CLAIMS

1. A compound of formula (I),

5

the N-oxide forms, the addition salts and the stereo-chemically isomeric forms thereof, wherein

n is 0 or 1; s is 0 or 1;

X is -N= or -CR⁴=, wherein R⁴ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

15

Y is -N< or -CH<;

Q is -NH-, -O-, -C(O)-, -CH₂-CH₂- or -CHR⁵-, wherein R⁵ is hydrogen, hydroxy, C₁₋₆alkyl, arylC₁₋₆alkyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkyloxyC₁₋₆alkylamino or haloindazolyl;

R¹ is C₁₋₆alkyl or thienyl;

R² is hydrogen or taken together with R³ may form =O;

25

30

20

R³ is hydrogen, C₁₋₆alkyl or a radical selected from

- NR^6R^7 (a-1), -O-H (a-2), -O- R^8 (a-3), -S- R^9 (a-4), or — $C\equiv N$ (a-5),

wherein

 R^6 is -CHO, C_{1-6} alkyl, hydroxy C_{1-6} alkyl, C_{1-6} alkylcarbonyl, di $(C_{1-6}$ alkyl)amino C_{1-6} alkyl, C_{1-6} alkylcarbonylamino C_{1-6} alkyl,

piperidinyl C_{1-6} alkyl, piperidinyl C_{1-6} alkylaminocarbonyl, C_{1-6} alkyloxy, C_{1-6} alkyl, thienyl C_{1-6} alkyl, pyrrolyl C_{1-6} alkyl, aryl C_{1-6} alkylpiperidinyl, arylcarbonyl C_{1-6} alkyl, arylcarbonylpiperidinyl C_{1-6} alkyl, or aryl C_{1-6} alkyl)amino C_{1-6} alkyl; and

R⁷ is hydrogen or C₁₋₆alkyl; R⁸ is C₁₋₆alkyl, C₁₋₆alkylcarbonyl or di(C₁₋₆alkyl)aminoC₁₋₆alkyl; and

R⁹ is di(C₁₋₆alkyl)aminoC₁₋₆alkyl;

or R³ is a group of formula

(b-1),

10 wherein

t is 0, 1 or 2;

Z is a heterocyclic ring system selected from

15

25

5

$$R^{10}$$
 R^{10} R

N R (c-10)

HN TRIC

(c-11)

S-RIC

(c-12)

(c-13)

wherein each R¹⁰ independently is hydrogen, C₁₋₆alkyl, aminocarbonyl, hydroxy,

 C_{1-6} alkyloxy C_{1-6} alkyl, C_{1-6} alkyloxy C_{1-6} alkylamino, di(phenyl C_{2-6} alkenyl), piperidinyl C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyl C_{1-6} alkyl, aryloxy(hydroxy) C_{1-6} alkyl, haloindazolyl, aryl C_{1-6} alkyl, aryl C_{2-6} alkenyl, morpholino, C_{1-6} alkylimidazolyl, or pyridinyl C_{1-6} alkylamino;

20

25

each R¹¹ independently is hydrogen, hydroxy, piperidinyl or aryl;

aryl is phenyl or phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy;

- with the proviso that 6-(cyclohexyl-1*H*-imidazol-1-ylmethyl)-3-methyl-2(1*H*)-quinoxalinone is not included.
- A compound as claimed in claim 1 wherein X is -N= or -CH=; R¹ is C₁₋₆alkyl; R³ is hydrogen, C₁₋₆alkyl, a radical selected from (a-1), (a-2), (a-3) or (a-4) or a group of formula (b-1); R⁶ is di(C₁₋₆alkyl)aminoC₁₋₆alkyl or C₁₋₆alkyloxyC₁₋₆alkyl; R⁷ is hydrogen; R⁸ is di(C₁₋₆alkyl)aminoC₁₋₆alkyl; t is 0 or 2; Z is a heterocyclic ring system selected from (c-1), (c-5), (c-6), (c-8), (c-10), (c-12) or (c-13); each R¹0 independently is hydrogen, C₁₋₆alkyl, hydroxy, C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkylamino, morpholino, C₁₋₆alkylimidazolyl, or pyridinylC₁₋₆alkylamino; each R¹¹ independently is hydrogen or hydroxy; and aryl is phenyl.
 - 3. A compound according to claim 1 and 2 wherein

