

# Onethinx OTX-18 PSoC® 6x LoRaWAN module





# 1 Contents

| 1  | Co   | ontent  | S                               | 2  |
|----|------|---------|---------------------------------|----|
| 2  | Ge   | eneral  | description                     | 3  |
| 3  | Fe   | ature   | list                            | 4  |
| 4  | Pir  | nout    |                                 | 5  |
| 5  | Sp   | ecifica | ations                          | 7  |
|    | 5.   | 1.1     | Absolute maximum ratings        | 7  |
|    | 5.   | 1.2     | Recommended operating range     | 7  |
|    | 5.   | 1.3     | DC specifications               | 7  |
|    | 5.   | 1.4     | LoRa specifications             | 8  |
|    | 5.   | 1.5     | Bluetooth specifications        | 8  |
|    | 5.   | 1.6     | Low Power specifications        | 9  |
|    | 5.   | 1.7     | Physical specifications         | 9  |
|    | 5.   | 1.8     | Physical Dimensions             | 10 |
| 6  | In   | ternal  | Routing                         | 11 |
| 7  | De   | esign g | guidelines                      | 12 |
| -  | 7.1  | Plac    | cement of the module            | 12 |
|    | 7.2  | Blu     | etooth antenna                  | 12 |
| 8  | Re   | eferen  | ce design                       | 13 |
| 9  | En   | vironr  | mental Specifications           | 15 |
| 9  | 9.1  | Env     | rironmental Compliance          | 15 |
| 9  | 9.2  | RF      | Certification                   | 15 |
| 9  | 9.3  | Env     | rironmental Conditions          | 15 |
| 9  | 9.4  | ESI     | O and EMI Protection            | 15 |
| 10 |      | Regul   | atory Information               | 16 |
|    | 10.1 | . FCC   | <u> </u>                        | 16 |
|    | 10.2 | ! ISE   | D                               | 18 |
|    | 10.3 | 8 Eur   | opean Declaration of Conformity | 19 |
|    | 10.4 | OE      | Y Integrator Instructions       | 20 |
| 11 |      | Revis   | ion history                     | 21 |
| 12 |      | List o  | f figures and tables            | 21 |

# 2 General description

The Onethinx LoRaWAN<sup>TM</sup> Core module (OTX-18) is a ready-to-use LoRaWAN<sup>TM</sup> module, featuring Infineon's PSoC 6x and Semtech's next generation of sub-GHz radio transceiver SX126x.

The chipset and components used on the Onethinx LoRaWAN<sup>TM</sup> Core module are the best in class, delivering significant advantages to the developer and user. In today's world security is inevitable though complex as well. The OTX-18 module unburdens the developer from being a security expert and enables you to build any LoRaWAN<sup>TM</sup> application you can think of with an ultra-short time-to-market.

The OTX-18 is designed for extended battery life with just 4.2 mA of active receive current consumption. The module can transmit up to +14dBm (EU version) and +20 dBm (US version) with the highly efficient integrated power amplifier and antenna.

The module is developed in close cooperation with Infineon and Escrypt, tailored to suit IoT projects that requires ultra-secure end-to-end encryption combined with robust LoRaWAN<sup>TM</sup> functionality. The Onethinx Core module contains our own PSoC® 6x optimized LoRaWAN<sup>TM</sup> stack for industries best performance. Due to the integrated on-board LoRa antenna and the ready implemented isolated and certified LoRaWAN<sup>TM</sup> stack the module is ready to use 'out of the box'. The Infineon PSoC 6x configurable analog and digital blocks ensure an easy and direct connection to virtually any sensor without the need of additional components.

This makes the Onethinx Core module extremely well suited for projects that require high security demands and optimal performance like public security, agriculture, leak detection, disaster precaution, gas- and water metering, street lighting applications and many more.



