

JUMPING CONICS ON A SMOOTH QUADRIC IN \mathbb{P}_3

SUKMOON HUH

ABSTRACT. We investigate the jumping conics of stable vector bundles E of rank 2 on a smooth quadric surface Q with the first Chern class $c_1 = \mathcal{O}_Q(-1, -1)$ with respect to the ample line bundle $\mathcal{O}_Q(1, 1)$. We show that the set of jumping conics of E is a hypersurface of degree $c_2(E) - 1$ in \mathbb{P}_3^* . Using these hypersurfaces, we describe moduli spaces of stable vector bundles of rank 2 on Q in the cases of lower $c_2(E)$.

1. INTRODUCTION

The moduli space of stable sheaves on surfaces has been studied by many people. Especially, over the projective plane, the moduli space of stable sheaves of rank 2 was studied by W.Barth [1] and K.Hulek [9], using the jumping lines and jumping lines of the second kind. In [15], this idea was generalized to the jumping conics on the projective plane. In this article, we use the concept of jumping conics on the smooth quadric surface.

Let Q be a smooth quadric in $\mathbb{P}_3 = \mathbb{P}(V)$, where V is a 4-dimensional vector space over complex numbers \mathbb{C} , and $\mathcal{M}(k)$ be the moduli space of stable vector bundles of rank 2 on Q with the Chern classes $c_1 = \mathcal{O}_Q(-1, -1)$ and $c_2 = k$ with respect to the ample line bundle $H = \mathcal{O}_Q(1, 1)$. $\mathcal{M}(k)$ form an open Zariski subset of the projective variety $\overline{\mathcal{M}}(k)$ whose points correspond to the semi-stable sheaves on Q with the same numerical invariants. The Zariski tangent space of $\mathcal{M}(k)$ at E , is naturally isomorphic to $H^1(Q, \text{End}(E))$ and so the dimension of $\mathcal{M}(k)$ is equal to $h^1(Q, \text{End}(E)) = 4k - 5$, since E is simple.

Using the Beilinson-type theorem on Q [3], we obtain the following monad for $E \in \mathcal{M}(k)$,

$$0 \rightarrow \mathbb{C}^{k-1} \otimes \mathcal{O}_Q(-1, -1) \rightarrow \mathbb{C}^k \otimes (\mathcal{O}_Q(0, -1) \oplus \mathcal{O}_Q(-1, 0)) \rightarrow \mathbb{C}^{k-1} \otimes \mathcal{O}_Q \rightarrow 0,$$

with the cohomology sheaf E , where the first injective map derives a map

$$\delta : H^1(E(-1, -1)) \otimes V^* \rightarrow H^1(E).$$

As in [2], we similarly define $S(E) \subset \mathbb{P}_3^*$, the set of jumping conics of E , and prove that $S(E)$ is a hypersurface in \mathbb{P}_3^* of degree $k - 1$ whose equation is

1991 *Mathematics Subject Classification.* Primary: 14D20; Secondary: 14E05.

Key words and phrases. Jumping conics, stable bundle, quadric surface.

given by $\det \delta(z) = 0$, $z \in V^*$, where $\delta(z)$ is a symmetric $(k-1) \times (k-1)$ -matrix. We give a criterion for $H \in \mathbb{P}_3^*$ to be a singular point of $S(E)$ and calculate the exact number of singular points of $S(E)$ when E is a Hulsbergen bundle, i.e. E admits the following exact sequence,

$$0 \rightarrow \mathcal{O}_Q \rightarrow E(1,1) \rightarrow I_Z(1,1) \rightarrow 0,$$

where Z is a 0-cycle on Q with length k whose support is in general position.

In Section 4, we describe the above results in the cases $c_2 \leq 3$ by investigating the map

$$S : \mathcal{M}(k) \rightarrow |\mathcal{O}_{\mathbb{P}_3^*}(k-1)|,$$

sending E to $S(E)$. When $c_2 = 2$, $S(E)$ is a hypersurface in \mathbb{P}_3 and $\mathcal{M}(2)$ is isomorphic to $\mathbb{P}_3 \setminus Q$ via S , which was already shown in [8]. In the case of $c_2 = 3$, we investigate the surjective map from $\mathcal{M}(3)$ to \mathbb{P}_3^* , sending E to the vertex point of the quadric cone $S(E) \subset \mathbb{P}_3^*$ to give an explicit description of $\mathcal{M}(3)$. In fact, the generic fibre of this map over $H \in \mathbb{P}_3^*$ is isomorphic to the set of smooth conics which are Poncelet related to the smooth conic $H \cap Q$. As a result, we can observe that S is an isomorphism from $\mathcal{M}(3)$ to its image and in particular, when $c_2 = 2, 3$, the set of jumping conics, $S(E)$, determines E uniquely.

We would like to thank E. Ballico, F. Catanese, I. Dolgachev and M. Reid for many suggestions and advices.

2. THE BEILINSON THEOREM AND JUMPING CONICS

2.1. The Beilinson Theorem. Let V_1 and V_2 be two 2-dimensional vector spaces with the coordinate $[x_{1i}]$ and $[x_{2j}]$, respectively. Let Q be a smooth quadric isomorphic to $\mathbb{P}(V_1) \times \mathbb{P}(V_2)$ and then it is embedded into $\mathbb{P}_3 \simeq \mathbb{P}(V)$ by the Segre map, where $V = V_1 \otimes V_2$. Let us denote $f^*\mathcal{O}_{\mathbb{P}_1}(a) \otimes g^*\mathcal{O}_{\mathbb{P}_1}(b)$ by $\mathcal{O}_Q(a, b)$ and $E \otimes \mathcal{O}_Q(a, b)$ by $E(a, b)$ for coherent sheaves E on Q , where f and g are the projections from Q to each factors. Then the canonical line bundle K_Q of Q is $\mathcal{O}_Q(-2, -2)$.

Definition 2.1. For a fixed ample line bundle H on Q , a torsion free sheaf E of rank r on Q is called *stable* (resp. *semi-stable*) with respect to H if

$$\frac{\chi(F \otimes \mathcal{O}_Q(mH))}{r'} < (\text{resp. } \leq) \frac{\chi(E \otimes \mathcal{O}_Q(mH))}{r},$$

for all non-zero subsheaves $F \subset E$ of rank r' .

Let $\overline{\mathcal{M}}(k)$ be the moduli space of semi-stable sheaves of rank 2 on Q with the Chern classes $c_1 = \mathcal{O}_Q(-1, -1)$ and $c_2 = k$ with respect to the ample line bundle $H = \mathcal{O}_Q(1, 1)$. The existence and the projectivity of $\overline{\mathcal{M}}(k)$ is known in [6] and it has an open Zariski subset $\mathcal{M}(k)$ which consists of the stable vector bundles with the given numeric invariants. By the Bogomolov theorem, $\mathcal{M}(k)$ is empty if $4k < c_1^2 = 2$ and in particular, we can consider

only the case $k \geq 1$. Note that $E \simeq E^*(-1, -1)$ and by the Riemann-Roch theorem, we have

$$\chi_E(m) := \chi(E(m, m)) = 2m^2 + 2m + 1 - k,$$

for $E \in \overline{\mathcal{M}}(k)$.

Using the same trick as in the proof of the Beilinson theorem on the vector bundles over the projective space [13], we can obtain similar statement over Q .

