# Analysis I

# October 2, 2023

#### Lecture Notes

Class will not have dedicated lecture notes. Many are available already. Undergraduate notes are available on Canvas. Lecture 1 overview available on Canvas (lecture1.pdf).

## **Tentative Office Hours**

Mondays 2-3pm and Tuesday 1-2pm.

## Homework

Nominally due at beginning of class; ask for leeway if needed. First week homework will be review of undergraduate proofs. First homework due Wednesday, October 11.

### Notation

Natural Numbers:  $\mathbb{N} = \{1, 2, 3, ...\}$ Non Negative Integers:  $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$ Integers:  $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, ...\}$ Rationals:  $\mathbb{Q} = \left\{\frac{p}{q}, \ p \in \mathbb{Z}, \ q \in \mathbb{Z}\right\} = \mathbb{Z} \times \mathbb{N}/\infty$ 

• Equivalent representation of rationals:  $(p_1,q_1) \sim (p_2,q_2)$  iff  $p_1q_2 = p_2q_1$ 

Sequence of Rationals:  $\{u_n\}_{n\in\mathbb{N}}, u_n\in\mathbb{Q}, \ \forall n.$ 

# Properties of the Rationals

 $(\mathbb{Q}, +, \cdot)$  is a (ii) totally ordered (i) field satisfying the (iii) Archimedean property.

## (i) Field

- 1. + is associative: (a + b) + c = a + (b + c)
- 2. + is commutative: a + b = b + a

- 3. is associative and commutative.
- 4.  $\exists 0 \in \mathbb{Q}$  such that  $\forall a \in \mathbb{Q}$ , 0 + a = a + 0
- 5.  $\exists 1 \in \mathbb{Q} \setminus \{0\}$  such that  $\forall a \in \mathbb{Q}, 1 \cdot a = a \cdot 1 = a$
- 6.  $\forall a \in \mathbb{Q} \setminus \{0\} \exists b \in \mathbb{Q}, a \cdot b = b \cdot a = 1$ 
  - $b = a^{-1} = \frac{1}{a}$

## (ii) Totally Ordered

 $\exists$  a set  $\mathbb{Q}_+ \subseteq Q$  of "Positive Numbers" stable under + and  $\cdot$  such that  $\forall A \in \mathbb{Q}$  either a > 0 ( $a \in \mathbb{Q}_+$ ), -a > 0 (also a < 0) or a = 0.

- Ordering:  $\forall a, b \in \mathbb{Q}$ , a < b if and only if b a > -0.
- Trichotomy:  $\forall a, b \in \mathbb{Q}$  either a < b, a > b, or a = b.
- $\max(a,b) = \begin{cases} a & \text{if } a > b \\ b & \text{otherwise} \end{cases}$
- $|a| = \max(a, -a)$  (helps measure distance in  $\mathbb{Q}$ ).
- $\operatorname{dist}(a,b) := |b-a|$
- Triangle Inequality:  $|u \pm v| \le |u| + |v|$
- Observe also:  $||u| |v|| \le |u \pm v|$ . The triangle inequality may be used to prove this.
- Proof of Triangle Inequality  $-|u| \le u \le |u|$  and  $-|v| \le v \le |v|$ , therefore  $-|u| |v| \le u + v \le |u| + |v|$ . Therefore  $u + v \le |u| + |v|$  and  $-(u + v) \le |u| + |v|$  implies  $|u + v| \le |u| + |v|$ .

2

#### (iii) Archimedian Property:

$$\forall \epsilon > 0, \ \exists N, \ \forall n \ge N, \ \frac{1}{n} < \epsilon.$$

## **Bounded Sequence of Rationals**

 $\{u_n\}_{n\in\mathbb{N}}$  is bounded if  $\exists m\in\mathbb{Q}_+$  such that  $|u_n|\leq M,\ \forall n.$   $\{u_n\}_{n\in\mathbb{N}}$  converges to  $a\in\mathbb{Q}$  ( $\lim_{n\to\infty}u_n=a$ ) if  $\forall \epsilon>0, \exists N, \forall n\geq N, |u_n-a|<\epsilon.$ 

## **Famous Limits**

# Decaying Rational

1. 
$$\lim_{n\to\infty}\frac{1}{n}=0$$

• 
$$\forall \epsilon \in \mathbb{Q}_+, \ \exists n \in \mathbb{N}, \ 0 < \frac{1}{n} < \epsilon$$

• 
$$\forall n \in \mathbb{N}, \exists n \in \mathbb{N}, n \ge N$$

- b. and c. are equivalent.

## Decaying Exponential Rational

 $r \in \mathbb{Q}, \ 0 < r < 1, \lim_{n \to \infty} r^n = 0.$ 

• Proof: Write  $r = \frac{1}{1+k}$  for some k > 0. Then  $r^n = \frac{1}{(1+k)^n} \stackrel{\text{Bernoulli}}{\leq} \frac{1}{1+nk}$ .

#### Geometric

1. 
$$r \in \mathbb{Q}$$
,  $0 < r < 1$ ,  $u_n = 1 + r + \dots + r^n = \frac{1 - r^{n+1}}{1 - r} \to \frac{1}{1 - r}$ 

## Features of Limits

## Limits are Unique

If the limit of a sequence exists, it is unique.

## Squeezing Lemma

If  $\{a_n\}$ ,  $\{b_n\}$  are such that  $0 \le a_n \le b_n$ , and  $b_n \to 0$  as  $n \to \infty$ , then  $a_n \to 0$ .

#### Limits Preserve Order

If  $a_n \leq b_n \ \forall n \text{ and } a_n \text{ and } b_n \text{ converge, then } \lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$ .

## Limit Algebraic Rules

 $\lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n = \lim_{n\to\infty} (a_n + b_n)$  when  $a_n$  and  $b_n$  converge. If  $\lim_{n\to\infty} b_n \neq 0$ , then  $\frac{a_n}{b_n} \to \frac{\lim a_n}{\lim b_n}$ .

## Peculiarity of the Rationals

Q lacks completeness.

# Examples

Consider  $u_1 = 1$  and  $u_{n+1} = \frac{1}{2}(u_n + \frac{2}{u_n})$ .

Then  $u_n \in \mathbb{Q}, \ \forall n \in \mathbb{N}$ .

It can further be proven, by induction, that  $u_n \ge 1$ ,  $\forall n$ .  $\left(u_{n+1} - 1 = \frac{1}{2}(u_n + \frac{1}{u_n}) - 1 = \frac{1}{2u_n}((u_n - 1)^2 + 1)\right)$ .  $\lim_{n \to \infty} u_n^2 = 2$ .

$$u_{n+1}^{2} - 2 = \left(\frac{1}{2}(u_{n} + \frac{2}{u_{n}})\right)^{2} - 2$$

$$= \left(1\frac{1}{2u_{n}}(u_{n}^{2} + 2)^{2} - 4u_{n}\right)$$

$$= 1\frac{4}{u_{n}^{2}}(u_{n}^{2} - 2)^{2}$$

$$\leq \frac{1}{4}(u_{n}^{2} - 2)^{2}$$

If  $u_n$  converged in  $\mathbb{Q}$  to L, by algebraic limit rules,  $2 = \lim u_n^2 = (\lim u_n)^2 = L^2$ , yet  $\sqrt{2} \notin \mathbb{Q}$ .

# Cauchy Criterion

A sequence  $\{u_n\}_{n\in\mathbb{N}}$  of rationals is Cauchy if  $\forall \epsilon>0,\ \exists n\in\mathbb{N},\ \forall p,q\geq n,\ |u_p-u_q|<\epsilon.$ 

## Visual Justification



## Example 1

The sequence from before is Cauchy.

$$|u_p - u_q| = \frac{|u_p^2 - u_q^2|}{|u_p + u_q|} \le \frac{1}{2} |u_p^2 - u_q^2|$$

## Example 2

$$u_n = \sum_{k=0}^n \frac{1}{k!} \in \mathbb{Q}.$$

- This is increasing.
- It is bounded above by 3:

$$\begin{aligned} 1+1+\frac{1}{2}+\frac{1}{2\cdot 3}+\frac{1}{2\cdot 3\cdot 4}+\cdots+\frac{1}{2\cdots n} &\leq 1+1+\cdots\frac{1}{2^{n-1}}\\ &\leq 1+\frac{1-2^{-n}}{1-\frac{1}{2}}\\ &\leq 3 \end{aligned}$$

4

# Convergence, Cauchy and Boundedness.

Given a sequence  $\{u_n\}_{n\in\mathbb{N}}$ ,  $\{u_n\}$  converges  $\Longrightarrow$   $\{u_n\}$  is Cauchy  $\Longrightarrow$   $\{u_n\}$  is bounded. Note that in  $\mathbb{Q}$  none of these implications may be reversed.

