

PUBLIC KEY CRYPTOSYSTEMS

Md. Alamgir Hossain

Senior Lecturer,

Dept. of CSE, Prime University

Mail: alamgir.cse14.just@gmail.com

ASYMMETRIC KEY ENCRYPTION

- The concept of using **different keys** at the encryption and decryption ends.
- Depends on different mathematical principles than symmetric encryption.
- Usually done through a combination of hardware and software.
- Can be used for several different applications, other than just encryption.

MISCONCEPTIONS CONCERNING PUBLIC-KEY ENCRYPTION

- **Public-key encryption** is more secure from cryptanalysis than symmetric encryption.
 - ▶ Not true they depend on different principles but can be equally secure.
- ☑ Public-key encryption has made symmetric encryption obsolete.
 - ▶ Not true symmetric encryption is still used in several areas, quite successfully.

ASYMMETRIC ENCRYPTION TERMINOLOGY

Asymmetric Keys

Two related keys – a public key and a private key, that are used to perform complementary operations, such as encryption and decryption or signature generation and signature verification

Public Key Certificate

A digital document issued and digitally signed by the private key of the certification authority that binds the name of a subscriber to a public key. The certificate indicates that the subscriber identified in the certificate has sole control and access to the corresponding private key.

Public Key Algorithm

A cryptographic algorithm that uses the related keys, a public key and a private key. The two keys have the property that deriving the private key from the public key is computationally infeasible.

Public Key Infrastructure

A set of policies, processes, server platforms, software, and workstations used for the purpose of administering certificates and public-private key pairs, including the ability to issue and revoke public key certificates.

PRINCIPLES OF PUBLIC-KEY CRYPTOSYSTEMS

- ☑ Public-key cryptography evolved from an attempt to address the two basic limitations of symmetric encryption:
 - ▶ **Key Distribution** How to have secure communication without having to trust a KDC (key distribution center) with your key?
 - **Digital Signatures** How to verify that a message comes intact from the claimed sender?
- Whit Diffie and Martin Hellman proposed a method that addressed both problems and was radically different from all previous approaches to cryptography.

PUBLIC-KEY CRYPTOSYSTEMS TERMINOLOGY

- ✓ Plaintext the input data
- ☑ Encryption Algorithm Performs various transformations on the plaintext
- ☑ Public Key Used for encryption
- Private Key Used for decryption
- Ciphertext The output data
- Decryption Algorithm Used for decryption

PUBLIC-KEY CRYPTOGRAPHY-ENCRYPTION

CONVENTIONAL AND PUBLIC-KEY ENRYPTION

Conventional Encryption	Public-Key Encryption		
Needed to Work:I. The same algorithm with the same key is used for encryption and decryption.II. The sender and receiver must share the algorithm and the key.	Needed to Work:I. One algorithm is used for encryption and a related one for decryption.II. The sender and receiver must each have one of the matched pair of keys (not the same one).		
Needed for Security:	Needed for Security:		
I. The key must be kept secret.II. It must be impossible or at least impractical to decipher a message if the key is kept secret.III. Knowledge of the algorithm plus samples of ciphertext must be insufficient to determine the other key.	impractical to decipher a message if one of the keys is kept secret.		

PUBLIC-KEY CRYPTOSYSTEM: SECRECY

APPLICATIONS FOR PUBLIC KEY CRYPTOSYSTEMS

Public-key cryptosystems can be classified into three categories:

- **Encryption/decryption:** The sender encrypts a message with the recipient's public key
- **Digital Signatures:** The sender "signs" a message with its private key
- **♥ Key Exchange:** Two sides cooperate to exchange a session key
- Some algorithms are suitable for all three applications, whereas others can be used only for one or two.

