Complex Numbers

Professor David Barrett Transcribed by Thomas Cohn

Exterior Calculus in \mathbb{R}^3	Vector Calculus in \mathbb{R}^3
0-form	Scalar Function
3-form {	Scalar Tunction
1-form	Vector Field
2-form \int	_
d	V
d(0-form)	$\operatorname{grad} f = \nabla f$
d(1-form)	$\operatorname{grad} f = \nabla f$ $\operatorname{curl} \vec{F} = \nabla \times \vec{F}$
d(2-form)	$\operatorname{div} \vec{F} = \left\langle \nabla, \vec{F} \right\rangle$

 $\left\langle \mathrm{curl}\,\vec{F},\vec{N}\right\rangle$ is the rotation of \vec{F} in the plane perpendicular to \vec{N} based on $\int_{M}d\omega$.

For M oriented 2-manifold in $\mathbb{R}^3,\,\omega$ 2-form

$$\int_{M} \omega = \int_{\vec{p} \in M} \omega(\vec{p})(\vec{v_1}, \vec{v_2}) ds = \int \vec{F} \cdot \vec{N} ds$$

where \vec{F} is the vector field corresponding to ω and $(\vec{v_1}, \vec{v_2}, \vec{N})$ form a positively-oriented orthonormal basis.

We can thus interpret \vec{F} as the velocity of a fluid with unit density, so $\int_M \omega$ is the flux of \vec{F} across M. $\vec{F} \cdot \vec{N} > 0$ implies a positive flow, $\vec{F} \cdot \vec{N} < 0$ implies a negative flow.

If the fluid has density ρ , then the fluid crosses M at rate (flux of $\rho \vec{F}$).

Ex: For compact 3-manifold $U \subset \mathbb{R}^3$, the flow out of U is equal to the flux of $\rho \vec{F}$ across ∂U , which according to Stokes', is $\int_U \operatorname{div} \vec{F}$.

Additionally, we know the flow out of U is $-\frac{\partial}{\partial t} \int_U \rho = -\int \frac{\partial \rho}{\partial t}$ by Leibniz. Since this is true for all U, we have $\frac{\partial \rho}{\partial t} = -\operatorname{div}(\rho \vec{F})$.

Thus, if $\operatorname{div}(\rho\vec{F}) > 0$, the fluid is expanding, and if $\operatorname{div}(\rho\vec{F}) < 0$, the fluid is contracting. If ρ is constant in space and time, then the fluid is incompressible, $\operatorname{div}(\rho\vec{F}) = 0$.

We can upgrade to include viscosity, and we get Navier-Stokes

Special Case of Euler's equations: $\operatorname{div} \vec{F} = \vec{0}$, $\operatorname{curl} \vec{F} = \vec{0}$ (incompressible and irrotational).

Even more special case:
$$\vec{F} = \begin{pmatrix} \alpha(x,y) \\ \beta(x,y) \\ 0 \end{pmatrix}$$
. Get $\frac{\partial \alpha}{\partial x} + \frac{\partial \beta}{\partial y} = 0$ and $\frac{\partial \beta}{\partial x} - \frac{\partial \alpha}{\partial y} = 0$, i.e., $\frac{\partial \alpha}{\partial x} = -\frac{\partial \beta}{\partial y}$, $\frac{\partial \alpha}{\partial y} = \frac{\partial \beta}{\partial x}$.

Complex Integrands

Defn: Consider $f:A\to C$, where f=u+iv for \mathbb{R} -valued u and v. We say $u\stackrel{\mathrm{def}}{=} \mathrm{Re}\, f$ and $v\stackrel{\mathrm{def}}{=} \mathrm{Im}\, f$.

$$\int_{A} f \stackrel{\text{def}}{=} \int_{A} u + i \int_{A} v$$

Use the extended integral when ext $\int u_+$, ext $\int u_-$, ext $\int v_+$, and ext $\int v_-$ are all finite.

