

AME532a Group Presentation

ASW28 Model Controller Design and Simulation

Sen Yang() Jiaoran Wang (625909903)

04/30/2020

ASW-28 Aircraft

- Used Mass and Geometry properties from lecture notes and homework
- Key properties: m = .48 kg,

$$J = \begin{bmatrix} .0494 & 0 & -.0017 \\ 0 & .0223 & 0 \\ -.0017 & 0 & .0708 \end{bmatrix}$$

• FlightGear Visualization

Nonlinear Dynamics Simulation

• Block Diagram:

1st order actuator model

• Simple Propeller Model:

Trim & Linearization

• Trim Results (Trans Kin, Propeller, 1st order actuators commented out):

State		Desired Value	Actual Value	Desired dx	Actual dx			
Model_to_T	Model_to_Trim/Rotational Dynamics/Integrator							
State - 1	Р	[-Inf , Inf]	-1.4774e-13	0	5.2303e-12			
State - 2	Q	[-Inf , Inf]	-8.0076e-18	0	-4.5985e-11			
State - 3	R	[-Inf , Inf]	-8.1001e-13	0	9.3652e-13			
Model_to_T	Model_to_Trim/Rotational Kinematics/Integrator							
State - 1	phi	[-Inf , Inf]	-1.7683e-12	0	6.028e-18			
State - 2	theta	[-Inf , Inf]	-0.18042	0	-8.0076e-18			
State - 3	psi	[-Inf , Inf]	-5.135e-10	[-Inf , Inf]	-8.2337e-13			
Model_to_Trim/Translational Dynamics/Integrator								
State - 1	U	[-Inf , Inf]	18.7783	0	-4.0394e-09			
State - 2	V	[-Inf , Inf]	2.6454e-13	0	-2.012e-12			
State - 3	W	[-Inf , Inf]	-0.64048	0	-2.2141e-08			

• Trim Condition (Glider) FlightGear Demonstration: https://www.youtube.com/watch?v=aavscQ1y04M

Longitudinal Mode

- State: [Θ; U; W; Q; h]
- Control Surfaces: $[\delta_F; \delta_E; \delta_T]$
- Sensors: [Q; V_{∞} ; α ; h; a_{x} ; a_{z}] and GPS data (lat, long & alt)
- Phugoid mode Eigenvalues: -0.10 ± 0.63i
- Short Period mode Eigenvalues: -23.97 ± 31.29i
- Full State Observer: Estimate the states for full-state feedback
- Stability Augmentation System: Dampen Short Period mode
- Autopilot Design: Automatic Takeoff with LQR

Full-State Observer

- Observer Equation $\hat{x} = A\hat{x} + Bu + L(y \hat{y})$
- State Error Equation $\dot{\tilde{x}} = \dot{x} \dot{\hat{x}} = (A LC)\tilde{x}$
- Closed loop feedback equation $\dot{x} = (A BK)x$
- Observer gain "L" is determined with pole placement, similar to the feedback gain "K"
- K = place(A, B, P)
- L = place(A^T , C^T , P)

Full-State Observer

• Linearized State Space System with Full-State Observer:

- P=[-6 -6.5 -7 -7.5 -10]
- "Actual" States initial conditions: [0; 0; 0; 0; 0]
- "Observer" States initial conditions: [.2; 5; -2; -1; 10]
- Error converges to 0 in less than 1 second

 $y - \dot{y}$

 $x - \dot{x}$

Pure Rate Feedback SAS

- Goal of the SAS system is to dampen short period, as the initial response is fast and oscillatory with poles at -23.97 ± 31.29i
- Short Period Mode is most related with Pitch rate Q to Elevator input
- Pure Rate Feedback Block Diagram:

Pure Rate Feedback SAS

• Open loop eigenvalue:

$$-23.97 \pm 31.29i$$

 $\omega_n = 39.42 \text{ rad/s}$
 $z = .61$
 $z = .0417 \text{ s}$

• Closed loop eigenvalue:

$$-34.00 \pm 0.00i$$

$$\omega_n$$
 = 34.00 rad/s

z = 1

 $\tau = .0294 \text{ s}$

Automatic Takeoff with LQR

- Assume the aircraft already starts in air at 10 m altitude with zero velocity
- Initial State $x_0 = [\Theta; U; W; Q; h] = [0; -20; 0; 0; -90]$
- Goal State: x_{ref} = [0; 0; 0; 0; 0] (trim condition, 20m/s at 0 degree Θ angle at 100 m altitude)
- Controller $u = K(x_{ref} x)$
- Closed loop Equation: $\dot{x} = Ax + B[K(x_{ref} x)] = (A BK)x + BKx_{ref}$

