Дискретная математика Тема 1. Теория множеств

Перепелкин Е.А.

Санкт-Петербургский государственный университет аэрокосмического приборостроения (ГУАП)

2021

1.1 Понятие множества

Понятие множества является первичным неопределяемым понятием математики.

Множество можно понимать как объединение элементов, обладающих заданным свойством.

Принадлежность элемента x множеству A обозначается: $x \in A$, непринадлежность: $x \notin A$.

Способы задания множеств:

Перечислением элементов конечного множества

$$A = \{x_1; x_2; \ldots; x_n\}.$$

2) Характеристическим свойством

$$A = \{x | P(x)\}.$$

3) Алгоритмом формирования элементов множества.

Пример

1) Множество цифр шестнадцатеричной системы счисления задаётся перечислением цифр

$$X = \{0; 1; 2; 3; 4; 5; 6; 7; 8; 9; A; B; C; D; E; F\}.$$

 Множество точек окружности единичного радиуса задаётся уравнением

$$S = \{(x, y) | x^2 + y^2 = 1\}.$$

3) Множество простых чисел от 1 до n можно задать алгоритмом последовательного вычёркивания составных чисел. Этот алгоритм получил название «Решето Эратосфена». Сначала вычеркиваются числа кратные 2, затем кратные 3 и т.д. После окончания работы алгоритма остаются только простые числа.

Для числовых множеств приняты следующие обозначения:

N – множество натуральных чисел;

Z – множество целых чисел;

Q — множество рациональных чисел;

R – множество действительных чисел;

C – множество комплексных чисел.

Интервал на числовой оси обозначается как

$$(a, b) = \{x | a < x < b\}.$$

Полуинтервалы

$$(a,b] = \{x | a < x \le b\}, \quad [a,b) = \{x | a \le x < b\}.$$

Отрезок

$$[a, b] = \{x | a \le x \le b\}.$$

Промежуток – любое из указанных множеств: интервал, полуинтервал или отрезок.

Два особых множества: универсальное множество U и пустое множество \emptyset .

Определение

Универсальным множеством (универсумом) будем называть множество, содержащее все элементы заданной природы. Например, множество всех равносторонних треугольников на плоскости.

Определение

Пустым множеством будем называть множество, не содержащее элементов заданной природы. Например, пустым множеством является множество действительных решений уравнения $x^2=-1$.

1.2 Операции над множествами

Пусть A,B,C,... есть множества, состоящие из элементов U.

Определение

Два множества A и B называются равными, A=B, если они состоят из одних и тех же элементов,

$$\forall x \in U : x \in A \Leftrightarrow x \in B$$
.

Множество A является подмножеством B (A включается в B), если

$$\forall x \in U : x \in A \Rightarrow x \in B.$$

Включение обозначают $A\subseteq B$. Строгое включение $A\subset B$ означает, что $A\subseteq B$ и $A\neq B$.

Два множества A и B равны (совпадают), если они являются подмножествами друг друга, $A\subseteq B$ и $B\subseteq A$.

1) Объединение

$$A \cup B = \{x | x \in A$$
или $x \in B\}$.

2) Пересечение

$$A \cap B = \{x | x \in A \text{ if } x \in B\}.$$

3) Разность

$$A \setminus B = \{ x | x \in A \text{ if } x \notin B \}.$$

4) Симметрическая разность

$$A \triangle B = \{x | (x \in A \text{ и } x \notin B) \text{ или } (x \notin A \text{ и } x \in B) \},$$
 $A \triangle B = (A \setminus B) \cup (B \setminus A),$
 $A \triangle B = (A \cup B) \setminus (A \cap B).$

5) Дополнение

$$\overline{A} = \{x | x \notin A\},\$$

 $\overline{A} = U \setminus A.$

Пример

Пусть

$$U = \{1; 2; 3; 4; 5; 6; 7; 8; 9; 10\},$$

$$A = \{2; 4; 7\},$$

$$B = \{1; 4; 9\},$$

$$C = \{2; 5; 8; 9\}.$$

Построим множество

$$D = \overline{A \cup B} \setminus C.$$

Находим

$$A \cup B = \{1; 2; 4; 7; 9\},$$

 $\overline{A \cup B} = \{3; 5; 6; 8; 10\},$
 $D = \{3; 6; 10\}.$

Наглядное представление операций над множествами дают диаграммы Эйлера-Венна

Пример

В студенческой группе 23 человека. Экзамен по математике сдали 17 человек. Экзамен по информатике 19 человек. Оба экзамена сдали 14 человек. Сколько человек не сдали ни одного экзамена?

Обозначим:

U – множество студентов в группе;

A – множество студентов, сдавших экзамен по математике;

В – множество студентов, сдавших экзамен по информатике.

Множество студентов, сдавших оба экзамена равно $C = A \cap B$, сдавших только математику равно $D = A \setminus C$, сдавших только информатику равно $E = B \setminus C$, сдавших, по крайней мере один экзамен, равно $C \cup D \cup E$. Множество студентов, не сдавших ни одного экзамена равно $U \setminus (C \cup D \cup E)$.

Число студентов, сдавших

оба экзамена: 14,

только математику: 17-14=3,

только информатику: 19-14=5.

Число студентов, не сдавших ни одного экзамена ровно

23-(14+3+5)=1.

Разбиением множества A называется набор его попарно непересекающихся подмножеств $A_i,\ i\in I$ таких, что

$$A = \bigcup_{i \in I} A_i, \quad A_i \cap A_j = \emptyset, \quad i \neq j.$$

Пример

Для любого натурального числа ho>0 множество целых чисел можно записать в виде

$$Z=Z_0\cup Z_1\cup\cdots\cup Z_{p-1},$$

где

$$Z_0=kp,\quad Z_1=kp+1,\quad \dots,\quad Z_{p-1}=kp+p-1,\quad k\in Z.$$

При этом $Z_i \cap Z_j = \emptyset$, $i \neq j$.

