Introduction to Artificial Intelligence with Python

Knowledge

knowledge-based agents

agents that reason by operating on internal representations of knowledge

If it didn't rain, Harry visited Hagrid today.

Harry visited Hagrid or Dumbledore today, but not both.

Harry visited Dumbledore today.

Harry did not visit Hagrid today.

It rained today.

sentence

an assertion about the world in a knowledge representation language

Propositional Logic

Proposition Symbols

 $P \qquad Q \qquad R$

Logical Connectives

 \neg \land \lor not and or

→ ↔ implication biconditional

Not (¬)

P	$\neg P$
false	true
true	false

And (A)

P	Q	$P \wedge Q$
false	false	false
false	true	false
true	false	false
true	true	true

Or (v)

P	Q	$P \vee Q$
false	false	false
false	true	true
true	false	true
true	true	true

Implication (\rightarrow)

P	Q	$P \rightarrow Q$
false	false	true
false	true	true
true	false	false
true	true	true

Biconditional (↔)

P	Q	$P \leftrightarrow Q$
false	false	true
false	true	false
true	false	false
true	true	true

model

assignment of a truth value to every propositional symbol (a "possible world")

model

P: It is raining.

Q: It is a Tuesday.

 $\{P = \mathsf{true}, \, Q = \mathsf{false}\}$

knowledge base

a set of sentences known by a knowledge-based agent

Entailment

$$\alpha \vDash \beta$$

In every model in which sentence α is true, sentence β is also true.

If it didn't rain, Harry visited Hagrid today.

Harry visited Hagrid or Dumbledore today, but not both.

Harry visited Dumbledore today.

Harry did not visit Hagrid today.

It rained today.

inference

the process of deriving new sentences from old ones

P: It is a Tuesday.

 \overline{Q} : It is raining.

R: Harry will go for a run.

KB: $(P \land \neg Q) \rightarrow R$ P

Inference: R

Inference Algorithms

Does $KB \models \alpha$?

Model Checking

Model Checking

- To determine if $KB \models \alpha$:
 - Enumerate all possible models.
 - If in every model where KB is true, α is true, then KB entails α .
 - ullet Otherwise, KB does not entail lpha.

P: It is a Tuesday. Q: It is raining. R: Harry will go for a run.

KB: $(P \land \neg Q) \rightarrow R$ $P \qquad \neg Q$

Query: R

P	Q	R	KB
false	false	false	
false	false	true	
false	true	false	
false	true	true	
true	false	false	
true	false	true	
true	true	false	
true	true	true	

P: It is a Tuesday. Q: It is raining. R: Harry will go for a run.

KB: $(P \land \neg Q) \rightarrow R$ $P \qquad \neg Q$

Query: R

P	Q	R	KB
false	false	false	false
false	false	true	false
false	true	false	false
false	true	true	false
true	false	false	false
true	false	true	true
true	true	false	false
true	true	true	false

P: It is a Tuesday. Q: It is raining. R: Harry will go for a run.

KB: $(P \land \neg Q) \rightarrow R$ $P \qquad \neg Q$

Query: R

P	Q	R	KB
false	false	false	false
false	false	true	false
false	true	false	false
false	true	true	false
true	false	false	false
true	false	true	true
true	true	false	false
true	true	true	false

Knowledge Engineering

Clue

Clue

Propositional Symbols

mustardballroomknifeplumkitchenrevolver

scarlet library wrench

Clue

```
(mustard v plum v scarlet)
(ballroom v kitchen v library)
(knife v revolver v wrench)
```

 $\neg plum$

 $\neg mustard \lor \neg library \lor \neg revolver$

Logic Puzzles

- Gilderoy, Minerva, Pomona and Horace each belong to a different one of the four houses: Gryffindor, Hufflepuff, Ravenclaw, and Slytherin House.
- Gilderoy belongs to Gryffindor or Ravenclaw.
- Pomona does not belong in Slytherin.
- Minerva belongs to Gryffindor.

Logic Puzzles

Propositional Symbols

GilderoyGryffindor MinervaGryffindor

GilderoyHufflepuff MinervaHufflepuff

GilderoyRavenclaw MinervaRavenclaw

GilderoySlytherin MinervaSlytherin

PomonaGryffindor HoraceGryffindor

PomonaHufflepuff HoraceHufflepuff

PomonaRavenclaw HoraceRavenclaw

PomonaSlytherin HoraceSlytherin

Logic Puzzles

 $(PomonaSlytherin \rightarrow \neg PomonaHufflepuff)$

 $\overline{(MinervaRavenclaw)} \rightarrow \neg GilderoyRavenclaw)$

(GilderoyGryffindor v GilderoyRavenclaw)

Inference Rules

Modus Ponens

If it is raining, then Harry is inside.

