

MatheMagician in 21 Days

Problems in Few Seconds

of Maths Phobia

Prof. Chaitanya A. Patil

M.Tech (Computers); Formerly Asst. Professor

Link: www.Speed16.com/books/vm

Direct Whatsapp: https://wa.me/919764058654/?text=Hi

Location of this file: www.speed16.com/files/vm/supplement.pdf (Last Updated on 2nd July 2020. Keep visiting above link for updated file.)

Beauty of

Vedic Speed Mathematics

(World's Fastest Mental Calculation System)

Supplement

(Graphical Representation of Some of the Formulas/Pattern.)

HIGHLY USEFUL FOR: Standard/Grade 3rd to **Ph.D** Students; Parents, Mathematics Teachers, Math Lovers, Placement & Job Interviews; All Entrance & Competitive Exams (PSAT/NMSQT, UPSC - CSAT, Banking - IBPS, RBI, CAT, MAT, Railways - RRB, PSUs, GATE, IES, SSC, LIC, TET, GRE, GMAT, SAT, ACT, PERT, GED, TASC etc.).

Chaitanya A. Patil (Speed16 Academy) Copyright © 2020 Chaitanya A. Patil All Rights Reserved.

Paperback, eBook, FREE Work Book, Video Course & Online Training on 'Vedic Speed Mathematics', 'C'& Python Programming

Link: www.Speed16.com/books

Direct Whatsapp: https://wa.me/919764058654/?text=Hi

IMP Links:

- Link: www.Speed16.com/books/vm
- Download this PDF for Details: www.speed16.com/files/vm/vm.pdf
- Paperback (India):
- Amazon: https://amzn.to/2Mronn3 OR
- Instamojo: https://www.instamojo.com/speed16
- Paperback (International):
- www.Speed16.com/books/vm
- Vedic Speed Maths: Video Course (@just ₹99 / 1.3US\$; Thinkific):
- https://speed16.thinkific.com/courses/vsm
- Vedic Speed Maths: Video Course (6 to 12US\$; Udemy):
- https://www.udemy.com/course/speedmaths/?referralCode=7852F401 12045FBAD598
- eBooks (Country wise):
- India: Part-1: https://amzn.to/2MqmJSo
- US: https://amzn.to/2KmO47C
- UK: https://amzn.to/2Vi1Yj9
- Other Countries: https://www.speed16.com/books/vm/

Get all Future Updates:

- Join our Telegram Channel:
- https://t.me/SpeedMaths
- Like our Facebook Page:
- facebook.com/SpeedMaths99
- Subscribe to our YouTube Channel:
- youtube.com/speedmaths

Sharing is Caring. Share with All.

Click Here to Share on WhatsApp

Speed16 Academy

(An Online & Offline School, Sports & IT Training Academy)

- ♣ C Programming: <u>www.Speed16.com/books/c</u>
- **♣** Python Programming: <u>www.Speed16.com/books/python</u>
- Python & all IT Training: www.Speed16.com/training
- **4** (First Session is Completely FREE and Open to All. Separate Batches for Software Professionals and US/Europe Students)
- Vedic Speed Mathematics online training is completely FREE and open to all. www.Speed16.com/free
- Contact: Chaitanya Patil email: <u>info@speed16.com</u> Call: +91-97640-58-654; Whatsapp: <u>https://wa.me/919764058654</u>
- ♣ Online Interactive Python, Java, Tableau, Salesforce, DevOps, AWS & all IT Training:
- www.Speed16.com/training
- **First Session is Completely FREE and Open to All. Separate Batches for Software Professionals and US/Europe Students**
- Contact: Chaitanya Patil
- **♣** email: <u>info@speed16.com</u>
- **♣** Call: +91-97640-58-654
- **♦** Whatsapp: https://wa.me/919764058654

MULTIPLICATION

Multiplication using Base Method

Case 1: When both numbers (multiplicand and multiplier) are less than the working base:

Ex.1:	Ex.2:	Ex.3:	Ex.4:	Ex.5:	Ex.6:
7×8	6×7	94×96	90×89	997×993	950×930
B:10	B:10	B:100	B:100	B:1000	B:1000
7-3	6 -4	94 -6	90 -10	997 -3	950 -50
8/-2	7 -3	96 -4	89 -11	993 -7	930 -70
-/					
5 6	3 12	90 24	79 110	990 021	880 3500
	3+1 2		79+1 10		880+3 500
	4 2		80 10		883 500
56	42	9024	8010	990021	883500

Multiplication using Criss Cross Method

Case 1: Two Digit Numbers (2D×2D and 2D×1D) {D: Digit}

Graphical Representation:

Answer consists of three parts.

First Part:	Second Part:	Third Part:
a b	a b	a b
c d	c d	c d
(a×c)	$(\mathbf{a} \times \mathbf{d} + \mathbf{b} \times \mathbf{c})$	(b × d)

Case 2: Three Digit Numbers (3D×3D; 3D×2D and 3D×1D)

Answer consists of Five Parts.

First	Second	Third	Fourth	Fifth
Part:	Part:	Part:	Part:	Part:
a b c d e f	a b c d e f	a b c d e f	a b c d e f	a b c d e f
$(\mathbf{a} \times \mathbf{d})$	$(\mathbf{a} \times \mathbf{e} + \mathbf{b} \times \mathbf{d})$	$(a\times f + b\times e)$	$(\mathbf{b} \times \mathbf{f} + \mathbf{c} \times \mathbf{e})$	(c × f)
		+ c × d)		

CASE 3: $(4 \times 3; 4 \times 3; 4 \times 2; 4 \times 1)$

Answer consists of seven parts.

First Part:	Second Part:	Third Part:	Fourth Part:
a b c d e f g h	a b c d e f g h	a b c d e f g h	a b c d e f g h
(a×e)	$(\mathbf{a} \times \mathbf{f}) + (\mathbf{b} \times \mathbf{e})$	$(\mathbf{a} \times \mathbf{g}) + (\mathbf{b} \times \mathbf{f}) +$	$(\mathbf{a} \times \mathbf{h}) + (\mathbf{b} \times \mathbf{g}) +$
		(c×e)	$(\mathbf{c} \times \mathbf{f}) + (\mathbf{d} \times \mathbf{e})$

Fifth Part:	Sixth Part:	Seventh Part:	
a b c d	a b c d	a b c d	
e f g h	e f g h	e f g h	
$(\mathbf{b} \times \mathbf{h}) + (\mathbf{c} \times \mathbf{g}) + (\mathbf{d} \times \mathbf{f})$	$(\mathbf{c} \times \mathbf{h}) + (\mathbf{d} \times \mathbf{g})$	(d×h)	

CASE 4: $(5 \times 5; 5 \times 4; 5 \times 3; 5 \times 2; 5 \times 1)$

Answer consists of nine parts.

