PMRF Review I

Potluri Vachan Deep Roll # 184104002

IIT Bombay PMRF start date: Jul-2018 (direct entry)

December 20, 2020

► Numerical simulation of hypersonic shock-boundary layer interactions (SBLIs)

- Numerical simulation of hypersonic shock-boundary layer interactions (SBLIs)
 - Ubiquitous presence in hypersonic cruise vehicles and missiles
 - Outer body
 - Control surfaces
 - Supersonic inlets

Babinsky & Harvey [1]

- Numerical simulation of hypersonic shock-boundary layer interactions (SBLIs)
- Ubiquitous presence in hypersonic cruise vehicles and missiles
 - Outer body
 - Control surfaces
 - Supersonic inlets
- Prediction and control of SBLI critical for design

Babinsky & Harvey [1]

- Numerical simulation of hypersonic shock-boundary layer interactions (SBLIs)
- Ubiquitous presence in hypersonic cruise vehicles and missiles
 - Outer body
 - Control surfaces
 - Supersonic inlets
- Prediction and control of SBLI critical for design
- Challenges for computations
 - Extremely localised peak in heat transfer
 - 2 Unsteadiness/sustained oscillations
 - 3 Strong viscous inviscid coupling

Babinsky & Harvey [1]

Current status and issues

- Current capabilities of CFD solutions (Knight et al. [2], Gaitonde [3], and Knight et al. [4])
 - Laminar high temperature simulations sensitive to chemistry and surface catalysis models
 - Turbulent (low temperature) simulations sensitive to turbulence modelling
- Sensitivity to computational choices: an issue for simulations

Current status and issues

- Current capabilities of CFD solutions (Knight et al. [2], Gaitonde [3], and Knight et al. [4])
 - Laminar high temperature simulations sensitive to chemistry and surface catalysis models
 - Turbulent (low temperature) simulations sensitive to turbulence modelling
- Sensitivity to computational choices: an issue for simulations
- Specific case: hypersonic laminar perfect gas SBLI
- Blind validation study by Harvey et al. [5]
 - Experiments
 - Axisymmetric geometries: cylinder/flare and double cone
 - ► With N₂ at LENS shock tunnels, CUBRC
 - Navier-Stokes simulations by 4 participants
 - Experimental results declared only after participants gave simulation results

- Gnoffo [7]
 - Cylinder flare run 8 ($M_{\infty}=11.5,\,T_{\infty}=132.8\,\mathrm{K},\,$ $\mathrm{Re}=359\,600\,\mathrm{m}^{-1}$): stalled convergence on finest grid

Gnoffo [7]

- Cylinder flare run 8 ($M_{\infty}=11.5,\,T_{\infty}=132.8\,\mathrm{K},\,$ $\mathrm{Re}=359\,600\,\mathrm{m}^{-1}$): stalled convergence on finest grid
- Double cone run 28 ($M_{\infty}=9.59$, $T_{\infty}=198.9\,\mathrm{K}$ Re $=139\,435\,\mathrm{m}^{-1}$): divergence with final refinement

- ► Gnoffo [7]
 - Cylinder flare run 8 ($M_{\infty}=11.5,\,T_{\infty}=132.8\,\mathrm{K},\,$ $\mathrm{Re}=359\,600\,\mathrm{m}^{-1}$): stalled convergence on finest grid
 - Double cone run 28 ($M_{\infty} = 9.59$, $T_{\infty} = 198.9 \,\mathrm{K}$ Re = $139\,435 \,\mathrm{m}^{-1}$): divergence with final refinement
- ► Candler et al. [8]
 - Divergent results with explicit methods beyond a grid resolution

Gnoffo [7]

- Cylinder flare run 8 ($M_{\infty} = 11.5$, $T_{\infty} = 132.8$ K, $Re = 359600 \,\mathrm{m}^{-1}$): stalled convergence on finest grid
- Double cone run 28 ($M_{\infty} = 9.59$, $T_{\infty} = 198.9 \, \mathrm{K}$ $Re = 139435 \,\mathrm{m}^{-1}$): divergence with final refinement

► Candler et al. [8]

- Divergent results with explicit methods beyond a grid resolution
- Sensitive to numerical scheme

► "Future prospects of hypersonic simulations" (Candler et al. [9])

- ► "Future prospects of hypersonic simulations" (Candler et al. [9])
 - 1 "Reliable simulations"
 - Devise better models for simulations
 - ▶ Quantification of uncertainty w.r.t modelling parameters (e.g. turbulence)

