Crystal Physics Laboratory Lead bromide, orthorhombic, m.p. 373°C 66 66 Lead chloride Lead bromide/lead chloride mixed crystals 66 Magnesium aluminate (spinel)

66

67

67

67

Single crystal, Union Carbide

Multicrystalline, Kodak IRTRAN-5

Multicrystalline (Cordierite ceramic), Raytheon

Magnesium-aluminum silicate

Nagnesium carbonate Pressed powder

Magnesium oxide

| Management 61, and le                              | Page       |
|----------------------------------------------------|------------|
| Manganese fluoride                                 | 7.5        |
| Tetragonal crystal, Columbia University            | 75         |
| Mercury compounds, hot-pressed                     | 76         |
| Nickel oxide                                       |            |
| Single crystal, M.I.T., Crystal Physics Laboratory | 77         |
| Phosphate glass, American Optical                  | 77         |
| Rubidium manganese fluoride                        |            |
| Single crystal, M.I.T., Crystal Physics Laboratory | 77         |
| Silicon                                            |            |
| Single crystal, cubic, Brown University            | 78         |
| Intrinsic, M.I.T., Crystal Physics Laboratory      | 78         |
| Silicon carbide                                    |            |
| Carborundum                                        | 79         |
| With BeO, National Beryllia Carberlox              | 80         |
| Silicon dioxide                                    |            |
| Natural quartz crystal, Fort Monmouth              | 80,81      |
| Glasses                                            |            |
| American Optical Amersil, clear                    | 82         |
| " " translucent                                    | 82         |
| Corning 7940                                       | 83         |
| Dynasil 4000                                       | 84         |
| Coneral Electric Type 101, clear                   | 85,86,87   |
| Spectrosil A, Thermal American Fuscu Quartz Co.    | 83         |
| të B <sub>p</sub> së së dë ës të                   | 88         |
| Vitreosil, optical grade, " " " "                  | 88         |
| " , comercial " " " " "                            | 88         |
| Nixed silicate glasses                             |            |
| Corning Lab. No. 1198UC                            | 89         |
| " Code 1723                                        | <b>\$9</b> |
| Lancaster 7352                                     | <b>89</b>  |
| <b>"</b> 7357                                      | 90         |
| 29 L1957                                           | 91         |
| # L8100                                            | 92         |
| Soda silitate glass, N.I.T., Laboratory for        |            |
| Insulation Research                                | 93         |

|                                                                                            | Page    |
|--------------------------------------------------------------------------------------------|---------|
| Mixed silicate glasses (cont.)                                                             |         |
| Owens-Illinois EE 9                                                                        | 93      |
| " " EE 10                                                                                  | 93      |
| Owens Corning, X994                                                                        | 93      |
| Pittsburgh Plate Glass Co., Plate glass                                                    | 94      |
| " " ", Sheet glass                                                                         | 94      |
| Sintered                                                                                   |         |
| Brunswick slip-cast                                                                        | 95      |
| " " with 2.5% Cr <sub>2</sub> 0 <sub>3</sub>                                               | 95      |
| Corning 7941                                                                               | 96      |
| Corning multiform glass                                                                    | 96      |
| Silica slip-cast, Dynasil                                                                  | 96      |
| Fibers                                                                                     |         |
| Quartz fiber, Philco Ford (manufacturer: Fiber Materials Inc.), AS-3DX-1R                  | 97      |
| Silica fiber composites, Philco Ford 1-XB-O-M                                              | 98      |
| " " AS-3DX 176-17                                                                          | 98      |
| " " in aluminum phosphate matrix,                                                          |         |
| Whittaker Corporation                                                                      | 99      |
| Silicon nitride                                                                            |         |
| Pyrolytic, North American Aviation                                                         | 100     |
| Ceramic, Admiralty Materials Laboratory                                                    | 100     |
| " , Raytheon                                                                               | 100     |
| " , Union Carbide                                                                          | 101     |
| Silver iodide                                                                              |         |
| Pressed powder, M.I.T., Laboratory for Insulation Res.                                     | 102     |
| Souium chloride                                                                            |         |
| With BiCl3, M.1.T., Crystal Physics Laboratory                                             | 103-105 |
| Strontium fluoride                                                                         |         |
| Single crystal, cubic, M.I.T., Crystal Physics Lab.                                        | 10៦,107 |
| Tantalum oxide                                                                             |         |
| Ceramic, Ciba optical grade powder, fired at M.I.T.,<br>Laboratory for Insulation Research | 108     |
| Thallium halides, M.I.T., Crystal Physics Laboratory                                       | 109     |

Page

|     |                                                      | rage         |
|-----|------------------------------------------------------|--------------|
|     | Thorium oxide                                        |              |
|     | Ceramic, nuclear grade Zircoa                        | 110,111,112, |
|     | Ceramic, M.I.T., Lab. Ins. Res. Vanadium oxide       | 113,114      |
|     | Pressed powder samples, M.I.T., Lab. Ins. Res.       | 114          |
|     | Yttrium oxide                                        |              |
|     | Single crystal, M.I.T., Lab. Ins. Res.               | 115          |
|     | Ceramic, nuclear grade Zircoa                        | 116          |
|     | Zinc oxide                                           |              |
|     | Single crystal, hexagonal, Litton Industries         | 117          |
|     | Zirconium oxide                                      |              |
|     | Ceramic, technical grade Zircoa "C"                  | 118          |
|     | " nuclear grade Zircoa Y-904                         | 119          |
|     | " nuclear grade Zircoa Y-1362                        | 120,121      |
|     | " Zircolite, Air Force Materials Laboratory          | 122          |
|     | Zirconium silicate (ziccon)                          |              |
|     | Single crystal, mineral                              | 123,124,125  |
| II. | Minerals, Rocks, Soils, and Miscellaneous Inorganics |              |
|     | Single crystal minerals                              |              |
|     | Apatite                                              | 126,127      |
|     | Astrophyllite                                        | 127          |
|     | Benitoite                                            | 127          |
|     | Beryl                                                | 128,129      |
|     | Calcite, see Sec. I                                  |              |
|     | Neptunite                                            | 129          |
|     | Quartz, see Sec. I                                   |              |
|     | Spodumene                                            | 1.30,131,132 |
|     | Topaz                                                | 133,134      |
|     | Tourmaline                                           | 134          |
|     | Zircon, see Sec. I                                   |              |
|     | Crushed minerals                                     | -            |
|     | Halite                                               | 135          |
|     | Limonite                                             | 135          |
|     | Magnesite                                            | 135          |
|     | Quartz powder                                        | 135          |
|     |                                                      |              |

#### Table of Contents (cont.) Page Rocks 136 Basalt, Hawaian, high-density low-density 137 deep-ocean 137 Granite, Quincy 138 Virginia 138 Greenstone, Virginia 139 Limestone, Lucerne Valley, Raytheon 139 Lunar rocks and synthetic basalt 139 Rhyolite 140 Sandstone, almond, Raytheon 140 Soils Fullers earth, Foxboro 141 Hawaian 141,142 Mass. loams 143 Desert sand 143 Miscellaneous Inorganics Sands (Holliston and Slatterville No. 60) 144 Ices, glacial 145,146,147 CFI 1003 and CFI 1006 attenuator materials 148 Corning 0330, 7941, and 9606 149 Ferrites, General Ceramics: 3308D, 3310, 3321, 3330, "Q"-3 150 R-1, R-4, R-5, R-6 151,152 Havelex, glass-bonded micas: Types 1080, 1090, 1101, 2101, 2103, 2801, 2803 153 Isomica 4950, General Electric 153 Mycalex 410, 500, 555, 560, 620 153,154,155 Asphalt pavement and asphalts 156 Concrete pavement 157 Salt, Raytheon 158 Service boards, John Manville, The Sippican Corp. 158

|      |                                                                           | Page        |
|------|---------------------------------------------------------------------------|-------------|
| III. | Organic Compounds                                                         |             |
|      | American Concrete Products, artificial concrete                           | 159         |
|      | American Cyanamid, cyanoethylated cotton moulding                         | 159         |
|      | Cymac 325                                                                 | 160         |
|      | Amicon Corporation, conformal coating 1517-36-3                           | 160         |
|      | Amphenol Corp., polyethylene, irradiated                                  | 161         |
|      | AVCO Research, polyvinylidene fluoride                                    | 161         |
|      | Avisum Corporation, polypropylene                                         | 162,163     |
|      | The Budd Company, polytetrafluoroethylene, fiberglas laminate, Diclad-522 | 163         |
|      | The Budd Company, Copper-clad laminate PE1153                             | 164,165     |
|      | The Carborundum Company, EKONOL (polyester resin)                         | 166         |
|      | Chemplast Inc., golytetrafluoroethylene film                              | 166         |
|      | H. I. Crowley Co., polyiron (carbonyl) attenuator                         | 167         |
|      | Custom Materials, Inc., custom load 4101, 707-4, and 707 (3.75)           | 167         |
|      | Dodge Industries, Inc., FLUORGLAS E 650/2-1200 (TFE-fibe glas laminate)   | 167         |
|      | Dow Corning, moulding compound 306                                        | 168         |
|      | Silastic RTV 501, 521, 1602, 5350, S-6538                                 | 168         |
|      | Sylgard 182, 184, DC-92.907                                               | 168         |
|      | E. I. Dupont de Nemours & Co., "H"-film                                   | 169,170,171 |
|      | Kapton (Type 500 H film)                                                  | 171         |
|      | Nonex honeycombs                                                          | 172         |
|      | Teflon FEP (1963)                                                         | 173         |
|      | Teflon FEP (1964)                                                         | 175         |
|      | " TEF-7 (1964)                                                            | 173         |
|      | " TFE-6C (1964)                                                           | 173         |
|      | " T-100, Lot 38180                                                        | 174         |
|      | " 100X (FEP) 1960 and TFE                                                 | 174         |
|      | " 9033, Lot 10601                                                         | 174         |
|      | Electronized Chemicals Corp., Polyguide                                   | 175         |
|      | Emerson and Cumming, A-19 attenuator macerial                             | 175         |
|      | Eccogel 1265                                                              | 176         |
|      | Eccofoam FH                                                               | 176         |
|      |                                                                           |             |

|     |                                                                               | Page   |
|-----|-------------------------------------------------------------------------------|--------|
|     | Organic compounds (cont.)                                                     |        |
|     | General Electric, RTV-11                                                      | 176    |
|     | Silicone rubber SE900                                                         | 177    |
|     | Lexan                                                                         | 177    |
|     | 3-M , "3M" board                                                              | 178    |
|     | Scotchcast 221                                                                | 178    |
|     | Monsanto, polyimide foams, HD-139, -140, -144                                 | 178    |
|     | Nopco Chemical Corp., polyurethane rigid foam                                 | 179    |
|     | Polymer Corporation, Fluorosint (1960)                                        | 179    |
|     | Quantum Inc., radar tape                                                      | 180    |
|     | Raytheon Company, plastics                                                    | 180    |
|     | Rex, Wm. Brand Division of American Enka Corp., Rexolite<br>1422 (1964)       | 181    |
|     | Rexolite 2200 (1964), Rexolite 2200 (1965)                                    | 182    |
|     | Rexolene P                                                                    | 183    |
|     | Rogers Corporation, Duroid (1" thick sheet)                                   | 184    |
|     | Duroid 5870 (1966)                                                            | 185    |
|     | Shell Chemical Company, Epon 828 + PMDA epoxies                               | 186,18 |
|     | The Sippican Corporation, polystyrene foam                                    | 188    |
|     | Polyurethane foam                                                             | 188    |
|     | Tellite Corporation, Tellite 3A                                               | 188    |
|     | Union Carbide Corp., Plastics Division, Polysulfone                           | 189    |
|     | U.S. Air Force Materials Laboratory, Wright-Patterson<br>Air Force Base, Ohio |        |
|     | Fiberglass laminates                                                          | 189,19 |
| IV. | Miscellaneous Organics                                                        |        |
|     | Coal, Powdered, Kennecott Copper, Peabody Coal Division                       | 191    |
|     | " single lump, M.I.T., National Magnet Laboratory                             | 192    |
|     | Balsa wood, The Sippican Corporation                                          | 192    |
|     | Particle boards, ""                                                           | 193    |
|     | Wood products (pine board, fir plywood, birch plywood, Marinite)              | 193    |
| ٧.  | Liquids                                                                       |        |
|     | Allied Chemical Corporation                                                   |        |
|     | Fluorocarbon derivative P-1C                                                  | 194    |

|                                             | Page     |
|---------------------------------------------|----------|
| Liquids (cont.)                             |          |
| Dow Chemical, Dowtherm A                    | 194      |
| E. I. Dupont de Nemours & Co., fluorinated  | ethers:  |
| FPS-1418, FPS-1419, FPS-1420                | 194      |
| Esso, Teresso V-78                          | 195      |
| Hercules, Inc., DI-CUP, VUL-CUP             | 196      |
| Pennwalt Corporation, Lucidol Division, Luc | idol 196 |
| Lupersol 130                                | 196      |
| U.S. Bureau of Fisheries, mullet oil        | 197      |
| U.S. Peroxygen Division, Argus Chemical Cor | p.,      |
| USP 333                                     | 197      |
| Wallace & Tiernan Inc., Lupersol 101        | 197      |
| VI. Foodstuffs                              |          |
| Cooking oil, Kremax, Armour                 | 198      |
| Beef steak, lean, frozen and vacuum-dried   | 199      |
| Potatoes, raw                               | 199      |
| Potato flakes                               | 199      |
| Potato chips                                | 199      |
| Potato starch, granular and gelatinized     | 200,201  |
| Coffee, instant                             | 202      |
| Tea, instant, powder                        | 202      |
| Eggwhite                                    | 202      |
| Bread                                       | 202      |
| Bread dough                                 | 202      |

#### DIELECTRIC PARAMETERS

Dielectric parameters in the present report have the following notation:

 $\kappa'$ ,  $\epsilon'/\epsilon_0$ , dielectric constant relative to vacuum  $\kappa''$ ,  $\epsilon''/\epsilon_0$ , dielectric loss factor relative to vacuum tan  $\delta$ , or tan  $\delta_d$ , dielectric loss tangent (dissipation factor)

 $\kappa_{m}^{\dagger},~\mu^{\dagger}/\mu_{o},$  magnetic permeability relative to vacuum

 $\kappa_m^{\prime\prime},~\mu^{\prime\prime}/\mu_o,$  magnetic loss factor

tan  $\delta_{\mathbf{m}}$ , magnetic loss tangent

o, a.c. volume conductivity in mho-cm

 $\rho$ , a.c. volume resistivity in ohm-cm

# I. INORGANIC COMPOUNDS

Aluminum nitride, hot-pressed, at 8.5 GHz, 25°C,  $\kappa$ ' =  $\pm$  0.1

The Carborundum Co.





Al<sub>2</sub>O<sub>3</sub> single-crystal sapphire, low frequency peak dispersion due to silver diffusion. To be re-evaluated to higher temperatures with platinum electrodes.

The Linde Air Products Co.





Aluminum oxide, single crystal

Sapphire Al<sub>2</sub>O<sub>3</sub>

Density at 25°C = 3.9840 g/cm<sup>3</sup>

Union Carbide Electronics Division

| Loss tanger             | nts at 8.5         | GHz, 25°C: | Freq. 3.         | 45-3.33 | SHz, E⊥c |
|-------------------------|--------------------|------------|------------------|---------|----------|
| -                       | <.00002<br><.00005 |            | т <sup>о</sup> с | ĸ       | tan δ    |
| -                       |                    |            | 25               | 9.39    | < .0001  |
| Dielectric constants at |                    | at 3 GHz:  | 80               | 9.41    | < .0001  |
| T <sup>o</sup> C        | Εlc                | Ellc       | 240              | 9.49    | < .0001  |
| 25                      | 9.390*             | 11.584*    | 377              | 9.62    | < .0001  |
| <del>-</del> 75         | 9.292              | 11.433     | 526              | 9.83    | < .0001  |
| -195                    | 9.257              | 11.357     | 617              | 9.95    | < .0001  |
|                         |                    |            | 713              | 10.08   | < .00015 |

Variation of dielectric constant at 25°C with inclination of electric field direction with respect to optic axis was calculated from elliptic polarization function:

$$\kappa = \frac{\left[\frac{11.584^2 \times 9.39^2(1 + \cot^2\theta)}{11.584^2 + 9.39^2 \cot^2\theta}\right]^{1/2}}{0},$$

$$0 \qquad \kappa$$

$$10 \qquad 11.494$$

$$20 \qquad 11.246$$

$$30 \qquad 10.895$$

$$40 \qquad 10.507$$

$$50 \qquad 10.1295$$

$$60 \qquad 9.820$$

$$70 \qquad 9.584$$

$$80 \qquad 9.439$$

Average K for random oriented full-density ceramic:

$$\kappa_{av} = 10.071 \text{ from } \kappa_{av} = (9.30 \times 9.39 \text{ 11.584})^{1/3}$$
or 10.121 for approximate value (11.584+2 9.390)/3.

These values are in reasonable agreement with optically measured values of 11.56 and 9.406 [E.E. Russell and Bell, J. Opt. Soc. Am. 57, 543 (1967)].

### Aluminum oxide Multicrystalline (alumina)

Alberox Corp. A-950 95% Al<sub>2</sub>O<sub>3</sub> density: 3.663 g/cm<sup>3</sup>

|         | •       | 8, 4m   |  |  |
|---------|---------|---------|--|--|
| ToC     | K¹      | tan δ   |  |  |
| 25      | 9. 01   | . 00051 |  |  |
| 100     | 9.14    | . 00055 |  |  |
| 200     | 9. 30   | .00074  |  |  |
| 300     | 9.46    | .00108  |  |  |
| 400     | 9. 53   | .00149  |  |  |
| 500     | 9.79    | .00192  |  |  |
| 600     | 9. 95   | .00237  |  |  |
| 700     | 10.13   | .00288  |  |  |
| 750     | 10, 22  | .00320  |  |  |
| 800     | 10.31   | .00367  |  |  |
| 850     | 10.41   | .0051   |  |  |
| 892     | 10.50   | .010    |  |  |
| 3.8     | 9 - 3.6 |         |  |  |
| 8.5 GHz |         |         |  |  |
| 25      | 8.98    | .00058  |  |  |



# Alberox Corp. A-962 96.2% Al<sub>2</sub>O<sub>3</sub>



| Alberox Cor | P. A-9: | 35                |
|-------------|---------|-------------------|
| 93,5% A     |         |                   |
| Density     | 3.623   | g/cm <sup>3</sup> |

| TOC | W,   | tan ó  |
|-----|------|--------|
| 25  | 8.65 | .00155 |
| 100 | 8.73 | .00208 |
| 200 | 8.84 | .00305 |
| 300 | 8.95 | .00423 |
| 400 | 9.06 | .0057  |
| 500 | 9.18 | .0081  |
| 540 | 9.24 | .010   |

8.52 GHz

Alumina (cont.)





Alumina, high-purity

Armour Research Foundation

From Alcoa 99.99% Al with HF, fired air 1820  $^{\rm O}$ C

Spectrographic analysis: concentration of elements in parts per million:

Si Mg Fe Ca Cu 111 58 38 3 5

Density 3.32 g/cm<sup>3</sup>

Fired silver electrodes



Density 3.32



Alumina, high-purity

Armour Research Foundation

From Reynolds 99.999% Al with HF, fired air  $1840^{\circ}$ C

Spectrographic analysis: concentration of elements in parts per million:

Si Mg Fe Ca Ni Cr Cu 60 30 60 15 5 4 3

Density  $3.23 \text{ g/cm}^3$ 



v, frequency in Hz



Alumina oxide with added silicic acid Fired air 1890°C 850 ppm Si, 550 ppm Na Fired silver electrodes Density 3.49 g/cm<sup>3</sup>

Armour Research Foundation





Alumina, high purity, hot-pressed in C Armour Research Foundation Density 3.84 g/cm<sup>3</sup>





# Alumina, hot-pressed, in graphite

### Armour Research Foundation











Change in dielectric constant with temperature for various aluminas at ca. 4000 MHz







Mindeline of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second







# 

#### Frenchtown 7225

8.52 GHz,  $25^{\circ}$ C  $\kappa^{*} = 8.8 \pm 0.05$   $\tan \delta = 0.0013 \pm 0.0002$ on two samples

#### Aluminum oxide, multicrystalline

AT-100 (near 100% Al<sub>2</sub>O<sub>3</sub>, fine grained) Density,  $g/cm^3$ : (10<sup>2</sup> to 10<sup>8</sup> Hz) - 3.956 (4; 8 GHz) - 3.955 General Electric Company Electronic Components Division

| Frequency i | in F | łz |
|-------------|------|----|
|-------------|------|----|

| T <sup>O</sup> C    | 10 <sup>2</sup> | 10 <sup>3</sup> | 104    | 10 <sup>5</sup> | 106    | 107    | $8.5 \times 10^9$ |
|---------------------|-----------------|-----------------|--------|-----------------|--------|--------|-------------------|
| 25 κ                | 9.98            | 9.98            | 9.98   | 9.98            | 9.98   | 9.98   | 9.96              |
| $10^6$ tan $\delta$ | 7               | <1              | <1     | <1              | <1.5   | <7     | 48                |
| 100 K               | 10.09           | 10.09           | 10.09  | 10.09           | 10.09  | 10.09  |                   |
| $10^6$ tan $\delta$ | 52              | 6               | <1     | <1              | <1.5   | <7     |                   |
| 200 κ               | 10.21           | 10.23.          | 10.21  | 10.21           | 10.21  | 10.21  |                   |
| $10^6$ tan $\delta$ | 603             | 128             | 45     | 20              | 10     | <7     |                   |
| 300 K               | 10.42           | 10.37           | 10.355 | 10.35           | 10.35  | 10.35  |                   |
| $10^4$ tand         | 61.3            | 16.3            | 5.27   | 2.28            | .62    | .12    |                   |
| 400 κ               | 10.84           | 10.68           | 10.57  | 10.46           | 10.44  | 10.44  |                   |
| tan∂                | 0307            | .0133           | .00407 | .00103          | .00034 | .00006 |                   |
| 500 κ               | 12.60           | 11.28           | 10.86  | 10.71           | 10.63  | 10.62  |                   |
| tanδ                | .289            | .069            | .0237  | .0044           | .00082 | .0002  |                   |



and the second section of the second section is a second section of the second section section is a second section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section sec

#### Alumina (cont.)



General Electric Co.

A-919 (97%  $\mathrm{Al}_{2}\mathrm{O}_{3}$ , magnesia-free)

Density,  $g/cm^3$ :  $(10^2 \text{ to } 10^8 \text{ Hz}) - 3.747$  $(8.5 \text{x} 1.0^9 \text{ Hz}) - 3.750$ 

|                   |       |       | Frequency in Hz |        |                 |                 |                 |                     |  |
|-------------------|-------|-------|-----------------|--------|-----------------|-----------------|-----------------|---------------------|--|
|                   |       | 102   | 10 <sup>3</sup> | 104    | 10 <sup>5</sup> | 10 <sup>6</sup> | 10 <sup>7</sup> | 8.5×10 <sup>9</sup> |  |
| $T^{\mathbf{O}}C$ |       |       |                 |        |                 |                 |                 |                     |  |
| 25                | κ     | 10.33 | 9.95            | 9.62   | 9.45            | 9.38            | 9.37            | 9.35                |  |
|                   | tan 6 | .0240 | .0251           | .0206  | .0082           | .00139          | .00030          |                     |  |
| 100               | κ     | 10.29 | 9.88            | 9.60   | 9.51            | 9.49            | 9.49            | .00069              |  |
|                   | tan 6 | .0316 | .0252           | .0123  | .00303          | .00048          | .00025          |                     |  |
| 200               | κ     | 9.74  | 9.62            | 9.60   | 9.59            | 9.59            | 9.59            |                     |  |
|                   | tan ô | .0210 | .0046           | .00089 | .00021          | .00006          | <.0001          |                     |  |
| 300               | κ     | 10.32 | 9.89            | 9.79   | 9.78            | 9.77            | 9.77            |                     |  |
|                   | tan ô | .0760 | .0237           | .00475 | .00097          | .00033          | .00010          |                     |  |
| 400               | ĸ     | 14.38 | 11.13           | 10.18  | 9.96            | 9.90            | 9.89            |                     |  |
|                   | tan ô | 1.65  | .295            | .0590  | .0106           | .00195          | .00063          |                     |  |
| 500               | κ     | 16.56 | 13.67           | 11.44  | 10.37           | 10.08           | 10.03           |                     |  |
|                   | tan 8 | 3     | 6.83            | .866   | .122            | .0203           | .0035           |                     |  |

## Aluminum oxide, multicrystalline

General Electric Company

A-923 (97% A1<sub>2</sub>0<sub>3</sub>)

Density,  $g/cm^3$ :  $(10^2 \text{ to } 10^8 \text{ Hz}) - 3.740$  $(8.5 \text{x} 10^9 \text{ Hz}) - 3.740$ 

#### Frequency in Hz

| T <sup>O</sup> C |   | 10 <sup>2</sup> | 10 <sup>3</sup> | 104   | 10 <sup>5</sup> | 10 <sup>6</sup> | 107    | 8.5x10 <sup>9</sup> |
|------------------|---|-----------------|-----------------|-------|-----------------|-----------------|--------|---------------------|
| 25 κ             |   | 10.26           | 10.23           | 10.10 | 9.61            | 9.28            | 9.27   | 9.24                |
| tan              | δ | .00227          | .00432          | .0173 | .0357           | .00952          | .00165 | .00067              |
| 100 K            |   | 10.33           | 10.30           | 10.19 | 9.72            | 9.40            | 9.39   |                     |
| tan              | δ | .00330          | .00352          | .0178 | .0320           | .0118           | .00157 |                     |
| 200 K            |   | 10.18           | 9.73            | 9.55  | 9.53            | 9.50            | 9.50   |                     |
| tan              | δ | .0349           | .0238           | .0073 | .00200          | .0089           | .00040 |                     |
| 300 к            |   | 10.38           | 9.84            | 9.74  | 9.65            | 9.64            | 9.64   |                     |
| tan              | δ | .0678           | .0232           | .0074 | .00313          | .00167          | .00112 |                     |
| 400 K            |   | 12.50           | 10.48           | 9.97  | 9.82            | 9.80            | 9.79   |                     |
| tan              | δ | .205            | .082            | .0228 | .00735          | .0035           | .0017  |                     |
| 500 K            |   | 16.72           | 13.93           | 10.98 | 10.08           | 9.95            | 9.91   |                     |
| tan              | δ | 8.03            | 1.20            | .240  | .0444           | .00976          | .0037  |                     |

### A-923 (97% Al<sub>2</sub>0)

Density 3.740 g/cm<sup>3</sup>

Freq. 3.74 - 3.37 GHz

| TOC | κ     | t <b>a</b> n ô | TOC  | κ     | tan δ  |
|-----|-------|----------------|------|-------|--------|
| 25  | 9.31  | .00039         | 705  | 10.42 | .00215 |
| 99  | 9.41  | .00042         | 800  | 10.63 | .00265 |
| 184 | 9.58  | .00053         | 903  | 10,86 | .0033  |
| 281 | 9.72  | .00070         | 973  | 10.98 | 。0040  |
| 356 | 9.84  | .00090         | 1025 | 11.17 | .0045  |
| 430 | 9.96  | .00112         | 1050 | 11.22 | .0050  |
| 562 | 10.17 | .00160         | 1109 | 11.38 | .0060  |
|     |       |                | 1132 | 11.41 | .010   |

A-976 (near 100%)

|                     |                 |                 |       | Frequenc        | y in Hz         |       |                       |
|---------------------|-----------------|-----------------|-------|-----------------|-----------------|-------|-----------------------|
| T <sup>o</sup> C    | 10 <sup>2</sup> | 10 <sup>3</sup> | 104   | 10 <sup>5</sup> | 10 <sup>6</sup> | 107   | 8.5 x 10 <sup>9</sup> |
| 25 K                | 9.90            | 9.90            | 9.90  | 9.90            | 9.90            | 9.90  | 9.81                  |
| $10^6$ tand         | 70              | 34              | 20    | 10              | <10             | <10   | 66                    |
| 100 K               | 10.01           | 10.01           | 10.00 | 10.00           | 10.00           | 10.00 |                       |
| $10^5$ tand         | 15              | 7               | 3     | 1.5             | <1              | <1    |                       |
| 200 K               | 10.14           | 10.12           | 10.11 | 10.11           | 10.11           | 10.1  |                       |
| $10^5$ tanó         | 66              | 23              | 8     | 6               | 3               | <1    |                       |
| 300 K               | 10.32           | 10.29           | 10.26 | 10.26           | 10.26           | 10.26 |                       |
| $10^4$ tan $\delta$ | 25              | 11              | 3.8   | 1.1             | .4              | .2    |                       |
| 400 K               | 10.65           | 10.50           | 10.43 | 10.42           | 10.41           | 10.41 |                       |
| $10^4$ tan $\delta$ | 395             | 102             | 27.8  | 8.7             | 2.9             | 1.0   |                       |
| 500                 | 11.30           | 10.81           | 10.65 | 10.59           | 10.58           | 10.56 |                       |
| 10 <sup>3</sup> tan | 461             | 118             | 22.4  | 4.59            | 1.97            | 1.1   |                       |

Density of disk - 3.919; density of cylinder - 3.917

#### Aluminum oxide, multicrystalline

A-1000 (99.8%  $Al_2O_3$ , fine grained)

Density,  $g/cm^3$ :  $(10^2 \text{ to } 10^8 \text{ Hz}) - 3.900$  $(8.5 \times 10^9) - 3.896$  General Electric Company

|     |       |                 |                 | Freque | ncy in Hz |                 |        |                     |
|-----|-------|-----------------|-----------------|--------|-----------|-----------------|--------|---------------------|
| TOC |       | 10 <sup>2</sup> | 10 <sup>3</sup> | 104    | 105       | 10 <sup>6</sup> | 107    | 8.5x10 <sup>9</sup> |
| 25  | K     | 10.08           | 10.08           | 10.07  | 10.04     | 9.98            | ý.96   | 9.77                |
|     | tan 6 | .00048          | .00048          | .00135 | .00354    | .00664          | .00612 | .00258              |
| 100 | K     | 10.20           | 10.16           | 10.15  | 10.15     | 10.15           | 10.15  |                     |
|     | tan ô | .00184          | .00077          | .00037 | .00058    | .00208          | .0061  |                     |
| 200 | K     | 10.39           | 10.36           | 10.33  | 10.33     | 10.31           | 10.29  |                     |
|     | tan δ | .00344          | .00198          | .00101 | .00045    | .00051          | .00170 |                     |
| 300 | κ     | 10.65           | 10.55           | 10.51  | 10.47     | 10.45           | 10.44  |                     |
|     | tan 6 | .0193           | .0059           | .00226 | .00079    | .00049          | .00065 |                     |
| 400 |       | 11.86           | 10.89           | 10.68  | 10.63     | 10.60           | 10.58  |                     |
|     | tan ô | .213            | .0461           | .00936 | .00208    | 00076           | .00057 |                     |
| 500 |       | 33.3            | 13.98           | 11.28  | 10.83     | 10.80           | 10.76  |                     |
|     | tan ô | 1.212           | .585            | .130   | .0201     | .00341          | .00135 |                     |

#### General Electric Company

#### Aluminum oxide, multicrystalline

A-1004 (94% A1<sub>2</sub>0<sub>3</sub>)

At  $25^{\circ}$ C:  $2 \times 10^{4}$  Hz,  $\kappa = 10.10$ ,  $\tan \delta = .0426$ ;  $5 \times 10^{4}$  Hz,  $\kappa = 9.76$ ,  $\tan \delta = .0536$ ;  $3 \times 10^{5}$ ,  $\kappa = 9.19$ ,  $\tan \delta = .0341$ .

Density,  $g/cm^3$ :  $(10^2 \text{ to } 10^8 \text{ Hz}) - 3.645$  $(8.5 \times 10^9 \text{ Hz}) - 3.649$ 

#### Frequency in Hz

| T <sup>O</sup> C | 10 <sup>2</sup> | 10 <sup>3</sup> | 104    | 10 <sup>5</sup> | 106    | 107    | 8.5x10 <sup>9</sup> |
|------------------|-----------------|-----------------|--------|-----------------|--------|--------|---------------------|
| 25 K             | 10.48           | 10.41           | 10.26  | 9.51            | 9.10   | 9.00   | 9.01                |
| tan δ            | .00226          | .00716          | .0319  | .0534           | .0142  | .00228 | .00125              |
| 100 K            | 10.63           | 10.55           | 10.48  | 9.89            | 9.19   | 9.10   |                     |
| tan 6            | .00355          | .00555          | .0208  | .0505           | .0271  | .0515  |                     |
| 200 K            | 10.49           | 9.73            | 9.34   | 9.25            | 9.21   | 9.20   |                     |
| tan ô            | .0450           | .0439           | . 0171 | .0047           | .00163 | .00105 |                     |
| 300 K            | 10.52           | 9.81            | 9.55   | 9.44            | 9.37   | 9.36   |                     |
| tan 6            | .0767           | .043            | .0132  | .0059           | .0022  | .0020  |                     |
| 400 K            | 12.63           | 10.39           | 9.78   | 9.54            | 9.43   | 9.36   |                     |
| tan ô            | .227            | .0887           | .033   | .0136           | .0072  | .0040  |                     |
| 500 K            | 19.19           | 12.59           | 10.55  | 10.03           | 9.83   | 9,74   |                     |
| tan ô            | 1.16            | .452            | .121   | .0298           | .0133  | .0071  |                     |

### A-1004 (94% $Al_2\theta_3$ ), density 3.649 g/cm<sup>3</sup>

#### Freq. 1.80 - 3.61 GHz

| Toc | K     | tan 6  |
|-----|-------|--------|
| 25  | 9.02  | .00076 |
| 100 | 9.11  | .00078 |
| 200 | 9.26  | .00081 |
| 300 | 9.40  | .00093 |
| 400 | 9.55  | .00109 |
| 500 | 9.69  | .00128 |
| 600 | 9.84  | .00177 |
| 650 | 9.92  | .00335 |
| 700 | 10.00 | .0093  |







High-purity alumina at SO GHz,  $25^{\circ}$ C  $\kappa' = 9.5$ , tan  $\delta = 1 \times 10^{-5}$ 



Kearfott





#### Alumina (cont.)

Aluminum oxide, multicrystal, 1959 Raytheon Company





#### Steatit-Magnesia Aktiengesellschaft







Alumina (cont.)





Alumica: Western Gold and Platinum
AL-300 modified
Density 3.771 g/cm<sup>3</sup>
4.1 to 3.85 GHz



| $T^{o}C$   | $\kappa^{\scriptscriptstyle 1}$ | $tan \ \delta$ |
|------------|---------------------------------|----------------|
| 25         | 9. 39                           | .00037         |
| 122        | 9.48                            | .00037         |
| 185        | 9.55~                           | .00038         |
| 258        | 9.63                            | .00038         |
| 339        | 9.74                            | .00041         |
| 393        | 9.79                            | .00045         |
| 500        | 9.95                            | .00055         |
| 572        | 10.08                           | .00064         |
| 788        | 10.43                           | .00120         |
| 881        | 10.63                           | . 00219        |
|            | At 25°C                         |                |
| f (Hz)     |                                 |                |
| 107        | 9.44                            | .00012         |
| 109        | 9.40                            | .00035         |
| 3 x 10 9   | 9. 39                           | .00037         |
| 8.5 x 10 9 | 9.38                            | .00046         |







Beryllium oxide
BeO crystal KSC 7011A
Electronic Space Products Inc.

