Evaluation of Cohen 1998's Biphasic Model

Rahul Yerrabelli, Alexander Spector

February 6, 2022

Contents

1	Introduction	1
2	Proof: $C_1 = C_2 \iff f(t) = C_1 \varepsilon_{zz}(t)$	2
3	Proof #1 that $C_1 = C_2 \iff \nu_{31} = 0.5$	4
	Proof #2 that $C_1 = C_2 \iff \nu_{31} = 0.5$ 4.1 Getting C_{11} , C_{12} , etc expressions directly in terms of parameters	8
	4.4 Solve for $C_1 \equiv C_2$	Ċ

1 Introduction

Taking Cohen's biphasic model and comparing Cohen's analytic solution with our numerical results [1]. As there is a discrepancy, take the case of $C_1 = C_2$ to prove which is correct.

2 Proof:
$$C_1 = C_2 \iff f(t) = C_1 \varepsilon_{zz}(t)$$

If $C_1 = C_2$ (happens if $\nu_{31} = 0.5$), then:

$$\frac{\widetilde{F(s)}}{\widetilde{\varepsilon}_{zz}(s)} = \frac{C_1 I_0 \left[\sqrt{s}\right] - C_2 C_0 \frac{I_1 \left[\sqrt{s}\right]}{\sqrt{s}}}{I_0 \left[\sqrt{s}\right] - C_0 \frac{I_1 \left[\sqrt{s}\right]}{\sqrt{s}}} \tag{1}$$

$$=C_1 \frac{I_0\left[\sqrt{s}\right] - C_0 \frac{I_1\left[\sqrt{s}\right]}{\sqrt{s}}}{I_0\left[\sqrt{s}\right] - C_0 \frac{I_1\left[\sqrt{s}\right]}{\sqrt{s}}}$$

$$\tag{2}$$

$$=C_1\tag{3}$$

if
$$s \neq 0$$
 and $I_0 \left[\sqrt{s} \right] \neq C_0 \frac{I_1 \left[\sqrt{s} \right]}{\sqrt{s}}$

Already known invalid point

Tricky condition, will return to it

If those conditions are satisfied, then:

$$f(t) = C_1 \tilde{\varepsilon}_{zz}(s) \tag{5}$$

$$=C_1\dot{\varepsilon}_0 t_g \left(\frac{1-\exp\left(-s\frac{t_0}{t_g}\right)}{s^2}\right) \tag{6}$$

$$=C_1\varepsilon_{zz}(t) \tag{7}$$

It will be proven later that this is satisfied only with $\nu_{31} = 0.5$. See in Figure 1 (corresponding to 1) that the numerical solution is a perfect ramp as expected at this ν_{31} value, unlike Cohen's analytic solution.

Table 1: Parameters for lines plotted in Fig 1

	t_0/t_g	t_g	$\dot{arepsilon}$	E_1	E_3	ν_{21}	ν_{31}	Δ_1	Δ_2	Δ_3	C_{11}	C_{12}	C_{13}	C_{33}	C_0	C_1	C_2
Line #1	0.246184	40.62	0.01	8.5	19	0.75	0.293	0.173188	0.549482	2.628	26.968415	22.111272	14.38	27.426	0.18	9.555	27.055
Line #2	0.246184	40.62	0.01	8.5	19	0.75	0.5	0.026316	0.507519	9.6428	163.928	159.071429	161.5	180.5	0.0296	7.823	7.823
Line #3	0.246184	40.62	0.01	8.5	19	0.75	0.707	-0.197368	0.443609	4e-16	-19.104762	-23.961905	-30.45	-24.067	-0.254	6.302	19.790

Figure 1: Note that the numerical solution is a perfect ramp at $\nu_{31} = 0.5$ as expected, unlike Cohen's proposed analytic solution.

Figure 2: Note that at $\nu_{31} = 0.5$, the summation expression is not uniformly 0, and thus f(t) is not proportional to varepsilon(t).

