Blockchains & Distributed Ledgers

Lecture 07

Aggelos Kiayias

BFT protocols

- 1. The Permissioned and Permissionless setting
- 2. Digital signatures and certificates
- BFT = Byzantine fault tolerance. A classical BFT protocol for a permissioned ledger
 - a. Graded Conesnus
 - b. Binary Consensus

Permissionless Protocols

- •Bitcoin and similar PoW-based blockchain protocols provide a permissionless setting:
- •Anyone can participate in the protocol and receive BTC as rewards by performing the PoW-based mining operation.
- •The mechanism of pouring currency in the system via proof of work, makes it feasible for anyone (possessing sufficient hashing power) to participate.
- •The ledger itself is public, readable and writeable by anyone (the latter assuming one possesses bitcoin)

Permissioned Protocols

- •Participation is restricted:
- •Producing transactions and/or blocks can only be performed after being authorized by the other nodes.
- In their simplest form the set of nodes is **static**: the set of nodes implementing the protocol is fixed and determined at the onset of protocol execution.

Permissioning How-To

- •Most straight approach: employ a PKI (=public-key infrastructure).
- ·Based on digital signatures / authentication protocols.
- ·Certificate authorities can authorize other entities.
- •authorization includes a signature from the CA on the entity's public-key, identity information etc.
- •Sharing certificate authority information is necessary; (how, where?)

X.509 Certificates

- Internet standard since 1988.
- ·Hierarchical.
- http://www.ietf.org/rfc/rfc3280.txt

Structure of x.509

Version
Serial Number
Algorithm / Parameters
Issuer
Period of Validity: not before date not after date
Subject
Algorithm/ Parameters/ Key
x509v3 extensions
•••
Signature

X.509
does not
specify
cryptographic
algorithms

Digital Signatures and Certificates

- A certificate contains a digital signature.
- Recall that cryptographic design of digital signatures involves typically:
- A cryptographic signing operation that acts on a fixed input of a specific type and has a public-verifiability feature.
- A cryptographic hash function that takes arbitrary strings and maps them to the data type suitable for the signing operation.
- Common setting today: SHA2 with RSA or DSA.

Certification considerations

- All computer systems come with preloaded certificates from certificate authorities. This provide a **setup assumption**.
- Certificates need to be revoked in case the corresponding secret keys become exposed or the algorithms used are not safe anymore.
- In a blockchain system, certificate information can be provided as part of the genesis block.

Secure channels and certificates

- Possession of mutually acceptable certificates not only permits authenticated communication (exchanging signed mechanism between two entities) but also allows building a secure channel Protocol **TLS 1.3** is used to build such secure channel.
- It relies on cryptographic protocols such as the Diffie Hellman
- key exchange. It can ensure the confidentiality of the data exchanged.

Static Permissioned Blockchain

- •All participants are identified by self-signed certificates in the genesis block.
- •The set of participants remains the same throughout the execution.
- •This is the simplest form of a PKI / public-key directory.

Permissioning

- •Prior to system operation the nodes register their certificates that are included in the genesis block.
- •Using such certificates, all the nodes are capable of authenticating each participant and allowing interaction with the shared state in a way that is prescribed by the participants' credentials.

A Centralised Permissioned Ledger

(let's focus on just a "LOG" of Transactions)

- One of participants acts as a server and maintains the LOG.
- Readers and writers to the LOG authenticate with the server and can perform read and write operations.
- •Consistency of the LOG is guaranteed assuming the server is trusted.
- Liveness of the LOG is guaranteed assuming the server is trusted and functional.

Bitcoin Permissionless Ledger

- •The genesis block contains no certificate information.
- •Reading from the LOG is open (anyone can do it without credentials).
- ·Writing to the LOG can only be done in specific ways (issuing transactions).
- •Nodes can obtain valid credentials (accounts) by generating a public and secret-key and either mining a block (which will reward their account with BTC) or buy BTC from another node.
- •Once the LOG records their account credit, they can issue transactions.
- •In essence: crediting a bitcoin account is creating a certificate that imparts the account holder with certain permissions w.r.t. the ledger.

