

Zusammenfassung Modul 127

Server betreiben

Copyright © by Janik von Rotz

Version: 01.00 Freigabe: 20.05.11

Inhaltsverzeichnis

1.	Übersicht Serverkomponenten	3
1.1	Unterschiede HW Server <> PC Hardware	3
1.2	Dienste	3
1.3	Redundanz in Server	3
2.	RAID-Systeme	
2.1	RAID-0	4
2.2	RAID-1	4
2.3	RAID-5	5
2.4	RAID-10	5
2.5	Hot Spare	5
2.6	Hot Swapping	5
2.7	RAID FACTS	6
3.	Filesysteme	6
4.	Wichtigste Filesysteme im Vergleich	
4.1	Berechtigungen in Filesystemen	8
5.	CMD Commands	8
5.1	Nslookup	8
5.1.1	Syntax	8
5.1.2	Parameters	8
5.1.3	Beispiele	g
6.	Ports und Dienste	10
6.1	DHCP	10
6.1.1	Vorteile	10
6.1.2	Nachteile	10
6.2	WINS	10
7.	IP Rechen	11
7.1	Beispiele	11
7.2	Subnetz Aufteilungen	13
7.3	Berechnen Broadcast und NetzID	
8.	DFS (Distributet File System)	15
8.1	Grundfunktion	15
8.2	Begriffe	15
8.3	Kompatibilität	16
8.4	Vorrausetzungen	16
8.5	Betriebsmodi	
8.6	DFS und DFS-Replikation	
8.6.1	Sicherung von Daten	
8.7	Ausfallsicherheit	
8.7.1	Empfindliche Stellen	
8.7.2	Voraussetzungen für eine redundante Dateiserver-Umgebung	
8.8	Standortübergreifendes DFS	18

Änderungskontrolle				
Version	Datum	Autor	Beschreibung der Änderung	Status
<<#>>	< <datum>></datum>	< <name>></name>		

Referenzierte Dokumente

Nr.	Dok-ID	Titel des Dokumentes / Bemerkungen
<<#>>	<<#>>	< <titel des="" dokumentes="" name="">></titel>

Titel:	Zusammenfassung Modul 127	Тур:	Hanbuch	Version:	01.00
Thema:	Server betreiben	Klasse:	öffentlich	Freigabe:	20.05.11
Autor:	Janik von Rotz Status: Freigegeben				20.05.11 / Mai 11
Ablage/Name:	c:\Dokumente und Einstellungen\ILZ32\Eigene	Registratur:			
	Dateien\Dropbox\exchange\teil_abschluss_prüfungen\zusammenfassung\m127\modul127_zus				

1. Übersicht Serverkomponenten

Operating Systems	Hardware	Netzwerkkor	mponenten	Know-How
		Aktiv	Passiv	
Windows Server	RAM (extrem viel)	Switch	Kabel	Netzwerk Topologie
Sun Solaris	CPU (Multi-Core)	Router	Schalter	Routing
Opensuse Linux	Netzwerkkarten NIC (Network Interface Controller)	Gateaway	Stecker	Clustering
Linux Server allg.	Erweiterbares Motherborad	Hub	Buchsen	Net Protokolls
	Harddisk	Bridge		Netzwerk allg.
	Raid Controller	Repeater		Server OS Kenntnisse
	Power Suply	Access Point		
	Blade System			

Version: 01.00 vom 20.05.11

1.1 Unterschiede HW Server <> PC Hardware

- Leistungsfähigkeit
- Erhöhte Lebensdauer
- Spezialisierter
- Unix BSD
- OS-X Server

1.2 Dienste

- Netzwerkdienste
 - o DHCP
 - o DNS
- Applikationsdienste
 - o Web
 - o Mail
 - o FTP
 - o File

1.3 Redundanz in Server

- Harddisk (RAID)
- CPU
- Netzwerkkarte
- Ganze Systeme
- Netzteil
- (USV) Unterbrechungsfreie Strom Versorgung
- RAM
- Ventilatoren (FAN)

