Statistical Learning Theory & Methods

Lecturer: Liqing Zhang

Dept. Computer Science & Engineering Shanghai Jiao Tong University

Function Estimation Model

• **Key concepts:** F(x,y), an i.i.d. k-sample on F, functions $f(x,\alpha)$ and the equivalent representation of each f using its index α

The Problem of Risk Minimization

◆ The loss functional (L, Q)

- the error of a given function on a given example

$$L:(x, y, f_{\alpha}) \mapsto L(y, f(x, \alpha))$$

 $Q:(z, \alpha) \mapsto L(z_{y}, f(z_{x}, \alpha))$

- ◆ The risk functional (R)
 - the expected loss of a given function on an example drawn from F(x,y)
 - the (usual concept of) generalisation error of a given function

$$R(\alpha) = \int Q(z, \alpha) dF(z)$$

The Problem of Risk Minimization

Three Main Learning Problems

– Pattern Recognition:

$$y \in \{0,1\}$$
 and $L(y, f(x, \alpha)) = \mathbf{1}[y = f(x, \alpha)]$

– Regression Estimation:

$$y \in \Re$$
 and $L(y, f(x, \alpha)) = (y - f(x, \alpha))^2$

– Density Estimation:

$$y \in [0,1]$$
 and $L(p(x,\alpha)) = -\log p(x,\alpha)$

General Formulation

- ◆ The Goal of Learning
 - Given an i.i.d. k-sample z_1, \ldots, z_k drawn from a fixed distribution F(z)
 - For a function class' loss functionals $Q(z, \alpha)$, with α in Λ
 - To minimise the risk, finding a function α^*

$$\alpha^* = \arg\min_{\alpha \in \Lambda} R(\alpha)$$

General Formulation

- The Empirical Risk Minimization (ERM) Inductive Principle
 - Define the empirical risk (sample/training error):

$$R_{\text{emp}}(\alpha) = \frac{1}{k} \sum_{i=1}^{k} Q(z_i, \alpha)$$

– Define the empirical risk minimiser:

$$\alpha_k = \arg\min_{\alpha \in \Lambda} R_{\rm emp}(\alpha)$$

- ERM approximates $Q(z, \alpha^*)$ with $Q(z, \alpha_k)$ the $R_{\rm emp}$ minimiser...that is ERM approximates α^* with α_k
- Least-squares and Maximum-likelihood are realisations of ERM

Key Points in SL

Curse of dimensionality

- How many samples are necessary for estimating one dimensional pdf in general
- How many samples are good for 10-d pdf estimation
- Pseudo orthogonality for any two high-dimensional vectors

Regression function

$$EPE(f) = E[Y - f(X)]^2$$

极小解为:
 $f(x) = E(Y | X = x)$

Overview of the Course

- Introduction
- Overview of Supervised Learning
- <u>Linear Method for Regression</u> and <u>Classification</u>
- Basis Expansions and Regularization
- Kernel Methods
- Model Selections and Inference
- Support Vector Machine
- Unsupervised Learning
- Latent Dirichlet Allocation
- Deep Networks and Regularization

Key Points in SL

- Curse of dimensionality
 - How many samples are necessary for estimating one dimensional pdf in general
 - How many samples are good for 10-d pdf estimation
 - Pseudo orthogonality for any two high-dimensional vectors
- Regression function

$$EPE(f) = E[Y - f(X)]^{2}$$

极小解为:

$$f(x) = E (Y \mid X = x)$$

Error Decomposition

$$\begin{split} EPE(x_0) &= E_T[f(x_0) - \overset{\wedge}{y_0}]^2 \\ &= E_T[f(x_0) - E[\overset{\wedge}{y_0}] + E[\overset{\wedge}{y_0}] - \overset{\wedge}{y_0}]^2 \\ &= E_T[\overset{\wedge}{y_0} - E_T(\overset{\wedge}{y_0})]^2 + E_T[E(\overset{\wedge}{y_0}) - f(x_0)]^2 \\ &+ 2E\{[\overset{\wedge}{y_0} - E_T(\overset{\wedge}{y_0})][E(\overset{\wedge}{y_0}) - f(x_0)]\} \\ &= Var_T(\overset{\wedge}{y_0}) + Bias^2(\overset{\wedge}{y_0}) \end{split}$$