 n is 0; X is CH; Q is -NH-, -CH₂-CH₂- or -CHR⁵-, wherein R⁵ is hydrogen,
 hydroxy, or arylC₁₋₆alkyl; R¹ is C₁₋₆alkyl; R² is hydrogen; R³ is hydrogen, hydroxy
 or a group of formula (b-1); t is 0; Z is a heterocyclic ring system selected from
 (c-8) or (c-13); each R¹⁰ independently is hydrogen; and aryl is phenyl.

4. A compound according to claim 1, 2 and 3 wherein the compound is selected from compound No 7, compound No 2, compound No 1 and compound No 11.

5. A compound as claimed in any of claims 1 to 4 for use as a medicine.

- 6. A pharmaceutical composition comprising pharmaceutically acceptable carriers and as an active ingredient a therapeutically effective amount of a compound as claimed in claim 1 to 4.
- 5 7. A process of preparing a pharmaceutical composition as claimed in claim 6 wherein the pharmaceutically acceptable carriers and a compound as claimed in claim 1 to 4 are intimately mixed.
- 8. Use of a compound for the manufacture of a medicament for the treatment of a PARP mediated disorder, wherein the compound is a compound of formula (I)

$$(CH_2)_s \xrightarrow{R^2} (CH_2)_n \xrightarrow{X} R^1$$
 (I)

the N-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

n is 0 or 1;

s is 0 or 1;

20

X is -N= or -CR⁴=, wherein R⁴ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

Y is -N< or -CH<;

25

Q is -NH-, -O-, -C(O)-, -CH₂-CH₂- or -CHR⁵-, wherein R⁵ is hydrogen, hydroxy, C₁₋₆alkyl, arylC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkylamino or haloindazolyl;

30 R¹ is C₁₋₆alkyl or thienyl;

 R^2 is hydrogen or taken together with R^3 may form =0;

R³ is hydrogen, C₁₋₆alkyl or a radical selected from

- NR ⁶ R ⁷	(a-1),
-О-Н	(a-2),
-O-R ⁸	(a-3),
-S- R ⁹	(a-4), or
—C≡N	(a-5).

wherein

5

15

$$\begin{split} R^6 \text{ is --CHO, } C_{1\text{--6}}alkyl, & \text{hydroxy} C_{1\text{--6}}alkyl, & C_{1\text{--6}}alkylcarbonyl, \\ & \text{di}(C_{1\text{--6}}alkyl)aminoC_{1\text{--6}}alkyl, & C_{1\text{--6}}alkylcarbonylaminoC_{1\text{--6}}alkyl, \\ & \text{piperidinyl} C_{1\text{--6}}alkyl, & \text{piperidinyl} C_{1\text{--6}}alkylaminocarbonyl, } C_{1\text{--6}}alkyloxy, \end{split}$$

10 C_{1-6} alkyloxy C_{1-6} alkyl, thienyl C_{1-6} alkyl, pyrrolyl C_{1-6} alkyl, arylcarbonylpiperidinyl C_{1-6} alkyl, arylcarbonylpiperidinyl C_{1-6} alkyl, haloindozolylpiperidinyl C_{1-6} alkyl, or aryl C_{1-6} alkyl(C_{1-6} alkyl)amino C_{1-6} alkyl; and R^7 is hydrogen or C_{1-6} alkyl;

 R^8 is C_{1-6} alkyl, C_{1-6} alkylcarbonyl or $di(C_{1-6}$ alkyl)amino C_{1-6} alkyl; and R^9 is $di(C_{1-6}$ alkyl)amino C_{1-6} alkyl;

or R³ is a group of formula

(b-1),

wherein

t is 0, 1 or 2;

