Funkcionalna analiza Zapiski predavanj

2023/24

Povzetek

Dokument vsebuje zapiske predavanj predmeta Funkcionalna Analiza v okviru študija prvega letnika magistrskega študija matematike na FNM.

Kazalo

1 Vektorski prostori

3

1 Vektorski prostori

Preden se lotimo glavne teme naloge bomo definirali in opisali nekaj osnovnih lastnosti Hilbertovih prostorov.

Spomnimo se najprej definicije vektorskih prostorov in linearne neodvisnosti.

Definicija 1: Naj bo F poljubno polje z nevtralnim elementom 0 in enoto 1. Neprazna množica V, skupaj z operacijama $+: V \times V \to V$ in $\cdot: F \times V \to V$ je vektorski prostor nad F, če velja:

- (V, +) je Abelova grupa
- $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$; $\forall \alpha, \beta \in F \& \forall x \in V$
- $\alpha \cdot (x+y) = \alpha \cdot x + \alpha \cdot y; \ \forall \alpha \in F \& \forall x, y \in V$
- $\alpha \cdot (\beta \cdot x) = (\alpha \beta) \cdot x$; $\forall \alpha, \beta \in F \& \forall x \in V$
- $1 \cdot x = x$; $\forall x \in V$

Definicija 2: Naj bo $n \in \mathbb{N}$ in naj bo V poljuben vektorski prostor nad poljubnim poljem F. Pravimo, da so vektorji $x_1, x_2, \ldots, x_n \in V$ <u>linearno</u> <u>neodvisni</u>, če enakost $\alpha_1 \cdot x_1 + \alpha_2 \cdot x_2 + \ldots + \alpha_n \cdot x_n = 0$ velja le za $\alpha_1 = \alpha_2 = \ldots = \alpha_n = 0$. Če vektorji x_1, x_2, \ldots, x_n niso linearno neodvisni, pravimo, da so linearno odvisni.

Naj boM poljubna neprazna podmnožica vektorskega prostora V. Pravimo, da je M <u>linearno neodvisna</u>, če je vsaka njena končna podmnožica linearno neodvisna.

Opomba 1: V nadaljevanju bomo s \mathbb{F} označili polje, ki je ali polje realnih števil \mathbb{R} , ali pa polje kompleksnih števil \mathbb{C} . Kadar bo pomembno, bomo natančno navedli, če je $\mathbb{F} = \mathbb{R}$ ali $\mathbb{F} = \mathbb{C}$.

Sedaj se spomnimo definicij norme in skalarnega produkta, saj bosta v nadaljevanju ta pojma ključna.

Definicija 3: Naj bo V vektorski prostor nad \mathbb{F} . Preslikavi $||.||:V\to\mathbb{R}$ pravimo norma na V, če velja:

- $||x|| \ge 0$; $\forall x \in V$
- $||x|| = 0 \iff x = 0$
- $||\alpha \cdot x|| = |\alpha|||x||$; $\forall \alpha \in \mathbb{F} \& \forall x \in V$
- ||x + y|| < ||x|| + ||y||; $\forall x, y \in V$

Če je ||.|| norma na V, pravimo, da je $(V, +, \cdot, ||.||)$ normiran prostor (nad \mathbb{F}).

Opomba 2: Naj bo $(V, +, \cdot, ||.||)$ normiran prostor nad poljem \mathbb{F} . Enostavno je preveriti naslednje rezultate:

- ||0|| = 0
- $||x_1 + x_2 + \ldots + x_n|| \le ||x_1|| + ||x_2|| + \ldots + ||x_n||$; $\forall x_1, x_2, \ldots, x_n \in V$

• $|||x|| - ||y||| \le ||x - y||$; $\forall x, y \in V$

Opomba 3: Naj bo $(V, +, \cdot, ||.||)$ normiran prostor nad poljem \mathbb{F} . Enostavno je preveriti, da je s predpisom $d(x, y) = ||x - y|| \ \forall x, y \in V$ definirana metrika na V. Za to metriko pravimo, da je porojena z normo ||.||.

Dejstvo, da vsaka norma porodi metriko nas motivira, da obravnavamo konvergenco tudi v normiranih prostorih.

Definicija 4: Naj bo (V, ||.||) normiran prostor nad poljem \mathbb{F} . Naj bo $\bar{x} = (x_n)_{n \in \mathbb{N}}$ zaporedje s členi iz V.

- Pravimo, da je zaporedje \bar{x} konvergentno, če obstaja tak $x \in V$, da za vsak $\varepsilon > 0$ obstaja tak $n_0 \in \mathbb{N}$, da za vsak $n \in \mathbb{N}$ velja: $n \geq n_0 \Rightarrow ||x_n x|| < \varepsilon$. V tem primeru pravimo, da je x limita zaporedja $(x_n)_{n \in \mathbb{N}}$ in pišemo $\lim_{n \to \infty} x_n = x$.
- Pravimo, da je zaporedje \bar{x} <u>Cauchyjevo</u>, če za vsak $\varepsilon > 0$ obstaja tak $n_0 \in \mathbb{N}$, da za poljubna $m, n \in \mathbb{N}$ velja: $m, n \geq n_0 \Rightarrow ||x_m x_n|| < \varepsilon$.
- Naj bo \bar{s} zaporedje podano s predpisom $s_n = \sum_{k=1}^n x_k; \ \forall n \in \mathbb{N}$. Pravimo, da je vrsta $\sum_{k=1}^\infty x_k$ konvergentna, če je konvergentno zaporedje \bar{s} . Če je s limita zaporedja \bar{s} , tedaj pravimo, da je s vsota vrste $\sum_{k=1}^\infty x_k$ in pišemo $s = \sum_{k=1}^\infty x_k$.
- Pravimo, da je vrsta $\sum_{k=1}^{\infty} x_k$ absolutno konvergentna, če je vrsta $\sum_{k=1}^{\infty} ||x_k||$ konvergentna.

