OPTIMAL DESIGN OF STRUCTURES (MAP 562)

CHAPTER VI

GEOMETRIC OPTIMIZATION (first part)

S. Amstutz, B. Bogosel

Original version by G. Allaire

Academic year 2019-2020

Ecole Polytechnique
Department of applied mathematics

Geometric optimization of a membrane

A membrane is occupying a variable domain Ω in \mathbb{R}^N with boundary

$$\partial\Omega = \Gamma \cup \Gamma_N \cup \Gamma_D$$
,

where

- $ightharpoonup \Gamma
 eq \emptyset$ is the variable part of the boundary,
- $hormall \Gamma_D
 eq \emptyset$ is a fixed part of the boundary where the membrane is clamped,
- ▶ $\Gamma_N \neq \emptyset$ is another fixed part of the boundary where the loads $g \in L^2(\Gamma_N)$ are applied.

$$\begin{cases} -\Delta u = 0 & \text{in } \Omega \\ u = 0 & \text{on } \Gamma_D \\ \frac{\partial u}{\partial n} = g & \text{on } \Gamma_N \\ \frac{\partial u}{\partial n} = 0 & \text{on } \Gamma \end{cases}$$

(No surface load for simplicity)

Boundary variation in geometric optimization

Shape optimization of a membrane

Geometric optimization problem:

$$\inf_{\Omega\in\mathcal{U}_{ad}}J(\Omega).$$

We must define the set of admissible shapes \mathcal{U}_{ad} . That is a major difficulty.

Examples:

Compliance or work done by the load (rigidity measure)

$$J(\Omega) = \int_{\Gamma_N} gu \, ds$$

lacktriangle Least square criterion for a target displacement $u_0 \in L^2(\Omega)$

$$J(\Omega) = \int_{\Omega} |u - u_0|^2 dx$$

where u depends on Ω through the state equation.

Existence results

In full generality, there does not exist any optimal shape !

- Existence under a geometric constraint (e.g. uniforme cone property, perimeter constraint).
- Existence under a topological constraint (e.g. number of holes).
- Existence under a regularity constraint (e.g. proximity to a given shape).
- ► Counter-example in the absence of these conditions.

Related questions:

- How to set the problem ? How to parametrize shapes ?
- Calculus of variations for shapes.
- Mathematical framework for establishing numerical algorithms.

Counter-example of existence

Let $D=]0;1[\times]0;L[$ be a rectangle in \mathbb{R}^2 . We fill D with a mixture of two materials, homogeneous isotropic, characterized by an elasticity coefficient β for the strong material, and α for the weak material (almost like void) with $\beta>>\alpha>0$. We denote by $\chi(x)\in\{0,1\}$ the **characteristic function** of the weak phase α , and we define

$$a_{\chi}(x) = \alpha \chi(x) + \beta(1 - \chi(x)).$$

(Other possible interpretation: variable thickness which can take only two values.)

State equation:

$$\left\{ \begin{array}{ll} -\operatorname{div}\left(\mathbf{a}_{\chi}\nabla u_{\chi}\right)=0 & \text{in } D \\ \mathbf{a}_{\chi}\nabla u_{\chi}\cdot \mathbf{n}=\mathbf{e}_{1}\cdot \mathbf{n} & \text{on } \partial D \end{array} \right.$$

The (vertical) load leads to horizontal traction. Objective function: compliance

$$J(\chi) = \int_{\partial D} (e_1 \cdot n) u_{\chi} ds$$

Admissible set: no geometric or smoothness constraint, i.e. $\chi \in L^{\infty}(D; \{0,1\})$. There is however a volume constraint

$$\mathcal{U}_{\mathsf{ad}} = \left\{ \chi \in L^{\infty} \left(D; \{0,1\} \right) \text{ such that } \frac{1}{|D|} \int_{D} \chi(x) \, \mathrm{d}x = \theta \right\},$$

otherwise the strong phase would always be preferred! The shape optimization problem is:

$$\inf_{\chi \in \mathcal{U}_{ad}} J(\chi).$$

Non-existence

Proposition If $0 < \theta < 1$, there does not exist an optimal shape in the set \mathcal{U}_{ad} .

Remark. Cause of non-existence = lack of geometric or smoothness constraint on the shape boundary.

Many small holes are better than just a few bigger holes !

Mechanical intuition

Minimizing sequence $k \to +\infty$: k rigid fibers, aligned in the principal stress e_1 , and uniformly distributed. To achieve a uniform deformation, the fibers must be finer and finer and alternate more and more weak and strong ones.

This is the main idea of a minimizing sequence which never achieves the minimum.

Existence under a regularity condition

Mathematical framework for shape deformation based on diffeomorphisms applied to a reference domain Ω_0 (useful to compute a gradient too).

