SESIÓN 4:

SUPERPOSICIÓN DE SEÑALES DC Y AC

Construya el circuito en el panel de la entrenadora. La señal de tensión continua V₁ de 10 V DC será la proporcionada por la fuente S1. La señal de tensión sinusoidal V₂ se obtendrá del generador de funciones, fijando inicialmente una amplitud de 2V y una frecuencia de 1kHz. Conectaremos con un cable la señal a la entrenadora.

Utilice el canal 1 del osciloscopio en modo de acoplamiento DC y mida la diferencia de tensión en el nodo A (V_A) Represente su valor en función del tiempo, indicando los valores máximos y mínimos que alcanza la señal.

Como podemos observar, la señal tiene un Vpp de 1.92V, el valor máximo que nos muestra el osciloscopio es de 2.76V, y el mínimo de 840mV, siendo el promedio de 1.81V.

A continuación, represente en el osciloscopio <u>únicamente la componente alterna</u> de la tensión en el nodo A utilizando el modo de acoplamiento AC. Varíe entonces la frecuencia desde 50 Hz hasta 50 kHz 'logarítmicamente' tomando varios puntos por década (por ej. 50, 60, 70, 80, 90, 100, 200, ... 800, 900, 1000, 2000, ... 8000, 9000, 10000, 20000, 30000, 40000, 50000) Realice las siguientes tareas <u>para cada una de las frecuencias</u>:

- a) Mida la amplitud de la señal V_A.
- b) Mida la amplitud de la señal de entrada V₂ usando el Canal 2.
- c) Mida el desfase temporal (δt) entre las dos ondas. Utilice siempre como referencia la misma onda

Frecuencia (Hz)	Modulo de Vab (V)	Modulo de V2 (V)	ΔV (V)	Desfase temporal (ms)	Ganancia Lineal	Desfase temporal grados
10	0.012	2.04	-44.608978	27.3	0.005882353	98.28
20	0.0132	2.04	-43.781125	12.3	0.006470588	88.56
30	0.0288	2.04	-37.004754	8.4	0.014117647	90.72
40	0.044	2.04	-33.32355	6.5	0.021568627	93.6
50	0.055	2.04	-31.38535	4.9	0.026960784	88.2
60	0.066	2.04	-29.801725	4	0.032352941	86.4
70	0.075	2.04	-28.691378	3.5	0.036764706	88.2
80	0.087	2.04	-27.402218	3	0.042647059	86.4
90	0.098	2.04	-26.368082	2.8	0.048039216	90.72
100	0.108	2.04	-25.524128	2.36	0.052941176	84.96
200	0.214	2.04	-19.584328	1.14	0.104901961	82.08
300	0.316	2.04	-16.198862	0.76	0.154901961	82.08
400	0.424	2.04	-13.645286	0.54	0.207843137	77.76
500	0.52	2.04	-11.872536	0.45	0.254901961	81
600	0.62	2.04	-10.34477	0.35	0.303921569	75.6
700	0.71	2.04	-9.1674364	0.29	0.348039216	73.08
800	0.79	2.04	-8.2400615	0.25	0.387254902	72
900	0.87	2.04	-7.4022183	0.2	0.426470588	64.8
1000	0.94	1.96	-6.3825644	0.18	0.479591837	64.8
2000	1.44	1.96	-2.6778716	0.066	0.734693878	47.52
3000	1.64	1.92	-1.3691476	0.032	0.854166667	34.56
4000	1.76	1.92	-0.7557712	0.017	0.916666667	24.48
5000	1.8	1.92	-0.5605745	0.012	0.9375	21.6
6000	1.84	1.92	-0.3696681	0.01	0.958333333	21.6
7000	1.88	1.92	-0.1828676	0.005	0.979166667	12.6
8000	1.88	1.92	-0.1828676	0	0.979166667	0
9000	1.88	1.92	-0.1828676	0	0.979166667	0
10000	1.85	1.85	0	0	1	0
20000	1.9	1.85	0.23163745	0	1.027027027	0
30000	1.92	1.85	0.32259001	0	1.037837838	0
40000	1.92	1.85	0.32259001	0	1.037837838	0
50000	1.92	1.85	0.32259001	0	1.037837838	0
60000	1.92	1.85	0.32259001	0	1.037837838	0
70000	1.92	1.85	0.32259001	0	1.037837838	0
80000	1.92	1.85	0.32259001	0	1.037837838	0
90000	1.92	1.85	0.32259001	0	1.037837838	0
100000	1.94	1.85	0.41260003	0	1.048648649	0

