School of Computing and Information Systems The University of Melbourne COMP30027 MACHINE LEARNING (Semester 1, 2019)

Tutorial exercises: Week 5

1. For the following dataset:

apple	ibm	lemon	sun	CLASS			
TRAINING INSTANCES							
4	0	1	1	FRUIT			
5	0	5	2	FRUIT			
2	5	0	0	COMPUTER			
1	2	1	7	COMPUTER			
TEST INSTANCES							
2	0	3	1	?			
1	2	1	0	?			

- (a) Classify the test instances according to the method of Nearest Prototype.
- (b) Using the **Euclidean distance** measure, classify the test instances using the 1-NN method.
- (c) Using the **Manhattan distance** measure, classify the test instances using the 3-NN method, for the three weightings we discussed in the lectures: majority class, inverse distance, inverse linear distance.
- (d) Can we do weighted k-NN using **cosine similarity**?
- 2. Revise SVMs, particularly the notion of "linear separability".
 - (a) If a dataset isn't linearly separable, an SVM learner has two major options. What are they, and why might we prefer one to the other?
 - (b) Contrary to many geometric methods, SVMs work better (albeit slower) with large attribute sets. Why might this be true?
- 3. We have now seen a decent selection of (supervised) learners:
 - Naive Bayes
 - 0-R
 - 1-R
 - Decision Trees
 - k-Nearest Neighbour
 - Nearest Prototype
 - Support Vector Machines
 - (a) For each, identify the model built during training.
 - (b) Rank the learners (approximately) by how fast they can classify a large set of test instances. (Note that this is largely independent of how fast they can build a model, and how well they work in general!)

1. For the following dataset:

	apple	ibm	lemon	sun	CLASS				
	Training Instances								
A	4	0	1	1	FRUIT				
В	5	0	5	2	FRUIT				
C	2	5	0	0	COMPUTER				
P	1	2	1	7	COMPUTER				
	TEST INSTANCES								
	2	0	3	1	?				
	1	2	1	0	?				

- (a) Classify the test instances according to the method of Nearest Prototype.
- (b) Using the Euclidean distance measure, classify the test instances using the 1-NN method.
- (c) Using the Manhattan distance measure, classify the test instances using the 3-NN method, for the three weightings we discussed in the lectures: majority class, inverse distance, inverse linear distance.
- (d) Can we do weighted *k*-NN using **cosine similarity**?

1. (a) Nearest Prototype:

Step 1. Construct prototype for each class:

Step 2. use Distance Formula to Classify.

$$P_{f} = \langle \frac{445}{2}, \frac{040}{2}, \frac{145}{2}, \frac{145}{2} \rangle = \langle 4.5, 0, 3, 1.5 \rangle$$

Use "Enclidean Distance" (Manhattan is similar)

For the first test instance.

$$Q_{E}(T_{1},P_{f}) = \sqrt{(2-4.5)^{2}+(0-0)^{2}+(3-3)^{2}+(1-1)^{2}} = \sqrt{1.5}$$

$$P_{E}(T_{I}, A) = \sqrt{8} \rightarrow fruit$$

top-3 smallest:

$$P_{M}(T_{1},C)=9.$$
 C - computer

i) Majority Class.

A:
$$\frac{1}{4+1} = \frac{1}{5}$$
 B: $\frac{1}{6+1} = \frac{1}{7}$

A:
$$\frac{9-4}{9-4} = 1$$
 C: $\frac{9-9}{9-9} = 0$

$$9-4 = 1$$
 $C: \frac{9-4}{9-4} = 0$
 $B: \frac{9-6}{3} = \frac{3}{3}$

$$\frac{9-4}{5}$$
 2. get total score

test 1: fruit

1. W_j =
$$\frac{dk-dj}{dk-dj}$$
 $\frac{dk}{dk}$: furthest neight

1. Inverse Distance. (ID)

1. IP = $\frac{1}{D+E}$ $=$ $\frac{1}{2}$ $=$ $\frac{$

- (d) Yes. this is easien than Calculate distance. because we assign a weighting for each instance using the asine Similarity directly. An overall veighting for a class can be obtained by summing the asine scores for the instances of the corresponding class, from among the set of nearest neighbors.
 - 2. Revise SVMs, particularly the notion of "linear separability".
 - (a) If a dataset isn't linearly separable, an SVM learner has two major options. What are they, and why might we prefer one to the other?
 - (b) Contrary to many geometric methods, SVMs work better (albeit slower) with large attribute sets. Why might this be true?

(a) Option 1: Soft margins: We permit a few points in "wrong" side to find a better margin.

Option 2: <u>Kernel methods</u>: transform data into higher dimensional space.

前提 1: Suspect is linear separable.

. a few points mis - classified -> soft margins

a few instances -> kernel

前規2: Suspect not linear Separable.

Soft margin - very wrong margin.

(6) the dataset has a number of useful and useless attributes.

Most geometric methods calculate Similarity | distance which assume all cultributes are same important, but some non-relevant attributes will affect result a lot.

In SVMs, finding "different" neights for each affribute. high on important, low on useless.

3. We have now seen a decent selection of (supervised) learners:	
Naive Bayes	
• 0-R	
1-RDecision Trees	
• k-Nearest Neighbour	
Nearest Prototype	
Support Vector Machines	
(a) For each, identify the model built during training.(b) Rank the learners (approximately) by how fast they can classify a large set of test instances. (Note that this is largely independent of how fast they can build a model, and how well they work in general!)	
(a) Noive Bayes: a set of prior prob (Pc;) and a set of	posterior prob e P(aHC;)
O-R: looks class Distribution	
I-R: this is an attribute, and the majority class	
DT: a Tree, every none-terminal node is labelled with a	n attribute.
KNN; the data set itselt.	
NP: this is prototype for closs.	
SVM: hyperplane.	
(b) N-training instances. C-classes b-ottributes	
time to make prediction:	
fostest: O-R; O(0) 1-R O(1) DT: O	(D)
hp: 0(cD) hB: 0(Co+c)	
SVM One us. one	

0 (C2p+C2)

Slowest K-HH: O (ND +K)

(a)