2. RAID-Systeme

Der Betrieb eines RAID-Systems setzt mindestens zwei Festplatten voraus. Die Festplatten werden gemeinsam betrieben und bilden einen Verbund, der unter mindestens einem Aspekt betrachtet leistungsfähiger ist als die einzelnen Festplatten. Mit RAID-Systemen kann man folgende Vorteile erreichen:

- Erhöhung der Ausfallsicherheit (Redundanz)
- Steigerung der Transferraten (Leistung)
- · Aufbau großer logischer Laufwerke
- Austausch von Festplatten und Erhöhung der Speicherkapazität während des Systembetriebes
- Kostenreduktion durch Einsatz mehrerer preiswerter Festplatten

Die genaue Art des Zusammenwirkens der Festplatten wird durch den *RAID-Level* spezifiziert. Die gebräuchlichsten RAID-Level sind RAID 0, RAID 1 und RAID 5. Sie werden unten beschrieben.

Version: 01.00 vom 20.05.11

2.1 RAID-0

RAID Level 0

Die Daten werden über alle am RAID beteiligten Festplatten verteilt. Das parallele Lesen respektive Schreiben auf mehreren Laufwerken steigert zwar die Durchsatzrate, senkt jedoch die Sicherheit der Daten: Fällt eine Platte des Verbunds aus, sind alle Daten verloren.

2.2 RAID-1

RAID Level 1

Bei RAID 1 werden die Daten auf mehrere Festplatten gespiegelt. Da die Daten mehrfach vorhanden sind ist ein Festplattenausfall kein Problem mehr.

2.3 RAID-5

RAID Level 5

RAID 5 verteilt alle Daten und zusätzliche Paritätsinformationen gleichmäßig über die Festplatten. Dadurch steigen die Lese- und Schreibraten, obwohl die Datenverfügbarkeit gewährt bleibt.

2.4 RAID-10

RAID Level 10

RAID 10 ist eine Kombination aus RAID 1 und 0. Dabei werden wie bei RAID 1 die Festplatten gespiegelt, diese Daten jedoch anschließend bei bei RAID 0 mittels Striping über die Festplatten verteilt. Die Performance ist insgesamt gesteigert obwohl die Daten gesichert sind wie bei RAID 1.

2.5 Hot Spare

Eine Hot-Spare-Festplatte ist eine in einem System in Reserve gehaltene (normalerweise nicht verwendete) Festplatte. Fällt eine andere Platte aus, wird die Hot-Spare-Platte im laufenden Betrieb automatisch anstelle der defekten eingebunden. Die Festplatte ist im fehlerfreien Betrieb abgeschaltet und wird erst bei Bedarf per Software angeschaltet. Dies dient zur Schonung der mechanischen Bestandteile der Festplatte. Dies ist insbesondere in einem RAID sinnvoll, in dem die Daten der defekten Festplatte automatisch rekonstruiert werden können (Rebuild).

Während des Rebuilds auf die Hotspare-Platte lässt die Performance des RAID deutlich nach. Der Rebuild benötigt bei RAID-1 weniger Zeit als bei RAID-5, da bei RAID-5 zusätzlich Paritätsinformationen rekonstruiert werden müssen. Je mehr Festplatten in einem RAID-5-Verbund sind, desto länger dauert der Rebuild bzw. desto schlechter ist die Performance während eines Defekts einer Festplatte.

2.6 Hot Swapping

Hot Swapping ist die Möglichkeit, Festplatten im laufenden Betrieb auszutauschen. Dazu muss der Bus-Controller Hot-Plugging unterstützen (nur SCSI, SAS oder SATA). Damit es nicht zu Datenverlust führt, ist ein Austausch nur in Arrays mit redundanter Datensicherung möglich.

