

GCGGACGCGT GGGTGAAATT GAAAATCAAG ATAAAAATGT TCACAATTAA 50
GCTCCTTCTT TTTATTGTTTC CTCTAGTTAT TTCCTCCAGA ATTGATCAAG 100
ACAATTCATC ATTTGATTCT CTATCTCCAG AGCCAAAATC AAGATTTGCT 150
ATGTTAGACG ATGTAAAAAT TTTAGCCAAT GGCCTCCTTC AGTTGGGACA 200
TGGTCTTAAA GACTTTGTCC ATAAGACGAA GGGCCAAATT AATGACATAT 250
TTCAAAAAACT CAACATATTT GATCAGTCTT TTTATGATCT ATCGCTGCAA 300
ACCAGTGAAA TCAAAGAAGA AGAAAAGGAA CTGAGAAGAA CTACATATAA 350
ACTACAAGTC AAAAATGAAG AGGTAAAGAA TATGTCACTT GAACTCAACT 400
CAAAACTTGA AAGCCTCCTA GAAGAAAAAA TTCTACTTCA ACAAAAAGTG 450
AAATATTTAG AAGAGCAACT AACTAACTTA ATTCAAAATC AACCTGAAAC 500
TCCAGAACAC CCAGAAGTAA CTTCACTTAA AACTTTGTA GAAAACAAG 550
ATAATAGCAT CAAAGACCTT CTCCAGACCG TGGAAGACCA ATATAAACAA 600
TTAAACCAAC AGCATAGTCA AATAAAAGAA ATAGAAAATC AGCTCAGAAG 650
GACTAGTATT CAAGAACCCA CAGAAATTTC TCTATCTTCC AAGCCAAGAG 700
CACCAAGAAC TACTCCCTT CTTCAGTTGA ATGAAATAAG AAATGTAAAA 750
CATGATGGCA TTCCTGCTGA ATGTACCACC ATTTATAACA GAGGTGAACA 800
TACAAGTGGC ATGTATGCCA TCAGACCCAG CAACTCTCAA GTTTTCATG 850
TCTACTGTGA TGTTATATCA GGTAGTCCAT GGACATTAAT TCAACATCGA 900
ATAGATGGAT CACAAAACCTT CAATGAAACG TGGGAGAACT ACAAAATATGG 950
TTTGGGAGG CTTGATGGAG AATTTGGTT GGGCCTAGAG AAGATATACT 1000
CCATAGTGAA GCAATCTAAT TATGTTTAC GAATTGAGTT GGAAGACTGG 1050
AAAGACAACA AACATTATAT TGAATATTCT TTTTACTTGG GAAATCACGA 1100
AACCAACTAT ACGCTACATC TAGTTGCGAT TACTGGCAAT GTCCCCAATG 1150
CAATCCCGGA AAACAAAGAT TTGGTGTGTTT CTACTTGGGA TCACAAAGCA 1200
AAAGGACACT TCAACTGTCC AGAGGGTTAT TCAGGAGGCT GGTGGTGGCA 1250
TGATGAGTGT GGAGAAAACA ACCTAAATGG TAAATATAAC AAACCAAGAG 1300
CAAAATCTAA GCCAGAGAGG AGAAGAGGAT TATCTTGGAA GTCTCAAAAT 1350
GGAAGGTTAT ACTCTATAAA ATCAACCAAA ATGTTGATCC ATCCAACAGA 1400
TTCAGAAAGC TTTGAATGAA CTGAGGCAAT TTAAAGGCAT ATTTAACCAT 1450

TAACTCATTC CAAGTTAATG TGGTCTAATA ATCTGGTATA AATCCTTAAG 1500
AGAAAGCTTG AGAAATAGAT TTTTTTATC TTAAAGTCAC TGTCTATTAA 1550
AGATTAAACA TACAATCACA TAACCTTAAA GAATACCGTT TACATTTCTC 1600
AATCAAAATT CTTATAATAC TATTGTTTT AAATTTGTG ATGTGGGAAT 1650
CAATTTAGA TGGTCACAAT CTAGATTATA ATCAATAGGT GAACTTATTA 1700
AATAACTTTT CTAAATAAAA AATTTAGAGA CTTTATTTT AAAAGGCATC 1750
ATATGAGCTA ATATCACAAAC TTTCCCAGTT TAAAAAACTA GTACTCTTGT 1800
TAAAACCTCA AACTTGACTA AATACAGAGG ACTGGTAATT GTACAGTTCT 1850
TAAATGTTGT AGTATTAATT TCAAAACTAA AAATCGTCAG CACAGAGTAT 1900
GTGTAAAAAT CTGTAATACA AATTTTAAA CTGATGCTTC ATTTGCTAC 1950
AAAATAATTT GGAGTAAATG TTTGATATGA TTTATTTATG AACCTAATG 2000
AAGCAGAATT AAATACTGTA TTAAAATAAG TTCGCTGTCT TT 2042

