```
import pandas as pd
In [1]:
         import warnings
         warnings.filterwarnings("ignore")
In [2]: data=pd.read csv("/home/placement/Downloads/fiat500.csv")
In [3]: data1=data.loc[(data.model=='lounge')]
          data1
Out[3]:
                  ID model engine power age in days
                                                         km previous owners
                                                                                  lat
                                                                                           lon
                                                                                                price
             0
                   1 lounge
                                      51
                                                 882
                                                      25000
                                                                         1 44.907242
                                                                                       8.611560
                                                                                                8900
             3
                   4 lounge
                                      51
                                                2739
                                                     160000
                                                                         1 40.633171 17.634609
                                                                                                6000
             6
                   7 lounge
                                      51
                                                 731
                                                      11600
                                                                          1 44.907242
                                                                                       8.611560
                                                                                               10750
             7
                                                1521
                                                      49076
                                                                          1 41.903221 12.495650
                                                                                                9190
                     lounge
                                      51
                                                 366
                                                      17500
                                                                         1 45.069679
                                                                                      7.704920
                                                                                               10990
             11
                  12 lounge
                                      51
           1528
               1529
                     lounge
                                      51
                                                2861 126000
                                                                          1 43.841980 10.515310
                                                                                                5500
           1529
                1530
                     lounge
                                      51
                                                 731
                                                      22551
                                                                         1 38.122070 13.361120
                                                                                                9900
           1530
               1531 lounge
                                      51
                                                 670
                                                      29000
                                                                         1 45.764648
                                                                                       8.994500
                                                                                               10800
           1534
                1535
                     lounge
                                                3835
                                                     112000
                                                                                       8.666870
                                                                                                4600
                                      74
                                                                          1 45.845692
          1536 1537 lounge
                                      51
                                                2557
                                                      80750
                                                                         1 45.000702
                                                                                      7.682270
                                                                                                5990
         1094 rows × 9 columns
In [4]: data1=data.drop(['lat','lon','lon'],axis=1)
In [5]: data1=pd.get dummies(data1)
```

localhost:8888/notebooks/ridge27.ipynb

In [6]: data1

Out[6]:

	ID	engine_power	age_in_days	km	previous_owners	price	model_lounge	model_pop	model_sport
0	1	51	882	25000	1	8900	1	0	0
1	2	51	1186	32500	1	8800	0	1	0
2	3	74	4658	142228	1	4200	0	0	1
3	4	51	2739	160000	1	6000	1	0	0
4	5	73	3074	106880	1	5700	0	1	0
1533	1534	51	3712	115280	1	5200	0	0	1
1534	1535	74	3835	112000	1	4600	1	0	0
1535	1536	51	2223	60457	1	7500	0	1	0
1536	1537	51	2557	80750	1	5990	1	0	0
1537	1538	51	1766	54276	1	7900	0	1	0

1538 rows × 9 columns

```
In [7]: y=data1['price']
x=data1.drop('price',axis=1)
```

```
In [8]: from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test=train_test_split(x,y,test_size=0.33,random_state=42)
```

```
In [10]: from sklearn.model selection import GridSearchCV
         from sklearn.linear model import Ridge
         alpha = [1e-15, 1e-10, 1e-8, 1e-4, 1e-3, 1e-2, 1e-1, 1, 5, 10, 20, 30]
         ridge = Ridge()
         parameters = {'alpha':alpha}
         ridge regressor = GridSearchCV(ridge, parameters)
         ridge regressor.fit(X train, Y train)
Out[10]:
          ▶ GridSearchCV
          ▶ estimator: Ridge
                ▶ Ridge
In [11]: ridge_regressor.best_params_
Out[11]: {'alpha': 30}
In [12]: ridge=Ridge(alpha=30)
         ridge.fit(X train,Y train)
         y_pred_ridge=ridge.predict(X_test)
In [15]: from sklearn.metrics import mean squared error
         Ridge Error=mean squared error(y pred ridge, Y test)
         Ridge Error
Out[15]: 583469.403836385
```

Out[16]:

	index	price	predicted	ID
0	481	7900	5900.920030	0
1	76	7900	7213.135940	1
2	1502	9400	9797.090447	2
3	669	8500	9727.400047	3
4	1409	9700	9976.565475	4
503	291	10900	10071.495566	503
504	596	5699	6309.976843	504
505	1489	9500	9945.637546	505
506	1436	6990	8314.354246	506
507	575	10900	10386.087480	507

508 rows × 4 columns

```
In [17]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='price',data=Results.head(50))
sns.lineplot(x='ID',y='predicted',data=Results.head(50))
plt.plot()
```

Out[17]: []

In []: