4 场效应三极管及其放大电路

分类:

4 场效应三极管及其放大电路

- 4.1 金属-氧化物-半导体 (MOS) 场效应三极管
- 4.2 MOSFET基本共源极放大电路
- 4.3 图解分析法
- 4.4 小信号模型分析法
- 4.5 共漏极和共栅极放大电路
- 4.7 组合放大电路
- 4.9 各种FET的特性及使用注意事项

4.1 金属-氧化物-半导体

(MOS) 场效应三极管

- 4.1.1 N沟道增强型MOSFET
- 4.1.2 N沟道耗尽型MOSFET
- 4.1.3 P沟道MOSFET
- 4.1.4 沟道长度调制等几种效应
- 4.1.5 MOSFET的主要参数

1. 结构及电路符号 L: 沟道长度 W: 沟道宽度 tox: 绝缘层厚度

1. 结构及电路符号

符号

2. 工作原理

(1) V_{cs}对沟道的控制作用

当 V_{GS}≤0时

无导电沟道, d、s间加 电压时,也无电流产生。

当0 < V_{GS} < V_{TN} 时

产生电场,但未形成导电 沟道(反型层),d、s间加电 压后,没有电流产生。

2. 工作原理

(1) V_{cs}对沟道的控制作用

当 V_{CS} > V_{TN} 时

在电场作用下产生导电沟 道,d、s间加电压后,将有 电流产生。

 V_{cs} 越大,导电沟道越厚 V_{TN} 称为N沟道增强型 MOSFET开启电压

必须依靠栅极外加电压才能产生反 型层的MOSFET称为增强型器件

4.1.1 N沟道增温刑MOSFFT

2. 工作原理

(2) V_{DS}对沟道的控制作用

当 V_{GS} 一定($V_{GS} > V_{TN}$)时,

 $V_{DS} \uparrow \rightarrow I_D \uparrow \rightarrow$ 沟道电位梯度↑

- →靠近漏极d处的电位升高
- →电场强度减小 →沟道变薄

4.1.1 N沟道增强刑MOSFFT

2. 工作原理

(2) V_{DS}对沟道的控制作用

当 V_{GS} 一定($V_{GS} > V_{TN}$)时,

 $V_{DS} \uparrow \rightarrow I_D \uparrow \rightarrow$ 沟道电位梯度 ↑

当 $V_{\rm DS}$ 增加到使 $V_{\rm GD} = V_{\rm TN}$ 时,

在紧靠漏极处出现预夹断。

在预夹断处: $V_{GD} = V_{GS} - V_{DS} = V_{TN}$

4.1.1 N沟道增温刑MOSEFT

2. 工作原理

(2) V_{DS}对沟道的控制作用

预夹断后, $V_{DS} \uparrow \rightarrow$ 夹断区延长 \rightarrow 沟道电阻 $\uparrow \rightarrow I_{D}$ 基本不变

4.1.1 N沟道增温刑MOSEFT

2. 工作原理

(3) V_{DS} 和 V_{GS} 同时作用时

V_{DS}一定,V_{GS}变化时 给定一个 v_{GS} ,就有一 条不同的 $i_D - v_{DS}$ 曲线。

- 沟道中只有一种类型的载流子参与导电,所以场效应管也称 为单极型三极管。
- MOSFET的栅极是绝缘的,所以 $i_{\rm G} \approx 0$,输入电阻很高。
- MOSFET是电压控制电流器件(VCCS),i_D受v_{CS}控制。
- 只有当 v_{GS} > V_{TN} 时,增强型MOSFET的d、s间才能导通。
- 预夹断前in与vns呈近似线性关系; 预夹断后, in趋于饱和。

V_{DS} 极性接反会怎样?

13

11 华中科技大学电信学院

3. I-V特性曲线及特性方程

(1) 输出特性及大信号特性方程

$$i_{\mathbf{D}} = f(v_{\mathbf{DS}})\Big|_{v_{\mathbf{GS}} = \mathbf{const.}}$$

①截止区 当 $v_{\rm CS} < V_{\rm TN}$ 时,导电沟道 尚未形成, $i_{\rm D}=0$,为截 止工作状态。

预夹断临界点轨迹

ch04

14

5

2.5

 $v_{\rm GS}=1.5{\rm V}$

10

7.5

截止区

 $v_{\rm DS}/{
m V}$

3. I-V特性曲线及特性方程

(1) 输出特性及大信号特性方程

$$i_{\rm D} = f(v_{\rm DS})\Big|_{v_{\rm GS} = {\rm const.}}$$

② 可变电阻区

$$v_{\mathrm{DS}} < (v_{\mathrm{GS}} - V_{\mathrm{TN}})$$

$$i_{\mathrm{D}} = K_{\mathrm{n}} \left[2(v_{\mathrm{GS}} - V_{\mathrm{TN}}) v_{\mathrm{DS}} - v_{\mathrm{DS}}^2 \right]$$

由于 v_{DS} 较小,可近似为

$$i_{\mathrm{D}} \approx 2K_{\mathrm{n}}(v_{\mathrm{GS}} - V_{\mathrm{TN}}) v_{\mathrm{DS}}$$

$$r_{\text{dso}} = \frac{dv_{\text{DS}}}{di_{\text{D}}} \bigg|_{v_{\text{GS}} = \text{\%} \text{ \%}} = \frac{1}{2K_{\text{n}}(v_{\text{GS}} - V_{\text{TN}})}$$

预夹断临界点轨迹

 $r_{\rm dso}$ 是一个受 $v_{\rm GS}$ 控制的可变电阻

3. I-V特性曲线及特性方程

(1) 输出特性及大信号特性方程

②可变电阻区

$$i_{\mathrm{D}} \approx 2K_{\mathrm{n}}(v_{\mathrm{GS}} - V_{\mathrm{TN}}) v_{\mathrm{DS}}$$

$$r_{\mathrm{dso}} = \frac{1}{2K_{\mathrm{n}}(v_{\mathrm{GS}} - V_{\mathrm{TN}})}$$

其中

$$K_{\rm n} = \frac{K'_{\rm n}}{2} \cdot \frac{W}{L} = \frac{\mu_{\rm n} C_{\rm ox}}{2} \left(\frac{W}{L}\right)$$

μ.: 反型层中电子迁移率

Car: 栅极(与衬底间)

氧化层单位面积电容

预夹断临界点轨迹

$$K'_n = \mu_n C_{ox}$$
 本征电导因子

 K_n 为电导常数,单位: mA/V^2

3. I-V特性曲线及特性方程

(1) 输出特性及大信号特性方程

③ 饱和区

(又称恒流区或放大区)

$$v_{
m GS} > V_{
m TN}$$
 ,且 $v_{
m DS} \! > \! (v_{
m GS} \! - V_{
m TN})$

I-V 特性:

$$i_{D} = K_{n} (v_{GS} - V_{TN})^{2}$$

$$= K_{n} V_{TN}^{2} (\frac{v_{GS}}{V_{TN}} - 1)^{2}$$

$$= I_{DO} (\frac{v_{GS}}{V_{TN}} - 1)^{2}$$

$$I_{DO} = K_{\rm n}V_{\rm TN}^2$$
 是 $v_{\rm GS} = 2V_{\rm TN}$ 时的 $i_{\rm D}$

预夹断临界点轨迹

必须让FET工作在饱和区 (放大区) 才有放大作用。

3. I-V特性曲线及特性方程

(2) 转移特性

$$i_{\rm D} = f(v_{\rm GS})\Big|_{v_{\rm DS}={\rm const.}}$$

$$i_{\rm D} = K_{\rm n} (v_{\rm GS} - V_{\rm TN})^2$$

预夹断临界点轨迹

在饱和区, $i_D \oplus v_{GS}$ 控制

4.1 MOS场效应三极管

- 4.1.1 N沟道增强型MOSFET
- 4.1.2 N沟道耗尽型MOSFET
- 4.1.3 P沟道MOSFET
- 4.1.4 沟道长度调制等几种效应
- 4.1.5 MOSFET的主要参数

4.1.2 N沟道耗尽型MOSFET

1. 结构和工作原理简述

二氧化硅绝缘层中掺有大量的正离子, 已存在导电沟道 可以在正或负的栅源电压下工作,而且基本上无栅流

4.1.2 N沟道耗尽型MOSFET

2. I-V 特性曲线及大信号特性方程

$$i_{\mathrm{D}} pprox I_{\mathrm{DSS}} (1 - \frac{v_{\mathrm{GS}}}{V_{\mathrm{PN}}})^2$$

$$i_{\mathrm{D}} pprox I_{\mathrm{DSS}} (1 - \frac{v_{\mathrm{GS}}}{V_{\mathrm{PN}}})^2$$
 $i_{\mathrm{D}} = I_{\mathrm{DO}} (\frac{v_{\mathrm{GS}}}{V_{\mathrm{TN}}} - 1)^2$ (N沟道增强型)

4.1 MOS场效应三极管

- 4.1.1 N沟道增强型MOSFET
- 4.1.2 N沟道耗尽型MOSFET
- 4.1.3 P沟道MOSFET
- 4.1.4 沟道长度调制等几种效应
- 4.1.5 MOSFET的主要参数

4.1.3 P沟道MOSFET

1. 电路符号

- # 衬底是什么类型的半导体材料?
- #哪个符号是增强型的?
- # 在增强型的P沟道MOSFET 中, v_{GS} 应加什么极性的电压才能工作在饱和区(线性放大区)?

