

10 / 501007
PCT/KR 02 / 02434
RO / 26.12.2002

08 JUL 2004

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto
is a true copy from the records of the Korean Intellectual
Property Office.

출 원 번 호 : 10-2002-0001118
Application Number PATENT-2002-0001118

출 원 년 월 일 : 2002년 01월 09일
Date of Application JAN 09, 2002

출 원 인 : 한미약품공업 주식회사
Applicant(s) HAN MI PHARM. IND. CO., LTD.

2002 년 11 월 06 일

특 허 청
COMMISSIONER

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

【서지사항】

【서류명】	특허출원서
【권리구분】	특허
【수신처】	특허청장
【제출일자】	2002.01.09
【발명의 명칭】	개선된 심바스타틴의 제조방법
【발명의 영문명칭】	IMPROVED PROCESS FOR THE PREPARATION OF SIMVASTATIN
【출원인】	
【명칭】	한미약품공업 주식회사
【출원인코드】	1-1998-004411-2
【대리인】	
【성명】	이현실
【대리인코드】	9-1999-000366-5
【포괄위임등록번호】	1999-056327-8
【대리인】	
【성명】	장성구
【대리인코드】	9-1998-000514-8
【포괄위임등록번호】	1999-023919-6
【발명자】	
【성명의 국문표기】	이재현
【성명의 영문표기】	LEE, Jaeheon
【주민등록번호】	660614-1031411
【우편번호】	449-840
【주소】	경기도 용인시 수지읍 풍덕천 1028 상록아파트 611-1201
【국적】	KR
【발명자】	
【성명의 국문표기】	하태희
【성명의 영문표기】	HA, Taehee
【주민등록번호】	700425-1318818
【우편번호】	442-470
【주소】	경기도 수원시 팔달구 영통동 964-5 신나무실 512-1504
【국적】	KR

1020020001118

출력 일자: 2002/11/7

【발명자】

【성명의 국문표기】 박철현
【성명의 영문표기】 PARK,Chul-Hyun
【주민등록번호】 710628-1047915
【우편번호】 463-911
【주소】 경기도 성남시 분당구 정자동 한솔주공아파트 5단지 511-1005
【국적】 KR

【발명자】

【성명의 국문표기】 이회철
【성명의 영문표기】 LEE,Hoe-Chul
【주민등록번호】 681002-1079910
【우편번호】 449-840
【주소】 경기도 용인시 수지읍 풍덕천리 1065 신정마을 1단지 111-1504
【국적】 KR

【발명자】

【성명의 국문표기】 이관순
【성명의 영문표기】 LEE,Gwan Sun
【주민등록번호】 600110-1471553
【우편번호】 138-160
【주소】 서울특별시 송파구 가락동 극동아파트 2-806
【국적】 KR

【발명자】

【성명의 국문표기】 장영길
【성명의 영문표기】 CHANG,Young Kil
【주민등록번호】 591026-1037413
【우편번호】 138-180
【주소】 서울특별시 송파구 삼전동 34-4
【국적】 KR

【심사청구】

【취지】 특허법 제42조의 규정에 의하여 위와 같이 출원합니다. 대
리인 이현
실 (인) 대리인
장성구 (인)

1020020001118

출력 일자: 2002/11/7

【수수료】

【기본출원료】	20	면	29,000	원
【가산출원료】	5	면	5,000	원
【우선권주장료】	0	건	0	원
【심사청구료】	8	항	365,000	원
【합계】			399,000	원
【첨부서류】			1. 요약서·명세서(도면)_1통	

【요약서】**【요약】**

본 발명은 고지혈증의 치료제인 화학식 1의 심바스타틴의 개선된 제조 방법에 관한 것으로, 로바스타틴을 수산화 칼륨-메탄올-물 혼합액 존재하에서 가수분해 반응시켜 트리올산 결정을 제조하고, 제조된 트리올산을 재락톤화시킨 다음, 락تون화의 히드록시기의 보호반응을 수행하여 수득된 화합물과 2,2-디메틸부티릴 클로리드를 유기용매 중에서 상전이촉매인 사급암모늄할라이드 또는 사급포스포늄할라이드를 첨가하면서 가열환류시킴으로써 아실화 반응을 수행하여 보호된 심바스타틴을 제조한 다음 탈보호 반응을 수행하는 것을 특징으로 하는 본 발명의 방법에 따르면, 고수율 및 고순도로 화학식 1의 심바스타틴을 수득할 수 있으며, 총생산 시간이 대폭 단축됨으로써 제조단가 또한 혁신적으로 낮출 수 있다.

