Gazdasági matematika I.

Losonczi László és Pap Gyula anyagai alapján

Debreceni Egyetem, Informatikai Kar

I. félév

Előadó: Hajdu Lajos

Szemináriumi aláírás feltétele:

legfeljebb 3 hiányzás

Jegyszerzés:

- jegymegajánló dolgozat (félév közepe és félév vége)
- kollokvium

Részletes információk, mintadolgozatok, előadáskövető anyagok, feladatok:

e-learning

1.1 Halmazok

Tartalmazás jelölése

```
a \in B (a eleme a B halmaznak)
 b \notin A (b nem eleme az A halmaznak)
```

Halmazok megadási módjai

- **felsorolás**; például $A = \{2, 3, 5, 7, 11\}$
- ismert halmaz adott tulajdonságú elemeinek megadása; például $A = \{n \in \mathbb{N} : n \text{ páros}\}$, ahol $\mathbb{N} := \{1, 2, \dots\}$ a természetes számok halmaza

1.1 Halmazok

Definíciók

- Üres halmaz: melynek egyetlen eleme sincs; jelölése: Ø
- Az A és B halmazok egyenlőek, ha elemei ugyanazok; jelölése: A = B; tagadása: A ≠ B
- Az A halmaz részhalmaza a B halmaznak, ha A minden eleme benne van a B halmazban; jelölése: A ⊂ B, illetve B ⊃ A, amit úgy olvasunk, hogy B tartalmazza az A halmazt
- Az A halmaz valódi részhalmaza a B halmaznak, ha A ⊂ B és A ≠ B

1.1 Halmazok

Logikai alapfogalmak

- Állítás: olyan kijelentés, melyről egyértelműen eldönthető, hogy igaz vagy hamis.
- Logikai műveletek:
 - $\neg P$ (nem P, azaz P tagadása) pontosan akkor igaz, ha P hamis
 - $P \wedge Q$ (P és Q) pontosan akkor igaz, ha P és Q is igaz
 - $P \lor Q$ (P vagy Q) pontosan akkor igaz ha, P és Q legalább egyike igaz
 - P ⇒ Q (P-ből következik Q) pontosan akkor igaz, ha P hamis vagy ha Q igaz
 - $P \iff Q$ (P ekvivalens Q-val) pontosan akkor igaz, ha P és Q vagy mindketten igazak vagy mindketten hamisak

1.1 Halmazok

 $P\Longrightarrow Q$ esetén azt mondjuk, hogy P elegendő Q teljesüléséhez, másképpen Q szükséges P teljesüléséhez

 $P \Longleftrightarrow Q$ esetén azt mondjuk, hogy P szükséges és elegendő Q teljesüléséhez

• $P \iff Q$ pontosan akkor igaz, ha $P \implies Q$ és $Q \implies P$ is igaz, azaz

$$(P \Longleftrightarrow Q) \iff (P \Longrightarrow Q) \land (Q \Longrightarrow P)$$

tetszőleges P és Q állításokra igaz

Az indirekt bizonyítás alapja:

$$(P \Longrightarrow Q) \iff (\neg Q \Longrightarrow \neg P)$$

tetszőleges P és Q állításokra igaz

1.1 Halmazok

Logikai kvantorok

- univerzális kvantor: $\forall x = \text{minden } x\text{-re}$
- egzisztenciális kvantor: $\exists x = \text{van olyan } x \text{ melyre}$

Példák:

$$A \subset B \iff (\forall x) (x \in A \Longrightarrow x \in B)$$

és

$$A = B \iff (\forall x) ((x \in A \Longrightarrow x \in B) \land (x \in B \Longrightarrow x \in A))$$

igazak tetszőleges A és B halmazokra

1.1 Halmazok

Műveletek egy X halmaz részhalmazaival

• A és B egyesítése = uniója:

$$A \cup B := \{x \in X : x \in A \text{ vagy } x \in B\}$$

• A és B metszete = közös része:

$$A \cap B := \{x \in X : x \in A \text{ \'es } x \in B\}$$

A és B különbsége:

$$A \setminus B := \{x \in X : x \in A \text{ és } x \notin B\}$$

• A komplementere (X-re nézve):

$$\overline{A} := X \setminus A$$

1.1 Halmazok

Halmazműveletek tulajdonságai

- kommutativitás: $A \cup B = B \cup A$, $A \cap B = B \cap A$
- asszociativitás:

$$A \cup (B \cup C) = (A \cup B) \cup C$$
, $A \cap (B \cap C) = (A \cap B) \cap C$

disztributivitás:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C), \quad A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

- idempotencia: $A \cup A = A$, $A \cap A = A$
- de Morgan azonosságok: $\overline{A \cup B} = \overline{A} \cap \overline{B}$, $\overline{A \cap B} = \overline{A} \cup \overline{B}$

1.2 Relációk

Két halmaz Descartes szorzata

Az A és B halmazok **Descartes szorzata** (vagy direkt szorzata) e halmazok elemeiből képezett összes (a,b) rendezett párok halmaza, ahol $a \in A$, $b \in B$. Jelölése: $A \times B := \{(a,b) : a \in A, b \in B\}$. További jelölés: $A^2 := A \times A$.

Rendezett párok egyenlősége

(a,b)=(c,d) akkor és csakis akkor ha $a=c,\ b=d.$

Két halmaz közötti reláció

Az A és B halmazok Descartes szorzatának egy $R \subset A \times B$ részhalmazát az A és B közötti **relációnak** nevezzük.

Ha $(a,b) \in R$, akkor azt mondjuk, hogy az a elem R relációban van b-vel. Jelölése: aRb. Ha A=B, akkor az A és B közötti relációt A-n értelmezett relációnak mondjuk.

Féligrendezés, rendezés

Az A halmazon értelmezett $R \subset A \times A$ reláció **féligrendezés**, ha

- reflexív, azaz $(\forall a \in A) \ a R \ a$
- antiszimmetrikus, azaz $(\forall a, b \in A)$ $(a R b \land b R a) \Longrightarrow (a = b)$.
- tranzitív, azaz $(\forall a, b, c \in A)$ $(aRb \land bRc) \Longrightarrow aRc$.

Az A halmazon értelmezett $R \subset A \times A$ reláció **rendezés**, ha féligrendezés, és ha $(\forall a, b \in A)$ $(aRb \lor bRa)$.

Példák:

1.2 Relációk

- ullet A valós számok ${\mathbb R}$ halmazán a \leq reláció rendezés.

1.2 Relációk

Valós számhalmazok korlátossága

- $A \subset \mathbb{R}$ felülről korlátos, ha $(\exists k \in \mathbb{R})$ $(\forall a \in A)$ $a \leq k$. Ekkor a k számot A egy felső korlátjának nevezzük.
- $A \subset \mathbb{R}$ alulról korlátos, ha $(\exists k' \in \mathbb{R})$ $(\forall a \in A)$ $a \ge k'$. Ekkor a k' számot A egy alsó korlátjának nevezzük.
- $A \subset \mathbb{R}$ korlátos, ha alulról és felülről is korlátos.
- $s \in \mathbb{R}$ az $A \subset \mathbb{R}$ pontos felső korlátja = szuprémuma, ha
 - s az A felső korlátja;
 - A bármely s' felső korlátjára $s \le s'$.

Jelölés: $s = \sup A$.

- $i \in \mathbb{R}$ az $A \subset \mathbb{R}$ pontos alsó korlátja = infimuma, ha
 - i az A alsó korlátja;
 - A bármely i' alsó korlátjára $i \ge i'$.

Jelölés: $i = \inf A$.

1.2 Relációk

Függvény

- Az A és B halmazok között értelmezett F ⊂ A × B reláció függvény, ha minden a ∈ A elemhez pontosan egy olyan b ∈ B elem létezik, melyre a F b teljesül. Ilyenkor a b = F(a) jelölést használjuk, a függvény jelölése pedig F: A → B.
- $\mathcal{D}_F := A$ az F függvény **értelmezési tartománya**.
- $\mathcal{R}_F := \{F(a) : a \in A\}$ az F függvény értékkészlete.
- Az $F: A \rightarrow B$ függvény **injektív**, ha

$$(\forall a, b \in A) \quad a \neq b \Longrightarrow F(a) \neq F(b)$$

- Az $F: A \rightarrow B$ függvény **szürjektív**, ha $\mathcal{R}_F = B$.
- Az F: A → B függvény bijektív, ha injektív és szürjektív.
- Ha $F: A \to B$ injektív, akkor az $F^{-1}: \mathcal{R}_F \to A$ inverz függvény értelmezése: $F^{-1}(b) = a$ ha b = F(a).

1.3 A valós számok axiómarendszere

A valós számok $\,\mathbb{R}\,$ halmaza teljesíti a következő 3 axiómacsoportot:

Testaxiómák

R-ben két művelet van értelmezve:

$$\mathbb{R} \times \mathbb{R} \ni (x, y) \mapsto x + y$$
 összeadás, $\mathbb{R} \times \mathbb{R} \ni (x, y) \mapsto x \cdot y$ szorzás.

Az összeadás axiómái:

$$(\forall x, y \in \mathbb{R}) \qquad x + y = y + x,$$

$$(\forall x, y, z \in \mathbb{R}) \qquad x + (y + z) = (x + y) + z,$$

$$(\exists 0 \in \mathbb{R}) \quad (\forall x \in \mathbb{R}) \qquad x + 0 = x,$$

$$(\forall x \in \mathbb{R}) \quad (\exists -x \in \mathbb{R}) \qquad x + (-x) = 0.$$

1.3 A valós számok axiómarendszere

Testaxiómák

A szorzás axiómái:

$$(\forall x, y \in \mathbb{R}) \qquad x \cdot y = y \cdot x, (\forall x, y, z \in \mathbb{R}) \qquad x \cdot (y \cdot z) = (x \cdot y) \cdot z, (\exists 1 \in \mathbb{R}, 1 \neq 0) \quad (\forall x \in \mathbb{R}) \qquad x \cdot 1 = x, (\forall x \in \mathbb{R}, x \neq 0) \quad (\exists x^{-1} \in \mathbb{R}) \qquad x \cdot x^{-1} = 1.$$

Továbbá

$$(\forall x, y, z \in \mathbb{R})$$
 $x \cdot (y + z) = x \cdot y + x \cdot z.$

1.3 A valós számok axiómarendszere

Rendezési axiómák

 \mathbb{R} -en értelmezve van egy \leq **rendezési reláció**, melyre

$$(\forall x, y, z \in \mathbb{R})$$
 $x \le y \implies x + z \le y + z$,

$$(\forall x,y\in\mathbb{R}) \qquad (0\leq x)\wedge(0\leq y) \implies 0\leq x\cdot y.$$

Teljességi axióma

 $\mathbb R$ a rendezésre nézve **teljes**, azaz $\mathbb R$ bármely nemüres felülről korlátos részhalmazának létezik pontos felső korlátja.

R létezése

Létezik olyan \mathbb{R} halmaz, mely teljesíti ezt a 3 axiómacsoportot (és ez a halmaz bizonyos értelemben egyértelmű).

A valós számokat a számegyenesen modellezhetjük.

1.4 R nevezetes részhalmazai, abszolút érték, távolság

- Természetes számok halmaza: $\mathbb{N} := \{1, 2, 3, 4, \dots\}$
- Egész számok halmaza: $\mathbb{Z} := \{0, \pm 1, \pm 2, \pm 3, \dots\}$
- Racionális számok halmaza: $\mathbb{Q}:=\left\{rac{p}{q}:p,q,\in\mathbb{Z},\ q
 eq 0
 ight\}$

 $\mathbb N$ az $\mathbb R$ -nek az a legszűkebb részhalmaza, melyre teljesül az, hogy

- \bullet 1 \in \mathbb{N} ,
- ha $n \in \mathbb{N}$, akkor $n + 1 \in \mathbb{N}$.

Teljes indukció

Ha egy $M \subset \mathbb{N}$ részhalmazra teljesül az, hogy

- 1 ∈ M,
- ha $n \in M$, akkor $n + 1 \in M$,

akkor $M = \mathbb{N}$.

1.4 R nevezetes részhalmazai, abszolút érték, távolság

 $a, b \in \mathbb{R}$, a < b esetén

nyílt:
$$]a, b[:= \{x \in \mathbb{R} : a < x < b\},$$

zárt:
$$[a,b] := \{x \in \mathbb{R} : a \le x \le b\},$$

balról nyílt, jobbról zárt:
$$[a,b] := \{x \in \mathbb{R} : a < x \le b\},$$

balról zárt, jobbról nyílt:
$$[a,b[:=\{x \in \mathbb{R} : a \le x < b\},$$

elfajult:
$$[a, a] := \{x \in \mathbb{R} : a \le x \le a\} = \{a\},$$

végtelen:
$$]a, \infty[:= \{x \in \mathbb{R} : a < x\}, \qquad [a, \infty[:= \{x \in \mathbb{R} : a \le x\},$$

$$]-\infty, b[:=\{x \in \mathbb{R} : x < b\}, \qquad]-\infty, b]:=\{x \in \mathbb{R} : x \le b\},$$

$$]-\infty,\infty[:=\mathbb{R}.$$

1.4 ℝ nevezetes részhalmazai, abszolút érték, távolság

Valós szám abszolút értéke

Az
$$x \in \mathbb{R}$$
 szám **abszolút értéke:** $|x| := \begin{cases} x & \text{ha } x \geq 0, \\ -x & \text{ha } x < 0. \end{cases}$

Az abszolút érték tulajdonságai

Bármely $x, y \in \mathbb{R}$ esetén

- $|x| \ge 0$, és $|x| = 0 \iff x = 0$,
- |xy| = |x| |y|,
- $|x + y| \le |x| + |y|,$
- $||x|-|y|| \leq |x-y|,$
- $|x| \le a \iff -a \le x \le a$,
- \bullet $|x| < a \iff -a < x < a$.

