

CAp 2018:

CONE: A Cost-Sensitive Classification Wrapper for Iterative F-Measure Optimization

Kevin Bascol, Rémi Emonet, Elisa Fromont, Amaury Habrard, Guillaume Metzler and Marc Sebban

22 juin 2018

Introduction

Accuracy
$$A = \frac{TP + TN}{P + N}$$
, F-Measure $F = \frac{2(P - FN)}{2P - FN + FP}$.

Let us now working in an imbalanced setting ($P \ll N$):

Classical classifiers, based on the minimization of the error rate, tend to predict the majority class $\Rightarrow A \simeq 1$.

However $\Rightarrow FN \simeq P \Rightarrow F=0$. Accuracy is not suitable measure in an imbalanced setting compare to the F-Measure.

Problem F-Measure is non-convex \rightarrow hard to optimize

⇒ Approximate F-Measure optimization with weighted accuracy.

The Idea from Parambath et al. (NIPS 2014)

- A weighting function $a(t) = (1 + \beta^2 t, t)$, weights on FP and FN.
- A classifier $h \in \mathcal{H}$ and its error profile $e(t) = (e_1(t), e_2(t))$
- ightarrow Idea: find a link between the weighted error and the F-Measure, using the notion of *Pseudo-linearity*.

Base Result (from Parambath et al .2014)

 \rightarrow Propose an upper bound on the optimal F-Measure

Let $\varepsilon_0 \geq 0$ and $\varepsilon_1 \geq 0$, and assume that there exists $\Phi > 0$ such that for all e, e' satisfying F(e') > F(e), we have:

$$F(e') - F(e) \le \Phi \langle a(F(e')), e - e' \rangle.$$

Then , let us take $e^{\star} \in argmax \ F(e')$ and denote $a^{\star} = a(F(e^{\star}))$. Let furthermore $g \in \mathbb{R}^d_+$ and $h \in \mathcal{H}$ satisfying the following two conditions:

(i)
$$\|\boldsymbol{g} - \boldsymbol{a}^*\|_2 \le \varepsilon_0$$
, (ii) $\langle \boldsymbol{g}, \mathbf{E}(h) \rangle \le \min_{\boldsymbol{e'} \in \mathcal{E}(\mathcal{H})} \langle \boldsymbol{g}, \boldsymbol{e'} \rangle + \varepsilon_1$.

We have:

$$F(\mathbf{E}(h)) \ge F(e^*) - \Phi(2\varepsilon_0 M + \varepsilon_1), \ M = \max_{e' \in \mathcal{E}(\mathcal{H})} \|e'\|_2,$$

where $F(e^{\star})$ is the optimal value of the F-Measure.

Geometric Interpretation

A weighting function:

$$a(t) = (1 + \beta^2 - t, t).$$

We can rewrite the point

$$\begin{split} &\|\boldsymbol{g}-\boldsymbol{a}^\star\|_2 \leq \varepsilon_0, \text{ as } \\ &\|a(t_1)-a(t)\|_2 \leq 2\|t_1-t\|_2 = \varepsilon_0, \end{split}$$

and the bound in function of t:

$$F(e(t)) \leq \frac{F(e(t_1))}{+4\Phi M \|t_1 - t\|_2} + \frac{\Phi \varepsilon_1}{2}.$$

A Tighter Slope

 \rightarrow Use $\sqrt{2}$ as a Lipschitz constant of a, find a value of M.

Considering the assumptions of the base result, for all $e \in \mathcal{E}(\mathcal{H})$ and all t we have:

$$F(e(t)) \le F(e(t_1)) + \Phi\sqrt{2}(\|e\|_2 + M')\|t_1 - t\|_2 + \Phi\varepsilon_1.$$

In other words, we refined the slope of the cones to $\sqrt{2}\Phi\left(\|e\|_2 + M'\right)$.

$$M' = \max_{\boldsymbol{e'} \in \mathcal{E}(\mathcal{H})} \|\boldsymbol{e'}\|_2, \quad s.t. \ F_{\beta}(\boldsymbol{e'}) > F_{\beta}(\boldsymbol{e}).$$

Writing $e'=e+\alpha$, finding M' consist of maximizing a convex function on a square with a linear constraint.

ightarrow Need to look what happen on the border of the square.