It is raining.

Harry is inside.

Modus Ponens

$$\alpha \rightarrow \beta$$

 α

ß

And Elimination

Harry is friends with Ron and Hermione.

Harry is friends with Hermione.

And Elimination

$$\alpha \wedge \beta$$

 α

Double Negation Elimination

It is not true that Harry did not pass the test.

Harry passed the test.

Double Negation Elimination

$$\neg(\neg\alpha)$$

 α

Implication Elimination

If it is raining, then Harry is inside.

It is not raining or Harry is inside.

Implication Elimination

$$\alpha \rightarrow \beta$$

$$\neg \alpha \lor \beta$$

Biconditional Elimination

It is raining if and only if Harry is inside.

If it is raining, then Harry is inside, and if Harry is inside, then it is raining.

Biconditional Elimination

$$\alpha \leftrightarrow \beta$$

$$(\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)$$

It is not true that both Harry and Ron passed the test.

Harry did not pass the test or Ron did not pass the test.

$$\neg(\alpha \land \beta)$$

$$\neg \alpha \lor \neg \beta$$

It is not true that Harry or Ron passed the test.

Harry did not pass the test and Ron did not pass the test.

$$\neg(\alpha \lor \beta)$$

$$\neg \alpha \land \neg \beta$$

Distributive Property

$$(\alpha \land (\beta \lor \gamma))$$

$$(\alpha \land \beta) \lor (\alpha \land \gamma)$$

Distributive Property

$$(\alpha \vee (\beta \wedge \gamma))$$

$$(\alpha \vee \beta) \wedge (\alpha \vee \gamma)$$

Search Problems

- initial state
- actions
- transition model
- goal test
- path cost function

Theorem Proving

- initial state: starting knowledge base
- actions: inference rules
- transition model: new knowledge base after inference
- goal test: check statement we're trying to prove
- path cost function: number of steps in proof

Resolution

(Ron is in the Great Hall) v (Hermione is in the library)

Ron is not in the Great Hall

Hermione is in the library

 $P \vee Q$

 $\neg P$

Q

$$P \vee Q_1 \vee Q_2 \vee ... \vee Q_n$$

$$\neg P$$

$$Q_1 \vee Q_2 \vee ... \vee Q_n$$

(Ron is in the Great Hall) v (Hermione is in the library)

(Ron is not in the Great Hall) v (Harry is sleeping)

(Hermione is in the library) v (Harry is sleeping)

 $P \vee Q$

 $\neg P \lor R$

 $Q \vee R$

 $P \vee Q_1 \vee Q_2 \vee ... \vee Q_n$ $\neg P \vee R_1 \vee R_2 \vee ... \vee R_m$

 $Q_1 \vee Q_2 \vee ... \vee Q_n \vee R_1 \vee R_2 \vee ... \vee R_m$

clause

a disjunction of literals

e.g. $P \vee Q \vee R$

conjunctive normal form

logical sentence that is a conjunction of clauses

e.g. $(A \lor B \lor C) \land (D \lor \neg E) \land (F \lor G)$

Conversion to CNF

- Eliminate biconditionals
 - turn $(\alpha \leftrightarrow \beta)$ into $(\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)$
- Eliminate implications
 - turn $(\alpha \rightarrow \beta)$ into $\neg \alpha \lor \beta$
- Move ¬ inwards using De Morgan's Laws
 - e.g. turn $\neg(\alpha \land \beta)$ into $\neg \alpha \lor \neg \beta$
- ullet Use distributive law to distribute ${f v}$ wherever possible

Conversion to CNF

$$(P \lor Q) \rightarrow R$$

$$\neg (P \lor Q) \lor R$$

eliminate implication

$$(\neg P \land \neg Q) \lor R$$

De Morgan's Law

$$(\neg P \lor R) \land (\neg Q \lor R)$$
 distributive law

Inference by Resolution

 $P \vee Q$

 $\neg P \lor R$

 $(Q \vee R)$

 $P \vee Q \vee S$

 $\neg P \lor R \lor S$

 $(Q \vee S \vee R \vee S)$

 $P \vee Q \vee S$

 $\neg P \lor R \lor S$

 $(Q \vee R \vee S)$

- To determine if $KB \models \alpha$:
 - Check if (KB $\wedge \neg \alpha$) is a contradiction?
 - If so, then $KB \models \alpha$.
 - Otherwise, no entailment.

