

POLITECHNIKA WARSZAWSKA

WYDZIAŁ: Mechaniczny Energetyki I Lotnictwa

Metody Komputerowe w Mechanice Konstrukcji

SPRAWOZDANIE

Ćwiczenie nr 4 (ANSYS)

Płyta ścinana – analiza utraty stateczności

Wykonał: Adam Nowak (indeks 304250)

(magisterskie niestacjonarne)

WARSZAWA, styczeń 2025

Spis treści

1.	Cel éwiczenia	3
	Obiekt – dane	
	Warunki brzegowe	
	Analiza statyczna	
	Analiza wyboczeniowa	

1. Cel ćwiczenia

Celem ćwiczenia jest analiza płyty, określenie postaci utraty stateczności oraz wyznaczenie siły krytycznej.

2. Obiekt – dane

Płyta o wymiarach 630 mm \times 520 mm \times 2 mm została wykonana z kompozytu. Aby wprowadzić stałe naprężenia styczne, umieszczono ją w czworoboku przegubowym, wykonanym z prętów o stałym przekroj $A_p = 1000 \ mm^2$.

Rysunek 1 Struktura, siatka oraz warunki brzegowe

Poniżej w tabeli przedstawione zostały parametry materiałowe użytych materiałów.

Parametry	Kompozyt	Stal
Typ elementu	SHELL 181	LINK 180
Moduł Younga [MPa]	45926	2· 10 ⁵
Współczynnik Poissona	0.33	0.33

Tabela 1 Dane materiałowe, model liniowy

3. Warunki brzegowe

Zastosowane warunki brzegowe:

- Odebranie stopni swobody na kierunku Y w dolnych narożnikach,
- Odebrany stopni swobody na kierunku X w lewym dolnym rogu,
- Odebranie stopni swobody na kierunku Z na wszystkich krawędziach,
- Przyłożona siła rozciągająca o wartości 1000 N w prawym górnym rogu.

4. Analiza statyczna

Aby wykonać analizę wyboczenia, należy najpierw przeprowadzić analizę statyczną. Poniżej przedstawiono wykresy przemieszczeń oraz naprężeń w kierunkach X oraz Y. Z analizy wynika, że płyta wykazuje obecnie bardzo małe deformacje oraz niewielkie naprężenia. Na podstawie wyników tej analizy można teraz przeprowadzić analizę wyboczenia oraz wyznaczyć siłę krytyczną.

Rysunek 2 Przemieszczenia na kierunku X

Rysunek 3 Przemieszczenia na kierunku Y

Rysunek 4 Naprężenia na kierunku X

Rysunek 5 Naprężenia na kierunku Y

5. Analiza wyboczeniowa

Na podstawie analizy statycznej przeprowadzono analizę wyboczeniową. Przy założonej sile 1000 N stwierdzono, że do utraty stateczności siła ta powinna zostać przemnożona przez wartość 6.7048. Otrzymana wartość odpowiada sile krytycznej.

$$F_{kryt} = 1000 * 6.7048 = 6704.8 N$$

Poniżej przedstawiono mapę deformacji płytki. Mapa ta ilustruje kształt oraz miejsce potencjalnego wyboczenia, które mogłoby wystąpić po przyłożeniu siły krytycznej. Należy jednak zauważyć, że wartości deformacji mają charakter względny i nie są wiążące.

Rysunek 6 Deformacja płytki z analizy wyboczeniowej