Slides Semana 1

Probabilidade

Introdução

Diariamente, tomamos decisões com relação a eventos incertos:

Devo investir na bolsa?

Vale a pena fazer um plano odontológico?

Devo contratar um seguro para o meu carro?

Devo levar um guarda-chuva?

Devo me matricular numa disciplina eletiva com baixa taxa de aprovação?

Experimentos Aleatórios

Experimento: qualquer processo que produza uma observação ou resultado

Experimento Determinístico: é aquele que, dada uma ação controlada, sabemos exatamente qual será o resultado obtido

Exemplo: lançamento de um dado com todas as faces iguais a 6 Único resultado possível? 6

Experimento Aleatório: é aquele em que não se tem certeza sobre seus resultados, a priori. Mútiplos resultados podem ser obtidos a partir de uma única ação. Cada vez que se repete o experimento, o resultado pode ser diferente.

Exemplo: lançamento de um dado de seis faces Resultados possíveis: {1, 2, 3, 4, 5, 6}

Probabilidade

Probabilidade: medida de incerteza sobre certos eventos ou características de interesse.

Tais eventos, em geral, estão associados a experimentos aleatórios.

Aleatorização:

- · Jogar um dado.
- · Jogar uma moeda.
- · Girar uma roleta.

Ex: para aleatorizar dois tratamentos entre pacientes, pode-se lançar uma moeda. Se sair "cara" o paciente recebe a droga A, se sair "coroa", recebe a droga B.

Exemplo: Lançamento de dado

Você está jogando Ludo: um dado é usado para movimentar as peças.

Em certo ponto do jogo, durante a sua vez, o 6 sai 3 vezes seguidas e você vence o jogo!

Dentre os de **100 lançamentos** do dado durante a sua vez, seu oponente no jogo comenta que o **6 saiu 23 vezes**.

Seu oponente então reclama que o dado estava te favorecendo com tantos 6, portanto o dado não era "justo".

Exemplo: Lançamento de dado

Se o dado é "justo", quantos 6 você espera que ocorram em 100 lançamentos?

Se um dado "justo" é lançado diversas vezes, esperamos que o 6 ocorra 1/6 das vezes.

100 lançamentos: 100/6 pprox 17 vezes.

É muito improvável que o 6 saia 23 vezes em 100 lançamentos? Como verificar?

- Lance o dado 100 vezes.
- · Conte o número de 6 que aparecem.
- · Repita várias vezes esse processo.

Você obtém assim a distribuição de frequências do 6 em 100 lançamentos do dado.

Simulação 1: lançamento de um dado 100 vezes

	1	2	3	4	5	6
Freq	12	21	28	6	20	13

Simulação 2: lançamento de um dado 100 vezes

	1	2	3	4	5	6
Freq	16	19	13	16	14	22

Simulação 3: lançamento de um dado 100 vezes

	1	2	3	4	5	6
Freq	11	21	22	13	19	14

Simulação 3: lançamento de um dado 100 vezes

Show 10 ventries			Search:
Lançamento 🍦	Face 6 ocorre?	Soma Acumulada de 6 🔷	Proporção Acumulada de 6 🔷
1 nâ	ão	0	0
2 nā	ão	0	0
3 sii	m	1	0.33
4 nã	ão	1	0.25
5 nã	ão	1	0.2
6 sii	m	2	0.33
7 nã	ão	2	0.29
8 sii	m	3	0.38
9 nã	ão	3	0.33
10 nã	ão	3	0.3
Showing 1 to 10 of 100 entries		Previous 1 2	3 4 5 10 Next

Simulação 3: lançamento de um dado 100 vezes

Simulação 2: lançamento de um dado 100 vezes

Simulação 1: lançamento de um dado 100 vezes

Simulação: lançamento de um dado 100 vezes

A cada simulação (100 lançamentos e anotando o total de 6) obtivemos um resultado diferente: 13, 22 e 14.