Automatic Takeoff with LQR

• LQR Equation:
$$J = \int_0^T \left(x(\tau)^T Q x(\tau) + u(\tau)^T R u(\tau) \right) \ d\tau + x(T)^T Q_f x(T)$$

- Large Q matrix penalizes changes in state
- Large R matrix penalizes changes in actuator
- Q=diag([35000,.1,30000,1,1]) for [Θ; U; W; Q; h], prioritizes slow, small changes in Θ
- R=diag([1,1,1]) for $[\delta_F; \delta_E; \delta_T]$
- Good strategy to prioritize performance over actuation cost which is low already

Automatic Takeoff with LQR

• FlightGear Demonstration: https://www.youtube.com/watch?v=ZxiTEh3dW9o

Contents

- System Overall Block Diagram
 - -- Basic Blocks & Attached Blocks

- **}**
- Non-linear System Analysis.
- System Linearization.
 - --Steady State Analysis.
 - --Lateral Motion Control (Wash out Filter).
 - --System Discretization

- Aerodynamic Analysis for Sonic Flight
 - --Model Aero-coefficient Analysis in XFLR5
 - --The CFD & FEA in ANSYS

- Simulation
 - --Skidded to Turn in FlightGear.

Design Diagram

System Overall Block Diagram

- 1 Basic Control Blocks
- ② Attached Control Blocks(AeroSurf & Propeller)

System Block Diagram

◆ Basic Control Blocks

- Translational Kinematics
- Translational Dynamics
- Rotational Kinematics
- Rotational Dynamics

n intB

CL1=CL0_2345(1)+CLa(1).*a_ss1+3*elevator*0.5; CL2=CL0_2345(2)+CLa(2).*a_ss2+3*rudder*0.5; CL3=CL0_2345(3)+CLa(3).*a_ss3+3*aileron_r*0.5; CL4=CL0_2345(4)+CLa(4).*a_ss4+3*aileron_l*0.5;

Propeller Control Diagram

Subsystem

Increase Thrust by Adding Power to All Motors Evenly All Torques Cancel

Yaw Right by Adding Power to FR/BL Motors, Reducing Power to FL/BR Motors

Non-linear System

- **1** Trimmed Model
- 2 PID Controller Design for System Damping

-€

PID Controller Design for System Damping

♦ Yaw Angle Tuned

System Linearization

- 1 Linearized System Behaviors & PID design
- ② Steady State Analysis.
- 3 Lateral Motion Control (Wash out Filter).
- 4 System Discretization

Model Linearization

							I .			
Α	Р	Q	R	PHI	THETA	PSI	U	V	W	Wash out
P_dot	-1	0.00017	-0.000284	0	0	0	-2.56E-06	-7.97E-06	3.61E-06	6.88E-09
Q_dot	9.76E-07	-1	0.004509	0	0	0	-0.00094	0.0007193	-0.001111	1.18E-07
R_dot	0.00011	0.00178	-1	0	0	0	-4.48E-05	-0.000135	6.26E-05	-3.80E-08
PHI_dot	1	0.3858	-0.8841	-1	0.000664	0	0	0	0	0
THETA_dot	0	-0.9165	-0.3999	-0.000344	-1	0	0	0	0	0
PSI_dot	0	0.5557	-1.273	-0.000229	0.000461	-1	0	0	0	0
U_dot	0	-0.00335	0.002001	-3.476	-2.786	3.102	-0.9998	-0.000298	-0.0001301	-8.55E-09
V_dot	0.003349	0	0.002582	-30.67	-2.13	30.73	0.0002746	7.64E-05	0.00463	7.35E-09
W_dot	-0.002	-0.00258	-1.24E-09	-1.42E-10	-22.26	-3.329	0.0001314	-0.004547	-1	6.18E-09
Wash out	0	0	1	0	0	0	0	0	0	-5.00E+00
							ĺ			

Linearized System Controller Design

PID only applied to 'phi'

◆ PID applied to 'phi' &'V'

-0.86282

-0.86282

★ Steady State Analysis.

