2017年北京邮电大学

《大学物理 C》期末考试答案和评分标准

一、选择题(单选,每题3分,共30分)

1. A 2.B 3.C 4.C 5.C 6.D 7.C 8.A 9.B 10.B				
二、填空题(没空 3 分,共 30 分)				
11. 0.1 m/s^2 , 0.4 m/s^2 12. $\frac{\mu_0 Ia}{2\pi} \ln 2$ 13. $\sqrt{2}aIB$ 14.	2υ /ω			
15. 减小 16. π , $\frac{2\pi}{\lambda}(b-a)$ 17. $A\cos[\omega t + kx - 2kL]$	18. $\lambda / (2n\theta)$			
三、计算题(每题 10 分,共 40 分)				
17 . 解:设小物体沿 <i>A</i> 轨下滑至地板时的速度为 <i>v</i> ,对小物体与 <i>A</i> 组守恒定律及沿水平方向动量守恒定律,可有:	成的系统,应用机械能			
り 旦足律及石水 $ $ 力 円 切 里 り 旦足律 $ $ り 有 $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	2 分			
$mgh_0 = \frac{1}{2}Mv_A^2 + \frac{1}{2}mv^2$ ②	2 分			
由①、②式,解得				
$v = \sqrt{2Mgh_0/(M+m)} $ (3)	1 分			
当小物体以初速 v B 轨上升到最大高度 H 时,小物体与 B	3 有沿水平方向的共同			
速度 u ,根据动量守恒与机械能守恒,有 $mv = (M + m)u$ ④	2 分			
$\frac{1}{2}mv^2 = \frac{1}{2}(M+m)u^2 + mgH $ (5)	2 分			
2 2 X X X X X X X X X X X X X X X X X X				
$H = \frac{Mv^2}{2(M+m)g} = (\frac{M}{M+m})^2 h_0$	1 分			
18. 解: 当 r>R 时,根据高斯定理				
$4\pi r^2 E = \rho \cdot \frac{4}{3}\pi R^3 \bigg/ \varepsilon_0$	2 分			
$E = \frac{\rho R^3}{3\varepsilon_0 r^2}$	1 分			
$V = \int_{r}^{\infty} E dr = \frac{\rho R^3}{3\varepsilon_0 r}$	2 分			
当 r>R 时,根据高斯定理				
$4\pi r^2 E = \rho \cdot \frac{4}{3}\pi r^3 \bigg/ \varepsilon_0$	2 分			
$E = \frac{ ho}{3arepsilon_0}r$	1 分			
$V = \int_0^\infty E dr = \int_r^R \frac{\rho}{3\varepsilon_0} r dr + \int_R^\infty E dr = \frac{\rho R^2}{2\varepsilon_0} - \frac{\rho r^2}{6\varepsilon_0}$	2 分			

19.	解:	设物体的运动方程为 $x = A\cos(\omega t + \phi)$.	2 分
		恒外力所做的功即为弹簧振子的能量: $W=Fs=0.48 J$.	2 分
		当物体运动到左方最远位置时,弹簧的最大弹性势能为 0.4	.8 <i>J</i> ,
		$\mathbb{H}: \frac{1}{2}kA^2 = 0.48 J,$	
		$\therefore A = 0.2 \text{ m}$. A 即振幅	2 分
		$\omega = \sqrt{k/m} = 2 \text{ rad/s}$	2 分
		按题目所述时刻计时,初相为 $φ=π$.	2 分
		\therefore 物体运动方程为 $x = 0.2\cos(2t + \pi)$	
20.	解:	(1) 如图,取向上为正方向,设零级明纹中心坐标为x ₀	
		则 $(l_2+r_2)-(l_1+r_1)=0$ 分	2
		$\therefore r_2 - r_1 = l_1 - l_2 = 3\lambda$	
		$\therefore r_2 - r_1 \approx dx_0 / D$	2 分
		$\therefore x_0 = D(r_2 - r_1)/d = 3D\lambda/d$	1 分
		(2) 在屏上距 O 点为 x 处,光程差 $\delta \approx (dx/D) - 3\lambda$	2 分
		明纹条件 $\delta = \pm k\lambda$ ($k=1, 2,$)	
		$x_k = (\pm k\lambda + 3\lambda)D/d$	2 分
		相邻明条纹间距 $\Delta x = x_{k+1} - x_k = D\lambda/d$	1 分