

ANKARA ÜNİVERSİTESİ ENFORMATİK BÖLÜMÜ TEZSİZ YÜKSEK LİSANS PROGRAMI

Yazılım Mühendisliği Temel Süreçler – PLANLAMA II

Etkin Maliyet Modeli

- ✓ COCOMO 1981 Boehm
- ✓ Mikro maliyet kestirim modeline örnektir.
- ✓ Kullanılacak ayrıntı düzeyine göre üç ayrı model biçiminde yapılabilir:
 - Temel Model
 - Ara Model
 - Ayrıntı Model

COCOMO formülleri

- ✓ İş Gücü (K) K=a*S^b
- ✓ Zaman (T) T=c*K^d

a,b,c,d: her bir model için farklı katsayılar

S: bin türünden satır sayısı

Proje Sınıfları

✓ Ayrık Projeler:

- Boyutları küçük,
- Deneyimli personel tarafından gerçekleştirilmiş
- LAN üzerinde çalışan insan kaynakları yönetim sistemi gibi

✓ Yarı Gömülü:

Hem bilgi boyutu hem donanım sürme boyutu olan projeler

✓ Gömülü Projeler:

Donanım sürmeyi hedefleyen projeler (pilotsuz uçağı süren yazılım - donanım kısıtları yüksek)

Temel Model

- ✓ Küçük-orta boy projeler için hızlı kestirim yapmak amacıyla kullanılır
- ✓ Dezavantajı: Yazılım projesinin geliştirileceği ortam ve yazılımı geliştirecek ekibin özelliklerini dikkate almaz
- ✓ Avantajı: Hesap makinesi ile kolaylıkla uygulanabilir

Ayrık Projeler

- İş Gücü K=2.4*S^{1,05}
- Zaman T=2.5*K^{0,38}

Yarı Gömülü Projeler

- İş Gücü K=3,0*S^{1,12}
- Zaman T=2.5*K^{0,35}

Gömülü Projeler

- İş Gücü K=3,6*S^{1,20}
- **Zaman T=2.5*K**^{0,32}

- ✓ Temel modelin eksikliğini gidermek amacıyla oluşturulmuştur.
- ✓ Bir yazılım projesinin zaman ve iş gücü maliyetlerinin kestiriminde;
 - Proje ekibinin özelliklerini,
 - Proje geliştirmede kullanılacak araçları, yöntem ve ortamı dikkate alır.
- ✓ Üç Aşamadan oluşur:
 - İş gücü hesaplama
 - Maliyet çarpanı hesaplama
 - İlk iş gücü değerini düzeltme

İş Gücü Hesaplama

- ✓ Ayrık Projeler K=3.2*S^{1,05}
- ✓ Yarı Gömülü Projeler K=3,0*S^{1,12}
- ✓ Gömülü Projeler K=2.8*S^{1,20}

Maliyet Çarpanı Hesaplama

✓ Maliyet Çarpanı 15 maliyet etmeninin çarpımı sonucudur.

Maliyet Etmenleri

Maliyet etmeni		Seçenekler					
		Çok Düşük	Düşük	Normal	Yüksek	Çok Yüksek	Oldukça Yüksek
Ürün Özellikleri	RELY	0,75	0,88	1,00	1,15	1,40	-
	DATA	-	0,94	1,00	1,08	1,16	-
	CPLX	0,70	0,85	1,00	1,15	1,30	1,65
Bilgisayar Özellikleri	TIME	-	-	1,00	1,11	1,30	1,66
	STOR	-	-	1,00	1,06	1,21	1,56
	VIRT	-	0,87	1,00	1,15	1,30	-
	TURN	-	0,87	1,00	1,07	1,15	-
Personel Özellikleri	ACAP	1,46	1,19	1,00	0,86	0,71	-
	AEXP	1,29	1,13	1,00	0,91	0,82	-
	PCAP	1,42	1,17	1,00	0,86	0,70	-
	VEXP	1,21	1,10	1,00	0,90	-	-
	LEXP	1,14	1,07	1,00	0,95	-	-
Proje Özellikleri	MODP	1,24	1,10	1,00	0,91	0,82	-
	TOOL	1,24	1,10	1,00	0,91	0,83	-
	SCED	1,23	1,08	1,00	1,04	1,10	-

- ✓ Rely: Yazılımın güvenirliği
- ✓ Data: Veri Tabanının Büyüklüğü. Burada program büyüklüğüne oranı dikkate alınır.
- ✓ Cplx: Karmaşıklığı.

