

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	Информатика и системы управления (ИУ)
КАФЕДРА	Программное обеспечение ЭВМ и информационные технологии (ИУ7)

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

по дисциплине «Моделирование» «Генерация псевдослучайных чисел»

Группа <u>ИУ7-71Б</u>		
Студент	подпись, дата	<u>Лукьяненко В.А.</u> фамилия, и.о.
Преподаватель	подпись, дата	Рудаков И. В
Оценка		

Задание

Цель работы

Цель работы: изучение принципов генерации псевдослучайных чисел, реализация программного средства с графическим интерфейсом для формирования таблицы случайных чисел и проверки степени случайности последовательностей по собственному критерию.

Теоретическая часть

Псевдослучайные числа

Псевдослучайные числа представляют собой последовательности, которые создаются по определенным алгоритмам, но обладают свойствами случайных величин. В отличие от истинно случайных чисел, генерируемых физическими процессами, псевдослучайные числа полностью определяются начальными параметрами и алгоритмом. При одинаковом значении зерна генератор всегда создаёт одну и ту же последовательность, что обеспечивает воспроизводимость результатов.

Способы генерации случайных чисел

В работе рассматриваются два метода получения случайных чисел:

- 1. **Табличный способ** использует заранее заданную таблицу случайных чисел (в работе берется таблица ГОСТ 11.003-73). Такой подход обеспечивает фиксированные и повторяемые результаты, что удобно для проверки алгоритмов и сравнительного анализа.
- 2. **Алгоритмический способ** основан на программной генерации чисел с использованием математических формул. В данной работе для алгоритмической генерации выбран метод XorShift32.

Алгоритм XorShift32

Алгоритм XorShift относится к классу линейных генераторов на основе побитовых операций. Он использует комбинацию логических сдвигов и операции XOR, что обеспечивает быстрое перемешивание битов и равномерное распределение чисел. Каждое последующее значение вычисляется по формулам:

$$\begin{cases} x = x \oplus (x \ll 13) \\ x = x \oplus (x \gg 17) \\ x = x \oplus (x \ll 5) \end{cases}$$

После выполнения трёх шагов полученное значение используется как следующее число последовательности.

Критерий оценки случайности

Для анализа случайности каждой последовательности реализован смешанный критерий, возвращающий значение в процентах. Критерий основан на трёх статистических показателях:

- 1. **Равномерность распределения** оценивает, насколько часто встречаются цифры от 0 до 9. Рассчитывается как 100% минус доля отклонения фактического распределения от равномерного.
- 2. Отсутствие повторов измеряет долю одинаковых соседних цифр. Чем меньше подряд идущих одинаковых символов, тем выше оценка по этому параметру.
- 3. **Изменение направления** отражает, насколько часто последовательность меняет направление (возрастание/убывание). При частых изменениях направление чередуется, что повышает показатель случайности.

Итоговый процент вычисляется по формуле:

$$R = 0.3 \cdot U + 0.3 \cdot P + 0.4 \cdot D,$$

где U — равномерность, P — оценка антиповторности, D — частота изменения направления. Результат округляется и ограничивается диапазоном от 0 до $100\,\%$.

Таким образом, функция оценки позволяет наглядно определить степень хаотичности каждой последовательности и сравнить эффективность разных способов генерации.

Результат работы программы

Ручной ввод Цифра	способ	Табличный способ				
	3	2	1	3	2	1
1	881	81	1	926	92	2
8	596	96	6	456	68	8
9	974	74	4	144	45	5
0	705	5	5	395	61	1
0	19	19	9	405	14	4
2	74	74	4	609	49	9
3	341	41	1	771	39	9
5	432	32	2	425	55	5
1	536	36	6	392	40	0
2	840	40	0	528	51	1
59%	79%	75%	67%	76%	60%	59%

Рисунок 1 – Результирующая таблица

Вывод

В ходе выполнения лабораторной работы была разработана программа с графическим интерфейсом, реализующая генерацию псевдослучайных чисел различной разрядности двумя способами: табличным и алгоритмическим. В качестве алгоритмического метода был применён генератор XorShift32.

Был создан собственный критерий оценки случайности, основанный на трёх показателях: равномерности распределения цифр, количестве повторяющихся элементов и частоте изменения направления последовательности.