Automne 2014

Modèles Mathématiques pour l'Image

Raphaëlle Chaine

Master Professionnel Image

Université Claude Bernard - Lyon 1

Transformée de Fourier discrète d'un signal 1D

- Soit s_e(t) un signal échantillonné avec la fréquence f_e uniquement dans l'intervalle [0, .., NT_e[
- On dispose donc de N échantillons
- Soit s_{ep}(t) le signal obtenu à partir de s_e(t) en le reproduisant après translation de T₀=NT_e
 - s_{ep}(t) est un signal discret et périodique
 - Sa transformée de Fourier est donc périodique de période 1/T_e=f_e
 - Sa transformée de Fourier est également discrète, avec un spectre n'intégrant que les fréquences multiples de $1/T_0 = f_0$

- Plus précisément :
 - S_{ep}(f) est une somme d'impulsions de Dirac

$$S_{ep}(f) = \sum_{k=-\infty}^{k=+\infty} S_{ep}(kf_0) \delta(f-kf_0)$$
 (ie $s_{ep}(t) = \sum_{k=-\infty}^{k=+\infty} S_{ep}(kf_0) e^{i2\pi kf_0 t}$)

– pondérées par des coefficients $S_{\rm ep}({\rm kf_0})$ qui se retrouvent être périodique et correspondent à des moyennes sur une période T₀

$$S_{ep}(kf_0) = \frac{1}{N} \sum_{n=0}^{n=N-1} s_{ep}(nT_e)e^{-i2\pi kf_0 nT_e}$$

• Que pouvez-vous dire de $2\pi k f_0 n T_e$?

- Que pouvez-vous dire de $2\pi k f_0 n T_e$?
 - Simplifications menant à $\,2\pi kn/N\,$ ne faisant intervenir ni ${
 m f_{\scriptscriptstyle 0}}$

$$S_{ep}(kf_0) = \frac{1}{N} \sum_{n=0}^{n=N-1} s_{ep}(nT_e)e^{-i2\pi kn/N}$$

84

Transformée de Fourier discrète d'un signal 1D

- On peut donc s'affranchir de T_e et T₀, la seule quantité importante étant N
- Soit s un signal discret périodique composé de N valeurs réelles ou complexes

N valeurs réelles ou complexes
$$s(n) = \sum_{k=0}^{N-1} S(k) e^{i2\pi k n/N} \qquad O \leq n < N$$

$$s(n) = \sum_{k=-N/2}^{k < N/2} S(k) e^{i2\pi k n/N} \ O \leq n < N$$
 s

$$s(n) = \sum_{k=-N/2}^{N} S(k)e^{i2\pi kn/N} \ O \le n < N$$

Transformée de Fourier discrète d'un signal 1D

• Avec :

$$S(k) = \frac{1}{N} \sum_{n=0}^{n=N-1} s(n)e^{-i2\pi kn/N}$$
ou bien $-N/2 \le k < N/2$

 S correspond au produit du vecteur s avec une matrice de Vandermonde

$$M_{kn} = e^{-i2\pi kn/N}$$

86

Transformée de Fourier discrète d'un signal 2D

- x(I,c) signal périodique, composé d'une période de L lignes et C colonnes
- On a

$$x(l,c) = \sum_{l=-L/2}^{l< L/2} \sum_{c=-C/2}^{c< C/2} X(u,v) e^{i2\pi(ul/L + vc/C)}$$

• Δνασ

$$X(u,v) = \frac{1}{LC} \sum_{u=-L/2}^{u < L/2} \sum_{v=-C/2}^{v < C/2} x(l,c) e^{-i2\pi(ul/L + vc/C)}$$

87

Transformée de Fourier discrète d'un signal 2D

- Faire le calcul de la transformée de Fourier des lignes et remplacer chaque ligne par sa transformée de Fourier
- Faire le calcul de la transformée de Fourier des colonnes ainsi obtenues
- Cela est équivalent à faire directement une transformée de Fourier discrète 2D

88

Représentation d'une Transformée de Fourier discrète 2D

- Le spectre X de l'image x est à valeurs complexes
- On considère
 - Spectre d'amplitude
 - Spectre de phase
- Sur les images du monde réel,
 - Représenter log(1+|X(u,v)|) plutôt |X(u,v)| pour mieux distinguer les variations au voisinage de (0,0) (fréquences basses de module beaucoup trop grand)
 - Ce spectre a généralement une forme proche de 1/f ou de $1/f^3$