Z is a heterocyclic ring system selected from

$$HN = R^{10} + HN = R^{10} + HN = R^{10} + HN = R^{10} + HN = R^{10}$$
(c-1) (c-2) . (c-3) (c-4)

$$R^{10}$$
 HN NH R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10}

wherein each R¹⁰ independently is hydrogen, C₁₋₆alkyl, aminocarbonyl, hydroxy,

 C_{1-6} alkyloxy C_{1-6} alkyl, C_{1-6} alkyloxy C_{1-6} alkylamino, di(phenyl C_{2-6} alkenyl), piperidinyl C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyl C_{1-6} alkyl, aryloxy(hydroxy) C_{1-6} alkyl, haloindazolyl, aryl C_{1-6} alkyl, aryl C_{2-6} alkenyl, morpholino, C_{1-6} alkylimidazolyl, or pyridinyl C_{1-6} alkylamino; each R^{11} independently is hydrogen, hydroxy, piperidinyl or aryl;

aryl is phenyl or phenyl substituted with halo, C₁₋₆alkyl, or C₁₋₆alkyloxy.

10

5

- 9. Use according to claim 8 of a PARP inhibitor of formula (I) for the manufacture of a medicament for the treatment of a PARP-1 mediated disorder
- 10. Use according to claim 8 and 9 wherein the treatment involves chemosensitization.

15

- 11. Use according to claims 8 and 9 wherein the treatment involves radiosensitization.
- 12. A combination of a compound with a chemotherapeutic agent wherein said compound is a compound of formula (I)

20

$$(CH_2)_s \xrightarrow{R^2} (CH_2)_n \xrightarrow{X} R^1$$

$$(I)$$

the N-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

25

- n is 0 or 1;
- s is 0 or 1;
- X is -N= or -CR⁴=, wherein R⁴ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

Y is -N < or -CH <;

Q is -NH-, -O-, -C(O)-, -CH₂-CH₂- or -CHR⁵-, wherein R⁵ is hydrogen, hydroxy, C₁₋₆alkyl, arylC₁₋₆alkyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkyloxyC₁₋₆alkylamino or haloindazolyl;

R¹ is C₁₋₆alkyl or thienyl;

R² is hydrogen or taken together with R³ may form =O;

10

5

R³ is hydrogen, C₁₋₆alkyl or a radical selected from

- NR⁶R⁷ (a-1), -O-H (a-2), -O-R⁸ (a-3), -S- R⁹ (a-4), or

15 -S- R⁹ (a-4), (a-5), (a-5),

wherein

 R^6 is -CHO, C_{1-6} alkyl, hydroxy C_{1-6} alkyl, C_{1-6} alkylcarbonyl, di(C_{1-6} alkyl)amino C_{1-6} alkyl, C_{1-6} alkyl, carbonylamino C_{1-6} alkyl,

- piperidinylC₁₋₆alkyl, piperidinylC₁₋₆alkylaminocarbonyl, C₁₋₆alkyloxy, C₁₋₆alkyloxyC₁₋₆alkyl, thienylC₁₋₆alkyl, pyrrolylC₁₋₆alkyl, arylC₁₋₆alkyl, arylC₁₋₆alkylpiperidinyl, arylcarbonylC₁₋₆alkyl, arylcarbonylpiperidinylC₁₋₆alkyl, haloindozolylpiperidinylC₁₋₆alkyl, or arylC₁₋₆alkyl(C₁₋₆alkyl)aminoC₁₋₆alkyl; and R⁷ is hydrogen or C₁₋₆alkyl;
- R⁸ is C_{1-6} alkyl, C_{1-6} alkylcarbonyl or di(C_{1-6} alkyl)amino C_{1-6} alkyl; and R⁹ is di(C_{1-6} alkyl)amino C_{1-6} alkyl;

or R³ is a group of formula

$$-(CH2)t-Z-$$
 (b-1), wherein

t is 0, 1 or 2;