Se repetirmos a simulação 1000 vezes, temos uma idéia da distribuição de frequências da proporção de 6 em 100 lançamentos.

Média: 0.167. Mediana: 0.17.

Simulação 4: lançamento de um dado 5000 vezes

Com poucos lançamentos, a proporção de 6 pode flutuar bastante, mas com o aumento do número de lançamentos, a proporção acumulada de 6 estabiliza em $1/6. \,$

Lei dos Grandes Números

O resultado da simulação é um caso particular da Lei dos Grandes Números, resultado provado em 1689 pelo matemático suíço Jacob Bernoulli.

Se um evento de probabilidade p é observado repetidamente em ocasiões independentes, a proporção da frequência observada deste evento em relação ao total número de repetições converge em direção a p à medida que o número de repetições se torna arbitrariamente grande.

Probabilidade

Em um fenômeno aleatório, a **probabilidade** de um resultado acontecer é a proporção de vezes que o resultado ocorreu quando consideramos muitas observações do fenômeno em questão.

- · Quando dizemos que a probabilidade do 6 sair no dado é 1/6, estamos dizendo que a proporção esperada de 6 em **vários lançamentos** (observações) do dado é 1/6.
- Quando a previsão do tempo diz que a chance de chuva para hoje é 70%, quer dizer que para **vários dias** observados no passado com condições atmosféricas equivalentes ao dia de hoje a proporção observada de dias de chuva foi 0.7.

Como calcular probabilidades?

Em um fenômeno aleatório, a **probabilidade** de um resultado acontecer é a proporção de vezes que o resultado ocorreu quando consideramos muitas observações do fenômeno em questão.

- · Esta definição nem sempre é útil.
- Quando a NASA lançou o primeiro ônibus espacial, como os cientistas sabiam a probabilidade de sucesso? Não havia nenhum dado sobre lançamentos no passado para que se pudesse calcular a probabilidade de sucesso.

Ônibus espacial Columbia

Probabilidade

Algumas vezes, é possível fazer alguma suposição sobre o fenômeno aleatório considerado.

- · Ao lançar um dado, podemos assumir que cada valor de $1\,a\,6$ tenha a mesma chance de ocorrer: 1/6.
- \cdot Ao lançar uma moeda, podemos assumir que ela pode cair de um lado ou de outro com a mesma chance: 1/2.

Outras vezes, podemos utilizar a distribuição de frequências observadas como uma estimativa das probabilidades.

Exemplo: dado

Estudar as probabilidades de ocorrência das faces de um dado.

Procedimento Empírico: lançar o dado um certo número n de vezes e contar o número de vezes, n_i , que a face i=1,2,3,4,5,6 ocorre.

Distribuição empírica das probabilidades:

$$f_i = rac{n_i}{n}.$$

Para diferentes vezes que esse experimento for realizado, a distribuição de frequência terá resultados diferentes (exemplo anterior, lançamento de 100 dados, várias vezes).

No entanto, espera-se que esses resultados, apesar de distintos, sejam semelhantes.

Distribuição de Probabilidade

Procedimento Teórico: construir a distribuição de frequências populacionais (probabilidades) através de suposições teóricas.

Suposições:

- só podem ocorrer 6 faces: $\{1, 2, 3, 4, 5, 6\}$;
- · o dado é perfeitamente equilibrado;
- · então, cada face deve ocorrer o mesmo número de vezes, ou seja $f_i=rac{1}{6}.$

Face	1	2	3	4	5	6	Total
Freq. Teórica	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	1

Espaço Amostral

Para quantificar incerteza em fenômenos aleatórios usando probabilidades, precisamos primeiro especificar o conjunto de todos os possíveis resultados do fenômeno em questão.

- Espaço Amostral: todos os resultados possíveis do experimento (aleatório), denotado por $\Omega = \{\omega_1, \omega_2, \dots\}$.
- · Probabilidade: $P(\omega)$, para cada "ponto amostral" ω .

