Conditions for the Covariance Operator of a (Unitarily) Time-Changed Stationary Process On The Real Line To Be Self-Adjoint

BY STEPHEN CROWLEY August 12, 2025

Table of contents

1	Introduction]
2	Fourier analysis and spectral densities	1
	2.1 Fourier transform conventions	
3	Time-changed stationary kernels in the frequency domain	•
	3.1 Setup and spectral representation for stationary kernels	3
4	Random wave model on the line	
	4.1 Frequency-side density on [-1,1]	6
5	Non-monotone time changes	7
6	Main characterization	8

1 Introduction

This document develops a Fourier-domain framework for translation-invariant kernels on the real line, their spectral measures via a frequency-domain characterization, and the operator-theoretic consequences for integral operators under measurable time changes. All assertions include detailed proofs. The random wave model using the stationary kernel $J_0(|x|)$ is presented as an example whose spectral density is supported on the interval [-1, 1]. Time changes are treated by unitary conjugation in the strictly monotone case.

2 Fourier analysis and spectral densities

2.1 Fourier transform conventions

For $f \in L^1(\mathbb{R})$, define

$$\hat{f}(\omega) = \int_{\mathbb{R}} f(x) e^{-i\omega x} dx \tag{1}$$

and

$$f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{f}(\omega) e^{i\omega x} d\omega$$
 (2)

For a finite nonnegative Borel measure μ on \mathbb{R} , define its Fourier–Stieltjes transform by

$$\hat{\mu}(x) = \int_{\mathbb{R}} e^{i\omega x} d\mu(\omega) \tag{3}$$

2.2 Spectral characterization in the frequency domain

Theorem 1

(Bochner-Wiener-Khintchine characterization) A continuous function $\phi: \mathbb{R} \to \mathbb{C}$ is positive definite if and only if there exists a finite nonnegative Borel measure μ on \mathbb{R} such that

$$\phi(x) = \int_{\mathbb{R}} e^{i\omega x} d\mu(\omega) \forall x \in \mathbb{R}$$
 (4)

If μ is absolutely continuous with respect to Lebesgue measure with density $S(\omega) \geq 0$, then

$$\phi(x) = \int_{\mathbb{R}} e^{i\omega x} S(\omega) d\omega \tag{5}$$

If $\phi \in L^1(\mathbb{R})$, then

$$\phi(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{\phi}(\omega) e^{i\omega x} d\omega \tag{6}$$

and the absolutely continuous spectral measure satisfies

$$d\,\mu(\omega) = S(\omega)\,d\,\omega\tag{7}$$

with

$$S(\omega) = \frac{1}{2\pi} \hat{\phi}(\omega) \tag{8}$$

and $S(\omega) \geq 0$ almost everywhere.

Proof. First, suppose

$$\phi(x) = \int e^{i\omega x} d\mu(\omega) \tag{9}$$

for a finite nonnegative Borel measure μ . For any finite set of points $x_1, \ldots, x_n \in \mathbb{R}$ and complex numbers c_1, \ldots, c_n , we have

$$\sum_{j,k=1}^{n} c_{j} \bar{c_{k}} \phi(x_{j} - x_{k}) = \sum_{j,k=1}^{n} c_{j} \bar{c_{k}} \int e^{i\omega(x_{j} - x_{k})} d\mu(\omega)$$
(10)

$$= \int \left| \sum_{j=1}^{n} c_j e^{i\omega x_j} \right|^2 d\mu(\omega) \ge 0 \tag{11}$$

since μ is nonnegative. Thus ϕ is positive definite.

Conversely, if ϕ is continuous and positive definite, then by Bochner's theorem there exists a unique finite nonnegative Borel measure μ such that

$$\phi(x) = \int e^{i\omega x} d\mu(\omega) \tag{12}$$

The remaining statements follow from standard Fourier analysis: if μ has density $S(\omega)$ then

$$\phi(x) = \int e^{i\omega x} S(\omega) d\omega \tag{13}$$

and if $\phi \in L^1(\mathbb{R})$ then by Fourier inversion

$$\phi(x) = \frac{1}{2\pi} \int \hat{\phi}(\omega) e^{i\omega x} d\omega \tag{14}$$

giving

$$S(\omega) = \frac{1}{2\pi} \,\hat{\phi}(\omega) \ge 0 \tag{15}$$

almost everywhere by the positive definiteness of ϕ .