Met Phe Thr Ile Lys Leu Leu Leu Phe Ile Val Pro Leu Val Ile
1 5 10 15

Ser Ser Arg Ile Asp Gln Asp Asn Ser Ser Phe Asp Ser Leu Ser
20 25 30

Pro Glu Pro Lys Ser Arg Phe Ala Met Leu Asp Asp Val Lys Ile
35 40 45

Leu Ala Asn Gly Leu Leu Gln Leu Gly His Gly Leu Lys Asp Phe
50 55 60

Val His Lys Thr Lys Gly Gln Ile Asn Asp Ile Phe Gln Lys Leu
65 70 75

Asn Ile Phe Asp Gln Ser Phe Tyr Asp Leu Ser Leu Gln Thr Ser
80 85 90

Glu Ile Lys Glu Glu Lys Glu Leu Arg Arg Thr Thr Tyr Lys
95 100 105

Leu Gln Val Lys Asn Glu Glu Val Lys Asn Met Ser Leu Glu Leu
110 115 120

Asn Ser Lys Leu Glu Ser Leu Leu Glu Glu Lys Ile Leu Leu Gln
125 130 135

Gln Lys Val Lys Tyr Leu Glu Glu Gln Leu Thr Asn Leu Ile Gln
140 145 150

Asn Gln Pro Glu Thr Pro Glu His Pro Glu Val Thr Ser Leu Lys
155 160 165

Thr Phe Val Glu Lys Gln Asp Asn Ser Ile Lys Asp Leu Leu Gln
170 175 180

Thr Val Glu Asp Gln Tyr Lys Gln Leu Asn Gln Gln His Ser Gln
185 190 195

Ile Lys Glu Ile Glu Asn Gln Leu Arg Arg Thr Ser Ile Gln Glu
200 205 210

Pro Thr Glu Ile Ser Leu Ser Ser Lys Pro Arg Ala Pro Arg Thr
215 220 225

Thr Pro Phe Leu Gln Leu Asn Glu Ile Arg Asn Val Lys His Asp
230 235 240

Gly Ile Pro Ala Glu Cys Thr Thr Ile Tyr Asn Arg Gly Glu His
245 250 255

Thr Ser Gly Met Tyr Ala Ile Arg Pro Ser Asn Ser Gln Val Phe
260 265 270

His Val Tyr Cys Asp Val Ile Ser Gly Ser Pro Trp Thr Leu Ile
275 280 285

Gln His Arg Ile Asp Gly Ser Gln Asn Phe Asn Glu Thr Trp Glu
290 295 300

Asn Tyr Lys Tyr Gly Phe Gly Arg Leu Asp Gly Glu Phe Trp Leu
305 310 315

Gly Leu Glu Lys Ile Tyr Ser Ile Val Lys Gln Ser Asn Tyr Val
320 325 330

Leu Arg Ile Glu Leu Glu Asp Trp Lys Asp Asn Lys His Tyr Ile
335 340 345

Glu Tyr Ser Phe Tyr Leu Gly Asn His Glu Thr Asn Tyr Thr Leu
350 355 360

His Leu Val Ala Ile Thr Gly Asn Val Pro Asn Ala Ile Pro Glu
365 370 375

Asn Lys Asp Leu Val Phe Ser Thr Trp Asp His Lys Ala Lys Gly
380 385 390

His Phe Asn Cys Pro Glu Gly Tyr Ser Gly Gly Trp Trp Trp His
395 400 405

Asp Glu Cys Gly Glu Asn Asn Leu Asn Gly Lys Tyr Asn Lys Pro
410 415 420

Arg Ala Lys Ser Lys Pro Glu Arg Arg Arg Gly Leu Ser Trp Lys
425 430 435

Ser Gln Asn Gly Arg Leu Tyr Ser Ile Lys Ser Thr Lys Met Leu
440 445 450

Ile His Pro Thr Asp Ser Glu Ser Phe Glu
455 460

GGCTGAGGGG AGGCCCGGAG CCTTTCTGGG GCCTGGGGGA TCCTCTTGCA 50
CTGGTGGGTG GAGAGAAGCG CCTGCAGCCA ACCAGGGTCA GGCTGTGCTC 100
ACAGTTTCCT CTGGCGGCAT GTAAAGGCTC CACAAAGGAG TTGGGAGTTC 150
AAATGAGGCT GCTGCGGACG GCCTGAGGAT GGACCCCAAG CCCTGGACCT 200
