地理建模实验6实验报告

42109232 吕文博 地信 2101 班

2024-06-11

主成分分析

读取和清洗数据

```
library(tidyverse)
library(broom)
library(ggfortify)
urban_econindic = readxl::read_xlsx('.../data/exp6/6.xlsx',sheet = 'Chp 第 16 题')
names(urban_econindic) = str_extract(names(urban_econindic),"^[^/]+")
head(urban_econindic) %>% knitr::kable()
```

城市	总人	非农业人	农业总	工业总	地方财政预算	城乡居民年底	在岗职工工
编号	П	口比例	产值	产值	内收入	储蓄余额	资总额
1	1249.90	0.60	184.34	1999.97	279.09	2680.66	577.33
2	910.17	0.58	150.11	2264.55	112.81	1130.19	225.43
3	875.40	0.23	291.87	688.58	35.23	709.59	75.89
4	299.92	0.66	23.60	273.78	20.33	394.31	65.40
5	207.78	0.44	36.53	81.65	10.58	139.66	30.93
6	677.08	0.63	129.54	582.67	56.79	901.70	115.28

使用 baseR 的 prcomp 函数联同 tidyverse 执行主成分分析

```
## # A tibble: 1 x 3
##
    data
                      pca
                               pca_aug
    st>
                      t>
                               t>
##
## 1 <tibble [35 x 8]> <prcomp> <tibble [35 x 16]>
var_exp = urban_econpca %>%
  unnest(pca_aug) %>%
 summarise(across(contains(".fittedPC"),\(x) stats::var(x))) %>%
 gather(key = pc, value = variance) %>%
 mutate(var_exp = variance / sum(variance),
        cum_var_exp = cumsum(var_exp),
        pc = str_replace(pc, ".fitted", ""))
var_exp
## # A tibble: 7 x 4
##
          variance var_exp cum_var_exp
    рс
```

```
<dbl>
##
    <chr>
                    <dbl>
                               <dbl>
## 1 PC1
            4.31
                  0.616
                               0.616
## 2 PC2
            1.95
                  0.279
                               0.896
## 3 PC3
          0.360 0.0514
                               0.947
## 4 PC4
                               0.973
          0.185 0.0264
## 5 PC5
          0.138 0.0198
                               0.993
## 6 PC6
            0.0331 0.00473
                               0.998
## 7 PC7
            0.0150 0.00214
```

按照特征值大于 1 的原则, 第 1 主成分的初始特征值为 4.31, 第 2 主成分的初始特征值为 1.95. 从 第 3 主成分开始, 其初始特征值均小于 1. 因此, 选择前 2 个主成分可以得到 89.6% 的累计贡献率, 即 表示前 2 个主成分可以解释 89.6% 的总方差.

碎石图

```
lims(y = c(0, 1)) +
labs(y = "Variance",
    title = "Variance explained by each principal component")
```

Variance explained by each principal component

从碎石图中可以看出, 从第 3 个组件开始, 特征值就处于一个较低的水平. 因此选择前 2 个主成分是科学的。

将前两个主成分为 x 和 y 轴展示数据

```
title = "First two principal components of PCA on Urban economic indicators")
)
) %>%
pull(pca_graph)
```

First two principal components of PCA on Urban economic indicators

计算综合评价得分

R 中的特征向量默认指向负方向,因此我们将乘以-1 来反转主成分得分的符号.

```
weight_pca = var_exp %>%
  dplyr::filter(pc %in% c("PC1","PC2")) %>%
  pull(variance) %>%
  {. / sum(.)}
weight_pca
```

[1] 0.6882711 0.3117289

```
urban_rank = urban_econpca %>%
unnest(pca_aug) %>%
select(城市编号,num_range(".fittedPC",1:2)) %>%
mutate(across(-城市编号,\(x) -x)) %>%
mutate(综合得分 = weight_pca[1] * .fittedPC1 + weight_pca[2] * .fittedPC2) %>%
mutate(综合排名 = min_rank(desc(综合得分))) %>%
select(城市编号,综合得分,综合排名) %>%
arrange(综合排名)
```

注:与 SPSS 结果计算有出入,SPSS 中通过因子分析和综合得分两步得出结果,R 直接可以运行主成分分析, R 计算结果较准确

knitr::kable(urban_rank)

城市综合排名

综合排名	综合得分	城市编号
1	4.8032455	10
2	3.5177835	1
3	3.2554747	27
4	1.8837192	23
5	1.2007658	2
6	0.7998288	3
7	0.6319004	9
8	0.5925233	28
S	0.5331693	19
10	0.2330736	12
11	0.2131860	7
12	0.1980604	15
13	0.0661563	13
14	0.0650758	24
15	0.0396344	8
16	-0.0191400	6
17	-0.0454772	21
18	-0.0561301	11
19	-0.2079732	18
20	-0.3791397	31
21	-0.4330530	20
22	-0.4339440	22
23	-0.5374285	30
24	-0.9126734	17
25	-0.9188985	14
26	-1.0809321	25
27	-1.1324317	16
28	-1.1946543	29
29	-1.2361824	4
30	-1.2370102	32
31	-1.3626954	5
32	-1.6209127	35
33	-1.6502416	33

城市编号	综合得分	综合排名
34	-1.6779540	34
26	-1.8967252	35

urban_rank %>%

head(5) %>%

knitr::kable()

综合实力前五城市

城市编号	综合得分	综合排名
10	4.803246	1
1	3.517784	2
27	3.255475	3
23	1.883719	4
2	1.200766	5

urban_rank %>%

tail(5) %>%

knitr::kable()

综合实力后五城市

城市编号	综合得分	综合排名
5	-1.362695	31
35	-1.620913	32
33	-1.650242	33
34	-1.677954	34
26	-1.896725	35