Recent progress of REBCO coated conductors at Fujikura

Masanori Daibo (Fujikura Ltd.)

A part of this work has been commissioned by the New Energy and Industrial Technology Development Organization (NEDO)

Outline

- Introduction
- Characteristics of Fujikura's REBCO coated conductors
- Recent progress of REBCO coated conductors at Fujikura
- Summary

Fujikura's REBCO coated conductor (IBAD / PLD)

Ion Beam Assisted Deposition (IBAD)

Pulsed Laser Deposition (PLD)

Fujikura's REBCO coated conductors

Typical Specification

ltem	Width [mm]*	Thickness [mm]*	Substrate [µm]	Stabilizer [µm]	Critical Current (I _c) [A] (@77K, S.F.)
FYSC-SCH04	4	0.13	75	20 x 2	≧165
FYSC-SCH12	12	0.13	75	20 x 2	≧550

^{*} Dimensions do not include thickness of insulating tapes.

<Schematic of 2G HTS wire (FYSC-SCH04)>

In-field *I_c* distribution in a 1 km long demo sample at 3 T, 10-77 K

Uniform in-field I_c in wide range of temperatures are observed

Typical In-field I_c of a production wire

- > Example data of typical production wire
- > Sample : Ic = 573 A@77K,s.f. (cm-w)

* This work includes some data measured at High Field Laboratory for Superconducting Materials, Institute for Materials Research, Tohoku University.

Example data of longitudinal I_c distribution

a production wire of 4 mm-wide

4-terminal method current conduction measurement at every 4.7 m

Magnetic measurement @Tapestar™

quite uniform I_c with 600m length are obtained

Evaluation of tensile characteristics of divided 4 mm-wide

Tensile characteristics of 3 parts of 4 mm-wide conductors divided from 12 mm-wide coated conductor in LN2

Each divided 4 mm-wide conductors have shown equivalent tensile characteristics in LN2

DC power supply

Data logging system

Outline

- Introduction
- Characteristics of Fujikura's REBCO coated conductors
- Recent progress of REBCO coated conductors at Fujikura
- Summary

Abstract of 2G HTS development program in Japan(FY2016~)

NEDO started a new program of 2G HTS wires with the aim of promoting rapid commercialization, from FY2016.

Cat.	Development Items		Institutions	Target	'16	'17	'18	'19	'20
HTS Power Cable systems	(1) Electric HTS Power Cable systems	AC	TEPCO Sumitomo Furukawa Maekawa	Ensuring essential safety functionsRecovery methodsRefrigerators	Ensuring s functio		Standards for design	>	
		DC	Isikari Association	 Standards for design/operations 	Standards for design				
	(2) Railway HTS Power Cable systems	_	RTRI	 2km refrigerator systems 	Developme scale refr			ions of a 2 ator syste	•
	(3) HTS highly stable magnet system for MRI	_	Mitsubishi Electric AIST	- Half-scale 3T MRI systems		ment of a h	atem a	evelopme half-scal 'S-MRI sy	e 5T
HTS		joints	AIST etc.	- superconducting joints	Developmen	t of supercond	lucting joints)	
Magnet Systems	(4) 2G HTS wires	_	F Fujikura	 In-field Ic and uniformity improvement Evaluation of reliability of wires 		l Ic improv nity Improv			
		_	F Fujikura	- High productivity	Hig	h producti	vity		

Development of 2G HTS wire to improve the in-field I_c with high productivity

2G HTS development program in NEDO project (~FY2018)

Program of 2G HTS wires with the aim of promoting rapid commercialization

Challenges	Current level	Target		
(1) Improvement of current density of 2G HTS wires	Je=250A/mm ² @30K, 7T	Je > 400A/mm ² @30K,7T (with insulation) with high productivity		
(2) Improvement of uniformity and Evaluation of reliability of 2G HTS wires	reduced rate of Ic < 0.15 at 300m	reduced rate of Ic < 0.15 at 1km		
(3) Development of low AC loss 2G HTS wires	fabrication technology of 100μm-wide multi filament Striated 440μm-wide SC layer	Loss Simulation AC loss < 1/10		

Improvement of in-field I_c with artificial pinning

Improvement of in-field I_c of 2G HTS wire will be applied introducing artificial pinning techniques in HTS layer

BHO doping by hot-wall PLD system

Typical dimensions of nano-rods

Length : ~100 nm Diameter: 3~5 nm

Distance between rods: 10~30 nm

< STEM image >

Rod-shaped precipitates were observed

Example data of in-field I_c with artificial pinning (B//c)

- Example data of a trial short sample (REBCO+BHO)
- \triangleright Sample : $I_c = 483 \text{ A}@77 \text{ K,s.f. (cm-w)}$

Evaluation of reproducibility of I_c -B- θ characteristics

Focus on evaluating the reproducibility of in-field I_c and I_c -B- θ characteristics of coated conductors

Example data of trial samples with artificial pinning (REBCO+BHO)

Good reproducibility of I_c -B- θ characteristics are obtained

Reproducibility will be evaluated with optimization of deposition conditions and thickness, etc.

Comparison of uniformity of longitudinal I_c distribution

Artificial pinning wire (REBCO+BHO)

Tapestar® measurement

■ Production wire (w/o artificial pinning)

Uniform I_c with 300-m-long artificial pinning wire are obtained

Comparison of tensile characteristics of 4mm-wide wires

Evaluation of failure probability of delamination

<Delamination stress by thermal stress>

$$F(\sigma_c, V) = 1 - \exp\left[-V_{\rm E}(m, V) \left(\frac{\sigma_c}{\sigma_0}\right)^m\right]$$
$$V_{\rm E}(m, V) = \int_V \left(\frac{\sigma(\vec{x})}{\sigma_c}\right)^m \frac{dV}{V_0}$$

Average delamination stress of 2G HTS tapes have improved by Weibull analysis

Evaluation of static and dynamic fatigue coefficient at R.T.

Fatigue coefficient N≒20 are in agreement with general ceramics

Outline

- Introduction
- Characteristics of Fujikura's REBCO coated conductors
- Recent progress of REBCO coated conductors at Fujikura
- Summary

Summary

- Evaluation of conventional REBCO coated conductors
 - Stabilizer of nominal specification is applied 20µm copper plate
 - Uniform *I_c* with 600m length are obtained from mass-produced conductors without artificial pinning
- Recent progress of REBCO coated conductors at Fujikura
 - 3-year NEDO program of development of 2G HTS wires, FY2016-2018
 - Fujikura has developed REBCO coated conductors with artificial pinning(REBCO+BHO) for Improvement in-field I_c by IBAD/PLD method
 - Focus on uniformity and reproducibility for mass-production
 - Evaluate Failure probability of delamination stress, static and dynamic fatigue coefficient of conductors, in terms of reliability of conductors

Thank you for your attention

Please visit Fujikura website!!

- Global Site
 http://www.fujikura.com/solutions/superconductingwire/
- Fujikura website http://www.fujikura.co.jp/eng/products/new/index.html

