Лабораторная работа №5 «Численное интегрирование»

Задание к лабораторной работе

- 1. Найдите шаг интегрирования h для вычисления интеграла $\int_{-b}^{b} f(x) dx$ по формуле трапеций с точностью $\varepsilon = 0{,}001$.
- 2. Вычислите интеграл по формуле трапеций с шагами 2h и h. Дайте уточненную оценку погрешности.
- 3. Вычислите интеграл по формуле Симпсона с шагами 2h и h. Дайте уточненную оценку погрешности.
- 4. Вычислите определенный интеграл по формуле Ньютона—Лейбница. Сравните приближенные значения интеграла с точными. Какая формула численного интегрирования дала более точный результат?

Указание. Шаг h следует выбирать с учетом дополнительного условия: отрезок интегрирования должен разбиваться на число частей, кратное 4.

Варианты заданий

N₂	Интеграл
1	$f(x) = x^4 (1 + x^2)^{-1}, a = 1, b = 2.$
2	$f(x) = x^2 e^{-2x}$, $a = 0$, $b = 1,6$.
3	$f(x) = x^{-0.5} \ln x$, $a = 1$, $b = 3$.
4	$f(x) = x \sin 3x, \qquad a = 0, b = 1.$
5	$f(x) = \sqrt{x+1} \lg(x+1)$ $a = 0,1, b = 1,1.$
6	$f(x) = x^2 \ln x$, $a = 1$, $b = 2$.
7	$f(x) = x^{2}(x+1)^{-2}, a=1, b=4.$
8	$f(x) = x\cos 2x, \qquad a = 0, b = 1.$
9	$f(x) = x^2 \ln x$, $a = 1$, $b = 2$.
10	$f(x) = \sqrt{x} \ln x$, $a = 1$, $b = 4$.
11	$f(x) = x^3 / \sqrt{1 - x^2}$, $a = -0.5$, $b = 0.5$.
12	$f(x) = e^{-x} \cos x$, $a = 0$, $b = 2$.
13	$f(x) = \sqrt{x}/(x+1),$ $a = 1,$ $b = 4.$
14	$f(x) = e^{-\sqrt{x}}$, $a = 1$, $b = 4$.
15	f(x) = xarctgx, $a = 0$, $b = 1$.
16	$f(x) = x \arccos x$, $a = -0.5$, $b = 0.5$.
17	$f(x) = x \arcsin x, \qquad a = 0, b = 0.9.$
18	$f(x) = (x^3 + x)^{-1}, \qquad a = 1, b = 2,2.$
19	$f(x) = x3^{-x}$, $a = 0$, $b = 1,5$.
20	$f(x) = x^2 e^{-x},$ $a = 0, b = 1.$
21	$f(x) = x^3/(1+x^2), a=0, b=2.$
22	$f(x) = (x^2 + x)^{-1}, \qquad a = 1, b = 3.$
23	$f(x) = \sqrt{1 + x^2}$, $a = 0$, $b = 1.8$.
24	$f(x) = x^2 \sin x$, $a = 0$, $b = 1$.
25	$f(x) = x \sin x$, $a = 0$, $b = 1,6$.
26	$f(x) = x^3 / \sqrt{x^2 + 1}, a = -0.4, \ b = 0.8.$
27	$f(x) = x^2 \cos x$, $a = 0$, $b = 1$.
28	$f(x) = x2^{-x},$ $a = 0, b = 2.$
29	$f(x) = e^x \sin x$, $a = 0$, $b = 1,2$.
30	$f(x) = x^2 \operatorname{arctg} x$, $a = 0$, $b = 1$.

Лабораторная работа №6 «Численные методы решения обыкновенных дифференциальных уравнений»

Задание к лабораторной работе

Решается задача Коши: y'=f(x,y), $y(a)=y_0$ на отрезке [a,b].