2.7 RAID FACTS

Behauptung	Stimmt	Stimmt nicht
Win XP unterstützt kein RAID 5	Х	
WIN XP unterstützt gar kein Software-RAID		Х
Win XP unterstützt kein Hardware RAID		Х
Ein Hochvergügbarkeitsystem braucht eine UPS, Raidkontroller, redundante Powersupplys und ein Backupsystem (Da gäbe es noch weiter Punkte)	Х	
Eine USV ist unumgänglich um ein RAID System zu unterstützen		Х
Eine USV und eine UPS sind das gleiche	Х	
RAID 1 steigert die Performance beim lesen und schreiben von Daten		Х
Für RAID 5 gibt es Zusatztreiber	Х	
Ein Backup ersetzt ein RAID System		Х

3. Filesysteme

Eigenschaften	FAT12	FAT16	VFAT	FATX	FAT32	NTFS	HPFS	Ext4
8.30 Format Unterstützung	Х	Х	Х	Х	Х	Х	Х	Х
Automatische Komprimierung				Х	Х	Х	Х	Х
Bei Absturz Recovery möglich					Х	Х	Х	Х
Dateinamen im UNICODE		Х	Х					
Hot Fixing						Х	Х	Х
Lange Dateinamen			Х	Х	Х	Х	Х	Х
Max. Anzahl Clusters	4'086	65'526	65'526		~268'4 35'456			
Partitionen über 2GB					Х	Х	Х	Х
RAID					Х	Х	Х	Х

4. Wichtigste Filesysteme im Vergleich

File system	Maximum filename length	Maximum pathname length	Maximum file size	Maximum volume size
exFAT	226 characters	No limit defined	127 PB (127 × 10245 bytes)	64 ZB (64 × 10247 bytes), 512 TB re- commended
TexFAT	247 characters	No limit defined	2 GB	500 GB Tested
FAT12	8.3 (255 UTF-16 code units with LFN)	No limit defined	32 MB	1 MB to 32 MB
FAT16	8.3 (255 UTF-16 code units with LFN)	No limit defined	2 GB	16 MB to 2 GB
FAT32	8.3 (255 UTF-16 code units with LFN)	No limit defined	4 GB	512 MB to 8 TB
FATX	42 bytes	No limit defined	2 GB	16 MB to 2 GB
MFS	255 bytes	No path (flat filesystem)	226 MB	226 MB
HFS	31 bytes	Unlimited	2 GB	2 TB
HPFS	255 bytes	No limit defined	2 GB	2 TB[18]
NTFS	226 characters	32,767 Unicode characters with each path component (directory or filename) up to 226 characters long	16 EB (16 × 10246 bytes)	16 EB
HFS Plus	255 UTF-16 code units	Unlimited	slightly less than 8 EB	slightly less than 8 EB
ext2	255 bytes	No limit defined	16 GB to 2 TB[5]	2 TB to 32 TB
ext3	255 bytes	No limit defined	16 GB to 2 TB[5]	2 TB to 32 TB
ext4	226 bytes	No limit defined	16 GB to 16 TB ^{[5][23]}	1 EB
Rei- serFS	4,032 bytes/226 characters	No limit defined	8 TB[25] (v3.6), 4 GB (v3.5)	16 TB
Reiser4	3,976 bytes	No limit defined	8 TB on x86	Unknown

4.1 Berechtigungen in Filesystemen

Beschränkte Berechti- gung	Vollzugriff	Ändern	Lesen & Ausführen	Ordnerinhalt auflisten	Lesen	Schreiben
Ordner durchsuchen /Datei ausführen	Х	Х	Х	Х		
Ordner auflisten /Daten lesen	Х	Х	Х	Х		
Attribute lesen	Х	X	Х		Х	
Erweiterte Attribute lesen	Х	X	Х		X	
Dateien erstellen/ Daten schreiben	X	X				X
Ordner erstellen /Daten anhängen	Х	X				Х
Attribute schreiben	Х	Х				X
Erweiterte Attribute schreiben	Х	Х				Х
Untergeordnete Ordner und Dateien löschen	X	X				
Löschen	Х	X				
Berechtigungen lesen	X					
Berechtigungen ändern	Х					
Besitz übernehmen	Х					
Synchronisieren	Х					

5. CMD Commands

5.1 Nslookup

Displays information that you can use to diagnose Domain Name System (DNS) infrastructure. Before using this tool, you should be familiar with how DNS works. The Nslookup command-line tool is available only if you have installed the TCP/IP protocol.

