

枫香-真菌互作培养体系构建

Method for Constructing Liquidambar Styraciflua-Root Fungus Interaction

3 System

王玉宸^{1,2},彭龙^{1,2},潘雪玉³,袁志林^{1,2}*

5

4

1

2

6 1林木遗传育种国家重点实验室,中国林业科学研究院,北京;2中国林业科学研究院亚热带林业研究所,

7 杭州; 3中国林业科学研究院热带林业研究所,广州

8

*通讯作者邮箱: yuanzl@caf.ac.cn

1011

- 12 摘要: 林木可与真菌形成多种不同类型的关系以适应复杂的生存环境。作为林木-真菌互
- 13 作研究的常见树种之一,北美枫香 (Liquidambar styraciflua) 是一种优良的抗逆树种选
- 14 育材料,具有耐干旱、耐瘠薄、萌芽能力强、生长速度快等特点,通过播种繁殖易获得
- 15 实生苗,经消毒处理后可得到无菌苗用于枫香-真菌互作培养体系构建。此外,北美枫香
- 16 是优良的彩叶树种,叶入秋变红,是极具生态研究价值及观赏经济价值的造林绿化树种。
- 17 为了探究枫香-真菌的互作机制及促进枫香适应环境胁迫的效应,需要建立标准的实验
- 18 室体系互作研究方法。本文介绍了枫香-真菌互作培养体系的构建方法,包括育苗体系和
- 19 接种方法等。
- 20 关键词: 枫香,真菌,互作体系

21

22 材料与试剂

- 23 1. 泥炭土
- 24 2. 珍珠岩
- 25 3. 蛭石
- 26 4. 有机肥
- 27 5. ddH₂O
- 28 6. 超纯水
- 29 7. WPM 粉末 (EKEAR)
- 30 8. 改良 MS 培养基 (见溶液配方)

- 31 9. 20× 大量元素母液 (见溶液配方)
- 32 10. 100× 微量元素母液 (见溶液配方)
- 33 11. 100× 铁盐母液 (见溶液配方)
- 34 **12.** 100× 有机化合物母液 (见溶液配方)
- 35 13. IBA 母液 (见溶液配方)
- 36 14. 0.85%生理盐水 (见溶液配方)
- 37 15. 0.1%升汞 (见溶液配方)
- 38 16. PDA 培养基 (见溶液配方)
- 39 17. WPM 培养基 (见溶液配方)

41 仪器设备

40

- 42 1. 接种针
- 43 2. 毛刷
- 44 3. 纱布
- 45 4. 剪刀
- 46 5. 镊子
- 47 6. 滤纸
- 48 7. 漏斗
- 49 8. 锥形瓶
- 50 9. 封口膜
- 51 10. 移液枪
- 52 11. 血球计数板
- 53 12. 打孔器 (直径 7 mm)
- 54 13. 大试管 (38 mm × 250 mm)
- 55 14. 大培养皿 (直径 15 cm)
- 56 15. 光学显微镜 (Carl Zeiss, model: Axio Scope A1)
- 57 16. 光照培养箱 (宁波扬辉, model: RDN-1500B)
- 58 17. Phytatray™Ⅱ培养容器 (sigma, catalog number: P5929)
- 59 **18**. 立式压力蒸汽灭菌器 (上海申安, model: LDZF-50KB-II)

实验步骤

- 62 1. 真菌接种剂的准备
- 63 1.1 菌饼接种剂准备
 - 1) PDA 培养基灭菌后取出,室温下放置,待培养基温度约 45 ℃后,倒入一次性塑料培养皿中,待培养基凝固后,进行接种处理。
 - 2) 从纯培养真菌平板菌落边缘用接种针挑取菌块,转移至 PDA 固体培养基上 26°C 黑暗条件下培养。
 - 3) 待培养 7 d 后, 自菌落边缘使用打孔器 (直径 7 mm) 取菌饼作接种剂。
 - 1.2 孢子悬浮液接种剂准备
 - 1) PDA 培养基灭菌后取出,室温下放置,待培养基温度约 45 °C 后,倒入一次性塑料培养皿中,待培养基凝固后,进行接种处理
 - 2) 从纯培养真菌平板菌落边缘用接种针挑取菌块,转移至 PDA 固体培养基上 26°C 黑暗条件下培养 14 d。
 - 3) 制备终浓度为 1×10⁶ ml⁻¹ 的孢子悬浮液。制备方法如下:取上一步骤中培养 14 d 的真菌,在其表面倒一层无菌生理盐水 (0.85% NaCl 溶液),用无菌 毛刷轻轻刮取菌丝。以四层无菌纱布过滤并收集滤液;取滤液 50 ml,沿着 盖玻片边缘滴入血球计数板计数室,使用光学显微镜进行计数;用生理盐水 稀释至浓度为 1×10⁶ ml⁻¹ 的孢子悬浮液作接种剂。

