RICOH

RP122x Series

400 mA Low Noise and Low Supply Current LDO Regulator

No.EA-403-210426

OVERVIEW

The RP122x is an LDO regulator that provides low output noise, high ripple rejection and fast response characteristics, achieved by low supply current. This device is suitable not only for noise-sensitive applications such as high-performance analog circuits, but also for various applications.

KEY BENEFITS

- Achieves Low Noise, High PSRR and Fast Response.
- Provides Saving Space by Adopting of 4-pin Small Package without Noise Bypass Capacitor.
- Provides Long-Duration of Operation for Battery-powered Equipment by Low Supply Current of 9.5 μA (Typ.), despite the low-noise LDO.

KEY SPECIFICATIONS

- Input Voltage Range (Max.Rating):1.9 V to 5.5 V (6.0 V)
- Output Voltage Range: 1.2 V to 4.8 V (0.1 V step)
- Output Voltage Accuracy: ±0.8% (V_{SET} ≥ 1.8 V, Ta = 25°C)
- Supply Current: Typ. 9.5 μA
- Output Noise: Typ. 8 μVrms (I_{OUT} = 250 mA)
- Ripple Rejection: Typ. 90 dB (f = 1kHz)
 - Typ. 85 dB (f = 10kHz) Typ. 65 dB (f = 100kHz)
- Dropout Voltage: Typ. $0.145 \text{ V} (I_{\text{OUT}} = 400 \text{ mA}, V_{\text{SET}} = 2.8 \text{ V}, \text{RP122Z})$
 - Typ. $0.170 \text{ V} (I_{\text{OUT}} = 400 \text{ mA}, V_{\text{SET}} = 2.8 \text{ V}, \text{RP122K})$
- Protection Features: Thermal Shutdown Protection (Detection Temp. Typ.165°C)
 - Inrush Current Limit at Typ.250mA for appr.700µs period after startup
- Ceramic Capacitor (C_{IN}, C_{OUT}): 1.0 µF or more (No Need of Noise Bypass Capacitor)

TYPICAL APPLICATIONS

Without a bypass capacitor for noise

APPLICATIONS

- Mobile Phones and Tablets, Digital Cameras, Audio Devices, and Battery-powered Equipment
- RF Modules
- Clock Generator: VCO, PLL, etc.
- Noise-sensitive Devices: ADC, DAC

PACKAGE

WLCSP-4-P8 0.64 x 0.64 x 0.36 (mm)

WLCSP-4-P12 0.64 x 0.64 x 0.26 (mm)

DFN(PLP)1010-4 1.00 x 1.00 x 0.6 (mm)

SELECTION GUIDE

The set output voltage and the auto-discharge function⁽¹⁾ are user-selectable.

Product Name	Package Quantity per Reel		Pb Free	Halogen Free
RP122Zxx1*-TR-F	WLCSP-4-P8	5,000 pcs	Yes	Yes
RP122Zxx3*-TR-F	WLCSP-4-P12	10,000 pcs	Yes	Yes
RP122Kxx1*-TR	DFN(PLP)1010-4	10,000 pcs	Yes	Yes

xx: Specify the set output voltage (V_{SET}) within the range of 1.2 V to 4.8 V in 0.1 V steps.

The voltage in 0.05 V step is shown as follows.

Ex. 1.85 V: RP122x18x*5

*: Specify whether with the auto-discharge or not.

B: without the auto-discharge function

D: with the auto-discharge function

BLOCK DIAGRAMS

RP122xxxxB Block Diagram

RP122xxxxD Block Diagram

⁽¹⁾ Auto-discharge function quickly lowers the output voltage to 0 V, when the chip enable signal is switched from the active mode to the standby mode, by releasing the electrical charge accumulated in the external capacitor.