Exemplos de Espaço amostral

1. Se o fenômeno considerado é observar o sexo de uma criança ao nascer:

1. Se o experimento consiste em observar os resultados ao lançar uma moeda duas vezes:

$$\Omega=\{\omega_1,\omega_2,\omega_3,\omega_4\}$$
 $\omega_1=(C,C);\omega_2=(C,X);\omega_3=(X,C);\omega_4=(X,X)$ $C=cara$ e $X=coroa$

Exemplo: dois dados

Experimento é lançar dois dados (1 vermelho e 1 verde) e anotar os valores:

$$\Omega = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), \\ (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), \\ (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), \\ (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), \\ (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), \\ (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)\}$$

Evento

Evento é um subconjunto do espaço amostral. Denotamos eventos pelas letras A, B, C, etc...

Dizemos que o evento A ocorreu sempre que o resultado observado pertencer ao subconjunto de elementos do evento A.

Experimento é lançar dois dados (1 vermelho e 1 verde) e anotar os valores:

$$\Omega = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)\}$$

Evento: soma dos valores é igual a 3.

$$A = \{(1,2),(2,1)\}$$

Probabilidade de um evento

Cada elemento do espaço amostral tem uma probabilidade de ocorrer.

Portanto, cada evento (subconjunto do espaço amostral) também tem uma probabilidade.

Duas regras:

- · A probabilidade de cada elemento do espaço amostral deve estar entre 0 e 1.
- A soma das probabilidades de cada elemento do espaço amostral deve ser igual a 1.

Exemplo: lançar uma moeda duas vezes

$$C$$
 = cara

$$X = coroa$$

$$\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\} = \{(C, C), (C, X), (X, C), (X, X)\}$$

Então
$$\omega_1=(C,C)$$
; $\omega_2=(C,X)$; $\omega_3=(X,C)$ e $\omega_4=(X,X)$.

· Considerando que a moeda é honesta:

$$P(\omega_i) = rac{1}{4}\,, \quad orall i = 1,2,3,4\,.$$

· Seja o evento $A=\{\omega_1,\omega_4\}=$ obter duas faces iguais:

$$P(A) = P(\{\omega_1, \omega_4\}) = P(\omega_1) + P(\omega_4) = rac{1}{4} + rac{1}{4} = rac{2}{4} = rac{1}{2}$$

Equiprobabilidade

$$\Omega = \{\omega_1, \ldots, \omega_n\}$$
 finito.

Equiprobabilidade: Todos os elementos do espaço amostral tem a mesma probabilidade de acontecer, ou seja,

$$P(\omega_i) = rac{1}{n}, \qquad orall i = 1, 2, \dots, n$$

Seja $A=\{\omega_{A_1},\dots,\omega_{A_m}\}$ um evento em Ω com $m\leq n$ pontos amostrais, então

$$P(A) = \frac{m}{n}$$

Probabilidade de um evento

A probabilidade de um evento A, denotada por P(A), é obtida somando as probabilidades de cada elemento do espaço amostral que pertence ao evento A.

Quando cada elemento do espaço amostral tem a mesma probabilidade de ocorrer:

$$P(A) = \frac{\text{número de elementos no evento } A}{\text{número de elementos do espaço amostral}}$$

Exemplos

Exemplo 1: moeda honesta é lançada uma vez $\Omega = \{C, X\}$

$$P(C) = P(X) = \frac{1}{2}$$

$$A = \{C\}$$
 \rightarrow $P(A) = \frac{1}{2}$

Exemplo 2: moeda honesta é lançada duas vezes

$$\Omega = \{(C, C), (X, C), (C, X), (X, X)\}$$

$$P(C,C) = P(X,C) = P(C,X) = P(X,X) = \frac{1}{4}$$

$$A = \{(X, X), (C, C)\}$$
 \rightarrow $P(A) = \frac{2}{4} = \frac{1}{2}$

Exemplo: dado honesto é lançado uma vez

$$\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6\}$$

em que $\omega_i=$ face $i, \forall i=1,2,3,4,5,6.$

Como o dado é honesto, $P(\omega_i)=rac{1}{6}$.

