1.11 We use ℓ to denote $\ln p(\mathbf{X}|\mu, \sigma^2)$ from (1.54). By standard rules of differentiation we obtain

$$\frac{\partial \ell}{\partial \mu} = \frac{1}{\sigma^2} \sum_{n=1}^{N} (x_n - \mu).$$

Setting this equal to zero and moving the terms involving μ to the other side of the equation we get

$$\frac{1}{\sigma^2} \sum_{n=1}^{N} x_n = \frac{1}{\sigma^2} N\mu$$

and by multiplying ing both sides by σ^2/N we get (1.55).

Similarly we have

$$\frac{\partial \ell}{\partial \sigma^2} = \frac{1}{2(\sigma^2)^2} \sum_{n=1}^{N} (x_n - \mu)^2 - \frac{N}{2} \frac{1}{\sigma^2}$$

and setting this to zero we obtain

$$\frac{N}{2}\frac{1}{\sigma^2} = \frac{1}{2(\sigma^2)^2} \sum_{n=1}^{N} (x_n - \mu)^2.$$

Multiplying both sides by $2(\sigma^2)^2/N$ and substituting $\mu_{\rm ML}$ for μ we get (1.56).

3.1 NOTE: In the 1^{st} printing of PRML, there is a 2 missing in the denominator of the argument to the 'tanh' function in equation (3.102).

Using (3.6), we have

$$2\sigma(2a) - 1 = \frac{2}{1 + e^{-2a}} - 1$$

$$= \frac{2}{1 + e^{-2a}} - \frac{1 + e^{-2a}}{1 + e^{-2a}}$$

$$= \frac{1 - e^{-2a}}{1 + e^{-2a}}$$

$$= \frac{e^a - e^{-a}}{e^a + e^{-a}}$$

$$= \tanh(a)$$

3.3 If we define $\mathbf{R} = \operatorname{diag}(r_1, \dots, r_N)$ to be a diagonal matrix containing the weighting coefficients, then we can write the weighted sum-of-squares cost function in the form

$$E_D(\mathbf{w}) = \frac{1}{2} (\mathbf{t} - \mathbf{\Phi} \mathbf{w})^{\mathrm{T}} \mathbf{R} (\mathbf{t} - \mathbf{\Phi} \mathbf{w}).$$

Setting the derivative with respect to w to zero, and re-arranging, then gives

$$\mathbf{w}^{\star} = \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{R} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{R} \mathbf{t}$$

which reduces to the standard solution (3.15) for the case $\mathbf{R} = \mathbf{I}$.

If we compare (3.104) with (3.10)–(3.12), we see that r_n can be regarded as a precision (inverse variance) parameter, particular to the data point (\mathbf{x}_n, t_n) , that either replaces or scales β .

Alternatively, r_n can be regarded as an *effective* number of replicated observations of data point (\mathbf{x}_n, t_n) ; this becomes particularly clear if we consider (3.104) with r_n taking positive integer values, although it is valid for any $r_n > 0$.

3.7 From Bayes' theorem we have

$$p(\mathbf{w}|\mathbf{t}) \propto p(\mathbf{t}|\mathbf{w})p(\mathbf{w}),$$

where the factors on the r.h.s. are given by (3.10) and (3.48), respectively. Writing this out in full, we get

$$p(\mathbf{w}|\mathbf{t}) \propto \left[\prod_{n=1}^{N} \mathcal{N} \left(t_{n} | \mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}_{n}), \beta^{-1} \right) \right] \mathcal{N} \left(\mathbf{w} | \mathbf{m}_{0}, \mathbf{S}_{0} \right)$$

$$\propto \exp \left(-\frac{\beta}{2} (\mathbf{t} - \boldsymbol{\Phi} \mathbf{w})^{T} (\mathbf{t} - \boldsymbol{\Phi} \mathbf{w}) \right)$$

$$= \exp \left(-\frac{1}{2} (\mathbf{w} - \mathbf{m}_{0})^{T} \mathbf{S}_{0}^{-1} (\mathbf{w} - \mathbf{m}_{0}) \right)$$

$$= \exp \left(-\frac{1}{2} (\mathbf{w}^{T} \left(\mathbf{S}_{0}^{-1} + \beta \boldsymbol{\Phi}^{T} \boldsymbol{\Phi} \right) \mathbf{w} - \beta \mathbf{t}^{T} \boldsymbol{\Phi} \mathbf{w} - \beta \mathbf{w}^{T} \boldsymbol{\Phi}^{T} \mathbf{t} + \beta \mathbf{t}^{T} \mathbf{t} \right)$$

$$= \exp \left(-\frac{1}{2} (\mathbf{w}^{T} \left(\mathbf{S}_{0}^{-1} + \beta \boldsymbol{\Phi}^{T} \boldsymbol{\Phi} \right) \mathbf{w} - \left(\mathbf{S}_{0}^{-1} \mathbf{m}_{0} + \beta \boldsymbol{\Phi}^{T} \mathbf{t} \right)^{T} \mathbf{w} \right)$$

