FORMULARIO

PROF. Mario ANTONUZZI ITIS "S. CANNIZZARO" di RHO

POTENZE	$a^{m} \cdot a^{n} = a^{m+n}$ $a^{m} : a^{n} = a^{m-n}$ $(a^{m})^{n} = a^{m \cdot n}$	$a^{m} \cdot b^{m} = (a \cdot b)^{m}$ $a^{m} : b^{m} = (a : b)^{m}$	TRIANGOLO DI TARTAGLIA	1
PRODOTTI $(a+b)(a-b) = a^2 - b^2$		SOMMA X DIFFERENZA		
NOTEVOLI	$\left(a \pm b\right)^2 = a^2 \pm 2ab +$		QUADRATO DI BINOMIO	
		$+c^2 + 2ab + 2ac + 2bc$	QUADRATO DI TRINOMIO	
	$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$		CUBO DI BINOMIO	
	$\left(a+b\right)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$		POTENZA N-SIMA DI BINOMIO	
EQUAZIONI di SECONDO GRADO COMPLETE		$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
$ax^2 + bx + c = 0$		$x_{1,2} = \frac{-\left(\frac{b}{2}\right) \pm \sqrt{\left(\frac{b}{2}\right)^2 - ac}}{a}$		

COEFFICIENTE ANGOLARE $\frac{y_2 - y_1}{x_2 - x_1}$	PARABOLA $y = ax^{2} + bx + c \qquad V\left(-\frac{b}{2a}; -\frac{\Delta}{4a}\right) F\left(-\frac{b}{2a}; \frac{1-\Delta}{4a}\right)$
EQUAZIONE RETTA $y - y_0 = m(x - x_0)$	DIRETTRICE: $y = -\frac{1+\Delta}{4a}$ ASSE: $x = -\frac{b}{2a}$
DISTANZA TRA 2 PUNTI $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	DIRETTRICE: $y = -\frac{1}{4a}$ ASSE: $x = -\frac{1}{2a}$
DISTANZA PUNTO RETTA $d = \frac{ ax_0 + by_0 + c }{\sqrt{a^2 + b^2}}$	
CIRCONFERENZA	IPERBOLE
$x^{2} + y^{2} + ax + by + c = 0$ $C\left(-\frac{a}{2}; -\frac{b}{2}\right)$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 F_1\left(\sqrt{a^2 + b^2}; 0\right) F_2\left(-\sqrt{a^2 + b^2}; 0\right)$
$r = \frac{1}{2}\sqrt{a^2 + b^2 - 4c}$	$e = \frac{\sqrt{a^2 + b^2}}{a}$ ASINTOTI: $y = \pm \frac{b}{a}x$
ELLISSE	$\begin{pmatrix} x^2 & y^2 \\ \end{pmatrix}$
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ con a>b	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ con a b
$F_1(\sqrt{a^2-b^2};0)$ $F_2(-\sqrt{a^2-b^2};0)$ $e=\frac{\sqrt{a^2-b^2}}{a}$	$F_1(0; \sqrt{b^2 - a^2})$ $F_2(0; -\sqrt{b^2 - a^2})$ $e = \frac{\sqrt{b^2 - a^2}}{b}$

PROPRIETA'
LOGARITMI

1.
$$\log_*(a \cdot b) = \log_* a + \log_* b$$

2.
$$\log_*(a:b) = \log_* a - \log_* b$$

3.
$$\mathbf{m} \cdot \log_* a = \log_* a^m$$

$$4. \quad \log_a b = \frac{\log_* b}{\log_* a}$$

FORMULE GONIOMETRICHE

ARCHI ASSOCIATI

$$sen\left(\frac{\pi}{2} - \alpha\right) = \cos \alpha$$

$$sen\left(\frac{\pi}{2} + \alpha\right) = \cos \alpha$$

$$sen(\pi - \alpha) = sen\alpha$$

$$sen(\pi + \alpha) = -sen\alpha$$

$$sen\left(\frac{3}{2}\pi - \alpha\right) = -\cos\alpha$$

$$sen\left(\frac{3}{2}\pi + \alpha\right) = -\cos\alpha$$

$$sen(2\pi - \alpha) = -sen\alpha$$

FORMULE di DUPLICAZIONE

$$\cos(2\alpha) = \begin{cases} 2\cos^2 \alpha - 1 \\ \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \end{cases}$$

$$\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$$

$$\cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$$

$$\sin(2\alpha) = 2\sin\alpha \cos\alpha$$

$$tg\left(2\alpha\right) = \frac{2tg\alpha}{1 - tg^2\alpha}$$

FORMULE di BISEZIONE

$$sen\frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$$

$$\cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$$

$$tg\frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}$$

FORMULE di ADDIZIONE e SOTTRAZIONE

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp sen\alpha sen\beta$$
$$sen(\alpha \pm \beta) = sen\alpha \cos \beta \pm \cos \alpha sen\beta$$
$$tg(\alpha \pm \beta) = \frac{tg\alpha \pm tg\beta}{1 \mp tg\alpha tg\beta}$$

