7. Distribucions Uniforme i Normal

Universitat de Barcelona

Variables aleatòries contínues

Distribució Uniforme Contínua

Oistribució Normal

Variables aleatòries contínues

- Anomenarem f(x) la funció de densitat d'una distribució si compleix que

 - $f(x) \ge 0$
 - $\bullet \lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = 0$
- P(X = a) = 0
- $P(a \le X \le b) = \int_a^b f(x) dx$

Distribució Uniforme Contínua

Definició: X segueix una distribució uniforme en l'interval [a, b], que denotarem $X \sim U([a, b])$

Fun. densitat:

$$f_X(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{en cas contrari} \end{cases}$$

Probabilitats:

$$P(k_1 \le X \le k_2) = \int_{k_1}^{k_2} \frac{1}{b-a} dx$$

E(X) i V(X):

$$E(X) = \frac{a+b}{2}, \qquad Var(X) = \frac{(b-a)^2}{12}$$

Exemple Distribució Uniforme

Exemple

Un autobús passa per una parada cada 15 minuts. Quina és la probabilitat que si arribem a la parada ens haguem d'esperar més de 5 minuts?

Solució:
$$\frac{2}{3}$$

Si volem simular 10 valors de la d.uniforme en (0,1) amb R:

Si volem simular 10 valors de la d.uniforme en (8, 17) amb R:

o bé

La Normal $X \sim N(\mu, \sigma^2)$ i el Deutsche Bundesbank

Figura: Bitllet de 10 marcs, Alemanya

Distribució de notes d'un examen

Figura: Histograma de notes de PAAU amb f.d. Normal (\bar{x} =5.616, s^2 = 1.263)

Funció densitat de la Normal, Corba de Gauss

Figura: p.d.f de la Normal

Distribució Normal i Distribució Normal Estandarditzada

Definició: X segueix una Normal $\mu \in \mathbb{R}$ i $\sigma > 0$, $X \sim N(\mu, \sigma^2)$

F. densitat:

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} x \in \mathbb{R}$$

Probabilitats:

$$P(a \le X \le b) = \int_a^b \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

E(X) i V(X): $E(X) = \mu$ i $Var(X) = \sigma^2$

$$X \sim N(\mu, \sigma^2) \Leftrightarrow Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

Definició: Z té distribució Normal estàndard, $Z \sim N(0, 1)$

F. densitat:

$$f(z) = \frac{1}{\sqrt{2\pi}}e^{-z^2/2} \quad z \in \mathbb{R}$$

Figura: Taules de la Normal: F(z) de $Z \sim N(0,1)$

Llei normal dels 1-2-3 sigmes (σ):

Si $X \sim N(\mu, \sigma^2)$ tenim les següents probabilitats (aproximades)

$$1\sigma$$
 $P(\mu - \sigma \le X \le \mu + \sigma) \approx 0.68$

$$2\sigma P(\mu - 2\sigma \le X \le \mu + 2\sigma) \approx 0.95$$

$$3\sigma P(\mu - 3\sigma \le X \le \mu + 3\sigma) \approx 0.99$$

En el cas de $Z \sim N(0,1)$,

$$P(-1 < Z < 1) \approx 0.68$$

$$P(-2 \le Z \le 2) \approx 0.95$$

$$P(-3 \le Z \le 3) \approx 0.99$$

En una N(0,1) fora de [-3,3] només hi ha una probabilitat de 0.01!

Propietats:

- μ és on la funció assoleix el màxim. També l'eix de simetria i la mediana.
- Si $Y \sim N(0,1)$ aleshores $T = \mu + \sigma Y$ per $\mu \in \mathbb{R}$ i $\sigma > 0$ segueix una distribució $N(\mu, \sigma^2)$.
- Si X_n segueix una B(n, p), quan n tendeix a infinit tenim

$$\frac{X_n-np}{\sqrt{np(1-p)}}\to N(0,1).$$

Amb R

- La probabilitat acumulada $P(Z \le z)$ és: pnorm(z).
- La inversa $p = P(X \le x_0)$, x_0 és: qnorm(p).
- Per generar nombres aleatoris utilitzem: rnorm(n).
- Si volem treballar amb una distribució $N(\mu, \sigma^2)$, rnorm(1000,3,4) indica observacions de $N(\mu = 3, \sigma = 4)$

Alguns exemples de la distribució Normal.

