

Linear Combinations

1 Why

TODO

2 Definition

A linear combination is a sequence of vectors and a sequence of scalars from a vector space. The result of a linear combination is the result of scaling the *i*th vector by the *i*th scalar and adding the results.

A trivial linear combination is one whose sequence of scalars is zero at each coordinate. A nontrivial linear combination is one which is not trivial: in other words, there exists on coordinate of its scalar sequence which is nonzero.

2.1 Notation

Let (V, \mathbf{F}) be a vector space. Let $v = (v_1, \dots, v_n)$ be a sequence of vectors in V. Let $a = (a_1, \dots, a_n)$ be a sequence of scalars in \mathbf{F} . Then (v, a) is a linear combination and we can express its result by

$$a_1v_1 + a_2v_2 + \dots + a_nv_n.$$

3 Relationships

TODO span equivalence