PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:	\	(1	1) International Publication Number: WO 99/16557
B05D 7/24	A1	(4	3) International Publication Date: 8 April 1999 (08.04.99)
(21) International Application Number: PCT/US9 (22) International Filing Date: 29 September 1998 (2)			(81) Designated States: BR, CA, CN, JP, MX, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(30) Priority Data: 08/939,240 29 September 1997 (29.09.9	7) t	us	Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of
(71) Applicant: BATTELLE MEMORIAL INSTITUTE Pacific Northwest Division, Intellectual Property P.O. Box 999, Richland, WA 99352 (US).	thwest Division, Intellectual Property Services,		amendments.
(72) Inventors: AFFINITO, John, D.; 2713 Kyle Road, Ke WA 99338 (US). DARAB, John, G.; 2000 Richland, WA 99352 (US). GROSS, Mark, E.; 50 Drive, Pasco, WA 99301 (US).	Steve	ns,	
(74) Agent: ZIMMERMAN, Paul, W.; Battelle Memorial Pacific Northwest Division, Intellectual Property P.O. Box 999, Richland, WA 99352 (US).	Institu Servic	itc, es,	
(54) Title: FLASH EVAPORATION OF LIQUID MONO	OMER	PA	RTICLE MIXTURE

(57) Abstract

The present invention is a method of making a first solid composite polymer layer. The method has the steps of (a) mixing a liquid monomer with particles substantially insoluble in the liquid monomer forming a monomer particle mixture; (b) flash evaporating the particle mixture and forming a composite vapor; and (c) continuously cryocondensing said composite vapor on a cool substrate and cross-linking the cryocondensed film thereby forming the polymerlayer.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	AI.	Albania	F.S	Spain	LS	Lesotho	SI	Slovenia
	AM	Amenia	FI	Finland	LT	Lithuania	SK	Slovakia
	AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
	AU	Australia	GA.	Gabon	LV.	Latvia	SZ	Swaziland
	AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
	BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	1'G	Togo
	BB	Barbados	GН	Ghana	MG	Madagascar	TJ	Tajikistan
	BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
	BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkcy
	BG	Bulgaria	HU	Hungary	ML	Mali	Tr	Trinidad and Tobago
	BJ	Benin	IR	Ircland	MN	Mongolia	UA	Ukraine .
	BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
	BY	Belarus	IS	locland	MW	Malawi	US	United States of America
	CA	Canada	IT	Italy	MX	Mexico	UZ.	Uzbekistan
	CF	Central African Republic	JP	Japan	NK	Niger	VN	Viet Nam
	CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
	CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
	CI	Côre d'Ivoire	KP	Democratic People's	NZ	New Zealand		
	CM	Cameroun		Republic of Korea	PL.	Poland		
	CN	China	KR	Republic of Kores	PT	Portugal		
	CU	Cuba	ΚZ	Kazakstan	RO	Romania		
	CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
	DE	Germany	LI	Liechtenstein	SD	Sudan		
	DK	Denmark	LK	Sri Lanka	SE	Sweden		
l	EE	Estonia	I.R	Liberia	SG	Singapore		
		and the same						

PCT/US98/20742

-1-

FLASH EVAPORATION OF LIQUID MONOMER PARTICLE MIXTURE

5

FIELD OF THE INVENTION

The present invention relates generally to a method of making composite polymer films. More specifically,

10 the present invention relates to making a composite polymer film from a mixture having insoluble particles (conjugated or unconjugated) in a liquid monomer. Additional layers of polymer or metal may be added under vacuum as well. As used herein, the term "(meth)acrylic" is defined as "acrylic or methacrylic". As used herein, the term "cryocondense" and forms thereof refers to the physical phenomenon of a phase change from a gas phase to a liquid phase upon the gas contacting a surface having a temperature lower than a dew point of the gas.

As used herein, the term "conjugated" refers to a chemical structure of alternating single and double bonds between carbon atoms in a carbon atom chain.

BACKGROUND OF THE INVENTION

25

30

35

20

The basic process of flash evaporation is described in U.S. patent 4,954,371 herein incorporated by reference. This basic process may also be referred to as polymer multi-layer (PML) flash evaporation. Briefly, a polymerizable and/or cross linkable material is supplied at a temperature below a decomposition temperature and polymerization temperature of the material. The material is atomized to droplets having a droplet size ranging from about 1 to about 50 microns. The droplets are then vaporized, under vacuum by contact with a heated surface above the boiling point of the material, but below the temperature which would cause pyrolysis. The vapor is

- 2 -

cryocondensed then polymerized or cross linked as a very thin polymer layer.