PIN DESCRIPTIONS

RP122Z (WLCSP-4-P8 / WLCSP-4-P12) Pin Configuration

RP122K (DFN(PLP)1010-4) Pin Configuration

RP122Zxx1x(WLCSP-4-P8), RP122Zxx3x(WLCSP-4-P12) Pin Description

Pin No.	Symbol	Description
A1	VDD	Input Pin
A2	VOUT	Output Pin
B1	CE	Chip Enable Pin, Active-high
B2	GND	Ground Pin

RP122K Pin Description

Pin. No.	Symbol	Description			
1	VOUT	Output Pin			
2	GND	Ground Pin			
3	CE	Chip Enable Pin, Active-high			
4	VDD	Input Pin			

^{*} The tab on the bottom of the package must be electrically connected to GND (substrate level) when mounted on the board.

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit	
V _{IN}	Input Voltage	-0.3 to 6.0	V	
Vce	Input Voltage (CE pin)	-0.3 to 6.0	V	
Vout	Output Voltage	-0.3 to V _{IN} + 0.3	V	
Іоит	Output Current	600	mA	
PD	Power Dissipation	Refer to Appendix "POWER DISS	IPATION"	
Tj	Junction Temperature Range	-40 to 125		
Tstg	Storage Temperature Range	−55 to 125	°C	

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings are not assured.

RECOMMENDED OPERATING CONDITIONS

Symbol	Item	Rating	Unit
V _{IN}	Input Voltage	1.9 to 5.5	V
Та	Operating Temperature Range	-40 to 85	°C

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if they are used over such ratings by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

$V_{IN} = V_{SET} + 1 V (V_{IN} = 5.5 V \text{ when } V_{SET} \ge$	4.5 V), I_{OUT} = 1mA, C_{IN} = C_{OUT} = 1 μ F, unless otherwise specified
The specifications surrounded by	are guaranteed by design engineering at -40°C ≤ Ta ≤ 85°C.

RP122xxxxx Electrical Characteristics

 $(Ta = 25^{\circ}C)$

Symbol	Parameter		Con	Min.	Тур.	Max.	Unit	
			T. 05%	V _{SET} ≥ 1.8V	x0.992		x1.008	V
			Ta = 25°C	V _{SET} < 1.8V	-14		+14	mV
V_{OUT}	Output Voltage			V _{SET} ≥ 1.8V	x0.987		x1.012	V
			–40°C ≤ Ta ≤ 85°C	V _{SET} < 1.8V			OUCT-SPE IARACTER	
Іоит	Output Curre	nt			400			mA
ΔV _{OUT} /	Load	RP122Z	$1 \text{ mA} \le I_{OUT} \le 400$ $V_{IN} = V_{SET} + 0.5 \text{ V},$			3	25	mV
ΔI_{OUT}	Regulation	RP122K	1 mA ≤ I _{OUT} ≤ 400	mA		13	40	
V _{DIF}	Dropout Volta	age	I _{OUT} = 400 mA				DUCT-SPE IARACTER	
Iss	Supply Curre	nt	I _{OUT} = 0 mA			9.5	25	μA
ISTANDBY	Standby Curi	ent	V _{CE} = 0 V			0.01	0.3	μA
A\/ /			1.2V≤V _{SET} <1.4V	1.9V≤V _{IN} ≤5.5V				
	$\Delta V_{OUT}/\Delta V_{IN}$ Line Regulation		1.4V≤V _{SET} <4.3V	V _{SET} +0.5V≤V _{IN} ≤5.5V	0.02		0.10	%/V
ΔVIN			4.3V≤V _{SET} ≤4.8V V _{SET} +0.3V≤V _{IN} ≤5.5V					
			Pinnlo 0 2 \/n n	f = 1 kHz		90		
RR	Ripple Rejec	tion	Ripple 0.2 Vp-p, $I_{OUT} = 20 \text{ mA}$	f = 10 kHz		85		dB
			1001 - 20 IIIA	f = 100 kHz		65		
Isc	Short Curren	t Limit	V _{OUT} = 0 V			70		mA
I _{PD}	CE Pull-dowr	n Current				0.25	0.50	μA
VCEH	CE Input Vol	tage, high			1.0			V
VCEL	CE Input Volt	age, low					0.4	V
on	Output Noise		BW	I _{OUT} = 1 mA		12		μVrms
en 	Output Noise		=10Hz to 100kHz	I _{OUT} = 250 mA		8		μνιιιιδ
T_TSD	Thermal Shu	tdown	Junction Temperature			165		°C
	Temperature	, detection	Junction remperature			103		
T_{TSR}	Thermal Shu	tdown	Junction Temperature			110		°C
	Temperature		Junction remperature			110		
RLow	Auto-dischard On-resistand (RP122xxxxI	e	V _{IN} = 5.0 V, CE = 0	0 V,		50		Ω

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj \approx Ta = 25 $^{\circ}$ C) except Ripple Rejection and Output Noise.

R	P	1	2	2x
			_	~~

The specifications surrounded by _____ are guaranteed by design engineering at - 40°C ≤ Ta ≤ 85°C

RP122xxxxx Product-specific Electrical Characteristics

	V _{оит} [V]						V _{DIF} [V]			
Product Name		Ta = 25°C	;	-40°	C ≤ Ta ≤	85°C	RP122Z		RP122K	
Nume	Min.	Тур.	Max.	Min.	Тур.	Max.	Тур.	Max.	Тур.	Max.
RP122x12xx	1.186	1.200	1.214	1.180	1.200	1.218	(1)	(1)	(1)	(1)
RP122x12xx5	1.236	1.250	1.264	1.230	1.250	1.268	(1)	(1)	(1)	(1)
RP122x13xx	1.286	1.300	1.314	1.280	1.300	1.319	(1)	(1)	(1)	(1)
RP122x14xx	1.386	1.400	1.414	1.379	1.400	1.419	(1)	0.450(2	(1)	0.500(2)
RP122x15xx	1.486	1.500	1.514	1.479	1.500	1.519	(1)	0.430	(1)	0.470
RP122x16xx	1.586	1.600	1.614	1.578	1.600	1.620	0.240(2)	0.385	0.270(2)	0.425
RP122x17xx	1.686	1.700	1.714	1.678	1.700	1.720	0.235	0.350	0.260	0.390
RP122x18xx	1.786	1.800	1.814	1.777	1.800	1.821	0.215	0.325	0.240	0.365
RP122x18xx5	1.836	1.850	1.864	1.826	1.850	1.872	0.215	0.325	0.240	0.365
RP122x19xx	1.885	1.900	1.915	1.876	1.900	1.922	0.200	0.305	0.225	0.345
RP122x20xx	1.984	2.000	2.016	1.974	2.000	2.024	0.190	0.290	0.215	0.330
RP122x21xx	2.084	2.100	2.116	2.073	2.100	2.125	0.180	0.270	0.205	0.310
RP122x22xx	2.183	2.200	2.217	2.172	2.200	2.226	0.170	0.260	0.195	0.300
RP122x23xx	2.282	2.300	2.318	2.271	2.300	2.327	0.170	0.260	0.195	0.300
RP122x24xx	2.381	2.400	2.419	2.369	2.400	2.428	0.170	0.260	0.195	0.300
RP122x25xx	2.480	2.500	2.520	2.468	2.500	2.530	0.155	0.240	0.180	0.280
RP122x26xx	2.580	2.600	2.620	2.567	2.600	2.631	0.155	0.240	0.180	0.280
RP122x27xx	2.679	2.700	2.721	2.665	2.700	2.732	0.155	0.240	0.180	0.280
RP122x28xx	2.778	2.800	2.822	2.764	2.800	2.833	0.145	0.225	0.170	0.265
RP122x28xx5	2.828	2.850	2.872	2.813	2.850	2.884	0.145	0.225	0.170	0.265
RP122x29xx	2.877	2.900	2.923	2.863	2.900	2.934	0.145	0.225	0.170	0.265
RP122x29xx5	2.927	2.950	2.973	2.912	2.950	2.985	0.145	0.225	0.170	0.265
RP122x30xx	2.976	3.000	3.024	2.961	3.000	3.036	0.145	0.225	0.170	0.265
RP122x30xx5	3.026	3.050	3.074	3.011	3.050	3.086	0.145	0.225	0.170	0.265
RP122x31xx	3.076	3.100	3.124	3.060	3.100	3.137	0.145	0.225	0.170	0.265
RP122x31xx5	3.125	3.150	3.175	3.110	3.150	3.187	0.145	0.225	0170	0.265
RP122x32xx	3.175	3.200	3.225	3.159	3.200	3.238	0.145	0.225	0.170	0.265
RP122x33xx	3.274	3.300	3.326	3.258	3.300	3.339	0.130	0.205	0.155	0.245
RP122x34xx	3.373	3.400	3.427	3.356	3.400	3.440	0.130	0.205	0.155	0.245
RP122x35xx	3.472	3.500	3.528	3.455	3.500	3.542	0.130	0.205	0.155	0.245
RP122x36xx	3.572	3.600	3.628	3.554	3.600	3.643	0.120	0.195	0.145	0.235

