Experiment 2: Email Spam or Ham Classification using Naïve Bayes, KNN, and SVM

Student Name: SPINOLA THERES N Roll Number: 3122237001051

Sri Sivasubramaniya Nadar College of Engineering

(An autonomous Institution affiliated to Anna University)
M.Tech (Integrated) Computer Science & Engineering
Subject Code & Name: ICS1512 & Machine Learning Algorithms Laboratory
Academic Year: 2025-2026 (Odd), Batch: 2023-2028

September 2, 2025

1 Aim and Objective

To classify emails as spam or ham using three classification algorithms—Naïve Bayes, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM)—and evaluate their performance using accuracy metrics and K-Fold cross-validation.

2 Dataset Description

The Spambase dataset from Kaggle contains extracted features from emails, labeled as spam (1) or ham (0). The dataset characteristics are:

Table 1: Dataset Overview

Attribute	Details
Total samples	4,601 emails
Features	57 feature columns + 1 target column
Feature types	Word frequencies (48), character frequencies (6), capital letter
	statistics (3)
Class distribution	Ham: 2,788 (60.6%), Spam: 1,813 (39.4%)
Missing values	None
Data split	Training: 3,220 samples, Testing: 1,381 samples

3 Libraries Used

```
import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import seaborn as sns
from sklearn.model_selection import train_test_split, GridSearchCV,
     cross_val_score
from sklearn.naive_bayes import GaussianNB, MultinomialNB, BernoulliNB
7 from sklearn.neighbors import KNeighborsClassifier
8 from sklearn.svm import SVC
9 from sklearn.metrics import (accuracy_score, precision_score,
     recall_score,
                             f1_score, confusion_matrix, roc_curve, auc)
11 from sklearn.preprocessing import StandardScaler
12 import time
13 import warnings
warnings.filterwarnings('ignore')
```

Listing 1: Required Libraries for Implementation

4 Implementation Steps

4.1 Data Loading and Preprocessing

Listing 2: Data Loading and Initial Analysis

5 Model Implementation and Results

5.1 Naïve Bayes Variants

```
# Train all Naive Bayes variants
nb_models = {
    'Gaussian NB': GaussianNB(),
    'Multinomial NB': MultinomialNB(),
```

```
'Bernoulli NB': BernoulliNB()
 }
6
 nb_results = []
  for name, model in nb_models.items():
      if name == 'Gaussian NB':
          model.fit(X_train_scaled, y_train)
          y_pred = model.predict(X_test_scaled)
12
13
          model.fit(X_train, y_train)
14
          y_pred = model.predict(X_test)
15
16
      # Calculate performance metrics
      accuracy = accuracy_score(y_test, y_pred)
18
      precision = precision_score(y_test, y_pred)
19
      recall = recall_score(y_test, y_pred)
      f1 = f1_score(y_test, y_pred)
21
22
      nb_results.append([name, accuracy, precision, recall, f1])
```

Listing 3: Naïve Bayes Implementation and Evaluation

\mathbf{m} 11 \mathbf{a}	D C	α .	(* T T **	\mathbf{r}	T 7 • 1
Table 7.	Dortormongo	L'omportdon	0 1 1 0 1 1 7 0	ROTTOG	Varianta
Table 7.	Performance	COMBALISON	OI NAIVE	Daves	variants

Metric	Gaussian NB	Multinomial NB	Bernoulli NB	Best				
Accuracy	0.8197	0.7697	0.9030	Bernoulli				
Precision	0.7001	0.7190	0.9100	Bernoulli				
Recall	0.9485	0.6820	0.8364	Gaussian				
F1 Score	0.8056	0.7000	0.8716	Bernoulli				

Figure 1: Confusion Matrices for Naïve Bayes Variants: (a) Gaussian NB, (b) Multinomial NB, (c) Bernoulli NB

5.2 K-Nearest Neighbors (KNN)

5.2.1 Varying k Values

```
# Test different k values
k_values = [1, 3, 5, 7, 9, 11]
knn_results = []
```

Listing 4: KNN Performance Analysis with Different k Values

_Tal	Table 3: KNN Performance for Different k Values							
k	Accuracy	Precision	Recall	F1 Score				
1	0.8950	0.8661	0.8676	0.8669				
3	0.8972	0.8736	0.8640	0.8688				
5	0.8993	0.8799	0.8621	0.8709				
7	0.9008	0.8861	0.8585	0.8721				
9	0.9073	0.8910	0.8713	0.8810				
11	0.8986	0.8826	0.8566	0.8694				

Figure 2: KNN Performance vs k Value

5.2.2 KDTree vs BallTree Comparison

Table 4: KNN Tree Algorithm Comparison (k=9)

Algorithm	Accuracy	Precision	Recall	F1 Score	Training Time (s)
KDTree	0.9073	0.8910	0.8713	0.8810	0.0440
BallTree	0.9073	0.8910	0.8713	0.8810	0.0369

Figure 3: KNN Confusion Matrix (k=9, BallTree)

