

SEMINARIO MODELIZACIÓN DE NICHO ECOLÓGICO

María Ángeles Pérez m.angeles582@gmail.com

Envelope & Regression models

Bioclim

Mahalanobis distance

Generalized Linear Models

Generalized Additive Models

Envelope Models

Bioclim

- Fue uno de los primeros algoritmos utilizados
- Presence-only model. No necesita ausencias simuladas
- Define el rango de las especies como el espacio ambiental multidimensional que queda limitado por el valor mínimo y máximo de las presencias (normalmente el 90%)
- Compara la similaridad de un punto cualquiera del mapa a estos datos

Envelope Models

Bioclim

- Un valor de 1 es posible cuando un punto presenta los valores de la mediana para todas las variables
- Un valor de 0 para puntos que poseen al menos para una de las variables ambientales un valor que queda fuera de los límites del percentil
- No modela peor que otros métodos actuales
- Particularmente malo para proyecciones en nuevos escenarios

Distance based Models

Distancia de Mahalanobis

- Presence-only model. No necesita ausencias simuladas
- Mide la distancia de un punto cualquiera del espacio ambiental al valor medio de las variables ambientales para los puntos de presencia, escalando por la matriz de covarianza
- Escala las diferencias entre los vectores medidos. Es independiente de la escala del predictor

Distance based Models

Distancia de Mahalanobis

- Genera un mapa de distancias
- Asumiendo normalidad multivariante, el estadístico sigue una distribución Chicuadrado y los pvalues pueden ser mapeados
- Asume normalidad de las variables predictoras, linealidad en las respuestas e igual peso entre los predictores

Regression models

GLM (Generalized Regression Models)

- Relaciones no lineales entre variables
- Distribuciones de errores no normales: Binomial, Poisson, Gamma...
- Utiliza ausencias reales o estimadas (pseudoausencias o background)
- Se añade flexibilidad añadiendo términos polinómicos
- Se pueden añadir interacciones entre variables. No es muy frecuente
- Métodos de selección de modelos:
 Stepwise
- Modelos con variables ambientales significativamente diferentes pueden conducir a valores similares de AIC.

Regression models

GLM (Generalized Regression Models)

- Se recomiendan 5 presencias por variable y termino polinómico:
 - 1 grado \rightarrow 5 presencias/variable
 - 2 grado → 10 presencias/variable
 - 3 grado → 15 presencias/variable
- Datos de background deben ser ponderados
- Curvas de respuesta normales unimodales o logísticas
- Curvas respuesta suaves. Suelen ser recomendados para extrapolar

Regression Models

GAM (Generalized Additive Models)

- Extensiones no paramétricas de GLM
- Distribuciones de errores no normales: Binomial, Poisson, Gamma...
- Utiliza ausencias reales o estimadas (pseudoausencias o background)
- Coeficientes de regresión son remplazados por funciones de suavizado
- Splines, suavizado en función del número de knots y grados efectivos de libertad
- LOESS, suavizado por el número de vecinos incluidos en la regresión.
- Mayor ajuste a los datos que GLM.
 Puede ser bastante complejo

Regression Models

GAM (Generalized Additive Models)

- Paquetes mgcv y gam
- gam: por defecto 4 grados de libertad y polinomio grado 3
- Paquete mgcv es más reciente
- Selecciona por crosvalidación el número óptimo de knots
- Más de 8 df curva altamente no lineal
- k=-1 para ejecutar crosvalidation

