DOMAIN ADAPTIVE VISUAL OBJECT DETECTION

LEONARDO DI GIOVANNA GIUSEPPE MOSCARELLI GAETANO RICCARDO RICOTTA ANDREA VARA

MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE 2020/21

Definition

The **Object Detection** task is based on the identification of objects instances belonging to a predefined set of known classes.

Detector categories

- Two Stage Object Detectors
- Single Stage Object Detectors

Two Stage Object Detectors

Two stages

- region proposal
- classification and bounding-box regression

Two Stage Object Detectors

Main Solutions

- R-CNN
- Fast R-CNN
- Faster R-CNN

Single Stage Object Detectors

One stage

localization and content prediction

Single Stage Object Detectors

Main Solutions

- YOLO
- SSD

Main problems

- Data amount
- Annotations
- Cross-Domain Generalization

A possible solution

Domain Adaptation

Domain Adaptation is a transfer learning subcategory whose goal is to fit a model trained on a specific source domain to a specific target domain.

A related work

N. Inoue, R. Furuta, T. Yamasaki, and K. Aizawa. Cross-Domain Weakly-Supervised
Object Detection through Progressive Domain Adaptation. arXiv e-prints,
pagearXiv: 1803.11365, Mar. 2018

Cross-Domain Weakly-Supervised Object Detection through Progressive Domain Adaptation – Paper Details

Objective

The main goal is to detect objects as accurately as possible in the target domain by using sufficient instance-level annotations in the source domain and a small number of image-level annotations in the target domain.

Cross-Domain Weakly-Supervised Object Detection through Progressive Domain Adaptation – Paper Details

Strategy

Starting from a baseline SSD300 model, the authors perform two steps of domain adaptation by finetuning it with the images obtained exploiting two techniques:

- Domain Transfer (DT)
- Pseudo-Labelling (PL)

Cross-Domain Weakly-Supervised Object Detection through Progressive Domain Adaptation – Paper Details

Domain Transfer

CycleGAN

 $G: X \to Y$

 $F: Y \to X$

Cross-Domain Weakly-Supervised Object Detection through Progressive Domain Adaptation – Paper Details

Pseudo-Labelling

Given the set of all the detections produced by SSD over an image, for each objects class in the image, an annotation corresponding to the top-I confident detection is assigned.

Cross-Domain Weakly-Supervised Object Detection through Progressive Domain Adaptation - Paper Details

Source domain

PASCAL VOC 2007/2012 (20 classes)

Dataset	# images
PASCAL VOC 2007 trainval	5011
PASCAL VOC 2007 test	4952
PASCAL VOC 2012 trainval	11540

Cross-Domain Weakly-Supervised Object Detection through Progressive Domain Adaptation – Paper Details

Target domain

- Clipart1k
- Watercolor2k
- Comic2k

Dataset	# classes	# images	# instances
Clipart I k	20	1000	3165
Watercolor2k	6	2000	3315
Comic2k	6	2000	6389

Cross-Domain Weakly-Supervised Object Detection through Progressive Domain Adaptation – Paper Details

Results

Method	SSD300	YOLOv2	Faster R-CNN
Baseline	26.8	25.5	26.2
DT	38.0	31.5	32.1
PL	36.4	34.0	29.8
DT + PL	46.0	39.9	34.9

OUR WORK

INTRODUCTION

Our work

Objectives

- Replicate the results obtained by exploiting the domain transfer technique
- Propose a new adaptation technique based on online style-transfer
- Comparison

Our work

Domain Transfer vs. Style Transfer

STYLE TRANSFER

Our work

Chosen Solution

X. Huang and S. Belongie. **Arbitrary Style Transfer in Realtime with Adaptive Instance Normalization**, arXiv e-prints, page arXiv:1703.06868, Mar. 2017.

Our work – Style Transfer Network

Architecture

X. Huang and S. Belongie. **Arbitrary Style Transfer in Realtime with Adaptive Instance Normalization**. arXiv e-prints, page arXiv:1703.06868, Mar. 2017.