◆ロト 4周ト 4 恵 ト 4 恵 ト 夏 めな()

1.4 R nevezetes részhalmazai, abszolút érték, távolság

R pontjainak távolsága

Az $x \in \mathbb{R}$ és $y \in \mathbb{R}$ pontok **távolsága:** d(x,y) := |x-y|

A távolság tulajdonságai

Bármely $x, y, z \in \mathbb{R}$ esetén

- $d(x,y) \ge 0$, és $d(x,y) = 0 \iff x = y$,
- $\bullet \ d(x,y) = d(y,x),$
- $d(x,y) \leq d(x,z) + d(z,y).$

A HALMAZELMÉLET ALAPJAI ÉS A VALÓS SZÁMOK Topológiai alapfogalmak

- Az $a \in \mathbb{R}$ pont $\varepsilon > 0$ sugarú (nyílt) környezete:
 - $K(a,\varepsilon) := \{x \in \mathbb{R} : d(x,a) < \varepsilon\} =]a \varepsilon, a + \varepsilon[$
- Az $a \in \mathbb{R}$ pont az $A \subset \mathbb{R}$ halmaz belső pontja, ha a-nak van olyan környezete, mely teljesen benne van A-ban, azaz ha $(\exists \varepsilon > 0) \ (K(a, \varepsilon) \subset A).$
- Az $a \in \mathbb{R}$ pont az $A \subset \mathbb{R}$ halmaz izolált pontja, ha $a \in A$, és a-nak van olyan környezete, melyben a-n kívül nincs A-beli pont: $(a \in A) \land ((\exists \varepsilon > 0) (K(a, \varepsilon) \setminus \{a\}) \cap A = \emptyset).$
- Az $a \in \mathbb{R}$ pont az $A \subset \mathbb{R}$ halmaz torlódási pontja, ha a bármely környezetében van tőle különböző A-beli pont, azaz ha $(\forall \varepsilon > 0) \quad ((K(a, \varepsilon) \setminus \{a\}) \cap A \neq \emptyset).$
- Az $a \in \mathbb{R}$ pont az $A \subset \mathbb{R}$ halmaz határpontja, ha a bármely környezetében van A-beli és nem A-beli pont is, azaz ha

$$(\forall \varepsilon > 0) \quad \Big(\big(K(a, \varepsilon) \cap A \neq \emptyset \big) \wedge \big(K(a, \varepsilon) \cap \overline{A} \neq \emptyset \big) \Big).$$

1.5 Topológiai alapfogalmak

- A ⊂ ℝ összes belső pontjainak halmazát A belsejének nevezzük és A°-rel jelöljük.
- $A \subset \mathbb{R}$ összes határpontjainak halmazát A határának nevezzük és ∂A -val jelöljük.
- Az $A \subset \mathbb{R}$ halmazt **nyíltnak** nevezzük, ha minden pontja belső pontja A-nak.
- Az $A \subset \mathbb{R}$ halmazt **zártnak** nevezzük, ha komplementere nyílt.

2.1 Sorozatok korlátossága, monotonitása, konvergenciája

Valós számsorozat

Egy $a: \mathbb{N} \to \mathbb{R}$ függvényt valós számsorozatnak nevezünk.

Jelölés: $(a_n)=(a_n)_{n\in\mathbb{N}}, \text{ ahol } a_n:=a(n) \text{ ha } n\in\mathbb{N}.$

Sorozat megadása

- képlettel; például $a_n = \frac{1}{n}$ ha $n \in \mathbb{N}$.
- rekurzív módon; például $a_1 = 1$, és $a_{n+1} = \sqrt{2 + a_n}$ ha $n \in \mathbb{N}$.
- szabállyal; például $a_n := az n$ -edik prímszám.

Sorozat korlátossága

• $(a_n)_{n\in\mathbb{N}}$ felülről korlátos, ha $(\exists k\in\mathbb{R})\ (\forall n\in\mathbb{N})\ a_n\leq k$. Az ilyen k számot a sorozat felső korlátjának nevezzük.

←□ > ←□ > ←필 > ←필 > → 필 → り

2.1 Sorozatok korlátossága, monotonitása, konvergenciája

Sorozat korlátossága

• $(a_n)_{n\in\mathbb{N}}$ alulról korlátos, ha $(\exists k'\in\mathbb{R})$ $(\forall n\in\mathbb{N})$ $a_n\geq k'$. Az ilyen k' számot a sorozat **alsó korlátjának** nevezzük.

Sorozat korlátossága

Az $(a_n)_{n\in\mathbb{N}}$ sorozat akkor és csakis akkor korlátos, ha

$$(\exists K \in \mathbb{R}) \quad (\forall n \in \mathbb{N}) \quad |a_n| \leq K.$$

Sorozat monotonitása

- $(a_n)_{n\in\mathbb{N}}$ monoton növekvő, ha $(\forall n\in\mathbb{N})$ $a_{n+1}\geq a_n$.
- $(a_n)_{n\in\mathbb{N}}$ monoton csökkenő, ha $(\forall n\in\mathbb{N})$ $a_{n+1}\leq a_n$.
- $(a_n)_{n\in\mathbb{N}}$ szigorúan monoton növekvő, ha $(\forall n\in\mathbb{N})$ $a_{n+1}>a_n$.
- $(a_n)_{n \in \mathbb{N}}$ szigorúan monoton csökkenő, ha $(\forall n \in \mathbb{N})$ $a_{n+1} < a_n$.

2.1 Sorozatok korlátossága, monotonitása, konvergenciája

Konvergens valós számsorozat

Az $(a_n)_{n\in\mathbb{N}}$ sorozatot **konvergensnek** nevezzük, ha van olyan $a\in\mathbb{R}$, hogy bármely $\varepsilon>0$ -hoz létezik olyan $N(\varepsilon)\in\mathbb{R}$ szám, hogy

$$|a_n - a| < \varepsilon$$
 amennyiben $n > N(\varepsilon)$.

Az a számot a sorozat **határértékének** (limeszének) nevezzük.

$$a_n \to a \quad (n \to \infty), \qquad \text{vagy} \qquad \lim_{n \to \infty} a_n = a.$$

Az $(a_n)_{n\in\mathbb{N}}$ sorozatot **divergensnek** nevezünk, ha nem konvergens.

A konvergencia környezetes átfogalmazása

Az $(a_n)_{n\in\mathbb{N}}$ sorozat konvergens és határértéke $a\in\mathbb{R}$ akkor és csakis akkor, ha az a pont bármely környezetén kívül a sorozatnak csak véges sok eleme van.

25/135

2.1 Sorozatok korlátossága, monotonitása, konvergenciája

Ha egy sorozatban

- véges sok elemet teszőlegesen megváltoztatunk,
- vagy a sorozatból véges sok elemet elhagyunk,
- vagy a sorozathoz véges sok elemet hozzáveszünk,

akkor a sorozat konvergenciája vagy divergenciája nem változik, és konvergencia esetén a határértéke sem változik.

A határérték egyértelműsége

Konvergens sorozatnak pontosan egy határértéke van.

A konvergencia és a korlátosság kapcsolata

- Konvergens sorozat korlátos.
- Van olyan korlátos sorozat, mely divergens (nem konvergens).

Haidu Lajos (DE) Gazdasági matematika I. I. félév 26/135

2.1 Sorozatok korlátossága, monotonitása, konvergenciája

 $\{a_n : n \in \mathbb{N}\}$ a sorozat elemeiből álló halmaz (azaz a sorozat mint függvény értékkészlete)

A konvergencia és a monotonitás kapcsolata

- Ha az $(a_n)_{n\in\mathbb{N}}$ sorozat monoton növekvő és felülről korlátos, akkor konvergens és $\lim_{n\to\infty} a_n = \sup\{a_n : n\in\mathbb{N}\}.$
- Ha az $(a_n)_{n\in\mathbb{N}}$ sorozat monoton csökkenő és alulról korlátos, akkor konvergens és $\lim_{n\to\infty} a_n = \inf\{a_n : n\in\mathbb{N}\}.$

2.2 Műveletek, rendezés és konvergencia kapcsolata

A konvergencia és a műveletek kapcsolata

Ha
$$a_n o a$$
, $b_n o b$ $(n o \infty)$, akkor $a_n + b_n o a + b$ $(n o \infty)$, $a_n b_n o ab$ $(n o \infty)$, $\frac{a_n}{b_n} o \frac{a}{b}$ $(n o \infty)$, ha $b_n, b \neq 0$, $ca_n o ca$ $(n o \infty)$, $|a_n| o |a|$ $(n o \infty)$.

2.2 Műveletek, rendezés és konvergencia kapcsolata

Előjel=signum függvény

$$\mathrm{sign}(x) := \begin{cases} 1 & \text{ha } x > 0, \\ 0 & \text{ha } x = 0, \\ -1 & \text{ha } x < 0. \end{cases}$$

A konvergencia és a rendezés kapcsolata

- Konvergens sorozat **jeltartó**, azaz ha $a_n \to a \neq 0 \ (n \to \infty)$, akkor van olyan $n_0 \in \mathbb{R}$, hogy $sign(a_n) = sign(a)$ ha $n > n_0$.
- A konvergencia **megőrzi a monotonitást**, azaz ha $a_n \leq b_n$ $(n \in \mathbb{N})$ és $a_n \to a$, $b_n \to b$ $(n \to \infty)$, akkor $a \leq b$.
- Érvényes a **rendőrtétel**, azaz ha $a_n \to a$, $b_n \to a$ $(n \to \infty)$ és $a_n \le x_n \le b_n$ $(n \in \mathbb{N})$, akkor $(x_n)_{n \in \mathbb{N}}$ is konvergens és $x_n \to a$ $(n \to \infty)$.

2.3 Bővített valós számok, végtelenhez tartó sorozatok

Bővített valós számok halmaza

$$\mathbb{R}_b := \mathbb{R} \cup \{+\infty\} \cup \{-\infty\} \qquad \text{Jel\"ol\'es: } \infty := +\infty$$

Műveletek R_b-ben

Bármely $x \in \mathbb{R}$ esetén

$$x + (\pm \infty) := (\pm \infty) + x = \pm \infty,$$

$$(+\infty) + (+\infty) := +\infty, \qquad (-\infty) + (-\infty) := -\infty,$$

$$x \cdot (\pm \infty) := (\pm \infty) \cdot x = \pm \infty \quad \text{ha } x > 0,$$

$$x \cdot (\pm \infty) := (\pm \infty) \cdot x = \mp \infty \quad \text{ha } x < 0,$$

$$(+\infty) \cdot (\pm \infty) := \pm \infty, \qquad (-\infty) \cdot (\pm \infty) := \mp \infty,$$

$$\frac{x}{\pm \infty} := 0.$$

Rendezés R_b-ben

Bármely $x \in \mathbb{R}$ esetén $-\infty < x < +\infty$.

2.3 Bővített valós számok, végtelenhez tartó sorozatok

NINCSENEK ÉRTELMEZVE AZ ALÁBBIAK:

$$(+\infty)+(-\infty), \qquad (-\infty)+(+\infty), \qquad 0\cdot (\pm \infty), \qquad (\pm \infty)\cdot 0,$$

$$\frac{+\infty}{+\infty}, \qquad \frac{+\infty}{-\infty}, \qquad \frac{-\infty}{+\infty}, \qquad \frac{-\infty}{-\infty}, \qquad \frac{x}{0} \quad \text{ha} \ \ x \in \mathbb{R}_b.$$

2.3 Bővített valós számok, végtelenhez tartó sorozatok

A határérték fogalmának kiterjesztése

Azt mondjuk, hogy az $(a_n)_{n\in\mathbb{N}}$ sorozat **határértéke** $+\infty$, ha bármely $K\in\mathbb{R}$ számhoz van olyan $N(K)\in\mathbb{R}$, hogy

$$a_n > K$$
 ha $n > N(K)$.

Jelölés: $a_n \to +\infty \ (n \to \infty)$ vagy $\lim_{n \to \infty} a_n = +\infty$.

Azt mondjuk, hogy az $(a_n)_{n\in\mathbb{N}}$ sorozat **határértéke** $-\infty$, ha bármely $K\in\mathbb{R}$ számhoz van olyan $N(K)\in\mathbb{R}$, hogy

$$a_n < K$$
 ha $n > N(K)$.

Jelölés: $a_n \to -\infty \ (n \to \infty)$ vagy $\lim_{n \to \infty} a_n = -\infty$.

Ha $a_n \to +\infty$ vagy $a_n \to -\infty$, akkor a sorozat **divergens**, de **van** határértéke!

2.3 Bővített valós számok, végtelenhez tartó sorozatok

Környezetek \mathbb{R}_b -ben

- $+\infty$ környezetei a $]K, +\infty[$ $(K \in \mathbb{R})$ intervallumok,
- $-\infty$ környezetei a $]-\infty, K[\ (K\in\mathbb{R})$ intervallumok

A határérték környezetes átfogalmazása \mathbb{R}_b -ben

Egy sorozat határértéke $+\infty$ (illetve $-\infty$) akkor és csakis akkor, ha $+\infty$ (illetve $-\infty$) bármely környezetén kívül a sorozatnak csak véges sok eleme van.

Pontos felső korlát ℝ_b-ben

- Ha $A \subset \mathbb{R}$ felülről nem korlátos, akkor sup $A := +\infty$.
- Ha $A \subset \mathbb{R}$ alulól nem korlátos, akkor inf $A := -\infty$.

Minden $A \subset \mathbb{R}$ halmaznak van szuprémuma és infimuma \mathbb{R}_b -ben.

Minden monoton sorozatnak van határértéke \mathbb{R}_b -ben.

2.3 Bővített valós számok, végtelenhez tartó sorozatok

A határérték és műveletek kapcsolata \mathbb{R}_b -ben

Ha
$$a_n \to a$$
, $b_n \to b$ $(n \to \infty)$, ahol most $a,b \in \mathbb{R}_b$, és $c \in \mathbb{R}$, akkor

$$a_n+b_n o a+b \quad (n o\infty), \qquad \text{ha } a+b \quad \text{\'ertelmezve van,} \ a_n\cdot b_n o a\cdot b \quad (n o\infty), \qquad \text{ha } a\cdot b \quad \text{\'ertelmezve van,} \ rac{a_n}{b_n} o rac{a}{b} \quad (n o\infty), \qquad \text{ha } b_n
eq 0 \quad (n\in\mathbb{N}), \ \text{\'es } rac{a}{b} \quad \text{\'ertelmezve van,} \$$

$$c \cdot a_n o \ c \cdot a \ (n o \infty),$$
 ha $c \cdot a$ értelmezve van,

továbbá ha
$$|a_n| \to \infty \ (n \to \infty)$$
, akkor $\frac{1}{a_n} \to 0 \ (n \to \infty)$.

2.4 Nevezetes határértékek

$$\bullet \ \ n^a \rightarrow \begin{cases} +\infty & ha \ a>0, \\ 1 & ha \ a=0, \\ 0 & ha \ a<0. \end{cases} \qquad a^n \rightarrow \begin{cases} 0 & ha \ |a|<1, \\ 1 & ha \ a=1, \\ +\infty & ha \ a>1, \\ divergens & ha \ a\leq -1. \end{cases}$$

- Ha a > 0, akkor $\sqrt[n]{a} \to 1$ $(n \to \infty)$.
- Ha |a| < 1 és $k \in \mathbb{R}$, akkor $n^k a^n \to 0$ $(n \to \infty)$.
- $\sqrt[n]{n} \to 1 \ (n \to \infty)$.
- Ha $a \in \mathbb{R}$, akkor $\frac{a^n}{n!} \to 0 \ (n \to \infty)$.
- Az $a_n = \left(1 + \frac{1}{n}\right)^n \ (n \in \mathbb{N})$ sorozat szigorúan monoton növekvő és felülről korlátos, $a_n < 3 \ (n \in \mathbb{N})$, így konvergens. Határértéke egy nevezetes szám, amit e-vel jelölünk, közelitő értéke e \approx 2,72.