• Model is
$$f(x_i) = \beta_0 + \sum_{j=1}^{P-1} x_{ij} \beta_j$$

• or
$$\mathbf{F} = \mathbf{X}\boldsymbol{\beta}$$

Solution is
$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T y$$

 $\hat{y} = \mathbf{X} \hat{\beta}$
Also $Var(\hat{\beta}) = (\mathbf{X}^T \mathbf{X})^{-1} \sigma^2$

Key Points in Linear Regr.

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T y$$

$$\hat{y} = \mathbf{X} \hat{\beta}$$

Also
$$Var(\hat{\beta}) = (\mathbf{X}^T \mathbf{X})^{-1} \sigma^2$$

- How to formulate the regularization?
 - Data
 - Model
 - Bootstrap

Shrinkage methods

Ridge regression

The ridge estimator is defined by

$$\hat{\beta}^{ridge} = \arg\min(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (Y - \mathbf{X}\boldsymbol{\beta}) + \lambda \boldsymbol{\beta}^T \boldsymbol{\beta}$$

Equivalently,

$$\hat{\beta}^{ridge} = \arg\min(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$

subject to
$$\sum \beta_i^2 \le s$$

Ridge regression

Ridge solution:

$$\hat{\beta}_{\lambda} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{Y}$$

Singular value Decomposition:

 $X=UDV^T$; **D** is a diagonal matrix with

$$d_1 \ge d_2 \ge d_3 \ge \dots \ge d_p \ge 0$$

For Ordinary Regression

$$\mathbf{X}\hat{\boldsymbol{\beta}}^{ls} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y} = \mathbf{U}\mathbf{U}^T\mathbf{Y}$$

Ridge regression

Ridge solution:

$$\hat{\beta}_{\lambda} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{Y}$$

Singular value Decomposition:

$$X=UDV^T$$
; $D = diagonal(d_1, d_2, ..., d_p)$

◆ For Ridge Regression

$$\mathbf{X}\hat{\boldsymbol{\beta}}^{\text{ridge}} = \mathbf{X}(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{Y}$$

$$= \mathbf{U}D(\mathbf{D}\mathbf{D} + \lambda \mathbf{I})^{-1} D\mathbf{U}^T \mathbf{Y} = \sum_{j=1}^{p} \mathbf{u}_j \frac{d_j^2}{d_i^2 + \lambda} \mathbf{u}_j^T \mathbf{Y}$$

• To prove that the norm of regression solution $\hat{\beta} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$ will not increase as λ increases.

证明思路: 利用数据奇异值分解

$$\mathbf{X} = \mathbf{U}DV^{T}, \quad \mathbf{X}^{T}\mathbf{X} = VD^{T}DV^{T}; \quad \mathbf{X}^{T}\mathbf{X} + \lambda\mathbf{I} = V\left(D^{T}D + \lambda\mathbf{I}\right)V^{T}$$

$$\left\|\hat{\boldsymbol{\beta}}\right\|^{2} = \hat{\boldsymbol{\beta}}^{T}\hat{\boldsymbol{\beta}} = \mathbf{y}^{T}\mathbf{X}\left(\mathbf{X}^{T}\mathbf{X} + \lambda\mathbf{I}\right)^{-1}\left(\mathbf{X}^{T}\mathbf{X} + \lambda\mathbf{I}\right)^{-1}\mathbf{X}^{T}\mathbf{y}$$

$$= \mathbf{y}^{T}U\left[D\left(D^{T}D + \lambda\mathbf{I}\right)^{-2}D^{T}\right]U^{T}\mathbf{y}$$

