Last name	_
First name	

LARSON—MATH 601—HOMEWORK WORKSHEET h10 Linear Transformations & Matrices.

Write up a careful, complete test review and turn it in before our Test 1 on Fri., Mar. 3. **Explain** everything.

- 1. Let T be a linear transformation from a vector space V to a vector space W. Show that T(0) = 0.
- 2. In class we proved: If T is an isomorphism from a vector space V to a vector space W then T is invertible and non-singular. This is true regardless of the dimensions of V and W (in particular do not assume that V and W are finite-dimensional). Write up a **nice proof**, including all necessary definitions.
- 3. Let T be an isomorphism from a vector space V to a vector space W. Let $\{\alpha_i : i \in \mathcal{I}\}$ (where \mathcal{I} is a possibly infinite $index\ set$) be a basis for V. Show that $\{T(\alpha_i) : i \in \mathcal{I}\}$ is a basis for W.
- 4. Let T be an isomorphism from a vector space V to a vector space W with inverse T^{-1} . Let $\{\beta_j : j \in \mathcal{J}\}$ (where \mathcal{J} is a possibly infinite index set) be a basis for W. Show that $\{T^{-1}(\beta_j) : j \in \mathcal{J}\}$ is a basis for V.
- 5. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x_1, x_2) = (x_1, 0)$. Let $\mathcal{B} = \{\alpha_1, \alpha_2\} = \{(1, 0), (0, 1)\}$ be the standard basis in \mathbb{R}^2 . Let $\mathcal{B}' = \{\alpha'_1, \alpha'_2\} = \{(1, 1), (2, 1)\}$ be another basis for \mathbb{R}^2 .
 - (a) Find T(3, 5).
 - (b) Find $[T(3,5)]_{B}$.
 - (c) Find $[T]_{\mathcal{B}} = [[T(\alpha_1)]_{\mathcal{B}}[T(\alpha_2)]_{\mathcal{B}}].$
 - (d) Check that $[T(3,5)]_{\mathcal{B}} = [T]_{\mathcal{B}}[(3,5)]_{\mathcal{B}}$.
 - (e) Show that \mathcal{B}' is a basis for \mathbb{R}^2 .
 - (f) Find $[T(3,5)]_{\mathcal{B}'}$.
 - (g) Find $[T]_{\mathcal{B}'} = [[T(\alpha'_1)]_{\mathcal{B}}[T(\alpha'_2)]_{\mathcal{B}'}].$
 - (h) Check that $[T(3,5)]_{B'} = [T]_{B'}[(3,5)]_{B'}$.

What is the relationship between $[T]_{\mathcal{B}}$ and $[T]_{\mathcal{B}'}$?

- (i) Find $P = [[\alpha'_1]_{\mathcal{B}}[\alpha'_2]_{\mathcal{B}}].$
- (j) Find P^{-1} .
- (k) Check that $[T]_{\mathcal{B}'} = P^{-1}[T]_{\mathcal{B}}P$.
- (l) Find $Q = [[\alpha_1]_{\mathcal{B}'}[\alpha_2]_{\mathcal{B}'}].$
- (m) Find Q^{-1} .
- (n) Check that $[T]_{\mathcal{B}} = Q^{-1}[T]_{\mathcal{B}'}Q$.