Description Logic 1: Syntax and Semantics

Leif Harald Karlsen

Autumn 2015

Contents

Introduction

ALC: Syntax and Semantics

Extensions and other DLs

OWL and the Semantic Web

Appendix

Contents

Introduction

ALC: Syntax and Semantics

Extensions and other DLs

OWL and the Semantic Web

Appendix

Overview

 Description logics are formal languages designed for knowledge representation and reasoning, and most of these are decidable fragments of FOL.

Overview

- Description logics are formal languages designed for knowledge representation and reasoning, and most of these are decidable fragments of FOL.
- Each description logic describes a language, and each language differ in expressibility vs. reasoning complexity, defined by allowing or disallowing different constructs (e.g. conjunction, disjunction, negation, quantifiers, etc.) in their language.

- Description logic comes from a merging of two traditions.

- Description logic comes from a merging of two traditions.
- Knowledge Representation (KR)
 - Application oriented
 - Represent 'knowledge' in some way
 - 'Frames,' like classes, with relations and attributes
 - Try to add some 'semantics' in order to do some 'reasoning'

- Description logic comes from a merging of two traditions.
- Knowledge Representation (KR)
 - Application oriented
 - Represent 'knowledge' in some way
 - 'Frames,' like classes, with relations and attributes
 - Try to add some 'semantics' in order to do some 'reasoning'
- Automated Reasoning, Modal Logic
 - Had theorems and algorithms

- Description logic comes from a merging of two traditions.
- Knowledge Representation (KR)
 - Application oriented
 - Represent 'knowledge' in some way
 - 'Frames,' like classes, with relations and attributes
 - Try to add some 'semantics' in order to do some 'reasoning'
- Automated Reasoning, Modal Logic
 - Had theorems and algorithms
- Cross-fertilisation of applications and theory

- Description logic comes from a merging of two traditions.
- Knowledge Representation (KR)
 - Application oriented
 - Represent 'knowledge' in some way
 - 'Frames,' like classes, with relations and attributes
 - Try to add some 'semantics' in order to do some 'reasoning'
- Automated Reasoning, Modal Logic
 - Had theorems and algorithms
- Cross-fertilisation of applications and theory
- Today: large impact on Semantic Web (sign up for INF3580/4580!)

In description logics one works with three different types of elements:

In description logics one works with three different types of elements:

individuals/constants (e.g. james, sensor1)

In description logics one works with three different types of elements:

- individuals/constants (e.g. james, sensor1)
- concepts/unary relations (e.g. Person, Sensor)

In description logics one works with three different types of elements:

- individuals/constants (e.g. james, sensor1)
- concepts/unary relations (e.g. Person, Sensor)
- roles/binary relations (e.g. isFatherOf, isConnectedTo)

In description logics one works with three different types of elements:

- individuals/constants (e.g. james, sensor1)
- concepts/unary relations (e.g. Person, Sensor)
- roles/binary relations (e.g. isFatherOf, isConnectedTo)

Knowledge is represented as a *knowledge base*, $\mathcal{K} = \langle \mathcal{A}, \mathcal{T} \rangle$ where:

- A is a set of assertions about named individuals, called the ABox (e.g. Person(james), isFatherOf(james, peter))

In description logics one works with three different types of elements:

- individuals/constants (e.g. james, sensor1)
- concepts/unary relations (e.g. Person, Sensor)
- roles/binary relations (e.g. isFatherOf, isConnectedTo)

Knowledge is represented as a *knowledge base*, $\mathcal{K} = \langle \mathcal{A}, \mathcal{T} \rangle$ where:

- A is a set of assertions about named individuals, called the ABox (e.g. Person(james), isFatherOf(james, peter))
- \mathcal{T} is a set of terminology definitions (i.e. complex descriptions of concepts or roles), called the TBox (e.g. $Human \sqsubseteq Mammal$, $Mother \equiv Parent \sqcap Woman$)

Contents

Introduction

ALC: Syntax and Semantics

Extensions and other DLs

OWL and the Semantic Web

Appendix

ALC: Syntax

The description logic \mathcal{ALC} (Attribute Language with general Complement) allows the following concepts:

ALC: Syntax

The description logic \mathcal{ALC} (Attribute Language with general Complement) allows the following concepts:

ALC: Syntax

The description logic \mathcal{ALC} (Attribute Language with general Complement) allows the following concepts:

where A is an atomic concept, C and D are concepts, and R is a role.

\mathcal{ALC} : Syntax

The description logic \mathcal{ALC} (Attribute Language with general Complement) allows the following concepts:

where A is an atomic concept, C and D are concepts, and R is a role. We allow

- ABox assertions: C(a) and R(a,b) for individuals a,b, concepts C and roles R;
- TBox axioms: $C \sqsubseteq D$ for concepts C and D.

A model ${\mathcal M}$ for a knowledge base ${\mathcal K}$ consists of

- a nonempty set Δ , and
- an interpretation function $_{_}^{\mathcal{M}}$, such that:
 - for every constant c, $c^{\mathcal{M}} \in \Delta$,
 - for every atomic concept $A, A^{\mathcal{M}} \subseteq \Delta$,
 - for every atomic role R, $R^{\mathcal{M}} \subseteq \Delta \times \Delta$,

 $_{_}^{\mathcal{M}}$ is extended inductively as

 $_{_}^{\mathcal{M}}$ is extended inductively as

$$T^{\mathcal{M}} = \Delta$$

$$\bot^{\mathcal{M}} = \emptyset$$

$$(\neg C)^{\mathcal{M}} = \Delta \setminus C^{\mathcal{M}}$$

$$(C \sqcup D)^{\mathcal{M}} = C^{\mathcal{M}} \cup D^{\mathcal{M}}$$

$$(C \sqcap D)^{\mathcal{M}} = C^{\mathcal{M}} \cap D^{\mathcal{M}}$$

$$(\forall R.C)^{\mathcal{M}} = \{ a \in \Delta \mid \forall b \in \Delta (\langle a, b \rangle \in R^{\mathcal{M}} \to b \in C^{\mathcal{M}}) \}$$

$$(\exists R.C)^{\mathcal{M}} = \{ a \in \Delta \mid \exists b \in \Delta (\langle a, b \rangle \in R^{\mathcal{M}} \land b \in C^{\mathcal{M}}) \}$$

An interpretation ${\mathcal M}$ satisfies

– C(a), denoted $\mathcal{M} \models C(a)$, iff $a^{\mathcal{M}} \in C^{\mathcal{M}}$;

