②

Importing the Dependencies

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

loading the dataset to a Pandas DataFrame
credit_card_data = pd.read_csv('/content/credit_data.csv')

first 5 rows of the dataset credit_card_data.head()

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V:
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	0.090794	-0.551600	-0.617801	-0.99139
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	-0.166974	1.612727	1.065235	0.48909
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	0.207643	0.624501	0.066084	0.71729
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	-0.054952	-0.226487	0.178228	0.5077
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	0.753074	-0.822843	0.538196	1.3458

credit_card_data.tail()

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V1
284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918215	7.305334	1.914428	4.356170	-1.593105	2.71194
284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330	0.294869	0.584800	-0.975926	-0.150189	0.91580
284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827	0.708417	0.432454	-0.484782	0.411614	0.06311
284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180	0.679145	0.392087	-0.399126	-1.933849	-0.96288
284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006	-0.414650	0.486180	-0.915427	-1.040458	-0.03151

dataset informations
credit_card_data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 284807 entries, 0 to 284806 Data columns (total 31 columns): # Column Non-Null Count Dtype ___ -----0 Time 284807 non-null float64 284807 non-null float64 V1 1 2 V2 284807 non-null float64 3 V3 284807 non-null float64 284807 non-null float64 284807 non-null float64 4 V4 V5 5 284807 non-null float64 V6 V7 284807 non-null float64 V8 284807 non-null float64 8 9 V9 284807 non-null float64 10 V10 284807 non-null float64 11 V11 284807 non-null float64 12 V12 284807 non-null float64 13 V13 284807 non-null float64 14 V14 284807 non-null float64 284807 non-null float64 15 V15 16 V16 284807 non-null float64 17 V17 284807 non-null float64 18 V18 284807 non-null float64 19 V19 284807 non-null float64 20 V20 284807 non-null float64 284807 non-null float64 21 V21 284807 non-null float64 22 V22 23 V23 284807 non-null float64 24 V24 284807 non-null float64 284807 non-null float64 25 V25 26 V26 284807 non-null float64

```
27 V27
                  284807 non-null float64
     28 V28
                  284807 non-null float64
     29 Amount 284807 non-null float64
                  284807 non-null int64
      30 Class
     dtypes: float64(30), int64(1)
     memory usage: 67.4 MB
# checking the number of missing values in each column
credit_card_data.isnull().sum()
     Time
               0
     V1
               0
     V2
               0
     V3
               0
     V4
               0
     V5
     V6
               0
     V7
               0
     ٧8
     V9
               0
     V10
               0
     V11
               0
     V12
               0
     V13
               0
     V14
               0
     V15
               0
     V16
               0
     V17
               0
     V18
               0
     V19
     V20
               0
     V21
               0
     V22
     V23
               0
     V24
               0
     V25
               0
     V26
               0
     V27
               0
     V28
               0
     Amount
               0
     Class
               0
     dtype: int64
# distribution of legit transactions & fraudulent transactions
credit_card_data['Class'].value_counts()
     a
          284315
             492
     Name: Class, dtype: int64
This Dataset is highly unblanced
0 --> Normal Transaction
1 --> fraudulent transaction
# separating the data for analysis
legit = credit_card_data[credit_card_data.Class == 0]
fraud = credit_card_data[credit_card_data.Class == 1]
print(legit.shape)
print(fraud.shape)
     (284315, 31)
     (492, 31)
# statistical measures of the data
legit.Amount.describe()
              284315.000000
     count
     mean
                  88.291022
     std
                 250.105092
                   0.000000
     min
     25%
                   5.650000
     50%
                  22.000000
                  77.050000
```

1/16/24, 8:32 AM

max 25691.160000 Name: Amount, dtype: float64

fraud.Amount.describe()

492.000000 count 122.211321 mean std 256.683288 0.000000 min 25% 1.000000 50% 9.250000 75% 105.890000 2125.870000 max Name: Amount, dtype: float64

compare the values for both transactions
credit_card_data.groupby('Class').mean()

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	
Class													
0	94838.202258	0.008258	-0.006271	0.012171	-0.007860	0.005453	0.002419	0.009637	-0.000987	0.004467	0.009824	-0.006576	0.01
1	80746.806911	-4.771948	3.623778	-7.033281	4.542029	-3.151225	-1.397737	-5.568731	0.570636	-2.581123	-5.676883	3.800173	-6.25

Under-Sampling

Build a sample dataset containing similar distribution of normal transactions and Fraudulent Transactions

Number of Fraudulent Transactions --> 492

legit_sample = legit.sample(n=492)

Concatenating two DataFrames

new_dataset = pd.concat([legit_sample, fraud], axis=0)

new_dataset.head()

