PCT

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁶:

C12N 15/52, C12P 19/62, C12Q 1/68, C12N 1/20 // (C12N 1/20, C12R 1:01)

(11) Numéro de publication internationale:

WO 99/05283

A2

(43) Date de publication internationale:

4 février 1999 (04.02.99)

(21) Numéro de la demande internationale:

PCT/FR98/01593

(22) Date de dépôt international:

21 juillet 1998 (21.07.98)

(30) Données relatives à la priorité:

97/09458 98/07411 25 juillet 1997 (25.07.97) 12 juin 1998 (12,06.98) FR FR

(71) Déposant (pour tous les Etats désignés sauf US): HOECHST MARION ROUSSEL [FR/FR]; 1, terrasse Bellini, F-92800 Puteaux (FR).

(72) Inventeurs; et

(75) Inventeurs/Déposants (US seulement): FROMENTIN, Claude [FR/FR]; 16, rue de Flandres, F-75019 Paris (FR). MICHEL, Jean-Marc [FR/FR]; 22, rue des Domeliers, F-60200 Compiègne (FR). RAYNAL, Marie-Cécile [FR/FR]; 117, avenue de Choisy, F-75013 Paris (FR). SALAH-BEY, Khadidja [DZ/FR]; Appartement 2042, 100, boulevard Masséna, F-75013 Paris (FR). CORTES, Jesus [MX/GB]; 26 Cambanks, Union Lane, Cambridge CB4 1PZ (GB). GAISSER, Sabine [DE/GB]; 37 Gwydir Street, Cambridge CB1 2LG (GB). LEADLAY, Peter [GB/GB]; 17 Clarendon Road, Cambridge CB2 2BH (GB). MENDEZ, Carmen [ES/ES]; Calle Marcelino Fernandez 7, 2°B, E-33010 Oviedo (ES). SALAS, Jose, A. [ES/ES]; Calle

Guillermo Estrada, 2-Bajo Izquierda, E-33060 Oviedo (ES).

- (74) Mandataire: VIEILLEFOSSE, Jean, Claude; Hoechst Marion Roussel, 102, route de Noisy, F-93235 Romainville Cedex (FR).
- (81) Etats désignés: BR, CA, JP, MX, TR, US, brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Publiée

Sans rapport de recherche internationale, sera republiée dès réception de ce rapport.

- (54) Title: BIOSYNTHESIS GENES AND TRANSFER OF 6-DESOXY-HEXOSES IN SACCHAROPOLYSPORA ERYTHRAEA AND IN STREPTOMYCES ANTIBIOTICUS AND THEIR USE
- (54) Titre: GENES DE BIOSYNTHESE ET DE TRANSFERT DES 6-DESOXYHEXOSES CHEZ SACCHAROPOLYSPORA ERY-THRAEA ET CHEZ STREPTOMYCES ANTIBIOTICUS ET LEUR UTILISATION

(57) Abstract

The invention concerns the isolated DNA sequence represented in figure 2 (SEQ ID No. 1) corresponding to the *eryG-eryAIII* region of the cluster of the erythromycin biosynthesis genes and the isolated DNA sequence represented in figure 3 (SEQ ID No. 6) corresponding to the *eryAI-eryK* region of the cluster of the erythromycin biosynthesis genes. The invention also concerns the isolated DNA sequence represented in figure 22 (SEQ ID No. 15 sequence) corresponding to a region of the oleandomycin biosynthesis genes (SEQ ID No. 15 sequence).

(57) Abrégé

L'invention a pour objet la séquence d'ADN isolée représentée à la figure 2 (SEQ ID No. 1) correspondant à la région *ery*G-*ery*AIII du cluster de gènes de la biosynthèse de l'érythromycine et la séquence d'ADN isolée représentée à la figure 3 (SEQ ID No. 6) correspondant à la région *ery*AI-*ery*K du cluster de gènes de la biosynthèse de l'érythromycine, et a pour objet la séquence d'ADN isolée représentée à la figure 22 (séquence de SEQ ID No. 15) correspondant à une région du cluster de gènes de la biosynthèse de l'oléandomycine (séquence de SEQ ID No. 15).

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

			_			~~	
\mathbf{AL}	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
ΑT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
ΑU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaidjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	T.J	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave	TM	Turkménistan
\mathbf{BF}	Burkina Faso	GR	Grèce		de Macédoine	TR	Turquie
BG	Bulgarie	HU	Hongrie	ML	Mali	TT	Trinité-et-Tobago
BJ	Bénin	IE	Irlande	MN	Mongolie	UA	Ukraine
BR	Brésil	IŁ	Israël	MR	Mauritanie	UG	Ouganda
BY	Bélarus	IS	Islande	MW	Malawi	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	MX	Mexique	$\mathbf{U}\mathbf{Z}$	Ouzbékistan
CF	République centrafricaine	JP	Japon	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Pays-Bas	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NO	Norvège	zw	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire	NZ	Nouvelle-Zélande		
CM	Cameroun		démocratique de Corée	PL	Pologne		
CN	Chine	KR	République de Corée	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Roumanie		
CZ	République tchèque	LC	Sainte-Lucie	RU	Fédération de Russie		
DE	Allemagne	LI	Liechtenstein	SD	Soudan		
DK	Danemark	LK	Sri Lanka	SE	Suède		
EÉ	Estonie	LR	Libéria	SG	Singapour		

WO 99/05283 PCT/FR98/01593

Gènes de biosynthèse et de transfert des 6-désoxyhexoses chez Saccharopolyspora erythraea et chez Streptomyces antibioticus et leur utilisation.

La présente invention décrit des gènes impliqués dans la biosynthèse et le transfert des 6-désoxyhexoses chez Saccharopolyspora erythraea et leur utilisation dans la production d'analogues de l'érythromycine par manipulation génétique.

L'érythromycine A est un antibiotique macrolide cliniquement important produit par la bactérie gram-positive Sac. erythraea. Les gènes de la biosynthèse de l'érythromycine sont organisés en un cluster de gènes ery qui inclut aussi le gène d'auto-résistance à l'érythromycine ermE.

Le cluster ery contient les trois grands gènes eryAI, eryAII et eryAIII (locus eryA) codant pour trois polypeptides composant la polykétide synthétase (dénommée PKS) flanqués par deux régions comprenant les gènes impliqués dans les stades ultérieurs de conversion du noyau lactone

20 (6-désoxyérythronolide B) en érythromycine A.

Pendant le processus de biosynthèse de l'érythromycine A représenté à la figure 1, la biosynthèse des 6-désoxyhexoses comprend l'ensemble des réactions enzymatiques conduisant du glucose-1-phosphate au sucre activé final dTDP-L-mycarose ou 25 dTDP-D-désosamine. Le dTDP-L-mycarose ou la dTDP-D-désosamine ainsi produits sont ensuite utilisés comme substrats pour le transfert des deux désoxyhexoses sur le noyau lactone. La formation de l'érythromycine requiert l'attachement du mycarose via l'hydroxyle en position C-3 du noyau lactone et 1'attachement de la désosamine via l'hydroxyle en position C-5. L'ensemble des gènes eryB impliqués dans la biosynthèse ou le transfert du mycarose et l'ensemble des gènes eryC impliqués dans la biosynthèse ou le transfert de la désosamine n'ont pas encore été clairement identifiés.

Le cluster ery d'une longueur de 56 kb comprend 21 phases ouvertes de lecture ou "open reading frames" (ORFs) dont la numérotation a été établie par Haydock et al. (1991) et Donadio et al. (1993). Le locus eryA comprend les ORFs 10,

11 et 12.

Des travaux précoces d'interruption ou de remplacement de gène dans la partie gauche du cluster ery a permis une première identification du gène eryCI (ORF1) (Dhillon et al., 1989), puis du gène eryBI (ORF2), du locus eryH (ORFs 3, 4 et 5) dont l'inactivation conduit à la production de 6-désoxyérythronolide B, d'un locus eryBII (ORFs 7 et 8) et le gène eryCII (Weber et al., 1990).

Parmi les activités enzymatiques impliquées dans les

10 modifications ultérieures du noyau lactone ont été

identifiées le gène eryf (ORF4) responsable de l'hydroxyla
tion en C6 (Weber et al., 1991) et le gène eryk (ORF20)

responsable de l'hydroxylation en C12 (Stassi et al., 1993).

D'autre part, le gène eryG (ORF6) responsable de la

15 O-méthylation du mycarose en cladinose (position 3"OH) a été

identifié (Weber et al., 1989). L'érythromycine A est ainsi

formée via l'érythromycine B ou l'érythromycine C à partir de

l'érythromycine D selon le schéma proposé (figure 1).

La caractérisation fonctionnelle des gènes eryB et eryC 20 situés sur la partie droite de cluster ery (ORFs 13 à 19) n'a pas encore été établie de façon précise, malgré les informations parcellaires communiquées dans différents articles de revues (Donadio et al., 1993 ; Liu et Thorson, 1994 ; Katz et Donadio, 1995).

En raison de l'intérêt commercial des antibiotiques macrolides, l'obtention de nouveaux dérivés, notamment l'obtention d'analogues de l'érythromycine ayant des propriétés avantageuses, est intensivement recherchée. Les modifications peuvent être désirées dans la partie aglycone (macrolactone) ou/et dans son hydroxylation secondaire ainsi que dans la partie sucre (cladinose et/ou désosamine) de l'érythromycine.

Les méthodes courantes telles que les modifications chimiques sont difficiles et limitées vis-à-vis du type de 35 produit que l'on peut obtenir à partir de l'érythromycine. Par exemple, Sakakibara et al. (1984) passent en revue des modifications chimiques réalisées à partir de l'érythromycine A ou B, aussi bien dans la partie sucre que dans la macro-

lactone.

Des modifications de la macrolactone de l'érythromycine A par manipulation génétique du microorganisme Sac. erythraea ont été décrites dans la demande de brevet internationale 5 WO 93/13663 ainsi que l'obtention de nouvelles molécules polykétides par altérations génétiques spécifiques du locus eryA du chromosome codant pour la PKS. Par exemple la 7-hydroxyérythromycine A, la 6-désoxy-7-hydroxyérythromycine A ou le 3-oxo-3-désoxy-5-désoaminyl-érythronolide A ont été 10 ainsi obtenus.

La présente invention concerne la caractérisation fonctionnelle de dix gènes de Sac. erythraea impliqués dans la biosynthèse ou l'attachement du mycarose et de la désosamine (eryBII, eryCIII et eryCII situés en aval du locus eryA et eryBIV, eryBV, eryCVI, eryBVI, eryCIV, eryCV et eryBVII situés en amont), leur utilisation dans la production d'analogues de l'érythromycine ainsi qu'un procédé de préparation de ceux-ci.

La présente invention a donc pour objet une séquence 20 d'ADN simple ou double brin isolée, représentée à la figure 2 (séquence directe et complémentaire de SEQ ID N° 1) correspondant à la région eryG-eryAIII du cluster de gènes de la biosynthèse de l'érythromycine et a particulièrement pour objet une séquence d'ADN ci-dessus comprenant :

- 25 la séquence eryBII correspondant à l'ORF7 (séquence complémentaire de SEQ ID N° 1 du nucléotide 48 au nucléotide 1046) et codant pour une dTDP-4-céto-L-6-désoxyhexose 2,3-réductase,
- la séquence eryCIII correspondant à l'ORF8 (séquence 30 complémentaire de SEQ ID N° 1 du nucléotide 1046 au nucléotide 2308) et codant pour une désosaminyltransférase et - la séquence eryCII correspondant à l'ORF9 (séquence complémentaire de SEQ ID N° 1 du nucléotide 2322 au nucléotide 3404) et codant pour une dTDP-4-céto-D-6-désoxyhexose 35 3,4-isomérase.

La séquence d'ADN ci-dessus montrée à la figure 2 est une séquence d'ADN génomique qui peut être obtenue par exemple par sous-clonage de fragments de restriction d'un fragment d'ADN génomique de Sac. erythraea, selon des conditions opératoires dont une description détaillée est donnée plus loin.

L'invention a plus particulièrement pour objet une séquence d'ADN isolée représentée à la figure 2 choisie parmi la séquence eryBII correspondant à l'ORF7 (séquence complémentaire de SEQ ID N° 1 du nucléotide 48 au nucléotide 1046), la séquence eryCIII correspondant à l'ORF8 (séquence complémentaire de SEQ ID N° 1 du nucléotide 1046 au nucléotide 2308) ou la séquence eryCII correspondant à l'ORF9 (séquence complémentaire de SEQ ID N° 1 du nucléotide 2322 au nucléotide 3404) et les séquences qui hybrident et/ou présentent des homologies significatives avec cette séquence ou des fragments de celle-ci et ayant la même fonction.

L'invention a tout particulièrement pour objet la séquence d'ADN isolée eryCIII représentée à la figure 2 correspondant à l'ORF8 (séquence complémentaire de SEQ ID N° 1 du nucléotide 1046 au nucléotide 2308 = séquence complémentaire de SEQ ID N° 4) et codant pour une désosaminyl
20 transférase.

La séquence eryBII correspondant à l'ORF7 code pour un polypeptide ayant 333 acides aminés (séquence de SEQ ID N° 2), la séquence eryCIII correspondant à l'ORF8 code pour un polypeptide ayant 421 acides aminés (séquence de SEQ ID 25 N° 5) et la séquence eryCII correspondant à l'ORF9 code pour un polypeptide ayant 361 acides aminés (séquence de SEQ ID N° 3).

La mise en évidence des activités enzymatiques respectives indiquées ci-dessus a été réalisée par introduction d'une 30 délétion interne au gène correspondant telle qu'illustrée plus loin dans la partie expérimentale.

Par séquences qui hybrident et ayant la même fonction, on inclut les séquences d'ADN qui hybrident avec l'une des séquences d'ADN ci-dessus sous des conditions standards de 35 stringence élevée ou moyenne décrites par Sambrook et al. (1989) et qui codent pour une protéine ayant la même fonction enzymatique. Par même fonction enzymatique, on entend une activité enzymatique donnée sur des substrats de même nature,

par exemple un dTDP-6-désoxyhexose ou une macrolactone nue ou glycosylée. Les conditions de forte stringence comprennent par exemple une hybridation à 65°C pendant 18 heures dans une solution 5 x SSPE, 10 x Denhardt, 100 μg/ml DNAss, 1 % SDS 5 suivie de 2 lavages pendant 20 minutes avec une solution 2 x SSC, 0,05 % SDS à 65°C suivis d'un dernier lavage pendant 45 minutes dans une solution 0,1 x SSC, 0,1 % SDS à 65°C. Les conditions de stringence moyenne comprennent par exemple un dernier lavage pendant 20 minutes dans une solution 0,2 x 10 SSC, 0,1 % SDS à 65°C.

Par séquences qui présentent des homologies significatives et ayant la même fonction, on inclut les séquences ayant une identité de séquence nucléotidique d'au moins 60 % avec l'une des séquences ADN ci-dessus et qui codent pour une protéine ayant la même fonction enzymatique.

L'invention a aussi pour objet un polypeptide codé par l'une des séquences d'ADN ci-dessus et a spécialement pour objet un polypeptide correspondant à une ORF représentée à la figure 2, choisie parmi l'ORF7 (ayant la séquence de SEQ ID 20 N° 2), l'ORF8 (ayant la séquence de SEQ ID N° 5) ou l'ORF9 (ayant la séquence de SEQ ID N° 3) et les analogues de ce polypeptide.

Par analogues, on inclut les peptides ayant une séquence en acides aminés modifiée par substitution, délétion ou 25 addition d'un ou plusieurs acides aminés pour autant que ces produits conservent la même fonction enzymatique. Les séquences modifiées peuvent être par exemple préparées en utilisant la technique de mutagénèse dirigée connue de l'homme du métier.

L'invention a plus spécialement pour objet le polypeptide correspondant à l'ORF 8 représentée à la figure 2 (ayant la séquence de SEQ ID N° 5) et ayant une activité désosaminyltransférase, dénommé EryCIII.

L'invention décrit une protéine recombinante EryCIII de 35 Sac. erythraea obtenue par expression dans une cellule hôte selon les méthodes connues de génie génétique et de culture cellulaire.

L'obtention de la protéine recombinante purifiée a

permis de confirmer la caractérisation de la fonction glycosyltranférase associée au produit du gène eryCIII dans un test in vitro qui met en évidence le transfert du sucre activé dTDP-D-désosamine sur le noyau lactone.

- L'invention a aussi pour objet la thymidine 5'-(trihydrogène diphosphate), P'-[3,4,6-tridésoxy-3-(diméthylamino)-D-.xylo.-hexopyranosyl] ester (dTDP-D-désosamine) et les sels d'addition avec les bases, dont un exemple de préparation est décrit plus loin dans la partie expérimentale.
- L'invention a aussi pour objet une séquence d'ADN isolée représentée à la figure 3 (séquence de SEQ ID N° 6) correspondant à la région eryAI-eryK du cluster de gènes de la biosynthèse de l'érythromycine et a particulièrement pour objet une séquence d'ADN ci-dessus comprenant :
- 15 la séquence eryBIV correspondant à l'ORF13 (séquence de SEQ ID N° 6 du nucléotide 242 au nucléotide 1207) et codant pour une dTDP-4-céto-L-6-désoxyhexose 4-réductase,
- la séquence eryBV correspondant à l'ORF14 (séquence de SEQ ID N° 6 du nucléotide 1210 au nucléotide 2454) et codant pour 20 une mycarosyltransférase,
 - la séquence eryCVI correspondant à l'ORF15 (séquence de SEQ ID N° 6 du nucléotide 2510 au nucléotide 3220) et codant pour une dTDP-D-6-désoxyhexose 3-N-méthyltransférase,
- la séquence eryBVI correspondant à l'ORF16 (séquence de SEQ 25 ID N° 6 du nucléotide 3308 au nucléotide 4837) et codant pour une dTDP-4-céto-L-6-désoxyhexose 2,3-déshydratase,
 - la séquence eryCIV correspondant à l'ORF17 (séquence de SEQ ID N° 6 du nucléotide 4837 au nucléotide 6039) et codant pour une dTDP-D-6-désoxyhexose 3,4-déshydratase,
- 30 la séquence eryCV correspondant à l'ORF18 (séquence de SEQ ID N° 6 du nucléotide 6080 au nucléotide 7546) et codant pour une dTDP-D-4,6-didésoxyhexose 3,4-réductase et
- la séquence eryBVII correspondant à l'ORF19 (séquence de SEQ ID N° 6 du nucléotide 7578 au nucléotide 8156) et codant 35 pour une dTDP-4-céto-D-6-désoxyhexose 3,5 épimérase.

La séquence d'ADN ci-dessus montrée à la figure 3 est une séquence d'ADN génomique qui peut être obtenue, par exemple, par sous-clonage de fragments de restriction de cosmides contenant une banque d'ADN génomique de Sac. erythraea, selon des conditions opératoires dont une description détaillée est donnée plus loin.

L'invention a plus particulièrement pour objet une 5 séquence d'ADN isolée représentée à la figure 3 choisie parmi la séquence eryBIV correspondant à l'ORF13 (séquence de SEQ ID N° 6 du nucléotide 242 au nucléotide 1207), la séquence eryBV correspondant à l'ORF14 (séquence de SEQ ID N° 6 du nucléotide 1210 au nucléotide 2454), la séquence eryCVI 10 correspondant à l'ORF15 (séquence de SEQ ID N° 6 du nucléotide 2510 au nucléotide 3220), la séquence eryBVI correspondant à l'ORF16 (séquence de SEQ ID N° 6 du nucléotide 3308 au nucléotide 4837), la séquence eryCIV correspondant à l'ORF17 (séquence de SEQ ID N° 6 du nucléotide 4837 au nucléotide 15 6039), la séquence eryCV correspondant à l'ORF18 (séquence de SEQ ID Nº 6 du nucléotide 6080 au nucléotide 7546) ou la séquence eryBVII correspondant à l'ORF19 (séquence de SEQ ID N° 6 du nucléotide 7578 au nucléotide 8156) et les séquences qui hybrident et/ou présentent des homologies significatives 20 avec cette séquence ou des fragments de celle-ci et ayant la même fonction.

L'invention a tout particulièrement pour objet la séquence d'ADN isolée eryBV représentée à la figure 3 correspondant à l'ORF14 (séquence de SEQ ID N° 6 du nucléo-25 tide 1210 au nucléotide 2454) et codant pour une mycarosyltransférase.

La séquence eryBIV correspondant à l'ORF13 code pour un polypeptide ayant 322 acides aminés (SEQ ID N° 7), la séquence eryBV correspondant à l'ORF14 code pour un polypep30 tide ayant 415 acides aminés (SEQ ID N° 8), la séquence eryCVI correspondant à l'ORF15 code pour un polypeptide ayant 237 acides aminés (SEQ ID N° 9), la séquence eryBVI correspondant à l'ORF16 code pour un polypeptide ayant 510 acides aminés (SEQ ID N° 10), la séquence eryCIV correspondant à l'ORF17 code pour un polypeptide ayant 401 acides aminés (SEQ ID N° 14), la séquence eryCV correspondant à l'ORF18 code pour un polypeptide ayant 489 acides aminés (SEQ ID N° 11) et la séquence eryBVII correspondant à l'ORF19 code pour un

polypeptide ayant 193 acides aminés (SEQ ID N° 12).

La mise en évidence des activités enzymatiques respectives indiquées ci-dessus a été réalisée par introduction d'une délétion interne au gène correspondant telle 5 qu'illustrée plus loin dans la partie expérimentale.

Les séquences d'ADN qui hybrident ainsi que les séquences d'ADN qui présentent des homologies significatives et ayant la même fonction ont la même signification que celle indiquée précédemment.

L'invention a aussi pour objet un polypeptide codé par l'une des séquences d'ADN ci-dessus et a spécialement pour objet un polypeptide correspondant à une ORF représentée à la figure 3, choisie parmi l'ORF13 (ayant la séquence de SEQ ID N° 7), l'ORF14 (ayant la séquence de SEQ ID N° 8), l'ORF15

15 (ayant la séquence de SEQ ID N° 9), l'ORF16 (ayant la séquence de SEQ ID N° 10), l'ORF17 (ayant la séquence de SEQ ID N° 11) ou l'ORF19 (ayant la séquence de SEQ ID N° 12) et les analogues de ce peptide.

Les analogues du polypeptide ont la même signification que celle indiquée précédemment.

L'invention a plus spécialement pour objet le polypeptide correspondant à l'ORF14 représentée à la figure 3 (ayant la séquence de SEQ ID N° 8) et ayant une activité 25 mycarosyltransférase, dénommé EryBV.

La connaissance de chaque séquence d'ADN eryB ou eryC de l'invention indiquée ci-dessus et montrée à la figure 2 ou à la figure 3 permet de reproduire la présente invention par exemple par des méthodes connues de synthèse chimique ou par 30 criblage d'une banque génomique à l'aide de sondes d'oligonucléotides de synthèse par les techniques connues d'hybridation ou par amplification par PCR.

Les polypeptides de l'invention peuvent être obtenus par les méthodes connues, par exemple par synthèse chimique ou 35 par la méthodologie de l'ADN recombinant par expression dans une cellule hôte procaryote ou eucaryote.

Un autre objet de l'invention concerne l'utilisation d'au moins l'une des séquences d'ADN choisie parmi les

séquences eryBII (séquence complémentaire de SEQ ID N° 1 du nucléotide 48 au nucléotide 1046), eryCIII (séquence complémentaire de SEQ ID N° 1 du nucléotide 1046 au nucléotide 2308) ou eryCII (séquence complémentaire de SEQ ID N° 1 du 5 nucléotide 2322 au nucléotide 3404) représentées à la figure 2, eryBIV (séquence de SEQ ID N° 6 du nucléotide 242 au nucléotide 1207), eryBV (séquence de SEQ ID N° 6 du nucléotide 1210 au nucléotide 2454), eryCVI (séquence de SEQ ID Nº 6 du nucléotide 2510 au nucléotide 3220), eryBVI (séquence 10 de SEQ ID Nº 6 du nucléotide 3308 au nucléotide 4837), eryCIV (séquence de SEQ ID N° 6 du nucléotide 4837 au nucléotide 6039), eryCV (séquence de SEQ ID N° 6 du nucléotide 6080 au nucléotide 7546) ou eryBVII (séquence de SEQ ID N° 6 du nucléotide 7578 au nucléotide 8156) représentées à la 15 figure 3, pour synthétiser des métabolites secondaires hybrides chez Sac. erythraea.

Par métabolites secondaires hybrides, on entend soit des analogues de l'érythromycine, c'est-à-dire des dérivés de l'érythromycine ayant une ou plusieurs modifications portant 20 sur la partie sucre et possédant une activité antibiotique, soit des précurseurs de l'érythromycine tels que le 6-désoxyérythronolide B ou l'érythronolide B auxquels sont attachés un ou plusieurs résidus sucre modifiés ou non et ne possédant pas d'activité antibiotique. Le résidu sucre 25 modifié peut être par exemple, le 4-céto-L-mycarose.

La synthèse de métabolites secondaires hybrides chez Sac. erythraea par utilisation de séquences d'ADN eryB ou eryC de l'invention peut être réalisée par exemple, par l'inactivation d'un ou plusieurs gènes eryB ou eryC ci-dessus 30 et l'introduction d'un ou plusieurs gènes exogènes ou de leurs dérivés obtenus par exemple par mutagénèse, ayant des séquences nucléotidiques codant pour des enzymes ayant la même fonction chez des souches productrices d'autres macrolides, par exemple la tylosine, la picromycine ou la 35 méthymycine. En particulier, l'introduction de gènes exogènes peut être effectuée par intégration d'une séquence d'ADN obtenue selon la méthodologie du "DNA shuffling" (Stemmer, 1994) ou par la construction d'une séquence d'ADN chimère, par

exemple à partir d'une séquence eryB ou eryC de l'invention intervenant dans le transfert d'un résidu sucre, par exemple la séquence eryCIII ou eryBV, et de gènes homologues isolés à partir de souches productrices de macrolides, par exemple 5 Streptomyces fradiae, Streptomyces olivaceus, Streptomyces venezuelae ou Streptomyces antibioticus.

L'invention concerne aussi l'utilisation d'au moins l'une des séquences d'ADN choisie parmi les séquences eryBII (séquence complémentaire de SEQ ID N° 1 du nucléotide 48 au 10 nucléotide 1046), eryCIII (séquence complémentaire de SEQ ID N° 1 du nucléotide 1046 au nucléotide 2308) ou eryCII (séquence complémentaire de SEQ ID N° 1 du nucléotide 2322 au nucléotide 3404) représentées à la figure 2, eryBIV (séquence de SEQ ID Nº 6 du nucléotide 242 au nucléotide 1207), eryBV 15 (séquence de SEQ ID N° 6 du nucléotide 1210 au nucléotide 2454), eryCVI (séquence de SEQ ID N° 6 du nucléotide 2510 au nucléotide 3220), eryBVI (séquence de SEQ ID N° 6 du nucléotide 3308 au nucléotide 4837), eryCIV (séquence de SEQ ID Nº 6 du nucléotide 4837 au nucléotide 6039), eryCV 20 (séquence de SEQ ID N° 6 du nucléotide 6080 au nucléotide 7546) ou eryBVII (séquence de SEQ ID N° 6 du nucléotide 7578 au nucléotide 8156) représentée à la figure 3 ou d'un fragment de cette séquence, comme sondes d'hybridation.

Les séquences d'ADN eryB ou eryC de l'invention peuvent 25 être utilisées pour constituer des sondes d'hybridation d'au moins 19 nucléotides, permettant d'isoler des gènes homologues dans des souches productrices de macrolides en utilisant les méthodes classiques d'hybridation d'acides nucléiques immobilisées sur des filtres ou d'amplification 30 par PCR, selon les conditions décrites par Sambrook et al. (1989).

L'invention concerne particulièrement l'utilisation de la séquence d'ADN eryCIII représentée à la figure 2 (séquence complémentaire de SEQ ID N° 1 du nucléotide 1046 au nucléo35 tide 2308 = séquence complémentaire de SEQ ID N° 4) comme sonde d'hybridation pour isoler des gènes homologues responsables de la glycosylation de la macrolactone chez une souche productrice de macrolide.

L'invention concerne plus particulièrement l'utilisation ci-dessus, dans laquelle les gènes homologues sont les gènes de la biosynthèse de l'oléandomycine chez S. antibioticus.

L'invention décrit, à titre d'exemple, l'utilisation de 5 la séquence du gène eryCIII comme sonde d'hybridation pour isoler des gènes homologues dans une souche productrice d'oléandomycine. La sonde eryCIII utilisée a permis d'isoler les gènes oleG1 et oleG2 codant pour des glycosyltransférases chez S. antibioticus impliquées dans le transfert de la 10 désosamine et de l'oléandrose sur le noyau lactone.

La caractérisation fonctionnelle des gènes *ole*G1 et *ole*G2 a permis de définir l'organisation de la partie droite du cluster des gènes de la biosynthèse de l'oléandomycine chez S. antibioticus.

- L'invention a donc pour objet une séquence d'ADN isolée représentée à la figure 22 (séquence de SEQ ID N° 15) correspondant à une région du cluster de gènes de la biosynthèse de l'oléandomycine comprenant :
- la séquence correspondant à l'ORF *ol*eP1 du nucléotide 184 20 au nucléotide 1386,
 - la séquence correspondant à l'ORF oleG1 du nucléotide 1437 au nucléotide 2714 codant pour une activité glycosyltrans-férase,
- la séquence correspondant à l'ORF oleG2 du nucléotide 2722 25 au nucléotide 3999 codant pour une activité glycosyltransférase.
 - la séquence correspondant à l'ORF oleM du nucléotide 3992 au nucléotide 4720 (= séquence de SEQ ID N° 20) et
- la séquence correspondant à l'ORF *ole*Y du nucléotide 4810 30 au nucléotide 5967.

La séquence d'ADN ci-dessus montrée à la figure 22 (séquence de SEQ ID N° 15) est une séquence d'ADN génomique qui peut être obtenue par exemple à partir d'un cosmide couvrant la partie droite du cluster de gènes de la biosynthèse de l'oléandomycine par hybridation avec une sonde eryCIII, selon les conditions opératoires dont une description détaillée est donnée plus loin.

L'invention a plus particulièrement pour objet une

séquence d'ADN isolée représentée à la figure 22 choisie parmi la séquence correspondant à l'ORF oleG1 (séquence de SEQ ID N° 15 du nucléotide 1437 au nucléotide 2714 codant pour une activité glycosyltransférase et la séquence correspondant à l'ORF oleG2 (séquence de SEQ ID N° 15 du nucléotide 2722 au nucléotide 3999) codant pour une activité glycosyltransférase.

L'invention a tout particulièrement pour objet une séquence d'ADN isolée ci-dessus correspondant à l'ORF oleG1 (séquence de SEQ ID N° 15 du nucléotide 1437 au nucléotide 2714) codant pour une activité désosaminyltransférase, ainsi qu'une séquence d'ADN isolée ci-dessus correspondant à l'ORF oleG2 (séquence de SEQ ID N° 15 du nucléotide 2722 au nucléotide 3999) codant pour une activité oléandrosyl
15 transférase.

La séquence correspondant à l'ORF oleG1 code pour un polypeptide ayant 426 acides aminés (séquence de SEQ ID N° 17) et la séquence correspondant à l'ORF oleG2 code pour un polypeptide ayant 426 acides aminés (séquence de SEQ ID 20 N° 18).

La mise en évidence des activités enzymatiques respectives indiquées ci-dessus a été réalisée par altération du gène correspondant telle qu'illustrée plus loin dans la partie expérimentale.

L'invention a aussi pour objet le polypeptide codé par la séquence d'ADN correspondant à l'ORF oleG1 et ayant une activité désosaminyltransférase (séquence de SEQ ID N° 17) et le polypeptide codé par la séquence d'ADN correspondant à l'ORF oleG2 et ayant une activité oléandrosyltransférase 30 (séquence de SEQ ID N° 18).

Les polypeptides ci-dessus dénommés respectivement OleG1 et OleG2 peuvent être obtenus par les méthodes connues indiquées ci-dessus.

L'invention a aussi pour objet un procédé de préparation 35 de métabolites secondaires hybrides chez Sac. erythraea dans lequel:

- on isole une séquence ADN contenant au moins une séquence eryB ou une séquence eryC du cluster de gènes de la bio-

WO 99/05283 PCT/FR98/01593 13

synthèse de l'érythromycine représentée à la figure 2 (séquence complémentaire de SEQ ID N° 1) ou à la figure 3 (séquence de SEQ ID N°6),

- on crée une modification dans la dite séquence et on 5 obtient une séquence altérée,
 - on intègre la séquence altérée dans le chromosome de la souche hôte et on obtient une souche modifiée,
- on cultive la souche modifiée dans des conditions permettant la formation du métabolite secondaire hybride et 10 - on isole le métabolite secondaire hybride.

La modification de la séquence d'ADN peut être réalisée par exemple par une addition et/ou par une délétion de séquences d'ADN d'au moins un nucléotide, dans une séquence eryB ou eryC de l'invention qui code pour l'une des enzymes 15 correspondantes indiquées ci-dessus.

L'intégration de la séquence altérée dans la souche hôte peut être réalisée par exemple par la méthodologie de la recombinaison homologue qui peut être effectuée selon le schéma montré à la figure 4 et conduit à la génération de 20 mutants chromosomiques de souches Sac. erythraea que l'on cultive ensuite selon les méthodes générales connues de culture cellulaire.

L'invention a particulièrement pour objet le procédé cidessus dans lequel la séquence ADN code pour l'une des 25 enzymes choisie parmi une

- dTDP-4-céto-D-6-désoxyhexose 2,3-réductase,
- désosaminyltransférase,
- dTDP-4-céto-D-6-désoxyhexose 3,4-isomérase,
- dTDP-4-céto-L-6-désoxyhexose 4-réductase,
- 30 mycarosyltransférase,
 - dTDP-D-6-désoxyhexose 3-N-méthyltransférase,
 - dTDP-4-céto-L-6-désoxyhexose 2,3-déshydratase,
 - dTDP-D-6-désoxyhexose 3,4-déshydratase,
 - dTDP-D-4,6-didésoxyhexose 3,4-réductase ou
- 35 dTDP-4-céto-D-6-désoxyhexose 3,5 épimérase.

L'invention a plus particulièrement pour objet le procédé ci-dessus dans lequel l'altération de la séquence résulte dans l'inactivation d'au moins l'une des enzymes

indiquées ci-dessus.

L'inactivation d'au moins l'une des enzymes est mise en évidence, d'une part par l'absence de production d'érythromycine, d'autre part par l'accumulation de précurseurs de l'érythromycine tels que le 6-désoxyérythronolide B, l'érythronolide B ou le 3-α-mycarosyl érythronolide B et/ou l'accumulation de métabolites secondaires hybrides tels que définis précédemment dans les surnageants de cultures des souches modifiées correspondantes.

L'invention concerne tout particulièrement le procédé ci-dessus dans lequel l'enzyme inactivée est une dTDP-4-céto-L-6-désoxyhexose 4-réductase ou dans lequel l'enzyme inactivée est une dTDP-D-6-désoxyhexose 3,4-déshydratase ou dans lequel l'enzyme inactivée est une mycarosyltransférase ou dans lequel l'enzyme inactivée est une dTDP-4-céto-L-6-désoxyhexose 2,3-réductase.

L'invention concerne aussi le procédé ci-dessus dans lequel le métabolite secondaire hybride isolé est un analogue de l'érythromycine choisi parmi la 4"-céto-érythromycine, la 20 4'-hydroxy-érythromycine ou la 3"-C désméthyl-2",3"-ène-érythromycine ou dans lequel le métabolite secondaire hybride isolé est le désosaminyl érythronolide B.

Des exemples de mise en oeuvre du procédé de l'invention sont donnés dans la partie expérimentale. L'accumulation de 25 métabolites secondaires hybrides dans des souches de Sac. erythraea modifiées est également décrite plus loin.

L'invention concerne aussi une souche de Sac. erythraea modifiée dans laquelle au moins l'une des enzymes choisie parmi une

- 30 dTDP-4-céto-L-6-désoxyhexose 2,3-réductase,
 - désosaminyltransférase,
 - dTDP-4-céto-D-6-désoxyhexose 3,4-isomérase,
 - dTDP-4-céto-L-6-désoxyhexose 4-réductase,
 - mycarosyltransférase,
- 35 dTDP-D-6-désoxyhexose 3-N-méthyltransférase,
 - dTDP-4-céto-L-6-désoxyhexose 2,3-déshydratase,
 - dTDP-D-6-désoxyhexose 3,4-déshydratase,
 - dTDP-D-4,6-didésoxyhexose 3,4-réductase ou

- dTDP-4-céto-D-6-désoxyhexose 3,5 épimérase est inactivée et produisant au moins un métabolite secondaire hybride.

L'invention concerne particulièrement la souche de Sac.

5 erythraea modifiée BII92 dans laquelle une dTDP-4-céto-L-6désoxyhexose 2,3-réductase est inactivée et produisant la
3"-C désméthyl-2",3"-ène-érythromycine C, la souche de Sac.
erythraea modifiée BIV87 dans laquelle une dTDP-4-céto-L-6désoxyhexose 4-réductase est inactivée et produisant la 4"10 céto-érythromycine, la souche de Sac. erythraea modifiée
CIV89 dans laquelle une dTDP-D-6-désoxyhexose 3,4-déshydratase est inactivée et produisant la 4'-hydroxyérythromycine D
ainsi que la souche de Sac. erythraea modifiée BV88 dans
laquelle une mycarosyltransférase est inactivée et produisant
15 du désoaminyl érythronolide B. Des constructions détaillées
des souches ci-dessus sont données plus loin dans la partie
expérimentale.

L'invention concerne aussi un procédé de préparation de précurseurs de l'oléandomycine chez S. antibioticus dans 20 lequel

- on crée une altération de la séquence du gène choisie parmi la séquence d'ADN correspondant à l'ORF oleG1 (séquence de SEQ ID N° 15 du nucléotide 1437 au nucléotide 2714) et la séquence d'ADN correspondant à l'ORF oleG2 (séquence 25 de SEQ ID N° 15 du nucléotide 2722 au nucléotide 3999) dans le chromosome d'une souche hôte et obtient une souche modifiée,
- on cultive la souche modifiée dans des conditions permettant l'accumulation des précurseurs de l'oléandomycine 30 et
 - on isole ces précurseurs.

L'altération de la séquence d'ADN peut être réalisée par exemple par interruption du gène cible dans la souche S. antibioticus, par exemple par intégration d'un plasmide 35 par la méthodologie de la recombinaison homologue et conduit à la génération de mutants chromosomiques de la souche sauvage.

L'invention concerne particulièrement un procédé ci-

dessus dans lequel l'altération est créée dans la séquence d'ADN correspondant à l'ORF oleG1 (séquence de SEQ ID N° 15 du nucléotide 1437 au nucléotide 2714) et dont il résulte au moins l'élimination de l'activité désoaminyltransférase et l'accumulation du précurseur de l'oléandomycine 8,8a-désoxyoléandolide.

L'accumulation d'un précurseur non glycosylé de l'oléandomycine 8,8a-désoxyoléandolide observée par interruption du gène oleG1 est due à un effet polaire transcription-10 nel inactivant le gène oleG2.

Un exemple de mise en oeuvre du procédé ci-dessus est donné plus loin dans la partie expérimentale.

Matériels et méthodes générales.

15 1. Souches bactériennes, plasmides et conditions de croissance.

La souche Sac. erythraea utilisée pour la réalisation de l'invention est un variant phénotypique spontané dit "red variant" (Hessler et al., 1997) de la souche sauvage

20 Sac. erythraea NRRL 2338 dont la croissance est effectuée en routine soit sur milieu solide R2T2 (milieu R2T décrit par Weber et al., 1985 sans peptone), R2T20 (Yamamoto et al., 1986) ou M1-102 sur agar (Kaneda et al., 1962), soit en milieu liquide TSB (Oxoid) à 30°C.

La souche Streptomyces lividans 1326 (John Innes Culture Collection) décrite par Hopwood et al. (1983), utilisée pour la préparation de plasmides dépourvus d'origine de réplication d'Escherichia coli tels que pIJ702 et pIJ486, a été maintenue sur milieu solide R2YE(R5) (Hopwood et al., 1985).

JM110 (Stratagene) et DH5α.MCR (GibcoBRL), utilisées pour les préparations de plasmides, a été effectuée en routine en milieu liquide 2 x YT ou LB ou en milieu solide LB sur agar, tels que décrits par Sambrook et al. (1989). La souche

35 E. coli XL1-blue est utilisée pour les clonages en routine. La souche JM110 est utilisée pour des clonages où l'on utilise des sites de restriction tels que BclI. La souche DH5α.MCR est utilisée pour la préparation de plasmides destinés à être introduits chez Sac. erythraea pour une transformation optimale.

La sélection des plasmides dans E.~coli a été effectuée sur ampicilline (Sigma) à 100 μ g/ml.

Les souches Bacillus subtilis ATCC 6633 ou Bacillus pumilus ATCC 14884 ont été utilisées comme souches indicatrices pour évaluer la production d'érythromycine dans des essais biologiques par antibiogramme.

Les plasmides Litmus28, pUC18 et pUC19 (New England
10 Biolabs) ont été utilisés en routine pour les sous-clonages.
Le vecteur pIJ702 (Katz et al., 1983) a été obtenu du John
Innes Institute. Le vecteur pIJ486 (Ward et al., 1986) a été
obtenu de C.J. Thompson (Université de Bâle, Suisse). Le
phagmide pTZ18R a été obtenu de Pharmacia Biotech. Le vecteur
15 navette coli-streptomyces pUWL218 (Wehmeier, 1995) utilisé
pour l'intégration chromosomique dans Sac. erythraea a été
obtenu de W.Piepersberg (Université de Wuppertal, Allemagne).
2. Manipulation de l'ADN et séquençage.

Les méthodes générales de biologie moléculaire utilisées 20 sont décrites par Sambrook et al., 1989.

Les réactifs d'origine commerciale ont été utilisés incluant les enzymes de restriction (New England Biolabs et Boehringer Mannheim), le fragment de Klenow de l'ADN polymerase I (Boehringer Mannheim). La trousse "DNA ligation 25 system" (Amersham) a été utilisée pour effectuer les ligations et la trousse Plasmid Midi kit (Quiagen) ou RPM kit (Biol01 Inc.) pour purifier l'ADN plasmidique.

La préparation de l'ADN du bactériophage λ a été réalisée selon Ausubel et al. (1995) et l'isolement de l'ADN 30 chromosomique de Sac. erythraea selon Hopwood et al. (1985).

La transformation de S. lividans et l'isolement des plasmides ont été effectués selon Hopwood et al. (1985). 3. Préparation de l'érythronolide B et du $3-\alpha$ -mycarosyl érythronolide B.

L'érythronolide B et le $3-\alpha$ -mycarosyl érythronolide B ont été purifiés à partir d'extraits de culture du mutant eryCI (clone WHB2221 décrit par Dhillon et al., 1989) par chromatographie sur gel d'aminopropyl (LichroprepNH2 25-40 μ ,

Merck) avec un gradient d'élution par des mélanges chlorure de butyle/chlorure de méthylène successifs (100:0, 80:20, 50:50 et 20:80) suivi d'un gradient d'élution linéaire par le mélange chlorure de butyle/méthanol variant de 99:1 à 90:10.

5 Les fractions contenant les produits attendus sont amenées à sec sous vide puis analysées par chromatographie en couche mince (ccm). L'érythronolide B est ensuite cristallisé dans un mélange acétate d'éthyle/hexane puis recristallisé dans l'éthanol. Le 3-α-mycarosyl érythronolide B est cristallisé 10 deux fois dans un mélange acétate d'éthyle/hexane.

Milieux cités.

1. R2T2:

Pour 1 litre de solution aqueuse : sucrose 103 g ; K_2SO_4 0,25g ; extrait de levure 6,5 g ; tryptone 5,0 g ; bactoagar

- 15 22,0 g; eau distillée qsp 860 ml. La solution est stérilisée par autoclavage pendant 30 minutes à 120°C. Au moment de l'utilisation, les solutions stériles suivantes sont ajoutées : 20 ml de glucose à 50 %; 25 ml de Tris-HCl 1M, pH7,0; 5 ml de KH2PO4 à 0,5 %; 2,5 ml de NaOH 1N; 50 ml
- 20 de CaCl₂ 1M; 50 ml de MgCl₂,6H₂O 1M et 2 ml de solution de "trace elements" (Hopwood et al., 1985).

2. R2T20:

Pour un litre de solution aqueuse : milieu R2T2 contenant 206 g de sucrose.

- 25 3. M1-102 (Kaneda et al., 1962) :
- Pour 1 litre de solution aqueuse : glucose 5 g ; sucre brun commercial 10 g ; tryptone 5 g ; extrait de levure 2,5 g ; Versène 36 mg ; eau courante 1000 ml ; pH final ajusté à 7,0 à 7,2 avec KOH. La solution est stérilisée par autoclavage 30 pendant 30 minutes à 120°C.
- 4. R2YE(R5) (Hopwood et al., 1985) :
 - Pour 1 litre de solution aqueuse : sucrose 103 g ; K_2SO_4 0,25 g ; $MgCl_2$,6 H_2O 10,12 g ; casaminoacides 0,1 g ; solution de "trace elements" 2 ml ; extrait de levure 5 g ; TES
- 35 5,72 g ; bactoagar 15 g ; eau distillée qsp 940 ml. La solution est stérilisée par autoclavage pendant 30 minutes à 120°C. Au moment de l'utilisation, les solutions stériles suivantes sont ajoutées : 10 ml de KH₂PO₄ 0,5 % ; 20 ml de

 ${\rm CaCl}_2$ 1M ; 15 ml de L-proline à 20 % ; 20 ml de glucose à 50 % et 1 ml de ${\rm CuCl}_2$ 10mM.

5. 2 x TY:

Pour 1 litre de solution aqueuse : tryptone 10 g ; extrait de 5 levure 10 g ; NaCl 5 g.

6. Tampon PT:

Pour 1 litre de solution aqueuse : sucrose 100 g ; K₂SO₄ 0,25 g ; MgCl₂6H₂O 5,1 g ; solution de "trace elements" 2 ml ; eau distillée qsp 875 ml. La solution est stérilisée 10 par autoclavage pendant 30 minutes à 120°C. Au moment de l'utilisation, les solutions stériles suivantes sont

7. Sucrose-succinate (Caffrey et al., 1992) :

ajoutées: 5 ml de CaCl, et 20 ml de TES 5,3 %.

Pour 1 litre de solution aqueuse : sucrose 0,2 M ; acide
15 succinique 20 mM ; phosphate de potassium 20 mM (pH 6,6) ;
sulfate de magnésium 5 mM ; nitrate de potassium 100 mM ;
solution de "trace elements" 2 ml. La solution est stérilisée
par autoclavage pendant 30 minutes à 120°C.

Les figures ci-annexées illustrent certains aspects de 20 l'invention.

La figure 1 représente la voie de biosynthèse de l'érythromycine A.

La figure 2 représente la séquence nucléotidique (séquence directe et complémentaire de SEQ ID N° 1) de la 25 région eryG-eryAIII du cluster de gènes de la biosynthèse de l'érythromycine comprenant les ORFs 7, 8 et 9 et leurs séquences protéiques déduites.

La figure 3 représente la séquence nucléotidique (séquence de SEQ ID N° 6) de la région eryAI-eryK du cluster 30 de gènes de la biosynthèse de l'érythromycine comprenant les ORFs 13 à 19 et leurs séquences protéiques déduites.

La figure 4 représente le schéma de substitution de gène par recombinaison homologue.

La figure 5A représente l'organisation de la partie 35 gauche du cluster des gènes de la biosynthèse de l'érythromycine chez Sac. erythraea dont les ORFs 1 à 9 sont indiquées par des flèches ainsi qu'une carte de restriction des plasmides pK62, pBCK1, pKB22, pBK44, pBIISB, pEco2 et pK23,

générés à partir du clone génomique $\lambda SE5.5.$ (Abréviations des enzymes de restriction : B, BamHI ; Bc, BclI ; Bg, BglII ; E, EcoRI ; K, KpnI ; M, MluI ; P, PstI ; S, SacI ; Sa, SalI.)

La figure 5B représente l'organisation de la partie 5 droite du cluster des gènes de la biosynthèse de l'érythromycine chez Sac. erythraea dont les ORFs 13 à 21 sont indiquées par des flèches ainsi qu'une carte de restriction des plasmides pBK6-12, pCN9, pNCO28, pNB49, pNCO62, pPSP4, pNCO62X et pBAB18. (Abréviations des enzymes de restriction :

10 B, BamHI; Ba, BalI; Bc, BclI; C, ClaI; E, EcoRI; K, KpnI; N, NcoI; Ns, NsiI; P, PstI; Pv, PvuII; S, SacI; Sc, ScaI; Sh, SphI; Sp, SpeI; X, XbaI; Xh, XhoI).

La figure 6A représente le schéma de construction du plasmide pBII Δ .

La figure 6B représente une carte de restriction du plasmide pUWL218.

La figure 6C représente une carte de restriction du plasmide pBII Δ .

La figure 7A représente le schéma de construction du 20 plasmide pdel88.

La figure 7B représente le schéma de construction du plasmide pdel88A.

La figure 7C représente le schéma de construction du plasmide pOBB.

La figure 7D représente le schéma de construction et une carte de restriction du plasmide pCIII Δ .

La figure 8A représente le schéma de construction du plasmide $pCII\Delta$.

La figure 8B représente une carte de restriction du 30 plasmide pORT1.

La figure 8C représente une carte de restriction du plasmide pCII Δ .

La figure 9A représente le schéma de construction du plasmide pBIV Δ .

La figure 9B représente une carte de restriction du plasmide pBIV Δ .

La figure 10A représente le schéma de construction du plasmide pBV Δ .

La figure 10B représente une carte de restriction du plasmide $pBV\Delta$.

La figure 11A représente le schéma de construction du plasmide pPSTI.

5 La figure 11B représente une carte de restriction du plasmide pPSTI.

La figure 12A représente le schéma de construction du plasmide pXhoI.

La figure 12B représente une carte de restriction du 10 plasmide pXhoI.

La figure 13A représente le schéma de construction du plasmide $pCIV\Delta$.

La figure 13B représente une carte de restriction du plasmide $pCIV\Delta$.

15 La figure 14A représente le schéma de construction du plasmide $pCV\Delta$.

La figure 14B représente une carte de restriction du plasmide $pCV\Delta$.

La figure 15 représente l'analyse par Southern blot des 20 souches mutantes BII92, CIII68, CII62, BIV87, BV88, CIV89 et CV90, comparativement à la souche sauvage "red variant" notée Wt. Pour chaque mutant, l'enzyme de restriction utilisée est indiquée en-dessous de chaque blot et la taille des bandes détectées devant chaque blot est estimée par rapport aux 25 marqueurs de poids moléculaire λ -HindIII et λ -BstEII (non détectables par auto-radiographie).

La figure 16 représente l'analyse par PCR des souches mutantes BII91, CIII68, CII62, BIV87, BV88, CIV89 et CV90, comparativement à la souche sauvage "red variant" notée Wt et 30 aux plasmides pBII Δ , pCIII Δ , pCII Δ , pBIV Δ , pBV Δ , PCIV Δ et pCV Δ utilisés respectivement pour obtenir le mutant par recombinaison homologue. Les tailles des bandes détectées par coloration au bromure d'éthydium sont estimées par rapport aux marqueurs de poids moléculaire Φ X174-HaeIII ou λ -BstEII.

La figure 17 représente l'analyse par CCM des métabolites produits par les souches mutantes BII92, CIII68, CII62, BIV87, BV88, CIV89 et CV90, comparativement aux produits standards érythromycine A (Er A), érythronolide B (EB) et $3-\alpha$ -mycarosyl érythronolide B (MEB).

La figure 18 représente l'analyse par SDS-PAGE de la purification de la protéine EryCIII successivement après extraction à l'urée 7M (ligne 2), chromatographie Q Sépharose 5 (ligne 3), chromatographie Superdex (ligne 4), chromatographie Q source (ligne 6) avec des marqueurs standard de poids moléculaire (lignes 1 et 5);

La figure 19 représente l'analyse par CMM du test d'activité biologique de la protéine EryCIII, par incubation 10 avec d-TDP-D-désosamine (ligne 2) ou avec d-TDP-D-désosamine et 3-α-mycarosyl érythronolide B (MEB) (ligne 3) comparativement au contrôle MEB (ligne 1) et au contrôle érythromycine A (ligne 4). Les pointillés marquent les zones montrant une activité antibiotique par autobiogramme sur B. pumilus.

La figure 20 représente la localisation des six cosmides (cosAB35, cosAB76, cosAB87, cosAB67, cosAB63 et cosAB61) couvrant l'ensemble du cluster des gènes de la biosynthèse de l'oléandomycine. Les fragments de restriction BamHI (noté B) hybridant avec les sondes notées str M, D, E et les fragments 20 BamHI (3,5 kb et 2,7 kb) hybridant avec la sonde eryCIII sont montrés.

La figure 21 représente l'organisation de la partie droite du cluster des gènes de la biosynthèse de l'oléandromycine chez S. antibioticus dont les différentes ORFs (notées oleP1, oleG1, oleG2, oleM, oleY, oleP et oleB) sont indiquées par des flèches ainsi qu'une carte de restriction du plasmide pCO35-S et l'insert du plasmide pCO3 généré à partir du pCO35-S. La double flèche indique l'insert correspondant à la séquence de la figure 22 (abréviations des enzymes de restriction: B, BamHI; Bg, BglII; K, KpnI; S, SacI; Sh, SphI; l'étoile indique qu'il ne s'agit pas d'un site unique).

La figure 22 représente la séquence nucléotidique (séquence de SEQ ID N° 15) de la région couvrant les gènes 35 oleP1, oleG1, oleG2, oleM et oleY de la biosynthèse de l'oléandomycine et leurs séquences protéiques déduites.

EXEMPLE 1 : clonage et séquençage de la région eryG-eryAIII du cluster de gènes de la biosynthèse de l'érythromycine.

