Probability Note

我不知道

1 Variance

Property 1.1. For two independent RVs X, Y, Var(X + Y) = Var(X) + Var(Y).

Proof.

$$Var(X + Y)$$
= $E[X + Y]^2 - E[(X + Y)^2]$
= $E[X]^2 + 2E[X]E[Y] + E[Y]^2 - E[X^2] - 2E[XY] - E[Y]^2$
= $Var(X) + Var(Y)$

Property 1.2. For RV *X*, Y = cX has variance $Var(Y) = c^2 Var(x)$.

Proof.

$$Var(cX)$$
= $E[cX]^2 - E[(cX)^2]$
= $c^2 Var(X)$

Lemma 1.1. Let x_1, x_2, \ldots, x_n be n samples from a probability distribution. Let \bar{x} denote the mean of the samples and μ be the *real mean*. If the *real mean* is known, the sample variance is

$$\frac{1}{n}\sum_{i=1}^n(x_i-\mu)^2$$

Otherwise,

$$\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Proof. Call f(x) an unbiased estimator of θ if

$$\mathbb{E}[f(u(x_1,x_2,\ldots,x_n))]=\theta$$

where u means uniformly chosen from all samples x_i .

Probability Note 我不知道

Let us show that the given formula is indeed an unbiased estimator of Var(x).

$$E\left[\frac{1}{n-1}\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}\right]$$

$$=\frac{1}{n-1}E\left[\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}\right]$$

$$=\frac{1}{n-1}E\left[\sum_{i=1}^{n}(x_{i}-\mu+\mu-\bar{x})^{2}\right]$$

$$=\frac{1}{n-1}E\left[\sum_{i=1}^{n}(x_{i}-\mu)^{2}+2\sum_{i=1}^{n}(x_{i}-\mu)(\mu-\bar{x})+\sum_{i=1}^{n}(\mu-\bar{x})^{2}\right]$$

$$=\frac{n}{n-1}\left(\operatorname{Var}(x)-2\operatorname{Var}(\bar{x})+\operatorname{Var}(\bar{x})\right)$$

$$=\frac{n}{n-1}\left(\operatorname{Var}(x)-\operatorname{Var}\left(\frac{\sum_{i=1}^{n}x_{i}}{n}\right)\right)$$

$$=\frac{n}{n-1}\left(\operatorname{Var}(x)-\operatorname{Var}\left(\sum_{i=1}^{n}x_{i}\right)\right)$$

$$=\frac{n}{n-1}\left(\operatorname{Var}(x)-\frac{1}{n^{2}}\operatorname{Var}\left(\sum_{i=1}^{n}x_{i}\right)\right)$$

$$=\frac{n}{n-1}\left(\operatorname{Var}(x)-\frac{n}{n^{2}}\operatorname{Var}(x)\right)$$

$$=\frac{n}{n-1}\cdot\frac{n-1}{n}\operatorname{Var}(x)$$

$$=\operatorname{Var}(x)$$

2 Discrete Distributions

2.1 Binomial Distribution

Definition 2.1. A *Bernoulli Trial* is a RE that only has two outcomes, success and fail, each with probability of p and 1 - p.

Definition 2.2. A sequence of RVs is *independent and identically distributed* if each of them has the same probability distribution and they are mutally independent.

Definition 2.3. A *Binomial Distribution*, denoted by B(n, p), is the distribution the number of success of n i.i.d. Bernoulli Trial with success probability p. The PMF of $X \sim B(n, p)$ is

$$f(X) = \binom{n}{X} p^X (1 - p)^X$$

Property 2.1. Let $X \sim B(n, p)$.

• $\mu = np$.

• $\sigma^2 = np(1-p)$.