Many electronic devices, however, require polymer composite layers for devices including but not limited to molecularly doped polymers (MDP), light emitting polymers (LEP), and light emitting electrochemical cells (LEC). Presently these devices are made by spin coating or physical vapor deposition (PVD). Physical vapor deposition may be either evaporation or sputtering. Spin coating, surface area coverage is limited and scaling up to large surface areas requires multiple parallel units rather than a larger single unit. Moreover, physical vapor deposition processes are susceptible to pin holes.

In all of these prior art methods, the starting monomer is a (meth) acrylic monomer (FIG. 1b). When R₁ is hydrogen (H), the compound is an acrylate and when R₁ is a methyl group (CH₃), the compound is a methacrylate. If the group R₂ pendant to the (meth) acrylate group is fully conjugated, the O-C- linkage interrupts the conjugation and renders the monomer non-conducting. Exposure to electron beam radiation, or UV in the presence of a photoinitator, initiates polymerization of the monomer by creating free radicals at the (C=C) double bond in the (meth) acrylate linkage. After polymerization, the two (meth) acrylate Double (C=C) bonds, where the crosslinking occurred, have been converted to single (C-C) bonds. Thus, the cross-linking step further interrupts the conjugation and makes conductivity impossible.

Therefore, there is a need for an apparatus and high deposition rate method for making composite polymer layers that may be scaled up to cover larger surface areas with a single unit and that is less susceptible to pin holes. There is also a need for a method of preserving conjugation of the monomer.

5

10

15

20

25

5

15

20

30

35

SUMMARY OF THE INVENTION

The present invention is a method of making a first solid composite polymer layer. The method has the steps of:

- (a) mixing a liquid monomer with particles substantially insoluble in the liquid monomer forming a monomer particle mixture;
- (b) supplying a continuous liquid flow of said monomer particle mixture into a vacuum environment at a temperature below both the decomposition temperature and the polymerization temperature of the monomer particle mixture;
 - (c) continuously atomizing the monomer particle mixture into a continuous flow of droplets;
 - (d) continuously vaporizing the droplets by continuously contacting the droplets on a heated surface having a temperature at or above a boiling point of the liquid monomer and of the particles, but below a
 - pyrolysis temperature, forming a composite vapor; and

 (e) continuously cryocondensing said

 composite vapor on a cool substrate thereby forming said

 composite polymer layer.

Although the liquid monomer may not be conjugated

25 because of the curing steps, the use of conjugated
particles can preserve conjugation within the polymer
material. If the flash evaporation is additionally
combined with plasma deposition, then both the conjugated
particles and the monomer may be conjugated.

It is, therefore, an object of the present invention to provide a method of making a composite polymer via flash evaporation.

It is further object of the present invention to provide a method of making a conjugated polymer via flash evaporation.

An advantage of the present invention is that it is permits making composite layers via flash evaporation. Another advantage of the present invention is that multiple layers of materials may be combined. For example, as recited in U.S. patents 5,547,508 and 5,395,644, 5,260,095, hereby incorporated by reference, multiple polymer layers, alternating layers of polymer and metal, and other layers may be made with the present invention in the vacuum environment.

The subject matter of the present invention is particularly pointed out and distinctly claimed in the concluding portion of this specification. However, both the organization and method of operation, together with further advantages and objects thereof, may best be understood by reference to the following detailed description in combination with the drawings wherein like reference characters refer to like elements.

BRIEF DESCRIPTION OF THE DRAWINGS

20

10

15

- FIG. 1 is a cross section of a prior art combination of a glow discharge plasma generator with inorganic compounds with flash evaporation.
- FIG. 2 is a cross section of the apparatus of the present invention of combined flash evaporation and glow discharge plasma deposition.
 - FIG. 2a is a cross section end view of the apparatus of the present invention.
- FIG. 3 is a cross section of the present invention 30 wherein the substrate is the electrode.

DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

According to the present invention, a first solid 35 polymer composite layer is made by the steps of:

PCT/US98/20742

WO 99/16557

- 5 -

- mixing a liquid monomer with particles substantially insoluble in the liquid monomer forming a monomer particle mixture;
- flash evaporating the monomer particle (b) mixture forming a composite vapor; and
- continuously cryocondensing the composite (c) vapor on a cool substrate and cross linking a cryocondensed monomer layer thereby forming the composite polymer layer.

Flash evaporation has the steps:

5

10

15

20

25

30

35

- supplying a continuous liquid flow of said monomer particle mixture into a vacuum environment at a temperature below both the decomposition temperature and the polymerization temperature of the monomer particle mixture;
- (b) continuously atomizing the monomer particle mixture into a continuous flow of droplets;
- (c) continuously vaporizing the droplets by continuously contacting the droplets on a heated surface having a temperature at or above a boiling point of the liquid monomer and of the particles, but below a pyrolysis temperature, forming a composite vapor.

Insoluble is defined as not dissolving. Substantially insoluble refers to any amount of a particle material not dissolved in the liquid monomer. Examples include solid particles that are insoluble or partially soluble in the liquid monomer, immiscible liquids that are fully or partially miscible/insoluble in the liquid monomer, and dissolvable solids that have a concentration greater than the solubility limit of the monomer so that an amount of the dissolvable solid remains undissolved.

The liquid monomer may be any liquid monomer useful in flash evaporation for making polymer films. monomer includes but is not limited to acrylic monomer,

- 6 -

for example tripropyleneglycol diacrylate, tetraethylene glycol diacrylate, tripropylene glycol monoacrylate, caprolactone acrylate and combinations thereof; methacrylic monomers; and combinations thereof. The (meth)acrylic monomers are particularly useful in making molecularly doped polymers (MDP), light emitting polymers (LEP), and light emitting electrochemical cells (LEC).

5

25

The insoluble particle may be any insoluble or partially insoluble particle type having a boiling point below a temperature of the heated surface in the flash 10 evaporation process. For LEP/LEC devices, preferred insoluble particles are organic compounds including but not limited to N, N'-Bis (3-methylphenyl) -N, N'diphenylbenzidine (TPD) - a hole transporting material for LEP and MDP, and Tris(8-quinolinolato) aluminumIII 15 (Alq3) - an electron transporting and light emitting material for LEP and MDP. To achieve an LEC, it is necessary to add an electrolyte, usually a salt for example Bistrifluoromethylsulfonyl imide, Lithium-20 trifluoromethanesulfonate (CF₃SO₃Li), and combinations thereof.

The particle may be conjugated or unconjugated and the monomer may be conjugated or unconjugated.

Conjugated particle or monomer include but are not limited to phenylacetylene derivatives, for example Trans-Polyphenylacetylene, polyphenylenevinylene and combinations thereof, Triphynyl Diamine Derivative, Ouinacridone and combinations thereof.

The insoluble particles are preferably of a volume 30 much less than about 5000 cubic micrometers (diameter about 21 micrometers) or equal thereto, preferably less than or equal to about 4 cubic micrometers (diameter about 2 micrometers). In a preferred embodiment, the insoluble particles are sufficiently small with respect to particle density and liquid monomer density and

- 7 -

viscosity that the settling rate of the particles within the liquid monomer is several times greater than the amount of time to transport a portion of the particle liquid monomer mixture from a reservoir to the atomization nozzle. It is to be noted that it may be necessary to stir the particle liquid monomer mixture in the reservoir to maintain suspension of the particles and avoid settling.

5

35

The mixture of monomer and insoluble or partially 10 soluble particles may be considered a slurry, suspension or emulsion, and the particles may be solid or liquid. The mixture may be obtained by several methods. method is to mix insoluble particles of a specified size into the monomer. The insoluble particles of a solid of 15 a specified size may be obtained by direct purchase or by making them by one of any standard techniques, including but not limited to milling from large particles, precipitation from solution, melting/spraying under controlled atmospheres, rapid thermal decomposition of 20 precursors from solution as described in U.S. patent 5,652,192 hereby incorporated by reference. The steps of U.S. patent 5,652,192 are making a solution of a soluble precursor in a solvent and flowing the solution through a reaction vessel, pressurizing and heating the flowing 25 solution and forming substantially insoluble particles, then quenching the heated flowing solution and arresting growth of the particles. Alternatively, larger sizes of solid material may be mixed into liquid monomer then agitated, for example ultrasonically, to break the solid 30 material into particles of sufficient size.

