Information Theory for Data Science

Information sources

Prof. Giorgio Taricco

Politecnico di Torino – DET

Program of the course (prof. Taricco)

- Time allocation:
 - 30 hours = 20 slots (of 1.5-hours)
- Information sources and source codes (lossless)
 - THEORY (5 slots)
 - ASSIGNMENT (5 slots)
- Lossy source coding
 - THEORY (5 slots)
 - ASSIGNMENT (5 slots)

Tentative schedule, subject to minor modifications

Information sources

- Information sources are statistical devices generating a data stream representing any kind of information
- They emit a sequence of random variables X_n , where $n \in \mathbb{Z}$, the set of integer numbers (n may be a discrete time index)
- The complete description requires all the possible probabilities

$$P(X_{\mathcal{S}} = x_{\mathcal{S}})$$

- The symbol $\mathcal S$ represents any subset of $\mathbb Z$
- The event $X_{\mathcal{S}} = x_{\mathcal{S}}$ corresponds to $X_n = x_n \ \forall \ n \in \mathcal{S}$
- While the X_n are random symbols generated by the source, the x_n are deterministic values they take on, extracted from a source alphabet

$$\mathcal{X} = \{\xi_1, \dots, \xi_M\}$$

Information sources

Example 1

- Binary source, $\mathcal{X} = \{0,1\}$
- Sample subset: $S = \{0,2,4,10\}$
- Sample probability

$$P(X_S = \{0,1,0,1\}) = P(X_0 = 0, X_2 = 1, X_4 = 0, X_{10} = 1)$$

Example 2

- Ternary information source, $\mathcal{X} = \{0,1,2\}$
- Sample subset: $S = \{-2,0,2\}$
- Sample probability

$$P(X_S = \{2,1,0\}) = P(X_{-2} = 2, X_0 = 1, X_2 = 0)$$

Stationarity of an information source

- Stationarity
 - For a fixed deterministic vector x of |S| values, $P(X_S = x) = P(X_{S+\Delta} = x) \tag{*}$
 - $\Delta \in \mathbb{Z}$
 - $S + \Delta \stackrel{\text{def}}{=} \{n + \Delta, n \in S\}$
 - Stationarity holds if eq. (*) holds for every S and every Δ

- Example 2 (cont.)
 - Sample subset: $S = \{-2,0,2\}$, shift $\Delta = 4$:
 - $P(X_S = \{2,1,0\}) = P(X_{S+\Delta} = \{2,1,0\})$
 - $P(X_{-2} = 2, X_0 = 1, X_2 = 0) = P(X_2 = 2, X_4 = 1, X_6 = 0)$

Stationarity of an information source

- If $|\mathcal{S}| = 1$, stationarity implies that $P(X_n = x) = P(X_0 = x) \stackrel{\text{def}}{=} p_X(x)$
- ullet So, the probability distribution is independent of n
- The function $p_X(x)$ is the probability distribution function
- If $|\mathcal{S}|=2$, stationarity implies that $P(X_n=x_1,X_{n+\Delta}=x_2)=P(X_0=x_1,X_{\Delta}=x_2)\stackrel{\text{def}}{=} p_{\Delta}(x_1,x_2)$
- ullet The two-point probability distribution depends only on the time difference Δ
- Stationarity is a strong assumption, sometimes we only have weaker assumptions satisfied

Markov sources

- Markov sources are an important class of information sources with memory
- The information source $X_1, X_2, X_3, ...$ is called a Markov source with memory L if the following property holds for every n > L:

$$P(X_n = x_n | X_{1:n-1} = x_{1:n-1}) = P(X_n = x_n | X_{n-L:n-1} = x_{n-L:n-1})$$

- The effective part of the conditioning clause is in the last L symbols
- ullet The previous symbols are irrelevant, so that we say there is memory L
- Among the applications of Markov sources there is modeling written text for data compression

The notation a: b corresponds to the integer sequence from a to b

Markov sources

• We consider time-invariant* Markov sources such that, for all n > L,

$$P(X_n = x_n | X_{n-L:n-1} = x_{n-L:n-1}) = P(X_{L+1} = x_{L+1} | X_{1:L} = x_{1:L})$$

- The symbols $\Sigma_n \stackrel{\mathrm{def}}{=} X_{n-L:n-1}$ represent the state of the source at time n (> L)
- ullet If the symbol alphabet is \mathcal{X} , the state alphabet is \mathcal{X}^L

• We characterize time-invariant Markov sources by the distribution of the initial state $\Sigma_{L+1} = X_{1:L}$ and by the conditional probabilities

$$P(\Sigma_{L+2} = X_{2:L+1} = \sigma_2 \mid \Sigma_{L+1} = X_{1:L} = \sigma_1)$$

^{*}Time-invariance is a restricted form of stationarity

Markov sources

• The conditional probabilities $P(\Sigma_{L+2} = \sigma_2 | \Sigma_{L+1} = \sigma_1)$ form a transition probability matrix \boldsymbol{P} whose entries are defined as

$$(\mathbf{P})_{\sigma_1,\sigma_2} = P(\Sigma_{L+2} = \sigma_2 | \Sigma_{L+1} = \sigma_1)$$

• Usually, the states are represented by integer numbers:

$$(\mathbf{P})_{i,j}, i,j \in \mathbb{S}$$
 (the state space)

- Typically, $S = \{1, 2, ..., |S|\}$
- The sum of the row elements of P is equal to $1: \sum_{j \in \mathbb{S}} (P)_{i,j} = 1$
- State probability vectors $oldsymbol{p}_n$ are defined by

$$(\boldsymbol{p}_n)_i = P(\Sigma_n = i), \qquad i \in \mathbb{S}$$

Markov chains

- The evolution of the state probability vectors is a *Markov chain*
- The evolution of the state probability distribution is governed by the equations

$$p_{n+1} = p_n P$$

This is a consequence of the total probability law:

$$(\boldsymbol{p}_{n+1})_j = P(\Sigma_{n+1} = j) = \sum_{i \in \mathbb{S}} P(\Sigma_n = i, \Sigma_{n+1} = j)$$

$$= \sum_{i \in \mathbb{S}} P(\Sigma_n = i) P(\Sigma_{n+1} = j | \Sigma_n = i)$$
$$= \sum_{i \in \mathbb{S}} (\boldsymbol{p}_n)_i (\boldsymbol{P})_{i,j}$$

