Getting Started with Julia on HPC Clusters

Carsten Bauer

Julia Setup

Julia binaries: Keep it simple.

- Use the regular binaries
 - o juliaup or julialang.org
- A system module might help you with packages
 - module avail / module spider julia
 - module load julia
- Generally, no need to compile from source.

Put the Julia depot on the parallel file system (PFS).

- PFS is often called "scratch"
 - High quotas
 - Writable (also from within compute jobs)
 - No backup of redundant data
- Set JULIA_DEPOT_PATH environment variable
- Watch out for automatic deletion
 - Workaround: touch files periodically

On heterogeneous clusters, use multiversioning.

- Nodes with different CPU kinds
 - e.g. login and compute nodes
 - re-triggering of package precompilation
- Set JULIA_CPU_TARGET environment variable
 - export JULIA_CPU_TARGET="znver3;skylake,clone_all"
 - o julia -C help

Workflow: Visual Studio Code

Challenges

- Running VS Code on cluster nodes
- Making the Julia extension work

Run VS Code on a cluster node via SSH

Login node

- Press F1 and run the Remote-SSH: Open SSH Host... command.
 - o accountname@perlmutter.nersc.gov

Compute node

- SSH ProxyJump
 - might not be possible at all
 - (requires full accounts at NERSC 😔)

Use a Julia wrapper for the Julia extension

• Julia: Executable Path should point to a wrapper script. For Perlmutter:

```
#!/bin/bash

# Make julia available
module use /global/common/software/nersc/n9/julia/modules
module julia

# Pass on all arguments to julia
exec julia "${@}"
```

Run VS Code on a cluster node via "remote tunnels"

On the target node

Download the code CLI and run

```
o code tunnel --verbose \
    --cli-data-dir=$SCRATCH/.code_cli_data_dir
```

Locally

 Press F1 and run the Remote Tunnels: Connect to Tunnel command.

(also works with NERSC training accounts \Leftrightarrow)

Workflow: Jupyter

NERSC Jupyter

https://jupyter.nersc.gov/