5.1.1 Syntax

nslookup [-SubCommand ...] [{ComputerToFind| [-Server]}]

5.1.2 Parameters

- SubCommand ... : Specifies one or more nslookup subcommands as a command-line option. For a list of subcommands, see Related Topics.
- ComputerToFind: Looks up information for ComputerToFind using the current default DNS name server, if no other server is specified. To look up a computer not in the current DNS domain, append a period to the name.
- Server: Specifies to use this server as the DNS name server. If you omit -Server, the default DNS name server is used.

Version: 01.00 vom 20.05.11

• { help | ? } : Displays a short summary of nslookup subcommands.

5.1.2.1 Type Parameter

Set ty[pe]=ResourceRecordType

ResourceRecordType: Specifies a DNS resource record type. The default resource record type is A. The following table lists the valid values for this command.

Value	Description
Α	Specifies a computer's IP address.
ANY	Specifies all types of data.
CNAME	Specifies a canonical name for an alias.
GID	Specifies a group identifier of a group name.
HINFO	Specifies a computer's CPU and type of operating system.
MB	Specifies a mailbox domain name.
MG	Specifies a mail group member.
MINFO	Specifies mailbox or mail list information.
MR	Specifies the mail rename domain name.
MX	Specifies the mail exchanger.
NS	Specifies a DNS name server for the named zone.
PTR	Specifies a computer name if the query is an IP address; otherwise, specifies the pointer to other information.
SOA	Specifies the start-of-authority for a DNS zone.
TXT	Specifies the text information.
UID	Specifies the user identifier.
UINFO	Specifies the user information.
WKS	Describes a well-known service.

Version: 01.00 vom 20.05.11

{ help | ? } : Displays a short summary of nslookup subcommands

5.1.3 Beispiele

Technische Mailadresse von heise.de von green.ch

- nslookup –ty=ns green.ch
 - o dns1.agrinet.ch
- nslookup –ty=soa heise.de dns1.agrinet.ch

IP Adresse von www.bild.de mit bluewin NS

- nslookup –ty=ns bluewin.ch
 - o dns1.bluewin.ch
- nslookup –ty=a www.bild.de dns1.bluewin.ch

6. Ports und Dienste

Portnummer	Dienst	Beschreibung
7	Echo	Zurücksenden empfangener Daten
20	FTP-Data	Dateitransfer (Datentransfer vom Server zum Client)
21	FTP	Dateitransfer (Initiierung der Session und Senden der FTP-Steuerbefehle durch den Client)
22	SSH	Secure Shell
23	Telnet	Terminalemulation
25	SMTP, ESMTP	E-Mail-Versand
53	DNS	Auflösung von Domainnamen in IP-Adressen
67	DHCP	Zuweisung der Netzwerkkonfiguration an Clients
80	HTTP	Webserver
110	POP3	Client-Zugriff für E-Mail-Server
119	News, NNTP	
143	IMAP	Client-Zugriff für E-Mail-Server
194	IRC	Internet Rely Chat Online Diskussionen im Internet "Schwarze Bretter"
443	HTTPS	sicherer Webserver
548	AFP over IP	Datei- und Druckdienste (Mac OS und Mac OS X)
993	IMAPS	sicherer Client-Zugriff für E-Mail-Server
995	POP3S	sicherer Client-Zugriff für E-Mail-Server
1433	Microsoft SQL Ser- ver	Zugriff auf SQL-Server-Datenbanken
1521	Oracle	Zugriff auf Oracle-Datenbanken
3050	Firebird	Zugriff auf Firebird-Datenbanken
3306	MySQL	Zugriff auf MySQL-Datenbanken
3389	RDP	Windows Remotedesktopzugriff, Windows Terminal Services
5190	ICQ	Instant-Messaging-Programm ICQ
5432	PostgreSQL	Zugriff auf PostgreSQL-Datenbanken
6667	IRC	Chatserver
8080	alternativer HTTP Port	Webserver (Standardport bei Apache Tomcat)

