No. 4 C_s m (b-axis setting) [monoclinic] (axial)

表 1 rank 0

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
1	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	_	_	$\mathbb{G}_0^{(h,A^{\prime\prime})}$	${\tt Gh}({\tt O},{\tt A}^{\prime\prime},,)$	C_0

表 2 rank 1

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
2	A'	\mathtt{A}'	-	-	$\mathbb{G}_1^{(h,A')}$	${\tt Gh}(1,{\tt A}',,)$	S_1
3	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	1	_	$\mathbb{G}_1^{(h,A^{\prime\prime},1)}$	${\tt Gh}(1,{\tt A}^{\prime\prime},1,)$	C_1
4	A''	Α''	2		$\mathbb{G}_1^{(h,A^{\prime\prime},2)}$	${\tt Gh}(1,A^{\prime\prime},2,)$	C_0

表 3 rank 2

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
5	A'	A'	1	_	$\mathbb{G}_2^{(h,A',1)}$	${\tt Gh(2,A',1,)}$	S_1
6	A'	\mathtt{A}'	2	_	$\mathbb{G}_2^{(h,A',2)}$	${\tt Gh}(2,{\tt A}',2,)$	S_2
7	A''	$\mathtt{A}^{\prime\prime}$	1	_	$\mathbb{G}_2^{(h,A^{\prime\prime},1)}$	${\tt Gh}(2,{\tt A}^{\prime\prime},1,)$	C_0
8	A''	$\mathtt{A}^{\prime\prime}$	2	_	$\mathbb{G}_2^{(h,A^{\prime\prime},2)}$	${\tt Gh}(2,{\tt A}^{\prime\prime},2,)$	C_2
9	A''	Α''	3	_	$\mathbb{G}_2^{(h,A^{\prime\prime},3)}$	${\tt Gh(2,A'',3,)}$	C_1

表 4 rank 3

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
10	A'	\mathtt{A}'	1	_	$\mathbb{G}_3^{(h,A',1)}$	${\tt Gh}({\tt 3},{\tt A}',{\tt 1},)$	S_2
11	A'	\mathtt{A}'	2	_	$\mathbb{G}_3^{(h,A',2)}$	${\tt Gh}({\tt 3},{\tt A}',{\tt 2},)$	$-\frac{\sqrt{6}S_1}{4} - \frac{\sqrt{10}S_3}{4}$
12	A'	\mathtt{A}'	3	_	$\mathbb{G}_3^{(h,A',3)}$	${\tt Gh}({\tt 3},{\tt A}',{\tt 3},)$	$\frac{\sqrt{10}S_1}{4} - \frac{\sqrt{6}S_3}{4}$
13	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	1	_	$\mathbb{G}_3^{(h,A^{\prime\prime},1)}$	${\tt Gh}({\tt 3},{\tt A}'',{\tt 1},)$	$-\frac{\sqrt{6}C_1}{4} + \frac{\sqrt{10}C_3}{4}$
14	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	2	_	$\mathbb{G}_3^{(h,A^{\prime\prime},2)}$	${\tt Gh}({\tt 3},{\tt A}'',{\tt 2},)$	C_0
15	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	3	_	$\mathbb{G}_3^{(h,A^{\prime\prime},3)}$	${\tt Gh}({\tt 3},{\tt A}'',{\tt 3},)$	$-\frac{\sqrt{10}C_1}{4} - \frac{\sqrt{6}C_3}{4}$
16	A''	Α''	4	_	$\mathbb{G}_3^{(h,A^{\prime\prime},4)}$	${\tt Gh(3,A'',4,)}$	C_2

表 5 rank 4

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
17	A'	\mathtt{A}'	1	_	$\mathbb{G}_4^{(h,A',1)}$	${\tt Gh(4,A',1,)}$	$-\frac{\sqrt{14}S_1}{4} - \frac{\sqrt{2}S_3}{4}$
18	A'	\mathtt{A}'	2	_	$\mathbb{G}_4^{(h,A',2)}$	${\tt Gh}(4,{\tt A}',2,)$	S_4
19	A'	\mathtt{A}'	3	_	$\mathbb{G}_4^{(h,A',3)}$	${\tt Gh}({\tt 4},{\tt A}',{\tt 3},)$	$-\frac{\sqrt{2}S_1}{4} + \frac{\sqrt{14}S_3}{4}$
20	A'	\mathtt{A}'	4	_	$\mathbb{G}_4^{(h,A',4)}$	${\tt Gh}(4,{\tt A}',4,)$	S_2
21	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	1	_	$\mathbb{G}_4^{(h,A^{\prime\prime},1)}$	${\tt Gh}({\tt 4},{\tt A}^{\prime\prime},{\tt 1},)$	$\frac{\sqrt{21}C_0}{6} + \frac{\sqrt{15}C_4}{6}$
22	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	2	_	$\mathbb{G}_4^{(h,A^{\prime\prime},2)}$	${\tt Gh}(4,{\tt A}^{\prime\prime},2,)$	$\frac{\sqrt{15}C_0}{6} - \frac{\sqrt{21}C_4}{6}$
23	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	3	_	$\mathbb{G}_4^{(h,A^{\prime\prime},3)}$	${\tt Gh}(4,A^{\prime\prime},3,)$	$-C_2$
24	A''	$\mathtt{A}^{\prime\prime}$	4	_	$\mathbb{G}_4^{(h,A^{\prime\prime},4)}$	${\tt Gh}({\tt 4},{\tt A}'',{\tt 4},)$	$\frac{\sqrt{14}C_1}{4} - \frac{\sqrt{2}C_3}{4}$
25	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	5	_	$\mathbb{G}_4^{(h,A^{\prime\prime},5)}$	${\tt Gh}(4, {\tt A}^{\prime\prime}, {\tt 5},)$	$-\frac{\sqrt{2}C_1}{4} - \frac{\sqrt{14}C_3}{4}$

