$egin{aligned} ext{Module } \mathbf{A_5} \ ext{Sous-variétés de } \mathbb{R}^n \ ext{Extrema liés} \end{aligned}$

Dans ce module, E désigne l'espace euclidien \mathbb{R}^n avec $n \in \mathbb{N}$, muni du produit scalaire usuel et de norme associée la norme euclidienne, notée $\|\cdot\|_2$. Pour plus de détails, le lecteur pourra se référer au module $\mathbf{A2}$: Différentiabilité sur les espaces euclidiens.

1 Sous-variétés

1.1 Définition

Définition 1 (Sous-variété)

Soit $E = \mathbb{R}^n$ un espace euclidien. Soit $X \subset E$. On dit que X est une sous-variété de E si pour tout $x \in X$, il existe U un voisinage de x et $\varphi : U \to \mathbb{R}^{n-d}$ une submersion tels que

$$X \cap U = \left\{ x \in U \mid \varphi(x) = 0 \right\}$$

On appelle alors d la dimension de X.

Notons que la dimension d d'une sous-variété de \mathbb{R}^n est toujours inférieure à n. Lorsqu'une sous-variété est définie comme dans la définition précédente, on dit qu'elle est (localement) décrite implicitement par la submersion φ .

Cette définition est connue sous le nom de définition par description implicite. On verra dans la troisième section de ce module qu'il existe d'autres manières équivalentes de définir les sous-variétés.

Exemple

Sous-espaces vectoriels. Tout sous-espace vectoriel F de \mathbb{R}^n est une sous-variété de \mathbb{R}^n de dimension dim F.

Exemple

Noyau d'une submersion. En prenant V = E, on montre que l'ensemble

$$\left\{ x \in U \mid \varphi(x) = 0 \right\} = \varphi^{-1}(\{0\})$$

est une sous-variété de E si $\varphi: U \to \mathbb{R}^{n-d}$ est une submersion.

Définition 2

Soit X une sous-variété de \mathbb{R}^n de dimension d.

- Si d=1, alors X est appelée courbe de E.
- Si d=2, alors X est appelée surface de E.
- Si d = n 1, alors X est appelée hypersurface de E.

EXEMPLE

Courbe. On s'intéresse à la parabole définie comme l'ensemble des points du plan donné par

$$X = \left\{ (x, y) \in \mathbb{R}^2 \mid y = x^2 \right\}$$

En posant

$$\varphi: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & y - x^2 \end{array} \right.$$

on définit une application différentiable de classe \mathcal{C}^{∞} (chaque composante étant une fonction polynomiale), de gradient

$$\nabla \varphi(x,y) = \begin{pmatrix} -2x\\1 \end{pmatrix}$$

Puisque $\nabla \varphi$ ne s'annule pas sur \mathbb{R}^2 , le vecteur $\nabla \varphi(x,y)$ forme une famille libre pour tout $(x,y) \in \mathbb{R}^2$, et φ définit une submersion sur \mathbb{R}^2 . Par conséquent, $X = \varphi^{-1}(\{0\})$ est une sous-variété.

On verra dans la troisième section le lien qu'il peut exister entre le graphe d'une fonction et les sous-variété.

Exemple

Cercle. On s'intéresse au cercle unité du plan, défini par

$$X = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$$

En posant

$$\varphi: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & x^2 + y^2 = 1 \end{array} \right.$$

on définit une application différentiable de classe \mathcal{C}^{∞} (chaque composante étant une fonction polynomiale), de gradient

$$\nabla \varphi(x,y) = \begin{pmatrix} 2 \, x \\ 2 \, y \end{pmatrix}$$

Il est immédiat que $\nabla \varphi$ ne s'annule pas qu'à l'origine, qui n'appartient pas au cercle unité. Ainsi, $\nabla \varphi(x,y)$ forme une famille libre pour tout $(x,y) \in X$, et φ définit une submersion sur X. Par conséquent, $X = \varphi^{-1}(\{0\})$ est une sousvariété.

1.2 Premières propriétés

Proposition 1

Soit X une sous-variété de \mathbb{R}^n et soit $a \in \mathbb{R}^n$. Alors

$$X + a = \left\{ x + a \mid x \in X \right\}$$

est une sous-variété de \mathbb{R}^n , de même dimension que X.

En particulier, dans la définition 1, on peut remplacer $\varphi^{-1}(\{0\})$ par l'image réciproque de n'importe quel point.

DÉMONSTRATION : Soit $y_0 \in X + a$. Alors $x_0 = y_0 - a$ est un élément de X. Par définition d'une sous-variété de dimension d, il existe un voisinage U de x_0 et une submersion $\varphi: U \to \mathbb{R}^{n-d}$ tels que

$$X \cap U = \varphi^{-1}(\{0\})$$

Autrement dit, pour tout $x \in X \cap U$, on a

$$\varphi(x) = 0 = \varphi(x + a - a)$$

avec

$$\psi: \left\{ \begin{array}{ccc} U+a & \to & \mathbb{R}^{n-d} \\ y & \mapsto & \varphi(y-a) \end{array} \right.$$

une submersion et U + a un voisinage de y_0 . Il s'ensuit que

$$(X+a)\cap (U+a)=\psi^{-1}(\{0\})$$

Autrement dit, X + a est une sous-variété de \mathbb{R}^n de dimension d.

