Crude Oil Price Prediction

Team ID: PNT2022TMID38415

Team Leader: MARIYAREBAKKA .S

Team member: YUVASHRI.A

Team member: PADMINI.R

Team member: PREETHA.M

CHAPTER-1 INTRODUCTION

1.1 Project Overview

Oil demand is inelastic, therefore the rise in price is good news for producers because they will see an increase in their revenue. Oil importers, however, will experience increased costs of purchasing oil. Because oil is the largest traded commodity, the effects are quite significant. A rising oil price can even shift economic/political power from oil importers to oil exporters. The crude oil price movements are subject to diverse influencing factors.

This Guided Project mainly focuses on applying Neural Networks to predict the Crude Oil Price. This decision helps us to buy crude oil at the proper time. Time series analysis is the best option for this kind of prediction because we are using the Previous history of crude oil prices to predict future crude oil. So we would be implementing RNN(Recurrent Neural Network) with LSTM(Long Short Term Memory) to achieve the task.

Crude oil price fluctuations have a far reaching impact on global economies and thus price forecasting can assist in minimising the risks associated with volatility in oil prices. Price forecasts are very important to various stakeholders: governments, public and private enterprises, policymakers, and investors

1.2 Purpose

Crude oil is amongst the most important resources in today's world, it is the chief fuel and its cost has a direct effect on the global habitat, our economy and oil exploration, exploitation and other activities. Prediction of oil prices has become the need of the hour, it is a boon to many large and small industries, individuals, the government.

The evaporative nature of crude oil, its price prediction becomes extremely difficult and it is hard to be precise with the same. Several different factors that affect crude oil prices. We propose a contemporary and innovative method of predicting crude oil prices using the artificial neural network (ANN).

The main advantage of this approach of ANN is that it continuously captures the unstable pattern of the crude oil prices which have been incorporated by finding out the optimal lag and number of the delay effect that controls the prices of crude oil.

Variation of lag in a period of time has been done for the most optimum and close results, we then have validated our results by evaluating the root mean square error and the results obtained using the proposed model have significantly outperformed.

CHAPTER-2 LITERATURE SURVEY

1	Paper title	Crude Oil Price Prediction Using Deep
		Learning
	Problem	Predict the crude oil prices
	definition	and evaluate the model
	Methodology/	Using LSTM(Long Short
	Algorithm	based on deep learning
	Advantages	The model is assessed by utilizing the
		valuable information in the WTI unrefined
		petroleum markets
		The model achieves increments in the
		expected precision of results
	Disadvantages	The crude oil price depends on several
		external factors and high volatility
2	Paper title	Multi-step-ahead Crude Oil Price Forecasting
		Based on Autoregreesive Integrated Moving
		Average and Improved Optimization enhanced
		Gated Recurrent Unit
	Problem	Crude oil price volatility has a strong influence
	definition	on the stability of the global energy market.
		Therefore, both traders and policy makers
		have been interested in the accurate forecast
		of crude oil price so as to prevent large losses
		and to stabilize the market
	Methodology/	Using ARMA, IPSO, GRU
	Algorithm	
	Advantages	To prevent large losses and to stabilize the
		market
		Crude oil spot prices covering a period of
		714 days
		For twenty-step forecasting, the overall
		reduction of RMSE is as much as 53%, which
		significantly raises the prediction accuracy.
	Disadvantages	In the overall reduction of RMSE is not an

