Ejercicios para Calculo Diferencial e Integral I

Actuaría 2016-I FES Acatlán

Prólogo de [Spi92] 1.

1.1. Teoría de conjuntos

Ejercicio 1.1.1. Sean $A = \{1\}$ y $B = \{1, 2\}$ conjuntos. Discute la validez de las siguiente afirmaciones.

- $\blacksquare A \subset B.$
- \bullet 1 \in A.
- \blacksquare 1 \subset A.

- $\blacksquare A \neq B.$
- $A \in B$.
- $1 \subset B$.

Ejercicio 1.1.2. Demuestra o refuta las siguiente afirmaciones:

- $\blacksquare \varnothing \in \varnothing$
- $\blacksquare \varnothing \subset \varnothing$
- $\bullet \{\emptyset\} \in \{\emptyset, \{\emptyset\}\}$

- $\emptyset \in \{\emptyset\}$
- $\blacksquare \{\emptyset\} \subset \{\emptyset, \{\emptyset\}\}$

Ejercicio 1.1.3 (de [Apo84]). Sean $A = \{1, 2\}, B = \{\{1\}, \{2\}\}, C = \{\{1\}, \{1, 2\}\}$ y $D = \{\{1\}, \{2\}, \{1,2\}\}$ conjuntos. Discute la validez las siguiente afirmaciones.

- $\blacksquare A = B.$
- $A \subset C$.
- $\blacksquare B \subset D.$

- \bullet $A \subset B$.
- $\blacksquare A \subset D.$
- $\blacksquare B \in D.$

- $A \in C$.
- $\blacksquare B \subset C.$
- $A \in D$.

Ejercicio 1.1.4. Demuestra las siguientes igualdades de conjuntos.

- $\bullet \{a\} = \{b,c\} \text{ si y}$ sólo si a = b = c.

Ejercicio 1.1.5. Demuestra que, si $X \subset \emptyset$ entonces $X = \emptyset$.

Ejercicio 1.1.6. Sea A un conjunto y sea \mathcal{F} una familia de conjuntos. Demuestra que, si $A \in \mathcal{F}$ entonces $A \subset \bigcup \mathcal{F}$.

Ejercicio 1.1.7 (Leyes conmutativas). Para conjuntos A y B, demuestra que

- $\blacksquare A \cap B = B \cap A$
- $\blacksquare A \cup B = B \cup A$

Ejercicio 1.1.8 (Leyes asociativas). Para conjuntos A, B y C, demuestra que

- $(A \cap B) \cap C = A \cap (B \cap C)$
- $(A \cup B) \cup C = A \cup (B \cup C)$

Ejercicio~1.1.9 (Leyes distributivas). Para conjuntos A, B y C, demuestra que

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Ejercicio 1.1.10. Demuestra que $A \setminus B$ es un subconjunto de $A \cup B$.

Ejercicio 1.1.11. Demuestra que A y B son ambos subconjuntos de $A \cup B$.

Ejercicio 1.1.12. Demostrar que

$$\bullet \ \varnothing \cup A = A.$$

$$\bullet \ A \cup B = \varnothing \text{ implica}$$

$$\bullet \ A = A \cap A.$$

$$\text{que } A = \varnothing \ B = \varnothing.$$

$$\bullet \ A = A \cup A. \qquad \bullet \ \varnothing \cap A = \varnothing. \qquad \bullet \ (A \backslash B) \cap B = \varnothing.$$

Ejercicio 1.1.13. Demuestra que $A \setminus B = \emptyset$ si y sólo si $A \subset B$.

Ejercicio 1.1.14. Demuestra que $A \setminus B = A$ si y sólo si $A \cap B = \emptyset$.

Sea A un subconjunto de un conjunto universo $\mathcal U.$ Se define el complemento de A como el conjunto

$$A^c = \mathcal{U} \backslash A$$
.

Ejercicio 1.1.15. Determinar los conjuntos \varnothing^c y \mathcal{U}^c .

Ejercicio 1.1.16. Demuestra que $(A^c)^c = A$.

