Grundbegriffe der Theoretischen Informatik

Sommersemester 2018 - Thomas Schwentick

Teil C: Berechenbarkeit und Entscheidbarkeit

12: Verschiedene Berechnungsmodelle

Version von: 5. Juni 2018 (12:14)

Inhalt

- > 12.1 Einleitung in Teil C
 - 12.2 WHILE-Programme
 - 12.3 GOTO-Programme
 - 12.4 Turingmaschinen

Ein einfaches algorithmisches Puzzle-Problem

- Wir betrachten zwei Varianten eines "Puzzle-Problems"
 - Eine wird sich als deutlich schwieriger als die andere herausstellen
- Einfache Variante des Puzzlespiels:
 - Gegeben: schwarze und gelbe Spielsteintypen mit Strings
 - Von jedem Steintyp stehen beliebig viele Steine zur Verfügung
 - Lässt sich das selbe Wort aus schwarzen wie aus gelben Spielsteinen legen?

Beispiel

- Schwarze Steintypen: 01 , 10 , 011
- Gelbe Steintypen: 101 | 00 | 11
- Lösungswort: 1010011
 - ... in schwarz: 10 10 011
 - ...und in gelb: 101 00 11

Definition (Pseudo-PCP)

Gegeben: eine Folge

$$(oldsymbol{u_1},oldsymbol{v_1}),\ldots,(oldsymbol{u_k},oldsymbol{v_k})$$
 von Paaren nicht-leerer Strings

Frage: Gibt es Indexfolgen i_1,\ldots,i_n und j_1,\ldots,j_m mit $n\geqslant 1$, so dass $u_{i_1}u_{i_2}\cdots u_{i_n}=v_{j_1}v_{j_2}\cdots v_{j_m}$?

- ullet Die Frage ist also: Gibt es einen String w, der sowohl aus u_i s als auch aus v_j s zusammen gesetzt werden kann
- Pseudo-PCP lässt sich mit Hilfe von Automaten in polynomieller Zeit entscheiden:
 - Konstruiere einen Automaten \mathcal{A} , der nichtleere Strings akzeptiert, die aus den u_i zusammengesetzt sind
 - Konstruiere einen Automaten \mathcal{B} , der nichtleere Strings akzeptiert, die aus den v_i zusammengesetzt sind
 - Teste ob $oldsymbol{L}(\mathcal{A}) \cap oldsymbol{L}(\mathcal{B}) \, \neq \, arnothing$

Ein schwieriges algorithmisches Puzzle-Problem

- Jetzt betrachten wir die schwierigere Variante
- Gegeben eine Menge von Spielsteintypen

- Von jedem Typ stehen beliebig viele Steine zur Verfügung
- Lassen sich die Steine so in einer Reihe auslegen, dass das schwarze (obere) Wort gleich dem gelben (unteren) Wort ist?

Beispiel

• Steintypen: 101

Mögliche Lösung:

Beispiel

• 10 101

hat keine Lösung

Definition (PCP)

Gegeben: eine Folge $(u_1,v_1),\ldots,(u_k,v_k)$ von Paaren nicht-leerer Strings

Frage: Gibt es eine Indexfolge i_1,\dots,i_n mit $n\geqslant 1$, so dass $u_{i_1}u_{i_2}\cdots u_{i_n}=v_{i_1}v_{i_2}\cdots v_{i_n}?$

- ullet Die Frage ist also: Gibt es einen String w, der sowohl aus u_i s als auch aus v_i s zusammen gesetzt werden kann, und zwar mit derselben nicht-leeren Indexfolge?
- $oldsymbol{oldsymbol{\circ}}$ Wir nennen eine solche Indexfolge $oldsymbol{ec{i}}=i_1,\ldots,i_n$ eine Lösung und den String $u_{i_1}u_{i_2}\cdots u_{i_n}$ einen Lösungsstring
- PCP = Postsches Korrespondenzproblem

Ein komplizierteres Beispiel

PCP ist algorithmisch nicht lösbar

 Wir werden in den nächsten Kapiteln den folgenden Satz beweisen

Satz

- PCP ist nicht entscheidbar
- Dazu benötigen wir einige Vorbereitung
- Zunächst müssen wir den Begriff "entscheidbar" definieren
- Informell soll ein algorithmisches Problem entscheidbar sein, wenn es einen Algorithmus gibt, der bei jeder Eingabe anhält und immer die richtige Antwort gibt
- Um dies zu formalisieren benötigen wir eine Definition von "Algorithmus"
- Um zu definieren, was ein Algorithmus ist, benötigen wir ein allgemeines "Berechnungsmodell"
- Damit unsere Definition nicht zu modellspezifisch wird, ziehen wir mehrere Berechnungsmodelle in Betracht

Inhalt

- 12.1 Einleitung in Teil C
- > 12.2 WHILE-Programme
 - 12.3 GOTO-Programme
 - 12.4 Turingmaschinen