On a en réalité le résultat plus général suivant :

Proposition 2

Soit U un ouvert de \mathbb{R}^n . Soit $f:U\to\mathbb{R}^n$ un difféomorphisme. Soit $X\subset U$ une sous-variété de \mathbb{R}^n . Alors f(X) est une sous-variété de \mathbb{R}^n de même dimension que X.

DÉMONSTRATION : Soit $y_0 \in f(X)$. Il existe donc $x_0 \in X$ tel que $y_0 = f(x_0)$. Par définition d'une sous-variété, il existe un voisinage U de x_0 et une submersion $\varphi: U \to \mathbb{R}^{n-d}$ tels que

$$X \cap U = \left\{ x \in U \mid \varphi(x) = 0 \right\}$$

On en déduit que pour tout $x \in X \cap U$,

$$\varphi \circ f^{-1} \circ f(x) = 0$$

avec $\varphi \circ f^{-1}: f(U) \to \mathbb{R}^{n-d}$ une submersion (d'après la proposition 8 du module A4 : Théorème du rang constant). On en déduit que

$$f(X \cap U) = f(X) \cap f(U) = \left\{ y \in U \mid \varphi \circ f^{-1}(y) = 0 \right\}$$

Autrement dit, f(X) est une sous-variété de \mathbb{R}^n , de dimension d.

Proposition 3

Soit X une sous-variété de \mathbb{R}^n . Soit $U \subset \mathbb{R}^n$ un ouvert de X. Alors U est une sous-variété de \mathbb{R}^n de même dimension que X.

On rappelle que U est un ouvert de X s'il existe \tilde{U} un ouvert de \mathbb{R}^n tel que $U = \tilde{U} \cap X$.

En particulier, puisque \mathbb{R}^n est une sous-variété de \mathbb{R}^n , tout ouvert de \mathbb{R}^n est une sous-variété de \mathbb{R}^n .

DÉMONSTRATION : Soit $x_0 \in X$. Par définition, il existe un voisinage V de x_0 et une submersion $\varphi: U \to \mathbb{R}^{n-d}$ tels que

$$X \cap V = \left\{ x \in V \mid \varphi(x) = 0 \right\}$$

On en déduit que

$$\tilde{U}\cap X\cap V=(\tilde{U}\cap X)\cap (\tilde{U}\cap V)=\left\{x\in \tilde{U}\cap V\mid \varphi(x)=0\right\}$$

Il suffit donc de considérer la restriction de φ à l'ensemble $\tilde{U} \cap V$ pour conclure.

Proposition 4

Soit $X \subset \mathbb{R}^n$ et $X' \subset \mathbb{R}^m$ deux sous-variétés, de dimension respective d et d'. Alors $X \times X'$ est une sous-variété de \mathbb{R}^{n+m} de dimension d+d'.

DÉMONSTRATION : Soit $(x_0, x_0') \in X \times X'$. On a donc $x_0 \in X$ et $x' \in X_0'$. Par définition.

• il existe un voisinage U de x_0 et une submersion $\varphi:U\to\mathbb{R}^{n-d}$ tels que

$$X \cap U = \left\{ x \in U \mid \varphi(x) = 0 \right\}$$

• il existe un voisinage U' de x'_0 et une submersion $\psi: U' \to \mathbb{R}^{n-d'}$ tels que

$$X' \cap U' = \left\{ x' \in U' \mid \psi(x') = 0 \right\}$$

Ainsi, $\tilde{\varphi}: U \times U' \to \mathbb{R}^{d+d'}$ définie par

$$\forall \, (x,x') \in U \times U', \qquad \begin{pmatrix} \varphi(x) \\ \psi(x') \end{pmatrix} \qquad \text{avec} \qquad J \tilde{\varphi}(x,x') = \begin{pmatrix} J \varphi(x) \\ J \psi(x') \end{pmatrix}$$

est une submersion et

$$(X\cap U)\times (X'\cap U')=(X\times X')\cap (U\times U')=\Big\{(x,x')\in U\times U'\mid \tilde{\varphi}(x,x')=0\Big\}$$

de sorte que $X \times X'$ est une sous-variété de \mathbb{R}^{n+m} de dimension d+d'.

1.3 Redressement d'une sous-variété

L'idée sous-jacente d'une sous-variété est la possibilité de la transformer localement, et de manière "douce", en un sous-espace vectoriel.

