

Institut für Algebra und Geometrie Prof. Dr. Wilderich Tuschmann Dr. Rafael Dahmen Dr. Elisa Hartmann Martin Günther, M. Sc.

Winter-Semester 2020/2021

Lineare Algebra I

Musterlösung zu Übungsblatt 5

07.12.20

Aufgabe 1 (*Gruppen*)

(10 Punkte)

a) Beweisen Sie: In jeder Gruppe (G, *) gilt für Elemente $x, y, a \in G$:

$$a*x = a*y \iff x = y \iff x*a = y*a$$

b) Es sei (G, *) eine Gruppe und $a, b \in G$. Zeigen Sie:

$$(ab = ba) \iff \forall n \in \mathbb{N} : (ab)^n = a^n b^n$$

c) Beweisen Sie mittels vollständiger Induktion, dass $|\mathscr{S}(n)| = n!$ für alle $n \in \mathbb{N}$ gilt. Dabei bezeichnet $\mathscr{S}(n)$ die symmetrische Gruppe auf n Elementen und $n! = 1 \cdot 2 \cdots n$ die Fakultät von n.

Hinweis: Zeigen Sie, dass die Mengen

$$M_k := \{ \sigma \in \mathcal{S}(n+1) \mid \sigma(n+1) = k \}$$

für $k \in \{1, ..., n+1\}$ alle gleich groß sind, und $M_{n+1} \cong \mathcal{S}(n)$ gilt.

Außerdem ist jedes Element von $\mathcal{S}(n+1)$ in genau einer der Mengen M_1, \ldots, M_{n+1} enthalten.

Lösung zu Aufgabe 1

a) Wenn x = y gilt, gilt offenbar auch a * x = a * y, denn wir multiplizieren ja zweimal dasselbe Element mit a. Außerdem folgt auch x * a = y * a.

Da a in G ein Inverses a^{-1} hat, haben wir auch die folgenden Implikationen:

$$a * x = a * y \implies a^{-1} * (a * x) = a^{-1} * (a * y)$$

$$\implies (a^{-1} * a) * x = (a^{-1} * a) * y$$

$$\implies e_G * x = e_G * y$$

$$\implies x = y$$

Im zweiten Schritt benutzen wir die Assoziativität der Gruppe und danach die Definitionen von Inversem und Neutralelement.

Analog zeigt man auch die Folgerung $x * a = y * a \implies x = y$.

b) Wir zeigen "←":

Für n=2 erhalten wir aus der rechten Aussage abab=aabb. mit Teilaufgabe a) können wir "kürzen":

$$a(bab) = a(abb) \implies bab = abb \implies (ba)b = (ab)b \implies ba = ab.$$

Wir zeigen "⇒":

Nun sei also ab = ba. Wir führen den Beweis mit vollständiger Induktion:

Induktionsbeginn: Für n = 1 gilt offenbar $(ab)^1 = ab = ba = b^1a^1$.

Induktionsannahme: Für ein $n \in \mathbb{N}$ gilt $(ab)^n = a^n b^n$

Induktionssschluss: Wegen ab = ba gilt auch $(ab)^n = (ba)^n$. Wir benutzen die Assoziativität der Halbgruppe, um Klammern zu versetzen:

$$(ab)^{n+1} = \underbrace{(ab)(ab)\dots(ab)(ab)}_{n+1 \text{ mal } ab} = a\underbrace{(ba)(b\dots a)(ba)}_{n \text{ mal } ba} b = a(ba)^n b = a(ab)^n b = a(a^nb^n)b = a^{n+1}b^{n+1}$$

Somit gilt die Induktionsannahme auch für n + 1.

Allgemein sagt die Gleichung ab = ba aus, dass die Reihenfolge der Faktoren in einem Produkt aus beliebig vielen a und b keine Rolle spielt.

c) Induktionsbeginn: Für n=1 gibt es nur eine Bijektion $1 \to 1$, also gilt $|\mathscr{S}(1)|=1=1!$ Induktionsannahme: Für ein $n \in \mathbb{N}$ gilt $|\mathscr{S}(n)|=n!$

Induktionsschluss: Die Mengen

$$M_k := \{ \sigma \in \mathcal{S}(n+1) \mid \sigma(n+1) = k \}.$$

sind disjunkt und ergeben vereinigt ganz $\mathcal{S}(n+1)$.

