PT

Solution to Assignment 1

- 1. Let R, G, B respectively represent the red, green and blue marbles.
 - (a) The sample space is $\Omega = \{RR, RG, RB, GR, GG, GB, BR, BG, BB\}$. Since all outcomes have the same probability, the probability of each point in the sample space is $\frac{1}{9}$.
 - (b) The sample space is $\Omega = \{RG, RB, GR, GB, BR, BG\}$. Since all outcomes have the same probability, the probability of each point in the sample space is $\frac{1}{6}$.
- 2. The evens can be represented as follows:
 - (a) $F \cap E^c \cap G^c$
 - (b) $E \cap F \cap G^c$
 - (c) $E \cup F \cup G$
 - (d) $(E \cap F) \cup (E \cap G) \cup (F \cap G)$
 - (e) $E \cap F \cap G$
 - (f) $E^c \cap F^c \cap G^c$
 - (g) $(E \cap G^c \cap F^c) \cup (E^c \cap G \cap F^c) \cup (E^c \cap G^c \cap F) \cup (E^c \cap F^c \cap G^c)$
 - (h) $E^c \cup F^c \cup G^c$.
- 3. Consider a sample space $\Omega = [0,1]$ and assign probabilities in such a way that each sub-interval has probability equal to its length:

$$P([a,b]) = b - a,$$

where $[a, b] \subset [0, 1]$. Hence, $P(\{a\}) = 0, a \in [0, 1]$, but $\{a\}$ is not \emptyset .

4.

- (a) {the circuit works in order} = $A \cap (B \cup C) \cap D$
- (b) {the circuit works out of order} = $A^c \cup (B^c \cap C^c) \cup D^c$

5. Noting that $A \cap B = \emptyset$, the probabilities are as follows:

(a)
$$P(A \cup B) = P(A) + P(B) = 0.8$$
.

(b)
$$P(A \setminus B) = P(A) = 0.3$$
.

(c)
$$P(A \cap B) = P(\emptyset) = 0$$
.

6. We must have

$$\mathcal{A} = \{\phi, \{1\}, \{2,3\}, \{1,2,3\}\}.$$

Suppose $\{1,2\} \in \mathcal{A}$. Then $\{2\} = \{1,2\} \setminus \{1\} \in \mathcal{A}$, which contradicts to the assumption.

7. The sample space is $\Omega = \{(i, j) : i, j = 1, \dots, 6\}$. So $|\Omega| = 36$.

(a)
$$A=\{$$
 exactly one six $\}=\{(6,1),(6,2),\cdots,(6,5),(1,6),\cdots,(5,6)\}$. So $P(A)=\frac{|A|}{|\Omega|}=\frac{10}{36}=\frac{5}{18}$

(b)
$$A = \{ \text{ both numbers are odd } \} = \left\{ \begin{array}{c} (1,1), (1,3), (1,5), (3,1), (3,3), (3,5), \} \\ (5,1), (5,3), (5,5) \end{array} \right\}.$$
 So $P(A) = \frac{|A|}{|\Omega|} = \frac{9}{36} = \frac{1}{4}.$

(c)
$$A = \{ \text{ sum is } 4 \} = \{ (1,3), (2,2), (3,1) \}$$
. So $P(A) = \frac{|A|}{|\Omega|} = \frac{3}{36} = \frac{1}{12}$.

(d)
$$A = \{ \text{ sum is divisible by } 3 \} = \left\{ \begin{array}{l} (1,2), (2,1), (1,5), (2,4), (3,3), \\ (4,2), (5,1), (3,6), (4,5), (5,4), \\ (6,3), (6,6) \end{array} \right\}.$$
 So $P(A) = \frac{|A|}{|\Omega|} = \frac{12}{36} = \frac{1}{3}.$