◆□▶◆圖▶◆臺▶◆臺▶臺⑨

Булеаном множества A называется множество всех его подмножеств

$$2^A = \{B | B \subseteq A\}.$$

Пустое множество \emptyset и само множество A являются элементами булеана.

Пример

Для множества $A = \{x; y; z\}$

$$2^{A} = \{\emptyset; \{x\}; \{y\}; \{z\}; \{x; y\}; \{x; z\}; \{y; z\}; \{x; y; z\}\}.$$

Характеристической функцией множества A называется функция принадлежности элементов U множеству A

$$f_A(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$$

Множества совпадают тогда и только тогда, когда совпадают их характеристические функции

$$A = B \Leftrightarrow f_A(x) = f_B(x).$$

Свойства характеристических функций:

1)
$$f_U(x) = 1$$
, $f_{\emptyset}(x) = 0$

2)
$$f_{A \cup B}(x) = f_A(x) + f_B(x) - f_A(x)f_B(x)$$

- 3) $f_{A\cap B}(x) = f_A(x)f_B(x)$
- 4) $f_{\overline{A}}(x) = 1 f_A(x)$
- 5) $f_{A\setminus B}(x) = f_A(x) f_A(x)f_B(x)$
- 6) $f_{A \triangle B}(x) = f_A(x) + f_B(x) 2f_A(x)f_B(x)$

$$\forall x: f_{\overline{A}}(x) = 1 - f_A(x).$$

Действительно,

$$f_{\overline{A}}(x) = 1 \Rightarrow x \in \overline{A} \Rightarrow x \notin A \Rightarrow f_A(x) = 0 \Rightarrow 1 - f_A(x) = 1,$$

 $f_{\overline{A}}(x) = 0 \Rightarrow x \notin \overline{A} \Rightarrow x \in A \Rightarrow f_A(x) = 1 \Rightarrow 1 - f_A(x) = 0.$

Характеристическим вектором конечного множества

$$A\subseteq U=\{x_1;x_2;\ldots;x_n\}$$

называется вектор

$$h_{\mathcal{A}}=[f_{\mathcal{A}}(x_1),\ldots,f_{\mathcal{A}}(x_n)].$$

Элементы характеристических векторов принимают только два значения: 0 и 1.

Операции сложения, умножения и отрицания характеристических векторов

$$h = [h_1, \ldots, h_n], \quad g = [g_1, \ldots, g_n]$$

выполняются поэлементно:

$$h + g = [h_1 + g_1, \dots, h_n + g_n],$$

 $hg = [h_1g_1, \dots, h_ng_n],$
 $\bar{h} = [\bar{h}_1, \dots, \bar{h}_n],$

hi	gi	$h_i + g_i$	h _i g _i
1	1	1	1
1	0	1	0
0	1	1	0
0	0	0	0

hį	\overline{h}_i
1	0
0	1

Операции над конечными множествами можно выразить через операции над характеристическими векторами этих множеств:

- $1) h_{A\cup B}=h_A+h_B$
- $2) h_{A\cap B}=h_Ah_B$
- 3) $h_{\overline{A}} = \bar{h}_A$
- 4) $h_{A\setminus B}=h_A\bar{h}_B$
- $5) h_{A\triangle B} = h_A \bar{h}_B + \bar{h}_A h_B$

Пример

Пусть

$$U = \{1; 2; 3; 4; 5; 6; 7; 8; 9; 10\},$$

$$A = \{3; 4; 7; 9; 10\},$$

$$B = \{2; 4; 6; 7; 8; 9\}.$$

Тогда

$$h_A = [0011001011],$$
 $h_B = [0101011110],$
 $h_{\bar{A}} = \bar{h}_A = [1100110100],$
 $h_{\bar{B}} = \bar{h}_B = [1010100001],$
 $h_{A \setminus B} = h_A \bar{h}_B = [0010000001],$
 $h_{A \triangle B} = h_A \bar{h}_B + \bar{h}_A h_B = [0110010101].$

1.3 Теоретико-множественные тождества

Справедливы следующие теоретико-множественные тождества:

1) Коммутативность

$$A \cup B = B \cup A$$
, $A \cap B = B \cap A$.

2) Ассоциативность

$$(A \cup B) \cup C = A \cup (B \cup C), \quad (A \cap B) \cap C = A \cap (B \cap C).$$

3) Дистрибутивность

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C), \quad (A \cap B) \cup C = (A \cup C) \cap (B \cup C).$$

4) Законы де Моргана

$$\overline{A \cup B} = \overline{B} \cap \overline{A}, \quad \overline{A \cap B} = \overline{B} \cup \overline{A}.$$

5) Идемпотентность

$$A \cup A = A$$
, $A \cap A = A$.

6) Поглощение

$$(A \cup B) \cap A = A$$
, $(A \cap B) \cup A = A$.

7) Свойства нуля

$$A \cup \emptyset = A$$
, $A \cap \emptyset = \emptyset$.

8) Свойства единицы

$$A \cup U = U$$
, $A \cap U = A$.

9) Инволютивность

$$\overline{\overline{A}} = A$$
.

10) Свойства дополнения

$$A \cup \overline{A} = U$$
, $A \cap \overline{A} = \emptyset$.

Доказать теоретико-множественные тождества можно методом включения и методом характеристических функций.

