Use of symmetry in calculation of many electron relativistic operators

Peter John Cherry Shiozaki group meeting August 2nd 2017

Properties in XMS-CASPT2

- The XMS-CASPT2 energy is not minimized with respect to the CI and orbital coefficients obtained in the CASSCF calculation.
- This makes differentiating it with respect to perturbations of the Hamiltonian difficult.
- Accordingly, a Lagrangian is defined, which is minimized with respect to these variables:

$$L(\mathbf{t}, \mathbf{c}, \mathbf{z}, \boldsymbol{\lambda}) = E(\mathbf{t}, \mathbf{c}) + \mathbf{z}^{\dagger} \mathbf{g}(\mathbf{c}) + \boldsymbol{\lambda}^{\dagger} \mathbf{g}'(\mathbf{t})$$

• Typically, differentiating this Lagrangian with respect to some perturbative parameter is much easier than differentiating the XMS-CASPT2 energy.

Z-vector and Lambda equations

- The Z constraint can be obtained by solution of the "Z-vector equation".
- This requires, amongst other things, calculation of the CI-deratives:

$$y_{I,N} = \frac{\partial L_{PT2}}{\partial c_{I,N}}$$
 — Derivative of the CASPT2 Lagrangian with respect to CASSCF reference coefficients.

Calculation of CI derivatives

Requires evaluation of terms of this form

$$\sum_{\mathbf{ijklwxyz}} \sum_{J} T_{\mathbf{ijkl}}^{\dagger} g_{\mathbf{wxyz}} \langle I | a_{\mathbf{i}} a_{\mathbf{j}} a_{\mathbf{k}}^{\dagger} a_{\mathbf{l}}^{\dagger} a_{\mathbf{w}}^{\dagger} a_{\mathbf{x}}^{\dagger} a_{\mathbf{y}} a_{\mathbf{z}} | J \rangle c_{J}$$

 Wick's theorem is used to rewrite this sum over general indices as a sum over active indices:

$$= \sum_{\mathbf{ijklmnop}} \Gamma_{\mathbf{ij,kl,mn,op}} A_{\mathbf{ij,kl,mn,op}}$$

$$+\sum_{\mathbf{ijklmn}}\Gamma_{\mathbf{ij,kl,mn}}A_{\mathbf{ij,kl,mn}} + \sum_{\mathbf{ijkl}}\Gamma_{\mathbf{ij,kl}}A_{\mathbf{ij,kl}} + \sum_{\mathbf{ij}}\Gamma_{\mathbf{ij}}A_{\mathbf{ij}} + A$$

RDM derivatives

RDM derivatives are defined as:

$$\Gamma^{I}_{\mathbf{ijklwxyz}} = \langle I| : a_{\mathbf{i}} a_{\mathbf{j}}^{\dagger} a_{\mathbf{k}}^{\dagger} a_{\mathbf{l}}^{\dagger} a_{\mathbf{w}}^{\dagger} a_{\mathbf{z}}^{\dagger} a_{\mathbf{z}} : |J\rangle c_{J}$$

 As I and J are restricted to the active space, and thanks to the normal ordering, we have:

$$\Gamma^{I}_{ijklwxyz} = \Gamma^{I}_{ijklwxyz} = \langle I| : a_i a_j a_k^{\dagger} a_l^{\dagger} a_k^{\dagger} a_x^{\dagger} a_y a_z : |J\rangle c_J$$

"A" tensor

• Formed by summing of different contractions of the representations of the operators in the molecular orbital basis:

$$A_{\mathbf{i}'\mathbf{j}'\mathbf{k}'\mathbf{l}'\mathbf{m}'\mathbf{n}'} = \sum_{\mathbf{x}} T_{\mathbf{i}\mathbf{j}\mathbf{k}\mathbf{x}}^{\dagger} g_{\mathbf{m}\mathbf{n}\mathbf{o}\mathbf{x}} s_{lp} + T_{\mathbf{i}\mathbf{j}\mathbf{l}\mathbf{x}}^{\dagger} g_{\mathbf{m}\mathbf{n}\mathbf{x}\mathbf{p}} s_{lo} + T_{\mathbf{i}\mathbf{j}\mathbf{x}\mathbf{l}}^{\dagger} g_{\mathbf{m}\mathbf{n}\mathbf{x}\mathbf{p}} s_{ko} + \dots$$

 The ability to combine all these contractions into one is crucial if the method is to be efficient.

