CIS 623 Assignment 2 Due Week 3 Live

For each of the following set of formulas, show if there is an entailment relation from formulas in a to the formulas in b. Give a formal proof if the entailment relation holds from the formulas in a to b.

1.

a.
$$(p \land q) \lor (p \land r)$$

b.p
$$\Lambda$$
(q V r)

2.

b.
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

3.

a.
$$p \rightarrow q$$

b.
$$\neg q \rightarrow \neg p$$

4.

b.p
$$\rightarrow$$
q

a.
$$(p \land q) \lor (p \land r)$$

b. $p \land (q \lor r)$

Truth Table:

_ p	q	r	p∧q	p∕\r	(p/\q) \/ (p/\r)	q∨r	p /\ (q ∀ r)
$ar{ ext{T}}$	T	T	T	T	T	T	T
T	T	F	T	F	T	T	T
T	F	T	F	T	T	T	T
T	F	F	F	F	F	F	F
F	T	T	F	F	F	T	F
F	T	F	F	F	F	T	F
F	F	T	F	F	F	T	F
F	F	F	F	F	F	F	F

Proof:

1. $(p \land q) \lor (p \land r)$	premise
2. p/\ (q\/r)	premise
3. (p/\q)	assumption
4. p	∧e, 3
5. q	∧e, 3
6. q√r	√i, 5
7. $p/(q/r)$	$\wedge i, 4, 6$
8. (p/\r)	assumption
9. r	/\e, 8
10. (q√r)	√i, 9
11. p	∧e, 8
12. p/\(q\/r)	√i, 10, 11
13. $p \land (q \lor r)$	√e, 3-7, 8-12

2.

a. Nothing

b.
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

Truth Table:

p	q	r	$\mathbf{p} \rightarrow \mathbf{q}$	$\mathbf{q} \rightarrow \mathbf{r}$	$(p \rightarrow q)/(q \rightarrow r)$	$\mathbf{p} \rightarrow \mathbf{r}$	$\big \big((p\rightarrow q)\land (q\rightarrow r)\big)\rightarrow (p\rightarrow r)$
T	T	T	T	T	T	T	T
T	T	F	T	F	F	F	T
T	\mathbf{F}	T	F	T	F	T	T
T	\mathbf{F}	F	F	T	F	F	T
F	T	T	T	T	T	T	T
F	T	F	T	F	F	T	T
F	F	T	T	T	T	T	T
F	F	F	T	T	T	T	T

Proof:

1.
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$
 premise
2. $p \rightarrow q$ assumption
3. p $\rightarrow e$, 2
4. q $\rightarrow e$, 2
5. $q \rightarrow r$ assumption
6. r $\rightarrow e$, 5
7. $(p \rightarrow q) \land (q \rightarrow r)$ $\land i$, 2-4, 5-6
8. $p \rightarrow r$ $\rightarrow i$, 3, 6
9. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ $\rightarrow e$, 2-8, 5-7

3.

$$a.\,p\to q$$

$$b.\,\neg q \to \neg p$$

Truth Table:

_ p	q	$\mathbf{p} \rightarrow \mathbf{q}$	$\neg \mathbf{q}$	¬р	$\neg p \rightarrow \neg q$
T	Ť	T	F	F	T
\mathbf{T}	F	F	T	F	F
\mathbf{F}	T	F	F	T	T
\mathbf{F}	F	F	T	T	T

Proof:

1. $(p \rightarrow q)$ 2. ¬q

premise assumption MT, 1, 2

3. ¬p

4. $\neg q \rightarrow \neg p$

→ i, 2-3

4.

b.p
$$\rightarrow$$
q

Truth Table:

_ p	q	¬p∨q	$\mathbf{p} \rightarrow \mathbf{q}$
$\overline{\mathrm{T}}$	T	T	T
T	F	F	F
F	Т	T	T
F	F	Т	T

Proof unnecessary as p and $\neg p$ cannot both be true. Therefore, $\neg p \lor q$ cannot entail for $p \to q$