Cross Validation

Linear Regression

Print slope, intercept & line

Linear regression

In linear regression, the equation that describes the factor-response relationships is Y=mX+C where Y and X are vectors that describe the response variable and the factor variable respectively.

Multiple regression

In a multiple regression case, we're interested in the impact of not only one, but many different factors, on the response variable.

The equation can be written as $Y=m_1X_1+m_2X_2+C$ where m1 and m2 are the coefficients of factors X1 and X2 respectively.

Polynomial Regression

For polynomial regression, we might use higher powers of X to describe Y, as described in

$$Y = m_1 X + m_2 X^2 + C$$

where m1 and m2 are coefficients of the first and second powers of the factor.

Logistic regression

Logistic regression is a statistical method for analysing a dataset in which there are one or more independent variables that determine an outcome.

The outcome is measured with a variable in which there are only two possible outcomes. It is used to predict a binary outcome (1 / 0, Yes / No, True / False) given a set of independent variables.

Applications

- Spam Detection : Predicting if an email is Spam or not
- Credit Card Fraud: Predicting if a given credit card transaction is fraud or not
- Health: Predicting if a given mass of tissue is benign or malignant
- Marketing: Predicting if a given user will buy an insurance product or not
- Banking: Predicting if a customer will default on a loan

sigmoid/logistic function

In logistic regression, the goal is to determine a mathematical equation that can be used to predict the probability of event

The sigmoid/logistic function is given by the following

equation.

Precision, Recall

$$\operatorname{precision} = rac{tp}{tp + fp},$$

$$recall = \frac{tp}{tp + fn},$$