Allgemeine Bemerkungen zum Lösen von ganzrationalen Gleichungen

Allgemeine Form

Bringt man die Gleichung auf die allgemeine Form $\mathbf{a} \cdot \mathbf{x}^2 + \mathbf{b} \cdot \mathbf{x} + \mathbf{c} = \mathbf{0}$, hat diese die Lösungen:

$$x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
.

Der Term b² - 4ac heißt Diskriminante D.

Mit Hilfe der Diskriminante lässt sich entscheiden, wie viele Lösungen eine quadratische Gleichung besitzt. Ist D > 0, gibt es zwei Lösungen, ist D = 0, eine Lösung und ist D < 0, gibt es keine Lösung.

Normalform

Bringt man die Gleichung auf die Normalform $x^2 + px + q = 0$, hat diese die Lösungen:

$$x_{1/2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q}$$
 mit $D = \frac{p^2}{4} - q$.

Weiteres

Enthält eine ganzrationale Gleichung **kein Absolutglied**, so wird die Gleichung durch **Ausklammern** umgeformt und anschließend der "Satz vom Nullprodukt" angewandt:

Ein Produkt ist genau dann null, wenn mindestens einer seiner Faktoren null ist.

Tipps

- In der Normalform sind p und q in der Regel Brüche.
 Wenn Sie Brüche vermeiden wollen, verwenden Sie die allgemeine Form!
- Formen Sie die Gleichung so um, dass a eine natürliche Zahl ist.
- Achten Sie auf die Vorzeichen!
 In 3x² 7x 4 = 0 ist a = 3; b = -7; c = -4.

Eine Sinus- oder Kosinusfunktion der Form

$$f(x) = a \cdot \sin(b \cdot x + c) + d$$
 bzw. $f(x) = a \cdot \cos(b \cdot x + c) + d$

kann umgeformt werden in

$$f(x) = a \cdot \sin(b \cdot (x + e)) + d$$
 bzw. $f(x) = a \cdot \cos(b \cdot (x + e)) + d$. (1)

Dabei gibt

- |a| die Amplitude,
- $\left|\frac{2\pi}{b}\right|$ die Periode,
- e die Verschiebung nach links (e positiv) bzw. rechts (e negativ),
- d die Verschiebung nach oben (d positiv) bzw. unten (d negativ) an.

Aus einem vorgelegten Graphen kann man schrittweise die Konstanten ermitteln.

Wird in einer **Anwendungssituation** ein periodischer Vorgang beschrieben, geht man entsprechend vor. Man skizziert den Graphen und bestimmt schrittweise die Konstanten.

Tipps

- Skizzieren Sie sich zunächst die "Mittellage" der Schwingung als Parallele zur x-Achse. Dann erkennt man eine Verschiebung in y-Richtung und die Amplitude |a|.
- Lesen Sie die Periode p ab.

Aus
$$\left| \frac{2\pi}{b} \right|$$
 = p ergibt sich b.

• Die Verschiebung nach rechts bzw. links erkennt man aus der "Mittellage".

Hinweise zum Gebrauch eines GTR bei einer Termsuche

Liegt eine Wertetabelle vor, deren Werte einen sinusförmigen Verlauf beschreiben, kann man eine sogenannte **Funktionsanpassung** durchführen.

Hierzu gibt man die Wertetabelle als Liste in den GTR ein und führt mit dem Befehl *SinReg* eine **Regression** durch.

Der GTR liefert einen Term in der Form $y = a \cdot \sin(bx + c) + d$.

Wissen über die wichtigsten Wachstumsformen

f(x) gibt z.B. den Bestand einer Population, die Intensität einer Größe oder die Temperatur einer Flüssig-

keit an. Die Variable x entspricht meistens der Zeit und wird dann oft mit t bezeichnet. Zu jeder Wachstumsform gehört eine bestimmte Differenzialgleichung, die den Zusammenhang von Bestand f(x) und seiner momentanen Änderungsrate f'(x) beschreibt.

Beispiel: Vermehrung von Bakterien

Beispiel: Radioaktiver Zerfall

Exponentielle Abnahme (Zerfall)

 $f'(x) = k \cdot f(x)$ mit Wachstumskonstante k

Exponentielles (natürliches) Wachstum Bestandsfunktion: $f(x) = a \cdot e^{k \cdot x}$ mit k > 0

Zerfallsfunktion: $f(x) = a \cdot e^{-kx}$ mit k > 0

a: Anfangsbestand f(0) Differenzialgleichung:

a: Anfangsbestand

Differenzialgleichung:

 $f'(x) = -k \cdot f(x)$ mit Zerfallskonstante k

Beispiel: Wachstum von Pflanzen

Beschränktes Wachstum

Bestandsfunktion: $f(x) = G - c \cdot e^{-kx}$ mit k > 0mit Sättigungsgrenze G.

Differenzialgleichung:

 $f'(x) = k \cdot (G - f(x))$ mit Wachstumskonstante k

Beispiel: Abkühlung einer warmen Flüssigkeit in kälterer Umgebung

Beschränkte Abnahme

Bestandsfunktion: $f(x) = G + c \cdot e^{-kx}$ mit k > 0

mit Grenze G.

