

100mA TinyPower™ LDO

HT75xx-1

Revision: V2.80 Date: April 10, 2024

www.holtek.com

Table of Contents

Features	. 3
Applications	. 3
General Description	. 3
Selection Table	
Block Diagram	
Pin Assignment	
AbsolutemAximum Ratings	
-	
Thermal Information	
Pin Descriptions	
Electrical Characteristics	. 5
HT7521-1, +2.1V Output Type	
HT7523-1, +2.3V Output Type	
HT7525-1, +2.5V Output Type	
HT7527-1, +2.7V Output Type	
HT7530-1, +3.0V Output Type	
HT7533-1, +3.3V Output Type	
HT7536-1, +3.6V Output Type	
HT7540-1, +4.0V Output Type	
HT7541-1, +4.15V Output Type	
HT7544-1, +4.4V Output Type	
HT7550-1, +5.0V Output Type	
HT7560-1, +6.0V Output Type	
HT7570-1, +7.0V Output Type	
HT7580-1, +8.0V Output Type	
HT7590-1, +9.0V Output Type	
HT75A0-1, +10.0V Output Type	
HT75C0-1, +12.0V Output Type	
Typical Performance Characteristics	
Application Circuits	13
Basic Circuit	13
High Output Current Positive Voltage Regulator	13
Short-Circuit Protection for Tr1	13
Circuit for Increasing Output Voltage	13
Circuit for Increasing Output Voltage	14
Constant Current Regulator	14
Dual Supply	14
Package Information	15
3-pin SOT89 Outline Dimensions	
5-pin SOT23 Outline Dimensions	17

Features

- Low power consumption
- · Low voltage drop
- Low temperature coefficient
- High input voltage (up to 30V)
- Quiescent current 2.5μA
- High output current: 100mA
- Output voltage accuracy: tolerance $\pm 3\%$
- 3-pin SOT89 and 5-pin SOT23 packages

Applications

- Battery-powered equipment
- Communication equipment
- · Audio/Video equipment

General Description

The HT75xx-1 series is a set of three-terminal low power high voltage implemented in CMOS technology. They can deliver 100mA output current and allow an input voltage as high as 30V. They are available with several fixed output voltages ranging from 2.1V to 12.0V. CMOS technology ensures low voltage drop and low quiescent current.

Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain variable voltages and currents.

Selection Table

Part No.	Output Voltage	Package	Marking
HT7521-1	2.1V		
HT7523-1	2.3V		
HT7525-1	2.5V		
HT7527-1	2.7V		
HT7530-1	3.0V		
HT7533-1	3.3V		
HT7536-1	3.6V		
HT7540-1	4.0V	SOT89	75xx-1 (for SOT89)
HT7544-1	4.4V	SOT23-5	5xx1 (for SOT23-5)
HT7550-1	5.0V		
HT7560-1	6.0V		
HT7570-1	7.0V		
HT7580-1	8.0V		
HT7590-1	9.0V		
HT75A0-1	10.0V		
HT75C0-1	12.0V		
HT7541-1	4.15V	SOT89	7541-1

Note: "xx" stands for output voltages.

Block Diagram

Pin Assignment

AbsolutemAximum Ratings

Supply Voltage	-0.3V to 33V
Storage Temperature	−60°C to 150°C
Operating Temperature	-40°C to 85°C
Maximum Junction Temperature	150°C

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Thermal Information

Symbol	Parameter	Package	Max.	Unit
	Thermal Resistance (Junction to Ambient)	SOT23-5	500	°C/W
θ_{JA}	(Assume no ambient airflow, no heat sink)	SOT89	200	°C/W
Б	Power Dissipation	SOT23-5	0.20	W
P□		SOT89	0.50	W

Note: P_D is measured at Ta=25°C

Rev. 2.80 4 April 10, 2024

Pin Descriptions

Pin No.	Pin Name	Pin Description
1	GND	Ground pin
2	VIN	Input pin
3	VOUT	Output pin

