CS2601 Linear and Convex Optimization Project Report

- Implementing the Water-filling Algorithm

Xuankun Yang 523030910248

December 28, 2024

Contents

1	Intr	oduction	1		
2	Obectives of the Experiment				
3	Exp	erimental Process	3		
	3.1	Binary Search	4		
	3.2	Gradient Descent	5		
	3.3	Newton Method	6		
4	Res	ults and Analysis	7		
	4.1	Horizontal Comparision	7		
			8		
		4.1.2 Discussion on Dimension $n cdot$	10		
	4.2	Vertical Comparision			
		4.2.1 Binary Search			
		4.2.2 Gradient Descent Method			
		4.2.3 Newton Method			
	4.3	Visualization of Iteration Process			
5	Cor	clusion	16		

1 Introduction

In this project, we concentrate on $\it The\ Water-filling\ Problem$. I implemented 3 different methods in my experiments.

In this report, we have 3 parts: Obectives of the Experiment, Experimental Process and Results and Analysis.

2 Obectives of the Experiment

The convex optimization problem:

minimize
$$-\sum_{i=1}^{n} \log (\alpha_i + x_i)$$

subject to
$$x \succeq 0, \mathbf{1}^T x = 1, \alpha_i > 0$$

Introducing Lagrange multipliers $\lambda^* \in \mathbf{R}^n$ for the inequality constraints $x^* \succeq 0$, and a multiplier $\nu^* \in \mathbf{R}$ for the equality constraint $\mathbf{1}^T x = 1$, we obtain the KKT conditions:

$$x^* \succeq 0, \mathbf{1}^T x^* = 1, \lambda^* \succeq 0, \lambda_i^* x_i^* = 0, i = 1, \dots, n,$$
$$-\frac{1}{\alpha_i + x_i^*} - \lambda_i^* + \nu^* = 0, i = 1, \dots, n.$$

We can directly solve these equations to find x^* , λ^* and ν^* .

Noting that λ^* acts as a slack variable in the last equation, so it can be eliminated, leaving

$$x^* \succeq 0, \mathbf{1}^T x^* = 1, (\nu^* - \frac{1}{\alpha_i + x_i^*}) x_i^* = 0, i = 1, \dots, n,$$
$$\nu^* \geqslant \frac{1}{\alpha_i + x_i^*}, i = 1, \dots, n.$$

Next, we make a discussion on ν^*

- 1. If $\nu^* < \frac{1}{\alpha_i}$, the last condition can hold only if $x_i^* > 0$, according to the third condition, $\nu^* = \frac{1}{\alpha_i + x_i^*}$ Solving for x_i^* , we conclude that $x_i^* = \frac{1}{\nu^*} - \alpha_i$, if $\nu^* < \frac{1}{\alpha_i}$
- 2. If $\nu^* \geqslant \frac{1}{\alpha_i}$, according to the third condition, $x_i^* = 0$ must hold Therefore, $x_i^* = 0$, if $\nu^* \geqslant \frac{1}{\alpha_i}$

Thus, we have

$$x_i^{\star} = \begin{cases} \frac{1}{\nu^{\star}} - \alpha_i, & \nu^{\star} < \frac{1}{\alpha_i} \\ 0, & \nu^{\star} \geqslant \frac{1}{\alpha_i} \end{cases}$$

or, put more simply, $x_i^* = \max\{0, \frac{1}{\nu^*} - \alpha_i\}$. Substituting this expression for x_i^* into the condition $\mathbf{1}^T x^* = 1$, we obtain

$$\sum_{i=1}^{n} \max\{0, \frac{1}{\nu^{\star}} - \alpha_i\} = 1$$

Figure 1: Visualization

The lefthand side is a piecewise-linear increasing function of $\frac{1}{\nu^*}$, with breakpoint at α_i , so the equation has a unique solution which is readily determined.

This solution method is called water-filling for the following reason. We think of i as the ground level above patch i, and then flood the region with water to a depth $\frac{1}{\nu}$, as illustrated in figure 1. The total amount of water used is then $\sum_{i=1}^{n} \max\{0, \frac{1}{\nu^{\star}} - \alpha_i\}$. We then increase the flood level until we have used a total amount of water equal to one. The depth of water above patch i is then the optimal value x_i^{\star} .

Therefore, the objective of our experiments is to implemente some algorithm and find the ν^* , and keep $\sum_{i=1}^n \max\{0, \frac{1}{\nu^*} - \alpha_i\} = 1$, so that we can make our target $-\sum_{i=1}^n \log(\alpha_i + x_i)$ minimized.

3 Experimental Process

In this experiment, I implemented 3 different methodology.

