Theorem — Cauchy-Schwarz Inequality

Let V be an inner product space over F. Then for all $v_1, v_2 \in V$, we have

$$|\langle v_1, v_2 \rangle| \le ||v_1|| \, ||v_2|| \, .$$

Proof. If either $v_1 = 0$ or $v_2 = 0$, then the result is immediate, so we may assume that $v_1 \le 0$, $v_2 \ne 0$. We define v such that

$$v = v_2 - \frac{\langle v_2, v_1 \rangle}{\|v_1\|^2} v_1, \qquad (Projection onto v_1)$$

and claim that $\langle v, \alpha v_1 \rangle = 0$ for all $\alpha \in F$. Observe that

$$\langle v, \alpha v_1 \rangle = \left\langle v_2 - \frac{\langle v_2, v_1 \rangle}{\|v_1\|^2} v_1, \alpha v_1 \right\rangle$$

$$= \left\langle v_2, \alpha v_1 \right\rangle - \left\langle \frac{\langle v_2, v_1 \rangle}{\|v_1\|^2} v_1, \alpha v_1 \right\rangle$$

$$= \left\langle v_2, \alpha v_1 \right\rangle - \frac{\langle v_2, v_1 \rangle}{\|v_1\|^2} \left\langle v_1, \alpha v_1 \right\rangle$$

$$= \bar{\alpha} \left\langle v_2, v_1 \right\rangle - \frac{\langle v_2, v_1 \rangle}{\|v_1\|^2} \bar{\alpha} \left\langle v_1, v_1 \right\rangle$$

$$= \bar{\alpha} \left\langle v_2, v_1 \right\rangle - \bar{\alpha} \left\langle v_2, v_1 \right\rangle$$

$$= 0.$$

Thus the claim has been shown. We now prove the rest of the theorem. We know that inner products of vectors with themselves are always non-negative, so

$$0 \leq \langle v, v \rangle$$

$$= \left\langle v, v_2 - \frac{\langle v_2, v_1 \rangle}{\|v_1\|^2} v_1 \right\rangle$$

$$= \langle v, v_2 \rangle + \left\langle v, -\frac{\langle v_2, v_1 \rangle}{\|v_1\|^2} v_1 \right\rangle$$

$$= \langle v, v_2 \rangle$$

$$= \left\langle v_2 - \frac{\langle v_2, v_1 \rangle}{\|v_1\|^2} v_1, v_2 \right\rangle$$

$$= \langle v_2, v_2 \rangle + \left\langle -\frac{\langle v_2, v_1 \rangle}{\|v_1\|^2} v_1, v_2 \right\rangle$$

$$= \langle v_2, v_2 \rangle - \frac{\langle v_2, v_1 \rangle}{\|v_1\|^2} \langle v_1, v_2 \rangle$$

$$= \|v_2\|^2 - \frac{\overline{\langle v_1, v_2 \rangle} \langle v_1, v_2 \rangle}{\|v_1\|^2}$$

$$= \|v_2\|^2 - \frac{|\langle v_1, v_2 \rangle|^2}{\|v_1\|^2}$$

$$0 \leq \|v_1\|^2 \|v_2\|^2 - |\langle v_1, v_2 \rangle|^2$$

$$|\langle v_1, v_2 \rangle|^2 \leq \|v_1\|^2 \|v_2\|^2$$

$$|\langle v_1, v_2 \rangle| \leq \|v_1\| \|v_2\|$$

Theorem — Minkowski Inequality

Let V be an inner product space over F. Then for all $v_1, v_2 \in V$, we have

$$||v_1 + v_2|| \le ||v_1|| + ||v_2||$$
.