35/135

3. SOROK

3.1 Definíció, konvergencia, divergencia, összeg

Számsor

Egy $(a_n)_{n\in\mathbb{N}}$ valós számsorozat elemeit az összeadás jelével összekapcsolva kapott

$$a_1 + a_2 + \cdots$$
 vagy $\sum_{n=1}^{\infty} a_n$ (röviden $\sum a_n$)

összeget számsornak (vagy numerikus sornak) nevezzük.

A $\sum a_n$ sort konvergensnek nevezzük, ha részletösszegeinek

$$s_n := a_1 + a_2 + \cdots + a_n = \sum_{k=1}^n a_k \qquad (n \in \mathbb{N})$$

sorozata konvergens, és ekkor a **sor összege** $s:=\lim_{n\to\infty}s_n$, és azt égiple begye

irjuk, hogy
$$\sum_{n=1}^{\infty} a_n = s$$
, azaz $\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} \sum_{k=1}^{n} a_k$.

A $\sum a_n$ sort **divergensnek** nevezzük, ha nem konvergens.

36/135

3.1 Definíció, konvergencia, divergencia, összeg

• A $\sum_{n=1}^{\infty}aq^{n-1}=a+aq+aq^2+\cdots$, $(a,q\in\mathbb{R},\ a\neq 0)$ geometriai sor akkor és csakis akkor konvergens, ha |q|<1, és akkor

$$\sum_{n=1}^{\infty} aq^{n-1} = \frac{a}{1-q} = \frac{\text{első tag}}{1-\text{kvóciens}}.$$

• A $\sum_{n=1}^{\infty} \frac{1}{n}$ harmónikus sor divergens.

Sor konvergenciájának szükséges feltétele

Ha a $\sum\limits_{n=1}^{\infty} a_n$ sor konvergens, akkor $\lim\limits_{n \to \infty} a_n = 0$.

3.1 Definíció, konvergencia, divergencia, összeg

Leibniz tétele (elegendő feltétel alternáló sorok konvergenciájára)

A $\sum\limits_{n=1}^{\infty} (-1)^{n+1} a_n$ $(a_n \geq 0, n \in \mathbb{N})$ alternáló sor konvergens, ha $(a_n)_{n \in \mathbb{N}}$ monoton csökkenően tart nullához, és ekkor a sor s összegére, és részletösszegeinek $(s_n)_{n \in \mathbb{N}}$ sorozatára teljesül

Például a
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{|s-s_n|}{n} = \frac{n+1}{1} - \frac{n+1}{2} - \frac{n+1}{3} - \frac{n+1}{4} + \cdots$$
 alternáló sor konvergens (és összege ln 2).

3.2 Pozitív tagú sorok

A $\sum a_n$ sort akkor nevezzük pozitív tagúnak, ha $a_n > 0$ $(n \in \mathbb{N})$.

Pozitív tagú sor akkor és csakis akkor konvergens, ha a részletösszegeiből álló sorozat felülről korlátos.

Majoráns/minoráns teszt

Legyenek $0 < a_n \le b_n \ (n \in \mathbb{N}).$

- Ha a $\sum b_n$ sor konvergens, akkor a $\sum a_n$ sor is konvergens.
- Ha a $\sum a_n$ sor divergens, akkor a $\sum b_n$ sor is divergens.

3.2 Pozitív tagú sorok

Hányados/D'Alambert teszt

Legyen $\sum a_n$ pozitív tagú sor.

- Ha $(\exists \ q < 1) \ (\forall n \in \mathbb{N}) \ \frac{a_{n+1}}{a_n} \leq q$, akkor a $\sum a_n$ sor konvergens.
- Ha $(\forall n \in \mathbb{N})$ $\frac{a_{n+1}}{a_n} \ge 1$, akkor a $\sum a_n$ sor divergens.

Hányados/D'Alambert teszt limeszes alakja

Legyen ∑ an pozitív tagú sor, és tegyük fel, hogy

$$\exists \lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L \in \mathbb{R}_b.$$

- Ha L < 1, akkor a $\sum a_n$ sor konvergens.
- Ha L > 1, akkor a $\sum a_n$ sor divergens.
- Ha L = 1, akkor a ∑ a_n sor lehet konvergens, és lehet divergens is.

3.2 Pozitív tagú sorok

Gyök/Cauchy teszt

Legyenek $a_n \geq 0 \ (n \in \mathbb{N}).$

- Ha $(\exists q < 1)$ $(\forall n \in \mathbb{N})$ $\sqrt[n]{a_n} \le q$, akkor a $\sum a_n$ sor konvergens.
- Ha $(\forall n \in \mathbb{N})$ $\sqrt[n]{a_n} \ge 1$, akkor a $\sum a_n$ sor divergens.

Gyök/Cauchy teszt limeszes alakja

Legyenek $a_n \ge 0 \ (n \in \mathbb{N})$, és tegyük fel, hogy

$$\exists \lim_{n\to\infty} \sqrt[n]{a_n} = L \in \mathbb{R}_b.$$

- Ha L < 1, akkor a $\sum a_n$ sor konvergens.
- Ha L > 1, akkor a $\sum a_n$ sor divergens.
- Ha L = 1, akkor a $\sum a_n$ sor lehet konvergens, és lehet divergens is.

4日 > 4日 > 4目 > 4目 > 目 り9○

41/135

3.3 Abszolút konvergencia, műveletek sorokkal

- A $\sum a_n$ sort **abszolút konvergens**nek nevezzük, ha a $\sum |a_n|$ sor konvergens.
- A $\sum a_n$ sort **feltételesen konvergens**nek nevezzük, ha a sor konvergens, de nem abszolút konvergens.

Abszolút konvergens sor konvergens, de konvergens sor lehet nem abszolút konvergens.

Sor átrendezése

Ha $\varphi: \mathbb{N} \to \mathbb{N}$ bijektív, akkor a $\sum a_{\varphi(n)}$ sort a $\sum a_n$ sor átrendezésének nevezzük.

- Abszolút konvergens sor bármely átrendezése is konvergens, és az átrendezett sor összege megegyezik az eredeti sor összegével.
- Feltételesen konvergens sornak van olyan átrendezése, mely divergens, vagy melynek összege egy tetszőlegesen előírt szám.

3.3 Abszolút konvergencia, műveletek sorokkal

- Konvergens sor tetszőlegesen zárójelezhető, és a zárójelezett sor összege megegyezik az eredeti sor összegével.
- Ha $\sum a_n$ és $\sum b_n$ konvergensek és $c \in \mathbb{R}$, akkor $\sum (a_n + b_n)$ és $\sum (c \cdot a_n)$ is konvergensek, és

$$\sum_{n=1}^{\infty}(a_n+b_n)=\sum_{n=1}^{\infty}a_n+\sum_{n=1}^{\infty}b_n, \qquad \sum_{n=1}^{\infty}(c\cdot a_n)=c\cdot\sum_{n=1}^{\infty}a_n.$$

A
$$\sum\limits_{n=0}^{\infty}a_n$$
 és $\sum\limits_{n=0}^{\infty}b_n$ sorok **Cauchy-féle szorzatsora** $\sum\limits_{n=0}^{\infty}c_n$, ahol

$$c_n := a_0b_n + a_1b_{n-1} + \cdots + a_nb_0 = \sum_{k=0}^n a_kb_{n-k}.$$

Abszolút konvergens sorok Cauchy-féle szorzatsora is abszolút konvergens, és összege a tényezősorok összegének szorzata.

Hajdu Lajos (DE) Gazdasági matematika I. I. félév 43/135

3.4 Hatványsorok

Egy $(a_n)_{n\in\mathbb{N}}$ számsorozat és $a\in\mathbb{R}$ esetén a $\sum\limits_{n=0}^{\infty}a_n(x-a)^n$

összeget hatványsornak nevezzük, melynek konvergenciahalmazát azon $x \in \mathbb{R}$ pontok alkotják, melyekre a sor konvergens.

A konvergenciahalmaz pontjaiban értelmezhető a sor összegfüggvénye (mint a részletösszegek határértéke).

Tegyük fel, hogy a
$$\sum_{n=0}^{\infty} a_n(x-a)^n$$
 hatványsor esetén $\exists \lim_{n\to\infty} \sqrt[n]{|a_n|} \in \mathbb{R}_b$.

Az
$$r:=\frac{1}{\displaystyle\lim_{n\to\infty}\sqrt[n]{|a_n|}}\in\mathbb{R}_b$$
 (ahol $\frac{1}{0}:=+\infty$, $\frac{1}{+\infty}:=0$) bővített valós

számot a hatványsor konvergenciasugarának nevezzük.

- Ha |x a| < r, akkor a hatványsor abszolút konvergens x-ben.
- Ha |x a| > r, akkor a hatványsor divergens x-ben.

4.1 Függvény határértéke

A torlódási pont fogalmát már korábban bevezettük. Ezt most kiterjesztjük arra az esetre amikor a torlódási pont \mathbb{R}_b -beli. Azt mondjuk, hogy $+\infty$ $(-\infty)$ torlódási pontja a D halmaznak, ha D nem korlátos felülről (alulról). Egy $D\subset\mathbb{R}$ halmaz \mathbb{R}_b -beli torlódási pontjainak halmazát D'-vel fogjuk jelölni.

Függvény határértéke

Legyen $f: D \subset \mathbb{R} \to \mathbb{R}$ és legyen $x_0 \in D'$. Azt mondjuk, hogy f-nek van (véges, vagy végtelen) határértéke az x_0 pontban, ha van olyan $a \in \mathbb{R}_b$ bővített valós szám, hogy bármely olyan D-beli $(x_n)_{n \in \mathbb{N}}$ sorozatra, melyre $\lim_{n \to \infty} x_n = x_0$ és $x_n \neq x_0$, teljesül a $\lim_{n \to \infty} f(x_n) = a$ egyenlőség.

a-t az f függvény x_0 pontbeli határértékének nevezzük, és $\lim_{x \to x_0} f(x) = a$ -val, vagy $f(x) \to a$ $(x \to x_0)$ -lal jelöljük.

4.1 Függvény határértéke

Átfogalmazás

Másképpen megfogalmazva: az f függvény értelmezési tartományának egy $x_0 \in \mathbb{R}_b$ torlódási pontjában akkor és csakis akkor lesz f határértéke az $a \in \mathbb{R}_b$ bővített valós szám, ha az értelmezési tartományból bármely x_0 -hoz konvergáló $(x_n)_{n \in \mathbb{N}}$ sorozatot véve, melynek elemei x_0 -tól különbözőek, a függvényértékek $(f(x_n))_{n \in \mathbb{N}}$ sorozata a-hoz tart.

Határérték egyértelműsége

Függvény határértéke, ha létezik, akkor egyértelmű.

Határérték **létezhet az** x_0 **pontban akkor is, ha a függvény nincs értelmezve a pontban**, de torlódási pontja annak (egy halmaz torlódási pontja ugyanis nem feltétlenül pontja a halmaznak).

4.1 Függvény határértéke

Legyen $f:D\subset\mathbb{R}\to\mathbb{R}$ és legyen $E\subset D$, akkor az f függvény E-re való leszűkítését $f_{\mid E}$ -vel jelöljük. Ez a függvény csak az E halmazon van definiálva és ott megegyezik f-fel.

Jobb- és baloldali határérték $x_0 \in \mathbb{R}_b$ -ben

Legyen $f:D\subset\mathbb{R}\to\mathbb{R}$ és legyen $x_0\in\mathbb{R}_b$ a $D^+_{x_0}:=D\cap[x_0,+\infty[$ $(D^-_{x_0}:=D\cap]-\infty,x_0])$ halmaz torlódási pontja. Akkor mondjuk, hogy az $f:D\subset\mathbb{R}\to\mathbb{R}$ függvénynek az $a\in\mathbb{R}_b$ bővített valós szám **jobboldali** (baloldali) határértéke az x_0 pontban, ha $a\in\mathbb{R}_b$ az x_0 pontbeli határértéke az $f_{D^+_{x_0}}(f_{D^-_{x_0}})$ leszűkített függvénynek.

Jobboldali (baloldali) határérték jelölése:
$$\lim_{x\to x_0+0} f(x)=a$$
 ($\lim_{x\to x_0-0} f(x)=a$)

Világos, hogy $+\infty$ -ben csak baloldali, $-\infty$ -ben csak jobboldali határérték definiálható.

4.1 Függvény határértéke

Függvény határértékére a fentivel ekvivalens definíció adható, de ekkor a véges és végtelenben vett véges és végtelen határértékek definíciója kissé eltérő.

Függvény véges határértéke véges pontban, ε, δ -s definíció

Legyen $f:D\subset\mathbb{R}\to\mathbb{R}$ és legyen $x_0\in D'$ véges torlódási pontja D-nek. Azt mondjuk, hogy f-nek van (véges) határértéke az x_0 pontban, ha van olyan $a\in\mathbb{R}$ szám, hogy minden $\varepsilon>0$ -hoz van olyan $\delta(\varepsilon)>0$, hogy

$$|f(x) - a| < \varepsilon$$
 ha $0 < |x - x_0| < \delta(\varepsilon)$ és $x \in D$.

4.1 Függvény határértéke

Határérték, monotonitás és műveletek kapcsolata

Legyenek
$$f,g:D\subset\mathbb{R}\to\mathbb{R},\ x_0\in D',\ \text{\'es tegy\"{u}k fel, hogy}$$

$$\lim_{x\to x_0}f(x)=a\in\mathbb{R}_b,\qquad \lim_{x\to x_0}g(x)=b\in\mathbb{R}_b.$$

Akkor bármely $c \in \mathbb{R}$ mellett

Ha
$$f(x) \le g(x)$$
 $(x \in D, x \ne x_0)$, akkor $a \le b$.

$$\textit{Ha } f(x) \leq \textit{h}(x) \leq \textit{g}(x) \ (\textit{x} \in \textit{D}, \, \textit{x} \neq \textit{x}_0), \ \textit{\'es } \textit{a} = \textit{b}, \ \textit{akkor} \lim_{\substack{x \to \textit{x}_0}} \textit{h}(x) = \textit{a}.$$

Hajdu Lajos (DE) Gazdasági matematika I. I. félév 49/135

4.1 Függvény határértéke

Összetett függvény

A h(x):=g(f(x)) $(x\in D)$ függvényt, ahol $f:D\subset\mathbb{R}\to\mathbb{R}$, $g:f(D)\to\mathbb{R}$, az f és g függvényekből összetett függvénynek nevezzük, f a belső, g a külső függvény. (Itt $f(D):=\{f(x):x\in D\}$ az f függvény értékkészlete.) Más jelölés: $h=g\circ f$.