Oscillatory Mode

$\lambda = \begin{cases} -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1} & \text{for } \zeta > 1 \\ -\zeta \omega_n & \text{for } \zeta = 1 \\ -\zeta \omega_n \pm i\omega_n \sqrt{1 - \zeta^2} & \text{for } \zeta < 1 \end{cases}$ **Short-period Dutch Roll Mode** 0.25016i -1.0241 0.058674i 0.25016i -1.02410.058674i **Damping Ratio** 0.96045 **Damping Ratio** 0.99836 0.89835 Natural Freq (rad/s) 1.0258 Natural Freq (rad/s) Time Period (s) 6.1221 Time Period (s) 6.9906

Stable Exponential Mode

$\lambda_{roll} = -rac{1}{ au} = L_p$					
Roll Mode			Time Constant(s)		
-1.0002	+	Oi	0.99980004		
-0.99896	+	Oi	1.00104108		
-0.9549	+	Oi	1.04723008		
-1.2786	+	Oi	0.78210543		
Roll Mode (ui	nstable)		Time Constant(s)		
0.0068486 +		Oi	146.015244 (Long)		
Roll Mode (Fr	om Washou	ut)	Time Constant(s)		
-5	+	0i	0.2		

HOW can I change these **Dynamic Behaviors?**

Bode in Freq Domain

◆ Rlocus in Time Domain

Wash Out Filter

- Washout Filter removes slowly-changing component and preserves the fastchanging component in INPUT
- 2 OUTPUT remains unchanged

Subsystem

Figure-1 Discrete System

 $\times 10^{-4}$

Discretized System (Digital Control)

Figure-3 Signals

Signal: STEP & CHIRP

Sample time: 0.01s

Discrete Method: ZOH

Figure-2 Discrete VS Continuous

Aerodynamic Analysis for *Sonic Flight*

- (1) FEA in ANSYS
- 2 CFD & Wind Tunnel Analysis in ANSYS
- ③ Aero-coefficient Comparison (Alpha=Beta=0[deg])

The Aerodynamic Analysis in ANSYS

Model Name	ASW28
Velocity(m/s)	400
Temperature(°F)	77
Altitude(m)	1000
Air Density(kg/m^3)	1.074

Pressure Distribution

♦ Finite Element Analysis(FEA)

Wind Tunnel & CFD Analysis in ANSYS

♦ Velocity Distribution

(Alpha=Beta=0[deg])

Figure. Velocity Contour (left); [u; v; w] in Longitudinal Symmetry Plane

Aero-coefficient Comparison (Alpha=Beta=0[deg])

ANSYS (x-time, y-coefficient)

XFLR5

Simulation

- 1 Pilot Control System
- 2 Skidded to Turn Simulation

Pilot Control Simulation

➤ Autopilot Roll Angle Control Theorem

Pilot Control (with Time-delay & Disturbance)

MIMO System Control Steph

➤ No Signal Input

Large Signal Input

Lateral Motion Control-Skid to Turn Coordinated Turn Slipping Turn **Skidding Turn** Skid to Turn angles > Skid to Turn Simulation

3. SKIDDING TURN. CENTRIFUGAL FORCE GREATER THAN HORIZONTAL LIFT.

Skid to Turn-Simulation

References

- [1]. STEVENS, B.L., F.L. LEWIS and E.N. JOHNSON, Aircraft Control and Simulation Third Edition Dynamics, Controls Design, and Autonomous Systems, United States of America: John Wiley & Sons, Inc., Hoboken, New Jersey
- [2]. Dr. Nelson, R.C., Flight Stability and Automatic Control 2nd Ed.
- [3]. Kaloust, J., C. Ham and Z. Qu, Nonlinear autopilot control design for a 2-DOF helicopter model.
- [4]. Chen, C., System Theory and Design. Second Edition ed: Oxford University Press.
- [5]. Yechout, T.R., et al., Introduction to aircraft flight mechanics: American Institute of Aeronautics and Astronautics, Inc.1801 Alexander Bell Drive, Reston, VA 20191-4344.
- [6]. Chambers, J.R. and R.M. Hall, Historical Review of Uncommanded Lateral-Directional Motions at Transonic Conditions. JOURNAL OF AIRCRAFT, (Vol. 41, No. 3, May–June 2004).
- [7]. Rauf, A., et al. Aerodynamic modeling and state-space model extraction of a UAV using DATCOM and Simulink. 2011: IEEE.
- [8]. Rysdyk, R., Course and Heading Changes in significant wind. JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS, (Vol. 30, No. 4, July–August 2007).
- [9]. Michael Basler, M.S., et al., The FlightGear Manual for FlightGear Version 3.6.0.
- [10]. Kubica, F. and T. Livet, Flight Control Law Synthesis for A Flexible Aircraft. American Institute of Aeronautics, 1994.
- [11] Tanner Austin Sims, Design and Control Considerations for a Skid-to-Turn Unmanned Aerial Vehicle, 2009

Thanks for Watching!!

Questions?