Systèmes et complexes - exercices supplémentaires

Exercice 1 Discuter et résoudre suivant les valeurs des réels λ et a:

(S)
$$\begin{cases} 3x + 2y - z + t &= \lambda \\ 2x + y - z &= \lambda - 1 \\ 5x + 4y - 2z &= 2\lambda \\ (\lambda + 2)x + (\lambda + 2)y - z &= 3\lambda + a \\ 3x - z + 3t &= -\lambda^2 \end{cases}$$

Montrer que $\frac{3+4i}{5}$ n'est pas une racine n^{ieme} de l'unité. Exercice 2

On pourra:

- Montrer : $\exists \theta \in \mathbb{R}$, $\frac{3+4i}{5} = \exp(i\theta)$ Montrer : $\forall n \in \mathbb{N}^*$, $\forall \theta \in \mathbb{R}$, $\exists (\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{Z}^n$, $\cos(n\theta) = 2^{n-1} \cos^n \theta + \alpha_1 \cos^{n-1} \theta + \dots + \alpha_{n-1} \cos \theta + \alpha_n$.
- $Calculer \cos n\theta \ et \cos \theta$.
- Conclure

Sur une horloge à aiguilles, combien y a-t-il de configurations possibles telles que, Exercice 3 lorsque l'on échange les aiguilles des heures et des minutes, cela donne aussi une heure valide?

Résoudre le système d'inconnue $(x,y)\in\mathbb{C}^2$: $\left\{\begin{array}{rcl} x^3&=&3x+7y\\ y^3&=&7x+3y \end{array}\right.$ (on résoudra Exercice 4 un système où les inconnues sont x + y et xy)