# REPORT FOR CONTINUOUS ASSESSMENT

## 1. LINEAR REGRESSION

## 1.1 BUSINESS UNDERSTANDING

The name of this dataset is "Facebook Metrics Data Set", downloaded from the UCI machine learning repository. (<a href="https://archive.ics.uci.edu/ml/datasets/Facebook+metrics#">https://archive.ics.uci.edu/ml/datasets/Facebook+metrics#</a>). This data set is related to posts published on the Facebook page of a renowned cosmetic brand in 2014. The value we are trying to predict from this data set is the "Lifetime Post Total Reach". This is basically just trying to learn how much attention this post can get.

## 1.2 DATA UNDERSTANDING AND PREPARATION

This data set contains 19 columns, 7 of which include features known post publication and 12 of which are for evaluating post impact. Each column has 501 rows. The total number of records are : 9515.

## **PREPARATION**

Not much preparation was done for the data as it was already well prepared from the source. However, some columns that could act as factors were removed. In total 3 columns were removed. They are: Paid, Type and Category columns. The correlation between the dependent variable and all the independent Variables were also checked and their results were noted down.

#### UNDERSTANDING

Using the "pairs" function, we were able to get a grasp of the type of relationship the independent variables had with each other and with the dependent variable.

#### **Scatter Plot**



## (Zoom in to see Clearly)

We then split the data set into two: training and test data sets. The train data set consisted of 80 percent of the main data set while the test dataset consisted of the remaining 20 percent.

#### 1.3 MODELLING

The first model was created using all the variables left in the data set. The model set the dependent variable and all the independent variable in a linear model. When the summary of the model was taken, the R and Adjusted R squared values were:

# Multiple R-squared: 0.963, Adjusted R-squared: 0.9617

These R squared values were pretty high but we want to optimize the model so we check the summary. After checking the summary, 5(Post.Weekday, Post.Hour, Total.Interaction, Post.consumers and Post.Consumptions) columns had no statistical significance to the dependent variable, Three of these variables were removed and a new model was created based on the remaining variables. When the summary of this new model was taken, the R and Adjusted R values were:

# Multiple R-squared: 0.9624, Adjusted R-squared: 0.9615

There was almost no deviation and smaller variables so this model was better, however after we removed all the variables that were not statistically significant, we still had the same R and Adjusted R squared values. Therefore the third model was the best. We also created a model containing only the most significant variables. This however had low R and Adjusted R squared values: # Multiple R-squared: 0.5687, Adjusted R-squared: 0.5654

#### 1.4 EVALUATION

In conclusion, the model 3 is better than the other models. This is because it has higher R and Adjusted R squared values thereby making it better in predicting the "Lifetime Post Total Reach". The "predict" function was also used on this model. These are the results:

Actual values:

| (a□)   Ø   ∀ Filter |                  |            |                           |           |                           |  |  |  |
|---------------------|------------------|------------|---------------------------|-----------|---------------------------|--|--|--|
| ^                   | Page.total.likes | Post.Month | Post.Weekday <sup>‡</sup> | Post.Hour | Lifetime.Post.Total.Reach |  |  |  |
| 6                   | 139441           | 12         | 1                         | 9         | 10472                     |  |  |  |
| 14                  | 139441           | 12         | 5                         | 3         | 2549                      |  |  |  |
| 27                  | 138458           | 12         | 5                         | 11        | 19552                     |  |  |  |
| 35                  | 138895           | 12         | 2                         | 3         | 3766                      |  |  |  |
| 37                  | 138895           | 12         | 1                         | 3         | 2690                      |  |  |  |
| 43                  | 138353           | 12         | 5                         | 10        | 7268                      |  |  |  |
| 53                  | 138329           | 11         | 7                         | 9         | 4894                      |  |  |  |
| 54                  | 138329           | 11         | 7                         | 3         | 2935                      |  |  |  |
| 58                  | 138329           | 11         | 5                         | 3         | 2545                      |  |  |  |
| 59                  | 138329           | 11         | 4                         | 10        | 2257                      |  |  |  |
| 62                  | 138185           | 11         | 3                         | 2         | 50912                     |  |  |  |
| 63                  | 138185           | 11         | 2                         | 10        | 28752                     |  |  |  |
| 64                  | 138185           | 11         | 2                         | 3         | 27216                     |  |  |  |
| 66                  | 138185           | 11         | 1                         | 3         | 3416                      |  |  |  |
| 74                  | 137893           | 11         | 4                         | 2         | 11444                     |  |  |  |
| 78                  | 137177           | 11         | 1                         | 10        | 22984                     |  |  |  |
| 81                  | 137177           | 11         | 7                         | 3         | 8728                      |  |  |  |
| 91                  | 137059           | 11         | 2                         | 3         | 24720                     |  |  |  |
| 102                 | 137020           | 10         | 4                         | 3         | 68896                     |  |  |  |
| 109                 | 136736           | 10         | 7                         | 9         | 2426                      |  |  |  |
| 116                 | 136642           | 10         | 7                         | 12        | 813                       |  |  |  |
| 119                 | 136642           | 10         | 7                         | 10        | 834                       |  |  |  |
| 125                 | 136393           | 10         | 7                         | 6         | 677                       |  |  |  |

