

ZJU-UIUC Institute

Zhejiang University / University of Illinois at Urbana-Champaign Institute

ECE 470: Introduction to Robotics Lecture 03

Liangjing Yang

Assistant Professor, ZJU-UIUC Institute

liangjingyang@intl.zju.edu.cn

Wechat ID: Liangjing_Yang

Schedule Check

Lecture

WK 02

O. Overview

Science & Engineering in Robotics

I. Spatial Representation & Transformation

• Coordinate Systems; Pose Representations; Homogeneous Transformations

Kinematics

Multi-body frame assignment; D-H Convention; Joint-space; Work-space; Forward/<u>Inverse Kinematics</u>

III. Velocity Kinematics and Static Forces

• Translational/Rotational Velocity: Joint torque: Generalized Force Coordinates: Jacobian: Singularity

IV. Dynamics

Lagrangian Formulation; Newton-Euler Equations of Motion

V. Planning

• Joint-based Motion Planning; Cartesian-based Path Planning

VI. Control

Independent Joint/Feedforward/Inverse Dynamics Controls: Controller Architectures

VII. Robot Vision (and Perception)

• Image Formation; Image Processing; Visual Tracking & Pose Estimation; Vision-based Control & Image-guided robotics

garaga reserved

Reading Wk/ Exam on Week 15-16

Fundamentals

Week 1-4

Revision/ Quiz on Week 5

Essentials

Week 6-9

Revision/ Quiz on Week 10

Applied

Week 11-14

- Define robotics
 - Robot: A <u>machine/agent</u> designed to execute <u>task(s)</u> while interacting with the environment
- Appreciate the relevance and scope of robotics
 - Robots designed in various forms for different tasks while operating in different environment
 - Important aspects include: Robot <u>kinematics</u>, <u>dynamics</u>, <u>planning</u>, <u>control and perception</u>
- Familiarize with mathematical representations for spatial description and transformation
 - Coordinate systems and frames can be assigned to describe poses and transformations
 - The <u>homogenous transformation matrix</u> encompasses information on orientation/rotation and position/translation

- Coordinate systems and frames
 - Frame is a coordinate system usually specified in <u>position and</u> orientation relative to other assigned coordinate systems
 - Reference frames can be <u>assigned to rigid bodies</u> for the description
 ↑ of object poses and transformation

Homogenous transformation matrix $\rightarrow {}^{A}T = \begin{bmatrix} {}^{A}R & {}^{A}P_{BORG} \\ \overline{\boldsymbol{o}} & \mathbf{1} \end{bmatrix}$

Can be seen as an multiplication operator of 4 x 4 matrix in 3D space

Composite transformation matrix

$${}_{2}^{0}T = {}_{1}^{0}T {}_{2}^{1}T$$

$${}^{0}_{N}T = {}^{0}_{1}T {}^{1}_{2}T \dots {}^{k-1}_{k}T {}^{k}_{k+1}T \dots {}^{N-1}_{N}T$$

$${}^{k-1}_{k+1}T$$

- Inverse of a homogenous transformation, ${}^{A}T_{B}^{-1}$
- $AT_B^{-1} = BT_A$
 - Reversing the order of reference

$$\bullet {}^{B}\tilde{P} = \begin{bmatrix} {}^{A}R {}^{T} & -{}^{A}R {}^{T} {}^{A}P_{BORG} \\ 0 & 0 & 1 \end{bmatrix} {}^{A}\tilde{P}$$

- Kinematics: The science of motion (a branch of mechanics) without regards to the forces that cause it
 - Pose (/configuration) of the manipulator in static situations
 - Analyze (linear and angular) motion of bodies (/linkages)
- D-H Method: A systematic way to represent the configuration of the serial manipulator
 - 1. Frame assignment
 - 2. D-H parameters and tables
 - 3. Homogenous transformation matrix
- Forward Kinematics: <u>mapping from joint coordinates</u>, or robot configuration <u>to end-effector pose</u>

$$ho_{\rm E}^{0} {
m T} = {}_{1}^{0} {
m T}(q_{1}) \cdot {}_{2}^{1} {
m T}(q_{2}) \cdot {}_{3}^{2} {
m T}(q_{3}) \cdot \cdots {}_{N}^{N-1} {
m T}(q_{N}) \cdot {}_{\rm E}^{N} {
m T}$$

Recap: Summary of DH Frame Assignment

- 1. Identify the joint axes and attach infinite lines along them. For neighboring pair (*i* and *i*+1)
- 2. Identify the common perpendicular or point of intersection. At the point of intersection, or at the point where the common perpendicular meets *i*th axis, assign the link-frame origin.
- 3. Assign the Z_i axis pointing along the ith joint axis.
- 4. Assign the X_i axis pointing along the direction normal to the two neighboring Z-axes.
- 5. Assign the *Y_i* axis to complete a right-hand coordinate system.
- 6. Assign {0} to match {1}. For {N}, choose an origin location and *X* direction freely, but generally so as to cause as many linkage parameters as possible to become zero.

