THE SOLVABILITY OF THE EQUATION $ax^2+by^2=c$ IN QUADRATIC FIELDS

NEAL PLOTKIN

ABSTRACT. In a recent paper, L. J. Mordell gave necessary and sufficient conditions for the equation $ax^2+by^2=c$ to have algebraic integer solutions in the quadratic field $Q(\sqrt{(-n)})$. In this paper we drop the requirement that the solutions be algebraic integers. In particular, we prove that $ax^2+by^2=c$ has solutions in $Q(\sqrt{(-n)})$ if and only if the quadratic form $abt^2-bcu^2-acv^2-nw^2$ represents 0 over Q.

I. THEOREM 1. Let a, b, c be nonzero rational numbers, and n an integer. Then solutions of the equation $ax^2+by^2=c$ exist in the quadratic field $Q(\sqrt{(-n)})$ if and only if solutions of $abt^2-bcu^2-acv^2=n$ exist in the field of rationals, Q.

We remark that rational solutions of $abt^2-bcu^2-acv^2=n$ exist if and only if the quadratic form $abt^2-bcu^2-acv^2-nw^2$ represents 0 in Q. The latter representation is a classical problem with a known solution—see [2, p. 75], noting that by a simple change of variables, we may assume the coefficients of $abt^2-bcu^2-acv^2-nw^2$ are square-free integers, no three having a factor in common.

PROOF OF THEOREM 1. (\Leftarrow) Suppose there exist t_0 , u_0 , $v_0 \in Q$ with $abt_0^2 - bcu_0^2 - acv_0^2 = n$.

Case I. Suppose $bu_0^2 + av_0^2 = 0$. Then $abt_0^2 = n$.

Let $x = ((b-c)/2abt_0)\sqrt{(-n)}$, y = (b+c)/2b.

Case II. Suppose $bu_0^2 + av_0^2 \neq 0$.

Let $x = (1/d)(bt_0u_0 + v_0\sqrt{(-n)})$, $y = (1/d)(at_0v_0 - u_0\sqrt{(-n)})$, where $d = bu_0^2 + av_0^2$.

In either case, an easy calculation shows that $ax^2+by^2=c$.

(\$\Rightarrow\$) Suppose
$$ax_0^2 + by_0^2 = c$$
, where $x_0 = r + s\sqrt{(-n)}$, $y_0 = p + q\sqrt{(-n)}$,

Presented to the Society, January 18, 1972 under the title *The solutions of the equation* $ax^2 + by^2 = c$ in quadratic fields; received by the editors September 30, 1971.

AMS 1970 subject classifications. Primary 10B05, 10B35, 10C05, 12A25; Secondary 10J05.

Key words and phrases. Diophantine equations, quadratic fields, quadratic forms.

 $p, q, r, s \in Q$. Then

$$c = a(r + s\sqrt{(-n)})^2 + b(p + q\sqrt{(-n)})^2$$

= $(ar^2 - ans^2 + bp^2 - bnq^2) + (2ars + 2bpq)\sqrt{(-n)}$.

Therefore ars+bpq=0.

Case I. Suppose q=0. Then $c=ar^2-ans^2+bp^2$, and also ars=0, so either r or s=0. If s=0, we have $c=ar^2+bp^2$. Upon multiplying by abc, this yields $abc^2=bca^2r^2+acb^2p^2$, which may be rewritten $ab(c)^2-bc(ar)^2-ac(bp)^2=0$; i.e. the quadratic form $abt^2-bcu^2-acv^2$ represents 0 in Q. By a well-known result [2, p. 41], $abt^2-bcu^2-acv^2$ also represents n in Q. If r=0, $s\neq 0$, then $c=bp^2-ans^2$, so $n=(bp^2-c)/as^2$, which may be rewritten in the form $n=ab(p/as)^2-ac(1/as)^2-bc(0)^2$, which is a rational solution of $n=abt^2-bcu^2-acv^2$.

Case II. Suppose $q \neq 0$. Then p = -ars/bq. Therefore

(*)
$$c = ar^2 - ans^2 + b(ars/bq)^2 - bnq^2$$
.

