AMATH 562 Assignment 10

Tyler Chen

Let $P=(P_t)_{t\geq 0}$ be a Poisson process with intensity $\lambda.$ (a) What is the Lévy Measure ν of P.

- (b) Let $dX_t = dP_t$. Define $u(x,t) := \mathbb{E}[\varphi(X_T)|X_t = x]$. Find u(t,x) and verify it solves the Kolmogorov Backward equation.

Solution

(a) We have,

$$\nu(U) = \mathbb{E}\left[N(1,U)\right] = \mathbb{E}\left[\sum_{0 \le s \le 1} \mathbb{1}_{\Delta P_s \in U}\right] = \mathbb{E}\left[\sum_{i=1}^{P_1} \mathbb{1}_{1 \in U}\right] = \mathbb{E}\left[P_1\right] \mathbb{1}_{1 \in U} = \lambda \mathbb{1}_{1 \in U}$$

(b) Integrating $dX_t = dP_t$ from 0 to t gives, $X_t - X_0 = P_t - P_0$. Since $P_0 = 0$ we have,

$$X_t = X_0 + P_t$$

First observe,

$$\mathbb{P}(X_T = k | X_t = x) = \mathbb{P}(X_0 + P_T = k | X_0 + P_t = x) = \mathbb{P}(P_T = k - X_0 | P_t = x - X_0)$$

Since P has independent increments, and since P is Markov,

$$\mathbb{P}(P_T = k - X_0 | P_t = x - X_0) = \mathbb{P}(P_{T-t} = k - x) = \frac{(\lambda (T - t))^{k-x}}{(k - x)!} e^{-\lambda (T - t)}$$

Thus,

$$u(t,x) = \mathbb{E}\left[\varphi(X_T)|X_t = x\right] = \sum_{k=x}^{\infty} \varphi(k)\mathbb{P}(X_T = k|X_t = x) = \sum_{k=x}^{\infty} \varphi(k)\frac{(\lambda(T-t))^{k-x}}{(k-x)!}e^{-\lambda(T-t)}$$

Reindexing with n = k - x,

$$u(t,x) = e^{-\lambda(T-t)} \sum_{k=x}^{\infty} \varphi(k) \frac{(\lambda(T-t))^{k-x}}{(k-x)!} = e^{-\lambda(T-t)} \sum_{n=0}^{\infty} \varphi(n+x) \frac{(\lambda(T-t))^n}{n!}$$

We now compute the generator A(t) for P. By definition,

$$\mathcal{A}(t)\varphi(x) = \lim_{s \to t^{+}} \frac{1}{s-t} \left[\mathcal{P}(t,s)\varphi(x) - \varphi(x) \right] = \lim_{s \to t^{+}} \frac{1}{s-t} \left[\mathbb{E}\left[\varphi(X_{s}) | X_{t} = x \right] - \varphi(x) \right]$$

In a small interval dt the probability $X_{t+dt} = X_t + 1$ is λdt and probability $X_{t+dt} = X_t$ is $(1 - \lambda)dt$. Therefore,

$$\mathcal{A}(t)\varphi(x) = \frac{1}{\mathrm{d}t} \left[\varphi(x+1)\lambda + \varphi(x)(1-\lambda) - \varphi(x) \right] = \lambda(\varphi(x+1) - \varphi(x))$$

Since the t-derivative of the n = 0 term is zero,

$$\sum_{n=0}^{\infty} \varphi(n+x)\partial_t \left[\frac{(\lambda(T-t))^n}{n!} \right] = \sum_{n=1}^{\infty} \varphi(n+x)\partial_t \left[\frac{(\lambda(T-t))^n}{n!} \right]$$
$$= \sum_{n=1}^{\infty} \varphi(n+x)(n)(-\lambda) \frac{(\lambda(T-t))^{n-1}}{n!}$$
$$= -\lambda \sum_{n=1}^{\infty} \varphi(n+x) \frac{(\lambda(T-t))^{n-1}}{(n-1)!}$$

