K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Subject Code: CEDLC5054

Subject Name: Probabilistic Graphical Models Date: 12-12-

2022

Nov - Dec 2022

B. Tech Program: Computer Engineering

Examination: TY Semester: V

and Course Name: Probabilistic Graphical Models Course Code: CEDLC5054

Duration: 2.5 Hours

Max. Marks: 60

Instructions:

(1) All questions are compulsory.

(2) Draw neat diagrams wherever applicable.

(3)	Assume	suitable	data,	if	necessary.
-----	--------	----------	-------	----	------------

Sr. No.	Questions	Max. Marks	СО	BT level
Q1	Solve any six questions out of eight:	12		
i)	Explain five terminologies used in graph structures.	2	CO1	U
ii)	Which pairs of variables are independent in the graphical model below, given that none of them have been observed? Justify your answer.	2	CO2.	Ap
iii)	Explain the concept of Markovian Blanket.	2	CO3	U
iv)	Illustrate Temporal Markov Model? Explain with a diagram.	2	CO4	U
v)	How Expected Value is different from Expected Utility.	2	CO5	Ap
vi)	List any four applications of Bayesian Networks.	2	CO6 *	U
vii)	Explain Gibb's Distribution with suitable examples.	2	CO3	U
viii)	Define Emission Probability and Transition Probability with example.	2	CO4	U
Q.2	Solve any four questions out of six.	16		
i)	Differentiate between marginal and joint distributions with an example.	4	COI	Ap
ii)	In your local nuclear power station, there is an alarm that senses when a temperature gauge exceeds a given threshold. The gauge measures the temperature of the core. Consider the Boolean variables A (alarm sounds), FA (alarm is faulty), and FG (gauge is faulty) and the multivalued, discrete nodes G (gauge reading) and T (actual core temperature).	4	CO2	An
	Draw a Bayesian network for this domain, given that the gauge is more likely to fail when the core temperature gets too high.			

K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai) Subject Code: CEDLC5054 Subject Name: Probabilistic Graphical Models Date: 12-12-

Subject Code: CEDLC5054

2022

ii)	Explain the Markov Model. Justify the role of Factor Table in representation of information in Markov Model.	4	CO3	Ap
iv)	Explain factor graph in HMM with the help of an example.	4	CO4	U
V)	Explain Causal and Evidential Reasoning patterns with example		CO5	U
vi)	Explain any one application of Bayesian Network with respect to PGM.		CO6	U
Q.3	Solve any two questions out of three.			
i)	The random variable X has a range of $\{0, 1, 2\}$ and the random variable Y has a range of $\{1, 2\}$. The joint distribution of X and Y is given by the following table:	8	CO1	Ap
	 a. Write down tables for the marginal distributions of X and of Y, i.e. give the values of P(X = x) for all x, and of P(Y = y) for all y. b. Compute E(X) and E(Y). c. Are X and Y independent? Explain why or why not 			
	$ \begin{array}{c cc} x & y & P(X=x, Y=y) \\ \hline 0 & 1 & 0.2 \end{array} $			
	$egin{array}{c ccc} 0 & 2 & & 0.1 \\ 1 & 1 & & 0.0 \\ 1 & 2 & & 0.2 \\ \hline \end{array}$			
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
ii)	From the HMM given below, find the likelihood of the sequence {Happy, Grumpy}. S - Sunny R - Rainy H - Happy G - Grumpy	8	CO4	Ar
	0.8 0.2 R 0.6 O.6 H G		3	

K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai) Gubject Code: CEDLC5054 Subject Name: Probabilistic Graphical Models Date: 12-12

Subject Code: CEDLC5054

Date: 12-12-

iii)	Write Short notes on: a. Maximum Expected Utility (MEU) b. Utility Curve c. Maximum Likelihood Estimation (MLE) d. Decision Tree	8	CO5	U
0.4	Solve any two questions out of three.	16		
Q.4 i)	Write short note on Tabular CPD.	8	CO2	U
ii)	Explain Variable Elimination in details. Apply the Variable Elimination (VE) algorithm to compute P(G). Coherence Difficulty Intelligence Grade SAT Letter Job	8	CO3	Ар
iii)	List Applications of Bayesian Networks and Markov Models. Illustrate Speech Recognition as an application HMM.	8	CO6	Ap