

Lenguajes Formales y de Programación

Práctica1: Trabajo teórico-práctico

Sección: A

Nombre: Registro académico:

Mariano Francisco Camposeco Camposeco 202030987

1. Creación de la expresión regular que describa el patrón de cada token.

1.1. Identificador:

Expresión regular: ([L])+.([0-9])*

1.2. Número:

Expresión regular: [0-9]+

1.3. Decimal:

Expresión regular: [0-9]+((.).(0-9)+)*

1.4. Puntuación:

Expresión regular: ((.)|(,)|(;)|(:))+

1.5. Operador:

Expresión regular: ((+)|(-)|(*)|(/)|(%))+

1.6. Agrupación:

Expresión regular: $((()|())|([)|(])|(\{)|(\}))+$

2. Gramática regular de cada token.

2.1. Identificador:

Diagrama autómata finito no determinista Método de Thomson: Identificador

Tabla de transición

FT	е	L	[0-9]
s0	{s0,s1}=s0	∂(s0,L)=s2	{ (s0, [0-9]) } ={}
s2	{s2}=s1	{ (s2,L) } =s2	∂(s2, [0-9]) =s2

Optimizar - Tabla de transición

FT	е	L	[0-9]	
s0	{s0,s1}=s0	∂(s0,L)=s1	{ (s0, [0-9]) } ={}	
s2	{s2}=s1	{ (s2,L) } =s1	∂(s2, [0-9]) =s1	

Definición formal AFD: $A=(Q,\Sigma,\partial,A,F)$

1.Q={s0, s1}

2.s0

3. $\Sigma = \{[a-z], [A-Z], [0-9]\}$

 $4.F = {s1}$

5. Función de transición

$$\partial(S0, [L]) = S1$$
 $\partial(S1, [0-9]) = S1$ $\partial(S1, [L]) = S1$

2.2. Número:

Tabla de transición

FT	е	[0-9]			
s0	{s0,s1}=s0	{ (s0, [0-9]) } =s2			
s2	{s2}=s1	∂(s2, [0-9]) =s2			

Optimizar - Tabla de transición

FT	е	[0-9]			
s0	{s0,s1}=s0	{ (s0, [0-9]) } =s1			
s2	{s2}=s1	∂ (s1, [0-9]) =s1			

Definición formal AFD: $A=(Q, \Sigma, \partial, A, F)$

1.Q={s0, s1}

2.s0

3. $\Sigma = \{[0-9]\}$

 $4.F={s1}$

5. Función de transición

 $\partial(S0, [0-9]) = S1$

 $\partial(S1, [0-9]) = S1$

2.3. Decimal:

Definición formal AFD: $A=(Q,\Sigma,\partial,A,F)$

1.Q={s0, s1,s2,s3}

2.s0

3. $\Sigma = \{[0-9],(.)\}$

4.F={s3}

5. Función de transición

 $\partial(S0, [0-9]) = S1$

∂(S1, (.)) = S2

 $\partial(S1, [0-9]) = S1$

 $\partial(S2, [0-9]) = S3$

 $\delta(S3, [0-9]) = S3$

2.4. Puntuación:

Tabla de transición

FT	е		,	;	:
s0	{s0,s1,s2,s3,s4}=s0	{ (s0, [.]) } =s5	{ (s0, [,]) } =s5	{ (s0, [;]) } =s5	{ (s0, [:]) } =s5
S5	{s5}=s1	{ (s1, [.]) } =s5			

Optimizar - Tabla de transición

FT	е		,	;	:
s0	{s0,s1,s2,s3,s4}=s0	{ (s0, [.]) } =s1	{ (s0, [,]) } =s1	{ (s0, [;]) } =s1	{ (s0, [:]) } =s1
S5	{s5}=s1	{ (s1, [.]) } =s1			

Definición formal AFD: $A=(Q, \Sigma, \partial, A, F)$

1.Q={s0, s1}

- 2.s0
- 3. $\Sigma = \{(.), (,), (;), (:)\}$
- $4.F={s1}$
- 5. Función de transición

$$\partial(SO, (.)) = S1$$
 $\partial(SO, (,)) = S1$ $\partial(SO, (;)) = S1$ $\partial(SO, (:)) = S1$

$$\partial(S1, (.)) = S1$$
 $\partial(S1, (.)) = S1$ $\partial(S1, (.)) = S1$ $\partial(S1, (.)) = S1$

2.5. Operador:

Definición formal AFD: $A=(Q,\Sigma,\partial,A,F)$

- 1.Q={s0, s1}
- 2.s0
- 3. $\Sigma = \{(+), (-), (*), (/), (%)\}$
- $4.F={s1}$
- 5. Función de transición

$$\partial(SO, (+)) = S1 \quad \partial(SO, (-)) = S1 \quad \partial(SO, (*)) = S1 \quad \partial(SO, (/)) = S1 \quad \partial(SO, (%)) = S1$$

$$\partial(S1, (+)) = S1 \quad \partial(S1, (-)) = S1 \quad \partial(S1, (*)) = S1 \quad \partial(S1, (/)) = S1 \quad \partial(S1, (%)) = S1$$

2.6. Agrupación:

- $1.Q=\{s0, s1\}$
- 2.s0
- 3. $\Sigma = \{((), ()), ([), (]), (\{), (\})\}$
- $4.F={s1}$
- 5. Función de transición

$$\partial(SO, (()) = S1 \quad \partial(SO, ()) = S1 \quad \partial(SO, ([)) = S1 \quad \partial(SO, ([))$$

$$\partial(S1, (()) = S1 \quad \partial(S1, ())) = S1 \quad \partial(S1, ([)) = S1 \quad \partial(S1, ([))) = S1 \quad \partial(S1, (\{))) = S1$$

- 3. AFD de cada token.
- 3.1. Identificador

3.2.

3.3.

3.4.

3.5.

3.6.

- 4. Creación del AFD que acepte todos los tokens
- 4.1. Diagrama de transiciones del AFD

4.2. Tabla de transiciones del AFD

FT	s0	s1	s2	s3	s4	s5	s6	s7
L	∂ (s0, [L])=s1	∂(s1,						
		[L])=s1						
[0-9]	∂ (s0, [0-9])=s2	∂(s1, [0-	∂(s2, [0-	∂(s3, [0-	∂(s4, [0-			
		9])=s1	9])=s2	9])=s4	9])=s4			
(.)	∂(s0, (.))=s5		∂(s2,			∂(s5,		
			(.))=s3			(.))=s5		
(,)	∂(s0, (,))=s5					∂(s5,		
						(,))=s5		
(;)	∂(s0, (;))=s5					∂(s5,		
						(;))=s5		
(:)	∂(s0, (:))=s5					∂(s5,		
						(:))=s5		
(+)	∂(s0, (+))=s7							∂ (s7, (+))=s7
(-)	∂(s0, (-))=s7							∂(s7, (-))=s7
(*)	∂(s0, (*))=s7							∂(s7, (*))=s7
(/)	∂(s0, (/))=s7							∂(s7, (/))=s7
(%)	∂(s0, (%))=s7							∂(s7, (%))=s7

(()	∂(s0, (())=s6			∂(s6, (()	
)=s6	
())	∂(s0, ()))=s6			∂(s6, ())	
)=s6	
([)	∂(s0, ([))=s6			∂(s6, ([))=s6	
(])	∂(s0, (]))=s6			∂(s6, (]))=s6	
({)	∂(s0, ({))=s6			∂(s6, ({))=s6	
(})	∂(s0, (}))=s6			∂ (s6, (}))=s6	