CNF and Resolution

Previous Lecture

- Rules of substitution
- Logic inference
- Inference and tautologies
- Rules of inference

Conjunctive Normal Form

 A literal is a primitive statement (propositional variable) or its negation

A clause is a disjunction of one or more literals

$$p \lor q$$
, $p \lor \neg q \lor r$, $\neg q$, $\neg s \lor s \lor \neg r \lor \neg q$

 A statement is said to be a Conjunctive Normal Form (CNF) if it is a conjunction of clauses

$$p \wedge (p \vee \neg q) \wedge (\neg r \vee \neg p)$$

$$p \wedge q \wedge (\neg r \vee \neg p)$$

$$(\neg r \vee q) \wedge (p \vee \neg q \vee \neg s \vee r) \wedge (\neg r \vee \neg p)$$

$$\neg r$$

CNF Theorem

Theorem

Every statement is logically equivalent to a certain CNF.

Proof (sketch)

Let Φ be a (compound) statement.

- Step 1. Express all logic connectives in Φ through negation, conjunction, and disjunction. Let Ψ be the obtained statement.
- Step 2. Using DeMorgan's laws move all the negations in Ψ to individual primitive statements. Let Θ denote the updated statement
- Step 3. Using distributive laws transform Θ into a CNF.

Example

Find a CNF logically equivalent to $(p \rightarrow q) \rightarrow r$

Step 1.
$$\neg(\neg p \lor q) \lor r$$

Step 2.
$$(p \land \neg q) \lor r$$

Step 3.
$$(p \lor r) \land (\neg q \lor r)$$

Rule of Resolution

- The corresponding tautology $((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$
 - "Jasmine is skiing or it is not snowing.

 It is snowing or Bart is playing hockey."
 - p 'it is snowing'
 - q 'Jasmine is skiing'
 - r 'Bart is playing hockey'

"Therefore, Jasmine is skiing or Bart is playing hockey"

Computerized Logic Inference

- Convert the premises into CNF
- Convert the negation of the conclusion into CNF
- Consider the collection consisting of all the clauses that occur in the obtained CNFs
- Use the rule of resolution to obtain the empty clause (\varnothing). If it is possible, then the argument is valid. Otherwise, it is not.

Why empty clause?

The only way to produce the empty clause is to apply the resolution rule to a pair of clauses of the form p and ¬p. Therefore, the collection of clauses is contradictory. In other words, for any choice of truth values for the primitive statements, if premises are true, the conclusion cannot be false.

Logic Puzzles

A prisoner must choose between two rooms each of which contains either a lady, or a tiger. If he chooses a room with a lady, he marries her, if he chooses a room with a tiger, he gets eaten by the tiger. The rooms have signs on them:

at least one of these rooms contains a lady

a tiger is in the other room

It is known that either both signs are true or both are false

$$(p \lor q) \rightarrow \neg p, \quad \neg p \rightarrow (p \lor q)$$

Example

- A lady and a tiger
- Premises: $\neg p \rightarrow (p \lor q), (p \lor q) \rightarrow \neg p$
- Negation of the conclusion: ¬q
- Clauses:

$$\neg p, p \lor q, \neg q$$

Argument:

$$p \lor q$$
 premise \varnothing resolvent

¬q premise

p resolvent

¬p premise

Predicates and Quantifiers

What Propositional Logic Cannot Do

We saw that some declarative sentences are not statements without specifying the value of `indeterminates'

```
"x + 2 is an even number"
```

"If
$$x + 1 > 0$$
, then $x > 0$ "

 Some valid arguments cannot be expressed with all our machinery of tautologies, equivalences, and rules of inference

Every man is mortal. Socrates is a man.

∴ Socrates is mortal

[&]quot;A man has a brother"

Open Statements or Predicates

- Sentences like `x is greater than 3' or `person x has a brother' are not true or false unless the variable is assigned some particular value.
- Sentence `x is greater than 3' consists of 2 parts.
 - The first part, x, is called the variable or the subject of the sentence.
 - The second part the predicate, `is greater than 3' refers to a property the subject can have.
- Sentences that have such structure are called open statements or predicates
- lacktriangle We write P(x) to denote a predicate with variable x

