■ SUPPLEMENT ■

Complete Model Equations and Parameters

for

Sex-Specific Computational Models for Blood Pressure Regulation in the Rat

Cardiovascular Function

$$P_{mf} = (\frac{1}{SF_V} \times 7.436 \times V_b - 30.18) \times \epsilon_{aum} \quad * \tag{S1}$$

$$P_{ra} = \max \left\{ 0.2787 e^{SF_R \times 0.2281\Phi_{co}} - 0.9119, 0 \right\}$$
 (S2)

$$P_{ma} = \Phi_{co} \times R_{tp} \quad ^* \tag{S3}$$

$$\Phi_{vr} = \frac{P_{mf} - P_{ra}}{R_{vr}} \quad * \tag{S4}$$

$$\Phi_{co} = \Phi_{vr} \stackrel{\circ}{*} \tag{S5}$$

$$\frac{dvas}{dt} = vas_f - vas_d \quad * \tag{S6}$$

$$vas_f = \frac{11.312 \times e^{-\Phi_{co} \times (SF_R \times 0.4714)}}{100000} \quad * \tag{S7}$$

$$vas_d = vas \times K_{vd} \quad * \tag{S8}$$

$$R_a = R_{ba} \times \epsilon_{aum} \quad ^* \tag{S9}$$

$$R_{ba} = K_{bar}/vas * (S10)$$

$$R_{vr} = (8R_{bv} + R_a)/31 \quad * \tag{S11}$$

$$R_{tp} = R_a + R_{bv} \quad ^* \tag{S12}$$

$$\varepsilon_{aum} = \frac{4}{5} (a_{chemo} + a_{baro}) \quad * \tag{S13}$$

$$a_{chemo} = \frac{1}{4} a_{auto} \quad * \tag{S14}$$

$$\frac{da_{baro}}{dt} = \frac{3}{4} \left\{ \frac{da_{auto}}{dt} - 0.0000667(a_{baro} - 1) \right\}$$
 (S15)

$$a_{auto} = 3.0042e^{-0.0107P_{ma}} \quad * \tag{S16}$$

Renal Hemodynamics

$$\Phi_{rb} = \frac{P_{ma}}{R_r} \quad * \tag{S17}$$

$$\Phi_{gfilt} = P_f \times C_{gcf} \quad * \tag{S18}$$

$$P_f = P_{gh} - (P_B + P_{go}) \quad * \tag{S19}$$

$$P_{ah} = P_{ma} - \Phi_{rb} \times R_{AA} \quad * \tag{S20}$$

$$R_r = R_{AA} + R_{EA} \quad * \tag{S21}$$

$$R_{AA} = R_{aa-ss} \times \beta_{rsna} \times \Sigma_{tgf} \times \Sigma_{myo} \times \Psi_{AT1R-AA} \times \Psi_{AT2R-AA} \quad ^{*\star\dagger}$$
 (S22)

$$R_{EA} = R_{ea-ss} \times \Psi_{AT1R-EA} \times \Psi_{AT2R-EA} \quad ^{**\dagger} \tag{S23}$$

$$\beta_{rsna} = \frac{2}{1 + e^{-3.16(rsna-1)}} *^{\ddagger}$$
 (S24)

$$\Sigma_{tgf} = \begin{cases} 0.3408 + \frac{3.449}{3.88 + e^{(\Phi_{md-sod} - SF_S \times 3.891)/(SF_S \times -0.9617)}} & \text{in males} \\ 0.3408 + \frac{3.449}{3.88 + e^{(\Phi_{md-sod} - SF_S \times 6.591)/(SF_S \times -0.9617)}} & \text{in females} \end{cases}$$
(S25)

$$\Sigma_{myo} = 0.75 + \frac{1.2}{1 + 3.8e^{-0.6(P_{gh} - 63.8)}}$$
 (S26)

$$\Psi_{AT1R-AA} = 0.8 + 0.2092 \times \frac{[AT1R]}{[AT1R]_{eq}} - 0.0092 \div \frac{[AT1R]}{[AT1R]_{eq}}$$

$$\Psi_{AT1R-EA} = 0.925 + 0.0835 \frac{[AT1R]}{[AT1R]_{eq}} - 0.0085 \div \frac{[AT1R]}{[AT1R]_{eq}}$$

$$(S27)$$

$$\Psi_{AT1R-EA} = 0.925 + 0.0835 \frac{[AT1R]}{[AT1R]_{eq}} - 0.0085 \div \frac{[AT1R]}{[AT1R]_{eq}}$$
[†]
(S28)

$$\Psi_{AT2R-AA} = \begin{cases} 0.9 + 0.1e^{-\frac{[AT2R]}{[AT2R]eq} - 1} & \text{in females} \\ 1 & \text{in males} \end{cases}$$

$$(S29)$$

$$\Psi_{AT2R-EA} = \begin{cases} 0.9 + 0.1e^{-\frac{[AT2R]}{[AT2R]_{eq}} - 1} & \text{in females} \\ 1 & \text{in males} \end{cases}$$
 (S30)

Renal Function

$$\Phi_{filsod} = \Phi_{afilt} \times C_{sod} \quad * \tag{S31}$$

$$\Phi_{pt-sodreab} = \Phi_{filsod} \times \eta_{pt-sodreab} \quad * \tag{S32}$$

$$\Phi_{md-sod} = \Phi_{filsod} - \Phi_{pt-sodreab} \quad * \tag{S33}$$

$$\Phi_{dt-sodreab} = \Phi_{md-sod} \times \eta_{dt-sodreab} \quad * \tag{S34}$$

$$\Phi_{dt-sod} = \Phi_{md-sod} - \Phi_{dt-sodreab} \quad * \tag{S35}$$

$$\Phi_{cd-sodreab} = \Phi_{dt-sod} \times \eta_{cd-sodreab}$$
 * (S36)

$$\Phi_{u-sod} = \Phi_{dt-sod} - \Phi_{cd-sodreab} \quad * \tag{S37}$$

$$\eta_{pt-sodreab} = \eta_{pt-sodreab}^{eq} \times \gamma_{filsod} \times \gamma_{AT1R} \times \gamma_{rsna} \quad * \tag{S38}$$

$$\eta_{dt-sodreab} = \eta_{dt-sodreab}^{eq} \times \psi_{al} \quad ^* \tag{S39}$$

$$\eta_{cd-sodreab} = \eta_{cd-sodreab}^{eq} \times \lambda_{dt} \times \lambda_{anp} \times \lambda_{al} \quad ^{*\dagger}$$
 (S40)

$$\gamma_{filsod} = \begin{cases} 0.8 + \frac{0.3}{1 + e^{[(\Phi_{filsod} - SF_S \times 113.7)/(SF_S \times 138)]}} & \text{in males} \\ 0.8 + \frac{0.3}{1 + e^{[(\Phi_{filsod} - SF_S \times 108.3)/(SF_S \times 138)]}} & \text{in females} \end{cases}$$
(S41)