The Lasso

- The lasso (least absolute shrinkage and selection operator) is a shrinkage method like ridge, but acts in a nonlinear manner on the outcome y.
- The lasso is defined by

$$\hat{\beta}^{lasso} = \arg\min(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^{T} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$
subject to
$$\sum_{j=1}^{p} \left| \boldsymbol{\beta}_{j} \right| \leq t$$

ullet No constraint on eta_0

The Lasso

- ◆ The parameter t should be adaptively chosen to minimize an estimate of expected, using say cross-validation
- Ridge vs Lasso: if inputs are orthogonal,
 - ridge multiplies least squares coefficients by a constant < 1,
 - lasso translates them towards zero by a constant, truncating at zero.

Linear Classification

- Linear and Quadratic Discriminant Functions
- Reduced Rank Linear Discriminant Analysis
- Logistic Regression
- Separating Hyperplanes

Linear Discriminant Analysis

According to the Bayes optimal classification mentioned in chapter
 2, the posteriors is needed.

post probability :
$$Pr(G|X)$$

Assume:

 $f_k(x)$ — condition-density of **X** in class G=k.

 π_k — prior probability of class k, with $\sum_{k=1}^K \pi_k = 1$

Bayes theorem give us the discriminant:

$$\Pr(G = k \mid X = x) = \frac{f_k(x)\pi_k}{\sum_{l=1}^{K} f_l(x)\pi_l}$$

Linear Discriminant Analysis

Multivariate Gaussian density:

$$f_k(x) = \frac{1}{(2\pi)^{p/2} |\Sigma_k|^{1/2}} e^{-\frac{1}{2}(x-\mu_k)^T \sum_{k=1}^{n-1} (x-\mu_k)}$$

ullet Comparing pdfs of two classes k and l , assume $\Sigma_k = \Sigma, \, \forall k$

$$\log \frac{\Pr(G = k \mid X = x)}{\Pr(G = l \mid X = x)} = \log \frac{f_k(x)}{f_l(x)} + \log \frac{\pi_k}{\pi_l}$$

$$= \log \frac{\pi_k}{\pi_l} - \frac{1}{2} (\mu_k + \mu_l) \Sigma^{-1} (\mu_k - \mu_l)$$

$$+ x^T \Sigma^{-1} (\mu_k - \mu_l)$$

◆ 关于LDA的分界面:

- 对于线性判别分析,两类协方差相同,第一类样本数N1大约第二类样本数, 分界面里哪一类中心更近?

$$\delta_k(x) = x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k \Sigma^{-1} \mu_k + \log \pi_k$$

Reduced Rank LDA

- Although the line joining the centroids defines the direction of greatest centroid spread, the projected data overlap because of the covariance (left panel).
- The discriminant direction minimizes this overlap for Gaussian data (right panel).

Linear Classifiers

Reduced Rank LDA

• Let
$$\hat{\Sigma} = UDU^T$$

$$\begin{array}{ccc} \bullet & \mathsf{Let} & X^* = D^{-1/2} U^T X \\ \hat{U}_K^* = D^{-1/2} U^T \hat{U}_K \end{array}$$

i.e.
$$\hat{\Sigma}^{\scriptscriptstyle -1/2}\, X$$
 $\hat{\Sigma}^{\scriptscriptstyle -1/2}\, U_{\scriptscriptstyle K}$

• LDA:
$$\delta_K(x) = \frac{1}{2} ||x^* - \hat{\mu}_K^*||^2 - \log \hat{\pi}_K$$

- Closest centroid in sphered space(apart from $-\log\hat{\pi}_{\scriptscriptstyle K}$)
- Can project data onto K-1 dim subspace spanned by $\hat{U}_1^*, \cdots, \hat{U}_{K-1}^*$, and lose nothing!
- Can project even lower dim using principal components of \hat{U}_k^* , k=1,...,M(< K).