An interpretation $\mathcal M$ satisfies

- -C(a), denoted $\mathcal{M} \models C(a)$, iff $a^{\mathcal{M}} \in C^{\mathcal{M}}$;
- $C \sqsubseteq D$, denoted $\mathcal{M} \models C \sqsubseteq D$, iff $C^{\mathcal{M}} \subseteq D^{\mathcal{M}}$;

An interpretation ${\cal M}$ satisfies

- -C(a), denoted $\mathcal{M} \models C(a)$, iff $a^{\mathcal{M}} \in C^{\mathcal{M}}$;
- $C \sqsubseteq D$, denoted $\mathcal{M} \models C \sqsubseteq D$, iff $C^{\mathcal{M}} \subseteq D^{\mathcal{M}}$;
- $-R \sqsubseteq P$, denoted $\mathcal{M} \models R \sqsubseteq P$, iff $R^{\mathcal{M}} \subseteq P^{\mathcal{M}}$.

As usual, we will write $\mathcal{K} \vDash \psi$ if for any model \mathcal{M} we have that $\mathcal{M} \vDash \mathcal{K} \Rightarrow \mathcal{M} \vDash \psi$.

An interpretation ${\mathcal M}$ satisfies

- -C(a), denoted $\mathcal{M} \models C(a)$, iff $a^{\mathcal{M}} \in C^{\mathcal{M}}$;
- $-C \sqsubseteq D$, denoted $\mathcal{M} \models C \sqsubseteq D$, iff $C^{\mathcal{M}} \subseteq D^{\mathcal{M}}$;
- $-R \sqsubseteq P$, denoted $\mathcal{M} \models R \sqsubseteq P$, iff $R^{\mathcal{M}} \subseteq P^{\mathcal{M}}$.

As usual, we will write $\mathcal{K} \vDash \psi$ if for any model \mathcal{M} we have that $\mathcal{M} \vDash \mathcal{K} \Rightarrow \mathcal{M} \vDash \psi$.

We will use the following shorthand notation:

- $-C \equiv D$ instead of the two axioms $C \sqsubseteq D$ and $D \sqsubseteq C$;
- $-\mathcal{A} \vDash \psi$ instead of $\langle \emptyset, \mathcal{A} \rangle \vDash \psi$;
- $-\mathcal{T} \vDash \psi$ instead of $\langle \mathcal{T}, \emptyset \rangle \vDash \psi$.

Example

TBox:

 $Animal \sqsubseteq LivingThing$ $Donkey \equiv Animal \sqcap \forall hasParent.Donkey$ $Horse \equiv Animal \sqcap \forall hasParent.Horse$ $Mule \equiv Animal \sqcap \exists hasParent.Horse \sqcap \exists hasParent.Donkey$ $\exists hasParent.Mule \sqsubseteq \bot$

Example

TBox:

```
Animal \sqsubseteq LivingThing
Donkey \equiv Animal \sqcap \forall hasParent.Donkey
Horse \equiv Animal \sqcap \forall hasParent.Horse
Mule \equiv Animal \sqcap \exists hasParent.Horse \sqcap \exists hasParent.Donkey
\exists hasParent.Mule \sqsubseteq \bot
```

ABox:

Horse(Mary) Mule(Peter) Donkey(Sven)
hasParent(Peter, Mary) hasParent(Peter, Carl)

Example

TBox:

```
Animal \sqsubseteq LivingThing
Donkey \equiv Animal \sqcap \forall hasParent.Donkey
Horse \equiv Animal \sqcap \forall hasParent.Horse
Mule \equiv Animal \sqcap \exists hasParent.Horse \sqcap \exists hasParent.Donkey
\exists hasParent.Mule \sqsubseteq \bot
```

ABox:

```
hasParent(Peter, Mary) hasParent(Peter, Carl)
hasParent(Sven, Hannah) hasParent(Sven, Carl)
```

Horse(Mary) Mule(Peter) Donkey(Sven)

The function π map concepts to first-order formulae:

The function π map concepts to first-order formulae:

$$\pi_{x}(A) = A(x)$$

$$\pi_{x}(\neg C) = \neg \pi_{x}(C)$$

$$\pi_{x}(C \sqcup D) = \pi_{x}(C) \vee \pi_{x}(D)$$

$$\pi_{x}(C \sqcap D) = \pi_{x}(C) \wedge \pi_{x}(D)$$

$$\pi_{x}(\exists R.C) = \exists y (R(x, y) \wedge \pi_{y}(C))$$

$$\pi_{x}(\forall R.C) = \forall y (R(x, y) \rightarrow \pi_{y}(C))$$

The function π map concepts to first-order formulae:

$$\pi_{x}(A) = A(x)$$

$$\pi_{x}(\neg C) = \neg \pi_{x}(C)$$

$$\pi_{x}(C \sqcup D) = \pi_{x}(C) \vee \pi_{x}(D)$$

$$\pi_{x}(C \sqcap D) = \pi_{x}(C) \wedge \pi_{x}(D)$$

$$\pi_{x}(\exists R.C) = \exists y (R(x, y) \wedge \pi_{y}(C))$$

$$\pi_{x}(\forall R.C) = \forall y (R(x, y) \rightarrow \pi_{y}(C))$$

We can then map axioms: $\Pi(C \sqsubseteq D) := \forall x(\pi_x(C) \to \pi_x(D)).$

The function π map concepts to first-order formulae:

$$\pi_{x}(A) = A(x)$$

$$\pi_{x}(\neg C) = \neg \pi_{x}(C)$$

$$\pi_{x}(C \sqcup D) = \pi_{x}(C) \vee \pi_{x}(D)$$

$$\pi_{x}(C \sqcap D) = \pi_{x}(C) \wedge \pi_{x}(D)$$

$$\pi_{x}(\exists R.C) = \exists y (R(x, y) \wedge \pi_{y}(C))$$

$$\pi_{x}(\forall R.C) = \forall y (R(x, y) \rightarrow \pi_{y}(C))$$

We can then map axioms: $\Pi(C \sqsubseteq D) := \forall x(\pi_x(C) \to \pi_x(D)).$

Theorem

$$a^{\mathcal{I}} \in C^{\mathcal{I}} \text{ iff } \mathcal{I} \models_{FOL} \pi_{x}(C)[a/x], \text{ and } \mathcal{I} \vDash C \sqsubseteq D \text{ iff } \mathcal{I} \models_{FOL} \Pi(C \sqsubseteq D).$$

The function π map concepts to first-order formulae:

$$\pi_{x}(A) = A(x)$$

$$\pi_{x}(\neg C) = \neg \pi_{x}(C)$$

$$\pi_{x}(C \sqcup D) = \pi_{x}(C) \vee \pi_{x}(D)$$

$$\pi_{x}(C \sqcap D) = \pi_{x}(C) \wedge \pi_{x}(D)$$

$$\pi_{x}(\exists R.C) = \exists y (R(x, y) \wedge \pi_{y}(C))$$

$$\pi_{x}(\forall R.C) = \forall y (R(x, y) \rightarrow \pi_{y}(C))$$

We can then map axioms: $\Pi(C \sqsubseteq D) := \forall x(\pi_x(C) \to \pi_x(D))$.

