Dominio del problema: Empresa de Ecommerce

Olist conecta pequeñas empresas de todo Brasil con canales simples y con un único contrato. Estos comercios pueden vender sus productos a través de la tienda Olist y enviarlos directamente a los clientes utilizando sus socios logísticos. Después de que un cliente compra el producto en la Olist Store, se notifica al vendedor para que complete ese pedido. Una vez que el cliente recibe el producto, o vence la fecha estimada de entrega, el cliente recibe una encuesta de satisfacción por correo electrónico donde puede dar una nota de la experiencia de compra y anotar algunos comentarios. El conjunto de datos tiene información de 100.000 pedidos realizados entre los años 2016 y 2018, en múltiples mercados de Brasil, y permite verlos desde múltiples dimensiones: desde el estado del pedido, el precio, el pago y el rendimiento del flete hasta la ubicación del cliente, los atributos del producto y finalmente las reseñas escritas por los clientes.

Se trata de datos comerciales reales, que han anonimizados. Las referencias a las empresas y socios en el texto de la reseña han sido sustituidas por los nombres de las grandes casas de Juego de Tronos.

Atención:

- 1. Un pedido puede tener varios artículos.
- 2. Cada artículo puede ser gestionado por un vendedor distinto.
- 3. Todo el texto que identificaba tiendas y socios fue reemplazado por los nombres de las grandes casas de Juego de Tronos.

image.png

Desafío

Free un/a consultor/a de inteligencia de negocios y fuiste contratado/a nor Olist Store nara

ayudarlos a comprender mejor su negocio y aumentar la satisfacción de sus clientes. Para ello, debes responder las siguientes preguntas:

- ¿En qué estados residen nuestros clientes? ¿Cuál es el valor monetario de cada estado para Olist?
- ¿En qué estados se encuentran nuestros vendedores? ¿Cuáles son los principales comercios?
- ¿Cuáles son los productos (o categorías de productos) más vendidos?
- ¿Existe alguna relación entre la categoría de producto adquirida y la satisfacción del cliente? Si existe, ¿su impacto es mayor o menor que el tiempo de entrega?
- Trabajando en el problema, ¿encontraste alguna otra relación interesante entre los datos?
- Opcional: Si la empresa quisiera construir 3 centros logísticos a fin de reducir al máximo posible los tiempos de entrega, ¿en qué lugares debe hacerlo?

Para responder a estas preguntas, debes:

- 1. Partiendo de la base de datos provista, generar un data mart con un esquema en estrella con los valores que consideres relevantes para responder a las preguntas planteadas arriba. Para completar este punto, te recomendamos que utilices KNIME, pero eres libre de utilizar la herramienta con la que te sientas más cómodo/a.
- 2. Generar uno o más dashboards en Tableau o en PowerBI en el que se evidencien las respuestas a las preguntas planteadas. La fuente de datos utilizada en este punto debe ser el data mart generado en el punto anterior.
- 3. En una videollamada que marcaremos cuando nos envíes los archivos generados, preséntanos tu solución en no más de 20 minutos.

Atención

Los criterios con los que evaluaremos tu solución son, en orden decreciente de importancia:

- 1. El proceso lógico que seguiste para resolver el problema.
- 2. La claridad con la que presentes tu solución, tanto en la presentación oral como en la calidad de los dashboards.
- 3. El orden, la pulcritud y la documentación de los archivos generados.
- 4. El resultado obtenido.

Inicio

Iniciamos la exploracion, seleccion y limpieza de los datos.

De acuerdo a las preguntas, buscamos saber:

- 1. En que estados residen los clientes. El valor monetario de cada estado (valor de las ventas por estado, interpreto)
- 2. En que estados estan los vendedores. Los principales comercios.
- 3. Productos mas vendidos, categorias de productos mas vendidos
- 4. Relacion (si existe) entre categoria de productos y satisfaccion del cliente. Si existe, se pregunta si 'su impacto es mayor o menor al tiempo de entrega' (aqui interpreto que propone explorar la relacion entre tiempo de entrega y satisfaccion)
- 5. Otras relaciones interesantes entre datos
- 6. Si se quiere construir 3 centros logisticos que minimicen el tiempo de entrega al maximo, en donde sugerirlos (y por que)

Comignae per coloccionar las columnas a utilizar, de cada tabla (ccv), limpiando los datos

```
Connenzo por Seleccionar las columnas a utilizar, de cada tabla (.csv), ilimpiando los datos
 import pandas as pd
 import os
 # armamos un diccionario que asocia nombres de archivos .csv con los datos (cargados como 🤉
 tables = dict([(f, pd.read_csv(f)) for f in filter(lambda n: ".csv" in n, os.listdir("./dat
 import json
 # cargamos el diccionario de datos (copiado de instrucciones, almacenado como json)
 data_dict_file = open("./datadict.json")
 data_dict = json.load(data_dict_file)
 # veamos de una vez cuales tablas tienen datos duplicados
 for k, v in zip(tables.keys(), tables.values()):
     print(k, v.duplicated().any())
olist_products_dataset.csv False
olist_geolocation_dataset.csv True
filtered_geolocation.csv False
olist_orders_dataset.csv False
olist_order_reviews_dataset.csv False
olist_order_payments_dataset.csv False
olist_customers_dataset.csv False
product_category_name_translation.csv False
olist_sellers_dataset.csv False
olist_order_items_dataset.csv False
 # aparentemente solo el de geolocation, de inicio
 # definimos estas funciones para mayor legibilidad en lo que sigue
 def match_csv(name):
     match name:
         case 'orders':
             return 'olist_orders_dataset.csv'
         case 'products':
             return 'olist_products_dataset.csv'
         case 'geolocation':
             return 'olist_geolocation_dataset.csv'
         case 'order_reviews':
             return 'olist_order_reviews_dataset.csv'
         case 'order_payments':
             return 'olist_order_payments_dataset.csv'
         case 'customers':
```

return 'olist_customers_dataset.csv'
case 'product_category_name_translation':

return 'olist_sellers_dataset.csv'

return 'olist_order_items_dataset.csv'

case 'sellers':

def t(name): # tablas

case 'order_items':

return tables[match_csv(name)]

return 'product_category_name_translation.csv'

```
return data_dict[match_csv(name)]

# de esta forma, en vez de escribir tables['olist_orders_dataset.csv'] escribo t('orders')
```