Proof. Observe that

$$||v_{1} + v_{2}||^{2} = \langle v_{1} + v_{2}, v_{1} + v_{2} \rangle$$

$$= \langle v_{1}, v_{1} \rangle + \langle v_{2}, v_{1} \rangle + \langle v_{1}, v_{2} \rangle + \langle v_{2}, v_{2} \rangle$$

$$= \langle v_{1}, v_{1} \rangle + \langle v_{2}, v_{1} \rangle + \overline{\langle v_{1}, v_{2} \rangle} + \langle v_{2}, v_{2} \rangle$$
Suppose $\langle v_{1}, v_{2} \rangle = \alpha + \beta \sqrt{-1}$, so then $\langle v_{1}, v_{2} \rangle + \overline{\langle v_{1}, v_{2} \rangle} = \alpha + \beta \sqrt{-1} + \alpha - \beta \sqrt{-1} = 2\alpha$.

$$= ||v_{1}||^{2} + 2\alpha + ||v_{2}||^{2}$$

$$\leq ||v_{1}||^{2} + 2\sqrt{\alpha^{2} + \beta^{2}} + ||v_{2}||^{2}$$

$$\leq ||v_{1}||^{2} + 2||\langle v_{1}, v_{2} \rangle| + ||v_{2}||^{2}$$

$$\leq ||v_{1}||^{2} + 2||v_{1}|| ||v_{2}|| + ||v_{2}||^{2}$$
(Cauchy-Schwarz)
$$= (||v_{1}|| + ||v_{2}||)^{2}.$$

Thus we have shown that $||v_1 + v_2||^2 \le (||v_1|| + ||v_2||)^2$, so we have $||v_1 + v_2|| \le ||v_1|| + ||v_2||$.

Theorem — Gram-Schmidt Theorem

Let V be an inner product space over F and $\emptyset \neq S_n = \{v_1, \dots, v_n\} \subseteq V$ a linearly independent set. Then there exist $y_1, \dots, y_n \in V$ such that

- (i) $y_1 = v_1$
- (ii) $T_n = \{y_1, \dots, y_n\}$ is an orthogonal set and linearly independent
- (iii) $\operatorname{span}(T_n) = \operatorname{span}(S_n)$

Proof. We construct T_n from S_n using the Gram-Schmidt Process, and proceed by induction. When n = 1, we set $y_1 = v_1$, and the statements above clearly hold. Suppose the statement is true for some n = k, so

- (i) $y_1 = v_1$,
- (ii) $T_k = \{y_1, \dots, y_k\}$ is an orthogonal set and linearly independent,
- (iii) $\operatorname{span}(T_k) = \operatorname{span}(S_k)$.

We define

$$y_{k+1} = v_{k+1} - \sum_{i=1}^{k} \frac{\langle v_{k+1}, y_i \rangle}{\|y_i\|^2} y_i.$$
 (*)

We know that $y_{k+1} \neq 0$, because otherwise $v_{k+1} \in \text{span}(T_k) = \text{span}(S_k)$ and $\{v_1, \dots, v_{k+1}\}$ would not be linearly independent, a contradiction.

We claim that $\langle y_{k+1}, y_j \rangle = 0$ for all $j = 1, \dots, k$. We can see that

$$\begin{split} \langle y_{k+1}, y_j \rangle &= \left\langle v_{k+1} - \sum_{i=1}^k \frac{\langle v_{k+1}, y_i \rangle}{\|y_i\|^2} y_i, y_j \right\rangle \\ &= \left\langle v_{k+1}, y_j \right\rangle - \sum_{i=1}^k \frac{\langle v_{k+1}, y_i \rangle}{\|y_i\|^2} \left\langle y_i, y_j \right\rangle \\ &= \left\langle v_{k+1}, y_j \right\rangle - \frac{\left\langle v_{k+1}, y_j \right\rangle}{\|y_j\|^2} \left\langle y_j, y_j \right\rangle \\ &= \left\langle v_{k+1}, y_j \right\rangle - \left\langle v_{k+1}, y_j \right\rangle \\ &= \left\langle v_{k+1}, y_j \right\rangle - \left\langle v_{k+1}, y_j \right\rangle \\ &= 0. \end{split}$$

Since $0 \notin T_{k+1} = \{y_1, \dots, y_{k+1}\}$ and T_{k+1} is an orthogonal set, it must be linearly independent. Furthermore, we know by rearranging (*) that $v_{k+1} \in \text{span}(y_1, \dots, y_{k+1})$ and has a non-zero component for y_{k+1} , and so by the Replacement Theorem

$$span(T_{k+1}) = span(y_1, \dots, y_{k+1}) = span(y_1, \dots, y_k, v_{k+1}) = span(v_1, \dots, v_{k+1}) = S_{k+1}.$$

Theorem — Orthogonal Theorem

Let V be a finite-dimensional inner product space over F. Then V has an orthogonal basis. If $F = \mathbb{R}$ or \mathbb{C} , then V has an orthonormal basis.

