Articulation Points

Andrés Valencia Oliveros^{1,2}

Facultad de Ingeniería, Diseño e Innovación Institución Universitaria Politécnico Grancolombiano Bogotá, Colombia

Resumen

. .

Keywords: articulation point, cut vertex

1 Introducción

. . .

2 Teoría de grafos

En matemáticas y en ciencias de la computación, la teoría de grafos estudia las propiedades de los grafos. Un grafo G(V, E) es una colección de puntos, llamados vértices o nodos $V = \{v_1, v_2, \dots\}$, y segmentos de línea que conectan esos puntos, llamados aristas o arcos (en inglés edges) $E = \{e_1, e_2, \dots\}$; cada arista e tiene dos puntos finales, que son vértices. Se escribe $u \stackrel{e}{-} v$, y significa que la arista e incide sobre los vértices u y v; en este caso se puede decir que e conecta los vértices u y v, o que los vértices u y v son advacentes [1].

Fig. 1. Ejemplo de un grafo. [1]

 $^{^{1}}$ GitHub: anvalenciao

 $^{^2\,}$ Email: anvalenciao@poligran.edu.co

2.1 Grafo conexo

Un grafo G es conexo, si por cada dos vértices u y v, hay un camino (finito) que comienza en u y termina en v [1]. Para verificar si un grafo G es conexo, se puede aplicar un algoritmo determinista habitual, búsqueda en anchura en inglés $Breadth\ First\ Search\ (DFS)$ o búsqueda en profundidad en inglés $Depth\ First\ Search\ (DFS)$.

Fig. 2. Tipos de grafos. (a) Conexo. (b) Disconexo.

2.2 Grafo dirigido o digrafo

Un digrafo o grafo dirigido G(V, E) se define de manera similar a un grafo, excepto que el par de *puntos finales* (u, v) de cada arista ahora está ordenado. Se escribe $u \stackrel{e}{\to} v$, dónde u es el vértice inicial de e; y v es el vértice final de e. Se dice que la arista e está dirigida de u a v [1].

Fig. 3. Tipos de grafos. (a) No dirigido. (b) Dirigido o digrafo.

3 Puntos de articulación

Un vértice v es un punto de articulación (o vértice de corte), si al eliminar el vértice v del grafo aumenta el número de componentes conectados. Es decir, genera algunos vértices inalcanzables para otros, se desconecta el grafo.

Fig. 4. Ejemplo de grafo con dos puntos de articulación v_4 y v_6 .

4 Puentes

Una arista se llama puente si al eliminarla del grafo (manteniendo los vértices) aumenta el número de componentes conectados.

Fig. 5. Ejemplo de grafo con una arista puente e_9 .

5 Algoritmos

lorem ipsum dolor sit amet.

5.1 Algoritmo de Tarjan

El algoritmo de Tarjan para encontrar puntos de articulación

5.1.1 Pseudocódigo

```
Algoritmo 1: sample code
```

```
1 function name(params) {
2     return this + "test";
3 }
```

5.1.2 Complejidad

Glosario de términos

adyacentes Si una arista conecta dos vértices, se dice que son adyacentes. 1

algoritmo determinista Su comportamiento se puede predecir completamente a partir de la entrada, el algoritmo realiza los mismos cálculos y ofrece los mismos resultados[2]. 2

```
BFS Breadth First Search. 2
```

DFS Depth First Search. 2

puntos finales Dos vértices conectados por una arista. 1, 2

Referencias

- [1] S. Even, Graph algorithms. Cambridge University Press, 2011.
- [2] P. E. Black, "deterministic algorithm," 2009.