83/100

***************************************	(a) The fissile isotope in U3 Sis is 235 U
	The enrichment in Natural form is 0.7% 235U
	-2, 28/30
	(b) Q = E + N + O + O + D + n + S = 3MU + Q = 0.03
U3512	C from HWI
	$6 = 11.31 \text{ g/m}^2$
	δυ = fw 8 = 0.9274 (11.3/g/cm²) = 10.489 g/cm²
	δυ/Mu = 10,489 = 0,04407
	Nu = NA (Su/Mu) = 6.022x1023 (0.04407)
	No = 2.654 ×1022 atoms /cm3
	Nuzzs = QNu = 0.03 (2.654 (x1022 atms (cm)) -> Nuzzs = 7.962 x1020 atms/cm2
· · · · · · · · · · · · · · · · · · ·	of = 5,50 kio 21 (M2 , Ef = 3.0 x10 - " J/finim
	Quessiz = Es No De gan = 420,41 W/cm3
Uzsis;	Now working backwards = 1/15 = 7.962 x1020 atoms (m3)
ī	NF= 9 Nu -> 9 = NF/Nu , Ms; = 28.0855 (from HWI)
	Muzss = 3 Mu + 5Ms; = 3(238) + 5(28,0855)
	Muzsis = 854.4275 g/mi
•	

1	Continued
	fw = 3Mu = 3(238) = 0.8356
	δ ₀ =7.5 g of U/(M³ → δυ/My = 7.5/238 = 0.0315
	Nu = NA (80/Mu) = 6.022 x1023 (0.0315)
	Nu = 1.897) X1022 atoms (m3 -> need Nf (V3Sis) = Nf (V3Siz)
	q = No (U35:5) = (7,962 x10 atoms/cm) / (1,8977 x102 atoms/cm)
	$q = 0.0419 \rightarrow q = 4.2\%$ -2, math error
(c)	Us Sis seems like a poor fuel choice to me when compared to Us Siz for several reasons; [12.5 W/m.k. (1 / 100cm) = 0.125 W/m.k. (0.23 W/m.k.) K for Us Siz it has a smaller thornal conductivity. It requires a higher prichment in order to produce
	the same power per unit volume
,	
v	
,	

-3, 32/35

(a)	LHR = 250 W/CM, Trool = 580 K, toad = 0.6mm, Ke = 0.17 W/cm.k y = 0.05, hool = 2.5 W/(em ² ·k), toap = 80 mm, Rf = 4.5mm
	Teo = 27 Representation = 250 W/cm (2.5 W/cm.k) + 580 k = (615.37 k)
	Tic = Tico + LHRte = (250) (0.06 cm) + 615.37K = (646.57K)
-	Kgap = KHe Kxe, KHe = 16×10-6 Tic = 0.00266
	Kxe = 0.7 x10-6 Tu = 1.163 x10-4
	Kgap = KHe Kxe = 0.002273 -> hgap = Kgap = 0.28411
	Ts = LHR + TIC = 220(045)(0,2841) + 646,5710
,	-> Ts = 957.8 K (a)
(6)	The largest steers occurs at the outer surface in the Doo direction
(K=0.2 W/mak)	$\mathcal{T} = \{ R_f = R_f R_f = 1 \}$
in votel)	To- Ti = LHR = 250 = 99.47K
-	$0^* = \frac{\sqrt{E(1-1)}}{4(1-1)} = 61,349 \text{ Mpg}$
	$\sigma_{00} = -\sigma^*(1-37^2) = -0.61675(1-3(11))$
	Oco = 122.70 MPa

	e would be larger than the stress in the uranium nitrate in this -3. The stress is larger but primarily due to the much lower thermal conductivity in UO2 leading to a high
2	o, the suess is larger but primarily due to the mach lower thermal conductivity in OCZ leading to a migr
(d)	In (a) and (b) the following assumptions were made:
	· O constant K (independent of T)
	(2) Steady state
	(2) Steady state (3) axis- symmetry
	4) Temp. does not change in 2
	(5) Constant E (Independent of T)
	*
-	

3

(9) Assumptions, Og static body (2) The effects of gravity are negligible
(3) Axis - Symmetry (4) isotropic Material response

-3, Stress is constant through the thickness

(b)
$$\bar{\sigma}_0 = \frac{\rho R}{8} = \frac{(6 \times 10^6 \text{ Pa})}{0.6 \text{ mm}} = \frac{1}{8} = \frac{1}$$

$$\bar{O}_{2} = \frac{\rho R}{28} = \frac{1}{2} \left(\frac{\rho R}{8} \right) = \frac{1}{2} \bar{O}_{0} = \frac{1}{2} \left(\frac{56 M Pa}{8} \right) \rightarrow \bar{O}_{2} = \frac{28 M Pa}{2}$$

$$\bar{\mathcal{O}}_r = -\frac{1}{2}\rho = -\frac{1}{2}(6MP_a) \rightarrow \bar{\mathcal{O}}_r = -3MP_a$$

(1) The thin-walled approximation overestimates To and To. Since To is the largest stress in the cladding the thin walled approximation is a conservative estimate for cladding failure.

While To is underestimated for about half the range, it is the smallest stress in the cladding so it is of the least concern.

-10, Calculate stress at two radii using thick wall equations and compare to see if they are equal

(d)
$$\epsilon_{rr} = \frac{1}{\epsilon} \left(\sigma_{rr} - V \left(\sigma_{\sigma\sigma} + \sigma_{zz} \right) \right) = \left[-5.349 \times 10^{-4} = \epsilon_{rr} \right]$$

$$\begin{bmatrix}
 56 & 0 & 0 \\
 \hline
 0 & 28 & 0 & MPq \\
 \hline
 0 & 0 & -3
 \end{bmatrix}$$

$$E = \begin{bmatrix} 65.34 & 0 & 0 \\ 0 & 8.957 & 0 \\ 0 & 0 & -53.49 \end{bmatrix} \times 10^{-5}$$