4.1.3 P沟道MOSFET

2. I-V特性曲线

电流均以流入漏极的方向为正!

#是增强型还是耗尽型特性曲线?

#耗尽型特性曲线是怎样的? $v_{\rm cs}$ 加什么极性的电压能使管子 工作在饱和区(线性放大区)?

4.1.3 P沟道MOSFET

3. 特性方程

可变电阻区

$$i_{\rm D} = -K_{\rm p}[2(v_{\rm GS} - V_{\rm TP})v_{\rm DS} - v_{\rm DS}^2]$$

饱和区

$$i_{\rm D} = -K_{\rm p}(v_{\rm GS} - V_{\rm TP})^2 = -I_{\rm DO}(\frac{v_{\rm GS}}{V_{\rm TP}} - 1)^2$$

$$K_{\rm p} = \frac{W\mu_{\rm p}C_{\rm ox}}{2L}$$

MOSFET电流-电压特性小结

	NMOS	PMOS
临界点	$v_{ m DS} = v_{ m GS} - V_{ m TN}$	$v_{ m DS} = v_{ m GS} - V_{ m TP}$
非饱和区	$v_{ m DS} < v_{ m GS} - V_{ m TN}$	$v_{ m DS} > v_{ m GS} - V_{ m TP}$
	$i_{\rm D} = K_{\rm n} [2(v_{\rm GS} - V_{\rm TN}) \ v_{\rm DS} - v_{\rm DS}^2]$	$i_{\rm D} = -K_{\rm P}[2(v_{\rm GS} - V_{\rm TP}) \ v_{\rm DS} - v_{\rm DS}^2]$
饱和区	$v_{ m DS} > v_{ m GS} - V_{ m TN}$	$v_{ m DS} < v_{ m GS} - { m V}_{ m TP}$
	$i_{\rm D} = K_{\rm n}(v_{\rm GS} - V_{\rm TN})^2$	$i_{\rm D} = -K_{\rm n}(v_{\rm GS} - V_{\rm TP})^2$
增强型	开启电压 V _{TN} > 0	开启电压 V _{TP} < 0
耗尽型	夹断电压 V _{PN} < 0	夹断电压 V _{PP} > 0

4.1 MOS场效应三极管

- 4.1.1 N沟道增强型MOSFET
- 4.1.2 N沟道耗尽型MOSFET
- 4.1.3 P沟道MOSFET
- 4.1.4 沟道长度调制等几种效应
- 4.1.5 MOSFET的主要参数

1. 沟道长度调制效应

实际上饱和区的曲线并不是平坦的(N沟道为例)

修正后
$$i_{\rm D} = K_{\rm n} (v_{\rm GS} - V_{\rm TN})^2 (1 + \lambda v_{\rm DS}) = I_{\rm DO} (\frac{v_{\rm GS}}{V_{\rm TN}} - 1)^2 (1 + \lambda v_{\rm DS})$$

$$\lambda \approx \frac{0.1}{I} V^{-1} \quad L$$
的单位为 μ m $V_{\rm A}$ 称为厄利(Early)电压

当不考虑沟道调制效应时,

 $\lambda = 0$,曲线是平坦的。

当 $v_{\rm CS}$ 固定、 $v_{\rm DS}$ 增加时,沟道长度L变短, $i_{\rm D}$ 会有所增加

 $-V_{\rm A}=-\frac{\perp}{2}$

2.衬底调制效应(体效应)及衬底的正确连接

衬底未与源极并接时,衬底与源极间的偏压 $v_{
m BS}$ 将影响实际的开

启(夹断) 电压和转移特性。

对耗尽型器件的夹断电压有类似的影响

 V_{TNO} 表示 $v_{\text{RS}} = 0$ 时的开启电压

2.衬底调制效应(体效应)及衬底的正确连接

为保证导电沟道与衬底之 间的PN结反偏,要求:

N沟道: *v*_{RS}≤0

P沟道: *v*_{RS}≥0

集成电路中,N沟道器件的衬底接电路的最低电位,P沟道 器件的衬底接电路的最高电位,衬底B与源 极S之间就存在衬底 偏压 $v_{\rm RS}$ 。

在分立元件电路中,场效应管的衬底通常与源极相连,即 $v_{\rm BS} = 0$

3. 温度效应

 $V_{\rm TN}$ 和电导常数 $K_{\rm n}$ 随温度升高而下降,且 $K_{\rm n}$ 受温度的 影响大于 V_{TN} 受温度的影响。

可变电阻区
$$i_{D} = K_{n} [2(v_{GS} - V_{TN}) v_{DS} - v_{DS}^{2}]$$

饱和区
$$i_{\mathrm{D}} = K_{\mathrm{n}} (v_{\mathrm{GS}} - V_{\mathrm{TN}})^2$$

当温度升高时,对于给定的 $V_{\rm GS}$,总的效果是漏极电 流减小。

这种作用给功率MOS管提供了一种反馈条件,自然限 制了沟道电流,保证了功率MOS管的稳定运行。

4. 击穿效应

(1)漏衬击穿

外加的漏源电压过高,将 导致漏极到衬底的PN结击穿。

(2) 栅极击穿

若绝缘层厚度 t_{ox} = 50 纳米 时,只要约30V的栅极电压就 可将绝缘层击穿,若取安全系 数为3,则最大栅极安全电压 只有10V。

通常在MOS管的栅源间接 入双向稳压管,限制栅极电压 以保护器件。

4.1 MOS场效应三极管

- 4.1.1 N沟道增强型MOSFET
- 4.1.2 N沟道耗尽型MOSFET
- 4.1.3 P沟道MOSFET
- 4.1.4 沟道长度调制等几种效应
- 4.1.5 MOSFET的主要参数

4.1.5 MOSFET的主要参数

一、直流参数

1. 开启电压 $V_{\rm T}$ (增强型参数)

当 $v_{\rm DS}$ 为某一固定值(例如10V)使 $i_{\rm D}$ 等于一微小电流(例 如50μA) 时,栅源间的电压为 V_{TN} 。

2. 夹断电压 V_p (耗尽型参数)

4.1.5 MOSFET的主要参数

一、直流参数

3. 饱和漏电流 I_{DSS} (耗尽型参数)

4. 直流输入电阻 $R_{\rm GS}$ ($10^9\Omega\sim10^{15}\Omega$)

4.1.5 MOSFET的主要参数

二、交流参数(饱和区)

$$1.$$
输出电阻 $r_{
m ds}$

1. 输出电阻
$$r_{\mathrm{ds}}$$

$$r_{\mathrm{ds}} = \frac{\partial v_{\mathrm{DS}}}{\partial i_{\mathrm{D}}} \bigg|_{V_{\mathrm{GS}}}$$

对于增强型NMOS管 $i_D = K_n (v_{GS} - V_{TN})^2 (1 + \lambda v_{DS})$

有
$$v_{\text{DS}} = \frac{i_{\text{D}}}{\lambda K_{\text{n}} (v_{\text{GS}} - V_{\text{TN}})^2} - \frac{1}{\lambda}$$

所以
$$r_{ds} = [\lambda K_{n}(v_{GS} - V_{TN})^{2}]^{-1} \approx \frac{1}{\lambda i_{D}} = \frac{V_{A}}{i_{D}}$$

当不考虑沟道调制效应时, λ =0, r_{ds} →∞

实际中, r_{ds} 一般在几十千欧到几百千欧之间。

4.1.5 MOSFET的主要参数

二、交流参数

2. 低频互导
$$g_{\mathrm{m}}$$

2. 低频互导
$$g_{\rm m}$$

$$g_{\rm m} = \frac{\partial i_{\rm D}}{\partial v_{\rm GS}} \bigg|_{V_{\rm DS}}$$

NMOS增强型 $i_{\rm D} = K_{\rm n} (v_{\rm GS} - V_{\rm TN})^2$

$$\text{III} \left. g_{\text{m}} = \frac{\partial i_{\text{D}}}{\partial v_{\text{GS}}} \right|_{V_{\text{DS}}} = \frac{\partial \left[K_{\text{n}} (v_{\text{GS}} - V_{\text{TN}})^2 \right]}{\partial v_{\text{GS}}} \bigg|_{V_{\text{DS}}} = 2K_{\text{n}} (v_{\text{GS}} - V_{\text{TN}})$$

