Introducción a los fibrados principales

Guillermo Gallego Sánchez

Geometría de superficies topológicas

17 de diciembre de 2018

Un *fibrado* (E, B, p, F)

Un *fibrado* (E, B, p, F) consta de:

▶ base: B

- **▶ base**: B
- espacio total: E

- **▶ base**: B
- espacio total: E
- ▶ fibra: F

- **▶ base**: B
- espacio total: E
- **▶** fibra: F
- p : E → B aplicación continua

- **▶ base**: B
- espacio total: E
- **▶** fibra: F
- ▶ $p: E \rightarrow B$ aplicación continua tal que $\forall x \in B \exists U^x$ y una *trivialización*

- **▶ base**: B
- espacio total: E
- **▶** fibra: F
- ▶ $p: E \rightarrow B$ aplicación continua tal que $\forall x \in B \exists U^x$ y una *trivialización*

$$p^{-1}(U) \xrightarrow{\varphi_U} U \times F$$

Ejemplos

► El fibrado trivial:

$$\begin{array}{ccc} F & \longrightarrow & B \times F \\ & & \downarrow^{\mathsf{pr}_1} \\ & & B \end{array}$$

Ejemplos

► El fibrado trivial:

$$\begin{array}{ccc}
F & \longrightarrow & B \times F \\
& & \downarrow^{\mathsf{pr}_1} \\
& & & B
\end{array}$$

La cinta de Moebius:

$$(0,1) \longrightarrow E$$

$$\downarrow \mathsf{pr}_1$$
 \mathbb{S}^1

con E = $\{(x, y) : x \in \mathbb{R}, y \in (0, 1)\}/(x, y) \sim (x + 1, 1 - y) \text{ y}$ p: E $\to \mathbb{S}^1$, viendo la base como $\mathbb{S}^1 = \{x \in \mathbb{R}\}/x \sim x + 1$.

 $E \to B$ fibrado, $x \in B$, U^x , V^x .

 $E \rightarrow B$ fibrado, $x \in B$, U^x , V^x .

 $E \rightarrow B$ fibrado, $x \in B$, U^x , V^x .

$$\phi_{V} \circ \phi_{U}^{-1} : (U \cap V) \times F \longrightarrow (U \cap V) \times F$$
$$(x, y) \longmapsto (x, \psi_{UV}(x, y))$$

 $E \to B$ fibrado, $x \in B$, U^x , V^x .

$$U \cap V \times F \xrightarrow{\phi_{U}^{-1}} p^{-1}(U \cap V) \xrightarrow{\phi_{V}} U \cap V \times F$$

$$\downarrow^{p} \qquad \downarrow^{p} \qquad \downarrow$$

$$\begin{split} \phi_V \circ \phi_U^{-1} : (U \cap V) \times F &\longrightarrow (U \cap V) \times F \\ (x,y) &\longmapsto (x,\psi_{UV}(x,y)) \end{split}$$

$$\psi_{\mathrm{UV},x}: F \longrightarrow F$$

$$y \longmapsto \psi_{\mathrm{UV}}(x,y)$$

► Función de transición entre U y V:

$$g_{UV}:U\cap V\longrightarrow \mathsf{Homeo}(\mathsf{F})$$

$$\chi\longmapsto \psi_{UV,x}.$$

Las funciones de transición cumplen la condición de cociclo

$$g_{UW} = g_{VW} \circ g_{UV}$$
.

En particular,
$$g_{UU} = id y g_{UV} = g_{VU}^{-1}$$
.

Con estructura adicional en las funciones de transición obtenemos otro tipo de fibrados (por ejemplo, fibrados vectoriales ~ matrices de transición).

 $p: E \to B, p': E \to B'$ fibrados con fibra F.

 $p: E \to B, p': E \to B'$ fibrados con fibra F. Un *isomorfismo de fibrados* entre $p: E \to B$ y $p: E' \to B'$ es un par de homeomorfismos (f, \tilde{f}) tales que

 $p: E \to B, \, p': E \to B'$ fibrados con fibra F. Un *isomorfismo de fibrados* entre $p: E \to B$ y $p: E' \to B'$ es un par de homeomorfismos $(f, \, \tilde{f})$ tales que el diagrama

conmuta.

