

Énoncés des exercices

EXERCICE 1 [Indication] [Correction]

On définit une application f 2π -périodique et impaire par : $\begin{cases} 0 < t < \pi \Rightarrow f(t) = 1 \\ f(0) = f(\pi) = 0 \end{cases}$

- 1. Former le développement en série de Fourier de f.
- 2. En déduire la valeur de $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}.$
- 3. A l'aide de l'égalité de Parseval, calculer $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}$ puis $\sum_{n=0}^{+\infty} \frac{1}{n^2}$.

Exercice 2 [Indication] [Correction]

On définit une application f, 2π -périodique sur \mathbb{R} , par $\begin{cases} \forall t \in]-\pi, \pi[, f(t) = t \\ f(-\pi) = f(\pi) = 0 \end{cases}$

- 1. Former le développement en série de Fourier de f.
- 2. A l'aide de l'égalité de Parseval, calculer la somme de la série $\sum_{n=1}^{+\infty} \frac{1}{n^2}$.
- 3. On définit g, 2π -périodique, par par $g(x) = \frac{\pi t}{2}$ sur $]0, 2\pi[$ et $g(0) = g(2\pi) = 0$. Déduire de la question (1) le développement en série de Fourier de g.

Exercice 3 [Indication] [Correction]

On définit une application f, 2π -périodique sur \mathbb{R} , par $\forall x \in [-\pi, \pi], f(x) = |x|$.

- 1. Former le développement en série de Fourier de f.
- 2. En déduire les sommes $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}$ et $\sum_{n=1}^{+\infty} \frac{1}{n^2}$.
- 3. Avec l'identité de Parseval, calculer les sommes $\sum_{n=1}^{+\infty} \frac{1}{(2n+1)^4}$ et $\sum_{n=1}^{+\infty} \frac{1}{n^4}$.

EXERCICE 4 [Indication] [Correction]

Développer $f(x) = |\sin x|$ en série de Fourier. En déduire $\sum_{n=1}^{+\infty} \frac{1}{1-4n^2}$ et de $\sum_{n=1}^{+\infty} \frac{(-1)^n}{1-4n^2}$.

Exercice 5 [Indication] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$, impaire, 2π -périodique, définie sur $[0, \pi]$ par $f(x) = x(\pi - x)$.

- 1. Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R} , et qu'elle est de classe \mathcal{C}^2 par morceaux.
- 2. Former le développement en série de Fourier de f. En déduire $\sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)^3}$.
- 3. Calculer les sommes $\sum_{n=1}^{+\infty} \frac{1}{(2n+1)^6}$ et $\sum_{n=1}^{+\infty} \frac{1}{n^6}$.

Indications, résultats

Indications ou résultats

INDICATION POUR L'EXERCICE 1 [Retour à l'énoncé]

1. On trouve :
$$\forall x \in \mathbb{R}, f(x) = \frac{4}{\pi} \sum_{n=0}^{+\infty} \frac{\sin(2n+1)x}{2n+1}$$
.
2. Se placer au point $x = \frac{\pi}{2}$.

3. L'égalité de Parseval donne $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}$. En déduire $\sum_{n=0}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Indication pour l'exercice 2 [Retour à l'énoncé]

1. On trouve: $\forall x \in \mathbb{R}, f(x) = 2\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} \sin nx$.

2. L'égalité de Parseval donne l'égalité bien connue $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. 3. Pour tout x de \mathbb{R} , $g(x) = \frac{1}{2}f(\pi - x)$.

Indication pour l'exercice 3 [Retour à l'énoncé]

1. On trouve $\forall x \in \mathbb{R}, f(x) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=0}^{+\infty} \frac{\cos(2n+1)x}{(2n+1)^2}$.

2. Se placer en x = 0. En déduire que $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}$, puis $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

3. Parseval donne $\sum_{1}^{+\infty} \frac{1}{(2n+1)^4} = \frac{\pi^4}{96}$. En déduire que $\sum_{1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$.

Indication pour l'exercice 4 [Retour à l'énoncé]

1. On obtient : $\forall x \in \mathbb{R}, |\sin x| = \frac{2}{\pi} + \frac{4}{\pi} \sum_{i=1}^{+\infty} \frac{\cos 2nx}{1 - 4n^2}$.

