Bootstrap Your Own Latent A New Approach to Self-Supervised Learning

School of Industrial and Management Engineering, Korea University

Hansam Cho

Contents

- * Research Purpose
- Methods
- Experiments

Research Purpose

- Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning (2020, NeurIPS)
 - DeepMind 소속의 저자, 2022년 06월 06일 기준으로 1438회 인용

Bootstrap Your Own Latent A New Approach to Self-Supervised Learning

Jean-Bastien Grill*, Florian Strub*, Florent Altché*, Corentin Tallec*, Pierre H. Richemond*, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo. Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, Michal Valko.

¹DeepMind ²Imperial College

[jbgrill,fstrub,altche,corentint,richemond] @google.com

Abstract

We introduce Bootstrap Your Own Latent (BYOL), a new approach to self-supervised image representation learning. BYOL relies on two neural networks, referred to as *online* and *target* networks, that interact and learn from each other. From an augmented view of an image, we train the online network to predict the target network representation of the same image under a different augmented view. At the same time, we update the target network with a slow-moving average of the online network. While state-of-the art methods rely on negative pairs, BYOL achieves a new state of the art *without them*. BYOL reaches 74.3% top-1 classification accuracy on ImageNet using a linear evaluation with a ResNet-50 architecture and 79.6% with a larger ResNet. We show that BYOL performs on par or better than the current state of the art on both transfer and semi-supervised benchmarks. Our implementation and pretrained models are given on GitHub.³

Research Purpose

Introduction

- 좋은 representation을 학습하는 것은 중요한 task이며 contrastive learning이 좋은 성능을 보임
- Contrastive learning은 negative pair의 정의와 augmentation 기법에 민감함
- Positive pair만을 활용하는 BYOL이라는 새로운 self-supervised learning 기법을 제안함

Motivation

- ImageNet 데이터 활용한 classification 성능 비교
- 실험1: Random representation을 활용, linear classifier 학습 → Top1 Acc. 1.4%
- 실험2: Random representation을 예측하도록 encoder 학습 후 해당 encoder를 고정, linear classifier 학습 → Top1 Acc. 18.8%
- Representation을 예측하는 것 만으로도 좋은 representation 학습 가능

- 5 -

🔥 DMQA 🥍 hca

❖ BYOL

- Online network: 실제 representation을 학습하는 모델
- Target network: Online network가 학습할 target값을 생성하는 모델
- Online network에만 predictor가 존재 → 모델의 비대칭성을 통해 서로 다른 representation 생성
- 서로 다른 augmentation (t,t')을 활용해 두개의 이미지 생성 (v,v') 후 입력
- Online network와 target network의 output에 대해 정규화

BYOL

• MSE를 loss로 활용

$$\mathcal{L}_{\theta,\xi} \triangleq \left\| \overline{q_{\theta}}(z_{\theta}) - \overline{z}'_{\xi} \right\|_{2}^{2} = 2 - 2 \cdot \frac{\langle q_{\theta}(z_{\theta}), z'_{\xi} \rangle}{\left\| q_{\theta}(z_{\theta}) \right\|_{2} \cdot \left\| z'_{\xi} \right\|_{2}}.$$

• 입력 이미지를 바꾼 경우에 대해서도 loss 계산, 두 loss를 더해서 최종 loss로 활용

$$\mathcal{L}_{ heta,\xi}^{ exttt{BYOL}} = \mathcal{L}_{ heta,\xi} + \widetilde{\mathcal{L}}_{ heta,\xi}$$

• Online network만 학습을 진행하며 target network는 online network의 exponential moving average로 파라미터 업데이트

$$\theta \leftarrow \text{optimizer}(\theta, \nabla_{\theta} \mathcal{L}_{\theta, \xi}^{\text{BYOL}}, \eta) \quad \text{and} \quad \xi \leftarrow \tau \xi + (1 - \tau)\theta,$$

- Intuitions on BYOL's behavior
 - BYOL은 collapse*를 막을 수 있는 장치가 없음 (*collapse: 모든 이미지에 대해서 동일한 representation 생성)
 - 하지만 collapse가 일어나는 경우가 불안정하기 때문에 collapse가 발생하지 않음
 - Online network predictor가 optimal인 상황을 가정

$$q_{\theta} = q^{\star} \text{ with } q^{\star} \triangleq \arg\min_{q} \mathbb{E}\left[\left\|q(z_{\theta}) - z_{\xi}'\right\|_{2}^{2}\right], \text{ where } q^{\star}(z_{\theta}) = \mathbb{E}\left[z_{\xi}'|z_{\theta}\right],$$

• Online network update에 사용되는 gradient는 conditional variance에 영향을 받음

$$\nabla_{\theta} \mathbb{E} \Big[\| q^{\star}(z_{\theta}) - z_{\xi}' \|_{2}^{2} \Big] = \nabla_{\theta} \mathbb{E} \Big[\| \mathbb{E} \big[z_{\xi}' | z_{\theta} \big] - z_{\xi}' \|_{2}^{2} \Big] = \nabla_{\theta} \mathbb{E} \Big[\sum_{i} \operatorname{Var}(z_{\xi,i}' | z_{\theta}) \Big]$$

