Ejemplo: Ciclo de Carnot

Usando integrales:

Como la energía es constante,

$$\begin{aligned} & \mathbf{Q}_{\text{entra}} = W_{\text{sale}} = \int_{V_A}^{V_B} P dV = \int_{V_A}^{V_B} \frac{N k_B T}{V} dV \\ &= N k_B T \int_{V_A}^{V_B} \frac{dV}{V} = N k_B T \ln(V) |_{V_A}^{V_B} = N k_B T \ln\left(\frac{V_B}{V_A}\right) \end{aligned}$$

0

Entropía=

"... como el agua que Compresión empuja una rueda..." aislada

Sadi Carnot ΔS

arnot
$$\Delta S = \frac{\delta Q}{T} = Nk_B \ln \left(\frac{V_B}{V_A}\right)$$
$$= \frac{\delta Q}{T} = Nk_B \ln \left(\frac{V_C}{V_D}\right)$$

$$E = \frac{3}{2}Nk_BT \qquad PV = Nk_BT$$

$$E = \frac{3}{2}Nk_BT \qquad PV = Nk_BT$$

$$Q_1 = \int_A^B PdV = Nk_BT_1 \ln \frac{V_B}{V_A}$$

$$Q_2 = -\int_C^D PdV = Nk_BT_2 \ln \frac{V_C}{V_D}$$

$$E = \frac{3}{2}Nk_BT \qquad PV = Nk_BT$$

$$Q_1 = \int_A^B PdV = Nk_BT_1 \ln \frac{V_B}{V_A}$$

$$Q_2 = -\int_C^D PdV = Nk_BT_2 \ln \frac{V_C}{V_D}$$

En la expansión adiabática,

$$dE = -pdV$$

$$\frac{3}{2}Nk_BdT = -\frac{Nk_BT}{V}dV$$

$$\int_B^C \frac{dV}{V} = -\frac{3}{2}\int_B^C \frac{dT}{T}$$

$$\frac{V_C}{V_B} = \left(\frac{T_1}{T_2}\right)^{3/2} = \frac{V_D}{V_A}$$

$$dE = -pdV$$

$$\frac{3}{2}Nk_BdT = -\frac{Nk_BT}{V}dV$$

$$\int_B^C \frac{dV}{V} = -\frac{3}{2}\int_B^C \frac{dT}{T}$$

$$\frac{V_C}{V_B} = \left(\frac{T_1}{T_2}\right)^{3/2} = \frac{V_D}{V_A}$$

$$E = \frac{3}{2}Nk_BT \qquad PV = Nk_BT$$

$$Q_1 = \int_A^B PdV = Nk_BT_1 \ln \frac{V_B}{V_A}$$

$$Q_2 = -\int_C^D PdV = Nk_BT_2 \ln \frac{V_C}{V_D}$$

$$\frac{Q_2}{T_2} = -\frac{Q_1}{T_1}$$

$$E = \frac{3}{2}Nk_BT \qquad PV = Nk_BT$$

$$Q_1 = \int_A^B PdV = Nk_B T_1 \ln \frac{V_B}{V_A}$$

$$Q_2 = -\int_C^D PdV = Nk_B T_2 \ln \frac{V_C}{V_D}$$

En la expansión adiabática,

$$dE = -pdV$$

$$\frac{3}{2}Nk_BdT = -\frac{Nk_BT}{V}dV$$

$$\int_B^C \frac{dV}{V} = -\frac{3}{2}\int_B^C \frac{dT}{T}$$

$$\frac{V_C}{V_B} = \left(\frac{T_1}{T_2}\right)^{3/2} = \frac{V_D}{V_A}$$

$$\frac{Q_2}{T_2} = -\frac{Q_1}{T_1}$$

$$\Delta S(A \to B) = \frac{Q_1}{T_1}$$
$$= Nk_B(\ln V_B - \ln V_A)$$

Y a nivel microscópico, ¿Qué es la Entropía?

Y a nivel microscópico, ¿Qué es la Entropía?

Entropía= Cuánta información nos falta para saber cuál es exactamente el estado del sistema

Un efecto del calor es que cada vez sabemos menos del estado del sistema.

