Positive Semidefinite Matrices

Definition: Positive Semidefinite

To say that A is positive semidefinite means $\forall \vec{x} \in \mathbb{C}^n$:

$$\vec{x}^* A \vec{x} > 0$$

Note that A positive semidefinite $\implies A$ Hermitian.

Also note that A positive definite $\implies A$ positive semidefinite,

Properties: Positive Semidefinite

1). $A \in M_n$ positive semidefinite $\implies \operatorname{Sp}(A) \subseteq [0, \infty)$

Assume A is positive semidefinite

Assume $\vec{x} \in \mathbb{C}^n$ such that $\vec{x} \neq \vec{0}$

$$\vec{x} * A \vec{x} > 0$$

Let $\vec{x} \in \text{Eig}_A(\lambda)$ such that \vec{x} is a unit vector

$$\vec{x}^* A \vec{x} = \vec{x}^* \lambda \vec{x} = \lambda \vec{x}^* \vec{x} = \lambda \ge 0$$

2). $A \in M_n$ positive semidefinite $\implies a_{ii} \ge 0$

Assume ${\cal A}$ is positive semidefinite

$$\vec{e}_i^* A \vec{e}_i = a_{ii} \ge 0$$

3). $A \in M_n$ positive semidefinite $\implies \forall S \in GL(n), S^*AS$ positive semidefinite

 $\label{eq:Assume A is positive semidefinite} Assume \ A \ is \ positive \ semidefinite$

Assume $\vec{x} \in \mathbb{C}^n$ such that $\vec{x} \neq \vec{0}$

$$\vec{x}^*(S^*AS)\vec{x} = (\vec{x}^*S^*)A(S\vec{x}) = (S\vec{x})^*A(S\vec{x}) = \vec{y}^*A\vec{y} \ge 0$$

- $\therefore S^*AS$ is positive semidefinite.
- 4). $A \in M_n$ positive semidefinite \implies any principle submatrix B of A is positive semidefinite

Assume A is positive semidefinite

AWLOG: B is a leading principle submatrix, otherwise permute and note property (3)

Assume $\vec{x} \in \mathbb{C}^k$ for $1 \leq k \leq n$

$$\begin{bmatrix} \vec{x}^* & 0 \end{bmatrix} \begin{bmatrix} B & * \\ \hline * & * \end{bmatrix} \begin{bmatrix} \vec{x} \\ 0 \end{bmatrix} = \vec{x}^* B \vec{x} \ge 0$$

 \therefore B is positive semidefinite.

Theorem

Let $A \in M_n$. A positive semidefinite \iff A Hermitian and $\operatorname{Sp}(A) \subseteq [0, \infty)$

Proof

 \implies Assume A is positive semidefinite

A is also Hermitian By property (1), $\forall \lambda \in \operatorname{Sp}(A), \lambda \geq 0$

 \iff Assume A is Hermitian and $\mathrm{Sp}(A) \subseteq [0,\infty)$

Assume $\lambda \in \operatorname{Sp}(A)$

Let \vec{x} be a unit eigenvector associated with λ

 $\vec{x}^* A \vec{x} = \vec{x}^* \lambda \vec{x} = \lambda \vec{x}^* \vec{x} = \lambda \ge 0$

 \therefore A is positive semidefinite.

Theorem

Let $A \in M_n$. A positive semidefinite $\implies A$ Hermitian and $\det A_k \ge 0$ for all $1 \le k \le n$, where A_k is the $k \times k$ leading principle submatrix of A.

Proof

Assume *A* is positive semidefinite A is Hermitian Assume $1 \le k \le n$ A_k is positive semidefinite Assume $\lambda \in \sigma(A_k)$ $\lambda \ge 0$ $\det A_k = \prod_{i=1}^k \lambda_i(A_k) \ge 0$

Note that the converse is not true for positive semidefinite. Consider the following counterexample:

$$A = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$$

A is Hermitian and $\det A_k = 0$; however, A is not positive semidefinite due to the negative eigenvalue.