The program did say prediction from a rank deficient fit may be misleading though.

We can see from the picture taken that the values predicted are somewhat close to the actual values and are not far off from it.

#### Prediction of model on test data set



## 2. POLYNOMIAL REGRESSION

## 2.1 BUSINESS UNDERSTANDING

The name of this dataset is "Facebook Metrics Data Set", downloaded from the UCI machine learning repository. (<a href="https://archive.ics.uci.edu/ml/datasets/Facebook+metrics#">https://archive.ics.uci.edu/ml/datasets/Facebook+metrics#</a>). This data set is related to posts published on the Facebook page of a renowned cosmetic brand in 2014. The value we are trying to predict from this data set is the "Lifetime Post Total Reach". This is basically just trying to learn how much attention this post can get.

# 2.2 DATA UNDERSTANDING AND PREPARATION

Since Linear Regression and Polynomial Regression were carried out in the same R file and also were performed on the same data set, the training and testing split sample still

existed and all data preparation was intact/ still in place. The pairs function was then used on the main data set to ascertain which variables had possible polynomial relationship with the dependent variable. Below is a review of the scatter plot once again.

#### **Scatter Plot**



(Zoom in to see Clearly)

#### 2.3 MODELLING

The models were created from the train data set. This is because we wanted to use to predict function to check if the model works in the end. Based on the scatter plot we took 9 variables(Page.total.likes , Post.Hour ,Lifetime.Post.Total.Impressions , Lifetime.Engaged.Users , Lifetime.Post.Consumers , Lifetime.Post.Consumptions , Lifetime.Post.reach.by.people.who.like.your.Page , Lifetime.People.who.have.liked.your.Page.and.engaged.with.your.post and like) to use for our polynomial model. After creating the model using the poly function we set the degree to 2. The summary of the model gave the following R and Adjusted R squared values : # Multiple R-squared: 0.9632, Adjusted R-squared: 0.9577 . This Value was pretty high, however we went further to see the limits of the model. In the second model, we changed the degree to 3. This gave R and Adjusted R squared values of : # Multiple R-squared: 0.9998, Adjusted R-squared: 0.9996.

Following this we checked for R and Adjusted R squared values after changing the degree to 4. Here we got: Multiple R-squared: 1, Adjusted R-squared: 1.

#### 2.4 EVALUATION

In conclusion, the third model with degree 4 is in theory a perfect model because it has R and Adjusted R squared values of 1. However, this is suspicious and overfitting may have occurred somewhere. The predict function was also used on this model to predict the test data set and the values predicted were a mess as shown by the second diagram below.

