Show that if $A \leq_T B$ and $B \leq_T C$, then $A \leq_T C$.

Step-by-step solution

Step 1 of 1

Definition of $A \leq_T B$.

Language A is Turing reducible to Language B, written as $A \leq_T B$, if A is decidable relative to B. That is the oracle for language B decides Language A. Given that

 $A \leq_T B$

That is, Let the oracle M_1^B for Language B decides the Language A. and

 $B \leq_r C$

That is, Let the oracle ${M_2}^{\it C}$ for Language ${\it C}$ decides the Language ${\it B}$.

We have to prove that

 $A \leq_T C$

That is, there exists an oracle M_3^C for Language C which decides the Language A.

That means, machine $\,^{M_3}$ have to simulate machine $\,^{M_1}$.

We will explain this simulation in detail as follows

- Let M_1 queries an oracle about some String x.
- $M_{\rm 3}$ does not have an oracle for ${\it B.}$ $M_{\rm 3}$
- So M_3 does not perform the test whether $x \in B$ or not directly.
- Thus M_3 first simulates M_2 on input x and get the result.
- Then M_3 provides that answers to M_1 .
- But the queries of machine M_2 are directly answered by M_3 . Because M_3 and M_2 use same oracle C.

In this way the oracle for Language C decides Language A. That is $A \leq_T C$.

Thus If $A \leq_T B$ and $B \leq_T C$ then $A \leq_T C$.

Comment