Projeto 1

TI327 - TÓPICOS EM INTELIGÊNCIA ARTIFICIAL
Prof. Guilherme Macedo
gmacedo@unicamp.br

Uma generalização do conhecido problema do caixeiro-viajante é o problema do caixeiro-viajante múltiplo (*multiple traveling salesman problem* - mTSP). Este problema foi descrito por Miller et al. (1960) da seguinte maneira:

m caixeiros-viajantes partem de uma cidade qualquer, visitam cada uma das outras n cidades exatamente uma vez e retornam para a cidade de onde partiram. Um caxeiro-viajante não pode visitar mais de k cidades. O objetivo é minimizar a distância total percorrida por todos os caixeiros-viajantes.

Você implementará e avaliará uma heurística construtiva para o mTSP.

Atividades

- Implementar a heurística em Python 3.12.4 para o mTSP. O códigofonte deve ser claro, eficiente e bem documentado.
- Experimentar a heurística construtiva implementada com um conjunto de nove instâncias disponibilizado pelo professor no ambiente de ensino

- aberto. A Tabela 1 apresenta o nome das instâncias, suas dimensões e valor quando conhecido da solução ótima.
- Preparar um relatório de 3 à 5 páginas com as suas descobertas. O modelo do relatório está disponível em https://bit.ly/43QpBkv. O relatório deverá ser escrito em português ou inglês.

Instância	n	m	k	f(x)
mTSP-n13-m1	13	1	13	3071
mTSP-n17-m1	17	1	17	3948
mTSP-n19-m1	19	1	19	4218
mTSP-n31-m3	31	3	11	5841
mTSP-n47-m3	47	3	16	6477
mTSP-n59-m3	59	3	20	6786
mTSP-n71-m5	71	5	15	8618
mTSP-n83-m5	83	5	17	9246
mTSP-n91-m5	91	5	19	9586

Tabela 1: Instâncias.

Prazo de entrega

Quarta-feira, 10 de abril de 2023, até às 23h59.

Submissão

O código-fonte e o relatório deverão ser submetidos pelo GitHub Classroom até o prazo de entrega estabelecido.

Referências

Miller, C., Tucker, A. e Zemlin, R. A. Integer Programming Formulations and Traveling Salesman Problems. Journal of the Association for Computing Machinery, 7, 326-329. 1960.

Bektas, T. The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega, 34. 209-219. 2006.