An Introduction to Data Visualization for Meta-Analyses with tidymeta

Malcolm Barrett
2018-04-22

tidymeta requires the development version of several packages, including ggplot2, to function correctly. You can install the required packages for this vignette with the following code:

```
install.packages(c("devtools", "yaml", "ggrepel"))
library(devtools)
install_github("r-lib/rlang")
install_github("malcolmbarrett/tidymeta")
install_github("malcolmbarrett/mbmisc")
install_github("tidyverse/ggplot2")
```

Tidy Meta-Analysis

tidymeta is a toolkit for working with meta-analyses in R. It includes a data set, called iud_cxca, for a meta-analysis of the relationship between IUD use and cervical cancer.

iud_cxca

```
## # A tibble: 16 x 26
                                                     u95
##
      study_id study_name
                              author
                                               195
                                                             lnes
                                                                   ln195
                                                                            lnu95
##
         <int> <chr>
                                             <dbl> <dbl>
                                                            <dbl>
                                                                   <dbl>
                                                                            <dbl>
                              <chr>
                                      <dbl>
##
    1
             1 Roura, 2016
                              Roura
                                     0.600 0.300
                                                   1.20
                                                         -0.511
                                                                  -1.20
                                                                          0.182
##
    2
                                                         -0.223
                                                                  -0.693
             2 Lassise, 1991 Lassi~ 0.800 0.500
                                                   1.20
                                                                          0.182
##
    3
             3 Li, 2000
                                      0.890 0.730
                                                   1.08
                                                         -0.117
                                                                  -0.315
                                                                          0.0770
##
    4
             4 Shields, 2004 Shiel~ 0.500 0.300
                                                   0.820 -0.693
                                                                  -1.20
                                                                         -0.198
    5
             5 Castellsague~ Caste~ 0.630 0.380
                                                   1.06
                                                         -0.462
                                                                  -0.968
##
                                                                          0.0583
    6
                                                   0.670 - 0.799
                                                                  -1.20
##
             6 Castellsague~ Caste~ 0.450 0.300
                                                                         -0.400
##
    7
             7 Brinton, 1990 Brint~ 0.690 0.500
                                                   0.900 - 0.371
                                                                  -0.693 -0.105
##
    8
             8 Parazzini, 1~ Paraz~ 0.600 0.300
                                                   1.10
                                                         -0.511
                                                                  -1.20
                                                                          0.0953
             9 Williams, 19~ Willi~ 1.00
##
    9
                                           0.600
                                                   1.60
                                                                  -0.511
                                                                          0.470
                                                   0.500 - 1.20
                                                                  -2.30
## 10
            10 Hammouda, 20~ Hammo~ 0.300 0.100
                                                                         -0.693
                                                           0.0770 - 0.994
## 11
            11 Castellsague~ Caste~ 1.08 0.370
                                                   3.20
            12 Castellsague~ Caste~ 0.340 0.0500 2.56
                                                         -1.08
                                                                  -3.00
## 12
                                                                          0.940
## 13
            13 Castellsague~ Caste~ 0.870 0.340
                                                   2.23
                                                         -0.139
                                                                  -1.08
                                                                          0.802
##
  14
            14 Castellsague~ Caste~ 0.490 0.190
                                                   1.23
                                                         -0.713
                                                                  -1.66
                                                                          0.207
##
  15
            15 Castellsague~ Caste~ 0.240 0.0900 0.660 -1.43
                                                                  -2.41
                                                                         -0.416
##
            16 Celentano, 1~ Celen~ 0.500 0.170 1.47 -0.693
                                                                 -1.77
                                                                          0.385
     ... with 17 more variables: selnes <dbl>, group <fct>, case_num <dbl>,
##
       control_num <dbl>, start_recruit <dbl>, stop_recruit <dbl>,
## #
       pub_year <dbl>, numpap <dbl>, ses <dbl>, gravidity <dbl>,
## #
       lifetimepart <dbl>, coitarche <dbl>, hpvstatus <dbl>, smoking <dbl>,
       location <chr>, aair <dbl>, hpvrate <dbl>
```