Distributed Permissioned Ledger

- •A number of servers maintain the ledger LOG individually.
- •Each share the same genesis block that identifies all participants.
- •Assuming a synchronous operation, at each round, Readers and Writers authenticate with the servers and interact with the LOG in a prescribed fashion.

Distributed Permissioned Ledger, II

- Readers authenticate to each server and obtain Read access.
- ·Writers authenticate to each server and provide their inputs.
- Servers run a consensus protocol to agree what inputs should be included in the LOG.

Reader/Writer Management

- Readers and Writers can authenticate to each server referring to the information in the genesis block.
- It is possible to introduce additional readers and writers by suitably issuing certificates to other users.
- Note that each participant would then need to show a valid certificate chain that establishes her privileges for the specific read or write access that is requested.

Read Requests

- Is it possible to restrict read requests as in the centralized setting?
- Nodes can maintain blocks of transactions private and issue them only to users that are authenticated.
- •The TLS protocol can be used to build a secure channel between the reader and the responding node.
- Note that the above would require that all servers remain honest (as they all share the LOG).

"Classical" BFT Consensus

•Focus on write requests next. We want to ensure LOG liveness and consistency.

- We will build a "byzantine fault tolerant" (BFT) agreement protocol that uses two important tools:
 - a graded broadcast.
 - •a binary consensus protocol.

Graded Consensus

- •Parties involved : a single sender and several receivers.
 - •The i-th receiver outputs (Mi, Gi).
 - •The value *Gi* is in {0,1,2}.
 - If the sender is honest then *Mi=Mj* for all *i,j* and *Gi=2*.
 - •If the sender is malicious and one receiver outputs (M,2) then other honest receivers output (M,Gi) with Gi>=1.

- •Round 1. The sender sends the message *M* to all receivers.
- •Round 2. The *i*-th receiver obtains *M1i* from round 1 and sends it to all receivers.
- •Round 3. The *i*-th receiver obtains *M2ji* from the *j*-th receiver in round 2 and performs the following:
 - if there is a single message that was sent by 2n/3 receivers then send it to all receivers. Else send nothing.

Output Generation. The *i*-th receiver obtains *M3ji* from the *j*-th receiver in round 3.

If there is a single message that was sent by more than 2n/3 receivers output that message as Mi and set Gi=2.

If there is a single message that was sent by more than n/3 receivers output that message as *Mi* and set *Gi*=1.

In any other case output *fail* and *Gi*=0.

Analysis. Assume that malicious parties are t < n/3.

Observation #1

If the sender is honest, then each receiver will receive the same message >= 2n/3 times in round 2 and 3. All honest receivers will output *Gi*=2 and that message.

Observation #2. If two honest receivers send a message in round 3 it **must be** the *same*.

Proof. Indeed, if they send messages M M, they both have received them by at least 2n/3 receivers from round 2. Given this, observe that 2n/3-t > n/3 honest parties have sent M in round 2.

Thus < n-n/3 = 2n/3 parties are capable of sending M' (which is different than M), leading to a contradiction.

Observation #3

Suppose the *i*-th receiver returns Gi=2 and let Mi be the message it chooses. Consider the output of the *j*-th receiver (Mj, Gj)

The *i*-th receiver has received the message from at least *2n/3* receivers in round 3.

=> More than *n*/3 honest receivers have sent *M* in round 3. Thus it cannot be that *Mj*=0. But it may still be the case that *Mj* is not equal to *Mi*

In that case, we deduce that there is another message M' sent by more n/3 receivers in round 3, at least one of them is honest; this leads to a

From Graded Broadcast to a BFT-Ledger

A simplistic approach: execute n/3+1 phases to guarantee an honest sender will be encountered. In each phase perform:

- A designated sender organizes all valid transactions it collected as M and performs a graded broadcast.
- A binary consensus protocol determines whether everyone's grade is 2 or not. If that is true each node signs the output to generate a public endorsement and appends M on their LOG (together with the signatures). Otherwise LOG remains the same.