GCCGAGCGTG GCACTGAGGC AGCGGCTGAC GCTACTGTGA GGGAAAGAAG 250
GTTGTGAGCA GCCCCGCAGG ACCCCTGGCC AGCCCTGGCC CCAGCCTCTG 300
CCGGAGCCCT CTGTGGAGGC AGAGCCAGTG GAGCCCAGTG AGGCAGGGCT 350
GCTTGGCAGC CACCGGCCTG CAACTCAGGA ACCCCTCCAG AGGCCATGGA 400
CAGGCTGCCCG CGCTGACGGC CAGGGTGAAG CATGTGAGGA GCCGCCCGG 450
AGCCAAGCAG GAGGGAAGAG GCTTCATAG ATTCTATTCA CAAAGAATAA 500
CCACCATTT GCAAGGACCA TGAGGCCACT GTGCGTGACA TGCTGGTGGC 550
TCGGACTGCT GGCTGCCATG GGAGCTGTTG CAGGCCAGGA GGACGGTTTT 600
GAGGGCACTG AGGAGGGCTC GCCAAGAGAG TTCATTACCA TAAACAGGTA 650
CAAGCGGGCG GGCAGTCCC AGGACAAGTG CACCTACACC TTCATTGTGC 700
CCCAGCAGCG GGTACGGGT GCCATCTGCG TCAACTCCAA GGAGCCTGAG 750
GTGCTTCTGG AGAACCGAGT GCATAAGCAG GAGCTAGAGC TGCTAACCAA 800
TGAGCTGCTC AAGCAGAAGC GGCAGATCGA GACGCTGCAG CAGCTGGTGG 850
AGGTGGACGG CGGCATTGTG AGCGAGGTGA AGCTGCTGCG CAAGGAGAGC 900
CGCAACATGA ACTCGCGGGT CACGCAGCTC TACATGCAGC TCCTGCACGA 950
GATCATCCGC AAGCGGGACA ACGCGTTGGA GCTCTCCCAG CTGGAGAACCA 1000
GGATCCTGAA CCAGACAGCC GACATGCTGC AGCTGGCCAG CAAGTACAAG 1050
GACCTGGAGC ACAAGTACCA GCACCTGGCC ACACTGGCCC ACAACCAATC 1100
AGAGATCATC GCGCAGCTTG AGGAGCACTG CCAGAGGGTG CCCTCGGCCA 1150
GGCCCGTCCC CCAGCCACCC CCCGCTGCC CGCCCCGGGT CTACCAACCA 1200
CCCACCTACA ACCGCATCAT CAACCAGATC TCTACCAACG AGATCCAGAG 1250
TGACCAGAAC CTGAAGGTGC TGCCACCCCC TCTGCCACT ATGCCCACTC 1300
TCACCAGCCT CCCATCTTCC ACCGACAAGC CGTCGGGCC ATGGAGAGAC 1350
TGCCTGCAGG CCCTGGAGGA TGGCCACGAC ACCAGCTCCA TCTACCTGGT 1400
GAAGCCGGAG AACACCAACC GCCTCATGCA GGTGTGGTGC GACCAGAGAC 1450

ACGACCCCGG GGGCTGGACC GTCATCCAGA GACGCCTGGA TGGCTCTGTT 1500
AACTTCTTCA GGAACCTGGGA GACGTACAAG CAAGGGTTTG GGAACATTGA 1550
CGGCGAATAAC TGGCTGGGCC TGGAGAACAT TTACTGGCTG ACGAACCAAG 1600
GCAACTACAA ACTCCTGGTG ACCATGGAGG ACTGGTCCGG CCGCAAAGTC 1650
TTTGCAGAAT ACGCCAGTTT CCGCCTGGAA CCTGAGAGCG AGTATTATAA 1700
GCTGCGGCTG GGGCGCTACC ATGGCAATGC GGGTGACTCC TTTACATGGC 1750
ACAACGGCAA GCAGTTCACC ACCCTGGACA GAGATCATGA TGTCTACACA 1800
GGAAACTGTG CCCACTACCA GAAGGGAGGC TGGTGGTATA ACGCCTGTGC 1850
CCACTCCAAC CTCAACGGGG TCTGGTACCG CGGGGGCCAT TACCGGAGCC 1900
GCTACCAGGA CGGAGTCTAC TGGGCTGAGT TCCGAGGAGG CTCTTACTCA 1950
CTCAAGAAAG TGGTGATGAT GATCCGACCG AACCCCCACA CCTTCCACTA 2000
AGCCAGCTCC CCCTCCTGAC CTCTCGTGGC CATTGCCAGG AGCCCACCC 2050
GGTCACGCTG GCCACAGCAC AAAGAACAAAC TCCTCACCAAG TTCATCCTGA 2100
GGCTGGGAGG ACCGGGATGC TGGATTCTGT TTTCCGAAGT CACTGCAGCG 2150
GATGATGGAA CTGAATCGAT ACGGTGTTTT CTGTCCCTCC TACTTCCCTT 2200
CACACCAGAC AGCCCCTCAT GTCTCCAGGA CAGGACAGGA CTACAGACAA 2250
CTCTTCTTT AAATAAATTA AGTCTCTACA ATAAAAAAA 2290