Electrical Characteristics

HT7521-1, +2.1V Output Type

Ta=25°C

Symbol	Parameter	Test Conditions	Min.	Tun	Max.	Unit
Symbol	Parameter	Conditions	IVIIII.	Тур.	IVIAX.	Offic
V _{IN}	Input Voltage	_	_	_	30	V
Vout	Output Voltage	V _{IN} =4.1V, I _{OUT} =10mA	2.037	2.100	2.163	V
Гоит	Output Current	V _{IN} =4.1V	70	100	_	mA
ΔV_{OUT}	Load Regulation	V _{IN} =4.1V, 1mA≤I _{OUT} ≤50mA	_	25	60	mV
V_{DIF}	Dropout Voltage (Note)	Ιουτ=1mA, ΔVουτ=2%	_	30	100	mV
I _{SS}	Quiescent Current	No load	_	2.5	4.0	μA
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	Line Regulation	3.1V≤V _{IN} ≤30V, I _{OUT} =1mA	_	_	0.2	%/V
ΔV OUT $\Delta T_a \times V$ OUT	Temperature Coefficient	I _{оит} =10mA, -40°С<Т _а <85°С	_	100	_	ppm/°C

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN} = V_{OUT} + 2V$ with a fixed load.

HT7523-1, +2.3V Output Type

Ta=25°C

Symbol	Parameter	Test Conditions	Min.	Turn	Max.	Unit
Symbol	Farameter	Conditions	IVIII I.	Тур.	IVIAX.	Offic
V _{IN}	Input Voltage	_	_	_	30	V
V _{OUT}	Output Voltage Tolerance	V _{IN} =4.3V, I _{OUT} =10mA	2.231	2.300	2.369	V
Гоит	Output Current	V _{IN} =4.3V	70	100	_	mA
ΔV_{OUT}	Load Regulation	V _{IN} =4.3V, 1mA≤I _{OUT} ≤50mA	_	25	60	mV
V _{DIF}	Dropout Voltage (Note)	Ι _{ουτ} =1mA, ΔV _{ουτ} =2%	_	30	100	mV
I _{SS}	Quiescent Current	No load	_	2.5	4.0	μA
$\frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{IN}} \times V_{\text{OUT}}}$	Line Regulation	3.3V≤V _{IN} ≤30V, I _{OUT} =1mA	_	_	0.2	%/V
$\frac{\Delta V_{OUT}}{\Delta T_{a} \times V_{OUT}}$	Temperature Coefficient	І _{оит} =10mA, -40°C <ta<85°c< td=""><td>_</td><td>100</td><td>_</td><td>ppm/°C</td></ta<85°c<>	_	100	_	ppm/°C

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN} = V_{OUT} + 2V$ with a fixed load.

Rev. 2.80 5 April 10, 2024

HT7525-1, +2.5V Output Type

Ta=25°C

Cumbal	Parameter	Test Conditions	Min. T	Min	Tim	Max.	Unit
Symbol	Parameter	Conditions	IVIIII.	Тур.	wax.	Unit	
V _{IN}	Input Voltage	_	_	_	30	V	
V _{OUT}	Output Voltage	V _{IN} =4.5V, I _{OUT} =10mA	2.425	2.500	2.575	V	
Гоит	Output Current	V _{IN} =4.5V	70	100	_	mA	
ΔV_{OUT}	Load Regulation	V _{IN} =4.5V, 1mA≤I _{OUT} ≤50mA	_	25	60	mV	
V _{DIF}	Dropout Voltage (Note)	Ι _{ουτ} =1mA, ΔV _{ουτ} =2%	_	30	100	mV	
Iss	Quiescent Current	No load	_	2.5	4.0	μA	
$\frac{\Delta V \text{OUT}}{\Delta V \text{IN} \times V \text{OUT}}$	Line Regulation	3.5V≤V _{IN} ≤30V, I _{OUT} =1mA	_	_	0.2	%/V	
$\frac{\Delta V_{OUT}}{\Delta T_{a} \times V_{OUT}}$	Temperature Coefficient	І _{оит} =10mA, -40°С<Т _а <85°С	_	100	_	ppm/°C	

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN}=V_{OUT}+2V$ with a fixed load.