- 1. Найти шаг интегрирования для решения задачи Коши методом Рунге–Кутта (IV) с точностью 10^{-4} .
- 2. Найти решение задачи Коши на отрезке [a,b] методом Рунге– Кутта (IV) с точностью 10^{-4} . Построить приближенную интегральную кривую.
- 3. Найти решение задачи Коши на отрезке [a,b] методом Эйлера. Построить на одном графике (с п. 2) приближенную интегральную кривую.
- 4. Найти точное решение задачи Коши. Сравнить точное решение с приближенным. Найти максимум модуля отклонений в узловых точках приближенного решения от точного.
 - 5. Записать результаты расчетов в сводную таблицу.

Варианты заданий

№	Задача Коши
1	$y'+xy = 0.5(x-1)e^x y^2$, $y(0) = 2$; $a = 0$, $b = 2$.
2	$y'-ytgx = -2/3y^4 \sin x$, $y(0) = 1$; $a = 0$, $b = 1,2$.
3	$y'+y^2 = x$, $y(0) = 1$; $a = 0$, $b = 2$.
4	$xy'+y=y^3e^{-x}, y(1)=1; a=1, b=2.$
5	$y'+xy = 0.5(x+1)e^x y^2$, $y(0) = 1$; $a = 0$; $b = 2$.
6	$xy'-y = -y^2(2\ln x + \ln^2 x), \ y(1) = 2; \ a = 1, \ b = 2.$
7	$y'+4x^3y = 4y^2e^{4x}(1-x^3), \ y(1) = 1; \ a = 1, \ b = 2.8.$
8	$2y'+3y\cos x = e^{2x}(2+3\cos x)/y$, $y(1) = 2$; $a = 1, b = 1,6$.
9	$y'+2xy = 2x^3y^3$, $y(0) = 1$; $a = 0$, $b = 1$.
10	$xy'+y = y^2 \ln x$, $y(1) = 0.5$; $a = 1$, $b = 5$.
11	$2y'+3y\cos x = (8+12\cos x)e^{2x}/y$, $y(0) = 2$; $a = 0$, $b = 2$.
12	$4y'+x^3y = (x^3+8)e^{-2x}y^2$, $y(0) = 0.5$; $a = 0$, $b = 2.4$.
13	$8xy'=12y=-(5x^2+3)y^3$, $y(1)=1$; $a=1$, $b=3$.
14	$y'+y=0.5xy^2$, $y(0)=2$; $a=0$, $b=2$.
15	$y'+xy=(x-1)e^xy^2$, $y(0)=1$; $a=0$, $b=2$.
16	$3y'-3y\cos x = -e^{-2x}(2+3\cos x)/y$, $y(0) = 1,1$; $a = 0$, $b = 0,8$.
17	$y'-y = xy^2$, $y(0) = 0.5$; $a = 0$, $b = 0.8$.
18	$xy'+y=y^2 \ln x$, $y(1)=1$; $a=1$, $b=2,6$.
19	$y'+y = xy^2$, $y(0) = 1$; $a = 0$, $b = 2$.
20	$xy'+y=xy^2$, $y(1)=1$; $a=1$, $b=2$.
21	$2y'+3y\cos x = e^{2x}(2+3\cos x)/y$, $y(0)=1$; $a=0$, $b=1,6$.
22	$3(xy'+y) = xy^2, y(1) = 1; a = 1, b = 5.$
23	$y'-y = 2xy^2$, $y(-1) = 0.2$; $a = -1$, $b = 0.6$.
24	$2xy'-3y = -(20x^2 + 12)y^3$, $y(1) = 0.25$; $a = 1, b = 5$.
25	$2y'+3y\cos x = (8+12\cos x)e^{2x}/y$, $y(0) = 3$; $a = 0$, $b = 3$.
26	$y'+xy = (1+x)e^x y^{-2}, y(0) = 1, \qquad a = 0, \ b = 1,6.$
27	$xy'+y=2y^2 \ln x$, $y(1)=0.5$; $a=1$, $b=5$
28	$2xy'+2y = xy^2$, $y(1) = 2$; $a = 1$, $b = 1.8$.
29	$y'+4x^3y = 4(x^3+1)e^{-4x}y^2$, $y(0) = 0.5$; $a = 0$, $b = 1$.
30	$xy'-y = -y^2(2\ln x + \ln^2 x), \ y(1) = 1; \ a = 1, b = 3.$