 $^{^{(1)}\!}$ Input voltage should be equal or more than the minimum operating voltage of 1.9 V.

 $^{^{(2)}}$ When "Output voltage + Dropout Voltage" < 1.9 V, input voltage must be equal or more than the minimum operating voltage of 1.9 V.

RP122x
No.EA-403-210426

The specifications surrounded by \square are guaranteed by design engineering at - 40° C \leq Ta \leq 85° C

RP122xxxxx Product-specific Electrical Characteristics

	V _{ou}			V _{OUT} [V]				V _{DIF} [V]			
Product Name Ta = 25°C		;	-40°C ≤ Ta ≤ 85°C			RP122Z		RP122K			
	Min.	Тур.	Max.	Min.	Тур.	Max.	Тур.	Max.	Тур.	Max.	
RP122x37xx	3.671	3.700	3.729	3.652	3.700	3.744	0.120	0.195	0.145	0.235	
RP122x38xx	3.770	3.800	3.830	3.751	3.800	3.845	0.120	0.195	0.145	0.235	
RP122x39xx	3.869	3.900	3.931	3.850	3.900	3.946	0.120	0.195	0.145	0.235	
RP122x40xx	3.968	4.000	4.032	3.948	4.000	4.048	0.115	0.185	0.140	0.225	
RP122x41xx	4.068	4.100	4.132	4.047	4.100	4.149	0.115	0.185	0.140	0.225	
RP122x42xx	4.167	4.200	4.233	4.146	4.200	4.250	0.115	0.185	0.140	0.225	
RP122x42xx5	4.216	4.250	4.284	4.195	4.250	4.301	0.115	0.185	0.140	0.225	
RP122x43xx	4.266	4.300	4.334	4.245	4.300	4.351	0.115	0.185	0.140	0.225	
RP122x44xx	4.365	4.400	4.435	4.343	4.400	4.452	0.115	0.185	0.140	0.225	
RP122x45xx	4.464	4.500	4.536	4.442	4.500	4.554	0.115	0.185	0.140	0.225	
RP122x45xx5	4.514	4.550	4.586	4.491	4.550	4.604	0.115	0.185	0.140	0.225	
RP122x46xx	4.564	4.600	4.636	4.541	4.600	4.655	0.115	0.185	0.140	0.225	
RP122x47xx	4.663	4.700	4.737	4.639	4.700	4.756	0.115	0.185	0.140	0.225	
RP122x48xx	4.762	4.800	4.838	4.738	4.800	4.857	0.115	0.185	0.140	0.225	

THEORY OF OPERATION

Inrush Current Limit

The inrush current limit value at start-up increases in proportion to the capacitance of C_{OUT} . If not flow the load current (I_{LOAD}) except the charge current to C_{OUT} , the inrush current reaches 250mA when the effective capacitance of C_{OUT} becomes appr.6.0 μF or more, and the inrush current limit protection runs. During appr.700 μS after the CE pin becomes "H", the inrush current, which occurs at charging the capacitor of C_{OUT} , is limited at appr.250 mA. The power-on time (t_{ON}) can be calculated from the following equation. If the capacitance value of C_{OUT} is too much, the time-out occurs and the inrush current increases.

 $t_{ON} = t_D + C_{OUT} \cdot V_{SET} / I_{LIM START}$

t_D : Delay Time at Start-up Typ.50 μs

V_{SET}: Set Output Voltage

ILIM_START : Limit Current at Start-up Typ.250 mA

If flow the load current (I_{LOAD}) except the charge current to C_{OUT} during start-up, the start-up time becomes longer. The load current over I_{LIM_START} cannot be applied.

