Cross Product The angle between two vectors Representations of Lines and Planes in R^3

Jiarui Yu

Cross Product

4 Definition If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then the **cross product** of \mathbf{a} and \mathbf{b} is the vector

$$\mathbf{a} \times \mathbf{b} = \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$$

8 Theorem The vector $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b} .

FIGURE 1

The right-hand rule gives the direction of $\mathbf{a} \times \mathbf{b}$.

EXAMPLE 1 If $\mathbf{a} = \langle 1, 3, 4 \rangle$ and $\mathbf{b} = \langle 2, 7, -5 \rangle$, then

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & 4 \\ 2 & 7 & -5 \end{vmatrix}$$

$$= \begin{vmatrix} 3 & 4 \\ 7 & -5 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & 4 \\ 2 & -5 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 3 \\ 2 & 7 \end{vmatrix} \mathbf{k}$$

=
$$(-15 - 28)\mathbf{i} - (-5 - 8)\mathbf{j} + (7 - 6)\mathbf{k} = -43\mathbf{i} + 13\mathbf{j} + \mathbf{k}$$

The angle between two vectors

• Generally, the angle $\phi \in [0, \pi]$ between vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^2$ a point $\mathbf{p} \in I_1 \cap I_2$ is determined by

$$\cos \phi = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}$$

The angle is *acute* if $\mathbf{a} \cdot \mathbf{b} > 0$ and *obtuse* if $\mathbf{a} \cdot \mathbf{b} < 0$.

Representations of Lines and Planes in R^3

There exists alternative representations for planes/lines:

- Equational Representation
- Parametric Representation

Equational Representation

Planes

Every plane in \mathbb{R}^3 is the solution set of a single linear

equation

with
$$a_1, a_2, a_3, b \in \mathbb{R}$$
 and not all a_i equal to zero (i.e., $(a_1, a_2, a_3) \in \mathbb{R}^3 \setminus \{\mathbf{0}\}$).

Conversely, every such point set is a plane in \mathbb{R}^3 .

Linear equations $a_1x_1 + a_2x_2 + a_3x_3 = b$ and $a'_1x_1 + a'_2x_2 + a'_3x_3 = b'$ represent the same plane iff the vectors (a_1, a_2, a_3, b) and (a'_1, a'_2, a'_3, b') are scalar multiples of each other.

 $a_1x_1 + a_2x_2 + a_3x_3 = b$

Equational Representation

Lines

Every line in \mathbb{R}^3 is the intersection of 2 planes (in many ways) and hence the solution set of a system of 2 linear equations.

Conversely, the intersection of any 2 distinct planes in \mathbb{R}^3 is a line.

with a1,a2,a3,a4,a5,a6,b1,b2 belongs to R and not all ai equals to zero.

Parametric Representation

Lines

• The physical *line* through any two distinct points $P rianlge (p_1, p_2)$ and $Q rianlge (q_1, q_2)$ is represented by the mathematical line

$$I = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} + \mathbb{R} \begin{pmatrix} q_1 - p_1 \\ q_2 - p_2 \end{pmatrix} = \left\{ \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} + \lambda \begin{pmatrix} q_1 - p_1 \\ q_2 - p_2 \end{pmatrix}; \lambda \in \mathbb{R} \right\}$$

$$C = \left\{ (1 - \lambda) \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} + \lambda \begin{pmatrix} q_1 \\ q_2 \end{pmatrix}; \lambda \in \mathbb{R} \right\}$$

$$C \text{ is on line PQ}$$

Using vectorial notation $\mathbf{p}=(p_1,p_2)$, $\mathbf{q}=(q_1,q_2)$ this simplifies to $I=\mathbf{p}+\mathbb{R}(\mathbf{q}-\mathbf{p})=\left\{\mathbf{p}+\lambda(\mathbf{q}-\mathbf{p});\lambda\in\mathbb{R}\right\}$ and can also be written as $I=\left\{\lambda_1\mathbf{p}+\lambda_2\mathbf{q};\lambda_1,\lambda_2\in\mathbb{R},\lambda_1+\lambda_2=1\right\}$.

The vector $\mathbf{b} = \mathbf{q} - \mathbf{p}$ is sometimes called *direction vector* of the line I. (Note, however, that any multiple $\lambda \mathbf{b}$, $\lambda \neq 0$, and in particular $-\mathbf{b}$ is a direction vector of I as well.)

For Planes?

Think about that, and there is a related question in WS1, we will talk about that later.

Examples

Find parametric and equational representations of the line that passes through the points A (2,4,-3) and B (3,-1,1).

parametril

$$\overline{J} = \overline{A} + C(\overline{B} - \overline{A})$$

$$\overline{J} = \begin{pmatrix} 2 \\ 4 \\ -3 \end{pmatrix} + C\begin{pmatrix} 1 \\ -5 \\ 4 \end{pmatrix}$$

