

FOX 2 CPU MAJOR STATE FLOW (SIMPLIFIED)

Example of Foxboro Module Addresses

MODULE	I/O CONN PLATE	LOT NO.	STATUS BIT	IOT ADDRESS	VECT ADDR	PRIORITY
081		E	\	164000		_
DRUM	J14	1	1	164002	204	7
		2		164004		
		3		164006		
TAPE PUNCH	JI	4	2	164010	210	4
TAPE READER	J1	4	3	164010 //	214	4
DIG INPUT	J2	5	9	164012	200	5
(FIELD)						
(KYBD)	J2	5	4	164012	220	5
* ANALOG INPUT	J3	6	5	164014	224	6
* DIG DISPLAY	J4	7	6	164016	230	5
* DIG OUTPUT	J5	10	7	164020	234	5
* VAVLE CONTROL	J6	11	8	164022	240	5
* SYS SECURITY	J7	12	9	164024	244	6
SETPOINT CONT	J8	13	10	164026	250	5
PULSE COUNT	J9	14	11	164030	254	5
* PROCESS INTR	J10	15	12	164032	260	5
SEL TYPER 1	งก	16	13	164034	264	4
* SEL TYPER 2	J12	17	14	164036	270	4

^{*} OPTIONAL ADDR ASSIGNMENTS

SIMPLIFIED CORE MAP

TABLE 9-1. Bootstrap Loader Instructions

a) T	eletype Reader
OCTAL ADDRESS	OCTAL INSTRUCTION
xx7744	Ø167Ø1
xx7746	000026
xx7750	Ø127Ø2
xx7752	ØØØ352
xx7754	005211
xx7756	105711
xx776Ø	100376
xx7762	116162
xx7764	000002
xx7766	××7400
xx777Ø	ØØ5267
xx7772	177756
xx7774	ØØØ765
xx7776	177560

b) High Speed Reader

OCTAL ADDRESS	OCTAL INSTRUCTION
xx7734	Ø167Ø1
xx7736	000036
xx7740	012702
xx7742	000344
xx7744	112761
xx7746	000200
xx775Ø	000001
xx7752	132761
xx7754	000010
xx7756	177770
xx776Ø	001374
xx7762	Ø111Ø3
xx7764	110362
xx7766	xx7376
xx777Ø	ØØ5267
xx7772	177746
xx7774	000761
xx7776	164010

NOTE: The value of xx depends on core memory size, as follows:

Memory Size	Value of xx (ootal)
8K	03
12K	0 5
16K	Ø 7
20K	11
24K	13
28K	15

ADDRESS STRUCTURE & TERMINOLOGY

NOTES: 1. ONLY BYTES CAN HAVE ODD ADDRESSES

2. ALL INSTRUCTIONS OCCUPY A FULL WORD AT EVEN ADDRESSES, SO 2 MUST BE ADDED TO THE PC TO POINT TO NEXT INSTRUCTION WORD

PROCESSOR STATUS WORD

TRACE TRAP

* T BIT (BIT 4) IF SET, CAUSES PROCESSOR TRAP (USED BY DEBUGGING PROGRAM)

PRIORITY

(BITS 5, 6, 7) SPECIFY CURRENT PRIORITY LEVEL OF PROCESSOR

* WHEN T BIT IS SET - COMPLETE ONE INSTRUCTION AND TRAP

GENERAL REGISTER ADDRESSING

### Register R (R) = Operand Register	MODE	DESCRIPTION	SYMBOLIC	ADDRESS CALCULATION PERFORMED
Register Deferred @R or (R) *Auto-Increment (R)+ *Auto-Decrement (P) *Auto-Decrement (P) *Auto-Decrement (P) *Index Deferred (P) *Index Oct (R) *Index Oct (R) *Index Oct (R) *Index Oct (R)	6	Register	~	(R) = Operand
*Auto-Increment (R)+ *Auto-Decrement	-	Register Deferred		(R) + EA _f
*Auto-Increment @(R)+ *Auto-Decrement -(R) *Auto-Decrement @-(R) *Index ±X(R) *Index, or Deferred @(R)	2	*Auto-Increment	(R)+	(R) + EA _f ; then (R) + (1 or 2) + R
*Auto-Decrement -(R) *Auto-Decrement @-(R) *Index ±X(R) *Index, or Or Deferred @(R)	8	*Auto-Increment Deferred	@(R)+	(R) $+ EA_i$, (EA _i) $+ EA_f$; then (R) $+ 2 + R$
becrement \emptyset -(R) $\pm X(R)$ \emptyset - (R) \emptyset - (R) or ed \emptyset (R)	4	*Auto-Decrement	-(R)	$\frac{PUSH}{(R) - \{1 \text{ or } 2\} + R; \text{ then } (R) + EA_f}$
±X(R) @±X(R) or oR	ഹ	*Auto-Decrement Deferred	@-(R)	PUSH $(R) - 2 + R; \text{ then } (R) + EA_{\mathcal{E}}, (EA_{\mathcal{E}}) + EA_{\mathcal{F}}$
@±X(R) or od(R)	9	*Index	±X(R)	$(NMW) + (R) + EA_{f_*}$ where $(NMW) = X$
Ø(K)	7	*Index,	0±X(R) or	$(NMW) + (R) + EA_{i}$, $(EA_{i}) + EA_{f}$, where $(NMW) = X$
		Deferred	@(K)	(NMH) + (R) + EAi, $(EAi) + EAf$, where $(NMH) = U$

PC REGISTER ADDRESSING NOTE: PC = %7

= Address of Register NMW = Next Memory Word = Contents of Register PUSH/ By 1 if Byte Instruction = PC After Being Updated POP By 2 if Word Instruction	(R) = Add (UDPC = PC	Replaces the Contents of Final Effective Address Intermediate Effective Address		EAT EAT
$(NMW) + UOPC = EA_{\dot{x}}, (EA_{\dot{x}}) = EA_{\dot{x}}$	0A	Relative Deferred	7	7
$(NMM) + UDPC + EA_f$	A	Relative	7	9
(NMW) → EA _f	0#A	Absolute	7	E
(NMW) = Operand	N#	Immediate	7	2
ADDRESS CALCULATION PERFORMED	SYMBOL IC	DESCRIPTION	REGISTER	MODE

RULES: Except:
RULES: Always 2 for R6 and R7
Always 2 for Deferred Modes Automatically *All modes marked with an asterisk use a register's contents as an address, hence are really deferred modes. Modes 3, 5, and 7 are therefore doubly deferred modes.