Cymric: Short-tailed but Mighty

Alexandre Adomnicăi¹ Wonseok Choi² Yeongmin Lee³ Kazuhiko Minematsu⁴ Yusuke Naito⁵

¹Independent Researcher, Paris, France, ²DGIST, Daegu, Korea, ³DESILO Inc., Seoul, Korea, ⁴NEC, Kawasaki, Japan, ⁵Mitsubishi Electric Corporation, Kanagawa, Japan,

Wonseok Choi DGIST

ecurity Proof Impossibility Result Performance Conclusion

Cymric?

Introduction
00000000

Cymric cat

文A 27 languages ~

Read Edit View history Tools >

From Wikipedia, the free encyclopedia

The Cymric (/ˈkumrik/ KiM-rik, /ˈkamrik/ KiM-rik) is a Canadian cat breed. Some cat registries consider the Cymric a semi-long-haired variety of the Manx breed, rather than a separate breed. Except for the length of fur, in all other respects, the two varieties are the same, and kittens of either sort may appear in the same litter. The name comes from Cymru (Welsh pronunciation: [ˈkamrsi]), the indigenous Welsh name of Wales, even though the breed is not associated with Wales. The name may have been chosen to provide a "Celtic" sounding moniker for the breed. While the breed's Manx bloodline originated from the Isle of Man, the long-haired variant is claimed to have been developed by Canada. The breed is called the Longhair Manx or a similar name by some registries.

History [edit]

According to the Isle of Man records, the taillessness trait of the Manx (and ultimately the Cymric) began as a mutation among the island's domestic cat population. Given the island's closed environment and small gene pool, the dominant gene that decided the cats' taillessness was easily passed from one generation to the next, along with the gene for long hair. Long-haired kittens had been horn to Manx cats on the Isle of Man, but had always been discarded by

Other names Manx Longhair,

Longhair Manx, Semi-longhair Manx Variant, long-haired Manx

Origin Canada (breeding

programme), Isle of Man (Manx stock)

Vonseok Choi DGIS

Cymric

Introduction

- Cymric = MANX with LONGHAIR
- ► What is MANX?

Wonseok Choi

Cymric

Introduction

- Cymric = MANX with LONGHAIR
- ► What is MANX?

Wonseok Cho

Fig. 3: Encryption of Manx2. (Left) Short message case, (Right) Tiny message case.

Alexandre Adomnicăi, Kazuhiko Minematsu, and Junji Shikata, "Authenticated Encryption for Very Short Inputs", CT-RSA '23

Wonseok

Fig. 3: Encryption of Manx2. (Left) Short message case, (Right) Tiny message case.

Observation: Cymric is cuter.

Cymric vs. Manx

Introduction 000000000

Fig. 3: Encryption of Manx2. (Left) Short message case, (Right) Tiny message case.

Observation: Cymric is cuter.

- A BBB AEAD dedicated to short inputs!
- an interesting security proof!
- Achieving tightness with a matching impossibility result!
- Super fast!
- Cymric: Short-tailed but Mighty and hairy

Wonseok Choi

- A BBB AEAD dedicated to short inputs!
- an interesting security proof!
- Achieving tightness with a matching impossibility result!
- Super fast!
- Cymric: Short-tailed but Mighty and hairy

onseok Choi DGIST

Cymric, More Details

- A BBB AEAD dedicated to short inputs!
- an interesting security proof!

- A BBB AEAD dedicated to short inputs!
- an interesting security proof!
- Achieving tightness with a matching impossibility result!
- Cymric: Short-tailed but Mighty and hairy

Cymric, More Details

- A BBB AEAD dedicated to short inputs!
- an interesting security proof!
- Achieving tightness with a matching impossibility result!
- Super fast!

