

Introduction

- Data monitoring and visualization
 - Datadog
- Causal Inference
 - Data Imputation
 - Stationary Transformation
 - Correlation Analysis
 - Causal and Inference

Data Monitoring and Visualization

Datadog

Logs Dashboard | Datadog (datadoghq.com)

Establish whether and how changes in one variable cause changes in another

Example: Processor Time – Performance Counter (Instance: RapidResponse)

Data Imputation

Imputation for missing value to generate complete datasets

Stationary Transformation

Why stationary is important: most time series models assume that each point is independent of one another.

Stationary data: mean and variance do not vary across time

Stationary data

Non-stationary data

Correlation Analysis

Evaluate strength and direction of the linear relationship between two variables

Question: We can only retain a month's worth of data, insufficient for any computation

Solution: Employ a variety of mathematical computations

Method:

- 1. Pearson correlation coefficient
- 2. Spearman correlation coefficient
- 3. Kendall correlation coefficient

Correlation Analysis

Pearson Correlation

Coefficient: [-1,1]

Coefficient = 1 or -1: perfect linear relationship

Coefficient = 0 : no linear relationship, could have a non-linear or more complex relationship

Pearson Correlation Coefficient

Correlation Analysis

Spearman Correlation Coefficient

coefficient = 1/-1 : perfect
positive/negative monotonic
relationship

Coefficient = 0 : no monotonic

relationship

Spearman Correlation Coefficient

Kendall Correlation Coefficient

coefficient = 1/-1: ranks of corresponding values within each data sample always same

Coefficient = 0 : no association between the ranks of the values

Ex: (xi,yi), (xj,yj), i < j:

Either both xi > xj and yi > yj or xi < xj, yi < yj

Kendall Correlation Coefficient

Correlation Coefficient

Top5 Results:

Pearson Correlation:	Spearman Correlation:	Kendall Correlation:
----------------------	-----------------------	----------------------

Queries being executed Total query execution time Total query execution time

Users logged in Queries being executed Queries being executed

DctBlocks: create rate (blocks/sec) Total data query execution Total data query execution

MC: Total Quota (MB)

Users logged in

Users logged in

MC: Total Inuse (MB)

DctBlocks: create rate (blocks/sec)

DctBlocks: create rate (blocks/sec)

Correlation VS Causation

Transfer Entropy

Features of time series: max, min, mean, median, variance,...

Series A: 1, 2, 1, 2, 1, 2, 1, ...

Series B: 1, 1, 2, 1, 2, 2, 1, ...

Same mean, same variance, same median, different entropy

Larger the entropy, more chaotic the system

Transfer entropy: transfer of information

Transfer Entropy

Symbol: direction of transfer

+:Y -> X

-: X -> Y

Causal Inference

Neural Network: LSTM(Long-short term memory)

Step 1: Forecasting

Step 2: Evaluating the prediction model

Step 3: Calculating feature Importance

Step1: Forecasting

Selected 3 subsections from the entire dataset as examples

Step 2: Evaluating the prediction model

MAE: mean absolute error

MSE: mean squared error

RMSE: root mean squared error

Causal Inference

Step 3: Calculating feature Importance

OOF: Out-of-Fold, dividing a dataset into subsets, known as "folds." Each fold is then used as a validation set once while the remaining folds are utilized for training.

Conclusion

- Most Correlated metrics with Processor Time:
 - Total query execution time
 - Queries being executed
 - Total data query execution
 - users logged in
 - DctBlocks: create rate (blocks/sec)

- Metrics with the largest Transfer Entropy:
 - MC metrics
 - Total query execution time
 - Lock wait time
 - Queries open
 - Total data query execution

- Metrics with the biggest influence:
 - MC metrics
 - Queries open
 - Users logged in
 - Lock wait time
 - Total query execution time

Conclusion

Possible Reason of error:

- Insufficient data
- Inappropriate model selection
 - Not suitable
 - Overfitting, too complex
- Feature engineering issues
 - Incorrect stationary transformation

