Finding gamma transients in simulated GW follow-ups with Gammapy

Monica Seglar-Arroyo on behalf of IRFU/CEA Paris-Saclay team

Goal

In a nutshell: Observe extended regions, following the GW reconstruction area and look for a transient signal

Simulation chain

Pointing pattern covers source location?

Bank of GW
simulated signals
+ NSNS
locations,
distances,
inclinations,
detectors
involved..

Observation
algorithms
considering visibility
constrains, zenith
angle optimisation,
galaxy distribution
defines pointing
strategy

Is source detected?

Input

- Phenomenological GRB model
- Source position
- Pointings
- Duration
- IRFs

Output

Source detection and dependency of input+source parameters

Injection of a gravitational wave counterpart aka low redshift GRB

Injected source spectrum:

- Evolution with time [0, 10000s]
- Based of an interpolation to lower z of one of the brightest GRBs observed: GRB090510
 - Eiso 1052 ergs
 - Shows extended emission(~200s) up to GeV energies (~30GeV)
 - Opening angle 10deg, on-axis GRB

For the simulation:

- The spectrum is EBL deabsorbed.
- IRFs are chosen for a given simulation which depend on zenith angle and telescope config. Example: North_NSBx05_z20_N_LST_30m

First steps on simulation

Map simulation: single, simple cube simulation (extracted from Notebooks)

Extended observation simulation

 Combination of several observations, with several states of the source per observation

Finding the source

- I. Merge all observations together
- 2. Tried: Li&Ma computation with Tophat2DKernel

 TSMapEstimation using a Gaussian2DKernel
- 3. Look for peaks in significance

dec	ra	У	X	value
deg	deg			
float64	float64	int64	int64	float64
39.50629	176.94583	475	463	6.8406
41.36974	175.74726	568	509	4.0593

Next step:TIME

- This is the approach I found by looking into Jupiter Notebook tutorials + some docu.
- Time-related improvements:
 - Looking for a better way to simulate an evolving source
 - I do a simulation of every source state and add them up, not sure if in the most efficient way.
 - Looking for nice clustering technique that includes time evolution
 - Clustering algorithms in (x,y,t)
 - Wavelets
 - ?
 - I am working with **maps** and I dont have a list of simulated photons with times, etc. => Possible solution would be to use MapEventSampler explained by Fabio Pintore including a temporal evolution in sky_model as input option?