Proposition 2.2. [3] *For any holomorphic bundle E on Q , there is a spectral sequence*

$$E_1^{p,q} \Rightarrow E_\infty^{p+q} = \begin{cases} E, & \text{if } p+q=0; \\ 0, & \text{otherwise,} \end{cases}$$

with

$$\begin{cases} E_1^{p,q} = 0, & |p+1| > 1 \\ E_1^{0,q} = H^q(E) \otimes \mathcal{O}_Q \\ E_1^{-2,q} = H^q(E(-1, -1)) \otimes \mathcal{O}_Q(-1, -1), \end{cases}$$

and an exact sequence

$$\cdots \rightarrow H^q(E(0, -1)) \otimes \mathcal{O}_Q(0, -1) \rightarrow E_1^{-1,q} \rightarrow H^q(E(-1, 0)) \otimes \mathcal{O}_Q(-1, 0) \rightarrow \cdots.$$

Proof. Let p_1 and p_2 be the projections from $Q \times Q$ to each factors and denote $p_1^* \mathcal{O}_Q(a, b) \otimes p_2^* \mathcal{O}_Q(c, d)$ by $\mathcal{O}(a, b)(c, d)'$. If we let Δ be the diagonal of $Q \times Q$, we have the following Koszul complex,

$$(1) \quad 0 \rightarrow \mathcal{O}(-1, -1)(-1, -1)' \rightarrow \bigoplus_{i=0}^1 \mathcal{O}(-i, 1-i)(-i, 1-i)' \rightarrow \mathcal{O} \rightarrow \mathcal{O}_\Delta.$$

If we tensor it with $p_2^* E$, then we have a locally free resolution of $p_2^* E|_\Delta$. If we take higher direct images under p_1 , we get the assertion by the standard argument on the spectral sequence. \square

From the stability condition of $E \in \mathcal{M}(k)$, we have $H^0(E(a, b)) = 0$ whenever $a+b \leq 0$. Hence $E_1^{p,q} = 0$ for $p = -2, -1, 0$ and $q = 0, 2$ and thus the proposition gives us a monad

$$(2) \quad M : 0 \rightarrow K_{1,1} \otimes \mathcal{O}_Q(-1, -1) \rightarrow E_1^{-1,1} \rightarrow K_{0,0} \otimes \mathcal{O}_Q \rightarrow 0,$$

with the cohomology sheaf $E(M) = E$, where $K_{a,b} = H^1(E(-a, -b))$ and $E_1^{-1,1}$ fits into the following exact sequence,

$$(3) \quad 0 \rightarrow K_{0,1} \otimes \mathcal{O}_Q(0, -1) \rightarrow E_1^{-1,1} \rightarrow K_{1,0} \otimes \mathcal{O}_Q(-1, 0) \rightarrow 0.$$

Since $H^1(\mathcal{O}_Q(1, -1)) = 0$, this exact sequence splits. Thus we have the following corollary.

Corollary 2.3. *Let $E \in \mathcal{M}(k)$. Then E becomes the cohomology sheaf of the following monad:*

$$\begin{aligned} M(E) : 0 &\rightarrow K_{1,1} \otimes \mathcal{O}_Q(-1, -1) \rightarrow \\ &\bigoplus_{i=0}^1 (K_{i,1-i} \otimes \mathcal{O}_Q(-i, -1+i)) \rightarrow K_{0,0} \otimes \mathcal{O}_Q \rightarrow 0. \end{aligned}$$

Note that $k_{1,1} = k_{0,0} = k - 1$ and $k_{1,0} = k_{0,1} = k$, where $k_{i,j} = \dim K_{a,b}$.

Let us denote by a , the first injective map in the monad in the corollary (2.3). Since $E \simeq E^*(-1, -1)$, the last surjective map is the dual of a , twisted by $\mathcal{O}_Q(-1, -1)$ and thus the monad M is completely determined by a . The monomorphism a corresponds to an element α in

$$K_{1,1}^* \otimes ((K_{0,1} \otimes V_1) \oplus (K_{1,0} \otimes V_2)),$$

i.e. $\alpha = (\alpha_1, \alpha_2)$, where $\alpha_i \in \text{Hom}(V_i^*, \text{Hom}(K_{1,1}, K_{i-1,2-i}))$. Since $K_{1,1}^* \simeq K_{0,0}$ and $K_{1,0}^* \simeq K_{0,1}$, we can obtain a map

$$(4) \quad \delta : V_1^* \otimes V_2^* \rightarrow \text{Hom}(K_{1,1}, K_{0,0}),$$

defined by $\delta := \alpha_2^t \circ \alpha_1 + \alpha_1^t \circ a_2$. So $\delta(z) \in K_{0,0} \otimes K_{0,0}$ since $K_{1,1}^* \simeq K_{0,0}$. Again from the self-duality of E , i.e. $E \simeq E^*(-1, -1)$, we have $\delta(z) = \delta(z)^t$. In other words, $\delta(z)$ is an element in $\text{Sym}^2(K_{0,0})$ for all z .

2.2. Jumping Conics. Let H be a general hyperplane section of \mathbb{P}_3 and then $C_H := Q \cap H$ is a conic on H . Let E be a vector bundle of rank r on Q . If we choose an isomorphism $f : \mathbb{P}_1 \rightarrow C_H$, then due to Grothendieck, we have

$$f^*E|_{C_H} \simeq \mathcal{O}_{\mathbb{P}_1}(a_1) \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}_1}(a_r),$$

where $a_{E,H} := (a_1, \dots, a_r) \in \mathbb{Z}^r$ such that $a_1 \geq \cdots \geq a_r$. Here, $a_{E,H}$ is called the splitting type of $E|_{C_H}$.

Definition 2.4. A conic $C_H = Q \cap H$ on Q , is called a *jumping conic* of E if the splitting type $a_{E,H}$ of $E|_{C_H}$ is different from the generic splitting type a_E . We will denote the set of jumping conics of E by $S(E) \subset \mathbb{P}_3^*$.

Remark 2.5. The above definition is valid only for the general hyperplane sections H . Later, we give an equivalent definition for the jumping conics for arbitrary case, using the cohomological criterion.

From the theorem (0.2) in [12], we have $a_i - a_{i+1} \leq 2$ for all i since the degree of $Q \subset \mathbb{P}_3$ is 2. From the following proposition, we know that this upper bound can be sharpened to be 1.

Proposition 2.6. *If E is a stable vector bundle on Q of rank r , we have*

$$a_i - a_{i+1} \leq 1, \text{ for all } i,$$

where $a_E = (a_1, \dots, a_r)$.

Proof. The proof is analogue of the one for the Grauert-Mülich theorem in [13]. We consider the incidence variety $\mathbf{I} = \{(x, H) \in Q \times \mathbb{P}_3^* \mid x \in C_H\}$ with the projections π_1 and π_2 to each factors. Suppose that i is the first index such that $a_i - a_{i+1} \geq 2$. Moreover, we can assume that $a_i = 0$. Now, let us consider the natural map

$$(5) \quad \pi_2^* \pi_{2*} \pi_1^* E \rightarrow \pi_1^* E$$

and E_1 be the image of this map. Then E_1 is a subsheaf of $\pi_1^*(E)$ on \mathbf{I} of rank i such that

$$f^* E_1|_{\pi_2^{-1}(H)} \simeq \mathcal{O}_{\mathbb{P}_1}(a_1) \oplus \cdots \mathcal{O}_{\mathbb{P}_1}(a_i),$$

for a general $H \in \mathbb{P}_3^*$ and an isomorphism $f : \mathbb{P}_1 \rightarrow C_H$. Then the quotient sheaf $E_2 := \pi_1^*(E)/E_1$ is of rank $r - i$ with

$$f^* E_2|_{\pi_2^{-1}(H)} \simeq \mathcal{O}_{\mathbb{P}_1}(a_{i+1}) \oplus \cdots \mathcal{O}_{\mathbb{P}_1}(a_r),$$

for a general $H \in \mathbb{P}_3^*$. From the following lemma, the pull-back of the relative tangent bundle $T_{\mathbf{I}|Q}$ to \mathbb{P}_1 , is $\mathcal{O}_{\mathbb{P}_1}(-1)^{\oplus 2}$. Hence, the restriction of the sheaf $\text{Hom}(T_{\mathbf{I}|Q}, \text{Hom}(E_1, E_2))$ to C_H is isomorphic to the direct sum of $\mathcal{O}_{\mathbb{P}_1}(a_{j_1} - a_{j_2} + 1)^{\oplus 2}$ where $j_1 \geq i + 1$ and $j_2 \leq i$. In particular, we have

$$\text{Hom}(T_{\mathbf{I}|Q}, \text{Hom}(E_1, E_2)) = 0.$$

By the Descente-Lemma [13], there exists a subsheaf of E' of E on Q such that $\pi_1^* E' = E_1$ and it would make the contradiction to the stability of E . \square