Für jede Permutation $\sigma \in M_k$ betrachten wir nun die Permutation $\tilde{\sigma} := (k, n+1) \circ \sigma$, wobei (k, n+1) wie in der Vorlesung die Permutation bezeichnet, die k und n+1 vertauscht und alle anderen Elemente gleich lässt. Es gilt offenbar $\tilde{\sigma}(n+1) = n+1$, also $\tilde{\sigma} \in M_{n+1}$.

Die Abbildung

$$f: M_k \to M_{n+1}, \quad \sigma \mapsto (k, n+1) \circ \sigma$$

ist eine Bijektion mit inverser Abbildung

$$f^{-1}: M_{n+1} \to M_k, \quad \sigma \mapsto (k, n+1) \circ \sigma$$

das heißt, M_k und M_{n+1} haben gleich viele Elemente. Außerdem sind die Elemente von M_{n+1} Permutationen, die n+1 fest lassen und $\{1, \ldots n\}$ beliebig permutieren, also ergibt die Einschränkung auf $\{1, \ldots n\}$ eine Bijektion zwischen M_{n+1} und $\mathcal{S}(n)$.

Das bedeutet, die n+1 Mengen $M_1, \ldots M_{n+1}$ haben jeweils $|\mathscr{S}(n)| = n!$ Elemente. Insgesamt hat $\mathscr{S}(n+1)$ also $(n+1) \cdot n! = (n+1)!$ Elemente.

Aufgabe 2 (Ringhomomorphismen zwischen Körpern) (10 Punkte)

Es seien K_1, K_2 zwei Körper (und damit auch Ringe) und $\varphi \colon K_1 \to K_2$ ein Ringhomomorphismus. Beweisen Sie, dass φ dann injektiv ist.

Lösung zu Aufgabe 2

Es seien $a, b \in K_1$ mit $\varphi(a) = \varphi(b)$. Also $\varphi(a - b) = 0$. Nehme an, a - b hat ein Inverses c. Dann ist

$$1 = \varphi(1) = \varphi((a-b)c) = \varphi(a-b)\varphi(c) = 0$$

Das ist ein Widerspruch. Also hat a-b kein Inverses. Dies impliziert a-b=0, also a=b. Damit haben wir gezeigt, dass φ injektiv ist.

(10 Punkte)

a) Die Menge

$$R \coloneqq \left\{ \begin{pmatrix} \alpha & 2\beta \\ \beta & \alpha \end{pmatrix} \middle| \alpha, \beta \in \mathbb{Q} \right\}$$

bildet einen Unterring von $(\mathbb{Q}^{2\times 2}, +, \cdot)$, wobei + und · die Addition und Multiplikation von Matrizen bezeichnet.

b) Die Menge

$$\mathbb{Q}(\sqrt{2}) \coloneqq \left\{ x + \sqrt{2} y \,\middle|\, x, y \in \mathbb{Q} \right\}$$

bildet einen Unterring von $(\mathbb{R}, +, \cdot)$, wobei + und · die Addition und Multiplikation von reellen Zahlen bezeichnet.

Lösung zu Aufgabe 3

- a) Wir überprüfen die Axiome eines Unterringes:
 - i Wir überprüfen (R, +) ist eine Untergruppe: Sind $\alpha_1, \beta_1, \alpha_2, \beta_2 \in \mathbb{Q}$, dann ist

$$\begin{pmatrix} \alpha_1 & 2\beta_1 \\ \beta_1 & \alpha_1 \end{pmatrix} - \begin{pmatrix} \alpha_2 & 2\beta_2 \\ \beta_2 & \alpha_2 \end{pmatrix} = \begin{pmatrix} \alpha_1 - \alpha_2 & 2\beta_1 - 2\beta_2 \\ \beta_1 - \beta_2 & \alpha_1 - \alpha_2 \end{pmatrix} \in R.$$

