Übungsblatt 12 zur Algebra I

Abgabe bis 8. Juli 2013, 17:00 Uhr

Aufgabe 1. Allgemeines zu Gruppen

- a) Gibt es in der Permutationsgruppe S_5 eine Untergruppe mit 70 Elementen?
- b) Sei G eine Gruppe. Sei H eine Untergruppe von G und K eine Untergruppe von H. Wieso ist K dann auch eine Untergruppe von G?
- c) Sei G eine Gruppe und $\sigma \in G$. Zeige, dass $\sigma^i \circ \sigma^j = \sigma^{i+j}$ für beliebige ganze Zahlen i, j.

Lösung.

- a) Nein, denn nach dem Satz von Lagrange wäre 70 dann ein Teiler der Ordnung von S_5 . Diese ist aber 5! = 120.
- b) Zur Erinnerung die nötigen Definitionen:

Eine Gruppe G ist eine Teilmenge einer S_n , die die Identitätspermutation enthält und außerdem unter Komposition und Inversenbildung abgeschlossen ist.

In dieser Situation ist eine Untergruppe L von G eine Teilmenge derselben symmetrischen Gruppe S_n , welche die Identitätspermutation enthält und außerdem unter Komposition und Inversenbildung abgeschlossen ist, und außerdem eine Teilmenge von G ist.

Dann ist die Behauptung klar: Zu zeigen ist, dass $H \subseteq G$ und dass H die Identitätspermutation enthält und unter Komposition und Inversenbildung abgeschlossen ist. Letzteres gilt nach Voraussetzung, und ersteres folgt aus $H \subseteq G$ und $K \subseteq H$.

Aufgabe 2. Elementordnungen

- a) Sei G eine Gruppe und $\sigma \in G$ ein Element der Ordnung n. Zeige, dass die Ordnung einer beliebigen Potenz σ^m durch $n / \operatorname{ggT}(n, m)$ gegeben ist.
- b) Bestimme die Ordnungen aller Elemente der zyklischen Gruppe C_n .
- c) Bestimme alle Erzeuger der zyklischen Gruppe C_n .

Aufgabe 3. Kreisteilungspolynome

- a) Berechne die Kreisteilungspolynome $\Phi_3(X)$, $\Phi_6(X)$ und $\Phi_9(X)$.
- b) Zerlege das Polynom $X^3 + X^2 + X + 1$ über den rationalen Zahlen in irreduzible Faktoren.

Lösung.

a) Bekanntermaßen gilt $\Phi_1 = X - 1$ und $\Phi_2 = X + 1$. Dann folgt jeweils mit Polynomdivision:

$$X^{3} - 1 = \Phi_{1} \cdot \Phi_{3} \qquad \Longrightarrow \Phi_{3} = X^{2} + X + 1$$

$$X^{6} - 1 = \Phi_{1} \cdot \Phi_{2} \cdot \Phi_{3} \cdot \Phi_{6} \qquad \Longrightarrow \Phi_{6} = X^{2} - X + 1$$

$$X^{9} - 1 = \Phi_{1} \cdot \Phi_{3} \cdot \Phi_{9} \qquad \Longrightarrow \Phi_{9} = X^{6} + X^{3} + 1$$

b) Wir fügen zunächst künstlichen den Faktor (X-1) hinzu:

$$(X^3 + X^2 + X + 1) \cdot (X - 1) = X^4 - 1 = \Phi_1 \cdot \Phi_2 \cdot \Phi_4 = (X - 1) \cdot (X + 1) \cdot (X^2 + 1).$$

Dann können wir ihn wieder kürzen, und erhalten die Zerlegung

$$X^3 + X^2 + X + 1 = (X+1) \cdot (X^2 + 1).$$

Die auftretenden Faktoren sind (wie alle Kreisteilungspolynome) irreduzibel über den rationalen Zahlen.

Aufgabe 4. Etwas Zahlentheorie

Sei p eine Primzahl.

- a) Gib eine Primfaktorzerlegung von $X^{p-1} 1$ modulo p an.
- b) Zeige, dass der Binomialkoeffizient $\binom{p^2}{p}$ durch p, aber nicht durch p^2 teilbar ist.

Lösung.

a) Nach dem kleinen Satz von Fermat gilt für alle ganzen Zahlen a die Beziehung

$$a^p \equiv a \mod p$$
.

Für solche ganze Zahlen a, die modulo p invertierbar sind (d. h. die teilerfremd zu p sind), kann man a auf beiden Seiten einmal kürzen, sodass man die Beziehung

$$a^{p-1} \equiv 1 \mod p$$

erhält. Folglich besitzt das gegebene Polynom modulo p die p-1 verschiedenen Nullstellen $1, 2, \ldots, p-1$. Aus Gradgründen folgt dann schon:

$$X^{p-1} - 1 \equiv (X - 1)(X - 2) \cdots (X - (p - 1)) \mod p$$
.

b) Wir rechnen:

$$\binom{p^2}{p} = \frac{p^2 \cdot (p^2 - 1) \cdots (p^2 - p + 2) \cdot (p^2 - p + 1)}{p \cdot (p - 1) \cdots 2 \cdot 1}$$

$$= p \cdot \frac{(p^2 - 1) \cdot (p^2 - 2) \cdots (p^2 - p + 2) \cdot (p^2 - p + 1)}{(p - 1) \cdot (p - 2) \cdots 2 \cdot 1}$$

$$= p \cdot \binom{p^2 - 1}{p - 1}$$

Da der hintere Faktor wie jeder Binomialkoeffizient eine ganze Zahl ist, ist daher p ein Teiler von $\binom{p^2}{p}$. Ferner ist p^2 aber kein Teiler, da im Zähler des hinteren Faktors die Primzahl p kein einziges Mal vorkommt (wieso?) [im Nenner auch nicht, aber das tut nichts zur Sache].

Aufgabe 5. Primitive Wurzeln

- a) Gib alle primitiven Wurzeln modulo 5 an.
- b) Sei X die Menge der n-ten komplexen Einheitswurzeln. Zeige, dass die Abbildung

$$\sigma_d: X \longrightarrow X, \ \zeta \longmapsto \zeta^d$$

genau dann eine Bijektion ist, wenn die feste natürliche Zahl d teilerfremd zu n ist.

Lösung.

a) Eine primitive Wurzel modulo p ist eine solche (p-1)-te Einheitswurzel in $\mathbb{Z}/(p)$, sodass jede (p-1)-te Einheitswurzel in $\mathbb{Z}/(p)$ eine gewisse Potenz von ihr ist.

Von den Zahlen 0,1,2,3,4 sind genau die Zahlen 1,2,3,4 vierte Einheitswurzeln, denn es gilt

$$0^4 \equiv 0,$$
 $1^4 \equiv 1,$ $2^4 \equiv 1,$ $3^4 \equiv 1,$ $4^4 \equiv 1$

modulo 5. Zur Überprüfung der Primitivität legen wir folgende Tabelle an:

ξ	ξ^0	ξ^1	ξ^2	ξ^3	ξ^4	ξ^5	
1	1	1	1	1	1	1	
2	1	2	4	3	1	2	
3	1	3	4	1 3 2	1	3	
4	1	4	1	4	1	4	

Also sind 2 und 3 primitive Wurzeln modulo 5, da in ihren Zeilen *alle* vierten Einheitswurzeln vorkommen. Die Zahlen 1 und 4 sind zwar vierte Einheitswurzeln, aber nicht primitive vierte Einheitswurzeln.

Zur Erinnerung: Algebra-Treffen am 10. Juli um 18:30 Uhr in Raum 2004/L1.