Introduction Theoretical basis Variational formulation Summary

# Variational formulation of elliptic problems MA31-Numerical analysis of Partial Derivative Equations: Courses 09-10

#### Manuel Samuelides

Institut Supérieur de l'Aéronautique et de l'Espace Toulouse, France

October 2013



- Introduction
- 2 Theoretical basis
  - Lax-Milgram theorem
  - Definitions of  $H^1$  and  $H_0^1$
- Variational formulation
  - Variational formulation of the Laplace equation
  - Variational formulation of Neumann problem

# Objective of the course

- to be able to transform an elliptic PDE problem with boundary condition into a variational problem,
- to know the underlying mathematical structures,
- to be prepared to understand the principle of Finite element method and inner energetic approximations.

- Introduction
- 2 Theoretical basis
  - Lax-Milgram theorem
  - Definitions of  $H^1$  and  $H_0^1$
- Variational formulation
  - Variational formulation of the Laplace equation
  - Variational formulation of Neumann problem

# Lax-Milgram theorem

### Definition

a bilinear continuous form a on a Hilbert space  $\mathcal{H}$  is said **coercive** when  $\exists m > 0 \text{ such that } a(u, u) \geq m \parallel u \parallel^2$ 

#### **Theorem**

Let a be a bilinear continuous coercive form and L a linear continuous form on  $\mathcal{H}$ , then there exists a unique  $u \in \mathcal{H}$  such that

$$\forall v \in \mathcal{H}, a(u, v) = L(v)$$

Moreover, if a is symmetric, u is the minmizer of the quadratic form  $J(v) = \frac{1}{2}a(v, v) - L(v)$ 

# Proof of Lax-Milgram theorem

 Since a is a bilinear continuous form, from the Riesz representation theorem it exists a unique linear continuous operator A ∈ L(H) such that

$$\forall (u, v) \in \mathcal{H} \times \mathcal{H}, a(u, v) = (Au \mid v)$$

- Moreover we get  $||Au|| \ge m ||u||$  from coercivity and Cauchy-Schwarz inequality. This proves that A is invertible in  $\mathcal{L}(H)$  (linear algebra proof).
- From the Riesz representation theorem there exist  $b \in \mathcal{H}$  such that  $\forall v \in \mathcal{H}$ ,  $(b \mid v) = L(v)$ .
- Then solving  $\forall v \in \mathcal{H}$ , a(u, v) = L(v) amounts to solve Au = b which is solved by  $u = A^{-1}b$
- We have  $J(u+v) = J(u) + \frac{1}{2}a(v,v) + a(u,v) L(v)$ .

- Introduction
- Theoretical basis
  - Lax-Milgram theorem
  - Definitions of  $H^1$  and  $H_0^1$
- Variational formulation
  - Variational formulation of the Laplace equation
  - Variational formulation of Neumann problem

# Definition of $H^1$

### Definition

Let  $\Omega$  be a 'regular domain' of  $\mathbb{R}^n$  (with smooth boundary) and let  $\mathcal{H}^1$  be the subspace of  $u \in {}^2(\Omega, dx)$  such that  $\vec{\nabla}(u) \in L^2(\Omega, dx)$  where the gradient is a weak derivative in the sense of distribution theory.  $\mathcal{H}^1$  is called a **Sobolev space** 

### Theorem

Define on  $\mathcal{H}^1$  the scalar product

$$(u \mid v)_1 = (u \mid v) + (\vec{\nabla}(u) \mid \vec{\nabla}(v))$$

Then  $\mathcal{H}^1$  is a Hilbert space for this scalar product.



# Proof of hilbertian structure of $\mathcal{H}^1$

### **Proof**

- Let  $(u_n)$  be a Cauchy sequence for  $\|\cdot\|_1$
- Then  $(u_n)$  and  $(v_n = \vec{\nabla}(u_n))$  are Cauchy sequences in  $L^2(\Omega, dx)$  and converges respectively towards u and v
- From the definition of weak derivative in distribution theory

$$\forall \phi \in \mathcal{D}(\Omega), \int_{\Omega} \vec{\nabla}(u_n)\phi(x)dx = -\int_{\Omega} u_n \vec{\nabla}(\phi(x))dx$$

• It comes that  $v = \vec{\nabla}(u)$ , then  $u \in \mathcal{H}_1$  and  $\parallel u_n - u \parallel_1 \to 0$ 

# Piecewise $C^1$ continuous functions



#### Definition

Let  $\Omega$  be a smooth bounded open domain of  $\mathbb{R}^n$  and u a piecewise derivable function which is continuous on  $\overline{\Omega}$ . A **piecewise**  $\mathcal{C}^1$  **function** is such that there is a finite partition of  $\Omega$  defined by disjoint open sets with smooth boundaries  $\Omega_i$  checking  $\overline{\Omega} = \cup_i(\overline{\Omega_i})$  such that the restrictions  $u_i$  of u to  $\overline{\Omega_i}$  are  $\mathcal{C}^1(\overline{\Omega_i})$ .

