Question number	Scheme	Marks
10 a (i)	$\overrightarrow{OP} = \overrightarrow{OA} + \frac{3}{4} \overrightarrow{AB} = \mathbf{a} + \frac{3}{4} (-\mathbf{a} + \mathbf{b}) \text{ or } \overrightarrow{OB} + \frac{1}{4} \overrightarrow{BA} = \mathbf{b} + \frac{1}{4} (\mathbf{a} - \mathbf{b})$	M1
	$\overrightarrow{OP} = \frac{1}{4}\mathbf{a} + \frac{3}{4}\mathbf{b}$	A1
(ii)	$\overrightarrow{OP} = \frac{1}{4}\mathbf{a} + \frac{1}{4}\mathbf{b}$ $\overrightarrow{MN} = \overrightarrow{MO} + \frac{1}{2}\overrightarrow{OP} = -\frac{1}{2}\mathbf{a} + \frac{1}{2}\left(\frac{1}{4}\mathbf{a} + \frac{3}{4}\mathbf{b}^{"}\right) \text{ or } \frac{1}{2}\overrightarrow{AO} + \frac{1}{2}\overrightarrow{OP}$	M1
	$\overrightarrow{MN} = -\frac{3}{8}\mathbf{a} + \frac{3}{8}\mathbf{b}$	A1 (4)
b	$\overrightarrow{OC} = \lambda \mathbf{b}$	B1
	$\overrightarrow{AN} = \left(\overrightarrow{AO} + \overrightarrow{ON}\right) = -\mathbf{a} + \frac{1}{2} \left(\frac{1}{4}\mathbf{a} + \frac{3}{4}\mathbf{b}'' \right) = -\frac{7}{8}\mathbf{a} + \frac{3}{8}\mathbf{b} \text{ or } \overrightarrow{AN} = \overrightarrow{AP} + \overrightarrow{PN} = -\frac{7}{8}\mathbf{a} + \frac{3}{8}\mathbf{b} $	M1
	$\overrightarrow{OC} = \overrightarrow{OA} + \mu \overrightarrow{AN} = \mathbf{a} + \mu \left(-\mathbf{a} + \frac{1}{2} \left(\frac{1}{4} \mathbf{a} + \frac{3}{4} \mathbf{b}'' \right) \right)$	M1 (A1
	$2(4^{11}4^{2})$	on ePen)
	$=\mathbf{a}-\frac{7}{8}\mu\mathbf{a}+\frac{3}{8}\mu\mathbf{b} \text{ or } \left(1-\frac{7}{8}\mu\right)\mathbf{a}+\frac{3}{8}\mu\mathbf{b}$	A1 (M1
	8 2 8 2 3 (1 8 2) 1 8 2 3	on ePen)
	. 3 7 8 . 3	M1 (A1
	$\therefore \lambda = \frac{3}{8}\mu \text{and} 0 = 1 - \frac{7}{8}\mu \Rightarrow \mu = \frac{8}{7} \qquad \therefore \lambda = \frac{3}{7}$	on
	\rightarrow 3	ePen)
	$\overrightarrow{OC} = \frac{3}{7}\mathbf{b}$	(6)
ALT	$\overrightarrow{AC} = -\mathbf{a} + \lambda \mathbf{b}$	B1
	$\overrightarrow{AN} = \left(\overrightarrow{AO} + \overrightarrow{ON}\right) = -\mathbf{a} + \frac{1}{2} \left(\frac{1}{4} \mathbf{a} + \frac{3}{4} \mathbf{b}'' \right) = -\frac{7}{8} \mathbf{a} + \frac{3}{8} \mathbf{b} \text{ or } \overrightarrow{AN} = \overrightarrow{AP} + \overrightarrow{PN} = 0$	M1
	$\overrightarrow{AC} = \mu \overrightarrow{AN} = \mu \left(-\mathbf{a} + \frac{1}{2} \left(\frac{1}{4} \mathbf{a} + \frac{3}{4} \mathbf{b}'' \right) \right)$	M1 (A1 on
		ePen) A1 (M1
	$=-\frac{7}{8}\mu\mathbf{a}+\frac{3}{8}\mu\mathbf{b}$	on
	2 7 0 2	ePen) M1 (A1
	$\therefore \lambda = \frac{3}{8}\mu \text{and} 0 = 1 - \frac{7}{8}\mu \Rightarrow \mu = \frac{8}{7} \therefore \lambda = \frac{3}{7}$	on ePen)
	$\overrightarrow{OC} = \frac{3}{7}\mathbf{b}$	A1 (6)

General principles for marking part (b) – if in any doubt about allocating marks – send to review

B1 Writes a valid vector with a parameter in terms of **a** or **b** which leads to finding \overrightarrow{OC} M1 M1 A1 Writes a second valid vector with a different parameter, in terms of **a** and **b**, following a distinct different route, which leads to finding \overrightarrow{OC}

M1 Compares components with two different parameters and arrives at a value for μ or λ

