FHI-aims capabilities for molecules, clusters, and solids

Main developers

Volker Blum
Duke University, US

Matthias Scheffler
Humboldt University and
Fritz Haber Institute of the
Max Planck Society,
Germany

FHI-aims

V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter and M. Scheffler, "Ab Initio Molecular Simulations with Numeric Atom-Centered Orbitals", Computer Physics Communications 180, 2175-2196 (2009)

Main focus:

- Accurate all-electron electronic-structure calculations (DFT and beyond) for both periodic and cluster/ molecular systems
- Massively parallel

Robust interface: atomic simulation environment (ASE)

Approximations to the electronic problem: Basis set

Idea: represent all unknown functions ($\rho(\mathbf{r}), \psi_i(\mathbf{r})$) as a linear combination of known functions with well-defined properties: $\psi_i(\mathbf{r}) = \sum C_{ip} \varphi_p(\mathbf{r})$

Widely used basis sets:

gaussians $x^i y^j z^k \exp(-\alpha r^2)$ (localized, analytic integrals)

plane waves $\exp(i\mathbf{k} \cdot \mathbf{r})$ (delocalized, analytic integrals)

Slater-type $x^i y^j z^k \exp(-\alpha r)$ (localized, nuclear cusp)

grid-based $\delta(\mathbf{r}-\mathbf{r}_i)$ (localized, analytic integrals)

Core electrons are often treated separately (pseudopotentials, planewave + localized basis)

The basis set: Numeric atomic orbitals

$$arphi_{i[lm]}(m{r}) = rac{u_i(r)}{r} \cdot Y_{lm}(\Omega)$$

• $u_i(r)$: Flexible choice - "Anything you like."

Many popular implementations: DMol³ (Delley), FPLO (Eschrig et al.), PLATO (Horsfield et al.), PAOs (Siesta, Conquest, OpenMX², Fireball, ...)

The basis set: Numeric atomic orbitals

$$arphi_{i[lm]}(oldsymbol{r}) = rac{u_i(r)}{r} \cdot Y_{lm}(\Omega)$$

Many popular implementations: DMol³ (Delley), FPLO (Eschrig et al.), PLATO (Horsfield et al.), PAOs (Siesta, Conquest, OpenMX², Fireball, ...)

- $u_i(r)$: Flexible choice "Anything you like."
- → Localized; "naturally" all-electron
- → The choice of <u>efficient</u> and of <u>enough</u> radial functions is obviously important
- → We have a basis set library for all elements (1-102), from fast qualitative to meV-converged (total energy, LDA/GGA) calculations efficient and accurate approach

V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter and M. Scheffler, "Ab Initio Molecular Simulations with Numeric Atom-Centered Orbitals", Computer Physics Communications 180, 2175-2196 (2009)

"Pool" of trial basis functions: 2+ ionic u(r)Hydrogen-like u(r) for z=0.1-20

Optimization target:
Non-selfconsistent symmetric dimers, averaged for different d

Pick basis functions one by one, up to complete total energy convergence

	Н	C	О	Au
minimal	1s	$[\mathrm{He}] + 2s2p$	$[\mathrm{He}] + 2s2p$	[Xe] + 6s5d4f
Tier 1	H(2s,2.1)	H(2p,1.7)	H(2p,1.8)	$Au^{2+}(6p)$
	$\mathrm{H}(2p,\!3.5)$	H(3d,6.0)	H(3d,7.6)	$\mathrm{H}(4f,\!7.4)$
		$\mathrm{H}(2s,\!4.9)$	H(3s,6.4)	$\mathrm{Au^{2+}(6s)}$
				H(5g,10)
				$\mathrm{H}(6h{,}12.8)$
				$\mathrm{H}(3d,2.5)$
Tier 2	H(1s,0.85)	H(4f, 9.8)	H(4f,11.6)	H(5f,14.8)
	$\mathrm{H}(2p,\!3.7)$	H(3p,5.2)	H(3p,6.2)	H(4d, 3.9)
	H(2s,1.2)	H(3s,4.3)	H(3d,5.6)	$\mathrm{H}(3p,\!3.3)$
	H(3d,7.0)	$\mathrm{H}(5g,\!14.4)$	$\mathrm{H}(5g,\!17.6)$	$\mathrm{H}(1s{,}0.45)$
		H(3d,6.2)	H(1s,0.75)	$\mathrm{H}(5g,\!16.4)$
				H(6h, 13.6)
Tier 3	H(4f,11.2)	H(2p,5.6)	$O^{2+}(2p)$	$H(4f,5.2)^*$
	H(3p,4.8)	H(2s,1.4)	H(4f,10.8)	H(4d,5.0)

Systematic hierarchy of basis (sub)sets, iterative automated construction based on dimers

"First tier (level)"

"Second tier"

"Third tier"

The basis set: additional parameters to converge

$$egin{aligned} h_{ij} = \int d^3r arphi_i(m{r}) \hat{h}_{ ext{KS}} arphi_j(m{r}) \end{aligned}$$

• Discretize to integration grid:

$$\int d^3r f(\boldsymbol{r}) \to \sum_{\boldsymbol{r}} w(\boldsymbol{r}) f(\boldsymbol{r})$$

... but even-spaced integration grids are out: f(r) strongly peaked near all nuclei!

- Overlapping atom-centered integration grids:
 - Radial shells (e.g., H, light: 24; Au, tight: 147)
 - Specific angular point distribution ("Lebedev") exact up to given integration order *l* (50, 110, 194, 302, points per shell)

<u>Pioneered by</u> Becke JCP 88, 2547 (1988), Delley, JCP 92, 508 (1990), MANY others!