HT7527-1, +2.7V Output Type

Ta=25°C

Council of	Oh. al	Test Conditions	Min	T	Mari	I I mid
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{IN}	Input Voltage	_	_	_	30	V
Vout	Output Voltage	V _{IN} =4.7V, I _{OUT} =10mA	2.619	2.700	2.781	V
Гоит	Output Current	V _{IN} =4.7V	70	100	_	mA
ΔV_{OUT}	Load Regulation	V _{IN} =4.7V, 1mA≤I _{OUT} ≤50mA	_	25	60	mV
V _{DIF}	Dropout Voltage (Note)	Ιουτ=1mA, ΔVουτ=2%	_	30	100	mV
Iss	Quiescent Current	No load	_	2.5	4.0	μA
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	Line Regulation	3.7V≤V _{IN} ≤30V, I _{OUT} =1mA	_	_	0.2	%/V
ΔV OUT $\Delta T_a \times V$ OUT	Temperature Coefficient	I _{ОUТ} =10mA, -40°С<Т _а <85°С	_	100	_	ppm/°C

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN} = V_{OUT} + 2V$ with a fixed load.

HT7530-1, +3.0V Output Type

Ta=25°C

Comple at	Domonoston	Test Conditions	B.41	T	Mari	I I mid
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{IN}	Input Voltage	_	_	_	30	V
Vout	Output Voltage	V _{IN} =5.0V, I _{OUT} =10mA	2.910	3.000	3.090	V
Гоит	Output Current	V _{IN} =5.0V	70	100	_	mA
ΔV_{OUT}	Load Regulation	V _{IN} =5.0V, 1mA≤I _{OUT} ≤50mA	_	25	60	mV
V _{DIF}	Dropout Voltage (Note)	Ιουτ=1mA, ΔVουτ=2%	_	30	100	mV
Iss	Quiescent Current	No load	-	2.5	4.0	μA
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	Line Regulation	4.0V≤V _{IN} ≤30V, I _{OUT} =1mA	_	_	0.2	%/V
ΔV OUT $\Delta T_a \times V$ OUT	Temperature Coefficient	I _{оит} =10mA, -40°С<Т _а <85°С	_	100	_	ppm/°C

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN} = V_{OUT} + 2V$ with a fixed load.

Rev. 2.80 6 April 10, 2024

HT7533-1, +3.3V Output Type

Ta=25°C

Cymhal	Parameter	Test Conditions	Min. Typ	Min Tun B	Max.	Unit
Symbol	Parameter	Conditions	IVIIII.	Тур.	wax.	Unit
V _{IN}	Input Voltage	_	_	_	30	V
V _{оит}	Output Voltage	V _{IN} =5.3V, I _{OUT} =10mA	3.201	3.300	3.399	V
Гоит	Output Current	V _{IN} =5.3V	70	100	_	mA
ΔV_{OUT}	Load Regulation	V _{IN} =5.3V, 1mA≤I _{OUT} ≤50mA	_	25	60	mV
V _{DIF}	Dropout Voltage (Note)	Ιουτ=1mA, ΔVουτ=2%	_	25	55	mV
Iss	Quiescent Current	No load	_	2.5	4.0	μA
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	Line Regulation	4.3V≤V _{IN} ≤30V, I _{OUT} =1mA	_	_	0.2	%/V
$\frac{\Delta V_{OUT}}{\Delta T_{a} \times V_{OUT}}$	Temperature Coefficient	І _{оит} =10mA, -40°С<Т _а <85°С	_	100	_	ppm/°C

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN}=V_{OUT}+2V$ with a fixed load.

HT7536-1, +3.6V Output Type

Ta=25°C

Cumb al	Domenton	Test Conditions	Min.	Torre	Mari	11
Symbol	Parameter	Conditions	wiin.	Тур.	Max.	Unit
V _{IN}	Input Voltage	_	_	_	30	V
V _{OUT}	Output Voltage	V _{IN} =5.6V, I _{OUT} =10mA	3.492	3.600	3.708	V
Гоит	Output Current	V _{IN} =5.6V	70	100	_	mA
ΔV_{OUT}	Load Regulation	V _{IN} =5.6V, 1mA≤I _{OUT} ≤50mA	_	25	60	mV
V _{DIF}	Dropout Voltage (Note)	Ι _{ουτ} =1mA, ΔV _{ουτ} =2%	_	25	55	mV
Iss	Quiescent Current	No load	_	2.5	4.0	μA
$\frac{\Delta V \text{OUT}}{\Delta V \text{IN} \times V \text{OUT}}$	Line Regulation	4.6V≤V _{IN} ≤30V, I _{OUT} =1mA	_	_	0.2	%/V
$\frac{\Delta V_{OUT}}{\Delta T_{a} \times V_{OUT}}$	Temperature Coefficient	I _{ОUT} =10mA, -40°С<Т _а <85°С	_	100	_	ppm/°C

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN} = V_{OUT} + 2V$ with a fixed load.