Our work – Style Transfer Network

AdaIN

AdalN receives a content input x and a style input y, and simply aligns the channel-wise mean and variance of x to match those of y

$$AdaIN(x,y) = \sigma(y) \left(\frac{x - \mu(x)}{\sigma(x)} \right) + \mu(y)$$

Our work – Style Transfer Network

Notation

Content image: *c*

Style image: *s*

Encoder Network: $f(\cdot)$

Decoder Network: $g(\cdot)$

AdalN layer: $AdalN(\cdot,\cdot)$

$$T(c,s) = g\left(AdaIN(f(c),f(s))\right)$$

Our work – Style Transfer Network

Runtime controls: Stylization grade

$$T(c, s, \alpha) = g\left((1 - \alpha)f(c) + \alpha AdaIN(f(c), f(s))\right)$$

Our work – Domain Adaptation Architecture

Transfer ratio (TR) is the probability that a content image is stylized before feeding the SSD

OUR WORK

IMPLEMENTATION DETAILS AND RESULTS

Our work

Domains

- Source domain
 - PASCAL VOC 2007/12
- Target domain
 - Clipart I k

Our work – Baseline SSD model

Implementation

- SSD300
 - https://github.com/ekoops/SSD

Our work – Baseline SSD model

Datasets

Training

- PASCAL VOC 2007 trainval split
- PASCAL VOC 2012 trainval split

Test

Clipart lk test split

Our work - Baseline SSD model training

Details

- Learning rate: 10^{-3}
- Iterations number: 120000
- Momentum: 0.9
- Batch size: 32
- Weight decay: 5×10^{-4}

Our work – Baseline SSD model

Results

Model	aereo bike l	bird boat	bottle	bus	car	cat	chair cow	table	dog ho	orse mbike	person	plant s	sheep	sofa train	tv	mAP
Author's Baseline SSD	19.8 49.52	20.1 23.0	11.3	38.6	34.2	2.5	39.1 21.6	27.3	10.8 3	2.5 54.1	45.3	31.2	19.0	19.5 19.1	17.9	26.8
Our Baseline SSD	18.9 56.6	19.2 19.9	10.1	26.5	27.0	10.5	42.7 10.3	24.9	14.5 3	0.9 48.5	35.0	30.4	9.1	24.2 26.5	22.5	25.4

Our work - CycleGAN model

Implementation

- CycleGAN
 - https://github.com/ekoops/pytorch-CycleGAN-and-pix2pix

Our work - CycleGAN model

Datasets

TrainA

- PASCAL VOC 2007 trainval split
- PASCAL VOC 2012 trainval split

TrainB

Clipart I k train split

Our work - CycleGAN model training

Details

- Total epochs: 20
- Learning rate
 - 10^{-5} for the first 10 epochs
 - Linear decay rate to 0 for the last 10 epochs
- λ : 10
- Batch size: 1

Our work – Baseline SSD model finetuning with domain-transferred images

Datasets

Training

- PASCAL VOC 2007 trainval split domain-transferred
- PASCAL VOC 2012 trainval split domain-transferred

Test

Clipart I k test split

Our work – Baseline SSD model finetuning with domain-transferred images

Details

- Learning rate: 10^{-5}
- Iterations number
 - 520 (about 1 epoch)
 - **1100**
 - **1**0000
- Batch size: 32

Our work – Baseline SSD model finetuning with domain-transferred images

Results

Model	# Iterations	mAP
Author's FT	I epoch	38.0
Our FT	520	30.7
Our FT 2	1100	31.6
Our FT 3	10000	31.7

Our work – Baseline SSD model finetuning with domain-transferred images

Possible performance drop reason

Our result

Authors' result

Our work – Baseline SSD model finetuning with online style-transferred images

Implementation

- AdalN
 - https://github.com/ekoops/pytorch-AdaIN

Our work - Baseline SSD model finetuning with online style-transferred images

Datasets

- Training
 - PASCAL VOC 2007 trainval split
 - PASCAL VOC 2012 trainval split
- Style
 - Clipart I k train split
- Test
 - Clipart I k test split

Our work - Baseline SSD model finetuning with online style-transferred images

Details

- Images have been resized to 512×512
- Learning rate: 10^{-5}
- Iterations number: {520, 1040}
- Transfer ratio: {0.5, 1.0}
- α : {0.5, 1.0}
- Batch size: 32

Our work – Baseline SSD model finetuning with online style-transferred images

Results

# Iterations	Transfer ratio	α	mAP
520	0.5	0.5	31.3
520	1.0	0.5	32.7
520	0.5	1.0	36.8
520	1.0	1.0	38.2
1040	1.0	1.0	38.5

Our work – Conclusion

Comparison

Model	mAP
Author's Baseline SSD	26.8
Our Baseline SSD	25.4

Model	mAP
Author's DT	38.0
Our Proposal	38.2

Our work – Conclusion

What could be improved in the future?

A different Style Transfer Network

THANKS FOR YOUR ATTENTION