		100%, only 53% prediction accuracy was
		raises for 20th step forecasting
3	Paper title	A Novel Hybrid Approach with A
		Decomposition Method and The RVFL
		Model for Crude Oil Price Prediction
	Problem	Volatility of international crude oil prices is
	definition	influenced by various external factors on
		different time scales. User search data (USD)
		which reflects investor attentions has been
		widely researched and proved to be
		associated with crude oil price change at
		different frequency bands.
	Methodology/	Random vector functional link (RVFL)
	Algorithm	,Bivariate empirical mode decomposition
		(BEMD)
	Advantages	Third, Brent crude oil spot price is used to
		test the proposed approach empirically
		Forecasting results are analyzed with
		various evaluation criteria and verified
		robustness.
	Disadvantages	The proposed approach statistically
		outperforms traditional forecasting machine
		learning techniques and similar counterparts
		(with USD or
		EMD-based method) in terms of prediction
		accuracy.
4	Paper title	Forecasting Crude Oil Price Using Event
		Extraction
	Problem	Econometric Variable Prediction Problem
	definition	5 . 5 Al
	Methodology/	Event Extraction Algorithm
	Algorithm	
	Advantages	It uses textual contents and relation
		between entities
	B: 1	High quality features
	Disadvantages	Crude oil prices are largely influenced by
		various factors, such as economic

		development, financial markets, conflicts,
		wars, and political events.
5	Paper title	Predictive Analytics for Crude Oil Price Using
		RNN-LSTM Neural Network
	Problem	This study aims to certify the capability of a
	definition	prediction model built based on the RNN-
		LSTM network to predict the future price of
		crude oil.
	Methodology/	Using Recurrent Neural Network and Long
	Algorithm	Short Term Network
	Advantages	The capability of the network to provide an
		improvement of the accuracy of crude oil
		price prediction
		 Millions of traders investing the crude oil
		prediction
	Disadvantages	It dynamic nature
		It complex to predict the price of crude oil

CHAPTER-3 IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

An empathy map is a simple, easy-to-digest visual that captures knowledge about a user's behaviours and attitudes. It is a useful tool to helps teams better understand their users. Creating an effective solutionrequires understanding the true problemand the person who is experiencing it. The exercise of creating the map helps participants consider things from the user's perspective along with hisor her goals and challenges.

3.2 Ideation & Brainstorming

Brainstorming provides a free and open environment that encourages

everyone within a team to participate in the creative thinking process that leads to problem solving. Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich amount of creative solutions.

Step-1: Team Gathering, Collaboration and Select the Problem Statement

Step-2: Brainstorm, Idea Listing and Grouping

Step-3: Idea Prioritization

3.3 Proposed Solution

S.No	Parameter	Description
1	Problem Statement (Problem to be solved)	Oil price increases are generally thought to increase inflation and reduce economic growth. Oil prices directly affect the prices of goods made with petroleum products. As mentioned above oil prices indirectly affect costs such as transportation, manufacturing, and heating.
2	Idea / Solution description	Crude oil is a raw natural resource that is extracted from the earth and refined into products such as gasoline and petroleum products. Crude oil is a global trade in markets around the world.
3	Novelty / Uniqueness	Supply, demand, and sentiment towards oil futures contracts, which are traded heavily by speculators play a dominant role in price determination.
4	Social Impact / Customer Satisfaction	Oil spills can damage the environment and the wildlife and marine life that depends on it they can also cause physical, mental, and financial stress to people as individuals.
5	Business Model (Revenue Model)	Models general includes information like products or services the business plans to sell, target markets, and any anticipated expenses. There are dozens of types of business models including retailers, manufacturers, fee-for-services, or freemium providers.
6	Scalability of the Solution	Crude oil prices are determined by global supply and demand. Economic growth is one of the biggest factors affecting

3.4 Problem Solution Fit

CHAPTER-4

REQUIREMENT ANALYSIS

4.1 Functional Requirement

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement	Sub Requirement (Story /
	(Epic)	Sub-Task)
FR-1	User Homepage	Registration through Form
		Registration through Gmail
		Registration through
		LinkedIN
FR-2	Prediction	The User can enter the
		required data and the
		predicted price of the
		crude oil will be displayed.
FR-3	Display	The predicted graph will be
		displayed in the user's
		screen.