Markov chains

• The equation $\boldsymbol{p}_{n+1} = \boldsymbol{p}_n \boldsymbol{P}$ can be applied repeatedly:

$$p_{n+m} = p_{n+m-1}P = p_{n+m-2}P^2 = \cdots = p_nP^m$$

• The matrix P^m corresponds to m consecutive transition steps in the Markov chain:

$$(\mathbf{P}^m)_{i,j} = P(\Sigma_{n+m} = j \mid \Sigma_n = i)$$

- In some cases, as $m \to \infty$, ${\bf P}^m$ converges to a matrix whose rows are all equal
- To characterize Markov chains, we need some additional characterizations

Markov chains – basic definitions

- **Definition** 1: accessibility A state $j \in \mathbb{S}$ is accessible from $i \in \mathbb{S}$ if $(\mathbf{P}^m)_{i,j} > 0$ for some $m \geq 0$
 - This definition means that "it is possible to travel from i to j, with positive probability, in a certain number of steps"
 - A state is always considered accessible from itself since ${\bf P}^0={\bf I}$ (the identity matrix) even when $({\bf P})_{i,i}=0$
- If both "j is accessible from i" and "i is accessible from j," we say that i and j communicate and write $i \leftrightarrow j$
- This is an equivalence relation since
 - $i \leftrightarrow i$ (reflexivity)
 - $i \leftrightarrow j$ implies $j \leftrightarrow i$ (symmetry)
 - $i \leftrightarrow j$ and $j \leftrightarrow k$ imply $i \leftrightarrow k$ (transitivity)

Markov chains – basic definitions

- The communication equivalence relation $i \leftrightarrow j$ induces a partition on the space state $\mathbb S$ into disjoint sets A_p such that
 - $i \leftrightarrow j$ for all $i, j \in A_p$
 - $i \leftrightarrow j$ for all $i \in A_p$ and $j \in A_q$ with $p \neq q$
- The sets are called *communicating classes*

 State properties are called class properties if they are shared by all the states in a class

Markov chains – basic definitions

- **Definition** 2: *irreducibility* A Markov chain whose state space \mathbb{S} has *a single communicating class* is said *irreducible*, otherwise it is *reducible*
- If a Markov chain is irreducible, then all its states communicate

- **Definition** 3a: first return time For each state $i \in \mathbb{S}$, the first return time is defined by $T_i^r = \inf \{n \geq 1, \Sigma_n = i\}$
- **Definition** 3b: *mean return time* For each pair of states $i, j \in \mathbb{S}$, the mean return time from i to j is $\mu_{i \to j} = E \left[T_i^r \middle| \Sigma_0 = i \right]$

State classification

- The states of a Markov chain have the following characteristics:
- Recurrence: a state $i \in \mathbb{S}$ is recurrent if, starting from i, the chain will return to i in a finite time, with probability 1:

$$P(\Sigma_n = i \text{ for some } n \ge 1 \mid \Sigma_0 = i) = 1$$

- A state is *positive recurrent* if $\mu_{i \to i} < \infty$
- A state is *null recurrent* if $\mu_{i \to i} \to \infty$
- Transience: a state is transient when it is not recurrent
- Recurrence and transience are *class properties*
- Absorbency: a state is absorbing if $(P)_{i,i} = 1$

State classification

• Consider the state $i \in \mathbb{S}$ and define the sequence

$$S_i = \{m \ge 1: (\mathbf{P}^m)_{i,i} > 0\}$$

- The period of the state i is the greatest common divisor of the S_i
- If the period is equal to 1, the state is called *aperiodic*
- If all states are aperiodic, the Markov chain is called aperiodic
- If $(\mathbf{P})_{i,i} > 0$, the state i is aperiodic
- Periodicity is a class property

Calculation of $\mu_{i \rightarrow j}$

The calculation can be done recursively:

$$\mu_{i \to j} = 1 \times (\boldsymbol{P})_{i,j} + \sum_{k \neq j} (\boldsymbol{P})_{i,k} \times \{1 + E[T_k^r | \Sigma_0 = k]\}$$
 Arrives at j in one step Plus the average number of steps to reach j from k

• Since $\sum_{k\in\mathbb{S}}(P)_{i,k}=1$ and $\mu_{i\to j}=E\big[T_j^r\big|\Sigma_0=i\big]$, the previous equation yields:

$$\mu_{i\to j} = 1 + \sum_{k\neq j} (\mathbf{P})_{i,k} \, \mu_{k\to j}$$

Calculation of $\mu_{i o j}$ for the two state Markov chain

• Take, for example, the two state Markov chain:

In this case,

$$\mu_{1\to 1} = 1 + \alpha \mu_{2\to 1}, \qquad \mu_{2\to 1} = 1 + (1-\beta)\mu_{2\to 1}$$
 $\mu_{2\to 2} = 1 + \beta \mu_{1\to 2}, \qquad \mu_{1\to 2} = 1 + (1-\alpha)\mu_{1\to 2}$

Solving the linear equations, one gets:

$$\mu_{1\to 1} = 1 + \frac{\alpha}{\beta}, \qquad \mu_{2\to 1} = \frac{1}{\beta}, \qquad \mu_{2\to 2} = 1 + \frac{\beta}{\alpha}, \qquad \mu_{1\to 2} = \frac{1}{\alpha},$$

Reducible aperiodic Markov chain

ullet If $oldsymbol{P}$ has one all-zero column, the associated Markov chain is reducible

$$\mathbf{P} = \begin{pmatrix} 0 & 1/2 & 0 & 1/2 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

States 1,4 are recurrent. State 2 is absorbing since $(\mathbf{P})_{2,2}=1$. State 3 is transient since $(\mathbf{P})_{i,3}=0$. The communication classes are: $\{1,4\},\{2\},\{3\}$

State evolution

- On the right, we have a sequence of powers of the transition matrix *P*
- Whatever the initial state probability distribution p_0 , the stationary state distribution is $p_{\infty} = (0,1,0,0)$

	0		0.5000		0	0.5000
D	0		1.0000		0	0
P =	0		1.0000		0	0
	1.0000		0		0	0
	0.5000		0.5000		0	0
$P^2 =$	0		1.0000		0	0
<i>r</i> –	0		1.0000		0	0
	0		0.5000		0	0.5000
	0		0.7500		0	0.2500
$P^{3} =$	0		1.0000		0	0
1 –	0		1.0000		0	0
	0.5000		0.5000		0	0
	0		0.8750		0	0.1250
$P^{5} =$	0		1.0000		0	0
.	0		1.0000		0	0
	0.2500		0.7500		0	0
	0.0312		0.9688		0	0
$P^{10} =$	0		1.0000		0	0
	0		1.0000		0	0
	0		0.9688		0	0.0312
	0	1	0	0		
$P^{\infty} =$	0	1	0	0		
	0	1	0	0		
	0	1	0	0		

Reducible aperiodic Markov chain

State 1 is transient so that the chain is reducible. However, a stationary state distribution exists since the irreducibility condition is not necessary.

