Given a string consisting of the letters \mathbf{a} , \mathbf{b} and \mathbf{c} , we can perform the following operation:

• Take any two adjacent distinct characters and replace them with the third character.

Find the shortest string obtainable through applying this operation repeatedly.

For example, given the string **aba** we can reduce it to a 1 character string by replacing **ab** with **c** and **ca** with **b**: **aba** \rightarrow **ca** \rightarrow **b**.

Function Description

Complete the *stringReduction* function in the editor below. It must return an integer that denotes the length of the shortest string obtainable.

stringReduction has the following parameter:

- s: a string

Input Format

The first line contains the number of test cases t.

Each of the next t lines contains a string s to process.

Constraints

- $1 \le t \le 100$
- $1 < |s| \le 100$

Output Format

For each test case, print the length of the resultant minimal string on a new line.

Sample Input

3 cab bcab cccc

Sample Output

2 1 5

Explanation

For the first case, there are two solutions: $\mathbf{cab} \to \mathbf{cc}$ or $\mathbf{cab} \to \mathbf{bb}$. For the second case, one optimal solution is: $\mathbf{bcab} \to \mathbf{aab} \to \mathbf{ac} \to \mathbf{b}$. For the third case, no operations can be performed so the answer is 5.