Exemple

Una companyia de reparació de fotocopiadores considera que el temps invertit en un servei pot representar-se com una variable aleatòria $N(75,20^2)$. Quina és la proporció de serveis en menys d'una hora?

X := "temps invertit en un servei triat a l'atzar".

Volem determinar P(X < 60). *Sigui* $Z \sim N(0,1)$; *aleshores,*

$$P\left(\frac{X-75}{20} < \frac{60-75}{20}\right) = P(Z < -0.75) = pnorm(-0.75) = \boxed{0.2266}$$

El 23% dels serveis es fan en menys d'una hora.

Exemple

El període de gestació en humans, des de la fecundació de l'òvul fins al naixement del nadó, té una distribució aproximadament normal de mitjana 266 dies i d.típica 16 dies. Aleshores, quina durada (aproximada) tenen el 2.5% dels embarassos més llargs?

X= "període gestació nadó triat a l'atzar". $Z\sim N(0,1)$.

Busquem el valor de x₀ tal que

$$0.025 = P(X > x_0) \Leftrightarrow 0.025 = P\left(Z > \frac{x_0 - 266}{16}\right)$$

Amb R:

qnorm(0.975) 1.959964 qnorm(0.975, 266, 16) 297.3594

Exemple (Conservatori)

La Meritxell va obtenir 680 punts a la prova de accés al Conservatori de Música (C).

La Sara, vol estudiar a l'Escola de Música (E) i va passar la prova amb resultat de 27 punts.

La distribució dels resultats a C es considera $N(500,100^2)$ i la distribució dels resultats a E es considera $N(18,6^2)$.

Aleshores, suposant que tots dos exàmens són comparables, quina de les següents afirmacions és falsa,

- 1 La Meritxell es troba entre el 5% amb millor nota a C.
- 2 La Sara es troba entre el 10% amb millor nota a E.
- 3 La Meritxell va puntuar, dins C, millor del que la Sara a E.
- La Sara va puntuar, dins E, millor que la Meritxell dins C.

Solució: d) és la falsa.

Exemple (Banda)

Es considera que el temps que una famosa banda de rock està a l'escenari durant els seus concerts segueix una distribució normal de mitjana 200 minuts i desviació estàndard 20 minuts.

- Calculeu la proporció de concerts d'aquesta banda que duren entre 180 i 200 minuts.
- 2 Aquesta temporada, la banda té programats 150 concerts. Quants s'espera que durin entre 180 i 200 minuts? Simuleu i representeu gràficament la durada dels 150 concerts de la gira.
- Una persona de l'audiència vol gravar el concert en una cinta de 245 minuts. Quina és la probabilitat de que no tingui espai suficient per gravar el concert complet?

Solució Exemple Banda

Sigui X:=" la durada d'un concert triat a l'atzar" $\sim N(200, 20^2)$.

1 La proporció de concerts entre 180 i 200 minuts és del 34%:

$$P(180 < X < 200) = 0.5 - 0.1587 = \boxed{0.3413}$$

② Dels 150 concerts, s'espera que $0.3413 \cdot 150 = 51.195 \approx 51$ durin entre 180 i 200 minuts (Bin(150; 0.3413)).

```
x=rnorm(150, 200, 20)
hist(x, col="blue", main="Rock", prob=T)
y=seq(120, 260, 0.01)
lines(y, dnorm(y, 200, 20), col="red")
```

Section 245 La probabilitat de no poder gravar el concert complet en la cinta de 245 minuts la calculem com.

$$P(X > 245) = 1 - pnorm(2.25) = \boxed{0.0122}$$