EECS 70 Discrete Mathematics and Probability Theory Fall 2015 Satish Rao Discussion 6A

1. RSA Reasoning

In RSA, if Alice wants to send a confidential message to Bob, she uses Bob's public key to encode it. Then Bob uses his private key to decode the message. Suppose that Bob chose N = 77. And then Bob chose e = 3 so his public key is (3,77). And then Bob chose e = 3 so his private key is (26,77).

Will this work for encoding and decoding messages? If not, where did Bob <u>first</u> go wrong in the above sequence of steps and what is the consequence of that error? If it does work, then show that it works.

Solution: e should be co-prime to (p-1)(q-1). e=3 is not co-prime to (7-1)(11-1)=60, so this is incorrect, since therefore e does not have an inverse mod 60.

2. Roots

Let's make sure you're comfortable with roots of polynomials in the familiar real numbers \mathbb{R} . Recall that a polynomial of degree d has at most d roots. In this problem, assume we are working with polynomials over \mathbb{R} .

- (a) Suppose p(x) and q(x) are two different nonzero polynomials with degrees d_1 and d_2 respectively. What can you say about the number of solutions of p(x) = q(x)? How about $p(x) \cdot q(x) = 0$? **Solution:** A solution of p(x) = q(x) is a root of the polynomial p(x) q(x), which has degree at most $\max(d_1, d_2)$. Therefore, the number of solutions is also at most $\max(d_1, d_2)$. A solution of $p(x) \cdot q(x) = 0$ is a root of the polynomial $p(x) \cdot q(x)$, which has degree $d_1 + d_2$. Therefore, the number of solutions is at most $d_1 + d_2$.
- (b) Consider the degree 2 polynomial $f(x) = x^2 + ax + b$. Show that, if f has exactly one root, then $a^2 = 4b$.

Solution: If there is a root c, then the polynomial is divisible by x-c. Therefore it can be written as f(x) = (x-c)g(x). But g(x) is a degree one polynomial and by looking at coefficients it is obvious that its leading coefficient is 1. Therefore g(x) = x-d for some d. But then d is also a root, which means that d = c. So $f(x) = (x-c)^2$ which means that a = -2c and $b = c^2$, so $a^2 = 4b$.

(c) What is the *minimal* number of real roots that a nonzero polynomial of degree d can have? How does the answer depend on d?

Solution: If d is even, the polynomial can have 0 roots (e.g., consider $x^d + 1$, which is always positive for all $x \in \mathbb{R}$). If d is odd, the polynomial must have at least 1 root (a polynomial of odd degree takes on arbitrarily large positive and negative values, and thus must pass through 0 inbetween them at least once).

3. Lagrange Interpolation

Find a unique real polynomial p(x) of degree at most 3 that passes through points (-1,3), (0,1), (1,2), and (2,0) using Lagrange interpolation.

1. Find
$$\Delta_{-1}(x)$$
 where $\Delta_{-1}(0) = \Delta_{-1}(1) = \Delta_{-1}(2) = 0$ and $\Delta_{-1}(-1) = 1$. Solution: $\Delta_{-1}(x) = \frac{x(x-1)(x-2)}{-6}$

2. Find $\Delta_0(x)$ where $\Delta_0(-1) = \Delta_0(1) = \Delta_0(2) = 0$ and $\Delta_0(0) = 1$.

Solution: $\Delta_0(x) = \frac{(x+1)(x-1)(x-2)}{2}$

3. Find $\Delta_1(x)$ where $\Delta_1(-1) = \Delta_1(0) = \Delta_1(2) = 0$ and $\Delta_1(1) = 1$.

Solution: $\Delta_1(x) = \frac{(x+1)(x)(x-2)}{-2}$.

4. Find $\Delta_2(x)$ where $\Delta_2(-1) = \Delta_2(0) = \Delta_2(1) = 0$ and $\Delta_2(2) = 1$.

Solution: $\Delta_2(x) = \frac{(x+1)(x)(x-1)}{6}$.

5. Construct p(x) using a linear combination of $\Delta_{-1}(x)$, $\Delta_0(x)$, $\Delta_1(x)$ and $\Delta_2(x)$.

Solution: We don't need $\Delta_2(x)$.