Theorem

$$\mathsf{a}^\mathcal{I} \in \mathsf{C}^\mathcal{I} \ \text{iff} \ \mathcal{I} \models_{\mathsf{FOL}} \pi_\mathsf{x}(\mathsf{C})[\mathsf{a}/\mathsf{x}], \ \mathsf{and} \ \mathcal{I} \vDash \mathsf{C} \sqsubseteq \mathsf{D} \ \text{iff} \ \mathcal{I} \models_{\mathsf{FOL}} \Pi(\mathsf{C} \sqsubseteq \mathsf{D}).$$

E.g.:

$$\pi_x(Animal \sqcap \forall hasParent.Donkey) = Animal(x) \land \forall y(hasParent(x,y) \rightarrow Donkey(y))$$

 $\Pi(Animal \sqsubseteq LivingThing) = \forall x(Animal(x) \rightarrow LivingThing(x))$

The following problems are of interest with respect to a TBox \mathcal{T} :

– Given a concept C, is C satisfiable $(\langle \mathcal{T}, \{C(x_0)\}\rangle)$ has a model);

- Given a concept C, is C satisfiable $(\langle \mathcal{T}, \{C(x_0)\}\rangle)$ has a model);
- Given two concepts C and D, is C subsumed by D ($T \models C \sqsubseteq D$);

- Given a concept C, is C satisfiable $(\langle \mathcal{T}, \{C(x_0)\}\rangle)$ has a model);
- Given two concepts C and D, is C subsumed by D ($\mathcal{T} \models C \sqsubseteq D$);
- Given two concepts C and D, are C and D equivalent $(T \models C \equiv D)$;

- Given a concept C, is C satisfiable $(\langle \mathcal{T}, \{C(x_0)\}\rangle)$ has a model);
- Given two concepts C and D, is C subsumed by D ($T \models C \sqsubseteq D$);
- Given two concepts C and D, are C and D equivalent $(T \models C \equiv D)$;
- Given two concepts C and D, are C and D disjoint $(T \models C \sqcap D \sqsubseteq \bot)$;

The following problems are of interest with respect to a TBox \mathcal{T} :

- Given a concept C, is C satisfiable $(\langle \mathcal{T}, \{C(x_0)\}\rangle)$ has a model);
- Given two concepts C and D, is C subsumed by D ($T \models C \sqsubseteq D$);
- Given two concepts C and D, are C and D equivalent $(T \models C \equiv D)$;
- Given two concepts C and D, are C and D disjoint $(T \vDash C \sqcap D \sqsubseteq \bot)$;

The following problems are of interest with respect to knowledge bases $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$:

The following problems are of interest with respect to a TBox \mathcal{T} :

- Given a concept C, is C satisfiable $(\langle \mathcal{T}, \{C(x_0)\}\rangle)$ has a model);
- Given two concepts C and D, is C subsumed by D ($T \models C \sqsubseteq D$);
- Given two concepts C and D, are C and D equivalent $(T \models C \equiv D)$;
- Given two concepts C and D, are C and D disjoint $(T \vDash C \sqcap D \sqsubseteq \bot)$;

The following problems are of interest with respect to knowledge bases $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$:

– Is K consistent (K has a model);

The following problems are of interest with respect to a TBox \mathcal{T} :

- Given a concept C, is C satisfiable $(\langle \mathcal{T}, \{C(x_0)\}\rangle)$ has a model);
- Given two concepts C and D, is C subsumed by D ($T \models C \sqsubseteq D$);
- Given two concepts C and D, are C and D equivalent $(T \models C \equiv D)$;
- Given two concepts C and D, are C and D disjoint $(T \vDash C \sqcap D \sqsubseteq \bot)$;

The following problems are of interest with respect to knowledge bases $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$:

- Is K consistent (K has a model);
- Given a concept C and an individual a, does K entail C(a) ($K \models C(a)$);

The following problems are of interest with respect to a TBox \mathcal{T} :

- Given a concept C, is C satisfiable $(\langle \mathcal{T}, \{C(x_0)\}\rangle)$ has a model);
- Given two concepts C and D, is C subsumed by D ($T \models C \sqsubseteq D$);
- Given two concepts C and D, are C and D equivalent $(T \models C \equiv D)$;
- Given two concepts C and D, are C and D disjoint $(T \vDash C \sqcap D \sqsubseteq \bot)$;

The following problems are of interest with respect to knowledge bases $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$:

- Is K consistent (K has a model);
- Given a concept C and an individual a, does K entail C(a) ($K \models C(a)$);
- Given a concept C, find all individuals a such that K entails C(a).

Contents

Introduction

ALC: Syntax and Semantics

Extensions and other DLs

OWL and the Semantic Web

Appendix

– As we have seen \mathcal{ALC} is the Attribute Language with general Complement.

- As we have seen ALC is the Attribute Language with general Complement.
- The $\mathcal C$ actually denotes an extension of a more restrictive language $\mathcal A\mathcal L$.

