Departamento de Análisis Matemático y Matemática Aplicada

Análisis de Variable Real - Grupo E - Curso 2020-21 Derivabilidad. Hoja 7.

En esta hoja de ejercicios hay algunos que son de Cálculo. Para tener ejemplos relevantes (yendo más allá de los polinomios y potencias de racionales) vamos a utilizar funciones como e^x , x^{α} (con $\alpha \in \mathbb{R}$, $\alpha > 0$), $\ln(x)$, funciones trigonométricas, etc.. Utilizaremos las propiedades conocidas de estas funciones (incluyendo sus derivadas) a pesar de que el estudio sistemático de estas funciones se hará más adelante. Los ejercicios en donde se pueden utilizar estas propiedades están marcados con el símbolo (*).

- 131 Usar la definición de derivada (con la formulación ϵ - δ) para calcular la derivada de las funciones siguientes en un punto arbitrario de su dominio de definición.
 - a) $f(x) = x^3, x \in \mathbb{R}$, b) $g(x) = \frac{1}{x}, x \neq 0$, c) $h(x) = \sqrt{x}, x > 0$
- 132 Probar que la función $f(x) = x^{1/3}$ no es diferenciable en x = 0.
- **133** i) Sea $f : \mathbb{R} \to \mathbb{R}$ la función de Dirichlet, que está definida por f(x) = 1 para $x \in \mathbb{Q}$ y f(x) = 0 para $x \in \mathbb{R} \setminus \mathbb{Q}$. ¿Es f derivable en algún punto?
- ii) Sea $g: \mathbb{R} \to \mathbb{R}$ la función definida por $g(x) = x^2$ para $x \in \mathbb{Q}$ y g(x) = 0 para $x \in \mathbb{R} \setminus \mathbb{Q}$. Probar que g es derivable en x = 0 y calcular g'(0). En qué puntos es la función g continua?
- iii) Sea $h : \mathbb{R} \to \mathbb{R}$ la función definida por h(x) = x para $x \in \mathbb{Q}$ y h(x) = 0 para $x \in \mathbb{R} \setminus \mathbb{Q}$. Estudiar la continuidad y derivabilidad de h.
- 134 Sea $n \in \mathbb{N}$ y sea $f : \mathbb{R} \to \mathbb{R}$ la función definida por $f(x) = x^n$ para x > 0 y f(x) = 0, para $x \le 0$. ¿Para qué valores de n la función f es derivable en todo $x \in \mathbb{R}$? ¿Para qué valores de n la función f' es continua en x = 0? ¿Para qué valores de n la función f' es derivable en x = 0?
- 135 Probar que la derivada de una función par es impar y la de una función impar es par. (**Observación:** Una función $f: \mathbb{R} \to \mathbb{R}$ se dice par si verifica f(-x) = f(x) para todo $x \in \mathbb{R}$ y se dice impar si f(-x) = -f(x) para todo $x \in \mathbb{R}$)
- 136 (*) Determina los valores $r \in \mathbb{R}$ para los que la función $f(x) = x^r \sin(\frac{1}{x})$ (con f(0) = 0) tiene derivada en x = 0.
- 137 (*) Deriva y simplifica:

a)
$$f(x) = \frac{x}{1+x^2}$$
, b) $g(x) = \sqrt{5-2x+x^2}$, c) $h(x) = (\sin(x^k))^m$, con $m, k \in \mathbb{N}$.

- 138 (*) Sabiendo que la función $\tan(x)$ es una función estrictamente creciente en $(-\pi/2, \pi/2)$, calcula la derivada de la función inversa, que la denotamos por $f(y) = \arctan(y)$.
- 139 Para cada una de las funciones siguientes calcula los extremos relativos y los intervalos de crecimiento/decrecimiento.

a)
$$f(x) = x^2 - 3x + 5$$
, $x \in \mathbb{R}$, b) $g(x) = 3x - 4x^2$, $x \in \mathbb{R}$, c) $h(x) = x^4 + 2x^2 - 4$, $x \in \mathbb{R}$

d)
$$k(x) = x + \frac{1}{x}, x \neq 0$$
, e) $l(x) = \frac{x}{x^2 + 1}, x \in \mathbb{R}$, f) $m(x) = \sqrt{x} - 2\sqrt{x + 2}, x > 0$.

