IN THE CLAIMS:

- 1. (Previously Presented) An intermediate network device for use within a computer net-
- work having a server configured to provide one or more data streams to a client, each
- stream having a corresponding bandwidth, the network device comprising:
- 4 means for determining network traffic characteristics sufficient to identify a
- stream from the server to the client;
- a packet classification engine for snooping on Real Time Streaming Protocol
- 7 (RTSP) messages for determining the bandwidth of the stream; and
- a resource reservation protocol (RSVP) transmitter proxy configured to reserve
- 9 resources within the computer network on behalf of the server for allocation to the
- 10 stream.
- 2.(original) The intermediate network device of claim 1 wherein the RSVP transmitter
- 2 proxy is configured to generate and send one or more RSVP Path messages on behalf of
- the server, the one or more RSVP Path messages containing the network traffic character-
- 4 istics and the bandwidth of the stream.
- 3. (original) The intermediate network device of claim 2 wherein the RSVP transmitter
- 2 proxy is configured to terminate RSVP Reservation (Resv) messages that are sent to the
- 3 server.
- 4. (original) The intermediate network device of claim 3 wherein the RSVP transmitter
- 2 proxy is configured to generate and send one or more RSVP Path Teardown (PathTear)
- messages on behalf of the server for releasing the reserved resources allocated to the
- 4 stream.
- 1 Claims 5-8 (Canceled).

- 9. (Previously Presented) The intermediate network device of claim 1 wherein the packet
- 2 classification engine is configured to extract the bandwidth of the stream from one or
- more messages whose contents are organized at least in part in accordance with the Ses-
- 4 sion Description Protocol (SDP) specification standard.
- 10. (original) The intermediate network device of claim 9 further comprising a session
- 2 manager configured to store the network traffic characteristics and bandwidth of the
- 3 stream.
- 1 11. (original) The intermediate network device of claim 10 wherein the stream has an
- 2 RTSP state and the session manager includes one or more state machine engines config-
- ured to maintain the RTSP state of the stream.
- 1 12. (original) The intermediate network device of claim 2 wherein
- the client has a network layer address and a transport layer port for use in receiv-
- 3 ing the stream from the server,
- 4 the server has a network layer address and a transport layer port for use in sending
- 5 the stream to the client, and
- the network traffic characteristics include the client's network layer address and
- transport layer port and the server's network layer address and transport layer port.
- 1 13. (original) The intermediate network device of claim 12 wherein
- the stream uses a given transport layer protocol, and
- the network traffic characteristics include the given transport layer protocol.
- 14. (original) The intermediate network device of claim 13 wherein the RSVP Path mes-
- sages generated and sent by the RSVP transmitter proxy on behalf of the server include a
- session object containing the client's network layer address and transport layer port and
- 4 the transport layer protocol associated with the stream.

- 1 15. (original) The intermediate network device of claim 14 wherein the RSVP Path mes-
- sage includes a sender template object containing the server's network layer address and
- 3 transport layer port associated with the stream.
- 1 16. (original) The intermediate network device of claim 15 wherein the RSVP Path mes-
- sage includes a sender Tspec object containing the bandwidth of the stream.
- 17. (Previously Presented)An intermediate network device for use within a computer net-
- work having a server configured to provide one or more data streams to a client, each
- 3 stream having a corresponding bandwidth, the intermediate network device comprising:
- 4 means for determining traffic characteristics sufficiently to identify a stream from
- 5 the server to the client;
- 6 means for determining the bandwidth of the stream;
- a resource reservation protocol (RSVP) transmitter proxy configured to reserve
- resources within the computer network on behalf of the server for allocation to the stream
- and to generate and send one of more RSVP Path messages on behalf of the server, the
- one or more RSVP Path messages containing the network traffic characteristics and the
- bandwidth of the stream, and means for obtaining a differentiated services codepoint
- (DSCP) value that is based on the bandwidth of the stream.
- 18. (original) The intermediate network device of claim 17 wherein the RSVP transmitter
- 2 proxy is configured to load the DSCP into the RSVP Path message generated and sent on
- 3 behalf of the server.
- 19. (original) The intermediate network device of claim 18 wherein the RSVP Path mes-
- 2 sage includes a DCLASS object containing the DSCP.
- 20. (Previously Presented) A method for providing one or more data streams from a
- server to a client, each stream having a corresponding bandwidth, the method comprising:

3	receiving a message from a client to a server,
4	determining network traffic characteristics sufficient to identify a stream from the
5	server to the client;
6	determining the bandwidth of the stream; and
7	sending via a resource reservation protocol (RSVP) transmitter proxy, messages
8	to nodes along a data path from the server to the client to reserve resources within the
9	computer network on behalf of the server for allocation to the stream.
1	21. (Previously Presented) The method of claim 20 wherein the message from the client
2	is an RTSP Describe Request.
1	22. (Previously Presented) A method for operating a router, comprising:
2	receiving a message from a client, the message directed to a server, the client
3	message requesting that the server begin sending a traffic flow to the client;
4	receiving a response message from the server, the response message responding to
5	the message from the client;
6	transmitting, in response to the message, a resource reservation request message
7	(RSVP request message) to the client, the RSVP message establishing a path to the client;
8	receiving a RSVP reply message from the client, the RSVP reply message reserv-
9	ing resources for the requested traffic flow;
10	receiving a data message of the traffic flow from the server; and
11	transmitting the data message of the traffic flow with a resource reservation indi-
12	cia in the data message, the resource reservation indicia to direct the data message to
13	travel along the reserved resources.
1	23. (Previously Presented) The method of claim 22, further comprising:
2	reading a message received by the router from a computer network in order to de-
3	termine if the message is from a client, and if the message requests that the server send a
4	traffic flow to the client.

