

实验06 FPGA原理及Vivado综合

2022/11/03

实验安排

数字电路实验关键时间节点

时间	实验发布(23: 59前)	实验讲解(上课时间)	检查截止(21:30前)	报告提交截止(23:59前)
第四周(09.22)	实验01_Logisim入门			
第五周 (09. 29)	实验02_简单组合逻辑电路	实验01_Logisim入门		
第七周(10.13)	实验03_简单时序逻辑电路	实验02_简单组合逻辑电路	实验01_Logisim入门	
第八周(10.20)	实验04_Verilog硬件描述语言	实验03_简单时序逻辑电路	实验02_简单组合逻辑电路	实验01_Logisim入门
第九周(10.27)	实验05_使用Vivado进行仿真	实验04_Verilog硬件描述语言	实验03_简单时序逻辑电路	实验02_简单组合逻辑电路
第十周(11.03)	实验06_FPGA原理及Vivado综合	实验05_使用Vivado进行仿真	实验04_Verilog硬件描述语言	实验03_简单时序逻辑电路
十一周 (11.10)	实验07_FPGA实验平台及IP核	实验06_FPGA原理及Vivado综合	实验05_使用Vivado进行仿真	实验04_Verilog硬件描述语言
十二周(11.17)	实验08_信号处理及有限状态机	实验07_FPGA实验平台及IP核	实验06_FPGA原理及Vivado综合	实验05_使用Vivado进行仿真
十三周 (11.24)	实验09_竞争冒险及流水线技术	实验08_信号处理及有限状态机	实验07_FPGA实验平台及IP核	实验06_FPGA原理及Vivado综合
十四周(12.01)	实验10_综合实验	实验09_竞争冒险及流水线技术	实验08_信号处理及有限状态机	实验07_FPGA实验平台及IP核
十五周 (12.08)		实验10_综合实验	实验09_竞争冒险及流水线技术	实验08_信号处理及有限状态机
十六周 (12.15)			实验10_综合实验	实验09_竞争冒险及流水线技术
十七周 (12. 22)				实验10_综合实验

实验目的

- 了解FPGA工作原理
- 了解Verilog文件和约束文件在FPGA开发中的作用
- 学会使用Vivado进行FPGA开发的完整流程
- 学习使用FPGA在线实验平台

实验环境

- vlab.ustc.edu.cn
- **■** fpgaol.ustc.edu.cn
- verilogoj.ustc.edu.cn
- **Vivado**
- Logisim

■FPGA开发板/平台

■初识FPGA

- ■中文全称:现场可编程逻辑门阵列
- ■英文全称: Field Programmable Gate Array
- ■最大厂商Xilinx,2020年被AMD收购,350亿美元
- ■第二大厂Altera, 2015年被Intel收购, 167亿美元
- ■对比ARM, 2016年被日本软银收购,约320亿美元
- ■对比MIPS, 2017年Tallwood MIPS, 6500万美元

- **■FPGA基本结构**
 - ■可编程逻辑单元(Configurable Logic Blocks)
 - ■交叉互连矩阵 (Switch Matrix)
 - ■输入/输入单元(IOB)

■ FPGA基本结构

CLB包含查找表和触发器 查找表实现组合逻辑 触发器实现实现逻辑

Figure 4: Diagram of SLICEL

- ■可编程逻辑单元
 - ■查找表本质上就是RAM
 - ■通过改变RAM内的数值, 可以实现不同的组合逻辑

assign o = fun(a, b)

输入	输出	
0 0	1	
0 1	1	
1 0	1	
1 1	0	

- 1) assign o = fun(a,b); //组合逻辑
- 2) always@(posedge clk) //时序逻辑 o <= fun(a, b);

■交叉互联矩阵

当输入变量个数超出LUT输入数,或者需要进行信号反馈时,单靠可编程逻辑单元无法实现,这时候需要借助交叉互连矩阵的功能

- IOB (Input/Output Block)
 - ■FPGA的每个通用管脚都由IOB来管理,可以做为输入管脚、输出管脚或双向管脚
 - ■Vivado工程中的XDC文件主要就是用来配置IOB的

- IOB (Input/Output Block)
 - ■FPGA的每个通用管脚都由IOB来管理,可以做为输入管脚、输出管脚或双向管脚
 - ■Vivado工程中的XDC文件主要就是用来配置IOB的

■ Vivado综合

- ■建立工程
- ■添加文件
- ■综合实现生成

> Open Hardware Manager

- 烧写到实验平台
 - **■**fpgaol.ustc.edu.cn

实验内容

- 按时完成实验指导书上的所有题目
- 按时提交实验报告

谢谢!