表 6 rank 5

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
26	A'	\mathtt{A}'	1	-	$\mathbb{G}_{5}^{(h,A',1)}$	${\tt Gh}({\tt 5},{\tt A}',{\tt 1},)$	S_4
27	A'	\mathtt{A}'	2	_	$\mathbb{G}_{5}^{(h,A',2)}$	${\tt Gh}({\tt 5},{\tt A}',{\tt 2},)$	$-S_2$
28	A'	\mathtt{A}'	3	_	$\mathbb{G}_5^{(h,A',3)}$	${\tt Gh}({\tt 5},{\tt A}',{\tt 3},)$	$\frac{\sqrt{15}S_1}{8} + \frac{\sqrt{70}S_3}{16} + \frac{3\sqrt{14}S_5}{16}$
29	A'	\mathtt{A}'	4	_	$\mathbb{G}_5^{(h,A',4)}$	${\tt Gh}({\tt 5},{\tt A}',{\tt 4},)$	$\frac{\sqrt{21}S_1}{8} - \frac{9\sqrt{2}S_3}{16} + \frac{\sqrt{10}S_5}{16}$
30	A'	\mathtt{A}'	5	_	$\mathbb{G}_5^{(h,A',5)}$	${\tt Gh}({\tt 5},{\tt A}',{\tt 5},)$	$-\frac{\sqrt{7}S_1}{4} - \frac{\sqrt{6}S_3}{8} + \frac{\sqrt{30}S_5}{8}$
31	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	1	_	$\mathbb{G}_{5}^{(h,A^{\prime\prime},1)}$	${\tt Gh}({\tt 5},{\tt A}^{\prime\prime},{\tt 1},)$	$\frac{\sqrt{15}C_1}{8} - \frac{\sqrt{70}C_3}{16} + \frac{3\sqrt{14}C_5}{16}$
32	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	2	_	$\mathbb{G}_{5}^{(h,A^{\prime\prime},2)}$	${\tt Gh}({\tt 5},{\tt A}^{\prime\prime},{\tt 2},)$	C_0
33	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	3	_	$\mathbb{G}_{5}^{(h,A^{\prime\prime},3)}$	${\tt Gh}({\tt 5},{\tt A}^{\prime\prime},{\tt 3},)$	$\frac{\sqrt{21}C_1}{8} + \frac{9\sqrt{2}C_3}{16} + \frac{\sqrt{10}C_5}{16}$
34	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	4	_	$\mathbb{G}_{5}^{(h,A^{\prime\prime},4)}$	${\tt Gh}({\tt 5},{\tt A}^{\prime\prime},{\tt 4},)$	C_4
35	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	5	_	$\mathbb{G}_{5}^{(h,A^{\prime\prime},5)}$	${\tt Gh}({\tt 5},{\tt A}^{\prime\prime},{\tt 5},)$	$\frac{\sqrt{7}C_1}{4} - \frac{\sqrt{6}C_3}{8} - \frac{\sqrt{30}C_5}{8}$
36	$A^{\prime\prime}$	Α"	6	_	$\mathbb{G}_{5}^{(h,A^{\prime\prime},6)}$	${\tt Gh}({\tt 5},{\tt A}^{\prime\prime},{\tt 6},)$	C_2

表 7 rank 6

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
37	A'	A'	1	_	$\mathbb{G}_6^{(h,A',1)}$	${\tt Gh(6,A',1,)}$	$\frac{\sqrt{3}S_1}{4} - \frac{\sqrt{30}S_3}{8} - \frac{\sqrt{22}S_5}{8}$
38	A'	\mathtt{A}'	2	_	$\mathbb{G}_6^{(h,A',2)}$	${\tt Gh}(6,{\tt A}',2,)$	S_4
39	A'	\mathtt{A}'	3	_	$\mathbb{G}_6^{(h,A',3)}$	${\tt Gh}(6,{\tt A}',3,)$	$\frac{3\sqrt{22}S_1}{16} + \frac{\sqrt{55}S_3}{16} + \frac{\sqrt{3}S_5}{16}$
40	A'	\mathtt{A}'	4	_	$\mathbb{G}_6^{(h,A',4)}$	${\tt Gh}(6,{\tt A}',4,)$	S_6
41	A'	\mathtt{A}'	5	_	$\mathbb{G}_6^{(h,A',5)}$	${\tt Gh}(6,{\tt A}',{\tt 5},)$	$\frac{\sqrt{10}S_1}{16} - \frac{9S_3}{16} + \frac{\sqrt{165}S_5}{16}$
42	A'	\mathtt{A}'	6	_	$\mathbb{G}_6^{(h,A',6)}$	${\tt Gh}(6,{\tt A}',6,)$	S_2
43	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	1	_	$\mathbb{G}_6^{(h,A^{\prime\prime},1)}$	${\tt Gh}(6,{\tt A}^{\prime\prime},1,)$	$\frac{\sqrt{2}C_0}{4} - \frac{\sqrt{14}C_4}{4}$
44	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	2	_	$\mathbb{G}_6^{(h,A^{\prime\prime},2)}$	${\tt Gh}(6,{\tt A}^{\prime\prime},2,)$	$\frac{\sqrt{11}C_2}{4} - \frac{\sqrt{5}C_6}{4}$
45	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	3	_	$\mathbb{G}_{6}^{(h,A^{\prime\prime},3)}$	${\tt Gh}(6,{\tt A}^{\prime\prime},3,)$	$\frac{\sqrt{14}C_0}{4} + \frac{\sqrt{2}C_4}{4}$
46	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	4	_	$\mathbb{G}_6^{(h,A^{\prime\prime},4)}$	${\tt Gh}(6,{\tt A}^{\prime\prime},4,)$	$\frac{\sqrt{5}C_2}{4} + \frac{\sqrt{11}C_6}{4}$
47	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	5	_	$\mathbb{G}_6^{(h,A^{\prime\prime},5)}$	${\tt Gh}(6,{\tt A}^{\prime\prime},5,)$	$-\frac{\sqrt{3}C_1}{4} - \frac{\sqrt{30}C_3}{8} + \frac{\sqrt{22}C_5}{8}$
48	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	6	_	$\mathbb{G}_6^{(h,A^{\prime\prime},6)}$	${\tt Gh}({\tt 6},{\tt A}^{\prime\prime},{\tt 6},)$	$\frac{3\sqrt{22}C_1}{16} - \frac{\sqrt{55}C_3}{16} + \frac{\sqrt{3}C_5}{16}$
49	A''	$\mathtt{A}^{\prime\prime}$	7	_	$\mathbb{G}_6^{(h,A^{\prime\prime},7)}$	${\tt Gh}({\tt 6},{\tt A}^{\prime\prime},{\tt 7},)$	$\frac{\sqrt{10}C_1}{16} + \frac{9C_3}{16} + \frac{\sqrt{165}C_5}{16}$

