Al511 – Machine Learning Week 1 – Problem Solving

Aniruddh Kishore Budhgavi aniruddh.kishore@iiitb.ac.in

6 Sept 2021

Q1: Statement

Minimize the expression $\frac{x^2}{4} - 2x + 5$ with respect to x using

- 1. The closed-form solution
- 2. Gradient descent

Q1: The graph

Q1: Closed-form solution

$$f(x) = \frac{x^2}{4} - 2x + 5$$
$$\frac{df(x)}{dx} = \frac{x}{2} - 2 = 0$$
$$x = 4$$

Q1: Recap of Gradient Descent

Algorithm 1 Gradient Descent

$$W \leftarrow \text{random}$$
 $\text{Costs} \leftarrow \phi$
 $\text{for } i = 1 \text{ to } n_i \text{ do}$
 $\hat{Y} \leftarrow M(W, X)$
 $C \leftarrow J(Y, \hat{Y})$
 $W \leftarrow W - \alpha \nabla_W C$
Append C to Costs
end for

Let us set x = 10 initially. Let $\alpha = 0.1$

$$f(x) = \frac{x^2}{4} - 2x + 5$$

$$\frac{df(x)}{dx} = \frac{x}{2} - 2$$

$$f(10) = \frac{10^2}{4} - 2 * 10 + 5$$

$$= 25 - 20 + 5$$

$$= 10$$

X	f(x)
10	10

$$\alpha = 0.5, f(x) = \frac{x^2}{4} - 2x + 5, \frac{df(x)}{dx} = \frac{x}{2} - 2$$

$$f'(10) = \frac{10}{2} - 2$$

$$= 3$$

$$x_{next} = x - \alpha f'(x)$$

$$= 10 - 0.5 * 3$$

$$= 8.5$$

$$f(8.5) = \frac{8.5^2}{4} - 2 * 8.5 + 5$$

$$= 6.0625$$

X	f(x)
10	10
8.5	6.025

$$\alpha = 0.5, f(x) = \frac{x^2}{4} - 2x + 5, \frac{df(x)}{dx} = \frac{x}{2} - 2$$

$$f'(8.5) = \frac{8.5}{2} - 2$$

$$= 2.25$$

$$x_{next} = x - \alpha f'(x)$$

$$= 8.5 - 0.5 * 2.25$$

$$= 7.375$$

$$f(7.375) = \frac{7.375^2}{4} - 2 * 7.375 + 5$$

$$= 3.848$$

X	f(x)
10	10
8.5	6.025
7.375	3.848

$$\alpha = 0.5, f(x) = \frac{x^2}{4} - 2x + 5, \frac{df(x)}{dx} = \frac{x}{2} - 2$$

$$f'(7.375) = \frac{7.375}{2} - 2$$

$$= 1.688$$

$$x_{next} = x - \alpha f'(x)$$

$$= 7.375 - 0.5 * 1.688$$

$$= 6.531$$

$$f(6.531) = \frac{6.531^2}{4} - 2 * 6.531 + 5$$

$$= 2.601$$

X	f(x)
10	10
8.5	6.025
7.375	3.848
6.531	2.601

Q1: Run Through Gradient Descent

$$\alpha = 0.5, f(x) = \frac{x^2}{4} - 2x + 5, \frac{df(x)}{dx} = \frac{x}{2} - 2$$

$$f'(6.531) = \frac{6.531}{2} - 2$$

$$= 1.266$$

$$x_{next} = x - \alpha f'(x)$$

$$= 6.531 - 0.5 * 1.266$$

$$= 5.898$$

$$f(5.898) = \frac{5.898^2}{4} - 2 * 5.898 + 5$$

$$= 1.901$$

X	f(x)
10	10
8.5	6.025
7.375	3.848
6.531	2.601
5.898	1.901

$$\alpha = 0.5, f(x) = \frac{x^2}{4} - 2x + 5, \frac{df(x)}{dx} = \frac{x}{2} - 2$$

$$f'(5.898) = \frac{5.898}{2} - 2$$

$$= 0.949$$

$$x_{next} = x - \alpha f'(x)$$

$$= 5.898 - 0.5 * 0.949$$

$$= 5.424$$

$$f(5.424) = \frac{5.424^2}{4} - 2 * 5.424 + 5$$

$$= 1.507$$

X	f(x)
10	10
8.5	6.025
7.375	3.848
6.531	2.601
5.898	1.901
5.424	1.507

$$\alpha = 0.5, f(x) = \frac{x^2}{4} - 2x + 5, \frac{df(x)}{dx} = \frac{x}{2} - 2$$