Casi quietas y en el fondo (digamos que por gravedad)

Moviéndose muy rápido y en todos lados

¿Cuánta información nos falta para saber exactamente dónde están las moléculas y qué velocidad tienen?= Entropía

La información se mide en bits (Shannon)

1 Bit= La información que obtengo cuando me responden una pregunta de Si/No

Ej: El juego de las 20 preguntas

Para **un** solo sitio, no necesito bits

Para **dos** sitios, necesito **1 bit**

00	10
01	11

Para **cuatro** sitios, necesito **2 bits**

000	010	100	110
001	011	101	111

Para **ocho** sitios, necesito **3 bits**

0000	0010	0100	0110
0001	0011	0101	0111
1000	1010	100	1110
1001	1011	1101	1111

Para **16** sitios, necesito **4 bits**

Cada vezque se duplican, necesito 1 pregunta más.

¿Cuántas preguntas necesito para saber quién es?

Para **un** solo sitio, no necesito bits

Para **dos** sitios, necesito **1 bit**

00	10
01	11

Para **cuatro** sitios, necesito **2 bits**

000	010	100	110
001	011	101	111

Para **ocho** sitios, necesito **3 bits**

0000	0010	0100	0110
0001	0011	0101	0111
1000	1010	100	1110
1001	1011	1101	1111

Para **16** sitios, necesito **4 bits**

Cada vezque se duplican, necesito 1 pregunta más.

¿Cuántas preguntas necesito para saber quién es?

0 1

Para **un** solo sitio, no necesito bits

 $1 = 2^0$

Para **dos** sitios, necesito **1 bit**

9		0
4	_	4

000	010	100	110
001	011	101	111

Para **ocho** sitios, necesito **3 bits**

$$8 = 2 \times 2 \times 2 = 2^3$$

Cada vezque se duplican, necesito 1 pregunta más.

00	10
01	11

 $4 = 2 \times 2 = 2^2$

10	Para cuatro sitios
11	necesito 2 bits

0000	0010	0100	0110
0001	0011	0101	0111
1000	1010	100	1110
1001	1011	1101	1111

Para **16** sitios, necesito **4 bits**

$$16 = 2 \times 2 \times 2 \times 2 = 2^4$$

¿Cuántas preguntas necesito para saber quién es?

Para **un** solo sitio, no necesito bits $1 = 2^0$

Para **dos** sitios, necesito **1 bit** $2 = 2^1$

	00	10
	01	11
. '	_	

Para **cuatro** sitios, necesito **2 bits**

$$4 = 2 \times 2 = 2^2$$

000	010	100	110
001	011	101	111

Para **ocho** sitios, necesito **3 bits**

$$8 = 2 \times 2 \times 2 = 2^3$$

Cada vezque se duplican, necesito 1 pregunta más.

0000	0010	0100	0110
0001	0011	0101	0111
1000	1010	100	1110
1001	1011	1101	1111

Para **16** sitios, necesito **4 bits**

$$16 = 2 \times 2 \times 2 \times 2 = 2^4$$

$$\#$$
sitios = $2^{\#$ bits

de preguntas y respuestas Si/No que necesito hacer para saber quién es

Para **un** solo sitio, no necesito bits

Para **dos** sitios, necesito **1 bit** $2 = 2^1$

	00	10
	01	11
4	0	<u> </u>

Para **cuatro** sitios, necesito **2 bits**

$$4 = 2 \times 2 = 2^2$$

000	010	100	110
001	011	101	111

Para **ocho** sitios, necesito **3 bits**

$$8 = 2 \times 2 \times 2 = 2^3$$

0000	0010	0100	0110
0001	0011	0101	0111
1000	1010	100	1110
1001	1011	1101	1111

Para **16** sitios, necesito **4 bits**

$$16 = 2 \times 2 \times 2 \times 2 = 2^4$$

Ese exponente se llama el logaritmo

bits = $\log_2 (\#$ sitios)

¿Cuántas preguntas necesito para saber quién es?

Para **un** solo sitio, no necesito bits $1 = 2^0$

0	1
J	

Para **dos** sitios, necesito 1 bit $2 = 2^1$

	00	10	
	01	11	
4	$=2 \times$	$\overline{2} = 2$	2^2

Para **cuatro** sitios, necesito 2 bits

$$4 =$$

000	010	100	110
001	011	101	111

Para ocho sitios, necesito 3 bits

$$8 = 2 \times 2 \times 2 = 2^3$$

0000	0010	0100	0110
0001	0011	0101	0111
1000	1010	100	1110
1001	1011	1101	1111

Para **16** sitios, necesito 4 bits

$$16 = 2 \times 2 \times 2 \times 2 = 2^4$$

Ese exponente se llama el logaritmo

bits = \log_2 (# sitios)

¿Cuántas preguntas necesito para saber quién es?