A Tighter Slope ?

Unreachable region obtained with the bounds on points from a grid

Parambath et al.

With a tighter slope

We observe that $F(e(t)) \simeq 0$ when t is large.

 \rightarrow Can we reduce the space of research?

Search Space Pruning

- \rightarrow Assumption : the learned classifiers are *optimal* $\Rightarrow \varepsilon_1 = 0$.
- \rightarrow We can show that $(e_1 e_2)(t) = (FN FP)(t)$ is increasing.

A bound on F-Measure

Let $t>t_1$, $\boldsymbol{e}(t)$ and $\boldsymbol{e}(t_1)$ the vector of misclassified examples obtained with an optimal classifier trained with costs a(t) and $a(t_1)$ respectively. We have:

$$F_{\beta}(\boldsymbol{e}(t)) \le (1+\beta^2) \frac{\frac{1+\beta^2}{t_1} TP(t_1)}{\beta^2 \frac{1+\beta^2}{t_1} TP(t_1) + P}.$$

Illustration of the Pruning Effect

Unreachable region obtained with the bounds on points from a grid

Presentation of **CONE**

Illustration of **CONE** on the three first iterations.

- ν_1 : First cone with t in the middle of the search space: $t_1=1$
- $\begin{tabular}{ll} \hline \rightarrow & \mbox{Highest remaining } F=1 \\ & \mbox{for } t \in [0, \ 0.6] \\ \hline \end{tabular}$
- u_2 : Next cone with t in the middle of this interval: $t_2=0.3$
- \rightarrow Highest remaining F=0.7 for $t\in[1.3,\ 2]$
- ν_3 : Next cone with t in the middle of this interval: $t_3=1.65$
- \rightarrow Highest remaining F=0.7 for $t \in [1.3, 1.35]$
- u_{∞} : Until we reach the best F possible

Experimental Results

Examples of run of CONE (blue points and gray area) compared to Grid (black crosses)

Corresponding convergence of best F-measure and its bound in function of the number of classifier used

Results Table

When we limit the grid size/number of cone to...

• ... 9 SVMs:

- 111 5 G V 1110.						
Dataset	P (%)	SVM*	SVM_C	SVM^+_C		
Adult	23.9	66.1 (0.1)	66.5 (0.1)	66.5 (0.1)		
Abalone10	15.2	30.2 (2.5)	31.0 (1.1)	32.3 (1.2)		
IJCNN'01	9.6	61.6 (0.4)	61.0 (0.6)	61.6 (0.6)		
Abalone12	6.4	16.1 (3.5)	12.2 (7.0)	17.0 (3.5)		
Yeast	3.4	24.5 (16.3)	34.8 (8.3)	32.3 (12.2)		
Wine	3.3	11.7 (11.3)	11.3 (10.8)	19.4 (6.6)		

... 4 SVMs:

<u> </u>						
Dataset	P (%)	SVM*	SVM_C	SVM^+_C		
Adult	23.9	65.8 (0.3)	66.5 (0.03)	66.5 (0.04)		
Abalone10	15.2	30.7 (2.8)	12.2 (14.5)	30.8 (1.1)		
IJCNN'01	9.6	61.0 (0.5)	61.0 (0.6)	61.0 (0.6)		
Abalone12	6.4	0.0 (0.0)	0.0 (0.0)	15.9 (3.7)		
Yeast	3.4	33.0 (18.0)	14.7 (12.0)	35.0 (8.4)		
Wine	3.3	0.0 (0.0)	0.0 (0.0)	17.7 (4.4)		

I.R.: Imbalance Ratio

SVM*: Reproduction of Parambath et al. algorithm

 SVM_C : **CONE**

SVMC: CONE with pruning

Conclusion & Future work

In this work,

- we derive a tighter bound,
- we propose an algorithm which optimize the search space,
- we show quick convergence results

In a possible future,

From a theoretical point of view:

- Search Space Pruning for small values of t
- Derive Generalization Guarantee over the F-Measure

Further experiments:

- Apply with other algorithms such as Neural Networks
- Dealing with the notion of sub-optimality in non-convex cases.

Thank you for your attention