

Discrete Mathematics 2024

Student: Jeferson Morales Mariciano morale@ethz.ch>

Assignment 8

Due date: Thursday, 14 November 2024, 23:59

Exercise 8.5, Inner Direct Products (\star)

(8 Points)

- a) Let $\langle G; *, \hat{}, e \rangle$ be a commutative group. Let H and K be subgroups of G such that
 - (i) $G = \{h * k \mid h \in H, k \in K\},\$
 - (ii) $H \cap K = \{e\}.$

Prove that G is isomorphic to the direct product $H \times K$. In this case, G is called the *inner* direct product of H and K.

b) Use the previous subtask to prove that $\langle \mathbb{Z}_{15}^*, \odot_{15} \rangle \simeq \mathbb{Z}_2 \times \mathbb{Z}_4$. You can use the subtask even if you have not proved it. **Do not** prove the isomorphism directly.

a)

By the exercise statement, all the elements of G can be written as h*k for some $h \in H$ and $k \in K$ by the first condition (i), thus all the elements of H and K are in G as well because $\forall h \in H, h * e \in G$ and $\forall k \in K, e * k \in G$. The group G is stated to be abelian, so H and K are abelian as well and recall * is associative by Definition 5.7 of Group.

For the subgroups $\langle H; *, \hat{\ }, e \rangle$ and $\langle K; *, \hat{\ }, e \rangle$ of G, their direct product $H \times K$ is defined as algebra $\langle H \times K; \star, \hat{}, e \rangle$. where the component wise operation \star is defined as

$$(a_1, b_1) \star (a_2, b_2) = (a_1 * a_2, b_1 * b_2) \quad a_1, a_2 \in H, b_1, b_2 \in K$$
 (Definition 5.9)
 $\Rightarrow (h_1, k_1) \star (h_2, k_2) = (h_1 * h_2, k_1 * k_2) \quad (h_1, k_1), (h_2, k_2) \in H \times K$

From Lemma 5.4 $\langle G_1 \times \cdots \times G_n; * \rangle$ is a group where the neutral element and the inversion operation are component wise in the respective groups, but by Definition 5.11 of Subgroups, H, Kand group G share the same neutral element e, inverse operation $\hat{\ }$, and are closed under the operation *.

Let's define the mapping function ψ .

$$\psi: G \to H \times K \qquad h * k \mapsto (h, k) \quad \forall h * k \in G$$

The group homomorphism property of ψ is check as follows

$$\psi(a * b) = \psi(a) \star \psi(b) \quad \forall a, b \in G$$

$$\psi((h_1 * k_1) * (h_2 * k_2)) = \psi(h_1 * k_1) \star \psi(h_2 * k_2) = ((h_1, h_2), (k_1, k_2))$$

$$\psi((h_1 * k_1) * (h_2 * k_2)) \stackrel{.}{\Longrightarrow} \psi(h_1 * (k_1 * h_2) * k_2)$$

$$\Leftrightarrow \psi(h_1 * (h_2 * k_1) * k_2)$$

$$\Leftrightarrow \psi((h_1 * h_2) * (k_1 * k_2))$$

$$\Leftrightarrow \psi((h_1 * h_2) * (k_1 * k_2))$$

$$\Leftrightarrow \psi(h_1 * k)$$

$$\Leftrightarrow ((h_1 * h_2), (k_1 * k_2)) \stackrel{.}{\Longrightarrow} ((h_1, k_1) \star (h_2, k_2))$$

$$\Leftrightarrow \psi(h_1 * k_1) \star \psi(h_2 * k_2) \stackrel{.}{\Longrightarrow} \psi(a) \star \psi(b)$$
(CHECK Definition 5.10)
(group elems notation)
(associativity)
(associativity)

From G to direct product of 2 subgroups of G.

Injectivity: let $\psi(a) = \psi(b)$ for some $a, b \in G$, then

$$\psi(a) = \psi(b) \implies (h_a, k_a) = (h_b, k_b) \implies h_a = h_b, k_a = k_b$$

 $\implies a = b \implies \psi(a) = \psi(b) \implies \psi$ is injective

For any $(h,k) \in H \times K$, it exists an element a in G by definition (i) such that a = h * k and $\psi(a) = (h,k)$. Thus, ψ is surjective. Finally, ψ is bijective, then the homomorphism ψ is an isomorphism and $G \simeq H \times K$, where G is the inner direct product of H and K.

b)

The group \mathbb{Z}_{15}^* is the set of all integers a such that $a \in Z_{15} \wedge \gcd(a, 15) = 1$ by Definition 5.16. Hence, the group $\mathbb{Z}_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$ and $|\mathbb{Z}_{15}^*| = 8$ which is the order of \mathbb{Z}_{15}^* due to Definition 5.13. By Definition 5.15, such group is not cyclic.

Then, the group $\mathbb{Z}_2 \times \mathbb{Z}_4$ is closed under modular addition \oplus because for modular multiplication \odot in general the group \mathbb{Z}_n may have elements without the multiplication inverse, as \mathbb{Z}_{12} with the element 8 which has no inverse. From Theorem 5.7, $\langle \mathbb{Z}_n; \oplus \rangle$ is the standard notation for the cyclic group of order n. The definition is $\mathbb{Z}_2 \times \mathbb{Z}_4 = \{(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3)\}$. So we know that $\mathbb{Z}_2, \mathbb{Z}_4$ are cyclic groups.

Notice $|\mathbb{Z}_2 \times \mathbb{Z}_4| = 8 = |\mathbb{Z}_{15}^*|$ so a totally well defined mapping ψ could be defined as in the previous subtask, and it can be shown that it is both injective and surjective, hence bijective and an isomorphism.

The order of elements from \mathbb{Z}_{15}^* are as follows: ord = 2 for 4, 11, 14, ord = 4 for 2, 7, 8, 13, and ord = 1 for 1 as it is the multiplicative inverse and also self inverse.

The cyclic subgroups of \mathbb{Z}_{15}^* generated by generator elements 2, 11 are $\langle 2 \rangle = \{1, 2, 4, 8\}$ with $ord(\langle 2 \rangle) = 4$ and $\langle 11 \rangle = \{1, 11\}$ with $ord(\langle 11 \rangle) = 2$ respectively using Definition 5.14.

By Theorem 5.7, a cyclic group of order n is isomorphic to $\langle \mathbb{Z}_n; \oplus \rangle$ and abelian. So $\langle 2 \rangle, \langle 11 \rangle$ are isomorphic to $\mathbb{Z}_4, \mathbb{Z}_2$ w.r.t. their order, i.e. $\langle 2 \rangle \simeq \langle \mathbb{Z}_4; \oplus \rangle$, $\langle 11 \rangle \simeq \langle \mathbb{Z}_2; \oplus \rangle$.

Hence, from the previous subtask **a**), the group G can be seen as \mathbb{Z}_{15}^* and the direct product of $H \times K$ would be the direct product of the cyclic subgroups $\langle 2 \rangle, \langle 11 \rangle$, which are isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_4$, i.e. $\mathbb{Z}_{15}^* \simeq \langle 2 \rangle \times \langle 11 \rangle \simeq \mathbb{Z}_2 \times \mathbb{Z}_4$. The proof is complete and a explicity example of isomorphism is not needed from the exercise statement.