In this problem we establish the real Jordan form. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be linear. The *complexification* of T is defined as $T_{\mathbb{C}}: \mathbb{C}^n \to \mathbb{C}^n$ by

$$T_{\mathbb{C}}(v+iw) = T(v) + iT(w)$$
.

1. Show that $T_{\mathbb{C}}$ is a linear transformation on \mathbb{C}^n . If $\lambda \in \mathbb{C}$ is one of its eigenvalues and \hat{E}_{λ} is the corresponding generalized eigenspace, show that $\mathfrak{c}(\hat{E}_{\lambda}) = \hat{E}_{\overline{\lambda}}$. (Here \mathfrak{c} is the complex conjugation map from last problem.)

Solution. If $v \in \mathbb{C}^n$ we can write it as u + iw for $u, w \in \mathbb{R}^n$. Then if z = x + iy is a complex scalar,

$$z(u+iw) = (x+iy)(u+iw) = xu - yw + i(yu + xw)$$
.

Therefore if $v_1, v_2 \in \mathbb{C}^n$, written as $v_1 = u_1 + iw_1$ and $v_2 = u_2 + iw_2$, then

$$T_{\mathbb{C}}(zv_1 + v_2) = T_{\mathbb{C}}(xu_1 - yw_1 + u_2 + i(yu_1 + xw_1 + w_2))$$

$$= T(xu_1 - yw_1 + u_2) + iT(yu_1 + xw_1 + w_2)$$

$$= [xT(u_1) - yT(w_1) + i(yT(u_1) - xT(w_1))] + [T(u_2) + iT(w_2)]$$

$$= (x + iy)(T(u_1) + iT(w_1)) + T(u_2) + iT(w_2)$$

$$= (x + iy)T_{\mathbb{C}}(u_1 + iw_1) + T_{\mathbb{C}}(u_2 + iw_2).$$

This means $T_{\mathbb{C}}$ is linear.

Next let λ be an eigenvalue of $T_{\mathbb{C}}$ and v = u + iw be in the generalized eigenspace for $T_{\mathbb{C}}$ corresponding to eigenvalue λ . Then note that

$$T_{\mathbb{C}}(\mathfrak{c}(v)) = T_{\mathbb{C}}(u+i(-w)) = T(u) + iT(-w) = T(u) - iT(w) = \mathfrak{c}(T_{\mathbb{C}}(v)) \ .$$

Therefore for any $m \geq 1$, $T_{\mathbb{C}}^m(\mathfrak{c}(v)) = \mathfrak{c}(T_{\mathbb{C}}^m(v))$. Now since v is a generalized eigenvector for eigenvalue λ , there exists $k \geq 1$ such that $(T_{\mathbb{C}} - \lambda I)^k(v) = \vec{0}$. Write $(T_{\mathbb{C}} - \lambda I)^k = a_k T_{\mathbb{C}}^k + \cdots + a_0 I$ so that

$$\vec{0} = (T_{\mathbb{C}} - \lambda I)^{k}(v) = (T_{\mathbb{C}} - \lambda I)^{k}(\mathfrak{c}(\mathfrak{c}(v)))$$

$$= a_{k} T_{\mathbb{C}}^{k}(\mathfrak{c}(\mathfrak{c}(v))) + \dots + a_{0} I(\mathfrak{c}(\mathfrak{c}(v)))$$

$$= \mathfrak{c} \left(\overline{a_{k}} T_{\mathbb{C}}^{k}(\mathfrak{c}(v)) + \dots + \overline{a_{0}} I(\mathfrak{c}(v)) \right)$$

$$= \mathfrak{c} \left((T_{\mathbb{C}} - \overline{\lambda} I)^{k}(\mathfrak{c}(v)) \right) .$$

However \mathfrak{c} is injective, so we find that $\mathfrak{c}(v)$ is a generalized eigenvector for eigenvalue $\overline{\lambda}$. This means

$$\mathfrak{c}(\hat{E}_{\lambda}) \subset \hat{E}_{\overline{\lambda}}$$
.

Repeating the argument with $\overline{\lambda}$ in place of λ gives

$$\mathfrak{c}(\hat{E}_{\overline{\lambda}}) \subset \hat{E}_{\lambda}$$
.