4.2 Non-functional Requirements:

Following are the non-functional requirements of the proposed solution. $\ensuremath{\mathsf{FR}}$

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The predictor is user friendly and easy to use it.
NFR-2	Security	The model is tested for it security before the deployment and it is highly secure.
NFR-3	Reliability	Highly reliable.
NFR-4	Performance	It is efficient and optimized method to predict the crude oil price.
NFR-5	Availability	Accessible at any time.
NFR-6	Scalability	It will perform well for many number of users with the same speed.

CHAPTER-5 PROJECT DESIGN

5.1 Data Flow Diagram

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

5.2 User Stories

User Type	Functional Requireme	User Story	User Story /	Acceptan ce criteria	Priority	Release
Type	nt (Epic)	Number	Task	oc ontena		
	(_p.o)					
Custo		USN-1	As a user,	I can	High	Sprint-1
mer			I can see	access the		
(Mobi			the crude	data		
le			oil price	available.		
user)			history.			
		USN-2	Ву	The	High	Sprint-2
			Entering	analysed		
			the	result will		
			year(dat	be		
			e) the	displayed		
			model	in the		
			will	screen.		
			analyse			
			and			
			display			
			the			
			output.			

5.3 Solution & Technical Architecture

A Solution architecture (SA) is an architectural description of a specific solution. SAs combine guidancefrom different enterprise architecture viewpoints (business, information and technical), as well as from the enterprise solution architecture (ESA). Ultimately, solutionarchitecture is aimed at the following overarching goals:

- (i) Streamlining of day-to-day activities
- (ii) Providing a more efficient production environment
- (iii) Lowering costs and gainingcost-effectiveness
- (iv) Providing a secure, stable, and supportable environment

SOLUTION ARCHITECTURE

TECHNICAL ARCHITECTURE

CHAPTER-6 PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

TITLE	DESCRIPTION	DATE
Literature Survey & Information Gathering	Literature survey on the selected project & gathering information by referring the, technical papers, research publications etc.	28 SEPTEMBER 2022
Prepare Empathy Map	Prepare Empathy Map Canvas to capture the user Pains & Gains, Prepare list of problem statements	24 SEPTEMBER 2022
Ideation	List the by organizing the brainstorming session and prioritize the top 3 ideas based on the feasibility & importance.	25 SEPTEMBER 2022
Proposed Solution	Prepare the proposed solution document, which includes the novelty, feasibility of idea, business model, social impact, scalability of solution, etc.	23 SEPTEMBER 2022
Problem Solution Fit	Prepare problem - solution fit document.	30 SEPTEMBER 2022
Solution Architecture	Prepare solution architecture document.	28 SEPTEMBER 2022

Customer Journey	Prepare the customer journey maps to understand the user interactions & experiences with the application (entry to exit).	20 OCTOBER 2022
Functional Requirement	Prepare the functional requirement document.	8 OCTOBER 2022
Data Flow Diagrams	Draw the data flow diagrams and submit for review.	9 OCTOBER 2022
Technology Architecture	Prepare the technology architecture diagram.	10 OCTOBER 2022
Prepare Milestone & Activity List	Prepare the milestones & activity list of the project.	05 November 2022
Project Development - Delivery of Sprint-1, 2, 3 & 4	Develop & submit the developed code by testing it.	IN PROGRESS

