

# 临床意义 - [云]基线资料表

| 变量                        | Low expression of ERBB2 | High expression of ERBB2 | p值    | 统计量    | 方法                |
|---------------------------|-------------------------|--------------------------|-------|--------|-------------------|
| n                         | 41                      | 41                       |       |        |                   |
| Pathologic T stage, n (%) |                         |                          | 0.062 | 5.5456 | Yates' correction |
| T1                        | 1 (1.3%)                | 7 (8.9%)                 |       |        |                   |
| T2                        | 15 (19%)                | 12 (15.2%)               |       |        |                   |
| T3&T4                     | 25 (31.6%)              | 19 (24.1%)               |       |        |                   |
| Age, n (%)                |                         |                          | 0.248 | 1.3338 | Chisq test        |
| <= 60                     | 29 (35.4%)              | 24 (29.3%)               |       |        |                   |
| > 60                      | 12 (14.6%)              | 17 (20.7%)               |       |        |                   |
| BMI, median (IQR)         | 22.058 (20.196, 23.243) | 22.204 (20.303, 25.934)  | 0.110 |        | Wilcoxon          |
|                           |                         |                          |       |        |                   |

网址: <a href="https://www.xiantao.love">https://www.xiantao.love</a>



更新时间: 2023.03.14



#### 目录

| 基本概念                 | 3 |
|----------------------|---|
| 应用场景                 | 3 |
| 分析流程                 | 4 |
| 主要结果                 | 5 |
| 云端数据                 | 7 |
| 参数说明                 | 8 |
| 特殊参数                 | 8 |
| 数据处理                 | 9 |
| 表格                   | 0 |
| 变量 1                 | 0 |
| 结果说明 1               | 1 |
| 主要结果 1               | 1 |
| 补 <mark>充结果 1</mark> | 1 |
| <mark>方法学</mark>     | 3 |
| 如何 <mark>引用</mark>   | 4 |
| 常见问题                 | 5 |



## 基本概念

- ▶ 基线资料表:展示每一格研究对象的基本信息情况。
- ▶ 卡方检验: 比较不同组之间构成比(分类型资料)是否有差异,要求每个格子(level)中的理论频数 T 均大于 5 或 1<T<5 的格子数不超过总格子数的 1/5。
- ➤ Fisher 精确检验: 当不满足卡方检验的要求时,可以使用 Fisher 精确检验。
- ➤ T检验:用于两组之间(数值型资料)的比较,需要满足两组正态性和方差 齐性的要求。
- ➤ Welch t' test: 又称为不等方差检验,即当两组仅满足正态性而不满足方差齐性的要求时,可以选择用该方法进行两组的比较。
- Wilcoxon rank sum test, 也叫 Mann-Whitney U test (曼-惠特尼 U 检验), 或者 Wilcoxon-Mann-Whitney test。秩和检验是一个非参的假设检验方法, 一般用于两组不满足正态性的情况。
- ➤ One-way ANOVA: 单因素方差分析, 当比较组大于2时, 可以使用该方法。
- ➤ Kruskal-Wallis test: 克鲁斯卡尔-沃利斯检验,又称"K-W 检验"、"H 检验"等。 本质也是一种秩和检验,用以检验多组(两组以上)不满足正态性的情况。

## 应用场景

基线资料表,是基于公共数据(云端数据)根据所选单个分子在所有样本中的中位数,将样本分为高低表达组,联合分组来评估不同的分组之间不同临床变量的构成比是否有差别。



## 分析流程

基于分子的表 达量

选择云端数据

将样本分成高 低组

选择分子和 临床变量

基线资料表





## 主要结果

#### 列联表

| 1  | Α                         | В                       | С                        | D                  | E                | F                 |
|----|---------------------------|-------------------------|--------------------------|--------------------|------------------|-------------------|
| 1  | characteristics           | Low expression of ERBB2 | High expression of ERBB2 | pvalue             | statistic        | method            |
| 2  | n                         | 41                      | 41                       |                    |                  |                   |
| 3  | Pathologic T stage, n (%) |                         |                          | 0.0624871632116509 | 5.54558826389699 | Yates' correction |
| 4  | T1                        | 1 (1.3%)                | 7 (8.9%)                 |                    |                  |                   |
| 5  | T2                        | 15 (19%)                | 12 (15.2%)               |                    |                  |                   |
| 6  | T3&T4                     | 25 (31.6%)              | 19 (24.1%)               |                    |                  |                   |
| 7  | Age, n (%)                |                         |                          | 0.248136154697613  | 1.33376707872479 | Chisq test        |
| 8  | <= 60                     | 29 (35.4%)              | 24 (29.3%)               |                    |                  |                   |
| 9  | > 60                      | 12 (14.6%)              | 17 (20.7%)               |                    |                  |                   |
| 10 | BMI, median (IQR)         | 22.058 (20.196, 23.243) | 22.204 (20.303, 25.934)  | 0.109701172177491  |                  | Wilcoxon          |

