DM - Problème MAX-SAT

2. NP-Complétude de MAX-2-SAT

1.

Supposons qu'il existe une valuation v telle que :

$$\llbracket x
rbracket^v = 0 ext{ et } \llbracket l_1 ee l_2 ee l_3
rbracket^v = 1$$

Comme les littéraux l_1, l_2, l_3 ne dépendent pas de x, on peut lui appliquer une valuation sans changer la valeur de vérité de ceux-ci.

Alors,
$$v$$
 satisfait les clauses :
$$\begin{cases} l_2 \vee \neg x \\ l_3 \vee \neg x \\ l_1 \vee \neg x \end{cases}$$

(si $[x]^v = 1$ v ne satisfait qu'une clause)

l_1	l_2	l_3	$(\overline{l_1} ee \overline{l_2})$	$(\overline{l_1} ee \overline{l_3})$	$(\overline{l_2} ee \overline{l_3})$
0	0	1	1	1	1
0	1	1	1	1	0
1	0	1	1	0	1
1	1	0	0	1	1
1	1	1	0	0	0

Ce tableau nous informe que 4 clauses sont remplies au maximum.

Ainsi, comme 4+3=7, le nombre maximum de clauses satisfaites est 7.

2.

Supposons qu'il existe une valuation v telle que :

$$[l_1 \lor l_2 \lor l_3]^v = 0$$

Pour maximiser le nombre de valuations on prend $[\![x]\!]^v=0$ comme dans la question précédente, v satisfait 3 clauses ainsi, comme $[\![l_1]\!]^v=[\![l_2]\!]^v=[\![l_3]\!]^v=0$ alors,

$$\llbracket (\overline{l_1} \vee \overline{l_2}) \rrbracket^v = \llbracket (\overline{l_1} \vee \overline{l_3}) \rrbracket^v = \llbracket (\overline{l_2} \vee \overline{l_3}) \rrbracket^v = 1$$

Donc, au maximum on a 6 clauses de satisfaites.

3.

Définir une formule φ' de MAX-2-SAT de taille polynomiale en m et un seuil k tels que φ est satisfiable si et seulement s'il existe une valuation satisfaisant au moins k clauses de φ' .

On pose:

$$\boxed{\forall i \in \llbracket 1, m \rrbracket, \varphi' = l_{i,1} \wedge l_{i,2} \wedge l_{i,3} \wedge x \wedge (\overline{l_{i,1}} \vee \overline{l_{i,2}}) \wedge (\overline{l_{i,2}} \vee \overline{l_{i,3}}) \wedge (\overline{l_{i,1}} \wedge \overline{l_{i,3}}) \wedge (l_{i,1} \vee \neg x) \wedge (l_{i,2} \vee \neg x) \wedge (l_{i,3} \vee \neg x)}$$

et k=7

Soit

$$arphi = igwedge_{i=1}^m (l_{i,1} ee l_{i,2} ee l_{i,3})$$

avec $l_{i,1}, l_{i,2}$ ou $l_{i,3} = \bot$ si on a que deux littéraux dans une clause.

Alors,

 \Rightarrow :

Si φ est satisfiable, $\forall i \in [\![1,m]\!], l_{i,1} \vee l_{i,2} \vee l_{i,3}$ est satisfiable, alors il existe donc une valuation satisfaisant au moins 7 clauses de φ (c'est même exactement) d'après la question 1.

⇐ :

Réciproquement, par contraposition si φ n'est pas satisfiable, alors il existe $i \in [\![1,m]\!]$ tel que $l_{i,1} \vee l_{i,2} \vee l_{i,2}$ n'est pas satisfiable ie d'après la question 2: pour toute valuation de φ' , au plus 6 clauses sont satisfaites (ce qui est bien la négation de : il existe une valuation satisfaisant au moins 7 clauses de φ')

4.

5.

Comme il suffit de minimiser le nombre de clauses de φ_0 d'après l'arbre, la valuation définie par :

$$v(x_1) = 1$$
 et $v(x_2) = v(x_3) = v(x_4) = 0$

convient

6.

```
let phi_0 = [[1; 2; 3]; [1; -3; 4]; [1; -4]; [-1; 2; 3]; [-1; -2]; [-1; -3]; [-2; 3]; [2; -3]];;
```

7.

8.

```
let v = [|false; true; false; false; true|];;
```

9.

```
let insat_clause (v:bool array) (k:int) (phi:clause) =
  let rec aux (f:clause) =
    match f with
```

```
| [] -> false

| i::s -> (if (abs(i) > k) then true

else if ((v.(abs(i)) && i>0) || (not v.(abs(i)) && i <0))

then true else aux s)

in aux phi;;
```

10.

11.

2 est la borne inférieure initiale de φ_0 alors,

12.

```
let maxSat (f:fnc) =
    let n = nb_var f in
    let v init = (Array.make (n+1) true) in
   let v_max = ref (Array.make (n+1) true) in (*Tableau ou les valuations des littéraux vérifiant MAX-SAT seront
renvoyés*)
    let min = ref (insat v_init n f) in
        let rec aux v k =
            let v_true = Array.copy v in (*Tableau qui choisit la valuation true pour le litéral k*)
            let v_false = Array.copy v in (*Même chose pour false*)
                v_false.(k) <- false;</pre>
                let in_sat_true = insat v_true k f in (*borne inférieure de clauses non satisfiable pour
l'évaluation du litéral k à true*)
                let in_sat_false = insat v_false k f in (*Même chose pour false*)
                    if (k=n) then (*Condition d'arret : on atteint une feuille*)
                        (if in_sat_true < !min</pre>
                        then (min:= in_sat_true; v_max := v_true)
```