Universidade de São Paulo Campus Butantã Instituto de Matemática e Estatística

Um teste do algoritmo de modularidade Louvain como uma ferramenta para detectar espécies-chave em redes de interações multicamada

Aluno: Henrique Suzuki Requejo

Orientador: Prof. Dr. Marco A. R. Mello

Curso: Matemática Aplicada e Computacional

Habilitação: Ciências Biológicas

Um teste do algoritmo de modularidade Louvain como uma ferramenta para detectar espécies-chave em redes de interações multicamada

Trabalho de Conclusão de Curso submetido à Universidade de São Paulo, como requisito necessário para obtenção do grau de Bacharel em Matemática Aplicada e Computacional

Conteúdo

1	Visâ	ão geral da rede rand_ml_2_100_30	1
2	Res	ultados da rede rand_ml_2_100_30	2
	2.1	Distribuição de G_{norm}	2
	2.2	Variação de $\overline{\mathbf{G}}$ por ω	3
	2.3	Seleção das espécies com maior G_{norm}	3

$1 \quad \text{Visão geral da rede rand} \underline{\hspace{0.3cm}} \text{ml} \underline{\hspace{0.3cm}} \underline{\hspace{0.3cm}} 2\underline{\hspace{0.3cm}} \underline{\hspace{0.3cm}} 100\underline{\hspace{0.3cm}} \underline{\hspace{0.3cm}} 30$

A rede rand_ml_2_100_30 (Mucha et al., 2010) possui 2 camadas (1 e 2), 30 nós e 97 conexões. A tabela 1 mostra o resumo das propriedades da rede. A figura 1 apresenta uma visão geral da rede.

\begin{table}[!h]

 $\label{lem:caption} $$ \operatorname{Propriedades} \ da \ rede \ rand_ml_2_100_30 $$$

Propriedade	Valor
Número de Camadas	2
Tipo de conexões	$1 \ \mathrm{e} \ 2$
Número de nós	30
Número de conexões	97

 $\ensuremath{\mbox{end}\{\ensuremath{\mbox{table}}\}}$

\begin{figure}[H]

\caption{Visão geral da rede rand_ml_2_100_30 .} \end{figure}

2 Resultados da rede rand_ml_2_100_30

2.1 Distribuição de G_{norm}

A variável G foi calculada para 10 partições de ω , ou seja, o tamanho do passo dado dentro de ω foi de 0.1. O processo foi repetido para 16 partições de γ , com γ começando em 0.25, com passos de 0.25 até um γ máximo de 4. O cálculo de \overline{G} foi feito usando 100 iterações. A tabela 1 resume os parâmetros de execução do código e a figura 2.1 mostra a distribuição dos valores de G_{norm} médio obtidos.

Tabela 1: Parâmetros de execucao

Parâmetro	Valor
Iterações	100
Partições de omega	10

\begin{figure}[H]

Distribuicao de G normalizado

\caption{Distribuição de G_{norm} médio da rede rand_ml_2_100_30 .} \end{figure}

2.2 Variação de $\overline{\mathbf{G}}$ por ω

Como temos dados em 3 dimensões $(\overline{G}, \omega, \gamma)$ temos algumas formas diferentes para apresentar os valores de \overline{G} em relação a ω e γ , não sei dizer se devemos usar uma delas, as três ou alguma outra. A figura ?? mostra curvas de decaimento de \overline{G} por ω para diferentes nós com diferentes valores de G_{norm} e para diferentes valores de γ . A figura ?? mostra a superfície 3D formada por \overline{G} em relação a ω e γ . A figura ?? mostra a mesma superfície da figura ?? mas no formato de mapa de calor.

2.3 Seleção das espécies com maior G_{norm} .

A figura 1 e a tabela 2 mostram as espécies com valor de G_{norm} acima de 1.1, ou seja, aquelas com decaimento de G mais lento da rede rand_ml_2_100_30.

Figura 1: Espécies com \mathcal{G}_{norm} maiores que 1.1 em destaque de tamanho e cor.

Tabela 2: Espécies com valores de G_{norm} maiores que 1.1

Espécie	G_{norm}
node3	1.230
node24	1.190
node12	1.140
node11	1.100

Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., & Onnela, J.-P. (2010). Community structure in time-dependent, multiscale, and multiplex networks. *Science*, 328(5980), 876–878. https://doi.org/10.1126/science.1184819