Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Ciencias y Sistemas Organización Computacional Primer Semestre 2020

Catedráticos: Ing. Otto Rene Escobar Leiva

Tutores académicos: Christian Real

201800726 María Reneé Juárez Albizures 201800535 Jessica Elizabeth Botón Pérez 201801266 Didier Alfredo Domínguez Urías 201800491 Aracely Jacqueline Méndez González 201801182 Stefany Samantha Abigail Coromac Huezo

Descripción del Problema

Se les pide que lleven un control de los vehículos que entran y salen de la fábrica, utilizando como sensor una fotorresistencia. La capacidad máxima dentro de la fábrica es de 9 vehículos y en base a esta cantidad se debe mostrar en tiempo real el control de los vehículos a través de un display.

En caso la fábrica esté a su máxima capacidad le deberá indicar al conductor por medio de un led rojo en la talanquera, de lo contrario se deberá de prender un led verde.

Black - Box

Diagrama de Estados

¿Cuántos y que tipo de Flip - Flop utilizaremos en el diseño?

El número de Flip – Flop se calcula por medio de la formula Log2 (n) = número de flip flops. Entonces se necesitan 4 Flip – Flop y el tipo que se utilizará para el diseño es JK.

$$2^n = N$$
úmero de Estados = 16
 $n = 4$

Asignación de valores binarios a los estados

ESTADO	QA	QB	QC	QD
S0	0	0	0	0
S1	0	0	0	1
S2	0	0	1	0
S3	0	0	1	1
S4	0	1	0	0
S5	0	1	0	1
S6	0	1	1	0
S 7	0	1	1	1

S8	1	0	0	0
S9	1	0	0	1

Tabla de excitación del sistema digital que se diseña

Q Ou	tput	Inputs			
Present State	Next State	J _n	K _n		
0	0	0	х		
0	1	1	X		
1	0	X	1		
1	1	X	0		

Conteo Ascendente																	
			Pl	RESE	NTE			FUT	URO		P	١	E	В			D
#	Α	QA	QB	QC	QD	QA+1	QB+1	QC+1	QD+1	JA	KA	JB	KB	JC	KC	JD	KD
0	0	0	0	0	C	0	0	0	1	0	Х	0	Χ	0	X	1	X
1	0	0	0	0	1	0	0	1	0	0	X	0	Χ	1	X	Χ	1
2	0	0	0	1	C	0	0	1	1	0	Χ	0	Χ	Χ	0	1	X
3	0	0	0	1	1	0	1	0	0	0	Χ	1	Χ	Χ	1	Χ	1
4	0	0	1	0	C	0	1	0	1	0	X	Χ	0	0	X	1	X
5	0	0	1	0	1	0	1	1	0	0	X	Χ	0	1	X	Χ	1
6	0	0	1	1	C	0	1	1	1	0	X	Χ	0	Χ	0	1	X
7	0	0	1	1	1	1	0	0	0	1	Χ	Χ	1	Χ	1	Χ	1
8	0	1	0	0	C	1	0	0	1	X	0	0	Χ	0	Χ	1	X
9	0	1	0	0	1	0	0	0	0	X	1	0	Χ	0	Χ	Χ	1
10	0	1	0	1	C	X	X	X	X	X	X	Χ	Χ	Χ	X	Χ	X
11	0	1	0	1	1	X	X	X	X	X	X	Χ	Χ	Χ	X	Χ	X
12	0	1	1	0	C	X	X	X	X	Χ	X	Χ	Χ	Χ	X	Χ	X
13	0	1	1	0	1	X	Χ	X	X	X	Χ	Χ	Χ	Χ	Χ	Χ	X
14	0	1	1	1	C	X	X	X	X	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X
15	0	1	1	1	1	X	Χ	X	X	Χ	Χ	Χ	Х	Χ	X	Χ	X

Conteo Descendente

	PRESENTE						FUTURO				Α		E	B C		2	; D	
#	Α	QA	QB	QC	QD	QA+1	QB+1	QC+1	QD+1	JA	KA	JB	KB	JC	KC	JD	KD	
0	1	0	0	0	0	1	0	0	1	1	Χ	0	Χ	0	Χ	1	X	
1	1	0	0	0	1	0	0	0	0	0	Χ	0	Χ	0	Χ	Χ	1	
2	1	0	0	1	0	0	0	0	1	0	Χ	0	Χ	Χ	1	1	X	
3	1	0	0	1	1	0	0	1	0	0	Χ	0	Χ	Χ	0	Χ	1	
4	1	0	1	0	0	0	0	1	1	0	Χ	Χ	1	1	Χ	1	X	
5	1	0	1	0	1	0	1	0	0	0	Χ	Χ	0	0	Χ	Χ	1	
6	1	0	1	1	0	0	1	0	1	0	Χ	Χ	0	Χ	1	1	X	
7	1	0	1	1	1	0	1	1	0	0	Χ	Χ	0	Χ	0	Χ	1	
8	1	1	0	0	0	0	1	1	1	X	1	1	X	1	Χ	1	X	