- As we have seen ALC is the Attribute Language with general Complement.
- The \mathcal{C} actually denotes an extension of a more restrictive language \mathcal{AL} .
- In a similar way, we have the following possible extensions of our logic:

- As we have seen \mathcal{ALC} is the Attribute Language with general Complement.
- The $\mathcal C$ actually denotes an extension of a more restrictive language $\mathcal A\mathcal L$.
- In a similar way, we have the following possible extensions of our logic:
 - $-\mathcal{H}$: Role hierarchies;
 - \mathcal{R} : Complex role hierarchies;
 - $-\mathcal{N}$: Cardinality restrictions;
 - Q: Qualified cardinality restrictions;
 - − O: Closed classes;
 - *I*: Inverse roles;
 - $-\mathcal{D}$: Datatypes;

— …

- As we have seen \mathcal{ALC} is the Attribute Language with general Complement.
- The \mathcal{C} actually denotes an extension of a more restrictive language \mathcal{AL} .
- In a similar way, we have the following possible extensions of our logic:
 - $-\mathcal{H}$: Role hierarchies;
 - \mathcal{R} : Complex role hierarchies;
 - $-\mathcal{N}$: Cardinality restrictions;
 - Q: Qualified cardinality restrictions;
 - − O: Closed classes;
 - *I*: Inverse roles;
 - $-\mathcal{D}$: Datatypes;
 - ..
- We name the languages by adding the letters of the features to \mathcal{ALC} . So e.g. \mathcal{ALCN} is \mathcal{ALC} extended with cardinality restrictions and \mathcal{ALCHI} is \mathcal{ALC} extended with role hierarchies and inverse roles.

- As we have seen ALC is the Attribute Language with general Complement.
- The $\mathcal C$ actually denotes an extension of a more restrictive language $\mathcal A\mathcal L$.
- In a similar way, we have the following possible extensions of our logic:
 - $-\mathcal{H}$: Role hierarchies;
 - $-\mathcal{R}$: Complex role hierarchies;
 - $-\mathcal{N}$: Cardinality restrictions;
 - Q: Qualified cardinality restrictions;
 - − O: Closed classes;
 - *I*: Inverse roles;
 - $-\mathcal{D}$: Datatypes;
 - ...
- We name the languages by adding the letters of the features to \mathcal{ALC} . So e.g. \mathcal{ALCN} is \mathcal{ALC} extended with cardinality restrictions and \mathcal{ALCHI} is \mathcal{ALC} extended with role hierarchies and inverse roles.
- It is common to shorten \mathcal{ALC} (extended with transitive roles) to just $\mathcal S$ for more advanced languages, so e.g. \mathcal{SHOIN} is $\mathcal{ALC}+\mathcal H+\mathcal O+\mathcal I+\mathcal N$.

 $-\mathcal{H}$ – Role Hierarchies: We allow TBox axioms on the form $R \sqsubseteq P$ for atomic roles. Semantics:

$$\mathcal{M} \vDash R \sqsubseteq P \Leftrightarrow R^{\mathcal{M}} \subseteq P^{\mathcal{M}}$$

e.g. $hasFather \sqsubseteq hasParent$;

 $-\mathcal{H}$ – Role Hierarchies: We allow TBox axioms on the form $R \sqsubseteq P$ for atomic roles. Semantics:

$$\mathcal{M} \vDash R \sqsubseteq P \Leftrightarrow R^{\mathcal{M}} \subseteq P^{\mathcal{M}}$$

e.g. $hasFather \sqsubseteq hasParent$;

- R - Complex role hierarchies: We allow roles on the form $R \circ P$ and TBox axioms on the form $R \circ P \sqsubseteq P$ and $R \circ P \sqsubseteq R$ for any two roles. Semantics:

$$(R \circ P)^{\mathcal{M}} := \left\{ \langle a, b \rangle \in \Delta^{\mathcal{M}} imes \Delta^{\mathcal{M}} \mid \exists c \in \Delta^{\mathcal{M}} \left(\langle a, c \rangle \in R^{\mathcal{M}} \wedge \langle c, b \rangle \in P^{\mathcal{M}} \right) \right\}$$

and

$$\mathcal{M} \vDash R \sqsubseteq P \Leftrightarrow R^{\mathcal{M}} \subseteq P^{\mathcal{M}}$$

e.g. $friendOf \circ enemyOf \sqsubseteq enemyOf$.

 $-\mathcal{N}$ – Cardinality restrictions: We allow concepts on the form $\leq nR$ and $\geq nR$ for any natural number n. Semantics¹:

$$(\leq n R)^{\mathcal{M}} := \{ a \in \Delta^{\mathcal{M}} \mid \# \{ b \in \Delta^{\mathcal{M}} \mid \langle a, b \rangle \in R^{\mathcal{M}} \} \leq n \}$$

$$(\geq n R)^{\mathcal{M}} := \{ a \in \Delta^{\mathcal{M}} \mid \# \{ b \in \Delta^{\mathcal{M}} \mid \langle a, b \rangle \in R^{\mathcal{M}} \} \geq n \}$$

e.g. $Mammal \subseteq \leq 2 hasParent$;

 $^{{}^{1}}$ We let #S be the cardinality of the set S

 $-\mathcal{N}$ – Cardinality restrictions: We allow concepts on the form $\leq nR$ and $\geq nR$ for any natural number n. Semantics¹:

$$(\leq n R)^{\mathcal{M}} := \{ a \in \Delta^{\mathcal{M}} \mid \# \{ b \in \Delta^{\mathcal{M}} \mid \langle a, b \rangle \in R^{\mathcal{M}} \} \leq n \}$$
$$(\geq n R)^{\mathcal{M}} := \{ a \in \Delta^{\mathcal{M}} \mid \# \{ b \in \Delta^{\mathcal{M}} \mid \langle a, b \rangle \in R^{\mathcal{M}} \} \geq n \}$$

- e.g. $Mammal \subseteq \leq 2 hasParent$;
- Q − Qualified cardinality restrictions: We allow concepts on the form $\leq nR.C$ and $\geq nR.C$ for any natural number n. Semantics:

$$(\leq n R.C)^{\mathcal{M}} := \{ a \in \Delta^{\mathcal{M}} \mid \# \{ b \in \Delta^{\mathcal{M}} \mid \langle a, b \rangle \in R^{\mathcal{M}} \land b \in C^{\mathcal{M}} \} \leq n \}$$
$$(\geq n R.C)^{\mathcal{M}} := \{ a \in \Delta^{\mathcal{M}} \mid \# \{ b \in \Delta^{\mathcal{M}} \mid \langle a, b \rangle \in R^{\mathcal{M}} \land b \in C^{\mathcal{M}} \} \geq n \}$$

e.g. $RichPeople \sqsubseteq \geq 2 \ owns.House.$

 $^{{}^{1}}$ We let #S be the cardinality of the set S

 $-\mathcal{O}$ – Closed classes: We allow concepts on the form $\{a_1,a_2,\ldots,a_n\}$ where a_i are individuals. Semantics

$$(\{a_1,a_2,\ldots,a_n\})^{\mathcal{M}}:=\{a_1^{\mathcal{M}},a_2^{\mathcal{M}},\ldots,a_n^{\mathcal{M}}\}$$

e.g. $Days \sqsubseteq \{monday, tuesday, wednesday, thursday, friday, saturday, sunday\};$

