240206 - Q1

Power electronics and electrical machines application in electrical mobility and industry

Master's degree in Electric Power Systems and Drives

Daniel Montesinos-Miracle

(daniel.montesinos@upc.edu)

Daniel Heredero-Peris

(daniel.heredero@upc.edu)

Lab 1. Vehicle model

- Objectives
 - Develop a model for the vehicle dynamics
 - Evaluate the vehicle for the required performance
- Main parameters to observe
 - Forces, power and energy for each force
 - Total force, power and energy
 - Evaluate forces, power and energy at performance requirements
 - Differences when recovering or not braking energy in an NEDC cycle

Forces in a vehicle

- F_a: aerodynamic friction losses
- F_r: rolling friction
- F_g: hill climbing force
- F_t: tractive force

$$Ma = F_t - \left(F_w + F_r + F_g\right)$$

Aerodynamic friction losses

- Two origins
 - Viscous friction of surrounding air
 - Pressure difference in front and rear

$$F_{w}(v) = \frac{1}{2} \rho A_{f} c_{d} \left(V - V_{w} \right)^{2}$$

 ρ : air density

 A_f : frontal area

 c_d : aerodynamic drag coefficient

V: vehicle speed

 V_w : wind speed

Aerodynamic drag coeficient

Vehicle type		Coefficient of aerodynamic resistance
	Open convertible	0.50.7
	Van body	0.50.7
	Ponton body	0.40.55
	Wedged-shaped body; headlamps and bumpers are integrated into the body, covered underbody, optimized cooling air flow	0.30.4
	Headlamp and all wheels in body, covered underbody	0.20.25
6116	K-shaped (small breakaway section)	0.23
	Optimum streamlined design	0.150.20
Trucks, road trains Buses Streamlined buses Motorcycles		0.81.5 0.60.7 0.30.4 0.60.7

Rolling friction

Due to hysteresis of tire material

Rolling friction

 Depends on many factors: vehicle speed, tyre pressure, road surface conditions

$$F_r = f_r Mg \cos(\alpha), \quad V > 0$$

 f_r : rolling friction coefficient

M: vehicle mass

g: gravity constant

 α : road slope

Rolling Resistance Coefficients

Conditions	Rolling Resistance Coefficient
Car tires on a concrete or asphalt road	0.013
Car tires on a rolled gravel road	0.02
Tar macadam road	0.025
Unpaved road	0.05
Field	0.1-0.35
Truck tire on a concrete or asphalt road	0.006-0.01
Wheel on iron rail	0.001-0.002

Accepted speed dependence for most situations

$$f_r = 0.01 \left(1 + \frac{V}{160} \right), \quad V < 128 \text{ km/h}$$

Hill climbing force

- Conservative
- Great influence on vehicle dynamics

$$F_g = Mg\sin(\alpha)$$

M: vehicle mass

g: gravity constant

 α : road slope

Performance required

Performance target/unit	Target value	
0 to 100 km/h	5,9 s	
Maximum speed	120 km/h, at 0% grade	
Grade at 80 km/h	7,2 %	
Maximum grade	33 %, at 5 km/h	
NEDC cycle	-	

Vehicle parameters

Parameter	Mid-size car
Vehicle mass (m _v)	1000 kg
Tyre effective rolling radius (r _w)	0,26 m
Reduction gear (k _{gear})	5
Drag coeficient (C _d)	0,35
Frontal area (A _f)	2 m ²
Rolling resistance coeficient (f _r)	0,017
Air density (ρ)	1,22521 kg/m ³
Gravity constant (g)	9,8 m/s ²

Lab 2. Motor, converter and control

Objectives

- Implement a dynamic model of the complete vehicle (except the battery) including motor and control loops
- Evaluate the performance requirements with the given vehicle and motor
- Main parameters to observe
 - Control Loop performance
 - Motor and converter limits vs. performance required
 - Propose adequate performance

Motor parameters

Parameter	Value
Rated power (P)	32 kW
Rated voltage (V)	400 V
Rated current (A)	89,5 A
Rated speed (rpm)	2840 rpm
Maximum speed (rpm)	6000 rpm
EMF constant (k_{Φ})	1,2396 Vs/rad
Winding resistance (r _a)	0,35 Ω
Winding inductance (L _a)	6,5 mH