

CV Intro & CNNs

Computer Vision

The rise and impact of computer vision

Robotics

Mobile computing

Accessibility

Biology & Medicine

Autonomous driving

What do computers see?

Images are numbers

An image is just a matrix of numbers [0, 255] i.e. 1080 x 1080 x 1 for a grayscale image

What do computers see?

Images as matrices

An image is just a matrix of numbers [0, 255] i.e. 1080 x 1080 x 3 for an RGB image

High level feature detection

Lets identify key features in each image category

Nose, Eyes, Mouth

Wheels, License Plate, Headlights

Door, Windows, Steps

Manual feature extraction

Domain Knowledge

Define Features

Detect features to classify

Viewpoint variation

Illumination conditions

Deformation

Occlusion

Intra-class variation

Learning feature representations

• Can we learn a hierarchy of features directly from the data instead of hand engineering?

Low level features

Edges, dark spots

Mid level features

Eyes, ears, nose

High level features

Facial structure

Learning visual features

Fully connected neural network

Input:

- 2D image
- Vector of pixel values

Learning visual features

Using spatial structure

Input: 2D image. Array of pixel values

Learning visual features

Using spatial structure

Connect patch in input layer to a single neuron in subsequent layer.

Use a sliding window to define connections.

Feature extraction with convolution

- Filter of size 4x4: 16 different weights
- Apply this same filter to 4x4 patches in input
- Shift by 2 pixels for next patch

This "patchy" operation is **convolution**

- 1) Apply a set of weights a filter to extract **local features**
 - 2) Use multiple filters to extract different features
 - 3) **Spatially share** parameters of each filter

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:

Purpose of Convolutions

What does this filter do?

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

1	0	-1			
1	0	-1			
1	0	-1			

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Purpose of Convolutions

Different filters can be used to extract various features

Sharpen

Where does the "Deep Learning" part come in?

• Like dense fully-connected layers, we can just learn these filters!

Filters (3D)

- Steps:
 - Compute the dot product for each channel (same as 2D)
 - Sum over each channel
- Note: The depth of the filter is always the same as the depth of the input image

↑ W1 and W2 are distinct 4 x 4 x 3 filters

Convolutional Layers

activation map

Convolutional Layers

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Convolution Layers - Padding

- Convolving an image with a filter results in a block with a smaller height and width
 - what if we want the height and width as before?

Convolution Layers - Same vs Valid Padding

Valid padding: no padding

Without Padding (Padding=Valid)

With Padding (Padding=Same)

 Same padding: padding with 0s (or possibly some other constant value) to preserve the spatial dimensions of the output

Convolution Layers - Stride

- The number of pixels to slide the filter by (both horizontally and vertically):
- A stride of 1 will shift the filter every pixel
- A stride of 2 will shift the filter every 2 pixels

Output Dimensions

- ceil[(W F + 2P) / S] + 1
 - W: Input Dimension
 - F: Kernel / Filter Size
 - P: Padding size
 - S: Strides

- For the figure on the right:
 - Assume no padding and a stridge of 1
 - W' = ceil[(6 3 + 2 * 0) / 1] + 1 = 4
 - H' = ceil[(6 3 + 2 * 0) / 1] + 1 = 4

Introducing non-linearity

- Apply after every convolution operation (i.e., after convolutional layers)
- ReLU: pixel-by-pixel operation that replaces all negative values by zero. **Non-linear operation!**

Rectified Linear Unit (ReLU)

Pooling Layers

- Reduces output size
- Applied to each channel independently
- Neighboring features may be similar
 - Doesn't remove too much information

- Max pooling takes the max
- Average pooling takes the average

29

CNNs

- I. Convolution: Apply filters with learned weights to generate feature maps.
- 2. Non-linearity: Often ReLU.
- 3. Pooling: Downsampling operation on each feature map.

Train model with image data. Learn weights of filters in convolutional layers.

CNNs for classification: Feature learning

- I. Learn features in input image through convolution
- 2. Introduce **non-linearity** through activation function (real-world data is non-linear!)
- 3. Reduce dimensionality and preserve spatial invariance with pooling

CNNs for classification: Class probabilities

- CONV and POOL layers output high-level features of input
- Fully connected layer uses these features for classifying input image
- Express output as **probability** of image belonging to a particular class

$$softmax(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}}$$

CNNs: Training with backpropagation

Learn weights for convolutional filters and fully connected layers
Backpropagation: cross-entropy loss

$$J(\boldsymbol{\theta}) = \sum_{i} y^{(i)} \log(\widehat{\boldsymbol{y}}^{(i)})$$

CNN Example

CNN Example

	Activation Shape	Activation Size	# of parameters
Input	(32,32,3)	3072	
CONV 1 (f=5,s=1,n _c = 8)	(28,28,8)	6272	(5*5*3 + 1) * 8 = 608
POOL 1	(14,14,8)	1568	
CONV 2 (f=5,s=1, n _c = 16)	(10,10,16)	1600	(5*5*8 + 1) * 16 = 3216
POOL 2	(5,5,16)	400	
FC 3	(120,1)	120	400 * 120 + 120 = 48120
FC 4	(84,1)	84	120 * 84 + 84 = 10164
Softmax	(10,1)	10	84*10 + 10 = 850

Thanks

36