### Construction of the Real Numbers

Short version: If the limit of a sequence isn't in the set, then define the limit as the sequence itself. Let  $C_{\mathbb{Q}} = \{\text{Cauchy sequences of rationals.}\}$ .

## Two Operations

- Termwise Addition  $\{u_n\}_n + \{v_n\}_n := \{u_n + v_n\}_{n \in \mathbb{N}}$
- Termwise Multiplication  $\{u_n\}_n \cdot \{v_n\}_n := \{u_n \cdot v_n\}_{n \in \mathbb{N}}$

## Closure of Cauchy Sequence

If  $\{u_n\}_n$ ,  $\{v_n\}_n \in C_{\mathbb{Q}}$ , then  $\{u_n\}_n + \{v_n\}_n \in C_n$  and  $\{u_n\}_n \cdot \{v_n\}_n \in C_n$ .

## Example

Infinite decimal expansion.

Fix  $N \in \mathbb{Z}$ ,  $a_1 \cdots a_n \in \{0, \dots, 9\}$ .

Then let  $u_n = N + \sum_{k=1}^n a_k (10)^{-k}$  (that is the number  $N.a_1 a_2 \dots a_n$ ).

This is always increasing and bounded above by  $N + \sum_{k=1}^{n} 9 \cdot (10)^{-k} = N + \frac{9}{10} \cdot \sum_{k=1}^{n} (10)^{-(k+1)} \le N + 1$ . Hence, it is Cauchy.

# Increasing and Bounded Above Implies Cauchy

By contrapositive, increasing and not Cauchy implies not bounded.

By the negation of Cauchy and letting  $p \ge q$  without loss of generality, we can force  $u_p > u_q + \epsilon$ .

# Negation of Cauchy

 $\exists \epsilon > 0, \ \forall N, \ \exists p, q \ge N, \ |u_p - u_q| > \epsilon.$ 

# Real Numbers as Equivalence Classes of Cauchy Sequences

On  $C_{\mathbb{Q}}$  define the relation  $\{x_n\}_n \sim \{y_n\}_n$  if and only if  $\lim_{n\to\infty} |(x_n-y_n)| = 0$ .

# Equivalence Relation

Reflexive:  $x_n - x_n = 0$ 

Transitive: Uses algebraic limit rules.  $x_n - z_n = x_n - y_n + y_n - z_n$ .

Symmetric.

#### Definition of the Reals

$$\mathbb{R} := C_{\mathbb{Q}} / \sim$$
Then  $x \in \mathbb{R}, \ x = [\{x_n\}_n].$ 

# Addition and Multiplication of Reals

- Addition  $x + y := [\{x_n + y_n\}_n]$ .
- Multiplication  $x \cdot y := [\{x_n \cdot y_n\}_n].$

# Operations Do Not Depend on Choice of Representative

If 
$$\{x_n\}_n \sim \{x_n'\}_n$$
 and  $\{y_n\}_n \sim \{y_n'\}_n$ , then  $\{x_n\}_n + \{y_n\}_n \sim \{x_n'\}_n + \{y_n'\}_n$ .  
If  $\{x_n\}_n \sim \{x_n'\}_n$  and  $\{y_n\}_n \sim \{y_n'\}_n$ , then  $\{x_n\}_n \sim \{y_n\}_n \sim \{x_n'\}_n \sim \{y_n'\}_n$ .

#### The Reals are a Field

There are nine properties to check, eight of which are "obvious":

# Commutativity of Addition (and Other "Obvious" Features)

 $[\{x_n\}_n] + [\{y_n\}_n] = [\{x_n + y_n\}_n] = [\{y_n + x_n\}] = [\{y_n\}_n] + [\{x_n\}_n]$ That is, the Reals inherit most field features from the Rationals.

- Zero Element  $0_{\mathbb{R}} = \left[ \{0_{\mathbb{Q}}\}_n \right]$
- One Element  $1_{\mathbb{R}} = [\{1_{\mathbb{Q}}\}_n]$

## Multiplicative Inverses

How to define  $x^{-1}$  for  $x \in \mathbb{R}$  where  $x \neq 0$ ?

- Idea If  $x = [\{x_n\}_n]$  choose  $x^{-1} = [\{\frac{1}{x}\}_n]$ . If  $x \in \mathbb{R}$ ,  $x \neq 0$  then
  - 1.  $\exists \{x_n\}_n \in C_{\mathbb{Q}}$  representing x with non zero entries.
  - 2.  $\{\frac{1}{x_n}\}_n$  is Cauchy.
  - Proof of 1 Pick any  $\{x_n\}_n$  representing x.

\* 
$$x \neq 0$$
, so NOT  $(\lim_{n\to\infty} x_n = 0: \exists \epsilon_0 > 0, \forall N, \exists n \geq N, |x_n| > \epsilon_0.$ 

\* 
$$\{x_n\}$$
 is Cauchy:  $\forall \epsilon > 0, \exists N, \ \forall p,q \geq N, \ |x_p - x_q| < \epsilon.$ 

Therefore,  $\exists N$  such that  $\forall p,q \geq N_1, \ |x_p-x_q| < \frac{\epsilon_0}{2}$  And  $\exists N_2 \geq N, \ , |x_{N_2}>\epsilon_0.$ 

For  $q \ge N_2$ , the Cauchy Criterion states that  $|x_q| = |x_q - x_{N_2} + x_{N_2} \ge |x_{N_2}| - |x_{N_2} - x_q| \ge \epsilon_0 - \frac{\epsilon_0}{2} \ge \frac{\epsilon_0}{2}$ . Therefore, the sought sequence is  $\{x_{N_2} + k\}_{k \in \mathbb{N}}$ .

- Proof of 
$$2\left|\frac{1}{x_p} - \frac{1}{x_q}\right| = \frac{|x_p - x_q|}{|x_p||x_q|} \le \frac{4}{\epsilon_0^2} |x_p - x_q|$$
.

#### Order on the Reals

Let  $x \neq 0$ ,  $\exists \{x_n\}_{n \in \mathbb{N}}$  be a representation of x and  $\epsilon_0 > 0$ . Then for  $|x_n| > \epsilon_0$ ,  $\forall n \in \mathbb{N}$ , there is a dichotomy:

- Either  $\exists N \in \mathbb{N}, x_n > \epsilon_0, \forall n \geq N$  (in which case we write x > 0)
- Or  $\exists N \in \mathbb{N}, x_n < -\epsilon_0, \forall n \geq N$  (in which case we write x < 0

Thus the Reals are totally ordered.

# October 4, 2023

### Overview

Completeness of  $\mathbb{R}$ .

Topology of the Real Line.

## Non-zero Reals Are Either Positive or Negative

Given  $x \in \mathbb{R} \setminus \{0\}$ ,  $\exists \delta \in \mathbb{Q}_+$  such that  $\forall \{x_n\}_n$  representing  $x, \exists N \in \mathbb{N}$  such that  $|x_n| > \delta, \forall n \geq N$ . Moreover, one of the following (but not both) holds:

1. 
$$\forall \{x_n\}_n \in x, \exists, x_n > \delta, \forall n \ge N \text{ (i.e. } x > 0)$$

2. 
$$\forall \{x_n\}_n \in x, \ \exists, \ x_n < -\delta, \ \forall n \ge N \ (\text{i.e.} \ x < 0)$$

Recall that  $x \in \mathbb{R} \setminus \{0\}$  is an equivalence class of Cauchy sequences.

