SOLUTIONS

Module:	Telecoms Systems							
Module Code	EBU5302	Paper	A					
Time allowed	2hrs	Filename	Solutions_1516-1_EBU5302_A					
Rubric	ANSWER ALL FOUR QU	ANSWER ALL FOUR QUESTIONS						
Examiners	Dr Yue Gao	Dr Yan Sur	า					

Question 1

Let x(t) be a band-limited signal to W = 2 kHz, amplitude $0 \le x(t) \le 2$ and power P = 1. Signal x(t) is sampled at a rate 20% higher than the Nyquist rate to provide a guard band. The maximum acceptable error in the sample amplitude (the maximum quantization error) is 0.5% of the peak amplitude. The quantized samples are binary coded.

Assume "Sr" is an M=8 symbol source. Symbol A....H represent each of the symbol amplitude values generated by the quantiser. The probability p_m of each symbol is shown in the following table:

m	A	В	C	D	E	F	G	Н
P(m)	0.3	0.1	0.06	0.25	0.04	0.05	0.18	0.02

a) Using diagrams to explain why in general sampling has to meet the Nyquist sampling theorem.

[4 marks]

b) Illustrate what is the sample rate for x(t).

[1 mark]

- c) Find the minimum bandwidth of a channel required to transmit the encoded binary signal. [6 marks]
- d) If 24 such signals are time-division-multiplexed, determine the minimum transmission bandwidth required to transmit the multiplexed signal.

[1 marks]

e) What is the information content for each symbol of Sr?

[9 marks]

f) What are the source entropy and source efficiency for Sr?

[4 marks]

Answer

a) Nyquist rate is defined as twice the signal bandwidth W for low-pass band signal. [4 marks]

- b) The Nyquist sampling rate for x(t) is $R_N = 2^* 2000 = 4000$ Hz (samples per second). The actual sampling rate is $R_S = 4000^*1.2 = 4800$ Hz.
- c) The quantization step is q, and the maximum quantization error is $\pm q/2$.

Therefore

$$q/2 = 0.5\% *2,$$

[1 mark]

So quantization level M = 100,

[1 mark]

For binary coding, L must be a power of 2. Hence, the next higher value of L that is a power of 2 is L=128. [1 mark]

So we need $n=\log_2 128 = 7$ bits per sample.

[1 mark]

As we required to transmit a total of C= 7*4800=33,600 bit/s. [1 mark]

Because for binary, we can transmit up to 2 bits per hertz of bandwidth, we require a minimum transmission bandwidth $B_T=C/2=16.8kHz$. [1 mark]

- d) Multiplexed signal has a total of C_M = 24*33,600 = 0.806 Mbit/s, which requires a minimum of 0.806/2= 0.403 MHz of transmission bandwidth. [1 mark]
- e) The information content I of symbol is defined as

$$I = \log_2(1/p)$$

[1 mark]

SO

m	A	В	C	D	E	F	G	Н
$I_{ m m}$	1.74	3.32	4.06	2	4.64	4.32	2.47	5.64

[8 marks]

f) The entropy is defined as

$$H = \sum_i p_i \log_2(1/p_i)$$

[1 mark]

The resulting entropy will then be H = 2.55 bits/symbol. [1 mark]

For an information source that produces 8 symbols with the same probability (uniform information source), the entropy is $H_{max} = \log 8 = 3$. [1 mark]

So the source efficiency is 2.55/3=85%. [1 mark]

Question 2

A digital information source produces binary sequences at a rate of 5 kbps. The probability of producing the value 0 is $p_0 = 0.2$. A Hamming code with the following parity check matrix **H** is employed to protect information against errors:

$$H = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

The resulting binary sequences are transmitted through a wireless channel where power falloff with distance follows the formula $P_r(d) = P_t(d_0/d)^3$ for $d_0=10$ m. Assume the channel has bandwidth B=30 kHz and AWGN with noise PSD (power spectral density) $N_0/2$, where $N_0=10^{-9}$ W/Hz.

a) For a transmit power of 1 W, find the capacity of this cannel for a transmit-receive distance of 100m and 1km.

