Factorisation forests for infinite words

Thomas Colcombet Cnrs, Irisa Fct 2007

OVERVIEW

- Factorisation forest theorems
 - Original presentation, by trees
 - By Ramseyan regular expressions
 - By splits
- An elementary application
- Ideas about the proof
- Extension to infinite words
- Application to automata over scattered linear orderings
- Related work

Semigroup: (S, .), with multiplication associative.

E.g., $(A^*, .)$ is a semigroup.

Morphism: $f: S \to S'$ with f(x.y) = f(x).f(y)

Semigroup: (S, .), with multiplication associative.

E.g., $(A^*, .)$ is a semigroup.

Morphism: $f: S \to S'$ with f(x.y) = f(x).f(y)

Th(Kleene): A language is regular iff it is of the form $f^{-1}(M)$ for $M \subseteq S$, with S a finite semigroup.

E.g., Words over $\{a,b\}$ containing an even number of a's is $f^{-1}(0)$ with

Semigroup: $S = \{0, 1\}$, 00 = 11 = 0, 10 = 01 = 1

Morphism: f(a) = 1, f(b) = 0

Semigroup: (S, .), with multiplication associative.

E.g., $(A^*, .)$ is a semigroup.

Morphism: $f: S \to S'$ with f(x.y) = f(x).f(y)

Th(Kleene): A language is regular iff it is of the form $f^{-1}(M)$ for $M \subseteq S$, with S a finite semigroup.

Fix a nondeterministic automaton A of states Q

$$S = \mathcal{P}(Q \times Q)$$

$$a.b = \{(p,r) : (p,q) \in a, (q,r) \in b\}$$

$$f(u) = \{(p,q) : p \longrightarrow_u q\}$$

$$M = Init \times Final$$

Semigroup: (S, .), with multiplication associative.

E.g., $(A^*, .)$ is a semigroup.

Morphism: $f: S \to S'$ with f(x.y) = f(x).f(y)

Th(Kleene): A language is regular iff it is of the form $f^{-1}(M)$ for $M \subseteq S$, with S a finite semigroup.

Fix a nondeterministic automaton A of states Q

$$S = \mathcal{P}(Q \times Q) \qquad a.b = \{(p, r) : (p, q) \in a, (q, r) \in b\}$$

$$f(u) = \{(p,q) : p \longrightarrow_u q\}$$
 $M = Init \times Final$

Below we identify S with the alphabet (f is the identity). I.e., we work with words in S^* .

Call f(u) the value of u.

Set $S = (\mathbb{Z}/5\mathbb{Z}, +)$ and the word u = 210232300322002.

Set $S = (\mathbb{Z}/5\mathbb{Z}, +)$ and the word u = 210232300322002.

A factorising tree is a tree such that:

- leaves are labeled by letters,
- reading leaves from left to right yields the word.

Set $S = (\mathbb{Z}/5\mathbb{Z}, +)$ and the word u = 210232300322002.

A factorising tree is a tree such that:

- leaves are labeled by letters,
- reading leaves from left to right yields the word.

A factorising tree is Ramseyan if every node:

- is a leaf, or;
- has two children, or;
- ullet all its children have as value the same idempotent of S.

Set $S = (\mathbb{Z}/5\mathbb{Z}, +)$ and the word u = 210232300322002.

A factorising tree is a tree such that:

- leaves are labeled by letters,
- reading leaves from left to right yields the word.

A factorising tree is Ramseyan if every node:

- is a leaf, or;
- has two children, or;
- ullet all its children have as value the same idempotent of S.

Set $S = (\mathbb{Z}/5\mathbb{Z}, +)$ and the word u = 210232300322002.

A factorising tree is a tree such that:

- leaves are labeled by letters,
- reading leaves from left to right yields the word.

A factorising tree is Ramseyan if every node:

- is a leaf, or;
- has two children, or;
- ullet all its children have as value the same idempotent of S.

Set $S = (\mathbb{Z}/5\mathbb{Z}, +)$ and the word u = 210232300322002.

Th(Simon 90): Every word over a finite semigroup S admits a Ramseyan factorisation tree of height at most 9|S|.

Set $S = (\mathbb{Z}/5\mathbb{Z}, +)$ and the word u = 210232300322002.