3 Proof #1 that $C_1 = C_2 \iff \nu_{31} = 0.5$

Set $C_1 = C_2$:

$$\frac{C_{1}}{C_{11} + C_{12} - 4C_{13} + 2C_{33}} = 2 \frac{C_{2}}{C_{33} (C_{11} - C_{12}) + C_{11} (C_{11} + C_{12} - 4C_{13}) + 2C_{13}^{2}}}{(C_{11} - C_{12})^{2}}$$
(8)

$$(C_{11} - C_{12})(C_{11} + C_{12} - 4C_{13} + 2C_{33}) = 2C_{33}(C_{11} - C_{12}) + 2C_{11}(C_{11} + C_{12} - 4C_{13}) + 4C_{13}^{2}$$

$$(9)$$

$$(C_{11} - C_{12})(C_{11} + C_{12} - 4C_{13}) = 2C_{11}(C_{11} + C_{12} - 4C_{13}) + 4C_{13}^{2}$$

$$(10)$$

$$-(C_{11}+C_{12})(C_{11}+C_{12}-4C_{13})=4C_{13}^{2}$$
(11)

$$-\frac{E_1}{\Delta_1} \cdot \frac{E_1 \left(1 - 4\nu_{31}\right)}{\Delta_1} = 4 \left(\frac{E_1 \nu_{31}}{4^{\Delta_1}}\right)^2 \tag{12}$$

$$\left(\frac{E_1}{\Delta_1}\right)^2 (4\nu_{31} - 1) = 4\nu_{31}^2 \left(\frac{E_1}{\Delta_1}\right)^2 \tag{13}$$

Knowing $E_1 = 0$ is impossible as then $C_{11} = C_{12} = 0$ Thus, only one pair of solutions remains:

$$2\nu_{31} - 1 = 0 \tag{17}$$

$$\nu_{31} = \frac{1}{2} \iff C_1 = C_2$$

4 Proof #2 that $C_1 = C_2 \iff \nu_{31} = 0.5$

Strategy: Get C_1 - C_2 directly in terms of constants $(\nu_{21}, \nu_{31}, E_1, E_3)$, then set them equal each other.

4.1 Getting C_{11} , C_{12} , etc expressions directly in terms of parameters

$$C_{11} = \frac{E_1 \cdot \left(1 - \nu_{31}^2 \frac{E_1}{E_3}\right)}{(1 + \nu_{21}) \cdot \Delta_1} \tag{18}$$

$$= \frac{E_1 \cdot \left(1 - \nu_{31}^2 \frac{E_1}{E_3}\right)}{\left(1 + \nu_{21}\right) \left(1 - \nu_{21} - 2\nu_{31}^2 \frac{E_1}{E_3}\right)} \tag{19}$$

$$C_{12} = \frac{E_1 \cdot \left(\nu_{21} + \nu_{31}^2 \frac{E_1}{E_3}\right)}{(1 + \nu_{21}) \cdot \Delta_1} \tag{20}$$

$$= \frac{E_1 \cdot \left(\nu_{21} + \nu_{31}^2 \frac{E_1}{E_3}\right)}{\left(1 + \nu_{21}\right) \left(1 - \nu_{21} - 2\nu_{31}^2 \frac{E_1}{E_3}\right)} \tag{21}$$

$$C_{13} = \frac{E_1 \nu_{31}}{\Delta_1} \tag{22}$$

$$=\frac{E_1\nu_{31}}{1-\nu_{21}-2\nu_{31}^2\frac{E_1}{E_2}}\tag{23}$$

$$C_{33} = E_3 \cdot \left(1 + \frac{2\nu_{31}^2 \frac{E_1}{E_3}}{\Delta_1} \right) = \frac{\Delta_1 E_3 + 2\nu_{31}^2 E_1}{\Delta_1}$$
 (24)

$$= E_3 \cdot \left(1 + \frac{2\nu_{31}^2 \frac{E_1}{E_3}}{1 - \nu_{21} - 2\nu_{31}^2 \frac{E_1}{E_3}} \right) \tag{25}$$

$$=\frac{\left(1-\nu_{21}-2\nu_{31}^2\frac{E_1}{E_3}\right)E_3+2\nu_{31}^2E_1}{1-\nu_{21}-2\nu_{31}^2\frac{E_1}{E_3}}\tag{26}$$

$$=\frac{E_3 \cdot (1-\nu_{21})}{1-\nu_{21}-2\nu_{31}^2 \frac{E_1}{E_2}} \tag{27}$$

(28)