3 Time-changed stationary kernels in the frequency domain

3.1 Setup and spectral representation for stationary kernels

Let $\phi: \mathbb{R} \to \mathbb{C}$ be continuous and positive definite with spectral measure μ and, when absolutely continuous, spectral density $S(\omega) \geq 0$. Define the stationary kernel

$$K(x,y) = \phi(x-y) = \int_{\mathbb{R}} e^{i\omega(x-y)} d\mu(\omega)$$
 (16)

Let $\theta: \mathbb{R} \to \mathbb{R}$ be measurable and define the time-changed kernel

$$K_{\theta}(s,t) = \phi\left(\theta(s) - \theta(t)\right)\sqrt{\theta'(s)}\sqrt{\theta'(t)}$$
(17)

The identity

$$K_{\theta}(s,t) = \sqrt{\theta'(s)} \sqrt{\theta'(t)} \int_{\mathbb{R}} e^{i\omega(\theta(s) - \theta(t))} d\mu(\omega)$$
(18)

follows directly from the stationary kernel's frequency-domain representation by substituting $x = \theta(s)$ and $y = \theta(t)$ inside the phase.

3.2 Integral operators and unitary conjugation in the monotone case

Define the integral operator T_{θ} on $L^{2}(\mathbb{R})$ by

$$(T_{\theta} f)(s) = \int_{\mathbb{R}} K_{\theta}(s, t) f(t) dt$$
(19)

Assume that θ is strictly monotone and absolutely continuous with derivative $\theta'(s) > 0$ almost everywhere, so that θ is invertible with absolutely continuous inverse θ^{-1} and $(\theta^{-1})'(u) = 1/\theta'(\theta^{-1}(u))$.

Lemma 2

(Unitary change of variables) Define $U: L^2(\mathbb{R}, ds) \to L^2(\mathbb{R}, du)$ by

$$(Uf)(u) = f(\theta^{-1}(u))\sqrt{(\theta^{-1})'(u)} = \frac{f(\theta^{-1}(u))}{\sqrt{\theta'(\theta^{-1}(u))}}$$
(20)

Then U is unitary.

Proof. Let $f \in L^2(\mathbb{R}, ds)$. Then

$$||Uf||_{L^{2}(du)}^{2} = \int_{\mathbb{R}} |f(\theta^{-1}(u))|^{2} (\theta^{-1})'(u) du$$
(21)

Setting $s = \theta^{-1}(u)$ gives $ds = (\theta^{-1})'(u) du$, hence

$$||Uf||_{L^{2}(du)}^{2} = \int_{\mathbb{R}} |f(s)|^{2} ds = ||f||_{L^{2}(ds)}^{2}$$
(22)

Thus U is an isometry onto $L^2(\mathbb{R}, du)$ and therefore unitary.

Theorem 3

(Unitary equivalence to a weighted stationary convolution) Let ϕ be continuous and positive definite with spectral density $S(\omega)$ when absolutely continuous. Define S: $L^2(\mathbb{R}) \to L^2(\mathbb{R})$ by

$$(\mathcal{S}g)(u) = \int_{\mathbb{R}} \phi(u - v) g(v) dv$$
(23)

and let M_w be multiplication by

$$w(u) = \sqrt{(\theta^{-1})'(u)} \tag{24}$$

If θ is strictly monotone and absolutely continuous with $\theta'(s) > 0$ almost everywhere, then

$$UT_{\theta}U^{-1} = M_w \mathcal{S}M_w \tag{25}$$

Proof. Let $g \in L^2(\mathbb{R}, du)$. Then

$$U^{-1}g(s) = g(\theta(s))\sqrt{\theta'(s)}$$
(26)

Compute (TODO: this is fucking hideous and unnecessary, streamline this whole fucking proof)

$$(UT_{\theta}U^{-1}g)(u) = \sqrt{(\theta^{-1})'(u)} \int_{\mathbb{R}} \phi \left(\theta(\theta^{-1}(u)) - \theta(t)\right) \sqrt{\theta'(\theta^{-1}(u))} \sqrt{\theta'(t)} g(\theta(t)) \sqrt{\theta'(t)} dt \qquad (27)$$

$$=\sqrt{(\theta^{-1})'(u)}\int_{\mathbb{R}}\phi\left(u-\theta(t)\right)g(\theta(t))\theta'(t)\,dt\tag{28}$$

Set

$$v = \theta(t) \tag{29}$$

so that

$$dv = \theta'(t) dt \tag{30}$$

and

$$\theta'(t) dt = dv \tag{31}$$

Then

$$(UT_{\theta}U^{-1}g)(u) = \sqrt{(\theta^{-1})'(u)} \int_{\mathbb{R}} \phi(u-v) g(v) dv$$
(32)

This can be written as

$$(UT_{\theta}U^{-1}g)(u) = \sqrt{(\theta^{-1})'(u)} \int_{\mathbb{R}} \phi(u-v) \left(g(v) \frac{\sqrt{(\theta^{-1})'(v)}}{\sqrt{(\theta^{-1})'(v)}}\right) dv$$
 (33)

Setting

$$h(v) = g(v)\sqrt{(\theta^{-1})'(v)} = (M_w g)(v)$$
(34)

we have

$$(UT_{\theta}U^{-1}g)(u) = \sqrt{(\theta^{-1})'(u)} (Sh)(u) = (M_w S M_w g)(u)$$
(35)

