Evoluția lunară a producției de lapte de băut în România în perioada 2005m11-2021m08 (mii tone)

Problema 1

a) Romania (2005m11-2021m08)

 $\underline{https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=apro_mk_colm\&lang=en$

Data descărcării: 15.10.2021

Romania

- **b**) Componente:
- > Trend: stagnare 2006-2012, creștere 2012-2021
- > Sezonalitate: minime în lunile de vară, maxime în restul lunilor
- > Componenta aleatoare
- c) Coeficienții sezonalității

Date: 10/17/21 Time: 15:41 Sample: 2005M11 2021M08 Included observations: 190 Ratio to Moving Average Original Series: ROMANIA Adjusted Series: ROMANIASA

Scaling Factors:	
1	1.065444
2	1.050766
3	1.114120
4	1.010333
5	1.050928
6	0.911518
7	0.834590
8	0.900281

9	0.967990
10	1.063664
11	1.031614
12	1.037970

Pentru a studia sezonalitatea, am mers în meniul $Proc \rightarrow Seasonal Adjustment \rightarrow Moving$ Average Methods \rightarrow Ratio to moving average - Multiplicative \rightarrow OK.

Pentru eliminarea sezonalității sunt calculate mediile mobile de ordin egal cu perioada componentei sezoniere, prin urmare MM (12). În urma acestor pași rezultă un tabel. Din acest tabel putem interpreta coeficienții aferenții fiecărei luni.

Interpretare:

- În luna ianuarie, colectarea laptelui de băut a fost cu 6,5% peste medie.
- ➤ În luna februarie, colectarea laptelui de băut a fost cu 5% peste medie.
- **>** ..
- > În luna iunie, colectarea laptelui de băut a fost cu 9% sub medie.
- În luna iulie, colectarea laptelui de băut a fost cu 17% sub medie.
- **>** ..
- ➤ În luna decembrie, colectarea laptelui de băut a fost cu 3,7% peste medie.

Etapele de obținere a coeficienților sezonalității:

1. Se calculează mediile mobile de ordinul 12, pentru că avem date lunare;

$$\bar{y}_t = \frac{0.5 \times y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7 + y_8 + y_9 + y_{10} + y_{11} + y_{12} + 0.5 \times y_{13}}{12}$$

2. Folosim modelul multiplicativ, pentru că amplitudinea fluctuațiilor sezoniere crește(valoarea oservată / medie);

$$S_{ij} = \frac{y_{ij}}{\bar{y}_{ij}}$$

3. Se calculează media rapoartelor precedente pentru fiecare sezon.

$$S_I = \frac{S_{1/2006} + S_{1/2007} + \dots + S_{1/2021}}{17}$$

Seria observată și seria desezonalizată

d) Un ciclu economic acoperă mai mulți ani, iar după cum se poate observa din datele de mai jos sunt vizibile câteva cicluri scurte: 2008m01-2010m04, 2012m08-2015m07

Hodrick-Prescott Filter (lambda=14400)

ciclicitate

e) Previziuni

Pentru a previziona, am folosit metoda "Exponential Smoothing"

Prin intermediul metodei, am previzionat pe următoarele 5 perioade (următoarele 5 luni).

Parameters:	Alpha		0.2300
	Beta		0.0000
	Gamma		0.0000
Sum of Squared Residuals		S	433.5495
Root Mean Squared Error		r	1.510576
End of Period	Levels:	Mean	33.08950

Trend		0.077837
Seasonals:	2020M09	0.964599
	2020M10	1.060483
	2020M11	1.067956
	2020M12	1.022598
	2021M01	1.053724
	2021M02	1.041768
	2021M03	1.101668
	2021M04	1.009920
	2021M05	1.045749
	2021M06	0.905381
	2021M07	0.830836
	2021M08	0.895319

Exemplificăm modul de obținere al valorilor previzionate.

Lungimea seriei este T=190, perioada componentei sezoniere p=12.

Previziunile sunt determinate din ecuația

$$\hat{Y}_{190+h} = (33.08950 + h * 0.077837)S_{190-12+h}$$
 unde orizontul de previziune este h=1,2,...

Ultima observație: luna august 2021 (T=190)

Pentru luna septembrie 2021, orizontul de previziune este h=1, coeficientul sezonalității S=0.964599, iar valoarea previzionată:

$$\hat{Y}_{190}(1) = \hat{Y}_{190+1} = (33.08950 + 1 * 0.077837) * 0.964599 = 31.9931801$$

Pentru luna octombrie 2021, orizontul de previziune este h=2, coeficientul sezonalității S=1.060483

$$\hat{Y}_{190}(2) = \hat{Y}_{190+2} = (33.08950 + 2 * 0.077837) * 1.060483 = 35.25594186$$

Exemplificăm pentru ultimele 5 valori MAE.

