#### **Lecture 11: Functions**

Jingjin Yu | Computer Science @ Rutgers





#### Outline

Copyrighted Material – Do Not Distribute

- Lectures 9-10 review
- ► Functions
  - Notation, domain, co-domain, image/preimage
  - ▶ 1-1 (injective), onto (surjective), bijective functions
  - Inverse functions
  - Compositions
  - Partial functions

► A repeating note: make sure you read the textbook



### L09-10: Sets and Set Operations

Copyrighted Material – Do Not Distribute

#### A set is a collection of elements

- Roster representation
  - $A = \{1, a, cup, \pi, apple\}$  elements do need not be of the same type
  - Natural numbers (an infinite set),  $\mathbb{N} = \{0, 1, 2, ...\}$
- Set builder notation such that
  - $\mathbb{R}^3 = \{ (x, y, z) \mid x, y, z \in \mathbb{R} \}$
  - $A = \{x \mid x \text{ is a student at Rutgers}\}$

#### Set operations

- $\triangleright$  Intersection:  $A \cap B = \{x \mid x \in A \land x \in B\}$
- Difference:  $A B = \{x \mid x \in A \land x \notin B\}$  (or  $A \setminus B$ )
- $\triangleright$  Symmetric difference:  $A \oplus B = A \cup B A \cap B$



# L09-10: Venn Diagram, Subset, Power Set Copyrighted Material – Do Not Distribute

Venn diagram













- ▶ Subset ( $\subseteq$ ):  $B \subseteq A \Leftrightarrow \forall x \in B, x \in A$
- ► (Superset ( $\supseteq$ ):  $A \supseteq B \Leftrightarrow B \subseteq A$
- ▶ Powerset:  $\mathcal{P}(S) = \{A \mid A \subseteq S\}$ , example:
  - $> S = \{1,2\}$
  - $\triangleright \quad \mathcal{P}(S) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$
- Cardinality (size)
  - $| \nabla Q | = Q$
  - $|\{1,2\}|=2$



#### **Functions**

- ▶ **Def**<sup>n</sup>: A **function**, or a **mapping**, f, denoted  $f: X \to Y$ , assigns exactly one element  $y \in Y$  to each and every element  $x \in X$ , written as f(x) = y or  $x \mapsto y$ .

  - $\triangleright$  *Y*: co-domain
  - $\triangleright$  If f(a) = b, then b is the **image** of a under f, a is the **preimage** of b
  - $f(X) = \{f(x) | x \in X\} \text{ is the } \mathbf{range} \text{ or } \mathbf{image} \text{ of } X \text{ under } f$
  - $\triangleright$  **Ex**: People  $X = \{a, b, c\}$ , age Y = N. f(a) = 19, f(b) = 20, f(c) = 19.
    - Domain? Co-domain?





# Two "Non"-Functions

Copyrighted Material – Do Not Distribute





Not a total function



# **Examples**

Copyrighted Material – Do Not Distribute

 $Ex: f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ 

 $Ex: f: \mathbb{N} \to \mathbb{N}, x \mapsto x^2$ 

**Ex**:  $f: \mathbb{R} \to \mathbb{R}$ ,  $x \mapsto x^3$ 







# Examples, Cont.

- ▶ **Ex**: sine:  $\mathbb{R} \rightarrow [-1,1]$ ,  $x \mapsto \sin x$
- ► Ex: floor:  $\mathbb{R} \to \mathbb{Z}$ ,  $x \mapsto$  largest integer that is no larger than  $x \mapsto \mathbb{Z}$ .

  This is also written as [x]
- **Ex**: ceiling:  $\mathbb{R} \to \mathbb{Z}$ ,  $x \mapsto$  smallest integer that is no smaller than x
  - $\triangleright$  This is also written as [x]
- ▶ What is  $[\pi]$  and  $[-\pi]$ ?