E || c axis  $10^2$  to  $10^7$  Hz  $\kappa' = 7.41 \pm 0.1$ tan  $\delta < 0.0006$  Beryllium oxide (cont.)

American Lava AlSiMag 754 (99.5% BeO) Density 2.851 g/cm<sup>3</sup>

8.52 GHz

| $T^{o}C$ | $\kappa^{_1}$ | $tan \ \delta$ |
|----------|---------------|----------------|
| 25       | 6.86          | .00031         |
| 300      | 6.98          | .00055         |
| 500      | 7.13          | .00062         |





#### Beryllium oxide (cont.)



0.003

0.002

0.00

Coors Porcelain Co. Beryllia BD98 8.52 GHz

| T <sup>o</sup> C | $K^1$ | $tan \ \delta$ |
|------------------|-------|----------------|
| 25               | 6.67  | .00050         |
| 300              | 6.87  | .00072         |
| 500              | 7.13  | .00102         |

## National Beryllia Corp. Berlox

#### 8.52 GHz

| ToC | K'   | tan δ   |
|-----|------|---------|
| 25  | 6.64 | . 00043 |
| 300 | 6.77 | .00068  |
| 500 | 6.98 | . 00093 |

tan 8

1000

1200

600 600 Temperature \*C



#### Beryllium oxide, multicrystal



Beryllium silicate crystal KSC 7013

Electronic Space Products Inc.

E II optic axis

f (Hz) 
$$\kappa^{\dagger}$$
 tan  $\delta$ 

$$10^{2}$$
 5.1 ± . 5 . 0025

$$10^5$$
 "  $.0003 \pm 2$ 

 $\mathrm{Bi_{4}Si_{3}O_{12}}$  ceramic

Laboratory for Insulation Research



Boron nitride, hexagonal,  $3000^{\rm O}{\rm C~sublimes}$  Average dielectric constant versus density



Boron nitride
(hot-pressed, after vacuum treatment)
Density in g/cm<sup>3</sup>

Battelle Memorial Institute

| 8.52 GHz, 25°C |             |      |        |  |  |
|----------------|-------------|------|--------|--|--|
| Sample         | Density     | κ    | tan ö  |  |  |
| 115H7          | <b>Name</b> | 4.37 | .00030 |  |  |
| 118H7          | 2.132       | 4.87 | .00025 |  |  |



Boron nitride, hot-pressed Grade A, 25°C

#### Carborundum

A Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Comp

| Sample Density direct. (Hz) 10 <sup>2</sup> 10 <sup>3</sup> 10 <sup>4</sup> 10 <sup>5</sup> 10 <sup>6</sup> 10 <sup>7</sup> 10 <sup>8</sup> No. (g/cm <sup>3</sup> )  1 2.084 unknown K 4.23 4.12 4.090 4.087 4.086 4.080 4.08  tan6 11.8 10.4 7.9 4.3 3.1 2.7 2.6  2 2.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. (g/cm <sup>3</sup> )  1 2.084 unknown K 4.23 4.12 4.090 4.087 4.086 4.080 4.08  tan6 11.8 10.4 7.9 4.3 3.1 2.7 2.6  2 2.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1 2.084 unknown K 4.33 4.12 4.090 4.087 4.086 4.080 4.08 tan6 11.8 10.4 7.9 4.3 3.1 2.7 2.6  2 2.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| tan6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3       2.066          K       3.99       3.99       3.98       3.98       3.98       3.97         tanô       6.9       5.6       4.5       3.0       2.4       1.1         4 (various not meas.)       unknown K       4.46       4.46       4.46       4.61       4.61         5       2.099       unknown K       4.62       4.615       4.599       4.605         5       2.091       1       K       4.62       4.615       4.599         tanô       2.6       3.7       3.8       3.8         7       2.097       mixed       K       4.36       4.359       4.352         tanô       2.2       1.3       1.5       4.586         4       4.550       4.550         9       2.077       1       K       4.550         4       4.266       4.266 |
| 3 2.066   K 3.99 3.99 3.98 3.98 3.98 3.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| tan6 6.9 5.6 4.5 3.0 2.4 1.1  (Hz)3x108 109 3x109 8.5x109 1.4x1010 2.4x1010  4 (various unknown K 4.46 4.46 4.46 4.46 4.61 4.61 fan6 4.0 3.3 3.4 5.8 3.5  5 2.099 unknown K 4.62 4.615 4.599 20  6 2.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (Hz)3x10 <sup>8</sup> 10 <sup>9</sup> 3x10 <sup>9</sup> 8.5x10 <sup>9</sup> 1.4x10 <sup>10</sup> 2.4x10 <sup>10</sup> 4 (various unknown K 4.46 4.46 4.46 4.66 4.61 4.61 4.61 4.65  tan6 4.0 3.3 3.4 5.8 3.5  5 2.099 unknown K 4.62 4.615 4.599  tan6 2.6 3.7 3.8  7 2.097 mixed K 4.36 4.359 4.352  tan7 2.2 1.3 1.5  8 2.069                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4 (various unknown K 4.46 4.46 4.46 4.46 4.61 4.61 and meas.)  tanó 4.0 3.3 3.4 5.8 3.5  5 2.099 unknown K 4.695  tanó 20  6 2.091 1 K 4.62 4.615 4.599  tanó 2.6 3.7 3.8  7 2.097 mixed K 4.36 4.359 4.352  tanó 2.2 1.3 1.5  8 2.069 1 K 4.386  tanó 6.4  9 2.077 1 K 4.550  tanó 3.6 4.268                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| not meas.)     tan6     4.0     3.3     3.4     5.8     3.5       5     2.099     unknown     K     4.605       tan6     20       6     2.091     L     K     4.62     4.615     4.599       tan6     2.6     3.7     3.8       7     2.097     mixed     K     4.36     4.359     4.352       tan6     tan6     4.586       tan6     6.4       9     2.077     L     K     4.550       tan6     3.6       9     H     H     K     4.268                                                                                                                                                                                                                                                                                                              |
| 5 2.099 unknown K 4.605  tand 20 6 2.091 1 K 4.62 4.615 4.599  tand 2.6 3.7 3.8 7 2.097 mixed K 4.36 4.359 4.352  tand 2.2 1.3 1.5 8 2.069 1 K 4.586  tand 6.4 9 2.077 1 K 4.550  tand 3.6 9 " U K 4.268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| tanó 20 6 2.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6 2.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| tano 2.6 3.7 3.8  7 2.097 mixed K 4.36 4.359 4.352  tano 2.2 1.3 1.5  8 2.069 L K 4.586  tano 6.4  9 2.077 L K 4.550  tano 3.6  9 " U K 4.266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7 2.097 mixed K 4.36 4.359 4.352  tand 2.2 1.3 1.5  8 2.069 L K 4.586  tand 6.4  9 2.077 L K 4.550  tand 3.6  9 " U K 4.268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| tano 2.2 1.3 1.5 8 2.069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8 2.069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| tanó 6.4  9 2.077 <u>1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9 2.077 <u>1</u> K 4.550<br>tan <sup>5</sup> 3.6\<br>9 "    K 4.268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| tanó 3.6 \ 9 "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 9 "    1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 10 L K 4.268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| tanó 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11 2.093 i s 4.53 4.53 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 88 6.070 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 13 2.095 L K 4.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 13 " U K *-24 3.2 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

## Boron nitride, hot-pressed Grade HP, 25°C

The Carborundum Company Refractories & Electronics Division Whirlpool Technical Center Niagara Falls, N.Y., 14302

#### All tan 4 values multiplied by 104

|       |                        | Field   |           |      |                    |       |                   |                 |                    |                      |                      |
|-------|------------------------|---------|-----------|------|--------------------|-------|-------------------|-----------------|--------------------|----------------------|----------------------|
| Samp1 | le Density             | direct. | •         | (Hz) | 10 <sup>2</sup>    | 103   | 104               | 10 <sup>5</sup> | 106                | 107                  | 10 <sup>8</sup>      |
| No.   | . (g/cm <sup>3</sup> ) |         |           |      |                    |       |                   |                 |                    |                      |                      |
| 1     | 2.120                  | unknovi | ı K       |      | 4.59               | 4.56  | 4.54              | 4.54            | 4.54               | 4.54                 | 4.54                 |
|       |                        |         | tanó      |      | 8.5                | 3.58  | 2.30              | 2.3             | 2.3                | 2.8                  | 3.5                  |
| 2     | 1.762                  | T       | K         |      | 4.14               | 4.02  | 3.97              | 3.96            | 3.9ó               | 3.96b                |                      |
|       |                        |         | tanó      |      | 414                | 174   | 41.6              | 9.9             | 3.4                | 2.0                  |                      |
| 3     | 2.131                  | H       | K         |      | 4.71               | 4.64  | 4.54              | 4.46            | 4.40               | 4.32                 |                      |
|       |                        |         | tand      |      | 100                | 110   | 120               | 125             | 141                | 123                  |                      |
|       |                        |         |           | (Hz) | 3x1:0 <sup>8</sup> |       | 3×10 <sup>9</sup> | 8               | .5x10 <sup>9</sup> | 1.4x10 <sup>10</sup> | 2.4×10 <sup>10</sup> |
|       | (various not meas.)    |         |           |      |                    | 4.59  | 4.59              | 4               | . 39               | 4.62                 | 4.57                 |
|       |                        |         | tand      |      | 2.7                | 3.5   | 4.2               | 6               | . \$\$             | 6.0                  | 6.0                  |
| 5     | 1.999                  | unknown |           |      |                    |       |                   |                 |                    |                      |                      |
|       |                        |         | tanó      |      |                    |       |                   |                 |                    |                      |                      |
| 6     | 2.033                  | 1       | K .       |      |                    |       | 4.457             |                 |                    |                      |                      |
|       |                        |         | tand      |      | 5.3                | 4.6   | 6.0               |                 |                    |                      |                      |
| 7     | 1.748                  | mixed   | ¥,        |      |                    | 3.880 | 3.876             |                 |                    |                      |                      |
| _     |                        |         | tand      | -    | 4.1                | 4.7   | 4.0               |                 | • • •              |                      |                      |
| . 8   | 2.111                  | Ţ       | .¢        |      |                    |       |                   |                 | 584                |                      |                      |
| _     |                        |         | tand      |      |                    |       |                   | <b>\$.</b> !    |                    |                      |                      |
| 9     | 2.061                  | T       | 4         |      |                    |       |                   | à.;             |                    |                      |                      |
| 9     | 44                     | U       | tané<br>K |      |                    |       |                   | 7.j<br>4.j      |                    |                      |                      |
| 7     |                        |         | taná      |      |                    |       |                   | 7.1             |                    |                      |                      |
| 10    | 2.117                  | 1       | K.        |      |                    |       |                   | ₹ . •           | •                  | . <b>.</b>           |                      |
| **    | 2.117                  |         | Land      |      |                    |       |                   |                 |                    | 4.75                 |                      |
| 11    | 2.063                  | 1       | <b>K</b>  |      |                    |       |                   |                 |                    | 8.0<br>4.55          |                      |
|       |                        | _       | tand      |      |                    |       |                   |                 |                    | 8.7                  |                      |
| 11    | 44                     | u       | K.        |      |                    |       |                   |                 |                    | 4.51                 |                      |
|       |                        |         | tanč      |      |                    |       |                   |                 |                    | 5.8                  |                      |
| 12    | 2.118                  | 1       | K         |      |                    |       |                   |                 |                    | •••                  | 4.69                 |
|       |                        |         | tanô      |      |                    |       |                   |                 |                    |                      | 2,5                  |
| 13    | 2.066                  | 1       | *         |      |                    |       |                   |                 |                    |                      | 4.6                  |
|       |                        | _       | tanå      |      |                    |       |                   |                 |                    | . •                  | 7.3                  |
| 13    | •                      | u       | ĸ         |      |                    |       |                   |                 |                    | •                    | 4.48                 |
|       |                        | +       | taní      |      |                    | 48    |                   |                 |                    |                      | 9.2                  |
|       |                        |         |           |      |                    | ~0    |                   |                 |                    |                      |                      |

Carborundum

A control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the cont

|        |                      |         |       |      |                   | All tan | δ value           | s multi | plied | by 10 <sup>4</sup>   |                      |
|--------|----------------------|---------|-------|------|-------------------|---------|-------------------|---------|-------|----------------------|----------------------|
| Sample | Density              | Field   |       | (Hz) |                   |         | 104               |         |       |                      | 108                  |
| No.    | (g/cm <sup>3</sup> ) | 0.2000  | •     | ()   |                   |         |                   |         |       |                      |                      |
| 1      |                      | unknown | ĸ     |      | 3.71              | 3.70    | 3.69              | 3.69    | 3.69  | 3.68                 | 3.68                 |
| -      |                      |         | tanó  |      | 4.0               | 2.78    | 2.22              | 2.07    | 1.63  |                      | 2.3                  |
| 2      | 2.107                | T       | ĸ     |      | 4.34              | 4.33    | 4.32              | 4.30    | 4.30  |                      |                      |
|        |                      | _       | tanó  |      | 16.9              | 14,3    | 10.5              | 6.6     | 3.7   |                      |                      |
| 3      | 2.109                | 11      | *     |      | 3.76              | 3.76    | 3.76              | 3.75    | 3.75  |                      |                      |
|        |                      | -       | tanó  |      | 7.4               |         |                   | 4.6     | 3.4   |                      |                      |
|        |                      |         |       | (Hz) | 3x10 <sup>8</sup> | 109     | 3x10 <sup>9</sup> | 8.5x1   | 09    | 1.4x10 <sup>10</sup> | 2.4x10 <sup>10</sup> |
| 4      | (various             |         | K     |      | 4.24              | 4.24    | 4.24              |         |       | 4.32                 |                      |
|        | not meas.)           | )       | tanó  |      | 2.8               | 3.1     | 3.7               |         |       | 5.5                  |                      |
| 5      | 2.145                |         | ĸ     |      |                   |         |                   | 4.328   |       |                      |                      |
|        |                      |         | tand  |      |                   |         |                   | 4.1     |       |                      |                      |
| 6      | 2.137                | 1       | ĸ     |      | 4.27              | 4.27    | 4.255             |         |       |                      |                      |
|        |                      |         | tanŝ  |      | 3.8               | 4.9     | 4.9               |         |       |                      |                      |
| 7      | 2.118                | mi xed  | ĸ     |      | 3.99              | 3.992   | 3.983             |         |       |                      |                      |
|        |                      |         | tané  |      | 3.9               | 4.5     | 5.2               |         |       |                      |                      |
| 8      | 2.095                | 1       | ĸ     |      |                   |         |                   | 4.192   |       |                      |                      |
|        |                      |         | tané  |      |                   |         |                   | 6.6     |       |                      |                      |
| 9      | 2.120                | 1       | ĸ     |      |                   |         |                   | 4.332   |       |                      |                      |
|        |                      |         | tanš  |      |                   |         |                   | 6.2     |       |                      |                      |
| 9      |                      | H       | ĸ     |      |                   |         |                   | 3,668   | 1     |                      |                      |
|        |                      |         | tanš  |      |                   |         |                   | 8.5     |       |                      |                      |
| 10     | 2.125                | T       | ĸ     |      |                   |         |                   |         |       | 4.23                 |                      |
|        |                      |         | tand  |      |                   |         |                   |         |       | 5.4                  |                      |
| 11     | 2.123                | 1       | ĸ     |      |                   |         |                   |         |       | 4.293                |                      |
|        |                      | •       | tuns  |      |                   |         |                   |         |       | 11,0                 |                      |
| 11     | **                   | 1 .     | ĸ     |      |                   |         |                   |         |       | 3.63                 |                      |
|        |                      |         | taré  |      |                   |         |                   |         |       | 7.8                  |                      |
| 12     | 2.066                | 1       | ĸ     |      |                   |         |                   |         |       | •                    | 4.22                 |
|        |                      |         | taré  |      |                   |         |                   |         |       |                      | 6.1                  |
| 13     | 2.121                | 1       | 4     |      |                   |         |                   |         |       |                      | 4.28                 |
|        |                      |         | t and |      |                   |         |                   |         |       |                      | 7.9                  |
| . • .  | **                   | U       | *     |      |                   |         |                   |         |       |                      | 3.64                 |
|        |                      |         | ens!  |      |                   |         |                   |         |       |                      | 10.5                 |

BN, pyrolytically deposited, High-Temperature Materials, Inc., "Boralloy." The microwave data show a small peak possibly due to loss of impurities (perhaps OH ions) at about 800°C. Graphite electrodes and prepurified N2 used in low-frequency measurements which showed variations among different samples.



Boron nitride, pyrolytically deposited

High-Temperature Materials, Inc. Division of Union Carbide



Density 1. 23 g/cm<sup>3</sup>



At 5.74 to 5.65 GHz

Density 1. 398 g/cm<sup>3</sup>



Density 1.23 g/cm<sup>3</sup> At 9.21 to 9.04 GHz



Post-treated samples, measured at 8.52 GHz, 25°C

| Density<br>(g/cm <sup>3</sup> ) | κ     | tan δ               |
|---------------------------------|-------|---------------------|
| 1.233                           | 2.994 | $.00008 \pm .00002$ |
| 1.237                           | 3.013 | $.00005 \pm .00003$ |

Sample 2A + 2B, density at  $25^{\circ}$ C 1.381

|                  | 5.07  | to 5.00 GHz       |
|------------------|-------|-------------------|
| т <sup>о</sup> с | κ     | tan δ             |
| 25               | 3.199 | <.0002            |
| . 200            | 3.212 | <.0002            |
| 400              | 3.226 | <.0002            |
| 600              | 3.241 | $.0002 \pm .0001$ |
| 800              | 3.255 | $.0002 \pm .0001$ |
| 1000             | 3.272 | $.0002 \pm .0001$ |
| 1200             | 3.288 | $.0002 \pm .0001$ |
| 1300             | 3.297 | $.0003 \pm .0002$ |
| 1400             | 3.309 | $.0007 \pm .0004$ |

Test for anisotropic effects at 8.52 GHz, 25°C, by rotation and reversal of sample:

 $\kappa_{\text{max}} = 3.0018$   $\kappa_{\text{min}} = 2.9894$ 

Boron nitride

Pyrolytic laminate, Union Carbide

Boron nitride, Grade HD0086, density 1.940 g/cm<sup>3</sup>, 5.17 to 4.96 GHz



Boron nitride, hot-pressed Grade HD0056



Boron nitride, grade HD 0086

8.52 GHz

| T°C                                         | E                                        | $\kappa^{t}$                                         | tan δ                                                    |
|---------------------------------------------|------------------------------------------|------------------------------------------------------|----------------------------------------------------------|
| 25<br>25<br>100<br>200<br>300<br>400<br>500 | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4.31<br>4.10<br>4.08<br>4.07<br>4.06<br>4.05<br>4.05 | .00053<br>.00055<br>.00059<br>.00066<br>.00075<br>.00086 |

Grade HD 0092, Grade HD 0093 Density 1.9165  $g/cm^3$ Density 1.9745 g/cm<sup>3</sup> At 8.52 GHz At 8.52 GHz  $\kappa_{\min} = 3.993 \quad \text{tan } \delta = 0.00025$  $\kappa^{\dagger} = 3.998 \pm 0.002$  $\kappa_{\text{max}} = 4.091$  $tan \delta = 0.00026$  $\tan \delta = 0.00052$ At 4.54 to 4.47 GHz At 4.53 to 4.44 GHz TOC T°C tan  $\delta$ tan  $\delta$ 25 4.08 .00026 25 4.003 .0005 113 4.08 .0003 207 4.048 .0004 185 4.09 .0005 393 4.072 .00045 322 4.09 .00055 513 4.088 .0004 423 4.10 .00040 593 4.101 .0007 530 4.11 .00035 798 4.146 .0030 639 4.12 .00040 852 4.166 .0052 752 4.13 .00045 891 4.204 .0040 863 4.13 .00050 1018 4.320 .0028 943 4.14 .00050 1077 4.479 .0057 1021 4.15 .00055 1094 4.485 .0071 1096 4.16 .00080 1110 4.54 .01 1170 4.16 .0013 .0026 943 4.25 1219 4.17 860 .0019 4.19 1287 4.18 .0034 25 4.01 1373 4.19 .0040 1427 4.20 .0028 Density check after run 1.916 4.22 1446 .0023 1460 4,24 .0044 1470 4.24 0046

Grade HD 0094, at 8.52 GHz

| Sample 2:        | density 1.3       | 03 g/cm <sup>3</sup> | At       | 5.30 to 5.26           | GHz    |
|------------------|-------------------|----------------------|----------|------------------------|--------|
| T°C              | κ                 | tan 6                | Density: | $1.303 \text{ g/cm}^3$ |        |
| 25               | 3.004             | .00033               | T°C      | ĸ                      | tan δ  |
| Sample 1:        | density 1.3       | 07 g/cm <sup>3</sup> | 25       | . 3.004                | .00033 |
| T <sup>O</sup> C | ·                 | •                    | 120      | 3.008                  | .00037 |
|                  |                   |                      | 203      | 3.012                  | .00039 |
| 25<br>93         | 3.016<br>3.02+.03 | .00033<br>.00030     | 325      | 3.018                  | .00044 |
| 192              | 0.0000            | .00035               | 404      | 3.021                  | .00043 |
| 339<br>471       |                   | .00037<br>.00040     | 498      | 3.026                  | .00046 |
| 602              | 3.04 <u>+</u> .03 | .00040               | 601      | 3.032                  | .00046 |
| 705<br>754       |                   | .00047<br>.00060     | 721      | 3.039                  | .00065 |
| 793              |                   | .00095               | 812      | 3.047                  | .00186 |
| 843<br>954       |                   | .0020<br>.0085       | 884      | 3.053                  | .00447 |
| 999              |                   | .0135                | 908      |                        | >.01   |

## Hot-pressed boron nitride, grade HBN

Carbon Products Division Union Carbide Corp. (Formerly National Carbon Co.)

4.95 to 4.88 GHz





Density 2.054 g/cm<sup>3</sup> 1" cylinder, 8.52 GHz

| ToC | <b>E</b> . | $K^{\dagger}$ | tan δ   |
|-----|------------|---------------|---------|
| 25  | 1          | 4.38          | . 00050 |
| 25  | 11         | 4, 52         | . 00056 |
| 100 | 11         | 4.52          | . 00056 |
| 200 | H          | 4, 51         | . 00061 |
| 300 | H          | 4.50          | .00064  |
| 400 | 11         | 4.49          | . 00066 |
| 500 | u          | 4.48          | . 00073 |

# Boron nitride, hot-pressed Grade HBR

Union Carbide Corporation Carbon Products Division

E ⊥ direction of pressing

| T <sup>o</sup> C |                        | 10 <sup>2</sup> | 103   | 104  | 10 <sup>5</sup> | 10 <sup>6</sup> | 10 <sup>7</sup> |
|------------------|------------------------|-----------------|-------|------|-----------------|-----------------|-----------------|
| 25               | κ                      | 4.77            | 4.77  | 4.76 | 4.76            | 4.76            | 4.76            |
|                  | $10^4$ tan $\delta$    | 18.2            | 7.1   | 4.9  | 1.5             | 1.4             | 0.9             |
| 100              | κ                      | 4 - 85          | 4.80  | 4.78 | 4.78            | 4.78            | 4.78            |
|                  | $10^4$ tan $\delta$    | 165             | 45.4  | 9.4  | 4.1             | 2.1             | 0.6             |
| 200              | κ                      | 5.26            | 4.96  | 4.85 | 4.82            | 4.81            | 4.81            |
|                  | .10 <sup>4</sup> tan δ | 596             | 277   | 101  | 39              | 5.4             | 23              |
| 300              | κ                      | 5.75            | 5.25  | 5.00 | 4.89            | 4.85            | 4.85            |
|                  | $10^4$ tan $\delta$    | 855             | 526   | 231  | 109             | 33.8            | 12.5            |
| 400              | κ                      | 6.75            | 5.70  | 5.21 | 5.00            | 4.88            | 4.87            |
|                  | $10^4$ tan $\delta$    | 28.0            | 11.57 | 4.95 | 2.3             | 1.2             | .37             |
| 500              | κ                      | 8.07            | 6.46  | 5.62 | 5.31            | 5.08            | 4.93            |
|                  | tan δ                  | 1.994           | .389  | .109 | .0419           | 024             | -014            |

### Boron nitride, Cold-pressed



## Union Carbide Corporation

Rod sample, at 8.52 GHz Density: 1.474 g/cm<sup>3</sup> At 25°C:

 $\kappa^{\dagger} = 3.412$ ; tan  $\delta = .00046$ 

Calcium carbonate (calcite)

Single crystal mineral,
hexagonal, decomposes at 894°C

Ell c, crystal No. 1









|       | At 25°C |                   |
|-------|---------|-------------------|
| Freq. | 105     | 6x10 <sup>7</sup> |
| ĸ     | 2.66    | 15.8              |
| tan s | 3.86    | 0.253             |

## Cr<sub>2</sub>0<sub>3</sub> single crystal

## The Linde Air Products Company



Cobalt oxide

Massachusetts Institute of Technology Crystal Physics Laboratory

Cobalt oxide-nickel oxide

At 25°C, 1 MHz

 $\kappa$  tan  $\delta$ 

CoO 12.9 .0005

CoO-NiO 40 .39

50/50 mole percent

For complete data see: k. V. Rao and A. Smakula, J. Appl. Phys. 36, 2031 (1965).

Copper halide pressed powders Massachusetts Institute of Technology Laboratory for Insulation Research

Measured values at 14 GHz

Sample density/X-ray density

 K¹
 tan 6

 Cutr
 4.85/5.17
 6.33 < .001</td>

 CuCl
 3.68/4.10
 6.52 < .001</td>

 Cut
 27.8 < .112</td>

Hafnium oxide (multicrystal) stabilized with  $Y_2O_3$ , nuclear grade Zircoa Y-790, density 7.445 g/cm<sup>3</sup> (m.p. 2810°C), see also p. 118



Lanthanum aluminate (LaA103), single crystal (m.p. 1612°C)

National Lead

Elec. field in [111] direction





#### Lead halides

M. I. T. Crystal Physics Laboratory

Union Carbide

|                      | Electric | field dir. | At 1 M    | Hz, 25°C | Activation energy for  |
|----------------------|----------|------------|-----------|----------|------------------------|
|                      | para     | allel to   | $\kappa'$ | tan δ    | "intrinsic" conduction |
| PbBr <sub>2</sub>    | a        | . 4.72     | 52.7      | .0052    | -                      |
| _                    | b        | 8.06       | 56. 3     | .0033    | •                      |
|                      | С        | 9.55       | 25.3      | .0033    | -                      |
| PbCl2                | a        | 4.53       | 47.4      | .11      | .30 eV                 |
|                      | ь        | 7.62       | 51.3      | .065     | .28 eV                 |
|                      | С        | 9.05       | 24.8      | .051     | .42 eV                 |
| PbCl <sub>2</sub> -P | -        |            | 28.5      | .016     | 1.1 eV                 |

For additional data on these materials see: A. Smakula, Tech. Rep. No. 6, (Final Report under Contract Nonr 1841(88)), M.I.T., Crystal Phys. Lab., March 11, 1965.

Magnesium aluminate (spinel) MgOAl203

Single crystal

Density at  $25.0^{\circ}$ ,  $3.57389 \text{ g/cm}^3$ 

At 8.52,  $25^{\circ}$ C:  $\kappa' = 8.26 \pm .04$ 

 $\tan \delta = .00009 + .00002$ 

Freq. 4.23 - 4.07 GHz

| TOC | κ <u>+</u> 02 | $ \hbox{tan } \delta$ |
|-----|---------------|-----------------------|
| 25  | 8,28          | .0001                 |
| 150 | 8.42          | •0002                 |
| 231 | 8.54          | .0002                 |
| 297 | 8.64          | •0003                 |
| 421 | 8.85          | .0010                 |
| 455 | 8.91          | .0025                 |

Magnesium aluminum silicate Cordierite ceramic, at 8.52 GHz Density 2.44 g/cm<sup>3</sup> Raytheon Company



Magnesium carbonate, hard-packed fine powder, reagent grade, at 8.52 GHz, 25°C:

> $K^{1}$  $tan \delta$

.0109 1.282

Density . 189  $g/cm^3$ 

Transparent MgO ceramic IRTRAN-5

Density =  $3.57 \text{ g/cm}^3$ ,  $25^{\circ}\text{C}$ 

f (Hz)

 $\text{tan }\delta$  $K^{1}$ 

102

.0014 9.82

 $8.5 \times 10^9$  9.72 .00045

Kodak





Frequency in cps



STATE OF THE PROPERTY OF THE PARTY OF THE PA

MgO ceramic, Minneapolis Honeywell Regulator Co., 99.95% MgO, density 3.52 g/cc.





Magnesium metasilicate, multicrystalline, F-66

Bell Telephone Laboratories

#### 14 GHz

| $T^{O}C$ | $\kappa^{\scriptscriptstyle 1}$ | tan δ  |
|----------|---------------------------------|--------|
| 25       | 6.37                            | .0012  |
| 100      | 6.39                            | .0012  |
| 200      | 6.43                            | .0012  |
| 300      | 6.47                            | .0012  |
| 400      | 6.52                            | .0013  |
| 500      | 6.58                            | .0015  |
| 600      | 6.67                            | .0020  |
| 700      | 6.75                            | .0047  |
| 800      | 6.85                            | . 0165 |

50 GHz

25 6.25 .0012

International Pipe and Ceramic Corp. (Gladding McBean and Co.)

Steatite TC-503, 8.52 GHz



## Magnesium orthosilicate, multicrystalline

General Electric Electronic Components Div.

|                      | 2               | 25 <sup>0</sup> C | 1    | 00 <sup>о</sup> с | ;    | 200 <sup>0</sup> с | 30   | o <sup>o</sup> c | 4    | ю°с              | 500   | o°c    | 550  | °c      |
|----------------------|-----------------|-------------------|------|-------------------|------|--------------------|------|------------------|------|------------------|-------|--------|------|---------|
| Freq. Hz             | ĸ               | tan δ             | κ    | tan δ             | ĸ    | tan δ              | κ    | tan δ            | κ    | tan δ            | κ     | tan δ  | ĸ    | tan δ   |
| 10 <sup>2</sup>      | 6.625           | .00098            | 6.70 | .00445            | 6.80 | .00134             | 6,91 | .00636           | 7.23 | .0662            | 8.78  | .421   |      |         |
| 103                  | 6.62            | .00027            |      | .00065            | 6.79 | .00076             | 6.89 | .00198           | 7.04 | .0127            | 7.44  | .0890  |      |         |
| 2x10 <sup>3</sup>    |                 |                   |      | .00086            |      |                    |      |                  |      |                  |       |        |      |         |
| 3x10 <sup>3</sup>    |                 |                   |      | .00098            | 6.78 | .00057             |      |                  |      |                  |       |        |      |         |
| ×10 <sup>3</sup>     |                 |                   |      | .00108            |      |                    |      |                  |      |                  |       |        |      |         |
| ×10 <sup>3</sup>     |                 |                   |      | .00110            |      |                    |      |                  |      |                  |       |        |      |         |
| 103<br>103           |                 |                   |      | .00102            |      |                    |      |                  |      |                  |       |        |      |         |
| .04                  | 6.62            | .00013            | 6.70 |                   | 6.78 | .00044             | 6.88 | .00090           | 6.98 | .00334           | 7.20  | .0188  |      |         |
| .05                  | 6-62            | .000110           | 6.69 | .00024            | 6.78 | .00064             | € 87 | .00051           | 6.96 | .00123           | 7.14  | .0049  |      |         |
| x10 <sup>5</sup>     |                 |                   |      |                   | 6.77 | .00098             |      |                  |      |                  |       |        |      |         |
| .06                  | 6.62            | .000072           | 6.69 | .00016            | 6.77 | .00074             | 6.85 | .00046           | 6.96 | .00069           | 7.09  | .00329 |      |         |
| 107                  | 6.62            | .00011            | 6.69 | .00024            | 6.77 | .00025             | € 84 | .00083           | 6.95 | .00023           | 7.08  | .00149 |      |         |
| 108                  |                 |                   |      |                   |      |                    |      |                  |      |                  |       |        |      |         |
| 3.5 x10 <sup>9</sup> | 6.59            | .00083            | 6.64 | ,00086            | 6.73 | ,00092             | 6.81 | .00100           | 6.90 | .00109           | 6.98  | .00119 | 7.03 | .00124  |
| 2.4x10 <sup>10</sup> |                 |                   |      |                   |      |                    |      |                  |      |                  |       |        |      |         |
| -202                 |                 |                   |      |                   |      |                    |      |                  |      |                  |       |        |      |         |
|                      | 25 <sup>0</sup> | С                 | 100  | °c                | 200° | C                  | 300  | o <sup>o</sup> c | 40   | о <sup>о</sup> с | 500   | °c     |      | 550°C   |
| req. Hz              | ĸ               | tan 6             | ĸ    | tan δ             | K    | tan 6              | ĸ    | tan ô            | ĸ    | tan 6            | ĸ     | tan 6  |      |         |
| o <sup>2</sup>       | 6.77            | .000515           | 6.86 | .00107            | 6.99 | .00077             | 7.26 | .02835           | 9.74 | .508             | 14.73 | 4.29   |      |         |
| 03                   | 6.76            | .000293           | 6.85 | .00063            | 5.98 | ,00202             | 7.14 | .0076            | 7.70 | .142             | 10.08 | .822   |      |         |
| 04                   | 6,76            | .000240           | 6.84 | .00056            | 6.96 | .00124             | 7.08 | .0037            | 7.34 | .0293            | 8,13  | .178   |      |         |
| .05                  | 6,76            | .000233           | 6.83 | .00035            | 6.95 | .00077             | 7.06 | .0017            | 7,22 | ,00705           | 7.40  | ,0474  |      |         |
| 06                   | 6.76            | .000245           | 6,83 | ,00032            | 6,94 | ,00067             | 7.06 | .00120           | 7.18 | .0025            | 7.31  |        |      |         |
| 07                   |                 |                   |      |                   |      |                    |      |                  |      |                  |       |        |      |         |
|                      | 6.76            | .00025            | 6,83 | .00025            | 6.94 | .00052             | 7.05 | .00098           | 7.15 | .00153           | 7.28  | .00394 |      |         |
| 08                   |                 |                   |      |                   |      |                    |      |                  |      |                  |       |        |      |         |
| _                    |                 |                   |      |                   |      |                    |      |                  |      |                  |       |        |      |         |
| .5x10 <sup>9</sup>   | 6.74            | ,08000,           | 6.81 | .00090            | 6.92 | .0015              | 7.02 | .0014            | 7.13 | .0019            | 7.23  | .0027  | 7    | .28 .00 |

Density of disk 3.087, cylinder 3.086  $\mathrm{g/cm}^3$ 





Manganese fluoride crystal (MnF2)

Columbia University

i (Hz)  $\kappa'$  tan 5  $10^{3}$  7.2±.2 .043  $10^{7}$  6.7±.2 <.004

E 1 to platelike, unoriented crystal

Mercury compounds, hot-pressed

| Theore.<br>density | ű      | Sample<br>No. | (S/0)/8) | To C      |        | 102     | 103    | 104    | 105    | 106    | 107    | 8.5x10 <sup>9</sup> |
|--------------------|--------|---------------|----------|-----------|--------|---------|--------|--------|--------|--------|--------|---------------------|
| 6.27               | Hally. | r-i           | ŧ        | 53        | ¥      |         | 13.7   |        |        | 11.8   |        | 13.4                |
|                    | ı      |               |          |           | tan 6  |         | 191.   |        |        | .0034  |        | .0037               |
|                    |        | ſ4            | 87.5     | 2.5       | ₩      |         | 14.3   |        |        | 12.57  |        |                     |
|                    |        |               |          |           | ton o  |         | 302.   |        |        | .0026  |        |                     |
|                    |        | ľ.            | \$.69    | 77        | M      |         |        |        |        |        |        | 13.9                |
|                    |        |               |          |           | ran 6  |         |        |        |        |        |        | < .003              |
|                    |        | 4             | \$ . 56  | \$3       | ы      | 16.11   | 13.15  |        | 12.39  | 12.38  | 12.37  |                     |
|                    |        |               |          |           | tan 6  | .828    | .154   |        | .00427 | .00117 |        |                     |
|                    |        |               |          | Ş         | K      | 64.35   | 16.87  |        | 12.98  | 12.90  |        |                     |
|                    |        |               |          |           | tan 6  | 2.33    | .888   |        | .0264  |        | .00095 |                     |
|                    |        |               |          | 25        |        | 15.45   | 13.03  |        | 12.42  |        |        |                     |
|                    |        |               |          |           | tan 6  | .713    | .1.85  | .0334  | .0057  | _      |        |                     |
| 7.15               | 概に     | ***           | 5.36     | \$2       |        | 7.49    | 7.48   |        |        | 7.46   | 7.45   |                     |
|                    |        |               |          |           | Can &  | .0013   | 77000. |        |        | .00040 |        |                     |
|                    |        |               |          | 8         |        | 7.62    | 1.61   |        |        | 7.57   | 7.57   |                     |
|                    |        |               |          |           | 2 E23  | .00328  | .0000  |        |        | .00028 | .00039 |                     |
|                    |        |               |          | <b>52</b> | ¥      | 7.38    | 7.58   |        |        | 7.56   | 7.56   |                     |
|                    |        |               |          | •         | can 6  | .00050  | .00027 |        |        | .00034 | 97000. |                     |
| 7.73               | 5. 光色  | 1             | 5.19     | 25        | ×      | 9.75    | 9.72   |        | 79.6   | 6.62   | 9.58   |                     |
|                    |        |               |          |           | CA'. 6 | .0038   | .0035  |        | .0021  | .0017  | .0011  |                     |
|                    |        |               |          | ያ         | ¥      | 9.64    | 19.6   |        | 9.56   | 9.53   | 67.6   |                     |
|                    |        |               |          |           | 1.4m & | .90 324 | .00225 | .00188 | .00174 | .00181 | .00144 |                     |
|                    |        |               |          | 25        | ¥      | 9.63    | 9.62   |        | 9.61   | 9.58   | 9.57   |                     |
|                    |        |               |          |           | Cats é | .00207  | .00177 |        | .00165 | .00147 | .00119 |                     |

Nickel oxide, NiO, single crystal M.I.T., Crystal Physics Lab.