Relativistic case

- The relativistic case is significantly more expensive:
 - Alpha and beta orbitals are treated seperately.
 - Can have spin flipping excitations.
 - → Eight index tensors can be 256 times as large.
- Must use time reversal symmetry to reduce cost.

Non-interacting spin-sectors

Contributions to non-relativistic Γ^I_{ijklmn} for $|I\rangle \in [4\alpha 3\beta]$

	$\left \left[7\alpha 0\beta \right] \right $	$\left[\left[6\alpha 1\beta \right] \right]$	$\left[\left[5lpha 2eta ight] ight]$	$\left[4\alpha 3\beta\right]$	$[3\alpha 4\beta]$	$[2\alpha 5\beta]$	$ [1\alpha 6\beta]$	$0\alpha7\beta]$
$\boxed{[7\alpha0\beta]}$								
$\boxed{[6\alpha1\beta]}$								
$[5\alpha 2\beta]$								
$\boxed{[4\alpha 3\beta]}$								
$\boxed{[3\alpha 4\beta]}$								
$\boxed{[2\alpha 5\beta]}$								
$\boxed{[1\alpha6\beta]}$								
$\boxed{[0\alpha7\beta]}$								

Interacting spin-sectors

Contributions to relativistic Γ^I_{ijklmn} for $|I\rangle \in [4\alpha 3\beta]$

	$ [7\alpha 0\beta]$	$\left \ [6\alpha 1\beta] \ \right $	$ [5\alpha 2\beta] $	$ \left \ \left[4\alpha 3\beta \right] \right $	$[3\alpha 4\beta]$	$[2\alpha 5\beta]$	$\left[1\alpha6\beta\right]$	$0\alpha7\beta]$
$\boxed{[7\alpha0\beta]}$								
$\boxed{[6\alpha1\beta]}$								
$[5\alpha 2\beta]$								
$\boxed{[4\alpha 3\beta]}$								
$\boxed{[3\alpha 4\beta]}$								
$\boxed{[2\alpha 5\beta]}$								
$\boxed{[1\alpha6\beta]}$								
$\boxed{[0\alpha7\beta]}$								

Interacting spin-sectors

1-electron rdm derivatives which need to be calculated for Γ^I_{ijklmn} with $|I\rangle \in [4\alpha 3\beta]$

	$ [7\alpha 0\beta]$	$\left [6\alpha 1\beta] \right $	$ [5\alpha 2\beta] $	$\boxed{[4\alpha 3\beta]}$	$[3\alpha 4\beta]$	$[2\alpha 5\beta]$	$10 \left[1 \alpha 6 \beta \right]$	$\boxed{[0\alpha7\beta]}$
$\boxed{[7\alpha0\beta]}$								
$\boxed{[6\alpha1\beta]}$								
$[5\alpha 2\beta]$								
$\boxed{[4\alpha 3\beta]}$								
$[3\alpha 4\beta]$								
$2\alpha 5\beta$								
$[1\alpha6\beta]$								
$[0\alpha7\beta]$								

Interacting spin-sectors

1-electron rdm derivatives which need to be calculated for Γ^I_{ijklmn} with $|I\rangle \in [4\alpha 3\beta]$

	$\left \left[7\alpha 0\beta \right] \right $	$\left [6\alpha 1\beta] \right $	$5\alpha 2\beta$	$[4\alpha 3\beta]$	$\left[3\alpha 4\beta\right]$	$[2\alpha 5\beta]$	$\left[1\alpha6\beta\right]$	$\boxed{[0\alpha7\beta]}$
$\boxed{[7\alpha0\beta]}$								
$6\alpha 1\beta$								
$[5\alpha 2\beta]$								
$\boxed{[4\alpha 3\beta]}$								
$[3\alpha 4\beta]$								
$\boxed{[2\alpha 5\beta]}$								
$\boxed{[1\alpha6\beta]}$								
$\boxed{[0\alpha7\beta]}$								

Spin restricted indexes

• Constrain indexes to either alpha or beta

$$\Gamma_{\mathbf{ijklmn}}^{I\alpha\alpha\beta\alpha\beta\beta} = \sum_{J} \langle I | a_{\mathbf{i}}^{\alpha\dagger} a_{\mathbf{j}}^{\alpha\dagger} a_{\mathbf{k}}^{\beta\dagger} a_{\mathbf{l}}^{\alpha} a_{\mathbf{m}}^{\beta} a_{\mathbf{l}}^{\beta} | J \rangle c_{J}$$

