

K-Means Clustering: Airline Customer Value Analysis

Table of Contents

01

EDA

Descriptive, univariate & multivariate analysis

02

Data Pre-Processing

Missing values & outlier handling, feature engineering, standardization

03 Modelling

K-Means clustering & PCA plot

04

Analysis & Recommendation

Customer characteristics and Business recommendation

Airline Customer Value Dataset

Customer dataset from airline company contains some features to describe each customer's value.

Click to download the dataset

Objective

- To analyze and divide airline customer into segments.
 - To make business recommendation based on the cluster model

Goal

Create a clustering model to make customer segmentation

Feature Description

Description
: ID Member
: Frequent Flyer Program Join Date
: Tanggal Penerbangan pertama
: Jenis Kelamin
: Tier dari Frequent Flyer Program
: Kota Asal
: Provinsi Asal
: Negara Asal
: Umur Customer
: Tanggal data diambil
: Jumlah penerbangan Customer
: Rencana Perjalanan
: Fare Revenue
: Votes Prices
: Total jarak(km) penerbangan yg sudah dilakukan
: Tanggal penerbangan terakhir
: Jarak waktu penerbangan terakhir ke pesanan penerbangan paling akhir
: Rata-rata jarak waktu
: Maksimal jarak waktu
: Jumlah penukaran
: Rata rata discount yang didapat customer
: Jumlah poin yang didapat customer
: point yang tidak digunakan oleh members

01

Exploratory Data Analysis (EDA)

Descriptive, univariate, and multivariate analysis

1. Descriptive Analysis

Data Types

8 Categorical 15 Numerical

Missing Values

Age, fare revenue, vote prices, work city, province and country.

Duplicated Rows

0 duplicated rows

Numerical columns statistical summary

	count	mean	std	min	25%	50%	75%	max
MEMBER_NO	62988.0	31494.500000	18183.213715	1.0	15747.750000	31494.500000	47241.250000	62988.0
FFP_TIER	62988.0	4.102162	0.373856	4.0	4.000000	4.000000	4.000000	6.0
AGE	62568.0	42.476346	9.885915	6.0	35.000000	41.000000	48.000000	110.0
FLIGHT_COUNT	62988.0	11.839414	14.049471	2.0	3.000000	7.000000	15.000000	213.0
BP_SUM	62988.0	10925.081254	16339.486151	0.0	2518.000000	5700.000000	12831.000000	505308.0
SUM_YR_1	62437.0	5355.376064	8109.450147	0.0	1003.000000	2800.000000	6574.000000	239560.0
SUM_YR_2	62850.0	5604.026014	8703.364247	0.0	780.000000	2773.000000	6845.750000	234188.0
SEG_KM_SUM	62988.0	17123.878691	20960.844623	368.0	4747.000000	9994.000000	21271.250000	580717.0
LAST_TO_END	62988.0	176.120102	183.822223	1.0	29.000000	108.000000	268.000000	731.0
AVG_INTERVAL	62988.0	67.749788	77.517866	0.0	23.370370	44.666667	82.000000	728.0
MAX_INTERVAL	62988.0	166.033895	123.397180	0.0	79.000000	143.000000	228.000000	728.0
EXCHANGE_COUNT	62988.0	0.319775	1.136004	0.0	0.000000	0.000000	0.000000	46.0
avg_discount	62988.0	0.721558	0.185427	0.0	0.611997	0.711856	0.809476	1.5
Points_Sum	62988.0	12545.777100	20507.816700	0.0	2775.000000	6328.500000	14302.500000	985572.0
Point_NotFlight	62988.0	2.728155	7.364164	0.0	0.000000	0.000000	1.000000	140.0

Key takes:

 Age has strange maximum values (110)

Categorical columns statistical summary

	FFP_DATE	FIRST_FLIGHT_DATE	GENDER	WORK_CITY	WORK_PROVINCE	WORK_COUNTRY	LOAD_TIME	LAST_FLIGHT_DATE
count	62988	62988	62985	60719	59740	62962	62988	62988
unique	3068	3406	2	3234	1165	118	1	731
top	1/13/2011	2/16/2013	Male	guangzhou	guangdong	CN	3/31/2014	3/31/2014
freq	184	96	48134	9386	17509	57748	62988	959

Key takes:

- Work city, province, and country can be dropped because they have too many unique values and cant compute with model.
- FFP_DATE, FIRST_FLIGHT_DATE, LOAD_TIME and LAST_FLIGHT_DATE are date types.

2. Univariate Analysis (Boxplot)

Key takes:

- Most of features have outliers.
- There's an indication
 FFP_TIER have discreet
 values.

Univariate Analysis (Distplot)

Key takes:

- Discount has strange values above 1 (>100%)
- Most of the features are right-skewed and have outliers.

Countplot – Age feature

Countplot – Flight count feature

Most of the customers have flight only 1-7 times, and then the number is decreasing after that...

