Math 4317 (Prof. Swiech, S'18): HW #1

Peter Williams

1/25/2018

Section 1

F. Show that the symmetric difference D, defined in the preceding exercise is also given by $D = (A \cup B) \setminus (A \cap B)$ Show $D = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$:

First, $x \in (A \setminus B) \cup (B \setminus A) \implies x \in (A \setminus B)$ or $x \in (B \setminus A) \implies$, x is in A but not B, or, x is in B but not $A \implies x$ is in A or B but not in A and $B \implies x \in (A \cup B) \setminus (A \cap B)$.

In the other direction, $x \in (A \cup B) \setminus (A \cap B) \implies x \in (A \cup B)$ but not in $(A \cap B) \implies x$ is in A but not B, or, x is in B but not $A \implies x \in (A \setminus B)$ or $x \in (B \setminus A) \implies x \in (A \setminus B) \cup (B \setminus A) \implies (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$

I. If $\{A_1, A_2, ..., A_n\}$ is a collection of sets, and if E is any set, show that:

(i)
$$E \cap \bigcup_{i=1}^n A_i = \bigcup_{i=1}^n (E \cap A_i)$$
, and (ii), $E \cup \bigcup_{i=1}^n A_i = \bigcup_{i=1}^n (E \cup A_i)$

- (i) $x \in E \cap \bigcup_{j=1}^n A_j \implies x \in E \text{ and } x \in \{A_1 \text{ or } A_2 \dots \text{ or } A_n\} \implies x \in E \text{ and that there exists for some } j=1,2,...,n \text{ an } A_j \text{ such that } x \in A_j \text{ and } x \in E \implies (x \in E \text{ and } A_1) \text{ or } (x \in E \text{ and } A_2) \dots \text{ or } (x \in E \text{ and } A_n) \implies x \in \bigcup_{j=1}^n (E \cap A_j).$ In the other direction, $x \in \bigcup_{j=1}^n (E \cap A_j) \Leftrightarrow x \in (E \cap A_1) \cup (E \cap A_2) \dots \cup (E \cap A_n) \implies x \in E \text{ and } A_1 \text{ or } E \text{ and } A_2 \dots \implies \text{ there exists a } j=1,...,n \text{ such that } x \in (E \cap A_j) \implies x \in E \text{ and } x \in A_1 \text{ or } A_2, \dots, \text{ or } A_n \implies x \in E \text{ and } \bigcup_{j=1}^n A_j \implies x \in E \cap \bigcup_{j=1}^n A_j.$
- (ii) $x \in E \cup \bigcup_{j=1}^{n} A_j \implies x \in E$ or $x \in A_1$ or $A_2 \dots$ or $A_n \implies$ for some j = 1, ..., n that $x \in E \cup A_j \implies x \in E \cup A_1$ or $x \in E \cup A_2 \dots$ or $x \in E \cup A_n \implies x \in \bigcup_{j=1}^{n} (E \cup A_j)$. In the other direction, $x \in \bigcup_{j=1}^{n} (E \cup A_j) \Leftrightarrow x \in E \cup A_1$ or $x \in E \cup A_2 \dots$ or $x \in E \cup A_n \implies$ there exists some j = 1, ..., n such that $x \in E \cup A_j \implies (x \in E \text{ or } x \in A_1)$ or $(x \in E \text{ or } x \in A_2) \dots$ or $(x \in E \text{ or } x \in A_n) \implies x \in E$ or $x \in \bigcup_{j=1}^{n} A_j \implies x \in E \cup \bigcup_{j=1}^{n} A_j$.
- J. If $\{A_1, A_2, ..., A_n\}$ is a collection of sets, and if E is any set, show that:

(i)
$$E \cap \bigcap_{j=1}^{n} A_j = \bigcap_{j=1}^{n} (E \cap A_j)$$
, and (ii), $E \cup \bigcap_{j=1}^{n} A_j = \bigcap_{j=1}^{n} (E \cup A_j)$

- (i) $x \in \cap \cap_{j=1}^n A_j \implies x \in E$ and $x \in \cap_{j=1}^n A_j \implies x \in E$ and $x \in A_j$ for all $j=1,...,n \implies x \in E$ and $[x \in A_1 \text{ and } x \in A_2 \dots \text{ and } x \in A_n] \implies [x \in E \text{ and } A_1] \text{ and } \dots \text{ and } [x \in E \text{ and } A_n] \implies x \in \bigcap_{j=1}^n (E \cap A_j)$. In the other direction, $x \in \cap_{j=1}^n (E \cap A_j) \implies x \in (E \cap A_1)$ and $a \in (E \cap A_2) \dots$ and $x \in (E \cap A_n) \implies x \in (E \cap A_j)$ for all $j=1,...,n \implies x \in E$ and $x \in A_1$ and $x \in A_2 \dots$ and $x \in A_n \implies x \in E$ and $x \in \cap_{j=1}^{nA_j} \implies x \in E \cap \cap_{j=1}^{nA_j}$.
- (ii) $x \in E \cup \cap_{j=1}^n A_j \implies x \in E \text{ or } x \in \cap_{j=1}^n A_j \implies x \in E \text{ or } [x \in A_1 \text{ and } x \in A_2 \dots \text{ and } x \in A_n] \implies x \in E \text{ or } A_1 \text{ and } x \in E \text{ or } A_2 \dots \text{ and } x \in E \text{ or } A_n \implies x \in \cap_{j=1}^n (E \cup A_j).$ In the other direction, $x \in \cap_{j=1}^n (E \cup A_j) \implies x \in (E \text{ or } A_1) \text{ and } x \in (E \text{ or } A_2) \dots \text{ and } x \in (E \text{ or } A_n) \implies \text{that for all } j = 1, \dots, n \text{ , } x \in (E \text{ or } A_j) \implies x \in E \text{ or } (x \in A_1 \text{ and } x \in A_2 \dots \text{ and } x \in A_n) \implies x \in \cap_{j=1}^n A_j \text{ or } x \in E \implies x \in E \cup \cap_{j=1}^n A_j.$
- K. Let E be a set and $\{A_1, A_2, ..., A_n\}$ be a collection of sets. Establish the De Morgan laws:

(i)
$$E \setminus \bigcap_{i=1}^n A_i = \bigcup_{j=1}^n (E \setminus A_j)$$
, and, (ii) $E \setminus \bigcup_{i=1}^n A_i = \bigcap_{j=1}^n (E \setminus A_j)$

(i) $x \in E \setminus \bigcap_{j=1}^n A_j \implies x \in E$ but not $(A_1 \text{ and } A_2 \dots \text{ and } A_n) \implies \text{there exists a } j = 1, ..., n$ such that $x \in E$ but not $A_j \implies x \in E$ but not A_1 , or $x \in E$ but not $A_2, \ldots, \text{or } x \in E$ but not

- $A_n \implies x \in E \setminus A_1 \text{ or } x \in E \setminus A_2 \dots \text{ or } x \in E \setminus A_n \implies x \in \bigcup_{j=1}^n (E \setminus A_j).$ In the other direction, $x \in \bigcup_{j=1}^n (E \setminus A_j) \implies x \in (E \text{ but not } A_1) \text{ or } (E \text{ but not } A_2) \text{ or } (E \text{ but not } A_n) \implies \text{there exists } j = 1, ..., n, \ x \in E \text{ but not } A_j \implies x \in E \text{ but not } (A_1 \text{ and } A_2 \dots \text{ and } A_n) \implies x \in E \setminus \bigcap_{j=1}^n A_j.$
- (ii) $x \in E \setminus \bigcup_{j=1}^n \implies x \in E$ but A_1 or $A_2 \dots$ or $A_n \implies x \in E$ and $x \notin A_j$ for all $j=1,...,n \implies x \in E$ but not A_1 , and $x \in E$ but not A_2, \dots , and $x \in E$ but not $A_n \implies x \in (E \setminus A_1)$ and $x \in (E \setminus A_2) \dots$ and $x \in (E \setminus A_n) \implies x \in \bigcap_{j=1}^n (E \setminus A_j)$. In the other direction, $x \in \bigcap_{j=1}^n (E \setminus A_j) \implies x \in (E \setminus A_1 \text{ and } E \setminus A_2 \dots \text{ and } E \setminus A_n) \implies x \in E$ but not A_j for all $j=1,...,n \implies x \in E$ but A_1 or $A_2 \dots$ or $A_n \implies x \in E$ but not $\bigcup_{j=1}^n A_j \implies x \in E \setminus \bigcup_{j=1}^n A_j$

Section 2

C. Consider the subset of $\mathbb{R} \times \mathbb{R}$ defined by $D = \{(x,y) : |x| + |y| = 1\}$. Describe this set in words. Is it a function?

This set consists of points on the line segments connecting a rotated square in the (x,y) plane with vertices $(1,0),\ (0,1),\ (-1,0),\$ and (0,-1). If we attempt to define a function, with the elements (x,y) from the set D, i.e. $y=f(x),f:x\to y$, we have $|x|+|y|=1\implies \sqrt{y^2}=1-|x|\implies y=\pm\sqrt{(1-|x|)^2}.$ $f(x)=y=\pm\sqrt{(1-|x|)^2}$ does not fit the defintion of a function, since, as an example, the set D includes the elements (0,1) and (0,-1), which if, f is a function, $f:x\to y\implies -1=1$, which is clearly not true.

E. Prove that if f is an injection from A to B, then $f^{-1} = \{(b, a) : (a, b) \in f\}$ is a function. Then prove it is an injection.

If f is an injection, and $(a,b) \in f$, and $(a',b) \in f$, then a=a'. $f^{-1}=\{(b,a):(a,b) \in f\}$ contains the pair (b,a) and (b,a'), and we know that a=a' from the definition of f, so we can assume that f^{-1} is a function. Since f is injective, each unique element b=f(a), is mapped to by a unique element a, and by definition $f^{-1}=\{(b,a):(a,b) \in f\}$ maps the unique element a back to a, meaning a and a and a and only if a is also injective.

H. Let f, g be functions such that

$$g \circ f(x) = x$$
, for all x in $D(f)$

$$f \circ g(y) = y$$
, for all y in $D(g)$

Prove that $g = f^{-1}$

J. Let f be the function on \mathbb{R} to \mathbb{R} given by $f(x) = x^2$, and let $E = \{x \in \mathbb{R} - 1 \le x \le 0\}$ and $F = \{x \in \mathbb{R} : 0 \le x \le 1\}$. Then $E \cap F = \{0\}$ and $f(E \cap F) = \{0\}$ while $f(E) = f(F) = \{y \in \mathbb{R} : 0 \le y \le 1\}$. Hence $f(E \cap F)$ is a proper subset of $f(E) \cap f(F)$. Now delete 0 from E and F.