Non-interacting spin-sectors

Contribution $\Gamma^{I\alpha\alpha\beta\alpha\beta\beta}_{ijklmn}$ for $|I\rangle\in[4\alpha3\beta]$

	$\boxed{[7\alpha0\beta]}$	$\left [6\alpha 1\beta] \right $	$\left \left[5 \alpha 2 \beta \right] \right $	$[4\alpha 3\beta]$	$[3\alpha 4\beta]$	$[2\alpha 5\beta]$	100 10	$0\alpha7\beta$
$\boxed{[7\alpha0\beta]}$								
$\boxed{[6\alpha1\beta]}$								
$[5\alpha 2\beta]$								
$\boxed{[4\alpha 3\beta]}$								
$\boxed{[3\alpha 4\beta]}$				•				
$\boxed{[2\alpha 5\beta]}$								
$\boxed{[1\alpha6\beta]}$								
$\boxed{[0\alpha7\beta]}$								

Spin restricted RDM derivatives

Constrain indexes to either alpha or beta

$$\Gamma_{\mathbf{ijklmn}}^{I\alpha\alpha\beta\alpha\beta\beta} = \sum_{J} \langle I | a_{\mathbf{i}}^{\alpha\dagger} a_{\mathbf{j}}^{\alpha\dagger} a_{\mathbf{k}}^{\beta\dagger} a_{\mathbf{l}}^{\alpha} a_{\mathbf{m}}^{\beta} a_{\mathbf{l}}^{\beta} J \rangle c_{J}$$

For the rdm derivative this is straightforward, but for the "A" tensor :

$$A_{\mathbf{i}'\mathbf{j}'\mathbf{k}'\mathbf{l}'\mathbf{m}'\mathbf{n}'}^{\alpha\alpha\beta\alpha\beta\beta} = \sum_{\mathbf{x}} T_{\mathbf{i}\mathbf{j}\mathbf{k}\mathbf{x}}^{\alpha\alpha\beta\dagger} g_{\mathbf{mnox}}^{\alpha\beta\beta} s_{lp} + T_{\mathbf{i}\mathbf{j}\mathbf{l}\mathbf{x}}^{\alpha\alpha\beta\dagger} g_{\mathbf{mnxp}}^{\alpha\beta\beta} s_{lo} + T_{\mathbf{i}\mathbf{j}\mathbf{x}\mathbf{l}}^{\alpha\alpha\beta\dagger} g_{\mathbf{mnxp}}^{\alpha\beta\beta} s_{ko} + \dots$$

- The factor s_{lp} are dependent upon the spin sector.
- Consequently a the contributions to A depend upon the spin sector.

Spin restricted RDM derivatives

 Indicates that we need to perform this contraction for every distinct combination of spin excitations:

$$\sum_{\sigma_4} \sum_{\mathbf{ijklmnop}} \Gamma_{\mathbf{ij,kl,mn,op}}^{I\sigma_4} A_{\mathbf{ij,kl,mn,op}}^{\sigma_4} + \sum_{\sigma_3} \sum_{\mathbf{ijklmn}} \Gamma_{\mathbf{ij,kl,mn}}^{I\sigma_3} A_{\mathbf{ij,kl,mn}}^{\sigma_3}$$

$$+\sum_{\sigma_2}\sum_{\mathbf{ijkl}}\Gamma_{\mathbf{ij},\mathbf{kl}}^{I\sigma_2}A_{\mathbf{ij},\mathbf{kl}}^{\sigma_2} + \sum_{\sigma_1}\sum_{\mathbf{ij}}\Gamma_{\mathbf{ij}}^{I\sigma_1}A_{\mathbf{ij}}^{\sigma_1} + A$$

- Where, $\sigma_3 = \{s_i s_j, s_k s_l, s_l s_m\}$, e.g., $\{\alpha \beta, \alpha \alpha, \beta \beta\}$
- Different terms in the summation over σ_i correspond to different indexes, hence we cannot swap the order of the summation.