Byzantine Binary Consensus

(RECALL) n parties (1,2,...,n), t adversarial.

Let $v_i \in \{0,1\}$ be the input of party i.

Honest parties should *decide* on values $u_i \in \{0,1\}$ satisfying the following properties.

- **Agreement**: if parties i and j are honest, then $u_i = u_i$.
- Validity: if there exists $v \in \{0,1\}$ such that $v_i = v$ for each honest party i, then $u_i = v$ for each honest party i.
- **Termination**: values u_i are well defined for all honest parties.

Exponential Information Gathering Algorithm (EIG)

Algorithm Sketch.

- At round 1, send to everyone your input.
- At round r+1, send to everyone all messages you received at round r (avoiding redundant messages).

Each party arranges the messages in its own EIG tree.

- Let u₁,...,u_n be the messages received in the first round. (including itself)
- Subsequently, u_{xj} is the value received from j as the value u_y in j's tree.

Note: there need be no repetitions in the label of a node (e.g., x in u_x should contain distinct identifiers).

The value party 3 told me that party 2 send him in the previous round.

What is the size of the tree?

EIG Termination

The EIG algorithm terminates after t+1 rounds. The output value of each party is defined as follows.

- For each leaf v in the EIG tree, set $z_v = u_v$.
- For an internal node v, set z_v equal to the majority of the z-values of its children. If the majority is not defined, set $z_v = z_0$, for some default value z_0 .
- Define the output as z_{root}.

Impossibility results I

Theorem[LSP1982] Impossible for n<3t+1.

Theorem[FL1982] Impossible in t rounds.

Example The EIG algorithm with t=1 needs at least 2 rounds.

- 1. If a party received a single 1, its output should be 0. (Because the 1 could be coming from the adversary.)
- 2. If a party received two 1s, its output should be 0. (Because one of them could have been sent from the adversary, while another party received a single 1 and will decide on 0 according to the previous statement.)
- 3. And so on... (by induction, the output will always be 0, contradicting validity)

Theorem[GM1998] Doable for n>3t in t+1 rounds.

Impossibility results II

Theorem[BT1985] Asynchronous Byzantine Consensus is impossible with n<3t+1, even if the parties have agreed on a PKI.

Proof Partition parties into sets A, B, C of size at most t. Consider 3 scenarios.

- A. A malicious, B and C honest with inputs 0. The adversary sends no messages. The honest parties should decide on 0 until some time T_{Δ} .
- B. B malicious, A and C honest with inputs 1. The adversary sends no messages. The honest parties should decide on 1 until some time $T_{\rm g}$.
- C. C malicious, B and A honest with inputs 0 and 1 respectively. The adversary communicates with B as the honest C in scenario A and with A as the honest C in scenario B. At the same time every communication between A and B is delayed for time at least max $\{T_A, T_B\}$.

The crux is that A has the same view in scenarios B and C. Similarly for B, in scenarios A and C. Agreement in scenario C is impossible, if validity is achieved in scenarios A and B.

A blockchain related to proof-of-stake

Servers $S_1,...,S_n$ with shared verification keys $pk_1,...,pk_n$ and private signing keys $sk_1,...,sk_n$.

 B_0 : Genesis block containing the public info.

$$B_i = (k,d,sl,\sigma_{sl},\sigma_{block})$$
, where

k: hash of previous block

d: data

sl: slot number

 σ_{sl} : signature on sl by $S_{sl \mod n}$ σ_{sl} : signature on whole block by $S_{sl \mod n}$ At any step, each server, extends the longest known blockchain

Characteristic sequences and executions

The characteristic sequence of an execution with L slots 0,1,...,L-1 is a binary string w in $\{0,1\}^L$ such that $w_i=1$ iff $S_{i \mod n}$ is adversarial.

