Solutions & Notes of Homework 1

Junda Wu, Student ID: 210320621

June 24, 2025

If students struggle against an exercise for several hours (possibly working with other students), then they are likely to learn a lot.

-Sheldon Axler

Problem 1

Let V be a vector space and let $\mathbf{x}, \mathbf{y} \in V$. Show that

- (a) $\beta \mathbf{0} = \mathbf{0}$ for each scalar β .
- (b) x + y = 0 implies that y = -x, i.e., the additive inverse of x is unique.
- ✓ **Proof:** (a) Using the distributive property, we have

$$\beta 0 = \beta (0 + 0) = \beta 0 + \beta 0.$$

Add the additive inverse of $\beta 0$ to both sides of the equation above, and we have $0 = \beta 0$, as desired.

(b) **Note:** We need only to prove y = -x, and it indicates the uniqueness.

$$-\mathbf{x} = -\mathbf{x} + \mathbf{0}$$
 (additive identity)
 $= -\mathbf{x} + (\mathbf{x} + \mathbf{y})$
 $= (-\mathbf{x} + \mathbf{x}) + \mathbf{y}$ (associativity)
 $= \mathbf{0} + \mathbf{y}$ (additive identity)
 $= \mathbf{y} + \mathbf{0}$ (commutativity)
 $= \mathbf{y}$. (additive identity)

Therefore, x + y = 0 implies that y = -x, as desired.

An alternative proof: add $-\mathbf{x}$ to both sides of $\mathbf{x} + \mathbf{y} = \mathbf{0}$ and we have

$$\begin{aligned} \mathbf{0} + (-\mathbf{x}) &= \mathbf{x} + \mathbf{y} + (-\mathbf{x}) \\ -\mathbf{x} + \mathbf{0} &= \mathbf{y} + \mathbf{x} + (-\mathbf{x}) \\ -\mathbf{x} + \mathbf{0} &= \mathbf{y} + (\mathbf{x} + (-\mathbf{x})) \end{aligned} & \text{(associativity)} \\ -\mathbf{x} &= \mathbf{y} + \mathbf{0} \\ -\mathbf{x} &= \mathbf{y}. \end{aligned} & \text{(additive identity)}$$

Therefore, x + y = 0 implies that y = -x, as desired.

Note for typesetting: *Use displayed equations (equations in a single line) to enhance readability. Consider the displayed equation as a part of the sentence and add an appropriate punctuation to it.*

Problem 2

Let V be the set of all ordered pairs of real numbers with addition defined by

$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2),$$

and scalar multiplication defined by

$$\alpha \circ (x_1, x_2) = (\alpha x_1, x_2),$$

Scalar multiplication for this system is defined in an unusual way, and consequently we use the symbol \circ to avoid confusion with the ordinary scalar multiplication of row vectors. Is V a vector space with these operations? Justify your answer.

✓ **Solution (1):** No. We have

$$(a+b)\circ(x_1,y_1)=((a+b)\times x_1,y_1)=(ax_1+bx_1,y_1),$$

while

$$a \circ (x_1, y_1) + b \circ (x_1, y_1) = (ax_1, y_1) + (bx_1, y_1) = (ax_1 + bx_1, 2y_1).$$

Therefore, $(a + b) \circ (x_1, y_1) \neq a \circ (x_1, y_1) + b \circ (x_1, y_1)$, which implies distributive property does not hold, and V is not a vector space.

✓ **Solution (2):** No. Suppose V is a vector space. According to the distributive property, we have

$$(x_1, y_1) + (x_1, y_1) = 1 \circ (x_1, y_1) + 1 \circ (x_1, y_1) = (1+1) \circ (x_1, y_1) = (2x_1, y_1).$$
 (1)

However, according to the definition of addition, we have

$$(x_1, y_1) + (x_1, y_1) = (2x_1, 2y_1),$$

which is contradictory to (1). Therefore, V is not a vector space.

Note: If the scalar multiplication in the problem above is redefined as $\alpha \circ (x_1, x_2) = (\alpha x_1, 0)$, we will find that the sets given in both this example and the problem above include 0 and are closed under addition and scalar multiplication. However, they are not vector spaces. What makes this happen?

Hint: The conditions for **subspaces** and those for **vector spaces** are different!