- **140** Si $a_1, a_2, \dots a_n$ son números reales, ¿Dónde se alcanza el valor mínimo de la función $f(x) = \sum_{i=1}^{n} (x a_i)^2$? Interpretar el resultado obtenido.
- 141 (*) Usar el Teorema del Valor Medio para probar:
 - a) $|\sin(x) \sin(y)| \le |x y|, x, y \in \mathbb{R}$,
 - b) $\frac{x-1}{x} < \ln(x) < x-1, x > 1$ (Podeis usar que la derivada del $\ln(x)$ es 1/x para x > 0)

- **142** (*) a) Sea $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = 2x^4 + x^4 \sin(1/x)$ para $x \neq 0$ y f(0) = 0. Probar que f(0) = 0es derivable en todo $\mathbb R$ y tiene un mínimo absoluto en x=0. Sin embargo la derivada de f toma valores positivos y negativos en todo entorno de 0.
- b) Sea $g: \mathbb{R} \to \mathbb{R}$ definida por $g(x) = x + 2x^2 \sin(1/x)$ para $x \neq 0$ y g(0) = 0. Probar que g es derivable en \mathbb{R} , g'(0) = 1 y sin embargo la función g' toma valores negativos y positivos en todo entorno de 0.
- 143 Sea I un intervalo. Probar que si una función $f: I \to \mathbb{R}$ es diferenciable y existe una contante L tal que $|f'(x)| \leq L$ para todo $x \in I$, entonces f es una función Lipschitz con constante de Lipschitz L.
- 144 Sea I un intervalo. Probar que si una función $f: I \to \mathbb{R}$ es diferenciable y f'(x) > 0 para todo $x \in \mathbb{R}$ entonces la función es estrictamente creciente.
- **145** Sea $h: \mathbb{R} \to \mathbb{R}$ una función tal que h(x) = a, x < 0, h(x) = b, x > 0 y $h(0) = c, \text{ con } a \neq b$. Probar que no puede existir ninguna función $f: \mathbb{R} \to \mathbb{R}$ tal que f'(x) = h(x) para todo $x \in \mathbb{R}$. Dar dos funciones f_1 y f_2 tales que $f'_1(x) = f'_2(x) = h(x)$ para todo $x \neq 0$ y tal que $f_1 - f_2$ no es una constante.
- **146** Sean $f, g : \mathbb{R} \to \mathbb{R}$ dos funciones diferenciables con $f(0) \leq g(0)$ y $f'(x) \leq g'(x)$ para todo x > 0. Probar que se tiene $f(x) \leq g(x)$ para todo $x \geq 0$.
- 147 (*) Evalúa los siguientes límites:

a)
$$\lim_{x \to 0} \frac{e^x + e^{-x} - 2}{1 - \cos(x)}$$
, b) $\lim_{x \to 0} \frac{x^2 - \sin^2(x)}{x^4}$, c) $\lim_{x \to 0} \frac{\ln(x+1)}{\sin(x)}$, d) $\lim_{x \to 0} \frac{\sin(x)}{x}$

e)
$$\lim_{x \to 0} \frac{\arctan(x)}{x}$$
, f) $\lim_{x \to 0^+} \frac{1}{x(\ln(x))^2}$, g) $\lim_{x \to 0^+} x^n \ln(x)$, h) $\lim_{x \to +\infty} x^n e^{-x}$

$$\mathrm{i)}\, \lim_{x \to +\infty} \frac{\ln(x)}{x^\alpha}, \, \mathrm{con}\,\, \alpha > 0 \qquad \mathrm{j)}\, \lim_{x \to 0^+} x^x, \qquad \mathrm{k)}\, \lim_{x \to 0^+} (\sin(x))^x, \qquad \mathrm{l)}\, \lim_{x \to +\infty} x^{1/x}$$

m)
$$\lim_{x\to +\infty} (1+\frac{1}{x})^x$$
, n) $\lim_{x\to c} \frac{x^c-c^x}{x^x-c^c}$, para $c>0$