 $P^2 =$

 $P^3 =$

 $P^{5} =$

 $P^{10} =$

 $P^{\infty} =$

0	1.0000	0	0
0	0	0	1.0000
	1.0000	0	0
0	0.5000	0.5000	0
	0.3000	0.5000	Ü
0	0	0	1.0000
0	0.5000	0.5000	0
0	0	0	1.0000
0	0.5000	0	0.5000
0	0.5000	0.5000	0
0	0.5000	0	0.5000
0	0.5000	0.5000	0
0	0.2500	0.2500	0.5000
0	0.2500	0.2500	0.5000
0	0.5000	0.2500	0.2500
0	0.2500	0.2500	0.5000
0	0.3750	0.1250	0.5000
0	0.3750	0.1875	0.4375
0	0.4062	0.2188	0.3750
0	0.3750	0.1875	0.4375
0	0.4062	0.1875	0.4062
0	0.4000	0.2000	0.4000
0	0.4000	0.2000	0.4000
0	0.4000	0.2000	0.4000
0	0.4000	0.2000	0.4000

Reducible periodic Markov chain

 Another example of reducible Markov chain obtained by modifying the previous one:

$$\mathbf{P} = \begin{pmatrix} 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

The communication classes are: $\{1,4\},\{2,3\}$

State evolution

 On the right, we have a sequence of powers of the transition matrix *P*

The powers of *P* do not converge

ullet Therefore, $oldsymbol{p}_{\infty}$ does not exist

 $P^2 =$

 $P^{3} =$

 $P^{5} =$

 $P^{2n} =$

 $n \to \infty$

 $P^{2n+1} =$

	0	0.5000	0	0.5000
	0	0.3000	1.0000	0.3000
	0	1.0000	0	0
1.000		0	0	0
1.000	שינ	V	U	V
0.500	00	0	0.5000	0
	0	1.0000	0	0
	0	0	1.0000	0
	0	0.5000	0	0.5000
	0	0.7500	0	0.2500
	0	0	1.0000	0
	0	1.0000	0	0
0.500	00	0	0.5000	0
			-	
	0	0.8750	0	0.1250
	0	0	1.0000	0
	0	1.0000	0	0
0.250	00	0	0.7500	0
0	0	1	0	
0	1	0	0	
0	0	1	0	
0	1	0	0	
0	1	0	0	
0	0	1	0	
0	1	0	0	
0	0	1	0	

© prof. Giorgio Taricco

Irreducible periodic Markov chain

$$\boldsymbol{P} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

- Build the S_i sequences:
- All states have period 2

$$S_0 = \{2,4,6,8,10,...\}$$

 $S_1 = \{2,4,6,8,10,...\}$
 $S_2 = \{4,6,8,10,12,...\}$
 $S_3 = \{4,6,8,10,12,...\}$

State evolution

- On the right the sequence of powers of the transition matrix **P**
- We can see that P^n does not converge but oscillates between two different matrices
- For $p_0 = (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$, we have $p_{\infty} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{6}, \frac{1}{6})$
- But for ${m p}_0=(1,0,0,0)$, ${m p}_{\infty}$ does not exist

0	1.0000	0	0
0.5000	0	0.5000	0
0	0	0	1.0000
1.0000	0	0	0
0.5000	0	0.5000	0
0	0.5000	0	0.5000
1.0000	0	0	0
0	1.0000	0	0
0	0.5000	0	0.5000
0.7500	0	0.2500	0
0	1.0000	0	0
0.5000	0	0.5000	0
0	0.7500	0	0.2500
0.6250	0	0.3750	0
0	0.5000	0	0.5000
0.7500	0	0.2500	0
0.6667	0	0.3333	0
0	0.6667	0	0.3333
0.6667	0	0.3333	0
0	0.6667	0	0.3333
0	0.6667	0	0.3333
0.6667	0	0.3333	0
0	0.6667	0	0.3333
0.6667	0	0.3333	0

P =

 $P^2 =$

 $P^{3} =$

 $P^{5} =$

 $P^{1000} =$

 $P^{1001} =$

Markov chain: convergence of \boldsymbol{p}_n

- Summarizing the previous cases, we have seen that the state distribution doesn't converge when the Markov chain is periodic
- However, it may converge when the Markov chain is reducible and aperiodic
- The following result provides a sufficient convergence condition:

If a finite-state Markov chain is irreducible and aperiodic, there exists a unique stationary state probability distribution $m{p}_{\infty}$ such that

$$\boldsymbol{p}_{\infty} = \lim_{n \to \infty} \boldsymbol{p}_n = \lim_{n \to \infty} \boldsymbol{p}_0 \boldsymbol{P}^n \qquad \forall \, \boldsymbol{p}_0$$

How to calculate $oldsymbol{p}_{\infty}$

- The calculation of the successive powers of $m{P}$ converges to a matrix whose rows are $m{p}_{\infty}$ when convergence is granted
- If a finite-state Markov chain is irreducible and aperiodic, the stationary state probability distribution p_∞ can be obtained by solving the equation

$$p_{\infty} = p_{\infty} \cdot P \Rightarrow p_{\infty}(I - P) = 0$$

- This equation system can be solved since 1 is an eigenvalue of \boldsymbol{P} , so that $\det(\boldsymbol{I}-\boldsymbol{P})=0$
- In fact, $\mathbf{1}P = \mathbf{1}$ since the sum of the row elements of P is always 1

all-1 row-vector

How to calculate $oldsymbol{p}_{\infty}$

To solve the homogeneous linear equation system

$$\boldsymbol{p}_{\infty}(\boldsymbol{I}-\boldsymbol{P})=\boldsymbol{0}$$

- We proceed as follows:
 - We discard one of the equations because the coefficient matrix $(\mathbf{I} \mathbf{P})$ has not full rank
 - We replace this equation by the normalization condition that requires ${m p}_{\infty}$ to be a probability vector, so that ${m p}_{\infty}{m 1}^T=1$
 - The vector $m{p}_{\infty}$ is a left-eigenvector of $m{P}$ corresponding to the eigenvalue 1
 - The vector $m{p}_{\infty}$ obtained by solving this linear equation system is a probability vector (nonnegative components adding to 1) by the Perron-Frobenius Theorem

