Table: Algorithm Comparison Based on Metrics

Metric	Definition/Use	Formula	Algorithm A	Algorithm B	Algorithm C
True Positives (TP)	Correctly predicted positives (e.g., fraud correctly detected).	From Confusion Matrix			
False Positives (FP)	Incorrectly predicted positives (e.g., flagged as fraud but legitimate).	From Confusion Matrix			
False Negatives (FN)	Missed positives (e.g., fraud not detected).	From Confusion Matrix			
True Negatives (TN)	Correctly predicted negatives (e.g., legitimate transactions correctly ignored).	From Confusion Matrix			
Accuracy	Overall correctness of the model (good for balanced datasets).	(TP + TN)/(TP + FP + FN + TN)			

Precision	How many of the predicted positives are actually positive (important when false positives are costly).	TP/(TP+FP)		
Recall (Sensitivity)	How many actual positives are correctly identified (important when false negatives are costly).	TP/(TP+FN)		
F1-Score	Harmonic mean of precision and recall (balances precision and recall).	$\begin{array}{c} 2 \times \\ \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} \end{array}$		
Specificity	True negative rate (useful for imbalanced datasets to measure correct identification of negatives).	TN/(TN+FP)		
AUC-ROC Score	Model's ability to distinguish between classes at various thresholds (higher is better).	Computed using ROC Curve		
Business Use Case	Does the algorithm align with the business requirements (e.g., prioritizing precision or recall)?	-		

How to Use the Table:

- 1. **Fill in Metrics**: Populate the table with results from different algorithms based on the confusion matrix and evaluation metrics.
- 2. **Business Context**: Highlight which metrics matter most for your problem:
 - a. If false positives are costly, prioritize precision.
 - b. If false negatives are costly, prioritize recall.
 - c. If you need a balance, focus on **F1-score**.
- 3. **Compare**: Identify the algorithm that performs best for the critical metrics for your use case.

Example Filled Table:

Metric	Definition/Use	Algorithm A	Algorithm B	Algorithm C
TP	Correctly predicted positives	90	85	92
FP	Incorrectly predicted positives	10	25	12
FN	Missed positives	20	30	18
TN	Correctly predicted negatives	180	165	188
Accuracy	Overall correctness	90%	83%	92%
Precision	Focus on minimizing false positives	90%	77%	88%
Recall	Focus on minimizing false negatives	82%	74%	84%
F1-Score	Balance between precision and recall	86%	75%	86%
Specificity	Correctly identifying negatives	95%	87%	94%
AUC-ROC Score	Ability to distinguish between classes	0.92	0.88	0.94
Business Use Case	Meets business requirements (recall-focused)		×	

Decision:

- If **recall** is the most important (e.g., fraud detection or disease diagnosis), choose **Algorithm C** as it has the highest recall (84%) and still balances other metrics well.
- If **precision** is critical (e.g., reducing false alarms), choose **Algorithm A** as it has the highest precision (90%).
- If you need a balance (F1-score), both **Algorithm A** and **Algorithm C** are good candidates. Evaluate based on other factors like model complexity or interpretability.

Table: Regression Algorithm Comparison Based on Metrics

Metric	Definition/Use	Formula	Algorithm A	Algorithm B	Algorithm C
Mean Absolute Error (MAE)	Average of the absolute differences between predicted and actual values (lower is better).	(\frac{1}{n} \sum_{i=1}^n	y_i - \hat{y}_i)	
Mean Squared Error (MSE)	Average of the squared differences between predicted and actual values (penalizes large errors).	$rac{1}{n}\sum_{i=1}^n (y_i-\hat{y}_i)^2$			
Root Mean Squared Error (RMSE)	Square root of MSE, easier to interpret as it's in the same units as the target variable.	$\sqrt{rac{1}{n}\sum_{i=1}^n(y_i-\hat{y}_i)^2}$			

R ² Score (Coefficient of Determination)	Measures how well the model explains variance in the data (1 is perfect; closer to 0 is poor fit).	$R^2 = 1 - rac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - ar{y})^2}$			
Adjusted R ²	Adjusted version of R ² for multiple predictors, penalizes overfitting.	$1 - \frac{(1 - R^2)(n - 1)}{n - p - 1}$			
Mean Absolute Percentage Error (MAPE)	Percentage difference between actual and predicted values (good for interpretability).	(\frac{1}{n} \sum_{i=1}^n	y_i - \hat{y}_i	}{y_i} \times 100)	

	іптегргетаріііту).			
Explained Variance	Measures variance explained by the model predictions (closer to 1 is better).	Computed from $1-\operatorname{Var}(y-\hat{y})/\operatorname{Var}(y)$		
Prediction Speed	Time taken to generate predictions (important for real-time use cases).	Measured empirically		
Training Speed	Time taken to train the model (important for large datasets).	Measured empirically		
Business Use Case	Does the model meet the business requirements (e.g., interpretability, generalizability)?	-		

Example Filled Table:

Metric	Definition/Use	Algorithm A (Linear Regression)	Algorithm B (Random Forest)	Algorithm C (XGBoost)
MAE	Measures average error	5.6	3.8	3.5
MSE	Penalizes large errors	42.1	25.4	21.8
RMSE	Interpretable version of MSE	6.49	5.04	4.67
R ² Score	Explains variance	0.85	0.91	0.93
Adjusted R ²	Accounts for complexity	0.83	0.89	0.91
MAPE	Percentage error	10.5%	8.2%	7.8%
Explained Variance	Variance explained by the model	0.87	0.92	0.94
Prediction Speed	Speed to generate predictions	Fast	Medium	Slow
Training Speed	Speed to train the model	Very Fast	Medium	Slow
Business Use Case	Does the model meet the requirements?	Interpretability	✓ Good accuracy	☑ High accuracy

How to Decide:

1. Based on Metrics:

- a. If **interpretability** is important (e.g., business use cases or explainable AI), choose **Linear Regression** (Algorithm A).
- b. If **prediction accuracy** is critical, choose **XGBoost** (Algorithm C) as it has the best R² and lowest error metrics.
- c. If **training and prediction speed** are a factor, choose **Random Forest** (Algorithm B) as a middle ground.

2. Trade-Offs:

- a. Consider trade-offs between speed, accuracy, and interpretability depending on the application.
- b. For large datasets or real-time predictions, prefer models with better **training speed** and **prediction speed**.

3. Validate on Business Context:

a. Check if the metrics align with the **business needs** (e.g., low error for forecasting revenue or house prices).