Logistic Regression

Logistic regression

- When response variable is measured/counted, regression can work well.
- ▶ But what if response is yes/no, lived/died, success/failure?
- Model probability of success.
- Probability must be between 0 and 1; need method that ensures this.
- Logistic regression does this. In R, is a generalized linear model with binomial "family":

```
glm(y ~ x, family="binomial")
```

Begin with simplest case.

Packages

```
library (MASS)
library(tidyverse)
library(marginaleffects)
library(broom)
library(nnet)
library(conflicted)
conflict_prefer("select", "dplyr")
conflict_prefer("filter", "dplyr")
conflict prefer("rename", "dplyr")
conflict prefer("summarize", "dplyr")
```

The rats, part 1

▶ Rats given dose of some poison; either live or die:

dose status

- 0 lived
- 1 died
- 2 lived
- 3 lived
- 4 died
- 5 died

Read in:

```
my_url <- "http://ritsokiguess.site/datafiles/rat.txt"
rats <- read_delim(my_url, " ")
rats</pre>
```

Basic logistic regression

Make response into a factor first:

```
rats2 <- rats %>% mutate(status = factor(status))
rats2
# A tibble: 6 \times 2
  dose status
  <dbl> <fct>
    0 lived
2 1 died
 2 lived
 3 lived
5
  4 died
6
   5 died
```

then fit model:

```
status.1 <- glm(status ~ dose, family = "binomial", data =</pre>
```

Output

summary(status.1)

```
Call:
glm(formula = status ~ dose, family = "binomial", data = ra
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.6841 1.7979 0.937 0.349
dose -0.6736 0.6140 -1.097 0.273
```

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 8.3178 on 5 degrees of freedom Residual deviance: 6.7728 on 4 degrees of freedom AIC: 10.773

Number of Fisher Scoring iterations: 4

Interpreting the output

- Like (multiple) regression, get tests of significance of individual x's
- Here not significant (only 6 observations).
- "Slope" for dose is negative, meaning that as dose increases, probability of event modelled (survival) decreases.

Output part 2: predicted survival probs

```
cbind(predictions(status.1)) %>%
  select(dose, estimate, conf.low, conf.high)
```

```
      dose
      estimate
      conf.low
      conf.high

      1
      0
      0.8434490
      0.137095792
      0.9945564

      2
      1
      0.7331122
      0.173186479
      0.9729896

      3
      2
      0.5834187
      0.168847561
      0.9061463

      4
      3
      0.4165813
      0.093853682
      0.8311524

      5
      4
      0.2668878
      0.027010413
      0.8268135

      6
      5
      0.1565510
      0.005443589
      0.8629042
```

On a graph

plot_predictions(status.1, condition = "dose")

The rats, more

- More realistic: more rats at each dose (say 10).
- Listing each rat on one line makes a big data file.
- Use format below: dose, number of survivals, number of deaths.

dose	lived	died
0	10	0
1	7	3
2	6	4
3	4	6
4	2	8
5	1	9

- ▶ 6 lines of data correspond to 60 actual rats.
- ► Saved in rat2.txt.

These data

```
my_url <- "http://ritsokiguess.site/datafiles/rat2.txt"
rat2 <- read_delim(my_url, " ")
rat2</pre>
```

```
# A tibble: 6 x 3
    dose lived died
    <dbl> <dbl> <dbl> 1
    0    10    0
2    1    7    3
3    2    6    4
4    3    4    6
5    4    2    8
6    5    1    9
```

Response matrix:

- Each row contains *multiple* observations.
- Create *two-column* response with cbind:
 - #survivals in first column,
 - #deaths in second.

