Feuille de TD n o 1 $ModIA\ 2020-2021$

Analyse Hilbertienne

Exercice 1

Soit E un espace préhilbertien, et A et B deux parties de E. On rappelle que $A^{\perp} = \{x \in E; \langle x, y \rangle = 0, \forall y \in A\}.$

- 1. Montrer que $A \subset B \Longrightarrow B^{\perp} \subset A^{\perp}$
- 2. Montrer que $(A \cup B)^{\perp} = A^{\perp} \cap B^{\perp}$
- 3. Montrer que $A \subset A^{\perp \perp}$. A-t-on toujours égalité?
- 4. On suppose que A est un sous espace vectoriel de E. Montrer que $A \cap A^{\perp} = \{0\}$

Exercice 2 Dans chacun des cas suivants, montrer l'existence d'une projection sur la partie considérée et la déterminer.

1. Dans \mathbb{R}^3 muni du produit scalaire euclidien :

$$A = \{(x, y, z); x \ge 0, y \ge 0, z \ge 0\}, B = \{(x, y, z); x^2 + y^2 + z^2 \le 1\}, C = \{(x, y, z); x^2 + y^2 \le 1\}.$$

2. Dans $\ell^2(\mathbb{N}; \mathbb{R}), A = \{u; u_{2k} \ge 0\}$

Exercice 3 Soit H un espace de Hilbert réel. Pour tout convexe fermé contenant 0, on pose $C^0 = \{x \in H; \langle x; y \rangle \leq 1 \ \forall y \in C\}$. Soit C un convexe fermé de H contenant 0.

- 1. Vérifier que C^0 est un convexe fermé contenant 0. Soit $x \in H$ et $\varepsilon > 0$. Désignons par $p = p_C(x)$ le projeté de $x \in H$ sur C.
- 2. Montrer que $\langle x-p,p\rangle \geq 0$ puis que $\frac{x-p}{\langle x-p;p\rangle + \varepsilon} \in C^0$.
- 3. En déduire que $||x=p||^2 \le \varepsilon$ si $x \in C^{00}$.
- 4. En conclure que $C^{00} = C$.
- 5. Soit F un sous espace vectoriel fermé de H. Montrer que $F^0 = F^{\perp}$ et en déduire $F = F^{\perp \perp}$.

Exercice 4 Soit H un espace de Hilbert et T une application linéaire continue sur H. Montrer les relations suivantes

$$\operatorname{Ker}(T^*) = \operatorname{Im}(T)^{\perp}, \quad \operatorname{Im}(T^*) \subset \operatorname{Ker}(T)^{\perp}.$$

Exercice 5 Soit $H = L^2([0,1])$. Pour $f \in H$, on pose $Tf(x) = \int_0^x f(t)dt$.

- 1. Montrer que T est un opérateur continu sur H.
- 2. Calculer l'adjoint de T.

Exercice 6 Soit H un espace de Hilbert et E un sous espace vectoriel fermé de H.

1. Montrer que P_E est le projecteur orthogonal sur E si et seulement si

$$\forall x \in H, \quad \forall y \in E, \quad \langle x - p_E(x), y \rangle = 0.$$

Soit $P \in \mathcal{L}(H)$ une application vérifiant $P^2 = P$, P est appelé un projecteur. On note $E = \operatorname{Im}(P)$.

2. Montrer que les assertions suivantes sont équivalentes :

(a)
$$||P|| = 1$$
 (b) P est le projecteur orthogonal sur E (c) $P^* = P$.

Exercice 7 Minimiser la fonctionnelle $F(a,b) = \int_0^1 (t^2 - at - b)^2 dt$. On formulera ce problème comme un problème de projection sur un sous espace vectoriel fermé dans un espace de Hilbert adapté.

Exercice 8 Pour tout $x \in]-1,1[$ et pour tout $n \in \mathbb{N}$, on définit la fonction $T_n(x) = \cos(n\arccos(x))$

- 1. Calculer T_0 et T_1
- 2. Etablir que pour tout $n \ge 1$, on a $T(n+1)(x) + T_{n-1}(x) = 2xT_n(x)$.
- 3. En déduire que T_n est un polynôme de degré n dont on précisera le terme de plus haut degré.
- 4. Expliciter les racines de T_n ainsi que $\max_{x \in [-1,1]} |T_n(x)|$.
- 5. Montrer que les polynômes T_n sont orthogonaux pour le produit scalaire défini sur les polynômes par

$$\langle P; Q \rangle = \int_{-1}^{1} \frac{P(t)Q(t)}{\sqrt{1-t^2}} dt.$$

Exercice 9 On considère $I \subset \mathbb{R}$ un segment. Etant donnés k+1 points $(x_i)_{0 \le i \le k}$ dans I et k+1 réels $(\lambda_i)_{0 \le i \le k}$, on appelle formule d'intégration numérique l'expression, pour $f \in \mathcal{C}^0(I;\mathbb{R})$

$$\mathcal{I}(f) = \sum_{i=0}^{k} \lambda_i f(x_i),$$

et on souhaite que $\mathcal{I}(f)$ soit une bonne approximation de $\int_I f(x)\omega(x)dx$. Pour mesurer la qualité de cette approximation, on définit l'ordre comme étant le plus grand $N \in \mathbb{N}$ tel que

$$\forall P \in \mathbb{R}_N[X], \quad \mathcal{I}(P) = \int_I P(x)\omega(x)dx,$$

autrement dit si l'erreur d'approximation est nulle pour les polynômes de degré inférieur ou égal à N.