Two-state Markov chain

Probability matrix

$$\mathbf{P} = \begin{pmatrix} 1 - \alpha & \beta \\ \alpha & 1 - \beta \end{pmatrix}, \quad \alpha, \beta \in [0, 1]$$

• Graph:

Two-state Markov chain

• The stationary state probability distribution $p_{\infty}=(p_0,p_1)$ can be obtained by solving the equations:

$$(1 - \alpha)p_0 + \beta p_1 = p_0 \Rightarrow -\alpha p_0 + \beta p_1 = 0$$

$$\alpha p_0 + (1 - \beta)p_1 = p_1 \Rightarrow \alpha p_0 - \beta p_1 = 0$$

$$p_0 + p_1 = 1$$

- The equation can be found by following the paths leading to each state in the graphic representation
- The solution is

$$p_0 = \frac{\beta}{\alpha + \beta}, \qquad p_1 = \frac{\alpha}{\alpha + \beta}$$

Entropy rate of a Markov source

General definition:

$$\overline{H} \stackrel{\text{def}}{=} \lim_{n \to \infty} \frac{H(X_{1:n})}{n}$$

Stationary independent source:

$$\overline{H} = H(X)$$

Time index dropped for stationarity

For a stationary (not independent) source,

$$\overline{H} = \lim_{n \to \infty} H(X_n | X_{1:n-1})$$

For a Markov source,

$$\overline{H} = H(X|\Sigma) = -\sum_{\sigma \in \mathcal{X}^L} p_{\infty}(\sigma) \sum_{x \in \mathcal{X}} p(x|\sigma) \log_2 p(x|\sigma)$$
 Time index dropped Stationary state for stationarity distribution distribution

- The first example is a two-state Markov source
- In state 0, the source emits symbols with probability distribution vector $oldsymbol{p}_0$
- In state 1, the source emits symbols with probability distribution vector $oldsymbol{p}_1$
- The entropy rate is

$$\overline{H} = p_{\infty}(0)H(\boldsymbol{p}_0) + p_{\infty}(1)H(\boldsymbol{p}_1)$$

$$= \frac{\beta}{\alpha + \beta} H(\boldsymbol{p}_0) + \frac{\alpha}{\alpha + \beta} H(\boldsymbol{p}_1)$$

- We consider a binary source
 - With memory L=2
 - Defined by the conditional symbol probabilities

$$P(X_n = 0 | X_{n-1} + X_{n-2} = 0) = p_0 \Rightarrow P(X_n = 1 | X_{n-1} + X_{n-2} = 0) = 1 - p_0$$

 $P(X_n = 0 | X_{n-1} + X_{n-2} = 1) = p_1$
 $P(X_n = 0 | X_{n-1} + X_{n-2} = 2) = p_2$

- ullet To find the stationary state distribution we must find the matrix $oldsymbol{P}$
- We define
 - Starting (or departure) state: X_{n-2} , X_{n-1}
 - Ending (or arrival) state: X_{n-1} , X_n

• The state evolution is summarized by the following table:

Starting state	Current symbol	Ending state	Probability
X_{n-2} , X_{n-1}	X_n	X_{n-1} , X_n	
00	0	00	p_0
00	1	01	$1 - p_0$
01	0	10	p_1
01	1	11	$1 - p_1$
10	0	00	p_1
10	1	01	$1 - p_1$
11	0	10	p_2
11	1	11	$1 - p_2$

• Graph:

Matrix:

$$\mathbf{P} = \begin{pmatrix} p_0 & 1 - p_0 & 0 & 0 \\ 0 & 0 & p_1 & 1 - p_1 \\ p_1 & 1 - p_1 & 0 & 0 \\ 0 & 0 & p_2 & 1 - p_2 \end{pmatrix}$$

- The states are listed as
 - 1. 00
 - 2. 01
 - 3. 10
 - 4. 11

Markov source: example 2

• Finally, we solve the stationary state state probability distribution equations:

$$p_{00} = p_0 p_{00} + p_1 p_{10}$$

$$p_{01} = (1 - p_0) p_{00} + (1 - p_1) p_{10}$$

$$p_{10} = p_1 p_{01} + p_2 p_{11}$$

$$1 = p_{00} + p_{01} + p_{10} + p_{11}$$

The solution is

$$p_{00} = \alpha p_1 p_2$$

$$p_{01} = p_{10} = \alpha (1 - p_0) p_2$$

$$p_{11} = \alpha (1 - p_0) (1 - p_1)$$

$$\alpha = \frac{1}{p_1 p_2 + 2(1 - p_0) p_2 + (1 - p_0)(1 - p_1)}$$

Entropy rate

Collecting the previous results, we get the entropy rate:

$$\overline{H} = \frac{p_1 p_2 H_b(p_0) + 2(1 - p_0) p_2 H_b(p_1) + (1 - p_0)(1 - p_1) H_b(p_2)}{p_1 p_2 + 2(1 - p_0) p_2 + (1 - p_0)(1 - p_1)}$$

$$H_b(p) \stackrel{\text{def}}{=} -p \log_2 p - (1-p) \log_2 (1-p)$$

Information Theory and Applications

Source coding

Prof. Giorgio Taricco

Politecnico di Torino – DET

Source coding

- The goal of source coding is reducing the amount of data necessary to store a large set of symbols on a storage system
- This is sometimes referred to as data compression
- Source coding must be an invertible operation: from encoded data one must be able to retrieve the original data
- Depending on the length of the source and encoded blocks, we have three types of source coding algorithms:
 - Fixed-to-fixed
 - Fixed-to-variable
 - Variable-to-fixed

