

École Polytechnique Sousse Département d'Informatique

Section: Génie Logiciel, AU: 2022-2023

 $Niveau: 1^{ere}Ann\'ee$

Travaux Pratiques N°3 Atelier de programmation C

Exercice 1

```
Soit le programme C suivant :
#include <stdio.h>
void main()
    long int n,s=0,a;
    do
    {
        printf("Donner un entier > 0 :");
         scanf("%ld",&n);
    \}while(n<=0);
    while(n!=0)
         a = n\%10;
         s=s*10+a;
         n=n/10;
    printf("Le resultat = %ld",s);
}
   1. Faire l'exécution à la main du programme ci dessus pour :
      - n = 1234
      -n = 58853
   2. Remplacer la boucle while par la boucle :
       * for
       * do..while
   3. Quel est le rôle de cet programme.
```

Exercice 2

Écrire un programme C qui permet de saisir un entier N (N > 1), calculer et afficher la somme suivante : $S = 1 + 1/2^2 + 1/3^2 + 1/4^2 + \dots + 1/N^2$

Exercice 3

Réaliser en C un algorithme qui permet de déterminer la somme des chiffres d'un entier (N > 10) donné (exemple : pour N = 25418, on aura 2+5+4+1+8 = 20).

Exercice 4

Un nombre multiparfait est un entier naturel dont la somme des diviseurs est égal à un multiple de lui-même.

Exemple:

120 est multiparfait car la somme de ses diviseurs = 360 (360 est un multiple de 120) Écrire Un programme en C qui permet de saisir un entier (X > 0)de tester et d'afficher le si X est multiparfait ou non.

Exercice 5

Le carré d'un entier naturel N est égal à la somme des n premiers entiers impairs.

Exemple : $N = 10 : 10^2 = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19$

Écrire Un programme en C qui permet de saisir un entier (N > 0)de déterminer et d'afficher le carré de N selon le principe ci-dessus.

Exercice 6

Un nombre réel X et un nombre entier N étant donnés, proposer un programme C qui fait calculer X^N . Étudier tous les cas possibles (N positive ou négative).

Exercice 7

Les nombres de Fibonacci sont donnés par la récurrence :

 $F_n = F_{n-2} + F_{n-1}$ avec $F_0 = 1etF_1 = 1$

Ecrire un programme C qui affiche les 20 premiers nombres de Fibonacci.

Exercice 8

Un entier naturel de trois chiffres est dit cubique s'il est égal à la somme des cubes de ses trois chiffres.

Exemple: 153 est cubique car 153 = 13 + 53 + 33

Écrire un programme en C qui cherche et affiche tous les entiers cubiques de trois chiffres.

Exercice 9

Écrire un programme C qui permet de lire un entier positif et déterminer tous ses facteurs premiers.

Exemples:

30=2*3*5

99=3 * 3 * 11

Exercice 10

Deux nombres entiers sont premiers entre eux s'ils n'ont pas d'autres diviseurs communs que 1.

- 7 et 13 n'ont que 1 comme diviseur commun donc 7 et 13 sont premiers entre eux.
- 12 et 32 ont plusieurs diviseurs communs : 1 , 2 et 4 donc 12 et 32 ne sont pas premiers entre eux.

Ecrire un programme C qui saisit deux entiers N1 et N2, vérifie et affiche s'ils sont premiers entre eux ou non.

Exercice 11

Un nombre est dit palindrome s'il est écrit de la même manière de gauche à droite ou de droite à gauche.

Exemples: 101; 22; 3663; 10801, etc.

Ecrire un programme C permettant de déterminer et d'afficher tous les nombres palindromes compris dans l'intervalle [a .. b] (avec 100 < a < b).

Exercice 12

Ecrire un programme C qui permet de chercher et afficher la suite de tous les nombres parfaits inférieurs ou égaux à un nombre naturel non nul donné noté n.

Un nombre est dit parfait s'il est égal à la somme de ses diviseurs autre que lui-même.

Exemple: 28 = 1 + 2 + 4 + 7 + 14

Voici la liste des nombres parfaits inférieurs à 10000 : 6, 28, 496, 8128.

Exercice 13

- 1. Écrire un programme C qui permet de :
 - Saisir un entier X (X > 0),
 - Vérifier et afficher si X est premier ou non.
- 2. Écrire un programme C qui permet de :
 - Saisir un entier N et M (1 < N < M),
 - Chercher et afficher tous les entiers premiers entre N et M.

Exercice 14

On se propose d'écrire un programme C qui permet de déterminer le PGCD (Plus Grand Commun Diviseur) de deux entiers positifs non nuls A et B en utilisant l'algorithme d'Euclide : Sachant que PGCD (a, b) = PGCD(b, r), avec $r = a \mod b$.

Tant que le reste r est non nul, on remplace a par b et b par r. Le dernier reste r non nul est alors le PGCD des deux nombres

Exemple: PGCD(32, 12) = PGCD(12, 8) = PGCD(8, 4) = PGCD(4, 0) = 4.

Exercice 15

Écrire un programme C qui permet de :

- Saisir un entier m (m > 0)
- Chercher et afficher le premier entier n > m ayant un nombre de diviseurs égal au double de celui de m.

Exemple:

```
Donner m(m > 0) : 50
+-----+
50 possédé 6 diviseurs
```

Le premier entier > 50 ayant 12 diviseurs est 60