$$\gamma_{AT1R} = 0.92 + \frac{0.136}{1 + e^{-1.7983(\frac{[AT1R]}{[AT1R]eq} - 0.8017)}} *$$
(S42)

$$\gamma_{rsna} = 0.72 + \frac{0.56}{1 + e^{(1 - rsna)/2.18}} * \tag{S43}$$

$$\psi_{al} = \frac{11.55}{1 + 0.1e^{-0.007937C_{al}}} - 10.5 \quad ^{\ddagger} \tag{S44}$$

$$\lambda_{dt} = \begin{cases} 0.8 + \frac{0.275}{1 + e^{\frac{1}{SF_S} \times 2.31(\Phi_{dt-sod} - SF_S \times 2.224)}} & \text{in males} \\ 0.8 + \frac{0.2417}{1 + e^{\frac{1}{SF_S} \times 2.86(\Phi_{dt-sod} - SF_S \times 3.699)}} & \text{in females} \end{cases}$$
(S45)

$$\lambda_{anp} = -0.1 \times \hat{C}_{anp} + 1.1 \quad * \tag{S46}$$

$$\lambda_{al} = \frac{1}{C_{al}^{eq0.06}} C_{al}^{0.06} \quad ^{\dagger} \tag{S47}$$

$$\Phi_{pt-wreab} = \Phi_{gfilt} \times \eta_{pt-wreab} \quad ^{\ddagger} \tag{S48}$$

$$\Phi_{md-u} = \Phi_{gfilt} - \Phi_{pt-wreab} \quad ^{\ddagger} \tag{S49}$$

$$\Phi_{dt-wreab} = \Phi_{md-u} \times \eta_{dt-wreab} \quad ^{\ddagger} \tag{S50}$$

$$\Phi_{dt-u} = \Phi_{md-u} - \Phi_{dt-wreab} \quad ^{\ddagger} \tag{S51}$$

$$\Phi_{cd-wreab} = \Phi_{dt-u} \times \eta_{cd-wreab} \quad ^{\ddagger} \tag{S52}$$

$$\Phi_u = \Phi_{dt-u} - \Phi_{cd-wreab} \quad ^{\ddagger} \tag{S53}$$

$$\eta_{pt-wreab} = \eta_{pt-wreab}^{eq} \times \mu_{pt-sodreab}$$
 [†] (S54)

$$\eta_{dt-wreab} = \eta_{dt-wreab}^{eq} \times \mu_{dt-sodreab} \quad ^{\ddagger} \tag{S55}$$

$$\eta_{cd-wreab} = \eta_{cd-wreab}^{eq} \times \mu_{cd-sodreab} \times \mu_{adh}$$
[†]
(S56)

$$\mu_{pt-sodreab} = 0.12 \tanh \left(10 \left(\frac{\eta_{pt-sodreab}}{\eta_{pt-sodreab}^{eq}} - 1 \right) \right) + 1^{-\frac{1}{2}}$$
(S57)

$$\mu_{dt-sodreab} = 0.12 \tanh \left(10 \left(\frac{\eta_{dt-sodreab}}{\eta_{dt-sodreab}^{eq}} - 1 \right) \right) + 1^{-\frac{1}{4}}$$
(S58)

$$\mu_{cd-sodreab} = 0.12 \tanh \left(10 \left(\frac{\eta_{cd-sodreab}}{\eta_{cd-sodreab}^{eq}} - 1 \right) \right) + 1^{-\frac{1}{2}}$$
(S59)

$$\mu_{adh} = 1.0328 - 0.1938e^{-0.4441C_{adh}} \quad * \tag{S60}$$

Renin-Angiotensin-Aldosterone System

$$R_{sec} = N_{rs} \times \nu_{md-sod} \times \nu_{rsna} \times \nu_{AT1R} \quad * \tag{S61}$$

$$\frac{d[PRC]}{dt} = R_{sec} - \frac{\ln(2)}{h_{renin}} [PRC]^{-\dagger} \tag{S62}$$

$$PRA = [PRC] \times X_{PRC-PRA} \quad ^{\dagger} \tag{S63}$$

$$\frac{d[AGT]}{dt} = k_{AGT} - PRA - \frac{\ln(2)}{h_{AGT}}[AGT]^{-\dagger}$$
(S64)

$$\frac{d[AngI]}{dt} = PRA - (c_{ACE} + c_{Chym} + c_{NEP})[AngI] - \frac{\ln(2)}{h_{AngI}}[AngI]$$
[†]
(S65)

$$\frac{d[AngII]}{dt} = (c_{ACE} + c_{Chym})[AngI] - (c_{ACE2} + c_{AII=AIV} + c_{AT1R} + c_{AT2R})[AngII] - \frac{\ln(2)}{h_{AngII}}[AngII]^{\dagger}$$
(S66)

$$\frac{d[Ang(1-7)]}{dt} = c_{NEP}[AngI] + c_{ACE2}[AngII] - \frac{\ln(2)}{h_{Ang(1-7)}}[Ang(1-7)]^{-\dagger}$$
(S67)

$$\frac{d[AngIV]}{dt} = c_{AII=AIV}[AngII] - \frac{\ln(2)}{h_{AngIV}}[AngIV]^{-\dagger}$$
(S68)

$$\frac{d[AT1R]}{dt} = c_{AT1R}[AngII] - \frac{\ln(2)}{h_{AT1R}}[AT1R]^{-\dagger}$$
(S69)

$$\frac{d[AT2R]}{dt} = c_{AT2R}[AngII] - \frac{\ln(2)}{h_{AT2R}}[AT2R]^{-\dagger}$$
(S70)

$$\nu_{md-sod} = \begin{cases} 0.2262 + \frac{28.04}{11.56 + e^{(\Phi_{md-sod} - SF_S \times 1.659)/(SF_S \times 0.6056)}} & \text{in males} \\ 0.2262 + \frac{28.04}{11.56 + e^{(\Phi_{md-sod} - SF_S \times 4.359)/(SF_S \times 0.6056)}} & \text{in females} \end{cases}$$
(S71)

$$\nu_{rsna} = 1.822 - \frac{2.056}{1.358 + e^{(rsna - 0.8662)}}$$
 * (S72)

$$\nu_{AT1R} = \left(\frac{[AT1R]}{[AT1R]_{eq}}\right)^{-0.95}$$
 † (S73)

$$N_{als} = N_{als}^{eq} \times \xi_{k/sod} \times \xi_{map} \times \xi_{AT1R} \quad * \tag{S74}$$

$$\frac{dN_{al}}{dt} = \frac{1}{T_{al}}(N_{als} - N_{al}) \quad * \tag{S75}$$

$$C_{al} = 387N_{al} \quad * \tag{S76}$$

$$\xi_{k/sod} = \frac{5}{1 + e^{0.265(C_k/C_{sod} - 23.7)}}$$
 (S77)

$$\xi_{map} = \begin{cases}
70.1054e^{-(0.0425) \times P_{ma}} & \text{if } P_{ma} \le 100 \\
1 & \text{if } P_{ma} > 100
\end{cases} \\
\xi_{AT1R} = 0.1 + \frac{2.9}{1 + e^{-2\left(\frac{[AT1R]}{[AT1R]_{eq}} - 1.399\right)}} *$$
(S78)

$$\xi_{AT1R} = 0.1 + \frac{2.9}{1 + e^{-2\left(\frac{[AT1R]}{[AT1R]_{eq}} - 1.399\right)}}$$
 (S79)