 $-\mathcal{O}$ – Closed classes: We allow concepts on the form $\{a_1,a_2,\ldots,a_n\}$ where a_i are individuals. Semantics

$$(\{a_1, a_2, \ldots, a_n\})^{\mathcal{M}} := \{a_1^{\mathcal{M}}, a_2^{\mathcal{M}}, \ldots, a_n^{\mathcal{M}}\}$$

- e.g. $Days \sqsubseteq \{monday, tuesday, wednesday, thursday, friday, saturday, sunday\};$
- $-\mathcal{I}$ Inverse roles: We allow roles on the form R^- . Semantics:

$$(R^-)^{\mathcal{M}} := \{\langle \mathsf{a}, \mathsf{b}
angle \in \Delta^{\mathcal{M}} imes \Delta^{\mathcal{M}} \mid \langle \mathsf{b}, \mathsf{a}
angle \in R^{\mathcal{M}} \}$$

e.g. $hasParent^- \sqsubseteq isChildOf$;

 $-\mathcal{O}$ – Closed classes: We allow concepts on the form $\{a_1, a_2, \dots, a_n\}$ where a_i are individuals. Semantics

$$(\{a_1, a_2, \ldots, a_n\})^{\mathcal{M}} := \{a_1^{\mathcal{M}}, a_2^{\mathcal{M}}, \ldots, a_n^{\mathcal{M}}\}$$

- e.g. $Days \sqsubseteq \{monday, tuesday, wednesday, thursday, friday, saturday, sunday\};$
- $-\mathcal{I}$ Inverse roles: We allow roles on the form R^- . Semantics:

$$(R^-)^{\mathcal{M}} := \{\langle \mathsf{a}, \mathsf{b}
angle \in \Delta^{\mathcal{M}} imes \Delta^{\mathcal{M}} \mid \langle \mathsf{b}, \mathsf{a}
angle \in R^{\mathcal{M}} \}$$

- e.g. $hasParent^- \sqsubseteq isChildOf$;
- $-\mathcal{D}$ Datatypes: We introduce a set of datatypes: *int,string,float,boolean*, and so on. They all have a fixed interpretation, that is, the same for all models.

