

Théorie des jeux pour la modélisation informatique

Devoir Maison

13 mai 2021

Mohamed Amine AMGHAR Sébastien DELPEUCH Radjasouria VINAYAGAME

1 Question 1

Justifier que si un sommet v est gagnant pour P_1 sur l'arène $\mathcal{A}' = (V_0 \cap Y, V_1 \cap Y, E \cap (Y \times Y))$ pour la condition \overline{Win} , alors v est gagnant pour P_1 sur l'arène \mathcal{A} pour \overline{Win}

Montrons d'abord que P_0 ne peux pas ramener P_1 dans la partie $A = Attr_0(X)$ de l'arène : Supposons, par l'absurde, que le joueur P_0 puisse ramener le joueur P_1 dans la partie A de l'arène. Ainsi il existerait un sommet x de Y qui ramène P_0 vers $A = Attr_0(X)$, ceci est absurde car ce sommet permet de ramener P_0 vers l'ensemble X en appliquant la stratégie de l'attracteur, ainsi $x \in Attr_0(X) = A$, mais $x \in Y = V - A$, ce qui est absurde.

Ainsi, une stratégie gagnante pour P_1 pour gagner dans l'arène \mathcal{A} est de rester dans la partie Y = V - A des sommets de \mathcal{A} tout en utilisant sa stratégie gagnante qu'il avait dans l'arène \mathcal{A}' , et ceci car P_0 ne peux pas ramener P_1 dans la partie A.

2 Question 2

2.1 Justifier que $v \in Attr_0^+(F)$ si et seulement si P_0 a une stratégie pour visiter F en au moins un coup.

Nous allons montrer cette propriété par double implication :

Dans un premier temps montrons que $v \in Attr_0^+(F)$ implique que P_0 possède une stratégie gagnante pour visiter F en au moins un coup :

Nous avons $v \in Attr_0^+(F) = \bigcup_{i \geq 0} X_i$. Prenons donc le plus petit n tel que $v \in X_n$ nous réalisons alors une disjonction de cas sur n:

- Si n=0, nous réalisons une disjonction de cas en fonction de l'appartenance de v à V_0 ou V_1 :
 - $v \in V_0$ alors $\exists w \in F$ tel que $(v, w) \in E$, nous prenons donc cette arête pour aller dans F
 - $v \in V_1$ alors, par définition de X_0 nous avons $\forall w(v,w) \in E \implies w \in F$, le joueur adverse nous amènera donc forcément dans F.

Dans tous les cas, nous avons un coup pour arriver dans F à partir de $v \in X_0$.

- Si n > 0, comme nous avons pris n le plus petit possible (nous avons alors $v \notin X_{n-1}$), nous réalisons donc une disjonction de cas en fonction de l'appartenance de v à V_0 ou V_1 :
 - $v \in V_0$ alors $\exists w \in X_{n-1}$ tel que $(v, w) \in E$, nous prendrons cette arête pour aller dans X_{n-1}
 - $v \in V_1$ alors par définition de X_n nous avons $\forall w(v,w) \in E \implies w \in X_{n-1}$, le joueur adverse nous amènera donc forcément dans X_{n-1} .

Dans tous les cas, nous avons un coup pour arriver dans X_{n-1} à partir de $v \in X_n$ et nous réitérons ce processus jusqu'à arriver dans X_0 .

Ainsi, nous avons montré que si $v \in Attr_0^+(F)$ alors P_0 possède une stratégie gagnante pour visiter F en au moins un coup.

Dans un second temps, nous allons montrer que si P_0 possède une stratégie gagnante pour visiter F en au moins un coup alors $v \in Attr_0^+(F)$:

Montrons d'abord que si P_0 possède une stratégie pour visiter F en au plus n coups à partir de v (selon les coups de l'adversaire) alors $v \in X_{n-1}$. Définissons la suite de coups (la plus longue possible) à partir de v de P_0 , $\pi = v, v_{n-2}, ... v_0, v_{-1}$ pour atteindre F (avec $v_{-1} \in F$) et montrons que $\forall i \in [0, n-2], v_i \in X_i$. Procédons par récurrence.

