Bovespa Index volatility forecasting

Bruno Tebaldi

Computational Methods in Empirical Finance prof. Pedro Valls Pereira

November 28, 2019

- 1 Introduction
- 2 Methodology
 - Volatility Models
 - Forecast Evaluation
- 3 Data
 - Bovespa index history
 - Bovespa index series
- 4 Results
 - Daily returns model
 - Out-of-sample forecast
 - Normal vs Skewed t-Student
 - Forecast Window
 - Parameter re-estimation
 - Realized volatility comparison
 - E-GARCH Parameter Estimates
- 6 Conclusion

Introduction

- We follow the footsteps of Brownlees, Engle & Kelly; A Practical Guide to Volatility Forecasting through Calm and Storm
- We use of similar models, to the Bovespa Index.
- The models take into account several stylized fact of financial time series.

Volatility Models

The following models were analized:

• ARCH(1)

- model
- GARCH(1,1)
- $oxed{model}$
- E-GARCH(1,1)GJR-Garch(1,1)
 - model

• EWMA

- model
- APARCH(1,1)
- \mod el

For each model we make a comparison between Normal and Skewed t-Student, as well as different forecasting windows.

Forecast Evaluation

Quasi-Likelihood and Mean Squared Error

Two loss functions are used to evaluate the forecasting error.

• The mean squared error loss depends solely on the additive forecast error, $\hat{\sigma}_t^2 - h_{t|t-k}$.

$$MSE: L(\hat{\sigma}_t^2, h_{t|t-k}) = (\hat{\sigma}_t^2 - h_{t|t-k})^2$$
 (1)

• The quasi-likelihood-based loss, named for its close relation to the Gaussian likelihood, depends only on the standardized residual $\hat{\sigma}_t^2/h_{t|t-k}$.

$$QL: L(\hat{\sigma}_t^2, h_{t|t-k}) = \frac{\hat{\sigma}_t^2}{h_{t|t-k}} - \ln\left(\frac{\hat{\sigma}_t^2}{h_{t|t-k}}\right)$$
 (2)

Forecast Window

Out-of-sample forecasts are typically computed using one of two methods:

- Recursive (expanding window)
- 2 Rolling (moving window).

Forecast Window

Recursive (expanding window)

Forecast Window

Rolling (moving window)

Realized Volatility

The realized volatility are calculated using the following methodology:

• Denote by $p_{d,m}$ the log-price of the asset in the period m $(m=1,\ldots,M)$ of day d $(d=1,\ldots,D)$, the corresponding intraday return in the period d and m

$$r_{d,m} = p_{d,m} - p_{d,m-1}$$
 $m = 2, \dots, M$ $d = 1, \dots, D$ (3)

$$r_{d,1} = p_{d,1} - p_{d-1,M} (4)$$

• The realized variance for an asset in day $d(VR_d)$ is then given by

$$VR_{d} = \begin{cases} \sum_{m=2}^{M} r_{d,m}^{2} & \text{if day d-1 is excluded} \\ r_{d,1}^{2} + \sum_{m=2}^{M} r_{d,m}^{2} & \text{otherwise} \end{cases}$$
 (5)

- 1 Introduction
- 2 Methodology
 - Volatility Models
 - Forecast Evaluation
- 3 Data
 - Bovespa index history
 - Bovespa index series
- 4 Results
 - Daily returns model
 - Out-of-sample forecast
 - Normal vs Skewed t-Student
 - Forecast Window
 - Parameter re-estimation
 - Realized volatility comparison
 - E-GARCH Parameter Estimates
- 6 Conclusion

- The Bovespa Index (Ibovespa) is the result of a theoretical portfolio of assets.
- The Ibovespa's objective is to be the indicator of the average performance of quotations of the most tradable and representative assets of the Brazilian stock market.
- The Index is composed of shares and units exclusively of shares of companies listed on the Bm&fBovespa that meet the inclusion
- \bullet The Bovespa index suffered a methodology change on 11/09/2013

Level

Daily returns

Source: Yahoo finance

The Bovespa Index High Frequency Data

The high frequency data is calculated for the period 1998-04-06 to 2003-08-03.

Gaps

Holidays and other eventual gaps in the series were handdled by using a local level model with a Kalman filter.