# Total Ordering of the Reals

x > 0 produces a total ordering of  $\mathbb{R}$  where x < y if and only if y - x > 0.

$$\Rightarrow \max(x,y) = \begin{cases} x & \text{if } x > y \\ y & \text{otherwise} \end{cases}$$

 $|x| = \max(x, -x)$  (which satisfies the triangle inequality)

#### Lemma A

Let  $x, y \in \mathbb{R}$ . If  $\{x_n\}_n, \{y_n\}_n$  represent x, y and satisfy  $x_n < y_n, \exists N \in \mathbb{N}, \forall n \ge N$ , then  $x \le y$ .

• Proof By contradiction, suppose x > y and  $\exists \{x_n\}_n, \{y_n\}_n$  representing x, y such that  $x_n \leq y_n, \ \forall n \geq N_1$ . Then, by definition,  $x - y > 0 \implies \exists \delta > 0, \ \exists N_2, \ x_n - y_n > \delta \text{ for } n \geq N_2$ . But  $x_n \leq y_n$  contradicts  $x_n - y_n > \delta$ .

## Sequences of Reals

$$\{x_n\}_n, x_n \in \mathbb{R}$$

The definition of bounded, convergent and Cauchy sequences are the same as in  $\mathbb{Q}$ .

## Injection of Rationals

$$\iota: \mathbb{Q} \to \mathbb{R}$$
 such that  $r \mapsto [\{u_n = r\}_n]$   
This is isometric in the sense that  $|\iota(r) - \iota(s)|_{\mathbb{R}} = |r - s|_{\mathbb{Q}}$ 

## Theorem (Completeness 1)

Let  $\{x_n\}_n \in C_{\mathbb{Q}}$  and  $x = [\{x_n\}_n]$ , then  $\{\iota(x_n)\}_n$  converges to x.

#### Proof

What to show:  $\forall \epsilon > 0$ ,  $\exists N$ ,  $\forall n \geq N$ ,  $|\iota(x_n) - x| < \epsilon$ . Let  $\epsilon \in \mathbb{Q}_+$ . By the Cauchy criterion,  $\exists N, \forall q, p \geq N, |x_p - x_q| < \epsilon$ . This is equivalent to  $x_q - \epsilon \leq x_p \leq x_q + \epsilon$  where p is frozen. Then by Lemma A,  $x - \epsilon \leq \iota(x_p) \leq x + \epsilon$ . It follows that  $\forall p \geq N, |\iota(x_p) - x \leq \epsilon$ .

#### Corollary

 $\mathbb{Q} \cong \iota(\mathbb{Q})$  is dense in  $\mathbb{R}$ . That is,  $\forall \epsilon > 0$ ,  $\forall x \in \mathbb{R}$ ,  $\exists r \in \mathbb{Q}$ ,  $|\iota(r) - x| < \epsilon$ .

#### The Isometric Copy of Rationals

For brevity, the  $\iota$  notation will be dropped and the  $\mathbb{Q}$  will be understood as  $\iota(\mathbb{Q})$ .

#### Completeness of the Real Numbers

A sequence of real numbers converges in  $\mathbb{R}$  if and only if it is Cauchy.

#### Proof

 $(\Longrightarrow)$  This is clear.

( $\Leftarrow$ ) Take a Cauchy sequence of reals  $\{x_n\}_n$ . Then  $\forall \epsilon > 0$ ,  $\exists N$ ,  $\forall p, q \geq |x_p - x_q| < \epsilon$ . Using the density of  $\mathbb{Q}$ ,  $\forall n \in \mathbb{N}$ ,  $\exists r_n \in \mathbb{Q}$  such that  $|x_n - r_n| < \frac{1}{n}$ .

Claim:  $\{r_n\}_n$  is Cauchy. Indeed,

$$\begin{aligned} |r_p - r_q| &= |r_p - x_p + x_p - x_q + x_q - r_q| \\ &\leq |r_p - x_p| + |x_p - x_q| + |x_q - r_q| \\ &\leq \frac{1}{p} + |x_p - x_q| + \frac{1}{q} \end{aligned}$$

Take  $\epsilon > 0$ .  $\{x_n\}$  cauchy implies  $\exists N_1, \ \forall p,q \geq N, |x_p - x_q| \leq \frac{\epsilon}{3}$  and  $\exists N_2, \ \forall p,q \geq N_2, \frac{1}{p} \leq \frac{\epsilon}{3}, \ \frac{1}{q} \leq \frac{\epsilon}{3}$  for

 $p,q \ge \max(N_1,N_2) \ |r_p-r_q| \le \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}.$  Then, for Cauchy  $\{r_n\}_n$ , call  $r = [\{r_n\}_n]$ , then  $\lim_{n\to\infty} r_n = r$  by the above theorem. Then my algebraic limit rules,  $x_n(x_n-r_n) + r_n$  where  $(x_n-r_n) \to 0$  and  $r_n \to r$  as  $n \to \infty$ . So  $\{x_n\}$  converges.

## Example

Let  $x_1 = 1$ ,  $x_{n+1} = \frac{1}{2}(x_n + \frac{2}{x_n})$ . Then  $\{x_n\}_n \in C_{\mathbb{Q}}$ , and it converges to  $L \in \mathbb{R}$ . By algebraic limit rules,  $L^2(\lim x_n)^2 = \lim x_n^2 = 2$ .

# Subsets of the Reals, Infimum and Supremum

#### Notation

Subset:  $S \subseteq \mathbb{R}$ Inclusion:  $x \in S$ 

Open Interval:  $(a,b) = \{x \in \mathbb{R} | a < x < b\}$ Semiclosed Interval:  $(a, b] = \{x \in \mathbb{R} | a < x \le b\}$ Closed Interval:  $[a, b] = \{x \in \mathbb{R} | a \le x \le b\}$ 

Unbounded Semiclosed Interval:  $(-\infty, a] = \{x \in \mathbb{R} | x \le a\}$ 

Unbounded Open:  $(-\infty, a) = \{x \in \mathbb{R} | x < a\}$ 

# Suprememum

 $S \subseteq \mathbb{R}$  is bound above (respectively below) if  $\exists M \in \mathbb{R}, \ \forall x \in S, \ x \leq M$  (respectively  $\exists L \in \mathbb{R}, \ \forall x \in S, \ L \leq X$ ) S ad mits a least upper bound, LUB, suprememum or sup M if

- 1.  $\forall x \in S, x \leq M$
- 2.  $\forall M' \in \mathbb{R}$ , upper bound of  $S, M \leq M'$

If  $\sup S$  exists, it is unique.

If  $x \in S$  and x is an upper bound for S, then  $x = \sup S$ .

## Example 1

$$\sup(0,1) = \sup[0,1] = 1$$

## Example 2

 $S = \{x \in \mathbb{Q}, x^2 < 2\}$  does not have a greatest element in  $\mathbb{Q}$ , nor a least upper bound in  $\mathbb{Q}$ .

# Theorem (Completness 2)

Every subset  $S \subseteq \mathbb{R}$ , nonempty and bouned above, has a supremum in  $\mathbb{R}$ .

#### Proof

By dichotomy.

 $S \neq \emptyset \implies \exists x_0 \in S \text{ and } S \text{ bounded above implies } \exists y_0 \in \mathbb{R}, \ \forall x \in S, \ x \leq y_0 \text{ (in particular } x_0 \leq y_0).$  If  $x_0 = y_0$ , done. Otherwise, consider  $m_0 = \frac{x_0 + y_0}{2}$ .

$$\begin{array}{c|c} & + & + & + \\ \hline x_0 \ x_1 & y_0 = y_1 \\ \hline S & \end{array}$$

Two options exist: if  $m_0$  is an upper bound for S, set  $y_1 = m_0$  and  $x_1 = x_0$ .

Otherwise,  $\exists x_1 \in S$ , such that  $m_0 < x_1$  so set  $y_1 = y_0$ .

Repeat this process forever to construct two sequences  $x_n$ ,  $y_n$ .

 $\forall n, x_n \in S, y_n \text{ is an upper bound for } S.$ 

- $x_n \le y_n$
- $x_n$  is increasing and bounded above by  $y_0$ , so it must be Cauchy and converging to x.
- $y_n$  is decreasing and bounded below by  $x_0$ , so it must be Cauchy and converging to y.
- $|x_{n+1} y_{n+1}| \le \frac{|x_n y_n|}{2}$  which implies  $|x_n y_n| \le \frac{1}{2^n} |x_0 y_0|$  and x = y = z.