3.3 Frequency-domain diagonalization of the stationary operator

Assume $d\mu(\omega) = S(\omega) d\omega$ with $S(\omega) \ge 0$ and $S \in L^{\infty}(\mathbb{R})$. Let \mathcal{F} denote the unitary Fourier transform on $L^2(\mathbb{R})$ with the stated convention. For $g \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$ (and then by density),

$$\widehat{\mathcal{S}}g(\omega) = \widehat{\phi}(\omega)\,\widehat{g}(\omega) \tag{36}$$

Since

$$\phi(x) = \int e^{i\omega x} S(\omega) d\omega \tag{37}$$

one has

$$\hat{\phi}(\omega) = 2\pi S(\omega) \tag{38}$$

almost everywhere, so

$$\widehat{\mathcal{S}}g(\omega) = (2\pi) S(\omega) \, \hat{g}(\omega) \tag{39}$$

i.e.,

$$S = \mathcal{F}^{-1} M_{2\pi S(\cdot)} \mathcal{F} \tag{40}$$

Theorem 4

(Bounded self-adjointness in the monotone case) Assume ϕ is continuous and positive definite with absolutely continuous spectral density $S(\omega) \in L^{\infty}(\mathbb{R})$. If θ is strictly monotone and absolutely continuous with $\theta'(s) > 0$ almost everywhere, then T_{θ} is bounded and self-adjoint on $L^{2}(\mathbb{R})$, with

$$||T_{\theta}|| = ||2\pi S||_{L^{\infty}(\mathbb{R})} \tag{41}$$

Proof. From the previous theorem,

$$UT_{\theta}U^{-1} = M_w \mathcal{S}M_w \tag{42}$$

where

$$w(u) = \sqrt{(\theta^{-1})'(u)} \tag{43}$$

and

$$S = \mathcal{F}^{-1} M_{2\pi S(\cdot)} \mathcal{F} \tag{44}$$

Since M_w is multiplication by a positive real-valued function, $M_w \mathcal{S} M_w$ is unitarily equivalent to \mathcal{S} and therefore to the multiplication operator $M_{2\pi S(\cdot)}$ in Fourier space. Since $2\pi S(\omega) \geq 0$ is real-valued and essentially bounded, this operator is bounded and self-adjoint with norm $\|2\pi S\|_{L^{\infty}}$. These properties transfer to T_{θ} by unitary equivalence. \Box

4 Random wave model on the line

4.1 Frequency-side density on [-1, 1]

Define

$$\phi(x) = J_0(|x|) \forall x \in \mathbb{R} \tag{45}$$

Its Fourier transform under the stated convention equals

$$\hat{\phi}(\omega) = \int_{\mathbb{R}} J_0(|x|) e^{-i\omega x} dx = \frac{2}{\sqrt{1 - \omega^2}} \mathbf{1}_{\{|\omega| \le 1\}}$$
(46)

Therefore the spectral density is

$$S(\omega) = \frac{1}{2\pi} \hat{\phi}(\omega) = \frac{1}{\pi \sqrt{1 - \omega^2}} \mathbf{1}_{\{|\omega| \le 1\}}$$

$$\tag{47}$$

Equivalently,

$$\phi(x) = \int_{\mathbb{R}} e^{i\omega x} \frac{1}{\pi \sqrt{1 - \omega^2}} \mathbf{1}_{\{|\omega| \le 1\}} d\omega \tag{48}$$

where the integrable endpoint singularities at $\omega = \pm 1$ are handled by Lebesgue integration.

4.2 Stationary operator and multiplier

Define $\mathcal{S}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ by

$$(\mathcal{S}f)(x) = \int_{\mathbb{R}} J_0(|x - y|) f(y) dy$$

$$\tag{49}$$

Then

$$\widehat{Sf}(\omega) = \widehat{\phi}(\omega) \, \widehat{f}(\omega) = \frac{2}{\sqrt{1 - \omega^2}} \, \mathbf{1}_{\{|\omega| \le 1\}} \widehat{f}(\omega) \tag{50}$$

Hence S is the frequency multiplier by

$$m(\omega) = \frac{2}{\sqrt{1 - \omega^2}} \mathbf{1}_{\{|\omega| \le 1\}} \tag{51}$$

4.3 Time-changed random wave operator

For a strictly monotone absolutely continuous $\theta: \mathbb{R} \to \mathbb{R}$ with $\theta'(s) > 0$ almost everywhere, define

$$(T_{\theta}f)(s) = \int_{\mathbb{R}} J_0(|\theta(s) - \theta(t)|) \sqrt{\theta'(s)} \sqrt{\theta'(t)} f(t) dt$$
(52)