3. Multivariate Analysis (Heatmap plot)

8.0

-0.6

0.4

-0.2

-00

-0.2

- FLIGHT_COUNT, BP_SUM,
 SUM_YR_1, SUM_YR_2,
 SEG_KM_SUM, and Points_Sum
 are multicolinearity columns.
 - AVG_INTERVAL and MAX_INTERVAL are multicolinearity columns.
 - AGE has very low correlation with all features

02

Data Pre-Processing

Missing values and outliers handling, standardization, feature selection & engineering

Missing Values

- Age: fill with median
- Revenue (SUM_YR_1 & 2 SUM_YR_2) : fill 0

9
0
0
1
0
2102
3019
23
389
0
0
9
542

Outlier Handling

Remove outlier with z-score.

Feature Selection

LRFMC analysis: to divide customers aviation industry into segments.

- L (Length of joining member): The number of months since the member's joining time
 LOAD_TIME FFP_DATE
- R (Recent flight): Number of months since the member's last flight => LAST_TO_END
- **F (Flight Count)**: The total number of times the member has flown => **FLIGHT_COUNT**
- M (Miles Accumulated): Miles accumulated => SEG_KM_SUM
- C (Discount Used): The average value of the discount used by the member =>
 avg_discount

Feature engineering

3.0

2.5

Distribution of Average Discount

It makes no sense that avg_discount has values more than 1 (100%)

Drop rows with discount more than 100%

Standardization

```
# remove rows nan, inf, dan -inf

df_cust =df_cust[~df_cust.isin([np.nan, np.inf, -np.inf]).any(1)]

from sklearn.preprocessing import StandardScaler

std = StandardScaler()
custvalue_std = std.fit_transform(df_cust)
custvalue_std
```

	L	R	F	M	C
0	0.143953	-0.783974	0.933512	4.901182	0.651321
1	0.293691	-0.634441	-0.079031	4.799460	0.742712
2	-0.386717	-0.698527	0.033474	4.897951	0.616131
3	0.111610	-0.997593	3.071103	5.035603	0.366655
4	0.897433	-0.356737	0.258483	4.835153	0.522968

03

Modelling

K-Means Clustering

Elbow Method

Clustering K-Means

```
# cluster n=4
kmeans = KMeans(n_clusters = 4, random_state = 0)
# fit model
kc = kmeans.fit(dfcust_std)
cluster_labels = kc.labels_
# add cluster
datacust_cluster = dfcust_std.assign(K_Cluster = cluster_labels)
datacust_cluster.head()
```

Syntax

```
# add cluster to df_cust
cust_cluster = df_cust.assign(K_Cluster = cluster_labels)
cust_cluster.head()
```

	L	R	F	М	c	K_Cluster
1486	1561	41	18	76005	0.786950	0
1490	1686	69	9	74714	0.799971	0
1508	1118	57	10	75964	0.781936	0
1594	1534	1	37	77711	0.746389	0
1609	2190	121	12	75167	0.768661	0

Table

Clustering K-Means with PCA Visualization

Interpretation

Summary statistics

K_Clus	ter		L		R		F		М		C
		mean	median	mean	median	mean	median	mean	median	mean	median
0	0	1649.972379	1535.0	49.594812	25.0	26.004563	24.0	36818.721028	34325.0	0.715935	0.714094
1	1	860.074690	797.0	114.092317	96.0	7.605338	7.0	10820.552208	9412.0	0.669370	0.678153
2	2	1186.243756	978.0	488.576439	487.0	3.602480	3.0	5416.018158	4153.0	0.715294	0.725000
3	3	2433.846578	2393.0	128.454835	103.0	7.780847	7.0	10922.126416	9591.5	0.700152	0.706322

LRFMC Boxplot Visualization

✓ The difference of average discount used is not too significant among clusters

LRFMC Boxplot Visualization

04

Analysis and Recommendation

Customer characteristics and business recommendation

Cluster Characteristics

- The 2nd oldest member
- The shortest recency
- The highest flying frequency
- The highest flying distance

Cluster 2 (Potential churned customer)

- The second newest member
- Havent't flight recently (> 1 year)
- Lowest flight frequency
- Lowest miles accumulated

Cluster 1 (New member but fly often)

- The newest member
- The 2nd recency, mostly have flight in recent time
- Medium flying count
- Medium flying distance

Cluster 3 (Casual Customer)

- The oldest member
- Recency, Frequency, and flying distance are almost identic with cluster 1

Engage Cluster 1 to become loyal customers by getting more flights by suggesting discount voucher/bundling package.

Since **Cluster 1** are new members but have flight in recent time.

Awalsyahrp@gmail.com +62821 1393 2861 linkedin.com/in/awalsyahrp/ github.com/Awalsyah1995

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**

Visit my <u>repository</u> to access the source code and dataset

Do you have any questions? youremail@freepik.com +91 620 421 838 yourcompany.com

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**

Please keep this slide for attribution