Übersicht

- Wir suchen Antworten auf folgende Fragen
 - Was ist ein Algorithmus?
 - Wann ist eine Funktion berechenbar?
- Wir betrachten dazu verschiedene Berechnungsmodelle
- Zwei Modelle, die von Programmiersprachen inspiriert sind:
 - WHILE-Programme
 - GOTO-Programme
- Ein Modell, das als mächtige Erweiterung der endlichen Automaten aufgefasst werden kann, ursprünglich aber als mathematische Formalisierung des "Rechnens mit Papier und Bleistift" gedacht war:
 - Turingmaschinen
- Später betrachten wir noch ein Modell, das durch rekursive Definitionen inspiriert ist:
 - $-\mu$ -rekursive Funktionen
- Im nächsten Kapitel werden wir die Mächtigkeit dieser Berechnungsmodelle miteinander vergleichen

Partielle Funktionen

- Wir werden jetzt häufig partielle Funktionen über den natürlichen Zahlen verwenden
- ullet Bei partiellen Funktionen f muss der Funktionswert nicht für alle Elemente der Grundmenge definiert sein
- Notation:
 - $-f:\mathbb{N}_0
 ightharpoonup \mathbb{N}_0$
 - Um auszudrücken, dass $m{f}(m{n})$ undefiniert ist, schreiben wir: $m{f}(m{n}) = ot$

Beispiel

- Sei sqrt die partielle Funktion $\mathbb{N}_0
 ightharpoonup \mathbb{N}_0$, die jeder natürlichen Zahl n die natürliche Zahl m mit $m^2=n$ zuordnet, wenn ein solches m existiert
- Es gilt also z.B.:
 - $\operatorname{sqrt}(9) = 3$
 - $\operatorname{sqrt}(\mathbf{10}) = \bot$

Definition ($oldsymbol{D}(oldsymbol{f})$, $oldsymbol{W}(oldsymbol{f})$)

- ullet Sei $f:\mathbb{N}_0
 ightharpoonup \mathbb{N}_0$ eine partielle Funktion
 - Der <u>Definitionsbereich</u> $\underline{m{D}(f)}$ einer partiellen Funktion $m{f}$ ist

$$\{ \boldsymbol{n} \in \mathbb{N}_{\boldsymbol{0}} \mid \boldsymbol{f}(\boldsymbol{n}) \neq \bot \}$$

– Der <u>Wertebereich</u> $\underline{W(f)}$ einer partiellen Funktion f ist $\{n\in\mathbb{N}_{f 0}\mid \exists m\in\mathbb{N}_{f 0}: f(m)=n\}$

- Eine totale Funktion $\mathbb{N}_0 \to \mathbb{N}_0$ ist eine Funktion, die für alle natürlichen Zahlen definiert ist
- Der Begriff "partielle Funktion" erzwingt nicht, dass es Zahlen gibt, für die kein Funktionswert existiert
- Jede totale Funktion ist also auch eine partielle Funktion
- Wir werden auch partielle Funktionen über Strings betrachten

WHILE-Programme: Beispiele

Beispiel

```
x_1 \coloneqq x_2;
WHILE x_3 \neq 0 DO x_1 \coloneqq x_1 + 1;
x_3 \coloneqq x_3 \div 1
```

- Variablen nehmen in WHILE-Programmen nur Werte aus $\mathbb{N}_{\mathbf{0}}$ an
- Der Effekt des Programmes ist also:

$$x_1 := x_2 + x_3$$

$$\text{Und: } x_3 := 0$$

Beispiel

```
x_1 := 0;
WHILE x_3 \neq 0 DO x_4 := x_2;
WHILE x_4 \neq 0 DO x_1 := x_1 + 1;
x_4 := x_4 \div 1
END;
x_3 := x_3 \div 1
```

• Der (wesentliche) Effekt des Programmes ist: $x_1 := x_2 \times x_3$

Beispiel

$$x_1 := 1;$$
WHILE $x_1 \neq 0$ DO $x_3 := x_2 + 2$

Dieses Programm hält nie an...

WHILE-Programme: Syntax

- WHILE-Programme verwenden die folgenden syntaktischen Grundelemente:
 - Variablen: x_1, x_2, x_3, \ldots
 - Konstanten: 0, 1, 2, . . .
 - Trennsymbole: ; :=
 - Operationszeichen: + ∸
 - Schlüsselwörter: WHILE, DO, END

Definition (WHILE-Programm (Syntax))

 Die Syntax von WHILE-Programmen ist wie folgt definiert:

Wertzuweisung:

$$-x_i := c$$

$$-x_i := x_j$$

$$-x_i := x_j + c$$

$$-x_i := x_j - c$$

sind WHILE-Programme

(für jede Konstante c und $i,j\geqslant 1$)

Reihung: Falls P_1 und P_2 WHILE-

Programme sind, so auch $P_1; P_2$

Bedingte Wiederholung: Ist $oldsymbol{P}$ ein

WHILE-Programm, so auch

WHILE $oldsymbol{x_i} + oldsymbol{0}$ do $oldsymbol{P}$ end

WHILE-Programme: Semantik (1/2)