Метод включения заключается в следующем. Множества A и B равны, если $A \subseteq B$ и $B \subseteq A$. Следовательно, A = B, если

$$\forall x: x \in A \Rightarrow x \in B \text{ if } x \in B \Rightarrow x \in A,$$

или в виде одного утверждения

$$\forall x: x \in A \Leftrightarrow x \in B.$$

Для доказательства равенства множеств A и B методом характеристических функций достаточно показать, что

$$\forall x : f_A(x) = f_b(x).$$

Докажем закон де Моргана

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

методом включения. В соответствии с определением операций над множествами

$$x \in \overline{A \cup B} \Rightarrow x \notin A \cup B \Rightarrow x \notin A \text{ if } x \notin B \Rightarrow$$
$$x \in \overline{A} \text{ if } x \in \overline{B} \Rightarrow x \in \overline{A} \cap \overline{B} \Rightarrow \overline{A \cup B} \subseteq \overline{A} \cap \overline{B}.$$

С другой стороны,

$$x \in \overline{A} \cap \overline{B} \Rightarrow x \in \overline{A} \text{ if } x \in \overline{B} \Rightarrow x \notin A \text{ if } x \notin B \Rightarrow x \notin A \cup B \Rightarrow x \in \overline{A \cup B} \Rightarrow \overline{A} \cap \overline{B} \subseteq \overline{A \cup B}.$$

Объединим две эти записи в одну

$$x \in \overline{A \cup B} \Leftrightarrow x \notin A \cup B \Leftrightarrow x \notin A \text{ in } x \notin B \Leftrightarrow$$

$$x \in \overline{A} \text{ in } x \in \overline{B} \Leftrightarrow x \in \overline{A} \cap \overline{B} \Rightarrow \overline{A \cup B} = \overline{A} \cap \overline{B}.$$

Докажем методом характеристических функций

$$f_{\overline{A \cup B}}(x) = 1 - f_{A \cup B}(x) = 1 - f_{A}(x) - f_{B}(x) + f_{A}(x)f_{B}(x),$$

$$f_{\overline{A} \cap \overline{B}}(x) = f_{\overline{A}}(x)f_{\overline{B}}(x) = (1 - f_{A}(x))(1 - f_{B}(x)) =$$

$$= 1 - f_{A}(x) - f_{B}(x) + f_{A}(x)f_{B}(x).$$

Следовательно,

$$f_{\overline{A \cup B}}(x) = f_{\overline{A} \cap \overline{B}}(x)$$

И

$$\overline{A \cup B} = \overline{A} \cap \overline{B}.$$

Законы де Моргана можно обобщить на несколько множеств.

Теорема

Справедливы тождества

$$\overline{\bigcup_{i=1}^{n} A_i} = \bigcap_{i=1}^{n} \overline{A}_i, \quad \overline{\bigcap_{i=1}^{n} A_i} = \bigcup_{i=1}^{n} \overline{A}_i.$$

Доказательство.

Докажем второе тождество

$$x\in \overline{\bigcap_{i=1}^n A_i} \Leftrightarrow x\notin \bigcap_{i=1}^n A_i \Leftrightarrow$$

$$\exists i: x \notin A_i \Leftrightarrow \exists i: x \in \overline{A}_i \Leftrightarrow x \in \bigcup_{i=1}^n \overline{A}_i.$$

1.4 Мощность конечного множества

Определение

Количество элементов конечного множества называется мощностью множества и обозначается |A|.

Мощность конечного множества A с характеристической функцией $f_A(x)$ равна

$$|A| = \sum_{x \in U} f_A(x).$$

Для разбиения конечного множества

$$A = \bigcup_{i=1}^{n} A_i, \quad A_i \cap A_j = \emptyset, \quad i \neq j,$$

справедливо равенство

$$|A| = \sum_{i=1}^n |A_i|.$$

Теорема

Для любых конечных множеств А и В справедливо равенство

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

Доказательство.

$$|A \cup B| = \sum_{x \in U} f_{A \cup B}(x) = \sum_{x \in U} (f_A(x) + f_B(x) - f_{A \cap B}(x)) =$$

= $|A| + |B| - |A \cap B|$.

Теорема (Формула включения-исключения)

Пусть A_1, \ldots, A_n есть подмножества некоторого конечного множества A. Тогда

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{1 \leq i \leq n} |A_{i}| - \sum_{1 \leq i < j \leq n} |A_{i} \cap A_{j}| +$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}| - \dots + (-1)^{n-1} |A_{1} \cap \dots \cap A_{n}|.$$

Докажем на основе принципа математической индукции. Базис индукции. При n=2 получим

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|.$$

Шаг индукции. Пусть теорема справедлива для (n-1)-го подмножества. Тогда

$$\begin{aligned} \left| \bigcup_{i=1}^{n} A_{i} \right| &= \left| \bigcup_{i=1}^{n-1} A_{i} \cup A_{n} \right| = \left| \bigcup_{i=1}^{n-1} A_{i} \right| + |A_{n}| - \left| \left(\bigcup_{i=1}^{n-1} A_{i} \right) \cap A_{n} \right| = \\ &= \left| \bigcup_{i=1}^{n-1} A_{i} \right| + |A_{n}| - \left| \bigcup_{i=1}^{n-1} (A_{i} \cap A_{n}) \right| = \sum_{1 \leq i \leq n} |A_{i}| - \sum_{1 \leq i < j \leq n} |A_{i} \cap A_{j}| + \\ &+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}| - \dots + (-1)^{n-1} |A_{1} \cap \dots \cap A_{n}|. \end{aligned}$$

Пусть A_1, \ldots, A_n есть подмножества некоторого конечного множества A. Тогда

$$\left|\bigcap_{i=1}^{n} \overline{A_i}\right| = |A| - \left(\sum_{1 \le i \le n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - \dots + (-1)^{n-1} |A_1 \cap \dots \cap A_n|\right).$$

Доказательство.

