Die Abbildung zeigt drei 3D-KS'e A, B und C.

 a) Geben Sie die folgenden homogenen Transformationsmatrizen an:

$$\mathbf{T}_{B}^{A},\mathbf{T}_{C}^{B},\mathbf{T}_{C}^{A}$$

b) Prüfen Sie durch Nachrechnen:

$$\mathbf{T}_C^A = \mathbf{T}_B^A \mathbf{T}_C^B$$

c) Prüfen Sie durch Nachrechnen:

$$\mathbf{T}_A^C = (\mathbf{T}_C^A)^{-1}$$

d) Führen Sie für den Punkt P einen Koordinatenwechsel von B nach A durch.

Die z-Achsen sind nicht eingezeichnet und ragen aus dem Bild heraus.

Gegeben seien ein raumfestes, globales KS O und zwei transformierte KSe A und B, wobei B um θ = 30° gedreht ist. Die KS'e seien 2-dimensional.

- a) Geben Sie die homogenen Transformationsmatrizen $\mathbf{T}_{\!A}^{\!\scriptscriptstyle O}$ und $\mathbf{T}_{\!\scriptscriptstyle B}^{\!\scriptscriptstyle O}$ an.
- b) Führen Sie für den Punkt P mit $\mathbf{p}^{B} = (1,1)$ einen Koordinatentransformation nach O durch.
- c) Wie lässt sich \mathbf{T}_{B}^{A} aus \mathbf{T}_{A}^{O} und \mathbf{T}_{B}^{O} bestimmen?
- d) Bestimmen Sie **p**A.
- e) Was ergibt sich durch $\mathbf{T}_{B}^{A}\mathbf{p}^{A}$?

Gegeben sei eine 3D-Rotationsmatrix:

$$\mathbf{R} = \begin{pmatrix} r_{00} & r_{01} & r_{02} \\ r_{10} & r_{11} & r_{12} \\ r_{20} & r_{21} & r_{22} \end{pmatrix}$$

Rotationsmatrix, die sich im yaw-pitch-roll-Drehsystem ergibt S. S. 2-22:

$$\mathbf{R}(zy'x'', \psi, \theta, \phi)$$

$$= \mathbf{R}(z, \psi)^* \mathbf{R}(y, \theta)^* \mathbf{R}(x, \phi)$$

$$= \begin{pmatrix} C\psi C\theta & C\psi S\theta S\varphi - S\psi C\varphi & C\psi S\theta C\varphi + S\psi S\varphi \\ S\psi C\theta & S\psi S\theta S\varphi + C\psi C\varphi & S\psi S\theta C\varphi - C\psi S\varphi \\ -S\theta & C\theta S\varphi & C\theta C\varphi \end{pmatrix}$$
mit C = cos und S = sin

Geben Sie die drei Euler-Drehwinkel ψ , θ , ϕ an.

Ein Roboter befindet sich im KS O an der Position (x_R, y_R) mit der Ausrichtung θ .

Der Roboter hat die Länge I und die Höhe h (ohne Räder). Der Radius der Räder ist r.

Ein Roboterarm ist über einen Drehteller D auf dem Roboter fixiert. Der Roboterarm ist in z-Richtung um α geschwenkt. D hat den Durchmesser a und die Höhe b.

Der Roboterarm besteht aus den Teilen A_1 und A_2 mit den Längen l_1 und l_2 . Die Arme sind jeweils um β_1 bzw. β_2 geneigt. A_1 ist auf dem Drehteller D seitlich drehbar gelagert.

Legen Sie KS'e für den Roboterarm nach der DH-Konvention fest.

Geben Sie die Transformationsmatrix T an, mit der die Position $\mathbf{p}^0 = (x_p, y_p, z_p)$ der Armspitze P im globalen KS O berechnet werden kann.

Seitenansicht mit $\alpha = 0^{\circ}$

Aufgabe 2.4 – Lösung (1)

$$\mathbf{T}_{\mathrm{R}}^{\mathrm{O}} = \mathbf{T}\mathbf{I}((x_{R}, y_{R}, r)^{\mathrm{T}} * \widetilde{\mathbf{R}}(z, \theta)$$

Aufgabe 2.4 – Lösung (2)

$$\mathbf{T}_{\mathrm{DB}}^{\mathrm{R}} = \mathbf{Tl}((l/2 - a/2, 0, h)^{\mathrm{T}})$$

DB = Drehtellerbasis (auf Roboter fixiert)

Aufgabe 2.4 – Lösung (3)

$$\mathbf{T}_{\mathrm{D}}^{\mathrm{DB}} = \mathbf{T}\mathbf{I}((0,0,b/2)^{\mathrm{T}}) * \widetilde{\mathbf{R}}(z,\alpha) * \widetilde{\mathbf{R}}(x,90^{\circ})$$

D = Drehteller

Aufgabe 2.4 – Lösung (4)

$$\mathbf{T}_{A1}^{D} = \mathbf{Tl}((0, 0, a/2)^{T}) * \widetilde{\mathbf{R}}(z, \beta_{1}) * \mathbf{Tl}((l_{1}, 0, 0)^{T})$$

