Non-ideal reactors

- Construction of C(t) and E(t)
- Convolution integral & Step-input
- Moments of the RTD and application to PFR/PBR and CSTR
- RTD of LFR an example of a nonideal reactor
- Models for real reactors

Lecture # 30 CHE331A

Models for nonideal reactors – from the RTD curves to conversions

Goutam Deo

2020-2021 1st semester

Given a E(t), conversion can be calculated for the segregated model: PFR/PBR, CSTR, LFR and in general

ightharpoonup Experimentally determined E(t) curve from C(t)

X(t) determined for a batch reactor for specified kinetics

$$\bar{X} = \int_0^\infty X(t).E(t).dt$$

t (min)	C(t)	E(t) min ⁻¹	X(t)	X(t).E(t) min ⁻¹			
0	0	0	0	0			
1	1	0.02	0.095	0.0019			
2	5	0.10	0.181	0.0180			
And so on							

Maximum Mixedness model – the other zero parameter model

- ► Fluid elements enter, as per the E(t) curve, and mix radially but not axially
- ► Fluid elements at the far left spend the most amount of time and those at the far right the least
- λ Is the time it takes for the fluid to move from a particular point in the reactor to the end (also called life expectancy)
- Thus, E(λ)dλ is the fraction of molecules having a life expectancy between λ and λ+dλ

Mole balance for the elemental volume, ΔV

- Balance in the elemental volume
- ▶ Integrating with $v_{\lambda} = 0$ at $\lambda = \infty$

▶ Thus, the volume of fluid with life expectancy between λ and λ +d λ is

$$\Delta V = v_0 [1 - F(\lambda)] \Delta \lambda$$

- rate of generation of species A in this volume is: $r_A \Delta V = r_A v_0 [1 F(\lambda)] \Delta \lambda$
- ▶ Thus mole balance in the elemental volume is:

$$v_0\{[1-F(\lambda)]C_A\}|_{\lambda+\Delta\lambda} + v_0C_{A0}E(\lambda)\Delta\lambda - v_0\{[1-F(\lambda)]C_A\}|_{\lambda} + r_Av_0[1-F(\lambda)]\Delta\lambda = 0$$

The differential equation for maximum mixedness model

- $v_0\{[1-F(\lambda)]C_A\}|_{\lambda+\Delta\lambda} + v_0C_{A0}E(\lambda)\Delta\lambda v_0\{[1-F(\lambda)]C_A\}|_{\lambda} + r_Av_0[1-F(\lambda)]\Delta\lambda = 0$
- ▶ Dividing by $v_0\Delta\lambda$ and taking the limits of $\Delta\lambda \to 0$ we have
- ► Thus, $C_{A0}E(\lambda) + [1 F(\lambda)] \frac{d}{d\lambda} [C_A] C_A E(\lambda) + r_A [1 F(\lambda)] = 0$ $\frac{dC_A}{d\lambda} = -r_A + (C_A C_{A0}) \frac{E(\lambda)}{1 F(\lambda)}$
- ▶ And in terms of conversion:

$$\frac{dX}{d\lambda} = \frac{r_A}{C_{A0}} + X \frac{E(\lambda)}{1 - F(\lambda)}$$

 \circ With boundary conditions of $\lambda \to \infty$ then $C_A = C_{A0}$ or X = 0

Comparison between complete segregation and maximum mixedness models

▶ 2^{nd} order liquid phase reaction $2A \rightarrow B$

$$C_{A0} = 8 \frac{mol}{dm^3}; v_0 = 25 \frac{dm^3}{min}$$

$$-r_A = kC_A^2$$
 with $k = 0.01 \frac{dm^3}{mol.min}$ at 320 K; Reactor vol = 1000 dm^3

Tracer test: $N_0 = 100 g$ and $v = 25 \frac{dm^3}{dx}$

- ▶ Determine E(t) curve from C(t) curve
 - o Is it a CSTR
 - o However, $\frac{1}{\tau} = \frac{v_0}{V} = \frac{25}{1000} = 0.025 \neq 0.028$
- ► For Segregation model: $\bar{X} = \int_0^\infty X(t)E(t)dt$

t (min)	C(t)	E(t) min ⁻¹	X(t)	X(t).E(t) min ⁻¹	$X(t)E(t)\Delta t$		
0	112	0.0280	0	0	0		
5	95.8	0.0240	0.286	0.00686	0.0172		
10	82.2	0.0206	0.444	0.00916	0.0400		
15	70.6	0.0177	0.545	0.00965	0.0470		
And so on							

- ▶ Batch reactor equation for 2nd order reaction: $X = \frac{kC_{A0}t}{1+kC_{A0}t}$
- Numerical integration using trapezoid rule gives: $\bar{X} = \sum_{0}^{\infty} X(t) E(t) dt = 0.61$

Maximum mixedness the other bound for the zero parameter models

- ► Conversions for maximum mixedness: $\frac{dX}{d\lambda} = \frac{r_A}{c_{A0}} + X \frac{E(\lambda)}{1 F(\lambda)}$ Determine: $\frac{E(\lambda)}{1 F(\lambda)}$
- ▶ Using Euler method for numerical integration: $X_{i+1} = X_i + \Delta \lambda \left[\frac{r_A}{c_{A0}} + X_i \frac{E(\lambda)}{1 F(\lambda)} \right]$
 - \circ This starts from $\lambda = 0$, however the solution is unstable and depends on the starting value of X \rightarrow integrate backwards, i.e., start from $\lambda \rightarrow \infty$
- ► Integrating backward: $X_{i-1} = X_i \Delta \lambda \left[X_i \frac{E(\lambda_i)}{1 F(\lambda_i)} kC_{A0}(1 X_i)^2 \right]$
- ▶ $\lambda \to \infty$ (or at the beginning), we have X = 0
- ► X at $(\lambda = 0$, outlet) = 0.564 compared to 0.61 for segregated model

t (min)	C(t)	E(t) min ⁻¹	1-F(t)	E(t)/[1-F(t)]	λ	
0	112	0.0280	1.00	0.0280	0	
5	95.8	0.0240	0.871	0.0276	5	
10	82.2	0.0206	0.760	0.0271	10	
And so on						
200	0.90	0.000225	0.003	0.0750	200	

