Web-based Supplementary Materials for A Space-time Skew-t Model for Threshold Exceedances by Morris, Reich, Thibaud, and Cooley

Samuel A Morris^{1,*}, Brian J Reich¹, Emeric Thibaud², and Daniel Cooley²

¹Department of Statistics, North Carolina State University, Raleigh, North Carolina, U.S.A.

²Department of Statistics, Colorado State University, Fort Collins, Colorado, U.S.A.

*email: samorris@ncsu.edu

Web Appendix A. MCMC details

The MCMC sampling for the model in Section 4 is done using R (http://www.r-project.org). Whenever possible, we select conjugate priors (see Appendix Web Appendix B); however, for some of the parameters, no conjugate prior distributions exist. For these parameters, we use a random walk Metropolis-Hastings update step. In each Metropolis-Hastings update, we tune the algorithm during the burn-in period to give acceptance rates near 0.40.

Spatial knot locations

For each day, we update the spatial knot locations, $\mathbf{w}_1, \dots, \mathbf{w}_K$, using a Metropolis-Hastings block update. Because the spatial domain is bounded, we generate candidate knots using the transformed knots $\mathbf{w}_1^*, \dots, \mathbf{w}_K^*$ (see section 3.3) and a random walk bivariate Gaussian candidate distribution

$$\mathbf{w}_{k}^{*(c)} \sim \mathbf{N}(\mathbf{w}_{k}^{*(r-1)}, s^{2}I_{2})$$

where $\mathbf{w}_k^{*(r-1)}$ is the location for the transformed knot at MCMC iteration r-1, s is a tuning parameter, and I_2 is an identity matrix. After candidates have been generated for all K knots, the acceptance ratio is

$$R = \left\{ \frac{l[Y_t(\mathbf{s}|\mathbf{w}_1^{(c)}, \dots, \mathbf{w}_K^{(c)}, \dots)]}{l[Y_t(\mathbf{s}|\mathbf{w}_1^{(r-1)}, \dots, \mathbf{w}_K^{(r-1)}, \dots)]} \right\} \times \left\{ \frac{\prod_{k=1}^K \phi(\mathbf{w}_k^{(c)})}{\prod_{k=1}^K \phi(\mathbf{w}_k^{(r-1)})} \right\} \times \left\{ \frac{\prod_{k=1}^K p(\mathbf{w}_k^{*(c)})}{\prod_{k=1}^K p(\mathbf{w}_k^{*(r-1)})} \right\}$$

where l is the likelihood given in (18), and $p(\cdot)$ is the prior either taken from the time series given in (3.3) or assumed to be uniform over \mathcal{D} . The candidate knots are accepted with probability $\min\{R,1\}$.

Spatial random effects

If there is no temporal dependence amongst the observations, we use a Gibbs update for z_{tk} , and the posterior distribution is given in Web Appendix B. If there is temporal dependence amongst the observations, then we update z_{tk} using a Metropolis-Hastings update. Because this model uses $|z_{tk}|$, we generate candidate random effects using the z_{tk}^* (see Section 3.3) and a random walk

Gaussian candidate distribution

$$z_{tk}^{*(c)} \sim N(z_{tk}^{*(r-1)}, s^2)$$

where $z_{tk}^{*\,(r-1)}$ is the value at MCMC iteration r-1, and s is a tuning parameter. The acceptance ratio is

$$R = \left\{ \frac{l[Y_t(\mathbf{s})|z_{tk}^{(c)}, \dots]}{l[Y_t(\mathbf{s})|z_{tk}^{(r-1)}]} \right\} \times \left\{ \frac{p[z_{tk}^{(c)}]}{p[z_{tk}^{(r-1)}]} \right\}$$

where $p[\cdot]$ is the prior taken from the time series given in Section 3.3. The candidate is accepted with probability $\min\{R, 1\}$.