- Wir definieren die Semantik von WHILE-Programmen durch ihre Wirkung auf Speicherinhalte
- ullet Dabei modellieren wir Speicherinhalte durch Funktionen X, die die Werte der Variablen x_1, x_2, \ldots repräsentieren
 - X[i] repräsentiert den Wert von x_i

- $^{\circ}$ Manchmal beschreiben wir einen Speicherinhalt als Folge von Zahlen $X[1], X[2], X[3], \dots$
 - In dieser Sichtweise wird der initiale Speicherinhalt $X^b_{ ext{Init}}$ bei Eingabe b durch die Folge $b,0,0,\ldots$ repräsentiert

Definition (Speicherinhalt)

- ullet Ein <u>Speicherinhalt</u> X ist eine Funktion $\mathbb{N} o \mathbb{N}_0$, für die $X[i] \neq 0$ nur für endlich viele $i \in \mathbb{N}$ gilt
- ullet Der <u>initiale Speicherinhalt $X^b_{ ext{Init}}$ bei Eingabe ullet ullet $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{a</u>$

$$oldsymbol{X_{ ext{Init}}^{oldsymbol{b}}[i] \stackrel{ ext{def}}{=} egin{cases} oldsymbol{b} & ext{für } oldsymbol{i} = oldsymbol{1} \ oldsymbol{0} & ext{sonst} \end{cases}$$

riangle Wir schreiben hier $m{X}[i]$ statt $m{X}(i)$, um später die Unterscheidung zu anderen (runden) Klammern zu erleichtern

WHILE-Programme: Semantik (2/2)

Definition (WHILE-Programm (Semantik))

- ullet Ist X ein Speicherinhalt und P ein WHILE-Programm, so bezeichne P(X) den Speicherinhalt nach Bearbeitung von P
- ullet $oldsymbol{P}(oldsymbol{X})$ ist induktiv wie folgt definiert
- ullet Falls $m{P}$ von der Form $m{x_i} := m{x_j} + m{c}$ ist: $m{P}(m{X})[m{k}] \stackrel{ ext{def}}{=} egin{cases} m{X}[m{j}] + m{c} & ext{für } m{k} = m{i} \ m{X}[m{k}] & ext{sonst} \end{cases}$
 - Analog für $x_i := c$ und $x_i := x_i$
- ullet Falls $oldsymbol{P}$ von der Form $oldsymbol{P_1}; oldsymbol{P_2}$ ist: $oldsymbol{P}(X) \stackrel{ ext{def}}{=} oldsymbol{P_2}(oldsymbol{P_1}(X))$

Definition (Forts.)

ullet Ist $oldsymbol{P}$ von der Form

while
$$x_i \neq 0$$
 do P_1 end and X ein Speicherinhalt, so sei $P(X) \stackrel{ ext{def}}{=}$

$$egin{cases} X & ext{falls } X[i] = 0 \ P(P_1(X)) & ext{sonst} \end{cases}$$

- ullet Die durch ein WHILE-Programm P berechnete Funktion f_P ist wie folgt definiert:
 - Für jedes $m{b} \in \mathbb{N}_{m{0}}$ ist $m{f_P}(m{b}) \stackrel{ ext{def}}{=} m{P}(m{X}_{ ext{Init}}^{m{b}})[m{1}]$
- ullet Eine partielle Funktion $f: \mathbb{N}_0
 ightharpoonup \mathbb{N}_0$ heißt WHILE-berechenbar, falls $f=f_P$ für ein WHILE-Programm P
- ullet Der durch das Programm berechnete Funktionswert entspricht also dem Inhalt von x_1 nach Ende der Berechnung

WHILE-Programme: Bemerkungen

- Intuitive Bedeutung der Semantik der bedingten Wiederholung:
 - Solange $X[i] \neq 0$ gilt, wird P_1 ausgeführt
- Zu beachten:
 - Die Semantik-Definition ist rekursiv
 - $oldsymbol{P}(oldsymbol{X})$ ist nicht für alle $oldsymbol{P}$ und $oldsymbol{X}$ definiert
- Auch mehrstellige Funktionen lassen sich durch WHILE-Programme berechnen:
 - Für jedes k-Tupel $ec{a}=(a_1,\dots,a_k)$ sei $f_{P,k}(ec{a})$ der Wert von X'(1), wobei
 - $*~X'=P(X_{\mathsf{Init}}^{ec{a}})$
 - st und $X^{ec{a}}_{ ext{Init}}$ der Folge $a_1,\ldots,a_k,0,0,\ldots$ entspricht

- Wir haben schon gesehen, dass WHILE-Programme verschiedene Konstrukte simulieren können:
 - Addition zweier Variablen
 - Produkt zweier Variablen
- Es ist nicht schwer zu sehen, dass mit WHILE-Programmen auch bedingte Anweisungen der Art

IF
$$oldsymbol{x_1} = oldsymbol{c}$$
 THEN $oldsymbol{P}$ END simuliert werden können

