Study of Effects of Microgravity on Disc Height and Compositional Analysis

Nita Chen; Nozomu Inoue, MD, PhD; Won C Bae, PhD; Tomonori Yamaguchi; Robert L Sah, MD, ScD; Koichi Masuda, MD

UCSD-Doshisha Medical Imaging Research Center 2nd
Symposium
08/24/2010

Disc Herniation and Back Pain

- Commonly occurs in astronauts
- Increases the injury likelihood and inhibits daily life
- Underlying factor: intervertebral disc (IVD) degeneration (NASA)
- Endplates
 - Separates disc and vertebral body
 - Structural and compositional changes during space travel
 - Spinal elongation
 - Imbalance of collagenproteoglycan ratio (Pedrini-Mille)

Gravity Effects on Spine

- Spine compressed during return to Earth
- Intervertebral discs compressed and may cause disc herniation (Maynard)
- Compositional and structural changes in trabecular bone (LeBlanc)

Objectives

- To investigate structural and compositional changes of mice intervertebral discs under microgravity by examining
 - Disc heights
 - Trabecular analyses
- Methods
 - Micro computed tomography (µCT)
 - Tri 3D Bon software and CT Analyser software
 - Mimics 13.0 and 13.1
- Analyses parameters
 - Bone volume ratio (BV/TV)
 - Trabecular number (Tb.N)
 - Trabecular thickness (Tb.Th)
 - Bone mineral density (BMD)
 - Disc height

Samples

NASA Discovery STS-131 mission mice

Strain: C57BI/6

CD45.1 congenic mice

Weigh 25g

Image Acquisition

Shimadzu SMX-160CTS

Chamber design

Micro CT Scanning: High Resolution Imaging

Conditions

- 1.59 microns isotropic
- source-to-object distance (SOD) of 3.5mm
- Voltage: 65 kV 72 kV
- Reconstruction matrix size 512 x 512
- Field of view (FOV XY) approximately 0.8 mm
- Limitation: incomplete view of endplate

Image Reconstruction

1. Tri/3D Bon (Ratoc System Engineering)

- Import raw data from µCT
- Noise reduction and filter
- Generate 3D model
- Export files as bitmap

2. Mimics 13.1 ® (Materialise)

- Import bitmap files
- Threshold and segment
- Generate reconstruction 3D model
- Export point cloud (with Mimics 13.0)

Disc Height Calculation

1. Eraser Program

- Open point cloud data from Mimics
- Erase unnecessary regions
- Generate endplate
- Save files as .txt

2. DHD Program

- Open caudal and cranial erased text files
- Calculate disc height

Trabecular Analysis

1. Tri/3D Bon (Ratoc System Engineering)

- Import raw data from µCT
- Noise reduction and filter
- Generate 3D model
- Export files as bmp

2. CT Analyser Software

- Import reconstructed data
- Select region of interest (ROI)
- Calculate trabecular parameters
- Export analyses as text file

Results: Disc Height Practice

Resolution level 2 X/Y: 2 x 0.009 (mm) Z: 1 x 0.009 (mm)

Resolution level 4 X/Y: 4 x 0.009 (mm) Z: 1 x 0.009 (mm)

40.8 KB

Resolution level 5 X/Y: 5 x 0.009 (mm) Z: 1 x 0.009 (mm)

62.5 KB

46.4 KB

X-Y resolution reduction by 2-5x appears appropriate for estimating IVD height in mice

resolution	mean	minimum	maximum	
1	n/a	n/a	n/a	
2	0.2887	0.1383	0.5271	
3	0.284	0.1364	0.4789	
4	0.2849	0.136	0.5103	
5	0.2898	0.136	0.5469	
STDEV	0.00283	0.00110	0.0288	

Table 03. Disc heights of L45 of mice spine sample 1 at various resolutions

#	Date	type	voltage (kV)	brightness (kV)	FOV XY (mm)	FOV Z (mm)	SOD (mm)	Resolution (microns)
1	07/31/2010	cancellous bone	62	0	3.098	1.895	8.6	512; (6.050)
2	08/04/2010	cancellous bone	60	0	0.873	0.825	3.9	512; (1.705)

•Trabecular bone images of the fourth vertebrate at two different resolutions.

Scan #2

Bone Volume Ratio over Vertebrae Levels

Figure 01. Bone volume ratio of different aged mice spines of twelve days, twenty-four days, and one month over the six lumbar levels.

Vertebrae Levels

Bone Surface Density over Vertebrae Levels

Figure 02. Bone surface density of different aged mice spines of twelve days, twenty-four days, and one month over the six lumbar levels.

Figure 03. Trabecular thickness of different aged mice spines of twelve days, twenty-four days, and one month over the six lumbar levels.

Figure 04. Trabecular number of different aged mice spines of twelve days, twenty-four days, and one month over the six lumbar levels.

Results: Endplate Imaging

#	date.,	voltage-	brightness	FOV:XY	FOV:Z	resolution.	
		(kV).1	(power).	(mm).1	(mm).,	(microns).1	А
1*.,	2010/6/8.,	80.1	20.1	0.834.,	0.730.,	512; (1.629)	
2.,	2010/5/8.,	72.1	0.,	0.817.,	0.743.,	512; (1.595)	
3.1	2010/5/8.,	72.,	0.,	0.750.,	0.750.,	512; (1.465)	

Table 04. micro CT scanning results of endplates at various voltage-power settings with a source-to-object distance (SOD) of 3.5 mm and a matrix of 512 x 512.

Results: Endplate Imaging

4*	2010/5/8.,	65.1	55.,	0.813.,	0.743.,	512; (1.588)	
5.1	2010/6/8.,	65.1	0.1	0.834.,	0.730.,	512; (1.629)	
6.1	2010/6/8.,	60.1	0.1	0.834.,	0.730.,	512; (1.629)	

^{*} oscillograph at 50% - 60% ₽

Table 05. micro CT scanning results of endplates at various voltage-power settings with a source-to-object distance (SOD) of 3.5 mm and a matrix of 512 x 512.

Discussion

Accomplished/Established:

- Trabecular and endplate high resolution scanning protocol
- Mimics software protocol
- Micro CT scanning and reconstruction practice

Future Goals

- Space mice disc heights calculation and analysis
- Further assessment of parameters of trabecular analyses
- Biochemical analyses of collagen-proteoglycan ratio

Acknowledgements

Laboratories and People

- Prof. Nozomu Inoue, Tissue Engineering Lab, Doshisha University
- Prof. Noriko Koizumi, Research Center for Inflammation and Regenerative Medicine, Doshisha University
- Prof. Robert L Sah, Cartilage Tissue Engineering Lab, UCSD
- Prof. Koichi Masuda, Skeletal Translational Research Lab, UCSD
- Dr. Gabriele Wienhausen, Associate Dean of Education, Division of Biology, UCSD
- Dr. Peter Arzberger, Principal Investigator, Pacific Rim Application and Grid Middleware Assembly (PRAGMA)

Programs and Supporting Agencies

- UCSD PRIME
- National Science Foundation, IOSE-0710726