

Creating and Revitalizing Energy

Jaclyn Carifi, Julia Frankenbush, Gloria Kim, Andie Le, Shane Matyi, Alex Sereda & Alli Yocum

Problem

- Concerns over carbon footprint and excessive energy consumption
- Energy costs that help allow the college to provide environmental leadership
- Tool that enables the testing of different scenarios
- Energy consumption and carbon emissions of campus buildings based on Gross Square Footage

Objectives

- Provide an effective and user friendly database to determine energy usage and consumption
- Determine the environmental and economic impact of TCNJ infrastructure
- Better understanding on energy usage, emissions and factors that lead to energy cost

Descriptions

End Product

- Use building data (Ex: Age, Operational Hours, Sizes, etc.) to identify energy usage across campus
- Implement such data to predict and estimate energy usage and cost of specific buildings
- Convert input data into output data that users can use to strategize energy consumption

Importance & Need

- Energy prices are increasing, energy sources are decreasing
- Understanding is necessary to forecast energy demand
- Ensures future environmental security as well as economic growth

Questions

- What is the relationship between cost and emissions?
- □ How will introducing new structures to the campus affect the emissions and energy consumption?
- Which buildings need to be replaced or rebuilt into something more efficient/sustainable?
- Which structures are located in an area ideal for green energy and will they largely benefit?

Obtaining Data / Plan

- Identify frequent energy use and loss through comparisons of building attributes, such as energy type or building age
- ☐ Find out energy consumption & carbon emissions of campus buildings on a Gross Square Footage basis
- Discovering and using a pattern of energy demand from different campus buildings to have a forecast

Similar Systems

CARE Approach

- ENERGY Star Portfolio Manager: uses benchmarking to measure and compare energy usage between buildings
 - Negative: requirement of benchmark does not include hypothetical future plans
- STARS: transparent, self-reporting framework for universities to measure their sustainability performance
 - Negative: transparency eliminates certain privacy rights
- ESG Investing: considers environmental, social, and governance factors to judge an investment's financial returns and its overall impact
 - Negative: focus on investments prevents experimentation

- Create a map and build new buildings in order to determine specific costs and emission of energy consumption per building
- Implement current data from buildings to find efficient ways of reducing energy consumption and costs
- Predict future energy consumption and emissions for when a new building is put in place

We CARE about the sustainability efforts at The College of New Jersey and we want you to participate in Creating and Revitalizing Energy!

References

https://governance.tcnj.edu/wp-content/uploads/sites/147/2020/08/GreenerGoingForward.pdf

https://stars.aashe.org/reports-data/

https://www.energystar.gov/buildings/benchmark?testEnv=false

https://www.cfainstitute.org/en/research/esg-investing#:~:text=ESG%20stands%20for%20Environmental%2C%20Social,material%20risks%20and%20growth%20opportunities.&text=This%20guide%20takes%20fiduciary%20duty,important%20ESG%20issues%20into%20account

Questions? Comments? Concerns?