Variance terms

When there is more than one site in a partition, then we update σ_{tk}^2 using a Metropolis-Hastings update. First, we generate a candidate for σ_{tk}^2 using an $\mathrm{IG}(a^*/s,b^*/s)$ candidate distribution in an independence Metropolis-Hastings update where $a^* = (n_{tk}+1)/2+a, b^* = [Y_{tk}^T \Sigma_{tk}^{-1} Y_{tk} + z_{tk}^2]/2+b,$ n_{tk} is the number of sites in partition k on day t, and Y_{tk} and Σ_{tk}^{-1} are the observations and precision matrix for partition k on day t. The acceptance ratio is

$$R = \left\{ \frac{l[Y_t(\mathbf{s})|\sigma_{tk}^{2}|^{(c)}, \dots]}{l[Y_t(\mathbf{s})|\sigma_{tk}^{2}|^{(r-1)}]} \right\} \times \left\{ \frac{l[z_{tk}|\sigma_{tk}^{2}|^{(c)}, \dots]}{l[z_{tk}|\sigma_{tk}^{2}|^{(r-1)}, \dots]} \right\} \times \left\{ \frac{p[\sigma_{tk}^{2}|^{(c)}]}{p[\sigma_{tk}^{2}|^{(r-1)}]} \right\} \times \left\{ \frac{c[\sigma_{tk}^{2}|^{(r-1)}]}{c[\sigma_{tk}^{2}|^{(c)}]} \right\}$$

where $p[\cdot]$ is the prior either taken from the time series given in Section 3.3 or assumed to be IG(a,b), and $c[\cdot]$ is the candidate distribution. The candidate is accepted with probability $\min\{R,1\}$.

Spatial covariance parameters

We update the three spatial covariance parameters, $\log(\rho)$, $\log(\nu)$, γ , using a Metropolis-Hastings block update step. First, we generate a candidate using a random walk Gaussian candidate distribution

$$\log(\rho)^{(c)} \sim \mathbf{N}(\log(\rho)^{(r-1)}, s^2)$$

where $\log(\rho)^{(r-1)}$ is the value at MCMC iteration r-1, and s is a tuning parameter. Candidates are generated for $\log(\nu)$ and γ in a similar fashion. The acceptance ratio is

$$R = \left\{ \frac{\prod_{t=1}^{T} l[Y_t(\mathbf{s})|\rho^{(c)}, \nu^{(c)}, \gamma^{(c)}, \dots]}{\prod_{t=1}^{T} l[Y_t(\mathbf{s})|\rho^{(r-1)}, \nu^{(r-1)}, \gamma^{(r-1)}, \dots]} \right\} \times \left\{ \frac{p[\rho^{(c)}]}{p[\rho^{(r-1)]}} \right\} \times \left\{ \frac{p[\nu^{(c)}]}{p[\nu^{(r-1)}]} \right\} \times \left\{ \frac{p[\gamma^{(c)}]}{p[\nu^{(r-1)}]} \right\}.$$

All three candidates are accepted with probability $min\{R, 1\}$.

Web Appendix B. Posterior distributions

Conditional posterior of $z_{tk} \mid \dots$

If knots are independent over days, then the conditional posterior distribution of $|z_{tk}|$ is conjugate.

For simplicity, drop the subscript t, let $\tilde{z}_{tk} = |z_{tk}|$, and define

$$R(\mathbf{s}) = \begin{cases} Y(\mathbf{s}) - X(\mathbf{s})\beta & s \in P_l \\ Y(\mathbf{s}) - X(\mathbf{s})\beta - \lambda \tilde{z}(\mathbf{s}) & s \notin P_l \end{cases}$$

Let

$$R_1 = \text{the vector of } R(\mathbf{s}) \text{ for } s \in P_l$$

$$R_2 = \text{the vector of } R(\mathbf{s}) \text{ for } s \notin P_l$$

$$\Omega = \Sigma^{-1}.$$

Then

$$\pi(z_{l}|\ldots) \propto \exp \left\{ -\frac{1}{2} \left[\begin{pmatrix} R_{1} - \lambda \tilde{z}_{l} \mathbf{1} \\ R_{2} \end{pmatrix}^{T} \begin{pmatrix} \Omega_{11} & \Omega_{12} \\ \Omega_{21} & \Omega_{22} \end{pmatrix} \begin{pmatrix} R_{1} - \lambda \tilde{z}_{l} \mathbf{1} \\ R_{2} \end{pmatrix} + \frac{\tilde{z}_{l}^{2}}{\sigma_{l}^{2}} \right] \right\} I(z_{l} > 0)$$

$$\propto \exp \left\{ -\frac{1}{2} \left[\Lambda_{l} \tilde{z}_{l}^{2} - 2\mu_{l} \tilde{z}_{l} \right] \right\}$$

where

$$\mu_l = \lambda (R_1^T \Omega_{11} + R_2^T \Omega_{21}) \mathbf{1}$$
$$\Lambda_l = \lambda^2 \mathbf{1}^T \Omega_{11} \mathbf{1} + \frac{1}{\sigma_l^2}.$$