$$= \exp \left(-\frac{1}{2} (\mathbf{w}^{T} \left(\mathbf{S}_{0}^{-1} + \beta \boldsymbol{\Phi}^{T} \boldsymbol{\Phi} \right) \mathbf{w} - \left(\mathbf{S}_{0}^{-1} \mathbf{m}_{0} + \beta \boldsymbol{\Phi}^{T} \mathbf{t} \right)^{T} \mathbf{w} \right)$$

$$- \mathbf{w}^{T} \left(\mathbf{S}_{0}^{-1} \mathbf{m}_{0} + \beta \boldsymbol{\Phi}^{T} \mathbf{t} \right) + \beta \mathbf{t}^{T} \mathbf{t} + \mathbf{m}_{0}^{T} \mathbf{S}_{0}^{-1} \mathbf{m}_{0} \right)$$

$$= \exp\left(-\frac{1}{2}\left(\mathbf{w} - \mathbf{m}_{N}\right)^{\mathrm{T}} \mathbf{S}_{N}^{-1}\left(\mathbf{w} - \mathbf{m}_{N}\right)\right)$$
$$\exp\left(-\frac{1}{2}\left(\beta \mathbf{t}^{\mathrm{T}} \mathbf{t} + \mathbf{m}_{0}^{\mathrm{T}} \mathbf{S}_{0}^{-1} \mathbf{m}_{0} - \mathbf{m}_{N}^{\mathrm{T}} \mathbf{S}_{N}^{-1} \mathbf{m}_{N}\right)\right)$$

where we have used (3.50) and (3.51) when completing the square in the last step. The first exponential corrsponds to the posterior, unnormalized Gaussian distribution over \mathbf{w} , while the second exponential is independent of \mathbf{w} and hence can be absorbed into the normalization factor.

3.8 Combining the prior

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N)$$

and the likelihood

$$p(t_{N+1}|\mathbf{x}_{N+1}, \mathbf{w}) = \left(\frac{\beta}{2\pi}\right)^{1/2} \exp\left(-\frac{\beta}{2}(t_{N+1} - \mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}_{N+1})^{2}\right)$$
(130)

where $\phi_{N+1} = \phi(\mathbf{x}_{N+1})$, we obtain a posterior of the form

$$p(\mathbf{w}|t_{N+1}, \mathbf{x}_{N+1}, \mathbf{m}_N, \mathbf{S}_N)$$

$$\propto \exp\left(-\frac{1}{2}(\mathbf{w} - \mathbf{m}_N)^{\mathrm{T}} \mathbf{S}_N^{-1}(\mathbf{w} - \mathbf{m}_N) - \frac{1}{2}\beta(t_{N+1} - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}_{N+1})^2\right).$$

We can expand the argument of the exponential, omitting the -1/2 factors, as follows

$$(\mathbf{w} - \mathbf{m}_{N})^{\mathrm{T}} \mathbf{S}_{N}^{-1} (\mathbf{w} - \mathbf{m}_{N}) + \beta (t_{N+1} - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}_{N+1})^{2}$$

$$= \mathbf{w}^{\mathrm{T}} \mathbf{S}_{N}^{-1} \mathbf{w} - 2 \mathbf{w}^{\mathrm{T}} \mathbf{S}_{N}^{-1} \mathbf{m}_{N}$$

$$+ \beta \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}_{N+1}^{\mathrm{T}} \boldsymbol{\phi}_{N+1} \mathbf{w} - 2\beta \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}_{N+1} t_{N+1} + \text{const}$$

$$= \mathbf{w}^{\mathrm{T}} (\mathbf{S}_{N}^{-1} + \beta \boldsymbol{\phi}_{N+1} \boldsymbol{\phi}_{N+1}^{\mathrm{T}}) \mathbf{w} - 2 \mathbf{w}^{\mathrm{T}} (\mathbf{S}_{N}^{-1} \mathbf{m}_{N} + \beta \boldsymbol{\phi}_{N+1} t_{N+1}) + \text{const},$$

where const denotes remaining terms independent of \mathbf{w} . From this we can read off the desired result directly,

$$p(\mathbf{w}|t_{N+1}, \mathbf{x}_{N+1}, \mathbf{m}_N, \mathbf{S}_N) = \mathcal{N}(\mathbf{w}|\mathbf{m}_{N+1}, \mathbf{S}_{N+1}),$$

with

$$\mathbf{S}_{N+1}^{-1} = \mathbf{S}_{N}^{-1} + \beta \phi_{N+1} \phi_{N+1}^{\mathrm{T}}.$$
 (131)

and

$$\mathbf{m}_{N+1} = \mathbf{S}_{N+1}(\mathbf{S}_N^{-1}\mathbf{m}_N + \beta \phi_{N+1}t_{N+1}). \tag{132}$$