# HorNets: Learning from Discrete and Continuous Signals with Routing Neural Networks

Boshko Koloski<sup>1,2</sup> Nada Lavrač<sup>1</sup>

Blaž Škrlj<sup>1</sup>

<sup>1</sup>Jožef Stefan Institute, Ljubljana, Slovenia <sup>2</sup>Jožef Stefan Postgraduate School, Ljubljana, Slovenia

#### **Motivation**

- Complex Data Modeling: Neural networks struggle with modelling logic in high dimensions.
- High-Dimensional Challenges: Limited instances in high-dimensional tabular data demand data-efficient models.
- Neuro-Symbolic Integration: Combining neural networks with propositional logic enhances reasoning capabilities.
- Current Model Limitations: Existing models often fail to handle both discrete and continuous data effectively.

## **PolyClip Activation Function**

$$\operatorname{polyClip}(x,k) = \operatorname{clip}(x^{2 \cdot k + 1}, -1, 1) = \frac{x^{2k + 1}}{\max\{|x^{2k + 1}|, 1\}} = \begin{cases} -1; x \le -1 \\ 1; x \ge 1 \\ x^{2k + 1}; \text{ else.} \end{cases}$$

- Output Range: Maps inputs to {-1, 0, 1}, enabling logical interpretations.
- Logical Expressiveness: Capable of modeling negation and conjunction (AND, NOT).
- Probabilistic Link: Connects to zero-order (propositional) logic.



Figure 1. PolyClip Activation Function

### Modelling High-Dimensional Real-Life Biomedical Data

 Consistently ranks among the top three performers across 14 datasets, outperforming strong baselines such as AutoML-based TPOT.



#### **HorNets Architecture**



Figure 2. HorNets Architecture Overview

- Routing Operator (CatRouter): Distinguishes between discrete (CatInt) and continuous (LinAtt) data based on input cardinality (binary vs. high cardinality).
- Categorical Interaction Module (CatInt): Models feature interactions using factorization and incorporates pseudovariables for efficient handling of higher-order interactions. The key component is combActOp. This operator enables the traversal of considered feature combination space with incremental factorization (and activation).

$$\mathbf{F} = \mathsf{combActOp}(\mathbf{M}, x, \mathsf{CombIndices}), \quad x_0 = \mathsf{dropout}(\mathbf{F}),$$
  $\mathsf{x}_1 = \mathsf{softmax}(x_0), \quad x_2 = x_1 \cdot \mathbf{w} + b.$ 

 $combActOp(\mathbf{M}, \mathbf{x}, CombIndices) =$ 

 $\mathbf{F}[:, \text{combIndex}] = \text{polyClip}(x[:, \text{CombIndices}] \cdot \mathbf{M}[:, \text{CombIndices}]),$ 

• Linear Attention Module (LinAtt): Handles continuous data through linear attention mechanisms and utilizes PolyClip activation for enhanced interpretability.

$$x_0 = \frac{x}{\max(\|x\|_p, \epsilon)}, \quad x_1 = \text{polyClip}(x_0) \otimes x, \quad x_2 = x_1 \cdot \mathbf{w} + b.$$

## **Modelling Binary Logic**

We aim to model arbitrary binary logical clauses of the form  $OP(\{0,1\}^{a\times b}) \to \{0,1\}^a$ , where b > 2 and  $OP \in \{AND, XOR, NOT, XNOR\}$ .

 Achieves perfect F1 scores on logical operations; and outperforms Logistic Regression, Random Forest, MLP, and TabNET.

