MA2103

IISER Kolkata

Mid Semester Exam

Instructor: Dr. Rajesh Kumble Nayak 10:00 AM, 7th October 2023. Duration: 60 + 30 Minutes.

- Answer all the question.
- No calculators are allowed!
- · Good luck

Q - 1: [20 Marks] Plot the function

$$f(x) = e^{-\frac{1}{x}},$$

In an appropriate domain.

The domain is
$$-\infty$$
, ∞

The special point $-\infty$, 0^{-} , 0^{+} , $+\infty$

at $\alpha = 0 - \infty$ $f(x) = 0 1$

at $n \to +\infty$ $f(x) \to 1$

or: as $n \to 0$ from $-\infty$ namino

 $e^{+\infty} = 0$ $f(x) \to 0$

or: as $n \to 0$ from $+\infty$ namino

 $n \to 0$ from $+\infty$ namino

 $n \to 0$ $n \to 0$ $n \to 0$

or: $n \to \infty$
 $n \to \infty$

 $\frac{dy}{dx} = e^{-\frac{1}{2}x} \times \frac{1}{x^2}$

Q - 2: [20 Marks | Find the Fourier series expansion of the function

$$f(x) = \begin{cases} \pi + x & -\pi \le x < 0 \\ \pi - x & 0 < x \le \pi \end{cases},$$

Make plot of function f(x), first two individual terms and the partial sum of two terms.

Let us start wich a plot

$$a_0 = \frac{1}{9\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx.$$

$$a_{0} = \frac{1}{2\pi} \int_{-\pi}^{0} (\bar{\tau} + z) dx + \frac{1}{2\pi} \int_{0}^{\pi} (\bar{\tau} - x) dx$$

$$= \frac{1}{2\pi} \left[\pi x + \frac{x^{2}}{2} \right]_{-\pi}^{0} + \frac{1}{2\pi} \left[\pi x - \frac{x^{2}}{2} \right]_{0}^{\pi}$$

$$= \frac{1}{4} + \frac{\pi}{4} = \frac{\pi}{2}$$

$$a_{n} = \frac{1}{4} \int_{0}^{0} (\pi + x) \cos nx dx + \frac{1}{4\pi} \int_{0}^{\pi} (\pi - x) dx dx$$

$$= \frac{1 - \cos n\pi}{2n^{2}n} + \frac{1 - \cos n\pi}{2n^{2}\pi}$$

$$a_{n} = \frac{1 - \cos n\pi}{n^{2}\pi} = \frac{1 - (-1)^{n}}{n^{2}\pi}$$

$$= \int_{0}^{0} \cos nx dx + \frac{1 - \cos n\pi}{2n^{2}\pi} = \frac{1 - (-1)^{n}}{n^{2}\pi}$$

$$= \int_{0}^{\pi} \cos nx dx + \frac{1 - \cos n\pi}{2n^{2}\pi} = \frac{1 - (-1)^{n}}{n^{2}\pi}$$

$$= \int_{0}^{\pi} \cos nx dx + \frac{1 - \cos n\pi}{2n^{2}\pi} = \frac{1 - (-1)^{n}}{n^{2}\pi}$$

$$= \int_{0}^{\pi} \cos nx dx + \frac{1 - \cos n\pi}{2n^{2}\pi} = \frac{1 - (-1)^{n}}{n^{2}\pi}$$

$$= \int_{0}^{\pi} \cos nx dx + \frac{1 - \cos n\pi}{2n^{2}\pi} = \frac{1 - (-1)^{n}}{n^{2}\pi}$$

$$= \int_{0}^{\pi} \cos nx dx + \frac{1 - \cos n\pi}{2n^{2}\pi} = \frac{1 - (-1)^{n}}{n^{2}\pi}$$

$$= \int_{0}^{\pi} \cos nx dx + \frac{1 - \cos n\pi}{2n^{2}\pi} = \frac{1 - (-1)^{n}}{n^{2}\pi}$$

$$= \int_{0}^{\pi} \cos nx dx + \frac{1 - \cos n\pi}{2n^{2}\pi} = \frac{1 - (-1)^{n}}{n^{2}\pi}$$

$$= \int_{0}^{\pi} \cos nx dx + \frac{1 - \cos n\pi}{2n^{2}\pi} = \frac{1 - (-1)^{n}}{n^{2}\pi}$$

$$= \int_{0}^{\pi} \cos nx dx + \frac{1 - \cos n\pi}{2n^{2}\pi} = \frac{1 - (-1)^{n}}{n^{2}\pi}$$