PUBLIC KEY REQUIREMENTS

Computationally easy

- of or party B to generate a pair (public-key PUb, private key PRb)
- for sender A, knowing the public key and the message, to generate the corresponding ciphertext
- for receiver B to decrypt the resulting ciphertext using the private key to recover the

Computationally infeasible for an adversary

- knowing the public key, to determine the private key
- knowing the public key and a ciphertext, to recover the original message

PUBLIC KEY REQUIREMENTS

- Need a trap-door one-way function
 - \circ f: $\{0,1\}^n \rightarrow \{0,1\}$ n is a one-way function if
 - \circ Y = f(X) can easily be computed for X in $\{0,1\}^n$
 - \circ X = f⁻¹ (Y) infeasible for Y in $\{0,1\}^n$
- $\ensuremath{ f \oslash }$ A trap-door one-way function is a family of invertible functions f_k , such that computing
 - $\mathbf{Y} = \mathbf{f}_k$ (X) is easy, if k and X are known
 - \circ X = f_k^{-1} (Y) is easy, if k and Y are known
 - \circ X = f_k^{n-1} (Y) infeasible, if Y is known but k not known
- A practical public-key scheme depends on a suitable trapdoor oneway function

RIVEST-SHAMIR-ADLEMAN (RSA) SCHEME

- Developed in 1977 by Ron Rivest, Adi Shamir & Len Adleman.
- Most widely used general-purpose public-key encryption.
- \bigcirc A cipher for which the plaintext and ciphertext are integers between 0 and n 1 for some n.
 - ▶ A typical size for n is 1024 bits, or 309 decimal digits.

RSA ALGORITHM

- Plaintext is encrypted in blocks with whose value less than some number n
- ☑ Encryption and decryption are of the following form, for plaintext block M and ciphertext block C
- $\bigcirc C = M^e \mod n$
- Both sender and receiver must know the value of n
- The sender knows the value of e, and only the receiver knows the value of d
- This is a public-key encryption algorithm with a public key of PU={e, n} and a private key of PR={d, n}

ALGORITHM REQUIREMENTS

- It should be possible to find values of e, d, n such that M^{ed} mod n = M for all M < n
- ✓ It should be relatively easy to calculate

 Me mod n and Cd mod n for all values of M < n
- It should be infeasible to determine d given e and n.

RSA ALGORITHM

Key Generation

Select p, q $p \text{ and } q \text{ both prime } p \neq q$

Calculate $n = p \times q$

Calculate $\phi(n) = (p-1)(q-1)$

Select integer e $gcd(\phi(n), e) = 1; 1 < e < \phi(n)$

Calculate $d \equiv e^{-1} \mod \phi(n)$

Public key $PU = \{e, n\}$ Private key $PR = \{d, n\}$

Encryption

Plaintext M < n

Ciphertext $C = M^e \pmod{n}$

Decryption

Ciphertext C

Plaintext $M = C^d \pmod{n}$

Select two prime no. Suppose P = 53 and Q = 59.

Now First part of the Public key : n = P*Q = 3127.

We also need a small exponent say e: But e Must be An integer.

 $1 < e < \Phi(n)$ [$\Phi(n)$ is discussed below], Let us now consider it to be equal to 3.

Our Public Key is made of n and e.

Generating Private Key:

We need to calculate $\Phi(n)$: Such that $\Phi(n) = (P-1)(Q-1)$. so, $\Phi(n) = 3016$ Now calculate Private Key, d: d = $(k^*\Phi(n) + 1)$ / e for some integer k For k = 2, value of d is 2011.

Now we are ready with our – Public Key (n = 3127 and e = 3) and Private Key(d = 2011)

FINDING THE VALUE OF "d"

 \mathbf{v} d = e^{-1} mod $\Phi(n)$. => de = 1 mod $\Phi(n)$. What does it mean? It means "**de mod** $\Phi(n)$ = **1**"(Basic theorem of inverse modular arithmetic).

$$\Phi(n)$$
) de (x

1

 $=>\Phi(n)*X+1=de;=>d=\{\Phi(n)*X+1\}/e;d$ must be an integer number.

