INDUCTION AND SEQUENCES §1.5 & §2.2

- (1) Let $a \ge 2$ be a real number.
 - (a) Prove that for any natural number n, the inequality $a^n \ge na$ holds true.
 - (b) Prove that the sequence $\left\{\frac{1}{a^n}\right\}_{n=1}^{\infty}$ converges to 0.
- (2) Define a sequence $\{b_n\}_{n=1}^{\infty}$ recursively by the rule $b_1=0$, and $b_n=\frac{1+b_{n-1}}{2}$ for n>1. Prove that $b_n=1-\frac{1}{2^n}$ for all $n\in\mathbb{N}$ and compute $\lim_{n\to\infty}b_n$.
- (3) Define a sequence $\{c_n\}_{n=1}^{\infty}$ recursively by the rule $c_1 = 1$, and $c_n = \sqrt{2c_{n-1}}$ for n > 1.
 - (a) Use a calculator to write down the first 5 terms of this sequence.
 - (b) Prove that the sequence $\{c_n\}_{n=1}^{\infty}$ is bounded above by 2.
 - (c) Use the previous part to show that $\{c_n\}_{n=1}^{\infty}$ is an increasing sequence.
 - (d) Prove that the sequence $\{c_n\}_{n=1}^{\infty}$ is convergent.
 - (e) What value does $\{c_n\}_{n=1}^{\infty}$ converge to? Can you prove it?