- ii Wir zeigen, die 1 ist enthalten: $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in R$.
- iii Wir zeigen R ist multiplikativ abgeschlossen. Sind $\alpha_1, \beta_1, \alpha_2, \beta_2 \in \mathbb{Q}$, dann ist

$$\begin{pmatrix} \alpha_1 & 2\beta_1 \\ \beta_1 & \alpha_1 \end{pmatrix} \begin{pmatrix} \alpha_2 & 2\beta_2 \\ \beta_2 & \alpha_2 \end{pmatrix} = \begin{pmatrix} \alpha_1\alpha_2 + 2\beta_1\beta_2 & 2\alpha_1\beta_2 + 2\alpha_2\beta_1 \\ \alpha_2\beta_1 + \alpha_1\beta_2 & 2\beta_1\beta_2 + \alpha_1\alpha_2 \end{pmatrix} \in R.$$

b) Für alle $x, y, x', y' \in \mathbb{Q}$ gilt

$$(x + \sqrt{2}y) + (x' + \sqrt{2}y') = (x + x') + \sqrt{2}(y + y') \qquad \in \mathbb{Q}(\sqrt{2}),$$

$$(x + \sqrt{2}y) \cdot (x' + \sqrt{2}y') = (xx' + 2yy') + \sqrt{2}(xy' + x'y) \qquad \in \mathbb{Q}(\sqrt{2}).$$

Damit liegt die Summe und das Produkt zweier Elemente aus $\mathbb{Q}(\sqrt{2})$ wieder in $\mathbb{Q}(\sqrt{2})$. Außerdem gilt

$$\begin{split} 0 &= 0 + \sqrt{2} \cdot 0 \in \mathbb{Q}(\sqrt{2}), \\ -(x + \sqrt{2}y) &= (-x) + \sqrt{2}(-y) \in \mathbb{Q}(\sqrt{2}). \\ 1 &= 1 + \sqrt{2} \cdot 0 \in \mathbb{Q}(\sqrt{2}), \end{split}$$

damit ist $(\mathbb{Q}(\sqrt{2}), +)$ eine Untergruppe von $(\mathbb{R}, +)$ und abgeschlossen unter der Multiplikation. Insgesamt ist $\mathbb{Q}(\sqrt{2})$ also ein Unterring von \mathbb{R} .

Aufgabe 4 (Körper und Isomorphismen)

(10 Punkte)

- a) Für $x, y \in \mathbb{Q}$ gilt: $x + \sqrt{2}y = 0 \iff x = y = 0$. Hinweis: Es gilt $\sqrt{2} \notin \mathbb{Q}$.
- b) Der Ring $(\mathbb{Q}(\sqrt{2}), +, \cdot)$ aus Aufgabe 3 ist sogar ein Körper. Hinweis: Es könnte helfen, einen Bruch mit $x - \sqrt{2}y$ zu erweitern, falls dieser Term nicht Null ist.
- c) Die Ringe $(R, +, \cdot)$ und $(\mathbb{Q}(\sqrt{2}), +, \cdot)$ aus Aufgabe 3 sind isomorph zueinander, d.h. es gibt einen bijektiven Ringhomomorphismus $\varphi \colon R \to \mathbb{Q}(\sqrt{2})$.

Lösung zu Aufgabe 4

a) Wenn x=y=0 gilt, dann gilt offensichtlich auch $x+\sqrt{2}\,y=0.$

Angenommen, es gilt $x+\sqrt{2}y=0$. Falls nun $y\neq 0$ gälte, würde daraus $\sqrt{2}=-\frac{x}{y}\in\mathbb{Q}$ folgen, was nicht wahr ist, da $\sqrt{2}$ irrational ist. Also muss y=0 und somit $x=-\sqrt{2}y=0$ gelten.

b) Damit $\mathbb{Q}(\sqrt{2})$ ein Körper ist, müssen wir noch zeigen, dass jedes Element in $\mathbb{Q}(\sqrt{2}) \setminus \{0\}$ ein multiplikatives Inverses besitzt.

Nach Aufgabenteil a) sind die Elemente von $\mathbb{Q}(\sqrt{2}) \setminus \{0\}$ genau diejenigen $x + \sqrt{2}y$, für die $x, y \in \mathbb{Q}$ nicht beide 0 sind. In \mathbb{R} gibt es dann ein multiplikatives Inverses:

$$(x+\sqrt{2}y)^{-1} = \frac{1}{x+\sqrt{2}y} = \frac{x-\sqrt{2}y}{(x+\sqrt{2}y)(x-\sqrt{2}y)} = \frac{x}{x^2-2y^2} - \sqrt{2}\frac{y}{x^2-2y^2} \in \mathbb{Q}(\sqrt{2})$$

