Physikalisches Praktikum

Die Potenzialwaage

Versuch 10

Name:	Daniel Elkeles E-Mail: daniel.elkeles@stud.uni-goettingen.de Tom Groß E-Mail: tom.gross@stud.uni-goettingen.de
Tutorin: Gruppe:	Jantje Freudenthal 10
Durchgeführt am: Protokoll abgegeben: Protokoll verbessert:	03.06.2013 17.06.2013
Testiert:	

Inhaltsverzeichnis

1.	Einleitung	1
2.	Theorie 2.1. Das Elektrische Feld und die Coulomb Kraft	1 1 1
3.	Durchführung	1
4.	Auswertung	1
5.	Diskussion	1
Α.	Messwerte (Original)	2

1. Einleitung

2. Theorie

2.1. Das Elektrische Feld und die Coulomb Kraft

Analog zur Gravitationkraft zwischen Massen existieren auch zwischen elektrischen Ladungen Kräfte. Nach dem Coulombschen Gesetz werden diese durch die Formel

$$\vec{F} = \frac{1}{4\pi\varepsilon_0\varepsilon_r} \cdot \frac{Q_1Q_2}{\vec{r}^2}\hat{r} \tag{1}$$

beschrieben. <erklärung der parameter>

2.2. Plattenkondensator

Ein Plattenkondensator besteht aus zwei gegenüberliegenden Metallplatten mit Abstand d. Wird nun eine Spannung U angelegt, erfolgt eine Ladungstrennung, welche ein elektrisches Feld zwischen den Platten erzeugt. Durch den Satz von Gauß ergibt sich für die Ladung Q die Formel

$$Q = C \cdot U, \tag{2}$$

wobei C die Kapazität des Kondensators beschreibt. Die Kapazität hängt von der Geometrie des Kondensators und vom Dielektrikum ab. Mit der Permittivität $\varepsilon = \varepsilon_r \cdot \varepsilon_0$ ergibt sich der folgende Zusammenhang:

$$C = \varepsilon_r \varepsilon_0 \frac{A}{d}.$$
 (3)

 $(d: {\it Abstand}$ der Kondensatorplatten, $A: {\it Fläche}$ des Plattenkondensators) Die Arbeit, welche bei anlegen einer Spannung U, auf eine infinitesimale Ladung dqgeleistet wird, kann mithilfe der Formel

$$dW = dq \frac{Q}{C} \tag{4}$$

errechnet werden. Für die Gesamtenergie, die das System erhält, gilt also:

$$W = \frac{1}{C} \int_{0}^{Q} Q' dQ' = \frac{Q^{2}}{2C} = \frac{1}{2}CU^{2} = \frac{\varepsilon_{0}\varepsilon_{r}AU^{2}}{2d}$$
 (5)

Dadurch gilt für die Kraft, die zwischen den Platten wirkt

$$F = -\nabla W = -\frac{\mathrm{d}}{\mathrm{d}d} \left(\frac{\varepsilon_0 \varepsilon_r A U^2}{2d} \right) = \frac{\varepsilon_0 \varepsilon_r A U^2}{2d^2}.$$
 (6)

3. Durchführung

4. Auswertung

5. Diskussion

A. Messwerte (Original)