Problem 3, 9
a) as we can see $\phi(x)$ projected X into \mathbb{R}^n Space. For $\phi(x)$
$\psi(x, x_n) = \left(\exp\left(-\frac{1}{x} - x_n\right)^2 \right) (y^2) \text{ fust callier Scalar to X and}$
$\psi(x, x_n) = \left(\exp\left(-\frac{1}{2}x - x_n\right)^2\right) (Y'' : s \text{ just welling Scalar to } X \text{ and} $ $Y_n, \text{ thus could square} : +)$
$ \Rightarrow \exp\left(-\left(\chi^{2}\right)\right) \exp\left(-\left(\chi^{2}\right)\right) \exp\left(2\chi\chi_{M}\right) $
· · · · · · · · · · · · · · · · · · ·
Taylor exponsion $= \exp(-(x^2)) \exp(-(x_n)^2) \sum_{i=1}^{\infty} \frac{(2xx_n)^i}{i!}$
$= \sum_{i=1}^{\infty} \left(\exp\left(-(x_{i}^{2}) \cdot \sqrt{\frac{2i}{i!}}(x)^{i} \right) \left(\exp\left(-(x_{i}^{2}) \cdot \sqrt{\frac{i!}{i!}}(x^{*})^{i} \right) \right)$
for known. In and X.
Xis transferred into Hinty Attentional
147th = 17
γ
with. $\begin{bmatrix} 1, \frac{1}{2}, \frac{1}{2}, -1 \end{bmatrix} \xrightarrow{\chi^2}$
for infinity direction. duc = a, and can Setter all X. thus
this transfruction works
c) is just on special case of b)
,

To calculate the eculture distance, we never to project X to (ij)'s space When we project X to $ R ^{100}$: $\stackrel{\triangle}{=}$ project $\stackrel{\triangle}{X}$
Proj(X) is just liver combiation of downts of X
thus we can use the toylor expersion similar in part by respect to project) and fas fire project) and infinitely discussion. Which also hears it is transformed to infinitely discussion. Thus the transformertion works.

a)
$$W \nearrow PW = (PW) / (PW) = \sum_{q=3}^{2} W_q^2$$

 $+ \sum_{w=3}^{2} W_w^2 = \sum_{q=3}^{2} W_q^2$
 $+ \sum_{w=3}^{2} W_w^2 = \sum_{q=3}^{2} W_q^2$

from book Figuretion (46) English = Ein(W) + \(\sum \) with take derivative respect to we are both sible. PEauglish = PEin(W) + 2\(\sum \) W(4) - M Einglish(W) = M(1) - M (PEin(W(4)) + 2\(\sum \) with) = M(4) - M PEin(W(4)) - 2\(\sum \) M(4) - (1-29\(\sum \) W(4) - M PEin(W(4))	problem 4.8
Eaug(W) = $\overline{\text{Ein}(W)} + \lambda W^{T}W$ take derivative respect to W on both side. $\overline{\text{VEaug}(W)} = \overline{\text{VEin}(W)} + 2\lambda W$ $\Rightarrow W(t) - \eta \overline{\text{VEin}(W(t))} = W(t) - \eta (\overline{\text{VEin}(W(t))} + 2\lambda W(t))$ $= W(t) - \eta \overline{\text{VEin}(W(t))} - 2\lambda \eta W(t)$	
take dorivative respect to w on both side. $\nabla E_{ang}(W) = \nabla E_{in}(W) + 2\lambda W$ $\Rightarrow W(t) - \eta \nabla E_{ang}(W(t)) = W(t) - \eta (\nabla E_{in}(W(t)) + 2\lambda W(t))$ $= W(t) - \eta \nabla E_{in}(W(t)) - 2\lambda \eta W(t)$	
$ \nabla E_{aug}(W) = \nabla E_{in}(W) + 2\lambda W $ $ \Rightarrow W(t) - \eta \nabla E_{aug}(W(t)) = W(t) - \eta (\nabla E_{in}(W(t)) + 2\lambda W(t)) $ $ = W(t) - \eta \nabla E_{in}(W(t)) - 2\lambda \eta W(t) $	
$= W(t) - \eta \nabla E_{ag}(W(t)) = W(t) - \eta \left(\nabla E_{ag}(W(t)) + 2 \right) W(t)$ $= W(t) - \eta \nabla E_{ag}(W(t)) - 2 \lambda \eta W(t)$	take donicative respect to w on both side.
=WCt) - M DEm(Wc+1) -2XMWCt)	$\nabla \text{Eang}(W) = \nabla \text{Ein}(W) + 2\lambda W$
= W(t) - M \(\nabla \times_{\t	
= ((->y) W(t) - y \(\nabla \) Ein(W(t))	=W(t) - N VEm(Wc+1) -2XNW(t)
	= ((-24) W(+) - 4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	<u>'</u>

CSE 417 homework 3

Muzhou Liu

Problem 1

- The generalization of the model looked okay, as there is small difference between the training error and the test error in each case, which shows the model is well generalized.
 - o The E_in we got from the 10k, 100k and 1 million iterations are 0.5847, 0.4937 and 0.4354
 - The training error we got from 10k, 100k and 1 million iterations are 0.3092, 0.2237, and 0.1513
 - The test error we got from 10k, 100k and 1 million iterations are 0.3172,0.2069, and 0.1310
 - As the three interactions all used up maxim iteration steps we set up, the more the
 algorithm iterates, the closer the gradient to its minimum state. Which is the
 reason that we can see that in all criteria, the output is improving as the number of
 iteration increases.
- Comparing with the results we got form last part, glm model, it has the lowest E_in (0,4074), little bit higher training error (0.1711) and the lowest testing error (0.1103)
 - o Compare the running time using the "timeit" function, it returns 5.1616*10^-4 second for the 'glmfit' function and 7.5506 seconds for the one-million-time nitration which returns an even worse output comparing to the 'glmfit' function.
- After standardization, we tried five different learning rates (from 10^-1 to 10^-5) to input into the model, they took 2333, 23368, 233708, 2337116 and 23371191 steps to final terminate.
 - o The e_in we got from all the five learning are all 0.4074.

Appendix 1: Codes

```
function [ w, e_in ] = logistic_reg( X, y, w_init, max_its, eta )
%LOGISTIC REG Learn logistic regression model using gradient descent
   Inputs:
용
       X : data matrix (without an initial column of 1s)
        y : data labels (plus or minus 1)
        w init: initial value of the w vector (d+1 dimensional)
양
        max its: maximum number of iterations to run for
응
        eta: learning rate
응
  Outputs:
응
       w : weight vector
        e in : in-sample error (as defined in LFD)
X = [ones(size(X,1),1) X];
y = 2*y -1;
old w = w init;
n itr = 0;
tol = 0.001*2;
n = size(X, 1);
while tol > 0.001 && n_itr < max_its</pre>
 g = -sum(y .* X ./ (1+exp(y.*X*old w)))/n;
new w = old w-eta*transpose(g);
old w = new w;
n itr = n itr+1;
tol = max(abs(q));
w = new w;
e in = sum(log(1+exp(-y.*X*w)))/n;
end
function [ test error ] = find test error( w, X, y )
%FIND TEST ERROR Find the test error of a linear separator
   This function takes as inputs the weight vector representing a linear
    separator (w), the test examples in matrix form with each row
   representing an example (X), and the labels for the test data as a
  column vector (y). X does not have a column of 1s as input, so that
   should be added. The labels are assumed to be plus or minus one.
   The function returns the error on the test examples as a fraction. The
% hypothesis is assumed to be of the form (sign ( [1 \times (n,:)] \times w )
y = 2*y-1;
temp = ones(size(X,1),1);
X = [temp X];
test label = sign(X*w);
test error = sum(y ~= test label)/size(X,1);
```

```
function [ w, e in, n itr ] = logistic reg2( X, y, w init, eta )
%LOGISTIC REG Learn logistic regression model using gradient descent
   Inputs:
       X : data matrix (without an initial column of 1s)
응
       y : data labels (plus or minus 1)
응
       w init: initial value of the w vector (d+1 dimensional)
       max its: maximum number of iterations to run for
       eta: learning rate
용
  Outputs:
       w : weight vector
        e in : in-sample error (as defined in LFD)
X = [ones(size(X,1),1) X];
y = 2*y -1;
old w = w init;
n itr = 0;
tol = 0.001*2;
n = size(X, 1);
while tol > 10^{(-6)}
 g = -sum(y .* X ./ (1+exp(y.*X*old w)))/n;
 new w = old w-eta*transpose(g);
old w = new w;
n itr = n itr+1;
tol = max(abs(q));
end
n itr= n itr;
w = new w;
e in = sum(log(1+exp(-y.*X*w)))/n;
end
train = csvread('clevelandtrain.csv',1,0);
train x = train(:,1:13);
train y = train(:,14);
test = csvread('clevelandtest.csv',1,0);
test x = test(:,1:13);
test y = test(:,14);
[w_10k, e_10k] = logistic_reg(train_x, train_y, zeros(14,1), 10000, 0.00001);
[w 100k,e 100k] = logistic reg(train x, train y, zeros(14,1),100000,0.00001);
[w 1m,e 1m] = logistic reg(train x, train y, zeros(14,1), 1000000, 0.00001);
```

```
train error 10k = find test error(w 10k,train x,train y)
test error 10k = find test error(w 10k, test x, test y)
train error 100k = find test error(w 100k, train x, train y)
test error 100k = find test error(w 100k, test x, test y)
train error 1m = find test error(w 1m, train x, train y)
test error 1m = find test error(w 1m, test x, test y)
glm w = glmfit(train x, train(:,14) , 'binomial');
e glm = sum(log(1+exp(-(2*train y-1).*[ones(size(train x,1),1)
train x|*qlm w)))/size(train x,1)
glm train error = find test error(glmfit(train x,train(:,14) ,
'binomial'),train x,train y)
glm test error = find test error(glmfit(train x,train(:,14) ,
'binomial'),test x,test y)
glm time = @() glmfit(train x,train(:,14) , 'binomial');
glm time = timeit(glm time)
my time = @() logistic reg(train x, train y, zeros(14,1),1000000,0.00001);
my time = timeit(my time)
 stand train x = zscore(train x);
[w std1, e std1, n std1] = logistic reg2(stand train x, train y,
zeros(14,1),0.1)
[w std2, e std2, n std2] = logistic reg2(stand train x, train y,
zeros(14,1),0.01)
[w std3, e std3, n std3] = logistic reg2(stand train x, train y,
zeros(14,1),0.001)
[w std4, e std4, n std4] = logistic reg2(stand train x, train y,
zeros(14,1),0.0001)
[w std5, e std5, n std5] = logistic reg2(stand train x, train y,
zeros(14,1),0.00001)
%[w std6,e std6, n std6] = logistic reg2(stand_train_x, train_y,
zeros(14,1),0.000001);
train error std1 = find test error(w std1, stand train x, train y)
train error std2 = find test error(w std2, stand train x, train y)
train error std3 = find test error (w std3, stand train x, train y)
```

```
train_error_std4 = find_test_error(w_std4,stand_train_x,train_y)
train_error_std5 = find_test_error(w_std5,stand_train_x,train_y)
```

Appendix 2 : Outputs

Value 0.4937 0.5847 0.4354 0.6062 0.4074 0.4074 0.4074 0.4074 0.1103 5.1616e-04 0.1103 14x1 double 7.5506 2333 23368 233708 2337116
0.5847 0.4354 0.6062 0.4074 0.4074 0.4074 0.4074 0.1103 5.1616e-04 0.1103 14x1 double 7.5506 2333 23368 233708
0.4354 0.6062 0.4074 0.4074 0.4074 0.4074 0.1103 5.1616e-04 0.1103 14x1 double 7.5506 2333 23368 233708
0.6062 0.4074 0.4074 0.4074 0.4074 0.4074 0.1103 5.1616e-04 0.1103 14x1 double 7.5506 2333 23368 233708
0.4074 0.4074 0.4074 0.4074 0.4074 0.1103 5.1616e-04 0.1103 14x1 double 7.5506 2333 23368 233708
0.4074 0.4074 0.4074 0.4074 0.1103 5.1616e-04 0.1103 14x1 double 7.5506 2333 23368 233708
0.4074 0.4074 0.4074 0.1103 5.1616e-04 0.1103 14x1 double 7.5506 2333 23368 233708
0.4074 0.4074 0.1103 5.1616e-04 0.1103 14x1 double 7.5506 2333 23368 233708
0.4074 0.1103 5.1616e-04 0.1103 14x1 double 7.5506 2333 23368 233708
0.1103 5.1616e-04 0.1103 14x1 double 7.5506 2333 23368 233708
5.1616e-04 0.1103 14x1 double 7.5506 2333 23368 233708
0.1103 14x1 double 7.5506 2333 23368 233708
14x1 double 7.5506 2333 23368 233708
7.5506 2333 23368 233708
2333 23368 233708
23368 233708
233708
2227116
2337110
23371191
152x13 double
145x14 double
0.2069
0.3172
0.1310
145x13 double
145x1 double
152x14 double
0.2237
0.3092
0.1513
0.1711
0.1711
0.1711
0.1711
0.1711
152x13 double
152x1 double
14x1 double
14x1 double
14x1 double
14x1 double
14x1 double
14x1 double
14x1 double
14x1 double