2. 无菌北美枫香幼苗的培育

- 2.1 枫香果实成熟期为 10-11 月份,果穗由绿色转为黄绿色,果实采集后阴干 4-7 天,然后暴晒数日,用棍打果实即可获得枫香种子 (种子在 0-5°C 条件下可贮存 5年左右,在-18°C 时贮存时间超过 5年)。将枫香种子播种育苗床。土壤基质及其配比:泥炭土:珍珠岩:蛭石:有机肥=1:2:2:2(121°C 高压灭菌30 min),放置于光照培养箱,保持85%相对湿度,光照条件为14 h 光照/10 h 黑暗,25°C 恒温培养。

图 1. 北美枫香实生幼苗培育。图为在育苗床中播种繁殖的枫香实生幼苗,实生幼苗培养条件为: 25°C恒温; 85%相对湿度; 14 h 光照/10 h 黑暗。

2.3 在超净工作台剪去幼苗根部,将剩余地上部分放入 0.1%升汞中进行表面消毒约 12 min,再用 ddH₂O 清洗 4-5 次去除表面残留升汞。

2.4 林木专用生根培养基——WPM 培养基 (Woody Plant Medium) 灭菌后取出,室温下放置,待培养基温度约 45 °C 后,在超净工作台中倒入无菌大试管 (25 ×240 mm) 中,待培养基凝固后,将表面消毒后的幼苗插入培养基 (如图 2 所示)。

图 2. 枫香幼苗生根培养示意图。图为在装有 WPM 培养基的无菌试管中进行幼苗生根培养,光照培养箱内生根培养条件为 25°C 恒温; 14 h 光照/10 h 黑暗。

2.5 将培养有枫香实生幼苗的大试管转移到光照培养箱中,25°C 恒温培养,光照条件14h光照/10h黑暗。待实生幼苗重新生根,苗高达到5-6cm后,可将幼

106		苜	苗取出进	行继代	繁殖。	将每-	一株幼苗	首的幼	茎剪断,	再次插	入新的	J WP	M 培养基
107		F	中进行扩	繁,转科	多到光	照培养	籍中并	保持同	司样的温	度和光	照条件	进行组	继代繁殖。
108		2.6 並	选取根系	大小、	发达程	度和相	朱高较一	一致 (5	5-6 cm)	的无菌	幼苗,	进行	共培养。
109	3.	实验:	室体系:	枫香无	菌幼苗	亩-根系	《真菌互	作体系	系构建				
110		3.1 遠	菌饼接种	互作体	系构建	ţ							
111		1)	超净二	L作台對	紫外消	毒后,	无菌 P	hytatr	ay™ II ^J	音养容器	长宽 (长宽	:高:	11.4 cm ×
112			8.6 cr	m × 10.	.2 cm)	中倒	入 70 m	I改良	MS 培	养基。			

- 2) 将步骤 2 挑选的根系和株高较为均一的枫香无菌幼苗用镊子将轻轻取出,放入装有 ddH₂O 的玻璃大培养皿中,洗除幼苗根部的培养基残留,并用无菌滤纸吸干表面水份后,转接至装有改良 MS 培养基的 PhytatrayTM II 无菌培养容器内。
- 3) 分为对照组和处理组,每组设置至少3个重复,每个重复包含10株无菌苗(如图3所示)。将步骤1.1中打孔获得的菌饼随机挑取5个均匀转接至根系周围,对照组接种灭菌后的菌饼,用封口膜进行密封,防止污染。而后,转移至光照培养箱中以相同条件继续培养,根据自身实验要求设计共培养时间,然后取样进行生理指标的测定。