Met Arg Pro Leu Cys Val Thr Cys Trp Trp Leu Gly Leu Leu Ala
1 5 10 15

Ala Met Gly Ala Val Ala Gly Gln Glu Asp Gly Phe Glu Gly Thr
20 25 30

Glu Glu Gly Ser Pro Arg Glu Phe Ile Tyr Leu Asn Arg Tyr Lys
35 40 45

Arg Ala Gly Glu Ser Gln Asp Lys Cys Thr Tyr Thr Phe Ile Val
50 55 60

Pro Gln Gln Arg Val Thr Gly Ala Ile Cys Val Asn Ser Lys Glu
65 70 75

Pro Glu Val Leu Leu Glu Asn Arg Val His Lys Gln Glu Leu Glu
80 85 90

Leu Leu Asn Asn Glu Leu Leu Lys Gln Lys Arg Gln Ile Glu Thr
95 100 105

Leu Gln Gln Leu Val Glu Val Asp Gly Gly Ile Val Ser Glu Val
110 115 120

Lys Leu Leu Arg Lys Glu Ser Arg Asn Met Asn Ser Arg Val Thr
125 130 135

Gln Leu Tyr Met Gln Leu Leu His Glu Ile Ile Arg Lys Arg Asp
140 145 150

Asn Ala Leu Glu Leu Ser Gln Leu Glu Asn Arg Ile Leu Asn Gln
155 160 165

Thr Ala Asp Met Leu Gln Leu Ala Ser Lys Tyr Lys Asp Leu Glu
170 175 180

His Lys Tyr Gln His Leu Ala Thr Leu Ala His Asn Gln Ser Glu
185 190 195

Ile Ile Ala Gln Leu Glu Glu His Cys Gln Arg Val Pro Ser Ala
200 205 210

Arg Pro Val Pro Gln Pro Pro Pro Ala Ala Pro Pro Arg Val Tyr
215 220 225

Gln Pro Pro Thr Tyr Asn Arg Ile Ile Asn Gln Ile Ser Thr Asn
230 235 240

Glu Ile Gln Ser Asp Gln Asn Leu Lys Val Leu Pro Pro Pro Leu
245 250 255

Pro Thr Met Pro Thr Leu Thr Ser Leu Pro Ser Ser Thr Asp Lys
260 265 270

Pro Ser Gly Pro Trp Arg Asp Cys Leu Gln Ala Leu Glu Asp Gly
275 280 285

His Asp Thr Ser Ser Ile Tyr Leu Val Lys Pro Glu Asn Thr Asn
290 295 300

Arg Leu Met Gln Val Trp Cys Asp Gln Arg His Asp Pro Gly Gly
305 310 315

Trp Thr Val Ile Gln Arg Arg Leu Asp Gly Ser Val Asn Phe Phe
320 325 330

Arg Asn Trp Glu Thr Tyr Lys Gln Gly Phe Gly Asn Ile Asp Gly
335 340 345

Glu Tyr Trp Leu Gly Leu Glu Asn Ile Tyr Trp Leu Thr Asn Gln
350 355 360

Gly Asn Tyr Lys Leu Leu Val Thr Met Glu Asp Trp Ser Gly Arg
365 370 375

Lys Val Phe Ala Glu Tyr Ala Ser Phe Arg Leu Glu Pro Glu Ser
380 385 390

Glu Tyr Tyr Lys Leu Arg Leu Gly Arg Tyr His Gly Asn Ala Gly
395 400 405

Asp Ser Phe Thr Trp His Asn Gly Lys Gln Phe Thr Thr Leu Asp
410 415 420

Arg Asp His Asp Val Tyr Thr Gly Asn Cys Ala His Tyr Gln Lys
425 430 435

Gly Gly Trp Trp Tyr Asn Ala Cys Ala His Ser Asn Leu Asn Gly
440 445 450

Val Trp Tyr Arg Gly Gly His Tyr Arg Ser Arg Tyr Gln Asp Gly
455 460 465

Val Tyr Trp Ala Glu Phe Arg Gly Gly Ser Tyr Ser Leu Lys Lys
470 475 480

Val Val Met Met Ile Arg Pro Asn Pro Asn Thr Phe His
485 490 493

GCAGCTGGTT ACTGCATTC TCCATGTGGC AGACAGAGCA AAGCCACAAC 50
GCTTCTCTG CTGGATTAAA GACGGCCCAC AGACCAGAAC TTCCACTATA 100
CTACTTAAAA TTACATAGGT GGCTTGTCAA ATTCAATTGA TTAGTATTGT 150
AAAAGGAAAA AGAAGTCCT TCTTACAGCT TGGATTCAAC GGTCCAAAAC 200
AAAAATGCAG CTGCCATTAA AGTCTCAGAT GAACAAACTT CTACACTGAT 250
TTTAAAATC AAGAATAAGG GCAGCAAGTT TCTGGATTCA CTGAATCAAC 300
AGACACAAAA AGCTGGCAAT ATAGCAACTA TGAAGAGAAA AGCTACTAAT 350
AAAATTAACC CAACGCATAG AAGACTTTT TTTCTCTTCT AAAAACAACT 400
AAGTAAAGAC TTAAATTTAA ACACATCATT TTACAACCTC ATTTCAAAAT 450