Ejercicio 1.1.17. Demuestra que $A \setminus B = A \cap B^c$

Ejercicio 1.1.18. Demuestra que $A \subset B$ implica $B^c \subset A^c$.

1.2. Propiedades fundamentales de los números

Ejercicio 1.2.1. ¿Qué número es el inverso aditivo del cero?

Ejercicio 1.2.2. ¿Qué número es el inverso multiplicativo del uno?

Ejercicio 1.2.3. Demuestra lo siguiente:

1. Si ax = a para algún número $a \neq 0$, x = 1.

2.
$$x^2 - y^2 = (x - y)(x + y)$$
.

3.
$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$
.

4.
$$x^3 + y^3 = (x+y)(x^2 - xy + y^2)$$
.

 $\it Ejercicio$ 1.2.4. ¿Dónde esta el fallo en el siguiente argumento? Sea x=y. Entonces

$$x^{2} = xy$$

$$x^{2} - y^{2} = xy - y^{2}$$

$$(x+y)(x-y) = y(x-y)$$

$$x+y=y$$

$$2y = y$$

$$2 = 1.$$

Ejercicio~1.2.5. Demuestra lo siguiente:

1. Si
$$b, c \neq 0$$
, entonces

$$\frac{a}{b} = \frac{ac}{bc}.$$

2. Si $b, d \neq 0$, entonces

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}.$$

3. Si $a, b \neq 0$, entonces

$$(ab)^{-1} = a^{-1}b^{-1}.$$

4. Si $b \neq 0$, entonces

$$-\left(\frac{a}{b}\right) = \frac{-a}{b} = \frac{a}{-b}.$$

5. Si $b, d \neq 0$, entonces

$$\left(\frac{a}{b}\right)\left(\frac{c}{d}\right) = \frac{ac}{bd}.$$

6. Si $b, c, d \neq 0$, entonces

$$\frac{a/b}{c/d} = \frac{ad}{bc}.$$

Ejercicio~1.2.6. Demuestra que los inversos aditivos y multiplicativos son únicos. Ejercicio~1.2.7. Sean a y b un par de números. Demuestra que se cumple uno y sólo uno de los siguientes enunciados:

$$a=b.$$

$$a > b$$
.

$$\bullet$$
 $a < b$.

Ejercicio 1.2.8. Demuestra lo siguiente:

1. Si
$$x^2 = y^2$$
, entonces $x = y$ o $x = -y$.

- 2. Si a < b, entonces -b < -a.
- 3. Si $a < b \ y \ c > d$, entonces a c < b d.
- 4. Si a < b y c > 0, entonces ac < bc.
- 5. Si a < b y c < 0, entonces ac > bc.
- 6. Si a > 1, entonces $a^2 > a$.
- 7. Si 0 < a < 1, entonces $a^2 < a$.
- 8. Si $0 \le a < b$ y $0 \le c < d$, entonces ac < bd.
- 9. Si $0 \le a < b$, entonces $a^2 < b^2$.
- 10. Si $a, b \ge 0$, entonces $a^2 < b^2$ implica que a < b.

Ejercicio 1.2.9. Demostrar que si 0 < a < b, entonces

$$a < \sqrt{ab} < \frac{a+b}{2} < b.$$

Ejercicio 1.2.10. Demuestra lo siguiente:

- 1. $|xy| = |x| \cdot |y|$.
- 2. Si $x \neq 0$, entonces

$$\left|\frac{1}{x}\right| = \frac{1}{|x|}.$$

3. Si $y \neq 0$, entonces

$$\frac{|x|}{|y|} = \left| \frac{x}{y} \right|.$$

4. $|x + y + z| \le |x| + |y| + |z|$.

Ejercicio 1.2.11. Demuestra que

$$\max(a,b) = \frac{a+b+|b-a|}{2}$$

у

$$\min(a,b) = \frac{a+b-|b-a|}{2}.$$

Intenta ahora deducir una fórmula para el mínimo y el máximo de tres números.

1.3. Distintas clases de números

 $\it Ejercicio$ 1.3.1. Qué propiedades fundamentales de los números no son válidas para los números naturales.