	Date	Open	High	Low	Close	Adj. Close	Volume
Min.	2000-01-03	8.397	8.513	8.225	8.371	8.371	0
1st Qu.	2004-08-03	23.225	23.456	22.961	23.235	22.757	0
Median	2009-05-11	50.414	51.065	49.891	50.423	50.089	1.981.600
Mean	2009-05-27	44.812	45.287	44.342	44.826	44.465	7.266.875
3rd Qu.	2014-03-10	61.264	61.945	60.747	61.272	61.138	3.502.075
Max.	2018-12-28	89.820	91.242	89.429	89.820	89.820	232.265.300
NA's	84	84	84	84	84	0	84

- 1 Introduction
- 2 Methodology
 - Volatility Models
 - Forecast Evaluation
- 3 Data
 - Bovespa index history
 - Bovespa index series
- 4 Results
 - Daily returns model
 - Out-of-sample forecast
 - Normal vs Skewed t-Student
 - Forecast Window
 - Parameter re-estimation
 - Realized volatility comparison
 - E-GARCH Parameter Estimates
- 6 Conclusion

Daily returns model

The following models are fitted to the daily returns. The selection of the model is based by the Akaike Information criteria.

Model	Const.	$\mathbf{A}\mathbf{R}$	MA	log likelihood	\mathbf{AIC}
ARMA(1,1)	0.0004 (0.0003)	-0.2944 $_{(0.3830)}$	$\underset{(0.3798)}{0.3075}$	12576.58	-25147.16
ARMA(1,0)	0.0003	$\underset{(0.0145)}{0.0097}$	-	12576.36	-25148.72
ARMA(0,1)	0.0003	-	$\underset{(0.0149)}{0.0103}$	12576.37	-25148.74
ARMA(0,0)	0.0003	-	-	12576.13	-25150.27

The ARMA(0,0) model will be used to model the mean of the returns.

In-Sample Fit

Model	\mathbf{Dist}	Akaike	Bayes	Shibata	HannanQuinn
ARCH	Norm	-5.1607	-5.1552	-5.1607	-5.1588
ARCH	Sstd	-5.2325	-5.2233	-5.2325	-5.2292
GARCH	Norm	-5.3083	-5.3009	-5.3083	-5.3056
GARCH	Sstd	-5.3259	-5.3148	-5.3259	-5.3219
E-GARCH	Norm	-5.3252	-5.3159	-5.3252	-5.3219
E-GARCH	Sstd	-5.3413	-5.3283	-5.3413	-5.3366
GJR-Garch	Norm	-5.3295	-5.3202	-5.3295	-5.3262
GJR-Garch	Sstd	-5.3438*	-5.3308*	-5.3438*	-5.3391*
EWMA	Norm	-5.2947	-5.2910	-5.2947	-5.2934
EWMA	Sstd	-5.3185	-5.3111	-5.3185	-5.3159
APARCH	Norm	-5.3266	-5.3154	-5.3266	-5.3226
APARCH	Sstd	-5.3409	-5.3261	-5.3409	-5.3356

Table: Model Information Criteria

In-Sample Fit

Bovespa Index volatility

Source: Yahoo finance

Out-of-sample forecast

- All models are estimated using a Normal distribution as well as a Skewed t-Student distribution, using all 3 types of forecasting windows (expanding, moving 2 year window, moving 5 year window), with several parameters re-estimation strategies (5 days, 20 days, 60 days, 252 days).
- A total of 144 forecasting scenarios were analyzed.

- For the baseline comparison of between the Normal distribution and the Skewed t-Student we use the expanding window with 252 day period of parameter re-estimation.
- Since parameter re-estimation can be an important factor we will also present results for the expanding window with 5 day period of parameter re-estimation

252 day periodof parameter re-estimation

Table: MSE for a expanding window with 252 period of parameter re-estimation

	Norm	\mathbf{Sstd}	DM p-value
ARCH	9.5927	1.7369^{+}	0.0945
GARCH	1.5821*	1.5809^{+*}	0.3517
E-GARCH	1.5837^{+}	1.5866	0.3738
GJR-GARCH	1.6024^{+}	1.6043	0.3777
EWMA	1.5846^{+}	1.5851	0.3348
APARCH	1.6520^{+}	1.6575	0.3783