3.1 Binary Search

From the analysis above, $\sum_{i=1}^n \max\{0, \frac{1}{\nu^*} - \alpha_i\}$ is a piecewise-linear increasing function of $\frac{1}{\nu^*}$, with breakpoint at α_i , so the equation $\sum_{i=1}^n \max\{0, \frac{1}{\nu^*} - \alpha_i\} = 1$ has a unique solution which is readily determined.

Naturally, I come up with the *Binary Search*.

The python code of the key function *fill water* is as follows:

```
def fill_water(alpha, total_water, precision):
    lower_bound = 1/(total_water + max(alpha))
    upper_bound = 1/min(alpha)
    iteration = 0
    while upper_bound - lower_bound > precision:
        nu = (lower_bound + upper_bound)/2
        x = np.maximum(0, 1/nu - alpha)
        water_sum = np.sum(x)
        iteration += 1
        if water_sum > total_water:
            lower_bound = nu
        else:
            upper_bound = nu
    nu_opt = (upper_bound + lower_bound)/2
    x_opt = np.maximum(0, 1/nu_opt - alpha)
    print(f"Iterations : {iteration}")
    return np.array(x_opt), iteration
```

1. Firstly, consider the upper bound of ν , *i.e.* consider the lower bound of the level $\frac{1}{\nu}$

$$\frac{1}{\nu} > \min \, \alpha_i, i = 1, \dots, n$$

must holds.

Thus the upper bound of ν could be $\frac{1}{\min \alpha_i}$.

2. As for the lower bound of ν , consider the upper bound of the level $\frac{1}{\nu}$

$$\frac{1}{\nu} < 1 + \max \, \alpha_i, i = 1, \dots, n$$

must holds.

Thus the lower bound of ν could be $\frac{1}{1+\max \alpha_i}$.

- 3. Next, we set a precision gap, if upper bound minus lower bound is greater than our precision gap, then update ν using the middle of upper bound and upper bound and update x according to $x_i = \max\{0, \frac{1}{\nu} \alpha_i\}$.
- 4. To ensure $\mathbf{1}^T x = 1$,
 - If $\sum_{i=1}^{n} x_i > \text{total water}$ (here we take 1), which means the level is too high, *i.e.* ν is too small, then we increase lower bound to ν
 - if $\sum_{i=1}^{n} x_i < \text{total water}$, which means the level is too low, *i.e.* ν is too big, then we decrease upper bound to ν
- 5. Continue doing this until the precision gap is satisfied, and we got the optimized x and optimized ν .

3.2 Gradient Descent

The python code of the key function *fill water* and *backtracking line search* are as follows:

break

return step

- 1. Firstly, initialize x averagely.
- 2. In each iteration, we update the level with the minimum of $\alpha_i + x_i$, *i.e.* update ν with $\frac{1}{\min \alpha_i + x_i}$.
- 3. According to $x_i = \max\{0, \frac{1}{\nu} alpha_i\}$, we update x by x = np.maximum(0, 1 / nu alpha).
- 4. Calculate the gradient of our target function $f(x) = -\sum_{i=1}^{n} \log (\alpha_i + x_i)$, we get

$$\frac{\partial f}{\partial x_i} = -\frac{1}{\alpha_i + x_i}$$

٠.

$$\nabla f(x) = -\frac{1}{\alpha + x}$$

- 5. And we obtain the direction(the negative gradient), then we try to determine the step size. And I offerd two ways of determine the step:
 - Set a learning rate and fix the step with learning rate (however I find this method always leads to bad output up to the water sum is out of total water, I will discuss this later)
 - To ensure $\sum_{i=1}^{n} x_i = 1$, I set a big step first and a ratio beta, and gradually make new $x(i.e. \ x + step * direction)$ get close to 1.
- 6. Next, we update x with x step * grad.

3.3 Newton Method

The python code of the key function *fill water* is as follows:

```
def fill_water(alpha, total_water, precision, max_iter):
    n = len(alpha)
    x = np.ones((n, 1))*(total_water / n)

for t in track(range(max_iter), description = " ..."):
    nu = 1 / np.min(alpha + x)
    x = np.maximum(0, 1 / nu - alpha)
    grad = -1 / (alpha + x)
    nt = alpha + x
```

```
step = backtracking_line_search(x, nt, total_water)
x = x + step * nt
return np.array(x)
```

- 1. Like the strategy in *Gradient Descent*, initialize x averagely.
- 2. In each iteration, we update the level with the minimum of $\alpha_i + x_i$, *i.e.* update ν with $\frac{1}{\min \alpha_i + x_i}$.
- 3. According to $x_i = \max\{0, \frac{1}{\nu} alpha_i\}$, we update x by x = np.maximum(0, 1 / nu alpha).
- 4. We have know that $\nabla f(x) = -\frac{1}{\alpha+x}$, then we calculate $\nabla^2 f(x)$

$$\frac{\partial}{\partial x_j}(-\frac{1}{\alpha_i+x_i}) = \left\{ \begin{array}{ll} \frac{1}{(\alpha_i+x_i)^2}, & i=j\\ 0, & i\neq j \end{array} \right.$$

