Aprendizaje Semi-supervisado

Georgina Flesia, Laura Alonso Alemany
Diplomatura en Ciencia de Datos,
Aprendizaje Automático y sus Aplicaciones
FaMAF-UNC
agosto 2024

Para saber más

Un buen tutorial de Jerry Zhu

http://pages.cs.wisc.edu/~jerryzhu/pub/sslchicago09.pdf

Xiaojin Zhu and Andrew B. Goldberg. Introduction to Semi-Supervised Learning. Morgan & Claypool, 2009.

y más reciente:

First Workshop on Weakly Supervised Learning

Contexto

Los datos etiquetados son escasos y caros

Los datos no etiquetados son abundantes y gratis

Cómo conseguir más datos etiquetados

https://datasciencemilan.medium.com/weakly-supervised-learning-introduction-and-best-practices

Aprendizaje NO supervisado

Fundamento cognitivo

elorar la

ormance gratis!

Promes

Contexto

Los datos etiquetados son escasos y caros

Los datos no etiquetados son abundantes y gratis -

Objetivo: aprender de datos etiquetados y no etiquetados, para obtener:

- Menos overfitting, mejor generalización
- Más capacidad para tratar ejemplos no vistos

También: usar datos etiquetados para mejorar algoritmos no supervisados

- Clustering with rules
- Reglas de asociación con clase

Cómo ayudan los datos no etiquetados?

Asunciones equivocadas... empeoran

Notación

ejemplo de entrada x, etiqueta y

aprendedor $f: X \rightarrow Y$

datos etiquetados $(X_{l}X_{l})=\{(x_{1:l}y_{1:l})\}$

datos no etiquetados $X_{ij} = \{x_{j+1:n}\}$ disponibles durante entrenamiento

normalmente: / << n

datos de test $X_{test} = \{x_{n+1}\}$ NO disponibles durante entrenamiento

Modelos disjuntos vs. conjuntos

Aprender conjuntamente vs. concatenar módulos

Métodos de aprendizaje semi-supervisado

- Auto-aprendizaje
- Co-aprendizaje
- Métodos generativos
- Propagación por grafos
- Otros: SVM3, Ladder Networks, Positive Unlabelled
- Aprendizaje Activo
- Aprendizaje por Refuerzos
- Recomendación
- Embeddings con tareas de pretexto

Autoaprendizaje (self-learning) (bootstrapping)

Algoritmo de autoaprendizaje

- 1. Obtener un conjunto pequeño de datos etiquetados
- 2. Aprender un clasificador de los datos etiquetados
- 3. Aplicar el clasificador sobre datos no etiquetados
- 4. Incorporar datos etiquetados automáticamente al conjunto de entrenamiento
- 5. Volver a 2.

- ¿Qué ejemplos etiquetados automáticamente incorporamos?
 - Mayor confianza
 - Los n mejores
 - Todos

Un ejemplo: Yarowsky (1995)

Desambiguación de palabras

- 1. Ejemplos iniciales
- 2. Aprender una lista de decisión
- 3. Buscar más ejemplos con la lista
- 4. Iterar a 2.

Un ejemplo: Yarowsky (1995)

Desambiguación de palabras

1. Ejemplos iniciales

Un ejemplo: Yarowsky (1995)

Desambiguación de palabras

One sense per collocation

- 1. Ejemplos iniciales
- 2. Aprender una lista de decisión
- 3. Buscar más ejemplos con la lista
- 4. Iterar a 2.

One sense per discourse

En cada documento, la misma palabra tiene siempre el mismo sentido

Aprendizaje NO supervisado

Aprendizaje NO supervisado

Valoración de autoaprendizaje

Ventajas:

- Muy fácil de implementar
- Se adapta a cualquier aprendedor (es un wrapper)
- Funciona muy bien para muchas tareas

Desventajas:

- Deriva semántica (Amplificación del error)
- Puede haber regiones del espacio a las que no llega

Valoración de autoaprendizaje

Ventajas:

- Muy fácil de implementar
- Se adapta a cualquier aprendedor (es un wrapper)
- Funciona muy bien para muchas tareas

Desventajas:

- Deriva semántica (Amplificación del error) ← estrategias correctivas
- Puede haber regiones del espacio a las que no llega ← estrategias complementarias

Co-aprendizaje (co-training)

Combinar estrategias complementarias

Aprendedores complementarios sobre diferentes facetas de un mismo objeto

- Página web / producto: imagen y texto
- Entidades nombradas: palabra y contexto

Algoritmo de co-aprendizaje

- 1. Obtener un conjunto pequeño de datos etiquetados
- 2. Aprender **dos** clasificadores **complementarios** de los datos etiquetados
- 3. Aplicar los clasificadores sobre datos no etiquetados
- 4. Incorporar datos etiquetados automáticamente al conjunto de entrenamiento
- 5. ¿Eliminar datos etiquetados automáticamente del conjunto de entrenamiento?
- 6. Volver a 2.