Now take complex conjugate of both sides to get

$$\hat{E}_{\overline{\lambda}} \subset \mathfrak{c}(\hat{E}_{\lambda})$$
.

2. Show that the non-real eigenvalues of $T_{\mathbb{C}}$ come in pairs. In other words, show that we can list the distinct eigenvalues of $T_{\mathbb{C}}$ as

$$\lambda_1,\ldots,\lambda_r,\sigma_1,\ldots,\sigma_{2m}$$
,

where for each $j=1,\ldots,r$, $\overline{\lambda_j}=\lambda_j$ and for each $i=1,\ldots,m$, $\sigma_{2i-1}=\overline{\sigma_{2i}}$.

Solution. Let σ be an eigenvalue of $T_{\mathbb{C}}$. Then there is a nonzero vector v in \hat{E}_{σ} . By the previous part, $\mathfrak{c}(v)$, which is also a nonzero vector, is an element of $\hat{E}_{\overline{\sigma}}$. Thus $T_{\mathbb{C}}$ has an eigenvector associated to $\overline{\sigma}$, meaning $\overline{\sigma}$ is an eigenvalue as well.

3. Because \mathbb{C} is algebraically closed, the proof of Jordan form shows that

$$\mathbb{C}^n = \hat{E}_{\lambda_1} \oplus \cdots \oplus \hat{E}_{\lambda_r} \oplus \hat{E}_{\sigma_1} \oplus \cdots \oplus \hat{E}_{\sigma_{2m}}.$$

Using the previous two parts, show that for $j=1,\ldots,r$ and $i=1,\ldots,m$, the subspaces of \mathbb{C}^n

$$\hat{E}_{\lambda_j}$$
 and $\hat{E}_{\sigma_{2i-1}} \oplus \hat{E}_{\sigma_{2i}}$

are \mathfrak{c} -invariant.

Solution. If $v \in \hat{E}_{\lambda_j}$ then part 1 shows that $\mathfrak{c}(v) \in \hat{E}_{\overline{\lambda_j}}$. But λ_j is real, so it equals its complex conjugate, implying that $\mathfrak{c}(v) \in \hat{E}_{\lambda_j}$. Thus \hat{E}_{λ_j} is \mathfrak{c} -invariant.

If however $v \in \hat{E}_{\sigma_{2i-1}} \oplus \hat{E}_{\sigma_{2i}}$ then we can write $v = v_1 + v_2$ where

$$v_1 \in \hat{E}_{\sigma_{2i-1}}$$
 and $v_2 \in \hat{E}_{\sigma_{2i}}$.

Then $\mathfrak{c}(v) = \mathfrak{c}(v_1 + v_2) = \mathfrak{c}(v_1) + \mathfrak{c}(v_2)$. But by part (a),

$$\mathfrak{c}(v_1) \in \hat{E}_{\sigma_{2i}}$$
 and $\mathfrak{c}(v_2) \in \hat{E}_{\sigma_{2i-1}}$,

so $\mathfrak{c}(v) \in \hat{E}_{\sigma_{2i-1}} \oplus \hat{E}_{\sigma_{2i}}$, giving \mathfrak{c} -invariance.

4. Deduce from the previous problem that there exist subspaces X_1, \ldots, X_r and Y_1, \ldots, Y_m of \mathbb{R}^n such that for each $j = 1, \ldots, r$ and $i = 1, \ldots, m$,

$$\hat{E}_{\lambda_i} = \mathbf{Span}(\iota(X_i))$$
 and $\hat{E}_{\sigma_{2i-1}} \oplus \hat{E}_{\sigma_{2i}} = \mathbf{Span}(\iota(Y_i))$.

Show that $\mathbb{R}^n = X_1 \oplus \cdots \oplus X_r \oplus Y_1 \oplus \cdots \oplus Y_m$.

Solution. It was shown in the last problem (on HW 10) that a subspace W of \mathbb{C}^n is \mathfrak{c} -invariant if and only if there exists a subspace U of \mathbb{R}^n such that $W = \operatorname{Span}(\iota(U))$. Applying this result to the subspaces in the last part gives the existence of X_1, \ldots, X_r and Y_1, \ldots, Y_m .

