Stability of a Multi-Parameter Persistent Homology Approach to Functional and Structural Data

Presenter: Haibin Hang[†]

Joint work with W. Kim[‡], F. Memoli[‡] and W. Mio[†]

† Department of Mathematics, Florida State University ‡ Department of Mathematics, Ohio State University

Functional data: data sets where each data object $X_f = (X, d_X, f)$ is a metric space $X = (X, d_X)$ and a continuous function $f: X \to \mathbb{R}$.

Structural data: data sets where each data object $\mathbb{X}_{\alpha} = (X, d_X, \alpha)$ is a metric space $\mathbb{X} = (X, d_X)$ and a Borel probability measure α .

We simply call $\mathbb{X}_f = (X, d_X, f)$ a functional triple and cal $\mathbb{X}_{\alpha} = (X, d_X, \alpha)$ a metric measure space or mm-space.

Functional data: data sets where each data object $\mathbb{X}_f = (X, d_X, f)$ is a metric space $\mathbb{X} = (X, d_X)$ and a continuous function $f: X \to \mathbb{R}$.

Structural data: data sets where each data object $\mathbb{X}_{\alpha} = (X, d_X, \alpha)$ is a metric space $\mathbb{X} = (X, d_X)$ and a Borel probability measure α .

We simply call $\mathbb{X}_f = (X, d_X, f)$ a functional triple and cal $\mathbb{X}_{\alpha} = (X, d_X, \alpha)$ a metric measure space or mm-space.

Functional data: data sets where each data object $X_f = (X, d_X, f)$ is a metric space $X = (X, d_X)$ and a continuous function $f: X \to \mathbb{R}$.

Structural data: data sets where each data object $\mathbb{X}_{\alpha} = (X, d_X, \alpha)$ is a metric space $\mathbb{X} = (X, d_X)$ and a Borel probability measure α .

We simply call $\mathbb{X}_f = (X, d_X, f)$ a functional triple and call $\mathbb{X}_\alpha = (X, d_X, \alpha)$ a metric measure space or mm-space.

Functional data: data sets where each data object $X_f = (X, d_X, f)$ is a metric space $X = (X, d_X)$ and a continuous function $f: X \to \mathbb{R}$.

Structural data: data sets where each data object $\mathbb{X}_{\alpha} = (X, d_X, \alpha)$ is a metric space $\mathbb{X} = (X, d_X)$ and a Borel probability measure α .

We simply call $X_f = (X, d_X, f)$ a functional triple and call $X_\alpha = (X, d_X, \alpha)$ a metric measure space or mm-space.

Motivation

Eg: Similar signals on different domains. In our discussion,

- function ←⇒ signal;
- high function value ←⇒ weak signals!

- To construct a metric to compare two signals and downplay the regions with weak signals;
- Use persistent homology (or persistent diagram) to reduce the metric by giving a computable lower bound;

Example: Let f and g have the same domain X, a commonly used metric is $d(f,g):=\|f-g\|_{\infty}$ and the stability theorem

$$d_{\rm I}({\rm H}_*(f),{\rm H}_*(g)) \leq \|f-g\|_{\infty}$$

leads to a computable reduction of d.

- To construct a metric to compare two signals and downplay the regions with weak signals;
- Use persistent homology (or persistent diagram) to reduce the metric by giving a computable lower bound;

Example: Let f and g have the same domain X, a commonly used metric is $d(f,g):=\|f-g\|_{\infty}$ and the stability theorem

$$d_{\rm I}({\rm H}_*(f),{\rm H}_*(g)) \leq \|f-g\|_{\infty}$$

leads to a computable reduction of d.

- To construct a metric to compare two signals and downplay the regions with weak signals;
- Use persistent homology (or persistent diagram) to reduce the metric by giving a computable lower bound;

Example: Let f and g have the same domain X, a commonly used metric is $d(f,g) := \|f - g\|_{\infty}$ and the stability theorem

$$d_{\mathrm{I}}(\mathrm{H}_*(f),\mathrm{H}_*(g)) \leq \|f - g\|_{\infty}$$

leads to a computable reduction of d.