# 3 Feature list

- ✓ The only LoRaWAN<sup>TM</sup> module with latest Infineon PSoC® 6x MCU
- ✓ Based on the latest Semtech® SX126x chipset for extended battery use
- ✓ Bluetooth® low energy (BLE) 5.0
- ✓ Embedded secure element functionality with secure boot
- ✓ PSA certified (OTX-18P)
- ✓ Locked down LoRaWAN<sup>TM</sup> stack runs isolated from user code for ultimate security
- √ Highly efficient integrated antenna
- ✓ Adding wireless configuration possibilities, over the air firmware upgrades
- ✓ Recommended by Infineon®, ESCRYPT® and The Things Network®
- ✓ Easy to connect to virtually any sensor
- ✓ Ultra low hibernate current: 600 nA in hibernate mode with RTC (@ 1.8V)



# 4 Pinout



Figure 1: OTX-18 pinout



The following table give a detailed description of the pins.

| <b>OTX-18</b> | PSOC6x | Signal   | Description                               |
|---------------|--------|----------|-------------------------------------------|
| pin           | pin    |          |                                           |
| 1             |        | GND      | Ground                                    |
| 2             | P6_6   | SWD_IO   | Serial Wire Debug Data / GPIO             |
| 3             | P6_7   | SWD_CLK  | Serial Wire Debug Clock / GPIO            |
| 4             |        | XRES     | Reset Input (active low)                  |
| 5             |        | VREF     | Analog Vref Out                           |
| 6             | P0_4   | Wakeup   | Wakeup input (selectable active high/low) |
| 7             |        | V_BACKUP | Backup power                              |
| 8             | P10_1  | IO_12    | General Purpose IO                        |
| 9             | P11_5  | IO_11    | General Purpose IO                        |
| 10            | P10_0  | IO_10    | General Purpose IO                        |
| 11            | P11_7  | IO_9     | General Purpose IO                        |
| 12            |        | BLE_ANT  | Bluetooth Radio RF output (50 ohms)       |
| 13            |        | V_IN     | Power +3.3V                               |
| 14            |        | GND      | Ground                                    |
| 15            | P12_5  | IO_8     | General Purpose IO                        |
| 16            | P12_4  | IO_7     | General Purpose IO                        |
| 17            | P9_2   | IO_6     | General Purpose IO                        |
| 18            | P10_3  | IO_5     | General Purpose IO                        |
| 19            | P9_3   | IO_4     | General Purpose IO                        |
| 20            | P10_2  | IO_3     | General Purpose IO                        |
| 21            | P9_1   | IO_2     | General Purpose IO                        |
| 22            | P9_0   | IO_1     | General Purpose IO                        |
| 23            |        | GND      | Ground                                    |

Table 1: OTX-18 Pin description



# **5 Specifications**

### **5.1.1 Absolute maximum ratings**

| Parameter  | Description                | Min  | Тур | Max     | Units |
|------------|----------------------------|------|-----|---------|-------|
| VDD.max    | Maximum supply voltage     | -0.5 |     | 3.7     | V     |
| T.ambMax   | Storage temperature limits | -55  |     | 125     | °C    |
| I.totalMax | Supply current limits      | -10  |     | 250     | mA    |
| V.GPIOMax  | GPIO voltage limits        | -0.5 |     | VDD+0.5 | V     |
| I.GPIOMax  | GPIO current limits        | -25  |     | 25      | mA    |

Table 2: Absolute maximum ratings

# **5.1.2 Recommended operating range**

| Parameter | Description        | Min | Тур | Max | Units |
|-----------|--------------------|-----|-----|-----|-------|
| VDD       | supply voltage     | 1.8 | 3.3 | 3.6 | V     |
| T.amb     | temperature limits | -40 |     | 85  | °C    |