To prove independence of these subspaces, we will use independence of their embeddings in \mathbb{C}^n . Let v_1, \ldots, v_r and v'_1, \ldots, v'_m be vectors in \mathbb{R}^n such that

$$v_i \in X_i$$
 for $i = 1, \dots r$ and $v_i' \in Y_i$ for $i = 1, \dots, m$

and $v_1 + \cdots + v_r + v'_1 + \cdots + v'_m = \vec{0}$. Then we may embed both sides an use \mathbb{R} -linearity:

$$\vec{0} = \iota(v_1 + \dots + v_r + v_1' + \dots + v_m') = \iota(v_1) + \dots + \iota(v_r) + \iota(v_1') + \dots + \iota(v_m').$$

Since these vectors lie in independent spaces in \mathbb{C}^n , they are all zero. But if for some vector $v \in \mathbb{R}^n$ we have $\iota(v) = \vec{0}$ we must have $v = \vec{0}$; this reason is that $\iota(v) = (v, \vec{0})$, so both components must be $\vec{0}$, giving $v = \vec{0}$. Therefore

$$v_1 = \dots = v_r = \vec{0} \text{ and } v'_1 = \dots = v'_m = \vec{0}$$

and the spaces $X_1, \ldots, X_r, Y_1, \ldots, Y_m$ are independent.

Last we must show that $\mathbb{R}^n = X_1 + \cdots + X_r + Y_1 + \cdots + Y_m$. So let $v \in \mathbb{R}^n$ and consider the embedding $\iota(v)$. Since it is in \mathbb{C}^n we can write it as a sum of elements of the generalized eigenspaces. We then use the previous part to find vectors v_1, \ldots, v_r and v'_1, \ldots, v'_m with $v_i \in X_i$ and $v'_j \in Y_j$ and complex scalars $z_1, \ldots, z_r, z'_1, \ldots, z'_m$ such that

$$\iota(v) = z_1 \iota(v_1) + \dots + z_r \iota(v_r) + z'_1 \iota(v'_1) + \dots + z'_m \iota(v'_m)$$

or

$$(v, \vec{0}) = z_1(v_1, \vec{0}) + \dots + z_r(v_r, \vec{0}) + z'_1(v'_1, \vec{0}) + \dots + z'_m(v'_m, \vec{0}).$$

Now writing $z_1 = x_1 + iy_1, \dots, z_r = x_r + iy_r$ and $z'_1 = x'_1 + iy'_1, \dots, z'_m = x'_m + iy'_m$, we find

$$(v, \vec{0}) = (x_1v_1 + \dots + x_rv_r + x_1'v_1' + \dots + x_m'v_m', y_1v_1 + \dots + y_rv_r + y_1'v_1' + \dots + y_m'v_m').$$

Finally,

$$v = x_1 v_1 + \dots + x_r v_r + x_1' v_1' + \dots + x_m' v_m',$$

proving that $v \in X_1 + \cdots + X_r + Y_1 + \cdots + Y_m$.

5. Prove that for each $j=1,\ldots,r$, the transformation $T-\lambda_jI$ restricted to X_j is nilpotent and thus we can find a basis B_j for X_j consisting entirely of chains for $T-\lambda_jI$.

Solution. First we prove that each X_j is T-invariant, so that the restriction is a linear transformation. Let $v \in X_j$; by definition $\iota(v) \in \hat{E}_{\lambda_j}$, a $T_{\mathbb{C}}$ -invariant space. So we can write

$$(T(v), \vec{0}) = T_{\mathbb{C}}(\iota(v)) \in \hat{E}_{\lambda_j} = \operatorname{Span}(\iota(X_j))$$
.

This means that we can write $(T(v), \vec{0}) = \sum_{k=1}^{\ell} z_k \iota(v_k)$ for complex scalars z_k and vectors $v_k \in X_j$. Writing $z_k = x_k + iy_k$, this becomes

$$(T(v), \vec{0}) = (x_1v_1 + \dots + x_\ell v_\ell, y_1v_1 + \dots + y_\ell v_\ell),$$

or
$$T(v) = x_1v_1 + \cdots + x_\ell v_\ell$$
. Therefore $T(v) \in X_j$.