又因为
$$i_{\mathrm{D}} = K_{\mathrm{n}} (v_{\mathrm{GS}} - V_{\mathrm{TN}})^2 \Longrightarrow (v_{\mathrm{GS}} - V_{\mathrm{TN}}) = \sqrt{\frac{i_{\mathrm{D}}}{K_{\mathrm{n}}}}$$

所以
$$g_{\rm m} = 2K_{\rm n}(v_{\rm GS} - V_{\rm TN}) = 2\sqrt{K_{\rm n}i_{\rm D}}$$

其中
$$K_{\rm n} = \frac{\mu_{\rm n} C_{\rm ox}}{2} \cdot \frac{W}{L}$$

4.1.5 MOSFET的主要参数

三、极限参数

- 1. 最大漏极电流 I_{DM}
- 2. 最大耗散功率 $P_{\rm DM}$
- 3. 最大漏源电压 $V_{(BR)DS}$
- 4. 最大栅源电压 $V_{\rm (BR)~GS}$

4 场效应三极管及其放大电路

- 4.1 金属-氧化物-半导体 (MOS) 场效应三极管
- 4.2 MOSFET基本共源极放大电路
- 4.3 图解分析法
- 4.4 小信号模型分析法
- 4.5 共漏极和共栅极放大电路
- 4.7 组合放大电路
- 4.9 各种FET的特性及使用注意事项

4.2 MOSFET基本共源极放大电路

- 4.2.1 基本共源极放大电路的组成
- 4.2.2 基本共源极放大电路的工作原理
- 4.2.3 放大电路的习惯画法
- 4.2.4 其它共源放大电路

4.2.1 基本共源极放大电路的组成

1. 如何让MOS管工作在饱和区?

元件作用

 $V_{\rm GG}$:

提供栅源电压使 $v_{\rm GS}$ > $V_{\rm TN}$

 $V_{\rm DD}$ 和 $R_{\rm d}$:

提供合适的漏源电压,使

$$v_{\mathrm{DS}} > v_{\mathrm{GS}} - V_{\mathrm{TN}}$$

 $R_{\rm d}$ 还兼有将电流转换成电压的作用

通常称 V_{GG} 和 V_{DD} 为三极管的工作电源, v_i 为信号。

4.2.1 基本共源极放大电路的组成

2. 信号如何通过MOS管传递?

饱和区
$$i_{\mathrm{D}} = K_{\mathrm{n}} (v_{\mathrm{GS}} - V_{\mathrm{TN}})^2$$

$$v_{\rm i} \longrightarrow \Delta v_{\rm GS} \longrightarrow \Delta i_{\rm D} \longrightarrow \Delta v_{\rm DS} \ (= v_{\rm o})$$

可获得信号电压增益

信号由栅源回路输入、漏源回路输出,即源极是公共端,所以称此电路为共源电路。

也可看作信号由栅极输入、漏极输出。

ch04

4.2 MOSFET基本共源极放大电路

- 4.2.1 基本共源极放大电路的组成
- 4.2.2 基本共源极放大电路的工作原理
- 4.2.3 放大电路的习惯画法
- 4.2.4 其它共源放大电路

1. 放大电路的静态和动态

静态:输入信号为零($v_{i}=0$ 或 $i_{i}=0$)时,放大电路的工作状态,也称*直流工作状态*。

此时,FET的直流量 $I_{\rm D}$ 、 $V_{\rm GS}$ 、 $V_{\rm DS}$,在输出特性曲线上表示为一个确定的点,习惯上称该点为静态工作点Q。常将上述三个电量写成 $I_{\rm DQ}$ 、 $V_{\rm GSQ}$ 和 $V_{\rm DSQ}$ 。

动态:输入信号不为零时,放大电路的工作状态,也 称*交流工作状态*。

2. 放大电路的直流通路和交流通路

仅有直流电流流经的通路为直流通路

放大电路的直流通路和交流通路

仅有交流电流流经的通路为交流通路

直流电压源内阻为零,交 流电流流经直流电压源时 不产生任何交流压降。 故:

直流电压源对交流相当于短路

ch04

2. 放大电路的直流通路和交流通路

仅有交流电流流经的通路为交流通路

直流电压源对交流相当于短路

3. 放大电路的静态工作点估算

直流通路

假设NMOS管工作于饱和区,则

$$\begin{cases} V_{\text{GSQ}} = V_{\text{GG}} \\ I_{\text{DQ}} = K_{\text{n}} (V_{\text{GSQ}} - V_{\text{TN}})^2 \\ V_{\text{DSQ}} = V_{\text{DD}} - I_{\text{DQ}} R_{\text{d}} \end{cases}$$

当已知 V_{GG} 、 V_{DD} 、 V_{TN} 、 K_n 、和 R_d 时,便可求得Q点(V_{GSO} 、 I_{DO} 、 $V_{\rm DSQ}$)。必须检验是否满足饱和区工作条件: $V_{\rm DSO} > V_{\rm GSO} - V_{\rm TN} > 0$ 。 若不满足,则说明工作在可变电阻区,此时漏极电流为

$$i_{\rm D} = K_{\rm n} 2(v_{\rm GS} - V_{\rm TN}) v_{\rm DS}$$

注意:电路结构不同,除FET特性方程外,其它电路方程将有差别

例4.2.1

已知 $V_{\rm GG}$ =2V, $V_{\rm DD}$ =5V, $V_{\rm TN}$ =1V,

 $K_{\rm n}$ =0.2mA/V², $R_{\rm d}$ =12k Ω ,求Q点。

解: 假设NMOS管工作于饱和区,根据

$$\begin{cases} V_{\text{GSQ}} = V_{\text{GG}} \\ I_{\text{DQ}} = K_{\text{n}} (V_{\text{GSQ}} - V_{\text{TN}})^2 \\ V_{\text{DSQ}} = V_{\text{DD}} - I_{\text{DQ}} R_{\text{d}} \end{cases}$$

求得:

$$V_{\rm GSQ}$$
=2V, $I_{\rm DQ}$ =0.2mA, $V_{\rm DSQ}$ =2.6V

满足饱和区工作条件:

$$V_{\rm DSQ} > V_{\rm GSQ} - V_{\rm TN} > 0$$
,结果即为所求。

 $i_{\rm D}/{\rm mA}$

可变电阻区

(非饱和区

3. 放大电路的静态工作点估算

增强型NMOS管

饱和区的条件: $V_{GSO} > V_{TN}$,

$$I_{\mathrm{DQ}} > 0$$
 , $V_{\mathrm{DSQ}} > V_{\mathrm{GSQ}} - V_{\mathrm{TN}}$

$$I_{DQ} = K_n (V_{GSQ} - V_{TN})^2$$
 计算 Q 点。

若: $V_{\rm DSO} < V_{\rm GSO} - V_{\rm TN}$, NMOS管可能工作在可变电阻区。

1.5 2.5V 假设NMOS管工作于饱和区,利用 1 2V $I_{\text{DO}} = K_{\text{n}} (V_{\text{GSO}} - V_{\text{TN}})^2$ 计算Q点。 0.5 $v_{\rm GS}=1.5{\rm V}$ 截止区 若: $V_{GSO} < V_{TN}$, NMOS管截止。 $v_{\rm DS}/{
m V}$ 2.5 7.5 10

如果初始假设是错误的,则必须作出新的假设,同时重新分析电路。

#请归纳其它管型静态工作点的计算方法

预夹断临界点轨迹

饱和区

 $v_{\rm DS} = v_{\rm GS} - V_{\rm TN} (\vec{p}_{\rm CD}) = v_{\rm GS} - v_{\rm DS} = V_{\rm TN}$

4. 放大电路的动态工作情况

在静态基础上加入小信号 v_i 此时电路中的总电压和电流为

4.2 MOSFET基本共源极放大电路

- 4.2.1 基本共源极放大电路的组成
- 4.2.2 基本共源极放大电路的工作原理
- 4.2.3 放大电路的习惯画法
- 4.2.4 其它共源放大电路

ch04

4.2.3 放大电路的习惯画法

省略工作电源的直流电压符号,仅保留电压源非接"地"端子,并标注电压源名称。

4.2 MOSFET基本共源极放大电路

- 4.2.1 基本共源极放大电路的组成
- 4.2.2 基本共源极放大电路的工作原理
- 4.2.3 放大电路的习惯画法
- 4.2.4 其它共源放大电路

能否省掉一个工作电源?

可以提供合适的 V_{GSO}

11 华中科技大学电信学院

2. 信号如何输入?

 v_i 的内阻很小且其直流量为零,即 $V_i = 0$,导致 $V_{GSQ} \approx 0$,NMOS管受 v_i 影响不能工作在饱和区。

如何解决信号源对静态工作点的影响?

电容对信号频率呈现的阻抗,与放大电路的输入电阻相比可以忽略不计 (短路)。信号可以正常通过,但避免了栅极的直流电压受信号源的影响

设
$$C_1$$
=10uF, f =1kHz。 $\left|Z_{C_1}\right| = \left|\frac{1}{j\omega C_1}\right| = \frac{1}{2\pi f C_1} = \frac{1}{2\pi \times 10^3 \times 10 \times 10^{-6}} \approx 16\Omega$

4. 习惯画法

接负载后是否对静态工作点造成影响? 5.

