CONCEPTOS BÁSICOS Y EJEMPLO DE APLICACIÓN

A MODO INTRODUCTORIO DIREMOS QUE:

EL DIODO ZENER, ES UN DIODO AL QUE LE "GUSTA" TRABAJAR EN LA ZONA DE RUPTURA INVERSA

Diodo de unión pn preparado para trabajar en la zona de polarización inversa o zona de ruptura

Diodo de unión pn preparado para trabajar en la zona de polarización inversa o zona de ruptura

Valores característicos:

I_{ZT} = corriente de test (corriente a la cual el zener disipa ¼ de la potencia máxima)

 V_{ZT} = tensión a la cual se mide I_{ZT}

 Z_{7T} = resistencia del zener medida a I_{7T}

I_{7K} = corriente de codo

I_{zM} = máxima corriente del zener

DIODO ZENER - EQUIVALENTE LINEAL

Diodo zener

Equivalente lineal completo

DIODO ZENER – EQUIVALENTE LINEAL

Diodo zener

VBD significa tensión de ruptura (inversa)

La tensión de zener es:

$$V_Z = V_{BD} + rz I_Z$$

Equivalente lineal completo

EJEMPLO DE APLICACIÓN

REGULADOR DE TENSIÓN CON VARIACIÓN DE TENSIÓN DE ENTRADA

En el siguiente circuito regulador de tensión, hallar la variación porcentual de la tensión de salida. Compararla con la variación de la tensión de entrada.

Datos:

VIN puede variar entre 20 y 30 V

$$rz = 5 \Omega$$

VBD = 10 **V**

IZ min = 0.25mA

RS = 220Ω

 $RL = 1K\Omega$

Debemos calcular V₇

1) Ecuación del diodo zener (modelo lineal):

$$V_Z = I_Z \ rz + V_{BD}$$

2) Ecuación de nodos del circuito completo

$$\frac{V_{IN} - V_Z}{R_S} = I_Z + \frac{V_Z}{R_L}$$

3) Combinamos ambas ecuaciones y despejamos V_7

$$V_Z = \frac{V_{IN} + V_{BD} \frac{R_S}{rz}}{(1 + \frac{R_S}{R_L} + \frac{R_S}{rz})}$$

Debemos calcular V₇

Calculamos el valor de VZ para los dos valores extremos de la tensión $V_{\rm IN}$

$$V_{IN1} = 20V \rightarrow V_{Z1} = 10,17$$

 $V_{IN2} = 30V \rightarrow V_{Z2} = 10,39$

$$V_Z = \frac{V_{IN} + V_{BD} \frac{R_S}{rz}}{(1 + \frac{R_S}{R_I} + \frac{R_S}{rz})}$$

Debemos calcular V_Z

$$V_Z = \frac{V_{IN} + V_{BD} \frac{R_S}{rz}}{(1 + \frac{R_S}{R_I} + \frac{R_S}{rz})}$$

Calculamos el valor de VZ para los dos valores extremos de la tensión V_{IN}

$$V_{IN1} = 20V \rightarrow V_{Z1} = 10,17$$

 $V_{IN2} = 30V \rightarrow V_{Z2} = 10,39$

Por último calculamos las variaciones porcentuales

$$\Delta V_{IN} \% = \frac{|V_{IN1} - V_{IN2}|}{V_{IN1}} 100 = 50 \%$$

$$\Delta V_{Z} \% = \frac{|V_{Z1} - V_{Z2}|}{V_{Z1}} 100 = 2,16 \%$$

Se logró regular la tensión en la carga, obteniendo una variación en la tensión de salida del 2% para una variación del 50% de la tensión de entrada!!!

Por último calculamos las variaciones porcentuales

$$\Delta V_{IN} \% = \frac{|V_{IN1} - V_{IN2}|}{V_{IN1}} 100 = 50 \%$$

$$\Delta V_{Z} \% = \frac{|V_{Z1} - V_{Z2}|}{V_{Z1}} 100 = 2,16 \%$$

$$V_Z = \frac{V_{IN} + V_{BD} \frac{R_S}{r_Z}}{(1 + \frac{R_S}{R_I} + \frac{R_S}{r_Z})}$$

FIN DE LA PRESENTACIÓN