Then $\tilde{Z}_l | \ldots \sim N_{(0,\infty)}(\Lambda_l^{-1}\mu_l, \Lambda_l^{-1})$

Conditional posterior of $\beta \mid \dots$

Let $\beta \sim N_p(0, \Lambda_0)$ where Λ_0 is a precision matrix. Then

$$\pi(\beta \mid \ldots) \propto \exp\left\{-\frac{1}{2}\beta^T \Lambda_0 \beta - \frac{1}{2} \sum_{t=1}^T [\mathbf{Y}_t - X_t \beta - \lambda | z_t |]^T \Omega [\mathbf{Y}_t - X_t \beta - \lambda | z_t |]\right\}$$

$$\propto \exp\left\{-\frac{1}{2} \left[\beta^T \Lambda_\beta \beta - 2 \sum_{t=1}^T [\beta^T X_t^T \Omega (\mathbf{Y}_t - \lambda | z_t |)]\right]\right\}$$

$$\propto \mathbf{N}(\Lambda_\beta^{-1} \mu_\beta, \Lambda_\beta^{-1})$$

where

$$\mu_{\beta} = \sum_{t=1}^{T} \left[X_t^T \Omega(\mathbf{Y}_t - \lambda | z_t |) \right]$$
$$\Lambda_{\beta} = \Lambda_0 + \sum_{t=1}^{T} X_t^T \Omega X_t.$$

Conditional posterior of $\sigma^2 \mid \dots$

In the case where L=1 and temporal dependence is negligible, then σ^2 has a conjugate posterior distribution. Let $\sigma_t^2 \stackrel{iid}{\sim} \mathrm{IG}(\alpha_0,\beta_0)$. For simplicity, drop the subscript t. Then

$$\pi(\sigma^2 \mid \dots) \propto (\sigma^2)^{-\alpha_0 - 1/2 - n/2 - 1} \exp\left\{-\frac{\beta_0}{\sigma^2} - \frac{|z|^2}{2\sigma^2} - \frac{(\mathbf{Y} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{Y} - \boldsymbol{\mu})}{2\sigma^2}\right\}$$
$$\propto (\sigma^2)^{-\alpha_0 - 1/2 - n/2 - 1} \exp\left\{-\frac{1}{\sigma^2} \left[\beta_0 + \frac{|z|^2}{2} + \frac{1}{2} (\mathbf{Y} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{Y} - \boldsymbol{\mu})\right]\right\}$$
$$\propto \mathrm{IG}(\alpha^*, \beta^*)$$

where

$$\alpha^* = \alpha_0 + \frac{1}{2} + \frac{n}{2}$$
$$\beta^* = \beta_0 + \frac{|z|^2}{2} + \frac{1}{2} (\mathbf{Y} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{Y} - \boldsymbol{\mu}).$$

In the case that L>1, a random walk Metropolis Hastings step will be used to update σ_{lt}^2 .

Conditional posterior of $\lambda \mid \dots$

For convergence purposes we model $\lambda = \lambda_1 \lambda_2$ where

$$\lambda_1 = \begin{cases} +1 & \text{w.p.}0.5\\ -1 & \text{w.p.}0.5 \end{cases}$$
 (1)

$$\lambda_2^2 \sim IG(\alpha_\lambda, \beta_\lambda).$$
 (2)

(3)