- > characteristics: 临床变量以及对应的分组
- ➤ Low expression of ERBB2: (低表达组) 对应的临床变量的构成比。当变量为分类型时,为不同水平 level 的计数和百分比; 当变量为数值型时,或者是均值±标准差(样本数<=5000 且满足正态性或样本数>5000 时),或者是中位数(上下四分位)(样本数<=5000 且不满足正态性时)
- ➤ High expression of ERBB2: (高表达组) 对应的临床变量的构成比。当变量为分类型时,为不同水平 level 的计数和百分比; 当变量为数值型时,或者是均值±标准差(样本数<=5000 且满足正态性或样本数>5000 时),或者是中位数(上下四分位)(样本数<=5000 且不满足正态性时)
- > pvalue:对应的列联表或者两组数值比较的统计学 p 值结果
- ➤ statistic: 统计量,只有卡方检验、t 检验以及 ANOVA 相关检验才会有, Fisher 精确检验是没有统计量的
- ▶ method: 所使用的统计学方法

纯基线资料表

| 1 | Α                         | В                       |
|---|---------------------------|-------------------------|
| 1 | characteristics           | overall                 |
| 2 | Pathologic T stage, n (%) |                         |
| 3 | T1                        | 8 (10.1%)               |
| 4 | T2                        | 27 (34.2%)              |
| 5 | T3&T4                     | 44 (55.7%)              |
| 6 | Age, n (%)                |                         |
| 7 | <= 60                     | 53 (64.6%)              |
| 8 | > 60                      | 29 (35.4%)              |
| 9 | BMI, median (IQR)         | 22.175 (20.213, 24.687) |



- ▶ characteristics: 临床变量以及对应的分组
- ▶ overall: 对应的临床变量的统计描述。当变量为分类型时,为不同水平 level的计数和百分比;当变量为数值型时,或者是均值±标准差(样本数<=5000 且满足正态性或样本数>5000 时),或者是中位数(上下四分位)(样本数<=5000 且不满足正态性时)</p>





## 云端数据



本模块提供预清洗好的云端数据,<mark>不同平台的云端数据集的分子可能会有不同</mark>。 注意查看当前数据参数选中的云端数据。



## 参数说明

(说明: 标注了颜色的为常用参数。)

## 特殊参数



➤ 分组变量: 下拉框将列出对应所选数据集分子,可以输入关键字搜索分子, 基因 symbol 或 Ensembl ID,只能选单个分析。



▶ (临床)变量:下拉框将列出对应所选数据集的临床变量,加减号可修改变量。选中变量后,右侧可选关联的分类信息,如 Pathologic\_T\_stage对应 T1-T4 分类。





▶ 分组:在变量对应的分类中自定义比较分组。 加减号修改分组,一个框内的分类组可以合成一个组,如 T3和T4分类作为一组等等。注意,选择的分类(单个组)中样本数需要大于等于3,且分组数大于等于2,才能进行统计分析。根据具体情况可以自由选择参考组的分组。

## 数据处理



缺失值处理:缺失处理是在开始统计前统一处理还是不处理。(如果想要保证所有的变量的总和加起来都是一个值,可以选择去除任一变量缺失的样本,但是这么操作需要关注变量的缺失情况,如果缺失很多,则最终会留下来的样本会少)



#### 表格



- ▶ 表格类型:可选列联表、纯基线资料表。
- 列联表百分比统计:列联表中的分类变量的百分比统计方式,可选总数、按 列、按行和无,默认以总数。只有列联表才起作用。



- ▶ 强制正态的数值变量:影响数值变量的展示方式以及对应的统计检验方法的选择。当通过经验判断该变量应该为正态分布(进行 t 检验)时,可以选择对应变量(程序自动返回选项,只有数值变量中选择了变量才会起作用)。此处选择后,对应的数值变量的汇总模式会更换成均值±标准差
- 强制卡方的分类变量:影响分类变量的统计检验方法的选择。当通过经验判断该变量应该进行卡方检验时,可以选择对应变量(程序自动返回选项,只有分类变量中选择了变量才会起作用)



## 结果说明

#### 主要结果



主要结果格式为表格格式,提供 xlsx 和 docx 格式下载。

## 补充结果

| 变量                        | 类型          | 分类数量 | 缺失数量 | 是否纳入分析 | 补充说明 |
|---------------------------|-------------|------|------|--------|------|
| ERBB2                     | 分类变量        | 2    | 0    | 纳入     |      |
| Pathologic T stage        | 分类变量        | 3    | 3    | 纳入     |      |
| Age                       | 分类变量        | 2    | 0    | 纳入     |      |
| BMI                       | 数值变量        |      | 4    | 纳入     |      |
| 数: 82                     |             |      |      |        |      |
| *^^ ~~<br>某个分类变量的分类>10,将无 | 注记则为公米亦具/华尔 | 亦量   |      |        |      |

