Bayesian Modelling of Loss Curves in Insurance

Mick Cooney michael.cooney@applied.ai

15 April 2016

Structure of Talk

- Loss Curves
- Chain Ladder Modelling (package ChainLadder)
- Loss Growth Modelling
- Expanding the Model
- Posterior Predictive Checks
- Summary

Loss Curves

```
use_grcode <- c(43,353,388,620)
ppauto_ss_dt <- ppauto_dt[GRCODE %in% use_grcode
                         ][DevelopmentYear < 1998
                         ][, .(grcode
                                           = GRCODE
                              .accvear
                                           = AccidentYear
                              .devlag
                                           = DevelopmentLag
                                           = EarnedPremDIR_B
                              ,premium
                              ,cumloss
                                           = CumPaidLoss_B
                              ,loss_ratio = CumPaidLoss_B / EarnedPremDIR_B)]
print(dcast(ppauto_ss_dt[grcode == 43]
            ,grcode + accyear + premium ~ devlag
            ,value.var = 'cumloss'),digits=3)
##
       grcode accyear premium
                                  1
                                          2
                                                3
                                                      4
                                                             5
                                                                   6
##
    1:
           43
                  1988
                           957
                                        333
                                              431
                                                    570
                                                           615
                                                                 615
                                                                        615
                                                                            614
    2.
           43
                  1989
                          3695
                                  934
                                       1746
                                             2365
                                                    2579
                                                          2763
                                                                2966
                                                                       2940 2978 2978
##
    3.
           43
                  1990
                          6138
                                 2030
                                       4864
                                             6880
                                                   8087
                                                          8595
                                                                8743
                                                                      8763 8762
                                                                                       NA
    4.
           43
                  1991
                                 4537 11527 15123 16656 17321 18076 18308
                                                                              NA
                                                                                   NΔ
                                                                                       NΔ
##
    5.
           43
                  1992
                         29341
                                 7564 16061 22465 25204 26517 27124
                                                                        NA
                                                                              NA
                                                                                   NA
                                                                                       NA
    6:
           43
                  1993
                         37194
                                 8343 19900 26732 30079 31249
                                                                  NA
                                                                        NA
                                                                              NA
                                                                                   NA
                                                                                       NA
    7:
           43
                  1994
                         46095 12565 26922 33867 38338
                                                                  NA
                                                                        NA
                                                                              NA
                                                                                   NA
                                                                                       NA
    8:
           43
                  1995
                         51512 13437 26012 31677
                                                            NA
                                                                  NA
                                                                              NA
                                                                                   NA
                                                                                       NA
                                                                        NA
##
   9:
           43
                  1996
                         52481 12604 23446
                                               NA
                                                      ΜΔ
                                                            NΔ
                                                                  NA
                                                                        NA
                                                                              NA
                                                                                   NA
                                                                                       NA
## 10:
           43
                  1997
                         56978 12292
                                         NA
                                               NA
                                                      NA
                                                            NA
                                                                  NA
                                                                        NA
                                                                              NA
                                                                                   NA NA
```


Snapshot of Loss Curves for 10 Years of Product Liability Insurance for Single Organisation

roduction Loss Curves **Chain Ladder** Loss Growth Modelling Model Iteration PPC Summary

Chain Ladder

Standard R approach is ChainLadder


```
ppauto_mack <- MackChainLadder(ppauto_triangle, est.sigma = "Mack")
ppauto_mack$f
## [1] 2.10486 1.29968 1.12655 1.04671 1.03069 1.00743 1.00292 1.00000 1.00000 1.00000
ppauto_mack$FullTriangle
##
        dev
## origin
                                                                                  10
##
                 333
                       431.0
                               570.0
                                       615.0
                                               615.0
                                                       615.0
                                                               614.0
                                                                       614.0
                                                                               614.0
                1746
                      2365.0 2579.0 2763.0 2966.0
                                                      2940.0 2978.0 2978.0 2978.0
          2030 4864 6880.0 8087.0 8595.0 8743.0 8763.0 8762.0 8762.0 8762.0
##
          4537 11527 15123.0 16656.0 17321.0 18076.0 18308.0 18361.5 18361.5 18361.5
##
          7564 16061 22465.0 25204.0 26517.0 27124.0 27325.6 27405.5 27405.5 27405.5
##
          8343 19900 26732.0 30079.0 31249.0 32208.1 32447.6 32542.4 32542.4 32542.4
      7 12565 26922 33867.0 38338.0 40128.7 41360.4 41667.9 41789.6 41789.6 41789.6
##
##
      8 13437 26012 31677.0 35685.7 37352.5 38499.0 38785.2 38898.6 38898.6 38898.6
       9 12604 23446 30472.3 34328.5 35932.0 37034.8 37310.1 37419.2 37419.2 37419.2
##
       10 12292 25873 33626.6 37882.0 39651.4 40868.4 41172.3 41292.6 41292.6 41292.6
##
```

plot(ppauto_mack)

Development period

Calendar period

plot(ppauto_mack, lattice = TRUE)

Chain ladder developments by origin period

Chain ladder dev. Mack's S.E.