First Part:	Second Part:	Third Part:
a b c d e f g h i j	a b c d e f g h i j	a b c d e f g h i j
(a×f)	$(\mathbf{a} \times \mathbf{g}) + (\mathbf{b} \times \mathbf{f})$	$(\mathbf{a} \times \mathbf{h}) + (\mathbf{b} \times \mathbf{g}) + (\mathbf{c} \times \mathbf{f})$

Fourth Part:	Fifth Part:	Sixth Part:
a b c d e	a b c d e	a b c d e
f g h i j	f g h i j	f g h i j
$(a\times i)+(b\times h)+$	$(\mathbf{a} \times \mathbf{j}) + (\mathbf{b} \times \mathbf{i}) + (\mathbf{c} \times \mathbf{h}) +$	$(\mathbf{b} \times \mathbf{j}) + (\mathbf{c} \times \mathbf{i}) +$
$(\mathbf{c} \times \mathbf{g}) + (\mathbf{d} \times \mathbf{f})$	$(\mathbf{d} \times \mathbf{g}) + (\mathbf{e} \times \mathbf{f})$	$(\mathbf{d} \times \mathbf{h}) + (\mathbf{e} \times \mathbf{g})$

Seventh Part:	Eighth Part:	Nineth Part:
a b c d e	a b c d e	a b c d e
f g h i j	f g h i j	fgh i j
$(\mathbf{c} \times \mathbf{j}) + (\mathbf{d} \times \mathbf{i}) + (\mathbf{e} \times \mathbf{h})$	$(\mathbf{d} \times \mathbf{j}) + (\mathbf{e} \times \mathbf{i})$	(e×j)

- 1. Books, eBooks, Video Course, FREE Workbook & FREE Online Training on Vedic Speed Mathematics, C & Python Programming: www.Speed16.com/books/vm
- 2. 3D Printers (Sales & Service; Anywhere in the World).
- 3. eBook Creation (epub/mobi) & Publishing (Amazon Kindle, iBooks, Kobo etc.) Services.
- 4. IT Solutions and Services
- 5. Reach us for **FREE Home Delivery** of Vedic Speed Mathematics (Anywhere in the World)
- 6. Contact: Chaitanya Patil; info@speed16.com

CASE 5: (6×6; 6×5; 6×4; 6×3; 6×2; 6×1) (Do it Yourself)

Answer consists of eleven parts.

First Part:	Second Part	Third Part:	Fourth Part	Fifth Part:
abcd e f				
ahiik l	ghijkl	ahiik l	ahiikl	ahiik 1
gnijki	gnijki	gnijki	gnijki	gnijki

10 th Part: 11 th Part
abcd e f abcd e f
ghijkl ghijkl

- Books, eBooks, Video Course, FREE Workbook & FREE Online Training on Vedic Speed Mathematics, C & Python Programming: <u>www.speed16.com/books/vm</u>
- 2. 3D Printers (Sales & Service; Anywhere in the World).
- 3. eBook Creation (epub/mobi) & Publishing (Amazon Kindle, iBooks, Kobo etc.) Services.
- 4. IT Solutions and Services
- 5. Reach us for **FREE Home Delivery** of Vedic Speed Mathematics (Anywhere in the World)
- 6. Contact: Chaitanya Patil; info@speed16.com

DIVISION

Vinculum Number: A number that has atleast one vinculum digit is called vinculum number. Notation: Either dotted or dash above the number. **Ex.** 1\(\beta\) 2; \(\beta\)641;2\(\bar{2}\)3; \(\bar{6}\)2\(\bar{3}\)8; \(\bar{8}\)4\(\bar{2}\)3; \(\bar{8}\); \(\bar{3}\)

```
1\overline{4}2=100-40+2=62;

\overline{9}641=-9000+600+40+1=-8359

2\overline{2}3=200-20+3=183

6\overline{2}3\overline{8}=6000-200+30-8=5822

8\overline{4}2\overline{3}=8000-400-20-3=7577

\overline{8}=-8

\overline{3}=-3
```

Division using Transpose and Apply

Ex.1:123÷11; Here Base=10 and Surplus=1; Negation of Surplus=-1= $\ddot{1}$

Step 1:	Step 2:	Step 3:	Step 4:	Step 5:
11) 1 2 ¦ 3	11) 1 2 ¦ 3	11) 1 2 ¦ 3	11) 1 2 ¦ 3	11) 1 2 ¦ 3
-1	-1	-1 -1	1 1 1	1 1 1 2

Answer: 11 (Q); 2 (R)

Books, eBooks, Video Course, FREE Workbook & FREE Online Training on Vedic Speed Mathematics, C & Python Programming: www.Speed16.com/books/vm

Division by FLAG (ध्वजांक) Method

Ex.2: Divide 949 by 22

Step 1	Step 2	Step 3	Answer
$2^2 # 9_1 4 9$	$2^2 # 9_1 4_{0}9$	$2^2 # 9_1 4 _0 9_1$	
4	4.3	4 3 1	43.1 (Upto 1
14-(2*4)=14-8-6	9-(2*3)=9-6=3		Decimal
$6 \div 2 = 3(Q) O(R)$	$3 \div 2 = 1(Q) \ 1(R)$		Point)

Books, eBooks, Video Course, FREE Workbook & FREE Online Training on Vedic Speed Mathematics, C & Python Programming: www.Speed16.com/books/vm

DECIMALS, FRACTIONS AND PERCENTAGES

Fractions: Is an expression that indicates the quotient of two quantities. **Ex.** $\frac{p}{q}$; $\frac{1}{2}$; $\frac{1}{3}$; $\frac{42}{2.1}$; $\frac{445.61}{2.64}$; $\frac{785}{2}$; $\frac{36}{3}$; $-\frac{40}{20}$; $-\frac{1}{9}$ etc. Upper part is Numerator (N) and Lower part is Denominator. The Denominator can not be zero.

