Løsningsforslag eksamensopgaver M3NUM1 vinter 2020/2021

OPGAVE 1

(1a)

Scriptet vil virke efter hensigten, hvis det rettes til følgende (ændringer og tilføjelser er markeret med rød skrift):

```
clear
z = @(x,y) 12.0 + 313*y - 1466*y^2 + 7.69*x - 126*x.*y ...
           + 878*x.*y^2 - 2.42*x^2 + 34.1*x^2.*y - 213*x^2.*y^2;
x = 1:0.01:4;
y = 0.03:0.001:0.23;
zmax = 0;
for i = 1:length(x)
  for j = 1:length(y)
    zny = z(x(i),y(j));
    if zny > zmax
        xmaxz = x(i); % "Notér" aktuel x-værdi i xmaxz
        ymaxz = y(j); % "Notér" aktuel y-værdi i ymaxz
        zmax = zny; % "Notér" aktuel z-værdi i zmax
    end
  end
end
xmaxz, ymaxz, zmax % Skriv funden løsning
```

Når det rettede script køres, fås følgende resultat:

Dvs., at den <u>maksimale virkningsgrad er 35,1%</u> ved et <u>omdrejningstal på 2,11 kRPM</u> og en <u>momentbelastning</u> på 0,177 kNm.

(1b)

Den færdiggjorte funktion kan fx se ud som følger:

```
function resultat = driftomr(x,y)
a1 = 0.1637; b1 = 0.237; c0 = -0.01425;
s0 = -0.01113; x0 = 2.164; y0 = 0.2185;
xmin = 1; xmax = 4; ymin = 0.03;
ymax1 = @(x) a1*(x-x0)^4 + b1*(x-x0)^3 + c0*(x-x0)^2 + s0*(x-x0) + y0;
ymax2 = @(x) c0*(x-x0)^2 + s0*(x-x0) + y0;
if x >= xmin && x <= x0 && y >= ymin && y <= ymax1(x)
    resultat = 1;
elseif x > x0 && x <= xmax && y >= ymin && y <= ymax2(x)
    resultat = 1;
else
    resultat = 0;</pre>
```

MATLAB-kommandoer og resultater opnået ved afprøvningerne:

MATLAE	Resultat		
iomr =	driftomr(0.9,	0.01)	iomr = 0
iomr =	driftomr(1.5,	0.2)	iomr = 0
iomr =	driftomr(2.5,	0.03)	iomr = 1
iomr =	driftomr(2.5,	0.2)	iomr = 1
iomr =	driftomr(3,	0.2)	iomr = 0
iomr =	driftomr(4,	0.1)	iomr = 1
iomr =	driftomr(4,	0.15)	iomr = 1
iomr =	driftomr(4.1,	0.1)	iomr = 0

OPGAVE 2

(2a)

Her følger en færdiggjort version af funktionen jacobifunk:

(2b)

MATLAB-kode til løsning af ligningssystemet:

```
format shortg
[X,funk,ea,iter] = newtmult(@jacobifunk,[1; 0.03],0.002)
```

Outputtet bliver som følger:

Den fundne løsning er således $\underline{x} = 2,578 \text{ kRPM}$; $\underline{y} = 0,1482 \text{ kNm}$. Den approksimative relative fejl er på 0,0001% og dermed under den maksimalt tilladte fejl på 0,002%. Dermed er den ønskede nøjagtighed af løsningen opnået.

(2c)

Usikkerhedsintervallerne for *x* og *y* beregnes:

```
Usikkerhedsinterval for x: 1,822289 \pm 0,0047\% = 1,822289 \pm 1,822289 \times \frac{0,0047}{100} = 1,822289 \pm 0.000086 = [1,822203; 1,822375]
```

Usikkerhedsinterval for y:
$$0,2096506 \pm 0,0047\% = 0,2096506 \pm 0,2096506 \times \frac{0,0047}{100} = 0,2096506 \pm 0,0000099 = [0,2096407; 0,2096605]$$

For x skal man afrunde til tre decimaler, for at intervalendepunkterne bliver ens, nemlig så man får resultatet 1,822. For y skal man ligeledes afrunde til tre decimaler, for at intervalendepunkterne bliver ens, nemlig så man får resultatet 0,210. Løsningen med sikre afrundede decimaler er derfor:

x = 1,822 kRPM; y = 0,210 kNm.