Seja o evento $A=\{ ext{a face \'e um n\'umero par}\}=\{\omega_2,\omega_4,\omega_6\}=\{2,4,6\}$

$$P(A) = P(\{2\}, \{4\}, \{6\}) = P(2) + P(4) + P(6) = \frac{3}{6} = \frac{1}{2}$$

Propriedades: Modelo Teórico (Kolmogorov - 1956)

Em um experimento aleatório nem todos os subconjuntos do espaço amostral são eventos. Para tanto, exigimos que a classe de subconjuntos para os quais estará definida a ``chance" de ocorrência seja uma $\{\sigma$ -álgebra $\}$.

- $\{\sigma$ -álgebra: $\}$ Seja $\Omega \neq \emptyset$. Uma classe (família) de eventos \mathcal{F} é uma $\{\sigma$ -álgebra $\}$ sobre Ω , se e somente se, são satisfeitas as as seguintes propriedades:
- 1. Se $A \in \mathcal{F}$, então $A^c \in \mathcal{F}$,
- 2. $\Omega \in \mathcal{F}$,
- 3. Se $A_1,A_2,\ldots,\in\mathcal{F},$ então $\bigcup_{i=1}^\infty A_i\in\mathcal{F}.$

Para (Ω,P) em que, Ω é o espaço amostral, P uma medida probabilidade em Ω,A um evento em Ω e \varnothing é um conjunto vazio ou evento impossível, temos:

Propriedades:

- $\cdot \ \ P(A) \geq 0$, para todo $A \in \mathcal{F},$
- $P(\Omega) = 1$, (medida finita).
- · (σ -aditividade) Se A_1,A_2,\ldots é uma sequência de eventos de ${\cal F}$ mutuamente excludentes, i.e., $A_i\cap A_j=\emptyset$ para todo $i\neq j,$ então

$$P\left(igcup_{i=1}^{\infty}A_i
ight)=\sum_{i=1}^{\infty}P(A_i)$$

Exemplo: Alunos de um Instituto

Curso	Masculino (M)	Feminino (F)	Total
Matemática Pura (MP)	70	40	110
Matemática Aplicada (A)	15	15	30
Estatística (E)	10	20	30
Computação (C)	20	10	30
Total	115	85	200

Escolhendo um aluno ao acaso:

$$P(MP) = \frac{110}{200} = 0.550$$
 $P(E) = \frac{30}{200} = 0.150$ $P(M) = \frac{115}{200} = 0.575$ $P(F) = \frac{85}{200} = 0.425$

Exemplo: Alunos de um Instituto

Curso	Masculino (M)	Feminino (F)	Total
Matemática Pura (MP)	70	40	110
Matemática Aplicada (A)	15	15	30
Estatística (E)	10	20	30
Computação (C)	20	10	30
Total	115	85	200

Seja o evento I: escolher ao acaso um aluno e ele ser estudante de estatística e do sexo masculino.

 $I=E\cap M$, o evento I é a interseção dos eventos E e M.

$$P(E \cap M) = \frac{10}{200} = 0.05$$

Interseção de Eventos

A interseção de A e B consiste de elementos do espaço amostral que pertencem tanto ao evento A quanto ao evento B.

Denotamos $A \cap B$:

União de Eventos

A união de A e B consiste de elementos do espaço amostral que pertencem ao evento A ou ao evento B.

Denotamos $A \cup B$:

Na figura da direita, A e B são denominados **disjuntos**, pois $A \cap B = \varnothing$.

Probabilidade de União de Eventos

 $A \cup B$ contém elementos dos eventos A ou B.

Para calcular a probabilidade de $A\cup B$, podemos então somar a probabilidade de A ocorrer e a probabilidade de B ocorrer.

Problema: ao fazer isso, estamos somando a probabilidade de $A\cap B$ duas vezes.

Forma correta:
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
.

Exemplo: Alunos de um Instituto

Curso	Masculino (M)	Feminino (F)	Total
Matemática Pura (MP)	70	40	110
Matemática Aplicada (A)	15	15	30
Estatística (E)	10	20	30
Computação (C)	20	10	30
Total	115	85	200

Seja U o evento: escolher um aluno ao acaso e ele ser estudante de estatística ou do sexo masculino.

 $U=E\cup M$, o evento U é uma união dos eventos E e M.

$$P(E \cup M) = P(E) + P(M) - P(E \cap M)$$

$$P(E) = \frac{30}{200} = 0.150 \quad P(M) = \frac{115}{200} = 0.575 \qquad P(E \cap M) = \frac{10}{200} = 0.050$$

$$P(E \cup M) = 0.150 + 0.575 - 0.050 = 0.675$$

Exemplo: Alunos de um Instituto

Curso	Masculino (M)	Feminino (F)	Total
Matemática Pura (MP)	70	40	110
Matemática Aplicada (A)	15	15	30
Estatística (E)	10	20	30
Computação (C)	20	10	30
Total	115	85	200

No caso de eventos mutuamente exclusivos ou disjuntos, a interseção é vazia (\varnothing).

Probabilidade de escolher um aluno ao acaso e ele ser estudante da matemática pura e da computação:

$$P(MP \cap C) = P(\varnothing) = 0$$

Probabilidade de escolher um aluno ao acaso e ele ser estudante da matemática pura **ou** da computação:

$$P(MP \cup C) = P(MP) + P(C) - P(MP \cap C) = P(MP) + P(C) = \frac{140}{200} = 0.700$$

80.2 milhões de declarações (2002).

(para simplificar, uma frequência de 90 representa 90.000).

Renda	Caiu na malha fina	Não caiu na malha fina	Total
D - abaixo de 25000	90	14010	14100
C - 25000 a 49999	71	30629	30700
B - 50000 a 99999	69	24631	24700
A - acima de 100000	80	10620	10700
Total	310	79890	80200

Qual o espaço amostral?

$$\Omega = \{(A, sim), (B, sim), (C, sim), (D, sim), (break (A, não), (B, não), (C, não), (D, não)\}$$

É um fenômeno equiprovável?

Renda	Caiu na malha fina	Não caiu na malha fina	Total
D - abaixo de 25000	90	14010	14100
C - 25000 a 49999	71	30629	30700
B - 50000 a 99999	69	24631	24700
A - acima de 100000	80	10620	10700
Total	310	79890	80200

Se escolhermos uma declaração de 2002 aleatoriamente, qual a probabilidade dela ter caído na malha fina (evento \mathbb{Z})?

$$Z = \{(A, sim), (B, sim), (C, sim), (D, sim)\} \implies P(Z) = \frac{310}{80200} = 0.004$$

Qual a probabilidade dela ter renda acima de 100.000 (evento Y)?

$$Y = \{(A, sim), (A, não)\} \implies P(Y) = \frac{10700}{80200} = 0.133$$

Renda	Caiu na malha fina	Não caiu na malha fina	Total
D - abaixo de 25000	90	14010	14100
C - 25000 a 49999	71	30629	30700
B - 50000 a 99999	69	24631	24700
A - acima de 100000	80	10620	10700
Total	310	79890	80200

Se escolhermos uma declaração de 2002 aleatoriamente, qual a probabilidade dela ter renda acima de 100.000 e ter caído na malha fina (evento W)?

$$W=Z\cap Y=\{(A,\sin)\}$$

$$P(W) = P(Z \cap Y) = \frac{80}{80200} = 0.001$$

Evento complementar

No caso geral, sejam A e B subconjuntos de Ω :

- $\cdot \ A \cap B = ext{evento em que } A ext{ e } B ext{ ocorrem simultaneamente.}$
- $\cdot \ A \cup B = \text{evento em que } A \text{ ou } B \text{ ocorrem.}$
- $P(A \cup B) = P(A) + P(B) P(A \cap B).$
- · se $\{A\cap B\}=arnothing$, então $P(A\cup B)=P(A)+P(B)$.

