Sampling Plans and Initial Condition Problems For Continuous Time Duration Models

James J. Heckman University of Chicago

Econ 312, Spring 2019

Sampling Plans and Initial Condition Problems For Continuous Time Duration Models

James J. Heckman University of Chicago

Econ 312, Spring 2019

Sampling plans and initial condition problems: Duration Models

For interrupted spells, one of the following duration times may be observed:

- time in state up to sampling date (T_b)
- time in state after sampling date (T_a)
- total time in completed spell observed at origin of sample $(T_c = T_a + T_b)$

Duration of spells beginning after the origin date of the sample, denoted T_d , are not subject to initial condition problems. The intake rate, $k(-t_b)$, is the proportion of the population entering a spell at $-t_b$. Assume:

- A time homogenous environment, i.e. constant intake rate, $k(-t_b) = k, \forall b$
- A model without observed or unobserved explanatory variables.
- No right censoring, so $T_c = T_a + T_b$
- Underlying distribution is nondefective
- $m = \int_0^\infty xg(x)dx < \infty$

The proportion of the population experiencing a spell at t=0, the origin date of the sample, is

$$P_0 = \int_0^\infty k(-t_b)(1-G(t_b))dt_b = k \int_0^\infty (1-G(t_b))dt_b$$

$$= k \left[t_b(1-G(t_b))|_0^\infty - \int_0^\infty t_b d(1-G(t_b)) \right]$$

$$= k \int_0^\infty t_b g(t_b)dt_b = km$$

where $1 - G(t_b)$ is the probability the spell lasts from $-t_b$ to 0 (or equivalently, from 0 to $-t_b$).

So the density of a spell of length t_b interrupted at the beginning of the sample (t=0) is

$$f(t_b) = rac{ ext{proportion surviving til } t = 0 ext{ from batch } t_b}{ ext{total surviving til } t = 0} = rac{k(-t_b)(1-G(t_b))}{P_0} = rac{1-G(t_b)}{m}
eq g(t_b)$$

The probability that a spell lasts until t_c given that it has lasted from $-t_b$ to 0, is

$$g(t_c|t_b) = \frac{g(t_c)}{1 - G(t_b)}$$

So the density of a spell that lasts for t_c is

$$f(t_c) = \int_0^{t_c} g(t_c|t_b) f(t_b) dt_b$$
$$= \int_0^{t_c} \frac{g(t_c)}{m} dt_b = \frac{g(t_c)t_c}{m}$$

Likewise, the density of a spell that lasts until t_a is

$$f(t_a) = \int_0^\infty g(t_a + t_b|t_b) f(t_b) dt_b$$

$$= \int_0^\infty \frac{g(t_a + t_b)}{m} dt_b$$

$$= \frac{1}{m} \int_{t_a}^\infty g(t_b) dt_b$$

$$= \frac{1 - G(t_a)}{m}$$

So the functional form of $f(t_b) = f(t_a)$: Consequences of stationarity.

Some useful results that follow from this model:

1 If $g(t) = \theta e^{-t\theta}$, then $f(t_b) = \theta e^{-t_b\theta}$ and $f(t_a) = \theta e^{-t_a\theta}$. **Proof**:

$$g(t) = \theta e^{-t\theta} \to m = \frac{1}{\theta},$$

$$G(t) = 1 - e^{-t\theta} \to f(t_a) = \frac{1 - G(t)}{m} = \theta e^{-t\theta}$$

$$(T_a) = \frac{m}{2} (1 + \frac{\sigma^2}{m^2}).$$

Proof:

$$E(T_{a}) = \int t_{a}f(t_{a})dt_{a} = \int t_{a}\frac{1-G(t_{a})}{m}dt_{a}$$

$$= \frac{1}{m}\left[\frac{1}{2}t_{a}^{2}(1-G(t_{a}))|_{0}^{\infty} - \int \frac{1}{2}t_{a}^{2}d(1-G(t_{a}))\right]$$

$$= \frac{1}{m}\int \frac{1}{2}t_{a}^{2}g(t_{a})dt_{a} = \frac{1}{2m}[var(t_{a}) + E^{2}(t_{a})]$$

$$= \frac{1}{2m}[\sigma^{2} + m^{2}]$$

- $E(T_b) = \frac{m}{2}(1 + \frac{\sigma^2}{m^2})$. **Proof**: See proof of Proposition 2.
- **2** $E(T_c) = m(1 + \frac{\sigma^2}{m^2})$. **Proof**:

$$E(T_c) = \int rac{t_c^2 g(t_c)}{m} dt_c = rac{1}{m} (var(t_c) + E^2(t_c))$$

$$\rightarrow E(T_c) = 2E(T_a) = 2E(T_b), E(T_c) > m \text{ unless } \sigma^2 = 0$$

Some Additional Results:

$$h(t) = \text{hazard}: h(t) = \frac{F(t)}{1 - F(t)}.$$

- **1** $h'(t) > 0 \rightarrow E(T_a) = E(T_b) < m$. **Proof:** See Barlow and Proschan.
- 2 $h'(t) < 0 \rightarrow E(T_a) = E(T_b) > m$. **Proof**: See Barlow and Proschan.

Examples

Specification of the Distribution

Weibull Distribution

- Parameters: $\lambda > 0, k > 0$
- Probability Density Function (PDF):

$$\frac{\lambda}{k} \left(\frac{t}{\lambda} \right)^{k-1} \exp \left(- \left(\frac{t}{k} \right)^k \right)$$

Cumulative Density Function:

$$1 - \exp\left(-\left(\frac{t}{k}\right)^k\right)$$

Set of Parameters:

$$\begin{pmatrix} \lambda_1, k_1 = 0.5 \\ \lambda_2, k_1 = 1.0 \\ \lambda_3, k_1 = 2.0 \\ \lambda_3, k_1 = 3.0 \end{pmatrix}, \text{ respectively}$$

Basic Distribution Graphs

PDF for Weibull Distribution

CDF of Weibull Distribution

Basic Duration Graphs

Hazard Function for Weibull Distribution

Integrated Hazard Function for Weibull

Observed and Original Distribution for T_b (Example 1)

Observed and Original Distribution for T_b (Example 3)

CAGO

Observed and Original Distribution for T_b (Example 4)

ERSITY OF

Observed and Original Distribution for T_c (Example 1)

CAGO

Observed and Original Distribution for T_c (Example 2)

Observed and Original Distribution for T_c (Example 3)

ERSITY OF

Observed and Original Distribution for T_c (Example 4)