GAAGACTTTT ACCTGGACCC TAGGTGTGCT ATTCTTCCTA CTAGTGGACA 500
CTGGACATTG CAGAGGTGGA CAATTCAAAA TTAAAAAAAT AAACCAGAGA 550
AGATACCCTC GTGCCACAGA TGGTAAAGAG GAAGCAAAGA AATGTGCATA 600
CACATTCTG GTACCTGAAC AAAGAATAAC AGGGCCAATC TGTGTCAACA 650
CCAAGGGGCA AGATGCAAGT ACCATTAAAG ACATGATCAC CAGGATGGAC 700
CTTGAAAACC TGAAGGATGT GCTCTCCAGG CAGAAGCGGG AGATAGATGT 750
TCTGCAACTG GTGGTGGATG TAGATGGAAA CATTGTGAAT GAGGTAAAGC 800
TGCTGAGAAA GGAAAGCCGT AACATGAACT CTCGTGTTAC TCAACTCTAT 850
ATGCAATTAT TACATGAGAT TATCCGTAAG AGGGATAATT CACTTGAACT 900
TTCCCAACTG GAAAACAAAA TCCTCAATGT CACCACAGAA ATGTTGAAGA 950
TGGCAACAAG ATACAGGGAA CTAGAGGTGA AATACGCTTC CTTGACTGAT 1000
CTTGTCAATA ACCAATCTGT GATGATCACT TTGTTGGAAG AACAGTGCTT 1050
GAGGATATT TCCCGACAAG ACACCCATGT GTCTCCCCCA CTTGTCCAGG 1100
TGGTGCCACA ACATATTCTT AACAGCCAAC AGTATACTCC TGGTCTGCTG 1150
GGAGGTAACG AGATTCAAGAG GGATCCAGGT TATCCCAGAG ATTTAATGCC 1200
ACCACCTGAT CTGGCAACTT CTCCCCACAA AAGCCCTTC AAGATAACCAC 1250
CGGTAACTTT CATCAATGAA GGACCATTCA AAGACTGTCA GCAAGCAAAA 1300
GAAGCTGGGC ATTGGTCAG TGGGATTAT ATGATTAAAC CTGAAAACAG 1350
CAATGGACCA ATGCAGTTAT GGTGTGAAAA CAGTTGGAC CCTGGGGGTT 1400
GGACTGTTAT TCAGAAAAGA ACAGACGGCT CTGTCAACTT CTTCAGAAAT 1450

TGGGAAAATT ATAAGAAAGG GTTGAAAC ATTGACGGAG AATACTGGCT 1500
TGGACTGGAA AATATCTATA TGCTTAGCAA TCAAGATAAT TACAAGTTAT 1550
TGATTGAATT AGAAGACTGG AGTGATAAAA AAGTCTATGC AGAATACAGC 1600
AGCTTCGTC TGGAACCTGA AAGTGAATTC TATAGACTGC GCCTGGGAAC 1650
TTACCAGGGA AATGCAGGGG ATTCTATGAT GTGGCATAAT GGTAAACAAT 1700
TCACCACACT GGACAGAGAT AAAGATATGT ATGCAGGAAA CTGCGCCCAC 1750
TTTCATAAAG GAGGCTGGTG GTACAATGCC TGTGCACATT CTAACCTAAA 1800
TGGAGTATGG TACAGAGGAG GCCATTACAG AAGCAAGCAC CAAGATGGAA 1850
TTTTCTGGGC CGAATACAGA GGCAGGTCAT ACTCCTTAAG AGCAGTTCAG 1900
ATGATGATCA AGCCTATTGA CTGAAGAGAG ACACTCGCCA ATTTAAATGA 1950
CACAGAACTT TGTACTTTTC AGCTCTTAAA AATGTAAATG TTACATGTAT 2000
ATTACTTGGC ACAATTTATT TCTACACAGA AAGTTTTAA AATGAATTTC 2050
ACCGTAACTA TAAAAGGGAA CCTATAAAATG TAGTTTCATC TGTCGTCAAT 2100
TACTGCAGAA AATTATGTGT ATCCACAACC TAGTTTTTTT AAAAATTATG 2150
TTGACTAAAT ACAAAAGTTG TTTCTAAAAA TGTAAATATT TGCCACAATG 2200
TAAAGCAAAT CTTAGCTATA TTTAAATCA TAAATAACAT GTTCAAGATA 2250
CTTAACAATT TATTAAAAT CTAAGATTGC TCTAACGTCT AGTAAAAAAA 2300
ATATTTTTA AATTTCAGCC AAATAATGCA TTTTATTTA TAAAATACA 2350
GACAGAAAAT TAGGGAGAAA CTTCTAGTT TGCCAATAGA AAATGTTCTT 2400
CCATTGAATA AAAGTTATT CAAATTGAAT TTGTGCCTTT CACACGTAAT 2450
GATTAAATCT GAATTCTAA TAATATATCC TATGCTGATT TTCCCAAAAC 2500
ATGACCCATA GTATTAAATA CATATCATT TTAAAAATAA AAAAAAACCC 2550
AAAAATAATG CATGCATAAT TTAAATGGTC AATTTATAAA GACAAATCTA 2600
TGAATGAATT TTTCAGTGT TCTTCATAT GATATGCTGA ACACCAAAAT 2650
CTCCAGAAAT GCATTCTAA TAGTTCTAAA ATCAGCAAAA TATTGGTATT 2700
ACAAAAATGC AGAATATTG GTGTGCTACA GATCTGAATT ATAGTTCTAA 2750
TTTATTATTA CTTTTTTCT AATTTACTGA TCTTACTACT ACAAAAGAAAA 2800
AAAAACCCAA CCCATCTGCA ATTCAAATCA GAAAGTTGG ACAGCTTTAC 2850
AAGTATTAGT GCATGCTCAG AACAGGTGGG ACTAAAACAA ACTCAAGGAA 2900

