Uma Aplicação na Física

O produto vetorial é uma importante ferramenta matemática utilizada na Física. Dentre algumas de suas aplicações pode-se citar o torque.

O torque é uma grandeza vetorial, representado por t, e está relacionada com a possibilidade de um corpo sofrer uma torção ou alterar seu movimento de rotação.

A equação para o cálculo do torque é

onde l'Ilé a distância do ponto de aplicação da força È ao eixo de rotação, ao qual o corpo está vinculado.

Lembrando o cálculo do módulo do produto vetorial visto em (3) tem-se

$$|\vec{\tau}| = |\vec{r}| |\vec{F}| \sin \theta$$

onde θ é o ângulo entre \vec{r} e \vec{F} .

Exemplo

and $\overrightarrow{AB} = \overrightarrow{r} = 2\overrightarrow{j}$ (em metros), $\overrightarrow{F} = 10\overrightarrow{i}$ (em Calcular o torque sobre a barra AB (Figura 3.11), newtons) e o eixo de rotação é o eixo z.

Figura 3.11

$$\vec{\tau} = (0\vec{i} + 2\vec{j} + 0\vec{k})m \times (10\vec{i} + 0\vec{j} + 0\vec{k})N$$

O vetor torque, para o caso desta figura, é

dado por

Solução

o

$$\vec{\tau} = (0\vec{i} + 0\vec{j} - 20\vec{k})mN$$

ПО

$$\vec{\tau} = (-20\,\vec{k}\,)\text{mN}$$

A intensidade (módulo) do torque pode ser calculado por

$$|\vec{\tau}| = |\vec{\tau}| |\vec{F}| \operatorname{sen} \theta = (2m)(10N) (\operatorname{sen} 90^\circ) = 20mN$$

on bor

$$|\vec{\tau}| = \sqrt{(-20)^2} = 20 \text{mN}$$

Cap. 3 Produto Vetorial 87

Observação

Caso a força F seja invertida (Figura 3.12), isto é, $\vec{F} = -10\vec{i}$ (em newtons), o torque é dado por

$$\vec{\tau} = (0\vec{i} + 2\vec{j} + 0\vec{k}) \text{m} \times (-10\vec{i} + 0\vec{j} + 0\vec{k}) \text{N}$$

$$\vec{\tau} = (20\vec{k}) \text{mN}.$$

Figura 3.12

Problemas Propostos

i $u \times v + u \times w$ 1) Se $\vec{u} = 3\vec{i} - \vec{j} - 2\vec{k}$, $\vec{v} = 2\vec{i} + 4\vec{j} - \vec{k}$ e $\vec{w} = -\vec{i} + \vec{k}$, determinar

a)
$$\overrightarrow{lu} \times \overrightarrow{ul}$$
 e) $(\overrightarrow{u} - \overrightarrow{v}) \times \overrightarrow{w}$
b) $(2\overrightarrow{v}) \times (3\overrightarrow{v})$ f) $(\overrightarrow{u} \times \overrightarrow{v}) \times \overrightarrow{w}$

$$c)(\underbrace{u \times w}_{\downarrow}) + (\underbrace{w \times u}_{\downarrow}) \qquad g)\underbrace{u \times (v \times w)}_{\downarrow}$$

k) (u x v). w (v x w)

 $(\overrightarrow{u} \times \overrightarrow{v})$

c)
$$(u \times w) + (w \times u)$$
 g) $u \times (v \times w)$
d) $(u \times \dot{v}) \times (\dot{v} \times \dot{u})$ h) $u \times (\dot{v} + \dot{w})$
2) Efetuar

e)
$$(3\vec{i}) \cdot (2\vec{j})$$
 i) $(\vec{i} \times \vec{j}) \times \vec{k}$

a)
$$\vec{i} \times \vec{k}$$

b) $\vec{j} \times (2\vec{i})$

$$f)(3\vec{1})\times(2\vec{j}) \qquad j)(\vec{1}\times\vec{j})\times\vec{j}$$

$$g)\vec{1}\cdot(\vec{j}\times\vec{i}) \qquad k)\vec{1}\times(\vec{j}\times\vec{j})$$

$$c)(3\vec{i}) \times (2\vec{k})$$

$$d) \vec{i} \cdot (\vec{j} \times \vec{k})$$

$$h) \stackrel{\rightarrow}{\vec{j}} \cdot (\stackrel{\rightarrow}{\vec{j}} \times \stackrel{\rightarrow}{\vec{k}}) \qquad \qquad l) (\stackrel{\rightarrow}{\vec{j}} \times \stackrel{\rightarrow}{\vec{k}}) \cdot \stackrel{\rightarrow}{\vec{i}}$$

3) Dados os pontos A(2, 1, -1), B(3, 0, 1) e C(2, -1, -3), determinar o ponto D tal que $\overline{AD} = \overline{BCx\overline{AC}}$

4) Determinar o vetor \vec{x} tal que \vec{x} . (1, 4, -3) = -7 e \vec{x} x (4, -2, 1) = (3, 5, -2)

5) Resolver os sistemas

a)
$$\begin{cases} \vec{x} \times \vec{j} = \vec{k} \\ \vec{x} \times (4\vec{i} - 2\vec{j} + \vec{k}) = 10 \end{cases}$$
 b) $\begin{cases} \vec{x} \times (2\vec{i} - \vec{j} + 3\vec{k}) = \vec{0} \\ \vec{x} \cdot (\vec{i} + 2\vec{j} - 2\vec{k}) = 12 \end{cases}$

6) Dados os vetores $\vec{u} = (3, 1, 1)$, $\vec{v} = (-4, 1, 3)$ e $\vec{w} = (1, 2, 0)$, determinar \vec{x} de modo que $x \perp w$ e $x \times u = v$.

