논리식의 간소화

3 논리식의 간소화

- 주어진 논리식에서 불필요한 항과 변수를 제거하고 간소화해서 등가 회로로 만드는 것을 논리식의 간소화라고 한다.
- 불대수 법칙 이용 : 불 대수의 공리와 기본 법칙을 이용해 대수적으로 간소화한다. 비교적 단순한 논리식에 사용한다.
- ② 카르노 맵 이용 : 논리 변수의 개수가 4개 이하일 때 주로 사용한다. 불 대수를 이용하는 방법보다 복잡한 논리식에 사용한다.
- ❸ 도표법 이용 : 퀸-맥클러스키(Quine Mc-Cluskey) 방법이라고도 한다. 지루하고 단조로운 절차 등으로 에러가 발생할 가능성이 높아 잘 사용하지 않지만 소프트웨어로 만들기는 적합한 방법이다.

□ 불 대수 법칙을 이용한 간소화

- 대수식이 단순하면 쉽게 간소화할 수 있지만, 식이 복잡해지면 이용하기 어렵다.
- 어떤 항끼리 결합할지 결정하기 힘들고 결과가 최적인지 판단하기도 쉽지 않다.
- 따라서 이 방법은 드물게 사용하고 카르노 맵 방법을 주로 이용한다.

$$F(A, B, C) = \sum m(1, 2, 3, 4, 5)$$

$$= \overline{A}\overline{B}C + \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}C + A\overline{B}C$$

$$= \overline{A}\overline{B}C + A\overline{B}C + \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}C + A\overline{B}C$$

$$= (\overline{A} + A)\overline{B}C + \overline{A}B(\overline{C} + C) + A\overline{B}(\overline{C} + C)$$

$$= \overline{B}C + \overline{A}B + A\overline{B}$$

$$\leftarrow A + A = A \text{ olg}$$

□ 카르노 맵을 이용한 간소화

- 카르노 맵(Karnaugh map)은 1953년 모리스 카르노(Maurice Karnaugh)가 체계적으로 논리식을 간소화하기 위해 소개
- 카르노 맵은 논리식에서 사용될 최소항을 각 칸에 넣어 표로 만들어 놓은 것이다.

A	\overline{B}	В
\overline{A}	$\overline{A}\overline{B}$	$\overline{A}B$
A	$A\overline{B}$	AB

A	\overline{B}	В
\overline{A}	$m_{\scriptscriptstyle m O}$	$m_{\scriptscriptstyle 1}$
A	m_2	m_3

A	0	1
О	0	1
1	2	3

그림 3-21 2변수 카르노 맵 표현 방법

❖ 카르노 맵에서 묶는 규칙

- 이웃하는 최소항끼리 묶을 수 있다.
- ② 최소항은 1, 2, 4, 8, 16개 단위로 묶을 수 있다.
- ③ 반드시 직사각형이나 정사각형으로 묶어야 하며, 대각선으로는 묶을 수 없다.
- 4 최대한 크게 묶는다.
- 중복해서 묶는 것이 더 간소하다면 중복하여 묶는다.
- 급 무관항은 간소화될 수 있으면 묶어 주고, 그렇지 않으면 묶지 않는다.

그림 3-22 $F = \overline{AB} + \overline{AB}$ 의 카르노 맵

불 대수의 법칙으로 풀면

$$F = \overline{A}\overline{B} + \overline{A}B$$
$$= \overline{A}(\overline{B} + B) = \overline{A} \cdot 1 = \overline{A}$$

A=0이므로 \overline{A} , B=0 and 1이므로 B를 제거한다. 즉, 한 변수에서 서로 다른 값이 묶여지면 제거한다.