Proof. We will prove the variance. The MGF of *X* is

$$M(t) = \sum_{X=0}^{n} e^{tX} \binom{n}{X} p^{X} (1-p)^{X} = (pe^{t} + (1-p))^{n}$$

Therefore

$$M'(t) = n \left(pe^t + (1-p) \right)^{n-1} pe^t \Rightarrow \mu = E[X] = M'(0) = np$$

$$M''(t) = n(n-1) \left(pe^t + (1-p) \right)^{n-2} p^2 e^{2t} + n \left(pe^t + (1-p) \right)^{n-1} pe^t \Rightarrow E[X^2] = M''(0) = n(n-1)p^2 + np$$

$$\sigma^2 = E[X^2] - E[X]^2 = np - np^2 = np(1-p)$$

Definition 2.4. A *Negative Binomial Distribution*, denoted by NB(r, p), is the distribution of the number of i.i.d. Bernoulli Trial with success probability p needs to performed until r success. The PMF of $X \sim NB(r, p)$ is

$$f(X) = {r + X - 1 \choose r - 1} p^r (1 - p)^X$$

Definition 2.5. A *Geometric Distribution* with probability p, denoted by G(p), is defined as NB(1, p). Its PMF is

$$f(X) = p(1 - p)^X$$

Definition 2.6 (Poisson Distribution). Observe the number of arrivals during a given period of time. Under the assumption of

- 1. Each arrival is independent.
- 2. The probability of exactly one arrival in a sufficient short period of time Δt is $\lambda \Delta t$.
- 3. The probability of two or more arrival in a sufficient short period of time is 0.

Then the distribution is a *Poisson Distribution*, denoted by $Pois(\lambda)$.

Property 2.2. Let $X \sim \text{Pois}(\lambda)$

- PMF $f(X) = \frac{\lambda^X e^{-\lambda}}{X!}$
- $\mu = \lambda$.
- $\sigma^2 = \lambda$.

Proof. We will prove the all of them. Assume the time period is splited into n segments, then

$$X \sim B(n, \frac{\lambda}{n})$$

When $n \to \infty$,

$$P(X = x) = \lim_{n \to \infty} \binom{n}{x} \left(\frac{\lambda}{n}\right)^x \left(1 - \frac{\lambda}{n}\right)^{n-x}$$

$$= \lim_{n \to \infty} \frac{\prod_{n=x+1}^{i=n} i}{n^x} \frac{\lambda^x}{x!} \left(1 - \frac{\lambda}{n}\right)^n \left(1 - \frac{\lambda}{n}\right)^{-x}$$

$$= 1 \cdot \frac{\lambda^x}{x!} \cdot e^{-\lambda} \cdot 1$$

The MGF of the distribution is

$$M(t) = \sum_{x=0}^{\infty} \frac{\lambda^{X} e^{-\lambda}}{X!} e^{tX} = e^{-\lambda} e^{\lambda e^{t}}$$

Therefore

$$M'(t) = \lambda e^t e^{\lambda e^t - \lambda} \Rightarrow \mu = E[x] = M'(0) = \lambda$$
$$M''(t) = \lambda e^t e^{\lambda e^t - \lambda} + \lambda^2 e^{2t} e^{\lambda e^t - \lambda} \Rightarrow E[x^2] = \lambda + \lambda^2 \Rightarrow \sigma^2 = \lambda$$

3 Continuous Distributions

Definition 3.1. For a RV X, the *cumulative distribution function* is defined

$$F_X(t) = P(X \le t)$$

which the following must hold:

- $\lim_{t\to\infty} F_X(t) = 1$.
- $\lim_{t\to-\infty}F_X(t)=0.$
- $a < b \Rightarrow F_X(a) \le F_X(b)$.

Definition 3.2. For a continuous RV *X*, the *probability density function* is defined

$$f_X(t) = \frac{d}{dt} F_X(t)$$

or equivlantly,

$$\int_{-\infty}^{x} f_X(t)dt = F_X(t)$$

Property 3.1. A valid PDF f_X with space S must have

- $f(x) \ge 0$ $(x \in S)$
- $\int_{S} f(x)dx = 1$
- $P(a < X < b) = \int_a^b f(x)dx \quad ((a,b) \subseteq S).$

Remark. Notice the following consequences:

- It is possible that f(x) > 1.
- P(X = x) = 0.
- It is possible f_X is non-continuous
- $P(X \in [a,b]) = P(X \in [a,b]) = P(X \in (a,b]) = P(X \in (a,b))$

Definition 3.3. For a continuous RV X with PDF f_X ,

• Mean $\mu = E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$

我不知道

- Variance $\sigma^2 = \text{Var}(X) = \int_{-\infty}^{\infty} (x \mu)^2 f_X(x) dx$
- MGF $M(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$, if there exists a open interval $(-\delta, \delta)$ which the integral converges.