Recap: Summary of DH Frame Assignment

- 1. Identify the joint axes and attach infinite lines along them. For neighboring pair (*i* and *i*+1)
- 2. Identify the common perpendicular or point of intersection. At the point of intersection, or at the point where the common perpendicular meets *i*th axis, assign the link-frame origin.
- 3. Assign the Z_i axis pointing along the ith joint axis.
- 4. Assign the X_i axis pointing along the direction normal to the two neighboring Z-axes.
- 5. Assign the Y_i axis to complete a right-hand coordinate system.
- 6. Assign {0} to match {1}. For {N}, choose an origin location and *X* direction freely, but generally so as to cause as many linkage parameters as possible to become zero.

Recap: Q2.3: Example on an RRR Kinematics

$${}_{1}^{0}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0 \\ s\theta_{1} & c\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{1}T = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & L_{1} \\ s\theta_{2} & c\theta_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{3}^{2}T = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & L_{2} \\ s\theta_{3} & c\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{E}^{3}T = \begin{bmatrix} 1 & 0 & 0 & L3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

5. Forward Kinematics

$${}_{E}^{0}T = {}_{1}^{0}T(\theta_{1}) \cdot {}_{2}^{1}T(\theta_{2}) \cdot {}_{3}^{2}T(\theta_{3}) \cdot {}_{E}^{3}T$$
$${}_{E}^{0}\widetilde{P} = {}_{1}^{0}T(\theta_{1}) \cdot {}_{2}^{1}T(\theta_{2}) \cdot {}_{3}^{2}T(\theta_{3}) \cdot {}_{E}^{3}\widetilde{P}$$

1. Schematic Diagram

2. Frame Assignment

3. DH Parameters & Table

	α_{i-1}	a_{i-1}	$ heta_i$	d_i
1	0	0	$Q1 = \theta_1$	0
2	0	L1	$Q2 = \theta_2$	0
3	0	<i>L</i> 2	$Q3 = \theta_3$	0

4. Homogenous Transformation

$${}^{i-1}_{i}T = R_{x}(\alpha_{i-1})D_{x}(\alpha_{i-1}) R_{z}(\theta_{i})D_{z}(d_{i})$$

$${}^{0}_{3}T = {}^{0}_{1}T {}^{1}_{2}T^{2}_{3}T$$

Tryst

i dilia 300					
	α_{i-1}	a_{i-1}	$ heta_i$	d_i	
1					
2					
3					
4					
5					
6					
\hat{X}_3 \hat{Y}_3 \hat{X}_5 \hat{X}_5 \hat{X}_5					

	α_{i-1}	a_{i-1}	$ heta_i$	d_i
1	0	0	$q_1 = 0$	0
2	$-\frac{\pi}{2}$	0	$q_2 = 0$	0
3	0	a_2	$q_3 = 0$	d_2
4	$-\frac{\pi}{2}$	a_3	$q_4 = 0$	d_3
5	$\frac{\pi}{2}$	0	$q_5 = 0$	0
6	$-\frac{\pi}{2}$	0	$q_6 = 0$	0

Demo on Matlab Robotics Toolbox

$$_{i}^{i-1}T = R_{x}(\alpha_{i-1})D_{x}(\alpha_{i-1}) R_{z}(\theta_{i})D_{z}(d_{i})$$

$$\bullet \quad {}_{1}^{0}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0 \\ s\theta_{1} & c\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\bullet \quad {}_{1}^{0}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0 \\ s\theta_{1} & c\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \bullet \quad {}_{4}^{3}T = \begin{bmatrix} c\theta_{4} & -s\theta_{4} & 0 & a_{3} \\ 0 & 0 & 1 & d_{4} \\ -s\theta_{4} & -c\theta_{4} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\bullet \quad {}_{2}^{1}T = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s\theta_{2} & -c\theta_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \bullet \quad {}_{5}^{4}T = \begin{bmatrix} c\theta_{5} & -s\theta_{5} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ s\theta_{5} & c\theta_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\bullet \quad {}_{5}^{4}T = \begin{bmatrix} c\theta_{5} & -s\theta_{5} & 0 & 0\\ 0 & 0 & -1 & 0\\ s\theta_{5} & c\theta_{5} & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\bullet \quad {}_{3}^{2}T = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & a_{2} \\ s\theta_{3} & c\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\bullet \quad {}_{3}^{2}T = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & a_{2} \\ s\theta_{3} & c\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \bullet \quad {}_{6}^{5}T = \begin{bmatrix} c\theta_{6} & -s\theta_{6} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s\theta_{6} & -c\theta_{6} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{\mathrm{E}}^{0}\mathrm{T} = {}_{1}^{0}\mathrm{T}(\theta_{1}) \cdot {}_{2}^{1}\mathrm{T}(\theta_{2}) \cdot {}_{3}^{2}\mathrm{T}(\theta_{3}) \cdot {}_{4}^{3}\mathrm{T}(\theta_{4}) \cdot {}_{5}^{4}\mathrm{T}(\theta_{5}) \cdot {}_{6}^{5}\mathrm{T}(\theta_{6})$$