tidymeta includes broom methods for cleaning meta-analysis results, although it currently only supports the metafor package. The tidy() function in broom puts results into a tidy data frame: one observation per row and one variable per column.

```
library(metafor)
meta4 <- rma(yi = lnes, sei = selnes, data = iud_cxca)
tidy(meta4) %>%
   as_tibble() # for space
```

```
## # A tibble: 17 x 8
##
                       estimate std.error statistic p.value conf.low conf.high
      study
               type
                                                          <dbl>
##
      <chr>
               <chr>
                          <dbl>
                                     <dbl>
                                                <dbl>
                                                                    <dbl>
                                                                               <dbl>
    1 1
##
                        -0.511
                                    0.354
                                               -1.44
                                                                   -1.20
                                                                              0.182
               study
                                                      NA
    2 2
##
               study
                        -0.223
                                    0.223
                                               -0.999 NA
                                                                   -0.661
                                                                              0.215
##
    3 3
               study
                        -0.117
                                    0.0999
                                               -1.17
                                                       NA
                                                                   -0.312
                                                                              0.0793
##
    4 4
                        -0.693
                                    0.257
                                               -2.70
                                                                   -1.20
                                                                             -0.190
               study
                                                       NA
##
    5 5
                        -0.462
                                               -1.77
               study
                                    0.262
                                                       NA
                                                                   -0.975
                                                                              0.0509
                                                                   -1.20
##
    6 6
                        -0.799
                                    0.205
                                               -3.90
                                                                             -0.397
               study
                                                       NA
   7 7
##
                        -0.371
                                               -2.47
                                                       NA
                                                                   -0.665
               study
                                    0.150
                                                                             -0.0772
##
    8 8
               study
                        -0.511
                                    0.331
                                               -1.54
                                                       NA
                                                                   -1.16
                                                                              0.139
##
    9 9
                                    0.250
                                                0.
                                                       NA
                                                                   -0.490
                                                                              0.490
               study
                         0.
## 10 10
               study
                        -1.20
                                    0.411
                                               -2.93
                                                       NA
                                                                   -2.01
                                                                             -0.399
## 11 11
                         0.0770
                                                                   -1.00
               study
                                    0.550
                                                0.140 NA
                                                                              1.16
## 12 12
               study
                        -1.08
                                    1.00
                                               -1.07
                                                       NA
                                                                   -3.05
                                                                              0.889
## 13 13
               study
                        -0.139
                                    0.480
                                               -0.290 NA
                                                                   -1.08
                                                                              0.801
## 14 14
               study
                        -0.713
                                    0.476
                                               -1.50
                                                       NA
                                                                   -1.65
                                                                              0.221
## 15 15
                        -1.43
                                               -2.81
                                                       NA
               study
                                    0.508
                                                                   -2.42
                                                                             -0.431
## 16 16
                        -0.693
                                    0.550
                                               -1.26
                                                                   -1.77
                                                                              0.385
               study
                                                       NΑ
## 17 Overall summa~
                        -0.449
                                    0.0941
                                               -4.77
                                                        1.83e-6
                                                                   -0.634
                                                                             -0.265
```

