Simulation of Iodine-Xenon Transients After Reactor Shutdown

Comparison of RK4 and Matrix Exponential Methods

Sajib Sakhawat

April 2025

Introduction

Introduction

Goal

Simulate behavior of I-135 and Xe-135 after reactor shutdown.

Introduction

Goal

Simulate behavior of I-135 and Xe-135 after reactor shutdown.

Why Important?

- Xe-135 is a strong neutron absorber.
- Accurate simulation ensures reactor safety.

Nuclear Physics Background

Isotopes Involved

- lodine-135 (I-135): Decays to Xe-135.
- Xenon-135 (Xe-135): Produced directly and from I-135.
- Xe-135 is termed a neutron poison because of its extremely high microscopic absorption cross-section

Nuclear Physics Background

Isotopes Involved

- lodine-135 (I-135): Decays to Xe-135.
- Xenon-135 (Xe-135): Produced directly and from I-135.
- Xe-135 is termed a neutron poison because of its extremely high microscopic absorption cross-section

Key Challenge

Xe-135 has a high neutron absorption cross-section.

Bateman equations and Parameters

Bateman equations

The equations for the I-135 and Xe-135 populations in a reactor, where λ_T is the decay constant for tellurium-135:

$$\frac{d}{dt}I(t) = \lambda_T T(t) - \lambda_I I(t)$$

$$\frac{d}{dt}X(t) = \lambda_I I(t) - \lambda_X X(t)$$

Bateman equations and Parameters

Bateman equations

The equations for the I-135 and Xe-135 populations in a reactor, where λ_T is the decay constant for tellurium-135:

$$\frac{d}{dt}I(t) = \lambda_T T(t) - \lambda_I I(t)$$

$$\frac{d}{dt}X(t) = \lambda_I I(t) - \lambda_X X(t)$$

Fixed Nuclear Constants

Symbol	Description	Value
λ_I	Decay constant of I-135	$2.874 \times 10^{-5} \text{ s}^{-1}$
λ_X	Decay constant of Xe-135	$2.027 \times 10^{-5} \text{ s}^{-1}$
Y_I, Y_X	Fission yields	0.061, 0.003
σ_{aX}	Absorption cross-section of Xe-135	$2.75 imes 10^{-18} \; ext{cm}^2$

Equilibrium Before Shutdown

The equilibrium concentrations I_0 and X_0 represent the steady-state levels of lodine-135 and Xenon-135 during full-power operation of the reactor.

Initial Concentrations

$$I_0 = \frac{Y_I \cdot \Sigma_f \cdot \phi}{\lambda_I}$$
$$X_0 = \frac{Y_X \cdot \Sigma_f \cdot \phi + \lambda_I I_0}{\lambda_X + \sigma_{aX} \cdot \phi}$$

Equilibrium Before Shutdown

The equilibrium concentrations I_0 and X_0 represent the steady-state levels of lodine-135 and Xenon-135 during full-power operation of the reactor.

Initial Concentrations

$$I_0 = \frac{Y_I \cdot \Sigma_f \cdot \phi}{\lambda_I}$$
$$X_0 = \frac{Y_X \cdot \Sigma_f \cdot \phi + \lambda_I I_0}{\lambda_X + \sigma_{aX} \cdot \phi}$$

- φ: Neutron flux
- Σ_f : Macroscopic fission cross-section

Equilibrium Before Shutdown

The equilibrium concentrations I_0 and X_0 represent the steady-state levels of lodine-135 and Xenon-135 during full-power operation of the reactor.

Initial Concentrations

$$I_0 = \frac{Y_I \cdot \Sigma_f \cdot \phi}{\lambda_I}$$

$$X_0 = \frac{Y_X \cdot \Sigma_f \cdot \phi + \lambda_I I_0}{\lambda_X + \sigma_{aX} \cdot \phi}$$

- φ: Neutron flux
- Σ_f : Macroscopic fission cross-section

Significance

- As Initial Conditions
- Incorrection of values leading to inaccurate poisioning forecast

Simulation Methods

Simulation Methods

RK4 (Runge-Kutta 4th Order)

- Step-by-step numerical integration
- It uses combinations of explicit and implicit iterative methods in temporal discretization to approximate solutions of ordinary differential equations.

Simulation Methods

RK4 (Runge-Kutta 4th Order)

- Step-by-step numerical integration
- It uses combinations of explicit and implicit iterative methods in temporal discretization to approximate solutions of ordinary differential equations.