Összetett függvény határértéke

Legyen
$$f: D \subset \mathbb{R} \to \mathbb{R}$$
, $g: f(D) \to \mathbb{R}$, és $h(x) := g(f(x))$ $(x \in D)$. Ha $x_0 \in D'$,

$$\lim_{x\to x_0} f(x) = a,$$
 $a\notin f(D\setminus \{x_0\}),$ és $\lim_{y\to a} g(x) = b,$

akkor

$$\lim_{x \to x_0} h(x) = b.$$

4.2 Függvény folytonossága

Függvény folytonossága

Az $f: D \subset \mathbb{R} \to \mathbb{R}$ függvényt **folytonosnak** nevezzük az $x_0 \in D$ pontban, ha bármely D-beli x_0 -hoz konvergáló $x_n \in D \, (n \in \mathbb{N}), \, x_n \to x_0 \, (n \to \infty)$ sorozat esetén a függvényértékek $f(x_n) \, (n \in \mathbb{N})$ sorozata az x_0 pontbeli függvényértékhez tart $\lim_{n \to \infty} f(x_n) = f(x_0)$.

Röviden: az f függvény $x_0 \in D$ pontbeli folytonossága azt jelenti, hogy ha $D \ni x_n \to x_0 \ (n \to \infty)$ akkor $\lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n) = f(x_0)$.

- Ha $x_0 \in D \cap D'$, akkor f folytonos x_0 -ban akkor, és csakis akkor, ha $\lim_{x \to x_0} f(x) = f(x_0)$.
- Ha $x_0 \in D$, de $x_0 \notin D'$, akkor x_0 a D **izolált pontja**, izolált pontokban f a definíció alapján mindig folytonos.

4.2 Függvény folytonossága

Jobb- és baloldali folytonosság

Az $f:D\subset\mathbb{R}\to\mathbb{R}$ függvényt jobbról (balról) **folytonosnak** nevezzük az $x_0\in D$ pontban, ha az $f_{\left|D_{x_0}^+\right|}(f_{\left|D_{x_0}^-\right|})$ leszűkített függvény folytonos az $x_0\in D$ pontban.

Ez azt jelenti, hogy az $f:D\subset\mathbb{R}\to\mathbb{R}$ függvény pontosan akkor jobbról (balról) **folytonos** az $x_0\in D$ pontban, ha bármely D-beli x_0 -hoz konvergáló $x_n\in D$ ($n\in\mathbb{N}$), $x_n\geq x_0$ ($x_n\leq x_0$), $x_n\to x_0$ ($x_n\to x_0$) sorozat esetén a függvényértékek $f(x_n)$ ($x_n\in\mathbb{N}$) sorozata az x_n 0 pontbeli függvényértékhez tart, $\lim_{n\to\infty} f(x_n) = f(x_n)$.

4.2 Függvény folytonossága

Függvény folytonossága, ε , δ -s ekivivalens definíció

Az $f: D \subset \mathbb{R} \to \mathbb{R}$ függvényt az $x_0 \in D$ pontban **folytonosnak** nevezzük, ha bármely $\varepsilon > 0$ -hoz van olyan $\delta(\varepsilon) > 0$, hogy $|f(x) - f(x_0)| < \varepsilon$ ha $|x - x_0| < \delta(\varepsilon)$ és $x \in D$.

Függvény folytonossága és a műveletek kapcsolata

- Ha $f,g:D\subset\mathbb{R}\to\mathbb{R}$ folytonosak az $x_0\in D$ pontban és $c\in\mathbb{R}$, akkor $f+g,\ c\cdot f,\ f\cdot g,\ \frac{f}{g}$ (ha $g(x_0)\neq 0$) is folytonosak x_0 -ban.
- A h(x) = g(f(x)) $(x \in D)$ összetett függvény folytonos x_0 -ban (ahol $f: D \subset \mathbb{R} \to \mathbb{R}$, $g: f(D) \to \mathbb{R}$), ha f folytonos x_0 -ban és g folytonos az $y_0 := f(x_0)$ pontban.

53 / 135

4.3 Folytonos függvények globális tulajdonságai

Azt mondjuk, hogy az $f:D\subset\mathbb{R}\to\mathbb{R}$ függvény a D halmazon

- alulról (felülről) korlátos, ha értékkészlete alulról (felülről) korlátos.
- monoton növekvő (csökkenő), ha

$$\forall x_1 < x_2, x_1, x_2 \in D$$
 esetén $f(x_1) \le f(x_2)$ $(f(x_1) \ge f(x_2))$.

szigorúan monoton növekvő (csökkenő), ha

$$\forall x_1 < x_2, x_1, x_2 \in D$$
 esetén $f(x_1) < f(x_2) (f(x_1) > f(x_2)).$

4.3 Folytonos függvények globális tulajdonságai

Azt mondjuk, hogy az $f: D \subset \mathbb{R} \to \mathbb{R}$ függvénynek az $x_0 \in D$ pontban

ullet lokális/helyi maximuma (minimuma) van, ha $\exists\, arepsilon>0$, hogy

$$f(x_0) \ge f(x) \quad (f(x_0) \le f(x)) \quad \forall \, x \in K(x_0, \varepsilon) \cap D \text{ eset\'en}.$$

• szigorú lokális/helyi maximuma (minimuma) van, ha $\exists \varepsilon > 0$, hogy

$$f(x_0) > f(x)$$
 $(f(x_0) < f(x))$ $\forall x \in K(x_0, \varepsilon) \cap D, x \neq x_0$ esetén.

• globális/abszolút maximuma (minimuma) van, ha

$$f(x_0) \ge f(x)$$
 $(f(x_0) \le f(x))$ $\forall x \in D$ esetén.

szigorú globális/abszolút maximuma (minimuma) van, ha

$$f(x_0) > f(x)$$
 $(f(x_0) < f(x))$ $\forall x \in D, x \neq x_0$ esetén.

4.3 Folytonos függvények globális tulajdonságai

Folytonos függvény **jeltartó**, azaz ha $f: D \subset \mathbb{R} \to \mathbb{R}$ folytonos az $x_0 \in D$ pontban, és $f(x_0) \neq 0$, akkor van olyan $\delta > 0$, hogy

Függvény folytonossága halmazon

Azt mondjuk, hogy az $f: D \subset \mathbb{R} \to \mathbb{R}$ függvény **folytonos az** $A \subset D$ **halmazon**, ha f az A halmaz minden pontjában folytonos.

Folytonos függvény korlátossága

Korlátos zárt intervallumon folytonos függvény korlátos.

Maximum, minimum létezése

Korlátos zárt intervallumon folytonos függvény felveszi a függvényértékek szuprémumát és infimumát függvényértékként.

4 D > 4 A > 4 B > 4 B > B + 9 9 9

4.3 Folytonos függvények globális tulajdonságai

Függvény egyenletes folytonossága halmazon

Azt mondjuk, hogy az $f: D \subset \mathbb{R} \to \mathbb{R}$ függvény **egyenletesen folytonos a** $D_1 \subset D$ **halmazon**, ha bármely $\varepsilon > 0$ -hoz van olyan (csak ε -tól függő) $\delta(\varepsilon) > 0$, amelyre

$$|f(x) - f(y)| < \varepsilon$$
 ha $|x - y| < \delta(\varepsilon)$ és $x, y \in D_1$.

Ha f csupán folytonos D_1 -en, akkor bármely $\varepsilon > 0$ -hoz és bármely $y \in D_1$ -hez van olyan (y-tól is függő) $\delta(\varepsilon, y) > 0$, amelyre

$$|f(x) - f(y)| < \varepsilon$$
 ha $|x - y| < \delta(\varepsilon, y)$ és $x \in D_1$.

Cantor tétele

Korlátos zárt intervallumon folytonos függvény ott egyenletesen folytonos.

4.3 Folytonos függvények globális tulajdonságai

Közbenső értékek tétele

Egy intervallumon folytonos függvény felvesz bármely két függvényérték közötti értéket is függvényértékként.

Azaz egy intervallumon folytonos függvény értékkészlete is egy intervallum.

Inverz függvény folytonossága

Egy intervallumon folytonos, szigorúan monoton függvény injektív, és inverze is folytonos, és szigorúan monoton (ugyanolyan értelemben mint az eredeti függvény).

Inverz függvény folytonossága

Egy intervallumon folytonos és injektív függvény inverze is folytonos.

4.4 Az elemi függvények folytonossága

- $x \mapsto \ln x := az \ x \mapsto e^x \ \text{függvény inverze}, \ \ln :]0, \infty[\to \mathbb{R},$
- $a^x := e^{x \ln a} \ (x \in \mathbb{R})$, ahol a > 0,
- $x \mapsto \log_a x := az \ x \mapsto a^x$ függvény inverze, ahol $0 < a \neq 1$, $\log_a :]0, \infty[\to \mathbb{R},$
- $\arcsin: [-1,1] \to \left[-\frac{\pi}{2},\frac{\pi}{2}\right] := a \sin_{\left|\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\right|}$ függvény inverze,
- $arccos: [-1,1] \rightarrow [0,\pi] := a cos_{[0,\pi]}$ függvény inverze,
- $arctg: \mathbb{R} \to \left] \frac{\pi}{2}, \frac{\pi}{2} \right[:= a tg_{\left| \right] \frac{\pi}{2}, \frac{\pi}{2} \right[}$ függvény inverze,
- ullet arcctg : $\mathbb{R} \to]0,\pi[$:= a $\operatorname{ctg}_{\mid 0,\pi[}$ függvény inverze.

4.4 Az elemi függvények folytonossága

Elemi függvények

Αz

- $f(x) = c \ (x \in \mathbb{R})$ (ahol $c \in \mathbb{R}$ tetszőleges konstans),
- $f(x) = x \ (x \in \mathbb{R}),$
- $f(x) = e^x \ (x \in \mathbb{R}),$
- $f(x) = \ln x \ (x > 0),$
- $f(x) = \sin x \ (x \in \mathbb{R}),$
- $f(x) = \arcsin x \ (x \in [-1, 1])$

függvényeket, és ezekből a

- 4 alapművelet (összeadás, kivonás, szorzás, osztás),
- összetett függvény képzése,
- leszűkítés egy intervallumra

operációk véges sokszori alkalmazásával keletkező függvényeket **elemi függvényeknek** nevezzük.

4.4 Az elemi függvények folytonossága

Elemi függvények

- Az
 - $f(x) = x^{\alpha} := e^{\alpha \ln x} \ (x > 0)$, általános hatványfüggvény,
 - a trigonometrikus függvények és inverzeik,
 - a polinomok,
 - racionális törtfüggvények (azaz polinomok hányadosai)
 elemi függvények.
- Az elemi függvények folytonosak.

4.5 Nevezetes függvényhatárértékek

Nevezetes függvényhatárértékek

$$\lim_{x\to 0}\frac{e^x-1}{x}=1,$$

$$\lim_{x\to 0}\frac{\sin x}{x}=1.$$

5.1 Differenciálhatóság, differenciálási szabályok

Differenciálhatóság, differenciálhányados/derivált

Az $f: I \to \mathbb{R}$ ($I \subset \mathbb{R}$ egy nem elfajult intervallum) függvényt **differenciálhatónak** nevezzük az $x_0 \in I$ pontban, ha létezik a

$$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}\in\mathbb{R}.$$

E határértéket az f függvény x_0 pontbeli **differenciálhányadosának** vagy deriváltjának nevezzük.

Jelölés: $f'(x_0)$ vagy $\frac{\mathrm{d}f}{\mathrm{d}x}(x_0)$.

Minden olyan $x \in I$ pontban, ahol f differenciálható, értelmezhetjük az $x \mapsto f'(x)$ derivált függvényt.

5.1 Differenciálhatóság, differenciálási szabályok

A derivált jelentése:

- $\frac{f(x) f(x_0)}{x x_0}$ az $[x_0, x]$ intervallumon vett **differenciahányados**, ami a függvény változásának **átlagsebessége**;
- $f'(x_0)$ az átlagsebesség határértéke, amikor az $[x_0, x]$ intervallum összehúzódik az x_0 pontra, azaz $f'(x_0)$ a függvény változásának x_0 pontbeli **pillanatnyi sebessége**.

A derivált geometriai jelentése:

- $\frac{f(x) f(x_0)}{x x_0}$ az f függvény görbéjének $(x_0, f(x_0))$ és (x, f(x)) pontjait összekötő *szelőjének iránytangense*;
- $f'(x_0)$ az f függvény görbéjéhez az $(x_0, f(x_0))$ pontban húzott **érintő iránytangense**.

Ha f differenciálható egy pontban, akkor ott folytonos is.

5.1 Differenciálhatóság, differenciálási szabályok

Differenciálás és a műveletek kapcsolata

Ha $f,g:I\to\mathbb{R}$ differenciálhatók az $x_0\in I$ pontban, akkor

• f + g is differenciálható x_0 -ban, és

$$(f+g)'(x_0) = f'(x_0) + g'(x_0),$$

• tetszőleges $c \in \mathbb{R}$ esetén $c \cdot f$ is differenciálható x_0 -ban, és $(c \cdot f)'(x_0) = c \cdot f'(x_0)$,

f ⋅ g is differenciálható x₀-ban, és

$$(f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0),$$

• ha $g(x_0) \neq 0$, akkor $\frac{f}{g}$ is differenciálható x_0 -ban, és

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0) \cdot g(x_0) - f(x_0) \cdot g'(x_0)}{g(x_0)^2}.$$

5.1 Differenciálhatóság, differenciálási szabályok

Differenciálhatóság és lineáris approximálhatóság kapcsolata

• Az $f: I \to \mathbb{R}$ függvény akkor és csakis akkor differenciálható az $x_0 \in I$ pontban, ha van olyan $A \in \mathbb{R}$ konstans, hogy

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - A(x - x_0)}{x - x_0} = 0.$$

Ha ez teljesül, akkor $A = f'(x_0)$.

• Az $f:I \to \mathbb{R}$ függvény akkor és csakis akkor differenciálható az $x_0 \in I$ pontban, ha van olyan $A \in \mathbb{R}$ konstans és $\varepsilon:I \to \mathbb{R}$ függvény, hogy

$$f(x) - f(x_0) = A(x - x_0) + \varepsilon(x - x_0)$$
 és $\lim_{x \to x_0} \varepsilon(x) = 0$.