Proof. Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be a basis for V. By the Gram-Schmidt Theorem, we know that there exists a linearly independent and orthogonal set $\mathcal{C} = \{w_1, \dots, w_n\}$ such that $\operatorname{span}(\mathcal{C}) = \operatorname{span}(\mathcal{B}) = V$. Because \mathcal{C} is both linearly independent and spans V, it must be a basis for V, and so is an orthogonal basis for V.

If $F = \mathbb{R}$, then $\left\{\frac{w}{\|w\|} \mid w \in \mathcal{C}\right\}$ is an orthonomal basis for V as $\|w\| \in \mathbb{R}$ for all $w \in \mathcal{C}$. The same reasoning applies for $F = \mathbb{C}$.

Theorem — Orthogonal Decomposition Theorem

Let V be an inner product space over F (not necessarily finite-dimensional), with $S \subseteq V$ a finite-dimensional subspace, and $v \in V$. Then there exist unique $s \in S$ and $s^{\perp} \in S^{\perp}$ such that $v = s + s^{\perp}$. In particular, $V = S + S^{\perp}$ and $S \cap S^{\perp} = 0$, so $V = S \perp S^{\perp}$. Moreover, if

$$v = s + s^{\perp}, s \in S, s^{\perp} \in S^{\perp},$$

then

$$\|v\|^2 = \|s\|^2 + \|s^{\perp}\|^2$$
. (Pythagorean Theorem)

If, in addition, V is a finite-dimensional inner product space over F, then

$$\dim(V) = \dim(S) + \dim(S^{\perp}).$$

Proof. By the Orthogonal Theorem, we know that there exists an orthogonal basis $\mathcal{B} = \{v_1, \ldots, v_n\}$ for S, the finite-dimensional inner product space over F. We will first show existence. Let $v \in V$. We define $s \in S = \operatorname{span}(\mathcal{B})$ by

$$s = \sum_{i=1}^{n} \frac{\langle v, v_i \rangle}{\|v_i\|^2} v_i,$$

and $s^{\perp} = v - s$. Then $v = s + s^{\perp}$ and $S \cap S^{\perp} = 0$, i.e. $V = S \oplus S^{\perp}$. We first show that $s^{\perp} \perp v_j$ for $j = 1, \ldots, n$. Observe that

$$\langle s^{\perp}, v_{j} \rangle = \langle v - s, v_{j} \rangle$$

$$= \langle v, v_{j} \rangle - \langle s, v_{j} \rangle$$

$$= \langle v, v_{j} \rangle - \left\langle \sum_{i=1}^{n} \frac{\langle v, v_{i} \rangle}{\|v_{i}\|^{2}} v_{i}, v_{j} \right\rangle$$

$$= \langle v, v_{j} \rangle - \sum_{i=1}^{n} \frac{\langle v, v_{i} \rangle}{\|v_{i}\|^{2}} \langle v_{i}, v_{j} \rangle$$

$$= \langle v, v_{j} \rangle - \frac{\langle v, v_{j} \rangle}{\|v_{j}\|^{2}} \langle v_{j}, v_{j} \rangle$$

$$= \langle v, v_{j} \rangle - \langle v, v_{j} \rangle$$

$$= \langle v, v_{j} \rangle - \langle v, v_{j} \rangle$$

$$= 0.$$

$$(\langle v_{i}, v_{j} \rangle = \delta_{ij})$$

Since $s = \sum_{i=1}^{n} \alpha_i v_i \in S$, we have

$$\langle s, s^{\perp} \rangle = \left\langle \sum_{i=1}^{n} \alpha_{i} v_{i}, s^{\perp} \right\rangle$$

$$= \sum_{i=1}^{n} \alpha_{i} \left\langle v_{i}, s^{\perp} \right\rangle$$

$$= 0.$$

Thus we have shown that $s^{\perp} \perp s$ for all $s \in S$, so $s^{\perp} \in S^{\perp}$, as needed. We must now show uniqueness. Suppose

$$s + s^{\perp} = v = r + r^{\perp}$$
.

Then $s-r=r^{\perp}-s^{\perp}$. However, because $S\cap S^{\perp}=0$, we have $s-r=0=r^{\perp}-s^{\perp}$, so s=r and $s^{\perp}=r^{\perp}$. Therefore the decomposition of v is unique.

To show the Pythagorean Theorem, we have

$$\left\|v\right\|^2 = \left\|s+s^\perp\right\|^2 = \left\langle s+s^\perp, s+s^\perp\right\rangle = \left\langle s,s\right\rangle + \left\langle s,s^\perp\right\rangle + \left\langle s^\perp,s\right\rangle + \left\langle s^\perp,s^\perp\right\rangle = \left\|s\right\|^2 + \left\|s^\perp\right\|^2.$$

If V is finite-dimensional, by the Counting Theorem, we have that

$$\dim(V) = \dim(S + S^{\perp}) = \dim(S) + \dim(S^{\perp}) - \dim(S \cap S^{\perp}) = \dim(S) + \dim(S^{\perp}).$$

Theorem — Approximation Theorem

Let V be an inner product space over $F, S \subseteq V$ a finite-dimensional subspace, and $v \in V$. Then v_S is *closer* to v than any other vector in S, i.e.,

$$d(v, v_S) = ||v - v_S|| \le ||v - r|| = d(v, r)$$

in \mathbb{R} for all $r \in S$. Equivalently, we may write

$$d(v, S) = d(v, v_S).$$

Moreover, if $r \in S$, then

$$||v - v_S|| = ||v - r||$$
 in \mathbb{R} if and only if $r = v_S$.

We say v_S gives the best approximation to v in S.

Proof. Let $v = s + s^{\perp}$ with $s = v_S$, $s^{\perp} = v - s = v - v_S$ and $s^{\perp} \in S^{\perp}$. Let $r \in S$. Then

$$v - r = (v - v_S) + (v_S - r) = s^{\perp} + (v_S - r).$$

Because $v_S - r \in S$, we have $||v - r||^2 = ||v - v_S||^2 + ||v_S - r||^2 \ge ||v - v_S||^2$ with equality if and only if $||v_S - r||^2 = 0$, or $v_S = r$.

Theorem — Hermitian Corollary

Let V be an inner product space over $F, T: V \to V$ linear. Suppose that T is hermitian. Then any eigenvalue of T (if any) is real, i.e. lies in $F \cap \mathbb{R}$.

Proof. Because T is hermitian, we have $\langle Tv, v \rangle = \langle v, Tv \rangle$ for all $v \in V$. If λ is an eigenvalue of T, then

$$\lambda = \frac{\lambda \left\langle v, v \right\rangle}{\left\|v\right\|^2} = \frac{\left\langle Tv, v \right\rangle}{\left\|v\right\|^2} = \frac{\left\langle v, Tv \right\rangle}{\left\|v\right\|^2} = \frac{\bar{\lambda} \left\langle v, v \right\rangle}{\left\|v\right\|^2} = \bar{\lambda},$$

so $\lambda = \bar{\lambda}$ and λ must be real.

Theorem — Key Lemma (for Hermitian Operators)

Let V be an inner product space over $F, T: V \to V$ hermitian, $S \subseteq V$ a T-invariant subspace. Then

- (i) S^{\perp} is T-invariant, i.e. $T(S^{\perp}) \subseteq S^{\perp}$
- (ii) $T|_{S^{\perp}} \colon S^{\perp} \to S^{\perp}$ is hermitian

Proof. (i) Let $s^{\perp} \in S^{\perp}$. Then it suffices to show that $Ts^{\perp} \in S^{\perp}$. Observe that for all $s \in S$, we have

$$\langle s, Ts^{\perp} \rangle = \langle Ts, s^{\perp} \rangle$$
 (*T* is hermitian)
= 0. (*S* is a *T*-invariant subspace)

Therefore $Ts^{\perp} \in S^{\perp}$ so S^{\perp} is T-invariant.