Ejercicio1.3.2. Para números a_1,\dots,a_n y
 b, demuestre que es válida la siguiente igualdad

$$\left(\sum_{i=1}^{n} a_i\right) \cdot b = \sum_{i=1}^{n} a_i \cdot b.$$

Ejercicio 1.3.3. Demuestra que

$$\sum_{i=1}^{n} i^3 = \left(\sum_{i=1}^{n} i\right)^2.$$

(Sugerencia: Recuerde a que es igual la suma de los n primero números).

Ejercicio~1.3.4. Para número enteros n y a cualesquiera, demuestra que es válida la fórmula

$$n \cdot a = \sum_{i=1}^{n} a.$$

Ejercicio 1.3.5. Encuentra una fórmula para $\sum_{i=1}^{n} (2i-1)$.

 $\it Ejercicio~1.3.6.$ Demuestra la validez de la siguiente desigualdad para todo número n>1.

1.
$$\frac{n}{2} < \sum_{i=0}^{n} \frac{1}{2^{n}-1} < n$$
.

Ejercicio 1.3.7. Podemos definir el exponente de un número real bajo un número natural de forma recursiva como sigue

- $a^1 = a$
- $a^{n+1} = a^n \cdot a.$

Demuestra que

$$a^{m+n} = a^m \cdot a^n,$$
$$(a^n)^m = a^{m \cdot n}.$$

(Sugerencia: Cuidado. Realiza inducción sobre no mpero no los dos a vez.)

Ejercicio 1.3.8. Definase el producto de los números a_1, \ldots, a_n de manera recursiva como

- $\blacksquare \prod_{i=1}^{1} a_i = a_1,$
- $\blacksquare \prod_{i=1}^{n} a_i = \left(\prod_{i=1}^{n-1}\right) \cdot a_n.$

Demuestra que

$$\prod_{i=1}^{n} m = m^{n}.$$

Ejercicio 1.3.9. Sean x_1, \ldots, x_n números no negativos con la particularidad que

$$\sum_{i=1}^{n} x_i \le \frac{1}{2}.$$

Demuestra que

$$\prod_{i=1}^{n} (1 - x_i) \ge \frac{1}{2}.$$

Ejercicio 1.3.10. Sea $r \neq 1$ un número real cualquiera. Demuestra por inducción

$$\sum_{i=1}^{n} r^{i} = \frac{r(1-r^{n})}{1-r}$$

 $Ejercicio\ 1.3.11.$ Suponga se conocen las propiedades 1 y 4 de los números naturales, pero no se ha hablado de la multiplicación. Se puede definir la multiplicación de manera recursiva como sigue

 $\bullet 1 \cdot b = b,$

$$(a+1) \cdot b = a \cdot b + a.$$

Demuestra que

$$a \cdot (b+c) = a \cdot b + a \cdot c.$$

Ejercicio 1.3.12. Qué propiedades fundamentales de los números no son válidas para los números enteros.

Ejercicio 1.3.13. Qué propiedades fundamentales de los números no son válidas para los números racionales.

Ejercicio 1.3.14. Demuestra que los números $\sqrt{3}$, $\sqrt{\frac{2}{3}}$ y $\sqrt{2}+\sqrt{3}$ son irracionales.

Fundamentos de [Spi92] (Parte 1) 2.

2.1. **Funciones**

Ejercicio 2.1.1. Sea $\phi(x) = |x-3| + |x-1|$. Calcula los valores $\phi(0)$, $\phi(1)$, $\phi(2)$, $\phi(-1)$ y $\phi(-2)$. Determina los valores para los cuales $\phi(t+2) = \phi(t)$.

Ejercicio 2.1.2. Sea $f(x) = x^2$. Determine en cada caso los conjuntos de números reales para los cuales la fórmula es válida.

1.
$$f(-x) = f(x)$$
.

4.
$$f(2y) = 4f(y)$$
.

2.
$$f(y) - f(x) = (y - x)(x - y)$$
. 5. $f(t^2) = f(t)^2$.

5.
$$f(t^2) = f(t)^2$$
.

3.
$$f(x+h) - f(x) = 2xh + h^2$$
. 6. $\sqrt{f(a)} = |a|$.