88 Vetores e Geometria Analítica

- 7) Levando em conta a Figura 3.13, calcular
 - a) OF x OD
- e) \overrightarrow{OA} . $(\overrightarrow{OC} \times \overrightarrow{OE})$ d) EC × EA
 - f) $\overline{GB} \times \overline{AF}$ b) ACX FA c) ABX AC
- 8) Sejam os vetores $\vec{u} = (1, -2, 1)$, $\vec{v} = (1, 1, 1)$ e w
- a) Utilizar o produto escalar para mostrar que os vetores são, dois a dois, ortogonais.
- produto vetorial de quaisquer dois deles é paralelo ao terceiro vetor. b) Utilizar o produto vetorial para mostrar que o
 - c) Mostrar que $\vec{u} \times (\vec{v} \times \vec{w}) = \vec{0}$
- 9) Determinar um vetor simultaneamente ortogonal aos vetores $\vec{u} + 2\vec{v}$ e \vec{v} \vec{u} , sendo $\vec{u} = (-3, 2, 0) e \vec{v} = (0, -1, -2).$
 - 10) Obter um vetor ortogonal ao plano determinado pelos pontos A(2, 3, 1), B(1, -1, 1) e C(4, 1, -2).
- Dado $\vec{v}_1 = (1, -2, 1)$, determinar vetores $\vec{v}_2 = \vec{v}_3$ de modo que os três sejam mutuamente ortogonais.

- - 14) Com base na Figura 3.14, calcular
- a) IAB x ADI
- c) $\overline{AB} \times \overline{DC}$

- f) IBD x CD
- 15)
 - $a)12\vec{u} \times \vec{v}$
- 16) Determinar $\vec{u} \cdot \vec{v}$, sabendo que $|\vec{u} \times \vec{v}| = 12$, $|\vec{u}| = 13$ e \vec{v} é unitário.

Figura 3.13

- 12) Dados os vetores $\vec{u} = (1, 1, 0)$ e $\vec{v} = (-1, 1, 2)$, determinar
- a) um vetor unitário simultaneamente ortogonal a u e v;
- b) um vetor de módulo 5 simultaneamente ortogonal a u e v.
- 13) Determinar um vetor de módulo 2 ortogonal a $\vec{u} = (3, 2, 2)$ e a $\vec{v} = (0, 1, 1)$.
- b) IBA x BCI
- d) $\overline{AB} \times \overline{CD}$
- e) $\overline{\text{IBD}} \times \overline{\text{AC}}$
- Sendo $|\vec{u}| = 2\sqrt{2}$, $|\vec{v}| = 4$ e 45° o ângulo entre \vec{u} e \vec{v} , calcular

Figura 3.14

- Cap. 3 Produto Vetorial 89
- 17) Dados os vetores $\vec{u} = (3, -1, 2)$ e $\vec{v} = (-2, 2, 1)$, calcular
- a) a área do paralelogramo determinado por u ev;
- b) a altura do paralelogramo relativa à base definida pelo vetor v .
- Mostrar que o quadrilátero ABCD de vértices A(4, 1, 2), B(5, 0, 1), C(-1, 2, -2) e D (-2, 3, -1) é um paralelogramo e calcular sua área. <u>(8</u>
 - 19) Dois vértices consecutivos de um paralelogramo são A(2, -4, 0) e B(1, -3, -1) e o ponto médio das diagonais é M (3, 2, -2). Calcular a área do paralelogramo.
 - Calcular o valor de m para que a área do paralelogramo determinado por u = (m, -3, 1) e $\vec{v} = (1, -2, 2)$ seja igual a $\sqrt{26}$. 20)
- 21) Sabendo que $|\vec{u}| = 6$, $|\vec{v}| = 4$ e 30° o ângulo entre \vec{u} ev, calcular
- a) a área do triângulo determinado por u e v;
- b) a área do paralelogramo determinado por $\overset{\rightharpoonup}{u}$ e (- $\overset{\rightharpoonup}{v}$);
- c) a área do paralelogramo determinado por u + v e u v.
- Calcular a área do paralelogramo determinado pelos vetores u e v. sabendo que suas diagonais são $\vec{u} + \vec{v} = (-1, 3, 4) e \vec{u} - \vec{v} = (1, -1, 2)$. 22)
- Calcular a distância do ponto P(4, 3, 3) à reta que passa por A(1, 2, -1) e B(3, 1, 1). 23) Calcular a distância do ponto P(4, 3, 3) à reta que passa por A(1, 2, -1) e B(3 24) Calcular a área do triângulo ABC e a altura relativa ao lado BC, sendo dados
 - a) A(-4, 1, 1), B(1, 0, 1) e C(0, -1, 3)
- Encontrar um vetor ortogonal ao plano determinado pelos pontos P, Q e R e calcular b) A(4, 2, 1), B(1, 0, 1) e C(1, 2, 0) a área do triângulo PQR. 25)
 - a) P(3, 0, 0), Q(0, 3, 0), R(0, 0, 2)
 - b) P(2, 3, 0), Q(0, 2, 1), R(2, 0, 2)
- Calcular z, sabendo-se que A (2, 0, 0), B(0, 2, 0) e C(0, 0, z) são vértices de um triângulo de área 6. 26)
 - 27) Dados os pontos A(2, 1, -1) e B(0, 2, 1), determinar o ponto C do eixo Oy de modo que a área do triângulo ABC seja 1,5 u.a.
 - Sabendo que os pontos A(4, 0, 0), B(0, 0, 2), C(0, 3, 0) e D(4, 3, -2) são coplanares, calcular a área do quadrilátero ABCD. 28)
- 29) Os pontos médios dos lados do triângulo ABC são M(0, 1, 3), N(3, -2, 2) e P(1, 0, 2). Determinar a área do triângulo ABC.