Miscellaneous

$$rsna = \begin{cases} rsna_0^{\frac{1}{rsna_0}} & \text{in females} & \star \\ rsna_0 & \text{in males} \end{cases}$$
 (S80)

$$\alpha_{map} = 0.5 + \frac{1}{1 + e^{(P_{ma} - 103)/15}} \quad * \tag{S81}$$

$$\alpha_{rap} = 1 - 0.008 P_{ra}$$
 * (S82)

$$\Phi_{win} = \frac{SF_U \times 0.002313}{1 + e^{-0.8(C_{adh} - 4.3404)}}$$
 (S83)

$$\frac{dV_{ecf}}{dt} = \Phi_{win} - \Phi_u \quad * \tag{S84}$$

$$V_b = SF_V \times 4.5479 + \frac{SF_V \times 2.4312}{1 + e^{-(V_{ecf} - SF_V \times 18.1128) \times (\frac{1}{SF_V} \times 0.4744)}}$$
 (S85)

$$N_{adhs} = \begin{cases} \left[\max\{(C_{sod} - 140), 0\} + \max\{(\epsilon_{aum} - 1), 0\} - \delta_{ra} \right] / 3 & \text{in males} \end{cases} * (S86)$$

$$\left[\max\{(C_{sod} - 143), 0\} + \max\{(\epsilon_{aum} - 1), 0\} - \delta_{ra} \right] / 3 & \text{in females} \end{cases}$$

$$\frac{dN_{adh}}{dt} = \frac{1}{T_{adh}} (N_{adhs} - N_{adh}) \quad * \tag{S87}$$

$$C_{adh} = 4N_{adh} \quad ^* \tag{S88}$$

$$\frac{d\delta_{ra}}{dt} = 0.2 \frac{dP_{ra}}{dt} - 0.0007\delta_{ra} \quad * \tag{S89}$$

$$\frac{dM_{sod}}{dt} = \Phi_{sodin} - \Phi_{u-sod} \quad * \tag{S90}$$

$$C_{sod} = \frac{M_{sod}}{V_{ecf}} \quad * \tag{S91}$$

$$\hat{C}_{anp} = 7.4052 - \frac{6.554}{1 + e^{(P_{ra} - 3.762)/(1)}}$$
(S92)

 $\underline{\text{Other}}$

$$V_b = 0.06 \times W_b + 0.77 \quad ^{\circ} \tag{S93}$$

Rat Value = Human Value
$$\times$$
 SF_{α} , ‡ (S94)

 $\alpha=$ urine sodium flow, urine flow, volume, resistance

Equation Reference Legend

- * Ref. [1]

 * Ref. [2]

 ° Ref. [3]

 † Ref. [4]

 † This work

Table S1: Baseline values of all model variables and parameters for male (M) and female (F). ADH, antidiuretic hormone; ALD, aldosterone; ANP, atrial natriuretic peptide; CD, collecting duct; DT, distal tubule; MAP, mean arterial pressure; PT, proximal tubule; RSNA, renal sympathetic nerve activity.

Symbol	Description	Units	Baseline M Value	Baseline F Value	Ref.
	Cardiovascular Function				
P_{mf}	Mean filling pressure	mmHg	7.28	7.26	[1]
P_{ra}	Right atrial pressure	mmHg	0	0	[1]
P_{ma}	Mean arterial pressure	mmHg	103	103	[1]
Φ_{vr}	Venous return	$\frac{ml}{min}$	15.0	9.57	[1, 5]
Φ_{co}	Cardiac output	$rac{min}{ml} \\ min$	27.3	17.4	citekaraaslan2005, munger988
vas	Vascularity	_	1	1	[1]
vas_f	Vascularity formation rate	_	1×10^{-5}	1×10^{-5}	[1]
vas_d	Vascularity destruction rate	_	1×10^{-5}	1×10^{-5}	[1]
K_{vd}	Vascularity destruction coefficient	_	1×10^{-5}	1×10^{-5}	[1]
K_{bar}	Coefficient relating basic arterial resistance to vascularity	$\frac{mmHg}{ml/min}$	3.14	4.91	[1, 5]
R_a	Arterial resistance	$\frac{ml/min}{mmHg}$	3.14	4.91	[1, 5]
R_{ba}	Basic arterial resistance	$\frac{ml/min}{mmHg}$	3.14	4.91	[1, 5]
	Resistance to venous return	$ml/min \ mmHg$	0.267	0.418	= =
R_{vr}		$\frac{ml/min}{mmHg}$			[1, 5]
R_{bv}	Basic venous resistance	ml/min	0.642	1.01	[1, 5]
R_{tp}	Total peripheral resistance	$\frac{mmHg}{ml/min}$	3.78	5.91	[1, 5]
ε_{aum}	Autonomic multiplier effect	_	1	1	[1]
a_{chemo}	Chemoreceptor activity	_	0.25	0.25	[1]
a_{baro}	Baroreceptor activity	_	1	1	[1]
a_{auto}	Autonomous system activity	_	1	1	[1]
	Renal Hemodynamics				
Φ_{rb}	Renal blood flow	$\frac{ml}{min}$	6.55	4.17	[5]
Φ_{gfilt}	Glomerular filtration rate	$\frac{min}{ml}$	1.22	0.833	[5]
C_{gcf}	Glomerular capillary filtration coefficient	$\frac{min}{ml/min}$	0.068	0.047	[1, 5]
P_f	Net filtration pressure	$\stackrel{mmHg}{mmHg}$	17.9	17.7	[1]
P_{gh}	Glomerular hydrostatic pressure	mmHg		63.7	[1]
P_B^{gn}	Bowman hydrostatic pressure	mmHg		18	[1]
P_{go}	Glomerular osmotic pressure	mmHg		28	[1]
R_r^{go}	Renal vascular resistance	mmHg	15.7	24.6	[1, 5]
R_{AA}	Afferent arteriolar resistance	$\frac{ml/min}{mmHg}$	5.98	9.36	[1, 5]
		$\frac{ml/min}{mmHg}$			
R_{EA}	Efferent arteriolar resistance	$\overline{ml/min}$	9.76	15.2	[1, 5]
β_{rsna}	Effect of RSNA on afferent arteriolar resistance	_	1	1	[1]
Σ_{tgf}	Tubuloglomerular feedback signal	_	1	1	[1]
Σ_{myo}	Myogenic response	_	1	1	[6]
	Effect of AT1R-bound Ang II on afferent resistance	_	1	1	[7]
	Effect of AT1R-bound Ang II on efferent resistance	_	1	1	[7]
	Effect of AT2R-bound Ang II on afferent resistance	_	1	1	[8]
$\Psi_{AT2R-EA}$	Effect of AT2R-bound Ang II on efferent resistance		1	1	[8]
	Renal Function				
Φ_{filsod}	Filtered Na ⁺ load	$rac{\mu e q}{min} \ \mu e q$	174	122	[1, 5]
$\Phi_{pt-sodreab}$		min	140	61.1	[1]
Φ_{md-sod}	Macula densa Na ⁺ flow	$\frac{\mu eq}{min}$	34.9	61.1	[1]
$\Phi_{dt-sodreab}$	Distal tubule Na ⁺ reabsorption rate	$rac{\mu e q}{min} \ \mu e q$	17.4	30.5	[1]
		μeq	17.4	30.5	[1]
Φ_{dt-sod}	Distal tubule Na ⁺ flow	\overline{min}	11.1		L J
	, Collecting duct Na ⁺ reabsorption rate	$_{\mu eq}^{min}$	16.2	29.3	[1]
	Collecting duct Na ⁺ reabsorption rate Urine Na ⁺ flow	$rac{min}{\mu eq} \ rac{min}{\mu eq}$	16.2 1.22		
$\Phi_{cd-sodread}$, Collecting duct Na ⁺ reabsorption rate	$_{\mu eq}^{min}$	16.2	29.3	[1]

