# Оптимизация расхода ферросплавов при производстве стали



Yandex Data Factory

## Некоторые понятия

**Сталь** — сплав на основе железа с заданным содержанием примесей. Это то, что надо получить.

**Чугун** - сплав на основе железа с известным содержанием примесей и с большим содержанием углерода. Это ¾ того, из чего делают сталь.

**Лом** — металлические отходы с плохо известным содержанием примесей. Это примерно ¼ того, из чего делают сталь.

**Ферросплав** — сплав на основе железа с известным содержанием примесей. Это то, что добавляют в сталь для получения нужного состава.

## Вот как это выглядит





## Процесс выплавки стали



## Процесс выплавки стали



## Цели и задачи проекта

> **Цель:** Оценить пригодность технологий и методик Яндекса в области Big Data и Machine Learning для решения задач ММК в части оптимизации использования добавок при производстве стали

 Задача: Разработать сервис, который будет выдавать рекомендации по расходу использования ферросплавов при производстве стали на конвертерном этапе и этапе внепечной обработки

## Использование результатов





## Линия времени



**Data Factory** 

## Линия времени



## Озадаче

#### Известны:

- Все измерения, совершенные к моменту запроса
- Набор ферросплавов
- > Спецификации стали

#### Надо определить:

Количество каждого из ферросплавов

#### Условия:

- Надо удовлетворить спецификациям
- Надо оптимизировать дополнительную цель (например, минимизировать цену)

## Определения

 $\overrightarrow{x}$  - массы вносимых ферросплавов

 $\overrightarrow{\boldsymbol{y}}$  - химический состав стали

 $\overrightarrow{a}$  - параметры плавки, не вошедшие в  $\overrightarrow{x}$ 

 $\vec{y}(\vec{x}, \vec{a})$  – регрессионная зависимость химического состава стали от условий плавки

## Ограничения - Требования по химии

По каждому из нескольких химических элементов заданы допустимые границы содержания:

$$\alpha_i \leq y_i \leq \beta_i$$

Иногда ограничения задаются для комбинации элементов:

$$y_i + y_j \leq \beta_k$$







## Цели оптимизации

#### Один из вариантов:

> Минимальные затраты

Максимальная близость к «идеальному» химическому составу

## Цели оптимизации

#### Затраты:

$$\vec{x} \cdot \vec{p} \rightarrow min$$

 $\overrightarrow{x}$  - количества вносимых ферросплавов

 $\overrightarrow{\boldsymbol{p}}$  - стоимости ферросплавов

#### Близость к заданному хим.составу

$$\|\vec{y}(\vec{x},\vec{a}) - \vec{y}^*\| \rightarrow min$$

 $\overrightarrow{y}(\overrightarrow{x})$  – химический состав, полученный регрессией по количествам ферросплавам и другим параметрам  $\overrightarrow{a}$ 

 $\overrightarrow{m{y}}^*$  - целевой химический состав

## Постановка задачи. Особенности

Высокая неопределенность важных факторов, например, состава лома

Как следствие, при заданных параметрах и точно определенных количествах всех ферросплавов хим. состав стали не гарантирован

Как следствие, можно говорить лишь о вероятностном предсказании

## Почему бы не построить регрессию $\vec{x}(\vec{y}, \vec{a})$ ? Это сразу дало бы ответ.

 Разные комбинации вносимых материалов могут приводить к одному и тому же химическому составу



ightharpoonup Регрессионной зависимости  $\overrightarrow{x}(\overrightarrow{y},\overrightarrow{a})$  не существует даже при наличии полной и точной информации об  $\overrightarrow{y}$  и  $\overrightarrow{a}$ 

## Работа с неопределенностью предсказания $\overrightarrow{y}(\overrightarrow{x}, \overrightarrow{a})$



Результат предсказания – не точное значение получаемого химического состава, а распределение его вероятности:



Интерес представляет та часть распределения, которая попадает в границы диапазона

## Оптимизация. Пример ограничений.

Ограничения – условия уверенного попадания содержания элементов в заданные диапазоны по химии:

$$\int_{y_{min}}^{y_{max}} \rho(y) dy \ge \alpha$$

$$y_{min}$$

y – хим.состав;  $y_{min}, y_{max}$  – границы диапазона;

 $oldsymbol{
ho}(oldsymbol{y})$  – распределение плотности вероятности получения хим.состава  $oldsymbol{y}$ ;

lpha – порог уверенного попадания.

