APPENDIX 'B'

AVIATION METEOROLOGY

THE SYLLABUS OF AVIATION METEOROLOGY IS AS FOLLOWS:

1. Aviation Meteorology

1.1 The Atmosphere

- a) Composition, extent, vertical division
- b) Temperature
 - vertical distribution of temperature
 - transfer of heat: solar and terrestrial radiation, conduction, convection, advection and turbulence
 - lapse rate, stability and instability
 - development of inversions, types of inversions
 - temperature near the earth's surface, surface effects, diurnal
 - variation, effect of clouds, effect of wind

c) Atmospheric pressure

- barometric pressure, isobars
- pressure variation with height, contours (isohypses)
- reduction of pressure to mean sea level, QFF
- surface low/upper-air low, surface high/upper-air highprecipitation
- d) Atmospheric density : interrelationship of pressure, temperature and density
- e) International Standard Atmosphere (ISA)
- f) Altimetry
 - pressure altitude, true altitude
 - height, altitude, flight level
 - altimeter settings: QNH, QFE, 1013.25 hPa
 - effect of accelerated airflow due to topography

1.2 Wind

- a) Definition and measurement
- b) Primary cause of wind
 - primary cause of wind, pressure gradient, coriolis force, gradient wind
 - relationship between isobars and wind

- c) General circulation
 - general circulation around the globe
- d) Turbulence
 - Turbulence and gustiness, types of turbulence
 - origin and location of turbulence
- e) Variation of wind with height
 - variation of wind in the friction layer
- f) Local winds: Anabatic and katabatic winds, land and sea breezes, venturi effects
- g) Standing waves
 - origin of standing waves

1.3 Thermodynamics

- a) Humidity
 - water vapour in the atmosphere
 - temperature / dew point, mixing ratio, relative humidity

1.4 Clouds and Fog

- a) Clouds formation and description
 - cloud types, cloud classification
 - influence of inversions on cloud development
- b) Fog, mist, haze
 - radiation fog
 - advection fog
 - steaming fog
 - frontal fog
 - orographic fog

1.5 Precipitation

- a) Development of precipitation
 - development of precipitation
 - types of precipitation
 - type of precipitation, relationship with cloud types

1.6 Airmasses and Fronts

- a) Types of airmasses
 - description, factors, affecting the properties of an airmass
 - classification of airmasses, modifications of airmasses, areas of origin

b) Fronts

- boundaries between airmasses (fronts), general situation, geographic differentiation
- warm front, associated clouds and weather
- cold front, associated clouds and weather
- Warm sector, associated clouds and weather
- weather behind the cold front
- occlusions, associated clouds and weather
- stationary front, associated clouds and weather
- movement of fronts and pressure systems, life cycle

1.7 Pressure Systems

- a) Location of the principal pressure areas
- b) Anticyclone: Anticyclones, types, general properties, cold and warm anticyclones, ridges and wedges, subsidence
- c) Non frontal depressions
 - thermal, orographic and secondary depressions, cold air pools, trough
- d) Tropical revolving storms

1.8 Climatology

- a) Typical weather situations in mid-latitudes
 - westerly waves
 - high pressure area
 - uniform pressure pattern
- b) Local seasonal weather and wind

- SE & NE Monsoon, Pre-Monsoon, Northwesters, Kalbaisakhi
- Western Disturbance

1.9 Flight Hazards

- a) Icing
 - weather conditions for ice accretion, topographical effects
- b) Turbulence
 - effects on flight, avoidance
- c) Windshear
 - definition of windshear
 - weather conditions for windshear
 - effects on flight
- d) Thunderstorms
 - structure of thunderstorms, squall lines, life history, storm cells, electricity in the atmosphere, static charges
 - conditions for and process of development, forecast, location, type specification
 - Thunderstorm avoidance, ground/airborne radar, storm scope
 - development and effect of down bursts
 - development of lightning discharge and effect of lightning strike on aircraft and flight execution
- e) Low and high level inversions: Influence on aircraft performance
- f) Hazards in mountainous areas
 - influence of terrain on clouds and precipitation, frontal passage
 - vertical movements, mountain waves, windshear, turbulence, ice accretion
 - development and effect of valley inversions
- g) Visibility reducing phenomena
 - reduction of visibility caused by mist, smoke, dust, sand and precipitation
 - reduction of visibility caused by low drifting and blowing snow

1.10. Meteorological Information

a) Observation

- On the ground surface wind, visibility and runway visual range, transmissometers; Clouds – type, amount, height of base and tops, movement; Weather – including all types of precipitation, air temperature, relative humidity, dew point, atmospheric pressure
- aircraft observations and reporting, data link systems, PIREPS

_

- b) Weather Charts
 - significant weather charts
 - surface charts
 - upper air charts
 - symbols and signs on analysed and prognostic charts
- c) Information for Flight Planning
 - Aeronautical codes: METAR, TAF, SPECI, SIGMET, SNOWTAM, runway report
 - Meteorological broadcasts for aviation: VOLMET, ATIS, HFVOLMET, ACARS
 - Content and use of pre-flight meteorological documents
 - Meteorological briefing and advice
 - measuring and warning systems for low level windshear, inversion
 - Special meteorological warnings