$\eta_{cd-sodreab}$	Fractional collecting duct Na ⁺ reabsorption	_	0.93	0.96	[1]
γ_{filsod}	Effect of the filtered Na ⁺ load on fractional PT Na ⁺ reabsorption	_	1	1	[1]
γ_{AT1R}	Effect of AT2R-bound Ang II on fractional PT Na ⁺ reabsorption	_	1	1	[1]
γ_{rsna}	Effect of RSNA on fractional PT Na ⁺ reabsorption	_	1	1	[1]
ψ_{al}	Effect of ALD on fractional DT Na ⁺ reabsorption	_	1	1	[6]
λ_{dt}	Effect of DT Na ⁺ outflow on fractional CD Na ⁺ reabsorption	_	1	1	[1]
λ_{anp}	Effect of ANP on fractional CD Na ⁺ reabsorption	_	1	1	[1]
λ_{al}	Effect of ALD on fractional CD Na ⁺ reabsorption	_	1	1	[4]
$\Phi_{pt-wreab}$	Proximal tubule water reabsorption rate	\underline{ml}	1.05	0.417	[6]
Φ_{md-u}	Macula densa ultrafiltrate flow	$\frac{min}{ml}$	0.171	0.417	[6]
$\Phi_{dt-wreab}$	Distal tubule water reabsorption rate	$\frac{min}{ml}$	0.102	0.250	[6]
Φ_{dt-u}	Distal tubule ultrafiltrate flow	$rac{min}{ml}$	0.0682	0.168	[6]
$\Phi_{cd-wreab}$	Collecting duct water reabsorption rate	$_{ml}^{min}$	0.0532	0.152	[6]
Φ_u	Urine flow	$min \\ ml$	0.0150	0.0150	[1, 5]
		\overline{min}	0.86	0.50	
$\eta_{pt-wreab}$	Fractional proximal tubule water reabsorption	_			[9]
$\eta_{dt-wreab}$	Fractional distal tubule water reabsorption	_	0.60	0.60	[9]
$\eta_{cd-wreab}$	Fractional collecting duct water reabsorption	_	0.78	0.91	[9]
$\mu_{pt-sodreab}$	Effect of osmotic gradient in PT	_	1	1	[6]
$\mu_{dt-sodreab}$	Effect of osmotic gradient in DT	_	1	1	[6]
$\mu_{cd-sodreab}$		_	1	1	[6]
μ_{adh}	Effect of ADH on CD fractional water reabsorption	_	1	1	[1]
	Renin-Angiotensin-Aldosterone System				
R_{sec}	Normalized renin secretion rate	_	1	1	[1]
[PRC]	Plasma renin concentration	\underline{fmol}	17.3	17.3	[8]
PRA	Plasma renin activity	$\frac{ml \cdot min}{f mol}$	136	114	[8]
[AGT]	Angiotensinogen concentration	$\frac{ml \cdot min}{fmol}$	5.76×10^5	5.76×10^5	[8]
		$\overline{f_{mol}^{ml}}$	90	75	
[AngI]	Angiotensin I concentration	$\frac{\overline{ml}}{fmol}$			[8]
[AngII]	Angiotensin II concentration	$\frac{\overline{ml}}{fmol}$	6.0	6.0	[8]
[Ang(1-7)]	Angiotensin (1-7) concentration	$\frac{fmot}{fmol}$	50	25	[8]
[AngIV]	Angiotensin IV concentration	$\frac{fmot}{ml} \\ fmot$	1.29	1.29	[8]
[AT1R]	AT1R-bound Angiotensin II concentration	$\frac{fmot}{ml} \\ fmot$	20	20	[8]
[AT2R]	AT2R-bound Angiotensin II concentration	$\frac{fmol}{ml}$	6.8	6.8	[8]
$X_{PRC-PRA}$	Ratio of PRA to [PRC]	_	7.83	6.60	[8]
k_{AGT}	AGT production rate	$\frac{fmol}{ml \cdot min}$	801	780	[8]
CACE	Reaction rate of Ang converting enzyme	_1_	0.0968	0.116	[2]
c_{Chym}	Reaction rate of chymase	$\frac{min}{1}$	0.0108	0.0128	[8]
c_{NEP}	Reaction rate of neutral endopeptidase	$\frac{min}{1}$	0.0127	0.00767	[8]
c_{ACE2}	Reaction rate of Ang converting enzyme 2	$_{1}^{min}$			[8]
$c_{AII=AIV}$			2.67×10^{-3}	4.33×10^{-4}	101
-AII-AIV		$\frac{min}{1}$	2.67×10^{-3} 0.298	4.33×10^{-4} 0.298	
CATID	Reaction rate of conversion of Ang II to Ang IV	$rac{\overline{min}}{1} \ \overline{min} \ 1$	0.298	0.298	[8]
CAT1R	Reaction rate of conversion of Ang II to Ang IV Reaction rate of binding of Ang II to AT1R	$egin{array}{c} \overline{min} \ \underline{1} \ \overline{min} \ \underline{1} \ \overline{min} \ \underline{1} \ \underline{min} \ 1 \ \end{array}$	0.298 0.197	0.298 0.197	[8] [8]
c_{AT2R}	Reaction rate of conversion of Ang II to Ang IV Reaction rate of binding of Ang II to AT1R Reaction rate of binding of Ang II to AT2R	$egin{array}{c} \overline{min} \ rac{1}{min} \ rac{1}{min} \ rac{1}{min} \ \end{array}$	0.298 0.197 0.0657	0.298 0.197 0.0657	[8] [8] [8]
$c_{AT2R} \ h_{renin}$	Reaction rate of conversion of Ang II to Ang IV Reaction rate of binding of Ang II to AT1R Reaction rate of binding of Ang II to AT2R Half life of renin	$egin{array}{c} rac{min}{1} \ rac{min}{min} \ rac{min}{min} \ rac{min}{min} \ min \ min \ \end{array}$	0.298 0.197 0.0657 12	0.298 0.197 0.0657 12	[8] [8] [8]
$egin{aligned} c_{AT2R} \ h_{renin} \ h_{AGT} \end{aligned}$	Reaction rate of conversion of Ang II to Ang IV Reaction rate of binding of Ang II to AT1R Reaction rate of binding of Ang II to AT2R Half life of renin Half life of AGT	$egin{array}{c} rac{min}{1} \ rac{min}{1} \ rac{min}{1} \ rac{min}{min} \ min \ min \ min \ \end{array}$	0.298 0.197 0.0657 12 600	0.298 0.197 0.0657 12 600	[8] [8] [8] [8]
$egin{aligned} c_{AT2R} \ h_{renin} \ h_{AGT} \ h_{AngI} \end{aligned}$	Reaction rate of conversion of Ang II to Ang IV Reaction rate of binding of Ang II to AT1R Reaction rate of binding of Ang II to AT2R Half life of renin Half life of AGT Half life of Ang I	$egin{array}{c} rac{min}{min} \ rac{min}{min} \ rac{min}{min} \ min \ min \ min \ min \ \end{array}$	0.298 0.197 0.0657 12 600 0.5	0.298 0.197 0.0657 12 600 0.5	[8] [8] [8] [8] [8]