Problem 3

Suppose V is a real vector space.

- The *complexification* of V, denoted by $V_{\mathbb{C}}$, equals $V \times V$. An element of $V_{\mathbb{C}}$ is an ordered pair (u, v), where $u, v \in V$, but we write this as u + iv.
- Addition on $V_{\mathbb{C}}$ is defined by

$$(u_1 + iv_1) + (u_2 + iv_2) = (u_1 + u_2) + i(v_1 + v_2),$$

for all $u_1, v_1, u_2, v_2 \in V$.

• Complex scalar multiplication on $V_{\mathbb{C}}$ is defined by

$$(a+bi)(u+iv) = (au-bv) + i(av+bu),$$

for all $a, b \in \mathbb{R}$ and all $u, v \in V$.

Prove that with the definitions of addition and scalar multiplication as above, $V_{\mathbb{C}}$ is a complex vector space.

- ✓ **Proof:** We need to verify each condition in the definition of vector space.
 - (1) **commutativity:** for all $u_1, v_1, u_2, v_2 \in V$, we have

$$(u_1 + iv_1) + (u_2 + iv_2) = (u_1 + u_2) + i(v_1 + v_2)$$
$$= (u_2 + u_1) + i(v_2 + v_1)$$
$$= (u_2 + iv_2) + (u_1 + iv_1),$$

Thus commutativity holds.

(2) **associativity:** for all $u_1, v_1, u_2, v_2, u_3, v_3 \in V$, we have

$$((u_1 + iv_1) + (u_2 + iv_2)) + (u_3 + iv_3) = (u_1 + u_2) + i(v_1 + v_2) + (u_3 + iv_3)$$

$$= (u_1 + u_2 + u_3) + i(v_1 + v_2 + v_3)$$

$$= (u_1 + iv_1) + (u_2 + u_3) + i(v_2 + v_3)$$

$$= (u_1 + iv_1) + ((u_2 + iv_2) + (u_3 + iv_3)),$$

and for all $a, b, c, d \in \mathbb{R}$ and all $u, v \in V$, we have

$$((a+bi)(c+di))(u+iv) = ((ac-bd)+i(ad+bc))(u+iv)$$

$$= ((ac-bd)u - (ad+bc)v) + i((ac-bd)v + (ad+bc)u)$$

$$= ((cu-dv)a - (cv+du)b) + i((cv+du)a + (cu-dv)b)$$

$$= (a+bi)((cu-dv)+i(cv+du))$$

$$= (a+bi)((c+di)(u+iv)).$$

Thus associativity holds.

(3) additive identity: for all $u, v \in V$, we have

$$(u+iv) + (0+i0) = (u+0) + i(v+0) = (u+iv),$$

thus 0 + i0 is an (in fact, the unique) additive identity of $V_{\mathbb{C}}$.

(4) additive inverse: for all $u, v \in V$, we have

$$(u+iv) + (-u+i(-v)) = (u+(-u)) + i(v+(-v)) = 0 + i0,$$

thus for every $(u, v) \in V_{\mathbb{C}}$, there exists an additive inverse (-u, -v).

(5) **multiplicative identity:** for all $u, v \in V$, we have

$$(1+i0)(u+iv) = (1u-0v) + i(1v+0u) = u+iv,$$

thus 1+i0 is a (in fact, the unique) multiplicative identity of $V_{\mathbb{C}}$.

(6) **distributive properties:** for all $a, b \in \mathbb{R}$ and all $u_1, v_1, u_2, v_2 \in V$, we have

$$(a+bi)((u_1+iv_1)+(u_2+iv_2)) = (a+bi)((u_1+u_2)+i(v_1+v_2))$$

$$= ((u_1+u_2)a-(v_1+v_2)b)+i((v_1+v_2)a+(u_1+u_2)b)$$

$$= au_1-bv_1+i(av_1+bv_1)+au_2-bv_2+i(av_2+bv_2)$$

$$= (a+bi)(u_1+iv_1)+(a+bi)(u_2+iv_2),$$

and for all $a, b, c, d \in \mathbb{R}$ and all $u, v \in V$, we have

$$((a+bi) + (c+di))(u+iv) = ((a+c) + i(b+d))(u+iv)$$

$$= ((a+c)u - (b+d)v) + i((a+c)v + (b+d)u)$$

$$= au - bv + i(av + bu) + cu - dv + i(cv + du)$$

$$= (a+bi)(u+iv) + (c+di)(u+iv).$$

Thus distributive properties hold.

