Algebraic Combinatorics HW 1

EVAN LIM AND DALLIN GUISTI

2-6-2024

Problem 1 (Closed Walks in K_n). Find a combinatorial proof of the fact that # closed walks of length l in K_n from some vertex to itself is

$$\frac{1}{n}\left((n-1)^l + (n-1)(-1)^l\right)$$

Proof. We'll count the number of closed l-walks from v_1 to v_1 , which, by symmetry, is the number of closed l-walks from any vertex to itself. We write each walk as an ordered list of vertices, so that we must find the number of walks

$$v_1, v_{i_1}, v_{i_2}, \cdots, v_{i_{l-1}}, v_1$$

with adjacent vertices distinct, so $v_{i_k} \neq v_{i_{k+1}}$ and $v_{i_1}, v_{i_{l-1}} \neq v_1$.

We start our count with the number of valid walks when neglecting the $v_{i_{l-1}} \neq v_1$ constraint: there are $(n-1)^{l-1}$ such walks (l-1)-walks beginning at v_1).

We then must subtract the number of sequences where $v_{i_{l-1}} = v_1$, (the number of closed l-1-walks) ¹. Repeating the same reasoning, we find the number of closed l-1-walks by taking $(n-1)^{l-2}$ and then subtracting the number of closed l-2-walks. In this way, and finishing with n-1 2-walks, the number of closed l-walks from a vertex to itself is

$$(n-1)^{l-1} - (n-1)^{l-2} + (n-1)^{l-3} + \dots + (-1)^{l}(n-1)$$

$$= \sum_{k=1}^{l-1} (n-1)^k (-1)^{l-1+k}$$

$$= (-1)^{l-1} \sum_{k=1}^{l-1} (1-n)^k$$

$$= (-1)^{l-1} \frac{(1-n)\left((1-n)^{l-1} - 1\right)}{1-n-1}$$

$$= (-1)^l \frac{(1-n)^l - (1-n)}{n}$$

$$= \frac{1}{n} \left((n-1)^l + (n-1)(-1)^l \right),$$

as desired.

Problem 2 (Eigenvalues of some bipartite graphs).

$$(n-1)^{l} - \frac{1}{n} \left((n-1)^{l-1} + (n-1)(-1)^{l-1} \right) = \frac{1}{n} \left((n-1)^{l} + (n-1)(-1)^{l} \right).$$

¹This suggests that we could complete via an inductive proof, using

- (i) Let G[A, B] be a bipartite graph with partite sets A, B. Show by a walk-counting argument that the non-zero eigenvalues of G come in pairs $\pm \lambda$. (Eigenvalues of K_{rs}) Consider the complete bipartite graph $K_{r,s}$ (that is, having partite sets of size r and s)
- (ii) Use purely combinatorial reasoning to compute the number of closed walks of length l in $K_{r,s}$.
- (iii) Deduce the eigenvalues of $K_{r,s}$. (Eigenvalues of $K_{n,n} - nK_2$) Let H_n be the graph $K_{n,n}$ with a perfect matching removed.
- (iv) Show that the eigenvalues of H_n are

$$\pm 1(n-1 \text{ times}), \pm (n-1) \text{ (once each)}.$$

Proof.

(i) Every step on a walk takes us between partite sets A and B. Thus, there are no 2l + 1-walks, meaning that

$$\sum (\lambda_i)^{2l+1} = 0,$$

so

$$\sum (-\lambda_i)^{2l+1} = -\sum (\lambda_i)^{2l+1} = 0 = \sum (\lambda_i)^{2l+1}.$$

As $\sum (\lambda_i)^{2l} = \sum (-\lambda_i)^{2l}$, $\sum \lambda_i^k$ and $\sum (-\lambda_i)^k$ agree for all positive integers k, so the $-\lambda_i$ are simply a permutation of the λ_i , meaning that all nonzero eigenvalues come in $\pm \lambda$ pairs.

(ii) Call the partite with r elements A and the partite with s elements B. If l is odd, there are zero walks. So, we assume l is even. If we begin our l-walk in A, we know go from A to B l times and B to A l times. Each time we go from A to B, we have s options. Each time we go from B to A, we have r options, except the last step, at which point we must return to our original vertex, for which we have r choices. There are thus $s^l r^{l-1} r = (rs)^l l$ -walks beginning in A, and an identical argument gives $(rs)^l l$ -walks beginning in B. There are thus

$$\begin{cases} 0 & l \text{ odd} \\ 2(rs)^l & l \text{ even} \end{cases}$$

l-walks.

(iii) $\sum_{i} \lambda_i^l$ and $(rs)^l + (-rs)^l + (n-2) \cdot (0)^l$ agree for all positive l, so the eigenvalues of $K_{r,s}$ are

$$\pm rs$$
, 0 $(r+s-2 \text{ times})$.

