Foundations of Computation

Assignment 2

November 8, 2021

Q1: Write regular expressions which describe the following languages

```
    {w ∈ {0,1}*| w ends with 101 }
        (0 ∪ 1)*101
    {w ∈ {0,1}*| w starts with 10 or ends with 1 }
        (10(0 ∪ 1)*) ∪ ((0 ∪ 1)*1)
    {w ∈ {0,1}*| w contains the substring 01 }
        (0 ∪ 1)*01(0 ∪ 1)*
    {w ∈ {0,1}*| w does not contain the substring 01 }
        1*0*
    {w ∈ {0,1}*| w contains exactly one occurrence of 01}
        1*00*11*0*
    {w ∈ {0,1}*| w has even length }
        ((0 ∪ 1)(0 ∪ 1))*
    {w ∈ {0,1}*| the number of 0s in w is odd }
        1*0(1 ∪ 01*0)*
```

Q2: Convert the following regular expressions into nondeterministic finite automata using the method shown.

```
(aba \cup bb \cup ba)^*ab(a \cup b)^*a(a \cup b)^*b^*a^*(ba \cup b^*)
```

The solutions are in the diagrams below

6 a (ba U 6)

Q3: Convert these nondeterministic finite automata into regular expressions using the method shown in the lessons.

The final regular expression for the first NFA is $(a \cup ((a \cup b)b))^*$

The final regular expression for the second NFA is $(ab^*(a \cup b))(a(ab^*(a \cup b)))^*$

The steps are shown in the diagrams below.

preprocessing stage

1. Initual states shouldn't have any incoming arrows

2. accept states shouldn't have any outgoing arrows

3. between 2 states, only I arrow

eliminating
$$f_2$$
 $q_1 - q_2 - q_3$
 $f_0 = \frac{\epsilon'}{4}$
 $f_0 = \frac{\epsilon'}{4}$

The final regular expression is (au((aub)b))*

Q 3 b)

Pollowing the same steps in O3 a), we reach the preprocessing stage below:

Q4: Use the pumping lemma to prove that the following languages are not regular.

1.
$$\{b^{n^3} \in \{b\}^* | n \ge 0\}$$

Step 1:

Suppose that L is regular. By the pumping lemma, \exists some m > 0 (pumping length) s.t. \forall w with |w| > m can be pumped.

Choose $w = b^{m^3}$. Here $|w| = m^3$. We want $m^3 \ge m$. $\Leftrightarrow m^2 \ge 1$ as $m > 0 \Leftrightarrow m \ge 1$ Therefore, our choice of w is $w = b^{m^3}, m \ge 1$

Step 3:

By the pumping lemma, \exists some division w = xyz s.t.

- 1. $y \neq e$
- $2. |xy| \leq m$
- 3. $xy^iz \in L, i \geq 0$

Step 4:

Consider xyz, we have $|xyz| = |w| = m^3$. Consider xy^2z , we have $|xy^2z| = |xyz| + |y|$.

By pumping lemma 2, $|xy| \le m \Leftrightarrow |y| \le m$.

$$\Rightarrow |xy^2z| = |xyz| + |y| \le m^3 + m < m^3 + 3m^2 + 3m + 1 = (m+1)^3, m > 0.$$

By pumping lemma 1, $y \neq e \Rightarrow |y| > 0 \Rightarrow |xy^2z| = |xyz| + |y| > |xyz| = m^3$ Therefore, we have $m^3 < |xy^2z| < (m+1)^3 \Rightarrow xy^2z \notin L$

Contradiction!

2.
$$\{b^{3^n} \in \{b\}^* | n \ge 0\}$$

Suppose that L is regular. By the pumping lemma, \exists some m > 0 (pumping length) s.t. \forall w with $|w| \geq m$ can be pumped.

Step 2:

Choose $w = b^{3^m}$. Here $|w| = 3^m$. Consider a function $y = 3^x - x, x > 0$, we have y is always positive either by plotting the graph of y or consider the derivative of y. Therefore $|w| = 3^m > m$

By the pumping lemma, \exists some division w = xyz s.t.

- 1. $y \neq e$
- $2. |xy| \leq m$
- 3. $xy^iz \in L, i \geq 0$

Step 4:

Consider xyz and xy^2z , we have $|xyz| = |w| = 3^m$ and $|xy^2z| = |xyz| + |y|$.

By pumping lemma 1, $y \neq e \Rightarrow |y| > 0$

$$\Rightarrow |xy^2z| = |xyz| + |y| > |xyz| = 3^m$$

By pumping lemma 2, $|xy| \le m \Rightarrow |y| \le m$.

$$\Rightarrow |xy^2z| = |xyz| + |y| \le 3^m + m < 3^{m+1}$$

the strictly less than sign is because $3^{m+1} = 3^m * 3 = 3^m + 2 * 3^m > 3^m + m$ as $3^m > m$ (Proved in Step 2)

Therefore, we have $3^m < |xy^2z| < 3^{m+1} \Rightarrow xy^2z \notin L$

Contradiction!

