hetFL

shamsiiat.abdurakhmanova

February 27, 2024

1 Numerical experiments

1.1 Datasets

1.1.1 Synthetic Dataset

Experiments were performed on a synthetic dataset whose empirical graph \mathcal{G} is partitioned into 3 equal-sized clusters $\mathcal{P} = \{\mathcal{C}^{(1)}, \mathcal{C}^{(2)}, \mathcal{C}^{(3)}\}$, with $|\mathcal{C}^{(1)}| = |\mathcal{C}^{(2)}| = |\mathcal{C}^{(3)}|$. We denote the cluster assignment of node $i \in \mathcal{V}$ by $c^{(i)} \in \{1, 2, 3\}$.

For experiments where graph connectivity is known, the edges in \mathcal{G} are generated via realizations of independent binary random variables $b_{i,i'} \in \{0,1\}$. These random variables are indexed by pairs i,i' of nodes that are connected by an edge $\{i,i'\} \in \mathcal{E}$ if and only if $b_{i,i'} = 1$.

Two nodes in the same cluster are connected with probability $Prob\{b_{i,i'}=1\}:=p_{in}$ if nodes i,i' belong to the same cluster. In contrast, $Prob\{b_{i,i'}=1\}:=p_{out}$ if nodes i,i' belong to different clusters. Every edge in $\mathcal G$ has the same weight, $A_e=1$ for all $e\in\mathcal E$.

Each node $i \in \mathcal{V}$ of the empirical graph \mathcal{G} holds a local dataset $\mathcal{D}^{(i)}$ of the form $\mathcal{D}^{(i)} := \{(\mathbf{x}^{(i,1)}, y^{(i,1)}), ..., (\mathbf{x}^{(i,m_i)}, y^{(i,m_i)})\}$. Thus, dataset $\mathcal{D}^{(i)}$ consist of m_i data points, each characterized by a feature vector $\mathbf{x}^{(i,r)} \in \mathbb{R}^d$ and scalar label $y^{(i,r)}$, for $r = 1, ..., m_i$. The feature vectors $\mathbf{x}^{(i,r)} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{d \times d})$, are drawn i.i.d. from a standard multivariate normal distribution.

The labels of the data points are generated by a noisy linear model

$$y^{(i,r)} = (\mathbf{w}^{(i)})^T \mathbf{x}^{(i,r)} + \varepsilon^{(i,r)}$$
(1)

The noise $\varepsilon^{(i,r)} \sim \mathcal{N}(0,1)$, for $i \in \mathcal{V}$ and $r = 1, ..., m_i$, are i.i.d. realizations of a normal distribution. The true underlying vector $\overline{\mathbf{w}}^{(i)} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{d \times d})$ is drawn from a standard normal distribution and is the same for nodes from the same cluster, i.e. $\overline{\mathbf{w}}^{(i)} = \overline{\mathbf{w}}^{(i')}$ if $c^{(i)} = c^{(i')}$.

(!!! Not relevant if we only interested in weight vector est.error!!!) Datasets are divided into training and validation subsets by using resampling with replacement. The size of the validation subset is $m_i^{(val)} = 100$.

1.1.2 Shared Dataset

The dataset $\mathcal{D}^{(test)} := \{\mathbf{x}^{(i)}, ..., \mathbf{x}^{(m')}\}$ consist of only feature vectors (no labels), where feature vector is sampled as $\mathbf{x}^{(r)} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{d \times d})$. Predictions on $\mathcal{D}^{(test)}$ are shared across all nodes. The size of the dataset is m' = 100.

1.2 Experiments

1.2.1 Synthetic Dataset, linreg model, graph is known

In these experiments empirical graph \mathcal{G} consist of N=150 nodes partitioned into three clusters ($|\mathcal{C}^{(i)}|=50$). Two nodes in the same cluster are connected with probability $p_{in}=0.8$ if nodes i,i' belong to the same cluster and $p_{out}=0.2$ if nodes i,i' belong to different clusters.

Each node $i \in \mathcal{V}$ of the empirical graph \mathcal{G} holds a local dataset $\mathcal{D}^{(i)}$ consisting of m_i data points, each characterized by a feature vector $\mathbf{x}^{(i,r)} \in \mathbb{R}^d$ and scalar label $y^{(i,r)}$, for $r = 1, ..., m_i$, where d = 10. The sample size of the shared dataset $\mathcal{D}^{(test)}$ is m' = 100.

