CONTENTS

1	Intro	oduction	1						
	1.1	Goals	4						
	1.2	Outline	6						
2	Back	Background 9							
	2.1	Probabilistic Machine Learning	9						
	2.2	Variational Inference	10						
		2.2.1 Evidence Lower Bound	11						
	2.3	Statistical Divergences and Density-Ratio Estimation .	12						
		2.3.1 Variational Divergence Estimation	14						
		2.3.2 Class-Probability Estimation	14						
	2.4 Gaussian Processes								
		2.4.1 Gaussian Process Regression	18						
		2.4.2 Sparse Gaussian Processes	23						
		2.4.3 Random Fourier Features	28						
	2.5	Bayesian Optimisation	32						
		2.5.1 Surrogate Models	35						
		2.5.2 Acquisition Functions	37						
	2.6	Summary	41						
	Add	lendum	43						
	2.A	KL Divergence Simplification	43						
	2.B		43						
	2.C	Intermediate Lower Bound for Gaussian Likelihoods .	44						
	2.D	Optimal Variational Distribution for Gaussian Likelihoods 4							
	2. E	Collapsed Lower Bound for Gaussian Likelihoods	45						
	2. F		45						
	2.G	Cosine Difference as Inner Product	46						
3	Orth	nogonally-Decoupled Sparse Gaussian Processes with							
	Spho	erical Neural Network Activation Features	47						
	3.1	Introduction	47						
	3.2	Inter-Domain Inducing Features	48						
		3.2.1 Spherical Harmonics Inducing Features	49						
		3.2.2 Spherical Neural Network Inducing Features .	51						
	3.3	Orthogonally Decoupled Inducing Points	52						
	3.4	Methodology							
	3.5	Related Work							
	3.6	Experiments	60						
		3.6.1 Synthetic 1D Dataset	60						
		3.6.2 Regression on UCI Repository Datasets	61						
		3.6.3 Large-scale Regression on Airline Delays Dataset	62						
	3.7	Summary	63						
		lendum	69						
	3.A	Experimental Set-up and Implementation Details	69						

		3.A.1	Hardware	69				
		3.A.2	Software	69				
		3.A.3	Hyperparameters	69				
	3.B	Addit	ional Results	70				
		3.B.1	Regression on Airline Delays Dataset	70				
		3.B.2	Extra UCI Repository Datasets	70				
4								
	App	roxima	ation	73				
	4.1	Introd	luction	73				
	4.2	Impli	cit Latent Variable Models	74				
		4.2.1	Prescribed Likelihood	75				
		4.2.2	Implicit Prior	76				
	4.3	Variat	ional Inference	76				
		4.3.1	Prescribed Variational Posterior	76				
		4.3.2	Reverse KL Variational Objective	77				
		4.3.3	Approximate Divergence Minimisation	78				
	4.4	Symm	netric Joint-Matching Variational Inference	79				
		4.4.1	Variational Joint	80				
		4.4.2	Forward KL Variational Objective	80				
	4.5	Cycle	GAN as a Special Case	82				
		4.5.1	Basic CycleGAN Framework	82				
		4.5.2	Cycle-consistency as Conditional Entropy Max-					
			imisation	83				
		4.5.3	Distribution Matching as Approximate Diver-					
			gence Minimisation	84				
	4.6		ed Work	87 88				
	4.7 Experiments							
	4.8	Summary						
		Addendum						
	4.A	1						
	4.B		nary of Definitions	94				
5	-		ptimisation by Classification with Deep Learning					
		Beyond		97				
	5.1		luction	97				
	5.2	-	nisation Policies and Density-Ratio Estimation	99				
		5.2.1	Relative Density-Ratio	99				
		5.2.2	Improvement-based Acquisition Functions	99				
		5.2.3	Tree-structured Parzen Estimator	102				
		5.2.4 P	Potential Pitfalls	102				
	5.3	•	ian Optimisation by Probabilistic Classification .	103				
		5.3.1	Choice of Proportion γ	106				
		5.3.2	Choice of Probabilistic Classifier	107				
		5.3.3 Polato	Likelihood-Free BO by Weighted Classification	109				
	5·4		ed Work	110				
	5.5	-	Moural Notwork Tuning (HPORonch)	111				
		5.5.1	Neural Network Tuning (HPOBench)	111				

		5.5.2	Neural Architecture Search (NASBench201)	114			
		5.5.3	Robot Arm Pushing	114			
		5.5.4	Racing Line Optimisation	117			
		5.5.5	Ablation Studies	117			
	5.6	Discus	sion	118			
	5.7	Summ	ary	121			
	Add	ldendum					
	5.A						
	5.B	Class-posterior Probability					
	5.C						
		5.C.1	Optimum	125			
		5.C.2	Empirical Risk Minimisation	125			
	5.D	Impler	mentation of Baselines	126			
	5.E	Experi	mental Set-up and Implementation Details	126			
		5.E.1	BORE-RF	127			
		5.E.2	BORE-XGB	127			
		5.E.3	BORE-MLP	128			
	5.F	Details	s of Benchmarks	128			
	-	5.F.1	HPOBench	128			
			NASBench201	128			
		5.F.3	Robot pushing control	129			
		5.F.4	Racing Line Optimisation	130			
	5.G	Parame	eters, hyperparameters, and meta-hyperparameter				
			Parameters	131			
		5.G.2	Hyperparameters	132			
		5.G.3	Meta-hyperparameters	133			
6	Con	clusion		135			
	6.1	Summary of Contributions					
	6.2		Directions	136			
	6.3	Final Reflection					
Α	Numerical Methods for Improved Decoupled Sampling of						
			rocesses	139			
	A.1		uction	139			
	A.2		pled Sampling of Gaussian Processes	140			
	A.3	Numerical Integration for GP Prior Approximations . 142					
		A.3.1	Monte Carlo Estimation	144			
		A.3.2	Quasi-Monte Carlo	145			
		A.3.3	Quadrature	146			
		A.3.4	Other Approaches	154			
	A.4		ments	156			
		A.4.1	Prior Approximation	156			
		A.4.2	Posterior Sample Approximation	160			
	A.5	•	ary	162			
		dendum					
		Product-to-Sum Identity					
		Zero in Expectation					

Bibliography 167