= Wichtige Ports und deren Dienste

= Meine Ergänzungen für wichtige Ports und deren Dienste

6.1 DHCP

6.1.1 Vorteile

- Weniger Verwaltungsaufwand
- Zentrale Konfiguration
- Weniger IP-Adressen nutzen, wenn nur temporäre User vorhanden
- Dyn DNS => Keine Host Datei

6.1.2 Nachteile

• Falls Subnetzte vorhanden, braucht es DHCP Relay Agent

6.2 WINS

• Protokolliert und speichert Namensauflösungsanfragen in Datenbank

- · Gibt Antwort bevor Broadcast entsteht
- Reduziert Traffic im Netz

7. IP Rechen

7.1 Beispiele

Bezeichnung	Binär	Adresse, Bits, Anzahl	Bemerkung
IP		180.170.160.55	
Klasse		В	Definiert durch erstes Oktett in IP Adresse
Netzmaske		255.255.0.0	Definiert durch Klasse
Subnetzmaske	1.1.11000000.0	255.255.192.0	
Alternative Schreibweise, CIDR-Notation		18	Auslesbar aus der Anzahl Bits auf 1 in der Subnetzmaske
Hosts		2 ¹⁴ -2	Anzahl Nullen in Subnetzmaske als Exponent zur Basis 2 minus 2, einmal für Broadcast Adressen und ein zweites Mal für Netzadresse
Subnetze		2 ²	Anzahl Bits der Subnetzmaske minus der Anzahl der Bits der Netzmaske als Exponent zur Basis 2
Netz ID: Subnetz	1.1.1100 ⁰ 0000.0	180.170.128.0	Alle Host Bits auf null setzen
Plus IP (Hostbits	<u>1.1.1000'0000.0</u>		
auf null)	1.1.1000'0000.0		
Broadcast	1.1.1100 ⁰ 0000.0	180.170.191.255	Alle Host Bits auf Eins setzen
	<u>1.1.1011'1111.1</u>		
	<i>1.1.10</i> 11'1111.1		
Host-ID	0.0.00000000000	0.0.32.55	IP-Adresse minus Netz-ID oder alle Subnetz
	<u>1.1.1011'1111.1</u>		Bits und Netz Bits auf null setzen.
	0.0.0010'0000.00110111		

Bezeichnung	Binär	Adresse, Bits, Anzahl	Bemerkung	
IP		97.233.176.192		
Klasse		Α	Definiert durch erstes Oktett in IP Adresse	
Netzmaske		255.0.0.0	Definiert durch Klasse	
Subnetzmaske		255.255.224.0		
Alternative Schreibweise, CIDR-Notation	1.1.1110'0000.0	19	Auslesbar aus der Anzahl Bits auf 1 in der Subnetzmaske	
Hosts	1.1.1110'0000.0	2 ¹³ -2	Anzahl Nullen in Subnetzmaske als Exponent zur Basis 2 minus 2, einmal für Broadcast Adressen und ein zweites Mal für Netzadresse	
Subnetze	1.1.1110°0000.0	2 ¹¹	Anzahl Bits der Subnetzmaske minus der Anzahl der Bits der Netzmaske als Expo- nent zur Basis 2	
Netz ID:	1.1110'1001.1010'0000.0	97.233.160.0	Alle Host Bits in IP auf null setzen	
Broadcast	1.1110'1001.101 1'1111.1	97.233.191.255	Alle Host Bits in IP auf Eins setzen	
Host-ID	0.0000'0000.0001'0000.1	0.0.16.192	IP-Adresse minus Netz-ID oder alle Subnetz Bits und Netz Bits auf null setzen + IP.	