OPGAVE 3

(3a)

For at gennemføre Newton-Raphsons metode, er det nødvendigt at finde den afledte af polynomiumsfunktionen:

$$p'(x) = 2x^4 - 4x^3 - 18x^2 + 4x + 16$$

Resultater og formler i de enkelte iterationer er som følger (løst i Excel, hvor navngivning af x-kolonnen er anvendt):

	Α	В	С	D
1	Iteration	X	p(x)	p'(x)
2	0	0	7	16
3	1	-0,4375	0,842206	11,21292
4	2	-0,51261	0,048758	9,896599
5	3	-0,51754	0,000222	9,806609
6	4	-0,51756	4,67E-09	9,806195

	Α	В	С	D
1	Iteration	X	p(x)	p'(x)
2	0	0	=0,4*x^5-x^4-6*x^3+2*x^2+16*x+7	=2*x^4-4*x^3-18*x^2+4*x+16
3	1	=B2-C2/D2	=0,4*x^5-x^4-6*x^3+2*x^2+16*x+7	=2*x^4-4*x^3-18*x^2+4*x+16
4	2	=B3-C3/D3	=0,4*x^5-x^4-6*x^3+2*x^2+16*x+7	=2*x^4-4*x^3-18*x^2+4*x+16
5	3	=B4-C4/D4	=0,4*x^5-x^4-6*x^3+2*x^2+16*x+7	=2*x^4-4*x^3-18*x^2+4*x+16
6	4	=B5-C5/D5	=0,4*x^5-x^4-6*x^3+2*x^2+16*x+7	=2*x^4-4*x^3-18*x^2+4*x+16

Den fundne rod aflæses som sidste tal i x-kolonnen: x = -0.51756. Denne værdi lig med den foregående værdi (x = -0.51754) med op til tre decimaler afrundet. Roden med sikre decimaler afrundet er derfor x = -0.518.

(3b)

Det færdiggjorte script og produceret output, når det køres:

Script	Output
clear, format long	3
$p = 0(x) 0.4*x^5 - x^4 - 6*x^3 + 2*x^2 + 16*x + 7;$	2.0900000000000000
pdiff = $@(x) 2*x^4 - 4*x^3 - 18*x^2 + 4*x + 16;$	1.924121538104697
x = 3;	1.908032816033752
disp(x)	1.907874720973848
for i = 1:5	1.907874705686683
x = x - p(x)/pdiff(x);	
disp(x)	
end	

Rodestimaterne i iteration 4 og 5 er ens med op til syv decimaler (afrundet), så den estimerede rod med sikre decimaler er x = 1,9078747.

(3c)

Newton-Raphsons metode finder næste rodestimat ved at beregne, hvor tangentlinjen til det nuværende punkt på grafen skærer x-aksen. Hvis funktionsværdien i det nuværende punkt er "meget" forskellig fra nul og/eller tangenthældningen er "tæt på" nul kan næste rodestimat ligge langt fra udgangspunktet. På skitsen t.h. er det illustreret, at med et startpunkt i x = 3.9 vil man få en tangentlinje, der skærer x-aksen et sted ude på den negative del ($x = 3.9 - \frac{p(3.9)}{p'(3.9)} = 3.9 - \frac{-126.54}{-16.768} = -3.65$), og som resultat vil

Newton-Raphsons metode ved de følgende iterationer gradvist nærme sig den mindste rod, som er negativ.

(3d)

Den afledte af polynomiumsfunktionen er $p'(x) = 2x^4 - 4x^3 - 18x^2 + 4x + 16$, og dermed er $p'(x_0) = p'(-1) = 2(-1)^4 - 4(-1)^3 - 18(-1)^2 + 4(-1) + 16 = 0$. Newton-Raphsons metode indebærer, at man skal dividere med den afledte, altså i dette tilfælde nul. Derfor kan man ikke beregne x_1 , og således kan man ikke iterere sig frem til en rod.

