Машинно-зависимые языки программирования, лекция 1

Каф. ИУ7 МГТУ им. Н. Э. Баумана, 2021 г.

Организация курса

- видео-, аудиозапись и фотосъёмка на занятиях запрещены
- 2 модуля + экзамен
- 8 лекций, ~12 лабораторных работ
- 38 часов самостоятельной подготовки (по учебному плану)

Литература

Зубков С. В. "Assembler. Для DOS, Windows и Unix"

Цели и программа курса

- Изучение низкоуровневого устройства ЭВМ
- Понимание исполнения программ на аппаратном уровне. Работа процессора
- Умение составлять и читать программы на языках низкого уровня, включая:
 - написание программы на низкоуровневом языке "с нуля";
 - взаимодействие программного кода с устройствами;
 - о использование расширений процессоров;
 - отладку и реверс-инжиниринг исполняемых файлов.

История создания ЭВМ. Появление вычислителей общего назначения.

Архитектура фон Неймана

От решения частных вычислительных задач - к универсальным системам

Принципы фон Неймана:

- 1. Использование двоичной системы счисления в вычислительных машинах.
- 2. Программное управление ЭВМ.
- 3. Память компьютера используется не только для хранения данных, но и программ.
- 4. Ячейки памяти ЭВМ имеют адреса, которые последовательно пронумерованы.
- 5. Возможность условного перехода в процессе выполнения программы.

Структурная схема ЭВМ

Память. Единица адресации.

Минимальная адресуемая единица памяти - байт:

- 8 бит
- 2⁸=256 значений (0..255)
- $8 = 2^3$
- $\bullet 256 = 2^8 = 10_{16}^2 = 100_{16}$

Машинное слово - машинно-зависимая величина, измеряемая в битах, равная разрядности регистров и шины данных

Параграф - 16 байт

ASCII (аски́) - American standard code for information interchange, США, 1963.

	ASCII Code Chart															
	Θ	1	2	3	4	5	6	7	8	9	Α	В	C	D	E	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	50	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2				#	\$	-%	&		()	*	+	,	-		/
3	0	1	2	3	4	5	6	7	8	9	:	;	<		>	?
4	0	Α	В	С	D	E	F	G	Н	I	J	K	L	М	N	0
5	Р	Q	R	5	T	U	٧	W	Х	Υ	Z	1	\	1	^	_
6	*	a	ь	С	d	e	f	g	h	i	j	k	ι	m	n	0
7	р	q	г	5	t	u	٧	w	х	у	Z	{		}	~	DEL

- 7-битная кодировка (в расширенном варианте **8-битная**)
- первые 32 символа непечатные (служебные)
- старшие 128 символов 8-битной кодировки национальные языки, псевдографика и т. п.

Системы счисления

Двоичная (binary)

- 0, 1, 10, 11, 100, 101...
- $2^8 = 256$
- $2^{10} = 1024$
- $2^{16} = 65536$
- Суффикс b. Пример: 1101b

Шестнадцатеричная (hexadecimal)

- 0, 1, ..., 8, 9, A, B, C, D, E, F, 10, 11, 12,, 19, 1A, 1B, ...
- $2^4 = 10_{16}$
- $2^8 = 100_{16}$
- $2^{16} = 100000_{16}$
- Суффикс h (10h 16). Некоторые компиляторы требуют префикса 0x (0x10)

Представление отрицательных чисел

Знак - в старшем разряде (0 - "+", 1 - "-").

Возможные способы:

- прямой код
- обратный код (инверсия)
- дополнительный код (инверсия и прибавление единицы)

Примеры доп. кода на 8-разрядной сетке

- -1:
- 1. 00000001
- 2. 11111110
- 3. <u>11111111</u>

Смысл: -1 + 1 = 0 (хоть и с переполнением): 111111111 + 1 = (1)00000000

-101101:

- 1. 00101101
- 2. 11010010
- 3. 11010011

Виды современных архитектур ЭВМ

- x86-64 8086 (16-pasp.) \$\simegas 86 (32-pasp.) \$\simegas 64 (64-pasp.)
- ARM
- IA64
- MIPS (включая Байкал)
- Эльбрус