Then

$$\pi(\lambda_2 \mid \ldots) \propto \lambda_2^{2(-\alpha_{\lambda} - 1)} \exp\left\{-\frac{\beta_{\lambda}}{\lambda_2^2}\right\} \prod_{t=1}^T \prod_{k=1}^K \frac{1}{\lambda_2} \exp\left\{-\frac{z_{tk}^2}{2\lambda_2^2 \sigma_{tk}}\right]^2$$
$$\propto \lambda_2^{2(-\alpha_{\lambda} - kt - 1)} \exp\left\{-\frac{1}{\lambda_2^2} \left[\beta_{\lambda} + \frac{z^2}{2\sigma_{tk}^2}\right]\right\}$$

Then $\lambda_2 \mid \ldots \sim IG\left(\alpha_{\lambda} + kt, \beta_{\lambda} + \frac{z^2}{2\sigma_{tk}^2}\right)$

Web Appendix C. Proof that $\lim_{h\to\infty}\pi(h)=0$

Let c be the midpoint of \mathbf{s}_1 and \mathbf{s}_2 . Define A as the circle centered at c with radius h/2 where $h = ||\mathbf{s}_1 - \mathbf{s}_2||$ is the distance between sites \mathbf{s}_1 and \mathbf{s}_2 . Consider a homogeneous spatial Poisson process over A with intensity given by

$$\mu(A) = \lambda_{PP}|A| = \lambda_{PP}\pi \left(\frac{h}{2}\right)^2 = \lambda_{PPA}^*h^2.$$

Consider a partition of A into four regions, B_1 , B_2 , R_1 , R_2 as seen in Web Figure 1.

[Figure 1 about here.]

Let N_j be the number of knots in B_j , j = 1, 2. Then

$$P(\mathbf{s}_1 \in P_i, \mathbf{s}_2 \in P_{j \neq i}) \geqslant P(N_1 > 0, N_2 > 0)$$
 (4)

since knots in both B_1 and B_2 is sufficient, but not necessary, to ensure that \mathbf{s}_1 and \mathbf{s}_2 are in different partition sets. By definition of a Poission process, N_1 and N_2 are independent and thus

 $P(N_1 > 0, N_2 > 0) = P(N_1 > 0)^2$, and the intensity measure over B_1 is given by

$$\mu(B_1) = \lambda_{PP}|B_1| = \lambda_{PP} \frac{h^2}{4} \left(\frac{2\pi}{3} - \frac{\sqrt{3}}{2} \right)$$

$$= \lambda_{PPB1}^* h^2. \tag{5}$$

So,

$$P(\mathbf{s}_1 \in P_i, \mathbf{s}_2 \in P_{j \neq i}) >= P(N_1 > 0)^2 = [1 - P(N_1 = 0)]^2 = [1 - \exp(-\lambda_{PPB1}^* h^2)]^2$$
 (6)

which goes to 1 as h goes to infinity.

Web Appendix D. Skew-t distribution

Univariate skew-t distribution

We say that Y follows a univariate extended skew-t distribution with location $\xi \in \mathcal{R}$, scale $\omega > 0$, skew parameter $\alpha \in \mathcal{R}$, and degrees of freedom ν if has distribution function

$$f_{\text{EST}}(y) = 2f_T(z; \nu)F_T \left[\alpha z \sqrt{\frac{\nu+1}{\nu+z^2}}; \nu+1 \right]$$
 (7)

where $f_T(t;\nu)$ is a univariate Student's t with ν degrees of freedom, $F_T(t;\nu) = P(T < t)$, and $z = (y - \xi)/\omega$.

Multivariate skew-t distribution

If $\mathbf{Z} \sim \mathrm{ST}_d(0, \bar{\Omega}, \boldsymbol{\alpha}, \eta)$ is a d-dimensional skew-t distribution, and $\mathbf{Y} = \xi + \boldsymbol{\omega} \mathbf{Z}$, where $\boldsymbol{\omega} = \mathrm{diag}(\omega_1, \dots, \omega_d)$, then the density of Y at y is

$$f_y(\mathbf{y}) = \det(\boldsymbol{\omega})^{-1} f_z(\mathbf{z}) \tag{8}$$

where

$$f_z(\mathbf{z}) = 2t_d(\mathbf{z}; \bar{\mathbf{\Omega}}, \eta) T \left[\boldsymbol{\alpha}^T \mathbf{z} \sqrt{\frac{\eta + d}{\nu + Q(\mathbf{z})}}; \eta + d \right]$$
(9)

$$\mathbf{z} = \boldsymbol{\omega}^{-1}(\mathbf{y} - \boldsymbol{\xi}) \tag{10}$$

where $t_d(\mathbf{z}; \bar{\Omega}, \eta)$ is a d-dimensional Student's t-distribution with scale matrix $\bar{\Omega}$ and degrees of freedom η , $Q(z) = \mathbf{z}^T \bar{\Omega}^{-1} \mathbf{z}$ and $T(\cdot; \eta)$ denotes the univariate Student's t distribution function with η degrees of freedom (Azzalini and Capitanio, 2014).