	Time	V1	V2	V3	V4	V5	V6	V7
203131	134666.0	-1.220220	-1.729458	-1.118957	-0.266099	0.823338	-0.098556	-0.407751
95383	65279.0	-1.295124	0.157326	1.544771	-2.468209	-1.683113	-0.623764	-0.371798
99706	67246.0	-1.481168	1.226490	1.857550	2.980777	-0.672645	0.581449	-0.143172
153895	100541.0	-0.181013	1.395877	1.204669	4.349279	1.330126	1.277520	1.568221
249976	154664.0	0.475977	-0.573662	0.480520	-2.524647	-0.616284	-0.361317	-0.347861

new_dataset.tail()

	Time	V1	V2	V3	V4	V5	V6	V7
279863	169142.0	-1.927883	1.125653	-4.518331	1.749293	-1.566487	-2.010494	-0.882850
280143	169347.0	1.378559	1.289381	-5.004247	1.411850	0.442581	-1.326536	-1.413170
280149	169351.0	-0.676143	1.126366	-2.213700	0.468308	-1.120541	-0.003346	-2.234739
281144	169966.0	-3.113832	0.585864	-5.399730	1.817092	-0.840618	-2.943548	-2.208002
281674	170348.0	1.991976	0.158476	-2.583441	0.408670	1.151147	-0.096695	0.223050

new_dataset['Class'].value_counts()

- 1 492
- 0 492

```
Name: Class, dtype: int64
```

```
new_dataset.groupby('Class').mean()
```

```
        Class
        V1
        V2
        V3
        V4
        V5
        V6
        V

        0
        96783.638211
        -0.053037
        0.055150
        -0.036786
        -0.046439
        0.077614
        -0.023218
        -0.00070

        1
        80746.806911
        -4.771948
        3.623778
        -7.033281
        4.542029
        -3.151225
        -1.397737
        -5.56873
```

Splitting the data into Features & Targets

```
X = new_dataset.drop(columns='Class', axis=1)
Y = new_dataset['Class']
print(X)
                 Time
                             V1
                                       V2 ...
                                                     V27
                                                               V28
                                                                    Amount
     203131 134666.0 -1.220220 -1.729458 ... 0.173995 -0.023852
                                                                    155.00
     95383
              65279.0 \ -1.295124 \quad 0.157326 \quad \dots \quad 0.317321 \quad 0.105345
                                                                     70.00
                                           ... -0.546577
     99706
              67246.0 -1.481168 1.226490
                                                          0.076538
                                                                     40.14
     153895 100541.0 -0.181013 1.395877 ... -0.229857 -0.329608 137.04
     249976 154664.0 0.475977 -0.573662 ... 0.058961 0.012816
                                                                    19.60
                                           . . .
     279863
            169142.0 -1.927883 1.125653
                                          ... 0.292680
                                                         0.147968 390.00
                                          ... 0.389152
     280143 169347.0 1.378559 1.289381
                                                         0.186637
                                                                      0.76
     280149 169351.0 -0.676143 1.126366
                                                0.385107 0.194361
                                                                     77.89
     281144 169966.0 -3.113832 0.585864 ... 0.884876 -0.253700 245.00
     281674 170348.0 1.991976 0.158476 ... 0.002988 -0.015309
                                                                     42.53
     [984 rows x 30 columns]
print(Y)
     203131
               0
     95383
               0
     99706
               0
     153895
     249976
               0
     279863
     280143
               1
     280149
               1
     281144
               1
     281674
               1
     Name: Class, Length: 984, dtype: int64
Split the data into Training data & Testing Data
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify=Y, random_state=2)
print(X.shape, X_train.shape, X_test.shape)
     (984, 30) (787, 30) (197, 30)
Model Training
Logistic Regression
model = LogisticRegression()
# training the Logistic Regression Model with Training Data
model.fit(X_train, Y_train)
     LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                        intercept_scaling=1, l1_ratio=None, max_iter=100,
                        multi_class='auto', n_jobs=None, penalty='12',
```

random_state=None, solver='lbfgs', tol=0.0001, verbose=0,
warm_start=False)

Model Evaluation

```
Accuracy Score
```

```
# accuracy on training data
X_train_prediction = model.predict(X_train)
training_data_accuracy = accuracy_score(X_train_prediction, Y_train)

print('Accuracy on Training data : ', training_data_accuracy)
    Accuracy on Training data : 0.9415501905972046

# accuracy on test data
X_test_prediction = model.predict(X_test)
test_data_accuracy = accuracy_score(X_test_prediction, Y_test)

print('Accuracy score on Test Data : ', test_data_accuracy)
    Accuracy score on Test Data : 0.9390862944162437
```