Lemma 2.7. *Let $f : \mathbb{P}_1 \rightarrow C_H$ be an isomorphism. Then we have an isomorphism*

$$f^* T_{\mathbf{I}|Q}|_{C_H} \simeq \mathcal{O}_{\mathbb{P}_1}(-1)^{\oplus 2}.$$

Proof. Let \mathbf{I}' be the incidence variety in $\mathbb{P}_3 \times \mathbb{P}_3^*$, i.e. $\mathbf{I}' \simeq \mathbb{P}(T_{\mathbb{P}_3}^*)$. Then we have the universal exact sequence of $\mathbb{P}(T_{\mathbb{P}_3}^*)$,

$$0 \rightarrow M \rightarrow \pi_1^* T_{\mathbb{P}_3}^* \rightarrow N \rightarrow 0,$$

where M and N are vector bundles on \mathbf{I}' of rank 1 and 2, respectively. If we restrict the universal sequence to $\pi_2^{-1}(\{H\})$, then we obtain

$$0 \rightarrow N_{H|\mathbb{P}_3}^* \rightarrow T_{\mathbb{P}_3}^*|_H \rightarrow T_H^* \rightarrow 0,$$

where $N_{H|\mathbb{P}_3} \simeq \mathcal{O}_H(1)$ is the normal bundle of H in \mathbb{P}_3 . Note that

$$T_{\mathbf{I}'|\mathbb{P}_3}|_H \simeq \text{Hom}(M, N)|_H \simeq N_{H|\mathbb{P}_3} \otimes T_H^*.$$

Since $f^* N_{H|\mathbb{P}_3}$ is isomorphic to $\mathcal{O}_{\mathbb{P}_1}(2)$, it is enough to prove that

$$f^* T_H^* \simeq f^* \Omega_H \simeq \mathcal{O}_{\mathbb{P}_1}(-3)^{\oplus 2}$$

since $T_{\mathbf{I}|\mathbb{P}_3}$ is the restriction of $T_{\mathbf{I}'|\mathbb{P}_3}$ to \mathbf{I} . If we tensor the following exact sequence,

$$0 \rightarrow \mathcal{O}_{\mathbb{P}_2}(-2) \rightarrow \mathcal{O}_{\mathbb{P}_2} \rightarrow \mathcal{O}_{C_H} \rightarrow 0,$$

with $\Omega_{\mathbb{P}_2}(1)$ (recall that $H \simeq \mathbb{P}_2$ and C_H is the image conic of \mathbb{P}_1 by f) and take the long exact sequence of cohomology, then we obtain $H^0(\Omega_{\mathbb{P}_2}(1)|_{C_H}) = 0$ from the Bott theorem [13]. Thus we have

$$h^0(f^*(\Omega_{\mathbb{P}_2}(1))) = h^0(\Omega_{\mathbb{P}_2}(1)|_{C_H}) = 0.$$

Since $c_1(f^*(\Omega_{\mathbb{P}_2}(1))) = -2$, the only possibility is that $f^*(\Omega_{\mathbb{P}_2}(1)) \simeq \mathcal{O}_{\mathbb{P}_1}(-1)^{\oplus 2}$ and so $f^*T_H^* \simeq \mathcal{O}_{\mathbb{P}_1}(-3)^{\oplus 2}$. \square

Remark 2.8. From the theorem 1 in [15], we know that for a semistable vector bundle of rank 2 on \mathbb{P}_2 and a general smooth conic $f : \mathbb{P}_1 \hookrightarrow \mathbb{P}_2$, we have

$$f^*E \simeq \begin{cases} \mathcal{O}_{\mathbb{P}_1}^{\oplus 2}, & \text{if } c_1(E) = 0; \\ \mathcal{O}_{\mathbb{P}_1}(-1)^{\oplus 2}, & \text{if } c_1(E) = -1. \end{cases}$$

Since $T_{\mathbb{P}_2}$ is semistable, we can also obtain $f^*T_{\mathbb{P}_2}^* \simeq \mathcal{O}_{\mathbb{P}_1}(-3)^{\oplus 2}$ for a general conic. In fact, this is true for all conics and $T_{\mathbb{P}_2}$ is the only vector bundle of rank 2 on \mathbb{P}_2 up to twists with the same splitting type over all smooth conics except a direct sum of two line bundles [11].

Let us assume that $E \in \mathcal{M}(k)$ be a stable vector bundle on Q . As an immediate consequence of the above proposition, we get the following corollary.

Corollary 2.9. *For a general conic C_H on Q , we have*

$$E|_{C_H} \simeq \mathcal{O}_{C_H}(-p) \oplus \mathcal{O}_{C_H}(-p),$$

where p is a point on C_H .

In particular, the jumping conics of E can be characterized by

$$(6) \quad h^0(E|_{C_H}) \neq 0,$$

and we will use this cohomological criterion as the definition of the jumping conics of E .

We consider the exact sequence,

$$0 \rightarrow E(-1, -1) \rightarrow E \rightarrow E|_{C_H} \rightarrow 0,$$

to derive the following long exact sequence,

$$(7) \quad 0 \rightarrow H^0(E|_{C_H}) \rightarrow H^1(E(-1, -1)) \rightarrow H^1(E),$$

where the last map is given by $\delta(z) = \alpha_2^t \otimes \alpha_1 + \alpha_1^t \otimes \alpha_2$, where z is the coordinates determining the hyperplane section H . Hence C_H is a jumping conic if and only if $\det(\delta) = 0$. Note that $\det(\delta)$ is a homogeneous polynomial of degree $c_2(E) - 1$ with the coordinates of $V_1^* \otimes V_2^*$. This determinant does not vanish identically due to the proposition (2.6), and so we obtain that $S(E)$ is a hypersurface of degree $c_2(E) - 1$ in \mathbb{P}_3^* . From the fact that $\delta(z) = \delta(z)^t$, we obtain the following statement.

Theorem 2.10. *$S(E)$ is a symmetric determinantal hypersurface of degree $c_2(E) - 1$ in \mathbb{P}_3^* .*

The natural question on $S(E)$ is the smoothness and the next proposition will give an answer to this question.

Proposition 2.11. *If $h^0(E|_{C_H}) \geq 2$, then $H \in \mathbb{P}_3^*$ is a singular point of $S(E)$.*

Proof. The statement is clear from the theory on the singular locus of symmetric determinantal varieties [7]. Indeed, let $M = M_0$ denote the projective space \mathbb{P}_N of $(k-1) \times (k-1)$ matrices up to scalars and M_i be the locus of matrices of corank i or more. Let us consider a map $\varphi : \mathbb{P}_3^* \rightarrow M$, determined naturally by δ . If we let S_i be the preimage of M_i via φ , then we have

$$\begin{aligned} T_p S_2 &= d\varphi^{-1}(T_q \varphi(S_2)) \\ &= d\varphi^{-1}(T_q M_2 \cap T_q \varphi(\mathbb{P}_3^*)) \\ &= d\varphi^{-1}(M \cap T_q \varphi(\mathbb{P}_3^*)) \text{, since } T_q M_2 = M \text{ [7]} \\ &= d\varphi^{-1} T_q \varphi(\mathbb{P}_3^*) = \mathbb{P}_3^*, \end{aligned}$$

where $q = \varphi(p)$ and $p \in S_2$. In particular, S_2 is the singular locus of $S_1 = S(E)$. \square

Remark 2.12. Let $f : \mathbb{P}_1 \rightarrow C_H \subset Q$ be a smooth conic on Q and assume that we have

$$f^* E|_{C_H} \simeq \mathcal{O}_{\mathbb{P}_1}(-1-i) \oplus \mathcal{O}_{\mathbb{P}_1}(-1+i),$$

where i is a nonnegative integer. Note that $k = h^0(E|_{C_H}) = \text{corank}(\delta(z))$, where z is the coordinates of H . If $i \geq 2$, then $H \in \mathbb{P}_3^*$ is a singular point of $S(E)$.