Basic Operations on Decimals

Addition:

Ex.1: 0.32+13.35+45.058+**696.368**+31.004

0.32 (320/1000);

13.35 (13350/1000);

45.058 (45058/1000);

696.368 (696368/1000);

31.004 (31004/1000)

$$\frac{320}{1000} + \frac{13350}{1000} + \frac{45058}{1000} + \frac{696368}{1000} + \frac{31004}{1000} = \frac{786100}{1000} = 786.1$$

Ex.2: 143+365.9+**0.04**+**36.02**+**6986.36**+7469.3

143 (14300/100);

365.9 (36590/100);

0.04(4/100);

36.02 (3602/100);

6986.36 (698636/100);

7469.3(746930/100)

$$\frac{14300}{100} + \frac{36590}{100} + \frac{4}{100} + \frac{3602}{100} + \frac{698636}{100} + \frac{746930}{100} = \frac{1500062}{100}$$
$$= 15000.62$$

Subtraction:

Ex.1: 133.45-45.058-6.368-31.004

133.45 (133450/1000);

45.058 (45058/1000);

6.368 (6368/1000);

31.004 (31004/1000)

$$\frac{133450}{1000} - \frac{45058}{1000} - \frac{6368}{1000} - \frac{31004}{1000} = \frac{51020}{1000} = 51.02$$

Ex.2: 143-65.9-0.004-36.002-6.986-7.3

143 (143000/1000);

65.9 (65900/1000);

0.004 (4/1000);

36.002 (36002/100);

6.986 (6986/1000);

7.3(7300/1000)

$$\frac{143000}{1000} - \frac{65900}{1000} - \frac{4}{1000} - \frac{36002}{1000} - \frac{6986}{1000} - \frac{7300}{1000} = \frac{26808}{1000}$$
$$= 26.808$$

Multiplication:

Ex.1:	Ex.2:	Ex.3:	Ex.4:
3.6×6.8	43.63×34.2	42.36×67.363	3.6×63.68×1.3
$\frac{36}{10} \times \frac{68}{10}$	$\frac{4363}{100} \times \frac{3420}{100}$	$\frac{42360}{1000} \times \frac{67363}{1000}$	$\frac{360}{100} \times \frac{6368}{100} \times \frac{130}{100}$
$=\frac{2448}{100}$	$=\frac{14921460}{10000}$	$=\frac{2853496680}{1000000}$	$=\frac{298022400}{1000000}$
= 24.48	= 1492.146	= 2853.49668	= 298.0224
24.48	1492.146	2853.49668	298.0224

Basic Operations on Fractions:

Addition:

Case 1: When Denominators are same: Just add numerators; place denominator as it is and Reduce.

Case 2: When one Denominator is factor of another: Make same denominator by multiplying lower denominator and its numerator with the factor and add using case 1.

Case 3: Cross Product: Numerator: sum of cross products; Denominator: product of both denominators.

Ex.1:	Ex.2:	Ex.3:	Ex.4:
Case:1	Case:2	Case:3	Case:3
$\frac{68}{10} + \frac{36}{10}$	$\frac{150}{21} + \frac{1350}{63}$	$\frac{35}{16} + \frac{12}{20}$	$\frac{36}{10} + \frac{25}{12} + \frac{11}{14}$
$\frac{68+36}{10}$	$\frac{150 \times 3}{21 \times 3} + \frac{1350}{63}$	$\frac{(35 \times 20) + (16 \times 12)}{(16 \times 20)}$	$\frac{(36 \times 12) + (10 \times 25)}{(10 \times 12)} + \frac{11}{14}$
$\frac{104}{10}$	$\frac{450}{63} + \frac{1350}{63}$	$\frac{(700) + (192)}{(320)}$	$\frac{682}{120} + \frac{11}{14}$
<u>52</u> 5	$\frac{450 + 1350}{63}$	892 320	$\frac{(682 \times 14) + (120 \times 11)}{(120 \times 14)}$
	$\frac{1800}{63} = \frac{200}{7}$	$\frac{223}{80}$	$\frac{10868}{1680} = \frac{2717}{420}$
52	200	223	2717
5	7	80	420

Subtraction:

Case 1: When Denominators are same: Just subtract numerators; place denominator as it is and Reduce.

Case 2: When one Denominator is factor of another: Make same denominator by multiplying lower denominator and its numerator with the factor and subtract using case 1.

Case 3: Cross Product: Numerator: Difference of cross products; Denominator: product of both denominators.

Ex.1:	Ex.2:	Ex.3:	Ex.4:
Case:1	Case:2	Case:3	Case:3
68 36	150 1350	35 12	36 25 11
10 10	21 63	$\frac{16}{16} - \frac{20}{20}$	10 12 14
68 - 36	150×3 1350	$(35 \times 20) - (16 \times 12)$	$(36 \times 12) - (10 \times 25)$ 11
10	21 × 3 63	(16 × 20)	$(10 \times 12) \qquad \boxed{14}$
32	450 1350	(700) - (192)	182 11
10	63 63	(320)	$\frac{120}{14}$
16	450 - 1350	508 127	$(182 \times 14) - (120 \times 11)$
5	63	$\frac{330}{320} = \frac{127}{80}$	(120 × 14)
	900 _ 100		1228 307
	$-{63} = -{7}$		$\frac{1680}{1680} = \frac{1}{420}$
<u>16</u>	_ 100	<u>127</u>	307
5	7	80	420

Multiplication:

Option 1: Multiply Numerator with numerator and denominator with denominator and REDUCE.

Option 2: Write factors and cancel common factors. Then Multiply Numerator with numerator and denominator with denominator and REDUCE.

Ex.2:	Ex.3:
$\frac{84}{-} \times \frac{66}{-}$	$\frac{360}{100} \times \frac{630}{100} \times \frac{30}{100}$
	$\frac{210}{210} \times \frac{60}{60} \times \frac{90}{90}$
$= \frac{21 \times 4}{22 \times 2} \times \frac{22 \times 3}{21 \times 2}$	$= \frac{60 \times 6}{210} \times \frac{210 \times 3}{60} \times \frac{30}{3 \times 30}$
$=\frac{1}{1}\times\frac{3}{1}=3$	$=\frac{6}{1} \times \frac{1}{1} \times \frac{1}{1} = 6$
3	6
	$= \frac{\frac{84}{44} \times \frac{66}{42}}{\frac{21 \times 4}{22 \times 2} \times \frac{22 \times 3}{21 \times 2}}$

Division: Write the first set as it is; replace ÷ (division sign) by × (multiplication sign); Exchange Numerator and Denominator of second set; Perform Multiplication.

$$\frac{N1}{D1} \div \frac{N2}{D2} = \frac{N1}{D1} \times \frac{D2}{N2}$$
84 42 84 66 21 × 4 22 ×

$$\frac{84}{44} \div \frac{42}{66} = \frac{84}{44} \times \frac{66}{42} = \frac{21 \times 4}{22 \times 2} \times \frac{22 \times 3}{21 \times 2} = \frac{4}{2} \times \frac{3}{2} = 3$$

Reciprocals

Ending in 9:

Ex. 1:
$$\frac{1}{19}$$
?

A: Denominator is 19. Positive Osculator of 19 is 2. (Go through "Divisibility" Unit to understand osculator concept).

$$\frac{1}{19} \approx \frac{1}{20} = \frac{0.1}{2}$$
Now for $\frac{0.1}{2}$

Divisor	2	2	2	2	2	2	2	2	2	2	2	2	2
Dividend	0.1	<u> </u>	10	-	5	12	6	3	11	15	17	18	9
Quotient	-	0.	0	5	/2	6	3	1	5	7	8	9	4
Remainder	-	-	-	0	1	0	0	1	1	1	1	0	1

Divisor is 2 in all cases. Initial Dividend is 0.1. We can not divide 0.1 by 2 so in quotient we need to give decimal point. New Dividend is 1. Again we can not divide 1 by 2 so in quotient we need to add zero. New Dividend is 10. We divide 10 by 2. Q is 5 and R is 0. New Dividend is RQ (05). Remainder and then append Quotient. 5÷2; Q=2; R=1; Next Dividend=12 (:R=1 & Q=2). Like this we go on dividing. Final answer: Quotient Row.

$$\frac{1}{19} = 0.052631578 \dots$$

POLYNOMIALS

Multiplication using Criss Cross Method

Note: Read Multiplication using Criss Cross or Vertically & Crosswise Method from Multiplication Unit

Steps:

- 1. Write coefficients of given polynomials one below the other separated by space or vertical bar.
- 2. Multiply coefficients using formula (refer formula OR graphical representation).
- 3. Last part is constant. Go on incrementing powers of variable by 1 from right. Second last is x, then x², x³, x⁴, x⁵ and so on. **Note:** Write coefficient as zero if any term is absent.

CASE 1: $(2 \times 2; 2 \times 1)$

First Part:	Second Part:	Third Part:
a b	a b	a b
c d	c d	c d
(a×c)	$(\mathbf{a} \times \mathbf{d} + \mathbf{b} \times \mathbf{c})$	(b×d)

CASE 2: $(3 \times 3; 3 \times 2; 3 \times 1)$

First Part:	Second	Third Part:	Fourth	Fifth Part:
	Part:		Part:	
a b c d e f	a b c d e f	a b c d e f	a b c d e f	a b c d e f
(a×d)	$(\mathbf{a} \times \mathbf{e} + \mathbf{b} \times \mathbf{d})$	$(\mathbf{a} \times \mathbf{f} + \mathbf{b} \times \mathbf{e})$	$(\mathbf{b} \times \mathbf{f} + \mathbf{c} \times \mathbf{e})$	(c×f)
		+ c × d)		

CASE 3: $(4 \times 3; 4 \times 3; 4 \times 2; 4 \times 1)$

First Part:	Second Part:	Third Part:	Fourth Part:
a b c d e f g h	a b c d e f g h	a b c d e f g h	a b c d e f g h
(a×e)	$(\mathbf{a} \times \mathbf{f}) + (\mathbf{b} \times \mathbf{e})$	$(\mathbf{a} \times \mathbf{g}) + (\mathbf{b} \times \mathbf{f}) + (\mathbf{c} \times \mathbf{e})$	$(\mathbf{a} \times \mathbf{h}) + (\mathbf{b} \times \mathbf{g}) + (\mathbf{c} \times \mathbf{f}) + (\mathbf{d} \times \mathbf{e})$

Fifth Part:	Sixth Part:	Seventh Part:
a b c d	a b c d	a b c d
e f g h	e f g h	e f g h
$(\mathbf{b} \times \mathbf{h}) + (\mathbf{c} \times \mathbf{g}) + (\mathbf{d} \times \mathbf{f})$	$(\mathbf{c} \times \mathbf{h}) + (\mathbf{d} \times \mathbf{g})$	(d×h)

Ex.1:
$$(x^3+5x^2+3x+2) (2x^3-4x^2-7x+3)$$

1 5 3 2
2 -4 -7 3
 $(1\times2) \mid (1\times-4)+(5\times2) \mid (1\times-7)+(5\times-4)+(3\times2) \mid (1\times3)+(5\times-7)+(3\times-4)+(2\times2) \mid (5\times3)+(3\times-7)+(2\times-4) \mid (3\times3)+(2\times-7) \mid (2\times3)$
2 \left(6 \right(-21 \right| -40 \right| -14 \right| -5 \right| 6
 $2x^6+6x^5-21x^4-40x^3-14x^2-5x+6$
 $2x^6+6x^5-21x^4-40x^3-14x^2-5x+6$

Books, eBooks, Video Course, FREE Workbook & FREE Online Training on Vedic Speed Mathematics, C & Python Programming: www.speed16.com/books/vm

CASE 4: $(5 \times 5; 5 \times 4; 5 \times 3; 5 \times 2; 5 \times 1)$

First Part:	Second Part:	Third Part:
a b c d e f g h i j	a b c d e f g h i j	a b c d e f g h i j
$(\mathbf{a} \times \mathbf{f})$	$(\mathbf{a} \times \mathbf{g}) + (\mathbf{b} \times \mathbf{f})$	$(\mathbf{a} \times \mathbf{h}) + (\mathbf{b} \times \mathbf{g}) + (\mathbf{c} \times \mathbf{f})$

Fourth Part:	Fifth Part:	Sixth Part:
a b c d e	a b c d e	a b c d e
fghij	fghij	f g h i j
$(a\times i)+(b\times h)+$	$(\mathbf{a} \times \mathbf{j}) + (\mathbf{b} \times \mathbf{i}) + (\mathbf{c} \times \mathbf{h}) +$	$(\mathbf{b} \times \mathbf{j}) + (\mathbf{c} \times \mathbf{i}) +$
$(\mathbf{c} \times \mathbf{g}) + (\mathbf{d} \times \mathbf{f})$	$(\mathbf{d} \times \mathbf{g}) + (\mathbf{e} \times \mathbf{f})$	$(\mathbf{d} \times \mathbf{h}) + (\mathbf{e} \times \mathbf{g})$

Seventh Part:	Eighth Part:	Nineth Part:
a b c d e	a b c d e	a b c d e
f g h i j	fghij	fghij
$(\mathbf{c} \times \mathbf{j}) + (\mathbf{d} \times \mathbf{i}) + (\mathbf{e} \times \mathbf{h})$	$(\mathbf{d} \times \mathbf{j}) + (\mathbf{e} \times \mathbf{i})$	(e×j)

CASE 5: $(6\times6; 6\times5; 6\times4; 6\times3; 6\times2; 6\times1)$ (Do it Yourself)

First Part:	Second	Third Part:	Fourth	Fifth Part:
	Part:		Part:	
abcd e f	abcd e f	abcd e f	abcd e f	abcd e f
ghijkl	ghijkl	ghijkl	ghijkl	ghijkl

Sixth Part:	Seventh P:	Eighth P:	Nineth P:	Tenth P:
abcd e f	abcd e f	abcd e f	abcd e f	abcd e f
ghijkl	ghijkl	ghijkl	ghijk l	ghijkl

Division using Transpose and Apply

SIMPLE EQUATIONS

Simple Algebraic Equations contains only one variable.