По закону де Моргана

$$\left|\bigcap_{i=1}^{n} \overline{A_i}\right| = \left|\overline{\bigcup_{i=1}^{n} A_i}\right| = \left|A \setminus \bigcup_{i=1}^{n} A_i\right| = |A| - \left|\bigcup_{i=1}^{n} A_i\right|.$$

Пусть А – конечное множество. Тогда мощность булеана

$$|2^A| = 2^{|A|}$$
.

Доказательство.

Докажем на основе принципа математической индукции. Обозначим

$$A_n = \{x_1; \ldots; x_n\}.$$

Базис индукции. При n=1 получим

$$2^{A_1} = \{\{x_1\}; \emptyset\}, \quad |2^{A_1}| = 2^{|A_1|} = 2.$$

Шаг индукции. Пусть утверждение теоремы верно для множества A_{n-1} . Множество 2^{A_n} представим в виде объединения двух непересекающихся множеств

$$2^{A_n} = 2^{A_{n-1}} \cup B,$$

$$B = \left\{ C \subseteq 2^{A_n} | a_n \in C \right\}, \quad 2^{A_{n-1}} \cap B = \emptyset.$$

Следовательно,
$$|2^{A_n}| = |2^{A_{n-1}}| + |B| = 2 \cdot 2^{n-1} = 2^n$$
.

1.5 Декартово произведение множеств

Определение

Прямым (декартовым) произведением множеств $A_i,\ i=1,\ldots,n$,

$$B = A_1 \times A_2 \times \cdots \times A_n$$

называется множество всех упорядоченных наборов

$$(x_1,x_2,\ldots,x_n),$$

где $x_i \in A_i$, $i = 1, \ldots, n$.

Если $A \neq B$, то $A \times B \neq B \times A$.

Пример

Пусть

$$A = \{x; y; z\}, \quad B = \{0; 1\}.$$

Тогда

$$A \times B = \{(x,0); (x,1); (y,0); (y,1); (z,0); (z,1)\}, B \times A = \{(0,x); (0,y); (0,z); (1,x); (1,y); (1,z)\}.$$

Пусть все множества A_i , $i=1,\ldots,n$ равны между собой. Множество

$$A^n = A \times \cdots \times A$$

называется n-ой степенью множества A.

Пример

Множество $R^2 = R \times R$ является множеством точек плоскости с декартовой системой координат.

Геометрическая интерпретация декартового произведения.

3десь множества A и B отрезки числовой оси, $C=A\times B$.

Справедливы тождества:

1)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
,

2)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$
,

3)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$
,

4)
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$
,

5)
$$(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$$
,

6)
$$A \times (B \setminus C) = (A \times B) \setminus (A \times C)$$
,

7)
$$(A \setminus B) \times C = (A \times C) \setminus (B \times C)$$
,

8)
$$\overline{A \times B} = (\overline{A} \times \overline{B}) \cup (\overline{A} \times B) \cup (A \times \overline{B}).$$

Докажем тождество 1 методом включения

$$(x,y)\in A imes (B\cup C)\Leftrightarrow x\in A$$
 и $y\in B\cup C\Leftrightarrow$ $x\in A$ и $(y\in B)$ или $(x\in A)$ и $y\in C)\Leftrightarrow (x,y)\in A\times B$ или $(x,y)\in A\times C\Leftrightarrow (x,y)\in (A\times B)\cup (A\times C)$

Пусть множества A_i , $i=1,\ldots,n$ конечны. Тогда мощность прямого произведения

$$|A_1 \times A_2 \times \cdots \times A_n| = |A_1||A_2| \cdots |A_n|.$$

Доказательство.

Элементы множества $A_1 imes A_2 imes \cdots imes A_n$ есть упорядоченные наборы

$$(a_1, a_2, \ldots, a_n), \quad a_i \in A_i, \quad i = 1, 2 \ldots, n.$$

При построении таких наборов первый элемент выбираем $|A_1|$ способами, второй независимо от первого $|A_2|$ способами и т.д. Всего получим $|A_1||A_2|\cdots|A_n|$ различных элементов прямого произведения.

Как следствие получим $|A^n| = |A|^n$.

1.6 Бинарные отношения и их свойства

Определение

Отношение R на множествах $A_i,\ i=1,\ldots,n$ есть подмножество прямого произведения этих множеств

$$R \subseteq A_1 \times A_2 \times \ldots A_n$$
.

Определение

Бинарным отношением называется отношение на двух множествах

$$R \subseteq A \times B$$
.

Определение

Бинарным отношением на множестве называется отношение

$$R \subseteq A \times A = A^2$$
.

Принадлежность пары (x,y) бинарному отношению R записывается в виде $(x,y) \in R$ или xRy.

Бинарные отношения на конечных множествах можно задавать в виде списка элементов, в виде матрицы, в виде графа.

Пусть $A = \{x_1; x_2; \dots; x_n\}$, $B = \{y_1; y_2; \dots; y_m\}$. Матрица бинарного отношения $R \subseteq A \times B$ состоит из элементов

$$M_{ij} = \left\{ egin{array}{ll} 1, & (x_i, y_j) \in R \\ 0, & (x_i, y_j) \notin R \end{array}
ight.$$

Матрицу бинарного отношения R будем обозначать M_R .

Пример

На множестве чисел $A = \{1, 2, 3, 4, 5, 6\}$ зададим бинарное отношение

$$R = \{(x, y) | x$$
 делитель $y\}$.

Отношение содержит элементы

$$R = \{(1,1); (1,2); (1,3); (1,4); (1,5); (1,6); (2,2); (2,4); (2,6); (3,3); (3,6); (4,4); (5,5); (6,6)\}.$$

Матрица отношения равна

$$M_R = egin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \ 0 & 1 & 0 & 1 & 0 & 1 \ 0 & 0 & 1 & 0 & 0 & 1 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Граф отношения

Тождественным отношением, заданным на множестве A, называется отношение

$$E = \{(x,x)| x \in A\}.$$

Матрица тождественного отношения, заданного на конечном множестве, есть единичная матрица.

