IGCSE EXTENDED MATHEMATICS (0580)

TOPICAL PAST PAPER QUESTIONS - 2016/2017

GRAPHS (Paper 4)

1. (0580-S 2016-Paper 4/3-Q3)

The diagram shows the graph of y = f(x) for $-3.5 \le x \le 2.5$.

(a)	(i)	Fin	1 + 1 + 1 = 1 + 1 = 1 = 1 = 1 = 1 = 1 =										
													[1]
	(ii)	So	lve the e	quation f((x)=2.								
						x =		c	or $x = \dots$		or <i>x</i> =		[3]
	(iii)	Tw	o tangen	ts, each v	vith grad								
	()		_	the equa					<i>8</i> r	/ (
		VVI	nie down	tile equa	ulon of Ca	acii talige	ait.						
												•••••	[2]
(b)	(i)	Со	mplete tl	ne table f	or $g(x) =$	$\frac{2}{x}$ + 3 for	r −3.5 ≤	<i>x</i> ≤−	-0.5 and	$0.5 \leqslant x \leqslant$	€ 2.5 .		
	x		-3.5	-3	-2	-1	-0.5		0.5	1	2	2.5	
	g(x)		2.4	2.3		1			7	5		3.8	
													[3]
	(ii)	Or	the grid	opposite	, draw th	e graph o	$\mathbf{f} y = \mathbf{g}(x)$).					[4]
	(iii)	Us	e your gr	aph to so	lve the e	quation f	(x) = g(x)						
									<i>x</i> =		or <i>x</i> =		[2]
(c)	Find	l of((-2).										
(-)		- 6-1	. –)-										
													[2]
(d)	Finc	l g=	¹ (5).										
													[1]

2. (0580-S 2016-Paper 4/2-Q4)

$$f(x) = x^2 - \frac{1}{x} - 4$$
, $x \neq 0$

(a) (i) Complete the table.

3	С	-3	-2	-1	-0.5	-0.1	0.2	0.5	1	2	3
f(.	x)	5.3	0.5		-1.8	6.0	-9.0	-5.8	-4		4.7

[2]

(ii) On the grid, draw the graph of y = f(x) for $-3 \le x \le -0.1$ and $0.2 \le x \le 3$.

[5]

(b)	Use	your graph to solve the equation $f(x) = 0$.	
(c)	Fine	$x = \dots$ I an integer k , for which $f(x) = k$ has one solution.	or $x =$ [3]
(0)	THIC	an integer κ , for which $I(\kappa) = \kappa$ has one solution.	
			<i>k</i> =[1]
(d)	(i)	By drawing a suitable straight line, solve the equation	f(x) + 2 = -5x.
			x = or $x = $ [4]
	(ii)	$f(x) + 2 = -5x$ can be written as $x^3 + ax^2 + bx - 1 = 0$	
		Find the value of a and the value of b .	
			<i>a</i> =
			<i>b</i> =[2]

3. (0580-S 2016-Paper 4/1-Q5)

$$f(x) = \frac{20}{x} + x, \quad x \neq 0$$

(a) Complete the table.

x	-10	-8	-5	-2	-1.6	1.6	2	5	8	10
f(x)	-12	-10.5	-9	-12	-14.1	14.1	12			12

(b) On the grid, draw the graph of y = f(x) for $-10 \le x \le -1.6$ and $1.6 \le x \le 10$.

MrMannMaths

[2]

(c) Using your graph, solve the equation f(x) = 11.

(d) k is a prime number and f(x) = k has no solutions.

Find the possible values of k.

.....[2]

(e) The gradient of the graph of y = f(x) at the point (2, 12) is -4.

Write down the co-ordinates of the other point on the graph of y = f(x) where the gradient is -4.

(.....)[1]

(f) (i) The equation $f(x) = x^2$ can be written as $x^3 + px^2 + q = 0$.

Show that p = -1 and q = -20.

[2]

- (ii) On the grid opposite, draw the graph of $y = x^2$ for $-4 \le x \le 4$.
- (iii) Using your graphs, solve the equation $x^3 x^2 20 = 0$.

(iv)

NOT TO SCALE

The diagram shows a sketch of the graph of $y = x^3 - x^2 - 20$. P is the point (n, 0).

Write down the value of n.

 $n = \dots$

4. (0580-S 2016-Paper 4/3-Q7) Alfonso runs 10 km at an average speed of x km/h. The next day he runs 12km at an average speed of (x-1) km/h. The time taken for the 10 km run is 30 minutes less than the time taken for the 12 km run. (a) (i) Write down an equation in x and show that it simplifies to $x^2 - 5x - 20 = 0$. [4] (ii) Use the quadratic formula to solve the equation $x^2 - 5x - 20 = 0$. Show your working and give your answers correct to 2 decimal places. x = or x = [4] (iii) Find the time that Alfonso takes to complete the 12km run. Give your answer in hours and minutes correct to the nearest minute.