【화학식 1】

【명세서】

【발명의 명칭】

개선된 심바스타틴의 제조방법{IMPROVED PROCESS FOR THE PREPARATION OF SIMVASTATIN}

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

<1> 본 발명은 고지혈증 치료제로 사용되는 하기 화학식 1의 심바스타틴의 개선된 제조 방법에 관한 것이다.

<2> 화학식 1

<3>

<4> 상기 화학식 1의 심바스타틴은 미국의 머크(Merck) 제약회사에서 개발한 공지의 화합물로서, 콜레스테롤 생합성 초기단계와 율속 단계에 필수적인 HMG-CoA(3-hydroxy-3-methylglutaryl CoA) 환원효소를 효과적으로 저해함으로써, 고지혈증을 치료하는데 있어 매우 효과적인 것으로 알려졌으며, 특히 로바스타틴, 아토르바스타틴, 세리바스타틴 등과 같은 여타 고지혈증 치료제 보다 부작용이 적고 위 흡수도가

빠르며 투여 용량에 비하여 효과가 우수한 특장점을 지닌 약제이다. 또한, 최근에는 노인성 질환인 알츠하이머의 발병과 밀접한 관련을 지닌 베타-아밀로이드 단백질 Ab42의 생성을 자연시킴으로써 알츠하이머의 발병을 억제하는 효과도 있는 것으로 알려졌다.

<5> 심바스타틴은 매우 다양한 방법을 통하여 제조할 수 있는 바, 공지된 방법을 살펴 보면 로바스타틴의 8'-메틸부티릴옥시기를 가수분해하지 않고 직접 메틸기를 도입하는 방법과 락톤환과 함께 8'-메틸부티릴옥시기를 가수분해하고 진행시키는 방법으로 대분할 수 있다.

<6> 우선, 로바스타틴의 8'-메틸부티릴옥시기를 가수분해하지 않고 직접 메틸기를 도입하는 방법을 살펴 보면, 국제특허출원 WO 98 12188에는 락톤환의 히드록시기를 보론 화합물로 보호하고 8'-메틸부티릴옥시기의 측쇄가지에 메틸기를 도입한 후 보론 보호기를 제거하는 방법이 개시되어 있다. 이 방법은 반응단계가 짧고 반응의 총수율이 80%이상으로서 매우 높다는 장점은 있으나, 고온 및 고압의 반응조건을 요구하며, 특히 반응물 질로 사용된 로바스타틴이 각 단계에서 제거되지 않고 최종 단계에까지 함유되어 결과적으로 제조된 심바스타틴의 순도가 떨어진다는 단점이 있다.

<7> 이와 유사한 방법으로 미국 특허 제 5,393,893 호, 제 4,582,915 호, 제 5,763,646 호, 제 5,763,653 호, 유럽 특허 제 299,656 호 및 국제특허출원 WO 99 45003 호에는 락톤환만 가수분해된 상태에서 8'-메틸부티릴옥시기에 메틸기를 직접

도입하는 방법이 개시되어 있는데, 이 방법은 카르복실산을 아미드 화합물로 변환하고, 히드록시기를 실릴이나 보론으로 보호한 다음 메틸기를 직접 도입한 후 보호기를 제거하고 재락톤화 반응을 수행하는 것으로 구성되어 있다. 이 방법 또한 반응단계가 짧고 수율이 높다는 장점은 있으나, 무수조건하의 -30 내지 -75°C이하 극저온 반응조건이 요구되며, 아미드 염기와 메틸할라이드를 반복사용하여야 하며, 디올, 메비놀린 등과 같은 부산물이 생성되고, 가수분해 반응이 비선택적으로 일어나며, 순도 또한 낮다는 단점이 있다.

<> 한편, 락тон화과 함께 8'-메틸부티릴옥시기를 가수분해하고 진행시키는 방법으로서 미국특허 제 4,444,784 호에는, 하기 반응식 1에 나타낸 바와 같이 화학식 2의 로바스타틴을 과량의 수산화 리튬 수용액과 반응시킴으로써 락تون화이 열리고 8'-위치의 2-메틸부타노일기가 제거된 화학식 3의 트리올산(Triol acid)을 오일상으로 수득하고 이를 정제하지 않은 상태로 틀루엔 중에서 바로 가열환류시켜 재락톤화 반응을 수행하여 화학식 4의 디올(Diol) 화합물을 수득한 다음, 락تون화의 히드록시기를 t-부틸디메틸실릴기로 보호하여 화학식 5의 화합물을 제조하고, 디시클로헥실카보디이미드를 축합제로 사용하여 8'-위치의 히드록시기를 화학식 6의 2,2-디메틸부탄산과 아실화 반응시키거나 2,2-디메틸부탄산을 산염화물로 전환시킨 다음 아실화반응시킴으로써 8'-위치에 2,2-디메틸부타노일기가 도입된 화학식 7의 보호된 심바스타틴을 수득한 후 테트라부틸암모늄플루오리드를 사용하여 t-부틸디메틸실릴기를 제거함으로써 최종적으로 화학식 1의 심바스타틴을 제조하는 방법이 개시되어 있다.