Development period

Loss Growth Modelling

Model growth cumulative losses as function Scale losses by premium

$$g(t; \ \omega, heta) = 1 - \exp\left(-\left(rac{t}{ heta}
ight)^{\omega}
ight)$$

$$g(t; \omega, \theta) = \frac{t^{\omega}}{t^{\omega} + \theta^{\omega}}$$

Loglogistic Function

Weibull Function

Start with the Weibull model

$$g(t; \omega, \theta) = \frac{t^{\omega}}{t^{\omega} + \theta^{\omega}}$$

Treat as hierarchical model - group by Accident Year

$$\mathsf{Loss}_{\mathsf{Y},t} \sim \mathsf{Normal}(\mu_{\mathsf{L},\mathsf{Y},t},\sigma_{\mathsf{L}})$$

where

$$\begin{array}{rcl} \mu_{\mathsf{L},\mathsf{Y},t} & = & \mathsf{LR}_\mathsf{Y} \times \mathsf{P}_\mathsf{Y} \times \mathsf{g}(t;\,\omega,\theta) \\ \sigma_\mathsf{L} & = & \mathsf{P}_\mathsf{Y} \times \sigma \\ \mathsf{LR}_\mathsf{Y} & \sim & \mathsf{Lognormal}(\mu_\mathsf{LR},\sigma_\mathsf{LR}) \end{array}$$

Normal prior for $\mu_{\rm LR}.$ Lognormal prior for $\omega,~\theta,~\sigma_{\rm LR},~\sigma.$


```
functions {
  real growth_factor_weibull(real t, real omega, real theta) {
    real factor:
    factor <- 1 - exp(-(t/theta)^omega);
    return(factor);
  real growth_factor_loglogistic(real t, real omega, real theta) {
    real factor:
    factor <- ((t^omega) / (t^omega + theta^omega));
    return(factor):
data {
  int<lower=0,upper=1> growthmodel_id;
  int n_data;
  int n_time;
 int n_cohort;
  int cohort_id[n_data];
 int t_idx[n_data];
  real<lower=0> t_value[n_time];
  real premium[n_cohort];
 real loss[n_data];
  int cohort_maxtime[n_cohort];
```

```
parameters {
  real<lower=0> omega;
  real<lower=0> theta;
  real<lower=0> LR[n_cohort];
  real mu_LR;
  real<lower=0> sd_LR;
  real<lower=0> loss_sd;
transformed parameters {
  real gf[n_time];
  real loss_mean[n_cohort, n_time];
  for(i in 1:n_time) {
    if(growthmodel_id == 1) {
      gf[i] <- growth_factor_weibull
                                        (t_value[i], omega, theta);
    } else {
      gf[i] <- growth_factor_loglogistic(t_value[i], omega, theta);</pre>
  for(i in 1:n data) {
    loss_mean[cohort_id[i], t_idx[i]] <- LR[cohort_id[i]] * premium[cohort_id[i]] * gf[t_idx[i]];
```

```
model {
   mu_LR ~ normal(0, 0.5);
   sd_LR ~ lognormal(0, 0.5);

LR ~ lognormal(mu_LR, sd_LR);

loss_sd ~ lognormal(0, 0.7);

omega ~ lognormal(0, 1);
   theta ~ lognormal(0, 1);

for(i in 1:n_data) {
    loss[i] ~ normal(loss_mean[cohort_id[i], t_idx[i]], premium[cohort_id[i]] * loss_sd);
   }
}
```

Stan Output

Check simple diagnostics:

Warning: Removed 110 rows containing missing values (geom_point).

Check parameter values:

Model Iteration

How might we expand this model?