 $p: E \to B, p': E \to B'$ fibrados con fibra F. Un *isomorfismo de fibrados* entre $p: E \to B$ y $p: E' \to B'$ es un par de homeomorfismos (f, \tilde{f}) tales que el diagrama

conmuta.

Las funciones de transición se relacionan por

$$g'_{U'V'} = f_{VV'}^{-1} \circ g_{UV} \circ f_{UU'},$$

con $f_{UU'}: U' \to Homeo(F)$.

 ${\mathfrak U}$ recubrimiento abierto de B, $G<{\sf Homeo}(F)$ y $\{g_{{\mathfrak U} V}: {\mathfrak U}\cap V \to G: {\mathfrak U}, V\in {\mathfrak U}\}$ conjunto de funciones de transición de un fibrado $E\to B$.

 ${\mathfrak U}$ recubrimiento abierto de $B, G < {\sf Homeo}(F)$ y $\{g_{{\tt U}{\tt V}}: {\tt U} \cap {\tt V} \to G: {\tt U}, {\tt V} \in {\tt U}\}$ conjunto de funciones de transición de un fibrado ${\tt E} \to B$. Entonces ${\tt E} \to B$ es isomorfo al fibrado ${\tt E}' \to B$ con

 ${\mathfrak U}$ recubrimiento abierto de $B, G < {\sf Homeo}(F)$ y $\{g_{{\mathfrak U} V}: {\mathfrak U} \cap V \to G: {\mathfrak U}, V \in {\mathfrak U}\}$ conjunto de funciones de transición de un fibrado $E \to B$.

Entonces $E \to B$ es isomorfo al fibrado $E' \to B$ con

espacio total

$$\mathsf{E}' = \bigsqcup_{\mathsf{U} \in \mathsf{U}} (\mathsf{U} \times \mathsf{F}) / (\mathsf{x}, \mathsf{y}) \sim (\mathsf{x}, \mathsf{g}_{\mathsf{UV}}(\mathsf{x})(\mathsf{y}))$$

 ${\mathfrak U}$ recubrimiento abierto de B, $G<{\sf Homeo}(F)$ y $\{g_{{\mathfrak U} V}: {\mathfrak U}\cap V \to G: {\mathfrak U}, V\in {\mathfrak U}\}$ conjunto de funciones de transición de un fibrado $E\to B$.

Entonces $E \to B$ es isomorfo al fibrado $E' \to B$ con

espacio total

$$\mathsf{E}' = \bigsqcup_{\mathsf{U} \in \mathsf{U}} (\mathsf{U} \times \mathsf{F}) / (\mathsf{x}, \mathsf{y}) \sim (\mathsf{x}, \mathsf{g}_{\mathsf{UV}}(\mathsf{x})(\mathsf{y}))$$

la proyección

$$p: E' \longrightarrow B$$

$$[(x, y)] \longmapsto x.$$

 ${\mathfrak U}$ recubrimiento abierto de B. G < Homeo(F).

 ${\mathfrak U}$ recubrimiento abierto de B. G < Homeo(F).

▶ Un conjunto de funciones $\{g_{UV}: U \cap V \to G: U, V \in \mathcal{U}\}$ es: un 1-cociclo de Čech subordinado a \mathcal{U} con coeficientes en G si

 $g_{UW} = g_{VW} \circ g_{UV}$

 ${\mathfrak U}$ recubrimiento abierto de B. G < Homeo(F).

▶ Un conjunto de funciones $\{g_{UV}: U \cap V \to G: U, V \in \mathcal{U}\}$ es: un 1-cociclo de Čech subordinado a \mathcal{U} con coeficientes en G si

$$g_{UW} = g_{VW} \circ g_{UV}$$

▶ Se llama *primer grupo de cohomología de Čech* subordinado a ¼ con coeficientes en G al cociente

$$\check{H}(\mathcal{U},G) = \{1\text{-cociclos}\}/g_{UV} \sim (f_{VV'}^{-1} \circ g_{UV} \circ f_{UU'}).$$

 ${\mathfrak U}$ recubrimiento abierto de B. G < Homeo(F).

