# CSC110 Lecture 21: Asymptotic Notation for Function Growth

David Liu and Tom Fairgrieve, Department of Computer Science

Navigation tip for web slides: press? to see keyboard navigation controls.

# Announcements and today's plan

### Test 2 done!



#### **Announcements**

- Assignment 3 has been posted—due tomorrow!
  - Check out the A3 FAQ (+ corrections)
  - Additional TA office hours
  - Review advice on academic integrity
  - Delayed in finishing? Read about grace tokens in A3: Logistics
- Next week is reading week!
  - No lectures, tutorial, or office hours
- The Final Exam schedule has been posted!

#### Story so far: evaluating programs

What makes a "good" program?

- 1. Correctness
- 2. Simple design and standard code style

3. Efficiency, or how long a program takes to run

But what does it mean to say that one program is "more efficient" than another?

#### Today you'll learn to...

- 1. Define and explain the differences between Big-O, Omega, and Theta asymptotic bounds.
- 2. Prove statements involving asymptotic notation.
- 3. Compare different elementary functions using asymptotic notation.

## Big-O Notation

### Definition of Big-O

Let  $f,g:\mathbb{N} \to \mathbb{R}^{\geq 0}$ . We say g is Big-O of f and write  $g \in \mathcal{O}(f)$  when:

$$\exists c, n_0 \in \mathbb{R}^+, \ orall n \in \mathbb{N}, \ n \geq n_0 \Rightarrow g(n) \leq c \cdot f(n)$$

Equivalently, "g is eventually dominated up to a constant factor by f"



#### An example

Prove that for all  $a,b\in\mathbb{R}^+$ ,  $a+bn\in\mathcal{O}(n^2)$ .

(Example:  $1+10^{10^{10}}n\in\mathcal{O}(n^2)$ )

#### **Translation:**

 $orall a,b\in\mathbb{R}^+,\;\exists c,n_0\in\mathbb{R}^+,\; orall n\in\mathbb{N},\; n\geq n_0\Rightarrow a+bn\leq cn^2$ 

#### Proof (header)

$$(orall a,b\in\mathbb{R}^+,\;\exists c,n_0\in\mathbb{R}^+,\;orall n\in\mathbb{N},\;n\geq n_0\Rightarrow a+bn\leq cn^2)$$

Let  $a,b\in\mathbb{R}^+$ .

Let  $c = \dots$  and let  $n_0 = \dots$ 

Let  $n \in \mathbb{N}$  and assume  $n \geq n_0$ .

We'll prove that  $a + bn \le cn^2$ .

## Rough work: prove $a + bn \le cn^2$

Key idea: split up into two simpler inequalities,

$$a \leq c_1 n^2 \ bn \leq c_2 n^2$$

(Adding these two inequalities yields  $a+bn \leq (c_1+c_2)n^2$ .)

### Approach 1: Focus on "c" (and not " $n_0$ ")

$$a \leq c_1 n^2 \ bn \leq c_2 n^2$$

Pick  $c_1$  and  $c_2$  to satisfy inequalities.

Assuming  $n \ge 1$ :

$$egin{array}{ccc} a \leq c_1 n^2 & 
ightarrow & c_1 = a \ bn \leq c_2 n^2 & 
ightarrow & c_2 = b \end{array}$$

$$c = c_1 + c_2 = a + b$$
, and  $n_0 = 1$ 

#### Approach 1: Focus on "c" (and not " $n_0$ ")

Proof.

Let  $a,b\in\mathbb{R}^+$ . Let c=a+b and let  $n_0=1$  Let  $n\in\mathbb{N}$  and assume  $n\geq n_0$ . We'll prove that  $a+bn\leq cn^2$ .

Since  $1 \le n$ , we know  $1 \le n^2$ , and so (multiplying by a),  $a \le an^2$ .

Since  $1 \le n$ , we know (multiplying by bn) that  $bn \le bn^2$ .

Adding the previous two inequalities, we have:

$$a+bn \leq an^2+bn^2 \ = (a+b)n^2 \ = cn^2$$

## Approach 2: Focus on "n" (and not "c")

$$a \leq c_1 n^2 \ bn \leq c_2 n^2$$

Set  $c_1 = c_2 = \frac{1}{2}$ , and find n to satisfy:

$$a \leq rac{1}{2}n^2 \ bn \leq rac{1}{2}n^2$$

$$egin{align} a \leq rac{1}{2} n^2 & 
ightarrow & n \geq \sqrt{2a} \ bn \leq rac{1}{2} n^2 & 
ightarrow & n \geq 2b \ \end{pmatrix}$$

Approach 2: Focus on "n" (and not "c")

$$egin{align} a \leq rac{1}{2} n^2 & 
ightarrow & n \geq \sqrt{2a} \ bn \leq rac{1}{2} n^2 & 
ightarrow & n \geq 2b \ \end{pmatrix}$$

Pick  $n_0$  so that  $n \geq n_0$  implies  $n \geq \sqrt{2a}$  and  $n \geq 2b$ .

$$c=c_1+c_2=1$$
, and  $n_0=\max(\sqrt{2a},2b)$ 

Exercise 1: Practice with Big-O

# Omega and Theta

Big-O expresses an upper bound on function growth.

