

Synergy Framework 3.1.0

DHCP Server

API Description

August 2011

Cambridge Silicon Radio Limited

Churchill House Cambridge Business Park Cowley Road Cambridge CB4 0WZ United Kingdom

Registered in England and Wales 3665875

Tel: +44 (0)1223 692000 Fax: +44 (0)1223 692001 www.csr.com

Contents

1	Introduction				
	1.1	Introduction and Scope	4		
2	Des	cription	5		
	2.1	Reference Model			
	2.2	Sequence Overview	5		
	2.3	Client State	7		
	2.4	IP Address	7		
	2.5	Lease Time	8		
		Rogue IP addresses			
3		R DHCP Server Primitives			
	3.1	Socket Primitives	9		
	3.2	CSR_DHCP_SERVER_CREATE	10		
	3.3	CSR_DHCP_SERVER_DESTROY	11		
		CSR_DHCP_SERVER_START			
	3.5	CSR_DHCP_SERVER_STOP_REQ	13		
	3.6	CSR_DHCP_SERVER_LEASES_GET	14		
	3.7	CSR_DHCP_SERVER_LEASES_SET	15		
	3.8	CSR_DHCP_SERVER_ROGUE_IP_ADDRESS	16		
4		ument References			

List of Figures

Figure 1: The CSR DHCP Server API shown relative to the applications	5
Figure 2: MSC for using the DHCP Server	6
List of Tables	
Table 1: List of DHCP Primitives	9
Table 2: CSR_IP_SOCKET_UDP_NEW Primitives	10
Table 3: CSR_IP_SOCKET_UDP_BIND Primitives	
Table 4: CSR_IP_SOCKET_UDP_DATA Primitives	
Table 5: CSR_IP_SOCKET_UDP_CLOSE Primitives	13
Table 6: CSR_IP_SOCKET_UDP_MULTICAST_SUBSCRIBE Primitives	14
Table 7: CSR_IP_SOCKET_UDP_MULTICAST_UNSUBSCRIBE Primitives	15
Table 8: CSR_IP_SOCKET_UDP_MULTICAST_INTERFACE Primitives	16
Table 22: Abbreviations and Definitions	18

1 Introduction

1.1 Introduction and Scope

This document describes the API for the CSR Dynamic Host Configuration Protocol (DHCP) Server.

The CSR DHCP Server described in this document is implemented as defined in RFC 2132. The following should be noted about the implementation:

- In section 4.1 in RFC 2131 it states that the server unicast DHCPOFFER and DHCPACK messages to the client's hardware address and 'yiaddr' address if the broadcast bit is not set and 'giaddr' is zero and 'ciaddr' is zero. This is not possible, as the CSR DHCP Server implementation uses the API described in [1], that API does not make that possible, and the messages are broadcast instead.
- The CSR DHCP Server will not offer a client on a different subnet an IP address, i.e. if the 'giaddr' is not zero in a DHCPDISCOVER message.
- The CSR DHCP Server does not probe the offered address with an ICMP Echo request message before
 a client is offered the IP address. It is in the interest of the client to check if the IP address offered is not
 used by anyone.

© Cambridge Silicon Radio Limited 2010 This material is subject to CSR's non-disclosure agreement.

2 Description

This section will give an overview of the CSR DHCP Server API.

2.1 Reference Model

Figure 1 illustrates the CSR DHCP Server API and its location relative to applications and CSR IP Socket API.

Figure 1: The CSR DHCP Server API shown relative to the applications

2.2 Sequence Overview

Figure 2 illustrates how the API of the CSR DHCP Server can be used. First, the application shall create a server with a CSR_DHCP_SERVER_CREATE_REQ. When the server has been created, it can be started with a CSR_DHCP_SERVER_START_REQ. The server can be stopped again with a CSR_DHCP_SERVER_STOP_REQ. When the server has been stopped, it will ignore all messages it receives from any clients. When the application does not want to use the server anymore it shall destroy the server. It can do so by sending a CSR_DHCP_SERVER_DESTROY_REQ, which will remove the server and all its leases again.

