Contents

抽象代数	;
1.1 群的定义问题集(MA2008)	

2 CONTENTS

Chapter 1

抽象代数

定理 1.0.1

同类置换有相同的循环结构.

解. $P,Q,T\in S_n$ 且 $Q=TPT^{-1},Q,P$ 属同类,则Q,P有相同的循环结构. $P(v)=(1^{v_1}2^{v_2}\cdots m^{v_m}), P=C_1C_2\cdots C_r, r=\sum_i v_i, n=\sum_i iv_i. \ Q=TPT^{-1}=\prod_i TC_iT^{-1}=\prod_i C_i'.$ T是一一映射, $(C_i')_i$ 两两不交,因 $(C_i)_i$ 两两不交, $(C_i')_i$ 与两两不交, $(C_i')_i$ 与 $(C_i')_i$

问题 1.0.1

在环R中, 对于任意的 $x \in R$, 都存在 $n \in \mathbb{N}_+$, 使得 $x = x^{n+1}$, 证明: 对于任意的 $y \in R$, $yx^n = x^ny$.

解. 先证 x^n 是幂等的, $(x^n)^2 = x^n$.

再证, 若ab = 0, 则 $ba = (ba)^{\tilde{n}+1} = b(ab)^{\tilde{n}}a = 0$.

再证, $x = x^{n+1}$, 则 $yx^n = yx^{2n}$, 所以 $(y - yx^n)x^n = 0$, 所以 $x^n(y - yx^n) = 0$, 即 $x^ny = x^nyx^n$.

最后, 同上面的做法, 由 $x^n y = x^{2n} y$, 有 $y x^n = x^n y x^n$, 所以 $x^n y = y x^n$.

问题 1.0.2: AMM, E.C.Johnsen, D.L. Outcalt and Adil Yaqub, An Elementary Commutativity Theorem For Rings, Vol. 75, No. 3, 288-289

有幺元的非结合环R中, 若对于任意的 $x, y \in R$, 有 $(xy)^2 = x^2y^2$, 则R是交换环.

解. 由 $(xy)^2 = x^2y^2$, $(x(y+1))^2 = x^2y^2 + 2x^2y + x^2$, 而 $(x(y+1))^2 = (xy+x)^2 = (xy)^2 + (xy)x + x(xy) + x^2$, 所以 $xyx + xxy + 2x^2y$, 将x + 1代换x的位置,有 $xyx + yx + xxy = 2x^2y + xy$,即得xy = yx.

注. 含幺性不可省, $R = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} | a, b \in \mathbb{Z} \right\}$, 或 $\left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\} \leq \mathrm{GF}(2)$ 有左幺元.

注2. $(xy)^k = x^k y^k$ 在k > 2时有反例, $k \ge 3$ 固定, p素且满足: k奇时, $p \mid k$, k偶时, $p \mid \frac{k}{2}$.

$$R = \left\{ \begin{pmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{pmatrix} : a, b, cd \in GF(p) \right\} \le GF(p),$$

这里的R不可交换.

问题 1.0.3

R是含幺环, 若对于任意的 $x, y \in R$, 存在 $m, n \in \mathbb{N}$, 使得 $x^{m+1}y^{n+1} = x^myxy^n$, 则R是交换环.

解. $x^m(xy - yx)y^n = 0$, $x^l(xy - yx)(y+1)^k = 0$, 定义 $r = \max\{m, l\}$, 则

$$x^{r}(xy - yx)y^{n} = 0$$
, $x^{r}(xy - yx)(y+1)^{k} = 0$, $(y, y+1) = 1 \Longrightarrow (y^{n}, (y+1)^{k}) = 1$.

所以 $(y^{2n-1},(y+1)^ky^{n-1})=y^{n-1}$,所以存在A(y),B(y)使得 $Ay^{2n-1}+B(y+1)^ky^{n-1}=y^{n-1}$,所以 $x^r(xy-yx)y^{n-1}=0$,注意到红色部分的 y^n 得到了降次,所以存在s满足 $x^s(xy-yx)=0$.

再设 $(x+1)^t(xy-yx)=0$,同样辗转相除得到xy-yx=0,即R可交换.

1.1 群的定义问题集(MA2008)

问题 1.1.1

Prove that the set

$$G = \left\{ 3^k / 2^{2k}; k \in \mathbb{Z} \right\}$$

forms a group with respect to multiplication. You may assume that multiplication is associative.