But these upper bounds might be very inaccurate!

$$10n+5\in \mathcal{O}(n^{1000})$$

### Omega ("lower bound")

Let  $f,g:\mathbb{N} o \mathbb{R}^{\geq 0}$ . We say g is Omega of f and write  $g \in \Omega(f)$  when:

$$\exists c, n_0 \in \mathbb{R}^+, \ orall n \in \mathbb{N}, \ n \geq n_0 \Rightarrow g(n) \geq c \cdot f(n)$$



Proving " $g \in \Omega(f)$ " is very similar to Big-O.

Proof.

Let  $c=\ldots$  and  $n_0=\ldots$  Let  $n\in\mathbb{N}$  and assume  $n\geq n_0$ .

We will prove that  $g(n) \ge c \cdot f(n)$ .

#### Theta

Let  $f,g:\mathbb{N} \to \mathbb{R}^{\geq 0}$ . We say g is Theta of f and write  $g \in \Theta(f)$  when:

$$\exists c_1, c_2, n_0 \in \mathbb{R}^+, \ orall n \in \mathbb{N}, \ n \geq n_0 \Rightarrow c_1 \cdot f(n) \leq g(n) \leq c_2 \cdot f(n)$$

Or equivalently, when  $g \in \mathcal{O}(f)$  and  $g \in \Omega(f)$ .

When  $g \in \Theta(f)$  we say that f is a **tight bound** on g. (f is both an upper and lower bound on g)



Proving " $g \in \Theta(f)$ " involves proving two inequalities.

Proof.

Let  $c_1=\ldots,c_2=\ldots$  and  $n_0=\ldots$  Let  $n\in\mathbb{N}$  and assume  $n\geq n_0$ . We will prove that  $g(n)\geq c_1\cdot f(n)$  and  $g(n)\leq c_2\cdot f(n)$ .

## Big-O vs. Theta and tight bounds

Warning: when people say Big-O, they often mean Theta!

E.g., "
$$10+2n\in\mathcal{O}(n)$$
"

#### **Definitions**

Given  $g \in \mathcal{O}(f)$ , we say f is a **tight upper bound** on g when  $g \in \Theta(f)$ .

Given  $g \in \Omega(f)$ , we say f is a **tight lower bound** on g when  $g \in \Theta(f)$ .

Exercise 2: Omega and Theta

# Comparing Elementary Functions

#### Powers of n

In Exercise 1, you proved that for all  $a,b\in\mathbb{R}^+$ , if a< b then  $n^a\in\mathcal{O}(n^b)$  and  $n^b\not\in\mathcal{O}(n^a)$ .

What about other elementary functions?

### Elementary Function Growth Hierarchy Theorem

For all  $a, b \in \mathbb{R}^+$ , the following statements are true:

- 1. If a>1 and b>1, then  $\log_a n\in\Theta(\log_b n)$ .
  - E.g.,  $\log_2 n \in \Theta(\log_{100} n)$
- 2. If a < b, then  $n^a \in \mathcal{O}(n^b)$  and  $n^a \notin \Omega(n^b)$ .
  - ullet E.g.,  $n^2 \in \mathcal{O}(n^{100})$  and  $n^2 
    ot \in \Omega(n^{100})$
- 3. If a < b, then  $a^n \in \mathcal{O}(b^n)$  and  $a^n \notin \Omega(b^n)$ .
  - E.g.,  $2^n \in \mathcal{O}(100^n)$  and  $2^n 
    ot \in \Omega(100^n)$

# Elementary Function Growth Hierarchy Theorem, continued

- 4. If a>1, then  $1\in \mathcal{O}(\log_a n)$  and  $1\notin \Omega(\log_a n)$ .
  - Note: 1 means the constant function g(n)=1 for all  $n\in\mathbb{N}$

- 5. If a>1, then  $\log_a n\in \mathcal{O}(n^b)$  and  $\log_a n 
  ot\in \Omega(n^b)$ .
  - ullet E.g.,  $\log_2 n \in \mathcal{O}(n^{0.0000000001})$  and  $\log_2 n 
    otin \Omega(n^{0.0000000001})$

- 6. If b>1, then  $n^a\in\mathcal{O}(b^n)$  and  $n^a\notin\Omega(b^n)$ .
  - ullet E.g.,  $n^{10000} \in \mathcal{O}(1.0000001^n)$  and  $n^{10000} 
    ot \in \Omega(1.0000001^n)$

# Summary

## Today you learned to...

- 1. Define and explain the differences between Big-O, Omega, and Theta asymptotic notation.
- 2. Prove statements involving asymptotic notation.
- 3. Compare different elementary functions using asymptotic notation.

#### Homework

- Readings:
  - From prep: 9.1, 9.2
  - Today: 9.3
  - Next class: 9.3, 9.5
- Finish Assignment 3