Семейство процессоров х86 и х86-64

- Микропроцессор 8086: 16-разрядный, 1978 г., 5-10 МГц, 3000 нм
- Предшественники: 4004 4-битный, 1971 г.; 8008 8-битный, 1972 г.; 8080 1974 г.
- Требует микросхем поддержки
- 80186 1982 г., добавлено несколько команд, интегрированы микросхемы поддержки
- 80286 1982 г., 16-разрядный, добавлен защищённый режим
- 80386, 80486, Pentium, Celeron, AMD, ... 32-разрядные, повышение быстродействия и расширение системы команд
- х86-64 (х64) семейство с 64-разрядной архитектурой
- Отечественный аналог К1810ВМ86, 1985 г.

Устройство 8086

Архитектура 8086 с точки зрения программиста (структура блока регистров)

DS

ES

Язык ассемблера

Машинная команда - инструкция (в двоичном коде) из аппаратно определённого набора, которую способен выполнять процессор.

Машинный код - система команд конкретной вычислительной машины, которая интерпретируется непосредственно процессором.

Язык ассемблера - машинно-зависимый язык программирования низкого уровня, команды которого прямо соответствуют машинным командам.

Исполняемые файлы. Компиляция. Линковка

- Исполняемый файл файл, содержащий программу в виде, в котором она может быть исполнена компьютером (то есть в машинном коде).
- Получение исполняемых файлов обычно включает в себя 2 шага: компиляцию и линковку.
- Компилятор программа для преобразования исходного текста другой программы на определённом языке в объектный модуль.
- Компоновщик (линковщик, линкер) программа для связывания нескольких объектных файлов в исполняемый.

Исполняемые файлы. Запуск программы. Отладчик

- B DOS и Windows расширения .EXE и .COM
- Последовательность запуска программы операционной системой:
 - 1. Определение формата файла.
 - 2. Чтение и разбор заголовка.
 - 3. Считывание разделов исполняемого модуля (файла) в ОЗУ по необходимым адресам.
 - 4. Подготовка к запуску, если требуется (загрузка библиотек).
 - 5. Передача управления на точку входа.
- Отладчик программа для автоматизации процесса отладки. Может выполнять трассировку, отслеживать, устанавливать или изменять значения переменных в процессе выполнения кода, устанавливать или удалять контрольные точки или условия остановки.

"Простейший" формат исполняемого файла

.COM (command) - простейший формат исполняемых файлов DOS и ранних версий Windows:

- не имеет заголовка;
- состоит из одной секции, не превышающей 64 Кб;
- загружается в ОЗУ без изменений;
- начинает выполняться с 1-го байта (точка входа всегда в начале).

Последовательность запуска СОМ-программы:

- 1. Система выделяет свободный *сегмент* памяти нужного размера и заносит его адрес во все сегментные регистры (CS, DS, ES, FS, GS, SS).
- 2. В первые 256 (100h) байт этого сегмента записывается служебная структура DOS, описывающая программу PSP.
- 3. Непосредственно за ним загружается содержимое СОМ-файла без изменений.
- 4. Указатель стека (регистр SP) устанавливается на конец сегмента.
- 5. В стек записывается 0000h (начало PSP адрес возврата для возможности завершения командой ret).
- 6. Управление передаётся по адресу CS:0100h.

Классификация команд процессора 8086

- Команды пересылки данных
- Арифметические и логические команды
- Команды переходов
- Команды работы с подпрограммами
- Команды управления процессором

Команда пересылки данных MOV

MOV <приёмник>, <источник>

Источник: непосредственный операнд (константа, включённая в машинный код), РОН, сегментный регистра, переменная (ячейка памяти).

Приёмник: РОН, сегментный регистр, переменная (ячейка памяти).