1	24. (Previously Presented) The method of claim 22, further comprising:
2	reading a message received by the router from the server in order to determine if
3	the message is a response to a client request for a traffic flow.
1	25. (Previously Presented) The method of claim 22, further comprising:
2	reading from messages received by the router parameters of a traffic flow, the
3	traffic flow requested by the client for the server to transmit to the client.
1	26. (Currently Amended) The method of claim 22, further A method for operating a
2	router, comprising:
3	receiving a first message from a client, from a computer network in order to de-
4	termine if the first message is from the client, the first message directed to a server, the
5	first message requesting that the server begin sending a traffic flow to the client if the
6	first message requests that the server send the traffic flow to the client;
7	reading a first message received by the router from a computer network in order
8	to determine if the message is from a client, and if the message requests that the server
9	send a traffic flow to the client;
0	determining a sequence number of the first message;
1	reading a second message received by the router from the server in order to de-
2	termine if the message is a response to a client request for a traffic flow, the determining
3	in response to discovering the sequence number in the second message;
4	reading from the first message and the second message at least one parameter of a
5	traffic flow, the traffic flow requested by the client for the server to transmit to the client;
6	receiving a response message from the server, the response message responding to
7	the message from the client;
8	transmitting, in response to the message, a resource reservation request message
9	(RSVP request message) to the client, the RSVP message establishing a path to the client.

20	receiving a RSVP reply message from the client, the RSVP reply message reserv
21	ing resources for the requested traffic flow;
22	receiving a data message of the traffic flow from the server;
23	transmitting the data message of the traffic flow with a resource reservation indi-
24	cia in the data message, the resource reservation indicia to direct the data message to
25	travel along the reserved resources; and
26	writing the at least one parameter into the RSVP request message.
1	27. (Currently Amended) The method of claim 22, further comprising:
2	using a snooping Resource reSerVation (RSVP) protocol to learn the contents of
3	messages received by the router.
1	28. (Previously Presented) The method of claim 22, further comprising:
2	connecting the router one hop away from the server;
3	receiving first messages by the router, the first messages originating from com-
4	puters connected to the Internet and directed to the server; and
5	receiving second messages by the router, the second messages originating from
6	the server and directed to clients connected to the Internet.
1	29. (Previously Presented) A router, comprising:
2	means for receiving a message from a client, the message directed to a server, the
3	client message requesting that the server begin sending a traffic flow to the client;
4	means for receiving a response message from the server, the response message
5	responding to the message from the client;
6	means for transmitting, in response to the message, a resource reservation request
7	message (RSVP request message) to the client, the RSVP message establishing a path to
8	the client;
9	means for receiving a RSVP reply message from the client, the RSVP reply mes-
10	sage reserving resources for the requested traffic flow;

means for receiving a data message of the traffic flow from the server; and 11 means for transmitting the data message of the traffic flow with a resource reser-12 vation indicia in the data message, the resource reservation indicia to direct the data mes-13 sage to travel along the reserved resources. 14 30. (Previously Presented) The router of claim 29, further comprising: 1 means for reading a message received by the router from a computer network in 2 order to determine if the message is from a client, and if the message requests that the 3 server send a traffic flow to the client. 4 31. (Previously Presented) The router of claim 29, further comprising: 1 means for reading a message received by the router from the server in order to 2 determine if the message is a response to a client request for a traffic flow. 3 32. (Previously Presented) The router of claim 29, further comprising: 1 means for reading from messages received by the router parameters of a traffic 2 flow, the traffic flow requested by the client for the server to transmit to the client. 3 33. (Currently Amended) The router of claim 29 A router, comprising: 1 means for receiving a first message from a client, from a computer network in or-2 der to determine if the first message is from the client, the first message directed to a 3 server, the first message requesting that the server begin sending a traffic flow to the cli-4 ent if the first message requests that the server send the traffic flow to the client; 5 means for reading a first message received by the router from a computer network 6 in order to determine if the message is from a client, and if the message requests that the 7 server send a traffic flow to the client; 8 means for determining a sequence number of the first message; 9

10	means for reading a second message received by the router from the server in or-
11	der to determine if the message is a response to a client request for a traffic flow, the de-
12	termining in response to discovering the sequence number in the second message;
13	means for reading from the first message and the second message at least one pa-
14	rameter of a traffic flow, the traffic flow requested by the client for the server to transmit
15	to the client;
16	means for receiving a response message from the server, the response message re-
17	sponding to the message from the client;
18	means for transmitting, in response to the message, a resource reservation request
19	message (RSVP request message) to the client, the RSVP message establishing a path to
20	the client;
21	means for receiving a RSVP reply message from the client, the RSVP reply mes-
22	sage reserving resources for the requested traffic flow;
23	means for receiving a data message of the traffic flow from the server;
24	means for transmitting the data message of the traffic flow with a resource reser-
25	vation indicia in the data message, the resource reservation indicia to direct the data mes-
26	sage to travel along the reserved resources; and
27	means for writing the at least one parameter into the RSVP request message.
1	34. (Currently Amended) The router of claim 22, further comprising:
2	means for using a snooping Resource reSerVation (RSVP) protocol to learn the
3	contents of messages received by the router.
1	35. (Previously Presented) The method of claim 29, further comprising:
2	means for connecting the router one hop away from the server;
3	means for receiving first messages by the router, the first messages originating
4	from computers connected to the Internet and directed to the server; and
5	means for receiving second messages by the router, the second messages originat-
6	ing from the server and directed to clients connected to the Internet.