	TYPE-1	TYPE-2
General Form	px+q=rx+s	(x+p)(x+q) = (x+r)(x+s)
Value of x	$x = \frac{s - q}{p - r}$	if $p \times q = r \times s$ then $x=0$ else
	p-r	$x = \frac{rs - pq}{p + q - r - s}$
Ex.1	5x+3=3x+9	p+q-r-s (x+4) (x+3) = (x+2) (x+6)
DA.I		
	$x = \frac{9-3}{5-3}$	p×q=r×s
	$=\frac{6}{3}=3$	$4 \times 3 = 2 \times 6 = > 12 = 12$
	$-\frac{1}{2}-3$	∴ x=0
Ex.2	3x-3=4x+7	(x+3)(x+5) = (x+2)(x+4)
	$x = \frac{7 - (-3)}{2 - 4} = \frac{10}{-1} = -10$	p×q≠r×s
	3-4 -1	$\chi = \frac{2 \times 4 - 3 \times 5}{3 + 5 - 2 - 4}$
		$=-\frac{7}{2}$
Ex.3	6x+6=8x+8	(x-2)(x+3) = (x+4)(x-5)
	$x = \frac{8-6}{6-8} = \frac{2}{-2} = -1$	p×q≠r×s
	\mathbf{OR}^{6-8}	$x = \frac{4 \times (-5) - (-2) \times 3}{-2 + 3 - 4 - (-5)}$
	6x+6=8x+8	\
		=-7
	6(x+1)=8(x+1)	
	x+1=0 x=-1	

Books, eBooks, Video Course, FREE Workbook & FREE Online Training on Vedic Speed Mathematics, C & Python Programming: www.speed16.com/books/vm

and object to the state of the				
	TYPE-3	TYPE-4		
General Form	$\frac{px+q}{rx+s} = \frac{t}{u}$	$\frac{a}{x+p} + \frac{b}{x+q} = 0$		
Value of x	$x = \frac{ts - uq}{up - tr}$	$x = -\frac{aq + bp}{a + b}$		
Ex.1	$\frac{2x+3}{3x+5} = \frac{3}{2}$ $x = \frac{3\times 5 - 2\times 3}{2\times 2 - 3\times 3} = -\frac{9}{5}$	$\frac{\frac{3}{x+2} + \frac{4}{x+3} = 0}{x = -\frac{3 \times 3 + 4 \times 2}{3+4} = -\frac{17}{7}}$		
Ex.2	$\frac{x-4}{2x+2} = \frac{7}{3}$ $x = \frac{7 \times 2 - 3 \times (-4)}{3 \times 1 - 7 \times 2} = \frac{26}{11}$	$\frac{\frac{5}{x-3} + \frac{6}{x+4} = 0}{x = -\frac{5 \times 4 + 6 \times -3}{5 + 6} = -\frac{2}{11}}$		
Ex.3	$\frac{3x-2}{x-3} = \frac{4}{3}$ $x = \frac{4(-3)-3(-2)}{3\times 3-4\times 1} = \frac{6}{5}$	$\frac{4}{x+2} + \frac{4}{x+3} = 0$ $x = -\frac{4 \times 3 + 4 \times 2}{4 + 4} = -\frac{5}{2}$ OR $x+2+x+3=0$ $2x+5=0$ $x = -5/2$		

Solution using "If the Set is same, it is ZERO"

4.

$$N1+N2=D1+D2=0$$

$$\frac{3x+5}{5x+4} = \frac{4x+6}{2x+7}$$

$$5x+4+2x+7=7x+11$$

$$∴ 7x+11=0$$

$$x = -\frac{11}{7}$$

B. If
$$m(N1+N2)=n(D1+D2)$$
 then

N1+N2=D1+D2=0 (**m,n**=common factors)

$$\frac{7x+2}{2x+1} = \frac{5x+6}{x+1}$$

$$7x+2+5x+6=12x+8=4(3x+2)$$

$$2x+1+x+1=3x+2=1(3x+2)$$

$$\therefore 3x+2=0$$

$$x = -\frac{2}{3}$$

C. If m(N1-D1)=n(N2-D2) then

N1-D1=N2-D2=0 (**m,n**=common factors)
$$\frac{3x+5}{5x+4} = \frac{4x+6}{2x+7}$$

$$3x+5-5x-4 = -2x+1 \text{ and } 4x+6-2x-7 = 2x-1 = -1 (-2x+1)$$

$$\therefore -2x+1=0; 2x=1; x = \frac{1}{2}$$

Books, eBooks, Video Course, FREE Workbook & FREE Online Training on Vedic Speed Mathematics, C & Python Programming:

www.Speed16.com/books/vm

QUADRATIC EQUATIONS

Solution using Calculus

This sutra tells that: Differentiation of expression is equal to square root of discriminant.

