Backtracking: finding all solution by exploring all possible comdidates.

1) Find all n digit number which can be custed by I or 2.

paismelis

i, n, ano[n]

1	11
1	12
1	21
7	22
2	1 1
2	12
2	21
2	22

findall (ant i, int n, wit aw [1)

if (
$$i = = n$$
) i pent (aee); return } (2)

and [i] = 1;

fundall ($i \neq 1$, n, and); (2)

fundall ($i \neq 1$, n, and); (3)

fundall ($i \neq 1$, n, and); (4)

fundall ($i \neq 1$, n, and); (4)

fundall (1, 3, and);

and [i] = 1

fundall (2, 3, and); fundall (2, 3, ard)

fundall (3, 3, and); fundall (3, 2, and); fundall (3, 2, and); fundall (3, 2, and);

1 11

The second of the content of the conten

```
findall ( int i, int n, int am [1))
if(i==n) \ d pent(aee); return) \ d
for(int j=1; j < S; j+t)
d ans [i]=j;
fundall(i+1, n, ans);
d
```

along of some N, no of subsets with sum = k.

$$\begin{cases}
5 & -a & 9 & 1 \\
0 & 1 & 0 & 1
\end{cases}$$
quesate all subsets with sum = k.

$$\begin{cases}
5 & -a & 9 & 1 \\
0 & 1 & 0 & 1
\end{cases}$$
quesate all subsets with sum = k.

$$\begin{cases}
5 & -a & 9 & 1 \\
5 & -a & 9
\end{cases}$$

$$\begin{cases}
5 & -a & 9 & 1 \\
5 & -a & 9
\end{cases}$$

$$\begin{cases}
5 & -a & 9 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 9 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 9 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 9 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 9 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 9 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 9 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 9 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 9 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 9 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 9 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 9 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 9 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 9 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 9 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2 & 1 \\
5 & -a & 2
\end{cases}$$

$$\begin{cases}
5 & -a & 2$$

j

find all subsets if elements one unique list of lest = final list Jan genallsub (mt i, nil n, int all s, lest) if (== n) { finallist. moet (lost); lest insert (au (i)); genallab (i+1, n, all, list); list. remove from end (); genouse(iti, n, all i (ist)); j

.

unique intépers, find all permutations n n-1 n-2 52341 21345

void genall per (ent i, ent n, int aer ())

 $\tilde{u}_{j}(\tilde{u}==n) \text{ if finallist o coset}(au); j$

for (j= i) j<n; j++) of (j[=i hr auli]==aulj) contine;

swap (aulj1, auli);

genal per (i+1, n, ar);

Swap (aulj1, auli);

aab

aab baa

z

function (...) {

// base condition

Try all possibilités {

do
funct() recurrence coll

modo

g