- To determine if $KB \models \alpha$:
 - Convert (KB $\wedge \neg \alpha$) to Conjunctive Normal Form.
 - Keep checking to see if we can use resolution to produce a new clause.
 - If ever we produce the **empty** clause (equivalent to False), we have a contradiction, and $KB \models \alpha$.
 - Otherwise, if we can't add new clauses, no entailment.

$$(A \lor B) \land (\neg B \lor C) \land (\neg C) \land (\neg A)$$

$$(A \lor B) \quad (\neg B \lor C) \quad (\neg C) \quad (\neg A)$$

$$(A \lor B) \land (\neg B \lor C) \land (\neg C) \land (\neg A)$$

$$(A \lor B) \quad (\neg B \lor C) \quad (\neg C) \quad (\neg A)$$

$$(A \lor B) \land (\neg B \lor C) \land (\neg C) \land (\neg A)$$

$$(A \lor B) \quad (\neg B \lor C) \quad (\neg C) \quad (\neg A) \quad (\neg B)$$

$$(A \lor B) \land (\neg B \lor C) \land (\neg C) \land (\neg A)$$

$$(A \lor B) \quad (\neg B \lor C) \quad (\neg C) \quad (\neg A) \quad (\neg B)$$

$$(A \lor B) \land (\neg B \lor C) \land (\neg C) \land (\neg A)$$

$$(A \lor B) \quad (\neg B \lor C) \quad (\neg C) \quad (\neg A) \quad (\neg B)$$

$$(A \lor B) \land (\neg B \lor C) \land (\neg C) \land (\neg A)$$

$$(A \lor B) \quad (\neg B \lor C) \quad (\neg C) \quad (\neg A) \quad (\neg B) \quad (A)$$

$$(A \lor B) \land (\neg B \lor C) \land (\neg C) \land (\neg A)$$

$$(A \lor B) \quad (\neg B \lor C) \quad (\neg C) \quad (\neg A) \quad (\neg B) \quad (A)$$

$$(A \lor B) \land (\neg B \lor C) \land (\neg C) \land (\neg A)$$

$$(A \lor B) \quad (\neg B \lor C) \quad (\neg C) \quad (\neg A) \quad (\neg B) \quad (A)$$

Does
$$(A \lor B) \land (\neg B \lor C) \land (\neg C)$$
 entail A ?

$$(A \lor B) \land (\neg B \lor C) \land (\neg C) \land (\neg A)$$

$$(A \lor B) \quad (\neg B \lor C) \quad (\neg C) \quad (\neg A) \quad (\neg B) \quad (A) \quad ()$$

$$(A \lor B) \land (\neg B \lor C) \land (\neg C) \land (\neg A)$$

$$(A \lor B) \quad (\neg B \lor C) \quad (\neg C) \quad (\neg A) \quad (\neg B) \quad (A) \quad ()$$

First-Order Logic

Propositional Logic

Propositional Symbols

MinervaGryffindor

MinervaHufflepuff

MinervaRavenclaw

MinervaSlytherin

• • •

First-Order Logic

Constant Symbol

Predicate Symbol

Minerva

Pomona

Horace

Gilderoy

Gryffindor

Hufflepuff

Ravenclaw

Slytherin

Person

House

BelongsTo

First-Order Logic

Person(Minerva) Minerva is a person.

House(Gryffindor) Gryffindor is a house.

 $\neg House(Minerva)$ Minerva is not a house.

BelongsTo(Minerva, Gryffindor)

Minerva belongs to Gryffindor.

Universal Quantification

Universal Quantification

 $\forall x. BelongsTo(x, Gryffindor) \rightarrow \neg BelongsTo(x, Hufflepuff)$

For all objects x, if x belongs to Gryffindor, then x does not belong to Hufflepuff.

Anyone in Gryffindor is not in Hufflepuff.

Existential Quantification

Existential Quantification

 $\exists x. House(x) \land BelongsTo(Minerva, x)$

There exists an object x such that x is a house and Minerva belongs to x.

Minerva belongs to a house.

Existential Quantification

 $\forall x. Person(x) \rightarrow (\exists y. House(y) \land BelongsTo(x, y))$

For all objects x, if x is a person, then there exists an object y such that y is a house and x belongs to y.

Every person belongs to a house.

Knowledge

Introduction to Artificial Intelligence with Python