Respostas de Problemas Propostos

- g) (-6, -20, 1) 1) a) 0
- k) 5 h) (8, -2, 13) i) (8, -2, 13)

2) a)
$$-i$$
 e) 0

2) a)
$$-\vec{j}$$
 e) 0
b) $-2\vec{k}$ f) $6\vec{k}$

c)
$$-6j$$
 g) 0
d) 1 h) 0

3)
$$D(-4, -1, 1)$$

4) $\vec{x} = (3, -1, 2)$
5) a) $\vec{x} = (1, -3, 0)$

$$x = (3, -1, 2)$$

$$(3, -1, 2)$$

= $(1, -3, 0)$

b)
$$\vec{x} = (-4, \frac{1}{2})$$

$$c) (0, 0, a^2)$$

e) a³ f) 0

7) a)
$$(-a^2, -a^2, a^2)$$
 c) $(0, ($

b)
$$(-a^2, -a^2, 0)$$
 d) $(-a^2, -a^2, -a^2)$
9) Um deles: $(\vec{u} + 2\vec{v}) \times (\vec{v} - \vec{u}) = (-12, -18, 9)$

10) Um deles:
$$\overrightarrow{AB} \times \overrightarrow{AC} = (12, -3, 10)$$

11) Uma das infinitas soluções:
$$\vec{v}_1 = (1, -2, 1)$$
, $\vec{v}_2 = (1, 1, 1)$ e $\vec{v}_3 = (-1, 0, 1)$

12) a)
$$(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$$
 ou $(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$
b) $(\frac{5}{\sqrt{3}}, \frac{5}{\sqrt{3}}, \frac{5}{\sqrt{3}})$ ou $(\frac{5}{\sqrt{3}}, \frac{5}{\sqrt{3}})$
13) $(0, \sqrt{2}, -\sqrt{2})$ ou $(0, -\sqrt{2}, \sqrt{2}, \sqrt{3})$

ou
$$(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}})$$

ou $(-\frac{5}{\sqrt{3}}, \frac{5}{\sqrt{3}}, -\frac{5}{\sqrt{3}})$
ou $(0, -\sqrt{2}, \sqrt{2})$

13)
$$(0, \sqrt{2}, -\sqrt{2})$$
 ou 14) a) $2\sqrt{3}$ c) 0

$$\begin{array}{c} 5 \\ \text{b) } \sqrt{10} \end{array}$$

7) a) 3
$$\sqrt{10}$$

18)
$$\sqrt{122}$$

16) 5 ou -5
17) a) 3
$$\sqrt{10}$$

18) $\sqrt{122}$
19) $2\sqrt{74}$
20) 0 ou 2
21) a) 6
22) $\sqrt{35}$
23) $\sqrt{65}$

c) 24

23)
$$\frac{\sqrt{65}}{}$$

24) a)
$$\sqrt{35}$$
 e $\frac{2\sqrt{35}}{\sqrt{6}}$

$$b)\frac{7}{2} e$$

$$b)\frac{7}{2}e^{\frac{7}{3\sqrt{5}}}$$

Cap. 3 Produto Vetorial 91

$$b)\frac{7}{2}e^{\frac{7}{\sqrt{5}}}$$

b)
$$\frac{7}{2}$$
 e $\frac{7}{\sqrt{5}}$
b) t (1, 4, 6), t \in R e $\frac{\sqrt{53}}{2}$.

25) a) t (2, 2, 3), t ∈ R e
$$\frac{3\sqrt{17}}{2}$$
 b) t (

26) 4 ou -4
27) C
$$(0, 1, 0)$$
 ou C $(0, \frac{5}{2}, 0)$

28)
$$2\sqrt{61}$$

29) $4\sqrt{2}$