# Смежные классы. Нормальный делитель

**Определение 1**. Левый смежный класс (ЛСК) группы G по подгруппе H — множество элементов

$$gH = \{gh \mid g \in G, h \in H\},\$$

g – фиксированный элемент группы G, h – пробегает все элементы подгруппы H.

Количество элементов любого смежного класса совпадает с количеством элементов в подгруппе Н.

**Определение 2**. Правый смежный класс (ПСК) группы G по подгруппе H – множество элементов

$$Hg = \{hg \mid g \in G, h \in H\}.$$

**Пример 1**. 
$$G = \langle \mathbb{Z}, +, 0 \rangle$$
.  $H = \{3k\} = \{0; \pm 3; \pm 6\} = \langle 3 \rangle$ .

Три левых смежных класса:

- 1. 0 + H = H + 0
- 2.  $1 + H = \{1, 4, -2, 7, -5, ...\} = H + 1$
- 3.  $2 + H = \{2, 5, -1, 8, -4, ...\} = H + 2$

Если операция коммутативна, то множество левых смежных классов совпадёт с множеством правых смежных классов.

Пересечение левых смежных классов пусто, а объединение дает все множество Z.

Пусть G – группа, H – подгруппа G.

**Теорема 1**. Левые смежные классы группы G по подгруппе H образуют разбиение множества элементов группы G.

#### Доказательство.

Рассмотрим два ЛСК:  $g_1H$  и  $g_2H$  и предположим, что у них есть общий элемент:  $g_1h'=g_2h''$ . Т.к. в группах каждый элемент обратим:

$$g_1h'(h')^{-1} = g_2h''(h')^{-1} \Rightarrow g_1 = g_2h''(h')^{-1}.$$

Для  $\forall h \in H$  домножим равенство на  $h: g_1 h = g_2 h''(h')^{-1} h$ , т.к. все три элемента

 $h, h', h'' \in H$ , то их произведение также находится в H. Таким образом любой элемент ЛСК  $g_1H$  является элементом класса  $g_2H$ , следовательно,  $g_1H \subseteq g_2H$ 

Аналогично, домножая  $g_1h' = g_2h''$  на  $h''^{-1}$ , получим  $g_2H \subseteq g_1H$ .

 $\Rightarrow g_1 H = g_2 H$ , т.е. два левых смежных класса, имеющих общий элемент, совпадают. Следовательно, ЛСК образуют разбиение: классы либо не пересекаются, либо совпадают.

| G/H       | $h_1 = e  h_2  \dots  h_i  \dots$         |                 |
|-----------|-------------------------------------------|-----------------|
| $g_1 = e$ | $g_1h_1$ $g_1h_2$ $g_1h_i$                | $g_1H = eH = H$ |
| •••       |                                           |                 |
| $g_k$     | $g_k h_1  g_k h_2  \dots  g_k h_i  \dots$ | $g_{k}H$        |
| •••       |                                           |                 |

Каждый раз домножаем каждый элемент подгруппы H на элемент, которого ещё не было в построенных смежных классах:  $g_k$  не принадлежит ни одному из уже построенных ЛСК.

Аналогичную теорему можно доказать для правых смежных классов.

#### Нормальный делитель

Рассмотрим два эквивалентных определения нормального делителя.

**Определение 1**. Подгруппа H — нормальный делитель (нормальная подгруппа) группы G, если множества левых смежных классов и правых смежных классов группы G по подгруппе H совпадают.

**Определение 2.** Подгруппа H — нормальный делитель (нормальная подгруппа) группы G, если

$$\forall g \in G \quad gH = Hg.$$

Доказательство эквивалентности двух определений.

Очевидно, что из определения 2 следует определение 1. Покажем, что определение 1 влечет определение 2.

Так как  $e \in H \Rightarrow g \in gH$  и  $g \in Hg$ , а т.к. ЛСК и ПСК совпадают и классы образуют разбиение, то это один и тот же класс: gH = Hg.

В коммутативной группе все подгруппы являются нормальными делителями.

Пример 1. 
$$G = < Z, +, 0 >$$

$$H = \{3k\} = \{0, \pm 3, \pm 6, ...\} = <3>.$$

Пример 2. Рассмотрим группу  $S_3 = \{\pi_0, (123), (132), (13), (13), (23)\}$  и

ее циклическую подгруппу  $H = <(13)> = \{\pi_0, (13)\}.$   $(13)^2 = \pi_0$ 

ЛСК ПСК

$$1.\pi_0 H = H \qquad \qquad 1.H\pi_0 = H$$

$$2.(12)H = \{(12), (132)\}$$
  $2.H(12) = \{(12), (123)\}$ 

$$3.(23)H = \{(23), (123)\}$$
  $3.H(23) = \{(23), (132)\}$ 

 $\Pi \text{СК} \neq \Pi \text{СК}$ , следовательно, H не является нормальным делителем.

Пример 3.  $S_3 = \{\pi_0, (123), (132), (12), (13), (23)\}$ 

И циклическая подгруппа  $H = <(1 \ 3 \ 2) > = \{\pi_0, (1 \ 3 \ 2), (1 \ 2 \ 3)\}.$ 

$$1.\pi_0 H = H$$
  $1.H\pi_0 = H$ 

$$2.(12)H = \{(12), (13), (23)\}\$$
  $2.H(12) = \{(12), (23), (13)\}\$ 

Смежные классы совпадают, следовательно, H – нормальный делитель.

Здесь H — подгруппа индекса 2 (элементов в два раза меньше, чем в группе). Подгруппа индекса 2 всегда нормальный делитель, т.к. смежные классов 2: H и  $G \setminus H$ .