- MOV AX, 5
- MOV BX, DX
- MOV [1234h], CH
- MOV DS, AX

- MOV [0123b], [2345h]
- MOV DS 1000h

Целочисленная арифметика (основные команды)

- ADD <приёмник>, <источник> выполняет арифметическое сложение приёмника и источника. Сумма помещается в приёмник, источник не изменяется.
- SUB <приёмник>, <источник> арифметическое вычитание источника из приёмника.
- MUL <источник> беззнаковое умножение. Умножаются источник и AL/AX, в зависимости от размера источника. Результат помещается в AX либо DX:AX.
- DIV <источник> целочисленное беззнаковое деление. Делится AL/AX на источник. Результат помещается в AL/AX, остаток - в AH/DX.
- INC <приёмник> инкремент на 1
- DEC <приёмник> декремент на 1

Побитовая арифметика (основные команды)

AND <приёмник>, <источник> - побитовое "И".

- AND al, 00001111b
- OR <приёмник>, <источник> побитовое "ИЛИ".
- OR al, 00001111b
- XOR <приёмник>, <источник> побитовое исключающее "ИЛИ". XOR AX, AX
- NOT <приёмник> инверсия

Команда безусловной передачи управления ЈМР

ЈМР <операнд>

- Передаёт управление в другую точку программы (на другой адрес памяти), не сохраняя какой-либо информации для возврата.
- Операнд непосредственный адрес (вставленный в машинный код), адрес в регистре или адрес в переменной.

Команда NOP (no operation)

- Ничего не делает
- Занимает место и время
- Размер 1 байт, код 90h
- Назначение задержка выполнения либо заполнение памяти, например, для выравнивания

Пример

...

XOR AX, AX

MOV BX, 5

label1:

INC AX

ADD BX, AX

JMP label 1

AX O	900	SI	0000	CS	19F	5 IP	0100
BX O	900	DI	0000	DS	19F	5	
CX O	924	BP	0000	ES	19F!	5 HS	19F5
DX O	900	SP	FFFE	SS	19F	5 FS	19F5
CMD	>						
	33C0	1000		XOI	27	AX,AX	
	BB050	90		MOL	J	BX,00	105
0105	40			INC	0	AX	
0106	03D8			ADI	0	BX, AX	
0108	EBFB			JM	P	0105	
010A	BA140	91		MOU	J	DX, 01	14
010D	CD21			IN'	Г	21	
	B44C			MOL	1	AH,40	

Взаимодействие программы с внешней средой (ОС, пользователь, ...)

Прерывания - аппаратный механизм для приостановки выполнения текущей программы и передачи управления специальной программе - обработчику прерывания.

Основные виды:

- аппаратные
- программные

int <номер> - вызов (генерация прерывания)

21h - прерывание DOS, предоставляет прикладным программам около 70 различных функций (ввод, вывод, работа с файлами, завершение программы и т.д.)

Номер функции прерыванию 21h передаётся через регистр АН. Параметры для каждой функции передаются собственным способом, он описан в документации. Там же описан способ возврата результата из функции в программу.

Память в реальном режиме работы процессора

Реальный режим работы - режим совместимости современных процессоров с 8086.

Доступен 1 Мб памяти (2^{20} байт), то есть разрядность шины адреса - 20 разрядов.

Физический адрес получается сложением адреса начала сегмента (на основе сегментного регистра) и смещения.

Сегментный регистр хранит в себе **старшие 16 разрядов** (из 20) адреса начала сегмента. 4 младших разряда в адресе начала сегмента всегда нулевые. Говорят, что сегментный регистр содержит в себе **номер параграфа начала сегмента**.

Память в реальном режиме работы процессора пример

Номер параграфа начала сегмента

[SEG]:[OFFSET] => физический адрес:

- SEG необходимо побитово сдвинуть на 4 разряда влево (или умножить на 16, что тождественно)
- К результату прибавить OFFSET

```
5678h:1234h =>
 56780
₵Ъ1234
 579B4
```

Вычисление физического адреса выполняется процессором аппаратно, без участия программиста.

Распространённые пары регистров: CS:IP, DS:BX, SS:SP

Структура памяти программы. Виды сегментов. Назначение отдельных сегментных регистров

- Сегмент кода регистр CS. Командой MOV изменить невозможно, меняется автоматически по мере выполнения команд.
- Сегмент данных. Основной регистр DS, при необходимости дополнительных сегментов данных задействуются ES, FS, GS.
- Сегмент стека регистр SS