Now for later use, let us define a sheaf supported on $S(E)$. As in [1], we can see that $S(E)$ is the support of the $\mathcal{O}_{\mathbb{P}_3^*}$ -sheaf $\vartheta_E(1)$ defined by the following exact sequence,

$$(8) \quad 0 \rightarrow K_{1,1} \otimes \mathcal{O}_{\mathbb{P}_3^*}(-1) \rightarrow K_{0,0} \otimes \mathcal{O}_{\mathbb{P}_3^*} \rightarrow \vartheta_E(1) \rightarrow 0.$$

The first injective map is composed of

$$K_{1,1} \otimes \mathcal{O}_{\mathbb{P}_3^*}(-1) \rightarrow K_{1,1} \otimes (V_1^* \otimes V_2^*) \otimes \mathcal{O}_{\mathbb{P}_3^*} \rightarrow K_{0,0} \otimes \mathcal{O}_{\mathbb{P}_3^*},$$

where the first map is from the Euler sequence over \mathbb{P}_3^* and the second map is from the map δ . So ϑ_E is an $\mathcal{O}_{S(E)}$ -sheaf.

From the incidence variety $\mathbf{I} \subset Q \times \mathbb{P}_3^*$, we obtain

$$0 \rightarrow \pi_1^* \mathcal{O}_Q(-1, -1) \otimes \pi_2^* \mathcal{O}_{\mathbb{P}_3^*}(-1) \rightarrow \mathcal{O}_{Q \times \mathbb{P}_3^*} \rightarrow \mathcal{O}_{\mathbf{I}} \rightarrow 0.$$

If we tensor it with $\pi_1^* E$ and take the direct image of it, we obtain,

$$0 \rightarrow K_{1,1} \otimes \mathcal{O}_{\mathbb{P}_3^*}(-1) \rightarrow K_{0,0} \otimes \mathcal{O}_{\mathbb{P}_3^*} \rightarrow R^1 \pi_{2*} \pi_1^* E \rightarrow 0.$$

Since this exact sequence coincide with the sequence (8), we have

Lemma 2.13. $\vartheta_E(1) \simeq R^1 \pi_{2*} \pi_1^* E$.

3. EXAMPLES

Let $\mathcal{M}(k)$ be the moduli space of stable vector bundles of rank 2 on Q with the Chern classes $c_1 = \mathcal{O}_Q(-1, -1)$ and $c_2 = k$ with respect to the ample line bundle $\mathcal{O}_Q(1, 1)$. The dimension of $\mathcal{M}(k)$ can be computed to be $4k - 5$. By sending $E \in \mathcal{M}(k)$ to the set of jumping conics of E , we can define a morphism

$$S : \mathcal{M}(k) \rightarrow |\mathcal{O}_{\mathbb{P}^*_3}(k-1)| \simeq \mathbb{P}_N,$$

where $N = \binom{k+2}{3} - 1$.

Let $Z = \{x_1, \dots, x_k\}$ be a 0-dimensional subscheme of Q with length k in general position. If E is a stable vector bundle fitted into the exact sequence,

$$0 \rightarrow \mathcal{O}_Q \rightarrow E(1, 1) \rightarrow I_Z(1, 1) \rightarrow 0,$$

which is called a *Hulsbergen bundle*, then E is in $\mathcal{M}(k)$. Note that if $k \leq 4$, then $E \in \mathcal{M}(k)$ admits the above exact sequence. Conversely, let us consider the above extension. It is parametrized by

$$\mathbb{P}(Z) := \mathbb{P} \text{Ext}^1(I_Z(1, 1), \mathcal{O}_Q) \simeq \mathbb{P} H^0(\mathcal{O}_Z)^*.$$

If we give $\mathbb{P}(Z)$ the coordinate system (c_1, \dots, c_k) corresponding to Z , then by the lemma (5.1.2) in Chapter 1 [13] or [4], the bundle E corresponding to (c_1, \dots, c_k) is locally free if and only if $c_i \neq 0$ for all i .

Now by the theorem (2.10), $S(E) \subset \mathbb{P}^*_3$ is a hypersurface of degree $k - 1$.

Lemma 3.1.

- (1) If $|Z \cap H| \geq 3$, then $h^0(E|_{C_H}) \geq 2$.
- (2) If $|Z \cap H| \leq 2$, then $h^0(E|_{C_H}) \leq 1$.

Proof. Let $m = |Z \cap H| \geq 3$. If C_H is a smooth conic, then by tensoring the above exact sequence with \mathcal{O}_H , we have $E|_{C_H} \simeq \mathcal{O}_{C_H}((m-1)p) \oplus \mathcal{O}_{C_H}(-mp)$ since $\text{Ext}^1(\mathcal{O}_{C_H}(-mp), \mathcal{O}_{C_H}((m-1)p)) = 0$. Thus, $h^0(E|_{C_H}) \geq 2$.

Let us assume that $C_H = l_1 + l_2$, i.e. H is a tangent plane of Q . Note that

$$h^0(C_H, \mathcal{O}(a_1, a_2)) = \begin{cases} 0, & \text{if } a_i < 0; \\ a_i, & \text{if } a_i \geq 0, a_j < 0; \\ a_1 + a_2 + 1, & \text{if } a_i \geq 0 \end{cases}$$

where $\mathcal{O}(a_1, a_2) := \mathcal{O}_{l_1}(a_1) \cup \mathcal{O}_{l_2}(a_2)$. From the lemma (2.1) in [11], it is clear that $h^0(E|_{C_H}) \geq 2$. For example, when $m = 3$ and $Z \cap H = \{x, y, z\}$, $x, y \in l_1$, $z \in l_2$ and $q = l_1 \cap l_2 \notin Z$, we have

$$(9) \quad 0 \rightarrow \mathcal{O}_{l_1}(1) \cup \mathcal{O}_{l_2} \rightarrow E \rightarrow \mathcal{O}_{l_1}(-2) \cup \mathcal{O}_{l_2}(-1) \rightarrow 0,$$

and in particular the filtrations in the lemma (2.1) of [11], coincide in q . Thus, $h^0(E|_{C_H}) = 2$.

Assume that $|Z \cap H| \leq 2$. If C_H is smooth, we obtain in a similar way as above that $E|_{C_H}$ is either $\mathcal{O}_{C_H}(-2p) \oplus \mathcal{O}_{C_H}$ or $\mathcal{O}_{C_H}(-p) \oplus \mathcal{O}_{C_H}(-p)$ and thus $h^0(E|_{C_H}) \leq 1$. When H is a tangent plane section at $q \in Q$, we can

also similarly show that $h^0(E|_{C_H}) \leq 1$, except when $Z \cap H = \{x, y\}$ and $y = q$, say $x \in l_1$. In this case, we have

$$\begin{aligned} E|_{l_1} &\simeq \mathcal{O}_{l_1}(1) \oplus \mathcal{O}_{l_1}(-2), \text{ and} \\ E|_{l_2} &\simeq \mathcal{O}_{l_2} \oplus \mathcal{O}_{l_2}(-1). \end{aligned}$$

Since $y = q$ is the intersection point of l_1 and l_2 , the sub-bundles $\mathcal{O}_{l_1}(1)$ and \mathcal{O}_{l_2} in (9) do not coincide at y . So $h^0(E|_{C_H}) = 1$. \square

Since we have $\binom{k}{3}$ hyperplanes that meet Z at 3 points and thus $S(E)$ has at least $\binom{k}{3}$ singular points. Thus we have the following statement.

Proposition 3.2. *For a Hulsbergen bundle $E \in \mathcal{M}(k)$, $S(E)$ is a hypersurface of degree $k - 1$ in \mathbb{P}_3^* with $\binom{k}{3}$ singular points.*

3.1. If $c_2 = 1$, then there is no stable vector bundles. In fact, it can be shown [8] that there exists a unique strictly semi-stable vector bundle $E_0 := \mathcal{O}_Q(-1, 0) \oplus \mathcal{O}_Q(0, -1)$. Since $h^0(E_0) = h^1(E_0(-1, -1)) = 0$, we have $h^0(E_0|_{C_H}) = 0$ for all $H \in \mathbb{P}_3^*$. Hence, if we extend the concept of the jumping conic to semi-stable bundles, we can say that there is no jumping conic of E_0 . It is consistent with the fact that $S(E_0)$ is a hypersurface of degree 0 in \mathbb{P}_3^* .

