Первое задание по курсу «Пучки и когомологии в алгебраической геометрии». Весна 2025, 1й семестр.

Для участия в зачете или экзамене необходимо сдать не позднее 27 апреля с.г.

При сдаче задания большая просьба указывать разборчиво свои: Имя, Фамилию, курс, хотите ли вы сдавать зачет или экзамен.

Необходимым условием участия в зачете (экзамене) является листочек с вашими данными, сданный не позже указанной выше даты!

Задача 1. Морфизм схем $f\colon X\to Y$ называется *квазиконечным*, если для любой точки $y\in Y$ множество $f^{-1}(y)$ конечно. Покажите, что

- (1) всякий конечный морфизм является квазиконечным;
- (2) не всякий квазиконечный морфизм является конечным (приведите пример).

Задача 2. Размерностью схемы X, обозначаемой $\dim X$, мы называем размерность ее базисного топологического пространства. Для неприводимого замкнутого подмножества Z в X назовем его коразмерностью $\operatorname{codim}(Z,X)$ верхнюю грань целых чисел n таких, что существует строго возрастающая цепочка

$$Z = Z_0 \subsetneq Z_1 \subsetneq \cdots \subsetneq Z_n.$$

замкнутых неприводимых подмножеств, начинающаяся с Z.

Пусть X — целая схема конечного типа над некоторым полем. Покажите, что

- (1) $\dim X = \dim \mathcal{O}_P$ для всякой замкнутой точки $P \in X$. Здесь справа стоит размерность Крулля кольца \mathcal{O}_P .
- (2) Y замкнутое подмножество в X, тогда $\dim Y$ + $\operatorname{codim}(Y, X) = \dim X$.
- (3) Пусть U непустое открытое подмножество в X. Тогда $\dim U = \dim X$.

(4) Пусть теперь R — кольцо дискретного нормирования, содержащее свое поле вычетов. Проверьте, что для $X = \operatorname{Spec} R[t]$ утверждения (1)–(3) выше неверны.

Задача 3. Пусть $P_1, \ldots P_r$ и $Q_1, \ldots Q_s$ — наборы попарно не совпадающих точек на аффинной прямой \mathbb{A}^1 (Можно считать, что все происходит над некоторым алгебраически замкнутым полем). Предположим, что многообразия $\mathbb{A}^1 - \{P_1, \ldots P_r\}$ и $\mathbb{A}^1 - \{Q_1, \ldots Q_s\}$ изоморфны. Показать, что тогда r = s. Верно ли обратное утверждение?

Задача 4. Покажите, что схема X аффинна тогда и только тогда, когда существует конечный набор элементов $f_1, \ldots f_r \in A = \Gamma(X, \mathcal{O}_X)$ такой, что все открытые множества X_{f_i} аффинны и идеал $(f_1, \ldots f_r)$ — единичный.

Задача 5. Покажите, что для морфизма $(f, f^{\sharp}): X \to Y$ целых схем следующие условия эквивалентны:

- (1) Образ $f: sp(X) \to sp(Y)$ является плотным в sp(Y);
- (2) Гомоморфизм $f^{\sharp}: \mathcal{O}_{Y} \to f_{*}\mathcal{O}_{X}$ инъекция;
- (3) $f(\eta_X) = \eta_Y$, где η_X, η_Y общие точки X и Y, соответственно;
- (4) Образ $f: sp(X) \to sp(Y)$ содержит общую точку η_Y .