本节主题

x86体系结构

北京大学。嘉课

计算机组成

制作人:随後旅

x86体系结构

体系结构		厂商	微处理器型号	字长	年代
x86	"x86-16" "IA-16"	Intel	8086 , 8088, 80186, 80188 80286	16位	1978年起
	IA-32	Intel	80386, 80486, Pentium, Pentium Pro/II/III/4, Core, Atom	32位	1985年起
		AMD	Am386, Am486, AM5x86, K5, K6, Athlon		
		Others	Cyrix 5x86; VIA C3/C7 Transmeta Crusoe, Efficeon		
	x86-64	AMD	Opteron, Athlon 64 Phenom, Phenom II		
		Intel	Pentium 4 Prescott, Core 2 Core i3/i5/i7	64位	2003年起
		Others	VIA Nano		

Intel 8086 (1978年)

№ 8086的主要特点

- ① 内部的通用寄存器为16位 既能处理16位数据,也能处理8位数据
- ② 对外有16根数据线和20根地址线 可寻址的内存空间为1MByte(2²⁰)
- ③ 物理地址的形成采用"段加偏移"的方式

8086的寄存器模型

模型机的CPU和存储器

通用寄存器(多功能寄存器)

№ 数据寄存器,共有4个

- 。均为16位寄存器
- 。每个16位寄存器都可分为两个8位寄存器使用
- 。适用大多数算术运算和逻辑运算指令
- 。除存放通用数据外,各有一些专门的用途:

AX	Accumulator	存放乘除等指令的操作数
ВХ	Base	存放存储单元的偏移地址
CX	Count	存放计数值
DX	Data	乘法运算产生的部分积 除法运算的部分被除数

16	6位8	<u> </u>	_			
<i>I</i> 1	AH	AL	A			
i	ВН	BL	В			
l I	СН	CL	C			
l	DH	DL	D			
`-	s	Р	-			
	ВР					
	SI					
	DI					
	IP					
	FLAGS					
	CS					
	DS					
	ES					
	SS					
			•			

模型机的CPU和存储器

标志寄存器

🧿 标志位

- 。 FLAGS寄存器中包含若干标志位
- 。标志位分为两大类:状态标志和控制标志
- ❷ 状态标志 反映CPU的工作状态

例如:

- 。执行加法运算时是否产生进位
- 。运算结果是否为零
- ② 控制标志 对CPU的运行起特定控制作用

例如:

- 。以单步方式还是连续方式运行
- 。是否允许响应外部中断请求

8086的标志位

模型机的CPU和存储器

8086的指令指针寄存器

- ❷ 指令指针寄存器 IP (Instruction Pointer)
 - 。保存一个内存地址,指向当前需要取出的指令
 - 。当CPU从内存中取出一个指令后,IP会自动增加,指向下一指令的地址(注:实际情况会复杂的多)
 - 。程序员不能直接对IP进行存取操作
 - 。转移指令、过程调用/返回指令等会改变IP的内容

IP寄存器的寻址能力: 2¹⁶=65536(64K)字节单元

> 8086对外有20位地址线 寻址范围:2²⁰=1M字节单元

8086的段寄存器

- 段寄存器 (Segment Register)
 - 。与其它寄存器联合生成存储器地址

CS	代码段寄存器(Code Segment)
DS	数据段寄存器 (Data Segment)
ES	附加段寄存器(Extra Segment)
SS	堆栈段寄存器(Stack Segment)

8位 16位 AX AH AL BX BH BL CH CL CX DH DL DX SP BP SI DI IP **FLAGS** CS DS ES

8086的物理地址生成

模型机上的示例

x86体系结构

体系结构		厂商	微处理器型号	字长	年代
x86	"x86-16" "IA-16"	Intel	8086, 8088, 80186, 80188 80286	16位	1978年起
	IA-32	Intel	80386, 80486, Pentium, Pentium Pro/II/III/4, Core, Atom	32位	1985年起
		AMD	Am386, Am486, AM5x86, K5, K6, Athlon		
		Others	Cyrix 5x86; VIA C3/C7 Transmeta Crusoe, Efficeon		
	x86-64	AMD	Opteron, Athlon 64 Phenom, Phenom II		
		Intel	Pentium 4 Prescott, Core 2 Core i3/i5/i7	64位	2003年起
		Others	VIA Nano		

Intel 80386 (1985年)

№ 80386的主要特点

- 。80x86系列中的第一款32位微处理器
- 。 支持32位的算术和逻辑运算,提供32位的通用寄存器
- 。地址总线扩展到32位,可寻址4GB的内存空间
- 。改进了"保护模式"(例如,段范围可达4GB)
- 。增加了"虚拟8086模式",可以同时模拟多个8086微处理器

80386 主频12.5~33MHz 27.5万个晶体管

IA-32的寄存器模型

x86体系结构

(4	系结构	厂商	微处理器型号	字长	年代
x86	"x86-16" "IA-16"	Intel	8086, 8088, 80186, 80188 80286	16位	1978年起
	IA-32	Intel	80386, 80486, Pentium, Pentium Pro/II/III/4, Core, Atom	32位	1985年起
		AMD	Am386, Am486, AM5x86, K5, K6, Athlon		
		Others	Cyrix 5x86; VIA C3/C7 Transmeta Crusoe, Efficeon		
	x86-64	AMD	Opteron, Athlon 64 Phenom, Phenom II		
		Intel	Pentium 4 Prescott, Core 2 Core i3/i5/i7	64位	2003年起
		Others	VIA Nano		

注:Intel提出的IA-64是独立于x86的一种新的体系结构,不兼容IA-32

x86-64的寄存器模型

本节小结

x86体系结构

北京大学。嘉课

计算机组成

制作人:随後旅