9	1	1	0	0	1	1	0	0	0	Χ	0	0	Χ	0	Χ	Χ	1
10	1	1	0	1	0	X	Χ	Χ	Х	Χ	X	Χ	Χ	Χ	Χ	Χ	Χ
11	1	1	0	1	1	X	Χ	Χ	Χ	X	X	Χ	Χ	X	Χ	Χ	Χ
12	1	1	1	0	0	X	X	Χ	Χ	Χ	X	Χ	Χ	Χ	Χ	Χ	Χ
13	1	1	1	0	1	X	X	Χ	Χ	Χ	X	Χ	Χ	Χ	Χ	Χ	Χ
14	1	1	1	1	0	X	Χ	Χ	Χ	Х	Х	Χ	Χ	X	Χ	Χ	Χ
15	1	1	1	1	1	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Х	X

Estructura algebraica que concatena variables independientes versus dependientes

Conteo Ascendente Función JA

JA	QBQ	QBQCQD				
QAQB/QCQD	00	01	11	10		
00	0	0	0	0		
01	0	0	1	0		
11	Χ	Χ	Χ	Χ		
10	Χ	Χ	Χ	Χ		

Función KA

KA		(ΣD	
QAQB/QCQD	00	01	11	10
00	Χ	Χ	Χ	Χ
01	Χ	Χ	Χ	Χ
11	Χ	Χ	Χ	Χ
10	0	1	X	Χ

Función JB

JB	QCQD							
QAQB/QCQD	00	01	11	10				
00	0	0	1	0				
01	Χ	Χ	X	X				
11	Χ	Χ	X	X				
10	0	0	X	X				

Función KB

KB	QCQD							
QAQB/QCQD	00	01	11	10				
00	Χ	Χ	X	X				
01	0	0	1	0				
11	Χ	Χ	X	X				
10	Χ	Χ	X	X				

Función JC

JC		Q/	4'QD		
QAQB/QCQD	00	01	11	10	
00	0	1	Χ	X	
01	0	1	Χ	X	
11	Χ	Χ	Χ	Χ	
10	0	0	Χ	X	

Función KC

KC		C	QD	
QAQB/QCQD	00	01	11	10
00	Χ	Χ	1	0
01	Χ	Χ	1	0
11	Χ	Χ	Χ	Χ
10	Χ	Χ	Χ	Χ

Función JD

JD			1		
QAQB/QCQD	00	01	11	10	
00	1	Χ	Χ	1	
01	1	Χ	Χ	1	
11	Χ	Χ	Χ	Χ	
10	1	Χ	Χ	X	

Función KD

KD			1		
QAQB/QCQD	00	01	11	10	
00	Χ	1	1	Χ	
01	Χ	1	1	Χ	
11	Χ	Χ	Χ	Χ	
10	Χ	1	Χ	Χ	

Conteo Descendente Función JA

JA		QB'Q	C'QD'	i
QAQB/QCQD	00	01	11	10
00	1	0	0	0
01	0	0	0	0
11	Χ	Χ	Χ	Χ
10	Χ	Χ	Χ	Χ

Función KA

ΚA QD'

QAQB/QCQD	00	01	11	10
00	Χ	Χ	Χ	X
01	Χ	Χ	Χ	X
11	Χ	Χ	X	X
10	1	0	Χ	X

Función JB

JB		Q <i>A</i>	\QD'		
QAQB/QCQD	00	01	11	10	
00	0	0	0	0	
01	Χ	Χ	Χ	Χ	
11	Χ	Χ	Χ	X	
10	1	0	Χ	X	

Función KB

KB QC'QD'					
QAQB/QCQD	00	01	11	10	
00	Χ	Χ	Χ	Χ	
01	1	0	0	0	
11	Χ	Χ	Χ	Χ	
10	Χ	Χ	Χ	Χ	

Función JC

JC	Q	BQD'	+QAC	D'	
QAQB/QCQD	00	01	11	10	
00	0	0	Χ	Χ	
01	1	0	X	Χ	
11	Χ	Χ	Χ	Χ	
10	1	0	Χ	Χ	

Función KC

KC		(QD'	
QAQB/QCQD	00	01	11	10
00	Χ	Χ	0	1
01	Χ	Χ	0	1
11	Χ	Χ	Χ	X
10	Χ	Χ	Χ	X

Función JD

JD			1		
QAQB/QCQD	00	01	11	10	
00	1	Χ	Χ	1	
01	1	Χ	Χ	1	
11	Χ	Χ	Χ	Χ	
10	1	Χ	Χ	Χ	

F	Función KD						
	KD			1			
	QAQB/QCQD	00	01	11	10		
	00	Χ	1	1	Χ		
	01	Χ	1	1	Χ		
	11	Χ	Χ	Χ	Χ		
	10	Χ	1	Χ	Χ		

Capacidad máxima dentro de la fábrica

#	QA	QB	QC	QD	LED	FUNCION DEL LED
#			QC	QD		LED
0	0	0	0	0	0	
1	0	0	0	1	0	
2	0	0	1	0	0	
3	0	0	1	1	0	
4	0	1	0	0	0	(QAQB'QC'QD)'
5	0	1	0	1	0	,
6	0	1	1	0	0	
7	0	1	1	1	0	
8	1	0	0	0	0	
9	1	0	0	1	1	QAQB'QC'QD
10	1	0	1	0	Χ	Χ
11	1	0	1	1	Χ	Χ
12	1	1	0	0	Χ	Χ
13	1	1	0	1	Χ	Χ
14	1	1	1	0	Χ	Χ
15	1	1	1	1	Χ	X

NOTA: Si viene 1 enciende el led rojo, si es 0 enciende el led verde.

