

T. Y. B. Tech Computer Engineering 2024-2025

Pursued in Department of Computer Engineering Faculty of Science & Technology

Vishwakarma University, Pune-411048

NAME	Swanand Mangesh Garge
YEAR	THIRD YEAR
DIV	D
BATCH	D2
ROLL NO	39
SRN NO	202201589
PRN NO	2280030433
COURSE NAME	DATAWAREHOUSE & DATA MINING
	LAB
COURSE CODE	BTECCE22509
COURSE TEACHER NAME	PROF. RAHUL PAPALKAR

ASSIGNMENT NO: 3

Problem Statement:

Consider a vaccination management operational database that tracks different vaccine types, doses administered, sessions, sites, and adverse events following immunization (AEFI). It also tracks demographic information such as age group, gender, and location by state. You have to design a data warehouse that will be updated from the operational database and should support decision-making by helping to answer analytical questions about the total doses administered, sessions conducted, individuals vaccinated, and AEFI reported per vaccine type, age group, gender, date, and state.

THEORY:

• Star Schema:

- A type of database schema that organizes data into fact and dimension tables.
- The fact table is at the center, and it connects to dimension tables, which "radiate" out like the points of a star.
- It is simple, easy to understand, and supports efficient queries.

• Fact Table:

- Stores quantitative data (measurable metrics) related to business processes, like sales, revenue, or performance metrics.
- Each record in a fact table is a combination of foreign keys to dimension tables and facts (numeric data).
- Typically, it has many rows and fewer columns.

• Dimension Table:

• Contains descriptive attributes (context) about the facts, like product details, time, location, or customer information.

- Dimension tables are used to filter, group, and label the data in the fact table.
- They usually have fewer rows but more columns compared to fact tables.

$State_dim$ State_Key State_Name Region 1 Maharashtra Western 2 Tamil Nadu Southern 3 West Bengal Eastern 4 Western Gujarat

Karnataka

NULL

$Date_dim$

HULL

Date_Key	Date	Day	Month	Year	Quarter
1	2021-01-01	1	1	2021	1
2	2021-02-01	1	2	2021	1
3	2021-03-01	1	3	2021	1
4	2021-04-01	1	4	2021	2
5	2021-05-01	1	5	2021	2

Southern

NULL

Age_group_dim

Age_Group_Key	Age_Group
1	0-18 years
2	19-30 years
3	31-45 years
4	46-60 years
5	60+ years
NULL	NULL

Age__dim

Gender_Key	Gender
1	Male
2	Female
3	Other
4	Non-binary
5	Prefer not to say

Vaccine_Type_Key	Vaccine_Type
1	Covaxin
2	Covishield
3	Sputnik V
4	Pfizer
5	Moderna
NULL	NULL

Vaccination_fact

Vaccination_ID	State_Key	Date_Key	Vaccine_Type_Key	Gender_Key	Age_Group_Key
1	1	1	1	1	1
2	2	2	2	2	2
3	3	3	3	3	3
4	4	4	4	4	4
5	5	5	5	5	5
HULL	NULL	NULL	NULL	NULL	NULL

Total_Doses_Administered	Sessions	Sites	First_Dose_Administered	Second_Dose_Administered
5000	50	10	2500	2500
10000	100	20	5000	5000
7500	75	15	3750	3750
12000	120	25	6000	6000
8000	80	18	4000	4000
HULL	NULL	NULL	NULL	NULL

AEFI	Total_Individuals_Vaccinated
5	5000
10	10000
7	7500
12	12000
8	8000
NULL	NULL