## Оптимизация.

## Иллюстрация ограничений.





Масса СМН18, кг

## Оптимизация.

## Иллюстрация ограничений.



## Подход к решению. Общая идея.

- > Строим модель, которая предсказывает хим. состав стали.
- > Оцениваем уровень погрешности модели.
- При помощи модели и оценки ее погрешности строим функцию вероятности попадания в диапазоны по химии; аргументы количества добавляемых ферросплавов.
- Оптимизируем:
  - Вероятность попадания в диапазоны по химии
  - Дополнительные критерии: стоимость или близость к заданному химическому составу

## Подход к решению. Построение регрессии.

Протоколы плавок

Список факторов и целей Значения факторов для всех плавок. Плавки разбиты на две группы: Регрессионная Для Для модель обучения теста Построение Построение регрессионной выборки и модели значений факторов Регрессионная модель – «чёрный ящик». Зависимость целевых показателей от факторов определена, но трудноинтерпретируема.

## Подход к решению. Оптимизация.



## Общая схема

#### 1. Регрессия

- Объект одна плавка
- Данные разнотипные параметры плавки
- Целевое значение хим. состав стали

#### 2. Оптимизация

- Настраиваемые параметры добавления ферросплавов
- Функционал качества расстояние от результата регрессии до целевой точки
- Ограничение по вероятности попадания в заданный диапазон

#### Данные для обучения регрессионной модели

- Данные исторические, с 2011 по 2015 год
- Данные сырые, то есть в данных много ошибок
- Предполагается что технология выплавки за данный период, а также за период предсказания, не изменится
- Общее кол-во плавок (объектов) 177273

## Построение признакового описания

#### • Из каждой плавки извлекались:

- > Параметры плавки
- > Параметры технологического процесса
- > Добавления ферросплавов

#### • Данные фильтровались:

- > исходя из физических соображений
- > по остаткам регрессии

Кол-во оставшихся плавок - 45000

## Задача регрессии

- Хотим научиться моделировать процесс плавки
- Хотим уметь предсказывать погрешность
- Модель должна быть интерпретируемой
- Модель должна выдавать адекватный результат в областях, не покрытых историческими данными

## График Mn



## Линейная регрессия

- Отдельная модель по каждому хим. элементу
- Простая модель
- Интерпретируемая модель
- Большие остатки

## Матрикснет



## Идея!

Совместим простую и интерпретируемую модель с матрикснетом

## Регрессия

 $\vec{x}$  — значения факторов  $y^k$  — цель (содержание элемента k)

 $\left\{\vec{x}_{j},y^{k}_{j}\right\}$  — исторические данные



$$y^k \approx F(\vec{x})$$



## Предварительно рассматриваются наиболее важные факторы $\vec{z}$ :

- содержание легирующего элемента в ферросплавах
- химия чугуна

#### 2 этапа регрессии:

- Линейная зависимость от  $\vec{z}$
- Регрессия на остатки при помощи технологии Яндекса «Матрикснет»

$$y^k \approx L(\vec{z}) + M(\vec{x})$$

### Матрикснет + линейная регрессия



## Качество регрессии

| элемент | SD     | RMSE   | RMSE/SD |
|---------|--------|--------|---------|
| C       | 0.0493 | 0.0164 | 0.3332  |
| Mn      | 0.0444 | 0.0272 | 0.6117  |
| Р       | 0.0055 | 0.0022 | 0.3966  |
| S       | 0.0062 | 0.0030 | 0.4783  |
| Si      | 0.0287 | 0.0167 | 0.5807  |



## Проблемы регрессии

Не все признаки можно использовать

#### Добавления ферросплавов – плохие признаки:

- > Названия ферросплавов меняются
- > Различные названия могут обозначать один и тот же ферросплав
- Выбор некоторых ферросплавов обусловлен технологическим процессом

Вместо добавлений ферросплавов – добавления элементов

• Не все элементы мы можем предсказывать

## Плохой пример

Важность признаков для модели, предсказывающей углерод:

- 1. Масса добавленной серы 11.18942894
- 3. Масса добавленного кремния 8.734091967
- 4. Масса добавленного марганца 8.67283899

• • •

11. Масса добавленного углерода — 2.059519198

Признак, непосредственно влияющий на углерод находится на 11 месте!

