CLAIMS

What is claimed is:

1	1.	A method, comprising:	
_			

- dynamically invoking a speculative thread from a main thread in a processor;
- 3 and
- 4 executing instructions comprising the speculative thread.
- 1 2. The method of claim 1, further comprising attempting to bind a hardware thread
- 2 context for the speculative thread.
- 1 3. The method of claim 2, further comprising determining whether the attempt to bind
- 2 the hardware thread context for the speculative thread was a success or a failure.
- 1 4. The method of claim 3, further comprising raising an exception and branching to a
- 2 recovery handler when it is determined that the attempt to bind a hardware thread context for
- 3 the speculative thread was a success.
- 1 5. The method of claim 3, further comprising treating the attempt to bind a hardware
- 2 thread context for the speculative thread as a no operation instruction when it is determined
- 3 that the attempt to bind a hardware thread context for the speculative thread was a failure.
- 1 6. The method of claim 1, further comprising transferring live-in values for pre-
- 2 computation slices to hardware thread context register files.
- 1 7. The method of claim 6, further comprising allocating a portion of memory for the
- 2 speculative thread and dedicating the allocated a portion of on-chip memory buffer space as
- 3 an intermediate buffer to pass live-in values from the main thread to the speculative thread.

6

7

computation slice; and

available.

1	8. The method of claim 6, further comprising:
2	identifying at least one load of interest;
3	constructing pre-computation slices for each load of interest, wherein the pre-
4	computation slice comprises a speculative thread that pre-computes an address accessed by a
5 .	load of interest and pre-fetching for the load of interest using the pre-computed address; and
6	establishing triggers to invoke the speculative thread.
1	9. A method in a processor, comprising:
2	Avnomically involving from a first manufacture than 1
	dynamically invoking from a first speculative thread a second speculative
3	thread, wherein the first speculative thread is dynamically invoked from a main thread; and
4	executing instructions comprising the first and second speculative threads.
1	10. The method of claim 9, further comprising attempting to bind a hardware thread
2	context for the speculative thread.
1	11. The method of claim 9, further comprising detecting a trigger to invoke the second
2	speculative thread, storing second speculative thread live-in values to a buffer, and executing
3	instructions in the second speculative thread.
1	12. The method of claim 10 wherein each speculative thread includes a pre-computation
2	slice, the method further comprising:
3	allocating on output in a record Country in a
	allocating an entry in a queue for a copy of at least one pre-computation slice
4	when it is determined that a hardware context is unavailable for the copy of the pre-

placing the pre-computation slice in the queue until a hardware context is

3

4

5

6

7

8

9

10

11

12

1 13	. A pro	cessor,	comprising:
------	---------	---------	-------------

- 2 a first hardware context to store a main software thread;
- a second hardware context to store a speculative software thread;
- 4 logic coupled between the first and second hardware contexts and a machine-
- 5 readable medium having machine-readable instructions stored thereon to instruct a processor
- 6 to bind the speculative software thread to the second hardware context and to transfer live-in
- 7 values from main software thread to the speculative software thread; and
- 1 14. The processor of claim 13 wherein the logic to copy live-in values from first hardware
- 2 context to the second hardware context includes flash-copy hardware or portion of memory
- 3 buffer space.

1 15. A processor, comprising:

a first hardware context to store a main thread;

a second hardware context and a third hardware context to bind to a first speculative thread and a second speculative thread, respectively, the main thread to dynamically invoke the first speculative thread and the first speculative thread to dynamically invoke the second speculative thread; and logic coupled between the first, second, and third hardware contexts, and a processor-readable medium having processor-readable instructions stored thereon to instruct the processor, to bind the first and second speculative threads to the second and third hardware contexts, respectively, and to transfer live-in values from main thread to the first speculative thread and from the first speculative thread to the second speculative thread, wherein the processor-readable medium includes at least one instruction to instruct the processor to trigger the invocation of the first and second speculative threads.

1 16. The processor of claim 15, further comprising a pending slice queue having entries to allocate a copy of at least one pre-computation slice when it is determined that a hardware context is unavailable for the copy of the pre-computation slice and to hold the pre-computation slice until a hardware context is available.

5

¥ ()

- 1 17. The processor of claim 15, further comprising an outstanding pre-computation slice
- 2 counter to track for a set of loads of interest the number speculative threads that have been
- 3 spawned relative to the number of instances of any load of interest that have not yet been
- 4 retired by the main thread and to decrement en the main thread retires the corresponding load
- 5 of interest.
- 1 18. The processor of claim 15, further comprising an outstanding pre-computation slice
- 2 counter to track for a set of loads of interest the number speculative threads that have been
- 3 spawned relative to the number of instances of any load of interest that have not yet been
- 4 retired by the main thread and to decrement en the main thread retires the corresponding load
- 5 of interest, to increment the counter when the corresponding pre-computation slice is
- 6 spawned, and to force any speculative thread for which the entry in the counter is in a
- 7 predetermined state to wait in the queue until the entry in the counter becomes a second
- 8 predetermined state.