Logistic Regression vs LDA

$$\log \frac{\Pr(g = k | X = x)}{\Pr(g = K | X = x)} = \log \frac{\pi_k}{\pi_K} - \frac{1}{2} (\mu_k + \mu_K)^T \Sigma^{-1} (\mu_k - \mu_K) + x^T \Sigma^{-1} (\mu_k - \mu_K) = \alpha_{k0} + \alpha_k^T x$$

Same form as Logistic Regression

$$LR: \Pr(X, g = k) = \Pr(X) \Pr(g = k \mid X = x)$$

$$\Pr(X, g = k) = \Pr(X) \Pr(g = k \mid X = x)$$

$$\Pr(X, g = k) = \exp(\beta_{k,0} + \beta_k^T x)$$

$$1 + \sum_{l=1}^{K-1} \exp(\beta_{l,0} + \beta_l^T x)$$

$$LDA: \Pr(X, g = k) = \phi(X; \mu_k, \Sigma) \pi_k$$

$$\Pr(X) = \sum_{k=1}^{K} \pi_k \phi(X; \mu_k, \Sigma)$$

Linear Classifiers

Overview of the Course

- Introduction
- Overview of Supervised Learning
- Linear Method for Regression and Classification
- Basis Expansions and Regularization
- Kernel Methods
- Model Selections and Inference
- Support Vector Machine
- Unsupervised Learning
- Latent Dirichlet Allocation
- Deep Networks and Regularization

Boundary Effect in Variances

$$f(x) = \sum_{k=1}^{N} \beta_k h_k(x) = \beta^{\mathrm{T}} h(x)$$
$$\operatorname{var}(\hat{f}(x)) = h(x)^{\mathrm{T}} (H^{\mathrm{T}} H)^{-1} h(x) \sigma^2$$

*

Smoothing Splines

• Base on the spline basis method: $f(x) = \sum_{k=1}^{N} \beta_k h_k(x)$

$$y = \sum_{k=1}^{m} \beta_k h_k(x) + \varepsilon$$
, ε is the noise.

Minimize the penalized residual sum of squares

$$RSS(f,\lambda) = \sum_{i=1}^{N} \{y_i - f(x_i)\}^2 + \lambda \int \{f''(t)\}^2 dt$$

 λ is a fixed smoothing parameter

 $\lambda = 0$: f can be any function that interpolates the data

 $\lambda=\infty$: the simple least squares line fit

Smoothing Splines

- The solution is a natural spline: $f(x) = \sum_{j=1}^{N} N_j(x)\theta_j$
- ◆ Then the criterion reduces to:

$$RSS(\theta, \lambda) = (y - N\theta)^{T} (y - N\theta) + \lambda \theta^{T} \Omega_{N} \theta$$

$$N = \{N_j(x_i)\}; \quad \Omega_{Nij} = \int N_i''(t)N_j''(t)dt$$

So the solution:

$$\hat{\theta} = (N^T N + \lambda \Omega_N)^{-1} N^T y$$

The fitted smoothing spline:

$$\hat{f}(x) = \sum_{j=1}^{N} N_j(x)\hat{\theta}_j$$

Basis Expansion and Regularization

Some Key Points

The B-spline have local support; they are nonzero on an interval spanned by M+1 knots.

$$f(x) = \sum_{k=1}^{N} \beta_k h_k(x)$$

Minimize

$$RSS(f,\lambda) = \sum_{i=1}^{N} \{y_i - f(x_i)\}^2 + \lambda \int \{f''(t)\}^2 dt$$

$$\hat{f} = N(N^T N + \lambda \Omega_N)^{-1} N^T y = S_{\lambda} y$$

$$df_{\lambda} = trace(S_{\lambda})$$

 $df_{\lambda} = trace(S_{\lambda})$ • Effective degrees of freedom

Bias-Variance Tradeoff

The integrated squared prediction error (EPE) combines both bias and variance in a single summary: $EPE(\hat{f}_x) = E(Y - \hat{f}_x(X))^2$

$$= Var(Y) + E \left[Bias^{2}(\hat{f}_{\lambda}(X)) + Var(\hat{f}_{\lambda}(X)) \right]$$
$$= \sigma^{2} + MSE(\hat{f}_{\lambda})$$