Matrix Exponential

- The matrix exponential is a matrix function on square matrices analogous to the ordinary exponential function.
- It is used to solve systems of linear differential equations.
- Efficient and compact via exp(At)

Analytical Reference Solution

7 / 18

Sajib Sakhawat I-X Transient Simulation April 2025

Analytical Reference Solution

Xe-135 Concentration Over Time

$$X(t) = X_0 e^{-\lambda_X t} + \frac{\lambda_I I_0}{\lambda_X - \lambda_I} (e^{-\lambda_I t} - e^{-\lambda_X t})$$

• Used as benchmark for simulation accuracy.

Sajib Sakhawat I-X Transient Simulation April 2025 7 / 18

Simulation Setup

Simulation Setup

The simulation makes several simplifying assumptions for tractability and clarity:

- All neutrons are treated as if they belong to a single energy group.
- This neglects the energy dependence of cross-sections and reactions.
- The reactor core is assumed homogeneous spatial variations in flux and nuclide concentrations are ignored.
- Only I-135 and Xe-135 are modeled.
- Other isotopes or reaction channels are ignored.

Simulation Setup

The simulation makes several simplifying assumptions for tractability and clarity:

- All neutrons are treated as if they belong to a single energy group.
- This neglects the energy dependence of cross-sections and reactions.
- The reactor core is assumed homogeneous spatial variations in flux and nuclide concentrations are ignored.
- Only I-135 and Xe-135 are modeled.
- Other isotopes or reaction channels are ignored.

Parameters

- Time range: up to 70 hours
- Flux levels: 20% to 100% of base flux
- Step size: 3600 seconds (1 hour)

Simulation Workflow

Simulation Workflow

Average Runtime Over 300 Runs

Method	Avg. Runtime
RK4	0.001493 s
Matrix Exponential	0.031730 s

Average Runtime Over 300 Runs

Method	Avg. Runtime
RK4	0.001493 s
Matrix Exponential	0.031730 s

• RK4 is faster and suitable for linear systems.

Average Runtime Over 300 Runs

Method	Avg. Runtime
RK4	0.001493 s
Matrix Exponential	0.031730 s

- RK4 is faster and suitable for linear systems.
- The matrix exponential method requires longer calculation time, but it is much more accurate than the Fourth-order Runge-Kutta method.

Average Runtime Over 300 Runs

Method	Avg. Runtime
RK4	0.001493 s
Matrix Exponential	0.031730 s

- RK4 is faster and suitable for linear systems.
- The matrix exponential method requires longer calculation time, but it is much more accurate than the Fourth-order Runge-Kutta method.

Sajib Sakhawat I-X Transient Simulation April 2025 11 / 18

Fig: RK4 Method

Fig: EXPM Method

Sajib Sakhawat I-X Transient Simulation April 2025 12 / 18

Figure: 3D plot of expm Method

Behavior After Shutdown

• Xe-135 builds up then decays.

Sajib Sakhawat I-X Transient Simulation April 2025 13 / 18

Behavior After Shutdown

- Xe-135 builds up then decays.
- Poisoning level changes with flux.

Sajib Sakhawat I-X Transient Simulation April 2025 13 / 18

Behavior After Shutdown

- Xe-135 builds up then decays.
- Poisoning level changes with flux.
- Xenon poisoning peaks around 11 hrs after reactor shutdown and then decays with a relatively slower rate.

Behavior After Shutdown

- Xe-135 builds up then decays.
- Poisoning level changes with flux.
- Xenon poisoning peaks around 11 hrs after reactor shutdown and then decays with a relatively slower rate.
- The greater the flux is, the higher the poisoning peak is.

13 / 18

Sajib Sakhawat I-X Transient Simulation April 2025

Behavior After Shutdown

- Xe-135 builds up then decays.
- Poisoning level changes with flux.
- Xenon poisoning peaks around 11 hrs after reactor shutdown and then decays with a relatively slower rate.
- The greater the flux is, the higher the poisoning peak is.

13 / 18

Sajib Sakhawat I-X Transient Simulation April 2025

Sajib Sakhawat I-X Transient Simulation April 2025 14 / 18

Comparison of Results

Fig: RK4 Method

Fig: EXPM Method

Error Analysis

Error Analysis

Comparison with Analytical Solution

- Matrix method shows minimal error.
- RK4 introduces slight numerical error.

Error Analysis

Comparison with Analytical Solution

- Matrix method shows minimal error.
- RK4 introduces slight numerical error.
- In expm, there's a small spike in error around 30–35 hours, which might be due to: floating-point precision issues or slight rounding artifacts in matrix operations.
- The RK4 error behavior is largely independent of the flux.
- The smoothness of the curve shows RK4 is stable and doesn't exhibit erratic behavior.