信号源和负载对管子的静态工作点无影响

111 华中科技大学电信学院

信号源和工作电源共地

若信号频率很低,甚至近似直流时,则不能用电容隔直,只能用 直接耦合方式。

6. 直接耦合放大电路中电源、信号源如何"共地"

为避免和减少干扰,通常要求电子电路 中的电源和信号源采用"共地"接法。

直接耦合放大电路中电源、信号源如何"共地"

61

11 华中科技大学电信学院

直接耦合放大电路中电源、信号源如何"共地"

- 信号源和工作电源共地
- 信号源对管子的静态工作点无影响
- 双电源供电

7. 自偏压共源放大电路

7. 自偏压共源放大电路

导电沟道已经存在, $V_{PN} < 0$,栅极绝缘。

静态:

$$V_{\rm G} = 0 \qquad V_{\rm S} = R_{\rm s} I_{\rm DQ}$$

$$\begin{cases} V_{\text{GSQ}} = V_{\text{G}} - V_{\text{S}} = -R_{\text{s}}I_{\text{DQ}} \\ I_{\text{DQ}} = K_{\text{n}}(V_{\text{GSQ}} - V_{\text{PN}})^2 \end{cases}$$

$$V_{\rm DSQ} = V_{\rm DD} - I_{\rm DQ} (R_{\rm d} + R_{\rm s})$$

已知 $V_{\rm DD}$ 、 $V_{\rm PN}$ 、 $K_{\rm n}$ 、 $R_{\rm d}$ 和 $R_{\rm s}$

可求得Q点: $V_{\rm GSQ}$ 、 $I_{\rm DQ}$ 、 $V_{\rm DSQ}$

耗尽型NOMS

必须检验是否满足饱和区工作条件: $V_{\rm DSQ} > V_{\rm GSQ} - V_{\rm PN} > 0$ 。

8. 具有稳定静态工作点作用的放大电路

当FET参数受环境温度影响发生变 化时,将导致 I_{DO} 变化,可能使电路不 能正常放大信号。

增加源极电阻,其它电阻参 数需做相应调整

8. 具有稳定静态工作点作用的放大电路

稳定原理

$$V_{\text{GSQ}} = \frac{R_{\text{g2}}}{R_{\text{g1}} + R_{\text{g2}}} \cdot V_{\text{DD}} - I_{\text{DQ}} R_{\text{s}}$$

$$I_{\rm DO} = K_{\rm n} (V_{\rm GSO} - V_{\rm TN})^2$$

假设温度变化导致 I_{DQ} 減小, 电路通过如下过程可以稳定 I_{DQ}

$$I_{\mathrm{DQ}} \downarrow \to V_{\mathrm{S}} \downarrow \to V_{\mathrm{GSQ}} \uparrow$$
 $I_{\mathrm{DQ}} \uparrow \longleftarrow$
(反馈控制)

4 场效应三极管及放大电路

- 4.1 金属-氧化物-半导体 (MOS) 场效应三极管
- 4.2 MOSFET基本共源极放大电路
- 4.3 图解分析法
- 4.4 小信号模型分析法
- 4.5 共漏极和共栅极放大电路
- 4.7 组合放大电路
- 4.9 各种FET的特性及使用注意事项

4.3 图解分析法

- 4.3.1 用图解方法确定静态工作点Q
- 4.3.2 动态工作情况的图解分析
- 4.3.3 图解分析法的适用范围

4.3.1 用图解方法确定静态工作点Q

采用图解法分析静态工作点,必须已知FET的输出特性曲线。

静态: $v_i = 0$

• 输入回路

$$v_{\rm GS} = V_{\rm GG} = V_{\rm GSQ}$$

• 输出回路

$$v_{\rm DS} = V_{\rm DD} - i_{\rm D} R_{\rm d}$$

(直流负载线)

输出回路左侧的FET端口可用输出特性曲线描述

4.3.1 用图解方法确定静态工作点Q

直流负载线:
$$v_{DS} = V_{DD} - i_D R_c$$

4.3 图解分析法

- 4.3.1 用图解方法确定静态工作点Q
- 4.3.2 动态工作情况的图解分析
- 4.3.3 图解分析法的适用范围

4.3.2 动态工作情况的图解分析

正常工作情况

$$v_{\rm GS} = V_{\rm GSQ} + v_{\rm i}$$

工作点沿负载线移动

4.3.2 动态工作情况的图解分析

正常工作情况

图解分析可得如下结论:

- 1. $v_i \uparrow \rightarrow v_{GS} \uparrow \rightarrow i_D \uparrow \rightarrow v_{DS} \downarrow$ $\rightarrow /v_{ds}(v_{o})/\uparrow (v_{i}$ 正半周时)
 - $2. v_{ds}$ 与 v_{i} 相位相反;
- 3. 可以测量出放大电路的 电压放大倍数;
- 4. 可以确定最大不失真输 出幅度。
- #动态工作时, i_n的 实际电流方向是否改变, $v_{\rm GS}$ 、 $v_{\rm DS}$ 的实际电压极性 是否改变?

4.3.2 动态工作情况的图解分析

2. 静态工作点对波形失真的影响

截止失真 (NMOS)

4.3.2 动态工作情况的图解分析

2. 静态工作点对波形失真的影响

 $v_{\rm DS} = v_{\rm GS} - V_{\rm TN}$ $i_{\rm D}$ 饱和失真 饱和失真 $v_{\rm gs}$ (NMOS) $V_{
m GSQ}$ I_{DQ} I_{DQ} $i_{\rm d}$ 0" 饱和区 ωt $V_{
m DSQ}$ $v_{
m DS}$ $V_{
m DSS}$ $v_{
m DS}$ $v_{
m ds}$ 饱和失真

 ωt

4.3 图解分析法

- 4.3.1 用图解方法确定静态工作点Q
- 4.3.2 动态工作情况的图解分析
- 4.3.3 图解分析法的适用范围

4.3.3 图解分析法的适用范围

幅度较大而工作频率不太高的情况

优点:

直观、形象。有助于建立和理解交、直流共存,静态和动态等重要概念;有助于理解正确选择电路参数、合理设置静态工作点的重要性。能全面地分析放大电路的静态、动态工作情况。

缺点:

不能分析工作频率较高时的电路工作状态,也不能用来分析放大电路的输入电阻、输出电阻等动态性能指标。

思考题

1. 试分析下列问题:

- (1) 画出负载线
- (2) 接入负载 R_L 时,负载线将如何变化? Q点怎样变化?

思考题

试分析下列问题:

- (1) 增大 R_d 时,负载线将如何变化?Q点怎样变化?
- (2) 减小 $V_{\rm DD}$ 时,负载线将如何变化?Q点怎样变化?

3. 放大电路如图所示。当测得 FET的 V_{DS} 接近 V_{DD} 的值时,问 管子处于什么工作状态?可能的 故障原因有哪些?

截止状态

故障原因可能有:

• R_{g1} 支路可能开路

$$v_{\rm GS} = 0 < V_{\rm TN}, I_{\rm D} = 0,$$

• C_1 可能短路, $V_{\rm GS} = 0 < V_{\rm TN}$

共源放大电路

$$V_{\rm DS} = V_{\rm DD} - I_{\rm D}R_{\rm d} = V_{\rm DD}$$

4 场效应三极管及放大电路

- 4.1 金属-氧化物-半导体 (MOS) 场效应三极管
- 4.2 MOSFET基本共源极放大电路
- 4.3 图解分析法
- 4.4 小信号模型分析法
- 4.5 共漏极和共栅极放大电路
- 4.7 组合放大电路
- 4.9 各种FET的特性及使用注意事项

4.4 小信号模型分析法

4.4.1 MOSFET的小信号模型

- 4.4.2 用小信号模型分析共源极放大电路
- 4.4.3 带源极电阻的共源极放大电路的分析
- 4.4.4 小信号模型分析法的适用范围

82

建立小信号模型的意义

由于场效应管是非线性器件,所以分析起来非常复 杂。建立小信号模型,就是在特定条件下将非线性器件 做线性化近似处理,从而简化由其构成的放大电路的分 析和设计。

建立小信号模型的思路

当放大电路的输入信号幅值较小时,就可以把三极 管小范围内的特性曲线近似地用直线来代替,从而可以 把三极管这个非线性器件所组成的电路当作线性电路来 处理。

1. λ=0时

(以增强型NMOS管为例)

在饱和区内有

$$i_{D} = K_{n}(v_{GS} - V_{T})^{2}$$

$$= K_{n}(V_{GSQ} + v_{gs} - V_{T})^{2}$$

$$= K_{n}[(V_{GSQ} - V_{T}) + v_{gs}]^{2}$$

$$= K_{\rm n} (V_{\rm GSQ} - V_{\rm T})^2 + 2K_{\rm n} (V_{\rm GSQ} - V_{\rm T})v_{\rm gs} + K_{\rm n} v_{\rm gs}^2$$

$$= I_{DQ} + g_{m}v_{gs} + K_{n}v_{gs}^{2}$$

其中

非线性失

真项

静态值 (直流)

