

Projekt Inżynierski

Realizacja gry logicznej "Mistrz intelektu" na bazie układu FPGA

Promotor: Tomasz Garbolino Wykonanie: Michał Gold

Cel i Opis Projektu

Celem pracy było zaprojektowanie i wykonanie układu realizującego grę logiczną "Mistrz intelektu" (ang. "Master Mind") w oparciu układ FPGA.

Zaprojektowany układ wyświetla obraz gry na monitorze z **interfejsem VGA i/lub HDMI**. Sterowanie odbywa się poprzez **przyciski** obecne na osobnej płytce stykowej podłączonej do urządzenia.

Projekt wyposażony jest również w głośnik, potrafiący odtwarzać proste melodie.

Użytkownik jest w stanie konfigurować wiele parametrów gry, takich jak ilość dostępnych kolorów, rozmiar planszy oraz liczba dozwolonych prób odgadnięcia ukrytej sekwencji. Możliwe jest też ustawienie rozmiaru czcionki wyświetlanej na ekranie oraz palety barw, jaka jest wykorzystywana do rysowania wielu elementów.

4

Wykorzystane Technologie - Układ FPGA

Układ FPGA **10M08DAF256C8G** z rodziny MAX10 firmy Altera, zestaw startowy **MAXimator**

Wykorzystane Technologie - Oprogramowanie

Do stworzenia projektu wykorzystano program Quartus Prime Lite firmy Intel oraz język opisu sprzętu SystemVerilog.

Do testów wykorzystano program Questa Sim.

Sterowanie

Przy odczycie stanu przycisków zastosowano **Debouncing**. Sygnał musi być stabilny przez **2ms**.

Ogólna Struktura Projektu

Parametr	Wartość	Jednostka	
Częstotliwość Zegara Pikseli	25.175	MHz	
Horizontal Resolution	640	Cykle Zegara Pikseli	
Horizontal Front Porch	16	Cykle Zegara Pikseli	
Horizontal Sync	96	Cykle Zegara Pikseli	
Horizontal Back Porch	48	Cykle Zegara Pikseli	
Vertical Resolution	480	Linie obrazu	
Vertical Front Porch	10	Linie obrazu	
Vertical Sync	2	Linie obrazu	
Vertical Back Porch	33	Linie obrazu	

Obraz **HDMI**: Analogicznie jak VGA, ale z zegarem pikseli o 10x większej częstotliwości (251,75Hz) i kodowaniem **TMDS**.

Ze względu na ograniczenia technologicznie, wykorzystano częstotliwości zegarów **25,2Hz** oraz **252Hz**.

Problem z synchronizacją modułu VGA z modułami RAM i ROM

Moduły RAM oraz ROM posiadają opóźnienie równe **2** taktom zegara.

W projekcie zastosowano więc dwa zestawów liczników. Pierwszy zestaw jest opóźniony względem drugiego o **2 cykle sygnału zegarowego**. Drugi zestaw wykorzystywany jest do obliczeń adresu pamięci RAM i ROM, a drugi wykorzystywany jest do wyznaczenia generowanego koloru na podstawie aktualnej odpowiedzi zwracanej przez moduły pamięci.

	Pulsy Zegara Pikseli				
Licznik Pamięci	3	4	5	6	7
Adres pamięci	a3 ्	a4 ```	a5 .	a6	a7
Wyjście pamięci	q1	q2	q 3	q 4	4 5
Licznik Rysowania	1	2	3	4	5

Generowanie Liczb Losowych

Algorytm XorShiftStar.

Początkowy seed ustawiany jest na jako liczbę cykli sygnału zegarowego w momencie rozpoczęcia rozgrywki, jaka minęła od uruchomienia urządzenia

```
module RNG(
         input clk.
         input en,
         input [31:0] seed,
         output wire [31:0] res,
         output wire [63:0] res_full
      localparam [31:0] init_state = 32'd2463534242;
      localparam [31:0] multiplier = 32'd3084775641:
                 [31:0] state
                                    = init state:
      rea [63:0] mul res = 0:
12
      assign res = mul_res[63:32];
      assign res_full = mul_res;
    □always @(posedge clk) begin
         if(seed) begin
16
            state = seed:
17
         end
18
         if(en) begin
19
            state \bar{\Lambda}= (state << 13);
20
            state \wedge= (state >> 17);
21
            state ^= (state << 5);
22
            mul_res = state * multiplier;
23
             mul_res[63:32] = state;
24
25
     Lend
26
      endmodule
```


System musi dokonań w najgorszym przypadku 400 porównań kolorów. Synteza takiego układu wykorzystania **130%** dostępnych wymaga jednostek logicznych na układzie FPGA. Rozłożono więc działanie algorytmu w czasie, wykonując jedno porównanie na jeden cykl zegara. To, które piny są porównywane zależy od wartości licznika cykli zegara. Ostatecznie, projekt wymagał **57%** dostępnych jednostek logicznych.

	time_counter		Wykonywane porównanie			
Bit 10	Bity 9:5	Bity 4:0				
faza	pos2	post				
	0	0-19	Podpowiedzi zielone: porównanie pos1 z pos1			
		20-31				
0		0-19				
	1-31	20-31	Brak akcji			
		:				
	0	0-19	Podpowiedzi zółte: porównanie pos2 (0) z pos1			
		20-31	Brak akcji			
	1	0-19	Podpowiedzi zółte: porównanie pos2 (1) z pos1			
		20-31	Brak akcji			
1	:	:	:			
	19 20-31	0-19	Podpowiedzi zółte: porównanie pos2 (19) z pos1			
		20-31				
		:	Brak akcji			

Wygląd Urządzenia

Gra - Menu Główne

Gra - Menu Opcji

Gra - Przykładowy przebieg gry

Dalsze możliwości rozwoju

Dodanie pamięci nieulotnej (EEPROM Flash lub karta MicroSD), na której zapisywane będą preferencje użytkownika. Aktualnie wartości ustawionych opcji są tracone wraz z odłączeniem urządzenia od zasilania.

Ulepszenie algorytmu liczenia podpowiedzi. Aktualnie wyznaczanie podpowiedzi zajmuje 1024 cykle zegara 1MHz, czyli około 1ms. Skupiono się na łatwości implementacji algorytmu niż na wydajności.

Dziękuję za Uwagę