Table 3: Recommended operating conditions

# 5.1.3 DC specifications

| Parameter | Description                        | Min     | Тур | Max     | Units |
|-----------|------------------------------------|---------|-----|---------|-------|
| VI.L      | GPIO input voltage low threshold   | 0.3*VDD |     |         | V     |
| VI.H      | GPIO input voltage high threshold  |         |     | 0.7*VDD | V     |
| VO.L      | GPIO output voltage low threshold  |         |     | 0.4     | V     |
| VO.H      | GPIO output voltage high threshold | VDD-0.5 |     | VDD+0.5 | V     |

Table 4: DC specifications



# 5.1.4 LoRa specifications

| Parameter  | Description                                 | Min | Typ   | Max    | Units |
|------------|---------------------------------------------|-----|-------|--------|-------|
| RX.RNG.EU  | Frequency range, receiver                   | 863 |       | 870    | MHz   |
| RX.RNG.US  | Frequency range, receiver                   | 902 |       | 928    | MHz   |
| RX.BWR     | Bandwidth range, receiver                   | 4   |       | 500    | KHz   |
| RX.SIN     | RF input sensitivity (SF = 12, BW = 125KHz) |     | -137  |        | dBm   |
| TX.RNG.EU  | Frequency range, transmitter                | 863 |       | 870    | MHz   |
| TX.RNG.US  | Frequency range, transmitter                | 902 |       | 915    | MHz   |
| TX.BWR     | Bandwidth range, transmitter                | 4   |       | 500    | KHz   |
| TX.POUT.EU | RF output power, EU version                 |     | +14   |        | dBm   |
| TX.POUT.US | RF output power, US version                 |     | +20   |        | dBm   |
| RF.FO      | RF frequency offset (TX & RX)               |     | +/- 8 | +/- 15 | ppm   |

Table 5: LoRa specifications

# **5.1.5 Bluetooth specifications**

| Parameter | Description             | Min | Тур | Max | Units |
|-----------|-------------------------|-----|-----|-----|-------|
| RX.SIN    | BT RF input sensitivity |     | -95 |     | dBm   |
| RX.PMAX   | BT RF output power      |     | +4  |     | dBm   |

Table 6: Bluetooth specifications



#### **5.1.6 Low Power specifications**

Low power specifications are measured with the following conditions: Chip power mode = ULP, VDD = 3V3, SX126x in sleep mode with cold start, RF switch turned off. Active cores are in infinite loops.

| Parameter | Description                    | Min | Тур  | Max | Units |
|-----------|--------------------------------|-----|------|-----|-------|
| I.Active  | Both cores active              |     | 3.67 |     | mA    |
| I.DS      | Deep sleep (3.3V)              |     | 7.60 |     | μΑ    |
| I.HIB1    | Hibernate, RTC active (3.3V)   |     | 1.66 |     | μΑ    |
| I.HIB2    | Hibernate, RTC disabled (3.3V) |     | 1.21 |     | μΑ    |
| I.HIB2    | Hibernate, RTC active (3.0V)   |     | 1.24 |     | μΑ    |
| I.HIB3    | Hibernate, RTC disabled (3.0V) |     | 0.66 |     | μΑ    |
| I.HIB2    | Hibernate, RTC active (1.8V)   |     | 0.60 |     | μΑ    |
| I.HIB2    | Hibernate, RTC disabled (1.8V) |     | 0.41 |     | μΑ    |

Table 7: Low power specifications

#### **5.1.7 Physical specifications**

| Parameter | Description             | Тур             | Units |
|-----------|-------------------------|-----------------|-------|
| DIM       | Length x Width x Height | 24.5 x 20 x 3.2 | mm    |
| M         | Weight                  | 1.7             | g     |

Table 8: Physical parameters



# **5.1.8 Physical Dimensions**

Physical dimensions of the module are as indicated on the image below.