$$= \int_{0}^{\pi} \cos nx dx + \frac{1 - \cos n\pi}{2n^{2}\pi} = \frac{1 - (-1)^{n}}{n^{2}\pi}$$

$$= \int_{0}^{\pi} \cos nx dx + \frac{1 - \cos n\pi}{2n^{2}\pi} = \frac{1 - (-1)^{n}}{n^{2}\pi}$$

$$= \int_{0}^{\pi} \cos nx dx + \frac{1 - \cos n\pi}{2n^{2}\pi} = \frac{1 - (-1)^{n}}{n^{2}\pi}$$

$$= \int_{0}^{\pi} \cos nx dx + \frac{1 - \cos n\pi}{2n^{2}\pi} = \frac{1 - (-1)^{n}}{n^{2}\pi}$$

$$= \int_{0}^{\pi} \cos nx dx + \frac{1 - \cos n\pi}{2n^{2}\pi} = \frac{1 - (-1)^{n}}{n^{2}\pi}$$

$$= \int_{0}^{\pi} \cos nx dx + \frac{1 - \cos n\pi}{2n^{2}\pi} = \frac{1 - (-1)^{n}}{n^{2}\pi}$$

$$= \int_{0}^{\pi} \cos nx dx + \frac{1 - \cos n\pi}{2n^{2}\pi} = \frac{1 - (-1)^{n}}{n^{2}\pi}$$

$$= \int_{0}^{\pi} \cos nx dx + \frac{1 - \cos n\pi}{2n^{2}\pi} = \frac{1 - (-1)^{n}}{n^{2}\pi}$$

$$= \int_{0}^{\pi} \cos nx dx + \frac{1 - \cos n\pi}{2n^{2}\pi} = \frac{1 - (-1)^{n}}{n^{2}\pi}$$

$$= \int_{0}^{\pi} \cos nx dx + \frac{1 - \cos n\pi}{2n^{2}\pi} = \frac{1 - (-1)^{n}}{n^{2}\pi}$$

$$= \int_{0}^{\pi} \cos nx dx + \frac{1 - \cos n\pi}{2n^{2}\pi} = \frac{1 - (-1)^{n}}{n^{2}\pi}$$

$$= \int_{0}^{\pi} \cos nx dx + \frac{1 - \cos nx}{2n^{2}\pi} = \frac{1 - (-1)^{n}}{n^{2}\pi}$$

$$= \int_{0}^{\pi} \cos nx dx + \frac{1 - \cos nx}{2n^{2}\pi} = \frac{1 - (-1)^{n}}{n^{2}\pi}$$

$$= \int_{0}^{\pi} \cos nx dx + \frac{1 -$$

$$f(x) = \frac{\pi}{2}$$
 first turm
 $f(x) = \frac{2}{\pi}$ & sos x

Q - 3: [20 Marks] A string of length L is fixed at both end is left with an initial shape given by the function $\psi_0(x)$, the initial velocity of the string is zero i.e. $\frac{\partial \psi(x,t)}{\partial t}\Big|_{t=0} = 0$. Find the amplitude of string, $\psi(x,t)$ as function of position and time.

Solved in the class!

Q - 4: [20 Marks] If p(x) is the probability density function, then the mean of the distribution is given by

$$\mu = \int_{-\infty}^{+\infty} x p(x) \, dx \,.$$

Explicitly compute the mean for the distribution given below

$$p(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-2)^2}$$
.

It is given that $\int_{-\infty}^{+\infty} p(x)dx = 1$.

$$\mu = \int_{-\infty}^{\infty} p(x) dx$$

$$= \int_{-\infty}^{\infty} \frac{x}{\sqrt{2\pi}} e^{-\frac{1}{2}(x-2)^2} dx$$

$$= \int_{-\infty}^{\infty} e^{-\frac{1}{2}x} \frac{y^2}{\sqrt{2\pi}} dx + \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x} \frac{y^2}{\sqrt{2\pi}} dx$$

$$= \int_{-\infty}^{\infty} e^{-\frac{1}{2}x} \frac{y^2}{\sqrt{2\pi}} dx + \int_{-\infty}^{\infty} e^{-\frac{1}{2}x} \frac{y^2}{\sqrt{2\pi}} dx$$

$$= \int_{-\infty}^{\infty} e^{-\frac{1}{2}x} \frac{y^2}{\sqrt{2\pi}} dx + \int_{-\infty}^{\infty} e^{-\frac{1}{2}x} \frac{y^2}{\sqrt{2\pi}} dx$$

mean $\mu = 2.1$