$$f'(5.424) = \frac{5.424}{2} - 2$$

$$= 0.712$$

$$x_{next} = x - \alpha f'(x)$$

$$= 5.424 - 0.5 * 0.712$$

$$= 5.068$$

$$f(5.068) = \frac{5.068^2}{4} - 2 * 5.068 + 5$$

$$= 1.285$$

X	f(x)
10	10
8.5	6.025
7.375	3.848
6.531	2.601
5.898	1.901
5.424	1.507
5.068	1.285

$$\alpha = 0.5, f(x) = \frac{x^2}{4} - 2x + 5, \frac{df(x)}{dx} = \frac{x}{2} - 2$$

$$f'(5.068) = \frac{5.068}{2} - 2$$

$$= 0.534$$

$$x_{next} = x - \alpha f'(x)$$

$$= 5.068 - 0.5 * 0.534$$

$$= 4.801$$

$$f(4.801) = \frac{4.801^2}{4} - 2 * 4.801 + 5$$

$$= 1.16$$

X	f(x)
10	10
8.5	6.025
7.375	3.848
6.531	2.601
5.898	1.901
5.424	1.507
5.068	1.285
4.801	1.16

Q1: Gradient Descent With Excess Learning Rate

Let us set x = 10 initially. Let $\alpha = 5$

$$f(x) = \frac{x^2}{4} - 2x + 5$$

$$\frac{df(x)}{dx} = \frac{x}{2} - 2$$

$$f(10) = \frac{10^2}{4} - 2 * 10 + 5$$

$$= 25 - 20 + 5$$

$$= 10$$

$x \mid f(x)$
10 10
10 10

Q1: Gradient Descent With Excess Learning Rate

$$\alpha = 5, f(x) = \frac{x^2}{4} - 2x + 5, \frac{df(x)}{dx} = \frac{x}{2} - 2$$

$$f'(10) = \frac{10}{2} - 2$$

$$= 3$$

$$x_{next} = x - \alpha f'(x)$$

$$= 10 - 5 * 3$$

$$= -5$$

$$f(-5) = \frac{(-5)^2}{4} - 2 * (-5) + 5$$

$$= 21.25$$

X	f(x)
10	10
-5	21.25

Q1: Gradient Descent With Excess Learning Rate

$$\alpha = 5, f(x) = \frac{x^2}{4} - 2x + 5, \frac{df(x)}{dx} = \frac{x}{2} - 2$$

$$f'(-5) = \frac{-5}{2} - 2$$

$$= -4.5$$

$$x_{next} = x - \alpha f'(x)$$

$$= -5 - 5 * (-4.5)$$

$$= 17.5$$

$$f(17.5) = \frac{17.5^2}{4} - 2 * 17.5 + 5$$

$$= 46.563$$

X	f(x)
10	10
-5	21.25
17.5	46.563

Q1: Gradient Descent With Excess Learning Rate

Q2: Statement

Find the minimum of $f(x,y) = x^4 + x^3 - 2x^2 + y^2$, using the closed-form solution and using gradient descent. Interact with the 3D plot here.

Q2: Contour Plots

It's difficult to visualize the gradient and the path on the 3D plot.

Every curve on the contour plot is a locus of constant height.

To obtain the contour of f(x, y) at height h, on the x-y plane, plot the curve of h = f(x, y). Interact with the contour plot here.

Q2: Closed-form solution

 $\therefore y = 0$

$$f(x,y) = x^4 + x^3 - 2x^2 + y^2$$

$$\frac{\partial f(x,y)}{\partial x} = 4x^3 + 3x^2 - 4x = 0$$

$$\therefore x = -1.443, 0, 0.693$$

$$\frac{\partial f(x,y)}{\partial y} = 2y = 0$$

$$f(-1.443,0) = -2.833$$
$$f(0,0) = 0$$
$$f(0.693,0) = -0.39$$

 \therefore the minimum of f(x,y) is at (-1.443,0)

Let's start from (-0.5, 4.5) with $\alpha = 0.1$.