$c_{AT2R} \ h_{renin} \ h_{AGT} \ h_{AngI} \ h_{AngII}$	Reaction rate of conversion of Ang II to Ang IV Reaction rate of binding of Ang II to AT1R Reaction rate of binding of Ang II to AT2R Half life of renin Half life of AGT Half life of Ang I Half life of Ang II	$rac{rac{min}{1}}{min} \ rac{1}{min} \ rac{1}{min} \ min \ min \ min \ min \ min \ min \ min$	0.298 0.197 0.0657 12 600 0.5 0.66	0.298 0.197 0.0657 12 600 0.5 0.66	[8] [8] [8] [8] [8] [8]
c_{AT2R} h_{renin} h_{AGT} h_{AngI} $h_{Ang(1-7)}$	Reaction rate of conversion of Ang II to Ang IV Reaction rate of binding of Ang II to AT1R Reaction rate of binding of Ang II to AT2R Half life of renin Half life of AGT Half life of Ang I Half life of Ang II Half life of Ang (1-7)	$rac{\prod\limits_{1}^{min}}{\prod\limits_{min}^{min}}$ $rac{\prod\limits_{min}^{min}}{min}$ min min min min min min	0.298 0.197 0.0657 12 600 0.5 0.66 30	0.298 0.197 0.0657 12 600 0.5 0.66 30	[8] [8] [8] [8] [8] [8]
c_{AT2R} h_{renin} h_{AGT} h_{AngI} h_{AngII} $h_{Ang(1-7)}$ h_{AngIV}	Reaction rate of conversion of Ang II to Ang IV Reaction rate of binding of Ang II to AT1R Reaction rate of binding of Ang II to AT2R Half life of renin Half life of AGT Half life of Ang I Half life of Ang II Half life of Ang (1-7) Half life of Ang IV	$rac{rac{min}{1}}{1}$ $rac{1}{min}$ $rac{min}{min}$ min min min min min min min min min	0.298 0.197 0.0657 12 600 0.5 0.66 30 0.5	0.298 0.197 0.0657 12 600 0.5 0.66 30 0.5	[8] [8] [8] [8] [8] [8] [8]
c_{AT2R} h_{renin} h_{AGT} h_{AngI} h_{AngII} $h_{Ang(1-7)}$ h_{AngIV}	Reaction rate of conversion of Ang II to Ang IV Reaction rate of binding of Ang II to AT1R Reaction rate of binding of Ang II to AT2R Half life of renin Half life of AGT Half life of Ang I Half life of Ang II Half life of Ang (1-7) Half life of Ang IV Half life of AT1R-bound Ang II	$rac{\overline{min}}{1}$ $rac{1}{min}$ min	0.298 0.197 0.0657 12 600 0.5 0.66 30 0.5 12	0.298 0.197 0.0657 12 600 0.5 0.66 30 0.5 12	[8] [8] [8] [8] [8] [8] [8]
c_{AT2R} h_{renin} h_{AGT} h_{AngI} h_{AngII} h_{AngIV} h_{AT1R}	Reaction rate of conversion of Ang II to Ang IV Reaction rate of binding of Ang II to AT1R Reaction rate of binding of Ang II to AT2R Half life of renin Half life of AGT Half life of Ang I Half life of Ang II Half life of Ang (1-7) Half life of Ang IV Half life of AT1R-bound Ang II Half life of AT2R-bound Ang II	$rac{rac{min}{1}}{1}$ $rac{min}{min}$ $rac{min}{min}$ min	0.298 0.197 0.0657 12 600 0.5 0.66 30 0.5 12 12	0.298 0.197 0.0657 12 600 0.5 0.66 30 0.5 12 12	[8] [8] [8] [8] [8] [8] [8] [8]
c_{AT2R} h_{renin} h_{AGT} h_{AngI} h_{AngII} h_{AngIV} h_{AT1R} h_{AT2R} ν_{md-sod}	Reaction rate of conversion of Ang II to Ang IV Reaction rate of binding of Ang II to AT1R Reaction rate of binding of Ang II to AT2R Half life of renin Half life of AGT Half life of Ang I Half life of Ang II Half life of Ang II Half life of Ang IV Half life of AT1R-bound Ang II Half life of AT2R-bound Ang II Effect of macula densa Na ⁺ flow on renin secretion rate	$rac{\overline{min}}{1}$ $rac{\overline{min}}{min}$ min	0.298 0.197 0.0657 12 600 0.5 0.66 30 0.5 12 12	0.298 0.197 0.0657 12 600 0.5 0.66 30 0.5 12 12	[8] [8] [8] [8] [8] [8] [8] [8] [8]
c_{AT2R} h_{renin} h_{AGT} h_{AngI} h_{AngII} h_{AngIV} h_{AT1R} h_{AT2R} ν_{md-sod} ν_{rsna}	Reaction rate of conversion of Ang II to Ang IV Reaction rate of binding of Ang II to AT1R Reaction rate of binding of Ang II to AT2R Half life of renin Half life of AGT Half life of Ang I Half life of Ang II Half life of Ang II Half life of Ang IV Half life of AT1R-bound Ang II Half life of AT2R-bound Ang II Effect of macula densa Na ⁺ flow on renin secretion rate Effect of RSNA on renin secretion rate	$rac{rac{min}{1}}{1}$ $rac{min}{min}$ $rac{min}{min}$ min	0.298 0.197 0.0657 12 600 0.5 0.66 30 0.5 12 12 1	0.298 0.197 0.0657 12 600 0.5 0.66 30 0.5 12 12 1	[8] [8] [8] [8] [8] [8] [8] [8] [8] [1]
c_{AT2R} h_{renin} h_{AGT} h_{AngI} h_{AngII} h_{AngIV} h_{AT1R} h_{AT2R} ν_{md-sod} ν_{rsna} ν_{AT1R}	Reaction rate of conversion of Ang II to Ang IV Reaction rate of binding of Ang II to AT1R Reaction rate of binding of Ang II to AT2R Half life of renin Half life of AGT Half life of Ang I Half life of Ang II Half life of Ang IV Half life of Ang IV Half life of AT1R-bound Ang II Half life of AT2R-bound Ang II Effect of macula densa Na ⁺ flow on renin secretion rate Effect of AT1R-bound Ang II on renin secretion rate	$rac{\overline{min}}{1}$ $rac{\overline{min}}{min}$ min	0.298 0.197 0.0657 12 600 0.5 0.66 30 0.5 12 12 1	0.298 0.197 0.0657 12 600 0.5 0.66 30 0.5 12 12 1	[8] [8] [8] [8] [8] [8] [8] [8] [1] [1] [4]
c_{AT2R} h_{renin} h_{AGT} h_{AngI} h_{AngII} h_{AngIV} h_{AT1R} ν_{md-sod} ν_{rsna} ν_{AT1R} N_{als}	Reaction rate of conversion of Ang II to Ang IV Reaction rate of binding of Ang II to AT1R Reaction rate of binding of Ang II to AT2R Half life of renin Half life of AGT Half life of Ang I Half life of Ang II Half life of Ang II Half life of Ang (1-7) Half life of Ang IV Half life of AT1R-bound Ang II Half life of AT2R-bound Ang II Effect of macula densa Na ⁺ flow on renin secretion rate Effect of AT1R-bound Ang II on renin secretion rate Normalized ALD secretion rate	$rac{\overline{min}}{1}$ $rac{\overline{min}}{min}$ min	0.298 0.197 0.0657 12 600 0.5 0.66 30 0.5 12 12 1 1	0.298 0.197 0.0657 12 600 0.5 0.66 30 0.5 12 12 11	[8] [8] [8] [8] [8] [8] [8] [8] [1] [1] [4]
