Stat 134: Conditional Probabilities, Distributions, & Expectations Review

Adam Lucas

May 2nd, 2018

Problem 1

Let $X_1 \sim \text{Geom } (p_1)$, $X_2 \sim \text{Geom } (p_2)$, $X_1 \perp X_2$, both on $\{1, 2, \ldots\}$. Find:

- a. $P(X_1 \le X_2)$
- b. $P(X_1 = x \mid X_1 \le X_2)$. Recognize $X_1 \mid X_1 \le X_2$ as a named distribution, and state the parameter(s).
- c. $P(X_1 = k \mid X_1 + X_2 = n)$ in the case $p_1 = p_2$. Recognize this as a named distribution and state the parameter(s).

Problem 2

Let $Y \sim \text{Beta } (r, s)$. Conditioned on Y = y, let $X \sim \text{Geometric } (y)$ on $\{0, 1, 2, \ldots\}$ For simplicity, assume r, s > 1.

- a. What is $\mathbb{E}(X \mid Y = y)$?
- b. Find $\mathbb{E}(X)$.
- c. Find P(X = x), for $x \in \{0, 1, 2, ...\}$.

Problem 3

Suppose a proportion *p* of a population has a gene *m* that makes them predisposed to migraines. Of these people, the number of migraines they experience in a year follows a Poisson process with rate λ_m per year, whereas the rest of the population experiences migraines according to a Poisson process with rate λ_x .

a. What is the probability that a randomly selected individual experiences no migraines in a given year?

Hint: Condition on whether the individual has gene m.

- b. Let N_t denote the number of migraines a randomly selected individual experiences in t years. Find $\mathbb{E}(N_t)$.
- c. Find $Var(N_t)$.
- d. Given that a person experienced *k* migraines in a year, find the expected number of migraines they will have next year.
- e. Challenge: Find $Corr(N_{[0,1)}, N_{[1,2)})$, i.e. the correlation between number of migraines in consecutive years.

Hint: Update the likelihood they have gene m using Bayes' Rule.