orders

```
# empiezo por orders|pedidos
dd('orders')
{'order_id': 'Identificador único del pedido',
 'customer_id': 'Clave para el conjunto de datos de pedidos. Cada pedido tiene un
customer_id único.',
 'order_status': 'Referencia al estado del pedido (entregado, enviado, etc).',
 'order_purchase_timestamp': 'Muestra la marca de tiempo de la compra.',
 'order_approved_at': 'Muestra la marca de tiempo de aprobación del pago.',
 'order_delivered_carrier_date': 'Muestra la marca de tiempo de publicación del pedido.
Cuando fue entregado al socio logístico.',
 'order_delivered_customer_date': 'Muestra la fecha real de entrega del pedido al
cliente.',
 'order_estimated_delivery_date': 'Muestra la fecha de entrega estimada que fue informada
al cliente en el momento de la compra.'}
t('orders').shape
(99441, 8)
t('orders').info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 99441 entries, 0 to 99440
Data columns (total 8 columns):
#
     Column
                                    Non-Null Count Dtype
    -----
- - -
 0
     order_id
                                    99441 non-null object
                                    99441 non-null object
 1
    customer_id
 2
     order_status
                                    99441 non-null object
     order_purchase_timestamp
                                    99441 non-null object
 3
 4
     order_approved_at
                                    99281 non-null object
 5
     order_delivered_carrier_date
                                    97658 non-null object
 6
     order_delivered_customer_date 96476 non-null object
 7
     order_estimated_delivery_date 99441 non-null object
dtypes: object(8)
memory usage: 6.1+ MB
t('orders')['order_status'].unique() # estos son todos los estados posibles de una orden
array(['delivered', 'invoiced', 'shipped', 'processing', 'unavailable',
       'canceled', 'created', 'approved'], dtype=object)
t('orders')[t('orders').isnull().any(axis=1)].head() # filas que tienen campos nulos
# (df.isnull().any(axis=1) devuelve filas donde hay null(s))
```

	order_id	customer_id	order_status	order_
6	136cce7faa42fdb2cefd53fdc79a6098	ed0271e0b7da060a393796590e7b737a	invoiced	2017-0
44	ee64d42b8cf066f35eac1cf57de1aa85	caded193e8e47b8362864762a83db3c5	shipped	2018-0
103	0760a852e4e9d89eb77bf631eaaf1c84	d2a79636084590b7465af8ab374a8cf5	invoiced	2018-0
128	15bed8e2fec7fdbadb186b57c46c92f2	f3f0e613e0bdb9c7cee75504f0f90679	processing	2017-0
154	6942b8da583c2f9957e990d028607019	52006a9383bf149a4fb24226b173106f	shipped	2018-0

```
# estados posibles en filas con campos nulos
t('orders')[t('orders').isnull().any(axis=1)]['order_status'].unique() # estos pueden ser
```

```
# veamos que pasa con las ordenes entregadas en las filas donde hay nulls
t('orders')[t('orders').isnull().any(axis=1)&(t('orders').order_status=='delivered')].head(
# veo casos en los que fue delivered pero el campo de order_delivered_customer_date es nulc
# si esta entregado el paquete, quiero todos los datos

# tambien veo que puede no haber order_delivered_carrier_date
# tambien puede no estar aprobada pero luego se entrego
```

	order_id	customer_id	order_status	orde
3002	2d1e2d5bf4dc7227b3bfebb81328c15f	ec05a6d8558c6455f0cbbd8a420ad34f	delivered	2017
5323	e04abd8149ef81b95221e88f6ed9ab6a	2127dc6603ac33544953ef05ec155771	delivered	2017
16567	8a9adc69528e1001fc68dd0aaebbb54a	4c1ccc74e00993733742a3c786dc3c1f	delivered	2017
19031	7013bcfc1c97fe719a7b5e05e61c12db	2941af76d38100e0f8740a374f1a5dc3	delivered	2017
20618	f5dd62b788049ad9fc0526e3ad11a097	5e89028e024b381dc84a13a3570decb4	delivered	2018

```
t('orders').loc[(t('orders').isnull().any(axis=1))&(t('orders').order_status=='delivered')]
# lo demas tiene sentido que tenga campos nulos, dado el estado
```

	order_id	customer_id	order_status	orde
3002	2d1e2d5bf4dc7227b3bfebb81328c15f	ec05a6d8558c6455f0cbbd8a420ad34f	delivered	2017
5323	e04abd8149ef81b95221e88f6ed9ab6a	2127dc6603ac33544953ef05ec155771	delivered	2017
16567	8a9adc69528e1001fc68dd0aaebbb54a	4c1ccc74e00993733742a3c786dc3c1f	delivered	2017
19031	7013bcfc1c97fe719a7b5e05e61c12db	2941af76d38100e0f8740a374f1a5dc3	delivered	2017
20618	f5dd62b788049ad9fc0526e3ad11a097	5e89028e024b381dc84a13a3570decb4	delivered	2018

```
# realmente no me interesan mucho las fechas, mas bien los tiempos (para la pregunta opcior
# lo de la aprobacion del pago dejo de lado; me interesa tiempos de
# - entrega a cliente (si el estado es entregado no puede ser nulo)
# - estimacion del tiempo de entrega
# - entrega a socio logistico (que si tiene campos null no importa mucho, lo dejo por resul
ordersdf = t('orders').copy()
# ajustamos tipos de datos
ordersdf['order_status'] = ordersdf['order_status'].astype('category')
ordersdf['order_purchase_timestamp'] = pd.to_datetime(ordersdf['order_purchase_timestamp'])
ordersdf['order_approved_at'] = pd.to_datetime(ordersdf['order_approved_at'])
ordersdf['order_delivered_carrier_date'] = pd.to_datetime(ordersdf['order_delivered_carrier
ordersdf['order_delivered_customer_date'] = pd.to_datetime(ordersdf['order_delivered_custom
ordersdf['order_estimated_delivery_date'] = pd.to_datetime(ordersdf['order_estimated_delive
ordersdf['order_id'] = ordersdf['order_id'].astype('string')
ordersdf['customer_id'] = ordersdf['customer_id'].astype('string')
# me quedo entonces con todo (por ahora) excepto cuando el estado es delivered y no hay del
# (~ == NOT)
ordersdf = ordersdf[~(ordersdf.order_delivered_customer_date.isna())&(ordersdf.order_status
# calculamos las diferencias de tiempo (en horas)
ordersdf['hs_entrega_cliente'] = (ordersdf['order_delivered_customer_date']
                                      -ordersdf['order_purchase_timestamp']).apply(lambda v:
ordersdf['hs_entrega_estimada_cliente'] = (ordersdf['order_estimated_delivery_date']
                                      -ordersdf['order_purchase_timestamp']).apply(lambda v:
# da una fecha estimada y no un timestamp. podria poner hora min y max estimadas.. pero lo
ordersdf['hs_entrega_logistica'] = (ordersdf['order_delivered_carrier_date']
                                      -ordersdf['order_purchase_timestamp']).apply(lambda v:
ordersdf.info()
<class 'pandas.core.frame.DataFrame'>
Index: 96470 entries, 0 to 99440
Data columns (total 11 columns):
    Column
#
                                    Non-Null Count Dtype
    order_id
                                    96470 non-null string
 0
                                    96470 non-null string
 1
    customer_id
 2
    order_status
                                    96470 non-null category
                                    96470 non-null datetime64[ns]
    order_purchase_timestamp
 3
 4
    order_approved_at
                                    96456 non-null datetime64[ns]
 5
    order_delivered_carrier_date
                                    96469 non-null datetime64[ns]
 6
    order_delivered_customer_date 96470 non-null datetime64[ns]
 7
    order_estimated_delivery_date 96470 non-null datetime64[ns]
 8
    hs_entrega_cliente
                                    96470 non-null float64
 9
    hs_entrega_estimada_cliente
                                    96470 non-null float64
    hs_entrega_logistica
                                    96469 non-null float64
dtypes: category(1), datetime64[ns](5), float64(3), string(2)
memory usage: 8.2 MB
```

