With a RM provided the learning process converges significantly faster²

Reward Machines

Reinforcement Learning

The feedback is in form of rewards!

Reward Machines (RM)

use automata or temporal logics to capture non-Markovian rewards!

EM Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, D. Wojtczak (ECAI'23): ω -Regular Reward Machines

by the user

ω -regular (long horizon) tasks! \longrightarrow ω -regular reward machines

Hard for sequential or long-horizon tasks!

2. RT Icarte, T. Klassen, R. Valenzano, S. McIlraith (ICML'18): Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning

Reward Machines

Reinforcement Learning

The feedback is in form of rewards!

Hard for sequential or long-horizon tasks!

Reward Machines (RM)

use automata or temporal logics to capture non-Markovian rewards!

 ω -regular (long horizon) tasks! \longrightarrow ω -regular reward machines

With a RM provided by the user, the learning process converges significantly faster²

- 1. EM Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, D. Wojtczak (ECAI'23): ω -Regular Reward Machines
- 2. RT Icarte, T. Klassen, R. Valenzano, S. McIlraith (ICML'18): Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning

Joint Inference of RMs & Policy

Hypothesis Specification φ