Solving for n, we get

$$n = \frac{1}{as^2 + bq^2} \left(ar^2 + \frac{a^2r^2s^2}{bq^2} - c \right) = \frac{ar^2}{bq^2} - \frac{c}{as^2 + bq^2}$$
$$= ab \left(\frac{r}{bq} \right)^2 - ac \left(\frac{s}{as^2 + bq^2} \right)^2 - bc \left(\frac{q}{as^2 + bq^2} \right)^2,$$

a rational solution of $n=abt^2-bcu^2-acv^2$.

Note that $c \neq 0 \Rightarrow as^2 + bq^2 \neq 0$ (from (*)). This completes the proof.

As an interesting special case, we get the following result of Fein and Gordon [1, Theorem 7].

COROLLARY 1. $x^2+y^2=-1$ may be solved in $Q(\sqrt{(-n)})$, n a square-free integer, if and only if n>0 and $n\not\equiv 7\pmod 8$.

PROOF. Take a=b=-c=1 in the theorem. We find that there are solutions in $Q(\sqrt{(-n)})$ if and only if n is the sum of three squares, $t^2+u^2+v^2$, in Q. By clearing denominators, we see that this occurs if and only if $nw^2=t_1^2+u_1^2+v_1^2$, where t_1 , u_1 , v_1 , w are integers. But it is well known that this is true if and only if nw^2 is not of the form $4^i(8j+7)$, i.e. if and only if n (being square-free) is not congruent to n (mod n).

II. In [3, p. 118], L. J. Mordell showed that $ax^2+by^2=c$ has algebraic integer solutions in precisely the quadratic fields:

A:
$$Q(\sqrt{(-(abk^2/d_1^2-c/d))})$$
,

where d|abc, p and q are integers such that $ap^2+bq^2=d$, $(ap, bq)=d_1$, and

k is any integer making the radicand an integer, and

B:
$$Q(\sqrt{(-(abk^2/d_1^2-4c/d))})$$
,

where d|2abc, p, q, and d_1 are as above, and k is any integer such that $\frac{1}{4} + (abk^2/4d_1^2) - c/d$ is an integer.

In this section we show that the result of Theorem 1 is distinct from that of Mordell, i.e. there exists a field $Q(\sqrt{(-n)})$ in which $x^2+y^2=-1$ has solutions but no algebraic integer solutions.

We have a=b=-c=1. In case A, d=1, so p=0 or 1, q=1 or 0, and $d_1=1$. Therefore there are algebraic integer solutions in the field $Q(\sqrt{(-(k^2+1))})$, any integer k. In case B, d=2, $p=q=d_1=1$, and so there are algebraic integer solutions in any field $Q(\sqrt{(-(k^2+2))})$, k odd. These are all.

In the field $Q(\sqrt{(-6)})$, $x=(2+\sqrt{(-6)})/2$, $y=(2-\sqrt{(-6)})/2$ is a solution of $x^2+y^2=-1$. However, $Q(\sqrt{(-6)})$ is neither of the form $Q(\sqrt{(-(k^2+1))})$, k an integer, nor $Q(\sqrt{(-(k^2+2))})$, k odd. For suppose $Q(\sqrt{(-6)})=Q(\sqrt{(-(k^2+1))})$. Then $k^2+1=6j^2$, some integer j. It is easy to see there are no such k, j by considering the equation mod k. Now suppose $Q(\sqrt{(-6)})=Q(\sqrt{(-(k^2+2))})$, k odd. Therefore $k^2+2=6j^2$. Since k is odd, we again get a contradiction mod k.

BIBLIOGRAPHY

- 1. B. Fein and B. Gordon, On the representation of -1 as a sum of two squares in an algebraic number field, J. Number Theory 3 (1971), 310-315.
- 2. B. W. Jones, *The arithmetic theory of quadratic forms*, Carus Math. Monograph Series, no. 10, Math. Assoc. of Amer., distributed by Wiley, New York, 1950. MR 12, 244.
- 3. L. J. Mordell, *Diophantine equations*, Pure and Appl. Math., vol. 30, Academic Press, New York, 1969. MR 40 #2600.

DEPARTMENT OF MATHEMATICS, SYRACUSE UNIVERSITY, SYRACUSE, NEW YORK 13210