Ekkor $f(x) \approx f(x_0) + f'(x_0)(x - x_0)$, azaz, az $x \mapsto f(x)$ függvény az $x \mapsto f(x_0) + f'(x_0)(x - x_0)$ lineáris függvénnyel approximálható

5.1 Differenciálhatóság, differenciálási szabályok

Összetett függvény differenciálhatósága

Legyen $f: I \to \mathbb{R}$, J:=f(I) az f értékkészlete, $g: J \to \mathbb{R}$. Ha f differenciálható az $x_0 \in I$ pontban és g differenciálható az $y_0 := f(x_0) \in J$ pontban, akkor a $h:= g \circ f$ összetett függvény differenciálható az x_0 pontban, és

Inverz függvény differenciálhatósága

Tegyük fel, hogy $f: I \to \mathbb{R}$ invertálható, folytonos I-n, differenciálható az $x_0 \in I$ pontban, és $f'(x_0) \neq 0$. Akkor az $f^{-1}: f(I) \to I$ inverz függvény differenciálható az $y_0 := f(x_0)$ pontban, és

$$(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))}$$

5.2 Az elemi függvények deriváltjai

$$(c)' = 0 (x \in \mathbb{R}, c \in \mathbb{R} \text{ tetsz\"oleges konstans}),$$

$$(x^{\alpha})' = \alpha x^{\alpha - 1} (x > 0, ha \ \alpha \in \mathbb{R}; x \in \mathbb{R}, ha \ \alpha \in \mathbb{N}),$$

$$(\sin x)' = \cos x (x \in \mathbb{R}),$$

$$(\cos x)' = -\sin x (x \in \mathbb{R}),$$

$$(\operatorname{tg} x)' = \frac{1}{\cos^2 x} (x \in \mathbb{R}, x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}),$$

$$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x} (x \in \mathbb{R}, x \neq k\pi, k \in \mathbb{Z}),$$

$$(e^x)' = e^x (x \in \mathbb{R}),$$

$$(a^x)' = a^x \ln a (x \in \mathbb{R}, 0 < a \neq 1),$$

5.2 Az elemi függvények deriváltjai

$$(\ln x)' = \frac{1}{x} \qquad (x > 0),$$

$$(\log_a x)' = \frac{1}{x \ln a} \qquad (x > 0, \ 0 < a \neq 1),$$

$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}} \qquad (|x| < 1),$$

$$(\arccos x)' = -\frac{1}{\sqrt{1 - x^2}} \qquad (|x| < 1),$$

$$(\arctan x)' = \frac{1}{1 + x^2} \qquad (x \in \mathbb{R}),$$

$$(\operatorname{arcctg} x)' = -\frac{1}{1 + x^2} \qquad (x \in \mathbb{R}).$$

Az elemi függvények értelmezési tartományuk belső pontjaiban differenciálhatók.

5.3 Középértéktételek és alkalmazásaik

Lokális szélsőérték szükséges feltétele

Ha $f: I \to \mathbb{R}$ differenciálható az $x_0 \in I^\circ$ belső pontban (I° jelöli az I intervallum belső pontjainak halmazát, vagyis belsejét), és f-nek x_0 -ban lokális szélsőértéke van, akkor

$$f'(x_0)=0.$$

Rolle-féle középértéktétel

Legyen $f:[a,b] \to \mathbb{R}$ folytonos [a,b]-n, differenciálható]a,b[-n, f(a)=f(b), akkor van olyan $\xi \in]a,b[$, melyre

$$f'(\xi) = \frac{f(b) - f(a)}{b - a} = 0.$$

5.3 Középértéktételek és alkalmazásaik

Lagrange-féle középértéktétel

Legyen $f:[a,b]\to\mathbb{R}$ folytonos [a,b]-n, differenciálható]a,b[-n, akkor van olyan $\xi\in]a,b[$, melyre

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

Cauchy-féle középértéktétel

Legyenek $f,g:[a,b]\to\mathbb{R}$ folytonosak [a,b]-n, differenciálhatók]a,b[-n, akkor van olyan $\xi\in]a,b[$, melyre

$$(f(b) - f(a))g'(\xi) = (g(b) - g(a))f'(\xi),$$

vagy, ha $g'(x) \neq 0$ $(x \in]a,b[)$, akkor

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

5.3 Középértéktételek és alkalmazásaik

Monotonitás és deriváltak kapcsolata

Legyen $f: I \to \mathbb{R}$ differenciálható I-n.

- f monoton növekvő I-n akkor és csak akkor, ha $f'(x) \ge 0$ $(x \in I)$.
- f monoton csökkenő I-n akkor és csak akkor, ha $f'(x) \le 0$ $(x \in I)$.
- f konstans I-n akkor és csak akkor, ha f'(x) = 0 $(x \in I)$.
- f szigorúan monoton növekvő I-n ha f'(x) > 0 $(x \in I)$.
- f szigorúan monoton csökkenő I-n ha f'(x) < 0 $(x \in I)$.

5.3 Középértéktételek és alkalmazásaik

L'Hospital szabály

Legyenek $f,g:]a,b[\to \mathbb{R}$ differenciálhatók]a,b[-n (ahol most $a,b\in \mathbb{R}_b)$, és $g'(x)\neq 0$ $(x\in]a,b[$). Ha

$$\exists \lim_{x \to a+0} \frac{f'(x)}{g'(x)} = A \in \mathbb{R}_b$$

és

$$\lim_{x\to a+0} f(x) = \lim_{x\to a+0} g(x) = 0 \qquad \text{vagy} \qquad \lim_{x\to a+0} g(x) = +\infty(-\infty),$$

akkor

$$\lim_{x\to a+0}\frac{f(x)}{g(x)}=A.$$

A tétel akkor is érvényes, ha $x \to a+0$ helyére mindenütt $x \to b-0$, illetve $x \to c$ kerül, ahol c az]a, b[egy belső pontja.

Haidu Laios (DE)

Gazdasági matematika I.

I. félév 73/135

5.4 Magasabbrendű deriváltak, konvexitás, konkávitás

Magasabbrendű deriváltak

Tegyük fel, hogy az $f: I \to \mathbb{R}$ függvény első deriváltja létezik az $x_0 \in I$ pontnak egy (legalább egyoldali) környezetében, akkor f második deriváltja

$$f''(x_0) := (f')'(x_0) = \lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0}.$$

Hasonlóan, az f függvény (n+1)-edik deriváltja

$$f^{(n+1)}(x_0) := (f^{(n)})'(x_0).$$

5.4 Magasabbrendű deriváltak, konvexitás, konkávitás

Konvexitás, konkávitás

Az $f:I \to \mathbb{R}$ függvényt **konvexnek** nevezzük az I intervallumon, ha

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2) \qquad (x_1, x_2 \in I, \ \lambda \in [0, 1]).$$

Az $f: I \to \mathbb{R}$ függvényt **konkávnak** nevezzük *I*-n, ha -f konvex *I*-n.

Konvexitás geometriai jelentése: $x_1 < x_2$ esetén a $\lambda x_1 + (1 - \lambda)x_2$ pont az $[x_1, x_2]$ intervallumot $1 - \lambda : \lambda$ arányban osztja ketté. Az $(x_1, f(x_1))$ és $(x_2, f(x_2))$ pontokon átmenő egyenes (szelő)

egyenlete:

$$y = f(x_1) + \frac{f(x_2) - f(x_1)}{x_2 - x_1}(x - x_1).$$

Ennek értéke a $\lambda x_1 + (1 - \lambda)x_2$ pontban éppen $\lambda f(x_1) + (1 - \lambda)f(x_2)$. Így az f függvény akkor és csakis akkor konvex az I intervallumon, ha a függvény görbéjének bármely szelője a metszési pontok közötti szakaszon a függvény görbe felett van.

5.4 Magasabbrendű deriváltak, konvexitás, konkávitás

Konvex és konkáv függvények jellemzése

- **1** Ha $f: I \to \mathbb{R}$ differenciálható I-n, akkor
 - f konvex I-n akkor és csakis akkor, ha f' monoton növekvő I-n;
 - f konkáv I-n akkor és csakis akkor, ha f' monoton csökkenő I-n.
- ② Ha $f: I \to \mathbb{R}$ kétszer differenciálható I-n, akkor
 - f konvex I-n akkor és csakis akkor, ha $f''(x) \ge 0$ $(x \in I)$;
 - f konkáv I-n akkor és csakis akkor, ha $f''(x) \le 0$ $(x \in I)$.

5.4 Magasabbrendű deriváltak, konvexitás, konkávitás

Inflexiós hely, inflexiós pont

Legyen $f:I\to\mathbb{R}$ és $x_0\in I^\circ$ belső pontja I-nek. Az x_0 pontot az f függvény **inflexiós helyének**, az $(x_0,f(x_0))$ pontot **inflexiós pontjának** nevezzük, ha x_0 az I intervallum konvex és konkáv szakaszait választja el, azaz, ha van olyan $\delta>0$, hogy

- f konvex az $]x_0 \delta, x_0[$, konkáv az $]x_0, x_0 + \delta[$ intervallumon, vagy
 - f konkáv az $]x_0 \delta, x_0[$, konvex az $]x_0, x_0 + \delta[$ intervallumon.

Inflexiós pontok megkeresése

Legyen $f: I \to \mathbb{R}$ kétszer differenciálható I-n.

- Ha az $x_0 \in I^{\circ}$ pont inflexiós helye f-nek, akkor $f''(x_0) = 0$.
- Ha $f''(x_0) = 0$ és f'' előjelet vált x_0 -ban, akkor x_0 inflexiós helye f-nek.

5.5 Taylor tétele

Taylor tétele

Legyen $f:[a,b]\to\mathbb{R}$, és tegyük fel, hogy $\exists \ n\in\mathbb{N}\cup\{0\}$, hogy

- az f függvény (n+1)-szer differenciálható]a, b[-n,
- $f^{(n)}$ folytonos [a,b]-n.

Akkor bármely $x, x_0 \in [a, b]$ -hoz van olyan ξ az x és x_0 között (szigorúan közöttük, ha $x \neq x_0$), hogy

$$f(x) = \left(f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n\right) + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)^{n+1},$$

ahol $f^{(0)} := f$.

5. DIFFERENCIÁLSZÁMÍTÁS5.5 Taylor tétele

$$T_n(x) := f(x_0) + \frac{f'(x_0)}{1!}(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \cdots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$$

az f függvény x_0 pont körüli n-edfokú **Taylor polinomja** ($x_0 = 0$ esetén **Mc Laurin polinomja**),

$$R_n(x) := \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$$

a Taylor formula n-edik maradéktagja Lagrange-féle alakban. Az $R_n(x)$ maradéktag azt mutatja meg, hogy f(x)-et a $T_n(x)$ Taylor polinom milyen hibával közelíti.

5. DIFFERENCIÁLSZÁMÍTÁS 5.5 Taylor tétele

Példák Taylor polinomra:

• $f(x) = e^x$, $x_0 = 0$ mellett

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \cdots + \frac{x^{n}}{n!} + R_{n}(x),$$

ahol

$$R_n(x) := \frac{e^{\xi}}{(n+1)!}x^{n+1},$$

és ξ az x és $x_0 = 0$ között van. Ebből azt kapjuk, hogy

$$e^{x} = \lim_{n \to \infty} \left(1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} \right) = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}.$$

Ezt a sort az exponenciális függvény Mc Laurin sorának, vagy $x_0 = 0$ körüli Taylor sorának nevezzük.

80/135

5.5 Taylor tétele

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + R_{2n+1}(x) \qquad (x \in \mathbb{R}),$$

ahol

$$R_{2n+1}(x) := \frac{\sin\left(\xi + (2n+2)\frac{\pi}{2}\right)}{(2n+2)!}x^{2n+2},$$

és ξ az x és $x_0 = 0$ között van. Ebből azt kapjuk, hogy

$$\sin x = \lim_{n \to \infty} \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} \right) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}.$$

Ezt a sort a \sin függvény Mc Laurin sorának, vagy $x_0=0$ körüli Taylor sorának nevezük.

5.6 Szélsőértékszámítás

Lokális szélsőérték szükséges feltétele

Ha $f: I \to \mathbb{R}$ differenciálható az $x_0 \in I^{\circ}$ belső pontban, és ott lokális szélsőértéke van, akkor $f'(x_0) = 0$.

Stacionárius pont

Azokat az x_0 pontokat, amelyekre $f'(x_0) = 0$ teljesül, az f függvény stacionárius pontjainak nevezzük.

Stacionárius pontban az érintő párhuzamos az x tengellyel, és ott lehet lokális szélsőérték, de nem biztos, hogy van!

Milyen $x_0 \in I$ pontokban lehet egy $f: I \to \mathbb{R}$ függvénynek lokális szélsőértéke?

- $x_0 \in I^{\circ}$ belső pont, ahol $f'(x_0) = 0$,
- x_0 az / intervallum valamely végpontja (ha az /-hez tartozik),
- x_0 az *I*-nek olyan pontja, ahol *f* nem differenciálható.

5.6 Szélsőértékszámítás

Elsőrendű elegendő feltétel lokális szélsőértékre

Tegyük fel, hogy $f: I \to \mathbb{R}$ differenciálható az $x_0 \in I^\circ$ belső pont egy környezetében, és x_0 stacionárius pontja f-nek (azaz $f'(x_0) = 0$).

- Ha van olyan r > 0, hogy $f'(x) \ge 0$ ha $x \in]x_0 r, x_0[\cap I]$, és $f'(x) \le 0$ ha $x \in]x_0, x_0 + r[\cap I]$, akkor f-nek **lokális maximuma** van x_0 -ban.
- Ha van olyan r > 0, hogy $f'(x) \le 0$, ha $x \in]x_0 r, x_0[\cap I$, és $f'(x) \ge 0$ ha $x \in]x_0, x_0 + r[\cap I]$, akkor f-nek **lokális minimuma** van x_0 -ban.
- Ha van olyan r > 0, hogy f'(x) > 0 ha $x \in]x_0 r, x_0 + r[\cap I, x \neq x_0, vagy <math>f'(x) < 0$ ha $x \in]x_0 r, x_0 + r[\cap I, x \neq x_0, akkor f-nek nincs lokális szélsőértéke <math>x_0$ -ban, x_0 inflexiós helye f-nek.

4 D > 4 A > 4 B > 4 B > -

83/135

5.6 Szélsőértékszámítás

n-edrendű elegendő feltétel lokális szélsőértékre

Tegyük fel, hogy $f: I \to \mathbb{R}$ n-szer folytonosan differenciálható az $x_0 \in I^{\circ}$ belső pont egy környezetében (azaz $f^{(n)}$ folytonos e környezetben), és

$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0,$$
 de $f^{(n)}(x_0) \neq 0.$

- Ha n páros, akkor f-nek szigorú lokális szélsőértéke van x_0 -ban, maximum, ha $f^{(n)}(x_0) < 0$, minimum, ha $f^{(n)}(x_0) > 0$.
- Ha n páratlan, akkor f-nek nincs szélsőértéke x₀-ban.

5.6 Szélsőértékszámítás

Globális szélsőérték megkeresése:

- Ha I korlátos és zárt intervallum, és $f:I\to\mathbb{R}$ folytonos, akkor f-nek van globális maximuma és minimuma I-n.
- Ha / nem korlátos, vagy korlátos de nem zárt, akkor előfordulhat, hogy f-nek nincs szélsőértéke /-n.
- Ha f: I → R (elég sokszor) differenciálható a korlátos és zárt I intervallumon, akkor
 - megkeressük f lokális szélsőértékeit l belső pontjaiban;
 - kiszámítjuk f értékét l végpontjaiban;
 - a lokális szélsőértékek és a végpontokban felvett értékek közül a legnagyobb adja a globális maximum értékét, a legkisebb adja a globális minimum értékét.