SOURCE CODE:

```
CREATE DATABASE vaccinedb;
USE vaccinedb;
CREATE TABLE state_dim (
  State Key INT PRIMARY KEY,
  State_Name VARCHAR(100),
  Region VARCHAR(100)
);
CREATE TABLE date_dim (
  Date_Key INT PRIMARY KEY,
  Date DATE,
  Day INT,
  Month INT,
  Year INT,
  Quarter INT
);
-- Create age group dimension table
CREATE TABLE age_group_dim (
  Age_Group_Key INT PRIMARY KEY,
  Age_Group VARCHAR(50)
);
-- Create gender dimension table
CREATE TABLE gender dim (
  Gender_Key INT PRIMARY KEY,
  Gender VARCHAR(50)
);
-- Create vaccine type dimension table
CREATE TABLE vaccine_type_dim (
  Vaccine_Type_Key INT PRIMARY KEY,
  Vaccine_Type VARCHAR(100)
);
-- Create vaccination fact table after all dimension tables
CREATE TABLE vaccination_fact (
  Vaccination_ID INT PRIMARY KEY,
  State_Key INT,
  Date_Key INT,
  Vaccine_Type_Key INT,
  Gender_Key INT,
```

```
Age_Group_Key INT,
  Total_Doses_Administered INT,
  Sessions INT,
  Sites INT,
  First_Dose_Administered INT,
  Second_Dose_Administered INT,
  AEFI INT,
  Total_Individuals_Vaccinated INT,
  FOREIGN KEY (State_Key) REFERENCES state_dim(State_Key),
  FOREIGN KEY (Date_Key) REFERENCES date_dim(Date_Key),
  FOREIGN KEY (Vaccine_Type_Key) REFERENCES vaccine_type_dim(Vaccine_Type_Key),
  FOREIGN KEY (Gender_Key) REFERENCES gender_dim(Gender_Key),
  FOREIGN KEY (Age_Group_Key) REFERENCES age_group_dim(Age_Group_Key)
);
-- Insert values into state dim
INSERT INTO state dim (State Key, State Name, Region)
VALUES
(1, 'Maharashtra', 'Western'),
(2, 'Tamil Nadu', 'Southern'),
(3, 'West Bengal', 'Eastern'),
(4, 'Gujarat', 'Western'),
(5, 'Karnataka', 'Southern');
select * from state dim;
-- Insert values into date dim
INSERT INTO date_dim (Date_Key, Date, Day, Month, Year, Quarter)
VALUES
(1, '2021-01-01', 1, 1, 2021, 1),
(2, '2021-02-01', 1, 2, 2021, 1),
(3, '2021-03-01', 1, 3, 2021, 1),
(4, '2021-04-01', 1, 4, 2021, 2),
(5, '2021-05-01', 1, 5, 2021, 2);
select * from date_dim;
-- Insert values into age group dim
INSERT INTO age_group_dim (Age_Group_Key, Age_Group)
VALUES
(1, '0-18 years'),
```

```
(2, '19-30 years'),
(3, '31-45 years'),
(4, '46-60 years'),
(5, '60 + years');
select * from age_group_dim;
-- Insert values into gender_dim
INSERT INTO gender_dim (Gender_Key, Gender)
VALUES
(1, 'Male'),
(2, 'Female'),
(3, 'Other'),
(4, 'Non-binary'),
(5, 'Prefer not to say');
select * from gender_dim;
-- Insert values into vaccine_type_dim
INSERT INTO vaccine_type_dim (Vaccine_Type_Key, Vaccine_Type)
VALUES
(1, 'Covaxin'),
(2, 'Covishield'),
(3, 'Sputnik V'),
(4, 'Pfizer'),
(5, 'Moderna');
select * from vaccine_type_dim;
-- Insert values into vaccination fact with matching Date Key values
INSERT INTO vaccination_fact (Vaccination_ID, State_Key, Date_Key, Vaccine_Type_Key,
Gender_Key, Age_Group_Key, Total_Doses_Administered, Sessions, Sites, First_Dose_Administered,
Second Dose Administered, AEFI, Total Individuals Vaccinated)
VALUES
(1, 1, 1, 1, 1, 1, 1000, 100, 10, 4000, 1000, 10, 1000),
(2, 2, 2, 2, 2, 10000, 100, 20, 5000, 5000, 10, 10000),
(3, 3, 3, 3, 3, 3, 7500, 75, 15, 3750, 3750, 7, 7500),
(4, 4, 4, 4, 4, 4, 12000, 120, 25, 6000, 6000, 12, 12000),
(5, 5, 5, 5, 5, 5, 8000, 80, 18, 4000, 4000, 8, 8000);
```

SELECT * FROM vaccination_fact;

OUTPUT:

CONCLUSION:

The design of this data warehouse schema provides a well-structured and effective framework for managing and analyzing vaccination data. By implementing a star schema with a central fact table (vaccination_fact) surrounded by dimension tables (state_dim, date_dim, age_group_dim, gender_dim, and vaccine_type_dim), it ensures efficient querying and aggregation of key metrics such as the total doses administered, sessions held, and individuals vaccinated across various dimensions like state, vaccine type, and demographic categories.

The relationships between the fact and dimension tables enable comprehensive, multidimensional analysis. This structure enhances the ability to understand vaccination performance across different aspects, including time, geographic regions, age groups, gender, and vaccine types. Organizing data in this manner allows the data warehouse to support informed decision-making, offering stakeholders valuable insights into critical public health areas like vaccination coverage, demographic targeting, and regional distribution.

This schema not only ensures data consistency and integrity through enforced foreign key relationships but also empowers users to perform complex analytical queries with ease. It serves as a robust foundation for tracking and analyzing vaccination efforts, ultimately aiding in the effective management and optimization of vaccination campaigns.