Programme de khôlle n° 21

Semaine du 31 Mars

Cours

• Chapitre 12 : Variables aléatoire discrètes

- Variables aléatoires réelles discrètes (v.a.r.d.) finies et infinies
- Loi d'une v.a.r.d., la loi d'une v.a.r.d. X est entièrement déterminée par une famille de réels $(x_i)_{i\in I}$ et une famille de réels positifs $(p_i)_{i\in I}$ vérifiant $\sum_{i\in I} p_i = 1$, avec $I = \mathbb{N}$ ou $I = \mathbb{Z}$ ou I fini, telles que $\forall i \in I$, $\mathbb{P}(X = x_i) = p_i$.
- Fonction de répartition, lien entre fonction de répartition et loi
- Définition de l'espérance (X admet une espérance ssi la série $\sum x_i \mathbb{P}(X = x_i)$ converge **absolument**). Linéarité de l'espérance, espérance d'une v.a.r.d. positive, théorème de transert, moment d'ordre r d'une variable aléatoire.
- Variance, écart-type, formule de König-Huygens
- Inégalité de Markov, inégalité de Bienaymé-Tchebychev.
- Lois usuelles:
 - Loi de Bernoulli, fonction de répartition, espérance, variance. Variable aléatoire indicatrice.
 - Loi uniforme sur un ensemble fini. Fonction de répartition dans le cas $X \hookrightarrow \mathcal{U}(\llbracket a,b \rrbracket)$. Si $X \hookrightarrow \mathcal{U}(\llbracket 1,n \rrbracket)$, alors $\mathbb{E}(X) = \frac{n+1}{2}$ et $V(X) = \frac{n^2-1}{12}$.
 - Loi binomiale, X suit une loi binomiale lorsque X compte le nombre de succès dans la répétiton de n épreuves de Bernoulli identiques et indépendantes, espérance et variance.
 - Loi géométrique, X suit une loi géométrique lorsque X est le rang du premier succès dans une répétition d'épreuves de Bernoulli, espérance et variance. Une loi géométrique est sans mémoire.
 - Loi de Poisson, espérance et variance. La loi $\mathcal{P}(\lambda)$ peut être interprété comme une limite de loi $\mathcal{B}(n,\frac{\lambda}{n})$.

Questions de cours et exercice

• Questions de cours

- Calcul d'espérance et/ou variance pour les lois usuelles
- Démonstration de l'inégalité de Markov
- Démonstration de l'inégalité de Bienaymé-Tchebychev