- $\mathbf{M} = f/6$, p = 7, q = 17, n = 119, $\Phi(n) = 96$, e = 5, C = 41, d = 77, M = 6.
- \mathbf{v} M = 2, p = 3, q = 11, n = 33, Φ (n) = 20, e = 7, C = 29, d = 3, M = 2.
- \mathbf{v} M = 9, p = 7, q = 11, n = 77, Φ (n) = 60, e = 7, C = 37, d = 43, M = 9.

$$P = 17$$
, $q = 11$, $n = 187$, $\phi(n) = 160$, $e = 7$, $d = 23$

$$P = 17$$
, $q = 7$, $n = 119$, $\phi(n) = 96$, $e = 5$, $d = 77$

- Encrypt and Decrypt: "HI".
- \bigcirc Convert letters to numbers : H = 8 and I = 9.
- \mathbf{P} = 7, q = 17, n = 119, φ (n) = 96, e = 5, d = 77
- ☑ Thus Encrypted Data c = 89^e mod n.
- Thus our Encrypted Data comes out to be 38
- \bigcirc Decrypted Data = c^d mod n.
- Thus our Deccrypted Data comes out to be 89
- \bigcirc H = 8 and I = 9 i.e. "HI".

Plaintext: HELLO

- 1) Choose two prime numbers p = 5 and q = 7
- 2) Compute n = pq and m = (p 1)(q 1)a. n = pq = (5)(7) = 35b. m = (p - 1)(q - 1) = (5 - 1)(7 - 1) = (4)(6) = 24
- 3) Choose a number e < n such that it has no common factors with z other than
- 1, Let e = 5
- 4) Find a number d such that ed divided z has a remainder of 1, d = 5 or 29.
- 5) The public key becomes (n, e) and the private key becomes (n, d).

Encryption:

Plain Text	h	e	l	l	0
Number	8	5	12	12	15
Encrypted value	8	10	17	17	15

Decryption: Do it!!

- This time, to make life slightly less easy for those who can crack simple Caesar substitution codes, we will group the characters into blocks of three and compute a message representative integer for each block.
- Please note that this method is not secure in any way.
- ✓ It just shows another example of the mechanism of RSA with small numbers.
- For this example, to keep things simple, we'll limit our characters to the letters A to Z and the space character.
- ☑ Message: ATTACK AT SEVEN = ATT ACK _AT _SE VEN

- In the same way that any decimal number can be represented uniquely as the sum of powers of ten, e.g. $135=1\times10^2+3\times10^1+5\times10^0$,
- we can represent our blocks of three characters as the sum of powers of 27 using SPACE=0, A=1, B=2, C=3, .. E=5, .. K=11, .. N=14, .. S=19, T=20, .. V=22, ..., Z=26.
- $-ATT \Rightarrow 1 \times 27^2 + 20 \times 27^1 + 20 = 1289$
- $--ACK \Rightarrow 1 \times 27^2 + 3 \times 27^1 + 11 = 821$
- AT \Rightarrow 0 x 27^2 + 1 x 27^1 + 20 = 47
- ---SE \Rightarrow 0 x 27² + 19 x 27¹ + 5 = 518
- $--VEN \Rightarrow 22 \times 27^2 + 5 \times 27^1 + 14 = 16187$

Using this system of integer representation, the maximum value of a block (ZZZ) is $27^3-1=19682$, so we require a modulus n greater than this value.

- 1. We choose e = 3
- 2. We select primes p=173 and q=149 and check
 - gcd(e, p-1) = gcd(3, 172) = 1 ⇒ OK
 - o gcd(e, q-1) = gcd(3, 148) = 1 ⇒ OK.
- 3. Thus we have $n=pq=173 \times 149=25777$, and $\phi=(p-1)(q-1)=172 \times 148=25456$.
- 4. We compute $d=e^{-1} \mod \phi = 3^{-1} \mod 25456 = 16971$.
 - \circ Note that $ed = 3 \times 16971 = 50913 = 2 \times 25456 + 1$
 - \circ That is, $ed \equiv 1 \bmod 25456 \equiv 1 \bmod \phi$
- 5. Hence our public key is (n, e) = (25777, 3) and our private key is (n, d) = (25777, 16971). We keep the values of p, q, d and ϕ secret.

Overall, our plaintext ATTACK AT SEVEN is represented by the sequence of five integers m_1, m_2, m_3, m_4, m_5 : (1289, 821, 47, 518, 16187).

