н	_

Sets				
Set	Convex?	Proof		
$C = A \cup B$	Not always			
$C = A \cap B$	Yes, if A and B are convex sets.			
Functions				
Function	Convex?	Proof		
$\mathbf{y} = \max(f_1, f_2)$	Yes, if f_1 and f_2 are convex functions			
$\mathbf{y} = \min(f_1, f_2)$	Not always			
$C = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m \}$	It is an affine set (all affine set is a convex set)			
$y = \mathbf{c}^T \mathbf{x} \text{ (linear function)}$	Yes (but not strictly convex)			
$y = \ \mathbf{x}\ _p \text{ (p-norm)}$	Yes (for any $p \in \mathbb{N}_+$)	$\ \theta \mathbf{x} + (1 - \theta)\mathbf{y}\ \le \theta \ \mathbf{x}\ + (1 - \theta) \ \mathbf{y}\ $ (triangular inequality)		
$f(g(\mathbf{x}))$	Yes, if f, g are convex			
Function	Domain	Codomain	Comments	
System of linear equation: $\mathbf{b} = f(\mathbf{x}) = \mathbf{A}\mathbf{x}$ $D = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{b} \in \mathbb{R}^m, \mathbf{A} \in \mathbb{R}^{m \times n}\}$ $C = \{\mathbf{b} \in \mathbb{R}^m \mathbf{b} = \mathbf{A}\mathbf{x}, \ \forall \ \mathbf{x} \in D\}$			If D is an affine set, so C is also	
			affine set which, in turn, is a con-	
			vex set.	
			vex set.	

Remarks:

- 1. All affine set is a convex set, but with infinite extension.
- 2. If the affine set happens to have the origin, it is also a subspace of that space.
- 3. An affine set contains every affine combination of its points: If C is an affine set, $x_1, \dots, x_k \in C$, and $\sum_{i=1}^k \theta_i = 1$, then the point $\sum_{i=1}^k \theta_i x_1$ also belongs to C.