A space of diffeomorphisms (or smooth one-to-one map) in \mathbb{R}^N

$$\mathcal{T} = \left\{ \, T \text{ such that } (\, T - \, \mathrm{Id}) \text{ and } (\, T^{-1} - \, \mathrm{Id}) \in \mathit{W}^{1,\infty}(\mathbb{R}^{\mathit{N}};\mathbb{R}^{\mathit{N}}) \right\}.$$

(They are perturbations of the identity $Id: x \to x$.)

Definition of $W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)$. Space of Lipschitz vectors fields:

$$\phi: \left\{ \begin{array}{ccc} \mathbb{R}^N & \to & \mathbb{R}^N \\ x & \to & \phi(x) \end{array} \right.$$

$$\|\phi\|_{W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)} = \sup_{\mathbf{x} \in \mathbb{R}^N} \left(|\phi(\mathbf{x})|_{\mathbb{R}^N} + |\nabla \phi(\mathbf{x})|_{\mathbb{R}^{N \times N}} \right) < \infty$$

Remark: ϕ is continuous but its gradient is jut bounded. Actually, one can replace $W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)$ by $C_h^1(\mathbb{R}^N;\mathbb{R}^N)$.

Space of admissible shapes

Let Ω_0 be a reference smooth open set.

$$\mathcal{C}(\Omega_0) = \left\{\Omega \text{ such that there exists } \mathcal{T} \in \mathcal{T}, \Omega = \mathcal{T}(\Omega_0)\right\}.$$

- Each shape Ω is parametrized by a diffeomorphism T (not unique!).
- All admissible shapes have the same topology.
- We define a pseudo-distance on $\mathcal{D}(\Omega_0)$

$$d(\Omega_1,\Omega_2) = \inf_{T \in \mathcal{T} \mid T(\Omega_1) = \Omega_2} (\|T - \operatorname{Id}\| + \|T^{-1} - \operatorname{Id}\|)_{W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)}.$$

▶ If Ω_0 is bounded, it is possible to use $C^1(\mathbb{R}^N; \mathbb{R}^N)$ instead of $W^{1,\infty}(\mathbb{R}^N; \mathbb{R}^N)$.

Existence theory

Space of admissible shapes

$$\mathcal{U}_{ad} = \Big\{\Omega \in \mathcal{C}(\Omega_0) \text{ such that } \Gamma_D \bigcup \Gamma_N \subset \partial \Omega \text{ and } |\Omega| = V_0 \Big\}.$$

For a fixed constant R > 0, we introduce the smooth subspace

$$\mathcal{U}_{ad}^{reg} = \left\{\Omega \in \mathcal{U}_{ad} \text{ such that } d(\Omega,\Omega_0) \leq R, \ \right\}.$$

Interpretation: in practice, it is a "feasability" constraint.

Theorem. The shape optimization problem

$$\inf_{\Omega \in \mathcal{U}_{ad}^{reg}} J(\Omega)$$

admits at least one optimal solution.

Remark. All shapes share the same topology in \mathcal{U}_{ad} . Furthermore, the shape boundaries in \mathcal{U}_{ad}^{reg} cannot oscillate too much.

Shape differentiation

Goal: to compute a derivative of $J(\Omega)$ by using the parametrization based on diffeomorphisms T. We restrict ourselves to diffeomorphisms of the type

$$T = \mathrm{Id} + \theta$$
 with $\theta \in W^{1,\infty}(\mathbb{R}^N; \mathbb{R}^N)$.

Idea: we differentiate $\theta \to J((\mathrm{Id} + \theta)\Omega_0)$ at 0.

Remark. This approach generalizes the Hadamard method of boundary shape variations along the normal: $\Omega_0 \to \Omega_t$ for $t \ge 0$

$$\partial\Omega_t = \left\{ x_t \in \mathbb{R}^N \mid \exists x_0 \in \partial\Omega_0 \mid x_t = x_0 + t \, g(x_0) \, n(x_0) \right\}$$

with a given incremental function g.

The shape $\Omega = (\operatorname{Id} + \theta)(\Omega_0)$ is defined by

$$\Omega = \{x + \theta(x) \mid x \in \Omega_0\}.$$

Thus $\theta(x)$ is a vector field which plays the role of the **displacement** of the reference domain Ω_0 .

Lemma. For any $\theta \in W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)$ satisfying $\|\theta\|_{W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)} < 1$, the map $T = \mathrm{Id} + \theta$ is one-to-one into \mathbb{R}^N and belongs to the set \mathcal{T} .

Proof. Based on the formula

$$\theta(x) - \theta(y) = \int_0^1 (x - y) \cdot \nabla \theta(y + t(x - y)) dt$$

we deduce that $|\theta(x) - \theta(y)| \le \|\theta\|_{W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)} |x-y|$ and θ is a strict contraction. Thus, $T = \mathrm{Id} + \theta$ is one-to-one into \mathbb{R}^N . Indeed, $\forall b \in \mathbb{R}^N$ the map $K(x) = b - \theta(x)$ is a contraction and thus admits a unique fixed point y, i.e., b = T(y) and T is therefore one-to-one into \mathbb{R}^N .