Switch to alternating order

• Switching from normal order (+++---) to alternating order (+-+-+-), i.e.,

$$\gamma_{\mathbf{iljmkn}}^{I\alpha\alpha\alpha\beta\beta\beta} = \sum_{J} \langle I | a_{\mathbf{i}}^{\alpha\dagger} a_{\mathbf{l}}^{\alpha} a_{\mathbf{j}}^{\alpha\dagger} a_{\mathbf{m}}^{\beta} a_{\mathbf{k}}^{\beta\dagger} a_{\mathbf{n}}^{\beta} | J \rangle c_{J}$$

Commutation relations are used to rewrite rdm derivatives

$$\Gamma_{\mathbf{ijklmn}}^{I\alpha\alpha\beta\alpha\beta\beta} = \sum_{J} \langle I | a_{\mathbf{i}}^{\alpha\dagger} a_{\mathbf{j}}^{\alpha\dagger} a_{\mathbf{k}}^{\beta\dagger} a_{\mathbf{l}}^{\alpha} a_{\mathbf{m}}^{\beta} a_{\mathbf{l}}^{\beta} | J \rangle c_{J}$$

$$= \sum_{J} \left[\gamma_{ijklmn}^{I\alpha\alpha\beta\alpha\beta\beta} + \sum_{qrst} \kappa_{qrst} \delta_{uv} \gamma_{qrst}^{I\sigma_{q}\sigma_{r}\sigma_{s}\sigma_{t}} + \sum_{uv} \kappa_{qr} \delta_{uv} \delta_{st} \gamma_{uv}^{I\sigma_{q}\sigma_{r}} \right] c_{J}$$

Spin restricted RDM derivatives

 Indicates that we need to perform this contraction for every distinct combination of spin excitations:

$$\sum_{\sigma_4} \sum_{\mathbf{ijklmnop}} \gamma_{\mathbf{ij,kl,mn,op}}^{I\sigma_4} A_{\mathbf{ij,kl,mn,op}}^{\prime\sigma_4} + \sum_{\sigma_3} \sum_{\mathbf{ijklmn}} \gamma_{\mathbf{ij,kl,mn}}^{I\sigma_3} A_{\mathbf{ij,kl,mn}}^{\prime\sigma_3}$$

$$+\sum_{\sigma_2}\sum_{\mathbf{ijkl}}\gamma_{\mathbf{ij,kl}}^{I\sigma_2}A_{\mathbf{ij,kl}}^{\prime\sigma_2}+\sum_{\sigma_1}\sum_{\mathbf{ij}}\gamma_{\mathbf{ij}}^{I\sigma_1}A_{\mathbf{ij}}^{\prime\sigma_1}+A^{\prime}$$

- Where, $\sigma_3 = \{s_i s_j, s_k s_l, s_l s_m\}$, e.g., $\{\alpha \beta, \alpha \alpha, \beta \beta\}$
- Different terms in the summation over σ_i correspond to different indexes, hence we cannot swap the order of the summation.

Spin restricted RDM derivatives

 Indicates that we need to perform this contraction for every distinct combination of spin excitations:

$$\sum_{\sigma_4} \sum_{\mathbf{ijklmnop}} \gamma_{\mathbf{ij,kl,mn,op}}^{I\sigma_4} A_{\mathbf{ij,kl,mn,op}}^{\prime\sigma_4} + \sum_{\sigma_3} \sum_{\mathbf{ijklmn}} \gamma_{\mathbf{ij,kl,mn}}^{I\sigma_3} A_{\mathbf{ij,kl,mn}}^{\prime\sigma_3}$$

$$+\sum_{\sigma_2}\sum_{\mathbf{ijkl}}\gamma_{\mathbf{ij,kl}}^{I\sigma_2}A_{\mathbf{ij,kl}}^{\prime\sigma_2}+\sum_{\sigma_1}\sum_{\mathbf{ij}}\gamma_{\mathbf{ij}}^{I\sigma_1}A_{\mathbf{ij}}^{\prime\sigma_1}+A^{\prime}$$

Advantages of alternating order

- No new terms are being calculated; calculation of all rdm derivatives currently requires calculation of all γ_{ij}^I .
- Many (>2) index terms can re-expressed as products of two index terms

$$\gamma_{\mathbf{iljmkn}}^{I\sigma_3} = \sum_{JKL} \gamma_{\mathbf{il}}^{IK\sigma_1} \gamma_{\mathbf{jm}}^{KL\sigma_1'} \gamma_{\mathbf{kn}}^{LJ\sigma_1''} c_J$$

$$\gamma_{\mathbf{ij}}^{IK\sigma_1} = \langle I | a_{\mathbf{i}}^{s_i \dagger} a_{\mathbf{j}}^{s_j} | K \rangle$$

 Similarly, all spin excitation sequences are expressed in terms of two spin sequences:

$$\sigma_3 = \{s_i s_j s_k s_l s_m s_n\} = \sigma_1 \cup \sigma_1' \cup \sigma_1''$$