 $p(x) = 3 \cdot \Delta_{-1}(x) + 1 \cdot \Delta_{0}(x) + 2 \cdot \Delta_{1}(x) + 0 \cdot \Delta_{2}(x).$

4. Interpolation Practice

(a) Find a linear polynomial p(x) over \mathbb{R} such that p(1) = 1 and p(3) = 4.

Solution: We can find $p(x) = a_1x + a_0$ by solving the system of linear equations

$$p(1) = a_1 + a_0 = 1$$

 $p(3) = 3a_1 + a_0 = 4$

However, let us use Lagrange interpolation to illustrate the difference with part (b).

We know the polynomial passes through $(x_1, y_1) = (1, 1)$ and $(x_2, y_2) = (3, 4)$. We form the following Delta functions:

$$\Delta_1(x) = \frac{x - x_2}{x_1 - x_2} = \frac{x - 3}{1 - 3} = -\frac{1}{2}x + \frac{3}{2}$$
 (note that $\Delta_1(x_1) = 1$, $\Delta_1(x_2) = 0$)

$$\Delta_2(x) = \frac{x - x_1}{x_2 - x_1} = \frac{x - 1}{3 - 1} = \frac{1}{2}x - \frac{1}{2}$$
 (note that $\Delta_2(x_1) = 0$, $\Delta_2(x_2) = 1$)

Then the polynomial p is given by

$$p(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) = 1 \cdot \left(-\frac{1}{2}x + \frac{3}{2} \right) + 4 \cdot \left(\frac{1}{2}x - \frac{1}{2} \right) = \frac{3}{2}x - \frac{1}{2}.$$

Note that p(1) = 1 and p(3) = 4, as desired.

(b) Find a linear polynomial q(x) over GF(5) such that $q(1) \equiv 1 \pmod{5}$ and $q(3) \equiv 4 \pmod{5}$.

Solution: We use Lagrange interpolation. The Delta functions are:

$$\Delta_1(x) = \frac{x - x_2}{x_1 - x_2} = \frac{x - 3}{1 - 3} \equiv -2^{-1}(x - 3) \equiv -3(x - 3) \equiv 2x + 4 \pmod{5},$$

$$\Delta_2(x) = \frac{x - x_1}{x_2 - x_1} = \frac{x - 1}{3 - 1} \equiv 2^{-1}(x - 1) \equiv 3(x - 1) \equiv 3x + 2 \pmod{5}$$

In the calculation above we have used the fact that dividing by 2 is equivalent to multiplying by $2^{-1} \equiv 3 \pmod{5}$. Then the polynomial q is given by

$$q(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) \equiv 1 \cdot (2x+4) + 4 \cdot (3x+2) \equiv 14x + 12 \equiv 4x + 2 \pmod{5}.$$

Note that $q(1) \equiv 6 \equiv 1 \pmod{5}$ and $q(3) \equiv 14 \equiv 4 \pmod{5}$, as desired. Also note that unlike in part (a), here the polynomials Δ_1 , Δ_2 , and q all have integer coefficients.

Solver.

- 1. Prepare: comfortable position, pencil, paper, etc.
- 2. Read hints, suggestions, discuss with partner.
- 3. Read the problem aloud.
- 4. Solve on own. You speak, you solve, parter listens.
- 5. Speak! No need to choose words.
- 6. Go back over problem; "I'm stuck. I better start over." "No that won't work", "Let's see...hmmm"
- 7. Try to solve even trivial problems!

Listener.

- 1. Listener not a critic. "Please elaborate." "What are you thinking now?" "Can you check that?"
- 2. Role: (a) demand that PS keep talking but don't interrupt. (b) make sure that PS foillows the strategy adn doesn't skip any of the steps. (c) help PS improve his/her accuracy. (d) help reflect the mental process PS is following. (e) make sure you understnad each step.
- 3. Do not turn away from PS and start to work on problem!!!!!
- 4. Do not let PS continue if:
 - (a) you don't understand. "I don't understand" or "I don't follow that."
 - (b) when there is a mistake. "Maybe check that", "Does that sound right"
- 5. No hints! Point out errors, but no correction.