CTGTTGGCTG TTTTCCCGAT ACTGAGAATT CAACAGCTCC AGAGCAGAAG 2950
CCACAGGGGC ATAGCTTAGT CCAAACGTGCT AATTCATTT TACAGTGTAT 3000
GTAACGCTTA GTCTCACAGT GTCTTTAACT CATCTTGCA ATCAACAACT 3050
TTACTAGTGA CTTTCTGGAA CAATTCCTT TCAGGAATAC ATATTCACTG 3100
CTTAGAGGTG ACCTTGCCTT AATATATTG TGAAAGTTAAA ATTTTAAAGA 3150
TAGCTCATGA AACTTTGCT TAAGCAAAAA GAAAACCTCG AATTGAAATG 3200
TGTGAGGCAA ACTATGCATG GGAATAGCTT AATGTGAAGA TAATCATTG 3250
GACAACCTCAA ATCCATCAAC ATGACCAATG TTTTCATCT GCCACATCTC 3300
AAAATAAAAC TTCTGGTGAA ACAAAATTAAA CAAAATATCC AAACCTCAAA 3350
AAAAA 3355

Met Lys Thr Phe Thr Trp Thr Leu Gly Val Leu Phe Phe Leu Leu
1 5 10 15

Val Asp Thr Gly His Cys Arg Gly Gly Gln Phe Lys Ile Lys Lys
20 25 30

Ile Asn Gln Arg Arg Tyr Pro Arg Ala Thr Asp Gly Lys Glu Glu
35 40 45

Ala Lys Lys Cys Ala Tyr Thr Phe Leu Val Pro Glu Gln Arg Ile
50 55 60

Thr Gly Pro Ile Cys Val Asn Thr Lys Gly Gln Asp Ala Ser Thr
65 70 75

Ile Lys Asp Met Ile Thr Arg Met Asp Leu Glu Asn Leu Lys Asp
80 85 90

Val Leu Ser Arg Gln Lys Arg Glu Ile Asp Val Leu Gln Leu Val
95 100 105

Val Asp Val Asp Gly Asn Ile Val Asn Glu Val Lys Leu Leu Arg
110 115 120

Lys Glu Ser Arg Asn Met Asn Ser Arg Val Thr Gln Leu Tyr Met
125 130 135

Gln Leu Leu His Glu Ile Ile Arg Lys Arg Asp Asn Ser Leu Glu
140 145 150

Leu Ser Gln Leu Glu Asn Lys Ile Leu Asn Val Thr Thr Glu Met
155 160 165

Leu Lys Met Ala Thr Arg Tyr Arg Glu Leu Glu Val Lys Tyr Ala
170 175 180

Ser Leu Thr Asp Leu Val Asn Asn Gln Ser Val Met Ile Thr Leu
185 190 195

Leu Glu Glu Gln Cys Leu Arg Ile Phe Ser Arg Gln Asp Thr His
200 205 210

Val Ser Pro Pro Leu Val Gln Val Val Pro Gln His Ile Pro Asn
215 220 225

Ser Gln Gln Tyr Thr Pro Gly Leu Leu Gly Gly Asn Glu Ile Gln
230 235 240

Arg Asp Pro Gly Tyr Pro Arg Asp Leu Met Pro Pro Pro Asp Leu
245 250 255

Ala Thr Ser Pro Thr Lys Ser Pro Phe Lys Ile Pro Pro Val Thr
260 265 270

Phe Ile Asn Glu Gly Pro Phe Lys Asp Cys Gln Gln Ala Lys Glu
275 280 285

Ala Gly His Ser Val Ser Gly Ile Tyr Met Ile Lys Pro Glu Asn
290 295 300

Ser Asn Gly Pro Met Gln Leu Trp Cys Glu Asn Ser Leu Asp Pro
305 310 315

Gly Gly Trp Thr Val Ile Gln Lys Arg Thr Asp Gly Ser Val Asn
320 325 330

Phe Phe Arg Asn Trp Glu Asn Tyr Lys Lys Gly Phe Gly Asn Ile
335 340 345

Asp Gly Glu Tyr Trp Leu Gly Leu Glu Asn Ile Tyr Met Leu Ser
350 355 360

Asn Gln Asp Asn Tyr Lys Leu Leu Ile Glu Leu Glu Asp Trp Ser