 $OnlyChild \sqsubseteq Person \sqcap \neg \exists hasSibling. \top$

 $\begin{array}{ccc} \textit{OnlyChild} & \sqsubseteq & \textit{Person} \; \sqcap \; \neg \exists \, \textit{hasSibling} \, . \top \\ & \textit{Animal} & \sqsubseteq & \leq 2 \, \, \textit{hasParent}. \textit{Animal} \; \; \sqcap \geq 2 \, \, \textit{hasParent}. \textit{Animal} \end{array}$

```
\begin{array}{cccc} \textit{OnlyChild} & \sqsubseteq & \textit{Person} \sqcap \neg \exists \textit{hasSibling}. \top \\ & \textit{Animal} & \sqsubseteq & \leq 2 \textit{ hasParent}. \textit{Animal} & \sqcap \geq 2 \textit{ hasParent}. \textit{Animal} \\ \textit{Pet} \sqcap \textit{Person} & \sqsubseteq & \bot \end{array}
```

```
\begin{array}{cccc} \textit{OnlyChild} & \sqsubseteq & \textit{Person} \sqcap \neg \exists \textit{hasSibling}. \top \\ & \textit{Animal} & \sqsubseteq & \leq 2 \textit{ hasParent}. \textit{Animal} \sqcap \geq 2 \textit{ hasParent}. \textit{Animal} \\ \textit{Pet} \sqcap \textit{Person} & \sqsubseteq & \bot \\ & \textit{Person} & \sqsubseteq & \exists \textit{loves}. \{\textit{mary}\} \end{array}
```

```
\begin{array}{cccc} \textit{OnlyChild} & \sqsubseteq & \textit{Person} \sqcap \neg \exists \textit{hasSibling}. \top \\ & \textit{Animal} & \sqsubseteq & \leq 2 \textit{ hasParent}. \textit{Animal} \sqcap \geq 2 \textit{ hasParent}. \textit{Animal} \\ \textit{Pet} \sqcap \textit{Person} & \sqsubseteq & \bot \\ & \textit{Person} & \sqsubseteq & \exists \textit{loves}. \{\textit{mary}\} \\ & \textit{Norwegian} & \sqsubseteq & \exists \textit{comesFrom}. \{\textit{norway}\} \end{array}
```

```
\begin{array}{ccccc} \textit{OnlyChild} & \sqsubseteq & \textit{Person} \sqcap \neg \exists \textit{hasSibling}. \top \\ & \textit{Animal} & \sqsubseteq & \leq 2 \; \textit{hasParent}. \textit{Animal} \; \sqcap \geq 2 \; \textit{hasParent}. \textit{Animal} \\ \textit{Pet} \sqcap \textit{Person} & \sqsubseteq & \bot \\ & \textit{Person} & \sqsubseteq & \exists \textit{loves}. \{\textit{mary}\} \\ & \textit{Norwegian} & \sqsubseteq & \exists \textit{comesFrom}. \{\textit{norway}\} \\ & \{\textit{adam}\} & \sqsubseteq & \neg \{\textit{eve}\} \end{array}
```

```
OnlyChild \sqsubseteq Person \sqcap \neg \exists hasSibling. \top
                     Animal \square < 2 hasParent.Animal \square > 2 hasParent.Animal
             Pet \sqcap Person \sqsubseteq \bot
                     Person \sqsubseteq \exists loves.\{mary\}
                 Norwegian \sqsubseteq \exists comesFrom.\{norway\}
                    \{adam\} \subseteq \neg \{eve\}
hasFather ○ hasBrother □ hasUncle
                       \exists R. \top \sqsubseteq C
                                                                      Domain
                           \top \quad \Box \quad \forall R.C
```

```
OnlyChild \sqsubseteq Person \sqcap \neg \exists hasSibling. \top
                     Animal \square < 2 hasParent.Animal \square > 2 hasParent.Animal
             Pet \sqcap Person \sqsubseteq \bot
                     Person \sqsubseteq \exists loves.\{mary\}
                Norwegian \sqsubseteq \exists comesFrom.\{norway\}
                    \{adam\} \subseteq \neg \{eve\}
hasFather ○ hasBrother □ hasUncle
                       \exists R. \top \sqsubseteq C
                                                                      Domain
                           \top \quad \Box \quad \forall R.C
                                                                      Range
```

```
OnlyChild \sqsubseteq Person \sqcap \neg \exists hasSibling.\top
                     Animal \square < 2 hasParent.Animal \square > 2 hasParent.Animal
              Pet \sqcap Person \sqsubseteq \bot
                     Person \sqsubseteq \exists loves.\{mary\}
                 Norwegian \sqsubseteq \exists comesFrom.\{norway\}
                    \{adam\} \subseteq \neg \{eve\}
hasFather ○ hasBrother □ hasUncle
                       \exists R. \top \quad \Box \quad C
                                                                       Domain
                          \top \quad \Box \quad \forall R.C
                                                                       Range
                       R \circ R \sqsubset R
```

```
OnlyChild \sqsubseteq Person \sqcap \neg \exists hasSibling. \top
                     Animal \square < 2 hasParent.Animal \square > 2 hasParent.Animal
             Pet \sqcap Person \sqsubseteq \bot
                     Person \sqsubseteq \exists loves.\{mary\}
                Norwegian \sqsubseteq \exists comesFrom.\{norway\}
                    \{adam\} \subseteq \neg \{eve\}
hasFather ○ hasBrother □ hasUncle
                       \exists R. \top \sqsubseteq C
                                                                      Domain
                          \top \quad \Box \quad \forall R.C
                                                                      Range
                      R \circ R \sqsubset R
                                                                      Transitivity
```

```
OnlyChild \sqsubseteq Person \sqcap \neg \exists hasSibling. \top
                     Animal \square < 2 hasParent.Animal \square > 2 hasParent.Animal
              Pet \sqcap Person \sqsubseteq \bot
                      Person \sqsubseteq \exists loves.\{mary\}
                 Norwegian \sqsubseteq \exists comesFrom.\{norway\}
                    \{adam\} \subseteq \neg \{eve\}
hasFather ○ hasBrother □ hasUncle
                       \exists R. \top \quad \Box \quad C
                                                                       Domain
                           \top \quad \Box \quad \forall R.C
                                                                       Range
                       R \circ R \sqsubset R
                                                                       Transitivity
                            \top \Box < 1 R. <math>\top
```

```
OnlyChild \sqsubseteq Person \sqcap \neg \exists hasSibling. \top
                     Animal \square < 2 hasParent.Animal \square > 2 hasParent.Animal
             Pet \sqcap Person \sqsubseteq \bot
                     Person \sqsubseteq \exists loves.\{mary\}
                Norwegian \sqsubseteq \exists comesFrom.\{norway\}
                    \{adam\} \subseteq \neg \{eve\}
hasFather ○ hasBrother □ hasUncle
                       \exists R. \top \quad \Box \quad C
                                                                      Domain
                           \top \quad \Box \quad \forall R.C
                                                                      Range
                       R \circ R \sqsubset R
                                                                       Transitivity
                            \top \Box < 1 R. <math>\top
                                                                       Functionality
```

```
OnlyChild \sqsubseteq Person \sqcap \neg \exists hasSibling. \top
                     Animal \square < 2 hasParent.Animal \square > 2 hasParent.Animal
             Pet \sqcap Person \sqsubseteq \bot
                     Person \sqsubseteq \exists loves.\{mary\}
                Norwegian \sqsubseteq \exists comesFrom.\{norway\}
                    \{adam\} \subseteq \neg \{eve\}
hasFather ○ hasBrother □ hasUncle
                       \exists R. \top \quad \Box \quad C
                                                                      Domain
                           \top \quad \Box \quad \forall R.C
                                                                      Range
                       R \circ R \sqsubset R
                                                                      Transitivity
                           \top \Box < 1 R. <math>\top
                                                                       Functionality
                            R \sqsubset R^-
```

```
OnlyChild \sqsubseteq Person \sqcap \neg \exists hasSibling. \top
                    Animal \square < 2 hasParent.Animal \square > 2 hasParent.Animal
             Pet \sqcap Person \sqsubseteq \bot
                     Person \sqsubseteq \exists loves.\{mary\}
                Norwegian \sqsubseteq \exists comesFrom.\{norway\}
                    \{adam\} \subseteq \neg \{eve\}
hasFather ○ hasBrother □ hasUncle
                      \exists R. \top \quad \Box \quad C
                                                                      Domain
                           \top \quad \Box \quad \forall R.C
                                                                      Range
                      R \circ R \sqsubset R
                                                                      Transitivity
                           \top \Box < 1 R. <math>\top
                                                                      Functionality
                            R \sqsubset R^-
                                                                      Symmetry
```

```
OnlyChild \sqsubseteq Person \sqcap \neg \exists hasSibling. \top
                     Animal \square < 2 hasParent.Animal \square > 2 hasParent.Animal
              Pet \sqcap Person \sqsubseteq \bot
                      Person \sqsubseteq \exists loves.\{mary\}
                 Norwegian \sqsubseteq \exists comesFrom.\{norway\}
                    \{adam\} \subseteq \neg \{eve\}
hasFather ○ hasBrother □ hasUncle
                       \exists R. \top \quad \Box \quad C
                                                                        Domain
                            \top \quad \Box \quad \forall R.C
                                                                        Range
                       R \circ R \sqsubset R
                                                                        Transitivity
                            \top \Box < 1 R. <math>\top
                                                                        Functionality
                             R \quad \Box \quad R^-
                                                                        Symmetry
                             R \quad \Box \quad \neg R^-
```

```
OnlyChild \sqsubseteq Person \neg \exists hasSibling. \top
                     Animal \square < 2 hasParent.Animal \square > 2 hasParent.Animal
              Pet \sqcap Person \sqsubseteq \bot
                      Person \sqsubseteq \exists loves.\{mary\}
                 Norwegian \sqsubseteq \exists comesFrom.\{norway\}
                    \{adam\} \subseteq \neg \{eve\}
hasFather ○ hasBrother □ hasUncle
                       \exists R. \top \quad \sqsubseteq \quad C
                                                                       Domain
                            \top \quad \Box \quad \forall R.C
                                                                       Range
                       R \circ R \sqsubset R
                                                                       Transitivity
                            \top \Box < 1 R. <math>\top
                                                                       Functionality
                            R \quad \Box \quad R^-
                                                                        Symmetry
                            R \quad \Box \quad \neg R^-
                                                                        Asymmetry
```

Complexity results

http://www.cs.man.ac.uk/~ezolin/dl/

The description logic $\mathcal{E}\mathcal{L}$ allow the following concepts:

The description logic \mathcal{EL} allow the following concepts:

The description logic \mathcal{EL} allow the following concepts:

with the following axioms:

- $C \sqsubseteq D$ and $C \equiv D$ for concept descriptions D and C.
- $-P \sqsubseteq Q$ and $P \equiv Q$ for roles P, Q.
- -C(a) and R(a,b) for concept C, role R and individuals a,b.