Fit logistic regression

constructing the response in the glm:

```
rat2.1 <- glm(cbind(lived, died) ~ dose, family = "binomia"
```

Output

Significant effect of dose now:

```
summary(rat2.1)
```

```
Call:
glm(formula = cbind(lived, died) ~ dose, family = "binomia"
    data = rat2)
```

```
Coefficients:
```

```
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.3619 0.6719 3.515 0.000439 ***

dose -0.9448 0.2351 -4.018 5.87e-05 ***
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
```

(Dispersion parameter for binomial family taken to be 1)

Predicted survival probs

```
new <- datagrid(model = rat2.1, dose = 0:5)
cbind(predictions(rat2.1, newdata = new)) %>%
  select(estimate, dose, conf.low, conf.high)
```

On a picture

```
plot_predictions(rat2.1, condition = "dose")
```


Comments

- Significant effect of dose.
- Effect of larger dose is to decrease survival probability ("slope" negative; also see in decreasing predictions.)
- Confidence intervals around prediction narrower (more data).

Multiple logistic regression

- \blacktriangleright With more than one x, works much like multiple regression.
- Example: study of patients with blood poisoning severe enough to warrant surgery. Relate survival to other potential risk factors.
- ➤ Variables, 1=present, 0=absent:
 - survival (death from sepsis=1), response
 - shock
 - malnutrition
 - alcoholism
 - age (as numerical variable)
 - bowel infarction
- See what relates to death.

Read in data

```
my_url <-
   "http://ritsokiguess.site/datafiles/sepsis.txt"
sepsis <- read_delim(my_url, " ")
sepsis</pre>
```

# A tibble: 106 x 6						
	${\tt death}$	${\tt shock}$	${\tt malnut}$	${\tt alcohol}$	age	bowelinf
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	0	0	0	0	56	0
2	0	0	0	0	80	0
3	0	0	0	0	61	0
4	0	0	0	0	26	0
5	0	0	0	0	53	0
6	1	0	1	0	87	0
7	0	0	0	0	21	0
8	1	0	0	1	69	0
9	0	0	0	0	57	0
10	0	0	1	0	76	0

Make sure categoricals really are

```
sepsis %>%
  mutate(across(-age, \(x) factor(x))) -> sepsis
```

The data (some)

sepsis

```
# A tibble: 106 \times 6
   death shock malnut alcohol
                                    age bowelinf
   <fct> <fct> <fct> <fct> <fct> <fct> <dbl> <fct>
                                     56 0
 1 0
          0
                 0
 2 0
                                     80 0
 3 0
                                     61 0
                                     26 0
 5 0
                                     53 0
 6 1
                                     87 0
                                     21 0
 8 1
                                     69 0
                                     57 0
10 0
                                     76 0
# i 96 more rows
```

Fit model

```
sepsis.1 <- glm(death ~ shock + malnut + alcohol + age +
  bowelinf,
family = "binomial",
data = sepsis
)</pre>
```

Output part 1

```
summary(sepsis.1)
```

```
Call:
glm(formula = death ~ shock + malnut + alcohol + age + bow
   family = "binomial", data = sepsis)
Coefficients:
         Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.75391 2.54170 -3.838 0.000124 ***
shock1 3.67387 1.16481 3.154 0.001610 **
malnut1 1.21658 0.72822 1.671 0.094798 .
alcohol1 3.35488 0.98210 3.416 0.000635 ***
    age
bowelinf1 2.79759 1.16397 2.403 0.016240 *
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '
```

Removing malnut

```
sepsis.2 <- update(sepsis.1, . ~ . - malnut)
tidy(sepsis.2)</pre>
```

```
# A tibble: 5 \times 5
           estimate std.error statistic p.value
 term
 <chr>
              <dbl>
                      <dbl>
                               <dbl>
                                      <dbl>
                     2.32
1 (Intercept) -8.89
                               -3.84 0.000124
2 shock1 3.70 1.10
                               3.35 0.000797
3 alcohol1 3.19 0.917
                               3.47 0.000514
           0.0898 0.0292 3.07 0.00211
4 age
5 bowelinf1 2.39
                     1.07
                               2.23 0.0260
```

Everything significant now.