- ► "Future prospects of hypersonic simulations" (Candler *et al.* [9])
 - 1 "Reliable simulations"
 - ► Devise better models for simulations
 - ► Quantification of uncertainty w.r.t modelling parameters (e.g. turbulence)
 - 2 "Automated solutions" to tackle grid and numerical dissipation sensitivity
 - ► Grid generation
 - ► Adaptive meshing
 - ► Subcell shock resolution

- ► "Future prospects of hypersonic simulations" (Candler *et al.* [9])
 - 1 "Reliable simulations"
 - ► Devise better models for simulations
 - ► Quantification of uncertainty w.r.t modelling parameters (e.g. turbulence)
 - 2 "Automated solutions" to tackle grid and numerical dissipation sensitivity
 - ► Grid generation
 - ► Adaptive meshing
 - Subcell shock resolution
 - **3** Adaptability to modern parallel computation architecture: mesh generation \rightarrow simulation \rightarrow visualisation

- ► "Future prospects of hypersonic simulations" (Candler et al. [9])
 - 1 "Reliable simulations"
 - ► Devise better models for simulations
 - ▶ Quantification of uncertainty w.r.t modelling parameters (e.g. turbulence)
 - 2 "Automated solutions" to tackle grid and numerical dissipation sensitivity
 - ► Grid generation
 - ► Adaptive meshing
 - Subcell shock resolution
 - **3** Adaptability to modern parallel computation architecture: mesh generation \rightarrow simulation \rightarrow visualisation
- ▶ Discontinuous Galerkin (DG)-like techniques can contribute
 - High resolution simulations for better capture of physical phenomena (and hence provide inputs for better models)
 - 2 hp adaptive techniques, limiters
 - Massive scalability, GPU compatibility

- ► "Future prospects of hypersonic simulations" (Candler et al. [9])
 - "Reliable simulations"
 - Devise better models for simulations.
 - Quantification of uncertainty w.r.t modelling parameters (e.g. turbulence)
 - "Automated solutions" to tackle grid and numerical dissipation sensitivity
 - Grid generation
 - ► Adaptive meshing
 - Subcell shock resolution
 - **3** Adaptability to modern parallel computation architecture: mesh generation \rightarrow $simulation \rightarrow visualisation$
- ▶ Discontinuous Galerkin (DG)-like techniques can contribute
 - High resolution simulations for better capture of physical phenomena (and hence provide inputs for better models)
 - hp adaptive techniques, limiters
 - Massive scalability, GPU compatibility
- ► Scope of current work: 2 & 3

Research topic and present status

- Development of discontinuous Galerkin numerical framework for simulation of laminar perfect gas hypersonic SBLI
- Objectives: to investigate
 - 1 Reduction in sensitivity to grid and numerical scheme
 - 2 Parallel computation efficiency

Research topic and present status

- Development of discontinuous Galerkin numerical framework for simulation of laminar perfect gas hypersonic SBLI
- Objectives: to investigate
 - 1 Reduction in sensitivity to grid and numerical scheme
 - 2 Parallel computation efficiency
- Work done (current review period)
 - Developed pens2D: a code for Parallel Explicit Navier-Stokes simulations of 2D compressible flows using the deal.II finite element library [10, 11, 12]
 - 1 Inviscid fluxes: RKDG method [13] and HLLC Riemann solver [14]
 - 2 Viscous fluxes: auxiliary variable approach [15]
 - **3** Limiting: TVB slope limiter + positivity limiter [16]
 - 4 Boundary conditions: weak imposition [17]
 - 5 Time stepping: explicit RK methods [18]

Research topic and present status

- Development of discontinuous Galerkin numerical framework for simulation of laminar perfect gas hypersonic SBLI
- Objectives: to investigate
 - 1 Reduction in sensitivity to grid and numerical scheme
 - 2 Parallel computation efficiency
- ► Work done (current review period)
 - Developed pens2D: a code for Parallel Explicit Navier-Stokes simulations of 2D compressible flows using the deal.II finite element library [10, 11, 12]
 - 1 Inviscid fluxes: RKDG method [13] and HLLC Riemann solver [14]
 - 2 Viscous fluxes: auxiliary variable approach [15]
 - **3** Limiting: TVB slope limiter + positivity limiter [16]
 - 4 Boundary conditions: weak imposition [17]
 - **6** Time stepping: explicit RK methods [18]
 - 2 Tested the solver (currently in debugging phase) with
 - 1 1D inviscid expansion and subsonic flow over flat plate (without limiter)
 - 2 5 shock tube tests from Toro [14]