Dois eventos A e B são **complementares** se $A\cap B=\varnothing$ e $A\cup B=\Omega$.

- $\cdot \,\,$ como P(A)+P(B)=1, então P(B)=1-P(A)
- $\cdot \; B$ é denotado por $B=A^C$ (indicado na cor laranja).

Exemplo: Cartões de Crédito

Um estabelecimento aceita Visa ou Mastercard. Dentre os clientes, 22% possuem Mastercard, 58% possuem Visa e 14% possuem os dois.

Qual a probabilidade de que um cliente tenha pelo menos um destes cartões?

Espaço amostral: $\Omega = \{V, M, VM, N\}$, onde V="tem só Visa", M="tem só Matercard", VM="tem Visa e Mastercard", N="não tem Visa nem Mastercard".

Evento A: cliente possui Mastercard. $A=\{M,VM\}$

Evento B: cliente possui Visa. $B = \{V, VM\}$

$$P(A) = 0.22$$

 $P(B) = 0.58$

$$P(A \cap B) = 0.14$$

Exemplo: Cartões de Crédito

 $A \cup B$: cliente possui pelo menos um dos cartões. $A \cup B = \{V, M, VM\}$.

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.22 + 0.58 - 0.14 = 0.66.$$

Evento C: cliente não possui nenhum dos cartões. $C=\{N\}$

C é complementar de $A \cup B$, pois:

$$C \cup (A \cup B) = \Omega \in C \cap (A \cup B) = \varnothing$$
.

Então
$$P(C)=1-P(A\cup B)=0.34.$$

Exemplo: Cinto de segurança e acidentes

Usava cinto	Sobreviveu (S)	Não sobreviveu ($ar{S}$)	Total
$\operatorname{Sim}(C)$	414368	510	414878
Não ($ar{C}$)	162527	1601	164128
Total	576895	2111	579006

$$\Omega = \{(C, S), (C, \bar{S}), (\bar{C}, S), (\bar{C}, \bar{S})\}$$

Se selecionarmos um registro ao acaso, qual a probabilidade dele conter uma morte registrada?

$$P(\bar{S}) = \frac{2111}{579006} = 0.0034$$

Exemplo: Cinto de segurança e acidentes

Usava cinto	Sobreviveu (S)	Não sobreviveu ($ar{S}$)	Total
$\operatorname{Sim}(C)$	414368	510	414878
Não ($ar{C}$)	162527	1601	164128
Total	576895	2111	579006

$$\Omega = \{(C, S), (C, \bar{S}), (\bar{C}, S), (\bar{C}, \bar{S})\}$$

Se selecionarmos um registro ao acaso, qual a probabilidade de constar que o cinto não foi usado?

$$P(\bar{C}) = rac{164128}{579006} = 0.283$$

Probabilidade Condicional e Independência

Probabilidade Condicional

Probabilidade Condicional: encontrar a probabilidade de um evento quando você tem alguma outra informação sobre o evento.

- · Considere o lançamento de dois dados. Espaço amostral na figura abaixo.
- Considere que cada resultado tenha a mesma chance de ocorrer: 1/36.
- Suponha que você lance primeiro um dos dados e o resultado é 4.
- Qual a probabilidade de que a soma dos resultados dos dois dados seja 10?

Probabilidade Condicional

Como saiu 4 no primeiro dado, há 6 resultados possíveis:

$$\Omega_1 = \{(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)\}$$

Cada resultado tem a mesma probabilidade de ocorrer: 1/6.

Dado que o primeiro dado teve resultado 4, então a probabilidade de cada evento em Ω_1 tem igual chance de ocorrer.