Pour i = 0,

- Si $v_0 \in V_0$, alors P_0 joue le coup $v_{-1} \in F$ (donc $(v_0, v_{-1}) \in E$ et $v_{-1} \in F$ donc $v_0 \in X_0$.
- Si $v_0 \in V_1$, alors s'il existait $w \in V F$ tel que $(v_0, w) \in E$, P_1 aurait tout intérêt à jouer w. Cependant cela conduirait à une suite de coups plus longue que n, or d'après la définition de n cela n'est pas envisageable. En somme $\forall w, (v, w) \in E \implies w \in F$ et donc $v_0 \in X_0$.

Dans tous les cas, $v_0 \in X_0$.

Pour $i \neq 0$, supposons que $v_{i-1} \in X_{i-1}$,

- Si $v_i \in V_0$, alors P_0 joue le coup $v_{i-1} \in X_{i-1}$, ainsi $(v_i, v_{i-1}) \in E$ et $v_{i-1} \in X_{i-1}$ autrement dit $v_i \in X_i$.
- Si $v_i \in V_1$, alors s'il existait $w \in V X_{i-1}$ tel que $(v_i, w) \in E$, P_1 aurait tout intérêt à jouer w. Cependant cela conduirait à une suite de coups plus longue que n, or d'après la définition de n cela n'est pas envisageable. En somme, $\forall w, (v, w) \in E \implies w \in X_{i-1}$ et donc $v_i \in X_i$.

Dans tous les cas, nous arrivons à la conclusion que $v_i \in X_i$.

Ainsi, $\forall i \in [\![0,n-2]\!], v_i \in X_i$ pour la suite de coups $\pi=v,v_{n-2},...v_0,v_{-1}.$ Et nous pouvons généraliser à toutes les suites de coups de taille n (avec v comme point de départ et un sommet de F comme arrivée). Pour une suite de coups de taille inférieure à n, nous pouvons raisonner de manière équivalente tout en considérant que nous avons une "barrière" dans la taille de la suite (le joueur P_1 ne peut pas faire "dévier" le chemin vers F de telle sorte que la taille totale de la suite de coups dépasse n).

Finalement, avec un raisonnement similaire au raisonnement utilisé dans la récurrence, nous montrons aussi que $v \in X_{n-1} \subset Attr_0^+(F)$.

Nous avons donc montré la double implication. Ainsi nous pouvons dire que $v \in Attr_0^+(F)$ si et seulement si P_0 a une stratégie pour visiter F en au moins un coup.

2.2 Justifiez que la région gagnante de P_0 dans le jeu $Reach_2(F)$ est l'ensemble $Attr_0(F\cap Attr_0^+(F))$:

Pour ce faire, nous allons tout d'abord justifier que $Attr_0(F \cap Attr_0^+(F)) \subseteq W_0$ puis que $V \setminus Attr_0(F \cap Attr_0^+(F)) \subseteq W_1$.

D'une part justifions que $Attr_0(F \cap Attr_0^+(F)) \subseteq W_0$:

Rappelons que l'ensemble $F \cap Attr_0^+(F)$ décrit les sommets de F dont lesquels nous pouvons visiter à nouveau F en faisant au moins un coup. Nous prenons alors la stratégie σ_0 suivante :

- 1. En premier lieu, nous appliquons la stratégie de l'attracteur pour visiter un sommet $v \in F \cap Attr_0^+(F)$ à partir des sommets $Attr_0(F \cap Attr_0^+(F))$. Puisque $v \in F$, à présent nous avons visité F une première fois.
- 2. Ensuite, depuis ce sommet $v \in Attr_0^+(F)$, et d'après la question 2.1. P_0 a une stratégie pour visiter F en 1 ou plus coups. Nous appliquons donc cette stratégie, ainsi nous allons visiter F de nouveau.

