Depth-First- Search(DFS)

- > To search 'deeper' in the graph whereas possible.
 - When all of u's have been explored. The search backtracks to the edge leaving the vertex from which v's was discovered.
 - If any undiscovered vertex remains, then one of them is selected as new source and the search is repeated from that source.
 - Each vertex is initially white(w)
 - ◆ Grey(G) when it is discovered.
 - ♦ Black(B) when it is finished.
 - Each vertex has two timestamp
 - o pre[v] = when it is discovered (grey)
 - o post[v] = when it is finished (black)
 - > The input graph may be undirected or directed
 - ➤ The variable 'time' is global variable that we use for time stamping.

DFS(G) {

```
for each vertex u \in V[G] do{
              color[u] = W; p[u] = NIL; // p[u] is parent of u
       time = 0;
       for each vertex u \in V[G] do {
              if color[u] = W then DFS_VISIT(u);
       }
DFS_VISIT(u) {
       color[u] = G;
       time = time + 1;
       pre[u] = time;
       for each v \in Adj[u] do {
              if color[v] = W then{
                     p[v] = u;
                     DFS_VISIT(v);
       color[u] = B;
       time = time + 1;
       post[u] = time;
}
```

Topological sort(TS):

- > DFS can be used to perform a topological sort of a directed acyclic grahp(DAG)
- ➤ A directed grahp having no cycles is called a DAG
- ➤ A topological sort of a DAG is a linear ordering of all its vertices such that if G contains an edge(u,v) then it appears before v in the ordering
- > TS of a graph can be viewed as an ordering of its vertices along a horizontal line so that all directed edges go from left to right.

Problem:

- ➤ Prof Bose topologically sorts his clothing when getting dressed
- Each directed edge(u,v) means that garment u must be put on before garment v.
- ➤ Graph:

Execution of DFS:

shir	Tie	Jack	be	pant	und	sho	soc	wat	tim	Pre	Post	parents(p)
ts		et	lt	s	ersh	es	ks	ch	e			1
					orts							
G	W	W	W	W	W	W	W	W	1	pre(shirts) = 1		p(shirts) = NIL
G	G	W	W	W	W	W	W	W	2	pre(tie) = 2		p(tie) = shirts
G	G	G	W	W	W	W	W	W	3	pre(jacket) = 3		p(jacket) = tie
G	G	В	W	W	W	W	W	W	4		post(jacket) = 4	
G	В	В	W	W	W	W	W	W	5		post(tie) = 5	
G	В	В	G	W	W	W	W	W	6	pre(belt) = 6		p(belt) = shirt
G	В	В	В	W	W	W	W	W	7		post(belt) = 7	
В	В	В	В	W	W	W	W	W	8		post(shirt) = 8	
В	В	В	В	W	W	W	W	G	9	pre(watch) = 9		p(watch) = NIL
В	В	В	В	W	W	W	W	В	10		post(watch) = 10	
В	В	В	В	W	G	W	W	В	11	pre(undershorts) = 11		p(undershorts) = NIL
В	В	В	В	G	G	W	W	В	12	pre(pants) = 12		p(pants) = undershorts
В	В	В	В	G	G	G	W	В	13	pre(shoe) = 13		p(shoe) = pants
В	В	В	В	G	G	В	W	В	14		post(shoe) = 14	
В	В	В	В	В	G	В	W	В	15		post(pants) = 15	
В	В	В	В	В	В	В	W	В	16		post(undershorts)	
											= 16	
В	В	В	В	В	В	В	G	В	17	pre(shocks) = 17		p(shocks) = NIL
В	В	В	В	В	В	В	В	В	18		post(shocks) = 18	

> After topological sort of graph G

➤ Topological_sort (G){

Call DFS(G) to compute finishing time post(v) for each vertex v as each vertex is finished:

Insert it into the front of linked list; Return the linked list of vertices;

Complexity

}

- \triangleright The DFS takes O(|V| + |E|)
- ➤ O(1) is taken to insert each of the |V| vertices onto the front of the linked list
- \triangleright Overall O(|V| + |E|)

Strongly connected components:

- A directed graph is strongly connected if every two vertices are reachable from each other.
- A strongly connected component of directed graph G = (V, E) is a maximal set of vertices $C \subseteq V$ such that for every pair of vertices u and v in C, we have both $u \to v$ and $v \to u$; i.e., vertices u and v are reachable from each other.

S-C-C(G){

}

- 1. Call DFS(G) to compute the finishing times post[u] for each vertex u.
- 2. Compute G^T
- 3. Call DFS(G^T); but in the main loop of DFS, consider the vertices in order of decreasing post[u](as computed in line 1)
- 4. Output the vertices of each tree in the DFS forest formed in line 3 as a separate strongly connected components.

Suppose that G has strongly connected components: $C_1, C_2, C_3, \dots C_K$. The vertex set is $V_{scc} = \{v_1, v_2, \dots v_k\}$ and it contains a vertex v_i for each strongly connected components.

Graph G

• pre(a) (discovery time) = 13, post(a) (finishing time) = 14,

 $Graph \; \boldsymbol{G}^T$

Strongly connected components:

- \rightarrow Vertices b, c, g, h are the roots of the DFS trees produces by the execution of DFS on G^T .
- \rightarrow Directed Acyclic Graph (DAG) containing the strongly connected components $\{a, b, e\}, \{c, d\}, \{f, g\}, \{h\}$
- $\rightarrow\,G_{\text{SCC}}$

 $ightarrow G^{SCC}$ obtained by contracting all edges within each strongly connected component of G so that only a single vertex remains in each component.