

Computational hyperspectral SPIM for quantitative multicolor imaging

Nicolas Ducros^{1, 2}

¹CREATIS, Univ Lyon, INSA-Lyon, UCB Lyon 1,CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France ²IUF, Institut Universitaire de France

Joint work with: T Baudier, S Crombez, Chloé Exbrayat-Heritier, A Lorente-Mur, L Mahieu-Williame, C Ray, F Ruggiero

- ✓ Wide field (~mm³),
- ✓ High res (~6 µm)
- √ Fast (10 fps)
- √ Florescence samples
- ✓ GFP-labeled transgenic embryos
- ✓ Developmental study

[J Huisken *et al*, Science, **305**, (2004)]

Single Plane Illumination Microscopy (SPIM)

- Optical sectioning (6 μm resolution) as deep as 500 μm)
- ✓ Low photobleaching

[Image adapted from Wikimedia Commons]

Filter-Based Fluorescence Microscopy

- ✓ Many photons are rejected
- Overlapping fluorophores cannot be separated
- Undesired fluorophores cannot be rejected

Hyperspectral SPIM

[W Jahr et al, Nat. Commun., **6**, (2015)]

Computational Hyperspectral SPIM

Hyperspectral Imaging

Pushbroom

Filter-based

Computational

Hyperspectral Single-Pixel Imaging

Hyperspectral Single-Pixel Imaging

Forward model—Matrix Design—Recon

Linear model

$$oldsymbol{m}_{\lambda} = oldsymbol{P} oldsymbol{f}_{\lambda}$$

- i. "Weight design": How to choose the patterns P?
- 2. Reconstruction: How to recover the image f?

The Compressed Sensing Answer

- Fast acquisitions
 - Sequential measurements lead to long acquisition times
 - → Limit to a few patterns

 $K \ll N$

- Compressed sensing
 - ❖ Choose a "random" P
 - ❖ Recover f from m via (constrained/L1) optimization

$$\min_{\boldsymbol{f}} \|\boldsymbol{m} - \boldsymbol{P}\boldsymbol{f}\|_2^2 + \alpha \mathcal{R}(\boldsymbol{f})$$

Total Variation (TV)

$$\mathcal{R}_{\mathrm{TV}}(\boldsymbol{f}) = \|\nabla \boldsymbol{f}\|_1$$

... which requires iterative algorithms

→ Fast acquisitions: long reconstructions!

[Duarte et. al, IEEE SPM, 2008]

The Old Man Answer

In the case K = N, choose **Hadamard patterns**

K = N = 8

$$\boldsymbol{P}^{\top}\boldsymbol{P} = N\boldsymbol{I}$$

$$K = N = 4^2$$

The Old Man Answer

Hadamard patterns are optimal for additive white Gaussian noise

$$m_i \sim \mathcal{G}(\mu = 0, \sigma^2)$$

$$1 \le k \le N$$

Raster scan

$$\operatorname{var}\left(f_{n}^{*}\right)=\sigma^{2}$$

1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

$$\boldsymbol{P}^{\top}\boldsymbol{P} = N\boldsymbol{I}$$

$$f = \frac{1}{N} P^{\top} m$$

Hadamard

$$\mathrm{var}\,(f_n^*) = \frac{1}{N}\sigma^2$$

+	+	+	+
+	+	1	1
+	1	-	+
+	•	+	-

The Felgett's Advantage

Hadamard optimality, a. k. a. Felgett's advantage

[N. Ducros et al., working paper, 2021]

The Felgett's Advantage for Spectroscopy

M. Harwit, Cornell University, Center for Radiophysics and Space Research

N. Sloane,Bell Laboratories

(1979)

INLET CODING DISK

✓ Only one spatial dimension should be compressed, not two.

Computational Hyperspectral SPIM

$$m_k(y,\lambda) = \int p_k(x)f(x,y,\lambda) dx, \quad 1 \le k \le K$$

- ✓ Felgett's advantage (contrary to original hspim)
- ✓ No extra compression (as in hspi)

Computational Hyperspectral SPIM

Image formation model

(Basic) Image reconstruction

Structured Light Sheets

- ✓ Light patterns need to be calibrated
- ✓ "Good" patterns (e.g., matrix with low condition number) are highly desirable

Full Pipeline

Reconstruction illumination patterns space time objective optimization non negative least squares quantitative maps spectral signatures

Unmixing

Reconstruction

Learnt reconstruction

Reconstruction (inference)

$$oldsymbol{F}_{\lambda}^{*}=\mathcal{H}_{oldsymbol{ heta}^{*}}(oldsymbol{M}_{\lambda})$$
 network parameters

Learning

$$\boldsymbol{\theta}^* \in \operatorname*{arg\,min} rac{1}{L} \sum_{\ell} \|\mathcal{H}(\boldsymbol{\theta}; \boldsymbol{M}^{\ell}) - \boldsymbol{F}^{\ell}\|_2^2$$

STL-10 dataset

Computation times

- * Training phase is slow, i.e., several hours or days
- ❖ Inference is fast, i.e., tens or hundreds of milliseconds

Reconstruction

How to choose the 'model' H?

- Black box
- Two step
- Unrolled, plug & play

$$oldsymbol{F}_{\lambda}^* = \mathcal{H}_{oldsymbol{ heta}^*}(oldsymbol{M}_{\lambda}) = (\mathcal{G}_{oldsymbol{ heta}^*} \circ \mathcal{B})(oldsymbol{M}_{\lambda})$$

$$\mathcal{B}(oldsymbol{M}_{\lambda}) = oldsymbol{\Sigma} oldsymbol{P}^{ op} \left(oldsymbol{P} oldsymbol{\Sigma} oldsymbol{P}^{ op} + oldsymbol{arGamma}
ight)^{-1} oldsymbol{M}_{\lambda}$$

SPyRiT: Single-Pixel Reconstruction Toolkit

Core components

https://spyrit.readthedocs.io/en/master/

$$\boldsymbol{\theta}^* \in \operatorname*{arg\,min} \frac{1}{L} \sum_{\ell} \| (\mathcal{G}_{\boldsymbol{\theta}} \circ \mathcal{H}) (\boldsymbol{f}^{\boldsymbol{\ell}}) - \boldsymbol{f}^{\ell} \|_2^2$$

SPyRiT: Single-Pixel Reconstruction Toolkit

Core components

https://spyrit.readthedocs.io/en/master/

Data simulation

```
from spyrit.core.meas import HadamSplit
from spyrit.core.noise import Poisson
```

```
meas_op = HadamSplit(512, 128)
noise_op = Poisson(meas_op, 100)
m = noise op(f)
```

Hyperspectral Light Sheet Microscopy

Spectral unmixing

* Assuming C fluorophores (or combination of fluorophores, e.g., autofluorescence)

Regularization can enforce prior knowledge about the abundance maps or be "learnt" from "examples"

Fluorescence Removal

Journée POPILS, Lyon

Separation of Overlapping Fluorophores

1.0 - DsRed — mRFP — Autofluo

0.6 - 0.4 - 0.2 -

0 600 Wavelenght (nm)

540

560

580

Filter

Spectral

660

640

620

Perspectives

Open questions:

- Improved reconstruction / improved unmixing
- Joint reconstruction-unmixing
- Choice of the patterns
- Two-arm reconstruction (i.e., pansharpening)
- * Reconstruction hyperspectral 3D (x, y, z, λ)
- \diamond Dynamic reconstruction (x, y, z, λ, t)