1

- 1 19. A machine-readable medium having machine-readable instructions stored thereon to
- 2 instruct a processor to:
- 3 dynamically invoke a speculative thread from a main thread; and
- 4 execute instructions comprising the speculative thread.
- 1 20. The machine-readable medium of claim 19 wherein the instructions are further to
- 2 instruct the processor to:

3	allocate an entry in a queue for a copy of at least one pre-computation slice
4	when it is determined that a hardware context is unavailable for the copy of the pre-
5	computation slice; and
6	
	place the pre-computation slice in the queue until a hardware context is
7 8	available.
1	21. The machine-readable medium of claim 19 wherein the instructions are further to
2	instruct the processor to:
3	bind a hardware context for the speculative thread;
4	transfer live-in values from the main thread to the speculative thread; and
5	load live-in values in the hardware context for the speculative thread.
1	22. The machine-readable medium of claim 19 wherein the instructions are further to
2	instruct the processor to:
3	identify a set of loads of interest;
4	construct pre-computation slices for each delinquent load of interest, wherein
5	the pre-computation slice comprises a speculative thread that pre-computes an address
6	accessed by a load of interest; and establish triggers to invoke the speculative thread.
1	23. The machine-readable medium of claim 22 wherein the instructions are further to
2	instruct the processor to:
3	allocate an entry in a queue for a copy of at least one pre-computation slice
4	when it is determined that a hardware context is unavailable for the copy of the pre-
5	
	computation slice; and
6	place the pre-computation slice in the queue until a hardware context is
7 8	available.

1	24. The machine-readable medium of claim 23 wherein the instructions are further to
2	instruct the processor to:
3	track for a subset of the set of loads of interest the number speculative threads
4	that have been spawned relative to the number of instances of any load of interest that have
5	not yet been retired by the main thread; and
6	decrement a counter when the main thread retires the corresponding load of
7	interest.
1	25. The machine-readable medium of claim 23 wherein the instructions are further to
2	or ordinary of ordinary of the month of the month of the further to
	instruct the processor to:
3	track for a subset of the set of loads of interest the number speculative threads
4	that have been spawned relative to the number of instances of any load of interest that have
5	not yet been retired by the main thread; and
6	increment a counter when the corresponding pre-computation slice is
7	spawned; and
8	forcing any speculative thread for which the entry in the counter is in a
9	predetermined state to wait in the queue until the entry in the counter becomes a second
0	predetermined state.
1	
1	26. A machine-readable medium having machine-readable instructions stored thereon to
2	instruct a processor to:
3	dynamically invoke from a first speculative thread a second speculative
4	thread, the first speculative thread to be dynamically invoked from a main thread; and
5	
J	execute instructions comprising the first and second speculative threads

invoke a speculative thread from a main thread.

1	27. The machine-readable medium of claim 26 wherein the instructions are further to
2	instruct the processor to:
3	bind a first and second hardware contexts for the first and second speculative
4	threads, respectively; and
5	transfer live-in values from the main thread to the first hardware context and
6	from the first hardware context to the second hardware context.
1 2	28. The machine-readable medium of claim 27 wherein the instructions are further to
	instruct the processor to:
3	identify a set of loads of interest;
4	construct pre-computation slices for each delinquent load of interest, wherein
5	the pre-computation slice comprises a speculative thread that pre-computes an address
6	accessed by a load of interest; and
7	establish triggers to invoke the speculative thread.
1 2	29. The machine-readable medium of claim 28 wherein the instructions are further to instruct the processor to:
3	allocate an entry in a queue for a copy of at least one pre-computation slice
4	when it is determined that a hardware context is unavailable for the copy of the pre-
5	computation slice; and
6	place the pre-computation slice in the queue until a hardware context is
7 8	available.

1 30. The machine-readable medium of claim 28 wherein the instructions are further to 2 instruct the processor to:

predetermined state.

3	track for a subset of the set of loads of interest the number speculative threads
4	that have been spawned relative to the number of instances of any load of interest that have
5	not yet been retired by the main thread; and
6,	decrement a counter when the main thread retires the corresponding load of
7	interest.
1	31. The machine-readable medium of claim 28 wherein the instructions are further to
2	instruct the processor to:
3	track for a subset of the set of loads of interest the number speculative threads
4	that have been spawned relative to the number of instances of any load of interest that have
5	not yet been retired by the main thread; and
6	increment a counter when the corresponding pre-computation slice is
7	spawned; and
8	forcing any speculative thread for which the entry in the counter is in a
9	predetermined state to wait in the queue until the entry in the counter becomes a second