<9> 【반응식 1】

[화학식 2]

[화학식 3]

[화학식 4]

[화학식 5]

[화학식 7]

화학식 1

<10> 그러나, 이 방법은 화학식 2의 로바스타틴을 가수분해시켜 화학식 3의 트리올산을 수득하는데 있어 과량의 수산화리튬을 사용하여 56 시간 이상 장시간 동안 가열환류시킴으로써 부생성물이 생성되고, 이 부생성물이 제거되지 않은 오일상태로 바로 다음 단계가 진행됨으로써 재락톤화 단계까지의 수율이 80%를 넘지 못하며, 순도도 떨어진다는 문제점이 있다. 뿐만 아니라, 8'-위치의 히드록시기에 2,2-디메틸부타노일을 도입하는 아실화 단계에서는 2,2-디메틸부탄산을 산염화물로 전환시키거나 축합제인 디시클로헥실카

보디아이미드를 사용하여 반응을 진행시키는데, 이 때 산염화물을 사용할 경우 피리딘을 용매로 사용하여 100°C 이상의 고온에서 반응시키는 격렬한 조건으로 인해 부반응물이 생성될 뿐만 아니라 과량의 피리딘을 제거하고 목적산물을 분리하는 후처리 작업이 별도로 요구된다는 문제점이 있다. 한편, 디시클로헥실카보디아이미드를 사용하는 방법의 경우에는 반응 후 부산물로 생성되는 디시클로헥실우레아가 반응 후처리 작업에서 용이하게 제거되지 않아 결과적으로 최종산물의 순도를 떨어뜨린다는 단점이 있으며, 특히 반응이 매우 느리게 진행되어 반응을 완결시키는데 3일 내지 4일 정도의 장기간이 소요된다는 문제점이 있다.

<11> 한편, 대한민국 특허출원공개 제 2000-15179 호에는 화학식 3의 트리올산을 수득하는 가수분해 단계에서 염기로 칼륨 t-부톡사이드를 유기용매 및 소량의 물과 함께 사용하여 반응을 진행시키고, 8'-위치의 히드록시기에 2,2-디메틸부타노일을 도입하는 아실화 단계에서는 아실옥시트리페닐포스포니움 염을 염기와 함께 사용하여 반응을 진행시키는 방법이 개시되어 있다. 이 방법은 가수분해 반응시 비교적 온화한 조건 하에서 빠른 시간 내로 완결할 수 있으며 가수분해산물을 결정으로 수득할 수 있다는 장점은 있으나, 비교적 고가의 시약인 칼륨 t-부톡사이드를 사용하며, 박막크로마토그라피(thin layer chromatography)로 반응의 진행상태를 확인한 결과 원하지 않는 방향으로 반응이 상당부분 진행되어 반응 후처리시 물 중에서 엉

기는 현상이 발생하고 이를 유기용매로 추출한 다음 결정할 경우에도 가수분해 산물이 70%에도 미치지 못한다는 문제점이 나타났다. 한편, 아실화 단계에서는 반응시간을 10시간 내외로 단축시킬 수 있다는 장점은 있으나 반응에 참여하는 시약인 2,2-디메틸부탄산, 트리페닐포스핀 및 N-브로모석신이미드를 모두 4.0 당량의 과량을 사용하므로 반응 후 부산물인 트리페닐포스핀 옥시드와 미반응된 2,2-디메틸부탄산을 오일상의 목적산물로부터 제거하기가 용이하지 않아 최종 탈보호단계 후 수득한 심바스타틴의 순도가 떨어지므로 규격에 적합한 품질을 맞추기 위한 고도의 정제작업이 별도로 수반되어야 한다는 단점이 있다.