Comments

- Most of the original x's helped predict death. Only malnut seemed not to add anything.
- Removed malnut and tried again.
- Everything remaining is significant (though bowelinf actually became less significant).
- ➤ All coefficients are positive, so having any of the risk factors (or being older) increases risk of death.

```
Predictions from model without "malnut"
```

A few (rows of original dataframe) chosen "at random":

```
sepsis %>% slice(c(4, 1, 2, 11, 32)) -> new
new
```

```
# A tibble: 5 x 6
death shock malnut alcohol age bowelinf
<fct> <fct > fct > f
```

```
cbind(predictions(sepsis.2, newdata = new)) %>%
  select(estimate, conf.low, conf.high, shock:bowelinf)
```

estimate conf.low conf.high shock malnut alcohol 1 0.001415347 6.272642e-05 0.03103047 0 0 0

Comments

- Survival chances pretty good if no risk factors, though decreasing with age.
- Having more than one risk factor reduces survival chances dramatically.
- Usually good job of predicting survival; sometimes death predicted to survive.

Another way to assess effects

of age:

```
new <- datagrid(model = sepsis.2, age = seq(30, 70, 10))
new</pre>
```

```
    shock alcohol bowelinf age rowid

    1
    0
    0
    30
    1

    2
    0
    0
    0
    40
    2

    3
    0
    0
    0
    50
    3

    4
    0
    0
    0
    60
    4

    5
    0
    0
    70
    5
```

Assessing age effect

```
cbind(predictions(sepsis.2, newdata = new)) %>%
  select(estimate, shock:age)
```

	estimate	${\tt shock}$	${\tt alcohol}$	bowelinf	age
1	0.002026053	0	0	0	30
2	0.004960283	0	0	0	40
3	0.012092515	0	0	0	50
4	0.029179226	0	0	0	60
5	0.068729752	0	0	0	70

Assessing shock effect

```
new <- datagrid(shock = c(0, 1), model = sepsis.2)
new</pre>
```

```
      alcohol
      age bowelinf shock rowid

      1
      0 51.28302
      0 0 1

      2
      0 51.28302
      0 1 2
```

```
cbind(predictions(sepsis.2, newdata = new)) %>%
  select(estimate, death:shock)
```

```
estimate death shock
1 0.01354973 0 0
2 0.35742607 0 1
```

Assessing proportionality of odds for age

- An assumption we made is that log-odds of survival depends linearly on age.
- Hard to get your head around, but basic idea is that survival chances go continuously up (or down) with age, instead of (for example) going up and then down.
- In this case, seems reasonable, but should check:

Residuals vs. age

```
sepsis.2 %>% augment(sepsis) %>%
  ggplot(aes(x = age, y = .resid, colour = death)) +
  geom_point()
```


Comments

- No apparent problems overall.
- Confusing "line" across: no risk factors, survived.

Probability and odds

For probability p, odds is p/(1-p):

Prob	Odds	Log-odds	Words
0.5	$0.5 \ / \ 0.5 = 1.00$	0.00	even money
0.1	0.1 / 0.9 = 0.11	-2.20	9 to 1
0.4	0.4 / 0.6 = 0.67	-0.41	1.5 to 1
8.0	0.8 / 0.2 = 4.00	1.39	4 to 1 on

- ► Gamblers use odds: if you win at 9 to 1 odds, get original stake back plus 9 times the stake.
- Probability has to be between 0 and 1
- Odds between 0 and infinity
- Log-odds can be anything: any log-odds corresponds to valid probability.

Odds ratio

- ➤ Suppose 90 of 100 men drank wine last week, but only 20 of 100 women.
- Prob of man drinking wine 90/100 = 0.9, woman 20/100 = 0.2.
- Odds of man drinking wine 0.9/0.1 = 9, woman 0.2/0.8 = 0.25.
- **Ratio** of odds is 9/0.25 = 36.
- ▶ Way of quantifying difference between men and women: "odds of drinking wine 36 times larger for males than females'."

