Colorful Ultrametric Spaces and Ramsey Ultrafilters

JAKE R. GAMEROFF

ABSTRACT. Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

1. Preliminaries

- 1.1. **Ultrametric Analysis.** Recall that a *metric* on a set X is a function $d: X \times X \to [0, +\infty)$ such that for every $x, y, z \in X$ the following hold:
 - $(1) \ d(x,y) = 0 \Leftrightarrow x = y;$
 - (2) d(x,y) = d(y,x); and
 - (3) $d(x,y) \le d(x,z) + d(z,y)$.

The pair (X, d) is called a *metric space*. A stronger version of (3) is called the *strong triangle inequality*:

$$d(x,y) \le \max\{d(x,z), d(z,y)\}.$$

If the strong triangle inequality holds, then we call d an ultrametric and (X, d) an ultrametric space. In what follows, unless otherwise specified, (X, d) (or simply X) is an ultrametric space.

Lemma 1.1. If x, y, z are distinct points in an ultrametric space X and d(x, y) < d(y, z) then d(x, z) = d(x, y). (That is, every triangle in an ultrametric space is isosceles.

Proof.
$$\Box$$

An open ball (or simply a ball) of radius $\varepsilon > 0$ centered about a point $x \in X$ is defined as the set $B_{\varepsilon}(x) := \{y \in X : d(x,y) < \varepsilon\}$. If left unspecified, note that x denotes a point in X and ε a positive real number.

A subset \mathcal{O} of X is called *open* if it can be written as a union of open balls. A set is *closed* if its complement is open. Open balls (and

hence open sets) in ultrametric spaces exhibit properties that are quite counterintuitive, as delineated by the following simple results.

Lemma 1.2. Let $B_{\varepsilon}(x)$ be an open ball in X. Then $B_{\varepsilon}(x) = B_{\varepsilon}(y)$ for every point $y \in B_{\varepsilon}(x)$. (That is, every point in a ball is its center.)

Proof. Fix $y \in B_{\varepsilon}(x)$ so that $d(x,y) < \varepsilon$. If $t \in B_{\varepsilon}(y)$ then $d(y,t) < \varepsilon$. Then $t \in B_{\varepsilon}(x)$ since

$$d(x,t) \le \max\{d(x,y),d(y,t)\} < \varepsilon.$$

The reverse inclusion follows symmetrically as $x \in B_{\varepsilon}(y)$.

Corollary 1.1. Fix $\varepsilon_1, \varepsilon_2 > 0$ and $x, y \in X$. If $B_{\varepsilon_1}(x) \cap B_{\varepsilon_2}(y) \neq \emptyset$ then $B_{\varepsilon_1}(x) \subseteq B_{\varepsilon_2}(y)$ or $B_{\varepsilon_2}(y) \subseteq B_{\varepsilon_1}(x)$. (That is, two balls are either disjoint or one of them contains the other.)

Proof. Assume without loss of generality that $\varepsilon_1 \leq \varepsilon_2$. If $B_{\varepsilon_1}(x) \cap B_{\varepsilon_2}(y) \neq \emptyset$, there is a point $t \in X$ with $t \in B_{\varepsilon_1}(x)$ and $t \in B_{\varepsilon_2}(y)$. By (lemma) and since $\varepsilon_1 \leq \varepsilon_2$, we obtain $B_{\varepsilon_1}(x) = B_{\varepsilon_1}(t) \subseteq B_{\varepsilon_2}(t) = B_{\varepsilon_2}(y)$ as required.

Corollary 1.2. If $B_{\varepsilon}(x)$ is an open ball in X, then $X \setminus B_{\varepsilon}(x)$ is a union of open balls. (That is, $B_{\varepsilon}(x)$ is closed in X).

Proof. Suppose for a contradiction that there is a point $t \in X \setminus B_{\varepsilon}(x)$ such that for every r > 0 the ball $B_r(t)$ is not contained in $X \setminus B_{\varepsilon}(x)$, so $B_r(t) \cap B_{\varepsilon}(x) \neq \emptyset$. Setting $r = \varepsilon$ and using (lemma), we have $B_{\varepsilon}(t) \subseteq B_{\varepsilon}(x)$ or $B_{\varepsilon}(t) \subseteq B_{\varepsilon}(x)$. In either case, (lemma) implies equality. But then $t \in X \setminus B_{\varepsilon}(x) = X \setminus B_{\varepsilon}(t)$ is a contradiction. Hence $X \setminus B_{\varepsilon}(x)$ is a union of open balls so that $B_{\varepsilon}(x)$ is closed in X. \square