Theorem 3.1 (Moment Generating Function Uniqueness Theorem). If two MGF are the same, the PDF will also be the same.

Proof will not be present because it requires graduate courses.

Example. $X \sim U(a,b)$ means X is uniformly random selected from the interval [a,b], which has the following property.

- Mean $\mu = \frac{a+b}{2}$
- Variance $\sigma^2 = \frac{(b-a)^2}{12}$
- MGF $M(t) = \begin{cases} \frac{e^{bt} e^{at}}{t(b-a)} & (t \neq 0) \\ 1 & (t = 0) \end{cases}$

From discrete possion distribution, the waiting time between two successive arrival is also an RV. We denote this distribution as *Exponential Distribution*.

Definition 3.4. $X \sim \text{Exp}(\lambda)$ denotes the distribution of two successive arrival under the setting of possion distribution. The CDF can be written as

$$P(X \le \omega) = 1 - \frac{(\omega \lambda)^0 e^{-\omega \lambda}}{0!} = 1 - e^{-\omega \lambda}$$

Therefore

$$f_X(\omega) = \lambda e^{-\lambda \omega} \quad (\omega \ge 0)$$

Property 3.2. Let $X \sim \text{Exp}(\lambda)$, then the MGF is

$$M(t) = \frac{1}{1 - \lambda^{-1}t}$$

Consequently, $\mu = \lambda^{-1}$, $\sigma^2 = \lambda^{-2}$.

Proof. When $t = \lambda$ the integral diverges, otherwise

$$M(t) = \int_0^\infty \lambda e^{-\lambda x} e^{tx} dx = \left. \frac{\lambda}{t - \lambda} e^{(t - \lambda)x} \right|_0^\infty$$

When $t > \lambda$ the integral also diverges. Therefore when $t < \lambda$,

$$M(t) = -\frac{\lambda}{t - \lambda} = \frac{1}{1 - \lambda^{-1}t}$$

Property 3.3. Exponential distribution is *memoryless*. That is, for a < b, $P(X > b \mid X > a) = P(X > (b - a))$.

Probability Note 我不知道

It is not hard to think of, because intuitively, in Possion distribution, every arrival is independent. In mathematical form,

$$P(X > b \mid X > a) = \frac{P(X > b \cap X > a)}{P(X > a)} = \frac{P(X > b)}{P(X > a)} = \frac{e^{-b\lambda}}{e^{-a\lambda}} = e^{-(b-a)\lambda}$$

It is possible to generalize the exponential distribution,

Definition 3.5. $X \sim \Gamma(\alpha, \lambda)$ denotes the distribution of waiting time before the α -th under the setting of possion distribution. The CDF can be written as

$$P(X \le \omega) = 1 - \sum_{k=0}^{\alpha - 1} \frac{(\omega \lambda)^k e^{-\omega \lambda}}{k!}$$

Therefore

$$f_X(\omega) = \lambda e^{-\omega\lambda} - \sum_{k=1}^{\alpha-1} \left(\frac{-\lambda(\omega\lambda)^k e^{-\omega\lambda}}{k!} + \frac{k\lambda(\omega\lambda)^{k-1} e^{-\omega\lambda}}{k!} \right) = \lambda e^{-\omega\lambda} - \lambda e^{-\omega\lambda} \left(1 - \frac{(\lambda\omega)^{\alpha-1}}{(\alpha-1)!} \right) = \frac{\omega^{\alpha-1}\lambda^{\alpha} e^{-\omega\lambda}}{(\alpha-1)!}$$

Property 3.4. Let $X \sim \Gamma(\alpha, \lambda)$, then the MGF is

$$M(t) = (1 - \lambda^{-1}t)^{-\alpha} \quad (t < \lambda)$$

Consequently, $\mu = \alpha \lambda^{-1}$, $\sigma^2 = \alpha \lambda^{-2}$.