Para **un** solo sitio, no necesito bits $1 = 2^0$

0	1

Para **dos** sitios, necesito **1 bit** $2 = 2^1$

0	0	10	
0	1	11	

Para **cuatro** sitios, necesito **2 bits**

$$4 = 2 \times 2 = 2^2$$

000	010	100	110
001	011	101	111

Para **ocho** sitios, necesito **3 bits**

$$8 = 2 \times 2 \times 2 = 2^3$$

#	sitios	= 2	2#	bits	
			_		

Para **16** sitios, necesito **4 bits**

$$16 = 2 \times 2 \times 2 \times 2 = 2^4$$

Ese exponente se llama el logaritmo

2= la base

bits = \log_2 (# sitios)

La información se mide en bits (Shannon)

Para **un** solo sitio, no necesito bits

0	1
O	

Para **dos** sitios, necesito **1 bit**

00	10
01	11

Para **cuatro** sitios, necesito **2 bits**

000	010	100	110
001	011	101	111

Para **ocho** sitios, necesito **3 bits**

0000	0010	0100	0110
0001	0011	0101	0111
1000	1010	1100	1110
1001	1011	1101	1111

Para **16** sitios, necesito **4 bits**

$$\#$$
sitios = $2^{\#$ bits

$$\#$$
 bits = $\ln_2(\#$ sitios)

Si todos los sitios son igualmente probables

La información se mide en bits (Shannon)

¿Cuántos bits necesito para identificar dónde está una partícula?

Para **un** solo sitio, no necesito bits

Para **dos** sitios, necesito **1 bit**

00	10
01	11

Para **cuatro** sitios, necesito **2 bits**

000	010	100	110
001	011	101	111

Para **ocho** sitios, necesito **3 bits**

0000	0010	0100	0110
0001	0011	0101	0111
1000	1010	1100	1110
1001	1011	1101	1111

Para **16** sitios, necesito **4 bits**

$$\#$$
sitios = $2^{\#$ bits

$$\#$$
 bits = $\ln_2(\#$ sitios)

Si todos los sitios son igualmente probables

Entropía: la información promedio que nos falta para saber en qué estado está el sistema

¿Dónde está Jazmine?

p= la probabilidad de que esté allí

$$p=0.5=rac{1}{2^1}$$
 1 bit $p=0.25=rac{1}{2^2}$ 2 bits $p=rac{1}{2\# ext{bits}}$

bits =
$$-\log_2 p$$

Entropía: la información promedio que nos falta para saber en qué estado está el sistema

¿Dónde está Jazmine?

p= la probabilidad de que esté allí

$$p=0.5=rac{1}{2^1}$$
 1 bit $p=0.25=rac{1}{2^2}$ 2 bits $p=rac{1}{2\# ext{bits}}$

Definimos

$$S_i = I_i = -\log_2 p_i$$

$$S = \langle I \rangle = -\sum_{i} p_i \log_2 p_i$$

bits =
$$-\log_2 p$$

Entropía= Cantidad de información promedio que necesito para determinar en qué microestado está el sistema

Teoría de Información (Shannon)

Entropía = En promedio, Cuánta información nos falta para saber cuál es el estado del sistema

Teoría de Información (Shannon)

La entropía es mínima si hay total certeza sobre cuál es el microestado

Entropía= En promedio, Cuánta información nos falta para saber cuál es el estado del sistema

S=0

Para el niño:

- Antes de la ordenada, la entropía es cero
- Después de la ordenada, la entropía es máxima

Para la mamá:

- Antes de la ordenada, la entropía es máxima
- Después de la ordenada, la entropía es cero

La entropía aumenta si aumenta el "desorden", pero aquí "desorden" significa que no sabemos dónde están las moléculas ni qué velocidades tienen.

Más que "desorden", es "incertidumbre" = falta de información de dónde están y cómo se mueven.

Funciona Perfecto para los Gases Ideales

La entropía aumenta si el volumen aumenta

Un gas de 1 sola molécula

Digamos que tenemos 2¹⁰=1024 cajas de 1cm³, y con 10 preguntas basta

Con una pregunta más lo reducimos al caso anterior

S=10 preguntas

$$V=2^{10}=1024$$
 cajas

S=11 preguntas

Si el volumen se duplica, necesitamos una pregunta más que antes para saber dónde está con la misma precisión.

Un gas de N moléculas

Si son N bolitas, Necesitamos N preguntas más

Cada vez que el volumen se duplica, la entropía crece en N bits.

La entropía aumenta si el volumen aumenta

Un gas de 1 sola molécula

Digamos que tenemos 2¹⁰=1024 cajas de 1cm³, y con 10 preguntas basta

Con una pregunta más lo reducimos al caso anterior

S=10 preguntas

Si el volumen se duplica, necesitamos una pregunta más que antes para saber dónde está con la misma precisión.