2021M04	32.57	31.01941320776103
2021M05	31.38	32.5705352026182
2021M06	30.76	28.03210862244367
2021M07	28.51	26.36443522178315
2021M08	31.68	29.01206762446765
MAE = (32.57-	-31.02 +	31.38-32.57 + 30.76-28.03 + 28.51-26.36 + 31.68-29.01)/5 = 2.058

Problema 2

Pentru problema 2 am folosit aceeași bază de date, evoluția lunară a producției de lapte de băut în România în perioada 2005m11-2021m08 (mii tone)

a) După cum se poate observa din redarea grafică a datelor, seria este nestaționară/are unit root (tendință aleatoare), însă vom testa acest lucru în prealabil.

Romania

Din meniul View → Unit Root Test → Bifām "Trend and intercept" → OK

Null Hypothesis: ROMANIA has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 13 (Automatic - based on SIC, maxlag=14)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-0.816191	0.9613
Test critical values:	1% level	-4.011044	
	5% level	-3.435560	
	10% level	-3.141820	

Prob=0,9613>5%; Ipoteza nulă se acceptă, seria are rădăcină unitate/tendință aleatoare.

Seria s-a staționarizat după aplicarea diferențelor de ordinul 1, deci ordinul de integrare este **d=1**, la un nivel de semnificativitate alpha=5%.

b) Corelograma seriei staționare

Interpretare:

(Intervalul este
$$\frac{\pm 2}{\sqrt{189}} = \pm 0.1455$$
)

Primul coeficient (cel de la lag-ul 1) arată corelația dintre Y_t și Y_{t-1} (valoarea din luna curentă și valoarea din luna precedentă). Acesta este -0,213 și e semnificativ (iese din interval).

Al doilea coeficient (cel de la lag-ul 2) arată corelația dintre Y_t și Y_{t-2} (valoarea din luna curentă și valoarea din urmă cu două luni). Acesta este de 0,053 și e nesemnificativ (nu iese din interval).

c)
În prezența sezonalității coeficientul de la AC, PAC, de la lag=12 (date lunare) este semnificativ
(tabelul de la punctul b)).

În corelograma seriei desezonalizate nu există corelații semnificative în prima parte, deci pentru partea nesezonieră p=0, q=0.

d) Pentru analiza modelului coresponzător am ales modalitatea de specificare: Proc/Automatic ARIMA Forecasting

Opțiuni:

Max. SAR=2 Max. SMA=2 Periodicity:12

Options → *ecuatietema*

Automatic ARIMA Forecasting

Selected dependent variable: D(ROMANIA)

Date: 11/23/21 Time: 19:30 Sample: 2005M11 2022M01 Included observations: 189 Forecast length: 0

Number of estimated ARMA models: 225 Number of non-converged estimations: 0 **Selected ARMA model: (2,3)(2,2)**

AIC value: 3.78737933379

După analiza automată rezultă ARMA(2, 3)(2, 2), adică p=2, q=3, P=2, Q=2, d=0.

Un model de tip autoregresiv-medie mobilă ARMA(p,q) are o componentă de tip autoregresiv respectiv o componentă de tip medie mobilă unde p este ordinul părții autoregresive, q ordinul mediei mobile, P/Q indică gradul polinoamelor. Modelul mixt ARMA(p, q) surprinde atât caracterul inerțial cât și cel de asimilare a șocurilor.

Dependent Variable: D(ROMANIA)

Method: ARMA Maximum Likelihood (BFGS)

Date: 11/23/21 Time: 19:31 Sample: 2005M12 2021M08 Included observations: 189

Convergence achieved after 81 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.086340	0.081828	1.055147	0.2928
AR(1)	1.617587	0.070201	23.04224	0.0000
AR(2)	-0.882088	0.074752	-11.80019	0.0000
SAR(12)	1.615041	0.210884	7.658429	0.0000
SAR(24)	-0.668965	0.202833	-3.298113	0.0012
MA(1)	-2.239061	0.129066	-17.34823	0.0000
MA(2)	1.806644	0.217502	8.306352	0.0000
MA(3)	-0.498770	0.105394	-4.732449	0.0000
SMA(12)	-1.529872	0.226758	-6.746701	0.0000
SMA(24)	0.746264	0.180396	4.136816	0.0001
SIGMASQ	2.090645	0.252796	8.270099	0.0000

Probabilitatea constantei este mai mare decât alpha=5% (0.29>0.05), adica este nesemnificativă, deci o eliminăm.