Bezeichnung	Binär	Adresse, Bits, Anzahl	Bemerkung	
IP		195.149.87.178		
Klasse		С	Definiert durch erstes Oktett in IP Adresse	
Netzmaske		255.0.0.0	Definiert durch Klasse	
Subnetzmaske		255.255.255.252		
Alternative Schreibweise, CIDR-Notation	1.1.1.1111'1100	30	Auslesbar aus der Anzahl Bits auf 1 in der Subnetzmaske	
Hosts	1.1.1.1111'1100	2 ² -2	Anzahl Nullen in Subnetzmaske als Exponent zur Basis 2 minus 2, einmal für Broadcast Adressen und ein zweites Mal für Netzadresse	
Subnetze	1.1.1.1111'1100	2 ⁶	Anzahl Bits der Subnetzmaske minus der Anzahl der Bits der Netzmaske als Expo- nent zur Basis 2	
Netz ID:	1.1.1.1011'0010	195.149.87.176	Alle Host Bits in IP auf null setzen	
Broadcast	1.1.1.1011'0011	97.233.191.179	Alle Host Bits in IP auf Eins setzen	
Host-ID	0.0.0.0000'0010	0.0.0.2	IP-Adresse minus Subnetz oder alle Subnetz Bits auf null setzen + IP.	

Bezeichnung	Binär	Adresse, Bits, Anzahl	Bemerkung	
IP		154.71.234.82.		
Klasse		255.255.252.0	Definiert durch erstes Oktett in IP Adresse	
Netzmaske		255.255.0.0	Definiert durch Klasse	
Subnetzmaske		255.255.255.252		
Alternative Schreibweise, CIDR-Notation		22	Auslesbar aus der Anzahl Bits auf 1 in der Subnetzmaske	
Hosts		2 ¹⁰ -2	Anzahl Nullen in Subnetzmaske als Expo- nent zur Basis 2 minus 2, einmal für Broadcast Adressen und ein zweites Mal für Netzadresse	
Subnetze		2 ⁶	Anzahl Bits der Subnetzmaske minus der Anzahl der Bits der Netzmaske als Expo- nent zur Basis 2	
Netz ID:	1111'1100	154.71.232.0	Alle Host Bits in IP auf null setzen	
	1110'1000			
Broadcast		154.71.235.255	Alle Host Bits in IP auf Eins setzen	
Host-ID		0.0.2.82	IP-Adresse minus Subnetz oder alle Subnetz Bits auf null setzen + IP.	

7.2 Subnetz Aufteilungen

Netzwerk- anteil in Bit	Hostanteil in Bit	Subnetz- anzahl *)	Hostanzahl **)	Subnetzmaske	
8	24	1	16777216	255.0.0.0 Klasse A	
9	23	2	128*65536	255. 128 .0.0	
10	22	4	64*65536	255. 192 .0.0	
11	21	8	32*65536	255.224.0.0	
12	20	16	16*65536	255.240.0.0	
13	19	32	8*65536	255.248.0.0	
14	18	64	4*65536	255. 252 .0.0	
15	17	128	2*65536	255. 254 .0.0	
16	16	1	65536	255.255.0.0 Klasse B	
17	15	2	128*256	255.255. 128 .0	
18	14	4	64*256	255.255. 192 .0	
19	13	8	32*256	255.255. 224 .0	
20	12	16	16*256	255.255. 240 .0	
21	11	32	8*256	255.255. 248 .0	
22	10	64	4*256	255.255. 252 .0	
23	9	128	2*256	255.255. 254 .0	
24	8	1	256	255.255.255.0 Klasse C	
25	7	2	128	255.255.255. 128	
26	6	4	64	255.255.255. 192	
27	5	8	32	255.255.255. 224	
28	4	16	16	255.255.255.240	
29	3	32	8	255.255.255. 248	
30	2	64	4	255.255.255. 252	

7.3 Berechnen Broadcast und NetzID

Hier sieht man den sogenannten Subnetkuchen, dieser wird für jedes zusätzliche Subnetbit geteilt.