表 8 rank 7

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
50	A'	A'	1	_	$\mathbb{G}_7^{(h,A',1)}$	${\tt Gh}(7,{\tt A}',{\tt 1},)$	$\frac{\sqrt{78}S_2}{12} + \frac{\sqrt{66}S_6}{12}$
51	A'	\mathtt{A}'	2	_	$\mathbb{G}_7^{(h,A',2)}$	${\tt Gh}(7,{\tt A}',2,)$	S_4
52	A'	\mathtt{A}'	3	_	$\mathbb{G}_7^{(h,A',3)}$	${\tt Gh}(7,{\tt A}',3,)$	$\frac{\sqrt{66}S_2}{12} - \frac{\sqrt{78}S_6}{12}$
53	A'	\mathtt{A}'	4	_	$\mathbb{G}_7^{(h,A',4)}$	${\tt Gh}(7,{\tt A}',4,)$	$-\frac{5\sqrt{7}S_1}{32} - \frac{3\sqrt{21}S_3}{32} - \frac{\sqrt{231}S_5}{32} - \frac{\sqrt{429}S_7}{32}$
54	A'	\mathtt{A}'	5	_	$\mathbb{G}_7^{(h,A',5)}$	${\tt Gh}(7,{\tt A}',{\tt 5},)$	$-\frac{3\sqrt{33}S_1}{32} + \frac{\sqrt{11}S_3}{32} + \frac{25S_5}{32} - \frac{\sqrt{91}S_7}{32}$
55	A'	\mathtt{A}'	6	_	$\mathbb{G}_7^{(h,A',6)}$	${\tt Gh}(7,{\tt A}',6,)$	$\frac{\sqrt{858}S_1}{64} - \frac{3\sqrt{286}S_3}{64} + \frac{5\sqrt{26}S_5}{64} - \frac{\sqrt{14}S_7}{64}$
56	A'	\mathtt{A}'	7	_	$\mathbb{G}_7^{(h,A',7)}$	${\tt Gh}(7,{\tt A}',7,)$	$\frac{15\sqrt{6}S_1}{64} + \frac{19\sqrt{2}S_3}{64} + \frac{\sqrt{22}S_5}{64} - \frac{\sqrt{2002}S_7}{64}$
57	A''	$\mathtt{A}^{\prime\prime}$	1	_	$\mathbb{G}_7^{(h,A^{\prime\prime},1)}$	${\tt Gh}({\tt 7},{\tt A}^{\prime\prime},{\tt 1},)$	$-\frac{5\sqrt{7}C_1}{32} + \frac{3\sqrt{21}C_3}{32} - \frac{\sqrt{231}C_5}{32} + \frac{\sqrt{429}C_7}{32}$
58	A''	$\mathtt{A}^{\prime\prime}$	2	_	$\mathbb{G}_7^{(h,A^{\prime\prime},2)}$	${\tt Gh}(7,{\tt A}^{\prime\prime},2,)$	C_0
59	A''	$\mathtt{A}^{\prime\prime}$	3	_	$\mathbb{G}_7^{(h,A^{\prime\prime},3)}$	${\tt Gh}({\tt 7},{\tt A}^{\prime\prime},{\tt 3},)$	$-\frac{3\sqrt{33}C_1}{32} - \frac{\sqrt{11}C_3}{32} + \frac{25C_5}{32} + \frac{\sqrt{91}C_7}{32}$
60	A''	$\mathtt{A}^{\prime\prime}$	4	_	$\mathbb{G}_7^{(h,A^{\prime\prime},4)}$	${\tt Gh}({\tt 7},{\tt A}^{\prime\prime},{\tt 4},)$	C_4
61	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	5	_	$\mathbb{G}_7^{(h,A^{\prime\prime},5)}$	${\tt Gh}(7,{\tt A}^{\prime\prime},{\tt 5},)$	$-\frac{\sqrt{858}C_1}{64} - \frac{3\sqrt{286}C_3}{64} - \frac{5\sqrt{26}C_5}{64} - \frac{\sqrt{14}C_7}{64}$
62	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	6	_	$\mathbb{G}_7^{(h,A^{\prime\prime},6)}$	${\tt Gh}(7,{\tt A}^{\prime\prime},6,)$	C_6
63	A''	$\mathtt{A}^{\prime\prime}$	7	_	$\mathbb{G}_7^{(h,A^{\prime\prime},7)}$	${\tt Gh}(7,{\tt A}^{\prime\prime},7,)$	$-\frac{15\sqrt{6}C_1}{64} + \frac{19\sqrt{2}C_3}{64} - \frac{\sqrt{22}C_5}{64} - \frac{\sqrt{2002}C_7}{64}$
64	A''	Α''	8	_	$\mathbb{G}_7^{(h,A^{\prime\prime},8)}$	${\tt Gh}(7,{\tt A}^{\prime\prime},8,)$	C_2

