

## **Query Processing 2**

**Instructor: Beom Heyn Kim** 

beomheynkim@hanyang.ac.kr

Department of Computer Science



### Overview

- Sorting
- Assignments



# Sorting

- Sorting is important in database systems:
  - The output of SQL queries may need to be sorted
  - Query processing is efficient if the input relations are sorted
- Sorting approaches:
  - Build an index on the sort key, and then use the index to read the relation in sorted order.
    - May lead to one disk block access for each record.
      - Note: There are going to be much larger number of records than the number of blocks.
  - For relations that fit in memory, techniques like quicksort can be used.
    - However, relations are often too large to fit entirely in memory
  - For relations that don't fit in memory, external sort-merge is a good choice



### **External Sort-Merge**

Let *M* denote memory size (in pages).

**1. Create sorted runs**. Let *i* be 0 initially.

Repeatedly do the following till the end of the relation:

- a. Read *M* blocks of relation into memory
- b. Sort the in-memory blocks
- c. Write sorted data to run R<sub>i</sub>; increment i.

Let the final value of *i* be *N* 

2. Merge the runs (next slide).....



## External Sort-Merge (Cont.)

- 2. **Merge the runs (N-way merge)**. We assume (for now) that N < M.
  - a. Use *N* blocks of memory to buffer input runs, and 1 block to buffer output. Read the first block of each run into its buffer page
  - b. **Repeat** 
    - i. Select the first record (in sort order) among all buffer pages
    - Write the record to the output buffer. If the output buffer is full write it to disk.
    - iii. Delete the record from its input buffer page.If the buffer page becomes empty then read the next block (if any) of the run into the buffer.
  - c. **until** all input buffer pages are empty:



## External Sort-Merge (Cont.)

- If  $N \ge M$ , several merge passes are required.
  - $\circ$  In each pass, contiguous groups of M 1 runs are merged.
  - A pass reduces the number of runs by a factor of *M* 1, and creates runs longer by the same factor.
    - E.g. If M=11, and there are 90 runs, one pass reduces the number of runs to 9, each 10 times the size of the initial runs
  - Repeated passes are performed till all runs have been merged into one.



## **Example: External Sorting Using Sort-Merge**

#### Assume:

- 1. 3 blocks available in memory
- 2. 1 tuple fits in each block
- 3. During the first stage where the runs are created, all blocks in memory can be used as buffers for both input and output
- 4. During the merge passes, 2 blocks are used as input buffers and 1 block is used as the output buffer





## External Merge Sort (Cont.)

- Cost analysis:
  - 1 block per run leads to too many seeks during merge
    - Instead use  $b_b$  buffer blocks per run
      - $\rightarrow$  read/write  $b_b$  blocks at a time
    - Can merge  $LM/b_bJ-1$  runs in one pass
  - Total number of merge passes required:  $\lceil \log_{\lfloor M/b_{\perp} \rfloor 1} (b_r / M) \rceil$ .
    - **b**  $_{r}$  denotes the number of blocks containing records of relation r
  - Block transfers for initial run creation is 2b<sub>r</sub>
    - The first stage reads every block of the relation and writes them out again
  - $\circ$  For each merge pass, there will be  $2b_r$  block transfers as well
    - for final pass, we don't count write cost
      - we ignore final write cost for all operations since the output of an operation may be sent to the parent operation without being written to disk
    - Thus total number of block transfers for external sorting:

$$b_r (2 \lceil \log_{\lfloor M/b_L \rfloor - 1} (b_r / M) \rceil + 1)$$

Seeks: next slide



# External Merge Sort (Cont.)

- Cost of seeks
  - During run generation: one seek to read each run and one seek to write each run
  - During the merge phase
    - Need  $2 [b_r/b_h]$  seeks for each merge pass
      - except the final one which does not require a write
    - Total number of seeks:

$$2 \left\lceil b_r / M \right\rceil + \left\lceil b_r / b_b \right\rceil (2 \left\lceil \log_{\lfloor M b_b \rfloor} \rfloor_{-1} (b_r / M)) - 1)$$



### Overview

- Sorting
- Assignments



# Assignments

• Reading: Ch15.4

• Practice Excercises: 15.1

Solutions to the Practice Excercises:

https://www.db-book.com/Practice-Exercises/index-solu.html



## The End