# Continuous piecewise $C^1$ functions are in $H^1$

### Theorem

Let u be a continuous piecewise  $C^1$  function on a bounded support with smooth boundary  $\overline{\Omega}$ . then  $u \in \mathcal{H}^1(\Omega)$ .

Proof We just have to prove that the weak derivative of u is the  $L^2$  function which restriction on  $\Omega_i$  is  $\nabla u_i$ .

$$\int_{\Omega} u(x) \nabla \phi(x) dx = \sum_{i} \int_{\Omega_{i}} u_{i}(x) \nabla \phi(x) dx$$

$$\int_{\Omega} u(x) \nabla \phi(x) dx = -\sum_{i} \int_{\Omega_{i}} \nabla u_{i}(x) \phi(x) dx + \sum_{i,j} \int_{\Gamma_{ij}} u(x) \phi(x) \vec{n} dx$$

$$\int_{\Omega} u(x) \nabla \phi(x) dx = -\sum_{i} \int_{\Omega_{i}} \nabla u_{i}(x) \phi(x) dx$$

# Definition of $\mathcal{H}_0^1$

### Definition

Let  $\mathcal{H}_0^1$  be the closure of  $\mathcal{D}(\Omega)$  in  $\mathcal{H}^1$ .

Roughly speaking the elements of  $\mathcal{H}_0^1$  are functions of  $\mathcal{H}^1$  which are null on  $\partial\Omega$ . That cannot be a formal definition since functions of  $H_1$  are defined only almost everywhere and  $\partial\Omega$  is a smooth boundary of null Lebesgue measure. Thus we have

### Theorem

Let  $u \in \mathcal{H}^1 \cap \mathcal{C}^0(\overline{\Omega})$ , then we have the equivaence

$$u \in \mathcal{H}_0^1 \Leftrightarrow \forall x \in \partial\Omega, u(x) = 0$$

# Main properties of $\mathcal{H}_0^1$

### Theorem

Any compactly supported function  $u \in \mathcal{H}^1$  belongs to  $\mathcal{H}^1_0$ 

Proof To prove this theorem, we use an approximate convolution unit  $\phi_n \in \mathcal{D}(\Omega)$ . Then  $(\phi_n * u)$  is compactly supported for n large enough, smooth and converges towards u whe,  $n \to \infty$ . So  $u \in \mathcal{H}^1_0$ 

#### Theorem

We have the following Green formula on  $\mathcal{H}_0^1$ 

$$\forall (u, v) \in \mathcal{H}_0^1, \int_{\Omega} \vec{\nabla}(u) v(x) dx = -\int_{\Omega} u(x) \vec{\nabla}(v)(x) dx$$

**Proof** 

We use the density of  $\mathcal{D}(\Omega)$  in  $H_0^1$  and pass to the

# The application trace $\gamma$

### Theorem

The linear continuous restriction operator  $\gamma$  of  $\mathcal{C}^0(\overline{\Omega}) \cap \mathcal{H}^1$  into  $\mathcal{C}^0(\overline{\Omega}) \cap \mathcal{H}^1$  into  $\mathcal{C}(\partial\Omega)$ ) is prolongated into a linear continuous operator of  $\mathcal{H}^1$  into  $L^2(\Omega, ds)$  which is called the **trace operator**. The kernel of the trace operator  $\gamma$  is  $\mathcal{H}^0_1$ 

The trace operator allows to formulate the Green formula on a smooth bounded domain:

### Theorem

For all  $(u, v) \in \mathcal{H}^1 \times \mathcal{H}^1$ , we have

$$\int_{\Omega} \vec{\nabla} u(x) v(x) dx = \int_{\partial \Omega} u(x) v(x) \vec{n}_{x} ds - \int_{\Omega} u(x) \vec{\nabla} v(x) dx$$



# Poincaré inequality on $\mathcal{H}_D^1(\Omega)$

### Theorem

Let a regular partition of the boundary of a smooth bounded domain  $\Omega$   $\partial\Omega=\partial\Omega_D\cup\partial\Omega_N$  and let

$$\mathcal{H}_D^1 = \{ v \in \mathcal{H}_D^1 \text{ such that } \gamma(v).1_D = 0 \}$$

Then 
$$\exists \alpha > 0$$
 such that  $\int_{\Omega} |u(x)|^2 dx \leq \alpha^2 \int_{\Omega} \|\vec{\nabla}(u)\|^2 dx$ 