Therefore, $V_{\mathbb{C}}$ is a complex vector space.

Note (1): This problem illustrates the important role that **definitions** play in proof. All of the equalities above come from the definition of addition and scalar multiplication on $V_{\mathbb{C}}$ or V.

Note (2): The closure of addition and scalar multiplication is obvious and it's all right to omit the verification here. The following is listed for your reference.

Closure under addition: for all $u_1, v_1, u_2, v_2 \in V$, we have $(u_1 + iv_1) + (u_2 + iv_2) = (u_1 + u_2) + i(v_1 + v_2)$. Since $u_1 + u_2 \in V$ and $v_1 + v_2 \in V$, it follows that $(u_1 + iv_1) + (u_2 + iv_2) \in V_{\mathbb{C}}$.

Closure under scalar multiplication: for all $u, v \in V$ and all $a, b \in \mathbb{R}$, we have (a + bi)(u + iv) = (au - bv) + i(av + bu). Since $au - bv \in V$ and $av + bu \in V$, we have $(a + bi)(u + iv) \in V_{\mathbb{C}}$.

Problem 4

Let A be a fixed matrix in $\mathbb{R}^{n \times n}$ and let S be the set of all matrices that commute with A, that is,

$$S = \{B \mid AB = BA\}$$

Show that S is a subspace of $\mathbb{R}^{n \times n}$.

✓ **Proof:** Clearly $0_{n \times n} \in S$ because A0 = 0A = 0.

Also, S is closed under addition, because for $B_1, B_2 \in S$ we have

$$A(B_1 + B_2) = AB_1 + AB_2 = B_1A + B_2A = (B_1 + B_2)A.$$

Furthermore, S is closed under scalar multiplication, because for $B \in S, k \in \mathbb{R}$ we have

$$A(kB) = k(AB) = k(BA) = (kB)A.$$

Hence S is a subspace of $\mathbb{R}^{n \times n}$.

Problem 5

Verify the following statements.

- (a) Is \mathbb{R}^3 a subspace of the complex vector space \mathbb{C}^3 ?
- (b) Is $\{(x, y, z) \in \mathbb{R}^3 : x^3 = y^3\}$ a subspace of \mathbb{R}^3 ?
- (c) Is $\{(x, y, z) \in \mathbb{C}^3 : x^3 = y^3\}$ a subspace of \mathbb{C}^3 ?

✓ Solution:

- (a) **No**. By mentioning \mathbb{C}^3 as a complex vector space, we are taking scalars from \mathbb{C} , i.e., $\mathbb{F} = \mathbb{C}$. A real number multiplied by a complex number does not always give a real number, thus the result of scalar multiplication may not be in \mathbb{R}^3 , so \mathbb{R}^3 is not a subspace of \mathbb{C}^3 .
 - (b) **Yes**. For convenience, we denote $S = \{(x, y, z) \in \mathbb{R}^3 : x^3 = y^3\}$. It is easy to see that $(0, 0, 0) \in S$.

For $v_1 = (x_1, y_1, z_1), v_2 = (x_2, y_2, z_2) \in S$, we have $v_1 + v_2 = (x_1 + x_2, y_1 + y_2, z_1 + z_2)$. We can derive from $x^3 = y^3$ that x = y (*Hint*: $(x - y)(x^2 + xy + y^2) = 0$), hence $x_1 = y_1, x_2 = y_2$, and thus $(x_1 + x_2)^3 = (y_1 + y_2)^3$, which implies that S is closed under addition.

For $v_3=(x_3,y_3,z_3)\in S, k\in\mathbb{R}$, we have $kv_3=(kx_3,ky_3,kz_3)$. Because $(kx_3)^3=k^3x_3^3=k^3y_3^3=(ky_3)^3$, we have S is closed under scalar multiplication.

Therefore, $S = \{(x, y, z) \in \mathbb{R}^3 : x^3 = y^3\}$ is a subspace of \mathbb{R}^3 .