- A BBB AEAD dedicated to short inputs!
- an interesting security proof!
- Achieving tightness with a matching impossibility result!
- Super fast!
- Cymric: Short-tailed but Mighty and hairy

Cymric, More Details

- A BBB AEAD dedicated to short inputs!
- an interesting security proof!
- Achieving tightness with a matching impossibility result!
- Super fast!
- Cymric: Short-tailed but Mighty and hairy

Motivation

- Typical examples are found in low-power wireless communication because of (e.g.) limited packet length from power constraints.
 For example,
 - Sigfox limits packet lengths to a maximum of 12 bytes,
 - EnOcean limits packet lengths to 9 or 14 bytes, and
 - Bluetooth Low Energy (v4.0) supports payloads up to 33 bytes
 - Electronic Product Code (EPC) specified for RFIDs has just a 12-byte payload.
 - Micro QR code can contain up to 15 bytes.
 - For healthcare applications using tiny medical sensors, Narrow-Band IoT standards work with 1 to 4-byte payloads
 - Andreeva et al. (the Forkchipher work) present more examples

Wonsec

- Typical examples are found in low-power wireless communication because of (e.g.) limited packet length from power constraints. For example,
 - Sigfox limits packet lengths to a maximum of 12 bytes,
 - EnOcean limits packet lengths to 9 or 14 bytes, and
 - ▶ Bluetooth Low Energy (v4.0) supports payloads up to 33 bytes.
 - Electronic Product Code (EPC) specified for RFIDs has just a 12-byte payload.
 - Micro QR code can contain up to 15 bytes.
 - For healthcare applications using tiny medical sensors, Narrow-Band IoT standards work with 1 to 4-byte payloads.
 - Andreeva et al. (the Forkchipher work) present more examples.

WOULDEOK CHOI

Figure 1: Left: a cat. Right: Cymric1 uses $N \parallel M$ for the middle XOR in the left branch whereas Cymric2 uses M. b=1 iff |N|+|M|=n for Cymric1 and |M|=n for Cymric2.

Vonseok Choi DGIS

Comparison Table

Introduction 00000000

> Table 1: Comparison of AE schemes based on an n-bit block cipher. MUL denotes a multiplication over $GF(2^n)$. Min. calls denotes the minimum number of block cipher calls required for non-empty messages. ν and α are the predefined bit length of nonces and ADs, respectively.

Scheme	Max. message length	Primitive	Min. calls	Security	Expansion
OCB	any	SPRP	4	n/2	No
GCM	any	PRP, MUL	3†1	n/2	No
CCM	any	PRP	4	n/2	No
XOCB	any	SPRP	9	2n/3	No
EtE	$n-\nu-\alpha$	SPRP	1	n/2	Yes
Manx2	n	SPRP	2	$n/2^{\dagger 2}$	Yes
Cymric1	$n-\nu$	PRP	3	n	No
Cymric2	n	PRP	3	2n/3	No

^{†1:} additional GF(2^n) multiplications (two when $\nu = 96$ and four otherwise)

^{†2:} optimal value achieved when nonce is n/2 bits

- Amalgamating EWCDM nonce-based MAC and SoP PRF
 - both providing BBB security
- EWCDM nonce-based MAC has been analyzed via improved Mirror theory
 - Wonseok Choi, Jooyoung Lee, Yeongmin Lee, "Toward Full n-bit Security and Nonce Misuse Resistance of Block Cipher-based MACs". ASIACRYPT '24
- (Generically) composing EWCDM and SoP could be used, but
 - More key materials, more BC calls...

▶ If $q_e leq frac{2^n}{48n^2}$, $q_d leq 2^{t-1}$ and n leq 36, then we have

$$\mathbf{Adv}_{\mathsf{Cymric1}}^{\mathsf{nAE}}(q_e,q_d) \leq \frac{8(q_e+q_d)}{2^n} + \frac{2q_d}{2^t},$$

▶ We assume $q_e + 2^{n-t} \cdot q_d \le 2^{n-1}$ and $n \ge 36$. If $q_e \le \frac{2^n}{48n^2}$, then we have

$$\mathbf{Adv}_{\mathsf{Cymric2}}^{\mathsf{nAE}}(q_e,q_d) \leq \frac{(12 + 2^{\frac{t}{2}})q_e}{2^n} + \frac{7q_d}{2^t},$$

▶ By letting t = 2n/3 and $q = q_e + q_d$, we have

$$\mathbf{Adv}_{\mathsf{Cymric2}}^{\mathsf{nAE}}(q_e,q_d) \leq \frac{13q}{2^{2n/3}}.$$