2. En choisissant x, trouver $\sum_{1}^{+\infty} \frac{1}{1-4n^2} = -\frac{1}{2}$ puis $\sum_{1}^{+\infty} \frac{(-1)^n}{1-4n^2} = \frac{\pi}{4} - \frac{1}{2}$.

INDICATION POUR L'EXERCICE 5 | [Retour à l'énoncé]

– On trouve: $\forall x \in \mathbb{R}, f(x) = \frac{8}{\pi} \sum_{n=0}^{+\infty} \frac{\sin(2n+1)x}{(2n+1)^3}$. Se placer en $x = \frac{\pi}{2}$.

- Parseval donne $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^6} = \frac{\pi^6}{960}$. On en déduit $\sum_{n=0}^{+\infty} \frac{1}{n^6} = \frac{\pi^6}{945}$.

Page 2 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Corrigés des exercices

CORRIGÉ DE L'EXERCICE 1 [Retour à l'énoncé]

1. L'application f est 2π -périodique et de classe \mathcal{C}^1 par morceaux.

En chaque discontinuité x_0 , $f(x_0) = \frac{1}{2} (\lim_{x_0^-} f + \lim_{x_0^+} f) : f$ est sa propre "régularisée".

D'après Dirichlet, la série de Fourier de f converge simplement vers f sur \mathbb{R} .

L'application f étant impaire, sa série de Fourier est une série de "sinus".

On a donc, pour tout x de \mathbb{R} : $f(x) = \sum_{n=1}^{+\infty} b_n(f) \sin(nx)$, où $b_n(f) = \frac{2}{\pi} \int_0^{\pi} f(t) \sin nt \, dt$.

$$\forall n \ge 1, b_n(f) = \frac{2}{\pi} \int_0^{\pi} \sin nt \, dt = \frac{2}{\pi} \left[-\frac{1}{n} \cos nt \right]_0^{\pi} = \frac{2}{n\pi} (1 - (-1)^n).$$

Autrement dit : $\forall n \ge 1, b_{2n}(f) = 0$ et $\forall n \ge 0, b_{2n+1}(f) = \frac{4}{(2n+1)\pi}$.

On en déduit :
$$\forall x \in \mathbb{R}, f(x) = \frac{4}{\pi} \sum_{n=0}^{+\infty} \frac{\sin(2n+1)x}{2n+1}.$$

On a représenté ici, sur $[-2\pi, 2\pi]$, c'est-à-dire sur deux périodes, la fonction f et la somme partielle S_7 de sa série de Fourier : $S_7(x) = \frac{4}{\pi} \left(\sin x + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \frac{\sin 7x}{7} \right)$.

2. Pour
$$x = \frac{\pi}{2}$$
, on trouve $1 = \frac{4}{\pi} \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$, c'est-à-dire $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}$.

3. Parseval donne ici :
$$\sum_{n=0}^{+\infty} b_{2n+1}^2(f) = \frac{2}{\pi} \int_0^{\pi} f^2(t) dt = 2. \text{ Donc } \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}.$$

Avec
$$S = \sum_{n=1}^{+\infty} \frac{1}{n^2}$$
, on a : $S = \sum_{n=1}^{+\infty} \frac{1}{(2n)^2} + \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{1}{4}S + \frac{\pi^2}{8}$. Ainsi $S = \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Page 3 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Corrigé de l'exercice 2 [Retour à l'énoncé]

1. L'application f est 2π -périodique et de classe \mathcal{C}^1 par morceaux.

En chaque x_0 , $f(x_0) = \frac{1}{2} (\lim_{x_0^-} f + \lim_{x_0^+} f) : f$ est sa propre "régularisée".

D'après Dirichlet, f est la somme sur \mathbb{R} de sa série de Fourier (CVS).

L'application f étant impaire, sa série de Fourier est une série de "sinus".

