

UNIVERSIDAD POLITÉCNICA DE VALENCIA

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DE TELECOMUNICACIÓN

Máster Universitario en Ingeniería de Telecomunicación

Entregable 1

Huffman Extensión de fuente

PSCA

Autor:
Andrés Ruz Nieto

VALENCIA, 2021

Realizar la extensión de la fuente indicada y obtener un código Huffman asociado.

Obtener la entropía de la fuente, y la longitud media del código obtenido por cada 2 símbolos de fuente.

P(X=A)	0,45
P(X=B)	0,30
P(X=C)	0,13
P(X=D)	0,12

Tabla 1: Probabilidades de símbolo

(X_1, X_2)	$P(X_1 = x, X_2 = y)$	(X_1,X_2)	$P(X_1 = x, X_2 = y)$	Código Huffman
AA	0,2025	AA	0.2025	11
AB	0,135	AB	0.135	101
BA	0,135	BA	0.135	001
BB	0,09	BB	0.09	0001
AC	0.0585	AC	0.0585	0111
CA	0.0585	CA	0.0585	0110
AD	0.054	AD	0.054	0101
DA	0.054	DA	0.054	0100
BC	0.039	BC	0.039	10001
CB	0.039	CB	0.039	10000
BD	0.036	BD	0.036	00011
DB	0.036	DB	0.036	00010
CC	0.0169	CC	0.0169	000011
CD	0.0156	CD	0.0156	000010
DC	0.0156	DC	0.0156	000001
DD	0.0144	DD	0.0144	000000

Tabla 2: Probabilidades de código Tabla 3: Códigos Huffman

Longitud media: 3.6 db/2Sf = 1.8 db/Sf

 $L = \sum_{i=1}^{M} P(x_i) l(x_i) = 0.2025 \cdot 2 + 2 \cdot (0.135 \cdot 3) + 0.09 \cdot 4 + 2 \cdot (0.0585 \cdot 4) + 2 \cdot (0.054 \cdot 4) + 2 \cdot (0.039 \cdot 5) + 2 \cdot (0.036 \cdot 5) + 0.0169 \cdot 6 + 2 \cdot (0.0156 \cdot 6) + 0.0144 \cdot 6 = 3.6 \ db/2Sf$

Entropía de la fuente: 3.578 db/2Sf = 1.789 db/Sf

$$\begin{split} H_2(X) &= -\sum_{i=1}^M P(x_i)log_2P(x_i) = -[0,2025\cdot log_2(0,02025) + 2\cdot (0,135\cdot log_2(0,135)) + 0,09\cdot log_2(0,09) + \\ &2\cdot (0,0585\cdot log_2(0,0585)) + 2\cdot (0,054\cdot log_2(0,054)) + 2\cdot (0,039\cdot log_2(0,039)) + 2\cdot (0,036log_2(0,036)) + 0,0169\cdot log_2(0,0169) + \\ &2\cdot (0,0156\cdot log_2(0,0156)) + 0,0144\cdot log_2(0,0144)] = 3,578\cdot db/2Sf \end{split}$$

donde db es Dígitos Binarios y Sf1 es Símbolos de fuente.

Como podemos ver se cumple el límite fundamental de Shannon: $H \leq L$