Figure 2: MSC for using the DHCP Server

If the application wants to change the leases, the application shall stop the server and then get the current leases with a CSR_DHCP_SERVER_LEASES_GET_REQ. When the leases has been changed they can be sent to the server with a CSR_DHCP_SERVER_LEASES_SET_REQ. When the server receives a CSR_DHCP_SERVER_LEASES_SET_REQ it will clear all the known leases and then use the leases received. For this reason, it is important that the server is not running from when the application gets the current leases to it sets the new one. This could give an inconsistency between the server's leases and the clients' leases as all leases updated in between the CSR_DHCP_SERVER_LEASES_GET_REQ and CSR_DHCP_SERVER_LEASES_GET_REQ and CSR_DHCP_SERVER_LEASES_SET_REQ will be lost. An MSC for this can be seen in Figure 3.

Figure 3: MSC for changing leases

The CSR_DHCP_SERVER_LEASES_GET_REQ can also be used by the application to get the current leases and e.g. show them to the user. In this case, the application does not need to send a CSR_DHCP_SERVER_STOP_REQ before the application sends the CSR_DHCP_SERVER_LEASES_GET_REQ signal.

The CSR_DHCP_SERVER_LEASES_SET_REQ can also be used for creating a binding between a client and an IP address. This is described in Section 2.4

2.3 Client State

The server uses the following internally states of a client.

- IDLE: The server has no knowledge of the client.
- OFFERED: If the client has been offered an IP address and a lease time.
- ACTIVE: If the client has an IP address and a lease time that has not expired.
- INACTIVE: If the client has an IP address but a lease time that has expired.

These states will decide which IP addresses clients will be offered by the server.

2.4 IP Address

A client will be offered an IP address depending of the state of the client.

OFFERED: The client will be offered the same IP address as already offered to the client.

- ACTIVE: The client will be offered the same IP address as it already has
- INACTIVE: The client will be offered the same IP address as it had earlier if the IP address is not already used by another client, i.e. in OFFERED or ACTIVE state. If no IP addresses can be found it will try to find an IP address as if the client was in IDLE stat.
- IDLE: If the client has requested an IP address the client will be offered that IP address if not used, else
 the server will find an IP address not used. A used IP address is an address used by a client in
 OFFERED, ACTIVE or INACTIVE state. If no IP addresses can be found it will use an IP address from a
 client in INACTIVE state if one exists.

The application can create a binding between a client and an IP address with the signal CSR_DHCP_SERVER_LEASES_SET_REQ. By doing this the client will be in either ACTIVE or INACTIVE state depending of the lease time given in the signal. The client will then be offered an IP address as described above. If the lease time is infinite, the client will be guaranteed to be offered the IP address specified in the signal.

One thing that should be noted is that internally the CSR DHCP Server implementation is using a socket listing on the broadcast address 255.255.255.255 on the DHCP server port 67 to receive broadcast messages. When this socket receives, a broadcast message it will send the message to all the servers that has been created and is started. It does this, as the CSR DHCP Server does not know which interface the message was received on. The server will then decide how to handle this message. For this reason if multiple servers is running they could all offer the client an IP address and it is then up to the client which one to accept.

2.5 Lease Time

The expiration time for the lease is chosen as follows:

- If the client has requested a specific lease, the client will get that lease rounded down to whole hours. Except if the lease is below 1 hour the lease will be 1 hour and if the lease is above 255 hours, the lease will be 255 hours. If the requested lease time is infinite, the client will get an infinite lease time.
- If the client has not requested a specific lease time and is in ACTIVE state then the client will get the expiration time previously assigned to the client.
- If the client has not requested a specific lease time and the client is not in ACTIVE state the client will
 get the default lease time specified in a CSR_DHCP_SERVER_CREATE_REQ.

2.6 Rogue IP addresses

When the server discovers that a suggested IP address is already in use a CSR_DHCP_SERVER_ROGUE_IND signal is sent to the application. The server will discover this when a client sends a DHCPDECLINE message to the server. This indicates of a possible configuration problem. The server will mark the address as not available and not offer the address to a client again. The list of not available addresses will be cleared again when the server receives a CSR_DHCP_SERVER_START_REQ after the server has been stopped.

3 CSR DHCP Server Primitives

This section introduces all the primitives and parameters used in the CSR DHCP Server API. Detailed information can be found in the csr_dhcp_server_prim.h file.