Liquid particles may be obtained by mixing an immiscible liquid with the monomer liquid and agitating by ultrasonic or mechanical mixing to produce liquid particles within the liquid monomer. Immiscible liquids include, for example fluorinated monomers.

- 8 -

Upon spraying, the droplets may be particles alone, particles surrounded by liquid monomer and liquid monomer alone. Since both the liquid monomer and the particles are evaporated, it is of no consequence either way. It is, however, important that the droplets be sufficiently small that they are completely vaporized. Accordingly, in a preferred embodiment, the droplet size may range from about 1 micrometer to about 50 micrometers.

10

Example 1

A first solid polymer layer was made according to the method of the present invention. Specifically, the acrylic monomer blend of 50.75 ml of tetraethyleneglycol 15 diacrylate plus 14.5 ml tripropyleneglycolmonoacrylate plus 7.25 ml caprolactoneacrylate plus 10.15 ml acrylic acid plus 10.15 ml of EZACURE (a benzophenone blend photo initiator sold by Sartomer Corporation of Exton Pa.) was mixed with 36.25 gm of particles of solid N, N'-Bis(3-20 methylphenyl)-N,N'-diphenylbenzidine having a wide range of particle sizes varying from very fine to the size of grains of sand. The mixture was then agitated with a 20 kHz ultrasonic tissue mincer for about one hour to break up the solid particles to form a fine suspension. 25 initial mixture/suspension having about 40 vol%, or 72.5 gm, of particles was found to plug the 0.051 inch spray nozzle, so the mixture was diluted to about 20 vol%, or 36.25 gm, to avoid plugging. It will be apparent to one of skill in the art of slurry/suspension flow that 30 increasing nozzle size may accommodate higher concentrations. The mixture was heated to about 45 °C and stirred to prevent settling. The mixture was pumped through a capillary tube of 0.08" I.D. and about 24" long to the spray nozzle of 0.051 inch which atomized 35 (ultrasonic atomizer at 25 kHz) the mixture into droplets

that fell upon a surface maintained at about 650 °F. Flash evaporation chamber walls were maintained at about 550 °F to prevent monomer cryocondensation on the flash evaporation chamber walls. The vapor cryocondensed on a polyester (PET) web maintained at a low temperature with cooling water introduced at a temperature of about 55 °F, followed by UV curing.

The cured polymer was transparent and deposited at rates of about 4 microns thick at 4 m/min. Rates of hundreds of meters/minute are achievable though.

Example 2

5

10

35

A first solid polymer layer was made according to the method of the present invention and with the parameters specified in Example 1, with the following exceptions. The solid particles were 19.5 gm (about 10.75 vol%) of Tris(8-quinolinolato)-aluminumIII consisting of a few solid chunks in excess of 0.25" across. The capillary tube was 0.032" I.D. and about 24 long to the spray nozzle.

The cured polymer was produced at a rate of about 4 microns thick at 4 m/min.

Example 3

25 An experiment was conducted as in Examples 1 and 2, but using a combination of the mixtures from Example 1 and Example 2 along with 5 gm of an electrolyte salt Bistrifluoro-methylsulfonyl imide. The cured polymer was clear and produced at a rate of about 4 microns thick 30 at 1 m/min.

Alternative Embodiments

The method of the present invention may obtain a polymer layer either by radiation curing or by self curing. In radiation curing (FIG. 1), the monomer liquid

may include a photoinitiator. A flash evaporator 106 in a vacuum environment or chamber is used to deposit a monomer layer on a surface 102 of a substrate 104. addition an e-beam gun or ultraviolet light (not shown) is provided downstream of the flash evaporation unit for 5 cross linking or curing the cryocondensed monomer layer. A glow discharge plasma unit 100 may be used to etch the The glow discharge plasma unit 100 has a surface 102. housing 108 surrounding an electrode 112 that may be smooth or may have pointed projections 114. An inlet 110 permits entry of a gas for etching, for example oxygen or argon. In self curing, a combined flash evaporator, glow discharge plasma generator is used without either the ebeam gun or ultraviolet light.

