

Algorithmic trading

Introduction to Computation Finance

นายอิทธิเดช นามเหลา 6510503905

เสนอ

ดร. ยอดเยี่ยม ทิพยสุวรรณ

คณะวิศวกรรมศาสตร สาขาวิศวกรรมคอมพิวเตอร ปการศึกษา 2567 มหาวิทยาลัยเกษตรศาสตร

Final project - Introduction to Computational Finance

- 1. เลือกหุ้น, options, commodity, หรือ ETF 5 ตัว หรือหากมี financial instrument ในใจตัวใดที่อยากเทรด สามารถเลือกมาได้ เลือก options มาดังนี้
 - 1).Amazon
 - 2).Apple
 - 3).Netflix
 - 4).Google
 - 5). Tesla

- 2. นำข้อมูล historical data ย้อยหลัง 6 ปีจนถึงย้อนหลัง 1 ปี จาก IBKR หรือ Yahoo finance มาใช้เพื่อลองทำ Portfolio optimization ให้ลองใช้
- 2.a Mean-variance optimization

จากการคำนวณโดยใช้ข้อมูลจากเมื่อ 6 ปีก่อนมาจนถึง 1ปีก่อนแล้วนำ Expected return และ Covariance มาคำนวณ Mean-variance optimization ดัง code Output:

```
Optimal Weights (Mean-Variance): [0.59838, 0.0, 0.0, 0.0, 0.40162]
Expected Portfolio Return (Mean-Variance): 37.67%
Expected Portfolio Risk (Mean-Variance): 39.77%
```

ซึ่ง Weight ไม่กระจเลยและก็มี Expected Reutrn และ Risk ที่สูงมาก

```
วันาท์
         1 from pypfopt import EfficientFrontier, risk_models, expected_returns
         3 mu = expected_returns.mean_historical_return(data_5y)
         4 covariance = risk_models.sample_cov(data_5y)
         5 # print(covariance)
         6 # cov matrix = returns 5y.cov()
         7 # print(cov_matrix)
         9 ef = EfficientFrontier(mu, covariance)
        10 weights = ef.max_sharpe()
        11 cleaned_weights = ef.clean_weights()
        13 expected_performance = ef.portfolio_performance()
        14 weights_list = [cleaned_weights[ticker] for ticker in tickers]
        16 print("Optimal Weights (Mean-Variance):", weights_list)
        17 print(f"Expected Portfolio Return (Mean-Variance): {expected_performance[0]:.2%}")
        18 print(f"Expected Portfolio Risk (Mean-Variance): {expected_performance[1]:.2%}")
        19 optimal_weights_mvo = weights_list
   Toptimal Weights (Mean-Variance): [0.59838, 0.0, 0.0, 0.0, 0.40162]
        Expected Portfolio Return (Mean-Variance): 37.67%
        Expected Portfolio Risk (Mean-Variance): 39.77%
```

2.a.i Balanced

เป็นการลดค่า Risk และ Return เพื่อลดความเสี่ยง

```
Balanced Optimal Weights for Target Risk: [0.42607, 0.10168, 0.04374, 0.42744, 0.00106]
Expected Portfolio Return (Risk Target): 20.24%
Expected Portfolio Risk (Risk Target): 29.50%
```

```
[65] 1 target_risk = 0.295
2
3 # Optimize for minimum volatility at the target risk level
4 ef = EfficientFrontier(mu, covariance)
5 weights = ef.efficient_risk(target_risk)
6 cleaned_weights = ef.clean_weights()
7
8 # Calculate expected portfolio performance
9 expected_performance = ef.portfolio_performance()
10
11 # Format weights as a list
12 weights_list = [cleaned_weights[ticker] for ticker in tickers]
13
14 print("Balanced Optimal Weights for Target Risk:", weights_list)
15 print(f"Expected Portfolio Return (Risk Target): {expected_performance[0]:.2%}")
16 print(f"Expected Portfolio Risk (Risk Target): {expected_performance[1]:.2%}")
17 # optimal_weights_mvo = weights_list
```

