Foundations of data science, summer 2020

Jonathan Lennartz, Michael Nüsken, Annika Tarnowski

4. Exercise sheet Hand in solutions until Thursday, 14 May 2020, 12:00

Write a Python routine (eg. in a jupyter notebook) to choose a uniformly 5

(8+3 points)

Exercise 4.1 (Random point in a ball).

random point in a unit ball of dimension d.

Use your routine with $d=2$ to pick 1000 points and plot them, so that we can visually check the correctness of the algorithm.	3
Can you also plot a sample with $d=3$?	+3
Exercise 4.2 (Random exit). (10 points)	
Consider an experiment for which some general indicator variable \boldsymbol{X} has	
$\operatorname{prob}\left(X=1\right)=p\neq0.$	
We create new random variables as following: Repeat the experiment to obtain X_i for all $i \in \mathbb{N}'$. That is, (fill in!)	
Then we set the exit time	
$T = \min \left\{ i \mid X_i = 1 \right\}.$	
We simply may assume that this minimum always exists.	
(i) Prove that	2
$T = i \iff X_i = 1 \land X_{i-1} = 0 \land \dots \land X_1 = 0.$	
(ii) Compute(!) prob $(T = 1)$, prob $(T = 2)$, prob $(T = 3)$.	1
(iii) Prove a formula for prob $(T = i)$.	2
(iv) Express $E(T)$ as an infinite sum.	1
(v) Use the geometric series to derive a formula for $\sum_{i=1}^{\infty} ix^{i-1}$.	1
(vi) Compute the expected exit time $E(T)$.	1
(vii) Consider the method 1 algorithm from class. What is its expected runtime?	2