Entrada y Salida del edificio

Se utilizó un integrado 555 en configuración biestable (latch set-reset) para determinar si el carro ingresa al edificio o sale del mismo. Esto para indicar al contador la dirección en la que debe contar (ascendente o descendente) la cual es determinada por la entrada "SW"

ENTRADA		SAL	.IDA	COMENTARIO
S	R	Q	Q'	COMENTARIO
1	1	NA.	NA.	No cambia, permanece en el estado anterior
0	1	1	0	Establece (SET)
1	0	0	1	Restablece (RESET)
0	0	1	1	Condición inválida

Diagrama digital

CONTADOR DE CARROS

TALANQUERA

La talanquera funcionara si la contraseña es correcta se abrirá 10 segundos, debido a que tarda 3 segundos para abrir y cerrarse. El tiempo que se queda abierta es de 4 segundos.

FUNCIONAMIENDO DE MOTOR PASO A PASO BIPOLAR

DIAGRAMA DE ESTADOS

Debido a que se utiliza un motor Paso a Paso con una secuencia de paso completo quedan 4 estados.

SECUENCIA DE PASO COMPLETO

PASO	Α	В	С	D
1	1	1	0	0
2	0	1	1	0
3	0	0	1	1
4	1	0	0	1

FLIP FLOP A UTILIZAR

Utilizando la formula

$$2^n = \# estados$$

 $2^n = 4$
 $n = 2$

Se utilizarán 2 flip flop tipo T como se especifica el enunciado implementados con flip flop JK.

RELACION DE SALIDAS DE FLIP FLOP CON ENTRADAS DE MOTOR PASO A PASO

SALIDAS FLIP FLOP

ESTADO	QA	QB
S0	0	0
S1	0	1
S2	1	0
S3	1	1

SALIDAS PARA EL MOTOR PASO A PASO

ESTADO	QA	QB	А	В	С	D
S0	0	0	1	1	0	0
S1	0	1	0	1	1	0
S2	1	0	0	0	1	1
S3	1	1	1	0	0	1

MAPAS DE KARNAUGHT PARA LAS FUNCIONES A, B, C, D

QA\QB	0	1	QA\QB	0	1
0	1	0	0	1	1
1	0	1	1	0	0
A = 0	QA' QB' + QA	A QB		B = QA'	
QA\QB	0	1	QA\QB	0	1
0	0	1	0	0	0
1	1	0	1	1	1
C = 0	QA' QB + QA	QB'		D = QA	

GIRO	ESTADO PRESENTE		ESTADO FUTURO		SALIDAS F-F T	
G	QA	QB	QA	QB	TA	ТВ
0	0	0	0	1	0	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	0	0	1	1
1	0	0	1	1	1	1
1	0	1	0	0	0	1
1	1	0	0	1	1	1
1	1	1	1	0	0	1

$$TA = G'QB + GQB'$$

 $TB = 1$

DIAGRAMA DIGITAL SECUENCIA DE MOTOR PASO A PASO

CONTADOR DE 0-9 PARA TALANQUERA

NUMERO DE FLIP FLOP A UTILIZAR

Debido a que se está trabajando con 4 bits se van a utilizar 4 flip flop ya que un flip flop solo puede controlar 1 bit a la vez.

TABLA PARA LAS FUNCIONES DE LOS FLIP FLOP Y PARA EL MOTOR DE LA TALANQUERA

Α	В	С	D	Α	В	С	D	TA	ТВ	TC	TD	G	FR
0	0	0	0	0	0	0	1	0	0	0	1	1	1
0	0	0	1	0	0	1	0	0	0	1	1	1	1
0	0	1	0	0	0	1	1	0	0	0	1	1	1
0	0	1	1	0	1	0	0	0	1	1	1	Χ	0
0	1	0	0	0	1	0	1	0	0	0	1	Χ	0
0	1	0	1	0	1	1	0	0	0	1	1	Χ	0
0	1	1	0	0	1	1	1	0	0	0	1	Χ	0
0	1	1	1	1	0	0	0	1	1	1	1	0	1
1	0	0	0	1	0	0	1	0	0	0	1	0	1
1	0	0	1	0	0	0	0	1	0	0	1	0	1

FUNCIONES PARA CADA FIP FLOP Y MOTOR DE TALANQUERA

$$TA = AD + BCD$$

$$TB = CD$$

$$TC = A'D$$

$$TD = 1$$

$$G = A'B' + B'$$

$$FR = B'C' + B'D' + BCD$$

DIAGRAMA DIGITAL CONTADOR

DIAGRAMA DIGITAL TALANQUERA --

Puente:

El puente originalmente estará abierto, cuando la contraseña sea correcta y se permita el paso por la talanquera, el puente se cerrará por 20 segundos, tiempo que también debe de ser mostrado en un display y luego se volverá a abrir. Debe de haber un display que indique mediante una "A" que el puente estará abierto y mediante una "C" que el puente estará cerrado. El puente debe ser implementado con un motor stepper unipolar, utilizando una secuencia de medio paso, con Flip-Flop R-S, con una frecuencia de 3 Hertz.