me quedo tambien con 'order_purchase_timestamp' porque mas abajo aparece un timestamp mas
ordersdf = ordersdf[['order id', 'customer id', 'order status', 'order purchase timestamp',

```
- - -
                                -----
0
    order_id
                                96470 non-null string
    customer_id
                                96470 non-null string
1
    order_status
2
                                96470 non-null category
    order_purchase_timestamp
3
                                96470 non-null datetime64[ns]
4
    hs_entrega_logistica
                                96469 non-null float64
5
    hs_entrega_cliente
                                96470 non-null float64
6
    hs_entrega_estimada_cliente 96470 non-null float64
dtypes: category(1), datetime64[ns](1), float64(3), string(2)
memory usage: 5.2 MB
```

```
ordersdf.duplicated().any() # sin filas repetidas
```

np.False_

```
# vamos por los items de una orden ahora
dd('order_items')
```

```
'order_item_id': 'Número secuencial que identifica el número de artículos incluidos en el mismo pedido.',
'product_id': 'Identificador único del producto',
```

'seller_id': 'Identificador único del vendedor',

{'order_id': 'Identificador único del pedido',

'shipping_limit_date': 'Muestra la fecha límite de envío del vendedor para gestionar el pedido al socio logístico.',

'price': 'Precio del artículo',

'freight_value': 'Valor de flete del artículo (si un pedido tiene más de un artículo, el valor del flete se divide entre los artículos)'}

```
# necesito shipping_limit_date...? ya no guarde fechas en el anterior
# ...creo que podria servir. asi que vuelvo atras y guardo la fecha del pedido
# tanto price como freight_value estan ligados al valor monetario, los dejo
# pero puede ser interesante ver eso (considerar por ejemplo price - freight)
# creo que tampoco order_item_id pero lo dejo
# orderitemsdf = t('order_items')[['order_id', 'order_item_id', 'product_id', 'seller_id',
```

```
orderitemsdf = t('order_items')
```

orderitemsdf

	order_id	order_item_id	product_id	se
0	00010242fe8c5a6d1ba2dd792cb16214	1	4244733e06e7ecb4970a6e2683c13e61	48
1	00018f77f2f0320c557190d7a144bdd3	1	e5f2d52b802189ee658865ca93d83a8f	dd

2	000229ec398224ef6ca065/da4fc/03e	1	c///355d18b/2b6/abbeef9df44fd0fd	5b
3	00024acbcdf0a6daale931b038114c75	1	7634da152a4610f1595efa32f14722fc	9d
4	00042b26cf59d7ce69dfabb4e55b4fd9	1	ac6c3623068f30de03045865e4e10089	df.
112645	fffc94f6ce00a00581880bf54a75a037	1	4aa6014eceb682077f9dc4bffebc05b0	b8
112646	fffcd46ef2263f404302a634eb57f7eb	1	32e07fd915822b0765e448c4dd74c828	f3
112647	fffce4705a9662cd70adb13d4a31832d	1	72a30483855e2eafc67aee5dc2560482	с3
112648	fffe18544ffabc95dfada21779c9644f	1	9c422a519119dcad7575db5af1ba540e	2b
112649	fffe41c64501cc87c801fd61db3f6244	1	350688d9dc1e75ff97be326363655e01	f7

112650 rows \times 7 columns

```
orderitemsdf.duplicated().any()
```

np.False_

orderitemsdf.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 112650 entries, 0 to 112649
Data columns (total 7 columns):
#
    Column
                         Non-Null Count
                                          Dtype
    ----
                         -----
- - -
                                           ----
    order_id
0
                         112650 non-null object
    order_item_id
                         112650 non-null
                                          int64
1
    product_id
2
                         112650 non-null
                                          object
3
    seller_id
                         112650 non-null
                                          object
    shipping_limit_date 112650 non-null
4
                                          object
5
    price
                         112650 non-null
                                          float64
                         112650 non-null float64
6
    freight_value
dtypes: float64(2), int64(1), object(4)
memory usage: 6.0+ MB
```

```
orderitemsdf['shipping_limit_date'] = pd.to_datetime(orderitemsdf['shipping_limit_date'])
orderitemsdf['order_id'] = orderitemsdf['order_id'].astype('string')
orderitemsdf['product_id'] = orderitemsdf['product_id'].astype('string')
orderitemsdf['seller_id'] = orderitemsdf['seller_id'].astype('string')
```

float64

orderitemsdf.info()

freight_value

6

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 112650 entries, 0 to 112649