MrMannMaths 7

..... hours minutes [2]

(b) A cheetah runs for 60 seconds.

The diagram shows the speed-time graph.

(i) Work out the acceleration of the cheetah during the first 10 seconds.

m/s^2 [1]

(ii) Calculate the distance travelled by the cheetah.

.....m [3]

5. (0580-S 2016-Paper 4/1-Q9)

The diagram shows a curve with equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

- (a) A is the point (4, 0) and B is the point (0, 2).
 - (i) Find the equation of the straight line that passes through A and B. Give your answer in the form y = mx + c.

$$y =$$
.....[3]

(ii) Show that $a^2 = 16$ and $b^2 = 4$.

[2]

(b)

NOT TO SCALE

P(2, k) and Q(2, -k) are points on the curve $\frac{x^2}{16} + \frac{y^2}{4} = 1$.

(i) Find the value of k.

$$k = \dots [3]$$

(ii) Calculate angle POQ.

- (c) The area enclosed by a curve with equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab .
 - (i) Find the area enclosed by the curve $\frac{x^2}{16} + \frac{y^2}{4} = 1$.

Give your answer as a multiple of π .

(ii) A curve, mathematically similar to the one in the diagrams, intersects the x-axis at (12, 0) and (-12, 0).

Work out the area enclosed by this curve, giving your answer as a multiple of π .

6. (0580-S 2016-Paper 4/2-Q9)

A liı	ne joins the points $A(-2, -5)$ and $B(4, 13)$.
(a)	Calculate the length AB .
(b)	$AB = \dots $ [3] Find the equation of the line through A and B . Give your answer in the form $y = mx + c$.
	<i>y</i> =[3]
(c)	Another line is parallel to AB and passes through the point $(0, -5)$.
(-)	Write down the equation of this line.
	[2]
(d)	Find the equation of the perpendicular bisector of AB .
	[5]

7. (0580-W 2016-Paper 4/2-Q2)

(a) Complete the table of values for $y = \frac{x^3}{3} - x^2 + 1$.

X	-1.5	-1	-0.5	0	0.5	1	1.5	2	2.5	3
У	-2.38	-0.33	0.71		0.79	0.33	-0.13	-0.33	-0.04	

[2]

(b) Draw the graph of $y = \frac{x^3}{3} - x^2 + 1$ for $-1.5 \le x \le 3$.

The first 3 points have been plotted for you.

[4]

(c) Using your graph, solve the equations.

(i)
$$\frac{x^3}{3} - x^2 + 1 = 0$$

$$x =$$
 or $x =$ [3]

(ii)
$$\frac{x^3}{3} - x^2 + x + 1 = 0$$

(d) Two tangents to the graph of $y = \frac{x^3}{3} - x^2 + 1$ can be drawn parallel to the x-axis.

(i) Write down the equation of each of these tangents.

 	 [2]

(ii) For $0 \le x \le 3$, write down the smallest possible value of y.

8. (0580-W 2016-Paper 4/3-Q2)

(a) Complete the table for $y = 3x + \frac{2}{x^2} + 1$, $x \ne 0$.

x	-3	-2	-1	-0.5	-0.3	0.3	0.5	1	2	3
у	-7.8		0	7.5	22.3	24.1		6	7.5	10.2

[2]

(b) On the grid, draw the graph of $y = 3x + \frac{2}{x^2} + 1$ for $-3 \le x \le -0.3$ and $0.3 \le x \le 3$.

[5]

(c) Write down the value of the largest integer, k, so that the equation $3x + \frac{2}{x^2} + 1 = k$ has exactly one solution.

(d)	(i)	By drawing a suitable straight line on the grid, solve	$3x + \frac{2}{x^2} + 1 = 15 - 3x.$
-----	-----	--	-------------------------------------

$$x =$$
 or $x =$ [4]

(ii) The equation $3x + \frac{2}{x^2} + 1 = 15 - 3x$ can be written in the form $ax^3 + bx^2 + cx + 2 = 0$, where a, b and c are integers.

Find a, b and c.

$$c =$$
.....[3]

9. (0580-W 2016-Paper 4/1-Q4)

$$y = 1 - \frac{2}{x^2}, \ x \neq 0$$

(a) Complete the table.

x	-5	-4	-3	-2	-1	-0.5	0.5	1	2	3	4	5
у		0.88	0.78			-7	-7			0.78	0.88	

[3]

(b) On the grid, draw the graph of $y = 1 - \frac{2}{x^2}$ for $-5 \le x \le -0.5$ and $0.5 \le x \le 5$.

