Ruhr-Universität Bochum

LEHRSTUHL FÜR KRYPTOLOGIE UND IT-SICHERHEIT

Prof. Dr. Alexander May

Gottfried Herold

Hausübungen zur Vorlesung Quantenalgorithmen SS 2016

Blatt 1 / 11. April 2016

Abgabe: 25. April 2016, 10.00 Uhr (vor der Vorlesung), Kasten NA/02

AUFGABE 1 (8 Punkte):

Wir betrachten ein 3-Zustandssystem S mit den Basiszuständen $| \spadesuit \rangle, | \bigstar \rangle, | \blacklozenge \rangle$. Seien

$$|x\rangle = \frac{1}{2}|\spadesuit\rangle - \frac{1}{2}|\bigstar\rangle + \frac{1+i}{2}|\spadesuit\rangle,$$

$$|x\rangle = \frac{1}{2}|\spadesuit\rangle - \frac{1}{2}|\bigstar\rangle + \frac{1+i}{2}|\spadesuit\rangle,$$

$$|y\rangle = \frac{-i}{2}|\spadesuit\rangle + \frac{i}{2}|\bigstar\rangle + \frac{1+i}{2}|\spadesuit\rangle \text{ sowie}$$

$$|w\rangle = \frac{1}{3}|\spadesuit\rangle + \frac{2i}{3}|\bigstar\rangle - \frac{2i}{3}|\spadesuit\rangle.$$

$$|w\rangle = \frac{1}{3}|\spadesuit\rangle + \frac{2i}{3}|\bigstar\rangle - \frac{2i}{3}|\spadesuit\rangle.$$

Zeigen Sie:

- (a) $|x\rangle, |y\rangle, |w\rangle$ sind Einheitsvektoren (d.h. $\langle x|x\rangle = 1$). $|x\rangle$ und $|y\rangle$ sind orthogonal. Berechnen Sie $\langle w|y\rangle$. Ist $|x\rangle, |y\rangle, |w\rangle$ ein Orthonormalsystem?
- (b) Ergänzen Sie $|x\rangle, |y\rangle$ zu einem Orthonormalsystem $|x\rangle, |y\rangle, |z\rangle$.
- (c) Nehmen Sie an, das System S befindet sich im Zustand $|y\rangle$. Wir führen nun eine Messung durch (bzgl. der Basis $| \spadesuit \rangle, | \bigstar \rangle, | \blacklozenge \rangle$). Mit welcher Wahrscheinlichkeit messen wir $|\star\rangle$?
- (d) Nehmen Sie an, das System S befindet sich im Zustand $|\star\rangle$. Wir füren nun eine Messung durch (bzgl. der Basis $|x\rangle, |y\rangle, |z\rangle$). Mit welcher Wahrscheinlichkeit messen wir $|y\rangle$?

Zeigen oder widerlegen Sie:

- (e) Es gibt eine unitäre Matrix U, die die Basiszustände $| \spadesuit \rangle, | \bigstar \rangle, | \blacklozenge \rangle$ auf $| x \rangle, | y \rangle, | w \rangle$ abbildet, d.h. ein unitäres U mit $U|\phi\rangle = |x\rangle$, $U|\phi\rangle = |y\rangle$ und $U|\phi\rangle = |w\rangle$. Geben Sie ggf. so ein U an.
- (f) Es gibt eine unitäre Matrix U', die die Basiszustände $| \spadesuit \rangle, | \bigstar \rangle, | \blacklozenge \rangle$ auf $| x \rangle, | y \rangle, | z \rangle$ abbildet, d.h. ein unitäres U' mit $U'|\spadesuit\rangle = |x\rangle$, $U'|\bigstar\rangle = |y\rangle$ und $U'|\spadesuit\rangle = |z\rangle$. Geben Sie ggf. so ein U' an.

Bitte wenden!

AUFGABE 2 (5 Punkte):

Zeigen Sie, dass das Quanten-Not M_{\neg} und die Wurzel des Not $\sqrt{M_{\neg}}$ unitär sind sowie, dass $\sqrt{M_{\neg}}^2 = M_{\neg}$ gilt.

Zur Erinnerung:

$$M_{\neg} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sqrt{M_{\neg}} = \begin{pmatrix} \frac{1+i}{2} & \frac{1-i}{2} \\ \frac{1-i}{2} & \frac{1+i}{2} \end{pmatrix}$$

AUFGABE 3 (7 Punkte):

Wir betrachten ein 1-Qubit System, das initial im Zustand $|v_{\text{init}}\rangle = |0\rangle$ ist.

- (a) Wir betrachten folgendes Experiment: Wir wenden $\sqrt{M_{\neg}}$ auf $|v_{\text{init}}\rangle$ an, und erhalten $|v_{\text{zwischen}}\rangle$. Dann wenden wir $\sqrt{M_{\neg}}$ ein weiteres Mal auf $|v_{\text{zwischen}}\rangle$ und erhalten $|v_{\text{final}}\rangle$. Schließlich wird an $|v_{\text{final}}\rangle$ eine Messung M durchgeführt. Mit welchen Wahrscheinlichkeiten wird in M das Ergebnis $|0\rangle$ bzw. $|1\rangle$ gemessen?
- (b) Wir betrachten folgendes Experiment: Wir wenden $\sqrt{M_{\neg}}$ auf $|v_{\text{init}}\rangle$ an, und erhalten $|v_{\text{zwischen}}\rangle$. Wir wenden nun eine Zwischenmessung M_1 auf $|v_{\text{zwischen}}\rangle$ an. Nach der Messung wenden wir wieder $\sqrt{M_{\neg}}$ an und erhalten $|v_{\text{final'}}\rangle$. Schließlich wird eine Messung M_2 an $|v_{\text{final'}}\rangle$ durchgeführt. Was sind die möglichen Messergebnisse für (M_1, M_2) und mit welchen Wahrscheinlichkeiten treten diese jeweils auf?