```
Data columns (total 7 columns):
#
    Column
                          Non-Null Count
                                           Dtype
0
    order_id
                          112650 non-null
                                           string
    order_item_id
                          112650 non-null int64
1
2
    product_id
                          112650 non-null
                                           string
    seller_id
                          112650 non-null
3
                                           string
4
    shipping_limit_date 112650 non-null
                                           datetime64[ns]
5
    price
                          112650 non-null
                                           float64
```

112650 non-null

```
dtypes: datetime64[ns](1), float64(2), int64(1), string(3)
memory usage: 6.0 MB
dd('order_payments')
{'order_id': 'Identificador único del pedido',
 'payment_sequential': 'Un cliente puede pagar un pedido con más de un método de pago. Si
lo hace, se creará una secuencia para acomodar todos los pagos.',
 'payment_type': 'Forma de pago elegida por el cliente.',
 'payment_installments': 'Número de cuotas elegidas por el cliente.',
 'payment_value': 'Valor de la transacción.'}
# solo necesitamos el valor de la transaccion, lo demas es irrelevante para las preguntas
orderpaymentsdf = t('order_payments')[['order_id', 'payment_value']]
orderpaymentsdf.duplicated().any()
np.True_
# en este caso pueden haber varios pagos para una misma orden... para tener el pago por orc
orderpaymentsdf = orderpaymentsdf.groupby('order_id', as_index=False).sum('payment_value')
orderpaymentsdf.duplicated().any()
np.False_
# listo. ya no hay duplicados
orderpaymentsdf['order_id'] = orderpaymentsdf['order_id'].astype('string')
orderpaymentsdf.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 99440 entries, 0 to 99439
Data columns (total 2 columns):
#
    Column
                   Non-Null Count Dtype
     -----
    order id
0
                   99440 non-null string
    payment_value 99440 non-null float64
dtypes: float64(1), string(1)
memory usage: 1.5 MB
dd('order_reviews')
{'review_id': 'Identificador de revisión único',
'order_id': 'Identificador único del pedido',
 'review_score': 'Nota que va del 1 al 5 otorgada por el cliente en una encuesta de
satisfacción.',
 'review_comment_title': 'Título del comentario de la reseña dejada por el cliente, en
portugués.',
 'review_comment_message': 'Mensaje comentario de la reseña dejada por el cliente, en
```

```
portugues.',
  'review_creation_date': 'Muestra la fecha en la que se envió la encuesta de satisfacción
al cliente.',
```

'review_answer_timestamp': 'Muestra la marca de tiempo de respuesta de la encuesta de satisfacción.'}

```
# me quedaria solo con lo cuantitativo: review_score
# de los mensajes tb se puede extraer info ("sentiment analysis"?), pero ignoro por el mome
# quizas hay algo interesante para ver en cuanto al tiempo de respuesta del cliente y como
# ...me pregunto si una orden puede tener mas de un review
t('order_reviews').groupby(by='order_id', as_index=False).review_id.count().sort_values(by=.rename(columns={'review_id': 'cant_reviews'}).head()
```

	order_id	cant_reviews
1455	03c939fd7fd3b38f8485a0f95798f1f6	3
77319	c88b1d1b157a9999ce368f218a407141	3
54489	8e17072ec97ce29f0e1f111e598b0c85	3
86232	df56136b8031ecd28e200bb18e6ddb2e	3
2873	075a544c5f4ed4bb75f82b160465fe76	2

```
# efectivamente existe mas de un review para la misma orden
# una solucion posible es promediar los reviews
# (conservando timestamps? probemos)
orderreviewsdf = t('order_reviews')[['order_id', 'review_answer_timestamp', 'review_score']
    ['order_id', 'review_answer_timestamp'], as_index=False)\
.mean('review_score').rename(columns={'review_score': "avg_review_score"})
```

```
orderreviewsdf.duplicated().any()
```

np.False_

orderreviewsdf[orderreviewsdf.order_id=='03c939fd7fd3b38f8485a0f95798f1f6']

	order_id	review_answer_timestamp	avg_review_score
1463	03c939fd7fd3b38f8485a0f95798f1f6	2018-03-06 19:50:32	3.0
1464	03c939fd7fd3b38f8485a0f95798f1f6	2018-03-21 02:28:23	3.0
1465	03c939fd7fd3b38f8485a0f95798f1f6	2018-03-30 00:29:09	4.0

orderreviewsdf = orderreviewsdf[['order_id', 'hs_response', 'review_score']].groupby(

```
['order_id'], as_index=False)\
 .mean().rename(columns={'review_score': "avg_review_score"})
 orderreviewsdf['order_id'] = orderreviewsdf['order_id'].astype('string')
 orderreviewsdf[orderreviewsdf.order_id=='03c939fd7fd3b38f8485a0f95798f1f6']
       order_id
                                                   hs_response
                                                                    avg_review_score
1455
       03c939fd7fd3b38f8485a0f95798f1f6
                                                   23.60037
                                                                    3.333333
 orderreviewsdf.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 98673 entries, 0 to 98672
Data columns (total 3 columns):
 #
     Column
                       Non-Null Count Dtype
     _ _ _ _ _
                       -----
- - -
     order_id
                     98673 non-null string
 0
                       98673 non-null float64
 1
     hs_response
     avg_review_score 98673 non-null float64
dtypes: float64(2), string(1)
memory usage: 2.3 MB
products
 dd('products')
{'product_id': 'Identificador único de producto',
 'product_category_name': 'Categoría raíz del producto, en portugués.',
 'product_name_lenght': 'Número de caracteres extraídos del nombre del producto.',
 'product_description_lenght': 'Número de caracteres extraídos de la descripción del
producto.',
 'product_photos_qty': 'Número de fotos publicadas del producto.',
 'product_weight_g': 'Peso del producto medido en gramos.',
 'product_length_cm': 'Longitud del producto medida en centímetros.',
 'product_height_cm': 'Altura del producto medida en centímetros.',
```