Considérons $\varphi: U \to \mathbb{R}^{n-d}$ une submersion définie sur un ouvert U de \mathbb{R}^n , avec $a \in U$ et $\varphi(a) = 0$. La proposition 11 du module $\mathbf{A4}$: **Théorème du rang constant**appliquée à la submersion $\varphi(a+\cdot)$ assure qu'il existe un difféomorphisme $\phi: V \to W$ défini au voisinage V de 0, tel que $\phi(0) = a$ et

$$\forall u \in V, \qquad \varphi(a + \phi(u)) = (u_1, \dots, u_{n-d})$$

Si on considère à présent une sous-variété X globalement décrite implicitement par la submersion $\varphi: U \to \mathbb{R}^{n-d}$, c'est-à-dire que

$$X = \left\{ x \in U \mid \varphi(x) = 0 \right\}$$

Soit $a \in X$. On suppose que U - a = W. On constate que, d'après ce qui précède,

$$\forall y \in W, \qquad \varphi(a+y) = ((\phi^{-1}(y))_1, \dots, (\phi^{-1}(y))_{n-d})$$

de sorte que, en posant x = a + y,

$$\forall x \in U, \qquad \varphi(x) = ((\phi^{-1}(x-a))_1, \dots, (\phi^{-1}(x-a))_{n-d})$$

Ainsi, $x \in X$ si et seulement si $x \in U$ et

$$(\phi^{-1}(x-a))_1 = \dots = (\phi^{-1}(x-a))_{n-d} = 0$$
 soit $\phi^{-1}(x-a) \in \{0\}^{n-d} \times \mathbb{R}^d$

Autrement dit, on a

$$\phi^{-1}(X-a) = (\{0\}^{n-d} \times \mathbb{R}^d) \cap V$$

Ainsi, en appliquant un changement de variables (le difféomorphisme $\phi^{-1}(\cdot - a)$), on transforme la sous-variété X de dimension d en un voisinage de 0 dans le sous-espace vectoriel $F = \{0\}^{n-d} \times \mathbb{R}^d$. On parle de redressement. On peut évidemment étendre ce résultat à toute sous-variété, et montrer que, localement, toute sous-variété de dimension est, à un changement de variables près, un voisinage de 0 dans le sous-espace vectoriel $\{0\}^{n-d} \times \mathbb{R}^d$.

Exemple

Aplanir une parabole. On s'intéresse à la parabole définie comme l'ensemble des points du plan donné par

$$X = \left\{ (x, y) \in \mathbb{R}^2 \mid y = x^2 \right\}$$

En posant

$$\varphi: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & x^2 - y \end{array} \right.$$

on a vu que $X = \varphi^{-1}(\{0\})$ est une sous-variété de dimension 1, avec φ une submersion sur $\mathbb{R}^2 \setminus \{(0,0)\}$. Introduisons l'application suivante :

$$\phi: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto & (x,x^2-y) \end{array} \right.$$

L'application ϕ est bijective, d'inverse $\phi^{-1} = \phi$. On a par ailleurs

$$\forall (x,y) \in X, \qquad \phi(x,y) = (x,0)$$

Autrement dit, le difféomorphisme ϕ transforme la parabole X en la droite $F = \mathbb{R} \times \{0\}$.

Exemple

Redressement local d'un cercle. Dans le cas du cercle unité X, on peut considérer l'application suivante :

$$\phi: \left\{ \begin{array}{ccc} \mathbb{R} \times \mathbb{R}^{+*} & \to & \mathbb{R} \times \mathbb{R}^{+*} \\ (x,y) & \mapsto & (x,x^2+y^2-1) \end{array} \right.$$

qui est bien un difféomorphisme, et vérifier que

$$\phi(X \cap (\mathbb{R} \times \mathbb{R}^{+*})) = \mathbb{R} \times \{0\}$$

ce qui constitue un redressement local de X au voisinage de tout point $(x,y) \in X$ lorsque y>0; on peut procéder de manière analogue avec $y\leq 0$, mais avec une application ϕ différente. Il n'est pas possible de trouver une application qui permette de redresser X dans son intégralité.

On verra dans la section 3 que le redressement est une manière équivalente de définir une sous-variété. Autrement dit, tout redressement définit une sous-variété.

2 Théorème des extrema liés

2.1 Espace tangent

Définition 3 (Vecteur tangent)

Soit $X \subset \mathbb{R}^n$. Soit $a \in X$ et $v \in \mathbb{R}^n$. On dit que v est tangent à X en a s'il existe $\delta > 0$ et $\gamma :]-\delta ; \delta [\to \mathbb{R}^n$ une application différentiable tels que

- (i) $\gamma(]-\delta;\delta[)\subset X$
- (ii) $\gamma(0) = a$
- (iii) $\gamma'(0) = v$

L'application γ définit une courbe différentiable.

Graphe d'une fonction différentiable. Soit $f:\mathbb{R}\to\mathbb{R}$ une fonction différentiable.

