LAPORAN OBSERVASI TUGAS PEMROGRAMAN 02 – FUZZY LOGIC

diajukan untuk memenuhi tugas mata kuliah (CII – 2M3) Pengantar Kecerdasan Buatan

oleh Kelompok 18:
Otniel Abiezer (NIM 1301180469)
Muhammad Haidir Ali (NIM 1301180205)

PROGRAM STUDI TEKNIK INFORMATIKA
FAKULTAS INFORMATIKA
UNIVERSITAS TELKOM
BANDUNG
2021

DAFTAR ISI

1.]	Hal yang Perlu Diobservasi	1
a	ì.	Jumlah dan Nama Linguistik Input	1
b).	Batas dan Fungsi Keanggotaan Input	1
C	·.	Aturan Inferensi	3
Ċ	ı.	Metode Defuzzifikasi	3
e	.	Bentuk dan Batas Fungsi Keanggotaan Output	3
2.]	Prosedur/Fungsi yang Harus Dibangun	
a	ì.	Membaca File	4
b).	Fuzzifikasi	4
C	·	Inferensi	5
Ċ	ı.	Defuzzifikasi	6
e	.	Function Lain (Mendapatkan top 10)	6
f	•	Export ke Excel	7
3.]	Kesimpulan	7
4.	,	Video Presentasi	7

1. Hal yang Perlu Diobservasi

a. Jumlah dan Nama Linguistik Input

Pada Pelayanan, memiliki batasan input dari 1-100 dan memiliki 3 nama linguistik input yang terdiri dari :

- 1) Buruk
- 2) Sedang
- 3) Baik

Sedangkan, pada Makanan, memiliki batasan input dari 1-10 dan memiliki 3 nama linguistik input yang terdiri dari :

- 1) Tidak Enak
- 2) Biasa
- 3) Enak

```
50 v def inBuruk(pelayanan):
50 buruk = []
50 v for 1 in range(0,100):
61 nilai = pelayanan[i]
62 buruk append(pelayananBuruk(nilai))
63 return buruk
64
65 v def inSedang(pelayanan):
66 sedang = []
67 v for 1 in range(0,100):
68 nilai = pelayanan[i]
69 sedang append(pelayananSedang(nilai))
70 return sedang
71
72 v def inBalk(pelayanan):
73 baik = []
74 v for 1 in range(0,100):
75 nilai = pelayanan[i]
76 baik append(pelayananBaik(nilai))
77 return baik
```

b. Batas dan Fungsi Keanggotaan Input

Batas dari keanggotaan di atas adalah:

Pelayanan:

1) Buruk : $x \le 40$ 2) Sedang : 40 < x < 703) Baik : $x \ge 70$

Makanan

1) Tidak Enak : $x \le 4$ 2) Biasa : $5 \le x \le 7$ 3) Enak : $x \ge 8$

Dengan bentuk fungsi keanggotaan adalah Linear yang bisa dilihat seperti di bawah


```
pelayananBuruk(nilai pelayanan):
    if (nilai_pelayanan <=40):
    elif (41 <= nilai_pelayanan <= 50):
       return (50 - nilai_pelayanan)/10
def pelayananSedang(nilai_pelayanan):
    if (41 <= nilai_pelayanan <= 50):
       return (nilai_pelayanan - 40)/10
    elif (51 <= nilai_pelayanan <= 60):
    elif (61 <= nilai_pelayanan <= 70):
       return (70 - nilai_pelayanan)/10
       return 0
def pelayananBaik(nilai_pelayanan):
    if (nilai_pelayanan >= 71):
       return 1
    elif (61 <= nilai_pelayanan <= 70):
       return (nilai_pelayanan - 60)/10
       return 0
```

```
def makananTidakEnak(nilai_makanan):
    if (nilai_makanan <=4):
    elif (3 <= milai makanam <= 5):
       return (5 - nilai_makanan)/2
       return 8
def makananBiasa(milai makanan):
    if (3 <= milai_makanan <= 5):
       return (milai_makanan - 3)/2
   elif (5 <= nilai_makanan <= 7):
    elif (7 <= nilai_makanan <= 9):
       return (9 - nilai_makanan)/2
       return 8
def makananEnak(milai_makanan):
    if (nilai_makanan >= 8):
    elif (6 <= nilai_makanan <= 8):
       return (milai_makanan - 6)
```

c. Aturan Inferensi

Aturan Inferensi memiliki sebanyak 9 kemungkinan yang didapat dari 3 x 3 (banyak keanggotaan Pelayanan dan Makanan) dengan nilai output ada 3, yaitu Mengecewakan, OK, dan Puas. Dapat dilihat di tabel di bawah:

Pelayanan	Makanan	Output
Buruk	Tidak Enak	Mengecewakan
Buruk	Biasa	Mengecewakan
Buruk	Enak	Mengecewakan
Sedang	Tidak Enak	Mengecewakan
Sedang	Biasa	OK
Sedang	Enak	Puas
Baik	Tidak Enak	OK
Baik	Biasa	Puas
Baik	Enak	Puas

```
#Inference
mengecawakan = tblMengecewakan(buruk, sedang, tidak_enak, biasa, enak)
ok = tblOK(sedang, baik, tidak_enak, biasa)
puas = tblPuas(sedang, baik, biasa, enak)
```

d. Metode Defuzzifikasi

Dengan menggunakan metode Sugeno, karena mudah untuk diimplementasikan

$$z^* = \frac{\sum_{i=1}^{l} \mu B_i. \ c_i}{\sum_{i=1}^{l} \mu B_i}$$

```
#Defuzzification
defuzz = defuzzSugeno(mengecawakan, ok, puas)
```

e. Bentuk dan Batas Fungsi Keanggotaan Output

Dengan menggunakan defuzzifikasi Sugeno, maka memiliki batas berupa nilai konstan sebagai berikut :

1) Mengecewakan = 50 2) OK = 70 3) Puas = 100

Sehingga hasil dari defuzzifikasi memiliki rentang dari 50-100. Atau dapat digambarkan grafik seperti berikut :


```
def defuzzSugeno(mengecewakan, ok, puas):
    defuzz = []

for i in range(0,100):
    defuzz.append((mengecawakan[i]*50 + ok[i]*70 + puas[i]*100)/(mengecawakan[i] + ok[i] + puas[i]))
return defuzz
```

2. Prosedur/Fungsi yang Harus Dibangun

a. Membaca File

Pada Main Program (Driver)

```
#Import xlsx
restoran = pd.read_excel('restoran.xlsx')
indeks = restoran['id'].tolist()
pelayanan = restoran['pelayanan'].tolist()
makanan = restoran['makanan'].tolist()
```

b. Fuzzifikasi

Function/Prosedur menghitung nilai Fuzzifikasi (sama dengan 1b)

```
def pelayananBuruk(nilai_pelayanan):
                                                       def makananTidakEnak(nilai_makanan):
    if (nilai_pelayanan <=40):
                                                          if (nilai_makanan <=4):
                                                              return 1
    elif (41 <= nilai_pelayanan <= 50):
                                                           elif (3 <= nilai_makanan <= 5):
        return (50 - nilai_pelayanan)/10
                                                              return (5 - nilai_makanan)/2
        return 0
                                                              return 8
def pelayananSedang(nilai_pelayanan):
                                                      def makananBiasa(nilai makanan):
   if (41 <= nilai_pelayanan <= 50):</pre>
                                                          if (3 <= nilai_makanan <= 5):
       return (nilai_pelayanan - 40)/10
                                                              return (milai_makanan - 3)/2
    elif (51 <= nilai_pelayanan <= 60):
                                                          elif (5 <= nilai makanan <= 7):
       return 1
                                                             return 1
    elif (61 <= nilai_pelayanan <= 70):
                                                          elif (7 <= nilai_makanan <= 9):
       return (70 - nilai_pelayanan)/10
                                                              return (9 - nilai_makanan)/2
        return 0
                                                       def makananEnak(milai_makanan):
def pelayananBaik(nilai_pelayanan):
                                                          if (nilai makanan >- 8):
    if (nilai_pelayanan >= 71):
       return 1
                                                          elif (6 <= nilai_makanan <= 8):
    elif (61 <= nilai_pelayanan <= 70):</pre>
                                                              return (milai makanan - 6)
       return (nilai_pelayanan - 60)/10
                                                              return 0
```

Function/Prosedur untuk menampung nilai Fuzzifikasi (sama dengan 1a)

```
inBuruk(pelayanan):
                                                                     tidak_enak - []
         buruk = []
for 1 in range(0,100):
                                                                     for 1 in range(0,188):
             nilai - pelayanan[i]
                                                                         nilai - makanan[i]
             buruk.append(pelayananBuruk(nilai))
                                                                         tidak_enak.append(makananTidakEnak(nilai))
                                                                     meturn tidak enak
         return buruk
                                                           86 - dof inBiasa(makanan):
65 ~ def inSedang(pelayanan):
         sedang = []
         for 1 in range(0,100):
                                                                     for 1 in range(0,100):
            nilai = pelayanan[i]
                                                                        nilai - makaman[i]
                                                                         biasa.append(makananBiasa(nilai))
             sedang.append(pelayanamSedang(nilai))
         return sedang
                                                                     return biasa
  ~ def inBaik(pelayanan):
                                                           93 - def InEnak(makanan):
         baik = []
                                                                    enak - []
                                                                     for i in range(0,100):
nilai = makaman[i]
         for 1 in range(0,100):
             nilai = pelayanan[i]
            balk.append(pelayananBalk(nilai))
                                                                        enak.append(makananEnak(n11a1))
```