• Collapse 상황의 variance가 일반적인 상황의 variance에 비해 큼

$$\operatorname{Var}(z_{\xi}'|z_{\theta}) \leq \operatorname{Var}(z_{\xi}'|c)$$

• 따라서 학습과정 중 collapse 상황을 쉽게 벗어날 수 있음

Experiments

- Linear evaluation on ImageNet
 - BYOL은 online network encoder를 활용해 representation 생성
 - Encoder를 고정 후 생성된 representation을 활용해 liner classifier 학습
 - BYOL이 다른 방법론에 비해 좋은 성능을 보임

Method	Top-1	Top-5
Local Agg.	60.2	-
PIRL [35]	63.6	-
CPC v2 [32]	63.8	85.3
CMC [11]	66.2	87.0
SimCLR [8]	69.3	89.0
MoCo v2 [37]	71.1	-
InfoMin Aug. [12]	73.0	91.1
BYOL (ours)	74.3	91.6

Method	Architecture	Param.	Top-1	Top-5
SimCLR[8] CMC[11]	ResNet-50 $(2\times)$ ResNet-50 $(2\times)$	94M 94M	74.2 70.6	92.0 89.7
BYOL (ours)	ResNet-50 $(2\times)$	94M	77.4	93.6
CPC v2 [32] MoCo [9]	ResNet-161 ResNet-50 (4 \times)	305M 375M	68.6	90.1
SimCLR [8] BYOL (ours)	ResNet-50 (4 \times) ResNet-50 (4 \times)	375M 375M	76.5 78.6	93.2 94.2
BYOL (ours)	ResNet-200 (2 \times)	250M	79.6	94.8

Table 1: Top-1 and top-5 accuracies (in %) under linear evaluation on ImageNet.

⁽a) ResNet-50 encoder.

⁽b) Other ResNet encoder architectures.

Experiments

- Semi-supervised training on ImageNet
 - 일부 데이터의 label 정보만 활용한 semi-supervised 실험, BYOL의 성능이 가장 우수

Method	Top) -1	Top-5			
	1%	10%	1%	10%		
Supervised [77]	25.4	56.4	48.4	80.4		
InstDisc	-	-	39.2	77.4		
PIRL [35]	-	-	57.2	83.8		
SimCLR [8]	48.3	65.6	75.5	87.8		
BYOL (ours)	53.2	68.8	78.4	89.0		

Method	Architecture	Param.	Top)-1	Top-5		
			1%	10%	1%	10%	
CPC v2 [32]	ResNet-161	305M	-	-	77.9	91.2	
SimCLR [8]	ResNet-50 $(2\times)$	94M	58.5	71.7	83.0	91.2	
BYOL (ours)	ResNet-50 $(2\times)$	94M	62.2	73.5	84.1	91.7	
SimCLR [8]	ResNet-50 $(4\times)$	375M	63.0	74.4	85.8	92.6	
BYOL (ours)	ResNet-50 $(4\times)$	375M	69.1	75.7	87.9	92.5	
BYOL (ours)	ResNet-200 (2 \times)	250M	71.2	77.7	89.5	93.7	

(b) Other ResNet encoder architectures.

- Transfer to other classification tasks
 - 다양한 데이터에 적용할 수 있는 일반적인 representation을 생성할 수 있는지에 대한 실험
 - Supervised learning을 통해 생성된 representation보다 좋은 성능을 보이기도 함

Method	Food101	CIFAR10	CIFAR100	Birdsnap	SUN397	Cars	Aircraft	VOC2007	DTD	Pets	Caltech-101	Flowers
Linear evaluation:												
BYOL (ours)	75.3	91.3	78.4	57.2	62.2	67.8	60.6	82.5	75.5	90.4	94.2	96.1
SimCLR (repro)	72.8	90.5	74.4	42.4	60.6	49.3	49.8	81.4	75.7	84.6	89.3	92.6
SimCLR [8]	68.4	90.6	71.6	37.4	58.8	50.3	50.3	80.5	74.5	83.6	90.3	91.2
Supervised-IN [8]	72.3	93.6	78.3	53.7	61.9	66.7	61.0	82.8	74.9	91.5	94.5	94.7
Fine-tuned:												
BYOL (ours)	88.5	97.8	86.1	76.3	63.7	91.6	88.1	85.4	76.2	91.7	93.8	97.0
SimCLR (repro)	87.5	97.4	85.3	75.0	63.9	91.4	87.6	84.5	75.4	89.4	91.7	96.6
SimCLR [8]	88.2	97.7	85.9	75.9	63.5	91.3	88.1	84.1	73.2	89.2	92.1	97.0
Supervised-IN [8]	88.3	97.5	86.4	75.8	64.3	92.1	86.0	85.0	74.6	92.1	93.3	97.6
Random init [8]	86.9	95.9	80.2	76.1	53.6	91.4	85.9	67.3	64.8	81.5	72.6	92.0

⁽a) ResNet-50 encoder.

Experiments

- Building intuitions with ablations
 - SimCLR에 비해 batch size 크기, augmentation 기법에 대해 강건한 성능을 보임

(b) Impact of progressively removing transformations

Thank you