Maximum mixedness model by solving the ODE The maximum mixedness model: $\frac{dX}{d\lambda} = \frac{r_A}{c_{A0}} + X \frac{E(\lambda)}{1 - F(\lambda)}$

- - \circ Which is to be integrated from $\lambda \to \infty$ (reactor beginning) to $\lambda = 0$ (reactor end)
 - Difficult to integrate backwards → change variable so integration is in forward direction
 - Achieved by introducing a new variable, z, such that

$$z = \overline{T} - \lambda = 200 - \lambda \text{ OR } \lambda = \overline{T} - z = 200 - z$$

- Thus, $\frac{dX}{dz} = -\frac{r_A}{C_{AC}} X \frac{E(\overline{T}-z)}{1-E(\overline{T}-z)}$
- ▶ To solve the ODE, the E(t) or F(t) curve are fit to polynomial(s)
 - E(t) should not be negative and F(t) should not be equal to one at the beginning
- lt is then possible to integrate from z = 0 (reactor beginning) to z = 200(reactor end)
- ► For the same case (Example 13-7) X = 0.56 compared to 0.61

Comparison of ideal reactors and models and some comments

Example 13-7 is a nice exercise on the application of segregated and maximum mixedness models in detail

Complete segregation: 0.61

Maximum mixedness: 0.56

For a PFR of this size: 0.76

For a CSTR of this size: 0.58

- ▶ Not all tank reactors are CSTRs nor are all tubular reactors PFRs
- ▶ RTD is sufficient if the reaction was 1st order; Non-1st order needs a model
- Segregation and Maximum mixedness models (zero parameter) are bounds to the real reactor

One parameter models

- ▶ One parameter is used to describe the non-ideality of the real reactor
 - o One parameter models for CSTR are dead volume, V_D , or fraction of bypass, f
 - One parameter models for PFR include tanks-in-series (n) and dispersion (D_a)
- Often the parameter is obtained by analyzing the RTD function determined by from a tracer test
- Tubular reactors may be empty or packed
 - Ideal tubular (PFR) have piston like flow, no radial velocity profile, no axial mixing and every fluid element spends the same amount of time in the reactor
 - Often plug-flow and insufficient axial-mixing usually fail in real reactors
- ► One approach is to model the non-ideal tubular reactor as a series of identical CSTRs (tanks-in-series); the other is to consider axial dispersion along with plug-flow

Tanks-in-series (T-I-S) model is an one parameter model

- Analyze the RTD to determine the number of ideal tanks in series that can approximate the non-ideal tubular reactor
- ► For example, 3 T-I-S to represent the real reactor
 - Then generalize for n T-I-S
- Analysis of the 3 T-I-S based on pulse injected to 1st
- From the C(t) curve coming out of the 3rd reactor

$$E(t) = \frac{C_3(t).\nu}{\int_0^\infty C_3(t).\nu.dt} = \frac{C_3(t)}{\int_0^\infty C_3(t)dt}$$

Material balance on tracer is useful for analysis

- ► For 1st reactor: $C_1 = C_0 \exp(-t/\tau_1)$
- ► For 2nd reactor: $V_2 \frac{dC_2}{dt} = vC_1 vC_2 \rightarrow \tau_2 \frac{dC_2}{dt} = C_0 \exp(-t/\tau_1) C_2$
- Thus, $C_2 = \frac{c_0 t}{\tau_i} \exp(-t/\tau_i)$ Similarly, $C_3 = \frac{c_0 t^2}{2\tau_i^2} \exp(-t/\tau_i)$
- Substituting in RTD: $E(t) = \frac{c_3(t)}{\int_0^\infty c_3(t)dt} = \frac{\frac{c_0 t^2}{2\tau_i^2} \exp(-t/\tau_i)}{\int_0^\infty \frac{c_0 t^2}{2\tau_i^2} \exp(-t/\tau_i)dt} = \frac{t^2}{2\tau_i^2} \exp(-t/\tau_i)$
- ▶ In general: $E(t) = \frac{t^{n-1}}{(n-1)!\tau_i^n} \exp(-t/\tau_i)$ Further, $V = nV_i$
- ▶ And, $\tau_i = \frac{\tau}{n}$ where τ is for real reactor Thus, $E(\theta) = \frac{n(n\theta)^{n-1}}{(n-1)!} \exp(-n\theta)$

RTD response depends on the number of Tanks-In-Series

- $E(\theta) = \frac{n(n\theta)^{n-1}}{(n-1)!} \exp(-n\theta)$ and σ_{θ}^2 is given by

T-I-S response to pulse tracer for various n

- ▶ Thus, the number of reactors needed to model the real reactor as n ideal tanks in series can be determined from the variance of the $E(\Theta)$ vs Θ data
- ▶ Using *n* the conversion can be calculated for a series of CSTRs!