Sepsis data again

Recall prediction of probability of death from risk factors:

sepsis

# A tibble: 106 x 6								
	death	shock	${\tt malnut}$	${\tt alcohol}$	age	bowelinf		
	<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>	<dbl></dbl>	<fct></fct>		
1	0	0	0	0	56	0		
2	0	0	0	0	80	0		
3	0	0	0	0	61	0		
4	0	0	0	0	26	0		
5	0	0	0	0	53	0		
6	1	0	1	0	87	0		
7	0	0	0	0	21	0		
8	1	0	0	1	69	0		
9	0	0	0	0	57	0		
10	0	0	1	0	76	0		
# 1	i 96 m	ore ro	JS					

Multiplying the odds

Can interpret slopes by taking "exp" of them. We ignore intercept.

```
sepsis.2.tidy %>%
  mutate(exp_coeff=exp(estimate)) %>%
  select(term, exp_coeff)
```

Interpretation

```
# A tibble: 5 x 2
term exp_coeff
<chr> <dbl>
1 (Intercept) 0.000137
2 shock1 40.5
3 alcohol1 24.2
4 age 1.09
5 bowelinf1 10.9
```

- These say "how much do you multiply odds of death by for increase of 1 in corresponding risk factor?" Or, what is odds ratio for that factor being 1 (present) vs. 0 (absent)?
- ▶ Eg. being alcoholic vs. not increases odds of death by 24 times
- One year older multiplies odds by about 1.1 times. Over 40 years, about $1.09^{40} = 31$ times.

Odds ratio and relative risk

- Relative risk is ratio of probabilities.
- ▶ Above: 90 of 100 men (0.9) drank wine, 20 of 100 women (0.2).
- ▶ Relative risk 0.9/0.2=4.5. (odds ratio was 36).
- When probabilities small, relative risk and odds ratio similar.
- Eg. prob of man having disease 0.02, woman 0.01.
- Relative risk 0.02/0.01 = 2.

Odds ratio vs. relative risk

Odds for men and for women:

```
(od1 <- 0.02 / 0.98) # men
```

[1] 0.02040816

```
(od2 <- 0.01 / 0.99) # women
```

```
[1] 0.01010101
```

Odds ratio

```
od1 / od2
```

[1] 2.020408

▶ Very close to relative risk of 2.

More than 2 response categories

- With 2 response categories, model the probability of one, and prob of other is one minus that. So doesn't matter which category you model.
- With more than 2 categories, have to think more carefully about the categories: are they
- ordered: you can put them in a natural order (like low, medium, high)
- nominal: ordering the categories doesn't make sense (like red, green, blue).
- R handles both kinds of response; learn how.

Ordinal response: the miners

- ▶ Model probability of being in given category or lower.
- ➤ Example: coal-miners often suffer disease pneumoconiosis. Likelihood of disease believed to be greater among miners who have worked longer.
- Severity of disease measured on categorical scale: none, moderate, severe.

Miners data

▶ Data are frequencies:

Exposure	None	${\tt Moderate}$	Severe
5.8	98	0	0
15.0	51	2	1
21.5	34	6	3
27.5	35	5	8
33.5	32	10	9
39.5	23	7	8
46.0	12	6	10
51.5	4	2	5

Reading the data

Data in aligned columns with more than one space between, so:

```
my_url <- "http://ritsokiguess.site/datafiles/miners-tab.t:
freqs <- read table(my url)</pre>
```

The data

freqs

```
A tibble: 8 x 4
  Exposure None Moderate Severe
     <dbl> <dbl>
                 <dbl>
                           <dbl>
       5.8
              98
                        0
                               0
      15
              51
3
      21.5
              34
                        6
                               3
                        5
4
      27.5
              35
                               8
5
      33.5
              32
                       10
6
      39.5
              23
                               8
      46
              12
                        6
                              10
8
      51.5
               4
                               5
```

Tidying

```
freqs %>%
  pivot_longer(-Exposure, names_to = "Severity", values_to
  mutate(Severity = fct_inorder(Severity)) -> miners
```

Result

miners

```
# A tibble: 24 \times 3
   Exposure Severity Freq
      <dbl> <fct>
                     <dbl>
        5.8 None
                         98
        5.8 Moderate
 3
        5.8 Severe
4
                         51
       15
            None
 5
       15 Moderate
 6
       15 Severe
       21.5 None
                         34
8
       21.5 Moderate
                          6
                          3
       21.5 Severe
10
       27.5 None
                         35
    14 more rows
```