<12> 상기한 두 가지 방법, 즉 로바스타틴의 8'-메틸부티릴옥시기를 가수분해하지 않고 직접 메틸기를 도입하는 방법과 락톤환과 함께 8'-메틸부티릴옥시기를 가수분해하고 진행시키는 방법을 비교하여 볼 때, 직접 메틸화 방법은 단계별로 고온, 고압 또는 무수의 극저온의 반응조건을 요하거나, 특히 반응물질로 사용된 로바스타틴이 각 단계에서 제거되지 않고 최종 단계에까지 함유됨으로써 결과적으로 기준에 합당한 순도를 갖는 품질로 심바스타틴을 수득하는데 많은 어려움이 따라 대량생산방법으로는 적합하지 않은데 반하여, 락톤환과 함께 8'-메틸부티릴옥시기를 가수분해하고 진행시키는 후자의 방법은 반응단계는 다소 길긴 하지만 단계별 시약의 구성이 간단하고 반응조건이 온화하여 산업적으로 적용하기에 보다 바람직하다고 할 수 있다. 그러나, 이 방법 역시 첫 단계인 가수분해 단계와 8'-위치의 아실화 단계는 상기한 바와 같은 문제점들에 대한 개선의 필요성이 절실히 요구되는 상황이다.

<13> 이에 본 발명자들은 전술한 공자의 방법들이 갖는 문제점을 해결하기 위하여 계속 연구를 진행한 결과, 가수분해 반응을 진행함에 있어 수산화 칼륨-메탄올-물 혼합액을

사용하고, 8'-위치의 히드록시기의 아실화 반응에 있어 상전이촉매(Phase Transfer Catalyst: PTC)인 사급암모늄할라이드 또는 사급포스포늄할라이드를 사용하여 반응시킴으로써 고순도 및 고수율로 화학식 1의 심바스타틴을 보다 용이하게 제조할 수 있음을 발견하여 본 발명을 완성하게 되었다.

【발명이 이루고자 하는 기술적 과제】

<14> 따라서, 본 발명의 목적은 고지혈증 치료제로서 유용한 심바스타틴을 보다 경제적이고 효율적인 방법으로 제조하고자 하는 것이다.

【발명의 구성 및 작용】

<15> 상기 목적에 따라 본 발명에서는,

<16> 1) 화학식 2의 로바스타틴을 수산화 칼륨-메탄올-물 혼합액 존재하에서 가수분해 반응시켜 화학식 3의 트리올산 결정을 제조하는 단계;

<17> 2) 상기 수득된 화학식 3의 트리올산을 채락톤화시킨 다음 락톤화의 히드록시기의 보호반응을 수행하여 화학식 5의 화합물을 제조하는 단계;

<18> 3) 상기 수득된 화학식 5의 화합물과 화학식 8의 2,2-디메틸부티릴 클로리드를 유기용매 중에서 상전이촉매인 화학식 9의 사급암모늄할라이드 또는 화학식 10의 사급포스포늄할라이드를 첨가하면서 가열환류시킴으로써 아실화 반응을 수행하여 화학식 7의 보호된 심바스타틴을 제조한 다음 탈보호 반응을 수행하는 단계

<19> 를 포함하는 것을 특징으로 하는 화학식 1의 심바스타틴의 제조방법을 제공한다.

1020020001118

출력 일자: 2002/11/7

<20> 화학식 1

<21>

<22> 화학식 2

<23>

<24> 화학식 3

<25>

<26> 화학식 5

<28> 화학식 7

<30> 【화학식 8】

<31> 【화학식 9】

<32> 【화학식 10】

<33> 상기 식에서,

<34> R¹은 탄소수 1 내지 20개의 알킬 또는 페닐이고,

<35> R²는 탄소수 1 내지 20개의 알킬, 페닐 또는 벤질이며,

<36> X는 브롬 또는 요오드이다.

<37> 이하 본 발명을 보다 구체적으로 설명하면 다음과 같다.

<38> 본 발명에 따른 가수분해 반응은 수산화 칼륨-메탄올-물 혼합액을 사용하는데 가장 큰 특징이 있는 것으로서, 기존에 알려진 알카리 혼합액, 즉 물과 메탄올을 1 : 4의 비율로 혼합한 상태에서 수산화 칼륨을 용해시킨 클레이센 알카리 (Claisen's alkali)를 토대로 하여 그 범위를 더욱 확장시킨 알카리 혼합액이다 (Reagents for organic synthesis, Vol. 1, p. 153).

<39> 수산화 칼륨은 화학식 2의 로바스타틴 1.0 당량에 대하여 5.0 내지 15 당량을 사용 할 수 있으며, 8.0 내지 12 당량을 사용하는 것이 바람직하다.

<40> 물과 메탄올은 1 : 2 내지 1 : 20 의 부피비로 사용할 수 있으며, 특히 1 : 4 내지 1 : 12의 부피비가 바람직하다.

<41> 물과 메탄올 혼합액의 사용량은 수산화 칼륨에 대하여 1 내지 8배(v/wt), 바람직하게는 4 내지 6배(v/wt)의 범위이다.

