Cirq Quantum Framework

Introduction to Quantum Computing

First steps	Tutorials and examples	
Install		
Getting started	Beginner	
	Basics	
Essential concepts	Heatmaps	
Qubits	State Histograms	
Gates and operations		
Circuits	Intermediate	
Simulation	Quantum variational algorithm	
Ecosystem	Approximate optimization	
	Quantum walks	
Further topics	Fourier Checking	
Noise		
Devices	Advanced	
Transform circuits	Rabi oscillation experiment	
Qudits	Cross entropy benchmarking (XEB theory	
Protocols	XEB and coherent error	
Import/export circuits	Parallel XEB	
Custom gates	Isolated XEB	
Operators	Hidden linear function problem Shor's algorithm	
Issues / requests / questions		

Google hardware	AQT hardware Getting started with AQT hardware Azure Quantum Getting started with Honeywell on Azure Quantum Getting started with IonQ on Azure Quantum IonQ hardware Getting started with IonQ hardware Binary paintshop	
Getting started with QCS		
Visualizing calibration metrics Identifying Hardware Changes Qubit picking with Loschmidt echoes Circuit optimization, gate alignment, & spin echoes		
Calibration ^		
Floquet calibration: Example and benchmark	Pasqal hardware	
XEB calibration: Example and benchmark	Getting started with Pasqal hardware	
	Rigetti hardware	
	Getting started with Rigetti hardwar	

- Qubits on a grid
- Measurements really slow
- Measurements only at the end
- Limited set of gates
- Limited at ~400ms long circuits
- Limited qubits for real world-compatible circuits (23q/54q/72q)

Overview

ID	Title	Path	Туре
0	Cirq Setup	0-setup	Setup
1	Basic Quantum gates	1-gates	Basic
2	Superdense-Coding Implementation	2-superdense	Intermediate
3	Deutsch Implementation	3-deutsch	Intermediate
4	Quantum Linear Equation Solving	4-hhl	Advanced
5	Quantum MNIST Classification	5-mnist	Advanced
6	Cirq-Specific Tools	6-bonus	Bonus

0. Cirq Setup

Everything starts with Github: https://github.com/craciunoiuc/IQC-lab-presentation

Clone the repository and let the fun begin!

1. Basic Code In Cirq

Masters of Advanced Cybersecurity, Cezar Crăciunoiu & Dragoș Argint 24 may 2022

2. Superdense Coding

Alice 00: 01: 10: Eve Bob XZ 11: |0> Η Η |0>

3. Deutsch Algorithm

To the drawing board!

4. HHL Algorithm

Introduction to Quantum Computing

To the drawing board!

5. Quantum Neural Network

Fashion MNIST - dataset

$$(1, 1): ---X--$$

Parameterized gates

$$\begin{split} X^t &= e^{-i\frac{\pi}{2}t(X-I)} = e^{i\frac{\pi}{2}t}R_x(\pi t) \\ &= e^{i\frac{\pi}{2}t}\begin{bmatrix} \cos(\frac{\pi}{2}t) & -i\sin(\frac{\pi}{2}t) \\ -i\sin(\frac{\pi}{2}t) & \cos(\frac{\pi}{2}t) \end{bmatrix} \end{split}$$

Parameterized gates

$$\begin{aligned} \mathsf{XX}(\mathsf{t}) &= e^{-i\frac{\pi}{2}\mathsf{t}\mathsf{X}\otimes\mathsf{X}} \\ &= \begin{bmatrix} \cos(\frac{\pi}{2}\mathsf{t}) & 0 & 0 & -i\sin(\frac{\pi}{2}\mathsf{t}) \\ 0 & \cos(\frac{\pi}{2}\mathsf{t}) & -i\sin(\frac{\pi}{2}\mathsf{t}) & 0 \\ 0 & -i\sin(\frac{\pi}{2}\mathsf{t}) & \cos(\frac{\pi}{2}\mathsf{t}) & 0 \\ -i\sin(\frac{\pi}{2}\mathsf{t}) & 0 & 0 & \cos(\frac{\pi}{2}\mathsf{t}) \end{bmatrix} \end{aligned} \quad \begin{array}{l} \mathsf{q0, q1} = \mathsf{cirq.LineQubit.} \\ \mathsf{circuit} = \mathsf{cirq.Circuit()} \\ \mathsf{circuit.append(cirq.XX(q0))} \\ &= \mathsf{Can}(\mathsf{t},0,0) \end{aligned}$$

Introduction to Quantum Computing

Hinge loss

y_train: 1 0 0 1 0 ... y_train_hinge: 1 -1 -1 1 -1 ...
$$I(y) = \max(0, 1-ty)$$
 take_x_from(x_train) QNN

References

https://www.flaticon.com/free-icon/quantum-computing_1998708

<u> https://quantumai.google</u>

https://github.com/quantumlib/Cirq

http://cpb.iphy.ac.cn/article/2018/1924/cpb 27 2 020308/cpb 27 2 02

0308 f4.jpg

https://quantumai.google/cirq/tutorials/basics

https://quantumai.google/cirq/circuits

https://www.tensorflow.org/quantum/tutorials/mnist