Th(Simon 90): Every word over a finite semigroup S admits a Ramseyan factorisation tree of height at most 9|S|.

Th(Chalopin&Leung 04): Every word over a finite semigroup S admits a Ramseyan factorisation tree of height at most 7|S|.

Set $S = (\mathbb{Z}/5\mathbb{Z}, +)$ and the word u = 210232300322002.

Th(Simon 90): Every word over a finite semigroup S admits a Ramseyan factorisation tree of height at most 9|S|.

Th(Chalopin&Leung 04): Every word over a finite semigroup S admits a Ramseyan factorisation tree of height at most 7|S|.

Th: Every word over a finite semigroup S admits a Ramseyan factorisation tree of height at most 3|S|.

STATEMENT BY REGULAR EXPRESSION

Th: For every finite semigroup S, there exists a regular expression such that:

- it evaluates to S^*
- ullet Kleene star L^* is allowed only if all the values of words in L are equal to the same idempotent

E.g.,
$$S=(\mathbb{Z}/2\mathbb{Z},+)$$

$$0^*(10^*10^*)^*.(\varepsilon+10^*)$$

$$S = (\mathbb{Z}/5\mathbb{Z})$$

Def: Let α be a linear ordering, an additive labeling $\sigma: \alpha^2 \to S$ is such that:

- $\sigma(x,y)$ is defined iff x < y, and,
- $\forall x < y < z \in \alpha$, $\sigma(x, z) = \sigma(x, y) . \sigma(y, z)$

$$S = (\mathbb{Z}/5\mathbb{Z})$$

Def: Let α be a linear ordering, an additive labeling $\sigma: \alpha^2 \to S$ is such that:

- $\sigma(x,y)$ is defined iff x < y, and,
- $\forall x < y < z \in \alpha$, $\sigma(x, z) = \sigma(x, y) . \sigma(y, z)$

Def: A split of height N is a mapping $s: \alpha \to [1, N]$.

$$S = (\mathbb{Z}/5\mathbb{Z})$$

Def: Let α be a linear ordering, an additive labeling $\sigma: \alpha^2 \to S$ is such that:

- $\sigma(x,y)$ is defined iff x < y, and,
- $\forall x < y < z \in \alpha$, $\sigma(x, z) = \sigma(x, y) . \sigma(y, z)$

Def: A split of height N is a mapping $s: \alpha \to [1, N]$.

$$S = (\mathbb{Z}/5\mathbb{Z})$$

Def: Let α be a linear ordering, an additive labeling $\sigma: \alpha^2 \to S$ is such that:

- $\sigma(x,y)$ is defined iff x < y, and,
- $\forall x < y < z \in \alpha$, $\sigma(x, z) = \sigma(x, y) . \sigma(y, z)$

Def: A split of height N is a mapping $s: \alpha \to [1, N]$.

Def: $x \sim_s y$ si s(x) = s(y) and for all $z \in [\min(x, y), \max(x, y)]$, $s(z) \geq s(x)$.

$$S = (\mathbb{Z}/5\mathbb{Z})$$

Def: Let α be a linear ordering, an additive labeling $\sigma: \alpha^2 \to S$ is such that:

- $\sigma(x,y)$ is defined iff x < y, and,
- $\forall x < y < z \in \alpha$, $\sigma(x, z) = \sigma(x, y) . \sigma(y, z)$

Def: A split of height N is a mapping $s: \alpha \to [1, N]$.

Def: $x \sim_s y$ si s(x) = s(y) and for all $z \in [\min(x, y), \max(x, y)]$, $s(z) \geq s(x)$.

Def: A split is Ramseyan for σ if:

$$\forall x < y, x' < y'. \quad (x \sim_s y \sim_s x' \sim_s y') \to \sigma(x, y) = \sigma(x, y)^2 = \sigma(x', y')$$

$$S = (\mathbb{Z}/5\mathbb{Z})$$

Def: Let α be a linear ordering, an additive labeling $\sigma: \alpha^2 \to S$ is such that:

- $\sigma(x,y)$ is defined iff x < y, and,
- $\forall x < y < z \in \alpha$, $\sigma(x, z) = \sigma(x, y) . \sigma(y, z)$

Def: A split of height N is a mapping $s: \alpha \to [1, N]$.