2.b Sharpe Ratio Optimization

คำนวณโดยใช้ข้อมูลจากเมื่อ 6 ปีก่อนมาจนถึง 1ปีก่อนได้ mean_returns และ covariance มาใช้คำนวณต่อ โดยให้ Minimum allocation อยู่ที่ 10%

Output:

```
Optimal Weights (Sharpe Ratio): [0.1 0.1 0.1 0.1 0.6] Expected Portfolio Return (Sharpe Ratio): 0.19% Expected Portfolio Risk (Sharpe Ratio): 2.93% Sharpe Ratio: -0.62
```

```
1 from scipy.optimize import minimize
      4 mean_returns = returns_5y.mean()
      5 cov_matrix = returns_5y.cov()
      7 risk_free_rate = 0.02
      9 def portfolio performance(weights, mean returns, cov matrix):
     10 portfolio_return = np.sum(mean_returns * weights)
           portfolio_std_dev = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights)))
return portfolio_return, portfolio_std_dev
     14 # Function to minimize the negative Sharpe Ratio
    15 def neg_sharpe_ratio(weights, mean_returns, cov_matrix, risk_free_rate):
16    portfolio_return, portfolio_risk = portfolio_performance(weights, mean_returns, cov_matrix)
17    sharpe_ratio = (portfolio_return - risk_free_rate) / portfolio_risk
18    return -sharpe_ratio
     20 num_assets = len(mean_returns)
     21 initial_weights = np.array([1 / num_assets] * num_assets)
22 bounds = [(0.1, 1.0)] * num_assets
     23 constraints = [
             {'type': 'eq', 'fun': lambda weights: np.sum(weights) - 1}
     26 # Optimize Sharpe Ratio
     27 args = (mean_returns, cov_matrix, risk_free_rate)
     28 result = minimize(neg_sharpe_ratio, initial_weights, args=args, method='SLSQP', bounds=bounds, constraints=constraints)
     30 # Get optimal weights
     31 optimal_weights_sharpe = result.x
     33 opt_return_sharpe, opt_risk_sharpe = portfolio_performance(optimal_weights_sharpe, mean_returns, cov_matrix)
     34 opt_sharpe_ratio = (opt_return_sharpe - risk_free_rate) / opt_risk_sharpe
     36 print("Optimal Weights (Sharpe Ratio):", optimal_weights_sharpe)
     37 print(f"Expected Portfolio Return (Sharpe Ratio): {opt_return_sharpe:.2%}")
38 print(f"Expected Portfolio Risk (Sharpe Ratio): {opt_risk_sharpe:.2%}")
     39 print(f"Sharpe Ratio: {opt_sharpe_ratio:.2f}")
→ Optimal Weights (Sharpe Ratio): [0.1 0.1 0.6 0.1 0.1]
     Expected Portfolio Return (Sharpe Ratio): 0.19%
     Expected Portfolio Risk (Sharpe Ratio): 4.21%
     Sharpe Ratio: -0.43
```

2.c Black-Litterman Optimization เช่นเดิม Cov หามาจากข้อมูลเก่า 5 ปีและกำหนดมุมมองตามเทรนที่เริ่มเมื่อ 1 ปีก่อนโดยประมาณ

Output:

Optimal Weights (Black-Litterman): OrderedDict([('AAPL', 0.3629391436948078), ('AMZN', 0.0), ('GOOGL', 0.393704286816254), ('NFLX', 0.0), ('TSLA', 0.2433565694889383)])