- ¿Qué ejemplos etiquetados automáticamente incorporamos?
 - Mayor confianza, uno solo, ambos?
 - Donde los dos clasificadores estén de acuerdo

Valoración de co-aprendizaje

Ventajas:

- Muy fácil de implementar
- Se adapta a cualquier aprendedor (es un wrapper)
- Funciona muy bien para muchas tareas

Desventajas:

- Muchos problemas no se dividen bien en facetas disjuntas
- Es posible que un solo clasificador usando ambas facetas tenga mejor desempeño

Modelos generativos

Modelos generativos

En el tutorial:

Modelos generativos con gaussianas

Usando Maximum Likelihood Estimation y Expectation Maximization

Maximizar diferentes parámetros

Cuánto podemos aprender?

No free lunch!

Si asumimos pocas cosas, ganamos poca información

Si asumimos muchas cosas, nos podemos equivocar

- → Mixtura de gaussianas
- → Modelos más complejos

Un modelo simple no lo captura bien

Relacionado: cluster-and-label

Valoración de modelos generativos

Ventajas:

- Buen fundamento matemático
- Se obtiene un modelo generativo

Desventajas:

- Si la asunción está mal, el error es grande

Modelos basados en grafos

	d_1	d_3	d_4	d_2
asteroid	•	•		
bright	•	•		
comet		•		
year zodiac				
:				
airport bike				
camp			•	
yellowstone			•	•
zion				•

	d_1	d_3	d_4	d_2
asteroid	•			
bright	•			
comet				
year				
zodiac		•		
*				
:				
airport			•	
bike			•	
camp				
yellowstone				•
zion				•

	d_1	d_5	d_6	d_7	d_3	d_4	d_8	d_9	d_2
asteroid	•								
bright	•	•							
comet		•	•						
year			•	•					
zodiac				•	•				
airport						•			
bike						•	•		
camp						(65)	•	•	
yellowstone								•	•
zion									•

Aprendizaje NO supervisado

Otros algoritmos

Otros algoritmos

- Semi-supervised Support Vector Machines
- Ladder Networks
- Positive Unlabelled

SVMs

Ladder Networks

Positive Unlabelled

¿Supervisado, semi-supervisado, no supervisado?

Aprendizaje activo

- 1. Obtener un conjunto pequeño de datos etiquetados
- 2. Aprender un clasificador de los datos etiquetados
- 3. Aplicar el clasificador sobre datos no etiquetados
- 4. Seleccionar los ejemplos que, de tener etiqueta manual, maximizarían el rendimiento del clasificador
- 5. Un oráculo (humano) etiqueta los ejemplos, y se incorporan a los datos etiquetados
- 6. Volver a 2
 - Qué ejemplos maximizan aprendizaje? Con mayor incertidumbre? Más representativos?
 - Combinar con self-learning

Aprendizaje por refuerzos

Alcanzar un objetivo lejano a través de pasos que no sabemos si son acertados

- ej.: videojuegos, armar un mueble, tratamiento de leucemia...

Cómo?

Aprendiendo una política que nos lleve hasta el objetivo a través de los pasos

- → aprender de los errores: asociar penalizaciones o recompensas a cada paso
- a diferencia de no supervisado, el objetivo está definido
- a diferencia de supervisado, no todos los eventos están asociados a una clase
- es una forma de semi-supervisado?

Aprendizaje por refuerzos

Alcanzar un objetivo lejano a través de pasos que no sabemos si son acertados

- ej.: videojuegos, armar un mueble, tratamien

Cómo?

Aprendiendo una política que nos lleve hasta el o

- → aprender de los errores: asociar penalizac
- a diferencia de no supervisado, el objetivo e
- a diferencia de supervisado, no todos los ev
- es una forma de semi-supervisado?