3.2. If $c_2 = 2$, then $S(E)$ is a hyperplane in \mathbb{P}_3^* . So the map S is from $\mathcal{M}(2)$ to \mathbb{P}_3 . It was shown in [8] that S extends to an isomorphism

$$\overline{S} : \overline{\mathcal{M}}(2) \rightarrow \mathbb{P}_3,$$

where $\overline{\mathcal{M}}(2)$ is the compactification of $\mathcal{M}(2)$ in the sense of Gieseker [6], whose boundary consists of non-locally free sheaves with the same numeric invariants. In fact, for $E \in \overline{\mathcal{M}}(2)$, we have $h^0(E(1, 1)) = 3$ and can define a morphism from $\mathbb{P}_2 \simeq \mathbb{P}H^0(E(1, 1))$ to the Grassmannian $Gr(1, 3)$, sending a section s to the line in \mathbb{P}_3 containing the two zeros of s . The image of this map can be shown to be a 2-cycles of $Gr(1, 3)$ corresponding to the unique point in \mathbb{P}_3 . \overline{S} maps E to this uniquely determined point. Moreover, $\mathcal{M}(2)$ maps to $\mathbb{P}_3 \setminus Q$ via S and in particular, $S(E)$ determines E completely. Let Z be a 0-cycle on Q with length 2 such that the support of Z does not lie on a line in Q and consider an extension family $\mathbb{P}(Z)$ of E , admitting the following exact sequence,

$$0 \rightarrow \mathcal{O}_Q \rightarrow E(1, 1) \rightarrow I_Z(1, 1) \rightarrow 0.$$

Then, $\mathbb{P}(Z) \simeq \mathbb{P}_1$ is the secant line of Q passing through the support of Z . From this description, it can be easily checked that $H \in S(E)$ if and only if $E|_{C_H} \simeq \mathcal{O}_{C_H} \oplus \mathcal{O}_{C_H}(-2p)$, which is consistent with the fact that $S(E)$ is smooth.

3.3. If $c_2 = 3$, we have a map $S : \mathcal{M}(3) \rightarrow |\mathcal{O}_{\mathbb{P}_3^*}(2)| \simeq \mathbb{P}_9$, where $S(E)$ is a quadric in \mathbb{P}_3^* . $E(1, 1)$ is fitted into the following exact sequence,

$$(10) \quad 0 \rightarrow \mathcal{O}_Q \rightarrow E(1, 1) \rightarrow I_Z(1, 1) \rightarrow 0,$$

with a 0-cycle Z on Q with length 3. If Z is contained in a line on Q , then E contains $\mathcal{O}_Q(0, -1)$ or $\mathcal{O}_Q(-1, 0)$ as a sub-bundle, contradicting to the stability of E . Thus there exists a unique hyperplane H in \mathbb{P}_3 containing Z .

Remark 3.3. Conversely, if Z is not contained in any line on Q , then it can be easily shown from the standard computation that any sheaf E admitting an exact sequence (10) is semi-stable. In fact, if a subscheme of length 2 of Z is contained in a line on Q , any sheaf E admitting (10) is strictly semi-stable.

Now let us consider a map

$$\eta_E : \mathbb{P}_1 \simeq \mathbb{P}H^0(E(1, 1)) \rightarrow Gr(2, 3) \simeq \mathbb{P}_3^*,$$

sending a section $s \in H^0(E(1, 1))$ to the projective plane in \mathbb{P}_3 containing a 0-cycle Z in the exact sequence (10), which is obtained from s . Before proving that η_E is a constant map, we suggest a different proof of the fact that $S(E)$ is a quadric cone in \mathbb{P}_3^* .

Proposition 3.4. *For $E \in \mathcal{M}(3)$, $S(E)$ is a quadric cone in \mathbb{P}_3^* with a vertex point.*

Proof. Let s be a section of $E(1, 1)$ from which $E(1, 1)$ admits an exact sequence (10) for a 0-dimensional cycle Z of length 3. Let $Z = \{z_1, z_2, z_3\}$. If H_s be a hyperplane in \mathbb{P}_3 containing Z , then $E|_{C_{H_s}}$ admits an exact sequence,

$$0 \rightarrow \mathcal{O}_{C_{H_s}}(p) \rightarrow E|_{C_{H_s}} \rightarrow \mathcal{O}_{C_{H_s}}(-3p) \rightarrow 0,$$

where p is a point on C_{H_s} . It splits since $H^1(\mathcal{O}_{C_{H_s}}(-6p)) = 0$. Thus $E|_{C_{H_s}}$ is isomorphic to $\mathcal{O}_{C_{H_s}}(p) \oplus \mathcal{O}_{C_{H_s}}(-3p)$ and in particular, $H_s \in S(E)$. Similarly, if H contains only 2 points of Z , then $H \in S(E)$. It can be shown that $H \notin S(E)$ if H contains only 1 point of Z . Let us consider a hyperplane $H(z_1)$ in \mathbb{P}_3^* , whose points correspond to the hyperplanes in \mathbb{P}_3 containing z_1 . From the previous argument, we know that the intersection of $H(z_1)$ with $S(E)$ consists of 2 straight lines whose intersection point corresponds to the hyperplane H_s . If $S(E)$ is a smooth quadric, then $H(z_1)$ is the tangent plane of $S(E)$ at H_s . Similarly, we can define $H(z_i)$, $i = 2, 3$, and they would also become the tangent plane of $S(E)$ at H_s , which is absurd. We can similarly derive a contradiction in the case when Q is a hyperplane in \mathbb{P}_3^* with multiplicity 2. Let us assume that $S(E)$ consists of two hyperplanes meeting at a line l . Clearly, H_s lies in l . There are 3 lines on $S(E)$ corresponding to the hyperplanes containing 2 points of Z and they are exactly the intersection of $H(z_i)$'s. Hence there is a hyperplane of $S(E)$ that contains two intersecting lines of $H(z_i)$'s. It is impossible since the two intersecting lines of $H(z_i)$ with $S(E)$ lie on different components of $S(E)$. Thus Q is a quadric cone with a vertex point. \square

Corollary 3.5. *For $E \in \mathcal{M}(3)$, the map η_E is a constant map to the vertex point of $S(E)$.*

Proof. Using the notation in the proof of the preceding proposition, the planes $H(z_i)$ meet with $S(E)$ at two different lines. The only possibility is that H_s is the vertex point of $S(E)$. Now we get the assertion since this argument is valid for all sections of $E(1, 1)$. \square

Remark 3.6. The hyperplane H corresponding to the vertex point of $S(E)$ is the unique hyperplane for which $E|_{C_H}$ is isomorphic to $\mathcal{O}_{C_H}(-3p) \oplus \mathcal{O}_{C_H}(p)$, where p is a point on Q . For the other hyperplanes in $S(E)$, $E|_{C_H}$ become $\mathcal{O}_{C_H}(-2p) \oplus \mathcal{O}_{C_H}$.

By sending $E \in \mathcal{M}(3)$ to the vertex point of $S(E)$, we can define a map

$$\Lambda^* : \mathcal{M}(3) \rightarrow \mathbb{P}_3^*.$$

Let p be a point in $\mathbb{P}_3^* \setminus Q^*$, where Q^* is the dual of Q , whose points correspond to the tangent planes of Q . We can pick a stable vector bundle E fitted into the exact sequence (10) for a 0-cycle Z of length 3 whose support lies in the hyperplane section corresponding to p . Then E maps to the point p via Λ^* . In the case when $p \in Q^*$, we can also choose a 0-cycle Z for which there exists a stable vector bundle E mapping to p . Thus Λ^* is surjective and its generic fibres are 4-dimensional.