Since $\nabla T(x) = I + \nabla \theta(x)$ and $|\nabla \theta(x)| < 1$, the matrix $\nabla T(x)$ is invertible (Neumann series). We then check that

$$|T^{-1}(b) - b| = |y - b| = |\theta(y)| \le ||\theta||_{L^{\infty}},$$

$$|I - (\nabla T)^{-1}(x)| = |I - (I + \nabla \theta(x))^{-1}| = |\sum_{k=1}^{\infty} (-\nabla \theta(x))^{k}| \le \frac{\|\nabla \theta\|_{L_{\infty}}}{1 - \|\nabla \theta\|_{L_{\infty}}},$$

hence $(T^{-1} - \mathrm{Id}) \in W^{1,\infty}(\mathbb{R}^N; \mathbb{R}^N)$.

Definition of the shape derivative

Definition. Let $J(\Omega)$ be a map from the set of admissible shapes $C(\Omega_0)$ into \mathbb{R} . We say that J is shape differentiable at Ω_0 if the function

$$\theta \to J \big((\operatorname{Id} + \theta)(\Omega_0) \big)$$

is Fréchet differentiable at 0 in the Banach space $W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)$, i.e., there exists a linear continuous functional $L=J'(\Omega_0)$ on $W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)$ such that

$$J((\operatorname{Id} + \theta)(\Omega_0)) = J(\Omega_0) + L(\theta) + o(\theta)$$
 , with $\lim_{\theta \to 0} \frac{|o(\theta)|}{\|\theta\|} = 0$.

 $J'(\Omega_0)$ is called the shape derivative and $J'(\Omega_0)(\theta)$ is a directional derivative.

The directional derivative $J'(\Omega_0)(\theta)$ depends only on the **normal** component of θ on the boundary of Ω_0 .

This property is linked to the fact that the internal variations of the field θ do not change the shape Ω , i.e.,

$$\theta \in \mathit{C}^{1}_{c}(\Omega)^{\mathit{N}} \text{ and } \|\theta\| << 1 \ \Rightarrow \big(\operatorname{Id} + \theta\big)\Omega = \Omega.$$

Proposition. Let Ω_0 be a smooth bounded open set of \mathbb{R}^N . Let J be a differentiable map at Ω_0 from $\mathcal{C}(\Omega_0)$ into \mathbb{R} . Its directional derivative $J'(\Omega_0)(\theta)$ depends only on the normal trace on the boundary of θ , i.e.

$$J'(\Omega_0)(\theta_1) = J'(\Omega_0)(\theta_2)$$

whenever $heta_1, heta_2 \in C^1(\mathbb{R}^N; \mathbb{R}^N)$ satisfy

$$\theta_1 \cdot n = \theta_2 \cdot n$$
 on $\partial \Omega_0$.

Proof. Take $\theta = \theta_2 - \theta_1$ and, for fixed x, introduce the solution $t \mapsto \phi(t, x, \theta)$ of

$$\begin{cases} \frac{dy}{dt}(t) = \theta(y(t)) \\ y(0) = x \end{cases}$$

which satisfies

$$\begin{array}{l} \phi(t+t',x,\theta) = \phi(t,\phi(t',x,\theta),\theta) \quad \text{for any } t,t' \in \mathbb{R} \\ \phi(\lambda t,x,\theta) = \phi(t,x,\lambda\theta) \quad \text{for any } \lambda \in \mathbb{R}. \end{array} \tag{a} \end{array}$$

Then we define the one-to-one map from \mathbb{R}^N into \mathbb{R}^N , $x \to e^{\theta}(x) := \phi(1, x, \theta)$, the inverse of which is $e^{-\theta}$ by (a). Moreover $e^0 = \operatorname{Id}$ and $t \to e^{t\theta}(x)$ is the solution of the o.d.e. by (b).

Lemma. Let $\theta \in W^{1,\infty}(\mathbb{R}^N; \mathbb{R}^N)$ be such that $\theta \cdot n = 0$ on $\partial \Omega_0$. Then $e^{t\theta}(\Omega_0) = \Omega_0$ for all $t \in \mathbb{R}$.

Proof (by contradiction). Assume $\exists x \in \Omega_0$ such that the trajectory $\phi(t,x,\theta)$ escapes from Ω_0 (or conversely). Thus $\exists t_0 > 0$ such that $x_0 = \phi(t_0,x,\theta) \in \partial \Omega_0$.

