Practice 4 Nesting Boxes

Problem 1

The nesting relation is transitive.

Proof: Assume that there exists permutations: π_1 such that box A nests within box B, π_2 such that box B nests within box B, B, B, B are three B-dimensional boxes), we have

$$A_{\pi_1(1)} < B_1, \ A_{\pi_1(2)} < B_2, \ \cdots, \ A_{\pi_1(d)} < B_{d}, \ B_{\pi_2(1)} < C_1, \ B_{\pi_2(2)} < C_2, \ \cdots, \ B_{\pi_2(d)} < C_d.$$

Therefore, there exists a permutation $\pi_3=\pi_1\circ\pi_2$ such that $A_{\pi_3(1)}< C_1,\ A_{\pi_3(2)}< C_2,\ \cdots,\ A_{\pi_3(d)}< C_d$.

Thus, A nests within C, which proves that the nesting relation is transitive.

Problem 2

Algorithm Steps (Pseudocode)

return value: 1 when A nests within B, -1 when B nests within A, 0 when there is no nesting relation.

```
1
    isNest(d, A, B):
 2
         sort(A)
 3
         sort(B)
         if A[0] < B[0]:
 4
 5
              then for i \leftarrow 1 to d - 1:
 6
                  if A[i] >= B[i]:
 7
                       then return 0
                   return 1
 8
              else for i \leftarrow 0 to d - 1:
 9
10
                  if A[i] <= B[i]:
                       then return 0
11
12
                   return -1
```

Time Complexity

line 2: $O(d \log d)$ (Merge Sort or Quick Sort)

line 3: $O(d \log d)$ (Same as above)

line 4 - 12: O(d)

Therefore, the time complexity of this algorithm is $O(d \log d)$.

Correctness Proof

Sufficiency (After sorting $A_i' < B_i'$ for every $i \to A$ nests within B)

According to the definition of the nesting relation, after sorting, for every i, if $A'_i < B'_i$, A nests within B.

Necessity (A nests within B o After sorting $A_i' < B_i'$ for every i)

Basis step: When d=1, since A nests within B, there is only one permutation and $A_1 < B_1$.

Inductive step: Assume that for $d=k\geq 2$, if A nests within B, then after sorting, $A_i'< B_i'$ for every i.

When d=k+1, for convenience, regard the permutation that enables A to be nested within B as the original permutation. Therefore, $A_i < B_i$ for every i.

Pick out A_1 and B_1 , and according to the inductive hypothesis, after sorting, $A'_i < B'_i$ for every i > 1.

We insert A_1 and B_1 back into the sorted permutation, in ascending order. Since $A_1 < B_1$, the position where A_1 is inserted is same as or ahead of that of B_1 .

If same: The insertion doesn't affect the relationship between other A'_i and B'_i , thus the conclusion holds.

If ahead: After insertion, all A_i' after A_1 have been shifted one position to the right. Since $A_1 \leq A_i' < B_i' \leq B_{i+1}' \leq B_1$ for i within the two insertion positions, the conclusion still holds.

Problem 3

Algorithm Steps (Pseudocode)

```
1
    longestNestingSequence(n, d, boxes):
         /* nest: n*n 2-d arraylist, represent the nesting relation between box i and j
 2
 3
            depth: nesting depth of box i, with initial values 0
            prev: array with length n, store prev box of box i, with initial values -1 */
 4
 5
         for i \leftarrow 0 to n - 1:
             sort(boxes[i])
 6
 7
         for i \leftarrow 0 to n - 1:
 8
9
              for j \leftarrow i + 1 to n - 1:
                  if boxes[i][0] < boxes[j][0]:</pre>
10
                       then for k \leftarrow 1 to d - 1:
11
12
                           if boxes[i][k] >= boxes[j][k]:
13
                                then break
                           nest[i].add(j)
14
                       else for k \leftarrow 0 to d - 1:
15
16
                           if boxes[i][k] <= boxes[j][k]:</pre>
17
                                then break
                           nest[j].add(i)
18
19
         t = topological order of boxes
20
         for i \leftarrow 0 to t.length - 1:
21
              for j \leftarrow 0 to nest[j].size - 1:
22
                  if depth[j] < depth[i] + 1:</pre>
23
24
                       depth[j] = depth[i] + 1
25
                       prev[j] = i
26
27
         cur = index of maximum depth
28
         while cur != -1:
29
              print boxes[cur]
             cur = prev[cur]
30
```

Time Complexity

```
line 5 - 6: O(nd \log d)
line 8 - 18: O(n^2d)
line 20 - 25: O(n^2)
line 27 - 30: O(n)
```

Therefore, the time complexity of this algorithm is $O(n^2d)$.