▶ Un conjunto de funciones $\{g_{UV}: U \cap V \rightarrow G: U, V \in \mathcal{U}\}$ es: un 1-cociclo de Čech subordinado a \mathcal{U} con coeficientes en G si

$$g_{UW} = g_{VW} \circ g_{UV}$$

▶ Se llama *primer grupo de cohomología de Čech* subordinado a ¼ con coeficientes en G al cociente

$$\check{H}(\mathcal{U},G) = \{1\text{-cociclos}\}/g_{UV} \sim (f_{VV'}^{-1} \circ g_{UV} \circ f_{UU'}).$$

► Tomando el límite directo por refinamiento del recubrimiento, tenemos el *primer grupo de cohomología de Čech con coeficientes en* G

$$\check{H}^1(B,G)=\varinjlim_{\mathcal{U}}\check{H}^1(\mathcal{U},G).$$

Secciones

Una **sección** de un fibrado $p: E \rightarrow B$ es una aplicación continua $s: B \rightarrow E$ tal que $p \circ s = id_B$.

Secciones

Una secci'on de un fibrado $p:E\to B$ es una aplicación continua $s:B\to E$ tal que $p\circ s=id_B.$ Una sección local es una sección definida en un abierto $U\subset B.$

Secciones

Una **sección** de un fibrado $p: E \to B$ es una aplicación continua $s: B \to E$ tal que $\mathfrak{p} \circ \mathfrak{s} = \mathsf{id}_{\mathsf{B}}$. Una sección local es una sección definida en un abierto $U \subset B$. Denotamos $\Gamma(E)$ al conjunto de las secciones de $E \rightarrow B$ y $\Gamma(U, E)$ al conjunto de las secciones locales definidas en un abierto $U \subset B$.

Un *fibrado principal* (P, B, p, G) consta de:

una variedad diferenciable P,

Un *fibrado principal* (P, B, p, G) consta de:

- una variedad diferenciable P,
- un grupo de Lie G actuando libremente por la derecha sobre P:

$$P \times G \longrightarrow P$$
$$(p, g) \longmapsto p \cdot g,$$

Un *fibrado principal* (P, B, p, G) consta de:

- una variedad diferenciable P,
- un grupo de Lie G actuando libremente por la derecha sobre P:

$$P \times G \longrightarrow P$$
$$(p, g) \longmapsto p \cdot g,$$

▶ B = P/G con una sumersión $p : P \rightarrow P/G$, que es la proyección canónica al cociente

Un *fibrado principal* (P, B, p, G) consta de:

- una variedad diferenciable P,
- un grupo de Lie G actuando libremente por la derecha sobre P:

$$P \times G \longrightarrow P$$
$$(p, g) \longmapsto p \cdot g,$$

▶ B = P/G con una sumersión $p : P \to P/G$, que es la proyección canónica al cociente y tal que $\forall x \in B \ \exists U^x$ y una trivialización

$$p^{-1}(U) \xrightarrow{\varphi_U} U \times G$$

$$\downarrow p$$

Un *fibrado principal* (P, B, p, G) consta de:

- una variedad diferenciable P,
- un grupo de Lie G actuando libremente por la derecha sobre P:

$$P \times G \longrightarrow P$$
$$(p, g) \longmapsto p \cdot g,$$

▶ B = P/G con una sumersión p : P → P/G, que es la proyección canónica al cociente y tal que $\forall x \in B \ \exists U^x$ y una trivialización

$$p^{-1}(U) \xrightarrow{\phi_U} U \times G$$

Además, $\varphi_{U}(y) = (p(y), g_{U}(y))$ para cierta $q_{U}: p^{-1}(U) \to G$ con $q_{U}(y \cdot q) = q_{U}(y) \cdot q$.

Observaciones

Podemos pensar en un fibrado principal como en un fibrado sobre una variedad diferenciable cuya fibra es un grupo de Lie.

Observaciones

Podemos pensar en un fibrado principal como en un fibrado sobre una variedad diferenciable cuya fibra es un grupo de Lie. En efecto, para cada sección local $s_U: U \to P$ y para cada $y \in p^{-1}(x)$ existe un único elemento $g_U(y) \in G$ con $y = s_U(x)g_U(y)$.