Inverse Kinematics

Introduction to Robotics: Fundamentals

Inverse Kinematics

• Inverse kinematics is concerned with <u>obtaining the joint</u> coordinates for a <u>desired end-effector pose</u>

For a particular serial arm ${}^{0}T_{E}(\mathbf{Q})$, solve the joint coordinates $\mathbf{Q} = (q_{1}, \cdots q_{n})$ for desired pose ${}^{0}T_{E}$

Mapping between Kinematics Description

• Inverse kinematics is concerned with <u>obtaining the joint</u> coordinates for a <u>desired end-effector pose</u>

Task 1: Grab the cup at $\{A\} \rightarrow \text{Required joint variables } \mathbf{Q}_A$?

Task 2: Place the cup on $\{B\} \rightarrow \text{Required joint variables } \mathbf{Q}_{B}$?

$${}_{1}^{0}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0\\ s\theta_{1} & c\theta_{1} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{1}T = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & L_{1} \\ s\theta_{2} & c\theta_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{3}^{2}T = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & L_{2} \\ s\theta_{3} & c\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

5. Forward Kinematics

$${}_{E}^{0}T = {}_{1}^{0}T(\theta_{1}) \cdot {}_{2}^{1}T(\theta_{2}) \cdot {}_{3}^{2}T(\theta_{3}) \cdot {}_{E}^{3}T$$
$${}_{E}^{0}\widetilde{P} = {}_{1}^{0}T(\theta_{1}) \cdot {}_{2}^{1}T(\theta_{2}) \cdot {}_{3}^{2}T(\theta_{3}) \cdot {}_{E}^{3}\widetilde{P}$$

1. Schematic Diagram

2. Frame Assignment

3. DH Parameters & Table

	α_{i-1}	a_{i-1}	$ heta_i$	d_i
1	0	0	$Q1 = \theta_1$	0
2	0	L1	$Q2 = \theta_2$	0
3	0	<i>L</i> 2	$Q3 = \theta_3$	0

4. Homogenous Transformation

$${}^{i-1}_{i}T = R_{x}(\alpha_{i-1})D_{x}(\alpha_{i-1}) R_{z}(\theta_{i})D_{z}(d_{i})$$

$${}^{0}_{3}T = {}^{0}_{1}T {}^{1}_{2}T^{2}_{3}T$$

Forward Kinematics

$${}_{E}^{0}T = {}_{1}^{0}T(\theta_{1}) \cdot {}_{2}^{1}T(\theta_{2}) \cdot {}_{3}^{2}T(\theta_{3}) \cdot {}_{E}^{3}T$$
$${}_{E}^{0}\widetilde{P} = {}_{1}^{0}T(\theta_{1}) \cdot {}_{2}^{1}T(\theta_{2}) \cdot {}_{3}^{2}T(\theta_{3}) \cdot {}_{E}^{3}\widetilde{P}$$

Inverse Kinematics

- a) Solve $\theta_1 \theta_2 \theta_3$, such that $^0_ET = ^0_AT$
- b) Solve $\theta_1 \theta_2 \theta_3$, such that $^0_E T = ^0_B T$

Solvability

- 3 Joint Angles
- 3 Unknowns (2 Position, 1 Orientation)

- Solutions can be obtained numerically or analytically
 - Numerical solution
 - Closed-form solution

Existence of Solution

- Workspace
 - **Reachable**: Region where the end-effector can be located
 - **Dexterous**: Region where the end-effector can be <u>located with</u> all orientations

Existence of Solution

- Workspace
 - **Reachable**: Region where the end-effector can be located
 - **Dexterous**: Region where the end-effector can be <u>located with</u> all orientations

End-effector

Existence of Solution

- Workspace
 - **Reachable**: Region where the end-effector can be located
 - **Dexterous**: Region where the end-effector can be <u>located with all orientations</u>

Multiple Solutions

• For the same <u>end-effector pose</u>, there could be <u>2 possible solutions</u>

Q 3.2 Concept Check

When will the solution be unique?