Locally the boundary $\partial\Omega_0$ is parametrized by an equation $\psi(x)=0$ and the normal is $n=n_0/|n_0|$ with $n_0=\nabla\psi$ (defined around $\partial\Omega_0$). In the vicinity of $\partial\Omega_0$, we modify the vector field as $\tilde{\theta}=\theta-(\theta\cdot n)n$ to obtain a trajectory $\phi(t,x_0,\tilde{\theta})$ such that, for any $t\geq t_0$,

$$\frac{d}{dt}\Big(\psi(\phi(t,x_0,\tilde{\theta}))\Big) = (\nabla\psi\cdot\tilde{\theta})(\phi(t,x_0,\tilde{\theta}) = (\tilde{\theta}\cdot n|n_0|)(\phi(t,x_0,\tilde{\theta})) = 0.$$

Since $\psi(\phi(t_0,x_0,\tilde{\theta}))=0$, we deduce $\psi(\phi(t,x_0,\tilde{\theta}))=0$, i.e., the trajectory stays on $\partial\Omega_0$. Since $\theta\cdot n=0$ on $\partial\Omega_0$, $\phi(.,x_0,\tilde{\theta})$ is **also** a trajectory for the vector field θ . Uniqueness of the o.d.e. solution yields $\phi(t,x_0,\tilde{\theta})=\phi(t,x_0,\theta)\in\partial\Omega_0$ for any t which is a contradiction with $x\in\Omega_0$.

Remark. The crucial point is that θ is tangent to the boundary $\partial\Omega_0$.

Proof of the proposition

Since $e^{t\theta}(\Omega_0) = \Omega_0$ for any $t \in \mathbb{R}$, the function J is constant along this path and

$$\frac{d}{dt}J\big(e^{t\theta}(\Omega_0)\big)(0)=0.$$

By the chain rule we deduce

$$0=rac{d}{dt}Jig(e^{t heta}(\Omega_0)ig)(0)=J'(\Omega_0)\left(rac{de^{t heta}}{dt}
ight)(0)=J'(\Omega_0)\left(hetaig),$$

because the path $e^{t\theta}(x)$ satisfies

$$\frac{de^{t\theta}(x)}{dt}(0) = \theta(x).$$

Review of known formulas

To compute shape derivatives we need to recall how to change variables in integrals.

Lemma. Let Ω_0 be an open set of \mathbb{R}^N . Let $T \in \mathcal{T}$ be a diffeomorphism and $1 \leq p \leq +\infty$. Then $f \in L^p(\mathcal{T}(\Omega_0))$ if and only if $f \circ \mathcal{T} \in L^p(\Omega_0)$, and

$$\int_{T(\Omega_0)} f \, dx = \int_{\Omega_0} f \circ T \mid \det \nabla T \mid dx$$

$$\int_{T(\Omega_0)} f \mid \det(\nabla T)^{-1} \mid dx = \int_{\Omega_0} f \circ T \, dx.$$

Moreover, $f \in W^{1,p}ig(T(\Omega_0)ig)$ if and only if $f \circ T \in W^{1,p}(\Omega_0)$, and

$$(\nabla f) \circ T = ((\nabla T)^{-1})^t \nabla (f \circ T).$$

 $(^t = adjoint or transposed matrix)$

Remark. This latter formula stems from

$$\nabla (f \circ T)(x) \cdot h = \nabla f(T(x)) \cdot (\nabla T(x)h).$$

Change of variables in a boundary integral.

Lemma. Let Ω_0 be a smooth bounded open set of \mathbb{R}^N . Let $T \in \mathcal{T} \cap C^1(\mathbb{R}^N; \mathbb{R}^N)$ be a diffeomorphism and $f \in L^1(\partial T(\Omega_0))$. Then $f \circ T \in L^1(\partial \Omega_0)$, and we have

$$\int_{\partial T(\Omega_0)} f \, ds = \int_{\partial \Omega_0} f \circ T \mid \det \nabla T \mid \left| \left((\nabla T)^{-1} \right)^t n \right|_{\mathbb{R}^N} ds,$$

where n is the exterior unit normal to $\partial\Omega_0$ and $|\cdot|_{\mathbb{R}^N}$ is the Euclidean norm.

Examples of shape derivatives

Proposition. Let Ω_0 be a smooth bounded open set of \mathbb{R}^N , $f(x) \in W^{1,1}(\mathbb{R}^N)$ and J the map from $C(\Omega_0)$ into \mathbb{R} defined by

$$J(\Omega) = \int_{\Omega} f(x) \, dx.$$

Then J is shape differentiable at Ω_0 and

$$J'(\Omega_0)(\theta) = \int_{\Omega_0} \operatorname{div}(\theta(x) f(x)) dx = \int_{\partial \Omega_0} \theta(x) \cdot n(x) f(x) ds$$

for any $\theta \in W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)$.

Remark. To make sure the result is right, the safest way (but not the easiest) is to make a change of variables to get back to the reference domain Ω_0 .

