

Sep 08, 2020

♠ Aegea Biotechnologies rapid PCR SARS-CoV-2 test (high sensitivity & specificity; able to detect different strain types)

Lyle J. Arnold Ph.D., Stella M. Sung Ph.D.¹

¹Aegea Biotechnologies, Inc.

In Development dx.doi.org/10.17504/protocols.io.bk2dkya6

ABSTRACT

This protocol is for the Aegea Biotechnologies rapid PCR-based SARS-CoV-2 test. This assay uses patented "Switch-Blocker" technology as well as taqman probes to test for presence of SARS-CoV-2 and simultaneously orthogonally validate. A single amplification reaction is performed, and "Switch Blocker" is used on the forward strand and taqman is used on the reverse strand. The assay design has high sensitivity & specificity—single nucleotide level. Moreover, it is able to detect the SARS-CoV-2 L strain vs the SARS-CoV-2 S strain. The test can be adapted to point of care (Roche LIAT) as well as for different SARS-CoV-2 strains as the virus mutates. A next generation version of the assay could identify the presence of the SARS-CoV-2 L/S strains vs. influenza A/B. Finally, because of the sensitivity and specificity, the Aegea PCR-based SARS-CoV-2 test should be able to use saliva samples, and it is suitable for pooled testing. This protocol is designed for high throughput PCR (96 or 384 well plate formats).

Keywords: PCR, COVID-19, coronavirus, SARS-CoV-2, high throughput, multiplex, Switch-Blocker, taqman, high sensitivity, high specificity, accurate, pooling, saliva, strain types, L-strain, S-strain, combination SARS-CoV-2 and influenza

EXTERNAL LINK

http://www.aegeabiotech.com

DOI

dx.doi.org/10.17504/protocols.io.bk2dkya6

PROTOCOL CITATION

Lyle J. Arnold Ph.D., Stella M. Sung Ph.D. 2020. Aegea Biotechnologies rapid PCR SARS-CoV-2 test (high sensitivity & specificity; able to detect different strain types). **protocols.io** https://dx.doi.org/10.17504/protocols.io.bk2dkya6

EXTERNAL LINK

http://www.aegeabiotech.com

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Sep 08, 2020

LAST MODIFIED

Sep 08, 2020

PROTOCOL INTEGER ID

mprotocols.io

09/08/2020

Citation: Lyle J. Arnold Ph.D., Stella M. Sung Ph.D. (09/08/2020). Aegea Biotechnologies rapid PCR SARS-CoV-2 test (high sensitivity & specificity; able to detect different strain types). https://dx.doi.org/10.17504/protocols.io.bk2dkya6

STEPS MATERIALS

NAME	CATALOG #	VENDOR
RNAseP_FP1	RNAseP_FP1	
AEGEA 1001B_Taq	AEGEA 1001B_Taq	
AEGEA 1001RP	AEGEA 1001RP	
AEGEA_1003AF_Taq	AEGEA_1003AF_Taq	
RNAseP_RP1	RNAseP_RP1	
TaqPath™ 1-Step RT-qPCR Master Mix	A15300	
AEGEA 1001B_Switch-Blocker	AEGEA 1001B	
AEGEA 1002B_Taq	AEGEA 1002B_Taq	
AEGEA 1001cFP	AEGEA 1001cFP	
Nuclease-free Water	AM9937	
gblock L-type	gblock L-type	
gblock S-type	gblock S-type	
EQUIPMENT		
NAME	CATALOG #	VENDOR
QuantStudio 5	A34322	

DISCLAIMER:

DISCLAIMER - FOR INFORMATIONAL PURPOSES ONLY; USE AT YOUR OWN RISK

The protocol content here is for informational purposes only and does not constitute legal, medical, clinical, or safety advice, or otherwise; content added to <u>protocols.io</u> is not peer reviewed and may not have undergone a formal approval of any kind. Information presented in this protocol should not substitute for independent professional judgment, advice, diagnosis, or treatment. Any action you take or refrain from taking using or relying upon the information presented here is strictly at your own risk. You agree that neither the Company nor any of the authors, contributors, administrators, or anyone else associated with <u>protocols.io</u>, can be held responsible for your use of the information contained in or linked to this protocol or any of our Sites/Apps and Services.

1 Prepare Reaction Mix

10ul of the isolated total RNA will be used in a 20ul reaction with TaqPath™ 1-Step RT-qPCR Master Mix (5ul TaqPath Mastermix and 5ul of an oligo mix containing

- a. 0.5uM AEGEASwitch-Blocker (FAM),
- b. 0.5uM AEGEA COVID Forward Primer C,
- c. 2uM AEGEA COVID Reverse Primer,
- d. 0.8uM AEGEA L-Strain Probe (VIC),
- e. 0.8uM AEGEA S-Strain Probe (NED),
- f. 0.5uM AEGEARNaseP Forward Primer
- g. 0.5 uM AEGEA RNaseP Reverse Primer
- h .0.8uM AEGEA RNaseP Probe Alexa 647

Table:Reaction components and final concentrations

Component	Final Conc.
Nuclease	
Free H20	
TaqPath™	
1-Step RT-qPCR Master Mix (4x)	
AEGEA Switch-Blocker(FAM)	0.5 uM
AEGEA COVID	0.5 uM
Forward Primer	
AEGEA COVID	2 uM
Reverse Primer	
AEGEA	0.5 uM
RNaseP Forward Primer	
AEGEA	0.5 uM
RNaseP Reverse Primer	
AEGEA	0.8 uM
RNaseP Probe Alexa 647)	
AEGEA COVID	0.8 uM
L-Strain Probe (VIC)	
AEGEA COVID	0.8 uM
S-Strain Probe (NED)	
RNAseP	Variable
Template	Variable
(RNA-L/RNA-S)	

2 10ul nuclease free water (NTC) or 10ul (combined) gBlock control L/S (5 uL gBlock control L; 5uL gBlock control S) will be run in parallel as negative and positive controls respectively.

□10 μl

⊒5 μl

3 The oligo mix also contains reagents for an internal adequacy control which targets the human RNAseP RNA transcript.

Table:qPCR Cycling Condition

Cycle Step	Temperature 0C	Time	Cycles	
Step 1	25°C	2 min	1x	
RT Reaction	50°C	15 min	1x	
Initial Polymerase	95°C	2 min	1x	
Activation and DNA				
Denaturation				
Denaturation	95°C	3 sec	45 X	
Annealing	65°C	10 sec		
Annealing	52 0C	10 sec	Detection	
Extension	58 0C	1 min		
Melt Curve 95°C 40°C 95°C	95°C	15 sec	1x	
	15 sec	1x	Detection	
			During Ramp From 40	
				0C to 95 0C
	95°C	1 sec	1x	