Motor

1.Black-Box:

2. Diagrama de Estados:

3. Cantidad de Flip-Flops:

Flip-Flops tipo RS según el enunciado.

$$2^n = 8$$

$$n = 3$$

4. Asignación de valores binarios:

Doo	Variab	les de E	ntrada	Variables de Salida			
Pos	QA	QB	QC	Χ	Υ	Z	W
0	0	0	0	1	0	0	0
1	0	0	1	1	1	0	0
2	0	1	0	0	1	0	0
3	0	1	1	0	1	1	0
4	1	0	0	0	0	1	0
5	1	0	1	0	0	1	1
6	1	1	0	0	0	0	1
7	1	1	1	1	0	0	1

Funciones para conectar a las bobinas del motor, utilizando los mapas de Karnough de la tabla anterior:

 FX

QC/QAQB	0 0	0 1	11	10				
0	1	0	0	0				
1	1	0	1	0				
X= QA'QB' +QAQBQC								

 FY

QC/QBQC	0 0	0 1	1	10			
0	0	1	0	0			
1	1	1	0	0			
Y=QA'QC+QA'QB							

FΖ

QC/QAQB	0 0	0 1	11	10			
0	0	0	0	1			
1 0 1 0 1							
Z=QAQB'+QA'QBQC							

 FW

			1	
QC/QAQB	0 0	0 1	1	1 0
0	0	0	1	0
1	0	0	1	1
W=Q	AQC+	-QAQ	В	

5. Tabla de Exitacion:

I Estados		Giro		stados esente Q(t)		F	stado uturo Q(t+1	S	En	tradas	s de d	cada f	Flip-F	lop
		G	Α	В	С	Α	В	С	SA	RA	SB	RB	SC	RC
0	S0-S1	0	0	0	0	0	0	1	0	Χ	0	Χ	1	0
1	S1-S2	0	0	0	1	0	1	0	0	Χ	1	0	0	1
2	S2-S3	0	0	1	0	0	1	1	0	Χ	Χ	0	1	0
3	S3-S4	0	0	1	1	1	0	0	1	0	0	1	0	1
4	S4-S5	0	1	0	0	1	0	1	Χ	0	0	Χ	1	0
5	S5-S6	0	1	0	1	1	1	0	Χ	0	1	0	0	1
6	S6-S7	0	1	1	0	1	1	1	Χ	0	Χ	0	1	0
7	S7-S0	0	1	1	1	0	0	0	0	1	0	1	0	1
8	S0-S7	1	0	0	0	1	1	1	1	0	1	0	1	0
9	S1-S0	1	0	0	1	0	0	0	0	Χ	0	Χ	0	1
10	S2-S1	1	0	1	0	0	0	1	0	Χ	0	1	1	0
11	S3-S2	1	0	1	1	0	1	0	0	Χ	Χ	0	0	1
12	S4-S3	1	1	0	0	0	1	1	0	1	1	0	1	0
13	S5-S4	1	1	0	1	1	0	0	Χ	0	0	Χ	0	1
14	S6-S5	1	1	1	0	1	0	1	Χ	0	0	1	1	0
15	S7-S6	1	1	1	1	1	1	0	Χ	0	Χ	0	0	1

Funciones de entada para los Flip-Flops RS, utilizando mapas de Karnough:

11 10 00 1 0 0 0 01 Χ Χ 0 Χ 0 Χ Χ Χ 11 10 0

SA =G'A'BC+GA'B'C'

SB

GA/BC	0 0	0 1	1 1	10			
00	0	1	0	Х			
01	0	1	0	Χ			
11	1	0	Х	0			
10	1	0	Χ	0			
SB = G'B'C+GB'C'							

RA

			1				
GA/BC	00	0 1	1	10			
00	Χ	Χ	0	Х			
01	0	0	1	Χ			
11	1	0	0	0			
10	0	Χ	Χ	Χ			
RA=G	RA=G'ABC+GAB'C'						

RB

			1			
GA/BC	0 0	0 1	1	10		
00	Χ	0	1	0		
01	Χ	0	1	0		
11	0	Χ	0	1		
10	0	Χ	0	1		
RB = G'BC+GBC'						

SC

00				
GA/BC	0.0	0.1	1 1	1.0
GAIDC	00	UI	1 1	10

RC

			1	
GA/BC	0 0	0 1	1	10

00	1	0	0	1		
01	1	0	0	1		
11	1	0	0	1		
10	1	0	0	1		
SC = C'						

00	0	1	1	0				
01	0	1	1	0				
11	0	1	1	0				
10	0	1	1	0				
	RC =C							

Conversión de Flip-Flop's RS a Flip-Flops JK:

Entradas del RS		Esta	ados	Entradas a JK		
S	R	Q0(t)	Q(t+1)	J	K	
0	0	0	0	0	Χ	
0	0	1	1	Χ	0	
0	1	0	0	0	Χ	
0	1	1	0	Χ	1	
1	0	0	1	1	Χ	
1	0	1	1	Χ	0	
1	1	Χ	X	Χ	Χ	
1	1	Χ	Χ	Χ	Χ	