c_{AT2R} h_{renin} h_{AGT} h_{AngI} h_{AngII} h_{AngIV} h_{AT1R} ν_{md-sod} ν_{rsna} ν_{AT1R} N_{als}	Reaction rate of conversion of Ang II to Ang IV Reaction rate of binding of Ang II to AT1R Reaction rate of binding of Ang II to AT2R Half life of renin Half life of AGT Half life of Ang I Half life of Ang II Half life of Ang IV Half life of Ang IV Half life of AT1R-bound Ang II Half life of AT2R-bound Ang II Effect of macula densa Na ⁺ flow on renin secretion rate Effect of AT1R-bound Ang II on renin secretion rate	min min	0.298 0.197 0.0657 12 600 0.5 0.66 30 0.5 12 12 1 1	0.298 0.197 0.0657 12 600 0.5 0.66 30 0.5 12 12 1 1	[8] [8] [8] [8] [8] [8] [8] [8] [1] [1] [4]
c_{AT2R} h_{renin} h_{AGT} h_{AngI} h_{AngII} h_{AngIV} h_{AT1R} h_{AT2R} ν_{md-sod} ν_{rsna} ν_{AT1R} N_{als} N_{al} C_{al}	Reaction rate of conversion of Ang II to Ang IV Reaction rate of binding of Ang II to AT1R Reaction rate of binding of Ang II to AT2R Half life of renin Half life of AGT Half life of Ang I Half life of Ang II Half life of Ang II Half life of Ang (1-7) Half life of Ang IV Half life of AT1R-bound Ang II Half life of AT2R-bound Ang II Effect of macula densa Na ⁺ flow on renin secretion rate Effect of RSNA on renin secretion rate Effect of AT1R-bound Ang II on renin secretion rate Normalized ALD secretion rate Normalized ALD concentration Aldosterone concentration	$rac{min}{1} \ rac{1}{min} \ rac{1}{min} \ rac{min}{min} \ rac{1}{min} \ min \ - \ - \ - \ - \ - \ - \ - \ - \ - \ $	0.298 0.197 0.0657 12 600 0.5 0.66 30 0.5 12 12 1 1	0.298 0.197 0.0657 12 600 0.5 0.66 30 0.5 12 12 11	[8] [8] [8] [8] [8] [8] [8] [8] [1] [1] [4] [1] [10]
c_{AT2R} h_{renin} h_{AGT} h_{AngI} h_{AngII} h_{AngIV} h_{AT1R} ν_{md-sod} ν_{rsna} ν_{AT1R} N_{als}	Reaction rate of conversion of Ang II to Ang IV Reaction rate of binding of Ang II to AT1R Reaction rate of binding of Ang II to AT2R Half life of renin Half life of AGT Half life of Ang I Half life of Ang II Half life of Ang II Half life of Ang IV Half life of Ang IV Half life of AT1R-bound Ang II Half life of AT2R-bound Ang II Effect of macula densa Na ⁺ flow on renin secretion rate Effect of RSNA on renin secretion rate Effect of AT1R-bound Ang II on renin secretion rate Normalized ALD secretion rate Normalized ALD concentration Aldosterone concentration Time constant for ALD hormone secretion	min min	0.298 0.197 0.0657 12 600 0.5 0.66 30 0.5 12 12 1 1	0.298 0.197 0.0657 12 600 0.5 0.66 30 0.5 12 12 1 1	[8] [8] [8] [8] [8] [8] [8] [8] [1] [1] [4] [1]
c_{AT2R} h_{renin} h_{AGT} h_{AngI} h_{AngII} h_{AngIV} h_{AT1R} h_{AT2R} ν_{md-sod} ν_{rsna} ν_{AT1R} N_{als} N_{al} C_{al}	Reaction rate of conversion of Ang II to Ang IV Reaction rate of binding of Ang II to AT1R Reaction rate of binding of Ang II to AT2R Half life of renin Half life of AGT Half life of Ang I Half life of Ang II Half life of Ang II Half life of Ang (1-7) Half life of Ang IV Half life of AT1R-bound Ang II Half life of AT2R-bound Ang II Effect of macula densa Na ⁺ flow on renin secretion rate Effect of RSNA on renin secretion rate Effect of AT1R-bound Ang II on renin secretion rate Normalized ALD secretion rate Normalized ALD concentration Aldosterone concentration	$\begin{array}{c c} \overline{min} \\ \hline 1 \\ \hline 1 \\ \hline min \\ \hline min \\ \hline min \\ \hline min \\ - \\ - \\ - \\ - \\ - \\ \hline ng \\ \hline l \\ \end{array}$	0.298 0.197 0.0657 12 600 0.5 0.66 30 0.5 12 12 1 1 1 1 1 387	0.298 0.197 0.0657 12 600 0.5 0.66 30 0.5 12 12 1 1 1 1 1 387	[8] [8] [8] [8] [8] [8] [8] [8] [1] [1] [4] [1] [10]
c_{AT2R} h_{renin} h_{AGT} h_{AngI} h_{AngII} h_{AngIV} h_{AT1R} h_{AT2R} ν_{md-sod} ν_{rsna} ν_{AT1R} N_{als} N_{al} C_{al} T_{al}	Reaction rate of conversion of Ang II to Ang IV Reaction rate of binding of Ang II to AT1R Reaction rate of binding of Ang II to AT2R Half life of renin Half life of AGT Half life of Ang I Half life of Ang II Half life of Ang II Half life of Ang IV Half life of Ang IV Half life of AT1R-bound Ang II Half life of AT2R-bound Ang II Effect of macula densa Na ⁺ flow on renin secretion rate Effect of RSNA on renin secretion rate Effect of AT1R-bound Ang II on renin secretion rate Normalized ALD secretion rate Normalized ALD concentration Aldosterone concentration Time constant for ALD hormone secretion	$\begin{array}{c c} \overline{min} \\ \hline 1 \\ \hline 1 \\ \hline min \\ \hline min \\ \hline min \\ \hline min \\ - \\ - \\ - \\ - \\ - \\ \hline ng \\ \hline l \\ \end{array}$	0.298 0.197 0.0657 12 600 0.5 0.66 30 0.5 12 12 1 1 1 1 387 60	0.298 0.197 0.0657 12 600 0.5 0.66 30 0.5 12 12 1 1 1 1 387 60	[8] [8] [8] [8] [8] [8] [8] [8] [8] [1] [1] [1] [1] [1]

