COMSC 2043 Induction and Recursion

Student Workbook

Jeremy Evert Southwestern Oklahoma State University

October 27, 2025

Contents

Chapter 1

Foundations of Induction and Recursion

This chapter introduces the central ideas of **mathematical induction** and **recursion** as presented in Chapter 5 of Kenneth Rosen's *Discrete Mathematics and Its Applications*.

1.1 The Big Picture

Mathematical induction and recursion are two sides of the same elegant coin. Induction is how we *prove* things about a process that repeats. Recursion is how we *define* that process.

We use induction to reason that what works for one step will work for the next. We use recursion to build structures or compute results by defining a problem in terms of smaller instances of itself.

1.2 Key Ideas from Rosen's Chapter 5

- Basis Step: Prove that a statement is true for an initial value (usually n = 0 or n = 1).
- Inductive Step: Assume it is true for n = k (the *inductive hypothesis*) and prove it for n = k + 1.
- Strong Induction: Sometimes we assume it's true for all previous cases up to k to prove it for k + 1.
- Recursive Definitions: A way to define sets, sequences, or functions in terms of themselves.

• Structural Induction: A generalization used for recursively defined structures like trees or expressions.

1.3 Why This Matters

Induction teaches us to trust the domino effect: if one falls and the rule is consistent, they all fall. Recursion lets us *build the dominoes* themselves.

They are the grammar and logic behind everything from factorial functions to sorting algorithms to proofs of algorithmic correctness.

1.4 Example: The Factorial Function

The factorial of n, written n!, is defined recursively:

$$n! = \begin{cases} 1, & n = 0 \\ n \cdot (n-1)!, & n > 0 \end{cases}$$

We can prove by induction that $n! \geq 2^{n-1}$ for all $n \geq 1$.

Proof (sketch):

- Base case: $n = 1 \ 1! = 1 \ge 2^0 = 1 \checkmark$
- Inductive step: Assume $k! \ge 2^{k-1}$. Then

$$(k+1)! = (k+1)k! \ge (k+1)2^{k-1} \ge 2^k$$

for $k \geq 1$.

1.5 A Student Challenge

"Induction is not a leap of faith — it's a method of climbing an infinite ladder, one rung at a time."

Challenge: Write your own recursive function in Python that computes n!, and then write a proof by induction showing why it works for all $n \ge 0$.

1.6 Checkpoint Questions

- 1. What are the two main steps of a proof by induction?
- 2. How is recursion related to induction?
- 3. Give a real-world example of a recursive process.
- 4. Can every recursive definition be proven correct using induction?