Einführung in die Algebra

BLATT 10

Jendrik Stelzner

8. Januar 2014

Aufgabe 10.1.

Da ich in der vorlesungsfreien Zeit keine Lust auf Algebra hatte, und mich daher nicht mit Elementarteilertheorie beschäftigt habe, habe ich nur die anderen Aufgaben bearbeitet.

Aufgabe 10.2.

Bemerkung 1. Sei $p \in \mathbb{N}$ eine Primzahl und $k \in \mathbb{N}, k \geq 1$. Dann gibt es in $\mathbb{Z}/p^k\mathbb{Z}$ genau p Elemente $g \in \mathbb{Z}/p^k\mathbb{Z}$ mit pg = 0.

Beweis. Es bezeichne $\pi:\mathbb{Z}\to\mathbb{Z}/p^k\mathbb{Z}$ die kanonische Projektion und $\bar{n}=\pi(n)$ die Restklasse von $n\in\mathbb{Z}$. Für alle $n\in\mathbb{Z}$ ist

$$p \cdot \bar{n} = 0 \Leftrightarrow \overline{pn} = 0 \Leftrightarrow pn \in \operatorname{Ker} \pi = p^{k} \mathbb{Z} \Leftrightarrow n \in p^{k-1} \mathbb{Z}$$
$$\Leftrightarrow \bar{n} \in \left\langle \overline{p^{k-1}} \right\rangle = \{0, \overline{p^{k-1}}, \dots, (p-1)\overline{p^{k-1}}\}.$$

Bemerkung 2. Seien G_1, \ldots, G_n Gruppen. Für $(g_1, \ldots, g_n) \in G_1 \times \cdots \times G_n$ ist

$$\operatorname{ord}(g_1,\ldots,g_n)=\operatorname{kgV}(\operatorname{ord}g_1,\ldots,\operatorname{ord}g_n).$$

Beweis. Wir schreiben $k = \text{kgV}(\text{ord } g_1, \dots, g_n)$ und $l = \text{ord } (g_1, \dots, g_n)$. Es ist offenbar

$$(g_1,\ldots,g_n)^k = (g_1^k,\ldots,g_n^k) = (0,\ldots,0),$$

also $l \mid k$. Da

$$(0,\ldots,0)=(g_1,\ldots,g_n)^l=(g_1^l,\ldots,g_n^l)$$

ist ord $g_i \mid l$ für alle $i = 1, \ldots, n$, also auch $k \mid l$.

Es bezeichne $P\subsetneq\mathbb{N}$ die Menge der Primzahlen. Sei G eine abelsche Gruppe mit ord $G=15625=5^6$, so dass genau 124 Elemente der Ordnung 5 in G gibt. Aus dem Hauptsatz über endlich erzeugte abelsche Gruppen folgt, dass

$$G \cong \mathbb{Z}^d \oplus \bigoplus_{p \in P} \bigoplus_{n \ge 1} (\mathbb{Z}/p^n\mathbb{Z})^{\nu(p,n)},$$

wobei die $\nu(p,n)$ eindeutig bestimmt sind und $\nu(p,n)=0$ für fast alle $(p,n)\in P\times (\mathbb{N}\setminus\{0\})$. Da G endlich ist, ist d=0, und da ord $G=5^6$ ist $\nu(p,n)=0$ für alle $p\in P, p\neq 5$, und $\sum_{n\geq 1}n\cdot \nu(5,n)=6$. Übersichtlich ausgedrückt ist also

$$G \cong (\mathbb{Z}/5\mathbb{Z})^{\nu_1} \times \cdots \times (\mathbb{Z}/5^6\mathbb{Z})^{\nu_6}$$

mit eindeutig bestimmten $\nu_1,\ldots,\nu_6\in\mathbb{N}$ und $\nu_1+2\nu_2+\ldots+6\nu_6=6$. Für

