Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Microsoft Research Asia 2021

1. Introduction

- ✓ Transformer is notable for its use of attention to model long-range dependencies in the data.
- ✓ In this paper, we seek to expand the applicability of Transformer such that it can serve as a general-purpose backbone for computer vision.
- ✓ There are two challenges:
 - Differences of scale(variability in scale)
 - > Higher resolution of pixels in images compared to words in passages of text
- ✓ To overcome these issues, we propose a general-purpose Transformer backbone "Swin Transformer"

2. Related Work

- ✓ CNN and variants
 - > Served as the standard network model throughout computer vision.
 - VGG, GoogleNet, ResNet, DenseNet ...
- ✓ Self-attention based backbone architectures
 - > some works employ self-attention layers to replace some or all of the spatial convolution layers in the popular ResNet.
- ✓ Self-attention/Transformers to complement CNNs
- ✓ Transformer based vision backbones
 - Vision Transformer(ViT)
 - An image is 11 worth 16x16 words: Transformers for image recognition at scale(2021)

Structure

Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.

Patch Partition + Linear Embedding

- ✓ It first splits an input RGB image into non-overlapping, like ViT.
- ✓ Used a patch size of 4 × 4(in Tiny).
 - \triangleright Thus the feature dimension of each patch is $4 \times 4 \times 3 = 48$
- ✓ A linear embedding layer is applied on this raw-valued feature to project it to an arbitrary dimension.

Patch Merging

- ✓ The first patch merging layer concatenates the features of each group of 2 × 2 neighboring patches and applies a linear layer on the 4C-dimensional concatenated features.
- ✓ This reduces the number of tokens by a multiple of $2 \times 2 = 4$ ($2 \times$ downsampling of resolution), and the output dimension is set to 2C.
- ✓ To produce a hierarchical representation, the number of tokens is reduced by patch merging layers as the network gets deeper.

Swin Transformer Block

$$\begin{split} &\hat{\mathbf{z}}^{l} = \text{W-MSA}\left(\text{LN}\left(\mathbf{z}^{l-1}\right)\right) + \mathbf{z}^{l-1}, \\ &\mathbf{z}^{l} = \text{MLP}\left(\text{LN}\left(\hat{\mathbf{z}}^{l}\right)\right) + \hat{\mathbf{z}}^{l}, \\ &\hat{\mathbf{z}}^{l+1} = \text{SW-MSA}\left(\text{LN}\left(\mathbf{z}^{l}\right)\right) + \mathbf{z}^{l}, \\ &\mathbf{z}^{l+1} = \text{MLP}\left(\text{LN}\left(\hat{\mathbf{z}}^{l+1}\right)\right) + \hat{\mathbf{z}}^{l+1}, \end{split}$$

- ❖ W-MSA & SW-MSA
- ✓ W-MSA: Local Window 안에서 self attention
- ✓ SW-MSA: Local Window 간의 self attention

Efficient batch computation

$$x \in \mathbb{R}^{B \times N_h \times N_w \times C}$$

$$x \in \mathbb{R}^{nB \times M \times M \times C}$$
, $n = \frac{N_h}{M} + \frac{N_w}{M}$

 $(batch * patch_h * patch_w * channel)$

$$x \in \mathbb{R}^{4 \times 4 \times 4 \times 3}$$
$$M = 4, n = 4$$

$$\left(batch' * \frac{patch_h}{M} * \frac{patch_w}{M} * channel\right)$$

$$batch' = batch * \frac{patch_h}{m} * \frac{patch_w}{M}$$

- * SW-MSA
- ✓ Local Window 간의 self attention
- ✓ SW-MSA 수행 시에 window 개수가 H, W 별로 1개 씩 늘어나게 됨
 - > 더 많은 window 사용으로 인한 비효율적인 연산 수행
- ❖ Cyclic Shift + Attention Mask를 통한 W-MSA와 동일한 window 개수 사용

Cyclic shift & Attention Mask

- ✓ SW-MSA를 수행하여 나뉘어진 window로 구성되어야 했던 것을 일정 크기 만큼 shift한다.
 - \triangleright Shift size = Window size(M) // 2
- ✓ 색이 다른 부분 모두 각각 attention이 적용되어야 하기 때문에 mask를 적용한다.
 - ✓ Why? 실제로 색이 다른 부분은 이미지 상에서 인접한 부분이 아니기 때문이다.
- ✓ W-MSA와 동일하게 4개의 window만 사용하여 local window간에 attention을 계산한다.
- ✓ 계산 결과에 다시 shift를 적용하여 결과를 복원한다.

