Dealing with Missing Values

```
In [1]:
```

```
import pandas as pd
import numpy as np
```

In [2]:

```
data=pd.read_csv("/Users/Vaibhav/Desktop/Academic_Performance.csv")
```

In [3]:

```
data.head()
```

Out[3]:

STUDENT_ID GENDER PLACEMENT HONOR_OPTED_OR_NOT EDUCATION_TYPE /

0	SB11201210000129	F	Yes	Yes	ACADEMIC
1	SB11201210000137	F	Yes	Yes	ACADEMIC
2	SB11201210005154	М	No	Yes	ACADEMIC
3	SB11201210007504	F	Yes	Yes	ACADEMIC
4	SB11201210007548	М	Yes	Yes	ACADEMIC
4					•

In [4]:

```
missing_values=data.isnull().sum()
missing_values
```

Out[4]:

STUDENT_ID	0			
GENDER	22			
PLACEMENT	15			
HONOR_OPTED_OR_NOT	14			
EDUCATION_TYPE	15			
ACADEMIC_PROGRAM	34			
COURSE 1 MARKS	11			
COURSE 2 MARKS	8			
COURSE 3 MARKS	14			
COURSE 4 MARKS	14			
COURSE 5 MARKS	22			
PERCENTILE	0			
OVEARLL_GRADE	0			
dtype: int64				

In [5]:

```
miss_values_per= data.isnull().sum()/len(data)*100
miss_values_per
```

Out[5]:

STUDENT_ID	0.000000
GENDER	0.177262
PLACEMENT	0.120861
HONOR_OPTED_OR_NOT	0.112803
EDUCATION_TYPE	0.120861
ACADEMIC_PROGRAM	0.273951
COURSE 1 MARKS	0.088631
COURSE 2 MARKS	0.064459
COURSE 3 MARKS	0.112803
COURSE 4 MARKS	0.112803
COURSE 5 MARKS	0.177262
PERCENTILE	0.000000
OVEARLL_GRADE	0.000000
dtype: float64	

In [6]:

```
!pip install missingno
```

```
Requirement already satisfied: missingno in c:\users\vaibhav\anaconda3\lib
\site-packages (0.5.1)
Requirement already satisfied: numpy in c:\users\vaibhav\anaconda3\lib\sit
e-packages (from missingno) (1.20.1)
Requirement already satisfied: seaborn in c:\users\vaibhav\anaconda3\lib\s
ite-packages (from missingno) (0.11.1)
Requirement already satisfied: matplotlib in c:\users\vaibhav\anaconda3\li
b\site-packages (from missingno) (3.3.4)
Requirement already satisfied: scipy in c:\users\vaibhav\anaconda3\lib\sit
e-packages (from missingno) (1.6.2)
Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\vaibhav\anaco
nda3\lib\site-packages (from matplotlib->missingno) (1.3.1)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in
c:\users\vaibhav\anaconda3\lib\site-packages (from matplotlib->missingno)
(2.4.7)
Requirement already satisfied: python-dateutil>=2.1 in c:\users\vaibhav\an
aconda3\lib\site-packages (from matplotlib->missingno) (2.8.1)
Requirement already satisfied: cycler>=0.10 in c:\users\vaibhav\anaconda3
\lib\site-packages (from matplotlib->missingno) (0.10.0)
Requirement already satisfied: pillow>=6.2.0 in c:\users\vaibhav\anaconda3
\lib\site-packages (from matplotlib->missingno) (8.2.0)
Requirement already satisfied: six in c:\users\vaibhav\anaconda3\lib\site-
packages (from cycler>=0.10->matplotlib->missingno) (1.15.0)
Requirement already satisfied: pandas>=0.23 in c:\users\vaibhav\anaconda3
\lib\site-packages (from seaborn->missingno) (1.2.4)
Requirement already satisfied: pytz>=2017.3 in c:\users\vaibhav\anaconda3
\lib\site-packages (from pandas>=0.23->seaborn->missingno) (2021.1)
```

In [7]:

```
import missingno as msno
```

```
In [8]:
```

```
msno.bar(data)
```

Out[8]:

<AxesSubplot:>

Inputing the missing values

```
In [9]:
```

```
# Replacing null with mean
data['COURSE 1 MARKS']=data['COURSE 1 MARKS'].replace(np.NaN , data['COURSE 1 MARKS'].mea
```

In [10]:

```
data['COURSE 1 MARKS'].isnull().sum()
```

Out[10]:

0

In [11]:

```
# Replacing null with arbitrary value
data['COURSE 2 MARKS']=data['COURSE 2 MARKS'].fillna(0)
```

In [12]:

```
data['COURSE 2 MARKS'].isnull().sum()
```

Out[12]:

a

```
In [13]:
```

data

Out[13]:

STUDENT_ID GENDER PLACEMENT HONOR_OPTED_OR_NOT EDUCATION_TYF

0	SB11201210000129	F	Yes	Yes	ACADEM		
1	SB11201210000137	F	Yes	Yes	ACADEM		
2	SB11201210005154	М	No	Yes	ACADEM		
3	SB11201210007504	F	Yes	Yes	ACADEM		
4	SB11201210007548	М	Yes	Yes	ACADEM		
12406	SB11201420568705	М	Yes	Yes	ACADEM		
12407	SB11201420573045	М	Yes	Yes	ACADEM		
12408	SB11201420578809	М	Yes	No	ACADEM		
12409	SB11201420578812	F	Yes	Yes	ACADEM		
12410	SB11201420583232	М	No	No	ACADEM		
12411 rows × 13 columns							
4					>		

In [20]:

```
from sklearn.impute import SimpleImputer
imputer=SimpleImputer(strategy='most_frequent')
data['ACADEMIC_PROGRAM']=imputer.fit_transform(data['ACADEMIC_PROGRAM'].values.reshape(-1)
```

In [21]:

```
data['ACADEMIC_PROGRAM'].isnull().sum()
```

Out[21]:

a

```
In [22]:
```

```
imputer=SimpleImputer(strategy='constant',fill_value='missing')
data['HONOR_OPTED_OR_NOT']=imputer.fit_transform(data['HONOR_OPTED_OR_NOT'].values.reshap
```

In [23]:

```
data['HONOR_OPTED_OR_NOT'].isnull().sum()
```

Out[23]:

0

In [24]:

```
data['HONOR_OPTED_OR_NOT'].unique()
```

Out[24]:

array(['Yes', 'No', 'missing'], dtype=object)

Dealing with Outliers

In [26]:

```
import seaborn as sns
import pandas as pd
import numpy as np
```

In [27]:

```
#data=pd.read_csv("/Users/Vaibhav/Desktop/Academic_Performance.csv")
sns.boxplot(data=data['COURSE 1 MARKS'],x=data['COURSE 1 MARKS'])
```

Out[27]:

<AxesSubplot:xlabel='COURSE 1 MARKS'>


```
In [28]:
```

```
data['COURSE 1 MARKS']
Out[28]:
0
         71.0
1
         97.0
2
         17.0
3
         65.0
         94.0
          . . .
12406
         88.0
12407
         46.0
12408
         98.0
         60.0
12409
         83.0
12410
Name: COURSE 1 MARKS, Length: 12411, dtype: float64
```

Detecting outliers using Z-scores

```
In [6]:
```

```
import numpy as np
outliers = []
def detect_outliers_zscore(arr):
    thres = 3
    mean = np.mean(arr)
    std = np.std(arr)
    # print(mean, std)
    for i in arr:
        z_score = (i-mean)/std
        if (np.abs(z_score) > thres):
            outliers.append(i)
    return outliers
marks_outliers = detect_outliers_zscore(data['COURSE 1 MARKS'])
print("Outliers from Z-scores method: ", marks_outliers)
```

```
Outliers from Z-scores method: [4.0, 6.0, 3.0, 1.0, 5.0, 2.0, 8.0, 7.0, 2.0, 8.0, 6.0, 9.0, 2.0, 9.0, 8.0, 1.0, 9.0, 2.0, 2.0, 1.0, 6.0, 7.0, 4.0, 5.0, 9.0, 7.0, 9.0, 1.0, 2.0, 8.0, 5.0, 2.0, 8.0, 8.0, 1.0, 4.0, 7.0, 4.0, 7.0, 8.0, 3.0, 8.0, 5.0, 9.0, 7.0, 8.0, 7.0, 1.0, 9.0, 2.0, 7.0, 5.0, 3.0, 7.0, 3.0, 8.0, 6.0, 9.0, 8.0, 9.0, 6.0, 1.0, 7.0, 8.0, 1.0, 9.0, 1.0, 7.0, 8.0, 9.0, 6.0, 7.0, 7.0, 8.0, 4.0, 6.0, 5.0, -1.0, 8.0, 8.0, 3.0, 1.0, 3.0, 3.0, 2.0, 9.0, 8.0, 3.0, 6.0, 3.0, 2.0, 7.0, 8.0, 4.0, 8.0, 3.0, 7.0, 9.0, 9.0, 3.0, 7.0, 6.0, 1.0, 1.0, 1.0, -1.0, 9.0, 4.0, 8.0, 7.0, 1.0, 6.0]
```

Another way to implement zscore.

```
In [30]:
high_thresh=data['COURSE 1 MARKS'].mean() + 3*data['COURSE 1 MARKS'].std()
high_thresh
Out[30]:
145.50435926680913
In [31]:
data['COURSE 1 MARKS'].max()
Out[31]:
100.0
In [32]:
data['COURSE 1 MARKS'].mean()
Out[32]:
77.3858870967742
In [33]:
data['COURSE 1 MARKS'].std()
Out[33]:
22.706157390011644
In [34]:
lowest_thresh=data['COURSE 1 MARKS'].mean() - 3*data['COURSE 1 MARKS'].std()
lowest_thresh
Out[34]:
9.267414926739264
In [35]:
```

newdf=data[(data['COURSE 1 MARKS']<lowest_thresh) | (data['COURSE 1 MARKS']>high_thresh)]

```
In [36]:
```

```
newdf['COURSE 1 MARKS']
Out[36]:
11
         4.0
155
         6.0
167
         3.0
305
         1.0
353
         5.0
        ...
11995
         4.0
         8.0
12009
12068
        7.0
        1.0
12137
12246
        6.0
Name: COURSE 1 MARKS, Length: 113, dtype: float64
```

Trimming

```
In [38]:

newdf1=data[(data['COURSE 1 MARKS']>lowest_thresh) & (data['COURSE 1 MARKS']<high_thresh)
newdf1

Out[38]:</pre>
```

	STUDENT_ID	GENDER	PLACEMENT	HONOR_OPTED_OR_NOT	EDUCATION_TYF
0	SB11201210000129	F	Yes	Yes	ACADEM
1	SB11201210000137	F	Yes	Yes	ACADEM
2	SB11201210005154	М	No	Yes	ACADEM
3	SB11201210007504	F	Yes	Yes	ACADEM
4	SB11201210007548	М	Yes	Yes	ACADEM
12406	SB11201420568705	M	Yes	Yes	ACADEM
12407	SB11201420573045	M	Yes	Yes	ACADEM
12408	SB11201420578809	М	Yes	No	ACADEM
12409	SB11201420578812	F	Yes	Yes	ACADEM
12410	SB11201420583232	M	No	No	ACADEM
12298 ו	rows × 13 columns				
4					>
In [39)]:				
data.s	hape				
Out[39)]:				
(12411, 13)					
In [41]:					
newdf1	.shape				
Out[41	.]:				
(12298, 13)					

Data Transformation

```
In [42]:
```

```
categorical_data=data.select_dtypes(exclude=[np.number])
categorical_data
```

Out[42]:

	STUDENT_ID	GENDER	PLACEMENT	HONOR_OPTED_OR_NOT	EDUCATION_TYF		
0	SB11201210000129	F	Yes	Yes	ACADEM		
1	SB11201210000137	F	Yes	Yes	ACADEM		
2	SB11201210005154	М	No	Yes	ACADEM		
3	SB11201210007504	F	Yes	Yes	ACADEM		
4	SB11201210007548	М	Yes	Yes	ACADEM		
12406	SB11201420568705	М	Yes	Yes	ACADEM		
12407	SB11201420573045	М	Yes	Yes	ACADEM		
12408	SB11201420578809	М	Yes	No	ACADEM		
12409	SB11201420578812	F	Yes	Yes	ACADEM		
12410	SB11201420583232	М	No	No	ACADEM		
12411 rows × 7 columns							
4					>		

In [43]:

```
categorical_data['PLACEMENT'].unique()
```

Out[43]:

array(['Yes', 'No', nan], dtype=object)

In [44]:

```
categorical_data.PLACEMENT.value_counts()
```

Out[44]:

Yes 9740 No 2656

Name: PLACEMENT, dtype: int64

In [45]:

```
categorical_data.PLACEMENT.replace({'Yes':1,'No':-1},inplace=True)
```

C:\Users\Vaibhav\anaconda3\lib\site-packages\pandas\core\series.py:4509: S
ettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

return super().replace(

In [39]:

categorical_data

Out[39]:

	STUDENT_ID	GENDER	PLACEMENT	HONOR_OPTED_OR_	тои	EDUCATION_TYF
0	SB11201210000129	F	1.0		Yes	ACADEM
1	SB11201210000137	F	1.0		Yes	ACADEM
2	SB11201210005154	М	-1.0		Yes	ACADEM
3	SB11201210007504	F	1.0		Yes	ACADEM
4	SB11201210007548	М	1.0		Yes	ACADEM
12406	SB11201420568705	М	1.0		Yes	ACADEM
12407	SB11201420573045	М	1.0		Yes	ACADEM
12408	SB11201420578809	М	1.0		No	ACADEM
12409	SB11201420578812	F	1.0		Yes	ACADEM
12410	SB11201420583232	М	-1.0		No	ACADEM
12411 rows × 7 columns						
4						•

In [46]:

categorical_data=categorical_data.drop('STUDENT_ID',axis=1)

In [47]:

categorical_data

Out[47]:

	GENDER	PLACEMENT	HONOR_OPTED_OR_NOT	EDUCATION_TYPE	ACADEMIC_PRO		
0	F	1.0	Yes	ACADEMIC	INDUS ENGINEI		
1	F	1.0	Yes	ACADEMIC	INDUS ENGINEI		
2	М	-1.0	Yes	ACADEMIC	ELECTI ENGINE		
3	F	1.0	Yes	ACADEMIC	INDUS ENGINEI		
4	М	1.0	Yes	ACADEMIC	INDUS ENGINEI		
12406	М	1.0	Yes	ACADEMIC	MECHATR(ENGINE)		
12407	М	1.0	Yes	ACADEMIC	INDUS ENGINEI		
12408	М	1.0	No	ACADEMIC	INDUS ENGINEI		
12409	F	1.0	Yes	ACADEMIC	r		
12410	М	-1.0	No	ACADEMIC	INDUS ENGINEI		
12411 rows × 6 columns							
4					>		

In [50]:

```
from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()
for i in categorical_data:
    categorical_data[i] = label_encoder.fit_transform(categorical_data[i])
print("Label Encoded Data: ")
categorical_data.head()
```

Label Encoded Data:

Out[50]:

	GENDER	PLACEMENT	HONOR_OPTED_OR_NOT	EDUCATION_TYPE	ACADEMIC_PROGRA
0	0	1	1	0	1
1	0	1	1	0	1
2	1	0	1	0	1
3	0	1	1	0	1
4	1	1	1	0	1
4					

In [56]:

```
# One hot encoding
categorical_df=data.select_dtypes(exclude=[np.number])
categorical_df
one_hot_encoded_data = pd.get_dummies(categorical_df, columns = ['PLACEMENT', 'GENDER'])
print(one_hot_encoded_data)
             STUDENT_ID HONOR_OPTED_OR_NOT EDUCATION_TYPE
0
       SB11201210000129
                                         Yes
                                                    ACADEMIC
1
       SB11201210000137
                                         Yes
                                                    ACADEMIC
2
       SB11201210005154
                                         Yes
                                                    ACADEMIC
3
       SB11201210007504
                                         Yes
                                                    ACADEMIC
4
       SB11201210007548
                                         Yes
                                                    ACADEMIC
                                         . . .
12406
       SB11201420568705
                                                    ACADEMIC
                                         Yes
12407
       SB11201420573045
                                         Yes
                                                    ACADEMIC
12408
       SB11201420578809
                                                    ACADEMIC
                                          No
12409
       SB11201420578812
                                         Yes
                                                    ACADEMIC
12410
       SB11201420583232
                                          No
                                                    ACADEMIC
                ACADEMIC_PROGRAM OVEARLL_GRADE PLACEMENT_NO PLACEMENT_Yes
\
         INDUSTRIAL ENGINEERING
0
                                    FIRST CLASS
                                                             0
                                                                             1
1
         INDUSTRIAL ENGINEERING
                                    THIRD CLASS
                                                             0
                                                                             1
2
         ELECTRONIC ENGINEERING
                                                             1
                                                                             0
                                    DISTINCTION
3
         INDUSTRIAL ENGINEERING
                                    FIRST CLASS
                                                             0
                                                                             1
4
         INDUSTRIAL ENGINEERING
                                    FIRST CLASS
                                                             0
                                                                             1
. . .
                                                            . . .
12406 MECHATRONICS ENGINEERING
                                    FIRST CLASS
                                                             0
                                                                             1
         INDUSTRIAL ENGINEERING
                                    FIRST CLASS
                                                             0
                                                                             1
12407
12408
         INDUSTRIAL ENGINEERING
                                    FIRST CLASS
                                                             0
                                                                             1
12409
                                    FIRST CLASS
                                                             0
                                                                             1
                         missing
12410
         INDUSTRIAL ENGINEERING
                                    THIRD CLASS
                                                             1
                                                                             0
       GENDER F
                 GENDER M
0
              1
                         0
1
              1
                         0
2
              0
                         1
3
              1
                         0
4
              0
                         1
              0
12406
                         1
              0
12407
                         1
              0
12408
                         1
12409
              1
                         0
12410
[12411 rows x 9 columns]
In [ ]:
```