Therefore, the process may be understood as  $x_0 \leq \cdots \leq x_n \leq x_{n+1} \leq y_{n+1} \leq y_n \leq \cdots \leq y_0$ .

There remain two things to check: (1) z is an upper bound for S and (2) z is no larger than any other upper bound for S.

- 1. Take  $x \in S$ ,  $\forall n, x \leq y_n \xrightarrow{n \to \infty} x \leq Z$ .
- 2. Take upper bound for  $S, z', x_n \leq z', \forall n \xrightarrow{n \to \infty} z \leq z'$ .

So  $z = \sup S$ .

# Monotone Convergence Theorem (Completeness 3)

An increasing sequence of reals,  $\{x_n\}_n$ , that is bounded above, converges to  $\sup X = \sup\{x_n | n \in \mathbb{N}\}$ .

To prove that this converges, since it is monotone and bounded above it is Cauchy and therefore must be convergent.

## Proof

Call x the limit, then  $\forall n, x_n \leq x$ . To see this, suppose  $\exists n_0, x < x_{n_0}$  then  $\forall m \geq m_0, x < x_{m_0} \leq x_m \implies |x_m - x| \geq |x_{n_0} - x| > 0$ ,  $\forall m \geq n_0$  is a contradiction.

Let M be an upper bound of X. Then  $x_n \leq M$ ,  $\forall n \xrightarrow{n \to \infty} x \leq M \implies x = \sup X$ .

# Theorem (Existence of Roots)

 $\forall x \in \mathbb{R} \text{ where } x > 0, \ p \in \{2, 3, \dots, \}, \ \exists ! y > 0 \text{ such that } y^p = x.$ 

### Proof

Left as an exercise.

Either by dichotomy or consider  $S = \{y \in \mathbb{R} | y^p < x\}$ , show:  $S \neq 0$ , bounded above and  $(\sup S)^p = x$ . For uniqueness, show  $y_1^p = y_2^p = x \iff 0 = y_1^p - y_2^p = (y_1 - y_2)(\cdots \neq 0) \implies y_1 = y_2$ .

# **Topological Properties**

 $S \subseteq \mathbb{R}$  is open if  $\forall x \in S, \exists a, b \in \mathbb{R}, x \in (a, b) \subset S$ .

x is an accumulation or limit point of S if  $\forall \epsilon > 0, \exists y \in S, 0 < |x - y| < \epsilon$ .

 $S \subseteq \mathbb{R}$  is closed if it contains all its limit points.

A set may be both open closed, just open, just closed or neither.

Given  $S \subseteq \mathbb{R}$ , the interior of S is  $\bigcup_{S' \text{ open} \subset S} S' = S^{\text{int}} = S^0$ .

The closure is  $\bigcap_{F \text{ closed} \supseteq S} F = \overline{S} \stackrel{\text{wts}}{=} S \cup \{\text{limit points of } S\}.$ 

## Example

 $\{x\}$  is not open, but, since the limit points of x are  $\emptyset$ , it is closed.

## **Propositions**

- 1. Arbitrary unions and finite intersections of open sets are open.
- 2. S is open if and only the complement  $S^c = \mathbb{R} \setminus S$  is closed.
- 3. Arbitrary intersections and finite unions of closed sets are closed.

## **Bolzano-Weierstrass Theorem**

A bounded sequence in  $\mathbb{R}$  ad mits a convergent (Cauchy) subsequence.  $\exists M, |x_n| \leq M, \forall n$ 

## **Proof by Dichotomy**

Suppose  $I_0 = [a, b]$  contains the sequence. Construct a sequence of intervals by indicators: if  $\left[a, \frac{a+b}{2}\right]$  contains infinitely terms of  $\{x_n\}_n$ , choose n such that  $x_{n_1} \in \left[a, \frac{a+b}{2}\right]$  and call  $I_1 = \left[a, \frac{a+b}{2}\right]$ . Otherwise,  $\left[\frac{a+b}{2},b\right]$  must contain infinitely many terms. Choose n in a similar fashion as above such that  $I_1 = \left[\frac{a+b}{2},b\right]$ .

This process may be repeated to create a sequence of intervals such that  $I_k \supseteq I_{k+1} \supseteq I_{k+2}$  and  $l(I_k) = \frac{b-a}{2^k}$ . A subsequence  $\{u_{n_k}\}_k$  such that  $u_{n_k} \in I_l$  for  $k \ge l$ .

#### Exercise

Extract a Cauchy criterion out of the above.

# October 9, 2023

## Overview

- Topology of  $\mathbb{R}$  continued.
- Numerical series.

Next Wednesday

- Absolute and Conditional Convergence.
- Rearrangement theorem.

#### Last Time

Finished with Bolzano-Weierstrass.

## Limits

#### Limit Point

We say  $x \in \mathbb{R}$  is a limit point of  $\{x_n\}_n$  if a subsequence of  $\{x_n\}_n$  converges to x. Equivalently,  $\forall \epsilon > 0$ ,  $\forall n_0 \in \mathbb{N}$ ,  $\exists n \geq n_0$ ,  $|x_n - x| < \epsilon$ . That is, the sequence revisits an epsilon neighborhood of x infinitely many times.

#### Limit Set

The limit set of  $\{x_n\}_n$ : LS( $\{x_n\}_n$ ) = the set of limit points of  $\{x_n\}_n$ .

- Comments
  - if  $\lim_{n\to\infty} \{x_n\} = x$ , then LS( $\{x_n\}_n$ ) =  $\{x\}$ .
  - The limit set can be as big as  $\mathbb{R}!$

$$r_1$$
  $r_2$   $r_3$   $r_4$ 
 $\downarrow$   $r_1$   $r_2$   $r_3$ 
 $\downarrow$   $r_1$   $r_2$ 

- What Bolzano-Weierstrass says is that if  $\{x_n\}$  is bounded, then  $LS(\{x_n\}) \neq \emptyset$ .
- Examples  $LS(\{n\}_n) = \emptyset$ .  $LS(\{x_n\}_n)$  is closed (good exercise).

# Limit Superior

If  $\{x_n\}_n \in [a, b]$  is bounded,  $\forall k \in \mathbb{N}$ ,  $\sup\{x_j | j \ge k\}$  exists in  $\mathbb{R}$ . Because

$$a \le \sup\{x_j | j \ge k + 1\} = y_{k+1} \le \sup\{x_j | j \ge k\} = y_k$$

by the Monotone Convergence Theorem,  $\{y_k\}_k$  converges. Call its limit  $\limsup_n x_n = \inf_n \sup\{x_j | j \ge n\}$ .

#### **Limit Inferior**

Similarly, define  $\lim_n \inf x_n = \sup_n \inf \{x_j | j \ge n\}$ .

#### Limit Superior and Limit Inferior Always Exist

What to show:  $\limsup x_n$ ,  $\liminf x_n \in LS(\{x_n\})$ . Left as an exercise.

#### Convergence at the Limit

A bounded sequence  $\{x_n\}_n$  converges if and only if  $\liminf_n x_n = \limsup_n x_n$ .

• Proof Technique Often it is useful to structure a proof such that

$$L < \liminf_n x_n \le \limsup_n x_n < L$$

#### Topology of the Reals Continued

#### Compactness

Let  $A \subseteq \mathbb{R}$ .

A is (sequentially) compact if every sequence in A has a limit point in A. A is (Heine-Borel) compact if every open cover of A has a finite subcover.

- Open Cover  $\{O_{\alpha}\}_{{\alpha}\in I}$ , with  $O_{\alpha}$  open, is an open cover of A if  $A\subseteq \bigcup_{{\alpha}\in I}O_{\alpha}$ .
- Finite Subcover  $O_1, \ldots, O_n, n \in \mathbb{N}$ .

## Heine-Borel Theorem

Let  $A \subseteq \mathbb{R}$ .

The following are equivalent

- 1. A is Heine-Borel compact.
- 2. A is closed and bounded.
- 3. A is sequentially compact.