Not supported (excerpt):

- negation, (only disjointness of classes: $C \sqcap D \sqsubseteq \bot$),
- disjunction,
- universal quantification,
- cardinalities,
- inverse roles,
- plus some role characteristics.

Not supported (excerpt):

- negation, (only disjointness of classes: $C \sqcap D \sqsubseteq \bot$),
- disjunction,
- universal quantification,
- cardinalities,
- inverse roles,
- plus some role characteristics.
- Captures language used for many large ontologies.
- Checking ontology consistency, class expression subsumption, and instance checking is in P.
- "Good for large ontologies."

The description logic *DL-Lite*_R allows the following concepts:

The description logic *DL-Lite*_R allows the following concepts:

```
C 	o A | (atomic concept)

\exists R. \top | (existential restriction with \top only)

D 	o A | (atomic concept)

\exists R. D | (existential restriction)

\neg D | (negation)

D \sqcap D' | (intersection)
```

The description logic DL- $Lite_R$ allows the following concepts:

with the following axioms:

- $C \sqsubseteq D$ for concept descriptions D and C (and $C \equiv C'$).
- $-P \sqsubseteq Q$ and $P \equiv Q$ for roles P, Q.
- -C(a) and R(a,b) for concept C, role R and individuals a,b.

Not supported (excerpt):

- disjunction,
- universal quantification,
- cardinalities,
- functional roles, keys,
- enumerations (closed classes),
- subproperties of chains, transitivity

Not supported (excerpt):

- disjunction,
- universal quantification,
- cardinalities,
- functional roles, keys,
- enumerations (closed classes),
- subproperties of chains, transitivity
- Captures language for which queries can be translated to SQL.
 - Conjunctive queries over a *DL-Lite* knowledge base can be expanded with the TBox to a conjunctive query that can be answered over the Abox alone. This is called *first order rewritability*.
- "Good for large datasets."

The description logic \mathcal{RL} (also called DLP) allow the following concepts:

The description logic \mathcal{RL} (also called DLP) allow the following concepts:

The description logic \mathcal{RL} (also called DLP) allow the following concepts:

with the following axioms:

- $C \sqsubseteq D$, $C \equiv C'$, $\top \sqsubseteq \forall P.D$, $\top \sqsubseteq \forall P^-.D$ $P \sqsubseteq Q$, $P \equiv Q^-$ and $P \equiv Q$ for roles P, Q and concept descriptions D and C.
- -C(a) and R(a,b) for concept C, role R and individuals a,b.

Contents

Introduction

ALC: Syntax and Semantics

Extensions and other DLs

OWL and the Semantic Web

Appendix

 OWL (The Web Ontology Language) is a set of ontology languages with semantics based on description logics.

- OWL (The Web Ontology Language) is a set of ontology languages with semantics based on description logics.
- They combine Web technology with description logic to make an *intelligent* web of data.

- OWL (The Web Ontology Language) is a set of ontology languages with semantics based on description logics.
- They combine Web technology with description logic to make an *intelligent* web of data.
- In OWL, all individuals, concepts and roles are assigned a URI (Unique Resource Identifier).

- OWL (The Web Ontology Language) is a set of ontology languages with semantics based on description logics.
- They combine Web technology with description logic to make an *intelligent* web of data.
- In OWL, all individuals, concepts and roles are assigned a URI (Unique Resource Identifier).
 - These URIs can be URLs, hence they can state where we can find more information about an item.

- OWL (The Web Ontology Language) is a set of ontology languages with semantics based on description logics.
- They combine Web technology with description logic to make an *intelligent* web of data.
- In OWL, all individuals, concepts and roles are assigned a URI (Unique Resource Identifier).
 - These URIs can be URLs, hence they can state where we can find more information about an item.
 - URIs can be set to be equal, so we can link two ontologies together by stating which URIs denote the same thing in different contexts.

- OWL (The Web Ontology Language) is a set of ontology languages with semantics based on description logics.
- They combine Web technology with description logic to make an *intelligent* web of data.
- In OWL, all individuals, concepts and roles are assigned a URI (Unique Resource Identifier).
 - These URIs can be URLs, hence they can state where we can find more information about an item.
 - URIs can be set to be equal, so we can link two ontologies together by stating which URIs denote the same thing in different contexts.
- OWL provides a concrete syntax for writing axioms, implementations of reasoners over the axioms, and a query language that applies the reasoners for knowledge extraction.

- OWL has various *profiles* that correspond to different DLs.

- OWL has various *profiles* that correspond to different DLs.
- OWL Lite: SHIF(D);

- OWL has various *profiles* that correspond to different DLs.
- OWL Lite: SHIF(D);
- OWL DL: corresponds to $\mathcal{SHION}(\mathcal{D})$;

- OWL has various *profiles* that correspond to different DLs.
- OWL Lite: SHIF(D);
- OWL DL: corresponds to SHION(D);
- OWL 2 DL: corresponds to $\mathcal{SROIQ}(\mathcal{D})$ and is the "normal" OWL 2 (sublanguage): "maximum" expressivity while keeping reasoning problems decidable—but still very expensive;

- OWL has various *profiles* that correspond to different DLs.
- OWL Lite: SHIF(D);
- OWL DL: corresponds to SHION(D);
- OWL 2 DL: corresponds to $\mathcal{SROIQ}(\mathcal{D})$ and is the "normal" OWL 2 (sublanguage): "maximum" expressivity while keeping reasoning problems decidable—but still very expensive;
- (Other) profiles are tailored for specific ends, e.g.,
 - OWL 2 QL: Corresponds to DL-Lite $_{\mathcal{R}}$, and is specifically designed for efficient database integration;