Dependent Variable: D(ROMANIA)

Method: ARMA Maximum Likelihood (BFGS)

Date: 11/23/21 Time: 19:33 Sample: 2005M12 2021M08 Included observations: 189

Convergence achieved after 81 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(1) AR(2) SAR(12) SAR(24) MA(1) MA(2) MA(3) SMA(12)	1.613025 -0.880712 1.617481 -0.667780 -2.225172 1.787789 -0.490515 -1.517667	0.069995 0.078296 0.215451 0.207751 0.123824 0.209900 0.102323 0.227070	23.04498 -11.24844 7.507419 -3.214324 -17.97037 8.517315 -4.793784 -6.683709	0.0000 0.0000 0.0000 0.0016 0.0000 0.0000 0.0000
SMA(24) SIGMASQ	0.730517 2.102995	0.177833 0.243961	4.107875 8.620207	0.0001 0.0000

e) Ipoteza nulă H₀: Rezduurile nu sunt corelate.

Aplicăm testul Q din: View/Residual Diagnostics/Corelogram Q statistics

Date: 12/22/21 Time: 14:29 Sample: 2005M11 2022M01 Included observations: 163

Q-statistic probabilities adjusted for 9 ARMA terms

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
. .	. .	1	-0.004	-0.004	0.0026	
	.j. j	2	-0.012	-0.012	0.0262	
. .	. .	3	0.039	0.039	0.2779	
. .	. .	4	-0.004	-0.004	0.2802	
. .	. .	5	-0.033	-0.032	0.4605	
. .	. .	6	-0.034	-0.036	0.6588	
. .	. .	7	-0.057	-0.058	1.2124	
. .	. .	8	0.070	0.071	2.0576	
. .	. .	9	0.036	0.038	2.2811	
. .	. .	10	0.014	0.019	2.3132	0.128
. .	. .	11	0.029	0.021	2.4579	0.293
. .	. .	12	0.015	0.008	2.5006	0.475
.j.	.j. j	13	-0.050	-0.051	2.9568	0.565
. .	. .	14	-0.031	-0.030	3.1332	0.679
.j. j	.j. j	15	0.051	0.061	3.5991	0.731

Pentru M=15, Q(15)=3.59. Probabilitatea este de 0.731>alpha 0.05 de unde rezultă că ipoteza nulă se acceptă, reziduurile nu sunt corelate. Nu există corelații în reziduuri, de unde rezultă că modelul este unul adecvat.

Problema 3

Evoluția indicilor BET si BUX în perioada 1998-2020

I. Pregătirea datelor

Datele sunt în valori absolute, așadar se vor logaritma.

LNBUX=log(bux)

LNBET=log(bet)

Primul pas este acela de a afla dacă datele sunt staționare. Pentru aceasta am aplicat testul"Unit root Test" cu "Trend and intercept" pentru fiecare variabilă în parte.

Null Hypothesis: LNBUX has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=4)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.513035	0.3192
Test critical values: 1% level		-4.440739	
	5% level	-3.632896	
	10% level	-3.254671	

H₀: LNBUX are rădăcină unitate (trend aleator).

Prob=0.3192>alfa=0.05, deci ipoteza nulă se acceptă.

Null Hypothesis: LNBET has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=4)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-1.841908	0.6495
Test critical values:	1% level	-4.440739	
	5% level	-3.632896	
	10% level	-3.254671	

H₀: LNBET are rădăcină unitate (trend aleator).

Prob=0.6495>alpha=0.05, deci ipoteza nulă se acceptă.

Pentru a staționariza variabilele, vom aplica diferențele de ordin I, ΔY și ΔX .

$$\Delta Y = Y_{t-1} = DIFLNBUX = d(LNBUX)$$

$$\Delta X = X_{t-1} = DIFLNBET = d(LNBET)$$

II. Testul Granger de cauzalitate și corelograma încrucișată

Din corelograma încrucișată și PAC pentru DIFLNBET și DIFLNBUX se observă că nu există corelații puternic semnificative. Lag 0 ne indică faptul că avem o relație contemporană, adică o modificare în indicele bux va aduce cu sine o modificare în indicele bet în aceeași perioadă de timp, adică același an.

Date: 01/04/22 Time: 17:37 Sample: 1 27 Included observations: 22

Correlations are asymptotically consistent approximations

DIFLNBET,DIFLNBUX(-i)	DIFLNBET,DIFLNBUX(+i)	i	lag	lead
	DIFLNEE I, DIFLNEUX(+1)	3 4 5 6 7	0.7608 -0.1331 -0.1139 0.0163 -0.1742 -0.0022 -0.0023 0.1368	0.7608 -0.2270 0.1436 0.2210 -0.1064 0.0479 -0.1778 -0.1213
		8	0.1.00	
:]	! . !	10	0.1616	0.0061
			-0.1180 -0.0336	

Aplicăm testul Granger pentru lags=2. Vom lua în considerare variabilele staționare.