Un fragment d'ADN génomique de Sac. erythraea NRRL 2338 ayant > 20 kb en aval du gène ermE couvrant notamment les ORFs 3 à 9 et correspondant au clone λSE5.5 ainsi que la séquence nucléotidique d'un fragment de 4,5 kb correspondant 5 à la région du cluster ery comprise entre 3,7 kb et 8,0 kb à partir de l'extrémité 3' du gène ermE et comprenant les ORFs 3, 4, 5 et 6 ont été décrits par Haydock et al. (1991).

En tenant compte de la carte de restriction montrée par Haydock et al. (1991), des sous-clones ont été dérivés du 10 clone λSE5.5 par sous-clonage de fragments de restriction dans pUC19. Les plasmides pKB22, pBK44, pBIISB et pEco2 ont été ainsi générés selon la figure 5A de la façon suivante :

A partir de l'ADN du clone λSE5.5 digéré par l'enzyme de restriction KpnI, les plasmides pK62 et pK66 ont été

15 directement construits par sous-clonage du fragment KpnI de 5,8 kb dans pUC19, le plasmide pK66 correspondant au même fragment KpnI sous-cloné avec une orientation inversée de l'insert par rapport au vecteur. Le plasmide pKB22 contenant un insert de 2,9 kb a été ensuite dérivé du plasmide pK66 par excision du fragment BamHI-BglII (2,9 kb) couvrant l'ORF8 ainsi qu'une partie des ORFs 7 et 9 par digestion avec les enzymes de restriction BamHI et BglII. De la même façon, le plasmide pKB44 contenant un insert de 2,9 kb a été obtenu à partir du plasmide pK62 par excision du fragment BamHI-BglII (2,9 kb) couvrant le gène eryG correspondant aux ORFs 5 et 6 et le gène eryF correspondant à l'ORF4.

Le plasmide pBIISB a été dérivé du plasmide pBK44 par sous-clonage dans pUC19 du fragment SalI de 600 pb obtenu à partir du plasmide pBK44 digéré par l'enzyme de restriction 30 SalI (figure 5A).

A partir de l'ADN du clone λ SE5.5 digéré par l'enzyme de restriction EcoRI, le plasmide pEco2 a été directement construit par sous-clonage du fragment EcoRI (2,2 kb) dans pUC19.

Les sous-clones pKB22, pBK44, pBIISB et pEco2 ainsi obtenus ont été ensuite séquencés. L'analyse a été faite sur des échantillons d'ADN plasmidique, préalablement purifié sur une colonne de Quiagen 100 (Quiagen), sur le séquenceur

automatique ABI prism 377. Les réactions de séquençage ont été réalisées par la méthode de Sanger (1977) en utilisant les amorces M13 conventionnelles ou des amorces synthétiques et des didésoxynucléosides triphosphate fluorescents et la polymérase Taq FS (Perkin Elmer) en présence de 5 % de diméthylsulfoxide, les amorces synthétiques utilisées ayant les séquences suivantes :

	C3R2	TCCTCGATGGAGACCTGCC	(SEQ	ID	Νο	22)
	B2R1	GAGACCATGCCCAGGGAGT	(SEQ	ID	Ν°	23)
10	C3S2	TCTGGGAGCCGCTCACCTT	(SEQ	ID	Νο	24)
	C2R1	GACGAGGCCGAAGAGGTGG	(SEQ	ID	И°	25)
,	C2S	GCACACCGGAATGGATGCG	(SEQ	ID	Νο	26)
	fullC3S	CCGTCGAGCTCTGAGGTAA	(SEQ	ID	И°	27)
	fullC3R	GCCCGAGCCGCACGTGCGT	(SEQ	ID	Ν°	28) et
15	C4	TGCACGCGCTGCTGCCGACC	(SEQ	ID	Иo	29).

L'assemblage des données de séquence a été réalisé avec le logiciel Autoassembler TM pakage (Applied Biosystem). Les séquences ont été analysées en utilisant l'ensemble des logiciels GCG (Devereux 1984).

20 Les séquences nucléotidiques obtenues ont permis d'établir la séquence nucléotidique de 3412 bp de la figure 2 (séquence directe et complémentaire de SEQ ID N° 1) dans laquelle trois ORFs (7, 8 et 9) ont été identifiées respectivement du nucléotide 8957 au nucléotide 7959, du nucléotide 25 10219 au nucléotide 8957 et du nucléotide 11315 au nucléotide 10233 (numérotés dans la figure 2 à partir du site BamHI situé à l'extrémité 5' du gène ermE) (respectivement séquence complémentaire de SEQ ID N° 1 du nucléotide 48 au nucléotide 1046, du nucléotide 1046 au nucléotide 2308 et du nucléotide 30 2322 au nucléotide 3404) et correspondant respectivement aux gènes eryBII, eryCIII et eryCII selon Liu et Thorson (1994) dont les caractérisations fonctionnelles n'avaient pas encore été identifiées. Les trois ORFs 7, 8 et 9 ont la même orientation, la lecture se faisant à partir de la région 3' 35 du gène eryAIII.

Des échantillons de *E. coli* XL1-blue contenant la région codante des ORFs ci-dessus ont été déposés à la Collection Nationale de Cultures de Microorganismes (CNCM) INSTITUT

PASTEUR, 25, Rue du Docteur Roux 75724 PARIS CEDEX 15 FRANCE, le 16 juillet 1997 :

- le plasmide pK62 comprenant la séquence codante pour l'ORF7, l'ORF8 et une partie de l'ORF9 sous le numéro I-1897,
- 5 le plasmide pEco2 comprenant la séquence codante pour l'ORF9 et une partie de l'ORF8 sous le numéro I-1899.

EXEMPLE 2: construction du plasmide pBIIA.

Un plasmide d'intégration, dénommé **pBII∆** et portant une délétion dans le gène *eryBII* codant pour l'ORF7, a été 10 construit selon le schéma de la figure 6A.

Le fragment *BclI-BamHI* de 598 pb a été délété dans le plasmide pK62 obtenu à l'exemple 1 par digestion avec les enzymes *BclI* et *BamHI*. Le plasmide pBCK1 résultant a été ensuite digéré avec les enzymes de restriction *MluI* et *BglII*

- 15 de façon à déléter un fragment ayant 853 pb à l'intérieur de l'ORF7 du nucléotide 8011 au nucléotide 8863 de la séquence de la figure 2. Après remplissage des extrémités à l'aide du fragment de Klenow de l'ADN polymérase I, le plasmide contenant la délétion , a été religaturé et transformé dans
- 20 E. coli XL1-blue. A partir du plasmide p19BIIΔ ainsi généré, le fragment KpnI-HindIII (4,3 kb) qui porte la délétion a été sous-cloné dans le plasmide pUWL218 (figure 6B). La présence de la délétion de 853 pb du nucléotide 8011 au nucléotide 8863 dans le plasmide pBIIΔ ainsi généré (figure 6C) a été
- 25 confirmée par séquençage.

Le plasmide pBII Δ a ensuite été transféré dans la souche $E.\ coli\ DH5\alpha MRC$, puis utilisé pour transformer Sac. erythraea.

EXEMPLE 3: construction d'une souche Sac. erythraea ery BIIA 30 (BII92).

La construction d'une souche Sac. erythraea dans laquelle le gène eryBII porte une délétion interne telle que celle introduite dans le plasmide pBIIΔ préparé à l'exemple 2 et le processus d'intégration ont été réalisés de la façon 35 suivante :

La préparation des protoplastes a été réalisée selon la méthode décrite par Weber et Losick (1988), en utilisant du PEG 3350 (Sigma) au lieu de PEG 1000 et un tampon P modifié

(dénommé PT) contenant ${\rm MgCl}_2$, ${\rm 6H}_2{\rm O}$ 28 mM et sans ${\rm PO}_4{\rm H}_2{\rm K}$ au lieu des tampons P, L ou T décrits, selon les conditions opératoires suivantes :

Les cellules (au moins 10⁸ spores) de Sac. erythraea "red variant" (dont un échantillon a été déposé à la Collection Nationale de Cultures de Microorganismes (CNCM) INSTITUT PASTEUR, 25, Rue du Docteur Roux 75724 PARIS CEDEX 15 FRANCE, le 16 juillet 1997 sous le numéro I-1902) ont été mises à pousser dans 50 ml de milieu TBS pendant 3 à 5 jours à 30°C, 10 puis lavées dans du sucrose à 10,3 %. Les cellules ont été remises en suspension dans 50 ml de tampon PT contenant 2 à 5 mg/ml de lysozyme (Sigma), puis incubées à 30°C pendant 1 à 2 heures en désagrégeant les amas de mycélium toutes les 15 minutes jusqu'à conversion d'au moins 50 % du mycélium en 15 protoplastes. Les protoplastes ont été lavés avec 50 ml de tampon PT, remis en suspension dans 12,5 à 25 ml du même tampon, congelés lentement puis stockés à -80°C par aliquots de 200 µl.

Pour la transformation, un aliquot a été décongelé et 20 50 μ l ont été prélevés puis transférés dans un tube de 15 ml. Un à 10 μ g d'ADN plasmidique pBII Δ , préparé à l'exemple 2 à partir de la souche E, coli DH5 α MRC ont été mis en solution dans 5 à 10 μ l de tampon TE (Tris HCl 10 mM pH 7,5, EDTA 1 mM) puis déposés sur la paroi du tube incliné auquel a été 25 ensuite ajouté 0,5 ml d'une solution de PEG 3350 dans le tampon PT préparée extemporanément à partir d'une solution aqueuse à 50 % que l'on dilue au demi dans le tampon 2 x PT. Après dilution avec 3 à 5 ml de tampon PT puis centrifugation à 2500 rpm pendant 15 mn, le culot a été dissocié dans 0,5 ml 30 de tampon PT et la suspension de protoplastes transformés ainsi obtenue a été immédiatement répartie sur 2 ou 3 boîtes R2T2 très sèches (3 h sous une hotte à flux laminaire). Les boîtes ont été ensuite incubées à 32°C pendant 16 à 24 h jusqu'à apparition du voile de régénération des protoplastes. 35 A partir d'une solution stock de thiostrepton (Sigma) à 50 mg/ml dans le DMSO, une quantité appropriée a été diluée

dans 0,5 à 1 ml d'eau puis étalée sur les boîtes de façon à obtenir une concentration finale de 20 μg de thiostrepton/ml

de gélose. Après absorption complète de l'antibiotique, les boîtes ont été incubées à 32°C pendant 3 à 4 jours, ce qui permet la visualisation des transformants. Les boîtes ont encore été incubées plusieurs jours jusqu'à développement 5 complet des spores.

La sélection des intégrants correspondant au premier événement de recombinaison (figure 4) a été réalisée par réplication des boîtes sporulées à l'aide de velours ou par étalement d'une suspension des spores sur des boîtes R2T2 10 contenant du thiostrepton puis incubation à 32°C, ce qui permet la croissance des clones d'intégrants potentiels.

Pour la sélection de clones ayant subi un deuxième événement de recombinaison (figure 4), 5 à 10 clones résistants au thiostrepton obtenus ci-dessus ont été mis en culture dans 8 ml de milieu liquide TSB à 30°C pendant 3 à 4 jours. 50 à 100 µl ont été prélevés et remis en culture dans les mêmes conditions. Après 4 cycles successifs de dilution et culture destinés à favoriser la perte du marqueur de résistance au thiostrepton, des protoplastes ont été préparées à partir des cellules comme indiqué ci-dessus, de façon à chasser le plasmide. Les protoplastes ont ensuite été étalés sur des boîtes R2T2 de façon à obtenir des colonies individualisées dont la sensibilité au thiostrepton a été déterminée par réplique sur des boîtes R2T2 contenant du 25 thiostrepton.

Selon la position du deuxième événement de recombinaison par rapport au site de délétion (figure 4), on peut attendre que le phénotype des colonies sensibles au thiostrepton soit du type sauvage ou du type muté porteur de la délétion.

Parmi les colonies sensibles au thiostrepton, la sélection des mutants ayant le phénotype ery a été réalisée par antibiogramme sur la souche B. pumilus ATCC 14884 sensible à l'érythromycine. La souche B. pumilus a été utilisée comme souche indicatrice pour évaluer la production d'érythromycine dans des essais biologiques par antibiogramme. Les colonies ont été étalées à l'anse de platine sur des boîtes R2T2, puis incubées pendant 3 à 4 jours à 30°C. Des zones d'agar où le mutant a poussé à confluence ont

ensuite été prélevées à l'emporte pièce puis placées sur des boîtes A-Merck recouvertes d'une surcouche de 4 ml de 0,5 x A Merck (Antibiotic agar N°1 Merck) inoculée d'une suspension de spores de B. pumilus, puis incubées une nuit à 37°C.

La présence de la délétion attendue dans le chromosome du mutant (délétion de 853 pb du nucléotide 8011 au nucléotide 8863 de la figure 2) a ensuite été confirmée par analyse génomique par Southern blot ainsi que par PCR de la façon suivante :

- Pour l'analyse par Southern blot, le transfert d'ADN génomique, préalablement digéré avec l'enzyme de restriction appropriée, sur des membranes GeenscreenPlus (Dupont NEN) a été réalisé dans NaOH 0,4 M selon Ausubel et al. (1995). Les hybridations ont été effectuées en utilisant comme sonde l'oligonucléotide marqué à son extrémité 5' en utilisant du $[\gamma^{32}P]ATP$ (Amersham) et la polynucléotide kinase (Boehringer Mannheim) selon Sambroock et al. (1989), ayant la séquence suivante :
- B2-S TTGGCGAAGTCGACCAGGTC (SEQ ID N° 30)

 20 correspondant à la région d'ADN du début du gène eryG située de la position 4118 à la position 4137 de la séquence déposée dans la base EMBL sous la référence X60379 et décrite par Haydock et al. (1991). Les hybridations ont été effectuées avec un tampon d'hybridation rapide (Amersham) et les

 25 conditions de lavage suivantes : 2 x 5 mn, 2 x SSC, 20°C;

 30 mn, 2 x SSC, 65°C; 30 mn, 0,1 x SSC, 20°C.

Par hybridation Southern sur l'ADN génomique isolé selon Hopwood et al. (1985) puis digéré par l'enzyme de restriction KpnI, une bande de 5,8 kb à partir de la souche sauvage "red variant" et une bande de 4,9 kb à partir du mutant BII92 ont été détectées. Les résultats montrés à la figure 15 indiquent la présence chez le mutant d'une délétion d'environ 900 pb dans cette région du chromosome.

Pour l'analyse par PCR ,un échantillon de 100 μ l d'une 35 culture de 3 jours en milieu TSB a été centrifugé. Le culot obtenu a été remis en suspension dans 10 μ l de milieu TSB, puis utilisé pour l'amplification dans l'appareil genAmp PCR system 9600 (Perkin Elmer Cetus). Après chauffage de

l'échantillon pendant 3 mn à 94°C, les conditions
d'amplification suivantes ont été utilisées : 94°C, 1 mn ;
55°C, 1 mn ; 72°C, 3 mn ; 30 cycles ; polymérase Ampli Taq
(Perkin Elmer) en présence de diméthylsufoxyde 10 % (v/v)
5 suivis d'une élongation de 3 mn à 72°C. L'amplification a
été effectuée en utilisant l'oligonucléotide B2S ci-dessus et
l'oligonucléotide ayant la séquence suivante
B2-R GCCGCTCGGCACGGTGAACTTCA (SEQ ID N° 31)
correspondant à la séquence du brin complémentaire de la
10 région d'ADN située de la position 8873 à la position 8892 de
la séquence de la figure 2 à laquelle ont été ajoutés trois
nucléotides à l'extrêmité 5' et permettant d'encadrer par
amplification PCR la région portant la délétion interne à
l'ORF7.

L'analyse par amplification par PCR sur des cellules entières a permis de détecter une bande d'environ 1 kb dans la souche sauvage et une bande de 0,16 kb dans le mutant BII92 de façon identique au signal obtenu avec le plasmide pBIIΔ. Les résultats montrés à la figure 16 confirment que la délétion d'environ 900 pb détectée par l'analyse Southern est identique à celle portée par le plasmide pBIIΔ (853 pb).

La souche recombinante ainsi obtenue, désignée BII92, a été ensuite cultivée pour identifier les métabolites produits par la souche.

25 EXEMPLE 4 : fermentation de la souche BII92 et identification des métabolites secondaires produits.

Des extraits de bouillon de culture de la souche ont été analysés par chromatographie en couche mince (ccm) avec l'érythromycine A, l'érythronolide B et le 3-α-mycarosyl 30 érythronolide B comme standards.

La souche BII92 a été cultivée en erlen de 50 ml dans les conditions permettant une production optimale d'érythromycine A et de ses dérivés qui consistent à effectuer une préculture cellulaire à 28°C pendant 48 heures dans le milieu EP1 (Solulys L-Corn steep liquor (Roquette frères) 5 g/l; farine de soja déshuilée (Cargill) 10 g/l; CO₃Ca 2 g/l; ClNa 5 g/l; pH = 6,8; glucose qsp 15 g/l ajouté après autoclavage), puis une culture pendant 72 heures

après dilution à 7 % v/v avec le milieu EP2 (farine de soja déshuilée 10 g/l ; CO_3Ca 0,2 g/l ; Cl_2Co-6H_2O 1 mg/l ; pH = 6,8-7,0 ; glucose qsp 20 g/l ajouté après autoclavage).

Le surnageant de culture a été ensuite extrait à pH 9-10 5 avec de l'acétate d'éthyle. Les phases organiques ont été séchées sur SO₄Mg, amenées à sec sous pression réduite puis analysées par ccm sur gel de silice 60 F254 (Merck) [dichlorométhane/méthanol (90:10, v/v) ou éther isopropylique/méthanol/NH₄OH à 25 % (75:35:2, v/v)]. De façon 10 alternative, l'analyse a été réalisée par ccm sur des plaques de gel de silice greffées de type NH₂ F254 (Merk) [chlorure de butyle/méthanol (90:10, v/v)].

La révélation chimique des plaques a été effectuée par pulvérisation d'une solution de p-anisaldéhyde-acide

15 sulfurique 98 %-éthanol (1:1:9, v/v), suivie de chauffage pendant quelques minutes à 80°C. Les activités antibiotiques potentielles ont été analysées par bioautographie directe des plaques de ccm sur agar ensemencé de B. pumilus ATCC 14884.

Les résultats obtenus par révélation chimique (figure 20 17) montrent que la souche BII92 accumule préférentiellement l'érythronolide B comme attendu d'un mutant eryB.

Des métabolites mineurs de faible mobilité manifestant une activité antibiotique ont également été détectés. Ces métabolites ont été extraits à l'acétate d'éthyle et

25 identifiés par chromatographie liquide à haute performance en phase inverse (RP-HPLC) couplée à la spectrométrie de masse.

La RP-HPLC a été effectuée sur colonne (250 x 4,6mm) de

Kromasil C18 5µ en utilisant comme phase mobile le mélange acétonitrile/méthanol/acétate d'ammonium 0,065 M pH 6,7

30 (350:150:500, v/v) sur un chromatographe Waters équipé d'un spectromètre de masse Finningan TSQ 7000.

A côté de traces d'érythromycine A, B, C et D, 4 métabolites mineurs dénommés M1 à M4 ont été détectés :

- M1 donne un pic parent à m/z 704 et des produits de

35 fragmentation à m/z 576 et m/z 158. La présence de désaminylérythronolide A (m/z 576) indique que la différence de m/z de 30 comparée à l'érythromycine A (m/z 734) ou de 16 comparée à l'érythromycine C (m/z 720) est portée par le résidu sucre

érythromycine D.

neutre. La structure proposée pour M1 est la 3"-C désméthyl-2",3"-ène-érythromycine C.

- M2 donne un pic parent à m/z 706 et des produits de fragmentation à m/z 576 et m/z 158. La présence de désaminyl-5 érythronolide A (m/z 576) indique que la différence de m/z de 28 comparée à l'érythromycine A (m/z 734) ou de 14 comparée à l'érythromycine C (m/z 720) est portée par le résidu sucre neutre. La structure proposée pour M2 est la 3"-C désméthylérythromycine C.
- 10 M3 donne un pic parent à m/z 690 et des produits de fragmentation à m/z 560 et m/z 158. La présence de désaminylérythronolide B (m/z 560) indique que la différence de m/z de 28 comparée à l'érythromycine B (m/z 718) ou de 14 comparée à l'érythromycine D (m/z 704) est portée par le résidu sucre neutre. La structure proposée pour M3 est la 3"-C désméthyl-
 - M4 donne un pic parent à m/z 720 et des produits de fragmentation à m/z 576 et m/z 158. Le profil est identique à celui de l'érythromycine C (m/z 720) avec la présence de
- 20 désosaminylérythronolide A (m/z 576) et la perte du résidu sucre aminé (m/z 158), mais le métabolite M4 n'a pas le même temps de rétention en RP-HPLC que l'érythromycine. La structure proposée pour M4 est la 3"-C désméthyl-érythromycine A.
- La détection par SM-SM du métabolite mineur M1 ayant un sucre neutre insaturé (3"-C désméthyl-2",3"-ène-érythromycine C) indique que le gène eryBII code pour la dTDP-4-céto-L-6-désoxyhexose 2,3-réductase dans la voie de biosynthèse du dTDP-mycarose.
- 30 La souche BII92 a été déposée à la Collection Nationale de Cultures de Microorganismes (CNCM) INSTITUT PASTEUR, 25, Rue du Docteur Roux 75724 PARIS CEDEX 15 FRANCE, le 16 juillet 1997 sous le numéro I-1903.

EXEMPLE 5 : construction du plasmide pCIII Δ .

L'ORF8 pouvant être traductionnellement couplée à l'ORF7 située en aval, une délétion en phase a été introduite de façon à éviter un effet polaire. Un plasmide d'intégration, dénommé pCIIIΔ porteur d'une telle délétion, a été construit

selon le schéma de la figure 7(A-D).

Une délétion SalI de 663 pb a été introduite dans l'ORF8 du nucléotide 9384 au nucléotide 10046 de la séquence de la figure 2 en sous-clonant dans le plasmide pUC19 les deux 5 fragments SalI (a : 794 pb et b : 631 pb montrés à la figure 5A) isolés à partir du plasmide pBK44 obtenu à l'exemple 1 pour générer le plasmide pdel88 (figure 7A). La présence de la délétion de 663 pb a été confirmée par séquençage. Le plasmide pdel88 a été ensuite soumis à deux sous-clonages 10 additionnels de façon à élargir les régions chromosomiques utilisables pour la recombinaison homologue des deux cotés du site de délétion. Le fragment SacI (450 pb) du plasmide pdel88 a d'abord été remplacé par le fragment SacI (1,1 kb) du plasmide pEco2 obtenu à l'exemple 1 pour générer le 15 plasmide pdel88A (figure 7B). Puis le fragment EcoRI (1,5 kb) portant la délétion dans l'ORF8 a été isolé du plasmide pdel88A et utilisé pour remplacer le fragment EcoRI (1,66 kb) porteur de l'ORF intacte dans le plasmide pOBB. Le plasmide pOBB, représenté à la figure 7C, correspond au plasmide pBK44 20 préparé à l'exemple 1 dans le site PstI duquel a été souscloné le fragment PstI de 4 kb du plasmide pIJ486 obtenu par digestion par l'enzyme de restriction PstI et porteur de l'origine de réplication streptomyces ainsi que du gène de résistance au thiostrepton. Le plasmide résultant pCIIIΔ 25 porte des régions chromosomiques pour la recombinaison homologue de 1,27 kb et 1,38 kb respectivement en amont et en aval du site de délétion. Le plasmide pCIII∆ ainsi obtenu (figure 7D) a ensuite été transféré dans la souche E. coli DH5αMRC, puis utilisé pour transformer Sac. erythraea. 30 EXEMPLE 6 : construction d'une souche Sac. erythraea eryCIIIA

(CIII68).

Une souche dans laquelle le gène eryCIII porte une délétion interne telle que celle introduite dans le plasmide pCIII∆ obtenu à l'exemple 5 a été préparée par transformation 35 des protoplastes de Sac. erythraea avec le plasmide pCIII Δ .

La préparation des protoplastes, le processus d'intégration et la sélection des mutants ayant le phénotype ery ont été réalisés comme à l'exemple 3.

De plus, la présence de la délétion attendue dans le chromosome (délétion de 663 pb du nucléotide 9384 au nucléotide 10046 de la séquence de la figure 2) a été confirmée par analyse génomique par Southern blot ainsi que 5 par amplification par PCR selon les conditions décrites à l'exemple 3.

Par hybridation Southern sur l'ADN génomique digéré par l'enzyme de restriction *Eco*RI, en utilisant comme sonde l'oligonucléotide ayant la séquence suivante

10 C3-S ATGCGCGTCGTCTTCTCCTCCATG (SEQ ID N° 32)
correspondant au brin complémentaire de la région d'ADN
située de la position 10196 à la position 10219 de la
séquence de la figure 2, une bande de 2,2 kb à partir de la
souche sauvage et une bande de 1,5 kb à partir du mutant
15 CIII68 ont été détectées. Les résultats montrés à la figure
15 indiquent la présence chez le mutant d'une délétion
d'environ 700 pb dans cette région du chromosome.

L'amplification par PCR a été effectuée en utilisant l'oligonucléotide C3-S ci-dessus et l'oligonucléotide ayant 20 la séquence suivante

- C3-R TCATCGTGGTTCTCCTCCC (SEQ ID N° 33) correspondant à la séquence située de la position 8954 à la position 8974 de la séquence de la figure 2 permettant d'encadrer par amplification PCR la région portant la
- 25 délétion interne à l'ORF8. L'analyse par amplification par PCR a permis de détecter une bande d'environ 1,2 kb dans la souche sauvage et une bande d'environ 0,6 kb dans le mutant CIII68 de façon identique au signal obtenu avec pCIIIΔ. Les résultats montrés à la figure 16 confirment que la délétion 30 d'environ 700 pb détectée par l'analyse de Southern est

identique à celle portée par le plasmide pCIII∆ (663 pb).

La souche recombinante ainsi obtenue, désignée CIII68, a été ensuite cultivée pour identifier les métabolites produits par la souche.

35 EXEMPLE 7: fermentation de la souche CIII68 et identification des métabolites secondaires produits.

La culture de la souche CIII68 et les analyses par ccm suivie de bioautographie ont été réalisées selon les conditions indiquées à l'exemple 4.

Les résultats de ccm (figure 17) montrent que la souche CII68 accumule préférentiellement du 3-α-mycarosyl érythronolide B ainsi que de petites quantités d'érythronolide B 5 comme attendu d'un mutant eryC.

La séquence eryCIII présente une forte homologie avec d'autres glycosyltransférases putatives telles que DauH (43 % d'identité au niveau protéique) et DnrS (47 % d'identité) impliquées dans la biosynthèse de la daunorubicine chez

10 S. peucetius (Otten et al., 1995) et chez Streptomyces sp C5 (Dickens et al., 1996) ainsi que TylM2 (50 % d'identité) impliquée dans le transfert du mycaminose sur la tylactone dans la voie de biosynthèse de la tylosine chez S. fradiae (Gandecha et al., 1997).

15 Ces observations indiquent que gène eryCIII code pour la désosaminyltransférase dans la voie de biosynthèse de l'érythromycine.

EXEMPLE 8: construction du plasmide pCII Δ .

Un plasmide d'intégration, dénommé pCII∆ et portant une 20 délétion dans le gène eryBII codant pour l'ORF9, a été construit selon le schéma de la figure 8A.

Le plasmide pK23 (figure 5A) a été obtenu par sousclonage dans pUC19 du fragment KpnI de 10 kb isolé à partir de l'ADN du clone λSE5.5 digéré par l'enzyme de restriction 25 KpnI.

Dans un premier temps, le vecteur navette pORT1, montré à la figure 8B, a été obtenu par sous-clonage du fragment PstI de 4kb isolé par digestion du plasmide pIJ486 avec l'enzyme de restriction PstI incluant le gène de résistance 30 au thiostrepton et le réplicon Streptomyces, dans le site PstI de pUC19.

Une délétion hors phase de 304 pb a été introduite dans l'ORF9 du nucléotide 10881 au nucléotide 11184 de la séquence de la figure 2 en sous-clonant le fragment SacI-KpnI (1,1 kb) du plasmide pK23 avec le fragment EcoRI-KpnI (1,7 kb) du plasmide pEco2 obtenu à l'exemple 1 dans le plasmide pORT1 ci-dessus préalablement digéré avec les enzymes de restriction SacI et EcoRI. Le plasmide d'intégration pCIIΔ ainsi

obtenu (figure 8C) a été ensuite transféré dans la souche E. coli DH5 α MRC, puis utilisé pour transformer Sac. erythraea. **EXEMPLE 9**: construction d'une souche Sac. erythraea $eryCII<math>\Delta$ (CII62).

5 Une souche dans laquelle le gène eryCII porte une délétion interne telle que celle introduite dans le plasmide pCIIΔ obtenu à l'exemple 8 a été préparée par transformation des protoplastes de Sac. erythraea avec le plasmide pCIIΔ.

La préparation des protoplastes, le processus d'inté-10 gration et la sélection des mutants ayant le phénotype ery ont été réalisés comme à l'exemple 3.

De plus, la présence de la délétion attendue dans le chromosome (délétion de 304 bp du nucléotide 10881 au nucléotide 11184 de la séquence de la figure 2) a été 15 confirmée par analyse génomique par Southern blot ainsi que par PCR selon les conditions décrites à l'exemple 3.

Par hybridation Southern sur l'ADN génomique digéré par l'enzyme de restriction EcoRI, en utilisant comme sonde l'oligonucléotide C3-S ayant la séquence ci-dessus, une bande 20 de 2,2 kb à partir de la souche sauvage et une bande de 1,8 kb à partir du mutant CII62 ont été détectées. Les résultats montrés à la figure 15 indiquent chez le mutant la présence d'une délétion d'environ 400 pb dans cette région du chromosome.

25 L'amplification par PCR a été effectuée en utilisant l'oligonucléotide ayant la séquence suivante GGAATTCATGACCACGACCGATC C2-S (SEQ ID N° 34) correspondant au brin complémentaire de la région d'ADN de la fin du gène eryAIII située de la position 20258 à la position 30 20280 de la séquence déposée dans la base EMBL sous la référence X62569 et décrite par Bevitt et al., 1992 et l'oligonucléotide ayant la séquence suivante CGCTCCAGGTGCAATGCCGGGTGCAGGC (SEQ ID N° 35) correspondant à la séquence située de la position 10558 à la 35 position 10585 de la séquence de la figure 2 permettant d'encadrer par amplification PCR la région portant la délétion interne à l'ORF9. L'analyse par amplification par

PCR a permis de détecter une bande d'environ 760 pb dans la

souche sauvage et une bande d'environ 460 pb dans le mutant CII62 de façon identique au signal obtenu avec pCII\(\Delta\). Les résultats montrés à la figure 16 confirment que la délétion d'environ 400 pb détectée par l'analyse Southern est 5 identique à celle portée par le plasmide pCII\(\Delta\) (304 pb).

La souche recombinante ainsi obtenue, désignée CII62, a été ensuite cultivée pour identifier les métabolites produits par la souche.

EXEMPLE 10: fermentation de la souche CII62 et identifi10 cation des métabolites secondaires produits.

La culture de la souche CII62 et les analyses par ccm suivie de bioautographie ont été réalisées selon les conditions indiquées à l'exemple 4.

Les résultats de ccm (figure 17) montrent que la souche 15 CII62 accumule préférentiellement du $3-\alpha$ -mycarosyl érythronolide B ainsi que de petites quantités d'érythronolide B comme attendu d'un mutant eryC.

La séquence eryCII présente une forte homologie avec des gènes impliqués dans les voies de biosynthèse de la dauno20 samine (DnrQ, 38 % d'identité au niveau protéique, Otten et al., 1995) et du mycaminose (protéine codée par l'ORF1*, 40 % d'identité au niveau protéique, Gandecha et al., 1997) qui ont également besoin de transférer un groupement céto en position 3 à partir d'un carbone adjacent.

Ces observations indiquent que le gène eryCII code pour la dTDP-4-céto-D-6-désoxyhexose 3,4-isomérase dans la voie de biosynthèse de la dTDP-désosamine.

EXEMPLE 11 : clonage et séquençage de la région eryAI-eryK du cluster de gènes de la biosynthèse de l'érythromycine.

Des cosmides contenant la région eryAI-eryK du cluster de gènes ery tel que le cosmide Cos6B, ont été isolés par screening d'une banque d'ADN génomique de Sac. erythraea dans le vecteur cosmidique pWE15 (Stratagene) en utilisant comme sonde un fragment d'ADN de 13,2 kb comprenant la totalité du 35 gène eryAI et correspondant à la région d'ADN comprise entre le site NcoI situé à la position 44382 de la séquence de la figure 3 et le site NcoI situé à la position 392 de la séquence X62569 (Bevitt et al., 1992). La sonde a été

préparée de la façon suivante : Dans un premier temps, le fragment NcoI de 13,2 kb a été isolé à partir du plasmide pBK25 décrit par Bevitt et al., 1992 et sous-cloné dans le site SmaI de pUC18 après remplissage des extrémités NcoI avec 5 le fragment de Klenow. A partir du plasmide pNCO12 ainsi généré, le fragment de 13,2 kb a été isolé par digestion avec l'enzyme de restriction NcoI.

Le cosmide cos6B ainsi obtenu a été digéré par l'enzyme de restriction NcoI et les fragments résultants de 2,8 kb et 10 6,1 kb ont été clonés dans le site NcoI du vecteur Litmus28 générant respectivement les plasmides pNCO28 et pNCO62 montrés à la figure 5B.

Le plasmide pNCO28 a été séquencé par génération de sous-clones en utilisant l'exonucléase III selon le protocole 15 du fournisseur de la trousse Erase-a-Base Kit (Promega) en digérant par les enzymes de restriction respectivement SacI/XbaI et NsiI/BamHI pour la direction inverse. La séquence a été complétée en utilisant comme amorces les oligonucléotides synthétiques ayant les séquences suivantes

20	644	GATCACGCTCTTCGAGCGGCAG	(SEQ	ID	Ν°	36)	
	645	GAACTCGGTGGAGTCGATGTC	(SEQ	ID	Ν°	37)	et
	650	GTTGTCGATCAAGACCCGCAC	(SEO	ID	NО	38)	

Pour le séquençage du plasmide pNCO62, des matrices ont été générées par sonication de l'ADN selon Bankier et al.

25 (1987) en utilisant pUC18 comme vecteur. La séquence a été complétée en utilisant comme amorces les oligonucléotides synthétiques ayant les séquences suivantes :

	646	CATCGTCAAGGAGTTCGACGGT	(SEQ	ID	Νο	39)
	647	TGCGCAGGTCCATGTTCACCACGTT	(SEQ	ID	Ио	40)
30	648	GCTACGCCCTGGAGAGCCTG	(SEQ	ID	Ν°	41)
	649	GTCGCGGTCGGAGAGCACGAC	(SEQ	ID	Ио	42) et
	874	GCCAGCTCGGCGACGTCCATC	(SEO	ID	Ν°	43).

Les jonctions NcoI ont été séquencées en utilisant comme matrice l'ADN du cosmide cos6B obtenu ci-dessus dont les régions recouvrant les sites NcoI ont été séquencées en utilisant les amorces ayant les séquences 644 et 645 indiquées ci-dessus.

De plus, un fragment ClaI-NcoI de 0,9 kb, contenant le

début de la séquence du gène eryAI et la partie 5' de 1'ORF13, a été cloné dans pUC18. Ce fragment a été préparé de la façon suivante : Le plasmide pBK6-12 représenté à la figure 5B a d'abord été généré par sous-clonage dans le 5 phagmide pTZ18R du fragment KpnI de 4,5 kb isolé à partir du plasmide pBK25 décrit par Bevitt et al., 1992. Le sous-clone pCN9 a ensuite été généré par sous-clonage du fragment ClaI-NcoI de 0,9 kb isolé à partir du plasmide pBK6-12 dans le site SmaI de pUC19, après remplissage des extrémités à l'aide 10 du fragment de Klenow. Le plasmide pCN9 ainsi obtenu (figure 5B) a été séquencé. Des matrices ont été générées par sonication de l'ADN selon Bankier et al. (1987) en utilisant pUC18 comme vecteur. La séquence a été complétée en utilisant comme amorce l'oligonucléotide ayant la séquence suivante : 15 875 CGACGAGGTCGTGCATCAG (SEQ ID Nº 44).

Le séquençage de l'ADN est réalisé par la méthode de Sanger (1977) en utilisant un séquenceur automatisé sur les matrices d'ADN double brin avec le séquenceur Applied Biosystem 373 A. L'assemblage des données de séquence a été 20 réalisé avec le logiciel SAP (Staden, 1984). Les séquences ont été analysées en utilisant le logiciel GCG (Devereux, 1984).

Les séquences nucléotidiques obtenues ont permis d'établir la séquence nucléotidique de 8160 bp de la figure 3 25 (séquence de SEQ ID N° 6) dans laquelle sept ORFs (13-19) ont été identifiées respectivement du nucléotide 43841 au nucléotide 44806, du nucléotide 44809 au nucléotide 46053, du nucléotide 46109 au nucléotide 46819, du nucléotide 46907 au nucléotide 48436, du nucléotide 48436 au nucléotide 49638, du 30 nucléotide 49679 au nucléotide 51145 et du nucléotide 51177 au nucléotide 51755 (numérotés dans la figure 3 à partir du site BamHI situé à l'extrémité 5' du gène ermE) (respectivement séquence de SEQ ID N° 6 du nucléotide 242 au nucléotide 1207, du nucléotide 1210 au nucléotide 2454, du nucléotide 35 2510 au nucléotide 3220, du nucléotide 3308 au nucléotide 4837, du nucléotide 4837 au nucléotide 6039, du nucléotide 6080 au nucléotide 7546 et du nucléotide 7578 au nucléotide 8156) et correspondant respectivement aux gènes eryBIV,

eryBV, eryCVI, eryBVI, eryCIV, eryCV et eryBVII, selon Liu et Thorson (1994) dont les caractérisations fonctionnelles n'avaient pas encore été identifiées. Les sept ORFs (13-19) sont dans la même direction, la lecture se faisant à partir 5 de la région 5' du gène eryAI.

Des échantillons de *E. coli* XL1-blue contenant la région codante des ORFs ci-dessus ont été déposés à la Collection Nationale de Cultures de Microorganismes (CNCM) INSTITUT PASTEUR, 25, Rue du Docteur Roux 75724 PARIS CEDEX 15 FRANCE, 10 le 16 juillet 1997 :

- le plasmide pBK6-12 comprenant la séquence codante pour l'ORF13 et pour une partie de l'ORF14 sous le numéro I-1898
 le plasmide pNCO28 comprenant la séquence codante pour les ORFs 14 et 15 ainsi que pour une partie des ORFs 13 et 16
 sous le numéro I-1901 et
 - le plasmide pNCO62 comprenant la séquence codante pour les ORFs 17, 18 et 19 ainsi que pour une partie de l'ORF16 sous le numéro I-1900.

EXEMPLE 12 : construction du plasmide pBIV Δ .

L'ORF13 étant translationnellement couplé à l'ORF14 située en aval, une délétion en phase a dû être introduite. Un plasmide d'intégration, dénommé pBIVΔ et portant cette délétion, a été construit selon le schéma de la figure 9A.

Le plasmide pPSP4 (figure 5B) a d'abord été construit 25 par sous-clonage du fragment PvuII-SpeI (2,7 kb) isolé à partir du plasmide pBK6-12 obtenu à l'exemple 11 et du fragment SpeI-PstI (1,6 kb) isolé à partir du plasmide pNCO28 obtenu à l'exemple 11 dans le vecteur pUC19 préalablement digéré à l'aide des enzymes de restriction SmaI et PstI.

A partir du plasmide pPSP4, le plasmide p19BIVΔ a été généré en délétant le fragment BclI-NcoI de 510 pb interne à l'ORF13 et en lui substituant 45 pb venant d'un adaptateur synthétique de 54 pb. Cet adaptateur a été généré par appariement des 2 oligonucléotides complémentaires ayant les 35 séquences suivantes

SEQ A

AATTGATCAAGGTGAACACGGTCATGCGCAGGATCCTCGAGCGGAACTCCATGGGG (SEQ ID N° 45) et

SEQ B

CCCCATGGAGTTCCGCTCGAGGATCCTGCGCATGACCGTGTTCACCTTGATCAATT (SEQ ID N° 46)

créant un site BclI et un site NcoI encadrant la séquence de 5 45 pb.

Pour l'appariement, les deux oligonucléotides ont été mis à une concentration finale 1,8 μM dans le tampon d'hybridation NaCl 50 mM, Tris, HCl 20 mM pH 7,4, MgCl₂,6H₂O 2 mM, chauffés pendant 5 mn à 100°C puis refroidis lentement 10 à température ambiante. Après digestion avec les enzymes de restriction NcoI et BclI, une ligature a été effectuée dans le plasmide pPSP4 dont le fragment BclI-NcoI de 510 pb avait préalablement été éliminé. A partir du plasmide p19BIVΔ ainsi généré, le fragment SacI-EcoRI (2,2 kb) portant l'ORF13
15 modifiée a été sous-cloné dans le plasmide pUWL218 préalablement digéré avec les enzymes de restriction SacI et EcoRI. Le plasmide d'intégration pBIVΔ ainsi obtenu (figure 9B) a été ensuite transféré dans la souche E. coli DH5αMRC, puis utilisé pour transformer Sac. erythraea.

20 EXEMPLE 13: construction d'une souche Sac. erythraea eryBIVΔ (BIV87).

Une souche dans laquelle le gène eryBIV porte une délétion interne telle que celle introduite dans le plasmide pBIVΔ obtenu à l'exemple 12 a été préparée par transformation 25 des protoplastes de Sac. erythraea avec le plasmide pBIVΔ.

La préparation des protoplastes, le processus d'intégration et la sélection des mutants ayant le phénotype ery ont été réalisés comme à l'exemple 3.

De plus, la présence de la délétion attendue dans le 30 chromosome (délétion de 510 bp du nucléotide 43872 au nucléotide 44382 de la séquence de la figure 3) et son remplacement par la séquence synthétique de 45 pb a été confirmée par analyse génomique par Southern blot ainsi que par PCR selon les conditions décrites à l'exemple 3.

Par hybridation Southern sur l'ADN génomique digéré par l'enzyme de restriction XhoI, en utilisant comme sonde l'oligonucléotide B4-R ayant la séquence suivante B4-R AACTCGGTGGAGTCGATGTCGTCGCTGCGGAA (SEQ ID N° 47)

correspondant au brin complémentaire de la région d'ADN située de la position 44687 à la position 44718 de la séquence de la figure 3, une bande de 5,4 kb à partir de la souche sauvage et une bande de 2,7 kb à partir du mutant

- 5 BIV87 ont été détectées. Les résultats montrés à la figure 15 indiquent la présence d'un site XhoI supplémentaire à une distance de 2,7 kb en amont du site XhoI situé à la position 47114 de la séquence de la figure 3 confirmant ainsi l'incorporation de l'adaptateur dans le chromosome de mutant,
- 10 telle qu'attendue par l'incorporation de l'adaptateur synthétique ci-dessus utilisé pour générer le plasmide pBIV Δ .

L'amplification par PCR a été effectuée en utilisant l'oligonucléotide ayant la séquence suivante

B4-S CAATATAGGAAGGATCAAGAGGTTGAC (SEQ ID N° 48)

- 15 correspondant à la région d'ADN située de la position 43652 à la position 43678 de la séquence de la figure 3 et l'oligonucléotide B4-R ayant la séquence indiquée ci-dessus, permettant d'encadrer par amplification PCR la région portant la délétion interne à l'ORF13. L'analyse par amplification
- 20 par PCR a permis de détecter une bande d'environ 1 kb dans la souche sauvage et une bande d'environ 500 pb dans le mutant BIV87 de façon identique au signal obtenu avec le plasmide pBIV87 (figure 16).

L'ensemble des résultats d'analyse par Southern et par 25 PCR confirme la présence de la délétion de 510 pb et de l'adaptateur synthétique au niveau du chromosome du mutant.

La souche recombinante ainsi obtenue, désignée BIV87, a été ensuite cultivée pour identifier les métabolites produits par la souche.

30 EXEMPLE 14 : fermentation de la souche BIV87 et identification des métabolites secondaires produits.

La culture de la souche BIV87 et les analyses par ccm ont été réalisées selon les conditions indiquées à l'exemple 4.

Les résultats de ccm (figure 17) montrent que la souche BIV87 accumule préférentiellement de l'érythronolide B comme attendu d'un mutant eryB.

Des métabolites mineurs de faibles mobilités manifestant

une activité antibiotique ont également été détectés. Ces métabolites ont été extraits et analysés par RP-HPLC couplée à la spectrométrie de masse comme décrit à l'exemple 4.

Les résultats de spectre de masse indiquent que des 5 formes modifiées de l'érythromycine A, B, C et D ont été produites. Un métabolite majeur et 3 métabolites mineurs ont été détectés.

Le métabolite majeur M5 donne un pic parent à m/z 702 avec des produits de déshydratation et de fragmentation à m/z 10 684, m/z 560 et m/z 158 et correspond à l'élimination de 2 atomes d'hydrogène dans l'érythromycine D (m/z 704, m/z 686). La présence de désosaminyl érythronolide B (fragment m/z à 560) indique que la différence de masse est portée par le sucre neutre. La structure proposée pour ce métabolite est la 15 4"-céto érythromycine D.

Les métabolites mineurs donnent aussi un profil avec une différence de 2 dans les valeurs m/z respectivement :

- M6 (m/z à 718, m/z 700, m/z 576, m/z 158) au lieu de m/z 720, m/z 702 pour l'érythromycine C;
- 20 M7 (m/z à 732, m/z 714, m/z 576, m/z 158) au lieu de m/z 734, m/z 716 pour l'érythromycine A;
 - M8 (m/z à 716, m/z 698, m/z 560, m/z 158) au lieu de m/z 718, m/z 700 pour l'érythromycine B.

Les structures proposées sont respectivement la 4"-céto 25 érythromycine C pour M6, la 4"-céto érythromycine A pour M7 et la 4"-céto érythromycine B pour M8.

Ces observations indiquent que le gène *ery*BIV code pour la dTDP-4-céto-L-6-désoxyhexose 4-réductase dans la voie de biosynthèse du dTDP-mycarose.

La souche BIV87 a été déposé à la Collection Nationale de Cultures de Microorganismes (CNCM) INSTITUT PASTEUR, 25, Rue du Docteur Roux 75724 PARIS CEDEX 15 FRANCE, le 16 juillet 1997 sous le numéro I-1904

EXEMPLE 15 : construction du plasmide pBV Δ .

Un plasmide d'intégration, dénommé pBVΔ et portant une délétion dans le gène eryBV codant pour l'ORF14, a été construit selon le schéma de la figure 10A.

Une délétion de 726 pb a été générée dans l'ORF14 du

nucléotide 44963 au nucléotide 45688 de la séquence de la figure 3 par ligature du fragment BclI-KpnI (1,1 kb) isolé à partir du plasmide pBK6-12, obtenu à l'exemple 11, au fragment KpnI-BamHI (1,1 kb) isolé à partir du plasmide 5 pNCO28, obtenu à l'exemple 11, dans le plasmide pUWL218 préalablement digéré par l'enzyme de restriction BamHI. Le plasmide d'intégration pBVΔ ainsi obtenu (figure 10B) a ensuite été transféré dans la souche E. coli DH5αMRC, puis utilisé pour transformer Sac. erythraea.

10 EXEMPLE 16 : construction d'une souche Sac. erythraea eryBVΔ (BV88).

Une souche dans laquelle le gène eryBV porte une délétion interne telle que celle introduite dans le plasmide pBVΔ obtenu à l'exemple 15 a été préparée par transformation 15 des protoplastes de Sac. erythraea avec le plasmide pBVΔ.

La préparation des protoplastes, le processus d'intégration et la sélection des mutants ayant le phénotype ery ont été réalisés comme à l'exemple 3.

De plus, la présence de la délétion attendue dans le 20 chromosome (délétion de 726 pb du nucléotide 44963 au nucléotide 45688 de la séquence de la figure 3) a été confirmée par analyse génomique par Southern blot ainsi que par PCR selon les conditions décrites à l'exemple 3.

Par hybridation Southern sur l'ADN génomique digéré par l'enzyme de restriction NcoI, en utilisant comme sonde l'oligonucléotide ayant la séquence suivante :

B5-R TCCGGAGGTGTCTGTCGGACGGACTTGTCGGTCGGAAA (SEQ ID N° 49) correspondant au brin complémentaire de la région d'ADN située de la position 46060 à la position 46098 de la séquence de la figure 3, une bande de 2,7 kb à partir de la souche sauvage et une bande de 2,0 kb à partir du mutant BV88 ont été détectées. Les résultats montrés à la figure 15 indiquent chez le mutant la présence d'une délétion d'environ 700 pb dans cette région du chromosome.

L'amplification par PCR a été effectuée en utilisant l'oligonucléotide ayant la séquence suivante : B5-S AGGAGCACTAGTGCGGGTACTGCTGACGTCCTT (SEQ ID N° 50) correspondant à la région d'ADN située de la position 44799 à la position 44831 de la séquence de la figure 3 et l'oligonucléotide B5-R ayant la séquence indiquée ci-dessus, permettant d'encadrer par amplification PCR la région portant la délétion interne à l'ORF14. L'analyse par amplification 5 par PCR a permis de détecter une bande d'environ 1,3 kb dans la souche sauvage et une bande d'environ 570 pb dans le mutant BV88 de façon identique au signal obtenu avec le plasmide pBV88 (figure 16). Ces résultats confirment que la délétion de 710 pb détectée par analyse Southern est 10 identique à celle portée par le plasmide pBVΔ (726 pb).

La souche recombinante ainsi obtenue, désignée BV88, a été ensuite cultivée pour identifier les métabolites produits par la souche.

EXEMPLE 17: fermentation de la souche BV88 et identification 15 des métabolites secondaires produits.

La culture de la souche BV88 et les analyses par ccm ont été réalisées selon les conditions indiquées à l'exemple 4.

Les résultats de ccm (figure 17) montrent que la souche BV88 accumule préférentiellement de l'érythronolide B comme 20 attendu d'un mutant eryB.

Des métabolites mineurs de faibles mobilités ont également été détectés puis extraits et identifiés par RP-HPLC couplée à la spectrométrie de masse selon les conditions utilisées à l'exemple 4.

Le spectre de masse montre la présence d'un métabolite ayant un pic parent à m/z 560 et des produits de déshydratation et de fragmentation à m/z 542 et m/z 158 pour lequel la structure proposée est le désosaminyl érythronolide B.

La séquence eryBV présente une forte homologie avec 30 d'autres glycosyltransférases ainsi qu'avec le gène eryCIII ci-dessus (60,7 % d'identité au niveau nucléotidique, 44 % au niveau protéique).

Ces observations indiquent que le gène eryBV code pour la mycarosyltransférase impliquée dans la biosynthèse de 35 l'érythomycine.

EXEMPLE 18: construction d'un plasmide pCVIA (pPSTI).

Un plasmide d'intégration, dénommé pPSTI et portant une délétion dans le gène eryCVI codant pour l'ORF15, a été

construit selon le schéma de la figure 11A de la façon suivante :

Dans un premier temps, le plasmide pNB49 a été généré par traitement à l'exonucléase III du plasmide pNCO28 obtenu 5 à l'exemple 11 préalablement digéré par les enzymes de restriction NsiI et BamHI. Le plasmide pNB49 (figure 5B) contenant les nucléotides 44382 à 46562 de la séquence de la figure 3, a été ensuite digéré à l'aide de l'enzyme de restriction PstI puis traité par la nucléase Mung Bean (NE 10 Biolabs) comme décrit par Sambrook et al. (1989). Après religature et transformation dans E. coli XL1-Blue, les colonies résistantes à l'ampicilline ont été sélectionnées par analyse de restriction avec l'enzyme PstI. La perte du site PstI a été confirmée par séquençage d'un clone en 15 utilisant l'amorce M13 inverse et la délétion du nucléotide 46364 de la séquence de la figure 3 a été observée créant un changement de phase dans l'ORF15 dans le plasmide pNB49 Δ Pst ainsi généré. Le plasmide pIJ702 digéré avec l'enzyme de restriction BqlII a été ensuite ligaturé au site BglII du 20 plasmide pNB49ΔPst générant le plasmide pPSTI. L'orientation de pIJ702 dans pPSTI a été confirmée par la présence d'un fragment d'ADN ayant 0,9 kb après digestion avec l'enzyme de restriction SphI. Le plasmide d'intégration pPSTI (figure 11B) ainsi obtenu a été transféré dans la souche E. coli 25 DH5αMRC, puis utilisé pour transformer Sac. erythraea. EXEMPLE 19: construction d'une souche Sac. erythraea eryCVIA (Pst10).

Une souche dans laquelle le gène eryCVI porte une délétion interne telle que celle introduite dans le plasmide 30 pPSTI obtenu à l'exemple 18 a été préparée par transformation des protoplastes de Sac. erythraea avec le plasmide pPSTI.

La préparation des protoplastes et le processus d'intégration ont été réalisés comme à l'exemple 3.

La sélection des mutants ayant le phénotype ery a été 35 réalisée comme à l'exemple 3 en utilisant une souche B. subtilis sensible à l'érythromycine au lieu d'une souche B. pumilus comme souche indicatrice. La souche B. subtilis ATCC 6633 a été utilisée pour évaluer la production

d'érythromycine dans des essais biologiques sur des boîtes
d'agar en milieu M1-102 inoculées avec le mutant à analyser
et incubées pendant 3 jours à 30°C. Des zones d'agar
recouvertes de bactéries ont ensuite été prélevées à
5 l'emporte pièce puis placées sur des boîtes 2 x TY recouvertes d'une surcouche de 5 ml d'agar en milieu TY contenant
200 μl d'une culture de B. subtilis ATCC 6633, puis incubées
une nuit à 37°C.