Intuitive proof

Surface shifted by the transformation: the difference between $(\operatorname{Id} + \theta)\Omega_0$ and Ω_0 is close to $\partial\Omega_0$ thickened by $\theta \cdot n$. Thus

$$\int_{(\mathrm{Id}+\theta)\Omega_0} f(x) \, dx \approx \int_{\Omega_0} f(x) \, dx + \int_{\partial\Omega_0} f(x) \theta \cdot n \, ds.$$

Proof. We rewrite $J(\Omega)$ as an integral on the reference domain Ω_0

$$Jig((\operatorname{Id} + heta)\Omega_0ig) = \int_{\Omega_0} f \circ (\operatorname{Id} + heta) \mid \det(I +
abla heta) \mid dx.$$

The functional $\theta \to \det(I + \nabla \theta)$ is differentiable from $W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)$ into $L^{\infty}(\mathbb{R}^N)$ because

$$\det(I+\nabla\theta) = \det I + \operatorname{div}\theta + o(\theta) \quad \text{with} \quad \lim_{\theta \to 0} \frac{\|o(\theta)\|_{L^{\infty}(\mathbb{R}^N;\mathbb{R}^N)}}{\|\theta\|_{W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)}} = 0.$$

On the other hand, if $f(x) \in W^{1,1}(\mathbb{R}^N)$, the functional $\theta \to f \circ (\operatorname{Id} + \theta)$ is differentiable from $W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)$ into $L^1(\mathbb{R}^N)$ because

$$f \circ (\operatorname{Id} + \theta)(x) = f(x) + \nabla f(x) \cdot \theta(x) + o(\theta) \quad \text{with } \lim_{\theta \to 0} \frac{\|o(\theta)\|_{L^1(\mathbb{R}^N)}}{\|\theta\|_{W^{1,\infty}(\mathbb{R}^N)\mathbb{R}^N)}} = 0.$$

By product of these two expansions we obtain the result.

Proposition. Let Ω_0 be a smooth bounded open set of \mathbb{R}^N , $f(x) \in W^{2,1}(\mathbb{R}^N)$ and J the map from $\mathcal{C}(\Omega_0)$ into \mathbb{R} defined by

$$J(\Omega) = \int_{\partial\Omega} f(x) \, ds.$$

Then J is shape differentiable at Ω_0 and

$$J'(\Omega_0)(\theta) = \int_{\partial \Omega_0} \left(\nabla f \cdot \theta + f \big(\operatorname{div} \theta - \nabla \theta \, \mathbf{n} \cdot \mathbf{n} \big) \right) \, d\mathbf{s}$$

for any $\theta \in W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)$. By a (boundary) integration by parts this formula is equivalent to

$$J'(\Omega_0)(\theta) = \int_{\partial\Omega_0} \theta \cdot n \left(\frac{\partial f}{\partial n} + Hf \right) ds,$$

where H is the mean curvature of $\partial \Omega_0$ defined by $H = \operatorname{div} n$.

Interpretation

Two simple examples:

- ▶ If $\partial\Omega_0$ is an hyperplane, then H=0 and the variation of the boundary integral is proportional to the normal derivative of f.
- ▶ If $f \equiv 1$, then $J(\Omega)$ is the perimeter (in 2-D) or the surface (in 3-D) of the domain Ω and its variation is proportional to the mean curvature.

Proof. A change of variable yields

$$J((\operatorname{Id}+\theta)\Omega_0) = \int_{\partial\Omega_0} f \circ (\operatorname{Id}+\theta) |\det(I+\nabla\theta)| |(I+\nabla\theta)^{-t} n|_{\mathbb{R}^N} ds.$$

We already proved that $\theta \to \det(I + \nabla \theta)$ and $\theta \to f \circ (\mathrm{Id} + \theta)$ are differentiable.

Moreover, $\theta \to \left((I + \nabla \theta)^{-1} \right)^t n$ is differentiable from $W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)$ into $L^\infty(\partial \Omega_0;\mathbb{R}^N)$ because

$$(I + \nabla \theta)^{-t} n = n - (\nabla \theta)^t n + o(\theta) \quad \text{with } \lim_{\theta \to 0} \frac{\|o(\theta)\|_{L^{\infty}(\partial \Omega_0; \mathbb{R}^N)}}{\|\theta\|_{W^{1,\infty}(\mathbb{R}^N; \mathbb{R}^N)}} = 0.$$

By composition with $|y+h|_{\mathbb{R}^N} = |y|_{\mathbb{R}^N} + \frac{y \cdot h}{|y|_{\mathbb{R}^N}} + o(h)$ we infer

$$|(I + \nabla \theta)^{-t} n|_{\mathbb{R}^N} = 1 - (\nabla \theta)^t n \cdot n + o(\theta) \text{ with } \lim_{\theta \to 0} \frac{\|o(\theta)\|_{L^{\infty}(\partial \Omega_0)}}{\|\theta\|_{M^{1,\infty}(\mathbb{R}^N) \to N}} = 0.$$

Multiplying these three expansions leads to the result. The formula including the mean curvature is obtained by an integration by parts on the surface $\partial\Omega_0$ (delicate).

Derivation of a function depending on the shape

Let $u(\Omega, x)$ be a function depending (and defined) on the domain Ω .

For example $u(\Omega, x)$ could be the solution of a p.d.e. defined in Ω . Computing the shape derivative of $u(\Omega, x)$ is difficult!

- The function $u(\Omega, x)$ may belong to a Sobolev space, $H^1(\Omega)$, $H^1_0(\Omega)$, which varies with Ω.
- ► How can we differentiate a boundary condition with respect to the domain ?
- ▶ The use of a variational formulation is crucial.

Two notions of derivative

1) Eulerian (or shape) derivative U

$$u((\operatorname{Id}+\theta)\Omega_0,x)=u(\Omega_0,x)+U(\theta,x)+o(\theta), \quad \text{with} \quad \lim_{\theta\to 0}\frac{\|o(\theta)\|}{\|\theta\|}=0$$

OK if $x \in \Omega_0 \cap (\operatorname{Id} + \theta)\Omega_0$ (local definition, makes no sense on the boundary).

2) Lagrangian (or material) derivative Y We define the **transported** function \overline{u} by

$$\overline{u}(\theta,x) = u\Big((\operatorname{Id} + \theta)\Omega_0, x + \theta(x)\Big) \quad \forall x \in \Omega_0.$$

The Lagrangian derivative Y is obtained by differentiating $\overline{u}(\theta, x)$

$$\overline{u}(\theta,x) = \overline{u}(0,x) + Y(\theta,x) + o(\theta)$$
 , with $\lim_{\theta \to 0} \frac{\|o(\theta)\|}{\|\theta\|} = 0$.

If we assume that both derivatives exist, then the chain rule yields

$$Y(\theta,x) = U(\theta,x) + \theta(x) \cdot \nabla u(\Omega_0,x).$$

The Eulerian derivative, although being simpler, is **very delicate to use** and often not rigorous. For example, if $u \in H_0^1(\Omega)$, the space of definition varies with Ω ... Equivalently what boundary condition should the derivative satisfy ?

For the moment, we assume that the shape derivative $U=u'(\Omega)(\theta)$ exists. We use the Lagrangian method which does not require a precise formula for U! Later on, we shall rigorously justify the existence of U and find its formula.

Fast derivation: the Lagrangian method

- ▶ One can avoid the computations of U or Y by a simple and fast (albeit formal) method, called the Lagrangian method (proposed in this context by J. Céa).
- ► The Lagrangian allows us to find the correct definition of the adjoint state too.
- It is easy for Neumann boundary conditions, a little more involved for Dirichlet ones.
- ► That is the method to be known!

Fast derivation for Neumann boundary conditions

If the objective function is

$$J(\Omega) = \int_{\Omega} j(u(\Omega)) dx, \qquad \left\{ \begin{array}{l} -\Delta u + u = f \text{ in } \Omega \\ \partial_n u = g \text{ on } \partial \Omega \end{array} \right.$$

the Lagrangian is defined as the sum of J and of the variational formulation of the state equation

$$\mathcal{L}(\Omega, v, q) = \int_{\Omega} j(v) dx + \int_{\Omega} \left(\nabla v \cdot \nabla q + vq - fq \right) dx - \int_{\partial \Omega} gq ds,$$

with v and $q \in H^1(\mathbb{R}^N)$. It is important to notice that the space $H^1(\mathbb{R}^N)$ does not depend on Ω and thus the three variables in $\mathcal L$ are clearly independent.

The partial derivative of $\mathcal L$ with respect to q in the direction $\phi \in H^1(\mathbb R^N)$ is

$$\langle \frac{\partial \mathcal{L}}{\partial q}(\Omega, v, q), \phi \rangle = \int_{\Omega} \Big(\nabla v \cdot \nabla \phi + v \phi - f \phi \Big) dx - \int_{\partial \Omega} g \phi \, ds,$$

which, upon equating to 0, gives the variational formulation of the state.

The partial derivative of \mathcal{L} with respect to v in the direction $\phi \in H^1(\mathbb{R}^N)$ is

$$\langle \frac{\partial \mathcal{L}}{\partial v}(\Omega, v, q), \phi \rangle = \int_{\Omega} j'(v) \phi \, dx + \int_{\Omega} \left(\nabla \phi \cdot \nabla q + \phi q \right) dx,$$

which, upon equating to 0, gives the variational formulation of the adjoint.