表 9 rank 8

No. irrep. (tag) mul. comp. harmonics (tag) definition	
- (9/	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{\sqrt{35}S_5}{32} - \frac{S_7}{32}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ 67 \qquad A' \qquad \text{A}' \qquad 3 \qquad - \qquad \mathbb{G}_8^{(h,A',3)} \qquad \text{Gh}(8,\mathbf{A}',3,) \qquad -\frac{\sqrt{77}S_1}{32} + \frac{5\sqrt{15}S_3}{32} - \frac{3\sqrt{15}}{32} + \frac{3\sqrt{15}S_3}{32} - \frac{3\sqrt{15}}{32} + \frac{3\sqrt{15}S_3}{32} - \frac{3\sqrt{15}}{32} + \frac{3\sqrt{15}S_3}{32} - \frac{3\sqrt{15}S_$	$\frac{1}{S_5} - \frac{\sqrt{455}S_7}{32}$
$ 68 \qquad A' \qquad \textbf{A}' \qquad 4 \qquad - \qquad \mathbb{G}_8^{(h,A',4)} \qquad \textbf{Gh}(\textbf{8},\textbf{A}',\textbf{4},) \qquad \qquad S_4 $	
$ 69 \qquad A' \qquad \text{A}' \qquad 5 \qquad - \qquad \mathbb{G}_8^{(h,A',5)} \qquad \text{Gh}(8,\mathbf{A}',5,) \qquad -\frac{\sqrt{858}S_1}{64} + \frac{\sqrt{910}S_3}{64} + \frac{7\sqrt{4}}{66} + \frac{\sqrt{858}S_1}{64} + \sqrt{$	$\frac{2S_5}{1} + \frac{3\sqrt{30}S_7}{64}$
$70 \qquad A' \qquad \text{A}' \qquad 6 \qquad - \qquad \mathbb{G}_8^{(h,A',6)} \qquad \text{Gh}(\textbf{8},\textbf{A}',\textbf{6},) \qquad \qquad S_6$	
71 A' A' 7 $ \mathbb{G}_8^{(h,A',7)}$ $\mathrm{Gh}(8,A',7,)$ $-\frac{\sqrt{70}S_1}{64}+\frac{3\sqrt{66}S_3}{64}-\frac{\sqrt{1430}S_1}{64}$	$\frac{1}{1000} + \frac{\sqrt{2002}S_7}{64}$
$ 72 \qquad A' \qquad \text{A}' \qquad 8 \qquad - \qquad \mathbb{G}_8^{(h,A',8)} \qquad \text{Gh}(\textbf{8},\textbf{A}',\textbf{8},) \qquad \qquad S_2 $	
73 A'' A'' 1 $ \mathbb{G}_8^{(h,A'',1)}$ $\mathrm{Gh}(8,A'',1,)$ $\frac{\sqrt{33}C_0}{8} + \frac{\sqrt{21}C_4}{12} + \frac{1}{12}$	$\frac{\sqrt{195}C_8}{24}$
74 A'' A'' 2 $ \mathbb{G}_8^{(h,A'',2)}$ $\mathrm{Gh}(8,A'',2,)$ $-\frac{\sqrt{286}C_0}{32}+\frac{\sqrt{182}C_4}{16}$	$+\frac{\sqrt{10}C_8}{32}$
75 A'' A'' 3 $ \mathbb{G}_8^{(h,A'',3)}$ $\mathrm{Gh}(8,A'',3,)$ C_6	
$76 \qquad A'' \qquad \mathbf{A''} \qquad 4 \qquad - \qquad \mathbb{G}_8^{(h,A'',4)} \qquad \mathbf{Gh}(8,\mathbf{A''},4,) \qquad \qquad -\frac{\sqrt{210}C_0}{32} - \frac{\sqrt{330}C_4}{48} + \frac{1}{100}C_4 + \frac{1}{100}C_6 + \frac{1}{100}C$	$\frac{\sqrt{6006}C_8}{96}$
77 A'' A'' 5 - $\mathbb{G}_8^{(h,A'',5)}$ $\mathrm{Gh}(8,A'',5,)$ C_2	
78 A'' A'' 6 $ \mathbb{G}_8^{(h,A'',6)}$ $\mathrm{Gh}(8,A'',6,)$ $\frac{\sqrt{715}C_1}{32} - \frac{\sqrt{273}C_3}{32} + \frac{\sqrt{3}}{32}$	$\frac{\overline{35}C_5}{32} - \frac{C_7}{32}$
79 A'' A'' 7 $ \mathbb{G}_8^{(h,A'',7)}$ $\mathrm{Gh}(8,A'',7,)$ $\frac{\sqrt{77}C_1}{32} + \frac{5\sqrt{15}C_3}{32} + \frac{3\sqrt{13}C_3}{32} + \frac{3\sqrt{13}C$	$\frac{C_5}{32} - \frac{\sqrt{455}C_7}{32}$
$80 \qquad A'' \qquad \mathbf{A''} \qquad 8 \qquad - \qquad \mathbb{G}_8^{(h,A'',8)} \qquad \mathbf{Gh}(8,\mathbf{A''},8,) \qquad -\frac{\sqrt{858}C_1}{64} - \frac{\sqrt{910}C_3}{64} + \frac{7\sqrt{4}}{66} + \frac{\sqrt{10}C_3}{64} + \frac{1}{10}C_3}{64} + \frac{1}{10}C_3 + \frac$	$\frac{2C_5}{1} - \frac{3\sqrt{30}C_7}{64}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{C_5}{64} - \frac{\sqrt{2002}C_7}{64}$

