2 Доп3 (7). Любое счётное вполне упорядоченное множество изоморфно некоторому подмножеству \mathbb{R} .

Заметим, что вполне упорядоченное множество - это такое линейно упорядоченное множество, что в любом его непустом подмножестве есть минимальный элемент; $\mathbb{Q} \subset \mathbb{R}$. Тогда следующая теорема является более сильной, чем этот билет, и из неё, конечно, следует этот билет.

Теорема. Всякое счётное линейно упорядоченное множество изоморфно некоторому подмножеству множества \mathbb{Q} .

▲ Пусть X — данное нам множество. Требуемый изоморфизм между ним и \mathbb{Q} строится по шагам. После п шагов у нас есть два п-элементных подмножества $X_n \subset X$ и $Q_n \subset \mathbb{Q}$ (элементы которых мы будем называть «охваченными») и взаимно однозначное соответствие между ними, сохраняющее порядок. На очередном шаге мы берём какой-то неохваченный элемент множества X и сравниваем его со всеми охваченными элементами X. Он может оказаться либо меньше всех, либо больше, либо попасть между какими-то двумя. В каждом из случаев мы можем найти неохваченный элемент в \mathbb{Q} , находящийся в том же положении (больше всех, между первым и вторым охваченным сверху, между вторым и третьим охваченным сверху и т. п.). При этом мы пользуемся тем, что в \mathbb{Q} нет наименьшего элемента, нет наибольшего и нет соседних элементов, — в зависимости от того, какой из трёх случаев имеет место. После этого мы добавляем выбранные элементы к X_n и Q_n , считая их соответствующими друг другу.

Чтобы в пределе получить изоморфизм между множествами X и некоторым подмножеством ℚ, мы должны позаботиться о том, чтобы все элементы были рано или поздно охвачены. Поскольку X счётно, пронумеруем его элементы и будем выбирать неохваченный элемент с наименьшим номером. Это соображение завершает доказательство. ■