#### Proof

$$(1) \Longrightarrow (2) \Longrightarrow (3) \Longrightarrow (1)$$

ullet Heine-Borel Compact Implies Closed and Bounded Suppose A satisfies the Heine-Borel property.

Consider  $\{(-n,n)\}_{n\in\mathbb{N}}$ . Clearly  $\bigcup_n (-n,n) = \mathbb{R} \supseteq A$ .

By Heine-Borel,  $\exists n_0, \ldots, n_p$  such that  $A \supseteq \bigcup_{j=0}^p (-n_j, n_j) = (-N, N), N = \max(n_0, \ldots, n_p)$ . So A is bounded.

A is closed if  $y \notin A \implies y$  is not a limit point of A.

Take  $y \in A^c$ , then  $A \subseteq \mathbb{R} \setminus \{y\} = \bigcup_{n \in \mathbb{N}} (-\infty, y - \frac{1}{n}) \cup (y + \frac{1}{n}, \infty)$ .

By the Heine-Borel property,

$$A \subseteq \bigcup_{n_0, \dots, n_p} (-\infty, y - \frac{1}{n}) \cup (y + \frac{1}{n}, \infty)$$
$$= (-\infty, y - \frac{1}{N}) \cup (y + \frac{1}{N}, \infty)$$

Which implies  $A \cap [y - \frac{1}{N}, y + \frac{1}{N} = \emptyset]$  and y is not a limit point of A. That is, A contains its limit points.

ullet Closed and Bounded Implies Sequential Compactness Suppose A is both closed and bounded.

Let  $\{x_n\}_n \in A$ . Then  $\{x_n\}_n$  is bounded. By Bolzano-Weierstrass, it has a limit point x and a subsequence  $\{x_{n_k}\}_k$  converging to x.

Since A is closed,  $\lim_{k\to\infty} x_{n_k} = x \in A$ .

• Sequential Compactness Implies Heine-Borel Suppose  $A \subseteq \mathbb{R}$  is sequentially compact.

Consider an open cover of A,  $\{O_{\alpha} | \alpha \in I\}$ .

First, turn it into a countable cover:

$$- \ \forall \alpha \in I, \ O_{\alpha} \subseteq \left(r_{\alpha}^{1}, r_{\alpha}^{2}\right), \ r_{\alpha}^{1}, r_{\alpha}^{2} \in \mathbb{Q}$$

Assume that  $\{O_{\alpha}\}_{\alpha}$  can be made countable  $(O_1, \ldots, O_n)$ 

By contradiction, suppose  $\forall n \in \mathbb{N}, A \setminus \left(\bigcup_{j=1}^n O_j\right) \neq \emptyset$ .

Take  $x_n \in A \setminus \left(\bigcup_{j=1}^n O_j\right)$ . Since A is sequentially compact,  $\exists \{x_{n_k}\}_k$  subsequence of  $\{x_n\}_n$  converging to

Since  $A \subset \bigcup_{j \in \mathbb{N}} O_j$ ,  $\exists j_0, \ x \in O_{j_0}$ ,  $O_{j_0}$  is open:  $\exists \delta > 0$ ,  $(x - \delta, x + \delta) \subseteq O_{j_0}$ . Then  $\exists N, \ k \geq N \implies x_{n_k} \in (x - \delta, x + \delta) \subseteq O_{j_0}$ . But if k is such that  $n_k > j_0$ , we also have  $x_{n_k} \notin O_{j_0}$ which is a contradiction!



## Structure of Open and Closed Sets

A is open in  $\mathbb{R}$  if and only if it can be written as an at most countable, disjoint union of open intervals.

#### **TODO Proof**

For  $x \in A$ ,  $\exists (a, b)$ , such that  $x \in (a, b) \subseteq A$ .

Let  $I_x = \bigcup_{\text{open interval containing } x, I \subseteq A} I$ . This is the maximal interval containing x in A.

Then,  $A \subseteq \bigcup_{x \in A} \{x\} \subseteq \bigcup_{x \in A} I_x \subseteq A$ . That is,  $A = \bigcup_{x \in A} I_x \quad (*)$ .

Next, if  $x, y \in A$ , then  $\begin{cases} \text{either } I_x = I_y \\ \text{or } I_x \cap I_y = \emptyset \end{cases}$ 

IMAGE HERE

The union (\*), as a disjoint union, is at most countable because each distinct one must contain a distinct rational and  $\mathbb{O}$  is countable.

#### Long Story Short

The topology of the reals avoids exotic sets. Closed sets, on the other hand, can be quite complicated.

#### **TODO** Cantor Set

 $C := \bigcap_{k \in \mathbb{N}_0} I_k$ .  $I_{k+1}$  is obtained by removing the middle open third of each interval making  $I_k$ . IMAGE HERE - CANTOR

 $I_0 = [0, 1]$ . One interval of length 1.

 $I_1 = [0, 1/3] \cup [2/3, 1]$ . Two intervals of length 2/3.

 $I_2 = [0, 1/9] \cup [2/9, 1/3] \cup [2/3, 7/9]$ . Four intervals of  $(2/3)^2$   $I_k$  is  $2^k$  intervals of length  $(2/3)^k$ .

 $I_{k+1} \subseteq I_k \implies C \subseteq I_k, \ \forall k \implies l(C) \le l(I_k) = (2/3)^k \implies l(C) = 0.$ 

## **TODO** Triadic Expansions

Goal:

- 1. C is perfect (i.e. every point in C is a limit point of C).
- 2. C contains no open intervals.

Property 2 is easy because  $C \subseteq I_k$ , which does contain interval of length greater than  $(1/3)^k$ .

1. C is uncountable.

Every  $x \in [0,1]$  can be written in the form  $x = \sum_{k=1}^{\infty} \frac{a_k}{3^k}$ ,  $a_k \in \{0,1,2\}$ . That is,  $x = 0.a_1a_2...$  in base 3. This is not always unique (e.g. 1/3 = 0.100... = 0.022...).

### IMAGE HERE - THIRDS OF INTERVAL

Note that the Cantor set is removing all decimal expansions with leading 1s. That is,  $x \in C$  if and only if it has a triadic expansion only made of 0s and 2s.

- Proof of 1 If  $x \in C$ ,  $x = \sum_{k \ge 1} \frac{a_k}{3^k} = \lim_{n \to \infty} \sum_{k=1}^n \frac{a_k}{3^k}$ , then  $x_n \in C$ ,  $\forall n$  and  $x_n = 0.a_1 \dots a_n 0000 \dots$  where  $a_1, a_n \in \{0, 2\}$ . Unique representation can be maintained by forcing the behavior of the n + 1th digit.
- Proof of 3 Every point in [0,1] can also be written as  $x = \sum_{n=1}^{\infty} = \frac{b_n}{2^n}, b_n \in \{0,1\}$  (i.e. a binary expansion). Then  $C \mapsto [0,1]$  gives  $x = \sum \frac{a_k}{3^k} \mapsto \sum \frac{b_k}{2^k}$ ,  $b_k = \frac{a_k}{2}$  for  $a_k \in \{0,2\}$  is a bijection!

# October 11, 2023

Overview: Numeric Series

- Series with non-negative terms.
- Series with general terms.
- Convergence criteria.
- Algebraic rules.
- Rearrangements.

#### General Notation

Sequence  $\{x_n\}_{n\geq n_0}$  (often  $n_0\in\{0,1\}$ )

#### **Definition: Partial Sum**

$$\begin{split} S_n &= \sum_{k=n_0}^n x_k \ (x_n = S_n - S_{n-1}) \\ \text{We say } \sum_n x_n \text{ converges if } \lim_{n \to \infty} S_n \text{ exists.} \\ \text{We denote } \sum_{k=n_0}^\infty x_k = \lim_{n \to \infty} S_n \end{split}$$

• Example: Geometric Series  $\sum_{k=0}^{n} r^k = S_n, r \in (0,1)$   $\frac{1-r^{n-1}}{1-r} \to \frac{1}{1-r}$ 

• Example: P Series  $\sum_{k=1}^{n} \frac{1}{k^p}$ , p > 0

• Example: Exponential  $\sum_{k=0}^{n} \frac{1}{k!}$ 

# Series without Non-negative Terms

The series has non-negative terms if  $x_n \ge 0$ ,  $\forall n$ .