Plot proportions against exposure

```
miners %>%
 group_by(Exposure) %>%
 mutate(proportion = Freq / sum(Freq)) -> prop
prop
# A tibble: 24 x 4
# Groups: Exposure [8]
  Exposure Severity Freq proportion
     <dbl> <fct> <dbl>
                              <dbl>
       5.8 None
                      98
       5.8 Moderate 0
3
       5.8 Severe
4
                      51
      15
           None
                             0.944
5
      15 Moderate 2
                             0.0370
6
      15 Severe
                             0.0185
      21.5 None
                      34
                             0.791
8
      21.5 Moderate
                       6
                             0.140
                       3
      21.5 Severe
                             0.0698
```

Reminder of data setup

miners

```
# A tibble: 24 \times 3
   Exposure Severity
                      Freq
      <dbl> <fct>
                     <dbl>
        5.8 None
                         98
        5.8 Moderate
 3
        5.8 Severe
4
       15
            None
                         51
 5
       15 Moderate
 6
       15 Severe
       21.5 None
                         34
8
                          6
       21.5 Moderate
                          3
       21.5 Severe
10
       27.5 None
                         35
    14 more rows
```

Fitting ordered logistic model

Use function polr from package MASS. Like glm.

```
sev.1 <- polr(Severity ~ Exposure,
  weights = Freq,
  data = miners
)</pre>
```

Output: not very illuminating

```
sev.1 <- polr(Severity ~ Exposure,
  weights = Freq,
  data = miners,
  Hess = TRUE
)</pre>
```

```
summary(sev.1)
```

```
Call:
```

polr(formula = Severity ~ Exposure, data = miners, weights
 Hess = TRUE)

Coefficients:

Value Std. Error t value Exposure 0.0959 0.01194 8.034

Intercepts:

Value Std. Error t value

Does exposure have an effect?

Fit model without Exposure, and compare using anova. Note 1 for model with just intercept:

```
sev.0 <- polr(Severity ~ 1, weights = Freq, data = miners)
anova(sev.0, sev.1)</pre>
```

Likelihood ratio tests of ordinal regression models

```
Response: Severity

Model Resid. df Resid. Dev Test Df LR stat.

1 1 369 505.1621

2 Exposure 368 416.9188 1 vs 2 1 88.24324

Pr(Chi)

1 2 0
```

Exposure definitely has effect on severity of disease.

Another way

What (if anything) can we drop from model with exposure?

```
drop1(sev.1, test = "Chisq")
```

Single term deletions

```
Model:
Severity ~ Exposure

Df AIC LRT Pr(>Chi)
<none> 422.92
Exposure 1 509.16 88.243 < 2.2e-16 ***
---
Signif. codes:
0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Nothing. Exposure definitely has effect.

Predicted probabilities 1/2

```
freqs %>% select(Exposure) -> new
new
```

```
A tibble: 8 x 1
  Exposure
     <dbl>
       5.8
2
      15
     21.5
4
   27.5
5
   33.5
6
      39.5
      46
      51.5
8
```

Predicted probabilities 2/2

```
cbind(predictions(sev.1, newdata = new)) %>%
  select(group, estimate, Exposure) %>%
 pivot_wider(names_from = group, values_from = estimate)
# A tibble: 8 \times 4
  Exposure None Moderate Severe
    <dbl> <dbl> <dbl> <dbl> <
      5.8 0.968 0.0191 0.0132
   15 0.925 0.0433 0.0314
3
   21.5 0.869 0.0739 0.0569
4
   27.5 0.789 0.114 0.0969
5
     33.5 0.678 0.162 0.160
6
     39.5 0.542 0.205 0.253
     46 0.388 0.224 0.388
     51.5 0.272 0.210 0.517
8
```

Plot of predicted probabilities