Values for the MSE are multiplied by 10⁷

Diebold-Mariano Test alternative hypothesis: two sided

+: lowest value across the line

^{*:} lowest value across the column

252 day periodof parameter re-estimation

Table: QL for a expanding window with 252 day period of parameter re-estimation

	Norm	\mathbf{Sstd}	DM p-value
ARCH	7.8714	2.5507^{+}	0.02921
GARCH	2.4337^{+*}	2.4375^*	0.2159
E-GARCH	2.4453^{+}	2.4537	0.2956
GJR-GARCH	2.4471	2.4463^{+}	0.7158
EWMA	2.4603	2.4556^{+}	0.2877
APARCH	2.4588^{+}	2.4609	0.9981

Diebold-Mariano Test alternative hypothesis: two sided

+: lowest value across the line

*: lowest value across the column

5 day periodof parameter re-estimation

Table: MSE for a expanding window with 5 day period of parameter re-estimation

	Norm	\mathbf{Sstd}	DM p-value
ARCH	7.0980	1.7296 ⁺	0.1571
GARCH	1.5819*	1.5805^{+*}	0.3486
E-GARCH	1.5823 ⁺	1.5848	0.3767
GJR-GARCH	1.6007^{+}	1.6025	0.3620
EWMA	1.5841 ⁺	1.5845	0.3387
APARCH	1.6462	1.6381^{+}	0.0957

Values for the MSE are multiplied by 10⁷

Diebold-Mariano Test alternative hypothesis: two sided

+: lowest value across the line

^{*:} lowest value across the column

- For the baseline comparison of between the Expanding window vs Moving window we use consider a 5 day period of parameter re-estimation, as well as a 252 day period of parameter re-estimation.
- It's worth mentioning that the use of a Skewed t-Student distribution presented convergence problems for some models. We will focus on the Normal distribution results.
- We present a Diebold-Mariano test comparison between the models for the forecast scenario of the Normal distribution with a moving window of 5 years and re-estimation every 5 days.

MSE Results with Normal Dist.

Table: MSE comparison of forecast methods form Normal distribution

	Expanding	Moving 2 years	Moving 5 years
ARCH	7.09804	6.41130^{+}	6.71682
GARCH	1.58187*	1.58828	1.57809^{+}
E-GARCH	1.58228	1.60976	1.57625^{+*}
GJR-GARCH	1.60071	1.58248 ^{+*}	1.58965
EWMA	1.58413	1.59175	1.58364^{+}
APARCH	1.64617	1.63488	1.63303 ⁺

Values for the MSE are multiplied by 10^7

Parameters re-estimated every 5 days

+: lowest value across the line

^{*:} lowest value across the column

MSE Results with Sstd. Dist.

Table: MSE comparison of forecast methods form Sstd. distribution

	Expanding	Moving 2 years	Moving 5 years
ARCH	1.72956	1.64733	1.67268
GARCH	1.58050	NA	NA
E-GARCH	1.58478	NA	1.57723
GJR-GARCH	1.60255	NA	NA
EWMA	1.58451	1.58882	1.58554
APARCH	1.63811	NA	NA

Values for the MSE are multiplied by 10^7

Parameters re-estimated every 5 days

NA: Not available

+ : lowest value across the line

^{*}: lowest value across the column

Expanding window vs Moving window QL Results with Normal Dist.

Table: QL comparison of forecast methods form Normal distribution

	Expanding	Moving 2 years	Moving 5 years
ARCH	6.81089 ⁺	29.99399	17.97508
GARCH	2.43581^{+*}	2.45923	2.45747
E-GARCH	2.43971	2.47418	2.43676^{+*}
GJR-GARCH	2.44566^{+}	2.46250	2.44697
EWMA	2.45617^{+}	2.46857	2.46430
APARCH	2.44892+	2.45127*	2.45905

Parameters re-estimated every 5 days

+: lowest value across the line

* : lowest value across the column

DM-Test with Normal Dist.

Table: DM Test for Normal distribution, moving window of 5 years and re-estimation every 5 days

	ARCH	GARCH	E-GARCH	GJR-GARCH	EWMA	APARCH
ARCH	NA	0.9939	0.9940	0.9940	0.9939	0.9940
GARCH	0.0061*	NA	0.7080	0.7048	0.2764	0.6476
EGARCH	0.0060*	0.2920	NA	0.2778	0.2867	0.2282
GJRGARCH	0.0060*	0.2952	0.7222	NA	0.2883	0.2065
EWMA	0.0061*	0.7236	0.7133	0.7117	NA	0.6829
APARCH	0.0060*	0.3524	0.7718	0.7935	0.3171	NA

DM-Test: The alternative hypothesis is that the model on the column is less accurate than model on the row.