# 6 Internal Routing

The table below outlines the internal routing of components.

| PSoC6   | PSoC6 ball | Function           | SX126x | Module IO | RF SWITCH |
|---------|------------|--------------------|--------|-----------|-----------|
| P6_6    | L10        |                    |        | SWDIO     |           |
| P6_7    | K10        | SWD debugger       |        | SWDCLK    |           |
| XRES    | E2         |                    |        | XRES      |           |
| VBACKUP | C1         | Backup power       |        | V_BACKUP  |           |
| VREF    | B10        | Analog REF voltage |        | VREF      |           |
| XI      | M4         | 22 Mb = 10 DDM     |        |           |           |
| XO      | M5         | 32 Mhz 10 PPM      |        |           |           |
| ANT     | K1         | BLE Antenna 50 ohm |        | BLE ANT   |           |
| P0_0    | C2         | 22.760 IZI 10 DDM  |        |           |           |
| P0_1    | D3         | 32.768 Khz 10 PPM  |        |           |           |
| P0_4    | F3         | Wake Up            |        | WAKEUP    |           |
| P5_0    | L6         | •                  | MOSI   |           |           |
| P5_1    | K6         | CV126 CDI          | MISO   |           |           |
| P5_2    | J6         | SX126x SPI         | SCK    |           |           |
| P7_6    | G8         |                    | NSS    |           |           |
| P8_1    | F9         | CV126              | NRESET |           |           |
| P9_6    | C8         | SX126x             | BUSY   |           |           |
| P12_7   | H5         |                    | DIO1   |           |           |
|         |            | SX126x DIO         | DIO2   |           | RX/TX     |
| P6_4    | J9         |                    | DIO3   |           |           |
| P9_5    | C9         | RF switch power    |        |           | POWER     |
| P9_0    | D10        |                    |        | IO_1      |           |
| P9_1    | D9         |                    |        | IO_2      |           |
| P10_2   | F6         |                    |        | IO_3      |           |
| P9_3    | D7         |                    |        | IO_4      |           |
| P10_3   | E6         |                    |        | IO_5      |           |
| P9_2    | D8         | Madula CDIO        |        | IO_6      |           |
| P12_4   | C5         | Module GPIO        |        | IO_7      |           |
| P12_5   | D4         |                    |        | IO_8      |           |
| P11_7   | A5         |                    |        | IO_9      |           |
| P10_0   | B8         |                    |        | IO_10     |           |
| P11_5   | A6         |                    |        | IO_11     |           |
| P10_1   | A8         |                    |        | IO_12     |           |

Table 9: Internal routing



# 7 Design guidelines

#### 7.1 Placement of the module

The Onethinx module has an integrated LoRa antenna, which should be in free space for best results. The figure below shows the advised module positioning and corresponding pad locations.



Figure 2: OTX-18 PCB design guidelines and pad placement

There are library components available for several commonly-used PCB design IDEs. Please check the Onethinx website, forum and Github before creating your own.

#### 7.2 Bluetooth antenna

Please refer to the design reference files of the development kit on how to place the Bluetooth antenna. The antenna used in the reference design is the following: Ignion NN01-102 (Fractus FR05-S1-N-0-102 - Obsolete)

| Description     |    | LoRa Antenna | <b>BLE Antenna</b> | Units |
|-----------------|----|--------------|--------------------|-------|
| Antenna Type    |    | PCB trace    | Chip               |       |
| Frequency range | EU | 860-880      | 2400-2500          | MHz   |
|                 | US | 900-930      |                    |       |
| Peak Gain       |    | 0dBi         | 1.7dBi             | dBi   |
| Return Loss     |    | >10          | >10                | dB    |



# 8 Reference design

The design files of the Onethinx devkit are available on our website. The connection header size and positioning allow the devkit to act as a battery-powered Arduino with LoRaWAN, so you are able to add shields to it (you will need to configure the I/O of course). All reference designs, including API documentation can be found on our <u>Github page</u>.



Figure 3: OTX-18 Dev. Kit





Figure 4: OTX-18 Dev. Kit V2 schematic



# 9 Environmental Specifications

# 9.1 Environmental Compliance

This OTX-18 module is produced in compliance with the Restriction of Hazardous Substances (RoHS) and Halogen-Free (HF) directives. The Onethinx module and components used to produce this module are RoHS and HF compliant.

