Elettrostatica #3

4F Liceo Scientifico

15 dicembre 2022

La forza elettrica è un esempio di interazione a distanza.

La forza elettrica è un esempio di interazione a distanza.

Come avviene la sua propagazione nello spazio?

La forza elettrica è un esempio di interazione a distanza.

Come avviene la sua propagazione nello spazio?

Per rispondere a questa domanda la fisica moderna ricorre al concetto di campo di forze (o semplicemente *campo*).

La forza elettrica è un esempio di interazione a distanza.

Come avviene la sua propagazione nello spazio?

Per rispondere a questa domanda la fisica moderna ricorre al concetto di campo di forze (o semplicemente *campo*).

Nel caso della forza elettrica parleremo di campo elettrico.

1. Consideriamo una distribuzione di cariche, cioè una o più cariche disposte in una certa configurazione

- 1. Consideriamo una distribuzione di cariche, cioè una o più cariche disposte in una certa configurazione
- 2. A ogni punto dello spazio circostante resta associato un vettore \vec{E} , detto campo elettrico

- 1. Consideriamo una distribuzione di cariche, cioè una o più cariche disposte in una certa configurazione
- 2. A ogni punto dello spazio circostante resta associato un vettore \vec{E} , detto campo elettrico
- 3. Se una carica esterna q si trova in un certo punto, la forza elettrica risultante su q è data da $\vec{F} = q \cdot \vec{E}$

È una grandezza vettoriale che varia da punto a punto.

È una grandezza vettoriale che varia da punto a punto.

Nel Sistema Internazionale si misura in N/C.

È una grandezza vettoriale che varia da punto a punto.

Nel Sistema Internazionale si misura in N/C.

Se una carica q si trova in un campo elettrico \vec{E} , questa è soggetta a una forza che ha

- lo stesso verso di \vec{E} se q > 0
- ightharpoonup verso opposto a \vec{E} se q < 0

Campo elettrico generato da una sola carica

Campo elettrico generato da una sola carica

Consideriamo una singola carica "generatrice" Q.

Campo elettrico generato da una sola carica

Consideriamo una singola carica "generatrice" Q.

In un certo punto P il campo elettrico \vec{E} generato da Q

- ightharpoonup è uscente da Q se Q > 0
- ightharpoonup è entrante in Q se Q < 0
- ▶ ha intensità

$$E = k \frac{Q}{r^2}$$
 $r = \text{distanza del punto } P \text{ da } Q$

Sovrapposizione di campi elettrici

Sovrapposizione di campi elettrici

Consideriamo una distribuzione di più cariche puntiformi

$$Q_1, Q_2, Q_3, \ldots$$

Sovrapposizione di campi elettrici

Consideriamo una distribuzione di più cariche puntiformi

$$Q_1, Q_2, Q_3, \ldots$$

In ogni punto dello spazio circostante il campo elettrico È generato dalla distribuzione è dato dalla somma vettoriale

$$\vec{E} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 + \cdots$$

dei campi elettrici generati dalle singole cariche.

