Heart Disease Analysis & Prediction

Feature Selection, Model Selection and Tuning

Background & Context

According to the Centers for Disease Control and Prevention, Heart diseases are the leading cause of death all around the world. You need to build a system that can easily detect heart disease using machine learning algorithms.

Objective

- 1. Explore and visualize the dataset.
- 2. Build a classification model to predict if the person is having heart disease or not.
- 3. Optimize the model using appropriate techniques
- 4. Generate a set of insights and recommendations that will help the bank

Best Practices for Notebook:

- The notebook should be well-documented, with inline comments explaining the functionality of code and markdown cells containing comments on the observations and insights.
- The notebook should be run from start to finish in a sequential manner before submission.
- · Remove all warnings and errors

Questions:

Question 1. Perform an Exploratory Data Analysis on the data

- Univariate analysis - Bivariate analysis - Use appropriate visualizations to identify the patterns and insights - Any other exploratory deep dive

Question 2. Illustrate the insights based on EDA

Key meaningful observations on the relationship between variables

Question 3. Data Pre-processing

Prepare the data for analysis - Missing value Treatment, Outlier Detection(treat, if needed- why or why not), Feature Engineering, Prepare data for modeling

Question 4. Model building - Logistic Regression

- Make a logistic regression model - Improve model performance by up and downsampling the data - Regularize above models, if required

Question 5. Model building - Advance Algorithms

- Build Decision tree and random forest

Question 6. Hyperparameter tuning using grid search

- Tune the best model using grid search and provide the reason behind choosing those models

Question 7. Hyperparameter tuning using random search

- Tune the best model using random search and provide the reason behind choosing those models

Question 8. Model Performances

- Compare the model performance of all the models - Comment on the time taken by the grid and randomized search in optimization

Question 9. Actionable Insights & Recommendations

- Business recommendations and insights