Funciones de

lentrada a los

Flip-Flop JK usando mapas de Karnough:

S/RQ(t)	0 0	0 1	1 1	10			
0	0	Χ	Χ	0			
1	1	Х	Х	Х			
J=S							

			1				
QC/QBQC	00	0 1	1	10			
0	Χ	0	1	Χ			
1	Χ	0	Χ	Χ			
K= R							

Contador

Dividido en dos secciones para mostrar en displays distintos:

1Black-Box:

2.Diagrama de Estados:

	Salidas para BCD								
	Р	Para Cor 0 a	ntador de a 2		Contador de 0 a 9				
		D1	D0	U3	U2	D1	U0		
1	1	0	0	0	0	0	1	1	
2	2	0	0	0	0	1	0	1	
3	3	0	0	0	0	1	1	1	
4	4	0	0	0	1	0	0	1	
5	5	0	0	0	1	0	1	1	
6	6	0	0	0	1	1	0	0	
7	7	0	0	0	1	1	1	0	
8	8	0	0	1	0	0	0	0	
9	9	0	0	1	0	0	1	0	
16	10	0	1	0	0	0	0	0	
17	11	0	1	0	0	0	1	0	
18	12	0	1	0	0	1	0	0	
19	13	0	1	0	0	1	1	0	
20	14	0	1	0	1	0	0	0	
21	15	0	1	0	1	0	1	0	
22	16	0	1	0	1	1	0	1	
23	17	0	1	0	1	1	1	1	
24	18	0	1	1	0	0	0	1	
25	19	0	1	1	0	0	1	1	
32	20	1	0	0	0	0	0	1	

Р		Q	(t)	Q(t+1)					SALIDAS DE LOS FLIP-FLOPS							
-	A1	B1	C1	D1	A1	B1	C1	D1	JA1	KA1	JB1	KB1	JC1	KC1	JD1	KD1
0	0	0	0	0	0	0	0	1	0	Х	0	Х	0	Х	1	X
1	0	0	0	1	0	0	1	0	0	Х	0	Χ	1	Х	Χ	1
2	0	0	1	0	0	0	1	1	0	Х	0	Х	Χ	0	1	X
3	0	0	1	1	0	1	0	0	0	Х	1	Х	Χ	1	Χ	1
4	0	1	0	0	0	1	0	1	0	Х	Χ	0	0	Х	1	Х
5	0	1	0	1	0	1	1	0	0	Χ	Χ	0	1	Х	Χ	1
6	0	1	1	0	0	1	1	1	0	Χ	Χ	0	Χ	0	1	X
7	0	1	1	1	1	0	0	0	1	Χ	Χ	1	Χ	1	Χ	1
8	1	0	0	0	1	0	0	1	Χ	0	0	Х	0	Х	1	X
9	1	0	0	1	0	0	0	0	Χ	1	0	Х	0	Х	Χ	1

ı	Λ	1
J	н	- 1

0/ ()							
A1B1/C1D1	0 0	0 1	11	10			
00	0	0	0	0			
01	0	0	1	0			
11	X	Χ	Χ	Х			
10 X X X X							
JA1= B1C1D1							

JB1

A1B1/C1D1	0 0	0 1	11	10			
00	0	0	1	0			
01	Χ	Χ	X	Χ			
11	Χ	Χ	Χ	X			
10 0 0 X X							
JB1 = C1D1							

JC1

A1B1/C1D1	0 0	0 1	11	10		
00	1	X	Х	1		
01	1	Χ	Χ	1		
11	1	Х	Х	1		
10 1 X X 1						
JC1 = A'D						

JD1

A1B1/C1D1	0 0	0 1	11	10		
00	0	1	Х	Χ		
01	0	1	Χ	Χ		
11	Χ	Χ	Х	Χ		
10 0 0 X						
JD1 = 1						

KA1

A1B1/C1D1	0 0	0 1	11	10		
00	Χ	Χ	Χ	Χ		
01	Χ	Χ	Χ	Χ		
11	Χ	Χ	Χ	Χ		
10 0 1 X X						
KA1=D1						

KB1

A1B1/C1D1	0 0	0 1	11	10			
00	Χ	Χ	Χ	Χ			
01	0	0	1	0			
11	Χ	Χ	Χ	Χ			
10	Χ	Χ	Χ	Χ			
KB1 = C1D1							

KC1

A1B1/C1D1	0 0	0 1	11	10				
00	Χ	1	1	Χ				
01	Χ	1	1	Χ				
11	Χ	1	1	Χ				
10 X 1 1 X								
KC1 = D1								

KD1

A1B1/C1D1	0 0	0 1	11	10			
00	Χ	Χ	1	0			
01	Χ	Χ	1	0			
11	Χ	Χ	Χ	Χ			
10	Χ	Χ	Χ	Х			
KD1 = 1							

Contador de 0 a 2

D	Q(t)		Q(t+1)		SALIDAS FLIP - FLOP			
Р	A2	B2	A2	B2	JA2	KA2	JB2	KB2
0	0	0	0	1	0	Х	1	Х
1	0	1	1	0	1	Х	Х	1
2	1	0	0	0	Х	1	0	Х
3	Х	Х	Х	Х	Х	Х	Х	Х