#### 9.2 RF Certification

The OTX-18 module will be certified under the following RF certification standards at production release.

■ FCC: 2AUBKOTX-18

■ CE

#### 9.3 Environmental Conditions

Environmental Conditions Table 26 describes the operating and storage conditions for the Onethinx module.

| Description                                     | Minimum | Maximum | Units     |
|-------------------------------------------------|---------|---------|-----------|
| Operating temperature                           | -35     | 85      | °C        |
| Operating humidity (relative, non-condensation) | 5       | 85      | %         |
| Thermal ramp rate                               | -       | 3       | °C/minute |
| Storage temperature                             | -55     | 155     | °C        |
| Storage humidity                                |         | 85      | %         |

Table 10: Environmental Conditions for the OTX-18 module

#### 9.4 ESD and EMI Protection

Exposed components require special attention to ESD and electromagnetic interference (EMI).

A grounded conductive layer inside the device enclosure is suggested for EMI and ESD performance. Any openings in the enclosure near the module should be surrounded by a grounded conductive layer to provide ESD protection and a low-impedance path to ground.

Device Handling: Proper ESD protocol must be followed in manufacturing to ensure component reliability.



# 10 Regulatory Information

#### 10.1 FCC

#### 10.1.0 List of applicable FCC Rules:

The device OTX-18 complies with Part 15 of the FCC Rules (47 CFR Part 15 Subpart C §15.247). The device meets the requirements for modular transmitter approval as detailed in FCC public Notice DA00-1407.

#### 10.1.1 Specific operational use conditions:

The modular transmitter should be used within the limits outlined in Chapter 5 (Specifications) and the according the Design Guidelines (Chapter 7).

Transmitter Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference, and
- (2) This device must accept any interference received, including interference that may cause undesired operation.

This device has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This device generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help

#### **CAUTION:**

The FCC requires the user to be notified that any changes or modifications made to this device that are not expressly approved by Onethinx BV may void the user's authority to operate the equipment.

#### 10.1.2 Limited module procedures:

N/A (the modular transmitter is approved as a 'full modular module').

#### 10.1.3 Trace antenna designs:

N/A (the modular transmitter trace antenna is fixed on the PCB and therefore not applicable for design considerations by the OEM integrator).



#### 10.1.4 RF exposure considerations:

To comply with FCC RF Exposure requirements, the Original Equipment Manufacturer (OEM) must ensure to install the approved antenna following the guidelines in Chapter 7.

The preceding statement must be included as a CAUTION statement in manuals, for products operating with the approved antenna in Chapter 7 on page 11, to alert users on FCC RF Exposure compliance. Any notification to the end user of installation or removal instructions about the integrated radio module is not allowed.

The radiated output power of OTX-18 with the trace antenna and the approved BLE antenna is below the FCC radio frequency exposure limits. Nevertheless, use OTX-18 in such a manner that minimizes the potential for human contact during normal operation.

End users may not be provided with the module installation instructions. OEM integrators and end users must be provided with transmitter operating conditions for satisfying RF exposure compliance.

#### 10.1.5 Antennas:

Refer to Chapter 7 for the Design Guidelines and the antenna selection. If the OEM integrator wishes to choose an alternative antenna, it's peak gain should never exceed the gain of the listed antennas.

Refer to Chapter 10.4 for the OEM integrator instructions.

#### 10.1.6 Label and compliance information:

The Original Equipment Manufacturer (OEM) must ensure that FCC labelling requirements are met. This includes a clearly visible label on the outside of the OEM enclosure specifying the appropriate Onethinx FCC identifier for this product as well as the FCC Notice above.

The FCC identifier is FCC ID: 2AUBKOTX-18. In any case the end product must be labeled exterior with "Contains FCC ID: 2AUBKOTX-18".

