

AHSANULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Department of Computer Science and Enineering

CSE4238: SOFT COMPUTING LAB

Assignment-3

Implementation of Text Classification using Bi-directional RNN

Submitted by

Silvia Sanjana 17.01.04.142

Section C

Lab Group C2

September 25, 2021

Contents

1	Selecting Dataset and Model	
2	Hyperparameter and Train Test Data Split 2.1 Hyperparameters	1
3	Experimental Results Analysis 3.1 Loss Graph	2 2 3
4	Confusion Matrix 4.1 Confusion Matrix in Training Dataset	3
5	Results of Accuracy, Precision, Recall, F1-Score, and AUC	4
6	Github Repository	4

1 Selecting Dataset and Model

Last 3 digit of ID: 142

Now, (Last 3 digit of id%3) = 142%3 = 1. That means the dataset is: **Dataset 2**

(Last 3 digit of id + dataset number)%5 = (142+2)%5 = 4.

That means model is: $\mathbf{Bi}\text{-}\mathbf{directional}$ \mathbf{RNN}

2 Hyperparameter and Train Test Data Split

2.1 Hyperparameters

We set the hyperparameters as following:

• Num of Stacked Layer: 3

• Full Connection Layer: 2

• **Epoch:** 20

• Embedding Size: 128

• Batch Size: 32

• Input_dim: 12985

• **Output** dim: 128

• Activation Function: ReLU and Sigmoid

• Optimizer: Adam

• Learning_Rate: 0.01

• Loss_Function: BinaryCrossEntropy

2.2 Train Test Split Data

We have kept 80% of our data as training data and 20% of our data as testing data. In the given dataset there are 10314 data. That means we have taken almost 8251 data as training data and 2053 as testing data.

3 Experimental Results Analysis

Epoch No.	Train Loss	Train Accuracy	Val Loss	Val Accuracy
1	0.557034	0.770816	0.522824	0.784295
2	0.511659	0.799297	0.446430	0.830344
3	0.385709	0.868986	0.423360	0.848764
4	0.414891	0.835050	0.463896	0.779932
5	0.406675	0.840504	0.477490	0.786234
6	0.397677	0.844019	0.489569	0.787688
7	0.392756	0.849109	0.461028	0.795444
8	0.377098	0.860623	0.439425	0.819195
9	0.349934	0.862077	0.364299	0.848279
10	0.444337	0.762695	0.477146	0.779447
11	0.338740	0.861593	0.233877	0.914203
12	0.133561	0.956127	0.198117	0.925351
13	0.093121	0.970428	0.236068	0.924867
14	0.055900	0.983517	0.283493	0.936015
15	0.042967	0.988365	0.232050	0.935531
16	0.036508	0.990425	0.284252	0.931653
17	0.035001	0.990304	0.243044	0.933592
18	0.029406	0.991274	0.268057	0.935531
19	0.024207	0.993819	0.294459	0.935531
20	0.027309	0.993334	0.356520	0.922928

Figure 1: Loss and Accuracy for Training and Testing data

Here, we can observe that the model according to the figure 1 (Table of Loss and Accuracy in Training and Testing dataset). The model has achieved the highest training accuracy of 99.38% in epoch number 19 and minimum training model loss of 24.20% in epoch number 19 as well. On the other hand the model has achieved the highest testing accuracy of 93.36% in epoch number 17 and minimum testing model loss of 19.81% in epoch number 12.

3.1 Loss Graph

The following figure 2 is the Loss graph for this experiment.

Figure 2: Loss Graph for the Experiment

3.2 Accuracy Graph

The following figure 3 is the accuracy graph for this experiment.

Figure 3: Accuracy Graph for the Experiment

4 Confusion Matrix

The following figure 4 is the demo of the Confusion Matrix used in this experiment. Where TP, TN, FP, FN means the True-Positives, True-Negatives, False-Positives, and False-Negatives respectively.

	Predicted O	Predicted 1
Actual O	TN	FP
Actual 1	FN	TP

Figure 4: Demo Confusion Matrix

4.1 Confusion Matrix in Training Dataset

The following figure 5 is the Confusion Matrix in the training dataset for this experiment.

Figure 5: Confusion Matrix in training data

4.2 Confusion Matrix in Testing Dataset

The following figure 6 is the Confusion Matrix in the testing dataset for this experiment.

Figure 6: Confusion Matrix in testing data

5 Results of Accuracy, Precision, Recall, F1-Score, and AUC

In the following table 1 we will observe the accuracy, precision, recall, f1-score, and AUC which is achieved in the testing dataset of 2053 data.

Table 1: Performance Evaluation of the Model

	Accuracy	Precision	Recall	F1-Score	AUC
Bi-Directional RNN	92.29%	84.58%	79.56%	81.99%	92.57%

6 Github Repository

https://github.com/silvia-98/Text_Classifier-Detection-using-Bi-directional-RNN The above link is the github repository for the assignment-3.