Faster calculation of contractions

Can now rewrite the summation as

$$\sum_{\sigma_3} \sum_{\mathbf{ijklmn}} \gamma_{\mathbf{ij,kl,mn}}^{I\sigma_3} A_{\mathbf{ij,kl,mn}}^{\prime\sigma_3} = \sum_{\sigma_1} \sum_{\mathbf{ij}} \sum_{K} \gamma_{\mathbf{ij}}^{IK\sigma_1} \tilde{\gamma}_{\mathbf{ij}}^{K\sigma_1}$$

Where

$$\tilde{\gamma}_{ij}^{K\sigma_1} = \sum_{\sigma_2} \sum_{LJ} \sum_{\mathbf{klmn}} \gamma_{\mathbf{kl,mn}}^{KJ\sigma_2} A_{\mathbf{ij,kl,mn}}^{\prime\sigma_1 \otimes \sigma_2}$$

- Avoids the need for storage of a six index RDM derivative.
- Enables summation over all terms where the first two spin indexes are the same.

Spin transition pathways

 Representation in terms of individual transitions can help with application of symmetry:

Spin sector	$ \{ J angle\}$	$ \{ K angle\} $	$\Big \left\{ L angle ight\}\Big $	$ \{ I angle\}$
$7\alpha 0\beta$				
$\boxed{[6\alpha1\beta]}$				
$\boxed{[5\alpha2\beta]}$				1
$\boxed{[4\alpha 3\beta]}$				
$\overline{[3\alpha 4\beta]}$		A /		
$\boxed{[2\alpha 5\beta]}$				
$\boxed{[1\alpha6\beta]}$				
$\boxed{[0\alpha7\beta]}$				

$$|J\rangle \in [4\alpha 3\beta]$$

$$\gamma_{\alpha\beta}^{KL} = \langle K|a_{\alpha}^{\dagger}a_{\beta}|L\rangle$$

$$\gamma^{IK}_{\alpha\beta}\gamma^{KL}_{\alpha\beta}\gamma^{LJ}_{\beta\alpha}$$

Spin transition pathways

• "Forwards" and "backwards" transitions are connected by time reversal

Spin sector	$\{ J angle\}$	$ \{ K angle\} $	$ \{ L angle\}$	$\{ I angle\}$
$[7\alpha 0\beta]$				
$\boxed{[6\alpha1\beta]}$				
$\boxed{[5\alpha2\beta]}$				/
$\boxed{[4\alpha 3\beta]}$	×		/	
$\boxed{[3\alpha 4\beta]}$		×		
$\boxed{[2\alpha 5\beta]}$				
$\boxed{[1\alpha6\beta]}$				
$\boxed{[0\alpha7\beta]}$				

$$|J\rangle \in [4\alpha 3\beta]$$

$$\gamma_{\beta\alpha}^{KL} = \langle K|a_{\beta}^{\dagger}a_{\alpha}|L\rangle$$

$$\gamma_{\beta\alpha}^{JK}\gamma_{\beta\alpha}^{KL}\gamma_{\alpha\beta}^{LI}$$

$$\gamma_{\beta\alpha}^{KL} = (\gamma_{\alpha\beta}^{LK})^*$$

Time reversal symmetry

- Need only calculate the rdm derivatives for half the spin sectors.
- Can apply time reversal applied to only a <u>subset</u> of the indexes:

$$\gamma_{s_i s_j}^{IK} \gamma_{\alpha \beta}^{KL} \gamma_{\beta \alpha}^{LJ} = \gamma_{s_i s_j}^{IK} (\gamma_{\beta \alpha}^{KL} \gamma_{\alpha \beta}^{LJ})^*$$

Contributions to the "A" tensor also possess such symmetries, e.g.,

$$\sum_{im} T^{\dagger}_{m_{\alpha}n_{\alpha}o_{\alpha}p_{\beta}} g_{i_{\alpha}j_{\beta}k_{\alpha}l_{\beta}} \delta_{mn} = -\sum_{im} T^{\dagger}_{i_{\alpha}n_{\alpha}o_{\alpha}p_{\beta}} g_{i_{\alpha}j_{\alpha}l_{\beta}k_{\alpha}} \delta_{mn}$$