Naslednja trditev nam pove, da za limite v normiranih prostorih veljajo analogi nekaterih rezultatov, ki so nam znani že iz obravnave realnih zaporedij.

Trditev 1. Naj bo (V, ||.||) normiran prostor nad \mathbb{F} . Naj bosta $(x_n)_{n \in \mathbb{N}}$ in $(y_n)_{n \in \mathbb{N}}$ poljubni konvergentni zaporedji s členi iz V in z limitama x ter y. Naj bo $(\alpha_n)_{n \in \mathbb{N}}$ poljubno konvergentno zaporedje s členi iz \mathbb{F} z limito α . Tedaj velja:

- $i) \lim_{n\to\infty} (x_n + y_n) = x + y$
- *ii*) $\lim_{n\to\infty} ||x_n|| = ||\lim_{n\to\infty} x_n|| = ||x||$
- iii) $\lim_{n\to\infty} (\alpha_n \cdot x_n) = \alpha \cdot x$
- Dokaz. i) Naj bo $\varepsilon > 0$ poljuben. Ker sta zaporedji $(x_n)_{n \in \mathbb{N}}$ in $(y_n)_{n \in \mathbb{N}}$ konvergentni z limitama x in y, obstajata taka $n_1, n_2 \in \mathbb{N}$, da vse $n \in \mathbb{N}$, ki so večji ali enaki n_1 , velja $||x_n x|| < \frac{\varepsilon}{2}$ in za vse $n \in \mathbb{N}$, ki so večji ali enaki n_2 velja $||y_n y|| < \frac{\varepsilon}{2}$. Naj bo $n_0 = \max\{n_1, n_2\}$. Tedaj je $||x_n + y_n (x + y)|| = ||(x_n x) + (y_n y)|| \le ||x_n x|| + ||y_n y|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ za vse $n \in \mathbb{N}$, ki so večji ali enaki n_0 . Sledi, da je zaporedje $(x_n + y_n)_{n \in \mathbb{N}}$ konvergentno z limito x + y.
- ii) Najprej opazimo, da je zaporedje (||x_n-x||) realno konvergentno zaporedje z limito 0, saj je zaporedje (x_n) konvergentno z limito x. Po tretji točki iz opombe 1 za vsak $n \in \mathbb{N}$ velja $0 \le |||x_n|| ||x||| \le ||x_n-x||$. Po pravilu o sendviču zato sklepamo, da je $\lim_{n\to\infty} |||x_n|| ||x||| = 0$. Po znanem rezultatu iz Analize 1 potem velja, da je tudi $\lim_{n\to\infty} (||x_n|| ||x||) = 0$. Sledi, da je $\lim_{n\to\infty} ||x_n|| ||x|| = 0$ oziroma $\lim_{n\to\infty} ||x_n|| = ||x||$.

iii) Ponovno upoštevamo, da je $||x_n-x||$ konvergentno realno zaporedje z limito 0, ter na enak način vidimo, da je $|\alpha_n-\alpha|$ konvergentno realno zaporedje z limito 0. Dodatno vidimo, da za vsak $n \in \mathbb{N}$ velja:

$$0 \le ||\alpha_n \cdot x_n - \alpha \cdot x|| \le ||\alpha_n \cdot x_n - \alpha \cdot x_n + \alpha \cdot x_n - \alpha \cdot x||$$

Skrajno desno normo sedaj po trikotniškem pravilu ocenimo navzgor z

$$||\alpha_n \cdot x_n - \alpha \cdot x_n|| + ||\alpha \cdot x_n - \alpha \cdot x|| = ||\alpha_n - \alpha|||x_n|| + ||\alpha|||x_n - x||$$

Velja torej ocena:

$$0 \le ||\alpha_n \cdot x_n - \alpha \cdot x|| \le ||\alpha_n - \alpha|| ||x_n|| + ||\alpha|| ||x_n - x|| \tag{1}$$

Sedaj opazimo, upoštevajoč prejšnjo točko, da je $|\alpha_n - \alpha| ||x_n||$ produkt dveh konvergentnih realnih zaporedij in velja:

$$\lim_{n \to \infty} |\alpha_n - \alpha| ||x_n|| = \lim_{n \to \infty} |\alpha_n - \alpha| \cdot \lim_{n \to \infty} ||x_n|| = 0 \cdot ||x|| = 0$$

Dodatno vidimo, da je $\lim_{n\to\infty} |\alpha| ||x_n-x|| = |\alpha| \lim_{n\to\infty} ||x_n-x|| = |\alpha| \cdot 0 = 0$. Potem sledi, da je zaporedje $(|\alpha_n-\alpha|||x_n||+|\alpha|||x_n-x||)_{n\in\mathbb{N}}$ realno konvergentno zaporedje z limito 0. Po pravilu o sendviču, upoštevajoč oceno (1), sklepamo, da je potem $\lim_{n\to\infty} ||\alpha_n\cdot x_n-\alpha\cdot x|| = 0$, od tod pa sledi, da za vsak $\varepsilon>0$ obstaja $n_0\in\mathbb{N}$, da za vsak $n\in\mathbb{N}$, ki je večji ali enak n_0 , velja $||(\alpha_n\cdot x_n-\alpha\cdot x)-0||=||\alpha_n\cdot x_n-\alpha\cdot x||<\varepsilon$. Po definiciji konvergence zaporedja potem sledi, da je $\lim_{n\to\infty} (\alpha_n\cdot x_n)=\alpha\cdot x$.