Solutions: Hexadecimal Expansion (Example 5)

Part A — Worked Example

Shown step-by-step:

$$177130 \div 16 = 11070 \, r10 \quad (A)$$

$$11070 \div 16 = 691 \, r14 \quad (E)$$

$$691 \div 16 = 43 \, r3$$

$$43 \div 16 = 2 \, r11 \quad (B)$$

$$2 \div 16 = 0 \, r2$$

Digits: $(2B3EA)_{16}$.

Part B — Easier Practice Solutions

1. $(255)_{10}$:

$$255 \div 16 = 15 \, r15 \quad (F)$$

$$15 \div 16 = 0 \, r15 \quad (F)$$

Answer: $(255)_{10} = (FF)_{16}$.

 $2. (4095)_{10}$:

$$4095 \div 16 = 255 \, r15 \quad (F)$$

$$255 \div 16 = 15 \, r15 \quad (F)$$

$$15 \div 16 = 0 \, r15 \quad (F)$$

Answer: $(4095)_{10} = (FFF)_{16}$.

Part C — Harder Challenge Solution

$$1048575 = 2^{20} - 1.$$

Successive division by 16 gives all remainders equal to 15:

$$1048575 \div 16 = 65535 \, r15 \quad (F)$$

$$65535 \div 16 = 4095 \, r15 \quad (F)$$

$$4095 \div 16 = 255 \, r15 \quad (F)$$

$$255 \div 16 = 15 \, r15 \quad (F)$$

$$15 \div 16 = 0 \, r15 \quad (F)$$

Answer:

$$(1048575)_{10} = (FFFFF)_{16}.$$

Teaching Notes

- \bullet Highlight that A–F are digits 10–15.
- Easier problems illustrate short expansions (FF, FFF).
- The challenge problem emphasizes recognizing special forms like $2^n 1$.