(3e)

Funktionen fzero skal have polynomiumsfunktionen og en startværdi for *x* som input. Da funktionen finder den rod, der ligger nærmest startværdien, benyttes værdien -1,6:

```
format short p = @(x) 0.4*x^5 - x^4 - 6*x^3 + 2*x^2 + 16*x + 7; [rod funktionsvaerdi] = fzero(p,-1.6)
```

Resultatet bliver rod = -1.5503 og funktionsværdi = 0. Rodværdien er altså fundet til $\underline{x} = -1.5503$ (troværdig da den tilhørende funktionsværdi er nul).

(3f)

Funktionen roots finder rødderne på grundlag af polynomiumskoefficienterne:

```
format short
polynomiumskoefficienter = [0.4 -1 -6 2 16 7];
roedder = roots(polynomiumskoefficienter)
```

Resultatet bliver:

```
roedder =
```

4.9632

1.9079

-2.3032

-1.5503

-0.5176

De fem rødder er således, 4,9632, 1,9079, -2,3032, -1,5503 og -0,5176.

OPGAVE 4

(4a)

Talresultater:

	Α	В	С	D	E	F	G	Н
1	N =	1000000						
2	beta =	3,4						
3	gamma =	1,3						
4	h =	0,25						
5								
6	iteration	t	S	1	R	dS/dt	dI/dt	dR/dt
7	0	0	999999	1	0	-3,4	2,099997	1,3
8	1	0,25	999998	2	0	-5,18499	3,202489	1,982499
9	2	0,5	999997	2	1	-7,90709	4,88378	3,023308
10	3	0,75	999995	4	2	-12,0583	7,447727	4,610536
11	4	1	999992	5	3	-18,3887	11,3577	7,031048
12	5	1,25	999987	8	4	-28,0426	17,32028	10,7223
13	6	1,5	999980	13	7	-42,7643	26,41294	16,35139
14	7	1,75	999970	19	11	-65,2142	40,27859	24,93559
15	8	2	999953	29	17	-99,4483	61,42219	38,02614
16	9	2,25	999928	45	27	-151,651	93,66263	57,98835
17	10	2,5	999890	68	41	-231,25	142,821	88,4287
18	11	2,75	999833	104	64	-352,614	217,7684	134,8455
19	12	3	999745	158	97	-537,639	332,0184	205,6203
20	13	3,25	999610	241	149	-819,672	506,1458	313,5263
21	14	3,5	999405	368	227	-1249,47	771,4484	478,0236
22	15	3,75	999093	561	347	-1904,22	1175,473	728,7444
23	16	4	998617	854	529	-2901,08	1790,308	1110,773
24	17	4,25	997891	1302	806	-4417,53	2724,903	1692,623
25	18	4,5	996787	1983	1230	-6721,36	4143,147	2578,217
26	19	4,75	995107	3019	1874	-10214,5	6289,736	3924,74
27	20	5	992553	4591	2855	-15494,7	9525,823	5968,904
28	21	5,25	988679	6973	4348	-23439,5	14374,75	9064,796
29	22	5,5	982820	10567	6614	-35309,2	21572,64	13736,59
30	23	5,75	973992	15960	10048	-52851,9	32104,25	20747,7
31	24	6	960779	23986	15235	-78353,3	47171,72	31181,58
32	25	6,25	941191	35779	23030	-114494	67981,41	46512,39
33	26	6,5	912568	52774	34658	-163744	95137,46	68606,35
34	27	6,75	871632	76558	51810	-226885	127358,7	99526,02
35	28	7	814910	108398	76691	-300338	159420,6	140917,6
36	29	7,25	739826	148253	111921	-372918	180188,2	192729,3
37	30	7,5	646596	193300	160103	-424957	173666,4	251290,5

