Devoir surveillé n°9 Version 1

Durée : 3 heures, calculatrices et documents interdits

I. Matrices et probabilités.

Ce problème débute par l'étude probabiliste de la position d'un virus informatique. Cette étude menée en partie \mathbf{A} amène à calculer une moyenne et une variance empirique en partie \mathbf{B} . Un changement de modélisation aboutit à la résolution d'une équation matricielle (c'est-à-dire dont l'inconnue est une matrice) en partie \mathbf{C} , cette étude étant complétée en partie \mathbf{D} .

Dans tout le problème p désigne un réel appartenant à]0,1[, et l'on note q=1-p.

On note $\mathcal{M}_2(\mathbb{R})$ l'espace des matrices carrées de dimension 2×2 , $\mathcal{M}_{2,1}(\mathbb{R})$ l'espace des vecteurs colonne de dimension 2×1 , I_2 la matrice identité de dimension 2×2 et Id l'endomorphisme identité de $\mathcal{M}_{2,1}(\mathbb{R})$ (*i.e.* l'endomorphisme $X \mapsto X$).

Partie A: Une matrice diagonalisable.

Un réseau informatique est constitué de deux serveurs notés A et B. À une date initiale, un virus s'introduit dans le serveur A. Au bout de deux semaines, ce virus reste en A avec une probabilité p ou quitte A pour aller en B avec une probabilité q. De même, s'il est en B, au bout de deux semaines, il peut y rester avec une probabilité p ou revenir en A avec une probabilité q. On admet qu'à chaque nouvelle quinzaine, le virus peut rester sur le même serveur ou le quitter avec les probabilités p et q.

Pour tout $n \in \mathbb{N}$, on note u_n la probabilité de l'événement « le virus se trouve en A au bout de 2n semaines » et v_n la probabilité de l'événement « le virus se trouve en B au bout de 2n semaines ».

- 1) Déterminer une expression de u_{n+1} en fonction de u_n et v_n pour tout $n \in \mathbb{N}$. Justifier avec soin votre réponse.
- **2)** Pour tout $n \in \mathbb{N}$, on note $C_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$.
 - a) Préciser C_0 et déterminer $M \in \mathcal{M}_2(\mathbb{R})$ telle que :

$$\forall n \in \mathbb{N}, \quad C_{n+1} = MC_n$$

Dans cette question, on considère l'application $m: X \mapsto MX$.

- **b)** Montrer que m est un endomorphisme de $\mathcal{M}_{2,1}(\mathbb{R})$. Quelle est sa matrice dans la base canonique de cet espace-vectoriel?
- c) Montrer qu'il existe deux réels λ_1 et λ_2 tels que $\lambda_1 < \lambda_2$ et vérifiant pour tout $\lambda \in \mathbb{R}$:

$$(M - \lambda I_2)$$
 n'est pas inversible $\Leftrightarrow \lambda \in \{\lambda_1, \lambda_2\}$.

- d) On admet, si nécessaire, que $\lambda_1 = p q = 2p 1$ et que $\lambda_2 = 1$ Calculer $\operatorname{Ker}(m \lambda_1 \operatorname{Id})$ et $\operatorname{Ker}(m \lambda_2 \operatorname{Id})$.
- e) En déduire qu'il existe une base \mathscr{B} de $\mathscr{M}_{2,1}(\mathbb{R})$ pour laquelle $D = \operatorname{Mat}_{\mathscr{B}}(m)$ est diagonale, et dont les coefficients diagonaux sont classés dans l'ordre croissant.
- f) En déduire qu'il existe une matrice $P \in GL_2(\mathbb{R})$ telle que :

$$M = PDP^{-1}$$

On calculera notamment P^{-1} (on pourra calculer $P^{\top}P$ pour s'aider).

- 3) a) Déduire de ce qui précède, une expression de $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ en fonction de $n\in\mathbb{N}$.
 - b) Ces suites sont-elles convergentes? Si oui, préciser leurs limites.
- 4) Quels résultats obtiendrait-on si le virus avait été initialement positionné sur le serveur B?

Partie B: Moyenne et variance empiriques.

