## PHYSICS 141A – Problem Set 4

Jonas Gahr Sturtzel Lunde (jonassl)

March 1, 2019

## Exercise 1 - Simon 9.4

We have defined our vibrational nodes as

$$\delta x_n = Ae^{i\omega t}e^{-ikna} \tag{1}$$

while we have the dispersion relation

$$\omega(k) = \sqrt{\frac{\kappa}{m}} \left| \sin\left(\frac{ka}{2}\right) \right| = \omega_{max} \left| \sin\left(\frac{ka}{2}\right) \right|$$

We observe that if we set  $\omega$  larger than  $\omega_{max}$ , we will obtain a complex k, as sin doesn't output values larger than 1 for real arguments. Let us set  $\omega = \sigma \omega_{max}$ ,  $\sigma > 1$ , such that

$$\sigma = \frac{\omega}{\omega_{max}} = \left| \sin\left(\frac{ka}{2}\right) \right| \tag{2}$$

Now, considering a complex  $k = k_r + ik_c$ , we can write equation 1 as

$$\delta x_n = Ae^{i\omega t}e^{-ik_r na}e^{k_c na}$$

The last term, containing  $k_c$ , will either blow up as for large n, if  $k_c > 0$ , or disappear for large n, if  $k_c < 0$ . We can write this as a decay-relation

$$\delta x_n = C(t, k)e^{-qa}, \quad q = -k_c a$$

where C(t, k) is some harmonic planewave solution.

Writing out 2 using the  $\sin(x) = \frac{i}{2} (e^{-ix} - e^{ix})$ , we get

$$\sigma = \sin \left(\frac{ka}{2}\right) = \frac{i}{2} \Big(e^{-ika/2} - e^{ika/2}\Big)$$

Multiplying each side by  $2ie^{ika/2}$ , we get

$$2i\sigma e^{ika/2} = e^{ika} - 1$$

which can be written as

$$x^2 - 2i\sigma x - 1 = 0,$$
  $x = e^{ika/2}$ 

which is a 2nd degree polynomial eqn with solutions

$$e^{ika/2} = x = \sigma i \pm \sqrt{1 - \sigma^2}$$

Now, we have defined that  $\sigma > 1$ , such that  $\sigma^2 > 1$ , and we can define  $\sqrt{1 - \sigma^2} = \gamma i$ , where  $\gamma$  must be real. This gives

$$e^{ika/2} = \sigma i \pm \gamma i$$

$$\frac{ika}{2} = \ln(\sigma i \pm \gamma i) = \ln(i) + \ln(\sigma \pm \gamma) = \frac{\pi}{2}i + \ln(\sigma \pm \gamma)$$

$$k = \frac{\pi}{a} + \frac{2}{a}i\ln(\sigma \pm \gamma) = k_r + ik_c$$

where we have that  $k_c = \ln(\sigma \pm \gamma)$ , as we know both  $\sigma$  and  $\gamma$  must be real. Inserting gives

$$k_c = \ln\left(\sigma \pm \frac{\sqrt{1 - \sigma^2}}{i}\right)$$

which is real. Remember that  $\sigma = \omega/\omega_{max}$ .

## Exercise 2 - Simon 9.6

Given the mode

$$\delta x_n = A e^{i\omega t} e^{q|n|a} \tag{3}$$

We have the double time derivative:

$$\ddot{\delta x_n} = A\omega^2 e^{i\omega t} e^{q|n|a}$$

From Simon eqn (9.1), we have Newtons equation of motion written out for neighboring nodes:

$$m\delta \ddot{x}_n = \kappa(\delta x_{n+1} + \delta x_{n-1} - 2\delta x_n)$$

Inserting for equation 3 on the left hand side, and the derivative on the right, we get

$$Am\omega^{2}e^{i\omega t}e^{q|n|a} = \kappa Ae^{i\omega t} \left[ e^{q|n+1|a} + e^{iq|n-1|a} - 2e^{q|n|a} \right]$$
$$\omega^{2}m = \kappa \left[ e^{qa(|n+1|-|n|)} + e^{qa(|n-1|-|n|)} - 2e^{qa(|n|-|n|)} \right]$$

Now, for  $n \ge 1$ , we have |n| = n, |n-1| = n-1 and |n+1| = n+1, giving

$$\omega^2 m = \kappa \big[ e^{qa} + e^{-qa} - 2 \big], \qquad n \ge 1$$

For  $n \le -1$ , we have |n| = -n, |n-1| = -n+1, and |n+1| = -n-1, giving

$$\omega^2 m = \kappa \big[ e^{-qa} + e^{qa} - 2 \big], \qquad n \leq -1$$

which turns out to be the same thing.

At n = 0, we end up getting the same story. This could also have been seen due to symetry, as swithcing n-direction only switches |n - 1| and |n + 1|, leaving the same expression.

We regornize this as

$$m\omega^2 = 2\kappa [1 - \cosh(qa)]$$

where we can rewrite  $2[\cosh(qa) - 1] = 4\sinh^2(qa/2)$ , giving

$$\omega = 2\sqrt{\frac{k}{m}} \sinh\left(\frac{qa}{2}\right)$$

In constrast to exercise 9.4, where having  $\omega > \omega_{max}$  would require a complex k, which in turn would lead to a decaying wave,  $\sinh(qa/2)$  offers values larger than 1 without requiring q to be complex, which in turn doesn't it require to decay.

## Exercise 3

From Simon eq. (10.3) and (10.4) have the planewave solutions to both atoms as

$$\delta x_n = A_x e^{i\omega t - ikna}$$

$$\delta y_n = A_y e^{i\omega t - ikna}$$

which we plug into the equations of motion, described in Simon eq (10.1) and (10.2) as (with consideration of the differing masses):

$$m_x \ddot{\delta x_n} = \kappa (\delta y_n - \delta x_n) + \kappa (\delta y_{n-1} - \delta x_n)$$

$$m_y \ddot{\delta y_n} = \kappa (\delta x_{n+1} - \delta y_n) + \kappa (\delta x_n - \delta y_n)$$

giving

$$-\omega^2 m_x A_x e^{i\omega t - ikna} = \kappa (\delta y_n - \delta x_n) + \kappa (\delta y_{n-1} - \delta x_n)$$
$$-\omega^2 m_y A_y e^{i\omega t - ikna} = \kappa (\delta x_{n+1} - \delta y_n) + \kappa (\delta x_n - \delta y_n)$$

Inserting for  $\delta x_n$  and  $\delta y_n$ , as done is Simon, results in

$$-\omega^2 m_x A_x = \kappa A_y + \kappa A_y e^{ika} - 2\kappa A_x$$
$$-\omega^2 m_y A_y = \kappa A_x e^{-ika} + \kappa A_x - 2\kappa A_y$$

which can be written as the eigenvalue equation

$$\omega^2 \begin{pmatrix} A_x \\ A_y \end{pmatrix} = \begin{pmatrix} 2\kappa/m_x & (-\kappa - \kappa e^{ika})/m_x \\ (-\kappa - \kappa e^{-ika})/m_y & 2\kappa/m_y \end{pmatrix} \begin{pmatrix} A_x \\ A_y \end{pmatrix}$$

$$0 = \begin{vmatrix} 2\kappa/m_x - \omega^2 & (-\kappa - \kappa e^{ika})/m_x \\ (-\kappa - \kappa e^{-ika})/m_y & 2\kappa/m_y - \omega^2 \end{vmatrix}$$

which becomes

$$0 = \frac{4\kappa^2}{m_x m_y} - \omega^2 2\kappa \left[ \frac{1}{m_x} + \frac{1}{m_y} \right] + \omega^4 - \frac{\left(\kappa + \kappa e^{-ika}\right)^2}{m_x m_y}$$
$$= \omega^4 - \omega^2 2\kappa \left[ \frac{1}{m_x} + \frac{1}{m_y} \right] + \frac{4\kappa^2 - \left(\kappa + \kappa e^{-ika}\right)^2}{m_x m_y}$$

which is a is a second order polynomial equation for  $(\omega^2)$  with solutions

$$\omega^{2} = 2\kappa \left[ \frac{1}{2m_{x}} + \frac{1}{2m_{y}} \right] \pm \sqrt{\kappa^{2} \left[ \frac{1}{m_{x}} + \frac{1}{m_{y}} \right]^{2} + 4\frac{\kappa^{2} + (\kappa + \kappa e^{-ika})^{2}}{m_{x}m_{y}}}$$

where we can simplify

$$\begin{aligned} \left| \kappa + \kappa e^{ika} \right| &= \sqrt{\left( 2\kappa e^{ika} \right) \left( \kappa + \kappa e^{-ika} \right)} \\ &= \sqrt{2\kappa^2 (1 + \cos(ka))} \end{aligned}$$

giving

$$x = \kappa \left[ \frac{1}{m_x} + \frac{1}{m_y} \right] \pm \sqrt{\kappa^2 \left( \left[ \frac{1}{m_x} + \frac{1}{m_y} \right]^2 - \frac{4}{m_x m_y} \right) + 4 \frac{\kappa^2 + \kappa \cos(ka)}{m_x m_y}}$$

$$= \kappa \left[ \frac{1}{m_x} + \frac{1}{m_y} \right] \pm \sqrt{\kappa^2 \left( \frac{1}{m_x^2} + \frac{1}{m_y^2} - \frac{2}{m_x m_y} \right) + 4 \frac{\kappa^2 + \kappa \cos(ka)}{m_x m_y}}$$

$$= \kappa \left[ \frac{1}{m_x} + \frac{1}{m_y} \right] \pm \sqrt{\kappa^2 \left( \frac{1}{m_x^2} + \frac{1}{m_y^2} \right) - \frac{6\kappa^2 + 4\kappa \cos(ka)}{m_x m_y}}$$

giving

$$\omega_{\pm} = \sqrt{\kappa \left[ \frac{1}{m_x} + \frac{1}{m_y} \right] \pm \sqrt{\kappa^2 \left( \frac{1}{m_x^2} + \frac{1}{m_y^2} - \frac{6\kappa^2}{m_x m_y} \right) - \frac{4\kappa \cos(ka)}{m_x m_y}}$$

As  $\omega$  can take values of both  $\omega_+$  and  $\omega_-$ , there are two branches.

At k = 0 this has values

$$\omega_{\pm} = \sqrt{\kappa \left[ \frac{1}{m_x} + \frac{1}{m_y} \right] \pm \sqrt{\kappa^2 \left( \frac{1}{m_x^2} + \frac{1}{m_y^2} - \frac{6\kappa^2}{m_x m_y} \right) - \frac{4}{m_x m_y}}}$$

Below is a sketch of the real (orange) and imaginary (blue) parts of the postivie part  $(\omega_+)$  dispersion from  $k\in[-6,\,6]a.$   $\kappa$  is set to 1,  $m_x$  is set to 1, and  $m_y=1.5.$ 