10

A self curing apparatus is shown in FIG. 2. 15 apparatus and method of the present invention are preferably within a low pressure (vacuum) environment or chamber. Pressures preferably range from about 10⁻¹ torr to 10⁻⁶ torr. The flash evaporator 106 has a housing 116, with a monomer inlet 118 and an atomizing nozzle 120. 20 Flow through the nozzle 120 is atomized into particles or droplets 122 which strike the heated surface 124 whereupon the particles or droplets 122 are flash evaporated into a gas, evaporate or composite vapor that flows past a series of baffles 126 to a composite vapor 25 outlet 128 and cryocondenses on the surface 102. Cryocondensation on the baffles 126 and other internal surfaces is prevented by heating the baffles 126 and other surfaces to a temperature in excess of a 30 cryocondensation temperature or dew point of the composite vapor. Although other gas flow distribution arrangements have been used, it has been found that the baffles 126 provide adequate gas flow distribution or uniformity while permitting ease of scaling up to large 35 surfaces 102. The composite vapor outlet 128 directs gas

- 11 -

toward a glow discharge electrode 204 creating a glow discharge plasma from the composite vapor. embodiment shown in FIG. 2, the glow discharge electrode 204 is placed in a glow discharge housing 200 having a composite vapor inlet 202 proximate the composite vapor outlet 128. In this embodiment, the glow discharge housing 200 and the glow discharge electrode 204 are maintained at a temperature above a dew point of the The glow discharge plasma exits the composite vapor. glow discharge housing 200 and cryocondenses on the surface 102 of the substrate 104. The glow discharge monomer plasma cryocondensing on a substrate and thereon, wherein the crosslinking results from radicals created in the glow discharge plasma and achieves self curing. It is preferred that the substrate 104 is cooled. embodiment, the substrate 104 is moving and may be nonelectrically conductive, conductive, or biased with an impressed voltage. A preferred shape of the glow discharge electrode 204 is shown in FIG. 2a. preferred embodiment, the glow discharge electrode 204 is shaped so that composite vapor flow from the composite vapor inlet 202 substantially flows through an electrode opening 206.

10

15

20

35

Any electrode shape can be used to create the glow discharge, however, the preferred shape of the electrode 204 does not shadow the plasma from the composite vapor, and its symmetry, relative to the monomer exit slit 202 and substrate 204, provides uniformity of the plasma across the width of the substrate while uniformity transverse to the width follows from the substrate motion.

The spacing of the electrode 204 from the substrate 104 is a gap or distance that permits the plasma to impinge upon the substrate. This distance that the plasma extends from the electrode will depend on the

- 12 -

evaporate species, electrode 204/substrate 104 geometry, electrical voltage and frequency, and pressure in the standard way as described in detail in ELECTRICAL DISCHARGES IN GASSES, F.M. Penning, Gordon and Breach Science Publishers, 1965, and summarized in THIN FILM PROCESSES, J.L. Vossen, W. Kern, editors, Academic Press, 1978, Part II, Chapter II-1, Glow Discharge Sputter Deposition, both hereby incorporated by reference.

An apparatus suitable for batch operation is shown In this embodiment, the glow discharge 10 in FIG. 3. electrode 204 is sufficiently proximate a part 300 (substrate) to permit the plasma to impinge upon the substrate 300. This distance that the plasma extends from the electrode will depend on the evaporate species, electrode 204/substrate 104 geometry, electrical voltage 15 and frequency, and pressure in the standard way as described in ELECTRICAL DISCHARGES IN GASSES, F.M. Penning, Gordon and Breach Science Publishers, 1965, hereby incorporated by reference. Thus, the part 300 is 20 coated with the monomer condensate and self cured into a polymer layer. Sufficiently proximate may be connected to, resting upon, in direct contact with, or separated by a gap or distance. This distance that the plasma extends from the electrode will depend on the evaporate species, 25 electrode 204/substrate 104 geometry, electrical voltage and frequency, and pressure in the standard way as described in ELECTRICAL DISCHARGES IN GASSES, F.M. Penning, Gordon and Breach Science Publishers, 1965. is preferred, in this embodiment, that the substrate 300 30 be non-moving or stationary during cryocondensation. However, it may be advantageous to rotate the substrate 300 or laterally move it for controlling the thickness and uniformity of the monomer layer cryocondensed thereon. Because the cryocondensation occurs rapidly,

within seconds, the part may be removed after coating and before it exceeds a coating temperature limit.

In operation, either as a method for plasma enhanced chemical vapor deposition of high molecular weight monomeric materials onto a substrate, or as a method for making self-curing polymer layers (especially polymer multi-layer (PML)), the composite polymer may be formed by cryocondensing the glow discharge composite monomer plasma on a substrate and crosslinking the glow discharge plasma thereon. The crosslinking results from radicals created in the glow discharge plasma thereby permitting self curing.

