普通物理学 1 (H) 期中考试

2025年4月16日

Problem1. 考虑点源势能场 $V=-\frac{a}{r^{\alpha}}$,有一质点 m ,其绕原点转动的半径 r_0

- 1. 给出质点的能量 E , 动能 K , 势能 V , 动量 p , 角动量 L , 问上面哪个是运动中的不变量
- 2. 给出质点和源点距离 r 和其对时间的导数 \dot{r} ,用它们和第一问中的不变量表示能量 E
- 3. 考虑轨道的扰动,即关于 r 的一维振动,求在轨道 r_0 处的振动频率 ω_r
- 4. 记质点绕原点转动频率为 ω_{orb} , 求 α 使得 $\frac{\omega_r}{\omega_{orb}}$ 分别为 1 和 2

Problem2. 考虑质量为 M 的均匀质量的柱子,在角度为 θ 高度为 h 的斜坡上,初始在斜坡最高处,且斜坡上半部分 ($\frac{h}{2}$ 处之上) 粗糙,下半部分光滑。M 在上半部分时运动均为纯滚。

- 1. 求 M 的转动惯量
- 2. 求在上半部分时的摩擦力
- 3. 求 M 到一半时的速度
- 4. M 在下半部分可以不滑动吗,解释
- 5. 求 M 到底的速度

Problem3. 有一个由一根弹性系数为 k 的弹簧链接的耦合摆,两个质点质量均为 m ,二者所在绳长均为 L ,记两根绳子偏移角度分别为 $\theta_1\theta_2$

- 1. 求 $\ddot{\theta}_1$, $\ddot{\theta}_2$ 满足的方程, 其中忽略 θ_i^2 的高阶项
- 2. 我们考虑 $\theta_1+\theta_2$ 和 $\theta_1-\theta_2$, 现在求这两个振动角频率 ω_1,ω_2
- 3. 摆的初始条件为 $\theta_1 = \theta_0$, $\theta_2 = 0$ 且都是无初速度释放。我们知道 $\theta_1.\theta_2$ 满足

$$\theta_1 = A\cos\omega_1 t + B\cos\omega_2 t$$
 $\theta_2 = C\cos\omega_1 t + D\cos\omega_2 t$

现在请求出 $\theta_1\theta_2$ 的表达式

Problem4. 我们考虑线上一维的波动,其中x为波传播方向,y为振动方向。

1. 给出波 $y_1 = A\cos(kx - \omega t), y_2 = A\cos(kx + \omega t)$

(a) 我们有波振动满足的方程

$$\frac{\partial^2 y}{\partial t^2} = v^2 \frac{\partial^2 y}{\partial x^2}$$

现在证明 y_1, y_2 为上面方程的解, 其求 v, k, ω 之间的色散关系

(b) 线上还有一个波 y_3 ,在线上有一个静止的波感应器 A ,我们现在知道 A 的输出为

$$y_{tot} = 4A\cos kx \cos \frac{\omega t}{10} \cos \frac{11\omega t}{10}$$

求出 y_3 的振动方程。 y_3 是不是驻波?请说明

- (c) 现假设线密度均匀, 求线单位长度上的动能
- 2. 现在有另一个波感应器 B,我们记其记录的时间仍为 t ,距离坐标为 x',它在 t=0 时在 x=0,且以 v_0 的匀速沿 x 轴正方向运动
 - (a) 求 B 中由 t, x' 表示的 $y_1(x',t)$
 - (b) 现在我们发现 B 中 y_1 的振动频率为 A 中记录的 $\frac{2}{3}$, 求 B 运动速度 v_0