Wonseok Choi

$$\mathbf{Adv}_{\mathsf{Cymric1}}^{\mathsf{nAE}}(q_e,q_d) \leq \frac{8q_e}{2^n} + \frac{10q_d}{2^t}$$

$$\mathbf{Adv}_{\mathsf{Cymric2}}^{\mathsf{nAE}}(q_e,q_d) \leq \frac{(12 + \mathbf{2}^{\frac{t}{2}})q_e}{2^n} + \frac{7q_d}{2^t}$$

Wonseok Choi

- ▶ Enc: outputs a tag without truncation for encryption queries
- $\blacktriangleright \ \ \text{(A variant of)} \ \widehat{\mathcal{S}}_{\text{real}} = (\widehat{\mathsf{Enc}}, \mathsf{Dec})$
- ▶ An intermediate world: $\widehat{\mathcal{S}}_{inter} = (\widehat{\$^*}, \bot)$
 - \$: takes (N, A, M) and output (C, T') where
 - ightharpoonup C is a uniformly randomly chosen string of length |M| (with replacement) and
 - T' is chosen uniformly randomly from $\{0,1\}^n$ without replacement if M is the same.

Wonseok Cho

$$\begin{split} \|\mathcal{S}_{\text{real}} - \mathcal{S}_{\text{ideal}}\| &\leq \|\mathcal{S}_{\text{real}} - \mathcal{S}_{\text{inter}}\| + \|\mathcal{S}_{\text{inter}} - \mathcal{S}_{\text{ideal}}\|\,, \\ &\leq \left\|\widehat{\mathcal{S}}_{\text{real}} - \widehat{\mathcal{S}}_{\text{inter}}\right\| + \frac{q_e}{2^{n - \frac{t}{2}}}. \end{split}$$

$$\left\|\widehat{\mathcal{S}}_{\mathsf{real}} - \widehat{\mathcal{S}}_{\mathsf{inter}} \right\| \leq \frac{12q_e}{2^n} + \frac{7q_d}{2^t}.$$

Vonseok Choi

$$\left\|\widehat{\mathcal{S}}_{\mathsf{real}} - \widehat{\mathcal{S}}_{\mathsf{inter}}
ight\| \leq rac{12q_e}{2^n} + rac{7q_d}{2^t}$$

- bad₁ ⇔ there exists $(i_1,\ldots,i_n)\in [1..q_e]^{*n}$ s.t. $T_{i_1} = \cdots = T_{i_n}$.
- ▶ bad₂ \Leftrightarrow there exists $i \in [1..a]$ s.t. $S_i := M_i \oplus C_i = 0^n$.
- bad₃ ⇔ there exists $(i, j) \in [1..q_e]^{*2}$ s.t. $T_i = T_i$ and

$$M'_i \oplus M'_j \in \{0^n, S_i, S_j, S_i \oplus S_j\}.$$

- Why bad?: 1) the real bad, and 2) to apply Mirror theory.
- Good analysis: use Mirror theory!

Theorem

Let Γ be a nice system over $\{0,1\}^n$ such that the number of equations is q and the number of inequalities is v. Suppose the number of variables in the largest component of $\gamma^=$ is ξ_{\max} . If $\xi_{\max}^2 n + \xi_{\max} \leq 2^{n/2}$, $q\xi_{\max}^2 \leq \frac{2^n}{12}$ and $q + v \leq 2^{n-1}$, one has

$$h(\Gamma) \geq \frac{(2^n-2)_{|\mathcal{V}_1|}(2^n-2)_{|\mathcal{V}_2|}}{2^{nq}} \left(1-\frac{2\nu}{2^n}\right).$$

Vonseok Choi DGIS

Generic Construction

- We show the optimality of Cymric2
 - # of BC calls
 - no costly operations
- We define a generic construction of (short-input) AEs that uses linear operations and two BC calls.
- It accepts a ν -bit nonce and an n-bit plaintext, and returns an n-bit ciphertext and t-bit tag.

Figure 2: GAE with two block ciphers E_{K_1} , E_{K_2} and three linear functions L_1, L_2, L_3 .

Vonseok Choi DGIS

▶ Birthday Attack on GAE with t = n. There exists a $(q_e, 0)$ -adversary \mathcal{A} on GAE such that

$$\mathbf{Adv}_{\mathsf{GAE}}^{\mathsf{nAE}}(\mathcal{A}) = O\left(\frac{q_e^2}{2^n}\right)$$

▶ Birthday Attack on GAE with t < n. There exists a (q_e, q_d) -adversary \mathcal{A} on GAE such that $q_d \le 1$ and

$$\mathbf{Adv}_{\mathsf{GAE}}^{\mathsf{nAE}}(\mathcal{A}) = O\left(rac{q_e^2}{2^n}
ight)$$

onseok Choi DGIST

$N, M \qquad N, M \qquad N, M, W$ $L_1 \qquad V \qquad E_{K_1} \qquad W \qquad L_2 \qquad X \qquad E_{K_2} \qquad V \qquad L_3 \longrightarrow C, T$

Figure 3: GAE with two block ciphers E_{K_1} , E_{K_2} and three linear functions L_1, L_2, L_3 .

- ▶ WLOG, $C = a \cdot W \oplus b \cdot Y$ and $T = c \cdot W \oplus d \cdot Y$.
- ▶ Let t = n and Fin := $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$.
- rank(Fin) ≤ 1 .
 - ▶ There exists x s.t. $x \cdot C = T$
- ► rank(Fin) = $2 \land (\exists (i,j) \text{ s.t. } (N_i, M_i) \neq (N_j, M_j) \land V_i = V_j)$.
 - Find a collision $W_i = W_i$ (computable from C and T)

Wonseok Choi

Figure 4: GAE with two block ciphers E_{K_1} , E_{K_2} and three linear functions L_1, L_2, L_3 .

- ightharpoonup rank(Fin) = $2 \land \Big(\forall (i,j) \text{ s.t. } (N_i,M_i) \neq (N_j,M_j) : V_i \neq V_j \Big).$
 - 1. Choose q_e pairs of nonce and plaintext $(N_1, M_1), \ldots, (N_{q_e}, M_{q_e})$ such that V_1, \ldots, V_{q_e} are all distinct.
 - 2. For $i \in [1..q_e]$, make an encryption query (N_i, M_i) and receive the pair (C_i, T_i) .
 - For i ∈ [1..q_e], recover W_i by solving the equations
 C_i = a · W_i ⊕ b · Y_i; T_i = c · W_i ⊕ d · Y_i.
 - 4. If $\exists i, j \in [1..q_e]$ s.t. $i \neq j \land W_i = W_j$, then return 0; Otherwise return 1.
- \blacktriangleright What if t < n?

Attacks (2)

Figure 4: GAE with two block ciphers E_{K_1} , E_{K_2} and three linear functions L_1, L_2, L_3 .

- ightharpoonup rank(Fin) = $2 \land \Big(\forall (i,j) \text{ s.t. } (N_i,M_i) \neq (N_j,M_j) : V_i \neq V_j \Big).$
 - 1. Choose q_e pairs of nonce and plaintext $(N_1, M_1), \ldots, (N_{q_e}, M_{q_e})$ such that V_1, \ldots, V_{q_e} are all distinct.
 - 2. For $i \in [1..q_e]$, make an encryption query (N_i, M_i) and receive the pair (C_i, T_i) .
 - For i ∈ [1..q_e], recover W_i by solving the equations
 C_i = a · W_i ⊕ b · Y_i; T_i = c · W_i ⊕ d · Y_i.
 - 4. If $\exists i,j \in [1...q_e]$ s.t. $i \neq j \land W_i = W_j$, then return 0; Otherwise return 1.
- ▶ What if t < n?