38	31	7,75	540357	236717	222926	-434900	127167,8	307732,1
39	32	8	431632	268509	299859	-394050	44988,59	349061,6
40	33	8,25	333120	279756	387124	-316854	-46829,2	363682,9
41	34	8,5	253906	268049	478045	-231402	-117062	348463,4
42	35	8,75	196056	238783	565161	-159171	-151248	310418,3
43	36	9	156263	200971	642765	-106775	-154488	261262,8
44	37	9,25	129569	162349	708081	-71520,8	-139533	211054,3
45	38	9,5	111689	127466	760845	-48404,4	-117301	165705,9
46	39	9,75	99588	98141	802271	-33230,4	-94352,5	127582,9
47	40	10	91281	74553	834167	-23137,7	-73780,7	96918,37
48	41	10,25	85496	56107	858396	-16309,7	-56630	72939,65
49	42	10,5	81419	41950	876631	-11612,7	-42922,2	54534,91
50	43	10,75	78516	31219	890265	-8334,1	-32251,1	40585,2
51	44	11	76432	23157	900411	-6017,68	-24085,9	30103,6
52	45	11,25	74928	17135	907937	-4365,24	-17910,4	22275,67
53	46	11,5	73836	12658	913506	-3177,59	-13277,2	16454,78
54	47	11,75	73042	9338	917620	-2319,08	-9820,62	12139,7
55	48	12	72462	6883	920655	-1695,79	-7252,2	8947,994

Formler:

1	Α	В	С	D	Е	F	G	Н
1	N =	1000000						
2	beta =	3,4						
3	gamma =	1,3						
4	h =	0,25						
5								
6	iteration	t	S	I	R	dS/dt	dI/dt	dR/dt
7	0	=iteration*h	999999	1	0	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
8	=A7+1	=iteration*h	=C7+F7*h	=D7+G7*h	=E7+H7*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
9	=A8+1	=iteration*h	=C8+F8*h	=D8+G8*h	=E8+H8*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
10	=A9+1	=iteration*h	=C9+F9*h	=D9+G9*h	=E9+H9*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
11	=A10+1	=iteration*h	=C10+F10*h	=D10+G10*h	=E10+H10*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
12	=A11+1	=iteration*h	=C11+F11*h	=D11+G11*h	=E11+H11*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
13	=A12+1	=iteration*h	=C12+F12*h	=D12+G12*h	=E12+H12*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
14	=A13+1	=iteration*h	=C13+F13*h	=D13+G13*h	=E13+H13*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
15	=A14+1	=iteration*h	=C14+F14*h	=D14+G14*h	=E14+H14*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
16	=A15+1	=iteration*h	=C15+F15*h	=D15+G15*h	=E15+H15*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
17	=A16+1	=iteration*h	=C16+F16*h	=D16+G16*h	=E16+H16*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
18	=A17+1	=iteration*h	=C17+F17*h	=D17+G17*h	=E17+H17*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
19	=A18+1	=iteration*h	=C18+F18*h	=D18+G18*h	=E18+H18*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
20	=A19+1	=iteration*h	=C19+F19*h	=D19+G19*h	=E19+H19*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
21	=A20+1	=iteration*h	=C20+F20*h	=D20+G20*h	=E20+H20*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
22	=A21+1	=iteration*h	=C21+F21*h	=D21+G21*h	=E21+H21*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
23	=A22+1	=iteration*h	=C22+F22*h	=D22+G22*h	=E22+H22*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
24	=A23+1	=iteration*h	=C23+F23*h	=D23+G23*h	=E23+H23*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
25	=A24+1	=iteration*h	=C24+F24*h	=D24+G24*h	=E24+H24*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
26	=A25+1	=iteration*h	=C25+F25*h	=D25+G25*h	=E25+H25*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
27	=A26+1	=iteration*h	=C26+F26*h	=D26+G26*h	=E26+H26*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
28	=A27+1	=iteration*h	=C27+F27*h	=D27+G27*h	=E27+H27*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
29	=A28+1	=iteration*h	=C28+F28*h	=D28+G28*h	=E28+H28*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
30	=A29+1	=iteration*h	=C29+F29*h	=D29+G29*h	=E29+H29*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
31	=A30+1	=iteration*h	=C30+F30*h	=D30+G30*h	=E30+H30*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
32	=A31+1	=iteration*h	=C31+F31*h	=D31+G31*h	=E31+H31*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
33	=A32+1	=iteration*h	=C32+F32*h	=D32+G32*h	=E32+H32*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
34	=A33+1	=iteration*h	=C33+F33*h	=D33+G33*h	=E33+H33*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
35	=A34+1	=iteration*h	=C34+F34*h	=D34+G34*h	=E34+H34*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
36	=A35+1	=iteration*h	=C35+F35*h	=D35+G35*h	=E35+H35*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I

