LEIBNIZ UNIVERSITÄT HANNOVER NIEDERSÄCHSISCHES STUDIENKOLLEG

Musteraufgaben für die schriftliche Prüfung im Fach Mathematik (Analysis)

Bearbeitungszeit: 180 Minuten

Hilfsmittel: Taschenrechner (ohne Grafik, ohne CAS)

Aufgabe 1 (alle Kurstypen)

- a) Der Graph einer ganzrationalen Funktion dritten Grades schneidet die $\,x\,$ -Achse an der Stelle $\,x=-5\,$ und hat an der Stelle $\,x=-1\,$ einen Wendepunkt. Die Wendetangente hat die Gleichung $\,y=-12\,x+4\,$. Bestimmen Sie die Funktionsgleichung.
- b) Gegeben ist jetzt die Funktion f mit der Gleichung $f(x) = \frac{1}{8}x^3 + \frac{3}{8}x^2 \frac{9}{8}x + \frac{5}{8}$. Untersuchen Sie diese Funktion (Definitionsbereich, Symmetrie, Achsenschnittpunkte, Extrempunkte, Wendepunkte, Krümmungsverhalten) und skizzieren Sie den Graphen von f.
- c) Berechnen Sie den Inhalt der Fläche A, die der Graph der Funktion f aus Aufgabenteil b) mit der x-Achse einschließt.

Aufgabe 2 (alle Kurstypen)

Gegeben sind die Funktionen f und g mit $f(x) = (x^2 + 2x) \cdot e^{-x}$ und $g(x) = 3e^{-x}$.

- a) Untersuchen Sie die Funktion f (Definitionsbereich, Verhalten für $x \to \pm \infty$, Symmetrie zur y-Achse und zum Ursprung, Achsenschnittpunkte, Extrempunkte, Wendepunkte, Krümmungsverhalten).
- b) Berechnen Sie die Schnittpunkte der Graphen von f und g und skizzieren Sie die Graphen von f und g in ein gemeinsames Koordinatensystem.
- c) Die Graphen von f und g begrenzen auf der Geraden x = k, k > 1 eine Strecke. Berechnen Sie k so, dass die Länge der Strecke maximal wird.

Aufgabe 3 (alle Kurstypen)

Gegeben ist die Funktion $f_t(x) = (x - t) \cdot e^{2 - \frac{x}{t}}$ mit t > 0.

- a) Diskutieren Sie die Funktion allgemein (Symmetrie, Achsenschnittpunkte, Extrema, Wendepunkte, Krümmungsverhalten, Globalverlauf).
- b) Zeichnen Sie den Graphen $G_2(x)$ von $f_2(x)$ mit Hilfe der Ergebnisse aus Teil a).
- c) Was kann man über die Tangenten im Punkt P(t | 0) aller Graphen $G_t(x)$ von $f_t(x)$ aussagen?

d) Berechnen Sie die Wendetangente. Begründen Sie, für welchen Wert von t diese Wendetangente durch den Punkt $P\left(0\left|\frac{5}{e}\right.\right)$ geht.

Aufgabe 4 (T- und W-Kurs)

Gegeben ist die Funktionenschar $f_a(x) = \frac{x^2 + (a-1)x - a}{x + 1}$ mit $a \in R$.

- a) Bestimmen Sie den Definitionsbereich von allen Funktionen der Schar und berechnen
 Sie die Achsenschnittpunkte der Graphen der Schar.
- b) Untersuchen Sie, für welche Werte von a die Graphen von f_a Definitionslücken oder Polstellen besitzen.
- c) Zeigen Sie, dass die Asymptoten aller Graphen der Schar parallel sind.
- d) Stellen Sie fest, für welche Werte von a die Graphen von f_a Extrempunkte besitzen, und zeigen Sie, dass kein Graph der Schar einen Wendepunkt hat.
- e) Untersuchen Sie f_{-1} vollständig. Zur Erleichterung können Sie dabei die Ergebnisse aus den Aufgabenteilen a) bis d) benutzen. Skizzieren Sie den Graphen von f_{-1} .

Aufgabe 5 (T- und W-Kurs)

Gegeben ist die Funktionenschar $f(x) = \frac{ax}{b+cx^2}$ mit $a, b, c \in \mathbb{R}$ und $a \neq 0$.

- a) Bestimmen Sie die Funktion, die im Ursprung einen Wendepunkt mit der Wendetangente $y_T = x$ hat und an der Stelle $x = \sqrt{2}$ eine Polstelle besitzt.
- b) Gegeben ist nun die Funktion $g(x) = \frac{2x}{x^2 2}$. Untersuchen Sie die Funktion (Definitionsbereich, Symmetrie, Achsenschnittpunkte, Extrema, Wendepunkte, Asymptoten, Krümmungsverhalten, Globalverlauf) und zeichnen Sie den Graphen der Funktion.
- c) Berechnen Sie den Inhalt des Flächenstücks, das der Graph von g(x) mit der x-Achse und den Geraden x=2 und x=5 einschließt.