CS558 Network Security

Lecture 11: SSH

Unit 1 Very Brief Recap

Back bone intent pretercols Dos ALP, DNS BAR DOS

Mong to confidentialist

Confidential Communication – Goals

The SSH (User) Experience

Remember Diffie & Hellman?

gak

Is Diffie Hellman Key Exchange Enough?

Authenticated Diffie Hellman

The following steps are used to exchange a key. In this, C is the client; S is the server; p is a large safe prime; g is a generator for a subgroup of GF(p); q is the order of the subgroup; V_S is S's identification string; V_C is C's identification string; K_S is S's public host key; I_C is C's SSH_MSG_KEXINIT message and I_S is S'S SSH_MSG_KEXINIT message that have been exchanged before this part begins.

- 1. C generates a random number x (1 < x < q) and computes $e = q^x$ mod p. C sends e to S.
- 2. S generates a random number y (0 < y < q) and computes

 f = g^y mod p. S receives e. It computes K = e^y mod p,

 H = hash(V_C || V_S || I_C || I_S || K_S || e || f || K)

 (these elements are encoded according to their types; see below),

 and signature s on H with its private host key. S sends

 (K_S || f || s) to C. The signing operation may involve

 second hashing operation.
- 3. C verifies that K_S really is the host key for S (e.g., using certificates or a local database). C is also allowed to accept the key without verification; however, doing so will render the protocol insecure against active attacks (but may be desirable for practical reasons in the short term in many environments). C then computes K = from mod p, H = hash(V_C || V_S || I_C || I_S || K_S || e || from mod p, and verifies the signature s on H.

To WIRESHARK!

(Mutually) Authenticated Diffie Hellman

The following steps are used to exchange a key. In this, C is the client; S is the server; p is a large safe prime; g is a generator for a subgroup of GF(p); q is the order of the subgroup; V_S is S's identification string; V_C is C's identification string; K_S is S's public host key; I_C is C's SSH_MSG_KEXINIT message and I_S is S's SSH_MSG_KEXINIT message that have been exchanged before this part begins.

- 1. C generates a random number x (1 < x < q) and computes $e = g^x$ mod p. C sends e to S.
- 2. S generates a random number y (0 < y < q) and computes
 f = g^y mod p. S receives e. It computes K = e^y mod p,
 H = hash(V_C || V_S || I_C || I_S || K_S || e || f || K)
 (these elements are encoded according to their types; see below),
 and signature s on H with its private host key. S sends
 (K_S || f || s) to C. The signing operation may involve a
 second hashing operation.</pre>
- 3. C verifies that K_S really is the host key for S (e.g., using certificates or a local database). C is also allowed to accept the key without verification; however, doing so will render the protocol insecure against active attacks (but may be desirable for practical reasons in the short term in many environments). C then computes K = f^x mod p, H = hash(V_C || V_S || I_C || I_S || K_S || e || f || K), and verifies the signature s on H.

Mutual Auth Options

The value of 'signature' is a signature by the corresponding private key over the following data, in the following order: session identifier string byte SSH_MSG_USERAUTH_REQUEST user name string service name string string "publickey" boolean TRUE public key algorithm name string public key to be used for authentication string SSH MSG USERAUTH REQUEST byte string user name string service name "password" string boolean **FALSE** string plaintext password in ISO-10646 UTF-8 encoding [RFC3629]

GXY

C = Enc(Kene, m)

Sequence #

T = MAC(Kmae, m)

C, t

(mae)

So let's talk about Passwords (again)

SCP/SFTP file torrefor

(1) do an Stil Hard struke

CP, FIP