[6 marks]

- b) Based on the parity check matrix **H**, determine the length of the input information sequences and the length of the code words. Calculate the code rate of this Hamming code and the resulting transmission rate.

 [4 marks]
- c) How can the systematic linear block code words of this Hamming code be obtained? Calculate the code words corresponding to the information sequences 0110 and 1010.

[5 marks]

d) Determine the number of errors can be detected and corrected in this Hamming code.

[5 marks]

e) Decode the following received sequence r = 1111010.

[5 marks]

Answer

a) The received $SNR = P_r(d)/N_0B$ [1 mark] and $C = B \log_2 (1+SNR)$ [1 mark] For d_1 =100m, $SNR_1 = (10/100)^3/(10^{-9}*30*10^3)=33=15$ dB [1 mark] $C_1 = 30000 \log_2 (1+33) = 152.6$ kbps [1 mark] For d_2 =1km, $SNR_1 = (10/1000)^3/(10^{-9}*30*10^3)=0.033=-15$ dB [1 mark] $C_2 = 30000 \log_2 (1+0.033) = 1.4$ kbps [1 mark]

b) The dimensions of the parity check matrix are $m \times n$, where n is the length of a code word, m = n - k, and k is the length of information sequences. [1 mark]

This is then a (7,4) Hamming code and its code rate is $R_C = 4/7$. [1 mark]

The resulting transmission rate can be obtained as $R_B = 5 \text{kbps*} 1/R_c = 5000 \text{ x } 7/4 = 8.75 \text{ kbps.}$ [2 marks]

c) Based on the parity check matrix **H**, we first obtain the matrix **P**:

$$\mathbf{P} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
 [1 mark]

The generator matrix G of a systematic linear block code will then be

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \text{ mark} \end{bmatrix}$$

Code words c can be obtained by multiplying each 4-bit information sequence x by the generator matrix G, c = xG. [1 mark]

By using this expression, the code words corresponding to the sequences 0100 and 1000 are, respectively, 0110100 and 1010001. [2 marks]

d) Hamming codes belong to the family of linear block codes. Hence, the minimum distance can be obtained as the minimum weight (except all-zero codeword), where the weight of a code word is defined as the number of bits of value 1 in each sequence. [2 marks]

The main property of Hamming codes is that their minimum distance is always 3. [1 mark]

 d_{min} >e+t+1, Since the minimum distance is 3, up to 2 errors will be detected or 1 error will be corrected. [2 marks]

e) In order to decode the received sequence, we first compute its syndrome $\mathbf{s} = \mathbf{r}\mathbf{H}^T = \mathbf{e}\mathbf{H}^T$. [1 mark]

The syndrome sequence corresponding to 1111010 is s = 100. [1 mark]

The error sequence corresponding to this syndrome is e = 0000100. [1 mark]

Hence, the transmitted code word is c = 1111010 + 0000100 = 11111110. [1 mark]

This code word corresponds to the information sequence x = 1111. [1 mark]

Question 3

- a) A multilevel digital communication system sends one of 16 possible levels over the channel every 0.8 ms.
 - i) What is the number of bits corresponding to each level?
 - ii) What is the baud (Symbol) rate?
 - iii) What is the bit rate?

[6 marks]

Solutions:

- b) Multilevel data with an equivalent bit rate of 2,400 bits/s is sent over a channel using a four level line code that has a rectangular pulse shape at the output of the transmitter. The overall transmission system (i.e. the transmitter, channel and receiver) has an r=0.5 raised cosine roll-off Nyquist filter characteristic.
 - i) Find the baud (symbol) rate of the received signal.
 - ii) Find the 6-dB bandwidth for this transmission system.
 - iii) Find the absolute bandwidth for the system.