Unary, Binary, and so on

- 'x is greater than 3'
- `x is my brother'
- `x is a human being'

contain only 1 variable, unary predicates

- `x is greater than y'
- `x is the mother of y'
- `car x has colour y'

contain 2 variables, binary predicates

`x sits between y and z' contain 3 variables, ternary predicates
`x is a son of y and z'

Assigning a Value

When a variable is assigned a value, the predicates turns into a statement, whose truth value can be evaluated.

$$P(x) = x$$
 is greater than 3' false $P(x) = x$ is greater than 3' $P(x) = x$

$$x=my car$$
 $y=red$ $Q(my car,red) = `my car is red' false$

$$Q(x,y) = `car x has colour y'$$

$$x=my car$$

$$x=my car$$

$$Q(my car,grey) = `my car is grey' true$$

$$y=grey$$

Universe

We cannot assign a variable of a predicate ANY value. We need to obtain a meaningful statement!

 Every variable of a predicate is associated with a universe or universe of discourse, and its values are taken from this universe

`x is greater than 3'
`x is a number
`x is my brother'
`x is a human
x is a ???
`car x has colour y'
x is a car
y is a colour

Relational Databases

A relational database is a collection of tables like

No.	Name	Student ID	Supervisor	Thesis title
1.	Bradley Coleman	30101234	Petra Berenbrink	Algebraic graph theory
•••	•••	•••	•••	•••

A table consists of a schema and an instance. A schema is a collection of attributes, where each attribute has an associated universe of possible values. An instance is a collection of rows, where each row is a mapping that associates with each attribute of the schema a value in its universe.

Every table is a predicate that is true on the rows of the instance and false otherwise.

Quantifiers

- One way to obtain a statement from a predicate is to assign all its variables some values
- Another way to do that is to use expressions like

```
`For every ...'
`There is ... such that ...'
`A ... can be found ...'
`Any ... is ...'
```

`Every man is mortal'

'There is x such that x is greater than 3'

`There is a person who is my father'

`For any x, $x^2 \ge 0$ '

quantification

Universal Quantifiers

Abbreviates constructions like

For all ... For any ...

Every ...

Each ...

Asserts that a predicate is true for all values from the universe

`Every man is mortal'

'All lions are fierce'

`For any x, $x^2 \ge 0$ '

- Notation: ∀
- lacktriangle $\forall x \ P(x)$ means that for every value a from the universe P(a) is true

Universal Quantifiers (cntd)

`For any x, $x^2 \ge 0$ '

true!

`Every car is red'

false! my car is not red

- ∀x P(x) is false if and only if there is at least one value a from the universe such that P(a) is false
- Such a value a is called a counterexample

Thus to disprove that `Every man is mortal' it suffices to recall

HIGHLANDER

the movie `Highlander'

Existential Quantifiers

Abbreviates constructions like

For some ...

For at least one ...

There is ...

There exists ...

Asserts that a predicate is true for at least one value from the universe

`There is a living king'

'Some people are fierce'

`There is x such that $x^2 \ge 10$ '

- Notation: ∃
- \blacksquare $\exists x \ P(x)$ means that there is a value a from the universe such that P(a) is true

Existential Quantifiers (cntd)

`There is a red car' true! my friend's car is red `For some x, $x^2 < 0$ ' false!

- \blacksquare $\exists x \ P(x)$ is false if and only if for all a from the universe P(a) is false
- Disproving an existential statement is difficult!

Quantifiers and Negations

Summarizing

	true	false	
∀x P(x)	For every value a from the universe P(a) is true	There is a counterexample – a value a from the universe such that P(a) is false	
∃х Р(х)	There is a value a from the universe such that P(a) is true	For all values a from the universe P(a) is false	

Observe that

 $\forall x P(x)$ is false if and only if $\exists x \neg P(x)$ is true

 $\exists x \ P(x)$ is false if and only if $\forall x \neg P(x)$ is true

Example

What is the negation of each of the following statements?

-	Statement	Negation
	All lions are fierce $\forall x P(x)$	There is a peaceful lion
	Everyone has two legs $\forall x P(x)$	There is a person having more than two legs, one leg, or no legs at all
	Some people like $\exists x P(x)$ coffee	All people hate coffee
	There is a lady in ∃x P(x) one of these rooms (Some rooms contain a lady)	There is a tiger in every room

Homework

Exercises from the Book:

No. 1, 2, 4acij, 9a(i,iv), 12(vii,viii) (page 100-102)