We compute corresponding ciphertext integers $c_i=m_i^e mod n$, (which is still possible by using a calculator, honest):

 $c_1 = 1289^3 \mod 25777 = 18524$

 $c_2 = 821^3 \mod 25777 = 7025$

 $c_3 = 47^3 \mod 25777 = 715$

 $c_4 = 518^3 \mod 25777 = 2248$

 $c_5 = 16187^3 \mod 25777 = 24465$

We can send this sequence of integers, c_i , to the person who has the private key.

c_i = (18524, 7025, 715, 2248, 24465)

We can compute the inverse of these ciphertext integers using $m=c^d \mod n$.

```
m_1 = 18524^{16971} \mod 25777 = 1289
m_2 = 7025^{16971} \mod 25777 = 821
m_3 = 715^{16971} \mod 25777 = 47
m_4 = 2248^{16971} \mod 25777 = 518
m_5 = 24465^{16971} \mod 25777 = 16187
To convert these integers back to the block of three letters, do the following. For example, given m = 16187,
16187 \div 27^2 = 16187 \div 729 = 22 \text{ rem } 149, 22 \rightarrow 'V'
149 \div 27^1 = 149 \div 27 = 5 rem 14, 5 \rightarrow 'E'
14 \div 27^0 = 14 \div 1 = 14 rem 0, 14 \rightarrow 'N'
Hence the integer m = 16187 represents the string "VEN".
Similarly, m = 47 is encoded as follows:
47 \div 27^2 = 0 \text{ rem } 47, 0 \rightarrow \text{SPACE};
47 \div 27^1 = 1 \text{ rem } 20, 1 \rightarrow A';
20 \div 27^{0} = 20 \text{ rem } 0, 20 \rightarrow 'T'
giving the string "_AT".
```


- RSA algorithm is used to process multiple blocks of data. In this simple example, the plaintext is an alphanumeric string.
- ☑ Each plaintext symbol is assigned a unique code of two decimal digits (e.g., a = 00, A = 26).
- A plaintext block consists of four decimal digits, or two alphanumeric characters.
- The sequence of events for the encryption of multiple blocks is as shown (the circled numbers indicate the order in which operations are performed).

ATTCKS IN RSA ALGORITHM

- **Brute force**: This involves trying all possible private keys.
- **™ Mathematical attacks:** There are several approaches, all equivalent in effort to factoring the product of two primes.
- **Timing attacks:** These depend on the running time of the decryption algorithm.
- **Chosen ciphertext attacks:** This type of attack exploits properties of the RSA algorithm.

EXPONENTIATION IN MODULAR ARITHMETIC

- Both encryption and decryption in RSA involve raising an integer to an integer power, mod n.
- Can make use of a property of modular arithmetic: $[(a \mod n) \times (b \mod n)] \mod n = (a \times b) \mod n$
- With RSA you are dealing with potentially large exponents, so efficiency of exponentiation is a consideration.

EFFICIENT OPERATION USING THE PRIVATE KEY

- Decryption uses exponentiation to power d
- A small value of d is vulnerable to a brute force attack and to other forms of cryptanalysis
- Can use the Chinese Remainder Theorem (to speed up computation
 - The quantities d mod (p 1) and d mod (q 1) can be precalculated
 - ▶Result is that the calculation is approximately four times as fast as evaluating M = C^d mod n directly

ADVANTAGES OF ASYMMETRIC ENCRYPTION

- It's more secure than Symmetric Encryption.
- It's useful when more endpoints are involved.
- Makes key distribution easy.
- Makes digital signatures possible.

DISADVANTAGES OF ASYMMETRIC ENCRYPTION

- Slower Speed
- ☑It's Too Bulky to Be Used at Scale

RECOMMENDATION OF READING

- https://www.brainkart.com/article/Principles-of-Public-Key-Cryptosystems-and-its-Applications,-Requirements,-Cryptanalysis_8435/
- https://sectigostore.com/blog/what-is-asymmetric-encryption-how-does-it-work/
- https://www.geeksforgeeks.org/rsa-algorithm-cryptography/
- https://www.di-mgt.com.au/rsa_alg.html
- YouTube Videos
- Online PowerMod Calculator: https://www.mtholyoke.edu/courses/quenell/s2003/ma139/js/p owermod.html

Thank You

