The Chinese Remainder Theorem

The Chinese Remainder Theorem (CRT) is used to solve a set of different congruent equations with one variable but different moduli which are relatively prime as shown below:

$$X \equiv a_1 \pmod{m_1}$$

$$X \equiv a_2 \pmod{m_2}$$

. . .

$$X \equiv a_n \pmod{m_n}$$

CRT states that the above equations have a unique solution of the moduli are relatively prime.

$$X = (a_1M_1 M_1^{-1} + a_2M_2M_2^{-1} + ... + a_nM_nM_n^{-1}) \mod M$$

nesoacademy.org

The Chinese Remainder Theorem

$$X \equiv a_1 \pmod{m_1}$$
 $X \equiv 2 \pmod{3}$
 $X \equiv a_2 \pmod{m_2}$ $X \equiv 3 \pmod{5}$
 $X \equiv a_3 \pmod{m_3}$ $X \equiv 2 \pmod{7}$

Solution:

$$X = (a_1M_1 M_1^{-1} + a_2M_2M_2^{-1} + a_3M_3M_3^{-1}) \mod M$$

Given		To Find		
a ₁ = 2	$m_1 = 3$	M ₁	M ₁ -1	
$a_2 = 3$	$m_2 = 5$	M ₂	M ₂ -1	М
a ₃ = 2	m ₃ = 7	M ₃	M ₃ -1	

nesoacademy.org

The	Chinaga	0	J = 11 Th = = 11 = = =
ıne	Cninese	Remaind	der Theorem

Given		To Find		
a ₁ = 2	$m_1 = 3$	M₁	M ₁ -1	
$a_2 = 3$	$m_2 = 5$	M ₂	M ₂ -1	M=105
a ₃ = 2	m ₃ = 7	M ₃	M ₃ -1	
				- Introduction in the later to the later

Solution:

$$M = m_1 x m_2 x m_3$$

$$M = 3 \times 5 \times 7$$

$$M = 105$$

The Chinese Remainder Theorem

Given		To Find		
$a_1 = 2$	$m_1 = 3$	M ₁ =	M ₁ -1	
a ₂ = 3	$m_2 = 5$	M ₂ =	M ₂ -1	M=105
a ₃ = 2	$m_3 = 7$	M ₃ =	M ₃ -1	

$$M_1 = \frac{M}{m_1}$$

$$M_1 = \frac{105}{3}$$

$$M_1 = 35$$

$$M_2 = \frac{M}{m_2}$$

$$M_2 = \frac{105}{5}$$

$$M_2 = \frac{105}{5}$$

$$M_2 = 21$$

$$M_3 = \frac{M}{m_3}$$

$$M_3 = \frac{105}{7}$$

$$M_3 = \frac{105}{7}$$

$$M_3 = 15$$

The Chinese Remainder Theorem

Given		To Find		
a ₁ = 2	$m_1 = 3$	$M_1 = 35$	$M_1^{-1} = 2$	
$a_2 = 3$	$m_2 = 5$	M ₂ = 21	M ₂ -1=1	M=105
a ₃ = 2	m ₃ = 7	M ₃ = 15	M ₃ -1=1	

$$M_1 \times M_1^{-1} = 1 \mod m_1$$

35 x $M_1^{-1} = 1 \mod 3$
35 x 2 = 1 mod 3
 $M_1^{-1} = 2$

$$M_2 \times M_2^{-1} = 1 \mod m_2$$

 $21 \times M_2^{-1} = 1 \mod 5$
 $21 \times 1 = 1 \mod 5$
 $M_2^{-1} = 1$

$$M_3 \times M_3^{-1} = 1 \mod m_3$$

 $15 \times M_3^{-1} = 1 \mod 7$
 $15 \times 1 = 1 \mod 7$
 $M_3^{-1} = 1$

nesoacademy.org

4

The Chinese Remainder Theorem

Example 1: Solve the following equations using CRT

 $X \equiv 2 \pmod{3}$

 $X \equiv 3 \pmod{5}$

 $X \equiv 2 \pmod{7}$

Solution:

$$a_1 = 2$$
 $m_1 = 3$
 $M_1 = 35$
 $M_1^{-1} = 2$
 $a_2 = 3$
 $m_2 = 5$
 $M_2 = 21$
 $M_2^{-1} = 1$
 $M = 105$
 $a_3 = 2$
 $m_3 = 7$
 $M_3 = 15$
 $M_3^{-1} = 1$

 $X = (\alpha_1 M_1 M_1^{-1} + \alpha_2 M_2 M_2^{-1} + \alpha_3 M_3 M_3^{-1}) \mod M$

 $= (2x35x2 + 3x21x1 + 2x15x1) \mod 105$

= 233 mod 105

X = 23

nesoacademy.org