(ii) By (i) we know that $T|_{S^{\perp}}$ is linear, and since T is hermitian in V, it must be hermitian in S^{\perp} . In other words, because $\langle Tv, w \rangle = \langle v, Tw \rangle$ for all $v, w \in V$, it must also hold for all $v, w \in S^{\perp}$.

Theorem — Spectral Theorem (for Hermitian Operators) (Refined Version)

Let $F = \mathbb{R}$ or \mathbb{C} , V a finite-dimensional inner product space over F, $T: V \to V$ hermitian. Then there exists an ordered orthonormal basis \mathcal{C} of eigenvectors for V of T and every eigenvalue of T is real. Moreover, if \mathcal{B} is any ordered orthonormal basis for V, then

$$[T]_{\mathcal{C}} = C[T]_{\mathcal{B}}C^*$$

for some invertible matrix $C \in \mathbb{M}_n F$, i.e. $C = [1_V]_{\mathcal{B},\mathcal{C}}$.

Theorem — Spectral Theorem (for Hermitian Operators) (Refined Version)

Let $F = \mathbb{R}$ or \mathbb{C} , V a finite-dimensional inner product space over F, $T: V \to V$ hermitian. Then there exists an orthonormal basis $\mathcal{B} = \{v_1, \dots, v_n\}$ for V with each v_i , $i = 1, \dots, n$ an eigenvector for some eigenvalue $\lambda_i \in \mathbb{R}$, $i = 1, \dots, n$ (not necessarily distinct). In particular, T is diagonalizable.

Proof. We prove \mathcal{B} exists by induction on $\dim(V) = n$.

Observe that for the n=1 case, we have that $V=\operatorname{span}(v)$, for any non-zero $v\in V$. As $Tv\in\operatorname{span}(v)$, there exists an $\alpha\in F$ such that $Tv=\alpha v$, so $v\in E_T(\alpha)$. As T is hermitian, $\alpha\in\mathbb{R}$ by the Hermitian Corollary, even if $F=\mathbb{C}$. Thus $\mathcal{B}=\left\{\frac{v}{\|v\|}\right\}$ is a valid orthonormal basis for V.

Suppose the statement holds for some n, that is if W is a finite-dimensional inner product space over F, $\dim(W) = n - 1$, $T_0 \colon W \to W$ hermitian, then there exists an orthonormal basis for W of eigenvectors of T_0 and every eigenvalue of T_0 is real. Let \mathcal{C} be an ordered orthonormal basis for n-dimensional V, which exists as $F = \mathbb{R}$ or \mathbb{C} . Let $A = [T]_{\mathcal{C}} \in \mathbb{M}_n F \subseteq \mathbb{M}_n \mathbb{C}$. Then for all $x, y \in \mathbb{C}^{n \times 1}$, we have that $Ax \cdot y = x \cdot Ay$ (because T is hermitian). In other words, $A \colon \mathbb{C}^{n \times 1} \to \mathbb{C}^{n \times 1}$ is hermitian, where $\mathbb{C}^{n \times 1}$ is an inner product space over \mathbb{C} via the dot product. By the Fundamental Theorem of Algebra, f_A has a root $\lambda \in \mathbb{C}$, hence λ is an eigenvalue of $A \colon \mathbb{C}^{n \times 1} \to \mathbb{C}^{n \times 1}$, which is hermitian. Thus by the Hermitian Corollary, we know that $\lambda \in \mathbb{R}$. But

$$f_T = f_{[T]_{\mathcal{C}}} = f_A,$$

so f_T has a real root $\lambda \in \mathbb{R}$, if $F = \mathbb{R}$ or \mathbb{C} . Thus there exists a non-zero vector $v \in E_T(\lambda) \subseteq V$ that is an eigenvector of T. Let $Fv = \operatorname{span}(v) \subseteq E_T(\lambda)$. Then Fv is T-invariant. By the Orthogonal Decomposition Theorem

$$v = Fv \perp (Fv)^{\perp}$$

and

$$\dim(V) = \dim(Fv) + \dim(Fv)^{\perp} = 1 + \dim(Fv)^{\perp}.$$

Hence $\dim(Fv)^{\perp} = n-1$. By the Key Lemma, since Fv is T-invariant and $T: V \to V$ is hermitian, $(Fv)^{\perp}$ is T-invariant.