- Wir werden im Folgenden solche Anweisungen als "syntaktischen Zucker" erlauben
- WHILE-Programme im Sinne der formalen Definition nennen wir im Folgenden "einfache WHILE-Programme"
- Der Begriff "WHILE-berechenbar" bezieht sich auf einfache WHILE-Programme

Inhalt

- 12.1 Einleitung in Teil C
- 12.2 WHILE-Programme
- **▶** 12.3 GOTO-Programme
 - 12.4 Turingmaschinen

GOTO-Programme: Syntax

Definition (GOTO-Programm (Syntax))

- Ein GOTO-Programm besteht aus einer Folge
 - $-M_1:A_1;$
 - $-M_2:A_2;$
 - _ :
 - $-M_k:A_k$

von Anweisungen A_i mit Sprungmarken M_i

- Mögliche Anweisungen:
 - Wertzuweisung:

$$egin{array}{ll} * & x_i := c \ * & x_i := x_j \ * & x_i := x_j + c \ * & x_i := x_j - c \end{array}$$

- Bedingter Sprung:

IF
$$x_i=c$$
 THEN GOTO M_j

– Stopanweisung: HALT

Beispiel

```
1: x_4 := 1;

2: x_1 := x_2;

3: IF x_3 = 0 THEN GOTO 7;

4: x_1 := x_1 + 1;

5: x_3 := x_3 - 1;

6: IF x_4 = 1 THEN GOTO 3;

7: HALT
```

• Intuitiv hat dieses Programm den Effekt:

$$x_1 := x_2 + x_3$$
 (und Seiteneffekte für x_3 und x_4)

- Das Beispiel illustriert, dass sich unbedingte Sprünge durch bedingte Sprünge simulieren lassen
 - Wir erlauben im Folgenden deshalb auch unbedingte Sprünge GOTO $\,M_{j}\,$ als syntaktischen Zucker
- Sprungmarken, die nicht als Sprungadresse dienen, lassen wir oft weg

GOTO-Programme: Semantik (1/2)

- Da die Syntax von GOTO-Programmen nicht induktiv definiert ist, lässt sich ihre Semantik auch nicht ohne weiteres induktiv definieren
- Wir definieren die Semantik deshalb mit Hilfe von Konfigurationen

Definition (Konfiguration eines GOTO-Programms)

- ullet Eine Konfiguration eines GOTO-Programmes P ist ein Paar (M;X), wobei M eine Sprungmarke von P und X ein Speicherinhalt ist
- ullet Start-Konfiguration bei Eingabe b: $(oldsymbol{M_1; X_{\mathsf{Init}}^b})$

GOTO-Programme: Semantik (2/2)

Definition (GOTO-Programm (Semantik))

- ullet Ist M eine Sprungmarke eines GOTO-Programms, so bezeichnet M+1 die Sprungmarke der folgenden Zeile
- Die Nachfolge-Konfiguration (M';X') einer Konfiguration $(M_\ell;X)$ ist wie folgt definiert:
 - Ist A_ℓ eine Wertzuweisung, so ist $M' \stackrel{ ext{def}}{=} M_\ell + 1$ und X' ist definiert wie bei WHILE-Programmen
- ullet Halte-Konfiguration: $(M_k+1;X)$ oder $(M_\ell;X)$ und A_ℓ ist HALT

Definition (Forts.)

- Die **Berechnung** von P bei Eingabe b ist die eindeutig bestimmte Folge K_1, K_2, \ldots von Konfigurationen mit:
 - $oldsymbol{K_1}=(oldsymbol{M_1},oldsymbol{X_{ ext{Init}}^b})$ und
 - jede Konfiguration K_i ist die Nachfolgekonfiguration von K_{i-1} (für i>1)
- ullet Falls die Berechnung von $oldsymbol{P}$ bei Eingabe $oldsymbol{b}$ endlich ist, so ist die letzte Konfiguration eine Halte-Konfiguration $(oldsymbol{M}; oldsymbol{X})$
- ullet Dann sei wieder: $f_{oldsymbol{P}}(b) \stackrel{ ext{ iny def}}{=} X[1]$
- ullet Falls die Berechnung von $oldsymbol{P}$ bei Eingabe $oldsymbol{b}$ unendlich ist, so ist $oldsymbol{f_P}(oldsymbol{b}) \stackrel{ ext{def}}{=} oldsymbol{\perp},$
- ullet Eine partielle Funktion $f:\mathbb{N}_0 o\mathbb{N}_0$ heißt <u>GOTO-berechenbar</u>, falls $f=f_P$ für ein GOTO-Programm P

Inhalt

- 12.1 Einleitung in Teil C
- 12.2 WHILE-Programme
- 12.3 GOTO-Programme
- > 12.4 Turingmaschinen

Warum Turingmaschinen?

- Bisher haben wir Berechnungsmodelle betrachtet, die sich an Programmiersprachen anlehnen:
 - WHILE- und GOTO-Programme
- Jetzt betrachten wir ein Berechnungsmodell, das "menschliche Rechner" zum Vorbild nimmt
- Dieses Modell wurde 1936 von Alan Turing "erfunden"

- Warum hat jemand
 - etliche Jahre vor dem Bau des ersten Computers und
 - Jahrzehnte vor der Entwicklung "richtiger Programmiersprachen"

ein abstraktes Berechnungsmodell erfunden?