Extremal dependence

For a bivariate skew-t random variable $\mathbf{Y} = [Y(\mathbf{s}), Y(\mathbf{t})]^T$, the $\chi(h)$ statistic (Padoan, 2011) is given by

$$\chi(h) = \bar{F}_{EST} \left\{ \frac{[x_1^{1/\eta} - \varrho(h)]\sqrt{\eta + 1}}{\sqrt{1 - \varrho(h)^2}}; 0, 1, \alpha_1, \tau_1, \eta + 1 \right\} + \bar{F}_{EST} \left\{ \frac{[x_2^{1/\eta} - \varrho(h)]\sqrt{\eta + 1}}{\sqrt{1 - \varrho(h)^2}}; 0, 1, \alpha_2, \tau_2, \eta + 1 \right\},$$
(11)

where \bar{F}_{EST} is the univariate survival extended skew-t function with zero location and unit scale,

$$\varrho(h) = \text{cor}[y(\mathbf{s}), y(\mathbf{t})], \alpha_j = \alpha_i \sqrt{1 - \varrho^2}, \tau_j = \sqrt{\eta + 1}(\alpha_j + \alpha_i \varrho), \text{ and } x_j = F_T(\bar{\alpha}_i \sqrt{\eta + 1}; 0, 1, \eta) / F_T(\bar{\alpha}_j \sqrt{\eta + 1}; \eta), \gamma = 0, \gamma = 0$$

Proof that $\lim_{h\to\infty} \chi(h) > 0$

Consider the bivariate distribution of $\mathbf{Y} = [Y(\mathbf{s}), Y(\mathbf{t})]^T$, with $\varrho(h)$ given by (3). So, $\lim_{h\to\infty} \varrho(h) = 0$. Then

$$\lim_{h \to \infty} \chi(h) = \bar{F}_{EST} \left\{ \sqrt{\eta + 1}; 0, 1, \alpha_1, \tau_1, \eta + 1 \right\} + \bar{F}_{EST} \left\{ \sqrt{\eta + 1}; 0, 1, \alpha_2, \tau_2, \eta + 1 \right\}. \tag{12}$$

Because the extended skew-t distribution is not bounded above, for all $\bar{F}_{EST}(x) = 1 - F_{EST(x)} > 0$ for all $x < \infty$. Therefore, for a skew-t distribution, $\lim_{h \to \infty} \chi(h) > 0$.

Web Appendix E. Comparisons with other parameterizations

Various forms of multivariate skew-normal and skew-t distributions have been proposed in the literature. In this section, we make a connection between our parameterization in (1) of the main text and another popular version. Azzalini and Capitanio (2014) and Beranger et al. (2016) define

a skew-normal process as

$$\tilde{X}(\mathbf{s}) = \tilde{\lambda}|z| + (1 - \tilde{\lambda}^2)^{1/2}v(\mathbf{s})$$
(13)

where $\tilde{\lambda} \in (-1,1), z\ N(0,1), v(\mathbf{s})$ is a Gaussian process with mean zero, variance one, and spatial correlation function ρ . To extend this to the skew-t distribution, Azzalini and Capitanio (2003) take $\tilde{Y}(\mathbf{s}) = V\tilde{X}(\mathbf{s})$ where $V^{-2} \sim \mathrm{Gamma}(\nu/2, \nu/2)$. Returning to the proposed parameterization, let $\tau^{-2} = \frac{b}{a}\sigma^{-2} \sim \mathrm{Gamma}(a,a)$ so that (1) becomes

$$Y(\mathbf{s}) = \tau \left[\lambda \left(\frac{a}{b} \right)^{1/2} |z| + \left(\frac{a}{b} \right)^{1/2} v(\mathbf{s}) \right]. \tag{14}$$