Considere os eventos:

B = {a soma dos dados é igual a 10}

 $A = \{\text{no primeiro dado saiu 4}\}$

Definimos a **probabilidade condicional de** B **dado** A por:

$$P(B \mid A)$$

Probabilidade Condicional

Suponha que o resultado do experimento esteja contido no evento A.

Para que o resultado esteja também no evento B, ele precisa necessariamente estar tanto em A quanto em B, ou seja, precisa estar em $A\cap B$.

Mas, como sabíamos desde o início que o resultado estava em A, nosso espaço amostral agora é reduzido para somente os elementos de A e então:

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

Exemplo: Lançamento de dois dados

Voltando ao exemplo dos dois dados.

• Seja o evento A = {no primeiro dado saiu 4}.

$$A = \{(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)\}$$

• Seja o evento B = {a soma dos dados é igual a 10}

$$B = \{(4,6), (5,5), (6,4)\}$$

• Então $A\cap B=\{(4,6)\}.$ Portanto:

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{1/36}{6/36} = \frac{1}{6}$$

80.2 milhões de declarações.

Renda x Caiu na Malha Fina?

	Sim	Não	Total
D - abaixo de 25.000	90	14010	14100
C - 25.000 a 49.999	71	30629	30700
B - 50.000 a 99.999	69	24631	24700
A - acima de 100.000	80	10620	10700
Total	310	79890	80200

Para simplificar, uma frequência de 90 representa 90.000.

Espaço amostral:

$$\Omega = \{(A,sim),(A,n\~ao),(B,sim),(B,n\~ao),(C,sim),(C,n\~ao),(D,sim),(D,n\~ao)\}$$

Qual a probabilidade de cair na malha fina se a renda for acima de 100.000?

Considere os eventos:

- \mathcal{A} = {caiu na malha fina} ={(A, sim), (B, sim), (C, sim), (D, sim)}
- $\mathcal{B} = \{\text{renda acima de 100.000}\} = \{(A, sim), (A, não)\}$

$$P(\mathcal{A} \mid \mathcal{B}) = \frac{P(\mathcal{A} \cap \mathcal{B})}{P(\mathcal{B})} = \frac{P(\{(A, sim)\})}{P(\{(A, sim), (A, não)\})}$$
$$= \frac{80/80200}{10700/80200} = 0.007$$

Probabilidade condicional por faixa de renda em 2002

Renda X Caiu na Malha Fina?	Sim	Não	Total
D - abaixo de 25.000	90/14100	14010/14100	14100/14100
C - 25.000 a 49.999	71/30700	30629/30700	30700/30700
B - 50.000 a 99.999	69/24700	24631/24700	24700/24700
A - acima de 100.000	80/10700	10620/10700	10700/10700

Probabilidade condicional por faixa de renda em 2002

Renda X Caiu na Malha Fina?	Sim	Não	Total
D - abaixo de 25.000	0.006	0.994	1
C - 25.000 a 49.999	0.002	0.998	1
B - 50.000 a 99.999	0.003	0.997	1
A - acima de 100.000	0.007	0.993	1

Independência

Vimos que:

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

Regra da multiplicação:

$$P(A \cap B) = P(A)P(B \mid A)$$

Quando $P(B \mid A) = P(B)$ (informação sobre A não altera a probabilidade do evento B), dizemos que B e A são **independentes**. Neste caso:

$$P(A \cap B) = P(A)P(B)$$

Considere o lançamento de dois dados "justos" (36 resultados possíveis têm a mesma probabilidade de ocorrer).

Considere os eventos:

- A: primeiro dado tem resultado 3.
- \cdot B: soma dos dados é igual a 8.
- \cdot C: soma dos dados é igual a 7.

Perguntas:

- · Eventos A e B são independentes?
- · E os eventos A e C são independentes?