HT7540-1, +4.0V Output Type

Ta=25°C

Councile of	Damamatan	Test Conditions	Min. Typ.	T	Mari	I I mid
Symbol	Parameter	Conditions	iviin.	Тур.	Max.	Unit
V _{IN}	Input Voltage	_	_	_	30	V
Vout	Output Voltage	V _{IN} =6.0V, I _{OUT} =10mA	3.880	4.000	4.120	V
Гоит	Output Current	V _{IN} =6.0V	70	100	_	mA
ΔV_{OUT}	Load Regulation	V _{IN} =6.0V, 1mA≤I _{OUT} ≤50mA	_	25	60	mV
V _{DIF}	Dropout Voltage (Note)	Ιουτ=1mA, ΔVουτ=2%	_	25	55	mV
Iss	Quiescent Current	No load	_	2.5	4.0	μA
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	Line Regulation	5.0V≤V _{IN} ≤30V, I _{OUT} =1mA	_	_	0.2	%/V
ΔV OUT $\Delta T_a \times V$ OUT	Temperature Coefficient	I _{ОUТ} =10mA, -40°С<Т _а <85°С	_	100	_	ppm/°C

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN}=V_{OUT}+2V$ with a fixed load.

Rev. 2.80 7 April 10, 2024

HT7541-1, +4.15V Output Type

Ta=25°C

Cumb al	Domenton	Test Conditions	N/III	Min. Typ.	Max.	11
Symbol	Parameter	Conditions	wiin.	Тур.	wax.	Unit
V _{IN}	Input Voltage	_	_	_	30	V
V _{OUT}	Output Voltage	V _{IN} =6.15V, I _{OUT} =10mA	4.025	4.150	4.274	V
Гоит	Output Current	V _{IN} =6.15V	70	100	_	mA
ΔV_{OUT}	Load Regulation	V _{IN} =6.15V, 1mA≤I _{OUT} ≤50mA	_	25	60	mV
V _{DIF}	Dropout Voltage (Note)	Ιουτ=1mA, ΔVουτ=2%	_	25	55	mV
Iss	Quiescent Current	No load	_	2.5	4.0	μA
$\frac{\Delta V \text{OUT}}{\Delta V \text{IN} \times V \text{OUT}}$	Line Regulation	5.15V≤V _{IN} ≤30V, I _{OUT} =1mA	_	_	0.2	%/V
$\frac{\Delta V_{OUT}}{\Delta T_{a} \times V_{OUT}}$	Temperature Coefficient	І _{оит} =10mA, -40°С<Т _а <85°С	_	100	_	ppm/°C

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN}=V_{OUT}+2V$ with a fixed load.

HT7544-1, +4.4V Output Type

Ta=25°C

Council of	Damamatan	Test Conditions	Min	T	Mey	I I mid
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{IN}	Input Voltage	_	_	_	30	V
Vout	Output Voltage	V _{IN} =6.4V, I _{OUT} =10mA	4.268	4.400	4.532	V
Гоит	Output Current	V _{IN} =6.4V	70	100	_	mA
ΔV_{OUT}	Load Regulation	V _{IN} =6.4V, 1mA≤I _{OUT} ≤50mA	_	25	60	mV
V _{DIF}	Dropout Voltage (Note)	Ιουτ=1mA, ΔVουτ=2%	_	25	55	mV
Iss	Quiescent Current	No load	_	2.5	4.0	μA
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	Line Regulation	5.4V≤V _{IN} ≤30V, I _{OUT} =1mA	_	_	0.2	%/V
ΔV OUT $\Delta T_a \times V$ OUT	Temperature Coefficient	I _{ОUТ} =10mA, -40°С<Т _а <85°С	_	100	_	ppm/°C

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN} = V_{OUT} + 2V$ with a fixed load.