Clearly setting $a=\nu/2>0$, $b=\frac{\nu}{2(1-\tilde{\lambda}^2)}>0$, and $\lambda=\tilde{\lambda}/(1-\tilde{\lambda}^2)^{1/2}\in(-\infty,\infty)$ resolves the difference in parameterizations. We note that our parameterization has three parameters (a,b,λ) compared to the to parameters of the alternative parameterization $(\nu,\tilde{\lambda})$. However, if we introduce an overall scale parameter c>0 into the alternative parameterization so that $\tilde{Y}(\mathbf{s})=cV\tilde{X}(\mathbf{s})$, then the two models remain equivalent by setting $a=\nu/2$, $b=\frac{\nu}{2c^2(1-\tilde{\lambda}^2)}$, and $\lambda=\tilde{\lambda}/(1-\tilde{\lambda}^2)^{1/2}$.

Web Appendix F. Simulation study pairwise difference results

The following tables show the methods that have significantly different Brier scores when using a Wilcoxon-Nemenyi-McDonald-Thompson test. In each column, different letters signify that the methods have significantly different Brier scores. For example, there is significant evidence to suggest that method 1 and method 4 have different Brier scores at q(0.90), whereas there is not significant evidence to suggest that method 1 and method 2 have different Brier scores at q(0.90). In each table group A represents the group with the lowest Brier scores. Groups are significant with a familywise error rate of $\alpha=0.05$.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

References

- Azzalini, A. and Capitanio, A. (2003). Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* **65**, 367–389.
- Azzalini, A. and Capitanio, A. (2014). *The Skew-Normal and Related Families*. Institute of Mathematical Statistics Monographs. Cambridge University Press.
- Beranger, B., Padoan, S. A., and Sisson, S. A. (2016). Models for extremal dependence derived from skew-symmetric families. *ArXiv e-prints* arXiv:1507.00108.
- Padoan, S. A. (2011). Multivariate extreme models based on underlying skew- and skew-normal distributions. *Journal of Multivariate Analysis* **102,** 977–991.

Web Figure 1. Illustration of the partition of A.

Web Table 1

	Setting 1 – Gaussian marginal, $K = 1$ knot													
	q	(0.90) $q(0.95)$				5)		q(0	.98)		q(0.99)			
Method 1	A			A			A				A	В		
Method 2	A			A			A				A			
Method 3		В			В				C			В		
Method 4	A			A			A	В			A	В		
Method 5		В			В			В	C		A	В		
Method 6			C			C				D			C	

Method 6

Web Table 2

Setting 2 – Skew-t marginal, K = 1 knot q(0.90)q(0.98)q(0.99)q(0.95)C B C Method 1 В В Method 2 A A A A Method 3 В C A В A В A В В Method 4 В В A Method 5 D C C В

D

D

 \mathbf{C}

E

Web Table 3

	Setting 3 – Skew-t marginal, $K = 5$ knots											
	q(0.	90)	q(0	.95)		q(0.9)	8)	q([0.99])		
Method 1	В	}		C		В			В			
Method 2	В	}		C		В			В			
Method 3	A		В			В			В			
Method 4	A	A	4			A		A				
Method 5	A	A	4			A		A				
Method 6		С			D		С			C		

Web Table 4
Setting 4 – Max-stable

	Setting 4 – Max-stable													
	q(0.90)			q(0.95)				q(0.98)				q(0.99)		
Method 1	A	В				В				В				С
Method 2		В				В	C			В			В	C
Method 3			C	D			C			В			В	
Method 4				D				D			C			С
Method 5			C				C			В			В	С
Method 6	A				A				A			A		

Web Table 5

	Setting 5 – Transformation below $T = q(0.80)$													
		q(0.90) $q(0.95)$ $q(0.98)$						q(0.9)						
Method 1			C		В				C				C	
Method 2		В			В]	В			A	В		
Method 3	A				A		A				A			
Method 4		В	С		В]	В				В	С	
Method 5		В			В]	В	С				С	
Method 6				D		С				D				D