Das Erweitern mit $x-\sqrt{2}\,y$ ist eine erlaubte Umformung, denn nach a) gilt auch $x-\sqrt{2}\,y\neq 0$. Das bedeutet, $\frac{x}{x^2-2y^2}-\sqrt{2}\frac{y}{x^2-2y^2}$ ist auch in $\mathbb{Q}(\sqrt{2})$ das multiplikativ Inverse zu $x+\sqrt{2}\,y$, und wir haben es mit einem Körper zu tun.

c) Wir zeigen, dass die Abbildung

$$\varphi \colon R \to \mathbb{Q}(\sqrt{2})$$
$$\begin{pmatrix} x & 2y \\ y & x \end{pmatrix} \mapsto x + \sqrt{2}y$$

ein Ringisomorphismus ist.

Zunächst prüfen wir, dass φ ein Ringhomomorphismus ist: Für alle $x, y \in \mathbb{Q}$ gilt

$$\varphi\left(\begin{pmatrix} x & 2y \\ y & x \end{pmatrix} + \begin{pmatrix} x' & 2y' \\ y' & x' \end{pmatrix}\right) = \varphi\left(\begin{pmatrix} x + x' & 2(y + y') \\ y + y' & x + x' \end{pmatrix}\right)$$

$$= (x + x') + \sqrt{2}(y + y')$$

$$= (x + \sqrt{2}y) + (x' + \sqrt{2}y')$$

$$= \varphi\left(\begin{pmatrix} x & 2y \\ y & x \end{pmatrix}\right) + \varphi\left(\begin{pmatrix} x' & 2y' \\ y' & x' \end{pmatrix}\right)$$

$$\varphi\left(\begin{pmatrix} x & 2y \\ y & x \end{pmatrix} \cdot \begin{pmatrix} x' & 2y' \\ y' & x' \end{pmatrix}\right) = \varphi\left(\begin{pmatrix} xx' + 2yy' & 2(xy' + x'y) \\ yx' + xy' & xx' + 2yy' \end{pmatrix}\right)$$

$$= (xx' + 2yy') + \sqrt{2}(xy' + x'y)$$

$$= (x + \sqrt{2}y) \cdot (x' + \sqrt{2}y')$$

$$= \varphi\left(\begin{pmatrix} x & 2y \\ y & x \end{pmatrix}\right) \cdot \varphi\left(\begin{pmatrix} x' & 2y' \\ y' & x' \end{pmatrix}\right)$$

$$\varphi\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) = 1 + \sqrt{2} \cdot 0 = 1$$

Außerdem ist φ offensichtlich surjektiv, denn x, y sind beliebige Elemente aus \mathbb{Q} . Außerdem gilt mit Teilaufgabe a)

$$\begin{aligned} \ker(\varphi) &= \left\{ A \in R \, \middle| \, \varphi\left(A\right) = 0 \right\} \\ &= \left\{ \begin{pmatrix} x & 2y \\ y & x \end{pmatrix} \, \middle| \, x, y \in \mathbb{Q}, x + \sqrt{2} \, y = 0 \right\} \\ &= \left\{ \begin{pmatrix} x & 2y \\ y & x \end{pmatrix} \, \middle| \, x, y \in \mathbb{Q}, x = y = 0 \right\} \\ &= \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}, \end{aligned}$$

also ist der Kern trivial und φ ist somit injektiv. Damit ist φ ein bijektiver Ringhomomorphismus und somit ein Ringisomorphismus.

Aufgabe 5 (Bonusaufgabe zum Nikolaus) (10 Punkte)

Diese Aufgabe ist als Bonusaufgabe gedacht. Zur Bearbeitung haben Sie zwei Wochen Zeit, also bis zum 21.12.20.

Durch folgende Additions- und Multiplikationstabellen wird ein Körper mit 4-Elementen gegeben:

+	<i>8</i> €	•	•	00		<i>₩</i>	\odot	•	00
<i>8</i> €	ð₩	③	•	00	ð	ð.	ð₩	ð.	₩
\odot	•	<i>8</i>	00	•				•	
•	•	00	<i>8</i>	\odot	•	ð\$	•	00	\odot
0	00	•	\odot	ð	00	<i>5</i> %	00	\odot	•

Außerdem sei

Was bekommt Gauß vom Nikolaus?