However, when the model was created from the whole dataset, it predicted the test data perfectly(but the full data contains the test data) which nullifies its prediction

# Predicted (model based on full data set, degree=4)

| > predict(prmodel3,test) |             |             |            |            |             |             |              |  |
|--------------------------|-------------|-------------|------------|------------|-------------|-------------|--------------|--|
| 6                        | 14          | 27          | 35         | 37         | 43          | 53          | 54           |  |
| 10858.8416               | 3301.5682   | -8858.2675  | 3703.5249  | 2581.5467  | -94584.4908 | 4589.3658   | 2009.9785    |  |
| 58                       | 59          | 62          | 63         | 64         | 66          | 74          | 78           |  |
| 2704.0345                | 2193.0671   | 24548.9344  | 32992.0596 | 28270.9881 | 2411.4661   | 9069.4743   | 19673.3755   |  |
| 81                       | 91          | 102         | 109        | 116        | 119         | 125         | 127          |  |
| 12199.3335               | 19819.9164  | 142221.8397 | 2354.1879  | 487.9591   | 770.8826    | 898.9891    | 3480.0512    |  |
| 128                      | 134         |             |            |            |             |             |              |  |
| 744.3536                 | 883.0583    | 1318.1909   | 8226.8797  | 3357.4386  | 5912.4850   | 10381.4698  | 1312.7995    |  |
| 168                      | 178         | 186         | 198        | 199        | 204         | 205         | 208          |  |
| 3491.1179                | 6428.8790   | 2380.4212   | 2003.2324  | 2194.6135  | 268404.2828 | 2906.5329   | 2499.0385    |  |
| 209                      | 221         | 225         | 229        | 231        | 232         | 236         | 239          |  |
| 1984.6380                |             | 4183.9612   |            |            | 2621.7856   |             |              |  |
| 242                      | 255         | 256         | 257        | 261        | 268         | 276         | 279          |  |
| 4968.0758                | 47982.3420  | 4102.5581   | 30766.8405 | 5129.7254  | 11765.3540  | 11289.2242  | 1013355.1796 |  |
|                          | 290         |             |            |            |             |             |              |  |
|                          |             | 2553.3047   |            |            |             |             | 6199.1892    |  |
| 318                      | 321         |             |            |            |             |             | 358          |  |
|                          |             | 3923.7490   |            |            |             |             |              |  |
| 362                      | 365         | 369         |            |            | 380         |             |              |  |
| 2643.6276                | -11357.7580 |             |            |            | 412779.0874 |             |              |  |
| 393                      | 402         | 414         | 417        |            |             |             | 435          |  |
| 20954.1203               |             | 2109.6509   |            |            |             |             |              |  |
|                          |             | 457         |            |            | 482         |             |              |  |
|                          |             | 1666.7033   |            |            | 4760.6856   | 199338.9862 | 7204.0508    |  |
| 487                      | 490         |             |            |            |             |             |              |  |
| 4178.5798                | 5422.8732   | 76915.9767  | 9653.3961  | 317.1839   |             |             |              |  |

# Predicted (model based on train data set, degree =4)

| > predict(prmo       | odel3.1, test)      |                      |               |                      |              |               |              |
|----------------------|---------------------|----------------------|---------------|----------------------|--------------|---------------|--------------|
|                      |                     |                      | 35            | 37                   | 43           | 53            | 54           |
| -4.983598e+03        | 2.798243e+03        | 2.475529e+06         | 3.533183e+03  | 3.121087e+03         | 4.797744e+07 | 9.454610e+03  | 2.729317e+03 |
| 58                   | 59                  | 62                   | 63            | 64                   | 66           | 74            | 78           |
| 3.088661e+03         | 2.064320e+03        | 4.617786e+05         |               |                      |              | -2.349817e+05 | 2.546646e+05 |
| 81                   | 91                  | 102                  |               | 116                  |              |               | 127          |
|                      | 6.397281e+03        |                      |               |                      |              |               |              |
| 128                  |                     |                      |               | 150                  |              |               | 165          |
|                      | 8.405210e+02        |                      |               |                      |              |               |              |
| 168                  |                     |                      | 198           |                      |              | 205           |              |
|                      | 5.003332e+03        |                      |               |                      |              |               |              |
| 209                  | 221                 | 225                  |               | 231                  |              |               |              |
|                      | 2.225004e+03        |                      |               |                      |              |               |              |
| 242                  | 255                 | 256                  |               | 261                  |              |               |              |
|                      | 2.203082e+06        |                      |               |                      |              |               |              |
| 283                  |                     |                      |               | 304                  |              |               |              |
|                      | 3.319731e+02        |                      |               |                      |              |               |              |
| 318                  | 321                 | 330                  |               |                      |              |               |              |
|                      | -2.138488e+04       |                      |               |                      |              |               |              |
| 362                  | 365                 | 369                  |               |                      |              |               |              |
|                      | -4.787923e+06       |                      |               |                      |              |               |              |
| 393                  | 402<br>1.447438e+06 |                      |               | 426                  |              |               | 435          |
| -4.962/90e+03        |                     |                      |               | -7.265260e+04<br>471 |              |               |              |
|                      | 1.201862e+04        |                      |               |                      |              |               |              |
| -9.730108e+06<br>487 | 1.201862e+04<br>490 | -3.1035/1e+03<br>493 |               |                      | 0.432/290+04 | -4.2438210+00 | /.2/4324e+U2 |
|                      | -1.319906e+04       |                      |               |                      |              |               |              |
| 3. 3919016+02        | -1.3199000+04       | -3.2213306+03        | -0.2/90040+03 | 4.2033310+03         |              |               |              |

# Predicted (model based on train data set, degree =3)

|               |              |              | _         | _          |             |             |              |
|---------------|--------------|--------------|-----------|------------|-------------|-------------|--------------|
| > predict(prm | odel2, test) | # reasonable | values    |            |             |             |              |
|               |              |              | 35        |            |             |             |              |
|               |              |              | 3703.5249 |            |             |             | 2009.9785    |
| 58            |              | 62           |           | 64         |             |             |              |
|               |              | 24548.9344   |           | 28270.9881 |             |             |              |
| 81            | 91           |              |           | 116        |             |             |              |
|               |              |              | 2354.1879 |            |             |             |              |
| 128           | 134          | 138          | 149       | 150        | 155         | 164         | 165          |
| 744.3536      |              |              | 8226.8797 |            |             |             | 1312.7995    |
|               |              |              | 198       |            |             |             |              |
| 3491.1179     | 6428.8790    | 2380.4212    | 2003.2324 | 2194.6135  | 268404.2828 | 2906.5329   | 2499.0385    |
| 209           | 221          | 225          |           | 231        |             |             | 239          |
| 1984.6380     | 2381.8854    | 4183.9612    |           | 5036.2150  |             |             |              |
| 242           | 255          | 256          | 257       | 261        | 268         | 276         | 279          |
| 4968.0758     | 47982.3420   |              |           | 5129.7254  |             | 11289.2242  | 1013355.1796 |
| 283           | 290          | 298          | 301       | 304        | 305         | 306         | 307          |
| -3576.6659    | 1458.0060    | 2553.3047    | 6534.4123 | 9097.6469  | 60437.4890  | 3285.0176   | 6199.1892    |
| 318           | 321          | 330          | 338       | 348        | 350         | 356         | 358          |
| 3487.9279     | 11822.9460   | 3923.7490    | 2237.7137 | 2969.1317  | 1959.4013   | 6682.0486   | 2910.2072    |
| 362           | 365          | 369          | 371       | 378        | 380         | 388         | 391          |
| 2643.6276     | -11357.7580  | 14415.9680   | 8443.7134 | 7238.6571  | 412779.0874 | 4419.9661   | 3866.7427    |
| 393           | 402          | 414          | 417       | 426        | 429         | 430         | 435          |
| 20954.1203    | 50021.8754   | 2109.6509    | 5348.2463 | 4252.8833  | -6910.3404  | 1773.5610   | -1250.0673   |
| 437           | 445          | 457          | 470       | 471        | 482         | 483         | 484          |
| 46817.9298    | 6137.1503    | 1666.7033    | 9380.9743 | 3837.4062  | 4760.6856   | 199338.9862 | 7204.0508    |
| 487           | 490          | 493          | 494       | 499        |             |             |              |
| 4178.5798     | 5422.8732    | 76915.9767   | 9653.3961 | 317.1839   |             |             |              |
| < 1           |              |              |           |            |             |             |              |

# **Actual values:**



Based on these figures, and previous analysis, the second model with degree 3 is the best model as it doesn't overfit like model 3.

## Prediction of model on test dataset

