

Katedra Elektrotechniki i Podstaw Informatyki

LABORATORIUM OBWODÓW I SYGNAŁÓW SPRAWOZDANIE

Ćw. nr	Temat		
4	4 Sygnały napięcia i prądu okresowego niesinusoidalnego		
	Opracowali	Rok / gr. lab.	Data wyk. ćw.
1. 2.		1ET-DI / L02	10.12.2018r.

Spis treści

Ι.		wyznaczanie przepiegow okresowych niesinusoidainych i ich parametrow	3
	ı.	Analiza komputerowa	3
	II.	Obliczenia komputerowe	4
2.		Wyznaczanie przebiegów okresowych niesinusoidalnych i ich parametrów graficzne	o
рı	rze	dstawienie funkcji opisującej przebieg Fouriera	
	I.	Analiza komputerowa	8
	II.	Obliczenia komputerowe	9
3.		Analiza obwodu	12
	ı.	Analiza komputerowa	12
	II.	Obliczenia komputerowe	13
	III.	Obliczenia analityczne	18
4.		Analiza obwodu	21
	ı.	Analiza komputerowa	21
	II.	Obliczenia komputerowe	22
	III.	Obliczenia analityczne	28
5.		Zestawienie wyników	30
6.		Wnioski	30

1. Wyznaczanie przebiegów okresowych niesinusoidalnych i ich parametrów

Polecenie: W obwodzie przedstawionym na rys. 4.4 wyznaczyć przebieg napięcia na rezystorze u $R_{wy}(t)$. Dane źródeł podano w tab. 4.1. Pozostałe dane: R_{wy} =100 Ω .

II.	Obliczenia	komi	outerowe

**** 11/26/18 11:22:31 ********* Evaluation PSpice (Nov 1999) ***********
* C:\Users\laboratorium\Desktop\LAB4\Lab_4_1a.sch
**** CIRCUIT DESCRIPTION

* Schematics Version 9.1 - Web Update 1
* Mon Nov 26 11:22:26 2018
** Analysis setup **
tran 0.001 5m 0 0.1u
OPTIONS NOBIAS
OPTIONS NOPAGE
OP

```
* From [PSPICE NETLIST] section of pspiceev.ini:
.lib "nom.lib"
.INC "Lab_4_1a.net"
**** INCLUDING Lab_4_1a.net ****
* Schematics Netlist *
R_Rwy 0 $N_0001 100
V_VU1 $N_0002 0
+SIN 0 25.46479089 1k 0 0 0
V_VU3
          $N_0003 $N_0002
+SIN 0 8.488263632 3k 0 0 0
V_VU5
          $N_0001 $N_0003
+SIN 0 5.092958179 5k 0 0 0
**** RESUMING Lab_4_1a.cir ****
.INC "Lab_4_1a.als"
**** INCLUDING Lab_4_1a.als ****
* Schematics Aliases *
.ALIASES
```

```
R_Rwy Rwy(1=0 2=$N_0001)
V_VU1 VU1(+=$N_0002 -=0)
.ENDALIASES
**** RESUMING Lab_4_1a.cir ****
.probe
.END
**** OPERATING POINT INFORMATION TEMPERATURE = 27.000 DEG C
   JOB CONCLUDED
   TOTAL JOB TIME 1.89
```


2. Wyznaczanie przebiegów okresowych niesinusoidalnych i ich parametrów graficzne przedstawienie funkcji opisującej przebieg Fouriera.

Polecenie:

W obwodzie przedstawionym należy tak dobrać parametry źródeł VU1, VU3 oraz VU5, aby uzyskać przebieg napięcia na rezystorze $U_{RWy}(t)$, zbliżony do przebiegu przedstawionego na rys. 4.10b. Przyjąć amplitudę A = 21 oraz częstotliwość pierwszej harmonicznej kHz f = 1 .

Rys. 4.10. Sygnały okresowe niesinusoidalne i odpowiadające im szeregi Fouriera


```
II. Obliczenia komputerowe
```

- * Schematics Version 9.1 Web Update 1
- * Mon Nov 26 11:47:45 2018
- ** Analysis setup **
- .tran 0.001 5m 0 0.1u
- .OPTIONS NOBIAS
- .OPTIONS NOPAGE
- * From [PSPICE NETLIST] section of pspiceev.ini:
- .lib "nom.lib"
- .INC "Lab_4_2a.net"
- **** INCLUDING Lab 4 2a.net ****
- * Schematics Netlist *

```
R_Rwy 0 $N_0001 100
V VU1 $N 0002 0
+SIN 0 17.868 1k 0 0 0
V_VU3
          $N_0003 $N_0002
+SIN 0 -1.983 3k 0 0 0
V_VU5 $N_0001 $N_0003
+SIN 0 0.714 5k 0 0 0
**** RESUMING Lab_4_2a.cir ****
.INC "Lab_4_2a.als"
**** INCLUDING Lab 4 2a.als ****
* Schematics Aliases *
.ALIASES
R_Rwy Rwy(1=0 2=$N_0001)

V_VU1 VU1(+=$N_0002 -=0)

V_VU3 VU3(+=$N_0003 -=$N_0002)
.ENDALIASES
**** RESUMING Lab_4_2a.cir ****
.probe
.END
```