Minimum Operating Voltage

The RP122x does not include an UVLO circuit. To make the internal circuit operate normally and to ensure good output regulation, V_{IN} has to be: $V_{IN} \ge V_{SET} + V_{DIF}$ (Min.1.9 V). To bring out the best characteristics of the output noise voltage, the ripple rejection and the load transient response, V_{IN} has to be $V_{IN} = V_{SET} + 1.0 \text{ V}$.

Thermal Shutdown Protection

Thermal shutdown deactivates the circuit when the junction temperature exceeds the thermal shutdown threshold (T_{TSD}) of Typ. 165°C, and reactivates it when the junction temperature falls below the thermal shutdown release threshold (T_{TSR}) of Typ. 110°C. During the reactivation, the inrush current limit is in operation. Note that deactivation and activation cycle can be repeated due to load, heat dissipation and ambient temperature conditions. Thermal shutdown cannot be used for the purpose of heat sink, so the repetitive cycles of deactivation and activation may affect the reliability of the device.

APPLICATION INFORMATION

Typical Application Circuit

RP122x Typical Application Circuit

Technical Notes Related to External Components

- Ensure the VDD and GND lines are sufficiently robust. If their impedances are too high, noise pickup or unstable operation may result. Connect a 1.0 μF or more input capacitor (C_{IN}) between the VDD and GND pins with shortest-distance wiring. It is recommended to use a ceramic capacitor of 6.3 V and more such as the X7R and the X5R having small temperature dependence to ESR, ESL, and capacitance.
- Phase compensation is provided to secure stable operation even when the load current is varied. For this purpose, use a ceramic capacitor of 1.0 μF or more with ESR (Equivalent Series Resistance) of up to 300 mΩ to connect the output capacitor (C_{OUT}) between the VOUT and GND pins with shortest-distance wiring. Besides, set for the output capacitor to ensure the following effective capacitance in consideration of the dependence of temperature, DC bias, and package size.

Set Output Voltage (V _{SET})	Effective Capacitance
1.2 V ≤ V _{SET} < 2.0 V	0.75 μF and more
$2.0 \text{ V} \le \text{V}_{\text{SET}} < 3.4 \text{ V}$	0.70 μF and more
3.4 V ≤ V _{SET} ≤ 4.8 V	0.60 μF and more

In case of using a tantalum type capacitor with a large ESR, the output might become unstable. Evaluate your circuit including consideration of frequency characteristics with a parallel connection the above ceramic and the tantalum type capacitors.

TYPICAL CHARACTERISTICS

Typical Characteristics are intended to be used as reference data, they are not guaranteed.

1) Output Voltage vs. Temperature (C_{IN} = Ceramic 1.0 μ F, C_{OUT} = Ceramic 1.0 μ F)

RP122x12xx, $V_{IN} = 2.2 V$, $I_{OUT} = 1 mA$

RP122x28xx, $V_{IN} = 3.8 V$, $I_{OUT} = 1 mA$

RP122x48xx, $V_{IN} = 5.5 \text{ V}$, $I_{OUT} = 1 \text{ mA}$

2) Supply Current vs. Temperature (C_{IN} = Ceramic 1.0 μ F, C_{OUT} = Ceramic 1.0 μ F)

RP122x28xx, $V_{IN} = 3.8 V$

3) Dropout Voltage vs. Output Current (C_{IN} = Ceramic 1.0 μ F, C_{OUT} = Ceramic 1.0 μ F) RP122Z18xx RP122K181x

4) Dropout Voltage vs. Temperature (C_{IN} = Ceramic 1.0 μF, C_{OUT} = Ceramic 1.0 μF)

5) Dropout Voltage vs. Set Output Voltage (C_{IN} = Ceramic 1.0 μ F, C_{OUT} = Ceramic 1.0 μ F, Ta = 25°C)

6) Output Voltage vs. Output Current (C_{IN} = Ceramic 1.0 μ F, C_{OUT} = Ceramic 1.0 μ F, Ta = 25°C)