动态值 (交流)

 $g_{\rm m} = 2K_{\rm n}(V_{\rm GSO} - V_{\rm TN})$

当,
$$v_{gs} << 2(V_{GSO} - V_{TN})$$
时, $i_{D} \approx I_{DQ} + g_{m}v_{gs} = I_{DQ} + i_{d}$

$$i_{\mathrm{D}} \approx I_{\mathrm{DO}} + g_{\mathrm{m}} v_{\mathrm{gs}} = I_{\mathrm{DO}} + i_{\mathrm{d}}$$

1. え=0时

$$i_{\mathrm{D}} = I_{\mathrm{DQ}} + g_{\mathrm{m}} v_{\mathrm{gs}} = I_{\mathrm{DQ}} + i_{\mathrm{d}}$$

纯交流

$$i_{\rm d} = g_{\rm m} v_{\rm gs}$$

电路模型

- $g_{\mathbf{m}}v_{\mathbf{gs}}$ 是受控源,且为电压控制电流源(VCCS)。
- 电流方向与 $v_{\rm gs}$ 的极性是关 联的。

2. λ≠0时

d、s端口看入有一电阻 r_{ds}

$$r_{ds} = \frac{\partial v_{DS}}{\partial i_{D}} \Big|_{V_{GSQ}}$$

$$= \frac{1}{\lambda K_{n} (V_{GSQ} - V_{TN})^{2}} \approx \frac{1}{\lambda I_{DQ}} = \frac{V_{A}}{I_{DQ}}$$

电路模型

3. 参数的物理意义

$$g_{\rm m}$$
 — 低频互导

$$g_{\rm m} = \frac{\partial i_{\rm D}}{\partial v_{\rm GS}} \bigg|_{V_{\rm DSQ}}$$
$$= 2K_{\rm n}(V_{\rm GSQ} - V_{\rm TN})$$

转移特性曲线Q点 上切线的斜率

3. 参数的物理意义

r_{ds} — 输出电阻

$$r_{ds} = \frac{\partial v_{DS}}{\partial i_{D}} \bigg|_{V_{GSQ}}$$

$$= \frac{1}{\lambda K_{n} (V_{GSQ} - V_{TN})^{2}}$$

$$\approx \frac{1}{\lambda I_{DQ}} = \frac{V_{A}}{I_{DQ}}$$

输出特性曲线Q点 上切线斜率的倒数

模型应用的前提条件

$$v_{\rm gs} << 2 (V_{\rm GSQ} - V_{\rm TN})$$

小信号

$$g_{\rm m} = 2K_{\rm n}(V_{\rm GSQ} - V_{\rm TN})$$

$$r_{\rm ds} = \frac{1}{\lambda K_{\rm n}(V_{\rm GSQ} - V_{\rm TN})^2}$$

- 参数都是小信号参数,即微变参数或交 流参数。
- 与静态工作点有关。
- 只适合对交流信号(变化量)的分析。
- 未包含结电容的影响,不能用于分析高 频情况。

5. 其它管型

模型相同,参数类似

● 耗尽型NMOS管

$$g_{\rm m} = 2K_{\rm n}(V_{\rm GSO} - V_{\rm PN})$$

$$r_{\rm ds} = \frac{1}{\lambda K_{\rm n} (V_{\rm GSO} - V_{\rm PN})^2}$$

5. 其它管型

模型相同,参数类似

● 增强型PMOS管

$$g_{\rm m} = 2K_{\rm p}(V_{\rm TP} - V_{\rm GSQ})$$

$$r_{\rm ds} = \frac{1}{\lambda K_{\rm n} (V_{\rm GSO} - V_{\rm TP})^2}$$

• 耗尽型PMOS管 g_m 始终为正数

$$g_{\rm m} = 2K_{\rm p}(V_{\rm PP} - V_{\rm GSQ})$$

$$r_{\rm ds} = \frac{1}{\lambda K_{\rm n} (V_{\rm GSO} - V_{\rm PP})^2}$$

4.4 小信号模型分析法

- 4.4.1 MOSFET的小信号模型
- 4.4.2 用小信号模型分析共源极放大电路
- 4.4.3 带源极电阻的共源极放大电路的分析
- 4.4.4 小信号模型分析法的适用范围

由于小信号模型的参数是建立在静态工作点基础上的,所 以分析时必须先求出电路的静态工作点

例4.4.1 $V_{\text{TN}}=1$ V $K_{\text{n}}=0.8$ mA / V² $\lambda=0.02$ V⁻¹ 试确定电路的静态值,求MOS管 工作于饱和区的小信号电压增益 A_{r} 、输入电阻 R_{i} 和输出电阻 R_{o} 。

共源放大电路

93

例1

$$V_{\rm TN} = 1 {\rm V}$$
 $K_{\rm n} = 0.8 {\rm mA} / {\rm V}^2$ $\lambda = 0.02 {\rm V}^{-1}$

$$\lambda = 0.02 \mathrm{V}^{-1}$$

(1) 静态工作点 解:

- ■增强型?耗尽型?
- 栅源加什么极性偏置电压?

• Q点包含哪几个电量?

[5]1
$$V_{\text{TN}} = 1 \text{V}$$
 $K_{\text{n}} = 0.8 \text{mA} / \text{V}^2$ $\lambda = 0.02 \text{V}^{-1}$

解: (1) 静态工作点

$$V_{\text{GSQ}} = \left(\frac{R_{\text{g2}}}{R_{\text{g1}} + R_{\text{g2}}}\right) V_{\text{DD}} = \frac{40}{60 + 40} \times 5 \text{V} = 2 \text{V}$$

假设工作在饱和区

$$I_{DQ} = K_{n}(V_{GS} - V_{TN})^{2} = (0.8)(2-1)^{2} \text{mA} = 0.8 \text{mA}$$

$$V_{\rm DSO} = V_{\rm DD} - I_{\rm D}R_{\rm d} = [5 - (0.8)(3.9)]V = 1.88V$$

满足
$$V_{DSQ} > (V_{GSQ} - V_{TN})$$

假设成立,结果即为所求。

例1 $V_{\rm TN} = 1 {\rm V}$ $K_{\rm n} = 0.8 {\rm mA} / {\rm V}^2$ $\lambda = 0.02 {\rm V}^{-1}$

(2) 动态指标

小信号等效电路

电容和直流电压源对交流相当于短路

$$V_{\rm TN} = 1 \rm V$$

$$V_{\rm TN} = 1 \text{V}$$
 $K_{\rm n} = 0.8 \text{mA} / \text{V}^2$ $\lambda = 0.02 \text{V}^{-1}$

(2) 动态指标

小信号等效电路

[5]1
$$V_{\text{TN}} = 1 \text{V}$$
 $K_{\text{n}} = 0.8 \text{mA} / \text{V}^2$ $\lambda = 0.02 \text{V}^{-1}$

解: (2) 动态指标

模型参数 $V_{GSO} = 2V$

$$V_{\rm GSO} = 2V$$

$$g_{\rm m} = 2K_{\rm n}(V_{\rm GSQ} - V_{\rm TN})$$
$$= 2 \times 0.8 \times (2 - 1) \text{mA / V}$$

= 1.6 mA / V

$$r_{\rm ds} = \frac{1}{\lambda K_{\rm n} (V_{\rm GSO} - V_{\rm TN})^2} = \frac{1}{0.02 \times 0.8 \times (2 - 1)^2} = 62.5 \,\mathrm{k}\Omega$$

电压增益 $v_i = v_{gs}$ $v_o = -g_m v_{gs} (r_{ds} \parallel R_d)$

$$A_{v} = \frac{v_{o}}{v_{i}} = -\frac{g_{m}v_{gs}(r_{ds} || R_{d})}{v_{gs}} = -g_{m}(r_{ds} || R_{d}) \approx -g_{m}R_{d} = -6.24$$

 $A_v = -g_{\rm m}(r_{\rm ds} \parallel R_{\rm d})$ 经常当作公式使用

$$V_{\rm TN}$$
=1V

$$V_{\rm TN} = 1 {
m V}$$
 $K_{\rm n} = 0.8 {
m mA} / {
m V}^2$ $\lambda = 0.02 {
m V}^{-1}$

(2) 动态指标

输入电阻

$$R_{\rm i} = \frac{v_{\rm i}}{i_{\rm i}} = R_{\rm gs1} \parallel R_{\rm gs2} = 24 \text{ k}\Omega$$

受静态偏置电路的影响, 栅极绝缘的特性并未充分表现 出来

输出电阻

$$v_{\rm gs} = 0$$

$$R_{\rm o} = \frac{v_{\rm t}}{i_{\rm t}} = r_{\rm ds} \mid\mid R_{\rm d} \approx R_{\rm d}$$

