Welcome to the RL Lecture Brief Motivation and Orga

Marius Lindauer

Winter Term 2021

Question

Why are you interested to learn more about reinforcement learning (RL)?

Machine Learning

"Machine learning is the science of getting computers to act without being explicitly programmed."

by Andrew Ng

Lindauer ML-RL: Big Picture, Winter Term 2021

Reinforcement Learning

- Data: Self-acquired observations + rewards
- ► Task: Learn how to behave s.t. reward is maximized
- Not a single decision, but a sequence of good decisions

¹Image source: Morning Brew and Marius Haakestad on Unsplash

Goals of the Lecture

You will be able to

- 1. understand and explain the basic algorithms in RL
- 2. discuss the assumptions and limitations of RL and its algorithms
- 3. decide which RL algorithm to use on a given environments
- 4. do research on RL yourself
 - perfect opportunity to do a master project or thesis with us afterwards

Course Overview (tentative)

- 1. Big Picture (Introduction)
- 2. MDP, Policy, Value Iteration
- 3. Policy Evaluation
- 4. Model Free Control
- 5. Linear Function Approximation
- 6. Deep RL
- 7. Policy Gradient
- 8. Exploration
- 9. Meta-RL
- 10. Reproducibility in RL
- 11. Project

Course Overview (tentative)

- 1. Big Picture (Introduction)
- 2. MDP, Policy, Value Iteration
- 3. Policy Evaluation
- 4. Model Free Control
- 5. Linear Function Approximation
- 6. Deep RL
- 7. Policy Gradient
- 8. Exploration
- 9. Meta-RL
- 10. Reproducibility in RL
- 11. Project
- → More an introduction into RL!

Course Format

- Concepts over details
 - we provide references and links to papers s.t. you can read up details!
- Interactive lecture and exercise sessions
 - ▶ short inputs (\sim 10–20min) followed by Q&A
 - ▶ interactive quizzes in exercise sessions to reinforce your knowledge
 - $\,$ The success of it depends on whether you are willing to talk to us!
- ► (Mostly) Practical exercises
 - implement it, use it and play with it!

Team

Prof. Dr. Marius Lindauer

Theresa Eimer

Frederik Schubert

Organization (Lectures)

▶ Meeting each week Thursday at 2pm (s.t).

Organization (Lectures)

- ▶ Meeting each week Thursday at 2pm (s.t).
- Each week, the lecture is divided into small parts.

Organization (Lectures)

- ▶ Meeting each week Thursday at 2pm (s.t).
- ► Each week, the lecture is divided into small parts.
- We will not record or stream the lecture

- ► Every Wednesday at 3pm
 - ► Regular attendance highly recommended!
 - ► No recording

- Every Wednesday at 3pm
 - ► Regular attendance highly recommended!
 - ► No recording
- Discussion of mini examples (e.g., Mars Robot)

- Every Wednesday at 3pm
 - ► Regular attendance highly recommended!
 - ► No recording
- Discussion of mini examples (e.g., Mars Robot)
- Interactive Kahoot quiz

- Every Wednesday at 3pm
 - ► Regular attendance highly recommended!
 - No recording
- Discussion of mini examples (e.g., Mars Robot)
- Interactive Kahoot quiz
- Feedback to exercise sheet
 - You don't need to achieve any point threshold
 - ▶ But you need to submit something every week

- ► Every week, a new exercise sheet
 - exercise focus is one week behind the lecture topics
 - ▶ Most exercises will be practical, i.e., you have to implement something
 - ▶ Team work highly recommended, team size at most 3!

- ► Every week, a new exercise sheet
 - exercise focus is one week behind the lecture topics
 - Most exercises will be practical, i.e., you have to implement something
 - Team work highly recommended, team size at most 3!
 - Build upon GitHub classroom → enables auto-grading
 - ▶ There will be an invitation link each week on each exercise sheet.
 - You will have to click on the link on exercise sheet one to be able to form groups.
 - Submit solutions via git

- Every week, a new exercise sheet
 - exercise focus is one week behind the lecture topics
 - Most exercises will be practical, i.e., you have to implement something
 - ▶ Team work highly recommended, team size at most 3!
 - ▶ Build upon GitHub classroom ~> enables auto-grading
 - ▶ There will be an invitation link each week on each exercise sheet.
 - ▶ You will have to click on the link on exercise sheet one to be able to form groups.
 - Submit solutions via git
 - ▶ Up to 9 bonus points for final grade, i.e., 3 grading boosts.
 - \blacktriangleright To get a bonus point, your solution has to be at least correct by 80%

- Every week, a new exercise sheet
 - exercise focus is one week behind the lecture topics
 - Most exercises will be practical, i.e., you have to implement something
 - ▶ Team work highly recommended, team size at most 3!
 - ▶ Build upon GitHub classroom ~> enables auto-grading
 - ▶ There will be an invitation link each week on each exercise sheet.
 - ▶ You will have to click on the link on exercise sheet one to be able to form groups.
 - Submit solutions via git
 - ▶ Up to 9 bonus points for final grade, i.e., 3 grading boosts.
 - \blacktriangleright To get a bonus point, your solution has to be at least correct by 80%
 - If we catch anyone at obvious cheating (incl. plagiarism), we will kick them out.

- Every week, a new exercise sheet
 - exercise focus is one week behind the lecture topics
 - Most exercises will be practical, i.e., you have to implement something
 - ▶ Team work highly recommended, team size at most 3!
 - ▶ Build upon GitHub classroom ~> enables auto-grading
 - ▶ There will be an invitation link each week on each exercise sheet.
 - ▶ You will have to click on the link on exercise sheet one to be able to form groups.
 - Submit solutions via git
 - ▶ Up to 9 bonus points for final grade, i.e., 3 grading boosts.
 - \blacktriangleright To get a bonus point, your solution has to be at least correct by 80%
 - If we catch anyone at obvious cheating (incl. plagiarism), we will kick them out.
- If you need help or have questions, use the chat!