(c) **No**. Consider two vectors in $\{(x, y, z) \in \mathbb{C}^3 : x^3 = y^3\}$:

$$u_1 = (1, 1, 1), u_2 = (-1 + \sqrt{3}i, -1 - \sqrt{3}i, 1),$$

Both of them satisfy the condition $x^3=y^3$. (In fact, $1^3=1^3=1$; $(-1+\sqrt{3}i)^3=(-1-\sqrt{3}i)^3=8$) However, their sum is

$$u_3 = (\sqrt{3}i, -\sqrt{3}i, 2),$$

where the cube of the first coordinate is $(\sqrt{3}i)^3 = -3\sqrt{3}i$, while that of the second coordinate is $(-\sqrt{3}i)^3 = 3\sqrt{3}i$. Hence $u_3 \notin \{(x,y,z) \in \mathbb{C}^3 : x^3 = y^3\}$. Therefore, $\{(x,y,z) \in \mathbb{C}^3 : x^3 = y^3\}$ is not closed under addition, which implies it is not a subspace of \mathbb{C}^3 .

Note: We can also take $u_1 = \left(\frac{-1+\sqrt{3}i}{2}, 1, 0\right)$ and $u_2 = \left(\frac{-1-\sqrt{3}i}{2}, 1, 0\right)$.

Problem 6

Suppose U_1 and U_2 are subspaces of V.

- (a) Is the intersection $U_1 \cap U_2$ a subspace of V? Prove or give a counterexample.
- (b) Is the union $U_1 \cup U_2$ a subspace of V? Prove or give a counterexample.

✓ Solution:

(a) **Yes**. Clearly $\mathbf{0} \in U_1 \cap U_2$ because $\mathbf{0} \in U_1$ and $\mathbf{0} \in U_2$.

Consider two vectors $w_1, w_2 \in U_1 \cap U_2$. Since $w_1, w_2 \in U_1$ and U_1 is closed under addition (because it is a subspace of V), we have $w_1 + w_2 \in U_1$. Similarly, $w_1 + w_2 \in U_2$. Hence $w_1 + w_2 \in U_1 \cap U_2$. Therefore, $U_1 \cap U_2$ is closed under addition.

5

Consider a vector $w_3 \in U_1 \cap U_2$, and a scalar $\alpha \in \mathbb{F}$. Since $w_3 \in U_1$ and U_1 is closed under scalar multiplication (because it is a subspace of V), we have $\alpha w_3 \in U_1$. Similarly, $\alpha w_3 \in U_2$. Hence $\alpha w_3 \in U_1 \cap U_2$. Therefore, $U_1 \cap U_2$ is closed under scalar multiplication.

Now we conclude that the intersection $U_1 \cap U_2$ is a subspace of V.

(b) **No**. Consider two subspaces of \mathbb{R}^3 :

$$U_1 = \{(x, 0, 0), x \in \mathbb{R}\}, U_2 = \{(0, y, 0), y \in \mathbb{R}\}.$$

 U_1 includes all vectors parallel to x-axis while U_2 includes all vectors parallel to y-axis. Their union includes all vectors parallel to either x-axis or y-axis. However, consider the following two vectors in $U_1 \cup U_2$:

$$u_1 = (1, 0, 0), \quad u_2 = (0, 1, 0),$$

add them together and it turns out $u_1 + u_2 = (1, 1, 0)$, which is parallel to neither the x-axis nor the y-axis, and thus is not in $U_1 \bigcup U_2$.

Therefore, $U_1 \cup U_2$ is not closed under addition, which implies it is not a subspace of V.

Note: The union of subspaces is usually not a subspace, which is the reason for us to consider the sum of subspaces.

Problem 7

Suppose v_1, \ldots, v_m is a list of vectors in V. For $k \in \{1, \ldots, m\}$, let

$$w_k = v_1 + \dots + v_k.$$

Show that $\operatorname{span}(v_1,\ldots,v_m)=\operatorname{span}(w_1,\ldots,w_m)$.

