









## Predicting Argument Density from Multiple Annotations

Gil Rocha<sup>1,3</sup>, Bernardo Leite<sup>1,3</sup>, Luís Trigo<sup>1,3</sup>, <u>Henrique Lopes Cardoso<sup>1,3</sup></u>, Rui Sousa-Silva<sup>2,4</sup>, Paula Carvalho<sup>5</sup>, Bruno Martins<sup>5</sup>, and Miguel Won<sup>5</sup>

- <sup>1</sup> Faculdade de Engenharia, Universidade do Porto, Portugal
  - <sup>2</sup> Faculdade de Letras, Universidade do Porto, Portugal
- <sup>3</sup> Laboratório de Inteligência Artificial e Ciência de Computadores (LIACC)
  - <sup>4</sup> Centro de Linguística da Universidade do Porto (CLUP)
    - <sup>5</sup> INESC-ID, Lisboa, Portugal

NLDB 2022 June 15-17, 2022 Universitat Politècnica de Valencia, Spain

Cofinanciado por:









#### **Outline**

- Introduction
  - context and research goals
- Argument Density Prediction and Ranking
  - o tasks, aggregation strategies
- Experiments and Results
- Conclusions

## Introduction

#### **Argument Annotation**

# A corpus of Portuguese **opinion articles** annotated with arguments (DARGMINTS project)

1. Primeiro, as primeiras coisas. A Venezuela vive uma crise humanitária. Não há como a esconder. Largos milhões de pessoas sobrevivem no limiar da fome, estão desprovidos de qualquer serviço básico de saúde, expostos a altíssimos níveis violência. Já abandonaram o país 3,5 milhões de venezuelanos, dos quais um terço se refugiou na Colômbia, havendo regiões onde a situação se antolha dramática. É a maior deslocação de população na história das Américas.



#### **Argument Annotation**

#### Annotating a corpus with **argument structures** is a complex task

- requires semantically-demanding interpretation skills
- argumentative discourse markers may be absent
- difficult to obtain agreement between different annotators

#### Different **text genres** include argumentative content of varying degrees

- Essays are highly structured documents: explicit argumentation, full of discourse markers
- Opinion articles tend to be more subtle: argumentative reasoning steps are harder to capture

## Agreement and Perspectivism

373 opinion articles, each with 3 annotations (from a pool of 4 annotators)

- agreement on identifying argumentative discourse unit (ADU) spans [Rocha et al., LREC 2022]
  - Krippendorff's  $\alpha = 0.33$  (fair agreement)

|            | A,B,C | A,B,D | A,C,D | B,C,D |
|------------|-------|-------|-------|-------|
| $\alpha_U$ | .36   | .29   | .32   | .35   |

Can we take advantage of the subjective analysis of each annotator?

- a perspectivist approach to disagreement in NLP [Basile, 2020; Basile et al., 2021]
- generating diverse consolidated corpora taking into account subjective phenomena

#### Research Goals

Study different techniques for aggregating ADU annotations
 We propose different strategies (union, intersection and probabilistic) for aggregating ADU annotations from different annotators.

2. Address the task of **argumentative density prediction** and **ranking**We study the impact of using different aggregation strategies on these tasks.
We provide source code and BERT-based models: <a href="https://github.com/DARGMINTS/argument-density">https://github.com/DARGMINTS/argument-density</a>

## **Argument Density Prediction and Ranking**

### **Argument Density**

Text input:  $\mathcal{T} = \langle t_1, ..., t_m \rangle$ 

Argumentative content:  $\mathcal{T}^* = \langle t_1^*, ..., t_n^* \rangle$ , such that  $n \leq m, \forall i : t_i^* \in \mathcal{T}$ 

**Argument density (AD)** is the proportion of argumentative tokens:  $\rho = |\mathcal{T}^{\star}|/m$ 

#### AD Prediction: a regression task

- $\rho = 1$ : all tokens in the input sequence are included in ADUs
- $\rho = 0$ : none of the tokens in the input sequence are included in ADUs

## Argument Density Prediction and Ranking



Workflow for both Argument Density Prediction and Ranking tasks.