At 25°C, 1 MHz

 $\kappa^{1} = 11.9$ 

 $\tan \delta = .0154$ 

For complete data see: K. V. Rao and A. Smakula, J. Appl. Phys. 36, 2031-2038 (1965).

#### Phosphate glass

#### American Optical



#### Rubidium manganese fluoride

#### Massachusetts Institute of Technology Crystal Physics Laboratory



## Silicon crystal, undoped

## Brown University

Apparent properties of 1  $\,\mathrm{cm}$  cube sample with evaporated gold electrodes.

Silicon single crystal



Radiation damaged single crystal



Silicon crystal, intrinsic

M. I. T., Crystal Physics Lab.

|                      |            | at 25°C |            |
|----------------------|------------|---------|------------|
| f (Hz)               | $\kappa$ ' | tan δ   | /o(ohm-cm) |
| 103                  | -          | -       | 4100       |
| $1.4 \times 10^{10}$ | 12.0       | .0090   | 1190       |

## Silicon carbide type attenuator materials

#### Carborundum

一個のない、このないないないないないないないないないないないできないという

| Nominal resistivity (ohm-cm) | Temperature      | f (Hz)            | κ¹     | tan δ | Measured<br>resistivity<br>(ohm-cm) |
|------------------------------|------------------|-------------------|--------|-------|-------------------------------------|
| 35                           | 25               | $3 \times 10^8$   | 167    | 0.96  | 37. 2                               |
|                              | 25               | 109               | 107    | 0.686 | 24. 4                               |
|                              | 25               | $3 \times 10^9$   | 60     | 0.58  | 17.2                                |
|                              | 25               | $8.5 \times 10^9$ | 47.7   | 0,55  | 8.05                                |
| 0.1                          | 25               | $8.5 \times 10^9$ | 2130   | 1.85  | 0.069                               |
| 50                           | 25*              |                   | 10,150 | 1.17  | 151                                 |
|                              | 25 <sup>**</sup> |                   | 29,450 | 1.36  | 45                                  |
|                              | 25*              | 107               | 2810   | 1,21  | 56.5                                |

<sup>\*</sup> Two-terminal measurement.

Nominal 50-ohm material at 10<sup>7</sup> Hz



<sup>\*\*</sup> Four-terminal measurement, different sample



Silicon dioxide, natural quartz crystal, Y-cut plate, silver paint electrodes, at 25°C

Fort Monmouth



## Quartz, continued

Y-cut plate  
At 
$$25^{\circ}$$
C,  $\kappa' = 4.40$   
 $1/\kappa' \left(\frac{d\kappa'}{dt}\right) = -2.8 \times 10^{-5}/{^{\circ}}$ C

Z-cut plate, E || optic axis  
At 
$$25^{\circ}$$
C,  $\kappa' = 4.64$   
 $1/\kappa' \left(\frac{d\kappa'}{dt}\right) = -3.9 \times 10^{-5}/{^{\circ}}$ C

#### Silver electrodes







#### Silicon dioxide Glasses



Silicate glasses
Fused silica, Corning 7940



## Corning Glass Works

Microwave data on fused silica, Corning 7940, density = 2.20027 g/cm<sup>3</sup>. Data with foil taken on one sample at 6.1 GHz, data with paint taken on second sample at 4.3 GHz.



Corning 7940 continued







At 50 GHz, 25°C,  $\kappa' = 3.80$ , tan  $\delta = 0.0002$ 



Silicon dioxide (cont.)



Silicon dioxide, high-purity glasses (cont.)

Spectrosil A

25°C, 8.52 GHz:  $\kappa^1 = 3.826 \pm .003$  $10^4 \tan \delta = 1.9 \pm .4$  Thermal American Fused Quartz Co. Montville, N.J. 07045

Spectrosil B

25°, 8.52 GHz:  $\kappa' = 3.825 \pm .003$  $10^4 \tan \delta = 1.5 \pm .2$ 

## Frequency in Hz

| Toc |                 |     |   | 102   | 10 <sup>3</sup> | 104      | 10 <sup>5</sup> | 10 <sup>6</sup> | 10 <sup>7</sup> |
|-----|-----------------|-----|---|-------|-----------------|----------|-----------------|-----------------|-----------------|
| 25  | K               |     |   | 3.823 | 3.823           | 3.823    | 3.823           | 3.823           | 3.823           |
|     | 106             | tan | δ | <4    | <4              | . 6      | 7               | <40             | <130            |
| 100 | K               |     |   | 3.83  | 3.83            | 3.83     | 3.83            | 3.83            | 3.83            |
|     | 10 <sup>6</sup> | tan | δ | <4    | <4              | <8>      | <10             | <40             | <130            |
| 197 | K               |     |   | 3.84  | 3.84            | 3.84     | 3.84            | 3.84            | 3.64            |
|     | 10 <sup>6</sup> | tan | δ | 264   | 44              | 15       | <20             | <40             | <130            |
| 300 | K               |     |   | 3.86  | 3.86            | 3.86     | 3.86            | 3.86            | 3.66            |
|     | 104             | tan | δ | 151   | 15.9            | 2        | <,4             | <.6             | <1.3            |
| 398 | K               |     |   | 3.89  | 3.86            | 3.86     | 3.86            | 3.86            | 3.86            |
|     | 10 <sup>2</sup> | tan | δ | 15.9  | 1.76            | .219     | .04             | <.02            | <.02            |
| 486 | ĸ               |     |   | 3.98  | 3.89            | 3.87     | 3.87            | 3.87            | 3.87            |
|     |                 | tan | δ | .79   | .0883           | .07.3354 | .0015           | .000\$          | .0002           |

Vitreosil, optical grade

 $25^{\circ}$ C, 8.52 GHz,  $\kappa^{*} = 3.811 \pm .005$ ;  $10^{4}$  tan  $\delta = 1.17 \pm .2$ 

Vitreesil, commercial grade

 $25^{\circ}$ C, 8.52 GHz,  $\times^{*} = 3.805 \pm .01$ ;  $10^{4}$  tan  $\delta = .80 \pm .13$ 

## Mixed silicate glasses

Corning Lab. No. 119BUC magnetic glass

Corning Glass Works

25°C, 8.52 GHz

| K'    | tan δ | $\kappa_{\mathbf{m}}^{i}$ | tan $\delta_{\mathbf{m}}$ |  |
|-------|-------|---------------------------|---------------------------|--|
| 20. 8 | 0.157 | 1,006                     | 0.372                     |  |

### Corning Code 1723 glass

|     | 14 GHz |        | 24 GHz |       |        |  |
|-----|--------|--------|--------|-------|--------|--|
| Toc | K*     | tan ö  | ToC    | K1    | tan ô  |  |
| 25  | 6. 18  | . 0069 | 25     | 6.13  | . 0075 |  |
| 85  | 6. 21  | .0067  | 85     | 6.16  | . 0075 |  |
| 144 | b. 24  | . 0065 | 155    | 6. 20 | . 0074 |  |
| 231 | 6. 27  | .0063  | 251    | 6. 24 | . 0073 |  |
| 305 | 6. 31  | . 0061 | 333    | 6. 28 | . 0074 |  |
| 339 | 6. 33  | ,0060  | 419    | 6. 32 | . 0073 |  |
| 396 | 6. 36  | . 0059 | 446    | 6. 35 | . 0073 |  |
| 464 | 6. 40  | . 0057 | 510    | 6. 39 | . 0074 |  |
| 502 | 6, 43  | . 0056 |        |       |        |  |

Lancaster

No. 7352

#### Resistivities measured at 100 Hz



Silica glasses (cont.)

Lancaster

(Mixed silicate glasses), resistivities measured at 100  $\mbox{Hz}$ 

7357



7357



L1957



The second second post of the second

## Lancaster glasses (cont.)

No. L 8100





#### Mixed silicate glasses (cont.)

M.I.T., Laboratory for Insulation Research

|                                               | 50   | GHz                          |
|-----------------------------------------------|------|------------------------------|
| Soda silicate glass                           | κ    | $\tan \delta \times 10^{-4}$ |
| 1) 9% Na <sub>2</sub> 0, 91% SiO <sub>2</sub> | 4.90 | 158                          |
| 2) 12% Naon 88% Sina                          | 5 08 | 178                          |

Sample EE 9
Sample EE 10

Owens-Illinois Toledo, Ohio 43601

| Free | EE 9<br>1., 8.52 GHz | :      | Free | EE 10<br>q., 8.52 GHz |       |
|------|----------------------|--------|------|-----------------------|-------|
| ToC  | κ                    | tan δ  | TOC  | ĸ                     | tan δ |
| 25   | 5.84                 | .0070  | 25   | 8.17                  | .0082 |
| 97   | r 86                 | .0070  | 97   | 8.25                  | .0082 |
| 199  | 5.90                 | .0071  | 202  | 8.36                  | .0083 |
| 314  | 5.97                 | .0072  | 292  | 8.47                  | .0084 |
| 421  | 6.02                 | .007 % | 416  | 8.63                  | 0089  |
| 506  | 6.03                 | .0077  | 501  | 8.76                  | .0096 |
| 607  | 6.17                 | .0081  | 605  | 8.98                  | .0123 |
| 32   | 5.82                 | .0069  | 27   | 8.19                  | .0080 |

Silicate glasses (cont.)



## Glasses (cont.)

# Pittsburgh Plate Glass Co.



## Silicon dioxide, sintered

Slip-cast

Brunswick

| De                  | ensity | 7 <b>1.9</b> 57 g | z/cm <sup>3</sup> |                     |      |                  |      |        |      |                  |      |       |
|---------------------|--------|-------------------|-------------------|---------------------|------|------------------|------|--------|------|------------------|------|-------|
|                     | 2      | 25°C              | 16                | 00°C                | 20   | о <sup>о</sup> с | 30   | o°c    | 40   | o <sup>o</sup> c | 500  | o°c   |
| Freq.,Ha            | zκ     | $10^4 	an\delta$  | κ                 | $10^4$ tan $\delta$ | κ    | tan $\delta$     | κ    | tan δ  | ĸ    | tan δ            | κ    | tan δ |
| 10 <sup>2</sup>     | 3.38   | 7.1               | 3.39              | 11.0                | 3.44 | .0190            | 4.42 | .896   | 7.91 | 9.51             | 19.1 | 33.8  |
| $3 \times 10^2$     | 3.38   | 8.6               |                   |                     |      |                  |      |        |      |                  |      |       |
| 10 <sup>3</sup>     | 3.38   | 8.8               | 3.38              | 7.8                 | 3.41 | .99364           | 3.64 | .178   | 5.09 | 1.66             | 7.57 | 9.00  |
| 2x10 <sup>3</sup>   | 3.38   | 7.3               |                   |                     |      |                  |      |        |      |                  |      |       |
| 5x10 <sup>3</sup>   |        |                   | 3.38              | 7.7                 |      |                  |      |        |      |                  |      |       |
| 10 <sup>4</sup>     | 3.37   | 6.2               | 3.38              | 7.6                 | 3.41 | .00158           | 3.47 | .0246  | 3.90 | .334             | 5.10 | 1.47  |
| 5×10 <sup>4</sup>   |        |                   | 3.38              | 8.3                 |      |                  |      |        | 3.5  |                  |      |       |
| 10 <sup>5</sup>     | 3.37   | 4.5               | 3.37              | 8.3                 | 3.41 | .00099           | 3.46 | .00465 | 3.54 | .055             | 3,90 | .290  |
| 2x10 <sup>5</sup>   |        |                   | 3.37              | 7.5                 |      |                  |      |        |      |                  |      |       |
| 10 <sup>6</sup>     | 3.37   | 3.7               | 3.37              | 6.1                 | 3.40 | .00081           | 3.45 | .00158 | 3.49 | .0089            | 3.61 | .0483 |
| 6x10 <sup>6</sup>   |        |                   | 3.37              | 3.6                 |      |                  |      |        |      |                  |      |       |
| 10 <sup>7</sup>     | 3.37   | 2.5               | 3.37              | 3.2                 | 3.40 | .00068           | 3.45 | .0008  | 3.49 | .0021            | 3.55 | .0112 |
| 8.5x10 <sup>9</sup> | 3.364  | 4 6.6             |                   |                     |      |                  |      |        |      |                  |      |       |

Silicon dioxide, with 2.5% chromium oxide Slip-cast,

Brunswick

Density 1.928 g/cm<sup>3</sup>

|                     | 25   | °c     | 10   | o <sup>o</sup> c . | 20   | o°c   | 30   | oo°c  | 40   | 00°C           | 500  | o°c   |
|---------------------|------|--------|------|--------------------|------|-------|------|-------|------|----------------|------|-------|
| Freq.,H             | zκ   | tan δ  | κ    | tan (              | κ    | tan δ | κ    | tan 0 | K    | $tan \ \delta$ | κ    | tan δ |
| 10 <sup>2</sup>     | 3.33 | .00345 | 3.43 | .0057              | 3.57 | .0292 | 4.59 | .935  | 8.73 | 9.39           | 36.7 | 42.4  |
| 103                 | 3.33 | .00257 | 3.42 | .0043              | 3.51 | .0113 | 3.72 | .179  | 5.17 | 1.76           | 13.5 | 10.1  |
| 104                 | 3.32 | .00174 | 3.36 | .0034              | 3.48 | .0071 | 3.59 | .0292 | 3.95 | .324           | 6.09 | 2.41  |
| 10 <sup>5</sup>     | 3.32 | .00152 | 3.34 | .0027              | 3.40 | .0054 | 3.51 | .0109 | 3.63 | .0537          | 4.39 | .425  |
| 106                 | 3.31 | .00093 | 3.33 | .0020              | 3.38 | .0040 | 3.49 | .0101 | 3.56 | .0149          | 3.82 | .094  |
| 107                 | 3.31 | .00035 | 3.32 | .0017              | 3.34 | .0022 | 3.42 | .0076 | 3.53 | .0106          | 3.68 | .032  |
| 8.5x10 <sup>9</sup> | 3.29 | .00112 |      |                    |      |       |      |       |      |                |      |       |

## Silicon dioxide, sintered

## Code 7941

Density 1.923 g/cm<sup>3</sup>

Corning Glass

# Freq., ~8.5 GHz

## Corning Multiform Glass

| T <sup>O</sup> C 25 279 517 769 910 1043 1205 1372 | к<br>3.323<br>3.351<br>3.378<br>3.408<br>3.431<br>3.451<br>3.455<br>3.513 | tan δ .0005 .0009 .0014 .0023 .0028 .0037 .0051 | At 8.52 GHz, 25°C, density = 1.906 g/cm <sup>3</sup> $\kappa$ = 3.27; tan $\delta$ = .00063 |
|----------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------|
|----------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------|

## Silica, slip-cast

Dynasil Corp. of America

8.6 GHz, 25°C

| Sample  | Density $(g/cm^3)$ | ĸ     | tan δ  |
|---------|--------------------|-------|--------|
| DSCX-3  | 1.970              | 3.395 | .00058 |
| DSCX-8E | 2.038              | 3,513 | .00054 |

Quartz fiber

Sample AS-3DX-1R

Source:

Philco Ford Corp.

Newport Beach, Calif. 92663

Manufacturer: Fiber Materials Inc.

Graniteville, Mass. 01829

|     | Freq., 8.52 GHz |       |
|-----|-----------------|-------|
| TOC | κ               | tan δ |
| 25* | 3.02            | .0054 |
| 2.5 | 2.98            | .0019 |
| 98  | 2.97            | .0018 |
| 198 | 2.96            | .0016 |
| 307 | 2.95            | .0015 |
| 418 | 2.95            | .0014 |
| 497 | 2.945           | .0014 |
| 591 | 2.95            | .0016 |
| 729 | 2.96            | .0022 |
| 828 | 2.975           | .0029 |
| 905 | 2.99            | .0035 |
| 995 | 3.01            | .0042 |
|     |                 |       |

<sup>\*</sup> As received, other values after vacuum bake for 24 hours at 125°C.

## Silica fiber composites

Philco-Ford Corp., Aeronutronic Div.

| Sample 1-VH-O-M-1, 25°          | <b>c</b> (          | (Hz) 10 | <sup>5</sup> 10 <sup>6</sup> | 107  | 7.5x10 <sup>7</sup> | 1.8x10 <sup>8</sup> |
|---------------------------------|---------------------|---------|------------------------------|------|---------------------|---------------------|
|                                 | к<br>"-4            |         |                              |      |                     | 2.772*              |
| density 1.536 g/cm <sup>3</sup> | 10' tan             | 0 4.6   | 8.3                          | 6.4  | 13.4                | 17*                 |
| After 18 hrs.                   | ĸ                   |         |                              | 2.77 | 2.77                | 2.77*               |
| vacuum oven 80°C                | 10 <sup>4</sup> tan | δ       |                              | 4.6  | 9.1                 | 11.5*               |

<sup>\*</sup> Extrapolated values.

| Silica | fiber | composites | (cont.) |
|--------|-------|------------|---------|
|--------|-------|------------|---------|

Philco-Ford Corp., Aeronutronic Div.

| •                               |                  | -         |              |
|---------------------------------|------------------|-----------|--------------|
| Sample 1-XB-O-M                 |                  | 9 E2 GII- |              |
| Density 1.653 g/cm <sup>3</sup> |                  | 8.52 GHz  |              |
| <i>3</i> .                      | т <sup>о</sup> с | κ         | $tan \delta$ |
| As received, Face 1 up          | 25               | 2.919     | .0062        |
| Face 2 up                       | 25               | 2.956     | •0064        |
| After vacuum oven               |                  |           |              |
| 80°C, 10 days                   |                  |           |              |
| Face 2 up                       | 25               | 2,938     | .00162       |
| Face 1 up                       | 25               | 2.895     | .00169       |
|                                 | 115              | 2.89      | .0012        |
|                                 | 246              | 2.89      | .0006        |
|                                 | 357              | 2.90      | •0005        |
|                                 | 438              | ł         | •0006        |
|                                 | 535              |           | •0008        |
|                                 | 608              |           | .0010        |
|                                 | 710              |           | .0014        |
|                                 | 805              |           | .0020        |
|                                 | 908              |           | .0026        |
|                                 | 972              |           | •0028        |
|                                 | 1000             | ₩ *       | •0031*       |
| * Extrapolated values.          | 25               | 2.89      | .00042       |

Sample AS-3DX 176-17 at 8.5 GHz, density =  $1.626 \text{ g/cm}^3$ 

| TOC | ĸ                | tan 6           |
|-----|------------------|-----------------|
| 25  | $2.873 \pm .005$ | .00355          |
| 94  | $2.86 \pm .01$   | .00199          |
| 203 | 2.86             | .00054          |
| 288 | 2.35             | .00040          |
| 377 | 2.85             | .00043          |
| 466 | 2.85             | .00054          |
| 535 | 2.86 ± .02       | .00068          |
| 289 | 2.85             | .00042          |
| 27  | $2.840 \pm .005$ | .00038 ± .00003 |

Silica fibers in aluminum phosphate matrix ChemCeram

Whittaker Corp.

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

|                  |     | 8.52 GHz |       |                              |
|------------------|-----|----------|-------|------------------------------|
| Sample           | TOC | κ        | tan δ | Density (c/cm <sup>3</sup> ) |
| 1, as received   | 5   | 2.73     | .0051 | 1.547                        |
| 2, as "          | 25  | 2.70     | .0060 | 1.543                        |
| 2, dried*        | 25  | 2.68     | .0043 | (wt. loss .049%)             |
| 2, room humidity | 25  | 2.70     | •0050 |                              |
|                  | 116 | 2.70     | •0050 |                              |
|                  | 235 | 2.71     | .0053 | 1                            |
|                  | 410 | 2.71     | .0080 | •                            |
|                  | 495 | 2.71     | .0105 |                              |
|                  | 580 | 2.72     | .0140 |                              |
|                  | 673 | 2.72     | .0177 |                              |
|                  | 760 | 2,72     | .0228 |                              |
|                  | 827 | 2.73     | .0265 |                              |
|                  | 916 | 2.74     | .0315 |                              |
|                  | 967 | 2.75     | .038  |                              |
|                  | 25  | 2.71     | .0047 |                              |

<sup>\* 4</sup> days at 120°C in vacuum oven.





Silicon nitride ceramic At 8.52 GHz, density 2.449 g/cm<sup>3</sup>

| 61442 81 cm      |      |        |
|------------------|------|--------|
| T <sup>o</sup> C | K    | tan ô  |
| 25               | 5.54 | .0036  |
| 170              | 5,54 | .00375 |
| 323              | 5,54 | .0040  |
| 446              | 5,55 | .00365 |
| 586              | 5,55 | .0030  |
| 674              | 5,56 | .0050  |
| 714              | 5.57 | .0054  |
| 864              | 5.58 | .00615 |
| 912              | 5.59 | .00630 |
| 991              | 5,63 | .00665 |
| 509              | 5.55 | .0034  |
| 348              | 5.54 | .0040  |

Silicon nitride ceramic, after vacuum drying at 100°C, at 8.5 GHz Density 2.128 g/cm<sup>3</sup>

Raytheon Company

Admiralty Materials Laboratory

T<sup>O</sup>C κ tan δ
25 5.15 0.00037
100

10-3

10<sup>2</sup>

103

104

109

Haynes Stellite Division of Union Carbide



10

104

Frequency in cycles per second

10

109

Silver iodide, pressed powder at 10,000 psi, 27°C, aged several weeks unless noted

Massachusetts Institute of Technology Laboratory for Insulation Research



Sodium chloride, doped (0.075 mole % BiCl<sub>3</sub>)

M.I.T., Crystal Physics Laboratory

Variation of dielectric constant with temperature at different frequencies



Dielectric loss as a function of temperature at different frequencies



The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th

Sodium chloride, doped (cont.) (1.23 mole % BiCl<sub>3</sub>)

Variation of dielectric constant with temperature at different frequencies



Dielectric loss as a function of temperature at different frequencies



# Sodium chloride (cont.)

# Specific conductivity as a function of 1/T at different frequencies



## Strontium fluoride

M.I.T., Crystal Physics Lab.

For more complete data see K. V. Rao and A. Smakula, J. Appl. Phys. 37, 319 (1966).





 ${
m Ta_2O_5}$  ceramic, hot-pressed from Ciba optical grade powder, density 8.27 g/cm $^3$ 

Massachusetts Institute of Technology Laboratory for Insulation Research



Thallium halides

M. I. T., Crystal Physics Lab.

| Material                                            | κ', 25°C<br>10 <sup>6</sup> Hz | κ¹, 4 <sup>°</sup> Κ | tan δ, 25°C<br>10 <sup>6</sup> Hz | Activation energy<br>for conduction in<br>eV |
|-----------------------------------------------------|--------------------------------|----------------------|-----------------------------------|----------------------------------------------|
| TIF pressed                                         | 19.7                           | -                    | .00015                            | -                                            |
| TlCl                                                | 31.9                           | -                    | . 00006                           | . 73                                         |
| TlBr                                                | 30,4                           |                      | .00005                            | . 77                                         |
| TlI polycrystalline                                 | 20.4                           | 20.0                 | . 00024                           | -                                            |
| KRS6 (T1Cl).7-(T1Br).3                              | 32. 2                          | 38.4                 | .000075                           | . 71                                         |
| KRS5<br>(T1Br) <sub>.42</sub> -(T1I) <sub>.58</sub> | 32.4                           | -                    | .00016                            | . 66                                         |
| T1I + CsI . 01                                      | 32. 5                          | 39.4                 | .000068                           | . 65                                         |

For more complete data see reports under Contract AF 19(628)-395.

Thorium oxide ceramic, nuclear grade Zircoa, measured in air except at room temperature in dry nitrogen. Densities: of disk 9.852 g/cm<sup>3</sup>; cylinder 9.774 g/cm<sup>3</sup>



Dielectric constant  $\kappa^n$  vs. frequency and temperature shows build-up of low-frequency polarization and small temperature coefficient at 107 Hz.





Dielectric loss tangent at low temperatures shows peak moving to high frequencies with a low activation energy (0.51 eV). Thorium oxide ceramic (cont.)

Dielectric loss factor  $\kappa^{\text{\tiny{II}}}$  versus frequency shows ease of conduction when many hot electrons are available



Thorium oxide ceramic (cont.)

Conductivity vs. reciprocal temperature shows intrinsic conduction range having activation energy of  $1.70~{\rm eV}$ .



ThO<sub>2</sub> ceramic, Laboratory for Insulation Research; minor constituents Mg, Pb, Zn; traces of Ca, Cu, Fe, Si; density =  $8.77 \text{ g/cm}^3$ 



 $ThO_2$  ceramic, Laboratory for Insulation Research; minor constituents Mg, Pb, Zn; traces of Ca, Cu, Fe, Si; density - 8.77 g/cc.



Vanadium oxide (V<sub>2</sub>O<sub>3</sub>)

M. I. T., Lab. Ins. Research

Pressed powder samples, -185°C:

| f (Hz) | K'<br>mėas. | K' corr. to full density | Density<br>g/cm <sup>3</sup> |
|--------|-------------|--------------------------|------------------------------|
| 105    | 6. 52       | 15.2                     | 2.60                         |
| 106    | 4. 72       | 14.5                     | 2.28                         |



Yttrium oxide, nuclear grade (high purity 99.8%) ceramic, Zircoa; densities: of disk 5.1000, cylinder 4.917 g/cm<sup>3</sup>.



#### Zinc oxide, single crystal



Measurements of 1 and 300 MHz with electric field # to c axis. At 14 GHz field was perpendicular.



#### Airtron Div. of Litton Industries

#### Second sample heat treated

| Major | frequency |
|-------|-----------|
| resc  | nances    |
| (     | kHz)      |
| 2     | 22        |
| 4     | 82        |
| 6     | 00        |
| 6     | 77        |
| 7     | 40        |

#### Dielectric constant

| Hz                  | K     |
|---------------------|-------|
| 102                 | 12,29 |
| 103                 | 12.07 |
| 104                 | 11.90 |
| 105                 | 12,13 |
| 106                 | 8.35  |
| 9.5x10 <sup>6</sup> |       |





Zirconium oxide (ZrO<sub>2</sub>), mono-cubic, stabilized with lime (CaO), technical grade ceramic Zircoa "C", densities of disk 5.696 g/cm<sup>3</sup>, of cylinder 5.646 g/cm<sup>3</sup>. Dielectric constant vs. frequency showing large grain-boundary polarization.





Sc ilso page 121



Zirconium oxide stabilized with 8% Y<sub>2</sub>O<sub>3</sub> nuclear grade ceramic Zircoa Y-904; densities of disk 5.444 g/cm<sup>3</sup>, of cylinder 5.647 g/cm<sup>3</sup>. Dielectric constant versus frequency

Dielectric loss factor versus frequency

See also p. 121



Security of the Security States of the Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security



Zirconium oxide stabilized with 7.5% CaO, nuclear grade ceramic Zircoa Y-1362, densities of disk 5.087 g/cm<sup>3</sup>, of cylinder 5.015 g/cm<sup>3</sup>. Dielectric constant vs. frequency



Dielectric loss factor versus frequency.

See also p. 121

Zirconium oxide, nuclear grade, conductivity of heavy oxides at 100 Hz vs. 1/T. Activation energies for each approach 1.25 eV.





Zirconium silicate (zircon), ZrSiO<sub>4</sub>, single crystal, all samples from one crystal

E || c Sample 1, run 1,  $N_2$  to 200°C, air to 500°C, Ag electrodes

E || c Sample 2, run 1, same conditions as for Sample 1



## Zircon (cont.)



Zircon (cont.)

こうしょうしょう しゅうしゅうかい かんけい 大きないないない はないない ちおんない かんごう 大神 教育学者 いきない 残らしない しんしゃ

E  $\perp$  c Sample 1, run 2  $N_2$  to  $500^{\circ}$ C, Ag electrodes

E  $\perp$  c Sample 1, run 3 Air to 500°C, Pt electrodes



## II. MINERALS, ROCKS, SOILS, AND MISCELLANEOUS INORGANICS



Apatite (cont.)

E || c,  $25^{\circ}$ C, 1 MHz,  $\kappa' = 8.58$ 



| Astrophyllite                                         |                | 10 <sup>2</sup> Hz | 10 <sup>3</sup> Hz | 10 <sup>4</sup> Hz |
|-------------------------------------------------------|----------------|--------------------|--------------------|--------------------|
| Unoriented crystal                                    | K*             | 15. 42             | 15.17              | 14.83              |
|                                                       | tan ô          | 0.035              | 0.021              | 0.014              |
| Benitoite                                             | K <sup>1</sup> | 23.8               | 19.6               | 19. 2              |
| BaTiS <sub>3</sub> O <sub>9</sub> , unoriented cryst. | tan ô          | 0. 374             | 0.090              | 0.0195             |

Beryl

E II c



Beryl, E 1 c



10<sup>3</sup> Hz 10<sup>4</sup> Hz
Neptunite, (Na, K)<sub>2</sub>(Fe, Mn)(Si, Ti)<sub>5</sub>O<sub>12</sub>, κ' 8, 33 8, 19
data on unoriented crystal tan δ 0.0335 0.068

Spodumene



Spodumene (cont.)