Next we show that if $v \in X_j$ then there exists $k \geq 1$ such that $(T - \lambda_j I)^k(v) - \vec{0}$. Assuming we show that, then if $\{v_1, \ldots, v_s\}$ is a basis for X_j then we can choose k_1, \ldots, k_s such that $(T - \lambda I)^{k_p}(v_p) = \vec{0}$ for all $p = 1, \ldots, s$ and then $(T - \lambda_j I)^{k^*} = 0$ where $k^* = \max\{k_1, \ldots, k_s\}$, giving nilpotency.

So let $v \in X_j$. Then $\iota(v) \in \hat{E}_{\lambda_j}$ so there exists $k \geq 1$ such that $(T_{\mathbb{C}} - \lambda_j I)^k (\iota(v)) = \vec{0}$. because λ_j is real, we can find $a_0, \ldots, a_k \in \mathbb{R}$ such that

$$(T_{\mathbb{C}} - \lambda_j I)^k = a_k T_{\mathbb{C}}^k + \dots + a_0 I$$

SO

$$\vec{0} = (T_{\mathbb{C}} - \lambda_{j} I)^{k}(\iota(v)) = a_{k} T_{\mathbb{C}}^{k}(\iota(v)) + \dots + a_{0} \iota(v)$$

$$= a_{k} T_{\mathbb{C}}^{k}((v, \vec{0})) + \dots + a_{0} (v, \vec{0})$$

$$= a_{k} (T^{k}(v), \vec{0}) + \dots + a_{0} (v, \vec{0})$$

$$= (a_{k} T^{k}(v) + \dots + a_{0} v, \vec{0})$$

$$= ((T - \lambda_{j} I)^{k}(v), \vec{0}).$$

This implies $(T - \lambda_j I)^k(v) = \vec{0}$ and completes the proof.

6. For each k = 1, ..., m, let

$$C_k = \{v_1^{(k)} + iw_1^{(k)}, \dots, v_{n_k}^{(k)} + iw_{n_k}^{(k)}\}\$$

be a basis of $\hat{E}_{\sigma_{2k-1}}$ consisting of chains for $T_{\mathbb{C}} - \sigma_{2k-1}I$. Prove that

$$\hat{C}_k = \{v_1^{(k)}, w_1^{(k)}, \dots, v_{n_k}^{(k)}, w_{n_k}^{(k)}\}\$$

is a basis for Y_k . Describe the form of the matrix representation of T restricted to Y_k , relative to the basis \hat{C}_k .

Solution. This problem is worded a bit strangely (my bad!), because we do not want to assume that Y_k is fixed by part 4. We will first show that $\operatorname{Span}(\iota(\hat{C}_k)) = \hat{E}_{\sigma_{2k-1}} \oplus \hat{E}_{\sigma_{2k}}$, so then define Y_k as the span in \mathbb{R}^n of \hat{C}_k (recall part 4 only said "there exists").

First let $u \in \hat{C}_k$. Then either $u = v_p^{(k)}$ or $w_p^{(k)}$ for some p. In the first case,

$$\iota(u) = \iota(v_p^{(k)}) = (v_p^{(k)}, \vec{0}) = \frac{1}{2} \left[(v_p^{(k)}, w_p^{(k)}) + \mathfrak{c}((v_p^{(k)}, w_p^{(k)})) \right] .$$

However $(v_p^{(k)}, w_p^{(k)}) \in \hat{E}_{\sigma_{2k-1}}$, so its conjugate is in $\hat{E}_{\sigma_{2k}}$. This means $\iota(u) \in \hat{E}_{\sigma_{2k-1}} \oplus \hat{E}_{\sigma_{2k}}$. In the case that $u = w_p^{(k)}$ we can represent

$$\iota(u) = \frac{1}{2} \left[(v_p^{(k)}, w_p^{(k)}) - \mathfrak{c}((v_p^{(k)}, w_p^{(k)})) \right]$$

and arrive at the same conclusion. Either way, $\iota(\hat{C}_k) \subset \hat{E}_{\sigma_{2k-1}} \oplus \hat{E}_{\sigma_{2k}}$. Taking the span gives one inclusion.