表 10 rank 9

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
82	A'	\mathtt{A}'	1	-	$\mathbb{G}_9^{(h,A',1)}$	${\tt Gh}(9,A',1,)$	$rac{\sqrt{102}S_4}{12} - rac{\sqrt{42}S_8}{12}$
83	A'	\mathtt{A}'	2	_	$\mathbb{G}_9^{(h,A',2)}$	${\tt Gh}(9,A',2,)$	$\frac{\sqrt{3}S_2}{4} - \frac{\sqrt{13}S_6}{4}$
84	A'	\mathtt{A}'	3	-	$\mathbb{G}_9^{(h,A',3)}$	${\tt Gh}(9,A',3,)$	$\frac{\sqrt{42}S_4}{12} + \frac{\sqrt{102}S_8}{12}$
85	A'	\mathtt{A}'	4	-	$\mathbb{G}_9^{(h,A',4)}$	${\tt Gh}(9,A',4,)$	$-rac{\sqrt{13}S_2}{4} - rac{\sqrt{3}S_6}{4}$
86	A'	\mathtt{A}'	5	-	$\mathbb{G}_9^{(h,A',5)}$	${\tt Gh}(9, {\tt A}^{\prime}, {\tt 5},)$	$\frac{21\sqrt{5}S_1}{128} + \frac{\sqrt{2310}S_3}{128} + \frac{3\sqrt{286}S_5}{128} + \frac{3\sqrt{1430}S_7}{256} + \frac{\sqrt{24310}S_9}{256}$
87	A'	\mathtt{A}'	6	_	$\mathbb{G}_9^{(h,A',6)}$	${\tt Gh}(9, {\tt A}^\prime, 6,)$	$\frac{\sqrt{2431}S_1}{128} - \frac{\sqrt{9282}S_3}{128} + \frac{5\sqrt{170}S_5}{128} - \frac{7\sqrt{34}S_7}{256} + \frac{3\sqrt{2}S_9}{256}$
88	A'	\mathtt{A}'	7	_	$\mathbb{G}_9^{(h,A',7)}$	${\tt Gh}(9,{\tt A}',7,)$	$\frac{\sqrt{1001}S_1}{64} + \frac{\sqrt{78}S_3}{64} - \frac{3\sqrt{70}S_5}{64} - \frac{23\sqrt{14}S_7}{128} + \frac{3\sqrt{238}S_9}{128}$
89	A'	\mathtt{A}'	8	-	$\mathbb{G}_9^{(h,A',8)}$	${\tt Gh}(9, {\tt A}', 8,)$	$-\frac{\sqrt{858}S_1}{64} + \frac{\sqrt{91}S_3}{32} + \frac{5\sqrt{15}S_5}{32} - \frac{21\sqrt{3}S_7}{64} + \frac{\sqrt{51}S_9}{64}$
90	A'	\mathtt{A}'	9	-	$\mathbb{G}_9^{(h,A',9)}$	${\tt Gh}(9, {\tt A}', 9,)$	$-\frac{7\sqrt{22}S_1}{64} - \frac{3\sqrt{21}S_3}{32} - \frac{\sqrt{65}S_5}{32} + \frac{\sqrt{13}S_7}{64} + \frac{3\sqrt{221}S_9}{64}$
91	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	1	_	$\mathbb{G}_9^{(h,A^{\prime\prime},1)}$	${\tt Gh}(9,A^{\prime\prime},1,)$	$\frac{21\sqrt{5}C_1}{128} - \frac{\sqrt{2310}C_3}{128} + \frac{3\sqrt{286}C_5}{128} - \frac{3\sqrt{1430}C_7}{256} + \frac{\sqrt{24310}C_9}{256}$
92	A''	$\mathtt{A}^{\prime\prime}$	2	-	$\mathbb{G}_9^{(h,A^{\prime\prime},2)}$	${\tt Gh}(9,{\tt A}'',2,)$	C_0
93	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	3	_	$\mathbb{G}_9^{(h,A^{\prime\prime},3)}$	${\tt Gh}(9,A^{\prime\prime},3,)$	$\frac{\sqrt{2431}C_1}{128} + \frac{\sqrt{9282}C_3}{128} + \frac{5\sqrt{170}C_5}{128} + \frac{7\sqrt{34}C_7}{256} + \frac{3\sqrt{2}C_9}{256}$
94	A''	$\mathtt{A}^{\prime\prime}$	4	-	$\mathbb{G}_9^{(h,A^{\prime\prime},4)}$	${\tt Gh}(9,{\tt A}^{\prime\prime},4,)$	C_8
95	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	5	_	$\mathbb{G}_9^{(h,A^{\prime\prime},5)}$	${\tt Gh}(9,{\tt A}^{\prime\prime},5,)$	$\frac{\sqrt{1001}C_1}{64} - \frac{\sqrt{78}C_3}{64} - \frac{3\sqrt{70}C_5}{64} + \frac{23\sqrt{14}C_7}{128} + \frac{3\sqrt{238}C_9}{128}$
96	A''	$\mathtt{A}^{\prime\prime}$	6	-	$\mathbb{G}_9^{(h,A^{\prime\prime},6)}$	${\tt Gh}(9,{\tt A}^{\prime\prime},6,)$	C_4
97	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	7	_	$\mathbb{G}_9^{(h,A^{\prime\prime},7)}$	${\tt Gh}(9,{\tt A}^{\prime\prime},7,)$	$\frac{\sqrt{858}C_1}{64} + \frac{\sqrt{91}C_3}{32} - \frac{5\sqrt{15}C_5}{32} - \frac{21\sqrt{3}C_7}{64} - \frac{\sqrt{51}C_9}{64}$
98	A''	$\mathtt{A}^{\prime\prime}$	8	-	$\mathbb{G}_9^{(h,A^{\prime\prime},8)}$	${\tt Gh}(9,{\tt A}^{\prime\prime},8,)$	C_6
99	A''	$\mathtt{A}^{\prime\prime}$	9	-	$\mathbb{G}_9^{(h,A^{\prime\prime},9)}$	${\tt Gh}(9,{\tt A}^{\prime\prime},9,)$	$\frac{7\sqrt{22}C_1}{64} - \frac{3\sqrt{21}C_3}{32} + \frac{\sqrt{65}C_5}{32} + \frac{\sqrt{13}C_7}{64} - \frac{3\sqrt{221}C_9}{64}$
100	A''	Α"	10	_	$\mathbb{G}_9^{(h,A^{\prime\prime},10)}$	${\tt Gh(9,A'',10,)}$	C_2