N fold (leave one) cross-validation:

$$CV(\hat{f}_{\lambda}) = \sum_{i=1}^{N} (y - \hat{f}_{\lambda}^{-i}(x_i))^2 = \sum_{i=1}^{N} \left(\frac{y_i - \hat{f}_{\lambda}(x_i)}{1 - S_{\lambda}(i, i)} \right)^2$$

Bias-Variance Tradeoff

The EPE and CV curves have the a similar shape.
And, overall the CV curve is approximately unbiased as an estimate of the EPE curve

Reproducing Kernel Hilbert space

A regularization problems has the form:

$$\min_{f \in H} \left[\sum_{i=1}^{N} L(y_i, f(x_i)) + \lambda J(f) \right] \qquad J(f) = \int \frac{\left| \widetilde{f}(s) \right|^2}{\widetilde{G}(s)} ds$$

$$J(f) = \int \frac{\left|\widetilde{f}(s)\right|^2}{\widetilde{G}(s)} ds$$

- $-L(y_i, f(x_i))$ is a loss-function.
- -J(f) is a penalty functional, and H is a space of functions on which J(f) is defined.
- The solution

$$f(x) = \sum_{k=1}^{K} \alpha_{k} \phi_{k}(X) + \sum_{i=1}^{N} \theta_{i} G(X - x_{i})$$

span the null space of the penalty functional J

Spaces of Functions Generated by Kernel

- Important subclass are generated by the positive kernel K(x,y).
- The corresponding space of functions H_k is called reproducing kernel Hilbert space.
- Suppose that K has an eigen-expansion

$$K(x,y) = \sum_{i=1}^{\infty} \gamma_i \phi_i(x) \phi_i(y), \quad \gamma_i \ge 0, \sum_{i=1}^{\infty} \gamma_i^2 < \infty$$

Elements of H have an expansion

$$f(x) = \sum_{i=1}^{\infty} c_i \phi_i(x), \quad ||f||_{H_k}^2 = \sum_{i=1}^{\infty} c_i^2 / \gamma_i < \infty$$

*

Spaces of Functions Generated by Kernel

Reproducing properties of kernel function

$$\langle K(\bullet, x_i), f \rangle_{H_K} = f(x_i), \quad \langle K(\bullet, x_i), K(\bullet, x_j) \rangle_{H_K} = K(x_i, x_j)$$

$$f(x) = \sum_{i=1}^{\infty} c_i \phi_i(x), \quad ||f||_{H_k}^2 = \sum_{i=1}^{\infty} c_i^2 / \gamma_i < \infty$$

Key Points in the Basis Expansion

- Good representation of function spaces
 - Easy to implement (efficient in space and time)
 - Good for generalization
 - Easy to select good models
- Good parameter for model selection
 - Effective degrees of freedom
 - CV for Model selection
- Reproducing Kernel Hilbert Space
 - Polynomial Kernel
- Spline & Wavelet

Overview of the Course

- Introduction
- Overview of Supervised Learning
- Linear Method for Regression and Classification
- Basis Expansions and Regularization
- Kernel Methods
- Model Selections and Inference
- Support Vector Machine
- Unsupervised Learning
- Latent Dirichlet Allocation
- Deep Networks and Regularization

