

# DeepPurple

PI: Vahid Tarokh

Yu Xiang, Yuting Sun, Enmao Diao, Jie Ding, Jiawen Zhou

School of Eng. & Applied Sciences (SEAS)

Harvard University

- ☐ Main challenge: lack of data
  - ❖ Due to missing data, only 18 subjects can be studied
  - ❖ Before inoculation, *only two days* of data are available

- ☐ Goal: Predict infection after the inoculation within shortest time range
- ☐ Focus on: *Physiological sensor data*
- ☐ Physiological sensor data (wearable device):
  - Electro-dermal activity (EDA),
  - ♦ Heart rate (HR)
  - Skin temperature (Temp)
- ☐ Features of physiological sensor data
  - Easy to collect and low expense
  - Less informative

- ☐ Our approach:
  - (1) Apply Random Forest (RF) to make prediction
  - (2) Use the prediction error as the features

☐ Key consideration:

The model should make use of 24-hour data (one period) to make inference

- ☐ Propose two approaches based on RF
  - The first approach serves as a preliminary model, which shows some promising features but is not quite stable
  - ❖ The second approach is an improvement of the first approach to make the model stable

- ☐ Preprocessing of the data:
  - ❖ For each parameter (HR, TEMP, EDA), down-sample all the points in each hour to one point (take the median)
    - 1. 48-hour before inoculation:  $\mathbf{a} = \{a_1, ..., a_{48}\}$
    - 2. 24-hour after inoculation:  $\mathbf{b} = \{b_1, \dots, b_{24}\}$
- Overview of the first method
  - $\bullet$  Use  $\mathbf{a}=\{a_1,\dots,a_{48}\}$  to train *one random forest* and make predictions  $\widehat{\pmb{b}}=\{\widehat{b}_1,\dots,\widehat{b}_{24}\}$
  - ightharpoonup Distance(**b**,  $\hat{\mathbf{b}}$ ) will be the features

### **DARPA** First Approach: Details

- ☐ Initial training based on the 48 hours before inoculation + update the RF during prediction
  - **\Leftharpoonup** Let  $a_k = \{a_k, a_{k+1}, \dots, a_{k+23}\}$  to predict  $a_{k+24}$ , for  $k \in \{1, \dots, 24\}$
  - ❖ In words, use  $\{k, ..., k+23\}$ -th hours to predict the (k+24)-th hour for  $k \in \{1, ..., 24\}$
  - Summary: one RF each with 24 variables and 24 training sets (con: training set too small so result not stable)
- ☐ Prediction: predict the 24 hours after inoculation
  - Predict the t-th hour using the trained random forest and the predicted data
  - $\diamond$  Distance(**b**,  $\hat{\mathbf{b}}$ ) will be the features: dynamic time warping (DTW)



# **DARPA** Issues with the First Approach

- ☐ Training set too small compared with the number of features
- ☐ Main improvement:
  - ❖ Increase training set by making better use of the data (down-sample to 1 point per minute)
  - ❖ Take into account the 24 hour periodicity

#### ☐ Preprocessing of the data:

- ❖ For each parameter (HR, TEMP, EDA), down-sample all the points in each minute to one point (take the median)
  - 1. 48-hour before inoculation:  $48\times60=2880$  points  $\mathbf{a}=\{a_1,...,a_{2880}\}$
  - 2. 24-hour after inoculation: 24 points  $\mathbf{b} = \{b_1, \dots, b_{24}\}$
- ☐ Overview of the second method
  - Use **a** to train *one random forests* and make predictions  $\hat{b} = \{\hat{b}_1, ..., \hat{b}_{24}\}$
  - $\diamond$  Distance(**b**,  $\hat{\mathbf{b}}$ ) will be the features

### **DARPA** Second Approach: Details

- Initial training based on the 48 hours before inoculation + update the RF during prediction
  - **\Leftharpoonup** Let  $a_k = \{a_k, a_{T+k}, a_{2T+k}, ..., a_{23T+k}\}$  with T = 60 and  $k \in \{1, ..., 60\}$
  - In words, use the k-th minute of  $\{1, ..., 24\}$ -th hours to predict the k-th minute of the 25-th hour and repeat this by sliding through all 48 hours
- Summary: one RF with 24 variables and about 60\*48=2880 training sets





## **DARPA** Second Approach: Details

- ☐ Prediction: predict the 24 hours after inoculation
  - ❖ First down-sample the 48 hours before inoculation to 48 points
  - ❖ Predict the t-th hour after inoculation using the random forest and the predicted data
  - ❖ Distance(**b**, **b**) will be the features: dynamic time warping (DTW)



- ☐ True label (infected or not) is based on *symptom* and *shedding values* 
  - \* 8 non-infected subjects and 10 infected subjects
- ☐ Use simple classification method: SVM
- ☐ Use cross validation to evaluation the performance

- ☐ Move the whole training and testing window (a 3-day window) *to the right* for 5 consecutive hours (step-size is 1 hour)
  - ❖ Did not move the window to the left due to lack of data



- ☐ Decompose two types of errors:
  - ❖ false positive rate = # false positive / total # of non-infected
  - ❖ false negative rate = # false negative / total # of infected