表 11 rank 10

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
101	A'	A'	1	_	$\mathbb{G}_{10}^{(h,A',1)}$	${\tt Gh(10,A',1,)}$	$\frac{\sqrt{221}S_1}{32} - \frac{\sqrt{102}S_3}{32} - \frac{\sqrt{510}S_5}{32} - \frac{11\sqrt{6}S_7}{64} - \frac{\sqrt{38}S_9}{64}$
102	A'	\mathtt{A}'	2	_	$\mathbb{G}_{10}^{(h,A',2)}$	${\tt Gh(10,A',2,)}$	S_8
103	A'	\mathtt{A}'	3	=	$\mathbb{G}_{10}^{(h,A',3)}$	${\tt Gh(10,A',3,)}$	$\frac{\sqrt{39}S_1}{32} - \frac{11\sqrt{2}S_3}{32} + \frac{5\sqrt{10}S_5}{32} - \frac{\sqrt{34}S_7}{64} - \frac{\sqrt{1938}S_9}{64}$
104	A'	\mathtt{A}'	4	_	$\mathbb{G}_{10}^{(h,A',4)}$	${\tt Gh(10,A',4,)}$	S_4
105	A'	\mathtt{A}'	5	_	$\mathbb{G}_{10}^{(h,A',5)}$	${\tt Gh(10,A',5,)}$	$\frac{\sqrt{41990}S_1}{256} + \frac{\sqrt{4845}S_3}{128} + \frac{\sqrt{969}S_5}{128} + \frac{\sqrt{285}S_7}{256} + \frac{\sqrt{5}S_9}{256}$
106	A'	\mathtt{A}'	6	_	$\mathbb{G}_{10}^{(h,A',6)}$	${\tt Gh(10,A',6,)}$	S_{10}
107	A'	\mathtt{A}'	7	_	$\mathbb{G}_{10}^{(h,A',7)}$	${\tt Gh(10,A',7,)}$	$\frac{9\sqrt{78}S_1}{256} - \frac{69S_3}{128} - \frac{\sqrt{5}S_5}{128} + \frac{43\sqrt{17}S_7}{256} + \frac{3\sqrt{969}S_9}{256}$
108	A'	\mathtt{A}'	8	-	$\mathbb{G}_{10}^{(h,A',8)}$	${\tt Gh(10,A',8,)}$	S_6
109	A'	\mathtt{A}'	9	=	$\mathbb{G}_{10}^{(h,A',9)}$	${\tt Gh(10,A',9,)}$	$\frac{7\sqrt{3}S_1}{128} - \frac{7\sqrt{26}S_3}{128} + \frac{5\sqrt{130}S_5}{128} - \frac{7\sqrt{442}S_7}{256} + \frac{\sqrt{25194}S_9}{256}$
110	A'	\mathtt{A}'	10	=	$\mathbb{G}_{10}^{(h,A',10)}$	${\tt Gh(10,A',10,)}$	S_2
111	A''	$\mathtt{A}^{\prime\prime}$	1	-	$\mathbb{G}_{10}^{(h,A^{\prime\prime},1)}$	${\tt Gh(10,A'',1,)}$	$\frac{\sqrt{390}C_0}{48} - \frac{\sqrt{22}C_4}{8} - \frac{\sqrt{1122}C_8}{48}$
112	A''	$\mathtt{A}^{\prime\prime}$	2	-	$\mathbb{G}_{10}^{(h,A^{\prime\prime},2)}$	${\tt Gh(10,A'',2,)}$	$-\frac{\sqrt{85}C_{10}}{16} + \frac{\sqrt{1482}C_2}{48} + \frac{\sqrt{57}C_6}{48}$
113	A''	$\mathtt{A}^{\prime\prime}$	3	-	$\mathbb{G}_{10}^{(h,A^{\prime\prime},3)}$	${\tt Gh(10,A'',3,)}$	$\frac{11\sqrt{420189}C_0}{8988} + \frac{\sqrt{827645}C_4}{1498} - \frac{\sqrt{146055}C_8}{8988}$
114	A''	$\mathtt{A}^{\prime\prime}$	4	-	$\mathbb{G}_{10}^{(h,A^{\prime\prime},4)}$	${\tt Gh}({\tt 10},{\tt A}^{\prime\prime},{\tt 4},)$	$\frac{\sqrt{370006}C_{10}}{749} + \frac{\sqrt{190995}C_2}{749}$
115	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	5	=	$\mathbb{G}_{10}^{(h,A^{\prime\prime},5)}$	${\tt Gh(10,A'',5,)}$	$\frac{3\sqrt{3213210}C_0}{11984} - \frac{83\sqrt{1498}C_4}{5992} + \frac{31\sqrt{76398}C_8}{11984}$
116	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	6	=	$\mathbb{G}_{10}^{(h,A^{\prime\prime},6)}$	${\tt Gh}({\tt 10},{\tt A}^{\prime\prime},{\tt 6},)$	$\frac{\sqrt{1209635}C_{10}}{11984} - \frac{19\sqrt{58422}C_2}{35952} + \frac{\sqrt{2247}C_6}{48}$
117	A''	$\mathtt{A}^{\prime\prime}$	7	-	$\mathbb{G}_{10}^{(h,A^{\prime\prime},7)}$	${\tt Gh(10,A'',7,)}$	$-\frac{\sqrt{221}C_1}{32} - \frac{\sqrt{102}C_3}{32} + \frac{\sqrt{510}C_5}{32} - \frac{11\sqrt{6}C_7}{64} + \frac{\sqrt{38}C_9}{64}$
118	A''	$\mathtt{A}^{\prime\prime}$	8	_	$\mathbb{G}_{10}^{(h,A^{\prime\prime},8)}$	${\tt Gh(10,A'',8,)}$	$-\frac{\sqrt{39}C_1}{32} - \frac{11\sqrt{2}C_3}{32} - \frac{5\sqrt{10}C_5}{32} - \frac{\sqrt{34}C_7}{64} + \frac{\sqrt{1938}C_9}{64}$
119	A''	$\mathtt{A}^{\prime\prime}$	9	_	$\mathbb{G}_{10}^{(h,A^{\prime\prime},9)}$	${\tt Gh(10,A'',9,)}$	$\frac{\sqrt{41990}C_1}{256} - \frac{\sqrt{4845}C_3}{128} + \frac{\sqrt{969}C_5}{128} - \frac{\sqrt{285}C_7}{256} + \frac{\sqrt{5}C_9}{256}$
120	A''	$\mathtt{A}^{\prime\prime}$	10	_	$\mathbb{G}_{10}^{(h,A'',10)}$	$\mathtt{Gh}(\mathtt{10},\mathtt{A}'',\mathtt{10},)$	$\frac{9\sqrt{78}C_1}{256} + \frac{69C_3}{128} - \frac{\sqrt{5}C_5}{128} - \frac{43\sqrt{17}C_7}{256} + \frac{3\sqrt{969}C_9}{256}$
121	A''	$\mathtt{A}^{\prime\prime}$	11	_	$\mathbb{G}_{10}^{(h,A^{\prime\prime},11)}$	${\tt Gh(10,A'',11,)}$	$\frac{7\sqrt{3}C_1}{128} + \frac{7\sqrt{26}C_3}{128} + \frac{5\sqrt{130}C_5}{128} + \frac{7\sqrt{442}C_7}{256} + \frac{\sqrt{25194}C_9}{256}$

