3ZA-7

Kinect を用いた表情による入力インターフェイスの提案

井川 大輔^Ä 笹岡 久行 旭川工業高等専門学校A

1. はじめに

現在、インターネットを利用したチャットや メールなどを利用することで世界中の人とやり 取りを容易に行うことができる。そして、顔文 字を利用することにより、その時の感情を表現 することで、相手に的確に伝わりやすくなる。 しかし、顔文字は一つの感情でも多くの種類が あり、個人の好み、感情の大きさなどで利用す る顔文字が異なる。また、顔文字は予測変換に 登録することで顔文字を簡単に利用することが 可能だが、入力したい顔文字を候補の中から探 す必要がある。

そこで本研究では、ユーザの表情およびその 変化量を入力とし、顔文字の入力支援を行う手 法の提案を行う。具体的には、Microsoft 社製の Kinect[1]を利用し、時間ごとの顔パーツの座標 の変化量、顔の表情等を入力とし、表情と表情 の大きさを推定し、これを基に利用者が利用し たい顔文字を予測し、入力支援を行う。

2. Kinect SDK を用いた顔の認識処理

Kinect には、RGB カメラ、赤外線カメラの二 種類のカメラが搭載されており、これにより画 像と深度のデータを取得することが可能である。 また、画像と深度のデータより骨格のデータを 取得することも可能である。

そして、「Kinect SDK 1.5」以降より「Face Tracking SDK」を利用して顔の「目」、 「鼻」、「口」などの位置を取得することがで きる [2]。これら以外にも、顔の向いている方 向を取得することが可能となった。そのため、 今回は「Face Tracking SDK」を利用するこ とによって「口」などの位置データを取得し、 この位置データをもとに表情を決定する。

Proposal for Input Method with Expression on Use's face using Kinect

ÄDaisuke Ikawa

ŒHisayuki Sasaoka

ÄÆAsahikawa National College of Technology

3. 表情推定処理

表情には喜び、驚き、悲しみ、怒り、嫌う、 等がある。本研究では文字入力に対する内省か ら、喜び(笑い)、驚き、困る(嫌悪)、無反 応(退屈)の4種類の感情の判定を行こととし た。判定方法は喜び、驚き、困る(嫌悪)のそ れぞれの表情についての測定を行い、これらの 表情がない場合においては無反応(退屈)とし て処理を行う。

また、それらの表情において、表情と顔文字 の例をあげる。

喜び(笑い)

表情の例) 口が左右に広がる。

目が少し細めになる。

顔文字の例) $(\geq \nabla \leq)$

・ 驚き

表情の例) 目が上下に広がる。

口を開ける。

顔文字の例) Σ (゚д゚111) (° o°;;

$$(*^{0}0^{0}*)$$

• 困惑(嫌悪)

表情の例) 首をかしげる。

口が左右非対称。 眉間にしわがよる。

·無反応(退屈)

表情の例) 顔に変化がない。 $(\cdot \omega \cdot)$ 顔文字の例)

4.表情の大きさ

一人の一つの感情だけを取った場合でも、 感情の大きさによって表情が異なる。特に、 大きな感情である場合、表情のピーク値と表情 の継続した時間が長くなる。そのため、表情の 変化を取得するために、表情と認識を開始した 時間と表情でないと認識した時間の差と表情と 認識している間のピーク値の検出を行う。また、 表情の大きさの平均値を測定することで、表情 の大きさの誤差を小さくする。表情の時間、ピ ーク値、平均値を利用することで表情の大きさ を測定する。

5.提案手法

図 1 のように、Kinect の Face Tracking に よってデータを取得し、そのデータをもとに、 各表情大きさの測定を行う。その後認識した表 情の候補から利用者が顔文字の選択を行う。

図1提案手法の概略

6.処理例(喜び)

図 2 のように変化する口の左右の開く大きさ を測定し、開いた大きさが平均値よりも差があ る場合に笑顔であると認識を行い、継続時間と 平均値の測定を行い喜びの大きさを決定する

処理の一例

7.おわりに

1つの表情に一つの部分観測を行い動作の確 認を行っているため、表情の認識はうまくはい かない場合ある。

また、感情以外にも文章の終わりに個人の個 性のために独自の顔文字を添える場合があるた め、この場合においては文字予測が有効である。 今回、Kinect SDK の Face Tracking を用いた 提案手法により簡単に精度よい顔の認識し、顔 のパーツの位置データを取得することができる ことを確認した。位置データの取得によって、 口周辺、目周辺などの画像データより、画像処 理を行うことでより表情の大きさの精度をよく することが可能。

Kinect には、マルチアレイマイクを搭載され ている。今後は、声の大きさ、言葉などからも 表情の認識をすることも可能だと思われる。

参考文献

[1]Kinect for windows SDK

õhttp://www.microsoft.com/en-us/kinectforwindows/ö [2]杉浦 司,岩崎修介 "Kinect for windows SDK プ ログラミングガイド",工学社,2012年