Markov Chain Monte Carlo

ISC 5225/4933 Midterm Oct 24, 2023

Multidimensional Distributions and Importance Sampling

Consider a joint probability distribution $\pi_{\text{joint}}(x_1, x_2)$ corresponding to independent random variables x_1 and x_2 .

Both x_1 and x_2 come from the *same* exponential distribution $\pi(x) = e^{-x}$, for $x \ge 0$. Thus,

$$\pi_{\text{joint}}(x_1, x_2) = \pi(x_1)\pi(x_2) = e^{-x_1} \cdot e^{-x_2} = e^{-(x_1 + x_2)}.$$
 (1)

In class we learned that random variables from an exponential distribution $\pi(x) = e^{-x}$ can be sampled using standard uniform random numbers $u \sim U[0,1]$ by setting

$$x = -\log(1 - u). \tag{2}$$

- (i) Use this to generate N=5000 samples of (x_1,x_2) from $\pi_{\text{joint}}(x_1,x_2)$. Report the average (\bar{x}_1,\bar{x}_2) and the standard deviation $(\sigma_{x_1},\sigma_{x_2})$ of these samples.
- (ii) What is the conditional PDF $\pi(x_1|x_2)$?¹
- (iii) Suppose we are interested in evaluating the double integral,

$$I = \int_0^\infty \int_0^\infty e^{-(x_1 + x_2)^2} x_1^2 dx_1 dx_2 \tag{3}$$

using importance sampling. Inspecting the form of the integrand, we guess that $\pi_{\text{joint}}(x_1, x_2)$ is be a good candidate for importance sampling.²

Using N = 500, estimate the integral and associated error using importance sampling.³

Show your work on the answer sheet, and upload your code on Canvas.

(iv) Someone suggests using a two-dimensional normal or Gaussian distribution instead of $\pi_{\text{joint}}(x_1, x_2)$ from eqn 1. Is this a good suggestion? Comment.

Points: (i) 20, (ii) 10, (iii) 55, (iv) 15.

¹You should not need to perform derivations for this part, but may if that suits you.

²We already figured out how to sample this distribution in part (i).

³The true value of the integral is I = 1/6.