HT7550-1, +5.0V Output Type

Ta=25°C

Cumbal	Parameter	Test Conditions	Min.	din Tun	May	Unit
Symbol	Parameter	Conditions	IVIII.	Тур.	Max.	Unit
V _{IN}	Input Voltage	_	_	_	30	V
Vout	Output Voltage	V _{IN} =7.0V, I _{OUT} =10mA	4.850	5.000	5.150	V
Гоит	Output Current	V _{IN} =7.0V	100	150	_	mA
ΔV_{OUT}	Load Regulation	V _{IN} =7.0V, 1mA≤I _{OUT} ≤70mA	_	25	60	mV
V _{DIF}	Dropout Voltage (Note)	Ι _{ουτ} =1mA, ΔV _{ουτ} =2%	_	25	55	mV
Iss	Quiescent Current	No load	_	2.5	4.0	μA
$\frac{\Delta V \text{OUT}}{\Delta V \text{IN} \times V \text{OUT}}$	Line Regulation	6.0V≤V _{IN} ≤30V, I _{OUT} =1mA	_	_	0.2	%/V
ΔV OUT $\Delta T_a \times V$ OUT	Temperature Coefficient	I _{оит} =10mA, -40°С<Т _а <85°С	_	100	_	ppm/°C

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN} = V_{OUT} + 2V$ with a fixed load.

Rev. 2.80 8 April 10, 2024

HT7560-1, +6.0V Output Type

Ta=25°C

Cymhal	Parameter	Test Conditions	Min.	n Tun	May	Unit
Symbol	Parameter	Conditions	IVIII.	Тур.	Max.	Unit
V _{IN}	Input Voltage	_	_	_	30	V
Vout	Output Voltage	V _{IN} =8.0V, I _{OUT} =10mA	5.820	6.000	6.180	V
Гоит	Output Current	V _{IN} =8.0V	150	_	_	mA
ΔV_{OUT}	Load Regulation	V _{IN} =8.0V, 1mA≤I _{OUT} ≤70mA	_	25	60	mV
V _{DIF}	Dropout Voltage (Note)	Ι _{ουτ} =1mA, ΔV _{ουτ} =2%	_	25	55	mV
Iss	Quiescent Current	No load	_	2.5	4.0	μA
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	Line Regulation	7.0V≤V _{IN} ≤30V, I _{OUT} =1mA	_	0.2	_	%/V
ΔV OUT $\Delta T_a \times V$ OUT	Temperature Coefficient	I _{ОUT} =10mA, -40°С<Т _а <85°С	_	100	_	ppm/°C

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN}=V_{OUT}+2V$ with a fixed load.

HT7570-1, +7.0V Output Type

Ta=25°C

Council of	Davamatan	Test Conditions	Min	Min. Typ.	Mari	11
Symbol	Parameter	Conditions	Wiin.	Тур.	Max.	Unit
V _{IN}	Input Voltage	_	_	_	30	V
Vout	Output Voltage	V _{IN} =9.0V, I _{OUT} =10mA	6.790	7.000	7.210	V
Гоит	Output Current	V _{IN} =9.0V	150	_	_	mA
ΔV_{OUT}	Load Regulation	V _{IN} =9.0V, 1mA≤I _{OUT} ≤70mA	_	25	60	mV
V _{DIF}	Dropout Voltage (Note)	Ι _{ουτ} =1mA, ΔV _{ουτ} =2%	_	25	55	mV
Iss	Quiescent Current	No load	_	2.5	4.0	μA
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	Line Regulation	8.0V≤V _{IN} ≤30V, I _{OUT} =1mA	_	0.2	_	%/V
ΔV OUT $\Delta T_a \times V$ OUT	Temperature Coefficient	I _{ОUТ} =10mA, -40°С<Т _а <85°С	_	100	_	ppm/°C

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN} = V_{OUT} + 2V$ with a fixed load.