Eventos A e B são independentes?

$$P(A \cap B) = P(\{(3,5)\}) = \frac{1}{36}$$

$$P(A) = P(\{(3,1), (3,2), (3,3), (3,4), (3,5), (3,6)\}) = \frac{6}{36}$$

$$P(B) = P(\{(2,6), (3,5), (4,4), (5,3), (6,2)\}) = \frac{5}{36}$$

$$P(A \cap B) = \frac{1}{36} \neq P(A) \times P(B) = \frac{6}{36} \times \frac{5}{36}$$

Portanto, A e B não são eventos independentes.

E os eventos A e C são independentes?

$$P(A \cap C) = P(\{(3,4)\}) = \frac{1}{36}$$

$$P(A) = P(\{(3,1), (3,2), (3,3), (3,4), (3,5), (3,6)\}) = \frac{6}{36}$$

$$P(C) = P(\{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}) = \frac{6}{36}$$

$$P(A \cap C) = \frac{1}{36} = P(A) \times P(C) = \frac{6}{36} \times \frac{6}{36}$$

Portanto, A e C são eventos independentes.

Suponha que A e B sejam dois eventos disjuntos.

Suponha que
$$P(A)>0$$
 e $P(B)>0$.

A e B são independentes?

A e B são disjuntos, então $A\cap B=arnothing$ e $P(A\cap B)=0.$

$$P(A)>0$$
 e $P(B)>0$, portanto:

$$P(A \cap B) = 0 \neq P(A)P(B).$$

A e B não são independentes.

Além disso: $P(B \mid A) = \frac{P(A \cap B)}{P(A)} = 0$, ou seja, dado que A ocorre, B não ocorre.

Em uma família com duas crianças, considere os eventos:

- A={a primeira criança é uma menina}
- B={as duas crianças são meninas}.

Qual a
$$P(B \mid A)$$
?

$$\Omega = \{FF, MM, FM, MF\}$$

$$A = \{FF, FM\}$$
 $B = \{FF\}$ \Longrightarrow $B \cap A = B$

Portanto,

$$P(B \mid A) = \frac{P(B \cap A)}{P(A)} = \frac{P(\{FF\})}{P(\{FF, FM\})} = \frac{1/4}{1/2} = 1/2$$

Em uma família com duas crianças, considere os eventos:

- A={a primeira criança é uma menina}
- B={as duas crianças são meninas}.

A e B são eventos independentes?

$$\Omega = \{FF, MM, FM, MF\}$$
 $A = \{FF, FM\}$ $B = \{FF\}$ \Longrightarrow $B \cap A = B$

Então,
$$P(B\cap A)=P(B)=rac{1}{4}$$
 e

$$P(A)P(B) = \frac{1}{2} \times \frac{1}{4} = \frac{1}{8} \neq P(B \cap A)$$

Portanto, A e B não são independentes.

Cinto de segurança e acidentes

Uso de cinto / Sobreviveu	Sim (S)	Não ($ar{S}$)	Total
Sim (C)	414368	510	412878
Não ($ar{C}$)	162527	1601	164128
Total	574895	2111	577006

Qual a probabilidade de que a pessoa morreu no acidente?

$$P(\bar{S}) = \frac{2111}{577006} = 0.004$$

Qual a probabilidade de que a pessoa morreu dado que ela usava o cinto de segurança?

$$P(\bar{S} \mid C) = \frac{P(\bar{S} \cap C)}{P(C)} = \frac{510}{412878} = 0.001$$

Cinto de segurança e acidentes

Uso de cinto / Sobreviveu	Sim (S)	Não ($ar{S}$)	Total
Sim (C)	414368	510	412878
Não ($ar{C}$)	162527	1601	164128
Total	574895	2111	577006

Qual a probabilidade de que a pessoa morreu dado que ela não usava o cinto de segurança?

$$P(\bar{S} \mid \bar{C}) = \frac{P(\bar{S} \cap \bar{C})}{P(\bar{C})} = \frac{1601}{164128} = 0.01$$

Morte e uso de cinto são eventos independentes?

$$P(\bar{S}) = \frac{2111}{577006} = 0.004$$

Como $P(ar{S} \mid C)
eq P(ar{S})$, os eventos não são independentes.