- Turing war Mathematiker und wollte beweisen, dass es kein automatisches Verfahren gibt, das zu jeder mathematischen Aussage entscheidet, ob sie wahr oder falsch ist
- Etwas anders formuliert, wollte er zeigen, dass es keinen Algorithmus für das folgende algorithmische Problem gibt

Definition (Allgemeingültigkeitsproblem)

Gegeben: Prädikatenlogische Formel φ

Frage: Gilt für alle passenden Modelle \mathcal{M} :

 $\mathcal{M} \models \varphi$?

Turings Ideen zur Berechenbarkeit (1/4)

- Wie gesagt: zu Turings Zeit gab es noch keine künstlichen programmierbaren Rechner
- Wenn er von einem Computer sprach, meinte er einen Menschen, der nach einem festgelegten Verfahren etwas berechnet
- Seine Vorstellungen, wie ein solcher *Computer* arbeitet, hat er in der folgenden Arbeit beschrieben:
 - A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. *Proc. London Math. Soc.*, 2(42):230–265, 1936
- Die Abstraktion des Computers, die Turing in dieser Arbeit definierte, wird heute *Turingmaschine* genannt
- Schauen wir mal, welche Gedanken sich Alan Turing 1936 so gemacht hat...

Turings Ideen zur Berechenbarkeit (2/4)

- Computing is normally done by writing certain symbols on paper
- We may suppose this paper is divided into squares like a child's arithmetic book
- In elementary arithmetic the two-dimensional character of the paper is sometimes used
- But such a use is always avoidable, and I think that it will be agreed that the two-dimensional character of paper is no essential of computation
- I assume then that the computation is carried out on one-dimensional paper, i.e. on a tape divided into squares

 Arbeitsstring
- I shall also suppose that the number of symbols which may be printed is finite Arbeitsalphabet
 - If we were to allow an infinity of symbols, then there would be symbols differing to an arbitrarily small extent

Turings Ideen zur Berechenbarkeit (3/4)

- The **behaviour** of the computer at any moment is determined by the symbols which he is observing and his "state of mind" at that moment Registrand
- ullet We may suppose that there is a **bound** B to the **number of symbols** or squares **which** the computer can observe at one moment Zeiger/Kopf
- If he wishes to observe more, he must use successive observations
- We will also suppose that the number of states of mind which need be taken into account is finite
- Let us imagine the operations performed by the computer to be split up into "simple operations" which are so elementary that it is not easy to imagine them further divided
- Every such operation consists of some change of the physical system consisting of the computer and his tape GTI / Schwentick / SoSe 18

- We know the state of the system if we know the sequence of symbols on the tape, which of these are observed by the computer (possibly with a special order), and the state of mind of the computer **Konfiguration**
- We may suppose that in a simple operation not more than one symbol is altered
 - Any other changes can be set up into simple changes of this kind
- The situation in regard to the squares whose symbols may be altered in this way is the same as in regard to the observed squares
- We may, therefore, without loss of generality, assume that the squares whose symbols are changed are always "observed" squares

Turings Ideen zur Berechenbarkeit (4/4)

- Besides these changes of symbols, the simple operations must include changes of distribution of observed squares
- The new observed squares must be immediately recognisable by the computer

Kopfbewegung

- I think it is reasonable to suppose that they can only be squares whose distance from the closest of the immediately previously observed squares does not exceed a certain fixed amount
- Let us say that each of the new observed squares is within L squares of an immediately previously observed square

- The most general single operation must therefore be taken to be one of the following:
 - (A) A possible change (a) of symbol together with a possible change of state of mind
 - (B) A possible change (b) of observed squares, together with a possible change of state of mind
- The operation actually performed is determined, as has been suggested on p.250, by the state of mind of the computer and the observed symbols
- In particular, they determine the state of mind of the computer after the operation is carried out

 Transition

Vom Automaten zur Turingmaschine

 Turingmaschinen können als Erweiterung von endlichen Automaten in drei Stufen aufgefasst werden

(1) Mehr Bewegung

- Der Kopf darf sich nach rechts und nach links bewegen
- Endliche Automaten mit dieser Erweiterung können nur reguläre Sprachen entscheiden

(2) Schreiben

- Die Symbole der Eingabe k\u00f6nnen ver\u00e4ndert werden — jeweils an der Position des Kopfes
- Das Berechnungsmodell, das endliche Automaten um (1) und (2) erweitert, wird linear beschränkte Automaten genannt
 - Sie entscheiden genau die kontextsensitiven Sprachen

(3) Mehr Platz

- Der Arbeitsbereich kann über die Eingabe hinaus erweitert werden (nach rechts)
- Links von der Eingabe steht ein Symbol
 (>), das den linken Rand markiert, der
 nicht verschoben werden kann
- Berechnungen enden nicht mehr durch Verlassen der Eingabe sondern durch Erreichen spezieller Endzustände
- Wir betrachten nun zunächst Beispiele von Turingmaschinen

Turingmaschinen: 1. Beispiel

Beispiel

ullet Turingmaschine zum Test, ob die Eingabe von der Form ww^R ist

Idee: Vergleiche jeweils das erste mit dem letzten Symbol und lösche beide (durch Überschreiben mit # bzw. □)

 $a \colon 0$ und 1 überlesen, nach links — falls \triangleright oder # nach rechts in b

b: Falls 0 nach rechts in c — falls 1 nach rechts in d (dabei 0/1 durch # überschreiben) — falls \sqcup akz.