Pauline TAN 6 V2.7.2023

rentiable. On s'intéresse à son graphe

$$\operatorname{gr} f = \left\{ (x, f(x)) \in \mathbb{R}^2 \mid x \in \mathbb{R} \right\}$$

Soit $a \in \mathbb{R}$. On pose $v = (1, f'(a)) \in \mathbb{R}^2$. On considère l'application suivante :

$$\gamma: \left\{ \begin{array}{ccc}]-1; 1\left[& \to & \mathbb{R}^2 \\ & t & \mapsto & (a+t, f(a+t)) \end{array} \right. \right.$$

On a donc bien $\gamma(]-1;1[)\subset \operatorname{gr} f.$ Par ailleurs, $\gamma(0)=(a,f(a))$ et γ est différentiable, de gradient

$$\forall t \in]-1;1[, \qquad \gamma'(t) = \begin{pmatrix} 1 \\ f'(a+t) \end{pmatrix}$$

de sorte que $\gamma'(0) = v$. On en déduit que v est tangent à grf en (a, f(a)).

EXEMPLE

Point intérieur. Soit $X \subset \mathbb{R}^n$ et $a \in X$. On suppose qu'il existe une boule ouverte $\mathcal{B}(a,\delta)$ contenant a telle que $\mathcal{B}(a,\delta) \subset X$. Alors les vecteurs tangents à X en a sont les éléments de $\mathcal{S}(0,1)$ la sphère unité. En effet, pour tout $v \in \mathcal{S}(0,1)$, en considérant l'application différentiable

$$\gamma: \left\{ \begin{array}{ccc}]-\delta; \delta \left[& \to & \mathbb{R}^n \\ t & \mapsto & a+tv \end{array} \right. \right.$$

on a bien $\gamma(]-\delta; \delta[) \subset \mathcal{B}(a,\delta), \gamma(0) = a$ et $\nabla \gamma(t) = v$ pour tout $t \in]-\delta; \delta[$.

Dans le cas d'une sous-variété, on va décrire plus précisément les vecteurs tangents.

Proposition 5

Soit X une sous-variété de \mathbb{R}^n . Soit $a \in X$ et U un voisinage de a tel que

$$X \cap U = \left\{ x \in U \mid \varphi(x) = 0 \right\}$$

avec $\varphi = (\varphi_1, \dots, \varphi_d) : U \to \mathbb{R}^{n-d}$ une submersion. Alors les vecteurs tangents à X en a sont les vecteurs $v \in \mathbb{R}^n$ tels que $d_a \varphi(v) = 0$, c'est-à-dire

$$\forall j \in [1; d], \qquad d_a \varphi_j(v) = \langle \nabla \varphi_j(a), v \rangle = \sum_{i=1}^n \frac{\partial \varphi_j}{\partial x_i}(a) v_j = 0$$

Autrement dit, ils forment le sous-espace vectoriel $\ker d_a \varphi$, de dimension d.

On rappelle que $\ker d_a \varphi$ désigne le noyau de l'application linéaire $d_a \varphi : \mathbb{R}^n \to \mathbb{R}^{n-d}$. On notera que

$$\ker d_a \varphi = \ker J \varphi(a)$$

REMARQUE : Si d = n - 1, alors l'espace tangent $T_a X$ est donc un hyperplan orthogonal à $\nabla \varphi(a)$.

DÉMONSTRATION:

• Montrons que l'ensemble des vecteurs tangents à X en a forme un espace vectoriel. Soit v_1 et v_2 deux vecteurs tangents à X en a, associés aux courbes $\gamma_1:]-\delta_1; \delta_1[\to \mathbb{R}^n$ et $\gamma_2:]-\delta_2; \delta_2[\to \mathbb{R}^n$. Soit $(\lambda, \mu) \in \mathbb{R}^2$. On pose $\delta = \min(\delta_1/|\lambda|, \delta_2/|\mu|)$ et on considère l'application différentiable

$$\gamma: \left\{ \begin{array}{ccc}]-\delta\,; \delta\,[& \to & \mathbb{R}^n \\ & t & \mapsto & \frac{1}{2}\left(\gamma_1(2\,\lambda\,t) + \gamma_2(2\,\mu\,t)\right) \end{array} \right.$$

On a donc $\gamma(0) = (\gamma_1(0) + \gamma_2(0)) = a$ et $\gamma'(0) = \lambda \gamma_1'(0) + \mu \gamma_2'(0) = \lambda v_1 + \mu v_2$. On en déduit que le vecteur $\lambda v_1 + \mu v_2$ est tangent à X en a.

• Montrons que l'ensemble des vecteurs tangents à X en a est inclus dans $\ker d_a \varphi$. On suppose que v est tangent à X en a. Par définition, il existe $\delta > 0$ et $\gamma :] -\delta ; \delta [\to \mathbb{R}^n$ une application différentiable tels que

$$\forall t \in]-\delta; \delta[, \gamma(t) \in X$$

et $\gamma(0) = a$. Ainsi, quitte à choisir un $\delta > 0$ plus petit, on a

$$\forall\,t\in\,]\,-\delta\,;\delta\,[\,,\qquad\varphi(\gamma(t))=0$$

Différentions $\varphi \circ \gamma$, qui est constante sur] $-\delta$; δ [, donc de dérivée nulle :

$$\forall t \in]-\delta; \delta[, \qquad 0 = (\varphi \circ \gamma)'(t) = d_{\gamma(t)}\varphi(\gamma'(t))$$

