消華大学物理实验报告

班级:软件 71姓名:<u>骆炳君</u>学号:2017013573日期:2019-5-27

实验名称: 偏振光学实验

目 录

—、	实验目的·····	2
二、	数据处理	2
	1. 观测布氏角 · · · · · · · · · · · · · · · · · · ·	2
	2. 测定偏振器的透射轴方向	2
	3. 测消光比 e······	2
	4. 测量透射光强 I_m 与两偏振器间夹角 θ 的关系 \cdots	3
	$5.$ 定待测波片 C_X 的轴向 \cdots	3
	6. 定波片 C_0 的快轴方向 \cdots	3
	4 00,	4
	8. 线偏振光通过半波片或全波片	4
	9. 线偏振光通过全波片或半波片	4
三、	实验小结	5
四、	思考题	5
五、	拟合曲线	6
六、	原始数据表格·····	7

一、 实验目的

- (1) 理解偏振光的基本概念,偏振光的起偏与检偏方法.
- (2) 学习偏振片与波片的工作原理与使用方法.

二、数据处理

1. 观测布氏角

光束正入射棱镜表面时的平台方位角 $\alpha_{i=0}=330.6^{\circ}$.

入射角为布儒斯特角时的平台方位角平均值 $\alpha_B = 274.5^\circ$.

Brewster 角 $\theta_B = |\alpha_B - \alpha_{i=0}| = 56.1$ °. $n = \tan \theta_B = 1.488$, 其相对误差为

$$\frac{1.54 - 1.488}{1.54} \times 100\% = 3.38\%$$

姓名: 骆炳君

2. 测定偏振器的透射轴方向

起偏器 A 的透射轴方向

序号	1	2	3	标准差	平均值
p_{\leftrightarrow}	86.1°	86.2°	85.5°	0.31°	85.9°

检偏器 A 的透射轴方向

检偏器 A 的透射轴方向角 $a_{\updownarrow} = 186.6^{\circ}$

3. 测消光比 e

序号	$I_{max}(mV)$	$I_{min}(mV)$
1	17.549	0.002
2	17.546	0.001
3	17.553	0.002
平均值	17.549	0.002

已知电阻箱阻值 $R=270\Omega$, 遮住光源后 $I_0=-0.002mV$. 消光比

$$e = \frac{\overline{I_{min}} - I_0}{2I_{max}} = 1.13 \times 10^{-4}$$

其量级符合预期.

4. 测量透射光强 I_m 与两偏振器间夹角 θ 的关系

序号	夹角 θ(°)	A 盘方位角 α(°)	出射光强测量值 $I_m(°)$	出射光强计算值 $I_c(^\circ)$	相对偏差 (%)
1	0	276.6	16.802		
2	15	291.6	15.451	15.679	1.476
3	30	306.6	12.407	12.603	1.580
4	45	321.6	8.234	8.403	2.052
5	0	276.6	16.765		
6	60	336.6	4.125	4.260	3.273
7	75	351.6	1.113	1.127	1.258
8	80	356.6	0.503	0.508	0.994
9	0	276.6	16.810		
10	84	0.6	0.193	0.185	4.145
11	87	3.6	0.055	0.047	14.545
12	90	6.6	0.001	0.002	70.000
13	0	276.6	16.794		

由数据可得,当振动方向与透射轴方向夹角 $\theta \leq 80^\circ$ 时,出射光强的测量值与计算值间的误差较小,可近似认为验证了马吕斯定律. 当 $\theta > 80^\circ$ 时误差变大,主要是因为出射光强过小,导致测量误差增大. 相对透射率随 θ 变化的关系曲线及 $\cos\theta \sim \theta$ 曲线见附录,观察可得,两条曲线基本重合,可知马吕斯定律符合良好.

5. 定待测波片 C_X 的轴向

待测波片的一个轴在垂直方向时的方向角 $c_X = 78^\circ$.

6. 定波片 C_0 的快轴方向

波片 C_0 快轴在垂直方向时的度盘方向角 $c_0 = 123.9^\circ$.