Allow ω and θ to be part of the hierarchy:

$$egin{array}{cccc} \omega &
ightarrow & \omega_1 \ heta &
ightarrow & heta_1 \ heta &
ightarrow & heta_2 \ \end{array}$$

Each Accident Year has individual (ω_Y, θ_Y) with

$$\omega_{
m Y} \sim {
m Lognormal}(\mu_{\omega}, \sigma_{\omega})$$
 $\theta_{
m Y} \sim {
m Lognormal}(\mu_{\theta}, \sigma_{\theta})$
 $\mu_{\omega} \sim {
m Normal}(0, 1)$
 $\sigma_{\omega} \sim {
m Lognormal}(-3, 0.1)$
 $\mu_{\theta} \sim {
m Normal}(0, 1)$

 \sim Lognormal(-3, 0.1)

troduction Loss Curves Chain Ladder Loss Growth Modelling **Model Iteration** PPC Summary

Individual Parameters - ω

troduction Loss Curves Chain Ladder Loss Growth Modelling **Model Iteration** PPC Summary

Individual Parameters - θ

troduction Loss Curves Chain Ladder Loss Growth Modelling **Model Iteration** PPC Summary

Individual Parameters - LR

ntroduction Loss Curves Chain Ladder Loss Growth Modelling **Model Iteration** PPC Summary

Convergence Diagnostics

 $\mbox{\tt \#\#}$ Warning: Removed 110 rows containing missing values (geom.point).

Parameter

Problems with the Model

- Trouble with code
- Divergent transitions had to raise adapt_delta
- Would not rely on output
- Data is very sparse for later Accident Years
- May revisit once other insurers added

Multiple Insurers

Use hierarchical model for multiple insurers

Each insurer gets own set of loss ratios and growth curves:

$$\begin{array}{ccc} \mathsf{LR} & \to & \mathsf{LR}_{\mathsf{I},\mathsf{Y}} \\ \omega & \to & \omega_{\mathsf{I}} \\ \theta & \to & \theta_{\mathsf{I}} \end{array}$$

Put hierarchy on top of this

Start with 15 insurers

Multiple Insurers

```
model {
 mu LR ~ normal
                   (hyper_mu_LR_mean, hyper_mu_LR_sd);
 sd_LR ~ lognormal(hyper_sd_LR_mean, hyper_sd_LR_sd);
 loss_sd ~ lognormal(hyper_loss_sd_mean, hyper_loss_sd_sd);
 omega ~ lognormal(mu_omega, sd_omega);
 theta ~ lognormal(mu theta, sd theta):
 mu omega ~ normal(0, 1);
 sd_omega ~ lognormal(-3, 0.1);
 mu_theta ~ normal(0, 1);
 sd_theta ~ lognormal(-3, 0.1);
 hyper mu LR mean ~ normal(0, 1):
 hyper_mu_LR_sd ~ lognormal(0, 1);
 hyper sd LR mean ~ normal(0, 1):
 hyper_sd_LR_sd ~ lognormal(0, 1);
 hyper_loss_sd_mean ~ normal(0, 1);
 hyper_loss_sd_sd ~ lognormal(0, 0.1);
 for(i in 1:n_data) {
   loss[i] ~ normal(loss_mean[org_id[i], cohort_id[i], t_idx[i]], premium[i] * loss_sd[org_id[i]]);
 7-
 for(j in 1:n_org) {
   LR[j] ~ lognormal(mu_LR[j], sd_LR[j]);
 7-
```


Warning: Removed 676 rows containing missing values (geom_point).

Huge amount of parameters, so check interesting subset

Model Checking

Promising on first pass

Lots of things going on

How do we check and understand model?

roduction Loss Curves Chain Ladder Loss Growth Modelling Model Iteration PPC Summary

Posterior Predictive Checks

Posterior Predictive Checks

- Getting more and more emphasis
- Used to assess data aspects not modelled well
- Use sample to generate 'fake' data to compare
- Can also be used to generate predictions from data (clunky)
- No hard and fast rules
- How can we check our loss curve output?

LR Range

Question: Does model capture LR range well?

For each sample, track min/max of LR Compare actual min/max LR with distributions (devlag \geq 8 years)

LR Range

- Better than expected
- Max/Min very sample-dependent
- May be worth considering quantiles
- Data a little too aggregated perhaps

Question: Does model capture time to final development well?

For each sample, observe time at which gf exceeds 0.98 Take 25%/75% intervals of time for each insurer, compare to data

Further Iterations

- Need better PPCs
- Further nesting for Insurer and Accident Year
- Look across product lines
- Try ADVI to help with iteration

Conclusions

- Alternative to Chain Ladder
- Allows interesting views into data
- Data source used is crude
- More work required!

Further Work

- Try out ADVI on the models
- \blacksquare Incorporate different ω and θ priors
- Generate fake data to try new approaches (change-point for example)
- Add hierarchy of product lines to model
- Write-up and contribute as Stan Case Study

Get In Touch

Mick Cooney michael.cooney@applied.ai

Slides and code available on BitBucket: ${\tt https://www.bitbucket.org/kaybenleroll/dublin_r_workshops}$