Expected Portfolio Return (Black-Litterman): 11.03% Expected Portfolio Risk (Black-Litterman): 2.10%

```
[62] 1 from pypfopt import BlackLittermanModel
       3 cov matrix = returns 5y.cov()
       5 risk free rate = 0.02
       6 expected_market_return = 0.08
      8 # Fetch beta values for the tickers
      10 for ticker in tickers:
           betas[ticker] = stock.info['beta']
     14 # Market-implied prior returns (using CAPM model)
15 market_prior = np.array([risk_free_rate + beta * (expected_market_return - risk_free_rate) for beta in betas.values()])
      17 views = {"AAPL": 0.04, "GOOGL": 0.02, "AMZN": 0.03, "TSLA": 0.03, "NFLX": 0.03}
      20 bl = BlackLittermanModel(cov_matrix=cov_matrix, pi=market_prior, absolute_views=views)
      21 bl_adjusted_returns = bl.bl_returns()
      24 ef = EfficientFrontier(bl_adjusted_returns, cov_matrix)
      25 bl_weights = ef.max_sharpe()
      27 print("Optimal Weights (Black-Litterman):", bl_weights)
      29 def portfolio_performance(weights, mean_returns, cov_matrix):
          weights_array = np.array(list(weights.values()))
portfolio_return = np.sum(mean_returns * weights_array)
           portfolio_std_dev = np.sqrt(np.dot(weights_array.T, np.dot(cov_matrix, weights_array)))
return portfolio_return, portfolio_std_dev
      35 opt_return_bl, opt_risk_bl = portfolio_performance(bl_weights, market_prior, cov_matrix)
      36 print(f"Expected Portfolio Return (Black-Litterman): {opt_return_bl:.2%}")
      37 print(f"Expected Portfolio Risk (Black-Litterman): {opt_risk_bl:.2%}")
```

2. Performance

ได้ผลลัพพธ์ต่างๆดังนี้

Mean-Variance Optimization Metrics: Final Portfolio Value: \$131,219.44

Profit: \$31,219.44

Percentage Increase: 31.22%

Sharpe Ratio: 0.89 Rolling Volatility: 0.40

Maximum Drawdown: -0.28 Value at Risk (VaR 95%): -0.03

Conditional Value at Risk (CVaR 95%): -0.04

Sharpe Ratio Optimization Metrics: Final Portfolio Value: \$135.555.20

Profit: \$35,555.20

Percentage Increase: 35.56%

Sharpe Ratio: 0.86 Rolling Volatility: 0.56

Maximum Drawdown: -0.28 Value at Risk (VaR 95%): -0.03

Conditional Value at Risk (CVaR 95%): -0.05

Black-Litterman Optimization Metrics:

Final Portfolio Value: \$134,728.98

Profit: \$34,728.98

Percentage Increase: 34.73%

Sharpe Ratio: 1.22 Rolling Volatility: 0.27

Maximum Drawdown: -0.17 Value at Risk (VaR 95%): -0.02

Conditional Value at Risk (CVaR 95%): -0.03

ซึ่งค่าที่มีการขีดเส้นใต้คือค่าที่เป็นค่าที่ดีที่สด

สรุปได้ว่า Black-Litterman Optimization มี Performance โดยรวมดีที่สุดโดยมี Mean-Variance Optimization รองลงมาแต่ในแง่ของ Profit ถือว่าสูสึกันมากแต่ Black-Litterman นั้นมี Sharpe Ratio มากที่สุดได้เกิน1ซึ่งหมายถึงว่าการลงทุนโดยใช้ วิธีนี้นั้นคุ้มค่าต่อความเสี่ยงที่มี และ Rolling Volatility ที่น้อยที่สุดนั่นก็คือค่อนข้างที่จะ

stable และก็ง่ายต่อการคาดเดา และก็มี Maximum Drawdown(ราคาจุดต่ำสุดเมื่อ เทียบกบจุดสูงสุด) เป็นอันดับ 2 VaR และ CVaR น้อยที่สุด

3.

3.a. ใช้ข้อมูลย้อนหลัง 6 ปี จนถึงก่อนหน้า 1 ปี เพื่อ train model ทำ backtest ของ strategies แล้วใช้โมเดลหรือ strategies ที่ได้ มาทดสอบกับข้อมูลย้อนหลัง 1 ปีจนถึง ปัจจุบัน ทีเดียว แล้ววิเคราะห์ performance เทียบกับ buy-and-hold

ผมใช้ Random Forest Strategy ซึ่งเป็น Machine learning โดยใช้ Random Forest Regressing Model และใช้ Backtest ในการ simulation 1ปี Output:

จะได้ Perfomance ในเชิงของ Profits ถือว่าใกล้เคียงกับ buy-and-hold แต่ว่าน้อยกว่า นิดหน่อยส่วนค่าอื่นๆก็ถือว่าค่อนข้างดี Sharpe ratio สูง Rolling Volatility น้อย

3.b b. ใช้ข้อมูลย้อนหลัง 6 ปี จนถึงก่อนหน้า 1 ปี เพื่อ train model ทำ backtest ของ strategies แล้วใช้โมเดลหรือ strategies ที่ได้ มาทดสอบกับข้อมูล 12 เดือนย้อนหลัง เป็นเวลา 1 เดือน แล้ว ปรับ เทรน model ใหม่ โดยใช้ข้อมูลย้อนหลังที่ขยับมาข้างหน้า 1 เดือน เพื่อเทรน model และปรับ strategies ใหม่ ทดสอบกับ ข้อมูลย้อนหลังเดือนที่ 11 ขยับการดึงข้อมูลเช่นนี้ไปเรื่อยๆ จนถึงปัจจุบัน ให้วิเคราะห์ performance เทียบกับ a. และ buy-and-hold

ผมใช้ Random Forest Strategy เช่นเดิมแต่จพทำการ Train ใหม่ทุกๆครั้งตอนจบ เดือนและปรับ Weight ของ Stretegy ใหม่ทุกๆเดือน

```
Start Portfolio Value: $100000
Final Portfolio Value: $126826.02
Profits: 26.83%
Sharpe Ratio: 1.17
Rolling Volatility: 0.22
Maximum Drawdown: 0.18
Value at Risk (VaR 95%): -0.02
Conditional Value at Risk (CVaR 95%): -0.03
Portfolio Value at the end of 2023-11: $107166.90
Portfolio Value at the end of 2023-12: $108775.98
Portfolio Value at the end of 2024-01: $102663.87
Portfolio Value at the end of 2024-02: $101302.98
Portfolio Value at the end of 2024-03: $95637.99
Portfolio Value at the end of 2024-04: $95257.02
Portfolio Value at the end of 2024-05: $106783.07
Portfolio Value at the end of 2024-06: $117065.22
Portfolio Value at the end of 2024-07: $124134.81
Portfolio Value at the end of 2024-08: $127385.34
Portfolio Value at the end of 2024-09: $130922.94
Portfolio Value at the end of 2024-10: $126826.02
```

ได้ Final Portfolio Value: \$126826.02 ซึ่งมีค่ามากกว่า 3.a เพียงนิดหน่อยและ ก็ค่าต่างๆพวก Sharpe Ratio, Rolloing Volatility, Maximum Drawdown, VaR และ CVaR นั้นเหนือกว่าหรือเท่ากับ 3.a ทุกอย่างเลย แต่เมื่อเทียบกับ buy-and-hold Black-Litterman Optimization แล้วถือว่าใกล้เคียงกันมากขึ้นหรือบาง matrices ก็มีค่า เท่ากันเลย

กราฟจาก 3.b

กราฟจาก 3.a

จะเห็นได้ชัดเลยว่ากราฟของ ทั้ง 3.a และ 3.b นั้นมีความใกล้เคียงกนสูงมากแต่ เมื่อดูดีๆแล้วจะเห็นว่ากราฟของ 3.b จะค่อนข้าง smooth มากกว่า สรุปแล้ว Performance ของ 3.b นั่นสูงกว่า 3.a เกือบทุกด้านแต่ก็ยัง Performance น้อยกว่าหรือเท่ากับ buy-and-hold Black-Litterman ในบางด้าน ดังนั้น buy-and-hold Black-Litterman จึงเหมาะสมกบสถานการนี้มากกว่า 3.b

ลิ้งค์ Colab ข้อ 1,2

https://colab.research.google.com/drive/1kK9xXdWkpQOCTK8AEADbhIAwMJc3VEvy?usp=sharing

ลิ้งค์ Colab ข้อ 3

https://colab.research.google.com/drive/1qraR_VpN6k0ZiXwKpHdos6IE7zpkR RVA?usp=sharing