FORMULE PARAMETRICHE

$$t = tg \frac{\alpha}{2} \qquad sen\alpha = \frac{2t}{1+t^2}$$
$$\cos\alpha = \frac{1-t^2}{1+t^2} \qquad tg\alpha = \frac{2t}{1-t^2}$$

Radianti	Gradi	Seno	Coseno	Tangente	Cotangente
$\underline{\pi}$	15°	$\sqrt{6}-\sqrt{2}$	$\sqrt{6} + \sqrt{2}$	$2 - \sqrt{3}$	$2 + \sqrt{3}$
12		4	4		
$\frac{\pi}{10}$	18°	$\frac{\sqrt{5}-1}{4}$	$\sqrt{10+2\sqrt{5}}$	$\sqrt{25-10\sqrt{5}}$	$\sqrt{5+2\sqrt{5}}$
	220224	4	4	5	
$\frac{\pi}{2}$	22°30'	$\sqrt{2-\sqrt{2}}$	$\sqrt{2+\sqrt{2}}$	$\sqrt{2}-1$	$\sqrt{2+1}$
8		2	2		

 I IN	A	-	•
 ш	/1		

LE 7 FORME DI INDECISIONE

- $1. +\infty -\infty$
- $2. \quad \infty \cdot 0$

I 7 LIMITI NOTEVOLI

- 1. $\lim_{x\to 0} \frac{senx}{r} = 1$
- 3. $\lim_{x \to 0} \frac{1 \cos x}{x^2} = \frac{1}{2} \left| 6. \lim_{x \to 0} \frac{a^x 1}{x} = \ln a \right|$

- 5. $\lim_{x \to 0} \frac{\log_a (1+x)}{x} = \log_a e$
- 2. $\lim_{x\to 0} \frac{1-\cos x}{x} = 0$ da cui $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$
- 4. $\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e$ da cui $\lim_{x \to 0} \frac{e^x 1}{x} = 1$
 - 7. $\lim_{x \to 0} \frac{(1+x)^k 1}{x} = k$

y = senx

PUNTI DI DISCONTINUITA'

- Di prima specie o con salto
- 2. Di seconda specie e i punti di infinito
- 3. Di terza specie o eliminabile

 $y' = \cos x$

DERIVATE
$$y = x^n \qquad y' = n \cdot x^{n-1} \qquad y = senx \qquad y' = \cos x$$

$$y = \sqrt{x} \qquad y' = \frac{1}{2\sqrt{x}} \qquad y = \cos x \qquad y' = -senx$$

$$y = \log_a x \qquad y' = \frac{1}{x} \log_a e \qquad y = tgx \qquad y' = \frac{1}{\cos^2 x}$$

$$y = \ln x \qquad y' = \frac{1}{x} \qquad y = \cot gx \qquad y' = -\frac{1}{sen^2 x}$$

$$y = a^x \qquad y' = a^x \cdot \ln a \qquad y = arcsenx \qquad y' = \frac{1}{\sqrt{1-x^2}}$$

$$y = e^x \qquad y' = e^x \qquad y = arctgx \qquad y' = \frac{1}{1+x^2}$$

$$D[f(x) \cdot g(x)] = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

$$D\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{\left[g(x)\right]^2}$$

$\int x^n dx = \frac{x^{n+1}}{n+1} + c \quad \text{se } n \neq -1$ $\int \frac{1}{x} dx = \ln|x| + c$ $\int e^x dx = e^x + c$ $\int \frac{1}{\cos^2 x} dx = tgx + c$ **INTEGRALI** $\int \frac{1}{sen^2 x} dx = -cotgx + c$ $\int \frac{1}{\sqrt{1 - x^2}} dx = arcsenx + c = -\arccos x + c$ $\int a^x dx = \frac{1}{\ln a} \cdot a^x + c$ $\int \frac{1}{1+x^2} dx = arctgx + c$ $senxdx = -\cos x + c$ $\int \cos x dx = senx + c$