Automata Theory (CS1.302)

Monsoon 2021, IIIT Hyderabad 22 November, Monday (Lecture 12)

Models of Computation

Turing Machines

Some Undecidable Languages (contd.)

The Halting Problem asks if we can construct a total TM H that accepts the language

$$H_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ halts on input} w \}.$$

Such a TM, in fact, does not exist. We can prove this by first assuming that H exists, and then constructing from it a total TM A for $A_t extTM$ (which we know cannot exist). In other words, we solve the Halting Problem by reduction from the accepting problem.

More concretely, given H, we can construct

$$\begin{split} A(\langle M,w\rangle) = & \text{Run } H(\langle M,w\rangle) \\ & \text{If } H \text{ accepts, run } M(w) \\ & \text{If } H \text{ rejects, reject.} \end{split}$$

Note that $H_t extTM$ is partially decidable (like $A_{\rm TM}$), as it can be recognised by simply simulating M on w.

Reduction

The key idea of the proof of undecidability of $H_{\rm TM}$ is reduction (in this case, from $A_{\rm TM}$).

When a language X can be solved using a solver for Y, we say that X reduces to Y, or $X \leq Y$.

Thus, if $A \preceq B$, then

• B is decidable $\implies A$ is decidable.

• A is undecidable $\implies B$ is undecidable.

Some problems that can be proved undecidable by reduction from H_{TM} are

$$\begin{split} E_{\mathrm{TM}} &= \{\langle M \rangle \mid L(M) = \Phi\}, \\ EQ_{\mathrm{TM}} &= \{\langle M_1, M_2 \rangle \mid L(M_1) = L(M_2)\}, \\ ALL_{\mathrm{TM}} \end{split}$$

Closure Properties of Decidable Languages

Recursive languages are closed under union; if R_1 and R_2 are decidable, then so is $R_1 \cup R_2$. We can prove this by constructing

$$\begin{split} M'(w) = & \text{Run } M_1(w) \text{ and } M_2(w) \\ & \text{Accept if either accepts.} \end{split}$$

The proofs for recursive languages being closed under intersection and complementation are analogous.

An important property is that L and \overline{L} are both recursively enumerable iff L is recursive.

To prove one direction, if L is recursive, L is trivially also recursively enumerable. \overline{L} can be decided by checking for L and giving the opposite output.

For the other direction, if L and \overline{L} are recursively enumerable, check for both of them simultaneously. At least one will halt because for any w, either $w \in L$ or $w \in \overline{L}$. Then if L halts first, give the same input; and if \overline{L} halts first, give the opposite output.

The two can be checked simultaneously using a time-sharing (or *dovetailing*) technique, which is to run each of them alternately for a finite number of steps.

Closure Properties of Recognisable Languages

Using dovetailing, it is easy to prove that recursively enumerable languages are also closed under union and intersection. However, they are *not* closed under complementation; the above proved result makes this clear.

The class \mathbf{coRE} consists of languages whose complements are RE, *i.e.* $L \in \mathbf{coRE} \iff \overline{L} \in \mathbf{RE}$. Also, $R = \mathbf{RE} \cap \mathbf{coRE}$.

In fact, \mathbf{RE} consists of partially decidable problems, and \mathbf{coRE} of completely undecidable ones.