## Computing Argument Density from Multiple Annotations

Annotation aggregation strategies: union (*U*), intersection (*I*), probabilistic (*P*)

Let  $\mathcal{T}^k$  be the set of tokens annotated by annotator  $k \in K$ 

• Union (U): set of tokens that were annotated by at least one annotator

$$\mathcal{U} = \langle t_i : \bigvee t_i \in \mathcal{T}^k, \forall k \in K, \forall i \in [1, m] \rangle$$
 
$$\rho(\mathcal{U}) = |\mathcal{U}|/m$$

• Intersection (1): set of tokens that were annotated by all annotators

$$\mathcal{I} = \langle t_i : \bigwedge t_i \in \mathcal{T}^k, \forall k \in K, \forall i \in [1, m] \rangle$$
 
$$\rho(\mathcal{I}) = |\mathcal{I}|/m$$

• Probabilistic (P): set of tokens weighed by the ratio of annotators that have annotated them

$$\mathcal{P} = \langle w_i : w_i \in [0, 1], \forall i \in [1, m] \rangle \qquad \qquad \rho(\mathcal{P}) = (\sum_i^m w_i) / m$$

## Computing Argument Density from Multiple Annotations

#### Example annotations:



- Union (*U*): [3-15]
  - $\circ$   $\rho(U) = 13/20 = 0.65$
- **Intersection (/)**: [7-10]
  - $\rho(I) = 4/20 = 0.2$
- Probabilistic (P): [7-10]x3 + [3-6]x2 + [11-12]x2 + [13-15]x1
  - $\rho(P) = (4x3 + 6x2 + 3x1)/3/20 = 0.45$

### Paragraph-level Argument Density Distributions



## **Experiments and Results**

### **Experimental Setup**

Goal: compare **AD** prediction for different aggregation strategies

#### Data Preparation

- 15 generated datasets:
   5 annotator combinations × 3 aggregation techniques
- Density prediction is made at the paragraph-level

| +<br>! | l All       | (A,B,C) | <br>  (A,B,D) | (A,C,D) | (B,C,D)    |
|--------|-------------|---------|---------------|---------|------------|
| Union  | dataset 1   |         |               |         |            |
| Int.   |             |         |               |         |            |
| Prob.  | <br>   <br> |         |               |         | dataset 15 |

#### Setup

- 10-fold cross-validation with 8-1-1 train-validation-test splits (with similar mean density)
- Fine-tune mBERT for the regression task of AD prediction (loss = mean squared error)
- Baseline: dummy regressor (predict mean of the training set)

#### **Density Prediction Results**

|               | All |      | $\langle A, B, C \rangle$ |     |      |         | $\langle A, E \rangle$ | $ B,D\rangle$ |         | $\langle A, C \rangle$ | $C,D\rangle$ | $\langle B, C, D \rangle$ |     |      |         |
|---------------|-----|------|---------------------------|-----|------|---------|------------------------|---------------|---------|------------------------|--------------|---------------------------|-----|------|---------|
|               | bl  | BERT | mean AD                   | bl  | BERT | mean AD | bl                     | BERT          | mean AD | bl                     | <b>BERT</b>  | mean AD                   | bl  | BERT | mean AD |
| U             | .14 | .09  | .37                       | .12 | .09  | .31     | .13                    | .09           | .33     | .12                    | .08          | .29                       | .13 | .09  | .34     |
| $\mathcal{I}$ | .03 | .02  | .07                       | .04 | .04  | .10     | .04                    | .03           | .09     | .03                    | .03          | .08                       | .05 | .04  | .11     |
| $\mathcal{P}$ | .06 | .03  | .20                       | .06 | .04  | .20     | .06                    | .04           | .21     | .06                    | .04          | .18                       | .07 | .04  | .22     |

**bl / BERT** = MSE for baseline / mBERT; **mean AD** = mean argument density in the dataset

- Comparing aggregation techniques
  - Higher MSE for Union (despite improvements over baseline)
  - Lowest MSE for Intersection (but very sparse dataset, hence least improvements)
- Comparing sets of annotators
  - All yields results with reduced MSE for both Intersection and Probabilistic
  - MSE results do not seem to be aligned with IAA scores

|            | (A,B,C) | (A,B,D) | (A,C,D) | (B,C,D) | Mean |
|------------|---------|---------|---------|---------|------|
| $\alpha_U$ | .43     | .36     | .38     | .41     | .39  |

### Paragraph Ranking

Are the paragraphs with **highest predicted AD** the ones with **higher AD**?