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ξ_{AT1R}	Effect of AT1R-bound Ang II on ALD secretion rate	_	1	1	[1]		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Miscellaneous							
α_{rap} Effect of right atrial pressure on RSNA $-$ 1 1 [1] Φ_{win} Water intake $\frac{ml}{min}$ 0.0150 0.0150 [1, 5] Φ_{sodin} Na ⁺ intake $\frac{\mu e}{min}$ 1.22 1.22 1.22 [1, 5] W_b Body weight g 238 194 [5] V_{ecf} Extracellular fluid volume ml 46 38 [1] V_b Blood volume ml 15 12 [3, 5] I_{adh} Time constant for ADH secretion min 6 6 [1] N_{adh} Normalized ADH secretion rate $-$ 1 1 [1] N_{adh} Normalized ADH concentration $-$ 1 1 [1] N_{adh} Antidiuretic hormone concentration $-$ 1 1 [1] N_{adh} Antidiuretic hormone concentration $-$ 0 0 [1] N_{adh} Ontal amount of Na ⁺ μ μ	rsna	Renal sympathetic nerve activity	_	1	1	[1]		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	α_{map}	Effect of MAP on RSNA	_	1	1	[1]		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	α_{rap}	Effect of right atrial pressure on RSNA	_	1	1	[1]		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Φ_{win}	Water intake	$\frac{ml}{min}$	0.0150	0.0150	[1, 5]		
W_b Body weight g 238194[5] V_{ecf} Extracellular fluid volume ml 4638[1] V_b Blood volume ml 1512[3, 5] T_{adh} Time constant for ADH secretion min 66[1] N_{adh} Normalized ADH secretion rate $-$ 11[1] N_{adh} Normalized ADH concentration $-$ 11[1] C_{adh} Antidiuretic hormone concentration $\frac{\mu units}{ml}$ 44[1] δ_{ra} Effect of right atrial pressure on ADH secretion rate $-$ 00[1] M_{sod} Total amount of Na $^+$ μeq 65605527[1, 5] C_{sod} Plasma Na $^+$ concentration $\frac{\mu eq}{ml}$ 143147[1] \hat{C}_{anp} Normalized atrial natriuretic peptide concentration $-$ 11[1] C_K Plasma K concentration $-$ 11[1] SF_S Human to rat urine sodium flow scaling factor $\frac{\mu eq}{mq}$ 9.699.69[1, 5] SF_U Human to rat urine flow scaling factor $\frac{ml}{l}$ 1515[1, 5] SF_V Human to rat volume scaling factor $\frac{ml}{l}$ 3.012.48[1, 5]	Φ_{sodin}	Na ⁺ intake	$\frac{\mu eq}{min}$	1.22	1.22	[1, 5]		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Body weight		238	194	[5]		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V_{ecf}	Extracellular fluid volume	ml	46	38	[1]		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V_b	Blood volume	ml	15	12	[3, 5]		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T_{adh}	Time constant for ADH secretion	min	6	6	[1]		
C_{adh} Antidiuretic hormone concentration $\frac{\mu units}{ml}$ 44[1] δ_{ra} Effect of right atrial pressure on ADH secretion rate $-$ 00[1] M_{sod} Total amount of Na+ μeq 65605527[1, 5] C_{sod} Plasma Na+ concentration $\frac{\mu eq}{ml}$ 143147[1] \hat{C}_{anp} Normalized atrial natriuretic peptide concentration $-$ 11[1] C_K Plasma K concentration $-$ 11[1] S_{caling} Factors S_{caling} $ S_{caling}$ Factors S_{caling} Factors $ -$ <t< td=""><td>N_{adhs}</td><td>Normalized ADH secretion rate</td><td>_</td><td>1</td><td>1</td><td>[1]</td></t<>	N_{adhs}	Normalized ADH secretion rate	_	1	1	[1]		
δ_{ra} Effect of right atrial pressure on ADH secretion rate $-$ 0 0 0 [1] M_{sod} Total amount of Na ⁺ μeq 6560 5527 [1, 5] C_{sod} Plasma Na ⁺ concentration μeq 6560 5527 [1, 5] \hat{C}_{anp} Normalized atrial natriuretic peptide concentration $-$ 1 1 1 [1] C_K Plasma K concentration μeq 5 5 5 [1] $Scaling Factors$ Scaling Factors SF_S Human to rat urine sodium flow scaling factor μeq 9.69 9.69 [1, 5] SF_U Human to rat urine flow scaling factor μeq 9.69 9.69 [1, 5] SF_V Human to rat volume scaling factor μeq 1 15 15 [1, 5]	N_{adh}	Normalized ADH concentration	_	1	1	[1]		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_{adh}	Antidiuretic hormone concentration	$\frac{\mu units}{ml}$	4	4	[1]		
C_{sod} Plasma Na ⁺ concentration $\frac{\mu eq}{ml}$ 143 147 [1] \hat{C}_{anp} Normalized atrial natriuretic peptide concentration -1 1 1 [1] C_K Plasma K concentration $\frac{\mu eq}{ml}$ 5 5 [1] Scaling Factors SF _S Human to rat urine sodium flow scaling factor $\frac{\mu eq}{meq}$ 9.69 9.69 [1, 5] SF_U Human to rat urine flow scaling factor $\frac{\mu eq}{ml}$ 15 15 [1, 5] SF_V Human to rat volume scaling factor $\frac{ml}{l}$ 3.01 2.48 [1, 5]	δ_{ra}	Effect of right atrial pressure on ADH secretion rate		0	0	[1]		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M_{sod}	Total amount of Na ⁺	μeq	6560	5527	[1, 5]		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_{sod}	Plasma Na ⁺ concentration	$\frac{\mu eq}{ml}$	143	147	[1]		
C_K Plasma K concentration $\frac{\mu eq}{ml}$ 55[1]Scaling Factors SF_S Human to rat urine sodium flow scaling factor $\frac{\mu eq}{meq}$ 9.699.69[1, 5] SF_U Human to rat urine flow scaling factor $\frac{ml}{l}$ 1515[1, 5] SF_V Human to rat volume scaling factor $\frac{ml}{l}$ 3.012.48[1, 5]	\hat{C}_{anp}	Normalized atrial natriuretic peptide concentration	_	1	1	[1]		
SF_S Human to rat urine sodium flow scaling factor $\frac{\mu eq}{meq}$ 9.699.69[1, 5] SF_U Human to rat urine flow scaling factor $\frac{ml}{l}$ 1515[1, 5] SF_V Human to rat volume scaling factor $\frac{ml}{l}$ 3.012.48[1, 5]	C_K	Plasma K concentration	$rac{\mu e q}{m l}$	5	5			
SF_U Human to rat urine flow scaling factor $\frac{ml}{l}$ 15 15 [1, 5] SF_V Human to rat volume scaling factor $\frac{ml}{l}$ 3.01 2.48 [1, 5]	Scaling Factors							
SF_U Human to rat urine flow scaling factor $\frac{ml}{l}$ 15 15 [1, 5] SF_V Human to rat volume scaling factor $\frac{ml}{l}$ 3.01 2.48 [1, 5]	SF_S	Human to rat urine sodium flow scaling factor	μeq mea	9.69	9.69	[1, 5]		
SF_V Human to rat volume scaling factor $\frac{ml}{l}$ 3.01 2.48 [1, 5]	SF_U	Human to rat urine flow scaling factor	$\frac{ml}{l}$	15	15	[1, 5]		
	SF_V	Human to rat volume scaling factor		3.01	2.48	[1, 5]		
	SF_R	Human to rat resistance scaling factor	$\frac{l}{ml}$	0.189	0.296			

