Machine Learning Foundation HW1

B08502041 李芸芳

October 2020

第一題

答案:(D)

透過 supervised learning, 先給機器幾張有標示品質好壞的芒果圖片,機器可以透過影像辨識猜測圖片大概長怎樣叫做好/不好的芒果,接下來就可以透過芒果的圖片判斷芒果的品質了。

第二題

答案:(E)

- (A) 單純由運氣決定是否為 spam。
- (B) 給人類決定是否為 spam。
- (C) 其實也是給人類決定是否為 spam, 跟(B) 的差別是(C) 人類是給一個標準, 判斷的工作交給機器, 而(B) 是人類自行設定標準接著判斷。
 - (D)機器沒有在學習,就只是在做計算與判斷而已。

第三題

答案:(D)

根據 Lecture 2 Page 16,更新次數 T 有上限 $\frac{R^2}{\rho^2}$,這個上限就是 worst case,因為 R 與 ρ 中 $||\mathbf{x}_{\mathbf{n}(\mathbf{t})}||$ 的次數一樣,所以上下抵銷,速度不變。

第四題

答案:(A)

根據推導, $R' = \max_{n} ||\eta_t \mathbf{x_{n(t)}}||$, $\rho^{'} = \min_{n} \frac{\eta_t y_{n(t)} \mathbf{w_f^T} \mathbf{x_{n(t)}}}{||\mathbf{w_f^T}||}$,更新次數 $T' \leq \frac{R'^2}{\rho'^2}$,得 $\frac{R'^2}{\rho'^2} = \frac{R^2}{\rho^2}$,所以p = 0。

第五題

答案:(D)

$$y_{n(t)}\mathbf{w_{t+1}^T}\mathbf{x_{n(t)}} = y_{n(t)}(\mathbf{w_t} + \eta_t y_{n(t)}\mathbf{x_{n(t)}})^T \mathbf{x_{n(t)}}$$
$$= y_{n(t)}\mathbf{w_t^T}\mathbf{x_{n(t)}} + y_{n(t)}^2 \eta_t ||\mathbf{x_{n(t)}}||^2$$
$$> 0$$

第六題

答案:(A)

令
$$\lfloor \frac{-n(t)\mathbf{w_t^T}\mathbf{x_{n(t)}}}{\mathbf{x_{n(t)}}} \rfloor^2 + 1$$
」為 η_t ,perfect line 的法向量為 $\mathbf{w_f}$ 。

$$\mathbf{w_f^T} \mathbf{w_T} = (\mathbf{w_t} + \eta_t y_{n(t)} \mathbf{x_{n(t)}})^T \mathbf{w_f}$$

$$= \mathbf{w_f^T} \mathbf{w_{T-1}} + \eta_t y_{n(t)} \mathbf{w_f^T} \mathbf{x_{n(t)}}$$

$$\geq \mathbf{w_f^T} \mathbf{w_{T-1}} + \min_{n} \eta_t y_{n(t)} \mathbf{w_f^T} \mathbf{x_{n(t)}}$$

$$\geq \mathbf{w_f^T} \mathbf{w_{T-2}} + 2\min_{n} \eta_t y_{n(t)} \mathbf{w_f^T} \mathbf{x_{n(t)}}$$
...
$$\geq \mathbf{w_f^T} \mathbf{w_0} + T\min_{n} \eta_t y_{n(t)} \mathbf{w_f^T} \mathbf{x_{n(t)}}$$

$$\begin{aligned} ||\mathbf{w_{T}}||^{2} &= ||\mathbf{w_{T-1}} + \eta_{t} y_{n(t)} \mathbf{x_{n(t)}}||^{2} \\ &= ||\mathbf{w_{T-1}}||^{2} + 2\eta_{t} y_{n(t)} \mathbf{w_{T-1}^{T}} \mathbf{x_{n(t)}} + \eta_{t}^{2} y_{n(t)}^{2} ||\mathbf{x_{n(t)}}||^{2} \\ &\leq ||\mathbf{w_{T-1}}||^{2} + \eta_{t}^{2} ||\mathbf{x_{n(t)}}||^{2} \\ &\leq ||\mathbf{w_{T-1}}||^{2} + \max_{n} \eta_{t}^{2} ||\mathbf{x_{n(t)}}||^{2} \\ &\leq ||\mathbf{w_{T-2}}||^{2} + 2\max_{n} \eta_{t}^{2} ||\mathbf{x_{n(t)}}||^{2} \\ &\dots \end{aligned}$$

$$\leq ||\mathbf{w_0}||^2 + T \max_{n} |\eta_t^2||\mathbf{x_{n(t)}}||^2$$

$$\stackrel{\text{in}}{\approx} \rho = \min_{\mathbf{n}} \frac{\eta_t y_{\mathbf{n}(t)} \mathbf{w}_{\mathbf{f}}^{\mathbf{T}} \mathbf{x}_{\mathbf{n}(t)}}{||\mathbf{w}_{\mathbf{f}}^T||} , R = \max_{\mathbf{n}} \eta_t^2 ||\mathbf{x}_{\mathbf{n}(t)}||^2$$

設
$$\rho = \min_{n} \frac{\eta_{t}y_{n(t)}\mathbf{w_{f}^{T}}\mathbf{x_{n(t)}}}{||\mathbf{w_{f}^{T}}||}$$
, $R = \max_{n} \eta_{t}^{2}||\mathbf{x_{n(t)}}||^{2}$
 : $\mathbf{w_{0}}$ 可以為 0
 : $\frac{\mathbf{w_{f}^{T}}\mathbf{w_{T}}}{||\mathbf{w_{T}}|| ||\mathbf{w_{f}}||} \geq \frac{T\rho}{\sqrt{T_{R}}} = \frac{\sqrt{T}\rho}{R} \Rightarrow T \leq \frac{R^{2}}{\rho^{2}} \Rightarrow$ 保證在有完美的線時停止。

