Algorithmic complexity and graphs: flow networks

September 30, 2022

- The Maximum flow problem
 - Presentation of the problem

Max flow

Figure: Optimizing the quantity of merchandise transported from one place to another, respecting some constraints

Figure: Optimizing the quantity of merchandise transported from one place to another, respecting some constraints

We introduce the concept of flow network (reseau de flot).

▶ A Directed graph G = (E, V)

- ▶ A Directed graph G = (E, V)
- ▶ Each edge (u, v) must have a capacity $c(u, v) \ge 0$

- ▶ A Directed graph G = (E, V)
- ▶ Each edge (u, v) must have a **capacity** $c(u, v) \ge 0$
- ▶ We define two special nodes: a **source** *E* and a **sink** *S*.

- ▶ A Directed graph G = (E, V)
- ► Each edge (u, v) must have a **capacity** $c(u, v) \ge 0$
- ▶ We define two special nodes: a **source** *E* and a **sink** *S*.

Figure: A flow network (reseau de flot) with capacities

- ▶ A Directed graph G = (E, V)
- ▶ Each edge (u, v) must have a **capacity** $c(u, v) \ge 0$
- ▶ We define two special nodes : a **source** *E* and a **sink** *S*.
- ▶ A **flow** f is a function $f(u, v) \le c(u, v)$ (+ additional constraints)

- ► Each edge (u, v) must have a **capacity** $c(u, v) \ge 0$
- ▶ A **flow** f is a function $f(u, v) \le c(u, v)$ (+ additional constraints)

- ▶ Each edge (u, v) must have a **capacity** $c(u, v) \ge 0$
- ▶ A flow f is a function $f(u, v) \le c(u, v)$ (+ additional constraints)

Conservation of the flow

We must have :

• antisymmetry :
$$f(v, u) = -f(u, v)$$

conservation of the flow

we must have :

- ▶ antisymmetry : f(v, u) = -f(u, v)
- ▶ flow conservation : $\sum_{v \in V} f(u, v) = 0$ for any $u \notin \{e, s\}$

Other formulation of the flow conservation

Exercice 1 : Other formulation of the flow conservation Let us show that for a flow f, we have for any node $u \notin \{e, s\}$:

$$\sum_{f(u,v)>0} f(u,v) = \sum_{f(v,u)>0} f(v,u)$$
 (1)

Presentation of the problem

Maximum flow

- ▶ The value of the flow, noted |f|, is $\sum_{v \in S} f(E, v)$
- ▶ The problem is that of finding a flow with maximum value.

Figure: Max flow

Ford Fulkerson algorithm

We will introduce an algorithm to solve the problem. This algorithm :

- terminates
- is correct
- is polynomial

Ford Fulkerson algorithm

We will introduce an algorithm to solve the problem. This algorithm :

- terminates
- is correct.
- is polynomial

So it is a good algorithm.

Residual graph

▶ Given a graph with capacities c(u, v) and a flow f(u, v), we will define its **residual graph** that has a capacity $c_r(u, v)$:

$$c_r(u,v) = c(u,v) - f(u,v)$$
 (2)

Solution with the Ford-Fulkerson algorithm

Figure: All initial capacities set to 1

Figure: All initial capacities set to 1

Solution with the Ford-Fulkerson algorithm

Figure: All initial capacities set to 1

Figure: All initial capacities set to 1

Figure: All initial capacities set to 1

Solution with the Ford-Fulkerson algorithm

Figure: All initial capacities set to 1

Solution with the Ford-Fulkerson algorithm

Figure: All initial capacities set to 1

Residual graph

Figure: Another flow network

- The Maximum flow problem
 - Solution with the Ford-Fulkerson algorithm

Residual graph

Figure: Residual graph

Augmenting path

An augmenting path is a path in the **residual graph** from the source to the sink with capacities > 0.

Augmenting path

An augmenting path is a path in the **residual graph** from the source to the sink with capacities > 0.

Figure: Residual graph

Augmenting path

An augmenting path is a path from the source to the sink with capacities > 0.

The Ford-Fulkerson algorithm uses augmenting paths until there are no more augmenting paths.

Figure: Residual graph

Ford Fulkerson algorithm

Can you deduce the algorithm from the previous remarks?

Ford Fulkerson algorithm

```
Result : Flow f for (u,v) \in E do | f(u,v) = 0 end while \exists \rho augmenting path do | augment f with \rho end return f Algorithme \mathbf{1} : Ford Fulkerson algorithm
```

Ford-fulkerson algorithm

Let's apply the algorithm to some instances:

- The Maximum flow problem
 - Solution with the Ford-Fulkerson algorithm

initial graph

- The Maximum flow problem
 - Solution with the Ford-Fulkerson algorithm

residual graph step 1

- The Maximum flow problem
 - Solution with the Ford-Fulkerson algorithm

augmenting path step 1

- The Maximum flow problem
 - Solution with the Ford-Fulkerson algorithm

- The Maximum flow problem
 - Solution with the Ford-Fulkerson algorithm

- The Maximum flow problem
 - Solution with the Ford-Fulkerson algorithm

- The Maximum flow problem
 - Solution with the Ford-Fulkerson algorithm

- The Maximum flow problem
 - Solution with the Ford-Fulkerson algorithm

residual graph step 4

- The Maximum flow problem
 - Solution with the Ford-Fulkerson algorithm

- The Maximum flow problem
 - Solution with the Ford-Fulkerson algorithm

Overview

- The Maximum flow problem
 - Solution with the Ford-Fulkerson algorithm

initial graph

- The Maximum flow problem
 - Solution with the Ford-Fulkerson algorithm

- The Maximum flow problem
 - Solution with the Ford-Fulkerson algorithm

- The Maximum flow problem
 - Solution with the Ford-Fulkerson algorithm

- The Maximum flow problem
 - Solution with the Ford-Fulkerson algorithm

- The Maximum flow problem
 - Solution with the Ford-Fulkerson algorithm

- The Maximum flow problem
 - Solution with the Ford-Fulkerson algorithm

- The Maximum flow problem
 - Solution with the Ford-Fulkerson algorithm

residual graph step 4

- The Maximum flow problem
 - Solution with the Ford-Fulkerson algorithm

- The Maximum flow problem
 - Solution with the Ford-Fulkerson algorithm

residual graph step 5

Ford Fulkerson algorithm

▶ We will implement the Ford Fulkerson algorithm (1956) on a general graph.

Numpy exercise

Exercice 2: Numpy arrays.

First, we will do an exercise to get more familiar with numpy. Please follow the notebook numpy_demo/numpy_demo.py.

Ford Fulkerson algorithm

Exercice 3: We will implement the Ford Fulkerson algorithm (1956)

cd ford_fulkerson/ and use generate_flow_network.py to generate a flow network.

Algorithm

We will now use the functions contained in ford_functions.py and call them from apply_ford_fulkerson.py Solution with the Ford-Fulkerson algorithm

Algorithm

Exercice 4: step 1

Modify find _augmenting _paths() in order to find the augmenting paths.

Algorithm

Exercice 4: step 2

now edit augment_flow()

Algorithm

Exercice 4: step 3

► finally, edit the computation of the value of the flow

▶ Now the algorithm should be able to run

- The Maximum flow problem
 - Solution with the Ford-Fulkerson algorithm

Solution with the Ford-Fulkerson algorithm

Complexity

Complexity of Ford Fulkerson:

$$\mathcal{O}(|f^*| \times |E|) \tag{3}$$

Termination

When the capacities are integer numbers or rational numbers Ford Fulkerson terminates. Solution with the Ford-Fulkerson algorithm

Termination

- When the capacities are integer numbers or rational numbers Ford Fulkerson terminates.
- However, when the capacities are general real numbers (that can be irrationnal), the algorithm might not terminate.

Modification of Ford Fulkerson

What would we an intuitive and potentially faster modification of the algorithm ?

Modification of the algorithm

What would we an intuitive and potentially faster modification of the algorithm ?

Use the shortest augmenting path with strictly positive capacity. (Edmonds-Karp algorithm, 1972).

The time complexity is now $\mathcal{O}(|V||E|^2)$, thus **independent** on $|f^*|$.

Link with the matching problem

- We now go back to the matching problem, in the case of a bipartite graph ("problème d'affectation")
- ▶ We will show that in that case, we can connect the two problems.

- The Maximum flow problem
 - Connection with the matching problem

Bipartite graph

Figure: Complete bipartite graph (not all bipartite graphs are complete)

Connection with the matching problem

Matching problem

We now go back to the matching problem, in the case of a bipartite graph.

Figure: Bipartite graph

Equivalence between matching and flow

Figure: Introduce two more nodes. All edges have capacity 1. We consider **flows with integer values**

Ford Fulkerson for matching

Figure: Non optimal solution

Connection with the matching problem

Ford Fulkerson for matching

Figure: Optimal solution

Connection with the matching problem

Connection with the matching problem

Connection

Exercice 4: Find a connection between the two problems

Figure: Optimal solution

Ford Fulkerson and matching

▶ In the folder cd ford _matching/, the scripts apply Ford Fulkerson to a bipartite graph in order to find an optimal matching.

- The Maximum flow problem
 - Connection with the matching problem

initial graph

- The Maximum flow problem
 - Connection with the matching problem

residual graph step 1

- The Maximum flow problem
 - Connection with the matching problem

residual graph step 4

- The Maximum flow problem
 - Connection with the matching problem

augmenting path step 5

- The Maximum flow problem
 - Connection with the matching problem

residual graph step 12

Famous theorem

The maximum flow theorem is equivalent to another famous problem, the **minimum cut** theorem.

Perfect matching

In the case of a bipartite graph, what is the best matching possible ?

Perfect matching

In the case of a bipartite graph, what is the best matching possible ?

A matching where **all nodes are allocated**. It is called a **perfect** matching.

We must have that the two parts of the graph are of same cardinalty in order to have a perfect matching.

Hall's marriage theorem

This theorem gives a condition that is necessary and sufficient for the existence of a perfect matching in a bipartite graph: the "marriage condition".

If G = (U, V, E) is bipartite, the condition means that :

$$\forall X \subset U, |N_G(X)| \ge |X| \tag{4}$$

where $N_G(X)$ is the set of neighbors of X in G.

Hall's theorem

Exercice 5 : Application of the theorem.

Can you think of a graph that does not abide by the marriage condition and thus has **no perfect matching** ?

More results on the two problems

Illustration of Hall's theorem

Exercice 5 : Application of the theorem

Case of a non bipartite graph

In the case of a **non-bipartite**, we can not use the Ford-Fulkerson algorithm.

Other methods exist such as the Blossom algorithm.

Conclusion

Ford Fulkerson and its variants (Edmonds-Karp) are polynomial. As a result thay can run on datasets that are way bigger than exhaustive search algotirhms.