^{* :} less than 5%

MSE Results with Normal Dist.

Results for the 252 day period of parameter re-estimation are similar. Its worth mentioning that the E-GARCH model presented convergence problems when using a 2 year moving window.

Table: MSE comparison of forecast methods form Normal distribution

	Expanding	Moving 2 years	Moving 5 years
ARCH	9.59273	7.18291 ⁺	12.63411
GARCH	1.58209*	1.58932*	1.57497^{+*}
E-GARCH	1.58371	Inf	1.57816^{+}
GJR-GARCH	1.60242	1.62359	1.59712^{+}
EWMA	1.58464	1.59499	1.58393^{+}
APARCH	1.65203	1.63419 ⁺	1.64973

Values for the MSE are multiplied by 10^7

Parameters re-estimated every 252 days

+: lowest value across the line

*: lowest value across the column

Parameter re-estimation

• For the parameter re-estimation comparison we consider a Normal distribution with a 5 year moving window.

Parameter re-estimation

Table: MSE comparison of re-estimation form Normal distribution in a 5 year moving window

	5 days	$20 \mathrm{days}$	$60 \mathrm{days}$	$252 \mathrm{days}$
ARCH	6.7168 ⁺	7.1792	9.1130	12.6341
GARCH	1.5781	1.5782	1.5789^*	1.5750^{+*}
E-GARCH	1.5762^{+*}	1.5781*	1.5796	1.5782
GJR-GARCH	1.5897 ⁺	1.5928	1.5964	1.5971
EWMA	1.5836 ⁺	1.5852	1.5851	1.5839
APARCH	1.6330 ⁺	1.6392	1.6426	1.6497

Values for the MSE are multiplied by 10⁷

+: lowest value across the line

*: lowest value across the column

Realized volatility comparison

- The intraday data allowed for a 3 year (almost 4 year) comparison of the realized volatility.
- The forecast were performed considering a 3 year expanding window, and a 3 year moving window. Both with 5 day period of parameter re-estimation.

Realized volatility

Normal vs. Skewed t-Student

Table: MSE comparison in a 3 year expanding window

	Norm	\mathbf{Sstd}	DM p-value
ARCH	12.5964	0.5145^{+}	0.2188
GARCH	0.3111	0.2964^{+}	0.4948
E-GARCH	0.2295^{+}	0.2310	0.1303
GJR-GARCH	0.2600	NA	NA
EWMA	0.2262*	0.2231^{+}	0.2671
APARCH	0.2654	NA	NA

Values for the MSE are multiplied by 10^7

Diebold-Mariano Test alternative hypothesis: two sided

Parameters re-estimated every 5 days

+: lowest value across the line

^{*:} lowest value across the column

Realized volatility

Expanding window vs moving window

Table: MSE comparison between 3 year expanding window vs moving window

	Mov3(5)	Mov3(20)	Mov3(60)	Roll(5)	Roll(20)	Roll(60)
ARCH	4.2825	8.8842	0.5979	12.5964	0.5106	0.4952^{+}
GARCH	0.3030+	0.3083	0.3148	0.3111	0.3156	0.3225
E-GARCH	0.2359	0.2282^{+}	0.2447	0.2295	0.2340	0.2345
GJR-GARCH	0.2551+	0.2576	0.2588	0.2600	0.2625	0.2653
EWMA	0.2258*	0.2266*	0.2250 ⁺ *	0.2262*	0.2266*	0.2258^*
APARCH	0.2526	0.2574	0.2496 ⁺	0.2654	0.2667	0.2747

Values for the MSE are multiplied by 10⁷

Mov3(x): moving window of 3 years with re-estimation every x days

Roll(x): expanding window with re-estimation every x days

+: lowest value across the line

*: lowest value across the column

E-GARCH Parameter Estimates

- The E-GARCH model presented a convergence problem when using a moving window of 2 years, therefore we investigate how is the evolution of the parameters across the time.
- For this task we use the 5 year moving window with re-estimation of parameters every 5 days.