E=>
$$ax^2+bx+c=0$$
 ----(Expression)
D(E) = $2ax+b$ ----(Differentiation of Expression)
Discriminant = b^2 -4ac
Square Root of Discriminant = $\sqrt{b^2-4ac}$
 $\therefore 2ax+b=\sqrt{b^2-4ac}$
(Differentiation of expression = square root of discriminant.)
 $\therefore x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}$

Ex.1: $x^2+7x+12=0$

using Calanā kalanābhyām
(चलनकलनाभ्याम्)

$$a=1; b=7; c=12$$
 $\sqrt{b^2-4ac} = \sqrt{7^2-4\times1\times12} = \sqrt{1} = \pm 1$
 $x = \frac{-b\pm\sqrt{b^2-4ac}}{2a} = \frac{-7\pm1}{2\times1}$
 $x=(-7+1)/2 \text{ OR } x=(-7-1)/2; x=-6/2 \text{ OR } x=-8/2; x=-3 \text{ OR } x=-4$
 $x = -3 \text{ OR } x=-4$

Ex.2: $x^2+6x+8=0$	Ex.3: $3x^2+12x+7=0$	Ex.4: $6x^2 + 8x + 5 = 0$
a=1; b=6; c=8	a=3; b=12; c=7	a=6; b=8; c=5
$\sqrt{b^2-4ac}$	$\sqrt{b^2-4ac}$	$\sqrt{b^2-4ac}$
$= \sqrt{6^2 - 4 \times 1 \times 8}$	$= \sqrt{12^2 - 4 \times 3 \times 7}$	$= \sqrt{8^2 - 4 \times 6 \times 5}$
$=\sqrt{4}=\pm 2$	$=\sqrt{60}$	$=\sqrt{-56}$
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-6 \pm 2}{2 \times 1}$ $x = (-6 + 2)/2 \text{ OR } x = (-6 + 2)/2$ $x = -4/2 \text{ OR } x = -8/2$ $x = -2 \text{ OR } x = -4$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-12 \pm \sqrt{60}}{2 \times 3}$ $x = \frac{-12 \pm 2\sqrt{15}}{6}$ $x = \frac{2(-6 \pm \sqrt{15})}{6}$ $x = \frac{(-6 \pm \sqrt{15})}{3}$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-8 \pm \sqrt{-56}}{2 \times 6}$ $x = \frac{-8 \pm \sqrt{4 \times 14 \times i^2}}{12}$ $x = \frac{-8 \pm 2i\sqrt{14}}{12}$ $x = \frac{-4 \pm i\sqrt{14}}{6}$
x = -2 OR x = -4	$x = \frac{(-6 \pm \sqrt{15})}{3}$	$x = \frac{-4 \pm i\sqrt{14}}{6}$

Reciprocals By Mere Observation {Sub Sutra 13: Vilokanam}

Given Expression:	Convert it into:	Values:
$\frac{x_1}{x_2} \pm \frac{x_2}{x_1} = \frac{a}{b}$	$\frac{x_1}{x_2} \pm \frac{x_2}{x_1} = \frac{c}{d} \pm \frac{d}{c}$	$\frac{x_1}{x_2} = \frac{c}{d} \ or \ \pm \frac{d}{c}$

TYPE-1 (Plus)

Ex.1	Ex.2	Ex.3	Ex.4
$x+\frac{1}{x}=\frac{10}{3}$	$x + \frac{1}{x} = \frac{65}{8}$	$\frac{4x+3}{7x+1} + \frac{7x+1}{4x+3} =$	$\frac{5x+2}{x-3} + \frac{x-3}{5x+2} =$
$\frac{x}{1} + \frac{1}{x} = \frac{10}{3}$	$\frac{x}{1} + \frac{1}{x} = \frac{65}{8}$	$\frac{73}{24}$	74 35
$\left \frac{x}{1} + \frac{1}{x} \right = \frac{3}{1} + \frac{1}{3}$	$\begin{vmatrix} 1 & x & 8 \\ \frac{x}{1} + \frac{1}{x} = \frac{8}{1} + \frac{1}{8} \end{vmatrix}$	$\frac{73}{24} = \frac{3}{8} + \frac{8}{3}$	$\frac{74}{35} = \frac{5}{7} + \frac{7}{5}$
		$\frac{4x+3}{7x+1} = \frac{3}{8}OR\frac{8}{3}$	$\frac{5x+2}{x-3} = \frac{5}{7}OR\frac{7}{5}$
$\frac{x}{1} = \frac{3}{1} OR \frac{1}{3}$	$\frac{x}{1} = \frac{8}{1} OR \frac{1}{8}$	Solve for x	Solve for x
3 OR 1/3	8 OR 1/8	-21/11 OR 1/44	-29/30 OR -
			31/18

TYPE-2 (Minus):

Ex.5	Ex.6	Ex.7	Ex.8
$x - \frac{1}{x} = \frac{7}{12}$ $\frac{x}{1} - \frac{1}{x} = \frac{7}{12}$ $x = \frac{7}{12}$ $x = \frac{7}{12}$	$x - \frac{1}{x} = \frac{11}{30}$ $\frac{x}{1} - \frac{1}{x} = \frac{11}{30}$	$\frac{4x-3}{7x-1} - \frac{7x-1}{4x-3} = \frac{73}{24}$	$\frac{5x-2}{x-3} - \frac{x-3}{5x-2} = \frac{21}{10}$
$\frac{1}{1} - \frac{1}{x} = \frac{1}{3} - \frac{1}{4}$	$\frac{x}{1} - \frac{1}{x} = \frac{6}{5} - \frac{5}{6}$	$\frac{73}{24} = \frac{3}{8} - \frac{8}{3}$ $\frac{4x - 3}{7x - 1} = \frac{3}{8} OR \frac{8}{3}$	$\frac{21}{10} = \frac{5}{2} - \frac{2}{5}$ $\frac{5x-2}{x-3} = \frac{5}{2}OR - \frac{2}{5}$
$\frac{x}{1} = \frac{4}{3} OR - \frac{3}{4}$ 4/3 OR -3/4	$\frac{1}{1} = \frac{1}{5} OR - \frac{1}{6}$ 6/5 OR -5/6	Solve for x -21/11 OR 1/44	Solve for x -11/5 OR 16/27

Solution using "If the Set is same, it is ZERO"

First Factor:

If $\mathbf{m}(N1+N2)=\mathbf{n}(D1+D2)$ then N1+N2=D1+D2=0 ($\mathbf{m},\mathbf{n}=$ common factors)

Second Factor:

If $\mathbf{m}(N1-D1)=\mathbf{n}(N2-D2)$ then N1-D1=N2-D2=0 (\mathbf{m},\mathbf{n} =common factors)

Ex.1	Ex.2
$\frac{3x+5}{2} = \frac{4x+6}{2}$	$\frac{2x+6}{2} = \frac{6x+3}{2}$
5x+4 $2x+7$	4x+3 - 4x+6
N1+N2=3x+5+4x+6=7x+11	N1+N2=2x+6+6x+3=8x+9
D1+D2=5x+4+2x+7=7x+11	D1+D2=4x+3+4x+6=8x+9
N1-D1=3x+5-5x-4=-2x+1	N1-D1=2x+6-4x-3=-2x+3
N2-D2=4x+6-2x-7=2x-1=-1(-	N2-D2=6x+3-4x-6=2x-3=-1 (-
2x+1)	2x+3)
First Factor:	First Factor:
7x+11=0; 7x=-11; x=-11/7	8x+9=0; 8x=-9; x=-9/8
Second Factor:	Second Factor:
-2x+1=0; 2x=1; x=1/2	-2x+3=0; 2x=3; x=3/2
x = -11/7 OR x = 1/2	x = -9/8 OR x = 3/2