On a donc, pour tout x de \mathbb{R} : $f(x) = \sum_{n=1}^{+\infty} b_n(f) \sin(nx)$, où $b_n(f) = \frac{2}{\pi} \int_0^{\pi} f(t) \sin nt \, dt$.

$$\forall n \ge 1, b_n(f) = \frac{2}{\pi} \int_0^{\pi} t \sin nt \, dt = \frac{2}{\pi} \left[-\frac{t}{n} \cos nt \right]_0^{\pi} + \frac{2}{\pi n} \int_0^{\pi} \cos nt \, dt = 2 \frac{(-1)^{n+1}}{n}.$$

On en déduit :
$$\forall x \in \mathbb{R}, f(x) = 2\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} \sin nx.$$

On a représenté ici sur $[-2\pi, 2\pi]$, donc sur deux périodes, la fonction f et la somme partielle S_5 de sa série de Fourier : $S_5(x) = 2\left(\sin x - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \frac{\sin 4x}{4} + \frac{\sin 5x}{5}\right)$.

2. L'égalité de Parseval s'écrit : $\sum_{n=1}^{+\infty} b_n^2(f) = \frac{2}{\pi} \int_0^{\pi} f^2(t) dt.$

On obtient ici :
$$4\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{2}{\pi} \int_0^{\pi} t^2 dt = \frac{2\pi^2}{3}$$
 et finalement $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

3. Pour tout x de \mathbb{R} , $g(x) = \frac{1}{2}f(\pi - x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} \sin n(\pi - x) = \sum_{n=1}^{+\infty} \frac{\sin nx}{n}$.

On a donc obtenu l'égalité : $\forall x \in]0, 2\pi[, \sum_{n=1}^{+\infty} \frac{\sin nx}{n} = \frac{\pi - x}{2}.$

Page 4 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

CORRIGÉ DE L'EXERCICE 3 [Retour à l'énoncé]

1. f est continue et de classe \mathcal{C}^1 par morceaux. Le théorème de convergence normale s'applique donc : la série de Fourier de f est normalement convergente vers f sur \mathbb{R} . L'application f étant paire, sa série de Fourier est une série de "cosinus".

Autrement dit, pour tout x de \mathbb{R} : $f(x) = \frac{1}{2}a_0(f) + \sum_{n=1}^{+\infty} a_n(f)\cos(nx)$.

$$\forall n, \ a_n(f) = \frac{2}{\pi} \int_0^{\pi} f(t) \cos nt \, dt = \frac{2}{\pi} \int_0^{\pi} t \cos nt \, dt. \text{ Donc } a_0(f) = \frac{2}{\pi} \int_0^{\pi} t \, dt = \pi.$$

Pour tout $n \ge 1$

$$a_n(f) = \frac{2}{\pi} \left[\frac{t}{n} \sin nt \right]_0^{\pi} - \frac{2}{\pi n} \int_0^{\pi} \sin nt \, dt = \frac{2}{\pi n^2} \left[\cos nt \right]_0^{\pi} = \frac{2}{\pi n^2} ((-1)^n - 1)$$

On en déduit :
$$\forall n \ge 1, a_{2n} = 0$$
 et $\forall n \ge 0, a_{2n+1} = -\frac{4}{\pi(2n+1)^2}$.

Le DSF de
$$f$$
 sécrit donc : $\forall x \in \mathbb{R}, f(x) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=0}^{+\infty} \frac{\cos(2n+1)x}{(2n+1)^2}$.

On a représenté ici, sur l'intervalle $[-2\pi, 2\pi]$ (deux périodes) la fonction f puis la somme partielle S_3 de sa série de Fourier : $S_3(x) = \frac{\pi}{2} - \frac{4}{\pi} \left(\cos x + \frac{\cos 3x}{9}\right)$. L'approximation est déjà assez bonne.

On a enfin représenté conjointement f et S_3 au voisinage de 0. Visiblement la convergence des S_n vers f est moins rapide à proximité des points où f n'est pas dérivable.