L'absence de production d'érythromycine a été évaluée

10 également en présence de précurseurs ajoutés tels que
l'érythronolide B ou le 3-α-mycarosyl érythronolide B par
application de 10 μl d'une solution 10 mM de chaque métabolite sur les zones d'agar découpées suivie d'une incubation à
30°C pendant une nuit avant de recouvrir les boîtes de la

15 culture de B. subtilis comme indiqué ci-dessus. La souche
Sac. erythraea sauvage "red variant" a été utilisée comme
contrôle.

Après la transformation des protoplastes avec le plasmide pPSTI et la sélection des colonies résistantes au 20 thiostrepton, l'intégration dans le chromosome a été confirmée par analyse de Southern selon les méthodes générales décrites à l'exemple 3.

Un fragment d'ADN de 1269 pb correspondant à l'ORF14 généré par PCR en utilisant les oligonucléotides synthétiques 25 ayant les séquences suivantes :

14-1 GGGGGATCCCATATGCGGGTACTGCTGACGTCCTTCG (SEQ ID N° 51) et 14-2 GAAAAGATCTGCCGGCGTGGCGGCGCGTGAGTTCCTC (SEQ ID N° 52) a été utilisé comme sonde.

L'oligonucléotide 14-1 a été dessiné de façon à 30 introduire un site BamHI et un site NdeI en amont de la séquence correspondant à la région d'ADN située de la position 44811 à la position 44833 de la séquence de la figure 3.

L'oligonucléotide 14-2 a été dessiné de façon à introduire un site BglII en aval de la séquence correspondant au 35 brin complémentaire de la région d'ADN située de la position 46027 à la position 46053 de la séquence de la figure 3. L'ADN chromosomique préalablement digéré avec les enzymes de restriction ClaI et PstI a montré les bandes attendues de 4 kb et 7 kb à partir de l'intégrant alors que la souche sauvage présentait la bande de 3 kb attendue.

Après cultures répétées des intégrants, les colonies individualisées obtenues ont été analysées pour la sensi-5 bilité au thiostrepton et la production d'érythromycine, puis l'intégration de la délétion attendue (délétion du nucléotide 46364 de la séquence de la figure 3) dans le chromosome d'un clone mutant ayant le phénotype ery (Pst10) a été confirmée par analyse de Southern. L'ADN chromosomique, isolé respecti-10 vement à partir de la souche sauvage et du mutant Pst10, a été digéré avec l'enzyme de restriction PstI. L'hybridation avec la sonde PstI-NcoI de 0,8kb (nucléotides 46368 à 47142 de la séquence de la figure 3) a donné le profil attendu avec une bande PstI de 1kb correspondant aux nucléotides 46368 à 15 47397 de la séquence de la figure 3 à partir de la souche sauvage et avec une bande >20 kb à partir du mutant. La perte du site PstI à la position 46368 ci-dessus a aussi été montrée après double digestion par les enzymes PstI et NcoI, résultant en une bande PstI-NcoI de 0,8 kb (nucléotide 46368 20 à 47142) à partir de la souche sauvage et une bande NcoI de 2,8 kb (nucléotide 44382 à 47142) avec le mutant.

La souche recombinante ainsi obtenue, désignée Pst10, a ensuite été cultivée pour identifier les métabolites produits.

25 EXEMPLE 20: fermentation de la souche Pst10 et identification des métabolites secondaires produits.

La souche Pst10 a été cultivée dans le milieu sucrosesuccinate décrit par Caffrey et al. (1992) pendant 3 jours à
30°C. Le surnageant de culture a été ensuite extrait à pH 9
30 avec de l'acétate d'éthyle.Les phases organiques obtenues ont
été séchées sur SO₄Mg₂ puis amenées à sec sous pression
réduite. Le résidu a été dissous dans le mélange
acétonitrile-eau (1:1, v/v), puis a ensuite été analysé par
spectrométrie de masse sur un spectromètre BioQ (Micromass,
35 Manchester, UK) ou Finningan LCQ (Finningag, CA).

La production d'érythomycine A (m/z 734 et m/z 716) n'a pas été observée mais la présence d'érythronolide B (MK+:

m/z 441 et MNa+ : m/z 425) ainsi que de 3- α -mycarosyl

érythronolide B (MK+: m/z 585 et MNa+: m/z 569) mise en évidence caractérise la souche Pst10 comme un mutant eryC.

La séquence eryCVI présente une forte homologie avec d'autres méthyltransférases telles que SnoX impliquée dans la 5 biosynthèse de la nogalamycine chez S. nogalater (numéro d'accession EMBL S52403) (55,5 % d'identité au niveau protéique), TylM1 impliquée dans la biosynthèse de la tylosine chez S. fradiae (numéro d'accession EMBL X81885) (65 % d'identité au niveau protéique) et SrmX impliquée dans 10 la biosynthèse de la spiramycine chez S. ambofaciens (numéro d'accession EMBL S25204) (52,8 % d'identité au niveau protéique).

Ces observations indiquent que le gène eryCVI code pour la dTDP-D-6-désoxyhexose 3-N-méthyltransférase impliquée 15 dans la voie de biosynthèse de la dTDP-D-désosamine.

EXEMPLE 21 : construction d'un plasmide pBVI Δ (pXhoI).

Un plasmide d'intégration, dénommé pXhoI et portant une délétion dans le gène eryBVI codant pour l'ORF16, a été construit selon le schéma de la figure 12A de la façon 20 suivante :

Le fragment NcoI-XhoI (3,1 kb) du plasmide pNCO62 obtenu à l'exemple 11 et contenant les nucléotides 47142 à 50254 de la séquence de la figure 3 a été sous-cloné dans les sites NcoI et XhoI du plasmide Litmus 28. Le plasmide pNCO62X 25 (figure 5B) ainsi généré a été digéré avec l'enzyme de restriction PstI puis traité avec l'ADN polymérase T4 (Boehringer Mannheim). Après religature et transformation dans E. coli XL1-Blue, la perte du site PstI au nucléotide 47397 de la séquence de la figure 3 a été confirmée par 30 séquençage et une délétion de 60 pb du nucléotide 47337 au nucléotide 47397 de la séquence de la figure 3 ont été observés. Le plasmide pIJ702 digéré avec l'enzyme de restriction BglII a été ensuite ligaturé au site BglII de cette contruction. L'orientation de pIJ702 dans la construc-35 tion a été confirmée par la présence d'un fragment d'ADN ayant 4,3 kb après digestion avec l'enzyme de restriction XhoI. Le plasmide d'intégration pXhoI (figure 12B) ainsi

obtenu a été utilisé pour transformer Sac. erythraea.

EXEMPLE 22 : construction d'une souche Sac. erythraea $eryBVI\Delta$ (Xho91).

Une souche dans laquelle le gène eryBVI porte une délétion interne telle que celle introduite dans le plasmide 5 pXhoI obtenu à l'exemple 21 a été préparée par transformation des protoplastes de Sac. erythraea avec le plasmide pXhoI.

La préparation des protoplastes et le processus d'intégration ont été réalisés comme à l'exemple 3.

La sélection et l'analyse des mutants ayant le phénotype 10 ery a été réalisée selon les conditions décrites à l'exemple 19.

L'intégration dans le chromosome et la présence de la délétion attendue ont été confirmées par analyse de Southern selon les méthodes générales décrites à l'exemple 19.

15 Après la transformation des protoplastes avec le plasmide pXhoI et la sélection des colonies résistantes au thiostrepton, l'intégration dans le chromosome a été confirmée par analyse de Southern. En utilisant comme sonde le fragment PstI de 3,3 kb du plasmide pNCO62, l'ADN 20 chromosomique d'un intégrant préalablement digéré avec les enzymes de restriction PstI et BglII a montré les bandes 3 kb et 6 kb attendues.

Après cultures répétées des intégrants, les colonies individualisées obtenues ont été analysées pour la sensi-25 bilité au thiostrepton et la production d'érythromycine, puis l'intégration de la délétion attendue (délétion de 60 pb du nucléotide 47338 au nucléotide 47397 de la séquence de la figure 3) dans le chromosome d'un clone mutant ayant le phénotype ery (XhoI) a été confirmée par analyse de 30 Southern. L'ADN chromosomique, isolé respectivement à partir de la souche sauvage et du mutant XhoI, a été digéré avec l'enzyme de restriction PstI. L'hybridation avec la sonde PstI-NcoI de 0,8 kb (nucléotides 46368 à 47142 de la séquence de la figure 3) a donné le profil attendu avec une bande PstI 35 de 1 kb correspondant aux nucléotides 46368 à 47397 de la séquence de la figure 3 à partir de la souche sauvage et avec une bande de 4 kb à partir du mutant indiquant que le site PstI à la position 47397 ci-dessus a été perdu.

La perte du site PstI à la position 47397 a aussi été confirmée par PCR. L'ADN chromosomique a été soumis à une amplification par PCR en utilisant les amorces correspondant respectivement à la séquence du nucléotide 47300 au nucléotide 57320 et à la séquence du nucléotide 47661 au nucléotide 47636 de la séquence d la figure 3. Un fragment attendu de 306 pb a été ainsi amplifié à partir de la souche sauvage générant après digestion avec l'enzyme de restriction PstI deux bandes d'environ 100 et 300 pb. A partir du mutant 10 Xho91, un fragment de 300 pb a été amplifié, résultant de la délétion de 60 pb. Ce fragment a été ensuite isolé et a été trouvé résistant à la digestion par l'enzyme PstI.

La souche recombinante ainsi obtenue et désignée Xho91, a ensuite été cultivée pour identifier les métabolites 15 produits.

EXEMPLE 23: fermentation de la souche Xho91 et identification des métabolites secondaires produits.

La culture de la souche Xho91 et l'analyse du surnageant de culture par spectrométrie de masse ont été réalisées selon 20 les conditions décrites à l'exemple 20.

La production d'érythomycine A (m/z 734 et m/z 716) n'a pas été observée mais la présence d'une quantité majoritaire d'érythronolide B (MK $^+$: m/z 441; MNa $^+$: m/z 425; M-H $_2$ O H $^+$: m/z 385) ainsi que la présence de désosaminyl

25 érythronolide B (m/z 560) mises en évidence caractérisent la souche Pst10 comme un mutant *ery*B.

Les résultats de spéctrométrie de masse ont été confirmés par spectrométrie de masse en haute résolution sur un spectromètre Brucker FT-ICR (Brucker, FRG).

DnmT impliquée dans la biosynthèse de la daunorubicine chez S. peucetius (numéro d'accession EMBL U77891) (43,9 % d'identité au niveau protéique).

Ces observations indiquent que le gène eryBVI code pour 35 la dTDP-4-céto-L-6-désoxyhexose 2,3-déshydratase impliquée dans la biosynthèse du dTDP-mycarose, comme suggéré par Scotti et Hutchinson, 1996.

EXEMPLE 24: construction du plasmide $pCIV\Delta$.

Un plasmide d'intégration, dénommé pCIV∆ et portant une délétion dans le gène eryCIV codant pour l'ORF17, a été construit selon le schéma de la figure 13A de la façon suivante :

Le plasmide pNCO62 obtenu à l'exemple 11 a été digéré à l'aide des enzymes de restriction Ball et Bcll de façon à éliminer un fragment ayant 949 pb à l'intérieur de l'ORF17 du nucléotide 48650 au nucléotide 49598 de la séquence de la figure 3. Après remplissage des extrémités à l'aide du 10 fragment de Klenow de l'ADN polymérase I, le plasmide a été religaturé et transformé dans E. coli XL1-blue. A partir du plasmide pBCB17 ainsi généré, le fragment de 2,68 kb portant la délétion a été isolé par digestion à l'aide des enzymes XbaI et SphI, puis sous-cloné dans les sites correspondant du 15 plasmide pUWL218. La présence de la délétion de 949 pb du nucléotide 48650 au nucléotide 49598 de la séquence de la figure 3 a été confirmée par séquençage. Le plasmide d'intégration pCIV∆ ainsi obtenu (figure 13B) a ensuite été transféré dans la souche E. coli DH5αMRC, puis utilisé pour 20 transformer Sac. erythraea.

EXEMPLE 25 : construction d'une souche Sac. $erythraea\ eryCIV\Delta$ (CIV89).

Une souche, dans laquelle le gène eryCIV porte une délétion interne telle que celle introduite dans le plasmide 25 pCIVΔ obtenu à l'exemple 24, a été préparée par transformation des protoplastes de Sac. erythraea avec le plasmide pCIVΔ.

La préparation des protoplastes, le processus d'intégration et la sélection des mutants ayant le phénotype 30 ery ont été réalisés comme à l'exemple 3.

De plus, la présence de la délétion attendue dans le chromosome (délétion de 949 bp du nucléotide 48650 au nucléotide 49598 de la séquence de la figure 3 a été confirmée par analyse génomique par Southern blot ainsi que 35 par PCR selon les conditions décrites à l'exemple 3.

Par hybridation Southern sur l'ADN génomique digéré par l'enzyme de restriction *NcoI*, en utilisant comme sonde l'oligonucléotide ayant la séquence suivante :

C4-R AGCGGCTTGATCGTGTTGGACCAGTAC (SEQ ID N° 53)
correspondant au brin complémentaire de la région d'ADN
située de la position 49996 à la position 50022 de la
séquence de la figure 3, une bande de 6,2 kb à partir de la
5 souche sauvage et une bande de 5,2 kb à partir du mutant
CIV89 ont été détectées. Les résultats montrés à la figure 15
indiquent la présence dans le mutant d'une délétion d'environ
1 kb dans cette région du chromosome.

L'amplification par PCR a été effectuée en utilisant

10 l'oligonucléotide ayant la séquence suivante :

C4-S GGCCTATGTGGACTACGTGTTGAACGT (SEQ ID N° 54)

correspondant à la région d'ADN située de la position 48169 à

la position 48195 de la séquence de la figure 3 et

l'oligonucléotide C4-R ayant la séquence indiquée ci-dessus,

15 permettant d'encadrer par amplification PCR la région portant

la délétion interne à l'ORF17. L'analyse par amplification

par PCR a permis de détecter une bande de 1,8 kb dans la

souche sauvage et une bande de 900 pb dans le mutant CIV89 de

façon identique au signal obtenu avec le plasmide pCIVA. Les

20 résultats montrés à la figure 16 confirment que la délétion

d'environ 900 pb détectée par l'analyse Southern est

identique à celle portée par le plasmide pCIVA (949 pb).

La souche recombinante ainsi obtenue, désignée CIV89, a été ensuite cultivée pour identifier les métabolites produits 25 par la souche.

EXEMPLE 26: fermentation de la souche CIV89 et identification des métabolites secondaires produits.

La culture de la souche CIV89 et les analyses par ccm ont été réalisées selon les conditions indiquées à 30 l'exemple 4.

Les résultats de ccm (figure 17) montrent que la souche CIV89 accumule préférentiellement du $3-\alpha$ -mycarosyl érythronolide B ainsi que de l'érythronolide B comme attendu d'un mutant eryC.

Des métabolites mineurs de faibles mobilités ont été également détectés, puis extraits et analysés par RP-HPLC couplée à la spectrométrie de masse selon les conditions utilisées à l'exemple 4.

Un métabolite mineur donne un pic parent à m/z 720 et des produits de déshydration et de fragmentation à m/z 702, m/z 576 et m/z 174. Le pic 174 peut correspondre à la 4-hydroxydésosamine et le pic 576 au 4'-hydroxydésosaminyl 5 érythronolide B.

Ces résultats suggèrent que la différence de m/z de 16 comparée à l'érythromycine D (pic parent m/z 704) est portée par le sucre aminé. La structure proposée pour ce métabolite est la 4'-hydroxy érythromycine D.

10 Ces observations indiquent que l'enzyme est impliquée dans le retrait du groupement hydroxyle dans la voie de biosynthèse de l'érythromycine et que le gène eryCIV code pour la dTDP-6-désoxyhexose 3,4-déshydratase.

La souche CIV89 a été déposée à la Collection Nationale 15 de Cultures de Microorganismes (CNCM) INSTITUT PASTEUR, 25, Rue du Docteur Roux 75724 PARIS CEDEX 15 FRANCE, le 16 juillet 1997 sous le numéro I-1905.

EXEMPLE 27 : construction du plasmide pCV Δ .

Un plasmide d'intégration, dénommé pCVA et portant une 20 délétion dans le gène eryCV codant pour l'ORF18, a été construit selon le schéma de la figure 14A de la façon suivante :

Le fragment Ball-BamHI (3,48 kb), obtenu à partir du plasmide pNCO62 préparé à l'exemple 11 par digestion avec les enzymes de restriction Ball et BamHI, a été sous-cloné dans les sites Smal-BamHI du vecteur pUC19. Du plasmide résultant pBAB18 (figure 5B), le fragment interne Scal (1kb) a été ensuite délété par digestion avec l'enzyme Scal pour générer une délétion de 1044 pb du nucléotide 49998 au nucléotide 30 51041 de la séquence de la figure 3 dans l'ORF18. Du plasmide pBABΔCV ainsi obtenu, le fragment portant la délétion a ensuite été réisolé à partir du polylinker de pUC19 par digestion avec les enzymes de restriction HindIII et EcoRI, puis sous-cloné dans le plasmide pUWL218. Le plasmide 35 d'intégration pCVΔ ainsi obtenu (figure 14B) a été transféré dans la souche E. coli DH5αMRC, puis utilisé pour transformer Sac. erythraea.

EXEMPLE 28 : construction d'une souche Sac. erythraea eryCVA

(CV90).

Une souche dans laquelle le gène eryCV porte une délétion interne telle que celle introduite dans le plasmide pCVΔ obtenu à l'exemple 27 a été préparée par transformation 5 des protoplastes de Sac. erythraea avec le plasmide pCVΔ.

La préparation des protoplastes, le processus d'intégration et la sélection des mutants ayant le phénotype ery ont été réalisés comme à l'exemple 3.

De plus, la présence de la délétion attendue dans le 10 chromosome (délétion de 1044 pb du nucléotide 49998 au nucléotide 51041) a été confirmée par analyse génomique par Southern blot ainsi que par PCR selon les conditions décrites à l'exemple 3.

Par hybridation Southern sur l'ADN génomique digéré par l'enzyme de restriction NcoI, en utilisant comme sonde l'oligonucléotide ayant la séquence suivante :

C5-R AACGCCTCGTCCTGCAGCGGAGACACGAACA (SEQ ID N° 55) correspondant au brin complémentaire de la région d'ADN située de la position 51229 à la position 51259 de la 20 séquence de la figure 3, une bande de 6,2 kb à partir de la souche sauvage et une bande de 5,1 kb à partir du mutant CV90 ont été détectées. Les résultats montrés à la figure 15 indiquent chez le mutant la présence d'une délétion d'environ 1,1 kb dans cette région du chromosome.

L'amplification par PCR a été effectuée en utilisant 25 l'oligonucléotide ayant la séquence suivante : C5-S TTCGCTCCCCGATGAACACAACTCGTA (SEQ ID N° 56) correspondant à la région d'ADN située de la position 49668 à la position 49694 de la séquence de la figure 3 et 30 l'oligonucléotide C5-R ayant la séquence indiquée ci-dessus, permettant d'encadrer par amplification PCR la région portant la délétion interne à l'ORF18. L'analyse par amplification par PCR a permis de détecter une bande d'environ 1,6 kb dans la souche sauvage et une bande d'environ 500 pb dans le 35 mutant CV90 de façon identique au signal obtenu avec le plasmide pCV∆. Les résultats montrés à la figure 16 confirment que la délétion d'environ 1,1 kb détectée par l'analyse

Southern est identique à celle portée par le plasmide PCVA

(1044 pb).

La souche recombinante ainsi obtenue, désignée CV90, a été ensuite cultivée pour identifier les métabolites produits par la souche.

5 EXEMPLE 29 : fermentation de la souche CV90 et identification des métabolites secondaires produits.

La culture de la souche CV90 et les analyses par ccm ont été réalisées selon les conditions indiquées à l'exemple 4.

Les résultats de ccm (figure 17) montre que la souche 10 CV90 accumule préférentiellement du 3-α-mycarosyl érythronolide B ainsi que de l'érythronolide B comme attendu d'un mutant eryC.

La séquence des résidus 38-50 (VTGAGDGDADVQA) Val Thr Gly Ala Gly Asp Gly Asp Ala Asp Val Gln Ala 15 (SEQ ID N° 61)

de la protéine codée par *ery*CV (séquence de SEQ ID N° 11) est proche de la séquence consensus de liaison au NAD+ décrit par Wierenga et al., 1985 et par Scrutton et al., 1990.

Ces observations permettent de conclure que le gène 20 eryCV code pour une réductase qui interviendrait comme une dTDP-4,6-désoxyhexose 3,4-réductase dans la voie de biosynthèse de la d-TDP-désosamine.

EXEMPLE 30 : surexpression du produit du gène eryCIII dans E. coli.

- L'expression hétérologue du produit du gène eryCIII de Sac. erythraea correspondant à l'ORF8 décrite à l'exemple 1 et codant pour l'activité désosaminyltransférase identifiée à l'exemple 7 a été réalisée en utilisant E. coli comme souche hôte. La protéine ainsi produite sous forme de corps
- 30 d'inclusion a été ensuite purifiée et son activité enzymatique déterminée in vitro.
 - 1) Expression de la protéine EryCIII dans E. coli

L'expression a été réalisée en utilisant le vecteur pET11a (Stratagène) pour le clonage et l'expression de 35 protéines recombinantes dans *E. coli* sous le contrôle du promoteur de l'ARN polymérase du bactériophage T7.

Dans un premier temps, le gène eryCIII a été amplifié à partir du plasmide pK62 décrit à l'exemple 1 de la façon

suivante:

L'amplification par PCR a été effectuée en utilisant la polymérase Native Pfu (Stratagène) et comme amorces l'oligonucléotide A homologue au brin codant du gène eryCIII ayant la séquence

A GAAGGAGATATACATATGCGCGTCGTCTTCTCCTC (SEQ ID N° 57)

permettant d'introduire un site NdeI en amont de l'ATG

initiateur de eryCIII et l'oligonucléotide B homologue au

brin complémentaire du gène eryCIII ayant la séquence

10 B CGGGATCCTCATCGTGGTTCTCCTTCCTGC (SEQ ID N° 58)

permettant d'introduire un site BamHI en aval du codon stop

du gène eryCIII.

L'ADN amplifié a été ensuite digéré par les enzymes de restriction NdeI et BamHI, puis le fragment NdeI-BamHI de 1,2 kb obtenu contenant la totalité du gène eryCIII a été ligaturé dans le vecteur d'expression pET11a (Stratagène) qui contient le gène β-lactamase de résistance à l'ampicilline, l'origine de réplication ColE1 et le promoteur du gène de l'ARN polymérase T7 situé en amont du site de clonage NdeI, préalablement digéré avec les enzymes de restriction NdeI et BamHI. Après ligation et transformation dans E. coli XL1-blue, le plasmide pCEIII ainsi obtenu a été confirmé par carte de restriction et séquençage.

La souche d'E. coli BL21(DE3) de la trousse pET

25 (Stratagène) qui contient dans son ADN chromosomique le gène
lacI^q et le promoteur lacUV5 en amont du gène de l'ARN
polymérase T7, a ensuite été transformée par le plasmide
pECIII.5.

La souche transformée obtenue, dénommée BL21/pECIII, a
30 été cultivée en erlen de 50 ml à 37°C en milieu LB ensemencé
à $DO_{600}=0$,1 à partir d'une préculture, puis induite par
l'isopropyl- β -D-thiogalactopyranoside (IPTG) 1mM à $DO_{600}=1$.
Après 3 h 30 d'induction, 1 ml de culture a été prélevé et
centrifugé, puis le culot bactérien obtenu a été dissout dans
35 240 μ l d'eau et 120 μ l de tampon d'échantillon SDS 3X (Tris-HCl 1M pH = 6,8 : 1,9 ml ; glycérol 3 ml ; β -mercaptoéthanol
1,5 ml ; SDS 20 % , 3 ml ; bleu de bromophénol 1 % pH = 7 :
0,3 ml ; H₂O qsq 10 ml). A partir de 15 μ l de la solution

obtenue, les protéines totales extraites ont été analysées par SDS-PAGE sur un gel à 10 % de polyacrylamide avec une coloration au bleu de Comassie.

La surexpression d'une protéine ayant un poids
5 moléculaire apparent d'environ 46 Kd correspondant au PM
attendu pour la protéine EryCIII a été observée comparativement aux protéines totales d'une souche témoin transformée
par le plasmide pET11a.

2) Purification de la protéine EryCIII

La souche transformée BL21/pECIII ci-dessus a été cultivée en fermenteur de 6 litres en milieu minimum contenant du glycérol comme source de carbone (Korz et al., 1995) à 25°C jusqu'à D0₆₀₀=12, puis induite par l'IPTG pendant 18 h jusqu'à D0₆₀₀=54. A partir du bouillon récolté, 15 le culot bactérien contenant des corps d'inclusion a été isolé par centrifugation à 5000 g pendant 30 mn.

L'induction de la protéine EryCIII a été contrôlée par SDS-PAGE (gradient de polyacrylamide : 10 à 20 %) et avec une coloration au bleu de Comassie après lyse sur un aliquot dans 20 le tampon SDS 1 %, à 100°C pendant 5 min, soit directement sur le bouillon récolté, soit sur le culot bactérien après une première lyse par sonication dans un tampon phosphate.

190 g de culot bactérien correspondant à 1 litre de bouillon récolté ont été remis en suspension dans 2,5 volumes 25 de tampon KH₂PO₄/K₂HPO₄ 20 mM pH 7,2 contenant de l'EDTA 2,5 mM et du DTT 2,5 mM. Les cellules ont été ensuite lysées en utilisant un appareil Rannie (Mini-Lab, type 8-30H, APV Homogenisers As, Denmark) avec trois passages sous une pression de 1000 bars. Après centrifugation à 46.000 g 30 pendant 3 heures, le culot obtenu a été mis en suspension dans 2,5 volumes d'urée 2M puis centrifugé dans les mêmes conditions.

Le culot ainsi lavé a été ensuite mis en suspension dans 2,5 volumes d'une solution d'urée 7M dans du tampon tris 35 50 mM pH 7,5 (tampon A) de façon à solubiliser la protéine EryCIII. Après centrifugation dans les mêmes conditions, le surnageant recueilli obtenu contient 2,1 g de protéines totales déterminées par la méthode de Bradford en utilisant

une trousse du commerce (Pierce).

L'extrait dans l'urée 7M a été ensuite chargé à la vitesse de 0,5 mètres/h et à 4-8°C sur une colonne de 180 ml (5 cm x 9 cm) de Q sepharose (Pharmacia) préalablement 5 équilibrée avec le tampon A ci-dessus et avec une détection à 280 nm. La protéine EryCIII a été ensuite éluée avec le tampon A contenant NaCl 0,3M. Les fractions réunies, contenant la protéine EryCIII, mise en évidence par SDS-PAGE (gradient de polyacrylamide : 10 à 20 %) révélée par 10 coloration au bleu de Comassie et 835 mg de protéines totales, ont été ensuite chargées sur une colonne de 5,5 litres (10 cm x 70 cm) de Superdex 200 Prep grade (Pharmacia) préalablement équilibrée avec le tampon A ci-dessus. Par élution de la colonne avec le tampon A et par détection à 15 280 nm, un pic de protéine a été obtenu dont les fractions contenant la protéine EryCIII mise en évidence par SDS-PAGE et 200 mg de protéines totales ont été réunies puis purifiées sur une colonne de 180 ml (5 cm x 9 cm) de Q Source (Pharmacia) préalablement équilibrée avec le tampon A. Par 20 élution avec un gradient linéaire de NaCl variant de 0 à 0,3 M dans le tampon A, 30 ml de solution contenant 100 mg de protéine EryCIII dénaturée homogène en pureté évaluée par SDS-PAGE, avec une révélation au nitrate d'argent, ont été obtenus.

La figure 18 montre l'évolution de la pureté de la protéine EryCIII suivie par SDS-PAGE (gradient de polyacrylamide : 10 à 15 %) pour un dépôt de 500 ng de protéines totales et une révélation au nitrate d'argent successivement après extraction à l'urée 7M (ligne 2), chromatographie Q sepharose (ligne 3), chromatographie Superdex (ligne 4), chromatographie Q source (ligne 6) par rapport aux marqueurs de poids moléculaire (lignes 1 et 5).

La protéine EryCIII a été ensuite renaturée par dilution de l'éluat homogène avec une solution de tampon A contenant 35 du DTT 10 mM pour obtenir une concentration finale en protéine de 0,1 mg/ml. La solution diluée a été ensuite dialysée contre du tampon Tris 50 mM; NaCl 0,15 M; 0,3 % n-octyl-β-D-glucopyranosyl (NOG); DTT 10 mM, pH 8,3 puis

concentrée à 4 mg/ml par ultrafiltration sur une membrane PLGC04310 (Millipore) ayant un seuil de coupure de 10.000.

La protéine EryCIII purifiée a été ensuite conservée à l'état congelé à -20°C en aliquots de 500 μ l.

5 3) Caractérisation de la protéine EryCIII

La caractérisation de la protéine EryCIII ainsi obtenue a été examinée pour les propriétés suivantes :

a) Homogénéité.

L'électrophorèse par SDS-PAGE (gradient de 10 polyacrylamide : 10 à 15 %) en utilisant l'appareil Phast System (Pharmacia) et une révélation au nitrate d'argent montre une pureté supérieure à 99 % pour un dépôt de 2000 ng. b) Poids moléculaire par électrophorèse et spectrométrie de masse.

Par électrophorèse, un PM apparent de 46 kDa a été déterminé en accord avec le PM calculé de 45929.

L'analyse par RP-HPLC couplée à la spectrométrie de masse (HPLC : ESI-SM) donne une masse de 45934 uma.

- c) Séquence en acide aminés N-terminale
- La séquence N-terminale a été déterminée par microséquençage sur un microséquenceur de protéine Model A492 couplé à un analyseur HPLC de PTH-aminoacides (Applied Biosystems).

Aucune séquence secondaire n'a été décelée pour les 25 10 premiers résidus qui est en accord avec la séquence en acides aminés décrite à la figure 2 (séquence de SEQ ID N° 5).

d) Activité biologique

L'activité désosaminyl transférase de la protéine
30 EryCIII a été déterminée in vitro par la mise en évidence de
la formation d'érythromycine D à partir de dTDP-D-désosamine,
dont la préparation est décrite plus loin et de 3-α-mycarosyl
érythronolide B (MEB) dont la préparation est décrite cidessus dans Matériels et Méthodes générales.

Le milieu de réaction contient 150 nmoles de dTDP-Ddésosamine, 137,4 nmoles de MEB et 1 mg de protéine EryCIII en utilisant les conditions opératoires suivantes :

Dans un tube en verre à vis, on introduit successivement

4,78 ml de tampon Tris 50 mM pH 7,3 (tampon B); 20 μl de dTDP-D-désosamine, sel de triéthylamine (150 nmoles) en solution dans le tampon B contenant EDTA 1 mM et PEFABLOC O, 4 mM (Merck); 100 μl de MEB (137,4 nmoles) en solution dans le tampon B et 1 mg de protéine EryCIII correspondant à 250 μl d'un aliquot de solution congelée obtenue ci-dessus.

Après homogénisation au Vortex, le tube bouché est placé pendant 5 h dans un bain thermostaté à 30°C, puis on ajuste le pH à 9-10 avec NaOH 32 % puis extrait le mélange 10 réactionnel 3 fois avec 5 ml d'acétate d'éthyle. L'extrait obtenu, amené à sec sous pression réduite, puis repris par 100 μl de chlorure de méthylène est ensuite analysé par ccm dans les conditions indiquées à l'exemple 4 en utilisant comme éluant le mélange chlorure de méthylène/méthanol 15 (90 : 10, v/v).

Un essai témoin (t = 0) dont l'incubation est arrêtée immmédiatement par l'ajout de NaOH, est effectué dans les mêmes conditions.

Les résultats obtenus par révélation chimique montrent l'apparition d'un produit moins mobile ayant un Rf voisin de l'érythromycine D attendue et pour lequel une faible activité antibiotique est détectée par autobiogramme direct des plaques sur B. pumilus. Aucune activité biologique n'est observée pour l'essai témoin (figure 19).

25 Ces résultats confirment que la protéine EryCIII produite dans *E. coli* et purifiée ci-dessus a l'activité désoaminyl transférase attendue et a été correctement renaturée.

EXEMPLE 31: utilisation de la séquence du gène eryCIII comme 30 sonde pour isoler les gènes oleG1 et oleG2 codant pour des glycosyltransférases chez S. antibioticus.

1) clonage des gènes oleG1 et oleG2

La séquence du gène eryCIII de Sac. erythraea correspondant à l'ORF8 décrite à l'exemple 1 codant pour 35 l'activité désosaminyltransférase a été utilisée pour préparer une sonde d'hybridation et a permis d'isoler des gènes homologues dans la souche S. antibioticus ATCC 11891 productrice d'oléandomycine par hybridation Southern.

L'intégralité du gène eryCIII a été amplifiée par PCR à partir de 6 ng du plasmide pK62 obtenu à l'exemple 1 en suivant les conditions opératoires décrites à l'exemple 3 en utilisant la polymérase native pfu (Stratagene) et comme 5 amorces l'oligonucléotide ayant la séquence suivante : eryCIII-1 CGGGTACCATGCGCGTCGTCTTCTCCTCCATG (SEQ ID N° 59) comportant un site de restriction KpnI dans sa région 5' et dont la partie 3' correspond au brin complémentaire de la région d'ADN située de la position 10196 à la position 10219 de la séquence de la figure 2 et l'oligonucléotide eryCIII2 ayant la séquence suivante : eryCIII-2 CGGGTACCTCATCGTGGTTCTCTCCTTCC (SEQ ID N° 60) comportant un site KpnI dans sa région 5' et dont la partie 3' correspond à la région d'ADN située de la position 8954 à 15 la position 8974 de la séquence de la figure 2.

La bande d'environ 1,2 kb obtenue par amplification a été ensuite digérée par l'enzyme de restriction KpnI et clonée dans le plasmide pUC19 préalablement digéré par l'enzyme KpnI. Le plasmide pCIIIPCR1 ainsi obtenu a été 20 ensuite utilisé pour réisoler le fragment KpnI de 1,2 kb correspondant à l'intégralité du gène eryCIII montré à la figure 2. Le fragment ainsi isolé a été ensuite marqué au ³²P par la technique "random priming" décrite par Sambrook et al., 1989 et utilisé comme sonde eryCIII pour analyser par 25 hybridation Southern des clones cosmides obtenus à partir d'une banque d'ADN génomique de S. antibioticus ATCC 11891 et préparés de la façon suivante (figure 20) :

Une série de six cosmides (cosAB35, cosAB76, cosAB87, cosAB67, cosAB63 et cosAB61) se chevauchant et couvrant

30 environ 100 kb de la région correspondant au cluster de gènes de la biosynthèse de l'oléandomycine a été isolée en suivant la méthode décrite par Swan et al., 1994 en utilisant comme sondes le fragment SmaI de 2 kb interne à la troisième sous-unité de la polykétide synthase de Sac. erythraea dans le

35 cluster de gènes de la biosynthèse de l'érythromycine (Cortes et al., 1990) suivie d'une marche sur le chromosome. Les sondes strD, strE et strM codant respectivement pour la dTDP-glucose synthase, la dTDP-glucose 4,6-déshydratase et la

dTDP-6-désoxyglucose 3,5-épimérase de S. griseus (Stockmann et Piepersberg, 1992) hybrident avec les cosmides cosAB61 et cosAB63 (fig. 20). De façon analogue, par hybridation Southern avec la sonde eryCIII préparée ci-dessus effectuée 5 selon les conditions standard décrites par Hopwood et al., 1985, le cosmide cosAB35 (Swan et al., 1994) donne des signaux positifs dans deux fragments de restriction BamHI de 3,5kb et de 2,7 kb représentés à la figure 20. Le sousclonage et le séquençage ultérieurs montrent que ces deux 10 fragments sont séparés par un fragment BamHI de 0,6 kb non détecté par hybridation.

Un fragment SstI de 10,8 kb d'ADN génomique de S. antibioticus ATCC 11891 représenté à la figure 21, correspondant à la partie droite du cluster de gènes de la 15 biosynthèse de l'oléandomycine comprise entre le site SstI en position 11081 du gène OLE-ORF3 des PKS de la séquence EMBL n°L09654) et le site SstI en position 5 de la séquence EMBL n°L36601 situé à 1,4 kb en amont du gène oleB et hybridant avec la sonde eryCIII préparée ci-dessus, a été isolé à 20 partir du cosmide cosAB35 et sous-cloné dans le vecteur plasmidique pSL1180 (Pharmacia Biotech). Le clone pCO35-S ainsi obtenu a été utilisé pour générer des matrices simple brin par sous-clonage de différents fragments d'ADN dans les bactériophages M13mp18 et MP13mp19 (New England Biolabs), 25 puis la séquence nucléotidique de ces fragments a été déterminée selon la méthode de Sanger et al. (1977) en utilisant une polymérase T7 modifiée (Sequenase version 2.0; U.S. Biochemicals) en présence $d'\alpha[^{35}S]dCTP$ (Amersham) et de 7-déaza-dGTP, selon les recommandations du fournisseur afin 30 de limiter les problèmes de compression de bandes. Les amorces conventionnelles fournies avec la trousse Sequenase ainsi que les amorces synthétiques (17mer) internes ont été utilisées.

L'assemblage des données de séquence a été réalisé en 35 utilisant le programme Fragment Assembly (Genetic Computer Group, University of Wisconsin) et l'identification des phases ouvertes de lecture en utilisant le programme CODONPREFERENCE (Devereux et al., 1984).

Les séquences nucléotidiques obtenues ont permis d'établir la séquence nucléotidique de 6093 bp représentée à la figure 22 (séquence de SEQ ID N° 15), comprise entre les sites SphI* et KpnI montrés à la figure 21, dans laquelle 5 cinq ORFs ont été identifiées respectivement du nucléotide 184 au nucléotide 1386 (ORF dénommée oleP1), du nucléotide 1437 au nucléotide 2714 (ORF dénommée oleG1), du nucléotide 2722 au nucléotide 3999 (ORF dénommée oleG2), du nucléotide 3992 au nucléotide 4729 (ORF dénommée oleM) et du nucléotide 4810 au nucléotide 5967 (ORF dénommée oleM). Les cinq ORFs sont transcrites dans la même direction.

Des échantillons de *E. coli* contenant le plasmide pCO35-S comprenant la région codante des ORFs oleP1, oleG1, oleG2, oleM et oleY ont été déposés à la Collection Nationale 15 de Cultures de Microorganismes (CNCM) INSTITUT PASTEUR, 25, Rue du Docteur Roux 75724 PARIS CEDEX 15 FRANCE, le 8 avril 1998 sous le numéro I-2003.

Le gène oleG1 code pour un polypeptide ayant 426 acides aminés (séquence de SEQ ID N° 17). Cependant, la présence 20 d'un codon CGC codant pour une arginine très conservée dans cette classe de glycosyltransférase chez les Streptomycètes situé immédiatement en amont du codon GTG, indiquerait que le codon initiateur pourrait être le codon CTG en position 1431 de la séquence SEQ ID N° 17.

Le gène oleG2 code pour un polypeptide ayant 426 acides aminés (séquence de SEQ ID N° 18).

La comparaison des séquences en acides aminés déduites des ORFs oleG1 et oleG2 ci-dessus avec les protéines de bases de données à l'aide du programme Blast (Altschul et al.,

30 1990) a montré des similarités avec des glycosyl transférases de différentes sources, notamment environ 72 % de similarité et 53 % d'identité avec la déosaminyltransférase EryCIII décrite à l'exemple 30.

L'identification de la fonction du gène oleG1 ou du gène 35 oleG2 a été ensuite réalisée par interruption du gène cible dans la souche de S. antibioticus ATCC 11891 et par identification d'un précurseur non glycosylé de l'oléandomycine produit par la souche mutante en utilisant les méthodes

décrites dans les exemples 3 à 4.

2) génération d'une souche de S. antibioticus oleG1A (A35G1).

Une souche dans laquelle le gène oleG1 est interrompu a été préparée par intégration d'un plasmide pCO3 dans les 5 régions homologues de l'ADN chromosomique de la souche de S. antibioticus ATCC 11891 productrice d'oléandomycine.

Dans un premier temps, le fragment BamHI de 0,6 kb interne au gène oleG1, obtenu par digestion du plamide pCO35-S préparé ci-dessus, avec l'enzyme de restriction BamHI 10 (figure 21), a été sous-cloné dans le site BamHI du plasmide pOJ260 NRRL B-14785.

Le plasmide pCO3 ainsi généré a été ensuite transféré dans la souche *E. coli* TG1 recO1504::Tn5 (Kolodner et al., 1985), puis utilisé pour transformer les protoplastes de 15 *S. antibioticus*. La sélection des transformants a été réalisée par résistance à l'apramycine (Apramycine pour injection, Rhône Mérieux).

La préparation des protoplastes a été réalisée à partir de la souche *S. antibioticus* ATCC 11891 en suivant les 20 conditions décrites par Hopwood et al., 1985.

La transformation a été réalisée en utilisant 50 μ l d'aliquot de protoplastes, 5 μ g d'ADN plasmidique pCO3 et en remplaçant le thiostrepton par de l'apramycine à la concentration finale de 25 μ g/ml.

La sélection des intégrants effectuée par résistance à l'apramycine a permis d'isoler un clone dénommé A35G1.

L'altération attendue dans la région correspondante du chromosome de S. antibioticus a été confirmée par analyse génomique par Southern blot. L'ADN chromosomique isolé puis digéré par l'enzyme de restriction Pstl à partir de la souche S. antibioticus sauvage ou du mutant A35G1 a été analysé par Southern en utilisant comme sonde d'hybridation le fragment BamHI de 0,6 kb indiqué ci-dessus. Le remplacement du fragment Pstl de 4,7 kb ainsi détecté dans la souche sauvage par deux fragments Pstl de 2,4 et 6,5 kb dans le mutant A35G1 confirme l'intégration du plasmide pCO3 dans le chromosome de la souche A35G1 au niveau de l'ORF oleG1.

La souche recombinante A35G1 ainsi obtenue a été ensuite

cultivée pour identifier les précurseurs produits par la souche.

3) fermentation de la souche A35G1 et identification des précurseurs de l'oléandomycine produits.

La souche A35G1 a été cultivée pendant 72 h en erlen de 50 ml dans le milieu EP2 à partir d'une préculture de 48 h en milieu EP1 dans les conditions décrites à l'exemple 4.

Les extraits de bouillon avec de l'acétate d'éthyle ont été ensuite analysés selon les méthodes utilisées dans les 10 exemples 3 et 4.

a) L'essai biologique par antibiogramme a été réalisé de la façon suivante :

Après croissance de la souche *B. pumilus* sur milieu TSB pendant une nuit à 37°C, la culture a été diluée à 1/100 dans 15 du milieu contenant 50 % (w/v) de glycérol, puis la suspension cellulaire obtenue a été conservée à -20°C avant utilisation.

L'essai biologique a ensuite été effectué en introduisant 150 µl de la suspension cellulaire décongelée 20 dans 100 ml de milieu TSB contenant 1 % d'agar et maintenu à 55°C. Le mélange a été ensuite versé dans des boîtes de pétri. Après refroidissement, des cylindres oxford contenant 50 à 200 µl d'extraits à l'acétate d'éthyle ont été placés sur les boîtes d'agar, maintenus 2 h à 4°C, puis incubés 25 pendant une nuit à 37°C.

Les extraits ne montrent pas d'effet inhibiteur sur la croissance de B. pumilus ATCC 14884.

 b) L'analyse par ccm par révélation chimique a été effectuée selon les conditions décrites à l'exemple 4 en
 30 utilisant comme standards l'érythromycine A, l'érythronolide B ainsi que le 6-désoxyérythronolide B.

L'analyse par ccm montre que la souche A35G1 ne produit pas d'oléandomycine mais accumule préférentiellement un produit pourpre ayant une mobilité plus grande que

- 35 l'érythronolide B et voisine du 6-désoxyérythronolide B et que l'on peut attendre de la partie aglycone 8,8a-désoxy-oléandolide.
 - c) L'analyse par chromatographie RP-HPLC couplée à la

spectrométrie de masse a été réalisée selon les conditions décrites à l'exemple 4. Deux métabolites majeurs, dénommmés M9 et M10, ont été détectés (élution à 6,12 mn et 17,23 mn respectivement). Les deux produits donnent un pic parent 5 m/z 373 et des profils de fragmentation analogues qui peuvent être en accord avec la structure [8,8a-désoxyoléandolide]H⁺. Cependant seul le temps de rétention du métabolite M10 est en accord avec la structure proposée alors que le métabolite M9 pourrait correspondre à une structure isomère ou au noyau 10 lactone ouvert.

Des expériences de complémentation des souches mutantes de Sac. erythraea CIII68 décrite à l'exemple 6 et BV88 décrite à l'exemple 16 ont été également réalisées en utilisant des constructions plasmidiques permettant

15 d'exprimer respectivement chacun des gènes oleG1 et oleG2.

Ces observations et l'absence de détection d'oléandrosyl
8,8a-désoxyoléandolide ou de désosaminyl 8,8a-désoxyoléandolide indiquent que le gène oleG1 code pour la désoaminosyltransférase et le gène oleG2 code pour l'oléandrosyltransfé-

20 rase respectivement impliquées dans la biosynthèse de l'oléandomycine.

PREPARATION DE L'EXEMPLE 30: Thymidine 5'-(trihydrogen-diphosphate), P'-[3,4,6-tridéoxy-3-(diméthylamino)-D-xylo-hexopyranosyl]ester, N, N-diéthyléthanamine

25 STADE A: chlorhydrate 3,4,6-tridéoxy-3-(diméthylamino)-D-xylohexopyranose

On ajoute sous agitation et à température ambiante 146,6 g d'érythromycine A, à 1,5 litres d'acide chlorhydrique 6N. On porte la solution obtenue au reflux pendant 2 h. On 30 refroidit à la température ambiante, filtre et lave à l'eau le résidu obtenu. On extrait la phase aqueuse au chlorure de méthylène, puis à l'éther sulfurique. On ajoute à la phase aqueuse 10 g de noir L₂S et chasse les traces d'éther sous pression réduite. On filtre, et concentre. On effectue un 35 second envoi dans les mêmes conditions. On rassemble les deux essais, dissout dans l'éthanol (150 cm³), ajoute 150 cm³ d'éther éthylique. On essore, lave et sèche les cristaux obtenus. On obtient 42 g de produit recherché. F = 158~160°C.

<u>STADE B</u>: 3,4,6-tridéoxy-3-(diméthylamino)-D-xylo-hexopyranose,1,2-diacétate

On ajoute sous agitation à 20°C, 60 cm³ de triéthylamine dans un mélange renfermant 15,27 g de produit du stade A et 5 150 cm³ de chlorure de méthylène. On ajoute à 20°C une solution renfermant 20 cm³ d'anhydride acétique et 80 cm³ de chlorure de méthylène. On agite à la température ambiante pendant 20 heures. On filtre, lave et concentre. On empâte dans l'éther sulfurique. On concentre le filtrat sous 10 pression réduite. On chromatographie le résidu obtenu en éluant avec le mélange acétate d'éthyle-triéthylamine (95-5). On obtient 18,6 g de produit recherché que l'on utilise tel quel dans le stade suivant.

<u>STADE C</u>: 3,4,6-tridéoxy-3-(diméthylamino)-D-xylo-hexopyra-15 nose,2-acétate

On porte à 50°C un mélange renfermant 18,6 g du produit du stade B et 50 cm³ de DMF et ajoute 6,62 g d'acétate d'hydrazine NH₂NH₂, ACOH. On agite le mélange réactionnel et le verse sur une solution saturée de carbonate acide de 20 sodium. On extrait la phase aqueuse à l'acétate d'éthyle. On rassemble les phases organiques, sèche, filtre et concentre. On distille sous pression réduite pour éliminer le DMF par entraînement azéotrophirque avec le toluène. On obtient 11,28 g de produit que l'on chromatographie sur silice en 25 éluant avec le mélange acétate d'éthyle-triéthylamine (90-10). On obtient 6,5 g de produit recherché que l'on utilise tel quel dans le stade suivant.

STADE D: 3,4,6-tridéoxy-3-(diméthylamino)-D-xylo-hexopyranose,2-acétate bis(phénylméthyl)phosphate

On ajoute à -70°C, 5,7 cm³ d'une solution de n-butyllithium dans l'hexane dans une solution renfermant 1,738 g du produit du stade précédent et 40 cm³ de THF. On ajoute à -70~-75°C 10 g de dibenzylphosphochlorure préparé extempora-

nément (J. Chem. Soc. 1958, p. 1957),

35

en solution dans 20 cm³ de THF. On maintient l'agitation pendant 1 h 30 entre -70 et -74°C. On verse sur une solution saturée de carbonate acide de sodium, extrait à l'acétate d'éthyle. On sèche la phase organique sur sulfate de sodium, 5 filtre et concentre. On chromatographie le produit obtenu sur silice en éluant avec le mélange acétone-chlorure de méthylène (5-5). On obtient 1,070 g du produit recherché.

STADE E: 3,4,6-tridéoxy-3-(diméthylamino)-D-xylo-hexopyranose,1-(dihydrogen phosphate),N,N-diéthyléthanamine

On place sous agitation et sous courant d'hydrogène pendant 30 minutes à la température ambiante, un mélange renfermant 1,070 g du produit du stade précédent, 20 cm³ d'acétate d'éthyle, 10 cm³ de méthanol, 0,622 cm³ de triéthylamine et 200 mg de palladium sur charbon. On filtre, lave au 15 méthanol et à l'acétate d'éthyle et concentre le filtrat. On obtient 1 g d'une huile à laquelle on ajoute 10 cm³ de méthanol. On agite la solution obtenue pendant 20 heures. On chasse le méthanol sous pression réduite à 30°C. On obtient 680 g de produit recherché.

20 STADE F: 3,4,6-tridéoxy-3-(diméthylamino)-D-xylohexopyranose,1-(dihydrogen phosphate)

On dissout 420 mg du produit isolé sous forme de sels de triéthylamine, obtenu au stade précédent, dans 1,6 cm³ de méthanol. On ajoute 3,2 cm³ d'éther sulfurique. On ajoute 25 ensuite 6,4 cm³ d'éther sulfurique. On obtient 250 mg de produit recherché fondant à 242~244°C.

STADE G: Thymidine 5'-(trihydrogen diphosphate),P'-[3,4,6-

STADE G: Thymidine 5'-(trihydrogen diphosphate),P'-[3,4,6-tridéoxy-3-(diméthylamino)-D-xylo-hexopyranosyl]ester,N,N-diéthyléthanamine

On mélange 228 mg du produit de la préparation 1, 6 cm³ de pyridine et 544 mg de thymidine 5'-monophosphate morpholidate-4-morpholine-NN'-dicyclohexylcarboxamidine. On chasse la pyridine sous pression réduite au rotorvapor en maintenant la température à 30°C ou en dessous. On ajoute 6 cm³ de pyridine que l'on chasse sous pression réduite. On répète l'opération 2 fois. On ajoute 6 cm³ de pyridine, 105 mg de 1H-tétrazole. On agite pendant 3 jours à la température ambiante. On chasse la pyridine sous pression réduite. On reprend dans l'eau,

20

35

filtre, concentre et obtient un produit que l'on purifie par chromatographie. On obtient ainsi le produit recherché. rf = 0,12 éluant CH_2Cl_2 , MeOH, H_2O (60-35-6).

5 Références bibliographiques :

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) J Mol Biol 215 : 403-410.

- 10 Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA Struhl K (1995) Current protocols in molecular biology.

 Massachusetts General Hospital and Harvard medical School.

 John Wiley and Sons, Inc.
- 15 Bankier AT, Weston KM, Barrell BG (1987) Methods in Enzymology 155: 51-93.

Bevitt DJ, Cortes J, Haydock SF and Leadlay PF, (1992), Eur. J. Biochem 204: 39-49.

Caffrey P, Bevitt DJ, Staunton J, Leadlay PF (1992) FEBS 304: 225-228.

Cortés J, Haydock SF, Roberts GA, Bevitt DJ, Leadlay PF 25 (1990) Nature 348: 176-178.

Devereux J, Haeberli P, Smithies O (1984) Nucl Acids Res 12: 387-395.

30 Dhillon N, Hale RS, Cortes J, Leadlay PF (1989) Mol Microbiol 3: 1405-1414.

Dickens ML, Ye J, Strohl WR (1996) J Bacteriol 178: 3384-3388.

Donadio S, Stassi J, McAlpine JB, Staver MJ, Sheldon PJ, Jackson M, Swanson SJ, Wendt-Pienkowski E, Wang YG, Jarvis B, Hutchinson CR, Katz L (1993) In: Baltz RH, Hegeman GD,

25

Skatrud PL (eds) Industrial Microorganisms: Basic and Applied Molecular Genetics: American Society for Microbiology, Washington, DC, 257-265.

- 5 Gandecha AR, Large SL, Cundliffe E (1997) Gene 184: 197-203.
 - Haydock SF, Dowson JA, Dhillon N, Roberts GA, Cortes J, Leadlay PF (1991) Mol Gen Genet 230 : 120-128.
- 10 Hessler PE, Larsen PE, Constantinou AI, Schram KH, Weber JM, Appl Microbiol. Biotechnol (1997), 47: 398-404.
 - Hopwood DA, Kieser T, Wright HM an Bibb MJ, Journal of General Microbiology (1983), 129, 2257-2269.
- 15 Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton C, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schremp H (1985) Genetic manipulation of Streptomyces. A laboratory Manual. John Innes Foundation, Norwich.
- 20 Kaneda T, Butte JC, Taubman B, Corcoran JW (1962) J Biol Chem 237: 322-327.
 - Katz E, Thompson CJ, Hopwood DA (1983) J Gen Microbiol 129: 2703-2714.
 - Korz DJ, Rinas U, Hellmuth K, Sanders EA, Deckwer W-D (1995) Journal of Biotechnology 39: 59-65.
- Katz L, Donadio S (1995) Macrolides. In: Vining LC, Stuttard 30 C (eds). Genetics and Biochemistry of Antibiotic Production. Butterworth-Heinemann, Newton, MA, 385-420.
 - Liu H-W, Thorson JS (1994) Annu Rev Microbiol 48: 223-56.
- 35 Otten SL, Liu X, Ferguson J, Hutchinson CR (1995) J Bacteriol 177: 6688-6692.
 - Sakakibara H and Omura S (1984). In: Omura S. (ed) Macrolide

Antibiotics: Chemistry, Biology, and Practice. Academic Press, Inc. London, 85-125.

Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: 5 a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, N.Y.

Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74: 5463-5467.

10

Scotti C, Hutchinson CR (1996) J Bacteriol 178: 7316-7321.

Scrutton NS, Berry A, Perham RN (1990) Nature 343: 38-43.

15 Staden R (1984), Nucleic Acids Res 12: 521-528.

Stassi D, Donadio S, Staver MJ, Katz L (1993) J Bacteriol 175: 182-189.

20 Stemmer WPC (1994) Proc. Natl. Acad. Sci., Vol. 91, pp. 10747-10751.

Stockmann M, and Piepersberg W (1992) FEMS Microbiol Lett 90: 185-190.

25

Swan D.G., Rodriguez A.M., Vilches C., Méndez C., Salas J.A., (1994) Mol Gen Genet 242: 358-362.

Ward JM, Janssen GR, Kieser T, Bibb MJ, Buttner MJ, Bibb MJ 30 (1986) Mol. Gen. Genet. 203: 468-475

Weber JM, Wierman CK, Hutchinson CR (1985) J Bacteriol 164: 425-433.

35 Weber JM, Losick R (1988) Gene 68: 173-180.

Weber JM, Schoner B, Losick R (1989) Gene 75: 235-241.

72

Weber JM, Leung JO, Maine GT, Potenz RHB, Paulus TJ, DeWitt JP (1990) J Bacteriol 172: 2372-2383.

Weber JM, Leung JO, Swanson SJ, Idler KB, McAlpine JB (1991) 5 Science 252: 114-117.

Wehmeier UF (1995) Gene 165: 149-150.

Wierenga RK, Terpstra P, Hol WGJ (1986) J. Mol. Biol. 187: 10 101-107.

Yamamoto H, Maurer KH, Hutchinson CR (1986) J Antibiot 34: 1304-1313.

73

Texte libre de la liste de séquences

```
SEQ ID NO: 1:
   /function= "implique dans la biosynthese du mycarose"
5 /gene= "eryBII"
   /function= "implique dans la biosynthese de la desosamine"
   /gene= "eryCII"
   SEQ ID NO: 4:
10 /function= "implique dans la biosynthese de la desosamine"
   /gene= "eryCIII"
   /note= "SEQ ID NO 1 DE 1046 A 2308"
   SEO ID NO: 6:
15 /function= "implique dans la biosynthese du mycarose"
   /gene= "eryBIV"
   /transl except= (pos: 242 .. 244, aa: Met)
   /function= "implique dans la biosynthese du mycarose"
   /gene= "eryBV"
20 /transl except= (pos: 1210 .. 1212, aa: Met)
   /function= "implique dans la biosynthese de la desosamine"
   /gene= "eryCVI"
   /function= "implique dans la biosynthese du mycarose"
   /gene= "eryBVI"
25 /transl_except= (pos: 3308 .. 3310, aa: Met)
   /function= "implique dans la biosynthese de la desosamine"
   /gene= "eryCV"
   /function= "implique dans la biosynthese du mycarose"
   /gene= "eryBVII"
30 /transl except= (pos: 7578 .. 7580, aa: Met)
   SEQ ID NO: 13:
   /function= "implique dans la biosynthese de la desosamine"
   /gene= "eryCIV"
35 /note= "SEQ ID NO 6 DE 4837 A 6039"
   SEQ ID NO: 15:
   /gene= "oleP1"
```

74

```
/function= "glycosylation de 8,8a-desoxyoleandolide"
/gene= "oleG1"
/transl_except= (pos: 1437 .. 1439, aa: Met)
/function= "glycosylation de 8,8a-desoxyoleandolide"
5 /gene= "oleG2"
/gene= "oleG2"

SEQ ID NO: 20:
/gene= "oleM"
10 /note= "SEQ ID NO 15 DE 3992 A 4729"

SEQ ID NO: 22 à SEQ ID NO: 60
/desc = "OLIGONUCLEOTIDE"

15 SEQ ID NO: 61:
/note= "SEQ ID NO 11 DE 38 A 50"
```

REVENDICATIONS

- Séquence d'ADN simple ou double brin isolée, représentée à la figure 2 (séquence directe ou complémentaire de SEQ ID N° 1) correspondant à la région eryG-eryAIII du cluster de 5 gènes de la biosynthèse de l'érythromycine.
 - 2) Séquence d'ADN selon la revendication 1 comprenant :
 la séquence eryBII correspondant à l'ORF7 (séquence complémentaire de SEQ ID N° 1 du nucléotide 48 au nucléotide 1046)
 et codant pour une dTDP-4-céto-L-6-désoxyhexose
- 10 2,3-réductase,
 - la séquence *ery*CIII correspondant à l'ORF8 (séquence complémentaire de SEQ ID N° 1 du nucléotide 1046 au nucléotide 2308) et codant pour une désosaminyltransférase et
 - la séquence eryCII correspondant à l'ORF9 (séquence complé-
- 15 mentaire de SEQ ID N° 1 du nucléotide 2322 au nucléotide 3404) et codant pour une dTDP-4-céto-D-6-désoxyhexose 3,4-isomérase.
 - 3) Séquence d'ADN isolée représentée à la figure 2 choisie parmi la séquence eryBII correspondant à l'ORF7 (séquence
- 20 complémentaire de SEQ ID N° 1 du nucléotide 48 au nucléotide 1046), la séquence eryCIII correspondant à l'ORF8 (séquence complémentaire de SEQ ID N° 1 du nucléotide 1046 au nucléotide 2308) ou la séquence eryCII correspondant à l'ORF9 (séquence complémentaire de SEQ ID N° 1 du nucléotide 2322 au
- 25 nucléotide 3404) et les séquences qui hybrident et/ou présentent des homologies significatives avec cette séquence ou des fragments de celle-ci et ayant la même fonction.
 - 4) Séquence d'ADN isolée eryCIII représentée à la figure 2 correspondant à l'ORF8 (séquence complémentaire de SEQ ID
- 30 N° 1 du nucléotide 1046 au nucléotide 2308 = séquence complémentaire de SEQ ID N° 4) et codant pour une désosaminyl transférase.
 - 5) Polypeptide codé par l'une des séquences d'ADN selon l'une des revendications 1 à 4.
- 35 6) Polypeptide selon la revendication 5 correspondant à une ORF représentée à la figure 2, choisie parmi l'ORF7 (ayant la séquence de SEQ ID N° 2), l'ORF8 (ayant la séquence de SEQ ID N° 5) ou l'ORF9 (ayant la séquence de SEQ ID N° 3) et les

analogues de ce polypeptide.

- 7) Polypeptide selon la revendication 5 correspondant à l'ORF8 représentée à la figure 2 (ayant la séquence de SEQ ID N° 5) et ayant une activité désosaminyltransférase, dénommée 5 EryCIII.
 - 8) Séquence d'ADN isolée représentée à la figure 3 (séquence de SEQ ID N° 6) correspondant à la région *ery*AI-*ery*K du cluster de gènes de la biosynthèse de l'érythromycine.
 - 9) Séquence d'ADN selon la revendication 8 comprenant :
- 10 la séquence *ery*BIV correspondant à l'ORF13 (séquence de SEQ ID N° 6 du nucléotide 242 au nucléotide 1207) et codant pour une dTDP-4-céto-L-6-désoxyhexose 4-réductase,
- la séquence *ery*BV correspondant à l'ORF14 (séquence de SEQ ID N° 6 du nucléotide 1210 au nucléotide 2454) et codant pour 15 une mycarosyltransférase,
 - la séquence *ery*CVI correspondant à l'ORF15 (séquence de SEQ ID N° 6 du nucléotide 2510 au nucléotide 3220) et codant pour une dTDP-D-6-désoxyhexose 3-N-méthyltransférase,
- la séquence *ery*BVI correspondant à l'ORF16 (séquence de SEQ 20 ID N° 6 du nucléotide 3308 au nucléotide 4837) et codant pour une dTDP-4-céto-L-6-désoxyhexose 2,3-déshydratase,
 - la séquence *ery*CIV correspondant à l'ORF17 (séquence de SEQ ID N° 6 du nucléotide 4837 au nucléotide 6039) et codant pour une dTDP-D-6-désoxyhexose 3,4-déshydratase,
- 25 la séquence *eryCV* correspondant à l'ORF18 (séquence de SEQ ID N° 6 du nucléotide 6080 au nucléotide 7546) et codant pour une dTDP-D-4,6-didésoxyhexose 3,4-réductase et
 - la séquence *ery*BVII correspondant à l'ORF19 (séquence de SEQ ID N° 6 du nucléotide 7578 au nucléotide 8156) et codant
- 30 pour une dTDP-4-céto-D-6-désoxyhexose 3,5 épimérase.
 - 10) Séquence d'ADN isolée représentée à la figure 3 choisie parmi la séquence eryBIV correspondant à l'ORF13 (séquence de SEQ ID N° 6 du nucléotide 242 au nucléotide 1207), la séquence eryBV correspondant à l'ORF14 (séquence de SEQ ID
- 35 N° 6 du nucléotide 1210 au nucléotide 2454), la séquence eryCVI correspondant à l'ORF15 (séquence de SEQ ID N° 6 du nucléotide 2510 au nucléotide 3220), la séquence eryBVI correspondant à l'ORF16 (séquence de SEQ ID N° 6 du nucléo-

tide 3308 au nucléotide 4837), la séquence eryCIV correspondant à l'ORF17 (séquence de SEQ ID N° 6 du nucléotide 4837 au nucléotide 6039), la séquence eryCV correspondant à l'ORF18 (séquence de SEQ ID N° 6 du nucléotide 6080 au nucléotide 57546) ou la séquence eryBVII correspondant à l'ORF19 (séquence de SEQ ID N° 6 du nucléotide 7578 au nucléotide

- (séquence de SEQ ID N° 6 du nucléotide 7578 au nucléotide 8156) et les séquences qui hybrident et/ou présentent des homologies significatives avec cette séquence ou des fragments de celle-ci et ayant la même fonction.
- 10 11) Séquence d'ADN isolée *ery*BV représentée à la figure 3 correspondant à l'ORF14 (séquence de SEQ ID N° 6 du nucléotide 1210 au nucléotide 2454) et codant pour une mycarosyltransférase.
- 12) Polypeptide codé par l'une des séquences d'ADN selon 15 l'une des revendications 8 à 11.
 - 13) Polypeptide selon la revendication 12 correspondant à une ORF représentée à la figure 3, choisie parmi l'ORF13 (ayant la séquence de SEQ ID N° 7), l'ORF14 (ayant la séquence de SEQ ID N° 8), l'ORF15 (ayant la séquence de SEQ ID N° 9),
- 20 l'ORF16 (ayant la séquence de SEQ ID N° 10), l'ORF17 (ayant la séquence de SEQ ID N° 14), l'ORF18 (ayant la séquence de SEQ ID N° 11) ou l'ORF19 (ayant la séquence de SEQ ID N° 12) et les analogues de ce peptide.
- 14) Polypeptide selon la revendication 12 correspondant à 25 l'ORF14 représentée à la figure 3 (ayant la séquence de SEQ ID N° 8) et ayant une activité mycarosyltransférase, dénommé EryBV.
 - 15) Utilisation d'au moins l'une des séquences d'ADN choisie parmi les séquences eryBII (séquence complémentaire de SEQ ID
- 30 N° 1 du nucléotide 48 au nucléotide 1046), eryCIII (séquence complémentaire de SEQ ID N° 1 du nucléotide 1046 au nucléotide 2308) ou eryCII (séquence complémentaire de SEQ ID N° 1 du nucléotide 2322 au nucléotide 3404) représentées à la figure 2, eryBIV (séquence de SEQ ID N° 6 du nucléotide 242
- 35 au nucléotide 1207), eryBV (séquence de SEQ ID N° 6 du nucléotide 1210 au nucléotide 2454), eryCVI (séquence de SEQ ID N° 6 du nucléotide 2510 au nucléotide 3220), eryBVI (séquence de SEQ ID N° 6 du nucléotide 3308 au nucléotide

- 4837), eryCIV (séquence de SEQ ID N° 6 du nucléotide 4837 au nucléotide 6039), eryCV (séquence de SEQ ID N° 6 du nucléotide 6080 au nucléotide 7546) ou eryBVII (séquence de SEQ ID N° 6 du nucléotide 7578 au nucléotide 8156) représentée à la figure 3, pour synthétiser des métabolites secondaires hybrides chez Sac. erythraea.
- 16) Utilisation d'au moins l'une des séquences d'ADN choisie parmi les séquences eryBII (séquence complémentaire de SEQ ID N° 1 du nucléotide 48 au nucléotide 1046), eryCIII (séquence complémentaire de SEQ ID N° 1 du nucléotide 1046 au nucléo
 - tide 2308) ou *ery*CII (séquence complémentaire de SEQ ID N° 1 du nucléotide 2322 au nucléotide 3404) représentées à la figure 2, *ery*BIV (séquence de SEQ ID N° 6 du nucléotide 242 au nucléotide 1207), *ery*BV (séquence de SEQ ID N° 6 du
- 15 nucléotide 1210 au nucléotide 2454), eryCVI (séquence de SEQ ID N° 6 du nucléotide 2510 au nucléotide 3220), eryBVI (séquence de SEQ ID N° 6 du nucléotide 3308 au nucléotide 4837), eryCIV (séquence de SEQ ID N° 6 du nucléotide 4837 au nucléotide 6039), eryCV (séquence de SEQ ID N° 6 du nucléo-
- 20 tide 6080 au nucléotide 7546) ou *ery*BVII (séquence de SEQ ID N° 6 du nucléotide 7578 au nucléotide 8156) représentée à la figure 3 ou d'un fragment de cette séquence, comme sondes d'hybridation.
- 17) Utilisation de la séquence d'ADN eryCIII représentée à la 25 figure 2 (séquence complémentaire de SEQ ID N° 1 du nucléotide 1046 au nucléotide 2308 = séquence complémentaire de SEQ ID N° 4) comme sonde d'hybridation pour isoler des gènes homologues responsables de la glycosylation de la macrolactone chez une souche productrice de macrolide.
- 30 18) Utilisation selon la revendication 17 dans laquelle les gènes homologues sont les gènes de la biosynthèse de l'oléandomycine chez S. antibioticus.
 - 19) Séquence d'ADN isolée représentée à la figure 22 (séquence de SEQ ID N° 15) correspondant à une région du
- 35 cluster de gènes de la biosynthèse de l'oléandomycine comprenant :
 - la séquence correspondant à l'ORF *ole*P1 du nucléotide 184 au nucléotide 1386,

- la séquence correspondant à l'ORF *ole*G1 du nucléotide 1437 au nucléotide 2714 codant pour une activité glycosyltrans-férase,
- la séquence correspondant à l'ORF oleG2 du nucléotide 2722 5 au nucléotide 3999 codant pour une activité glycosyltransférase,
 - la séquence correspondant à l'ORF *ole*M du nucléotide 3992 au nucléotide 4720 (= séquence de SEQ ID N° 20) et
- la séquence correspondant à l'ORF *ole*Y du nucléotide 4810 10 au nucléotide 5967.
 - 20) Séquence d'ADN isolée représentée à la figure 22 choisie parmi la séquence correspondant à l'ORF oleG1 (séquence de SEQ ID N° 15 du nucléotide 1437 au nucléotide 2714 codant pour une activité glycosyltransférase et la séquence
- 15 correspondant à l'ORF oleG2 (séquence de SEQ ID N° 15 du nucléotide 2722 au nucléotide 3999) codant pour une activité glycosyltransférase.
 - 21) Séquence d'ADN isolée selon la revendication 20 correspondant à l'ORF oleG1 (séquence de SEQ ID N° 15 du nucléotide
- 20 1437 au nucléotide 2714) codant pour une activité désosaminyltransférase.
- 22) Séquence d'ADN isolée selon la revendication 20 correspondant à l'ORF oleG2 (séquence de SEQ ID N° 15 du nucléotide 2722 au nucléotide 3999) codant pour une activité 25 oléandrosyltransférase.
 - 23) Polypeptide codé par la séquence d'ADN correspondant à l'ORF oleG1 et ayant une activité désosaminyltransférase (séquence de SEQ ID N° 17).
- 24) Polypeptide codé par la séquence d'ADN correspondant à 30 l'ORF oleG2 et ayant une activité oléandrosyltransférase (séquence de SEQ ID N° 18).
 - 25) Procédé de préparation de métabolites secondaires hybrides chez Sac. erythraea dans lequel :
- on isole une séquence ADN contenant au moins une séquence 35 eryB ou une séquence eryC du cluster de gènes de la biosynthèse de l'érythromycine représentée à la figure 2 (séquence complémentaire de SEQ ID N° 1) ou à la figure 3 (séquence de SEQ ID N° 6),

- on crée une modification dans la dite séquence et on obtient une séquence altérée,
- on intègre la séquence altérée dans le chromosome de la souche hôte et on obtient une souche modifiée,
- 5 on cultive la souche modifiée dans des conditions permettant la formation du métabolite secondaire hybride et
 - on isole le métabolite secondaire hybride.
 - 26) Procédé selon la revendication 25 dans lequel la séquence ADN code pour l'une des enzymes choisie parmi une
- 10 dTDP-4-céto-L-6-désoxyhexose 2,3-réductase,
 - désosaminyltransférase,
 - dTDP-4-céto-D-6-désoxyhexose 3,4-isomérase,
 - dTDP-4-céto-L-6-désoxyhexose 4-réductase,
 - mycarosyltransférase,
- 15 dTDP-D-6-désoxyhexose 3-N-méthyltransférase,
 - dTDP-4-céto-L-6-désoxyhexose 2,3-déshydratase,
 - dTDP-D-6-désoxyhexose 3,4-déshydratase,
 - dTDP-D-4,6-didésoxyhexose 3,4-réductase ou
 - dTDP-4-céto-D-6-désoxyhexose 3,5 épimérase.
- 20 27) Procédé selon la revendication 25 dans lequel l'altération de la séquence résulte dans l'inactivation d'au moins l'une des enzymes choisie parmi une
 - dTDP-4-céto-L-6-désoxyhexose 2,3-réductase,
 - désosaminyltransférase,
- 25 dTDP-4-céto-D-6-désoxyhexose 3,4-isomérase,
 - dTDP-4-céto-L-6-désoxyhexose 4-réductase,
 - mycarosyltransférase,
 - dTDP-D-6-désoxyhexose 3-N-méthyltransférase,
 - dTDP-4-céto-L-6-désoxyhexose 2,3-déshydratase,
- 30 dTDP-D-6-désoxyhexose 3,4-déshydratase,
 - dTDP-D-4,6-didésoxyhexose 3,4-réductase ou
 - dTDP-4-céto-D-6-désoxyhexose 3,5 épimérase.
 - 28) Procédé selon la revendication 27 dans lequel l'enzyme inactivée est une dTDP-4-céto-L-6-désoxyhexose 4-réductase.
- 35 29) Procédé selon la revendication 27 dans lequel l'enzyme inactivée est une dTDP-D-6-désoxyhexose 3,4-déshydratase.
 - 30) Procédé selon la revendication 27 dans lequel l'enzyme inactivée est une mycarosyltransférase.

- 31) Procédé selon la revendication 27 dans lequel l'enzyme inactivée est une dTDP-4-céto-L-6-désoxyhexose 2,3-réductase.
- 32) Procédé selon la revendication 25 dans lequel le métabolite secondaire hybride isolé est un analogue de
- 5 l'érythromycine choisi parmi la 4"-céto-érythromycine, la 4'-hydroxy-érythromycine ou la 3"-C-désméthyl-2",3"-èneérythromycine.
 - 33) Procédé selon la revendication 25 dans lequel le métabolite secondaire hybride isolé est le désosaminyl
- 10 érythronolide B.
 - 34) Souche de Sac. erythraea modifiée dans laquelle au moins l'une des enzymes choisie parmi une
 - dTDP-4-céto-L-6-désoxyhexose 2,3-réductase,
 - désosaminyltransférase,
- 15 dTDP-4-céto-D-6-désoxyhexose 3,4-isomérase,
 - dTDP-4-céto-L-6-désoxyhexose 4-réductase,
 - mycarosyltransférase,
 - dTDP-D-6-désoxyhexose 3-N-méthyltransférase,
 - dTDP-4-céto-L-6-désoxyhexose 2,3-déshydratase,
- 20 dTDP-D-6-désoxyhexose 3,4-déshydratase,
 - dTDP-D-4,6-didésoxyhexose 3,4-réductase ou
 - dTDP-4-céto-D-6-désoxyhexose 3,5 épimérase est inactivée et produisant au moins un métabolite secondaire hybride.
- 25 35) Souche de Sac. erythraea modifiée (BII92) dans laquelle une dTDP-4-céto-L-6-désoxyhexose 2,3-réductase est inactivée et produisant la 3"-C-désméthyl-2",3"-ène-érythromycine C.
 - 36) Souche de Sac. erythraea modifiée (BIV87) dans laquelle une dTDP-4-céto-L-6-désoxyhexose 4-réductase est inactivée et
- 30 produisant la 4"-céto-érythromycine.
 - 37) Souche de Sac. erythraea modifiée (CIV89) dans laquelle une dTDP-D-6-désoxyhexose 3,4-déshydratase est inactivée et produisant la 4'-hydroxyérythromycine D.
 - 38) Souche de Sac. erythraea modifiée (BV88) dans laquelle
- 35 une mycarosyltransférase est inactivée et produisant du désoaminyl érythronolide B.
 - 39) Procédé de préparation de précurseurs de l'oléandomycine chez S. antibioticus dans lequel

- on crée une altération de la séquence du gène choisie parmi la séquence d'ADN correspondant à l'ORF oleG1 (séquence de SEQ ID N° 15 du nucléotide 1437 au nucléotide 2714) et la séquence d'ADN correspondant à l'ORF oleG2 (séquence 5 de SEQ ID N° 15 du nucléotide 2722 au nucléotide 3999) dans le chromosome d'une souche hôte et obtient une souche modifiée,
- on cultive la souche modifiée dans des conditions permettant l'accumulation des précurseurs de l'oléandomycine 10 et
 - on isole ces précurseurs.
 - **40)** Procédé selon la revendication 39 dans lequel l'altération est créée dans la séquence d'ADN correspondant à l'ORF oleG1 (séquence de SEQ ID N° 15 du nucléotide 1437 au
- 15 nucléotide 2714) et dont il résulte au moins l'élimination de l'activité désoaminyltransférase et l'accumulation du précurseur de l'oléandomycine 8,8a-désoxyoléandolide.
 - 41) Thymidine 5'-(trihydrogène diphosphate), P'-[3,4,6-tridésoxy-3-(diméthylamino)-D-.xylo.-hexopyranosyl] ester
- 20 (dTDP-D-désosamine) et les sels d'addition avec les bases.

FIGURE 1

7910	CTGCTTCACGCTCACCAGCCGTATCCTTTCTCGGTTCCTCTTGTGCTCACTGCACCAGG ++++++	7969
7970	CTTCCGGCGCCGCCGCCGGAGGCCACCGCGGGGAAGATCTCGTCCAGTTCGGACAGCGGGAAAGCCGCGCGCG	8029
8030	CCTGCTCGTCCAGGGTCATCGCGGACGCCTTCAGCGCGGAGTCGAGCTGCTCGGGGGTTC ++++++++	8089
8090	GCGGGCCGATGACGGCGCCGGCCGGGCCGGGACAGCACCCATGCGAGCCCCCACCT ++++++++	8149
8150	CGGCCGGGTCTTCGCCGAGGTTGCGGCAGAACTTCTCGTAGGCCTCGATCGCCGGGCGCA +++++	8209
8210	GGGACGCCAACACCTGCGCCCTGCGCCGACTTCACCGCGGTGCCCGCGGCCAACAACAACACCGCGGTGCCCGCGGCCCAACAACAAAAAAAA	8269
8270	GCTTCTCCAGCGCTCCGCTGAGCAGGCCGCCGTGCAGCGGCGACCAGGCGAAGACGCCGA ++++++++	8329

8389	8449	8509	8569	8629	8689	8749
GCCCGTAGGCCTGCGCGGCGGCACCTCCAGCTCGGCGTGCCGGACCGCCAGGTTGT ++++++	ACAGGCACTGGTGGGAGACCATGCCCAGGGAGTGGCGGCGGCGGCGGCGTTCTCCTGCGCGG +++++++	CGGCGATGTGCCAGCCCGCGAAGTTCGACGAGCCGACGTAGGAGACCTTGCCGCTGGCGA 8450 +++++++	CGAGGCTGTCCATGGCCTGCCACACCTCGTCCCACGGCGCGGACCGGTCGATGTGGTGCAAAAAAAA	TCTGGTAGACGTCGATGTGGTCGACGCCCAGCCTGCGCAGCGATCCCTCGCAGGAGGCGA 8570 ++++	TGATGTGCCGCGCCGACAGCCCGCTGTCGTTGACGCGCTCGCT	TGGTCGCCAGCACGGTGTCCTCGCGCCGTCCGCCGCCTGGGCCAGCCA
8330	8390	845	8510	857	8630	8690

8750	GCTCCTCGGTGTGGCCCTTGTAGAGCCGCCAGCCGTACATGTCGGCGGTGTCGAGGCAGT +++++++	8809
8810	TGATGCCGCGGTCCCGGGCGTCGTCCATCAGGCGCAGCGCGTCGTCGTCCTCGACGCGTCTCAGGCGTCGTCGTCGTCGTCGTCGTCGTCGTCGTCGTCGTCG	8869
8870	CGCTGAAGTTCACCGTGCCGAGCCTGCTGGTGAGCAGCGCGGAACGCCCGAGCC +++++++	8929
8930	GCACGTGCGTCGGGGGTCATCGTGGTTCTCTTCCTGCGGCCAGTTCCTC ++++++++	8 6 8 8
8990	GCAGATGCCGACGACCTCGGCGGTGACGCTCCGCGAGCATGTCGTCGCGCATCCGCGC +++++	9049
9050	CGCGCCGGCGCGGTCGTCGAGGACCCGCTTCACCGACTCCCGGAGCTGGTC ++++++++	9109
9110	GGGGGTCAGCTCGGGCACGGCGATCCCCGCCCCGAATTCCTGCGTGCG	9169

9229	9289	9349	9409	9469	9529	9589
GCGCACGCCGGTGTCCCAGCCGTCGGGCAGGATCACCTGCGGCACGCCGTGGATCGCCGC +++++++	GGTGTGCCAGCTCCCGGGTCCGCCGTGGTGCACCGTCGCCGCGCAGGTCGGCAGCAGCGCCCCCCCC	GTGCATCGGGACGAAGCCGACCGTGCGGACGTTGTCCGGGATGTTCGCGACGCCTTCTAG 0 +++++++	CTGCTGCGCGTCGAAGGTCGCGATGATCTCGGCGTCGACGTCGCCGACGGCACCCCAGCAGCAGCAGCAGCAGCAGCAGCA	CTCCTCGATGGAGACCTGCCCGATGCTGTTCTCGCGGCTGGAGATCCCGAGCGTGAGGCA 0 +++++++ GAGGAGCTACCTCTGGACGGCTACGACAAGAGCGCCGACCTCTAGGGCTCGCACTCCGT E E I S V Q G I S N E R S S I G L T L C	CACGCGGCGCCTCGGCCTCGTGCAGCCATTCCGGCACCGGACGGCCCGTTGTA 10 ++++++++-	GTCGACGTAGCGCATCCCGACGGTCTTCAGGCCGGTGTCGAGCCTGATCGCGGCCGGGGCCGGGGCCCGGGGCCCGGCCGG
9170	9230	9290	9350	9410	9470	9530

9590		9649
	P D I T W Q G V V V E E D F A P G G Y K	
L (CTCCAGCGTCCAGGTGAGCCACTCGGCGAGCGGGTCCTCCCGGTGCTCCTCCGGCTGGTC 9709	6076
965U	GAGGTCCAGGTCCACTCGCTCGCCCAGGAGGCCCACGAGGAGGCCGACCAGACCAGAGGCCGACCAGAGGCCCAGGAGG	1)
1		6926
9/10		
((CCGCGCGTGCGGCGTTCCGGTCACCGCCGCGCGATGGGCGCGCGC	9829
07.7.6	GGCGCGCACGCCAAGGCCAGTGGCGGCGCCTACCCGCGCCGCTTCCACTCGCCGAGGCCGAGGCCGAGGCCGCGCGCG) 1)
0		6886
9830 0	GGTCTACTGGTCCAGCCGCGGTGAAGGCCGTCTTGCTCTGGTACGGAAGCTACTCGCA W I V L D P R W K R C F S V M G E I L T	
	_	0000
0686	CAGGCCCGAGTAGTCCCGCATCTTCCAGCCCCACTCGTGCCAGACGTACGGGTCGTCCAC D P S M L A Y F T P T L V T Q M G L L H	ر ب د
C C		10009
0066	GAGGGTCCAGTTCCACCGCCCCAGGGCGAGCTTCAGGTCCGAGGCCTGCATCAGCTA E W T L T A P D R E S F D L S R V Y D I	

CGCCGCGACGA	CTCTGCGGTGG	SACGGTTCGCT	CGAGACGGCCA	GGCGCGCAGTG	CTGCGGGCTGA	TCCGGCTGCGC
-+ 10489	-+ 10549	-+ 10609	-+ 10669	-+ 10729	-+ 10789	-+ 10849
SCGCCCTGCT	SAGACGCCACC	STGCCAAGCGA	SCTCTGCCGGT	CCGCGCTCAC	3ACGCCCGACT	AGGCCGACGCG
A A V	E A T	V T R	S V A	A R L	Q P S	G A A
CCACGTCGAGGCGGTCGGCGCTCGGCGAGACCTCCGGGTCGCGGTTGGCCGCCGCGACGA	CGACCACGACCTCCTCGCCGATCACGTGCTCGCCGAGCCGCACCTCTGCGGTGG	CCGTGCGCCGCTCCAGGTGCAATGCCGGGTGCAGGCGCAGCACCTCGGCGACGGTTCGCT	GCGCGGCGGCGGGTCGTCGGTTCGGCCAGCCCCGGTTCGGCCGAGACGGCCAAACCGCCAAACCGGCCAAGCCGGCCAAACCGGCCAAACCGGCCAAACCGGCCAAACCGGCTCGGGCCAAGCCGGCTCGGGGCCAAGCCGGCTCTGCCGGTCGGGCCAAACCGGCTCTGCCGGTCGGGCCAAACCCGGCTCTGCCGGTCGGGCCAAACCCGGCTCTGCCGGTCGGGCCAAACCCGGCTCTGCCGGTCAAAACCGGCCAAACCCGGCTCTGCCGGTCGGCCAAACCCGGCTCTGCCGGTCGGCCAAACCCGGCTCTGCCGGTCGGCCAAACCCGGCTCTGCCGGTCGGCCCAAGCCGGCTCTGCCGGTCGGCCGAAACCCGGCTCTGCCGGTCGCGTCCGGTCGCCGCTCTGCCGGTCGCGCTCTGCCGGTCGCGCTCTGCCGGTCCGGCCCAAGCCCGCTCTGCCGGTCCGGTCCGGTCCGGCCCAAGCCCGCTCCGGTCCGGTCCGGTCCGCCCCCC	GGACCGCGTCGACCACGGTGTTCGCGGTCATCTCGGCCCCGGCGAACAGGGCGCGCAGTG	CGGGGTCGGCGGCAGCGCGACCGCTGCTTCGGTCACCGCGAGCTGCTGCGGGCTGA	GCTGGGCGTCCAGGCTGACGCGGGCGTCCCACGCGGCGCCGCGCAGCACTCCGGCTGCGC
+++++++	+++++++	+++++++		++++++++	+++++++	+++++++
10430	10490	10550	10610	10670	10730	10790

10909	10969	11029	11089	11149	11209	11269 11269
CGAGCACGGCGCTCATGCCCTGCACCGGTACCTGCCAGGCGAAGTCGCCGACCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGTACAGGGACGTGGCCATGGACGGTCCGCTTCAGCGGCTGGTCCAGGTCCAGGTCCAGGTCCAGTCCAGTCAGCGCTCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCAAAAAAAA	GCCGCGCGCCCGGGGAGCAGCCGGCGAAGCTCTCCGCCAGTTCCCCGACGTCGG 10910 ++++++++	GGACCTCGCCTTCCCAGGACGCGGCGTGCACGTCCCGGAACGGCTGGGCCCACTCGGCGG 10970 ++++++++	GTGGCGCGCCCGCGTCCATTCCGGTGTGCGTCGGTGGCGCGGGTGAACGCGG 11030 +++++++	GGTCGTCGAGCACCTGCCGGGCGGTGGCGTGGTCGGCCACCCAC	TGCGCCGCACCCGGACTCGCGCATCGAGCGGTACCGGCGCTGCGGGTCGTCGTCGTGTCTCTCTTCTTC 11150 ++++++++	CGCACAGCATCGGGTAAGGGTCGCCGTTGCTGCCGTAACCCCCAGTGCAGGCCGCGGG 11210 +++++++

S N <---ORF10 AGTAGACCTCGACGGGTCGGGCCGCGCTAGCCAGCACCAGTACTTAAGIM Q L Q R G L G A R D T T M TCATCTGGAGCTGCCTGCCCAGCCCGGCGCGATCGGTCGTGGATTC T T M <----ORF9

43610 43630 43650 TTTGACAGGTCCGCCACGCGTCCCCCTACTCGACGACCACGCAATGGGCGAACAATAT.	
	AG.
43670 43690 43710	
GAAGGATCAAGAGGTTGACATCGCCTCGTCGAGCCAACGAACCTGTGAACATCTGCAT	ЭT
43730 43750 43770	-
TGACAAGATCAACGGCGGCTACCTACTGTGGTGGCCCAGTGACGGGTTGCCGCACATC	30
10000	J C
43790 43810 43830 GCTGGGGAGATTCTTGAATTTCGCCCGTAGCACCGACCTGGAAAGCGAGCAAATGCT	~~
43850 43870 43890 GGTGAATGGGATCAGTGATTCCCCGCGTCAATTGATCACCCTTCTGGGCGCTTCCGGC	יטיד
	F
V N G I D D I N Q D I I D D	L
ORF13> 43930 43950	
40710	TC.
CGTCGGGAGCGCGGTTCTGCGCGAGCTGCGCGACCACCCGGTCCGGCTGCGCGCGGTG	s S
V G D A V L R L L R D II I V R D II I V	5
40010	~ n
CCGCGGCGAGCGCCCGCGGTTCCGCCCGGCGCGCGGAGGTCGAGGACCTGCGCGCCC	ga D
R G G A I A V I I G II I I I I I I I I I I I I I I	U
	C ED
CCTGCTGGAACCGGGCCGGCCGCCGCGATCGAGGACGCCGACGTGATCGTGCAC	
L L E P G R A A A A I E D A D V I V H	L
44090 44110 44130	~ ~
GGTGGCGCACGCAGCGGGGGGTTCCACCTGGCGCAGCGCCACCTCCGACCCGGAAGCC	
VARAGGSIWKSAIDDII	E
44150 44170 44190	mc.
GCGGGTCAACGTCGGCCTGATGCACGACCTCGTCGGCGCGCTGCACGATCGCCGCAGG	S
K V N V G H H H D H V G H L H D H	ಎ
	7 C
GACGCCGCCGTGTTGCTCTACGCGAGCACCGCACAGGCCGCGAACCCGTCGGCGCCCC	AG S
I t I A II	3
44470 · ·	CC
CAGGTACGCGCAGCAGAGACCGAGGCCGAGCGCATCCTGCGCAAAGCCACCGACGAG	G
I I I Q Q I I I I I I I I I I I I I I I	G
44770	CC
CCGGGTGCGCGGCGTGATCCTGCGGCTGCCCGCCGTCTACGGCCAGAGCGGCCCGTCC	
X \ X G \ T T T T T T T T T T T T T T T T T T	G
44390 44410 44430	om.
CCCCATGGGGGGGGGGGTGCCAGCGATGATCCGGCGTGCCCTCGCCGGCGAGCCG	CT
PMGRGVVAAMIRRALAGEP	Lı
44450 44470 44490	
44400	30
CACCATGTGGCACGACGGCGCGCGCGCGACCTGCTGCACGTCGAGGACGTGGCC	AC
CACCATGTGGCACGACGGCGGCGTGCGCCGCGACCTGCTGCACGTCGAGGACGTGGCCTT M W H D G G V R R D L L H V E D V A	AC T
CACCATGTGGCACGACGGCGGCGTGCGCCGCGACCTGCTGCACGTCGAGGACGTGGCC T M W H D G G V R R D L L H V E D V A 44510 44530 44550	Т
CACCATGTGGCACGACGGCGGCGTGCGCCGCGACCTGCTGCACGTCGAGGACGTGGCC T M W H D G G V R R D L L H V E D V A 44510 44530 44550 CGCGTTCGCCGCGCGCGGGGACCACGACGCGCGCGGCGCGCGC	T GG
CACCATGTGGCACGACGGCGGCGTGCGCCGCGACCTGCTGCACGTCGAGGACGTGGCC T M W H D G G V R R D L L H V E D V A 44510 44530 44550 CGCGTTCGCCGCCGCGCTGGAGCACCACGACGCGCTGGCCGGCGCACGTGGGCGCTGAGCACCACGACGCGCTGGCCGGCGCACGTGGGCGCTGAGCACGTGGGCGCTGAA F A A A L E H H D A L A G G T W A L	T GG
CACCATGTGGCACGACGGCGGCGTGCGCCGCGACCTGCTGCACGTCGAGGACGTGGCC T M W H D G G V R R D L L H V E D V A 44510 44530 44550 CGCGTTCGCCGCCGCGCTGGAGCACCACGACGCGCTGGCCGGCGCACGTGGGCGCTGAGCACCACGACGCGCTGGCCGGCGCACGTGGGCGCTGAGCACGCGCGCG	T GG G
CACCATGTGGCACGACGGCGGCGTGCGCCGCGACCTGCTGCACGTCGAGGACGTGGCC T M W H D G G V R R D L L H V E D V A 44510 44530 44550 CGCGTTCGCCGCCGCGCTGGAGCACCACGACGCGCTGGCCGGCGCACGTGGGCGCTG A F A A A L E H H D A L A G G T W A L 44570 44590 44610 CGCCGACCGATCCGAGCCGCTCGGCGACATCTTCCGGGCCGTCTCCGGCAGCGTCGCC	T GG G CG
CACCATGTGGCACGACGGCGGCGTGCGCCGCGACCTGCTGCACGTCGAGGACGTGGCC T M W H D G G V R R D L L H V E D V A 44510	T GG G CG
CACCATGTGGCACGACGGCGGCGTGCGCCGCGACCTGCTGCACGTCGAGGACGTGGCC T M W H D G G V R R D L L H V E D V A 44510	T GG G CG R
CACCATGTGGCACGACGGCGGCGTGCGCCGCGACCTGCTGCACGTCGAGGACGTGGCC T M W H D G G V R R D L L H V E D V A 44510 44530 44550 CGCGTTCGCCGCGCGCTGGAGCACCACGACGCGCTGGCCGCGCGCG	T GG G CCG R GGC

		44690						447	10					4	4730)		
CAA	CGZ	ACTTCC	GCA	GCGZ	ACGA	ACA	rcg	ACT	CCA	CCG	AGT:	rccc	GCAC	SCC(GGA(CCG	GCT(GGCG
-		FR	S			Ι				Ε		R	S	R	${f T}$	G	W	R
		44750						447						-	479			
CCC	CCC	GGTTT	ccc	rca(CCGA	ACGO	GCA	TCG.	ACC	GGA(CGG	rgg	CCG	CCC'	TGA		CCA	CCGA
p		V S				G		D			V		Α	L		P	\mathbf{T}	E
-		44810			_	_		448	3.0					4	485	0		
CCA	CCZ	CTAGT	200	2 2 T)	ልሮሞር	2CT(~GC(CA	CGG	CAC	GCA	CTT	CCA	GGG.	ACTG
			المال	3012	-AC 1 (JC 1(3230	.010	C 1 1 1		J C 1 1							
Ε	H		Ъ	7.7	L	L	Т	S	F	Α	Н	R	T	Н	F	0	G	L
•		V				1	1	٥	r	A	11	Γ	1	11	1	V	J	_
			FT4		->			4.40	0.0					1	491	Λ		
		44870			~ ~ ~	~~~		448	90	TO 7.	~~~	20 m/	700				~~ »	
GTC	CCC	GCTGGC	GTG													الحات	CA	5000
V	Р	L A	W	A	L	R	\mathbf{T}	A		Н	D	V	R	V		A	Q	P
		44930						449						_	497			0010
GCC	CT(CACCGA		GGT												CTC		CCAC
A	L	T D	A	V	I	G	Α	G	L	${ m T}$	А	V	P		_	S	D	H
		44990						450							503			
CGG	CT	GTTCGA	CAT	CGT	CCC	GGA.	AGI	CGC	CGC	TCA	GGT	GCA(CCG	CTA	CTC	CTT	CTA	CCTG
	L			V				Α		Q	V	Η	R	Y		F	Y	L
		45050						450	70					4	509	0		
GAC	ירוירי)	CTACCA	CCG	CGA	GCA	GGA	GCI	GCA	CTC	GTG	GGA	GTT(CCT	GCT	CGG	CAT	GCA	GGAG
		Y H						Н		W		F		L		Μ		E
ט	*	45110		_	~	_	_	451						4	515	0		
CCC	י א רי	CTCGCG		CCT	אַמייז עַ		ഭവ			$\alpha \alpha \gamma$	CGA	CTC	СТТ	CGT	CGC	CGA	GCT	GGTC
A A								V		N	D		F	V		E	T	
A	Ţ	45170	• •	V	1	r	٧	451		14	ט	D	-	•	521		_	
CIA (- mm	45170 CGCCCG		CMC	~~~	maa	mc 7			$\sim \sim 10^{-1}$	CHC	CCA	GCC.	_	_		CGC	CGGC
								L		L	W	E	P	F	T	F	A	G
D	F	A R	_	W	ĸ	P	ט	452		1.1	VV	خد	-	_	527	_	••	Ü
		45230		~~~	~~~	~~~	300			000	000	CCE	\sim \sim \sim	_		-	CGA	CCTC
	_	CGCGGC											L	W W	G	S	D	L
А	V			А	С	G	A	A		A	ĸ	ш	ப		533		ט	ם
		45290						453			~~~		3.00	_			~~~	cccc
AC(CGG	CTACTI	CCG	CGG						ACG	CCT	GCG -						
${f T}$	G	Y F	R	G	R	F	Q	A		R	L	R	R	P.		ΣE	D	R
		45350	1					453							539			
CCC	GGA	CCCGCT	GGG	CAC	GTG	GCT	'GA(CCGF	AGGI	'CGC	GGG	GCG	CTT	ÇGG	CG'I	'CGA	A'1"1	CGGC
Ρ	D	P L	G	\mathbf{T}	W	L	${ m T}$	E	V	Α	G	R	F	G	V	Ε	F'	G
		45410)					454	130					4	545	0		
GA	GGA	CCTCGC	GGT	CGG	GCA	GTG	GT	CGG'	rcga	CCA	GTI	GCC	GCC	GAG	$\Gamma T T$	CCG	GCT	'GGAC
E	D	L A	V	G	0	W	S	V	D	Q	L	P	P	S	F	R	L	D
_	_	45470		_	~			454		~				4	551	.0		
7 . C (acc	AATGGA	, , , , , , , , ,	CGT	ጥርጥ	CGC	GC(GCC	CTA	CAA	.CGG	CGC	GTC	GGT	GGI	TCCG
TIC.		M E	т 11 11 10	V	V	Δ	R	T	Τ.	P	Y	N	G	A	S	V	V	P
1	J	45530		٧	V	4.7	11		550	-	-	-,	_	4	557	0		
C	\sim m \sim	GCTCA	, ,		יראר	יחיבר	'C 7 (ר א יו	стс	тап	ראריי		_		CTC	CGGA
		L K	SCHA TZ) -	OAU C	ス	AD. T	_ 1 C ()	T		T	T	G	G	- T	S	G
D	W			G	5	A	1	154	510	-	_	_	-		1563	ເດັ	_	_
~-	~~~	45590)		maa		ma.				י א ר	COT					cco	שייים ב
-	-	GCTCGC	CGC	JUGA -	NIGC -	.CGA	TC.	AGT".	الالحال	رور ز	JAU m	1 リウ. T	70 J	4JD.	1 JUC 1	. UUC 7	JUE. P	E WATIC
\cdot L	G	L A		D	Α	D	Q	F.	A	K	.1.	ىل	A	V,	ப 1569	A.	71	T,
		45650)					45	570			.~~					~ ~ ~	(
GA		CGAAA	rcg:	rggi	CATT	GGG	TT	CCG	JTCC	:GG <i>I</i>	A.I.VC	CTC	.CGC	ا'ی)ی. 	LACC	ADD.	ACAA	TTTAJE
D	G	E I	V	V	\mathbf{T}	G	S	G	P	D	\mathbf{T}	S	А	V	P	D	N	I

