Assignment Project Exam Help Constrained Optimization

https://eduassistpro.github.

Add WeChat edu_assist_pr

Constrained Optimization

In many problems, there are natural constraints on optimization

Assignances of Project Exam Help

We m

https://eduassistpro.github.

or may Ae Add We Chat edu_assist_pr

$$\sum |\beta_i| \leq C.$$

But enforcing these constraints can be difficult.

Visual Example
Common problem:

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Parameter Transforms

When you expect a minimum inside the constraints: re-represent

Assignment Project Exam Help

https://eduassistpro.github.
Add WeChat edu_assist_pr

But, may change optimization curvature.

Positive Constraints

Log transformation is common

Assignment Project Exam Help

Add WeChat edu_assist_pr

https://eduassistpro.github.

In statistics $\sigma > 0 \to \eta = \log(\sigma) \in [-\infty, \infty]$.

Similar for exponential rates, Gamma, Beta parameters.

What If Constraints are Active?

Assiretime, policum tes Perojse thetco Erxing primile le p

Add WeChat edu_assist_pr

https://eduassistpro.github.

May need to be able to hit the boundary exactly.

When Constraints (and Optimizer) are Nice

Some methods allow linear boundaries, so you can require

Assignment Project Exam Help (in our case A = I) when optimizing for x.

https://eduassistpro.github.

- Take a proposed optimization step (say, Newton-Raphson)
- If you cross the boundary, back-track to it
- Add. WeChat edu_assist_prediction
 - Calculate an optimization step.
 - If step is into interior, keep it.Otherwise step along the boundary.
- Lots of variations possible (eg check that back-tracking still improves your objective function).

Graphically

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pro.github.

(Steps do not correspond to specific optimization algorithm).

8 / 24

Modified Objective Functions

Assignment Project Exam Help $F(x_1, x_2) = F(x_1, x_2) + \infty 1_{x_1 < 0} + \infty 1_{x_2 < 0}$

- https://eduassistpro.github.
- Add Wethat edu_assist_pr
 - Generally won't put you exactly on boundary.

A Sequence of Boundaries

Can make boundaries softer with

Assignment Project Exam Help

- Solve a sequence of
- https://eduassistpro.github.
- additional no Weechat edu_assist_presented in the constraints:

```
minimize F(x)
subject to G(x) \ge 0
and H(x) = 0
```

In Model Selection In linear regression

Assignment Project Exam Help

whe Rece https://eduassistpro.github.

$$\operatorname{Add}_{\operatorname{subject to}} \overset{\mathsf{minimize}}{\overset{\mathsf{y}_i - \beta_0}{\overset{\mathsf{v}_i - \beta_0}{\overset{v}_i - \beta_0}{\overset{v}$$

or penalize (equivalent)

 $\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{i=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{i=1}^{p} |\beta_j| + \sum_{i=1}^{p} |\beta_i| + \sum_{i=1}^{p} |\beta_i|$

Why The LASSO?

Least Absolute Subset Selection Operator (Tibhsirani 1996)

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Obtaining Estimates

Recent computing focussed on penalized form:

Assignment Project Exam Help

https://eduassistpro.github.

 $\sum_{i} (y_i - \beta_1 x_i)^2 + \lambda |\beta_1|$

Also scale
$$x_i$$
 so that $\sum x_i^2 = 1$.

Look at a minimum in 1 dimension.

ension $\langle \Box \rangle \langle B \rangle \langle E \rangle \langle E \rangle = 900$

Non-differentiable Minima

$$\begin{array}{c} \text{We know that } g(\beta_1) = |\beta_1| \text{ has a minimum at } \beta_1 = 0. \\ \text{Assignment Project Exam Help} \\ \text{How it is not differentiable at 0.} \end{array}$$

https://eduassistpro.github.

Derivative change sign at 0.

True arbitrarily close to 0.

Combining Loss and Penalty

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Depending on λ , penalty makeep β_1 at 0 or not.

Illustration

Assignment Project Exam Help

Add WeChat edu_assist_pr

https://eduassistpro.github.

Minimum outside 0

Minimum at 0

Derivatives

$$Assignment_{(y_i-x_i\beta_1)^2+\lambda|\beta_1|} Project_2 Exam_{2x_i(y_i-x_i\beta_1)} Help_0$$

^{Cha} https://eduassistpro.github.

when we have $\sum x_i^2 = 1$.

Soft Thresholding

A strict of the function $\hat{\beta}_j = H_{\lambda}(\sum x_i y_i)$ A strict of the project Exam Help

https://eduassistpro.github.

18 / 24

(note A do he We Chat edu_assist_predefine λ)

```
ST = function(t,lambda){
    return( max(min(t+lambda,0),t-lambda) )
}
```

A Co-ordinate Descent Strategy

Returning to multiple covariates, our objective is

Assignment Project Exam Help y's, x's centered, scaled.

https://eduassistpro.github.

Add WeChat edu_assist_pr

$$\hat{eta}_k = H_{\lambda} \left(\sum x_k \left(y_i - \sum_{j \neq k} x_{ij} eta_j \right) \right)$$

One time when co-ordinate descent works!

In Code

Start at 0, update each β_k until convergence.

```
LASSO = function(y,X,lambda,tol=1e-8,maxit=1000){
signment Project Exam Help
# Start at beta = 0
beta = r
   https://eduassistpro.github.
 oldbeta = beta
```

```
# Loop over co-efficients and soft-threshold to assist provided to the control of the control of
```

20/24

return(list(beta=beta, iterhist=iterhist, iter=iter))

A Data Example

Prostate cancer volume on Set $\lambda = 0.05$ Assignment Project Exam Help

age of subject in years

```
    https://eduassistpro.github.
    log capsular penetration
```

Gleason score WeChat edu_assist_pr

prostate specific antigen

```
> lasso.result = LASSO( prostate[,1],prostate[,-1],0.05)
> lasso.result$beta
[1] 0.00000000 0.05480074 -0.02788401 0.00000000 0.34451971 0.01304833
```

0.00000000 0.48628871 《ロト《문》《토》《토》 (토) (조) (21/24

Searching Over λ

```
lambdaseq = seq(0,1,by=0.01)
betamat = matrix(0,length(lambdaseq),ncol(X))
```

Assignment Project Exambelle

https://eduassistpro.github.

But still need to decide on which λ to use.

4 □ > <□ > < □ > < □ > < □ > < □ > < □ ≥</p>

Extensions

- Non-quadratic losses:
 - Poisson regression

Assignment Project Exam Help fit with penalty

https://eduassistpro.github. numerical optimization.

- Also logistic regression.
- Dereit type of penaltic or constraint u_assist_pr (fused LASSO)
 - $\sum \sqrt{\sum_{subset} \beta_i^2}$ groups of coefficients should all be zero (group LASSO)

Can require more specialized methods.

Important note: no inference after LASSO; not even bootstrap.

Summary

Assignment Project Exam Help

- Natural parameter ranges
- https://eduassistpro.github.

Many procedures; not all optimization methods work well.

Penalization for model selection increasingly proverieties). Grove silves de la latence of the l

Next: nonparametric smoothing.