Cyclic shift & Attention Mask

<정리>

- ✓ Shift 후 W-MSA처럼 4개의 Window만 사용하여 Window 간의 Self Attention 수행
- ✓ 이후 Attention Mask를 씌워 Mask에서 따로 Attention을 적용한다.
 - ➤ Relative bias 적용 후 Attention Mask가 적용됨

Relative position bias

Attention
$$(Q, K, V) = \text{SoftMax}(QK^T/\sqrt{d} + B)V$$
,

- ✓ In computing self-attention, ,we apply a relative position bias to each head in computing similarity
 - \triangleright $Q, K, V \in \mathbb{R}^{M^2 \times d}$: query, key and value matrices
 - \rightarrow d = query/key dimension
 - \rightarrow M^2 : the number of patches in a window

* Relative position bias

$$Attention(Q, K, V) = SoftMax(QK^{T}/\sqrt{d} + BV,$$

- ✓ 두 축 마다 Relative position의 범위: [-M + 1, M 1]
- ✓ Bias Index Matrix: $\hat{B} \in R^{(2M-1)\times(2M-1)}$
- ✓ $B \vdash \hat{B}$ 의 값을 사용

* Relative position bias

x axis

1 2 3 4 1

0

2

3

-1

-1

0

1

-1

0

y axis

1 2

3 4

1 **2** 3 4

0 -1 0 -1

2 | 1 | 0 | 1 | 0

3 0 -1 0 -1

4 1 0 1 0

- ✓ 축 별로 상대적인 거리를 계산한다.
 - ▶ 1과 같은 축에 있는 값들은 0, 1칸 차이나면 1 or -1, 2칸 차이나면 or -2
- ✓ 이렇게 구한 각 Matrix에 (window size 1)값을 더해 준다.
 - ▶ 실제로 index로 나타내기 위해 범위가 0부터 시작되도록 변환하기 위함

* Relative position bias

Relative Position Index

	1	2	3	4	5	6	7	8	9
1	<mark>12</mark>	11	10	7	6	5	2	1	0
2	13	<mark>12</mark>	11	80	7	6	3	2	1
3	14	13	<mark>12</mark>	9	∞	7	4	3	2
4	17	16	15	<mark>12</mark>	11	10	7	6	5
5	18	17	16	13	<mark>12</mark>	11	8	7	6
6	19	18	17	14	13	<mark>12</mark>	9	8	7
7	22	21	20	17	16	15	<mark>12</mark>	11	10
8	23	22	21	18	17	16	13	<mark>12</mark>	11
9	24	23	22	19	18	17	14	13	<mark>12</mark>

- \checkmark $x_axis_matrix *= 2 * window_size 1$
- \checkmark relative_position_matrix = $x_axis_matrix + y_axis_matrix$
- ✓ 이 행렬의 크기는 (2M-1)*(2M-1)

* Relative position bias

- ✓ 이렇게 만든 Relative position index를 \hat{B} 에서 값을 조회하여 B라는 행렬을 구성하게 된다.
- ✓ B를 Attention 수식에 적용한다.

4. Experiments

(a) Daniel and Incompleted With the land and the										
(a) Regular ImageNet-1K trained models										
method	image	#param.	FI OPs	throughput	ImageNet					
method	size	"Param.	TLOIS	(image / s)	top-1 acc.					
RegNetY-4G [48]	224 ²	21M	4.0G	1156.7	80.0					
RegNetY-8G [48]	224 ²	39M	8.0G	591.6	81.7					
RegNetY-16G [48]	224 ²	84M	16.0G	334.7	82.9					
EffNet-B3 [58]	300^{2}	12M	1.8G	732.1	81.6					
EffNet-B4 [58]	380^{2}	19M	4.2G	349.4	82.9					
EffNet-B5 [58]	456 ²	30M	9.9G	169.1	83.6					
EffNet-B6 [58]	528 ²	43M	19.0G	96.9	84.0					
EffNet-B7 [58]	600^{2}	66M	37.0G	55.1	84.3					
ViT-B/16 [20]	384 ²	86M	55.4G	85.9	77.9					
ViT-L/16 [20]	384 ²	307M	190.7G	27.3	76.5					
DeiT-S [63]	224 ²	22M	4.6G	940.4	79.8					
DeiT-B [63]	224 ²	86M	17.5G	292.3	81.8					
DeiT-B [63]	384 ²	86M	55.4G	85.9	83.1					
Swin-T	224 ²	29M	4.5G	755.2	81.3					
Swin-S	224 ²	50M	8.7G	436.9	83.0					
Swin-B	224 ²	88M	15.4G	278.1	83.5					
Swin-B	384 ²	88M	47.0G	84.7	84.5					