 $=3.9 \text{ k}\Omega$

4.4 小信号模型分析法

- 4.4.1 MOSFET的小信号模型
- 4.4.2 用小信号模型分析共源极放大电路
- 4.4.3 带源极电阻的共源极放大电路的分析
- 4.4.4 小信号模型分析法的适用范围

例2 $V_{\text{TN}}=1\text{V}$, $K_{\text{n}}=0.5\text{mA/V}^2$, $\lambda=0$,

 $V_{\rm DD}=V_{\rm SS}=5{\rm V}$, $R_{\rm d}=10{\rm k}\Omega$, $R_{\rm s}=0.5{\rm k}\Omega$,

 $R_{\rm si}$ =4kΩ, $R_{\rm g1}$ =150kΩ, $R_{\rm g2}$ =47kΩ,确

定静态工作点, 求动态指标。

解: (1) 静态工作点

假设在饱和区,根据

$$V_{\rm GSO} = V_{\rm G} - V_{\rm S}$$

$$I_{\rm DO} = K_{\rm n} (V_{\rm GSO} - V_{\rm TN})^2$$

$$V_{
m DSQ} = V_{
m DD} - (-V_{
m SS}) - I_{
m DQ}(R_{
m d} + R_{
m s})$$

 $V_{
m DD}$

例2 $V_{\text{TN}}=1\text{V}$, $K_{\text{n}}=0.5\text{mA/V}^2$, $\lambda=0$,

 $V_{\rm DD}=V_{\rm SS}=5{\rm V}$, $R_{\rm d}=10{\rm k}\Omega$, $R_{\rm s}=0.5{\rm k}\Omega$,

 $R_{\rm si}$ =4kΩ, $R_{\rm g1}$ =150kΩ, $R_{\rm g2}$ =47kΩ,确

定静态工作点,求动态指标。

解: (1) 静态工作点

求得

$$V_{\rm GSQ} = 2.1 {
m V}$$
 $I_{\rm DQ} = 0.58 {
m mA}$

$$V_{\rm DSQ} = 3.91 \mathrm{V}$$

验证

满足
$$V_{\rm DS} > (V_{\rm GS} - V_{\rm TN})$$

工作在饱和区

例2 $V_{\text{TN}}=1$ V, $K_{\text{n}}=0.5$ mA/V², $\lambda=0$,

 $V_{\rm DD} = V_{\rm SS} = 5 \text{V}$, $R_{\rm d} = 10 \text{k}\Omega$, $R_{\rm s} = 0.5 \text{k}\Omega$,

 $R_{\rm si}$ =4kΩ, $R_{\rm g1}$ =150kΩ, $R_{\rm g2}$ =47kΩ,确

定静态工作点,求动态指标。

解: (2) 动态指标

小信号等效电路

 $V_{
m DD}$

例2 $V_{\text{TN}}=1\text{V}$, $K_{\text{n}}=0.5\text{mA/V}^2$, $\lambda=0$,

 $V_{\rm DD}=V_{\rm SS}=5{\rm V}$, $R_{\rm d}=10{\rm k}\Omega$, $R_{\rm s}=0.5{\rm k}\Omega$,

 $R_{\rm si}$ =4kΩ, $R_{\rm g1}$ =150kΩ, $R_{\rm g2}$ =47kΩ,确

定静态工作点,求动态指标。

解: (2) 动态指标

小信号等效电路

例2 V_{TN} =1V, K_{n} =0.5mA/V², λ =0, V_{DD} = V_{SS} =5V, R_{d} =10kΩ, R_{s} =0.5kΩ,

 $R_{\rm si}$ =4kΩ, $R_{\rm g1}$ =150kΩ, $R_{\rm g2}$ =47kΩ,确定静态工作点,求动态指标。

解: (2) 动态指标

$$g_{\rm m} = 2K_{\rm n}(V_{\rm GSO} - V_{\rm TN}) = 1.1 \,{\rm mA} \,/\,{\rm V}$$

电压增益

$$v_{\rm i} = v_{\rm gs} + g_{\rm m} v_{\rm gs} R_{\rm s} = v_{\rm gs} (1 + g_{\rm m} R_{\rm s})$$

$$v_{\rm o} = -g_{\rm m}v_{\rm gs}R_{\rm d}$$

$$A_v = \frac{v_o}{v_i} = -\frac{g_m R_d}{1 + g_m R_s} \approx -7.1$$

输入电阻

105

$$R_{\rm i} = \frac{v_{\rm i}}{i_{\rm s}} = R_{\rm gs1} \parallel R_{\rm gs2} \approx 35.79 \text{ k}\Omega$$

放大电路的输入电阻不包含信号源的内阻

源电压增益

$$A_{vs} = \frac{v_o}{v_s} = \frac{v_o}{v_i} \cdot \frac{v_i}{v_s}$$
$$= A_v \cdot \frac{R_i}{R_{si} + R_i} \approx -6.39$$

例2 $V_{\rm TN}$ =1V, $K_{\rm n}$ =0.5mA/V², λ =0, $V_{\rm DD}$ = $V_{\rm SS}$ =5V, $R_{\rm d}$ =10kΩ, $R_{\rm s}$ =0.5kΩ, $R_{\rm si}$ =4kΩ, $R_{\rm g1}$ =150kΩ, $R_{\rm g2}$ =47kΩ,确定静态工作点,求动态指标。

解: (2) 动态指标

输出电阻

为便于分析,先考虑*λ*≠0时的情况

例2 $V_{\text{TN}}=1\text{V}$, $K_{\text{n}}=0.5\text{mA/V}^2$, $\lambda=0$, $V_{\text{DD}}=V_{\text{SS}}=5\text{V}$, $R_{\text{d}}=10\text{k}\Omega$, $R_{\text{s}}=0.5\text{k}\Omega$, $R_{\rm si}$ =4kΩ, $R_{\rm g1}$ =150kΩ, $R_{\rm g2}$ =47kΩ,确定静态工作点,求动态指标。

(2) 动态指标

输出电阻

为便于分析,先考虑2≠0 时的情况

$$v_{\rm gs} = -i_{\rm d}R_{\rm s}$$

$$v_{\rm t} = i_{\rm d}R_{\rm s} + (i_{\rm d} - g_{\rm m}v_{\rm gs})r_{\rm ds}$$

$$R_{\rm o}' = \frac{v_{\rm t}}{i_{\rm d}} = r_{\rm ds} \left[1 + R_{\rm s} \left(g_{\rm m} + \frac{1}{r_{\rm ds}} \right) \right]$$

所以当
$$\lambda$$
= 0 时,

$$R'_{\circ} \to \infty$$

所以当
$$\lambda=0$$
时, $R'_{o} \to \infty$ $R_{o} = R'_{o} \parallel R_{d} = R_{d}$

当
$$\lambda \neq 0$$
时,若 $r_{\rm ds} >> R_{\rm d}$,则 $R_{\rm o} = R_{\rm o}' \parallel R_{\rm d} \approx R_{\rm d}$

$$R_{\rm o} = R_{\rm o}' \mid\mid R_{\rm d} \approx R_{\rm d}$$

107

例2 $V_{\text{TN}}=1\text{V}$, $K_{\text{n}}=0.5\text{mA/V}^2$, $\lambda=0$,

 $V_{\rm DD}=V_{\rm SS}=5{\rm V}$, $R_{\rm d}=10{\rm k}\Omega$, $R_{\rm s}=0.5{\rm k}\Omega$,

 $R_{\rm si}$ =4kΩ, $R_{\rm g1}$ =150kΩ, $R_{\rm g2}$ =47kΩ,确

定静态工作点,求动态指标。

解: (2) 动态指标

 R_{g1}

电压增益

$$A_v = \frac{v_o}{v_i} = -\frac{g_m R_d}{1 + g_m R_s} \approx -7.1$$

能否进一步提高增益?