## Spodumene (cont.)

E || c



Topaz





Ell a









E || c



### Tourmaline

E  $\perp$  c, piezoelectrically active at 1 MHz



Ell c



### Crushed minerals

Halite (rock-like pieces of porous salt), at 50% R.H., 25°C, 14 GHz

| Sample     | $\kappa^{\tau}$ | tan δ     | Density (g/cm <sup>3</sup> ) |
|------------|-----------------|-----------|------------------------------|
| l, surface | 4.52 - 4.63     | .00560057 | 1.808                        |
| 2, "       | 4.68 - 4.82     | .01060103 | 1.861                        |
| 3, "       | 3.81 - 3.83     | .01270109 | 1, 565                       |
| 4, "       | 3.95 - 4.00     | .01040134 | 1.670                        |
| 5, l'down  | 3.69 - 3.94     | .01980125 | 1.500                        |
| 6, "       | 3.25 - 3.50     | .00770113 | 1. 422                       |
| 7, 3' ''   | 4.17 - 4.18     | .036046   | 1.646                        |
| 7, dried   | 4.12 - 4.19     | .01930206 | 1.640                        |

| Limor      | nite, cr       | ushed, de         | nsity 1.                        | 733 g/cm <sup>3</sup> | Harvard College Observatory                                               |
|------------|----------------|-------------------|---------------------------------|-----------------------|---------------------------------------------------------------------------|
|            | 1              | 0 <sup>9</sup> Hz |                                 | : 10 <sup>9</sup>     | Limonite, 8.52 GHz                                                        |
| T°C        | K 1            | tan 8             | $\kappa^{\scriptscriptstyle 1}$ | tan δ                 | Sample 1, coarse, 25°C                                                    |
| 25         | 4.17           | .0108             | 3.73                            | .046                  | $\kappa' = 3.95 - 4.01$ depending on rotation tan $\delta = 0.18 - 0.059$ |
| 475<br>404 | 3. 65<br>3. 62 | .0134             | 3.63<br>3.60                    | .0193                 | Sample 2, fine, 25°C                                                      |
| 325        | 3.61           | . 0057            | 3.58                            | .0084                 |                                                                           |
| 250<br>185 | 3. 61<br>3. 60 | .0048<br>.0045    | 3.57<br>3.56                    | .0073<br>.0064        | $\tan \delta = 0.0122 - 0.0127$<br>Sample 3 T°C $\kappa'$ tan $\delta$    |
| 107<br>22  | 3. 58          | .0047<br>.0057    | 3.55                            | 0059                  | Sample 3 T°C κ' tan δ 25 3.82 .0012                                       |
|            | 3.56           | quilibriu         | 3.53                            | .0055                 | 510 3.60 0085                                                             |
| Dain       |                | ty approx         |                                 | Oom                   | 300 3.52 .0039                                                            |
|            |                |                   |                                 |                       | 200 3.50 .0042<br>100 3.48 .0043                                          |
| •          |                |                   |                                 |                       | 25 3.49 .0043                                                             |

Magnesite, crushed powder, hard-packed

25°C, 50% R.H., 8.52 GHz,  $\kappa' = 3.29$ ,  $\tan \delta = .0054 - .0059$ , density 1.11 g/cm<sup>3</sup>

Quartz powder, 8.52 GHz, pre-dried in oven at  $100^{\circ}$ C, density 1.22 g/cm<sup>3</sup>

| $T^{o}K$ | K1     | tan δ |
|----------|--------|-------|
| 80       | 2. 446 | .0021 |
| 200      | 2.460  | .0027 |
| 300      | 2.472  | .0028 |
| 400      | 2. 483 | .0027 |
| 500      | 2, 495 | .0031 |
| 600      | 2. 497 | .0035 |

#### Rocks

### Hawaian high-density basalt



- % H<sub>2</sub>O on dry weight basis 0.358
   % H<sub>2</sub>O on dry volume basis 0.956
   density 2.6756 g/cm<sup>3</sup>
- Dry after 3 days in oven at 105°C density 2.669 g/cm<sup>3</sup>
- ▲ % H<sub>2</sub>O on dry weight basis 0.377 % H<sub>2</sub>O on dry volume basis 1.005 density 2.677 g/cm<sup>3</sup>

Hawaian high-density basalt 50% relative humidity

|                           | Density 2.717 g/cm <sup>3</sup> |          |                |          |                            |                                 |
|---------------------------|---------------------------------|----------|----------------|----------|----------------------------|---------------------------------|
| Freq. (Hz)                | Sample 1 3x10 <sup>8</sup>      | Sample 2 | Sample 3 3x108 | Sample 3 | Sample 3 3x10 <sup>9</sup> | Sample 4<br>8.5x10 <sup>9</sup> |
| κ                         | 8.36                            | 9.90     | 9.30           | 9.08     | 8.85                       | 8.40                            |
| tan δ                     | .043                            | .080     | .034           | .033     | .037                       | .04                             |
| μ'/μ <sub>ο</sub>         | 1.174                           | 1.17     | 1.113          | 1.10     | 1.08                       | 1.01                            |
| tan $\delta_{\mathrm{m}}$ | .0077                           | <.002    | .0075          | .026     | .072                       | .06                             |

### Hawaian low-density basalt



- % H<sub>2</sub>O on dry weight basis 0.441
   % H<sub>2</sub>O on dry volume basis 0.0617
   density 1.401 g/cm<sup>3</sup>
- Dry (after 3 days in oven at 105°C density 1. 400 g/cm³
- ♠ % H<sub>2</sub>O on dry weight basis 2.71 % H<sub>2</sub>O on dry volume basis 3.79 density 1.438 g/cm<sup>3</sup>

Hawaian low-density basalt 50% relative humidity

| Freq. (Hz) | 107   | 3×10 <sup>8</sup> | 109   | 3x10 <sup>9</sup> |
|------------|-------|-------------------|-------|-------------------|
| κ          | 4.9   | 3.74              | 3.51  | 3.30              |
| tan δ      | .068  | .085              | .0481 | .053              |
| μ'/μο      | 1.047 | 1.047             | 1.040 | 1.035             |
| tan om     | <.002 | .0040             | .002  | .002              |

Hawaian deep-ocean basalt
No change after heating to 200°C

| Freq. (Hz) | 10 <sup>5</sup> | 10 <sup>6</sup> | 107  | 8.5x10 <sup>9</sup> |
|------------|-----------------|-----------------|------|---------------------|
| κ          | 188             | 153             | 124  | 10.2                |
| tan δ      | 93.5            | 11.6            | .146 | .560                |
| ρ          | 1025            | 1015            | 995  | 36.9                |

Quincy granite

Density 2.631 g/cm<sup>3</sup>

Temp. run in dry N<sub>2</sub>





### Quincy granite

|      |       |                           |                          |                          |                         |     | 1       | kHa                      |
|------|-------|---------------------------|--------------------------|--------------------------|-------------------------|-----|---------|--------------------------|
| TO   | 3     | 10 <sup>2</sup> Hz        | 10 <sup>3</sup> Hz       | 10 <sup>4</sup> Hz       | 10 <sup>5</sup> Hz      | TOC | K'      | σ                        |
| 25   | K1    | 10.5                      | 9.26                     | 8 01                     | 2.06                    |     |         | 4,50 x 10 <sup>-10</sup> |
|      | tan 8 | 0.0796                    | 0.0875                   | 0.0875                   | 0,0705                  | 26  | 9, 26   |                          |
|      | σ     | 4.64 x 10 <sup>-11</sup>  | 4.5 x 10 <sup>-10</sup>  | 3.9 x 10 <sup>-10</sup>  | 2.76 x 10 <sup>-8</sup> | 69  | 10.3    | 4, 58                    |
| 200  | × 1   | 15.4                      | 12 47                    | 11.07                    | 9.78                    | 105 | 10.9    | 4,64                     |
| •••  | tan b | 0 21                      | 0.121                    | 0.088                    | 0.090                   | 147 | 11.5    | 5, 31                    |
|      | 9     | 1 797 x 10 <sup>-10</sup> |                          | 5.40 x 10 <sup>-9</sup>  | 4,88 x 10 <sup>-8</sup> | 504 | 12,51   | 8,61 x 10 <sup>-10</sup> |
| 400  |       | 64. 5                     | 32.9                     | 19,42                    | 12,86                   | 251 | 14.87   | 1,85 x 10 <sup>-9</sup>  |
| 400  |       | 1 02                      | 0.60                     | 0. 374                   | 0. 252                  | 305 | 19, 3   | 3. 38 x 10 <sup>-9</sup> |
|      | tan 6 | 3.65 x 10 <sup>-9</sup>   | 1.097 x 10 <sup>-8</sup> | 4.03 x 10*8              | 1.797 x 10 -7           | 345 | 23, 4   | 5, 51 x 10 9             |
|      |       |                           |                          |                          |                         | 400 | 32, 9   | 1,09 x 10 <sup>-8</sup>  |
| 600  | K'    | 293                       | 106                      | 42.5                     | 22,0                    | 466 | 34, 4   | 9,5 x 10 <sup>-8</sup>   |
|      | tan 6 | 6 85                      | 2. 31                    | 1.03                     | 0 54                    |     |         |                          |
|      | σ     | 1 114 x 10-7              | 136 x 10 <sup>-9</sup>   | 2.43 x 10-7              | 6.60 x 10 <sup>-7</sup> | 553 | 81, 3   | 9, 34 x 10 '8            |
| 800  |       | 1195                      | 2 38                     | 84                       | 37. 4                   | 601 | 106     | 1.36 x 10 <sup>-9</sup>  |
|      |       |                           | 9.65                     | 3, 05                    | 1 11                    | 700 | 172     | 4,25 x 10 <sup>-7</sup>  |
|      | tan 6 | 14 4                      |                          |                          |                         | 806 | 243     | 1. 313 v 10*6            |
|      | đ     | 1 116 x 10 <sup>-6</sup>  | 1.275 x 10 <sup>-6</sup> | 1,423 x 10 <sup>*6</sup> | 2.30 x 10 <sup>-6</sup> |     |         | 1 84 x 10 4              |
| 1000 | K'    |                           | 47000                    | 6100                     | 710                     | 874 | 26,800  |                          |
|      | tan   |                           | 14.0                     | 12 6                     | 12 4                    | 996 | 44, 900 | 3 57 x 10 <sup>-4</sup>  |
|      |       |                           | 1 45 4 10-4              | 4 36 w 30 · 4            | 4 89 × 10-4             |     |         |                          |

Virginia Greenstone

Density 2.936 g/cm<sup>3</sup>, temperature run in dry  $N_2$  (----) R. H. 52%



Limestone, from Lucerne Valley 50% R.H., 25°C, 14 CHz

Raytheon

| Sample | K1            | tan ô     | Density |
|--------|---------------|-----------|---------|
| 1      | 8. 21 - 8. 45 | .00380080 | 2.667   |
| 2      | 8. 62 - 8. 64 | .01780189 | 2.646   |

Synthetic basalt and lunar rocks, Apollo 11 and 12, see:

- D.H. Chung, W. B. Westphal, and G. Simmons, "Dielectric Properties of Apollo 11 Lunar Samples and their Comparison with Earth Materials," J. Geophys. Res. 75, 6524-6531 (1970).
- D. H. Chung, W. B. Westphal, and G. Simmons, "Dielectric Properties of Apollo 12 Lunar Samples," a paper (T64c) presented at the 1970 Am. Geophys. Union Meeting, Washington D.C., April 23, 1970.
- D. H. Chung, W. B. Westphal, and G. Simmons, Dielectric Behavior of Lunar Samples: Electromagnetic Probing of the Lunar Interior," Proc. Second Lunar Sci. Conf., Vol. 3, MIT Press, 1971, pp. 2381-2390.

Rocks (cont.)



Sandstone, almond, oil-bearing as cored, 25°C

Raytheon

| Frequency | in MHz |
|-----------|--------|
|-----------|--------|

| Sample |          | i              | 3             | 10             | 60              | 100            |
|--------|----------|----------------|---------------|----------------|-----------------|----------------|
| 1      | κ'       | 5. 64          | 5, 23         | 4, 90          | 4.55            | 4.50           |
|        | tan δ    | 0. 131         | 0, 104        | 0, 084         | 0.059           | 0.049          |
| 2      | κ'       | 6.13           | 6. 09         | 6. 07          | 6.06            | 6.06           |
|        | tan δ    | 0.0100         | 0. 0084       | 0. 0059        | 0.00 <b>4</b> 7 | 0.0051         |
| 3      | κ'       | 6.05           | 6. 04         | 6. 01          | 5.91            | 5.87           |
|        | tan δ    | 0.0068         | 0. 0079       | 0. 00855       | 0.0095          | 0.0097         |
| 4      | κ'       | 5. 33          | 5. 08         | 4. 92          | 4.75            | 4.73           |
|        | tan δ    | 0. 060         | 0. 057        | 0. 051         | 0.036           | 0.027          |
| 5      | κ'       | 5.40           | 5. 1 6        | 4. 93          | 4.68            | 4.61           |
|        | tan δ    | 0.080          | 0. 068        | 0. 058         | 0.042           | 0.032          |
| 6      | K' tan ô | 22. 9<br>1. 88 | 11.24<br>1.39 | 9. 20<br>0. 68 | 6, 60<br>0, 338 | 6. 20<br>0. 29 |
| 7      | κ'       | 6. 15          | 6. 12         | 6, 10          | 6.04            | 6.00           |
|        | tan δ    | 0. 0088        | 0. 0093       | 0, 0096        | 0.0102          | 0.0105         |

Soils Fullers Earth, at 8.52 GHz





- % H<sub>2</sub>O on weight basis
   % H<sub>2</sub>O on volume basis
   Density 0.8634 g/cm<sup>3</sup>
- Dry after 3 days in oven at 105°C Density, 7627 g/cm<sup>3</sup>
- ▲ % H<sub>2</sub>O on dry weight basis = 72, 27 % H<sub>2</sub>O on volume basis + 50, 60 Density 1, 2133 g/cm<sup>3</sup>

Soils

Hawaian soil saturated with distilled  ${\rm H}_{2}{\rm O}$ 

%  $H_2^0$  on dry weight basis = 127.5 %  $H_2^0$  on volume basis = 63.0 Density 1.303 g/cm<sup>3</sup>

| Freq. (Hz) | 10 <sup>3</sup> | 104  | 105   | 10 <sup>6</sup> | 9.5x10 <sup>6</sup> | 7x10 <sup>7</sup> |
|------------|-----------------|------|-------|-----------------|---------------------|-------------------|
| κ          | 29,700          | 988  | 230   | 1295            | 81.5                | 64.2              |
| tan ô      | 135             | 43.9 | 20.05 | 3.32            | .776                | .185              |

Hawaian soil with approximately 25%  $\rm H_2O$  on dry weight basis. Density  $\approx$  .88 g/cm<sup>3</sup>.

| Freq. (Hz | ) 10 <sup>2</sup> | 103  | 104  | 10 <sup>5</sup> | 10 <sup>6</sup> | 107   | 3x10 <sup>8</sup> | 1x10 <sup>9</sup> | 3×10 <sup>9</sup> | 8.5x10 <sup>9</sup> |
|-----------|-------------------|------|------|-----------------|-----------------|-------|-------------------|-------------------|-------------------|---------------------|
| ĸ         | 10560             | 940  | 68.0 | 21.66           | 12.04           | 6.88  | 5.12              | 4.90              | 4.45              | 3.97                |
| tan 6     | 2.30              | 4.43 | 7.25 | 2.67            | .827            | . 389 | .105              | .079              | .81               | .135                |

Mass. loams, at 10 MHz, 25°C



### Desert sand (Raytheon)

15% R. H. , 25°C, 14 GHz k' = 2.88

 $\tan \delta = 0.0115$ 

Density =  $1.633 \text{ g/cm}^3$ 

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

Miscellaneous Inorganics
Sands

| Sample       | Condition                 |                           | 108    | 3x10 <sup>8</sup> | 109    |
|--------------|---------------------------|---------------------------|--------|-------------------|--------|
| Holliston    | As received               | ĸ                         | 2.73   | 2.70              | 2,67   |
| sand         | d = 1.54                  | tan ô                     |        |                   |        |
|              |                           | <b>х</b> н <sub>2</sub> 0 |        | 0.06              | 0.06   |
|              | Dry                       | κ                         | 2.70   | 2.69              | 2.67   |
|              | d = 1.54                  | tan δ                     | 0.0022 | 0,00235           | 0.0017 |
|              | 1% н <sub>2</sub> 0       | ĸ                         | 3.25   |                   | 3.12   |
|              | d = 1.53                  | tan ô                     | 0.0084 | 0.059             | 0.062  |
|              | 3% H <sub>2</sub> O       | K                         | 3.40   | 3.35              | 3,30   |
|              | $\mathbf{d} = \bar{1}.39$ | tan 6                     | 0.0224 | 0.0930            | 0.120  |
|              | 10% H <sub>2</sub> O      | K                         | 7.25   | 7.15              | 6.85   |
|              | d = 1.45                  | tan 6                     | 0.056  | 0.054             | 0.058  |
|              | 93% RH                    | ĸ                         | 2.87   | 2.85              | 2.81*  |
| •            | d = 1.58                  | tan o                     | 0.006  | 0.020             | 0.063* |
| Slatterville | As received               |                           | 2,84   | 2.82              | 2,80   |
| sand No. 60  | d = 1.60                  |                           | 0.0070 | 0.0033            | 0.0033 |
|              | Dry                       |                           | 2,82   | 2,80              | 2.78   |
|              | d = 1.60                  |                           | 0.0038 | 0.0024            | 0.0016 |
|              | 13 H <sub>2</sub> O       |                           | 2.80   | 2.72              | 2.67   |
|              | d = 1.53                  |                           | 0.032  | 0.040             | 0.50   |
|              | 3% H20                    |                           | 3.60   | 3.51              | 3.19   |
|              | d = 1.48                  |                           | 0.947  | 0.061             | 0.089  |
|              | 102 H20                   |                           | 7.50   | 7.35              | 7.06   |
|              | d = 1.54                  |                           | 0.090  | 0.109             | 0.081  |
|              | 932 RR                    |                           | 2.92   | 2.90              | 2.84   |
|              | d = 1.60                  |                           | 0.004  | 0.0106            | 0.0564 |

<sup>\*</sup> x n20 = 0.385

## Miscellaneous Inorganics Ices, glacial

### Dielectric Constants

|                   |                              | <b></b>                     |                |                | Frequ            | ency in l      | МНz            |                  |
|-------------------|------------------------------|-----------------------------|----------------|----------------|------------------|----------------|----------------|------------------|
| Sample,<br>Source | Density (g/cm <sup>3</sup> ) | Temp.<br>( <sup>o</sup> /C) | 110*           | 150            | 300              | 500            | 0001           | 2700             |
| Dartmouth         |                              | -1                          | 3. 22          | 3, 21          | 3. 20            | 3.20           | 3. 20          | 3.201            |
| Firm ice          |                              | 5                           | 3. 21          | 3.20           | 3, 20            | 3.20           | 3.20           | 3. 195           |
| No. 12            |                              | 10                          | 3. 20          | 3.19           | 3. 19            | 3.19           | 3.19           | 3.188            |
| <b>4</b>          | A 909                        | 20<br>30                    | 3. 18<br>3. 17 | 3. 18<br>3. 16 | 3. 18<br>3. 16   | 3.18<br>3.16   | 3. 18<br>3. 16 | 3.175<br>3.163   |
|                   | 0.898                        | 40                          | 3. 15          | 3.15           | 3. 15            | 3.15           | 3. 15          | 3, 163           |
|                   |                              | 50                          | 3. 14          | 3.14           | 3. 14            | 3.14           | 3. 14          | 3, 139           |
|                   |                              | 60                          | 3, 13          | 3.13           | 3. 13            | 3.13           | 3.13           | 3.129            |
| Dartmouth         |                              | -1                          | 3.41           | 3. 38          | 3, 34            | 3, 31          | 3.28           |                  |
| Sea ice           |                              | 5                           | 3. 33          | 3. 31          | 3. 29            | 3. 27          | 3. 26          |                  |
| No. 14            |                              | 10<br>15                    | 3. 28<br>3. 26 | 3, 26<br>3, 24 | 3. 25<br>3. 24   | 3, 24<br>3, 23 | 3. 24<br>3. 22 |                  |
|                   |                              | 20                          | 3. 23          | 3. 22          | 3. 21            | 3, 23          | 3, 20          | 3.197            |
|                   |                              | 25                          | 3. 22          | 3.21           | 3. 20            | 3.19           | 3. 19          | 3. 184           |
|                   | 0.917                        | 30                          | 3. 21          | 3.20           | 3.19             | 3.18           | 3.17           | 3.173            |
|                   |                              | 40                          | 3.19           | 3.18           | 3. 17            | 3.16           | 3.16           | 3.159            |
|                   |                              | 50                          | 3.18           | 3.17           | 3. 1 ô           | 3.15           | 3. 15          | 3 144            |
|                   |                              | 60                          | 3. ₹5          | 3.15           | 3. 14            | 3. 14          | 3.14           | 3, 133           |
| Tuto              |                              | -1                          | 3. 22          | 3.21           | 3. 20            | 3. 20          | 3. 20          | 3.197            |
| Tunnel            |                              | 5                           | 3, 20          | 3.19           | 3.19             | 3.19           | 3.19           | 3. 189<br>3. 182 |
|                   |                              | 10<br>20                    | 3, 19<br>3, 17 | 3.18<br>3.17   | 3. 1 8<br>3. 1 7 | 3.18<br>3.17   | 3. 18<br>3. 17 | 3.170            |
|                   | 0. 902                       | 30                          | 3. 16          | 3.16           | 3. 16            | 3. 16          | 3.16           | 3, 159           |
|                   | .,,,                         | 40                          | 3. 15          | 3.15           | 3. 15            | 3.15           | 3.15           | 3.149            |
|                   |                              | 50                          | 3.14           | 3.14           | 3.14             | 3.14           | 3.14           | 3.138            |
|                   |                              | 60                          | 3. 13          | 3.13           | 3, 13            | 3. 13          | 3. 13          | 3.129            |
| Little            |                              | -1                          | 3.09           | 3.08           | 3.07             | 3.07           | 3.07           | 3.065            |
| America           |                              | 5                           | 3. 07          | 3.06           | 3.06             | 3.0è           | 3.06           | 3.057            |
|                   |                              | 10<br>29                    | 3. 06<br>3. 04 | 3.05<br>3.04   | 3. 05<br>3. 04   | 3. 05<br>3. 04 | 3. 05<br>3. 04 | 3.050<br>3.038   |
|                   | 0. 881                       | 30                          | 3.03           | 3.03           | 3.03             | 3.03           | 3.03           | 3.025            |
|                   | 7. 551                       | 40                          | 3. 0 i         | 3.01           | 3.01             | 3.01           | 3.01           | 3.012            |
|                   |                              | 50                          | 3. 00          | 3.00           | 3.00             | 3. 90          | 3.00           | 3.000            |
| Arctic            |                              | -1                          | 2. 90          |                |                  |                |                | 2.880            |
|                   |                              | 5                           | Ž. 89          |                |                  |                |                | 2.875            |
|                   |                              | 10                          | 2.88           |                |                  |                |                | 2.870            |
|                   | 0. 8 35                      | 20<br>30                    | 2, 86<br>2, 85 | 2.85           | 2.85             | 2.85           | 2.85           | 2.861<br>2.852   |
|                   | U. @ 33                      | 40                          | 2.85           | 2.85           | 2.85             | 2.84           | 2.84           | 2.844            |
|                   |                              | 50                          | 2.84           | 2.84           | 2. 54            | 2.84           | 2.84           | 2.835            |
|                   |                              | 60                          | 2.83           | 2.83           | 2.83             | 2.83           | 2.83           | 2.827            |

<sup>110</sup> Miz values are extrapolated, not measured.

The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon

## Ices (cont)

### Loss Tangent

## Frequency in MHz

| Sample,<br>Source   | Temp.<br>(°/C)                                    | 110*                                                                    | 150                                                                         | 300                                                                           | 500                                                                            | 1000                                                                             | 2700                                                               |
|---------------------|---------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Dartmouth<br>No. 12 | -1<br>5<br>10<br>20<br>30<br>40<br>50             | .0030<br>.0019<br>.00145<br>.00092<br>.00059<br>.00034<br>.60020        | .0022<br>.00144<br>.00110<br>.00068<br>.00043<br>.00026<br>.00014           | .00108<br>.00076<br>.00055<br>.00033<br>.00021<br>.00013<br>.00008            | .00052<br>.00040<br>.00028<br>.00019<br>.00013<br>.00008<br>.00005             | .0004                                                                            | .00038<br>.00034<br>.00030<br>.00024<br>.00020<br>.00016<br>.00014 |
| Dartmouth           |                                                   |                                                                         |                                                                             |                                                                               |                                                                                |                                                                                  | •                                                                  |
| No. 14              | -1<br>5<br>10<br>15<br>20<br>25<br>30<br>40<br>50 | .039<br>.026<br>.0195<br>.017<br>.015<br>.013<br>.010<br>.0058<br>.0028 | .037<br>.025<br>.0190<br>.0157<br>.0130<br>.0106<br>.0080<br>.0045<br>.0023 | .0225<br>.0200<br>.0145<br>.0107<br>.0091<br>.0067<br>.0048<br>.0026<br>.0015 | .0200<br>.0130<br>.0097<br>.0082<br>.0068<br>.0047<br>.0033<br>.0017<br>.00098 | .0122<br>.0080<br>.0067<br>.0054<br>.0045<br>.0030<br>.00205<br>.00112<br>.00062 | .0044<br>.0029<br>.00185<br>.00065<br>.00030                       |
| Tuto<br>Tunnel      | See                                               | data for Da                                                             | rtmouth No                                                                  | . 12 (no me                                                                   | asurable d                                                                     | ifference)                                                                       |                                                                    |
| Little<br>America   | -1<br>5<br>10<br>20<br>30<br>40<br>50             | .0049<br>.0035<br>.00286<br>.0020<br>.00146<br>.00105                   | .0037<br>.0026<br>.00217<br>.00154<br>.00116<br>.00085                      | .0018<br>.0013<br>.00108<br>.00078<br>.00057<br>.00044<br>.00030              | .00106<br>.00072<br>.00056<br>.00038<br>.00029<br>.00025                       | .00054<br>.00037<br>.00025<br>.00018<br>.00014<br>.00013                         | .00038<br>.00032<br>.00027<br>.00024<br>.00020                     |
|                     | * 110 M                                           | lHz values                                                              | are extrapo                                                                 | lated, not r                                                                  | neasured.                                                                      |                                                                                  |                                                                    |
| Arctic              | -1<br>5<br>10<br>20<br>30<br>40<br>50             | Co                                                                      | oling failed                                                                | .00045<br>.00032<br>.00022<br>.00015                                          | elted                                                                          |                                                                                  | .00033<br>.00029<br>.00024<br>.00018<br>.00016<br>.00014<br>.00013 |

Dartmouth No. 12

Sea ice





### Miscellaneous Inorganics (cont.)

### Corning Code 0330

### Corning Glass

| 3 GHz | 25°C  |
|-------|-------|
| κ     | tan δ |
| 6.58  | .0055 |



The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

# Miscellaneous Inorganics and Mixtures Ferrites

### General Ceramics Division of Indiana General



R-1



R-4



R -5



R-6



### Miscellaneous Inorganics

Havelex, glass-bonded mica At 8.52 GHz, 25°C Haveg Industries, Inc. Taunton Division

General Electric

| Type | $\kappa^{\scriptscriptstyle 1}$ | tan δ     |
|------|---------------------------------|-----------|
| 1080 | 6. 35                           | . 0025    |
| 1090 | 6.17                            | . 0058    |
| 1101 | 8.89                            | . 0027    |
| 2101 | 6. 35                           | .0013     |
| 2103 | 9. 2                            | .0021     |
| 2801 | 6.35                            | .0020     |
| 2803 | 6. 05 -                         | . 00255 - |
|      | 6. 39                           | .0026     |

Isomica 4950

Electronic Components Div.

Vacuum baked for 36 hrs. at 125°C, E || sheet

| Freq. (MHz) | κ     | tan δ  |
|-------------|-------|--------|
| 300         | 5.33  | .0013  |
| 8520        | 5.31  | .00207 |
| 8520        | 5.32* | .0025* |

<sup>\* 50%</sup> relative humidity.

Mycalex 410



Note: all Mycalex samples from sheet stock.  $10^2$  through  $10^8$  Hz, E  $\perp$  sheet.  $3 \times 10^8$  to 2.  $4 \times 10^{10}$  Hz, E  $\parallel$  sheet.

Mycalex (cont.)







Mycalex (cont.)





### Asphalt pavement

| Sample | Density | (Hz)         | 10 <sup>5</sup> | 10 <sup>6</sup> | 107   | 108   |
|--------|---------|--------------|-----------------|-----------------|-------|-------|
| S      | Dry     | κ            | 4.51            | 4.34            | 4.21  | 4.14  |
|        |         | tan δ        | .0280           | .0221           | .0181 | .0198 |
| S      | Wet     | κ            | 42.0            | 17.7            | 9.03  | 6.54  |
|        |         | tan δ        | .875            | .638            | .444  | .233  |
| L      | Dry     | ĸ            | 4.79            | 4.73            | 4.70  | 4.61  |
|        |         | tan $\delta$ | .0187           | .0158           | .0123 | .0121 |
| L      | Wet     | κ            | 14.48           | 9.28            | 6.65  | 6.01  |
|        |         | tan δ        | .368            | .280            | .190  | .104  |

### Raytheon

## Asphalt pavement at 40% R.H., 25°C, 14 GHz

| Sample<br>No.    | Thickness (cm)           | Density (g/cm <sup>3</sup> ) | H <sub>2</sub> O<br>(%) | Orientation                                    | K'                               | tan δ                            |
|------------------|--------------------------|------------------------------|-------------------------|------------------------------------------------|----------------------------------|----------------------------------|
| 1<br>2<br>3<br>4 | 0.1<br>0.1<br>0.1<br>0.1 |                              |                         | Independent                                    | 4.73<br>4.62<br>5.03<br>5.48     | .0114<br>.0103<br>.0120<br>.0095 |
| 5                | 0, 91                    | 2. 35                        | . 754                   | Face 1<br>Face 1, 90°<br>Face 2<br>Face 2, 90° | 6. 02<br>5. 53<br>5. 37<br>5. 44 | .021<br>.052<br>.204<br>.102     |

### Liquid asphalt

Esso

| f (Hz)                | ĸ,   | tan 5  |
|-----------------------|------|--------|
| $1 \times 10^9$       | 2.40 | . 0017 |
| 3 × 10 <sup>9</sup>   | 2.46 | . 0019 |
| 8.5 x 10 <sup>9</sup> | 2.46 | . 0013 |

## Solid asphalt formed by burning liquid for 2 days at 300°C

| 1.5 × 10 <sup>6</sup> | 2.64  | .0043   |
|-----------------------|-------|---------|
| 107                   | 2.64  | . 00 30 |
| 1.8 × 10 <sup>7</sup> | 2.64  | . 0027  |
| $4 \times 10^7$       | 2.64  | . 0029  |
| 8.5 x 10 <sup>9</sup> | 2, 63 | . 0018  |

### Miscellaneous Inorganics

### Concrete pavement

### California Highway Department

| <u>Sample</u> | Density | (MHz) | 0.1   | 1     | 10    | 100   |
|---------------|---------|-------|-------|-------|-------|-------|
| S1            | Dry     | κ     | 9.05  | 7.97  | 7.01  | 6.57  |
|               |         | tan δ | .0946 | .0913 | .0730 | .0536 |
| S1            | Wet     | ĸ     | 176.5 | 69.2  | 23.5  | 13.2  |
|               |         | tan 6 | .822  | 1.088 | .734  | .485  |

| Concrete pavement at 40% R. H., 25°C, 14 GHz |       |       |      | Raytheon    |             |           |
|----------------------------------------------|-------|-------|------|-------------|-------------|-----------|
| 1                                            | 0. 1  |       |      | Various     | 5. 03-5. 06 | . 026 029 |
| 2                                            | 0.1   |       |      | Various     | 5, 06-5, 17 | . 034 030 |
| 3                                            | 0.335 | 2, 14 | 2.21 | Face 1      | 5, 21       | . 059     |
|                                              |       |       |      | Face 1, 90° | 5. 20       | .0612     |
|                                              |       |       |      | Face 2      | 5, 30       | , 0509    |
|                                              |       |       |      | Face 2, 90° | 5, 26       | . 0505    |
| 4                                            | 0.453 | 2, 04 | 2.81 | Face 1      | 4.71        | . 0470    |
| -                                            |       |       |      | Face 1, 900 | 4, 60       | . 0455    |
|                                              |       |       |      | Face 2      | 4.70        | . 0487    |
|                                              |       |       |      | Face 2, 90° | 4, 55       | . 0487    |

Miscellaneous Inorganics

Salt

Raytheon

| <u>Sample</u>            | Condition                       |                                         | 108                    | 3x10 <sup>8</sup>      | 109                   |
|--------------------------|---------------------------------|-----------------------------------------|------------------------|------------------------|-----------------------|
| Granulated purified salt | As received d = 1.39            | κ<br>tan δ<br>% H <sub>2</sub> O        | 3.28<br>0.0019<br>0.05 | 3.27<br>0.0018<br>0.06 | 3,25<br>0,0040<br>.08 |
|                          | Dry<br>d = 1,39                 | κ<br>tan δ                              | 3.25<br>0.0009         | 3.25<br>.0006          | 3.23<br>0.0012        |
| Fine flake salt          | As received d = 0.960           | κ<br>tan δ<br><b>%</b> Η <sub>2</sub> Ο | 2.72<br>0.026<br>0.28  | 2.67<br>0.037<br>0.36  | 2.63<br>0.025<br>0.40 |
|                          | <b>Dry</b><br>d = <b>0.9</b> 56 | k<br>tan o                              | 2.64<br>0.0017         | 2.63<br>0.0014         | 2.62<br>0.0031        |

John Manville Service Boards at 25°C The Sippican Corporation

| Style 61 - 1/4" |       |       | Style 71 - 1/8" |       |  |
|-----------------|-------|-------|-----------------|-------|--|
| MHZ             | ĸ     | tan 6 | ĸ               | tan č |  |
| 0.05            | 12.78 | 0.429 | 5,18            | 0.342 |  |
| 1               | 6.43  | 0.347 | 3.46            | 0.150 |  |
| 60              | 3.87  | 0.091 | 3.07            | 0.017 |  |
| 300*            | 4.20  | 9.188 | 3.54            | 0.043 |  |
| 1000*           | 3,98  | 0.137 | 3,50            | 0.024 |  |
| 0.05*           | 149.  | 0.733 | 63.8            | 0.625 |  |
| 1*              | 46.3  | 0.740 | 15.8            | 1.09  |  |

<sup>\*</sup> Electric field in plans of sheet, others E sheet.