Определение

Множество

$$D_R = \{x | \exists y \in B : xRy\} \subseteq A$$

называется областью определения отношения $R \subseteq A \times B$.

Множество

$$I_R = \{y | \exists x \in A : xRy\} \subseteq B$$

называется областью значений отношения $R\subseteq A imes B$.

Определение

Обратным отношением для отношения $R\subseteq A\times B$ называется отношение

$$R^{-1} = \{(y, x) | xRy\} \subseteq B \times A.$$

Композицией бинарных отношений

$$R_1 \subseteq A \times B$$
, $R_2 \subseteq B \times C$

называется отношение

$$R_1 \circ R_2 = \{(x,y) | x \in A, y \in C, \exists z \in B : xR_1z, zR_2y\} \subseteq A \times C.$$

Определение

Ядром отношения $R\subseteq A imes B$ называется отношение

$$K_R = R \circ R^{-1}$$
.

Справедливы тождества:

1)
$$(R^{-1})^{-1} = R$$
,

2)
$$(R_1 \cup R_2)^{-1} = R_1^{-1} \cup R_2^{-1}$$
,

3)
$$(R_1 \cap R_2)^{-1} = R_1^{-1} \cap R_2^{-1}$$
,

4)
$$R_1 \circ (R_2 \circ R_3) = (R_1 \circ R_2) \circ R_3$$
,

5)
$$R_1 \circ (R_2 \cup R_3) = (R_1 \circ R_2) \cup (R_1 \circ R_3)$$
,

6)
$$(R_1 \cup R_2) \circ R_3 = (R_1 \circ R_3) \cup (R_2 \circ R_3),$$

7)
$$(R_1 \circ R_2)^{-1} = R_2^{-1} \circ R_1^{-1}$$
.

Докажем тождество 7. Необходимо показать, что

$$\forall x,y: x(R_1\circ R_2)^{-1}y \Leftrightarrow x(R_2^{-1}\circ R_1^{-1})y.$$

Действительно,

$$x(R_1 \circ R_2)^{-1}y \Leftrightarrow y(R_1 \circ R_2)x \Leftrightarrow \exists z : yR_1z, \ zR_2x \Leftrightarrow zR_1^{-1}y, \ xR_2^{-1}z \Leftrightarrow x(R_2^{-1} \circ R_1^{-1})y.$$

Пусть R – бинарное отношение на множестве A. Обозначим

$$R^n = \underbrace{R \circ R \circ \cdots \circ R}_{n}$$
.

Определим $R^0=E$. Тогда справедливы следующие соотношения

$$R^n \circ R^m = R^{n+m}, \quad (R^n)^{-1} = (R^{-1})^n = R^{-n}.$$

Отношение $R\subseteq A^2$ называется рефлексивным, если

$$\forall x \in A : xRx.$$

Определение

Отношение $R\subseteq A^2$ называется антирефлексивным, если не существует $x\in A$ такого, что xRx.

Отношение $R\subseteq A^2$ называется симметричным, если

$$\forall x,y \in A : xRy \Rightarrow yRx.$$

Определение

Отношение $R \subseteq A^2$ называется антисимметричным, если не существует $x, y \in A$ таких, что одновременно xRy и yRx.

Отношение $R\subseteq A^2$ называется транзитивным, если для

$$\forall x,y,z\in A:\ xRy,\ yRz\Rightarrow xRz.$$

Определение

Отношение $R\subseteq A^2$ называется плотным, если

$$\forall x, y \in A : x \neq y, \ xRy \Rightarrow \exists z \neq x, y : xRz, \ zRy.$$

Отношение R симметрично $\Leftrightarrow R = R^{-1}$

Доказательство.

Необходимость. Пусть R – симметрично. Тогда

$$xRy \Rightarrow yRx \Rightarrow xR^{-1}y \Rightarrow R \subseteq R^{-1},$$

 $xR^{-1}y \Rightarrow yRx \Rightarrow xRy \Rightarrow R^{-1} \subseteq R.$

Следовательно, $R = R^{-1}$.

Достаточность. Пусть $R = R^{-1}$. Тогда

$$xRy \Rightarrow xR^{-1}y \Rightarrow yRx.$$

Следовательно, R — симметрично.

Отношение R транзитивно $\Leftrightarrow R^2 \subseteq R$.

Доказательство.

 $\mathsf{Heofxoдимость}.\ \mathsf{Пусть}\ R$ транзитивно. Тогда

$$\forall x, y : xR^2y \Rightarrow \exists z : xRz, \ zRy \Rightarrow xRy \Rightarrow R^2 \subseteq R.$$

Достаточность. Пусть $R^2\subseteq R$. Тогда

$$\forall x, y, z : xRz, \ zRy \Rightarrow xR^2y \Rightarrow xRy.$$

Следовательно, отношение транзитивно.

T ранзитивное отношение R плотно $\Leftrightarrow R^2 = R$.

Доказательство.

Необходимость. Пусть R плотно. Тогда

$$\forall x, y: xRy \Rightarrow \exists z: xRz, zRy \Rightarrow xR^2y \Rightarrow R \subseteq R^2.$$

В силу транзитвности $R^2 \subseteq R$. Следовательно, $R^2 = R$. Достаточность. Пусть $R^2 = R$. Тогда

$$\forall x, y : xRy \Rightarrow xR^2y \Rightarrow \exists z : xRz, zRy.$$

Следовательно, R плотно.

1.7 Отношение эквивалентности

Определение

Отношение $R \subseteq A^2$ называется отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.

Отношение эквивалентности обозначают $x\sim y$.

Пример

1) Два целых числа x,y сравнимы по модулю натурального числа p

$$x \equiv y \pmod{p}$$
,

если совпадают остатки от деления этих чисел на p. Отношение сравнения по модулю является отношением эквивалентности.