## Obvious Algebraic Limit Rules

If  $\sum_{n\geq n_0} a_n$  and  $\sum_{n\geq n_0} b_n$  converge and  $\alpha\in\mathbb{R}$ , then  $\sum_{n\geq n_0} (a_n+\alpha b_n)$  converges to

$$\sum_{n=n_0}^{\infty} a_n + \alpha \sum_{n=n_0}^{\infty} b_n = \sum_{n=n_0} (a_n + \alpha b_n)$$

• Proof (Sketch) Reason on the partial sums; use algebraic limit rules on sequences.

## **Proposition**

If  $\sum_{n} x_n$  converges in  $\mathbb{R}$ , then  $\lim_{n\to\infty} x_n = 0$ .

• Proof  $x_n = S_n - S_{n-1} \xrightarrow{n \to \infty} S - S = 0$ Since  $S_n \xrightarrow{n \to \infty} S$  and  $S_{n-1} \xrightarrow{n \to \infty} S = \sum_{n=n_0}^{\infty} x_n$ .

# Series with Non-negative Terms

If  $x_n \ge 0$ ,  $\forall n$ ,  $S_n = \sum_{k=n_0}^n x_k$  is non-decreasing. By monotone convergence theorem,  $S_n$  is either bouned, and therefore converges, or unbounded from above where

$$\forall m > 0, \exists n_0 \in \mathbb{N}, \forall n \ge n_0, S_n \ge M$$

This is "diverging to  $+\infty$ ."

#### Theorem: Convergence Criteria

- Term Test If  $0 \le a_n \le b_n$ ,  $\forall n \ge n_0$  and  $\sum_n b_n$  converges, then  $\sum_n a_n$  converges.
  - Proof Suppose  $0 \le a_n \le b_n$ , and  $t_n = \sum_{k=n_0}^n b_k$  converges and, therefore, is bounded above by  $B = \sum_{k=n_0}^{\infty} b_k$ . Then  $\forall n, \sum_{k=n_0}^n a_k \le \sum_{k=n_0}^n b_k \le B$ .

Thus, by monotone convergence theorem,  $\sum_{k=n_0}^{n} a_k$  converges.

- Ratio Test If  $a_n > 0$ ,  $\forall n$  and  $\exists n_0 \in \mathbb{R}$  such that  $\frac{a_{n+1}}{a_n} \le r < 1$ ,  $\forall n \ge n_0$ , then  $\sum_n a_n$  converges.
  - Clarification The harmonic series has ratio  $\frac{k}{k+1} < 1$  but since  $\frac{k}{k+1} \stackrel{k \to \infty}{\to} 1$ , there is no r which satisfies
  - Proof Suppose  $a_{n+1} \le ra_n$  for  $n \ge n_0$ . Then  $a_{m_0+p} \le a_{m_0+(p-1)}r \le a_{m_0+(p-2)}r^2 \le \cdots \le a_{m_0}r^p$ . Then for  $n \geq n_0$ ,

$$\sum_{k=n_0}^{n} a_k = \sum_{k=n_0}^{m_0} a_k + \sum_{k=m_0+1}^{n} a_k \le \sum_{k=m_0}^{m_0 + (n-m_0)} a_{m_0} r^{n-m_0} \le a_{m_0} \sum_{k=m_0}^{n-m_0} r^{n-m_0} \le \frac{1}{1-r}$$

- Rate of Convergnce The above proof shows that the ratio test implies a geometric rate of convergence.
- Root Test If  $\exists n_0 \in \mathbb{N}$  and  $r \in (0,1)$  such that  $a_n^{1/n} \leq r$ , then  $\sum_n a_n$  converges.
  - Proof (Sketch) Same story as the ratio test:  $a_n^{1/n} \le r \implies a_n \le r^n$ .
- Rejection of Ratio/Root If  $\exists n_0 \in \mathbb{N}$  such that either  $\frac{a_{n+1}}{a_n} \ge 1$  for  $n \ge n_0$  or  $a_n^{1/n} \ge 1$  for  $n \ge n_0$ , then  $\sum_n a_n$ diverges to  $+\infty$ .
  - Proof (Sketch) In either case,  $a_n$  cannot converge to zero. Therefore the series cannot converge.

## Prototype Scales

## Geometric Rates

 $\sum_{n\geq 1}\frac{1}{n^{\alpha}}$  converges if and only if  $\alpha>1$  (to  $\zeta(\alpha)$ )  $a_k = \frac{1}{k^{\alpha}} \rightarrow 2^k a_{2^k} = \frac{2^k}{2^{k\alpha}} = \left(\frac{1}{2^{\alpha-1}}\right)^k \implies t_n = \sum_{k=1}^n 2^k a_{2^k} \text{ converges if and only if } \frac{1}{2^{\alpha-1}} < 1 \text{ if and only if } \alpha > 1.$ 

#### Log Geometric Case

 $\sum_{n\geq 1} \frac{1}{n(\log(n))^{\beta}}$  converges if and only if  $\beta>1$ .  $a_k = \frac{1}{k(\log(k))^{\beta}} \rightsquigarrow 2^k a_{2^k} = \frac{2^k}{2^k(\log(2^k)^{\beta})} = \frac{1}{(\log(2)^{\beta}k^{\beta})}$  converges if and only if  $\beta > 1$ .

#### Lemma:

Suppose  $a_n$  decreases to 0. Then the sequence  $S_n = \sum_{k=1}^n a_k$  converges if and only if  $t_n = \sum_{k=1}^n 2^k a_{2^k}$  converges.

$$S_{2^n} = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + \cdots$$

$$a_3 + a_3 \leq \leq a_2 + a_3$$

$$S_n = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + \cdots$$

$$= a_1 + \sum_{k=1}^{n} \sum_{p=1}^{2^k - 1} a_{2^k + p}$$

$$\leq a_1 + 2^k a_{2^{k+1}} + \cdots$$

This gives

$$\frac{1}{2}(t_n - a_1) \le S_{2^n} - a_1 \le t_{n-1}$$

Therefore  $S_{2^n}$  converges, which implies that  $t_n$  converges, and, since  $S_n$  is monotone,  $S_n$  itself converges.

#### Series with General Terms

General term is signed.

#### Trick

Write  $a_n = a_n^+ - a_n^-$  and  $a_n^{\pm} = \max(0, \pm a)$ . Then

$$S_n = \sum_{k=n_0}^n a_k = \left(\sum_{k=n_0}^n a_k^+\right) - \left(\sum_{k=n_0}^n a_k^-\right)$$

## Convergence Outcomes

|                                        | $\sum_{k=n_0}^{\infty} a_k^+ < \infty$ | $\sum_{k=n_0}^{\infty} a_k^+ = \infty$                                 |    |
|----------------------------------------|----------------------------------------|------------------------------------------------------------------------|----|
| $\sum_{k=n_0}^{\infty} a_k^- < \infty$ | absolute convergence                   | $\lim S_n = +\infty$                                                   | If |
| $\sum_{k=n_0}^{\infty} a_k^+ = \infty$ | $\lim S_n = -\infty$                   | lots of things can happen; divergence, convergence, any limit sequence | _  |

 $S_n^+$  and  $S_n^-$  converge, we can return to algebraic limit rules.  $S_n$  converges to  $\lim_{n\to\infty} S_n^+ - \lim_{n\to\infty} S_n^-$ 

# **Definition: Absolute Convergence**

We say  $\sum_n a_n$  converges absolutely if and only if  $\sum_n |a_n|$  converges.

#### Note

$$|a_n| = a_n^+ + a_n^-$$

# Proposition: Absolute Convergence Implies Convergence

#### Proof

Absolute convergence  $\implies \sum |a_n|$  converges  $\implies \sum a_n^+$  and  $\sum a_n^-$  converges  $\implies \sum (a_n^+ - a_n^-)$  converges.

# **Definition: Conditional Convergence**

 $\sum_n a_n$  converges conditionally if and only if  $\sum_n a_n$  converges while  $\sum_n |a_n|$  diverges.

# Criteria for Convergence

For absolute convergence, run root/ratio/term test on  $\sum_{n} |a_n|$ . Other criteria which might indicate conditional convergence.

