

Lecture 16 Resampling

Topics

- http://rtl-sdr.com
- Did you sign up for the ham exam?
- Last time
 - D.T processing of C.T signals
 - C.T processing of D.T signals (ha?????)
- Today
 - Downsampling
 - Changing Sampling Rate via DSP
 - Upsampling
 - Rational resampling

DownSampling

- Much like C/D conversion
- Expect similar effects:
 - -Aliasing
 - -mitigate by antialiasing filter

- Finely sampled signal ⇒ almost continuous
 - -Downsample in that case is like sampling!

Downsampling:

The DTFT:

$$X(e^{j\omega}) = \frac{1}{T} \sum_{k} X_c \left(j \left(\underbrace{\frac{\omega}{T}}_{\Omega} - \underbrace{\frac{2\pi}{T}}_{\Omega_s} k \right) \right)$$

$$X_d(e^{j\omega}) = \frac{1}{MT} \sum_k X_c \left(j \left(\frac{\omega}{MT} - \frac{2\pi}{MT} k \right) \right)$$

The DTFT:

$$X(e^{j\omega}) = \frac{1}{T} \sum_{k} X_c \left(j \left(\underbrace{\frac{\omega}{T}}_{\Omega} - \underbrace{\frac{2\pi}{T}}_{\Omega_s} k \right) \right)$$

$$X_d(e^{j\omega}) = \frac{1}{MT} \sum_k X_c \left(j \left(\frac{\omega}{MT} - \frac{2\pi}{MT} k \right) \right)$$

we would like to bypass X_c and go from $X(e^{j\omega}) \Rightarrow X_d$ $(e^{j\omega})$

substitute counter to

k = rM + i

two counters

e.g., r: hours, i: minutes

$$X_d(e^{j\omega}) = \frac{1}{MT} \sum_k X_c \left(j \left(\frac{\omega}{MT} - \frac{2\pi}{MT} k \right) \right)$$

$$= \frac{1}{M} \sum_{i=0}^{M-1} \frac{1}{T} \sum_{r=-\infty}^{\infty} X_c \left(j \left(\frac{\omega}{MT} - \frac{2\pi}{MT} i - \frac{2\pi}{T} r \right) \right)$$

$$X(e^{j\omega}) = \frac{1}{T} \sum_{k} X_c \left(j \left(\underbrace{\frac{\omega}{T}}_{} - \underbrace{\frac{2\pi}{T}}_{} k \right) \right)$$

$$X \left(e^{j\left(\frac{\omega}{M} - \frac{2\pi}{M}i\right)} \right)$$

$$X_d(e^{j\omega}) = \frac{1}{M} \sum_{i=0}^{M-1} X(e^{j(\frac{\omega}{M} - \frac{2\pi}{M}i)})$$
 stretch replicate by M

$$X_d(e^{j\omega}) = \frac{1}{M} \sum_{i=0}^{M-1} X\left(e^{j\left(\frac{w}{M} - \frac{2\pi}{M}i\right)}\right)$$

$$X_d(e^{j\omega}) = \frac{1}{M} \sum_{i=0}^{M-1} X\left(e^{j(\frac{w}{M} - \frac{2\pi}{M}i)}\right)$$

M. Lustig, EECS UC Berkeley

Shift by $(i=1)*2\pi/(M=3)$

Shift by $(i=2)*2\pi/(M=3)$

$$X_d(e^{j\omega}) = \frac{1}{M} \sum_{i=0}^{M-1} X\left(e^{j(\frac{w}{M} - \frac{2\pi}{M}i)}\right)$$

Anti-Aliasing

UpSampling

- Much like D/C converter
- Upsample by A LOT ⇒ almost continuous
- Intuition:
 - Recall our D/C model: $x[n] \Rightarrow x_s(t) \Rightarrow x_c(t)$
 - Approximate "x_s(t)" by placing zeros between samples
 - Convolve with a sinc to obtain "xc(t)"

Up-sampling

$$x[n] = \begin{cases} lower x \\ X_c(nT) \end{cases}$$

$$x_i[n] = X_c(nT')$$
 where $T' = \frac{T}{L}$

 ${\it L}$ integer

Obtain $x_i[n]$ from x[n] in two steps:

(1) Generate:
$$x_e = \begin{cases} x[n/L] & n = 0, \pm L, \pm 2L, \cdots \\ 0 & \text{otherwise} \end{cases}$$

Up-Sampling

(2) Obtain $x_i[n]$ from $x_e[n]$ by bandlimited interpolation:

Up-Sampling

$$x_i[n] = x_e[n] * \operatorname{sinc}(n/L)$$

$$x_e[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-kL]$$

$$x_i[n] = \sum_{k=-\infty}^{\infty} x[k] \operatorname{sinc}(\frac{n-kL}{L})$$

Frequency Domain Interpretation

Frequency Domain Interpretation

$$X_e(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \underbrace{x_e[n]}_{
eq 0 \text{ only for n=mL}}^{\infty}$$

$$= \sum_{m=-\infty}^{\infty} \underbrace{x_e[mL]}_{e^{-j\omega mL}} e^{-j\omega mL} = X(e^{j\omega L})$$

Compress DTFT by a factor of L!

M. Lustig, EECS UC Berkeley

Practical Upsampling

- Can interpolate with simple, practical filters. What's happening?
- Example: L=3, linear interpolation convolve with triangle

Resampling by non-integer

T' = TM/L (upsample L, downsample M)

What would happen if change order?

Example:

• L = 2, M=3, T'=3/2T (fig 4.30)

Subsampling M=3

$$X_e(e^{j\omega})$$

$$\tilde{X}_i = H_d X_e$$

Example:

• L = 2, M=3, T'=3/2T (fig 4.30)

sampling T

Subsampling M=3

LP filtering

Multi-Rate Signal Processing

- What if we want to resample by 1.01T?
 - Expand by L=100
 - Filter $\pi/101$ (\$\$\$\$)
 - Downsample by M=101

- Fortunately there are ways around it!
 - Called multi-rate
 - Uses compressors, expanders and filtering