En particulier, pour t = 0, on obtient :

$$d_a\varphi(v) = 0$$

• **Dimension de** ker $d_a\varphi$. Commençons par noter que, puisque $\varphi: U \to \mathbb{R}^{n-d}$ est une submersion en a, sa différentielle $d_a\varphi: \mathbb{R}^n \to \mathbb{R}^{n-d}$ est une application linéaire surjective. Donc son rang vaut n-d, et le théorème du rang assure que

$$\dim \ker d_a \varphi = n - \operatorname{rg} d_a \varphi = n - (n - d) = d$$

• Dimension de l'ensemble des vecteurs tangents à X en a. Pour conclure, on va montrer que l'ensemble des vecteurs tangents à X en a, qui est inclus dans $\ker d_a \varphi$, est de dimension supérieure à d, ce qui nous permettra de conclure à l'identité entre ces deux sous-espaces vectoriels. Soit $w \in \{0\}^{n-d} \times \mathbb{R}^d$. On a vu dans le paragraphe précédent qu'il existait un voisinage U de a, un difféomorphisme $\phi: V \to U + a$ défini au voisinage V de a, tel que a0 et tel que

$$\phi^{-1}(X \cap U - a) = (\{0\}^{n-d} \times \mathbb{R}^d) \cap V$$

Autrement dit, il existe $\delta > 0$ tel que, pour tout $t \in]-\delta$; δ [, le vecteur

$$\gamma(t) = a + \phi(t \, w)$$

soit dans X, avec $\gamma(0)=a.$ L'application γ ainsi définie est différentiable, de dérivée :

$$\forall t \in]-\delta; \delta[, \quad \gamma'(t) = d_{tw}\phi \cdot w$$

On a donc en particulier $\gamma'(0)=d_0\phi\cdot w$. Il s'ensuit que les $d_0\phi\cdot w$ sont tangents à X en a. Or, puisque ϕ est un difféomorphisme, l'application linéaire $d_0\phi$ est bijective. Ainsi, l'image $d_0\phi(\{0\}^{n-d}\times\mathbb{R}^d)$ est de même dimension que $\{0\}^{n-d}\times\mathbb{R}^d$, c'est-à-dire vaut d. Par inclusion, on en déduit que le sous-espace vectoriel des vecteurs tangents à X en a est de dimension supérieure à d. On en déduit donc l'identité entre cet espace et $\ker d_a\varphi$.

Pauline TAN 8 V2.7.2023

Exemple

Vecteurs tangents au cercle. On considère à nouveau le cercle unité, décrit implicitement par

$$X = \left\{ (x, y) \in \mathbb{R}^2 \mid \varphi(x, y) = x^2 + y^2 - 1 = 0 \right\}$$

Soit $(x_0, y_0) \in X$. On a

$$\nabla \varphi(x_0, y_0) = \begin{pmatrix} 2 \, x_0 \\ 2 \, y_0 \end{pmatrix}$$

de sorte que

$$\ker d_{(x_0,y_0)}\varphi = \left\{ (x,y) \in \mathbb{R}^2 \mid \left\langle \nabla \varphi(x_0,y_0), \begin{pmatrix} x \\ y \end{pmatrix} \right\rangle = 0 \right\}$$
$$= \left\{ (x,y) \in \mathbb{R}^2 \mid 2 x_0 x + 2 y_0 y = 0 \right\}$$

On en déduit que l'ensemble des vecteurs tangents au cercle X en (x_0, y_0) est l'ensemble des vecteurs $t(1, -x_0/y_0)$ avec $t \in \mathbb{R}$ si $y_0 \neq 0$ et la droite x = 0 sinon

Comme le suggère l'exemple précédent, dans le cas du plan, les vecteurs tangents correspondent aux directions des droites tangentes à la sous-variété, mais pas aux droites elles-mêmes. Celles-ci ne passent pas (en général) par l'origine, et ne constituent donc pas des sous-espaces vectoriels.

Définition 4 (Espace tangent)

Soit X une sous-variété de \mathbb{R}^n . Soit $a \in X$. On appelle espace tangent à X en a l'espace affine des points $x \in \mathbb{R}^n$ tels que le vecteur x - a soit tangent à X en a. Cet espace est noté T_aX .

Il est important de noter que, malgré son nom, l'espace tangent n'est en général pas un espace vectoriel, mais un espace affine. Si X est décrit implicitement par φ au voisinage de a, alors on a

$$T_a X = a + \ker d_a \varphi$$

Exemple

Espace tangent au cercle. Si X est le cercle unité, alors on a

$$T_{(x_0,y_0)} = \left\{ \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} + t \begin{pmatrix} y_0 \\ -x_0 \end{pmatrix} \mid t \in \mathbb{R} \right\}$$

Il s'agit d'une droite affine qui passe par (x_0, y_0) et qui est tangente (au sens géométrique) au cercle en (x_0, y_0) .