| Problem       | TabNet            | Random<br>Forest  | MLP               | Logistic<br>Regression | HorNets<br>-ReLU  | HorNets<br>-PolyClip |
|---------------|-------------------|-------------------|-------------------|------------------------|-------------------|----------------------|
| and(dim=4)    | $0.204 \pm 0.136$ | $1.0 \pm 0.0$     | $0.905 \pm 0.134$ | $1.0 \pm 0.0$          | $1.0 \pm 0.0$     | $1.0 \pm 0.0$        |
| and(dim=32)   | $0.331 \pm 0.147$ | $0.901 \pm 0.122$ | $0.899 \pm 0.131$ | $0.912 \pm 0.107$      | $0.821 \pm 0.21$  | $1.0 \pm 0.0$        |
| and(dim=128)  | $0.463 \pm 0.085$ | $0.484 \pm 0.093$ | $0.655 \pm 0.178$ | $0.627 \pm 0.185$      | $0.811 \pm 0.209$ | $1.0 \pm 0.0$        |
| not(dim=4)    | $0.0 \pm 0.0$     | $1.0 \pm 0.0$     | $1.0 \pm 0.0$     | $1.0 \pm 0.0$          | $1.0 \pm 0.0$     | $1.0 \pm 0.0$        |
| not(dim=32)   | $0.146 \pm 0.094$ | $1.0 \pm 0.0$     | $1.0 \pm 0.0$     | $1.0 \pm 0.0$          | $1.0 \pm 0.0$     | $1.0 \pm 0.0$        |
| not(dim=128)  | $0.521 \pm 0.169$ | $1.0 \pm 0.0$     | $1.0 \pm 0.0$     | $1.0 \pm 0.0$          | $1.0 \pm 0.0$     | $1.0 \pm 0.0$        |
| or(dim=4)     | $0.574 \pm 0.211$ | $1.0 \pm 0.0$     | $0.961 \pm 0.125$ | $1.0 \pm 0.0$          | $1.0 \pm 0.0$     | $1.0 \pm 0.0$        |
| or(dim=32)    | $0.48 \pm 0.175$  | $0.91 \pm 0.123$  | $0.87 \pm 0.168$  | $0.92 \pm 0.078$       | $1.0 \pm 0.0$     | $1.0 \pm 0.0$        |
| or(dim=128)   | $0.285 \pm 0.073$ | $0.558 \pm 0.244$ | $0.764 \pm 0.199$ | $0.699 \pm 0.227$      | $1.0 \pm 0.0$     | $1.0 \pm 0.0$        |
| xnor(dim=4)   | $0.093 \pm 0.067$ | $1.0 \pm 0.0$     | $1.0 \pm 0.0$     | $1.0 \pm 0.0$          | $1.0 \pm 0.0$     | $1.0 \pm 0.0$        |
| xnor(dim=32)  | $0.19 \pm 0.086$  | $1.0 \pm 0.0$     | $0.948 \pm 0.164$ | $1.0 \pm 0.0$          | $1.0 \pm 0.0$     | $1.0 \pm 0.0$        |
| xnor(dim=128) | $0.623 \pm 0.261$ | $1.0 \pm 0.0$     | $1.0 \pm 0.0$     | $1.0 \pm 0.0$          | $1.0 \pm 0.0$     | $1.0 \pm 0.0$        |
| xor(dim=4)    | $0.511 \pm 0.18$  | $1.0 \pm 0.0$     | $0.747 \pm 0.15$  | $0.497 \pm 0.189$      | $1.0 \pm 0.0$     | $1.0 \pm 0.0$        |
| xor(dim=32)   | $0.436 \pm 0.125$ | $0.678 \pm 0.158$ | $0.647 \pm 0.237$ | $0.554 \pm 0.188$      | $0.911 \pm 0.172$ | $1.0 \pm 0.0$        |
| xor(dim=128)  | $0.45 \pm 0.097$  | $0.473 \pm 0.146$ | $0.505 \pm 0.143$ | $0.584 \pm 0.107$      | $0.966 \pm 0.082$ | $1.0 \pm 0.0$        |

Table 1. Modelling of high-dimensional binary logic.

### **Key Takeaways**

- State-of-the-Art Performance: HorNets excel on both synthetic and real-life datasets.
- Novel Activation Function: Introduction of PolyClip with a link to propositional logic.
- Routing Mechanism: Efficiently distinguishes between discrete and continuous data.
- Logical Clause Retrieval: Capable of extracting interpretable logical expressions, including noisy XNOR.
- Superior to Baselines: Outperforms gradient-boosted trees and AutoML classifiers.