3.1 Socket Primitives

Primitives	Reference
CSR_DHCP_SERVER_CREATE_REQ	See Section 3.2
CSR_DHCP_SERVER_CREATE_CFM	See Section 3.2
CSR_DHCP_SERVER_DESTROY_REQ	See Section 3.3
CSR_DHCP_SERVER_DESTROY_CFM	See Section 3.3
CSR_DHCP_SERVER_START_REQ	See Section 3.4
CSR_DHCP_SERVER_START_CFM	See Section 3.4
CSR_DHCP_SERVER_STOP_REQ	See Section 3.5
CSR_DHCP_SERVER_STOP_CFM	See Section 3.5
CSR_DHCP_SERVER_LEASES_GET_REQ	See Section 3.6
CSR_DHCP_SERVER_LEASES_GET_CFM	See Section 3.6
CSR_DHCP_SERVER_LEASES_SET_REQ	See Section 3.7
CSR_DHCP_SERVER_LEASES_SET_CFM	See Section 3.7
CSR_DHCP_SERVER_ROGUE_IP_ADDRESS_IND	See Section 3.8

Table 1: List of DHCP Primitives

3.2 CSR_DHCP_SERVER_CREATE

Parameters	type	qid	ipAddress	network	networkMask	gateway	dns1	dns2	leaseTime	serverHandle	result
Primitives	-										
CSR_DHCP_SERVER_CREATE_REQ	\	1	\	✓	1	1	1	✓	1		
CSR_DHCP_SERVER_CREATE_CFM	>									✓	1

Table 2: CSR_DHCP_SERVER_CREATE Primitives

Description

Create a new DHCP server and receive a handle for it.

Parameters

type CSR_DHCP_SERVER_CREATE_REQ/CFM

qid The identity of the calling task.

ipAddress Address to listen to -- if part of network it won't be announced

network Network to announce, e.g. 192.168.0.0

networkMask Subnet Mask e.g. 255.255.255.0

gateway Default gateway

dns1 Domain Name Server

dns2 Domain Name Server

leaseTime Default lease lifetime in hours, 0 == infinite. If the client does not suggest a lease, then this

lease will be used. The lease offered to a client will always be between 1 hour and 255

hours, or infinite.

serverHandle A unique server handle that is used in subsequent server communication

result

• CSR_RESULT_SUCCESS: If the server has been created

 CSR_RESULT_FAILURE: If e.g. no more sockets is available, the port 67 is already in use, not enough permissions to listen on port 67, the IP address is not

valid

Function prototype

The following function is used for constructing and sending this primitive:

3.3 CSR_DHCP_SERVER_DESTROY

Parameters			
Primitives	type	serverHandle	result
CSR_DHCP_SERVER_DESTROY_REQ	✓	✓	
CSR_DHCP_SERVER_DESTROY_CFM	1	1	✓

Table 3: CSR_DHCP_SERVER_DESTROY Primitives

Description

Destroy the server again.

Parameters

type CSR_DHCP_SERVER_DESTROY_REQ/CFM

serverHandle A unique handle for the server

result CSR_RESULT_SUCCESS

Function prototype

The following function is used for constructing and sending this primitive:

 ${\tt CsrDhcpServerDestroyReqSend} \ ({\tt CsrDhcpServerHandle}\ server{\tt Handle}) \ ;$

3.4 CSR_DHCP_SERVER_START

Parameters			
Primitives	type	serverHandle	result
CSR_DHCP_SERVER_START_REQ	✓	1	
CSR_DHCP_SERVER_START_CFM	1	1	1

Table 4: CSR_DHCP_SERVER_START Primitives

Description

Start the server.

Parameters

Type CSR_DHCP_SERVER_START_REQ/CFM

serverHandle A unique handle for the server

result • CSR_RESULT_SUCCESS: If the server has been started

CSR_RESULT_FAILURE: If the server is already started

Function prototype

The following function is used for constructing and sending this primitive:

CsrDhcpServerStartReqSend(CsrDhcpServerHandle serverHandle);

3.5 CSR_DHCP_SERVER_STOP_REQ

Parameters			
Primitives	type	serverHandle	result
CSR_DHCP_SERVER_STOP_REQ	✓	1	
CSR_DHCP_SERVER_STOP_CFM	1	1	✓

Table 5: CSR_DHCP_SERVER_STOP Primitives

Description

Stop the server.

