GOV 2000 Section 2

Konstantin Kashin¹ Harvard University

September 12, 2012

Administrative Details

REGRESSION

GOODNESS-OF-FIT: R²

Appendix

PROBLEM SET EXPECTATIONS

- First problem set distributed yesterday.
- Due next Tuesday.
- ► Must be typeset (LATEX or Word) and submitted electronically
- Submit source-able, commented code with journal-quality graphics

GETTING HELP

- 1. General questions should go to email list.
- 2. Response time: 24-response times during week, longer on weekends.
- 3. Office hours:
 - Adam: Tuesdays 4-6pm
 - ► Andy: Mondays 9-11am
 - Konstantin: Fridays 2-4pm (EXCEPT FOR THIS WEEK: 11am-1pm)
- 4. Formula Wiki

ADMINISTRATIVE DETAILS

REGRESSION

GOODNESS-OF-FIT: R²

Appendix

$$\hat{B}_{o} = \bar{y} - \hat{B}_{1}\bar{x}.$$

$$\hat{B}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}.$$

ADMINISTRATIVE DETAILS

REGRESSION

Goodness-of-Fit: R^2

APPENDIX

K²

How much variance are we explaining?

To calculate R^2 , we need to think about the following two quantities:

- 1. TSS: Total sum of squares
- 2. SSR: Sum of squared residuals

$$TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2.$$

$$SSR = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2.$$

$$R^2 = 1 - \frac{SSR}{TSS}.$$

Questions?

Administrative Details

REGRESSION

GOODNESS-OF-FIT: R²

APPENDIX

APPENDIX

DERIVING THE LINEAR LEAST SQUARES ESTIMATOR

Let $\tilde{\beta}_0$ and $\tilde{\beta}_1$ be possible values for β_0 and β_1 respectively, and

$$S(\tilde{\beta}_{o},\tilde{\beta}_{1})=\sum_{i=1}^{n}(y_{i}-\tilde{\beta}_{o}-x_{i}\tilde{\beta}_{1})^{2}.$$

- 1. Take partial derivatives of S with respect to $\tilde{\beta}_0$ and $\tilde{\beta}_1$.
- 2. Set each of the partial derivatives to o
- 3. Substitute $\hat{\beta}_0$ and $\hat{\beta}_1$ for $\tilde{\beta}_0$ and $\tilde{\beta}_1$ and solve for $\hat{\beta}_0$ and $\hat{\beta}_1$

and

$$S(\tilde{\beta}_{o}, \tilde{\beta}_{1}) = \sum_{i=1}^{n} (y_{i} - \tilde{\beta}_{o} - x_{i}\tilde{\beta}_{1})^{2}$$

$$= \sum_{i=1}^{n} (y_{i}^{2} - 2y_{i}\tilde{\beta}_{o} - 2y_{i}\tilde{\beta}_{1}x_{i} + \tilde{\beta}_{o}^{2} + 2\tilde{\beta}_{o}\tilde{\beta}_{1}x_{i} + \tilde{\beta}_{1}^{2}x_{i}^{2})$$

$$\frac{\partial S(\tilde{\beta}_{o}, \tilde{\beta}_{1})}{\partial \tilde{\beta}_{o}} = \sum_{i=1}^{n} (-2y_{i} + 2\tilde{\beta}_{o} + 2\tilde{\beta}_{1}x_{i})$$

$$\frac{\partial S(\tilde{\beta}_{o}, \tilde{\beta}_{1})}{\partial \tilde{\beta}_{1}} = \sum_{i=1}^{n} (-2y_{i}x_{i} + 2\tilde{\beta}_{o}x_{i} + 2\tilde{\beta}_{1}x_{i}^{2})$$

We set the partial derivatives to zero

$$\frac{\partial S(\tilde{\beta}_{o},\tilde{\beta}_{1})}{\partial \tilde{\beta}_{o}} = \sum_{i=1}^{n} (-2y_{i} + 2\tilde{\beta}_{o} + 2\tilde{\beta}_{1}x_{i})$$

becomes

$$\hat{\beta}_{\circ} n = \left(\sum_{i=1}^{n} y_{i}\right) - \hat{\beta}_{1} \left(\sum_{i=1}^{n} x_{i}\right)$$

and

$$\frac{\partial S(\tilde{\beta}_{o},\tilde{\beta}_{1})}{\partial \tilde{\beta}_{1}} = \sum_{i=1}^{n} \left(-2y_{i}x_{i} + 2\tilde{\beta}_{o}x_{i} + 2\tilde{\beta}_{1}x_{i}^{2}\right)$$

becomes

$$\hat{\beta}_1 \sum_{i=1}^n x_1^2 = \left(\sum_{i=1}^n x_i y_i\right) - \hat{\beta}_0 \left(\sum_{i=1}^n x_i\right)$$

Normal Equations: Two equations, two unkowns.

$$\hat{\beta}_{\circ} n = \left(\sum_{i=1}^{n} y_{i}\right) - \hat{\beta}_{1} \left(\sum_{i=1}^{n} x_{i}\right)$$

$$\hat{\beta}_1 \sum_{i=1}^n x_1^2 = \left(\sum_{i=1}^n x_i y_i\right) - \hat{\beta}_0 \left(\sum_{i=1}^n x_i\right)$$

Solving for $\hat{\beta}_0$ is straight forward:

$$\hat{\beta}_{\rm o} = \bar{y} - \hat{\beta}_{\scriptscriptstyle 1} \bar{x}$$

Let's solve for $\hat{\beta}_1$. We have two equations. We can manipulate them by multiplying the first by $\sum_{i=1}^{n} x_i$ and the second one by n.

$$\hat{\beta}_{0} n \sum_{i=1}^{n} x_{i} + \hat{\beta}_{1} \left(\sum_{i=1}^{n} x_{i} \right) \sum_{i=1}^{n} x_{i} = \left(\sum_{i=1}^{n} y_{i} \right) \sum_{i=1}^{n} x_{i}$$

$$\hat{\beta}_{0} n \left(\sum_{i=1}^{n} x_{i} \right) + n \hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2} = n \left(\sum_{i=1}^{n} x_{i} y_{i} \right)$$

Putting them together

$$\hat{\beta}_{1}\left(\left(\sum_{i=1}^{n} x_{i}\right) \sum_{i=1}^{n} x_{i} - n \sum_{i=1}^{n} x_{i}^{2}\right) = \left(\sum_{i=1}^{n} y_{i}\right) \sum_{i=1}^{n} x_{i} - n \left(\sum_{i=1}^{n} x_{i} y_{i}\right)$$

Rearranging we get

$$\hat{\beta}_{1} = \frac{n\left(\sum_{i=1}^{n} x_{i} y_{i}\right) - \sum_{i=1}^{n} y_{i} \sum_{i=1}^{n} x_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i}}$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$\hat{\beta}_{1} = \frac{Cov(x, y)}{Var(x)}$$

We also have from the assumptions the $E(\epsilon) = 0$ and $Cov(X_i \epsilon_j) = 0$ that

$$\sum_{i=1}^{n} \hat{u}_i = 0$$

$$\sum_{i=1}^{n} x_i \hat{u}_i = 0$$

$$\sum_{i=1}^{n} \hat{y}_i \hat{u}_i = 0$$