Now let us consider the determinant map

$$\lambda_E : \wedge^2 H^0(E(1, 1)) \rightarrow H^0(\mathcal{O}_Q(1, 1)).$$

Since $h^0(E(1, 1)) = 2$, the dimension of the domain is 1-dimensional.

Lemma 3.7. λ_E is injective.

Proof. We follow the argument in the proof of the lemma (6.6) in [14]. Let s_1, s_2 be two linearly independent sections of $E(1, 1)$. Assume that $s_1 \wedge s_2$ maps to 0 via λ_E . It would generate a line subbundle L of $E(1, 1)$ with $h^0(L) = 2$. The only choices for L is $\mathcal{O}_Q(0, 1)$ and $\mathcal{O}_Q(1, 0)$, and both contradict the stability of E . \square

Let us define q_E to be the point in $\mathbb{P}_3^* \simeq \mathbb{P}H^0(\mathcal{O}_Q(1, 1))$ corresponding to the image of λ_E . Since $E(1, 1)$ is fitted into the exact sequence (10), $H^0(E(1, 1))$ can be considered as the direct sum of $H^0(\mathcal{O}_Q)$ and $H^0(I_Z(1, 1))$, so $\wedge^2 H^0(E(1, 1))$ is isomorphic to $H^0(I_Z(1, 1))$. From the long exact sequence of cohomology of the exact sequence,

$$0 \rightarrow I_Z(1, 1) \rightarrow \mathcal{O}_Q(1, 1) \rightarrow \mathcal{O}_Z \rightarrow 0,$$

$H^0(I_Z(1, 1))$ is embedded into $H^0(\mathcal{O}_Q(1, 1))$. This embedding is determined by the injection of $H^0(\mathcal{O}_Z)^*$ into $H^0(\mathcal{O}_Q(1, 1))^*$, i.e. the hyperplane in \mathbb{P}_3 containing Z . We know from the preceding corollary that this hyperplane is independent on the sections of $E(1, 1)$. Thus the embedding of $H^0(I_Z(1, 1))$ into $H^0(\mathcal{O}_Q(1, 1))$ is independent on Z and it would give the same map as λ_E . As a quick consequence of this argument, we obtain that the image

of λ_E corresponds to the unique hyperplane in \mathbb{P}_3 containing Z . In other words, we obtain the following statement.

Proposition 3.8. *q_E is the vertex point of $S(E)$.*

Remark 3.9. Let f_Q be the polar map from \mathbb{P}_3 to \mathbb{P}_3^* given by

$$(11) \quad [x_0, \dots, x_3] \mapsto [\frac{\partial f}{\partial t_0}(x), \dots, \frac{\partial f}{\partial t_3}(x)],$$

where f is the homogeneous polynomial of degree 2 defining Q . Then we have a surjective map from $\mathcal{M}(3)$ to \mathbb{P}_3 ,

$$\Lambda := f_Q^{-1} \circ \Lambda^* : \mathcal{M}(3) \rightarrow \mathbb{P}_3.$$

For $E \in \mathcal{M}(3)$, let H_E be the hyperplane of \mathbb{P}_3 corresponding to q_E . Note that $C_{H_E} = H_E \cap Q$ is the set of points $p \in Q$ for which $\Lambda(E)$ is contained in the tangent plane of Q at p . Thus we can define the map Λ by sending E to the intersection point of the tangent planes at the support of Z in the exact sequence (10), which is independent on the choice of a section of $E(1, 1)$.

Recall that the set of singular quadrics in \mathbb{P}_3^* is the discriminant hypersurface \mathcal{D}_2 in \mathbb{P}_9 defined by the equation $\det(\mathcal{A}) = 0$, where \mathcal{A} is a symmetric 4×4 -matrix. By differentiating, we know that the singular points of \mathcal{D}_2 are defined by the determinants of 3×3 -minors of \mathcal{A} , i.e. the singular points of \mathcal{D}_2 correspond to the singular quadrics of rank ≤ 2 . Let \mathcal{D}_2^0 be the smooth part of \mathcal{D}_2 . Then we have the following picture,

$$(12) \quad \begin{array}{ccc} \mathcal{M}(3) & \xrightarrow{S} & \mathcal{D}_2^0 \\ & \searrow \Lambda^* & \downarrow \\ & & \mathbb{P}_3^*, \end{array}$$

where \mathcal{D}_2^0 is an open Zariski subset of a quartic hypersurface \mathcal{D}_2 of \mathbb{P}_9 and the vertical map sends a singular quadric of rank 3 to its vertex point.

Let $E \in (\Lambda^*)^{-1}(q_E)$ with $q_E \notin Q^*$. Thus H_E is not a tangent plane of Q and so C_{H_E} is a smooth conic on H_E . Let \mathbb{P}_2^* be the image of H_E via the polar map f_Q , which is a hyperplane of \mathbb{P}_3^* , not containing q_E . Then \mathbb{P}_2^* contains the dual conic $C_{H_E}^*$ of C_{H_E} via $f_Q|_{H_E}$. Let π_{q_E} be the projection map from \mathbb{P}_3^* to \mathbb{P}_2^* at q_E . Then we can assign a smooth conic $C(E) := \pi_{q_E}(S(E)) \subset \mathbb{P}_2^*$ to E , i.e. we have a map

$$\pi_{q_E} : (\Lambda^*)^{-1}(q_E) \rightarrow |\mathcal{O}_{\mathbb{P}_2^*}(2)| \simeq \mathbb{P}_5.$$

Clearly, $C(E) \neq C_{H_E}^*$.

Let us fix a general hyperplane H of \mathbb{P}_3 . For a 0-cycle Z with length 3 contained in $C_H \simeq \mathbb{P}_1$, we can consider an extension space $\mathbb{P}(Z) := \mathbb{P}\text{Ext}^1(I_Z(1, 1), \mathcal{O}_Q) \simeq \mathbb{P}_2$. Note that the Hilbert scheme parametrizing 0-cycles on C_H with length 3, $\mathbb{P}_1^{[3]}$, is isomorphic to \mathbb{P}_3 . Let us define

$$\mathcal{U} := R^1 p_{1*}(\mathcal{I} \otimes {p_2}^* \mathcal{O}_Q(-1, -1)),$$

where p_1, p_2 are the projections from $\mathbb{P}_3 \times Q$ to each factors and \mathcal{I} is the universal ideal sheaf of $\mathbb{P}_3 \times Q$. We can easily find that \mathcal{U} is a vector bundle on \mathbb{P}_3 of rank 3 and the fibre of $\mathbb{P}(\mathcal{U}^*)$ at $Z \in \mathbb{P}_3$ is $\mathbb{P}(Z)$. Then we have a rational map from $\mathbb{P}(\mathcal{U}^*)$ to $\mathcal{M}(3)_q := (\Lambda^*)^{-1}(q)$, and eventually to \mathbb{P}_5 after the composition with π_q , where q corresponds to H . In particular, the dimension of the image of $\mathbb{P}(\mathcal{U}^*)$ is less than 5 since the dimension of $\mathcal{M}(3)_q$ is 4.

$$(13) \quad \begin{array}{ccc} \mathbb{P}(\mathcal{U}^*) & \xrightarrow{\quad} & \mathbb{P}_5 \\ & \searrow & \swarrow \\ & \mathcal{M}(3)_q & \end{array}$$

For a general 0-cycle $Z = \{z_1, z_2, z_3\}$ on C_H , let $p_{ij} \in \mathbb{P}_2^*$ be the point corresponding to the line containing z_i and z_j . The conic $C(E)$ contains p_{ij} and so the image of $\mathbb{P}(Z)$ is contained in the projective plane in \mathbb{P}_5 parametrizing all the conics passing through three points p_{ij} . Let $Z^* = \{z_1^*, z_2^*, z_3^*\}$ be the dual lines on \mathbb{P}_2^* of Z , then p_{ij} is the intersection point of z_i^* and z_j^* . If we choose linear forms $0 \neq Z_i \in H^0(\mathcal{O}_{\mathbb{P}_2^*}(1))$ which vanish on z_i^* , then from the previous statement, $\pi_q \circ S$ is defined by

$$\begin{aligned} \pi_q \circ S : \mathbb{P}(Z) &\rightarrow |\mathcal{O}_{\mathbb{P}_2^*}(2)| \\ (c_1, c_2, c_3) &\mapsto f_1 Z_2 Z_3 + f_2 Z_1 Z_3 + f_3 Z_1 Z_2, \end{aligned}$$

where (c_1, c_2, c_3) is the coordinates from the identification of $\mathbb{P}(Z)$ with $\mathbb{P}H^0(\mathcal{O}_Z)^*$ and f_i 's are homogeneous polynomials of c_j 's.