#### 10.1.7 Information on test modes and additional testing requirements:

Refer to the OTX-18\_operation\_guide for more information for configuring the test modes of the modular transmitter.

Contact Onethinx BV for specific information on the additional testing requirements.

#### 10.1.8 Additional testing, Part 15 Subpart B disclaimer:

All final host products must be tested to be compliant to FCC Part 15 Subpart B standards. While the Onethinx OTX-18 module was tested to be complaint to FCC unintentional radiator standards, FCC Part 15 Subpart B compliance testing is still required for the final host product. This testing is required for all end products. Onethinx OTX-18 compliance does not affirm the end product's compliance.



#### **10.2 ISED**

Innovation, Science and Economic Development Canada (ISED) Certification

The OTX-18 is licensed to meet the regulatory requirements of Innovation, Science and Economic Development Canada (ISED), License: IC:

Manufacturers of mobile, fixed, or portable devices incorporating this module are advised to clarify any regulatory questions and ensure compliance for SAR and/or RF exposure limits. Users can obtain Canadian information on RF exposure and compliance from <a href="https://www.ic.gc.ca">www.ic.gc.ca</a>.

#### ISED NOTICE:

The device OTX-18 including the built-in trace antenna complies with Canada RSS-GEN Rules. The device meets the requirements for modular transmitter approval as detailed in RSS-GEN. Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference, and
- (2) This device must accept any interference received, including interference that may cause undesired operation.

L'appareil OTX-18, y compris l'antenne intégrée, est conforme aux Règles RSS-GEN de Canada. L'appareil répond aux exigences d'approbation de l'émetteur modulaire tel que décrit dans RSS-GEN. L'opération est soumise aux deux conditions suivantes:

- (1) Cet appareil ne doit pas causer d'interférences nuisibles, et
- (2) Cet appareil doit accepter toute interférence reçue, y compris les interférences pouvant entraîner un fonctionnement indésirable.

#### ISED INTERFERENCE STATEMENT FOR CANADA

This device complies with Innovation, Science and Economic Development (ISED) Canada license-exempt RSS standard(s). Operation is subject to the following two conditions:

- (1) this device may not cause interference, and
- (2) this device must accept any interference, including interference that may cause undesired operation of the device.



Cet appareil est conforme à la norme sur l'innovation, la science et le développement économique (ISED) norme RSS exempte de licence. L'exploitation est autorisée aux deux conditions suivantes:

- (1) l'appareil ne doit pas produire de brouillage, et
- (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

#### ISED RADIATION EXPOSURE STATEMENT FOR CANADA

This equipment complies with ISED radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with a minimum distance of 20 cm between the radiator and your body.

Cet équipement est conforme aux limites d'exposition aux radiations ISED prévues pour un environnement incontrôlé. Cet équipement doit être installé et utilisé avec un minimum de 20 cm de distance entre la source de rayonnement et votre corps.

#### LABELING REQUIREMENTS:

The Original Equipment Manufacturer (OEM) must ensure that ISED labelling requirements are met. This includes a clearly visible label on the outside of the OEM enclosure specifying the appropriate Onethinx IC identifier for this product as well as the ISED Notices above.

## 10.3 European Declaration of Conformity

Hereby, Onethinx BV declares that the module OTX-18 complies with the essential requirements and other relevant provisions of Directive 2014. As a result of the conformity assessment procedure described in Annex III of the Directive 2014, the end-customer equipment should be labeled as follows:



All versions of the OTX-18 in the specified reference design can be used in the following countries: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, The Netherlands, the United Kingdom, Switzerland, and Norway.



## **10.4 OEM Integrator Instructions**

The OTX-18 module is tested with a standard SMA connector and with the antennas listed in Chapter 7 on page 11. When integrated in the OEMs product, these fixed antennas require installation preventing end-users from replacing them with non-approved antennas. Any antenna not in the following table must be tested to comply with FCC Section 15.203 for unique antenna connectors and Section 15.247 for emissions.