Р		Entradas		Contador de 0 a 9				
	QA1	QB1	QC1	U3	U2	D1	U0	
1	0	0	0	0	0	0	1	
2	0	0	1	0	0	1	0	
3	0	1	0	0	0	1	1	
4	0	1	1	0	1	0	0	
5	1	0	0	0	1	0	1	
6	1	0	1	0	1	1	0	
7	1	1	0	0	1	1	1	
8	1	1	1	1	0	0	0	
9	1	0	0	1	0	0	1	
10	1	0	1	0	0	0	0	

A2/B2	0	1				
0	0	1				
1	Χ	Χ				
JA2=B2						

A2/B2	0	1				
0	Χ	Χ				
1	1	Χ				
KA2= 1						

A2/B2	0	1				
0	1	X				
1	0	Χ				
JB2=A2'						

A2/B2	0	1				
0	Χ	1				
1	Χ	Χ				
KB2= 1						

Diagrama Digital

Teclado digital

Se ingresará una contraseña de 4 números decimales por medio de un teclado digital [0-9] el cual tendrá como función verificar cada contraseña de 4 dígitos que se ingrese, se solicita que la propuesta sea amigable con el usuario por lo tanto se deberá visualizar la contraseña en formato decimal por medio de cuatro displays. El usuario tendrá cuatro oportunidades para ingresar la contraseña, en caso de equivocarse en todas sus oportunidades el sistema deberá alertar y bloquearse por diez segundos, tiempo que debe poder visualizarse en formato decimal en un display.

Decodificador

1. Black-Box

2. Correlación

J	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	S 3	S2	S 1	S0
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	0	0	1	0	0	0	0	1
2	0	0	0	0	0	0	0	1	0	0	0	0	1	0
3	0	0	0	0	0	0	1	0	0	0	0	0	1	1
4	0	0	0	0	0	1	0	0	0	0	0	1	0	0
5	0	0	0	0	1	0	0	0	0	0	0	1	0	1
6	0	0	0	1	0	0	0	0	0	0	0	1	1	0
7	0	0	1	0	0	0	0	0	0	0	0	1	1	1
8	0	1	0	0	0	0	0	0	0	0	1	0	0	0
9	1	0	0	0	0	0	0	0	0	0	1	0	0	1

3. Funciones

$$S3 = D9 + D8$$

$$S2 = D4 + D5 + D6 + D7$$

$$S1 = D2 + D3 + D6 + D7$$

$$S0 = D1 + D3 + D5 + D7 + D9$$

4. Diagrama Digital

Registro de Desplazamiento Universales

Cada bit de cada número entra con desplazamiento paralelo desde el bit menos significativo al más significativo, al realizar la pulsación de una tecla se realiza el desplazamiento en serie.

Contador de errores

1. Black-Box

2. Diagrama de estados

3. No. Y tipo de Flip-Flops

$$2^n = No \ estados = 8$$

n = 3 por lo tanto necesitamos 3 Flip - Flops JK

4. Asignación de valores a los estados

Estado	QA	QB	QC
S0	0	0	1
S1	0	1	0
S2	0	1	1
S 3	1	0	0

5. Tabla de excitación

		stado		Estado siguiente			1	4		3	(C
	pr	<u>'esen</u>	te									
J	QA	QB	QC	QA+1	QB+1	QC+1	JA	KA	JB	KB	JC	KC
0	0	0	0	0	0	1	0	Χ	0	Χ	1	Χ
1	0	0	1	0	1	0	0	Χ	1	Χ	Χ	1
2	0	1	0	0	1	1	0	Χ	Χ	0	1	Χ
3	0	1	1	1	0	0	1	Χ	Χ	1	Χ	1
4	1	0	0	0	0	0	Χ	1	0	Χ	0	Χ
5	1	0	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
6	1	1	0	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
7	1	1	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ

6. Articulación Algebraica

• JA = QC*QB

QC\QA QB	00	01	11	10
0	0	0	Χ	Χ
1	0	1	Χ	Χ

• KA = 1

QC\QA QB	00	01	11	10
0	Χ	Χ	Χ	1
1	Χ	Χ	Χ	Χ

• JB = QC

QC\QA QB	00	01	11	10
0	0	Χ	Χ	0
1	1	Χ	Χ	Χ

• KB = QC

QC\QA QB	00	01	11	10
0	Χ	0	Χ	Χ
1	Χ	1	Χ	Χ

• JC = ¬QA

QC\QA QB	00	01	11	10
0	1	1	Χ	0
1	Χ	Χ	Χ	Χ

• KC = 1

QC\QA QB	00	01	11	10
0	Χ	Χ	Χ	Χ
1	1	1	Χ	Χ

7. Diagrama Digital

Contador de bloqueo

1. Black-Box

2. Diagrama de estados

3. No. Y tipo de Flip-Flops

$$2^n = No \ estados = 16$$

n = 4 por lo tanto necesitamos 4 Flip - Flops JK

4. Asignación de valores a los estados

Estado	QA	QB	QC	QD
S0	0	0	0	0
S 1	0	0	0	1
S2	0	0	1	0
S 3	0	0	1	1
S4	0	1	0	0
S 5	0	1	0	1
S6	0	1	1	0
S7	0	1	1	1
\$0 \$1 \$2 \$3 \$4 \$5 \$6 \$7 \$8 \$9	1	0	0	0
S9	1	0	0	1
S10	1	0	1	0