这里提供变量情况统计的表格,包含数据类型、缺失情况、是否纳入分析(纳入规则见数据格式)和补充说明。



# Pathologic T stage-理论频数表 用于评估分类变量适合用什么统计检验方法 Pathologic T stage Low expression of ERBB2 T1 1 (4.2) 7 (3.8) T2 15 (14) 12 (13) T3&T4 25 (22.8) 19 (21.2) Pathologic T stage中存在level满足 5>理论频数>=1 且 总样本数>=40 的条件,建议选用连续矫正卡方检验(Yates' correction)。(备注: 括号内为各个level的理论频数)

分类变量(本例为 Pathologic T stage 分类)会提供对应的理论频数情况,以及给出选择统计方法的理由。

| 古分类变量适合用什么 | 么统计检验方法                 |                          |
|------------|-------------------------|--------------------------|
| Age        | Low expression of ERBB2 | High expression of ERBB2 |
| <= 60      | 29 (26.5)               | 24 (26.5)                |
| > 60       | 12 (14.5)               | 17 (14.5)                |

分类变量(本例为 Age 分类)会提供对应的理论频数情况,以及给出选择统计方法的理由。

| 评估连续变量适合用作               | 十么统计检验方法           |                    |                     |         |        |
|--------------------------|--------------------|--------------------|---------------------|---------|--------|
|                          |                    | 正态性检验 (Shapiro-W   | ilk Normality Test) |         |        |
|                          | 分组                 | 变量                 | 自由度(df)             | 统计量     | p值     |
| Low ex                   | xpression of ERBB2 | BMI                | 40                  | 0.97362 | 0.4649 |
| High expression of ERBB2 |                    | BMI                | 38                  | 0.87899 | 0.0007 |
|                          | ž                  | 5差齐性检验 (Levene's t | est(Base on Mean))  |         |        |
| 变量                       | 自由度1(df1)          | É                  | 由度2(df2)            | 统计量     | p值     |
| BMI                      | 1                  |                    | 76                  | 7.7727  | 0.0067 |

数值变量(本例为 BMI 数值)会提供对应的正态性检验和方差齐性检验的结果, 以及给出选择统计方法的理由。



# 方法学

所有分析和可视化均在 R 4.2.1 中进行

涉及的 R 包: stats





# 如何引用

生信工具分析和可视化用的是 R 语言,可以直接写自己用 R 来进行分析和可视 化即可,可以无需引用仙桃,如果想要引用仙桃,可以在致谢部分 (Acknowledge) 致谢仙桃学术(www.xiantao.love)。

方法学部分可以参考对应说明文本中的内容以及一些文献中的描述。





## 常见问题

#### 1. 为什么不同的临床变量的总数会不同?

答:

因为数据集可能会存在有缺失数据,缺失数据在变量情况表中进行展示,如果缺失值不在分析前统一处理,则可能会存在有一些临床变量的总数和总的样本数对应不上的情况。变量最终是否纳入分析也是一个需要关注的问题。如果想要总数一样,可以在参数中选择在分析前统一处理缺失。

#### 2. 为什么结果中没有统计值?

答:

当变量不满足构成列联表条件或者表格类型选择列联表的,均无统计检验相关的数据。反之,根据分组内数据情况自动选择并生成统计检验结果,具体统计方法的选择及给出的理由可参考结果中的 **补充说明**。

3. 在云端数据框内看到的例数、选择临床变量的数目 以及 分析时候的例数不同,这个是什么情况?

答:

云端数据的例数一般是对应组学所有的例数,选择临床变量的数目为没有去除重复样本的例数,分析时候可能会有剔除样本,具体需要看说明文本中对于数据的处理情况的说明。

有一些云端数据是存在有一个临床样本检测了多次的情况,去除重复检测的样本,能够降低同一份临床数据被同时纳入而影响结果。虽然存在有重复检测,但是一般这些重复检测的样本的数量很少!同样,也有一些云端数据对应的临床数据是只有临床数据,而没有对应的平台(组学)的检测的,一般这些没有检测的数据都是会被剔除的。

本模块,可选 去除正常 + 去除无临床信息、去除正常 + 去除无临床信息 + 去除五官。



4. 为什么设置了分组信息,不显示统计检验结果?

答:

#### 原因可能有下:

- ① 分组列的分类数目,可能因为其他任一变量的缺失过多,导致分组变成<mark>单分</mark> 类(一组)。
- ② 在分组存在且满足条件时,任一**分类型**变量,如果<mark>存在有 level 的 理论频数 <1 占比大于百分之 20 的</mark>,则无法判断所使用的统计检验方法。
- ③ 在分组存在且满足条件时,任一**数值型**变量,如果<mark>存在有任一分组内的样本数小于3个的</mark>,则不做统计检验,且对应分组的统计描述缺失。

如果发现没有组间比较的统计检验结果时,<mark>可以先检查 补充结果 中的 变量情</mark>况 表,查看是否纳入分析和缺失数量的情况,尝试删除对应变量再进行分析。