3.2 孢子悬浮液接种互作体系构建

- 超净工作台紫外消毒后,无菌 Phytatray™Ⅱ培养容器(长宽高: 11.4 cm × 8.6 cm × 10.2 cm) 中倒入 70 ml 改良 MS 培养基。
- 2) 将步骤 2 挑选的根系和株高较为均一的枫香无菌幼苗用镊子将轻轻取出,放入装有 ddH₂O 的玻璃大培养皿中,洗除幼苗根部的培养基残留,并用无菌滤纸吸干表面水份后,转接至装有改良 MS 培养基的 Phytatray™Ⅱ 无菌培养容器内。
- 3) 分为对照组和处理组,每组设置至少3个重复,每个重复包含10株无菌苗(如图3所示)。将步骤1.2中稀释获得的孢子悬浮液用移液枪吸取1ml接种至根系周围,对照组加入0.85%无菌生理盐水1ml。而后,转移至光照培养箱中以相同条件继续培养,根据自身实验要求设计共培养时间,然后取样进行生理指标的测定。

图 3. 枫香-真菌共培养体系示意图。图为在装有改良 MS 培养基的 Phytatray™Ⅱ无菌培养容器中进行枫香-真菌共培养实验 a: 接种无菌 PDA 琼脂块作空白对照组; b: 接种长满菌丝的菌块作实验处理组

139

140

135

溶液配方

141 1. PDA 培养基

142 马铃薯 200 g (去皮煮熟后过滤取汁液)

143 葡萄糖 20 g

144 琼脂 **15** g

145 加超纯水至 1 L,调 pH 至 7.0,121 °C 高温高压灭菌 15 min

146 2. WPM 培养基 (Woody Plant Medium)

147 WPM 粉末 2.78 g

148 蔗糖 20 g

149 琼脂粉 7 g

150 IBA 母液 600 μl

151 加超纯水至 1 L,调 pH 至 5.8,121 °C 高温高压灭菌 15 min

152 3. 改良 MS 培养基

153 20× 大量元素母液 25 ml

154 100x 微量元素 10 ml

155 100x 铁盐母液 10 ml

156		100× 有机化合物	10 ml	
157		蔗糖	2 g	
158		琼脂粉	7 g	
159		加超纯水至 1 L,	调 pH 至 5.8 ,	121 °C 高温高压灭菌 25 min
160	4.	20× 大量元素母	液	
161		NH ₄ NO ₃	33 g	
162		KNO ₃	38 g	
163		CaCl ₂ ·2H ₂ O	8.8 g	
164		MgSO ₄ ·7H ₂ O	7.4 g	
165		KH ₂ PO ₄	3.4 g	
166		加超纯水至 1 L		
167	5.	100× 微量元素母	建 液	
168		KI	0.083 g	
169		H ₃ BO ₃	0.62 g	
170		MnSO ₄ -4H ₂ O	1.69 g	
171		ZnSO ₄ ·7H ₂ O	0.86 g	
172		NaMoO ₄ ·2H ₂ O	0.0025 g	
173		CuSO ₄ ·5H ₂ O	0.0025 g	
174		CoCl ₂ ·6H ₂ O	0.0025 g	
175		加超纯水至 1 L		
176	6.	100× 铁盐母液		
177		FeSO ₄ ·7H ₂ O	2.78 g	
178		Na ₂ EDTA-2H ₂ O	3.73 g	
179		加超纯水至 1 L		
180	7.	100× 有机化合物	 同母液	
181		肌醇	10 g	
182		IVB 烟酸	0.05 g	
183		盐酸硫胺素	0.01 g	
184		盐酸吡哚醇	0.05 g	
185		甘氨酸	0.2 g	
186		加超纯水至 1 L		

187	Ω	IRΔ	母液
187	ο.	IDA	17 1/X

188 IBA 粉末 40 mg

189 溶于少量无水乙醇,吹打混匀

190 加 60 ℃ 超纯水至 80 ml

191 9. 0.1%升汞

192 升汞 1 g

193 溶于少量无水乙醇,吹打混匀

194 加超纯水至 **1** L

195 10. 0.85%生理盐水

196 NaCl 8.5 g

197 加超纯水至 1 L, 121 ℃ 高温高压灭菌 15 min

199 致谢

198

201

200 本工作的顺利开展得益于国家自然科学基金青年项目 (31901290) 的经费支持。

202 参考文献

- 203 1. 秦媛. (2017). <u>盐碱地植物共生微生物资源及功能初步研究.</u> (Master's thesis,中国
- 204 林业科学研究院).
- 205 2. 潘雪玉. (2018). 沿海防护林树种促生、耐盐根系真菌筛选及机制初探. (Master's
- 206 thesis,中国林业科学研究院).