5.3 Support Vector Machine (SVM)

```
# Define parameter grids for different kernels
 kernels_params = {
      'linear': {'C': [0.1, 1, 10], 'kernel': ['linear']},
      'polynomial': {'C': [0.1, 1, 10], 'kernel': ['poly'],
                      'degree': [2, 3, 4], 'gamma': ['auto', 'scale']},
      'rbf': {'C': [0.1, 1, 10], 'kernel': ['rbf'],
              'gamma': ['auto', 'scale', 0.01, 0.1]},
      'sigmoid': {'C': [0.1, 1, 10], 'kernel': ['sigmoid'],
                   'gamma': ['auto', 'scale']}
10
# Train and evaluate each kernel
13 svm_results = []
 for kernel_name, param_grid in kernels_params.items():
      grid_search = GridSearchCV(SVC(), param_grid, cv=3, scoring='
     accuracy')
      grid_search.fit(X_train_scaled, y_train)
16
      best_svm = grid_search.best_estimator_
18
      y_pred = best_svm.predict(X_test_scaled)
19
      # Store results with best parameters
21
      results = [kernel_name.capitalize(), str(grid_search.best_params_),
22
                accuracy_score(y_test, y_pred), f1_score(y_test, y_pred)]
```

```
svm_results.append(results)
```

Listing 5: SVM Hyperparameter Tuning Implementation

Table 5: SVM Performance with Different Kernels and Hyperparameter	Table 5:	SVM	Performance	with	Different	Kernels	and	Hyperparameters
--	----------	-----	-------------	------	-----------	---------	-----	-----------------

Kernel	Best Hyperparam-	Accuracy	F1 Score	Training Time (s)
	eters			
Linear	C = 1, kernel = linear	0.9290	0.9093	176.03
Polynomial	C = 10, degree = 2,	0.9124	0.8851	27.25
	gamma = auto			
RBF	C = 10, gamma = 0.01	0.9276	0.9060	19.87
Sigmoid	C = 1, gamma = auto	0.8841	0.8521	15.43

Figure 4: SVM Confusion Matrix for Linear Kernel

6 K-Fold Cross-Validation Results

```
# Select best models for cross-validation
best_models = {
    'Naive_Bayes': BernoulliNB(),
    'KNN': KNeighborsClassifier(n_neighbors=9, algorithm='ball_tree'),
    'SVM': SVC(C=1, kernel='linear')
}
```

```
# Perform cross-validation
cv_results = {}
for name, model in best_models.items():
    if name in ['SVM', 'KNN']:
        scores = cross_val_score(model, X_train_scaled, y_train, cv=5)
else:
        scores = cross_val_score(model, X_train, y_train, cv=5)
cv_results[name] = scores
```

Listing 6: 5-Fold Cross-Validation Implementation

Fold	Naïve Bayes	KNN	SVM
Fold 1	0.8990	0.9077	0.9207
Fold 2	0.9033	0.9054	0.9293
Fold 3	0.8935	0.8989	0.9217
Fold 4	0.9076	0.9174	0.9467
Fold 5	0.9098	0.8902	0.9261
Mean	0.9026	0.9039	0.9289
Std Dev	± 0.0059	± 0.0091	± 0.0094

Table 6: K-Fold Cross-Validation Results (K=5)

7 ROC Curves Analysis

Figure 5: ROC Curves for Best Performing Models: (a) Bernoulli NB, (b) KNN (k=9), (c) SVM (Linear)

8 Final Model Comparison

Table 7: Comprehensive Performance Summary of Best Models

Algorithm	Accuracy	Precision	Recall	F1 Score	CV Mean	Training Time (s)
Bernoulli NB	0.9030	0.9100	0.8364	0.8716	0.9026	0.0228
KNN (k=9)	0.9073	0.8910	0.8713	0.8810	0.9039	0.0369
SVM (Linear)	0.9290	0.9061	0.9125	0.9093	0.9289	176.03

Figure 6: Performance Comparison of All Three Algorithms

9 Observations and Conclusions

9.1 Key Findings

1. Overall Best Classifier: SVM with linear kernel achieved the highest accuracy of 92.90% and F1-score of 90.93%

2. Naïve Bayes Analysis:

- Bernoulli NB significantly outperformed Gaussian (81.97%) and Multinomial (76.97%) variants
- Best suited for binary classification problems like spam detection
- Fastest training time but moderate accuracy

3. KNN Analysis:

- Optimal k=9 provided best balance between bias and variance
- BallTree algorithm was more efficient than KDTree
- Good performance but computationally expensive for large datasets

4. SVM Analysis:

- Linear kernel worked best, indicating good linear separability
- Highest accuracy but longest training time
- Effective for high-dimensional data like text features

9.2 Performance Trade-offs

Table 8: Algorithm Trade-off Analysis

Algorithm	Accuracy	Speed	Memory	Complexity
Bernoulli NB	90.30%	Very Fast	Low	Low
KNN (k=9)	90.73%	Moderate	Moderate	Low
SVM (Linear)	92.90%	Slow	Low	High

9.3 Recommendations

- 1. Production Systems: Use SVM with linear kernel for maximum accuracy
- 2. Real-time Applications: Use Bernoulli Naïve Bayes for speed with acceptable accuracy
- 3. Balanced Requirements: Use KNN with k=9 for good accuracy-speed trade-off
- 4. Future Work: Consider ensemble methods combining all three approaches