MATH 307 Practice Final Exam

8 December 2021

 $\bullet\,$ No calculators, cell phones, laptops or notes

• Time allowed: 2 hours 30 minutes				
• 60 total marks				
• Write your name and student number in the space below				
Name:				
Student Number:				

- 1. True or false questions. Each part is independent of the others.
 - (a) (3 marks) **True** or **False**: If A is an $n \times n$ singular matrix (i.e., not invertible), then 0 is an eigenvalue of A. Justify your answer.

(b) (3 marks) **True** or **False**: If A is an $n \times n$ matrix and all n eigenvalues of A are equal, then A is a diagonal matrix. Justify your answer.

(c) (3 marks) **True** or **False**: If U and V are the two subspaces of \mathbb{R}^4 given by

$$U = \operatorname{span} \left\{ \begin{bmatrix} 1\\0\\-1\\2 \end{bmatrix}, \begin{bmatrix} 3\\2\\1\\-1 \end{bmatrix} \right\} \quad \text{and} \quad V = \operatorname{span} \left\{ \begin{bmatrix} 0\\-1\\4\\2 \end{bmatrix} \right\},$$

then $V = U^{\perp}$. Justify your answer.

(d) (3 marks) \mathbf{True} or \mathbf{False} : The matrix A is Hermitian when

(i)
$$A = \begin{bmatrix} 1 & 3-i \\ 3+i & i \end{bmatrix}$$
.

(ii)
$$A = \begin{bmatrix} 3 & 2-i & -3i \\ 2+i & 0 & 1-i \\ 3i & 1+i & 1 \end{bmatrix}.$$

Justify your answers.

- 2. Short answer questions. Each part is independent of the others.
 - (a) (3 marks) The matrix A has the LU decomposition A = LU where

$$L = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 1 & 2 & -1 & -2 & 4 \\ 0 & 1 & 1 & 0 & -3 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Determine $\dim(R(A))$ and $\dim(R(A^T))$.

(b) (3 marks) Consider 10 data points $(t_0, y_0), \ldots, (t_9, y_9)$ such that $t_k - t_{k-1} = 1$ for each $k = 1, \ldots, 9$. Suppose the coefficient matrix of the corresponding natural cubic spline is given by

$$\begin{bmatrix} 2 & -1 & 1 & a & -1 & 0 & 3 & 1 & -1 \\ 0 & 6 & 3 & b & -6 & -9 & -9 & 0 & 3 \\ -5 & 1 & 10 & c & 19 & 4 & -14 & -23 & -20 \\ 3 & 0 & 6 & 20 & 41 & 53 & 48 & 28 & 6 \end{bmatrix}$$

Determine the missing values a, b and c.

(c) (3 marks) Determine whether span $\{u_1, u_2\} = \text{span}\{u_3, u_4\}$ for

$$oldsymbol{u}_1 = \left[egin{array}{c} 1 \ -1 \ 1 \ 2 \end{array}
ight], \quad oldsymbol{u}_2 = \left[egin{array}{c} 1 \ -5 \ 4 \ 5 \end{array}
ight], \quad oldsymbol{u}_3 = \left[egin{array}{c} 2 \ 2 \ -1 \ 1 \end{array}
ight], \quad oldsymbol{u}_4 = \left[egin{array}{c} 4 \ 0 \ 1 \ 5 \end{array}
ight].$$

(d) (3 marks) Suppose A is a 3×3 matrix which depends on a parameter c > 0 such that the singular values of A are given by 2, 5 and c. Determine the minimum possible value for cond(A) for all values of c.

3. (6 marks) Use least squares linear regression to find the linear function $f(t) = c_0 + c_1 t$ that best fits the data points (0,7), (1,5), (2,8), (3,11) and (4,9).

4. (6 marks) Let
$$A = \begin{bmatrix} -2 & 1 \\ 1 & -3 \\ 0 & 1 \end{bmatrix}$$
.

- (a) (3 marks) Compute the thin QR decomposition of A.
- (b) (3 marks) Compute the projection of \boldsymbol{b} onto R(A) for $\boldsymbol{b} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$.

5. (6 marks) Consider the matrix

$$A = \begin{bmatrix} 0 & 1 \\ 2 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}$$

- (a) (4 marks) Find the orthogonal projection matrix P which projects onto R(A).
- (b) (2 marks) Find the shortest distance from \boldsymbol{x} to R(A) where

$$m{x} = egin{bmatrix} 0 \\ 2 \\ 1 \\ 1 \end{bmatrix}$$
 .

6. (6 marks) Use the power method (at least 3 iterations) to approximate the dominant eigenvalue and a corresponding eigenvector of the matrix

$$A = \left[\begin{array}{cc} 1 & 3 \\ 2 & 2 \end{array} \right]$$

- 7. (6 marks) Let U be the subspace of \mathbb{R}^4 spanned by $\boldsymbol{u_1} = (1,1,1,1)^T$ and $\boldsymbol{u_2} = (1,1,-1,1)^T$.
 - (a) (4 marks) Find the pseudo-inverse A^+ of

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}$$

(b) (2 marks) Find the linear combination $c_1 \boldsymbol{u_1} + c_2 \boldsymbol{u_2}$ which is nearest to $\boldsymbol{x} = (2, 1, 4, 1)^T$.

8. (6 marks) The stemplot of $\boldsymbol{x} \in \mathbb{C}^{20}$ is shown below:

(a) (2 marks) Find A_1 , A_2 , k_1 and k_2 such that

$$\boldsymbol{x} = A_1 \cos(2\pi k_1 \boldsymbol{t}) + A_2 \cos(2\pi k_2 \boldsymbol{t}).$$

(b) (4 marks) Compute DFT(\boldsymbol{x}).

Extra workspace.

 ${\it Extra\ workspace.\ Do\ not\ write\ in\ the\ table\ below.}$

Q1	/12
Q2	/12
Q3	/6
Q4	/6
Q5	/6
Q6	/6
Q7	/6
Q8	/6
Total	/60