MIMO (802.11n) & Next Generation 802.11n

MIMO

Multiple-input and multiple output (MIMO) is a method for multiplying the capacity of a radio link using multiple transmit and receive antennas

MIMO gains

- Multiplexing gain: send more packets at the same time
- Diversity gain: Increase SNR by sending packet along multiple streams

Receive Diversity

$$x_1 - y_1 = h_1 x_1 + h_1$$
 $y_2 = h_2 x_1 + h_2$

How Can we Decode?

- 1- Should We Sum?
- 2- Should We Decode Separately?

Transmit Diversity

Might add up destructively!

Pre-code the transmissions

MU-MIMO (Multi-User MIMO)

Can't decode because Rx1 and Rx2 are separate

Solution: Interference Nulling

What if we have a two-antenna receiver?

Solution: Interference Nulling

Next Generation 802.11n

1-antenna devices

2-antenna devices

3-antenna devices

Wireless nodes increasingly have heterogeneous numbers of antennas

802.11 Was Designed for 1-Antenna Nodes

When a single-antenna node transmits, multi-antenna nodes refrain from transmitting

But, MIMO Nodes Can Receive Multiple Concurrent Streams

It's Not That Simple

But, how do we transmit without interfering at receivers with fewer antennas?

Goal

Enable concurrent transmissions without harming ongoing transmissions

802.11n⁺

 Enables 802.11 nodes to contend for both time and concurrent transmissions

Maintains random access

1. How to transmit without interfering with receivers with fewer antennas?

2. How do we achieve it in a random access manner?

1. How to transmit without interfering with receivers with fewer antennas?

2. How do we achieve it in a random access manner?

Interference Nulling

Signals cancel each other at Alice's receiver

Interference Nulling

- Signals cancel each other at Alice's receiver
- Signals don't cancel each other at Bob's receiver
 - Because channels are different
- Bob's sender learns channels either by feedback from Alice's receiver or via reciprocity

Interference Nulling

Q: How to transmit without interfering with receivers with fewer antennas?

A: Nulling

Is Nulling Alone Enough? NO!

Is Nulling Alone Enough? NO!

Chris needs to null at three antennas

Is Nulling Alone Enough? NO!

Are we doomed?

MIMO Basics

1. N-antenna node receives in N-dimensional space

MIMO Basics

- 1. N-antenna node receives in N-dimensional space
- 2. N-antenna receiver can decode N signals

MIMO Basics

- 1. N-antenna node receives in N-dimensional space
- 2. N-antenna receiver can decode N signals
- 3. Transmitter can rotate the received signal

Rotate by multiplying transmitted signal by a rotation matrix R

Interference Alignment

2-antenna receiver

If I_1 and I_2 are aligned,

Interference Alignment

2-antenna receiver

If I₁ and I₂ are aligned,

- → appear as one interferer
- → 2-antenna receiver can decode the wanted signal

Use Nulling and Alignment

Use Nulling and Alignment

Use Nulling and Alignment

MAC Protocol

- Each sender computes in a distributed way
 - where and how to null
 - where and how to align

- Analytically proved:
 - # concurrent streams = # max antenna per sender

- 1. How to transmit without interfering with ongoing transmissions?
 - ▶ Interference nulling
 - ► Interference alignment
- 2. How do we achieve it in a random access manner?

- 1. How to transmit without interfering with receivers with fewer antennas?
 - ► Interference nulling
 - ► Interference alignment
- 2. How do we achieve it in a random access manner?

In 802.11, contend using carrier sense

But, how to contend despite ongoing transmissions?

Multi-Dimensional Carrier Sense

Say that Ben is performing carrier sense

Distinguishable using simple linear algebra

Bob and Ben contend for a second concurrent transmission

Project orthogonal to Alice's signal

Project orthogonal to Alice's signal

Apply carrier sense in the orthogonal space

Detect energy after projection

To contend for the next concurrent transmission

- Project orthogonal to ongoing signals
- Apply standard carrier sense

- 1. How to transmit without interfering with receivers with fewer antennas?
 - ▶ Interference nulling
 - ▶ Interference alignment
- 2. How do we achieve it in a random access manner?
 - Multi-dimensional carrier sense