$$\alpha = 0.1$$

$$f(x,y) = x^4 + x^3 - 2x^2 + y^2$$

$$\frac{\partial f(x,y)}{\partial x} = 4x^3 + 3x^2 - 4x$$

$$\frac{\partial f(x,y)}{\partial y} = 2y$$

X	У	f(x,y)
-0.5	4.5	19.688
-0.725	3.6	11.80

f(-0.5, 4.5) = 19.688
$(\nabla_{x,y}f)(-0.5,4.5)=(2.25,9)$
$(x_{next}, y_{next}) = (-0.5, 4.5) - \alpha(\nabla_{x,y} f)(-0.5, 4.5)$
= (-0.725, 3.6)
f(-0.725, 3.6) = 11.80

$$\alpha = 0.1$$

$$f(x,y) = x^4 + x^3 - 2x^2 + y^2$$

$$\frac{\partial f(x,y)}{\partial x} = 4x^3 + 3x^2 - 4x$$

$$\frac{\partial f(x,y)}{\partial y} = 2y$$

X	У	f(x,y)
-0.5	4.5	19.688
-0.725	3.6	11.80
-1.02	2.88	6.23
		-

$$f(-0.725, 3.6) = 11.80$$

$$(\nabla_{x,y} f)(-0.725, 3.6) = (2.952, 7.2)$$

$$(x_{next}, y_{next}) = (-0.725, 3.6) - \alpha(\nabla_{x,y} f)(-0.725, 3.6)$$

$$= (-1.02, 2.88)$$

$$f(-1.02, 2.88) = 6.23$$

$$\alpha = 0.1$$

$$f(x,y) = x^4 + x^3 - 2x^2 + y^2$$

$$\frac{\partial f(x,y)}{\partial x} = 4x^3 + 3x^2 - 4x$$

$$\frac{\partial f(x,y)}{\partial y} = 2y$$

	- (
У	f(x,y)
4.5	19.688
3.6	11.80
2.88	6.23
2.30	2.56
	3.6 2.88

f(-1.02, 2.88) = 6.23
$(\nabla_{x,y}f)(-1.02, 2.88) = (2.96, 5.76)$
$(x_{next}, y_{next}) = (-1.02, 2.88) - \alpha(\nabla_{x,y} f)(-1.02, 2.88)$
= (-1.31, 2.30)
f(-1.31, 2.30) = 2.56

$$\alpha = 0.1$$

$$f(x,y) = x^4 + x^3 - 2x^2 + y^2$$

$$\frac{\partial f(x,y)}{\partial x} = 4x^3 + 3x^2 - 4x$$

$$\frac{\partial f(x,y)}{\partial y} = 2y$$

X	У	f(x,y)
-0.5	4.5	19.688
-0.725	3.6	11.80
-1.02	2.88	6.23
-1.31	2.30	2.56
-1.45	1.84	0.55

f(-1.31, 2.30) = 2.56
$(\nabla_{x,y}f)(-1.31,2.30) = (1.39,4.6)$
$(x_{next}, y_{next}) = (-1.31, 2.30) - \alpha(\nabla_{x,y} f)(-1.31, 2.30)$
= (-1.45, 1.84)
f(-1.45, 1.84) = 0.55

$$\alpha = 0.1$$

$$f(x,y) = x^4 + x^3 - 2x^2 + y^2$$

$$\frac{\partial f(x,y)}{\partial x} = 4x^3 + 3x^2 - 4x$$

$$\frac{\partial f(x,y)}{\partial y} = 2y$$

X	У	f(x,y)
-0.5	4.5	19.688
-0.725	3.6	11.80
-1.02	2.88	6.23
-1.31	2.30	2.56
-1.45	1.84	0.55
-1.44	1.47	-0.67

$$f(-1.45, 1.84) = 0.55$$

$$(\nabla_{x,y}f)(-1.45, 1.84) = (-0.087, 3.68)$$

$$(x_{next}, y_{next}) = (-1.45, 1.84) - \alpha(\nabla_{x,y}f)(-1.45, 1.84)$$

$$= (-1.44, 1.47)$$

$$f(-1.44, 1.47) = -0.67$$

$$\alpha = 0.1$$

$$f(x,y) = x^4 + x^3 - 2x^2 + y^2$$

$$\frac{\partial f(x,y)}{\partial x} = 4x^3 + 3x^2 - 4x$$

$$\frac{\partial f(x,y)}{\partial y} = 2y$$

f(-1.44, 1.47) = -0.67
$(\nabla_{x,y}f)(-1.44,1.47) = (0.037,2.94)$
$(x_{next}, y_{next}) = (-1.44, 1.47) - \alpha(\nabla_{x,y} f)(-1.44, 1.47)$
= (-1.44, 1.17)
f(-1.44, 1.17) = -1.45

X	у	f(x,y)
-0.5	4.5	19.688
-0.725	3.6	11.80
-1.02	2.88	6.23
-1.31	2.30	2.56
-1.45	1.84	0.55
-1.44	1.47	-0.67
-1.44	1.17	-1.45

For happens next, open the interactive graph and play with it. To see the effect of a large learning rate, change α and see what happens!