Elliptische Kurven

Kevin Kappelmann, Lukas Stevens 15. April 2016

Inhaltsverzeichnis

1	Motivation und Geschichte	3
2	Grundbegriffe 2.1 Affine Ebenen	9
	2.2 Projektive Ebenen	
	2.2.1 Die projektive Ebene $PG(2, \mathbb{F})$	
	2.2.2 Konstruktion affiner Ebenen aus projektiven Ebenen	:
3	Elliptische Kurven E	•
	3.1 Definiton elliptischer Kurven	
	3.2 Die unendliche Gerade über $\operatorname{PG}(2,\mathbb{F})$	
	3.3 Affine Darstellung elliptischer Kurven	
4	Eine Gruppe über E	4
	4.1 Tangenten elliptischer Kurven	4
	4.2 Schnittpunkte von Geraden mit elliptischen Kurven	
	4.3 Die Schnittpunkt-Verknüpfung \oplus über E	
	4.4 Die Gruppe $(E,+)$	
5	Anwendung elliptischer Kurven in der Kryptologie	4
	5.1 Elgamal	4
	Noch einen für Signaturen	

Darstellungsformen nicht vergessen! Edwards Kurven und so Beispiel zitat [1, Kapitel 5, S. 215]

1 Motivation und Geschichte

Macht Kevin

Einleitung, warum elliptische Kurven, etc. (geschichtliches?)

2 Grundbegriffe

2.1 Affine Ebenen

Definition, Beispiele

2.2 Projektive Ebenen

Definition

2.2.1 Die projektive Ebene $PG(2, \mathbb{F})$

Konstruktion, Beispiel

2.2.2 Konstruktion affiner Ebenen aus projektiven Ebenen

Beweis, Beispiel

3 Elliptische Kurven E

Macht Lukas

3.1 Definition elliptischer Kurven

Wir haben bereits die projektive Ebene $PG(2, \mathbb{F})$ über beliebige Körper \mathbb{F} eingeführt. Diese hat die folgende Punktemenge:

$$P = \{(u:v:w) | (u,v,w) \in \mathbb{F}^3 \setminus (0,0,0)\}$$
 (1)

Nun wollen wir die Punktemenge der elliptischen Kurve einführen. Dazu benötigen wir Polynome in drei Unbestimmten. Der Polynomring mit drei Unbestimmten über \mathbb{F} ist mit

$$\mathbb{F}[X,Y,Z] = \left\{ \sum_{k,l,m \ge 0} a_{k,l,m} X^k Y^l Z^m \mid a_{k,l,m} \in \mathbb{F} \right\}$$
 (2)

3.2 Die unendliche Gerade über $PG(2, \mathbb{F})$

Isomorphismus von $\mathbb{F}^2 \to \mathcal{P}_U$

3.3 Affine Darstellung elliptischer Kurven

Erklärung, Beispiel(Graphen)

4 Eine Gruppe über E

Macht Kevin bis 4.3

4.1 Tangenten elliptischer Kurven

4.2 Schnittpunkte von Geraden mit elliptischen Kurven

Unendlich ferne Gerade mit Schnittpunkt \mathcal{O} , Affine Geraden, Parallele zur y-Achse

4.3 Die Schnittpunkt-Verknüpfung \oplus über E

Definition, Beweis der Abgeschlossenheit, graphische Interpretation

4.4 Die Gruppe (E, +)

Macht Lukas bis fertig Gruppe ist abelsch mit neutralem Element \mathcal{O} , Beispiel

5 Anwendung elliptischer Kurven in der Kryptologie

5.1 Elgamal

Welche Charakteristiken für elliptische Kurven, Domänenparameter

5.2 Noch einen für Signaturen

Welche Charakteristiken für elliptische Kurven, Domänenparameter

Literatur

[1] Test author. Elliptic bla bla, 2012.