We now consider the $K_{n,n} - nK_2$ graph, providing n = 3 as an example:

(iv) We aim to find the number of l-walks (for even l) on $K_{n,n} - nK_2$. If we write the partites as a_1, a_2, \dots, a_n and b_1, b_2, \dots, b_n such that the a_i and b_i are not connected, but a_i and b_j for $i \neq j$ are connected, then our walk-counting problem becomes analogous to the K_n problem. Any valid will alternate between A and B, but have no index repeated twice in a row. That is, a_1b_2 is a valid step, while a_1b_1 is not. We can use this to establish an bijection between l-walks starting in A and l-walks on K_n , meaning that the total number of l-walks on $K_{n,n} - nK_2$ is

$$2n\left(\frac{1}{n}\left((n-1)^l + (n-1)(-1)^l\right)\right) = 2(n-1)^l + 2(n-1)(-1)^l.$$

For odd l, the number of walks is 0, and so $\sum \lambda_i^l$ agrees for all positive l with

$$(n-1)^l + (1-n)^l + (n-1)((-1)^l + (1)^l),$$

meaning that our eigenvalues are

$$\pm 1(n-1 \text{ times}), \pm (n-1) \text{ (once each)}.$$

Problem 3 (On the largest eigenvalue of A(G); Extra credit).

- (i) Let G be a graph with max degree $\Delta(G)$. Let λ_1 be the largest eigenvalue of A(G). Show that $\lambda_1 \leq \Delta(G)$.
- (ii) Let G be a simple graph with m edges. Show that $\lambda_1 \leq \sqrt{2m}$.

Proof. (i)

Problem 4.

- (i) Start with n coins heads up. Choose a coin at random and turn it over. Do this a total of m times. What is the probability that all coins will have heads up?
- (ii) Same as (i), except now compute the probability that all coins have tails up.
- (iii) Same as (i), but now we turn over two coins at a time.

Solution. i Let \mathbb{Y} be the graph with vertices corresponding to the n+1 possible states of the n coins, and edges between states that differ in exactly one coin. The probability of moving to an adjacent edge on the graph is $\frac{1}{2}$. Thus, each coin flip can be modeled as a random walk on \mathbb{Y} . Starting at \mathbb{Y}_n (all coins heads), we are after the probability of arriving back at \mathbb{Y}_n after m steps. For odd m, it is impossible for all coins to return to being heads, meaning that the probability is 0.

$$P_{ij} = \begin{cases} \frac{1}{2} & \text{if } i \text{ and } j \text{ differ in exactly one coin} \\ 0 & \text{otherwise} \end{cases}$$

ii The probability of all coins having been flipped to tails is the same as the probability of moving from Y_n to Y_0 after m steps.

Problem 5. Let G_n be the graph with vertex set \mathbb{Z}_2^n with the edge set defined as: u and v are adjacent iff they differ in exactly two coordinates (that is, $\omega(u+v)=2$). What are the eigenvalues of G_n ?

Proof. Recall from lecture that the eigenvalues of Q_n are of the from n-2i as i ranges from 0 to n, where $\lambda_i = n-2i$ has multiplicity $\binom{n}{i}$. Consider $A(Q_n)^2$. We aim to show that

$$A(Q_n)^2 = nI_n + 2A(G_n)$$

via a walk counting argument. $A(Q_n)_{ij}^2$ counts the number of 2-walks from i to j (vertices on the hypercube). When i=j, this is precisely $\deg i=n$. When $i\neq j$, for there to be a 2-walk from i to j, we must have $\omega(i+j)=2$. Each step flips one coordinate of i, and since there must be exactly two coordinates to flip, we have 2!=2 such walks. Thus, $A(Q_n)_{ij}^2=2$ when $\omega(i+j)=2$. $2A(G_n)$ is the matrix with 2s when $\omega(i+j)=2$ and zeroes elsewhere, and nI_n is the matrix with ns along the diagonal. Therefore,

$$A(Q_n)^2 = nI_n + 2A(G_n),$$

so for any given eigenvalue λ_i of Q_n , since $A(Q_n)$ is diagonalizable, λ_i^2 is an eigenvalue of $A(Q_n)^2$. Thus,

$$\det(A(Q_n)^2 - \lambda_i^2 I_n) = 0$$
$$\det(nI_n + 2A(G_n) - \lambda_i^2 I_n) = 0$$
$$\det(2A(G_n) - (\lambda_i^2 - n)I_n) = 0$$
$$\det\left(A(G_n) - \frac{\lambda_i^2 - n}{2}I_n\right) = 0,$$

so $\frac{\lambda_i^2 - n}{2} = \frac{(n-2i)^2 - n}{2}$ is an eigenvalue of G_n , as i ranges from 0 to n.