Differenzialgleichung:

 $f'(x) = k \cdot (G - f(x))$ mit Wachstumskonstante k

Ist ein Vektor \vec{n} mit $\vec{n} \neq \vec{0}$ orthogonal zu zwei linear unabhängigen Vektoren a und b, heißt n ein Normalenvektor von \vec{a} und \vec{b} (vgl. Fig.).

Ermittlung eines Normalenvektors:

Einen Normalenvektor \vec{n} von \vec{a} und \vec{b} kann man bestimmen

- a) mithilfe des Skalarproduktes
- b) mithilfe des Vektorproduktes (auch Kreuzprodukt genannt).

Zu a): Da \vec{n} orthogonal zu \vec{a} und zu \vec{b} ist, gilt: $\vec{n} \cdot \vec{a} = 0$ und $\vec{n} \cdot \vec{b} = 0$.

Mit
$$\vec{n} = \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix}$$
 erhält man zwei Gleichungen für n_1 , n_2 und n_3 . Da ein Normalenvektor nicht eindeutig

bestimmt ist, kann man eine Koordinate wählen, die anderen ergeben sich dann (vgl. Beispiel). Zu b): Das Vektorprodukt zweier Vektoren \vec{a} und \vec{b} ist definiert durch:

$$\vec{a} \times \vec{b} = \begin{vmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{vmatrix}.$$

Vergleich beider Verfahren:

Da das Vektorprodukt $\vec{a} \times \vec{b}$ ein Vektor ist im Unterschied zum Skalarprodukt, erhält man direkt einen gesuchten Normalenvektor. Außerdem ist das Verfahren weniger rechenanfällig. Allerdings muss man die Formel kennen.

Beispiel: (Ermittlung eines Normalenvektors mit Gleichungen, vgl. Aufgabe)

Ermitteln Sie einen Normalenvektor von $\vec{a} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ und $\vec{b} = \begin{bmatrix} -1 \\ 5 \\ -3 \end{bmatrix}$

Lösung: Für einen Normalenvektor $\vec{n} = \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix}$ muss gelten: $\begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 4 \\ 2 \end{bmatrix} = 0$ und $\begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 5 \\ -3 \end{bmatrix} = 0$.

Diese Skalarprodukte ergeben das LGS:

$$3n_1 + 4n_2 + 2n_3 = 0$$

$$-n_1 + 5n_2 - 3n_3 = 0.$$

Hieraus folgt das LGS:

$$3n_1 + 4n_2 + 2n_3 = 0$$

$$19n_{2}^{2} - 7n_{3}^{3} = 0.$$

 $19n_2 - 7n_3 = 0$. Wählt man $n_3 = 19$, ergibt sich $n_2 = 7$, $n_1 = -22$. Damit ist $\vec{\mathbf{n}} = \begin{pmatrix} -22 \\ 7 \\ 19 \end{pmatrix}$ ein Normalenvektor.

In einer Geradenschar wie g_a : $\vec{x} = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} + t \cdot \begin{bmatrix} a \\ 1-a \\ 2a \end{bmatrix}$; $t, a \in \mathbb{R}$ nennt man a einen **Scharparameter** oder kurz **Parameter**.

Häufige Aufgabenstellungen bei Geradenscharen sind:

- a) Alle Geraden liegen in einer Ebene E; ermitteln Sie eine Koordinatengleichung für E (vgl. Aufgabe).
- Für welchen Wert des Parameters hat die zugehörige Gerade eine vorgegebene Eigenschaft (vgl. Beispiel).

Methoden zur Lösung von a):

Man wählt zwei spezielle Werte für den Parameter, notiert die zugehörigen Gleichungen, stellt eine Gleichung von E in Parameterform auf, wandelt diese in die Koordinatenform um und macht eine "Punktprobe" mit g...

Diese Methode wurde oben in der Lösung gewählt.

 Man notiert das zu g_a gehörende LGS und formt dieses so um, dass in einer Gleichung die Parameter a und t wegfallen.

Da das LGS neben x_1 , x_2 und x_3 noch die Parameter a und t enthält, ist das Verfahren 2) oft schwieriger.

Beispiel:

Für welchen Wert von a ist die Gerade aus der Schar

$$g_a$$
: $\vec{x} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + t \cdot \begin{pmatrix} 2 - a \\ a \\ 3 \end{pmatrix}$; $t, a \in \mathbb{R}$

parallel zur Ebene H: $4x_1 - x_2 + 4x_3 - 1 = 0$?

Lösung:

Die Gerade g_a ist parallel zur Ebene H, wenn ein Richtungsvektor von g_a orthogonal zu einem Normalenvektor von H ist.

Aus
$$\begin{pmatrix} 2-a \\ a \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ -1 \\ 4 \end{pmatrix} = 0$$
 folgt $4(2-a) - a + 12 = 0$ und hieraus **a = 4**.