365 370 375

Asp Lys Lys Val Tyr Ala Glu Tyr Ser Ser Phe Arg Leu Glu Pro
380 385 390

Glu Ser Glu Phe Tyr Arg Leu Arg Leu Gly Thr Tyr Gln Gly Asn
395 400 405

Ala Gly Asp Ser Met Met Trp His Asn Gly Lys Gln Phe Thr Thr
410 415 420

Leu Asp Arg Asp Lys Asp Met Tyr Ala Gly Asn Cys Ala His Phe
425 430 435

His Lys Gly Gly Trp Trp Tyr Asn Ala Cys Ala His Ser Asn Leu
440 445 450

Asn Gly Val Trp Tyr Arg Gly Gly His Tyr Arg Ser Lys His Gln
455 460 465

Asp Gly Ile Phe Trp Ala Glu Tyr Arg Gly Gly Ser Tyr Ser Leu
470 475 480

Arg Ala Val Gln Met Met Ile Lys Pro Ile Asp
485 490 491

GGCTCAGAGG CCCCACCTGGA CCCTCGGCTC TTCCCTTGGAC TTCTTGTGTG 50
TTCTGTGAGC TTCGCTGGAT TCAGGGTCTT GGGCATCAGA GGTGAGAGGG 100
TGGGAAGGTC CGCCGCGATG GGGAAAGCCCT GGCTGCGTGC GCTACAGCTG 150
CTGCTCCTGC TGGGCGCGTC GTGGGCGCGG GCAGGGCGCCC CGCGCTGCAC 200
CTACACCTTC GTGCTGCCCG CGCAGAAGTT CACGGGCGCT GTGTGCTGGA 250
GCAGCCCCGC ATCCACGCGG GCGACGCCCG AGGCCGCCAA CGCCAGCGAG 300
CTGGCGGCCGC TGCGCATGCG CGTCGGCCGC CACGAGGAGC TGTTACGCGA 350
GCTGCAGAGG CTGGCGGCCGG CCGACGGCGC CGTGGCCGGC GAGGTGCGCG 400
CGCTGCGCAA GGAGAGCCGC GGCCTGAGCG CGCGCCTGGG CCAGTTGCGC 450
GCGCAGCTGC AGCACGAGGC GGGGCCCGGG GCAGGGCCCGG GGGCGGATCT 500
GGGGCGGAG CCTGCCGCCGG CGCTGGCGCT GCTCGGGGAG CGCGTGCTCA 550
ACCGTCCGC CGAGGCTCAG CGCGCAGCCG CCCGGTTCCA CCAGCTGGAC 600
GTCAAGTTCC GCGAGCTGGC GCAGCTCGTC ACCCAGCAGA GCAGTCTCAT 650
CGCCCGCCTG GAGCGCCTGT GCCCGGGAGG CGCGGGCGGG CAGCAGCAGG 700
TCCTGCCGCC ACCCCCCACTG GTGCCTGTGG TTCCGGTCCG TCTTGTGGGT 750
AGCACCAAGTG ACACCAGTAG GATGCTGGAC CCAGCCCCAG AGCCCCAGAG 800
AGACCAGACC CAGAGACAGC AGGAGCCCAT GGCTTCTCCC ATGCCTGCAG 850
GTCACCCCTGC GGTCCCCACC AAGCCTGTGG GCCCGTGGCA GGATTGTGCA 900
GAGGCCCGCC AGGCAGGCCA TGAACAGAGT GGAGTGTATG AACTGCGAGT 950
GGGCCGTAC GTAGTGTCA G TATGGTGTGA GCAGCAACTG GAGGGTGGAG 1000
GCTGGACTGT GATCCAGCGG AGGCAAGATG GTTCAGTCAA CTTCTTCACT 1050
ACCTGGCAGC ACTATAAGGC GGGCTTGGG CGGCCAGACG GAGAATACTG 1100
GCTGGGCCTT GAACCCGTGT ATCAGCTGAC CAGCCGTGGG GACCATGAGC 1150
TGCTGGTTCT CCTGGAGGAC TGGGGGGGCC GTGGAGCACG TGCCCACTAT 1200
GATGGCTTCT CCCTGGAACC CGAGAGCGAC CACTACCGCC TGCGGCTTGG 1250
CCAGTACCAT GGTGATGCTG GAGACTCTCT TTCCTGGCAC AATGACAAGC 1300
CCTTCAGCAC CGTGGATAGG GACCGAGACT CCTATTCTGG TAACTGTGCC 1350
CTGTACCAGC GGGGAGGCTG GTGGTACCAT GCCTGTGCC ACTCCAACCT 1400
CAACGGTGTG TGGCACCACG GCGGCCACTA CCGAAGCCGC TACCAAGGATG 1450