 $V_{
m DD}$

4.4.3 带源极电阻的共源极放大电路的分析。

4.4.3 带源极电阻的共源极放大电路的分析

例3 双电源供电,电流源偏置

静态时, $v_{\rm I}=0$, $V_{\rm G}=0$, $I_{\rm DO}=I$

根据 $I_{DO} = K_n (V_{GSO} - V_{TN})^2$ (饱和区)

可求得 V_{GSO}

$$X V_{S} = V_{G} - V_{GSO} V_{D} = V_{DD} - I_{DQ}R_{d}$$

$$V_{\rm D} = V_{\rm DD} - I_{\rm DO} R_{\rm d}$$

则
$$V_{\rm DSO} = V_{\rm D} - V_{\rm S}$$

ch04

动态时

4.4 小信号模型分析法

- 4.4.1 MOSFET的小信号模型
- 4.4.2 用小信号模型分析共源极放大电路
- 4.4.3 带源极电阻的共源极放大电路的分析
- 4.4.4 小信号模型分析法的适用范围

4.4.4 小信号模型分析法的适用范围

放大电路的输入信号幅度较小,FET工作在其I-V特性曲线的饱和区(即近似线性范围)内。模型参数的值是在静态工作点上求得的。所以,放大电路的动态性能与静态工作点位置及稳定性密切相关。

优点:

分析放大电路的动态性能指标(A_v 、 R_i 和 R_o 等)非常方便,且适用于频率较高时(用高频模型)的分析。

缺点:

在放大电路的小信号等效电路中,电压、电流等电量及模型参数均是针对变化量(交流量)而言的,不能用来分析计算静态工作点。

思考题

- 1. MOSFET小信号模型是在什么条件下建立的?
- 2. 放大电路如图所示。试画出 其小信号等效电路。

4 场效应三极管及放大电路

- 4.1 金属-氧化物-半导体 (MOS) 场效应三极管
- 4.2 MOSFET基本共源极放大电路
- 4.3 图解分析法
- 4.4 小信号模型分析法
- 4.5 共漏极和共栅极放大电路
- 4.7 组合放大电路
- 4.9 各种FET的特性及使用注意事项

4.5 共漏极和共栅极放大电路

- 4.5.1 共漏极 (源极跟随器) 放大电路
- 4.5.2 共栅极放大电路
- 4.5.3 MOSFET放大电路三种组态的总结和比较

三种组态的判断

较好的方法并不是试图寻找接地的电极,而是寻找信号的输入电极和 输出电极。

即观察输入信号加在哪个电极,输出信号从哪个电极取出, 个电极便是共同电极。如

共源极放大电路,信号由栅极输入, 漏极输出; 共漏极放大电路,信号由栅极输入, 源极输出; 共栅极放大电路,信号由源极输入, 漏极输出。 栅极始终不能做 输出电极,漏极 不能做输入极

1. 静态分析

设MOS管工作于饱和区

$$\begin{cases} I_{\rm DQ} = K_{\rm n} (V_{\rm GSQ} - V_{\rm TN})^2 \\ V_{\rm GSQ} = \frac{R_{\rm g2}}{R_{\rm g1} + R_{\rm g2}} \cdot V_{\rm DD} - I_{\rm DQ} R_{\rm s} \\ V_{\rm DSQ} = V_{\rm DD} - I_{\rm DQ} R_{\rm s} \end{cases}$$

需验证是否工作在饱和区

2. 动态分析

小信号等效电路

根据静态工作点可求得 g_m

$$g_{\rm m} = 2K_{\rm n}(V_{\rm GSQ} - V_{\rm TN})$$

电压增益

$$v_{i} = v_{gs} + v_{o} = v_{gs} + g_{m}v_{gs}(R_{s} || r_{ds})$$

= $v_{gs}[1 + g_{m}(R_{s} || r_{ds})]$

$$v_{\rm o} = g_{\rm m} v_{\rm gs}(R_{\rm s} \parallel r_{\rm ds})$$

$$A_{v} = \frac{v_{o}}{v_{i}} = \frac{g_{m}v_{gs}(R_{s} || r_{ds})}{v_{gs}[1 + g_{m}(R_{s} || r_{ds})]}$$

$$= \frac{g_{\rm m}(R_{\rm s} || r_{\rm ds})}{1 + g_{\rm m}(R_{\rm s} || r_{\rm ds})} \approx 1$$

输出与输入同相,且增益小于等于1

2. 动态分析

源电压增益

$$A_{vs} = \frac{v_o}{v_s} = \frac{v_o}{v_i} \cdot \frac{v_i}{v_s}$$

$$= \frac{g_m(R_d || r_{ds})}{1 + g_m(R_d || r_{ds})} \cdot (\frac{R_i}{R_i + R_{si}})$$

输入电阻

$$R_{\mathrm{i}} = R_{\mathrm{g1}} \parallel R_{\mathrm{g2}}$$

受静态偏置电路的影响, 栅极绝缘的特性并未充分表现 出来

ch04

2. 动态分析

输出电阻

$$\begin{cases} i_{\mathrm{T}} = \frac{v_{\mathrm{T}}}{R_{\mathrm{s}}} + \frac{v_{\mathrm{T}}}{r_{\mathrm{ds}}} - g_{\mathrm{m}} v_{\mathrm{gs}} \\ v_{\mathrm{gs}} = -v_{\mathrm{T}} \end{cases}$$

$$R_{o} = \frac{v_{T}}{i_{T}} = \frac{1}{\frac{1}{R_{s}} + \frac{1}{r_{ds}} + g_{m}} = R_{s} || r_{ds} || \frac{1}{g_{m}}$$

输出电阻较小

4.5 共漏极和共栅极放大电路

- 4.5.1 共漏极(源极跟随器)放大电路
- 4.5.2 共栅极放大电路
- 4.5.3 MOSFET放大电路三种组态的总结和比较

4.5.2 共栅极放大电路

1. 静态分析

根据直流通路有

可得 V_{GSO}

$$\nabla V_{\rm S} = -V_{\rm GSQ}$$
 $V_{\rm D} = V_{\rm DD} - I_{\rm DQ}R_{\rm d}$

所以
$$V_{DSQ} = V_D - V_S$$

= $V_{DD} - I_{DQ} R_d + V_{GSQ}$

需验证是否工作在饱和区

4.5.2 共栅极放大电路

2. 动态分析

设*1*=0

电压增益

$$v_{\rm i} = -v_{\rm gs}$$

$$v_{\rm o} = -g_{\rm m}v_{\rm gs}(R_{\rm d} \parallel R_{\rm L})$$

$$A_v = \frac{v_o}{v_i} = g_m(R_d \parallel R_L)$$

源电压增益

$$v_{\rm s} = v_{\rm i} + i_{\rm i}R_{\rm si} = -v_{\rm gs} - g_{\rm m}v_{\rm gs}R_{\rm si}$$

$$A_{vs} = \frac{v_o}{v_s} = \frac{g_m(R_d \| R_L)}{1 + g_m R_{si}}$$

输出与输入同相

4.5.2 共栅极放大电路

2. 动态分析

输入电阻

$$R_{\rm i} = \frac{v_{\rm i}}{i_{\rm i}} = \frac{-v_{\rm gs}}{-g_{\rm m}v_{\rm gs}} = \frac{1}{g_{\rm m}}$$

输入电阻远小于其它两种组态

输出电阻

当
$$r_{\rm ds} >> R_{\rm d}$$
 和 $r_{\rm ds} >> R_{\rm si}$ 时 $R_{\rm o} \approx R_{\rm d}$

与共源电路同相

124

4.5 共漏极和共栅极放大电路

- 4.5.1 共漏极(源极跟随器)放大电路
- 4.5.2 共栅极放大电路
- 4.5.3 MOSFET放大电路三种组态的总结和比较

125

4.5.3 MOSFET放大电路三种组态的总结和比较

共源

共漏

共栅

电压增益

$$A_v = -g_{\mathbf{m}}(r_{\mathbf{ds}} \parallel R_{\mathbf{d}})$$

$$A_v = \frac{g_{\rm m}(R_{\rm s} || r_{\rm ds})}{1 + g_{\rm m}(R_{\rm s} || r_{\rm ds})} \approx 1$$

$$A_v = g_{\mathbf{m}}(R_{\mathbf{d}} \parallel R_{\mathbf{L}})$$

输入电阻

很高

很高

$$R_{\rm i} \approx \frac{1}{g_{\rm m}}$$

输出电阻

126

$$R_{\rm o} \approx R_{\rm d}$$

$$R_{\rm o} = R_{\rm s} || r_{\rm ds} || \frac{1}{g_{\rm m}}$$

$$R_{\rm o} \approx R_{\rm d}$$

ch04

4 场效应三极管及放大电路

- 4.1 金属-氧化物-半导体 (MOS) 场效应三极管
- 4.2 MOSFET基本共源极放大电路
- 4.3 图解分析法
- 4.4 小信号模型分析法
- 4.5 共漏极和共栅极放大电路
- 4.7 组合放大电路
- 4.9 各种FET的特性及使用注意事项

4.7 组合放大电路

- 4.7.1 共源-共漏放大电路
- 4.7.2 共源-共栅放大电路

例1

1. 静态分析 直流通路

例1

1. 静态分析

两管栅极均无电流, 假设工作在饱和区

$$\begin{cases} I_{\text{DQ 1}} = K_{\text{n1}} (V_{\text{GSQ 1}} - V_{\text{TN1}})^2 \\ V_{\text{GSQ 1}} = \frac{R_{\text{g2}}}{R_{\text{g1}} + R_{\text{g2}}} \cdot (V_{\text{DD}} + V_{\text{SS}}) - I_{\text{DQ 1}} R_{\text{s1}} \\ V_{\text{DSQ 1}} = V_{\text{DD}} + V_{\text{SS}} - I_{\text{DQ 1}} (R_{\text{d1}} + R_{\text{s1}}) \end{cases}$$

$$\begin{cases} I_{\text{DQ 2}} = K_{\text{n2}} (V_{\text{GSQ 2}} - V_{\text{TN2}})^2 \\ V_{\text{GSQ 2}} = V_{\text{DD}} + V_{\text{SS}} - I_{\text{DQ 1}} R_{\text{d1}} - I_{\text{DQ 2}} R_{\text{s2}} \end{cases}$$

$$V_{\text{DSQ 2}} = V_{\text{DD}} + V_{\text{SS}} - I_{\text{DQ 2}} R_{\text{s2}}$$