Aufgabe 2.4 – Lösung (5)

$$\mathbf{T}_{\mathrm{A2}}^{\mathrm{A1}} = \widetilde{\mathbf{R}}(z, \beta_2) * \mathbf{Tl}((l_2, 0, 0)^{\mathrm{T}})$$

Aufgabe 2.4 – Lösung (6)

$$\widetilde{\mathbf{p}}^{O} = \mathbf{T}_{R}^{O} * \mathbf{T}_{DB}^{R} * \mathbf{T}_{D}^{DB} * \mathbf{T}_{A1}^{D} * \mathbf{T}_{A2}^{A1} * \widetilde{\mathbf{p}}^{A2}$$

$$\widetilde{\mathbf{p}}^{\mathrm{A2}} = (0,0,0,1)^T$$

Die Abb. zeigt in der Draufsicht einen 3-DOF-Arm-Roboter mit einem Greifer und insgesamt 3 Drehgelenken (rot). Der erste Arm mit der Länge a₁ ist drehbar auf einem Tisch fixiert. Am zweiten Arm mit der Länge a₂ ist ein Greifer über ein Armstück der Länge a₃ montiert. Der Greifer besteht aus zwei Fingern der Länge f.

Vorwärtskinematik:

Führen Sie 2D-KS'e ein und schreiben Sie eine Funktion, die aus den Drehwinkeln der Gelenke θ_1 , θ_2 und θ_3 die Position (x_F, y_F) und Ausrichtung θ des Greifers berechnet.

Inverse Kinematik:

Schreiben Sie eine Funktion, die aus der Position (x_F, y_F) und der Ausrichtung θ des Greifers die drei Drehwinkel der Gelenke berechnet.

Aufgabe 2.5 – Vorwärtskinematik (1)

$$\mathbf{T}_{A1}^{0} = \widetilde{\mathbf{R}}(\theta_{1}) * \mathbf{Tl}((a_{1}, 0)^{T})$$

$$\mathbf{T}_{A2}^{A1} = \widetilde{\mathbf{R}}(\theta_{2}) * \mathbf{Tl}((a_{2}, 0)^{T})$$

$$\mathbf{T}_{E}^{A2} = \widetilde{\mathbf{R}}(\theta_{3}) * \mathbf{Tl}((a_{3}, 0)^{T})$$

Aufgabe 2.5 – Vorwärtskinematik (2)

$$\mathbf{T}_{\mathrm{F}}^{\mathrm{O}} = \mathbf{T}_{\mathrm{A1}}^{\mathrm{O}} * \mathbf{T}_{\mathrm{A2}}^{\mathrm{A1}} * \mathbf{T}_{\mathrm{F}}^{\mathrm{A2}}$$

$$= \begin{pmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{pmatrix} \text{ (ausrechnen!)}$$

$$= \begin{pmatrix} \cos(\theta) & -\sin(\theta) & x_F \\ \sin(\theta) & \cos(\theta) & y_F \\ 0 & 0 & 1 \end{pmatrix}$$

Damit:

$$\theta = \operatorname{atan2}(d, a)$$

$$x_F = c$$

$$y_F = f$$

Beachte: d und a sind vorzeichenbehaftet.

Es wird Winkel aus $[0, 2\pi)$ geliefert.

Beachte: Unbekannter Winkel mit atan2 berechnen

- Numerische Ungenauigkeiten bei
 - $\theta = \arcsin(y/a)$ bzw. $\theta = \arccos(x/a)$
- Ableitungen von arcsin und arccos haben Singularitäten.
- Daher atan2 verwenden:

$$\theta = atan2(y, x)$$

x, y ist vorzeichenbehaftet. Winkel θ ist aus $[-\pi, +\pi]$. atan2(y, x) wird auf atan(y/x) zurückgeführt.

https://de.wikipedia.org/wiki

Aufgabe 2.5 – Rückwärtskinematik (1)

Ziel: $(x_F, y_F, \theta) \rightarrow (\theta_1, \theta_2, \theta_3)$

Aufgabe 2.5 – Rückwärtskinematik (2)

$$x_2 = x_F - a_3 \cos(\theta)$$

$$y_2 = y_F - a_3 * \sin(\theta)$$

Aufgabe 2.5 – Rückwärtskinematik (3)

Lösbarkeit:

$$a \le a_1 + a_2$$

- Eindeutigkeit:
 - Ellbow Up: $\varepsilon = 1 (\theta_2, b < 0, \text{ wie in Abb.})$
 - Ellbow Down: $\varepsilon = -1 (\theta_2, b > 0)$

Drei rechtwinklige Dreiecke:

(1)
$$a^2 = x_2^2 + y_2^2$$

(2)
$$a^2 = (a_1 + c)^2 + b^2$$

(3)
$$a_2^2 = c^2 + b^2$$

Damit:

(4)
$$a = \sqrt{x_2^2 + y_2^2}$$

(5)
$$c = \frac{a^2 - a_1^2 - a_2^2}{2a_1}$$

$$(6) b = \varepsilon * \sqrt{a_2^2 - c^2}$$

Aufgabe 2.5 – Rückwärtskinematik (4)

$$\theta_2$$
 = atan2(b, c)
 θ_1 = atan2(y₂, x₂) - atan2(b, a₁+c)
 θ_3 = θ - θ_1 - θ_2