```
'product_width_cm': 'Ancho del producto medido en centímetros.'}
# de productos, solo me quedo con el id y la categoria
# (lo demas me parece irrelevante para las preguntas, ni tan interesante para la exploracio
productsdf = t('products')[['product_id', 'product_category_name']].copy()
productsdf.duplicated().any()
np.False_
productsdf['product_id'] = productsdf['product_id'].astype('string')
productsdf['product_category_name'] = productsdf['product_category_name'].astype('string')
productsdf.info()
```

```
RangeIndex: 32951 entries, 0 to 32950
Data columns (total 2 columns):
     Column
                            Non-Null Count Dtype
     -----
                            -----
- - -
 0
     product_id
                            32951 non-null string
 1
     product_category_name 32341 non-null string
dtypes: string(2)
memory usage: 515.0 KB
 # veo que hay nombres de categorias null. mejor limpio eso ahora
 productsdf.dropna(inplace=True)
 productsdf.info()
<class 'pandas.core.frame.DataFrame'>
Index: 32341 entries, 0 to 32950
Data columns (total 2 columns):
     Column
                            Non-Null Count Dtype
 0
     product_id
                            32341 non-null string
     product_category_name 32341 non-null string
 1
dtypes: string(2)
memory usage: 758.0 KB
 t('customers')[['customer_id', 'customer_state', 'customer_unique_id']].duplicated().any()
np.False_
geolocation
 # ahora vamos con geolocation (que me dio algunos dolores de cabeza)
 # (realmente empece con customers y sellers, pero quiero asociar el zip_code_prefix a coord
 # (para la ultima pregunta 'opcional'), que va a requerir hacer 2 joins con geolocation al
 # esto lo hago al limpiar customers y sellers ya (podria hacerlo en el join donde combino
   pero no deja de ser star shaped))
 # tras explorar la tabla de geolocation, entiendo (y compruebo) que el zipcode_prefix corre
 # (solo que falta limpiar los nombres de ciudades, info que podemos ignorar)
 # tambien veo que para un mismo zipcode_prefix hay varias ubicaciones ((lat,long)),
 # podria promediarlas y ver si tiene sentido...
 # promedio entonces las coordenadas (ubis)
 avggeodf = t('geolocation')[['geolocation_zip_code_prefix', 'geolocation_lat', 'geolocation
     .groupby('geolocation_zip_code_prefix',as_index=False).mean().rename(
         columns={'geolocation_lat':'avg_lat','geolocation_lng':'avg_lng'})
 # y para testear esto, podria hacer un right join entre la tabla de geolocation con la de 🖡
 # para quizas calcular la distancia entre coordenadas y coordenada promedio por zip_code_pr
 geocomparedf = avggeodf.merge(t('geolocation')[
                               ['geolocation_zip_code_prefix', 'geolocation_lat', 'geolocati
                               on='geolocation_zip_code_prefix',
```

how-tright!) rename(columns-flacelesstion lattillatt laceless

<class 'pandas.core.frame.DataFrame'>

para eso uso la funcion haversine, que calcula distancia entre dos pares de coordenadas

```
import numpy as np

def haversine(lat1, lon1, lat2, lon2):
    R = 6371  # radio de la tierra en km
    phi1, phi2 = np.radians(lat1), np.radians(lat2)
    delta_phi = np.radians(lat2 - lat1)
    delta_lambda = np.radians(lon2 - lon1)

a = np.sin(delta_phi / 2) ** 2 + np.cos(phi1) * np.cos(phi2) * np.sin(delta_lambda / 2)
    c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1 - a))

return R*c  # distancia en km
```

```
# aplicamos a cada columna
geocomparedf['distance_km'] = geocomparedf.apply(lambda row: haversine(row['avg_lat'], row|
```

geocomparedf.sort_index().sort_values('distance_km',ascending=False).head(20)

	geolocation_zip_code_prefix	avg_lat	avg_Ing	lat	Ing	distance_km
513754	28155	-11.314698	-34.725130	42.439286	13.820214	7752.025103
585260	35179	-17.930858	-44.956594	25.995245	-98.078533	7536.107929
585242	35179	-17.930858	-44.956594	25.995203	-98.078544	7536.106192
516682	28595	-15.307156	-38.850531	43.684961	-7.411080	7296.809454
695377	45936	-14.753814	-39.239425	38.323939	-6.775035	6802.082848
514429	28333	-12.602148	-37.000854	38.381672	-6.328200	6504.801620
513631	28165	-9.096036	-40.177949	41.614052	-8.411675	6503.702434
865611	83810	-10.478246	-41.012740	39.057629	-9.400037	6406.032095
727755	57319	-0.483505	-28.424444	45.065933	9.341528	6279.404161
698466	47310	-2.558106	-35.159028	38.268205	-7.803886	5338.590410
770534	68447	7.271649	-40.315884	42.428884	-6.873344	5099.926375
732362	58441	5.013519	-29.384846	41.385328	-8.717342	4535.869685
538512	29654	2.854530	-70.315200	29.409252	-98.484121	4189.601818
538584	29654	2.854530	-70.315200	-19.825000	-40.654440	4104.360028
538385	29654	2.854530	-70.315200	-19.823680	-40.655474	4104.187639
769464	68275	22.567952	-27.698087	-1.472765	-56.378018	4099.718182
538557	29654	2.854530	-70.315200	21.657547	-101.466766	3962.049462
769414	68275	22.567952	-27.698087	-1.743457	-52.244269	3793.489086
769356	68275	22.567952	-27.698087	-1.743457	-52.244269	3793.489086
769368	68275	22.567952	-27.698087	-1.743515	-52.244163	3793.485738

```
# (-34.586422, -58.732101) es en bsas XD
# (42.439286, 13.820214) [con zip 28155] es en santa maria ITALIA (no santa maria brasil)
```

```
# segun veo, el estado mas grande es amazonas y la distancia maxima adentro (~diametro de d
```

podria filtrar y quedarme con las distancias al promedio menores a 1850 km... pero hay ur # (intente varias formas, con geopy por ej, api calls, etc.. me quedo con la que sigue:)

```
import reverse_geocode

def is_this_brazil(lat, lon):
    location = reverse_geocode.search([(lat, lon)])[0]
    return location["country_code"]=="BR"
```

```
fgeodf = t('geolocation')[t('geolocation').apply(\textbf{lambda} \ r: \ is\_this\_brazil(r['geolocation\_lambda'])][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocation')][t('geolocat
```

