

模型评估与选择

真实值与预测值

样本ID	发型	喉结	胡须	性别
1	0.2	1	0.5	男
2	0.7	0	0. 1	女
3	0. 1	1	0.6	男
4	0.6	1	0.2	男
5	0.2	0	0.2	女

样本ID	发型	喉结	胡须
1	0. 2	1	0. 5
2	0. 7	0	0. 1
3	0. 1	1	0.6
4	0.6	1	0. 2
5	0. 2	0	0. 2

样本ID	性别	
1	男	
2	女	
3	男	
4	女	
5	女	

真实值与预测值

▶ 错误率:分类错误样本数占总样本数比例

▶ 精度:1-错误率

误差:模型输出与样本真实值之间的差异

训练误差 / 经验误差:模型在训练集上的误差

泛化误差:模型在新样本上的误差

样本ID	real	pre
1	男	男
2	女	女
3	男	男
4	(男	女
5	女	女

真实值与预测值

▶ 目标:得到泛化误差小的模型/学习器

> 实际:新样本未知

以经验误差代表泛化误差

模型从训练样本中学得适用于所有潜在样本的"普遍规律"

"过"与"不及"

▶ 过拟合:用力过猛

> 欠拟合:用力不足

训练集与测试集

目标:

- 对于模型 / 学习器的泛化误差进行评估
- > 专家样本:训练集+测试集
- ▶ 训练集:训练误差
- ▶ 测试集:测试误差
- ▶ 独立同分布&互斥
- 用测试误差近似表示泛化误差

	性别	胡须	喉结	发型	样本ID
	男	0.5	1	0.2	1
训练集	女	0.1	0	0.7	2
	男	0.6	1	0.1	3
	男	0.2	1	0.6	4
> 测试集	女	0.2	0	0.2	5

测试误差与泛化误差

- ➤ 留出法
- > 交叉验证
- ▶ 自助法

留出法

- ▶ 训练集+测试集: 互斥互补
- 训练集训练模型,测试集测试模型
- 合理划分、保持比例
- 单次留出与多次留出
- ▶ 多次留出法:如对专家样本随机进行100次训练集/测试集划分,评估结果取平均

交叉验证法

- ➤ K折交叉验证:将专家样本等份划分为K个数据集,轮流用K-1个用于训练,1个用于测试
- ▶ P次K折交叉验证

自助法

留出法与交叉验证法的训练集数据少于样本数据

- ➤ 给定m个样本的数据集D,从D中有放回随机取m次数据,形成训练集D'
- ▶ 用D中不包含D'的样本作为测试集
- ightharpoonup D中某个样本不被抽到的概率: $\left(1-\frac{1}{m}\right)^m$
- ightharpoonup 测试集数据量: $\lim_{m \to \infty} \left(1 \frac{1}{m}\right)^m \mapsto \frac{1}{e} \approx 0.368$
- ▶ 缺点:改变了初始数据集的分布

评价方法与评价标准

▶ 回归任务的评价标准:均方误差

$$E(f;D) = \frac{1}{m} \sum_{i=1}^{m} (f(\boldsymbol{x}_i) - y_i)^2$$

错误率与精度

错误率:分类错误样本数占总样本数比例

$$E(f; D) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{I}\left(f\left(\boldsymbol{x}_{i}\right) \neq y_{i}\right)$$

精度:1-错误率,分类正确样本数占总样本数比例

$$acc(f; D) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{I}(f(\boldsymbol{x}_i) = y_i)$$
$$= 1 - E(f; D).$$

数据挖掘流程

查准率与查全率

- ➤ 查准率 / 准确率 (precision) : F = TP/(TP+FP)
- ▶ 查全率 / 召回率 / 灵敏度 (recall) : F = TP/(TP+FN)
- "1"代表正例, "0"代表反例

样本ID	real	pre
1	男	男
2	女	女
3	男	男
4	男	女
5	女	女

	预测值		
立		1	0
实际	1	TP	FN
值	0	FP	TN

	预测值		
立		1	0
实际位	1	2	1
值	0	1	2

查准率与查全率

查准率与查全率相互制约,且不同场景有不同要求

P-R曲线图

- 以二分类为例,模型输出各样本为正例的可能性列表,按可能性大小顺序逐个把样本预测为正例,则每次可计算出当前查全率与查准率,最后连线成图。
- ➤ 注:P-R图一般为非光滑非单调曲线
- ▶ 曲线下面积与平衡点(BEP)

P-R曲线图

样本ID	1	2	3	4	5
男pr	0. 9	0.3	0.7	0.6	0.3
pre1	男	女	女	女	女
	_	_	_	_	
pre2	男	女	男	女	女
pre3	男	女	男	男	女
pre4	男	男	男	男	女
pre5	男	男	男	男	男

F1系数

> 综合查准率与查全率:

$$F1 = \frac{2 \times P \times R}{P + R} = \frac{2 \times TP}{$$
样例总数 $+ TP - TN$

▶ 更一般的形式:

$$F_{\beta} = \frac{(1+\beta^2) \times P \times R}{(\beta^2 \times P) + R}$$

- ightharpoonup 其中 eta 为正数,度量了查全率对查准率的相对重要性
- β = 1 :标准的F1系数
- $\beta > 1$: 查全率有更大影响
- β < 1 : 查准率有更大影响

多次训练/测试时的F1系数

先分后总:先分别计算各混淆矩阵的查准率和查全率,再以均值汇总

$$\text{macro-}P = \frac{1}{n}\sum_{i=1}^{n}P_{i} \qquad \text{macro-}R = \frac{1}{n}\sum_{i=1}^{n}R_{i} \qquad \text{macro-}F1 = \frac{2 \times \text{macro-}P \times \text{macro-}R}{\text{macro-}P + \text{macro-}R}$$

▶ 先总后分:先将各混淆矩阵的对应元素(TP、FP、TN、FN)进行汇总平均,再求P、R、F1值

$$\text{micro-}P = \frac{\overline{TP}}{\overline{TP} + \overline{FP}} \qquad \text{micro-}R = \frac{\overline{TP}}{\overline{TP} + \overline{FN}} \qquad \text{micro-}F1 = \frac{2 \times \text{micro-}P \times \text{micro-}R}{\text{micro-}P + \text{micro-}R}$$

比较检验与偏差方差

测试误差能代表泛化误差吗?

▶ 详见周志华:《机器学习》2.4比较检验

泛化错误率的构成:偏差+方差+噪声

偏差:模型输出与真实值的偏离程度,刻画了算法的拟合能力

方差:同样大小的训练集的变动导致的学习性能的变化,即数据扰动造成的影响

▶ 噪声:当前学习器所能达到的泛化误差的下限

偏差大:拟合不足/欠拟合;方差大:过拟合

▶ 详见周志华:《机器学习》2.5偏差与方差

Thank you!

泰迪科技:www.tipdm.com

热线电话:40068-40020