Example w = 000111000. Squares denote honest slots (including the genesis) and circles the adversarial ones. The adversary keeps the chain ending with slot 5 on top hidden so that S₆ extends the bottom chain. This results in a **fork**, two disjoint chains (except for the genesis block) of maximum length. The corresponding characteristic sequence w is called **forkable**.

Forkable sequences

Fact If weight(w)<length(w)/3, then w is not forkable.

Proof Let n=length(w) and t=weight(w) and assume w is forkable. The two chains must have length at least n-t (prove formally by induction). Thus, 2(n-t) is a lower bound on the sum of their lengths. On the other hand, the n-t honest parties have contributed at most n-t, while the adversarial parties have contributed at most 2t (because a given chain contains a slot at most once). Thus, (n-t)+2t is an upper bound on the sum of their lengths. We have

$$2(n-t) \le (n-t) + 2t \Longrightarrow n \le 3t$$
.

Consensus inspired from proof-of-stake [KR2018]

- Fix an arbitrary ordering of the servers: $S_1,...,S_n$.
- Construct a blockchain for 5t+2 rounds, recording your own input bit as data in any block you create.
- Upon termination output the majority of the first 2t+1 blocks of your chain.

Theorem If n > 3t, the protocol satisfies agreement and validity.

Proof [KR2018] It can be shown that the first 2t+1 blocks are common to all honest parties; this implies agreement. Validity follows from the fact that among the first 2t+1 at most t are adversarial and so the majority of them belong to honest parties.

Bitcoin Consensus

- Miners run the Bitcoin protocol recording their own input bit as data in any block they compute.
- When their chain has at least 2k blocks (for some security parameter k), the broadcast it and stop.
- Output is the majority of the bits recorded in the first k blocks.

Theorem [GKL15] If t<n/3, the above protocol satisfies Agreement and Validity with probability 1- $e^{-\Omega(k)}$.

Remark For Agreement, t<n/2 suffices.

Common-Prefix Property and Agreement

Common-Prefix Property For any pair of honest parties adopting the chains C_1 and C_2 at rounds C_1 and C_2 at rounds C_2 at rounds C_3 and C_4 respectively. If C_4 is a prefix of C_5 , where C_4 is C_4 without its last k blocks.

Common-Prefix Property implies Agreement. This is because the parties are pruning at least k blocks from their chains when keeping only their initial k blocks. Thus, the initial k blocks are common to all honest parties.

In [GKL2015] it is shown that in Bitcoin the Common-Prefix fails with probability exponentially small in k, if the adversary's hashing power is sufficiently bounded below $\frac{1}{2}$. It follows that Agreement is satisfied with probability 1-e^{- Ω (k)}, when t is sufficiently less than n/2.

Chain-Quality Property and Validity

Chain-Quality Property (informal) Among any sufficiently large number of consecutive blocks in an honest party's chain, a fraction of at least (n-2t)/(n-t) have been computed by honest parties.

Chain-Quality implies Validity, when t is sufficiently less than n/3. This is because, in that case, the majority of the first k blocks have been computed by honest parties. Thus, if all honest parties have input v, the majority of values recorded in the first k blocks will be v.

In [GKL2015] it is shown that in Bitcoin Chain-Quality fails with probability exponentially small in k, if the adversary's hashing power is sufficiently bounded below $\frac{1}{2}$. It follows that Validity is satisfied with probability 1-e^{- Ω (k)}, when t is sufficiently less than n/3.

References

- [BT1985] Bracha, Toueg. Asynchronous consensus and broadcast protocols.
- **[FL1982]** Fischer, Lynch. A lower bound on the time to assure interactive consistency.
- **[GKL2015]** Garay, Kiayias, Leonardos. The Bitcoin Backbone Protocol: Analysis and Applications.
- **[GM1998]** Garay, Moses. Fully polynomial Byzantine agreement for n>3t processors in t+1 rounds.
- **[KR2018]** Kiayias, Russell. Ouroboros-BFT. A simple Byzantine Fault Tolerant Consensus Protocol.
- [LSP1982] Lamport, Shostak, Pease. The Byzantine generals problem.