GTGTCTACTG GGCTGAGTTT CGTGGTGGGG CATATTCTCT CAGGAAGGCC 1500
GCCATGCTCA TTCGGCCCT GAAGCTGTGA CTCTGTGTTC CTCTGTCCCC 1550
TAGGCCCTAG AGGACATTGG TCAGCAGGAG CCCAAGTTGT TCTGGCCACA 1600
CCTTCTTGT GGCTCAGTGC CAATGTGTCC CACAGAACTT CCCACTGTGG 1650
ATCTGTGACC CTGGGCGCTG AAAATGGGAC CCAGGAATCC CCCCCGTCAA 1700
TATCTTGGCC TCAGATGGCT CCCCAAGGTC ATTCAATATCT CGGTTTGAGC 1750
TCATATCTTA TAATAACACA AAGTAGGCCAC 1780

Met Gly Lys Pro Trp Leu Arg Ala Leu Gln Leu Leu Leu Leu
1 5 10 15

Gly Ala Ser Trp Ala Arg Ala Gly Ala Pro Arg Cys Thr Tyr Thr
20 25 30

Phe Val Leu Pro Pro Gln Lys Phe Thr Gly Ala Val Cys Trp Ser
35 40 45

Gly Pro Ala Ser Thr Arg Ala Thr Pro Glu Ala Ala Asn Ala Ser
50 55 60

Glu Leu Ala Ala Leu Arg Met Arg Val Gly Arg His Glu Glu Leu
65 70 75

Leu Arg Glu Leu Gln Arg Leu Ala Ala Asp Gly Ala Val Ala
80 85 90

Gly Glu Val Arg Ala Leu Arg Lys Glu Ser Arg Gly Leu Ser Ala
95 100 105

Arg Leu Gly Gln Leu Arg Ala Gln Leu Gln His Glu Ala Gly Pro
110 115 120

Gly Ala Gly Pro Gly Ala Asp Leu Gly Ala Glu Pro Ala Ala Ala
125 130 135

Leu Ala Leu Leu Gly Glu Arg Val Leu Asn Ala Ser Ala Glu Ala
140 145 150

Gln Arg Ala Ala Ala Arg Phe His Gln Leu Asp Val Lys Phe Arg
155 160 165

Glu Leu Ala Gln Leu Val Thr Gln Gln Ser Ser Leu Ile Ala Arg
170 175 180

Leu Glu Arg Leu Cys Pro Gly Gly Ala Gly Gly Gln Gln Val
185 190 195

Leu Pro Pro Pro Pro Leu Val Pro Val Val Pro Val Arg Leu Val
200 205 210

Gly Ser Thr Ser Asp Thr Ser Arg Met Leu Asp Pro Ala Pro Glu
215 220 225

Pro Gln Arg Asp Gln Thr Gln Arg Gln Gln Glu Pro Met Ala Ser
230 235 240

Pro Met Pro Ala Gly His Pro Ala Val Pro Thr Lys Pro Val Gly
245 250 255

Pro Trp Gln Asp Cys Ala Glu Ala Arg Gln Ala Gly His Glu Gln
260 265 270

Ser Gly Val Tyr Glu Leu Arg Val Gly Arg His Val Val Ser Val
275 280 285

Trp Cys Glu Gln Gln Leu Glu Gly Gly Trp Thr Val Ile Gln
290 295 300

Arg Arg Gln Asp Gly Ser Val Asn Phe Phe Thr Thr Trp Gln His
305 310 315

Tyr Lys Ala Gly Phe Gly Arg Pro Asp Gly Glu Tyr Trp Leu Gly
320 325 330

Leu Glu Pro Val Tyr Gln Leu Thr Ser Arg Gly Asp His Glu Leu
335 340 345

Leu Val Leu Leu Glu Asp Trp Gly Gly Arg Gly Ala Arg Ala His
350 355 360

Tyr Asp Gly Phe Ser Leu Glu Pro Glu Ser Asp His Tyr Arg Leu
365 370 375

Arg Leu Gly Gln Tyr His Gly Asp Ala Gly Asp Ser Leu Ser Trp
380 385 390

His Asn Asp Lys Pro Phe Ser Thr Val Asp Arg Asp Arg Asp Ser
395 400 405

Tyr Ser Gly Asn Cys Ala Leu Tyr Gln Arg Gly Gly Trp Trp Tyr
410 415 420

His Ala Cys Ala His Ser Asn Leu Asn Gly Val Trp His His Gly
425 430 435

Gly His Tyr Arg Ser Arg Tyr Gln Asp Gly Val Tyr Trp Ala Glu
440 445 450

Phe Arg Gly Gly Ala Tyr Ser Leu Arg Lys Ala Ala Met Leu Ile
455 460 465

Arg Pro Leu Lys Leu
470

DNA 22779 Dark Field

The white spots represent the silver grains.

Figure 8-A

DNA 22779 H&E

Figure 8-B

DNA 28497 H&E

Figure 9A

DNA 28497 Dark Field

The white spots represent the silver grains.

Figure 9B

DNA 23339 H&E

Figure 10-A

DNA 23339 Dark Field

The white spots represent the silver grains.

Figure 10-B

NL1 Northern

Figure 11

NL5 Northern

Figure 12