Branch-and-bound Graphical Example (Accompanying Lesson 16)

1 Branch-and-bound Example

Solve the following IP using branch-and-bound. Solve each sub problem graphically.

(P1)
$$z_{IP}^* = \max 4x_1 - x_2$$

s.t. $7x_1 - 2x_2 \le 14$
 $2x_1 - 2x_2 \le 3$
 $x_2 \le 3$
 $x_1, x_2 \in \mathbb{Z}^{\geq 0}$

- Solve each sub-problem graphically
- Branching Rules
 - Always select the active node with the largest upperbound for branching.
 - \circ Branch on x_1 if it is fractional. Otherwise branch on x_2 .
- Book-keeping
 - Keep track of the:
 - \diamond incumbent solution \underline{x} ,
 - \diamond global lower bound \underline{z} , and
 - ♦ list of active nodes.
 - Draw the branch-and-bound tree:
 - \diamond Record the local upper bound (z) and relaxed optimal solution (x) for each subproblem.
 - ♦ Label each edge with the constraint that is added to form the child subproblem.
 - ♦ X-out fathomed nodes. Circle incumbent solution nodes.
 - Use the provided diagram to illustrate the (relaxed) feasible region of each subproblem.

incumbent solution \underline{x}

global lower bound \underline{z}

active nodes

Feasible Region

$$z_{IP}^* = \max 4x_1 - x_2$$
s.t. $7x_1 - 2x_2 \le 14$

$$2x_1 - 2x_2 \le 3$$

$$x_2 \le 3$$

$$x_1, x_2 \in \mathbb{Z}^{\geq 0}$$

Branch and Bound logic

Step 1: Solve 4 relaxation of original problem
Optimal solution is (3,3) with 3 pp = 8,4

5x = 84 - 5x = 8

Pa is original problem and x123

Step a: Solved problems P) and Pa

P1: X=(2/3) Z= 7.5

Pa: Infeasible

old bound ZIP 58

New bound Zpp 57

Xa is fractional so I want all Xa So Xa 21

STEP 3: Solve P3 and P4
P3: (=10) 2=6
P4: (=11) z=7

Integer solution where Z=7

2 1 2 7 and 2 1 5 7

Stop PY is Optimal

Zx=7 xx=(42,1)