Calculabilité - complexité

0h45, sans document sauf une feuille A4

Les réponses doivent être inscrites à la suite de chacune des questions, dans le cadre prévu à cet effet. Dans le cas (exceptionnel), où vous estimeriez qu'une question nécessite un développement plus important, utilisez une feuille séparée, en précisant le numéro de la question.

1 Calculablité

1.	Soit la	fonction	carrée	carre(x)	$: x \mapsto$	x^2 .	Cette	fonction	est-elle	calculable	?
----	---------	----------	--------	----------	---------------	---------	-------	----------	----------	------------	---

— oui ✓	
— oui pour n positif seulement	
— non	
— on ne sait pas	

2. Soit la fonction de Collatz $Collatz(n) \triangleq \mathbf{while} \ n > 1 \ \mathbf{do}$

if (n%2 = 0) then $n \leftarrow n/2$ else $n \leftarrow 3 * n + 1$

L'appel à Collatz(n) termine-t-il pour toute valeur de $n \ge 0$?

- oui
- non
- on ne sait pas 🗸
- oui pour n pair seulement
- non si n est premier

3. Existe-t-il une machine de Turing universelle qui puisse exécuter n'importe quel autre machine universelle?

- Oui, par définition de l'universalité
- Non, il faudrait une meta-machine de Turing
- Uniquement si elles ont le même alphabet
- 4. Savoir si une machine de Turing n'accepte qu'un unique mot est-il décidable? Si oui, donner le principe de l'algorithme; si non, argumenter (montrer une réduction ou une contradiction).

Savoir si une MT n'accepte aucun mot est indécidable. Or, ce problème est <= au problème 4 donc par réduction, le problème 4 est indécidable.

5. ...

2 Complexité

6.	Pourquoi est-il important d'étudier la complexité en plus de la calculabilité?
	Il faut savoir si le problème est alogirithmiquement résolvable ainsi que savoir combien d'étapes et combien de ressources sa résolution nécessitera.
7	Les protocoles interactifs sont-ils plus puissants que la vérification de certificats?
	Sujet non traité en 2020–2021
	\times
	Est-il vrai que la la complexité en temps est indépendante du codage des données, mais que la complexité en espace dépend du codage?
	Oui, intuitivement la compléxité dépend du codage. En plus, on sait que le codage des données est presque sans importance pour la complexité en temps.
	Pourquoi peut-on définir la complexité logarithmique en espace alors que la complexité logarithmique en temps n'a pas de sens?
	?
	Donner un problème complet pour PSPACE .
	-Dans le cas d'automates finis, déterminer si deux réprésentations de languages formels répresentent le même langage est un problème PSPACE-Complet -QBF est PSPACE-Complet
1.	
(Calcul quantique
2	