Page 5 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

2. On pose
$$x=0$$
 dans cette égalité et on trouve :
$$\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}.$$

Enfin
$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \sum_{n=1}^{+\infty} \frac{1}{(2n)^2} + \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{1}{4} \sum_{n=1}^{+\infty} \frac{1}{n^2} + \frac{\pi^2}{8} \Rightarrow \sum_{n=1}^{+\infty} \frac{1}{n^2} = \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

3. Parseval s'écrit ici :
$$\frac{1}{2}a_0(f)^2 + \sum_{n=0}^{+\infty} a_{2n+1}(f)^2 = \frac{2}{\pi} \int_0^{\pi} f^2(t) dt = \frac{2}{\pi} \int_0^{\pi} t^2 dt = \frac{2\pi^2}{3}.$$

On en déduit
$$\frac{16}{\pi^2} \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^4} = \frac{2\pi^2}{3} - \frac{\pi^2}{2} = \frac{\pi^2}{6}$$
 puis $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^4} = \frac{\pi^4}{96}$.

$$\sum_{n=1}^{+\infty} \frac{1}{n^4} = \sum_{n=1}^{+\infty} \frac{1}{(2n)^4} + \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^4} = \frac{1}{16} \sum_{n=1}^{+\infty} \frac{1}{n^4} + \frac{\pi^4}{96} \Rightarrow \sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{16}{15} \frac{\pi^4}{96} = \frac{\pi^4}{90}$$

Corrigé de l'exercice 4 [Retour à l'énoncé]

1. L'application f est 2π -périodique (elle est même π -périodique). Elle est continue sur \mathbb{R} et de classe \mathcal{C}^1 par morceaux. Le théorème de convergence normale s'applique donc : la série de Fourier de f est normalement convergente vers f sur \mathbb{R} .

L'application f est paire : pour tout n de \mathbb{N} , on a donc $b_n(f) = 0$.

Pour tout n de \mathbb{N} ,

$$a_n(f) = \frac{2}{\pi} \int_0^{\pi} f(t) \cos nt \, dt = \frac{2}{\pi} \int_0^{\pi} \sin t \cos nt \, dt = \frac{1}{\pi} \int_0^{\pi} (\sin(n+1)t - \sin(n-1)t) \, dt$$

On trouve d'abord $a_1(f) = \frac{1}{\pi} \int_0^{\pi} \sin 2t \, dt = 0$, puis pour tout entier $n \neq 1$:

$$a_n(f) = \frac{1}{\pi} \left[\frac{\cos(n-1)t}{n-1} - \frac{\cos(n+1)t}{n+1} \right]_0^{\pi}$$
$$= \frac{1}{\pi} \left(\frac{1}{n+1} - \frac{1}{n-1} \right) (1 + (-1)^n) = 2 \frac{1 + (-1)^n}{\pi (1 - n^2)}$$

Donc
$$a_{2n+1}(f) = 0$$
 (comme $a_1(f) = 0$) et $a_{2n}(f) = \frac{4}{\pi(1 - 4n^2)}$.

En particulier $a_0(f) = \frac{4}{\pi}$. On obtient donc :

$$\forall x \in \mathbb{R}, f(x) = |\sin x| = \frac{a_0(f)}{2} + \sum_{n=1}^{+\infty} a_{2n}(f) \cos 2nx = \frac{2}{\pi} + \frac{4}{\pi} \sum_{n=1}^{+\infty} \frac{\cos 2nx}{1 - 4n^2}$$

2. Pour
$$x = 0$$
, on trouve $\sum_{n=1}^{+\infty} \frac{1}{1 - 4n^2} = -\frac{1}{2}$.

Pour
$$x = \frac{\pi}{2}$$
, on obtient : $\sum_{n=1}^{+\infty} \frac{(-1)^n}{1 - 4n^2} = \frac{\pi}{4} - \frac{1}{2}$.

Page 6 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

CORRIGÉ DE L'EXERCICE 5 [Retour à l'énoncé]

1. f est continue sur \mathbb{R} (pour tout k, $f(k\pi) = 0$) et de classe \mathcal{C}^{∞} sur $\mathbb{R} - \pi \mathbb{Z}$.

L'application f' est a priori définie sur $\mathbb{R} - \pi \mathbb{Z}$.

Elle est paire (car f est impaire) 2π -périodique pour tout x de $]0, \pi[, f'(x) = \pi - 2x]$.

