

IFI20 Discrete Mathematics

02 Logics

Nyimas Dewi Sartika, Januar Wahjudi, Seng Hansun

REVIEW

- Sets
- Basic Operation on Sets

<u>OUTLINE</u>

- Propositions
- Logics Operators and Truth Table
- Conditional Propositions and Logical Equivalence
- Arguments and Rules of Inference
- Quantifiers

PROPOSITIONS

- A sentence that is either true or false, but not both, is called a proposition.
 - I. The only positive integers that divide 7 are 1 and 7 itself.
 - 2. For every positive integer n, there is a prime number larger than n.
 - 3. Earth is the only planet in the universe that contains life.
 - 4. Buy two tickets to the "Unhinged Universe" rock concert for Friday. (x)
 - 5. x + 4 = 6. (x)
- A proposition is typically expressed as a declarative sentence (as opposed to a question, command, etc.).
- Propositions are the basic building blocks of any theory of logic.
- We will use variables, such as p, q, and r, to represent propositions, much as we use letters in algebra to represent numbers.
- We will also use the notation

$$p: 1 + 1 = 3$$

to define p to be the proposition I + I = 3.

CONJUNCTION & DISJUNCTION

- Let p and q be propositions.
- The conjunction of p and q, denoted $\mathbf{p} \wedge \mathbf{q}$, is the proposition p and q.
- The disjunction of p and q, denoted p V q, is the proposition p or q.
- The truth values of propositions such as conjunctions and disjunctions can be described by truth tables.

q	$p \wedge q$
T	Т
F	F
T	F
F	F
	T F T

p	q	$p \vee q$
Т	Т	Т
T	F	Т
F	T	T
F	F	F

- The **inclusive-or** of propositions p and q is true if p or q, or both, is true, and false otherwise.
- There is also an **exclusive-or** that defines p exor q to be true if p or q, but not both, is true, and false otherwise.

<u>NEGATION</u>

- The **negation** of p, denoted $\neg p$, is the proposition not p.
- The truth value of the proposition ¬p is defined by the truth table

p	$\neg p$
Т	F
F	Т

- In expressions involving some or all of the operators \neg , \wedge , and \vee , in the absence of parentheses, we first evaluate \neg , then \wedge , and then \vee .
- We call such a convention **operator precedence**.
- \Box Given that proposition p is false, proposition q is true, and proposition r is false, determine whether the proposition $\neg p \lor q \land r$ is true or false.

CONDITIONAL PROPOSITIONS

• If p and q are propositions, the proposition

is called a conditional proposition and is denoted

$$p \rightarrow q$$

- The proposition p is called the hypothesis (or antecedent) and the proposition q is called the conclusion (or consequent).
- The proposition $p \rightarrow q$ can be true while the proposition $q \rightarrow p$ is false. We call the proposition $q \rightarrow p$ the **converse** of the proposition $p \rightarrow q$.

p	q	$p \rightarrow q$
Т	T	T
T	F	F
F	T	T
F	F	T

Assuming that p is true, q is false, and r is true, find the truth value of each proposition.

$$\square$$
 p \land q \rightarrow r

$$\square$$
 p \vee q $\rightarrow \neg$ r

$$\square$$
 p \land (q \rightarrow r)

$$\square p \rightarrow (q \rightarrow r)$$

BICONDITIONAL PROPOSITIONS

If p and q are propositions, the proposition

is called a biconditional proposition and is denoted

$$p \leftrightarrow q$$

□ The proposition I < 5 if and only if 2 < 8 can be written symbolically as

$$p \leftrightarrow q$$

if we define

Since both p and q are true, the proposition $p \leftrightarrow q$ is true.

LOGICALLY EQUIVALENT

• Suppose that the propositions P and Q are made up of the propositions p_1, \dots, p_n . We say that P and Q are **logically equivalent** and write

$$P \equiv Q$$
,

provided that, given any truth values of p_1 , ..., p_n , either P and Q are both true, or P and Q are both false.

We will verify the first of **De Morgan's** laws $\neg (p \lor q) \equiv \neg p \land \neg q$, by using the truth table.

p	q	$\neg (p \lor q)$	$\neg p \land \neg q$
Т	T	F	F
T	F	F	F
F	T	F	F
F	F	T	T

- The **contrapositive** (or **transposition**) of the conditional proposition $p \rightarrow q$ is the proposition $\neg q \rightarrow \neg p$.
- Both of them are logically equivalent.

<u>ARGUMENTS</u>

• An **argument** is a sequence of propositions written

 p_1 p_2 \vdots p_n \vdots

or

$$p_1, p_2, \dots, \frac{p_n}{\therefore q}$$

- The symbol : is read "therefore."
- The propositions p_1, \dots, p_n are called the **hypotheses** (or **premises**), and the proposition q is called the **conclusion**.
- The argument is **valid** provided that if p_1 and p_2 and \cdots and p_n are all true, then q must also be true; otherwise, the argument is **invalid** (or a **fallacy**).

RULES OF INFERENCE

- Each step of an extended argument involves drawing intermediate conclusions.
- For the argument as a whole to be valid, each step of the argument must result in a valid, intermediate conclusion.
- Rules of inference, brief, valid arguments, are used within a larger argument.
- Determine whether the argument

is valid.

$p \rightarrow q$		
p		
q		

We construct a truth table for all the propositions involved:

We observe that whenever the hypotheses $p \rightarrow q$ and p

are true, the conclusion q is also true; therefore, the argument is valid.

RULE OF INFERENCES

Rule of Inference	Name	Rule of Inference	Name
$\frac{p \to q}{\frac{p}{\therefore q}}$	Modus ponens	$\frac{p}{q}$ $\therefore p \wedge q$	Conjunction
$\frac{p \to q}{\neg q}$ $\therefore \neg p$	Modus tollens	$\begin{array}{c} p \to q \\ q \to r \\ \vdots p \to r \end{array}$	Hypothetical syllogism
$\frac{p}{\therefore p \lor q}$	Addition	$\frac{p \vee q}{\neg p}$ $\therefore q$	Disjunctive syllogism
$\frac{p \wedge q}{\therefore p}$	Simplification		

RULE OF INFERENCES

Represent the argument

The bug is either in module 17 or in module 81.

The bug is a numerical error.

Module 81 has no numerical error.

∴ The bug is in module 17.

given at the beginning of this section symbolically and show that it is valid.

If we let p: The bug is in module 17, q: The bug is in module 81, r: The bug is a numerical error, the argument may be written

$$\begin{array}{c}
p \lor q \\
r \\
\underline{r \to \neg q} \\
\vdots p
\end{array}$$

From $r \to \neg q$ and r, we may use modus ponens to conclude $\neg q$. From $p \lor q$ and $\neg q$, we may use the disjunctive syllogism to conclude p. Thus the conclusion p follows from the hypotheses and the argument is valid.

UNIVERSAL QUANTIFIERS

- Let P(x) be a statement involving the variable x and let D be a set.
- We call P a **propositional function** or **predicate** (with respect to D) if for each $x \in D$, P(x) is a proposition.
- We call D the domain of discourse of P.
- Let P be a propositional function with domain of discourse D.
- The statement

for every
$$x$$
, $P(x)$

is said to be a universally quantified statement.

■ The symbol \forall means "for every," "for all," "for any." Thus the statement for every x, P(x) may be written

$$\forall x P(x)$$
.

The symbol ∀ is called a universal quantifier.

COUNTEREXAMPLE

- The universally quantified statement $\forall x P(x)$ is false if for at least one x in the domain of discourse, the proposition P(x) is false.
- A value x in the domain of discourse that makes P(x) false is called a **counterexample** to the statement $\forall x P(x)$.
- \Box Consider the universally quantified statement $\forall x(x^2 1 > 0)$.

The domain of discourse is R.

The statement is false since, if x = 1, the proposition $1^2 - 1 > 0$ is false.

The value I is a counterexample to the statement $\forall x(x^2 - 1 > 0)$.

Although there are values of x that make the propositional function true, the counterexample provided shows that the universally quantified statement is false.

EXISTENTIAL QUANTIFIERS

- Let P be a propositional function with domain of discourse D.
- The statement

there exists
$$x, P(x)$$

is said to be an existentially quantified statement.

■ The symbol \exists means "there exists." "for some," "for at least one." Thus the statement there exists x, P(x) may be written

$$\exists x P(x).$$

- The symbol ∃ is called an existential quantifier.
- The existentially quantified statement $\exists x \ P(x)$ is false if for every x in the domain of discourse, the proposition P(x) is false.