TOTAL JOB TIME 1.94

3. Analiza obwodu

Polecenie:

Dane obwodu przedstawionego na rys. 4.16a są następujące: $e(t) = \left[75\sin(\omega t + 30^{\circ}) + 14.142\sin(3\omega t)\right] V , \quad \omega = 1 \, rd/s , \quad R_1 = 20 \, \Omega , \quad R_2 = 10 \, \Omega , \quad \frac{1}{\omega C_1}^{(1)} = 100 \, \Omega , \\ \frac{1}{\omega C_3}^{(1)} = 4 \, \Omega , \quad \omega L_2^{(1)} = 10 \, \Omega . \quad \text{Obliczy\'e: a)}. \quad I_1, \quad I_2, \quad U_{L2} \quad \text{(wartości skuteczne); b)}. \quad i_1(t) , \quad i_2(t) , \\ u_{L2}(t) ; \text{ c)}. \quad P, \quad Q.$


```
II. Obliczenia komputerowe
```

```
**** 11/26/18 11:52:29 ******* Evaluation PSpice (Nov 1999) *********
* C:\Users\laboratorium\Desktop\LAB4\Lab_4_3.sch
**** CIRCUIT DESCRIPTION
* Schematics Version 9.1 - Web Update 1
* Mon Nov 26 11:52:29 2018
** Analysis setup **
.tran 0.1 31.415927 0 0.01
.four 0.159155 9 I(V_VDI1) I(V_VDI2) V([$N_0006])
.OPTIONS NOBIAS
.OPTIONS NOPAGE
.OP
* From [PSPICE NETLIST] section of pspiceev.ini:
.lib "nom.lib"
.INC "Lab 4 3.net"
**** INCLUDING Lab_4_3.net ****
* Schematics Netlist *
V_VDI2 $N_0001 0 DC 0V AC 0V
V_VDI1
          $N_0002 $N_0003 DC 0V AC 0V
R_R1
        $N_0004 $N_0002 3
C_C1
        $N_0003 $N_0005 2
C_C3 0 $N_0005 12
```

\$N_0006 \$N_0001 1

L L2

```
R_R2 $N_0006 $N_0005 6
V_VE1 $N_0004 $N_0007
+SIN 0 75 0.159155 0 0 30
V_VE3 $N_0007 0
+SIN 0 14.142 0.477465 0 0 0
**** RESUMING Lab_4_3.cir ****
.INC "Lab_4_3.als"
**** INCLUDING Lab_4_3.als ****
* Schematics Aliases *
.ALIASES
V_VDI1
          VDI1(+=$N_0002 -=$N_0003)
R_R1 R1(1=$N_0004 2=$N_0002)
C_C1 C1(1=$N_0003 2=$N_0005)
C_C3 C3(1=0 2=$N_0005)
L_L2 L2(1=$N_0006 2=$N_0001)
R_R2 R2(1=$N_0006 2=$N_0005)
          VE1(+=$N_0004 -=$N_0007)
V_VE1
        VE3(+=$N_0007 -=0)
V_VE3
.ENDALIASES
**** RESUMING Lab_4_3.cir ****
.probe
.END
 **** OPERATING POINT INFORMATION TEMPERATURE = 27.000 DEG C
        FOURIER ANALYSIS
                                   TEMPERATURE = 27.000 DEG C
```

FOURIER COMPONENTS OF TRANSIENT RESPONSE I(V_VDI1)

DC COMPONENT = -1.721324E-01

HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)

- 1 1.592E-01 2.451E+01 1.000E+00 4.104E+01 0.000E+00
- 2 3.183E-01 1.439E-02 5.873E-04 -1.715E+02 -2.536E+02
- 3 4.775E-01 4.694E+00 1.915E-01 3.700E+00 -1.194E+02
- 4 6.366E-01 7.173E-03 2.927E-04 -1.703E+02 -3.345E+02
- 5 7.958E-01 5.787E-03 2.362E-04 -1.696E+02 -3.748E+02
- 6 9.549E-01 4.869E-03 1.987E-04 -1.676E+02 -4.139E+02
- 7 1.114E+00 4.123E-03 1.682E-04 -1.658E+02 -4.530E+02
- 8 1.273E+00 3.605E-03 1.471E-04 -1.654E+02 -4.936E+02
- 9 1.432E+00 3.290E-03 1.343E-04 -1.635E+02 -5.328E+02