6.
$$\sqrt{f(a)} = |a|$$
.

Ejercicio 2.1.3. Sea $g(x) = \sqrt{4-x^2}$ para $|x| \leq 2$. Comprobar cada una de las siguientes fórmulas y determinar para que valores son válidas.

1.
$$q(-x) = q(x)$$
.

4.
$$q(a-2) = \sqrt{4a-a^2}$$

2.
$$g(2y) = 2\sqrt{1-y^2}$$
.

5.
$$g\left(\frac{s}{2}\right) = \frac{1}{2}\sqrt{16 - s^2}$$
.

$$3. \ g\left(\frac{1}{t}\right) = \frac{\sqrt{4t^2 - 1}}{|t|}$$

6.
$$\frac{1}{2+g(x)} = \frac{2-g(x)}{x^2}$$
.

Ejercicio 2.1.4. Sean a_1, \ldots, a_n números reales cualquiera y sea

$$f(x) = \prod_{i=1}^{n} (x - a_i)$$

una función. Demuestra que f es un polinomio de grado n de forma tal que $f(a_i) = 0$ para cada $1 \le i \le n$. (Sugerencia: Usa inducción sobre n).

Ejercicio 2.1.5. ¿Para que números a, b, c y d la función

$$f(x) = \frac{ax + b}{cx + d}$$

satisface f(f(x)) = x para todo x?

Ejercicio 2.1.6. Sea A un conjunto de los números reales, define la función

$$\chi_A(x) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si } x \notin A \end{cases}$$

Encuentre expresiones para $\chi_{A \cup B}$, $\chi_{A \cap B}$ y $\chi_{\mathbb{R} \setminus A}$.

Ejercicio 2.1.7. Una función f es par si f(x) = f(-x) e impar si f(x) = -f(-x). Por ejemplo f es par si $f(x) = x^2$ o f(x) = |x|, mientras que es impar si f(x) = x o $f(x) = \sin(x)$.

- 1. ¿Cuándo es f + g una función par? ¿Cuándo es impar?
- 2. ¿Cuándo es $f \cdot g$ una función par? ¿Cuándo es impar?
- 3. ¿Cuándo es $f \circ g$ una función par? ¿Cuándo es impar?

Ejercicio 2.1.8. Demuestre que, si $f \circ g = I$, entonces

- 1. si $x \neq y$, entonces $g(x) \neq g(y)$.
- 2. cada número b puede escribirse como b = f(a) para algún número a.

Ejercicio 2.1.9. Sea

$$f(x) = \sum_{i=0}^{n} a_i x^i$$

un polinomio de grado n. Demuestra las siguientes propiedades.

- 1. Si $n \ge 1$ y f(0) = 0, entonces $f(x) = x \cdot g(x)$ para algún polinomio g de grado n-1.
- 2. Para real a, la función dado por p(x) = f(x + a).
- 3. Si $n \ge 1$ y f(a) = 0 para algún número real a, entonces $f(x) = (x-a) \cdot g(x)$ para algún g de grado n-1 (Sugerencia: considérese p(x) = f(x+a)).

2.2. Gráficas

Ejercicio 2.2.1. Las gráficas de los polinomios f(x) = x y $g(x) = x^3$ se cortan en tres puntos. Dibuja una parte suficiente de su gráfica para ver donde se cortan.

Ejercicio 2.2.2. Las gráficas de los polinomios f(x) = x y $g(x) = x^2$ se cortan en dos puntos. Dibuja una parte suficientes de sus gráficas para ver donde se cortan. ¿Puedes determinar en que puntos se cortan?

Referencias

- [Apo84] Apostol, Tom M.: Cálculo con funciones de una variable, con una introducción al Álgebra Lineal. Editorial Reverté, 1984.
- [KKCS89] Kudriávtsev, L. D., Kutásov, A. D., Chejlov, V. I. y Shabunin, M. I.: *Problemas de análisis matemático*. Editorial Mir, Moscú, 1989.
- [Spi92] Spivak, Michael: Cálculo Infinitesimal. Editorial Reverté, 2ª edición, 1992.