Aula M1A35 REGRESSAO LOGISTICA I

Leitura complementar:

- Breast Cancer Wisconsin (Diagnostic) Data Set
- Statsmodel
- sklearn.model_selection.KFold
- Cross Validation: A Beginner's Guide
- Cross-Validation in Machine Learning
- The importance of k-fold cross-validation for model prediction in machine learning
- sklearn.metrics.confusion_matrix
- sklearn.linear_model.LogisticRegression
- .split()
- enumerate()
- statistical models, hypothesis tests, and data exploration
- statsmodels.tools.tools.add_constant
- sklearn.model_selection.train_test_split
- statsmodels.discrete.discrete_model.Logit
- statsmodels.discrete.discrete_model.Logit.fit
- statsmodels.regression.linear_model.RegressionResults.summary2
- Prediction (out of sample)
- sklearn.linear_model.LogisticRegression
- .fit()
- .predict()
- sklearn.metrics.accuracy_score
- K-Nearest Neighbors (kNN) Explained
- KNN Algorithm: When? Why? How?
- KNN (K-Nearest Neighbors) #1
- KNN (K-Nearest Neighbors) #1
- O Algorítmo K-Nearest Neighbors (KNN) Em Machine Learning
- Pandas
- numpy
- seaborn
- sklearn.model_selection.KFold
- sklearn.model_selection.cross_val_score
- sklearn.neighbors.KNeighborsClassifier
- 6.3. Preprocessing data
- sklearn.preprocessing.scale
- sklearn.preprocessing.StandardScaler
- .fit_transform()
- numpy.std
- KNeighborsClassifier
- .fit_transform()
- .predict()
- sklearn.metrics.accuracy_score

- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •

- •
- •
- •
- •
- _
- .
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •

- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •

- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •

•

•

•

.

•

.

•

•

•

•

•

_

.

•

0

•

•

•

•

•

•

•

•

•

•

•

-

•

•

•

_

- •
- •
- •
- •
- -
- •
- _
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •

- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •

- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •

- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •

•

•

•

•

.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •

- •
- •
- •
- •
- •
- .
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •

- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •

- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •