Exercícios sistemas de numeração:

- 1) Efetue as conversões de binário para decimal indicadas:
 a) 10110111₂
 b) 10001000₂
 c) 10111₂
 d) 101101111011₂
- 2) Efetue as conversões de decimal para binário indicadas:
 - a) 123₁₀

e) 11011001₂

- b) 231₁₀
- c) 536₁₀
- d) 77₁₀
- e) 212₁₀
- 3) Efetue as conversões de hexadecimal para binário indicadas:
 - a) BABA₁₆
 - b) 19AD₁₆
 - c) 32012₁₆
 - d) 10ABA₁₆
 - e) A12FE7C₁₆
- 4) Efetue as conversões de binário para hexadecimal indicadas:
 - a) 101011010100010100100001111010₂
 - b) 101101110111100010101011010₂
 - c) 10101001100001010110011000₂
 - d) 100010001111001110011101101₂
 - e) 1010011111011010100011011101010101000110112
- 5) Efetue as conversões de hexadecimal para decimal indicadas:
 - a) BABA₁₆
 - b) 19AD₁₆
 - c) 32012₁₆
 - d) 10ABA₁₆
 - e) A12FE7C₁₆
- 6) Qual o maior valor inteiro positivo que pode ser representado em:
 - a) 4 bits
 - b) 8 bits
 - c) 10 bits
 - d) 16 bits
 - e) 20 bits
- 7) Quantos dígitos hexadecimais são necessários para representar valores binários de:
 - a) 10 dígitos
 - b) 15 dígitos

- c) 20 dígitos
- d) 30 dígitos
- 8) Quantos bits são necessários para representar os valores decimais abaixo:
 - a) 3500
 - b) 60
 - c) 1000
 - d) 9999
 - e) 99999
- 9) Quantos dígitos hexadecimais são necessários para representar os valores decimais abaixo:
 - a) 3500
 - b) 60
 - c) 1000
 - d) 9999
 - e) 99999
- 10)construa uma tabela com 3 colunas nas quais deve ser escrito os números em ordem crescente de 0 a 30 em decimal, binário e hexadecimal.

- 11) Some os seguintes numerais binários (faça todas as contas na base 2):
 - a) 11 + 01
 - b) 10 + 10
 - c) 101 + 11
 - d) 111 + 110

- e) 1001 + 101
- f) 1101 + 1011
- 12)Use a subtração direta para os seguintes numerais binários (ou seja, faça as contas com "empréstimos" na base 2):
 - a) 11 1
 - b) 101 100
 - c) 110 101
 - d) 1110 11
 - e) 1100 1001
 - f) 11010 10111
- 13) Determine o complemento a 1 de cada numeral binário:
 - a) 101
 - b) 110
 - c) 1010
 - d) 11010111
 - e) 1110101
 - f) 00001
- 14) Determine o complemento a 2 de cada numeral binário:
 - a) 10
 - b) 111
 - c) 1001
 - d) 1101
 - e) 11100
 - f) 10011
 - g) 10110000
 - h) 00111101
- 15) Expresse cada numeral decimal a seguir como uma palavra binária do tipo sinal-magnitude em 8 bits:
 - a) +29
 - b) -85
 - c) +100
 - d) -123