Bilgisayar Özellikleri

- ✓ Time: İşletim zamanı kısıtı
- ✓ Stor: Ana Bellek Kısıtı
- ✓ Virt: Bilgisayar Platform Değişim Olasılığı.
 Bellek ve Disk kapasitesi artırımı,
 CPU Upgrade
- ✓ Turn: Bilgisayar İş Geri Dönüş Zamanı.
 Hata düzeltme süresi.

Personel Özellikleri

- ✓ Acap: Analist Yeteneği: Deneyim, Birlikte çalışabilirlik.
- ✓ Aexp: Uygulama Deneyimi.

 Proje ekibinin ortalama tecrübesi.
- ✓ Pcap: Programcı Yeteneği.
- ✓ Vexp: Bilgisayar Platformu Deneyimi.
 Proje ekibinin geliştirilecek platformu tanıma oranı.
- ✓ Lexp: Programlama dili deneyimi.

Proje Özellikleri

- ✓ Modp: Modern Programlama Teknikleri.
 - Yapısal programlama,
 - Görsel programlama,
 - Yeniden kullanılabilirlik.
- ✓ Tool: Yazılım Geliştirme araçları kullanımı.
 - CASE araçları
 - Metin düzenleyiciler
 - Ortam yönetim araçları
- ✓ Sced: Zaman Kısıtı.

İlk İşgücü değerini Düzeltme

```
✓ Kd= K * C Kd= Düzeltilmiş
İşgücü
```

* Temel Formüldeki Zamanla formülü kullanılarak zaman maliyeti hesaplanır.

Ayrıntı modeli

Temel ve ara modele ek olarak iki özellik taşır.

- ✓ Aşama ile ilgili işgücü katsayıları: her aşama için (planlama, analiz, tasarım, geliştirme, test etme) farklı katsayılar, karmaşıklık belirler
- Æç düzey ürün sıra düzeni: yazılım maliyet kestiriminde
 - Modül
 - Altsistem
 - Sistem

Sıra düzenini dikkate alır

Proje Ekip Yapısı Oluşturma

- ✓ PANDA proje Ekip yapısı temel olarak her proje biriminin doğrudan proje yönetimine bağlı olarak çalışması ve işlevsel bölümlenme esasına göre oluşturulur. Temel bileşenler
 - Proje Denetim Birimi
 - Proje Yönetim Birimi
 - Kalite Yönetim Birimi
 - Proje Ofisi
 - Teknik Destek Birimi
 - Yazılım Üretim Eşgüdüm Birimi
 - Eğitim Birimi
 - Uygulama Destek Birimi

Yüklenici Proje Ekip Yapısı

- ✓ Proje Denetim Birimi: En üst düzey yönetimlerin proje ile ilgisinin sürekli sıcak tutulması ve onların projeye dahil edilmesi
- ✓ Proje Yönetim Birimi: Proje yönetiminden en üst düzeyde sorumlu birim.proje boyutuna göre bir yada daha çok yöneticiden oluşur.
- ✓ Kalite Yönetim Birimi: Projenin amacına uygunluğunu üretim süreci boyunca denetler ve onaylar
- ✓ Proje Ofisi: Her türlü yönetimsel işlerden(yazışma, personel izleme) sorumlu birimdir.

Yüklenici Proje Ekip Yapısı

- ✓ Teknik Destek Birimi: Donanım, İşletim sistemi, Veri tabanı gibi teknik destek
- ✓ Yazılım Üretim Eşgüdüm Birimi: Yazılım Üretim Ekiplerinden oluşur(4-7 kişilik sayı fazla artmaz). Eğer birden fazla yazılım Üretim Ekibi varsa Ortak uygulama yazılım parçalarının geliştirilmesinden sorumlu Yazılım Destek Ekibi de olur.
- ✓ Eğitim Birimi: Proje ile ilgili her türlü eğitimden sorumludur.
- ✓ Uygulama Destek Birimi: Uygulama anında destek. (mesela telefonla)

İş Sahibi Proje Ekip Yapısı

- ✓ Proje Eşgüdüm Birimi
- ✓ Kalite Yönetim Birimi
- ✓ Proje Ofisi
- ✓ Teknik Altyapı izleme birimi
- ✓ Yazılım Üretim İzleme Birimi
- ✓ Eğitim İzleme Birimi
- ✓ Kullanıcı Eşgüdüm Birimi