Observe, by the chain rule and assuming we can bring a derivative through a sum,

$$\partial_t u(t,x) = \left[\partial_t e^{-\lambda(T-t)}\right] \sum_{n=0}^{\infty} \varphi(n+x) \frac{(\lambda(T-t))^n}{n!} + e^{-\lambda(T-t)} \sum_{n=0}^{\infty} \varphi(n+x) \partial_t \left[\frac{(\lambda(T-t))^n}{n!}\right]$$

$$= \lambda e^{-\lambda(T-t)} \sum_{n=0}^{\infty} \varphi(n+x) \frac{(\lambda(T-t))^n}{n!} - \lambda e^{-\lambda(T-t)} \sum_{n=1}^{\infty} \varphi(n+x) \frac{(\lambda(T-t))^{n-1}}{(n-1)!}$$

$$= \lambda e^{-\lambda(T-t)} \sum_{n=0}^{\infty} \varphi(n+x) \frac{(\lambda(T-t))^n}{n!} - \lambda e^{-\lambda(T-t)} \sum_{n=m}^{\infty} \varphi(m+1+x) \frac{(\lambda(T-t))^m}{m!}$$

$$= \lambda(u(t,x) - u(t,x+1))$$

Therefore the KBE is satisfied as

$$[\partial_t + \mathcal{A}]u(t,x) = \lambda(u(t,x) - u(t,x+1)) - \lambda(u(t,x+1) - u(t,x)) = 0, \quad u(T,x) = \varphi(x)$$

Exercise 10.2

Solution

Exercise 10.3

Let $X = (X_t)_{t \ge 0}$ be a process defined by,

$$dX_t = \mu_t X_t dt + \sigma_t X_t dW_t + \int_{\mathbb{R}} \left(e^{\gamma_t(z)} - 1 \right) X_{t-} \tilde{N}(dt, dz)$$
$$dY_t = b_t Y_t dt + a_t Y_t dW_t + \int_{\mathbb{R}} \left(e^{g_t(z)} - 1 \right) Y_{t-} \tilde{N}(dt, dz)$$

where W is a one-dimensional Brownian motion, \tilde{N} is a one-dimensional compensated Poisson random measure on \mathbb{R} , and $\mu, b, \sigma, a, \gamma, g$ are \mathbb{F} -adapted stochastic processes.

- (a) Define $Z_t := X_t/Y_t$. Compute the differential $\mathrm{d}Z_t$. Your answer should not involve X_t or Y_t .
- (b) Find μ_t so that Z is a martingale.

Solution

(a) Define f(x, y) = x/y. Then $Z_t = f(X_t, Y_t)$. We have,

$$[(e^{\gamma_t(z)}-1)X_t;(e^{g_t(z)}-1)Y_t]\cdot\nabla f(X_{t^-},Y_{t^-}) = (e^{\gamma_t(z)}-1)X_{t^-}f_x(X_{t^-},Y_{t^-}) + (e^{g_t(z)}-1)Y_{t^-}f_y(X_{t^-},Y_{t^-}) + (e^$$

We use Itô's formula to compute,

$$\begin{split} \mathrm{d}Z_t &= \mathrm{d}f(X_t, Y_t) = \left(\mu_t X_t f_x + b_t Y_t f_y + \frac{1}{2} \left((\sigma_t X_t)^2 f_{xx} + 2(\sigma_t X_t) (a_t Y_t) f_{xy} + (a_t Y_t)^2 f_{yy} \right) \right) \mathrm{d}t \\ &+ \left(\sigma_t X_t f_x + a_t Y_t f_y \right) \mathrm{d}W_t \\ &+ \int_{\mathbb{R}} \left(f \left(X_{t^-} + (e^{\gamma_t(z)} - 1) X_{t^-}, Y_{t^-} + (e^{g_t(z)} - 1) Y_{t^-} \right) - f(X_{t^-}, Y_{t^-}) \right) \tilde{N}(\mathrm{d}t, \mathrm{d}z) \\ &+ \int_{\mathbb{R}} \left(f \left(X_{t^-} + (e^{\gamma_t(z)} - 1) X_{t^-}, Y_{t^-} + (e^{g_t(z)} - 1) Y_{t^-} \right) - f(X_{t^-}, Y_{t^-}) \\ &- (e^{\gamma_t(z)} - 1) X_{t^-} f_x(X_{t^-}, Y_{t^-}) - (e^{g_t(z)} - 1) Y_{t^-} f_y(X_{t^-}, Y_{t^-}) \right) \nu(\mathrm{d}z) \mathrm{d}t \end{split}$$