(b) ImageNet-22K pre-trained models

	method	image	#param.	FLOPs	throughput	ImageNet
		size	1		(image / s)	top-1 acc.
	R-101x3 [38]	384 ²	388M	204.6G	-	84.4
	R-152x4 [38]	$ 480^{2}$	937M	840.5G	-	85.4
_	ViT-B/16 [20]	384 ²	86M	55.4G	85.9	84.0
	ViT-L/16 [20]	384 ²	307M	190.7G	27.3	85.2
	Swin-B	224 ²	88M	15.4G	278.1	85.2
	Swin-B	384 ²	88M	47.0G	84.7	86.4
	Swin-L	384 ²	197M	103.9G	42.1	87.3

Table 1. Comparison of different backbones on ImageNet-1K classification. Throughput is measured using the GitHub repository of [68] and a V100 GPU, following [63].

4. Experiments

	(a) Various frameworks										
Method	Backbone	AP ^{box}	AP ₅₀ ^{box}	AP ₇₅ ^{box}	#param.	FLOPs	FPS				
Cascade	R-50	46.3	64.3	50.5	82M	739G	18.0				
Mask R-CNN	Swin-T	50.5	69.3	54.9	86M	745G	15.3				
ATSS	R-50	43.5	61.9	47.0	32M	205G	28.3				
Alss	Swin-T	47.2	66.5	51.3	36M	215G	22.3				
Dam Dainta V/2	R-50	46.5	64.6	50.3	42M	274G	13.6				
RepPointsV2	Swin-T	50.0	68.5	54.2	45M	283G	12.0				
Sparse	R-50	44.5	63.4	48.2	106M	166G	21.0				
R-CNN	R-CNN Swin-T 47.9 67.3 52.3 110M 172G 18.4										
4 /	(b) Various backbones w. Cascade Mask R-CNN										

						AP ₇₅ ^{mask}			
DeiT-S [†]	48.0	67.2	51.7	41.4	64.2	44.3	80M	889G	10.4
R50	46.3	64.3	50.5	40.1	61.7	43.4	82M	739G	18.0
Swin-T	50.5	69.3	54.9	43.7	66.6	47.1	86M	745G	15.3
X101-32	48.1	66.5	52.4	41.6	63.9	45.2	101M	819G	12.8
Swin-S									
X101-64	48.3	66.4	52.3	41.7	64.0	45.1	140M	972G	10.4
Swin-B	51.9	70.9	56.5	45.0	68.4	48.7	145M	982G	11.6

(c) System-level Comparison

Method		i-val		-dev	#param.	FLOPs
Wethod	AP ^{box}	AP ^{mask}	AP ^{box}	AP ^{mask}	"Paraiii.	LOIS
RepPointsV2* [12]	-	-	52.1	-	-	-
GCNet* [7]	51.8	44.7	52.3	45.4	-	1041G
RelationNet++* [13]	-	-	52.7	-	-	-
SpineNet-190 [21]	52.6	-	52.8	-	164M	1885G
ResNeSt-200* [78]	52.5	-	53.3	47.1	-	-
EfficientDet-D7 [59]	54.4	-	55.1	-	77M	410G
DetectoRS* [46]	-	-	55.7	48.5	-	-
YOLOv4 P7* [4]	-	-	55.8	-	-	-
Copy-paste [26]	55.9	47.2	56.0	47.4	185M	1440G
X101-64 (HTC++)	52.3	46.0	-	-	155M	1033G
Swin-B (HTC++)	56.4	49.1	-	-	160M	1043G
Swin-L (HTC++)	57.1	49.5	57.7	50.2	284M	1470G
Swin-L (HTC++)*	58.0	50.4	58.7	51.1	284M	-

Table 2. Results on COCO object detection and instance segmentation. †denotes that additional decovolution layers are used to produce hierarchical feature maps. * indicates multi-scale testing.