2) Отношение подобия фигур в геометрии является отношением эквивалентности.

Пусть $x \in A$. Множество $[x] = \{y \in A | x \sim y\}$ называется классом эквивалентности.

Теорема

Классы эквивалентности образуют разбиение множества А.

Доказательство.

$$\forall x \in A: \ x \sim x \Rightarrow x \in [x] \Rightarrow \bigcup_{x \in A} [x] = A,$$

$$\forall x, y \in A: \ [x] \cap [y] \neq \emptyset \Rightarrow \exists z \in A: \ z \in [x] \cap [y] \Rightarrow$$

$$x \sim z, \ z \sim y \Rightarrow x \sim y \Rightarrow [x] = [y].$$

Любое разбиение множества A порождает отношение эквивалентности на этом множестве.

Доказательство.

Пусть

$$A = \bigcup_{i \in I} A_i, \quad A_i \cap A_j = \emptyset, \quad i \neq j.$$

Определим отношение

$$x \sim y \Leftrightarrow x, y \in A_i$$
.

Выполняются все три свойства: рефлексивность, симметричность, транзитивность.

Если R – отношение эквивалентности на множестве A, то множество классов эквивалентности называется фактормножеством и обозначается A|R.

Фактормножество является подмножеством булеана $A|R\subseteq 2^A$.

Пример

Рассмотрим отношение сравнения по модулю 2 на множестве целых чисел Z. Существует два класса эквивалентности: множество чётных чисел

$$[0] = \{2k | k \in Z\}$$

и множество нечётных чисел

$$[1] = \{2k+1 | k \in Z\}.$$

При этом

$$Z = [0] \cup [1], \quad [0] \cap [1] = \emptyset.$$

1.8 Замыкания бинарных отношений

Определение

Отношение R_p называется замыканием отношения $R \subseteq A^2$ относительно свойства p, если:

- 1) R_p обладает свойством p;
- 2) $R \subseteq R_p$;
- 3) R_p является подмножеством любого другого отношения, включающего в себя R и обладающего свойством p.

Справедливы представления замыканий

1) Рефлексивное замыкание

$$R_r = R \cup E$$

2) Симметричное замыкание

$$R_s = R \cup R^{-1}$$

3) Транзитивное замыкание

$$R_t = \bigcup_{i=1}^{\infty} R^i$$

Доказательство.

Докажем 3. Отношение R_t транзитивно

$$\forall x, y, z : xR_t y, \ yR_t z \Rightarrow \exists m, k : xR^m y, \ yR^k z \Rightarrow xR^{m+k} z \Rightarrow xR_t z.$$

Условие $R\subseteq R_t$ также выполняется, поскольку $R=R^1\subseteq R_t$.

Пусть R' транзитивно и $R \subseteq R'$. Тогда

$$\forall x, y: xR_t y \Rightarrow \exists m: xR^m y \Rightarrow$$

$$\exists z_1, z_2, \dots, z_{m-1}: xRz_1, z_1Rz_2, \dots, z_{m-1}Ry \Rightarrow$$

$$xR'z_1, z_1R'z_2, \dots, z_{m-1}R'y \Rightarrow xR'y \Rightarrow R_t \subseteq R'.$$

Пусть R – бинарное отношение на конечном множестве с n элементами. Транзитивное замыкание R равно

$$R_t = \bigcup_{i=1}^n R^i.$$

Доказательство.

Транзитивное замыкание равно

$$R_t = \bigcup_{i=1}^{\infty} R^i$$
.

Обозначим

$$R_n = \bigcup_{i=1}^n R^i.$$

Справедливо включение $R_n\subseteq R_t$. Покажем, что $R_t\subseteq R_n$. Для этого достаточно показать, что $R^m\subseteq R_n$ при m>n. Пусть xR^my , m>n. Существует последовательность элементов

$$z=(z_1,z_2,\ldots,z_{m-1})$$

таких, что

$$xRz_1, z_1Rz_2, \ldots, z_{m-1}Ry.$$

В этой последовательности обязательно найдутся два одинаковых элемента $z_i=z_j,\ j>i$, поскольку всего элементов во множестве n.

Следовательно,

$$xRz_1,\ldots,z_iRz_{j+1},\ldots,z_{m-1}Ry.$$

Продолжая сокращать последовательность элементов z, придем к последовательности, длина которой k < n - 1 и, таким образом, $xR^{k+1}v$. Следовательно.

$$xR^m y \Rightarrow xR_n y \Rightarrow R^m \subseteq R_n$$
.

1.9 Матрицы бинарных отношений

Пусть $R\subseteq A imes B$ — бинарное отношение на конечных множествах.

Матрица M_R отношения R состоит из n=|A| строк и m=|B| столбцов.

Элементы M_R принимают два значения: 0,1. Такого рода матрицы называются логическими или булевыми.

Для булевых матриц определяются операции суммы и произведения с учётом булевых операций сложения и умножения

$$0+0=0, \quad 0+1=1+0=1, \quad 1+1=1, \\ 0\cdot 0=0, \quad 1\cdot 0=0\cdot 1=0, \quad 1\cdot 1=1.$$

◆ロト ◆団 ▶ ◆ 豆 ▶ ◆ 豆 ・ から○

Для матриц бинарных отношений справедливы равенства:

1)
$$M_{R_1 \cup R_2} = M_{R_1} + M_{R_2}$$

- $2) M_{R_1 \circ R_2} = M_{R_1} \cdot M_{R_2}$
- 3) $M_{R^k} = (M_R)^k$
- 4) $M_{R^{-1}} = (M_R)^T$
- 5) $M_{R_r} = M_R + M_E$
- 6) $M_{R_s} = M_R + (M_R)^T$
- 7) $M_{R_t} = \sum_{i=1}^n (M_R)^i$