tidymeta also includes wrapper functions for working with meta-analysis packages in the context of the tidyverse. The main function for this is meta_analysis(), which models and tidies the object, as well as storing the results in the meta column to facilitate other analysis.

```
# same as above but stores the meta-analysis object
iud_cxca %>%
meta_analysis(yi = lnes, sei = selnes, slab = study_name)
```

```
## # A tibble: 17 x 10
##
      study
                type
                      estimate std.error statistic
                                                      p.value conf.low conf.high
##
      <chr>
                <chr>>
                          <dbl>
                                    <dbl>
                                               <dbl>
                                                         <dbl>
                                                                  <dbl>
                                                                             <dbl>
##
    1 Roura, ~ study
                       -0.511
                                   0.354
                                              -1.44
                                                     NA
                                                                 -1.20
                                                                            0.182
    2 Lassise~ study
                       -0.223
                                   0.223
                                              -0.999 NA
                                                                 -0.661
                                                                            0.215
                       -0.117
##
    3 Li, 2000 study
                                   0.0999
                                              -1.17
                                                     NA
                                                                 -0.312
                                                                            0.0793
##
    4 Shields~ study
                       -0.693
                                   0.257
                                              -2.70
                                                     NA
                                                                 -1.20
                                                                           -0.190
##
    5 Castell~ study
                       -0.462
                                   0.262
                                              -1.77
                                                     NA
                                                                 -0.975
                                                                            0.0509
                                              -3.90
                                                                 -1.20
                                                                           -0.397
##
    6 Castell~ study
                       -0.799
                                   0.205
                                                     NA
    7 Brinton~ study
                       -0.371
                                   0.150
                                              -2.47
                                                     NA
                                                                 -0.665
                                                                           -0.0772
##
    8 Parazzi~ study
                       -0.511
                                   0.331
                                              -1.54
                                                     NA
                                                                 -1.16
                                                                            0.139
    9 William~ study
                                   0.250
                                                                 -0.490
                                                                            0.490
                        0.
                                               0.
                                                     NA
## 10 Hammoud~ study
                       -1.20
                                              -2.93
                                                                 -2.01
                                                                           -0.399
                                   0.411
                                                     NA
## 11 Castell~ study
                        0.0770
                                   0.550
                                               0.140 NA
                                                                 -1.00
                                                                            1.16
## 12 Castell~ study
                       -1.08
                                   1.00
                                              -1.07
                                                     NA
                                                                 -3.05
                                                                            0.889
                                              -0.290 NA
                                                                 -1.08
                                                                            0.801
## 13 Castell~ study
                       -0.139
                                   0.480
## 14 Castell~ study
                       -0.713
                                   0.476
                                              -1.50
                                                     NA
                                                                 -1.65
                                                                            0.221
                                                                 -2.42
## 15 Castell~ study
                       -1.43
                                   0.508
                                              -2.81
                                                     NA
                                                                           -0.431
                       -0.693
                                              -1.26
## 16 Celenta~ study
                                   0.550
                                                     NA
                                                                 -1.77
                                                                            0.385
## 17 Overall summ~
                       -0.449
                                   0.0941
                                              -4.77
                                                      1.83e-6
                                                                 -0.634
                                                                           -0.265
## # ... with 2 more variables: meta <list>, weight <dbl>
```

The benefit of this approach is that you can do meta-analyses with tidy tools in mind. For example, if I want to conduct a sub-group analysis, I can use the group_by() function from dplyr. Here, I'm grouping by group, a variable with information about study design.

```
ma <- iud cxca %>%
  group_by(group) %>%
  meta_analysis(yi = lnes, sei = selnes, slab = study_name, exponentiate = TRUE)
  # A tibble: 21 x 11
##
               study
                               estimate std.error statistic p.value conf.low
      group
                         type
                                             <dbl>
                                                       <dbl>
                                                                <dbl>
##
      <fct>
               <chr>>
                         <chr>>
                                  <dbl>
                                                                         <dbl>
##
  1 Nested ~ Roura, 2~ study
                                  0.600
                                           0.354
                                                      -1.44 NA
                                                                         0.300
  2 Nested ~ Subgroup~ summ~
                                  0.600
                                                                         0.300
                                           0.354
                                                      -1.44
                                                              0.149
   3 Populat~ Lassise,~ study
                                  0.800
                                           0.223
                                                      -0.999 NA
                                                                         0.516
   4 Populat~ Li, 2000 study
                                  0.890
##
                                           0.0999
                                                      -1.17 NA
                                                                         0.732
##
  5 Populat~ Shields,~ study
                                  0.500
                                           0.257
                                                      -2.70 NA
                                                                         0.302
  6 Populat~ Castells~ study
                                  0.630
                                           0.262
                                                      -1.77
                                                             NA
                                                                         0.377
##
  7 Populat~ Castells~ study
                                  0.450
                                           0.205
                                                      -3.90
                                                             NA
                                                                         0.301
  8 Populat~ Subgroup~ summ~
                                  0.655
                                           0.146
                                                      -2.90
                                                              0.00374
                                                                         0.492
## 9 Clinic-~ Brinton,~ study
                                  0.690
                                                      -2.47 NA
                                           0.150
                                                                         0.514
## 10 Clinic-~ Parazzin~ study
                                  0.600
                                           0.331
                                                      -1.54 NA
                                                                         0.313
## # ... with 11 more rows, and 3 more variables: conf.high <dbl>,
       meta <list>, weight <dbl>
```

You can also do sensitivy analyses and cumulative analyses with sensitivity() and cumulative().

Visualization for Meta-Analysis

tidymeta includes functionality for working with results in ggplot2, including meta-analysis specific geoms (such as geom_funnel()) and quick plots for common visualizations.