Now, using $f_x = 1/y$, $f_y = -x/y^2$, $f_{xy} = -1/y^2$, $f_{xx} = 0$, $f_{yy} = 2x/y^3$ we have

$$\mu_t X_t f_x + b_t Y_t f_y = \mu_t X_t \left(\frac{1}{Y_t}\right) + b_t Y_t \left(\frac{-X_t}{Y_t^2}\right) = \mu_t Z_t - b_t Z_t$$

$$(\sigma_t X_t)^2 f_{xx} + 2(\sigma_t X_t)(a_t Y_t) f_{xy} + (a_t Y_t)^2 f_{yy} = 2(\sigma_t X_t)(a_t Y_t) \left(\frac{-1}{Y_t^2}\right) + a_t^2 Y_t^2 \left(\frac{2X_t}{Y_t^3}\right) = -2\sigma_t a_t Z_t + 2a_t^2 Z_t$$

$$\sigma_t X_t f_x + a_t Y_t f_y = \sigma_t X_t \left(\frac{1}{Y_t}\right) + a_t Y_t \left(\frac{-X_t}{Y_t^2}\right) = \sigma_t Z_t - a_t Z_t$$

$$f\left(X_{t^{-}} + (e^{\gamma_{t}(z)} - 1)X_{t^{-}}, Y_{t^{-}} + (e^{g_{t}(z)} - 1)Y_{t^{-}}\right) - f(X_{t^{-}}, Y_{t^{-}}) = \frac{e^{\gamma_{t}(z)}}{e^{g_{t}(z)}}Z_{t^{-}} - Z_{t^{-}}$$

$$\begin{split} &(e^{\gamma_t(z)}-1)X_{t^-}f_x(X_{t^-},Y_{t^-}) + (e^{g_t(z)}-1)Y_{t^-}f_y(X_{t^-},Y_{t^-}) \\ &= (e^{\gamma_t(z)}-1)X_{t^-}\left(\frac{1}{Y_{t^-}}\right) + (e^{g_t(z)}-1)Y_{t^-}\left(\frac{-X_{t^-}}{Y_{t^-}^2}\right) \\ &= (e^{\gamma_t(z)}-1)Z_{t^-} - (e^{g_t(z)}-1)Z_{t^-} \end{split}$$

Inserting these evaluated expressions into the original expression for dZ_t gives,

$$dZ_{t} = \left(\mu_{t} - b_{t} - \sigma_{t}a_{t} + a_{t}^{2}\right) Z_{t}dt + \left(\sigma_{t} - a_{t}\right) Z_{t}dW_{t}$$

$$+ \int_{\mathbb{R}} \left(\frac{e^{\gamma_{t}(z)}}{e^{g_{t}(z)}} - 1\right) Z_{t} - \tilde{N}(dt, dz)$$

$$+ \int_{\mathbb{R}} \left(\frac{e^{\gamma_{t}(z)}}{e^{g_{t}(z)}} - e^{\gamma_{t}(z)} + e^{g_{t}(z)} - 1\right) Z_{t} - \nu(dz)dt$$

(b) We need the dt term to be zero. Therefore pick,

$$\mu_t = b_t + \sigma_t a_t - a_t^2 - \int_{\mathbb{R}} \left(\frac{e^{\gamma_t(z)}}{e^{g_t(z)}} - e^{\gamma_t(z)} + e^{g_t(z)} - 1 \right) \nu(\mathrm{d}z) \mathrm{d}t$$

Exercise 10.4

Let $\eta = (\eta_t)_{t \geq 0}$ be a one-dimensional Lévy Process and define $X = (X_t)_{t \geq 0}$ by

$$dX_t = \kappa(\theta - X_t)dt + d\eta_t$$

- (a) Find X_t explicitly as a function of η . (b) Assume $\eta_t = \sigma W_t + \int_{\mathbb{R}} z \tilde{N}(t, dz)$. Compute $m(t) := \mathbb{E} X_t$ and $c(t, s) := \mathbb{E} (X_t m(t))(X_s m(s))$

Solution

(a) Let $Y_t = X_t - \theta$ and $Z_t = e^{\kappa t} Y_t = f(t, Y_t)$, where $f(t, y) = e^{\kappa t} y$.

$$dY_t = dX_t = -\kappa Y_t dt + d\eta_t$$

Recall the product rule (which applies to Lévy Itô processes),

$$d(U_t V_t) = U_{t-} dV_t + V_{t-} dU_t + d[U, V]_t$$

Therefore,

$$dZ_t = d(e^{\kappa t}Y_t) = e^{\kappa t^-} dY_t + Y_{t^-} de^{\kappa t} + d[e^{\kappa t}, Y]_t$$

Using our heuristics we have $d(e^{\kappa t})dY_t = 0$. Therefore, since t^- and t can be "treated the same" on dt terms which are continuous,

$$dZ_t = e^{\kappa t^-} dY_t + \kappa e^{\kappa t} Y_{t^-} = e^{\kappa t^-} d\eta_t$$

