Planche nº 4. Révision algèbre linéaire.

Déterminants

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Exercice nº 1 (**)

Soient $A=(\mathfrak{a}_{i,j})_{1\leqslant i,j\leqslant n}$ une matrice carrée et $B=(\mathfrak{b}_{i,j})_{1\leqslant i,j\leqslant n}$ où $\mathfrak{b}_{i,j}=(-1)^{i+j}\mathfrak{a}_{i,j}$. Calculer $\det(B)$ en fonction $\det(A)$.

Exercice nº 2 (***)

On définit par blocs une matrice A par $A = \begin{pmatrix} B & D \\ 0 & C \end{pmatrix}$ où A, B et C sont des matrices carrées de formats respectifs \mathfrak{n} , \mathfrak{p} et \mathfrak{q} avec $\mathfrak{p} + \mathfrak{q} = \mathfrak{n}$. Montrer que $\det(A) = \det(B) \times \det(C)$.

Exercice nº 3 (*** I) (Déterminant de VANDERMONDE).

Soient $x_0,...,x_{n-1}$ n nombres complexes. Calculer $\operatorname{Van}(x_0,...,x_{n-1}) = \det\left(x_{j-1}^{i-1}\right)_{1 \leq i,j \leq n}$.

Exercice nº 4 (**** I) (Déterminant de CAUCHY).

Soient $a_1,..., a_n, b_1,..., b_n$ 2n nombres complexes tels que toutes les sommes $a_i + b_j, 1 \leqslant i,j \leqslant n$, soient non nulles. Calculer $C_n = \det\left(\frac{1}{a_i + b_j}\right)_{1 \leqslant i,j \leqslant n}$. Cas particulier : $\forall i \in [\![1,n]\!], \ a_i = b_i = i$ (déterminant de Hilbert).

Exercice nº 5 (**)

Résoudre le système MX=U où $M=(j^{i-1})_{1\leqslant i,j\leqslant n}\in M_n(\mathbb{R}),\ U=(\delta_{i,1})_{1\leqslant i\leqslant n}\in M_{n,1}(\mathbb{R})$ et X est un vecteur colonne inconnu.

Exercice nº 6 (**)

Calculer $\det(\sin(a_i + a_j))_{1 \le i,j \le n}$ où $a_1,..., a_n$ sont n réels donnés $(n \ge 2)$.

Exercice nº 7 (**)

Calculer $\det(a_i + b_i)_{1 \le i, i \le n}$ où $a_1, \dots, a_n, b_1, \dots, b_n$ sont 2n complexes donnés.

Exercice nº 8 (**)

Calculer $\det((a+i+j)^2)_{1 \le i,j \le n}$ où a est un complexe donné.

Exercice no 9 (****)

Soient $x_1,..., x_n$ n entiers naturels tels que $x_1 < ... < x_n$. A l'aide du calcul de $\det \left({x_j \choose i-1} \right)_{1 \leqslant i,j \leqslant n}$, montrer que $\prod_{1 \leqslant i < j \leqslant n} \frac{x_j - x_i}{j-i} \text{ est un entier naturel.}$

Exercice nº 10 (****) (Déterminants circulants).

Exercice no 11 (** I)

1) Soient $a_{i,j}$, $1 \le i,j \le n$, n^2 fonctions dérivables sur $\mathbb R$ à valeurs dans $\mathbb C$. Soit $d = \det(a_{i,j})_{1 \le i,j \le n}$. Montrer que d est dérivable sur $\mathbb R$ et calculer d'.

2) Application: calculer
$$d_n(x) = \begin{bmatrix} x+1 & 1 & \dots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \dots & 1 & x+1 \end{bmatrix}$$
.

Exercice nº 12 (***)

Soient A et B deux matrices carrées réelles de format n. Montrer que le déterminant de la matrice $\begin{pmatrix} A & -B \\ B & A \end{pmatrix}$ de format 2n est un réel positif.

Exercice no 13 (***)

Soient A, B, C et D quatre matrices carrées de format n. Montrer que si C et D commutent et si D est inversible alors $\det \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) = \det(AD - BC).$ Montrer que le résultat persiste si D n'est pas inversible.

Exercice nº 14 (***)

Soit A une matrice carrée complexe de format $n \ (n \ge 2)$ telle que pour tout élément M de $M_n(\mathbb{C})$, on ait $\det(A+M) = \det(A) + \det(M)$. Montrer que A = 0.

Exercice nº 15 (** I) (polynôme caractéristique d'une matrice compagnon)

Soient
$$a_0, \dots, a_{n-1}$$
 n nombres complexes et $A = \begin{pmatrix} 0 & \dots & 0 & a_0 \\ 1 & \ddots & & \vdots & a_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \dots & 0 & 1 & a_{n-1} \end{pmatrix}$. Calculer $\det(xI_n - A)$.

Exercice nº 16 (**)

Calculer les déterminants suivants :

$$\textbf{1)} \ \det A \ \text{où} \ A \in M_{2n}(\mathbb{K}) \ \mathrm{est} \ \mathrm{telle} \ \mathrm{que} \ \alpha_{i,i} = \alpha \ \mathrm{et} \ \alpha_{i,2n+1-i} = b \ \mathrm{et} \ \alpha_{i,j} = 0 \ \mathrm{sinon}.$$

$$2) \begin{vmatrix} 1 & 0 & \cdots & \cdots & 0 & 1 \\ 0 & 0 & & & & 0 & 0 \\ \vdots & & & & & \vdots \\ 0 & 0 & & & & 0 & 0 \\ 1 & 0 & \cdots & & & 0 & 1 \\ \end{vmatrix} \begin{vmatrix} 1 & \cdots & & & & \ddots & 1 \\ \vdots & 0 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 1 \\ 1 & 1 & \cdots & 1 & 0 \end{vmatrix} et \begin{vmatrix} 0 & 1 & \cdots & & & 1 \\ 1 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 1 \\ 1 & 1 & \cdots & 1 & 0 \end{vmatrix} (n \ge 2)$$

4) (I)
$$\begin{vmatrix} a & b & \dots & b \\ b & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ b & \dots & b & a \end{vmatrix}$$
 $(n \ge 2)$.