10

15

20

25

30

35

The liquid monomer may be any liquid monomer useful in flash evaporation for making polymer films. When using the apparatus of FIG. 2 to obtain self curing, It is preferred that the monomer material or liquid have a low vapor pressure, preferably less than about 10 torr at 83°F (28.3°C), more preferably less than about 1 torr at 83°F (28.3°C), and most preferably less than about 10 millitorr at 83°F (28.3°C). For monomers of the same chemical family, monomers with low vapor pressures usually also have higher molecular weight and are more readily cryocondensible than lower vapor pressure, lower molecular weight monomers. Low vapor pressure monomers are more readily cryocondensible than low molecular weight monomers.

By using flash evaporation, the monomer is vaporized so quickly that reactions that generally occur from heating a liquid monomer to an evaporation temperature simply do not occur.

In addition to the evaporate from the liquid monomer, additional gases may be added through inlet 130 within the flash evaporator 106 upstream of the evaporate outlet 128, preferably between the heated surface 124 and the first baffle 126 nearest the heated surface 124.

PCT/US98/20742

WO 99/16557

- 15 -

I claim:

5

10

15

20

1. A method of making a first solid composite polymer layer, comprising the steps of:

- mixing a liquid monomer with particles substantially insoluble in the liquid monomer forming a monomer particle mixture;
- supplying a continuous liquid flow of said monomer particle mixture into a vacuum environment at a temperature below both the decomposition temperature and the polymerization temperature of the monomer particle mixture;
- (c) continuously atomizing the monomer particle mixture into a continuous flow of droplets;
- continuously vaporizing the droplets by continuously contacting the droplets on a heated surface having a temperature at or above a boiling point of the liquid monomer and of the particles, but below a pyrolysis temperature, forming a composite vapor; and
 - (e) continuously cryocondensing said composite vapor on a cool substrate and cross linking a cryocondensed monomer layer thereby forming said polymer layer.
- 25 The method as recited in claim 1, wherein the 2. liquid monomer is selected from the group consisting of (meth) acrylic monomers and combinations thereof.
- The method as recited in claim 1, wherein 30 acrylic monomer is selected from the group consisting of tripropyleneglycol diacrylate, tetraethylene glycol diacrylate, tripropylene glycol monoacrylate, caprolactone acrylate, and combinations thereof,

- 14 -

Additional gases may be organic or inorganic for purposes included but not limited to ballast, reaction and combinations thereof. Ballast refers to providing sufficient molecules to keep the plasma lit in circumstances of low evaporate flow rate. Reaction refers to chemical reaction to form a compound different from the evaporate. Ballast gases include but are not limited to group VIII of the periodic table, hydrogen, oxygen, nitrogen, chlorine, bromine, polyatomic gases including for example carbon dioxide, carbon monoxide, water vapor, and combinations thereof. An exemplary reaction is by addition of oxygen gas to the monomer evaporate hexamethylydisiloxane to obtain silicon dioxide.

15

10

CLOSURE

While a preferred embodiment of the present invention has been shown and described, it will be apparent to those skilled in the art that many changes and modifications may be made without departing from the invention in its broader aspects. The appended claims are therefore intended to cover all such changes and modifications as fall within the true spirit and scope of the invention.

- 16 -

- 4. The method as recited in claim 1, wherein the particles are selected from the group consisting of organic solids, liquids, and combinations thereof.
- 5. The method as recited in claim 4, wherein the organic solids are selected from the group consisting of N,N'-Bis(3-methylphenyl)-N,N'-diphenylbenzidine, Tris(8-quinolinolato)aluminumIII, and combinations thereof.
- 6. The method as recited in claim 1, wherein the particles are selected from the group consisting of phenylacetylene derivative, triphynyl diamine derivative, quinacridone and combinations thereof.
- 7. The method as recited in claim 1, wherein said cross linking is radiation cross linking.
 - 8. The method as recited in claim 1, further comprising the step of passing the composite vapor past a glow discharge electrode prior to cryocondensing, wherein said cross linking is self curing.
 - 9. The method as recited in claim 1, further comprising adding an additional gas to the composite vapor upstream of a composite vapor outlet of a flash evaporator.