III. ORGANIC COMPOUNDS

(Listed according to manufacturer or source)

#### Artificial concrete

American Concrete Products

Material measured to be isotropic in  $\kappa$  within 0.5%

| Freq. (Miz) | 150    | 300    | 1000   | 3000   |
|-------------|--------|--------|--------|--------|
| ĸ           | 6.06   | 6.04   | 6.02   | 6.0    |
| tan δ       | 0,0107 | 0.0134 | 0.0125 | 0.0123 |

Cyanoethylated cotton moulding

American Cyanamid







Conformal coating 1517-36-3 25°C, 50% relative humidity

Amicon Corporation

| Freq. (Hz) | ĸ    | $	an \delta$ |
|------------|------|--------------|
| 102        | 4.31 | 0.0206       |
| 103        | 4.21 | 0.0204       |
| 106        | 3.76 | 0.0298       |

Volume resistivity 3.7  $\times$   $10^{13}$  ohm-cm Surface resistivity >6  $\times$   $10^{14}$  ohms per square

Polyethylene, irradiated At  $25^{\circ}\mathrm{C}$ 

Source: Amphenol Corp.

| Freq. (Hz)          | κ <sup>t</sup>    | tan ô            |
|---------------------|-------------------|------------------|
| 10 <sup>3</sup>     | 2.28 <u>+</u> .02 | .59 <u>+</u> .05 |
| 106                 |                   | .82 <u>+</u> .05 |
| 108                 |                   | $2.3 \pm .3$     |
| 4x10 <sup>8</sup>   | $2.27 \pm .02$    | 2.9 $\pm$ .5     |
| 109                 | ****              | $2.8 \pm .3$     |
| 3x10 <sup>9</sup>   |                   | $2.6 \pm .3$     |
| 8.5x10 <sup>9</sup> | $2.260 \pm .005$  | $2.5 \pm .2$     |

### Polyvinylidene fluoride

### AVCO Research

where we wanted



Avisun Corporation Post Road Markus Hook, Pa. 19061

|                     | Natural          |       | Plateable 12-270A   |       |                     |
|---------------------|------------------|-------|---------------------|-------|---------------------|
| Freq., Hz           | т <sup>о</sup> с | κ     | $10^4$ tan $\delta$ | κ     | $10^4$ tan $\delta$ |
| 10 <sup>2</sup>     | 25               | 2.26  | 1.50                | 2.41  | 15.2                |
| $2x10^2$            |                  |       | 1.30                |       |                     |
| $4x10^2$            |                  |       | 1.18                |       |                     |
| 10 <sup>3</sup>     |                  |       | 1.36                | 2,41  | 11.8                |
| $3x10^3$            |                  |       | 1.50                |       |                     |
| 10 <sup>2</sup>     |                  |       | 1.65                | 2.39  | 10.5                |
| $2x10^4$            |                  |       | 1.68                |       |                     |
| 5x10 <sup>4</sup>   |                  |       | <b>1.6</b> 6        |       |                     |
| 10 <sup>5</sup>     |                  | 2.25  | 1.51                | 2.38  | 8.70                |
| 10 <sup>6</sup>     |                  | 2.25  | 0.96                | 2.37  | 7.25                |
| 107                 |                  | 2.25  | 1.26                | 2.36  | 6.55                |
| 108                 |                  | 2.25  | 2.04                | 2.36  | 8.2                 |
| 3x10 <sup>8</sup>   |                  | 2.25  | 2.8                 | 2.35  | 12.4                |
| 10 <sup>9</sup>     |                  | 2.25  | 4.7                 | 2.35  | 17.5                |
| 3x10 <sup>9</sup>   |                  | 2.25  | 4.0                 | 2.35  | 15.7                |
| 5x10 <sup>9</sup>   | <b>2</b> >       | 2,245 | 3.7                 | 2.344 | 12.1                |
|                     | <b>~5</b> 5      | 2.265 | 3.0                 | 2.352 | 6.0                 |
|                     | -75              | 2.271 | 2.7                 |       |                     |
|                     | -195             | 2.308 | $0.7 \pm 0.3$       | 2.375 | 2.8                 |
| 8.5x10 <sup>9</sup> | 25               | 2.245 | 3.6                 | 2.343 | 12.3                |

# Polypropylene (cont.) Natural, at 8.52 GHz

THE WINDOWS OF THE SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECO

| <u>S</u>                                           | ample             |                 |                   | ensity<br>(/cm <sup>3</sup> ) | T <sup>O</sup> C |                    | κ                    |                      | tan δ             |                        |
|----------------------------------------------------|-------------------|-----------------|-------------------|-------------------------------|------------------|--------------------|----------------------|----------------------|-------------------|------------------------|
| 1 stacked shee                                     | et pcs            |                 |                   |                               | 25               |                    | 2.246                |                      | .00033            |                        |
| 2 stacked inje                                     | ection 1          | molded p        | cs                |                               | 25               |                    | 2.236                |                      | 00035             |                        |
| 3 rod                                              |                   |                 | .9                | 0073                          | 25               |                    | 2.245                | •                    | .00037            |                        |
| Polypropylene                                      | _                 |                 |                   |                               |                  |                    |                      | Avisun               | Corpor            | ation                  |
| 12-270A                                            | , at 8.           | 52 GHz          |                   |                               |                  |                    |                      |                      |                   |                        |
| <u> </u>                                           | Sample            |                 | De                | ensity                        | TOC              |                    | κ                    | t                    | an δ              |                        |
| 4 stacked inje                                     | ection r          | nolded n        | cs .              | 9500                          | 25               |                    | 2.442                | •                    | 00145             |                        |
| 5 rod                                              |                   |                 |                   | 9303                          | 25               |                    | 2.343                | •                    | 00123             |                        |
| Polytetrafluoroe<br>DiClad-522<br>E <u>l</u> sheet | •                 |                 |                   | es of tan                     | δ multip         | lied by            | 10 <sup>4</sup>      | The Budd<br>Polychem |                   |                        |
| T <sup>O</sup> C Freq. (Hz)                        | 10                | 10 <sup>2</sup> | 103               | 104                           | 105              | 10 <sup>6</sup>    | 10 <sup>7</sup>      | 5.5x10 <sup>7</sup>  | 9×10 <sup>7</sup> | 3.14x10 <sup>9</sup> * |
| 25 κ<br>1 tan δ                                    | 2.739<br>8.6      | 2.740<br>7.0    | 2.738<br>6.7      | 2.737<br>6.1                  | 2.735<br>6.3     | 2.734<br>6.95      | 2.733<br>7.7         | 2.732<br>10.0        | 2.731<br>11.7     | 2.712<br>22.5          |
| 100 κ<br>1 tan δ                                   |                   | 2.710<br>11.1   | 2.705<br>8.10     | 2.704<br>8.25                 | 2.698<br>7.17    | 2,696<br>7.07      | 2.683<br>7.7         |                      |                   | 2.680<br>31            |
| 250 κ<br>1 tan δ                                   |                   | 2.554<br>79.0   | 2.534<br>36.3     | 2.522<br>20.35                | 2.503<br>14.9    | 2.502<br>11.6      | 2.49<br>10.6         |                      |                   |                        |
| $-78$ K 1 tan $\delta$                             |                   | 2.796<br>4.2    | 2.793<br>5.9      | 2.790<br>6.8                  | 2.784<br>7.1     | 2.78<br>7.7        | 2.78<br>9.8          |                      |                   | 2.752<br>17            |
| -195 κ<br>1 tan δ                                  | 2.801<br>.0005    | 2.799<br>2.2    | 2.794<br>4.5      | 2.792<br>5.1                  | 2.787<br>5.4     |                    |                      |                      |                   | 2.758<br>12            |
| -269 κ<br>1 tan δ                                  | 2.789<br>.0003    | 2.789<br>1.2    | 2.784<br>2.0      | 2.783<br>2.2                  | 2.780<br>2.1     |                    |                      |                      |                   |                        |
| * Copper cavity                                    |                   |                 |                   |                               |                  |                    |                      |                      |                   |                        |
| E    sheet                                         |                   |                 |                   |                               |                  |                    |                      |                      |                   |                        |
| T <sup>O</sup> C Freq. (liz)                       | 3×10 <sup>8</sup> | 109             | 3x10 <sup>9</sup> | 8.5x10                        | 9 1.42           | <sub>(J.0</sub> 10 | 2.4x10 <sup>10</sup> |                      |                   |                        |
| 25 κ<br>tan δ                                      | 3.155<br>28       | 3,153<br>30     | 3.152<br>33       | 3.146<br>40                   |                  | 133<br>18          | 3.127<br>52          |                      |                   |                        |
| 100 κ<br>tan δ                                     |                   |                 |                   | 3.11<br>39                    |                  |                    |                      |                      |                   |                        |
| 250 κ<br><b>ta</b> n δ                             |                   |                 | •                 | 3.03<br>36                    |                  |                    |                      |                      |                   |                        |
| -54 κ<br>tan δ                                     |                   |                 |                   | 3.17<br>35                    | <b>3.</b> 1      | L3<br>39           |                      |                      |                   |                        |
| -195 κ<br>tan δ                                    |                   |                 |                   | 3.22<br>28                    | 3.1              | 12<br>31           |                      |                      |                   |                        |

| Е Т                                               | _            |            | 10 <sup>2</sup> | 10 <sup>3</sup> | 104             | 105             | 106             | 107             |
|---------------------------------------------------|--------------|------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 3-terminal,<br>liquid im-<br>mersion,<br>unclad * | 25           | κ<br>tan δ |                 |                 | 2.420           |                 |                 |                 |
| Declad †                                          | 25           | κ<br>tan δ |                 |                 | 2.451           |                 |                 |                 |
| 3-terminal, clad                                  | 26           | κ<br>tan δ | 2.650<br>.0945  | 2.465<br>.0279  | 2.438<br>.00484 | 2.432<br>.00093 |                 |                 |
|                                                   | -195         | κ<br>tan δ | 2.416<br>.00030 | 2.415<br>.00033 | 2.414<br>.00036 | 2.411<br>.00022 |                 |                 |
|                                                   | -54          | κ<br>tan δ | 2.433<br>.00042 | 2.421<br>.00050 | 2.417<br>.00052 | 2.413<br>.00031 |                 |                 |
| 2-terminal, clad, meas. 12-21-70                  | 25           | κ<br>tan δ | 2.495<br>.01816 | 2.475<br>.00307 | 2.471<br>.00083 |                 | 2.468<br>.00055 | 2.468<br>.00035 |
| 3-terminal,<br>clad, 2nd<br>sample                | 25           | κ<br>tan δ | 2.843<br>.141   | 2.504<br>.0491  | 2.457<br>.00811 | 2.449<br>.00126 |                 |                 |
|                                                   | 96           | κ<br>tan δ | 2.486<br>.0708  | 2.398<br>.01343 | 2.389<br>.00230 | 2.384<br>.00050 |                 |                 |
|                                                   | 250          | κ<br>tan δ | 2.257<br>.0263  | 2,240<br>.00568 | 2.232<br>.00238 | 2.222<br>.00111 |                 |                 |
|                                                   | 25           | κ<br>tan δ | 2.759<br>.0970  | 2.510<br>.0390  | 2.459<br>.00748 | 2.451<br>.00115 |                 |                 |
| 2-terminal, clad                                  | -54          | κ<br>tan δ | 2.484<br>.00034 | 2.484<br>.00044 | 2.484<br>.00065 | 2.479<br>.00062 | 2.464<br>.00059 | 2.456<br>.00110 |
|                                                   | <b>-1</b> 95 | κ<br>tan δ | 2.490<br>.00029 | 2,487<br>,00038 | 2.485<br>.00053 | 2.484<br>.00028 | 2.482<br>.00049 | 2.470<br>.00091 |
|                                                   | 25           | κ<br>tan δ |                 |                 |                 | 2.462<br>.00050 | -               | 2.458<br>.00033 |
|                                                   | 96           | κ<br>tan δ | 2.474<br>.01193 | 2.464<br>.00226 | 2.461<br>.00084 | 2.460<br>.00059 | 2.458<br>.00058 | 2.455<br>.00068 |
|                                                   | 250          | κ<br>tan δ | 2,333<br>,01013 | 2.319<br>.00340 | 2.312<br>.00177 | 2.309<br>.00147 | 2.298<br>.00097 | 2.295<br>.00070 |
|                                                   | 25           | κ<br>tan δ | 2.422<br>.00995 | 2.415<br>.00189 |                 |                 |                 |                 |
| E II                                              |              |            |                 |                 |                 |                 |                 |                 |
| 2-terminal, unclad                                | 25           | κ<br>tan δ | 2.434<br>.0037  | 2,533<br>,00094 | 2,431<br>.00061 | 2.428<br>.00035 | 2.416<br>.00052 | 2.413<br>.0005  |

<sup>\*</sup> Refers to sheet stock received without copper.

† Refers to a sample made by mechanically stripping the copper-clad sheet.

# Resonant-Cavity Measurements:

 $\sim$  8.5 GHz, sample constrained in parallel direction, allowed to expand with temperature against a force 30 lb/sq in the perpendicular direction. Unclad stock.

|                  | Ε⊥             |                 |       | E !!   |                 |  |  |
|------------------|----------------|-----------------|-------|--------|-----------------|--|--|
| т <sup>о</sup> с | κ              | tan δ           | κ     | tan ô  | Thickness<br>cm |  |  |
| -194             | 2.466          | .00063          | 2.420 | •00095 | 1.911           |  |  |
| -54              | 2.437          | .00070          | 2.397 | .00104 | 1.917           |  |  |
| 23               | 2.421          | .00091          | 2.383 | .00130 | 1.924           |  |  |
| 96               | 2.396          | .00117          | 2.367 | .00147 | 1.948           |  |  |
| 250              | 2.296          | .0022           | 2.246 | •00185 | 2.093           |  |  |
| Standi           | ng-wave metho  | <u>d</u> , 25°C |       |        |                 |  |  |
|                  | E    , one pie | ce unclad       | 2.387 | .00128 |                 |  |  |

EKONOL (polyester resin)

The Carborundum Company

|                     | Sample           | : 1   |        |
|---------------------|------------------|-------|--------|
| Frequency, Hz       | T <sup>O</sup> C | κ     | tan δ  |
| 10 <sup>2</sup>     | 25               | 3.216 | .00289 |
| 10 <sup>3</sup>     |                  | 3.210 | .00316 |
| 104                 |                  | 3.185 | .00336 |
| 10 <sup>5</sup>     |                  | 3.168 | .00348 |
| 10 <sup>6</sup>     |                  | 3.156 | .00325 |
| 10 <sup>7</sup>     |                  | 3.148 | .00220 |
| 108                 |                  | 3.140 | .00215 |
| 8.5x10 <sup>9</sup> | <b>\</b>         | 3.120 | .00281 |
| 1                   | 99               | 3.11  | .0030  |
|                     | 155              | 3.08  | .0040  |
|                     | 207              | 3.07  | .0061  |
|                     | 284              | 3.04  | .0104  |
|                     | 350              | 3.03  | .0230  |
|                     | 420              | 3.03  | .0230  |
|                     | 217              | 2.99  | .0067  |
| <b>\undersigned</b> | 25               | 2.96  | .0025  |
|                     |                  |       |        |

# Sample 2

| TOC | Freq., Hz | 10 <sup>2</sup>  | 103              | 10 <sup>4</sup>  | 10 <sup>5</sup>  | 10 <sup>6</sup>  | 107             |
|-----|-----------|------------------|------------------|------------------|------------------|------------------|-----------------|
| 25  | κ         | 2.958            | 2.954            | 2.942            | 2.939            | 2.923            | 2.891           |
|     | tan       | 0.00136          | 0.00201          | 0.00251          | 0.00325          | 0.00337          | 0.0021          |
| 100 | tan       | 2.982<br>0.00367 | 2.962<br>0.00263 | 2.955<br>0.00262 | 2.945<br>0.00303 | 2.926<br>0.00391 | 2.898<br>0.0040 |
| 180 | K         | 3.252            | 3.182            | 3.130            | 3.077            | 3.031            | 2.993           |
|     | tan       | 0.0444           | 0.0160           | 0.0120           | 0.0108           | 0.0099           | 0.0096          |
| 250 | K         | 4.606            | 3.415            | 3.244            | 3.177            | 3.096            | 3.050           |
|     | tan       | 0.767            | 0.188            | 0.0368           | 0.0151           | 0.0131           | 0.0138          |
| 325 | K         | 23.57            | 5.646            | 3.574            | 3.267            | 3.190            | 3.140           |
|     | tan       | 1.52             | 1.194            | 0.316            | 0.0567           | 0.0161           | 0.0127          |

Polytetrafluoroethylene film

Zitex

Density 0.463  $g/cm^3$ 

 $25^{\circ}$ C, 8.52 GHz:  $\kappa = 1.194$ , tan  $\delta = .00010$ 

Chemplast Inc. 150 Dey Road Wayne, N.J. 07470

# Polyiron (Carbonyl)

# H. I. Crowley





### Custom Materials

Custom Materials Inc.

Custom load 4101

| Freq. (GHz) | т <sup>о</sup> с | κ    | $	an \delta_{f e}$ | μ <b>'</b> /μ <sub>ο</sub> | tan $\delta_{\mathtt{m}}$ |
|-------------|------------------|------|--------------------|----------------------------|---------------------------|
| 3           | 25               | 13.8 | .050               | 2.69                       | .451                      |
| 8.5         | 25               | 13.3 | .031               | 1.65                       | .747                      |
| 8.5         | -67              | 13.7 | .006               | 1.57                       | .748                      |
| 8.5         | 85               | 14.5 | .051               | 1.68                       | .735                      |

Custom 707-4

 $25^{\circ}$ C, 8.52 GHz:  $\kappa = 4.04$ ,  $\tan \delta = .00090$ 

Custom 707-(3.75)

 $25^{\circ}$ C, 8.52 GHz:  $\kappa = 3.753$ , tan  $\delta = .00076$ 

# FLUORGLAS E 650/2-1200

Dodge Industries, Inc.

TFE-fiberglas laminate

|            |      | E     | : <b>_</b> | E     | E II   |  |
|------------|------|-------|------------|-------|--------|--|
| Freq., GHz | T°C  | κ     | tan δ      | κ     | tan δ  |  |
| 8.5        | 23   | 2,505 | .0014      | 2.847 | .0036  |  |
| 4          | -195 | 2,533 | .00082     | 2.896 | .00172 |  |

```
Moulding compound 306
                                                                  Dow Corning
           1 GHz
                                   3 GHz
                                                           8.52 GHz
     \mathbf{T^o}_{\mathsf{C}}
             K^{I}
                     ta: 6
                                                    T^{o}C
                                       tan δ
                                                               K'
                                                                       tan δ
      25
             3,92
                     .00538
                                3.87
                                       .00622
                                                    -55
                                                             3.85
                                                                       .0060
      76
             3.91
                    .0052
                               3,86
                                       .0058
                                                     25
                                                             3.84
                                                                       .0067
     103
             3.90
                    .0052
                               3.85
                                       .0058
                                                     61
                                                             3.835
                                                                       .00655
                    .0051
     129
            3.89
                               3.84
                                       .0056
                                                    118
                                                             3.825
                                                                       .0064
     150
            3.87
                    .0050
                               3.83
                                       .0055
                                                    147
                                                                       . 00635
                                                             3.82
    216
            3.83
                     0050
                               3.78
                                       .0051
                                                    199
                                                             3.807
                                                                       . 00625
    255
            3.80
                    .0052
                               3.75
                                       .0051
                                                    315
                                                             3.74
                                                                       .00615
     305
            3.77
                    .0056
                               3.72
                                       .0054
                                                    400
                                                             3.66
                                                                      .0061
    410
            3.68
                    .0064
                               3.63
                                       .0068
                                                    499
                                                             3.57
                                                                      .0060
    504
            3.62
                    .0058
                               3.58
                                       .0066
                                                   296
                                                             3.72
                                                                      .0061
    301
            3.75
                    .0048
Silastic RTV 501
                     T°C
                                  1000 MHz
                                                3000 MHz
                                                            8500 MHz
                     -55
                            K'
                                     3.17
                                                   3.07
                            tan 6
                                     0.025
                                                   0.037
                      23
                           K'
                                     2.89
                                                   2,88
                                                              2.87
                           tan δ
                                     0.0053
                                                   0.0104
                                                              0.0175
                     150
                           K'
                                     2,62
                                                   2.62
                           tan δ
                                     0.042
                                                   Q. 0045
        RTV 521
                      23
                           K'
                                     3.33
                                                   3.32
                                                              3.31
                           tan δ
                                     0.0086
                                                   0.0153
                                                              0.025?
        RTV 1602
                     -55
                                     3.09
                                                   3.03
                           tan 6
                                    0.0220
                                                  0.0308
                      23
                           K^{I}
                                    2.93
                                                  2.92
                                                              2.91
                           tan 6
                                    0.0073
                                                  0.0117
                                                              0.0187
                     150
                           ĸ'
                                    2.77
                                                  2, 75
                           tan 8
                                    0.0044
                                                  0.0060
       RTV 5350
                     -55
                           ĸ'
                                    3,22
                                                  3.14
                           tan 6
                                    0.0234
                                                  0.0287
                     23
                          K^{\prime}
                                    3.06
                                                  3.05
                                                             3.04
                           tan b
                                    0.0043
                                                  0.0088
                                                             0.0166
                    150
                          \kappa'
                                    2,82
                                                  2, 79
                          tan δ
                                    0.0040
                                                  0.0043
      S-6538
                    -55
                          K^{t}
                                    3.01
                                                  2.96
                                    0.0242
                          tan 8
                                                  0.0260
                     23
                          \kappa'
                                    2,99
                                                  2.98
                                                             2.97
                          tan 6
                                    0.0069
                                                  0.0124
                                                             0.0187
                    150
                          K^{I}
                                    2.78
                                                  2.77
                          tan 6
                                   0.0039
                                                 0.0047
 Sylgard 182
                    -55
                          ĸ
                                   2.90
                                                 2.86
                                                             2,81
                          tan 6
                                   0.0200
                                                 U. 024
                                                            0.029
                     23
                          K!
                                   2.79
                                                 2.77
                                                             2.73
                          tan 6
                                   0.0081
                                                 0.0120
                                                            0.0199
                    150
                          \kappa'
                                   2,50
                                                 2, 48
                                                            2.45
                          tan 6
                                   0.0026
                                                 0.0040
                                                            0.0073
  Sylgard 182, at 1 MHz
                                                                       Dow Corning
                 TOC
                                                 ĸ
                                                          tan ó
                  25
                                                2,86
                                                          .00132
                  70
                                                2.72
                                                          .00080
                  25 again
                                                         .00109
                  25 (after 24 hrs.
                                                2,86
                                                         .00142
                     in H2O) wt. gain 0.019%
 Sylgard 184, at 25°C
                                        103
                                                   105
               Freq. (Hz)
                             50
                                                               106
                             2.86
                                       2,86
                                                  2.84
                                                              2.84
                 10<sup>4</sup> tan 8
                             2
                                      10.2
                                                 18.4
                                                             14.0
 Sylgard 184 (2nd sample at 1 MMz)
                  TOC
                                                                tan 6
                  25
                                                                .00123
                                                   2.88
                   70
                                                   2.70
                                                                .00071
                  25
                                                                00040
                  25 Cafter 24 hrs.
                                                   2.39
                                                                .00129
                      in H2O) wt. gain 0.0252)
  DC-92,007
      8.52 GHz, 25°C, 50% R.H., x' = 4.92; tan 8 = 0.091
```









E. I. Dupont de Nemours and Co.



"Kapton"

E. I. Dupont de Nemours and Co.

Type 500 H film, at 25°C, 45% relative humidity Electric field in plane of sheet,  $\kappa \pm 0.05$ , tan  $\delta \pm 0.0005$ 

After 48 hrs. at 100°C

| Freq. (G | Hz) ĸ | tan o | κ    | tan S |
|----------|-------|-------|------|-------|
| 0.3      | 3.43  | .0074 | •    | _     |
| 1        | 3.40  | .0076 | 3.30 | .0041 |
| 3        | 3.37  | .0080 | 3.28 | .0044 |
| 8.5      | 3.33  | .0087 | 3.26 | .0047 |
| 24       | 3.25  | .0098 | _    | -     |

After 12 to 18 hrs. vacuum bake at 425°C, 2 microns, 8.52 GHz:  $\kappa = 3.03 \pm 0.1, \ \tan \delta = .0015 \pm .0003$ 

Nonex honeycombs
At 8.52 GHz

E. I. du Ponz de Nemours and Company

|               |         | E 1 doub | a direction  E 1 double-layer seam |        | ection<br>le-layer | c direction E   holes |        |
|---------------|---------|----------|------------------------------------|--------|--------------------|-----------------------|--------|
| Sample<br>No. | Density | κ        | tan δ                              | K      | tan ô              | κ                     | tan ó  |
| 1             | 1,398   | 1,0348   | .00089                             | 1.0441 | .00141             | 1.0855                | .00212 |
| 2             | 2.892   | 1.0519   | .00165                             | 1.0669 | .00229             | 1.0951                | .00350 |
| 3             | 3.938   | 1.0788   | .00176                             | 1,1258 | .00326             | 1.1444                | ,0041  |
| 4             | 4.039   | 1,0808   | .00187                             | 1.1020 | .00278             | 1.1265                | .0049  |
| 5             | 4,124   | 1.0827   | .00274                             | 1.1045 | .00359             | 1.1351                | .0046  |
| 6             | 4.259   | 1.0863   | .00197                             | 1.1340 | .00382             | 1.1270                | .0045  |
| 7             | 4.701   | 1.0928   | .00315                             | 1.1115 | .00297             | 1.1455                | .0047  |
| 8             | 5.003   | 1,0990   | .00205                             | 1.1781 | .00468             | 1.1869                | .0065  |
| 8*            | 5,603   | 1,1010   | .00330                             | 1.1667 | .00628             |                       |        |

<sup>\*</sup> At 100°C, all other values at 25°C



Density = 2.153 g/cm<sup>3</sup>, at 25°C, 8.52 GHz  $\kappa^*$  = 2.058, tan  $\delta$  = 0.00108









TEF-7 (1964)



Teflon T-100,\*) Lot 38180 Density at 25°C = 2.152 g/cm<sup>3</sup>

E. I. Dupont de Nemours and Co.



Teflon 100X (FEP) 1960 and TFE Effect of Van De Graaff irradiation, 25°C



\*) Electric data also apply to: Teflon 9033, Lot 10601, density at  $25^{\circ}C = 2.147 \text{ g/cm}^3$  "Polyguide"

Electronized Chemicals Corp.

|                                |       | 3 GHz     |              | 8. 5   | 2 GHz          | % wt.    |
|--------------------------------|-------|-----------|--------------|--------|----------------|----------|
|                                |       | $\kappa'$ | $tan \delta$ | κ'     | $tan \ \delta$ | increase |
| As received                    | 25°C  | 2.32      | .00034       | 2. 319 | .00030         |          |
|                                | -48°C |           |              | 2. 320 | .00017         |          |
|                                | 74°C  |           |              | 2, 300 | .00040         |          |
| After 24 hrs. H <sub>2</sub> O |       | 2.32      | . 00047      | 2, 320 | .00038         | .007     |

Emerson and Cumming A-19
graphite fiber loaded plastic, November 1966



| "Eccoge1" 1265                             |         |      |       |      | En     | erson &             | Cuming |
|--------------------------------------------|---------|------|-------|------|--------|---------------------|--------|
| т <sup>о</sup> с                           | Freq. ( | -    |       | 10   | 3      | 10                  | ,6     |
|                                            |         | К    | tan δ | K    | tan 6  | κ                   | tan δ  |
| 25                                         |         | 7.60 | .025  | 7.20 | .0595  | 4.05                | .1115  |
| 70                                         |         |      |       |      |        | 6.02                | .0545  |
| 25 again                                   |         |      |       |      |        | _                   | .0897  |
| 25 (after 24 h<br>in H <sub>2</sub> 0) wt. |         | %    |       |      |        | 5.38                | .128   |
| "Eccofoam FH" 3.938 lb/cu.ft               | 1       |      |       |      | Em     | erson &             | Cuming |
| 8.                                         | 52 GHz  |      |       |      | 24 GHz |                     |        |
| κ                                          | tan δ   |      |       |      | κ      | tar                 | ıδ     |
| 1.0856                                     | .00161  | L    |       |      | 1.0798 | 3 .00               | 0165   |
| RTV-11 At 1 MHz                            |         |      |       |      |        | Electric<br>Product |        |
|                                            | °c      |      |       |      |        |                     |        |
|                                            |         |      |       | κ    |        | $tan \delta$        |        |
|                                            | 25      |      |       | 3.25 |        | .00285              |        |
|                                            | 70      |      |       | 3.05 |        | .00372              |        |
| ;                                          | 25      |      |       | -    |        | .00242              |        |

.00543

3.31

25 (after 24 hrs in H<sub>2</sub>O) wt. gain .035%

# SE 900 Silicone Rubber

### General Electric

 $\Delta$  Sample cured 1 hr at 300  $^{\rm o}F$  , measured at 50% R. H.  $^{\rm o}$  Normal cure





| Lexan                | Genera | al Electric |
|----------------------|--------|-------------|
| f(Hz)                | $K^1$  | tan δ       |
| $8.5 \times 10^9$    | 2.77   | .00615      |
| $2.5 \times 10^{10}$ | 2.75   | .00593      |

| ^   |     |
|-----|-----|
| -1- | _ M |
|     |     |

| 11 | 3M   | 11 | boa | rd    |
|----|------|----|-----|-------|
|    | J171 |    | DUG | . L U |

| "SWI" board   |                                         |                  |       |        |                                 |                |          |
|---------------|-----------------------------------------|------------------|-------|--------|---------------------------------|----------------|----------|
|               |                                         |                  | 3 (   | GHz    | 8.5                             | 2 GHz          | % wt.    |
|               |                                         |                  | K¹    | tan δ  | $\kappa^{\scriptscriptstyle 1}$ | $tan \ \delta$ | increase |
| ` As rece     | ived                                    | 25°C             | 2, 32 | .00038 | 2.316                           | .00037         |          |
|               |                                         | -48°C            |       |        | 2.316                           | .00015         |          |
|               |                                         | 74°C             |       |        | 2,300                           | .00040         |          |
| After 24      | hrs H <sub>2</sub> O                    | 25°C             | 2, 32 | .00060 | 2.316                           | .00043         |          |
| Scotchcast 22 | 21                                      |                  |       |        |                                 | 3              | -M       |
| At 1 MH       | Iz                                      |                  |       |        |                                 |                |          |
|               | <b>T<sup>O</sup>C</b>                   |                  |       | κ      | tan δ                           |                |          |
|               | 25                                      |                  |       | 3.06   | .0273                           |                |          |
|               | 70                                      |                  |       | 3.73   | .1373                           |                |          |
|               | 25                                      |                  |       | ••     | .0245                           |                |          |
|               | 25 (after 24<br>in H <sub>2</sub> 0) wt |                  | 74%   | 3.12   | .0352                           |                |          |
| Polyimide foa | ms                                      |                  |       | •.     |                                 | Mor            | nsanto   |
| At 8.52       |                                         |                  |       | •      |                                 |                |          |
|               | Density (lbs/cu.ft.)                    | T <sup>o</sup> C |       | κ      |                                 | tan δ          |          |
| HD-139        | 8.4                                     | 25               |       | 1.1439 |                                 | .00277         |          |
|               |                                         | 150              |       | 1.128  |                                 | .00040         |          |
|               |                                         | 304              |       | 1.118  |                                 | .00045         |          |
|               |                                         | 25               |       | 1.126  |                                 | .0014          |          |
| HD-140        | 16.7                                    | 25               |       | 1.301  |                                 | .00507         |          |
|               |                                         | 154              |       | 1.264  |                                 | .00094         |          |
|               |                                         | 307              |       | 1.260  |                                 | .00121         |          |
|               |                                         | 25               |       | 1.260  |                                 | .00037         |          |
| HD-144        | 21.8                                    | 25               |       | 1.412  |                                 | .00635         |          |
|               |                                         | 148              |       | 1.355  |                                 | .00135         |          |
|               |                                         |                  |       |        |                                 |                |          |

1.382

1.351

.00190

.0068

303

28

|                                     | 3.80 lbs/cu. ft  |        |                                 | 7.54 lbs/cu.ft |  |  |
|-------------------------------------|------------------|--------|---------------------------------|----------------|--|--|
| $\mathtt{T}^{\mathbf{o}}\mathbf{F}$ | $\kappa^{\iota}$ | tan δ  | $\kappa^{\scriptscriptstyle 1}$ | tan δ          |  |  |
| 77                                  | 1.087            | .00136 | 1.165                           | .00242         |  |  |
| 116                                 | 1.088            | .00176 | 1.170                           | ,00276         |  |  |
| 164                                 | 1.093            | .00208 | 1.175                           | .00344         |  |  |

Fluorosint (1960)

Polymer Corp.



### Radar tape

At 14.2 GHz

Quantum Inc. Lufbery Ave. Wallingford, Conn.

| $\mathbf{T}^{\mathbf{O}}\mathbf{C}$ | κ    | tan $\delta$ |
|-------------------------------------|------|--------------|
| 25                                  | 3.56 | .0132        |
| 150                                 | 3.37 | .0055        |
| 320                                 | 3.32 | .0074        |
| 477                                 | 3.36 | .0130        |

### **Plastics**

Raytheon Company

Resin - "Bakelite" epoxy (Union Carbide)
- CY-178 epoxy (Ciba Products
Hardener - hexahydrothalic Anhydride, HHPA (Allied Chem.)

|                                 | . 73°F          |       |      |                    |  |
|---------------------------------|-----------------|-------|------|--------------------|--|
|                                 | 10 <sup>5</sup> | Hz    | 10   | 6<br>Hz            |  |
| Resin 100 parts                 | κ               | tan δ | κ    | ${\tt tan}~\delta$ |  |
| ERL-4221a                       | 3.42            | .0145 | 3.33 | .0165              |  |
| ERL-4221/ERRA-4090b             | 4.13            | .0193 | 4.05 | .0233              |  |
| ERL-4289 <sup>C</sup>           | 3.40            | .0123 | 3.34 | .0160              |  |
| ERL-4259d                       | 3.93            | .0172 | 3.82 | .0151              |  |
| ERL-4259 <sup>e</sup>           | 3.44            | .0159 | 3,33 | .0234              |  |
| ERL-4221/ERRA-4090 <sup>f</sup> | 3.84            | .0175 | 3.74 | .0153              |  |
| CY-1788                         | 3.38            | .0177 | 3.31 | .0179              |  |
| ERL-4221/ERRA-4090 <sup>h</sup> | 4.52            | .0302 | 4.42 | .0270              |  |

a. 90 parts HHPA, 0-silica.

b. 65 parts HHPA, O-silica.

c. 65-HHPA, O-silica.

d. 65-HHPA, 115-silica.

e. 90 parts hardener liquid anhydride (Ciba), O-silica.

f. 65-HHPA, 85-silica.

g. 65-HHPA, O-silica.

h. 65-HHPA, 118-silica.

Wm. Brand Rex Division of American Enka Corp.