<42> 상기 가수분해 반응의 온도는 20 내지 80°C, 특히 50 내지 70°C가 바람직하며, 반응 완결에 소요되는 시간은 수산화 칼륨의 당량, 물-메탄올의 비율 및 사용량에 따라 변 할 수는 있으나, 대략 5 내지 12 시간이면 충분하다.

<43> 본 방법에 따른 가수분해 방법은 수용액 중에서 과량의 수산화 리튬을 사용하거나, 물과 유기용매 중에서 칼륨 t-부톡사이드를 사용하던 기존의 방법에 비하여 부생성물 없 이 원하는 방향으로 진행되므로 반응 후처리 조작 후 오일상이 아닌 백색 결정상태로

95%이상의 수율로 수득할 수 있으며, 또한 불순물이 제거되어 98% 이상의 고순도로 수득 할 수 있다.

<44> 한편, 화학식 3의 트리올산을 재락톤화시켜 화학식 4의 디올 화합물을 얻는 반응은, 트리올산을 틀루엔과 같은 유기용매 중에서 가열환류하거나 촉매량의 산을 가하여 반응시키는 공지의 통상적인 방법에 따라 수행될 수 있으며(미국 특허 제 4,444,784 호), 알콜과 카르복실산이 축합된 다이머(dimer)형태의 부산물이 함유되지 않은 98%이상의 고순도 및 95%이상의 고수율로 수득할 수 있다.

<45> 결과적으로 본 발명의 가수분해 방법에 따라 수행할 경우 화합물 2의 로바스타틴으로부터 기존에 비하여 10%이상 증가된 90%이상의 고수율 및 98%이상의 고순도로 화합물 4의 디올 화합물을 수득할 수 있다.

<46> 또한, 락톤환의 8'-히드록시기를 t-부틸디메틸실릴기로 보호하는 반응 역시 공지의 방법에 따라 제조될 수 있으며(미국 특허 제 4,444,784 호), 입체적인 효과로 인하여 8'-위치의 히드록시기가 아닌 락تون환의 히드록시기로 반응이 거의 대부분 진행되며, 이 반응 또한 전 단계 화합물의 높은 순도에 기인하여 90%이상의 수율 및 98%이상의 순도로 수득할 수 있다.

<47> 본 발명에 따른 아실화 반응은 딘-스탁 장치와 같은 환류장치를 이용하여 가열환류 하며 상전이촉매인 화학식 9의 사급암모늄할라이드 또는 화학식 10의 사급포스포늄할라이드를 사용하는데 가장 큰 특징이 있는 것으로서, 통상 아실화 반응시 물의 존재가 반응에 큰 영향을 주므로 물과 공비(azeotrope)하며, 비교적 비등점이 낮은 벤젠 중에 반응물들을 혼합하고 가열환류하며 반응시키면 존재하던 물이 용이하게 제거됨으로써 반응이 부반응없이 원하는 방향으로만 진행되어 95%이상의 높은 수율, 98%이상의 순도로 화

학식 7의 화합물을 수득할 수 있다. 또한 상전이촉매인 사급암모늄할라이드 또는 사급포스포늄할라이드를 사용함으로써 반응이 훨씬 더 촉진되어 통상 3일 내지 4일이 지나야 완결되던 반응이 6 내지 8시간이면 완결되는 우수한 효과를 수득할 수 있다.

<48> 상기 반응에서 사용되는 사급암모늄할라이드로는 벤질트리-n-부틸암모늄브로마이드, 벤질트리에틸암모늄브로마이드, n-데실트리메틸암모늄브로마이드, n-도데실트리메틸암모늄브로마이드, n-옥틸트리메틸암모늄브로마이드, 폐닐트리메틸암모늄브로마이드, 테트라-n-부틸암모늄브로마이드, 테트라에틸암모늄브로마이드, 테트라-n-헥실암모늄브로마이드, 테트라메틸암모늄브로마이드, 테트라-n-프로필암모늄브로마이드, 벤질트리에틸암모늄요오다이드, 폐닐트리메틸암모늄요오다이드, 테트라-n-부틸암모늄요오다이드, 테트라-n-헵틸암모늄요오다이드, 테트라-n-헥실암모늄요오다이드, 테트라-n-옥틸암모늄요오다이드, 테트라-n-프로필암모늄요오다이드, 테트라메틸암모늄요오다이드 등이 있으며, 이 중 벤질트리-n-부틸암모늄브로마이드, 테트라-n-부틸암모늄브로마이드가 가장 바람직하다.