Forest plots

With tidy data, most data visualizations for meta-analyses are easy to build from the ground up. Nevertheless, tidymeta has several quick plot functions to make the process easier. forest_plot() takes a tidied meta-analysis and plots the effect sizes.

```
fp <- ma %>%
  forest_plot(group = group)
fp
```


Because the results are still ggplot2 objects, it's easy to make changes to the plot to your liking.

```
fp <- fp +
    scale_x_log() +
    theme(axis.text.y = element_text(face = c("bold", rep("plain", 21))))
fp</pre>
```


For better or worse, meta-analyses often have forest plots that include a lot of text about the studies in the form of a table. text_table() makes it easy to create a plot of text. text_table() quickly plots tables of text. Here, we'll format the OR and CI for the estimates using the est_ci() function from the mbmisc package.

```
library(mbmisc)
ma %>%
  mutate(est_95ci = est_ci(estimate, conf.low, conf.high, descriptor = "")) %>%
  text_table(group = group, "OR (95% CI)" = est_95ci)
```

		OR (95% CI)
Roura, 2016 Subgroup: Nested in cohort	Nested in cohort	0.60 (0.30, 1.20) 0.60 (0.30, 1.20)
Lassise, 1991 Li, 2000 Shields, 2004 Castellsague, 2011 (Spain) Castellsague, 2011 (Colombia) Subgroup: Population–based	Population-based	0.80 (0.52, 1.24) 0.89 (0.73, 1.08) 0.50 (0.30, 0.83) 0.63 (0.38, 1.05) 0.45 (0.30, 0.67) 0.65 (0.49, 0.87)
Brinton, 1990 Parazzini, 1992 Williams, 1994 Hammouda, 2005 Castellsague, 2011 (Morocco) Castellsague, 2011 (India) Castellsague, 2011 (Thailand) Castellsague, 2011 (Philippines) Castellsague, 2011 (Peru) Subgroup: Clinic-based	Clinic-based	0.69 (0.51, 0.93) 0.60 (0.31, 1.15) 1.00 (0.61, 1.63) 0.30 (0.13, 0.67) 1.08 (0.37, 3.18) 0.34 (0.05, 2.43) 0.87 (0.34, 2.23) 0.49 (0.19, 1.25) 0.24 (0.09, 0.65) 0.62 (0.45, 0.84)
Celentano, 1987 Subgroup: Friend/Family	Friend/Family	0.50 (0.17, 1.47) 0.50 (0.17, 1.47)
Overall	Summary	0.64 (0.53, 0.77)

Since we already have some of this information in the forest plot, we'll remove the y-axis and group labels. Then, we can use the patchwork package to combine the two easily.

```
library(patchwork)
txttbl <- ma %>%
  mutate(est_95ci = est_ci(estimate, conf.low, conf.high, descriptor = "")) %>%
  text_table(group = group, "OR (95% CI)" = est_95ci, show_y_facets = FALSE, show_y_axis = FALSE)
fp + txttbl
```


Funnel plots

Other plots work just as easily. Although we can use the <code>geom_funnel()</code> function manually, a funnel plot can be made just as easily with <code>funnel_plot()</code>. Note that because this is an odds ratio, we need to treat to transform the funnel lines with <code>log summary = TRUE</code>.

```
ma %>%
funnel_plot(log_summary = TRUE, col = group, shape = group, size = 3)
```



```
library(ggrepel)
ma %>%
  mutate(se_label = ifelse(std.error > 1, study, "")) %>%
  funnel_plot(log_summary = TRUE, col = group, shape = group, size = 3) +
  geom_label_repel(aes(label = se_label), col = "black")
```


Influence plots

You can use sensitvity() to assess the effect of leaving a study out in the summary estimate (the default) or comparing groups (by using group_by() first). You can plot the results with influence_plot().

```
ma %>%
sensitivity(exponentiate = TRUE) %>%
influence_plot()
```


Cumulative plots

A different way to approach sensitivy analysis is to order the studies in a given way and assess the cumulative effect on the summary estimate. For instance, let's order the analysis by study weight using arrange() from dplyr:

```
ma %>%
arrange(desc(weight)) %>%
cumulative(exponentiate = TRUE) %>%
cumulative_plot(sum_lines = FALSE)
```