Integrating we have,

$$Z_t = Z_0 + \int_0^t e^{\kappa s} \mathrm{d}\eta_s$$

Therefore, since $Y_t = e^{-\kappa t} Z_t$, $Z_0 = Y_0$ so,

$$Y_t = e^{-\kappa t} \left(Y_0 + \int_0^t e^{\kappa s} \mathrm{d}\eta_s \right)$$

Finally, since $X_t = \theta + Y_t$, $Y_0 = X_0 - \theta$ so,

$$X_t = \theta + e^{-\kappa t} \left(X_0 - \theta + \int_0^t e^{\kappa s} d\eta_s \right) = \theta + e^{-\kappa t} (X_0 - \theta) + \int_0^t e^{\kappa (s - t)} d\eta_s$$

(b) We have,

$$d\eta_t = \sigma dW_t + \int_{\mathbb{R}} z\tilde{N}(dt, dz)$$

Observe, that since integrals with respect to dW_t and $\int_{\mathbb{R}} \tilde{N}(dt, dz)$ are martingales so,

$$\mathbb{E}\left[\int_0^t e^{\kappa(s-t)} \mathrm{d}\eta_s\right] = \mathbb{E}\left[\int_0^t e^{\kappa(s-t)} \sigma \mathrm{d}W_t + \int_0^t e^{\kappa(s-t)} \int_{\mathbb{R}} z\tilde{N}(\mathrm{d}t,\mathrm{d}z)\right] = 0$$

Therefore,

$$m(t) = \mathbb{E}\left[X_t\right] = \mathbb{E}\left[\theta + e^{-\kappa t}(X_0 - \theta) + \int_0^t e^{\kappa(s-t)} d\eta_s\right] = \theta + e^{-\kappa t}(X_0 - \theta)$$

Clearly,

$$X_t - m(t) = \int_0^t e^{\kappa(u-t)} d\eta_u$$

Without loss of generality assume $t \geq s$. Then, using the independent increments property to write the expectation of a product as the product of expectations,

$$\begin{split} \mathbb{E}\left[\left(X_{t}-m(t)\right)\left(X_{s}-m(s)\right)\right] &= \mathbb{E}\left[\left(\int_{0}^{t}e^{\kappa(u-t)}\mathrm{d}\eta_{u}\right)\left(\int_{0}^{s}e^{\kappa(v-s)}\mathrm{d}\eta_{v}\right)\right] \\ &= \mathbb{E}\left[\left(\int_{0}^{s}e^{\kappa(u-t)}\mathrm{d}\eta_{u}+\int_{s}^{t}e^{\kappa(u-t)}\mathrm{d}\eta_{u}\right)\left(\int_{0}^{s}e^{\kappa(v-s)}\mathrm{d}\eta_{v}\right)\right] \\ &= \mathbb{E}\left[e^{-\kappa(t+s)}\left(\int_{0}^{s}e^{\kappa u}\mathrm{d}\eta_{u}\right)^{2}+e^{-\kappa(t+s)}\left(\int_{s}^{t}e^{\kappa u}\mathrm{d}\eta_{u}\right)\left(\int_{0}^{s}e^{\kappa v}\mathrm{d}\eta_{v}\right)\right] \\ &= e^{-\kappa(t+s)}\mathbb{E}\left[\left(\int_{0}^{s}e^{\kappa u}\mathrm{d}\eta_{u}\right)^{2}\right]+e^{-\kappa(t+s)}\mathbb{E}\left[\int_{s}^{t}e^{\kappa u}\mathrm{d}\eta_{u}\right]\mathbb{E}\left[\int_{0}^{s}e^{\kappa v}\mathrm{d}\eta_{v}\right] \end{split}$$

We now note that, Lévy processes without a dt term are martingales so that,

$$\mathbb{E}\left[\int_0^s e^{\kappa u} d\eta_u\right] = \mathbb{E}\left[\int_0^s e^{\kappa u} \left(\sigma dW_u + \int_{\mathbb{R}} z\tilde{N}(du, dz)\right)\right] = 0$$

Define,

$$Z_s = \int_0^s e^{\kappa u} \mathrm{d}\eta_u$$

Then,

$$dZ_s = e^{\kappa s} d\eta_s = \sigma e^{\kappa s} dW_s + \int_{\mathbb{R}} e^{\kappa s} z \tilde{N}(ds, dz)$$