第七題

答案:(E)

機器透過回饋會大概知道對於一個盤面怎麼樣的玩法是好/不好的,進而進行修正,所以是 reinforcement learning $^\circ$

第八題

答案:(B)

給予部分影片告訴機器人類會怎麼做,接下來給予其他未標記的影片給機器自己學習是 batch learning 和 semi-supervisied learning。影像需要透過機器轉換成對機器有用的資訊,所以影像是 raw feature。而每筆影像對應到的 y_n 是一個結構,所以是 structured learning。

第九題

答案:(E)

若取 $D=\{(1,0),(3,2),(0,2)\}$,綠色那條線為 g 則 $E_{in}=0$ 但 $E_{ots}(g)=1$;若取 $D=\{(3,2),(0,2),(2,3)\}$,紫色那條線為 g 則 $E_{in}=0$ 且 $E_{ots}(g)=0$ 。

第十題

答案:(B)

對的機率是 $1-\delta \Rightarrow$ 錯的機率是 $\delta \circ$ 而一個公正的硬幣每一面機率都應該是 $\frac{1}{2}$,但是題目偏差了 $\epsilon \circ$ 所以根據 Hoeffding Inequality

$$\delta = 2e^{-2\epsilon^2 N} \therefore N = \frac{1}{2\epsilon^2} ln \frac{2}{\delta}$$

第十一題

答案:(C)

若取到圖中紅色部分則 $E_{in}(h_2)=0$,紅色部分占全部 $\frac{1}{2}$,取 5 次則機率 為 $(\frac{1}{2})^5=\frac{1}{32}$ 。

第十二題

答案:(D)

根據下圖 (紫色: $h_2(x) \neq f(x)$ 、黃色: $h_1(x) \neq f(x)$ 、綠色: $h_1(x) = h_2(x) = f(x)$)可以發現並不存在 $h_1(x) \neq f(x)$ 且 $h_2(x) \neq f(x)$ 的狀況,因此若 $E_{in}(h_1)$ 要等於 $E_{in}(h_2)$ 且只取 5 個點,最多只會有三種情況: $E_{in}(h_1) = E_{in}(h_2) = 0, \frac{1}{5}, \frac{2}{5}$ 。

三種情況計算如下:

$$E_{in}(h_1) = E_{in}(h_2) = 0 \Rightarrow (\frac{3}{8})^5 \times \frac{5!}{5!} = \frac{243}{32768}$$
 (只取綠色區域)

 $E_{in}(h_1) = E_{in}(h_2) = \frac{1}{5} \Rightarrow (\frac{3}{8})^3 \times (\frac{1}{2})^1 \times (\frac{1}{8})^1 \times \frac{5!}{3!1!1!} = \frac{2160}{32768}$ (綠色區域取三個點、紫色和黃色區域各取一個點,這樣 $E_{in}(h_1)$ 和 $E_{in}(h_2)$ 就會各錯一個點)

 $E_{in}(h_1) = E_{in}(h_2) = \frac{2}{5} \Rightarrow (\frac{3}{8})^1 \times (\frac{1}{2})^2 \times (\frac{1}{8})^2 \times \frac{5!}{2!2!1!} = \frac{1440}{32768}$ (綠色區域取一個點、紫色和黃色區域各取兩個點,這樣 $E_{in}(h_1)$ 和 $E_{in}(h_2)$ 就會各錯兩個點)

全部加起來就會等於 3843 32768

第十三題

答案:(B)

對於 i=1,...,d,若 h_i 的 E_{in} 是 x, E_{out} 是 y,則 h_{i+d} 的 E_{in} 是 1-x, E_{out} 是 1-y。

x , E_{out} 是 1-y 。 若有一筆資料對於 h_i 來説是 $Bad\ Data$,表示 |x-y| 很大,對於 h_{i+d} 來 説也會是 $Bad\ Data$ ∴ $|E_{in}-E_{out}|=|(1-x)-(1-y)|=|y-x|=|x-y|$ 。 所以 C 可以取 d 就好。

第十四題

答案:(D)

可以得到5個綠3代表只能取BD,因此機率為 $\frac{2^5}{4^5}$ 。

- (A) 沒有這種情況,機率為 $\frac{0}{45}$
- (B) 只能取 C,機率為 $\frac{1^5}{4^5}$
- (C) 只能取 ABD,機率為 $\frac{3^5}{4^5}$
- (D) 只能取 AB,機率為 $\frac{2^5}{4^5}$ (E) 只能取 D,機率為 $\frac{1^5}{4^5}$ 故答案為(D)。

第十五題

答案:(C)

列舉對於每個數字要拿到5個綠色的情況。

5個綠1:無

5 個綠 2: ABD

5個綠3: BD

5個綠4: AB

5個綠5: D

5個綠 6: AC

+ ABD

$$A+B+C+D=4$$
 $AC+AB+AD+BD=4 \times (2^5-1-1)$ $ABD=\frac{3!}{2!}\frac{5!}{3!}+\frac{3!}{2!}\frac{5!}{2!2!}$ $(\because ABD$ 可以有 $(1,1,3)$ 和 $(1,2,2)$ 兩種取法)

:.取法總共有274種。