5.7 Elaszticitás

Arra vagyunk kíváncsiak, hogyan változik meg egy áru iránti kereslet, ha annak ára 1 százalékkal nő.

Elaszticitás

Egy $f: D \to \mathbb{R} \ (D \subset (0, \infty))$ függvény x_0 -beli $(x_0 \in D)$ elaszticitása

$$\mathsf{El}_{x_0} f(x) = \frac{x_0}{f(x_0)} f'(x_0),$$

amennyiben $f'(x_0)$ létezik.

Például, ha a, b pozitív konstansok, akkor az $f(x) = ax^b$ (x > 0) függvény elaszticitása

$$\mathsf{El}_X(ax^b) = \frac{x}{ax^b}abx^{b-1} = b.$$

6.1 Metrika és topológia R²-ben

Vektor hossza/normája

Az
$$x=(x_1,x_2)\in\mathbb{R}^2$$
 vektor hossza/normája $\|x\|:=\sqrt{x_1^2+x_2^2}.$

A hossz/norma tulajdonságai

Bármely $x, y \in \mathbb{R}^2$ és bármely $\lambda \in \mathbb{R}$ esetén

$$||x|| \ge 0$$
, és $||x|| = 0$ akkor és csakis akkor, ha $x = 0$,

$$\|\lambda \mathbf{x}\| = |\lambda| \, \|\mathbf{x}\|,$$

$$||x + y|| \le ||x|| + ||y||.$$

6.1 Metrika és topológia R²-ben

Pontok távolsága

Az $x, y \in \mathbb{R}^2$ pontok távolsága d(x, y) := ||x - y||.

Pont (nyílt) környezete

Egy $a \in \mathbb{R}^2$ pont $\varepsilon > 0$ sugarú (nyílt) környezetén a

$$K(a,\varepsilon):=\{x\in\mathbb{R}^2:d(x,a)=\|x-a\|<\varepsilon\}$$

halmazt értjük.

 $K(a, \varepsilon)$ az $a = (a_1, a_2)$ pont körüli ε sugarú **nyílt körlap**.

Egy halmaz belső pontjának, izolált pontjának, torlódási pontjának és határpontjának fogalma, valamint a nyílt és zárt halmaz fogalma a valós esethez hasonlóan definiálhatók.

6.1 Metrika és topológia R²-ben

Sorozat R²-ben

Egy $a: \mathbb{N} \to \mathbb{R}^2$ függvényt \mathbb{R}^2 -beli **sorozatnak** nevezünk. Jelölés: $(a_n)_{n\in\mathbb{N}}$, ahol $a_n:=a(n)$, és $a_n=(a_{n1},a_{n2})$, ha $n\in\mathbb{N}$.

Konvergens sorozat \mathbb{R}^2 -ben

Az \mathbb{R}^2 -beli $(a_n)_{n\in\mathbb{N}}$ sorozatot **konvergensnek** nevezzük, ha van olyan $b \in \mathbb{R}^2$, hogy bármely $\varepsilon > 0$ -hoz létezik olyan $N(\varepsilon) \in \mathbb{R}$ szám, hogy

$$||a_n - b|| < \varepsilon$$
 amennyiben $n > N(\varepsilon)$.

A b pontot a sorozat határértékének (limeszének) nevezzük. Jelölés:

$$a_n \to b$$
 ha $n \to \infty$, vagy $\lim_{n \to \infty} a_n = b$.

Eqv. \mathbb{R}^2 -beli sorozatot **divergensnek** nevezünk, ha nem konvergens.

6.1 Metrika és topológia \mathbb{R}^2 -ben

\mathbb{R}^2 -beli konvergencia = koordinátánkénti konvergencia

$$a_n = (a_{n1}, a_{n2}) \to b = (b_1, b_2)$$
 ha $n \to \infty$

akkor és csakis akkor, ha

$$a_{ni} \rightarrow b_i$$
 ha $n \rightarrow \infty$ $i = 1,2$ esetén.

Ez azt jelenti, hogy egy vektorsorozat akkor és csakis akkor konvergens, ha a sorozat mindkét koordinátája konvergens, és határértéke a határvektor megfelelő koordinátája.

6. KÉTVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 6.2 Kétváltozós függvény határértéke és folytonossága

Egy $D \subset \mathbb{R}^2$ halmaz torlódási pontjainak halmazát D'-vel jelöljük.

Kétváltozós függvény határértéke

Legyen $f:D\subset\mathbb{R}^2\to\mathbb{R}$ és legyen $(x_0,y_0)\in D'$. Azt mondjuk, hogy f-nek van (véges, vagy végtelen) **határértéke** az (x_0,y_0) pontban, ha van olyan $a\in\mathbb{R}_b$ bővített valós szám, hogy bármely olyan D-beli $(x_n,y_n)_{n\in\mathbb{N}}$ sorozatra, melyre $\lim_{n\to\infty}(x_n,y_n)=(x_0,y_0)$ és $(x_n,y_n)\neq(x_0,y_0)$, teljesül a $\lim_{n\to\infty}f(x_n,y_n)=a$ egyenlőség. $a\in\mathbb{R}_b$ -t az f függvény (x_0,y_0) pontbeli határértékének nevezzük, jelölése $\lim_{(x,y)\to(x_0,y_0)}f(x,y)=a$, vagy $f(x,y)\to a$ $((x,y)\to(x_0,y_0))$.

6. KÉTVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 6.2 Kétváltozós függvény határértéke és folytonossága

Átfogalmazás

Másképpen megfogalmazva: az f függvény értelmezési tartományának egy $(x_0,y_0)\in D'$ torlódási pontjában akkor és csakis akkor lesz f határértéke az $a\in\mathbb{R}_b$ bővített valós szám, ha az értelmezési tartományból bármely (x_0,y_0) -hoz konvergáló $(x_n,y_n)_{n\in\mathbb{N}}$ sorozatot véve, melynek elemei (x_0,y_0) -tól különbözőek, a függvényértékek $(f(x_n,y_n))_{n\in\mathbb{N}}$ sorozata a-hoz tart.

Határérték egyértelműsége

Függvény határértéke, ha létezik, akkor egyértelmű.

Határérték **létezhet az** (x_0, y_0) **pontban akkor is, ha a függvény nincs értelmezve a pontban**, de torlódási pontja annak (egy halmaz torlódási pontja ugyanis nem feltétlenül pontja a halmaznak). A műveletek, egyenlőtlenségek és határérték kapcsolata most is érvényes.

6.2 Kétváltozós függvény határértéke és folytonossága

Függvény folytonossága

Az $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ függvényt **folytonosnak** nevezzük az $(x_0, y_0) \in D$ pontban, ha bármely D-beli (x_0, y_0) -hoz konvergáló $D \ni (x_n, y_n) \to (x_0, y_0)$ $(n \to \infty)$ sorozat esetén a függvényértékek $f(x_n, y_n)$ $(n \in \mathbb{N})$ sorozata az (x_0, y_0) pontbeli függvényértékhez tart, azaz $\lim_{n \to \infty} f(x_n, y_n) = f(x_0, y_0)$.

Röviden: az f függvény $(x_0, y_0) \in D$ pontbeli folytonossága azt jelenti, hogy ha $D \ni (x_n, y_n) \to (x_0, y_0) \, (n \to \infty)$ akkor $\lim_{n \to \infty} f(x_n, y_n) = f(\lim_{n \to \infty} (x_n, y_n)) = f(x_0, y_0).$

- Ha $(x_0, y_0) \in D \cap D'$, akkor f folytonos (x_0, y_0) -ban akkor, és csakis akkor, ha $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$.
- Ha $(x_0, y_0) \in D$, de $(x_0, y_0) \notin D'$, akkor (x_0, y_0) a D **izolált pontja**, izolált pontokban f a definíció alapján mindig folytonos.

6. KÉTVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 6.3 Kétváltozós függvények differenciálhatósága

(Totális) differenciálhatóság

Az $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ függvényt az $(x_0, y_0) \in D$ belső pontban **(totálisan) differenciálhatónak** nevezzük, ha van olyan $(A, B) \in \mathbb{R}^2$ vektor, hogy

$$\lim_{(x,y)\to(x_0,y_0)}\frac{f(x,y)-f(x_0,y_0)-A(x-x_0)-B(y-y_0)}{\|(x,y)-(x_0,y_0)\|}=0.$$

Az $f'(x_0, y_0) := (A, B)$ vektort az f függvény (x_0, y_0) pontbeli deriváltjának nevezzük.

GEOMETRIAI JELENTÉS: a függvény $f(x,y)-f(x_0,y_0)$ növekményét az $A(x-x_0)+B(y-y_0)$ lineáris függvény jól közelíti (x_0,y_0) közelében; a függvény által meghatározott felületnek (x_0,y_0) -ban **van érintősíkja**, melynek \mathbb{R}^3 -beli egyenlete:

$$z = f(x_0, y_0) + A(x - x_0) + B(y_0, y_0)$$

KÉTVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA Kétváltozós függvények differenciálhatósága

Parciális derivált

Az $f:D\subset\mathbb{R}^2\to\mathbb{R}$ függvénynek az $(x_0,y_0)\in D$ belső pontban létezik az x illetve y változója szerinti **parciális deriváltja**, ha létezik a

$$\lim_{t \to 0} \frac{f(x_0 + t, y_0) - f(x_0, y_0)}{t} \quad \text{illetve} \quad \lim_{t \to 0} \frac{f(x_0, y_0 + t) - f(x_0, y_0)}{t}$$

véges határérték. Ha mindkét véges határérték létezik, a függvényt **parciálisan differenciálhatónak** nevezzük az (x_0, y_0) pontban. Jelölés: $\partial_1 f(x_0, y_0)$, $\partial_2 f(x_0, y_0)$.

Egyéb jelölések: $\partial_x f(x_0, y_0)$, $\partial_y f(x_0, y_0)$ vagy $\frac{\partial f}{\partial x}(x_0, y_0)$, $\frac{\partial f}{\partial y}(x_0, y_0)$ vagy $f_x(x_0, y_0)$, $f_y(x_0, y_0)$.

6.3 Kétváltozós függvények differenciálhatósága

(totális) deriválhatóság ⇒ parciális differenciálhatóság

Legyen $f: D \subset \mathbb{R}^2 \to \mathbb{R}$. Ha f (totálisan) differenciálható egy $(x_0, y_0) \in D$ pontban, akkor ott parciálisan is differenciálható. Továbbá $f'(x_0, y_0) = (\partial_1 f(x_0, y_0), \partial_2 f(x_0, y_0)).$

(totális) differenciálhatóság \Longrightarrow folytonosság

Ha $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ az $(x_0, y_0) \in D$ belső pontban (totálisan) differenciálható, akkor f folytonos (x_0, y_0) -ban.

parciális derivált folytonossága \Longrightarrow (totális) differenciálhatóság

Ha az $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ függvénynek az $(x_0, y_0) \in D$ belső pont egy környezetében folytonos parciális deriváltjai vannak, akkor f az (x_0, y_0) pontban (totálisan) differenciálható.

6.4 Magasabbrendű parciális deriváltak

Magasabbrendű parciális deriváltak

Tegyük fel, hogy az $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ függvénynek az $(x_0, y_0) \in D$ belső pont egy környezetében létezik az i-edik változó szerinti $\partial_i f$ parciális deriváltja. Ha ez parciálisan differenciálható a j-edik változó szerint, úgy a deriválást elvégezve kapjuk a

$$\partial_j \partial_i f(x_0, y_0) := \partial_j (\partial_i f(x_0))$$

második parciális deriváltját f-nek az (x_0, y_0) pontban az i-edik és j-edik változók szerint (ebben a sorrendben!).

Hasonlóan értelmezhetjük a harmadrendű, negyedrendű stb. parciális deriváltakat is.

6.4 Magasabbrendű parciális deriváltak

Példa. Számítsuk ki az

$$f: \mathbb{R}^2 \to \mathbb{R}, \qquad f(x,y) := x^2 + y^2 e^{xy}$$

függvény összes első- és másodrendű parciális deriváltját, és hasonlítsuk össze a $\partial_1\partial_2 f(x,y)$ és $\partial_2\partial_1 f(x,y)$ vegyes deriváltakat.

Young tétel: a vegyes parciális deriváltak függetlensége a deriválás sorrendjétől

Ha az $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ függvénynek az $(x_0, y_0) \in D$ belső pont egy környezetében valamely $m \geq 2$ esetén az összes m-edik parciális deriváltja létezik és az (x_0, y_0) pontban azok folytonosak, akkor az f függvény m-edik parciális deriváltjai az (x_0, y_0) pontban a differenciálás sorrendjétől függetlenek.

6. KÉTVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 6.5 Kétváltozós függvények szélsőértéke

Az $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ függvénynek az $(x_0, y_0) \in D$ pontban

• lokális/helyi maximuma (minimuma) van, ha $\exists \, \varepsilon > 0$:

$$f(x_0, y_0) \ge f(x, y) \ (f(x_0, y_0) \le f(x, y)) \ \forall (x, y) \in K((x_0, y_0), \varepsilon) \cap D.$$

ullet szigorú lokális/helyi maximuma (minimuma) van, ha $\exists\, arepsilon>0$:

$$f(x_0, y_0) > f(x, y) \ (f(x_0, y_0) < f(x, y)) \ \forall (x, y) \in K((x_0, y_0), \varepsilon) \cap D,$$

 $(x, y) \neq (x_0, y_0).$

• globális/abszolút maximuma (minimuma) van, ha

$$f(x_0, y_0) \ge f(x, y) \quad (f(x_0, y_0) \le f(x, y)) \quad \forall (x, y) \in D.$$

• szigorú globális/abszolút maximuma (minimuma) van, ha

$$f(x_0, y_0) > f(x, y) \quad (f(x_0, y_0) < f(x, y)) \quad \forall x \in D, \ (x, y) \neq (x_0, y_0).$$

KÉTVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA Kétváltozós függvények szélsőértéke

A szélsőérték létezésének elegendő feltétele

Korlátos, zárt halmazon folytonos függvény felveszi a függvényértékek infimumát és szuprémumát függvényértékként, ami azt jelenti, hogy a függvénynek van minimuma és maximuma (az illető korlátos, zárt halmazon).

A szélsőérték létezésének szükséges feltétele

Ha az $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ függvénynek az $(x_0, y_0) \in D$ belső pontban lokális szélsőértéke van, és léteznek f első parciális deriváltjai (x_0, y_0) -ban, akkor

$$\partial_1 f(x_0, y_0) = \partial_2 f(x_0, y_0) = 0.$$

(E feltételnek eleget tevő (x_0, y_0) pontokat az f függvény **stacionárius pontjainak** nevezzük.)