WO 99/05283 PCT/FR98/01593

								13	, 00									
		45710						457							5750			
CGT	TTC	GTGGA	TTT	CGT	rcc	GAT(GGG	GCG1	rtc'l	CCT	CCA	GAA	CTG	CGC	GGCG	ATC	TAC	CAC
																I		H
10		45770		•	-		_	457		_	×		•		5810			
~~~	000	CGGGGC		7 7 C		200	~ ~ ~			ת ייים	~~ x	ccc	א א פוויר				ТС 7	روسس
H	G	G A		.1.	W	A	Τ.	A		н	Н	G	Τ		_	I	S	V
		45830						458							5870			
GCA	CA7	GAATG	GGA'	TTG	CAT	GCT.	ACC	GCGC	GCC <i>I</i>	AGCA	.GAC	CGC	GGA/	ACT	GGGC	:GCG	GGZ	AATC
Α	H	E W	D	С	M	L	R	G	Q	Q	${ m T}$	Α	Ε	L	G	A	G	I
		45890	1					459	910	-					5930			
ma C	CTC	CCGGCC		CCAC	2011	ימטי	TCC			י איי	ccc	CAC	CCC	ጉርጥ -	CACC	CAC	CTC	CTC
									S			S					V	
Y	نــ	R P		L	V	D	A			ш	A	۵	^		_	<b>a.</b> .	V	V
		45950						459						_	5990		~~~	2000
GAG	GAC	CCCAC														TCC		
E	D	P T	Y	${f T}$	$\mathbf{E}$	N	Α	V	K	L	R	E	$\mathbf{E}$	Α	${ m L}$	S	D	P
		46010	)					460	030					4	6050			
ACG	יררי	GCAGG <i>I</i>	GAT	CGT	CCC	GCG.	AC:	rgg <i>i</i>	AGGA	AACT	CAC	:GCG	CCG	CCA	.CGCC	GGC	CTAC	GCGG
		Q E															*	
1	L	_		V	Ψ.	1.			090	-	•	•			6110			
		46070		~m~.	~ ~ m	~~~				a a ma		1200	~ A ~				000	N C C C
'1"1"1	CCC.	GACCGA	CAA	G'I'C	JG'I'	CCG.	ACA	AGCI	ACAC	CTC	.رنون	AGG	GAG	LAG				
															M	-		G
															OF	RF15	5	>
		46130	)					461	150					4	6170	)		
CGC	GT	rcgcc	AGC	TTT	ACG.	ACC	GG:	rrc:	raco	CGCG	GCC	:GGG	GCA	AGG	ACTA	CGC	CGG	CCGA
		A I										G			Y	Α		E
G	T.	46190		_	ט	10	•		210		, .		1.		6230			_
				~~~	~~~	ma a				2000	mac	m	000	-			חרירו	חריים א
		CGCAG																
Α	Α	Q 1		R	L	V	1			R I	. E	S	A		S	L	L	D
		46250							270						6290			
CGT	GG(CCTGC	GGA	.CCG	GCA:	CCC	AC(CTG	CGC	CGGT	TCC	CCG	ACC'	TCI	'TCGA	ΔCGP	4CG	IGAC
V	Α	C (T	G	T	Н		Ĺ J	R I	R F	r A	\ D	L	F	D	D	V	${f T}$
		46310)						330					4	6350)		
CGG	יכרי	rggag(rccc	caa	CGA	TG			чт СС		CGC	CGC				GCA	TCCC
		E I				M									G			P
G	L			Ŋ	A	141				v F	7 1		Q					-
		46370							390						6410			~~~~
		rgcag(I'CA(CCTG
V	L	Q (3 D	M	R	D)]	F 2	A :	LI) F	? E	F	Γ) A	V	${ m T}$	С
		46430							450						6470)		
$C\Delta^{\eta}$	الركات	TCAGC		ጥርር	GGC	$\Delta \subset \Delta$	TG		CAC	300		SAGO	TGG	ACC	'AGGC	GCT	rgg	CGTC
		S																
1,1	Г				11	. 171	٠.		510		, T		י		6530			
		4649			~ ~ ~	~~~					-m-a-c	maa	13 3 A				חררי	~~~
CTT		CCCGC																
F	Α	R	I L	A	. P	G	, 1			V 1	/ \	/ E	P		I W		P	E
		4655							570						6590			
GGA	ACT	TCCTC	GACG	GCT	ACG	TGG	CC	GGT(GAC	GTG	STGC	CGCG	ACG	GCG	SACCI	rga(CGA'	TCTC
D		L) [Ÿ	7.7	Δ		G .	D.	v 7	<i>]</i> F	ξ Γ.) (G	Γ	L	\mathbf{T}		S
ב	_	4661		. 4	v	4.1	•		630	- 1	•		J		6650			-
000	300			1000	maa	000						א אטרי	መረረ				200	ተርርጥ
		TCTCG													1 T C C &	7.7 7.7	ひひと	1001
R	V	S, I	A S	V	R	. A	7			A. 7.	L' F	< M	I E		H		V	V
		4667							690						6710			
GGC	CCG	ACGCG(GTGA	ACG	GTC	CGC	GG	CAC	CAC	GTG	GAGO	CACI	'ACG	AGA	ATCAC	CGC'	ГСТ	TCGA
		Α '															F	
					_	_		- '		_	_							

				٠			٠	4/00									
		46730						5750						770			
GCG	GCZ	AGCAGTA	CGA	GAA	GGC	CTT	CAC	CGCGG	CCGG	TTC	CGC	TGT	GCA	GTA	CCT	GGA	GGG
R	Q	Q Y	E	K	Α	F	T	A A	G	С	Α	V	Q	Y	L	E	G
		46790					46	5810					46	830			
CGG	ACC	CTCCGG	ACG	CGG	GTT	GTT	CGT	CGGTG	TGCG	CGG	ATG	ACC	CGT	'GCG'	TTC	GCG	$ ext{TTT}$
	P		R				V		R		*						
_		46850						5870					46	890			
TCC	GП	CCTGGC	ACA	GGT	GAT	'CCG			GCCC	TTT	CCC	CGC	CGI	'GAC	CGG	ACC	CTT
		46910						5930						950			
ACA	GTC	SAGTGCG	GGT	СТТ	GAT	'CGA			GGCG	GCA	GCA	AGC	GGA	GCC	GTC	GAC	GAC
1101.	.01	VR		L				A R			Q			P	S	\mathbf{T}	T
		ORF16	•	_	_	_				~	~						
		46970	•				46	5990					47	010			
ACC	CCZ	AGGGAGA	СТС	САТ	GGG	тса			GCGA	\CC6	GAC	GAT	-		ATC	CTC	GCA
	_	G E	S				R			R	T	I	P	E	S	S	Q
1	V	47030	D	11	J	ע		7050		* `	*		-	070	_	_	*.
CAC	ccc	CAACGCG	ىلىن ئارىكى	CCT	CCT	rccc			רב ב	ירר	יר אר	CGC			GGA	ΣΣΟ	CCA
T	.CGC		F					G 0		P	T	A		A A	E	Τ	Н
7	A	47090	Ľ	ш	ш	G		7110	, 1	1	_	77	_	130	ם	_	**
CCA	C TO	GGCTGAC		~ A A	ccc	·~~	_		recen		CCT	ccc			acc.	سب	CAG
		JAOLIDE T. T	.ccs R	N				Q F			V				P	F	S
ט	VV	47150	Τ.	1/1	G	A		7 17 0		نا	V	A	_	'190	Ē	T.	S
CCC	יר א ר	rggacco	ירותר	СПС	СПП	ייייי			'ACCC	יר אכ	ССТ	rece			CTC	caa	GCG
		D R	W	S	F			E I				A			S	G	R
A	1,1	47210	VV	ಎ	Г	Q		7230	J	Γ.	L	Α		250	J	G	10
\chim\(\text{u}\)		TCTCCAT	חררא	ccc	CCT	זריר א				Cmn		СТС			CCX	CTC	CAT
("1"1	3 '1"	$\Gamma \cup \Gamma \cup \cup A \cup$															
F	F	S I	E	G			V	R I		F	G	W	R	R	D	W	I
F	F	S I 47270	Ε	G	L	Н	V 4	R 1 7290	N	F	G	W	R 47	R '310	D	W	I
F CCA	F \GC	S I 47270 CCATCA	E rcgt	G 'GCA	L .GCC	H CGA	V 4' GAT	R 1 7290 CGGC1	TCCI	F CGC	G SCCT	W CAT	R 47 CGI	R 310 CAA	D GGA	W .GTT	I CGA
F CCA	F \GC	S I 47270 CCATCAT I I	Ε	G	L .GCC	H CGA	V 4' GAT I	R 1 7290 CGGC1 G F	TCCI	F CGC	G	W	R 47 CGT V	R 310 CAA K	D	W	I
F CCA Q	F \GC(P	S I 47270 CCATCAT I I 47330	E PCGT V	G 'GCA Q	L .GCC P	H CGA E	V 4' GAT I 4'	R 7 7290 CGGC7 G F 7350	TOCI	F CGC G	G GCCT L	W CAT I	R 47 CGT V 47	R 310 CAA K 370	D GGA E	W GTT F	I CGA D
F CCA Q CGG	F \GC(P TG'	S I 47270 CCATCAT I I 47330 IGCTGCA	E PCGT V ACGT	G 'GCA Q 'GC'I	L .GCC P	H CGA E CGCA	V .GAT(I 4'	R 77290 CGGCT G F 7350 CAAGO	TOCI TCCI L GCCG	F TCGC G AGCC	G SCCT L CGGG	W CAT I CAA	R 47 CGT V 47 CAT	R 310 CAA K 370 CAA	D GGA E CGC	W GTT F	I CGA D
F CCA Q	F \GC(P TG'	S I 47270 CCATCAT I I 47330 IGCTGCA L H	E PCGT V	G 'GCA Q	L .GCC P	H CGA E CGCA	V .GAT I 4' .GGC	R 1 7290 CGGC1 G F 7350 CAAGC	TOCI TCCI L GCCG	F CGC G	G SCCT L	W CAT I	R 47 CGT V 47 CAT	R 310 CAA K 370 CAA N	D GGA E	W GTT F	I CGA D
F CCA Q CGC G	F GCC P TG V	S I 47270 CCATCAT I I 47330 IGCTGCA L H 47390	E CGT V ACGT V	G PGCA Q PGCT L	L GCC P PGGC A	H E E CGCA Q	V 4'.GAT(I 4'.GGC(A 4	R 177290 CGGCTG F G F 7350 CAAGC K 77410	TOOT TOOT L GCCGA	F TCGC G AGCC P	G GCCT L CGGG G	W CAT I CAA	R 47 VGT 47 CAT	R 310 CAA 370 CAA N 430	D GGA E CGC A	W GTT F CGT V	I CGA D CCA Q
F CCA Q CGC G GCT	F AGCO P STGO V	S I 47270 CCATCAT I I 47330 IGCTGCA L H 47390 CCCCGAO	E V ACGT V	G PGCA Q PGCT L	L GCC P CGGC A	H CCGA E CGCA Q CGAC	V GAT(I 4'.GGC(A 4':CCG(R 177290 CGGCT G F 7350 CAAGC K 77410 CAGC7	TOCT TOCT L GCCGA E AACTA	F TCGG G AGCG P	G ECCT L CGGG G	W CAT I CAA N	R 47 V 47 CAT I 47	R 7310 CAA K 7370 CAA N 7430	D GGA E CGC A	W GTT F CGT V	I CGA D CCA Q GAA
F CCA Q CGC G	F GCC P TGC V	S I 47270 CCATCAT I I 47330 FGCTGCA L H 47390 CCCCGAG	E CGT V ACGT V CCCT	G GCA Q 'GC'I L 'GCA Q	L GCC P CGGC A	H CCGA E CGCA Q CGAC	V 4'.GAT(I 4'.GGC(A 4'.CCG(R 17290 CGGC1 G F 7350 CAAGC K 7410 CAGC7	TOCT L GCCGA E ACTA V	F TCGC G AGCC P ACAC	G GCCT L CGGG G	W CAT I CAA	R 47 V 47 CAT I 47 CCF	R 2310 CAA 370 CAA 7430 ACCG	D GGA E CGC A	W GTT F CGT V	I CGA D CCA Q
F CCA Q CGG G G GCT L	F GCC P GTG' V CCTC S	S I 47270 CCATCAT I I 47330 IGCTGCA L H 47390 CCCCGAC P T 47450	E CGT V ACGT V CCCT	G GCA Q rGCT L 'GCA	L GCC P CGGC A	H CCGA E CGCA Q CGAC	V 4'.GAT(I 4'.GGC(A 4':CCG(R	R 17290 CGGC1 G F 7350 CAAGO K 7410 CAGC7 S N	TOCT L GCCGA E AACTA	F TCGO G AGCO P ACAO T	G L CGGG G CCGG	W CAT I CAA N CGT V	R 47 V 47 CAT 1 47 CCAT 47	R 7310 CAA K 7370 CAA N 7430 ACCG R	D GGA E CGC A CGG	W GTT F CGT V CTC	I CGA D CCA Q GAA K
F CCA Q CGG G G GCT L	F GCC GTG' V CCT' S	S I 47270 CCATCAT I I 47330 IGCTGCA L H 47390 CCCCGAC P T 47450 GGTTCAT	E TCGT V ACGT V CCCT L	G GCA Q TGCT L TGCA Q	L GCC P CGGC A LGGC A	H CCGA E CGCA Q CGAC T	V 4'.GAT'(1 4'.GGC(A 4'.CCG(R 4'.CCG(R 17290 CGGC1 G F 7350 CAAGC K F 7410 CAGCF S N 7470 CACGC	TOOT TOOT L GCCGA E AACTA Y	F TCGC G AGCC P ACAC T	G GCCT L CGGG G GCCGG	W CAT I CAA N CGT V	R 47 V 47 CAT I 47 CCF H 47	R 7310 CAA 7370 CAA 7430 ACCG R 7490	D GGA CGC A CGG G	W GTT F CGT V CTC S	I CGA D CCA Q GAA K
F CCA Q CGG G G GCT L	F GCC GTG' V CCT' S	S I 47270 CCATCAT I I 47330 IGCTGCA L H 47390 CCCCGAC P T 47450 GGTTCAT	E TCGT V ACGT V CCCT L	G GCA Q TGCT L TGCA Q	L GCC P CGGC A LGGC A	H CCGA E CGCA Q CGAC T	V 4'.GAT(1 4'.GGC(A 4'.CCG(R 4'.CGG(G	R 17290 CGGCT G F 7350 CAAGC K A 7410 CAGCA S N 7470 CACGC	TTCCT L GCCGA AACTA V CGCCG P	F TCGC G AGCC P ACAC T	G GCCT L CGGG G GCCGG	W CAT I CAA N CGT V	R 47 V 47 CAT I 47 CCA H 47 CCA	R 7310 CAA 7370 CAA 7430 ACCG R 7490 CGT	D GGA E CGC A CGG G	W GTT F CGT V CTC S	I CGA D CCA Q GAA K
F CCA Q CGG G G G GCT L GGT V	F AGCO P CTTG V CTTCTCC R	S I 47270 CCATCAT I I 47330 IGCTGCA L H 47390 CCCCGAC P T 47450 GGTTCAT F I 47510	E CGT V ACGT V CCCT L CGA E	G GCA Q GCTA Q GTA Y	L GCC P P P GGC A A ACTT F	H CCGA E CGCA Q CGAC T TCAA	V 4'.GAT(4'.GGC(A 4'.CCG(R 4'.CGG(G 4'	R 17290 CGGCT G F 7350 CAAGC K F 7410 CAGCF S N 7470 CACGC T F	TTCCT T L SCCGA E AACTA Y CGCCC R P	F TCGC G AGCC P ACAC T CGAC	G L CGGG G CCGG G CCGG R	W CAT I CAA N CGT V GAT	R 47 V 47 CAT 1 47 CCF H 47 CCT L	R 7310 CAA 7370 CAA 7430 ACCG R 7490 CGT V 7550	D GGA E CGC A CGG G CGA	W GTT F CGT CCTC S CCTC	I CGA D CCA Q GAA K CGCT L
F CCA Q CGG G G GCT L GGT V CCA	F AGCO P CTG V CCTO S CCCO R	S I 47270 CCATCAT I I 47330 IGCTGCA L H 47390 CCCCGAC P T 47450 GGTTCAT F I 47510 CCGAGCA	E CGT V ACGT V CCCT L CGA E AGGG	G Q Q GCTA Q Q QGTA Y	L GCC P GGC A AGGC A CTT	H CCGA E CGCA Q CGAC T CCAA N GGTT	V 4' GAT(1 4' GGC(A 4' CCG(R 4' CGG(G 4' CCGT(R 17290 CGGC1 G F 7350 CAAGC K 7410 CAGCF S N 7470 CACGC T F 7530 GCGCF	TTCCT TCCT TCCT TCCT TCCT TCCT TCCT TC	F CGC P ACAC T CGAC S	G GCCT L CGGG G CCGG R ACCG	W CAT I CAA N CGT V GAT I	R 47 VGT 47 CAT 47 CCAT 47 CCAT	R 7310 7370 K 7370 7430 7430 R 7490 7550 R 76GT	D GGA CGC A CGG CGA CGA	W GTT F CGT V CTC S CGT V	I CGA D CCA Q GAA K CGCT L
F CCA Q CGG G G GCT L GGT V CCA	F AGCO P CTG V CCTO S CCCO R	S I 47270 CCATCAT I I 47330 IGCTGCA L H 47390 CCCCGAC P T 47450 GGTTCAT F I 47510	E CGT V ACGT V CCCT L CGA E AGGG	G Q Q GCTA Q Q QGTA Y	L GCC P GGC A AGGC A CTT	H CCGA E CGCA Q CGAC T CCAA N GGTT	V 4'.GAT(I 4'.GGC(A 4'.CCG(C CCG(CCT(L	R 17290 CGGC17350 CAAGCA S N 7410 CAGCA T F 7530 GCGCA	TTCCT TCCT L CCCGA E AACTA Y CCCCC R P AAGCC R	F CGC P ACAC T CGAC S	G GCCT L CGGG G CCGG R ACCG	W CAT I CAA N CGT V GAT I	R 47 CGT V 47 CAT I 47 CCCI L 47 ACAT M	R 7310 CAA 7370 CAA 7430 ACCG R 7490 CGT V 7550 CGGT V	D GGA E CGC A CGG G CGA D CGT V	W GTT F CGT V CTC S CGT V	I CGA D CCA Q GAA K CGCT L
F CCA Q CGG G GCT L GGT V CCA Q	F AGCO P GTG' V CCTCCO R AGTG	S I 47270 CCATCAT I I 47330 IGCTGCA L H 47390 CCCCGAC P T 47450 GGTTCAT F I 47510 CCGAGCA E Q 47570	E PCGT V ACGT V CCCT L PCGA E AGGG	G GCA Q CGCA Q GTA Y GCGC A	L GCC P GGC A GGC A CTT F CGTC W	H CGAA CGAC T CAA N GGTT F	V 4'.GATC A 4'.CCGC R 4'.CCGC G 4'.CCCTC L 4	R 17290 CGGC17350 CAAGC4 S 17410 CAGC4 S 17470 CACGC T 17530 GCGC4 R 17590	TOCT TOCT L SCCGA E AACTA Y CGCCC R AAGCC R	F TCGC G AGCC P ACAC T T CGAC S GCAA	G L CGGG G CCGG R CCCG R	W CAT I CAA N CGAT V GGAT I GGAA N	R 47 CGT V 47 CAT I 47 CCGA H 47 CCGA M 47	R 7310 CAA 7370 CAA 7430 CCG R 7490 CCGT V 7550 CGGT V 7610	D GGA E CGC A CGG G CGA D CGT V	W GTT F CGT V CCTC S CGT V	I CGA D CCA Q GAA K CGCT L
F CCA Q CGG G G CTI L CCA Q CCA Q GTT	F AGCO P V CCTO S CCCO R AGTO S	S I 47270 CCATCAT I I 47330 IGCTGCA L H 47390 CCCCGAC P T 47450 GGTTCAT F I 47510 CCGAGCA E Q 47570 ACGACCT	E PCGT V ACGT V CCCT L PCGA E AGGG	G GCA Q CGCA Y GCGC A CCGA	L GCC P GGCC A GGCC A CGTC W	H CGAA CGAA N GGTT F ACCO	V 4' GATG GGCG A 4' CCCGG G 4 CCCTG L 4 CGAA	R 17290 CGGCT G F 7350 CAAGCF S N 7470 CACGC T F 7530 GCGCF R F 7590 CTTCC	TOOT TOOT L SCOGA E AACTA Y CGCCC R AAGCC R CGGTC	F TCGC G AGCC P ACAC T CGAC S GCAI N	G CGGG G CCGG R CCGG R	W CAT I CAAA N CCGT V GGAA I CCGT	R 47 47 47 47 47 47 47 47 47 47 47 47 47	R 7310 CAA 7370 CAA 7430 ACCG R 7490 CGT V 7610 CGCA	D GGA E CGC A CGG G CGA D CGT V GCT	W GTT F CGT V CCTC S CGG V CCGA E	I CGA D CCA Q GAA K CGCT L GGT V
F CCA Q CGG G G CTI L CCA Q CCA Q GTT	F AGCO P V CCTO S CCCO R AGTO S	S I 47270 CCATCAT I I 47330 IGCTGCA L H 47390 CCCCGAC P T 47450 GGTTCAT F I 47510 CCGAGCA E Q 47570 ACGACCT	E PCGT V ACGT V CCCT L PCGA E AGGG	G GCA Q CGCA Y GCGC A CCGA	L GCC P GGCC A GGCC A CGTC W	H CGAA CGAA N GGTT F ACCO	V 4' GAT(GGC) A 4' CCGG A 4' CCGG A' CCCT L 4 CGAA	R 17290 CGGCT G F 7350 CAAGCF S N 7410 CACGC T F 7530 GCGCF R F 7590 CTTCC F F	TOCT TOCT L GCCGA ACTA ACTA V CGCCC R AAGCC R CGGTC R CGGTC R CGGTC R CGGTC R	F TCGC G AGCC P ACAC T CGAC S GCAI N	G CGGG G CCGG R CCGG R	W CAT I CAAA N CCGT V GGAA I CCGT	R 47 47 47 47 47 47 47 47 47 47 47 47 47	R 2310 CAA 370 CAA 430 CCG R 490 CCGT V 610 CGCA	D GGA E CGC A CGG G CGA D CGT V GCT	W GTT F CGT V CCTC S CGG V CCGA E	I CGA D CCA Q GAA K CGCT L GGT V
F CCA Q CGG G GCT L GGT V CCA Q GTT	F AGCO P STG V CCT S CCC R AGT S CCG D	S I 47270 CCATCAT I I 47330 IGCTGCA L H 47390 CCCCGAC P T 47450 GGTTCAT F I 47510 CCGAGCA E Q 47570 ACGACCT D L 47630	E PCGT V ACGT L PCGA E AGGG G P	G GCA Q GCA Y GCGA Y GCGCA CCGCA	L AGCC P CGGC A AGGC A CTT F CGTC W AGC H	H CCGA CGAC T CCAA N GGTT F ACCC	V 4'. GAT(GGC) A 4'. CCG(CCT) A CCT L 4 CGAA N 4	R 17290 CGGCTGGCFATCGGCFFFFFFFFFFFFFFFFFFFFFFFFF	TOOM TOOM TOOM TOOM TOOM TOOM TOOM TOOM	F CCGC P ACAC T S S GCA N GGCC L	G CGGG G CCGG R ACCG R	W CAT I CAA N CGT V GGAA N CGGT V CGGT V	R 47 47 47 47 47 47 47 47 47 47 47 47 47	R 2310 CAA 370 CAA 1430 CCG R 2490 CGT V 2550 CGCA 2670	D GGA E CGC A CGG G CGA D CGT V GCT	W GTT F CGI V CCTC S CGT V CGA E CGCG R	I CGA D CCA Q GAA K CGCT L GGT V
F CCA Q CGC G GCT L GGT V CCA Q GTT F	F AGCO P TOTO S TOTO R AGT S TOG	S I 47270 CCATCAT I I 47330 FGCTGCA L H 47390 CCCCGAC P T 47450 GGTTCAT F I 47510 CCGAGCA E Q 47570 ACGACCT D L 47630	E PCGT V ACGT L PCGA G G P ACGA	G GCA Q GCA GCGA CCGA E	L GCC P GGC A AGGC A CGTC W AGCA H ACGT	H CCGA CGAC T CAA CGAC F ACCC	V 4' GAT(I 4' GGC(A 4' CCG(CCT) L 4 CGAA CGAA CGAA	R 17290 CGGC1 G F 7350 CAAGC K 17410 CACGC T F 7530 GCGCA R F 7590 CTTCC F F 7650 CATGC	TOCT TOCT L SCCGA E AACTA Y CGCCC R AAGCC R CGGTC R GACCT SACCT SA	F TCGG G AGCC P ACAC T CGAC S ACGCC L IGCC	GCAC	W CAT I CAA N CCAA N CCGT V CCGT V CCGT	R 47 CGT V 47 CAT I 47 CCCA H 47 CCCA M 47 CCGG A 47 CCGGC A CCGGC	R 7310 CAA 7370 CAA 7430 CCG R 7490 CGGT V 7610 CGCA 7670 CGCA	D GGA E CGG A CGG G CGA D CGT V GCT CTG	W GTT F CGT V CTC S .CGT V CGA E CGCG R	I CGA D CCA Q GAA K CGCT L .GGT V
F CCA Q CGC G GCT L GGT V CCA Q GTT F	F AGCO P TOTO S TOTO R AGT S TOG	S I 47270 CCATCAT I I 47330 IGCTGCA L H 47390 CCCCGAC P T 47450 GGTTCAT F I 47510 CCGAGCA E Q 47570 ACGACCT D L 47630	E PCGT V ACGT L PCGA G G P ACGA	G GCA Q GCA GCGA CCGA E	L GCC P GGC A AGGC A CGTC W AGCA H ACGT	H CCGA CGAC T CAA CGAC F ACCC	V 4'.GAT(I 4'.GGC) A 4'.CGG(A'.CGG(I 4'.CGAA I GAA I GAA	R 17290 CGGC17350 CAAGC6 F 17410 CACGC T 17530 GCGC6 R 17590 CTTCC F 17650 CATGC M I	TOOTH	F TCGG G AGCC P ACAC T CGAC S ACGCC L IGCC	GCAC	W CAT I CAA N CCAA N CCGT V CCGT V CCGT	R 47 CGT V 47 CAT I 47 CCA H 47 CCA M 47 CCGA A CCGC A CCGC A CCGC A CCGCC A CCCC A CCC A CCCC A CCC CCC A CCCC A CCC CC	R 7310 CAA 7370 CAA 7430 CCG R 7490 CGGT V 7610 CGCA 7670 CGCA	D GGA E CGG A CGG CGA D CGT CGT CCTG	W GTT F CGT V CTC S .CGT V CGA E CGCG R	I CGA D CCA Q GAA K CGCT L .GGT V
F CCA Q CGG G GCT L GGT V CCA GTT F GAT	F AGCO P TCTO S TCCO R AGTO S TCG. D TGC	S I 47270 CCATCAT I I 47330 IGCTGCA L H 47390 CCCCGAC P T 47450 GGTTCAT F I 47510 CCGAGCA E Q 47570 ACGACCA D L 47630 TGCACCA H H 47690	E PCGT V ACGT L PCGA E AGGG G P ACGA	G GCA Q CGCA Y GCGC A CCGA E ACAA	L GCC P GGC A GGC A CGTC W AGC H ACGT	H CGAA Q CGAC T CAA N GGTT F ACCC P TGGT	V 4'.GATC A 4'.CCGC G 4'.CCTC L 4.CGAA CGAA N 4	R 17290 CGGC17350 CAAGC4 F 17410 CAGC4 F 17530 GCGC6 R 17590 CTTCC F 17650 CATGC M 17710	TTCCT TTCT TTCCT T	F TCGG G G AGCC P ACAC T CGAC S GCAA N T TGGCC R	G G G G G CCGG G CCGG R ACCG R TGAC	W CAT I CAA N CCGT V GGAA N CCGT V CCGT V	R 47 CGT V 47 CAT I 47 CCF H 47 CCGT A A CCGT A CCGT A A CCGGT A A CCGGT A A CCGGT A A	R 7310 CAA 7370 CAA 7430 CCG R 7490 CGGT V 7610 CGCA 7670 CGCA 7730	D GGA E CGG A CGG CGA D CGT C CTG C	W GTT F CGT V CTC S CGG V CGGA E CGGG R CGGG R	I CGA D CCA Q GAA K CGCT L GGT V GGGC A
F CCA Q CGG G GCT L GGT F GAT M GAG	F AGCO P TCTO S R AGTO R TCG D TCG CCG	S I 47270 CCATCAT I I 47330 IGCTGCA L H 47390 CCCCGAC P T 47450 GGTTCAT F I 47510 CCGAGCA E Q 47570 ACGACCA D L 47630 TGCACCA	E PCGT V ACGT L PCGA E AGGG P ACGA AGGG	G GCA Q GCA Y GCGA Y GCGA Y GCGA A GCGA E GGGG GGGG GGGG GGGG GGGG	L AGCC P AGGC A AGGC A ACTT F AGGC W AGCA H ACGT V	H CGAA Q CGAC T CAA F ACCC P CGGC V GGGC	V 4' GATC I 4' GGCC A 4' CCGGC CCTC I 4 CGAA CGAA N 4 CCGA	R 17290 CGGCTGGCTGGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCA	TOCT TOCT L SCOGA E AACTA Y CGCCC R AAGCC R CGGTC R W GACCT D L GTGCT	F TCGC G AGCC P ACAC T CGAC S GCAL N GGCC L TGCC R	G G G G G G G G G G G G G G G G G G G	W CAT I CAA N CGT V GGAA N CCGT V CCGT V CCGT V	R 47 CGT V 47 CAT I 47 CCT L 47 CCGT A A TCGGT A TCGGT A TCGGT CGGT CGG	R 7310 CAA 7370 CAA 7430 CCG R 7490 CGGT V 7610 CGGA 7670 CGGA 7730 CCGA	D GGA E CGG A CGG CGA D CGT C CTG C CGG CGG	W GTT F CGT V CCTC S CGT V CGA E CGCG R GCGT V	I CGA D CCA Q GAA K GGT L GGT CCC P

		4775	0						477°	7.0					1.	7790	1		
003	~~~			10m	~~ ~	CMC	amm			-	.000	7 C Z C			_			ת גרי <i>י</i> ו	C Λ C
CCA		CCGG																	
Q	A	R		L	Η	S	F	_	G		G	$^{\mathrm{T}}$	Р	Α		N		N	S
		4781							4783	-					_	7850			
CCT	GCI	GAGC	TGG	AT	CTC	CGA	.CGT	'GC	GCG	CCAC	GCG	GCGA	GTT	CGI	rgc i	AGCG	CGG	CCG	CCC
T.	Τ.	S							Α					V		R		R	
~	_	4787		_	_	_	•		4789			_				7910			
OOT		CGAC		~~~	~~~	~ > ~						יררא	007		-			CC	CCA
L	P	_	I	E	R	5	G		I		R	Ŋ	D	G			H	E	Ε
		4793							4795							7970			
GAA	GAZ	GTAC	TTC	CGA	CGT	CTT	'CGG	CG	TCA	CGGT	CGGC	CGAC	CAC	GCG <i>I</i>	ACC(GCGA	\GG1	CAA	CTC
K	K	Y	F	D	V	F	G	V	Т	V	Α	\mathbf{T}	S	D	R	E	V	N	S
		4799	n				_		480						4	8030	}		
amo	~ ~ ~ ~	rGCAG		-CID	\sim r	c mc						יררים	100n					א מיי	CCA
																			D
W	M	κ.		Ъ	L	S	Ρ		N		G	Ţ	ப	А		L		K	D
		4805							480							8090			
CAT	CGC	GCGGC	ACC	STT	GCA	.CGC	GCT	CG	TGC	AGC:	CGCC	SCAC	CGF	AGG(CGG	GCGG	GAI	GGP	CGT
I	G	G	Т	L	Η	Α	L	V	, O	L	R	T	E	Α	G	G	M	D	V
_	_	4811	n						481						4	8150)		
CCC		AGCTG		700	תיא רי	·	ייייי				CCI	א א	Ст	\cc				ירכז	CCA
													Y			A		E	E
A	E	L		Ρ	1	V	п		Q		ע	1//	ĭ	A			-	Ŀ	ï
		4817							481							8210			
GTT	CCC	SACCG	GCC	CTA	TGT	'GGA	CTA	CG	TGT'	rga <i>i</i>	ACG:	rgcc	CGCC	SCTO	CGC.	AGGI	CCC	CTA	CGA
F	R	Ρ	Α	Y	V	D	Y	V	L	N	V	P	R	S	0	V	R	Y	D
		4823	· Ո						482	50					4	8270)		
CCC	י זא רדיע	GCAC		יר א	$CC\lambda$	CCC	יררר					י א י	CGZ	(C)				ىررىر	ጥልው
																	M	L	
A	W	Н	S	\mathbf{E}	Ε	Ü	G	ĸ	F		R	1/1	Ε	N		Y		L	1
		4829							483						_	8330			
CGA	AGG:	rgccc	CGCC	CGA	CTI	CGF	1 CGC							ACC(GGT(GGAI	rgac	CTI	
\mathbf{E}	V	P	A	D	F	D	A	S	A	Α	P	D	Η	R	W	M	${ m T}$	F	D
		4835	0.6						483	70					4	8390)		
CC	CAT	rcacc		ىسىد	CCT	rac		<u>ه</u> ۲۰			ACG	TC A Z	CAC	ויייי (AGC	TGC	CAC	CAT	CAT
	T		Y				H									R		T	I
Q	1	T	_	ш	ш	G	п	٥			V	14		Q			_	_	
		4841							484							8450			
CGC	GT	GCGCC	CTC	GGC	CGI	CTZ	ACAC	CA	GGA	CCG	CCG	GATO	SAA	ACG(CGC	GCTC	3ACC	GAC	CTG
Α	С	A	S	A	V	Y	\mathbf{T}	F	T	Α	G	*							
												M	K	R	Α	L	\mathbf{T}	D	L
												ORE	717		->				
		4847	7.0						484	۵Λ		OIL				8510)		
200				~~~	~~~		2007				77.00	^_m/	3 m 3 /	~ ~ m	_			7 7 CC	
		CTTC																	
Α	Ι	F G	3 (G	Ρ	Ε	А	F			${ m T}$	L	Y	V				Ί,	V
		4853	30						485	50					4	8570)		
GGG	GAG	CCGGG	AGG	CGG	TTC	TTC	CGCC	CCG	CCT	GGA(GTG	GGC	GCT(SAAC	CAA	CAAC	CTGC	GCT(SACC
		R E																	
G	ט	4859			T.		A	11	486		**		س.	-4		8630		_	-
								·			200	2000		202					2000
AAC	JGG(CGGAC																	
N	G	G E	•]	L	V	R	Ε	F			R	V	A	D				V	R
		4865							486							8690			
CAC	TG	CGTGG	SCC/	ACC	TGC	CAAC	CGCC	SAC	GGT	CGC	GCT(GCA <i>I</i>	ACT(GGT(GСТ	GCG	CGCC	3AG(CGAC
		V																	
,	_	4871		-	_	• •	••	_	487		_	π.	_	•		8750			
CITY C	ייייים ר	4071 CGGCC		~m~	cm ²	ים גי	700	ייייי			الباليات		700	~ 7\				2000	2200
G1(ا ۱ د	ريون (zAG(-	JIC	GIC	-H1(عرر <u>.</u>) I I	.GAT	GA()	וויב	~~\ ~	プロン	-MCI	ノひし	ULAN TT	ノンシン	ノンひし	200C
V	S	G E	ડ `	V	V	M	Ъ	S	M	1'	r'	А	A	.1.	А	п	А	A	٥

		48770		•				487	90					48	381	0		
TGG	CTO	GGGCT(GGA.	ACC	GGT(GTT(CTG	CGA	CGT	GGA	CCC	CGA	GAC(CGGC	CCT	GCT(CGA	CCCC
W	L	G L	E	P	V	F	С	D	V	D	Р	E	\mathbf{T}	G	L	L	D	P
		48830		_			_	488						48	387	0		
GAG	C	CGTCGC	<u> </u>	<u>ገ</u> ረጥ(3.C.T.	220	ΔΟΟ			CCC		СДТ	~ A T(rgg(GT	GCA	CCT	GTGG
		V A	_	L	V		P		T	G			I	G		Н	L	W
E.	Н		۵	יד	V	T	r	489	_	G	^	7	_	_	393			**
~~~		48890	<b></b>	- am	~~~	~~~				~ ~ m	~~~	000	~~~				~ ~ ~ .	x cmc
		GCCGC'																
G	R	PΑ	P	V	E	A	L	Ε		Ι	A	А	E	H	-	V	K	L
		48950						489							399	-		
TTC	TTC	CGACGC	CGC	GCA(	CGC	GCT(	GGG	CTG	CAC	CGC	CGG	CGG	GCG(	GCC	GGT	CGG	CGC	CTTC
F	F	D A	A	Η	A	L	G	С	$\mathbf{T}$	Α	G	G	R	Р	V	G	Α	F
_		49010						490	30					4	905	0		
GGC	ים ב	CGCCGA	CCT	كالماليات	CAGO	ملس	CCD			CAA	GGC	GGT	CAC	СТС	TTT	CGA	GGG	CGGC
			V					A			A			S		E	G	G
G	1/4		V	Г	۵	Г	11			Λ	А	٧	1	_	911	_	J	G
		49070		~~-	~~~	~~~	~~-	490	-	~~~	~ ~ ~	000	000			•	c mm	0000
		CGTCAC																
A	I	_	D	D	G	L	L	Α		R	Ι	R	A	M	H	N	F	G
		49130						491							917			
ATC	:GC	ACCGGA	CAA	GCT(	GGT	GAC	CGA	ATGI	'CGG	CAC	CAA	CGG	CAA	GAT(	GAG	CGA	GTG	CGCC
I	Α	P D	K	L	V	${f T}$	D	V	G	${ m T}$	N	G	K	M	S	E	С	A
		49190						492	10					4	923	0		
GCG	GC(	GATGGG	CCT	CAC	CHC	GCT	CGA	CGC	רייים	rcgc	CGA	GAC	CAG	GGT	GCA	CAA	CCG	CCTC
A	_		_	T				A				Т		V	Н	N		T,
A	А		ш	7	S	ш	ט	492		А		-	1.	•	929		• `	
		49250	~~		~~~	~~~	~~-			000	~~~	~~~	~ 3 M	_		-		amma
		CGCGCT																
N	Η	A L	Y	S	D	E	L	R	D	V	R	G	Ι		V		A	F
		49310						493							935			
GAT	CC	TGGCGA	GCA	GAA	CAA	CTA	CCP	AGTA	CGT	GAT	CAT	CTC	GGT	GGA	CTC	CGC	GGC	CACC
D	P	G E	Q	N	N	Y	Q	Y	V	I	I	S	V	D	S	Α	Α	${f T}$
		49370	-					493	90					4	941	0		
GGC	TAT	CGACCG	CGA	CCA	GTT	GCA	.GGC	GAT	CCT	GCG	AGC	GGA	GAA	GGT'	TGT	'GGC	AÇA	ACCC
G	I	D R	_	Q	L	_		I		R		E	K	V	V	Α		P
G	_	49430	-	×	4.7	×	7.7	494		1	••	-	••	•	947		E.	_
ma c	, 111/11	CTCCCC		CIDC	~~ x		( ) n			יריתיא		C	CCX	_		•	aca	ССТС
			_	_										BCC.			GCG R	L
Y	F	S P	G	С	H	Q	M	Q		Y	R	${ m T}$	E	_	P	ν. Γ	Л	ند
		49490						495							953			
GAG	SAA	CACCGA	ACA	GCT	CTC	CGA	CCC	GGG1	'GC'I	CGC	GCT	'GCC	CAC	CGG	CCC	CGC	GGT	GTCC
E	N	T E	Q	L	S	D	R	V	L	Α	L	P	${ m T}$	G	Ρ	Α	V	S
		49550						495	570					4	959	0		
AGC	GA	GGACAT		GCG	GGT	GTG	CGA	ACAT	CAT	rcce	GCT	'CGC	CGC	CAC	CAG	CGG	CGA	GCTG
S																G		
5		49610			•	_	J		530	• `	_	••			965			
7 m/		CGCGCA	7 mc	CCA	CCX	CXC	יראל				اللباليان	CTC	ACC		_		ΔΩΔ	ΔСΤС
													17CG	1700	, UC			
I	N	A Q		ט	Q	K	.1.			G	S	^			071	^		
		49670						496					<u>.</u>		971			~~~
CCP	AGG	AGGTTC	GCT	CCC	CGA	TGA	ACA	ACA?	ACTO	CGTA	CGG	CAA	.CCG	CCC	AGG	AAG	CGG	GGGT
					M	I N	1 5	r	ΓF	? Т	. A	$\Gamma$	' A	. Q	E	: A	. G	V
					С	RF1	. 8	- <del>-</del> ->	>									
		49730			_			497	750					4	977	0		
. רכי	٠٠.	ACGCGG		ינורר	CGG					CGGC	CGG	TCG	TGC	GGG	CGC	TGA	.GCT	'CGGA
		A A																E
А	ע	A A	ı r	. r	L	, ,	1	Σ ر	. [		, V	V	7,	. 43				_

		4979						_	981							830			
GGT	CTC	CCGC	CGTC	CAC	CGG	CGC	CGG'	TGA	CGG	TGA	.CGC	CGA	CGT	GCA(	GGC	CGC	CCG	GCT	CGC
V	S	R 4985	V	T	G	А	G	D	G 987	D	A	D	V	Q	A 49	A 890	R	L	Α
CCA	$\sim$	CGCC:		2020	יתיא י	200	aac				יר גארי	200	CCT	CCA			ac Gr	TGC	GCG
		A	_	H	Υ	G		H H		F	T	P	L	E	0	T	R	A	R
D	ш	4991		11	T	G	Α		993		1	-			~	950	•		
aam	~~~	CCTC		700	~~~	~~ ~ ~	് നസ					רכי או	CCm	ഠനസ			ייחי ע	~~~	CCA
									H		GC I	D	L	F	G	R	I	P	ח
Ļ	G	L	D	R	A	E	F				7.	ע	ш	r	_	010	_	-	D
		4997		- am	~~~	003	~~~	_	999	_	~ ~ ~ ~	Om z	cmc	ama.			~ 7\ rD/	ר ג י	CCC
		CAC												GIC S	CAA N	T	I	CAA K	P
$\Gamma$	G	T	A	V	E	Н	G	-	A	-	K	Y	W	5		070	Т	IV.	r
		5003			~~~		~~~		005			~~~	~ 7 7	000		-	700	~mx	$C\lambda C$
		ACGC(															P	Y	S
L	D		A	G	A	L	D			V	Y	R	K	P	A	F	Р	ĭ	5
		5009		~~~			~ - ~		011			<u></u>	~~~	~mm		130	200		C 7 C
		SCCT(			_														
V	G	L	Y	P	G	P	$\mathbf{T}$	C_		F	R	С	H	F	C	V	R	V	T
		5015						_	017							190		~ <b>.</b>	
CGG	TGO	CCCG	CTA	CGA	GGC	CGC													
G	Α	R	Y	Ε	Α	Α	S	V			G	N	Ε	$\mathbf{T}$	L	A	A	I	I
		502							023							250			
CGA	.CGI	AGGT(	GCC	CAC	GGA	CAA	.CCC	GAA			GTA	CAT		GGG	CGG				
D	E	V	P	${f T}$	D	N	Р			М	Y	M	S	G	G	L	E	P	L
		502							029							310			
GAC	CAZ	ACCC	CGG'	TCT	CGG	CGA	GCT.	GGT			CGC								
$\mathbf{T}$	N	P	G	L	G	Ε	m L	V		Н	A	А	G	R	G	F	D	L	T
		503							035							370			
CGT	CTA	ACAC	CAA	CGC	CTT	CGC	CCI	CAC	'CGA		AGAC								
V	Y	${f T}$	N	A	F	Α	L	${ m T}$	$\mathbf{E}$	Q	$\mathbf{T}$	L	N	R	Q	P	G	L	M
		503						_	041							430			
GGA	.GC	rggg(	CGC	GAT	CCG	CAC	GTC	CCI	CTA	ACGO	GCT	'GAA	CAA	.CGA	CGA		CGA		
E	L	G	Α	I	R	$\mathbf{T}$	S	${ m L}$	Y	G	L	N	N	D	$\mathbf{E}$	Y	Ε	$\mathbf{T}$	${f T}$
		504						_	047	~						490			
CAC	CG	GCAA	GCG	CGG	CGC	TTT	CGA	ACG	CGI	CAA	AGAA	GAA.	CCI	'GCA	GGG	CTT	CCT	GCG	GAT
${f T}$	G	K	R	G	Α	F	$\mathbf{E}$	R	V	K	K	N	L	Q	G	F	L	R	M
		505	10						053							550			
GCG	iCG(	CCGA	GCG	GGA	.CGC	:GCC	GAT	CCG	GC7	rcgc	GCTI	CAA	CCA	CAT	CAT	CCT	GCC	GGG	SACG
R	A	E	R	D	Α	P	I	R	L	G	F	N	H	I	I	$\mathbf{L}$	P	G	R
		505							059							610			
GGC	CG.	ACCG	GCT	CAC	CGA	CCI	CGI	CGA	CTI	rcan	rcgc	CGA	GC1	CAA	CGP	LGTC	CAG	CCC	GCA
Α	D	R	${ t L}$	Т	D	L	V	D	F	I	Α	Ε	${\tt L}$	N	E	S	S	Р	Q
		506	30					5	065	50					50	670			
ACG	GC	CGCT	GGA	CTT	CGT	'GAC	GGT	GCG	CGA	AGG <i>I</i>	ACTA	CAG	GCGG	CCG	GCGZ	CGA	ÇGG	CCC	GCT
R	P	L	D	F	V	Ί	V	R	E	D	Y	S	G	R	D	D	G	R	L
		506	90					5	071	LO					50	730			
GTC	GG.	ACTC	CGA	GCG	CAA	CGA	AGC T	GCG	GCG2	AGG	GCCI	GGT	rgce	GTT	CG1	CGA	CTA	CGC	CCGC
S		S	Ε	R	N	E	L	R	E	G	L	V	R	F	V	D	Y	Α	Α
_	_	507	50					_	07	70					50	790			
. CGA	4GC	GGAC		GGG	CAT	GCA	CAT	rcg <i>i</i>	ACC.	rgg(	GCTA	ACGC	CCT	:GGA	AGAC	SCCT	GCG	GCC	GGG
E	R	T	Р	G	Μ	Н	I	D	L	G	Y	А	L	E	S	${ m L}$	R		G

WO 99/05283 PCT/FR98/01593

E0040	•		T0,000	,		r	-00-0	
50810	~~~~		50830	~~ ~~ ~~			50850	********
TGTGGACGCCGA								
V D A E 50870	ь ь	R 1	R P 1 50890	E T.	M R		га н 50910	I P Q
GGTCGCGGTGCA	GATCGA	CCTGCT	CGGCGAC	GTCTAC	CTCTA	CCGC	GAGGCGG	GCTTCCC
V A V Q	I D	L L	G D'	V Y	L Y		E A G	FP
50930			50950				50970	
GGAGCTGGAGGG	CGCCAC	CCGCTA	CATCGCG	GGCCGG	GTCAC	CCCG	rcgacca	GCCTGCG.
ELEG	A T	R Y	I A	G R	V T	P 5	S T S	LR
50990			51010				51030	
CGAGGTGGTGGA	GAACTT(	CGTGCT	GGAGAAC	GAGGGC	GTGCA	GCCC	CGCCCCG	GCGACGA
E V V E			E N					DE
51050			51070			Ţ	51090	
GTACTTCCTCGA	CGGCTT	CGACCA	GTCGGTG.	ACCGCA	CGGCT	CAAC	CAGCTCG	BAACGAGA
Y F L D	G F	D Q	S V	ΤA	R L	N (	Q L E	RD
51110			51130				51150	
CATCGCCGACGG	GTGGGA	GGACCA	.CCGCGGC	TTCCTG	GCGCGG.	AAGG'	TGAACCG	GAGTTGC
I A D G	WE	D H	R G	F L	R G	R	*	
51170			51190				51210	
GAGTACGTGAGC	TGGCGG'	TGGCGG	GCGGTTT	CGAGTI	CACCC	CCGA	CCCGAAG	CAGGACC
	V	A G	GF	E F	T P	D	ΡK	Q D R
	0	RF19 -	>					
51230							51270	
GGCGGGGCCTGT	TCGTGT	CTCCGC	TGCAGGA	CGAGGC	GTTCG'	TGGG	CGCGGTG	GGCCATC
R G L F	' V S	PI	, Q D	E A	F V	G	A V	G H R
51290			51310			!	51330	
GGTTCCCCGTCG	CCCAGA	TGAACC	CACATCGT	CTCCGC	CCGGG	GCGT	GCTGCGC	GGGCTGC
FPVA	Q M	N E	V I I	S A	R G	V	L R	G L H
51350			51370				51390	
ACTTCACCACCA								
FTTT	PP	G Ç	) C K	Y V	Y C			R A L
51410			51430				51450	
TCGACGTCATCG								
DVIV	D I	R V	G S		F G			A V E
51470			2				51510	
AGATGGACACCG								GCCTTCC
M D T E	H F	R P			R G			A F L
51530			51550				51570	
TCGCGCTTGAGG								
ALEI	DT	L M			S T			A E Y
51590			51610				51630	
ACGAGCAGGCGA	ATCGACC	CGTTC	SACCCCGC	GCTGGC	3TCTGC	CG'I'G	GCCCGCG	
	D P	FI	P A		L P			D L E
51650			51670				51690	200000
AGGTCGTGCTCT								
V V L S	S D R	. D 7			L E			R R G
51710			51730				51750	2 2 CCEC 2 C
GGATGCTGCCC								
MLPI								R *
,	*	A S	Q R F	, S S	5 G	A L		
							< (	ORF20



FIGURE 4













## 26/60





FIGURE 7C





FIGURE 8A











FIGURE 10A

















43/60





FIGURE 15



FIGURE 16











FIGURE 21

720

99

009

CCGGTGCTGGGGGCCGCGGTCGACGCGTGGCGCCCGCTGATCGACGAGGTCTGCGCG

Д

ĸ

3

Ø

Ω

>

K

Ø

420

480

GAAGGCTCGTGGCCGGTGCGGCGCGGGCTGGAGCAGTACGTGCCCGGGG E G S W P V R A K T D G L E Q Y V L P G

CACCAGGCGTTCCTGCGGCTGGAGCGCGAGGCCGAGCGACTGCGGGAGGTCGCGGCG

团

Ø

ы

团

R

M

П

ĸ

481

GTCACCGCCGACCCCGGGCTCGGGGGCCGCATCCTCGCCGACCGGAAGGCTCGGTGCCCG

×

2

Ω

¥

J

Н

æ

ტ

r

Н

r

Д

Ω

361

421

CCTTTCTACGACGCGATACGGACCCTGGGCGAGCTGCACCGGAGCAGGACCGGAGCCTGG

S

×

Ή

L

臼

ტ

Ч

2

Н

Ø

Ω

301

360

0	
Ó	
Ŋ	
GA	•
NGG	
Ž	
ູ້ວ	
ÿ	
E E	
Š	
ŭ	
BAC	
ğ	
ပ္ပ	
AT	
ဗ္ဗ	
AAC	
$\ddot{g}$	
CICC	
H	
ပ္ပ	
ပ္ပ	
ij	
TTCC	
Ę.	
S	
Š	
JGT	
CA.	
Ū	
7	

- CGGTGAAGGAGCGTGTTGCACTCATGCAGGACATGCAAGGCGTACAGCCCGAACCAGCCA
- 240 GAGATGGAGGACAGCGAACTGGGGCGCCGCCTGCAGATGCTCCGCGCCATGCAGTGGGTC Σ ы

300 Tregececcaacecatecetacecceectectetateaceccetteacetateacecettea

Σ

Ü

Ö

Н

Ц

ĸ

PstI

GTGTCGAACACGCGGCGGACGCAGCTCGAACAGAGCGAACGCCGCACGGAAGCCGCCCAG

CCGGTCGAGGTGCTGGCGCGGATCTGGGGCGTCCCGGAGGAGGACCGCCCGGTTCGGG GGGCTCGCGAAGGGGCTGCCGGACACGTTCGACCTGGTCGAGGAGTACGCGGGGCTGGTG 田 臼 > Ц Ω [14 H Ω Д Н U ×

661

601

CGTGACTGCCGGGCGCTCCCTCCCGCGCTGGACAGCCTCCTGTGTCCCCAGCAGTTGGCG Ø Д ပ Н Ц ß Ω П Д 721

840 CTGAGCAAGGACATGGCGTCCGCCTGGAGGACCTGCGTCTTCGACGGCCTCGAC

GCGACGCCGCCCTCGCCCGCCCGCCGACGGTGACGGAACGGCCGTGGCCATGCTCACC Ц æ Ц Ω ഠ П K S 841

H

ט

Ω

G

Ω

Ø

Д

r

Ø

960 GTTCTGCTCTGCACGGAGCCGGTGACCACGGCGATCGGGGAACACCGTGCTCGGGCTCCTT

Z ტ A ы Д 团 H

1020 CCCGGGCAGTGGCCCGTGCACCGGCCGGGTGGCTGCCGGGCAGGTTGCCGGGCAG ტ A > Ø r Ø Ø > 24 ט ы ပ Д > Д 3 Ø Ö 961

1080 GCGCTGCACCGGGCGGTGTCGTACCGTATCGCGACGCGGTTCGCCCGGGAGGACCTGGAG H  $\alpha$ Ø Į, ø H Ø Н ĸ × S 1021

TTGGCGGCTGCGAGGTCCGGTGACGAGGTGGTGGTCCTGGCCGGAGCGATCGGC I. A G C E V K S G D E V V L A G A I G 1081

1200 CGGAACGGACCGTCCGCAGCCGCCCCCCCCCCACCGGGCCCCAGCGGCCCCCGCCCGCC Д r Д Д Ø Д Д Ø V S 1141

CCGTCGGTCTTCGGTGCCGCCGCCTTCGAGAACGCGCTGGCCGAACCCCTCGTCCGGGCT 团 K Ц Ø z 臼 ഥ K Ø Ø U [I 1201

Ø H ø Д Д U ы Ø Н Ø Ø Н Ø 1261

1321

40		
14,		~
1381 GCCGCATGAGCATCGCGTCGAACGGCGCGCGCCCCCCCCC	A A *	01eG1
138		

1500 TGATGACCACCTTCGCGGCCAACACGCGACTTCCAGCCGCTGGTTCCCCTGGCCTGGGCAC 1441

1501

TGCGGACAGCCGGGCACGAGGTGCGTGAGCCAGCCTCGCTGAGCGACGTGGTGA Q H r

1620 1680 CGCAGGCGGGCTCACCTCGGTCGGTGGCCACCGAGGCTCCGGTCGAGCAGTTCGCGG CGACCTGGGGCGACGATGCCTACATCGGCGTCAACAGCATCGACTTCACCGGCAACGACC r Ω S Z ŋ  $\mathbf{H}$ × ď Ω Ω G Ø 1561 1621

ACGAGTTGCTGAACAACGAGTTCGTGGACGGCGTAGTCGCCCGTGACTGGC E L L N N E S F V D G V V E F A R D W R CCGGCCTGTGGACGTGGCCGTACCTCCTGGGCATGGAGACCATGCTGGTGCCGGCCTTCT Д > Σ Н 团 Σ Ç H Н × Д 3 H 1681

1860 1801

1920 CCGGCGCGCCCACGCCCGGCTGCGGGGGCAGAATCACCCTGCGCGGGGGGGAGA Ü ы Ø r ĸ H 1861

CGTTCCTCGCCGAGCGTGCCACCGTTCGAGCACCGGGAGGATCCCACGGCCGAGT F L A E R A L Q P F E H R E D P T A E W BamHI

GGCTGGGCCGCATGCTCGACCGGTACGGCTGCTCGTTCGACGAGGAGATGGTCACCGGGC Ö Σ S Σ ĸ t

	2641 CCCCCGGTGACGTCGTACCGGACCTGGAACGACTCACCGCGGGGGAGCATGCCACCGGCGCGA 2700	
	GA	Σ
	၁၅၁	¥
	SGG	ტ
	CAC	H
	IGC	¥
	SCA	H
	3GA(	田
	ညဗ္ဗာ	Ø
	CAC	H
	ACT	П
	ACG.	2
	3GA	Œ
	CCT	J
ı	3GA(	0
1	ACC	۵
i	CGT	>
ı	CGT(	>
ì	rgA(	_
ı	GG	ני
	CCCC	PGOVVPOLERLTAEHATGAM
	ŭ	
	264	

GGGAGCCGGAGTTCCGCGCGGGCGCCGAGCGGATCCGGGCCGAGATGCTCGCGATGCCCG Σ BamHI ĸ Ö 2581

2580 CGATGCCGGTGGGGGAACTGGGCGTCGAGGCGCTGCTGGGTGCTGGGCTGCTGGGCTGGGGGGGAACTGGGCGTCGAGGCGCTGCGGGGACCGGGTCCTGCGGCTGCTGG 2521

Ø r 니 Ø Ø Σ ĸ Ø Ø  $\alpha$ > Д H Ω 3 ഗ

2520 2461

2460 ACGGTGGTCCGGGCACGTGGTCGACGGCGCGCTCCACGGCGTCCCGCAGATCATCCTGG A H S 3 U 2401

GGCTGGTGGACTTCGTCCCGCTGCACCCGACCTGCTCGCGATCGTGCACC

L V D F V P L H A L M P T C S A I V H H 2341

2340 TGGCCACGCTCGACACCACCAGCAGCGCCTGCGGGGCGCGCCCCGGCAACGTCC
A T L D T T Q Q E R L R G A A P G N V R 2281

2280 GGGACCATGTCCCCCTCGACCACCTGCTCGACTCCCTCGCCGACGTGGACGCGGAGATCG Ω > Ω Ø ᆸ ß Ω Ц H H Ω Ц Д > 2221

2220 2161

2160 CCCTGGACATGCGGTACGTGCCGTACGGACCGGCGGTCGTACCCCCTGGGTGTGGG 2101

2100 AGTGGACCATCGACACGCTGCCGCCAGCATGCGGCTGGAGCTGTCCGAGGAGCTGCGCA Σ 2041

CGGGAAGGCGGTGAGACGATGCGCGTACTGCTGACCTGCTTCGCCAACGACACCCAC 2760		
CCAC	H	
SAC(	E	
3GA(	Ω	
CAA(	z	
ည္တင္သ	MRVLLTCFANDTH	
CTT.	ഥ	
CIG	ပ	
GAC	H	
GCT	J	
ACT	H	
CGT	>	
SCG	24	01662
GAT	Σ	0
GAC		
3TGZ	*	
3000	ĸ	
AAG	æ	
GGG	ש	
SGC	A	
1 T		
270		

2820 TTCCACGGGCTGGTGCCGTGGCGTGGCGCTGCGGGCCCGCGGGCACGAAGTCCGCGTG ტ Ø Ø æ ы Æ 3 Ø 口 Д 2761

GCCAGTCAGCCCGCCCTGTCCGACACGATCACCCAAGCGGGACTGACCGCGGTGCCCGTG 2821

H Н Ü Ø Ø Ω Ŋ П

GGCCGGGACACCGCCTTCCTGGAGCTGATGGGGGAGATCGGCGGGGGGCGTCCAGAAGTACGCCGGGACACCTCCAGAAGTACGCGCGGGGGACACGCGCGGGGGACGTCGGGGGGAAGTACGGGGGGAAATCGGCGGGGGAAATCGGGGGAAATCGGGGGAAATCGGCGGGGAAATCGGGGGAAATCGGCGGACGACCTCCAGAAGTAC 2881

TCCACCGGCATCGACCTGGGCGTCCGCGGAGCTGGCAGTACCTGCTCGGC S T G I D L G V R A E L T S W F V I. I. G 2941

ATGCACACGACCCTGGTGCCCACGTTCTACTCGCTGGTCAACGACGAGCCGTTCGTCGAC Ω z ы ഗ Д Ы 3001

3120 GGGCTCGTCGCGCCTGACCCGGGCCTGGCCGACCTCATCCTGTGGGAGCACTTCAGC ы 3 Ы Н П Ω Д œ 3 V 24 Н Ц A 3061

3121

3181

回 ¥ Σ Ω M ĸ

**ACCTTCGACGAGGAGCTGGTGACCGGGCAGTGGACGATCGACCCGCTGCCGCGGGGGATG** Д H 3 Ø Ç H > Ы 国 ы 3301

3420	3480	3540	3600	3660	3720	3780	3840	3900	3960
3361 CGGCTGCCCACCGGACGACGTGCCGTACGTGCCGTACAACGGGCGGG	3421 GTGGTCCCCGCATGGGTCCGGCAGCGGCCCCGGATCTGCCTGACGCTCGGT 3480 V V P A W V R Q R A R R P R I C L T L G	3481 GTGTCGGCCGGCAGACGCGAGGCGTGTCGCTGGCGGAGGTGCTGGCCGCGCTG 3540 V S A R Q T L G D G V S L A E V L A L	3541 GGCGACGTGGACGCGGGGAGCTCCTGGGGGGGGGGGGGG	3601 CCGGTGCCGGACACGTCCGCGTGGACTTCGTGCCCTGCACGCCCTGATGCCGACC 3660 P V P D N V R L V D F V P L H A L M P T	KpnI 3661 TGTTCGGCGATCGTGCCACCACGGCGCGCGGCGGCGGCGGCGGCGGC 3720 C S A I V H H G G A G T W L T A A V H G	3721 GTCCCGCAGATCGTCCTCGGTGACCTCGGACGCCCGGCCGG	3781 GCCGCGGCCGCCTGTTCATCCGTCCGAGGTCACCGCGGCCGGGCTCGGTGAG 3840 A A G A G L F I H P S E V T A A G L G E	3841 GGCGTGCCGGGTGCTGACGGACCCTTCCATCCGGGCCGCCGCACAGCGCGTCCGGGAC 3900 G V R R V L T D P S I R A A Q R V R D	3901 GAGATGAATGCAGGCGACGCCGGCGAGGTCGTCACGGTGCTGGAGCGGCTCGCCGCG 3960 E M N A E P T P G E V V T V L E R L A A
336	342	348	354	36(	366	37.	378	38,	39(

