Universidade Tecnológica Federal do Paraná

Engenharia da Computação Lógica Reconfigurável

Relatório 2 - Introdução à placa DE10-Lite

Aluno: Eduardo Yuji Yoshida Yamada Professor orientador: Marcelo de Oliveira

Conteúdo

1	Introdução	1
2	Códigos	2
3	Tabela, Mapas e Equação	3
4	Simulações	4
5	Diagramas RTL	6

1 Introdução

A atividade contém dois exercícios, sendo o primeiro, uma continuação da *Atividade 1: Portas lógicas*, mas dessa vez implementando na placa DE10-Lite, sendo assim foi implementado:

- Associar cada entrada (a e b) em uma chave;
- Associar um LED para cada uma das saídas.

Já para o segundo exercício foi considerado o circuito mostrado na figura 1, sendo um circuito de uma máquina de cópias. As chaves são encontradas normalmente aberta e, quando o papel passa por uma chave, a chave fecha. Considerando que é impossível que as chaves SW1 SW4 sejam fechadas ao mesmo tempo. Dessa forma o circuito produzirá um sinal alto de saída sempre que duas ou mais chaves estiverem fechadas ao mesmo tempo.

Dessa forma o exercício pede algumas implementações:

- Encontrar a tabela-verdade do circuito (utilizando don't care para simplificar);
- Transponhar a tabela para o mapa de Karnaugh e encontrar a equação booleana;
- Implementar o circuito em VHDL e fazer a simulação;
- Por fim, implementar o circuito na placa, com as chaves atuando como as entradas e um LED sendo aceso quando a saída for alta.

Figura 1: Circuito da máquina de cópias

2 Códigos

Para o segundo exercício, temos o seguinte código:

```
library ieee ;
use ieee . std_logic_1164 . all ;

entity projeto2 is
   port (
        a , b , c , d: in bit ;
        z: out bit
   );
end entity ;

architecture projeto2 of projeto2 is
   signal x: std_logic_vector (7 downto 0) ;
begin
   z <= ((not a) and (not b)) or ((not a) and (not c)) or
        ((not a) and (not d)) or ((not b) and (not c)) or
        ((not b) and (not d));
end architecture ;</pre>
```

Nesse código temos as portas a, b, c e d como portas de entrada e a porta z como saída. A porta z receberá apenas uma das entradas, not a e not b ou not c e not d, por exemplo.

3 Tabela, Mapas e Equação

A	В	С	D	Z
0	0	0	0	X
0	0		1	1
0	0	1	0	X
0	0	1	1	1
0 0 0	0 0 1 1 1 1 0 0	0	0	X
0	1	0		1
0	1	1	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	X
0	1	1	1	0
1	0	0	0	1
1 1 1	0	0	1	1
1	0	1	0	1
1	0	1		0
1	$\begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$	0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	X 1 X 1 X 0 1 1 1 0 0 0 0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Tabela 1: Tabela-verdade do exercicío 2

	\overline{CD}	$\overline{C}D$	CD	$\overline{\mathrm{C}D}$
\overline{AB}	X	1	1	X
$\overline{A}B$	X	1	0	X
AB	1	0	0	0
\overline{AB}	1	1	0	1

Tabela 2: Tabela-verdade do exercicío 2

Dessa forma obtemos a seguinte equação booleana o exercício 2: $\overline{AB}+\overline{AC}+\overline{AD}+\overline{BC}+\overline{BD}+\overline{CD}$

4 Simulações

Foi realizado a simuação do circuito do exercício 2 para mostrar as diferentes formas de saída. Além do Pin Planner dos dois circuitos

Figura 2: Pin Planner exercício 1

Figura 3: Simulação exercício 2

Figura 4: Pin Planner exercício 2

5 Diagramas RTL

Date: October 25, 2024

Project: projeto2

Figura 5: RTL Viewer exercício 2