You need help?

Priority list:

- 1. Ask your friends and peers
- 2. Use our chat system via Mattermost (see Stud.IP for invitation link)
 - → Channel "2021 RL Lecture"
 - You can also answer the questions of your peers!
 - We will only reply if we have the feeling that it is necessary.
- 3. If there are organizational questions, contact Theresa or Frederik directly (via Mattermost)
- 4. Only as the very last option, contact me ;-)

Al Courses at LUH

Lindauer

- ▶ Basics of AI (mandatory)
 - ► Search, planning, optimization ..., expectations, ...

Lindauer ML-RL: Big Picture, Winter Term 2021

- Basics of Al (mandatory)
 - Search, planning, optimization ..., expectations, ...
- Basics of Machine Learning (mandatory)
 - Classification, regression, clustering, decision tree, training-test split, cross validation, pre-processing ...
 - ► For example, ML lecture by Prof. Rosenhahn
 - ▶ to catch up (if nec.):

- Basics of Al (mandatory)
 - Search, planning, optimization ..., expectations, ...
- Basics of Machine Learning (mandatory)
 - Classification, regression, clustering, decision tree, training-test split, cross validation, pre-processing ...
 - ► For example, ML lecture by Prof. Rosenhahn
 - to catch up (if nec.):
- Knowledge and hands-on exp. in Deep Learning (PyTorch) (mandatory)
 - feed-forward network, recurrent network, convolutions, learning rates, regularization, ...
 - For example, DL lecture by Prof. Anand
 - to catch up (if nec.):

- Basics of Al (mandatory)
 - Search, planning, optimization ..., expectations, ...
- Basics of Machine Learning (mandatory)
 - ► Classification, regression, clustering, decision tree, training-test split, cross validation, pre-processing ...
 - ► For example, ML lecture by Prof. Rosenhahn
 - to catch up (if nec.):
- Knowledge and hands-on exp. in Deep Learning (PyTorch) (mandatory)
 - feed-forward network, recurrent network, convolutions, learning rates, regularization, ...
 - ► For example, DL lecture by Prof. Anand
 - to catch up (if nec.):
- Experience in Python and git (mandatory)
 - nearly all exercises will require that you implement something in Python and submit the solution to a git repo

- Basics of Al (mandatory)
 - Search, planning, optimization ..., expectations, ...
- Basics of Machine Learning (mandatory)
 - Classification, regression, clustering, decision tree, training-test split, cross validation, pre-processing ...
 - ► For example, ML lecture by Prof. Rosenhahn
 - ▶ to catch up (if nec.):
- Knowledge and hands-on exp. in Deep Learning (PyTorch) (mandatory)
 - ▶ feed-forward network, recurrent network, convolutions, learning rates, regularization, ...
 - ► For example, DL lecture by Prof. Anand
 - ▶ to catch up (if nec.):
- Experience in Python and git (mandatory)
 - nearly all exercises will require that you implement something in Python and submit the solution to a git repo
- \sim If you solved the self-assessment test, you should be ready.

Final Grading

- ▶ Implement a larger project (worth 1-2 weeks full time)
 - ▶ You can propose your own project idea!
 - ▶ Hand-in a short summary of the idea (half a page) and we will provide feedback regarding feasibility
 - ► Teamwork (at most 3) again possible
 - ightharpoonup Larger team ightarrow larger scope of the project
- "Exam"
 - ▶ First 15 minutes: Present your project idea and results in the
 - Of course, everyone will present the project on their own
 - ► Second 15min: We will ask further questions about your project and how it relates to stuff you learned in the lecture.

Material

- Slides:
- Additional Material:
 - To get a deep understanding of RL, you should also read some papers
 - RL book by Sutton and Barto:
 - Video lectures click on it!
 - ▶ [Emma Brunskill (2019-20)]
 - ► [Sergey Levine (2020)]
 - ▶ [David Silver (2015)]
 - ► [Robot Learning by Jan Peters (2021)]

RL is an advanced lecture and we present it for the second time

RL is an advanced lecture and we present it for the second time

Opportunities:

- ► RL is a very hot topic these days
- ▶ We will start with the basics and go step by step to the more advanced (research) topics
- ► The course will provide a solid background for doing a master project/thesis in our group

RL is an advanced lecture and we present it for the second time

Opportunities:

- ► RL is a very hot topic these days
- ▶ We will start with the basics and go step by step to the more advanced (research) topics
- ► The course will provide a solid background for doing a master project/thesis in our group

Challenges:

- ▶ The research on RL is very active and there is so much progress
 - → impossible to catch up with state of the art with one course
- ► The origins of RL go back to robotics, control, theory on bandits and computer science ~> different notations
- You will find some typos and issues in the slides
 - → please tell us if you find something

RL is an advanced lecture and we present it for the second time

Opportunities:

- ► RL is a very hot topic these days
- ▶ We will start with the basics and go step by step to the more advanced (research) topics
- ► The course will provide a solid background for doing a master project/thesis in our group

Challenges:

- ▶ The research on RL is very active and there is so much progress
 - \rightarrow impossible to catch up with state of the art with one course
- ► The origins of RL go back to robotics, control, theory on bandits and computer science ~> different notations
- You will find some typos and issues in the slides
 - \sim please tell us if you find something
- ightarrow Give us some feedback and we will improve the course!

Questions?