

a wO 99/25673

PCT/EP98/07148

9/21/06 → This application is a continuation of 09/554,631, filed 07/26/2000, now abandoned, which is a 371 of
a PCT/EP98/07148, filed
BACKGROUND OF THE INVENTION
Field of the invention

11/09/1998.

a The invention relates to unsaturated fatty
5 alcohols which are obtained by fractionating palm oil
fatty acid methyl esters, and then hydrogenating the
fraction of unsaturated long-chain methyl esters, and
to a process for the preparation of these fatty
alcohols.

a¹⁰ Prior art Statement of Related Art

Unsaturated fatty alcohols are important
intermediates for a large number of products of the
chemical industry, such as, for example, for the
preparation of surfactants and skincare products. A
15 review on this topic can be found, for example, by
U. Ploog et al. in *Seifen-Öle-Fette-Wachse [Soaps-Oils-
Fats-Waxes]* 109, 225 (1983). They are prepared from
more or less unsaturated fatty acid methyl esters which
can be hydrogenated, for example, in the presence of
20 chromium- or zinc-containing mixed catalysts [*Ullmann's
Encyclopedia of Industrial Chemistry, Verlag Chemie,
Weinheim, 4th Edition, Vol. 11, p. 436 ff*]. The prior
art is a large-scale process, as has hitherto also been
carried out by the applicant, according to which animal
25 fats and oils are used, and the unsaturated fatty
alcohols produced after the hydrogenation are distilled
at a still temperature of e.g. 220 to 250°C and a
reduced pressure of from 1 to 20 mbar - measured at the
top of the column. Since the preparation of unsaturated
30 fatty alcohols is associated with high costs,
distillation has been carried out with as low a raw
material loss as possible. In fact, in this way, it was
possible to achieve a yield of about 90% of theory, and
correspondingly a loss of 10%, although the products
35 exhibited a marked intrinsic odor. A further
disadvantage is that the fatty alcohols of the prior
art have unsatisfactory storage and low-temperature
behavior.