EC212 - Computação Gráfica

Danilo Peixoto Ferreira (danilopeixoto@gec.inatel.br) Instituto Nacional de Telecomunicações 6 de agosto de 2018

Orientações

A última versão da biblioteca CGCode encontra-se em: https://github.com/danilopeixoto/cgcode.

Envie os arquivos main1.cpp (item 1), mesh.obj (item 2) e main2.cpp (item 3) em uma pasta compactada (ZIP) para o endereço de e-mail danilopeixoto@gec.inatel.br com o assunto [EC212] Atividade 1. O nome do arquivo enviado deve seguir o padrão: NOME_MATRICULA.zip.

Atividade

1. A figura abaixo mostra um triângulo ABC transformado pela matriz de transformação M para a nova posição DEF.

Mostre o desenvolvimento dos itens:

- a) Encontre a matriz de transformação $\boldsymbol{M}.$
- b) Calcule a área do triângulo \boldsymbol{DEF} .
- c) Calcule a matriz que pode restaurar o triângulo **DEF** para a posição **ABC**?

2. Crie um arquivo Wavefront OBJ que represente a geometria 2D abaixo:

Observações:

- a) Utilize um editor de texto ASCII.
- b) Considere todos os vértices no plano z = 0.
- c) Represente as facetas no sentido anti-horário.
- d) Descreva as facetas na ordem proposta.
- e) Todos os vetores normais são unitários e apontam na direção de z positivo.
- 3. Utilizando a biblioteca CGCode, importe o arquivo suzanne.obj disponível no diretório res/objects e aplique na ordem as transformações abaixo:
 - a) Rotacione 90° em torno do eixo y.
 - b) Rotacione 180° em torno do eixo x.
 - c) Escale para metade do tamanho em y (altura).
 - d) Espelhe/reflita em relação ao eixo z.
 - e) Rotacione 45° em torno do eixo z sobre o ponto $P = \begin{pmatrix} 25 & 0 & 0 \end{pmatrix}$.