Hajdu Lajos (DE) Gazdasági matematika I. I. félév 100/135

6. KÉTVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 6.5 Kétváltozós függvények szélsőértéke

Kétváltozós függvény szélsőértéke

Tegyük fel, hogy az $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ összes második parciális deriváltja folytonos az $(x_0, y_0) \in D$ belső pont egy környezetében, továbbá $\partial_1 f(x_0, y_0) = \partial_2 f(x_0, y_0) = 0$.

Legyen $\Delta_1 = \partial_1 \partial_1 f(x_0, y_0)$,

$$\Delta_2 = \partial_1 \partial_1 f(x_0, y_0) \partial_2 \partial_2 f(x_0, y_0) - \partial_1 \partial_2 f(x_0, y_0) \partial_2 \partial_1 f(x_0, y_0).$$

- Ha $\Delta_1 > 0$, $\Delta_2 > 0$, akkor f-nek **szigorú lokális minimuma** van (x_0, y_0) -ban,
- ② ha $\Delta_1 < 0$, $\Delta_2 > 0$, akkor f-nek **szigorú lokális maximuma** van (x_0, y_0) -ban,
- **1** ha $\Delta_2 < 0$, akkor f-nek **nincs szélsőértéke** (x_0, y_0) -ban.

4 D > 4 P > 4 B > 4 B > B 9 Q P

101/135

Példa.

$$f: \mathbb{R}^2 \to \mathbb{R}, \qquad f(x,y) := x^3 + y^3 - 3xy$$

lokális szélsőértékeinek meghatározása.

7.1 Definíció és alapintegrálok

Primitív függvény

Legyen $f: I \to \mathbb{R}$ adott függvény ($I \subset \mathbb{R}$ egy intervallum). A $F: I \to \mathbb{R}$ függvényt az f függvény **primitív függvényének** nevezzük I-n, ha F differenciálható I-n, és F'(x) = f(x) ($x \in I$).

Ha F az f függvény primitív függvénye I-n, akkor

- bármely $c \in \mathbb{R}$ esetén G(x) = F(x) + c $(x \in I)$ is primitív függvénye f-nek I-n;
- I-n f minden primitív függvénye F(x) + c alakú, ahol $c \in \mathbb{R}$.

Határozatlan integrál

Egy *f* függvény összes primitív függvényeinek halmazát *f* **határozatlan integráljának** nevezzük, melynek jelölése:

$$\int f = \int f(x) dx = \{F(x) + c : c \in \mathbb{R}, F \text{ az } f \text{ egy primitiv függvénye}\},$$
 egyszerűbben:
$$\int f(x) dx = F(x) + c \text{ } (c \in \mathbb{R}).$$

7.1 Definíció és alapintegrálok

Alapintegrálok

$$\int \mathrm{e}^x \, \mathrm{d}x = \mathrm{e}^x + c \qquad \qquad \mathbb{R}\text{-en}$$

$$\int a^x \, \mathrm{d}x = \frac{a^x}{\ln a} + c \qquad \qquad \mathbb{R}\text{-en, ahol } 1 \neq a > 0$$

$$\int x^\alpha \, \mathrm{d}x = \frac{x^{\alpha+1}}{\alpha+1} + c \qquad \qquad (0,\infty)\text{-en, ahol } -1 \neq \alpha \in \mathbb{R}$$

$$\int \frac{1}{x} \, \mathrm{d}x = \ln |x| + c \qquad \qquad (-\infty,0)\text{-án, illetve } (0,\infty)\text{-en}$$

$$\int x^n \, \mathrm{d}x = \frac{x^{n+1}}{n+1} + c \qquad \qquad \mathbb{R}\text{-en, ahol } n = 0,1,\dots$$

7.1 Definíció és alapintegrálok

Alapintegrálok

$$\int \sin x \, \mathrm{d}x = -\cos x + c \qquad \mathbb{R}\text{-en}$$

$$\int \cos x \, \mathrm{d}x = \sin x + c \qquad \mathbb{R}\text{-en}$$

$$\int \frac{1}{\cos^2 x} \, \mathrm{d}x = \operatorname{tg} x + c \qquad \left] k\pi - \frac{\pi}{2}, \, k\pi + \frac{\pi}{2} \right[-n, \, \, k \in \mathbb{Z}$$

$$\int \frac{1}{\sin^2 x} \, \mathrm{d}x = -\operatorname{ctg} x + c \qquad \left] k\pi, (k+1)\pi \right[-n, \, \, k \in \mathbb{Z}$$

$$\int \frac{1}{\sqrt{1-x^2}} \, \mathrm{d}x = \arcsin x + c \qquad \left] -1, 1 \right[-\operatorname{en}$$

$$\int \frac{1}{1+x^2} \, \mathrm{d}x = \operatorname{arctg} x + c \qquad \mathbb{R}\text{-en}$$

Hajdu Lajos (DE)

7.2 Integrálási szabályok

Ha f-nek és g-nek van primitív függvénye I-n, akkor f+g-nek és bármely $c \in \mathbb{R}$ esetén $c \cdot f$ -nek is van I-n, és

$$\int (f+g) = \int f + \int g, \qquad \int (cf) = c \int f.$$

Parciális integrálás

Ha f és g differenciálhatók és fg'-nek van primitív függvénye I-n, akkor f'g-nek is van primitív függvénye I-n, és

$$\int f'g = fg - \int fg'$$
.

7.2 Integrálási szabályok

Helyettesítéses integrálás

Ha f-nek van primitív függvénye I-n, $g: J \rightarrow I$ differenciálható a J intervallumon, akkor $(f \circ g) \cdot g'$ -nek is van primitív függvénye J-n, és

$$\int (f\circ g)\cdot g'=\left(\int f\right)\circ g,$$

vagyis

$$\int f(g(x)) g'(x) dx = \int f(u) du|_{u=g(x)}.$$
Másképpen: ha $f: I \to \mathbb{R}$ és $g: J \to I$ differenciálhatók a J

intervallumon, $g'(x) \neq 0$ $(x \in J)$ és $(f \circ g) \cdot g'$ -nek van primitív függvénye, akkor f-nek is van primitív függvénye I-n, és

$$\int f = \int ((f \circ g) \cdot g') \circ g^{-1},$$

vagyis

$$\int f(x)\,\mathrm{d} x = \int f(g(u))\,g'(u)\,\mathrm{d} u\big|_{u=g^{-1}(x)}\,.$$

7.2 Integrálási szabályok

Például:

$$\int g^{\alpha}g' = \frac{g^{\alpha+1}}{\alpha+1} + c \quad (\alpha \neq -1), \qquad \int \frac{g'}{g} = \ln|g| + c,$$

amiből például

$$\int \operatorname{tg} x \, \mathrm{d}x = -\int \frac{(\cos x)'}{\cos x} \, \mathrm{d}x = -\ln|\cos x| + c$$

a $\left|k\pi-\frac{\pi}{2}, k\pi+\frac{\pi}{2}\right|$ $(k\in\mathbb{Z})$ intervallumokon,

$$\int \operatorname{ctg} x \, \mathrm{d}x = -\int \frac{(\sin x)'}{\sin x} \, \mathrm{d}x = -\ln|\sin x| + c$$

a $]k\pi, (k+1)\pi[$ $(k \in \mathbb{Z})$ intervallumokon.

7. HATÁROZATLAN INTEGRÁL

7.2 Integrálási szabályok

Lineáris helyettesítés

Ha f primitív függvénye F, és $a \neq 0$, $b \in \mathbb{R}$, akkor

$$\int f(ax+b) dx = \frac{1}{a} \int f(u) du|_{u=ax+b} = \frac{1}{a} F(ax+b) + c.$$

7. HATÁROZATLAN INTEGRÁL

7.2 Integrálási szabályok

További alapintegrálok (a > 0)

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, \mathrm{d}x = \arcsin \frac{x}{a} + c, \qquad (|x| < a),$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} \, \mathrm{d}x = \ln \left| x + \sqrt{x^2 + a^2} \right| + c, \quad (x \in \mathbb{R}),$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} \, \mathrm{d}x = \ln \left| x + \sqrt{x^2 - a^2} \right| + c, \quad (|x| > a),$$

$$\int \frac{1}{x^2 + a^2} \, \mathrm{d}x = \frac{1}{a} \arctan \frac{x}{a} + c, \qquad (x \in \mathbb{R}),$$

$$\int \frac{1}{x^2 - a^2} \, \mathrm{d}x = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + c, \qquad (|x| > a, \text{ vagy } |x| < a).$$

110/135

7. HATÁROZATLAN INTEGRÁL

7.3 Elemien integrálható függvények osztályai

Elemien integrálható függvény

Egy függvényt **elemien integrálhatónak** nevezünk, ha primitív függvénye elemi függvény.

Parciálisan integrálható függvények

Ha $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \ (a_0, a_1, \dots, a_n \in \mathbb{R})$ polinom, akkor parciálisan integrálható

 $P(x)e^{x}$: $f'(x) = e^x,$ g(x) = P(x)választással. $P(x) \sin x$: $f'(x) = \sin x, \quad g(x) = P(x)$ választással. $f'(x) = \cos x$, g(x) = P(x) $P(x)\cos x$: választással. $f'(x) = P(x), \quad g(x) = \ln x$ $P(x) \ln x$: választással. $f'(x) = P(x), \quad g(x) = \arcsin x$ P(x) arcsin x: választással. P(x) arctg x: $f'(x) = P(x), \quad g(x) = \operatorname{arctg} x$ választással.

8.1 Az integrál definíciója és alaptulajdonságai

Intervallum felosztása

Legyen $[a,b] \subset \mathbb{R}$ egy zárt intervallum.

- A $P = \{x_i : a = x_0 < x_1 < \dots < x_n = b\}$ $(n \in \mathbb{N})$ ponthalmazt az [a, b] intervallum egy **felosztásának** nevezzük,
- x_i az i-edik osztópont,
- $[x_{i-1}, x_i]$ az *i*-edik intervallum,
- $x_i x_{i-1}$ az *i*-edik intervallum hossza,
- a $||P|| := \max_{1 \le i \le n} (x_i x_{i-1})$ szám a P felosztás finomsága.

8.1 Az integrál definíciója és alaptulajdonságai

Integrálközelítő összeg

Legyen $f:[a,b]\to\mathbb{R}$ egy korlátos függvény, P az [a,b] egy felosztása, $t_i\in[x_{i-1},x_i]$ $(i=1,\ldots,n)$ közbenső pontok. Az

$$s(f, P, t) := \sum_{i=1}^{n} f(t_i)(x_i - x_{i-1})$$

összeget az f függvény P felosztáshoz és a $t=(t_1,\ldots,t_n)$ közbenső pontrendszerhez tartozó **integrálközelítő összegének** nevezzük.

Az s(f, P, t) összeg **geometriai jelentése**:

a felosztás és a közbenső pontok által meghatározott téglalapok területének (előjeles) összege, ami annál jobban közelíti a görbe alatti (előjeles) területet, minél finomabb a felosztás.

8.1 Az integrál definíciója és alaptulajdonságai

Riemann integrálhatóság és Riemann integrál

Az $f:[a,b] \to \mathbb{R}$ korlátos függvényt **Riemann integrálhatónak** nevezzük [a,b]-n, ha van olyan $\mathcal{I} \in \mathbb{R}$ szám, hogy bármely $\varepsilon > 0$ -hoz létezik olyan $\delta(\varepsilon)$, hogy

$$|s(f, P, t) - \mathcal{I}| < \varepsilon$$

ha $\|P\| < \delta(\varepsilon)$ és $t = (t_1, \ldots, t_n)$ tetszőleges közbenső pontrendszer. Az \mathcal{I} számot az f függvény [a,b]-n vett **Riemann integráljának** nevezzük, melynek jelölése $\int\limits_a^b f(x) \,\mathrm{d}x$ vagy $\int\limits_a^b f$.

Az $\int_{a}^{b} f(x) dx$ geometriai jelentése:

az x = a, x = b, y = 0 egyenesek és az y = f(x) függvénygörbe által meghatározott síkidom előjeles területe (az x tengely alatti részt az integrál negatív előjellel számolja).

8.1 Az integrál definíciója és alaptulajdonságai

Az [a,b]-n Riemann integrálható függvények osztályát $\mathcal{R}[a,b]$ jelöli.

Az integrál alaptulajdonságai

Ha $f,g:[a,b]\to\mathbb{R}$, $f,g\in\mathcal{R}[a,b]$, akkor bármely $c\in\mathbb{R}$ és bármely a< d< b mellett

$$f+g\in\mathcal{R}[a,b],$$

és
$$\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g$$
,

$$c \cdot f \in \mathcal{R}[a, b],$$

és

$$f \in \mathcal{R}[a, d], \quad f \in \mathcal{R}[d, b],$$

$$\int_{a}^{b} (c \cdot f) = c \cdot \int_{a}^{b} f,$$

$$\int_{a}^{b} f = \int_{a}^{d} f + \int_{d}^{b} f,$$

8.1 Az integrál definíciója és alaptulajdonságai

Az integrál és a rendezés kapcsolata

Ha
$$f,g:[a,b] o \mathbb{R}$$
, $f,g \in \mathcal{R}[a,b]$ és $f(x) \le g(x)$ $(x \in [a,b])$, akkor
$$\int\limits_{b}^{b} f \le \int\limits_{c}^{b} g.$$

Az integrálszámítás középértéktétele

Ha
$$f:[a,b] \to \mathbb{R}, \ f \in \mathcal{R}[a,b], \ akkor \ m(b-a) \le \int\limits_a^b f \le M(b-a),$$
 ahol
$$m:=\inf_{x\in[a,b]}f(x), \qquad M:=\sup_{x\in[a,b]}f(x).$$

Ha f folytonos [a,b]-n, akkor $\exists \xi \in [a,b]$, melyre $f(\xi) = \frac{1}{b-a} \int_{-a}^{b} f$.

I. félév

8.1 Az integrál definíciója és alaptulajdonságai

Az integrálhatóság elegendő feltétele

Egy pontsorozat kivételével folytonos függvény Riemann integrálható.

Az integrál és az abszolút érték kapcsolata

Ha $f:[a,b] \to \mathbb{R}$, $f \in \mathcal{R}[a,b]$, akkor $|f| \in \mathcal{R}[a,b]$, és

$$\left| \int_a^b f(x) \, \mathrm{d}x \right| \le \int_a^b |f(x)| \, \mathrm{d}x.$$

8.2 Az integrál kiszámítása, Newton-Leibniz formula

Területmérő függvény

Legyen $f \in \mathcal{R}[a, b]$, akkor a

$$T(x) := \int_a^x f(t) dt \qquad (x \in [a, b])$$

függvényt f területmérő függvényének nevezzük.

A területmérő függvény tulajdonságai

Ha $f \in \mathcal{R}[a,b]$ és T az f területmérő függvénye, akkor

- T folytonos [a, b]-n,
- ② ha f folytonos $x_0 \in [a, b]$ -ben, akkor T differenciálható x_0 -ban, és $T'(x_0) = f(x_0)$.

