

Welcome

Introduction

Review

Model and Cost Function

- Video: Model
 Representation
 8 min
- Reading: Model Representation 3 min
- Video: Cost Function 8 min
- Reading: Cost Function 3 min
- Video: Cost Function Intuition I

 11 min
- Reading: Cost Function Intuition I
 4 min
- Video: Cost Function Intuition II
 8 min
- Reading: Cost Function Intuition II
 3 min

Parameter Learning

- Video: Gradient Descent
 11 min
- Reading: Gradient Descent 3 min
- Video: Gradient Descent Intuition
 11 min
- Reading: Gradient Descent Intuition
 3 min

Gradient Descent Intuition

In this video we explored the scenario where we used one parameter θ_1 and plotted its cost function to implement a gradient descent. Our formula for a single parameter was :

Repeat until convergence:

$$heta_1 := heta_1 - lpha rac{d}{d heta_1} J(heta_1)$$

Regardless of the slope's sign for $\frac{d}{d\theta_1}J(\theta_1)$, θ_1 eventually converges to its minimum value. The following graph shows that when the slope is negative, the value of θ_1 increases and when it is positive, the value of θ_1 decreases.

On a side note, we should adjust our parameter α to ensure that the gradient descent algorithm converges in a reasonable time. Failure to converge or too much time to obtain the minimum value imply that our step size is wrong.