- To construct a metric to compare two signals and downplay the regions with weak signals;
- Use persistent homology (or persistent diagram) to reduce the metric by giving a computable lower bound;

Example: Let f and g have the same domain X, a commonly used metric is $d(f,g) := \|f - g\|_{\infty}$ and the stability theorem

$$d_{\mathrm{I}}(\mathrm{H}_*(f),\mathrm{H}_*(g)) \leq \|f - g\|_{\infty}$$

leads to a computable reduction of d.

Definition (Cone of functional data)

Given a functional triple $\mathbb{X}_f = (X, d_X, f)$, the new triple $\mathcal{C}\mathbb{X}_f = (\overline{X}, r_{\overline{X}}, f^*)$ is constructed in the following way: for $x, x' \in X$,

- ② $r_{\overline{X}}(x,x') = d_X(x,x')$ and $r_{\overline{X}}(x,*) = r_{\overline{X}}(*,x) = 0$;
- ① $f^*(x) = f(x)$ and $f^*(*) = \sup_{x \in X} f(x)$.

Definition (Cone of functional data)

Given a functional triple $\mathbb{X}_f = (X, d_X, f)$, the new triple $\mathcal{C}\mathbb{X}_f = (\overline{X}, r_{\overline{X}}, f^*)$ is constructed in the following way: for $x, x' \in X$,

- $\bullet \quad \overline{X} = X \sqcup \{*\};$
- ① $f^*(x) = f(x)$ and $f^*(*) = \sup_{x \in X} f(x)$.

Definition (Cone of functional data)

Given a functional triple $\mathbb{X}_f = (X, d_X, f)$, the new triple $C\mathbb{X}_f = (\overline{X}, r_{\overline{X}}, f^*)$ is constructed in the following way: for $x, x' \in X$,

- ① $f^*(x) = f(x)$ and $f^*(*) = \sup_{x \in X} f(x)$.

Definition (Cone of functional data)

Given a functional triple $\mathbb{X}_f = (X, d_X, f)$, the new triple $C\mathbb{X}_f = (\overline{X}, r_{\overline{X}}, f^*)$ is constructed in the following way: for $x, x' \in X$,

- **3** $f^*(x) = f(x)$ and $f^*(*) = \sup_{x \in X} f(x)$.

Given any set Z with non-negative symmetric function $r: Z \times Z \to \mathbb{R}$, we define **Rips complex** at scale $s \ge 0$

$$\mathcal{R}_s(Z) := \{ \sigma \subset Z | \sigma \text{ is finite set and } \operatorname{diam}(\sigma) \leq s \},$$

here $\operatorname{diam}(\sigma) := \max_{z_1, z_2 \in \sigma} r(z_1, z_2)$.

Definition

$$\rho(\mathbb{X}_f, \mathbb{Y}_g) := \inf\{\varepsilon > 0 | \mathcal{C}\mathbb{X}_f \text{ and } \mathcal{C}\mathbb{Y}_g \text{ are } \varepsilon\text{-matched}\}.$$

Remark

Since ρ does not satisfy the triangle inequality, we consider the metric generated by it.

Definition (matching distance)

 $d_{\mathrm{M}}(\mathbb{X}_f, \mathbb{Y}_g) := \inf \sum_{i=1}^m \rho(\mathbb{Z}_{i-1}, \mathbb{Z}_i)$, Here the infimum is taken over all sequences $\{\mathbb{Z}_i\}_{i=0}^m$ of functional data with $\mathbb{Z}_0 = \mathbb{X}_f$ and $\mathbb{Z}_m = \mathbb{Y}_g$.