## Остатки регрессионной модели

- Остатки приближаются нормальным распределением
- Дисперсия рассчитывается по
   определенным подгруппам плавок
   (отдельно для каждой марки стали) 10
- Вероятность попадания считаем как интеграл по нормальному распределению:

$$P(y) = \int\limits_a^b p(y'|y,\sigma)dy'$$
  $p(y'|y,\sigma)$  - нормальное распределение



### Оптимизация

Исходная задача:  $f(y) = (y - y_G)^2 \rightarrow min$ 

При ограничении  $P(y) = \int_a^b p(y'|y,\sigma) dy' \geq confidence$ 

- y результат регрессии по рассматриваемому элементу
- $y_{\it G}$  целевой анализ по заданному элементу
- $\sigma$  дисперсия, рассчитанная по истории для заданной марки стали
- confidence заданное значение вероятности попадания в диапазон [a,b]

## Проблема

## у – это результат матрикснета!

### Алгоритм

```
Data: Параметры плавки
Result: Рекомендации ферросплавов
Генерируем сетку в пространстве ферросплавов;
while (шаг сетки больше заданного значения) do
   for (точка из сетки) do
      считаем функционал;
      if функционал меньше текущего then
         запоминаем точку;
      end
   end
   сдвигаем сетку;
   уменьшаем шаг;
end
```

## Функционал качества

 ${\it P}({\it y})\,$  – вероятность попадания в диапазон  $[{\it a},{\it b}]$ 

$$P(y) = \int_{a}^{b} p(y'|y,\sigma)dy'$$

Возможен случай, когда

$$max_{y \in [a,b]}P(y) < confidence.$$

Тогда ослабим ограничения:

$$P(y) \ge confidence$$
.



$$P(y) \ge confidence \cdot max_{y \in [a,b]} P(y)$$

## Функционал качества

#### Перенесем ограничения в функционал:

$$f(y) = \omega_1 (y - y_G)^2 +$$
 $\omega_2 [y < y_L] (y - y_L)^2 +$ 
 $\omega_3 [y > y_H] (y - y_H)^2,$ 

 $\omega_{1,2,3}$ - веса компонент

$$y_L: P(y_L) = confidence \cdot P\left(\frac{a+b}{2}\right), y_L < \frac{a+b}{2}$$

$$y_H: P(y_H) = confidence \cdot P\left(\frac{a+b}{2}\right), y_H > \frac{a+b}{2}$$



## Результаты

- В большинстве случаев алгоритм выдает рекомендацию в течение 10 секунд
- По определенным группам (маркам) стали практически все рекомендации успешные
- Экономический эффект на этих марках всегда положительный

## Результаты

| Кол-во плавок |             | Денежные затраты |                  |
|---------------|-------------|------------------|------------------|
| Принятых      | Отвергнутых | В принятых       | В соответствии с |
|               |             | плавках          | историей         |
| 45            | 49          | 138469           | 147166           |

| Испол      | ьзовано Mn       | Использовано Si |                  |
|------------|------------------|-----------------|------------------|
| В принятых | В соответствии с | В принятых      | В соответствии с |
| плавках    | историей         | плавках         | историей         |
| 46689      | 49303            | 9024            | 11350            |

#### Выигрыш по сравнению с историей:

По деньгам : 6.28%

**➢** Πο Mn : 5.54%

По Si : 25.78%



## Направления развития

#### Постановка задачи:

- > Одинаково ли важны все диапазоны химии?
- > Что делать с теми целями, на которые мы не влияем?
- > Как правильно задавать требования к концу конвертерного этапа?

#### Модели регрессии:

- > Добавление в модель физически и химически обусловленных связей
- > Снижение погрешностей регрессии

#### Качество оптимизации:

- > Как точнее оценить область поиска?
- > Ускорение алгоритмов



Tel: +7 495 739-70-00

Fax: +7 495 739-70-70

yandexdatafactory.com ydf-customer@yandex-team.ru

Фабрика данных Яндекса, 119021, Москва, ул. Льва Толстого, 16, Россия