Observaciones

- ▶ Podemos pensar en un fibrado principal como en un fibrado sobre una variedad diferenciable cuya fibra es un grupo de Lie. En efecto, para cada sección local $s_U: U \to P$ y para cada $y \in p^{-1}(x)$ existe un único elemento $g_U(y) \in G$ con $y = s_U(x)g_U(y)$.
- Las funciones de transición son de la forma

$$U \cap V \times G \longrightarrow U \cap V \times G$$

 $(x, h) \longmapsto (x, g_{UV}(x)h).$

Observaciones

- ▶ Podemos pensar en un fibrado principal como en un fibrado sobre una variedad diferenciable cuya fibra es un grupo de Lie. En efecto, para cada sección local $s_U: U \to P$ y para cada $y \in p^{-1}(x)$ existe un único elemento $g_U(y) \in G$ con $y = s_U(x)g_U(y)$.
- Las funciones de transición son de la forma

$$U \cap V \times G \longrightarrow U \cap V \times G$$
$$(x, h) \longmapsto (x, g_{UV}(x)h).$$

 Un fibrado principal admite una sección global si y sólo si es trivial.

$$\blacktriangleright \ P = B = \mathbb{S}^1 \subset \mathbb{C} \ \mathsf{y}$$

$$p: \mathbb{S}^1 \longrightarrow \mathbb{S}^1$$
$$z \longmapsto z^2.$$

▶
$$P = B = \mathbb{S}^1 \subset \mathbb{C}$$
 y

$$p: \mathbb{S}^1 \longrightarrow \mathbb{S}^1$$
$$z \longmapsto z^2.$$

Fibra \mathbb{Z}_2 con la acción

$$\mathbb{S}^1 \times \mathbb{Z}_2 \longrightarrow \mathbb{S}^1$$
$$(z, \pm 1) \longmapsto \pm z.$$

▶
$$P = B = \mathbb{S}^1 \subset \mathbb{C}$$
 y

$$p: \mathbb{S}^1 \longrightarrow \mathbb{S}^1$$
$$z \longmapsto z^2.$$

Fibra \mathbb{Z}_2 con la acción

$$\mathbb{S}^1 \times \mathbb{Z}_2 \longrightarrow \mathbb{S}^1$$
$$(z, \pm 1) \longmapsto \pm z.$$

• $p: \tilde{M} \to M$ recubridor universal.

▶
$$P = B = \mathbb{S}^1 \subset \mathbb{C}$$
 y

$$p: \mathbb{S}^1 \longrightarrow \mathbb{S}^1$$
$$z \longmapsto z^2.$$

Fibra \mathbb{Z}_2 con la acción

$$\mathbb{S}^1 \times \mathbb{Z}_2 \longrightarrow \mathbb{S}^1$$
$$(z, \pm 1) \longmapsto \pm z.$$

▶ $p: \tilde{M} \to M$ recubridor universal. Fibra $\pi_1(M)$ con la acción de monodromía:

$$\begin{split} \tilde{M} \times \pi_1(M) &\longrightarrow \tilde{M} \\ (y,g) &\longmapsto \tilde{\gamma}_g^y(1). \end{split}$$

El *fibrado de referencias* sobre una variedad diferenciable *M* tiene por espacio total

 $L(M) = \{ \psi_x : \mathbb{R}^n \to T_x M : x \in M, \ \psi_x \text{ es un isomorfismo lineal} \}$

El *fibrado de referencias* sobre una variedad diferenciable *M* tiene por espacio total

 $L(M)=\{\psi_x:\mathbb{R}^n\to \mathsf{T}_xM:x\in M,\;\psi_x\;\text{es un isomorfismo lineal}\}$ con la aplicación

$$p: L(M) \longrightarrow M$$
$$\psi_x \longmapsto x.$$

El *fibrado de referencias* sobre una variedad diferenciable *M* tiene por espacio total

$$L(M) = \{\psi_x : \mathbb{R}^n \to T_xM : x \in M, \ \psi_x \text{ es un isomorfismo lineal} \}$$

con la aplicación

$$p: L(M) \longrightarrow M$$
$$\psi_x \longmapsto x.$$

Su fibra es $GL(n, \mathbb{R})$

El *fibrado de referencias* sobre una variedad diferenciable *M* tiene por espacio total

 $L(M)=\{\psi_x:\mathbb{R}^n\to T_xM: x\in M,\ \psi_x \text{ es un isomorfismo lineal}\}$ con la aplicación

$$p: L(M) \longrightarrow M$$
$$\psi_x \longmapsto x.$$

Su fibra es $GL(n, \mathbb{R})$ con la acción

$$\mathbb{R}^n \xrightarrow{A} \mathbb{R}^n \xrightarrow{\psi_x} \mathsf{T}_x \mathsf{M}.$$

