KozliayevYA 11102024-153921

Дано значение коэффициента отражения от входа реактивной цепи коррекции $s_{11}=0.04\text{-}0.22\mathrm{i}$.

Найти модуль (в дБ) коэффициента передачи s_{21} .

Варианты ОТВЕТА:

- 1) -1.0 дБ
- 2) -0.4 дБ
- 3) -0.2 дБ
- 4) -2.0 дБ

Даны значения s-параметров на некоторой частоте:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.3	0.498	-127.2	20.607	101.3	0.029	50.5	0.443	-64.4

Требуется выбрать согласованный аттенюатор с *минимальным* затуханием, подключения которого будет *достаточно*, чтобы обеспечить безусловную устойчивость всего устройства на этой частоте.

Варианты ОТВЕТА:

- 1) аттенюатор с затуханием 2.5 дБ, подключённый к плечу 1;
- 2) аттенюатор с затуханием 2.5 дБ, подключённый к плечу 2;
- 3) аттенюатор с затуханием 2.0 дБ, подключённый к плечу 1;
- 4) аттенюатор с затуханием 3.2 дБ, подключённый к плечу 2.

Найти неравномерность усиления в полосе, ограниченной частотами $f_{\scriptscriptstyle \rm H}=5.4~\Gamma\Gamma$ ц и $f_{\scriptscriptstyle \rm B}=6.2~\Gamma\Gamma$ ц, используя рисунок 1.

Рисунок 1 – Частотная характеристика усиления

Варианты ОТВЕТА:

1) 0.0 дБ 2) 0.6 дБ 3) 1.2 дБ 4) 1.6 дБ

Даны значения ѕ-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.322	-156.3	13.493	93.2	0.037	68.9	0.352	-56.5
1.5	0.339	-173.0	8.997	82.0	0.052	67.9	0.261	-65.7
2.0	0.354	177.1	6.620	74.5	0.066	66.1	0.207	-76.1
3.0	0.369	162.4	4.344	62.9	0.096	61.6	0.167	-95.0
5.5	0.398	137.8	2.371	38.3	0.168	46.2	0.121	-126.9
8.0	0.480	114.2	1.631	14.9	0.231	28.8	0.087	138.9

Выбрать Γ -образный четырёхполюсник (см. рисунок 2), который может обеспечить согласование со стороны плеча 1 на частоте 3.0 $\Gamma\Gamma$ ц.

Рисунок 2 – Различные реализации Г-образного четырёхполюсника

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

Дано значение коэффициента передачи диссипативной цепи коррекции, выполненной в виде цепи постоянного входного сопротивления 50 Ом: $s_{21} = -8~$ дБ.

Ко входу этой цепи подключён генератор с внутренним сопротивлением $50~{\rm Om}$ и доступной мощностью $9.9~{\rm дБм}.$

Какая мощность рассеивается внутри цепи коррекции?

Варианты ОТВЕТА:

- 1) 8.2 мBт
- 2) 1.5 mB_T
- 3) 1.6 мВт
- 4) 1.9 мВт

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 3) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа). (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 3 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных рисунке 4 ситуаций соответствует эта частотная характеристика?

Рисунок 4 – Различные реализации Г-образной цепи согласования

Варианты ОТВЕТА: 1) a 2) b 3) c 4) d