## Alternating Series Test

If  $a_n(-1)^n b_n$ ,  $b_n \ge 0$  decreases to zero, the series is conditionally convergent.

#### Dirichlet Test

If  $a_n = b_n c_n$ , where  $b_n$  decreases to zero and  $c_n$  satisfies  $|c_0 + c_1 + \cdots + c_n| \le C$ ,  $\exists C \in \mathbb{R}, \forall n \in \mathbb{N}$ , then  $\sum_{n \ge 0} a_n$  converges conditionally.

- Applications  $\sum_{n\geq 1} \frac{(-1)^n}{n}$  $\sum_{n\geq 1} \frac{\cos(n)}{n}$
- Proof Write  $C_n = c_0 + c_1 + \dots + c_n$ , such that  $|C_n| \le C$ ,  $\forall n$ . Then  $c_n = C_n - C_{n-1}$ , and

$$\sum_{k=0}^{n} b_k c_k = \sum_{k=0}^{n} b_k (C_k - C_{k-1}) = \sum_{k=0}^{n} b_k C_k - \sum_{k=0}^{n} b_k C_{k-1} \stackrel{l=k-1}{=} \sum_{k=0}^{n} b_k C_k - \sum_{l=0}^{n-1} b_{l+1} C_l = b_n C_n + \sum_{k=0}^{n-1} (b_k - b_{k+1}) C_k$$

Then, since  $b_n C_n \overset{n\to\infty}{\to} 0$ , we only need to show that the final term converges absolutely. Consider

$$\sum_{k=0}^{n-1} |b_k - b_{k+1}| |C_k| \le C \sum_{k=0}^{n-1} (b_k - b_{k+1}) = C(b_0 - b_n) \le C(b_0)$$

independent of n. Hence,  $\sum_{k=0}^{n} b_k c_k$  converges.

# Definition: Rearrangement

Take  $\sigma: \mathbb{N} \to \mathbb{N}$  a bijection and  $\sum_{n \geq 1} a_n$  a series such that  $S_n = \sum_{k=1}^n a_k$ . Then define a rearranged sum  $S_n^{(\sigma)} = \sum_{k=1}^n a_{\sigma(k)}$ .

## Q: When does the rarranged sum converge; to where?

- Theorem: Rearrangement of Absolute Convergence If  $\sum a_n$  converges absolutely, then  $\forall \sigma$ ,  $\lim_{n\to\infty} S_n^{(\sigma)} = \lim_{n\to\infty} S_n$ .
- Theorem: Rearrangement of Conditional Convergence If  $\sum a_n$  converges conditionally, then  $\forall x \in \mathbb{R}$ ,  $\exists \sigma$  such that  $\lim_{n\to\infty} S_n^{(\sigma)} = x$ .

# October 16, 2023

#### Overview

Sequences and Series of Functions Things that will be glossed over for time

- Limits
- Continuity
- Differentiability
- Integrability

# Why care about sequences and series?

Extending features of functions. Approximations.

# Limits and Continuity

Let  $I \subseteq \mathbb{R}$  be an interval and  $f: I \to \mathbb{R}$ ,  $x_0 \in I$ .

**Definition:** Limit

f has a limit at  $x_0$  if  $\exists \ell \in \mathbb{R}, \forall \epsilon > 0, \exists \delta > 0, 0 < |x - x_0| < \delta \implies |f(x) - \ell| < \epsilon$ 



• Equivalently

For every sequence  $\{x_n\}_n$  in I converging to x (but distinct to x),  $\lim_{n\to\infty} f(x_n) = \ell$ .

## **Definition: Continuous**

f is continuous at  $x_0$  if  $\lim_{x\to x_0} f(x) = f(x_0)$ .



• Modulus of Continuity  $\forall \epsilon > 0, \exists \delta > 0, \forall x \in I, |x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon$ Then  $\delta(x_0, \epsilon)$  is the modulus of continuity.

21

## Definition: Uniform Continuity on I

f is uniformly continuous on I if  $\forall \epsilon > 0, \exists \delta > 0, \forall x, y \in I, |x - y| < \delta \implies |f(x) - f(y)| < \epsilon$ . Where  $\delta$  is  $\delta(\epsilon)$ . That is, the modulus of continuity does not depend on the points.

# Special Types of Uniform Continuity

#### Hölder Continuous

f is α-Hölder continuous on I for  $\alpha \in (0, i]$ , if  $\exists c > 0$  such that  $\forall x, y \in I, |f(x) - f(y)| \le c|x - y|^{\alpha}$   $\alpha = 1$  implies that f is "Lipschitz-continuous"

• Example

If f' exists and is bounded on [a,b] by M, then by the Mean Value Theorem:  $|f(x) - f(y)| = |f'(\xi)| |x - y| \le M|x - y|$ , where  $x \le \xi \le y$ .

# Continuity on Compact Sets

Let  $K \subseteq \mathbb{R}$  be a compact set and  $f: K \to \mathbb{R}$  be continuous. Then

- 1. f(K) is compact. In particular, f is bounded on K.
- 2. f achieves its extrema on K. (e.g.  $\exists M \in K$  such that  $f(M) = \sup\{f(x) \mid x \in K\}$ .
- 3. f is uniformly continuous on K.

Note: the proofs of these features are good practice. In particular, proofs that exploit the Heine-Borel property.

## **Proof 1: Compact**

Let  $y_n$  be a sequence in f(K).

Then,  $\forall n, y_n = f(x_n)$  for  $x_n \in K$ .

It follows that there exists a subsequence  $\{x_{n_k}\}_k$  converging to x in K.

By continuity,  $y_{n_k} = f(x_{n_k}) \stackrel{k \to \infty}{\to} f(x) \in f(k)$ .

#### Proof 2: Achieves Its Extrema

Construct M.

By the suprememum property,  $S = \sup\{f(x) \mid x \in \mathbb{R}\}, \ \forall n, \exists x_n \in K \text{ such that } S - \frac{1}{n} \leq f(x_n) < S.$ 

Since K is compact, there exists a subsequence  $\{x_{n_k}\}_k$  converging to  $x \in K$ .

Since f is continuous at x,  $f(x_{n_k}) \stackrel{k \to \infty}{\to} f(x)$ , and also  $S - \frac{1}{n_k} \le f(x_{n_k} \le S \stackrel{k \to \infty}{\to} S = f(x)$ .

## **Proof 3: Uniformly Continuous**

Suppose, for sake of contradiction, that  $\exists \epsilon > 0, \forall \delta > 0, \exists x_{\delta}, y_{\delta} \in K, |x_{\delta} - y_{\delta}| < \delta \text{ and } |f(x_{\delta}) - f(y_{\delta})| \ge \epsilon.$ 

Letting  $\delta = \frac{1}{n}$ , we may write  $x_n, y_n \in K$ ,  $|x_n - y_n| < \frac{1}{n}$  and  $|f(x_n) - f(y_n)| \ge \epsilon$ . Since K is compact, there exists a subsequence  $\{x_{n_k}\}_k$  which converges to  $x \in K$ . Since  $|x_{n_k} - y_{n_k}| < \frac{1}{n_k}$ , then  $\{y_{n_k}\}_k$  also converges to x. By continuity of f at x,  $\lim_{k\to\infty} f(x_{n_k}) - f(y_{n_k}) = 0$ . However, this contradicts the established fact that  $|f(x_n) - f(y_n)| \ge \epsilon \text{ for } \epsilon > 0.$ 

#### Notation

Let  $I \subseteq \mathbb{R}$  be an interval.

## Sequence of Functions

$$f_n(x), x \in I, n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$$

## Series of Functions

$$S_n(x) = \sum_{k=0}^n f_k(x)$$

## **Definition: Pointwise Convergence**

A sequence or series of functions converges pointwise on I if and only if  $\forall x \in I, \{f_n(x)\}_n$  is convergent. Call f(x) the limit.

# Q: Under what conditions do properties of a sequence (e.g. continuity, differentiability, integrability) propogate to the limit?