The partial derivative of $\mathcal L$ with respect to Ω in the direction θ is

$$\frac{\partial \mathcal{L}}{\partial \Omega}(\Omega, v, q)(\theta) = \int_{\partial \Omega} \theta \cdot n \bigg(j(v) + \nabla v \cdot \nabla q + vq - fq - \frac{\partial (gq)}{\partial n} - Hgq \bigg) ds.$$

When evaluating this derivative with the state $u(\Omega_0)$ and the adjoint $p(\Omega_0)$, we precisely find the derivative of the objective function:

$$\overline{\frac{\partial \mathcal{L}}{\partial \Omega} \Big(\Omega_0, u(\Omega_0), p(\Omega_0) \Big) (\theta)} = J'(\Omega_0)(\theta)$$

Indeed, if we differentiate the equality

$$\mathcal{L}(\Omega, u(\Omega), q) = J(\Omega) \quad \forall \ q \in H^1(\mathbb{R}^N),$$

the chain rule yields

$$J'(\Omega_0)(\theta) = \frac{\partial \mathcal{L}}{\partial \Omega}(\Omega_0, u(\Omega_0), q)(\theta) + \langle \frac{\partial \mathcal{L}}{\partial \nu}(\Omega_0, u(\Omega_0), q), u'(\Omega_0)(\theta) \rangle.$$

Taking $q = p(\Omega_0)$, the last term cancels since $p(\Omega_0)$ is the solution of the adjoint equation.

Thanks to this computation, the "correct" result can be guessed for $J'(\Omega_0)$ without using the notions of shape or material derivatives.

Nevertheless, in full rigor, this "fast" computation of the shape derivative $J'(\Omega_0)$ is valid only if we know that u is shape differentiable.

The compliance case (self-adjoint)

Theorem. The functional $J(\Omega) = \int_{\Omega} fu \, dx + \int_{\partial \Omega} gu \, ds$ is shape-differentiable

$$J'(\Omega_0)(\theta) = \int_{\partial\Omega_0} \theta \cdot n \left(-|\nabla u(\Omega_0)|^2 - |u(\Omega_0)|^2 + 2u(\Omega_0)f \right) ds$$
$$+ \int_{\partial\Omega_0} \theta \cdot n \left(2 \frac{\partial (gu(\Omega_0))}{\partial n} + 2Hgu(\Omega_0) \right) ds,$$

Interpretation: assume f=0 and g=0 where $\theta \cdot n \neq 0$. The formula simplifies as

$$J'(\Omega_0)(\theta) = -\int_{\partial\Omega_0} \theta \cdot n \left(|\nabla u|^2 + u^2 \right) ds.$$

It is always advantageous to increase the domain (i.e., $\theta \cdot n > 0$) for decreasing the compliance.

Fast derivation for Dirichlet boundary conditions

It is more involved! Let $u \in H_0^1(\Omega)$ be the solution of

$$\int_{\Omega} \nabla u \cdot \nabla \phi \, dx = \int_{\Omega} f \phi \, dx \quad \forall \, \phi \in H_0^1(\Omega).$$

The "usual" Lagrangian is

$$\mathcal{L}(\Omega, v, q) = \int_{\Omega} j(v) dx + \int_{\Omega} (\nabla v \cdot \nabla q - fq) dx,$$

for $v, q \in H_0^1(\Omega)$. The variables (Ω, v, q) are not independent! Indeed, the functions v and q satisfy

$$v = q = 0$$
 on $\partial \Omega$.

Another Lagrangian has to be introduced.

Lagrangian for Dirichlet boundary conditions

The Dirichlet boundary condition is penalized

$$\mathcal{L}(\Omega, v, q, \lambda) = \int_{\Omega} j(v) \, dx - \int_{\Omega} (\Delta v + f) q \, dx + \int_{\partial \Omega} \lambda v \, ds$$

where λ is the Lagrange multiplier for the boundary condition. It is now possible to differentiate since the 4 variables v, q, λ defined on \mathbb{R}^N are independent.

Of course, we recover

$$\sup_{q,\lambda} \mathcal{L}(\Omega, v, q, \lambda) = \begin{cases} \int_{\Omega} j(u) \, dx = J(\Omega) & \text{if } v \equiv u, \\ +\infty & \text{otherwise.} \end{cases}$$

By definition of the Lagrangian: the partial derivative of $\mathcal L$ with respect to q in the direction $\phi \in H^1(\mathbb R^N)$ is

$$\langle \frac{\partial \mathcal{L}}{\partial q}(\Omega, v, q, \lambda), \phi \rangle = -\int_{\Omega} \phi \Big(\Delta v + f \Big) dx,$$

which, upon equating to 0, gives the state equation, the partial derivative of $\mathcal L$ with respect to λ in the direction $\phi \in H^1(\mathbb R^N)$ is

$$\langle \frac{\partial \mathcal{L}}{\partial \lambda}(\Omega, v, q, \lambda), \phi \rangle = \int_{\partial \Omega} \phi v \, dx,$$

which, upon equating to 0, gives the Dirichlet boundary condition for the state equation.