[5]

(c) (i) On the grid, draw the graph of y = -x - 1 for $-3 \le x \le 5$. [2]

(ii) Solve the equation $1 - \frac{2}{x^2} = -x - 1$.

 $x = \dots [1]$

(iii)	The equation $1 - \frac{2}{x^2} = -x - 1$ can be written in the form	$x^3 + px^2 + q = 0.$
	Find the value of p and the value of q .	

<i>p</i> =	
q =	. [3]

- (d) The graph of $y = 1 \frac{2}{x^2}$ cuts the positive x-axis at A. B is the point (0, -2).
 - (i) Write down the co-ordinates of A.

1			1
(,	·····/////////////////////////////////	1

- (ii) On the grid, draw the straight line that passes through A and B. [1]
- (iii) Complete the statement.

The straight line that passes through A and B is a

10. (0580-S 2017-Paper 4/3-Q3)

The table shows some values for $y = 2x^3 + 4x^2$.

х	-2.2	-2	-1.5	-1	-0.5	0	0.5	0.8
у	-1.94				0.75	0		3.58

(a) Complete the table.

[4]

(b) Draw the graph of $y = 2x^3 + 4x^2$ for $-2.2 \le x \le 0.8$.

[4]

(c) Find the number of solutions to the equation $2x^3 + 4x^2 = 3$.

.....[1]

(d)	(i)	The equation $2x^3 + 4x^2 - x = 1$ can be solved by drawing a straight line on the grid.
		Write down the equation of this straight line.
	(ii)	$y = \dots $ [1] Use your graph to solve the equation $2x^3 + 4x^2 - x = 1$.
		x = or $x = $ or $x = $ [3]
(e)	The	tangent to the graph of $y = 2x^3 + 4x^2$ has a negative gradient when $x = k$.
	Cor	nplete the inequality for k .
		< <i>k</i> <[2]

11. (0580-S 2017-Paper 4/1-Q4)

The diagram shows the graph of y = f(x) for $-2.5 \le x \le 2$.

(a)	Find f(1).
(b)	Solve $f(x) = 3$.
(c)	$x = \dots $ [1] The equation $f(x) = k$ has only one solution for $-2.5 \le x \le 2$.
(0)	Write down the range of values of k for which this is possible.
(d)	
(0)	$x = \dots \qquad \text{or } x = \dots \qquad \text{or } x = \dots \qquad \text{or } x = \dots \qquad \text{[3]}$ Then, a tengent to the graph of $y = f(y)$ at the point where $y = 1$
(e)	Draw a tangent to the graph of $y = f(x)$ at the point where $x = 1$. Use your tangent to estimate the gradient of $y = f(x)$ when $x = 1$.
	[3]

12. (0580-S 2017-Paper 4/2-Q4)

$$\mathbf{f}(x) = 2x^2 - 1$$

The graph of y = f(x), for $-2 \le x \le 2$, is drawn on the grid.

(a) Use the graph to solve the equation f(x) = 5.

(b) (i) Draw the tangent to the graph of y = f(x) at the point (-1.5, 3.5). [1]

(ii) Use your tangent to estimate the gradient of y = f(x) when x = -1.5.

.....[2]

(c)	$g(x) = 2^x$
(0)	5(2) 2

(i) Complete the table for y = g(x).

x	-2	-1	0	1	2
у	0.25	0.5		2	4

[1]

(ii)	On the grid opposite, draw the graph of $y = g(x)$ for $-2 \le x \le 2$.	[3]
------	---	-----

- (d) Use your graphs to solve
 - (i) the equation f(x) = g(x),

(ii) the inequality $f(x) \le g(x)$.

(e) (i) Write down the three values.

$$g(-3) = \dots \qquad g(-10) = \dots \qquad [1]$$

(ii) Complete the statement.

13. (0580-S 2017-Paper 4/1-Q7)

A li	e joins the points $A(-3, 8)$ and $B(2, -2)$.	
(a)	Find the co-ordinates of the midpoint of AB .	
(b)	Find the equation of the line through A and B . Give your answer in the form $y=mx+c$.	2
(c)	y=	3]
(d)	Find the equation of the line perpendicular to AB which passes through the point $(1, 5)$. Give your answer in the form $ax + by + c = 0$ where a , b and c are integers.	2]
	[·	4

14. (0580-S 2017-Paper 4/2-Q9)

(a)

The distance-time graph shows the journey of a train.

(i) Find the speed of the train between 0700 and 0730.

..... km/h [1]

(ii) Find the average speed for the whole journey.

..... km/h [3]

(b)

The speed-time graph shows the first 30 minutes of another train journey.

The distance travelled is 100 km.

The maximum speed of the train is V km/h.

(i) Find the value of V.

V	 	 	 	 [3	

(ii) Find the acceleration of the train during the first 5 minutes. Give your answer in m/s².

		m/s^2	[2]