```
fgeodf.sort_values('geolocation_lat')
```

	geolocation_zip_code_prefix	geolocation_lat	geolocation_Ing	geolocation_city	geolocatio
978656	96255	-33.692616	-53.453972	chui	RS
978674	96255	-33.692504	-53.456158	chui	RS
978660	96255	-33.692491	-53.456402	chui	RS
978363	96255	-33.692291	-53.460274	chui	RS
979359	96255	-33.692255	-53.460853	chui	RS
774876	68980	3.847562	-51.836146	oiapoque	AP
774867	68980	3.847562	-51.836146	oiapoque	AP
774892	68980	3.847829	-51.835417	oiapoque	AP
775036	68980	3.848867	-51.832635	oiapoque	AP
774451	68980	3.849093	-51.831911	oiapoque	AP

997447 rows \times 5 columns

```
geocompare3df.shape
```

(997447, 5)

```
geocompare3df['distance_km'] = geocompare3df.apply(lambda row: haversine(row['avg_lat'], rowspace)
geocompare3df.sort_index().sort_values('distance_km', ascending=False).head(20)
```

	geolocation_zip_code_prefix	avg_lat	avg_lng	lat	Ing	distance_km
990530	98780	-27.841898	-54.094589	-7.232281	-35.904965	2985.960184
917100	88868	-25.779146	-48.260064	-4.839351	-42.168362	2417.107985
916063	88868	-25.779146	-48.260064	-8.438995	-35.014650	2383.045898
955840	93608	-28.771318	-50.464148	-11.275710	-37.447485	2369.148436
588408	35179	-18.989317	-43.676547	-0.028420	-51.180812	2261.791030
588696	35179	-18.989317	-43.676547	-0.036337	-51.180038	2260.937534
588355	35179	-18.989317	-43.676547	-0.045834	-51.159471	2259.138465
774891	68985	-16.331144	-52.189767	3.816170	-51.863185	2240.566758
790510	72445	-15.625478	-48.640787	-11.000345	-68.752185	2234.877451
813859	76847	-11.208615	-61.588629	-22.854742	-46.314026	2073.947326
864953	83810	-20.385421	-47.335281	-4.951638	-37.131545	2040.073046
513638	28145	-20.757345	-49.881846	-8.741506	-63.907933	2012.239708
399307	19274	-21.646334	-49.382663	-5.067632	-42.808485	1974.859576
638881	37968	-21.011086	-46.811733	-8.001342	-34.850352	1934.366816
588963	35263	-13.799986	-50.805436	-9.982875	-67.844628	1901.311099
399598	19274	-21.646334	-49.382663	-9.763102	-36.662792	1895.017966
540918	29925	-8.445857	-53.478908	-19.122500	-40.360280	1846.381356
502491	27165	-21.067757	-45.073440	-8.068203	-34.893333	1811.993938
399299	19274	-21.646334	-49.382663	-10.893066	-61.932123	1793.580879
304242	13375	-20.569366	-46.023119	-5.754127	-39.627933	1786.107370

ahora si podemos seguir con fgeolocationdf
fgeolocationdf # f por filtered

	geolocation_zip_code_prefix	avg_lat	avg_Ing
0	1001	-23.550190	-46.634024
1	1002	-23.548146	-46.634979
2	1003	-23.548994	-46.635731
3	1004	-23.549799	-46.634757
4	1005	-23.549456	-46.636733
18951	99960	-27.953722	-52.025511
18952	99965	-28.183372	-52.039850
18953	99970	-28.343766	-51.874689
18954	99980	-28.389129	-51.843836
18955	99990	-28.329595	-51.769362

18956 rows × 3 columns

```
dd('customers')
{'customer_id': 'Clave para el conjunto de datos de pedidos. Cada pedido tiene un
customer_id único.',
 'customer_unique_id': 'Identificador único de un cliente',
 'customer_zip_code_prefix': 'Primeros cinco dígitos del código postal del cliente',
 'customer_city': 'Nombre de la ciudad del cliente',
 'customer_state': 'Estado del cliente'}
t('customers').info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 99441 entries, 0 to 99440
Data columns (total 5 columns):
#
    Column
                              Non-Null Count Dtype
    -----
                               _____
- - -
 0
    customer_id
                              99441 non-null object
    customer_unique_id
                              99441 non-null object
 1
 2
    customer_zip_code_prefix 99441 non-null int64
                              99441 non-null object
 3
    customer_city
 4
    customer_state
                              99441 non-null object
dtypes: int64(1), object(4)
memory usage: 3.8+ MB
# me pregunto si puedo dejar de lado el unique_id o si me sirve
t('customers')[['customer_id', 'customer_unique_id']].info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 99441 entries, 0 to 99440
Data columns (total 2 columns):
#
    Column
                        Non-Null Count Dtype
    -----
- - -
                        -----
                        99441 non-null object
 0
    customer_id
1
    customer_unique_id 99441 non-null object
dtypes: object(2)
memory usage: 1.5+ MB
t('customers')['customer_unique_id'].unique().shape
# mejor lo conservo, hay menos unique ids que customer ids (tiene sentido)
(96096,)
# conviene ya hacer un join con la tabla de geolocation... (puede ser importante para respo
customersdf = pd.merge(t('customers'), # guardo info de estado y ciudad tambien
                       fgeolocationdf.add_prefix('customer_'),
                       left_on='customer_zip_code_prefix', right_on='customer_geolocation_z
                       how='left').drop_duplicates()
```

sellers

```
dd('sellers')

{'seller_id': 'Identificador único del vendedor',

'seller_zin_codo_profix': 'Primoros 5 dígitos del código postal del vendedor '
```