TOTAL HARMONIC DISTORTION = 1.915447E+01 PERCENT

**** FOURIER ANALYSIS TEMPERATURE = 27.000 DEG C

FOURIER COMPONENTS OF TRANSIENT RESPONSE I(V_VDI2)

DC COMPONENT = -6.855779E-01

HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)

- 1 1.592E-01 3.296E-01 1.000E+00 -5.981E+01 0.000E+00
- 2 3.183E-01 7.126E-03 2.162E-02 -1.769E+02 -5.724E+01
- 3 4.775E-01 2.212E-02 6.713E-02 -1.236E+02 5.581E+01
- 4 6.366E-01 3.567E-03 1.082E-02 -1.731E+02 6.617E+01
- 5 7.958E-01 2.857E-03 8.669E-03 -1.713E+02 1.278E+02
- 6 9.549E-01 2.386E-03 7.240E-03 -1.694E+02 1.894E+02
- 7 1.114E+00 2.048E-03 6.213E-03 -1.676E+02 2.510E+02

```
8 1.273E+00 1.799E-03 5.458E-03 -1.659E+02 3.126E+02
```

9 1.432E+00 1.601E-03 4.857E-03 -1.640E+02 3.743E+02

TOTAL HARMONIC DISTORTION = 7.287124E+00 PERCENT

**** FOURIER ANALYSIS TEMPERATURE = 27.000 DEG C

FOURIER COMPONENTS OF TRANSIENT RESPONSE V(\$N 0006)

DC COMPONENT = 7.113448E-03

HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)

```
1 1.592E-01 3.366E-01 1.000E+00 3.232E+01 0.000E+00
```

TOTAL HARMONIC DISTORTION = 1.737386E+01 PERCENT

JOB CONCLUDED

TOTAL JOB TIME .33

^{2 3.183}E-01 1.076E-04 3.196E-04 -1.664E+02 -2.311E+02

^{3 4.775}E-01 5.848E-02 1.737E-01 -2.268E+01 -1.197E+02

^{4 6.366}E-01 5.342E-05 1.587E-04 -1.669E+02 -2.962E+02

^{5 7.958}E-01 4.317E-05 1.283E-04 -1.684E+02 -3.300E+02

^{6 9.549}E-01 3.722E-05 1.106E-04 -1.652E+02 -3.591E+02

^{7 1.114}E+00 3.019E-05 8.969E-05 -1.637E+02 -3.899E+02 8 1.273E+00 2.737E-05 8.131E-05 -1.652E+02 -4.238E+02

^{9 1.432}E+00 2.489E-05 7.395E-05 -1.609E+02 -4.518E+02

III. Obliczenia analityczne

4. Analiza obwodu

Dane obwodu przedstawionego na rys. 4.19 są następujące: $R_1=5~\Omega$, $R_2=20~\Omega$, $\omega L_1^{(1)}=5~\Omega$, $\omega L_3^{(1)}=10~\Omega$, $\frac{1}{\omega C_2}^{(1)}=20~\Omega$, $\omega=1~rd/s$, $e(t)=\left[20+40\sin(\omega t-60^o)+15\sin(2\omega t)\right]{\rm V}$. Obliczyć: a). I_1 , U_{L3} (wartości skuteczne); b). $i_1(t)$, $u_{L3}(t)$; c). S.

II. Obliczenia komputerowe

**** 12/10/18 21:36:42 ******** Evaluation PSpice (Nov 1999) ***********
* C:\Users\Uytkownik\Desktop\OBWODY_I_SYGNALY\LAB4\Schematic2.sch
**** CIRCUIT DESCRIPTION

* Schematics Version 9.1 - Web Update 1
* Mon Dec 10 21:36:39 2018
** Analysis setup **
.tran 0.1 62.831853 0 0.01
.four 0.159155 9 V([\$N_0002],[0]) I(V_VE1)
.OPTIONS NOBIAS
.OPTIONS NOPAGE
.OP

```
* From [PSPICE NETLIST] section of pspiceev.ini:
.lib "nom.lib"
.INC "Schematic2.net"
**** INCLUDING Schematic2.net ****
* Schematics Netlist *
L_L1
       $N_0001 $N_0002 5
R_R2 $N_0003 $N_0002 20
C_C2 0 $N_0003 0.05
V_VE1 $N_0004 $N_0005
+SIN 0 40 0.159155 0 0 -60
V_VE2
         $N_0005 0
+SIN 0 15 0.31831 0 0 0
R_R1 $N_0006 $N_0001 5
L_L3 $N_0002 0 10
V_VE0
       $N_0006 $N_0004 20
**** RESUMING Schematic2.cir ****
.INC "Schematic2.als"
```

```
**** INCLUDING Schematic2.als ****
* Schematics Aliases *
.ALIASES
L_L1
        L1(1=$N_0001 2=$N_0002)
R_R2 R2(1=$N_0003 2=$N_0002)
C_C2 C2(1=0 2=$N_0003)
V_VE1 VE1(+=$N_0004 -=$N_0005)
V_VE2 VE2(+=$N_0005 -=0)
R_R1 R1(1=$N_0006 2=$N_0001)
L_L3 L3(1=$N_0002 2=0)
V_VE0
        VE0(+=$N_0006 -=$N_0004)
.ENDALIASES
**** RESUMING Schematic2.cir ****
.probe
.END
**** OPERATING POINT INFORMATION TEMPERATURE = 27.000 DEG C
```