Proof. Let us prove by mathematical induction. Observe when $\alpha = 1$, the result is the same as exponential distribution, which we have already shown. Assume the property is correct when $\alpha = k - 1$. When $\alpha = k$:

$$\int_0^\infty \frac{x^{\alpha-1}\lambda^{\alpha}e^{(t-\lambda)x}}{(\alpha-1)!}dx = \int_0^\infty \frac{x^{\alpha-1}\lambda^{\alpha}}{(\alpha-1)!} \cdot e^{(t-\lambda)x}dx$$

$$= \frac{x^{\alpha-1}\lambda^{\alpha}}{(\alpha-1)!} \cdot \frac{e^{(t-\lambda)x}}{t-\lambda} \Big|_0^\infty - \int_0^\infty \frac{x^{\alpha-2}\lambda^{\alpha}}{(\alpha-2)!} \cdot \frac{e^{(t-\lambda)x}}{t-\lambda}dx$$

$$= -\int_0^\infty \frac{x^{\alpha-2}\lambda^{\alpha}}{(\alpha-2)!} \cdot \frac{e^{(t-\lambda)x}}{t-\lambda}dx$$

$$= \frac{\lambda}{\lambda-t} \int_0^\infty \frac{x^{\alpha-2}\lambda^{\alpha-1}e^{(t-\lambda)x}}{(\alpha-2)!}dx$$

$$= (1-\lambda^{-1}t)^{-\alpha}$$

By induction, the property holds.

Definition 3.6. The *Chi-square Distribution* with r degrees of freedom, denoted as $\chi^2(r)$, is equivlant to $\Gamma(\frac{r}{2}, \frac{1}{2})$.

Definition 3.7. The *Beta Distribution* with shape parameters α , β , denoted as Beta(α , β), is defined on interval [0, 1], and has PDF

$$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{\mathrm{B}(\alpha,\beta)}$$

where $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$ is called beta function, which is a normalization constant.

我不知道 Probability Note

Beta distribution is the beta distribution is the conjugate prior probability distribution for the Bernoulli, binomial, negative binomial, and geometric distributions. Recall the Baye's Law:

$$\begin{array}{|c|c|c|c|c|}
\hline
Posterior & P(B \mid A) \times P(A) \\
\hline
P(A \mid B) & \hline
P(B) & Pvidence
\end{array}$$

Suppose we suspect the target distribution is binomial distribution, but with probability p unknown, then we can choose beta distribution as the *prior* probability, with parameters α , β reflecting existing belief or information. For example if we know the p is selected uniformly at random, we might choose $\alpha = \beta = 1$.

We know that if we sampled s success and f fallure, then

$$P(s, f \mid p = x) = {s + f \choose s} x^{s} (1 - x)^{f}$$
$$P(p = x) = \frac{x^{\alpha - 1} (1 - x)^{\beta - 1}}{B(\alpha, \beta)}$$

To compute the probability of *p* being *x* given the result of *s*, *f*, we use Baye's Law:

$$P(p = x \mid s, f) = \frac{P(s, f \mid p = x)P(p = x)}{P(s, f)}$$

$$= \frac{\binom{s+f}{s}x^{s}(1 - x)^{f} \cdot \frac{x^{\alpha-1}(1 - x)^{\beta-1}}{B(\alpha, \beta)}}{\int P(s, f \mid p = y)P(p = y)dy}$$

$$= \frac{\binom{s+f}{s}x^{s}(1 - x)^{f} \cdot \frac{x^{\alpha-1}(1 - x)^{\beta-1}}{B(\alpha, \beta)}}{\int_{0}^{1}\binom{s+f}{s}y^{s}(1 - y)^{f} \cdot \frac{y^{\alpha-1}(1 - y)^{\beta-1}}{B(\alpha, \beta)}dy}$$

$$= \frac{x^{s+\alpha-1}(1 - x)^{f+\beta-1}}{B(s + \alpha, f + \beta)}$$

$$\approx \text{Beta}(s + \alpha, f + \beta)$$

We call this *conjugate prior probability*, because the beta distribution appraring as prior results a beta distribution as posterior probability distribution.