Rexolite 1422 (1964), including effect of Van De Graaff irradiation (1960)



# Rexolite 2200 (1964),

including effect of Van De Graaff irradiation (1960)



# Rexolite 2200 (1965)

| •                              |       | 3 (   | CHz    | 8.5    | SZ GHz    | % wt.    |
|--------------------------------|-------|-------|--------|--------|-----------|----------|
|                                |       | K'    | tan 8  | K      | tan b     | increase |
| As received                    | 25°C  | 2. 65 | .00169 | 2.65   | .00170    |          |
|                                | -48°C |       |        | 2.64   | .00110    |          |
|                                | 74°C  |       |        | 2. 645 | .00209    |          |
| After 24 hrs. H <sub>2</sub> O | 25°C  | 2. 66 | . 0026 | 2.66   | . 00 34 3 | . 055    |



# Wm. Brand Rex Division of American Enka Corp.



|                  | 3.7   | GHz    | 4.3   |        |                              |
|------------------|-------|--------|-------|--------|------------------------------|
|                  | E     | : //   | E     | 1      | Court to                     |
| T <sup>O</sup> C | ĸ     | tan δ  | κ     | tan δ  | Cavity<br>length<br>(inches) |
| 25               | 2.476 | .00156 | 2.317 | .00125 | 2.015                        |
| 81.5             | 2.458 | .00176 | 2.301 | .00153 | 2.042                        |
| 106.8            | 2.447 | .00178 | 2.289 | .00140 | 2.055                        |
| 125              | 2.438 | .00176 | 2.282 | .00142 | 2.067                        |
| 152              | 2.425 | .00166 | 2.268 | .00149 | 2.083                        |
| 176              | 2.412 | .00160 | 2.255 | .00155 | 2.106                        |
| 202              | 2.399 | .00159 | 2.239 | .00167 | 2.127                        |
| 250              | 2.370 | .00165 | 2.203 | .00202 | 2.159                        |
| 310              | 2.301 | .00182 | 2.130 | .0024  | 2.320                        |
| 362              | 2.031 | .00225 | 1.878 | .0015  | 2.869                        |



Epon 828 epoxy 100 pts. by weight

PMDA (pyromellitic dianhydride) 56 pts. by weight

plus

Tetrahydrofurfural alcohol 99 pts. by weight

Dicyandiamide 1 pt. by weight



Frequency (Hz)

ar our or arrivable and the same

Epon 828/PMDA casting

Epon 828 epoxy 109 pts. by weight PMDA (pyromellitic dianhydride) 31 pts. by weight



# Polystyrene foam Polyurethane foam

The Sippican Corporation

| Sample                                       | Hz        | 5x10 <sup>4</sup> | 106               | 6x10 <sup>7</sup> | 3x10 <sup>8</sup> | 1x10 <sup>9</sup> |
|----------------------------------------------|-----------|-------------------|-------------------|-------------------|-------------------|-------------------|
| I, white polystyrene 3 lbs/cu.ft.            | D.F.      | 1.060<br>.000083  | 1.060<br><.00002  | 1.060<br><.0002   | 1.058<br>.00004   | 1.057<br><.00005  |
| <pre>II, blue polystyrene 2 lbs/cu.ft.</pre> | κ<br>D.F. | 1.0368<br>.000061 | 1.0367<br><.00002 | 1.037<br><.0002   | 1.037<br>.0001    | 1.037<br><.00005  |
| III, polyurethane 4 lbs/cu ft.               | κ<br>D.F. | 1.0846<br>.00143  | 1.082<br>.00151   | 1.080<br>.0018    | 1.078<br>.00164   | 1.077             |
| IV, polyurethane 6 lbs/cu.ft.                | κ<br>D.F. | 1.155<br>.00207   | 1.148<br>.00289   | 1.145<br>.0033    | 1.144<br>.00295   | 1.143<br>.00347   |

# Tellite 3A

# Tellite Corp.

|                               | ToC | κ'   | tan δ  | κ'     | tan δ  | % weight increase |
|-------------------------------|-----|------|--------|--------|--------|-------------------|
| As received                   | 25  | 2.31 | .00028 | 2. 311 | .00022 |                   |
| ·                             | -48 |      |        | 2.318  | .00020 |                   |
|                               | 74  |      |        | 2. 294 | .00027 |                   |
| After 24 hrs H <sub>2</sub> O | 25  | 2.31 | .00036 | 2. 311 | .0003~ | .003              |



Fiberglass laminate

Air Force Materials Laboratory

with polybenzimidazole resin (approx. 24%)

density 1.949 g/cm<sup>3</sup>



# Fiberglass laminates

# 4.6 4.2 3.8 0.020 100 200 100 200 100 400 500 600

Fiberglass laminate with 181 glass cloth and a polyol cross-linked polyimide resin, 8.52 GHz

# Air Force Materials Laboratory



Fiberglass laminate with 181 glass cloth and a polyimide resin, 8.52 GHz



Fiberglass laminate with 181 glass cloth and epoxy resin, 8.52 GHz

# IV. MISCELLANEOUS ORGANICS

Coal, powdered

Peabody Coal Division Kennecott Copper

| Room | humidity, | 8. | 5 GHz |
|------|-----------|----|-------|
|------|-----------|----|-------|

| s             | ample<br>No. | κ <sup>†</sup>     | ĸ"     | tan δ  | om-cm) <sup>-1</sup>  | ρ<br>(g/cm <sup>3</sup> ) |        |
|---------------|--------------|--------------------|--------|--------|-----------------------|---------------------------|--------|
|               |              |                    |        |        |                       |                           | -      |
| 1             | -421         | 4.65               | .892   | .191   | $4.22 \times 10^{-3}$ | .780                      |        |
| 1             | -422         | 5.85               | 1.21   | . 206  | 5.73                  | .842                      |        |
| 1             | -424         | 5.76               | 1.15   | .199   | 5.42                  | .813                      |        |
| 0             | -1071        | 4.84               | 1.02   | .209   | 4.81                  | .759                      |        |
| 1             | -429         | 4.33               | .800   | .184   | 3.68                  | .768                      | ,      |
| 1             | -436         | 5.23               | 1.11   | .211   | 5.24                  | .756                      |        |
| 1             | -423         | 5.17               | 1.13   | .217   | 5.35                  | .740                      |        |
| . 1           | -427         | 5.07               | 1.09   | .2Ì5   | 5.17                  | .759                      |        |
| 1             | -425         | 4.66               | .885   | .189   | 4.18                  | .792                      | `,     |
| 0             | -1075        | 4.16               | .788   | .189   | 3.73                  | .775                      |        |
|               |              |                    |        |        |                       |                           |        |
| Sample<br>No. | Freq.,       | нz 10 <sup>2</sup> | 103    | 104    | 105                   | 10 <sup>6</sup>           | 107    |
| 1-421         | κ¹           | 1626.              | 123.   | 40.8   | 21.1                  | 15.5                      | 9.11   |
| ρ=.850        | κ"           | 10886.             | 1122.  | 153.   | 24.2                  | 9.56                      | 3.02   |
|               | tan δ        | 6.69               | 9.10   | 3.75   | 1.14                  | .613                      | .331   |
|               | σ            | 6.0E-7             | 6.2E-7 | 8.5E-7 | 1.3E-6                | 5.3E-6                    | 1.6E-5 |
| 1-422         | κ¹           |                    | 720.   | 100.   | 39.4                  | 18.7                      | 11.1   |
|               | ĸ            |                    | 7368.  | 930.   | 92.8                  | 18.8                      | 5.12   |
| ρ=.850        | tan $\delta$ | ;                  | 10.2   | 9.28   | 2.36                  | 1.01                      | .462   |
|               | σ            |                    | 4.1E-6 | 5.1E-6 | 5.1E-6                | 1.0E-5                    | 2.7E-5 |

Coal, single lump

Massachusetts Institute of Technology National Magnet Laboratory

| Frequency, Hz  | 106                 | 8.5x10 <sup>9</sup> |
|----------------|---------------------|---------------------|
| κ <sup>†</sup> | -                   | 8.4                 |
| κ"             |                     | 2.47                |
| tan δ          | -                   | .294                |
| σ              | $1 \times 1.0^{-4}$ | .117                |

# Balsa wood

# The Sippican Corporation

| Frequency, MHz   | κ     | tan o |
|------------------|-------|-------|
| 0.05             | 2.190 | .123  |
| 1                | 1.928 | .0614 |
| 60               | 1.727 | .0620 |
| 300 <sup>*</sup> | 1.417 | .046  |
| 1000*            | 1.404 | .047  |

<sup>\*)</sup> Electric field grain, others E along grain

### Particle boards

The Sippican Corporation

|    | •                                           |            | E ⊥ sl            | neet            | E    8            | sheet        |
|----|---------------------------------------------|------------|-------------------|-----------------|-------------------|--------------|
|    | Sample                                      | Freq., Hz  | 5x10 <sup>4</sup> | 10 <sup>6</sup> | 3x10 <sup>8</sup> | 109          |
| 1. | U.S. Plywood<br>fiber face                  | κ<br>tan δ |                   | 2.94<br>.0410   | .109              | 2.69<br>.105 |
| 2. | U.S. Plywood<br>fiber face,<br>all phenolic | κ<br>tan δ |                   | 3.02<br>.0582   |                   | 2.66<br>.096 |
| 3. | U.S. Plywood<br>Novoply                     | κ<br>tan δ | 3.12<br>.0261     | 2.98<br>.0320   | 2.87<br>.099      | 2.67<br>.100 |
| 4. | Evans Products,                             | κ<br>tan δ | 3.32<br>.0230     | 3.20<br>.0368   | 3.08<br>.106      | 2.85<br>.101 |
| 5. | Evans Products,<br>underlayment<br>grade    | κ<br>tan δ | 3.26<br>.0229     | 3.13<br>.0360   | 3.00<br>.110      | 2.76<br>.104 |

# Wood products

# The Sippican Corporation

|               |            | 2                 | 25°C, E in        |                   |                     |                     |                   |
|---------------|------------|-------------------|-------------------|-------------------|---------------------|---------------------|-------------------|
| Material F    | req.,Hz    | 5x10 <sup>4</sup> | 5×10 <sup>5</sup> | 3×10 <sup>6</sup> | 1.8x10 <sup>7</sup> | 3×10 <sup>7*)</sup> | 3x10 <sup>8</sup> |
| Pine board    | κ<br>tan δ | 2.90<br>.0228     | 2.81<br>.037      | 2.68<br>.055      | 2.38<br>.081        | 2.31<br>.087        | 2.06              |
| Fir plywood   | κ          | 3.18              | 2.97              | 2.78              | 2.54                | 2.47                | 2.25              |
|               | tan        | .060              | .068              | .064              | .064                | .065                | .074              |
| Birch plywood | κ          | 2.87              | 2.74              | 2.62              | 2.38                | 2.32                | 2.16              |
|               | tan        | .033              | .041              | .0505             | .062                | .063                | .067              |
| Marinite      | K          | 2.88              | 2.33              | 2.07              | 2.00                | 1.98                | 1.910             |
|               | tan        | .49               | .148              | .054              | .0219               | .020                | .0200             |

<sup>\*)</sup> Values at 30 MHz are interpolated, not measured.

V. LIQUIDS

| Fluorocarbon | derivative | P-1C |
|--------------|------------|------|
| At 2500      |            |      |

Allied Chemical Corporation

| Freq. (GHz) | κ    | tan $\delta$ |
|-------------|------|--------------|
| 1           | 1.92 | .0050        |
| 3           | 1.92 | .0140        |
| 8.52        | 1.89 | .029         |
| 14          | 1.87 | .038         |

# Dowtherm A

Dow Chemical



Fluorinated ethers, at  $27^{\circ}$ C T°C = <6 to 28

E. I. Dupont de Nemours & Co.

|                     | FPS   | -1418              | F. S  | -1419                | FPS   | -1420                 |
|---------------------|-------|--------------------|-------|----------------------|-------|-----------------------|
|                     | b.p.  | 148°C              | b.p.  | 101°C .              | b.p.  | 153°C                 |
| Freq. (Hz)          | ĸ     | tan ô              | ĸ     | tan ô                | K     | tan ô                 |
| 102                 | 1.890 | 3x10 <sup>-6</sup> | 1.859 | 1.6×10 <sup>-5</sup> | 2.570 | 3.23x10 <sup>-3</sup> |
| 105                 | 1.890 | 3x10 <sup>-6</sup> | 1.859 | $2 \times 10^{-6}$   | 2.570 | $1.6 \times 10^{-5}$  |
| 108                 | 1.888 | .00243             | 1.857 | 4.2x10 <sup>4</sup>  | 2.53  | .0126                 |
| 109                 | 1.851 | .0142              | 1.833 | .0042                | 2.420 | .0952                 |
| 3x10 <sup>9</sup>   | 1.838 | .0124              | 1.832 | .0075                | 2.213 | .0995                 |
| 8.5x10 <sup>9</sup> | 1.797 | .0068              | 1.798 | .0084                | 2.026 | .0907                 |



Teresso V-78 (cont.)





Hercules, Inc.

| DI-CUP |              | VUL-CUP                       |                   |                    |
|--------|--------------|-------------------------------|-------------------|--------------------|
| dicum  | yl peroxide  | a,a <sup>1</sup> -bis(t-butyl | peroxy)           | diisopropylbenzene |
|        | 25°C         |                               | 25°C              |                    |
| κ      | $	an \delta$ | Freq., Hz                     | κ                 | tan δ              |
| 2.79   | .0073        | 10 <sup>2</sup>               | 2,633             | .0011              |
| 1      | .00081       | 10 <sup>3</sup>               | 1                 | 。00011             |
|        | .000115      | 104                           |                   | .000013            |
| ļ      | .000064      | 10 <sup>5</sup>               | -                 | 10 <sup>-5</sup>   |
| . ↓    | .00040       | $10^6$                        |                   | .00005 ± 2         |
| 2.97   | .0032        | 1.8x10 <sup>7</sup>           |                   |                    |
| 2,73   | .0025        | 6x10 <sup>9</sup>             | <b>\</b>          |                    |
| 2.70   | .0050        | 108                           | 2,63              | •005 <u>+</u> 2    |
| 2.57   | •0082        | 10 <sup>9</sup>               | 2,60              | .0206              |
| 2.515  | .0078        | 3x10 <sup>9</sup>             | 2.56              | .0378              |
| 2.495  | .0044        | 8.5×10 <sup>9</sup>           | 2.40              | .056               |
|        |              |                               | 99 <sup>0</sup> C |                    |
|        |              | 109                           | 2.26              | .0116              |
|        |              | 3x10 <sup>9</sup>             | 2,24              | .0184              |

Pennwalt Corp., Lucidol Div.

Lucidol t-butyl perbenzoate

Lupersol 130

2,5 dimethyl-2,5-di(t-butylperoxy)hexyne-3

| 25°C  |                                                                 |                                                                                   | 25°C                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                           |
|-------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| K     | tan δ                                                           | Freq., Hz                                                                         | K                                                                                                                                                                           | tan 6                                                                                                                                                                                                                                                                                                                                     |
| -     | -                                                               |                                                                                   | 2.656                                                                                                                                                                       | .00123                                                                                                                                                                                                                                                                                                                                    |
| -     | -                                                               |                                                                                   |                                                                                                                                                                             | .000123                                                                                                                                                                                                                                                                                                                                   |
| 12.17 | .17                                                             | _                                                                                 |                                                                                                                                                                             | .000012                                                                                                                                                                                                                                                                                                                                   |
| 12.17 | .017                                                            |                                                                                   |                                                                                                                                                                             | .000023                                                                                                                                                                                                                                                                                                                                   |
| 12.1  | .0027                                                           |                                                                                   | •                                                                                                                                                                           | .00012                                                                                                                                                                                                                                                                                                                                    |
| 12.0  | .0095                                                           | 107                                                                               | 2.655                                                                                                                                                                       | .00121                                                                                                                                                                                                                                                                                                                                    |
| 11.2  | .0044                                                           | 108                                                                               | 2.65                                                                                                                                                                        | .0066                                                                                                                                                                                                                                                                                                                                     |
| 5.70  | .252                                                            |                                                                                   | 2.56                                                                                                                                                                        | .0235                                                                                                                                                                                                                                                                                                                                     |
| 4.07  | .337                                                            | 3x10 <sup>9</sup> .                                                               | 2.50                                                                                                                                                                        | .0344                                                                                                                                                                                                                                                                                                                                     |
| 3,23  | .460                                                            | 8,5x10 <sup>9 - t</sup>                                                           | 2.39                                                                                                                                                                        | .0505                                                                                                                                                                                                                                                                                                                                     |
|       |                                                                 |                                                                                   | 99°C                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                           |
|       |                                                                 |                                                                                   | 2.33                                                                                                                                                                        | .0076                                                                                                                                                                                                                                                                                                                                     |
|       |                                                                 |                                                                                   | 2.32                                                                                                                                                                        | .0154                                                                                                                                                                                                                                                                                                                                     |
|       | 12.17<br>12.17<br>12.17<br>12.1<br>12.0<br>11.2<br>5.70<br>4.07 | κ tan δ 12.17 .17 12.17 .017 12.1 .0027 12.0 .0095 11.2 .0044 5.70 .252 4.07 .337 | K tan $\delta$ Freq., Hz $10^2$ - 10 $^3$ 12.17 .17 $10^4$ 12.17 .017 $10^5$ 12.1 .0027 $10^6$ 12.0 .0095 $10^7$ 11.2 .0044 $10^8$ 5.70 .252 $10^9$ 4.07 .337 $3\times10^9$ | K tan $\delta$ Freq., Hz K  10 <sup>2</sup> 2.656  - 10 <sup>3</sup> 12.17 .17 10 <sup>4</sup> 12.17 .017 10 <sup>5</sup> 12.1 .0027 10 <sup>6</sup> 12.0 .0095 10 <sup>7</sup> 2.655 11.2 .0044 10 <sup>8</sup> 2.65 5.70 .252 10 <sup>9</sup> 2.56 4.07 .337 3x10 <sup>9</sup> 2.50 3.23 .460 8.5x10 <sup>9</sup> 2.39  99°C  2.33 2.32 |

# Mullet oil

# U.S. Bureau of Fisheries

|            | 24 + | 0.5°C        | 10 <u>+</u> | 1°C   |
|------------|------|--------------|-------------|-------|
| Freq., GHz | κ    | tan $\delta$ | κ           | tan δ |
| 1          | 2.54 | .068         | _           | _     |
| 8.5        | 2.52 | .0507        | 2.50        | .0458 |
| 14         | 2.42 | .0468        | 2.39        | .0443 |
| 24         |      | .0384        | 2.36        | .0380 |

USP 333

U.S. Peroxygen Div., Argus Chemical Corp.

| 25 <sup>0</sup> С<br>К | tan ô                                 |
|------------------------|---------------------------------------|
| 3.818                  | .0170                                 |
|                        | .00170                                |
|                        | .00017                                |
|                        | .000027                               |
| <b>\rightarrow</b>     | .00021                                |
| 3.81                   | .00157                                |
| 3.75                   | .0146                                 |
| 3,60                   | .0842                                 |
| 3.30                   | .130                                  |
| 2,80                   | .1735                                 |
|                        | 3.818<br>3.81<br>3.75<br>3.60<br>3.30 |

# Lupersol 101 2,5-dimethyl-2,5-di(t-butylperoxy)hexane

Wallace & Tiernan Inc.

| at 25°C              |         |         |
|----------------------|---------|---------|
| Freq., Nz            | κ       | tan 6   |
| 104                  | 2.66    | .000088 |
| 105                  | 2.66    | .000144 |
| 106                  | 2.66    | .000053 |
| 107                  | 2.65    | .00049  |
| 108                  | 2.64    | .0050   |
| 109                  | 2.62    | .0217   |
| 3×10 <sup>9</sup>    | 2.58    | .0387   |
| 8.5×10 <sup>9</sup>  | 2.41    | .057    |
| 2.4×10 <sup>10</sup> | 2.26    | .045    |
| +                    | at 99°C |         |
| 109                  | 2.02    | .0040   |
| 3×19 <sup>9</sup>    | 2.02    | .0068   |
|                      |         |         |

Kremax Armour



## Frozen lean steak

|                 | 150            | MHz       | 100          | 0 MHz                   | 3000   | MHz    |
|-----------------|----------------|-----------|--------------|-------------------------|--------|--------|
| TOF             | κ              | tan δ     | κ            | tan δ                   | κ      | tan δ  |
| <del>-</del> 75 | 3. 42          | .022      | 3. 33        | .0164                   | 3. 22  | .0105  |
| -60             | 3. 61          | .040      | 3. 42        | . 026                   | 3. 40  | .014   |
| <b>-5</b> 0     | 3. 70          | .058      | 3. 46        | . 036                   | 3. 44  | .0185  |
| -40             | 3. 82          | .072      | 3.51         | .050                    | 3. 46  | .024   |
| -30             | 3. 92          | .094      | 3. 60        | .066                    | 3. 55  | .032   |
| -20             | 4. 18          | .102      | 3. 80        | . 089                   | 3. 70  | .040   |
| -10             | 4. 50          | .138      | 4.10         | .12                     | 3. 80  | .054   |
| 0               | 5. 33          | .18       | 4. 40        | . 165                   | 3. 95  | .076   |
| . 10            | 6. 35          | . 24      | 5.18         | . 223                   | 4. 37  | .108   |
| 20              | 9. 55          | . 39      | 9. 50        | . 203                   | 7. 30  | .174   |
| 30              | 33             | . 60      | 20.8         | . 254                   | 8.40   | . 250  |
| 40<br>50        | 53. 5<br>53. 0 | . 22      | 33. 0        | . 32                    | 8. 30  | . 208  |
| 50              | 53. 0          | . 21      |              |                         |        |        |
|                 |                | Vac       | uum-dry leas | n beef                  |        |        |
| -60             |                |           | 1.495        | . 00 320                | 1.471  | .00335 |
| -40             | 1.535          | . 0060    | 1.497        | , 00 37 5               | 1.473  | .00395 |
| -20             | 1.548          | . 0080    | 1, 502       | .00446                  | 1.475  | . 0047 |
| 0               | 1. 562         | .0102     | 1.511        | . 00535                 | 1.480  | . 0057 |
| 20              | 1.582          | . 01 32   | 1.520        | . 0066                  | 1.483  | .0068  |
| 40              | 1.60           | . 0168    | 1.530        | ,0080                   | 1.490  | . 0082 |
| 60              | 1.62           | . 0216    | 1.542        | . 0096                  | 1.500  | . 0099 |
| 80              | 1.648          | . 0264    | 1.558        | .0111                   | 1.509  | .0119  |
| 100             |                |           | 1.571        | .0127                   | 1.522  | . 0138 |
| 120<br>140      |                |           | 1. 587       | .0143                   | 1.535  | .0147  |
| 160             |                |           | 1.604        | . 0160                  | 1.545  | . 0175 |
| 180             |                |           | 1.622        | . 0176                  | 1.560  | .0193  |
| 100             |                |           | 1.612        | . 0198                  | 1. 590 | . 0214 |
|                 |                | Potato (N | laine, 78.9% | н <sub>2</sub> 0), 25°с |        |        |
|                 |                | £ (C      | iHz) K       | ' tan ô                 |        |        |
|                 |                |           | 3 13         | 0 . 83                  |        |        |
|                 |                | 1         |              |                         |        |        |

| f (GHz) | K*  | tan ó |
|---------|-----|-------|
| . 3     | 130 | . 83  |
| 1       | 87  | . 39  |
| 3       | 81  | . 38  |

# Potato flakes, density 0.284

| . 3 | 1.50  | . 034 |
|-----|-------|-------|
| 1   | 1.485 | . 030 |
| 3   | 1.47  | . 029 |

## Potato chips

| partly cooked | 3 | 5, 76<br>5, 18 | . 36<br>. 55   |
|---------------|---|----------------|----------------|
| cooked        | 1 | 1. 89<br>1. 86 | . 034<br>. 036 |

Potato starch, granular and gelatinized, at 1 0 GHz, 25°C







|                     |             | Nescafe             |                        |                                 | Nestea     |                        |
|---------------------|-------------|---------------------|------------------------|---------------------------------|------------|------------------------|
| f (Hz)              | K           | tan δ               | σ                      | $\kappa^{\scriptscriptstyle 1}$ | tan δ      | σ                      |
| 102                 | 1.557       | .0115               | $9.93 \times 10^{-13}$ | 1.290                           | .00442     | 3.17×10 <sup>-13</sup> |
| 103                 | 1.529       | .0113               | $9.58 \times 10^{-12}$ | 1,281                           | .00384     | $2.73 \times 10^{-12}$ |
| 104                 | 1.490       | .0103               | $8.52 \times 10^{-11}$ | 1.276                           | .00301     | $2.13 \times 10^{-11}$ |
| 105                 | 1.488       | .0090               | $7.43 \times 10^{-10}$ | 1.270                           | .00245     | 1.73 $\times 10^{-10}$ |
| 106                 | 1.471       | .0089               | $7.27 \times 10^{-9}$  | 1.267                           | .00230     | $1.62 \times 10^{-9}$  |
| 107                 | 1.453       | .0093               | $7.52 \times 10^{-8}$  | 1.260                           | .00196     | $1.37 \times 10^{-8}$  |
| 3x10 <sup>8</sup>   | 1.432       | .0106               | $2.53 \times 10^{-7}$  | 1.24                            | .0023      | 4.75 $\times 10^{-7}$  |
| 109                 | 1.39        | .0098               | $7.57 \times 10^{-6}$  | 1.22                            | .0024      | $1.63 \times 10^{-7}$  |
| 3x10 <sup>9</sup>   | 1.36        | .0093               | $2.11 \times 10^{-5}$  | 1.21                            | .0026      | $5.25 \times 10^{-6}$  |
| 8.5x10 <sup>9</sup> | 1.34        | .0086               | $5.65 \times 10^{-5}$  | 1.20                            | .0033      | $1.87 \times 10^{-5}$  |
|                     | density 0.2 | $41 \text{ g/cm}^3$ |                        |                                 | 0.126 g/cm | 3                      |

## Eggwhite

| Frequency                         | . κ¹ | tan δ | ρ  |
|-----------------------------------|------|-------|----|
| 3 x 10 <sup>9</sup>               | 35   | . 5   |    |
| $9.2 \times 10^{9}$               | 13   | 1.1   |    |
| 10 <sup>4</sup> , 10 <sup>5</sup> |      |       | 35 |
| Bread                             |      |       |    |

$$1.2 \times 10^{7}$$
 11 3.35

Dough
 $10^{7}$   $2 \times 10^{5}$  2.25 1

## MATERIALS AND COMPANY INDEX

| "Acrawax" C, IV-56                    | "AlSiMag" 576, V-2,36,37; P.R6  |
|---------------------------------------|---------------------------------|
| Acrylate resins, IV-34,35;V-10        | "AlSiMag" 577, V-4,58           |
| Acrylonitrile-butadiene               | "AlSiMag" 602, V-21,75          |
| copolymer, IV-53                      | "AlSiMag" 614, VI-10; P.R6      |
| Admiralty Materials Laboratory's      | "AlSiMag" 652, V-21; VI-8,9     |
| ·                                     |                                 |
| silicon nitride, ceramic,             | "AlsiMag" 719; P.R6             |
| P.R100                                | "AlSiMag" 754, P.R40            |
| AFC Alumina, V-21                     | "AlSiMag" 5050, V-234; VI-44    |
| AF Materials Laboratory's             | Alumina (including porcelains), |
| Zircolite, P.R122                     | IV-6,96-100; V-1-4,21,23,30-52; |
| Aircraft-Marine Products, Inc.,       | VI-7-21; P.R5-37                |
| IV-14; V-74                           | "AFC," V-21,30                  |
| Air Reduction Sales Co., V-20         | "Alite," see U.S, Stoneware,    |
| Air Seal, IV-52                       | V-21,51; VI-20,21               |
| "Alathon," IV-27,70                   |                                 |
| · · · · · · · · · · · · · · · · · · · | "Alberox" A-935, A-950, and     |
| Alberox Corp., P.R5                   | A-962, r.R5                     |
| "Alberox" A-935, A-950, and           | American Lava                   |
| A-962, P.R5                           | "AlSiMag" 393, IV-3             |
| Alcohols, IV-62                       | "AlSiMag" 491, IV-6,100;        |
| "Alite" A-389-25 and                  | V-1,32,33                       |
| A-389-P-30, VI-20                     | "AlSiMag" 513, V-1,34,35        |
| AP-212 and AP-216, V-21               | "AlSiMag" 544, V-2,21,31        |
| AP-312, V-21,51                       | "AlSiMag" 548, V-21,31          |
| APO-512-6 and APO-                    | "AlSiMag" 576, V-2,36,37        |
| 512-7, VI-21                          | "AlSiMag" 602, V-21             |
| Alkyd resins, IV-47-49,123,124;       | "AlsiMag" 652, V-21,38,39;      |
| V-112,113                             | VI-8,9                          |
| Allied Chemical Corp., P.R194         |                                 |
| Allied Chemical fluorocarbon          | "AlSiMag" 719, P.R6             |
|                                       | Armour Research, Alcoa,         |
| derivative P-1C, P.R194               | P.R7,8                          |
| Allison, William M., and Co.,         | E-11, P.R9,10                   |
| IV-58                                 | E-20, P.R11                     |
| Allyl resins, IV-47,48                | A-75, P.R15-17                  |
| Allymer CR-39, CR-39+glass,           | A-76, P.R12-14                  |
| IV-48                                 | mixtures, P.R18                 |
| "Alox," National Beryllia,            | Centralab 205 and 206, P.R19    |
| P.R31                                 | Carborundum 1542, P.R19         |
| ''AlSiMag'' A-35, IV-3,80             | Coors                           |
| "AlsiMag" A-196, IV-3,78,79           | AB-2, IV-6,98,99                |
| "AlSiMag" 211, IV-3                   | AD-99, VI-14,15; P.R19          |
| "AlSiMag" 288, IV-3,81                | AD-995, P.R20                   |
| "AlsiMag" 243, IV-3,82; VI-34         |                                 |
| "AlsiMag" 393, TV-3                   | AL-100, V-2,40                  |
| MADINAR 373, 17-3                     | AL-200, IV-6,96,97; V-2,40;     |
| "AlsiMag" 475, V-5,59-61              | VI-11-13                        |
| "AlsiMag" 491, IV-6,100               | EI-95, VI-16,17                 |
| "AlSiMag" 491 (blue), V-1,32,33       | MC-2014, P.R20                  |
| "AlsiMag" 505, 1V-82                  | RR, P.R20                       |
| "AlSiMag" 513 (pink), V-1,34,35       | Coors-NBS 10F2, P.R20           |
| "AlsiMag" 544, V-21,31                | Corning                         |
| "AlSiMag" 548, V-21,31                | JD-40, V-2,41                   |
|                                       | JD-82, V-2,41                   |
|                                       | ,,                              |

| Alumina (cont.)               | Stupakoff                             |
|-------------------------------|---------------------------------------|
| Corning                       | 1542P, V-3,50                         |
| JB-123, V-2                   | 1550, V-3,50                          |
| WD-131, V-2                   | U.S. Stoneware                        |
| JB-183, V-2,41                | A-212, P.R34                          |
| Diamonite                     | A-216, P.R34                          |
| B-890, V-2,42                 | AP-212, V-21                          |
| B-890-2, P.R21                | AP-216, V-21                          |
| P3142, V-2,43                 | A-312, P.R34                          |
| P3142-1, P.R21                | AP-312, P.R34                         |
| P-3459, V-2,44                | "Alite" A-389-25, VI-20               |
| P-3530-40, V-3,45             | "Alite" A-389-P-30, VI-21             |
| P-3662, P.R21                 | "Alite" APO-512-6, VI-21              |
| Frenchtown                    | "Alite" APO-512-7, VI-21              |
| 4462, IV-6; V-48              | 610, P.R34                            |
| 6096, V-3,48                  | Std. 3050°F, P.R35                    |
| 7225, P.R21                   | Western Gold & Platinum               |
| 7873, V-3,49                  | AL-300, V-4,52; P.R36                 |
| General Ceramic               | AL-300, modified, P.R36               |
| ADH-211, V-3                  | AL-400, P.R37                         |
| General Electric              | AL-500, P.R37                         |
| AT-100, P.R22                 | AL-995, P.R37                         |
| A-919, P.R25                  | AL-1009, V-4; P.R37                   |
| A-923, P.R26                  | Aluminum nitride, Carborundum,        |
| A-976, P.R27                  | hot-pressed, P.R1                     |
| A-1000, P.R28                 | Aluminum oxide, Linde, single         |
| A-1004, P.R29                 | crystal, IV-1,72; V-1,26-28           |
| "Lucalox," P.R23,24           | P.R2,3                                |
| International Pipe & Ceramic  | Aluminum oxide, Union Carbide,        |
| TC-301, P.R30                 | single crystal, P.R4                  |
| тс-302-н, Р. R 30             | Aluminum oxide, multicrystalline,     |
| TC-351, P.R30                 | see alumina                           |
| V-69, P.R30                   | Aluminum oxide mixtures, VI-50,51     |
| Kearfott                      | Aluminum silicates, V-3,6             |
| high-purity, V-3,46,47; P.R30 | "Alvar" 11/90, IV-34                  |
| hot-pressed in carbon,        | Amber, IV-55                          |
| VI-18,19                      | Amber Mines, Inc., IV-55              |
| Knox porcelain, IV-6,100      | American Concrete Products, P.R159    |
| Minneapolis Honeywell         | American Cyanamid Co., Plastics Dev.  |
| A-127 and A-203, P.R31        | Labs., IV-21-23,38,46,112,118-121;    |
| National Beryllia "Alox"      | V-8,106,107; P.R159,160               |
| P.R31                         | American Cyanamid Co., Plastics and   |
| Norton 99.5%, P.R31           | Resins Div., VI-65                    |
| 7X, V-3,49                    | American Cyanamid, cyanoethylated     |
| 17Z, V-3                      | cotton molding, P.R159                |
| Raytheon 1959, P.R32          | American Cyanamid "Cymac" 325, P.R160 |
| 402B, V-3                     | American Cyanamid, see "Laminac,"     |
| "Sintox," V-3                 | "Melmac," "Beetle"                    |
| Steatit-Magnesia A.G. A-18,   | American Cyanamid 405 resin, V-8      |
| P.R32,33                      | American Feldmuehle Corp., V-21,30    |
| Stupakoff 15                  | American Lava, IV-3,4,6,78-82,88-93,  |
| 1510, V-3,51                  | 100; V-1,4,5,21,31-37,58-61,75, 234   |
| 1540, V-3,50                  | VI-8-10,34,44; P.R6,40                |
| 1542E, V-3,                   | American Lava, see "AlSiMag"          |
|                               |                                       |

American Optical Co., IV-9; P.R.-77,82 American Optical Amersil, P.R.-82 American Optical, phosphate glass, IV-9; P.R.-77 American Phenolic Corp., see Amphenol American Smelting and Refining Co., IV-13 Amersil, clear, translucent, P.R.-82 Amicon Corp., P.R.-160 Amicon Corp., conformal coating 1517-36-3, P.R.-160 Ammonium dihydrogen phosphate, IV-1 Amphenol Corp., IV-28; P.R.-161 Amphenol Corp., polyethylene, irradiated, P.R.-161 "Amplifilm," IV-14;V-74 Aniline-formaldehyde resins, IV-21 Apatite, P.R.-126,127 "Apiezon" Wax "W." IV-56 "Araldite" Adhesive, Type I, (natural and silver, IV-50 "Araldite" casting resin, Type B, IV-49,125 "Araldite" casting resin G, IV-49 "Araldite" E-134, IV-49 Argus Chemical Corp., U.S. Peroxygen Div., P.R.-197 Armour Research, P.R.-7-18,198 "Aroclor" 1221, 1232, 1242, 1248, IV-63 1254, IV-63; VI-78-83 1260, 1262, 5442, IV-64 1268, 4465, 5460, IV-15 Armour Research, aluminum oxide, P.R.-7-18 Asbestos, IV-13 Asbestos filled plastics, IV-16; V-8,9,84,85,96,97 Asphalt pavement and asphalts, P.R.-156 Asphalts and cements, IV-56 Astrophyllite, P.R.-127 "Atlac" 382, V-11,12 Atlas Powder Co., V-11,12 Attenuator materials: IV-43-45; V-13,15,17,18,22,234-244; VI-44,45; P.R.-79,80,81, 148,175 AVCO Research, P.R.-161 AVCO Research, polyvinylidene fluoride, P.R.-161 Avisun Corp., P.R.-162, 163 Avisun polypropylene, natural & plateable,

