

Silicon N-Channel Power Trench MOSFET

CS12N06 AE-G

General Description:

CS12N06 AE-G, the silicon N-channel Enhanced VDMOSFETs, is obtained by the high density Trenchtechnology which reduce the conduction loss, improve switching performance and enhance the avalanche energy. The transistor can be used in various power switching circuit for system miniaturization and higher efficiency. The package form is SOP-8, which accords with the RoHS standard.

\mathbf{F}	മ	tıı	res	
١,	54			Ξ

- I Fast Switching
- 1 Low ON Resistance
- **I Low Gate Charge**
- **I** Low Reverse transfer capacitances
- I 100% Single Pulse avalanche energy Test
- I Halogen free

Applications:

Power switch circuit of adaptor and charger.

Absolute ($T_A = 25^{\circ}C$ unless otherwise specified):

	(TA 20 0 differs other wise specified).		
Symbol	Parameter	Rating	Units
V _{DSS}	Drain-to-Source Voltage	60	V
ī	Continuous Drain Current	12	A
I_{D}	Continuous Drain Current T _A = 100 °C	8	A
I_{DM}^{a1}	Pulsed Drain Current	48	A
V_{GS}	Gate-to-Source Voltage	±20	V
E_{AS}^{a2}	Single Pulse Avalanche Energy	135	mJ
P_{D}	Power Dissipation	3.2	W
T_J , T_{stg}	Operating Junction and StorageTemperatureRange	150, -55 to 150	${\mathbb C}$

$V_{ m DSS}$	60	V
$I_{D~(Silicon~limited~current)}$	12	A
$P_D(T_C=25^{\circ}C)$	3.2	W
$R_{DS(ON)Typ}$	10.5	mΩ

Electrical Characteristics ($T_A=25^{\circ}C$ unless otherwise specified):

OFF Characteristics								
Carrata a 1	Parameter	Test Conditions		Rating				
Symbol	r at affecter	Test Conditions	Min.	Тур.	Max.	Units		
V_{DSS}	Drain to Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250 \mu A$	60			V		
I_{DSS}		$V_{DS} = 60 \text{V}, V_{GS} = 0 \text{V},$ $T_a = 25 ^{\circ}\text{C}$			1			
	Drain to Source Leakage Current	V_{DS} =48V, V_{GS} = 0V, T_a = 125 °C			100	μA		
$I_{GSS(F)}$	Gate to Source Forward Leakage	V _{GS} =+20V			100	nA		
$I_{GSS(R)}$	Gate to Source Reverse Leakage	V _{GS} =-20V			-100	nA		

ON Characteristics								
Symbol	Parameter	Test Conditions		Rating				
	1 arameter	Test Conditions	Min.	Typ.	Max.	Units		
$R_{\mathrm{DS(ON)}}$	Durin to Source On Besistance	V _{GS} =10V,I _D =12A		10.5	13.5	mΩ		
	Drain-to-Source On-Resistance	V _{GS} =4.5V,I _D =9A		13	16	mΩ		
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS}=V_{GS},I_D=250\mu A$	0.9	1.4	1.9	V		
Pulse width $tp \le 300 \mu s$, $\delta \le 2\%$								

Dynamic Characteristics								
Symbol	Parameter	Test Conditions	Rating			T I:4.		
	Farameter	Test Conditions	Min.	Тур.	Max.	Units		
C_{iss}	Input Capacitance			2370				
C_{oss}	Output Capacitance	V_{DS} =30V, V_{GS} =0V, f=1.0MHz		164		pF		
C_{rss}	Reverse Transfer Capacitance			123				

Resistive Switching Characteristics								
Symbol	Parameter	Test Conditions		Rating				
	Farameter	Test Collations	Min.	Тур.	Max.	Units		
$t_{d(\mathrm{ON})}$	Turn-on Delay Time			13.1				
tr	Rise Time	$V_{DD} = 30V, I_D = 10A,$		25.1				
$t_{d(OFF)}$	Turn-Off Delay Time	$R_G = 3\Omega, V_{GS} = 10V$		60.8		ns		
t_{f}	Fall Time			9.0				
Q_{g}	Total Gate Charge			50.7				
Q_{gs}	Gate to Source Charge	$V_{DS}=30V,I_{D}=12A, V_{GS}=10V$		7.0		nC		
Q_{gd}	Gate to Drain ("Miller")Charge			12.3				