To learn the local parameters $\mathbf{w}^{(i)}$, we use Algorithm 1. FedRelax Least-Squares Regression with local loss

$$L_{(i)}(h^{(i)}) = \frac{1}{m_i} \sum_{r=1}^{m_i} \left(y^{(i,r)} - h^{(i)}(\mathbf{x}^{(i,r)}) \right)^2$$
 (2)

and regularizer

$$\frac{\lambda}{2m'} \sum_{i' \in \mathcal{V}} A_{i,i'} \sum_{r=1}^{m'} \left(h^{(i)}(\mathbf{x}^{(r)}) - h^{(i')}(\mathbf{x}^{(r)}) \right)^2 \tag{3}$$

Algorithm 1 FedRelax Least-Squares Regression (Adjacency matrix is known)

Input: empirical graph \mathcal{G} with edge weights A_{ij} ; local loss $L_{(i)}(\cdot)$; shared dataset $D^{(test)} = \{\mathbf{x}^{(1)}, ..., \mathbf{x}^{(m')}\}$; GTV parameter λ ;

Initialize: k := 0; $\widehat{h}_0^{(i)} \equiv \text{ for all nodes } i \in \mathcal{V}$.

- 1: while stopping criterion is not met do do
- 2: **for** all nodes $i \in \mathcal{V}$ in parallel **do**
- 3: share predictions $\{\hat{h}_k^{(i)}(\mathbf{x})\}_{\mathbf{x}\in\mathcal{D}(test)}$, with neighbours $i'\in\mathcal{N}^{(i)}$
- 4: update local hypothesis $\hat{h}_k^{(i)}$ by

$$\widehat{h}_{k+1}^{(i)} \in \arg\min_{h^{(i)} \in \mathcal{H}^{(i)}} \left[\frac{1}{m_i} \sum_{r=1}^{m_i} \left(y^{(i,r)} - h^{(i)}(\mathbf{x}^{(i,r)}) \right)^2 + \frac{\lambda}{m'} \sum_{i' \in \mathcal{N}^{(i)}} A_{i,i'} \sum_{r=1}^{m'} \left(h^{(i)}(\mathbf{x}^{(r)}) - \widehat{h}_k^{(i')}(\mathbf{x}^{(r)}) \right)^2 \right]$$

- 5: end for
- 6: k := k + 1
- 7: end while

Ensure: local $\hat{h}^{(i)} := \hat{h}^{(i)}_{k+1}$ for all nodes $i \in \mathcal{V}$

For the experiment we use linear model implemented with pytorch (no bias, optimizer SGD learning rate 0.01). We try different local dataset sizes $m_i = \{2, 3, 5, 10, 20\}$ and regularization strength $\lambda = \{0, 0.1, 0.5\}$. Tried ratio $|\mathcal{C}^{(i)}|m_i/d = \{1, 1.5, 2.5, 5, 10\}$ or $d/m_i = \{5, 3.3, 2, 1, 0.5\}$

As stopping criterion in Algorithm 1, we use a fixed number of R=2000 iterations. For pytorch models one iteration is equivalent to one gradient step.

The results of the experiments is depicted in Figure 1 as the plot of mean estimation error (mean over 10 repetitions of the experiment for each pair of $\{\lambda, m_i\}$).

$$\frac{1}{N} \sum_{i=1}^{N} ||\overline{\mathbf{w}}^{(i)} - \widehat{\mathbf{w}}^{(i)}||_{2}^{2} \tag{4}$$

On each repetition new local $\mathcal{D}^{(i)}$ (new realizations of feature vectors and cluster-specific weights are drawn) and shared $\mathcal{D}^{(test)}$ (new realizations of feature vectors are drawn) datasets were generated. The shaded region is \pm one standard deviation.

1.2.2 Synthetic Dataset, linreg model, graph is not known

The variation of Algorithm 1, Algorithm 2a, is used for the case when the graph connectivity is not known. In Algorithm 2a we start with adjacency matrix set to zero and on each iteration we add p links between nodes with smallest

Figure 1: Algorithm 1 weight vector estimation error. Subplots corresponds to different regularization parameter values and lines correspond to different ratio d/m of a feature vector and local dataset size.

discrepancy in predictions on the shared test set $\mathcal{D}^{(test)}$. Thus, on each iteration each node's degree is either increasing or states fixed to p.

In another variation, Algorithm 2b, we set adjacency matrix to zero on each iteration and then add p links between nodes with smallest discrepancy in predictions on the shared test set $\mathcal{D}^{(test)}$. Thus, on each iteration each node's degree is fixed to p.

Figure 2: Algorithm 2a. Estimated error for the weight vector with parameter p=3

 $\bf Algorithm~2~{\rm a})$ FedRelax Least-Squares Regression (Adjacency matrix is not known)

Input: empirical graph \mathcal{G} ; local loss $L_{(i)}(\cdot)$; shared dataset $D^{(test)} = \{\mathbf{x}^{(1)},...,\mathbf{x}^{(m')}\}$; GTV parameter λ ;

Initialize: $k := 0; A := 0; \widehat{h}_0^{(i)} \equiv (???)$ for all nodes $i \in \mathcal{V}$.