We also have $\int f dV = \int u dV + i \int v dV$.

Exer: $\lambda \in \mathbb{C} \Rightarrow \int_{A} \lambda f = \lambda \int_{A} f$

Prop: $\left| \int_{A} f \right| \leq \int_{A} |f|.$

Proof: pick θ such that $\left| \left| \int f \right| \right| = e^{i\theta} \int f$. Then $\left| \int f \right| = \operatorname{Re} \int e^{i\theta} f = \int \operatorname{Re}(e^{i\theta} f) \leq \int \left| \operatorname{Re}(e^{i\theta} f) \right| \leq \int \left| e^{i\theta} f \right| = \int |f|$. \square

\mathbb{C} -valued k-forms

Recall that a k-form on $A \subseteq \mathbb{R}^n$ is $\omega = \sum_{I \in \{1,...,n\}^k \text{ asc}} b_I(\vec{x}) \Psi_I$ for $b_I \in C(A,\mathbb{R})$.

A \mathbb{C} -valued k-form on A is defined exactly the same, except we have each $b_I \in C(A, \mathbb{C})$.

An \mathbb{R} -valued k-form maps $A \to \mathcal{A}^k(\mathbb{R}^n) = \{f : \underbrace{\mathbb{R}^n \times \cdots \times \mathbb{R}^n}_k \to \mathbb{R} : f \text{ is } \mathbb{R}\text{-multilinear and alternating} \}.$

Likewise, a \mathbb{C} -valued k-form maps $A \to \mathcal{A}^k_{\mathbb{C}}(\mathbb{R}^n) = \{f : \underbrace{\mathbb{R}^n \times \cdots \times \mathbb{R}^n}_{:} \to \mathbb{C} : f \text{ is } \mathbb{R}\text{-multilinear and alternating} \}.$

Defn: If k = n, $\omega = b_{(1,\dots,k)} \Psi_{(1,\dots,k)}$, then $\int \omega \stackrel{\text{def}}{=} \int b_{(1,\dots,k)}$

Rules for \wedge , α^* , and d all carry over.

For $\alpha: A^{\operatorname{osso}\mathbb{R}^k} \to Y \subseteq \mathbb{R}^n$, Y_{α} parameterized k-manifold, ω \mathbb{C} -valued k-form, $\int_{Y_{\alpha}} \omega = \int_A \alpha^* \omega = \cdots$. We also still have $\int_{Y_{\alpha}} \lambda \omega = \lambda \int_{Y_{\alpha}} \omega$.

Consider $k = 1, \omega : A \to \mathbb{C}^n_{row}$.

Exer: We still have the ML estimate: $\left| \int_{Y_{\alpha}} \omega \right| \leq \operatorname{length}(Y_{\alpha}) \cdot \sup_{\vec{x} \in V} ||\omega(\vec{x})||$

Defn: Consider $f = u + iv : A^{\operatorname{osso}\mathbb{R}^k} \to \mathbb{C} \simeq \mathbb{R}^2$. Then $f \in C^r(A, \mathbb{C})$ if and only if $u, v \in C^r(A, \mathbb{R})$. Also, $D_i f = D_i u + i D_i v$, and $df \stackrel{\text{def}}{=} du + i dv$.

Now, consider n=2, z=x+iy. So $\overline{z}=x-iy, dz=dx+idy$, and $d\overline{z}=dx-idy$. Thus, we can write

$$dx = \frac{dz + d\overline{z}}{2}$$
 and $dy = \frac{dz - d\overline{z}}{2i}$

Thus, for α, β, f, g \mathbb{C} -valued functions, we can correspond $\alpha dx + \beta dy$ with $fdz + gd\overline{z}$.

This leads to another question – given f = u + iv, when is fdz closed?

Well, fdz = (u+iv)(dx+idy) = (udx-vdy)+i(vdx+udy).

So both (udx - vdy) and (vdx + udy) must be closed separately.