20

25

- 10. The method as recited in claim 9, wherein said additional gas is a ballast gas.
- 11. The method as recited in claim 9, wherein said additional gas is a reaction gas.

- 17 -

- 12. The method as recited in claim 11, wherein a reaction gas is oxygen gas and the composite vapor includes hexamethylydisiloxane.
- 5 13. A method of making a first solid composite polymer layer, comprising the steps of:
 - (a) mixing a liquid monomer with particles substantially insoluble in the liquid monomer forming a monomer particle mixture;
- (b) flash evaporating said monomer particle mixture in a vacuum environment forming a composite vapor; and
 - (c) continuously cryocondensing said composite vapor on a cool substrate and cross linking a cryocondensed monomer layer thereby forming said polymer layer.
 - 14. The method as recited in claim 13, wherein flash evaporating comprises the steps of:
- 20 (a) supplying a continuous liquid flow of said monomer particle mixture into a vacuum environment at a temperature below both the decomposition temperature and the polymerization temperature of the monomer particle mixture;
 - (b) continuously atomizing the monomer particle mixture into a continuous flow of droplets;
 - (c) continuously vaporizing the droplets by continuously contacting the droplets on a heated surface having a temperature at or above a boiling point of the liquid monomer and of the particles, but below a pyrolysis temperature, forming said composite vapor.
 - 15. The method as recited in claim 13, wherein said cross linking is radiation cross linking.

30

15

- 18 -

16. The method as recited in claim 13, further comprising the step of passing the composite vapor past a glow discharge electrode prior to cryocondensing, wherein said cross linking is self curing.

5

17. The method as recited in claim 13, wherein the particles are selected from the group consisting of phenylacetylene derivative, triphynyl diamine derivative, quinacridone and combinations thereof.

Fig. 1 (PRIOR ART)

2/3

Fig. 2a

3/3

Fig. 3

INTERNATIONAL SEARCH REPORT

Intern 1al Application No PCT/US 98/20742

A. CLASSIFICATION OF SUBJECT MATTER			
IPC 6 B05D7/24		·	
According to international Patent Classification	(IPC) or to both national classif	Ication and IPC	
B. FIELDS SEARCHED			
Minimum documentation searched (classificati IPC 6 B05D	ion system followed by classifica	tion symbols)	
Documentation searched other than minimum	documentation to the extent that	such documents are included in the fields so	arched
Electronic data base consulted during the inter	rnational search (name of data b	pase and, where practical, search terms used	
C. DOCUMENTS CONSIDERED TO BE RELE	EVANT		-
Category * Citation of document, with indicat	tion, where appropriate, of the re	elevant passages	Relevant to claim No.
30 December 198		INC)	1,13
see the whole do a US 4 954 731 4 September 1990 cited in the appropriate the whole do	A (YIALIZIS A.) O plication		1,13
Further documents are listed in the con	dinuation of box C,	X Patent family members are listed	n annex
Special categories of cited documents: A" document defining the general state of the considered to be of particular relevance		"T" later document published after the inte or priority date and not in conflict with cited to understand the principle or the invention	the application but
E" earlier document but published on or after the filling date L" document which may throw doubts on prior which is cited to establish the publication citation or other special reason (as specific document referring to an oral disclosure, upother means.	rity claim(s) or date of snother fied) se, exhibition or	"X" document of particular relevance; the clean to be considered novel or cannot levolve an inventive step when the document of particular relevance; the clean to be considered to involve an involvement is combined with one or moments, such combination being obvious in the art.	be considered to cument is taken alone eimed invention entive step when the re other such docu-
P" document published prior to the internation later than the priority date claimed	al Ming date but	"&" document member of the same patent f	amily
Date of the actual completion of the international 22 February 1999	search	Date of mailing of the international sea	rch report
Name and mailing address of the ISA European Patent Office, P.B. 5	5816 Patentiaan 2	Authorized officer	·
NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 Fax: (+31-70) 340-3016		Brothier, J-A	

INTERNATIONAL SEARCH REPORT

information on patent family members

Intern 181 Application No PCT/US 98/20742

Patent document cited in search report		Publication date	1	Patent family member(s)	Publication date
WO 8707848	A	30-12-1987	DE EP JP JP US	3786063 A 0270656 A 2530350 B 63503552 T 4954371 A	08-07-1993 15-06-1988 04-09-1996 22-12-1988 04-09-1990