Local Linear Regression

- Locally weighted linear regression make a first-order correction
- ◆ Separate weighted least squares at each target point x₀:

$$\min_{\alpha(x_0),\beta(x_0)} \sum_{i=1}^{N} K_{\lambda}(x_0,x_i) [y_i - \alpha(x_0) - \beta(x_0)x_i]^2$$

- The estimate: $\hat{f}(x_0) = \hat{\alpha}(x_0) + \hat{\beta}(x_0)x_0$
- $b(x)^T = (1,x)$; B: Nx2 regression matrix with *i*-th row $b(x)^T$;

$$W_{N\times N}(x_0) = diag(K_{\lambda}(x_0, x_i)), i = 1,..., N$$

$$\hat{f}(x_0) = b(x_0)^T (B^T W(x_0) B)^{-1} B^T W(x_0) y = \sum_{i=1}^N l_i(x_0) y_i$$

Local Linear Regression

• The weights $l_i(x_0)$ combine the weighting kernel $K_{\lambda}(x_0,\cdot)$ and the least squares operations—Equivalent Kernel

BCMI Local Linear Regression

• The expansion for $E\hat{f}(x_0)$, using the linearity of local regression and a series expansion of the true function f around x_0

$$E\hat{f}(x_0) = \sum_{i=1}^{N} l_i(x_0) f(x_i) = f(x_0) \sum_{i=1}^{N} l_i(x_0) + f'(x_0) \sum_{i=1}^{N} (x_i - x_0) l_i(x_0) + \frac{f''(x_0)}{2} \sum_{i=1}^{N} (x_i - x_0)^2 l_i(x_0) + R$$

$$\sum_{i=1}^{N} l_i(x_0) = 1, \quad \sum_{i=1}^{N} (x_i - x_0) l_i(x_0) = 0$$

For local regression

• The bias $E\hat{f}(x_0) - f(x_0)$ depends only on quadratic and higher-order terms in the expansion of f.

Local Polynomial Regression

Fit local polynomial fits of any degree d

$$\min_{\alpha(x_0),\beta_j(x_0),j=1,\dots,d} \sum_{i=1}^N K_\lambda(x_0,x_i) \left[y_i - \alpha(x_0) - \sum_{j=1}^d \beta_j(x_0) x_i^j \right]^2$$

$$\hat{f}(x_0) = \hat{\alpha}(x_0) + \sum_{j=1}^d \hat{\beta}_j(x_0) x_0^j$$
Local Linear in Interior

$$\hat{f}(x_0) = \hat{\alpha}(x_0) + \sum_{j=1}^d \hat{\beta}_j(x_0) x_0^j$$
Local Quadratic in Interior

Kernel Methods

Local Polynomial Regression

- Bias only have components of degree d+1 and higher.
- The reduction for bias costs the increased variance.

$$var(\hat{f}(x_0)) = \sigma^2 ||l(x_0)||^2, ||l(x_0)|| \text{ increases with } d$$

Summary

- To understand why increasing the order of polynomials causes the increase of model variance
- How to kernel method to implement local regression
- Probability density estimation by kernel methods
- EM algorithm for estimating GMM

Overview of the Course

- Introduction
- Overview of Supervised Learning
- <u>Linear Method for Regression and Classification</u>
- Basis Expansions and Regularization
- Kernel Methods
- Model Selections and Inference
- Support Vector Machine
- Unsupervised Learning
- Latent Dirichlet Allocation
- Deep Networks and Regularization

Outline

- Bias, Variance and Model Complexity
- The Bias-Variance Decomposition
- Optimism of the Training Error Rate
- Estimates of In-Sample Prediction Error
- The Effective Number of Parameters
- The Bayesian Approach and BIC
- Minimum Description Length
- Vapnik-Chernovenkis Dimension
- Cross-Validation
- Bootstrap Methods

Objective of This Chapter

- To grasp the concept of model selection and assessment
- To derive criterions for model selection
 - In-sample error
- What are the most popular model selection criteria
 - AIC; BIC; MDL; VC
- CV for model selection
- Bootstrap method