5. Tabla de excitación

	Est	ado p	orese	nte		Estado s	siguient	е		Д		В	()
J	QA	QB	QC	QD	QA+1	QB+1	QC+1	QD+1	JA	KA	JB	KB	JC	KC	JD	KD
0	0	0	0	0	0	0	0	1	0	Χ	0	Χ	0	Χ	1	Χ
1	0	0	0	1	0	0	1	0	0	Χ	0	Χ	1	Χ	Χ	1
2	0	0	1	0	0	0	1	1	0	Χ	0	Χ	Χ	0	1	Χ
3	0	0	1	1	0	1	0	0	0	Χ	1	Χ	Χ	1	Χ	1
4	0	1	0	0	0	1	0	1	0	Χ	Χ	0	0	Χ	1	Χ
5	0	1	0	1	0	1	1	0	0	Χ	Χ	0	1	Χ	Χ	1
6	0	1	1	0	0	1	1	1	0	Χ	Χ	0	Χ	0	1	Χ
7	0	1	1	1	1	0	0	0	1	Χ	Χ	1	Χ	1	Χ	1
8	1	0	0	0	1	0	0	1	Χ	0	0	Χ	0	Χ	1	Χ
9	1	0	0	1	1	0	1	0	Χ	0	0	Χ	1	Χ	Χ	1
10	1	0	1	0	0	0	0	0	Χ	1	0	Χ	Χ	1	0	Χ
11	1	0	1	1	X	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
12	1	1	0	0	X	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
13	1	1	0	1	X	X	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
14	1	1	1	0	X	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
15	1	1	1	1	Χ	Χ	X	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ

6. Articulación Algebraica

• JA = QB * QC * QD

QC QD\QA QB	00	01	11	10
00	0	0	Χ	Χ
01	0	0	Χ	Χ
11	0	1	Χ	Χ
10	0	0	Χ	Χ

• KA = QC

QC QD\QA QB	00	01	11	10
00	Χ	Χ	Χ	0
01	Χ	Χ	Χ	0
11	Χ	Χ	Χ	Χ
10	Χ	Χ	Χ	1

• JB = QC * QD

QC QD\QA	00	01	11	10
QB				

00	0	Χ	Χ	0
01	0	Χ	Χ	0
11	1	Χ	Χ	Χ
10	0	Χ	Χ	0

• KB = QC * QD

QC QD\QA	00	01	11	10
QB				
00	Χ	0	Χ	Χ
01	Χ	0	Χ	Χ
11	Χ	1	Χ	Χ
10	Χ	0	Χ	Χ

• JC = QD

QC QD\QA	00	01	11	10
QB				
00	0	0	Χ	0
01	1	1	Χ	1
11	Χ	Χ	Χ	Χ
10	Χ	Χ	Χ	Χ

• KC = QA + QD

QC QD\QA QB	00	01	11	10
00	Χ	Χ	Χ	Χ
01	Χ	Χ	Χ	Χ
11	1	1	Χ	Χ
10	0	0	Χ	1

• $JD = \neg QA + \neg QC$

QC QD\QA QB	00	01	11	10
00	1	1	Χ	1
01	Χ	Χ	Χ	Χ
11	Χ	Χ	Χ	Χ
10	1	1	Χ	0

• KD = 1

QC QD\QA	00	01	11	10
QB				

00	Χ	Χ	Χ	Χ
01	1	1	Χ	1
11	1	1	Χ	Χ
10	Χ	Χ	Χ	Χ

7. Diagrama Digital

Vehículo

Descripción del Problema

El vehículo será un camión de carga, el cual contará con un control (que funcionará conectado al vehículo mediante cables), que contará con los siguientes botones:

- Arriba
- Abajo
- Izquierda
- Derecha
- Carga/Descarga (mismo botón)

El botón de carga y descarga servirá para que el vehículo abra su compuerta para permitir la carga en el mismo, al presionar el mismo botón se cerrará la compuerta para indicar que ha finalizado la carga. Este mecanismo se debe hacer con un motor stepper, controlador wave drive, utilizando Flip-Flop J-K y una frecuencia de 2 Hertz. El vehículo contará con dos motores DC que obedecerán las instrucciones que sean enviadas desde el control alámbrico. Si el vehículo va en retroceso debe de haber un sonido intermitente cada segundo. Tomar en cuenta que el tiempo que tarda en abrir y cerrar la compuerta es de 4 segundos. Si la compuerta de carga está abierta el vehículo no se podrá mover hacia ninguna dirección que indique el control.

Black - Box

Diagrama de Estados

¿Cuántos y que tipo de Flip - Flop utilizaremos en el diseño?