2.2 Théorème des extrema liés

Théorème 1 (Théorème des extrema liés)

Soit $U \subset \mathbb{R}^n$ un ouvert, $f: U \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 sur U et $\varphi: U \to \mathbb{R}^m$ une submersion. On pose

$$\mathcal{A} = \left\{ x \in U \mid \varphi(x) = 0 \right\} = \varphi^{-1}(\{0\})$$

Soit $a \in U$ tel qu'il existe un voisinage $V \subset U$ de a et

$$\forall x \in V \cap \mathcal{A}, \qquad f(x) \ge f(a)$$

Alors il existe $(\lambda_1, \ldots, \lambda_m) \in \mathbb{R}^m$ tels que

$$df(a) = \sum_{j=1}^{m} \lambda_j \, d\varphi_j(a)$$

ou encore,

$$\nabla f(a) = \sum_{j=1}^{m} \lambda_j \, \nabla \varphi_j(a)$$

On a vu dans le module **B1**: Minimisation d'une fonction. Conditions d'optimalité que a est appelé minimiseur local de f sur \mathcal{X} , et que les fonctions φ_j sont appelées contraintes. Les scalaires λ_j sont quant à eux appelés multiplicateurs de Lagrange.

DÉMONSTRATION: Soit $a \in \mathcal{A} = \varphi^{-1}(\{0\})$. Puisque φ est une submersion, alors, d'après la proposition 5, on a $T_a\mathcal{A} = \ker d_a\varphi$. Soit $v \in T_a\mathcal{A}$. La définition de l'espace tangent $T_a\mathcal{A}$ assure l'existence d'une application différentiable $\gamma:]-\delta; \delta[$ telle que $\varphi \circ \gamma(t) = 0$ pour tout $t \in]-\delta; \delta[$, $\gamma(0) = a$ et $\nabla \gamma(0) = v$. Par hypothèse, pour tout $t \in \gamma(]-\delta; \delta[$), on a

$$f \circ \gamma(t) \ge f(a) = f \circ \gamma(0)$$

Autrement dit, 0 est minimiseur de la fonction $f \circ \gamma :] - \delta ; \delta [\to \mathbb{R}$. On verra dans le module **B1**: **Minimisation d'une fonction. Conditions d'optimalité.**que 0 est donc point critique de $f \circ \gamma$, c'est-à-dire

$$(f \circ \gamma)'(0) = \langle \nabla \gamma(0), \nabla f(\gamma(0)) \rangle = \langle v, \nabla f(a) \rangle = 0$$

Autrement dit, $d_a f$ s'annule sur $T_a \mathcal{A}$. En d'autres termes,

$$\ker d_a \varphi = T_a \mathcal{A} \subset \ker d_a f$$

Or,
$$\ker d_a \varphi = \ker(d_a \varphi_1, \dots, d_a \varphi_m) = \bigcap_{j=1}^m \ker d_a \varphi_j$$

Il s'ensuit a que $d_a f$ est une combinaison linéaire des $d_a \varphi_j$.

Pauline TAN 10 V2.7.2023

a. Cf par exemple Denis Monasse, Math'ematiques. Cours complet. Pr\'epa MP & MP*, Proposition 2.4.8.

Interprétons ce théorème en termes de vecteurs tangents. L'égalité

$$\nabla f(a) - \sum_{j=1}^{m} \lambda_j \nabla \varphi_j(a) = 0$$

nous permet de déduire que le vecteur $(1, -\lambda_1, \dots, -\lambda_m) \in \mathbb{R}^{m+1}$ appartient au noyau de l'application linéaire :

$$\begin{cases} \mathbb{R}^{m+1} & \to \mathbb{R}^n \\ \xi & \mapsto \xi_0 \nabla f(a) + \sum_{j=1}^m \xi_j \nabla \varphi_j(a) = d_a F(\xi) \end{cases}$$

avec $F = (f, \varphi_1, \dots, \varphi_m)$. Autrement dit, le vecteur $(1, -\lambda_1, \dots, -\lambda_m) \in \mathbb{R}^{m+1}$ est tangent à l'ensemble $F^{-1}(F(a))$ en a. Il existe donc une courbe différentiable $\gamma :]-\delta ; \delta [\to \mathbb{R}^m$ telle que $(\gamma(0), \gamma'(0)) = (a, 1, -\lambda_1, \dots, -\lambda_m)$ et

$$F \circ \gamma(] - \delta; \delta[) = F(a) = (f(a), 0, \dots, 0)$$

Ce théorème est à la base d'une théorie fondamentale en optimisation sous contraintes, qui sera abordée au module B5 : Théorème de KARUSH-KUHN-TUCKER.

3 Compléments : définitions équivalentes

Dans cette section, on va généraliser la notion de sous-variété en considérant des définitions équivalentes.