$$(g_1,\ldots,g_n)\in (\mathbb{Z}/5\mathbb{Z})^{\nu_1}\times\cdots\times(\mathbb{Z}/5^6\mathbb{Z})^{\nu_6}$$

ist wegen Bemerkung 2 genau dann

$$5 = \operatorname{ord}(g_1, \dots, g_n) = \operatorname{kgV}(\operatorname{ord} g_1, \dots, \operatorname{ord} g_n),$$

wenn ord $g_1, \ldots,$ ord $g_n \in \{1, 5\}$ und ord $g_i = 5$ für (mindestens) ein $i \in \{1, \ldots, n\}$. (Man bemerke, dass ord $g_i = 5^k$ für ein $k \in \mathbb{N}$ für alle $i = 1, \ldots, n$.) Da es genau 124 Elemente der Ordnung 5 in G gibt, gibt es genau 125 = 5^3 Elemente der Ordnung 1 oder 5 in G; diese entsprechen gerade den Elementen (g_1, \ldots, g_n) mit ord $g_i \in \{1, 5\}$ für alle $i = 1, \ldots, n$. Aus Bemerkung 2 folgt damit, dass

$$G \cong \mathbb{Z}/5^{\mu_1}\mathbb{Z} \times \mathbb{Z}/5^{\mu_2}\mathbb{Z} \times \mathbb{Z}/5^{\mu_3}\mathbb{Z},$$

mit $\mu_1, \mu_2, \mu_3 \geq 1$ und $\mu_1 + \mu_2 + \mu_3 = 6$. Die Isomorphieklassen dieser Gruppen entsprechen offenbar gerade den Partitionen von 6 in drei natürliche, positive Zahlen. Diese Partitionen sind (1,1,4), (1,2,3) und (2,2,2), d.h. G ist isomorph zu einer der drei Gruppen

$$(\mathbb{Z}/5\mathbb{Z})^2 \times \mathbb{Z}/5^4\mathbb{Z}$$
 oder $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5^2\mathbb{Z}, \mathbb{Z}/5^3\mathbb{Z}$ oder $(\mathbb{Z}/2\mathbb{Z})^3$,

die zueinander paarweise nicht isomorph sind. Offenbar erfüllt auch jede dieser drei Gruppen die geforderten Bedingungen. Also gibt es genau drei Isomorphieklassen.

Aufgabe 10.3.

(i)

Es ist char K=p: Ist $P\cong \mathbb{F}_q$, mit q prim, der Primkörper von K, so besitzt K als endlichdimensionaler P-Vektorraum genau q^m , $m\geq 1$, Elemente. Wegen $p^n=q^m$ muss p=q und n=m. Also ist $P\cong \mathbb{F}_p$ und daher char K=p. Da char K=p ist für alle $\alpha,\beta\in K$

$$\sigma(\alpha + \beta) = (\alpha + \beta)^p = \alpha^p + \beta^p = \sigma(\alpha) + \sigma(\beta).$$

Auch ist $\sigma(1) = 1^p = 1$ und für alle $\alpha, \beta \in K$

$$\sigma(\alpha\beta) = (\alpha\beta)^p = \alpha^p \beta^p = \sigma(\alpha)\sigma(\beta).$$

Also ist σ ein Ringendomorphismus. Da K ein Körper ist, ist $\sigma: K \to K$ injektiv. Da K endlich ist, ist σ damit auch surjektiv. Also ist σ ein Körperautomorphismus.

(ii)

Da K genau p^n Elemente hat, ist $\alpha^{(p^n)}=\alpha$ für alle $\alpha\in K$ (denn K^* hat p^n-1 Elemente, und 0 ist ein Fixpunkt von σ). Es ist also $\sigma^n=\operatorname{id}_K$ und daher $\operatorname{ord}\sigma\mid n$. Für $t\geq 1$ mit

$$\alpha = \sigma^t(\alpha) = \alpha^{(p^t)}$$
 für alle $\alpha \in K$

ist jedes $\alpha \in K$ eine Nullstelle des Polynoms $X^{(p^t)} - X \in K[X]$, weshalb

$$p^n \le \deg\left(X^{(p^t)} - X\right) = p^t,$$

also $n \leq t$. Insbesondere ist $n \leq \operatorname{ord} \sigma$. Zusammen mit ord $\sigma \mid n$ ist daher ord $\sigma = n$.