Wenn man nun den Bereich bestimmt, in welchem die Adresse liegt kann man ganz einfach die Broadcast Adresse (ungerade) am Ende des Bereichs lesen und die Netz-ID (gerade) am Anfang des Bereichs.

Ab vier Bits lässt sich der Kuchen jedoch nur schwer weiterteilten. Für diese Problem gibt es die nächste Methode das Schritte zählen.

Man für die ersten drei Bits der Subnetzmaske den Bereich mit Hilfe des Kuchen fest und Beginnt für die gesamte Anzahl Teilbits von unteren Anfang des Bereichs hinaufzuzählen bis man den neuen genaueren Bereich des geteilten IP Oktetts findet.

In diesem Bereich definiert man genau gleich wie beim Kuchen die Broadcast und Netz-ID Adresse.

!Bei Broadcast 1 minus rechnen, da ungerade!

Teilbits	Schritte	Berechnung Restliche Bits als Exponent zu 2	Kommentar
4 Bit Mas- ke	16er Schritte	24	
5 Bit Mas- ke	8er Schritte	2 ³	
6 Bit Mas- ke	4er Schritte	2 ²	
7 Bit Mas- ke	2er Schritte	2 ¹	
7 Bit Mas- ke	1er-Schritte	2 ⁰	Nicht nötig, da Broadcast, Netz-ID und vergebene IP Adresse die gleichen sind. Wird meistens für IP Vergabe durch Provider angewendet

8. DFS (Distributet File System)

Eine sehr interessante Möglichkeit im Windows-Umfeld ist DFS, das verteilte Dateisystem (Distributed File System). Viele Administratoren denken beim Stichwort DFS vor allem an »Verschiedene Server unter einer Freigabe«, was ja auch durchaus richtig ist.

8.1 Grundfunktion

- Der Client verbindet sich mit dem DFS-Root. Im Fall eines Domänenstammes ist dies der Name der Domäne und des DFS-Stammes, also \\alpha.intra\Daten.
- In dieser Freigabe sieht man diverse Unterverzeichnisse, die jeweils auf die Freigabe eines Servers verweisen.
- Datenpfade: Der Zugriff auf die Daten des Dateiservers erfolgt direkt nicht über den Server, der den DFS-Root führt.

8.2 Begriffe

Vorherige Begriff	Aktualisierte Begriff	Definition
Verknüpfung	Ordner	Alle Ordner, der im Namespace nach dem \\ServerOrDomainName\RootName angezeigt wird. Ein Ordner kann optionalen Ordner Ziele haben.
Verknüpfungsziel	Ordner Ziel	UNC ein Universal (-Pfad Naming Convention) eines freigegebenen Ordners oder einen anderen Namespace, der einen Ordner in einem Namespace zugeordnet ist.
DFS-Stamm	Stamm- Namespace	Der übergeordnete Ordner im Namespace. \\ServerOrDomainName\RootName ist z. B. der Namespacestamm.
Stammverzeichnis	Namespace	Eine virtuelle Struktur von Ordnern, die mit \\ServerOrDomainName\RootName beginnt.
Root-server	Namespace- server	Einen Server, einen namespace

8.3 Kompatibilität

Betriebssystem	DFS-Client	DFS-Root	DFS-Ziel
Windows Server 2008	Ja	Ja	Ja
Windows Vista	Ja	Nein	Ja
Windows Server 2003 (Web, Standard, Enterprise, Datacenter)	Ja	Ja	Ja
Windows XP	Ja	Nein	Ja
Windows 2000 Server	Ja	Ja	Ja
Windows 2000 Professional	Ja	Nein	Ja
Windows NT4 Server	Ja	Ja (kein Domain- Mode)	Ja
Windows NT4 Workstation	Ja	Nein	Ja
Windows 98/Me	Ja (kein Domain- Mode)	Nein	Ja