 $c{:}\;0$ und 1 überlesen nach rechts bis ${\sqcup}$, dann nach links in e

d: 0 und 1 überlesen nach rechts bis \sqcup , dann nach links in f

e: Falls 0 durch \sqcup ersetzen nach links in a — falls 1 oder # ablehnen

 $f\colon$ Falls 1 durch \sqcup ersetzen nach links in a — falls 0 oder # ablehnen

1. Beispielberechnung:

Turingmaschinen: 1. Beispiel, 2. Berechnung

Beispiel

Turingmaschine zum Test, ob die Eingabe von der Form $oldsymbol{w}^{oldsymbol{R}}$ ist

- $a \colon 0$ und 1 überlesen, nach links falls \triangleright oder # nach rechts in b
- b: Falls 0 nach rechts in c falls 1 nach rechts in d (dabei 0/1 durch # überschreiben) falls \sqcup akz.
- c: 0 und 1 überlesen nach rechts bis \sqcup , dann nach links in e
- $d extbf{:}\;0$ und 1 überlesen nach rechts bis \sqcup , dann nach links in f
- e: Falls 0 durch \sqcup ersetzen nach links in a falls 1 oder # ablehnen
- $f\colon \mathsf{Falls}\ 1$ durch \sqcup ersetzen nach links in a falls 0 oder # ablehnen

Turingmaschinen: Definition

Definition (Turingmaschine (Syntax))

- ullet Eine Turingmaschine $M=(oldsymbol{Q},\Gamma,\delta,s)$ besteht aus
 - einer endliche Menge Q,

(Zustandsmenge)

– einem Alphabet Γ , mit \sqcup , $\rhd \in \Gamma$,

(Arbeitsalphabet)

einer Funktion

$$\delta: Q imes \Gamma o (Q \cup \{\mathsf{ja}, \mathsf{nein}, h\}) imes \Gamma imes \{\leftarrow, \downarrow, o\}$$

(Transitionsfunktion),

– einem ausgezeichneten Zustand $s \in Q$

(Startzustand)

- ullet Dabei seien $Q, \Gamma, \{h, \mathsf{ja}, \mathsf{nein}\}$ und $\{\leftarrow, \downarrow,
 ightarrow\}$ paarweise disjunkt
- Turingmaschinen müssen außerdem die folgenden Bedingungen erfüllen:
 - Das Symbol ⊳ für den linken Rand darf nicht überschrieben werden
- Das lässt sich dadurch erreichen, dass $\delta(q, \triangleright)$ immer von der Form (q', \triangleright, d) mit $d \in \{\downarrow, \rightarrow\}$ ist

Turingmaschinen: Diagramm-Darstellung

Zustände der Beispiel-TM

- a: 0 und 1 überlesen, nach links falls \triangleright oder # nach rechts in b
- b: Falls 0 nach rechts in c falls 1 nach rechts in d (dabei 0/1 durch # überschreiben) falls \sqcup akz.
- c: 0 und 1 überlesen nach rechts bis \sqcup , dann nach links in e
- $d \colon 0$ und 1 überlesen nach rechts bis \sqcup , dann nach links in f
- e: Falls 0 durch \square ersetzen nach links in a falls 1 oder # ablehnen
- f: Falls 1 durch \sqcup ersetzen nach links in a falls 0 oder # ablehnen

Beispiel-Turingmaschine als Diagramm

ullet Konvention: ist für ein Paar $(m{q}, m{\sigma}) \in m{Q} imes m{\Gamma}$ kein Übergang eingezeichnet, so sei $m{\delta}(m{q}, m{\sigma}) \stackrel{ ext{def}}{=} (ext{nein}, m{\sigma}, igcup)$

Turingmaschinen: 2. Beispiel

2. Beispiel-TM: Inkrementieren einer Binärzahl

- Beschreibung der Zustände:
 - a: Die TM läuft, ohne etwas zu verändern, nach rechts bis zum ersten Leerzeichen, und dann einen Schritt nach links in den Zustand b.
 - b: Das maximale Suffix der Form $\mathbf{1}^i$ wird durch $\mathbf{0}^i$ ersetzt.
 - Ist davor eine ${f 0}$, so wird sie durch ${f 1}$ ersetzt und ${f M}$ geht in den Zustand ${f e}$
 - riangle Das Suffix der Eingabe ist von der Form 01^i und wird durch 10^i ersetzt
 - Ist davor ein \triangleright , so geht M in Zustand c
 - riangle Die Eingabe war von der Form $\mathbf{1}^i$, wurde in $\mathbf{0}^i$ geändert, und muss noch in $\mathbf{10}^i$ umgewandelt werden
 - c: Ersetzt die erste 0 durch eine 1, und geht in den Zustand d
 - d: Fügt eine 0 hinten an und geht in den Zustand e
 - e: läuft zum linken Rand und geht in den Endzustand h

