

ESCUELA DE INGENIERÍAS INDUSTRIALES

Detección multimodal de objetos mediante deep-learning empleando la red AdapNet++ para fusión sensorial.

Autor : Pablo Venema Rodríguez

Tutor: Ricardo Vázquez Martín.

Cotutor : Andrés Manuel Salas Espinales

1. Objetivos

El objetivo principal de este trabajo es el análisis de técnicas de transferencia de conocimiento sobre la arquitectura AdapNet++ para fusión multimodal utilizando imágenes del dataset UMA-SAR.

- 1. Imágenes térmicas.
- 2. Dataset autores.
- 3. UMA-SAR.

Fondo	Escombro	Civil	Pers.	Victima	Vehículo	Vehículo	Zapatos
			rescate		civil	rescate	

1. Introducción

Segmentación de imágenes con CNN

Proceso de entrenamiento

Transferencia de conocimiento

2. AdapNet++

Ventajas de la segmentación de imágenes de varias modalidades

Ventajas de la segmentación de imágenes de varias modalidades

3. Plan de trabajo

- Modelo entrenado.
- Dividir una de las clases

- Modelos entrenados.
- Estudio de una modalidad.
- Dos modalidades.

4. Transferencia de conocimiento partiendo del modelo de Cityscapes

- Entornos urbanos.
- 50 imágenes etiquetadas.
- Herramientas para preparación de imágenes.

Etiquetado de imágenes

Preprocesamiento de las imágenes de Cityscapes

1. Mapa de color

Preprocesamiento de las imágenes de Cityscapes

2. Aumento de datos

Imagen original

Escalado

Simetría Crop

5. Resultados obtenidos sobre el modelo de Cityscapes

$$\mathcal{L}(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} y_{ij} \log(p_{ij})$$

$$IoU = \frac{TP}{(TP + FP + FN)}$$

Entrenamiento de las dos últimas capas del decoder

• Pérdida: 0,07

• MIoU: 69

• Tiempo: 1.5 horas

Fine-tunning

• Pérdida: 0,12

• MIoU: 71

• Tiempo: 0.5 horas

Entrenamiento del decoder completo

• Pérdida: 0,12

• MIoU: 66

• Tiempo:1.7 horas

6. Transferencia de conocimiento utilizando el dataset UMA-SAR.

• Manipulación de las imágenes RGB.

Etiquetado de imágenes utilzando CVAT(Computer Vision Anotation Tool)

- Software libre.
- 60 imágenes.
- Tableta digitalizadora

Análisis de modelos utilizando el dataset UMA-SAR

Imágenes RGB Imágenes térmicas Modelo de Cityscapes Modelo de Freiburg-forest

7. Resultados obtenidos con el dataset UMA-SAR

Transferencia de conocimiento partiendo de:

- Cityscapes.
- Modelo generalista.

Análisis de resultados:

- No se tiene en cuenta el fondo al calcular la función de pérdida.
- Se tiene en cuenta el fondo al calcular la función de pérdida.

Resultados globales con una modalidad

Modelo	Pérdida	MIoU
Cityscapes rgb	0,0002	2,14 %
AdapNet general	0,06	1,95 %

Modelo	Pérdida	MIoU
Cityscapes rgb	0,26	39 %
AdapNet general	0,51	41 %

RGB sin tener en cuenta el fondo

RGB teniendo en cuenta el fondo

Modelo	Pérdida	MIoU
Cityscapes rgb	0,0002	1,9 %
Cityscapes mapas de profundidad	0,0034	2,45 %
AdapNet general	0,0001	1,86 %

Térmicas sin tener en cuenta el fondo

Modelo	Pérdida	MIoU
Cityscapes rgb	0,4	33 %
Cityscapes mapas de profundidad	0,43	15 %
AdapNet general	0,64	22 %

Térmicas teniendo en cuenta el fondo

Tabla RGB-Cityscapes

		Falsos	Falsos	
Clase Postivos real		positivos	negativos	loU
Escombros	10582,52	629,57	1936,28	80 %
Civil	2,71	0,36	2080,18	0 %
Personal de				
rescate	2625,34	1465,51	3939,58	33 %
Vehículo civil	3644,06	3,59	4108,61	47 %
Vehículo de				
rescate	6291,46	1706,57	3010,44	57 %
Víctima	0,00	0,00	342,00	0 %
Zapatos	0,00	0,00	351,12	0 %
Fondo	255798,22	12162,10	199,48	95 %

Tabla RGB-AdapNet++

		Falsos	Falsos	
Clase Positivos reales		positivos	negativos	IoU
Escombros	9488,40	1537,09	3030,40	68%
Civil	0,00	0,00	2082,90	0 %
Personal de				
rescate	2509,78	1729,55	4055,14	30 %
Vehículo civil	5712,36	116,84	2040,30	73 %
Vehículo de				
rescate	6556,46	519,71	2745,43	67 %
Víctima	0,00	0,00	342,00	0 %
Zapatos	0,00	0,00	351,12	0 %
Fondo	254783,22	11958,58	1214,48	95 %

Tabla Térmicas-Cityscapes

		Falsos	Falsos	
Clase	Positivos reales	positivos	negativos	loU
Escombros	9583,48	3736,27	498,49	69 %
Civil	112,07	7,32	1632,41	6 %
Personal de				
rescate	4801,17	3794,57	1207,39	49 %
Vehículo civil	0,00	0,00	7172,42	0 %
Vehículo de				
rescate	7965,68	7879,16	789,28	48 %
Víctima	0,00	0,00	361,00	0 %
Zapatos	0,00	0,00	343,48	0 %
Fondo	254575,80	2456,49	5869,35	97 %

Tabla Térmicas-AdapNet++

		Falsos	Falsos	
Clase Positivos rea		positivos	negativos	loU
Escombros	4169,15	1890,33	5912,82	35 %
Civil	0,00	0,00	1744,48	0 %
Personal de				
rescate	1143,75	1104,64	4864,81	16 %
Vehículo civil	0,00	0,00	7172,42	0 %
Vehículo de				
rescate	3697,33	2018,25	5057,63	34 %
Víctima	0,00	0,00	361,00	0 %
Zapatos	0,00	0,00	343,48	0 %
Fondo	259164,73	21723,81	1280,42	92 %

Resultados RGB

Cityscapes

AdapNet++

Resultados Térmicas

Cityscapes

AdapNet++

AdapNet++ con 2 modalidades

AdapNet++ entrenada con una sola modalidad del dataset UMA-SAR

Resultados transferencia de conocimiento de AdapNet++ con dos modalidades

• Pérdidas: 0,09.

• MIoU:52.

Clase	Positivos reales	Falsos positivos	Falsos negativos	loU
Escombros	8299,225	939,36	1982,87	74 %
Civil	1218,45	1246,69	610,58	40 %
Personal de rescate	3391,68	910,17	2211,81	52 %
Vehículo civil	7009,61	941,06	695,04	81 %
Vehículo de rescate	7754,52	1931,37	972,29	73 %
Víctima	0	0	361,00	0 %
Zapatos	0	0	343,48	0 %
Fondo	256785,43	4484,43	3275,98	97 %

Comparación entre 1 y 2 modalidades

8. Conclusiones y trabajos futuros

- Importancia del ajuste fino.
- Fondo de la imagen en el calculo del error.
- El resultado mejora al utilizar dos modalidades.

9. Trabajos futuros

- Aumento de la cantidad de imágenes con víctimas.
- Estudio del uso del bloque SSMA con Mask-RCNN.
- Análisis de funciones de pérdida diferentes.