3rd order results will be shown

$$p_{\infty} = 100 \,\mathrm{kPa}$$
 $T_{\infty} = 300 \,\mathrm{K}$
 $u_p = 100 \,\mathrm{m/sec}$

$$p_{\infty} = 100 \,\mathrm{kPa}$$
 $T_{\infty} = 300 \,\mathrm{K}$
 $\longrightarrow u_p = 100 \,\mathrm{m/sec}$

$$p_{\infty} = 100 \, \text{kPa}$$
 $T_{\infty} = 300 \, \text{K}$
 $\longrightarrow u_p = 100 \, \text{m/sec}$

$$p_{\infty} = 100 \, \text{kPa}$$
 $T_{\infty} = 300 \, \text{K}$
 $u_p = 100 \, \text{m/sec}$

- $M_{\infty} = 0.5$, $T_{\infty} = 222 \,\mathrm{K}$, $\rho_{\infty} = 1 \,\mathrm{kg} \,\mathrm{m}^{-3}$
- $ightharpoonup {\rm Re}_{\infty} = 1 \times 10^6 \, {\rm m}^{-1}, \, {\rm Pr} = 0.72$

$$p_{\infty} = 100 \,\mathrm{kPa}$$
 $T_{\infty} = 300 \,\mathrm{K}$
 $u_p = 100 \,\mathrm{m/sec}$

$$M_{\infty} = 0.5$$
, $T_{\infty} = 222 \,\mathrm{K}$, $\rho_{\infty} = 1 \,\mathrm{kg} \,\mathrm{m}^{-3}$

$$ightharpoonup {
m Re}_{\infty} = 1 \times 10^6 {
m m}^{-1}, {
m Pr} = 0.72$$

Conclusions from tests

▶ Basic implementation of viscous and inviscid treatment error-free (1D expansion and flat plate tests)

Conclusions from tests

- ▶ Basic implementation of viscous and inviscid treatment error-free (1D expansion and flat plate tests)
- ► Characteristics of scheme [14]
 - 1 Good resolution of slowly moving discontinuities (tests 4 & 5) HLLC
 - 2 Poor resolution of moving contact waves (tests 1, 3 & 4) HLLC (and limiter)
 - 3 Numerical dispersion of strong expansion waves (tests 3 & 5) High order interpolation

Conclusions from tests

- ▶ Basic implementation of viscous and inviscid treatment error-free (1D expansion and flat plate tests)
- ► Characteristics of scheme [14]
 - 1 Good resolution of slowly moving discontinuities (tests 4 & 5) HLLC
 - 2 Poor resolution of moving contact waves (tests 1, 3 & 4) HLLC (and limiter)
 - 3 Numerical dispersion of strong expansion waves (tests 3 & 5) High order interpolation
- ▶ Bugs in limiter implementation
 - 1 Test 1: glitch in sonic point, not observed with 1st order solution [14]
 - 2 Test 2: positivity limiter supposed to prevent crash

- 1 2D cartesian mesh solver (current)
 - 1 Error-free limiter implementation
 - Validation
 - Simulation of oblique shock induced SBLI on a plate

- 1 2D cartesian mesh solver (current)
 - 1 Error-free limiter implementation
 - Validation
 - Simulation of oblique shock induced SBLI on a plate
- 2 2D quadrilateral mesh solver
 - Choosing a limiter
 - 2 Implementation
 - Validation
 - Simulation of 2D SBLI cases

- 1 2D cartesian mesh solver (current)
 - 1 Error-free limiter implementation
 - Validation
 - 3 Simulation of oblique shock induced SBLI on a plate
- 2 D quadrilateral mesh solver
 - Choosing a limiter
 - 2 Implementation
 - Validation
 - 4 Simulation of 2D SBLI cases

- 3 Axi-symmetric solver
 - Implementation (extension of 2D quadrilateral version)
 - Validation
 - 3 Simulation of double cone and cylinder flare flows

- 1 2D cartesian mesh solver (current)
 - 1 Error-free limiter implementation
 - Validation
 - 3 Simulation of oblique shock induced SBLI on a plate
- 2 D quadrilateral mesh solver
 - Choosing a limiter
 - 2 Implementation
 - Validation
 - 4 Simulation of 2D SBLI cases

- 3 Axi-symmetric solver
 - Implementation (extension of 2D quadrilateral version)
 - Validation
 - Simulation of double cone and cylinder flare flows
- 4 Investigation of effectiveness
 - Sensitivity to grid and numerical scheme
 - Parallel computation efficiency

- 1 2D cartesian mesh solver (current)
 - 1 Error-free limiter implementation
 - Validation
 - Simulation of oblique shock induced SBLI on a plate
- 2 D quadrilateral mesh solver
 - 1 Choosing a limiter
 - 2 Implementation
 - Validation
 - A Simulation of 2D SBLI cases