4.2 Combinations of C_{11} , C_{12} , etcexpressions g

$$C_{11} - C_{12} = \frac{E_1}{1 + \nu_{21}} \tag{29}$$

$$C_{11} + C_{12} = \frac{E_1}{\Delta_1} \tag{31}$$

$$=\frac{E_1}{1-\nu_{21}-2\nu_{31}^2 \frac{E_1}{E_2}}\tag{32}$$

(30)

(33)

(35)

(37)

(40)

(43)

$$C_{13} = \frac{E_1 \nu_{31}}{1 - \nu_{21} - 2\nu_{31}^2 \frac{E_1}{E_2}} \tag{34}$$

$$C_{33} = \frac{E_3 \cdot (1 - \nu_{21})}{1 - \nu_{21} - 2\nu_{31}^2 \frac{E_1}{E}} \tag{36}$$

$$C_{11} + C_{12} - 4C_{13} = \frac{E_1 \left(1 - 4\nu_{31}\right)}{\Delta_1} \tag{38}$$

$$=\frac{E_1 \cdot (1 - 4\nu_{31})}{1 - \nu_{21} - 2\nu_{31}^2 \frac{E_1}{E_3}} \tag{39}$$

$$C_{11} + C_{12} - 4C_{13} + 2C_{33} = \frac{E_1 (1 - 4\nu_{31}) + 2E_3 (1 - \nu_{21})}{1 - \nu_{21} - 2\nu_{31}^2 \frac{E_1}{E_2}}$$

$$(41)$$

$$= \frac{E_1 + 2E_3 - 4E_1\nu_{31} - 2E_3\nu_{21}}{1 - \nu_{21} - 2\nu_{31}^2 \frac{E_1}{E_2}}$$

$$\tag{42}$$

4.3 Getting C_0, C_1 , directly in terms of parameters

$$C_0 = \frac{C_{11} - C_{12}}{C_{11}} = \frac{\Delta_1}{1 - \nu_{31}^2 \frac{E_1}{E_2}} = \frac{1 - \nu_{21} - 2\nu_{31}^2 \frac{E_1}{E_3}}{1 - \nu_{31}^2 \frac{E_1}{E_2}}$$

$$(44)$$

$$C_1 = \frac{C_{11} + C_{12} - 4C_{13} + 2C_{33}}{C_{11} - C_{12}} \tag{46}$$

(45)

(48)

(55)

$$=\frac{(1+\nu_{21})\left(1-4\nu_{31}+2\frac{E_3}{E_1}\left(1-\nu_{21}\right)\right)}{\left(1-\nu_{21}-2\nu_{31}^2\frac{E_1}{E_3}\right)}\tag{47}$$

$$C_2 = 2\frac{C_{33}(C_{11} - C_{12}) + C_{11}(C_{11} + C_{12} - 4C_{13}) + 2C_{13}^2}{(C_{11} - C_{12})^2}$$

$$(49)$$

$$=2\frac{\left(\frac{E_{3}\cdot(1-\nu_{21})}{1-\nu_{21}-2\nu_{31}^{2}\frac{E_{1}}{E_{3}}}\right)\left(\frac{E_{1}}{1+\nu_{21}}\right)+\left(\frac{E_{1}\cdot\left(1-\nu_{31}^{2}\frac{E_{1}}{E_{3}}\right)}{(1+\nu_{21})\left(1-\nu_{21}-2\nu_{31}^{2}\frac{E_{1}}{E_{3}}\right)}\right)\left(\frac{E_{1}\cdot(1-4\nu_{31})}{1-\nu_{21}-2\nu_{31}^{2}\frac{E_{1}}{E_{3}}}\right)+2\left(\frac{E_{1}\nu_{31}}{1-\nu_{21}-2\nu_{31}^{2}\frac{E_{1}}{E_{3}}}\right)^{2}}{\left(\frac{E_{1}}{1+\nu_{21}}\right)^{2}}$$

$$(50)$$

$$=2\frac{E_{3}E_{1}\left(1-\nu_{21}\right)\left(1-\nu_{21}-2\nu_{31}^{2}\frac{E_{1}}{E_{3}}\right)+E_{1}^{2}\cdot\left(1-\nu_{31}^{2}\frac{E_{1}}{E_{3}}\right)\left(1-4\nu_{31}\right)+2E_{1}^{2}\nu_{31}^{2}\left(1+\nu_{21}\right)}{\left(\frac{E_{1}}{1+\nu_{21}}\right)^{2}\left(1-\nu_{21}-2\nu_{31}^{2}\frac{E_{1}}{E_{3}}\right)^{2}\left(1+\nu_{21}\right)}$$
(51)