Q5: Let $\Sigma = \{a, b\}$.

1. Show that $\{a^kba^k|k\geq 1\}$ is not regular

Step 1:

Suppose that L is regular. By the pumping lemma, \exists some m > 0 (pumping length) s.t. \forall w with $|w| \ge m$ can be pumped.

Step 2:

Choose $w = a^m b a^m, m \ge 1$

Note that |w| = 2m + 1 > m for $m \ge 1$

Step 3:

By the pumping lemma, \exists some division w = xyz s.t.

- 1. $y \neq e$
- $2. |xy| \le m$
- 3. $xy^iz \in L, i \ge 0$

Step 4:

By pumping lemma 1 and 2, $y \neq e$ and $|xy| \leq m \Rightarrow |x| \leq m-1$

Therefore xz has less than m a's on the LHS of b but m a's on the RHS, thus breaking the symmetry.

 $\Rightarrow xz \not\in L$

Contradiction!

2. Show that $\{a^k b u a^k | k \geq 1, u \in \Sigma^*\}$ is not regular

Step 1:

Suppose that L is regular. By the pumping lemma, \exists some m > 0 (pumping length) s.t. \forall w with $|w| \ge m$ can be pumped.

Step 2:

Let u = a, choose $w = a^{m-1}baa^{m-1}, m \ge 2$

Note that |w| = 2m > m for $m \ge 2$

Step 3:

By the pumping lemma, \exists some division w = xyz s.t.

- 1. $y \neq e$
- $2. |xy| \leq m$
- 3. $xy^iz \in L, i \ge 0$

Step 4:

Consider this division

 $w' = xy^0z = xz = a^{m-1}aa^{m-1} = a^{2m-1}$ which does not contain b

Therefore $xz \notin L$ Contradiction!

3. Show that $\{a^k u a^k | k \ge 1, u \in \Sigma^*\}$ is regular

To show that a language is regular, we need to show that this language can be described by finite automata. We have $u \in \Sigma^*$, u can be represented by $(a \cup b)^*$

Because u can be any number of a's, it can be combined with a^k on the left, or a^k on the right to just mean a^* . Hence the above expression is equivalent to $\{a^i(a \cup b)^*a^j|i,j \geq 0\}$, which can be expressed by finite automata. Therefore $\{a^kua^k|k \geq 1, u \in \Sigma^*\}$ is regular.

- **Q6:** Consider the language $L = \{a^i b^j c^k | i, j, k \ge 0, \text{ and if } i = 1 \text{ then } j = k\}.$
 - 1. Show that L is not regular, using the fact that $L' = \{ab^ic^i|i \geq 0\}$ is not regular. Hint: the regular languages are closed under the intersection operation.

Because regular languages are closed under the intersection operation. We have the following: L1, L2 are regular $\Rightarrow L1 \cap L2$ is regular.

Consider $M = \{ab^j c^k | j, k \ge 0\}$. We know that M is regular as we can easily draw its NFA.

Note that $L' = M \cap L$. Suppose that L is regular. Since M is also regular, we have $M \cap L$ is regular (regular languages are closed under intersection), which means that L' must be regular. However, it is given fact that $L' = \{ab^ic^i|i \geq 0\}$ is not regular.

Contradiction!

Therefore, L is not regular.

2. Show that L meets the requirements of the regular language pumping lemma. In other words, find a pumping length n and show that the conditions hold for strings longer than n.

$$\begin{split} L &= \{a^i b^j c^k | i, j, k \geq 0, \text{ and if } i = 1 \text{ then } j = k\} \\ &= \{a b^j c^j | j \geq 0\} \cup \{a^i b^j c^k | i, j, k \geq 0, i \neq 1\} \end{split}$$

let
$$N = \{a^i b^j c^k | i, j, k \ge 0, i \ne 1\}$$

W.T.S \exists a pumping length n and conditions hold for strings longer than n.

Choose
$$w = a^0 b^n c^k = b^n c^k$$
 where $n, k \ge 0$

Note that $|w| = n + k \ge n \exists$ some division w = xyz s.t.

- 1. $y \neq e$
- 2. $|xy| \le m$
- 3. $xy^iz \in L, i \geq 0$

$$\begin{aligned} w' &= xy^iz = b^mc^k, m \geq n \geq 0, k \geq 0 \\ w' &\in N \subset L \end{aligned}$$

3. Explain why the previous two parts do not contradict each other.

Pumping lemma states that all regular languages have a special property.

We have RE \Rightarrow PL and \neg PL \Rightarrow \neg RE

If we can show that a language does not have this property, we can guarantee that it is not regular.

However, this does not mean that if a language has this property for some n, this language is regular. In other words, $PL \Rightarrow RE$ is not true

By proving that the conditions hold for some pumping length n does not prove the language is regular. The previous Q6b) does not prove the language is regular just by finding a pumping length n that meets the requirements of the pumping lemma.

Therefore, the previous two parts do not contradict each other.