- 3 Axi-symmetric solver
 - Implementation (extension of 2D quadrilateral version)
 - Validation
 - 3 Simulation of double cone and cylinder flare flows
- 4 Investigation of effectiveness
 - Sensitivity to grid and numerical scheme
 - Parallel computation efficiency
- ▶ Plan for next review period: 1 and parts 1 & 2 of 2

References I

- Babinsky, H. & Harvey, J. K. Shock Wave-Boundary-Layer Interactions. (Cambridge University Press, 2011).
- Knight, D., Longo, J., Drikakis, D., Gaitonde, D., Lani, A., Nompelis, I., Reimann, B. & Walpot, L. Assessment of CFD capability for prediction of hypersonic shock interactions. *Progress in Aerospace Sciences* 48-49, 8–26 (2012).
- Gaitonde, D. V. Progress in Shock Wave/Boundary Layer Interactions. Progress in Aerospace Sciences 72, 80–99 (2015).
- Knight, D., Chazot, O., Austin, J., Badr, M. A., Candler, G., Celik, B., de Rosa, D., Donelli, R., Komives, J., Lani, A., et al. Assessment of predictive capabilities for aerodynamic heating in hypersonic flow. Progress in Aerospace Sciences 90, 39–53 (2017).
- Harvey, J. K., Holden, M. & Wadhams, T. Code Validation Study of Laminar Shock Boundary Layer and Shock/Shock Interactions in Hypersonic Flow Part B: Comparison with Navier-Stokes and DSMC Solutions. in 39th Aerospace Sciences Meeting and Exhibit (2001).
- Knight, D. RTO WG 10-Test cases for CFD validation of hypersonic flight. in 40th AIAA Aerospace Sciences Meeting & Exhibit (2002), 433.
- Gnoffo, P. A. CFD validation studies for hypersonic flow prediction. in 39th Aerospace Sciences Meeting and Exhibit (2001).
- 8. Candler, G., Nompelis, I. & Druguet, M.-C. Navier-Stokes Predictions of Hypersonic Double-Cone and Cylinder-Flare Flow Fields. in 39th Aerospace Sciences Meeting and Exhibit (2001), 1024.
- 9. Candler, G., Mavriplis, D. & Trevino, L. Current status and future prospects for the numerical simulation of hypersonic flows. in 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (2009), 153.

References II

- Arndt, D., Bangerth, W., Blais, B., Clevenger, T. C., Fehling, M., Grayver, A. V., Heister, T., Heltai, L., Kronbichler, M., Maier, M., Munch, P., Pelteret, J.-P., Rastak, R., Thomas, I., Turcksin, B., Wang, Z. & Wells, D. The deal.II Library, Version 9.2. *Journal of Numerical Mathematics* 28, 131–146 (2020).
- Bangerth, W., Hartmann, R. & Kanschat, G. deal.II a General Purpose Object Oriented Finite Element Library. ACM Trans. Math. Softw. 33, 24/1–24/27 (2007).
- Arndt, D., Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kronbichler, M., Maier, M., Pelteret, J.-P., Turcksin, B. & Wells, D. The deal.II finite element library: Design, features, and insights. Computers & Mathematics with Applications (2020).
- Cockburn, B. & Shu, C.-W. Runge-Kutta Discontinuous Galerkin methods for convection-dominated problems. *Journal of Scientific Computing* 16, 173–261 (2001).
- Toro, E. F. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Third edition (Springer-Verlag Berlin Heidelberg, 2009).
- Bassi, F. & Rebay, S. A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier–Stokes Equations. *Journal of Computational Physics* 131, 267–279 (1997).
- Gallego-Valencia, J. P., Klingenberg, C. & Chandrashekar, P. On limiting for higher order discontinuous Galerkin method for 2D Euler equations. Bulletin of the Brazilian Mathematical Society, New Series 47, 335–345 (2016).
- Mengaldo, G., De Grazia, D., Peiro, J., Farrington, A., Witherden, F., Vincent, P. E. & Sherwin, S. J. A
 guide to the implementation of boundary conditions in compact high-order methods for compressible
 aerodynamics. in AIAA AVIATION 2014 -7th AIAA Theoretical Fluid Mechanics Conference (2014).

References III

 Gottlieb, S. & Shu, C.-W. Total Variation Diminishing Runge-Kutta schemes. Tech. rep. 221 (Mathematics of computation of the American Mathematical Society, Jan. 1998), 73–85.