7. 线偏振光经过 $\frac{1}{4}$ 波片

序号	β	$C(^{\circ})$	$\alpha_i(^{\circ})$	$I_{max}(mV)$	$I_{min}(mV)$	ψ 测量值 (°)	b^{2}/a^{2}	δ_r 计算值 (°)	ψ 计算值 (°)
1	0.0	123.9	275.9	9.921	0.000	0.7	0.000	0.000	0.000
2	22.5	146.4	258.7	9.070	1.779	17.9	0.196	无解	无解
3	45.0	168.9	320.4	6.308	5.623	-43.8	0.891	86.860	无解
4	67.5	191.4	119.0	12.861	1.778	157.6	0.138	67.507	169.532
5	90.0	213.9	97.9	14.354	0.000	178.7	0.000	0.000	0.000

当 $\beta=0^\circ$ 或 $\beta=90^\circ$ 时, $b^2/a^2=0$,透射光近似为线偏振光. 当 $\beta=45^\circ$ 时, b^2/a^2 近似为 1,透射光近似为圆偏振光.

8. 线偏振光通过半波片或全波片

 C_X 某轴置于垂直方向,度盘示值 78°.

 C_0 快轴置于垂直方向,度盘示值 123.9°.

序号	$p-p_{\leftrightarrow}(^{\circ})$	p(°)	$\alpha_i(^{\circ})$	$\alpha_{\uparrow} - \alpha_i(^{\circ})$
1	0.0	85.9	7.1	-0.5
2	15.0	100.9	350.5	16.1
3	30.0	115.9	333.4	33.2
4	45.0	130.0	318.1	48.5

由实验数据可得, $p-p_{\leftrightarrow}$ 与 $\alpha_{\updownarrow}-\alpha_{i}$ 的变化基本相同,可认为此时 C_{X} 与 C_{0} 组成全波片,所以 C_{X} 的快轴方向是水平方向.

9. 线偏振光通过全波片或半波片

 C_X 某轴保持垂直方向,度盘示值 78°.

 C_0 快轴置于水平方向,度盘示值 33.9°.

序号	$p-p_{\leftrightarrow}(^{\circ})$	p(°)	$\alpha_i(^{\circ})$	$\alpha_{\uparrow} - \alpha_i(^{\circ})$
1	0.0	85.9	186.2	0.4
2	15.0	100.9	199.7	-13.1
3	30.0	115.9	213.8	-27.2
4	45.0	130.0	229.6	-43.0

由实验数据可得, $p-p_{\leftrightarrow}$ 与 $\alpha_{\downarrow}-\alpha_{i}$ 的变化相反,可认为此时 C_{X} 与 C_{0} 组成半波片,所以 C_{X} 的快轴方向是水平方向.

综上可得, C_X 保持垂直方向的某轴为慢轴.

三、 实验小结

本次实验是光学实验,精密光学仪器的使用给实验操作带来了较大挑战,需要我们对实验原理和仪器都有比较深入的了解.在实验过程中暴露了我的很多不足之处,例如调节度盘出错,对读数不够熟悉等.感谢助教和老师的悉心指导!

四、 思考题

1.

将两个 $\frac{1}{4}$ 波片快轴与快轴平行,可构成半波片;将两个 $\frac{1}{4}$ 波片快轴与快轴垂直,可构成全波片. 线偏振光透过半波片后,振动方向与原方向关于快轴对称;线偏振光透过全波片后,振动方向不变. 因此可缓慢旋转入射线偏振光,若透射光同向旋转,则为全波片;若透射光反向旋转,则为半波片.

2.

波片快慢轴与 P 透射轴应满足夹角为 15°.

光隔离器的原理:光通过起偏器 P 后,透射光为振动方向与 P 透射轴平行的线偏振光;再通过与之夹角为 45° 的 $\frac{1}{4}$ 波片 C 后,透射光为圆偏振光.在 M 表面发生反射,由于半波损失的存在,反射光的旋向发生改变. 改变后的反射光反向入射到波片 C,透射光为偏振方向与入射偏振光相反的线偏振光,因此无法继续透过起偏器 P,从而实现了光隔离器.

五、 拟合曲线

1 0.9 8.0 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 20 40 60 80 100

六、 原始数据表格