10Hz 100Hz

1000Hz

100000Hz

$$\Delta V = \frac{R2||R1}{R2||R1 + Zc} =$$

$$\Delta V = \frac{\frac{(R2||R1)}{Zc}}{1 + (\frac{R2||R1)}{Zc}} = \frac{jwcR1||R2}{1 + jwcR1||R2} = \frac{\frac{jw}{w1}}{1 + \frac{jw}{w2}}$$
$$20 * log\left(\frac{\frac{w}{w1}}{\sqrt{1 + \frac{w^2}{w2^2}}}\right)$$

$$w1 = w2 = \frac{1}{C1R1||R2} = 12127,659w = 1920,17Hz$$

		Módulo de
	Módulo de ganancia LTSPICE	ganancia teórica
Frecuencia(Hz)	(dB)	(dB)
10	-45.712059	-45.712059
100	-25.723584	-25.723584
1000	-6.7445541	-6.7445538
10000	-158.85885m	-158.85884m
100000	-1.6176989m	-1.6176987m
1000000	-16.179972μ	-16.17997µ
10000000	-161.80002n	-161.79n

Podemos observar que las gráficas se ajustan a las predicciones de la simulación, obtenemos un filtro paso-alto ya que a medida que vamos aumentando la frecuencia, la ganancia va aumentando, hasta llegar a 0. Y un desfase que empieza en 90° y va bajando hasta los 0°, situándose a unos 45° cuando alcanzamos la frecuencia de corte. En cuanto a la ganancia lineal, empezamos con una ganancia de 0, hasta llegar a la Amax=1, pasando por $\frac{Amax}{\sqrt{2}} = 0.7$ cuando alcanza la frecuencia de corte.

Determine la frecuencia de corte para el circuito y compare con el valor teórico.

Podemos obtener la frecuencia del filtro calculando $\frac{Amax}{\sqrt{2}} = 0.7$, que cuyo módulo en escala logarítmica será de $20\log|0.7| = -3$ dB, vemos que en la tabla anterior, a 2000 Hz tenemos una ganancia de -2.67dB, por lo que a unos 1900 Hz tendremos una ganancia de -3 dB, esto concuerda con los cálculos teóricos, que predicen una frecuencia de corte de 1920,17 Hz.

DISCUSIÓN

Debido al acoplamiento DC del primer apartado, se le suma un offset de +1.754V (divisor de tensión) a la onda sinusoidal inicial, lo cual resulta en un desplazamiento de +1.754V de la onda en cada punto.

Obtenemos un valor Vpp de 1.92V en vez de 4V debido a la perdida de tensión en el condensador.

El Vmedio es igual a (Vmax+Vmin)/2, por ello en este caso es (2.76V +840mV)/2=1.81V, que es igual al offset introducido en la onda por la componente DC, ya que el Vmedio de una onda sinusoidal es de 0V.

La ganancia positiva que se puede observar al final de la tabla de datos (20log|Av| > 0 dB) es debida a la falta de precisión de los instrumentos de medida (osciloscopio), ya que si no estaríamos generando energía de la nada, y eso es imposible.

Según la simulación, si hubiéramos sustituido la bobina por un condensador, tendríamos que haber obtenido lo siguiente:

$$\Delta V = \frac{R2||R1}{R2||R1 + ZL} = \frac{1}{1 + \frac{ZL}{R1||R2}} = \frac{1}{1 + \frac{jwL}{R1||R2}}$$

$$|\Delta V| = \frac{1}{\sqrt{1 + \left(\frac{wL}{R1||R2}\right)^2}}$$

$$\varphi = \frac{\pi}{4} - arctg(\frac{wL}{R1||R2})$$