4. Experiments

ADE	20K	val	test	#param.	EI OPe	EDC
Method	Backbone	mIoU	score	"Param.	ricors	113
DANet [23]	ResNet-101	45.2	-	69M	1119G	15.2
DLab.v3+ [11]	ResNet-101	44.1	-	63M	1021G	16.0
ACNet [24]	ResNet-101	45.9	38.5	-		
DNL [71]	ResNet-101	46.0	56.2	69M	1249G	14.8
OCRNet [73]	ResNet-101	45.3	56.0	56M	923G	19.3
UperNet [69]	ResNet-101	44.9	-	86M	1029G	20.1
OCRNet [73]	HRNet-w48	45.7	-	71M	664G	12.5
DLab.v3+ [11]	ResNeSt-101	46.9	55.1	66M	1051G	11.9
DLab.v3+ [11]	ResNeSt-200	48.4	-	88M	1381G	8.1
SETR [81]	T-Large [‡]	50.3	61.7	308M	-	-
UperNet	DeiT-S [†]	44.0	-	52M	1099G	16.2
UperNet	Swin-T	46.1	-	60M	945G	18.5
UperNet	Swin-S	49.3	-	81M	1038G	15.2
UperNet	Swin-B [‡]	51.6	-	121M	1841G	8.7
UperNet	Swin-L‡	53.5	62.8	234M	3230G	6.2
CD 1.1 O D 1.				- 4	A THE THIRD CO.	

Table 3. Results of semantic segmentation on the ADE20K val and test set. † indicates additional deconvolution layers are used to produce hierarchical feature maps. ‡ indicates that the model is pre-trained on ImageNet-22K.

5. Ablation Study

	ImageNet			OCO	ADE20k
	top-1	top-5	APbox	AP ^{mask}	mIoU
w/o shifting	80.2	95.1	47.7	41.5	43.3
shifted windows	81.3	95.6	50.5	43.7	46.1
no pos.	80.1	94.9	49.2	42.6	43.8
abs. pos.	80.5	95.2	49.0	42.4	43.2
abs.+rel. pos.	81.3	95.6	50.2	43.4	44.0
rel. pos. w/o app.	79.3	94.7	48.2	41.9	44.1
rel. pos.	81.3	95.6	50.5	43.7	46.1

Table 4. Ablation study on the *shifted windows* approach and different position embedding methods on three benchmarks, using the Swin-T architecture. w/o shifting: all self-attention modules adopt regular window partitioning, without *shifting*; abs. pos.: absolute position embedding term of ViT; rel. pos.: the default settings with an additional relative position bias term (see Eq. (4)); app.: the first scaled dot-product term in Eq. (4).

5. Ablation Study

method	MSA	in a s	tage (ms)	Arc	h. (F	PS)
memod	S 1	S 2	S 3	S 4	T	S	В
sliding window (naive)	122.5	38.3	12.1	7.6	183	109	77
sliding window (kernel)	7.6	4.7	2.7	1.8	488	283	187
Performer [14]	4.8	2.8	1.8	1.5	638	370	241
window (w/o shifting)	2.8	1.7	1.2	0.9	770	444	280
shifted window (padding)	3.3	2.3	1.9	2.2	670	371	236
shifted window (cyclic)	3.0	1.9	1.3	1.0	755	437	278

Table 5. Real speed of different self-attention computation methods and implementations on a V100 GPU.

		ImageNet		CC		ADE20k
	Backbone	top-1	top-5	AP ^{box}	AP ^{mask}	mIoU
sliding window					43.5	45.8
Performer [14]	Swin-T	79.0	94.2	-	-	-
shifted window	Swin-T	81.3	95.6	50.5	43.7	46.1

Table 6. Accuracy of Swin Transformer using different methods for self-attention computation on three benchmarks.

5. Conclusion

- This paper presents Swin Transformer, a new vision Transformer which produces a hierarchical feature representation.
- ✓ Swin Transformer achieves the state-of-the-art performance on COCO object detection and ADE20K semantic segmentation
- ✓ As a key element of Swin Transformer, the shifted window based self-attention is shown to be effective and efficient on vision problems, and we look forward to investigating its use in natural language processing as well.