Def: $x \sim_s y$ si s(x) = s(y) and for all $z \in [\min(x, y), \max(x, y)]$, $s(z) \geq s(x)$.

Def: A split is Ramseyan for σ if:

$$\forall x < y, x' < y'. \quad (x \sim_s y \sim_s x' \sim_s y') \to \sigma(x, y) = \sigma(x, y)^2 = \sigma(x', y')$$

Th: Every additive labeling of a finite linear ordering by a finite semigroup S admits a Ramseyan split of height at most |S|.

Problem: Given a regular language L, and a word u, preprocess in linear time the word such that membership of a factor of u in L is constant time.

Conclusion: Computing $\sigma(x,y)$ for a given x,y is constant.

Situation 1: (S, .) is a group every element has an inverse

Situation 2: ab = aa = a, ba = bb = bevery product collapse to its first factor

Situation 3: aa = ba = a, ab = bb = bevery product collapse to its last factor

Situation 4: aa = ab = ba = a, bb = bAn element can swallow another

Situation 1: (S, .) is a group every element has an inverse Single regular \mathcal{H} -class

Situation 2: ab = aa = a, ba = bb = b every product collapse to its first factor Single regular \mathcal{L} -class

Situation 3: aa = ba = a, ab = bb = b every product collapse to its last factor Single regular \mathcal{R} -class

Situation 4: aa = ab = ba = a, bb = bAn element can swallow another Multiple \mathcal{J} -classes

Situation 1: (S, .) is a group every element has an inverse Single regular \mathcal{H} -class

Situation 2: ab = aa = a, ba = bb = bevery product collapse to its first factor Single regular \mathcal{L} -class

Situation 3: aa = ba = a, ab = bb = b every product collapse to its last factor Single regular \mathcal{R} -class

Situation 4: aa = ab = ba = a, bb = bAn element can swallow another Multiple \mathcal{J} -classes

The proof uses a different argument in each situation.

Those arguments are combined in a proof for every finite semigroup (Green's relations).

Group case. E.g., $(\mathbb{Z}/3\mathbb{Z}, +)$

Number S by n. Set $s(x) = n(\sigma(0, x))$, s(0) = n(e).

Group case. E.g., $(\mathbb{Z}/3\mathbb{Z},+)$

Number S by n. Set $s(x) = n(\sigma(0, x))$, s(0) = n(e).

Group case. E.g., $(\mathbb{Z}/3\mathbb{Z}, +)$

Number S by n. Set $s(x) = n(\sigma(0, x))$, s(0) = n(e).

 \mathcal{L} -equivalent elements. ab = bb = b, aa = ba = a.

Number S by $n: S \to [1, N]$. Set $s(x) = n(\sigma(x - 1, x))$, s(0) = 1.

Group case. E.g., $(\mathbb{Z}/3\mathbb{Z}, +)$

Number S by n. Set $s(x) = n(\sigma(0, x))$, s(0) = n(e).

 \mathcal{L} -equivalent elements. ab = bb = b, aa = ba = a.

Number S by $n: S \to [1, N]$. Set $s(x) = n(\sigma(x - 1, x))$, s(0) = 1.

Group case. E.g., $(\mathbb{Z}/3\mathbb{Z}, +)$

Number S by n. Set $s(x) = n(\sigma(0, x))$, s(0) = n(e).

 \mathcal{L} -equivalent elements. ab = bb = b, aa = ba = a.

Number S by $n: S \to [1, N]$. Set $s(x) = n(\sigma(x-1, x))$, s(0) = 1.

Group case. E.g., $(\mathbb{Z}/3\mathbb{Z}, +)$

Number S by n. Set $s(x) = n(\sigma(0, x))$, s(0) = n(e).

 \mathcal{L} -equivalent elements. ab = bb = b, aa = ba = a.

Number S by $n: S \to [1, N]$. Set $s(x) = n(\sigma(x-1, x))$, s(0) = 1.

Group case. E.g., $(\mathbb{Z}/3\mathbb{Z}, +)$

Number S by n. Set $s(x) = n(\sigma(0, x))$, s(0) = n(e).

 \mathcal{L} -equivalent elements. ab = bb = b, aa = ba = a.

Number S by $n: S \to [1, N]$. Set $s(x) = n(\sigma(x-1, x))$, s(0) = 1.

