- (1) Wykazać, że dla przestrzeni topologicznej (X, \mathcal{T}) następujące warunki są równoważne:
 - (a) (X, \mathcal{T}) jest przestrzenią Hausdorffa,
 - (b) przekątna $\Delta = \{(x,x) : x \in X\} \subseteq X \times X$ jest zbiorem domkniętym w kwadracie kartezjańskim przestrzeni (X, \mathcal{T}) .
- (2) Niech
 - (a) $Z_0 = \mathbb{N}$,
 - (b) $Z_1 = \{0\} \cup \{\frac{1}{i} : i = 1, 2, \ldots\},\$

(c) $Z_2 = \mathbb{N} \cup Z_1$, (d) $Z_3 = \{0\} \cup \{\frac{1}{i} + \frac{1}{j} : i, j = 2, 3, \dots, \frac{1}{j} < \frac{1}{i-1} - \frac{1}{i}\}$. Pokazać, że żadne dwie spośród podprzestrzeni Z_0, Z_1, Z_2, Z_3 prostej euklidesowej nie są homeomorficzne.

(3) Funkcję ciągłą $f: X \to Y$ nazywamy przekształceniem domkniętym jeżeli obraz f[F]jest domknięty w Y dla każdego domkniętego $F\subseteq X$. Otwartość odwzorowania fdefiniujemy analogicznie, zastępując 'domknięty' przez 'otwarty'.

Podać przykłady ciągłych funkcji $f: \mathbb{R} \to \mathbb{R}$, które nie są otwarte (nie są domkniete).

- (4) Sprawdzić, że $f: X \to Y$ jest przekształceniem domkniętym wtedy i tylko wtedy gdy $f[A] = f[\overline{A}]$ dla dowolnego $A \subseteq X$, a f jest przekształceniem otwartym wtedy i tylko wtedy gdy f jest ciągłe i $f[Int(A)] \subseteq Int f[A]$ dla dowolnego $A \subseteq X$.
- (5) Sprawdzić, że dla $A \subseteq X$, $B \subseteq Y$ w przestrzeni $X \times Y$ zachodzą wzory:
 - (a) $\overline{A \times B} = \overline{A} \times \overline{B}$;
 - (b) Int $(A \times B) = \text{Int } A \times \text{Int } B$;
 - (c) Bd $(A \times B) = (\overline{A} \times Bd B) \cup (Bd A \times \overline{B})$.
- (6) Z definicji, metryki d_1 i d_2 na zbiorze X są r'ownoważne jeżeli wyznaczają te same zbiory otwarte. Ustalić, dlaczego metryki d_1 i d_2 na przestrzeni X są równoważne wtedy i tylko wtedy gdy dla dowolnego ciągu (x_n) w X i $x \in X$,

$$\lim_{n} d_1(x_n, x) = 0 \iff \lim_{n} d_2(x_n, x) = 0.$$

(7) Niech (X, ρ) będzie przestrzenią metryczną. Sprawdzić, że wzory

$$d_1(x,y) = \min(\rho(x,y), 1), \qquad d_2(x,y) = \frac{\rho(x,y)}{1 + \rho(x,y)},$$

definiują ograniczone metryki na X, równoważne z wyjściową metryką ρ .

- (8) Rozważyć metrykę $d(x,y) = |\sqrt{x} \sqrt{y}|$ na $[0,\infty)$; czy jest ona równoważna metryce euklidesowej?
- (9) Zbadać brzeg, wnetrze i domkniecie $(0, 1/2)^{\mathbb{N}}$ w $[0, 1]^{\mathbb{N}}$.
- (10) Sprawdzić, że zbiór $A \subseteq \mathbb{R}^{\mathbb{N}}$ złożony z tych ciągów $x = (x_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$, które są niemalejące jest domknięty, a zbiór ciągów stałych od pewnego miejsca jest gęsty.
- (11) Sprawdzić, że każdy rzut $\pi_s:\prod_{t\in T}X_t\to X_s$ jest odwzorowaniem otwartym. Zauważyć, że rzut $\pi_1: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ nie jest domknięty.

- (12) Powiemy, że podzbiór A przestrzeni euklidesowej \mathbb{R}^n jest wypukły jeśli dla każdych $x,y\in\mathbb{R}^n$, i dla każdego $0\leq t\leq 1$ mamy, że jeśli $x,y\in A$ to również $tx+(1-t)y\in A$. Pokazać, że dowolne dwa otwarte niepuste podzbiory \mathbb{R}^n są homeomorficzne.
- (13) Podać przykład dwóch przestrzeni topologicznych X i Y które nie są homeomorficzne, dla których istnieją $f\colon X\to Y$ oraz $g\colon Y\to X$ ciągłe bijekcje.

 $\mathbf{Wskazówka}$: Można wskazać takie X i Y będące podzbiorami prostej rzeczywistej.