A1 correct vector

С	(Area triangle) $OAP = \frac{3}{4}$ (Area triangle) OAB	B1
ALT	(Area triangle) $OMN = \frac{1}{4}$ (Area triangle) $OAP = \frac{3}{16}$ (Area triangle) OAB	B1
	(Area quadrilateral) $AMNP = \frac{3}{4}$ (Area triangle) $OAB - \frac{3}{16}$ (Area triangle) OAB	M1
	$= \frac{9}{16} \text{ (Area triangle) } OAB k = \frac{9}{16}$	A1
		(4)
	$\frac{\text{(Area triangle)} OAP}{\text{(Area triangle)} OAB} = \frac{3}{4}$	B1
	$\left(\frac{\text{Area triangle }OMN}{\text{Area triangle }OAP} = \frac{1}{4}\right) \Rightarrow \frac{\left(\text{Area quadrilateral}\right) MNAP}{\left(\text{Area triangle}\right) OAP} = \frac{3}{4}$	В1
	$\frac{\text{(Area quadrilateral)} MNAP}{\text{(Area triangle)} OAP} \times \frac{\text{(Area triangle)} OAP}{\text{(Area triangle)} OAB} = \frac{3}{4} \times \frac{3}{4}$	M1
	$k = \frac{9}{}$	A1 (4)
	16	14 marks

Part	Marks	Note
(a) (i)		For stating or using $\overrightarrow{OP} = \overrightarrow{OA} + \frac{3}{4} \overrightarrow{AB}$ or for $\mathbf{a} + \frac{3}{4}(-\mathbf{a} + \mathbf{b})$
		For stating or using $OP = OA + -AB$ or for $\mathbf{a} + -(-\mathbf{a} + \mathbf{b})$
	M1	or $\overrightarrow{OB} + \frac{1}{4} \overrightarrow{BA}$ or $\mathbf{b} + \frac{1}{4} (\mathbf{a} - \mathbf{b})$
		(can be implied by correct vector)
	A1	For $\frac{1}{4}\mathbf{a} + \frac{3}{4}\mathbf{b}$ or valid alternative form such as $\frac{\mathbf{a} + 3\mathbf{b}}{4}$ or $\frac{1}{4}(\mathbf{a} + 3\mathbf{b})$
(ii)	M1	For stating or using $\overrightarrow{MN} = \overrightarrow{MO} + \frac{1}{2} \overrightarrow{OP}$ or $\frac{1}{2} \overrightarrow{AO} + \frac{1}{2} \overrightarrow{OP}$ or $-\frac{1}{2} \mathbf{a} + \frac{1}{2} \left(\text{their } \overrightarrow{OP} \right)$
	A1	$-\frac{3}{8}\mathbf{a} + \frac{3}{8}\mathbf{b} \text{ or valid alternative form such as } \frac{-3\mathbf{a} + 3\mathbf{b}}{8} \text{ or } \frac{1}{8}(-3\mathbf{a} + 3\mathbf{b})$ (can be implied by correct vector)
(b)	B1	$\overrightarrow{OC} = \lambda \mathbf{b} \text{ or any equivalent statement involving a parameter, in terms of } \mathbf{b}.$
		A fully correct method to find AN using their OP
	M1	$\overrightarrow{AN} = -\mathbf{a} + \frac{1}{2} \left(\frac{1}{4} \mathbf{a} + \frac{3}{4} \mathbf{b}'' \right)$
		2(4 4)
	M1 (A1	Using $\overrightarrow{OC} = \overrightarrow{OA} + \mu \left(\text{their } \overrightarrow{AN} \right)$ in terms a and b
	on ePen)	$\overrightarrow{OC} = \overrightarrow{OA} + \mu \overrightarrow{AN} = \mathbf{a} + \mu \left(-\mathbf{a} + \frac{1}{2} \left(\frac{1}{4} \mathbf{a} + \frac{3}{4} \mathbf{b}'' \right) \right)$
		Simplification not required
	A1 (M1 on	$= \mathbf{a} - \frac{7}{8}\mu\mathbf{a} + \frac{3}{8}\mu\mathbf{b} or \left(1 - \frac{7}{8}\mu\right)\mathbf{a} + \frac{3}{8}\mu\mathbf{b} \text{ either of these forms, ready for}$
	ePen)	comparing coefficients
	M1	For correctly equating their components with two different parameters and attempting
	(A1 on ePen)	to solve, reaching values for μ or λ We need to see two equations here, leading to a value for one of the parameters.
	,	\rightarrow 3
	A1	$\overrightarrow{OC} = \frac{3}{7}\mathbf{b}$
ALT	B1	$\overrightarrow{AC} = -\mathbf{a} + \lambda \mathbf{b}$ or any equivalent statement involving a parameter, in terms of \mathbf{a} and \mathbf{b} .
	M1	A fully correct method to find \overrightarrow{AN} using their \overrightarrow{OP}
		$\overrightarrow{AN} = -\mathbf{a} + \frac{1}{2} \left(\frac{1}{4} \mathbf{a} + \frac{3}{4} \mathbf{b}'' \right)$
	M1 (A1	$\overrightarrow{AC} = \mu \left(-\mathbf{a} + \frac{1}{2} \left(\frac{1}{4} \mathbf{a} + \frac{3}{4} \mathbf{b}'' \right) \right) \text{ using their } \overrightarrow{AN}$
	on ePen)	$\int_{0}^{\infty} \frac{-\mu}{2} \left(\frac{-a}{4} + \frac{\pi}{4} \right) \int_{0}^{\infty} \frac{d\sin \theta}{2} \sin \theta \sin \theta d\theta$
	A1 (M1	\rightarrow
	on ePen) M1 (A1 on	Correct vector for AC Marks allocated as main scheme
(a)	ePen) A1	
(c) BOTH	B1 B1	Correct statement Correct statement
SCHEMES	M1	Uses their statements to carry out a relevant calculation
	A1	Correct value for k