```
'seller_city': 'Nombre de la ciudad del vendedor.',
 'seller_state': 'Estado del vendedor.'}
t('sellers').info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3095 entries, 0 to 3094
Data columns (total 4 columns):
#
     Column
                             Non-Null Count Dtype
    -----
- - -
                             -----
    seller_id
 0
                             3095 non-null
                                             object
    seller_zip_code_prefix 3095 non-null
                                             int64
1
2
    seller_city
                             3095 non-null
                                             object
     seller_state
3
                             3095 non-null
                                             object
dtypes: int64(1), object(3)
memory usage: 96.8+ KB
t('sellers')[['seller_id', 'seller_state']].duplicated().any()
np.False_
# lo mismo aca
sellersdf = pd.merge(t('sellers'),
                        fgeolocationdf.add_prefix('seller_'),
                        left_on='seller_zip_code_prefix', right_on='seller_geolocation_zip_c
                        how='left').drop_duplicates()
for d in [ordersdf, orderitemsdf, orderpaymentsdf, orderreviewsdf, customersdf, sellersdf,
    print(d.duplicated().any())
False
False
False
False
False
False
False
# dataframe final | data mart (star shaped)
df = orderitemsdf.merge(ordersdf, how='left', on='order_id'
     ).merge(customersdf, how='left', on='customer_id'
    ).merge(sellersdf, how='left', on='seller_id'
    ).merge(orderpaymentsdf, how='left', on='order_id'
     ).merge(orderreviewsdf, how='left', on='order_id'
     ).merge(productsdf, how='left', on='product_id')
# diagrama
from graphviz import Digraph
from IPython.display import Image
dot = Digraph()
# Fact Table (Central Node)
```

setter_zip_code_prefix . Frimeros s digitos det codigo postat det vendedor.

```
dot.node( Fact , Fact\n(order_id,customer_id,order_status,order_purchase_timestamp,\nns_en
         shape='box', style='filled', fillcolor='lightblue')
# Dimension Tables (Surrounding Nodes)
dimensions = {
    'orders': 'order\n(order_id,customer_id,order_status,order_purchase_timestamp,\nhs_entr
    'order_items': 'order_items\n(order_id, order_item_id, product_id, \nseller_id, shipping_li
    'order_payments': 'order_payments\n(order_id, payment_value)',
    'order_reviews': 'order_reviews\n(order_id,hs_response,avg_review_score)',
    'products': 'products\n(product_id,product_category_name)',
    'customer': 'customer\n(*)',
    'seller': 'seller\n(*)',
    'geolocation_s': 'geolocation\n(seller_*)',
    'geolocation_c': 'geolocation\n(customer_*)'
}
for dim, label in dimensions.items():
    dot.node(dim, label, shape='ellipse', style='filled', fillcolor='lightgray')
    dot.edge(dim, 'Fact') # Connect dimensions to fact table
# Render and show the diagram
dot.render('star_schema', format='png', cleanup=False)
Image('star_schema.png')
```


Respuestas

```
import matplotlib.pylab as plt
```

1

plt.show()

2

```
# 2. en que estados estan los vendedores y cuales son los principales comercios
# podria primero contar vendedores diferentes agrupando por estado
# luego comparar con la cantidad de ventas
# esto podria hacerlo por cantidad de venta o por valor de venta.. vamos por valor de venta
r21df = df[['seller_state', 'seller_id']].groupby('seller_state').count()\
.rename(columns={'seller_id': 'cantidad'}).sort_values(by='cantidad', ascending=False)
ax = r21df.plot.bar(legend=False, title="Cantidad de vendedores por Estado",
                   xlabel="Estado", ylabel="Cantidad de vendedores/comercios")
total = r21df.cantidad.sum()
for container in ax.containers:
   #labels = [" "+str(v) for v in container.datavalues]
    labels = [f'' \{v\} (\{v/total:.2\%\})'' for v in container.datavalues]
   #print(container.datavalues)
    ax.bar_label(container, labels=labels, label_type='edge', rotation=90, fontsize='8')
ax.set_ylim([0,r21df.cantidad.max()*1.4])
plt.show()
```

Cantidad de vendedores por Estado


```
# principales comercios (10 principales)
r22df = df.groupby('seller_id')[['payment_value']].sum('payment_value').sort_values(by='payment_value')
```

```
principalescomerciosdf = r22df[:30]
principalescomerciosdf.index = principalescomerciosdf.index.str[:4]+"..."+principalescomerciosdf.
ax = principalescomerciosdf.plot.bar(legend=None, xlabel="Aliases de Comercios", ylabel="V&")
```


3

```
# 3. productos mas vendidos, categorias mas vendidas

# veamos primero cuales son las categorias mas vendidas, contando items vendidos
r31df = df[(df.order_status!='canceled')|(df.order_status!='unavailable')][
['product_category_name','product_id']].groupby('product_category_name').count()\
.sort_values('product_id', ascending=False)[:30]
```

ax = r31df.plot.bar(legend=None, xlabel="Categoria", ylabel="Cantidad vendida", title="Categoria")

r32df = df[['product_id','product_category_name','order_id']].groupby(['product_id','product_
.count().sort_values('order_id', ascending=False).rename(columns={'order_id': 'cantidad'})

r32df

	product_id	product_category_name	cantidad
21724	aca2eb7d00ea1a7b8ebd4e68314663af	moveis_decoracao	527
19394	99a4788cb24856965c36a24e339b6058	cama_mesa_banho	488
8456	422879e10f46682990de24d770e7f83d	ferramentas_jardim	484
7231	389d119b48cf3043d311335e499d9c6b	ferramentas_jardim	392
6950	368c6c730842d78016ad823897a372db	ferramentas_jardim	388
32334	fff1059cd247279f3726b7696c66e44e	esporte_lazer	1
32330	ffeb228c521d5464d1f71444da96c446	telefonia	1
32329	ffe9468f4d890db80b7231e86931ff37	brinquedos	1
32324	ffdde3d63e889c9a9f9ec30d82a4c815	brinquedos	1
32323	ffd9ac56db9194a413298faaa03cd176	pet_shop	1

 $32341 \text{ rows} \times 3 \text{ columns}$

principalesproductosdf.index = principalesproductosdf.product_id.str[:4] + "..." + principalesproductosdf.plot.bar(legend=None, xlabel="Alias de producto", ylabel="Cantititle="Principales Productos vs. Cantidad de Ventas")

Principales Productos vs. Cantidad de Ventas

4

4. relacion entre satisfaccion y categoria... podemos graficar simplemente y ver
ax = df[['product_category_name', 'avg_review_score']].groupby('product_category_name')\
.mean().sort_values('avg_review_score', ascending=False).plot.bar(legend=None, title="Satis")

Satisfaccion promedio por categoria

a excepcion de la categoria 'cds_dvds_musicais' y 'segurop_e_servicios' (outliers), no pa # podemos tomar la hipotesis nula: no hay relacion entre categoria y puntuacion (promedio)