# Adding & Multiplying Function

Copyrighted Material – Do Not Distribute

- Multiple functions can be added/multiplied
  - Addition/subtraction

DOMAIN MUST BE THESAM

- Multiplications

$$f(x) = e^{x}, f_{2}(x) = x, f_{3}(x) = t$$

$$f(x) = (f_{1} + f_{2} + 3)(x) = e^{x} + \lambda_{2}$$

$$g(x) = f(f_{1})(x) = e^{x} + \lambda_{2}$$

$$g(x) = f(f_{2})(x) = x$$



#### One-to-One and Onto Functions

Copyrighted Material – Do Not Distribute

- ▶ **Def**<sup>n</sup>: A function f is **one-to-one** (or an **injection**) iff  $f(x_1) \neq f(x_2)$  for  $x_1 \neq x_2$ . f is **onto** (or a **surjection**) iff f(X) = Y. f is a **bijection** iff it is **one**to-one and onto (injection and surjection).
  - $\triangleright$  **Ex**:  $f: \mathbb{N} \to \mathbb{N}$ ,  $x \mapsto x + 1$ if y= 0, then no KIN Solisties HE

- Ex:  $f: \mathbb{R}_+ \to \mathbb{R}_+, x \mapsto x^2$ Ex:  $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^3$



**Ex**: Identity:  $f: \mathbb{R} \to \mathbb{R}$ ,  $x \mapsto x$ 



#### One-to-One and Onto Functions





## **Proving 1-1 and Onto Properties**

Copysic Ged Material – Do Not Distribute

- ▶ Showing f is 1-1 (injectiveness):  $f(x) = f(y) \rightarrow x = y$ 
  - $\triangleright$  **Ex**:  $f: \mathbb{R} \to \mathbb{R}, x \mapsto x + 1$

$$C(x) = f(y) = 0 \quad x + 1 = y + 1 = 0 \quad x = 0$$

- ► Showing f is not 1-1:  $\exists x, y ((x \neq y) \rightarrow (f(x) = f(y)))$ 
  - $\triangleright \quad \mathbf{Ex} : f : \mathbb{R} \to \mathbb{R}, x \mapsto \sin x$



# Proving 1-1 and Onto Properties

Copyrighted Material – Do Not Distribute

- ▶ Showing f is onto (surjectiveness):  $\forall y \exists x (f(x) = y)$ 
  - $\triangleright$  **Ex**:  $f: \mathbb{R} \to \mathbb{R}, x \mapsto x + 1$

- ▶ Showing f is not onto:  $\exists y \forall x (f(x) \neq y)$ 
  - $\triangleright$  **Ex**:  $f: \mathbb{R} \to \mathbb{R}$ ,  $x \mapsto x^2$

Led you) Xi(E)



#### **Inverse Functions**

Copyrighted Material – Do Not Distribute

- ▶ **Def**<sup>n</sup>: A bijective function f has an **inverse** function, often denoted as  $f^{-1}$ , such that  $f^{-1}(y) = x$  if f(x) = y.
  - Domains/co-domain flipped

Only bijective functions have inverses.



▶ **Ex**: Is  $f: \mathbb{R} \to \mathbb{R}$ ,  $x \mapsto x^3$  invertible?

**Ex**: Is  $f: \mathbb{R} \to \mathbb{R}$ ,  $x \mapsto x^2$  invertible?





### **Function Composition**

- ▶ **Def**<sup>n</sup>:  $g: X \to Y$  and  $f: Y \to Z$  are two functions, then the **composition** of f and g, denoted  $f \circ g$ , is the function  $f \circ g: X \to Z, x \mapsto f(g(x))$ .
  - ▶ For invertible function, we always have  $f^{-1}(f(x)) = x$ .
  - ⊳ In general,  $f \circ g \neq g \circ f$
  - $\triangleright$  **Ex**:  $X = Y = Z = \mathbb{R}$ . f(x) = x + 2, g(x) = 3x

$$(f \cdot g)(x) = f(g(y)) = 3x + 2$$

