On munit $\mathbb R$ de son ordre usuel. Soit A une partie non vide, majorée, de $\mathbb R$, soit $a\in\mathbb R$. Donner une caractérisation de « $a=\sup A$ ».

Soit $a \in \mathbb{Z}$ et $b \in \mathbb{N}^*$, on admet l'existence d'un couple $(q,r) \in \mathbb{Z}^2$ vérifiant a = bq + r et $0 \le r < b$. Montrer l'unicité d'un tel couple.

Donner les définitions quantifiées de fonction injective, surjective et bijective.