Ainsi cette stratégie garantit de visiter F au moins 2 fois. Nous déduisons alors : $\forall v \in Attr_0(F \cap Attr_0^+(F))$, nous avons $v \in W_0$. Nous avons donc montré que $Attr_0(F \cap Attr_0^+(F)) \subseteq W_0$.

D'autre part justifions que $V \setminus Attr_0(F \cap Attr_0^+(F)) \subseteq W_1$:

Commençons par un schéma représentant les différents ensemble en jeu :

FIGURE 1: Représentation des différents ensemble en jeu

Justifions les points suivants :

La partie blanche de F ($(F - (F \cap Attr_0^+(F))) \cap (Attr_0(F \cap Attr_0^+(F))) = \emptyset$). Si un point de la partie blanche de F fait aussi partie de la partie bleue, ce point serait aussi inclus dans $Attr_0^+(F)$ or cela n'est pas possible.

La partie bleue est incluse dans $Attr_0^+(F)$ ($(Attr_0(F \cap Attr_0^+(F))) \subset Attr_0^+(F)$). Si un point v à l'extérieur de F et $Attr_0^+(F)$ faisait aussi partie de $Attr_0(F \cap Attr_0^+(F))$ alors il y aurait un chemin allant de ce point vers l'intersection de F et $Attr_0^+(F)$ or comme cette intersection fait aussi partie de F, v ferait aussi partie de $Attr_0^+(F)$ ce qui n'est pas possible par construction.

Considérons maintenant $v \in V \setminus Attr_0(F \cap Attr_0^+(F))$, nous réalisons alors une disjonction de cas en fonction de l'appartenance de v à la partie blanche de F (c-à-d: $F - Attr_0(F \cap Attr_0^+(F))$).

- si $v \in F$ (partie blanche de F). La stratégie gagnante consiste à sortir de F ce qui est réalisable. En effet, si ce n'était pas le cas, $v \in Attr_0^+(F)$ et nous aurions alors $v \in (F \cap Attr_0^+(F)) \subset (Attr_0(F \cap Attr_0^+(F)))$ ce qui est absurde par définition de v.
- $v \notin F$ donc $v \notin F \cup Attr_0(F \cap Attr_0^+(F))$. La stratégie consiste à éviter la partie bleue : $Attr_0^+(F)$ ce qui est possible (par définition de l'attracteur de $F \cap Attr_0^+(F)$) en appliquant la stratégie de survie.

Finalement, il nous reste à montrer que $W_0 \subseteq Attr_0(F \cap Attr_0^+(F))$ pour prouver que la région gagnante de P_0 dans le jeu $Reach_2(F)$ est $Attr_0(F \cap Attr_0^+(F))$:

Déjà nous avons $Attr_0(F \cap Attr_0^+(F)) \subseteq W_0$ et $V \setminus Attr_0(F \cap Attr_0^+(F)) \subseteq W_1$, donc l'union des deux parties à gauche est incluse dans l'union des deux parties à droite, ce qui donne $V \subseteq W_0 \cup W_1$. Nous savons aussi que $W_0 \cup W_1 \subseteq V$ donc $V = W_0 \cup W_1$. De plus, $W_0 \cap W_1 = \emptyset$, d'où W_0 et W_1 forment une partition de V (d'où $\overline{W_1} = W_0$).

Soit la propriété sur les ensembles suivante : Soit deux ensembles A et B, si $A\subseteq B$, alors $\overline{B}\subseteq \overline{A}$. En utilisant cette propriété dans notre cas nous avons :

$$V \setminus Attr_0(F \cap Attr_0^+(F)) \subseteq W_1$$

$$\Leftrightarrow \overline{W_1} \subseteq \overline{V \setminus Attr_0(F \cap Attr_0^+(F))}$$

$$\Leftrightarrow W_0 \subseteq Attr_0(F \cap Attr_0^+(F)) \quad \text{(car } W_0 \text{ et } W_1 \text{ forment une partition de } V)$$

D'où le résultat : la région gagnante de P_0 dans le jeu $Reach_2(F)$ est $W_0 = Attr_0(F \cap Attr_0^+(F))$.