XJTU 电池数据集详细介绍

电池介绍:

本实验的实验对象为"力神"制造的 18650 型镍钴锰酸锂电池,其化学成分为 $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ 。电池的标称容量为 2000 mAh,标称电压为 3.6 V,充电截止电压和放电截止电压分别为 4.2 V 和 2.5 V。整个实验在室温下进行。

实验细节介绍:

本次实验一共包含 55 只电池,在 6 种充放电策略下开展实验。充放电设备为 ACTS-5V10A-GGS-D,所有数据的采样频率为 1Hz。实验开始于 2022 年 9 月 16,至 2023 年 2 月 18 日,所有电池达到寿命终点(容量下降为初始值的 80%以下)。整个实验过程由于断电等原因有过几次暂停,但是我们公开的数据已经进行了拼接和整合处理。下面分别介绍每个组的充放电策略(分别以 Batch-1 到 Batch-6 来表示 6 组实验的数据)。

Batch-1(8 只电池):固定充放电策略,充满,放完。

第一个 cycle 测量电池的初始容量:以 0.5C(1A) 恒流充电至 4.2V,然后维持电压不变,直至电流降至 0.02C(40mA);静置 5 分钟;以 0.2C(0.4A) 放电至 2.5V。

其他 cycles: 以 2.0C(4A) 恒流充电至 4.2V,然后维持电压不变,直至电流降至 0.05C(0.1A);静置 5 分钟,以 1.0C(2A) 放电至 2.5V,静置 5 分钟。

Batch-2(15 只电池):固定充放电策略,充满,放完。

第一个 cycle 测量电池的初始容量:以 0.5C(1A) 恒流充电至 4.2V,然后维持电压不变,直至电流降至 0.02C(40mA);静置 5 分钟,以 0.2C(0.4A) 放电至 2.5V。

其他 cycles: 以 3.0C(A) 恒流充电至 4.2V,然后维持电压不变,直至电流降至 0.05C(0.1A); 静置 5 分钟,以 1.0C(2A) 放电至 2.5V,静置 5 分钟。

Batch-3(8只电池):不固定放电策略,充满,放完。

第一个 cycle 测量电池的初始容量:以 0.5C(1A) 恒流充电至 4.2V,然后维持电压不变,直至电流降至 0.02C(40mA);静置 5 分钟;以 0.2C(0.4A) 放电至 2.5V。

其他 cycles: 以 2.0C(2A) 恒流充电至 4.2V,然后维持电压不变,直至电流降至 0.05C(0.1A); 静置 5 分钟;以xC 放电至 2.5V(x在 $\{0.5,1,2,3,5\}$ 中循环取值); 静置 5 分钟;

Batch-4(8 只电池):不固定放电策略,充满,不放完。

第一个 cycle 测量电池的初始容量:以 0.5C(1A) 恒流充电至 4.2V,然后维持电压不变,直至电流降至 0.02C(40mA);静置 5 分钟;以 0.2C(0.4A) 放电至 2.5V。

其他 cycles: 以 2.0C(2A) 恒流充电至 4.2V,然后维持电压不变,直至电流降至 0.05C(0.1A); 静置 5 分钟;以xC 放电至 3.0V(x在 $\{0.5,1,2,3,5\}$ 中循环取值); 静置 5 分钟;每当x循环完一轮,执行一次以下操作测量容量:以 2C(4A) 恒流恒压充电至 4.2V;静置 5 分钟;以 1C(2A) 放电至 2.5V; 静置 5 分钟;

Batch-5(8 只电池): 随机游走策略, 充满, 不放完。

1-20 个 cycle: 以 0.5C (1A) 充电至 4.2V,然后维持电压不变,直至电流降至 0.02C (40mA); 静置 5 分钟;然后以 $_{x}A$ 放电 $_{y}$ 分钟($_{x}$ 为[2,8]区间内的随机整数, $_{y}$ 为[2,6]区间内的随机整数), 为保证安全,当电压降至 3.0V 时停止放电;静置 20 分钟。

从 21 个 cycle 起重复以下循环: 测一次容量(以 1C(2A)恒流恒压充电至 4.2V; 静置 5 分钟; 以 1C(2A)放电至 2.5V; 静置 5 分钟),随机放电 10 个 cycle(以 3.0C(6A)充电至 4.2V,然后维持电压不变,直至电流降至 0.05C(0.1A); 静置 5 分钟; 然后以 $_{x}$ A 放电 $_{y}$ 分钟($_{x}$ 为[2,8]区间内的随机整数, $_{y}$ 为[2,6]区间内的随机整数),为保证安全,当电压降至 3.0V 时停止放电;静置 10 分钟)。

Batch-6(8 只电池): 模拟地球同步轨道(Geosynchronous Earth Orbit)卫星电池充放电。 第一个 cycle 测量电池的初始容量: 以 0.5C(1A)恒流充电至 4.2V,然后维持电压不变,直至 电流降至 0.02C(40mA); 静置 5 分钟; 以 0.2C(0.4A)放电至 2.5V。

其他 cycles:以 2C(4A)充电至 4.2V,然后维持电压不变,直至电流降至 0.05C(0.1A);静置 5分钟,以 0.667C(1.334A)放电,放电持续时间如表 1 和图 1 所示所示。大约每 5 个 cycle 测一次容量(以 1C(2A)恒流恒压充电至 4.2V,静置 5分钟,以 0.5C(1A)放电至 2.5V)。

—————————————————————————————————————																							
周期序号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24
放电时长 (分钟)	5	20	34	41	46	50	54	56	58	60	62	64	68	69	70	71	72	72	72	72	72	72	72

表 1 地球同步轨道卫星放电策略

图 1 放电周期和持续时间示意图

附加数据:

由于本次实验在室温下进行,可能存在一定的温度波动,为了提供更加精准的温度信息,我们单独用一个通道来测量在电池在室内环境中的温度,用于做温度补偿,如图 2 所示。其

中,用于采集温度补偿数据的电池不进行充放电,所采集的温度数据保存在 Temperature_Compensation_Data.mat 文件中。

图 2 温度补偿数据采集示意图