P.R.-162,163

Bakelite Corp., IV-15,16,20, 27-29,36,48,57,58,64; V-12; P.R.-180 "Bakelite" BM-120, IV-15,16,69 "Bakelite" BM-250, BT-48-306, BM-16981, and BM-16981. powder, IV-16 "Bakelite" BM-262, BM-1895, IV-20-69 "Bakelite" BRS-16631 + glass, IV-48 BV-17085 + glass, IV-16PLLA-5005, V-12 "Bakelite" polystyrenes, IV-36 "Bakelite" polyvinyl chlorideacetate, see "Vinylites" Balata, precipitated, IV-51 Balsa wood, Sippican Corp., P.R.-192 Barium fluoride, single crystal, P.R.-38.39Barium-strontium titanate, IV-5,6 Barium titanate, IV-5; V-1 Barium titanate and plastic mixtures, IV-43 Basalt, Hawaian, high-density, P.R.-136 low-density, P.R.-137 deep ocean basalt, P.R.-137 Basalt, synthetic, P.R.-139 Battelle Memorial Institute, P.R.-45 Battelle boron nitride, hotpressed, P.R.-45 "Bayo1," "Bayo1"-D, -F, -16, IV-65,66 Beef steak, lean, frozen and vacuum dried, P.R.-199 Beeswax, white, yellow, IV-57 "Beetle" resin, IV-23 Bell Telephone Laboratories, IV-3,83; V-56,57;VI-28,29; P.R.-72 Bell Labs. F-66, IV-3,83; V-56,57; P.R. -72Benitoite, P.R.-127 Bantonite, IV-14; V-74 Benzenes and diphenyls. chlorinated, IV-63 Benzenes, chloro-, IV-64 Benzoguanamine-formaldehyde resin, IV-23 "Berlox," BeO, P.R.-41 Beryl, P.R.-128,129 Beryllia, IV-6; V-21,24,52,53: VI-22-27; P.R.-39-43 American Lava "AlSiMag" 754. P.R.-40 Beryllium Corp. hot-pressed. V-21.53crucible grade, V-21,52

| Beryllia (cont.)                    | Boron nitride (cont.)                                         |
|-------------------------------------|---------------------------------------------------------------|
| Brush                               | Union Carbide & Carbon (cont.)                                |
| B-6, F.R40                          | hot-pressed HBR, P.R56                                        |
| B-7-6, P.R40                        | HBN, P.R57                                                    |
| B-7-37, P.R40                       | HD-0025, VI-48,49                                             |
| cold-pressed, VI-24,25              | HD-0056, P.R54                                                |
| F-1, P.R41                          | HD-0086, P.R54                                                |
| hot-pressed, VI-22,23               | HD-0092, P.R55                                                |
| sintered, VI-26,27                  | HD-0093, P.R55                                                |
| Coors BD-98, P.R41                  | HD-0094, P.R55                                                |
| National Beryllia "Berlox,"         | Boron nitride alloys, V-6,79;VI-50,51                         |
| P.R41                               | Brand-Rex Co., IV-40; VI-11, 105; P.R181-183                  |
| cold-pressed, P.R41                 | Bread and bread dough, P.R202                                 |
| North American translucent,         | Bromund, E. A., and Co., IV-57                                |
| P.R42,43                            | Brown Univ. silicon, single cryst., P.R78                     |
| Norton, IV-6                        | Brunswick Corp., Defense Products                             |
| Beryllium Corp., The, V-21,52,53    | Division, P.R95                                               |
| Beryllium oxide, multicrystalline,  | Brunswick slip-cast, SiO2, P.R95                              |
| see Beryllia                        | Brush BeO                                                     |
| Beryllium oxide, single crystal,    | B-6, P.R40                                                    |
| Electronic Space Products,          | B-7-6, $P.R40$                                                |
| P.R39                               | B-7-37, P.R40                                                 |
| Beryllium orthosilicate, single     | cold-pressed, VI-24,25                                        |
| crystal KSC 7013, Elec.             | F-1, P.R41                                                    |
| Space Products, P.R44               | hot-pressed, VI-22,23                                         |
| Biphenyl, disopropyl and monoiso-   | sintered, VI-26,27                                            |
| propy1, V-19                        | Brush Electronics Co., IV-1, 73;                              |
| Biphenyls, chlorinated, IV-15,63,64 | VI-22,27; P.R40,41                                            |
| Birch plywood, P.R193               | Budd Company, The, P.R164,165                                 |
| Bismuth silicate ceramic, P.R44     | Budd copper-clad laminate, PE1153,                            |
| Bitumen, natural, IV-56             | P.R164,165                                                    |
| "Boltaron" 6200-10, V-10            | Budd DiClad-522, polytetrafluoro-                             |
| "Boralloy," P.R50,51                | ethylene, fiberglas laminate,                                 |
| Boron nitride, V-6,76,77; VI-48,49; | P.R164                                                        |
| P.R45-57                            | Buna S (GR-S) and compounds, IV-52                            |
| Boron nitride, density effect,      | Bureau of Standards casting resin,                            |
| P.R45                               | IV-40                                                         |
| Boron nitride, Battelle, hot-       | Butadiene-acrylonitrile copolymer,                            |
| pressed, P.R45                      | IV-53                                                         |
| Carborundum, hot-pressed, 1956,     | Butadiene, chloro-, IV-53,62                                  |
| V-6,76,                             | Butadiene-styrene copolymer, IV-38,52                         |
| Carborundum, hot-pressed,           | "Butvar," low OH and 55/98, IV-34                             |
| Grade A, P.R47                      | n-Butyl alcohol, IV-62                                        |
| Grade HP (1962), P.R46,48           | Butyl rubbers, IV-52                                          |
| Grade M, P.R49                      | Butyraldehyde, IV-62                                          |
| •                                   |                                                               |
| High-Temperature Materials,         | Cable oil 5314 and PL101270, IV-65                            |
| pyrolytic, P.R50,51                 | Calcite, P.R58                                                |
| National Carbon, see Union Carbide  | Calcium carbonate, single crystal                             |
| and Carbon                          | mineral, P.R58                                                |
| Raytheon, pyrolytic, P.R52,53       | Calcium fluoride, single crystal,                             |
| Union Carbide & Carbon,             | V-1; P.R59-61                                                 |
| pyrolytic (see High Temperature     | MIT, LIR, V-1                                                 |
| Materials)                          |                                                               |
| pyrolytic laminate, P.R54           | MIT, Crystal Physics Lab., P.R59<br>MIT, Ceramics Lab., P.R60 |
| cold-pressed, P.R57                 | MII, CETAMICS LAD., P.K6U                                     |

Calcium titanate, IV-5 California Research Corp., IV-65 Candy and Co., Inc., IV-57 Cantol Wax Co., IV-59 "Carberlox," National Beryllia, P.R.-80 Carbon, diamond, V-1 Carbon and plastic mixtures, IV-32,41; V-239,240 Carbon tetrachloride, IV-62 Carbonyl iron and plastic mixtures, V-15 Carborundum Co., The, V-6,76-79; VI-46,47; P.R.-1,19,46-49, 79,166 Carborundum boron nitride, Grade A, Grade HP, and Grade M, P.R.-46-49 hot-pressed, V-6,76,77 silicon nitride alloy, V-6,79 Carborundum EKONOL (polyester resin), P.R.-166 Carborundum silicon carbide, P.R.-79 Carborundum 1542, P.R.-19 Catalin Corp. of America, IV-16-18, 36, 39,119 "Catalin" 200, 500, and 700 base, IV-16,17 "Catalin" 8012, IV-39, 119 "Catalin" EK 2784, IV-39 Celanese Corp. of America, IV-24, 25, 114,115; V-9,10,12,90 Celanese MR-31C, MR-33C, Mx-186, and Mx-218; V-12 Cellular Rubber Products, Inc., IV-51 Cellulose acetare LL-1, IV-23 Cellulose acetate + plasticizer, IV--24 Cellulose acetates, IV-23,24; V-9 Cellulose derivatives, TV-23-25; V-9,90,91,92; P.R.-159 Cellulose nitrate and camphor, IV-25 Cellulose propionate, IV-25,114; V-9,90 Cellulose triacetate ("CTA"), V-9,92 Cements and asphalts, IV-56 Cenco "Sealstix," TV-56 Centralah. : aluminas 205, 206, P.R.-19 steatites 302, 400, 410, 452, IV-3,84-87

Centralab. Div., Globe-Union, Inc., IV-3,84-87; P.R.-19 Central Scientific Co., IV-56 "Ceram" 61-1, V-5,65 "Ceram" 61-2, V-5,66 "Ceram" 61-3, V-5,67 "Ceram" 61-4, V-6,68 "Ceram" 61-5, V-6,69 Ceramics for Industry, P.R.-148 Ceramics for Industry CFI 1003, CFI 1006 attenuator materials, P.R.-148 Cerese Wax AA and brown, IV-57 Ceresin, white and yellow, IV-57 Cerium fluoride, ceramic, MIT, LIR, P.R.-61 Cesium bromide, V-J. Cesium iodide, V-1 Cetylacetamide, IV-56 "Chemelac" M1405, M1406, M1407, M1411, and M1412, IV-32 "Chemelac" M1414, IV-32; V-241 "Chemelac" M1418-2, M1418-5, M1422, and M1423, IV-33 "Chemelac" B-3, IV-56 Chemplast, Inc., P.R.-166 Chemplast "Zitex," low-density polytetrafluoroethylene film, P.R.-166 Chlorinated benzenes and biphenyls, IV-15,63,64; VI-78-83  $\beta$ -chloroethy1-2,5-dichlorobenzene, IV-64 Chlorostyrenes, ortho and para, copolymer, IV-42 Chlorotrifluoroethylene dimer. trimer, V-18 Chlorotrifluoroethylene tetramer, pentamer, hexamer, V-19 Chromium oxide, Linde, single crystal, P.R.-62 Ciba Co., Inc., IV-21,49,50,125; P.R.-108; P.R.-186 Ciba epoxy resins, IV-49,50,125; P.R.-180 "Cibanite," IV-21 Ciba tantalum oxide, optical grade powder, P.R.-108 Climax Molybdenum Co., VI-45 Clinoensteatite, see magnesium metasilicate Coal, powdered, P.R.-191 single lump, P.R.~192 Cobalt ferrite, MIT samples, V-136, 177,206

| Cobalt oxide,                    | Corning Fotoceram, VI-40,41           |
|----------------------------------|---------------------------------------|
| Cobalt oxide, nickel oxide       | Corning Fotofoarm, VI-36-39           |
| mixed crystal, MIT,              | Corning Glass Code Nos. 0010,         |
| Crystal Physics Lab.,            | 0014, 0080, 0090, 0100, 0120,         |
| P.R63                            | 0330, 1723, 1770, 1990, 1991,         |
| Coffee, P.R202                   | 3320, 7040, 7050, IV-9,102;           |
| Columbia Univ., P.R75            | P.R89,149                             |
| Columbia University manganese    | 7052, 7055, 7060, 7070, IV-10,        |
| fluoride, tetragonal             | 102; V-62,63                          |
|                                  | 7230, 7570, 7720, 7740, 7750,         |
| crystal, P.R75                   | IV-10                                 |
| Components and Systems Lab.,     | 7900, 7911, IV-10; V-5,64; VI-35      |
| see U.S. Components and          |                                       |
| Systems Lab.,                    | 7911, IV-10,103                       |
| Concrete pavement, P.R157        | 7940, P.R83                           |
| Concrete, artificial, P.R159     | 7941, P.R96                           |
| Conformal coating, Amicon        | Corning 7945 multiform glass, P.R96   |
| Corp., P.R160                    | Corning Glass Nos. 8460, 8830,        |
| "Conolon" 506, V-8               | IV-10                                 |
| Continental Diamond Fibre Co.,   | 8603, V-5                             |
| IV-18,19,21,26,27,31,32;         | 8871, 9010, Lab. No. 189CS,           |
| V-8,12,14,80-83,88,93,           | IV-11                                 |
| 104,108,114                      | Corning Glass code 9606, VI-42,43     |
| (now a division of The Budd Co., | Corning Glass No. 119BUC, P.R89       |
| see also Budd)                   | Corning Glass Works, IV-9-11,26,      |
| Cooking oil, Kremax, Armour,     | 41,42,102,103; V-2,5,6,41,62-71;      |
| P.R198                           | VI-35-43; P.R83,89,96                 |
|                                  | Cotton molding, Amer. Cyanamid,       |
| Coors alumina                    |                                       |
| AB-2, IV-6,98,99                 | P.R159                                |
| AD-99, VI-14,15; P.R19           | Crepe, pale and compounds, IV-51      |
| AD-995, P.R20                    | Cresylic-acid formaldehyde            |
| AL-100, V-2,40                   | resins, IV-18,19,68,70                |
| AI-200, IV-6,96,97;              | "Crolite" No. 29, IV-4                |
| V-21; VI-11-13                   | "Cronar," V-13,109                    |
| EI-95, VI-16,17                  | Crowley Co., polyiron attenuator,     |
| MC-2014, P.R20                   | P.R167                                |
| RR, P.R20                        | Crowley, Henry I, and Co., Inc.,      |
| NBS 10F2, F.R20                  | IV-4,7; V-217-219; P.R167             |
| Coors BeO BD-98, P.R41           | "Crowloy" 20, IV-7;V-217              |
| Coors Porcelain Co., IV-6,94-99; | "Crowloy" 70, IV-7                    |
| V-2,21; VI-11-17; P.R19-20,      | "Crowloy" BX113, IV-7; V-218          |
| 41                               | "Crowloy" BX114, IV-7; V-219          |
| "Copolene" B, IV-28              | Crystals, inorganic, IV-1,2,72-77;    |
| Copper halides, ressed           | V-1,26-30,133-135; VI-2-6,            |
| powder, MIT, LIR                 | P.R2,4,38,3944,58,59,60,62,           |
| copper bromide, P.R63            | 63,65,66,68,77,78,80,81,103-          |
| copper chloride, P.R63           | 105,106,107,109,115,117,123-134       |
|                                  |                                       |
| copper iodide, P.R63             | Crystals, organic, IV-15              |
| Cordierite, P.R67                | Custom Maturials, Inc., P.R167        |
| "Corfoam" 114, IV-19             | Custom Materials, Load 4101, 707-4,   |
| Cornell Aeronautical Labs.,      | 707-(3.75), P.R167                    |
| IV-48,124                        | "Cymas," 325, VI-65; P.R160           |
| Corning aluminas                 | A                                     |
| JD-40, JD-82, JB-183,            | "Dacron"-filled plastics, V-8,10,12,  |
| V-2,41                           | 14,110                                |
| 13-123 and W D-131 V-2           | "Darex" No. 3, 43E, X-34, X-43, IV-36 |

"DeKhotinsky" cement, IV-56 Dow Chemical Co., IV-36-42,46,64, Delaware Research and Development Corp., V-9 Dennison Mfg. Co., IV-58 Desert sand, P.R.-143 Dewey and Almy Chemical Co., Organic Chemicals Division, IV-38 "Diala" 0il, IV-66 Diallyl phenyl phosphonate resin, IV-48 P.R.-168 Diamond, V-1 Diamonite Products Div. U.S. Ceramic Tile Co., V-2,3,42-45; P.R.-21 "Diamonite" B-890, V-2,42 B-890-2, P.R.-21 "Diamonite" P-3142, V-2,43 P-3142-1, P.R.-21 P-3459, V-2,44 P-3530-40, V-3,45 P-3662, P.R.-21 Diatomaceous-earth ceramic, 1V-6,101Dibutyl sebacate, IV-62 Dichloronaphthalenes, mixture of the 1,2-, 1,4- and 1,5-isomers, IV-58 Dichloropentanes Nos. 14 and 40, IV-63 2,5-Dichlorostyrene, IV-64 DI-CUP, P.R.-196 Diisopropyl biphenyl, V-19 "Dilectene" 100, IV-21
"Dilecto" (hot punching) XXX-P-26, IV-19; V-80,81IV-36 "Dilecto" ("Mecoboard"), IV-18; V-82,83 "Dilecto" GB-112S, IV-27 "Dilecto" GB-112T, JV-31,32; V-104 "Dilecto" GB-116E and GB-126E, V-14 "Dilecto" GB-181E, V-14,114 "Dilecto" GB-2615, IV-26; V-93 "Dilecto" GM-1, V-8,88 "Dilecto" GM-PE, V-12,108 Dinitrobenzene, VI-77 Dioctyl sebacate, I7-62 Diphenyl, see biphenyl Dodge Industries, Inc., P.R.-167 Dodge Industries FLUORGLAS E 650/2 1200, P.R.-167

117; V-91; P.R.-194 Dow Chemical "Dowtherm" A, F.R.-194 Dow Corning Corp., IV-26,27,41,42, 54,55,66,67,126; V-9,20,94, 95; VI-52-57; P.R.-168 Dow Corning fluids 200 and 500, IV-66 550 and 710, IV-67 Dow Corning molding compound 306, Dow Corning resins 996 and 2101, IV-26 2103, IV-26,27 2105, V-9,94 2106, V-9,95-101; VI-57 XK-7141; VI-56 R-7501, VI-52,53 R-7521, VI-54,55 Dow Corning Silastics 120, 125, 150, 152, 160, 167, 180, IV-54 181 and 250, IV-54,126 6167, IV-55,126 6181, X4342, IV-55 XF6620, IV-55; V-20 X6734.and 7181, IV-55 RTV 501, 521, 1602, 5350, S-6538, P.R.-168 Dow Corning Sylgard 182, 184, and DC-92.007, P.R.-168 Dow C-244, IV-36 Dow experimental plastic Q-166, Q-166 + fiberglas, Q-200.5, IV-39Dow experimental plastic Q-247.1, Q-344, IV-40 Q-406, IV-37,117 Q-409, IV-42 Q-475.5, IV-40 Q-764.6 and Q-767.2, IV-37 Q-817.1, IV-37,117 "Dowtherm" A, P.R.-194 Dupont, E. I. de Nemours and Co. Electrochemicals Dept., IV-33,64 Film Department, V-9,13,92 Organic Chemicals Dept. (Elastomers Div.), IV-53; P.R.-194 Photo Products Dept., V-13,109 Pigments Dept. IV-4 Plastics Dept., P.R.-169-171, 173,174

"Eccosorb" HF155, HF680, HF853, Dupont. E. I. de Nemours HF1000, HF2050, V-13 and Co. (cont.) "Eccosorb" MF110, MF112, MF114, and Polychemicals Dept., IV-23,25, 27, 32,34,35,58,113; V-10,89; MF116, V-15 "Eccosorb" MF117, V-15,242 VI-58 Eggwhite, P.R.-202 Textile Fibers Dept., V-8,10, EKONOL (polyester resin), P.R.-166 12, 14, 110; P.R.-172 Dupont de Nemours fluorinated Electronic Mechanics, Inc., ethers, Organic Chemicals IV-13,108 Dept., P.R.-194 Electronized Chemicals Corp., Dupont de Nemours "H" film, P.R.-175 Plastics Dept., P.R.-169-171 Electronized Chemical "Polyguide", Dupont de Nemours "Kapton," P.R.-175 500 H film, Plastics Emerson & Cuming, V-7,8,10,11,13-15, Dept., P.R.-171 115, 237, 238, 242; P.R.-175-176 Dupont de Nemours Nonex honey-Emerson & Cuming A-19 attenuator material, P.R.-175 combs, Textile Fibers Dept., P.R.-172 Emerson & Cuming "Eccofoam" FH, P.R.-176 Dupont Teflon FEP, TFE, T-100, "Eccofoam" GL, V-8 100X, 9033, TEF-7, TFE-6c, "Eccofoam" HiK (1000oF), V-7 Plastics Dept., Chestnut Run Lab., IV-32; V-24; "Eccofoam" HiK (5000F), V-14,115 "Eccofoam" PS, V-10 VI-58; P.R.-173,174 "Durez" 1601, natural, IV-17 Emerson & Cuming "Eccogel" 1265, "Durez" 11863, IV-20 P.R.-176 Elastomers, IV-51-55; V-127-129 Durez Plastics, Div., Hooker "Elvacet" 42A-900, IV-33 Electrochemical Co. "Elvano1" 51A-05, 50A-42, 70A-05, IV-17,20 "Durite" No. 500, IV-17 72A-05, 72A-51, IV-33 "Durite" No. 221X, IV-19 Engineering Research and Dev. Lab., Durite Plastics, Inc., now see U.S. Army Eng. Res. and the Borden Co., IV-17,19 Dev. Lab. "Duroid" (1" thick sheet), Enjay Co., Inc., IV-28,39,50 "Ensolite" M22240, M22239, 3036, P.R.-184 "Duroid" 5650, VI-59-61 "Duroid" 5850, VI-62-64 "Epon" Resin RN-48, IV-50 "Epcn" 828, V-16,116-125; VI-68-75; Dynasil Corp. of America. F.R.-186,187 P.R.-84,96 "Epon" X-131, V-16; VI-74-76 Dynasil 4000 glass, P.R.-84 Epoxy resins, IV-49,50, 125; V-14-Dynasil slip-cast, P.R.-96 16, 114, 126; VI-67-76; P.R.-180 East Coast Aeronautics, Inc., V-11 Epoxy laminates with "Dacron," V-14 Eastman Kodak Co., IV-15,62; P.R.-67 "Fibergias," IV-50; V-14,16,22, "Ecco" L65, V-11 "Eccofoam" FH, Emerson & Cuming, 114,124,125; VI-67,72-76 "Nylon," V-14
"Orlon," V-14 P.R.-176 "Eccofoam" GL, V-8 "Eccofoam" HiK (1000°F), V-7 E resin, IV-50 "Eccofoam" HiR (500°F), V-14,115 Esso Laboratories, see Enjay Co., "Eccofomm" PS, V-10 P.R.-195 Esso "Teresso" oil, V-78; P.R.-195 "Eccogel" 1265, Emerson & Cuming, "Estawax," IV-57 P.R.-176 "Eccosorb" HFX122, V-13,237 Ethers, fluorinated, P.R.-194 "Eccosorb" HFX123, V-13,238 "Ethocel" LT5, IV-25, 115; V-91

Ethyl alcohol, IV-62 Filtered Resin Products, Inc., IV-56 Ethyl cellulose, IV-25, 115; V-91 Fir plywood, P.R.-193 Ethylene Chemical Corp., V-10 Fluorinated ethers, P.R.-194 Ethylene Glycol, IV-62 Fluorocarbon derivative P-1C, P.R.-194 Ethylpolychlorobenzene, IV-64 FLUOROGLAS E 650/2-1200, P.R.-167 "Ferramic" A, V-159, 191,220 "Fluorosint" (1960), P.R.-179 "Ferramic" B, V-160,192,221
"Ferramic" C, V-161,193,222
"Ferramic" D, V-162,194,223
"Ferramic" E, V-163,195,224 Foam, alkyd diisocyanate, chlorinated, IV-124 epoxy, V-14 "Ferramic" G, V-164,196,225 "Ferramic" H-1, V-4,166,198 "Ferramic" H, V-165,197,226
"Ferramic" I, V-167,227
"Ferramic" J, V-168,199,228 "Foamglas," IV-11 Formaldehyde resins aniline, IV-21 "Ferramic" K, V-169,229 "Ferramic" N, V-200 "Ferramic" Q (rec'd Dec. 1953), V-170,230
"Ferramic" Q (rec'd Aug. 1954), V-171,201,231 urea, IV-23 "Ferramic" Q2, VI-32,33 "Ferramic" Q-3, P.R.-150 "Ferramic" R-1, R-4, R-5, R-6, P.R.-150 IV-21,68 "Ferramic" MF874, V-172,202 "Ferramic" 1118, V-173,232 "Ferramic" 1326B, V-174,203 "Ferramic" 1331, V-175, 204, 233
"Ferramic" 3308, P.R.-150
"Ferramic" 3310 (experimental), "Formica" YN-25, IV-17
"Formica" Z65, IV-46
"Formica" Z80, IV-47 V-176; P.R.-150 "Ferramic" 3321, P.R.-150 "Ferramic" 3330, F.R.-150 Ferrites and garnets, IV-7; V-4,54,133-204,206-233; VI-28-33; P.R.-150 "Fortiflex" A, V-10 "Ferrotron" 119, V-17,205,244 "Ferrotron" 308, 309, V-18 V-5; VI-40,41 Ferroxcube Corp. of America, V-4 "Ferroxcube" 105, V-4 "Fiberfrax" board, V-6,78; "Fractol" A, IV-66 VI-46,47 "Fiberglas" laminates, IV-16,18, V-3,48,49; P.R.-21 22,25-27,31,32,47-50,68; Frenchtown alumina V-8-11,13,14,16,22,86-88, 6096, V-3,48 93-95,98-101,104; V1-56,57; P.R.-189-190 7225, P.R.-21 "Fiberglas" see & glass, Owens-7873, V-3,49 Corning X994 laminates or "Fibestos" 2050TVA C-1086, IV-24 Films, see trade names as P.R.-85-87 Croner, Nylar, Kapton, Quantum tape, etc., or

polyimide, P.R.-178 polystyrene, IV-37; P.R.-188 polymethane, P.R.-179,188 benzoguanamine, IV-23 cresol, IV-18,19,68,70 melamine, IV-21,22,112 phenol, IV-15-19,109-111;V-80-87 phenolaniline, IV-20 Formica Co., The, IV-17,20,21,25, "Formica" FF-41 (sheet, rod stock), "Formica" FF-55, IV-21,69 "Formica" G7, G6, IV-25 "Formica" Grade MF-66, IV-20,68 "Formica" XX, LE, IV-17,68 "Formvar," Type E, IV-34 "Forticel" No. 28102, IV-25; V-90 "Forticel" JLB-(H), V-9
"Forticel" JMB-(M),V-9 "Fotoceram" (843 GU) and (843 GZ), "Fotoform" 8(843 GU), V-5; VI-36,37 "Fotoform" C(843 GU), V-5; VI-38,39 Frenchtown Porcelain Co., 17-6: 4462, IV-6; V-3,48 Fullers earth, Foxboro, P.R.-141 Furfurdehyde resin, phenol, IV-19 Fused quartz, IV-11,104; V-72,73;

chemical name

"Gafite" cast polymer, IV-34 Gasoline, aviation, 100 and 91 octane, IV-65 General Aniline and Film Corp., IV-34,46General Cable Corp., IV-52 Ceneral Ceramics Co., IV-4,8,83; V-3,4,54,55,159-176, 191-204, 220-233; VI-32, 33; P.R.-150-152,176,177 General Ceramics ADH-211, V-3 BM3054, V-4,55 7294, IV-4, V-55 General Ceramics "Ferramics, see "Ferramics" General Electric Co., IV-63-65 Chemical Materials Dept., IV-48 Electronic Components Div., IV-13,106,107; P.R.-22-29, 73,153,154 Lamp Div., IV-11,104; V-72,73 Plastics Dept. IV-50 Silicone Products Dept., IV-55; P.R.-85-87, 176,177 General Electric fused quartz, Type 101, IV-11,104; V-72,73 General Electric Isomica 4950, P.R.-153 General Electric "Loxan," P.R.-177 General Electric F-118,F-202 magnesium orthosilicate, P.R.-73 General Electric "Mycalex, P.R.-153,154 General Electric silicone rubber RTV-11, P.R. 176 SE900, P.R. 177 General Mills, Inc., IV-23 Geon 2046,80365,80384, IV-29 Cilsonite, IV-56 Glass, alkaline lead silicate, IV-11 Glass, alkali-silica, IV-12,105; P.R.-9], ace also mixed silicate glass and various glass afgra. Class, aluminum borosilicate, IV-10 aluminum zinc-phosphate, IV-9 barium corosilicate, IV-10 borosilicate, IV-9,101 Glass, Dynasil 4000, P.R.-84 "E". IV-11 Ceneral Electric 101, clear,

P.R.-85-87

iron-sealing, IV-9,102

Glass, lead-barium, IV-9 lime-alumina-silicate, IV-9 low alkali, potash-lithiaborosilicate, IV-10,102; V - 62 - 63mixed silicate, P.R.-89-94 phosphate 2043x, 2279x, IV-9 potah-lead silicate, IV-9 potash-soda-barium silicate, IV-9 silica, IV-10,103;V-64; P.R.-82-88 soda-borosilicate, IV-9,10 soda-lead-borosilicate, IV-10 soda-lime-silicate, IV-9,11 soda-potash-borosilicate, IV-9 soda-potash-lead-silicate, IV-9 soda-potash-lithia-borosilicate, IV-10 soda-silica, IV-11 soda-silicate, P.R.-93 Glass, "Spectrosil" A, P.R.-88 "Spectrosil" B, P.R.-88 "Vitreosil," optical Grade, P.R.-88
"Vitreosil," commercial grade, P.R.-88 Glass ceramic 9606, VI-42,43 Glass Lamicoid No. 6038, IV-21,70 Glass and mica, IV-13,69,106-108, P.R.-153-155 Glass powder and plastic mixtures, IV-41,42 Classes, IV-9-12,101-105; V-5,6,62-73; YI-35-43; P.P.-82-94 Glastic Corp., IV-47,49 "Glastie" GF, MH, MP and A-2, IV-49 "Clastic" S and MF, IV-47 Glyco Products Co. IV-56.59 "Glypto1" No. 1201 (red), IV-48 Goodrich, B.F., Chemical Co., IV-29,30 Goodyear Aircraft Corp., IV-48; V-8.9. 84-87,96-101 Goodyear Tire and Rubber Co., Plastics Dept., IV-40,51,52 Granite, Quincy, P.R.-138 Virginia, P.R.-138 Grease, Dow Corning, No. 4, IV-67 high vacuum, V-20 Grease, "KEL-F" No. 40, IV-63 Greenstone, Virginia, P.R.-129 CR-I (butyl rubber) and compound. GS-S (Busa S) and compounds. IV-51 Culf Oil Jorp., IV-58; VI-84,85

Gulf 303 oil, VI-84,85 Gutta-percha, IV-51 Hafnium oxide, multicrystalline, Zircoa, P.R.-64 Halite, P.R.- 135 "Halowax" No. 1001, IV-57 No. 11-314, IV-58 011 1000, IV-64 Hardman, H. V., Co., Inc., IV-49,51 Harshaw Chemical Co., The, IV-1,2;V-1,30 Hartwell, N.H., and Sons, Inc., V-10 Haveg Industries, Inc., Taunton Div., P.R.-153 "Havelex" glass-bonded micas: Types 1080,1090,1101,2101, 2103,2801,2803, P.R.-153 Hawaian soil, P.R.-141,142 Haynes Stellite, Div. of Union Carbide and Carbon, P.R.-101 Heptacosafluorotributyl, IV-63 Heptane, IV-62 Hercules Powder Co., Inc. IV-23; V-16; P.R.-196 Hercules DI-CUP, dicumyl peroxide, P.R.-196 VUL-CUP, a,al-bis(t-butyl peroxy) diidopropybenzene. P.R.-196 Hexachlorobutadiene, IV-62 Hexamethylene-adipamide polymer, TV-23,113 Hexane, V-19 "H"-film, P.R.-169-171 Hood Rubber Co., IV-22 Hooker Electrochemical Co.. IV-62; V-13 Hooker J2A, V-13 Houghton Labs., Inc., IV-50; V-15,16,126 Hunson, C.W., V-7 "Hycar" OR "Cell-tite, IV-52 Hydrocarbon polymer, crosslinked. IV-50 Hydrocarbons, petroleum, 1V-65-66; VI-84.85 12-Hydroxystearin, IV-58 "Hysol" 6000 and 6020, IV-50 6000 lid, V-15,126 6030-B. V-15 XL-6060, V-15 XE-6080, V-16

"Hy-tuf" laminate Grade GF181, IV-50 ' Ice, IV-1: P.R.-145-147 Ignition sealing compound No. 4, IV-67 Instant coffee, powder, P.R.-202 Instant tea, powder, P.R.-202 International Pipe & Ceramic, P.R.-30,72 International Pipe & Ceramic alumina, P.R.-30 International Pipe & Ceramic steatite, P.R.-72 Iron and plastic mixtures, IV-43,44; V - 243Iron-manganese oxide and plastic mixtures, IV-45 IRTRAN-5, Kodak MgO, multicrystal, P.R.-67 Irvington tape, V-17 Irvington Varnish and Insulator Co., Isobutylene-isoprene copolymer, IV-52 Isomica 4950, General Electric P.R.-153 Jet fuels JP-1, JP-3, IV-65; JP-4, V-19 Johns-Manville, IV-13; P.R.-158 "Kapton," P.R.-171 Kearfott alumina, V-3,46,47; VI-18,19 Kearfoot Co., Inc., V-3,46,47; VI-18,19 Kearney, James R., Corp., IV-52 "Ke1-F," IV-31 "Rel-F" Alkanes 464. 695. V-18 8126, 10157,12188, V-19 Grade 300 and 300-P25, IV-31, 116 X200, V-10,102,103 grease No. 40, IV-63 oil, Grade No. 1 and No. 3, IV-63 oil, Grade No. 10, 1V-6), V-130,131 wax No. 150, IV-58 Kellogg, M.W., Co., The, IV-31,58, 63,116; V-10,18,19,102,103, 130,131 Kennedott Copper, P.R.-191 Kerosene, IV-65 Knox Porcelain Corp., IV-6,100 Kodak Co., see Eastman Kodak Co. Kodak IRTRAN-5, P.R.-67 "Koroscal" 5CS-243, IV-30 "Kralastic" BE, BN, D. EBNU, F. IV-53 KRS-5, IV-2,76 KRS-6. 1V-2.75 Kahne-Libby Co., 17-57 "Laminac" 4115, IV-46,120 4-205, IV-46, 121

"Laminac" 4232, V-106,107 PDL7-627 and PDL7-650. IV-46,120 Laminate BD-44 and BK 174. IV-47,48 Laminated Plastics. Inc.. see Glastic Corp. Laminates and impregnated batts, see filler or resin: Asbestos-filled plastics "Dacron"-filled plastics Epoxy laminates "Fiberglas" laminates Melamine GMG "Nylon"-filled plastics "Orlon"-filled plastics Paper laminates Phenoloc resin plus fillers Polyester resin plus fillers Polystyrene plus fillers Silicone resin plus fillers Lancaster Glass Co., P.R.-89-92 Lancaster mixed silicate glasses, 7352, 7357, L1957, L9100, P.R. 89-92 Lanthanum aluminate, single crystal, National Lead, P.R.-65 Lava, V-21,75 Lead bromide, single crystal, MIT, Crystal Phys. Lab., P.R.-66 Lead chloride, P.R.-66 Lead chloride/lead bromide, P.R.-66 Leather, sole, IV-60 "Lexan," General Electric, P.R.-177 Limestone, P.R.-139 Limonite, P.R.-135 Linde Air Products Co., The, IV-1,2,72,77; V-1,26-28; VI-2-6; P.R.-2,3,62 Liquids, aliphatic, IV-62,63;V-18, . 19,130,131 aromatic, IV063,64;V-19; VI-78-83; see Table of Contents of the Present Report inorganic, IV-61; V-18 organic, IV-62-67; V-19,19, 20; VI-78-87; see Table of Contents of the Present report Liquids, petroleum, IV-65,66; VI-84, 85; P.R.-195 silicone, IV-66,67;V-20;VI-86,87

Lithium fluorine, IV-1

Lithium-nickel ferrite, V-137,178 Litton Industries, P.R.-117 "Loalin," IV-36 Lovell Chemical Co., IV-57,58; V-16 "Lucalox," General Electric, P.R.-23,24 Lucent Products Ltd., VI-66 "Lucido1," P.R.-196 "Lucite" HC 202, V-10 "Lucite" HM-119 and HM-140, IV-34,70 "Lucite," sintered, IV-34 "Lucoflex," IV-30 Lucoflex Plastic Fabricating, Inc., IV-30 "Lumarith" XFA-H4 and 22361, IV-24,25,70 Lunar rocks, Apollo 11 and 12, P.R.-139 "Lupersol" 101, P.R.-197 "Lupersol" 130, P.R.-196 "Lustrex" loaded glass mat, IV-41 3-M Company, IV-63; V-16,17,22; VI-67; P.R.-17 "3-M" board, P.R.-178 3-M "Scotchcast" 221, P.R.-178 Magnesia Kodak IRTRAN-5, P.R.-67 MIT, LIR, P.R.-68.69 Minneapolis Honeywell, P.R.-70,71 Magnesite, P.R.-135 Magnesium aluminate (spinel), single crystal, Union Carbide, P.R.-66 Magnesium-aluminum silicate (cordierite), multicrystalline, Raytheon, P.R.-67 Magnesium carbonate, pressed powder, P.R.-67 Magnesium ferrite (MIT samples), V-138, 179,207 Magnesium-manganese ferrite (MIT samples), V-139,140,180,181,208 Magnesium-manganese-zinc ferrite (MIT samples), V-141,182 Magnesium manganite, V-4,54 Magnesium metasilicate, steatite fired to clinoensteatite, multicrystalline, Bell Telephone Labs. F-66, P.R.-72 Intern. Pipe & Ceramic TC503, P.R.-72 Magnesium orthosilicate, multicryst., General Electric F-118, P.R.-73 F-202, P.R.-73Magnesium orthosilicate, Steatite-Magnesia A.G. Frequenta M, P.R.-74 Magnesium oxide, IV-1; V-29; P.R.-67-71 Norton, single crystal, IV-1: V-29: P.R.-68 Magnesium silicate, IV-3,78-82; VI-34