For the other inclusion, let $v_p^{(k)} + i w_p^{(k)}$ be a vector in C_k . Then we can write

$$v_p^{(k)} + i w_p^{(k)} = (v_p^{(k)}, \vec{0}) + i (w_p^{(k)}, \vec{0}) = \iota(v_p^{(k)}) + i \iota(w_p^{(k)}) \ .$$

This is a combination of vectors of the form $\iota(u)$ for $u \in \hat{C}_k$, so each element of C_k is in the span of $\iota(\hat{C}_k)$. Because C_k spans $\hat{E}_{\sigma_{2k-1}} \oplus \hat{E}_{\sigma_{2k}}$, we get the other inclusion, proving

$$\operatorname{Span}(\iota(\hat{C}_k)) = \hat{E}_{\sigma_{2k-1}} \oplus \hat{E}_{\sigma_{2k}}.$$

We have now defined $Y_k = \operatorname{Span}(\hat{C}_k)$, so clearly \hat{C}_k is a spanning set. We must then show linear independence. Let $a_1, \ldots, a_{n_k}, b_1, \ldots, b_{n_k}$ be real numbers and suppose that

$$a_1 v_1^{(k)} + \dots + a_{n_k} v_{n_k}^{(k)} + b_1 w_1^{(k)} + \dots + b_{n_k} w_{n_k}^{(k)} = \vec{0}$$
.

We now apply ι and use \mathbb{R} -linearity, getting

$$\vec{0} = a_1(v_1^{(k)}, \vec{0}) + \dots + a_{n_k}(v_{n_k}^{(k)}, \vec{0}) + b_1(w_1^{(k)}, \vec{0}) + \dots + b_{n_k}(w_{n_k}^{(k)}, \vec{0})$$

For $j = 1, ..., n_k$ write $u_j = v_j^{(k)} + i w_j^{(k)}$. Then we can rewrite the right side as

$$\frac{1}{2}\left[a_1(u_1+\mathfrak{c}(u_1))+\cdots+a_{n_k}(u_{n_k}+\mathfrak{c}(u_{n_k}))\right]-\frac{i}{2}\left[b_1(u_1+\mathfrak{c}(u_1))+\cdots+b_{n_k}(u_{n_k}+\mathfrak{c}(u_{n_k}))\right].$$

This can be decomposed into a sum of two vectors:

$$\frac{1}{2} \left[(a_1 - ib_1)u_1 + \dots + (a_{n_k} - ib_{n_k})u_{n_k} \right]$$

and

$$\mathfrak{c}\left(\frac{1}{2}\left[(a_1+ib_1)u_1+\cdots+(a_{n_k}+ib_{n_k})u_{n_k}\right]\right) .$$

The first vector is in $\hat{E}_{\sigma_{2k-1}}$ and the second is in $\hat{E}_{\sigma_{2k}}$. Since these spaces are independent, it follows that they are both zero. By linear independence of the u_i 's, we conclude that

$$a_1 - ib_1 = \dots = a_{n_k} - ib_{n_k} = 0$$
,

so $a_1 = \cdots = a_{n_k} = b_1 = \cdots = b_{n_k} = 0$. This completes the proof.

For the last part of the question, write again the vectors in C_k as u_1, \ldots, u_{n_k} and consider a chain of generalized eigenvectors u_1, \ldots, u_p , where

$$T_{\mathbb{C}}(u_j) = \sigma_{2k-1}u_j + u_{j-1} \text{ for } j = 2, \dots, p \text{ and } T_{\mathbb{C}}(u_1) = \sigma_{2k-1}u_1.$$

