

# 01.03.02 «Прикладная математика и информатика» Теория вероятностей и математическая статистика Часть 1 Теория вероятностей

Лектор: Лобузов Алексей Аркадьевич

Online-edu.mirea.ru



#### ЛЕКЦИЯ 7

# Характеристики дискретных случайных величин



Математическое ожидание (среднее значение) дискретной случайной величины  $\xi$  находится по формуле:  $M\xi = \sum_i x_i p_i$ , где

 $p_i = P(\xi = x_i)$ . Математическое ожидание существует, если ряд сходится абсолютно.

Свойства математического ожидания: 1)  $\xi = C \Rightarrow M\xi = C$ ;

2) 
$$\xi \ge 0 \Rightarrow M\xi \ge 0$$
;

2) 
$$\xi \ge 0 \Rightarrow M\xi \ge 0$$
; 3)  $M(\alpha\xi) = \alpha M\xi$ ;

4) 
$$|M\xi| \leq M|\xi|$$
;

4) 
$$|M\xi| \le M|\xi|$$
; 5)  $M(\xi_1 + \xi_2) = M\xi_1 + M\xi_2$ ;

6) 
$$\xi_1$$
 и  $\xi_2$  – независимы  $\Rightarrow M(\xi_1 \cdot \xi_2) = (M\xi_1) \cdot (M\xi_2);$ 

7) 
$$\eta = \varphi(\xi) \Rightarrow M\eta = \sum_{i} \varphi(x_i) p_i$$
;

8) 
$$\eta = \varphi(\xi_1, \xi_2) \Rightarrow M\eta = \sum_i \sum_j \varphi(x_i, y_j) p_{ij}$$
.



Дисперсия случайной величины  $\xi$  определяется формулой  $D\xi = M(\xi - M\xi)^2$ , если математические ожидания существуют.

#### Формулы расчёта дисперсии дискретной случайной величины:

1) 
$$D\xi = \sum_{i} (x_i - M\xi)^2 p_i;$$

2) 
$$D\xi = M\xi^2 - (M\xi)^2 = \sum x_i^2 p_i - (\sum_i x_i p_i)^2$$
.

#### Свойства дисперсии:

- 1)  $D\xi \ge 0$ ;
- 2)  $\xi = const \Rightarrow D\xi = 0$ ;
- 3)  $D(\alpha \cdot \xi) = \alpha^2 D\xi$ ;
- 4)  $\xi_{_1}$  и  $\xi_{_2}$  независимы  $\Rightarrow D(\xi_{_1}+\xi_{_2})=D\xi_{_1}+D\xi_{_2}$  .



Среднее квадратическое отклонение случайной величины  $\xi$  определяется формулой  $\sigma_{\xi} = \sqrt{D\xi}$  , если дисперсия существует.

Формулы для вычисления среднего квадратического отклонения дискретной случайной величины:

1) 
$$\sigma_{\xi} = \sqrt{\sum_{i} (x_{i} - M\xi)^{2} p_{i}}$$
; 2)  $\sigma_{\xi} = \sqrt{\sum_{i} x_{i}^{2} p_{i} - (\sum_{i} x_{i} p_{i})^{2}}$ .

Свойства среднего квадратического отклонения:

1) 
$$\sigma_{\xi} \ge 0$$
;

2) 
$$\xi = const \Rightarrow \sigma_{\xi} = 0$$
;

3) 
$$\sigma_{\alpha \cdot \xi} = |\alpha| \cdot \sigma_{\xi}$$
.



Ковариация случайных величин  $\xi_1$  и  $\xi_2$  определяется формулой:  $\mathrm{cov}(\xi_1,\xi_2) = M \big[ (\xi_1 - M\xi_1)(\xi_2 - M\xi_2) \big],$ 

если математические ожидания существуют. Формулы расчёта:

1) 
$$\operatorname{cov}(\xi_1, \xi_2) = \sum_{i} \sum_{j} (x_i - M\xi_1)(y_j - M\xi_2) p_{ij};$$

2) 
$$\operatorname{cov}(\xi_1, \xi_2) = M(\xi_1 \cdot \xi_2) - (M\xi_1) \cdot (M\xi_2) =$$
  
=  $\sum_i \sum_j x_i y_j p_{ij} - (\sum_i x_i p_i) (\sum_j y_j q_j)$ , где  $p_i = \sum_j p_{ij}$ ,  $q_j = \sum_i p_{ij}$ .

#### Свойства ковариации:

1) 
$$cov(\alpha_1 \xi_1 + \alpha_2 \xi_2, \eta) = \alpha_1 cov(\xi_1, \eta) + \alpha_2 cov(\xi_2, \eta);$$

2) 
$$cov(\xi_1,\xi_2) = cov(\xi_2,\xi_1);$$
 3)  $\xi_1$  и  $\xi_2$  – независимы  $\Rightarrow cov(\xi_1,\xi_2) = 0$ 

4) 
$$cov(\xi_1, \xi_2) = \frac{1}{2} \left[ D(\xi_1 + \xi_2) - D\xi_1 - D\xi_2 \right];$$
 5)  $\left| cov(\xi_1, \xi_2) \right| \le \sigma_{\xi_1} \cdot \sigma_{\xi_2}.$ 



Коэффициент корреляции случайных величин  $\xi$  и  $\eta$  определяется формулой:

$$r_{\xi,\eta} = \frac{\text{cov}(\xi,\eta)}{\sigma_{\xi}\sigma_{\eta}}$$

#### Свойства коэффициента корреляции

1) 
$$r_{\xi,\eta} = r_{\eta,\xi}$$
;

2) 
$$\xi$$
 и  $\eta$  – независимы  $\Rightarrow r_{\xi,\eta} = 0$ ;

3) 
$$|r_{\alpha\xi,\eta}| = |r_{\xi,\eta}|$$
;  $r_{\alpha\xi,\eta} = r_{\xi,\eta} \cdot \operatorname{sign}\alpha$ ;

4) 
$$|r_{\xi,\eta}| \le 1$$
 5)  $\eta = A\xi + B \Leftrightarrow |r_{\xi,\eta}| = 1$ 

Если  $r_{\xi,\eta} = 0$  (cov( $\xi,\eta$ )=0), то случайные величины  $\xi$  и  $\eta$ 

называются некоррелированными.

Из некоррелированности независимость не следует.



Производящая функция целочисленной неотрицательной случайной величины  $\xi$  определяется формулой:  $W_{\xi}(s) = Ms^{\xi}$ .

Если задан ряд распределения случайной величины  $\xi$ 

| ζ | 0     | 1     | <br>k     |  |
|---|-------|-------|-----------|--|
| P | $p_0$ | $p_1$ | <br>$p_k$ |  |

то  $W_{\xi}(s) = \sum_{k} s^{k} p_{k}$  (ряд сходится при  $|s| \le 1$ ).

#### Свойства производящей функции

1) 
$$W_{\xi}(1)=1;$$
 2)  $p_k = \frac{1}{k!} W_{\xi}^{(k)}(0);$ 

3) 
$$M\xi = W'_{\xi}(1);$$
 4)  $D\xi = W''_{\xi}(1) + W'_{\xi}(1) - [W'_{\xi}(1)]^2;$ 

5) 
$$\xi$$
 и  $\eta$  – независимы  $\Longrightarrow W_{\xi+\eta}(s) = W_{\xi}(s) \cdot W_{\eta}(s)$ .