$$=2\frac{\frac{E_{3}}{E_{1}}\left(1-\nu_{21}\right)\left(1-\nu_{21}-2\nu_{31}^{2}\frac{E_{1}}{E_{3}}\right)+\left(1-\nu_{31}^{2}\frac{E_{1}}{E_{3}}\right)\left(1-4\nu_{31}\right)+2\nu_{31}^{2}\left(1+\nu_{21}\right)}{\frac{\left(1-\nu_{21}-2\nu_{31}^{2}\frac{E_{1}}{E_{3}}\right)^{2}}{1+\nu_{21}}}$$
(52)

$$=2\frac{\frac{E_{3}}{E_{1}}\left(1-\nu_{21}^{2}\right)\left(1-\nu_{21}-2\nu_{31}^{2}\frac{E_{1}}{E_{3}}\right)+\left(1-\nu_{31}^{2}\frac{E_{1}}{E_{3}}\right)\left(1-4\nu_{31}\right)\left(1+\nu_{21}\right)+2\nu_{31}^{2}\left(1+\nu_{21}\right)^{2}}{\left(1-\nu_{21}-2\nu_{31}^{2}\frac{E_{1}}{E_{3}}\right)^{2}}$$
(53)

$$= 2\left(1 + \nu_{21}\right) \frac{\frac{E_3}{E_1}\left(1 - \nu_{21}\right)\left(1 - \nu_{21} - 2\nu_{31}^2 \frac{E_1}{E_3}\right) + \left(1 - \nu_{31}^2 \frac{E_1}{E_3}\right)\left(1 - 4\nu_{31}\right) + 2\nu_{31}^2 \left(1 + \nu_{21}\right)}{\left(1 - \nu_{21} - 2\nu_{31}^2 \frac{E_1}{E_3}\right)^2}$$

$$(54)$$

4.4 Solve for $C_1=C_2$

Knowing:

$$C_0 = \frac{1 - \nu_{21} - 2\nu_{31}^2 \frac{E_1}{E_3}}{1 - \nu_{31}^2 \frac{E_1}{E_2}} \tag{56}$$

(57)

(59)

(61)

$$C_1 = \frac{(1+\nu_{21})\left(1-4\nu_{31}+2\frac{E_3}{E_1}\left(1-\nu_{21}\right)\right)}{1-\nu_{21}-2\nu_{31}^{2}\frac{E_1}{E_2}}$$
(58)

$$C_{2} = 2 \frac{\frac{E_{3}}{E_{1}} \left(1 - \nu_{21}^{2}\right) \left(1 - \nu_{21} - 2\nu_{31}^{2} \frac{E_{1}}{E_{3}}\right) + \left(1 - \nu_{31}^{2} \frac{E_{1}}{E_{3}}\right) \left(1 - 4\nu_{31}\right) \left(1 + \nu_{21}\right) + 2\nu_{31}^{2} \left(1 + \nu_{21}\right)^{2}}{\left(1 - \nu_{21} - 2\nu_{31}^{2} \frac{E_{1}}{E_{3}}\right)^{2}}$$

$$(60)$$

We want to solve for $C_1=C_2$:

$$\frac{C_{1}}{(1+\nu_{21})\left(1-4\nu_{31}+2\frac{E_{3}}{E_{1}}\left(1-\nu_{21}\right)\right)} = 2\frac{C_{2}}{1-\nu_{21}-2\nu_{31}^{2}\frac{E_{3}}{E_{1}}\left(1-\nu_{21}^{2}\right)\left(1-\nu_{21}-2\nu_{31}^{2}\frac{E_{1}}{E_{3}}\right)+\left(1-\nu_{31}^{2}\frac{E_{1}}{E_{3}}\right)\left(1-4\nu_{31}\right)\left(1+\nu_{21}\right)+2\nu_{31}^{2}\left(1+\nu_{21}^{2}\right)^{2}} \left(1-\nu_{21}-2\nu_{31}^{2}\frac{E_{1}}{E_{3}}\right)^{2} \tag{A}$$

Multiply both sides by
$$\left(1-\nu_{21}-2\nu_{31}^2\frac{E_1}{E_3}\right)^2$$

$$\left(1+\nu_{21}\right)\left(1-4\nu_{31}+2\frac{E_{3}}{E_{1}}\left(1-\nu_{21}\right)\right)\left(1-\nu_{21}-2\nu_{31}^{2}\frac{E_{1}}{E_{3}}\right)=2\frac{E_{3}}{E_{1}}\left(1-\nu_{21}^{2}\right)\left(1-\nu_{21}-2\nu_{31}^{2}\frac{E_{1}}{E_{3}}\right)+2\left(1-\nu_{21}^{2}\frac{E_{1}}{E_{3}}\right)\left(1-4\nu_{31}\right)\left(1+\nu_{21}\right)+4\nu_{31}^{2}\left(1+\nu_{21}\right)^{2}$$

Divide both sides by $_{1+\nu_{21}}$

$$\left(1 - 4\nu_{31} + 2\frac{E_3}{E_1}(1 - \nu_{21})\right)\left(1 - \nu_{21} - 2\nu_{31}^2\frac{E_1}{E_3}\right) = \underbrace{2\frac{E_3}{E_1}(1 - \nu_{21})\left(1 - \nu_{21} - 2\nu_{31}^2\frac{E_1}{E_3}\right)}_{} + 2\left(1 - \nu_{31}^2\frac{E_1}{E_3}\right)(1 - 4\nu_{31}) + 4\nu_{31}^2(1 + \nu_{21}) \tag{B}$$

$$(1 - 4\nu_{31}) \left(1 - \nu_{21} - 2\nu_{31}^2 \frac{E_1}{E_3} \right) = \underbrace{2 \left(1 - \nu_{31}^2 \frac{E_1}{E_3} \right) (1 - 4\nu_{31})}_{\text{Move to lefthand side}} + 4\nu_{31}^2 (1 + \nu_{21})$$
(C)

$$(1 - 4\nu_{31}) \left(1 - \nu_{21} - 2\nu_{31}^2 \frac{E_1}{E_3} - 2\left(1 - \nu_{31}^2 \frac{E_1}{E_3} \right) \right) = 4\nu_{31}^2 \left(1 + \nu_{21} \right)$$
(D)

$$(1 - 4\nu_{31})(-1 - \nu_{21}) = 4\nu_{31}^2(1 + \nu_{21}) \tag{E}$$

$$-(1-4\nu_{31})(1+\nu_{21}) = 4\nu_{31}^2(1+\nu_{21}) \tag{F}$$

$$-\left(1 - 4\nu_{31} + 4\nu_{31}^2\right)\left(1 + \nu_{21}\right) = 0\tag{G}$$

$$-\left(4\nu_{31}^2 - 4\nu_{31} + 1\right)\left(1 + \nu_{21}\right) = 0\tag{H}$$

$$-(2\nu_{31}-1)^2(1+\nu_{21})=0$$
 (I)

Multiplications/divisions done to get to this step

$$-(2\nu_{31}-1)^{2}(1+\nu_{21}) = (C_{1}-C_{2}) \times \frac{\left(1-\nu_{21}-2\nu_{31}^{2}\frac{E_{1}}{E_{3}}\right)^{2}}{1+\nu_{21}}$$
$$-\frac{(2\nu_{31}-1)^{2}(1+\nu_{21})^{2}}{\left(1-\nu_{21}-2\nu_{31}^{2}\frac{E_{1}}{E_{3}}\right)^{2}} = C_{1}-C_{2}$$

$$C_2 - C_1 = \left(\frac{(2\nu_{31} - 1)(1 + \nu_{21})}{1 - \nu_{21} - 2\nu_{31}^2 \frac{E_1}{E_3}}\right)^2$$
 (J)

Since $\nu_{21} = -1 \implies C_{11}$ and C_{12} are undefined, we know $C_{11} = C_{12}$ has only one solution remaining:

$$C_1 = C_2 \iff \nu_{31} = 0.5$$
 assuming $1 - \nu_{21} - 2\nu_{31}^2 \frac{E_1}{E_3} \neq 0$

References

[1] B Cohen, WM Lai, and VC Mow. "A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis". In: (1998).