148 (*) Para las siguientes funciones, obtener el desarrollo de Taylor de grado n centrado en $x_0 = 0$, y una expresión para el resto:

a)
$$e^x$$
, b) $\sin(x)$, c) $\cos(x)$, d) $\ln(1-x)$, e) $\frac{1}{1-x}$,

a) e^x , b) $\sin(x)$, c) $\cos(x)$, d) $\ln(1-x)$, e) $\frac{1}{1-x}$, Para las funciones de a), b) y c) probar que el resto del polinomio de Taylor de orden n converge a 0cuando $n \to \infty$ para todo $x_0 y x$.

- **149** (*) Sea la función $h(x) = e^{-\frac{1}{x^2}}$, $x \neq 0$ y h(0) = 0. Probar que h es continua en x = 0. Probar además que $h^{(n)}(0) = 0$ para todo $n \in \mathbb{N}$. Probar que el resto de Taylor centrado en $x_0 = 0$ y $x \neq 0$ no converge a 0cuando $n \to \infty$.
- **150** (*) Si $x \in [0,1]$ y $n \in \mathbb{N}$ probar que se tiene

$$\left| \ln(1+x) - \left(x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} \right) \right| < \frac{x^{n+1}}{n+1}$$

Usar esta desigualdad para aproximar $\ln(1'5)$ con un error menor de 0'01 y 0'001.

Utilizar esta desigualdad para probar que la serie armónica alternada (que sabemos que converge) lo hace a ln(2), es decir

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \ln(2)$$

- 151 (*) Calcular el número e con las primeras 7 cifras decimales correctas.
- **152** Supongamos que I es un intervalo y que la función $f: I \to \mathbb{R}$ satisface que es dos veces diferenciable en todo $x \in I$ y verifica $f''(x) \ge 0$ para todo $x \in I$. Si $c \in I$, probar que la gráfica de f en I no está por debajo de la recta tangente a la gráfica en el punto (c, f(c)).
- 153 Probar que la función $f(x) = x^3 2x 5$ tiene una raíz, que llamaremos r, en el intervalo I = [2, 2'2]. Si consideramos la sucesión de puntos $\{x_n\}_{n=1}^{\infty}$ definida por el método de Newton empezando con $x_1 = 2$, probar que se tiene $|x_{n+1} r| \le 0.7|x_n r|^2$ y por tanto $\lim_{n \to \infty} x_n = r$. Probar que x_4 coincide con r en las primeras 6 cifras decimales.
- **154** a) Probar que cualquier polinomio $p(x) = a_n x^n + \ldots + a_1 x + a_0$ verificando $a_0 \cdot a_n < 0$ tiene por lo menos una raíz real. Además, si n es par, entonces tiene por lo menos dos raíces reales.
- b) Probar que todo polinomio de grado par y coeficiente de mayor grado positivo alcanza el ínfimo.

Incluimos a continuación unos ejercicios extraídos de problemas de examen de años anteriores.

- **155** (*) Consideremos la función $f(x) = \begin{cases} x^2 \sec(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$. Calcúlar f'(x) para todo $x \in \mathbb{R}$. ¿Es la función derivada f' una función continua?.
- **156** Sea $f:[0,\infty)\to\mathbb{R}$ una función continua y derivable que verifica f'(x)=2xf(x) para todo $x\geq 0$ y f(0)=1. Se pide:
- i) Probar que se tiene f(x) > 1 para todo x > 0.
- ii) Probar que de hecho también se tiene $f(x) \ge 1 + x^2$ para todo x > 0.
- iii) Probar que la función f tiene por lo menos tres derivadas continuas y cálcular el polinomio de Taylor de orden 2 centrado en $x_0 = 0$. Calcúlese una expresión del resto de Lagrange.
- 157 Sea $f : \mathbb{R} \to \mathbb{R}$ una función continua y con dos derivadas continuas. Supongamos que f tiene un mínimo relativo estricto en 0 y otro mínimo relativo estricto en 1 (**Observación:** no estamos asumiendo f(0) = f(1)). Se pide probar lo siguiente:
- i) Existe un punto $c \in (0,1)$ tal que f''(c) = 0.
- ii) Existe un punto $d \in (0,1)$ tal que f'(d) = 0.
- **158** (1.5 puntos) Sea $f: \mathbb{R} \to \mathbb{R}$ una función que tiene 3 derivadas continuas en todo \mathbb{R} y que verifica f(0) = f'(0) = f''(0) = 0 y $f'''(0) \neq 0$. Probar que f cambia de signo en x = 0, es decir existe un $\delta > 0$ tal que si $x \in (-\delta, 0), y \in (0, \delta)$ entonces f(x)f(y) < 0.
- 159 Sea $f: \mathbb{R} \to \mathbb{R}$ una función con dos derivadas continuas y que verifica que