E-GARCH

Parameter Estimates

E-GARCH

Forecast Estimates

- 1 Introduction
- 2 Methodology
 - Volatility Models
 - Forecast Evaluation
- 3 Data
 - Bovespa index history
 - Bovespa index series
- 4 Results
 - Daily returns model
 - Out-of-sample forecast
 - Normal vs Skewed t-Student
 - Forecast Window
 - Parameter re-estimation
 - Realized volatility comparison
 - E-GARCH Parameter Estimates
- 6 Conclusion

Conclusion

- Asymmetric models perform relatively well across all forecasting methods.
- The E-GARCH has convergence problems in the 2 year sample.
- Updating parameter estimates as frequently as possible provides the best forecasting performance.
- No evidence that the Student-t likelihood improves forecasting ability in comparison to the Normal.
- The use of Student-t may cause some convergence problems.
- The E-GARCH model reveals that the parameters have a great degree of variability without exhibiting any signs of breaks.

References

The Comprehensive R Archive Network

https://cran.r-project.org/ codes availiable in: github.com/btebaldi/EmpiricalFinance_1

Pereira, Pedro V.; Morrettin, Pedro A. (2019)

Econometria Financeira - Um Curso em Séries Temporais Financeiras 4th ed.

Pereira, Pedro V.

Lecture notes - Empirical finance I and II

Volatility Models ARCH

A generic model for estimating the conditional variance of returns is the ARCH model.

$$h_t = \omega + \alpha(L)h_{t-1} + \nu_t \tag{6}$$

where $\alpha(L)$ is a lag-polynomial operator of the type $\alpha(L) = \alpha_1 L + \alpha_1 L^2 + \cdots + \alpha_m L^m$ and to ensure no negativity of conditional variance: $w, \alpha_i > 0$ for $i = 1, \dots, m$. Also ν_t is and i.i.d. process with zero mean and unit variance.

Volatility Models GARCH

The GARCH(1,1) model assumes the following form:

$$h_t = \omega + \alpha r_{t-1}^2 + \beta h_{t-1} \tag{7}$$

Key features of this process are its mean reversion (imposed by the restriction $\alpha + \beta < 1$) and its symmetry - future variance responds as much to past positive returns as it does to negative returns.

Volatility Models E-GARCH

The E-GARCH models the log of variance. The formulation for a E-GARCH(1,1) is as follows:

$$\ln(h_t) = \omega + \alpha(|\epsilon_{t-1}| - \mathbb{E}[|\epsilon_{t-1}|]) + \gamma \epsilon_{t-1} + \beta \ln(h_{t-1})$$
 (8)

where $\epsilon_t = r_t / \sqrt{h_t}$

Volatility Models GJR-GARCH

The GJR-GARCH model also models asymmetry in the ARCH process. The GJR-GARCH(1,1) model assumes the following form:

$$h_t = \omega + (\alpha + \gamma \mathbb{I}_{r_{t-1} < c}) r_{t-1}^2 + \beta h_{t-1}$$
 (9)

where $\mathbb{I}_{r_{t-1}}$ is an indicator equaling one when the previous period's return is below some threshold c (most commonly, c = 0).

Volatility Models EWMA

The exponential smoothing is an IGARCH model with $\omega = 0$. In this case, the EWMA model assumes the following form:

$$h_t = \lambda h_{t-1} + (1 - \lambda)r\nu_t \tag{10}$$

back

Volatility Models APARCH

The APARCH model assumes a specific parametric form for powers of this conditional heteroskedasticity.

In this case, the APARCH(1,1) model assumes the following form:

$$h_t^{\delta/2} = \omega + \alpha (|r_t| - \gamma r_t)^{\delta} + \beta h_{t-1}^{\delta/2}$$
(11)

back

Parameter re-estimation

Table: QL comparison of re-estimation form Normal distribution in a 5 year moving window

	$5 \mathrm{days}$	$20 \mathrm{days}$	$60 \mathrm{days}$	$252 \mathrm{days}$
ARCH	17.9751 ⁺	49.7862	31.2580	26.3828
GARCH	2.4575	2.4555	2.4437	2.4353^{+*}
E-GARCH	2.4368*	2.4415^*	2.4355^{+*}	2.4451
GJR-GARCH	2.4470^{+}	2.4484	2.4510	2.4473
EWMA	2.4643	2.4679	2.4558^{+}	2.4563
APARCH	2.4591 ⁺	2.4650	2.4667	2.4598

+: lowest value across the line

^{*:} lowest value across the column