• All are combined to reduce the range of the sum over σ_2 :

$$\tilde{\gamma}_{ij}^{K\sigma_1} = \sum_{\sigma_2} \sum_{l,l} \sum_{\mathbf{klmn}} \gamma_{\mathbf{kl,mn}}^{KJ\sigma_2} A_{\mathbf{ij,kl,mn}}^{\prime\sigma_1 \otimes \sigma_2}$$

Advantages of alternating order

- No new terms are being calculated; calculation of all rdm derivatives currently requires calculation of all γ^I_{ij} .
- Resolution of identity application facilitates application of spin constraints and time reversal symmetry:

$$\gamma_{\mathbf{iljmkn}}^{I\alpha\beta\alpha\beta\alpha\beta} = \sum_{JKL} \langle I|a_{\mathbf{i}}^{\alpha\dagger}a_{\mathbf{l}}^{\beta}|K\rangle\langle K|a_{\mathbf{j}}^{\alpha\dagger}a_{\mathbf{m}}^{\beta}|L\rangle\langle L|a_{\mathbf{k}}^{\beta\dagger}a_{\mathbf{n}}^{\alpha}|J\rangle c_{J}$$

- Can apply time reversal applied to only a <u>subset</u> of the indexes.
- This is not the case for the rdm derivatives.

Spin transition pathways

• Application of spin constraints is more straightforward

Spin sector	$ $ $\{ J angle\}$	$\Big \{ K angle\}\Big $	$\{ L angle\}$	$\{ I angle\}$
$[7\alpha 0\beta]$				
$\boxed{[6\alpha1\beta]}$				
$\boxed{[5\alpha2\beta]}$				
$\boxed{[4\alpha 3\beta]}$				
$\boxed{[3\alpha 4\beta]}$				
$\boxed{[2\alpha 5\beta]}$				
$\boxed{[1\alpha6\beta]}$				#
$\boxed{[0\alpha7\beta]}$			#	
		\	'	·

$$|J\rangle \in [0\alpha 7\beta]$$

$$\to \gamma_{\beta\alpha}^{KJ} = 0$$

$$\to \gamma_{\alpha\beta}^{IK} \gamma_{\alpha\beta}^{KL} \gamma_{\beta\alpha}^{LJ} = 0$$

Spin transition pathways

· Application of spin constraints is more straightforward

Spin sector	$ \;\{ J angle\}$	$\Big \{ K angle\}\Big $	$\Big \{ L angle\}$	$\Big \{ I angle\}\Big $
$[7\alpha 0\beta]$				
$[6\alpha 1\beta]$				
$\boxed{[5\alpha2\beta]}$				
$\boxed{[4\alpha 3\beta]}$				
$\boxed{[3\alpha4\beta]}$				
$\boxed{[2\alpha 5\beta]}$				
$\boxed{[1\alpha6\beta]}$				#
$\boxed{[0\alpha7\beta]}$			#	
1		O		'

$$|J\rangle \in [0\alpha7\beta]$$

$$\rightarrow \gamma_{\beta\alpha}^{KJ} = 0$$

$$\rightarrow \gamma_{\alpha\beta}^{IK} \gamma_{\alpha\beta}^{KL} \gamma_{\beta\alpha}^{LJ} = 0$$

• This is much less clear with RDM derivatives, as they do not correspond a single transition pathway.

Decomposition of A

Ideally would decompose "A" tensor into two index components:

$$A_{ijklmn} = a_{ij} \otimes a_{kl} \otimes a_{mn}$$

• Computational cost would then be $3N_{det}N_{act}^2$:

$$\sum_{ijklmn} \gamma_{jiklmn}^{I} A_{ijklmn}$$

$$= \sum_{K} \sum_{ij} \gamma_{ij}^{I} a_{ij} \sum_{L} \sum_{kl} \gamma_{kl}^{KL} a_{kl} \sum_{J} \sum_{mn} \gamma_{mn}^{LJ} a_{mn} c_{J}$$

$$= \sum_{K} \sum_{ij} \gamma_{ij}^{I} a_{ij} \sum_{L} \sum_{kl} \gamma_{kl}^{KL} a_{kl} \tilde{c}_{L}$$

$$= \sum_{K} \sum_{ij} \gamma_{ij}^{I} a_{ij} \tilde{\tilde{c}}_{K}$$

Decomposition of "A" tensor

• Majority of the time we must deal with combinations of two electron operators:

$$A_{ijklqrwxyz} = T_{ijkl}^{\dagger} \otimes f_{qr} \otimes \lambda_{wxyz}$$

• Indexes may be reordered so as to isolate terms belonging to different operators:

$$\rightarrow \sum_{ijklqrwxyz} \gamma_{ijklqrwxyz}^{IJ} A_{ijklqrwxyz}$$

$$= \sum_{ijkl} \sum_{K} \gamma_{ijkl}^{IK} T_{ijkl}^{\dagger} \sum_{L} \sum_{qr} \gamma_{qr}^{KL} f_{qr} \sum_{M} \sum_{wxyz} \gamma_{wxyz}^{LJ} \lambda_{wxyz} c_{J}$$