Fixed-to-fixed source coding

- We consider a block of N source symbols from an alphabet $\mathcal X$ with cardinality $M=|\mathcal X|$
- There are M^N possible blocks so that a number from 0 to M^N-1 identifies uniquely the source block
- Since n bits are sufficient to represent all integers between 0 and 2^n-1 , we must have $2^n\geq M^N$ or $n\geq N\log_2 M$
- Since n must be an integer, its minimum value is given by $\nu = \lceil N \log_2 M \rceil$
- The corresponding number of bits per encoded symbol is

$$\bar{n} = \frac{\nu}{N} = \frac{\lceil N \log_2 M \rceil}{N} \approx \log_2 M$$

Example

- Consider the English alphabet plus some punctuation characters $\mathcal{X} = \{A, B, C, ..., Z, ..., ', ', ', ', ..., !\}$ with $M = |\mathcal{X}| = 32$ characters
- \mathcal{X} is encoded as follows:

Α	00000	В	00001	С	00010	D	00011	Е	00100
F	00101	G	00110	Н	00111		01000	J	01001
K	01010	L	01011	М	01100	N	01101	0	01110
Р	01111	Q	10000	R	10001	S	10010	Т	10011
U	10100	V	10101	W	10110	X	10111	Υ	11000
Z	11001	•	11010	,	11011	"	11100	;	11101
:	11110	!	11111						

Example

• Encode the sentence "GOOD NIGHT!"

Α	00000	В	00001	С	00010	D	00011	Ε	00100
F	00101	G	00110	Н	00111		01000	J	01001
K	01010	L	01011	M	01100	N	01101	0	01110
Р	01111	Q	10000	R	10001	S	10010	Т	10011
U	10100	V	10101	W	10110	X	10111	Υ	11000
Z	11001	•	11010	,	11011	"	11100	;	11101
:	11110	!	11111						

Decoding

- Decoding fixed-to-fixed source codes is very simple
- We know how many bits (ν) form one encoded character
- We process the bit stream extracting blocks of ν bits and use a look-up table to obtain the source symbols
- For example
- "OPEN BOOK" →
 01110 01111 00100 01101 11100 00001 01110 01110 01010

O P E N B O O K

Fixed-to-variable source coding

- The concept is that a fixed number of symbols is encoded into a variable number of bits
- The approach is advantageous, on average, if the source symbols have different probabilities
 - Most likely source symbols are assigned shorter codewords
 - On the other hand, longer codewords are assigned to less likely source symbols but their impact is limited on the average codeword length

Fixed-to-variable source coding

- ullet Assume a stationary source generating symbols from an alphabet \mathcal{X} , encoded individually
- Let the probability distribution be

$$p_i \stackrel{\text{def}}{=} P(X = \xi_i), \qquad i = 1, ..., (M \stackrel{\text{def}}{=} |\mathcal{X}|)$$

- Let the codeword lengths be v_i (bit/symbol)
- The average number of bit per symbol for an encoded string is

$$\langle \nu \rangle = \frac{1}{N} \sum_{i=1}^{M} N_i \nu_i$$

- *N*: n. of symbols in the string
- N_i : n. of occurrences of ξ_i

Fixed-to-variable source coding

• For a very long string, the frequencies of the symbols are approximately the probabilities of their occurrences:

$$\frac{N_i}{N} \approx p_i, \qquad i = 1, ..., M$$

 Accordingly, the average number of bit per symbol for an encoded string is approximated by

$$\bar{\nu} = \sum_{i=1}^{N} p_i \nu_i$$

- $\bar{\nu}$ is the expected average number of bit per symbol of the source code and represents a quality measure for the source code
- The lower $\bar{\nu}$, the better the source code

- Decoding is complicated by the fact that one doesn't know where encoded symbols are separated
- This may generate decoding ambiguity
- For example, consider the code

$$c(\xi_1) = 0$$
, $c(\xi_2) = 01$, $c(\xi_3) = 10$

- Apply this code to the sequence symbols
 - $\xi_1 \xi_3 \xi_2 \xi_1$
 - $\xi_2 \xi_1 \xi_2 \xi_1$
- In both cases we obtain 010010

To resolve decoding ambiguity codes must have a tree structure

- The code words (bit sequences representing each symbol) are located at tree nodes
- The bits of each code word are read off traveling the tree from the root to the node
- For example, c_2 is read passing through a path labelled 0 and another labelled 1
- If one code word is at a node inside the path to another codeword, the former is prefix of the latter
- Fixed-to-variables source codes are uniquely decodable if they satisfy the prefix-free condition

• The following code satisfies the no-prefix condition:

- Apply this code to the sequence symbols
 - $\xi_1 \xi_3 \xi_2 \xi_1$
 - $\xi_2 \xi_1 \xi_2 \xi_1$
- In the first case we get
 - 010110
- In the second case:
 - 110110

 If a code satisfies the no-prefix condition, decoding is always uniquely possible

• Decode the bit sequence 0111001110

Kraft inequality

- This is a simple inequality characterizing the code word length distribution for a uniquely decodable tree code
- Every code word is located on one node of the tree
- The nodes reachable traveling the tree from this node are said to be controlled
- A node at depth ν_i controls $2^{\nu_{\max}-\nu_i}$ nodes at depth ν_{\max}
- The sub-tree stemming from it up to depth $\nu_{\rm max}$ does not contain other codewords to satisfy the prefix-free condition
- We have the inequality

$$\sum_{i=1}^{M} 2^{\nu_{\max}-\nu_i} \le 2^{\nu_{\max}}$$

Kraft inequality

Inequality

$$\sum_{i=1}^{M} 2^{\nu_{\max} - \nu_i} \le 2^{\nu_{\max}}$$

- The total number of controlled nodes at depth $\nu_{\rm max}$ cannot exceed the number of nodes at depth $\nu_{\rm max}$, i.e., $2^{\nu_{\rm max}}$
- Dividing both sides, we obtain the Kraft inequality:

$$\sum_{i=1}^{M} 2^{-\nu_i} \le 1$$

Lower bound to $\bar{\nu}$

• We want to choose the code word lengths ν_i to minimize the average number of bits per symbol

$$\bar{v} = \sum_{i=1}^{M} p_i v_i$$

Our constraint is the Kraft inequality:

$$\sum_{i=1}^{M} 2^{-\nu_i} \le 1$$

 Applying the method of Lagrange multipliers, we build the Lagrangian function for this problem:

$$\mathcal{L}(\nu_1, ..., \nu_M) = \sum_{i=1}^{M} p_i \nu_i + \lambda \left(\sum_{i=1}^{M} 2^{-\nu_i} - 1 \right)$$