- OWL has various *profiles* that correspond to different DLs.
- OWL Lite: SHIF(D);
- OWL DL: corresponds to SHION(D);
- OWL 2 DL: corresponds to $\mathcal{SROIQ}(\mathcal{D})$ and is the "normal" OWL 2 (sublanguage): "maximum" expressivity while keeping reasoning problems decidable—but still very expensive;
- (Other) profiles are tailored for specific ends, e.g.,
 - OWL 2 QL: Corresponds to DL-Lite $_{\mathcal{R}}$, and is specifically designed for efficient database integration;
 - OWL 2 EL: Corresponds to \mathcal{EL} , and is a lightweight language with polynomial time reasoning;

- OWL has various *profiles* that correspond to different DLs.
- OWL Lite: SHIF(D);
- OWL DL: corresponds to SHION(D);
- OWL 2 DL: corresponds to $\mathcal{SROIQ}(\mathcal{D})$ and is the "normal" OWL 2 (sublanguage): "maximum" expressivity while keeping reasoning problems decidable—but still very expensive;
- (Other) profiles are tailored for specific ends, e.g.,
 - OWL 2 QL: Corresponds to DL-Lite $_{\mathcal{R}}$, and is specifically designed for efficient database integration;
 - OWL 2 EL: Corresponds to \mathcal{EL} , and is a lightweight language with polynomial time reasoning;
 - OWL 2 RL: Corresponds to \mathcal{RL} , and is designed for compatibility with rule-based inference tools.

- OWL has various *profiles* that correspond to different DLs.
- OWL Lite: SHIF(D);
- OWL DL: corresponds to $SHION(\mathcal{D})$;
- OWL 2 DL: corresponds to $\mathcal{SROIQ}(\mathcal{D})$ and is the "normal" OWL 2 (sublanguage): "maximum" expressivity while keeping reasoning problems decidable—but still very expensive;
- (Other) profiles are tailored for specific ends, e.g.,
 - OWL 2 QL: Corresponds to DL-Lite $_{\mathcal{R}}$, and is specifically designed for efficient database integration;
 - OWL 2 EL: Corresponds to \mathcal{EL} , and is a lightweight language with polynomial time reasoning;
 - OWL 2 RL: Corresponds to \mathcal{RL} , and is designed for compatibility with rule-based inference tools.
- OWL Full (not a proper DL): Anything goes: classes, relations, individuals, highly expressive, not decidable. But we want OWL's reasoning capabilities, so stay away if you can—and you almost always can.

Contents

Introduction

ALC: Syntax and Semantics

Extensions and other DLs

OWL and the Semantic Web

Appendix

What cannot be expressed in DLs: Brothers

- Given terms

hasSibling Male

- ...a brother is *defined* to be a sibling who is male
- Best try:

```
hasBrother \sqsubseteq hasSibling 
 \top \sqsubseteq \forall hasBrother.Male 
 \exists hasSibling.Male \sqsubseteq \exists hasBrother.\top
```

Not enough to infer that all male siblings are brothers

What cannot be expressed in DLs: Diamond Properties

- A semi-detached house has a left and a right unit
- Each unit has a separating wall
- The separating walls of the left and right units are the same
- "diamond property"
- Try...

SemiDetached $\sqsubseteq \exists hasLeftUnit.Unit \sqcap \exists hasRightUnit.Unit Unit \sqsubseteq \exists hasSeparatingWall.Wall$

– And now what?

What cannot be expressed in DLs: Connecting Properties

- Given terms

Person hasChild hasBirthday

- A twin parent is defined to be a person who has two children with the same birthday.
- Try...

```
TwinParent \equiv Person \quad \sqcap \ \exists hasChild. \exists hasBirthday[...] 
\sqcap \ \exists hasChild. \exists hasBirthday[...]
```

- No way to connect the two birthdays to say that they're the same.
 - (and no way to say that the children are *not* the same)
- Try...

```
TwinParent \equiv Person \sqcap \geq_2 hasChild. \exists hasBirthday[...]
```

Still no way of connecting the birthdays

Reasoning about Numbers

- Reasoning about natural numbers is undecidable in general.
- DL Reasoning is decidable
- Therefore, general reasoning about numbers can't be "encoded" in DL
- For instance, there is no largest prime number:

$$\forall n. \exists p. (p > n \land \forall k, l. p = k \cdot l \rightarrow (k = 1 \lor l = 1))$$

- Could try...

$$Number(zero)$$
 $Number \sqsubseteq \exists hasSuccessor.Number$
 $\top \sqsubseteq \leq 1 \ hasSuccessor. \top$

- Cannot encode addition, multiplication, etc.
- Note: a lot can be done with other logics, but not with DLs
 - Outside the intended scope of Description Logics

FO-rewritability

Assume $\mathcal{T}_{\mathcal{L}}$ is the set of TBoxes over the language \mathcal{L} , and that UCQ is the set of queries that are unions of conjunctive queries, and let

$$\mathcal{K} \vDash q_1 \lor q_2 \Leftrightarrow \mathcal{K} \vDash q_1 \text{ or } \mathcal{K} \vDash q_2$$

 $\mathcal{K} \vDash q_1 \land q_2 \Leftrightarrow \mathcal{K} \vDash q_1 \text{ and } \mathcal{K} \vDash q_2$

A description logic \mathcal{L} enjoys first order rewritability if there exists a rewriting function $\rho: \mathcal{T}_{\mathcal{L}} \times UCQ \to UCQ$, such that for any knowledge base $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ over \mathcal{L} and any conjunctive query $q(\vec{x})$ over \mathcal{K} we have that

$$\mathcal{A} \vDash \rho(\mathcal{T}, q(\vec{a})) \Leftrightarrow \mathcal{K} \vDash q(\vec{a})$$

This allows us to divide the querying up into two stages: i) translation of the query, and ii) ABox querying. This is useful for e.g. translating a query from a DL query to an SQL query where the ABox is a relational database.

E.g. let
$$\mathcal{T} := \{C_1 \sqsubseteq D, C_2 \sqsubseteq D, A \sqsubseteq C_1\}$$
 and $q(x) := D(x)$ we have that for any Abox \mathcal{A} that $\mathcal{A} \models D(a) \lor C_1(a) \lor C_2(a) \lor \mathcal{A}(a) \Leftrightarrow \langle \mathcal{T}, \mathcal{A} \rangle \models D(a)$