```
plot_predictions(model = sev.1, condition = c("Exposure",
    geom_point(data = prop, aes(x = Exposure, y = proportion
```

The graph

ggg

Comments

- Model appears to match data well enough.
- As exposure goes up, prob of None goes down, Severe goes up (sharply for high exposure).
- So more exposure means worse disease.

Unordered responses

- With unordered (nominal) responses, can use generalized logit.
- Example: 735 people, record age and sex (male 0, female 1), which of 3 brands of some product preferred.
- Data in mlogit.csv separated by commas (so read_csv will work):

```
my_url <- "http://ritsokiguess.site/datafiles/mlogit.csv"
brandpref <- read_csv(my_url)</pre>
```

The data (some)

brandpref

```
A tibble: 735 x 3
   brand sex
                  age
   <dbl> <dbl> <dbl>
                   24
                   26
3
                   26
                   27
 5
                   27
6
                   27
                   27
8
                   27
9
                   27
10
                   27
    725 more rows
```

Bashing into shape

sex and brand not meaningful as numbers, so turn into factors:

```
brandpref %>% count(sex)
```

Fitting model

▶ We use multinom from package nnet. Works like polr.

```
library(nnet)
levels(brandpref$sex)

[1] "female" "male"

brands.1 <- multinom(brand ~ age + sex, data = brandpref)</pre>
```

weights: 12 (6 variable)
initial value 807.480032
iter 10 value 702.990572
final value 702.970704
converged

Can we drop anything?

Unfortunately drop1 seems not to work:

```
drop1(brands.1, test = "Chisq", trace = 0)
```

trying - age

Error in if (trace) {: argument is not interpretable as log

So, fall back on fitting model without what you want to test, and comparing using anova.

Do age/sex help predict brand? 1/3

Fit models without each of age and sex:

```
brands.2 <- multinom(brand ~ age, data = brandpref)</pre>
```

```
# weights: 9 (4 variable)
initial value 807.480032
iter 10 value 706.796323
iter 10 value 706.796322
final value 706.796322
converged
```

```
brands.3 <- multinom(brand ~ sex, data = brandpref)</pre>
```

weights: 9 (4 variable) initial value 807.480032 final value 791.861266 converged

Do age/sex help predict brand? 2/3

```
anova(brands.2, brands.1)
```

Likelihood ratio tests of Multinomial Models

```
Response: brand

Model Resid. df Resid. Dev Test Df LR stat.

1 age 1466 1413.593

2 age + sex 1464 1405.941 1 vs 2 2 7.651236

Pr(Chi)

1
2 0.02180496
```

```
anova(brands.3, brands.1)
```

Likelihood ratio tests of Multinomial Models

```
Response: brand

Model Resid. df Resid. Dev Test Df LR stat.
```

Do age/sex help predict brand? 3/3

- age definitely significant (second anova)
- sex significant also (first anova), though P-value less dramatic
- ► Keep both.
- Expect to see a large effect of age, and a smaller one of sex.

Another way to build model

▶ Start from model with everything and run step:

```
step(brands.1, trace = 0)
trying - age
trying - sex
Call:
multinom(formula = brand ~ age + sex)
Coefficients:
  (Intercept) age sexmale
2 -11.25127 0.3682202 -0.5237736
3 -22.25571 0.6859149 -0.4658215
```

Residual Deviance: 1405.941 AIC: 1417.941

Final model contains both age and sex so neither could be

Making predictions

Find age 5-number summary, and the two sexes:

summary(brandpref)

```
brand sex age
1:207 female:466 Min. :24.0
2:307 male :269 1st Qu.:32.0
3:221 Median :32.0
Mean :32.9
3rd Qu.:34.0
Max. :38.0
```

Space the ages out a bit for prediction (see over).

Combinations

3 26 female 3 4 26 male 4 5 28 female 5 6 28 male 6 7 30 female 7

8

8 30 male

The predictions