Пример

Рассмотрим множество $A = \{1; 2; 3; 4; 5\}$ и бинарное отношение на этом множестве

$$R = \{(1,2); (2,1); (2,5); (3,3); (4,1); (4,5); (5,4)\}.$$

Матрица отношения равна

$$M_R = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

Матрицы замыканий

$$M_{R_r} = M_R + M_E = egin{bmatrix} 1 & 1 & 0 & 0 & 0 \ 1 & 1 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 1 & 1 \ 0 & 0 & 0 & 1 & 1 \end{bmatrix},$$

$$M_{R_s} = M_R + M_R^T = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix},$$

$$M_{R_t} = M_R + M_R^2 + M_R^3 + M_R^4 + M_R^5 = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \end{bmatrix}.$$

1.10 Отношение порядка

Определение

Антисимметричное транзитивное отношение называется отношением порядка. Обозначается \prec .

Если $x \prec y$, то говорят, что x предшествует y.

Определение

Рефлексивное отношение порядка называется отношением нестрогого порядка. Обозначается \leq .

Определение

Антирефлексивное отношение порядка называется отношением строгого порядка. Обозначается <.

Отношение порядка называется отношением полного (линейного) порядка, если для любых x,y или $x \prec y$ или $y \prec x$. Иначе отношение порядка называется отношением частичного порядка.

Определение

Множество A с заданным на нём отношением порядка \prec называется упорядоченным и обозначается (A, \prec) .

Пример

На множестве целых чисел рассмотрим отношение делимости x|y. Это отношение является отношением нестрогого частичного порядка.

Пример

На множестве точек окружности

$$A = \{(x, y)| x^2 + y^2 = 1\}$$

зададим отношение

$$(x_1,y_1) \prec (x_2,y_2),$$

если $x_1 < x_2$ и $y_1 < y_2$. Это отношение является отношением строгого частичного порядка.

Пример

Лексикографический порядок на множестве слов русского языка является отношением полного порядка.

Элемент x упорядоченного множества (A, \prec) называется максимальным, если

$$\forall y \in A : x \prec y \Rightarrow y = x.$$

Определение

Элемент x упорядоченного множества (A, \prec) называется минимальным, если

$$\forall y \in A: y \prec x \Rightarrow y = x.$$

Элемент x упорядоченного множества (A, \prec) называется наибольшим (supremum), если

$$\forall y \in A: y \prec x.$$

Определение

Элемент x упорядоченного множества (A, \prec) называется наименьшим (infinum), если

$$\forall y \in A : x \prec y.$$

Теорема

Наибольший (наименьший) элемент упорядоченного множества (A, \prec) , если существует, то является единственным.

Доказательство.

Пусть существуют два наибольших элемента x и y. Тогда $x \prec y$ и $y \prec x$. В силу антисимметричности получим x = y. Аналогично доказывается единственность наименьшего элемента.

Максимальных (минимальных) элементов может быть несколько или бесконечно много.

Если существует наибольший элемент, то он является и максимальным элементом.

Аналогичное утверждение верно и для наименьшего элемента.

Упорядоченное множество с полным порядком называется вполне упорядоченным, если в любом его непустом подмножестве есть минимальный элемент.

Пример

Множество неотрицательных целых чисел является вполне упорядоченным.

Множество неотрицательных действительных чисел вполне упорядоченным не является.

1. Теория множес

Конечное упорядоченное множество можно представить в виде диаграммы Хассе. В диаграмме Хассе элементы множества изображаются в виде точек на плоскости. Точки x и y соединяются линией, если $x \prec y$ и не существует z такого, что $x \prec z \prec y$. При этом точка x находится ниже точки y.

Пример

Рассмотрим множество всех подмножеств трехэлементного множества $A = \{a; b; c\}$. Отношение включения подмножеств является отношением частичного порядка.

Диаграмма Хассе

1.11 Функции

Определение

Функцией, отображающей множество A во множество B, называется бинарное отношение $R \subseteq A \times B$ такое, что $D_R = A$ и

$$\forall x \in A \ \forall y, z \in B : \ xRy, xRz \Rightarrow y = z.$$

Функцию принято обозначать $f: A \to B$ или y = f(x). Областью определения функции является множество A, областью значений – множество

$$f(A) = \{ y \in B \mid \exists x \in A : y = f(x) \}.$$

Функция называется инъективной, если

$$\forall x_1, x_2 \in A \ \forall y \in B: \ y = f(x_1), y = f(x_2) \Rightarrow x_1 = x_2.$$

Определение

Функция называется сюръективной, если

$$\forall y \in B \ \exists x \in A : \ y = f(x).$$

Область значений сюръективной функции совпадает со множеством B. Сюръективная функция задаёт отображение множества A на множество B.

Функция называется биективной, если она инъективная и сюръективная.

Биективная функция устанавливает взаимно-однозначное соответствие множеств A и B. Биективная функция обозначается

$$f: A \leftrightarrow B$$
.

Для биективной функции существует обратная функция

$$f^{-1}: B \leftrightarrow A, \quad y = f(x) \Leftrightarrow x = f^{-1}(y).$$

Справедливы соотношения

$$f^{-1}(f(x)) = x$$
, $f(f^{-1}(y)) = y$.

Пример

Функция

$$f: Z \to \{0; 1\}, \quad f(x) = x \pmod{2}$$

является сюръективной, но не является инъективной. Пусть M – множество чётных натуральных чисел. Функция

$$f: N \to M, \quad y = 2x$$

является инъективной и сюръективной.