- 1. Justifier qu'une formule d'intégration numérique à k+1 points ne peut pas être d'ordre > 2k+1.
- 2. On suppose que la formule d'intégration numérique à k+1 points est d'ordre 2k+1 et on définit $Q_k(X) = \prod_{i=0}^k (X-x_i)$. Pour $Q \in \mathbb{R}[X]$ de degré $\leq k$, calculer $\langle Q; Q_k \rangle$ à l'aide de \mathcal{I} et en déduire que Q_k est le polynôme orthogonal de degré k+1 pour le poids ω . Que sont alors les x_i ? Montrer que les λ_i sont uniques (on pourra calculer $\mathcal{I}(L_j)$ où L_j est un polynôme d'interpolation de Lagrange.
- 3. Réciproquement, on considère P_{k+1} le k+2-ième polynôme orthogonal pour le poids ω et $(x_i)_{0 \le i \le k+1}$ et on note $\lambda_j = \int_I L_j(x) \omega(x) dx$.
 - (a) Justifier que si $P \in \mathbb{R}_k[X]$, $\int_I P\omega = \mathcal{I}(P)$. On pourra utiliser les polynômes (L_j) . Qu'en déduire sur l'ordre de la méthode?
 - (b) Soit $P \in \mathcal{R}_{2k+1}[X]$, on note $P = QP_{k+1} + R$ sa division euclidienne par P_{k+1} . Pourquoi a-t-on $\int_I P\omega dx = \int_I R\omega dx$? D'autre part exprimer $\int_I R\omega dx$ à l'aide des $P(x_i)$. Conclure que cette méthode est d'ordre 2k+1. En utilisant les polynômes L_j , justifier que $\lambda_j > 0$.

Exercice 10 Soit H un espace de Hilbert et $(e_n)_{n\in\mathbb{N}}$ une famille totale de H (on dit aussi que c'est une base hilbertienne de H).

- 1. Montrer que $(e_n)_{n\in\mathbb{N}}$ converge faiblement vers 0.
- 2. Montrer que $(e_n)_{n\in\mathbb{N}}$ ne converge pas fortement vers 0.

Exercice 11 On étudie différentes manière de converger faiblement vers 0 sans converger fortement :

- 1. $H = L^2(\mathbb{R})$ et $\phi \in \mathcal{C}_c^1(\mathbb{R})$ non nulle. On définit $u_n(x) = \phi(x n)$: montrer que $(u_n)_{n \in \mathbb{N}}$ converge faiblement vers 0 mais pas fortement. Faire une représentation graphique du phénomène.
- 2. $v_n(x) = \sqrt{n}\phi(nx)$: montrer que $(v_n)_{n\in\mathbb{N}}$ converge faiblement vers 0 mais pas fortement.
- 3. Soit $w \in L^2_{per}([0,1])$ et $\phi_n(x) = w(nx)$: montrer que ψ_n converge faiblement vers la moyenne de w mais pas fortement. Faire une représentation graphique.

Exercice 12 On considère l'espace $\ell^2(\mathbb{N}) = \{(u_n)_{n \in \mathbb{N}} \mid \sum_{n=0}^{\infty} |u_n|^2 < +\infty \}$ muni du produit

$$\langle u; v \rangle = \sum_{n=0}^{\infty} u_n \overline{v_n}$$

- 1. Donner une famille totale $(e_n)_{n\in\mathbb{N}}$ de $\ell^2(\mathbb{N})$ et montrer que $e_n \rightharpoonup 0$.
- 2. Soit $a \in \ell^{\infty}(\mathbb{N})$ telle que $0 < \alpha \leq a_n \leq \beta < +\infty$ et $b \in \ell^2(\mathbb{N})$. On pose $\Phi(u) = \sum_{n=0}^{\infty} a_n u_n^2 + b_n u_n$. Montrer que Φ est définie et possède un minimum unique sur $\ell^2(\mathbb{N})$.
- 3. Soit F un sev fermé de $\ell^2(\mathbb{N})$. Montrer que le problème inf $\{\Phi(u), u \in F\}$ admet une solution unique et en donner une caractérisation.
- 4. Soit $C = \{(x_n)_{n \in \mathbb{N}}, \mid x_n \geq 0\}$: montrer que C est un convexe fermé et déterminer la projection sur C. Montrer que le problème inf $\{\Phi(u), u \in C\}$ admet une solution unique et en donner une caractérisation.