- Normalized Discounted Cumulative Gain (NDCG)
  - sums the scores ranked in the order induced by the predicted AD (with logarithmic discount)
  - normalizes by the best possible score (induced by the true AD)

$$NDCG = \frac{DCG_p}{IDCG_p} = \frac{\sum_{i=1}^{p} \frac{rel_i}{\log_2(i+1)}}{\sum_{i=1}^{|REL_p|} \frac{rel_i}{\log_2(i+1)}}$$

- Top-k accuracy
  - computes how many of the k paragraphs with higher AD are among the k paragraphs with higher predicted AD

## Paragraph Ranking (NDCG)

|        | All              |     |     | $\langle A, B, C \rangle$ |     |     | $\langle A, B, D \rangle$ |     |     | $\langle A, C, D \rangle$ |     |     | $\langle B, C, D \rangle$ |     |     |     |
|--------|------------------|-----|-----|---------------------------|-----|-----|---------------------------|-----|-----|---------------------------|-----|-----|---------------------------|-----|-----|-----|
|        | k                | 1   | 5   | all                       | 1   | 5   | all |
| 11     | baseline         | .45 | .56 | .75                       | .41 | .54 | .73                       | .42 | .54 | .73                       | .38 | .52 | .71                       | .43 | .55 | .74 |
| CI     | BERT             | .74 | .81 | .89                       | .66 | .76 | .86                       | .72 | .80 | .88                       | .71 | .78 | .87                       | .70 | .79 | .87 |
| $\tau$ | baseline         | .16 | .34 | .48                       | .20 | .39 | .54                       | .19 | .37 | .52                       | .18 | .36 | .50                       | .21 | .39 | .55 |
| L      | BERT             | .44 | .61 | .66                       | .47 | .65 | .71                       | .49 | .65 | .71                       | .47 | .64 | .69                       | .50 | .66 | .73 |
| D      | baseline<br>BERT | .37 | .52 | .71                       | .36 | .51 | .70                       | .36 | .52 | .70                       | .34 | .49 | .68                       | .37 | .52 | .70 |
| Ρ      | BERT             | .71 | .81 | .88                       | .65 | .77 | .86                       | .70 | .79 | .87                       | .70 | .79 | .87                       | .69 | .79 | .87 |

- Worse baseline results for Intersection (in contrast with AD prediction)
  - The only strategy where All gets worse results than any annotator trio (for baseline and BERT)
- Best values are obtained for the Union and Probabilistic strategies
  - Avg improvement for BERT over baseline: 48% (Union), 90% (Intersection), 61% (Probabilistic)
- Results improve as k increases (as expected), with **best results** for **Union** and **Probabilistic**
- Again, no clear alignment with IAA scores

## Paragraph Ranking (Top-k)

|               | All      |     |     | (A, I | 3, C) | (A, I | 3, D) | (A, C | C, D) | (B, C, D) |     |  |
|---------------|----------|-----|-----|-------|-------|-------|-------|-------|-------|-----------|-----|--|
|               | k        | 1   | 5   | 1     | 5     | 1     | 5     | 1     | 5     | 1         | 5   |  |
| 11            | baseline | .09 | .54 | .10   | .56   | .10   | .54   | .09   | .57   | .10       | .54 |  |
| и             | BERT     | .21 | .69 | .22   | .67   | .19   | .70   | .25   | .70   | .21       | .69 |  |
| $\tau$        | baseline | .21 | .80 | .16   | .75   | .18   | .75   | .19   | .77   | .15       | .73 |  |
| L             | BERT     | .29 | .59 | .28   | .63   | .31   | .62   | .30   | .61   | .29       | .63 |  |
| $\mathcal{D}$ | baseline | .10 | .54 | .13   | .56   | .09   | .55   | .10   | .57   | .10       | .54 |  |
|               | BERT     | .33 | .72 | .28   | .70   | .33   | .71   | .35   | .72   | .32       | .70 |  |

- For **Intersection**, BERT is **unable to improve** accuracy for k=5
- Results improve as k increases (as expected)
  - $\circ$  k=1 setup is very challenging, most results below 33%
  - $\circ$  BERT obtains the **best scores** for k=5 with the **Probabilistic** strategy
- Again, no observed alignment with IAA scores

## Conclusions

#### Conclusions

**Argument annotation** in opinion articles is a **demanding task** 

#### Aggregation strategies are needed to leverage different annotator biases

- Intersection strategy is too demanding and negatively impacts downstream tasks
- **Probabilistic** strategy seems to be the most sensible approach (looking at both AD and ranking)
- Annotator selection did not bring any significant improvement and does not correlate with IAA

#### **Argument Density Prediction and Ranking**

- Simpler argument mining tasks useful for measuring the merits of annotation aggregation strategies
- BERT-based models shown to be able to learn from multiple annotations

#### Future Work

- Explore other aggregation techniques (e.g., Bayesian and vector-based)
- For argument density, train the models directly in the ranking task











## Predicting Argument Density from Multiple Annotations

Thank you!

**Questions?** 

NLDB 2022 June 15-17, 2022 Universitat Politècnica de Valencia, Spain

Cofinanciado por:







