Project report

DESIGN AND FABRICATION OF A TEST-BED TO SIMULATE VISION-BASED AUTONOMOUS LANDING OF A UAV ON A SHIP DECK

RITWIK SHANKAR SENIOR UNDERGRADUATE IIT KANPUR

PROBLEM STATEMENT

SHIP DECK LANDING

Complex Challenge:

Landing a rotor-craft on a moving ship requires precise piloting and specialized training.

•Autonomy:

Requires real-time pose(itions) estimates and a robust algorithm to land the aircraft precisely.

•Proposed Algorithm:

Pose estimation using Computer vision Pose prediction using GRU

SHIP MOTIONS

SHIP-DECK EMULATOR

To simulate the ship-deck a Parallel manipulator will be used, this type of a parallel manipulator is called a Stewart Platform.

Its main features are:

- 4 DOF Capabilities
- Up to ±30 ° movement capabilities
- Up to 80cm of Z movement
- Up to 1m of sway movement

SHIP-DECK EMULATOR

SHIP-DECK EMULATOR

SHIP-DECK SIMULATION

The features of this custom design are:

- Fully customized linear actuators to work at 20cm/s velocity
- Quadrature encoder was added to get accurate estimates of the actuator pose
- DC motor used with conveyer mechanism for sway motions
- The design is highly redundant because each component is replaceable

INVERSE KINEMATICS

$$l_a = z - R\sin(\theta) - \sqrt{L^2 - (R(\cos(\theta) - \sin(\theta)\sin(\psi)) - H)^2}$$
 AFT
$$l_l = z + R\cos(\theta)\sin(\psi) - \sqrt{L^2 - (R\cos(\psi) - H)^2}$$
 LATERAL
$$l_f = z + R\sin(\theta) - \sqrt{L^2 - (-R(\cos(\theta) + \sin(\theta)\sin(\psi)) + H)^2}$$
 FORWARD

This good work is not mine, I got it from Abedinnasab, et al "Exploiting higher kinematic performance-using a 4-legged redundant PMrather than gough-stewart platforms,"

INVERSE KINEMATICS

$$\begin{split} l_{a} &= z - R \sin(\theta) - \sqrt{L^{2} - (R(\cos(\theta) - \sin(\theta)\sin(\psi)) - H)^{2}} & \text{AFT} \\ l_{l} &= z + R \cos(\theta)\sin(\psi) - \sqrt{L^{2} - (R \cos(\psi) - H)^{2}} & \text{LATERAL} \\ l_{f} &= z + R \sin(\theta) - \sqrt{L^{2} - (-R(\cos(\theta) + \sin(\theta)\sin(\psi)) + H)^{2}} & \text{FORWARD} \end{split}$$

This good work is not mine, I got it from Abedinnasab, et al "Exploiting higher kinematic performance-using a 4-legged redundant PMrather than gough-stewart platforms,"

MATLAB SIMULATION

HARDWARE ARCHITECTURE

CONTROL ARCHITECTURE

FINAL STEWART PLATFORM

FINAL STEWART PLATFORM

ARUCO MARKER

TEST DRONE

POSE ESTIMATION USING ARUCO

HOW DOES DETECTION WORK?

- 1. Edge detection Algorithms first detect the ArUCo marker and gets a warped image.
- 2. As the original ArUCo marker is already fed inside the algorithm so it rotates the acquired image to match the ideal position.

POSE ESTIMATION USING ARUCO

HOW DOES DETECTION WORK?

- 1. Edge detection Algorithms first detect the ArUCo marker and gets a warped image.
- 2. As the original ArUCo marker is already fed inside the algorithm so it rotates the acquired image to match the ideal position.
- 3. This rotation of the image gives us the Roll and Pitch of the UAV and the size of the edge gives the heave.

ONBOARD DETECTION

- The quadcopter has a onboard rasberry pi which uses OpenCV for ArUCo detection
- The pose estimates are sent as a ros topic at 100Hz

ROS

- PACKAGE: PRECISION_LAND_VISION
- ROSNODES
 - DETECTION_NODE
 - KALMAN_FILTER NODE
 - LANDING_NODE
- GAZEBO
 - PLATFORM MODEL
 - DRONE IRIS MODEL

PX4

- CUSTOM MODULE PREC_LAND_VISION
 - Takes in velocity setpoints from the Kalman filtered values
 - Applies a PID controller to these setpoints
 - Gives acceleration setpoints accordingly

Algorithm 1 Landing Algorithm

Require: $Relative_Angle \leftarrow Updated$

Ensure: UAV hovers above the landing platform

- 1: $Set_Pose \leftarrow 0, 0, 0$
- 2: $Curr_Pose \leftarrow 0, 0, 0$
- 3: while Landed \leftarrow False do
- 4: $Curr_Pose \leftarrow UAV.Current_Pose$
- 5: $Set_Pose \leftarrow Curr_Pose$
- 6: **if** $Relative_Angle \le abs(Threshold)$ && $abs(Error_sway) < Threshold$ **then**
- 7: $Set_Pose.Z \leftarrow Curr_Pose.Z 0.02$
- 8: **end if**
- 9: Publish(Set_Pose) to UAV Controller
- 10: end while

VISION AND LANDING GAZEBO SIM

PUBLICATIONS FROM THIS UGP

- R. SHANKAR, C. PRACHAND, J. SINGH, A.
 ABHISHEK, K.S. VENKATESH, "VISION BASED LANDING OF UAV ON SIMULATED
 SHIP DECK WITH ROLL PITCH AND SWAY
 MOTIONS", 2025 VERTICAL FLIGHT
 SOCIETY, FORUM 81 (ABSTRACT
 SUBMITTED)
- C. PRACHAND, R. RUSTAGI, R. SHANKAR,
 J. SINGH, A. ABHISHEK, K.S. VENKATESH,
 "VISION-BASED AUTONOMOUS SHIP DECK
 LANDING OF AN UNMANNED AERIAL
 VEHICLE USING FRACTAL ARUCO
 MARKERS", 2025 AIAA SCITECH FORUM.

THANK YOU

THANK YOU

