Chapter 3 - First Law of Thermodynamics and Energy Lecture 9 Section 3.4

MEMS 0051 Introduction to Thermodynamics

Mechanical Engineering and Materials Science Department University of Pittsburgh Chapter 3 - First Law of Thermodynamics and Energy

MEMS 0051

Learning Objectives

.4 Work - Moving Boundary

Student Learning Objectives

At the end of the lecture, students should be able to:

- ► Formulate an expression for work for moving boundary systems
- Calculate and apply the polytropic index to moving boundary systems

Chapter 3 - First Law of Thermodynamics and Energy

MEMS 0051

Learning Objectives

.4 Work - Moving Boundary

- ► Moving boundary systems include piston-cylinders, compressors, etc.
- Consider a piston-cylinder, in which the cylinder is raised a distance of dL from state 1 to 2:

Considering this a quasi-equilibrium process, we can calculate the work done onto/by the system.

Chapter 3 - First Law of Thermodynamics and Energy

MEMS 0051

Learning Objectives

3.4 Work - Moving Boundary

▶ By definition,

$$\delta W = F dx$$

Force is pressure times area, and the change in distance is dL

$$\delta W = PAdL \to Pd\forall$$

► Therefore

$$W_{1\to 2} = \int_1^2 \delta W = \int_1^2 P(\forall) d\forall$$

Chapter 3 - First Law of Thermodynamics and Energy

MEMS 0051

earning Objectives

3.4 Work - Moving Boundary

ummary

Slide 4 of 19

State 2: A_1 , P_2 , V_3

▶ Recall integration is calculating the area under a curve - as the piston moves between the two states, P can have varied dependence on \forall , i.e. path dependent

Chapter 3 - First Law of Thermodynamics and Energy

MEMS 0051

Learning Objectives

3.4 Work - Moving Boundary

ummary

Slide 5 of 19 ©Barry, 2020

▶ We use the inexact differential δW because W is a path function (i.e. it is path dependent) - we use the exact differential $d\forall$ because \forall only depends on the initial and final states

Chapter 3 - First Law of Thermodynamics and Energy

MEMS 0051

Learning Objectives

3.4 Work - Moving Boundary

ummary

Slide 6 of 19 ©Barry, 2020

Polytropic Process

- ➤ To quantify the path dependence of work, we must consider a polytropic process, a process pertaining to a function which has different values for one variable.
- ► A polytropic process is defined as:

$$P \forall^n = c$$

- ▶ n is the polytropic index, $n \in \mathbb{R}, -\infty \le n \le \infty$.
 - $ightharpoonup n=0 \implies \text{Isobaric } (P=c)$
 - $n=1 \implies \text{Isothermal } (T=c)$

 - $n=\infty \implies \text{Isochoric } (\forall =c)$

Chapter 3 - First Law of Thermodynamics and Energy

MEMS 0051

Learning Objectives

3.4 Work - Moving Boundary

Polytropic Index

▶ The polytropic index can be visualized on a P- \forall diagram, and can take any real value between $-\infty$ and ∞ !

 \blacktriangleright When n=0:

$$P(\forall^n) = c \implies P(\forall^0) = c \implies P(1) = c$$

▶ When $n \to \infty$:

$$P(\forall^{\infty}) = c \implies \forall = c$$

▶ So why is this of use? Given any value for the polytropic index, we can now calculate the path-dependent work of a system.

Chapter 3 - First Law of Thermodynamics and Energy

MEMS 0051

Learning Objectives

3.4 Work - Moving Boundary

ımmary

► Taking the equation for work:

$$W_{1\to 2} = \int_1^2 \delta W = \int_1^2 P d\forall$$

If we define $P \forall^n = c = P_1 \forall_1^n = P_2 \forall_2^n$ for States 1 and 2, and rearrange our expression for P:

$$P = \frac{P_1 \forall_1^n}{\forall^n} = \frac{P_2 \forall_2^n}{\forall^n} = \frac{c}{\forall^n}$$

Reinserting this for *P* within our expression for work:

$$W_{1\to 2} = \int_1^2 P d\forall = c \int_1^2 \frac{1}{\forall n} d\forall$$

Chapter 3 - First Law of Thermodynamics and Energy

MEMS 0051

Learning Objectives
3.4 Work - Moving
Boundary

▶ The integrand can be expressed as:

$$\frac{1}{\forall n} = \forall^{-n}$$

Inserting this into the integral expression for work:

$$W_{1\to 2} = c \int_1^2 \forall^{-n} d\forall = \frac{c}{1-n} \forall^{1-n} \Big|_1^2$$

