组合逻辑电路的分析和设计

1. 写出下图所示电路输出信号的逻辑表达式,并采用最少的与非门

$$F1 = \overline{A} \, \overline{B} = \overline{A} + B$$

$$F2 = \overline{(\overline{A} + B)(\overline{A} + C)} = \overline{\overline{A} + B} + \overline{\overline{A} + C} = A\overline{B} + A + C = A + C$$

$$Y = \overline{A + C + B \oplus \overline{C}} = \overline{A + C + BC + \overline{B}} \, \overline{C} = \overline{A + C + \overline{B}} = \overline{A}B\overline{C}$$

2. 用**或非门**实现函数 F, 并画出逻辑图。

$$F = A\overline{B}C\overline{D} + \overline{A}BC\overline{D} + A\overline{B}\overline{C}D + \overline{A}B\overline{C}D$$

画卡诺图为:

AB	CD	00	01	11	10
00					
01			1		1
11					
10			1		1

最大项对应的卡诺图为:

A+B	C+D	1+1	1	1+0	0+	0	0+1
1+1	<	0		0	0		0
1+0		0			0		
0+0		0		0	0		0
0+1		0			0		

对应的最简或与式为: $F = (A + B)(\overline{A} + \overline{B})(C + D)(\overline{C} + \overline{D})$

或非表达式为: $F = \overline{A + B} + \overline{A + B} + \overline{C + D} + \overline{C + D}$

逻辑图为:

3. 分别用二输入与非门和或非门实现下列逻辑函数,写出相应的表达式,画出逻辑图

$$F = \overline{A} \oplus B$$

$$F = AB + \overline{A} \overline{B}$$

与非门:

或非门:

与或式: $F = (A + \overline{B})(B + \overline{A})$

(找不到与或式的列真值表, 找最大项)

或非式: $F = \overline{A + B} + \overline{B + A}$

4. 设计一个代码转换电路,输入为 4 位循环码,输出为 4 位二进制代码

真值表: 输入 ABCD, 输出 F1F2F3F4

А	В	С	D	F1	F2	F3	F4
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	1	0	0	1	0
0	0	1	0	0	0	1	1
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	1
0	1	0	1	0	1	1	0
0	1	0	0	0	1	1	1
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	1
1	1	1	1	1	0	1	0
1	1	1	0	1	0	1	1
1	0	1	0	1	1	0	0
1	0	1	1	1	1	0	1
1	0	0	1	1	1	1	0
1	0	0	0	1	1	1	1

对于 ABCD 按 0000-1111 排列:

А	В	С	D	F1	F2	F3	F4
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	1
1	0	0	0	1	1	1	1
1	0	0	1	1	1	1	0
1	0	1	0	1	1	0	0
1	0	1	1	1	1	0	1
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	1
1	1	1	0	1	0	1	1
1	1	1	1	1	0	1	0

卡诺图:横坐标 CD,纵坐标 AB

F1:

	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	1	1
10	1	1	1	1

F1 = A

F2:

	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	0	0	0	0
10	1	1	1	1

 $F2 = A\overline{B} + \overline{A}B$

F3:

	00	01	11	10
00	0	0	1	1
01	1	1	0	0
11	0	0	1	1
10	1	1	0	0

 $F3 = \overline{A} \, \overline{B}C + \overline{A}B\overline{C} + ABC + A\overline{B} \, \overline{C}$

F4:

	00	01	11	10
00	0	1	0	1
01	1	0	1	0
11	0	1	0	1
10	1	0	1	0

$$F4 = \overline{A} \, \overline{B} \, \overline{C}D + \overline{A} \, \overline{B}C\overline{D} + \overline{A}B\overline{C} \, \overline{D} + \overline{A}BCD + AB\overline{C}D + AB\overline{C}D + A\overline{B} \, \overline{C} \, \overline{D}$$
$$+ A\overline{B}CD$$

逻辑图

5. 用与非门设计报警逻辑电路:设备中有四个传感器 A, B, C, D, 如果传感器 A 输出为 1, 同时 B, C, D 中至少有两个输出也为 1, 表示设备工作状态正常,否则工作异常,发出警报。

真值表:设定正常为1,异常为0。

Α	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

卡诺图

	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	1	1	1
10	0	0	1	0

函数式F = ABC + ABD + ACD

与非式: $F = \overline{\overline{ABC} \cdot \overline{ABD} \cdot \overline{ACD}}$

逻辑图:

6. 设计 1 位二进制全减器逻辑电路,写出真值表、卡诺图以及逻辑表达式,画出逻辑图

对于二进制全减器,要考虑三个输入:被减数 A、减数 B、下一位的借位 C,

考虑两个输出:结果 F1、向上一位的借位 F2

А	В	С	F1	F2
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

F1 卡诺图: 横坐标 BC, 纵坐标 A

	00	01	11	10
0		1		1
1	1		1	

 $F1 = \overline{A} \, \overline{B}C + \overline{A}B\overline{C} + A\overline{B} \, \overline{C} + ABC$

F2 卡诺图:

	00	01	11	10
0		1	1	1
1			1	

$$F2 = \overline{A}B + \overline{A}C + BC$$

逻辑图:

组合逻辑电路中的竞争和险象

7. 判断下图所示组合逻辑电路是否存在冒险现象,在什么情况下会产生冒险。

$$F = (A + B)(\overline{B} + C) = \overline{\overline{A}} \, \overline{\overline{B} + B} \overline{\overline{C}}$$

存在冒险现象,

1. 逻辑冒险: 输入 B 发生变化时。

例如当输入 ABC 由 000 转换为 010 时,可能发生逻辑冒险 因为非门的延迟等原因,下或门的输出可能变化的比上或门慢,电路 转换过程中,一开始上下或门的输出为 01,然后变为 11,最后转为 10。在中间的 11 情况下,电路会输出 1 的毛刺,形成冒险。

2. 功能冒险: 输入 A 或 B 或 C 不变, 另外两个信号变化时。 当输入 ABC 由 001 转换为 010 时, 可能发生功能冒险 信号的变化不会同时到达门电路处。如果信号经历 001-011-010 的 变化, 中间状态中, 电路的输出为 1. 会形成毛刺, 产生冒险。 8. 试分析逻辑函数Y = ĀBD + BD + ĀBC + ĀBC 当输入变量 ABCD 发生 0110->1100, 1111->1010, 0011->0110 变化时, 是否存在 功能冒险。

卡诺图: 横坐标 CD

	00	01	11	10
00		1	1	
01	1	1		1
11	1			1
10	1	1		

1. 0110->1100

两个变量发生变化,不变量BD

	00	01	11	10
00		1	1	
01	1	1		1
11	1			1
10	1	1		

不变量所在的方框全为 1,不会有功能冒险

2. 1111->1010

两个变量发生变化,不变量 AC

	00	01	11	10
00		1	1	
01	1	1		1
11	1			1
10	1	1		

不变量所在的方框有0有1,会有功能冒险

3. 0011->0110

两个变量发生变化,不变量 $\overline{A}C$

	00	01	11	10
00		1	1	
01	1	1		1
11	1			1
10	1	1		

不变量所在的方框有 0 有 1, 会有功能冒险

9. 分析下图所示电路, 指出电路什么情况下会发生逻辑冒险, 用改变逻辑设计的方式消除冒险

如果 AB 信号由 11 转变为 10, 因为非门的原因, \overline{B} 信号可能会延时较长, 造成下与门延时较长。电路上下与门的输出经历 10-00-01 的转变, 其中 00 的输出会造成整个电路产生 0 的毛刺。

若 AB 信号由 10 转变为 11, 且上与门延时较长。电路上下与门的输出经历 01-00-10 的转变, 其中 00 的输出会造成整个电路产生 0 的毛刺。

$$F = AB + A\overline{B} = AB + A\overline{B} + A$$

给电路加上一个 A 信号做冗余项可以消除冒险。

10.已知Y(A, B, C, D) = $\sum m(0,3,7,8,9,10,11,12,13) + \sum d(1,2,4)$,求 Y 的无逻辑冒险的**与或式**

卡诺图: 横坐标 CD

	00	01	11	10
00	1	Х	1	х
01	Х		1	
11	1	1		
10	1	1	1	1

最简与或式: $F = \overline{B} + A\overline{C} + \overline{A}CD$

加冗余项时,我们找能不能画出新的圈,其中的元素之前在不同的圈内

	00	01	11	10
00	1	1	1	1
01	0		1	
11	1	1		
10	1	1	1	1

最简与或式找不到新的圈 (注意约束项的值已经确定)。

所以,无冒险的与或式为 $F = \overline{B} + A\overline{C} + \overline{A}CD$