Fiche TD2 : Sémantique du calcul propositionnel

Exercice 1 Autre définition d'une équivalence

Montrer que $F \equiv G$ si et seulement si $F \Leftrightarrow G$ est une tautologie.

Exercice 2 Formes normales disjonctives

1. Donner une forme normale disjonctive en p,q,r pour la formule F dont la table de vérité est :

p	q	r	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

- 2. Donner une forme normale disjonctive pour les formules suivantes :
 - a) $(p \lor q) \Rightarrow (r \Rightarrow \neg p)$.
 - b) $p \Leftrightarrow q$.
 - c) $p \land (p \Rightarrow (q \Rightarrow p))$.
 - d) $(p \vee \neg q) \wedge (r \vee \neg p)$.
 - e) $p \Rightarrow (p \lor q)$.

Exercice 3 Forme normale conjonctive

Donner une forme normale conjonctive pour la formule :

$$F = (p \land (q \Rightarrow r)) \lor (q \land r)$$

Exercie 4 Les parents inquiets

Les parents d'un étudiant s'inquiètent de ce qu'il fera le soir précédant un examen. Révisera-t-il ? Se couchera-t-il tôt ? Sortira-t-il avec ses amis ? Aura-t-il une bonne note ? Ils savent que :

- (1) S'il sort, il se couchera tard.
- (2) Il révisera ou il sortira, peut être les deux.
- (3) S'il ne révise pas il aura une mauvaise note.
- (4) S'il révise, il ne se couchera pas tôt.
- 1. Traduire chacune de ces assertions en une formule du calcul propositionnel en utilisant en tout quatre variables propositionnelles dont on explicitera la signification.
- 2. Par le calcul, donner une forme disjonctive de chacune des formules précédentes.
- 3. En déduire une formule F sous FNC qui traduit ce que savent les parents. Remarquez que par hypothèse, on sait que cette formule est vraie.
- 4. En dressant la table de vérité de F, montrer que les parents peuvent répondre à l'une de leurs questions.
- 5. Il apprennent par la suite que leur enfant a eu une bonne note. Peuvent-ils répondre à leurs deux dernières questions ?

Exercice 5 Une FNC peut être très grande...

- 1. Donner, en développant le \vee , une FNC pour $F = (x_{1,0} \wedge x_{1,1}) \vee (x_{2,0} \wedge x_{2,1})$.
- 2. Quelle est la taille de F? Et celle de la FNC que vous avez trouvé pour F?
- 3. Reprendre les deux questions précédentes pour $F = (x_{1,0} \wedge x_{1,1}) \vee (x_{2,0} \wedge x_{2,1}) \vee (x_{3,0} \wedge x_{3,1})$.
- 4. Pour tout $n \in \mathbb{N}^*$, on note $F_n = (x_{1,0} \land x_{1,1}) \lor ... \lor (x_{n,0} \land x_{n,1})$.
 - a) Quelle est la taille de F_n ?
 - b) Montrer par récurrence que $G_n = \bigwedge_{f:[\![1,n]\!]\mapsto\{0,1\}} (x_{1,f(1)}\vee x_{2,f(2)}\vee\ldots\vee x_{n,f(n)})$ est une FNC pour F_n .
 - c) Combien y a-t-il de fonctions all ant de [1, n] dans $\{0, 1\}$?
 - d) En déduire le nombre de connecteurs \wedge dans G_n ainsi que le nombre de connecteurs \vee dans G_n .
 - e) Quelle est la taille de G_n ?
 - f) Comparer les tailles de F_n et de G_n . Qu'en pensez vous ?

Exercice 6 Substitutions

- 1. Donner les formules résultant des substitutions suivantes :
 - a) $F[p \lor q/p]$ où $F = \neg p \land q$.
 - b) $F[\top/q]$ où $F = p \lor (q \Rightarrow (\neg q \land p)).$
 - c) $F[r \lor (p \lor \neg s)/p]$ où $F = r \land s$.
- 2. Soit F, F', G des formules du calcul propositionnel et p une variable propositionnelle. Montrer que :
 - a) Si F est une tautologie alors F[G/p] est aussi une tautologie.
 - b) Si $F \equiv F'$ alors $F[G/p] \equiv F'[G/p]$.
 - c) Si $F \equiv F'$ alors $G[F/p] \equiv G[F'/p]$. Remarquez qu'on utilise souvent cette dernière propriété : c'est celle qui par exemple permet de dire que pour montrer que $\neg(F \land F') \equiv \neg F \lor \neg F'$, il suffit de montrer que $\neg(p \land q) \equiv \neg p \lor \neg q$ où p et q sont des variables propositionnelles.

Exercice 7 Conséquences logiques

Parmi les inférences suivantes, lesquelles sont valides?

- 1. $\{p,q\} \models p \land q$
- 2. $\{p,q\} \models p \Rightarrow q$
- 3. $\emptyset \models p \lor \neg p$
- 4. $\{j, \neg s, \neg b \lor s\} \models \neg s \land (j \lor b)$.
- 5. $\{j, \neg s, j \lor b\} \models \neg b \lor s$.

Exercice 8 Conséquences, tautologies et antilogies

Soit Γ un ensemble fini et satisfiable de formules, F une formule telle que F est conséquence de Γ et G une formule qui n'est pas conséquence de Γ .

- 1. Si T est une tautologie, a-t-on $\Gamma \cup \{T\} \models F$? A-t-on $\Gamma \cup \{T\} \models G$?
- 2. Si A est une antilogie, a-t-on $\Gamma \cup \{A\} \models F$? A-t-on $\Gamma \cup \{A\} \models G$?