Recomendación

Es un problema supervisado, semi-supervisado, no supervisado?

los ejemplos iniciales influencian el comportamiento de los nuevos casos!

Tarea de pretexto

- 1. en datos no etiquetados, inventar una etiqueta presente en los datos
- 2. entrenar un clasificador con estas etiquetas inventadas
 - el clasificador que obtenemos nos provee un nuevo espacio
 - este espacio está configurado con otra perspectiva sobre los datos
 - la proyección a este espacio se puede integrar muy fácilmente en el preproceso de datos para aprendizaje supervisado o no supervisado
 - especialmente útil en redes neuronales

- 1. entrenar un clasificador neuronal con una tarea de pretexto
- 2. quedarse con la penúltima capa del clasificador

- 1. entrenar un clasificador neuronal con una tarea de pretexto
- 2. quedarse con la penúltima capa del clasificador

ej.: semántica de las palabras

tarea de pretexto

datos no etiquetados: el gato come pescado datos etiquetados:

_ come pescado -- etiqueta: **el**

el _ come pescado -- etiqueta: gato

el gato _ pescado -- etiqueta: come

el gato come _ -- etiqueta: **pescado**

- 1. entrenar un clasificador neuronal con una tarea de pretexto
- 2. quedarse con la penúltima capa del clasificador
- ej.: semántica de las palabras

tarea de pretexto clasificador

dado un contexto, predecir la palabra

- 1. entrenar un clasificador neuronal con una tarea de pretexto
- 2. quedarse con la penúltima capa del clasificador
- ej.: semántica de las palabras

tarea de pretexto clasificador

dada la palabra, predecir el contexto

- 1. entrenar un clasificador neuronal con una tarea de pretexto
- 2. quedarse con la penúltima capa del clasificador

ej.: semántica de las palabras

tarea de pretexto clasificador embedding

la penúltima capa del clasificador

- 1. entrenar un clasificador neuronal con una tarea de pretexto
- 2. quedarse con la penúltima capa del clasificador

ej.: semántica de las palabras

tarea de pretexto clasificador embedding integración

para los nuevos ejemplos, los paso por el clasificador y los llevo hasta la penúltima capa. Su representación vectorial ya no es la del vector inicial (muy dimensional y ralo) sino la del vector de la penúltima capa (poco dimensional y denso)

semántica de las palabras

https://developers.google.com/machine-learning/crash-course/embeddings/obtaining-embeddings

https://developers.google.com/machine-learning/crash-course/embeddings/obtaining-embeddings

https://developers.google.com/machine-learning/crash-course/embeddings/obtaining-embeddings

Transfer learning

Contexto de aplicación:

- Tenemos datos etiquetados del Dominio A
- Tenemos pocos o ningún dato etiquetado del Dominio B
- El Dominio A y el Dominio B tienen algunos puntos en común
- 1. Aprender un modelo en el Dominio A
- Usar ese modelo en el Dominio B
 - → posiblemente, reentrenar (fine-tuning) el modelo del Dominio A con algunos ejemplos del Dominio B

Weak supervision

Etiquetas de menor calidad

- etiquetado en batch (clusters, comunidades)
- etiquetado por parte de no expertos
- reglas del dominio para automatizar el etiquetado con patrones conocidos
- etiquetado por transfer learning, self-learning

Supervisado \rightarrow **No** supervisado

Usar datos etiquetados para mejorar algoritmos no supervisados

- Clustering with rules
- Constrained Clustering
- Reglas de asociación con clase
- K-nn con etiquetas de usuarios, etiquetas de items
- Etiquetas sobre los datos

Evaluación

Evaluación

Reservar parte de los datos para evaluación (test)

- → tenemos pocos datos!
 - reservar datos para evaluación es costoso
 - la evaluación es todavía más anecdótica

Qué podemos hacer?

- cross-validation
- monitoreo manual de los datos nuevos
- graficar cómo evoluciona la distribución de población alrededor de los testigos

¿Qué nos llevamos de todo esto?

Takeaways

- El aprendizaje semisupervisado (o levemente supervisado) es muy ingenieril: aplicar **intuiciones** para encontrar una buena forma de resolver problemas
 - tratar de poner en juego lo que sabemos sobre los datos
 - explotar las propiedades de las herramientas que ya tenemos
 - optimizar el esfuerzo del experto de dominio
- Vocabulario sobre aprendizaje semisupervisado (y levemente supervisado)
- Algunas buenas ideas, y sus limitaciones