Lower bound to $\bar{\nu}$

 This is a convex optimization problem which can be solved by the following equations:

$$\frac{\partial \mathcal{L}}{\partial \nu_i} = p_i - \lambda \cdot \ln 2 \cdot 2^{-\nu_i} = 0$$

$$\lambda \left(\sum_{i=1}^{M} 2^{-\nu_i} - 1 \right) = 0 \quad (*)$$

- The solution requires $\lambda \cdot \ln 2 = 1$ since $\sum_{i=1}^M p_i = 1$ so that (*) is satisfied
- We get $v_i = -\log_2 p_i$ and

$$\bar{v} = \sum_{i=1}^{M} p_i(-\log_2 p_i) = H(X)$$

Lower bound to $\bar{\nu}$

- The solution $v_i = -\log_2 p_i$ is acceptable only if the lengths are all integer numbers
- In that case, $\bar{v} = H(X)$
- Otherwise, the source entropy is a strict lower bound:

$$\bar{\nu} > H(X)$$

• Summarizing, Kraft inequality implies that

$$\bar{\nu} \geq H(X)$$

Upper bound to $\bar{ u}$

- We can replace the lengths $v_i = -\log_2 p_i$ by their integer upper bounds: $v_i = [-\log_2 p_i]$
- For every real number x, [x] < x + 1
- Then,

$$\nu_i = \left[-\log_2 p_i \right] < -\log_2 p_i + 1$$

• Thus,

$$\bar{\nu} = \sum_{i=1}^{M} p_i \nu_i < \sum_{i=1}^{M} p_i (-\log_2 p_i + 1) = H(X) + 1$$

Shannon Theorem

• There always exists a uniquely decodable source code such that the average number of bits per symbol $\bar{\nu}$, required to encode a stationary independent source with entropy H(X), satisfies the inequalities

$$H(X) \le \bar{\nu} < H(X) + 1$$

- The lower bound is necessary for the existence of the code
- The upper bound is sufficient

Information Theory and Applications

Huffman codes

Prof. Giorgio Taricco

Politecnico di Torino – DET

Examples

• Example 1: $p = (\frac{1}{4}, \frac{1}{4}, \frac{1}{2})$ [Check Kraft inequality and build tree code]

• Example 2: $p = (\frac{1}{8}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2})$ [Check Kraft inequality and build tree code]

• Example 3: $p = (\frac{1}{8}, \frac{3}{8}, \frac{1}{2})$ [Check Kraft inequality and build tree code]

Cross entropy

- The precise knowledge of the source symbol distribution is not always possible
- Let p_i be the true probability of generation of the symbol ξ_i and q_i an estimated probability which may be different from p_i
- The optimum source code based on the estimated probabilities q_i has lengths $\nu_i = -\log_2 q_i$
- The average length based on the true probability distribution is the cross entropy:

$$\bar{\nu} = H(\boldsymbol{p}, \boldsymbol{q}) = -\sum_{i} p_{i} \log_{2} q_{i}$$

Cross entropy inequalities

- We notice that $H(\mathbf{p}) = H(\mathbf{p}, \mathbf{p})$
- We expect that the mismatch between the true distribution (p) and the estimated distribution (q) increases $\bar{\nu}$:

$$H(\boldsymbol{p},\boldsymbol{q}) \geq H(\boldsymbol{p},\boldsymbol{p})$$

This can be proved by applying the inequality

$$ln x \le x - 1, \qquad (x > 0)$$

In fact,

$$H(\boldsymbol{p},\boldsymbol{p}) - H(\boldsymbol{p},\boldsymbol{q}) = \sum_{i} p_{i} \log_{2} \frac{q_{i}}{p_{i}} = \frac{\sum_{i} p_{i} \ln \frac{q_{i}}{p_{i}}}{\ln 2} \leq \frac{\sum_{i} p_{i} \left(\frac{q_{i}}{p_{i}} - 1\right)}{\ln 2} = 0$$

Kullback-Leibler divergence

• The difference between the mismatched and optimum $\bar{\nu}$ is the Kullback-Leibler divergence:

$$D(\boldsymbol{p}||\boldsymbol{q}) \stackrel{\text{def}}{=} H(\boldsymbol{p},\boldsymbol{q}) - H(\boldsymbol{p},\boldsymbol{p}) \geq 0$$

We also can write

$$D(\boldsymbol{p}||\boldsymbol{q}) \stackrel{\text{def}}{=} \sum_{i} p_{i} \log_{2} \frac{p_{i}}{q_{i}}$$

• There is no ordering, instead, between $H(\boldsymbol{p},\boldsymbol{q})$ and $H(\boldsymbol{p},\boldsymbol{q})$, i.e., the difference $H(\boldsymbol{p},\boldsymbol{q})-H(\boldsymbol{q},\boldsymbol{q})=\sum_i(q_i-p_i)\log_2q_i$ can be negative, zero, or positive

Codes for stationary Markovian sources

- A Markovian source is characterized by a conditional probability distribution $p(x|\sigma)$
 - $x \in \mathcal{X}$ is the source symbol
 - $\sigma \in \mathcal{S}$ is the source state
- Choosing a specific source state σ , we can repeat the previous analysis and select a specific source code depending on σ
 - The optimum lengths are $-\log_2 p(x|\sigma)$
 - The average number of bits per symbol, conditional on σ , satisfies

$$-\sum_{x \in \mathcal{X}} p(x|\sigma) \log_2 p(x|\sigma) \le \bar{\nu}_{\sigma}$$

Codes for stationary Markovian sources

• There exists a source code such that the average number of bits per symbol, conditional on σ , satisfies

$$\bar{\nu}_{\sigma} < -\sum_{x \in \mathcal{X}} p(x|\sigma) \log_2 p(x|\sigma) + 1$$