$$f(0) = 1$$
, $f'(0) = 1$, $f''(0) = -2$

Considera la función $G: \mathbb{R} \to \mathbb{R}$, definida por $G(x) = f(x^2)$. Se pide

- i) Calcular el polinomio de Taylor centrado en $x_0 = 0$ de orden 2 de G. (No es necesario calcular el resto de Lagrange)
- ii) Probar que G tiene un extremo relativo en x=0. Clasificar este extremo.
- iii) Probar que existe un $\delta > 0$ tal que G es convexa en $(-\delta, \delta)$.

160 Sea $f:(-1,1)\to\mathbb{R}$ una función continua y derivable. Supongamos que se tiene f(0)=1 y se verifica

$$f'(x) = xf^{2}(x)$$
, para toda $x \in (-1, 1)$.

Se pide:

- i) Probar que la función f es creciente en [0,1) y decreciente en (-1,0]. Por tanto $f(x) \ge 1$ para todo $x \in (-1,1)$.
- ii) Probar que f tiene por lo menos dos derivadas continuas en (-1,1) y que f es una función convexa en (-1,1).
- iii) Probar que f(x) > 1 para todo $x \in (0, 1)$.
- **161** i) Sea $f : [a, b] \to \mathbb{R}$ una función continua e inyectiva con f(a) < f(b). Probar que f es estrictamente creciente.
- ii) Probar que la función $f(x) = x^7 + x 1$ tiene una y solamente una raiz en \mathbb{R} .
- **162** Consideremos la función $f(x) = 2\operatorname{sen}(x) + \frac{1}{2}x^2 3$. Se pide
- i) Calcular el desarrollo de Taylor de orden 2 centrado en $x_0 = 0$ de la función f, dando también una expresión del resto de Lagrange.
 - ii) Probar que existe un $\delta > 0$ tal que la función f es convexa en el intervalo $(-\delta, \delta)$
- 163 Sea $S : \mathbb{R} \to \mathbb{R}$ una función derivable y con derivada continua. Supongamos además que S es acotada, es decir, existe M > 0 tal que $|S(x)| \le M$ para todo $x \in \mathbb{R}$. Consideremos la función

$$f(x) = \begin{cases} x^2 S(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$$

Se pide:

- i) Calcular f'(x) para todo $x \in \mathbb{R}$.
- ii) ¿Es la función derivada f' en general una función continua?. Imponer alguna condición sobre S que garantice que f' es continua.

(**Observación:** La función derivada f' se expresará en función de S y su derivada).

164 Sea $S: \mathbb{R}^+ \to \mathbb{R}$ una función continua y derivable. Supongmos que existe M > 1 tal que $1 \le S(x) \le M$ para todo $x \ge 0$. Sea $h: \mathbb{R} \to \mathbb{R}$ la función definida por $h(x) = \begin{cases} xS(\frac{1}{|x|}), & x \ne 0 \\ 0, & x = 0. \end{cases}$

Estudiar la derivabilidad de la función h. ¿Es derivable en x=0? ¿Es derivable en $x\neq 0$? ¿Qué hipótesis pedirías a S para garantizar que h es derivable en x=0?