The general proof is difficult. To give an idea of the proof consider  $\Omega = [a, b]$  and  $\partial \Omega_D = \{a\}$ . Then,

$$|u(x)| = |\int_{a}^{x} u'(t)dt| \le \sqrt{\int_{a}^{b} |u'(t)|^{2} dt}$$

$$\int_{a}^{b} |u(x)|^{2} dx \leq (b-a) \int_{a}^{b} |u'(t)|^{2} dt = 0$$

- Introduction
- 2 Theoretical basis
  - Lax-Milgram theorem
  - Definitions of  $H^1$  and  $H_0^1$
- Variational formulation
  - Variational formulation of the Laplace equation
  - Variational formulation of Neumann problem

# Homogeneous Dirichlet boundary condition

Recall that from Stokes formula

$$\forall (u,v) \in \mathcal{H}_0^1(\Omega) \times \mathcal{H}_1^0(\Omega), \int_{\Omega} \vec{\nabla}(u)(x) \cdot \vec{\nabla}(v)(x) dx = -\int_{\Omega} \Delta u(x) v(x) dx$$

### Theorem

Let  $\Omega$  be an open bounded subset of  $\mathbb{R}^n$  and  $f \in L^2(\Omega)$ . Then there exists a unique  $u \in \mathcal{H}^1_0(\Omega)$  such that

$$orall v \in \mathcal{H}^1_0(\Omega), \int_{\Omega} ec{
abla}(u)(x) \cdot ec{
abla}(v)(x) dx = \int_{\Omega} f(x) v(x) dx$$

Proof We want to apply Lax-Milgram theorem with  $a(u, v) = \int_{\Omega} \vec{\nabla}(u)(x) \cdot \vec{\nabla}(v)(x) dx$  and  $L(v) = \int_{\Omega} f(x)v(x) dx$ 

# Proof of the solution of Laplace equation

- It is clear from Cauchy-Schwarz inequality that a and L are continuous.
- Poincaré inequality shows that the bilinear form a is coercive. since it gives

$$\| u \|_{\mathcal{H}_1}^2 = \int_{\Omega} \left[ \| u^2(x) \| + \| \vec{\nabla}(u) \|^2 \right] dx \le (1 + \alpha^2) a(u, u)$$

### Remark

Notice that the solution u minimizes the energy functional

$$J(v) = \frac{1}{2} \int_{\Omega} \| \vec{\nabla}(v)(x) \|^2 dx - \int_{\partial \Omega} f(x)v(x)ds$$

Actually, for elastic deformation, the variational formulation amounts to the principle of virtual work.

- Introduction
- 2 Theoretical basis
  - Lax-Milgram theorem
  - Definitions of  $H^1$  and  $H_0^1$
- Variational formulation
  - Variational formulation of the Laplace equation
  - Variational formulation of Neumann problem

# Elliptic equation with Neumann condition

### **Problem**

Find  $u \in \mathcal{H}^1(\Omega)$  such that

$$\begin{cases} \forall x \in \Omega, & -\Delta u(x) + a(x)u(x) = f(x) \\ \forall x \in \partial \Omega, & \frac{\partial u}{\partial n}(x) = g(x) \end{cases}$$

We suppose  $f, g \in L^2(\Omega, dx)$  and  $\forall x \in \Omega, 0 < m \le a(x) \le M$ . Moreover we suppose that  $\exists \hat{g} \in \mathcal{H}^1$  with  $g = \gamma(\mathcal{H}_1)$ . Then it exists a variational formulation of Neumann problem

### **Problem**

Find  $u \in \mathcal{H}_1(\Omega)$  such that  $\forall v \in \mathcal{H}^1(\Omega)$ ,

$$\int_{\Omega} \left[ \vec{\nabla}(u)(x) \cdot \vec{\nabla}(v) + a(x)u(x)v(x) \right] dx = \int_{\Omega} f(x)v(x) dx + \int_{\partial\Omega} g(x)v(x) ds$$

# Summary

- The Sobolev spaces provide the framework where PDE problems with boundary conditions are well-posed.
- For linear equation, Lax-Milgram theorem provides a powerful tool to solve variational formulations.
- The difficult point to apply Lax-Milgram theorem for elliptic equations is to check coercivity property from boundary conditions. Various inequalities which are difficult to prove where found to solve various problems.
- Poincare inequality is very useful for that purpose.

# For Further Reading I

- Grégoire Allaire Analyse numérique et optimisation . Ecole Polytechnique 2005
- Bernard Larrroutourou, Pierre-Louis Lions Optimisation et analyse numérique . Ecole Polytechnique 1995