4260

ĸ

ഗ

×

Ø

Ω

Ц

Σ

ß

ß

П

Ы

r

4201

4320

S

>

ĸ

G

Ω

H

S

24

Σ

Ω

G

Ø

H

ტ

4261

4380

Ω

H

团

Ø

Н

H

Ø

H

H

ט

>

Ø

S

ഥ

Σ

ပ

Н

4321

4381

4440

3

Д

ы

Ø

>

r

r

Д

K

H

H

ø

Ø

AACCATGCGGCTGACACGGAGCCGACCACCGG 4020		
ევე		ტ
CAC		H
GAC		H
000		Д
GGA		E F
ACAC		H
TG7	*	Ω
366	ს	Ø
IGC	¥	M R A
CCA	H	Σ
GAA	z	
AGGCGGG,	ט	
AGG	ტ	
ACGAGG	ტ	
ACG	ĸ	
ACGCGG,	ტ	
SACC	G R G R G G N	
3000	ŋ	
AGCGC	ტ	
	ß	
3961		

GTACGAGGACGAGTTCGCCGAGATCTACGACGCCGTGTACCGGGGCCGGGCCAAGGACTA

4080 ĸ Ç 24 Ø

CGCCGGCGAGGCGACGTGGCGGACCTCGTGCGCGACCGGGTGCCGGACGCGTCCTC

Ω

Д

>

×

Δ

ĸ

>

П

Ω

Ø

>

Ω

×

Ø

闰

4081

CCTCCTGGACGTGGCGCGCGCGCGCGCGCCTGCGGCACTTCGCCACGCTCTTCGA

H

K

Н

K

r

r

ပ

Ø

4141

CGACGCCCGCGGTCTCGAACTGTCCGCGAGCATGCTGGACATCGCCCGCTCCCGCATGCC

GGGCGTGCCGCTGCACCAAGGGGACATGCGATCCTTCGACCTGGGGCCACGCGTCTCCGC

GGTCACCTGCATGTTCAGCTCCGTCGGCCACCTGGCCACCCGCCGAACTCGACGCGAC

BqlII

oleM

4560 GACCATCTCCCGGGTGTCCCACTCGGTACGGGACGGCGCCCACCCGCATGGAGATCCA ы Σ ĸ K Ö r Ω ø > ß H S > ĸ S

GTTCCCGGAGACCTTCACCGACGCCTACGTGGCGGGTGACATCGTACGCGTCGACGGCCG r Ω × U K > ტ Ħ

4441

GCTGCGGTGCTTCGCCCGGCACACCCGGCCGCGCGCGTGGCCGTCGAACCGTGGTG

4501

FIGURE 22

4741 GCGCACCGCCCGATCACCCTGCTCAACGCCGTTCACACGGATCACCGGACCACGCGAAGG 4800

ACCTTTCACATGTCGTACGACGACGACGATACTGCGGTGCGCCGGA M S Y D D H A V L E A I L R C A G

GGTGACGAGCGCTTCCTGCTGAACACCGTCGAGGAATGGGGAGCCGCCGAGATCACCGCG

Ø

r

3

Œ

回

z

П

H

GCGCTCGTGGACGAGTTGCTGTTCCGCTGCGAGGTGGGCGGTGAGGCGTTTC A L V D E L L F R C E I P Q V G G E A F

PstI

CCTCGACGGCGCCCTCGGGCCGGGGCTGTTCGTCGGCACCGGACGTGAACCCGCCC

24

ŋ

ഥ

ч

ద

ß

0 7 0 7	VIADAEHGPRHLVEHHRIT	4680	
ָ נְ	H		×
145	н	CGA(	FPRHAYTAAYEKAGYTVEY
ל נ	ĸ	CGT(	>
לא	H	CAC	Ħ
בל ל	H	CTA	×
25	臼	ggg	ტ
Too	>	Ö	A
こして	H	GAA	×
S S	H	CGA	ഠ
ננ	ĸ	GTA	X
	Д	ပ် ပိ	Ø
2	ტ	O O O	Ą
SCA	H	CAC	H
S	团	GTA	×
5	A	TGC	A
SS	Ω	GCA	Ħ
) !!	Ø	ည	ĸ
GAL	H	ည	Д
S	>	U	[z,
CIA	×	GCT	1
4561		4621	

5160 5100 GGCTTCGGCGTCTCCTTCCTGCCCGACCTGCGCGCCCGCGGGCCGGGCCGCGCCC GGCAAGCCGGTCACGTCGGCGGAACTGGGCGGCCGTACCTGGAGT G K P V T S A E P A G Q E L G G R T W S r ы ტ ĸ Н Ω Д H [T. ß

5161

4921

4981

5041

5280	
ACTG	L1
	_
ပ္က	щ
೦೦೦೦೦೨	Д
GAC	H
CGA	回
CAACG	z
GAC	H
GAC	E-I
090	Ø
CCA	H
ົບຕູ	H
GGT	>
CGT	>
CAA	Z
CACC	H
CGC	A
၁၅၁၁၁၅၁၁	ĸ
090	A
GGC	A
CTGG	H
5221	

5340 GACCGGCTGGCCCTGCGCTACGAGTCCGACAAGTGGGGCGCGCGTCCACTGGTTCACCGGC Ü Ü 3 Ω × П Ы

BamHI

A Ø Ω æ K

5460 ATCGGCGCTACGACCTGCTGCCGAGCGCCCTCACTGAAGATGTGGAAGCGCTAC × S A ß Д Ω Ω 5401

TTCCCGCGCGCGTGGTTTCGGCGTGGACATCTTCGACAGTCGGCGTGCGACCAGCCGC Ø ĸ S Ω Ω > ט لنا r K Д 5461

GTGTCAAGACGCTCCGCGGCCCGGCAGGACGACCCGGAGTTCATGCGCCGCGTCGCCGAG Σ 团 Д Ω Ω Ø × Ø Ø ល 24 S 5521

GAGCACGGGCCGTTCGACGTCATCGACGACGGCAGCCACATCAACGCACATGCGG H ເນ ტ Ω Ω Н > Ω [II Д r 5581

ACCTTCACCTCCTACTGGCCGGGTACGGAGGCCCATCCGGAGCCCGGTGCCCGTCCGGA T F T S Y W P G Y G G P S G A R C P S G 5701

5820 ACAACCGCGCTGGAGATGGTCAAGGGACTGATCGACTCGGTGCACTACGAGGAGCGGCCG ഠ 团 r × Ц 5761

5880	5940
G A A T A D Y I A R N L V G L H A Y Q	לז
TAC Y	CACC
SGCC A	CCA(
3CAC H	SCC(
SCTC	CCTCGTCTTCCTCGAGAAGGGCGGCGGCGCATCCCCCACCGT S S S S R R A I N K E G G I P H T V
ပ္ပို့ ပ	විදුල
CGT(	ည်ပ
CCT(	3GA( E
SAA( N	CAA(
CAG( R	CAA
CGC A	GAT I
CAT	GGC
CTA	AAG R
CGA D	GAG R
GGC	CTC S
CAC	TTC
GGC	GTC
CGC	CTC
ACGG	GAC
0 0	AC T
5821	5881

6001 CCACTGTCCGCCCCCCTCGGAACCACCTCCAGCAAGGACACACCGCTGTGACCGATAC 6060 M N D N Œ д 24

CCCCGGGGAGCCGTTCTGGAACGACAACTAGCCACGGCCGCAACCAGAGCCGGAAACCGCA 6000

5941

KpnI 6061 GCACACCGGACCGGCCGACGCGGTACC 6093

(vi) ORIGINE:

### LISTE DE SEQUENCES

(1) INFORMATIONS GENERALES: 5 (i) DEPOSANT: (A) NOM: Hoechst Marion Roussel (B) RUE: 1, Terrasse Bellini (C) VILLE: PUTEAUX (E) PAYS: FRANCE 10 (F) CODE POSTAL: 92800 (G) TELEPHONE: 01.49.91.57.27 (H) TELECOPIE: 01.49.91.46.10 (ii) TITRE DE L' INVENTION: Genes de biosynthese et de transfert des 15 6-desoxyhexoses chez Saccharopolyspora erythraea et chez Streptomyces antibioticus et leur utilisation. (iii) NOMBRE DE SEQUENCES: 61 20 (iv) FORME DECHIFFRABLE PAR ORDINATEUR: (A) TYPE DE SUPPORT: Floppy disk (B) ORDINATEUR: IBM PC compatible (C) SYSTEME D' EXPLOITATION: PC-DOS/MS-DOS 25 (D) LOGICIEL: PatentIn Release #1.0, Version #1.30 (OEB) (vi) DONNEES DE LA DEMANDE ANTERIEURE: (A) NUMERO DE LA DEMANDE: FR 9709458 (B) DATE DE DEPOT: 25-JUL-1997 30 (vi) DONNEES DE LA DEMANDE ANTERIEURE: (A) NUMERO DE LA DEMANDE: FR 9807411 (B) DATE DE DEPOT: 12-JUN-1998 35 (2) INFORMATIONS POUR LA SEQ ID NO: 1: (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 3439 paires de bases 40 (B) TYPE: nucléotide (C) NOMBRE DE BRINS: double (D) CONFIGURATION: linéaire (ii) TYPE DE MOLECULE: ADNC 45

15

(A) ORGANISME: Saccharopolyspora erythraea

### (ix) CARACTERISTIQUE:

- (A) NOM/CLE: CDS
- (B) EMPLACEMENT: complement (48..1046)
- (D) AUTRES INFORMATIONS:/function= "implique dans la biosynthese du mycarose" /gene= "eryBII"

## 10 (ix) CARACTERISTIQUE:

- (A) NOM/CLE: CDS
- (B) EMPLACEMENT: complement (2322..3404)
- (D) AUTRES INFORMATIONS:/function= "implique dans la biosynthese de la desosamine" /gene= "eryCII"

### (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 1:

20 GCTTCACGCT CACCAGCCGT ATCCTTTCTC GGTTCCTCTT GTGCTCACTG CAACCAGGCT 60 TCCGGCGCCG CGCCGCCGGA GGCCACCGCG GGGAAGATCT CGTCCAGTTC GGACAGCGCC 120 25 TGCTCGTCCA GGGTCATCGC GGACGCCTTC AGCGCGGAGT CGAGCTGCTC GGGGGTTCGC 180 GGGCCGATGA CGGCGCCGGC GATGCCGGGC CGGGACAGCA CCCATGCGAG CCCCACCTCG 240 GCCGGGTCTT CGCCGAGGTT GCGGCAGAAC TTCTCGTAGG CCTCGATCGC CGGGCGCAGG 300 30 360 GACGGCAACA GCACCTGCGC ACGGCCCTGC GCCGACTTCA CCGCGGTGCC CGCGGCCAGC TTCTCCAGCG CTCCGCTGAG CAGGCCGCCG TGCAGCGGCG ACCAGGCGAA GACGCCGAGC 420 35 CCGTAGGCCT GCGCGGCGGG CAGCACCTCC AGCTCGGCGT GCCGGACCGC CAGGTTGTAC 480 AGGCACTGGT GGGAGACCAT GCCCAGGGAG TGGCGGCGGG CGGCGTTCTC CTGCGCGGCG 540 GCGATGTGCC AGCCCGCGAA GTTCGACGAG CCGACGTAGG AGACCTTGCC GCTGGCGACG 600 40 AGGCTGTCCA TGGCCTGCCA CACCTCGTCC CACGGCGCGG ACCGGTCGAT GTGGTGCATC 660 TGGTAGACGT CGATGTGGTC GACGCCCAGC CTGCGCAGCG ATCCCTCGCA GGAGGCGATG 720 45 ATGTGCCGCG CCGACAGCCC GCTGTCGTTG ACGCGCTCGC TCATCTCGCC GCCGACCTTG 780

	GTCGCCAGCA	CGGTGTCCTC	GCGCCGTCCG	CCGCCCTGGG	CCAGCCACCT	GCCCACCAGC	840
	TCCTCGGTGT	GGCCCTTGTA	GAGCCGCCAG	CCGTACATGT	CGGCGGTGTC	GAGGCAGTTG	900
5	ATGCCGCGGT	CCCGGGCGTG	GTCCATCAGG	CGCAGCGCGT	CGTCGTCCTC	GACGCGTCCG	960
	CTGAAGTTCA	CCGTGCCGAG	CCAGAGCCTG	CTGGTGAGCA	GCGCGGAACG	CCCGAGCCGC	1020
20	ACGTGCGTCG	CGGCGTCGGT	GGTCATCGTG	GTTCTCTCCT	TCCTGCGGCC	AGTTCCTCGC	1080
	AGATGCCGAC	GACCTCGGCC	GGTGACGGCT	CCGCGAGCAT	GTCGTCGCGC	ATCCGCGCCG	1140
	CGCCGGCGCG	GTGGGCCGGG	TCGTCGAGGA	CCCGCTTCAC	CGACTCCCGG	AGCTGGTCGG	1200
L5	GGGTCAGCTC	GGGCACGGGC	AGCGCGATCC	CCGCCCCGAA	TTCCTGCGTG	CGCTGCGCGC	1260
	GCACGCCGGT	GTCCCAGCCG	TCGGGCAGGA	TCACCTGCGG	CACGCCGTGG	ATCGCCGCGG	1320
20	TGTGCCAGCT	CCCGGGTCCG	CCGTGGTGCA	CCGTCGCCGC	GCAGGTCGGC	AGCAGCGCGT	1380
	GCATCGGGAC	GAAGCCGACC	GTGCGGACGT	TGTCCGGGAT	GTTCGCGACG	CCTTCTAGCT	1440
	GCTGCGCGTC	GAAGGTCGCG	ATGATCTCGG	CGTCGACGTC	GCCGACGGCA	CCCAGCAGCT	1500
25	CCTCGATGGA	GACCTGCCCG	ATGCTGTTCT	CGCGGCTGGA	GATCCCGAGC	GTGAGGCACA	1560
	CGCGGCGGCG	CTCGGGCTCG	TCGTGCAGCC	ATTCCGGCAC	CACGGACGGC	CCGTTGTAGT	1620
30	CGACGTAGCG	CATCCCGACG	GTCTTCAGGC	CGGTGTCGAG	CCTGATCGCG	GCCGGGGCGG	1680
	GGTCGATCGT	CCACTGCCCG	ACGACCACCT	CCTCGTCGAA	GGCCGGGCCG	CCGTACTTCT	1740
	CCAGCGTCCA	GGTGAGCCAC	TCGGCGAGCG	GGTCCTCCCG	GTGCTCCTCC	GGCTGGTCGG	1800
35	GCAGCAGGCC	GAGGAAGTTC	TGCCGCGCCC	GGGTGGTGAT	GTCGGGTCCC	CACAGCAGCC	1860
	GCGCGTGCGG	CGTTCCGGTC	ACCGCCGCCG	CGATGGGCGC	GGCGAAGGTG	AGCGGCTCCC	1920
10	AGATGACCAG	GTCGGGCCGC	CACTTCCGGC	AGAACGAGAC	CATGCCTTCG	ATGAGCGTGT	1980
	CCGGGCTCAT	CAGGGCGTAG	AAGGTCGGGG	TGAGCACGGT	CTGCATGCCC	AGCAGGTGCT	2040
	CCCAGGTCAA	GGTGGCGGGG	TCCCGCTCGC	TGAAGTCCAG	GCTCCGGACG	TAGTCGATGA	2100
15	TGTCGTGGCC	CGCGTGGGTC	ATGAAGTCCA	CGAGGTCGAC	GTCGGTGCCG	ACCGGGACGG	2160

	CGGTCAGCCC	GGCCGCGGTG	ATGTCCTCGG	TGAGCGCCGG	GGACGCGACC	ACGCGGACCT	2220
	CGTGCCCCGC	CGCGCGGAAC	GCCCATGCGA	GGGGGACGAG	GCCGAAGAGG	TGGCTCTTGC	2280
5	TGGCCATGGA	GGAGAAGACG	ACGCGCATCG	CGGTTACCTC	AGAGCTCGAC	GGGGCAGCGG	2340
	TTGGTTCCCC	GCAGGACGGG	TGATCGGCGG	CGCCGGACGA	CCGGGCCGCT	GGGCGTGAGT	2400
LO	CCGGGCAGCG	CCTTGGCCGC	GGCCCGCAGT	GCGGCGGTGG	CGAGCGCGGT	GACCAGCTCC	2460
	TCCAGCCTGC	CGGGGTGGCC	GCGATGTGCC	GACAGCGCGC	GGTCGGCGTC	GGGGCGTCC	2520
	ACGTCGAGGC	GGTCGGGCTC	GGCGAAGACC	TCCGGGTCGC	GGTTGGCCGC	CGCGACGACG	2580
L5	ACCACGACCT	CCTCGCCTTC	GCCGATCACG	TGCTCGCCGA	GCCGCACCTC	TGCGGTGGCC	2640
	GTGCGCCGCT	CCAGGTGCAA	TGCCGGGTGC	AGGCGCAGCA	CCTCGGCGAC	GGTTCGCTGC	2700
20	GCGGCGGCGG	GGTCGTCGGC	GATCCGTTCG	GCCAGCCCCG	GTTCGGCCGA	GACGGCCAGG	2760
20	ACCGCGTCGA	CCACGGTGTT	CGCGGTCATC	TCGGCCCCGG	CGAACAGGGC	GCGCAGTGCG	2820
	GGGTCGGCGG	GCAGTGCCGC	GACCGCTGCT	TCGGTCACCG	CGAGCTGCTG	CGGGCTGAGC	2880
25	TGGGCGTCCA	GGCTGACGCG	GGCGTCCCAC	GCGGCGCCGC	GCAGCACTCC	GGCTGCGCCG	2940
	AGCACGGCGG	TCATGCCCTG	CACCGGTACC	TGCCAGGCGA	AGTCGCCGAC	CAGGTCCAGC	3000
3 0	CGCGCGCCCG	CGCCGGGGAG	CAGACCGGCG	AAGCTCTCCG	CCAGTTCCCC	GACGTCGGGG	3060
, ,	ACCTCGCCTT	CCCAGGACGC	GGCGTGCACG	TCCCGGAACG	GCTGGGCCCA	CTCGGCGGGT	3120
	GGCGCGCCCG	CGGCCCGCAT	CCATTCCGGT	GTGCGTCCGG	TGGCGCGGGT	GAACGCGGGG	3180
35	TCGTCGAGCA	CCTGCCGGGC	GGTGGCGTGG	TCGGCCACCA	CCCACGTCTC	GGTGCGGCTG	3240
	CGCCGCACAC	CGGACTCGCG	CATCGAGCGG	TACCGGCGCT	GCGGGTCGTC	GTCGTGTCCG	3300
10	CACAGCAGCA	TCGGGTAAGG	GTCGCCGTTG	CTGCCGTAAC	CCCAGTGCAG	GCCGCGGATC	3360
·U	ATCTGGAGCT	GCCTGCCCAG	CCCGGCGCGA	TCGGTCGTGG	TCATGAATTC	CCTCCGCCCA	3420
	GCCAGGCGTC	GATGTGCCG					3439

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 333 acides aminés
  - (B) TYPE: acide aminé
  - (D) CONFIGURATION: linéaire

- (ii) TYPE DE MOLECULE: protéine
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 2:

Met Thr Thr Asp Ala Ala Thr His Val Arg Leu Gly Arg Ser Ala Leu
10 1 5 10 15

Leu Thr Ser Arg Leu Trp Leu Gly Thr Val Asn Phe Ser Gly Arg Val
20 25 30

15 Glu Asp Asp Asp Ala Leu Arg Leu Met Asp His Ala Arg Asp Arg Gly
35 40 45

Ile Asn Cys Leu Asp Thr Ala Asp Met Tyr Gly Trp Arg Leu Tyr Lys
50 55 60

20

Gly His Thr Glu Glu Leu Val Gly Arg Trp Leu Ala Gln Gly Gly 65 70 75 80

Arg Arg Glu Asp Thr Val Leu Ala Thr Lys Val Gly Glu Met Ser 25 85 90 95

Glu Arg Val Asn Asp Ser Gly Leu Ser Ala Arg His Ile Ile Ala Ser
100 105 110

30 Cys Glu Gly Ser Leu Arg Arg Leu Gly Val Asp His Ile Asp Val Tyr
115 120 125

Gln Met His His Ile Asp Arg Ser Ala Pro Trp Asp Glu Val Trp Gln 130 135 140

35

Ala Met Asp Ser Leu Val Ala Ser Gly Lys Val Ser Tyr Val Gly Ser 145 150 155 160

Ser Asn Phe Ala Gly Trp His Ile Ala Ala Gln Glu Asn Ala Ala 40 165 170 175

Arg Arg His Ser Leu Gly Met Val Ser His Gln Cys Leu Tyr Asn Leu 180 185 190

45 Ala Val Arg His Ala Glu Leu Glu Val Leu Pro Ala Ala Gln Ala Tyr 195 200 205 WO 99/05283

PCT/FR98/01593

	Gly	Leu 210	Gly	Val	Phe	Ala	Trp 215	Ser	Pro	Leu	His	Gly 220	Gly	Leu	Leu	Ser
5	Gly 225	Ala	Leu	Glu	Lys	Leu 230	Ala	Ala	Gly	Thr	Ala 235	Val	Lys	Ser	Ala	Gln 240
	Gly	Arg	Ala	Gln	Val 245	Leu	Leu	Pro	Ser	Leu 250	Arg	Pro	Ala	Ile	Glu 255	Ala
10	Tyr	Glu	Lys	Phe 260	Cys	Arg	Asn	Leu	Gly 265	Glu	Asp	Pro	Ala	Glu 270	Val	Gly
<b>1</b> F	Leu	Ala	Trp 275	Val	Leu	Ser	Arg	Pro 280	Gly	Ile	Ala	Gly	Ala 285	Val	Ile	Gly
15	Pro	Arg 290	Thr	Pro	Glu	Gln	Leu 295	Asp	Ser	Ala	Leu	Lys 300	Ala	Ser	Ala	Met
20	Thr 305	Leu	Asp	Glu	Gln	Ala 310	Leu	Ser	Glu	Leu	Asp 315	Glu	Ile	Phe	Pro	Ala 320
	Val	Ala	Ser	Gly	Gly 325	Ala	Ala	Pro	Glu	Ala 330	Trp	Leu	Gln			
25	(2)	INFO	ORMA'	rions	s pot	JR LA	A SE(	Q ID	NO:	3:						
30			(1	A) L(	ONGUI YPE :	EUR:	QUES 361 de ar	acio miné	des a	aminé						
35			) TYI				_			: SE(	Q ID	NO:	3:			
	Met 1	Thr	Thr	Thr	Asp 5	Arg	Ala	Gly	Leu	Gly 10	Arg	Gln	Leu	Gln	Met 15	Ile
40	Arg	Gly	Leu	His 20	Trp	Gly	Tyr	Gly	Ser 25	Asn	Gly	Asp	Pro	Tyr 30	Pro	Met
	Leu	Leu	Cys 35	Gly	His	Asp	Asp	Asp	Pro	Gln	Arg	Arg	Tyr 45	Arg	Ser	Met
45	Arg	Glu 50	Ser	Gly	Val	Arg	Arg 55	Ser	Arg	Thr	Glu	Thr	Trp	Val	Val	Ala

	Asp 65	His	Ala	Thr	Ala	Arg 70	Gln	Val	Leu	Asp	Asp 75	Pro	Ala	Phe	Thr	Arg 80
5	Ala	Thr	Gly	Arg	Thr 85	Pro	Glu	Trp	Met	Arg 90	Ala	Ala	Gly	Ala	Pro 95	Pro
	Ala	Glu	Trp	Ala 100	Gln	Pro	Phe	Arg	Asp 105	Val	His	Ala	Ala	Ser 110	Trp	Glu
LO	Gly	Glu	Val 115	Pro	Asp	Val	Gly	Glu 120	Leu	Ala	Glu	Ser	Phe 125	Ala	Gly	Leu
L5	Leu	Pro 130	Gly	Ala	Gly	Ala	Arg 135	Leu	Asp	Leu	Val	Gly 140	Asp	Phe	Ala	Trp
	Gln 145	Val	Pro	Val	Gln	Gly 150	Met	Thr	Ala	Val	Leu 155	Gly	Ala	Ala	Gly	Val 160
20	Leu	Arg	Gly	Ala	Ala 165	Trp	Asp	Ala	Arg	Val 170	Ser	Leu	Asp	Ala	Gln 175	Leu
	Ser	Pro	Gln	Gln 180	Leu	Ala	Val	Thr	Glu 185	Ala	Ala	Val	Ala	Ala 190	Leu	Pro
25	Ala	Asp	Pro 195	Ala	Leu	Arg	Ala	Leu 200	Phe	Ala	Gly	Ala	Glu 205	Met	Thr	Ala
30	Asn	Thr 210	Val	Val	Asp	Ala	Val 215	Leu	Ala	Val	Ser	Ala 220	Glu	Pro	Gly	Leu
	Ala 225	Glu	Arg	Ile	Ala	Asp 230	Asp	Pro	Ala	Ala	Ala 235	Gln	Arg	Thr	Val	Ala 240
35	Glu	Val	Leu	Arg	Leu 245	His	Pro	Ala	Leu	His 250	Leu	Glu	Arg	Arg	Thr 255	Ala
	Thr	Ala	Glu	Val 260	Arg	Leu	Gly	Glu	His 265	Val	Ile	Gly	Glu	Gly 270	Glu	Glu
10	Val	Val	Val 275	Val	Val	Ala	Ala	Ala 280	Asn	Arg	Asp	Pro	Glu 285	Val	Phe	Ala
15	Glu	Pro 290	Asp	Arg	Leu	Asp	Val 295	Asp	Arg	Pro	Asp	Ala 300	Asp	Arg	Ala	Leu

	Ser 305	Ala	His	Arg	Gly	His	Pro	Gly	Arg	Leu	Glu 315	Glu	Leu	Val	Thr	Ala 320	
5	Leu	Ala	Thr	Ala	Ala 325	Leu	Arg	Ala	Ala	Ala 330	Lys	Ala	Leu	Pro	Gly 335	Leu	
	Thr	Pro	Ser	Gly 340	Pro	Val	Val	Arg	Arg 345	Arg	Arg	Ser	Pro	Val 350	Leu	Arg	
10	Gly	Thr	Asn 355	Arg	Cys	Pro	Val	Glu 360	Leu								
4	(2)	INF	ORMA	rions	s pot	JR LA	A SE	QID	NO:	4:							
15		(i)	(1)	RACTI A) LO B) T	ONGUI YPE : OMBRI	EUR: nucl	1266 Léot: BRII	6 pa: ide NS: 0	ires doubl	de k le		5					
20		(ii)		D) CO					leal	re							
25		(vi)		IGINI A) OI		SME	: Sad	cchar	copo]	lyspo	ora e	eryth	nraea	a.			
		(ix)	( <i>1</i>	RACTI A) NO B) EN	OM/CI	LE: ( CEMEI	CDS NT : co	_					mlia	TILE (	dans	la	
30			\-	,	bio	osynt ene=	these ery	e de yCII	la d	desos	samir	ie"			<b></b>		
35		(xi)	) DES	SCRII	PTIO	1 DE	LA S	SEQUE	ENCE	: SEÇ	Q ID	NO:	4:				
	TCAT	rcgr	GGT :	rctc:	rcct:	rc c	rgcgo	GCCAC	G TTO	CCTCC	GCAG	ATG	CCGAC	CGA (	CCTCC	GCCGG	60
40	TGAC	CGGC:	rcc (	GCGA	GCATO	FT CO	GTCG	CGCA:	<b>r</b> cc(	GCGC	CGCG	CCGC	GCGCC	GT (	GGCC	CGGGTC	120
10	GTC	GAGG!	ACC (	CGCT	rcaco	CG A	CTCC	CGGA	G CTO	GTC	GGG	GTCA	AGCTO	CGG (	GCACO	GGCAG	180
	CGC	EATC	ccc (	GCCC	CGAA:	rt co	CTGC	GTGC	G CT	GCGC	GCGC	ACGO	CCGGI	CGT (	CCCAC	SCCGTC	240
1 E	aaaa	יא ממי	אשמ ז	N COM	7000	אה מר	ימממי	7007	n aa	7000		maaa	33 A A			100000	200

	GTGGTGCACC	GTCGCCGCĞC	AGGTCGGCAG	CAGCGCGTGC	ATCGGGACGA	AGCCGACCGT	360
	GCGGACGTTG	TCCGGGATGT	TCGCGACGCC	TTCTAGCTGC	TGCGCGTCGA	AGGTCGCGAT	420
5	GATCTCGGCG	TCGACGTCGC	CGACGGCACC	CAGCAGCTCC	TCGATGGAGA	CCTGCCCGAT	480
	GCTGTTCTCG	CGGCTGGAGA	TCCCGAGCGT	GAGGCACACG	CGGCGGCGCT	CGGGCTCGTC	540
10	GTGCAGCCAT	TCCGGCACCA	CGGACGGCCC	GTTGTAGTCG	ACGTAGCGCA	TCCCGACGGT	600
10	CTTCAGGCCG	GTGTCGAGCC	TGATCGCGGC	CGGGGCGGGG	TCGATCGTCC	ACTGCCCGAC	660
	GACCACCTCC	TCGTCGAAGG	CCGGGCCGCC	GTACTTCTCC	AGCGTCCAGG	TGAGCCACTC	720
15	GGCGAGCGGG	TCCTCCCGGT	GCTCCTCCGG	CTGGTCGGGC	AGCAGGCCGA	GGAAGTTCTG	780
	CCGCGCCCGG	GTGGTGATGT	CGGGTCCCCA	CAGCAGCCGC	GCGTGCGGCG	TTCCGGTCAC	840
20	CGCCGCCGCG	ATGGGCGCGG	CGAAGGTGAG	CGGCTCCCAG	ATGACCAGGT	CGGGCCGCCA	900
	CTTCCGGCAG	AACGAGACCA	TGCCTTCGAT	GAGCGTGTCC	GGGCTCATCA	GGGCGTAGAA	960
	GGTCGGGGTG	AGCACGGTCT	GCATGCCCAG	CAGGTGCTCC	CAGGTCAAGG	TGGCGGGGTC	1020
25	CCGCTCGCTG	AAGTCCAGGC	TCCGGACGTA	GTCGATGATG	TCGTGGCCCG	CGTGGGTCAT	1080
	GAAGTCCACG	AGGTCGACGT	CGGTGCCGAC	CGGGACGGCG	GTCAGCCCGG	CCGCGGTGAT	1140
30	GTCCTCGGTG	AGCGCCGGGG	ACGCGACCAC	GCGGACCTCG	TGCCCGCCG	CGCGGAACGC	1200
	CCATGCGAGG	GGGACGAGGC	CGAAGAGGTG	GCTCTTGCTG	GCCATGGAGG	AGAAGACGAC	1260
	GCGCAT						1266

- (2) INFORMATIONS POUR LA SEQ ID NO: 5:
  - (i) CARACTERISTIQUES DE LA SEQUENCE:
    - (A) LONGUEUR: 421 acides aminés
- 40 (B) TYPE: acide aminé
  - (D) CONFIGURATION: linéaire
  - (ii) TYPE DE MOLECULE: protéine
- 45 (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 5:

		Arg	Val	Val	Phe 5	Ser	Ser	Met	Ala	Ser 10	Lys	Ser	His	Leu	Phe 15	Gly
	1				5					10					13	
5	Leu	Val	Pro	Leu 20	Ala	Trp	Ala	Phe	Arg 25	Ala	Ala	Gly	His	Glu 30	Val	Arg
	Val	Val	Ala 35	Ser	Pro	Ala	Leu	Thr 40	Glu	Asp	Ile	Thr	Ala 45	Ala	Gly	Lev
10	Thr	Ala 50	Val	Pro	Val	Gly	Thr 55	Asp	Val	Asp	Leu	Val 60	Asp	Phe	Met	Thr
15	His 65	Ala	Gly	His	Asp	Ile 70	Ile	Asp	Tyr	Val	Arg 75	Ser	Leu	Asp	Phe	Ser 80
	Glu	Arg	Asp	Pro	Ala 85	Thr	Leu	Thr	Trp	Glu 90	His	Leu	Leu	Gly	Met 95	Glr
20	Thr	Val	Leu	Thr 100	Pro	Thr	Phe	Tyr	Ala 105	Leu	Met	Ser	Pro	Asp 110	Thr	Leu
	Ile	Glu	Gly 115	Met	Val	Ser	Phe	Cys 120	Arg	Lys	Trp	Arg	Pro 125	Asp	Leu	Val
25	Ile	Trp 130	Glu	Pro	Leu	Thr	Phe 135	Ala	Ala	Pro	Ile	Ala 140	Ala	Ala	Val	Thr
30	Gly 145	Thr	Pro	His	Ala	Arg 150	Leu	Leu	Trp	Gly	Pro 155	Asp	Ile	Thr	Thr	Arg
	Ala	Arg	Gln	Asn	Phe 165	Leu	Gly	Leu	Leu	Pro 170	Asp	Gln	Pro	Glu	Glu 175	His
35	Arg	Glu	Asp	Pro 180	Leu	Ala	Glu	Trp	Leu 185	Thr	Trp	Thr	Leu	Glu 190	Lys	Tyr
	Gly	Gly	Pro 195	Ala	Phe	Asp	Glu	Glu 200	Val	Val	Val	Gly	Gln 205	Trp	Thr	Ile
40	Asp	Pro 210	Ala	Pro	Ala	Ala	Ile 215	Arg	Leu	Asp	Thr	Gly 220	Leu	Lys	Thr	Val
45	Gly 225	Met	Arg	Tyr	Val	Asp 230	Tyr	Asn	Gly	Pro	Ser 235	Val	Val	Pro	Glu	Trp

Leu His Asp Glu Pro Glu Arg Arg Val Cys Leu Thr Leu Gly Ile 245 250 255

Ser Ser Arg Glu Asn Ser Ile Gly Gln Val Ser Ile Glu Glu Leu Leu 5 260 265 270

Gly Ala Val Gly Asp Val Asp Ala Glu Ile Ile Ala Thr Phe Asp Ala 275 280 285

10 Gln Gln Leu Glu Gly Val Ala Asn Ile Pro Asp Asn Val Arg Thr Val
290 295 300

Gly Phe Val Pro Met His Ala Leu Leu Pro Thr Cys Ala Ala Thr Val 305 310 315 320

15

30

40

His His Gly Gly Pro Gly Ser Trp His Thr Ala Ala Ile His Gly Val

Pro Gln Val Ile Leu Pro Asp Gly Trp Asp Thr Gly Val Arg Ala Gln 20 340 345 350

Arg Thr Gln Glu Phe Gly Ala Gly Ile Ala Leu Pro Val Pro Glu Leu 355 360 365

25 Thr Pro Asp Gln Leu Arg Glu Ser Val Lys Arg Val Leu Asp Asp Pro 370 380

Ala His Arg Ala Gly Ala Ala Arg Met Arg Asp Asp Met Leu Ala Glu
385 390 395 400

Pro Ser Pro Ala Glu Val Val Gly Ile Cys Glu Glu Leu Ala Ala Gly
405 410 415

Arg Arg Glu Pro Arg

- (2) INFORMATIONS POUR LA SEQ ID NO: 6:
  - (i) CARACTERISTIQUES DE LA SEQUENCE:
    - (A) LONGUEUR: 8160 paires de bases
    - (B) TYPE: nucléotide
    - (C) NOMBRE DE BRINS: double
    - (D) CONFIGURATION: linéaire
- 45 (ii) TYPE DE MOLECULE: ADN (génomique)

PCT/FR98/01593 WO 99/05283

```
12
        (vi) ORIGINE:
              (A) ORGANISME: Saccharopolyspora erythraea
        (ix) CARACTERISTIQUE:
 5
              (A) NOM/CLE: CDS
              (B) EMPLACEMENT: 242..1207
              (D) AUTRES INFORMATIONS:/function= "implique dans la
                     biosynthese du mycarose"
                     /qene= "eryBIV"
10
                     /transl except= (pos: 242 .. 244, aa: Met)
        (ix) CARACTERISTIQUE:
              (A) NOM/CLE: CDS
              (B) EMPLACEMENT: 1210..2454
15
              (D) AUTRES INFORMATIONS:/function= "implique dans la
                     biosynthese du mycarose"
                     /gene= "eryBV"
                     /transl except= (pos: 1210 .. 1212, aa: Met)
20
        (ix) CARACTERISTIQUE:
              (A) NOM/CLE: CDS
              (B) EMPLACEMENT: 2510..3220
              (D) AUTRES INFORMATIONS:/function= "implique dans la
                     biosynthese de la desosamine"
25
                     /gene= "eryCVI"
        (ix) CARACTERISTIQUE:
              (A) NOM/CLE: CDS
              (B) EMPLACEMENT: 3308..4837
30
              (D) AUTRES INFORMATIONS:/function= "implique dans la
                     biosynthese du mycarose"
                     /gene= "eryBVI"
                     /transl except= (pos: 3308 .. 3310, aa: Met)
35
        (ix) CARACTERISTIQUE:
              (A) NOM/CLE: CDS
              (B) EMPLACEMENT: 6080..7546
              (D) AUTRES INFORMATIONS:/function= "implique dans la
                     biosynthese de la desosamine"
40
                     /gene= "eryCV"
        (ix) CARACTERISTIQUE:
```

- (A) NOM/CLE: CDS
- (B) EMPLACEMENT: 7578..8156
- 45 (D) AUTRES INFORMATIONS:/function= "implique dans la biosynthese du mycarose"

PCT/FR98/01593

/gene= "eryBVII" /transl_except= (pos: 7578 .. 7580, aa: Met)

# (ix) CARACTERISTIQUE:

5

(A) NOM/CLE: mat_peptide

(B) EMPLACEMENT: 242

10	(x	i) DE	SCRII	OITS	1 DE	LA S	EQUE	ENCE :	SEÇ	) ID	NO:	6:					
	TTTGAC	AGGT	CCGC	CACGO	CG TO	cccc	TACI	r CGA	ACGAC	CCAC	GCAZ	TGGG	ECG I	ACA	ATATAG	6	50
<b>-</b> -	GAAGGA	TCAA	GAGG:	TGAC	CA TO	CGCCI	CGTC	C GAG	GCCAF	ACGA	ACCI	GTG	AAC A	ATCTC	GCATGT	12	20
15	TGACAA	GATC	AACG	GCGG	CT AC	CTAC	CTGTO	GTC	GCCC	CAGT	GACC	GGTT	rgc (	CGCAC	CATCGC	18	30
	GCTGGG	GAGA	TTCT	rtgai	AT T	rcgco	CCGT	A GCA	ACCGF	ACCT	GGAZ	AAGCO	GAG (	CAAAT	rgctcc	24	10
20	G GTG Met	AAT G Asn G							g Gl					eu Le		28	36
25	GGC GC															33	34
30	CAC CO															38	32
	CCG CC		Ala													43	30
35	CCG GC															45	78
40	CTG G															52	26
45	GAC CO														_	51	74