Figure S1: Renal autoregulation. Following the same experimental protocol as in Ref. [7], renal perfusion pressure is perturbed from its baseline value of 103 mmHg within a wide range. Male GFR is plotted as relative change from baseline value for full autoregulation, no myogenic response, no TGF, and no myogenic response and TGF. Dashed vertical lines are at the end points of the autoregulatory range of 90-170 mmHg. Female GFR curves are the same.

Figure S2: Response of several cardiovascular and renal variables to varying sodium intake.

Figure S3: Response of several cardiovascular and renal variables to Ang II infusion.

Figure S4: Sensitivity analysis. Percent change in afferent arteriolar resistance and urine flow due to various perturbations.

References

- Karaaslan, F., Denizhan, Y., Kayserilioglu, A. & Gulcur, H. O. Long-Term Mathematical Model Involving Renal Sympathetic Nerve Activity, Arterial Pressure, and Sodium Excretion. *Annals of Biomedical Engineering* 33, 1607–1630. ISSN: 0090-6964, 1573-9686. http://link.springer.com/10.1007/s10439-005-5976-4 (2019) (Nov. 2005).
- 2. Leete, J. & Layton, A. T. Sex-specific long-term blood pressure regulation: Modeling and analysis. *Computers in Biology and Medicine* **104**, 139-148. ISSN: 00104825. https://linkinghub.elsevier.com/retrieve/pii/S0010482518303408 (2019) (Jan. 2019).
- 3. Lee, H. B. & Blaufox, M. D. Blood Volume in the Rat. *Journal of Nuclear Medicine* **26**, 72-76. ISSN: 0161-5505, 2159-662X. http://jnm.snmjournals.org/content/26/1/72 (2019) (Jan. 1, 1985).
- 4. Hallow, K. M. et al. A model-based approach to investigating the pathophysiological mechanisms of hypertension and response to antihypertensive therapies: extending the Guyton model. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 306, R647-R662. ISSN: 0363-6119, 1522-1490. http://www.physiology.org/doi/10.1152/ajpregu.00039.2013 (2019) (May 2014).
- 5. Munger, K. & Baylis, C. Sex differences in renal hemodynamics in rats. *American Journal of Physiology-Renal Physiology* **254**, F223-F231. ISSN: 1931-857X. https://physiology.org/doi/abs/10.1152/ajprenal.1988.254.2.F223 (2019) (Feb. 1, 1988).
- 6. Ahmed, S. & Layton, A. This work.
- 7. Hilliard Lucinda M. et al. Gender Differences in Pressure-Natriuresis and Renal Autoregulation. Hypertension 57, 275-282. https://www.ahajournals.org/doi/full/10.1161/HYPERTENSIONAHA.110.166827 (2019) (Feb. 1, 2011).
- 8. Leete, J., Gurley, S. & Layton, A. T. Modeling sex differences in the renin angiotensin system and the efficacy of antihypertensive therapies. *Computers & Chemical Engineering* 112, 253-264. ISSN: 00981354. https://linkinghub.elsevier.com/retrieve/pii/S0098135418300723 (2019) (Apr. 2018).
- 9. Layton, A. T., Laghmani, K., Vallon, V. & Edwards, A. Solute transport and oxygen consumption along the nephrons: effects of Na+ transport inhibitors. *American Journal of Physiology-Renal Physiology* **311**, F1217-F1229. ISSN: 1931-857X. https://www.physiology.org/doi/full/10.1152/ajprenal.00294.2016 (2019) (Oct. 5, 2016).
- 10. Pendergrass, K. D. et al. Sex differences in circulating and renal angiotensins of hypertensive mRen().Lewis but not normotensive Lewis rats. American Journal of Physiology-Heart and Circulatory Physiology 295, H10-H20. ISSN: 0363-6135. https://www.physiology.org/doi/full/10.1152/ajpheart.01277.2007 (2019) (July 1, 2008).