Reduction using 2D-parameter Persistent Homology

For $\mathbb{CX}_f = (\overline{X}, r_{\overline{X}}, f^*)$, we take sub-level set and Rips complex **consecutively**:

$$\overline{X}_a := \{x \in \overline{X} | f^*(x) \le a\}$$

$$\mathcal{R}_s(\overline{X}_a) := \{\sigma \subset \overline{X}_a | \operatorname{diam}(\sigma) \le s\}$$

and formalize a bi-parameter filtration

$$\mathcal{R}(\mathcal{C}\mathbb{X}_f) := \{\mathcal{R}_s(\overline{X}_a) \hookrightarrow \mathcal{R}_t(\overline{X}_b)\}_{0 \le s \le t, a \le b}$$
$$H_*\mathcal{R}(\mathcal{C}\mathbb{X}_f) := \{H_*(\mathcal{R}_s(\overline{X}_a)) \to H_*(\mathcal{R}_t(\overline{X}_b))\}_{0 \le s \le t, a \le b}$$

Theorem (Stability)

For any pair of triples X_f, Y_g we have

$$d_{\mathrm{I}}\big(\mathrm{H}_*\mathcal{R}(\mathcal{C}\mathbb{X}_f),\mathrm{H}_*\mathcal{R}(\mathcal{C}\mathbb{Y}_g)\big) \leq d_{\mathrm{M}}(\mathbb{X}_f,\mathbb{Y}_g).$$

Strategy to Structural Data

Our way to deal with structural data is to transform it into functional data via a centrality function.

Definition

Given mm-space $\mathbb{X}_{\alpha} = (X, d_X, \alpha)$ and $p \geq 1$, the *p*-centrality function is defined as

$$s_{\alpha,p}(x) = \left(\int_X d_X^p(x,x') d\alpha(x')\right)^{1/p}$$

for $\forall x \in X$.

Now we have an operator S_p from structural data to functional data s.t.

$$(X, d_X, \alpha) \mapsto (X, d_X, s_{\alpha,p}).$$

We use the pull-back of d_M as a metric on structural data

$$d_{\mathcal{M},p}(\mathbb{X}_{\alpha},\mathbb{Y}_{\beta}):=d_{\mathcal{M}}(\mathcal{S}_{p}\mathbb{X}_{\alpha},\mathcal{S}_{p}\mathbb{Y}_{\beta})$$

Remark

The centrality function usually take small values at the center of a distribution. Hence $d_{M,p}$ stress regions with high density.

Then the stability theorem becomes

$\mathsf{Theorem}$

For any pair of triples $\mathbb{X}_{\alpha}, \mathbb{Y}_{\beta}$ we have

$$d_{\mathrm{I}}(\mathrm{H}_{*}\mathcal{RCS}_{p}\mathbb{X}_{\alpha},\mathrm{H}_{*}\mathcal{RCS}_{p}\mathbb{Y}_{\beta}) \leq d_{M,p}(\mathbb{X}_{\alpha},\mathbb{Y}_{\beta})$$

Some Consistency Results

Corollary

Given two Borel measures α and β on metric space $\mathbb{X} = (X, d_X)$ we have

$$d_{\mathrm{I}}(\mathrm{H}_{*}\mathcal{RCS}_{p}\mathbb{X}_{\alpha},\mathrm{H}_{*}\mathcal{RCS}_{p}\mathbb{X}_{\beta}) \leq W_{p}(\alpha,\beta).$$

For simplicity, we call $H_*\mathcal{RCS}_p\mathbb{X}_\alpha$ the 2D-persistent homology of \mathbb{X}_α .

Let $\{x_i\}$ be a sequence of independent identically distributed random variables under α and

- $\alpha_n = 1/n \sum_{i=1}^n \delta_{x_i}$;
- $A_n = \{x_1, x_2, \cdots, x_n\}.$

Recall that W_p metrize weak convergence and α_n converges to α weakly a.s., we get:

Corollary

The 2D-persistent homology of (X, d_X, α_n) converges to the 2D-persistent homology of (X, d_X, α) under d_I almost surely.

Furthermore, we can discretize the domain X:

Corollary

Given mm-space (X, d_X, α) with $\mathrm{supp}[\alpha] = X$ compact, then the 2D-persistent homology of (A_n, d_X, α_n) converges to the 2D-persistent homology of (X, d_X, α) under d_I almost surely.

Thanks for Your Attention!