On a $\lim_{x\to 0^+} f'(x) = \pi$. Donc $\lim_{x\to 0^-} f'(x) = \pi$ par parité. De même, $\lim_{x\to \pi^-} f'(x) = -\pi$.

On en déduit $\lim_{x\to(-\pi)^+} f'(x) = -\pi$ (parité) puis $\lim_{x\to\pi^+} f'(x) = -\pi$ (périodicité).

On en déduit (prolongement des applications C^1) que f' est définie et continue en 0 et π (et en tous les $x = k\pi$ donc sur \mathbb{R}) avec $f'(0) = \pi$ et $f'(\pi) = -\pi$.

L'application f est donc de classe \mathcal{C}^1 sur \mathbb{R} .

Enfin f'' est définie sur $\mathbb{R} - \pi \mathbb{Z}$, paire (comme f), 2π -périodique, et f''(x) = -2 sur $]0, \pi[$. L'application f est donc de classe \mathcal{C}^2 par morceaux sur \mathbb{R} .

2. f est continue et de classe \mathcal{C}^1 par morceaux. Le théorème de convergence normale s'applique donc : la série de Fourier de f est normalement convergente vers f sur \mathbb{R} .

L'application f étant impaire, sa série de Fourier est une série de "sinus".

$$\forall n \ge 1, \ b_n(f) = \frac{2}{\pi} \int_0^{\pi} f(t) \sin nt \, dt = \frac{2}{\pi} \left[-f(t) \frac{\cos nt}{n} \right]_0^{\pi} + \frac{2}{\pi n} \int_0^{\pi} f'(t) \cos nt \, dt$$
$$= \frac{2}{\pi n} \int_0^{\pi} (\pi - 2t) \cos nt \, dt = \frac{2}{\pi n^2} \left[\frac{\pi - 2t}{n} \sin nt \right]_0^{\pi} + \frac{4}{\pi n^2} \int_0^{\pi} \sin nt \, dt$$
$$= -\frac{4}{\pi n^3} \left[\cos nt \right]_0^{\pi} = \frac{4}{\pi n^3} (1 - (-1)^n).$$

Autrement dit : $\forall n \ge 1, b_{2n}(f) = 0$ et $\forall n \ge 0, b_{2n+1}(f) = \frac{8}{\pi (2n+1)^3}$.

On en déduit : $\forall x \in \mathbb{R}, f(x) = \sum_{n=1}^{+\infty} b_n(f) \sin(nx) = \frac{8}{\pi} \sum_{n=0}^{+\infty} \frac{\sin(2n+1)x}{(2n+1)^3}.$

En choisissant $x = \frac{\pi}{2}$, on trouve : $\sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)^3} = \frac{\pi}{8} f\left(\frac{\pi}{2}\right) = \frac{\pi}{8} \frac{\pi^2}{4} = \frac{\pi^3}{32}$.

3. Parseval donne ici $\sum_{n=0}^{+\infty} b_{2n+1}^2(f) = \frac{2}{\pi} \int_0^{\pi} f^2(t) dt$

Et donc $\frac{64}{\pi^2} \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^6} = \frac{2}{\pi} \int_0^{\pi} t^2 (\pi - t)^2 dt$ On en déduit :

$$\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^6} = \frac{\pi}{32} \int_0^{\pi} (\pi^2 t^2 - 2\pi t^3 + t^4) \, \mathrm{d}t = \frac{\pi}{32} \left(\frac{\pi^5}{3} - \frac{\pi^5}{2} + \frac{\pi^5}{5} \right) = \frac{\pi^6}{960}$$

$$\sum_{n=1}^{+\infty} \frac{1}{n^6} = \sum_{n=1}^{+\infty} \frac{1}{(2n)^6} + \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^6} = \frac{1}{64} \sum_{n=1}^{+\infty} \frac{1}{n^6} + \frac{\pi^6}{960} \Rightarrow \sum_{n=1}^{+\infty} \frac{1}{n^6} = \frac{64}{63} \frac{\pi^6}{960} = \frac{\pi^6}{945}.$$

Page 7 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.