Assignment - 1

UG Sem-III (CC-05)

Session: July, 2023 - December, 2023

August 22, 2023

1. For numerical purpose, the recurrence relation among Legendre's polynomials is

$$P_{n+1} = 2xP_n - P_{n-1} - \frac{1}{n+1}(xP_n - P_{n-1})$$
 (1)

Write a Python program to generate $P_m(x)$ for any arbitrary $m \ge 2$ on N number of discrete point x_i for i=0,1,2,...,(N-1) with $x_0=-1$ and $x_{N-1}=1$. Initial condition to use the recurrence relation is given by specifying $P_0(x)=1$ and $P_1(x)=x$.

Plot $P_m(x)$ in $-1 \le x \le 1$

- 2. Write a Python program
 - (a) To generate pair of $P_m(x)$ and $P_n(x)$ for any arbitrary set m, n using equation (1) in the interval $-1 \le x \le 1$.
 - (b) Compute the following integration

$$\int_{-1}^{1} P_m(x) P_n(x) \, dx$$

for two different cases: $m \neq n$ and m = n

- **3.** Write a Python program
 - (a) To generate set of Legendre polynomials $P_2(x)$, $P_3(x)$, $P_m(x)$ for any arbitrary value of $m \ge 2$ using the recurrence relation (1).
 - (b) Construct an $(m \times m)$ square matrix say M such that its elements are defined as nearest integer value of the following integral

$$[\mathbf{M}]_{i,j} = \left(i + \frac{1}{2}\right) \int_{-1}^{1} P_i(x) P_j(x) dx$$
 ; $i, j = 0, 1, 2, ..., m$

- **4.** Write a Python program
 - (a) To generate set of Legendre polynomials $P_2(x)$, $P_3(x)$, $P_4(x)$,...., $P_m(x)$ for any arbitrary value of $m \ge 2$ using the recurrence relation (1).
 - (b) A function f(x) is defined in the range $-1 \le x \le 1$:

$$f(x) = \begin{cases} 0 & ; & -1 \le x < 0 \\ 1 & ; & 0 \le x \le 1 \end{cases}$$

Obtain the coefficients C_l (for l = 0, 1, 2, ..., m) of the Legendre series expansion:

$$f(x) = \sum_{l=0}^{\infty} C_l P_l(x)$$

1

(c) Define a function:

$$\sigma(x;n) = \sum_{l=0}^{n} C_l P_l(x)$$

Plot this function in the range $-1 \le x \le 1$ with n = 0, 1, 2, 3, ..., m. Hence, explain your observation.