Using Itô's isometry we have,

$$\mathbb{E}\left[\left(\int_0^s e^{\kappa u} \mathrm{d}\eta_u\right)^2\right] = \mathbb{E}\left[\int_0^s \left(\sigma^2 e^{2\kappa u} + \int_{\mathbb{R}} e^{2\kappa u} z^2 \nu(\mathrm{d}z)\right) \mathrm{d}u\right] = \mathbb{E}\left[\left(\sigma^2 + \int_{\mathbb{R}} z^2 \nu(\mathrm{d}z)\right) \frac{e^{2\kappa s} - 1}{2\kappa}\right]$$

Therefore,

$$c(t,s) = e^{-\kappa(t+s)} \frac{e^{2\kappa s} - 1}{2\kappa} \left(\sigma^2 + \int_{\mathbb{R}} z^2 \nu(\mathrm{d}z)\right) = \frac{e^{\kappa(s-t)} - e^{-\kappa(t+s)}}{2\kappa} \left(\sigma^2 + \int_{\mathbb{R}} z^2 \nu(\mathrm{d}z)\right)$$

We can remove our assumption that $t \geq s$ and write,

$$c(t,s) = \frac{e^{-\kappa|t-s|} - e^{-\kappa(t+s)}}{2\kappa} \left(\sigma^2 + \int_{\mathbb{R}} z^2 \nu(\mathrm{d}z)\right)$$

Exercise 10.5

Let X be the following one-dimensional jump-diffusion

$$dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dW_t + \int_{\mathbb{R}} \gamma(t, X_{t-}, z)\tilde{N}(t, dz),$$

where W is a one-dimensional Brownian motion and \tilde{N} is a one-dimensional compensated Poisson random measure on \mathbb{R} . Derive using the Lévy-Itô formula the infinitesimal generator $\mathcal{A}(t)$ of the X process,

$$\mathcal{A}(t)\varphi(x) := \lim_{s \to t^+} \frac{\mathbb{E}\left[\varphi(X_s)|X_t = x\right] - \varphi(x)}{s - t}$$

Solution

Since $\mathbb{E}[\varphi(X_t)|X_t=x]=\varphi(x)$

$$\mathbb{E}\left[\varphi(X_s)|X_t=x\right] - \varphi(x) = \mathbb{E}\left[\varphi(X_t) + \int_t^s \mathrm{d}\varphi(X_u)\right] - \varphi(x) = \mathbb{E}\left[\int_t^s \mathrm{d}\varphi(X_u)\right]$$

From the Lévy-Itô formula we have,

$$d\varphi(X_u) = \left(\mu(u, X_u)\varphi'(X_u) + \frac{1}{2}\sigma(u, X_u)^2\varphi''(X_u)\right)du + \sigma(u, X_u)\varphi'(X_u)dW_u$$

$$+ \int_{\mathbb{R}} \left(\varphi(X_{u^-} + \gamma(u, X_{u^-}, z)) - \varphi(X_{u^-})\right)\tilde{N}(du, dz)$$

$$+ \int_{\mathbb{R}} \left(\varphi(X_{u^-} + \gamma(u, X_{u^-}, z)) - \varphi(X_{u^-}) - \gamma(u, X_{u^-}, z)\varphi'(X_{u^-})\right)\nu(dz)du$$

We note that as integrals with respect to W and \tilde{N} are martingales that,

$$\mathbb{E}\left[\int_{t}^{s} d\varphi(X_{u})\right] = \mathbb{E}\left[\int_{t}^{s} \left(\mu(u, X_{u})\varphi'(X_{u}) + \frac{1}{2}\sigma(u, X_{u})^{2}\varphi''(X_{u})du\right.\right.$$
$$+ \int_{\mathbb{R}}\left(\varphi(X_{u^{-}} + \gamma(u, X_{u^{-}}, z)) - \varphi(X_{u^{-}}) - \gamma(u, X_{u^{-}}, z)\varphi'(X_{u^{-}})\right)\nu(dz)\right)du$$

Thus, taking the limit as $s \to t^+$,

$$\mathcal{A}(t)\varphi(x) = \left(\mu(t, X_t)\partial_x + \frac{1}{2}\sigma(t, X_t)\partial_x^2 + \int_{\mathbb{R}}\nu(\mathrm{d}z)\left(\theta_{\gamma(t, X_t, z)} - 1 - \gamma(t, X_t, z)\partial_x\right)\right)\varphi(x)$$