4 Transformation of Random Variable

Basic transformation:

Property 4.1. For a random variable X of PDF f_X . The CDF of Y = g(X) is

$$F_Y(y) = P(Y \le y) = P(g(X) \le Y) = \int_{g(x) \le y} f_X(x) dx$$

Property 4.2. Assume Y = u(X) is **monotonic increasing** function. If the support (c_1, c_2) maps to the $(d_1, d_2) = (u(c_1), u(c_2))$. Then the distribution of Y is

$$f_Y(y) = \frac{d}{dy} F_Y(y) = \frac{d}{dy} F_X(u^{-1}(y)) = f_X(u^{-1}(y))(u^{-1})'(y)$$

Probability Note 我不知道

If *u* is **monotonic decreasing** function, then the result is

$$f_Y(y) = -\frac{d}{dy}F_Y(y) = -\frac{d}{dy}F_X(u^{-1}(y)) = -f_X(u^{-1}(y))(u^{-1})'(y)$$

Applying the whole domain might not be possible, but partition the domain into several monotonic intervals is a good idea.

Example. $X \sim \Gamma(\alpha, \lambda)$, find Y where $Y = e^X$. $X = \ln Y$, therefore

$$f_Y = -f_X(\ln Y) \cdot \frac{1}{Y} = \frac{(\ln Y)^{\alpha - 1} Y^{-\lambda} \lambda^{\alpha}}{\Gamma(\alpha) Y}$$

Example. Assume a RV X with Y = aX + b, find PDF of Y.

$$f_Y = f_X \left(\frac{Y - b}{a} \right) \left| \frac{1}{a} \right|$$

Example. Assume a RV X with $Y = X^n$ (where $n \in \mathbb{N}$), find PDF of Y. When n is odd, the transformation property is applicable:

$$f_Y = f_X \left(Y^{\frac{1}{n}} \right) \frac{Y^{\frac{1}{n} - 1}}{n}$$

When n is even, consider the both side:

$$f_Y = \left(f_X \left(Y^{\frac{1}{n}} \right) + f_X \left(-Y^{\frac{1}{n}} \right) \right) \frac{Y^{\frac{1}{n} - 1}}{n} \quad (Y \ge 0)$$

5 Multivariable Distribution

Definition 5.1. A *joint PMF* of k discrete RVs $X_1, X_2, ..., X_k$ is a function that $P(X_1 = x_1, X_2 = x_2, ..., X_k = x_k) = f(x_1, x_2, ..., x_k)$. Such function satisfies

- $\bullet \ \ 0 \le f(x_1, x_2, \dots, x_k) \le 1$
- $\sum_{(x_1,x_2,...,x_k)\in S} f(x_1,x_2,...,x_k) = 1$

The marginal PMF of X_i is

$$f_{X_i}(x) = P(X_i = x) = \sum f(x_1, x_2, \dots, x_{i-1}, x, x_{i+1}, \dots, x_k)$$

Definition 5.2. A *joint PDF* of k continuous RVs X_1, X_2, \ldots, X_k is a function that $P(X_1 = x_1, X_2 = x_2, \ldots, X_k = x_k) = f(x_1, x_2, \ldots, x_k)$. Such function satisfies

- $\bullet \ \ 0 \leq f(x_1, x_2, \dots, x_k)$
- $\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_1, x_2, \ldots, x_k) dx_1 dx_2 \cdots dx_k$

The marginal PDF of X_i is

$$\int_{-\infty}^{\infty} f(x_1, x_2, \dots, x_k) dx_i$$