Aufgabe 10.4.

Für einen beliebigen Körper K und beliebige
s $g\in K[X]$ mit deg $g\geq 1$ gilt, d
aK[X]ein Hauptidealring ist, bekanntermaßen

K[X]/(g) ist ein Körper \Leftrightarrow (g) ist maximal \Leftrightarrow g ist irreduzibel.

Da das Polynom $f=X^3-2$ irreduzibel in $\mathbb{Q}[X]$ ist, nicht jedoch in $\mathbb{R}[X]$, ist damit $\mathbb{Q}[X]/(f)$ ein Körper, $\mathbb{R}[X]/(f)$ jedoch nicht.

Aufgabe 10.5.

(i)

Da α und β algebraisch über K sind, ist die Körpererweiterung $K(\alpha,\beta)/K$ algebraisch und $K(\alpha,\beta)=K[\alpha,\beta]$ (bekannt aus der Vorlesung). Insbesondere ist daher $(\alpha^k\beta^l)_{k,l\in\mathbb{N}}$ ein K-Erzeugendensystem von $K(\alpha,\beta)$.

Sei nun $x_1,\ldots,x_m\in K(\alpha)$ eine K-Basis von $K(\alpha)$ und $y_1,\ldots,y_n\in K(\beta)$ eine K-Basis von $K(\beta)$. Es ist $(x_iy_j)_{i=1,\ldots,m,j=1,\ldots,n}$ ein K-Erzeugendensystem von $K(\alpha,\beta)$, und damit insbesondere

$$K[(\alpha, \beta) : K] = \dim_K K(\alpha, \beta) \le mn$$

Für alle $k,l\in\mathbb{N}$ gibt es nämlich (eindeutige) $\lambda_1^k,\ldots,\lambda_m^k\in K$ mit $\alpha^k=\sum_{i=1}^m\lambda_i^kx_i$ und $\mu_1^l,\ldots,\mu_n^l\in K$ mit $\beta^l=\sum_{j=1}^n\mu_j^ly_j$, weshalb

$$\alpha^k \beta^l = \left(\sum_{i=1}^m \lambda_i^k x_i\right) \left(\sum_{j=1}^n \mu_j^l y_j\right) = \sum_{i=1}^m \sum_{j=1}^n \lambda_i^k \mu_j^l x_i y_j.$$

Da $(\alpha^k \beta^l)_{k,l \in \mathbb{N}}$ ein K-Erzeugendensystem von $K(\alpha,\beta)$ ist, ist es daher auch $(x_i y_j)_{i,j}$.

(ii)

Aus der Kette von Körpererweiterungen

$$K \subseteq K(\alpha) \subseteq K(\alpha, \beta)$$

ergibt sich durch den Gradsatz, dass

$$[K(\alpha,\beta):K] = [K(\alpha,\beta):K(\alpha)] \cdot [K(\alpha):K],$$

also

$$m = [K(\alpha):K] \mid [K(\alpha,\beta):K]$$

Analog ergibt sich, dass auch $n \mid [K(\alpha, \beta) : K]$. Folglich ist auch

$$kgV(m, n) \mid [K(\alpha, \beta) : K].$$

Dabei ist kgV(m,n)=mn, da m und n teilerfremd sind. Mit $[K(\alpha,\beta):K]\geq 1$ ergibt sich damit, dass $mn\leq [K(\alpha,\beta):K]$. Da auch $[K(\alpha,\beta):K]\leq mn$ ist also

$$[K(\alpha,\beta):K]=mn.$$