CUBIC EQUATIONS

CASE 3:

$$\frac{1}{D1} + \frac{1}{D2} = \frac{1}{D3} + \frac{1}{D4}$$

if D1+D2=D3+D4

First Value: D1+D2=0

Second Value: D1-D2= D3-D4 Third Value: D1-D2= D4-D3

$$Ex: \frac{1}{4x+2} + \frac{1}{7x-6} = \frac{1}{5x+4} + \frac{1}{6x-8}$$

D1=4x+2; D2=7x-6;

D3=5x+4; D4=6x-8

D1+D2=11x-4; D3+D4=11x-4;

D1-D2=-3x+8; D3-D4=-x+12 D4-D3=x-12

First: 11x-4=0; x=4/11;

Second: -3x+8=-x+12; x=-2

Third: -3x+8=x-12; x=5

Books, eBooks, Video Course, FREE Workbook & FREE Online Training on Vedic Speed Mathematics, C & Python Programming:

www.Speed16.com/books/vm

SIMULTANEOUS EQUATIONS

Solution using Criss Cross Method

General Form: $a_1x+b_1y=c_1$ and $a_2x+b_2y=c_2$; Values are

$$x = \frac{b_1 c_2 - b_2 c_1}{a_2 b_1 - a_1 b_2} \quad y = \frac{a_2 c_1 - a_1 c_2}{a_2 b_1 - a_1 b_2}$$

$$a_1x+b_1y=c_1$$
 $a_1x+b_1y=c_1$ $a_1x+b_1y=c_1$ $a_2x+b_2y=c_2$ $a_2x+b_2y=c_2$

EX.1:	EX.2:	EX.3:
3x+7y=27-(I)	2x+y=7-(I)	-2x+y=1-(I)
5x+2y=16-(II)	3x-y=8-(II)	-3x+2y=5 –(II)
$r = \frac{7 \times 16 - 27 \times 2}{}$	$r - \frac{1 \times 8 - (-1) \times 7}{2}$	$r = \frac{1 \times 5 - 2 \times 1}{1 \times 5 - 2 \times 1}$
$x = \frac{112}{5 \times 7 - 3 \times 2}$	$x = \frac{3 \times 1 - 2 \times -1}{3 \times 1 - 2 \times -1}$	$x = {-3 \times 1 - (-2) \times 2}$
$=\frac{112-54}{35-6}=\frac{58}{29}=2$	$=\frac{8+7}{3+2}=\frac{15}{5}=3$	$=\frac{5-2}{-3+4}=\frac{3}{1}=3$
$5 \times 27 - 3 \times 16$	$3 \times 7 - 2 \times 8$	-3 + 4 1 $-3 \times 1 - (-2) \times 5$
$y = {5 \times 7 - 3 \times 2}$	$y = \frac{1}{3 \times 1 - 2 \times -1}$	$y = \frac{7}{-3 \times 1 - (-2) \times 2}$
$=\frac{135-48}{35-6}=\frac{87}{29}=3$	$=\frac{21-16}{3+2}=\frac{5}{5}=1$	-3 + 10 7
35 - 6 29	3 + 2 5	$={-3+4}={1}=7$
x=2 and $y=3$	x=3 and y=1	x=3 and $y=7$

Books, eBooks, Video Course, FREE Workbook & FREE Online Training on Vedic Speed Mathematics, C & Python Programming: www.Speed16.com/books/vm

INTRODUCTION TO VEDIC MATHEMATICS

Sutras: Meaning and Usage

Sutra 3: Ūrdhva – tiryagbhyām (ऊर्ध्वतिर्यग्भ्याम)

Meaning: Vertically and Crosswise.

Usage: This is used to to multiply given numbers vertically and

crosswise.

Ex: 25×67

First Part:	Second Part:	Third Part:
a b 2 5 c d 6 7	a b 2 5 c d 6 7	a b 2 5 c d 6 7
(a×c) (2×6=12)	$(\mathbf{a} \times \mathbf{d} + \mathbf{b} \times \mathbf{c})$ $(2 \times 7 + 5 \times 6 = 44)$	(b×d) (5×7=35)

12|44|35

12|44+3|5

12|47|5

12+4|7|5

16|7|5

1675

Applications: to find Product of given numbers and polynomials. **Refer Units:** Multiplication and Polynomials.

Sutra 5: Sūnyam Samyasamuccaye (शून्यं साम्यसमुच्चये)

Meaning: If the Samuccay (समुच्चय or समूह or Set) is same, it is ZERO.

Usage:

CASE 3: If the numerical numerators of two fractions are same, then the sum of denominators is ZERO.

$$Ex. \ \frac{3}{4x+5} + \frac{3}{7x-3} = 0$$

Here 3=3; so 4x+5+7x-3=0;

11x+2=0; 11x=-2; x=-2/11.

$$Ex. \ \frac{-7}{x^2+6} + \frac{-7}{6x+3} = 0$$

Here -7=-7; so $x^2+6+6x+3=0$;

$$x^2+6x+9=0$$
; $(x+3)^2=0$; $x=-3$.

$$Ex. \ \frac{16}{3x+5} - \frac{16}{8x-12} = 0$$

16=16; so 3x+5-(8x-12)=0; 3x+5-8x+12=0; -5x+17=0; x=17/5.

