血液による酸素と二酸化炭素の運搬

1 酸素の運搬

- 血液は酸素 O₂を肺から組織に運ぶ。
- O_2 の大部分はヘモグロビン Hb によって運ばれる。

ガスが血液に溶解している状態は物理的溶解(分子状態)と化学的溶解(血液中の物質と化学的に結合)がある。酸素の物理的溶解は 0.29ml/dl であり非常に少ない。化学的溶解では O_2 はヘモグロビンと結合して存在する。還元ヘモグロビンは O_2 と結合するとオキシヘモグロビン O_2 となる。全ヘモグロビンに対するオキシヘモグロビンの割合を酸素飽和度 O_2 (O_2 となる。全ヘモグロビンに対するオキシヘモグロビンの割合を酸素飽和度 O_2 (O_2 (O_3) と呼ぶ。酸素分圧の上昇は酸素飽和度を上昇させ、正常では酸素分圧 O_3 100ml 中の O_4 15g とすると O_4 1.34ml O_4 20ml を運搬することができる。 O_4 1分間の心拍出量が約 O_4 50 とすると約 O_4 1分間で O_4 10の酸素を運ぶことができる。安静時では通常 O_4 250ml の酸素消費量なので、十分な供給量である。 O_4 2 との結合は O_4 4分子のヘムに O_4 2分子が O_4 1個ずつ結合して最終的に O_4 2 となる。

2 二酸化炭素の運搬

- 組織では O_2 が消費されて二酸化炭素 CO_2 が生じる。
- CO₂は拡散して血漿、赤血球中に入り運ばれる。
- CO_2 は重炭酸イオン HCO_3 として運ばれるのが約 70%である。

二酸化炭素の物理的溶解は約 10%である。70%は重炭酸イオン HCO_3 として運ばれる。組織で生成された CO_2 は拡散(酸素の 20 倍)によって血漿、赤血球に入る。この時の反応は $CO_2+H_2O\to H_2CO_3$ (炭酸) $\to H^+$ (水素イオン)+ HCO_3 (重炭酸イオン)となる。この反応は赤血球中の炭酸脱水酵素 carbonic anhydrase によって加速される。生成された H^+ は酸素を切り離した還元へモグロビンと結合して、HHb となり、 H^+ を緩衝する。また赤血球から HCO_3 (重炭酸イオン)は血漿中に放出されて、血液のアルカリ性の維持に働く。また血漿中の H^+ と結合して緩衝する。また CO_2 は Hbのアミノ基(NH2 基)に結合し、 CO_2+Hb - NH_2 \to H^+ +カルバミノ結合 Hb-NHCO となって運ばれるのが約 H_2O と H_2O と H

	動脈血	静脈血
酸素分圧 PO2 mmHg	100	40
酸素飽和度 SO2 %	98	75
Hb との結合 ml/dl	19.5	15.1
物理的溶解 ml/dl	0.29	0.12
O2含有量 ml/dl	19.80	15.22

CO2分圧 PCO2 mmHg	40	46
HCO3 ⁻ として ml/dl	43.8	46.3
カルバミノ化合物	2.6	3.4
物理的溶解	2.6	3.0
CO ₂ 含有量	49.0	52.68
PH	7.4	7.36