Bias-Variance Decomposition

- Basic Model: $Y = f(X) + \varepsilon$, $\varepsilon \sim N(0, \sigma_{\varepsilon}^2)$
- The expected prediction error of a regression fit f(X)

$$Err(x_0) = E[(Y - \hat{f}(x_0))^2 | X = x_0]$$

$$= \sigma_{\varepsilon}^2 + [E\hat{f}(x_0) - f(x_0)]^2 + E[E\hat{f}(x_0) - \hat{f}(x_0)]^2$$

$$= \sigma_{\varepsilon}^2 + Bias(\hat{f}(x_0))^2 + Var(\hat{f}(x_0))$$
= Irreducible Error + Bias² + Variance

 The more complex the model, the lower the (squared) bias but the higher the variance.

Bias-Variance Decomposition

For the k-NN regression fit the prediction error:

$$Err(x_0) = E[(Y - \hat{f}(x_0))^2 | X = x_0]$$

$$= \sigma_{\varepsilon}^2 + [f(x_0) - \frac{1}{k} \sum_{j=1}^k f(x_j)]^2 + \sigma_{\varepsilon}^2 / k$$

$$\hat{f}(x_0) = \frac{1}{k} \sum_{x_j \in N(x_0)} y_j,$$

The in-sample error of the Linear Model

$$\frac{1}{N} \sum_{i=1}^{N} Err(x_i) = \sigma_{\varepsilon}^2 + \frac{1}{N} \sum_{i=1}^{N} [f(x_i) - E\hat{f}(x_i)]^2 + \frac{p}{N} \sigma_{\varepsilon}^2$$

- The model complexity is directly related to the number of parameters p.

Optimism of the Training Error Rate

Training Error < True Error

Training Error
$$\overline{err} = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}(x_i))$$

True Error $Err = E[L(Y, \hat{f}(X))]$

- ◆ Err is extra-sample error
- The in-sample error

$$Err_{in} = \frac{1}{N} \sum_{i=1}^{N} E_{Y^{new}} \left[L(Y_i^{new}, \hat{f}(x_i)) | T \right]$$

Optimism:

$$op \equiv Err_{in} - \overline{err}$$

Model Assessment & Selection

Optimism of the Training Error Rate

The average optimism is the expectation of the optimism over training sets

$$\omega \equiv E_y(op) \equiv E_y(Err_{in} - \overline{err})$$

Training Error
$$\overline{err} = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}(x_i))$$
 In sample error: $Err_{in} = \frac{1}{N} \sum_{i=1}^{N} E_{y^{new}} \left[L(Y_i^{new}, \hat{f}(x_i)) | T \right]$

$$\begin{split} \omega &= E_{y}(op) = E_{y} \left[Err_{in} - \overline{err} \right] \\ &= \frac{1}{N} \sum_{i=1}^{N} E_{Y^{new}} E_{y} \left[(Y_{i}^{new} - \hat{f}(x_{i}))^{2} - (y_{i} - \hat{f}(x_{i}))^{2} \right] \\ &= \frac{1}{N} \sum_{i=1}^{N} \left[2E[y_{i}, \hat{y}_{i}] - 2E\hat{y}_{i}Ey_{i} \right] = \frac{2}{N} \sum_{i=1}^{N} Cov(\hat{y}_{i}, y_{i}) \end{split}$$

Akaike Information Criterion

For the logistic regression model, using the binomial log-likelihood.

$$AIC = -\frac{2}{N}E[\log lik] + 2\frac{d}{N}$$

• For Gaussian model the AIC statistic equals to the C_p statistic.