To compute the partial derivative of \mathcal{L} with respect to v, we perform a first integration by parts

$$\mathcal{L}(\Omega, v, q, \lambda) = \int_{\Omega} j(v) \, dx + \int_{\Omega} (\nabla v \cdot \nabla q - fq) \, dx + \int_{\partial \Omega} \left(\lambda v - \frac{\partial v}{\partial n} q \right) ds,$$

then a second integration by parts

$$\mathcal{L}(\Omega, v, q, \lambda) = \int_{\Omega} j(v) \, dx - \int_{\Omega} (v \Delta q - fq) \, dx + \int_{\partial \Omega} \left(\lambda v - \frac{\partial v}{\partial n} q + \frac{\partial q}{\partial n} v \right) \, ds.$$

We now differentiate in the direction $\phi \in H^1(\mathbb{R}^N)$

$$\langle \frac{\partial \mathcal{L}}{\partial v}(\Omega, v, q), \phi \rangle = \int_{\Omega} j'(v) \phi \, dx - \int_{\Omega} \phi \Delta q \, dx + \int_{\partial \Omega} \left(-q \frac{\partial \phi}{\partial n} + \phi \left(\lambda + \frac{\partial q}{\partial n} \right) \right) ds$$

which, upon equating to 0, gives three relationships, the first two ones being the adjoint problem.

1. If ϕ has compact support in Ω_0 , we get

$$-\Delta p = -j'(u)$$
 in Ω_0 .

2. If $\phi = 0$ on $\partial \Omega_0$ with any value of $\frac{\partial \phi}{\partial n}$ in $L^2(\partial \Omega_0)$, we deduce

$$p=0$$
 on $\partial\Omega_0$.

3. If ϕ is now varying in the full $H^1(\Omega_0)$, we find

$$\frac{\partial p}{\partial n} + \lambda = 0$$
 on $\partial \Omega_0$.

The adjoint problem has actually been recovered but furthermore the optimal Lagrange multiplier λ has been characterized.

Eventually, the partial shape derivative is

$$\frac{\partial \mathcal{L}}{\partial \Omega}(\Omega_0, u, p, \lambda)(\theta) = \int_{\partial \Omega_0} \theta \cdot n \Big(j(u) - (\Delta u + f)p + \frac{\partial (u\lambda)}{\partial n} + Hu\lambda \Big) ds.$$

Knowing that u=p=0 on $\partial\Omega_0$ and $\lambda=-rac{\partial p}{\partial n}$ we deduce

$$\frac{\partial \mathcal{L}}{\partial \Omega}(\Omega_0, u, p, \lambda)(\theta) = \int_{\partial \Omega_0} \theta \cdot n \Big(j(0) - \frac{\partial u}{\partial n} \frac{\partial p}{\partial n} \Big) ds = J'(\Omega_0)(\theta).$$

$$J'(\Omega_0)(\theta) = \frac{\partial \mathcal{L}}{\partial \Omega} \Big(\Omega_0, u(\Omega_0), p(\Omega_0)\Big)(\theta)$$

Indeed, differentiating

$$\mathcal{L}(\Omega, u(\Omega), q, \lambda) = J(\Omega) \quad \forall q, \lambda$$

yields

$$J'(\Omega_0)(\theta) = \frac{\partial \mathcal{L}}{\partial \Omega}(\Omega_0, u(\Omega_0), q, \lambda)(\theta) + \langle \frac{\partial \mathcal{L}}{\partial \nu}(\Omega_0, u(\Omega_0), q, \lambda), u'(\Omega_0)(\theta) \rangle.$$

Then, taking $q = p(\Omega_0)$ (the adjoint state) and $\lambda = -\frac{\partial p}{\partial n}(\Omega_0)$, the last term cancels and we obtain the desired formula.

Application to compliance minimization

We minimize $J(\Omega) = \int_{\Omega} fu \, dx$ with $u \in H_0^1(\Omega)$ solution of

$$\int_{\Omega} \nabla u \cdot \nabla \phi \, dx = \int_{\Omega} f \phi \, dx \quad \forall \, \phi \in H_0^1(\Omega).$$

The adjoint state is just p = -u. The shape derivative is

$$J'(\Omega_0)(\theta) = \int_{\partial\Omega_0} \theta \cdot n \Big(fu - \frac{\partial u}{\partial n} \frac{\partial p}{\partial n} \Big) ds = \int_{\partial\Omega_0} \theta \cdot n \left(\frac{\partial u}{\partial n} \right)^2 ds.$$

It is always advantageous to shrink the domain (i.e., $\theta \cdot n < 0$) to decrease the compliance.

This is the opposite conclusion compared to Neumann b.c., but it is logical!