ANS: $L = 2^{L} = 4 \Rightarrow (=2)$ i) D = R/L = 2400/2 = 1200 bandii) $B = \frac{1}{2}(1+r)D$ where $\frac{1}{2}$ marks $\frac{1}{2}$ $\frac{1}{2}$

c) The following table illustrates the operation of an FHSS system for one complete period of the PN sequence.

Time	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Input data	0	1	1	1	1	1	1	0	0	0	1	0	0	1	1	1	1	0	1	0
Frequency	f ₁₁	f ₂	f ₁₁	f_3	f_3	f_3	f ₂₂	f ₁₀	f_0	f_0	f_1	f ₂₂	f ₉	f_1	f ₂₃	f_3	f ₂₂	f ₁₁	f_3	f ₃₁
PN Sequence	001	110	011	001	001	001	110	011	001	001	001	110	011	001	001	001	110	011	001	001

To determine:

- i) What is the period of the PN sequence?
- ii) The system makes use of a form of FSK. What form of FSK is it?
- iii) What is the number of bits per symbol?
- iv) What is the number of FSK frequencies?
- v) What is the length of a PN sequence per hop?
- vi) Is this a slow or fast FH system?
- vii) What is the total number of possible hops?
- viii) Show the variation of the dehopped frequency with time

[11 marks]

Answer:

- i) Period of the PN sequence is $2^4 1 = 15$ [1 mark]
- ii) MFSK
- [1 mark]
- iii) L=2
- [1 mark]
- **iv)** $M = 2^L = 4$
- [1 mark]
- **v)** k = 3
- [1 mark]
- vi) fast FHSS
- [1 mark]
- **vii**) $2^k = 8$
- [1 mark]
- viii)
- [4 marks, each 2 for 1 mark]

Time	0	1	2	3	4	5	6	7	8	9	10	11
Input data	0	1	1	1	1	1	1	0	0	0	1	0
Frequency	f	1	f_3		f_3		f_2		f_0		f_2	

Time	12	13	14	15	16	17	18	19	
Input data	0	1	1	1	1	0	1	0	
Frequency	f_1		f	3	f	2	f_2		

Question 4

a) If the received signal level for a particular digital system is -151dBW and the receiver system effective noise temperature is 1500 K, what is E_b/N_0 for a link transmitting 2400bps?

[2 marks]

Answer:

$$(E_b/N_0) = S_{dBw} - 10 \log R - 10 \log K - 10 \log T$$
 [1 mark] = -151 dBW - 10 log 2400 - 10 log 1500 + 228.6 dBW = 12 dBW [1 mark]

b) Using diagrams and engineering terms to compare for same data rate transmission by using single carrier, multi-carrier and OFDM modulations, respectively.

[11 marks]

Solutions:

OFDM is multi carrier modulation [1 mark]

OFDM sub-carrier spectrum is overlapping [1 mark]

In FDMA, band-pass filter separates each transmission [1 mark]

In OFDM, each sub-carrier is separated by DFT because carriers are orthogonal [1 mark]

Each sub-carrier is modulated by PSK, QAM [1 mark]

c) Derive the power spectral density (PSD) equation for the polar NRZ signalling.

[12 marks]

ANS: For polar NRZ Signaling, the possible marks]

Are +A and -A. For equally likely occurry

-A, and assumming the data are indigited bit. $R(0) = \sum_{i=1}^{2} (a_{i}a_{i}) R_{i} = A^{2} + (-A)^{2} \text{ marks}$ For $k \neq 0$, 4 $R(k) = \sum_{i=1}^{2} (a_{i}a_{i}) R_{i} = A^{2} + (-A)^{2} \text{ marks}$ Thus, $R_{i}(k) = \sum_{i=1}^{2} (a_{i}a_{i}) R_{i} = A^{2} + (-A)^{2} \text{ marks}$ Thus, $R_{i}(k) = \sum_{i=1}^{2} (a_{i}a_{i}) R_{i} = A^{2} + (-A)^{2} R_{i}$ Thus, $R_{i}(k) = \sum_{i=1}^{2} (a_{i}a_{i}) R_{i}$ The general expression for the PSD of a_{i}