-																	
	GGC	GCG	CTG	CAC	GAT	CGC	CGC	AGG	TCG	ACG	CCG	CCC	GTG	TTG	CTC	TAC	622
	Gly	Ala	Leu	His	Asp	Arg	Arg	Arg	Ser	Thr	Pro	Pro	Val	Leu	Leu	Tyr	
				115					120					125			
5	GCG	AGC	ACC	GCA	CAG	GCC	GCG	AAC	CCG	TCG	GCG	GCC	AGC	AGG	TAC	GCG	670
	Ala	Ser	Thr	Ala	Gln	Ala	Ala	Asn	Pro	Ser	Ala	Ala	Ser	Arg	Tyr	Ala	
			130					135					140				
														ACC			718
10	Gln	Gln	Lys	Thr	Glu	Ala	Glu	Arg	Ile	Leu	Arg	Lys	Ala	Thr	Asp	Glu	
		145					150					155					
														TAC			766
	_	Arg	Val	Arg	Gly		Ile	Leu	Arg	Leu		Ala	Val	Tyr	Gly		
15	160					165					170					175	
		~~~			~~~			222	999	222	ama	ama	GG7	aaa	3 m/d	N III CI	014
														GCG			814
	ser	GIY	Pro	ser		Pro	мес	GIY	Arg	185	Vai	Val	Ата	Ala	190	TTE	
20					180					100					190		
20	CGG	ССТ	פככ	CTC	GCC	GGC	GZG	רכפ	כידיכי	ΣCC	ΔͲር	TGG	CAC	GAC	GGC	GGC	862
														Asp			
	2119	1129	1124	195		CL J	0		200					205	1	2	
25	GTG	CGC	CGC	GAC	CTG	CTG	CAC	GTC	GAG	GAC	GTG	GCC	ACC	GCG	TTC	GCC	910
	Val	Arg	Arg	Asp	Leu	Leu	His	Val	Glu	Asp	Val	Ala	Thr	Ala	Phe	Ala	
			210					215					220				
	GCC	GCG	CTG	GAG	CAC	CAC	GAC	GCG	CTG	GCC	GGC	GGC	ACG	TGG	GCG	CTG	958
30	Ala	Ala	Leu	Glu	His	His	Asp	Ala	Leu	Ala	Gly	Gly	Thr	Trp	Ala	Leu	
		225					230					235					
														GCC			1006
	Gly	Ala	Asp	Arg	Ser	Glu	Pro	Leu	Gly	Asp	Ile	Phe	Arg	Ala	Val	Ser	
35	240					245					250					255	
														GTG			1054
	СТĀ	Ser	Val	Ala	_	GIn	Thr	GIA	Ser		Ala	Val	Asp	Val		Thr	
4.0					260					265					270		
40	Cmc	aaa	aaa	aaa	aza	C 3 C	000	C 7 C	aaa	774	~~~	ጥጥረ	ccc	אממ	G N C	CNC	1100
														AGC			1102
	val	Pro	AIG		GIU	nis	AId	GIU		ASII	нар	FIIG	Ard	Ser 285	Asp	nap	
				275					280					400			

	ATC	GAC	TCC	ACC	GAG	TTC	CGC	AGC	CGG	ACC	GGC	TGG	CGC	CCC	CGG	GTT	115	0
	Ile	Asp	Ser	Thr	Glu	Phe	Arg	Ser	Arg	Thr	Gly	Trp	Arg	Pro	Arg	Val		
			290					295					300					
_													~~~		~~~	• • • •		
5	TCC																119	8
	ser	305	Thr	Asp	GIY	Ile	310	Arg	Thr	vaı	Ala	315	ren	THE	PIO	1111		
		305					210					313						
	GAG	GAG	CAC	TA (GTG (CGG (STA (CTG (CTG A	ACG I	rcc :	TTC (GCG (CAC (cgc z	ACG	124	5
10	Glu	Glu	His	1	Met A	Arg V	/al I	Leu I	Leu :	Thr S	Ser I	Phe A	Ala H	lis A	Arg :	Thr		
	320				1				5					10				
						GTC											129	3
	His	Phe		Gly	Leu	Val	Pro		Ala	Trp	Ala	Leu		Thr	Ala	Gly		
15			15					20					25					
	CAC	GNC	CTC	CGC	CTC	GCC	GCC	CAG	רכר	GCG	פיזיפ	אככ	GAC	GCG	GTC	ATC	134	1
						Ala												_
		30	V	3			35					40						
20																		
	GGC	GCC	GGT	CTC	ACC	GCG	GTA	CCC	GTC	GGC	TCC	GAC	CAC	CGG	CTG	TTC	138	9
	Gly	Ala	Gly	Leu	Thr	Ala	Val	Pro	Val	Gly	Ser	Asp	His	Arg	Leu	Phe		
	45					50					55					60		
2 =	GAC	7 m.a	ama	aaa	~~ ~	ama	aaa	a a m	an a	ama	C A C	acc	ma C	TOO	መመረ	ምአ <i>ር</i>	143	. 7
25						Val											143	′
	Asp	110	val	FIO	65	vai	ALG	Ara	GIII	70	1110	Arg	1 7 1	501	75	-1-		
					0.5													
	CTG	GAC	TTC	TAC	CAC	CGC	GAG	CAG	GAG	CTG	CAC	TCG	TGG	GAG	TTC	CTG	148	5
30	Leu	Asp	Phe	Tyr	His	Arg	Glu	Gln	Glu	Leu	His	Ser	Trp	Glu	Phe	Leu		
				80					85					90				
													~~~	~=~	ama			_
						GCC											153	3
35	Leu	GTÀ	95	GIII	Giu	Ala	IIII	100	Arg	пр	vai	ıyı	105	val	Val	MBII		
J J			93					100					103					
	AAC	GAC	TCC	TTC	GTC	GCC	GAG	CTG	GTC	GAC	TTC	GCC	CGG	GAC	TGG	CGT	158	1
	Asn	qaA	Ser	Phe	Val	Ala	Glu	Leu	Val	Asp	Phe	Ala	Arg	Asp	Trp	Arg		
		110					115					120						
40																		
						TGG											162	9
		Asp	Leu	Val	Leu	Trp	Glu	Pro	Phe	Thr		Ala	Gly	Ala	Val			
	125					130					135					140		

	GCC	CGG	GCC	TGC	GGA	GCC	GCG	CAC	GCC	CGG	CTG	CTG	TGG	GGC	AGC	GAC	1677
	Ala	Arg	Ala	Cys	Gly	Ala	Ala	His	Ala	Arg	Leu	Leu	Trp	Gly	Ser	Asp	
					145					150					155		
5												CAA					1725
	Leu	Thr	Gly	Tyr	Phe	Arg	Gly	Arg	Phe	Gln	Ala	Gln	Arg	Leu	Arg	Arg	
				160					165					170			
	aaa	000	222	ar a	000	aaa	a » a	000	OMC.	999	200	maa	ama	7.00	C A C	CTC	1773
10	Pro											TGG					1//3
10	PLO	FIO	175	App	Arg	FIO	тор	180	neu	Gry	****	11p	185	1111	014	vui	
			1,0					200									
	GCG	GGG	CGC	TTC	GGC	GTC	GAA	TTC	GGC	GAG	GAC	CTC	GCG	GTC	GGG	CAG	1821
	Ala	Gly	Arg	Phe	Gly	Val	Glu	Phe	Gly	Glu	Asp	Leu	Ala	Val	Gly	Gln	
15		190					195					200					
	TGG	TCG	GTC	GAC	CAG	TTG	CCG	CCG	AGT	TTC	CGG	CTG	GAC	ACC	GGA	ATG	1869
	-	Ser	Val	Asp	Gln		Pro	Pro	Ser	Phe	_	Leu	Asp	Thr	Gly		
0.0	205					210					215					220	
20	<b>633</b>	7.00	omm.	ama	999	aaa	7.00	ama	000	ma c	770	aaa	000	maa	CmC	C TOTAL	1917
												GGC Gly					1917
	Giu	1111	vai	vai	225	Arg	1111	neu	PIO	230	ASII	Gry	Ala	Ser	235	Vai	
					225					230							
25	CCG	GAC	TGG	CTC	AAG	AAG	GGC	AGT	GCG	ACT	CGA	CGC	ATC	TGC	ATT	ACC	1965
	Pro	Asp	Trp	Leu	Lys	Lys	Gly	Ser	Ala	Thr	Arg	Arg	Ile	Cys	Ile	Thr	
				240					245					250			
												GCC					2013
30	Gly	Gly		Ser	Gly	Leu	Gly		Ala	Ala	Asp	Ala		Gln	Phe	Ala	
			255					260					265				
	CGG	አሮር	CTC	aca	CNG	СТС	aca	CGN	TTC	GNT	GGC	GAA	እጥሮ	GTG	Guu	ACG	2061
												Glu					2001
35	3	270					275	3		Р		280					
	GGT	TCC	GGT	CCG	GAT	ACC	TCC	GCG	GTA	CCG	GAC	AAC	ATT	CGT	TTG	GTG	2109
	Gly	Ser	Gly	Pro	Asp	Thr	Ser	Ala	Val	Pro	Asp	Asn	Ile	Arg	Leu	Val	
	285					290					295					300	
40																	
												TGC					2157
	Asp	Phe	Val	Pro		Gly	Val	Leu	Leu		Asn	Cys	Ala	Ala		Ile	
					305					310					315		

	CAC	CAC	GGC	GGG	GCC	GGA	ACC	TGG	GCC	ACG	GCA	CTG	CAC	CAC	GGA	ATT	2205
	His	His	Gly	Gly	Ala	Gly	Thr	Trp	Ala	Thr	Ala	Leu	His	His	Gly	Ile	
				320					325					330			
5	CCG	CAA	ATA	TCA	GTT	GCA	CAT	GAA	TGG	GAT	TGC	ATG	CTA	CGC	GGC	CAG	2253
	Pro	Gln	Ile	Ser	Val	Ala	His	Glu	Trp	Asp	Cys	Met	Leu	Arg	Gly	Gln	
			335					340					345				
	CAG	ACC	GCG	GAA	CTG	GGC	GCG	GGA	ATC	TAC	CTC	CGG	CCG	GAC	GAG	GTC	2301
10	Gln	Thr	Ala	Glu	Leu	Gly	Ala	Gly	Ile	Tyr	Leu	Arg	Pro	Asp	Glu	Val	
		350					355					360					
	GAT	GCC	GAC	TCA	TTG	GCG	AGC	GCC	CTC	ACC	CAG	GTG	GTC	GAG	GAC	CCC	2349
	Asp	Ala	Asp	Ser	Leu	Ala	Ser	Ala	Leu	Thr	Gln	Val	Val	Glu	Asp	Pro	
15	365					370					375					380	
	ACC	TAC	ACC	GAG	AAC	GCG	GTG	AAG	CTT	CGC	GAG	GAG	GCG	CTG	TCC	GAC	2397
	Thr	Tyr	Thr	Glu	Asn	Ala	Val	Lys	Leu	Arg	Glu	Glu	Ala	Leu	Ser	Asp	
20					385					390					395		
20	רכפ	אכפ	CCG	CNG	GAG	<b>አ</b> ጥር	ርሞር	CCG	CGA	רידיכ	GAG	GAA	כידיכי	ACG	CGC	CGC	2445
												Glu					
				400					405					410	5	J	
25	CAC	GCC	GGC	TAG	CGGT:	rtc (	CGAC	CGAC	AA G	rccg:	rccg <i>i</i>	A CAG	3CAC	ACCT			2494
	His	Ala	_														
			415														
	CCG	GAGG	GAG (	CAGG	G ATO	G TAC	C GAG	G GG	c GG(	TT(	C GCC	C GAO	G CT	TAC	C GAG	C CGG	2545
30					Met	туз	c Glu	ı Gly	y Gly	y Phe	e Ala	a Glu	ı Leı	ı Ty	r Asp	Arg	
					:	L			į	5				10	)		
	TTC	TAC	CGC	GGC	CGG	GGC	AAG	GAC	TAC	GCG	GCC	GAG	GCC	GCG	CAG	GTC	2593
	Phe	Tyr	Arg	Gly	Arg	Gly	Lys	Asp	Tyr	Ala	Ala	Glu	Ala	Ala	Gln	Val	
35			15					20					25				
	GCG	CGG	CTG	GTC	AGA	GAC	CGC	CTG	CCC	TCG	GCT	TCC	TCG	CTG	CTC	GAC	2641
	Ala	Arg	Leu	Val	Arg	Asp	Arg	Leu	Pro	ser	Ala	Ser	Ser	Leu	Leu	Asp	
		30					35					40					
40																	
	_											TTC	_				2689
		Ala	cys	сτλ	unr	_	Thr	HIS	ьeu	arg	_	Phe	АТА	Asp	ьeu		
	45					50					55					60	

												ATG Met				2737
5												GGC Gly				2785
10												TGC Cys				2833
15												CAG Gln 120				2881
												GTG Val				2929
20												GCC Ala				2977
25												CAC His				3025
30												GTG Val				3073
35												ATC Ile 200				3121
4.0												GGT Gly				3169
40												TTC Phe				3217
45	GGA Gly	TGA	CCCG'	TGC (	GTTC(	GCGT'	TT T	CCGT"	TCCT(	G GC	ACAG	GTGA	TCC	GCTC	CAC	3270

	GGG	CCT	TTC (	CCGG	CCGT	BA CO	CGGAC	CCTT	C ACA	AGTGI						GAC Asp	3325
_											]	L			Ē	5	
5	אאר	GCC	CGG	CGG	CAG	CAA	GCG	GAG	CCG	TCG	ACG	ACA	CCG	CAG	GGA	GAG	3373
												Thr					
				10					15					20			
10												CCG Pro					3421
	Ser	Mec	25	Asp	Arg	1111	GTÅ	30	Arg	1111	116	FIO	35	per	Der	0111	
												ATC					3469
15	Thr		Thr	Arg	Phe	Leu		Gly	Asp	Gly	Gly	Ile	Pro	Thr	Ala	Thr	
		40					45					50					
	GCG	GAA	ACC	CAC	GAC	TGG	CTG	ACC	CGC	AAC	GGC	GCC	GAG	CAG	CGG	CTC	3517
	Ala	Glu	Thr	His	Asp	Trp	Leu	Thr	Arg	Asn	Gly	Ala	Glu	Gln	Arg	Leu	
20	55					60					65					70	
	GNG	CTTC.	aca	רפר	CTC	CCG	ጥጥር	አር	פרר	ስጥG	GAC	CGC	TGG	TCG	ጥጥሮ	CAG	<b>35</b> 65
												Arg					3333
				J	75					80	•	Ī	_		85		
25																	
												CGC					3613
	Pro	GIU	Asp	90 GIÀ	Arg	ьеu	Ala	HIS	95	ser	GIY	Arg	Pne	100	per	116	
30												CGG					3661
	Glu	Gly		His	Val	Arg	Thr		Phe	Gly	Trp	Arg		Asp	Trp	Ile	
			105					110					115				
	CAG	CCC	ATC	ATC	GTG	CAG	CCC	GAG	ATC	GGC	TTC	CTC	GGC	CTC	ATC	GTC	3709
35	Gln	Pro	Ile	Ile	Val	Gln	Pro	Glu	Ile	Gly	Phe	Leu	Gly	Leu	Ile	Val	
		120					125					130					
	אאכ	GNG	باشان	G N C	ccr	CTC	ርሞር	ראכ	CTC	ריזיני	aca	CAG	מככ	ΔAG	פככ	GZG	3757
												Gln					3,3.
40	135			_	4	140					145			-		150	
												ACC					3805
	Pro	GIÀ	Asn	Ile	Asn 155	Ala	Val	Gln	Leu	Ser 160	Pro	Thr	ьeu	GIN	A1a 165	ınr	
					100					T00					100		

							AAG Lys				3853
5							CTC Leu				3901
10	CAG Gln						CGC Arg 210				3949
15	Val						CCG Pro	_			<b>39</b> 97
							CAC His		_		4045
20							CCG Pro	_	 		4093
25	CGG Arg						CCC Pro	_		,	4141
30	CAG Gln						GGC Gly 290				4189
35							GTG Val				4237
							ATC Ile				4285
40							GAG Glu			,	4333

	GAC	GTC	TTC	GGC	GTC	ACG	GTG	GCG	ACC	AGC	GAC	CGC	GAG	GTC	AAC	TCG	4381
	Asp	Val	Phe	Gly	Val	Thr	Val	Ala	Thr	Ser	Asp	Arg	Glu	Val	Asn	Ser	
			345					350					355				
5	TGG	ATG	CAG	CCG	CTG	CTC	TCG	CCC	GCC	AAC	AAC	GGC	CTG	CTC	GCC	CTG	4429
					Leu												
	-	360					365					370					
	CTG	GTC	AAG	GAC	ATC	GGC	GGC	ACG	TTG	CAC	GCG	CTC	GTG	CAG	CTG	CGC	4477
10	Leu	Val	Lys	Asp	Ile	Gly	Gly	Thr	Leu	His	Ala	Leu	Val	Gln	Leu	Arg	
	375					380					385					390	
	אככ	CNC	aaa	aac	GGG	א ידיכי	CAC	CTC	aaa	GNG	CTC	ccc	ССТ	አሮር	CTC	CAC	4525
					Gly												4020
15	1111	Jiu	niu	Gry	395	1100	nop	Val	7114	400	Dou				405		
	TGC	CAG	CCC	GAC	AAC	TAC	GCC	GAC	GCG	CCC	GAG	GAG	TTC	CGA	CCG	GCC	4573
	Cys	Gln	Pro	Asp	Asn	Tyr	Ala	Asp	Ala	Pro	Glu	Glu	Phe	Arg	Pro	Ala	
				410					415					420			
20																	
					GTG												4621
	Tyr	vai	425	Tyr	Val	Leu	Asn	va1 430	Pro	Arg	ser	Gin	vai 435	Arg	Tyr	Asp	
			423					430					733				
25	GCA	TGG	CAC	TCC	GAG	GAG	GGC	GGC	CGG	TTC	TAC	CGC	AAC	GAG	AAC	CGG	4669
	Ala	Trp	His	Ser	Glu	Glu	Gly	Gly	Arg	Phe	Tyr	Arg	Asn	Glu	Asn	Arg	
		440					445					450					
					GAG												4717
30		Met	Leu	Ile	Glu		Pro	Ala	Asp	Phe		Ala	Ser	Ala	Ala		
	455					460					465					470	
	GAC	CAC	CGG	TGG	ATG	ACC	ттс	GAC	CAG	ATC	ACC	TAC	CTG	CTC	GGG	CAC	4765
					Met												1,00
35	_		_	_	475			-		480		-			485		
	AGC	CAC	TAC	GTC	AAC	ATC	CAG	CTG	CGC	AGC	ATC	ATC	GCG	TGC	GCC	TCG	4813
	Ser	His	Tyr	Val	Asn	Ile	Gln	Leu	Arg	Ser	Ile	Ile	Ala	Cys	Ala	Ser	
4.0				490					495					500			
40	GCC	ama	<b>ጥ</b> አ ረግ	אממ	אממ	N.C.C	aaa	CC 2	י ע טועט	1 7 CC	700 (	ימוויםי	, מממי	ים מי	radia.	SATCT	1067
					Arg				1 GAZ	ישרה	ان ر	3C I G\$	sccG#	, C.		3MICI	4867
			505		••••	~ ~ * *		510									
45	TCG	GCGG	ccc (	CGAG	GCAT:	רכ כי	rgca(	CACC	TC:	racg:	rggg	CAG	GCCG#	ACC (	STCGO	GGACC	4927

	GGGAGCGGTT	CTTCGCCCGC	CTGGAGTGGG	CGCTGAACAA	CAACTGGCTG	ACCAACGGCG	4987
	GACCACTGGT	GCGCGAGTTC	GAGGGCCGGG	TCGCCGACCT	GGCGGGTGTC	CGCCACTGCG	5047
5	TGGCCACCTG	CAACGCGACG	GTCGCGCTGC	AACTGGTGCT	GCGCGCGAGC	GACGTGTCCG	5107
	GCGAGGTCGT	CATGCCTTCG	ATGACGTTCG	CGGCCACCGC	GCACGCGGCG	AGCTGGCTGG	5167
10	GGCTGGAACC	GGTGTTCTGC	GACGTGGACC	CCGAGACCGG	CCTGCTCGAC	CCCGAGCACG	5227
	TCGCGTCGCT	GGTGACACCG	CGGACGGGCG	CGATCATCGG	CGTGCACCTG	TGGGGCAGGC	5287
	CCGCTCCGGT	CGAGGCGCTG	GAGAAGATCG	CCGCCGAGCA	CCAGGTCAAA	CTCTTCTTCG	5347
15	ACGCCGCGCA	CGCGCTGGGC	TGCACCGCCG	GCGGGCGGCC	GGTCGGCGCC	TTCGGCAACG	5407
	CCGAGGTGTT	CAGCTTCCAC	GCCACGAAGG	CGGTCACCTC	GTTCGAGGGC	GGCGCCATCG	5467
20	TCACCGACGA	CGGGCTGCTG	GCCGACCGCA	TCCGCGCCAT	GCACAACTTC	GGGATCGCAC	5527
	CGGACAAGCT	GGTGACCGAT	GTCGGCACCA	ACGGCAAGAT	GAGCGAGTGC	GCCGCGGCGA	5587
	TGGGCCTCAC	CTCGCTCGAC	GCCTTCGCCG	AGACCAGGGT	GCACAACCGC	CTCAACCACG	5647
25	CGCTCTACTC	CGACGAGCTC	CGCGACGTGC	GCGGCATATC	CGTGCACGCG	TTCGATCCTG	5 <b>7</b> 07
	GCGAGCAGAA	CAACTACCAG	TACGTGATCA	TCTCGGTGGA	CTCCGCGGCC	ACCGGCATCG	5767
30	ACCGCGACCA	GTTGCAGGCG	ATCCTGCGAG	CGGAGAAGGT	TGTGGCACAA	CCCTACTTCT	5827
	CCCCCGGGTG	CCACCAGATG	CAGCCGTACC	GGACCGAGCC	GCCGCTGCGG	CTGGAGAACA	5887
	CCGAACAGCT	CTCCGACCGG	GTGCTCGCGC	TGCCCACCGG	CCCCGCGGTG	TCCAGCGAGG	5947
35	ACATCCGGCG	GGTGTGCGAC	ATCATCCGGC	TCGCCGCCAC	CAGCGGCGAG	CTGATCAACG	6007
	CGCAATGGGA	CCAGAGGACG	CGCAACGGTT	CGTGACGACC	TGCGCCACAA	GTGCCAGGAG	6067
40	GTTCGCTCCC		Thr Thr Arg		CC GCC CAG ( nr Ala Gln (		6115
45		a Asp Ala Al			CGG CGG GCC Arg Arg Ala		6163

	CGG	GCG	CTG	AGC	TCG	GAG	GTC	TCC	CGC	GTC	ACC	GGC	GCC	GGT	GAC	GGT	6211
	Arg		Leu	Ser	Ser	Glu		Ser	Arg	Val	Thr	Gly	Ala	Gly	Asp	Gly	
		30					35					40					
5	GAC	GCC	GAC	GTG	CAG	GCC	GCC	CGG	CTC	GCC	GAC	CTC	GCC	GCG	CAC	TAC	6259
	Asp	Ala	Asp	Val	Gln	Ala	Ala	Arg	Leu	Ala	Asp	Leu	Ala	Ala	His	Tyr	
	45					50					55					60	
	GGG	GCG	CAC	CCG	TTC	ACG	CCG	CTG	GAG	CAG	ACG	CGT	GCG	CGG	CTC	GGC	6307
10	Gly	Ala	His	Pro	Phe	Thr	Pro	Leu	Glu	Gln	Thr	Arg	Ala	Arg	Leu	Gly	
					65					70					75		
	CTG	GAC	CGC	GCG	GAG	TTC	GCC	CAC	CTG	CTC	GAC	CTG	TTC	GGC	CGC	ATC	6355
	Leu	Asp	Arg	Ala	Glu	Phe	Ala	His	Leu	Leu	Asp	Leu	Phe	Gly	Arg	Ile	
15				80					85					90			
	CCG	GAC	CTG	GGC	ACC	GCG	GTG	GAG	CAC	GGT	CCG	GCG	GGC	AAG	TAC	TGG	6403
	Pro	Asp	Leu	Gly	Thr	Ala	Val	Glu	His	Gly	Pro	Ala	Gly	Lys	Tyr	Trp	
20			95					100					105				
	TCC	AAC	ACG	ATC	AAG	CCG	CTG	GAC	GCC	GCA	GGC	GCA	CTG	GAC	GCG	GCG	6451
	Ser	Asn	Thr	Ile	Lys	Pro	Leu	Asp	Ala	Ala	Gly	Ala	Leu	Asp	Ala	Ala	
		110					115					120					
25	GTC	TAC	CGC	AAG	CCT	GCC	TTC	CCC	TAC	AGC	GTC	GGC	CTG	TAC	CCC	GGG	6499
	Val	Tyr	Arg	Lys	Pro	Ala	Phe	Pro	Tyr	Ser	Val	Gly	Leu	Tyr	Pro	Gly	
	125					130					135					140	
	CCG	ACG	TGC	ATG	TTC	CGC	TGC	CAC	TTC	TGC	GTG	CGG	GTG	ACC	GGT	GCC	6547
30	Pro	Thr	Cys	Met	Phe	Arg	Cys	His	Phe	Cys	Val	Arg	Val	Thr	Gly	Ala	
					145					150					155		
	CGC	TAC	GAG	GCC	GCA	TCG	GTC	CCG	GCG	GGC	AAC	GAG	ACG	CTG	GCC	GCG	6595
	Arg	Tyr	Glu	Ala	Ala	Ser	Val	Pro	Ala	Gly	Asn	Glu	Thr	Leu	Ala	Ala	
35				160					165					170			
	ATC	ATC	GAC	GAG	GTG	CCC	ACG	GAC	AAC	CCG	AAG	GCG	ATG	TAC	ATG	TCG	6643
	Ile	Ile	Asp	Glu	Val	Pro	Thr	Asp	Asn	Pro	Lys	Ala	Met	Tyr	Met	Ser	
40			175					180					185				
-0	GGC	GGG	CTC	GAG	CCG	CTG	ACC	AAC	CCC	GGT	CTC	GGC	GAG	CTG	GTG	TCG	6691
												Gly					
		190					195					200					

												TAC					6739
	205	Ата	AIA	GIY	Arg	210	Pne	Asp	ьeu	THE	215	Tyr	TITE	ASII	Ala	220	
5												GGC					6787
	Ala	Leu	Thr	GIU	225	THE	Leu	ASII	Arg	230	PIO	Gly	ьеи	IID	235	neu	
												AAC					6835
10	Gly	Ala	lle	Arg 240	Thr	Ser	Leu	Tyr	G1y 245	Leu	Asn	Asn	Asp	250	Tyr	GIU	
												GTC					6883
15	Thr	Thr	255	GIA	ьўз	Arg	GIÀ	260	Pne	GIU	Arg	Val	Lys 265	гуѕ	ASII	Leu	
												GCG					6931
20	Gln	Gly 270	Phe	Leu	Arg	Met	Arg 275	Ala	Glu	Arg	Asp	Ala 280	Pro	Ile	Arg	Leu	
												GAC					6979
	Gly 285	Phe	Asn	His	Ile	11e 290	Leu	Pro	Gly	Arg	A1a 295	Asp	Arg	Leu	Thr	300	
25												AGC					7027
	Leu	Val	Asp	Phe	Ile 305	Ala	Glu	Leu	Asn	Glu 310	Ser	Ser	Pro	GIn	Arg 315	Pro	
												GGC					7075
30	Leu	Asp	Phe	Val 320	Thr	Val	Arg	Glu	325	Tyr	Ser	Gly	Arg	330	Asp	GIY	
												GAG					7123
35	Arg	Leu	335	Asp	Ser	Glu	Arg	Asn 340	Glu	Leu	Arg	Glu	Gly 345	Leu	Val	Arg	
												ATG					7171
	Phe	Val 350	Asp	Тут	Ala	Ala	Glu 355	Arg	Thr	Pro	Gly	Met 360	His	Ile	Asp	Leu	
40																	
												GAC					7219
	365	туr	ATA	ьeu	GIU	370	ьeu	AIG	Arg	GΤÅ	375	Asp	ATd	GIU	TIER	380	

											GTC Val 395		7267
5											GCG Ala		7315
10											GTC Val		7363
15											GAG Glu		7411
0.0											GGC Gly		7459
20											ATC Ile 475		7507
25				GAG Glu 480					_	TGA	ACCGO	EAG	7556
30	TTG	CGAG	rac (	GTGA(	GCTG	GC G					CCC Pro		7607
35											GAC Asp 25		7655
40											ATG Met		7703
40											ACC Thr		7751

			GGG Gly								7799
5	CTC Leu 75		ATC Ile						_		7847
10	TGG Trp		GTG Val					_		_	7895
15			ACC Thr 110						_		7943
			CTG Leu								7991
20			TTC Phe								8039
25	GAG Glu 155		CTC Leu								8087
30	GCC Ala		CGA Arg								8135
35			AGC Ser 190		TGA	c					8160

- (2) INFORMATIONS POUR LA SEQ ID NO: 7:
- 40 (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 322 acides aminés
  - (B) TYPE: acide aminé
  - (D) CONFIGURATION: linéaire
- 45 (ii) TYPE DE MOLECULE: protéine
  - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 7:

	Met 1	Asn	Gly	Ile	Ser 5	Asp	Ser	Pro	Arg	Gln 10	Leu	Ile	Thr	Leu	Leu 15	GlΣ
5	Ala	Ser	Gly	Phe 20	Val	Gly	Ser	Ala	Val 25	Leu	Arg	Glu	Leu	Arg 30	Asp	His
	Pro	Val	Arg 35	Leu	Arg	Ala	Val	Ser 40	Arg	Gly	Gly	Ala	Pro 45	Ala	Val	Pro
10	Pro	Gly 50	Ala	Ala	Glu	Val	Glu 55	Asp	Leu	Arg	Ala	Asp 60	Leu	Leu	Glu	Pro
15	Gly 65	Arg	Ala	Ala	Ala	Ala 70	Ile	Glu	Asp	Ala	Asp 75	Val	Ile	Val	His	Let 80
	Val	Ala	His	Ala	Ala 85	Gly	Gly	Ser	Thr	Trp 90	Arg	Ser	Ala	Thr	Ser 95	Asp
20	Pro	Glu	Ala	Glu 100	Arg	Val	Asn	Val	Gly 105	Leu	Met	His	Asp	Leu 110	Val	Gly
	Ala	Leu	His 115	Asp	Arg	Arg	Arg	Ser 120	Thr	Pro	Pro	Val	Leu 125	Leu	Tyr	Ala
25	Ser	Thr 130	Ala	Gln	Ala	Ala	Asn 135	Pro	Ser	Ala	Ala	Ser 140	Arg	Tyr	Ala	Glr
30	Gln 145	Lys	Thr	Glu	Ala	Glu 150	Arg	Ile	Leu	Arg	Lys 155	Ala	Thr	Asp	Glu	Gl _y 160
	Arg	Val	Arg	Gly	Val 165	Ile	Leu	Arg	Leu	Pro 170	Ala	Val	Tyr	Gly	Gln 175	Ser
35	Gly	Pro	Ser	Gly 180	Pro	Met	Gly	Arg	Gly 185	Val	Val	Ala	Ala	Met 190	Ile	Arg
	Arg	Ala	Leu 195	Ala	Gly	Glu	Pro	Leu 200	Thr	Met	Trp	His	Asp 205	Gly	Gly	Val
40	Arg	Arg 210	Asp	Leu	Leu	His	Val 215	Glu	Asp	Val	Ala	Thr 220	Ala	Phe	Ala	Ala
45	Ala 225	Leu	Glu	His	His	Asp 230	Ala	Leu	Ala	Gly	Gly 235	Thr	Trp	Ala	Leu	Gl ₃ 240

Ala Asp Arg Ser Glu Pro Leu Gly Asp Ile Phe Arg Ala Val Ser Gly 

Ser Val Ala Arg Gln Thr Gly Ser Pro Ala Val Asp Val Val Thr Val 

Pro Ala Pro Glu His Ala Glu Ala Asn Asp Phe Arg Ser Asp Asp Ile 

10 Asp Ser Thr Glu Phe Arg Ser Arg Thr Gly Trp Arg Pro Arg Val Ser 

Leu Thr Asp Gly Ile Asp Arg Thr Val Ala Ala Leu Thr Pro Thr Glu 

Glu His

(2) INFORMATIONS POUR LA SEQ ID NO: 8:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 415 acides aminés
  - (B) TYPE: acide aminé
  - (D) CONFIGURATION: linéaire

- (ii) TYPE DE MOLECULE: protéine
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 8:

Met Arg Val Leu Leu Thr Ser Phe Ala His Arg Thr His Phe Gln Gly 

Leu Val Pro Leu Ala Trp Ala Leu Arg Thr Ala Gly His Asp Val Arg 

35 Val Ala Ala Gln Pro Ala Leu Thr Asp Ala Val Ile Gly Ala Gly Leu 

Thr Ala Val Pro Val Gly Ser Asp His Arg Leu Phe Asp Ile Val Pro 

Glu Val Ala Ala Gln Val His Arg Tyr Ser Phe Tyr Leu Asp Phe Tyr 

His Arg Glu Gln Glu Leu His Ser Trp Glu Phe Leu Leu Gly Met Gln 

	Glu	Ala	Thr	Ser 100	Arg	Trp	Val	Tyr	105	Val	Val	Asn	Asn	110	ser	Pne
5	Val	Ala	Glu 115	Leu	Val	Asp	Phe	Ala 120	Arg	Asp	Trp	Arg	Pro 125	Asp	Leu	Val
	Leu	Trp 130	Glu	Pro	Phe	Thr	Phe 135	Ala	Gly	Ala	Val	Ala 140	Ala	Arg	Ala	Cys
10	Gly 145	Ala	Ala	His	Ala	Arg 150	Leu	Leu	Trp	Gly	Ser 155	Asp	Leu	Thr	Gly	Tyr 160
15	Phe	Arg	Gly	Arg	Phe 165	Gln	Ala	Gln	Arg	Leu 170	Arg	Arg	Pro	Pro	Glu 175	Asp
	Arg	Pro	Asp	Pro 180	Leu	Gly	Thr	Trp	Leu 185	Thr	Glu	Val	Ala	Gly 190	Arg	Phe
20	Gly	Val	Glu 195	Phe	Gly	Glu	Asp	Leu 200	Ala	Val	Gly	Gln	Trp 205	Ser	Val	Asp
	Gln	Leu 210	Pro	Pro	Ser	Phe	Arg 215	Leu	Asp	Thr	Gly	Met 220	Glu	Thr	Val	Val
25	Ala 225	Arg	Thr	Leu	Pro	Tyr 230	Asn	Gly	Ala	Ser	Val 235	Val	Pro	Asp	Trp	Leu 240
30	Lys	Lys	Gly	Ser	Ala 245	Thr	Arg	Arg	Ile	Cys 250	Ile	Thr	Gly	Gly	Phe 255	Ser
	Gly	Leu	Gly	Leu 260	Ala	Ala	Asp	Ala	Asp 265	Gln	Phe	Ala	Arg	Thr 270	Leu	Ala
35	Gln	Leu	Ala 275	Arg	Phe	Asp	Gly	Glu 280	Ile	Val	Val	Thr	Gly 285	Ser	Gly	Pro
	Asp	Thr 290	Ser	Ala	Val	Pro	Asp 295	Asn	Ile	Arg	Leu	Val 300	Asp	Phe	Val	Pro
40	Met 305	Gly	Val	Leu	Leu	Gln 310	Asn	Cys	Ala	Ala	Ile 315	Ile	His	His	Gly	Gl _y 320
45	Ala	Gly	Thr	Trp	Ala 325	Thr	Ala	Leu	His	His 330	Gly	Ile	Pro	Gln	Ile 335	Ser

Val Ala His Glu Trp Asp Cys Met Leu Arg Gly Gln Gln Thr Ala Glu 340 345 Leu Gly Ala Gly Ile Tyr Leu Arg Pro Asp Glu Val Asp Ala Asp Ser 360 365 355 Leu Ala Ser Ala Leu Thr Gln Val Val Glu Asp Pro Thr Tyr Thr Glu 370 375 380 10 Asn Ala Val Lys Leu Arg Glu Glu Ala Leu Ser Asp Pro Thr Pro Gln 390 395 400 385 Glu Ile Val Pro Arg Leu Glu Glu Leu Thr Arg Arg His Ala Gly 405 15 (2) INFORMATIONS POUR LA SEQ ID NO: 9: (i) CARACTERISTIQUES DE LA SEQUENCE: 20 (A) LONGUEUR: 237 acides aminés (B) TYPE: acide aminé (D) CONFIGURATION: linéaire (ii) TYPE DE MOLECULE: protéine 25 (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 9: Met Tyr Glu Gly Gly Phe Ala Glu Leu Tyr Asp Arg Phe Tyr Arg Gly 15 1 5 30 Arg Gly Lys Asp Tyr Ala Ala Glu Ala Ala Gln Val Ala Arg Leu Val 20 25 Arg Asp Arg Leu Pro Ser Ala Ser Ser Leu Leu Asp Val Ala Cys Gly 40 35 Thr Gly Thr His Leu Arg Arg Phe Ala Asp Leu Phe Asp Asp Val Thr 55 Gly Leu Glu Leu Ser Ala Ala Met Ile Glu Val Ala Arg Pro Gln Leu 40 65 70 75 Gly Gly Ile Pro Val Leu Gln Gly Asp Met Arg Asp Phe Ala Leu Asp 85 90 95 45 Arg Glu Phe Asp Ala Val Thr Cys Met Phe Ser Ser Ile Gly His Met 110 100 105

	Arg	Asp	Gly 115	Ala	Glu	Leu	Asp	Gln 120	Ala	Leu	Ala	Ser	Phe 125	Ala	Arg	His
5	Leu	Ala 130	Pro	Gly	Gly	Val	Val 135	Val	Val	Glu	Pro	Trp 140	Trp	Phe	Pro	Glu
	Asp 145	Phe	Leu	Asp	Gly	Tyr 150	Val	Ala	Gly	Asp	Val 155	Val	Arg	Asp	Gly	Asp 160
10	Leu	Thr	Ile	Ser	Arg 165	Val	Ser	His	Ser	Val 170	Arg	Ala	Gly	Gly	Ala 175	Thr
15	Arg	Met	Glu	Ile 180	His	Trp	Val	Val	Ala 185	Asp	Ala	Val	Asn	Gly 190	Pro	Arg
	His	His	Val 195	Glu	His	Tyr	Glu	Ile 200	Thr	Leu	Phe	Glu	Arg 205	Gln	Gln	Tyr
20	Glu	Lys 210	Ala	Phe	Thr	Ala	Ala 215	Gly	Cys	Ala	Val	Gln 220	Tyr	Leu	Glu	Gly
	Gly 225	Pro	Ser	Gly	Arg	Gly 230	Leu	Phe	Val	Gly	Val 235	Arg	Gly			
25	(2)	INF	ORMA'	rions	S POI	JR L	A SE(	Q ID	NO:	10:						
30			(1	A) LO	CTER: ONGUI YPE: ONFI	EUR: acio	510 de ar	acio miné	des a	aminé						
35					E MOI		_	-		: SE(	Q ID	NO:	10:			
	Met 1	Arg	Val	Leu	Ile 5	Asp	Asn	Ala	Arg	Arg 10	Gln	Gln	Ala	Glu	Pro 15	Ser
40	Thr	Thr	Pro	Gln 20	Gly	Glu	Ser	Met	Gly 25	Asp	Arg	Thr	Gly	Asp 30	Arg	Thr
	Ile	Pro	Glu 35	Ser	Ser	Gln	Thr	Ala 40	Thr	Arg	Phe	Leu	Leu 45	Gly	Asp	Gly
45	Gly	Ile 50	Pro	Thr	Ala	Thr	Ala 55	Glu	Thr	His	Asp	Trp 60	Leu	Thr	Arg	Asn

	Gly 65	Ala	Glu	GIn	Arg	Leu 70	Glu	Val	Ala	Arg	75	Pro	Phe	Ser	Ата	Met 80
5	Asp	Arg	Trp	Ser	Phe 85	Gln	Pro	Glu	Asp	Gly 90	Arg	Leu	Ala	His	Glu 95	Ser
	Gly	Arg	Phe	Phe 100	Ser	Ile	Glu	Gly	Leu 105	His	Val	Arg	Thr	Asn 110	Phe	Gly
10	Trp	Arg	Arg 115	Asp	Trp	Ile	Gln	Pro 120	Ile	Ile	Val	Gln	Pro 125	Glu	Ile	Gly
15	Phe	Leu 130	Gly	Leu	Ile	Val	Lys 135	Glu	Phe	Asp	Gly	Val 140	Leu	His	Val	Leu
	Ala 145	Gln	Ala	Lys	Ala	Glu 150	Pro	Gly	Asn	Ile	Asn 155	Ala	Val	Gln	Leu	Ser 160
20	Pro	Thr	Leu	Gln	Ala 165	Thr	Arg	Ser	Asn	Tyr 170	Thr	Gly	Val	His	Arg 175	Gly
	Ser	Lys	Val	Arg 180	Phe	Ile	Glu	Tyr	Phe 185	Asn	Gly	Thr	Arg	Pro 190	Ser	Arg
25	Ile	Leu	Val 195	Asp	Val	Leu	Gln	Ser 200	Glu	Gln	Gly	Ala	Trp 205	Phe	Leu	Arg
30	Lys	Arg 210	Asn	Arg	Asn	Met	Val 215	Val	Glu	Val	Phe	Asp 220	Asp	Leu	Pro	Glu
	His 225	Pro	Asn	Phe	Arg	Trp 230	Leu	Thr	Val	Ala	Gln 235	Leu	Arg	Ala	Met	Leu 240
35	His	His	Asp	Asn	Val 245	Val	Asn	Met	Asp	Leu 250	Arg	Thr	Val	Leu	Ala 255	Cys
	Val	Pro	Thr	Ala 260	Val	Glu	Arg	Asp	Arg 265	Ala	Asp	Asp	Val	Leu 270	Ala	Arg
40	Leu	Pro	Glu 275	Gly	Ser	Phe	Gln	Ala 280	Arg	Leu	Leu	His	Ser 285	Phe	Ile	Gly
45	Ala	Gly 290	Thr	Pro	Ala	Asn	Asn 295	Met	Asn	Ser	Leu	Leu 300	Ser	Trp	Ile	Ser

	Asp 305	Val	Arg	Ala	Arg	Arg 310	Glu	Phe	Val	Gln	Arg 315	Gly	Arg	Pro	Leu	Pro 320
5	Asp	Ile	Glu	Arg	Ser 325	Gly	Trp	Ile	Arg	Arg 330	Asp	Asp	Gly	Ile	Glu 335	His
	Glu	Glu	Lys	Lys 340	Tyr	Phe	Asp	Val	Phe 345	Gly	Val	Thr	Val	Ala 350	Thr	Ser
10	Asp	Arg	Glu 355	Val	Asn	Ser	Trp	Met 360	Gln	Pro	Leu	Leu	Ser 365	Pro	Ala	Asn
15	Asn	Gly 370	Leu	Leu	Ala	Leu	Leu 375	Val	Lys	Asp	Ile	Gly 380	Gly	Thr	Leu	His
	Ala 385	Leu	Val	Gln	Leu	Arg 390	Thr	Glu	Ala	Gly	Gly 395	Met	Asp	Val	Ala	Glu 400
20	Leu	Ala	Pro	Thr	Val 405	His	Cys	Gln	Pro	Asp 410	Asn	Tyr	Ala	Asp	Ala 415	Pro
	Glu	Glu	Phe	Arg 420	Pro	Ala	Tyr	Val	Asp 425	Tyr	Val	Leu	Asn	Val 430	Pro	Arg
25	Ser	Gln	Val 435	Arg	Tyr	Asp	Ala	Trp 440	His	Ser	Glu	Glu	Gly 445	Gly	Arg	Phe
30	Tyr	Arg 450	Asn	Glu	Asn	Arg	Tyr 455	Met	Leu	Ile	Glu	Val 460	Pro	Ala	Asp	Phe
	Asp 465	Ala	Ser	Ala	Ala	Pro 470	Asp	His	Arg	Trp	Met 475	Thr	Phe	Asp	Gln	Ile 480
35	Thr	Tyr	Leu	Leu	Gly 485	His	Ser	His	Tyr	Val 490	Asn	Ile	Gln	Leu	Arg 495	Ser
	Ile	Ile	Ala	Cys 500	Ala	Ser	Ala	Val	Tyr 505	Thr	Arg	Thr	Ala	Gly 510		
40																

- (2) INFORMATIONS POUR LA SEQ ID NO: 11:
  - (i) CARACTERISTIQUES DE LA SEQUENCE:
    - (A) LONGUEUR: 489 acides aminés
- 45 (B) TYPE: acide aminé
  - (D) CONFIGURATION: linéaire

			•	
(ii)	TYPE	DE	MOLECULE:	protéine

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 11:

Met Asn Thr Thr Arg Thr Ala Thr Ala Gln Glu Ala Gly Val Ala Asp 

Ala Ala Arg Pro Asp Val Asp Arg Ala Val Val Arg Ala Leu Ser 

10 Ser Glu Val Ser Arg Val Thr Gly Ala Gly Asp Gly Asp Ala Asp Val 

Gln Ala Ala Arg Leu Ala Asp Leu Ala Ala His Tyr Gly Ala His Pro 

Phe Thr Pro Leu Glu Gln Thr Arg Ala Arg Leu Gly Leu Asp Arg Ala

Glu Phe Ala His Leu Leu Asp Leu Phe Gly Arg Ile Pro Asp Leu Gly 

Thr Ala Val Glu His Gly Pro Ala Gly Lys Tyr Trp Ser Asn Thr Ile 

25 Lys Pro Leu Asp Ala Ala Gly Ala Leu Asp Ala Ala Val Tyr Arg Lys 

Pro Ala Phe Pro Tyr Ser Val Gly Leu Tyr Pro Gly Pro Thr Cys Met 

Phe Arg Cys His Phe Cys Val Arg Val Thr Gly Ala Arg Tyr Glu Ala 

Ala Ser Val Pro Ala Gly Asn Glu Thr Leu Ala Ala Ile Ile Asp Glu 

Val Pro Thr Asp Asn Pro Lys Ala Met Tyr Met Ser Gly Gly Leu Glu 

- 40 Pro Leu Thr Asn Pro Gly Leu Gly Glu Leu Val Ser His Ala Ala Gly
  - Arg Gly Phe Asp Leu Thr Val Tyr Thr Asn Ala Phe Ala Leu Thr Glu

Gln Thr Leu Asn Arg Gln Pro Gly Leu Trp Glu Leu Gly Ala Ile Arg 5 Thr Ser Leu Tyr Gly Leu Asn Asn Asp Glu Tyr Glu Thr Thr Thr Gly Lys Arg Gly Ala Phe Glu Arg Val Lys Lys Asn Leu Gln Gly Phe Leu Arg Met Arg Ala Glu Arg Asp Ala Pro Ile Arg Leu Gly Phe Asn His Ile Ile Leu Pro Gly Arg Ala Asp Arg Leu Thr Asp Leu Val Asp Phe Ile Ala Glu Leu Asn Glu Ser Ser Pro Gln Arg Pro Leu Asp Phe Val 20 Thr Val Arg Glu Asp Tyr Ser Gly Arg Asp Asp Gly Arg Leu Ser Asp Ser Glu Arg Asn Glu Leu Arg Glu Gly Leu Val Arg Phe Val Asp Tyr Ala Ala Glu Arg Thr Pro Gly Met His Ile Asp Leu Gly Tyr Ala Leu Glu Ser Leu Arg Arg Gly Val Asp Ala Glu Leu Leu Arg Ile Arg Pro Glu Thr Met Arg Pro Thr Ala His Pro Gln Val Ala Val Gln Ile Asp 35 Leu Leu Gly Asp Val Tyr Leu Tyr Arg Glu Ala Gly Phe Pro Glu Leu Glu Gly Ala Thr Arg Tyr Ile Ala Gly Arg Val Thr Pro Ser Thr Ser Leu Arg Glu Val Val Glu Asn Phe Val Leu Glu Asn Glu Gly Val Gln Pro Arg Pro Gly Asp Glu Tyr Phe Leu Asp Gly Phe Asp Gln Ser Val 

Thr Ala Arg Leu Asn Gln Leu Glu Arg Asp Ile Ala Asp Gly Trp Glu
465 470 475 480

Asp His Arg Gly Phe Leu Arg Gly Arg
485

- (2) INFORMATIONS POUR LA SEQ ID NO: 12:
- 10 (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 193 acides aminés
  - (B) TYPE: acide aminé
  - (D) CONFIGURATION: linéaire
- 15 (ii) TYPE DE MOLECULE: protéine
  - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 12:

Met Ala Gly Gly Phe Glu Phe Thr Pro Asp Pro Lys Gln Asp Arg Arg

1 5 10 15

20

Gly Leu Phe Val Ser Pro Leu Gln Asp Glu Ala Phe Val Gly Ala Val
20 25 30

- Gly His Arg Phe Pro Val Ala Gln Met Asn His Ile Val Ser Ala Arg
  25 35 40 45
  - Gly Val Leu Arg Gly Leu His Phe Thr Thr Pro Pro Gly Gln Cys
    50 55 60
- 30 Lys Tyr Val Tyr Cys Ala Arg Gly Arg Ala Leu Asp Val Ile Val Asp
  65 70 75 80
  - Ile Arg Val Gly Ser Pro Thr Phe Gly Lys Trp Asp Ala Val Glu Met
    85 90 95

35

Asp Thr Glu His Phe Arg Ala Val Tyr Phe Pro Arg Gly Thr Ala His
100 105 110

- Ala Phe Leu Ala Leu Glu Asp Asp Thr Leu Met Ser Tyr Leu Val Ser 40 115 120 125
  - Thr Pro Tyr Val Ala Glu Tyr Glu Gln Ala Ile Asp Pro Phe Asp Pro 130 135 140
- 45 Ala Leu Gly Leu Pro Trp Pro Ala Asp Leu Glu Val Val Leu Ser Asp 145 150 155 160

WO 99/05283 PCT/FR98/01593

37

Arg Asp Thr Val Ala Val Asp Leu Glu Thr Ala Arg Arg Arg Gly Met 170 175 165 Leu Pro Asp Tyr Ala Asp Cys Leu Gly Glu Glu Pro Ala Ser Thr Gly 5 180 185 190 Arg 10 (2) INFORMATIONS POUR LA SEQ ID NO: 13: (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 1206 paires de bases (B) TYPE: nucléotide 15 (C) NOMBRE DE BRINS: double (D) CONFIGURATION: linéaire (ii) TYPE DE MOLECULE: ADN (génomique) 20 (vi) ORIGINE: (A) ORGANISME: Saccharopolyspora erythraea (ix) CARACTERISTIQUE: (A) NOM/CLE: CDS 25 (B) EMPLACEMENT:1..1203 (D) AUTRES INFORMATIONS:/function= "implique dans la biosynthese de la desosamine" /gene= "eryCIV" /note= "SEQ ID NO 6 DE 4837 A 6039" 30 (ix) CARACTERISTIQUE: (A) NOM/CLE: mat peptide (B) EMPLACEMENT:1 35 (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 13: ATG AAA CGC GCG CTG ACC GAC CTG GCG ATC TTC GGC GGC CCC GAG GCA 48 Met Lys Arg Ala Leu Thr Asp Leu Ala Ile Phe Gly Gly Pro Glu Ala 40 1 5 10 15 TTC CTG CAC ACC CTC TAC GTG GGC AGG CCG ACC GTC GGG GAC CGG GAG 96

Phe Leu His Thr Leu Tyr Val Gly Arg Pro Thr Val Gly Asp Arg Glu

	CGG	TTC	TTC	GCC	CGC	CTG	GAG	TGG	GCG	CTG	AAC	AAC	AAC	TGG	CTG	ACC	144
	Arg	Phe	Phe	Ala	Arg	Leu	Glu	Trp	Ala	Leu	Asn	Asn	Asn	Trp	Leu	Thr	
			35					40					45				
5	AAC	GGC	GGA	CCA	CTG	GTG	CGC	GAG	TTC	GAG	GGC	CGG	GTC	GCC	GAC	CTG	192
	Asn	Gly	Gly	Pro	Leu	Val	Arg	Glu	Phe	Glu	Gly	Arg	Val	Ala	Asp	Leu	
		50					55					60					
	GCG	GGT	GTC	CGC	CAC	TGC	GTG	GCC	ACC	TGC	AAC	GCG	ACG	GTC	GCG	CTG	240
10	Ala	Gly	Val	Arg	His	Cys	Val	Ala	Thr	Cys	Asn	Ala	Thr	Val	Ala	Leu	
	65					70					75					80	
	CAA	CTG	GTG	CTG	CGC	GCG	AGC	GAC	GTG	TCC	GGC	GAG	GTC	GTC	ATG	CCT	288
	Gln	Leu	Val	Leu	Arg	Ala	Ser	Asp	Val	Ser	Gly	Glu	Val	Val	Met	Pro	
15					85					90					95		
	TCG	ATG	ACG	TTC	GCG	GCC	ACC	GCG	CAC	GCG	GCG	AGC	TGG	CTG	GGG	CTG	336
	Ser	Met	Thr	Phe	Ala	Ala	Thr	Ala	His	Ala	Ala	Ser	Trp	Leu	Gly	Leu	
20				100					105					110			
	GAA	CCG	GTG	TTC	TGC	GAC	GTG	GAC	CCC	GAG	ACC	GGC	CTG	CTC	GAC	CCC	384
	Glu	Pro	Val	Phe	Cys	Asp	Val	Asp	Pro	Glu	Thr	Gly	Leu	Leu	Asp	Pro	
			115					120					125				
25	GAG	CAC	GTC	GCG	TCG	CTG	GTG	ACA	CCG	CGG	ACG	GGC	GCG	ATC	ATC	GGC	432
	Glu	His	Val	Ala	Ser	Leu	Val	Thr	Pro	Arg	Thr	Gly	Ala	Ile	Ile	Gly	
		130					135					140					
	GTG	CAC	CTG	TGG	GGC	AGG	CCC	GCT	CCG	GTC	GAG	GCG	CTG	GAG	AAG	ATC	480
30	Val	His	Leu	Trp	Gly	Arg	Pro	Ala	Pro	Val		Ala	Leu	Glu	Lys		
	145					150					155					160	
	GCC	GCC	GAG	CAC	CAG	GTC	AAA	CTC	TTC	TTC	GAC	GCC	GCG	CAC	GCG	CTG	528
	Ala	Ala	Glu	His	Gln	Val	Lys	Leu	Phe	Phe	Asp	Ala	Ala	His	Ala	Leu	
35					165					170					175		
	GGC	TGC	ACC	GCC	GGC	GGG	CGG	CCG	GTC	GGC	GCC	TTC	GGC	AAC	GCC	GAG	57€
	Gly	Cys	Thr	Ala	Gly	Gly	Arg	Pro	Val	Gly	Ala	Phe	Gly	Asn	Ala	Glu	
40				180					185					190			
	GTG	TTC	AGC	TTC	CAC	GCC	ACG	AAG	GCG	GTC	ACC	TCG	TTC	GAG	GGC	GGC	624
	Val	Phe	Ser	Phe	His	Ala	Thr	Lys	Ala	Val	Thr	Ser	Phe	Glu	Gly	Gly	
			195					200					205				

												CGC Arg					672
		210			-	-	215				-	220		J			
5	CAC																720
	His 225	Asn	Phe	Gly	Ile	Ala 230	Pro	Asp	Lys	Leu	Val 235	Thr	Asp	Val	Gly	Thr 240	
	225					250					233					240	
	AAC	GGC	AAG	ATG	AGC	GAG	TGC	GCC	GCG	GCG	ATG	GGC	CTC	ACC	TCG	CTC	768
10	Asn	Gly	Lys	Met		Glu	Cys	Ala	Ala	Ala	Met	Gly	Leu	Thr		Leu	
					245					250					255		
	GAC	GCC	TTC	GCC	GAG	ACC	AGG	GTG	CAC	AAC	CGC	CTC	AAC	CAC	GCG	CTC	816
	Asp	Ala	Phe		Glu	Thr	Arg	Val		Asn	Arg	Leu	Asn		Ala	Leu	
15				260					265					270			
												TCC					864
	Tyr	Ser		Glu	Leu	Arg	Asp		Arg	Gly	Ile	Ser		His	Ala	Phe	
20			275					280					285				
	GAT	CCT	GGC	GAG	CAG	AAC	AAC	TAC	CAG	TAC	GTG	ATC	ATC	TCG	GTG	GAC	912
	Asp	Pro	Gly	Glu	Gln	Asn	Asn	Tyr	Gln	Tyr	Val	Ile	Ile	Ser	Val	Asp	
		290					295					300					
25	TCC																960
		Ala	Ala	Thr	Gly		Asp	Arg	Asp	Gln		Gln	Ala	Ile	Leu		
	305					310					315					320	
												CCC					1008
30	Ala	Glu	Lys	Val		Ala	Gln	Pro	Tyr		Ser	Pro	Gly	Cys		Gln	
					325					330					335		
	ATG	CAG	CCG	TAC	CGG	ACC	GAG	CCG	CCG	CTG	CGG	CTG	GAG	AAC	ACC	GAA	1056
2.5	Met	Gln	Pro	_	Arg	Thr	Glu	Pro		Leu	Arg	Leu	Glu		Thr	Glu	
35				340					345					350			
	CAG	CTC	TCC	GAC	CGG	GTG	CTC	GCG	CTG	CCC	ACC	GGC	CCC	GCG	GTG	TCC	1104
	Gln	Leu		Asp	Arg	Val	Leu		Leu	Pro	Thr	Gly		Ala	Val	Ser	
40			355					360					365				
-0	AGC	GAG	GAC	ATC	CGG	CGG	GTG	TGC	GAC	ATC	ATC	CGG	CTC	GCC	GCC	ACC	1152
	Ser	Glu	Asp	Ile	Arg	Arg	Val	Cys	Asp	Ile	Ile	Arg	Leu	Ala	Ala	Thr	
		370					375					380					

AGC GGC GAG CTG ATC AAC GCG CAA TGG GAC CAG AGG ACG CGC AAC GGT Ser Gly Glu Leu Ile Asn Ala Gln Trp Asp Gln Arg Thr Arg Asn Gly 5 TCG TGA Ser (2) INFORMATIONS POUR LA SEQ ID NO: 14: (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 401 acides aminés (B) TYPE: acide aminé (D) CONFIGURATION: linéaire (ii) TYPE DE MOLECULE: protéine (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 14: Met Lys Arg Ala Leu Thr Asp Leu Ala Ile Phe Gly Gly Pro Glu Ala Phe Leu His Thr Leu Tyr Val Gly Arg Pro Thr Val Gly Asp Arg Glu Arg Phe Phe Ala Arg Leu Glu Trp Ala Leu Asn Asn Asn Trp Leu Thr Asn Gly Gly Pro Leu Val Arg Glu Phe Glu Gly Arg Val Ala Asp Leu 30 Ala Gly Val Arg His Cys Val Ala Thr Cys Asn Ala Thr Val Ala Leu Gln Leu Val Leu Arg Ala Ser Asp Val Ser Gly Glu Val Val Met Pro Ser Met Thr Phe Ala Ala Thr Ala His Ala Ala Ser Trp Leu Gly Leu Glu Pro Val Phe Cys Asp Val Asp Pro Glu Thr Gly Leu Leu Asp Pro Glu His Val Ala Ser Leu Val Thr Pro Arg Thr Gly Ala Ile Ile Gly 45 Val His Leu Trp Gly Arg Pro Ala Pro Val Glu Ala Leu Glu Lys Ile

WO 99/05283 PCT/FR98/01593

	Ala	Ala	Glu	His	Gln 165	Val	Lys	Leu	Phe	Phe 170	Asp	Ala	Ala	His	Ala 175	Leu
5	Gly	Cys	Thr	Ala 180	Gly	Gly	Arg	Pro	Val 185	Gly	Ala	Phe	Gly	Asn 190	Ala	Glu
	Val	Phe	Ser 195	Phe	His	Ala	Thr	Lys 200	Ala	Val	Thr	Ser	Phe 205	Glu	Gly	Gly
10	Ala	Ile 210	Val	Thr	Asp	Asp	Gly 215	Leu	Leu	Ala	Asp	Arg 220	Ile	Arg	Ala	Met
15	His 225	Asn	Phe	Gly	Ile	Ala 230	Pro	Asp	Lys	Leu	Val 235	Thr	Asp	Val	Gly	Thr 240
	Asn	Gly	Lys	Met	Ser 245	Glu	Cys	Ala	Ala	Ala 250	Met	Gly	Leu	Thr	Ser 255	Leu
20	Asp	Ala	Phe	Ala 260	Glu	Thr	Arg	Val	His 265	Asn	Arg	Leu	Asn	His 270	Ala	Leu
	Tyr	Ser	Asp 275	Glu	Leu	Arg	Asp	Val 280	Arg	Gly	Ile	Ser	Val 285	His	Ala	Phe
25	Asp	Pro 290	Gly	Glu	Gln	Asn	Asn 295	Tyr	Gln	Tyr	Val	Ile 300	Ile	Ser	Val	Asp
30	Ser 305	Ala	Ala	Thr	Gly	Ile 310	Asp	Arg	Asp	Gln	Leu 315	Gln	Ala	Ile	Leu	Arg 320
20	Ala	Glu	Lys	Val	Val 325	Ala	Gln	Pro	Tyr	Phe 330	Ser	Pro	Gly	Cys	His 335	Gln
35	Met	Gln	Pro	Tyr 340	Arg	Thr	Glu	Pro	Pro 345	Leu	Arg	Leu	Glu	Asn 350	Thr	Glu
	Gln	Leu	Ser 355	Asp	Arg	Val	Leu	Ala 360	Leu	Pro	Thr	Gly	Pro 365	Ala	Val	Ser
40	Ser	Glu 370	Asp	Ile	Arg	Arg	Val 375	Cys	Asp	Ile	Ile	Arg 380	Leu	Ala	Ala	Thr
	Ser	Gly	Glu	Leu	Ile	Asn	Ala	Gln	Trp	Asp	Gln	Arg	Thr	Arg	Asn	Gly

Ser