Theorem — New Key Lemma

Let V be a finite-dimensional inner product space over $F, T: V \to V$ linear. Suppose that V has an orthonormal basis and $W \subseteq V$ is a T-invariant subspace. Then $W^{\perp} \subseteq V$ is T-invariant. In particular,

$$T^*|_{W^{\perp}} \colon W^{\perp} \to W^{\perp}$$

is linear.

Proof. Let $w^{\perp} \in W^{\perp}$ and $x \in W$ be arbitrary. Then

$$\langle x, T^* w^{\perp} \rangle = \langle Tx, w^{\perp} \rangle = 0,$$

as $Tx \in W$ (because W is T-invariant). Thus $T^*w^{\perp} \in W^{\perp}$, and so W^{\perp} is also T-invariant.

Theorem — Schur's Theorem

Let V be a finite-dimensional inner product space over \mathbb{C} , $T:V\to V$ linear. Then T is triangularizable. Moreover, there exists an ordered orthonormal basis \mathcal{B} for T such that $[T]_{\mathcal{B}}$ is upper triangular.

Proof. We induct on $n = \dim(V)$. Let n = 1. Then for some non-zero $v \in V$, we have that $\mathcal{B} = \left\{\frac{v}{\|v\|}\right\}$ is a valid orthonormal basis. Let n > 1. By the Fundamental Theorem of Algebra, the characteristic polynomial f_{T^*} for T^* has a root $\lambda \in \mathbb{C}$, hence λ is an eigenvalue of T^* . Let $0 \neq v \in E_{T^*}(\lambda)$. By the Orthogonal Decomposition Theorem,

$$V = (\mathbb{C}v) + (\mathbb{C}v)^{\perp}$$

and

$$n = \dim(V)$$

$$= \dim(\mathbb{C}v) + \dim(\mathbb{C}v)^{\perp}$$

$$= 1 + \dim(\mathbb{C}v)^{\perp},$$

so dim $(\mathbb{C}v)^{\perp} = n - 1$. We know that $(\mathbb{C}v)$ is T^* -invariant as $v \in E_{T^*}(\lambda)$, so $(\mathbb{C}v)^{\perp}$ is $(T^*)^* = T$ -invariant by the New Key Lemma. So we may view

$$T|_{(\mathbb{C}v)^{\perp}} : (\mathbb{C}v)^{\perp} \to (\mathbb{C}v)^{\perp}$$
 as linear.

By induction, there exists an ordered orthonormal basis $\mathcal{B}_0 = \{v_1, \dots, v_{n-1}\}$ for $(\mathbb{C}v)^{\perp}$ such that $[T|_{(\mathbb{C}v)^{\perp}}]_{\mathcal{B}_0}$ is upper triangular. Let $\mathcal{B} = \{v_1, \dots, v_{n-1}, \frac{v}{\|v\|}\}$, an ordered orthonormal basis for V. Then by (*), we have

$$\begin{bmatrix} [T|_{(\mathbb{C}v)^{\perp}}]_{\mathcal{B}_0} & \cdots & * \\ \vdots & \ddots & * \\ 0 & \cdots & * \end{bmatrix} \in \mathbb{M}_n \mathbb{C},$$

where the last column (denoted by asterisks) is $\left[T\left(\frac{v}{\|v\|}\right)\right]_{\mathcal{B}}$.