Note: Here sign is negative, so we have subtracted (D1-D2)

CASE 4:

$$\frac{3x+5}{5x+4} = \frac{4x+6}{2x+7}$$

$$3x+5+4x+6=7x+11$$
; $5x+4+2x+7=7x+11$

$$\therefore$$
 7x+11=0; x = -\frac{11}{7}

B. If
$$\mathbf{m}(N1+N2)=\mathbf{n}(D1+D2)$$
 then $N1+N2=D1+D2=0$ ($\mathbf{m},\mathbf{n}=$ common factors)

$$\frac{7x+2}{2x+1} = \frac{5x+6}{x+1}$$
$$7x+2+5x+6=12x+8=4(3x+2)$$

$$2x+1+x+1=3x+2=1(3x+2)$$

$$3x+2=0$$

$$X = -\frac{2}{3}$$

C: If $\mathbf{m}(N1-D1)=\mathbf{n}(N2-D2)$ then N1-D1=N2-D2=0 (\mathbf{m},\mathbf{n} =common factors)

$$\frac{3x+5}{5x+4} = \frac{4x+6}{2x+7}$$

$$3x+5-5x-4 = -2x+1 \text{ and } 4x+6-2x-7 = 2x-1 = -1 (-2x+1)$$

$$\therefore -2x+1=0; \ 2x=1; \ x = \frac{1}{2}$$

Sutra 13: Sopantyadvayamantyam (सोपान्त्यद्वयमन्त्च्यम्)

Meaning: The ultimate and twice the penultimate

Usage:

$$\frac{1}{AB} + \frac{1}{AC} = \frac{1}{AD} + \frac{1}{BC}$$

If A, B, C and D are in Arithmetic Progression then D+2C=0

$$Ex.\frac{1}{(x+3)(x+4)} + \frac{1}{(x+3)(x+5)} = \frac{1}{(x+3)(x+6)} + \frac{1}{(x+4)(x+5)}$$

$$A=(x+3);$$

$$B=(x+4);$$

$$C=(x+5);$$

$$D=(x+6);$$

Here A, B, C & D are in Arithmetic Progression;

So,
$$D+2C=0$$
;

$$(x+6)+2(x+5)=0;$$

$$x+6+2x+10=0$$
; $3x+16=0$; $x=-16/3$.

Sub Sutras: Meaning and Usage

Sub Sutra 9: Antyayoreva (अन्त्ययोरेव)

Meaning: Only the Last Terms

Usage: This sutra is used to solve certain equations of the type:

After ignoring Constants; Numerator and the Denominator of one side are in the ratio of Numerator and Denominator of the other side.

if
$$\frac{m(N1) + c1}{m(D1) + c2} = \frac{N2}{D2}$$
 where $N1 = N2$ and $D1 = D2$ then $\frac{N2}{D2} = \frac{c1}{c2}$ m is common factor; c1 and c2 are constants.

$$Ex. \frac{x^2 + x + 2}{x^2 + 2x + 5} = \frac{x + 1}{x + 2}$$

$$= > \frac{x(x+1) + 2}{x(x+2) + 5} = \frac{x+1}{x+2} \text{ then } \frac{x+1}{x+2} = \frac{2}{5}; x = -\frac{1}{3}$$

Sub Sutra 12: Vilokanam (विलोकनं)

Meaning: By Mere Observation

Usage: This sutra is used in solving quadratic and simultaneous equations. Refer Unit: Quadratic Equations.

Ex:
$$x + \frac{1}{x} = \frac{10}{3}$$
; By Vilokanam (विलोकनं) we say that x=3.

Books, eBooks, Video Course, FREE Workbook & FREE Online Training on Vedic Speed Mathematics, C & Python Programming: www.Speed16.com/books/vm

Reach Us:

- Contact Person: Mr. Chaitanya A. Patil
- Email: <u>info@speed16.com</u>
- Call: +91-97640-58-654
- Direct WhatsApp
- Direct Telegram
- Join our Telegram Channels:
- https://t.me/SpeedMaths
- https://t.me/speed16_IT
- Subscribe to our YouTube Channels:
- Vedic Maths: youtube.com/speedmaths
- Python: <u>Click Here</u>
- Like our Facebook Pages:
- 1: facebook.com/SpeedMaths99
- 2: <u>facebook.com/Speed16Academy</u>
- 3: <u>facebook.com/ChaitanyaPatil88</u> (Send me friend Request)
- Follow our Linkedin Page:
- linkedin.com/company/speed16
- Connect with us on LinkedIn:
- <u>linkedin.com/in/cp488/</u>
- Follow us on Twitter:
- twitter.com/chait_patil
- Follow us on Instagram:
- instagram.com/chaitanya.1600
- Follow & Ask Questions on Quora:
- quora.com/profile/Chaitanya-Patil-128
- Follow us on Quora Space:
- quora.com/q/cmztxptoeyvanirp

IMP Links:

- Link: www.Speed16.com/books/vm
- Download this PDF for Details: www.speed16.com/files/vm/vm.pdf
- Paperback (India):
- Amazon: https://amzn.to/2Mronn3 OR
- Instamojo: https://www.instamojo.com/speed16
- Paperback (International):
- www.Speed16.com/books/vm
- Vedic Speed Maths: Video Course (@just ₹99 / 1.3US\$; Thinkific):
- https://speed16.thinkific.com/courses/vsm
- Vedic Speed Maths: Video Course (6 to 12US\$; Udemy):
- https://www.udemy.com/course/speedmaths/?referralCode=7852F401 12045FBAD598
- eBooks (Country wise):
- India: Part-1: https://amzn.to/2MufSaT; Part-2: https://amzn.to/2MqmJSo
- US: https://amzn.to/2KmO47CUK: https://amzn.to/2Vi1Yj9
- Other Countries: https://www.speed16.com/books/vm/

Get all Future Updates:

- Join our Telegram Channel:
- https://t.me/SpeedMaths
- Like our Facebook Page:
- facebook.com/SpeedMaths99
- Subscribe to our YouTube Channel:
- youtube.com/speedmaths

Sharing is Caring. Share with All.

Click Here to Share on WhatsApp

Speed16 Academy

(An Online & Offline School, Sports & IT Training Academy)

- ♣ Vedic Speed Mathematics: www.Speed16.com/books/vm
- **♣** C Programming: <u>www.Speed16.com/books/c</u>
- **♣** Python Programming: <u>www.Speed16.com/books/python</u>
- ♣ Python & all IT Training: www.Speed16.com/training
- **4** (First Session is Completely FREE and Open to All. Separate Batches for Software Professionals and US/Europe Students)
- ↓ Vedic Speed Mathematics online training is completely FREE and open to all. www.Speed16.com/free
- Contact: Chaitanya Patil email: <u>info@speed16.com</u> Call: +91-97640-58-654; Whatsapp: https://wa.me/919764058654
- ♣ Online Interactive Python, Java, Tableau, Salesforce, DevOps, AWS & all IT Training:
- www.Speed16.com/training
- **First Session is Completely FREE and Open to All. Separate Batches for Software Professionals and US/Europe Students**
- Contact: Chaitanya Patil
- **♣** email: <u>info@speed16.com</u>
- **♣** Call: +91-97640-58-654
- **♦** Whatsapp: https://wa.me/919764058654