Writing $\sigma_{2k-1} = a + bi$ for some $a, b \in \mathbb{R}$, we can then write this in real and imaginary parts as

$$(T(v_j^{(k)}, T(w_j^{(k)})) = (av_j^{(k)} - bw_j^{(k)}, aw_j^{(k)} + bv_j^{(k)}) + (v_j^{(k-1)}, w_j^{(k-1)})$$
 for $j = 2, \dots, p$

and $(T(v_1^{(k)}), T(w_1^{(k)})) = (av_1^{(k)} - bw_1^{(k)}, aw_1^{(k)} + bv_1^{(k)})$. Splitting into real and imaginary parts, we find

$$T(v_j^{(k)}) = \begin{cases} av_j^{(k)} - bw_j^{(k)} + v_j^{(k-1)} & \text{if } j = 2, \dots, p \\ av_1^{(k)} - bw_1^{(k)} & \text{if } j = 1 \end{cases}$$

and

$$T(w_j^{(k)}) = \begin{cases} bv_j^{(k)} + aw_j^{(k)} + w_j^{(k-1)} & \text{if } j = 2, \dots, p \\ bv_1^{(k)} + aw_1^{(k)} & \text{if } j = 1 \end{cases}.$$

Finally, this means that corresponding to the vectors $\{v_1^{(k)}, w_1^{(k)}, \dots, v_p^{(k)}, w_p^{(k)}\}$, the block in our matrix is

$$\left(\begin{array}{cccc}
\Sigma & I & & & \\
& \Sigma & I & & \\
& & \cdots & & \\
& & & \Sigma & I \\
& & & & \Sigma
\end{array}\right),$$

where Σ and I are 2×2 block matrices

$$\Sigma = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$
 and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

7. Gathering the previous parts, state and prove a version of Jordan form for linear transformations on \mathbb{R}^n . Your version should be of the form "If $T: \mathbb{R}^n \to \mathbb{R}^n$ is linear then there exists a basis B such that $[T]_B^B$ has the form ..."

Solution.

Theorem 0.1 (Real Jordan form). Let $T: V \to V$ be linear with $V = \mathbb{R}^n$. There exists a basis B of \mathbb{R}^n such that $[T]_B^B$ is a block diagonal matrix. The blocks are of one of two types: J_{σ} and J_{λ} , the second of which is a standard Jordan block for an eigenvalue $\lambda \in \mathbb{R}$:

$$J_{\lambda} = \begin{pmatrix} \lambda & 1 & & & \\ & \lambda & 1 & & \\ & & \cdots & & \\ & & & \lambda & 1 \\ & & & & \lambda \end{pmatrix} .$$

The first type corresponds to non-real eigenvalues σ of T (that is, non-real roots of the characteristic polynomial c_T):

$$J_{\sigma} = \begin{pmatrix} \Sigma & I & & & \\ & \Sigma & I & & & \\ & & \cdots & & & \\ & & & \Sigma & I \\ & & & & \Sigma \end{pmatrix} ,$$

where Σ and I are 2×2 block matrices

$$\Sigma = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$
 and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

and $\sigma = a + bi$.

Proof. It was shown above that there is a decomposition of \mathbb{R}^n into spaces

$$\mathbb{R}^n = X_1 \oplus \cdots \oplus X_r \oplus Y_1 \oplus \cdots \oplus Y_m .$$

These spaces are T-invariant (we proved this for the X_i 's and it follows for the Y_i 's from the last part, since we determined the action of T on a basis of Y_i). So if we build a basis of \mathbb{R}^n as a union of bases for these spaces, our matrix relative to this basis will be block diagonal. So it suffices to prove real Jordan form for T restricted to these spaces separately.

 X_1, \ldots, X_r and Y_1, \ldots, Y_m have the properties that, writing the real roots of c_T as $\lambda_1, \ldots, \lambda_r$ and the non-real roots as $\sigma_1, \ldots, \sigma_m$ with $\sigma_{2i} = \overline{\sigma_{2i-1}}$, $T - \lambda_j I$ is nilpotent on X_j and one can choose bases $\hat{C}_1, \ldots, \hat{C}_m$ of Y_1, \ldots, Y_m such that the transformation T restricted to Y_i has a matrix representation which is block diagonal using only blocks of the form J_{σ_i} . Choosing a basis C of chains of generalized eigenvectors for $X_1 \oplus \cdots \oplus X_r$ (which is allowed by nilpotency) and setting $B = C \cup \left(\bigcup_{j=1}^m \hat{C}_j \right)$ gives the form stated in the theorem.