```
cbind(predictions(brands.1, newdata = new)) %>%
  select(group, estimate, age, sex) %>%
 pivot_wider(names_from = group, values_from = estimate)
# A tibble: 8 \times 5
              `1` `2`
   age sex
  <dbl> <fct> <dbl> <dbl> <dbl> <dbl>
     24 female 0.915 0.0819 0.00279
    24 male 0.948 0.0502 0.00181
3
    26 female 0.834 0.156 0.0100
4
    26 male 0.894 0.0990 0.00674
5
    28 female 0.696 0.271 0.0329
6
    28 male 0.793 0.183 0.0236
    30 female 0.500 0.407 0.0933
    30 male 0.625 0.302 0.0732
8
```

Comments

- ▶ Young males prefer brand 1, but older males prefer brand 3.
- Females similar, but like brand 1 less and brand 2 more.
- A clear brand effect, but the sex effect is less clear.

Making a plot

▶ I thought plot_predictions doesn't work as we want, but I was (sort of) wrong about that:

Making it go

▶ We have to include group in the condition:

```
plot_predictions(brands.1, condition = c("age", "group"))
```


For each sex

If we add the other variable to the end, we get facets for sex:

plot_predictions(brands.1, condition = c("age", "group", "s

A better graph

- but the male-female difference was significant. How?
- ▶ don't actually plot the graph, then plot the right things:

The graph

g

Digesting the plot

- Brand vs. age: younger people (of both genders) prefer brand
 1, but older people (of both genders) prefer brand
 (Explains significant age effect.)
- ▶ Brand vs. sex: females (solid) like brand 1 less than males (dashed), like brand 2 more (for all ages).
- Not much brand difference between genders (solid and dashed lines of same colours close), but enough to be significant.
- Model didn't include interaction, so modelled effect of gender on brand same for each age, modelled effect of age same for each gender. (See also later.)

Alternative data format

Summarize all people of same brand preference, same sex, same age on one line of data file with frequency on end:

brandpref

```
# A tibble: 735 \times 3
   brand sex
                   age
   <fct> <fct> <dbl>
 1. 1
         male
                    24
2 1
         male
                    26
3 1
         male
                    26
         female 27
 5 1
         female 27
 6 3
         female
                    27
 7 1
         male
                    27
8 1
         male
                    27
         female
                    27
10 1
         male
                    27
```

: 70E mama marra

Getting alternative data format

```
brandpref %>%
 group by (age, sex, brand) %>%
 summarize(Freq = n()) %>%
 ungroup() -> b
b
# A tibble: 65 x 4
    age sex brand Freq
  <dbl> <fct> <fct> <int>
    24 male 1
2 26 male 1
3 27 female 1
  27 female 3
5
  27 male 1
6
  28 female 1
                        6
   28 female 2
8
   28 female 3
     28 male 1
```

Fitting models, almost the same

- Just have to remember weights to incorporate frequencies.
- Otherwise multinom assumes you have just 1 obs on each line!
- Again turn (numerical) sex and brand into factors:

```
b %>%
  mutate(sex = factor(sex)) %>%
  mutate(brand = factor(brand)) -> bf
b.1 <- multinom(brand ~ age + sex, data = bf, weights = Fred)
b.2 <- multinom(brand ~ age, data = bf, weights = Fred)</pre>
```

P-value for sex identical

```
anova(b.2, b.1)
```

Likelihood ratio tests of Multinomial Models

```
Response: brand

Model Resid. df Resid. Dev Test Df LR stat.

1 age 126 1413.593

2 age + sex 124 1405.941 1 vs 2 2 7.651236

Pr(Chi)

1

2 0.02180496
```

Same P-value as before, so we haven't changed anything important.

Trying interaction between age and gender

```
brands.4 <- update(brands.1, . ~ . + age:sex)</pre>
```

```
# weights: 15 (8 variable)
initial value 807.480032
iter 10 value 703.191146
iter 20 value 702.572260
iter 30 value 702.570900
iter 30 value 702.570893
iter 30 value 702.570893
final value 702.570893
converged
```

```
anova(brands.1, brands.4)
```

Likelihood ratio tests of Multinomial Models

Response: brand

Model Resid. df Resid. Dev Test Df

Make graph again

Not much difference in the graph

g4

Compare model without interaction

g