Symbol

 V_{SD}

 T_{rr}

Source-Drain Diode Characteristics

Parameter

Diode Forward Voltage

Reverse Recovery Time

Reverse Recovery Charge

CS12N06 AE-G

Test Conditions

--

22

19.5

 $I_S=12A, V_{GS}=0V$

 $V_{GS}=0V,I_{S}=12A,$

di/dt=100A/us

	Units		
Min.	Тур.	Max.	Units
		1.0	17

ns

nC

Pulse width $tp \le 300 \mu s$, $\delta \le 2\%$							
Symbol	Parameter	Max.	Units				
R o JA	Junction-to-Ambient	40	°C/W				

^{a1}: Repetitive rating; pulse width limited by maximum junction temperature

 $^{^{}a2}$: Vdd=25V, L=1mH, I_D =17A, Start T_J =25°C

^{a3}: Recommend soldering temperature defined by IPC/JEDEC J-STD 020

Characteristics Curve:

Figure 1. Output Characteristics

Figure 2. Transfer Characteristics

Figure 3. Drain-to-Source On Resistance vs Drain Current

Figure 4. Typical Body Diode Transfer Characteristics

Figure 5. Capacitance Characteristics

Figure 6. Gate Charge Characteristics

2
PULSED TEST
V_{GS} = 10V
I_D = 12A

1.8
PULSED TEST
V_{GS} = 10V
I_D = 12A

1.9
0.8
0.6
-75
-25
25
75
T_J, Junction Temperature (°C)

Figure 7. Normalized Breakdown Voltage vs Junction Temperature

Figure 8. Normalized On Resistance vs Junction Temperature

Figure 9. Maximum Safe Operating

Figure 10. Maximum Continuous Drain Current vs Case Temperature

Figure 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Figure 12. Drain-to-Source On Resistance vs Gate Voltage and Drain Current

Figure 13. Normalized Threshold Voltage vs Junction Temperature

Test Circuit and Waveform

Figure 14. Gate Charge Test Circuit

Figure 15. Gate Charge Waveforms

Figure 16. Resistive Switching Test Circuit

Figure 17. Resistive Switching Waveforms

Figure 18. Diode Reverse Recovery Test Circuit

Figure 19. Diode Reverse Recovery Waveform

Figure 20. Unclamped Inductive Switching Test Circuit

Figure 21. Unclamped Inductive Switching Waveform

Package Information:

Items	Values(mm)				
items	MIN	MAX			
A	1.30	1.80			
A1	0.10	0.25			
A2	1.30	1.50			
Е	5.80	6.20			
E1	3.80	4.00			
D	4.80	5.00			
L	0.40	0.90			
e	1.27	TYP			
b	0.37	0.47			
С	0.20 TYP				
θ3	0°	8°			

SOP-8Package

The name and content of poisonous and harmful material in products

Part's Name	Hazardous Substance									
i art 51 taine	Pb	Hg	Cd	Cr(VI)	PBB	PBDE	DIBP	DEHP	DBP	BBP
Limit	€	\leq	\leq	≤0.1%	≤0.1%	≤0.1%	≤0.1%	≤0.1%	≤0.1%	≤0.1%
	0. 1%	0.1%	0. 01%	≪U. 1%	≪0.1%	≪0.1%	₩0. 1%	∜ 0. 1%	≪0.1%	≪0.1%
Lead Frame	0	0	0	0	0	0	0	0	0	0
Molding	0	0	0	0	0	0	0	0	0	0
Chip	0	0	0	0	0	0	0	0	0	0
Wire Bonding	0	0	0	0	0	0	0	0	0	0
Solder	×	0	0	0	0	0	0	0	0	0
	o: Mea	ans the ha	zardous n	naterial is	under the	criterion	of 2011/65	EU.		
Note	×: Means the hazardous material exceeds the criterion of 2011/65/EU.									
Note The plumbum element of solder exist in process.					st in prod	ucts prese	ntly, but v	within the	allowed	range of
	Eurogroup's RoHS.									

Warnings

- 1. Exceeding the maximum ratings of the device in performance may cause damage to the device, even the permanent failure, which may affect the dependability of the machine. It is suggested to be used under 80 percent of the maximum ratings of the device.
- **2.** When installing the heat sink, please pay attention to the torsional moment and the smoothness of the heat sink.
- **3.** VDMOSFETs is the device which is sensitive to the static electricity, it is necessary to protect the device from being damaged by the static electricity when using it.
- **4.** This publication is made by Huajing Microelectronics and subject to regular change without notice.

WUXI CHINA RESOURCES HUAJING MICROELECTRONICS CO., LTD.

Add: No.14 Liangxi RD. Wuxi, Jiangsu, China Mail:214061 http://www.crhj.com.cn
Tel: +86 0510-85807228 Fax: +86- 0510-85800864

Marketing Part: Post: 214061 Tel: +86 0510-81805277/81805336

Fax: +86 0510-85800360/85803016

Application and Service: Post: 214061 Tel/Fax: +86-0510-81805243/81805110