问题 1.1.2

Consider the following group of congruence classes of integers modulo 14 with respect to multiplication:

$$G = \{[1]_{14}, [3]_{14}, [5]_{14}, [9]_{14}, [11]_{14}, [13]_{14}\}$$

Given that [1]₁₄ is the identity of the group, find (a) the order of [13]₁₄, (b) the order of [3]₁₄, (c) the inverse of [9]₁₄.

问题 1.1.3

Suppose that G is a group, $x \in G$ is an element of order 3 and $y \in G$ is an element of order N. Prove that

$$\left(x^2yx\right)^N = 1$$

问题 1.1.4

Let $G = \{1, a, a^2, b, b^2, ab, ab^2, a^2b, a^2b^2\}$ be a group where $a^3 = b^3 = 1$ and ab = ba. (a) Find $\langle b^2 \rangle$, the subgroup of G generated by b^2 . (b) It is given that $H = \{1, ab, a^2b^2\}$ is a subgroup of G. Find the distinct right cosets of H.

问题 1.1.5

Suppose G is an abelian group with its binary operation written as multiplication. Show that the mapping $\theta: G \to G$ defined by $g\theta = g^{-1}$ is a homomorphism.

问题 1.1.6

Prove that the set of vectors

$$\left\{ \left(\begin{array}{c} a+b \\ a-b \\ a \end{array} \right) : a,b \in \mathbb{R} \right\}$$

is a vector subspace of \mathbb{R}^3 . Calculate a basis and the dimension of this subspace.

问题 1.1.7

Reduce the matrix $A = \begin{pmatrix} 2 & 0 & 1 & 1 \\ 1 & 0 & -1 & 0 \\ 3 & 0 & 0 & 1 \\ 3 & 0 & -3 & 0 \end{pmatrix}$ to row-echelon form. Give a basis for the row-space of A.

问题 1.1.8

Prove that the following vector subspaces V and W of \mathbb{R}^3 are equal:

$$V = \operatorname{span}\left(\left(\begin{array}{c}1\\2\\3\end{array}\right), \left(\begin{array}{c}4\\5\\6\end{array}\right)\right), \quad W = \operatorname{span}\left(\left(\begin{array}{c}0\\2\\4\end{array}\right), \left(\begin{array}{c}1\\0\\-1\end{array}\right), \left(\begin{array}{c}5\\7\\9\end{array}\right)\right)$$

问题 1.1.9

Explain carefully which of the following functions define homomorphisms of vector spaces:

- (a) $f: \mathbb{R} \to \mathbb{R}$ defined by f(a) = a + 1,
- (b) $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f \begin{pmatrix} a \\ b \end{pmatrix} = a + b$,
- (c) $f: \mathcal{P}_2 \to \mathcal{P}_5$ defined by $f(a + bx + cx^2) = (1 3x^2 + 7x^3)(a + bx + cx^2)$.

问题 1.1.10

State the rank-nullity theorem for a homomorphism of finite-dimensional vector spaces. For any linear map $f: M_{2\times 2}(\mathbb{R}) \to \mathbb{R}^2$, prove there are at least two linearly independent matrices $A \in M_{2\times 2}(\mathbb{R})$ which satisfy $f(A) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

问题 1.1.11

- (a) Suppose G is a finite group and g is an element of G. Define the terms i. order of G, ii. order of g.
- (b) Use Lagrange's theorem to prove the following. If G is a finite group and $g \in G$ then the order of g divides the order of G.
- (c) Now suppose that G is an abelian group and let

$$H_k = \{ x \in G : x^k = 1_G \}$$

where k is a positive integer. Show that H_k is a subgroup of G.

(d) Let G be the group with the following operation table.