GENERALIZED DE MORGAN'S LAWS

• If P is a propositional function, each pair of propositions in (a) and (b) has the same truth values (i.e., either both are true or both are false).

a)
$$\neg(\forall x P(x)); \exists x \neg P(x)$$

b)
$$\neg(\exists x P(x)); \forall x \neg P(x)$$

Rule of Inference	Name
$\forall x P(x)$	
$P(d)$ if $d \in D$	Universal instantiation
$P(d)$ for every $d \in D$	
$\therefore \forall x \ P(x)$	Universal generalization
$\exists x P(x)$	
$\therefore P(d)$ for some $d \in D$	Existential instantiation
$P(d)$ for some $d \in D$	
$\exists x \ P(x)$	Existential generalization

Rules of Inference for Quantified Statements

- Consider writing the statement
 The sum of any two positive real numbers is positive,
 symbolically.
- We first note that since two numbers are involved, we will need two variables, say x and y. The assertion can be restated as: If x > 0 and y > 0, then x + y > 0. The given statement says that the sum of any two positive real numbers is positive, so we need two universal quantifiers. If we let P(x, y) denote the expression $(x > 0) \land (y > 0) \rightarrow (x + y > 0)$, the given statement can be written symbolically as $\forall x \forall y P(x, y)$.
- In words, for every x and for every y, if x > 0 and y > 0, then x + y > 0. The domain of discourse of the two-variable propositional function P is R × R, which means that each variable x and y must belong to the set of real numbers.
- Multiple quantifiers such as $\forall x \forall y$ are said to be **nested quantifiers**.

- By definition, the statement $\forall x \forall y P(x, y)$, with domain of discourse X ×Y, is true if, for every $x \in X$ and for every $y \in Y$, P(x, y) is true.
- The statement $\forall x \forall y \ P(x, y)$ is false if there is at least one $x \in X$ and at least one $y \in Y$ such that P(x, y) is false.
- By definition, the statement $\forall x \exists y \ P(x, y)$, with domain of discourse $X \times Y$, is true if, for every $x \in X$, there is at least one $y \in Y$ for which P(x, y) is true.
- The statement $\forall x \exists y \ P(x, y)$ is false if there is at least one $x \in X$ such that P(x, y) is false for every $y \in Y$.

- By definition, the statement $\exists x \forall y P(x, y)$, with domain of discourse $X \times Y$, is true if there is at least one $x \in X$ such that P(x, y) is true for every $y \in Y$.
- The statement $\exists x \forall y \ P(x, y)$ is false if, for every $x \in X$, there is at least one $y \in Y$ such that P(x, y) is false.
- By definition, the statement $\exists x \exists y \ P(x, y)$, with domain of discourse $X \times Y$, is true if there is at least one $x \in X$ and at least one $y \in Y$ such that P(x, y) is true.
- The statement $\exists x \exists y \ P(x, y)$ is false if, for every $x \in X$ and for every $y \in Y$, P(x, y) is false.

Write the negation of $\exists x \forall y (x \ y < 1)$, where the domain of discourse is R×R. Determine the truth value of the given statement and its negation.

Using the generalized De Morgan's laws for logic, we find that the negation is $\neg(\exists x \forall y (x \ y < 1)) \equiv \forall x \neg(\forall y (x \ y < 1)) \equiv \forall x \exists y \neg(x \ y < 1) \equiv \forall x \exists y (x \ y \geq 1).$

The given statement $\exists x \forall y (x \ y < 1)$ is true because there is at least one x (namely x = 0) such that x y < I for every y.

Since the given statement is true, its negation is false.

PRACTICE

NEXT WEEK'S OUTLINE

- Direct Proofs and Indirect Proofs
- Other Proofs Methods
- Proofs Strategy
- Mathematical Induction

<u>REFERENCES</u>

- Johnsonbaugh, R., 2005, Discrete Mathematics, New Jersey: Pearson Education, Inc.
- Rosen, Kenneth H., 2005, Discrete Mathematics and Its Applications, 6th edition, McGraw-Hill.
- Hansun, S., 2021, Matematika Diskret Teknik, Deepublish.
- Lipschutz, Seymour, Lipson, Marc Lars, Schaum's Outline of Theory and Problems of Discrete Mathematics, McGraw-Hill.
- Liu, C.L., 1995, Dasar-Dasar Matematika Diskret, Jakarta: Gramedia Pustaka Utama.
- Other offline and online resources.

Visi

Menjadi Program Studi Strata Satu Informatika **unggulan** yang menghasilkan lulusan **berwawasan internasional** yang **kompeten** di bidang Ilmu Komputer (*Computer Science*), **berjiwa wirausaha** dan **berbudi pekerti luhur**.

Misi

- . Menyelenggarakan pembelajaran dengan teknologi dan kurikulum terbaik serta didukung tenaga pengajar profesional.
- 2. Melaksanakan kegiatan penelitian di bidang Informatika untuk memajukan ilmu dan teknologi Informatika.
- 3. Melaksanakan kegiatan pengabdian kepada masyarakat berbasis ilmu dan teknologi Informatika dalam rangka mengamalkan ilmu dan teknologi Informatika.