Parameters

type CSR_DHCP_SERVER_STOP_REQ/CFM

serverHandle A unique handle for the server

result • CSR_RESULT_SUCCESS: If the server has been stopped

CSR_RESULT_FAILURE: If the server could not be stopped

Function prototype

The following function is used for constructing and sending this primitive:

CsrDhcpServerStopReqSend(CsrDhcpServerHandle serverHandle);

3.6 CSR_DHCP_SERVER_LEASES_GET

Parameters				
Primitives	type	serverHandle	leasesCount	leases
CSR_DHCP_SERVER_LEASES_GET_REQ	1	1		
CSR_DHCP_SERVER_LEASES_GET_CFM	1	1	1	1

Table 6: CSR_DHCP_SERVER_LEASES_GET Primitives

Description

Get the current leases.

Parameters

type CSR_DHCP_SERVER_LEASES_GET_REQ/CFM

serverHandle A unique handle for the server

leasesCount The number of leases

leases A pointer to the leases

The leases are of the type CsrDhcpServerLease.

```
typedef struct
{
    CsrUint8    ip[4];
    CsrUint8    mac[6];
    CsrTimeUtc    expiryTime;
} CsrDhcpServerLease;
```

ip The IP address of the client

mac The hardware address of the client

infinite. If sec == 0x00 and msec == 0x00 the lease has expired

Function prototype

The following function is used for constructing and sending this primitive:

CsrDhcpServerLeasesGetReqSend(CsrDhcpServerHandle serverHandle);

3.7 CSR_DHCP_SERVER_LEASES_SET

Parameters					
Primitives	type	serverHandle	leasesCount	leases	result
CSR_DHCP_SERVER_LEASES_SET_REQ	1	1	✓	1	
CSR_DHCP_SERVER_LEASES_SET_CFM	1	1			1

Table 7: CSR_DHCP_SERVER_LEASES_SET Primitives

Description

Set the leases.

Parameters

type CSR_DHCP_SERVER_LEASES_SET_REQ/CFM

serverHandle A unique handle for the server

leasesCount The number of leases

leases A pointer to the leases. See section 3.6 for a description.

result CSR_RESULT_SUCCESS

Function prototype

The following function is used for constructing and sending this primitive:

3.8 CSR_DHCP_SERVER_ROGUE_IP_ADDRESS

Parameters			
Primitives	type	serverHandle	ipAddress
CSR_DHCP_SERVER_ROGUE_IP_ADDRESS_IND	✓	✓	✓

Table 8: CSR_DHCP_SERVER_ROGUE_IP_ADDRESS Primitives

Description

Sent to the application when an offered IP address is already in use

Parameters

type CSR_DHCP_SERVER_ROGUE_IP_ADDRESS_IND

serverHandle A unique handle for the server

ip The IP address

4 Document References

Ref	Title
[1]	CSR Synergy Socket API Description

Terms and Definitions

CSR	Cambridge Silicon Radio
DHCP	Dynamic Host Configuration Protocol

Table 9: Abbreviations and Definitions

Document History

	Revision	Date	History
	1	Nov 2010	Initial revision
Ī	2	Aug 1011	Ready for release 3.1.0

TradeMarks, Patents and Licences

Unless otherwise stated, words and logos marked with $^{\text{TM}}$ or $^{\text{®}}$ are trademarks registered or owned by CSR plc or its affiliates. Bluetooth® and the Bluetooth logos are trademarks owned by Bluetooth SIG, Inc. and licensed to CSR. Other products, services and names used in this document may have been trademarked by their respective owners.

The publication of this information does not imply that any licence is granted under any patent or other rights owned by CSR plc.

CSR reserves the right to make technical changes to its products as part of its development programme.

While every care has been taken to ensure the accuracy of the contents of this document, CSR cannot accept responsibility for any errors.

No statements or representations in this document are to be construed as advertising, marketing, or offering for sale in the United States imported covered products subject to the Cease and Desist Order issued by the U.S. International Trade Commission in its Investigation No. 337-TA-602. Such products include SiRFstarIII™ chips that operate with SiRF software that supports SiRFInstantFix™, and/or SiRFLoc® servers, or contains SyncFreeNav functionality.

Life Support Policy and Use in Safety-critical Compliance

CSR's products are not authorised for use in life-support or safety-critical applications. Use in such applications is done at the sole discretion of the customer. CSR will not warrant the use of its devices in such applications.

Performance and Conformance

Refer to www.csrsupport.com for compliance and conformance to standards information.