Let A and B be events. Then P(A or B) = P(A) + P(B) - P(A and B); $P(A, \text{ given } B) = \frac{P(A \text{ and } B)}{P(B)}$;

$$P(A, \text{ given } B) = \frac{P(A \text{ and } B)}{P(B)};$$

0.80

0.20

 $P(A) = 1 - P(A^c)$

0.98

0.02

0.99

0.01

If E and F are Independent, then P(E and F) = P(E) * P(F);

If E and F are Mutually Exclusive (disjoint), then P(E and F) = 0

0.85

0.15

	Mean	Variance/ St. Dev.	
Population	$\mu = \frac{\sum X}{N}$	$\sigma^2 = \frac{\sum (X - \mu)^2}{N}$	
Sample	$\bar{x} = \frac{\sum X}{n}$	$s^2 = \frac{\sum (X - \bar{x})^2}{n - 1}$	
Probability	$u = \nabla V \cdot D(V)$	$\sigma^2 = \sum X^2 * P(X) - \mu^2$	
Distribution	$\mu = \sum X * P(X)$		
Binomial			
Distribution	$\mu = np$	$\sigma = \sqrt{np(1-p)}$	
Uniform	c+d	d-c	
Distribution	$\mu = {2}$	$\sigma = \frac{1}{\sqrt{12}}$	
Sample Mean		$\sigma = \frac{\sigma}{\sigma}$	
Normal Distribution	$\mu_{\bar{x}} = \mu$	$\sigma_{\bar{x}} = \frac{1}{\sqrt{n}}$	
Sample Proportion Normal Distribution	$\mu_{\widehat{p}}=p$	$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$	

0.90

0.10

0.95

0.05

Population z-score: $z = \frac{\overline{X - \mu}}{\sigma}$; Sample z-score: $z = \frac{\overline{X - \overline{x}}}{\sigma}$

If \neq , use p = 2*(1 - NORM.S.DIST(ABS(z), 1))

Interquartile Formulas: $IQR = Q_3 - Q_1$; Lower Fence $= Q_1 - 1.5(IQR)$; Upper Fence $= Q_3 + 1.5(IQR)$ Smallest Sample Size for CI: for Population Mean $n = \left(Z_{\alpha/2} \frac{\sigma}{E}\right)^2$; for Population Proportion $n = p(1-p)\left(\frac{Z_{\alpha/2}}{E}\right)^2$

Excel Functions:

prop

Mean value, \bar{x} (or μ) =**AVERAGE**(cell: cell);

Mode value **=MODE**. **MULT**(cell: cell)

Minimum value =MIN(cell: cell); Median value =MEDIAN(cell: cell); Maximum value =MAX(cell: cell)

Standard Deviation and Variance: σ =STDEV. P(cell: cell), σ^2 =VAR. P(cell: cell); and s =STDEV. S(cell: cell), s^2 =VAR. S(cell: cell)

k% percentile, Pk =PERCENTILE. INC(cell: cell, k%); Quartiles Q_1 , Q_2 , Q_3 : $Q_k = QUARTILE$. INC(cell: cell, k)

 $(\hat{p} - \epsilon, \hat{p} + \epsilon)$

 $\epsilon = \text{CONFIDENCE. NORM}(1-\beta, \sqrt{\hat{p}(1-\hat{p})}, n)$

Linear Regression: $\hat{y} = \mathbf{a}^* x + \mathbf{b}$, where $\mathbf{a} = \mathbf{SLOPE}(y_data, x_data)$, $\mathbf{b} = \mathbf{INTERCEPT}(y_data, x_data)$

The linear correlation coefficient is $r = CORREL(y_data, x_data)$					
Binomial Distribution: $P(X = k)$ =BINOM. DIST $(k, n, p, 0)$, $P(X \le k)$ =BINOM. DIST $(k, n, p, 1)$					
Uniform Distribution: uniformly distributed on $[c,d]$; $P(a \le X \le b) = \frac{b-a}{d-c}$ $\frac{value}{value} = value / value$					
Normal Distribution: $P(X \le k)$ =NORM. DIST $(k, \mu, \sigma, 1)$ $value^2$ = $value^2$ 2					
Inverse Normal: Find k so that $P(X \le k) = prob$. Then, k =NORM. INV $(prob, \mu, \sigma)$					
	Confidence Interval	Hypothesis Test	\sqrt{value} =SQRT(value)		
Z-Interval: $\bar{x} \pm z_{\alpha/2} * \frac{\sigma}{\sqrt{n}}$		Z-Test: If			
Population Mean, μ	OR $(\bar{x} - \epsilon, \ \bar{x} + \epsilon)$ where	$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$ If >, use $p = 1 - \text{NORM. S. DIST}(z, 1)$			
	ϵ =CONFIDENCE. NORM(1- β , σ , n)	If \neq , use $p = 2*(1 - \text{NORM. S. DIST}(ABS(z), 1))$			
	T-Interval: $\bar{x} \pm t_{\alpha/2} * \frac{s}{\sqrt{n}}$		use $p = T.DIST(t, n-1, 1)$		
	OR $(\bar{x} - \epsilon, \ \bar{x} + \epsilon)$ where	$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}} $ If >	use $p = \mathbf{T}.\mathbf{DIST}.\mathbf{RT}(t, n-1)$		
	ϵ =CONFIDENCE. T(1- β , s, n)	If \neq , use $p = \mathbf{T}$. DIST . 2T (ABS (t), $n-1$)			
Population Proportion,	$\widehat{p}(1-\widehat{p})$	Z-Test: If < , u	se p =NORM. S. DIST(z , 1)		
	Z-Interval: $\hat{p} \pm z_{\alpha/2}^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	$z = \frac{\hat{p} - p_0}{\sqrt{(n_0 (1 - n_0)/n)}}$ If >, u	se $p = 1 - NORM. S. DIST(z, 1)$		