▶ Proof: First suppose $v = a_1v_1 + \cdots + a_mv_m \in \text{span}(v_1, \dots, v_m)$, where a_1, \dots, a_m are scalars. Note that for every $k = 2, \dots, m$, we have $v_k = w_k - w_{k-1}$, and that $v_1 = w_1$. Then we have

$$v = a_1 v_1 + \dots + a_m v_m$$

= $a_1 w_1 + a_2 (w_2 - w_1) + \dots + a_m (w_m - w_{m-1})$
= $(a_1 - a_2) w_1 + (a_2 - a_3) w_2 + \dots + (a_{m-1} - a_m) w_{m-1} + a_m w_m$,

thus $v \in \text{span}(w_1, \dots, w_m)$, which implies that $\text{span}(v_1, \dots, v_m) \subset \text{span}(w_1, \dots, w_m)$.

Conversely, suppose $w = a_1 w_1 + \dots + a_m w_m \in \text{span}(w_1, \dots, w_m)$, where a_1, \dots, a_m are scalars. Then we have

$$w = a_1 w_1 + \dots + a_m w_m$$

= $a_1 v_1 + a_2 (v_1 + v_2) + \dots + a_m (v_1 + \dots + v_m)$
= $(a_1 + \dots + a_m) v_1 + (a_2 + \dots + a_m) v_2 + \dots + a_m v_m$,

thus $w \in \text{span}(v_1, \dots, v_m)$, which implies that $\text{span}(w_1, \dots, w_m) \subset \text{span}(v_1, \dots, v_m)$.

Therefore, $\operatorname{span}(v_1,\ldots,v_m)=\operatorname{span}(w_1,\ldots,w_m).$

Problem 8

Suppose v_1, \ldots, v_m is linearly independent in V and $w \in V$. Prove that if $v_1 + w, \ldots, v_m + w$ is linearly dependent, then $w \in \text{span}(v_1, \ldots, v_m)$.

Proof (1): Because $v_1 + w, \ldots, v_m + w$ is linearly dependent, we can conclude from linear dependence lemma (2.19 of the textbook, or Theorem 2.5.2 of the lecture notes) that there is a $j \in \{1, \ldots, m\}$ such that $v_j + w \in \text{span}(v_1 + w, \ldots, v_{j-1} + w)$.

If j=1, then $v_1+w\in \operatorname{span}()$, which implies that $v_1+w=0$, i.e., $w=-v_1$. Thus $w\in \operatorname{span}(v_1,\ldots,v_m)$. If $j\geq 2$, then there are scalars a_1,\ldots,a_{j-1} such that

$$v_j + w = a_1(v_1 + w) + \dots + a_{j-1}(v_{j-1} + w) \iff v_j + \lambda w = a_1v_1 + \dots + a_{j-1}v_{j-1},$$

where $\lambda = 1 - (a_1 + \dots + a_{j-1})$. Note that λ must be nonzero, otherwise v_j would lie in the span of v_1, \dots, v_{j-1} , which cannot happen since the list v_1, \dots, v_j is linearly independent. It follows that

$$w = \frac{1}{\lambda}(a_1v_1 + \dots + a_{j-1}v_{j-1} - v_j),$$

so that $w \in \text{span}(v_1, \dots, v_m)$.

▶ Proof (2): We can also construct the proof with the definition of linear independence and dependence.

Since the vectors $v_1 + w, \dots, v_m + w$ are linearly dependent, there exist scalars a_1, a_2, \dots, a_m , not all zero, such that

$$a_1(v_1+w) + a_2(v_2+w) + \dots + a_m(v_m+w) = 0.$$

Expand the left side of the equation and we have

$$a_1v_1 + a_2v_2 + \dots + a_mv_m + (a_1 + a_2 + \dots + a_m)w = 0.$$
 (2)

Let $c = a_1 + a_2 + \cdots + a_m$, and we can rewrite the equation as

$$a_1v_1 + a_2v_2 + \dots + a_mv_m + cw = 0.$$

If c=0, then the equation becomes $a_1v_1+a_2v_2+\cdots+a_mv_m=0$. Since v_1,\ldots,v_m are linearly independent, we must have $a_1=a_2=\cdots=a_m=0$. But this contradicts with the fact that a_1,a_2,\ldots,a_m are not all zero. Therefore, $c\neq 0$. We can then solve the equation (2) for w:

$$w = -\frac{1}{c}(a_1v_1 + a_2v_2 + \dots + a_mv_m),$$

which shows that w can be written as a linear combination of v_1, \ldots, v_m . This completes the proof.