El número de Flip – Flop se calcula por medio de la formula Log2 (n) = número de flip flops. Entonces se necesitan 3 Flip – Flop y el tipo que se utilizará para el diseño es JK.

$$2^n = N$$
úmero de Estados = 8 $n = 3$

Asignación de valores binarios a los estados

ESTADO	Χ	Α	В
S0	0	0	0
S1	0	0	1
S2	0	1	0
S3	0	1	1
S4 S5	1	0	0
S5	1	0	1
S6	1	1	0
S7	1	1	1

Tabla de excitación del sistema digital que se diseña

Q Ou	Inputs		
Present State	Next State	J _n	Kn
0	0	0	X
0	1	1	Х
1	0	x	1
1	1	X	0

	Pr	esen	te	F	uturo)	/	4	I	В	(2
	Χ	Α	В	X+	A+	B+	JX	ΚX	JA	KA	JB	ΚB
0	0	0	0	0	0	1	0	Χ	0	Χ	1	Χ
1	0	0	1	0	1	0	0	Χ	1	Χ	Χ	1
2	0	1	0	0	1	1	0	Χ	Χ	0	1	Χ
3	0	1	1	0	0	0	0	Χ	Χ	1	Χ	1
4	1	0	0	1	0	1	Χ	0	0	Χ	1	Χ
5	1	0	1	1	1	0	Χ	0	1	Χ	Χ	1
6	1	1	0	1	1	1	Χ	0	Χ	0	1	Χ
7	1	1	1	1	0	0	Χ	0	Χ	1	Χ	1

Estructura algebraica que concatena variables independientes versus dependientes

Carga y Descarga

Función JX

X/AB	00	01	11	10
0	0	0	0	0

Función KX

X/AB	00	01	11	10
0	Χ	Χ	Χ	Χ
1	0	0	0	0

• KX = 0

Función JA

X/AB	00	01	11	10
0	0	1	Χ	Χ
1	0	1	Χ	Χ

JA = B

Función KA

X/AB	00	01	11	10
0	Χ	Χ	1	0
1	Χ	Χ	1	0
• KA = B				

Función JB

X/AB	00	01	11	10
0	1	1	1	1
1	Χ	Χ	Χ	Χ

• JB = 1

Función KB

X/AB	00	01	11	10
0	Χ	Χ	Χ	Χ
1	1	1	1	1

• KB = 1

Motores DC

2	0	0	1	0	0	0	1	1	ABAJO
3	0	0	1	1	0	0	0	0	
4	0	1	0	0	0	1	0	0	IZQUIERDA
5	0	1	0	1	0	0	0	0	
6	0	1	1	0	0	0	0	0	
7	0	1	1	1	0	0	0	0	
8	1	0	0	0	1	0	0	0	DERECHA
9	1	0	0	1	0	0	0	0	
10	1	0	1	0	0	0	0	0	
11	1	0	1	1	0	0	0	0	
12	1	1	0	0	0	0	0	0	
13	1	1	0	1	0	0	0	0	
14	1	1	1	0	0	0	0	0	
15	1	1	1	1	0	0	0	0	

FUNCION UR

BA\DC	00	01	11	10
00	0	0	0	1
01	1	0	0	0
11	0	0	0	0
10	0	0	0	0

• UR = A'B'C'D+AB'C'D'

FUNCION UL

BA\DC	00	01	11	10
00	0	0	0	1
01	0	0	0	0
11	0	0	0	0
10	1	0	0	0

• UL = A'B'C'D+A'BC'D'

FUNCION DR

BA\DC	00	01	11	10
00	0	1	0	0
01	0	0	0	0
11	0	0	0	0
10	0	0	0	0

• DR = A'B'CD'

FUNCION DL

BA\DC	00	01	11	10
00	0	1	0	0

10	0	0	0	0
11	0	0	0	0
01	0	0	0	0

• DL = A'B'CD'

Diagrama digital

Semáforo

Descripción del Problema:

Se debía realizar en semáforo que cumpliera con las indicaciones dadas.

Talanquera	Semáforo	Tiempo
Cerrada	Rojo	Siempre que esté cerrada la talanquera y el puente abierto.
Abierta (3 segundos antes de que cierre)	Amarillo	3 segundos antes del cierre de la talanquera, hasta que cierre la talanquera.
Abierta	Verde	Mientras la talanquera esté abierta y el puente cerrado. (7 segundos)

Nota: El tiempo en segundo del semáforo en verde es de 4 seg.

Black-Box:

Diagrama de Estados:

Son 3 estados. El semáforo se mantiene en rojo, hasta que se ingresa la contraseña correcta, sigue con verde y termina el ciclo con amarillo.

Tipos y cantidad de Flip-Flops:

 $2^n = \# \text{ de estados} = 3$

 $n = 1.585 \sim 2$

Cantidad: 2 Flip-Flops

Tipo a utilizar: D

Asignación de valores binarios a los estados:

ESTADOS	Entradas Flip-Flops		
	DA	DB	
S0	0	0	
S1	0	1	
S2	1	0	

LUCES SEMAFORO					
OL.		NO			
R	V	Α			
1	0	0			
0	1	0			
0	0	1			

Tabla de Excitación del Sistema Digital que se Diseña

Variables	Variables	
Independientes	Dependientes	

Estado Presente Q(t)		Estado Futuro Q(t+1)		Salida Flip-F	
DA	DB	DA	DB	FDA	FDB
0	0	0	1	0	1
0	1	1	0	1	0
1	0	0	0	0	0

Estructura algebraica que concatena variables independientes versus dependiente

FDA = A'B

FDB = A'B'

Diagrama digital

Base del Semáforo

Reloj con validaciones provenientes de la talanquera