Proposition 3.10. *For a general 0-cycle Z , the map $\pi_q \circ S$ from $\mathbb{P}(Z)$ to \mathbb{P}_5 sending E to $\pi_q(S(E))$, is a linear embedding.*

Proof. From the previous argument, it is enough to check that f_i 's are linearly independent linear polynomials. In fact we can prove that $f_i \equiv c_i$ for all i .

Recall that \mathbf{I} is the incidence variety in $Q \times \mathbb{P}_3^*$ with the projections π_1 and π_2 . Then we have an isomorphism,

$$h : \mathcal{O}_{\mathbb{P}_3^*} \rightarrow \pi_{2*}\pi_1^*I_Z((0,0),3),$$

given by the multiplication with $Z_1 Z_2 Z_3$. Here, $\mathcal{O}_{\mathbf{I}}((a,b),c)$ is the sheaf $\pi_1^*\mathcal{O}_Q(a,b) \otimes \pi_2^*\mathcal{O}_{\mathbb{P}_3^*}(c)$ on \mathbf{I} . Note that $\pi_{2*}\pi_1^*I_Z$ is the ideal sheaf of functions on \mathbb{P}_3^* , vanishing on the lines z_i^* . From the canonical homomorphisms,

$$\begin{aligned} \mathrm{Ext}^1(I_Z(1,1), \mathcal{O}_Q) &\rightarrow \mathrm{Ext}^1(\pi_1^*I_Z(1,1), \mathcal{O}_{\mathbf{I}}) \\ &\rightarrow \mathrm{Ext}^1(\pi_1^*I_Z((0,0),3), \mathcal{O}_{\mathbf{I}}((-1,-1),3)), \end{aligned}$$

we can assign to an element $\varepsilon \in \mathrm{Ext}^1(I_Z(1,1), \mathcal{O}_Q)$, an extension

$$(14) \quad 0 \rightarrow \mathcal{O}_{\mathbf{I}}((-1,-1),3) \rightarrow \pi_1^*E((0,0),3) \rightarrow \pi_1^*I_Z((0,0),3) \rightarrow 0.$$

From the long exact sequence of cohomology of (14), we obtain

$$H^0(\mathcal{O}_{\mathbb{P}_3^*}) \rightarrow H^0(\pi_1^*I_Z((0,0),3)) \rightarrow H^1(\mathcal{O}_{\mathbf{I}}((-1,-1),3)) \simeq H^0(\mathcal{O}_{\mathbb{P}_3^*}(2)),$$

and let $\pi(\varepsilon)$ be the image of $1 \in H^0(\mathcal{O}_{\mathbb{P}_3^*})$. Then we can define a homomorphism

$$(15) \quad \pi : \mathrm{Ext}^1(I_Z(1,1), \mathcal{O}_Q) \rightarrow H^0(\mathcal{O}_{\mathbb{P}_3^*}(2)),$$

by sending ε to $\pi(\varepsilon)$.

From the inclusion $I_{z_i} \hookrightarrow I_Z$, we have a natural injection from

$$\mathrm{Ext}^1(I_{z_i}(1,1), \mathcal{O}_Q) \simeq \mathbb{C} \hookrightarrow \mathrm{Ext}^1(I_Z(1,1), \mathcal{O}_Q)$$

whose image is $H^0(\mathcal{O}_{z_i})^*$. It can be easily checked that any element in the image is mapped to $H^0(\mathcal{O}_{\mathbb{P}_3^*}(2))$ by the multiplication with $(Z_1 Z_2 Z_3)/Z_i$. Thus π is defined by sending (c_1, c_2, c_3) to $c_1 Z_2 Z_3 + c_2 Z_1 Z_3 + c_3 Z_1 Z_2$.

When we take the direct image of (14), then we obtain

$$\begin{aligned} \pi_{2*}\pi_1^*E((0,0),3) &\rightarrow \pi_{2*}\pi_1^*I_Z((0,0),3) \rightarrow R^1\pi_{2*}\mathcal{O}_{\mathbf{I}}((-1,-1),3) \\ &\rightarrow R^1\pi_{2*}\pi_1^*E((0,0),3) \rightarrow R^1\pi_{2*}\pi_1^*I_Z((0,0),3) \rightarrow 0. \end{aligned}$$

Note that $\pi_{2*}\pi_1^*I_Z((0,0),3) \simeq \mathcal{O}_{\mathbb{P}_3^*}$, $R^1\pi_{2*}\mathcal{O}_{\mathbf{I}}((-1,-1),3) \simeq \mathcal{O}_{\mathbb{P}_3^*}(2)$ and the second map in the sequence above, is given by the multiplication with $\pi(\varepsilon)$. As an analogue of the result in [9], we can easily check that $R^1\pi_{2*}\pi_1^*E((0,0),3)$ is isomorphic to $\vartheta_E(4)$ and its support is $S(E)$. On the other hand, the support of $R^1\pi_{2*}\pi_1^*I_Z((0,0),3)$ is contained in $\{p_{ij}\}$ and thus the support of $S(E)$ is same as the support of $\{\pi(\varepsilon) = 0\}$. Because of the same degree, they are the same. \square

Remark 3.11. Using the argument as in the similar statement on the projective plane in [10], we can prove that a sheaf $E \in \mathbb{P}(Z)$ with the coordinates (c_1, c_2, c_3) is locally free if and only if $c_i \neq 0$ for all i . Thus from the proof of the preceding proposition, we can observe that the conic corresponding to the image of E is smooth if and only if E is locally free. Note that the secant variety V_3 of the Veronese surface in \mathbb{P}_5 is a cubic hypersurface. The intersection of the image of $\mathbb{P}(Z)$ with V_3 are the 3 lines, which are the image of non-locally free sheaves in $\mathbb{P}(Z)$.

We can see that the same statement holds for arbitrary hyperplane section $H \in \mathbb{P}_3^*$. If $H \in Q^*$, Q^* the dual conic of Q , then $C_H = l_1 \cup l_2$. Because of the stability condition, our 0-cycles of length 3 associated to E with $\Lambda^*(E) \in Q^*$ cannot have its support only on l_1 nor l_2 . So the family of 0-cycles we consider, is isomorphic to the two copies of $\mathbb{P}_1^{[2]} \times \mathbb{P}_1$. Let us denote

$$\mathcal{M}(3) = \mathcal{M}^0(3) \coprod \mathcal{M}^1(3) \coprod \mathcal{M}^2(3),$$

where $\mathcal{M}^0(3) = (\Lambda^*)^{-1}(\mathbb{P}_3^* \setminus Q^*)$ and $\mathcal{M}^i(3)$'s are the two irreducible components of $(\Lambda^*)^{-1}(Q^*)$ whose 0-cycles have two points of its support on the ruling equivalent to l_i .

First let us assume that $H \notin Q^*$. Let $V \subset \mathbb{P}_5$ be the image of $\mathbb{P}(\mathcal{U}^*)$ and $v \in V$ be a general point in V . Then there exists three points z_i 's on C_H and c_i 's for which we have $v = c_1 Z_1 + c_2 Z_2 + c_3 Z_3$. Since $z_i \in C_H$, the lines

Z_i 's are tangent to the dual conic C_H^* , i.e. Z_i 's is a circumscribed triangle around C_H^* . Note that Z_i 's is a inscribed triangle in v . Thus V is the closure of the family of conics Poncelet related to C_H^* (see section 2 in [5]). From the classical result, V is a hypersurface in \mathbb{P}_5 and the generic fibre of the map $\mathbb{P}(\mathcal{U}^*) \rightarrow V$ is isomorphic to \mathbb{P}_1 . In fact, from the remark (2.2.3) in [5], V is isomorphic to a hypersurface of degree 4, H_4 in the space of conics, given by the condition $c_2^2 - c_1c_3 = 0$, where

$$\det(A - tI_3) = (-t)^3 + c_1(-t)^2 + c_2(-t) + c_3,$$

is the characteristic polynomial of a symmetric matrix A defining a conic.

