Trabalho Final

Desenvolver uma Inteligência Artificial (IA) capaz de dirigir um carro em um jogo de corrida virtual, utilizando redes neurais e aprendizado de máquina. O aluno deverá implementar uma das seguintes abordagens para treinar a IA:

1. Rede Neural Simples (MLP)

Se quisermos que o carro aprenda com exemplos, podemos usar uma rede neural feedforward (MLP).

Como funciona? Pegamos os dados dos sensores (car.get_data()) e ensinamos a rede a prever comandos como acelerar, frear e virar.

Como treinar? Precisamos de um conjunto de dados com exemplos de direção, que pode ser coletado manualmente ou gerado por um algoritmo simples.

2. Rede Neural com Algoritmo Genético (GA)

Se não quisermos fornecer exemplos, podemos deixar a IA evoluir sozinha!

Como funciona? Criamos várias redes neurais aleatórias e vemos quais dirigem melhor. As melhores são combinadas e modificadas ao longo de várias gerações.

Como treinar? Em vez de dados rotulados, usamos um critério de sobrevivência – por exemplo, a rede que percorre a maior distância sem bater continua evoluindo.

Bibliotecas recomendadas: DEAP, NEAT-Python, ou uma implementação personalizada com NumPy.

3. NEAT - Aprendizado Evolutivo Inteligente

Se quisermos algo ainda mais avançado, podemos usar NEAT, um método que evolui não só os pesos da rede, mas também sua estrutura.

Como funciona? Começamos com redes neurais pequenas e simples, e ao longo das gerações, elas vão crescendo e se tornando mais eficientes.

Como treinar? Assim como no algoritmo genético, basta definir um critério de sobrevivência, e o NEAT faz o resto automaticamente.

Biblioteca recomendada: NEAT-Python.

Implementação da IA:

O script do jogo está no **teams**, para rodar ele precisa das seguintes bibliotecas:

pip install pygame numpy

A parte principal do trabalho consiste em criar e treinar a rede neural para que o carro aprenda a dirigir. Para isso, os seguintes elementos do jogo devem ser utilizados:

car.get_data(): Retorna as distâncias dos sensores, que serão a entrada da rede neural.

car.angle e car.speed: São as saídas da rede neural, definindo as ações que o carro irá executar (girar e acelerar).

car.get_reward(): Retorna a recompensa que a lA recebe por sua performance, usada para melhorar o aprendizado.

O script que envio para vocês mostra o carro sendo controlado pelas setas do teclado. Vocês deverão remover essa parte e inserir o código de vocês. Todas as partes estão comentadas.

Pontuação do trabalho:

- Implementação do script (Comente o script): 50 pontos;
- Dar uma volta completa: 40 pontos;
- Relatório explicando o script e mostrando o resultado: 10 pontos.

O trabalho é em grupo de 4 alunos.

O carro com o menor tempo ganhará 5 pontos extras no total do semestre, se tiver empate será avaliado em outro mapa. (Será considerado os trabalhos sem bibliotecas prontas)