Group case. E.g., $(\mathbb{Z}/3\mathbb{Z}, +)$

Number S by n. Set $s(x) = n(\sigma(0, x))$, s(0) = n(e).

 \mathcal{L} -equivalent elements. ab = bb = b, aa = ba = a.

Number S by $n: S \to [1, N]$. Set $s(x) = n(\sigma(x-1, x))$, s(0) = 1.

Case of different $\mathcal J$ -classes. c=*c=c*=ab $\leq_{\mathcal J}$ b=bb=ba $\leq_{\mathcal J}$ a=aa

Group case. E.g., $(\mathbb{Z}/3\mathbb{Z}, +)$

Number S by n. Set $s(x) = n(\sigma(0, x))$, s(0) = n(e).

 \mathcal{L} -equivalent elements. ab = bb = b, aa = ba = a.

Number S by $n: S \to [1, N]$. Set $s(x) = n(\sigma(x-1, x))$, s(0) = 1.

Case of different $\mathcal J$ -classes. c=*c=c*=ab $\leq_{\mathcal J}$ b=bb=ba $\leq_{\mathcal J}$ a=aa

EXTENSION TO INFINITE LINEAR ORDERINGS

Th: Every additive labeling of a finite linear ordering by a finite semigroup S admits a Ramseyan split of height at most |S|.

Th: Every additive labeling of a complete linear ordering by a finite semigroup S admits a Ramseyan split of height at most 3|S|.

Buchi introduces automata accepting words indexed by ω .

Buchi introduces automata accepting words indexed by ω .

Th(Buchi 61): Languages accepted by Buchi automata are closed under union, intersection, projection and complementation.

Key of the proof: Uses Ramsey's theorem to uncover regularity in the behaviour of the automaton aver a given word.

Buchi introduces automata accepting words indexed by ω .

Th(Buchi 61): Languages accepted by Buchi automata are closed under union, intersection, projection and complementation.

Key of the proof: Uses Ramsey's theorem to uncover regularity in the behaviour of the automaton aver a given word.

Def: A linear ordering is scattered if it does not contain $(\mathbb{Q}, <)$ as a subordering.

E.g., Every ordinal is scattered

E.g., $(\mathbb{Z}, <)$ is scattered, but $(\mathbb{R}, <)$ is not

Bruyère & Carton introduce a family of automata for words indexed by countable scattered linear orderings.

Buchi introduces automata accepting words indexed by ω .

Th(Buchi 61): Languages accepted by Buchi automata are closed under union, intersection, projection and complementation.

Key of the proof: Uses Ramsey's theorem to uncover regularity in the behaviour of the automaton aver a given word.

Def: A linear ordering is scattered if it does not contain $(\mathbb{Q}, <)$ as a subordering.

E.g., Every ordinal is scattered

E.g., $(\mathbb{Z}, <)$ is scattered, but $(\mathbb{R}, <)$ is not

Bruyère & Carton introduce a family of automata for words indexed by countable scattered linear orderings.

Th(Carton&Rispal 05): Languages accepted by Bruyère and Carton automata are closed under union, intersection, projection and complementation.

Buchi introduces automata accepting words indexed by ω .

Th(Buchi 61): Languages accepted by Buchi automata are closed under union, intersection, projection and complementation.

Key of the proof: Uses Ramsey's theorem to uncover regularity in the behaviour of the automaton aver a given word.

Def: A linear ordering is scattered if it does not contain $(\mathbb{Q}, <)$ as a subordering.

E.g., Every ordinal is scattered

E.g., $(\mathbb{Z}, <)$ is scattered, but $(\mathbb{R}, <)$ is not

Bruyère & Carton introduce a family of automata for words indexed by countable scattered linear orderings.

Th(Carton&Rispal 05): Languages accepted by Bruyère and Carton automata are closed under union, intersection, projection and complementation.

Contribution: A simpler proof using splits of complete linear orderings.

RELATED WORK

Other uses of Simon's factorisation theorem

- caracterisation of subfamilies of regular languages (Pin&Weil)
- limitedness of distance automata (Simon)
- extension of regularity over ω -words (Bojańczyk&C.)

Variants

• Deterministic variant, application to logic over trees (Icalp 07)