近世代数课后习题作业4

1. 设 G_1 和 G_2 是群G的两个真子群。证明: $G_1 \cup G_2$ 是G的子群的充分必要条件是 $G_1 \subseteq G_2$ 或 $G_2 \subseteq G_1$ 。

证明:

充分性 \leftarrow : 由 $G_1 \subseteq G_2$ 或 $G_2 \subseteq G_1 \Rightarrow G_1 \cup G_2 = G_1$ 或 $G_1 \cup G_2 = G_2$ 是G的子群。

必要性 \Rightarrow : 假设不成立,则由 $e \in G_1 \cap G_2$ 知:

至少 $\exists a \in G_1 \land a \notin G_2$, $\exists b \in G_2 \land b \notin G_1$ 。

由 $a \in G_1 \cup G_2$, $b \in G_1 \cup G_2$ 及 $G_1 \cup G_2$ 为子群得: $ab \in G_1 \cup G_2$,从而 $ab \in G_1$ 或 $ab \in G_2$ 。若 $ab \in G_1$,则由 $a^{-1} \in G_1$ 知 $a^{-1}(ab) \in G_1$ ⇒ $b \in G_1$ 矛盾;若 $ab \in G_2$,则 由 $b^{-1} \in G_2$ 知 $(ab)b^{-1} \in G_2$ ⇒ $a \in G_2$ 矛盾,故假设不成立。

2. 设 (G_1,\circ) 和 $(G_2,*)$ 都是群, $\varphi:G_1\to G_2$, φ 是满射且 $\forall a,b\in G_1$ 有:

 $\varphi(a,b) = \varphi(a) * \varphi(b)$

证明: $\varphi^{-1}(e_2)$ 是 G_1 的子群,其中 e_2 为 G_2 的单位元素。

$$//\varphi^{-1}(e_2) = \{x | x \in G_1 \land \varphi(x) = e_2\}$$

证明: 记 $S = \varphi^{-1}(e_2)$, 则 $S = \{x | \varphi(x) = e_2, x \in G_1\}$, 显然 $S \subseteq G_1$

- 1) S 非空: 对 $\forall y \in G_2$, 由 φ 为满射,则 $\exists x \in G_1$,使得 $y = \varphi(x)$,从而 $\varphi(e_1) * y = \varphi(e_1) * \varphi(x) = \varphi(e_1 \circ x) = \varphi(x) = y$,同理有 $y * \varphi(e_1) = \varphi(x) = y$,即有: $\varphi(e_1) * y = y * \varphi(e_1) = y$,从而 $\varphi(e_1) = e_2$,故有 $e_1 \in S$ 。
- 2) 封闭性: 对 $\forall x, t \in S$,有 $\varphi(x) = e_2$, $\varphi(t) = e_2$, 则 $\varphi(x \circ t) = \varphi(x) * \varphi(t) = e_2$, 所以 $x \circ t \in S$ 。
- 3) 结合律: 显然。
- 4)单位元: $e_1 \in S$ 。
- 5) 逆元: 对 $\forall x \in S$, 有 $\varphi(x) = e_2$, 则: $e_2 = \varphi(e_1) = \varphi(x \circ x^{-1}) = \varphi(x) * \varphi(x^{-1})$

 $=e_2*\varphi(x^{-1})=\varphi(x^{-1})\,, \ \ \mathbb{P}\,\varphi(x^{-1})=e_2\,, \ \ \mathbb{H}\, \mathbb{U}\, x^{-1}\in S\,\, .$

3. 设(Z,+) 为整数的加法群,令 S_1 = {3,5}, S_2 = {8,12},请分别给出(S_1) 与(S_2)。 //需要给出生成过程,或给出生成结果的由来。不能直接给出结果。

解:
$$(S_1) = Z$$
, $(S_2) = \{4k | k \in Z\}$

4. 设 R 是全体实数之集, $G = \{f | f : R \to R, f(x) = ax + b, \forall x \in R, a \neq 0, b \in R\}$ 。试证: G 是一个变换群。

证明: 显然对 $\forall f \in G$, f 为双射。

1) 封闭性: 对 $\forall f,g \in G$, 设f(x) = ax + b, g(x) = cx + d, $a \neq 0, c \neq 0$,

則 $f \circ g(x) = f(g(x)) = f(cx+d) = a(cx+d) + b = (ac)x + ad + b$,所以 $f \circ g \in G$

- 2) 结合律: 映射的复合运算满足结合律。
- 3) 单位元: $I_{e}(x) = x$
- 4) 逆元: 显然对 $\forall f \in G$,由 f 为双射,故 f 可逆,且 $f^{-1}(x) = \frac{1}{a}x \frac{b}{a}$,则 $f^{-1} \in G$ 。
- 5. 设 R^+ 是一切正实数之集, R 为一切实数之集。 (R^+, \times) , (R, +) 是群。令 $\varphi: R^+ \to R$, $\forall x \in R^+$, $\varphi(x) = \log_p x$, 其中 P 是正数。证明: φ 是同构。证明:
- 1) 由 φ 的构造知 φ 为双射。
- 2) 同构方程: 对 $\forall x, y \in R^+$, $\varphi(x \times y) = \log_p(x \times y) = \log_p x + \log_p y = \varphi(x) + \varphi(y)$ 。