Electronic structure methods

Quantum chemistry & many-body theory:

$$\hat{\mathcal{H}}\Psi = E\Psi$$

... successive refinement of Ψ

Density functional theory: (Hohenberg-Kohn 1964, Kohn-Sham 1965)

Part I: atom and molecule

Problem I: Hydrogen atom

Tasks:

- Input files needed to run FHI-aims.
- Test the convergence of the total energy with basis size.
- Compare the total energy of the hydrogen atom computed with different methods implemented in FHI-aims. Do all methods converge to the same result?

FHI-aims input files

geometry.in

```
# Atomic structure
# x y z
atom 0.0 0.0 0.0 H
atom 1.0 0.0 0.0 H
initial_moment 1.0
# That's a comment
```

Units:

Positions in Å Energies in eV

control.in

```
# Physical model settings
    xc pw-lda
    charge 0.
    spin collinear
# SCF convergence settings
    sc_accuracy_eev 1E-2
    sc_accuracy_etot 1E-5
    sc_accuracy_rho 1E-4
    sc_iter_limit 100
# Species specifics
```

Default basis sets

.../species_defaults

Predefined species
Copy-paste into control.in

light

tight

really tight

Increased accuracy:

Basis

Hartree potential

Basis cutoff potential

Integration grids

Default basis sets

.../species_defaults

Predefined species
Copy-paste into control.in

light

tight

really tight

Fast, many production tasks

Fast pre-relaxation

Used to verify important results

Converged settings

Heavily converged numerical settings

Explicit convergence tests

Default basis sets

.../species_defaults

Predefined species

Copy-paste into control.in

light

tight

really tight

Fast, many production tasks

Fast pre-relaxation

Used to verify important results

Converged settings

Heavily converged numerical settings

Explicit convergence tests

Additionally converge "tiers"

```
Invoking FHI-aims ...

Reading file control.in.

Reading geometry description geometry.in.

Preparing all fixed parts of the calculation.
```

Geometry independent preparations
Basis set generation

Begin self-consistency loop: Initialization.

Date: 20130610, Time: 162002.389

Geometry dependent preparations Integration grid Initialization of charge density

5

```
Begin self-consistency loop: Initialization.

Date: 20130610, Time: 162002.389

Begin self-consistency iteration # 1

Date: 20130610, Time: 162002.445
```

First SCF cycle

Periodic metals only

```
Begin self-consistency loop: Initialization.

Date: 20130610, Time: 162002.389

Begin self-consistency iteration # 1

Date: 20130610, Time: 162002.445
```

First SCF cycle

» Self-consistency convergence accuracy

```
| Change of charge density : 0.6753E-02
| Change of sum of eigenvalues : 0.4376E+00 eV
| Change of total energy : 0.1143E-01 eV
```

```
Begin self-consistency loop: Initialization.

Date: 20130610, Time: 162002.389

Begin self-consistency iteration # 1

Date: 20130610, Time: 162002.445
```

Sixth SCF cycle

» Self-consistency convergence accuracy

```
| Change of charge density : 0.3163E-05
| Change of sum of eigenvalues : -.9415E-05 eV
| Change of total energy : 0.2388E-10 eV
```

Self-consistency cycle converged.

*** Energy and forces

| Total energy uncorrected : -0.130198526094581E+02 eV
| Total energy corrected : -0.130198526094581E+02 eV
| Electronic free energy : -0.130198526094581E+02 eV

*** **SCF info
| Number of self-consistency cycles : 6

*** Timings

8

Have a nice day.

7 Self-consistency cycle converged.

Postprocessing

Structure optimization

- » Get next relaxation step
- » Redo SCF for new geometry

8

Have a nice day.

Problem II-III: H₂

Tasks:

- Learn how to optimize geometry with FHI-aims.
- Calculate relative energies of different spin states.
- Calculate the atomization energy (ΔH_{at}) .
- See how geometry and atomization energy depend on the exchange-correlation functional.

Problem II-III: H₂

From now on, run FHI-aims via the batch system:

- 1) copy the file job.sh from the tutorial folder to your working directory
- 2) submit a job: sbatch --ntasks=XX job.sh
- 3) To see the progress, type tail -f output

Part II: periodic system

Important practical points

Each calculation one directory, for example

```
> mkdir tutorial1
```

- > cd tutorial1
- > mkdir 02
- 2 input files (plus 1 for pseudopotential embedding)

```
geometry.in control.in
```

Launching FHI-aims calculation

sbatch --ntasks=XX job.sh

Visualization

Orbitals and densities

Keyword in control.in

output cube eigenstate homo
cube filename HOMO.cube
output cube total_density
cube filename tot_dens_uc.cube

Get: *.cube file - values on a regular 3D grid.

Software: jmol

⇒ Appendix of handout

Lab 2: Calculate phase diagram of γ -Al₂O₃ (110) surface in NO atmosphere

Lab 2: Calculate phase diagram of γ -Al₂O₃ (110) surface in NO atmosphere Both team and individual work

- 1) Relax NO molecule (team)
- 2) Construct surface slab model from bulk (team)
- 3) Place NO at the surface in three different configurations and *different* coverages for each student (overall 28 structures) (team)
- 4) Distribute the structures among students evenly (7 each) (team)
- 5) Test convergence of NO adsorption energy as a function of the number of relaxed bottom layers for one structure (individual)
- 6) Choose the optimal number of relaxed layers (team)
- 7) Relax the structures, report the energy, discuss the difference between starting and final geometries, calculate, report, and discuss work function (individual)
- 8) Build a surface phase diagram in NO atmosphere combining all obtained energies (team)

Use "light" settings and 2x2x1 k-points for all calculations