► Evaluating this:

$$W_{1\to 2} = \frac{c}{1-n} (\forall_2^{1-n} - \forall_1^{1-n})$$

Recalling $P \forall^n = c = P_1 \forall_1^n = P_2 \forall_2^n$, substitute in the respective values for the constant

Chapter 3 - First Law of Thermodynamics and Energy

MEMS 0051

Learning Objectives

3.4 Work - Moving Boundary

ımmary

► Thus:

$$W_{1\to 2} = \left(\frac{c}{1-n}\right) \forall_2^{1-n} - \left(\frac{c}{1-n}\right) \forall_1^{1-n} = \frac{P_2 \forall_2^n \forall_2^{1-n} - P_1 \forall_1^n \forall_1^{1-n}}{1-n}$$

▶ Recalling $x^n x^{1-n} = x$, we are left with an expression for work based upon the pressures and volumes of States 1 and 2, the polytropic index n:

$$W_{1\to 2} = \frac{P_2 \forall_2 - P_1 \forall_1}{1 - n}$$

Chapter 3 - First Law of Thermodynamics and Energy

MEMS 0051

earning Objectives

3.4 Work - Moving Boundary

▶ Taking the limiting case n=1:

$$P\forall^n = c = P_1 \forall_1$$

ightharpoonup Rearranging for P:

$$P = \frac{P_1 \forall_1}{\forall^n} = \frac{P_1 \forall_1}{\forall}$$

 \triangleright Substitute P in for the definition of work:

$$W_{1\to 2} = \int_1^2 Pd\forall = P_1 \forall_1 \int_1^2 \frac{d\forall}{\forall}$$

Notice how P_1 and \forall_1 are constants - we are not integrating w.r.t. \forall_1 , rather \forall . Thus:

$$W_{1\to 2} = P_1 \forall_1 \ln(\forall) \Big|_1^2 = P_1 \forall_1 \ln\left(\frac{\forall_2}{\forall_1}\right)$$

Chapter 3 - First Law of Thermodynamics and Energy

MEMS 0051

Learning Objectives

3.4 Work - Moving Boundary

Example #1

▶ A piston-cylinder undergoes an expansion process from an initial pressure of 3 [bar] and volume of 0.1 [m³] to a final volume of 0.2 [m³]. Determine the final work for the process in [kJ] for:

- 1. n=1.5
- 2. n=1.0
- 3. n=0

Solution:

Chapter 3 - First Law of Thermodynamics and Energy

MEMS 0051

Learning Objectives

3.4 Work - Moving Boundary

Example #1

 $\underline{\rm Solution} :$

Chapter 3 - First Law of Thermodynamics and Energy

MEMS 0051

Learning Objectives

3.4 Work - Moving Boundary

Example #1

 $\underline{\rm Solution} :$

Chapter 3 - First Law of Thermodynamics and Energy

MEMS 0051

earning Objectives

3.4 Work - Moving Boundary

Example #2

ightharpoonup Construct an expression for the polytropic index n based upon pressure and volume between two states

Solution:

Chapter 3 - First Law of Thermodynamics and Energy

MEMS 0051

Learning Objectives

 $3.4~{
m Work}$ - Moving Boundary

ımmary

Student Learning Objectives

At the end of the lecture, students should be able to:

- ► Formulate an expression for work for moving boundary systems
 - ► Work for a moving boundary system is formulated based upon pressure and volume:

$$W_{1\to 2} = \int P(\forall) d\forall$$

► We can formulate this in terms of the polytropic index:

$$W_{1\to 2} = \frac{P_2 \forall_2 - P_1 \forall_1}{1 - n}$$

▶ When n = 1:

$$W_{1\to 2} = P_1 \forall_1 \ln\left(\frac{\forall_2}{\forall_1}\right)$$

Chapter 3 - First Law of Thermodynamics and Energy

MEMS 0051

Learning Objectives

.4 Work - Moving Soundary

Student Learning Objectives

- Calculate and apply the polytropic index to moving boundary systems
 - \triangleright *n* is calculated as:

$$n = \frac{\ln\left(\frac{P_2}{P_1}\right)}{\ln\left(\frac{\forall_1}{\forall_2}\right)} = \frac{\ln\left(\frac{P_1}{P_2}\right)}{\ln\left(\frac{\forall_2}{\forall_1}\right)}$$

Chapter 3 - First Law of Thermodynamics and Energy

MEMS 0051

Learning Objectives

.4 Work - Moving Boundary

Suggested Problems

► 3.37, 3.43, 3.45, 3.46, 3.49, 3.52, 3.56

Chapter 3 - First Law of Thermodynamics and Energy

 $\rm MEMS~0051$

earning Objectives

3.4 Work - Moving Boundary