Theorem — Spectral Theorem (for Normal Operators)

Let V be a finite-dimensional inner product space over \mathbb{C} , $T \colon V \to V$ normal. Then there exists an ordered orthonormal basis \mathcal{C} for V consisting of eigenvectors of T. In particular, T is diagonalizable. Moreover, if \mathcal{B} is an ordered orthonormal basis for V, then

$$T_{\mathcal{C}} = [1_V]_{\mathcal{B},\mathcal{C}}[T]_{\mathcal{B}}[1_V]_{\mathcal{B},\mathcal{C}}^*.$$

Proof. We induct on $n=\dim(V)$. When n=1, the statement is immediate. Let n>1. By the Fundamental Theorem of Algebra, there exists $\bar{\lambda}\in\mathbb{C}$ a root of $f_{T^*}\in\mathbb{C}[t]$, and thus is an eigenvalue of T^* . Let $0\neq v\in E_{T^*}(\bar{\lambda})$. By the lemma, $v\in E_T(\lambda)$. Thus $(\mathbb{C}v)$ is both T-invariant and T^* -invariant. Hence by the New Key Lemma we know that $(\mathbb{C}v)^{\perp}$ is also both T-invariant and T^* -invariant. In particular, for all $x,y\in(\mathbb{C}v)^{\perp}$, we have

$$\langle x, T^*y \rangle = \langle Tx, y \rangle$$

and $(T|_{(\mathbb{C}v)^{\perp}})^*$ is the unique linear map

$$(T|_{(\mathbb{C}v)^{\perp}})^*:(\mathbb{C}v)^{\perp}\to(\mathbb{C}v)^{\perp}$$

such that for all $x, y \in (\mathbb{C}v)^{\perp}$,

$$\begin{split} \left\langle x, \left(T|_{(\mathbb{C}v)^{\perp}}\right)^{*} y \right\rangle_{(\mathbb{C}v)^{\perp}} &= \left\langle T|_{(\mathbb{C}v)^{\perp}} x, y \right\rangle_{(\mathbb{C}v)^{\perp}} \\ &= \left\langle Tx, y \right\rangle_{V} \\ &= \left\langle x, T^{*} y \right\rangle_{V} \\ &= \left\langle x, T^{*}|_{(\mathbb{C}v)^{\perp}} y \right\rangle_{(\mathbb{C}v)^{\perp}}. \end{split}$$

It follows by the uniqueness of the adjoint that $T^*|_{(\mathbb{C}v)^{\perp}} = (T|_{(\mathbb{C}v)^{\perp}})^*$. Hence we have

$$T|_{(\mathbb{C}v)^{\perp}} : (\mathbb{C}v)^{\perp} \to (\mathbb{C}v)^{\perp}$$
 is also normal.

Since

$$\dim(V) = \dim(\mathbb{C}v) + \dim((\mathbb{C}v)^{\perp}) = 1 + \dim((\mathbb{C}v)^{\perp}),$$

by the Orthogonal Decomposition Theorem, by induction there exists an orthonormal basis $C_0 = \{v_2, \dots, v_n\}$ for $(\mathbb{C}v)^{\perp}$ of eigenvectors of $T|_{(\mathbb{C}v)^{\perp}}$ hence of eigenvectors of T. It follows that

$$C = \left\{ \frac{v}{\|v\|}, v_2, \dots, v_n \right\}$$

is an orthonormal basis for V consisting of eigenvectors of T. If \mathcal{B} is an orthonormal basis for V, then $[1_V]_{\mathcal{B},\mathcal{C}} * = [1_V]_{\mathcal{B},\mathcal{C}}^{-1}$, so

$$T_{\mathcal{C}} = [1_V]_{\mathcal{B},\mathcal{C}}[T]_{\mathcal{B}}[1_V]_{\mathcal{B},\mathcal{C}}^*$$

by the Change of Basis Theorem.

Theorem — Singular Value Theorem

Let $F = \mathbb{R}$ or \mathbb{C} , $A \in F^{m \times n}$. Then there exists $U \in U_n(F) := \{B \in \mathbb{M}_n F \mid BB^* = I\}, X \in U_m F$ such that

$$X^*AU = D := \begin{bmatrix} u_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} \in F^{m \times n}$$

is "diagonal" (i.e., $D_{ij}=0$ for all $i\neq j$) with $D_{ii}=0$ for all i>r, $D_{ii}=\mu_i,$ $i\leq r$ with

$$u_1 \ge \dots \ge u_r > 0$$
 and $r = \operatorname{rank}(A)$.