表 12 rank 11

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
122	A'	\mathtt{A}'	1	_	$\mathbb{G}_{11}^{(h,A',1)}$	${\tt Gh(11,A',1,)}$	$\frac{\sqrt{798}S_{10}}{48} + \frac{\sqrt{255}S_2}{24} + \frac{3\sqrt{6}S_6}{16}$
123	A'	\mathtt{A}'	2	_	$\mathbb{G}_{11}^{(h,A',2)}$	${\tt Gh(11,A',2,)}$	S_8
124	A'	\mathtt{A}'	3	_	$\mathbb{G}_{11}^{(h,A',3)}$	${\tt Gh(11,A',3,)}$	$-\frac{\sqrt{210}S_{10}}{96} + \frac{\sqrt{969}S_2}{48} - \frac{\sqrt{570}S_6}{32}$
125	A'	\mathtt{A}'	4	_	$\mathbb{G}_{11}^{(h,A',4)}$	${\tt Gh(11,A',4,)}$	S_4
126	A'	\mathtt{A}'	5	_	$\mathbb{G}_{11}^{(h,A',5)}$	${\tt Gh(11,A',5,)}$	$-\frac{\sqrt{646}S_{10}}{32} + \frac{\sqrt{35}S_2}{16} + \frac{\sqrt{238}S_6}{32}$
127	A'	\mathtt{A}'	6	_	$\mathbb{G}_{11}^{(h,A',6)}$	${\tt Gh(11,A',6,)}$	$-\frac{21\sqrt{66}S_1}{512}-\frac{\sqrt{88179}S_{11}}{512}-\frac{\sqrt{30030}S_3}{512}-\frac{15\sqrt{143}S_5}{512}-\frac{\sqrt{36465}S_7}{512}-\frac{\sqrt{46189}S_9}{512}$
128	A'	\mathtt{A}'	7	_	$\mathbb{G}_{11}^{(h,A',7)}$	${\tt Gh(11,A',7,)}$	$-\frac{\sqrt{41990}S_1}{512} - \frac{\sqrt{385}S_{11}}{512} + \frac{3\sqrt{4522}S_3}{512} + \frac{3\sqrt{4845}S_5}{512} - \frac{77\sqrt{19}S_7}{512} + \frac{39\sqrt{15}S_9}{512}$
129	A'	\mathtt{A}'	8	_	$\mathbb{G}_{11}^{(h,A',8)}$	${\tt Gh(11,A',8,)}$	$-\frac{5\sqrt{546}S_1}{256} - \frac{\sqrt{10659}S_{11}}{256} - \frac{11\sqrt{30}S_3}{256} + \frac{13\sqrt{7}S_5}{256} + \frac{3\sqrt{1785}S_7}{256} + \frac{3\sqrt{2261}S_9}{256}$
130	A'	\mathtt{A}'	9	_	$\mathbb{G}_{11}^{(h,A',9)}$	${\tt Gh(11,A',9,)}$	$\frac{\sqrt{29393}S_1}{512} - \frac{\sqrt{22}S_{11}}{1024} - \frac{9\sqrt{1615}S_3}{512} + \frac{5\sqrt{13566}S_5}{1024} - \frac{7\sqrt{1330}S_7}{1024} + \frac{9\sqrt{42}S_9}{1024}$
131	A'	\mathtt{A}'	10	_	$\mathbb{G}_{11}^{(h,A',10)}$	${\tt Gh(11,A',10,)}$	$\frac{15\sqrt{221}S_1}{512} - \frac{3\sqrt{2926}S_{11}}{1024} - \frac{\sqrt{595}S_3}{512} - \frac{53\sqrt{102}S_5}{1024} - \frac{105\sqrt{10}S_7}{1024} + \frac{61\sqrt{114}S_9}{1024}$
132	A'	\mathtt{A}'	11	_	$\mathbb{G}_{11}^{(h,A',11)}$	${\tt Gh(11,A',11,)}$	$\frac{21\sqrt{130}S_1}{512} - \frac{\sqrt{124355}S_{11}}{512} + \frac{57\sqrt{14}S_3}{512} + \frac{41\sqrt{15}S_5}{512} + \frac{17\sqrt{17}S_7}{512} - \frac{\sqrt{4845}S_9}{512}$
