SDN based Scalable MTD solution in Cloud Networks

MTD 2016 Ankur Chowdhary, Sandeep Pisharody, Dijiang Huang Arizona State University

Index

- Introduction
- Background
- System Architecture and Contribution
- Motivating Example
- MTD approach
- Complexity and Performance Evaluation
- Conclusion Future Work

Introduction

- There are many critical assets in a network which can be compromised by a malicious attacker through a multistage attack.
- SDN separates data and control plane, which provides network administrator better visibility and policy enforcement capability compared to traditional networks.

Introduction

- Moving target defenses have been proposed as a way to make it much more difficult for an attacker to exploit a vulnerable system by changing aspects of that system to present attackers with a varying attack surface.
- We use the SDN controller to assess the attack scenarios through scalable Attack Graphs (AG) and select necessary countermeasures to perform network reconfiguration to counter network attacks.

Background

- Attack Graph is a succinct representation of network nodes including hosts, ports, services, connectivity and vulnerability information.
- Using the information from the attack graph the analysts can take preventive measures before the attacker can exploit the system weakness.

Background

- Most of the works that have used AG in past face scalability challenges.
- We employ distributed hypergraph partitioning algorithm to handle scalability issues inherent in representing security states of entire network.

System Architecture

System Architecture

Contribution

- We automate dynamic system reconfiguration safely by leveraging scalable AG and cross-layer security policy checking. It requires no involvement by network operators.
- We are able to successfully implement a framework that does real-time network reconfiguration either pro-actively, or reactively to any abnormal events in the environment.

Contribution

 The reconfigured system is guaranteed to be compliant with security and SLA requirements of the organization.

Motivating Example

Attack Graph

Equivalent Partitioned Hypergraph

Countermeasure Selection

- Create an index of physical severs and their corresponding virtual server.
- For physical server PS_i calculate cumulative vulnerability score of each VS_j.
- If th $VS_i = Min\{10, \ln \sum \exp^{BaseScore(v)}\}$ vulnerability score exceeds a pre-set threshold, migrate to another PS.

Policy Conflict Post-Countermeasures

- Change in network configuration induces new flow rules in environment.
- This can create new attack paths in network.
- We ensure these flow rules do not conflict with existing rules.
- We generate new attack graph for modified network configuration.

Policy Conflict Post-Countermeasures

System Safety and Liveliness

- $P_{safe} = {\sim root(WS); \sim localprivEsc(ftpServ)}$
- P_{live} = {sshAccess(VM1; VM2); ftpAccess(VM1; ftpServ)}
- For the attack graph G, we check preconditions nodes described in attack analysis model satisfy $P_{\text{safe}}U$ P_{live}

Complexity

- The time for Attack Graph generation
- The $tin \frac{\mathcal{O}((N/p)^2) + \mathcal{O}(N/p) + \mathcal{O}(N \log p)}{\mathcal{O}(N/p)}$ on and policy conflict resolution

$$\mathcal{O}(|V| \times |CM|) + \mathcal{O}(n.r).$$

AG Performance Evaluation

Figure 7: AG generation time vs Number of nodes

Flow Rule Conflict Resolution

Conclusion

- Our scalable AG solution is very useful in analyzing the security state of a large network, which would otherwise be difficult to interpret for a network administrator.
- Once we reconfigure the network using a countermeasure selection module, we ensure that there is no security policy violation or conflict in the adjusted network

Future Work

- Use of Game Theoretic Modelling to analyze the payoff of Attacker and Admin, so that admin can identify best possible countermeasures.
- Use of anomaly detection to detect malicious traffic, and identify zero day vulnerabilities.
- Employ regression and other statistical measures to ensure accuracy of anomaly detection methods.

Questions ???