3.1 Définition locale par redressement

Commençons par un premier exemple introductif:

Exemple

Projection canonique. Soit $p: \mathbb{R}^n \to \mathbb{R}^m$ la projection canonique de \mathbb{R}^n sur \mathbb{R}^m (avec $m \leq n$), définie par

$$\forall x \in \mathbb{R}^n, \quad p(x_1, \dots, x_n) = (x_1, \dots, x_m)$$

On sait que p définit une submersion en tout point de \mathbb{R}^n . Soit $a \in \mathbb{R}^n$. On pose y = p(a) et on considère l'ensemble suivant :

$$p^{-1}(\{y\}) = \left\{ x \in \mathbb{R}^n \mid p(x) = y \right\} = \left\{ x \in \mathbb{R}^n \mid \forall i \in [1; m], x_i = a_i \right\}$$

Autrement dit, $p^{-1}(\{y\}) = \{(a_1, \dots, a_m)\} \times \mathbb{R}^{n-m}$

Ainsi, en choisissant

$$\varphi: \left\{ \begin{array}{ccc} \mathbb{R}^n & \to & \mathbb{R}^n \\ x & \mapsto & (x_{m+1}, \dots, x_n, x_1 - a_1, \dots, x_m - a_m) \end{array} \right.$$

Pauline TAN 11 V2.7.2023

qui est un difféomorphisme, on obtient

$$\varphi(p^{-1}(\{y\})) = \mathbb{R}^{n-m} \times \{0_m\}$$

Il s'ensuit que $p^{-1}(\{y\})$ définit une sous-variété de \mathbb{R}^n de dimension n-m.

On peut généraliser ce résultat à n'importe quelle submersion (et donc, à n'importe quelle sous-variété) :

Proposition 6 (Sous-variété définie par redressement)

Soit X une sous-variété de \mathbb{R}^n de dimension d. Soit $x \in X$. Alors il existe un voisinage **ouvert** \mathcal{V} de x, un voisinage **ouvert** \mathcal{V}_0 de 0 dans E, un sous-espace vectoriel F de E de la forme $\mathbb{R}^d \times \{0_{n-d}\}$, avec $d \in [0; n]$, et un difféomorphisme $f: \mathcal{V} \to \mathcal{V}_0$ de classe \mathcal{C}^k tels que

$$f^{-1}(F \cap \mathcal{V}_0) = X \cap \mathcal{V}$$

ou encore

$$f(X \cap \mathcal{V}) = F \cap \mathcal{V}_0$$

DÉMONSTRATION : Soit $U \subset \mathbb{R}^n$ un ouvert et $\varphi : U \to \mathbb{R}^{n-d}$ une submersion telle que $0 \in \varphi(U)$ et telle que $\varphi^{-1}(\{0\}) = X \cap U$. Soit $a \in X$. Par définition, $\varphi(a) = 0$. Par hypothèse, φ est une submersion en a. Donc, d'après le corollaire 3 du module $\mathbf{A4}$: **Théorème du rang constant**, il existe $V \subset \mathbb{R}^n$ un ouvert contenant 0 et $\varphi : V \to \mathbb{R}^n$ un \mathcal{C}^1 -difféomorphisme sur son image tels que $\varphi(0) = a$ et, pour u dans un voisinage $\mathcal{V}_0 \subset \mathbb{R}^n$ de 0,

$$\varphi \circ \phi(u_1, \dots, u_n) = (u_1, \dots, u_m) + \varphi(a) = (u_1, \dots, u_m)$$

Posons $\mathcal{V}=\phi(\mathcal{V}_0).$ Puisque $\varphi(0)=a,$ l'ensemble \mathcal{V} est un voisinage de a. Par ailleurs, d'après ce qui précède, on a

$$\forall x \in \mathcal{V}, \qquad \varphi(x) = (\phi^{-1}(x))_{1 \le i \le m}$$

On en déduit que

$$X \cap \mathcal{V} = \left\{ x \in \mathcal{V} \mid (\phi^{-1}(x))_{1 \le i \le m} = 0 \right\} = \mathcal{V} \cap \phi(\{0_m\} \times \mathbb{R}^{n-m})$$

Or, ϕ étant une bijection, on a

$$X \cap \mathcal{V} = \phi(\mathcal{V}_0) \cap \phi(\{0_m\} \times \mathbb{R}^{n-m}) = \phi(\mathcal{V}_0 \cap (\{0_m\} \times \mathbb{R}^{n-m}))$$

Il suffit alors de définir f à l'aide d'une permutation des coordonnées des arguments de $\phi.$ \blacksquare

On peut interpréter cette proposition de la manière suivante : localement, c'est-à-dire sur un voisinage $\mathcal V$ de tout point $x\in X$, il est possible, en appliquant un difféomorphisme adapté f, de transformer ("tordre") X en un (sous-)espace vectoriel. L'application f peut être vue comme un changement de variables.