This device has been designed to operate with the antennas listed in Chapter 7 on page 11. Antennas having a gain greater than the listed antennas are strictly prohibited for use with this device. The required antenna impedance is 50 ohms.

The OEM must follow the regulatory guidelines and integration instructions listed above to inherit Onethinx's modular approval. The OTX-18 holds full modular approvals and is certified for integration to products only by OEM integrators under the following conditions:

- (1) the antenna(s) must be installed such that a minimum separation distance of 20 cm is always maintained between the radiator (antenna) and all persons.
- (2) the transmitter module must not be operating in conjunction with any other antenna or transmitter, except in accordance with FCC multi-transmitter product procedures.

If the two conditions above are met, further transmitter testing is not required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, RF Exposure/SAR, etc.).



# **11 Revision history**

| Revision | Author | Date       | Changes                                                   |
|----------|--------|------------|-----------------------------------------------------------|
| A        | RN     | 23-12-2017 | Document creation                                         |
| В        | RN     | 07-08-2018 | Corrected IO5 connection to 10_5. Updated Specifications. |
| C        | JS     | 26-03-2019 | Restructured document. Updated specifications.            |
| D        | RN     | 15-05-2019 | Added Internal routing table. Corrected Dev. Kit LED      |
|          |        |            | naming.                                                   |
| E        | RN     | 17-06-2019 | Updated low power current consumption specifications.     |
| F + G    | RN     | 09-08-2019 | Fixed typos and updated module placement picture.         |
| H        | RN     | 12-03-2020 | Added Environmental and Regulatory information            |
| I        | RN     | 25-08-2020 | Added US specifications, updated several specs.           |
| J        | TB     | 03-05-2023 | Updated info and specs.                                   |

Table 11: Revision history

# 12 List of figures and tables

| Figure 1: OTX-18 pinout                                  | 5 |
|----------------------------------------------------------|---|
| Figure 2: OTX-18 PCB design guidelines and pad placement |   |
| Figure 3: OTX-18 Dev. Kit                                |   |
| Figure 4: OTX-18 Dev. Kit V2 schematic                   |   |
|                                                          |   |
| Table 1: OTX-18 Pin description                          | 6 |
| Table 2: Absolute maximum ratings                        |   |
| Table 3: Recommended operating conditions                |   |
| Table 4: DC specifications                               |   |
| Table 5: LoRa specifications                             | 8 |
| Table 6: Bluetooth specifications                        | 8 |
| Table 7: Low power specifications                        | 9 |
| Table 8: Physical parameters                             | 9 |
| Table 9: Internal routing                                |   |
| Table 10: Environmental Conditions for the OTX-18 module |   |
| Table 11: Revision history                               |   |
|                                                          |   |



## **Important Notice**

Information relating to this product and the application or design described herein is believed to be reliable, however such information is provided as a guide only and Onethinx assumes no liability for any errors in this document, or for the application or design described herein. Onethinx reserves the right to make changes to the product or this document at any time without notice. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. Onethinx warrants performance of its products to the specifications applicable at the time of sale, and all sales are made in accordance with the Onethinx' standard terms and conditions of sale.

ONETHINX PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS, OR IN NUCLEAR APPLICATIONS IN WHICH THE FAILURE COULD BE REASONABLY EXPECTED TO RESULT IN PERSONAL INJURY, LOSS OF LIFE OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. INCLUSION OF ONETHINX PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK. Should a customer purchase or use Onethinx products for any such unauthorized application, the customer shall indemnify and hold Onethinx and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise.

The Onethinx name and logo are registered trademarks. All other trademarks and trade names mentioned may be marks and names of the respective companies. Onethinx reserves the right to make changes to, or discontinue any products described in this document without further notice. Onethinx makes no warranty, representation or guarantee, express or implied, regarding the suitability of its products for any particular purpose. All rights reserved.