Then

$$UT_{\theta}U^{-1} = M_w \mathcal{F}^{-1} M_{m(\cdot)} \mathcal{F} M_w \tag{53}$$

where

$$w(u) = \sqrt{(\theta^{-1})'(u)} \tag{54}$$

and

$$m(\omega) = \frac{2}{\sqrt{1 - \omega^2}} \mathbf{1}_{\{|\omega| \le 1\}} \tag{55}$$

Theorem 5

(Self-adjointness for the time-changed random wave operator) Let θ be strictly monotone and absolutely continuous with $\theta'(s) > 0$ almost everywhere. Then T_{θ} is self-adjoint on $L^2(\mathbb{R})$ and shares the spectral representation by unitary equivalence with the multiplication operator $M_{m(\cdot)}$ on the Fourier side.

Proof. By construction,

$$UT_{\theta}U^{-1} = M_w \mathcal{F}^{-1} M_{m(\cdot)} \mathcal{F} M_w \tag{56}$$

with a real-valued symbol $m(\omega) \geq 0$. The operator $M_{m(\cdot)}$ is self-adjoint on its natural domain in $L^2(\mathbb{R})$. Since M_w commutes with real multiplication operators after Fourier transform, the composition is self-adjoint. Unitary equivalence transfers self-adjointness from this composition to T_{θ} .

5 Non-monotone time changes

Theorem 6

Let ϕ be a nontrivial positive definite function and $\theta: \mathbb{R} \to \mathbb{R}$ be measurable. If there exist $s_1 \neq s_2$ with $\theta(s_1) = \theta(s_2)$, then the integral operator T_{θ} with kernel $K_{\theta}(s,t) = \phi\left(\theta(s) - \theta(t)\right)\sqrt{\theta'(s)}\sqrt{\theta'(t)}$ has a nontrivial null action on differences of mass concentrated at s_1 and s_2 , and there exist L^2 functions obtained by balancing localized bumps at s_1 and s_2 that are mapped to 0 by T_{θ} .

Proof. $\langle \text{TODO} : \text{insert better proof here without that stupid bump crap} \rangle$

6 Main characterization

Theorem 7

(Characterization via monotonicity) Let

$$K(x,y) = \phi(x-y) \tag{57}$$

be a translation-invariant positive definite kernel with absolutely continuous spectral density $S(\omega) \in L^{\infty}(\mathbb{R})$. For θ strictly monotone and absolutely continuous with $\theta'(s) > 0$ almost everywhere, the operator T_{θ} is bounded and self-adjoint on $L^{2}(\mathbb{R})$, and

$$UT_{\theta}U^{-1} = M_w \mathcal{F}^{-1} M_{2\pi S(\cdot)} \mathcal{F} M_w \tag{58}$$

where

$$w(u) = \sqrt{(\theta^{-1})'(u)} \tag{59}$$

If θ is not strictly monotone, there exist nontrivial L^2 functions with null image under T_{θ} .

Proof. The first assertion is the bounded self-adjointness theorem proved above, together with the explicit weighted Fourier multiplier identification for the stationary operator. The second assertion follows from the construction in the non-monotone time change theorem using localized bump differences supported near level-set collisions of θ .

Example 8. (Random wave model on the line) Let

$$\phi(x) = J_0(|x|) \tag{60}$$

Then

$$\hat{\phi}(\omega) = \frac{2}{\sqrt{1 - \omega^2}} \mathbf{1}_{\{|\omega| \le 1\}} \tag{61}$$

and

$$S(\omega) = \frac{1}{\pi \sqrt{1 - \omega^2}} \mathbf{1}_{\{|\omega| \le 1\}} \tag{62}$$

The stationary operator S acts in the Fourier domain as multiplication by

$$m(\omega) = \begin{cases} \frac{2}{\sqrt{1 - \omega^2}} & |\omega| < 1\\ 0 & |\omega| \geqslant 1 \end{cases}$$
 (63)

For strictly monotone absolutely continuous θ with $\theta'(s) > 0$ almost everywhere, the time-changed covariance operator

$$(T_{\theta}f)(s) = \int_{\mathbb{R}} J_0(|\theta(s) - \theta(t)|) \sqrt{\theta'(t)} \sqrt{\theta'(s)} f(t) dt$$

$$(64)$$

satisfies

$$UT_{\theta}U^{-1} = M_w \mathcal{F}^{-1} M_{m(\cdot)} \mathcal{F} M_w \tag{65}$$

9 MAIN CHARACTERIZATION

where

$$w(u) = \sqrt{(\theta^{-1})'(u)} \tag{66}$$

 $\quad \text{and} \quad$

$$w(u) = \sqrt{(\theta^{-1})'(u)}$$

$$m(\omega) = \frac{2}{\sqrt{1 - \omega^2}} \mathbf{1}_{\{|\omega| < 1\}}$$

$$(66)$$