HT7580-1, +8.0V Output Type

Ta=25°C

Counch al	Downwoodow	Test Conditions	Min	T	Mari	I I mit
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{IN}	Input Voltage	_	_	_	30	V
Vout	Output Voltage	V _{IN} =10.0V, I _{OUT} =10mA	7.760	8.000	8.240	V
lout	Output Current	V _{IN} =10.0V	150	_	_	mA
ΔV_{OUT}	Load Regulation	V _{IN} =10.0V, 1mA≤I _{OUT} ≤70mA	_	25	60	mV
V _{DIF}	Dropout Voltage (Note)	Ι _{ουτ} =1mA, ΔV _{ουτ} =2%	_	25	55	mV
Iss	Quiescent Current	No load	_	2.5	4.0	μA
$\frac{\Delta V \text{OUT}}{\Delta V \text{IN} \times V \text{OUT}}$	Line Regulation	9.0V≤V _{IN} ≤30V, I _{OUT} =1mA	_	0.2	_	%/V
ΔV OUT $\Delta T_a \times V$ OUT	Temperature Coefficient	I _{ОUT} =10mA, -40°С<Т _а <85°С	_	100	_	ppm/°C

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN} = V_{OUT} + 2V$ with a fixed load.

Rev. 2.80 9 April 10, 2024

HT7590-1, +9.0V Output Type

Ta=25°C

Cumbal	Parameter	Test Conditions	Min	Min. Typ.	Max.	Unit
Symbol	Parameter	Conditions	win. Typ.		wax.	Unit
V _{IN}	Input Voltage	_	_	_	30	V
V _{оит}	Output Voltage	V _{IN} =11.0V, I _{OUT} =10mA	8.730	9.000	9.270	V
l _{оит}	Output Current	V _{IN} =11.0V	150	_	_	mA
ΔV_{OUT}	Load Regulation	V _{IN} =11.0V, 1mA≤I _{OUT} ≤70mA	_	25	70	mV
V _{DIF}	Dropout Voltage (Note)	Ιουτ=1mA, ΔVουτ=2%	_	25	55	mV
Iss	Quiescent Current	No load	_	2.5	4.0	μA
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	Line Regulation	10.0V≤V _{IN} ≤30V, I _{OUT} =1mA	_	0.2	_	%/V
ΔV OUT $\Delta T_a \times V$ OUT	Temperature Coefficient	I _{ОUT} =10mA, -40°С<Т _а <85°С	_	100	_	ppm/°C

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN}=V_{OUT}+2V$ with a fixed load.

HT75A0-1, +10.0V Output Type

Ta=25°C

Cumbal	Parameter	Test Conditions	Min	Min. Typ.		I Imit
Symbol	Parameter	Conditions	Min. Typ.		Max.	Unit
V _{IN}	Input Voltage	_	_	_	30	V
V _{OUT}	Output Voltage	V _{IN} =12.0V, I _{OUT} =10mA	9.700	10.000	10.300	V
Гоит	Output Current	V _{IN} =12.0V	150	_	_	mA
ΔV_{OUT}	Load Regulation	V _{IN} =12.0V, 1mA≤I _{OUT} ≤70mA	_	25	70	mV
V _{DIF}	Dropout Voltage (Note)	I _{OUT} =1mA, ΔV _{OUT} =2%	_	25	55	mV
Iss	Quiescent Current	No load	_	2.5	4.0	μA
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	Line Regulation	11.0V≤V _{IN} ≤30V, I _{OUT} =1mA	_	0.2	_	%/V
ΔV OUT ΔT a \times V OUT	Temperature Coefficient	I _{ОUT} =10mA, -40°С<Т _а <85°С	_	100	_	ppm/°C

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN}=V_{OUT}+2V$ with a fixed load.

HT75C0-1, +12.0V Output Type

Ta=25°C

Councile of	Downwoodow	Test Conditions	Min. Typ.	T	Mary	Unit
Symbol	Parameter	Conditions	IVIIII.	Тур.	Max.	Unit
V _{IN}	Input Voltage	_	_	_	30	V
V _{OUT}	Output Voltage	V _{IN} =14.0V, I _{OUT} =10mA	11.640	12.000	12.360	V
Гоит	Output Current	V _{IN} =14.0V	150	_	_	mA
ΔV_{OUT}	Load Regulation	V _{IN} =14.0V, 1mA≤I _{OUT} ≤70mA	_	25	70	mV
V _{DIF}	Dropout Voltage (Note)	Ι _{ουτ} =1mA, ΔV _{ουτ} =2%	_	25	55	mV
Iss	Quiescent Current	No load	_	2.5	4.0	μA
$\frac{\Delta V \text{OUT}}{\Delta V \text{IN} \times V \text{OUT}}$	Line Regulation	13.0V≤V _{IN} ≤30V, I _{OUT} =1mA	_	0.2	_	%/V
$\frac{\Delta V_{OUT}}{\Delta T_{a} \times V_{OUT}}$	Temperature Coefficient	I _{о∪т} =10mA, -40°C <t<sub>a<85°C</t<sub>	_	100	_	ppm/°C

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN}=V_{OUT}+2V$ with a fixed load.