Turingmaschinen: 2. Beispiel, 2. Berechnung

- 2. Beispiel-TM: Inkrementieren einer Binärzahl (Forts.)
- Turingmaschine zum Inkrementieren einer Binärzahl:
- Beschreibung der Zustände:
 - a: Die TM läuft, ohne etwas zu verändern, nach rechts bis zum ersten Leerzeichen, und dann einen Schritt nach links in den Zustand b.
 - b: Das maximale Suffix der Form 1^i wird durch 0^i ersetzt.
 - Ist davor eine ${f 0}$, so wird sie durch ${f 1}$ ersetzt und ${f M}$ geht in den Zustand ${f e}$
 - Ist davor ein \triangleright , so geht M in Zustand c
 - c: Ersetzt die erste 0 durch eine 1, und geht in den Zustand d
 - d: Fügt eine 0 hinten an und geht in den Zustand e
 - e: läuft zum linken Rand und geht in den Endzustand h

Turingmaschinen: 2. Beispiel als Diagramm

Beispiel: Zustände der 2. TM

- a: Laufe nach rechts bis zum ersten \square , dann einen Schritt nach links in Zustand b.
- b: Gehe nach links bis zur nächsten 0 ersetze dabei jede 1 durch 0
 - ullet Ist davor $oldsymbol{0}$, ersetze durch $oldsymbol{1}$ und gehe in Zustand $oldsymbol{e}$
 - Ist davor \triangleright , gehe in Zustand c
- c: Ersetze die erste 0 durch eine 1, und gehe in den Zustand d
- d: Fügt eine 0 hinten an und gehe in den Zustand e
- e: Laufe zum linken Rand und gehe in den Endzustand $oldsymbol{h}$

Diagramm zur 2. TM

Turingmaschinen: Konfigurationen (1/2)

 Um die aktuelle Situation einer TM zu beschreiben verwenden wir Konfigurationen, bestehend aus einem Zustand und einer String-Zeigerbeschreibung

Definition (String-Zeigerbeschreibung)

- ullet Eine String-Zeigerbeschreibung $(oldsymbol{w},oldsymbol{z})$ besteht aus
 - einem String $w \in \Gamma^*$
 - und einer Zeigerposition $z\in\mathbb{N},$ $z\leqslant|w|$
- Manchmal verwenden wir eine andere Notation und schreiben (u, σ, v) statt (w, z), falls
 - $-w=u\sigma v$
 - $-|u\sigma|=z$
- $m \sigma$ ist dann das Zeichen, auf das der Zeiger zeigt, m v ist der String rechts vom Zeiger, m u ist der String links vom Zeiger
- Die Definition ist gegenüber den Vorjahren verändert: dort wurde ▷ nicht in Konfigurationen repräsentiert

Definition (Konfiguration)

• $(>10,0,00 \sqcup)$

- ullet Eine Konfiguration von M ist ein Tupel $\overline{(q,(w,z))}$ mit
 - $q \in Q \cup \{\mathsf{ja}, \mathsf{nein}, h\}$

aktueller Zustand

- $\ w$ der aktuelle String
- z die Position des Zeigers der
 TM □ linker Rand ist Position 1

Turingmaschinen: Konfigurationen (2/2)

Definition (Nachfolgekonfiguration, \vdash_{M})

- ullet Sei $m{K}=(m{q},(m{w},m{z}))$ eine Konfiguration mit $m{w}[m{z}]=m{\sigma}$ und sei $m{\delta}(m{q},m{\sigma})=(m{q}',m{ au},m{d})$ mit $m{ au}\in m{\Gamma},m{d}\in \{\leftarrow,\downarrow,
 ightarrow\}$
- ullet Dann ist die Nachfolgekonfiguration K'=(q',(w',z')) von K wie folgt definiert:

$$-z'=z+1$$
, falls $d=\rightarrow$,

$$-z'=z$$
, falls $d=\downarrow$,

$$-z'=z-1$$
, falls $d=\leftarrow$,

Da vom linken Rand kein Linksschritt möglich ist, wird z niemals kleiner als 1

$$- w' = w[z/ au] \sqcup$$
 , falls $z = |w|$ und $d = \to$,

-
$$oldsymbol{w}' = oldsymbol{w}[oldsymbol{z}/oldsymbol{ au}]$$
, andernfalls

- ullet Dabei bezeichnet $oldsymbol{w}[oldsymbol{z}/oldsymbol{ au}]$ den String, der aus $oldsymbol{w}$ entsteht, indem das Zeichen an Position $oldsymbol{z}$ durch $oldsymbol{ au}$ ersetzt wird
- ullet Wir schreiben $K dash_M^* K'$, falls es Konfigurationen K_1, \ldots, K_m gibt mit $K dash_M K_1 dash_M \cdots dash_M K_M dash_M K'$