$$AIC = C_p = \overline{err} + 2\frac{d}{N}\hat{\sigma}_{\varepsilon}^2$$

Bayesian Approach & BIC

The Bayesian Information Criterion (BIC)

$$BIC = -2log lik + (\log N)d$$

- Gaussian model:
 - Variance σ_{ε}^2
 - then

$$-2loglik = C\sum_{i=1}^{N} (y_i - \hat{f}(x_i))^2 / \sigma_{\varepsilon}^2 = N \cdot \overline{err} / \sigma_{\varepsilon}^2$$

BIC =
$$\frac{N}{\sigma_{\varepsilon}^2} [\overline{err} + (\log N) \frac{d}{N} \sigma_{\varepsilon}^2]$$

$$AIC = C_p = \overline{err} + 2\frac{d}{N}\hat{\sigma}_{\varepsilon}^2$$

Brain-like Computing & VC Dimension

- **Φ** The VC dimension of a class of real-valued functions $\{g(x,\alpha)\}$ is defined to be the VC dimension of the indicator class $\{I(g(x,\alpha)-\beta>0)\}$ where β takes values over the range of g.
- **\Phi** Assume $\{g(x,\alpha)\}$ has VC dimension h, the sample number N.

Cherkassky and Mulier (2007, pages 116–118)

Cross Validation

• Denote the fitted function by $\hat{f}^{-k}(x)$ with removing k-th fold data. Then the cross-validation estimate of prediction error is

$$CV(\hat{f}) = \frac{1}{N} \sum_{i=1}^{N} L(y_{i,} \hat{f}^{-k}(x_{i}))$$

- ◆ The case K = N, *leave-one-out* cross-validation.
- Given model family $f(x,\alpha)$ indexed by a tuning parameter α .
- $\hat{f}^{-k}(x,\alpha)$: fited with the kth part of the data removed.

$$CV(\hat{f},\alpha) = \frac{1}{N} \sum_{i=1}^{N} L(y_{i,}\hat{f}^{-k}(x_{i},\alpha))$$

The Correct Way to Do CV

- A typical strategy for CV might be as follows:
 - Divide the samples into K cross-validation folds (groups) at random.
 - For each fold k = 1, 2, ..., K
 - Find a subset of "good" predictors that show fairly strong (univariate) correlation with the class labels, using all of the samples except those in fold k.
 - Using just this subset of predictors, build a multivariate classifier, using all of the samples except those in fold k.
 - Use the trained classifier to predict the class labels for the samples in fold k.

Brain-like Computing 8 Machine Intelligence The EM Algorithm

Gaussian Mixture Model

$$f(x) = \sum_{m=1}^{M} \alpha_m \phi(x; \mu_m, \Sigma_m)$$

- EM algorithm for 2 Gaussian mixtures
 - Given x_1, x_2, \dots, x_n , log-likelihood:

$$l(y,\theta) = \sum_{i=1}^{N} \log \left[\alpha \phi_{\theta_1}(x_i) + (1-\alpha)\phi_{\theta_2}(x_i) \right]$$

Suppose we observe Latent Binary

Bad

$$L(x, z, \theta) = \sum_{\substack{i=1\\z_i=1}}^{N} \log \left[\alpha \phi_{\theta_1}(x_i)\right] + \sum_{\substack{i=1\\z_i=0}}^{N} \log \left[(1-\alpha)\phi_{\theta_2}(x_i)\right]$$
z such that $z = 1 \Rightarrow x \sim \phi_{\theta_1}$, $z = 0 \Rightarrow x \sim \phi_{\theta_2}$ Good

The EM Algorithm in General

- ullet Start with initial params $\hat{ heta}$
- ◆ Expectation Step: at the j-th step compute

$$Q(\theta', \hat{\theta}^{(j)}) = E(\ell_0(\theta', \mathbf{T}) \mid \mathbf{Z}, \hat{\theta}^{(j)})$$

as a function of the dummy argument θ

ullet Maximization Step: Determine the new params by maximizing $\hat{ heta}^{(j+1)}$ $Q(heta', \hat{ heta}^{(j)})$

Iterate 2 and 3 until convergence