Sample Questions on Numerical Integration

1. Trapezoidal Rule

Conceptual Questions

Q1. The trapezoidal rule approximates the area under a curve by:

- (a) Fitting a straight line between points.
- (b) Fitting a quadratic polynomial between points.
- (c) Fitting a cubic polynomial between points.
- (d) Using random sampling.

Q2. For the trapezoidal rule, the error is proportional to:

- (a) h^2
- (b) h^3
- (c) h^{-1}
- (d) h

Numerical Questions

Q3. Use the trapezoidal rule with n=2 to approximate $\int_0^1 x^2 dx$:

- (a) 0.25
- (b) 0.333
- (c) 0.5
- (d) 0.375

Q4. Compute $\int_1^3 x^2 dx$ using the trapezoidal rule with n=4:

- (a) 8.6667
- (b) 9.0
- (c) 8.5
- (d) 9.3333

2. Simpson's 1/3 Rule

Conceptual Questions

Q5. Simpson's 1/3 rule requires the number of intervals n to be:

- (a) Odd.
- (b) Even.
- (c) Prime.
- (d) Any value.

Q6. Simpson's 1/3 rule is exact for:

- (a) Linear functions.
- (b) Quadratic functions.
- (c) Cubic functions.
- (d) Exponential functions.

Numerical Questions

Q7. Use Simpson's 1/3 rule to approximate $\int_0^1 x^2 dx$ with n=2:

- (a) 0.3333
- (b) 0.3750
- (c) 0.3417
- (d) 0.3167

Q8. Approximate $\int_0^2 e^x dx$ using Simpson's 1/3 rule with n=4:

- (a) 6.389
- (b) 6.420
- (c) 6.319
- (d) 6.500

3. Simpson's 3/8 Rule

Conceptual Questions

Q9. Simpson's 3/8 rule divides the interval into subintervals that are multiples of:

- (a) 3.
- (b) 4.
- (c) 2.
- (d) 5.

Q10. The degree of the polynomial that Simpson's $3/8$ rule integrates exactly is:
(a) Linear.
(b) Quadratic.
(c) Cubic.
(d) Quartic.
Numerical Questions
Q11. Use Simpson's 3/8 rule to approximate $\int_0^3 x^3 dx$ with $n=3$:
(a) 20.25
(b) 21.75
(c) 20.5
(d) 21.33
Q12. Approximate $\int_0^1 \sin(x) dx$ using Simpson's 3/8 rule with $n=3$:
(a) 0.4597
(b) 0.4600
(c) 0.4555
(d) 0.4589
4. Monte Carlo Integration
Conceptual Questions
Q13. Monte Carlo integration is best suited for:
(a) Low-dimensional integrals.
(b) High-dimensional integrals.

 ${\bf Q14.}\,$ The error in Monte Carlo integration decreases as:

(c) Functions with known antiderivatives.

(a) $O(1/n^2)$.

(d) Periodic functions.

- (b) $O(1/\sqrt{n})$.
- (c) $O(1/n^3)$.
- (d) O(n).