- 1: while stopping criterion is not met do do
- 2: **for** all nodes $i \in \mathcal{V}$ in parallel **do**
- 3: share predictions $\{\hat{h}_k^{(i)}(\mathbf{x})\}_{\mathbf{x}\in\mathcal{D}(test)}$, with neighbours $i'\in\mathcal{N}^{(i)}$
- 4: update local hypothesis $\widehat{h}_k^{(i)}$ by

$$\begin{split} \widehat{h}_{k+1}^{(i)} \in \arg \min_{h^{(i)} \in \mathcal{H}^{(i)}} & \left[\frac{1}{m_i} \sum_{r=1}^{m_i} \left(y^{(i,r)} - h^{(i)}(\mathbf{x}^{(i,r)}) \right)^2 + \right. \\ & \left. \frac{\lambda}{m'} \sum_{i' \in \mathcal{N}^{(i)}} A_{i,i'} \sum_{r=1}^{m'} \left(h^{(i)}(\mathbf{x}^{(r)}) - \widehat{h}_k^{(i')}(\mathbf{x}^{(r)}) \right)^2 \right] \end{split}$$

- 5: end for
- 6: k := k + 1
- 7: **for** all nodes $i \in \mathcal{V}$ in parallel **do**
- 8: Add neighbours for the node i by selecting p nodes $i' \in \mathcal{N}^{(i)}$ with smallest values of

$$\frac{1}{m'} \sum_{r=1}^{m'} \left(\widehat{h}_k^{(i)}(\mathbf{x}^{(r)})(?????currentlocalhyp.) - \widehat{h}_k^{(i')}(\mathbf{x}^{(r)}) \right)^2$$
 (5)

- 9: Set $A_{i,i'} = 1$ for these p nodes (with smallest discrepancy in prediction on the test set $\mathcal{D}^{(test)}$).
- 10: end for
- 11: end while

Ensure: local $\widehat{h}^{(i)} := \widehat{h}^{(i)}_{k+1}$ for all nodes $i \in \mathcal{V}$

Algorithm 3 b) FedRelax Least-Squares Regression (Adjacency matrix is not known, n.o. neib. is fixed)

Input: empirical graph \mathcal{G} ; local loss $L_{(i)}(\cdot)$; shared dataset $D^{(test)} = \{\mathbf{x}^{(1)},...,\mathbf{x}^{(m')}\}$; GTV parameter λ ;

Initialize: k := 0; A := 0; $\widehat{h}_0^{(i)} \equiv (???)$ for all nodes $i \in \mathcal{V}$.

- 1: **while** stopping criterion is not met do **do**
- 2: **for** all nodes $i \in \mathcal{V}$ in parallel **do**
- 3: share predictions $\{\hat{h}_k^{(i)}(\mathbf{x})\}_{\mathbf{x}\in\mathcal{D}(test)}$, with neighbours $i'\in\mathcal{N}^{(i)}$
- 4: update local hypothesis $\widehat{h}_k^{(i)}$ by

$$\widehat{h}_{k+1}^{(i)} \in \arg\min_{h^{(i)} \in \mathcal{H}^{(i)}} \left[\frac{1}{m_i} \sum_{r=1}^{m_i} \left(y^{(i,r)} - h^{(i)}(\mathbf{x}^{(i,r)}) \right)^2 + \frac{\lambda}{m'} \sum_{i' \in \mathcal{N}^{(i)}} A_{i,i'} \sum_{r=1}^{m'} \left(h^{(i)}(\mathbf{x}^{(r)}) - \widehat{h}_k^{(i')}(\mathbf{x}^{(r)}) \right)^2 \right]$$

- 5: end for
- 6: k := k + 1
- 7: **for** all nodes $i \in \mathcal{V}$ in parallel **do**
- 8: Init a new adjacent matrix A (all zeros)
- 9: Add neighbours for the node i by selecting p nodes $i' \in \mathcal{N}^{(i)}$ with smallest values of

$$\frac{1}{m'} \sum_{r=1}^{m'} \left(\widehat{h}_k^{(i)}(\mathbf{x}^{(r)})(????current local hyp.) - \widehat{h}_k^{(i')}(\mathbf{x}^{(r)}) \right)^2$$
 (6)

- 10: Set $A_{i,i'} = 1$ for these p nodes (with smallest discrepancy in prediction on the test set $\mathcal{D}^{(test)}$).
- 11: end for
- 12: end while

Ensure: local $\widehat{h}^{(i)} := \widehat{h}^{(i)}_{k+1}$ for all nodes $i \in \mathcal{V}$

Figure 3: Algorithm 2a. Estimated error for the weight vector with parameter p=5.

$\begin{array}{ccc} \textbf{1.2.3} & \textbf{TODO Synthetic Dataset, models of mixed type, graph is not } \\ & \textbf{known} \end{array}$