

Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting

Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, Deyu Meng*

Introduction

Problem

DNNs can easily overfit to biased training data.

- ✓ Corrupted labels: Data are collected from a crowd-sourcing system, web crawler, etc.
- ✓ Class imbalance: Real-world datasets are usually depicted as a long-tailed distribution.

Motivation

- ✓ Sample reweighting is a commonly used strategy against this robust learning issue.
- ✓ There exist two entirely contradictive ideas for constructing the weighting function.

Web crawler

Crowd-sourcing

Class imbalance1 E.g., AdaBoost[4,5], hard negative mining[6], focal loss[7].

- Need to pre-specify the form of weighting function based on certain assumptions on training data.
- •Need to manually set hyper-parameters, raising their difficulty to be readily used in real applications.

Meta-Weight-Net

The Meta-learning Objective

✓ We minimize the weighted training loss for classifier's updating.

$$w^*(\Theta) = \arg\min_{w} \frac{1}{N} \sum_{i=1}^{N} \mathcal{V}(L_i^{\text{train}}(w); \Theta) L_i^{\text{train}}(w)$$

We formulate $\mathcal{V}(L_i^{train}(w); \Theta)$ as a MLP network called Meta-Weight-Net.

 \checkmark The parameter Θ^* is obtained by minimizing the loss on meta data

$$\Theta^* = \arg\min_{\Theta} \frac{1}{M} \sum_{i=1}^{M} L_i^{\text{meta}}(w^*(\Theta))$$

References

2. Jiang et al,. Easy samples first. In ACM MM, 2014

Training Data

. Kumar, et al., Self-paced learning for latent variable models. In NeurIPS 2010

Ren et al.,. Learning to reweight examples for robust deep learning. In ICML, 2018.

3. Fernando et., A framework for robust subspace learning. IJCV, 2003

Jiang et al., Mentornet: Learning data-driven curriculum. In ICML, 2018

Algorithm

Code Downloading:

https://github.com/xjtush ujun/meta-weight-net

Please contact:

xjtushujun@gmail.com dymeng@mail.xjtu.edu.cn

Convergence Analysis

Theorem 1. Suppose the loss function ℓ is Lipschitz smooth with constant L, and have ρ -bounded gradients with respect to training /meta data. $\mathcal{V}(\cdot)$ is differential with a δ -bounded gradient and twice differential with its Hessian bounded by \mathcal{B} . Let the learning rate α_t satisfies $\alpha_t = \min\{1, \frac{k}{\tau}\}$ for some c > 0, such that $\frac{\sigma\sqrt{T}}{c} \ge L$ and $\sum_{t=1}^{\infty} \beta_t \le 1$ ∞ , $\sum_{t=1}^{\infty} \beta_t^2 \le \infty$. Then the proposed algorithm can achieve $\mathbb{E}\left[\left\|\nabla \mathcal{L}^{\text{meta}}(\Theta^{(t)})\right\|_2^2\right] \le \epsilon$ in $\mathcal{O}(1/\epsilon^2)$ steps.

Theorem 2. The conditions in Theorem 1 hold, then we have: $\lim_{t\to\infty} \mathbb{E}\left[\left\|\nabla \mathcal{L}^{\text{meta}}(\mathbf{w}^{(t)}; \Theta^{(t+1)})\right\|_{2}^{2}\right] = 0.$

Experimental Results

Class Imbalance Experiment

Test accuracy of ResNet-32 on long-tailed CIFAR-10 and CIFAR-100 [10]

Dataset Name	Long-Tailed CIFAR-10							Long-Tailed CIFAR-100					
Imbalance	200	100	50	20	10	1	200	100	50	20	10	1	
BaseModel	65.68	70.36	74.81	82.23	86.39	92.89	34.84	38.32	43.85	51.14	55.71	70.50	
Focal Loss	65.29	70.38	76.71	82.76	86.66	<u>93.03</u>	35.62	38.41	44.32	51.95	55.78	<u>70.52</u>	
Class-Balanced	<u>68.89</u>	<u>74.57</u>	<u>79.27</u>	<u>84.36</u>	<u>87.49</u>	92.89	36.23	39.60	45.32	<u>52.59</u>	<u>57.99</u>	70.50	
Fine-tuning	66.08	71.33	77.42	83.37	86.42	93.23	38.22	41.83	<u>46.40</u>	52.11	57.44	70.72	
L2RW	66.51	74.16	78.93	82.12	85.19	89.25	33.38	40.23	44.44	51.64	53.73	64.11	
Ours	68.91	75.21	80.06	84.94	87.84	92.66	<u>37.91</u>	42.09	46.74	54.37	58.46	70.37	

Corrupted Label Experiment

Test accuracy of WRN-28-10 with varying noise rates under uniform noise

Test accuracy of ResNet-32 with varying noise rates under flip noise

Datasets / Noi	se Rate	BaseModel	Reed-Hard	S-Model	Self-paced	Focal Loss	Co-teaching	D2L	Fine-tining	MentorNet	L2RW	GLC	Ours
	0%	92.89 ± 0.32	92.31 ± 0.25	83.61 ± 0.13	88.52 ± 0.21	93.03 ± 0.16	89.87 ± 0.10	92.02 ± 0.14	93.23±0.23	92.13 ± 0.30	89.25 ± 0.37	91.02 ± 0.20	92.04 ± 0.15
CIFAR-10	20%	76.83 ± 2.30	88.28 ± 0.36	79.25 ± 0.30	87.03 ± 0.34	86.45 ± 0.19	82.83 ± 0.85	87.66 ± 0.40	82.47 ± 3.64	86.36 ± 0.31	87.86 ± 0.36	89.68 ± 0.33	90.33 ± 0.61
	40%	70.77 ± 2.31	81.06 ± 0.76	75.73 ± 0.32	81.63 ± 0.52	80.45 ± 0.97	75.41 ± 0.21	83.89 ± 0.46	74.07 ± 1.56	81.76 ± 0.28	85.66 ± 0.51	88.92 ± 0.24	87.54 ± 0.23
	0%	70.50 ± 0.12	69.02 ± 0.32	51.46 ± 0.20	67.55 ± 0.27	70.02 ± 0.53	63.31 ± 0.05	68.11 ± 0.26	70.72 ± 0.22	70.24 ± 0.21	64.11 ± 1.09	65.42 ± 0.23	70.11 ± 0.33
CIFAR-100	20%	50.86 ± 0.27	60.27 ± 0.76	45.45 ± 0.25	63.63 ± 0.30	61.87 ± 0.30	54.13 ± 0.55	63.48 ± 0.53	56.98 ± 0.50	61.97 ± 0.47	57.47 ± 1.16	63.07 ± 0.53	64.22 ± 0.28
	40%	43.01 ± 1.16	50.40 ± 1.01	43.81 ± 0.15	53.51 ± 0.53	54.13 ± 0.40	44.85 ± 0.81	51.83 ± 0.33	46.37 ± 0.25	52.66 ± 0.56	50.98 ± 1.55	$\overline{62.22 \pm 0.62}$	58.64 ± 0.47

Clothing1M Experiment:

#	Method	Accuracy	#	Method	Accuracy	
1	Cross Entropy	68.94	5	Joint Optimization [66]	72.23	
2	Bootstrapping [58]	69.12	6	LCCN [67]	73.07	
3	Forward [65]	69.84	7	MLNT [68]	73.47	
4	S-adaptation [12]	70.36	8	Ours	73.72	

Ablation study

Test accuracy of different MW-Nets