Performance

Platform	Mode	Security (bits)	Speed (cycles) Scenario 1 Scenario 2		Me Key	mory (b Stack	ytes) Code
	Cymric1 Cymric2	128 85.3	9 881 9 687	- 10 084	32 32	238 238	2 152 2 766
AT 400							
ATmega128	XOCB	85.3	26 699	26 989	16	295	7 632
(AVR)	AES-GCM-SIV	64	52 211	42 126	16	537	5 656
	OCB	64	12871	10910	32	270	7 3 7 8
	GCM	64	39 239	59 628	32	490	4 466
	Cymric1	128	9 644	-	32	472	3 246
	Cymric2	85.3	9 584	9 697	32	464	3 648
STM32F407	XOCB	85.3	17 676	17 942	16	648	5 348
(Cortex-M4)	AES-GCM-SIV	64	20 775	19 472	16	788	5 102
	OCB	64	8 533	8 599	32	640	4 996
	GCM	64	9917	11 306	32	676	4314

Table 2: Benchmark of various AE modes all instantiated with AES-128 as the underlying block cipher.

Vonseok Choi DGIS

Benchmark of lightweight AE

AEAD	Security	Implementation	Speed (cycles)		Memory (bytes)		
AEAU	(bits)		Scenario 1	Scenario 2	Key	Stack	Code
LEA128-Cymric1	128		19 163 11 276 *	:	32 768*	491 107*	1 590 1 128*
LEA128-Cymric2	85.3	Ours	19 305 11 416*	19 400 11 517*	32 768*	488 104*	2 208 1 746*
GIFT128-Cymric1	128	Ours	31 609 19 139*	-	32 640*	427 107*	5 162 2 252*
GIFT128-Cymric2	85.3		31 764 19 293*	31 842 19 379*	32 640*	423 104*	5 780 2 870*
Ascon-AEAD128	128	ascon/ascon-c	24 143	18 661	16	122	4 0 3 6
Xoodyak	128	rweather/lwc-finalists	43 441	43 640	16	98	2 542
Romulus-N	128	rweather/lwc-finalists	30 364	30 525	16	165	5 592
PHOTON-Beetle-AEAD[128]	121	rweather/lwc-finalists	60 357	40 675	16	131	7 840
GIFT-COFB	64	aadomn/gift	27 224	26 993	16	398	9 192

^{*} Using pre-computed round keys.

Table 3: Benchmark of lightweight AE schemes on AVR ATmega128.

000

Benchmark of lightweight AE

AEAD	Security	Implementation	Speed (cycles)		Memory (bytes)		
AEAD	(bits)		Scenario 1	Scenario 2	Key	Stack	Code
LEA128-Cymric1	128		2 274	-	32	160	1 052
LEA128-Cymric2	85.3		2 198	2 3 1 6	32	152	1 390
GIFT128-Cymric1	128	Ours	8 218 4 500*	-	32 640*	800 160*	2 224 1 268*
GIFT128-Cymric2	85.3		8 157 4 438*	8 276 4 560*	32 640*	792 152 *	2 582 1 606*
Ascon-AEAD128	128	ascon/ascon-c	3 054	2 457	16	160	1 368
Xoodyak	128	XKCP/XKCP	3 572	3 669	16	240	3 304
Romulus-N	128	aadomn/skinny	11 061	11 199	16	980	9868
PHOTON-Beetle-AEAD[128]	121	rweather/lwc-finalists	30 897	20 702	16	284	6746
GIFT-COFB	64	aadomn/gift	6 600	6 405	16	496	3 970

^{*} Using pre-computed round keys.

Table 4: Benchmark of lightweight AE schemes on ARM Cortex-M4.

Conclusion

- ▶ Recall: An intermediate world: $\widehat{\mathcal{S}}_{inter} = (\widehat{\$^*}, \bot)$
 - \blacktriangleright \$: takes (N, A, M) and output (C, T') where
 - C is a uniformly randomly chosen string of length |M| (with replacement) and
 - ightharpoonup T' is chosen uniformly randomly from $\{0,1\}^n$ without replacement if M is the same.
- Lower bounds for constructing encryption modes/MACs/AEAD

► Thank you for listening!

Conclusion

- ▶ Recall: An intermediate world: $\widehat{\mathcal{S}}_{inter} = (\widehat{\$^*}, \bot)$
 - \blacktriangleright \$: takes (N, A, M) and output (C, T') where
 - C is a uniformly randomly chosen string of length |M| (with replacement) and
 - ightharpoonup T' is chosen uniformly randomly from $\{0,1\}^n$ without replacement if M is the same.
- Lower bounds for constructing encryption modes/MACs/AEAD

Thank you for listening!