Folytonos függvény primitív függvénye

Minden folytonos függvénynek van primitív függvénye, mégpedig a területmérő függvénye.

8.2 Az integrál kiszámítása, Newton-Leibniz formula

Newton-Leibniz formula

Tegyük fel, hogy $f:[a,b]\to\mathbb{R}$ folytonos [a,b]-n, és $F:[a,b]\to\mathbb{R}$ az f egy primitív függvénye [a,b]-n, akkor

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} := F(b) - F(a).$$

A Newton-Leibniz formula akkor is érvényes, ha $f \in \mathcal{R}[a,b]$, $F : [a,b] \to \mathbb{R}$ folytonos [a,b]-n, és F'(x) = f(x) $(x \in]a,b[)$.

8.2 Az integrál kiszámítása, Newton-Leibniz formula

Parciális integrálás határozott integrálra

Ha $f,g:[a,b] \to \mathbb{R}$ folytonosan differenciálhatók [a,b]-n, akkor

$$\int_a^b f'(x)g(x)\,\mathrm{d}x = [f(x)g(x)]_a^b - \int_a^b f(x)g'(x)\,\mathrm{d}x,$$

ahol $[f(x)g(x)]_a^b := f(b)g(b) - f(a)g(a)$.

Helyettesítéses integrálás határozott integrálra

Ha $g:[a,b] \to [c,d]$ folytonosan differenciálható [a,b]-n és $f:[c,d] \to \mathbb{R}$ folytonos [c,d]-n, akkor

$$\int_{a}^{b} f(g(x))g'(x) dx = \int_{g(a)}^{g(b)} f(u) du.$$

←□ → ←□ → ← □ → ← □ → へへの

8.3 Az integrál néhány közgazdaságtani alkalmazása

Olajkitermelés

A t=0 időpillanatban kezdjük el kitermelni az olajat egy olyan kútból, amely K hordó olajat taralmaz. Jelölje x(t) a t-edik időpont után megmaradó olaj mennyiségét, u(t) pedig a kitermelés sebességét a t időpontban. Feltéve, hogy x(t) differenciálható, x'(t)=-u(t) és x(0)=K adódik. Innen

$$\int_{0}^{t} -u(t)dt = x(t) - x(0), \quad \text{azaz} \quad x(t) = K - \int_{0}^{t} u(t)dt.$$

Speciálisan, ha $u(t) = u_0$ konstans, akkor $x(t) = K - u_0 t$, azaz a kút $t = K/u_0$ idő után merül ki.

Hajdu Lajos (DE)

8.3 Az integrál néhány közgazdaságtani alkalmazása

Valutatartalék

Jelölje F(t) egy ország devizakészletét a t időpontban. Ha F differenciálható, akkor az időegység alatti devizakészlet-változást az f(t) = F'(t) függvény írja le.

Ha f(t)>0, akkor az adott pillanatban devizabeáramlás történik az országba, míg f(t)<0 esetén devizakiáramlás.

A Newton-Leibniz formula alapján

$$F(t_1) - F(t_0) = \int_{t_0}^{t_1} f(t) dt.$$

Ez a formula megadja a $[t_0, t_1]$ időintervallumban a devizakészletben történt változást.

8.4 Improprius integrál

Integrál végtelen intervallumokon

Legyen $f:]-\infty, b] \to \mathbb{R}, \ b \in \mathbb{R},$ és tegyük fel, hogy minden t < b mellett $f \in \mathcal{R}[t, b]$, akkor

$$\int_{-\infty}^{b} f(x) dx := \lim_{t \to -\infty} \int_{t}^{b} f(x) dx,$$

feltéve, hogy a jobboldali határérték véges. Ekkor azt mondjuk, hogy az $\int_{-\infty}^{b} f(x) dx$ improprius integrál konvergens, ellenkező esetben (amikor a jobboldali határérték nem létezik, vagy létezik de végtelen) divergens.

8.4 Improprius integrál

Integrál végtelen intervallumokon

Legyen $f:]a, \infty[\to \mathbb{R}, \ a \in \mathbb{R}, \ \text{és tegyük fel, hogy minden} \ a < t$ mellett $f \in \mathcal{R}[a, t], \ \text{akkor}$

$$\int_{a}^{\infty} f(x) dx := \lim_{t \to \infty} \int_{a}^{t} f(x) dx,$$

feltéve, hogy a jobboldali határérték véges. Ekkor azt mondjuk, hogy az $\int_a^\infty f(x) \, \mathrm{d}x$ improprius integrál konvergens, ellenkező esetben (amikor a jobboldali határérték nem létezik, vagy létezik de végtelen) divergens.

8.4 Improprius integrál

Integrál végtelen intervallumokon

Legyen $f:]-\infty, \infty[\to \mathbb{R}$, és tegyük fel, hogy minden s < t mellett $f \in \mathcal{R}[s,t]$, akkor tetszőleges $c \in \mathbb{R}$ esetén

$$\int_{-\infty}^{\infty} f(x) dx := \int_{-\infty}^{c} f(x) dx + \int_{c}^{\infty} f(x) dx$$
$$= \lim_{s \to -\infty} \int_{s}^{c} f(x) dx + \lim_{t \to \infty} \int_{c}^{t} f(x) dx,$$

feltéve, hogy mindkét jobboldali határérték véges. Ekkor azt mondjuk, hogy az $\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x$ improprius integrál konvergens, ellenkező esetben (amikor valamelyik jobboldali határérték nem létezik, vagy létezik de végtelen) divergens.

Hajdu Lajos (DE)

8.4 Improprius integrál

Nem korlátos függvények integrálása

Legyen $f:[a,b] \to \mathbb{R}$, $a,b \in \mathbb{R}$, és tegyük fel, hogy f nem korlátos [a,b]-n, de minden a < t < b mellett $f \in \mathcal{R}[t,b]$, (így f korlátos [t,b]-n!), akkor

$$\int_a^b f(x) dx := \lim_{t \to a+0} \int_t^b f(x) dx,$$

feltéve, hogy a jobboldali határérték véges. Ekkor azt mondjuk, hogy az $\int_a^b f(x) \, \mathrm{d}x$ improprius integrál konvergens, ellenkező esetben (amikor a jobboldali határérték nem létezik, vagy létezik de végtelen) divergens.

8.4 Improprius integrál

Nem korlátos függvények integrálása

Legyen $f:[a,b] \to \mathbb{R}$, $a,b \in \mathbb{R}$, és tegyük fel, hogy f nem korlátos [a,b]-n, de minden a < t < b mellett $f \in \mathcal{R}[a,t]$, (így f korlátos [a,t]-n!), akkor

$$\int_a^b f(x) \, \mathrm{d} x := \lim_{t \to b-0} \int_a^t f(x) \, \mathrm{d} x,$$

feltéve, hogy a jobboldali határérték véges. Ekkor azt mondjuk, hogy az $\int_a^b f(x) \, \mathrm{d}x$ improprius integrál konvergens, ellenkező esetben (amikor a jobboldali határérték nem létezik, vagy létezik de végtelen) divergens.

8.4 Improprius integrál

Nem korlátos függvények integrálása

Legyen $f:[a,b] \to \mathbb{R}$, $a,b \in \mathbb{R}$, és tegyük fel, hogy f nem korlátos [a,b]-n, de van olyan $c \in]a,b[$, hogy minden a < s < c < t < b mellett $f \in \mathcal{R}[a,s]$ és $f \in \mathcal{R}[t,b]$, (így f korlátos [a,s]-n és [t,b]-n, de nem korlátos a c pont egy környezetében!), akkor

$$\int_{a}^{b} f(x) dx := \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$
$$= \lim_{s \to c-0} \int_{a}^{s} f(x) dx + \lim_{t \to c+0} \int_{t}^{b} f(x) dx,$$

feltéve, hogy mindkét jobboldali határérték véges. Ekkor azt mondjuk, hogy az $\int_a^b f(x) \, \mathrm{d}x$ improprius integrál konvergens, ellenkező esetben (amikor valamelyik jobboldali határérték nem létezik, vagy létezik de végtelen) divergens.

8.4 Improprius integrál

A Riemann integrál (beleértve az improprius integrált is) értéke nem változik, ha a függvény értékét véges sok pontban megváltoztatjuk.

Ezért a nem korlátos függvények (improprius) integráljának pl. az első definíciójában (amikor f az a végpont egy környezetében nem korlátos) mindegy, hogy a kiinduló f függvény az a pontban definiálva van vagy sem, mert utóbbi esetben f(a)-t tetszőlegesen értelmezve az integrál nem változik.

Mindhárom definíció esetében feltételeztük, hogy f értelmezve van abban a pontban, melynek környezetében f nem korlátos.

8.5 Kettős integrál

Téglalap felosztása

Legyen $D = [a, b] \times [c, d] \subset \mathbb{R}^2$ egy zárt téglalap, és $P_x = \{x_i : a = x_0 < x_1 < \dots < x_m = b\},$ $P_y = \{y_j : c = y_0 < y_1 < \dots < y_n = d\}$

az [a, b] és [c, d] intervallumok felosztásai.

- A $P := P_x \times P_y = \{(x_i, y_j) : i = 0, 1, ..., m; j = 0, 1, ..., n\}$ $(n \in \mathbb{N})$ ponthalmazt a D téglalap egy **felosztásának** nevezzük,
- $D_{i,j} := [x_{i-1}, x_i] \times [y_{j-1}, y_j]$ (i = 1, ..., m; j = 1, ..., n) a felosztás téglalapjai,
- a $||P|| := \max_{1 \le i \le m, 1 \le j \le n} \sqrt{(x_i x_{i-1})^2 + (y_j y_{j-1})^2}$ szám a P **felosztás finomsága** (a $D_{i,j}$ téglalapok átlói hosszának a maximuma).

Haidu Laios (DE) Gazdasági matematika I. I. félév 130/135

8.5 Kettős integrál

Integrálközelítő összeg

Legyen $f: D \to \mathbb{R}$ egy korlátos függvény a D téglalapon, P a D egy felosztása, $(s_i, t_j) \in D_{i,j}$ $(i = 1, \ldots, m; j = 1, \ldots, n)$ közbenső pontok, $v = ((s_1, t_1), (s_1, t_2), \ldots, (s_m, t_n))$ a közbenső pontok rendszere/vektora. Az

$$s(f, P, v) := \sum_{i=1}^{m} \sum_{j=1}^{n} f(s_i, t_j,) m(D_{i,j})$$

összeget, ahol $m(D_{i,j}) := (x_i - x_{i-1})(y_j - y_{j-1})$ a $D_{i,j}$ téglalap területe (mértéke), az f függvény P felosztáshoz és a v közbenső pontrendszerhez tartozó **integrálközelítő összegének** nevezzük.

Az s(f, P, v) összeg **geometriai jelentése**: a felosztás és a közbenső értékek által meghatározott hasábok térfogatának (előjeles) összege, ami annál jobban közelíti az f által meghatározott felület alatti (előjeles) térfogatot, minél finomabb a felosztás.

Haidu Laios (DE) Gazdasági matematika I. I. félév 131/135

8.5 Kettős integrál

Kettős Riemann integrál téglalapon

Az $f: D \to \mathbb{R}$ korlátos függvényt **Riemann integrálhatónak** nevezzük a D téglalapon, ha van olyan $\mathcal{I} \in \mathbb{R}$ szám, hogy bármely $\varepsilon > 0$ -hoz létezik olyan $\delta(\varepsilon)$, hogy

$$|s(f, P, v) - \mathcal{I}| < \varepsilon$$

ha $||P|| < \delta(\varepsilon)$ és $v = ((s_1, t_1), (s_1, t_2), \dots, (s_m, t_n))$ tetszőleges közbenső pontrendszer. Az \mathcal{I} számot az f függvény D-n vett **Riemann integráljának** nevezzük, melynek jelölése $\iint f(x, y) dx dy$.

Az $\iint f(x,y) dx dy$ geometriai jelentése: az x = a, x = b, y = c, y = d, z = 0 síkok és a z = f(x, y) felület által meghatározott idom előjeles térfogata (a z = 0 sík alatti részt az integrál negatív előjellel számolja).

8.5 Kettős integrál téglalapon

Kettős integrál kiszámítása

Legyen $f:D\to\mathbb{R}$ folytonos a $D=[a,b]\times[c,d]$ téglalapon. Ekkor f integrálható D-n, és

$$\iint\limits_{D} f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int_{a}^{b} \left(\int_{c}^{d} f(x,y) \, \mathrm{d}y \right) \mathrm{d}x$$

vagy

$$\iint\limits_{D} f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int_{c}^{d} \left(\int_{a}^{b} f(x,y) \, \mathrm{d}x \right) \mathrm{d}y$$

Tehát a kettős integrál kiszámítása **ismételt (iterált, szukcesszív) integrálással történik, a sorrend** (az hogy először *x* szerint másodszor *y* szerint integrálunk, vagy fordítva) **nem számít.**

8.5 Kettős integrál

Elsőfajú normáltartomány

Az $x=a, \ x=b$ egyenesek és az $y=\varphi_1(x), \ y=\varphi_2(x) \ (x\in [a,b])$ görbék által határolt

$$D := \{(x, y) : a \le x \le b, \ \varphi_1(x) \le y \le \varphi_2(x)\},$$

tartomány, ahol $\varphi_1, \varphi_2 : [a, b] \to \mathbb{R}$ adott folytonos függvények úgy, hogy $\varphi_1(x) \le \varphi_2(x)$ ha $x \in [a, b]$.

Kettős Riemann integrál elsőfajú normáltartományon

Ha $f:D\to\mathbb{R}$ folytonos a D elsőfajú normáltartományon, akkor

$$\iint\limits_{\Omega} f(x,y) \, \mathrm{d}x \, \mathrm{d}y := \int_a^b \left(\int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) \, \mathrm{d}y \right) \mathrm{d}x.$$

8.5 Kettős integrál

Másodfajú normáltartomány

Az y = c, y = d egyenesek és az $x = \psi_1(y)$, $x = \psi_2(y)$ $(y \in [c, d])$ görbék által határolt

$$D := \{(x, y) : c \le y \le d, \ \psi_1(y) \le x \le \psi_2(y)\},\$$

tartomány, ahol $\psi_1, \psi_2 : [c, d] \to \mathbb{R}$ adott folytonos függvények úgy, hogy $\psi_1(y) < \psi_2(y)$ ha $y \in [c, d]$).

Kettős Riemann integrál másodfajú normáltartományon

Ha $f: D \to \mathbb{R}$ folytonos a D másodfajú normáltartományon, akkor

$$\iint\limits_{\Gamma} f(x,y) \,\mathrm{d}x \,\mathrm{d}y := \int_{C}^{C} \left(\int_{\psi_{1}(y)}^{\psi_{2}(y)} f(x,y) \,\mathrm{d}x \right) \mathrm{d}y.$$

4 D > 4 A > 4 B > 4 B > 4 I. félév

135/135