Magnesium titanate, IV-4; P.R.-75

Magnesium titanate and plastic mixture, IV-43 Magnetite and plastic mixtures, IV-44,45 Mallinckrodt Chemical Works, IV-44,45,61,62 Manganese fluoride, single crystal, Columbia Univ., P.R.-75 Manganese-magnesium ferrite, (MIT samples), V-139,140, 180,181,208 Manganese-magnesium-zinc ferrite (MIT samples), V-141,182 Marble S-303, IV-13 Marbon, Chemical Div. of Borg-Warner Corp., IV-38 "Marbon" S Buna S hardboard, IV-52 "Marbon" S (Code 7206),S-1 (Code 7254), 8000 and 9200, IV-38 Marco Chemicals, Inc., now Celanese Corp. of America, IV-47 Marco Resin "MR"-21C, "MR"-23C, and "MR"-25C, IV-47 "Marcol," IV-65 Marinite, P.R.-193 Markite Co., V-22,235,236 "Markite" 3985, V-22,235 "Markite" 12812, V-22,236 "Marlex" 50, V-10 Martin Co., The, VI-57 Mass. loams, P.R.-143 Massachusetts Institute of Technology Cryogenic Engineering Laboratory, V-18 Crystal Physics Lab. P.R.-38,39,59,63,06,77, 78,103-105,106,107,109 Laboratory for Insulation Research, IV-1,2,5,11, 12,26,37,41-46,62,64, 105; V-1,133-136,138, 139,142-158,177,179, 180,183-190,206-216, 239,240,243; P.R.-44, 61,63,68,69,93,102, 110-114,115,116

M.I.T. (cont.) Lincoln Laboratory, V-140,141,176, 178,181,182; VI-30,31 Metallurgy Department, P.R.-60 National Magnet Laboratory (now Fracis Bitter Natl. Mag. Lab.), P.R.-192 Mathleson Chemical Corp., see Olin Mathieson Mathieson Plastic CY-8 and CQ-10DM, IV-41 Meat, IV-60: P.R.-199 "Mecoboard," IV-18; V-82-83 Melamine-formaldehyde resins, IV-21,22, 112; V-8,88 Melamine GMG, IV-21,70 "Melmac" 7278 + "E" glass, IV-22 "Melmac" molding compound 1500, 1502, IV-22,112 "Melmac" resin 592, IV-21 "Melmac" Type 1077 (Ivory WB 48), IV-21 Mercury compounds, hot-pressed mercurous chloride, P.R.-76 mercuric iodide, P.R.-76 mercuric sulfide, P.R.-76 Meta-dinitrobenzene, VI-77 Methacrylate resins, IV-34,35 "Methocel," IV-25 Methyl alcohol, IV-62 Methyl cellulose, IV-25 Methylstyrene polymer, VI-65 Methylstyrene-styrene copolymer, IV-39 Mica, Canadian, IV-13 Mica, glass-bonded, IV-13,69,106-108; P.R.-153-155 Mica, ruby, IV-13 Mica and glass, IV-13,69,106-108;V-7,79 Mica-filled plastics, IV-16,17,18,20; V-7 "Micaramic," V-7 "Micarta" No. 254, TV-18 "Micarta" No. 259, TV-22,68 "Micarta" No. 299, IV-19,68 "Micarta" No. 496, IV-18,68,70 Mica Insulator Co., IV-21 "Millimar," IV-56 Minneapolis-Honeywell Regulator Co., P.R. -31,70,71 Minneapolis-Honeywell alumina, P.R.-31 Minneapolts-Honeywell magnesium oxide, ceramic, P.R.-70-71 Minnesota Mining and Mfg. Co., now 3-M Co., IV-63; V-16,17,22; VI-67; P.R.-178

Minn. Mining & Mfg. EC-612, V-17 "Missileon," V-17 Mitchell-Rand Insulation Co., Inc., IV-57-59 Molding compounds, XM-3, IV-20 301, V-9,94; P.R.-168 "Moly-Sulfide," VI-45 Monoisopropyl biphenyl, V-19 Monsanto Chemical Co., Plastics Div., IV-15,18,20,22,24,30, 36,37,41-45,63,64; VI-78-83; P.R.-178 Monsanto OS-45, OS-59, and OS-82, V-19 Monsanto polyimide foam, P.R.-178 Morse, Herbert B., and Co., V-16,17Morse 200, V-16 280, 300, 400, 6060-C, and 6062, V-17 Mullet oil, P.R.-197 Mullite, V-3 Multiform glass, Corning, P.R.-96 Muscovite, IV-13 Mycalex Corp. of America, IV-13; V-7, 79; P.R.-153-155 "Mycalex" K10, IV-13 "Mycalex" 400, IV-13,69 "Mycalex" 410, 500, 555, 560, 620, P.R.-153-155 "Mycalex" 2821, IV-13,106,107 "Mykroy" Grade 8 and 38, IV-13,108 "Mylar" A, V-13 Napthalene, IV-15 Napthalene, chloro-, IV-64

Narmco Resins and Coatings Co., V-8 National Beryllia "Carberlox," P.R.-80 National Beryllia Corp., P.R.-31, 41,80 National Beryllia high=purity BeO, P.R.-41 National Carbon Co., Inc., V-18; VI-48-51; P.R.-4,50,51,54-57, 66,101,189; now div. of Union Carbide & Carbon National Lead, P.R.-65 National Lead LaAlO3 single crystal, P.R.-65 National Research Corp., V-3 Naugatuck Chemical, Div. of

U.S. Rubber Co., IV-47,53

Naugatuck Laminating Resin MP and MT, Neoprene GN and compound, IV-53 Neptunite, P.R.-129 Nickel ferrite (MIT samples), V-133-135, 142,143,183,209 Nickel-lithium ferrite (MIT samples), V-137,178 Nickel oxide, single crystal, P.R.-49 Nickel-zinc ferrite (MIT samples), V-144-157,184-190, 210-216 Nitrobenzene, IV-64 Nitrobenzene, meta-di, VI-77 Nitrogen, gas, V-20 Nitrogen, liquid, V-18 Nitrous oxide gas, V-20 Nonex honeycombs, P.R.-172 Nopco Chemical Corp., P.R.-179 Nopco Chemical polyurethane foam, P.R.-179 North American Aviation Co., P.R.-42, 43,100 North American Aviation silicon nitride, pyrolytic, P.R.-100 North American Aviation translucent BeO, P.R.-42,43 Norton Co., IV-1,6; V-3,29,49; P.R.-31,68 Norton 99.5% Al<sub>2</sub>O<sub>3</sub>, F.R.-31 Norton 7X, V-3,49 Norton 17Z, V-3 Norton MgO single crystal, P.R.-68 "Nylon" 66 and 610, IV-23 "Nylon" FM 10, 001, IV-23,113; V-89 "Nylon"-filled plastics, IV-17; V-8,12, 14,82,83 Oil, HB-40, IV-63 Oils, petroleum, IV-65,66; V-19; VI-84,85 Olin Mathieson Chemical Corp., 1V-41; V-20 "Opalwax," IV-58 "Orlon"-filled plastics, V-8,10,12,14 Owens Corning CR-262, 57M, EA63, EA73, X600, V-6 Owens-Corning X994, P.R.-93 Owens-Corning Fiberglas Corp., IV-11,16, 22,47,48; V-6,8,13; P.R.-93

Owens-Illinois Glass Co., P.R.-93

glass, P.R.-93

"Ozokerite," IV-58

Owens-Illinois EE9, EE 10, mixed silicate

Panelyte, Grade 140 and 776, Philco-Ford Co., P.R.-97,98 IV-17,22 Philco-Ford silica fiber composites, Paper, Kraft, V-18 1-XB-0-M, P.R.-98 AS-3DX-176-17, P.R.-98 Royalgrey, IV-60 Paper laminates, IV-17,19, Philips Chemical Co., V-10 21-23,46; V-80 Philips Petroleum Co., V-19 Paraffin, natural, IV-58 "Phoresin," IV-48 Paraffin wax 1320 ASTM and Phosphate glasses, IV-9; P.R.-77 1350 AMP, IV-58 Picatinny Arsenal, see U.S. War "Paraplex" P13, IV-48,122
"Paraplex" P43, IV-48; V-12,111 Department "Piccolastic" D-125, IV-39 "Piccopale," Resin, IV-50 Pine board, P.R.-193 "Parowax," IV-58 Particle boards, U.S. Plywood & Evans Products, P.R.-193 Pipestone, V-7 Pavement, see concrete or Pittsburgh Corning Corp., TV-11; asphalt "Pelron" 9420, 9422, 9423, and Pittsburgh Plate Glass Co., P.R.-94 9424, V-11 Plaskon Div., IV-22,23,47,49,123; Pennsylvania Industrial V-112,113"Plaskon" 911, IV-47 Chemical Corp., IV-39,50 Pennwalt Corp, P.R.-196 "Plaskon" Alkyd 411, 420, 422, 440, Pennwalt "Lucidol," t-butyl 440A and 442, IV-49 perbenzoate, P.R.-196 "Plaskon" Alkyd Special, Electrical Pennwalt "Lupersol" 130, Granular, IV-49,123; V-112,113 "Plaskon" melamine, IV-22 2,5-dimethy1-2,5-di(t-"Plaskon" urea, natural and brown, buty1peroxy) hexyne-3. P.R.-196 IV-23 "Penton," V-16 "Plasticell," IV-31 "Perfluorodihexyl ether, IV-63"Permafil," 3256, IV-50 Plastic Metals, Div. of National U.S. Radiator Corp., IV-43,44 "Permo" potting compound, Plastics, Raytheon, P.R.-180 No. 49 and No. 51, IV-49,51 "Plast-Iron" and plastic mixtures, Petroleum oils, IV-65,66; IV-43,44 VI-84, 85; P.R.-195 Plate glass, P.R.-94 Phenol-aniline-formaldehyde Plax Corp. IV-35 "Plexiglass," IV-34 resins, IV-20 Phenol-formaldehyde resins, "Plicene" Cement, IV-56 "Pliobond" M-190-C, IV-52
"Pliolite" and "Pliolite" GP, IV-51 IV-15-19,109-111 Phenol-furfuraldehyde resin, "Pliolite" S5, S3, S6B and S6, IV-40 IV-19 Phenolic, expanded, IV-19 Plywood, birch, P.R.-193 Phenolic paper laminate JH-1410, fir, P.R.-193 IV-18 Polaroid Corp., IV-35,37,40; V-11 Phenolic resin with asbestos, Polaroid Resin C, IV-40 V-8, 84,85 "Polectron" No. 24, IV-46 "Policap," V-16
"Polinel," TV-58 with "Dacron," V-8 with "Fiberglas," V-8, Polyamide resins, IV-23,113; V-8, 12,14, with "Nylon," V-8 82,83,89 with "Orlon," V-8 Polybutene, IV-59 Phenolic spheres, V-12 Polybutyl methacrylate, IV-35 Phenolics, IV-15-20,109-111; Poly-2-chlorobutadiene-1,3, IV-53 V-8,80-87Polychlorostyrenes, IV-41,42

Polychlorotrifluoroethylene, IV-31, 58,63,116; V-10,102,103 Polycyclohexy1 methacry1ate, IV-35 Polycyclostyrene, V-11 Polydiallyl phthalete, IV-48 Poly-2,5-dichlorostyrene, IV-40-42,70 Poly-2,5-dichlorostyrene + fillers, IV-42-45; V-243 Poly-3,4-dichlorostyrene, IV-42 Polyesters, IV-46-48,120-123; V-11,12,13,106-111 Polyester resin with "Dacron," V-12,110 Polyester resin with "Fiberglas," IV-47,48; V-12,13,22,106,107, Polyester resin with "Nylon," V-12 Polyester resin with "Orlon," V-12 Polyester resin with phenolic, spheres, V-12 Polyether, chlorinated, V-16 Polyethylene, irradiated, P.R.-161 Polyethyl methacrylate, IV-35 Folyethylene, IV-27,28,70; V-10 Polyethylene DE-3401, IV-27 Polyethylene (effect of milling), IV-28 "Polyglas" DT, IV-42 "Polyglas" M, IV-22
"Polyglas" P, IV-41 "Polyglas" S, IV-26 "Polyguide," P.R.-175 Polyimide foam, P.R.-178 Polyiron attenuator, P.R.-167 Polyisobutylene, Run 5047-2, XV-28 Polyisobutylene B-100 + Marbon B, TV-28 Polyisobutylmethacrylate, IV-35 Polymer Corp. of Pennsylvania, V-17.18,205,244; VI-66; P.R.-179 Polymethyl methacrylate, IV-34, 70; V-10 "Polypenco" Q-200, 5; VI-66 Polypropylene, Avisun Corp., P.R.-162,163

Polysiloxane resin, IV-26,27;V-9; VI-52-57 Polystyrene, IV-35-37,117 Polystyrene, cast in vacuo and cast in air, IV-37 cross-linked, IV-39,40,119; V-11, 105; VI-66 hydrogenated, IV-46 α-methylstyrene, IV-37,117 Polystyrene + chlorinated diphenyl, IV-37 Polystyrene Fibers Q-107, IV-37 Polystyrene + fillers, IV-41; V-10, 239, 240 Polystyrene foam, P.R.-188 Polystyrene Foam Q-103, IV-37 Polysulfone, P.R.-189 Polytetrafluoroethylene, IV-31-33, 70; V-10,104; VI-58-64; P.R.-166,173,174 Polytetrafluoroethylene tape, P.R.-166 "Polythene" A-3305, IV-27,70 Polytrifluorostyrene, V-11 Polyurethane foams, Nopco, P.R.-179, Sippican, P.R.-188 Polyvinyl acetal, IV-34 Polyvinyl acetate, IV-33 Polyvinyl alcohol-acetates, IV-33 Polyvinyl butyral, IV-34 Poly-N-vinylcarbazole, IV-46 Polyvinyl chloride 1006, 1018, 1216, 1406, W-174, W-175, and W-176, IV-30 Polyvinyl chloride-acetate, IV-28-31 Polyvinyl chloride-acetate + plasticizer, IV-28,29 Polyvinyl chlorides, IV-28-31; V-10 Polyvinylcyclohexane, IV-46 Polyvinyl formal, IV-34 Polyvinylidene and vinyl chlorides, IV-31 Polyvinylidene fluoride, AVCO, P.R.-161 Poly- $\alpha$ -vinylnaphthalene, IV-46 Poly-2-vinylpyridine, IV-46 Polyvinyl resins, IV-27-46 Polyvinyltoluene, IV-37,117 Poly-p-xylylene, IV-37 Porcelain, wet and dry process, IV-6,100 Porcelain No. 4462, IV-6 Porcelains, IV-6, 94-100; V-2,3,5,21,40, Porous Ceramic AF-497, IV-6,101

Porous ceramics, see low-density alumina, silica, silicates Potassium bromide, IV-1 chloride, V-1 dihydrogen phosphate, IV-1,73 Potato chips, P.R.-199 Potato flakes, P.R.-199 Potatoes, raw, P.R.-199 Potato starch, granular and gelatinized, P.R.-200,201 "Primo1"-D, IV-66 Proctor and Gamble Co., IV-60 n-Propyl alcohol, IV-62 "Prystal," IV-17
"Pyralin," IV-25 "Pyranol" 1467, 1476, and 1478, IV-63,64"Pyrex," IV-10 "Pyroceram" 9606, VI-42 "Pyrotex," V-8 Quantum, Inc., P.R.-180 Quantum Radar tape, P.R.-180 Quartz, fused, IV-11,104;V-6,72,73; P.R.-85-88 Quartz crystal, natural, P.R.-80,81 Quartz fiber, AS-3DX-1R, Philco-Ford, P.R.-97 Quartz sand, powder, P.R.-135 "Quinorgo" No. 3000, IV-13 "Quinterra," IV-13

Radar tape, Quantum, Inc., P.R.-180 Raybestos-Manhattan, Inc., V-8,9 Raytheon Mfg. Co., V-3; P.R.-32, 52,53,67,100,139,158,180 Raytheon Al<sub>2</sub>O<sub>3</sub>, multicrystal, P.R.-32 boron nitride, pyrolytic, P.R.-52,53 magnesium-aluminum silicate (Cordierite ceramic), P.R.-67 silicon nitride, ceramic, P.R.-100 Raytheon 402B, V-3 "Resimene" 803-A, IV-22 Resin (polyester), EKONOL, P.R.-166 Resinous Products Div., see Rohm and Haas Co. "Resinox" 7934, IV-20 "Resinox" 10231, IV-18,109

"Resinox" 10900, IV-18,110 Resins, natural, IV-55,56 Rex, Corp., IV-40; V-11,105 Rex, William Brand, Div. of American Enka (now Brand-Rex Co.), P.R.-181-183 "Rexolene" P. P.R.-183 "Rexolite" 1422, IV-40; V-105; P.R.-181 "Rexolite" 2101, V-11 "Rexolite" 2200, P.R.-182 Rezolin, Inc., IV-19 "Rhyolite," P.R.-140 Robertson, H. H., Co., IV-48,123; V-12,19"Rocketon," V-17 Rocks, see Table of Contents of the Present Report Rogers Corp., VI-59-64; P.R.-184,185 Rogers Corp. "Duroid" (1" thick sheet), P.R.-184 "Duroid" 5870 (1966), P.R.-185 Rogers Paper Mfg. Co., IV-60 Rohm and Haas Co., IV-30,34,48,62, 122; V-12,111 "Royalite" 149-11, M21982-1 and M22190, IV-53 RTV-11, General Electric, P.R.-176 Rubber Chemical Sales Department of Organic Chemicals Div., V-11,19 Rubber, butyl (GR-I), IV-52 Rubber, cellular, IV-51 Rubber, cyclized, IV-51,52 Rubber, GR-S (Buna S) and compounds, IV-52 Rubber, Hevea and compounds, IV-51 Rubber, natural, IV-51 Rubber, nitrile, IV-53 Rubber, silicone, IV-54,55,126; V-127-129, P.R.- 177 Rubber Reserve Corp., IV-51,52 Rubidium manganese fluoride, single crystal, MIT, Crystal Physics Lab., P.R.-49 Rutgers University, School of Ceramics, V-4 Rutgers' wallastonite E16, V-4 Rutile, IV-2,4,77 S-40 and S-60 resins, IV-39

S-40 and S-60 resins, IV-39
St. Regis Paper Co., Panelyte
Division, IV-17,22
Salts, granulated and fine flakes,
Raytheon, P.R.-158
Sand and resin mixtures, see epoxy,
silicone, etc.

Sands Silastics (cont.) Desert, P.R.-143 7181, IV-55 Holliston, P.R.-144 RTV 501, 521, 1602, 5350, S-6538, P.R.-168 Quartz, P.R.-135 Silica, fused 915c, IV-11,103; Slattersville, P.R.-144 Soil, IV-14 V-70,71Sandstone, almond, P.R.-140 Silica, slip-cast, Brunswick, "Santicizer" 9, IV-15 P.R.-95 Sapphire, IV-72; V-1,26-28; Dynasil, P.R.-96 VI-2-6; P.R.-2-4 Silica fiber composites, P.R.-98,99 "Saran" B-115, IV-31 Silicate glasses, IV-9-11, 101,102; Sauereisen Cements Co., V-7 V-5,62-69; VI-35-43; P.R.-89-94 Sauereisen Cement No. 1, V-7 Silicon, single crystal, intrinsic, "Scochcast" 221, P.R.-178 cubic, MIT, Crystal Physics Lab., "Scotchply" Type 1001, V-16 P.R.-78 "Scotchply" Type 1002, V-22; Silicon, single crystal, undoped, VI-67 Brown University, P.R.-78 "Scotchply" XPM-107, V-22 Silicon carbide, multicrystalline, "Scotch" tape No. 39, V-17 Carborundum, P.R.-79 Sealing Wax, Red Express, Silicon carbide with BeO, National IV-58 Beryllia Corp. "Carberlox," Sealing compound, V-17 P.R.-80 "Selectron" 5003 + glass, . Silicon dioxide, fused, IV-11,103; IV-47 V-70,71; P.R.-82-88 "Selectron" 5084 monomer, Silicon dioxide, natural quartz V-19 mineral, Fort monmouth, P.R.-80,81 "Selectron" 5084 resin, V-13 Silicon dioxide, sintered, Selenium, amorphous, IV-13 Brunswick slip-cast, P.R.-95 Selenium, multicrystalline, 11 " with 2.5% IV-1 Cr<sub>2</sub>O<sub>3</sub>, P.R.-95 Service boards, John Manville's, Corning Code 7941, P.R.-96 P.R.-158 Corning multiform glass, P.R.-96 Sharples Chemicals Div., Silica slip-cast, Dynasil, P.R.-96 Penn. Salt Mfg. Co., IV-63 Silicon dioxide fibers Shawinigan Products Corp., Quartz fiber sample, Philco Ford, IV-34 AS-3DX-1R, P.R.-97 Sheet glass, P.R.-94 Silica fiber composites, Philco Shellac, natural Zinfo, pure C Ford 1-XB-O-M, P.R.-98 garnet and garnet de-AS-#DX 176-17, P.R.-98 waxed, IV-56 Silica fiber composites in Shell Chemical Corp., IV-50; aluminum phosphate matrix, V-16,116-125; VI-68-76; Whittaker Corp., P.R.-99 P.R.-186,187 Silicon dioxide glasses Shell Chemical "Epon" 828 + "Amersil" (clear, translucent), PMDA epoxies, P.R.-186,187 P. X.-82 Shell Development Co., IV-45-48 Corning 7940, P.R.-83 Shell 011 Co., IV-56,66 Dynasil 4000, P.R.-84 Silastics, 120, 125, 150, 152, G.E. 101, clear, P.R.-85-87 160, 167, 180, IV-54 "Spectrosil" A, P.R.-88 181, IV-54,126 "Spectrosil" B, P.R.-88 250, IV-54,126 "Vitreosil," optical grade, P.R.-88 6167, IV-55,126 "Vitreosil," commercial grade, 6181, X4342, IV-55 P.R.-88

XF6734, IV-55

Silicon dioxide, mixed silicate glasses, see also Glass Corning Lab. No. 119BUC, P.R.-89 Corning Lab. Code 1723, P.R.-89 Lancaster 7352, 7357, L1957, L9100, P.R.-89-92 Owens-Corning X994, P.R.-93 Owens-Illinois EE9 and EE 13, P.R.-93 Pittsburgh Plate Glass Co., Flate glass, P.R.-94 Sheet glass, P.R.-94 Silicon nitride, ceramic Admiralty Labs., P.R.-100 Raytheon, P.R.-100 Union Carbide & Carbon, P.R.-101 Silicon nitride, pyrolytic, P.R.-100 Silicon nitrite alloy, V-6,79 Silicone alloys C-1147 and C-1328, V-9 Silicone fluida DC XF-6620, V-20 SF96-40, IV-67; VI-86,87 SF96-100 and SF96-1000, IV-67 DC200 and DC500, IV-66 DC550 and DC710, IV-67 Silicone glass laminates, IV-26,27; V-9,93-95,100,101; VI-56,57 Silicone grease, V-20 Silicone laminate DC2105, V-9,94 Silicone laminate DC2106, V-9,95 Silicone molding compound XM-3, IV-26 Silicone resin DC301, V-9,94 Silicone resin DC996 and DC2101, IV-26 Silicone resins, IV-25-27; V-9; VI-52-57 Silicone resins with asbestos, V-9, 96,97Silicone resins with "Fiberglas," V-9, 93-95,98-101;VI-56,57 Silicone rubber SE-450, IV-55; V-127 SE-555, IV 55 SE900, P.R.-177 SE-977, IV-55; V-129 RTV-11, P.R.-175 Silicone rubbers, IV-54,55,126; V-127-129; P.R.-176-177 Silicone varnish, IV-26; V-18 Silver iodide, Pressed powder, MIT, Lab. Ins. Res., P.R.-102 Sintered silicon dioxide, P.R.-95,96 "Sintox," V-3 Sippican Corp., The, P.R.-158, 188,192

Sippican polystyrene foam, P.R.-188 Sippican polyurethane foam, P.R.-188 Sippican service boards, P.R.-158 Snow, IV-1 Soap, IV-60 Socony Mobil Oil Co., Inc., IV-57,58 Formerly Socony-Vacuum 0il Co., Inc. Soda silicate glass, MIT, Lab. Ins. Res., P.R.-93 Sodium chloride, IV-2; P.R.-103 Sodium chloride, aqueous solutions, IV-61 Southern Alkali Corp., IV-48 "Spectrosil" A, P.R.-88 "Spectrosil" B, P.R.-88 Sperry Gyroscope Co., V-18 Spinel, P.R.-66 Spodumene, P.R.-130-132 Sponge Rubber Products Co., IV-19, Sprague Electric Co., IV-39 Spruce Pine Mica Co., V-7 Stanco Distributors, Inc., IV-65,66 Standard Oil Co. of N.J., IV-58 Standard Oil Development Co., see Enjay Co., Inc. Steak, beef, IV-60; P.P.-199 Steatite bodies, IV-3,4,78-87; V-4,55-57; VI-34; P.R.-72-74 Steatite Body 7292, IV-4,83 Steatite Type 303,400, 410 and 452, IV-3,84-87 Steatit-Magnesia A.G., P.R. 32,74 Steatit-Magnesia A-18, P.R.-32-33 Steatit-Magnesia Frequenta M, P.R.-74 Sterling Varnish Co., The, V-18 Sterling M50 varnish on paper, V-18 Strontium fluoride, single crystal, MIT, Crystal Physics Lab., P.R.-106,107 Strontium titanate, IV-5 Strontium titanate and plastic mixtures, IV-43 Stupakoff Ceramic and Mfg. Co., 1V-6.101; V-3,4,50,51Div. of the Carborundum Co. Stupakoff 1510, V-3,51 1540, V-3,50 1542E, V-3 1542P, V-3.50 1550, V-4,50

"Stycast", HiK, LoK and TPM-3, V-11 "Stypol" 16B monomer, V-19 "Stypo1" 16B resin, IV-48, 123; V-110 "Stypol" 16C resin, IV-48 "Stypol" 16D resin, IV-48;V-12 "Styraloy" 22, IV-38 "Styramic" No. 18, IV-37 "Styramic" HT, IV-42,43 Styrene copolymers, crosslinked, IV-39,40,119; V-11,105 Styrene copolymers, linear, IV-38,39,118,119 Styrene dimer, IV-64 Styrene N-100, dry and saturated with water, ..V-64 Styrene-acrylonitrile copolymer, IV-38,53,118 "Styrofoam" 103.7, IV-37 "Styron" C-176,411-A, 475, 666 and 671, IV-36 Suet, IV-60 Sulfur, crystalline, IV-2 sublimed, IV-2 "Supramica" 500, V-7,79 Sylgard 182, 184, D92.007, P.R.-168 Syncor Products Co., V-6 Synthetic basalt, P.R.-139 "Tam Ticon" B, BS, C, MC,

"Tam Ticon" B, BS, C, PC,
and S, IV-4,5,43
"Tam Ticon" T-S, T-L and
T-M, IV-4

Tantalum oxide, ceramic,
Ciba powder, fired at
L.T.R., MIT, P.R.108

Taylor Fibre Co., IV-18,27,111

Taylor Grade GGG, IV-18,111
Grade GSC and GSS, IV-27

Tea, powder, P.R.-202
"Teflon," IV-31-33,70; V-24,
104; VI-58-64; P.R.-173-174
"Teflon" FEP (1963), P.R.-173
"Teflon" TFE (1964), P.R.-173
"Teflon" TFE-6C (1964), P.R.-173
"Teflon" TFE-6C (1964), P.T.-173
"Teflon" TFE-6C (1964), P.T.-173
"Teflon" T-100, P.R.-174
"Teflon" 100X, P.R.-174

"Teflon" + calcium fluoride, IV-32; V-10 "Teflon" fiberglass laminates, GB-112T; IV-31,32; V-104; P.R.-164 FLUORGLAS E, P.R.-167 Duroids, VI-62-64; P.R.-184,185 Tellite Corporation, P.R.-188 Tellite 3A, P.R.-188 "Tenite" I 008A  $H_2$ ,  $H_4$ , M, MH, S and S<sub>4</sub>, IV-24 "Tenite" II 2054A H<sub>2</sub>, H<sub>4</sub>, MH, MS,  $S_2$ ,  $S_4$ , IV-24Tennessee Eastman Corp., IV-24 Tennessee Marble, Inc., IV-13 Teresso V-78, P.R.-195 Terphenyl, meta-, nona, ortho-, and para-, IV-15 Terphenyls, chlorinated, IV-64 Tetrachloroethylene, IV-62 Tetra alkyd silicate ester, V-19 Thallium bromide, IV-2,75 Thallium bromide-chloride, IV-2,75; P.R.-109 Thallium-bromide-iodide, IV-2,76; P.R.-109 Thallium chloride, V-1; P.R.-109 Thallium fluoride pressed powder, P.R.-109 Thallium icdide, IV-2,74; P.R.-109 Thermal American Fused Quartz Co., P.R.-88 Thermoplastic Composition 1766 EX and 3738, IV-58 3767A, IV-59 Thickol Chemical Corp., IV-54 "Thiokol" Type FA, PRI and ST, IV-54 Thorium oxide, ceramic, Zircoa, P.R.-110,112 MIT, Lab. Ins. Res., P.R.-113,114 TI Pure R-200, IV-4 Titanate ceramics, IV 5.6 Titania and titanate bodies, IV-4-6, Titanium Alloy Mfg. Div., National Lead Co., IV-4,5,42,43 Titanium dioxide, rutile, IV-2,4,77 Titanium dioxide ceramics, IV-4,5 Titanium dioxide + plastic mixtures, IV-33.42 Tobe Deutschmann, VI-78-83 Toluene sulfonamides, mixtures of ortho- and paraisomers, IV-15 Topaz, P.R.-133,134 Tourmaline, P.R.-134

"Transil" Oil 10C, IV-65
Trichlorobenzenes, mixture
of isomeric, IV-64
Trichloronaphthalenes,
mixture of isomeric, IV-64
α-Trinitrotoluene, IV-15

Union Carbide boron nitride,
hot-pressed, Grade HD0056,
HD0086, HD0092, HD0093,
HD0094, HBN, HBR, P.R.-54-57
cold-pressed, P.R.-57
pyrolytically deposited,
"Boralloy," P.R.-50,51
pyrolytic laminate, P.R.-54

Union Carbide magnesium aluminate (spinel), P.R.-66

Union Carbide "Polysulfone," P.R.-189

Union Carbide silicon nitride, ceramic, P.R.-101

Union Carbide R-63 Varnish, V-18

Urea-formaldehyde resins, IV-23 U.S. Army Engineering Research and Dev. Lab., Fort Belvoir, Va., IV-2,74-76; VI-77

U.S. Army Res. and Dev. Labs., Fort Monmouth, N.J., P.R.-80,81

U.S. Bureau of Fisheries, mullet oil, P.R.-197

U.S. Ceramic Tile Co., see Diamonite Products Div.

U.S. Gasket Co., IV-32,33

U.S. Industrial Chemical Co., IV-62

U.S. National Bureau of Standards, IV-40; P.R.-20

U.S. Peroxygen Division, Argus Chemical Corp., P.R.-197

U.S. Peroxygen USP 333 Liquid, P.R.-197

U.S. Polymeric Chemicals, Inc.,

U.S. Rubber Co., IV-31,40,52, 53,56

U.S. Sonics, P.R.-75

U.S. Sonics magnesium titanate, multicrystal, P.R.-75 U.S. Stoneware Co., The, V-21,51;
VI-20,21; P.R.-34,35
U.S. Stoneware Al<sub>2</sub>O<sub>3</sub>, A-212, A-216,
A-312, 610, Std. 3050°F, P.R.-34,35
U.S. War Department, Picatinny Arsenal, IV-15

Vanadium oxide, pressed powder, P.R.-114 Varnished glass cloth, V-18 Varnished linen tape, V-17 Varnished paper, V-18 "Vaseline," IV-65 "Vibron" 140 and 141, IV-40 Victor Chemical Works, IV-48 "Vinylite" QYNA, VG-5544 and VG-5901, IV-28 "Vinylite" VG-5904, VYHH, VYNS, and VYNW, IV-29 "Vinylite" VU-1900, IV-29,70 2-Vinylpyridine-styrene copolymer, IV-46 "Vistawax," IV-59
"Vitreosil," commercial grade, P.R.-88
"Vitreosil," optical grade, P.R.-88 VUI.-CUP, P.R.-196

Wallace & Tiernan, Inc., P.R.-197 Wallace & Tiernan "Lupersol" 101, 2,5-dimethyl-2,5-di(£-butylperoxy) hexane, P.R.-197 War Dept., Picatinny Arsenal, see U.S. War Department Water, conductivity, IV-61 Wax 3760, IV-59 Wax Compound F-590 and No. 1340, IV-59 Wax S-1167 and S-1184, IV-59 Waxes, IV-56-59; V-16,17 Weber, Hermann, and Co., IV-51 "Wesgo" AL-300, V-4,52 "wesgo" AL-1009, V-4 Western Gold & Platinum Works. V-4,52; P.R.-36,37 Western Gold & Platinum aluminum oxide, AL-300, AL-300 )modified), AL-400, AL-500 (multicryst.), AL-995, AL-1009,

P.R.-36,37
Westinghouse Electric Corp.,
Research Labs., IV-18,19,22
Whittaker Corp., P.R.-99

Whittaker silica fiber composites, P.R.-99

Wollastonite, V=4,58 Wood, IV=59; P.R.=193 Wood, pine board, Sippican, P.R.=193 Wood, birch plywood, Sippican, P.R.-193 fir plywood, Sippican, P.R.-193 Marinite board, Sippican, P.R.-193

Ytterbium ferrite, VI~28-31 Yttrium oxide, ceramic, Zircoa, P.R.-116 Yttrium oxide, single crystal, MIT, Lab. Ins. Res., P.R.-115

Zinc ferrite (MIT samples), V-158
Zinc-magnesium-manganese ferrite
 (MIT samples), V-141,182
Zinc-nickel ferrite (MIT samples),
 V-144-157
Zinc oxide, single crystel,
 Airtron Div., Litton
 Industries, P.R.-117
Zinsser, Wm., and Co., IV-55,56,
Zircoa ceramics:

"C", P.R.-118
Thorium oxide, P.R.-110-112
Y-790, P.R.-64
Y-904, P.R.-119
Y-1362, P.R.-120,121
"Zircolite," ceramic, P.R.-122
Zircon, P.R.-123-125

Zircon, P.R.-123-125 Zirconia, Zircoa "C", Y-904, Y-1362, P.R.-118-121

"Zircolite," P.R.-122 Zirconium oxide ceramics, see Zirconia

Zirconium silicate (zircon), ceramic, IV-6,94,95; V-5, 59-61

single crystal, P.R.-123-125 "Zitex," P.R.-166 > Zophar Nills, Inc., IV-59