#### Power Series

$$\frac{\sum_{n\geq 0} a_n (x - x_0)^n}{S_n(x) = \sum_{k=0}^n a_k (x - x_0)^k} \frac{(x - x_0)^n}{(x - x_0)^n}$$

#### Fourier Series

$$S_n = a_0 + \sum_{n=1}^{N} a_n \cos(nx) + b_n \sin(nx) \text{ is } 2\pi\text{-periodic.}$$

## **Approximation**

For purposes of approximation, it is useful to know if, for example, the integral may be approximated by taking integrals of the partial sums.

23

# Deficiencies of Pointwise Convergence

## Example 1

On 
$$[0,1]$$
,  $f_n(x) = x^n \xrightarrow{n \to \infty} \begin{cases} 0 & \text{if } x < 1 \\ 1 & \text{if } x = 1 \end{cases}$ 



 $f_n$  is continuous on  $[0,1], \forall n$ , but f is not.

#### Exercise

Show that there is no uniform convergence here.

Hint: negate uniform convergence and prove the negation.

## Example 2

$$\chi_{\mathbb{Q}}(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{otherwise} \end{cases}$$
 is not Riemann-integrable on  $[0, 1]$ .



If  $r_n$  denotes a denumeration of rationals in [0,1], define  $f_n(x) = \begin{cases} 1 & \text{if } x \in \{r_0,\ldots,r_n\} \\ 0 & \text{otherwise} \end{cases}$ .

So  $f_n$  converges pointwise on  $\chi_{\mathbb{Q}}$ .

Yet,  $\forall n, f_n$  is Riemann-integrable and  $\int_0^1 f_n(x) dx = 0$ .

# **Definition:** Uniform Convergence

We say  $f_n: D \to \mathbb{R}$  (e.g. D an interval) converges uniformly to f on D (notation  $f_n \rightrightarrows f$  on D) if  $\forall \epsilon > 0, \exists n \in \mathbb{R}$  $\mathbb{N}, n \ge \mathbb{N} \implies \begin{cases} |f_n(x) - f(x)| < \epsilon, \forall x \in D \\ \sup_D |f_n - f| < \epsilon \end{cases}$ 

## Compare with Pointwise Convergence

Compare to  $f_n \to f$  pointwise on D.

 $\forall x \in D, \forall \epsilon > 0, \exists N \in \mathbb{N}, n \ge \mathbb{N} \implies |f_n(x) - f(x)| < \epsilon.$ 

In this case, the behavior is primarily contingent upon the choice of x. That is  $N(x,\epsilon)$  is dependent on x.

#### Theorem: Weierstrass M-Test

Let  $f_n: D \to \mathbb{R}$  be bounded by  $M_n$  on D. If  $\sum_{n=1}^{\infty} M_n < \infty$ , then the series  $S_n(x) = \sum_{k=1}^n f_k(x)$  converges uniformly to S(x)

#### Proof

 $\forall x \in D, |S_n(x) - S(x)| = |\sum_{k=n+1}^{\infty} f_k(x)| \stackrel{\text{triangle inequality}}{\leq} \sum_{k=n+1}^{\infty} |f_k(x)| \leq \sum_{k=n+1}^{\infty} M_k, \text{ where } \sum_{k=n+1}^{\infty} M_k \text{ is a projection of } f_k(x) = \sum_{k=n+1}^{\infty} f_k(x) = \sum_{k=n+1}^{\infty} f_k(x)$ uniform bound in x.

24

Let 
$$\epsilon > 0, \exists n, n \ge N \Longrightarrow \sum_{k=n+1}^{\infty} M_k < \epsilon$$
.  
Then  $\forall x \in D, n \ge N, |S_n(x) - S(x)| \le \sum_{k=n+1}^{\infty} M_k < \epsilon$ .

# Theorem: Continuity and Uniform Limits

Let  $f_n D \to \mathbb{R}$  be continuous on D for all n and  $f_n f$  on D ( $\lim_{n\to\infty} \sup_D |f_n - f| = 0$ ). Then f is continuous on D.

## Proof

Fix  $x \in D$ , with  $x_n$  converging to x in D.

What To Show:  $f(x_n) \xrightarrow{n \to \infty} f(x)$ .

Scratch:  $f(x_n) - f(x) = (f(x_n) - f_p(x_n)) + (f_p(x_n) - f_p(x)) + (f_p(x) - f(x)).$ 

Let  $\epsilon > 0$  be given.

 $f_n \rightrightarrows f : \exists N, n \ge N \implies |f_n(y) - f(y)| < \frac{\epsilon}{3}, \forall y \in D.$ 

For  $p \ge N$ ,  $|f_p(y) - f(y)| < \frac{\epsilon}{3}$ ,  $\forall y \in D \implies \forall n \in \mathbb{N}$ ,  $|f(x_n) - f(x)| \stackrel{\text{triangle inequality}}{\le} \frac{2\epsilon}{3} + |f_p(x_n - f_p(x))|$ . With p = N, since  $f_p$  is continuous at x,  $\exists N_1, n \ge N_1 \implies |f_p(x_n) - f_p(x)| < \frac{\epsilon}{3}$ .

Hence, for  $n \ge N_1$ ,  $|f(x_n) - f(x)| \le \epsilon$ .

# Riemann-Integrability

Fix D = [a, b] and  $g : [a, b] \to \mathbb{R}$  bounded by  $|g(x)| \le M, \forall x$ .

#### **Definition: Subdivision**

$$\sigma = \{a = x_0 < x_1 < x_2 < \dots < x_n = b\}$$

#### Definition: Upper and Lower Riemann Sums

 $S^{+}(g,\sigma) = \sum_{k=1}^{n} (x_k - x_{k-1}) M_k$  is the upper sum.  $S^{-}(g,\sigma) = \sum_{k=1}^{n} (x_k - x_{k-1}) m_k$  is the lower sum.

Where  $M_k = \sup_{[x_{k-1}, x_k]} g$  and  $m_k = \inf_{[x_{k-1}, x_k]} g$ .

This gives  $-M(b-a) \le S^-(g,\sigma) \le S^+(g,\sigma) \le (b-a)M$ .

If  $\mathfrak{S}[a,b] = \{\text{subdivisions of } [a,b]\}$ , then

 $I^{-}(g) = \sup_{\sigma \in \mathfrak{S}[a,b]} S^{-}(g,\sigma) \text{ and } I^{+}(g) = \inf_{\sigma \in \mathfrak{S}[a,b]} S^{+}(g,\sigma).$ 

# Definition: Riemann Integrable

g is Riemann integrable if  $I^+(g) = I^-(g)$  and we denote  $\int_a^b g(t) dt = I^+(g)$ .

#### Lemma

g is Riemann integrable if and only if  $\forall \epsilon > 0, \exists \sigma \in \mathfrak{S}[a,b]$  such that  $S^+(g,\sigma) - S^-(g,\sigma) < \epsilon$ .

# **Properties**

- 1. Continous functions and monotone functions are Riemann Integrable.
- 2.  $f \mapsto \int_a^b f(t) dt$  is linear.
- 3. If f, g are Riemann Integrable and  $f(x) \leq g(x), \forall x \in [a, b], \text{ then } \int_a^b f(t) \, dt \leq \int_a^b g(t) \, dt$ .

## Theorem:

If  $f_n \Rightarrow f$  on [a, b] and  $f_n$  is Riemann Integrable for all n, then f is Riemann Integrable on [a, b] and  $\lim_{n\to\infty} \int_a^b f_n(t) dt = \int_a^b \lim_{n\to\infty} f_n(t) dt = \int_a^b f(t) dt$ .

## Proof

 $\forall n, \forall x \in [a, b], f_n(x) - \epsilon \leq f(x) \leq f_n(x) + \epsilon \text{ where } \epsilon_n = \sup_{x \in [a, b]} |f_n(x) - f(x)| \text{ (by hypothesis } e_n \xrightarrow{n \to \infty} 0)$ Then, for any  $\sigma \in \mathfrak{S}[a, b]$ ,  $S^-(f_n, \sigma) - \epsilon_n(b - a) \leq S^-(f, \sigma) \leq S^+(f, \sigma) \leq S^+(f_n, \sigma) + \epsilon_n(b - a)$ .
It follows that  $S^+(f, \sigma) - S^-(f, \sigma) \leq S^+(f_n, \sigma) - S^-(f_n, \sigma) + 2\epsilon_n(b - a)$ .
Finishing the proof is left as an exercise.