133	$A^{\prime\prime}$	$\mathtt{A}^{\prime\prime}$	1	_	$\mathbb{G}_{11}^{(h,A^{\prime\prime},1)}$	${\tt Gh(11,A'',1,)}$	$-\frac{21\sqrt{66}C_1}{512}+\frac{\sqrt{88179}C_{11}}{512}+\frac{\sqrt{30030}C_3}{512}-\frac{15\sqrt{143}C_5}{512}+\frac{\sqrt{36465}C_7}{512}-\frac{\sqrt{46189}C_9}{512}$
134	A''	$\mathtt{A}^{\prime\prime}$	2	_	$\mathbb{G}_{11}^{(h,A^{\prime\prime},2)}$	${\tt Gh}({\tt 11},{\tt A}^{\prime\prime},{\tt 2},)$	C_0
135	A''	$\mathtt{A}^{\prime\prime}$	3	_	$\mathbb{G}_{11}^{(h,A^{\prime\prime},3)}$	${\tt Gh}({\tt 11},{\tt A}^{\prime\prime},{\tt 3},)$	$-\frac{\sqrt{41990}C_1}{512} + \frac{\sqrt{385}C_{11}}{512} - \frac{3\sqrt{4522}C_3}{512} + \frac{3\sqrt{4845}C_5}{512} + \frac{77\sqrt{19}C_7}{512} + \frac{39\sqrt{15}C_9}{512}$
136	A''	$\mathtt{A}^{\prime\prime}$	4	_	$\mathbb{G}_{11}^{(h,A^{\prime\prime},4)}$	${\tt Gh}({\tt 11},{\tt A}^{\prime\prime},{\tt 4},)$	C_8
137	A''	$\mathtt{A}^{\prime\prime}$	5	_	$\mathbb{G}_{11}^{(h,A^{\prime\prime},5)}$	${\tt Gh(11,A'',5,)}$	$-\frac{5\sqrt{546}C_1}{256}+\frac{\sqrt{10659}C_{11}}{256}+\frac{11\sqrt{30}C_3}{256}+\frac{13\sqrt{7}C_5}{256}-\frac{3\sqrt{1785}C_7}{256}+\frac{3\sqrt{2261}C_9}{256}$
138	A''	$\mathtt{A}^{\prime\prime}$	6	_	$\mathbb{G}_{11}^{(h,A^{\prime\prime},6)}$	${\tt Gh(11,A'',6,)}$	C_4
139	A''	$\mathtt{A}^{\prime\prime}$	7	_	$\mathbb{G}_{11}^{(h,A^{\prime\prime},7)}$	${\tt Gh(11,A'',7,)}$	$-\frac{\sqrt{29393}C_1}{512}-\frac{\sqrt{22}C_{11}}{1024}-\frac{9\sqrt{1615}C_3}{512}-\frac{5\sqrt{13566}C_5}{1024}-\frac{7\sqrt{1330}C_7}{1024}-\frac{9\sqrt{42}C_9}{1024}$
140	A''	$\mathtt{A}^{\prime\prime}$	8	_	$\mathbb{G}_{11}^{(h,A^{\prime\prime},8)}$	${\tt Gh(11,A'',8,)}$	C_{10}
141	A''	$\mathtt{A}^{\prime\prime}$	9	-	$\mathbb{G}_{11}^{(h,A^{\prime\prime},9)}$	${\tt Gh(11,A'',9,)}$	$-\frac{15\sqrt{221}C_1}{512}-\frac{3\sqrt{2926}C_{11}}{1024}-\frac{\sqrt{595}C_3}{512}+\frac{53\sqrt{102}C_5}{1024}-\frac{105\sqrt{10}C_7}{1024}-\frac{61\sqrt{114}C_9}{1024}$
142	A''	$\mathtt{A}^{\prime\prime}$	10	-	$\mathbb{G}_{11}^{(h,A^{\prime\prime},10)}$	${\tt Gh(11,A'',10,)}$	C_6
143	A''	$\mathtt{A}^{\prime\prime}$	11	-	$\mathbb{G}_{11}^{(h,A^{\prime\prime},11)}$	${\tt Gh(11,A'',11,)}$	$-\frac{21\sqrt{130}C_1}{512}-\frac{\sqrt{124355}C_{11}}{512}+\frac{57\sqrt{14}C_3}{512}-\frac{41\sqrt{15}C_5}{512}+\frac{17\sqrt{17}C_7}{512}+\frac{\sqrt{4845}C_9}{512}$
144	A''	$\mathtt{A}^{\prime\prime}$	12	-	$\mathbb{G}_{11}^{(h,A^{\prime\prime},12)}$	${\tt Gh(11,A'',12,)}$	C_2