

IIC1253 — Matemáticas Discretas

Tarea 3 – Respuesta Pregunta 1

Pregunta 1

Sea A un conjunto no vacío. Una relación binaria $R \subseteq A \times A$ se dice Euleriana si cada vez que $(a,b) \in R$ y $(a,c) \in R$, entonces se tiene que $(b,c) \in R$.

1. Sea T una relación refleja y simétrica. Demuestre que T es Euclideana si, y solo si, T es transitiva.

Dado que T es simétrica, entonces para todo $(a,b) \in T$, $(b,a) \in T$, y como es refleja, entonces para todo $a \in A$ se cumple que $(a,a) \in T$.

Se pide demostrar que T es Euclideana si, y solo si, T es transitiva.

Suponemos T Euclideana, entonces se cumple que $\forall a, b, c \in A$ se tiene

$$[(a,b) \in T \land (a,c) \in T] \to (b,c) \in T$$

como T es simétrica se tiene:

$$[(b,a) \in T \land (a,c) \in T] \to (b,c) \in T$$

Por lo que T es transitiva.

 (\Leftarrow)

Ahora suponemos T transitiva, entonces se cumple que $\forall a, b, c \in A$ se tiene

$$[(a,b)\in T\wedge (b,c)\in T]\to (a,c)\in T$$

como T es simétrica se tiene:

$$[(b,a) \in T \land (b,c) \in T] \to (a,c) \in T$$

Por lo tanto T es Euclideana.

2. Sea T una relación refleja. Demuestre que T es simétrica y transitiva si, y solo si, T es Euclideana.

Dado que en la parte anterior se demostró que si T es simétrica y transitiva, T es Euclideana, solo realizaremos la demostración en el otro sentido.

(←)

Si T es Euclideana se tiene que $\forall a, b, c \in A$:

$$[(a,b) \in T \land (a,c) \in T] \to (b,c) \in T$$

Entonces también tendremos:

$$[(a,c)\in T\wedge (a,b)\in T]\to (c,b)\in T$$

Por lo tanto T es simétrica.

Como T es simétrica y Euclideana, entonces T también es transitiva por lo demostrado en la pregunta anterior.

IIC1253 — Matemáticas Discretas

Tarea 3 – Respuesta Pregunta 2

Pregunta 2

Considere el conjunto \mathcal{N} de todos los subconjuntos no-vacíos y finitos de \mathbb{N} . Formalmente $\mathcal{N} = \{S \subseteq \mathbb{N} | S \text{ es finito y } S \neq \emptyset\}$. Para todo $C \in \mathcal{N}$, se define $\min(C)$ como el mínimo en C según el orden \leq en \mathbb{N} . Se define la relación $R \subseteq \mathcal{N} \times \mathcal{N}$ tal que $(A, B) \in R$ si, y solo si, si $A \neq B$, entonces:

$$\min\left((A \cup B) - (A \cap B)\right) \in A$$

Es decir, $(A, B) \in R$ con $A \neq B$ si el mínimo de los elementos que no tienen en común A y B pertenece a A. Por ejemplo , $A = \{1, 2, 4, 7, 8\}$ y $B = \{1, 2, 6, 8, 10\}$ cumplen que $(A, B) \in R$ dado que min $((A \cup B) - (A \cap B)) = \min(\{4, 6, 7, 10\}) = 4$ y $4 \in A$.

1. Demuestre que R es refleja, antisimétrica y conexa.

Para esto primero reescribiremos la definición de R:

$$(A, B) \in R \leftrightarrow (A \neq B \rightarrow \min((A \cup B) - (A \cap B)) \in A)$$

Notamos que en el caso de A = B la implicancia se hace verdadera, y por lo tanto $(A, A) \in R$ para algún A, de la misma forma se cumple con B, por lo que para cualquier conjunto A, $(A, A) \in R$, por lo tanto R es refleja.

R es antisimétrica por construcción, ya que dentro de de la función mínimo solo existirán elementos que sean solo de A o solo de B, por lo que no puede pasar que $(A,B) \in R$ (o sea que el valor mínimo de los elementos distintos entre A y B pertenezca a A) y que al mismo tiempo $(B,A) \in R$ (que el valor mínimo de los elementos distintos entre A y B pertenezca a B), ya que ese mínimo solo pertenece a uno de los conjuntos, a menos que A = B, en ese caso si se cumple que $(A,B) \in R$ y $(B,A) \in R$, por lo enunciado en el paso anterior.

Para probar que R es conexa basta con tomar dos conjuntos de $\mathcal N$ cualquiera, como ambos son conjun-

tos finitos y distintos de \emptyset , para el caso en que sean iguales sabemos que $(A,B) \in R$ ya que probamos que R es refleja, si son distintos entre ellos, tendrán un conjunto de elementos distintos con al menos un elemento, que pertenecerán a A o B, pero no a ambos $((A \cup B) - (A \cap B))$, como dicho conjunto está conformado por una cantidad finita de números naturales, este conjunto siempre tendrá un mínimo, que pertenecerá a A o B, pero no a ambos, si suponemos que dicho mínimo pertenece a A, entonces se cumple $(A,B) \in R$ mientras que si el mínimo pertenece a B, entonces se cumple $(B,A) \in R$, lo que es equivalente a que:

$$\forall A, B \in \mathcal{N}$$
 $(A, B) \in R \lor (B, A) \in R$

Por lo tanto R es conexa.

2. Demuestre que R es transitiva.

Esto quiere decir que se cumple que para todo $A, B, C \in \mathcal{N}$:

$$[(A,B) \in R \land (B,C) \in R] \to (A,C) \in R$$

Lo demostraremos por contradicción, suponemos que se cumple

$$[(A,B) \in R \land (B,C) \in R] \to (A,C) \not \in R$$

para todo A, B, C

Ahora tomamos el caso C = A y nos quedará:

$$[(A,B)\in R\wedge (B,A)\in R]\to (A,A)\not\in R$$

pero eso es una contradicción, ya que R es refleja, por lo tanto R es transitiva.

En otras palabra, R es un orden total para el conjunto \mathcal{N} .