30

Z is a heterocyclic ring system selected from

10

20

wherein each R¹⁰ independently is hydrogen, C₁₋₆alkyl, aminocarbonyl, hydroxy,

$$\begin{split} &C_{1\text{-}6}alkyloxyC_{1\text{-}6}alkyl,\ C_{1\text{-}6}alkyloxyC_{1\text{-}6}alkylamino,\ di(phenylC_{2\text{-}6}alkenyl),\\ &piperidinylC_{1\text{-}6}alkyl,\ C_{3\text{-}10}cycloalkyl,\ C_{3\text{-}10}cycloalkylC_{1\text{-}6}alkyl,\\ &aryloxy(hydroxy)C_{1\text{-}6}alkyl,\ haloindazolyl,\ arylC_{1\text{-}6}alkyl,\ arylC_{2\text{-}6}alkenyl,\\ &morpholino,\ C_{1\text{-}6}alkylimidazolyl,\ or\ pyridinylC_{1\text{-}6}alkylamino;\\ &each\ R^{11}\ independently\ is\ hydrogen,\ hydroxy,\ piperidinyl\ or\ aryl; \end{split}$$

aryl is phenyl or phenyl substituted with halo, C_{1-6} alkyl or C_{1-6} alkyloxy.

13. A process for preparing a compound as claimed in claim 1, characterized by a) the hydrolysis of intermediates of formula (VIII), according to art-known methods, by submitting the intermediates of formula (VIII) to appropriate reagents, such as, tinchloride, acetic acid and hydrochloric acid, in the presence of a reaction inert solvent, e.g. tetrahydrofuran.

$$(CH_2)_s \xrightarrow{R^2} (CH_2)_n \xrightarrow{X} X$$

$$(CH_2)_s \xrightarrow{R^2} (CH_2)_n \xrightarrow{X} X$$

$$\downarrow N$$

$$\downarrow$$

(VIII)

b) the cyclization of intermediates of formula (X), according to art-known cyclizing procedures into compounds of formula (I) wherein X is CH herein referred to as compounds of formula (I-j), preferably in the presence of a suitable Lewis Acid, e.g. aluminum chloride either neat or in a suitable solvent such as, for example, an aromatic hydrocarbon, e.g. benzene, chlorobenzene, methylbenzene and the like; halogenated hydrocarbons, e.g. trichloromethane, tetrachloromethane and the like; an ether, e.g. tetrahydrofuran, 1,4-dioxane and the like or mixtures of such solvents.

$$(CH_{2})_{\overline{S}} \xrightarrow{R^{2}} (CH_{2})_{\overline{n}} \qquad Q \qquad (CH_{2})_{\overline{S}} \xrightarrow{R^{2}} (CH_{2})_{\overline{n}} \qquad Q \qquad R^{2}$$

$$NH - C - CR^{L} = C - C_{C}H_{5} \qquad (I-j)$$

$$(X)$$

10

15

20

5

c) the condensation of an appropriate ortho-benzenediamine of formula (XI) with an ester of formula (XII) into compounds of formula (I), wherein X is N and R² taken together with R³ forms =O, herein referred to as compounds of formula (I-a-1), in the presence of a carboxylic acid, e.g. acetic acid and the like, a mineral acid such as, for example hydrochloric acid, sulfuric acid, or a sulfonic acid such as, for example, methanesulfonic acid, benzenesulfonic acid, 4-methylbenzenesulfonic acid and the like.

$$(CH_2)_{\overline{s}} \xrightarrow{R^2} (CH_2)_{\overline{a}} \xrightarrow{NH_2} R^1 \xrightarrow{O} OR^h \xrightarrow{(CH_2)_{\overline{a}}} (CH_2)_{\overline{a}} \xrightarrow{R^2} (CH_2)_{\overline{a}} \xrightarrow{NH_2} O$$

$$(XI) \qquad (XII) \qquad (I-i)$$