6.2 Sprint Delivery Schedule

Use the below template to create product backlog and sprint schedule

Sprint	FunctionalRequireme nt(Epic)	UserStoryN umber	UserStory/Task	StoryPoints	Priority	TeamMembers
Sprint-1	DataCollection	USN-1	DownloadCrudeOilPriceDataset	2	Medium	S.Mariyarebakka
Sprint-1	DataPreprocessing	USN-2	ImportingTheDatasetintoWorkspace	1	Low	S.Mariyarebakka
Sprint-1		USN-3	HandlingMissingData	3	Medium	S.Mariyarebakka
Sprint-1		USN-4	FeatureScaling	3	Low	S.Mariyarebakka
S print-1		USN-5	DataVisualization	3	Medium	S.Mariyarebakka
Sprint-1		USN-6	SplittingDataintoTrain andTest	4	High	S.Mariyarebakka
Sprint-1		USN-7	CreatingADatasetwith SlidingWindows	4	High	S.Mariyarebakka
Sprint-2	ModelBuilding	USN-8	ImportingTheModelBuildingLibraries	1	Medium	S.Mariyarebakka A.Yuvashri
Sprint-2		USN-9	InitializingTheModel	1	Medium	S.Mariyarebakka R.Padmini
Sprint-2		USN-10	AddingLSTMLayers	2	High	S.Mariyarebakka M. Preetha
Sprint-2		USN-11	AddingOutputLayers	3	Medium	S.Mariyarebakka A.Yuvashri
Sprint-2		USN-12	ConfigureTheLearningProcess	4	High	S.Mariyarebakka R.Padmini

Sprint	Functional Requirement(Epic)	UserStory Number	UserStory/Task	StoryPoints	Priority	TeamMembers
Sprint-2		USN-13	TrainTheModel	2	Medium	S.Mariyarebakka R.Padmini
Sprint-2		USN-14	ModelEvaluation	1	Medium	S.Mariyarebakka A.Yuvashri
Sprint-2		USN-15	SaveTheModel	2	Medium	S.Mariyarebakka A.Yuvashri
Sprint-2		USN-16	TestTheModel	3	High	S.Mariyarebakka A.Yuvashri
Sprint-3	ApplicationBuilding	USN-17	CreateAnHTMLFile	4	Medium	S.Mariyarebakka A.Yuvashri
Sprint-3		USN-18	BuildPythonCode	4	High	S.Mariyarebakka A.Yuvashri RPadmini M.Preetha
Sprint-3		USN-19	RunTheAppinLocalBrowser	4	Medium	S.Mariyarebakka A.Yuvashri
Sprint-3		USN-20	ShowcasingPredictionOn UI	4	High	S.Mariyarebakka
Sprint-4	TrainTheModelOnIBM	USN-21	RegisterForIBMCloud	4	Medium	S.Mariyarebakka A.Yuvashri R.Padmini M.Preetha
Sprint-4		USN-22	TrainTheMLModelOnIBM	8	High	S.Mariyarebakka A.Yuvashri R.Padmini
Sprint-4		USN-23	IntegrateFlaskwithScoringEndPoint	8	High	S.Mariyarebakka A.Yuvashri R.Padmini M.Preetha

Sprint	Total StoryPoints	Duration	SprintStartDate	SprintEndDate(PI anned)	Story PointsCompleted (as onPlannedEndDate)	SprintReleaseDate(Act ual)
Sprint-1	20	6Days	29Oct2022	03Nov2022	20	05Nov2022
Sprint-2	20	6Days	30Oct2022	05Nov2022	20	08Nov2022
Sprint-3	20	6Days	06Nov2022	12Nov2022	20	12Nov2022
Sprint-4	20	6Days	14Nov2022	19Nov2022	20	18Nov2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint).

Let's calculate the team's averagevelocity (AV) pe iteration unit (story points per day

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies suchas Scrum. However, burndown chartscanbe applied to any project containing measurable progressover time.