Pairwise Granger Causality Tests Date: 01/04/22 Time: 17:33

Sample: 1 27 Lags: 2

Null Hypothesis:	Obs	F-Statistic	Prob.
DIFLNBUX does not Granger Cause DIFLNBET DIFLNBET does not Granger Cause DIFLNBUX	20	0.96624 3.18773	0.4030 0.0702

Prima ipoteză nulă se acceptă (Prob=0.4 >5%) deci nu există cauzalitate dinspre indicele bux înspre indicele bet. A doua ipoteză nulă se respinge (Prob=0.07<10%) deci există cauzalitate dinspre bet înspre bux; bux din anul curent este corelate cu bet.

III. Existența unei relații de cointegrare; metoda Engle-Granger. Model ECM, ARDL, VAR Indicele Bet este variabila dependentă. Vom face analiza pentru datele nestaționare.

Ecuația de integrare (Constant)

Date: 01/11/22 Time: 10:06 Series: LNBET LNBUX Sample (adjusted): 1 23

Included observations: 23 after adjustments Null hypothesis: Series are not cointegrated Cointegrating equation deterministics: C

Automatic lags specification based on Schwarz criterion (maxlag=4)

Dependent	tau-statistic	Prob.*	z-statistic	Prob.*
LNBET	-4.029100	0.0240	-18.43088	0.0189
LNBUX	-2.686550	0.2423	-14.50512	0.0762

Pentru alfa=5%, ambele teste (tau și z) resping ipoteza nulă, prin urmare seriile sunt cointegrate.

Estimăm ecuația

Dependent Variable: LNBET

Method: Fully Modified Least Squares (FMOLS)

Date: 01/11/22 Time: 10:11 Sample (adjusted): 2 23

Included observations: 22 after adjustments Cointegrating equation deterministics: C

Long-run covariance estimate (Bartlett kernel, Newey-West fixed

bandwidth = 3.0000)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LNBUX	1.522695	0.255586	5.957657	0.0000
C	-6.658962	2.515964	-2.646684	0.0155

LNBET = C + LNBUX

LNBET = -6.6589 + 1.5227LNBUX

Interpretare: O creștere a indicelui BUX cu 1% se asociază pe termen lung unei creșteri a indicelui BET cu 1.25%.

Reziduul pare staționar(fluctuează staționar în jurul lui 0); avem o confirmare în plus că există o relație de cointegrare între variabile (regresia estimată este validă). Seria reziduului se salvează din Proc/Make Residual Series (aici i s-a dat denumirea resid02).

Reziduul se calculează ca diferențe între valorile observate și valorile prezise de ecuația estimată:

 $RESID02_t = e_t = DIFLNBET_t - (-6.6589 + 1.5227DIFLNBUX_t)$

Modelul ECM este un model de tip ARDL estimat pentru diferentele de ordin unu DIFLNBUX si DIFLNBET, ce include suplimentar reziduul rez(-1) din ecuatia de cointegrare aferent perioadei anterioare t-1:

RESID02_{t-1}=DIFLNBET_{t-1}- $(-6.6589+1.25DIFLNBUX_{t-1})$

Se estimează inițial ecuația:

DIFLNBET c RESID02(-1)

Dependent Variable: DIFLNBET Method: Least Squares Date: 01/11/22 Time: 10:34 Sample (adjusted): 3 23

Included observations: 21 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.149560	0.087709	1.705188	0.1045
RESID02(-1)	-0.085600	0.199358	-0.429377	0.6725

Pentru alpha=10% coeficienții nu sunt semnificativi.

Coficientul reziduului din perioada precedentă (resido2(-1)) este negativ (ceea ce ne doream), însă este nesemnificativ, deoarece lungimea seriei este destul de mică.

Date: 01/11/22 Time: 10:41

Sample: 127

Included observations: 21

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
Autocorrelation	Partial Correlation	1 -0.043 2 0.114 3 0.134 4 -0.197 5 -0.034 6 -0.278	-0.043 0.112 0.145 -0.204	0.0454 0.3740 0.8569 1.9567 1.9926	0.831 0.829 0.836 0.744 0.850 0.612 0.723
		8 0.055 9 -0.031 10 0.099 11 -0.084	0.124 0.039 -0.045 -0.168	4.5979 4.6357 5.0655 5.4051 5.5370	0.723 0.800 0.865 0.887 0.910 0.938

Testul Q arată că nu există corelații în seria reziduului, deci modelul este adecvat și nu sunt necesari termeni de tipul ARDL (pentru diflnbet, diflnbux).

DIFLNBET =0.1496 - 0.0856*resid02(-1)