



Homework for the Lecture

Functional Analysis

## Stefan Waldmann Christopher Rudolph

Winter Term 2024/2025

 $\underset{_{\rm revision:\ 2024-11-21\ 15:36:03\ +0100}}{Homework} \underbrace{Sheet\ No\ 7}$ 

Last changes by christopher.rudolph@jmu on 2024-11-21 Git revision of funkana-ws2425: 8534ddd (HEAD -> master, origin/master)

25. 11. 2024 (23 Points. Discussion 02. 12. 2024)

## Homework 7-1: Stone-Weierstraß Counterexamples

We show that the assumptions in the Stone-Weierstraß Theorem can not be weakened in the most naive ways.

- i.) (1 Point) Find an example of a unital point-separating subalgebra  $\mathcal{A} \subseteq \mathcal{C}(X,\mathbb{C})$ , whose closure is strictly less than  $\mathcal{C}(X,\mathbb{C})$ .
- ii.) (1 Point) Find an example of a unital \*-subalgebra  $\mathcal{A} \subseteq \mathcal{C}(X,\mathbb{C})$ , whose closure is strictly less than  $\mathcal{C}(X,\mathbb{C})$ .
- iii.) (2 Points) Let  $K \subseteq \mathbb{R}$  be compact. Consider the polynomials without a constant term  $x\mathbb{C}[x]$ , restricted to K. Show that they are dense in  $\mathscr{C}(K,\mathbb{C})$  iff  $0 \notin K$ . Which condition in the Stone-Weierstraß Theorem fails in  $x\mathbb{C}[x]$ ?

## Homework 7-2: Continuous Functions and Separability

- i.) (1 Point) Let M be a topological space and  $N \subseteq M$  be a dense subset. Show that every dense subset of N (with respect to the subspace topology) is dense in M.
- ii.) (2 Points) Let  $n \in \mathbb{N}$  and K be a compact subset of  $\mathbb{K}^n$ . Without using part iii.), prove that  $\mathscr{C}(K,\mathbb{C}) = \mathscr{C}_{\mathrm{b}}(K,\mathbb{C})$  (endowed with the usual supremum norm topology) is separable, that is it contains a countable dense subset.

iii.) (5 Points) Let (M, d) be a compact metric space. Assume that M is separable. In this case, show that also  $\mathscr{C}(M, \mathbb{C})$  is separable.

Hint: Urysohn's Lemma

iv.) (6 Points) Let now M be a separable compact Hausdorff space. Cand you find a sufficient condition for M under which  $\mathcal{C}(M,\mathbb{C})$  becomes separable?

Hint: Every compact space is locally compact.

## Homework 7-3: The Limit Functional

In Homework 5-3, we showed that the multiplication of sequences induces a linear homeomorphism  $\phi: \ell^q \to (\ell^p)'$  for any two conjugated numbers  $p, q \in [1, \infty]$  with  $p \in [1, \infty)$ . In this exercise, we show that this map fails to be an isomorphism in the case of  $p = \infty$ .

- i.) (1 Point) Use Homework 5-3 to show that there is an isometry  $\iota: \ell^1 \to (\ell^{\infty})'$ .
- ii.) (4 Points) Consider the space  $c \subset \ell^{\infty}$  of convergent K-valued sequences. Show that the limit functional

$$L: c \ni (x_n)_{n \in \mathbb{N}} \mapsto x := \lim_{n \to \infty} x_n \tag{7.1}$$

defines a bounded linear operator and compute its operator norm. Conclude that  $\iota$  is not surjective.