Decomposition of "A" tensor

- Replaces a ten index operation, with two four index operation, and one two index operation (performed in sequence).
- If *A* has a decomposition

$$T_{ijkl} \otimes Y_{qrwxyz}$$
 or $\lambda_{ijkl} \otimes Y_{qrwxyz}$

- The contribution will vanish, as neither T nor lambda can have all active indexes.
- The largest tensor we shall have to deal with is formed from a single contraction between two 2-electron operators, e.g.,

$$A_{ijknop} = \sum_{l} T_{ijkl}^{\dagger} \lambda_{nopl}$$

 Reorder to keep indexes belonging to the same operator together, this the integral terms and the gamma matrices to be contracted prior to the end

Method Summary

Step 1 : Determine all possible "A"-tensors.

- Determine all unique contractions (symmetry applied here).
- Represent "A"-tensors tensor products of smallest possible tensors.

<u>Step 2</u>: Use normal ordering to get expression in terms of RDM derivatives with only active indexes.

- Get expressions for all possible transitions.
- Use contraction constraints to purge terms here.

<u>Step 3</u>: Reorder indexes in each RDM into alternating order.

- Merge all gamma terms
- For four and six index tensors, group indexes for like operators.
- Apply further spin transition constraints.

<u>Step 4</u>: Loop through spin sectors, performing contractions.

 Calculate contributions to ci-derivative for matching spin sectors simultaneously.

Current progress: Debugging Step 2 & 3; checking against expectation values from SMITH.

Decomposition of "A" tensor

• In many cases it is possible to decompose the A-tensor into components

$$\sum_{\mathbf{ijklwxyz}} \sum_{J} T_{\mathbf{ijkl}}^{\dagger} \lambda_{\mathbf{wxyz}} f_{\mathbf{qr}} \langle I | a_{\mathbf{i}} a_{\mathbf{j}} a_{\mathbf{k}}^{\dagger} a_{\mathbf{l}}^{\dagger} a_{\mathbf{q}}^{\dagger} a_{\mathbf{r}} a_{\mathbf{w}}^{\dagger} a_{\mathbf{z}} | J \rangle c_{J}$$

$$\rightarrow A_{ijklqrwxyz} = T^{\dagger}_{ijkl} \otimes f_{qr} \otimes \lambda_{wxyz}$$

 Reorder to keep indexes belonging to the same operator together, this the integral terms and the gamma matrices to be contracted prior to the end

$$\sum_{L} \sum_{ijkl} \gamma_{jikl}^{IL} T_{ijkl} \sum_{M} \sum_{wxyz} \gamma_{wxyz}^{LM} \lambda_{wxyz} \sum_{J} \sum_{qr} \gamma_{qr}^{MJ} f_{qr}$$

 May be evaluated in sequence; instead of a single ten index term, there are two four index terms, and one two index term.

Decomposition of T

- Most expensive terms are contractions involving
- , λ_{ijkl} and H_{ijkl}
- The blocks relevant to six index tensors are $T_{aa',ca''}$ and $T_{aa',a''v}$

$$c \rightarrow closed$$

$$a \rightarrow active$$

$$c \rightarrow closed$$
 $a \rightarrow active$ $v \rightarrow virtual$

Flatten tensor from four to two indexes:

$$aa \rightarrow \zeta$$
 $ca \rightarrow \nu$ $av \rightarrow \mu$

$$ca \rightarrow \nu$$

$$av \rightarrow \mu$$

$$T_{\zeta,\nu} = \sum_{\rho}^{N_{act}^2} t_{\zeta}^{\rho} \otimes t_{\nu}^{\rho} \epsilon_{\zeta}$$