8.4 Vorrausetzungen

- DFS-Client: Diese Betriebssysteme k\u00f6nnen als Client auf DFS-Shares zugreifen.
- DFS-Root: Ein DFS-Root ist der primäre Anlaufpunkt, wenn ein Client auf eine DFS-Struktur zugreifen möchte.
- DFS-Ziel: Diese Server stellen Ressourcen (Freigaben) innerhalb des DFS-Stammes zur Verfügung.

8.5 Betriebsmodi

Unter der Voraussetzung, dass ein Active Directory in Ihrer Umgebung vorhanden ist, können Sie einen Domänenstamm oder einen eigenständigen Stamm erstellen:

- Auf einen DFS-Domänenstamm greifen Sie wie in dem zuvor gezeigten Beispiel zu, also über \\domain.int\stammname.
- Ein »eigenständiger Stamm« ist immer an »seinem« Server aufgehängt. Der Zugriff erfolgt über \\computername\stammname.

8.6 DFS und DFS-Replikation

- Eine DFS-Verknüpfung verweist nicht nur auf ein Ziel, sondern auf mehrere Ziele, die auf verschiedenen Servern zu finden sind; es wird also auf mehrere Freigaben verwiesen.
- Durch geeignete Maßnahmen werden die Freigaben synchron gehalten.

8.6.1 Sicherung von Daten

- Richten Sie einen Domänen-DFS-Stamm ein. In den Standorten sollte jeweils ein DFS-Root vorhanden sein.
- Legen Sie für die Dateifreigaben der Standorte jeweils Verknüpfungungen im DFS-Stamm an.
- Legen Sie die Dateifreigabe des Standorts und eine Dateifreigabe in der Zentrale als DFS-Ziel an, und richten Sie die Replikation mittels DFS-Replikation ein.
- Sichern Sie die Dateifreigabe in der Zentrale im Rahmen der »normalen« Datensicherung der Zentrale.

8.7 Ausfallsicherheit

8.7.1 Empfindliche Stellen

 am DFS-Root, also an der »Anlaufstelle« der Clients, an denen überhaupt die über DFS bereitgestellten Ziele dargestellt werden

Version: 01.00 vom 20.05.11

• an den DFS-Zielen (d. h. den Freigaben auf den Servern) selbst

8.7.2 Voraussetzungen für eine redundante Dateiserver-Umgebung

- Verwendung eines DFS-Domänenstamms
- Redundante Active Directory-Domänencontroller: Steht kein Active Directory zur Verfügung, finden die Clients gar nichts!
- Redundante DFS-Roots: Dies kann im DFS-Snap-In konfiguriert werden (die DFS-Roots k\u00f6nnten beispielsweise von den Dom\u00e4nencontrollern bereitgestellt werden). Wichtig: Roots f\u00fcr dom\u00e4nenbasiertes DFS k\u00f6nnen nicht auf Clustern liegen!
- Redundante DFS-Ziele: Für jede DFS-Verknüpfung müssen mindestens zwei Ziele (also Dateiserver mit entsprechenden Freigaben) eingerichtet werden, die optimalerweise durch DFS-Replikation synchron gehalten werden.

8.8 Standortübergreifendes DFS

- Der Benutzer wird jeweils zu dem DFS-Root an seinem Standort geführt.
- Der Benutzer wird jeweils zu dem DFS-Ziel (Freigabe auf Fileserver) an seinem Standort geführt.
- Falls DFS-Root oder DFS-Ziel ausfallen, gibt es zwei Möglichkeiten:
 - Sofern ein weiterer Server am Standort vorhanden ist, wird der Benutzer auf diesen geleitet.
 - Ist kein weiterer Server am Standort, wird der Benutzer zu einem Server an einem entfernten Standort geführt.