<49> 또한, 사급포스포늄할라이드로는 벤질트리페닐포스포늄브로마이드, n-부틸트리페닐포스포늄브로마이드, 메틸트리페닐포스포늄브로마이드, 에틸트리페닐포스포늄브로마이드, n-헵틸트리페닐포스포늄브로마이드, n-헥실트리페닐포스포늄브로마이드, n-프로필트리페닐포스포늄브로마이드, 테트라-n-부틸포스포늄브로마이드, 테트라-n-옥틸포스포늄브로마이드, 테트라페닐포스포늄브로마이드, 테트라페닐포스포늄요오다이드, 메틸트리페닐포스포늄요오다이드 등이 있으며, 이 중 테트라-n-부틸포스포늄브로마이드가 가장 바람직하다.

<50> 본 발명에 따른 사급암모늄할라이드 또는 사급포스포늄할라이드의 사용량은, 화학식 5의 화합물 1.0 당량에 대하여 0.5 내지 3.0 당량을 사용할 수 있으며, 0.8 내지 1.5 당량의 범위가 바람직하다.

<51> 본 발명에 따른 화학식 8의 2,2-디메틸부티릴 클로리드는 2,2-디메틸부탄산으로부터 통상적인 방법(미국특허 제 4,450,171호)을 통하여 제조할 수 있으며, 상업적으로 구입이 가능하고, 그 사용량은 화학식 5의 화합물 1.0 당량에 대하여 1.0 내지 3.0 당량, 바람직하게는 1.3 내지 1.8 당량의 범위이다.

<52> 본 발명의 아실화 반응 단계에서는 반응진행시 유리된 염산을 중화시키기 위하여 화학식 5의 화합물 1.0 당량에 대하여 피리딘 2.0 내지 4.0 당량을 염기로서 첨가할 수 있다.

<53> 이어서 상기 제조된 화학식 7의 화합물을 공지의 방법인 테트라부틸암모늄플로리드와 반응시킴으로써(미국 특허 제 4,444,784 호) 보호기인 t-부틸디메틸실릴기를 제거하여 최종 목적 화합물인 화학식 1의 심바스타틴을 90% 이상의 수율 및 99% 이상의 순도로 수득할 수 있다.

<54> 이하, 본 발명을 실시예에 의거하여 보다 상세하게 설명하고자 하나, 이는 본 발명의 구성 및 작용의 이해를 돋기 위한 것일 뿐이며 본 발명의 범위가 이를 실시예에 한정되는 것은 아니다.

<55> 실시예 1:

<56> 7-[1',2',6',7',8',8a'(R)-헥사히드로-2'(S),6'(R)-디메틸-8'(S)-히드록시-1'(S)-나프틸]-3(R),5(R)-디히드록시 헵탄산의 제조(화학식 3의 화합물)

<57>

화학식 2

화학식 3

<58>

수산화 칼륨 140g을 물 100ml에 용해시키고 얼음중탕을 이용하여 온도를 20°C로 유지시키면서 메탄을 600ml를 서서히 가하였다. 20°C에서 로바스타틴 100g을 가하고 오일 중탕으로 가열환류하여 8 시간 동안 반응시켰다. 물 150ml를 가하고 메탄올을 감압증류하여 제거한 다음 물 550ml와 에테르 300ml를 가한 후 얼음 중탕으로 온도를 5~10°C로 유지시켜, 반응액을 교반하면서 6N-염산을 서서히 가하여 pH를 산성으로 하고 30분 동안 교반시킨 후 여과하고, 물과 에테르 혼합액으로 세척한 다음 건조하여 백색의 결정으로 목적 화합물 82g(수율 : 98%)을 수득하였다.

<59> 순 도 : 98.6%

<60> 용 점 : 128°C

<61> $^1\text{H-NMR}$ (δ , CDCl_3) : 5.98(d, 1H), 5.80(dd, 1H), 5.54(bs, 1H), 4.33(m, 1H), 4.28(m, 1H), 3.98(m, 1H), 2.51(bs, 2H), 1.18(d, 3H), 0.90(d, 3H)

<62> 실시 예 2 :

<63> 6(R)-[2-(8'(S)-히드록시-2'(S),6'(R)-디메틸-1',2',6',7',8',8a'(R)-헥사하이드로나프틸-1'(S))에틸]-4(R)-히드록시-3,4,5,6-테트라하이드로-2H-피란-2-온의 제조(화학식 4의 화합물)

<64>

화학식 3

화학식 4

<65>

실시예 1에서 수득한 화학식 3의 화합물 79g을 에틸 아세테이트 560ml에 가하고,

p-톨루엔슬픈산 0.8g을 가한 다음 상온에서 3시간 동안 교반시켰다. 여기에 헥산 700ml를 넣고 30분간 교반한 후 여과하였다. 이어서, 헥산 100ml로 세척한 후 건조하여 백색 고체로 목적 화합물 73.5g(수율: 98%)을 수득하였다.

