Метод скорейшего спуска (градиентного спуска)

Задача: минимизация функции $f(t_1, t_2, \dots t_k)$ Задача: найти $argmin(f(t_1, t_2, \dots t_k))$

Почему не работает

$$\frac{\frac{\partial f(t_1, t_2, \dots, t_k)}{\partial t_1} = 0}{\frac{\partial f(t_1, t_2, \dots, t_k)}{\partial t_k}} = 0$$

Временно рассмотрим случай функции одного аргумента

f(t)

 \boldsymbol{t}_0 - начальное приближение

 $\mathring{\lambda}$ - скорость обучения (learning rate)

$$t_{i+1} = t_i - \lambda \cdot f'(t_i)$$

Если λ слишком мал?

Если λ слишком велик?

Если функция f(t) имеет плато?

В ходе минимизации $\;\lambda\;$ должен убывать

Локальный минимум.

Вернемся к минимизации функции $f(t_1, t_2, \dots t_k)$

- начальное приближение точка $(t_{1,0}$, $t_{2,0}$, $\dots t_{k,0})$

$$\begin{aligned} t_{1,i+1} &= t_{1,i} - \lambda \cdot \frac{\partial f(t_1, t_2, \dots, t_k)}{\partial t_1} \bigg|_{t_{1,i}, t_{2,i}, \dots, t_{k,i}} \\ t_{k,i+1} &= t_{k,i} - \lambda \cdot \frac{\partial f(t_1, t_2, \dots, t_k)}{\partial t_k} \bigg|_{t_{1,i}, t_{2,i}, \dots, t_{k,i}} \end{aligned}$$

Оценки параметров регрессионной модели методом скорейшего спуска.

Критерий качества
$$Q = \sum_{i=1}^{n} \epsilon_i^2$$

Вектор частных производных (градиент) критерия качества

$$\nabla_{\beta} Q = \begin{pmatrix} \frac{\partial Q}{\partial \beta_0} \\ \frac{\partial Q}{\partial \beta_1} \\ \vdots \\ \frac{\partial Q}{\partial \beta_k} \end{pmatrix} = 2 \cdot X^T \cdot (X \cdot \beta - y)$$

$$\beta^{(i+1)} = \beta^{(i)} - \lambda \cdot \nabla_{\beta} Q \big|_{\beta^{(i)}}$$

Проверьте себя: где векторы, где скаляры?

Правила остановки в случае регрессии, например $\max(
abla_{eta}Q) < \epsilon$

Batch minibatch Stochastic Gradient Descent

Нестеров Adam