Pour tout $i \in \mathbb{N}$, on note X_i la variable aléatoire valant 1 si au bout de 2i semaines le virus est sur le serveur A et -1, s'il est sur le serveur B. Par ailleurs, pour tout $n \in \mathbb{N}$, on note M_n et V_n la moyenne et la variance empiriques de (X_0, \ldots, X_n) :

$$M_n = \frac{1}{n+1} \sum_{k=0}^{n} X_k,$$

$$V_n = \frac{1}{n+1} \sum_{k=0}^{n} (X_k - M_n)^2.$$

On admet, si nécessaire, que pour tout $0 \le i \le n$, $P(X_i = 1) = \frac{1}{2}(1 + (p - q)^i)$.

- 5) Calculer l'espérance et la variance de X_i pour tout $i \in \mathbb{N}$.
- 6) Soit $(i, j) \in \mathbb{N}^2$ tel que i < j.
 - a) Déduire de l'énoncé que :

$$P_{(X_{i}=1)}(X_{j}=1) = P(X_{j-i}=1).$$

- b) En déduire une expression de $P(X_j = 1, X_i = 1)$.
- c) Déterminer de même une expression de $P\left(X_j=-1,X_i=1\right), P\left(X_j=1,X_i=-1\right)$ et $P\left(X_j=-1,X_i=-1\right)$.
- d) En déduire que $P(X_iX_j=1)=P(X_{j-i}=1)$ puis calculer $\mathbf{E}(X_iX_j)$.
- 7) a) Déterminer l'espérance de M_n .
 - **b)** Démontrer que :

$$\forall n \in \mathbb{N}, \quad \mathbf{E}\left(M_n^2\right) = \frac{1}{n+1} + \frac{1}{(n+1)^2} \sum_{0 \le j < i \le n} \mathbf{E}\left(X_i X_j\right).$$

c) Montrer que

$$V_n = 1 - M_n^2$$

d) Déduire de ce qui précède une expression de l'espérance de la variance empirique de (X_0, \ldots, X_n) .

Partie C: Équation matricielle.

On souhaite modéliser la position du virus toutes les semaines plutôt que toutes les quinzaines. Pour tout $n \in \mathbb{N}$, on note donc w_n la probabilité de l'événement « le virus se trouve en A au bout de n semaines » et x_n la probabilité de l'événement « le virus se trouve en B au bout de n semaines ». Enfin on note D_n la matrice colonne de $\mathcal{M}_{2,1}(\mathbb{R})$ de coefficients w_n et x_n .

- 8) Quelle relation lie D_{2n} et C_n ?
- 9) On suppose qu'il existe au moins une matrice $N \in \mathcal{M}_2(\mathbb{R})$ à coefficients positifs ou nuls telle que :

$$\forall n \in \mathbb{N}, \quad D_{n+1} = ND_n$$

a) Démontrer que :

$$\forall n \in \mathbb{N}, \quad (N^2 - M) C_n = 0$$

- b) En déduire que $N^2 = M$.
- c) On pose $\Delta = P^{-1}NP$. Démontrer que $\Delta^2 = D$ et en déduire que Δ est une matrice diagonale et que p-q vérifie une égalité à préciser. Donner alors toutes les matrices Δ solutions de $\Delta^2 = D$.
- d) En déduire enfin qu'il existe au plus deux matrices N solutions du problème.

Partie D : Généralisation de l'équation précédente.

On souhaite généraliser la recherche précédente et on se pose la question suivante : peut-on affirmer que pour tout $M \in \mathcal{M}_2(\mathbb{R})$, il existe une ou plusieurs matrice(s) $N \in \mathcal{M}_2(\mathbb{R})$ telle(s) que $N^2 = M$? Dans cette partie, on note :

$$M = \left(\begin{array}{cc} -1 & 1\\ -1 & 1 \end{array}\right)$$

- 10) a) Démontrer que $\operatorname{Ker} M = \operatorname{Im} M$.
 - b) Démontrer qu'il existe $Q \in GL_2(\mathbb{R})$ telle que :

$$M = QTQ^{-1}$$
 avec $T = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

- 11) a) Résoudre l'équation $\Theta^2 = T$ d'inconnue $\Theta \in \mathcal{M}_2(\mathbb{R})$.
 - b) Conclure.