37	=A36+1	=iteration*h	=C36+F36*h	=D36+G36*h	=E36+H36*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
38	=A37+1	=iteration*h	=C37+F37*h	=D37+G37*h	=E37+H37*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
39	=A38+1	=iteration*h	=C38+F38*h	=D38+G38*h	=E38+H38*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
40	=A39+1	=iteration*h	=C39+F39*h	=D39+G39*h	=E39+H39*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
41	=A40+1	=iteration*h	=C40+F40*h	=D40+G40*h	=E40+H40*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
42	=A41+1	=iteration*h	=C41+F41*h	=D41+G41*h	=E41+H41*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
43	=A42+1	=iteration*h	=C42+F42*h	=D42+G42*h	=E42+H42*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
44	=A43+1	=iteration*h	=C43+F43*h	=D43+G43*h	=E43+H43*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
45	=A44+1	=iteration*h	=C44+F44*h	=D44+G44*h	=E44+H44*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
46	=A45+1	=iteration*h	=C45+F45*h	=D45+G45*h	=E45+H45*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
47	=A46+1	=iteration*h	=C46+F46*h	=D46+G46*h	=E46+H46*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
48	=A47+1	=iteration*h	=C47+F47*h	=D47+G47*h	=E47+H47*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
49	=A48+1	=iteration*h	=C48+F48*h	=D48+G48*h	=E48+H48*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
50	=A49+1	=iteration*h	=C49+F49*h	=D49+G49*h	=E49+H49*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
51	=A50+1	=iteration*h	=C50+F50*h	=D50+G50*h	=E50+H50*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*l
52	=A51+1	=iteration*h	=C51+F51*h	=D51+G51*h	=E51+H51*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*l
53	=A52+1	=iteration*h	=C52+F52*h	=D52+G52*h	=E52+H52*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*l
54	=A53+1	=iteration*h	=C53+F53*h	=D53+G53*h	=E53+H53*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I
55	=A54+1	=iteration*h	=C54+F54*h	=D54+G54*h	=E54+H54*h	=-beta/N*S*I	=beta/N*S*I-gamma*I	=gamma*I

Antallet af inficerede når ifølge løsningen sin maksimale værdi på $\underline{279756}$ til tidspunktet $\underline{t} = 8.25$ uger.

(4b)

MATLAB-kommandoer:

```
clear
N = 1000000;
I0 = 1; S0 = 9999999; R0 = 0;
beta = 3.4; gamma = 1.3;
tslut = 12;
h = 0.25;
dYdt = Q(t,Y) [-beta/N*Y(1)*Y(2), beta/N*Y(1)*Y(2)-gamma*Y(2), gamma*Y(2)];
[t,Y] = rk4system(dYdt,[0 tslut],[S0 I0 R0],h);
format shortg
disp('
               Uger
                               S
                                             Ι
                                                          R')
disp([t,Y])
% Ud fra Y-matricen ses, at den højeste I-værdi er 2.4922e+05, som
% står i matricens 28'ende række.
format longg
Imax = Y(28,2), tImax = t(28) % Max I-værdi og tilsvarende tidspunkt
```

Talresultater:

Uger	S	I	R
0	1e+06	1	0
0.25	1e+06	1.6901	0.4272
0.5	1e+06	2.8564	1.1492
0.75	9.9999e+05	4.8276	2.3695
1	9.9999e+05	8.159	4.4318
1.25	9.9998e+05	13.789	7.9173
1.5	9.9996e+05	23.305	13.808
1.75	9.9994e+05	39.385	23.764
2	9.9989e+05	66.56	40.589
2.25	9.9982e+05	112.48	69.022
2.5	9.9969e+05	190.06	117.07
2.75	9.9948e+05	321.12	198.25

```
3
                9.9912e+05
                                   542.4
                                                335.39
         3.25
                9.9852e+05
                                  915.81
                                                566.99
          3.5
                 9.975e+05
                                  1545.3
                                                957.91
         3.75
                9.9578e+05
                                  2604.4
                                                1617.1
                9.9289e+05
                                    4381
                                                2727.1
         4.25
                9.8806e+05
                                    7346
                                                4591.4
          4.5
                9.8004e+05
                                   12252
                                                7709.1
         4.75
                9.6686e+05
                                   20255
                                                 12886
            5
                9.4561e+05
                                   33008
                                                 21384
         5.25
                9.1235e+05
                                   52577
                                                 35076
          5.5
                8.6262e+05
                                   80873
                                                 56507
         5.75
                7.9309e+05
                                                 88642
                              1.1827e+05
            6
                7.0428e+05
                              1.6167e+05
                                            1.3405e+05
                6.0273e+05
                              2.0369e+05
                                            1.9359e+05
         6.25
          6.5
                4.9967e+05
                              2.3505e+05
                                            2.6528e+05
         6.75
                4.0618e+05
                              2.4933e+05
                                            3.4449e+05
                                             4.254e+05
            7
                3.2871e+05
                              2.4589e+05
         7.25
                2.6846e+05
                              2.2872e+05
                                            5.0282e+05
          7.5
                2.2333e+05
                              2.0347e+05
                                           5.732e+05
         7.75
                1.9012e+05
                              1.7513e+05
                                            6.3475e+05
                              1.4712e+05
            8
                 1.658e+05
                                            6.8708e+05
         8.25
                              1.2141e+05
                1.4795e+05
                                            7.3063e+05
          8.5
                1.3476e+05
                                   98897
                                            7.6634e+05
         8.75
                1.2494e+05
                                   79778
                                            7.9529e+05
            9
                1.1756e+05
                                   63890
                                            8.1855e+05
         9.25
                1.1198e+05
                                            8.3713e+05
                                   50888
          9.5
                1.0774e+05
                                   40364
                                            8.5189e+05
         9.75
                 1.045e+05
                                   31915 8.6359e+05
           10
                  1.02e+05
                                   25174
                                            8.7282e+05
        10.25
                1.0008e+05
                                   19819
                                           8.801e+05
         10.5
                      98593
                                   15581
                                            8.8583e+05
        10.75
                      97439
                                   12236 8.9032e+05
                      96544
                                  9600.5 8.9386e+05
           11
                                  7527.6
        11.25
                      95847
                                            8.9663e+05
         11.5
                      95304
                                  5899.2
                                          8.988e+05
        11.75
                                  4621.2
                                            9.005e+05
                      94881
                                  3618.8
                                            9.0183e+05
           12
                      94551
Imax =
          249334.187449107
tImax =
                       6.75
```

Antallet af inficerede når ifølge løsningen sin maksimale værdi på $\underline{249334}$ til tidspunktet $\underline{t} = \underline{6,75}$ uger.

(4c)

I Eulers metode udregnes næste *S*-værdi ved at foretage en lineær fremskrivning fra nuværende værdi. Fremskrivningen sker med en hældningskoefficient, der udregnes på basis af differentialligningen $\frac{dS}{dt} = -\frac{\beta}{N}SI$. Fremskrivningen fra iteration 12 til iteration 13 sker således med en hældningskoefficient på

$$\frac{dS}{dt} = -\frac{\beta}{N}SI = -\frac{3.4}{1000000} \times 197803 \times 387546 = -260636$$

og estimatet af S i iteration 13 bliver derfor

$$S_{13} = S_{12} + \frac{dS}{dt} \cdot h = 197803 + (-260636) \times 1 = -62833$$

For at undgå et negativt estimat af S, kan man reducere skridtlængden, fx til 0,5 uge.