<66> 순도 : 98.2%

<67> 용점 : 125 ~ 126 °C

<68> $^1\text{H-NMR}$ (δ , CDCl_3) : 6.0(d, 1H), 5.80(dd, 1H), 5.54(bs, 1H), 4.72(m, 1H), 4.38(m, 1H), 4.23(bs, 1H), 2.68(dd, 2H), 2.39(m, 2H), 2.15~1.78(m, 9H), 1.58~1.18(m, 4H), 1.19(d, 3H), 0.90(m, 1H)

<69> 실시예 3:

<70> 6(R)-[2-(8'(S)-히드록시)-2'(S), 6'(R)-디메틸-1', 2', 6', 7', 8', 8a'(R)-헥사히드로나프탈-1'(S))에틸]-4(R)-(디메틸-3급-부틸실릴옥시)-3, 4, 5, 6-테트라히드로-2H-페란-2-온의 제조(화학식 5의 화합물)

<72> 디클로로메탄 800ml에 상기 실시예 2에서 수득한 화학식 4의 화합물 70g을 가하고 용해시킨 다음 이미다졸 43g을 가하였다. 반응 혼합액에 클로로 t-부틸디메틸실란 43g 을 가하고 25 내지 30℃에서 6시간 동안 교반시킨 다음 반응액을 물 300ml씩으로 3회 세척하고, 0.2N-염산 200ml, 포화중조 100ml, 식염수 100ml로 순차적으로 세척하였다. 유기층을 분리하여 건조하고, 여과 후 감압증류한 다음 생성된 고체에 헥산 300ml를 가하고, 실온에서 30분 동안 교반한 다음 여과 및 건조하여 백색 고체로 목적 화합물 87.6g(수율: 96%)을 수득하였다.

<73> 순도 : 98.5%

<74> 융 점 : 134 ~136°C

<75> $^1\text{H-NMR}$ (δ , CDCl_3) : 6.03(d, 1H), 5.78(dd, 1H), 5.57(m, 1H), 4.70(m, 1H), 4.28(m, 2H),
2.58(d, 2H), 1.19(d, 3H), 0.90(s, 9H), 0.89(d, 3H), 0.1(s, 6H)

<76> 실시예 4:

<7> 6(R)-[2-(8'(S)-2",2"-디메틸부티릴옥시-2'(S),6'(R)-디메틸-1',2',6',7',8',8a'(R)-헥사히드로나프틸-1'(S))에틸]-4(R)-(디메틸-3급-부틸실릴옥시)-3,4,5,6-테트라히드로-2H-페란-2-온의 제조 (화학식 7의 화합물)

<79> 딘-스탁 장치하에서 벤젠 100ml에 벤질트리-n-부틸암모늄브로마이드 10g 및 피리딘 2.3ml를 가하고 30분 가열환류시킨 다음, 2,2-디메틸부티릴 클로리드 5.2ml 및 실시예 3에서 수득한 화학식 5의 화합물 10g을 가하여 8 시간 동안 가열환류한 다음 냉각시키고 에테르 300ml를 가하고 물 300ml씩으로 2회 세척한 후 재차 0.2N-염산 100ml씩으로 2회 세척하였다. 포화증조 수용액 200ml씩으로 2회 세척하고 유기층을 분리한 다음 건조 및 여과한 후 감압증류하여 오일상으로 목적화합물 12.1g(수율 : 98%)을 수득하였다.

<80> 순 도 : 98.3%

<81> $^1\text{H-NMR}$ (δ , CDCl_3) : 6.01(d, 1H), 5.80(dd, 1H), 5.52(bs, 1H), 5.35(bs, 1H), 4.60(m, 1H),
4.30(t, 2H), 2.60(m, 2H), 2.38(m, 2H), 2.20(d, 1H), 1.98~1.25(m, 14H), 1.12(d, 3H),
1.10(d, 3H), 0.95~0.81(m, 15H), 0.1(s, 6H)

<82> 실시예 5 :

<83> 6(R)-[2-(8'(S)-2",2"-디메틸부티릴옥시-2'(S),6'(R)-디메틸-1',2',6',7',8',8a'(R)-헥사하이드로나프탈-1'(S)에틸]-4(R)-히드록시-3,4,5,6-테트라하이드로-2H-피란-2-온의 제조
(화학식 1의 화합물: 심바스타틴)

<84>

화학식 7

화학식 1

<85> 테트라히드로퓨란 100ml에 실시예 4에서 수득한 화학식 7의 화합물 12.3g을 용해시키고 초산 5ml를 가한 다음 1N-테트라부틸암모늄플로리드 63ml를 가하고 상온에서 48시간 동안 교반하였다. 반응액에 에테르 800ml를 가하고 물 150ml씩으로 2회 세척한 다음 0.2N-염산 150ml, 물 150ml, 포화중조수용액 150ml, 소금물 150ml로 순차적으로 세척한 후, 건조하고 여과하고 용매를 감압증류하여 조생성물을 얻고, 이를 에틸 아세테이트와 헥산 중에서 재결정하여 백색 고체로 목적 화합물 8.8g(수율:91%)을 수득하였다.

<86> 순 도 : 99.2%

<87> 용 점 : 133 ~ 135°C

<88> $^1\text{H-NMR}$ (δ , CDCl_3) : 6.0(d, 1H), 5.78(dd, 1H), 5.51(bs, 1H), 5.37(m, 1H), 4.62(m, 1H), 4.39(bs, 1H), 2.92(m, 1H), 2.64~2.74(m, 2H), 2.4(m, 1H), 1.13(s, 6H), 0.86(t, 3H)

【발명의 효과】

<89> 이상에서 보듯이 본 발명의 방법에 따르면, 고수율 및 고순도로 심바스타틴을 수득할 수 있으며, 총생산 시간이 대폭 단축됨으로써 제조단가 또한 혁신적으로 낮출 수 있다.

【특허청구범위】

【청구항 1】

- 1) 화학식 2의 로바스타틴을 수산화 칼륨-메탄올-물 혼합액 존재하에서 가수분해 반응시켜 화학식 3의 트리올산 결정을 제조하는 단계;
- 2) 상기 수득된 화학식 3의 트리올산을 재락톤화시킨 다음, 락تون화의 히드록시기의 보호반응을 수행하여 화합물을 제조하는 단계; 및
- 3) 상기 수득된 화학식 5의 화합물과 화학식 8의 2,2-디메틸부티릴 클로리드를 유기용매 중에서 상전이촉매인 화학식 9의 사급암모늄할라이드 또는 화학식 10의 사급포스포늄할라이드를 첨가하면서 가열환류시킴으로써 아실화 반응을 수행하여 화학식 7의 보호된 심바스타틴을 제조한 다음 탈보호 반응을 수행하는 단계
를 포함하는 것을 특징으로 하는 화학식 1의 심바스타틴의 제조방법:

화학식 1

화학식 2

1020020001118

출력 일자: 2002/11/7

화학식 3

화학식 5

화학식 7

1020020001118

출력 일자: 2002/11/7

화학식 8

화학식 9

화학식 10

상기 식에서,

R^1 은 탄소수 1 내지 20개의 알킬 또는 페닐이고,

R^2 는 탄소수 1 내지 20개의 알킬, 페닐 또는 벤질이며,

X 는 브롬 또는 요오드이다.

【청구항 2】

제 1 항에 있어서,

상기 단계 1)에서, 수산화 칼륨을 화학식 2의 로바스타틴 1.0 당량에 대하여 5.0 내지 15 당량의 양으로 사용하는 것을 특징으로 하는 방법.

【청구항 3】

제 1 항에 있어서,

상기 단계 1)에서, 물과 메탄올을 1 : 2 내지 1 : 20의 부피비로 사용하는 것을 특징으로 하는 방법.

【청구항 4】

제 1 항 내지 제 3 항 중 어느 한 항에 있어서,

상기 단계 1)에서, 물과 메탄올 혼합액을 수산화 칼륨에 대하여 1 내지 8배(v/wt) 사용하는 것을 특징으로 하는 방법.

【청구항 5】

제 1 항에 있어서,

상기 단계 3)에서 사용되는 상전이 촉매가 벤질트리-n-부틸암모늄브로마이드, 테트라-n-부틸암모늄브로마이드 및 테트라-n-부틸포스포늄브로마이드 중에서 선택된 것임을 특징으로 하는 방법.

【청구항 6】

제 1 항 또는 제 5 항에 있어서,

상기 단계 3에서 상전이 촉매를 화학식 5의 화합물 1.0 당량에 대하여 0.5 내지 3.0 당량 사용하는 것을 특징으로 하는 방법.

1020020001118

출력 일자: 2002/11/7

【청구항 7】

제 1 항에 있어서,

상기 단계 3)에서 화학식 8의 2,2-디메틸부티릴 클로리드를 화학식 5의 화합물 1.0 당량에 대하여 1.0 내지 3.0 당량 사용하는 것을 특징으로 하는 방법.

【청구항 8】

제 1 항에 있어서,

상기 단계 3)에서 아실화 반응을 딘-스탁 장치하에서 벤젠을 가열환류시킴으로써 수행하는 것을 특징으로 하는 방법.