1. Calcule o módulo e a direcção da resultante dos sistemas de forças representados na figura.

- **2.** Um caçador sai do seu acampamento e anda 6.0 km para o norte. A seguir anda 3.0 km para Leste e 2.0 km para o sul, onde encontra um rio que vai em linha recta até ao seu acampamento.
 - a) Qual a direcção do rio?
 - b) A que distância estava ele do acampamento no momento em que encontrou o rio?
- **3.** Dados os vectores $\vec{A} = \vec{e}_1 + 2\vec{e}_2 + 3\vec{e}_3$ e $\vec{B} = 3\vec{e}_1 2\vec{e}_2 \vec{e}_3$, calcule:
 - a) O módulo do vector \vec{A} ($\left| \vec{A} \right|$) e o módulo do vector \vec{B} ($\left| \vec{B} \right|$).
 - **b**) $\vec{A} + \vec{B} e |\vec{A} + \vec{B}|$.
 - c) $\vec{A} \vec{B}$ e $|\vec{A} \vec{B}|$.
 - d) $\vec{A} \cdot \vec{B} \ e \ \vec{B} \cdot \vec{A}$.
 - e) $\vec{A} \wedge \vec{B} \in \vec{B} \wedge \vec{A}$.
- **4.** Dados os vectores $\vec{A} = \vec{e}_1 + 2\vec{e}_2 + 3\vec{e}_3$ e $\vec{B} = 3\vec{e}_1 2\vec{e}_2 \vec{e}_3$ qual deverá ser o vector \vec{D} tal que $\vec{A} + \vec{B} + \vec{D} = \vec{0}$?
- 5. Calcule o ângulo entre os vectores $\vec{A} = \vec{e}_1 + \vec{e}_2 + \vec{e}_3$ e $\vec{B} = \vec{e}_1 + \vec{e}_2$.
- **6.** Dados os vectores $\vec{A} = p\vec{e}_1 + \vec{e}_2 + \vec{e}_3$ e $\vec{B} = \vec{e}_1 2p\vec{e}_2 + \vec{e}_3$, para que valores de p são os vectores \vec{A} e \vec{B} perpendiculares entre si?
- 7. Diga se os dois vectores $\vec{A} = 15\vec{e}_1 10\vec{e}_2 + 30\vec{e}_3$ e $\vec{B} = 4\vec{e}_1 + 3\vec{e}_2 \vec{e}_3$ são perpendiculares entre si.
- 8. Determine o vector unitário perpendicular ao plano definido por

$$\vec{A} = 6\vec{e}_1 - 6\vec{e}_2 - 3\vec{e}_3$$
 e $\vec{B} = 4\vec{e}_1 + 3\vec{e}_2 - \vec{e}_3$.

9. Dados os vectores $\vec{A} = \vec{e}_1 + 2\vec{e}_2 + 3\vec{e}_3$, $\vec{B} = 3\vec{e}_1 - 2\vec{e}_2 - \vec{e}_3$ e $\vec{C} = 2\vec{e}_1 + 3\vec{e}_2 - \vec{e}_3$, calcule:

a)
$$\vec{A} + \vec{B} + \vec{C}$$
.

b)
$$\vec{A} - \vec{B} + \vec{C}$$
.

c)
$$\vec{A} \cdot (\vec{B} + \vec{C})$$
.

d)
$$(\vec{A} \wedge \vec{B}) \cdot \vec{C}$$
.

10. Os vectores $\vec{A} \in \vec{B}$, de intensidades A e B, respectivamente, fazem um ângulo θ entre si. Considerando as componentes de \vec{A} e \vec{B} ao longo de um sistema de eixos ortogonais, mostre que a intensidade do vector resultante (R) de somar \vec{A} com \vec{B} é dado por $R = \sqrt{A^2 + B^2 + 2AB\cos\Theta}$.

11. Mostre que o produto interno de dois versores perpendiculares entre si é igual a zero.

12. Mostre que o produto interno de um versor por si próprio é igual à unidade.

13. Mostre que o produto externo de dois versores perpendiculares entre si é um versor perpendicular ao plano definido pelos outros dois.

14. Mostre que o produto externo de um versor por si próprio é igual ao vector nulo.

Sugestão: Basic Vector Operations http://hyperphysics.phy-astr.gsu.edu/hbase/vect.html#veccon

15. Nas seguintes equações, a distância x está expressa em metros, o tempo t em segundos e a velocidade v, em metros por segundo. Quais serão as unidades das constantes C_1 e C_2 no Sistema Internacional (SI)?

a)
$$x = C_1 + C_2 t$$

b)
$$x = 12 C_1 t^2$$

c)
$$v = 2C_1x$$

16. Nas equações seguintes a distância x e o tempo t estão expressos em unidades SI. Determine as unidades SI das restantes grandezas presentes nas equações.

a)
$$x = V + X.t + Y.t^2 + W.ln(Z)$$
 b) $x = Xe^{-Yt}$

b)
$$x = Xe^{-Yt}$$

17. Considere que todos os valores abaixo apresentados foram obtidos por medições directas. Tendo em conta as regras de cálculos com algarismos significativos, apresente o resultado das operações abaixo indicadas.

a)
$$1,11 \text{ m} + 0,111 \text{ m} = \dots$$

.....