```
import scipy.stats as stats

testdf = df[['product_category_name', 'avg_review_score']
].groupby('product_category_name').std().sort_values('avg_review_score', ascending=False)#.

tr = stats.kruskal(*[v[0] for v in testdf.values])
```

```
print(tr.pvalue)
```

0.477833332653075

p value ~=0.5 > 0.05, no hay evidencia para rechazar la hipotesis nula => no hay relacior

5

5. relaciones interesantes entre datos? que tengo para relacionar?: satisfaccion, valor o

df.columns

```
'seller_avg_lat', 'seller_avg_lng', 'payment_value', 'hs_response',
'avg_review_score', 'product_category_name'],
dtype='object')
```

```
# podria ver correlaciones entre: hs de entrega, hs_response, avg_review_score
corrdf = df[['hs_entrega_logistica', 'hs_entrega_cliente', 'hs_entrega_estimada_cliente',
```

```
# podemos visualizar esto mejor
import seaborn as sns

ax = sns.heatmap(corrdf, annot=True, cmap='coolwarm', fmt=".2f")

# se ve correlacion negativa (-0.3) entre review promedio y hs_entrega_cliente (algo para v

# es de esperarse la positiva entre tiempos de entrega logistica y a cliente,
# lo mismo para hs de entrega y freight value (mayor tiempo, mayor distancia, mayor flete
```


Si la empresa quisiera construir 3 centros logísticos a fin de reducir al máximo posible # ¿en qué lugares debe hacerlo?

```
# usamos geopandas para graficar el mapa de brasil y las coordenadas import geopandas as gpd
```

```
world = gpd.read_file('mapdata2/ne_110m_admin_0_countries.shx')
brazil = world[world.NAME == "Brazil"]
```

```
# k-means clustering...! (con k=3)
# es la herramienta ideal porque agrupa en clusters, con los centros minimizando la distance
# lo puedo hacer considerando solo las coordenadas o tambien junto con el tiempo de entrega
# la primera idea fue:
# podria tomar todas las ventas (entregadas), agrupar por vendedor... puedo promediar la uk
# para asociar con un vendedor una ubi promedio de cliente
# me quedaria ahi con una tabla con 3 columnas: ubi vendedor, ubi promedio (de sus) cliente
# pero voy a probar sin hacer eso. voy a conservar todos los pares (solo las ubicaciones)

coordinatesandtimesdf = df[df.order_status=='delivered'][['seller_id', 'seller_avg_lat', 'seller_avg_lat'
```

```
'customer_avg_lat', 'customer_avg

# asi se ven las ubicaciones de vendedores y clientes sin promediar nada

ax = brazil.plot(color='gray')
```

s1 = ax.scatter(df['customer_avg_lng'],df['customer_avg_lat'], color='yellow', label='customer_avg_lat'], color='violet', label='sellers',

vendedores en violeta, clientes en amarillo

from sklearn.cluster import KMeans
from sklearn.preprocessing import MinMaxScaler

coordinatesandtimesdf = coordinatesandtimesdf.dropna()

nrimero considero solo las ubicaciones

```
data = coordinatesandtimesdf[['seller_avg_lat', 'seller_avg_lng', 'customer_avg_lat', 'cust
# reescaleamos (min-max)
scaler = MinMaxScaler()
data_scaled = scaler.fit_transform(data)
data_scaled = pd.DataFrame(data_scaled, columns=data.columns)
k = 3
# aplicamos k-means
kmeans = KMeans(n_clusters=k, init='k-means++', random_state=42)
data_scaled['cluster'] = kmeans.fit_predict(data_scaled)
# y obtenemos los centros de los clusters
cluster_centers = kmeans.cluster_centers_
cluster_centers
array([[0.80399892, 0.86113734, 0.41478186, 0.74596387],
       [0.31091431, 0.57850873, 0.67745626, 0.8483648 ],
       [0.3057583 , 0.56803317, 0.28914107, 0.68024828]])
# y los volvemos a su escala original
actual_centers = scaler.inverse_transform(cluster_centers) # Convert back to original scal
actual_centers
array([[ -8.29855991, -38.88790317, -18.12196603, -44.41957641],
       [-22.88301128, -47.09485832, -8.26324033, -40.54170121],
       [-23.03551574, -47.39904713, -22.83753049, -46.90819537]])
# ahora lo que tengo son 3 centros pero con 4 ubicaciones. una corresponde a la del vendedo
# lo que quiero es que el centro este en un punto medio, asi que promedio ambas
centersdf = pd.DataFrame(actual_centers)
lat_centros = 0.5*(centersdf[0]+centersdf[2])
lng_centros = 0.5*(centersdf[1]+centersdf[3])
ax = brazil.plot()
s1 = ax.scatter(df['customer_avg_lng'],df['customer_avg_lat'], color='yellow', label='customer_avg_lat']
s2 = ax.scatter(df['seller_avg_lng'],df['seller_avg_lat'], color='violet', label='sellers',
sc = plt.scatter(lng_centros, lat_centros, c='black', marker='x')
   5
   0
```


marco con colores cada cluster (puntos mas grandes son vendedores, mas chicos son client€


```
-20 -

-25 -

-30 -

-35 -

-70 -60 -50 -40
```



```
fig, axes = plt.subplots(1, 3, figsize=(15, 5)) # 1 row, 3 columns

for i in range(3):
    #ax = brazil.plot(color='white')

s1 = axes[i].scatter(ubisyclustersdf[ubisyclustersdf.cluster==i]['customer_lng'], ubisyclustersdf[ubisyclustersdf.cluster==i]['cluster'].map(clustercolor s2 = axes[i].scatter(ubisyclustersdf[ubisyclustersdf.cluster==i]['seller_lng'], ubisyclustersdf.cluster==i]['seller_lng'], ubisyclustersdf.cluster==i]['seller_lng']
```

```
c=(ubisyclustersdf[ubisyclustersdf.cluster==i]['cluster'].map(clusterco
```

```
sc2 = axes[i].scatter(lng_centros[i], lat_centros[i], c='black', marker='X')
```

beleza

actual_centers

#!!!

lat_centros

0 -13.210263

1 -15.573126

2 -22.936523

dtype: float64

lng_centros

0 -41.653740

1 -43.818280

2 -47.153621

dtype: float64