ASPECT BASED SENTIMENT ANALYSIS USING MACHINE LEARNING

UMAIR CHEEMA ATHAR PASHA

OVERVIEW

- Project Objective
- Data Preparation
- Exploratory Data Analysis
- Methods and Techniques
- Results
- Q & A

PROJECT OBJECTIVE

- Combine Machine Learning and Natural Language
 Processing to conduct Aspect Based Sentiment Analysis of Customer Reviews on Restaurants.
- What is Aspect Based Sentiment Analysis?

Aspect level analysis directly looks at the <u>opinion</u> and its <u>target</u> instead of just looking at document, paragraph, sentence or phrase level sentiment.

ASPECT LEVEL SENTIMENTS

Example

Seafood platter was delicious but wine options were limited and ridiculously expensive.

Aspect	Polarity
Food quality	Positive
Drinks options	Negative
Drinks Price	Negative

DATA PREPARATION

- Downloaded SemEval 2016 XML with Review, Entity/ Attribute and Sentiment Anotations
- XML to Pandas (Multilabel and Multidimensional transformations)
- Data Cleaning (Removal of punctuations, Case folding, Tokenization etc)

DATA PREPARATION

 Updated Opensource tool to prepare WordEmbeddings using Yelp data by modifying TensorFlow methods in the new version of Tensorflow

https://github.com/titipata/yelp_dataset_challenge

EXPLORATORY DATA ANALYSIS

SemEval Dataset

EXPLORATORY DATA ANALYSIS

Yelp Dataset

EXPLORATORY DATA ANALYSIS

Aspect Sentiment Class Distribution

CHALLENGES

- Only 350 annotated samples to train models
- Imbalanced Classes
- No built-in scikit-learn function available for evaluating Multidimensional classification

Warning: At present, no metric in sklearn.metrics supports the multioutput-multiclass classification task.

 Implemented Custom F1 micro Scoring Function described in "A MFoM Learning Approach to Robust Multiclass Multi-Label Text Categorization" by Gao et al.

$$F_1^M = 2\left[\sum_{i=1}^N R_i \sum_{i=1}^N P_i\right] / N\left[\sum_{i=1}^N R_i + \sum_{i=1}^N P_i\right] + F_1^\mu = 2\sum_{i=1}^N TP_i / \left[\sum_{i=1}^N FP_i + \sum_{i=1}^N FN_i + 2\sum_{i=1}^N TP_i\right]$$

- Prepared following features
- Bag of n grams
- POS Tags and Tokens
- Domain Specific CBOW Word Embeddings
- Domain Specific Skip gram Word Embeddings
- Paragraph Vector Models and Inferred Features

Word Embeddings (CBOW)

Continuous bag-of-words (Mikolov et al., 2013)

Word Embeddings (Skip-gram)

W(t-2)

w(t-1)

w(t+1)

Skip-gram (Mikolov et al., 2013)

Paragraph Vectors

(Mikolov et al ,2014)

t-distributed Stochastic Neighbor Embedding (t-SNE)

- Classification Algorithms
 - Support Vector Machines
 - RandomForests

RESULTS

METHOD	F1(ASPECT)	POLARITY
RandomForest (Bag of Words)	0.710	0.84
RandomForest (Bag of Words + POS)	0.732	0.83
RandomForest (Word2Vec CBOW)	0.715	0.871
SVM(Word2Vec CBOW)	0.739	0.913
SVM(Word2Vec Skip gram)	0.752	0.926
SVM(Word2Vec Phrase detection +CBOW)	0.760	0.927
SVM (Doc2Vec)	0.705	0.837

CONCLUSIONS

- Aspect Based Sentiment Analysis is a very challenging Multilabel and Multiclass classification problem.
- Domain specific Word Embeddings is an invaluable tool for converting textual features into Vector Space Model.
- A Multilabel SMOTE oversampling should have been used to balance the class distribution of the labelled datasets.

REFERENCES

- Bing Liu, 2015. Sentiment Analysis: Mining Opinions,
 Sentiments, and Emotions. 1 Edition. Cambridge University
 Press.
- Sebastian Ruder. 2016. On word embeddings Part 1.
 [ONLINE] Available at:

<u>http://sebastianruder.com/word-embeddings-1/. [Accessed December 2016]</u> Methods and Techniques

REFERENCES

- Quoc Le, Tomas Mikolov 2014. Distributed Representations of Sentences and Documents. Proceedings of the 31st
 International Conference on Machine Learning, pp. 1188-1196
- Tomas Mikolov et al 2013. Efficient Estimation of word
 representations in vector space arXiv preprint arXiv:1301.3781

REFERENCES

 Sheng Gao et al 2004. A MFoM Learning Approach to Robust Multiclass Multi-Label Text Categorization. Proceedings of the 21st International Conference on Machine Learning, pp. 42

Q&A