```
(2) INFORMATIONS POUR LA SEQ ID NO: 15:
```

- (i) CARACTERISTIQUES DE LA SEQUENCE:
- 5 (A) LONGUEUR: 6093 paires de bases
  - (B) TYPE: nucléotide
  - (C) NOMBRE DE BRINS: double
  - (D) CONFIGURATION: linéaire
- 10 (ii) TYPE DE MOLECULE: ADN (génomique)
  - (vi) ORIGINE:
    - (A) ORGANISME: Streptomyces antibioticus
- 15 (ix) CARACTERISTIQUE:
  - (A) NOM/CLE: CDS
  - (B) EMPLACEMENT: 184..1386
  - (D) AUTRES INFORMATIONS:/gene= "oleP1"
- 20 (ix) CARACTERISTIQUE:
  - (A) NOM/CLE: CDS
  - (B) EMPLACEMENT: 1437..2714
  - (D) AUTRES INFORMATIONS:/function= "glycosylation de 8,8a-desoxyoleandolide"
- 25 /gene= "oleG1" /transl except= (pos: 1437 .. 1439, aa: Met)
  - (ix) CARACTERISTIQUE:
    - (A) NOM/CLE: CDS
- 30 (B) EMPLACEMENT: 2722...3999
  - (D) AUTRES INFORMATIONS:/function= "glycosylation de 8,8a-desoxyoleandolide" /gene= "oleG2"
- 35 (ix) CARACTERISTIQUE:
  - (A) NOM/CLE: CDS
  - (B) EMPLACEMENT: 4810..5967
  - (D) AUTRES INFORMATIONS:/gene= "oley"
- 40 (ix) CARACTERISTIQUE:
  - (A) NOM/CLE: mat_peptide
  - (B) EMPLACEMENT: 184
- 45 (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 15:

	GCAT	GCCC	CCG (	CTTTC	CCTCC	CC CC	CTCTC	CGAA	CGC	ATCG	ACG	ACCO	GATO	CC (	CCTC	AGGGAC	60
	CGGI	GAAG	GA (	GCGT	<b>FTT</b> G(	CA CI	CATO	CAGG	ACA	ATGCA	AGG	CGT	CAGO	cc (	GAAC	CAGCCA	120
5	GTGT	CGAZ	ACA (	CGCG	gCGG <i>I</i>	AC GO	CAGCI	CGAA	CAC	SAGCG	AAC	GGCC	CAC	GA A	AGCC	ECCCAG	180
	GAG	ATG	GAG	GAC	AGC	GAA	CTG	GGG	CGC	CGC	CTG	CAG	ATG	CTC	CGC	GGC	228
		Met	Glu	Asp	Ser	Glu	Leu	Gly	Arg	Arg	Leu	Gln	Met	Leu	Arg	Gly	
		1				5					10					15	
10																	0.54
															CTG		276
	Met	Gln	Trp	Val		Gly	Ala	Asn	Gly	_	Pro	Tyr	Ala	Arg	Leu 30	Leu	
					20					25					30		
15	ጥርም	GGC	AΤG	GAG	GAT	GAC	CCG	TCA	CCT	TTC	TAC	GAC	GCG	ATA	CGG	ACC	324
															Arg		
	- T	1		35					40		•	•		45			
	CTG	GGC	GAG	CTG	CAC	CGG	AGC	AGG	ACC	GGA	GCC	TGG	GTC	ACC	GCC	GAC	372
20	Leu	Gly	Glu	Leu	His	Arg	Ser	Arg	Thr	Gly	Ala	Trp	Val	Thr	Ala	Asp	
			50					55					60				
															TGC		420
<b>~</b> -	Pro		Leu	Gly	Gly	Arg		Leu	Ala	Asp	Arg		Ala	Arg	Cys	Pro	
25		65					70					75					
	GAA	GGC	TCG	TGG	CCG	GTG	CGG	GCG	AAG	ACC	GAC	GGG	CTG	GAG	CAG	TAC	468
															Gln		
	80	-		-		85	_		_		90	_				95	
30																	
	GTG	CTG	CCC	GGG	CAC	CAG	GCG	TTC	CTG	CGG	CTG	GAG	CGC	GAG	GAG	GCC	516
	Val	Leu	Pro	Gly	His	Gln	Ala	Phe	Leu	Arg	Leu	Glu	Arg	Glu	Glu	Ala	
					100					105					110		
<u> </u>														~~~	~~~	ama	<b>5</b> .4
35															GCG		564
	GIU	Arg	Leu	_	GIU	vai	Ата	Ата	120	vai	ьeu	GTA	Ald	125	Ala	Val	
				115					120					123			
	GAC	GCG	TGG	CGC	CCG	CTG	ATC	GAC	GAG	GTC	TGC	GCG	GGG	CTC	GCG	AAG	612
40															Ala		
	-		130					135			-		140				
	GGG	CTG	CCG	GAC	ACG	TTC	GAC	CTG	GTC	GAG	GAG	TAC	GCG	GGG	CTG	GTG	660
	Gly	Leu	Pro	Asp	Thr	Phe	Asp	Leu	Val	Glu	Glu	Tyr	Ala	Gly	Leu	Val	
45		145					150					155					

						GCG Ala											708
	160					165					170					175	
5						GAC Asp											756
					180					185					190		
1.0						CAG											804
10	Leu	Leu	Cys	195	GIII	Gln	rea	Ala	200	per	пуъ	Asp	Mec	205	DCI	ALG	
						CTC											852
15	Leu	Glu	Asp 210	Leu	Arg	Leu	Leu	215	Asp	GIA	Leu	Asp	220	Thr	PIO	Arg	
						GAC											900
20	Leu	Ala 225	Gly	Pro	Ala	Asp	Gly 230	Asp	Gly	Thr	Ala	Val 235	Ala	Met	Leu	Thr	
						GAG											948
	Val 240	Leu	Leu	Cys	Thr	Glu 245	Pro	Val	Thr	Thr	Ala 250	Ile	Gly	Asn	Thr	Va1 255	
25						GGG											996
	Leu	Gly	Leu	Leu	Pro 260	Gly	Gln	Trp	Pro	Val 265	Pro	Cys	Thr	GIĀ	270	Val	
						GCC											1044
30	Ala	Ala	Gly	G1n 275	Val	Ala	GIY	GIn	280	Leu	HIS	Arg	Ala	285	ser	lyr	
						TTC											1092
35	Arg	Ile	Ala 290	Thr	Arg	Phe	Ala	Arg 295	GIu	Asp	Leu	Glu	300	Ala	GIY	Cys	
						GAC											1140
40	Glu	Val 305	ГÀЗ	ser	GTÀ	Asp	G1u 310	val	val	val	ьеи	315	GΤĀ	ALA	тте	Gly	
10																GCG	1188
	Arg 320		Gly	Pro	Ser	Ala 325	Ala	Ala	Pro	Pro	Ala 330	Pro	Pro	Gly	Pro	Ala 335	

	GCC	CCG	CCC	GCC	CCG	TCG	GTC	TTC	GGT	GCC	GCC	GCC	TTC	GAG	AAC	GCG	1236
	Ala	Pro	Pro	Ala	Pro	Ser	Val	Phe	Gly	Ala	Ala	Ala	Phe	Glu	Asn	Ala	
					340					345					350		
5	CTG																1284
	Leu	Ala	Glu		Leu	Val	Arg	Ala		Thr	Gly	Ala	Ala		Gln	Ala	
				355					360					365			
	CTC	מממ	G J G	aaa	רככ	מממ	ccc	כידיני	»CG	aca	מכמ	GGA	רככ	GTC	GT A	CGA	1332
10	Leu																2002
	БСи	miu	370	Gry	110	110	•••	375				O-1	380				
								• / -									
	CGG	CGG	CGT	TCC	CCT	GTC	GTC	GGC	GGG	CTG	CAC	CGG	GCT	CCG	GTG	GCC	1380
	Arg	Arg	Arg	Ser	Pro	Val	Val	Gly	Gly	Leu	His	Arg	Ala	Pro	Val	Ala	
15		385					390					395					
	GCC	GCA	TGAG	GCAT(	CGC (	GTCG?	AACG	GC G	CGCG	CTCG	G CC	CCCC	<b>3CCG</b>	GCC	CCTG	CGC	1436
	Ala	Ala															
• •	400																
20	a=a		3.50			<b></b>	~~~	~~~		7.00	<b>63.0</b>	mma	G N G	aaa	ama	amm.	3 4 0 4
												TTC Phe					1484
	1	Mec	Met	1117	5	Pile	Ата	ALA	ASII	10	UIS	FIIE	GIII	FIO	15	Val	
	_				J												
25	CCC	CTG	GCC	TGG	GCA	CTG	CGG	ACA	GCC	GGG	CAC	GAG	GTG	CGC	GTG	GTG	1532
	Pro	Leu	Ala	Trp	Ala	Leu	Arg	Thr	Ala	Gly	His	Glu	Val	Arg	Val	Val	
				20					25					30			
	AGC	CAG	CCC	TCG	CTG	AGC	GAC	GTG	GTG	ACG	CAG	GCG	GGG	CTC	ACC	TCG	1580
30	Ser	Gln		Ser	Leu	Ser	Asp	Val	Val	Thr	Gln	Ala		Leu	Thr	Ser	
			35					40					45				
	ama	aaa	ama	aaa	<b>1</b> .00	an a	aam	aaa	ama	C7.C	ana	mma	aaa	aaa	700	maa	1600
												TTC					1628
35	Val	50	Val	Gry	1111	Gru	55	PIO	vaı	Gru	GIII	Phe 60	ALG	AIA	1111	11p	
-		50					55					00					
	GGC	GAC	GAT	GCC	TAC	ATC	GGC	GTC	AAC	AGC	ATC	GAC	TTC	ACC	GGC	AAC	1676
	Gly	Asp	Asp	Ala	Tyr	Ile	Gly	Val	Asn	Ser	Ile	Asp	Phe	Thr	Gly	Asn	
	65					70					75					80	
40																	
	GAC	CCC	GGC	CTG	TGG	ACG	TGG	CCG	TAC	CTC	CTG	GGC	ATG	GAG	ACC	ATG	1724
	Asp	Pro	Gly	Leu	Trp	Thr	Trp	Pro	Tyr	Leu	Leu	Gly	Met	Glu	Thr	Met	
					85					90					95		

WO 99/05283

												GAG					1772
	Leu	Val	Pro	100	Pne	Tyr	GIU	Leu	Leu 105	Asn	Asn	Glu	ser	110	vaı	Asp	
5	GGC																1820
	Gly	Val		Glu	Phe	Ala	Arg	_	Trp	Arg	Pro	Asp		Val	Ile	Trp	
			115					120					125				
	GAG	CCG	CTG	ACG	TTC	GCC	GGC	GCG	GTG	GCG	GCG	CGC	GTC	ACC	GGC	GCG	1868
10	Glu	Pro	Leu	Thr	Phe	Ala	Gly	Ala	Val	Ala	Ala	Arg	Val	Thr	Gly	Ala	
		130					135					140					
	מכר	ראר	פככ	CGG	רידני	ררפ	TGG	GGG	CAG	GAG	ልጥሮ	ACC	СТС	CGC	GGG	CGG	1916
												Thr					
15	145			3		150		2			155			•	-	160	
												TTC					1964
	Gln	Ala	Phe	Leu		Glu	Arg	Ala	Leu		Pro	Phe	Glu	His		GIu	
20					165					170					175		
20	GAT	CCC	ACG	GCC	GAG	TGG	CTG	GGC	CGC	ATG	CTC	GAC	CGG	TAC	GGC	TGC	2012
	Asp	Pro	Thr	Ala	Glu	Trp	Leu	Gly	Arg	Met	Leu	Asp	Arg	Tyr	Gly	Cys	
				180					185					190			
25	TCG	mma	ar a	an a	an a	3 mc	ama	7.00	aaa	an a	maa	7 CC	አጥሮ	C A C	א כיכי	ama	2060
25												Thr					2000
	501		195					200	<b>U</b> -1	J			205				
												CTG					2108
30	Pro	_	Ser	Met	Arg	Leu		Leu	Ser	Glu	Glu	Leu	Arg	Thr	Leu	Asp	
		210					215					220					
	ATG	CGG	TAC	GTG	CCG	TAC	AAC	GGA	CCG	GCG	GTC	GTA	CCC	CCC	TGG	GTG	2156
	Met	Arg	Tyr	Val	Pro	Tyr	Asn	Gly	Pro	Ala	Val	Val	Pro	Pro	Trp	Val	
35	225					230					235					240	
	таа	C N N	ccc	TCC	CNC	רממ	מממ	ccc	GTC.	ጥርሞ	רידוכ	ACG	ል ጥር	GGC	אככ	ፐርር	2204
												Thr					2204
	- ₽			, -	245	3		5		250		- · <del>-</del>		- 4	255	_	
40																	
												GAC					2252
	Gln	Arg	Asp		Gly	Arg	Asp	His		Pro	Leu	Asp	His		Leu	Asp	
				260					265					270			

												ACG Thr					2300
r	CAG	ara.	275	ccc	CITIC .	CCC	aaa	280	aca	CCC	ccc	አአ <i>ር</i>	285	ccc	CTC	CTC	2348
5												Asn 300					2310
10												TGC Cys					2396
	305					310					315	-				320	
15												GCG Ala					2444
				Ile					Trp			CCG Pro		Arg			2492
20				340					345					350	<b></b>		254
												CCG Pro					2540
25	GGC Gly											CTG Leu 380					2588
30	GAG Glu 385											GAG Glu					2636
35												CGA Arg					2684
						ATG Met						GACG		CGC Arg			273
40	CTC	አሮሮ	maa.		ccc	<b>አ</b> አሮ	CAC	מ כיכי		ייייר. ייייר	CAC	GGG		стс	CCC	CTC	278:
												Gly					270.

												CGC Arg					2829
					25					30					35		
5	CCC																2877
	Pro	Ala	Leu	Ser 40	Asp	Thr	Ile	Thr	Gln 45	Ala	Gly	Leu	Thr	Ala 50	Val	Pro	
10	GTG Val											GGG Gly					2925
		-	55	-				60				_	65				
	GAC	GTC	CAG	AAG	TAC	TCC	ACC	GGC	ATC	GAC	CTG	GGC	GTC	CGC	GCG	GAG	2973
<b>1</b> F	Asp		Gln	Lys	Tyr	Ser		Gly	Ile	Asp	Leu	Gly	Val	Arg	Ala	Glu	
15		70					75					80					
												ACG					3021
	ьеи 85	Tnr	ser	Trp	GIU	90	Leu	Leu	GIÅ	мес	95	Thr	THE	ьеu	Val	100	
20																	
												GTC Val					3069
			-1-	202	105					110				2	115		
25	GCG	CTG	ACC	CGG	GCC	TGG	CGG	CCC	GAC	CTC	ATC	CTG	TGG	GAG	CAC	TTC	3117
												Leu					
				120					125					130			
												GGC					3165
30	Ser	Phe	Ala 135	Gly	Ala	Leu	Ala	Ala 140	Arg	Ala	Thr	Gly	Thr 145	Pro	His	Ala	
			133					140					J. 13				
												TTC					3213
35	Arg	Val 150	Leu	Trp	GIĀ	ser	155	ьeu	ше	vai	Arg	Phe 160	Arg	Arg	Asp	Pne	
												CGC Arg					3261
	165	1114	014	****	m	170	****9	110	1114	O.L.	175	**** 3	<u></u>			180	
40	<b></b>	~		~			A		~~-	~~~	~~	~~~	m~~	<b>.</b> ~ ~	m	<b>a.</b> c	2200
												GGC Gly					3309
			_		185	•				190		-			195	-	

				GGG Gly								3357
5	ATG Met		CCC	GGG Gly		ACG			TAC			3405
10	TAC Tyr			GTG Val								3453
15				CTG Leu 250								3501
				CTG Leu								3549
20				GCC Ala								3597
25	GGG Gly			AAC Asn								3645
30	GCC Ala			TGT Cys								3693
35				GCC Ala 330								3741
4.0				CTG Leu						_		3789
40				CAT His							_	3837

	GAG GGC GTG CGC CGG GTG CTG ACG GAC CCT TCC ATC CGG GCC GCA Glu Gly Val Arg Arg Val Leu Thr Asp Pro Ser Ile Arg Ala Ala Ala 375 380 385	3885
5	CAG CGC GTC CGG GAC GAG ATG AAT GCA GAG CCG ACG CCG GGC GAG GTC Gln Arg Val Arg Asp Glu Met Asn Ala Glu Pro Thr Pro Gly Glu Val 390 395 400	3933
10	GTC ACG GTG CTG GAG CGG CTC GCC GCG AGC GGC GGA CGC GGA CGA GGA Val Thr Val Leu Glu Arg Leu Ala Ala Ser Gly Gly Arg Gly Arg Gly 405 410 415 420	3981
15	GGC GGG AAC CAT GCG GGC TGACACGGAG CCGACCACCG GGTACGAGGA Gly Gly Asn His Ala Gly 425	4029
	CGAGTTCGCC GAGATCTACG ACGCCGTGTA CCGGGGCCGG GGCAAGGACT ACGCCGGCGA	4089
•	GGCGAAGGAC GTGGCGGACC TCGTGCGCGA CCGGGTGCCG GACGCGTCCT CCCTCCTGGA	4149
20	CGTGGCCTGC GGCACGGGCG CGCACCTGCG GCACTTCGCC ACGCTCTTCG ACGACGCCCG	4209
	CGGTCTCGAA CTGTCCGCGA GCATGCTGGA CATCGCCCGC TCCCGCATGC CGGGCGTGCC	4269
25	GCTGCACCAA GGGGACATGC GATCCTTCGA CCTGGGGCCA CGCGTCTCCG CGGTCACCTG	4329
	CATGTTCAGC TCCGTCGGCC ACCTGGCCAC CACCGCCGAA CTCGACGCGA CGCTGCGGTG	4389
	CTTCGCCCGG CACACCCGGC CCGGCGGCGT GGCCGTCATC GAACCGTGGT GGTTCCCGGA	4449
30	GACCTTCACC GACGCTACG TGGCGGGTGA CATCGTACGC GTCGACGGCC GGACCATCTC	4509
	CCGGGTGTCC CACTCGGTAC GGGACGGCGG CGCCACCCGC ATGGAGATCC ACTACGTGAT	4569
35	CGCCGACGCC GAGCACGGTC CCCGGCACCT GGTCGAGCAC CACCGCATCA CGCTGTTCCC	4629
	GCGGCATGCG TACACGGCCG CGTACGAGAA GGCGGGCTAC ACCGTCGAGT ACCTCGACGG	4689
40	CGGGCCCTCG GGCCGGGGC TGTTCGTCGG CACCCGGACG TGAACCCGCC CGCGCACCGC	4749
- <b>-</b>	CCGATCACCC TGCTCAACGC CGTTCACACG GATCACCGGA CCACGCGAAG GACCTTTCAC	4809
45	ATG TCG TAC GAC GAC CAC GCG GTG CTG GAA GCG ATA CTG CGG TGC GCC Met Ser Tyr Asp Asp His Ala Val Leu Glu Ala Ile Leu Arg Cys Ala  1 5 10 15	4857

	GGA	GGT	GAC	GAG	CGC	TTC	CTG	CTG	AAC	ACC	GTC	GAG	GAA	TGG	GGA	GCC	4905
	Gly	Gly	Asp	Glu	Arg	Phe	Leu	Leu	Asn	Thr	Val	Glu	Glu	Trp	Gly	Ala	
				20					25					30			
5	GCC	GAG	ATC	ACC	GCG	GCG	СТС	GTG	GAC	GAG	TTG	CTG	TTC	CGC	TGC	GAG	4953
						Ala											
			35					40					45				
															~~~		
10						GGT											5001
10	Ile	50	GIII	Val	GIY	GTÅ	55	Ald	PHE	116	GIY	60 Eeu	Asp	vaı	Бец	nis .	
		50										•					
	GGC	GCC	GAC	CGG	ATC	AGC	CAT	GTG	CTG	CAG	GTG	ACG	GAC	GGC	AAG	CCG	5049
	Gly	Ala	Asp	Arg	Ile	Ser	His	Val	Leu	Gln	Val	Thr	Asp	Gly	Lys	Pro	
15	65					70					75					80	
	GTC	ACG	TCG	GCG	GAA	CCG	GCC	GGC	CAG	GAA	CTG	GGC	GGC	CGT	ACC	TGG	5097
						Pro											
					85					90					95		
20																	
						ACC											5145
	Ser	Ser	Arg		Ala	Thr	Leu	Leu	_	Glu	Leu	Phe	Gly		Pro	Ser	
				100					105					110			
25	GGC	CGC	ACC	GCG	GGG	GGC	TTC	GGC	GTC	TCC	TTC	CTG	CCC	GAC	CTG	CGC	5193
	Gly	Arg	Thr	Ala	Gly	Gly	Phe	Gly	Val	Ser	Phe	Leu	Pro	Asp	Leu	Arg	
			115					120					125				
	GGC	ccc	ccc	אככ	አጥር	GAG	ccc	GCC	acc	CTC	acc	GCC	CGC	מככ	acc	አአC	5241
30	Gly																3241
	2	130	- · · · J				135					140					
						ACG											5289
35		Val	Leu	His	Ala	Thr	Thr	Asn	Glu	Thr		Pro	Leu	Asp	Arg		
33	145					150					155					160	
	GCC	CTG	CGC	TAC	GAG	TCC	GAC	AAG	TGG	GGC	GGC	GTC	CAC	TGG	TTC	ACC	5337
	Ala	Leu	Arg	Tyr	Glu	Ser	Asp	Lys	Trp	Gly	Gly	Val	His	Trp	Phe	Thr	
					165					170					175		
40	965	a= =		a	A1 A1 A1	a- ~	am		~~-	a=*		~~	a. ~	~~~	am.~	aaa	
						CAC His											5385
	GTÅ	1112	TÄT	180	мгд	nis	neu	HIG	185	val	wid	yen	GTII	190	vaı	ALY	

	ATC	CTG	GAG	ATC	GGC	ATC	GGC	GGC	TAC	GAC	GAC	CTG	CTG	CCG	AGC	GGC	5433
	Ile	Leu	Glu	Ile	Gly	Ile	Gly	Gly	Tyr	Asp	Asp	Leu	Leu	Pro	Ser	Gly	
			195					200					205				
5	GCC	TCA	CTG	AAG	ATG	TGG	AAG	CGC	TAC	TTC	CCG	CGC	GGC	CTG	GTC	TTC	5481
												Arg					
		210		-		-	215	•	-			220	-				
												AGC					5529
LO	Gly	Val	Asp	Ile	Phe	_	Ser	Arg	Arg	Ala		Ser	Arg	Val	Ser		
	225					230					235					240	
	CGC	TCC	GCG	GCC	CGG	CAG	GAC	GAC	CCG	GAG	TTC	ATG	CGC	CGC	GTC	GCC	5577
	Arg	Ser	Ala	Ala	Arg	Gln	Asp	Asp	Pro	Glu	Phe	Met	Arg	Arg	٧al	Ala	
15					245					250					255		
	GAG	GZG	CAC	GGG	CCG	ጥጥር	GAC	GTC	מיזיכ	አጥር ⁻	GAC	GAC	GGC	AGC	מאכ	ΔTC	5625
												Asp					302
				260					265		, _F		7	270			
20																	
	AAC	GCA	CAC	ATG	CGG	ACG	TCG	TTC	TCG	GTG	ATG	TTC	CCC	CAC	CTG	CGC	5673
	Asn	Ala	His	Met	Arg	Thr	Ser	Phe	Ser	Val	Met	Phe	Pro	His	Leu	Arg	
			275					280					285				
25	AAC																5721
	Asn	_	Gly	Phe	Tyr	Val		Glu	Asp	Thr	Phe	Thr	Ser	Tyr	Trp	Pro	
		290					295					300					
	GGG	TAC	GGA	GGG	CCA	TCC	GGA	GCC	CGG	TGC	CCG	TCC	GGA	ACA	ACC	GCG	5769
30	Gly	Tyr	Gly	Gly	Pro	Ser	Gly	Ala	Arg	Cys	Pro	Ser	Gly	Thr	Thr	Ala	
	305					310					315					320	
												CAC					5817
	Leu	Glu	Met	Val	_	Gly	Leu	Ile	Asp		Val	His	Tyr	Glu		Arg	
35					325					330					335		
	CCG	GAC	GGC	GCG	GCC	ACG	GCC	GAC	TAC	ATC	GCC	AGG	AAC	CTC	GTC	GGG	5865
	Pro	Asp	Gly	Ala	Ala	Thr	Ala	Asp	Tyr	Ile	Ala	Arg	Asn	Leu	Val	Gly	
				340					345					350			
10																	
												AGA					5913
	Leu	His		Tyr	Gln	Thr	Thr		Ser	Ser	Ser	Arg	Arg	Ala	Ile	Asn	
			355					360					365				

	AAG GAG GGC GGC ATC CCC CAC ACC GTG CCC CGG GAG CCG TTC TGG AAC Lys Glu Gly Gly Ile Pro His Thr Val Pro Arg Glu Pro Phe Trp Asn 370 375 380	5961
5	GAC AAC TAGCCACGGC CGCAACCAGA GCCGGAAACC GCACCACTGT CCGCGCCACC Asp Asn 385	6017
10	TCGGAACCAC CTCCAGCAAA GGACACACCG CTGTGACCGA TACGCACACC GGACCGACAC CGGCCGACGC GGTACC	6077
15	 (2) INFORMATIONS POUR LA SEQ ID NO: 16: (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 401 acides aminés (B) TYPE: acide aminé (D) CONFIGURATION: linéaire 	
20	(ii) TYPE DE MOLECULE: protéine (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 16:	
25	Met Glu Asp Ser Glu Leu Gly Arg Arg Leu Gln Met Leu Arg Gly Met 1 5 10 15 Gln Trp Val Phe Gly Ala Asn Gly Asp Pro Tyr Ala Arg Leu Leu Cys	
30	20 25 30 Gly Met Glu Asp Asp Pro Ser Pro Phe Tyr Asp Ala Ile Arg Thr Leu	
	35 40 45 Gly Glu Leu His Arg Ser Arg Thr Gly Ala Trp Val Thr Ala Asp Pro 50 55 60	
35	Gly Leu Gly Gly Arg Ile Leu Ala Asp Arg Lys Ala Arg Cys Pro Glu 65 70 75 80	
40	Gly Ser Trp Pro Val Arg Ala Lys Thr Asp Gly Leu Glu Gln Tyr Val 85 90 95	
	Leu Pro Gly His Gln Ala Phe Leu Arg Leu Glu Arg Glu Glu Ala Glu 100 105 110	
45	Arg Leu Arg Glu Val Ala Ala Pro Val Leu Gly Ala Ala Ala Val Asp 115 120 125	

	Ald	11p	Arg	PIO	Leu	116	135	GIU	val	Сув	ALG	140	пеа	AIG	цуь	GIY
5	Leu 145	Pro	Asp	Thr	Phe	Asp 150	Leu	Val	Glu	Glu	Tyr 155	Ala	Gly	Leu	Val	Pro
	Val	Glu	Val	Leu	Ala 165	Arg	Ile	Trp	Gly	Val 170	Pro	Glu	Glu	Asp	Arg 175	Ala
10	Arg	Phe	Gly	Arg 180	Asp	Cys	Arg	Ala	Leu 185	Ala	Pro	Ala	Leu	Asp 190	Ser	Leu
15	Leu	Cys	Pro 195	Gln	Gln	Leu	Ala	Leu 200	Ser	Lys	Asp	Met	Ala 205	Ser	Ala	Leu
13	Glu	Asp 210	Leu	Arg	Leu	Leu	Phe 215	Asp	Gly	Leu	Asp	Ala 220	Thr	Pro	Arg	Leu
20	Ala 225	Gly	Pro	Ala	Asp	Gly 230	Asp	Gly	Thr	Ala	Val 235	Ala	Met	Leu	Thr	Val 240
	Leu	Leu	Cys	Thr	Glu 245	Pro	Val	Thr	Thr	Ala 250	Ile	Gly	Asn	Thr	Val 255	Leu
25	Gly	Leu	Leu	Pro 260	Gly	Gln	Trp	Pro	Val 265	Pro	Cys	Thr	Gly	Arg 270	Val	Ala
30	Ala	Gly	Gln 275	Val	Ala	Gly	Gln	Ala 280	Leu	His	Arg	Ala	Val 285	Ser	Tyr	Arg
50	Ile	Ala 290	Thr	Arg	Phe	Ala	Arg 295	Glu	Asp	Leu	Glu	Leu 300	Ala	Gly	Cys	Glu
35	Val 305	Lys	Ser	Gly	Asp	Glu 310	Val	Val	Val	Leu	Ala 315	Gly	Ala	Ile	Gly	Arg 320
	Asn	Gly	Pro	Ser	Ala 325	Ala	Ala	Pro	Pro	Ala 330	Pro	Pro	Gly	Pro	Ala 335	Ala
40	Pro	Pro	Ala	Pro 340	Ser	Val	Phe	Gly	Ala 345	Ala	Ala	Phe	Glu	Asn 350	Ala	Let
	Ala	Glu	Pro 355	Leu	Val	Arg	Ala	Val 360	Thr	Gly	Ala	Ala	Leu 365	Gln	Ala	Let

130

55

Ala Glu Gly Pro Pro Arg Leu Thr Ala Ala Gly Pro Val Val Arg Arg 375 Arg Arg Ser Pro Val Val Gly Gly Leu His Arg Ala Pro Val Ala Ala 5 385 390 395 Ala 10 (2) INFORMATIONS POUR LA SEQ ID NO: 17: (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 426 acides aminés (B) TYPE: acide aminé 15 (D) CONFIGURATION: linéaire (ii) TYPE DE MOLECULE: protéine (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 17: 20 Met Met Met Thr Thr Phe Ala Ala Asn Thr His Phe Gln Pro Leu Val 1 5 10 15 Pro Leu Ala Trp Ala Leu Arg Thr Ala Gly His Glu Val Arg Val Val 20 25 25 Ser Gln Pro Ser Leu Ser Asp Val Val Thr Gln Ala Gly Leu Thr Ser 35 Val Pro Val Gly Thr Glu Ala Pro Val Glu Gln Phe Ala Ala Thr Trp 30 50 Gly Asp Asp Ala Tyr Ile Gly Val Asn Ser Ile Asp Phe Thr Gly Asn 70 75 35 Asp Pro Gly Leu Trp Thr Trp Pro Tyr Leu Leu Gly Met Glu Thr Met 85 90 Leu Val Pro Ala Phe Tyr Glu Leu Leu Asn Asn Glu Ser Phe Val Asp 100 105 110 40 Gly Val Val Glu Phe Ala Arg Asp Trp Arg Pro Asp Leu Val Ile Trp 115 120 125

Glu Pro Leu Thr Phe Ala Gly Ala Val Ala Arg Val Thr Gly Ala

140

	Ala 145	His	Ala	Arg	Leu	Pro 150	Trp	Gly	Gln	Glu	Ile 155	Thr	Leu	Arg	Gly	160
5	Gln	Ala	Phe	Leu	Ala 165	Glu	Arg	Ala	Leu	Gln 170	Pro	Phe	Glu	His	Arg 175	Gl
	Asp	Pro	Thr	Ala 180	Glu	Trp	Leu	Gly	Arg 185	Met	Leu	Asp	Arg	Tyr 190	Gly	Суя
10	Ser	Phe	Asp 195	Glu	Glu	Met	Val	Thr 200	Gly	Gln	Trp	Thr	Ile 205	Asp	Thr	Let
15	Pro	Arg 210	Ser	Met	Arg	Leu	Glu 215	Leu	Ser	Glu	Glu	Leu 220	Arg	Thr	Leu	Ası
	Met 225	Arg	Tyr	Val	Pro	Tyr 230	Asn	Gly	Pro	Ala	Val 235	Val	Pro	Pro	Trp	Va:
20	Trp	Glu	Pro	Cys	Glu 245	Arg	Pro	Arg	Val	Cys 250	Leu	Thr	Ile	Gly	Thr 255	Sei
	Gln	Arg	Asp	Ser 260	Gly	Arg	Asp	His	Val 265	Pro	Leu	Asp	His	Leu 270	Leu	Ası
25	Ser	Leu	Ala 275	Asp	Val	Asp	Ala	Glu 280	Ile	Val	Ala	Thr	Leu 285	Asp	Thr	Thi
30	Gln	Gln 290	Glu	Arg	Leu	Arg	Gly 295	Ala	Ala	Pro	Gly	Asn 300	Val	Arg	Leu	Va.
	Asp 305	Phe	Val	Pro	Leu	His 310	Ala	Leu	Met	Pro	Thr 315	Cys	Ser	Ala	Ile	Va]
35	His	His	Gly	Gly	Pro 325	Gly	Thr	Trp	Ser	Thr 330	Ala	Ala	Leu	His	Gly 335	Val
	Pro	Gln	Ile	Ile 340	Leu	Asp	Thr	Ser	Trp 345	Asp	Thr	Pro	Val	Arg 350	Ala	Glr
40	Arg	Met	Gln 355	Gln	Leu	Gly	Ala	Gly 360	Leu	Ser	Met	Pro	Val 365	Gly	Glu	Lei
45	Gly	Val 370	Glu	Ala	Leu	Arg	Asp 375	Arg	Val	Leu	Arg	Leu 380	Leu	Gly	Glu	Pro

Glu Phe Arg Ala Gly Ala Glu Arg Ile Arg Ala Glu Met Leu Ala Met Pro Ala Pro Gly Asp Val Val Pro Asp Leu Glu Arg Leu Thr Ala Glu His Ala Thr Gly Ala Met Ala Gly Arg Arg (2) INFORMATIONS POUR LA SEQ ID NO: 18: (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 426 acides aminés (B) TYPE: acide aminé (D) CONFIGURATION: linéaire (ii) TYPE DE MOLECULE: protéine (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 18: Met Arg Val Leu Leu Thr Cys Phe Ala Asn Asp Thr His Phe His Gly Leu Val Pro Leu Ala Trp Ala Leu Arg Ala Ala Gly His Glu Val Arg Val Ala Ser Gln Pro Ala Leu Ser Asp Thr Ile Thr Gln Ala Gly Leu 30 Thr Ala Val Pro Val Gly Arg Asp Thr Ala Phe Leu Glu Leu Met Gly Glu Ile Gly Ala Asp Val Gln Lys Tyr Ser Thr Gly Ile Asp Leu Gly Val Arg Ala Glu Leu Thr Ser Trp Glu Tyr Leu Leu Gly Met His Thr Thr Leu Val Pro Thr Phe Tyr Ser Leu Val Asn Asp Glu Pro Phe Val Asp Gly Leu Val Ala Leu Thr Arg Ala Trp Arg Pro Asp Leu Ile Leu

45 Trp Glu His Phe Ser Phe Ala Gly Ala Leu Ala Ala Arg Ala Thr Gly

	Thr 145	Pro	His	Ala	Arg	Val 150	Leu	Trp	Gly	Ser	Asp 155	Leu	Ile	Val	Arg	Phe 160
5	Arg	Arg	Asp	Phe	Leu 165	Ala	Glu	Arg	Ala	Asn 170	Arg	Pro	Ala	Glu	His 175	Arg
	Glu	Asp	Pro	Met 180	Ala	Glu	Trp	Leu	Gly 185	Trp	Ala	Ala	Glu	Arg 190	Leu	Gly
10	Ser	Thr	Phe 195	Asp	Glu	Glu	Leu	Val 200	Thr	Gly	Gln	Trp	Thr 205	Ile	Asp	Pro
15	Leu	Pro 210	Arg	Ser	Met	Arg	Leu 215	Pro	Thr	Gly	Thr	Thr 220	Thr	Val	Pro	Met
10	Arg 225	Tyr	Val	Pro	Tyr	Asn 230	Gly	Arg	Ala	Val	Val 235	Pro	Ala	Trp	Val	Arg 240
20	Gln	Arg	Ala	Arg	Arg 245	Pro	Arg	Ile	Cys	Leu 250	Thr	Leu	Gly	Val	Ser 255	Ala
	Arg	Gln	Thr	Leu 260	Gly	Asp	Gly	Val	Ser 265	Leu	Ala	Glu	Val	Leu 270	Ala	Ala
25	Leu	Gly	Asp 275	Val	Asp	Ala	Glu	Ile 280	Val	Ala	Thr	Leu	Asp 285	Ala	Ser	Gln
30	Arg	Lys 290	Leu	Leu	Gly	Pro	Val 295	Pro	Asp	Asn	Val	Arg 300	Leu	Val	Asp	Phe
	Val 305	Pro	Leu	His	Ala	Leu 310	Met	Pro	Thr	Cys	Ser 315	Ala	Ile	Val	His	His 320
35	Gly	Gly	Ala	Gly	Thr 325	Trp	Leu	Thr	Ala	Ala 330	Val	His	Gly	Val	Pro 335	Gln
	Ile	Val	Leu	Gly 340	Asp	Leu	Trp	Asp	Asn 345	Leu	Leu	Arg	Ala	Arg 350	Gln	Thr
40	Gln	Ala	Ala 355	Gly	Ala	Gly	Leu	Phe 360	Ile	His	Pro	Ser	Glu 365	Val	Thr	Ala
45	Ala	Gly 370	Leu	Gly	Glu	Gly	Val 375	Arg	Arg	Val	Leu	Thr 380	Asp	Pro	Ser	Ile

	Arg 385	Ala	Ala	Ala	Gln	Arg 390	Val	Arg	Asp	Glu	Met 395	Asn	Ala	Glu	Pro	Thr 400
5	Pro	Gly	Glu	Val	Val 405	Thr	Val	Leu	Glu	Arg 410	Leu	Ala	Ala	Ser	Gly 415	Gly
	Arg	Gly	Arg	Gly 420	Gly	Gly	Asn	His	Ala 425	Gly						
10	(2)	INFO	ORMA'	rions	F POT	JR L <i>i</i>	A SEÇ) ID	NO:	19:						
15		,	(<i>I</i>	CARAC A) LC B) TY	ONGUI (PE :	EUR: acio	386 le ar	acio niné	des a	aminé						
20				PE DI						: SE(QI Q	NO:	19:			
	Met 1	Ser	Tyr	Asp	Asp 5	His	Ala	Val	Leu	Glu 10	Ala	Ile	Leu	Arg	Cys 15	Ala
25	Gly	Gly	Asp	Glu 20	Arg	Phe	Leu	Leu	Asn 25	Thr	Val	Glu	Glu	Trp 30	Gly	Ala
	Ala	Glu	Ile 35	Thr	Ala	Ala	Leu	Val 40	Asp	Glu	Leu	Leu	Phe 45	Arg	Cys	Glu
30	Ile	Pro 50	Gln	Val	Gly	Gly	Glu 55	Ala	Phe	Ile	Gly	Leu 60	Asp	Val	Leu	His
35	Gly 65	Ala	Asp	Arg	Ile	Ser 70	His	Val	Leu	Gln	Val 75	Thr	Asp	Gly	Lys	Pro 80
33	Val	Thr	Ser	Ala	Glu 85	Pro	Ala	Gly	Gln	Glu 90	Leu	Gly	Gly	Arg	Thr 95	Trp
40	Ser	Ser	Arg	Ser 100	Ala	Thr	Leu	Leu	Arg 105	Glu	Leu	Phe	Gly	Pro 110	Pro	Ser
	Gly	Arg	Thr 115	Ala	Gly	Gly	Phe	Gly 120	Val	Ser	Phe	Leu	Pro 125	Asp	Leu	Arg
45	Gly	Pro 130	Arg	Thr	Met	Glu	Gly 135	Ala	Ala	Leu	Ala	Ala 140	Arg	Ala	Thr	Asn

	Val 145		Leu	His	Ala	Thr 150	Thr	Asn	Glu	Thr	Pro 155	Pro	Leu	Asp	Arg	160
5	Ala	Leu	Arg	Tyr	Glu 165	Ser	Asp	Lys	Trp	Gly 170	Gly	Val	His	Trp	Phe 175	Thr
	Gly	His	Tyr	Asp 180	Arg	His	Leu	Arg	Ala 185	Val	Arg	Asp	Gln	Ala 190	Val	Arg
10	Ile	Leu	Glu 195	Ile	Gly	Ile	Gly	Gly 200	Tyr	Asp	Asp	Leu	Leu 205	Pro	Ser	Gly
15	Ala	Ser 210	Leu	Lys	Met	Trp	Lys 215	Arg	Tyr	Phe	Pro	Arg 220	Gly	Leu	Val	Phe
	Gly 225	Val	Asp	Ile	Phe	Asp 230	Ser	Arg	Arg	Ala	Thr 235	Ser	Arg	Val	Ser	Arg 240
20	Arg	Ser	Ala	Ala	Arg 245	Gln	Asp	Asp	Pro	Glu 250	Phe	Met	Arg	Arg	Val 255	Ala
	Glu	Glu	His	Gly 260	Pro	Phe	Asp	Val	Ile 265	Ile	Asp	Asp	Gly	Ser 270	His	Ile
25	Asn	Ala	His 275	Met	Arg	Thr	Ser	Phe 280	Ser	Val	Met	Phe	Pro 285	His	Leu	Arg
30	Asn	Gly 290	Gly	Phe	Tyr	Val	Ile 295	Glu	Asp	Thr	Phe	Thr 300	Ser	Tyr	Trp	Pro
	Gly 305	Tyr	Gly	Gly	Pro	Ser 310	Gly	Ala	Arg	Cys	Pro 315	Ser	Gly	Thr	Thr	Ala 320
35	Leu	Glu	Met	Val	Lys 325	Gly	Leu	Ile	Asp	Ser 330	Val	His	Tyr	Glu	Glu 335	Arg
	Pro	Asp	Gly	Ala 340	Ala	Thr	Ala	Asp	Tyr 345	Ile	Ala	Arg	Asn	Leu 350	Val	Gly
40	Leu	His	Ala 355	Tyr	Gln	Thr	Thr	Ser 360	Ser	Ser	Ser	Arg	Arg 365	Ala	Ile	Asr
45	Lys	Glu 370	Gly	Gly	Ile	Pro	His 375	Thr	Val	Pro	Arg	Glu 380	Pro	Phe	Trp	Asr

Asp Asn 385

(2) INFORMATIONS POUR LA SEQ ID NO: 20:

5

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 738 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: double
- 10
- (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN (génomique)
- (vi) ORIGINE:
- 15 (A) ORGANISME: Streptomyces antibioticus
 - (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT:1..738
- 20 (D) AUTRES INFORMATIONS:/gene= "oleM"

 /note= "SEQ ID NO 15 DE 3992 A 4729"
 - (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: mat_peptide
- 25 (B) EMPLACEMENT:1
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 20:
- 30 ATG CGG GCT GAC ACG GAG CCG ACC ACC GGG TAC GAG GAC GAG TTC GCC

 Met Arg Ala Asp Thr Glu Pro Thr Thr Gly Tyr Glu Asp Glu Phe Ala

 1 5 10 15
- GAG ATC TAC GAC GCC GTG TAC CGG GGC CGG GGC AAG GAC TAC GCC GGC 96

 35 Glu Ile Tyr Asp Ala Val Tyr Arg Gly Arg Gly Lys Asp Tyr Ala Gly
 20 25 30
- GAG GCG AAG GAC GTG GCG GAC CTC GTG CGC GAC CGG GTG CCG GAC GCG

 Glu Ala Lys Asp Val Ala Asp Leu Val Arg Asp Arg Val Pro Asp Ala

 40 35 40 45
 - TCC TCC CTG GAC GTG GCC TGC GGC ACG GGC GCG CAC CTG CGG CAC

 Ser Ser Leu Leu Asp Val Ala Cys Gly Thr Gly Ala His Leu Arg His

 50

 55

 60

											TCC Ser			240
5	ATG				ÇGC				GGC		CTG Leu		CAA	288
10				TCC				CCA			GCG Ala	GTC		336
15			AGC				CTG				GAA Glu			384
											GGC Gly			432
20											GGC Gly			480
25											CGG Arg			528
30											CAC His			576
35											CAC His			624
											GAG Glu			672
40		TAC				CTC				TCG	CGG Arg	_		720

TTC GTC GGC ACC CGG ACG
Phe Val Gly Thr Arg Thr
245

738

5

- (2) INFORMATIONS POUR LA SEQ ID NO: 21:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 246 acides aminés
- 10
- (B) TYPE: acide aminé
- (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: protéine
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 21:

15

Met Arg Ala Asp Thr Glu Pro Thr Thr Gly Tyr Glu Asp Glu Phe Ala

1 5 10 15

Glu Ile Tyr Asp Ala Val Tyr Arg Gly Arg Gly Lys Asp Tyr Ala Gly
20 25 30

Glu Ala Lys Asp Val Ala Asp Leu Val Arg Asp Arg Val Pro Asp Ala
35 40 45

25 Ser Ser Leu Leu Asp Val Ala Cys Gly Thr Gly Ala His Leu Arg His
50 55 60

Phe Ala Thr Leu Phe Asp Asp Ala Arg Gly Leu Glu Leu Ser Ala Ser
65 70 75 80

30

Met Leu Asp Ile Ala Arg Ser Arg Met Pro Gly Val Pro Leu His Gln 85 90 95

Gly Asp Met Arg Ser Phe Asp Leu Gly Pro Arg Val Ser Ala Val Thr

100 105 110

Cys Met Phe Ser Ser Val Gly His Leu Ala Thr Thr Ala Glu Leu Asp 115 120 125

40 Ala Thr Leu Arg Cys Phe Ala Arg His Thr Arg Pro Gly Gly Val Ala
130 135 140

Ala Gly Asp Ile Val Arg Val Asp Gly Arg Thr Ile Ser Arg Val Ser 170 165 His Ser Val Arg Asp Gly Gly Ala Thr Arg Met Glu Ile His Tyr Val 5 185 180 Ile Ala Asp Ala Glu His Gly Pro Arg His Leu Val Glu His His Arg 195 200 205 10 Ile Thr Leu Phe Pro Arg His Ala Tyr Thr Ala Ala Tyr Glu Lys Ala 220 210 215 Gly Tyr Thr Val Glu Tyr Leu Asp Gly Gly Pro Ser Gly Arg Gly Leu 225 240 230 235 15 Phe Val Gly Thr Arg Thr 245 20 (2) INFORMATIONS POUR LA SEQ ID NO: 22: (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 19 paires de bases (B) TYPE: nucléotide 25 (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire (ii) TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE" 30 (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 22: TCCTCGATGG AGACCTGCC 19 35 (2) INFORMATIONS POUR LA SEQ ID NO: 23: (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 19 paires de bases 40 (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: Autre acide nucléique

(A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"

65 (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 23: GAGACCATGC CCAGGGAGT 19 5 (2) INFORMATIONS POUR LA SEQ ID NO: 24: (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 19 paires de bases (B) TYPE: nucléotide 10 (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire (ii) TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE" 15 (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 24: TCTGGGAGCC GCTCACCTT 19 20 (2) INFORMATIONS POUR LA SEQ ID NO: 25: (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 19 paires de bases 25 (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire (ii) TYPE DE MOLECULE: Autre acide nucléique 30 (A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE" (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 25: 35 GACGAGGCCG AAGAGGTGG 19 (2) INFORMATIONS POUR LA SEO ID NO: 26: (i) CARACTERISTIQUES DE LA SEQUENCE: 40 (A) LONGUEUR: 19 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: Autre acide nucléique

(A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 26: 19 GCACACCGGA ATGGATGCG 5 (2) INFORMATIONS POUR LA SEQ ID NO: 27: (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 19 paires de bases 10 (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire (ii) TYPE DE MOLECULE: Autre acide nucléique 15 (A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE" (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 27: 20 CCGTCGAGCT CTGAGGTAA 19 (2) INFORMATIONS POUR LA SEQ ID NO: 28: (i) CARACTERISTIQUES DE LA SEQUENCE: 25 (A) LONGUEUR: 19 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 30 (ii) TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE" (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 28: 35 GCCCGAGCCG CACGTGCGT 19 (2) INFORMATIONS POUR LA SEQ ID NO: 29: 40 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 20 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 45

(ii) TYPE DE MOLECULE: Autre acide nucléique

	(A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"	
_	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 29:	
5	TGCACGCGCT GCTGCCGACC	20
	(2) INFORMATIONS POUR LA SEQ ID NO: 30:	
10	 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 20 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
15	<pre>(ii) TYPE DE MOLECULE: Autre acide nucléique</pre>	
20	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 30:	
	TTGGCGAAGT CGACCAGGTC	20
25	(2) INFORMATIONS POUR LA SEQ ID NO: 31:	
30	 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 23 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
	<pre>(ii) TYPE DE MOLECULE: Autre acide nucléique</pre>	
35	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 31:	
	GCCGCTCGGC ACGGTGAACT TCA	23
40	(2) INFORMATIONS POUR LA SEQ ID NO: 32:	
45	 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 24 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	

	<pre>(ii) TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"</pre>	
5	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 32:	
	ATGCGCGTCG TCTTCTCCTC CATG	24
10	(2) INFORMATIONS POUR LA SEQ ID NO: 33:	
15	 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 21 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
	<pre>(ii) TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"</pre>	
20	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 33:	
	TCATCGTGGT TCTCTCCTTC C	21
25	(2) INFORMATIONS POUR LA SEQ ID NO: 34:	
30	 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 23 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
35	<pre>(ii) TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"</pre>	
	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 34:	
40	GGAATTCATG ACCACGACCG ATC	23
	(2) INFORMATIONS POUR LA SEQ ID NO: 35:	
	(i) CARACTERISTIQUES DE LA SEQUENCE:(A) LONGUEUR: 28 paires de bases	
45	(B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple	

		(D) CONFIGURATION: linéaire	
5	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 35:	
10	CGCTCCAG	GGT GCAATGCCGG GTGCAGGC	28
	(2) INFO	DRMATIONS POUR LA SEQ ID NO: 36:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 22 paires de bases	
15		(B) TYPE: nucléotide	
		(C) NOMBRE DE BRINS: simple	
		(D) CONFIGURATION: linéaire	
20	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 36:	
25	GATCACGO	CTC TTCGAGCGGC AG	22
	(2) INFO	DRMATIONS POUR LA SEQ ID NO: 37:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE:	
30		(A) LONGUEUR: 21 paires de bases	
		(B) TYPE: nucléotide	
		(C) NOMBRE DE BRINS: simple	
		(D) CONFIGURATION: linéaire	
35	(ii)	TYPE DE MOLECULE: Autre acide nucléique	
		(A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"	
40	(xi)	(A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE" DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 37:	
40			21

(i) CARACTERISTIQUES DE LA SEQUENCE:

(A) LONGUEUR: 21 paires de bases

		(B) TYPE: nucléotide	
		(C) NOMBRE DE BRINS: simple	
		(D) CONFIGURATION: linéaire	
5	(ii) T	YPE DE MOLECULE: Autre acide nucléique	
		(A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"	
	(xi) D	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 38:	
10			
	GTTGTCGATC	AAGACCCGCA C	21
	(0) TNTE(0D)	NAMITONIC DOUBLE A CEO TO NO. 20.	
	(2) INFORM	IATIONS POUR LA SEQ ID NO: 39:	
15	(i) C	ARACTERISTIQUES DE LA SEQUENCE:	
		(A) LONGUEUR: 22 paires de bases	
		(B) TYPE: nucléotide	
		(C) NOMBRE DE BRINS: simple	
		(D) CONFIGURATION: linéaire	
20			
	(ii) T	YPE DE MOLECULE: Autre acide nucléique	
	, ,	(A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"	
25	(xi) I	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 39:	
	CATCGTCAAG	G GAGTTCGACG GT	22
	/a\ TNEODN	MATIONS POUR LA SEQ ID NO: 40:	
30	(Z) INFORM	MITONS FOOR HA SEQ ID NO: 40:	
50	(i) (CARACTERISTIQUES DE LA SEQUENCE:	
	(1)	(A) LONGUEUR: 25 paires de bases	
		(B) TYPE: nucléotide	
		(C) NOMBRE DE BRINS: simple	
35		(D) CONFIGURATION: linéaire	
	(ii) 7	TYPE DE MOLECULE: Autre acide nucléique	
		(A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"	
40			
	(xi) I	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 40:	
	TGCGCAGGT	C CATGTTCACC ACGTT	25

 $45\,$ (2) informations pour LA seq id no: 41:

45 GCCAGCTCGG CGACGTCCAT C

	(1)	(A) LONGUEUR: 20 paires de bases (B) TYPE: nucléotide	
		(C) NOMBRE DE BRINS: simple	
5		(D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"	
10	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 41:	
	GCTACGCC	CCT GGAGAGCCTG	20
15	(2) INFO	ORMATIONS POUR LA SEQ ID NO: 42:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE:	
		(A) LONGUEUR: 21 paires de bases	
		(B) TYPE: nucléotide	
20		(C) NOMBRE DE BRINS: simple	
		(D) CONFIGURATION: linéaire	
25	(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 42:	
30	GTCGCGGT	TCG GAGAGCACGA C	23
	(2) INFO	DRMATIONS POUR LA SEQ ID NO: 43:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE:	
		(A) LONGUEUR: 21 paires de bases	
35		(B) TYPE: nucléotide	
		(C) NOMBRE DE BRINS: simple	
		(D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: Autre acide nucléique	
40		(A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 43:	

	(2)	INFO	RMATIONS POUR LA SEQ ID NO: 44:	
5		(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 19 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
10		(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"	
		(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 44:	
15	5 CGACGAGGTC GTGCATCAG			
	(2)	INFO	RMATIONS POUR LA SEQ ID NO: 45:	
20		(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 56 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
25		(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"	
30		(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 45:	
	ITAA	GATC	AA GGTGAACACG GTCATGCGCA GGATCCTCGA GCGGAACTCC ATGGGG	56
	(2)	INFO	RMATIONS POUR LA SEQ ID NO: 46:	
35		(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 56 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
40		(ii)	TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"	

45 (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 46:

	CCCCATGGAG TTCCGCTCGA GGATCCTGCG CATGACCGTG TTCACCTTGA TCAATT	56
	(2) INFORMATIONS POUR LA SEQ ID NO: 47:	
5	(i) CARACTERISTIQUES DE LA SEQUENCE:	
	(A) LONGUEUR: 32 paires de bases	
	(B) TYPE: nucléotide	
	(C) NOMBRE DE BRINS: simple	
	(D) CONFIGURATION: linéaire	
10		
	(ii) TYPE DE MOLECULE: Autre acide nucléique	
	(A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"	
15	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 47:	
	(AI) DideAIIIION Di in Digoinei. Dig ID No. 1/1	
	AACTCGGTGG AGTCGATGTC GTCGCTGCGG AA	32
	(2) INFORMATIONS POUR LA SEQ ID NO: 48:	
20		
	(i) CARACTERISTIQUES DE LA SEQUENCE:	
	(A) LONGUEUR: 27 paires de bases	
	(B) TYPE: nucléotide	
	(C) NOMBRE DE BRINS: simple	
25	(D) CONFIGURATION: linéaire	
	(ii) TYPE DE MOLECULE: Autre acide nucléique	
	(A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"	
3.0		
30	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 48:	
	CAATATAGGA AGGATCAAGA GGTTGAC	27
35	(2) INFORMATIONS POUR LA SEQ ID NO: 49:	
	(i) CARACTERISTIQUES DE LA SEQUENCE:	
	(A) LONGUEUR: 39 paires de bases	
	(B) TYPE: nucléotide	
40	(C) NOMBRE DE BRINS: simple	
	(D) CONFIGURATION: linéaire	
	(ii) TYPE DE MOLECULE: Autre acide nucléique	
	(A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"	
45		

	(xi)) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 49:	
	TCCGGAG	GTG TGCTGTCGGA CGGACTTGTC GGTCGGAAA	39
5	(2) INF	ORMATIONS POUR LA SEQ ID NO: 50:	
	(i)) CARACTERISTIQUES DE LA SEQUENCE:	
		(A) LONGUEUR: 33 paires de bases	
		(B) TYPE: nucléotide	
10		(C) NOMBRE DE BRINS: simple	
		(D) CONFIGURATION: linéaire	
	(ii) TYPE DE MOLECULE: Autre acide nucléique	
		(A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"	
15			
20	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 50:	
20	AGGAGCA	CTA GTGCGGGTAC TGCTGACGTC CTT	33
	(2) INF	ORMATIONS POUR LA SEQ ID NO: 51:	
25	(i) CARACTERISTIQUES DE LA SEQUENCE:	
		(A) LONGUEUR: 37 paires de bases	
		(B) TYPE: nucléotide	
		(C) NOMBRE DE BRINS: simple	
30		(D) CONFIGURATION: linéaire	
	(ii) TYPE DE MOLECULE: Autre acide nucléique	
		(A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"	
35	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 51:	
	GGGGGAT	CCC ATATGCGGGT ACTGCTGACG TCCTTCG	37
	(מ) דאים	ORMATIONS POUR LA SEQ ID NO: 52:	
40	(2) INT	CANALLECTIO E COM and DMY AD MC. DA.	
	(i) CARACTERISTIQUES DE LA SEQUENCE:	
		(A) LONGUEUR: 37 paires de bases	
		(B) TYPE: nucléotide	
		(C) NOMBRE DE BRINS: simple	
45		(D) CONFIGURATION: linéaire	

	(ii) TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"				
5	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 52:				
	GAAAAGATCT GCCGGCGTGG CGGCGCGTGA GTTCCTC	37			
10	(2) INFORMATIONS POUR LA SEQ ID NO: 53:				
15	 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 27 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 				
	<pre>(ii) TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"</pre>				
20	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 53:				
	AGCGGCTTGA TCGTGTTGGA CCAGTAC	27			
25	(2) INFORMATIONS POUR LA SEQ ID NO: 54:				
30	 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 27 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 				
35	<pre>(ii) TYPE DE MOLECULE: Autre acide nucléique</pre>				
	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 54:				
40	GGCCTATGTG GACTACGTGT TGAACGT	2			
	(2) INFORMATIONS POUR LA SEQ ID NO: 55:				
45	(i) CARACTERISTIQUES DE LA SEQUENCE:(A) LONGUEUR: 31 paires de bases(B) TYPE: nucléotide				
	(C) NOMBRE DE BRINS: simple				

	(D) CONFIGURATION: linéaire	
5	(ii) TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"	
	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 55:	
10	AACGCCTCGT CCTGCAGCGG AGACACGAAC A	31
	(2) INFORMATIONS POUR LA SEQ ID NO: 56:	
15	 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 27 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
20	(ii) TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"	
	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 56:	
25	TTCGCTCCCC GATGAACACA ACTCGTA	27
	(2) INFORMATIONS POUR LA SEQ ID NO: 57:	
30	 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 35 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
35	(ii) TYPE DE MOLECULE: Autre acide nucléique (A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"	
40	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 57:	
	GAAGGAGATA TACATATGCG CGTCGTCTTC TCCTC	35
	(2) INFORMATIONS POUR LA SEQ ID NO: 58:	
45	(i) CARACTERISTIQUES DE LA SEQUENCE:	

(A) LONGUEUR: 32 paires de bases

			(B)	TYPE: nucléotide	
			(C)	NOMBRE DE BRINS: simple	
			(D)	CONFIGURATION: linéaire	
5		(ii)	TYPE	DE MOLECULE: Autre acide nucléique	
			(A)	DESCRIPTION: /desc = "OLIGONUCLEOTIDE"	
		(xi)	DESC	RIPTION DE LA SEQUENCE: SEQ ID NO: 58:	
10	CGGG	SATCC'	TC AT	CGTGGTTC TCTCCTTCCT GC	32
	(2)	INFO	RMATI	ONS POUR LA SEQ ID NO: 59:	
15		(i)	CARA	CTERISTIQUES DE LA SEQUENCE:	
			(A)	LONGUEUR: 32 paires de bases	
			(B)	TYPE: nucléotide	
			(C)	NOMBRE DE BRINS: simple	
			(D)	CONFIGURATION: linéaire	
20					
		(ii)		DE MOLECULE: Autre acide nucléique	
			(A)	DESCRIPTION: /desc = "OLIGONUCLEOTIDE"	
25		(xi)	DESC	RIPTION DE LA SEQUENCE: SEQ ID NO: 59:	
	CGGC	TACC.	AT GC	GCGTCGTC TTCTCCTCCA TG	32
30	(2)	INFO	RMATI	ONS POUR LA SEQ ID NO: 60:	
50		(i)		CTERISTIQUES DE LA SEQUENCE:	
				LONGUEUR: 29 paires de bases	
			•	TYPE: nucléotide	
				NOMBRE DE BRINS: simple	
35			(D)	CONFIGURATION: linéaire	
		(ii)	TYPE	DE MOLECULE: Autre acide nucléique	
				DESCRIPTION: /desc = "OLIGONUCLEOTIDE"	
40					
		(xi)	DESC	RIPTION DE LA SEQUENCE: SEQ ID NO: 60:	
	CGG	GTACC	TC AT	CGTGGTTC TCTCCTTCC	29
45	(2)	INFO	RMATI	ONS POUR LA SEQ ID NO: 61:	

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 13 acides aminés
 - (B) TYPE: acide aminé
 - (C) NOMBRE DE BRINS: simple
- 5 (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: peptide
 - (ix) CARACTERISTIQUE:
- 10 (A) NOM/CLE: Peptide
 - (B) EMPLACEMENT:1..13
 - (D) AUTRES INFORMATIONS:/note= "SEQ ID NO 11 DE 38 A 50"
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 61:

15

Val Thr Gly Ala Gly Asp Gly Asp Ala Asp Val Gln Ala

1 5 10