항(term)과 리터럴(literal)

❖ 3변수 카르노 맵 표현 방법

A	$C\overline{B}\overline{C}$	$\overline{B}C$	BC	$B\overline{C}$
\overline{A}	$\overline{A}\overline{B}\overline{C}$	$\overline{A}\overline{B}C$	$\overline{A}BC$	$\overline{A}B\overline{C}$
A	$A\overline{B}\overline{C}$	$A\overline{B}C$	ABC	$AB\overline{C}$
D				
A	C ₀₀	01	11	10
A 0	0 0 0	01 1	11 3	10 2

그림 3-23 3변수 카르노 맵 표현 방법

AB	<u>C</u>	С	AB	0	1
$\overline{A}\overline{B}$	$\overline{A}\overline{B}\overline{C}$	$\overline{A}\overline{B}C$	00	0	1
$\overline{A}B$	$\overline{A}B\overline{C}$	$\overline{A}BC$	01	2	3
AB	$AB\overline{C}$	ABC	11	6	7
$A\overline{B}$	$A\overline{B}\overline{C}$	$A\overline{B}C$	10	4	5

행과 열을 바꾸어도 상관없다. 설계자가 선호하는 방법을 선택하면 된다.

카르나 맵 표현에서 비트열 배치 이해

인접한 비트끼리 1비트만 다름

❖ 간소화 예1

그림 3-24 $F(A, B, C) = \sum m(0, 1, 6, 7)$ 의 카르노 맵

❖ 간소화 예2

그림 3-25 3변수 카르노 맵에서 양쪽 끝 묶음

❖ 간소화 예3

그림 3-26 4개 항을 묶은 예

세 변수 부울 함수의 간소화 예제

[예 1] 다음 부울함수를 간단히 하여라.

$$F(A,B,C) = \sum (3,4,6,7)$$

$$F(A,B,C) = BC + AC'$$

❖ 4변수 카르노 맵 표현 방법

AB CL) CD	$\bar{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$	$\overline{A}\overline{B}\overline{C}\overline{D}$	$\overline{A}\overline{B}\overline{C}D$	$\overline{A}\overline{B}CD$	$\overline{A}\overline{B}C\overline{D}$
$\overline{A}B$	$\overline{A}B\overline{C}\overline{D}$	$\overline{A}B\overline{C}D$	$\overline{A}BCD$	$\overline{A}BC\overline{D}$
AB	$AB\overline{C}\overline{D}$	$AB\overline{C}D$	ABCD	$ABC\overline{D}$
$A\overline{B}$	$A\overline{B}\overline{C}\overline{D}$	$A\overline{B}\overline{C}D$	$A\overline{B}CD$	$A\overline{B}C\overline{D}$

CL AB	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	1 5	14
10	8	9	11	10

그림 3-27 4변수 카르노 맵의 표현 방법

그림 3-28 4변수 카르노 맵의 상하좌우 끝 쪽 연결

❖ 4변수 카르노 맵 간소화 예

❖ 4변수 카르노 맵 간소화 예(계속)

그림 3-29 4변수 카르노 맵의 다양한 예

13

네 변수 부울 함수의 간소화 예제

[예 3] 다음 부울함수를 간단히 하여라.

$$F(A,B,C,D) = \sum (0,1,2,6,8,9,10)$$

무관항이 있는 경우

- 무관항(don't care)은 입력 값이 0이든 1이든 상관없는, 즉, 입력이 결과에 영향을 미치지 않는 최소 항으로 x나 d로 표시한다.
- 무관항이 있는 경우에는 같이 묶어 간소하게 되면 같이 묶는다.
- 무관항끼리만 묶을 필요는 없고 무관항을 포함해도 간소화되지 않는다면 묶을 필요가 없다.
- 무관항을 잘 이용하면 회로를 간단하게 나타낼 수 있다.

그림 3-30 무관항이 있는 카르노 맵의 간소화

Don't Care Condition(無義조건)

[문제] 이진 입력값이 0,1,2일 경우 출력은 1이고, 입력이 3일 경우 출력은 0 그리고 입력이 4일 경우 출력은 1인 회로를 설계하시오.

풀이) 우선 문제의 조건을 만족하는 진리표를 작성하면 다음과 같다.

십진수	×	У	z	출력(Q)
0	0	О	О	1
1	О	O	1	1
2	О	1	О	1
3	О	1	1	o
4	1	О	О	1
5	1	О	1	×
6	1	1	О	×
7	1	1	1	×

X YZ	00	01	11	10
0	1		0	1
1 _	1	x	Х	X

$$Q(x,y,z) = y' + z'$$

수고하셨습니다!