89

Représentation d'une Transformée de Fourier Discrète 2D

 Pour la compression, le spectre de phase contient donc plus d'information spécifique au contenu de l'image

Algorithme de Transformée de Fourier Discrète Rapide (FFT)

- La transformée de Fourier d'un signal échantillonné sur N valeurs nécessite N² multiplications et additions (L²C² multiplications et additions en 2D)
- Il existe une stratégie Diviser pour Régner permettant de diminuer cette complexité : Algorithme en O(nlgn)
- Biblio: Cormen, Leiserson, Rivest

91

Algorithme de Transformée de Fourier Discrète Rapide (FFT)

- Idée de l'algorithme :
 - Le calcul d'une TFD de taille N se ramène au calcul de 2 TFD de taille N/2 suivi de N/2 multiplications

$$NS(m) = \sum_{n=0}^{n=N-1} s(n)e^{-i2\pi mn/N}$$

– On pose n=2k si n est pair, n=2k+1 si n est impair et on suppose que N est pair : N=2M

$$NS(m) = \sum_{k=0}^{N/2-1} s(2k)e^{-i2\pi 2km/N} + \sum_{k=0}^{N/2-1} s(2k+1)e^{-i2\pi(2k+1)m/N}$$

Algorithme de Transformée de Fourier Discrète Rapide (FFT)

- On adopte les notations suivantes qui correspondent à l'introduction de nouveaux signaux :
 - Signal s_{2M} de taille 2M

$$s_{2M}(k) = s(k)$$
 pour $k = 0, ..., 2M - 1$

- De TFD S₂м de taille 2M

$$2MS_{2M}(k) = 2MS(k)$$
 pour $k = 0, ..., 2M - 1$

– Signal s^p_M de taille M

$$s_M^p(n) = s(2n)$$
 pour $n = 0, ..., M - 1$

– Signal si_M de taille M

$$s_M^i(n) = s(2n+1)$$
 pour $n = 0, ..., M-1$

Algorithme de Transformée de Fourier Discrète Rapide (FFT)

- On partage donc le signal $s_{\rm 2M}$ en 2 signaux de taille moitié $s^{\rm p}_{\rm M}$ et $s^{\rm i}_{\rm M}$
- On a alors:

pour
$$m = 0, .., M - 1$$

1ère moitié du signal

$$2MS_{2M}(m) = MS_M^p(m) + e^{-i\pi m/M} MS_M^i(m)$$

2ème moitié du signal

$$2MS_{2M}(M+m) = MS_M^p(m) \left[-e^{-i\pi m/M} MS_M^i(m) \right]$$

• Démontrons ce résultat

94

Algorithme de Transformée de Fourier Discrète Rapide (FFT)

- On partage donc le signal $s_{\rm 2M}$ en 2 signaux de taille moitié $s^{\rm p}_{\rm M}$ et $s^{\rm i}_{\rm M}$
- L'opération de composition des deux TDFD de taille moitié s'appelle l'opération Papillon
 - M multiplications, additions et soustractions
- Cas d'arrêt de la récursion

- Si M=1
$$S_{M}^{p}(m=0) = s_{M}^{p}(m=0)$$

 $S_{M}^{i}(m=0) = s_{M}^{i}(m=0)$

- Algorithme récursif valable pour N correspondant à une puissance de 2
- Profondeur de récursion Ig₂(N)

Algorithme de Transformée de Fourier Discrète Rapide (FFT)

- Dérécursification de l'algorithme
 - A la descente, simple réorganisation de l'ordre des éléments du signaux
 - L'opération Papillon se fait à la remontée
- Simulation sur un signal de taille 8
- Réorganisation des éléments du signal dans leur ordre d'apparition aux feuilles
 - Inversion de la décomposition binaire
 - En effet à la première récursion, les indices dont la décomposition binaire se termine par 0 se retrouvent à gauche et les autres à droite, et ainsi de suite...

97

Algorithme de Transformée de Fourier Discrète Rapide (FFT)

- Après réorganisation de l'ordre des éléments du signal (dans un tableau)
- Pour s de 1 à $lg_2(N)$
 - Pour k de 0 à N-1 pas de 2^s faire
 - Combiner les deux TFD à 2^{s-1} éléments stockées entre les indices k et k+2^{s-1}-1 puis k+2^{s-1} et k+2^s-1
 - En une TFD à 2^s éléments que l'on stocke entre les indices k et et k+2^s-1
- Le tableau final contient la TFD

9