• Averaging with respect to the stationary state distribution $p(\sigma)$ and defining the average number of bits per symbol as ν , we get

$$\left\{ \sum_{\sigma \in \mathcal{S}} p(\sigma) \left[-\sum_{x \in \mathcal{X}} p(x|\sigma) \log_2 p(x|\sigma) \right] \right\} \leq \sum_{\sigma \in \mathcal{S}} p(\sigma) \bar{\nu}_{\sigma} = \bar{\nu}$$

$$\overline{H} = H(X|\Sigma)$$

• In a similar way:

$$\bar{\nu} < \bar{H} + 1$$

Huffman codes

- Huffman codes are prefix-free tree codes that minimize the average number of bits per symbol
- In this sense they are optimal source codes
- They are derived by constructing the code tree starting from the leaves
- The detailed construction algorithm is described in the following slide for the usual stationary independent source with symbols from

$$\mathcal{X} = \{\xi_1, \dots, \xi_M\}$$

• The symbol probabilities are $p_i = P(X_n = \xi_i)$ for i = 1, ..., M

Huffman code construction algorithm

- The starting point is the set of M leave nodes corresponding to the symbols ξ_i , $i=1,\ldots,M$
- The nodes are processed sequentially according to the following rules:
 - Select two nodes with minimum probabilities
 - Build a sub-tree stemming from a new node with arcs labelled 0 and 1 reaching the two original nodes
 - Replace the two nodes with the new node and assign it a probability equal to the sum of the probabilities of the two original nodes
 - Terminate the construction when only one node (the tree root) remains

Examples

• Example 1:
$$p = (\frac{1}{4}, \frac{1}{4}, \frac{1}{2})$$
 [Build the Huffman code]

• Example 2:
$$p = \left(\frac{1}{8}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}\right)$$
 [Build the Huffman code]

• Example 3:
$$p = (\frac{1}{8}, \frac{3}{8}, \frac{1}{2})$$
 [Build the Huffman code]

Storage of the compressed data

- The application of a source code to a sequence of source symbols of given length requires two types of data storages:
 - The code tree containing the symbols and their bit encodings
 - The sequence of encoded bits
- Consider for example a ternary source with symbols A,B,C with probabilities 0.25,0.25,0.5
- The tree (Huffman) code is
 - $A \rightarrow 00$
 - B → 01
 - C → 1

Storage of the compressed data

- Consider the source sequence "ABCCCCBABABACCCC" (16 symbols)
- Its encoding is "000111110100010001001111" (24 bits)
- The stored data are:
 - The tree: 00,A,01,B,1,C
 - The encoded bits: 000111110100010001001111
- Usually, the storage of the tree code is negligible with respect to the storage of the encoded bits
- In this example, the actual number of bits per symbol required is $\bar{\nu}=\frac{24}{16}=1.5$
- The source entropy is $\overline{H}=H(0.25,0.25,0.5)=1.5=\bar{\nu}$

Calculating $\bar{\nu}$ for Huffman codes

- The average number of bits per symbol $\bar{\nu}$ can be calculated recursively
- Clearly, \bar{v} is a function of the probability vector ${\pmb p}=(p_1,\dots,p_M)$: $\bar{v}=\phi({\pmb p})$
- This function is invariant to permutations of the probabilities so that we can assume them sorted in increasing (at least nondecreasing) order: $p_1 \le p_2 \le \cdots \le p_M$
- Now we consider one step in the Huffman code construction algorithm

Calculating $\bar{\nu}$ for Huffman codes

- The full code is obtained by adding two nodes to the dashed code
- The contribution to $\bar{\nu}$ in the full code of the two nodes p_1 and p_2 is

$$p_1 \nu_1 + p_2 \nu_2$$

- If the path to the node p_1+p_2 has length ν_{12} , we have $\nu_1=\nu_2=\nu_{12}+1$
- Then,

$$p_1 \nu_1 + p_2 \nu_2 = (p_1 + p_2)(\nu_{12} + 1)$$

- The contribution to $\bar{\nu}$ in the dashed code of the node p_1+p_2 is $(p_1+p_2)\nu_{12}$
- The other nodes p_3 to p_M give the same contribution to $\bar{\nu}$ in the full code and in the dashed code: $p_3\nu_3 + \cdots + p_M\nu_M$
- Then, $\phi(p_1, p_2, p_3, \dots, p_M) = p_1 + p_2 + \phi(p_1 + p_2, p_3, \dots, p_M)$

Examples

- Apply the previous recursive rule to calculate $\bar{\nu}$ with the previous recursive rule and check the inequalities $H(X) \leq \bar{\nu} < H(X) + 1$
 - 1. p = (0.1, 0.3, 0.6)
 - 2. p = (0.1, 0.1, 0.2, 0.2, 0.4)
 - 3. p = (0.5, 0.25, 0.125, 0.125)

Information Theory and Applications

Dictionary methods

Prof. Giorgio Taricco

Politecnico di Torino – DET

Variable-to-fixed encoding

- Complementary approach wrt fixed-to-variable
- Variable length source strings are encoded into fixed length bit vectors
- The set of possible variable length strings is called dictionary so that these are called dictionary methods
- The dictionary changes dynamically, as the source symbols are read off, according to an encoding algorithm
- Dictionary methods were introduced by Jacob Ziv, Abraham Lempel, and Terry Welch

Dictionary methods

- For an extended study of dictionary methods see:
 - W.A. Pearlman and A. Said, *Digital Signal Compression*, Cambridge University Press 2011
 - D. Salomon and G. Motta, *Handbook of Data Compression*, 5th ed., Springer, 2010
- The fixed-to-variable methods we considered before are statistical methods
- These methods use a statistical model of the data, and the quality of compression they achieve depends on how good that model is
- Dictionary methods are not based on a statistical model, they select strings of symbols and encode each string as a token using a dictionary
- The dictionary holds strings of symbols, and it may be static or dynamic
- Static is permanent, sometimes permitting the addition of strings but no deletions
- Dynamic holds strings previously found in the input stream, allowing for additions and deletions as new input is read

English dictionary method

- The simplest example of a static dictionary is a dictionary of the English language used to compress English text
- Imagine a dictionary with half a million words (without definitions)
- A word is read from the input stream and the dictionary is searched
- If a match is found, an index to the dictionary is written into the output stream
- Otherwise, the uncompressed word is written
- The compressed data contains indexes and raw words
- We distinguish them by an extra bit at the beginning

English dictionary method

- With 19 bits we can select each word from an English dictionary containing $2^{19} = 524,288$ words
- If the word to encode is in the dictionary we need 20 bits (including the extra bit)
- If it is not in the dictionary, we may encode it as follows:
 - Extra bit
 - 8 bits denoting the number of characters (1-256)
 - Character encoding according to some alphabet, eg, ASCII
- If the dictionary is comprehensive, most source words require 20 bit