**** FOURIER ANALYSIS TEMPERATURE = 27.000 DEG C

FOURIER COMPONENTS OF TRANSIENT RESPONSE V(\$N_0002,0)

DC COMPONENT = 1.225919E-04

HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED

NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)

- 1 1.592E-01 2.630E+01 1.000E+00 -5.054E+01 0.000E+00
- 2 3.183E-01 9.864E+00 3.750E-01 -9.466E+00 9.161E+01
- 3 4.775E-01 3.484E-04 1.325E-05 -2.335E+01 1.283E+02
- 4 6.366E-01 2.335E-04 8.877E-06 1.562E+02 3.584E+02
- 5 7.958E-01 3.307E-04 1.257E-05 -1.119E+02 1.408E+02
- 6 9.549E-01 1.563E-04 5.943E-06 -2.694E+01 2.763E+02
- 7 1.114E+00 2.740E-04 1.042E-05 -1.678E+02 1.860E+02
- 8 1.273E+00 5.768E-04 2.193E-05 -1.005E+02 3.038E+02
- 9 1.432E+00 4.310E-04 1.639E-05 -9.285E+00 4.456E+02

TOTAL HARMONIC DISTORTION = 3.749945E+01 PERCENT

**** FOURIER ANALYSIS TEMPERATURE = 27.000 DEG C

FOURIER COMPONENTS OF TRANSIENT RESPONSE I(V_VE1)

DC COMPONENT = -4.000026E+00

HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED

NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)

- 1 1.592E-01 2.079E+00 1.000E+00 5.790E+01 0.000E+00
- 2 3.183E-01 4.932E-01 2.372E-01 1.337E+02 1.787E+01
- 3 4.775E-01 1.648E-05 7.927E-06 1.284E+02 -4.526E+01
- 4 6.366E-01 3.973E-06 1.911E-06 -1.019E+02 -3.335E+02
- 5 7.958E-01 5.912E-06 2.843E-06 8.489E+01 -2.046E+02
- 6 9.549E-01 5.810E-06 2.794E-06 1.642E+02 -1.831E+02
- 7 1.114E+00 5.193E-06 2.497E-06 6.643E+01 -3.388E+02
- 8 1.273E+00 1.929E-05 9.275E-06 1.276E+02 -3.355E+02
- 9 1.432E+00 2.552E-05 1.227E-05 -1.410E+02 -6.621E+02

TOTAL HARMONIC DISTORTION = 2.371657E+01 PERCENT

JOB CONCLUDED

TOTAL JOB TIME .56

III. Obliczenia analityczne

5. Zestawienie wyników

Wielkość	Wynik obliczeń	Wynik analizy komputerowej
S	154,902VA	-
$\underline{U}_{L3}^{(1)}$	18,504e ^{j50,54} V	18,507e ^{j50,54} V
$\underline{U}_{L3}^{(2)}$	6,98e ^{-j9,96} V	6,972e ^{-j9,96} V
<u>U</u> _{L3}	19,861V	
<u>/(1)</u>	1,47e ^{-j122,109} A	1,14e ^{-j122,109} A
<u>/(2)</u>	0,349e ^{-j46,33} A	0,349e ^{j133,33} A
<u>Z</u>	12,649e ^{j62,103}	-

6. Wnioski

Po przeprowadzeniu obliczeń ręcznych oraz komputerowych możemy zauważyć ze wyniki nie różnią się od siebie. Dzięki analizie komputerowej mamy znacznie szybsze otrzymanie wyników niż w przypadku obliczeń ręcznych, kiedy obwody są bardziej złożone.

Następna niesamowitą zaletą symulatora jest ta opcja , że wystarczy zmienić dane w programie a on w bardzo krótkim czasie przeprowadzi nam nowe obliczenia. Ręczne przeprowadzanie obliczeń na innych danych zajmuje nieporównywalnie dużo więcej czasu.