Decomposition of "A" tensor

• In many cases it is possible to decompose the A-tensor into components

$$\sum_{\mathbf{ijklwxyz}} \sum_{J} T_{\mathbf{ijkl}}^{\dagger} \lambda_{\mathbf{wxyz}} f_{\mathbf{qr}} \langle I | a_{\mathbf{i}} a_{\mathbf{j}} a_{\mathbf{k}}^{\dagger} a_{\mathbf{l}}^{\dagger} a_{\mathbf{q}}^{\dagger} a_{\mathbf{r}} a_{\mathbf{w}}^{\dagger} a_{\mathbf{x}}^{\dagger} a_{\mathbf{y}} a_{\mathbf{z}} | J \rangle c_{J}$$

$$\rightarrow A_{ijklqrwxyz} = T^{\dagger}_{ijkl} \otimes f_{qr} \otimes \lambda_{wxyz}$$

Reorder to keep indexes belonging to the same operator together:

$$\sum_{L} \sum_{ijkl} \gamma_{jikl}^{IL} T_{ijkl} \sum_{M} \sum_{wxyz} \gamma_{wxyz}^{LM} \lambda_{wxyz} \sum_{J} \sum_{qr} \gamma_{qr}^{MJ} f_{qr}$$

Decomposition of "A" tensor

• In many cases it is possible to decompose the A-tensor into components

$$A_{ijklqrwxyz} = T_{ijkl}^{\dagger} \otimes f_{qr} \otimes \lambda_{wxyz}$$

$$\sum_{ijkl} \gamma_{jikl}^{IL} T_{ijkl} \sum_{M} \sum_{wxyz} \gamma_{wxyz}^{LM} \lambda_{wxyz} \sum_{J} \sum_{qr} \gamma_{qr}^{MJ} f_{qr}$$

Switch from RDM derivatives

Commutation relations and resolution of identity can be used to rewrite rdm derivatives

$$\Gamma_{\mathbf{ijklmn}}^{I\alpha\alpha\beta\alpha\beta\beta} = \sum_{J} \langle I | a_{\mathbf{i}}^{\alpha\dagger} a_{\mathbf{j}}^{\alpha\dagger} a_{\mathbf{k}}^{\beta\dagger} a_{\mathbf{l}}^{\alpha} a_{\mathbf{m}}^{\beta} a_{\mathbf{l}}^{\beta} | J \rangle c_{J}$$

$$\sum_{JKL} \langle I | a_{\mathbf{i}}^{\alpha \dagger} a_{\mathbf{l}}^{\alpha} | K \rangle \langle K | a_{\mathbf{j}}^{\alpha \dagger} a_{\mathbf{m}}^{\beta} | L \rangle \langle L | a_{\mathbf{k}}^{\beta \dagger} a_{\mathbf{n}}^{\beta} | J \rangle c_{J}$$

$$+ \sum_{\{q,r,s,t\}} \kappa_{qrst} \sum_{JK} \langle I | a_{\mathbf{q}}^{\alpha\dagger} a_{\mathbf{r}}^{\alpha} | K \rangle \langle K | a_{\mathbf{s}}^{\alpha\dagger} a_{\mathbf{t}}^{\beta} | J \rangle c_{J} + \sum_{\{u,v\}} \kappa_{uv} s_{\sum_{J} \langle K | a_{\mathbf{u}}^{\alpha\dagger} a_{\mathbf{v}}^{\beta} | J \rangle c_{J}}$$

- The factor s_{lp} are dependent upon the spin sector.
- Consequently a the contributions to A depend upon the spin sector.

Switch from RDM derivatives

Commutation relations and resolution of identity can be used to rewrite rdm derivatives

$$\Gamma_{\mathbf{ijklmn}}^{I\alpha\alpha\beta\alpha\beta\beta} = \sum_{J} \langle I | a_{\mathbf{i}}^{\alpha\dagger} a_{\mathbf{j}}^{\alpha\dagger} a_{\mathbf{k}}^{\beta\dagger} a_{\mathbf{l}}^{\alpha} a_{\mathbf{m}}^{\beta} a_{\mathbf{l}}^{\beta} | J \rangle c_{J}$$

$$= \sum_{JKL} \gamma_{ij}^{IL} \gamma_{kl}^{LK} \gamma_{mn}^{KJ} c_J + \sum_{JKL} \sum_{qrst} \kappa_{qrst} \gamma_{qr}^{IL} \gamma_{st}^{KJ} c_J + \sum_{JKL} \sum_{uv} \kappa_{uv} \gamma_{uv}^{IJ} c_J$$

- The factor s_{lp} are dependent upon the spin sector.
- Consequently a the contributions to A depend upon the spin sector.