Композицией функций $f:A\to B,\ g:B\to C$ называется функция $f\circ g:A\to C$, которая строится как композиция соответствующих отношений,

$$\forall x \in A: (f \circ g)(x) = g(f(x)).$$

Теорема

Пусть $f:A\leftrightarrow B$ и $g:B\leftrightarrow C$ биективные функции. Тогда $f\circ g$ также биективная функция и

$$(f \circ g)^{-1} = g^{-1} \circ f^{-1}.$$

Биективность композиции следует из биективности f и g. Покажем, что

$$\forall x \in C : (f \circ g)^{-1}(x) = (g^{-1} \circ f^{-1})(x).$$

Обозначим

$$y=(f\circ g)^{-1}(x).$$

Тогда

$$x = (f \circ g)(y) = g(f(y)),$$

$$(g^{-1} \circ f^{-1})(x) = f^{-1}(g^{-1}(x)) = f^{-1}(g^{-1}(g(f(y)))) = y.$$

Пример

Пусть

$$f: N \to N, \quad f(x) = x^2,$$

 $g: N \to N, \quad g(x) = x + 1.$

Тогда

$$(f \circ g)(x) = x^2 + 1, \quad (g \circ f)(x) = (x+1)^2.$$

Пусть $f:A \to B$ есть сюръекция. На множестве A зададим отношение эквивалентности

$$R_f = \{(x_i, x_j) | f(x_i) = f(x_j)\}.$$

Рассмотрим фактор множество

$$A|R_f = \{A_i|\ i \in I\}$$

и функцию g:A|R o B такую, что

$$g(A_i) = y_i, \quad y_i = f(x), \quad x \in A_i.$$

Функция g является биекцией. Таким образом можно перейти от сюръекции к биекции, заменив множество A на фактор множество $A|R_f$.

1.12 Мощность бесконечного множества

Определение

Множества A и B называются равномощными (эквивалентными), если существует биекция $A \leftrightarrow B$. Эквивалентность множеств A и B обозначают $A \sim B$.

Определение

Мощностью или кардинальным числом множества A называется класс эквивалентных A множеств.

Мощность множества обозначают |A|. Мощности множеств можно сравнивать:

- 1) Если $A \sim B$, то |A| = |B|.
- 2) Пусть существует инъекция A o B. Тогда $|A| \le |B|$.
- 3) Если $|A| \le |B|$ и $A \nsim B$, то |A| < |B|.

Теорема

Мощность любого множества A меньше мощности множества всех его подмножеств 2^A .

Доказательство.

Все элементы A являются элементами 2^A , поэтому $|A| \leq |2^A|$. Покажем, что $|A| < |2^A|$. Пусть существует биекция $f: A \leftrightarrow 2^A$. Составим множество

$$B = \{a \in A | a \notin f(a)\}.$$

Пусть f(b) = B. Тогда

$$b \in B \Rightarrow b \notin f(b) = B,$$

 $b \notin B \Rightarrow b \in f(b) = B.$

Получили противоречие.

Множество A называется счётным, если $A \sim N$. Мощность счётного множества обозначают \aleph_0 — «алеф нуль».

Теорема

- 1) Счётными являются множества целых чисел, множество рациональных чисел.
- 2) Множество действительных чисел счётным не является.

Доказательство.

Докажем 2. Предположим, что существует биекция $f: N \leftrightarrow R$. Каждое действительное число можно записать в виде бесконечной дроби

$$c=a,b_1b_2\ldots,$$

где a — целая часть, $b=0, b_1b_2\ldots$ — дробная часть числа. Конечную дробную часть дополним бесконечным числом нулей.

Составим число

$$d=0, d_1d_2\dots$$

по правилу: $d_i=0$ если в числе f(i) значение $b_i\neq 0$ и $d_i=1$ если в числе f(i) значение $b_i=0$. В результате получим действительное число, которое не совпадает ни с одним из чисел f(N).

Мощность множества всех подмножеств множества натуральных чисел 2^N называется мощностью континуума и обозначается c. Множество, равномощное 2^N , называется континуальным множеством.

Теорема

Множество действительных чисел R и множество $2^{\sf N}$ равномощны.

Доказательство.

Рассмотрим множество B всех бесконечных последовательностей из нулей и единиц. Покажем, что $B\sim 2^N$.

Биекцию

$$g: 2^N \leftrightarrow B$$

можно установить по следующему правилу. Пусть $A\subseteq 2^N$ и $f_A(x)$ — характеристическая функция A. Тогда

$$g(A)=(f_A(1)f_A(2)\dots).$$

Множество B эквивалентно полуинтервалу [0,1), поскольку каждое действительное число $0 \leq a < 1$ можно записать в двоичной системе счисления в виде последовательности нулей и единиц

$$a = 0, b_1 b_2 \dots$$

Полуинтервал [0,1) эквивалентен интервалу (0,1). Биекцию можно установить по правилу:

$$f(x) = \begin{cases} 1/2, & x = 0 \\ 1/(n+1), & x = 1/n, \ n = 2, 3, \dots \\ x, & x \neq 0, \ x \neq 1/n, \ n = 2, 3, \dots \end{cases}$$

Множества R и (0,1) эквивалентны в силу биекции

$$f(x) = \frac{1}{\pi} \arctan x + \frac{1}{2}.$$

Следовательно, $2^N \sim B \sim [0,1) \sim (0,1) \sim R$.

Обозначим

$$A_0 = N$$
, $A_i = 2^{A_{i-1}}$, $\aleph_i = |A_i|$, $i = 0, 1, 2, ...$

Справедливы неравенства

$$\aleph_0 < \aleph_1 < \aleph_2 < \dots$$

Континуум-гипотеза заключается в том, что других кардинальных чисел бесконечных множеств, отличных от \aleph_i , $i=0,1,2,\ldots$, не существует.

В частности, не существует бесконечного подмножества множества действительных чисел, мощность которого больше мощности множества натуральных чисел и меньше мощности действительных чисел.