7) Output Voltage vs. Input Voltage (C_{IN} = Ceramic 1.0 μ F, C_{OUT} = Ceramic 1.0 μ F, Ta = 25°C)

8) Supply Current vs. Input Voltage (C_{IN} = Ceramic 1.0 μ F, C_{OUT} = Ceramic 1.0 μ F, Ta = 25°C)

RP122x12xx Supply Current I_{SS} [µA] Input Voltage $V_{\rm IN}$ [V]

9) Supply Current vs. Output Current (C_{IN} = Ceramic 1.0 μ F, C_{OUT} = Ceramic 1.0 μ F, Ta = 25°C)

10) Ripple Rejection vs. Frequency (C_{OUT} = Ceramic 1.0 μ F, Ripple = 0.2 Vp-p, Ta = 25°C)

11) Ripple Rejection vs. Input Voltage (C_{OUT} = Ceramic 1.0 μ F, Ripple = 0.2 Vp-p, Ta = 25°C)

RP122x12xx, $I_{OUT} = 1 \text{ mA}$ 120 100 Ripple Rejection RR [dB] 80 60 40 0.1kHz 1kHz 20 10kHz 100kHz 0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Input Voltage V_{IN} [V]

RP122x12xx, $I_{OUT} = 250 \text{ mA}$

RP122x28xx, $I_{OUT} = 100 \text{ mA}$

RP122x28xx, I_{OUT} = 250 mA

RP122x48xx, I_{OUT} = 100 mA

RP122x48xx, $I_{OUT} = 250 \text{ mA}$

12) Output Noise Spectral Density vs. Frequency (C_{IN}=Ceramic 1.0μF, C_{OUT}=Ceramic 1.0μF, Ta=25°C)

RP122x12xx, $V_{IN} = 2.2 V$

 $RP122x28xx, V_{IN} = 3.8 V$

RP122x48xx, $V_{IN} = 5.5 V$

13) Input Transient Response (C_{IN} = Ceramic 1.0 μ F, C_{OUT} = Ceramic 1.0 μ F, t_R = t_F = 5 μ s, Ta = 25°C)

RP122x12xx, $I_{OUT} = 1 \text{ mA}$

2.78

2.77

-10

0

RP122x28xx, $I_{OUT} = 20 \text{ mA}$

Time t [µs]

20

30

40

10

RP122x48xx, $I_{OUT} = 20 \text{ mA}$

14) Load transient Response (C_{IN} = Ceramic 1.0 μ F, C_{OUT} = Ceramic 1.0 μ F, Ta = 25°C)

Time t [µs]

RP122x12xx,
$$V_{IN}$$
 = 2.2 V, I_{OUT} = 0 => 400 mA, t_R = 0.5 μs

 $RP122x28xx, \ V_{IN} = 3.8 \ V, \\ I_{OUT} = 1 \ mA <=> 250 \ mA, \ t_R = t_F = 10 \ \mu s$

RP122x28xx, V_{IN} = 3.8 V, I_{OUT} = 0 => 400 mA, t_R = 0.5 μ s

 $RP122x48xx, \, V_{IN} = 5.5 \, V, \\ I_{OUT} = 1 \, mA <=> 250 \, mA, \, t_R = t_F = 10 \, \mu s$

RP122x48xx, V_{IN} = 5.5 V, I_{OUT} = 0 => 400 mA, t_R = 0.5 μ s

15) Turn On Speed with CE Pin (C_{IN} = Ceramic 1.0 μ F, C_{OUT} = Ceramic 1.0 μ F, Ta = 25°C)

RP122x12xx, $V_{IN} = 2.2 \text{ V}$

RP122x28xx, V_{IN} = 3.8 V

16) Turn Off Speed with CE Pin (C_{IN} = Ceramic 1.0 μ F, C_{OUT} = Ceramic 1.0 μ F, Ta = 25°C)

100 150

Time t [µs]

200 250 300

0.0

-50

0

 $RP122x28xD, V_{IN} = 3.8 V$

17) Inrush Current (C_{IN} = Ceramic 1.0 μ F, I_{OUT} = 0 mA, Ta = 25°C)

RP122x12xx, $V_{IN} = 2.2 V$

RP122x28xx, $V_{IN} = 3.8 V$

RP122x48xx, $V_{IN} = 5.5 \text{ V}$

PD-WLCSP-4-P8-RP122/RP123-JE-A

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-9.