Forward Kinematics

$${}_{E}^{0}T = {}_{1}^{0}T(\theta_{1}) \cdot {}_{2}^{1}T(\theta_{2}) \cdot {}_{3}^{2}T(\theta_{3}) \cdot {}_{E}^{3}T$$
$${}_{E}^{0}\widetilde{P} = {}_{1}^{0}T(\theta_{1}) \cdot {}_{2}^{1}T(\theta_{2}) \cdot {}_{3}^{2}T(\theta_{3}) \cdot {}_{E}^{3}\widetilde{P}$$

Inverse Kinematics

- a) Solve $\theta_1 \theta_2 \theta_3$, such that $^0_ET = ^0_AT$
- b) Solve $\theta_1 \theta_2 \theta_3$, such that $^0_E T = ^0_B T$

Inverse Kinematics

a) Solve $\theta_1 \theta_2 \theta_3$, such that $^0_E T = ^0_A T$

a) Solve θ_1 , θ_2 , θ_3 , such that:

$${}_{3}^{0}T = \begin{bmatrix} c_{123} & -s_{123} & 0 & L1c_{1} + L2c_{12} \\ s_{123} & c_{123} & 0 & L1s_{1} + L2s_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Generally

$$\begin{bmatrix} c_{123} & -s_{123} & 0 & l_1c_1 + l_2c_{12} \\ s_{123} & c_{123} & 0 & l_1s_1 + l_2s_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos(\varphi) & -\sin(\varphi) & 0 & x \\ \sin(\varphi) & \cos(\varphi) & 0 & y \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

See textbook Section 4.4

Inverse Kinematics

a) Solve $\theta_1 \theta_2 \theta_3$, such that $^0_E T = ^0_A T$

Generally

$$\begin{bmatrix} c_{123} & -s_{123} & 0 & l_1c_1 + l_2c_{12} \\ s_{123} & c_{123} & 0 & l_1s_1 + l_2s_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos(\varphi) & -\sin(\varphi) & 0 & x \\ \sin(\varphi) & \cos(\varphi) & 0 & y \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Three unknowns:

Four nonlinear equations:

$$\cos(\varphi) = c_{123} \tag{1}$$

$$\sin(\varphi) = s_{123} \tag{2}$$

$$x = l_1 c_1 + l_2 c_{12} \tag{3}$$

$$y = l_1 s_1 + l_2 s_{12} \tag{4}$$

Inverse Kinematics

Algebraic Approach

Three unknowns:

Four nonlinear equations:

$$\cos(\varphi) = c_{123} \tag{1}$$

$$\sin(\varphi) = s_{123} \tag{2}$$

$$x = l_1 c_1 + l_2 c_{12} \tag{3}$$

$$y = l_1 s_1 + l_2 s_{12} \tag{4}$$

$$C_{123} = (05)(0, +0, +03)$$

(3) & (4):
$$x^2 + y^2 = l_1^2 + l_2^2 + 2l_1l_2c_2$$
 $*c_{12} = c_1c_2 - s_1s_2$ $c_2 = \frac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1l_2}$

- Right hand side must be between -1 and 1, else out of workspace
- θ_2 is solved

(3):
$$x = l_1 c_1 + l_2 c_{12} = l_1 c_1 + l_2 c_1 c_2 - l_2 s_1 s_2$$

 $(l_1 + l_2 c_2) c_1 - l_2 s_2 s_1 = R \sin(\theta_1 + \gamma)$ $a \sin \vartheta \pm b \cos \vartheta \equiv R \sin(\vartheta \pm \alpha)$

Where
$$R = \sqrt{(l_1 + l_2 c_2)^2 + l_2^2 s_2^2}$$
 and $\gamma = -\tan^{-1} \frac{(l_1 + l_2 c_2)}{l_2 s_2}$

- θ_1 is solved

From (1) or (2),
$$\theta_1 + \theta_2 + \theta_3 = \phi$$

 $-\theta_3$ is solved

Inverse Kinematics

Geometrical Approach?

Velocity Kinematics and Static Forces

Introduction to Robotics: Fundamentals

Velocity and Jacobian

Introduction to Robotics: Fundamentals

Revisit Orientation/Rotation

- Representation:
- 1. Euler Angle
- 2. Rotation Matrix
- 3. Rotation Vector
- 4. Unit Quaternion

Revisit Orientation/Rotation

- Representation:
- 1. Euler Angle
- 2. Rotation Matrix
- 3. Rotation Vector
- 4. Unit Quaternion

Rotation

- Any rotation can be expressed as:
 - 1. Rotation of angle θ
 - 2. About some rotation axis $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$

Review: Position

$$^{A}P = ^{A}P_{B,ORG} + ^{A}_{B}R \cdot ^{B}P$$

Concept Check

• It is given that the point is stationary in frame {B}. Can we conclude that the velocity of the point is zero in frame {A}?

