1) Let $X_1, X_2 \sim f_{X_1X_2}(t_1, t_2)$. The joint probability mass function of X_1 and X_2 is given in Table 1.2.1.

t_2	1	2	3	4	5	$f_{X_2}(t_2)$
1	0.02	0.05	0.05	0.07	0.06	k
2	0.05	0.02	0.05	0.05	0.08	k
3	0.02	0.05	0.05	0.08	0.05	k
4	0.12	0.08	0.03	0.01	0.01	k
$f_{X_1}(t_1)$	a	0.20	0.18	b	\rightarrow^c	1

Table 1.2.1: Joint PMF of X_1 and X_2 .

Choose the correct options from the following:

$$f_{X_1}(1) = 0.21$$

$$a + b + c = 0.62$$

$$a + b + c = 0.41$$

$$f_{x_1}(1) = 0.02 + 0.05 + 0.02 + 0.12$$

$$\Rightarrow 0.21$$

$$0.4 \quad 0.20 + 0.18 + 6 + 6 = 1$$

$$0.62$$

$$R + R + R + R = 1$$
 $23 + 4R = 1$
 $23 + 4R = 0.25$

2) If $X,Y\sim f_{XY}(t_1,t_2)$, select the correct statements from the following:

$$\Box$$
 $f_X(t_1) = \sum_{t_1 \in T_y} f_{XY}(t_1, t_2)$

$$f_X(t_1) = \sum_{t_2 \in T_y} f_{XY}(t_1, t_2)$$
 for t_1 , sum over t_2

$$\bigvee f_Y(t_2) = \sum_{t_1 \in T_X} f_{XY}(t_1, t_2)$$
 Kn $\mathbf{t_2}$, sum over $\mathbf{t_1}$

$$\Box$$
 $f_Y(t_2) = \sum_{t_2 \in T_X} f_{XY}(t_1, t_2)$

3) The joint probability mass function of two discrete random variables X and Y is given by

$$f_{XY}(x,y)=rac{xy}{9}$$
 , $x,y\in\{1,2\}$

Calculate $f_X(1) + f_X(2)$.

$$f_{x_{1}}(n_{M}) = \frac{n_{M}}{9}$$

$$f_{x_{1}}(1) = \frac{n_{M}}{9} + \frac{n_{M}}{9} = \frac{3}{9}$$

$$f_{x_{1}}(2) = \frac{2n_{M}}{9} + \frac{2n_{M}}{9} = \frac{6}{9}$$

$$f_{x_{1}}(1) + f_{x_{1}}(2) = \frac{3}{9} + \frac{6}{9} = \boxed{9}$$

$$f_{x_{1}}(1) + f_{x_{1}}(2) = \frac{3}{9} + \frac{6}{9} = \boxed{9}$$