Variables aleatòries més usuals

V.A. (X)	$f_X(x)$		E(X)	Var(X)	Altres propietats
Binomial $B(n,p)$	$\binom{n}{x}p^x(1-p)^{n-x}$	$si x \in \Omega_X$	np	np(1-p)	
$\Omega_X = \{0, 1, \cdots, n\}$	0	si $x \notin \Omega_X$			
Poisson $Po(\lambda)$	$\frac{\lambda^x}{x!}e^{-\lambda}$	si $x \in \Omega_X$	λ	λ	
$\Omega_X = \{0, 1, \cdots\}$	0	si $x \notin \Omega_X$			
Geomètrica $Ge(p)$	$(1-p)^{x-1}p$	si $x \in \Omega_X$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	
$\Omega_X = \{1, 2, \cdots\}$	0	si $x \notin \Omega_X$	-	•	
					$1 - (1-p)^{k+1}$ $x \in [k, k+1),$
Geomètrica $Ge(p)$	$(1-p)^x p$	si $x \in \Omega_X$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$	$F_X(x) = \begin{cases} 1 - (1-p)^{k+1} & x \in [k, k+1), \\ k \in \Omega_X \\ 0 & x < 0 \end{cases}$
			1	1	0 x < 0
$\Omega_X = \{0, 1, \cdots\}$	0	si $x \notin \Omega_X$			`
					$\int \frac{x-a}{b-a} x \in [a,b]$
Uniforme $\mathcal{U}(a,b)$	$\frac{1}{b-a}$	si $x \in [a, b]$	$\frac{b+a}{2}$	$\frac{(b-a)^2}{12}$	$F_X(x) = \begin{cases} \frac{x-a}{b-a} & x \in [a,b] \\ 0 & x < a \\ 1 & x > b \end{cases}$
					1 x > b
$\Omega_X = [a, b]$	0	si $x \notin [a, b]$,
Gaussiana $X(\mu, \sigma^2)$			μ	σ^2	$Z \sim N(0,1)$ normal estàndar
$\Omega_X = \mathbb{R}$					$F_Z(-z) = 1 - F_Z(z)$
					$F_X(x) = F_Z(\frac{x-\mu}{\sigma})$

Estadístics més usuals

Paràmetre mostral (estadístic)	Esperança	Variància	Distribució de probabilitat	
\bar{X}	$E(\bar{X}) = \mu$	$\operatorname{Var}(\bar{X}) = \frac{\sigma^2}{n}$	$\begin{split} \bar{X} &\sim N(\mu, \frac{\sigma^2}{n}) \\ \frac{\bar{X} - \mu}{\hat{s}_X / \sqrt{n}} &\sim t_{n-1} \\ \bar{X} &\sim N(\mu, \frac{\hat{s}_X^2}{n}) \end{split}$	població normal, σ conegut
			$\frac{x-\mu}{\hat{s}_X/\sqrt{n}} \sim t_{n-1}$	població normal, σ desconegut, $n \leq 30$
			$\bar{X} \sim N(\mu, \frac{\hat{s}_X^2}{n})$	σ desconegut, $n > 30$
\hat{s}_X^2	$E(\hat{s}_X^2) = \sigma^2$	$\operatorname{Var}(\hat{s}_X^2) = \frac{2\sigma^4}{n-1}$	$\frac{n-1}{\sigma^2}\hat{s}_X^2 \sim \chi_{n-1}^2$	població normal
\hat{p}_X	$E(\hat{p}_X) = p$	$ \operatorname{Var}(\hat{p}_X) = \frac{p(1-p)}{n} $	$\begin{vmatrix} \hat{p}_X \sim N(p, \frac{p(1-p)}{n}) \\ \hat{p}_X \sim t_{n-1} \end{vmatrix}$	$n>30$ població normal, $n\leq 30$

Intervals de confiança més usuals

Paràmetre mostral	Interval de confiança	
Mitjana	$ar{X} \pm z_{lpha/2} rac{\sigma}{\sqrt{n}}$	si la població segueix una llei normal i σ és conegut
	$\bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ $\bar{X} \pm t_{n-1,\alpha/2} \frac{\hat{s}_X}{\sqrt{n}}$	si la població segueix una llei normal, σ no és conegut i $n \leq 30$
	$\bar{X} \pm z_{\alpha/2} \frac{\hat{s}_X}{\sqrt{n}}$	si $n > 30$
Variància	$\left[\frac{n-1}{\chi_{n-1,1-\alpha/2}^2}\hat{s}_X^2, \frac{n-1}{\chi_{n-1,\alpha/2}^2}\hat{s}_X^2\right]$	si la població segueix una llei normal
Proporció	$\hat{p}_X \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_X(1-\hat{p}_X)}{n}}$	$\sin n > 30$