Then we have
$$\nabla^2 f(x) = diag(\frac{1}{(\alpha_1 + x_1)^2}, \frac{1}{(\alpha_2 + x_2)^2}, \dots, \frac{1}{(\alpha_n + x_n)^2})$$

 $\nabla^2 f(x)^{-1} = diag((\alpha_1 + x_1)^2, (\alpha_2 + x_2)^2, \dots, (\alpha_n + x_n)^2)$
 \therefore the Newton step

$$\Delta x_{nt} = -\nabla^2 f(x)^{-1} \nabla f(x) = (\alpha_1 + x_1, \alpha_2 + x_2, \dots, \alpha_n + x_n)^T$$

- 5. And we obtain the direction (Δx_{nt}) , then we try to determine the step size:
 - Set a big step first and a ratio beta, and gradually make x + step * direction get close to 1.
- 6. Next, update x with $x + step * \Delta x_{nt}$

4 Results and Analysis

4.1 Horizontal Comparision

In this comparision, I fixed the random seed(generate α) with 123456, and analyze three methods above.

4.1.1 Fix Dimension n = 10

Figure 2: Binary Search

Figure 3: Binary Search

Figure 4: Gradient Descent Method Figure 5: Gradient Descent Method

Figure 6: Newton Method

Figure 7: Newton Method

- In Binary Search, I set precision with 1e-9, and we can see that it only needs 33 iterations, which is very efficient. It turned out that sum of x is 0.999999995625364 which is very close to 1 and satisfies the precision and target decreases to a small number 8.33029224113138.
- In Newton Method, I set iterations with 1000 and used the Backtracking Line Search with 1000 max iteration.

 It turned out that the sum of x is 1.0 which is very close to 1 and target decreases to 8.330292239712175.

4.1.2 Discussion on Dimension n

Table 1: Binary Search

rable 1. Billary Scaron						
dimension n	iterations	$\mathbf{sum} \mathbf{of} x$	target			
10	30	1.000000001753952	8.330292234022055			
20	30	1.00000000009110206	20.652378045251726			
50	32	1.00000000009443624	59.84541793154762			
100	33	0.99999999989148151	127.35888574561403			
200	33	0.9999999994600418	249.72533875828353			
500	35	0.9999999997656048	651.7772009927137			
1000	35	0.9999999996562974	1319.1718511257977			
10000	42	0.9999999999154736	14023.175128139863			

In Binary Search, I set precision with 1e - 8.

Table 2: Gradient Descent Method

dimension n	$\int \int $	target			
10	0.99999999999998	8.330292239712175			
20	0.999999999999997	20.652378049182065			
50	1.0	59.84541793759993			
100	1.0	127.35888573539113			
200	1.0	249.7253387515363			
500	0.999999999999998	651.7772009878523			
1000	1.0	1319.171851116217			
10000	0.999999999999999	14023.175128131234			

In Gradient Descent Method, I set max iterations with 1000.

dimension ntarget $\mathbf{sum} \ \mathbf{of} \ x$ 1.0 8.330292239712175 0.99999999999999120.65237804918207 0.99999999999986 59.84541793759995

127.35888573539121

249.72553013269402

658.2840629609998

1353.8930686187957

10000 0.61522171057633914221.123470723647

0.999999999999957

0.9999941080478836

0.9297244906311094

0.5782796887567309

Table 3: Newton Method

10

20

50

100

200

500

1000

In Newton Method, I set max iterations with 1000 as the same.

- From table 1, we find out that in Binary Search with parameter precision fixed, as the dimension grows, the iterations grows slowly, but is always efficient.
- From table 2 and the results in monkey search, we were surprised to find that the performence of Gradient Descent Method is almost unaffected by the dimension.
- From table 3, we can see that as the dimension grows, the sum of xslowly deviates from 1, which is a bad phenomenon.

I guess this is because the number of iterations is too small, and when I set the dimension n = 10000 and max iterations with 100000. the sum of x turned out to become 0.999999926158202 with target 14023.175130704825, which looks normal.

The reason I guess is that **As the** Newton Method proceeds, the step size should decrease, otherwise we may choosed a big step and made the sum of x decreases a lot.

In order to confirm my guess, I set the max iteration with 1000, dimension n = 10000 and discuss on the initial step in Backtracking Line Search.