Let $E \in \mathcal{M}^1(3)$ and so $H \in Q^*$. If we define V as before and let $v \in V$ be a general conic, then v pass through the dual point $p_1 \in \mathbb{P}_2$ of l_1 . Let us fix a conic v passing through p_1 . If we choose $q_1 \in v$ not equal to p_1 , then consider a line l passing through q_1 and the dual point p_2 of l_2 . Let q_2 be the other intersection point of l with v . Then the dual points corresponding to the lines $\overline{p_1q_1}, \overline{q_1q_2}, \overline{q_2p_1}$ is a 0-cycle Z mapping to v . It depends on the choice of q_1 . Thus, V is isomorphic to a hyperplane in \mathbb{P}_5 and the generic fibre of the map from $\mathbb{P}(\mathcal{U}^*)$ is again isomorphic to \mathbb{P}_1 . We have the same argument for $\mathcal{M}^2(3)$.

As a direct consequence, $\mathcal{M}(3)_q$ is isomorphic to an open Zariski subset of a hyperplane in \mathbb{P}_5 and thus we have the following proposition.

Proposition 3.12. $\mathcal{M}(3)$ admits a fibration over \mathbb{P}_3^* whose fibre over $H \in \mathbb{P}_3^*$ is isomorphic to

- (1) an open Zariski subset $H_4 \cap (\mathbb{P}_5 \setminus V_3)$ of a H_4 , where V_3 is the secant variety of the Veronese surface $S \subset \mathbb{P}_5$ and H_4 is a hypersurface of degree 4 consisting of conics Poncelet related to $Q \cap H$, if $H \in \mathbb{P}_3^* \setminus Q^*$;
- (2) the union of two varieties $H_i \cap (\mathbb{P}_5 \setminus V_3)$, $i = 1, 2$, where H_i is the hyperplane in the space of conics which pass through a point p_i dual to the line $l_i \subset H$, where $Q \cap H = l_1 + l_2$, if $H \in Q^*$.

Remark 3.13. In fact, we can obtain differently the old result of Darboux on the Poncelet related conics in the case of triangles. We know that we have $\dim V \leq \dim \mathcal{M}(3)_q = 4$. Assume that C_H is a smooth conic. Let Δ_2 be the subscheme of $C_H^{[3]}$ whose points are 0-cycles with at most 2 points as their supports. Similarly, we can define $\Delta_3 \subset \Delta_2$. Let $Z \in \Delta_2$, say $Z = \{x, x, y\}$. The map $\mathbb{P}(Z) \rightarrow \mathbb{P}_5$ is naturally defined by sending (c_1, c_2, c_3) to $(c_1 + c_2)XY + c_3X^2$. From this observation, the image of \mathbb{P}_2 -bundle over δ_3 is $C_H \subset \mathbb{P}_5$ mapped by $|\mathcal{O}_{C_H}(2)|$. For $Z = \{x, x, y\}$, $\mathbb{P}(Z)$ is mapped to the line passing through X^2 and XY . When Y is moving along C_H , this line covers a projective plane $\mathbb{P}_2(x)$ passing through the point $X^2 \in C_H \subset \mathbb{P}_5$. Let D be the union of such projective planes over x moving along C_H . In particular, D is a subvariety of V with dimension 3 and all the non-locally free sheaves in $\mathbb{P}(\mathcal{U}^*)$ map to D . Also we have

$$V_3 \cap V = D,$$

where V_3 is the secant variety of the Veronese surface in \mathbb{P}_5 . It also implies that V is a subvariety of \mathbb{P}_5 with dimension 4.

Let us consider a fibre of the map $\mathbb{P}(\mathcal{U}^*) \rightarrow V$ over XY with $x, y \in C_H$. The image of the closure of this fibre via the projection to $C_H^{[3]}$ is isomorphic to \mathbb{P}_1 , parametrizing 0-cycles whose supports contain x and y . In fact, there exists a unique component of the closure of the fibre, mapping to $\mathbb{P}_1 \subset C_H^{[3]}$. It implies that the closure of the fibre over a generic conic v in V is isomorphic to \mathbb{P}_1 since there exists at most 1 point in $\mathbb{P}(Z)$ that maps to v .

In particular, the map $S : \mathcal{M}(k) \rightarrow \mathbb{P}_N$ is an isomorphism to its image, when $k \leq 3$.

Theorem 3.14. *The set of jumping conics of $E \in \mathcal{M}(k)$, determines E uniquely when $k \leq 3$.*

REFERENCES

- [1] W. Barth, *Moduli of vector bundles on the projective plane*, Invent. Math. **42** (1977), 63–91. MR 0460330 (57 #324)
- [2] ———, *Some properties of stable rank-2 vector bundles on \mathbf{P}_n* , Math. Ann. **226** (1977), no. 2, 125–150. MR 0429896 (55 #2905)
- [3] N. P. Buchdahl, *Stable 2-bundles on Hirzebruch surfaces*, Math. Z. **194** (1987), no. 1, 143–152. MR 871226 (88c:14022)
- [4] Fabrizio Catanese, *Footnotes to a theorem of I. Reider*, Algebraic geometry (L’Aquila, 1988), Lecture Notes in Math., vol. 1417, Springer, Berlin, 1990, pp. 67–74. MR 1040551 (91d:14022)
- [5] Igor Dolgachev, *Topics in classical algebraic geometry - part 1*, Lecture Notes, <http://www.math.lsa.umich.edu/~idolga/topics1.pdf>.
- [6] D. Gieseker, *On the moduli of vector bundles on an algebraic surface*, Ann. of Math. (2) **106** (1977), no. 1, 45–60. MR 466475 (81h:14014)
- [7] Joe Harris, *Algebraic geometry*, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1995, A first course, Corrected reprint of the 1992 original. MR 1416564 (97e:14001)
- [8] S. Huh, *A moduli space of stable sheaves on a smooth quadric in \mathbb{P}_3* , Preprint, arXiv:0810.4392 [math.AG], 2008.
- [9] Klaus Hulek, *Stable rank-2 vector bundles on \mathbf{P}_2 with c_1 odd*, Math. Ann. **242** (1979), no. 3, 241–266. MR 545217 (80m:14011)
- [10] W. Hulsbergen, *Vector bundles on the projective plane*, Ph.D. thesis, Leiden, 1976.
- [11] M. Idà and M. Manaresi, *Rank two vector bundles on \mathbf{P}^n uniform with respect to some rational curves*, Arch. Math. (Basel) **51** (1988), no. 3, 266–273. MR 960405 (89i:14011)
- [12] Masaki Maruyama, *The theorem of Grauert-Mülich-Spindler*, Math. Ann. **255** (1981), no. 3, 317–333. MR 615853 (82k:14012)
- [13] Christian Okonek, Michael Schneider, and Heinz Spindler, *Vector bundles on complex projective spaces*, Progress in Mathematics, vol. 3, Birkhäuser Boston, Mass., 1980. MR 561910 (81b:14001)
- [14] W. M. Oxbury, C. Pauly, and E. Previato, *Subvarieties of $SU_C(2)$ and 2ϑ -divisors in the Jacobian*, Trans. Amer. Math. Soc. **350** (1998), no. 9, 3587–3614. MR 1467474 (98m:14034)
- [15] Al Vitter, *Restricting semistable bundles on the projective plane to conics*, Manuscripta Math. **114** (2004), no. 3, 361–383. MR 2076453 (2005e:14066)

KOREA INSTITUTE FOR ADVANCED STUDY, HOEGIRO 87, DONGDAEMUN-GU, SEOUL
130-722, KOREA

E-mail address: `sukmoonh@kias.re.kr`