Rev. 2.80 10 April 10, 2024

Typical Performance Characteristics

(V_{IN}=7V, I_{OUT}=0mA~40mA)

(V_{IN}=5.3V, I_{OUT}=0mA~40mA)

Application Circuits

Basic Circuit

High Output Current Positive Voltage Regulator

Short-Circuit Protection for Tr1

Circuit for Increasing Output Voltage

Rev. 2.80 13 April 10, 2024

Circuit for Increasing Output Voltage

Constant Current Regulator

 $I_{OUT} \!\!=\!\! V_{XX} \!/ R_A \!\!+\!\! I_{SS}$

Dual Supply

Rev. 2.80 14 April 10, 2024

Package Information

Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the <u>Package/Carton Information</u>.

Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- The Operation Instruction of Packing Materials
- Carton information

3-pin SOT89 Outline Dimensions

Cumbal		Dimensions in inch				
Symbol	Min.	Nom.	Max.			
A	0.173	_	0.185			
В	0.053	_	0.072			
С	0.090	_	0.106			
D	0.031	_	0.047			
E	0.155	_	0.173			
F	0.014	_	0.019			
G	0.017	_	0.022			
Н	0.059 BSC					
I	0.055	_	0.063			
J	0.014	_	0.017			

Symbol		Dimensions in mm			
Syllibol	Min.	Nom.	Max.		
A	4.40	_	4.70		
В	1.35	_	1.83		
С	2.29	_	2.70		
D	0.80	_	1.20		
E	3.94	_	4.40		
F	0.36	_	0.48		
G	0.44	_	0.56		
Н		1.50 BSC			
I	1.40	_	1.60		
J	0.35	_	0.44		

Rev. 2.80 16 April 10, 2024

5-pin SOT23 Outline Dimensions

Symbol	Dimensions in inch			
	Min.	Nom.	Max.	
A	_	_	0.057	
A1	_	_	0.006	
A2	0.035	0.045	0.051	
b	0.012	_	0.020	
С	0.003	_	0.009	
D	0.114 BSC			
E	0.063 BSC			
е	0.037 BSC			
e1	0.075 BSC			
Н	0.110 BSC			
L1	0.024 BSC			
θ	0°	_	8°	

Symbol	Dimensions in mm		
	Min.	Nom.	Max.
A	_	_	1.45
A1	_	_	0.15
A2	0.90	1.15	1.30
b	0.30	_	0.50
С	0.08	_	0.22
D	2.90 BSC		
E	1.60 BSC		
е	0.95 BSC		
e1	1.90 BSC		
Н	2.80 BSC		
L1	0.60 BSC		
θ	0°	_	8°

Copyright® 2024 by HOLTEK SEMICONDUCTOR INC. All Rights Reserved.

The information provided in this document has been produced with reasonable care and attention before publication, however, HOLTEK does not guarantee that the information is completely accurate. The information contained in this publication is provided for reference only and may be superseded by updates. HOLTEK disclaims any expressed, implied or statutory warranties, including but not limited to suitability for commercialization, satisfactory quality, specifications, characteristics, functions, fitness for a particular purpose, and non-infringement of any thirdparty's rights. HOLTEK disclaims all liability arising from the information and its application. In addition, HOLTEK does not recommend the use of HOLTEK's products where there is a risk of personal hazard due to malfunction or other reasons. HOLTEK hereby declares that it does not authorise the use of these products in life-saving, life-sustaining or safety critical components. Any use of HOLTEK's products in life-saving/sustaining or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold HOLTEK harmless from any damages, claims, suits, or expenses resulting from such use. The information provided in this document, including but not limited to the content, data, examples, materials, graphs, and trademarks, is the intellectual property of HOLTEK (and its licensors, where applicable) and is protected by copyright law and other intellectual property laws. No license, express or implied, to any intellectual property right, is granted by HOLTEK herein. HOLTEK reserves the right to revise the information described in the document at any time without prior notice. For the latest information, please contact us.

Rev. 2.80 18 April 10, 2024