Table 4: Discussion on Initial Step Size in Backtracking Line Search

initial step size	$\mathbf{sum} \ \mathbf{of} \ x$	target
1.0	0.615221710576339	14221.123470723647
0.8	0.9842580219785946	14219.855889521325
0.5	0.615221710576339	14221.123470723647
0.1	0.9842580219785946	14219.855889521325
0.01	0.7874384545583886	14220.531921277568

From the table, interestingly, different initial step size may obtian the same result, and it not that the smaller initial step sieze the better performence.

4.2 Vertical Comparision

In this comparision, I fixed n=10, then set a series of parameters of of each method and compare their impact. In this part, the random seed is still 123456.

4.2.1 Binary Search

Table 5: Binary Search

precision	iterations	$\mathbf{sum} \ \mathbf{of} \ x$	target
1e-1	7	0.9854959700589823	8.37749991528356
1e-2	10	0.9964362155179058	8.341863037752896
1e-3	13	0.9996475623041371	8.331435698156694
1e-4	17	1.0000209098077328	8.330224405058946
1e-5	20	1.000002957539133	8.330282644958652
1e-6	23	0.9999998159219318	8.330292836892756
1e-7	27	1.0000000122727468	8.330292199897297
1e-8	30	1.000000001753952	8.330292234022055
1e-9	33	0.9999999995625364	8.33029224113138
1e-10	37	0.999999999734269	8.33029223979838

• From the table above, it is easy to find that the number of iterations and the precision of difference between sum of x and 1 is directly related to the parameter precision.

• And performence of *target* may be rarely associated with parameter *precision*.

4.2.2 Gradient Descent Method

In analysis below, I made two comparisions: the max iterations and using backtracking line search or not. I do not consider the iterations in backtracking line search, because it will always ends in a small number of iterations.

Table 6: Gradient Descent Method using Backtracking Line Search

j	iterations	$\mathbf{sum} \mathbf{of} x$	target
	1	0.5996978112837809	10.046418174429736
	5	0.9866644124857917	8.430947441250991
	10	0.9997781218498675	8.334272506259687
	20	0.9999845516531557	8.33034869077645
	50	0.999999999994104	8.330292239714463
	100	0.999999999999998	8.330292239712175
	500	0.999999999999998	8.330292239712175
	1000	0.999999999999998	8.330292239712175
	10000	0.999999999999998	8.330292239712175

From the table above, it is easy to find out that the convergence speed is impressive, and saturation is reached after almost 100 iterations.

Table 7: Gradient Descent Method with Fixed Stepsize

stepsize	$\mathbf{sum} \mathbf{of} x$	target
1e-1	136.68263799843982	-38.237979542758495
1e-2	39.8889399957294	-21.63855225777158
1e-3	9.401411836686217	-5.1838843477010155
1e-4	1.324753676483748	7.338759167059794
1e-5	0.2820381305500916	11.226990829633314
1e-6	0.205025479153595	11.67804173573701
1e-7	0.19702955018123156	11.729147183266553

In the experiments above, I set max iterations with 1000, and the performence looks bad.

4.2.3 Newton Method

In analysis below, I made comparisions among different max iterations and do not consider the iterations in backtracking line search.

Table 8:	Newton	Method	using	Backtra	cking	Line	Search

iterations	$\mathbf{sum of} \ x$	target
1	0.8359152954500617	10.035688630176235
5	0.8423697957445522	9.286513603368162
10	0.9562616963351661	8.55558788241405
20	0.9984104159780414	8.337795046131635
50	0.9999999998836335	8.330292674682592
100	0.999999999999952	8.330292239712206
500	1.0	8.330292239712175
1000	1.0	8.330292239712175
10000	1.0	8.330292239712175

From the table above, it is easy to see that the convergence speed is impressive, and saturation is reached after almost 100 iterations.

4.3 Visualization of Iteration Process

In this part, I select two random seed 123456 and 12345, and compare the process of these methods.

Figure 8: Binary Search 1

Figure 9: Binary Search 2

Figure 10: Gradient Descent Method 1 Figure 11: Gradient Descent Method 2

Figure 12: Newton Method 1

Figure 13: Newton Method 2

In the graph above, 1 means we used random seed 123456 and 2 is 12345.

- It is apparent that the *Binary Search* moves fast, but is not stable in the beginning.
- And the Gradient Descent Method converge faster than Newton Method, the reason I guess is: Since Newton Method uses the Taylor second-order term, which is quadratic, the rate of descent is significant while x is far from x_{opt} , and it slows down while x is getting close to x_{opt} . And in this problem, x is always near x_{opt} .

5 Conclusion

In this project, we made a deep analysis of the original problem first and use strategies learned from class converting it into a more straightward problem – the water filling problem. Next, we used three different methods to solve it, and made some clear and intuitive comparisions and analysis.

From this project, I gained a deeper understanding of handling optimization problems, it helped me learn to see optimization problems from a different perspective, I hold a firm belief that this will be of great benefit to my future study and life.