Un gas de N moléculas

Si son N bolitas, Necesitamos N preguntas más

Cada vez que el volumen se duplica, la entropía crece en N bits.

Veamos que sí funciona:

Ejemplo: Un gas se expande a temperatura constante de 10cm³ a 80cm³, ¿En cuánto aumenta su entropía?

Usando teoría de información:

La entropía crece en

N partículas, volumen 8V

Usando integrales:

Veamos que sí funciona:

Ejemplo: Un gas se expande a temperatura constante de 10cm³ a 80cm³, ¿En cuánto aumenta su entropía?

Usando teoría de información:

N partículas, volumen 8V

La entropía crece en

$$\Delta S = 3N$$
 bits

$$\Delta S = 3Nk_B \ln 2 \text{ J/K}$$

Usando integrales:

Veamos que sí funciona:

Ejemplo: Un gas se expande a temperatura constante de 10cm³ a 80cm³, ¿En cuánto aumenta su entropía?

Usando teoría de información:

N partículas, volumen 8V

La entropía crece en

$$\Delta S = 3N$$
 bits

$$\Delta S = 3Nk_B \ln 2 \text{ J/K}$$

Usando integrales:

Como la energía es constante,

$$\begin{aligned} Q_{\text{entra}} &= W_{\text{sale}} = \int_{V_A}^{V_B} P dV = \int_{V_A}^{V_B} \frac{N k_B T}{V} dV \\ &= N k_B T \int_{V_A}^{V_B} \frac{dV}{V} = N k_B T \ln(V)|_{V_A}^{V_B} = N k_B T \ln\left(\frac{V_B}{V_A}\right) \\ &= N k_B T \ln 8 = N k_B T \ln 2^3 = 3N k_B T \ln 2 \\ \text{Luego,} \qquad \Delta S &= \frac{Q_{\text{entra}}}{T} = 3N k_B \ln 2 \end{aligned}$$

Otros temas de Teoría de Información

¿Cuál debe ser el proceso de medida que minimice el número de pesadas quedebemos hacer para identificar cuál es la bola más pesada?

$$+\frac{8\times1\times7\times6\times5\times4}{9\times8\times7\times6\times5\times4}$$

$$p_{\text{izq}} = \frac{1 \times 8 \times 7 \times 6 \times 5 \times 4}{9 \times 8 \times 7 \times 6 \times 5 \times 4}$$

$$+\frac{8\times1\times7\times6\times5\times4}{9\times8\times7\times6\times5\times4}$$

$$+\frac{8\times7\times1\times6\times5\times4}{9\times8\times7\times6\times5\times4}$$

$$p_{\rm izq} = \frac{1}{3}$$

$$p_{\rm der} = \frac{1}{3}$$

$$p_{\text{centro}} = \frac{1}{3}$$

Código de Hamming

$$\langle L \rangle =$$

L_i <u>Código</u>

- 1 bit $p_1 = 0.5$
- 2 bit 10 $p_2 = 0.25$
- 3 bit 110 $p_3 = 0.125$
- 3 bit 111 $p_4 = 0.125$

Código de Hamming

$$p_1 = 0.4$$

 $p_2 = 0.2$
 $p_3 = 0.15$
 $p_4 = 0.1$
 $p_5 = 0.05$
 $p_6 = 0.05$
 $p_7 = 0.025$
 $p_8 = 0.025$

$$\langle L \rangle =$$

Thursday, August 20, 15

Código de Hamming

<u>Código</u>

$$p_1 = 0.8$$

$$p_1$$
=0.8 $I_1 = -\log_2 0.8 = 0.32$ bits

1
$$p_2=0.2$$

$$I_2 = -\log_2 0.2 = 2.32$$
 bits

$$\langle L \rangle = 1$$
 bit

$$S = 0.8 \times 0.32 \text{ bits} + 0.2 \times 2.32 \text{ bits} = 0.72 \text{ bits}$$

$$0 p_1p_1=0.64$$
 $0 0.64$ $0 0.64$

11
$$p_1p_2=0.16$$

11
$$p_1p_2=0.16$$
 10 0.20 1 0.36
100 $p_2p_1=0.16$ 11 0.16

$$100 p_2p_1=0.16$$

$$2\langle L\rangle = 0.64 \times 1 \text{ bit} + 0.16 \times 2 \text{ bits} + 0.16 \times 3 \text{ bits} + 0.04 \times 3 \text{ bits}$$

$$= 1.56$$

$$\langle L \rangle = 0.78 \text{ bits}$$