Индекс  $i = |\mathsf{G}/\mathsf{H}|$  — число смежных классов. Для конечной группы число смежных классов равно отношению числа элементов группы к числу элементов ее нормального делителя

$$i = \frac{\#G}{\#H}.$$

Теорема Лагранжа. Порядок конечной группы делится на порядок любой ее подгруппы.

Доказательство следует из формулы

$$i = \frac{\#G}{\#H} \Rightarrow \#G = \#H \cdot i.$$

### Пример 4. Группа самосовмещений квадрата:

$$G_{\square}=\{arphi_0,arphi_{rac{\pi}{2}},arphi_{\pi},arphi_{\pi},arphi_{\pi},\psi_1,\psi_2,\psi_3,\psi_4\}.$$
  $H_1=\{arphi_0,arphi_{\pi}\}$  — подгруппа.  $arphi_{\pi}^2=arphi_0\Rightarrowarphi_{\pi}^{-1}=arphi_{\pi}.$  ЛСК=ПСК

1. 
$$E = \varphi_0 H_1 = H_1 = H_1 \varphi_0$$

2. 
$$A = \varphi_{\frac{\pi}{2}} H_1 = \{ \varphi_{\frac{\pi}{2}}, \varphi_{\frac{3\pi}{2}} \} = H_1 \varphi_{\frac{\pi}{2}}$$

3. 
$$B = \psi_1 H_1 = \{\psi_1, \psi_3\} = H_1 \psi_1$$

4. 
$$C = \psi_2 H_1 = \{\psi_2, \psi_4\} = H_1 \psi_2$$

 $H_1$  — нормальный делитель.

## **Рассмотрим подгруппу** $H_2 = \{ \varphi_0, \psi_1 \}.$

Легко убедиться, что ЛСК $\neq$ ПСК и, следовательно,  $H_2$  не является нормальным делителем. Достаточно одного не совпадения класса  $gH_2 \neq H_2g$ , но мы выпишем все.

> ЛСК ПСК

$$\varphi_0 H_2 = H_2 = H_2 \varphi_0$$

2. 
$$\varphi_{\frac{\pi}{2}}H_2 = \{\varphi_{\frac{\pi}{2}}, \psi_4\}$$
  $\neq$   $H_2\varphi_{\frac{\pi}{2}} = \{\varphi_{\frac{\pi}{2}}, \psi_2\}$ 

3. 
$$\varphi_{\pi}H_{2} = \{\varphi_{\pi}, \psi_{3}\}$$
  $H_{2}\varphi_{\pi} = \{\varphi_{\pi}, \psi_{3}\}$ 

2. 
$$\varphi_{\frac{\pi}{2}}H_{2} = \{\varphi_{\frac{\pi}{2}}, \psi_{4}\}$$
  $\neq$   $H_{2}\varphi_{\frac{\pi}{2}} = \{\varphi_{\frac{\pi}{2}}, \psi_{2}\}$   
3.  $\varphi_{\pi}H_{2} = \{\varphi_{\pi}, \psi_{3}\}$   $H_{2}\varphi_{\pi} = \{\varphi_{\pi}, \psi_{3}\}$   
4.  $\varphi_{\frac{3\pi}{2}}H_{2} = \{\varphi_{\frac{3\pi}{2}}, \psi_{2}\}$   $\neq$   $H_{2}\varphi_{\frac{3\pi}{2}} = \{\varphi_{\frac{3\pi}{2}}, \psi_{4}\}$ 



 $\psi_i$  соответствует оси  $l_i$ 

Таблица Кэли для подсказки. Повороты пронумерованы последовательно

| o           | $arphi_0$   | $arphi_1$   | $\varphi_2$ | $\varphi_3$ | $\psi_1$    | $\psi_2$    | $\psi_3$    | $\psi_4$    |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| $\varphi_0$ | $arphi_0$   | $arphi_1$   | $\varphi_2$ | $\varphi_3$ | $\psi_1$    | $\psi_2$    | $\psi_3$    | $\psi_4$    |
| $\varphi_1$ | $arphi_1$   | $\varphi_2$ | $\varphi_3$ | $arphi_0$   | $\psi_4$    | $\psi_1$    | $\psi_2$    | $\psi_3$    |
| $\varphi_2$ | $\varphi_2$ | $\varphi_3$ | $arphi_0$   | $\varphi_1$ | $\psi_3$    | $\psi_4$    | $\psi_1$    | $\psi_2$    |
| $\varphi_3$ | $\varphi_3$ | $\varphi_0$ | $arphi_1$   | $\varphi_2$ | $\psi_2$    | $\psi_3$    | $\psi_4$    | $\psi_1$    |
| $\psi_1$    | $\psi_1$    | $\psi_2$    | $\psi_3$    | $\psi_4$    | $arphi_0$   | $arphi_1$   | $arphi_2$   | $\varphi_3$ |
| $\psi_2$    | $\psi_2$    | $\psi_3$    | $\psi_4$    | $\psi_1$    | $\varphi_3$ | $\varphi_0$ | $arphi_1$   | $\varphi_2$ |
| $\psi_3$    | $\psi_3$    | $\psi_4$    | $\psi_1$    | $\psi_2$    | $\varphi_2$ | $\varphi_3$ | $\varphi_0$ | $\varphi_1$ |
| $\psi_4$    | $\psi_4$    | $\psi_1$    | $\psi_2$    | $\varphi_3$ | $\varphi_1$ | $\varphi_2$ | $\varphi_3$ | $\varphi_0$ |