Turingmaschinen: Illustration der Nachfolgekonfiguration (1/2)

Beispiel: Schritt ohne Kopf-Bewegung

 $\bullet \ \delta(e,\rhd) = (h,\rhd,\downarrow)$

Beispiel: Linksschritt

• $\delta(b,0) = (e,1,\leftarrow)$

Turingmaschinen: Illustration der Nachfolgekonfiguration (2/2)

Beispiel: Rechtsschritt mit neuem Blank

Turingmaschinen: Semantik (1/2)

Definition (Turingmaschine (Semantik))

- ullet Sei $oldsymbol{\Sigma} \subseteq oldsymbol{\Gamma} \{
 hd, oldsymbol{\sqcup}\}$ (Ein-/Ausgabe-Alphabet)
- ullet Die <u>Startkonfiguration</u> von M bei Eingabe $u \in \Sigma^*$ ist $\underline{K_0(u)} \stackrel{ ext{def}}{=} (s, (\triangleright u, 1))$
- $ullet (m{q}, (m{w}, m{z}))$ heißt $m{\underline{ ext{Haltekonfiguration}}}, ext{falls} \ m{q} \in \{m{h}, ext{ja}, ext{nein}\}$
- ullet K_0,K_1,\ldots,K_t heißt endliche Berechnung von M bei Eingabe u, falls
 - $-K_0=K_0(u),$
 - $K_i dash_M K_{i+1}$ für alle i < t, und
 - K_t eine Haltekonfiguration ist
- ullet M akzeptiert u, falls $K_0(u) \vdash_M^* (\mathsf{ja}, (w, z))$
- ullet \underline{M} lehnt u ab, falls $K_{oldsymbol{0}}(u) dash_{oldsymbol{M}}^*$ (nein, $(oldsymbol{w}, oldsymbol{z})$)
 - (für gewisse $w \in \Gamma^*$, $z \in \mathbb{N}$)
- $M(u) \stackrel{\text{def}}{=}$ die (endliche oder unendliche) Berechnung von M bei Eingabe u M(u) bezeichnet nicht die Ausgabe!

Turingmaschinen: Beispiel einer Konfigurationsfolge

Turingmaschinen: Semantik (2/2)

Definition ($m{L}(m{M})$)

- ullet Eine TM M <u>entscheidet</u> eine Sprache L, falls für jedes $u\in \Sigma^*$ gilt:
 - $u \in L \Rightarrow M$ akzeptiert u
 - $u
 otin L \Rightarrow M$ lehnt u ab
- $ullet \ egin{array}{c} L(M) \stackrel{ ext{def}}{=} ext{Menge aller von } M \ \hline ext{akzeptierten W\"orter} \end{array}$

Zu Beachten

- ullet L(M) ist immer definiert
- ullet Aber $oldsymbol{M}$ entscheidet $oldsymbol{L}(oldsymbol{M})$ nicht immer!
 - Es könnte sein, dass $m{M}$ für gewisse Eingabewörter, die nicht in $m{L}(m{M})$ sind, nicht anhält
- ullet M entscheidet L(M) genau dann, wenn M für jedes Eingabewort anhält GTI/Schwentick/SoSe 18 C: 1

 Turingmaschinen können auch Funktionen berechnen:

Definition

- $ullet \ f_{oldsymbol{M}}(oldsymbol{u}) \stackrel{ ext{def}}{=} oldsymbol{v} \in oldsymbol{\Sigma}^*$, falls
 - $K_0(u) dash_M^*(h,(raket{v},1))$ oder
 - $K_0(u) \vdash_M^* (h,(riangle v au w,1))$ für ein $au \in \Gamma \Sigma$, $w \in \Gamma^*$
- $riangleq oldsymbol{f_M}(oldsymbol{u})$ ist nur dann definiert, wenn der Zeiger von $oldsymbol{M}$ im Haltezustand ganz links steht
 - $f_{m{M}}(u)$ ist dann die maximale Folge von Zeichen aus Σ , die direkt rechts vom Zeiger stehen
- ullet Im Allgemeinen ist f_M also eine partielle Funktion $\Sigma^* \rightharpoonup \Sigma^*$

Definition (Turing-berechenbar)

ullet Eine partielle Funktion $f:\Sigma^*
ightharpoonup \Sigma^*$ heißt $\overline{ ext{Tu-ring-berechenbar}}$, falls $f=f_M$, für eine Turingmaschine M

Literaturangaben

- Die Darstellung in diesem Kapitel richtet sich weitgehend nach
 - Uwe Schöning. Theoretische Informatik kurzgefaßt (3. Aufl.). Hochschultaschenbuch. Spektrum Akademischer Verlag, 1997