CHAPTER-7 CODING & SOLUTIONING

7.1 Feature 1

```
In [1]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
Data-pd.read_excel(r"/content/Crude Oil Prices Daily.xlsx")
Data
          Date Closing Value
0 1986-01-02 25,56
   1 1986-01-03
 2 1988-01-06 26.53
   3 1986-01-07
                   25.85
                 25.87
 4 1986-01-08
 8218 2018-07-03 74.19
 8219 2018-07-04
                    NaN
 8220 2018-07-05 73.05
 8221 2018-07-06
                   73.78
 8222 2018-07-09 73.93
8223 rows x 2 columns
Data.isnull().any()
Out [3]:
Closing Value True
dtype: bool
In [4]:
```

```
In [4]:
Data.isnull().sum()
Out [4]:
                0
Date
Closing Value
              7
dtype: int64
In [5]:
Data.dropna(axis=0,inplace=True)
Data.isnull().sum()
Out [5]:
Date
                0
Closing Value
                0
dtype: int64
In [6]:
Data_oil-Data.reset_index()['Closing Value']
In [7]:
Data_oil
Out[7]:
      25.56
0
       26.00
       26.53
      25.85
      25.87
8211 73.89
8212 74.19
8213 73.05
8214 73.78
8215 73.93
Name: Closing Value, Length: 8216, dtype: float64
In [8]:
from sklearn.preprocessing import MinMaxScaler
scaler - MinMaxScaler (feature range (0,1))
```

Data_oil=scaler.fit_transform(np.array(Data_oil).reshape(-1,1))

CHAPTER-9

RESULTS

9.1 Performance Metrics

Input

Input measures monitor the amount of resources being used to develop, maintain, or deliver a product, activity or service. Examples include:

- Money spent on equipment
- Number of employee hours worked
- Number of vehicles
- Facility costs
- Total operating expenditures
- Rental fees
- Number of full-time employees

Output

Output measures monitor "how much" was produced or provided. They provide a number indicating how many items, referrals, actions, products, etc. were involved. Examples include:

- Number of permits issued
- Number of pavement miles resurfaced
- Number of people trained
- Number of water leaks fixed
- Number of cases managed
- Number of arrests made
- Number of documents processed
- Number of clients served

Efficiency

Efficiency measures are used to monitor the relationship between the amount produced and the resources used. This means that efficiency measures are created by comparing input and output, see . There are two

general types of efficiency measures: unit cost and productivity. Unit cost is a comparison of an input to an output (i.e. resources used/number produced).

Productivity is a comparison of an output to an input (i.e. number produced/resources used). Examples include:

Unit Cost

- Cost per license issued
- Cost per employee taught
- Cost per lane-mile paved
- Cost per client served
- Cost per document

Productivity

- Licenses processed per employee-hour
- Units produced per week
- Students taught per instructor
- Cases resolved per agent
- Calls handled per hour

Quality

Quality measures are used to determine whether customer expectations are being met. These expectations can take many forms, including: timeliness, accuracy, meeting regulatory requirements, courtesy, and meeting customer needs.

The expectations can be identified as a result of internal or external feedback.

The comparison of outputs is often used to create measures of quality. It may be important to identify certain aspects (aspects / total outputs) about the services, products or activities produced by an organization that are important to its customers.

This comparison of specific outputs to total outputs is used to create measures of accuracy, timeliness and to determine the extent regulatory requirements are met.

Quality measures can also be derived from the evaluation of customer feedback data.

Timeliness

- Busy signal rate
- Percent of drivers licenses issued within one hour.

Accuracy

- Percent of applications requiring rework due to internal errors.
- Taxpayer error rate on tax returns.

Requirements

- Percent of wells meeting minimum water quality requirements.
- Percentage of clients that rated themselves as successfully rehabilitated.

CHAPTER-10

ADVANTAGES & DISADVANTAGES

ADVANTAGES:

Crude oil generates heat. Heating this material and other petroleum products can warm homes in colder weather, making modern living possible even in colder climates. This oil also produces energy. This product makes machinery move by providing the lubrication oil that modern industrial equipment depends on to run smoothly. Crude is also used to create the asphalt that cars and trucks move on. Asphalt is easier to lay than concrete and is generally cheaper as a result. Crude is also an integral part of modern textile production, with 40 percent of textiles now containing some petroleum by product.

DISADVANTAGES:

- Oil is a non-renewable source of energy.
- Burning oil produces carbon dioxide gas.
- Burning oil can pollute the air.

• Much of our oil has to be imported and it is becoming more and more expensive as reserves reduce and imports increase.