English dictionary method

- A simple improvement can be obtained by using 2 extra bits
 - 00, if the word is in the first 1024 most likely words in the dictionary
 - 01, if it is in the next 16384 most likely words
 - 10, if it is in the remaining words
 - 11, if it is not in the dictionary
- The number of bits required for the encoding is
 - Case 00: 2 + 10 = 12 bits
 - Case 01: 2 + 14 = 16 bits
 - Case 10: 2 + 19 = 21 bits
 - Case 11: variable

Adaptive methods

- The efficiency of a static method depends on the goodness of the statistical model (word probability distribution)
- With text files, it depends on the language, of course
- With other types of files (eg, binary files), a statistical model is difficult to predict
- An adaptive method is usually much better
 - It starts with a small default dictionary
 - It adds words as they are found from the source
 - It deletes old unused words to keep the size small and the search time short

String compression

- Source codes based on strings of symbols are more efficient than those based on individual symbols
- Example: stationary source generating binary symbols with probability $P(X_n = 0) = 0.7$
- Apply Huffman coding to strings of m symbols
- The probability distribution of a string of two symbols is:

String	Probability
00	0.49
01	0.21
10	0.21
11	0.09

String compression

 By applying Huffman encoding to progressively longer strings we report the values of the average number of bits per symbol

m	$\dfrac{\overline{oldsymbol{ u}}}{m}$
1	1
2	0.9050
3	0.9087
4	0.8918
5	0.8890
6	0.8882

• The sequence converges very slowly to $H_b(0.7) = 0.8813$

String compression

- The slow convergence is due to the fact that the encoded string length is fixed
- The number of possible strings grows exponentially with their length (it is 2^m)
- Strings to be encoded must be selected more carefully

Lempel-Ziv codes

- Jacob Ziv and Abraham Lempel were the developers of the first dictionary methods for data compression in the late 1970's
- Their first algorithm was LZ77
- The principle of LZ77 is to fill the dictionary with parts of the input stream as it is read off
- The method is based on a sliding window divided in two parts:
 - Search buffer
 - Look-ahead buffer

LZ77

- The search buffer contains already encoded symbols
- The look-ahead buffer contains symbols to be encoded
- In practical implementations, the search buffer is long a few thousands symbols and the look-ahead buffer a few tens
- The encoded output consists of tokens represented by three components:
 - Offset = distance of the first encoded symbol to the end of the search buffer
 - Length = length of the encoded string
 - Next symbol = first symbol after the encoded string
- The two buffers are implemented as sliding windows

LZ77 algorithm

- Initially,
 - the search buffer is empty
 - the symbols to be encoded fill the look-ahead buffer
- Repeat until the look-ahead buffer is empty:
 - Scan the search buffer to find the longest string matching the first symbols in the look-ahead buffer
 - If nothing is found
 - Output token <0,0,first symbol in look-ahead buffer>
 - else
 - Output token <offset, length, next symbol after encoded string in look-ahead buffer>
 - Move the buffer boundary to the right up to the next symbol to encode

LZ77 example: "cat cat catering"

- Assume buffer length is 8
- The \$ sign is used to terminate the string to encode

```
Search Look-ahead Token
  " "cat cat " <0,0,"c">
 c" "at cat c" <0,0,"a">
    ca" "t cat ca" <0,0,"t">
   cat" " cat cat" <0,0," ">
  cat " "cat cate" <4,4,"c">
"at cat c" "atering$" <4,2,"e">
"cat cate" "ring$ " <0,0,"r">
"catering" "$
                " <0,0,"$">
```

Another example: "sir sid eastman easily teases sea sick seals"

```
" --- "sir sid " --- <0,0,"s">
                                         "an easil" --- "y teases" --- <0,0,"y">
       s" --- "ir sid e" --- <0,0,"i">
                                         "n easily" --- " teases " --- <7,1,"t">
      si" --- "r sid ea" --- <0,0,"r">
                                         "easily t" --- "eases se" --- <8,3,"e">
                                         "ly tease" --- "s sea si" --- <2,1," ">
     sir" --- " sid eas" --- <0,0," ">
    sir " --- "sid east" --- <4,2,"d">
                                         " teases " --- "sea sick" --- <4,2,"a">
" sir sid" --- " eastman" --- <4,1,"e">
                                         "ases sea" --- " sick se" --- <4,2,"i">
"ir sid e" --- "astman e" --- <0,0,"a">
                                         "s sea si" --- "ck seals" --- <0,0,"c">
                                         " sea sic" --- "k seals$" --- <0,0,"k">
"r sid ea" --- "stman ea" --- <6,1,"t">
"sid east" --- "man easi" --- <0,0,"m">
                                         "sea sick" --- " seals$ " --- <5,2,"e">
                                         " sick se" --- "als$ " --- <0,0,"a">
"id eastm" --- "an easil" --- <4,1,"n">
" eastman" --- " easily " --- <8,4,"i">
                                         "sick sea" --- "ls$ " --- <0,0,"l">
                                         "man easi" --- "ly tease" --- <0,0,"1">
```

ZIP methods

- Several compression methods named *ZIP have been proposed in later years
- The first was PKZIP developed by P.W. Katz in 1987
- The core of PKZIP is the method called DEFLATE
- DEFLATE is a variation of LZ77 combined with Huffman codes

DEFLATE

- DEFLATE does not output tokens as LZ77
- DEFLATE still scans the search buffer for the longest string matching the initial part of the look-ahead buffer but it outputs
 - An unmatched character when the search fails
 - A pair (offset, length) when it was successful
- Unmatched characters and offsets have byte dimension
- Lengths have 15 bits
- DEFLATE output is stored by using a special Huffman code

Book references

- T.M. Cover and J.A. Thomas, Elements of Information Theory. Wiley, 2006
- R.M. Gray, Entropy and Information Theory, Springer, 2011
- G. Grimmett and D. Stirzaker, Probability and Random Processes 3rd ed. Oxford, 2001
- G. Grimmett and D. Stirzaker, One Thousand Exercises in Probability. Oxford, 2001
- M. Lefebvre, Basic Probability Theory with Applications. Springer Undergraduate Texts in Mathematics and Technology, 2009
- A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge University Press, 2011
- M.R.D. Rodriguez and Y. Eldar, Information-Theoretic Methods in Data Science, Cambridge University Press, 2021