Measurement Conditions

Item	Measurement Conditions
Environment	Mounting on Board (Wind Velocity = 0 m/s)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	101.5 mm x 114.5 mm x 1.6 mm
Copper Ratio	Outer Layer (First Layer): 60% Inner Layers (Second and Third Layers): 100% Outer Layer (Fourth Layer): 60%

Measurement Result

 $(Ta = 25^{\circ}C, Tjmax = 125^{\circ}C)$

Item	Measurement Result
Power Dissipation	520 mW
Thermal Resistance (θja)	θja = 192°C/W

 θ ja: Junction-to-Ambient Thermal Resistance

101.5mm 90.0mm

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

Ver. A

WLCSP-4-P8 Package Dimensions (Unit: mm)

PD-WLCSP-4-P12-RP122/RP123-JE-A

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51.

Measurement Conditions

Item	Measurement Conditions	
Environment	Mounting on Board (Wind Velocity = 0 m/s)	
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)	
Board Dimensions	101.5 mm x 114.5 mm x 1.6 mm	
Copper Ratio	Outer Layer (First Layer): 60% Inner Layers (Second and Third Layers): 100% Outer Layer (Fourth Layer): 60%	

Measurement Result

 $(Ta = 25^{\circ}C, Tjmax = 125^{\circ}C)$

Item	Measurement Result
Power Dissipation	520 mW
Thermal Resistance (θja)	θja = 192°C/W

 θ ja: Junction-to-Ambient Thermal Resistance

101.5mm mm0.06 mm0.00 90.0mm

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

DM-WLCSP-4-P12-JE-A

WLCSP-4-P12 Package Dimensions

RICOH

VI-160823

No.	Inspection Items	Inspection Criteria	Figure
1	Package chipping	A≥0.2mm is rejected B≥0.2mm is rejected C≥0.2mm is rejected And, Package chipping to Si surface and to bump is rejected.	B C
2	Si surface chipping	A≥0.2mm is rejected B≥0.2mm is rejected C≥0.2mm is rejected But, even if A≥0.2mm, B≤0.1mm is acceptable.	B C
3	No bump	No bump is rejected.	
4	Marking miss	To reject incorrect marking, such as another product name marking or another lot No. marking.	
5	No marking	To reject no marking on the package.	
6	Reverse direction of marking	To reject reverse direction of marking character.	
7	Defective marking	To reject unreadable marking. (Microscope: X15/ White LED/ Viewed from vertical direction)	
8	Scratch	To reject unreadable marking character by scratch. (Microscope: X15/ White LED/ Viewed from vertical direction)	
9	Stain and Foreign material	To reject unreadable marking character by stain and foreign material. (Microscope: X15/ White LED/ Viewed from vertical direction)	

PD-DFN(PLP)1010-4-RP122/RP123-JE-B

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

Item	Measurement Conditions		
Environment	Mounting on Board (Wind Velocity = 0 m/s)		
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)		
Board Dimensions	76.2 mm × 114.3 mm × 0.8 mm		
Copper Ratio	Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square		
Through-holes	φ 0.2 mm × 11 pcs		

Measurement Result

(Ta = 25°C, Tjmax = 125°C)

Item	Measurement Result
Power Dissipation	550 mW
Thermal Resistance (θja)	θja = 180°C/W
Thermal Characterization Parameter (ψjt)	ψjt = 105°C/W

 θ ja: Junction-to-Ambient Thermal Resistance

ψjt: Junction-to-Top Thermal Characterization Parameter

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

Ver. A

DFN(PLP)1010-4 Package Dimensions (Unit: mm)

i

^{*} The tab on the bottom of the package shown by blue circle is a substrate potential (GND). It is recommended that this tab be connected to the ground plane on the board but it is possible to leave the tab floating.

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
- 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.

Halogen Free

Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

Official website

https://www.n-redc.co.jp/en/

Contact us

https://www.n-redc.co.jp/en/buy/