CHAPTER-11 CONCLUSION

- Crude oil prices are highly fluctuated time series. It is affected by many economic and political factors. Specially, there are several sudden increase and decrease throughout the time.
- In order to eliminate the irregular trend. We try several methods, hpfilter, loess filter, log transformation and difference.
- Thus, only analysis of the crude oil price itself can hardly predict the sudden change. Maybe, we can find some latent variable to improve modeling and prediction.
- Introduce the variable selection before forecasting. In this process, we compare three different methods and analyze core influencing factors based on the literature review from supply and demand, global economic development, financial market, and technology aspects.

CHAPTER-12

FUTURE SCOPE

It shows that the prediction accuracy of the variable selection-machine learning integrated model is significantly improved compared with that of the univariate model.

we may introduce more independent variables with the help of internet search data, test our framework performance.

Moreover, investor sentiment can be quantified in this process. In addition, different variable selection methods can be introduced more.

This indicates that the variable selection-based machine learning integrated research framework proposed in this significantly improves the forecasting performance of oil prices

CHAPTER-13

APPENDIX

SOURCE CODE:

APP.PY

```
import numpy as np

from flask import Flask, render_template, request
from tensorflow.keras.models import load_model

app = Flask(__name__,template_folder='template')

model = load_model("./model/crude_oil.h5")

@app.route('/')
```

```
def home():
    return render_template('index.html')
@app.route('/predict')
def home2():
    return render_template('predict.html')
@app.route("/login", methods=['POST','GET'])
def Login():
    if request.method=='POST':
        a = request.form['year1']
        b = request.form['year2']
        c = request.form['year3']
        d = request.form['year4']
        e = request.form['year5']
        f = request.form['year6']
        g = request.form['year7']
        h = request.form['year8']
        i = request.form['year9']
        j = request.form['year10']
        x_{input} = [a, b, c, d, e, f, g, h, i, j]
        for i in range(0, len(x input)):
            x_input[i] = float(x_input[i])
        print(x_input)
        x_{input} = np.array(x_{input}).reshape(1, -1)
        temp_input = list(x_input)
        temp_input = temp_input[0].tolist()
        lst_output = []
        n_steps = 10
        i = 0
        while (i < 1):
            if (len(temp_input) > 10):
                x_input = np.array(temp_input[1:])
                print("{} day input {}".format(i, x_input))
                x_{input} = x_{input.reshape}(1, -1)
                x input = x input.reshape((1, n steps, 1))
                yhat = model.predict(x_input, verbose=0)
                print("{} day output {}".format(i, yhat))
                temp_input.extend(yhat[0].tolist())
                temp_input = temp_input[1:]
                lst_output.extend(yhat.tolist())
```

```
x_input = x_input.reshape((1, n_steps, 1))
                           yhat = model.predict(x_input, verbose=0)
                           print(yhat[0])
                           temp_input.extend(yhat[0].tolist())
                           print(len(temp_input))
                           lst_output.extend(yhat.tolist())
                           i = i + 1
             print(lst_output)
             return render_template("predict.html", showcase='The next day predicted
value is: ' + str(lst_output))
if ___name__ == '__main__':
      app.run(debug=True, port=5000)
 ○ IBM-Project-43010-1660711901/ × | ③ IBM
   → C ① 127.0.0.1:5000
                                                                                                                     Q & & L 🛛 🚷 :
                                                                                                                        Home Predict
                                                 Crude Oil Prediction
Demand for oil is inelastic, therefore the rise in price is good news for producers because they will see an increase in their revenue. Oil importers, however, will experience increased costs of purchasing oil. Because oil is the largest traded commodity, the effects are quite significant. A rising oil price can even shift economic/political power from oil importers to oil exporters. The crude oil price movements are subject to diverse influencing factors.
                                                               Login Here
                                                 Enter Email Here Enter Password Here Login
## ## 📻 🤤 💼 🕝 🖭 🦪
                                                                                                               x<sup>Q</sup> ∧ ■ // c// ENG 5:10 PM
```