Key Takeaways

 With higher flux, a higher xenon poisoning peak is observed, longer time required to decay.

Sajib Sakhawat I-X Transient Simulation April 2025 16 / 18

Key Takeaways

- With higher flux, a higher xenon poisoning peak is observed, longer time required to decay.
- The xenon build-up could render the reactor core impossible for restart during some time frame after a shutdown.

Sajib Sakhawat I-X Transient Simulation April 2025 16 / 18

Key Takeaways

- With higher flux, a higher xenon poisoning peak is observed, longer time required to decay.
- The xenon build-up could render the reactor core impossible for restart during some time frame after a shutdown.
- Both methods simulate I-X transients effectively. So at this point Matrix exponential method is preferred.

Sajib Sakhawat I-X Transient Simulation April 2025 16 / 18

Key Takeaways

- With higher flux, a higher xenon poisoning peak is observed, longer time required to decay.
- The xenon build-up could render the reactor core impossible for restart during some time frame after a shutdown.
- Both methods simulate I-X transients effectively. So at this point Matrix exponential method is preferred.
- When the problem becomes more complicated, computational efficiency might become a much greater concern, the less computationally expensive method RK4 could become the appropriate.

Key Takeaways

- With higher flux, a higher xenon poisoning peak is observed, longer time required to decay.
- The xenon build-up could render the reactor core impossible for restart during some time frame after a shutdown.
- Both methods simulate I-X transients effectively. So at this point Matrix exponential method is preferred.
- When the problem becomes more complicated, computational efficiency might become a much greater concern, the less computationally expensive method RK4 could become the appropriate.
- The matrix method matches the analytical solution almost perfectly, making it excellent for benchmarking or high-precision offline simulations.

Key Takeaways

- With higher flux, a higher xenon poisoning peak is observed, longer time required to decay.
- The xenon build-up could render the reactor core impossible for restart during some time frame after a shutdown.
- Both methods simulate I-X transients effectively. So at this point Matrix exponential method is preferred.
- When the problem becomes more complicated, computational efficiency might become a much greater concern, the less computationally expensive method RK4 could become the appropriate.
- The matrix method matches the analytical solution almost perfectly, making it excellent for benchmarking or high-precision offline simulations.

Limitations of Current Work

 Can only provide rough estimations of xenon transient as they currently only solve one-group Bateman equations in homogeneous reactor environment.

Limitations of Current Work

- Can only provide rough estimations of xenon transient as they currently only solve one-group Bateman equations in homogeneous reactor environment.
- There are many factors that have not been included in the models that could affect the calculation results, such as spatial variation of nuclide distribution and cross-sections and energy level dependence of the parameters.

Limitations of Current Work

- Can only provide rough estimations of xenon transient as they currently only solve one-group Bateman equations in homogeneous reactor environment.
- There are many factors that have not been included in the models that could affect the calculation results, such as spatial variation of nuclide distribution and cross-sections and energy level dependence of the parameters.

Next Steps

 Implementing these factors would require more sophisticated methods such as nodal diffusion methods, Method of Characteristics or Monte-Carlo neutron transport methods

Limitations of Current Work

- Can only provide rough estimations of xenon transient as they currently only solve one-group Bateman equations in homogeneous reactor environment.
- There are many factors that have not been included in the models that could affect the calculation results, such as spatial variation of nuclide distribution and cross-sections and energy level dependence of the parameters.

- Implementing these factors would require more sophisticated methods such as nodal diffusion methods. Method of Characteristics or Monte-Carlo neutron transport methods
- Incorporate real reactor data.

Limitations of Current Work

- Can only provide rough estimations of xenon transient as they currently only solve one-group Bateman equations in homogeneous reactor environment.
- There are many factors that have not been included in the models that could affect the calculation results, such as spatial variation of nuclide distribution and cross-sections and energy level dependence of the parameters.

Next Steps

- Implementing these factors would require more sophisticated methods such as nodal diffusion methods, Method of Characteristics or Monte-Carlo neutron transport methods
- Incorporate real reactor data.
- Couple with neutron kinetics and feedback models.

Limitations of Current Work

- Can only provide rough estimations of xenon transient as they currently only solve one-group Bateman equations in homogeneous reactor environment.
- There are many factors that have not been included in the models that could affect the calculation results, such as spatial variation of nuclide distribution and cross-sections and energy level dependence of the parameters.

Next Steps

- Implementing these factors would require more sophisticated methods such as nodal diffusion methods, Method of Characteristics or Monte-Carlo neutron transport methods
- Incorporate real reactor data.
- Couple with neutron kinetics and feedback models.

Thank you

THANK YOU