Notons que si $F = \mathbb{R}^{\tilde{d}} \times \{0_{n-d}\}$, alors l'ensemble

$$\widetilde{\mathcal{V}} = \left\{ \widetilde{x} \in \mathbb{R}^d \mid (\widetilde{x}, 0_{n-d}) \in F \cap \mathcal{V}_0 \right\}$$

est un ouvert de \mathbb{R}^d . En effet, pour tout $\tilde{x} \in \tilde{\mathcal{V}}$, puisque \mathcal{V}_0 est un ouvert, il contient une boule ouverte $\mathcal{B}_r(\tilde{x}, 0_{n-d})$ de rayon r centrée en $(\tilde{x}, 0_{n-d})$. Cette boule contient en particulier tous les éléments

$$(\tilde{y}, 0_{n-d})$$
 avec $\|\tilde{y} - \tilde{x}\| < r$

de sorte que $\widetilde{\mathcal{V}}$ contient la boule ouverte $\mathcal{B}_r(\tilde{x})$. Ainsi, une manière équivalente de définir les sous-variétés est la suivante : pour tout point x de la sous-variété X, on transforme l'intersection entre un voisinage de x (dans l'espace ambiant \mathbb{R}^n) et la sous-variété X en un **ouvert** de \mathbb{R}^d en appliquant un difféomorphisme. Dans le cas d'une courbe par exemple, on transforme de la sorte toute intersection entre une boule ouverte contenant x et la courbe X (ce qui donne une portion de courbe) en un intervalle ouvert de la droite réelle.

Exemple

Aplanir une parabole. On s'intéresse à la parabole définie comme l'ensemble des points du plan donné par

$$X = \left\{ (x, y) \in \mathbb{R}^2 \mid y = x^2 \right\}$$

En posant

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto & (x,y-x^2) \end{array} \right.$$

on définit une application différentiable de classe \mathcal{C}^{∞} (chaque composante étant une fonction polynomiale), bijective d'inverse

$$f^{-1}: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto & (x,x^2+y) \end{array} \right.$$

elle-même différentiable de classe \mathcal{C}^{∞} . Il s'ensuit que f est un \mathcal{C}^k -difféomorphisme pour tout $k \in \mathbb{N}^*$. Par ailleurs, on a

$$f(X) = \mathbb{R} \times \{0\}$$

où $\mathbb{R} \times \{0\}$ est une droite (la droite horizontale d'ordonnée nulle), donc un sous-espace vectoriel de \mathbb{R}^2 . La parabole X est donc bien une sous-variété de \mathbb{R}^2 , de dimension 1 (ici, on a choisi $\mathcal{V} = \mathcal{V}_0 = \mathbb{R}^2$). Dans cet exemple, l'application φ transforme la parabole en une droite.

On dit parfois que f redresse X en un espace vectoriel. Attention cependant : contrairement à ce que cette phrase pourrait laisser entendre, il ne s'agit pas de transformer globalement X en un espace vectoriel. La transformation se fait localement, c'est-à-dire sur des ouverts ; l'application f dépendant du voisinage considéré.

3.2 Définition locale par paramétrage

De même qu'une submersion peut définir une sous-variété, une immersion peut aussi permettre de les définir :

Proposition 7 (Sous-variété définie par paramétrage)

Soit X est une sous-variété de E de dimension d. Soit $x \in X$. Alors il existe un voisinage U de x, un voisinage V de 0 dans \mathbb{R}^d et une application $\psi: V \to E$, tels que ψ soit une immersion en 0 et

$$X \cap U = \psi(V)$$

DÉMONSTRATION : Soit X une sous-variété de \mathbb{R}^n et $x \in X$. Par définition, il existe un voisinage \mathcal{V} de x, un voisinage \mathcal{V}_0 de 0 dans \mathbb{R}^n , un sous-espace vectoriel F de \mathbb{R}^n de la forme $\mathbb{R}^d \times \{0\}$ et un difféomorphisme $f: \mathcal{V} \to \mathcal{V}_0$ tels que

$$f^{-1}(F \cap \mathcal{V}_0) = X \cap \mathcal{V}$$

On pose

$$V = \left\{ \hat{x} \in \mathbb{R}^d \mid \exists z \in \mathbb{R}^{n-d}, (\hat{x}, z) \in F \cap \mathcal{V}_0 \right\}$$

Il s'agit d'un voisinage de 0 dans \mathbb{R}^d . On considère la fonction

$$\psi: \left\{ \begin{array}{ccc} V & \to & \mathbb{R}^n \\ \hat{x} & \mapsto & f^{-1}(\hat{x},0) = f^{-1} \circ i(\hat{x}) \end{array} \right.$$

où $i: \mathbb{R}^d \to \mathbb{R}^n$ est l'injection canonique de \mathbb{R}^d dans \mathbb{R}^n . D'après le module A4 : Théorème du rang constant, $f^{-1} \circ i$ est une immersion.

Autrement dit, toute sous-variété s'écrit localement comme l'image d'une immersion.

3.3 Définition locale par graphe

Enfin, signalons cette dernière définition équivalente des sous-variétés :

Proposition 8 (Sous-variété définie par graphe)

Soit X est une sous-variété de E de dimension d. Soit $x \in X$. Alors il existe un voisinage U de x, un ensemble V de \mathbb{R}^d et une application $f: V \to \mathbb{R}^{n-d}$, tels que $X \cap U$ est le graphe de f; autrement dit,

$$X \cap U = \{(x_1, \dots, x_d, f_1(x_1, \dots, x_d), \dots, f_{n-d}(x_1, \dots, x_d) \in \mathbb{R}^n \mid x \in X \cap U\}$$

DÉMONSTRATION : Admis.