Answers to Option A test yourself questions

- 1 a N covalent
 - **b** M/R boundary covalent (borderline ionic)
 - c X/Y boundary covalent
 - **d** M covalent (borderline ionic)
 - e R covalent
 - **f** D/E boundary ionic
- 2 a no; b yes; c no; d yes
- 3 a $Bi_2O_3 + 3C \rightarrow 2Bi + 3CO$; or $2Bi_2O_3 + 3C \rightarrow 4Bi + 3CO_2$
 - **b** $CuO + C \rightarrow Cu + CO$; or $2CuO + C \rightarrow 2Cu + CO_2$
 - c Fe₂O₃+3C \rightarrow 2Fe+3CO; or 2Fe₂O₃+3C \rightarrow 4Fe+3CO₂
- 4 a $MgCl_2 \rightarrow Mg + Cl_2$
 - **b** $2KCl \rightarrow 2K + Cl_2$
- **5 a** 500 C; **b** 86 400 C; **c** 75.6 C
- **6 a** 0.0205 mol; **b** 22.4 mol; **c** 0.179 mol
- **7 a** 2.16 g; **b** 9.07 g; **c** 101 g
- 8 $9.2 \,\mathrm{mg} \,\mathrm{dm}^{-3}$; $2.3 \times 10^{-4} \,\mathrm{mol} \,\mathrm{dm}^{-3}$
- 9 Molecule I, a rod-shaped, polar molecule

Different forms (atactic/isotactic/syndiotactic) are possible depending on how the methyl groups are arranged relative to the main carbon skeleton.

- 11 Plastic A will be of lower density *and* more flexible: the branches prevent the main parts of the chains getting so close together hence lower density; there will be weaker forces between the chains hence more flexible.
- **12 a** 31.71%; **b** 19.72%; **c** 81.32%
- 13 a CO_2 and H_2O
 - **b** CO_2 , H_2O and HF
 - **c** CO_2 , H_2O , HCN and NO_x
- **14 a** PCDD; **b** phthalate ester; **c** PCB; **d** phthalate ester; **e** PCB; **f** PCDD
- **15 a** RIC 6; **b** RIC 1; **c** all; **d** RIC 3
- **16 a** Face-centred cubic (fcc) four atoms per unit cell
 - **b** Body-centred cubic (bcc) two atoms per unit cell
 - **c** Simple cubic one atom per unit cell
- **17** 14.9°; 30.9°; 50.4°
- **18 a** 4.079×10^{-10} m; **b** 337 pm
- **19 a** 3.27×10^{-22} g; **b** 1.59×10^{-22} g

- **20 a** 1.31×10^{-21} g; **b** 3.18×10^{-22} g
- **21 a** $19.3 \,\mathrm{g \, cm}^{-3}$; **b** $8.31 \,\mathrm{g \, cm}^{-3}$
- 22 Unit cell length = 5.57×10^{-10} m; density = 1.54 g cm⁻³

- **28 a** 1.7×10^{-10} ; **b** 7.8×10^{-16} ; **c** 2.0×10^{-39}
- **29 a** $1.3 \times 10^{-4} \,\text{mol dm}^{-3}$; $(K_{sp} = s^2)$
 - **b** $1.2 \times 10^{-17} \,\mathrm{mol}\,\mathrm{dm}^{-3}; (K_{\rm sp} = 4s^3)$
 - **c** $1.6 \times 10^{-5} \,\mathrm{mol \, dm}^{-3}$; $(K_{sp} = 27s^4)$
 - **d** $6.3 \times 10^{-4} \,\mathrm{mol \, dm}^{-3}; (K_{\rm sp} = 4s^3)$
- **30 a** $2.0 \times 10^{-4} \,\mathrm{mol \, dm^{-3}}$; **b** $1.0 \times 10^{-30} \,\mathrm{mol \, dm^{-3}}$
- **31** Between 9 and 10 (pH = 9.7)
- **32** $1.5 \times 10^{-9} \,\mathrm{g}$