已知管子参数和电路参数, 便可解出两管静态工作点

需验证是否工作在饱和区

例1

1. 静态分析

将具体参数值代入,计算得

$$V_{\rm GSO1}$$
 = 1.84 V $I_{\rm DO2}$ \approx 0.49 mA

$$I_{\rm DQ1} = 0.2 \text{ mA}$$
 $V_{\rm GSO2} = 2.78 \text{ V}$

$$V_{\rm DSQ1} = 6.02 \text{ V}$$
 $V_{\rm DSQ2} = 5.98 \text{ V}$

由于
$$V_{TN1} = V_{TN2} = 1.2 \text{ V}$$

可验证两管均工作在饱和区

例1

2. 动态分析

小信号等效电路

根据
$$g_{\rm m} = 2K_{\rm n}(V_{\rm GSQ} - V_{\rm TN})$$

可求得 g_m

电压增益

$$\begin{cases} v_{i} = v_{gs1} \\ v_{o} = g_{m2}v_{gs2}(R_{s2} || R_{L}) \\ -g_{m1}v_{gs1}R_{d1} = v_{o} + v_{gs2} \end{cases}$$

$$A_{v} = \frac{v_{o}}{v_{i}}$$

$$= -\frac{g_{m1}g_{m2}R_{d1}(R_{s2} || R_{L})}{1 + g_{m2}(R_{s2} || R_{L})}$$

 $R_{\rm si}$

例1

2. 动态分析

输入电阻

$$\textit{\textbf{R}}_{\rm i} = \textit{\textbf{R}}_{\rm g1} \parallel \textit{\textbf{R}}_{\rm g2}$$

输出电阻就是后一级共 漏电路的输出电阻

$$R_{\rm o} = R_{\rm s2} \| r_{\rm ds2} \| \frac{1}{g_{\rm m2}} = R_{\rm s2} \| \frac{1}{g_{\rm m2}}$$
 $(\lambda_2 = 0)$

源电压增益

$$A_{vs} = \frac{v_{o}}{v_{s}} = \frac{v_{o}}{v_{i}} \cdot \frac{v_{i}}{v_{s}} = -\frac{g_{m1}g_{m2}R_{d1}(R_{s2} \parallel R_{L})}{1 + g_{m2}(R_{s2} \parallel R_{L})} \cdot (\frac{R_{i}}{R_{i} + R_{si}})$$

111 华中科技大学电信学院

133

4.7 组合放大电路

- 4.7.1 共源-共漏放大电路
- 4.7.2 共源-共栅放大电路

例2

1. 静态分析

直流通路

例2

1. 静态分析

假设工作在饱和区

$$\begin{cases} I_{\text{DQ 1}} = K_{\text{n1}} (V_{\text{GSQ 1}} - V_{\text{TN1}})^2 \\ V_{\text{GSQ 1}} = \frac{R_{\text{g3}}}{R_{\text{g1}} + R_{\text{g2}} + R_{\text{g3}}} \cdot V_{\text{DD}} - I_{\text{DQ 1}} R_{\text{s1}} + V_{\text{SS}} \\ I_{\text{DQ 1}} = I_{\text{DQ 2}} \\ I_{\text{DO 2}} = K_{\text{n2}} (V_{\text{GSO 2}} - V_{\text{TN2}})^2 \end{cases}$$

 $V_{
m DD}$

$$V_{\rm DD} + V_{\rm SS} = I_{\rm DO\,2}R_{\rm d2} + V_{\rm DSO\,2} + V_{\rm DSO\,1} + I_{\rm DO\,1}R_{\rm s1}$$

需验证是否工作在饱和区

例2

2. 动态分析

小信号等效电路

电压增益

$$v_{\rm i} = v_{\rm gs1}$$

$$v_{\rm o} = -g_{\rm m2}v_{\rm gs2}R_{\rm d2} = -g_{\rm m1}v_{\rm gs1}R_{\rm d2}$$

$$A_v = \frac{v_o}{v_i} = -g_{m1}R_{d2}$$

例2

2. 动态分析

输入电阻

$$R_{\mathrm{i}} = R_{\mathrm{g2}} \parallel R_{\mathrm{g3}}$$

输出电阻

$$R_0 \approx R_{d2} \qquad (\lambda_2 = 0)$$

4 场效应三极管及其放大电路

- 4.1 金属-氧化物-半导体 (MOS) 场效应三极管
- 4.2 MOSFET基本共源极放大电路
- 4.3 图解分析法
- 4.4 小信号模型分析法
- 4.5 共漏极和共栅极放大电路
- 4.7 组合放大电路
- 4.9 各种FET的特性及使用注意事项

139

4.9 各种FET的特性及使用注意事项

表 4.10.1 各种场效应管的特性比较

	N沟道			P沟道		
	增强型 MOSFET	耗尽型 MOSFET	耗尽型 JFET	增强型 MOSFET	耗尽型 MOSFET	耗尽型 JFET
也 路符号		g i _D i _D i _d	g i _D	g i _D i _D if	g i _D i _D i _S	g i _D
V _T 或 V _P	+	_	_	_	+	+
K _n 或K _p	$K_{\rm n} = \frac{1}{2} \mu_{\rm n} C_{\rm ox}(W/L) = \frac{1}{2} K'_{\rm n}(W/L)$		$K_{\rm n} = I_{\rm DSS}/V_{\rm P}^2$	$K_{\rm p} = \frac{1}{2} \mu_{\rm p} C_{\rm ox}(W/L) = \frac{1}{2} K'_{\rm n}(W/L)$		$K_{\rm p} = I_{\rm DSS} / V_{\rm p}^2$
输出特性	$ \begin{array}{c c} i_{\text{D}} & v_{\text{GS}} = 5V \\ \hline 0 & v_{\text{DS}} \end{array} $	$ \begin{array}{c c} i_{\rm D} & 0.2 \\ \hline v_{\rm GS} = 0 V \\ \hline -0.2 \\ -0.4 \\ \hline v_{\rm DS} \end{array} $	$ \begin{array}{c c} i_{D} & v_{GS} = 0V \\ \hline & -1 \\ \hline & -2 \\ \hline & -3 \\ \hline & 0 \\ \hline & v_{DS} \end{array} $	$ \begin{array}{c c} i_{\text{D}} & v_{\text{GS}} = -6V \\ \hline & -5 \\ \hline & -4 \\ O & -v_{\text{DS}} \end{array} $	$ \begin{array}{c c} i_{\text{D}} & -1 \\ \hline v_{\text{GS}} = 0V \\ +1 \\ +2 \\ \hline O & -v_{\text{DS}} \end{array} $	$ \begin{array}{c c} i_{\text{D}} & v_{\text{GS}} = 0V \\ & +1 \\ & +2 \\ & & 13 \\ & & & -v_{\text{DS}} \end{array} $
转移特性	i_{D} O V_{T} v_{GS}	$V_{\rm P} = O - v_{\rm GS}$	$I_{ m DSS}$ $I_{ m DSS}$ $V_{ m P}$ O $v_{ m GS}$	$\frac{i_{D}}{V_{T} O v_{GS}}$	$i_{\rm D}$ O $V_{\rm P}$ $v_{\rm GS}$	I_{DSS} O V_{P} v_{GS}
140	ch04			林	* - <<	>>

思考:

- 对于MOSFET有没有给出其输出特性曲线完整的数学模 型(特性方程)?
- □ 三极管放大作用的本质是其控制作用。在MOSFET中, 是通过怎样的控制关系反映其放大作用的?
- □ MOSFET中的in和ves是线性关系吗?这种关系反应了哪 个参数的特性?意味着怎样的物理意义?
- MOSFET的栅极绝缘带来了哪些好处?
- 增强型和耗尽型MOSFET有何差别? N沟道和P沟道 MOSFET有何差别? 处于放大状态时它们各需要怎样的 静态偏置?

思考:

- □ 如何理解放大电路的静态和动态?它们与直流通路和交流通路有何关系?画直流通路和交流通路的方法是什么?
- □ MOSFET小信号模型适用的前提条件是什么?
- \square MOSFET的小信号模型参数 g_m 与静态工作点有关吗?
- □ MOSFET中的宽长比可直接影响它的互导参数,这一关系带来了什么好处?
- □ 如何分析MOSFET放大电路的静态工作点和动态指标?
- MOSFET三种组态(共源、共漏、共栅)放大电路各有 什么特点?