	1	a	a^2	a^3	b	ab	a^2b	a^3b	b^2	ab^2	a^2b^2	a^3b^2
1	1	a	a^2	a^3	b	ab	a^2b	a^3b	b^2	ab^2	a^2b^2	a^3b^2
a	a	a^2	a^3	1	ab	a^2b	a^3b	b	ab^2	a^2b^2	$a^{3}b^{2}$	b^2
a^2	a^2	a^3	1	a	a^2b	a^3b	b	ab	a^2b^2	$a^{3}b^{2}$	b^2	ab^2
a^3	a^3	1	a	a^2	a^3b	b	ab	a^2b	a^3b^2	b^2	ab^2	a^2b^2
b	b	ab^2	a^2b	a^3b^2	b^2	a	a^2b^2	a^3	1	ab	a^2	a^3b
ab	ab	a^2b^2	a^3b	b^2	ab^2	a^2	a^3b^2	1	a	a^2b	a^3	b
a^2b	a^2b	a^3b^2	b	ab^2	a^2b^2	a^3	b^2	a	a^2	a^3b	1	ab
a^3b	a^3b	b^2	ab	a^2b^2	a^3b^2	1	ab^2	a^2	a^3	b	a	a^2b
b^2	b^2	ab	a^2b^2	a^3b	1	ab^2	a^2	a^3b^2	b	a	a^2b	a^3
ab^2	ab^2	a^2b	a^3b^2	b	a	a^2b^2	a^3	b^2	ab	a^2	a^3b	1
a^2b^2	a^2b^2	a^3b	b^2	ab	a^2	a^3b^2	1	ab^2	a^2b	a^3	b	a
a^3b^2	a^3b^2	b	ab^2	a^2b	a^3	b^2	a	a^2b^2	a^3b	1	ab	a^2

- i. Write down the elements of $H_4 = \{x \in G : x^4 = 1_G\}$.
- ii. Is H_k always a subgroup of G, even if G is not abelian? Explain your answer.

6 CHAPTER 1. 抽象代数

问题 1.1.12

(a) Suppose that

$$G = \{1, a, a^2, a^3, b, ab, a^2b, a^3b\}$$

where

$$a^4 = 1$$
, $a^2 = b^2$, $ba = a^3b$

and

$$G' = \left\{1, c, c^2, c^3, d, cd, c^2d, c^3d\right\}$$

where

$$c^4 = d^2 = 1$$
 and $dc = cd$.

Construct a non-trivial homomorphism $\theta: G \to G'$. Find the image and kernel of your homomorphism.

(b) Consider the linear map $f: \mathcal{P}_2 \to \mathcal{P}_2$ defined by

$$f(a + bx + cx^{2}) = (a + b) + (2b + c)x + 3cx^{2}.$$

Find three eigenvectors of f which form a basis \mathcal{B} of \mathcal{P}_2 . Write down the following matrices and the relation between them:

- The change of basis matrix P, from \mathcal{B} to the standard basis $\{1, x, x^2\}$.
- The matrix C which represents f with respect to the standard basis.
- The matrix D which represents f with respect to the basis \mathcal{B} .

问题 1.1.13

Consider the function

$$f: \mathcal{P}_2 \longrightarrow M_{2\times 2}(\mathbb{R})$$

defined by

$$f(a+bx+cx^{2}) = \begin{pmatrix} a+b & 0\\ a-c & b+c \end{pmatrix}$$

- (a) Prove that the nullspace of f has dimension one, and give a basis $\{v\}$ for it.
- (b) Prove that the matrices f(x) and $f(x^2)$ form a basis for the image of f.
- (c) Find the matrix A which represents the linear map f with respect to the standard bases for \mathcal{P}_2 and $M_{2\times 2}(\mathbb{R})$. Using part (b), write down a basis for the column-space of this matrix.
- (d) Extend the set $\{f(x), f(x^2)\}$ to a basis \mathcal{B} for $M_{2\times 2}(\mathbb{R})$. Write down:
- i. the change of basis matrix P from the basis \mathcal{B} to the standard basis for $M_{2\times 2}(\mathbb{R})$,
- ii. The change of basis matrix Q from the basis $\{v, x, x^2\}$, where v is the polynomial you gave in part (a), to the standard basis for \mathcal{P}_2 . Show that

$$AQ = P \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)$$

Bibliography

[PH] The Man Who Loved Only Numbers, The Story of Paul Erdos and The Search for Mathematical Truth; Paul Hoffman; 1999.

[YN] 数域的上同调; 尤尔根·诺伊基希, 亚历山大[德], 哈尔滨工业大学.

[TH] Holder不等式及其应用; 田景峰, 哈明虎, 清华大学.

[HKZ2013on] Hu, W., Kukavica, I., Ziane, M.: On the regularity for the Boussinesq equations in a bounded domain, J. Math. Phys. 54(8), 081507, 10 (2013)

[T1997Inf] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences Vol. 68 (Springer, 1997).