Penerapan di Main Program (Driver)

```
#Fuzzification
buruk = inBuruk(pelayanan)
sedang = inSedang(pelayanan)
baik = inBaik(pelayanan)
tidak_enak = inTidakEnak(makanan)
biasa = inBiasa(makanan)
enak = inEnak(makanan)
```

c. Inferensi

Function/Prosedur

```
### INTERFECT

def tblMengecewakan(buruk, sedang, tidak_enak, biasa, enak):

mengecawakan = []

for i in range(0,100):
    mengecawakan.append(max(min(buruk[i], tidak_enak[i]), min(buruk[i], biasa[i]), min(buruk[i], enak[i]), min(seda return mengecawakan)

def tblOK(sedang, baik, tidak_enak, biasa):
    ok = []

for i in range(0,100):
    ok.append(max(min(sedang[i], biasa[i]), min(baik[i], tidak_enak[i])))

return ok

def tblPuas(sedang, baik, biasa, enak):
    puas = []

for i in range(0,100):
    puas = []

for i in range(0,100):
    puas.append(max(min(sedang[i], enak[i]), min(baik[i], biasa[i]), min(baik[i], enak[i])))

return puas
```

Penerapan di Main Program (Driver) (sama dengan 1c)

```
#Inference
mengecawakan = tblMengecewakan(buruk, sedang, tidak_enak, biasa, enak)
ok = tblOK(sedang, baik, tidak_enak, biasa)
puas = tblPuas(sedang, baik, biasa, enak)
```

d. Defuzzifikasi

Function/Prosedur (Sama dengan 1e)

```
def defuzzSugeno(mengecewakan, ok, puas):
    defuzz = []

for i in range(0,100):
    defuzz.append((mengecawakan[i]*50 + ok[i]*70 + puas[i]*100)/(mengecawakan[i] + ok[i] + puas[i]))
return defuzz
```

Di Main Program (Driver) (sama dengan 1d)

```
#Defuzzification
defuzz = defuzzSugeno(mengecawakan, ok, puas)
```

e. Function Lain (Mendapatkan top 10)

Function/Prosedur

```
131
      def isiTblAkhir(defuzz):
132
          tblAkhir = []
133
134
          for i in range(0,100):
              tampung = []
136
              tampung.append(i+1)
              tampung.append(defuzz[i])
137
138
              tblAkhir.append(tampung)
139
          return tblAkhir
141
      def selectionSort(tblAkhir):
          for i in range(0,100):
              maks = i
              for j in range(i+1,100):
144
                   if (tblAkhir[j][1] > tblAkhir[maks][1]):
146
                       maks = j
147
                   tblAkhir[maks], tblAkhir[i] = tblAkhir[i], tblAkhir[maks]
      def top10(tblAkhir):
150
          tertinggi 10 = []
          for i in range(0,10):
              tertinggi_10.append(tblAkhir[i][0])
          return tertinggi 10
```

Di Main Program (Driver)

```
179 tblAkhir = isiTblAkhir(defuzz)
180 selectionSort(tblAkhir)
181 tertinggi_10 = top10(tblAkhir)
```

f. Export ke Excel

Di Main Program (Driver)

```
#Export to xlsx

184     df = pd.DataFrame(tertinggi_10)

185     df.to_excel(r'peringkat.xlsx',index = False)
```

3. Kesimpulan

Jadi, dapat disimpulkan bahwa fuzzy logic dapat menyelesaikan permasalahan yang memiliki nilai *fuzzy* (tidak pasti) dengan menggunakan Reasoning yang memiliki pendekatan yang mirip dengan perasaan manusia sehingga menghasilkan nilai luaran yang lebih manusiawi.

Hasil Output:

```
PS D:\Kuliah Online\Semester 6\Pengantar Ai\Tugas Pemrograman 2> python 18_if4305_1301180469.py PS D:\Kuliah Online\Semester 6\Pengantar Ai\Tugas Pemrograman 2> []
```

File peringkat.xlsx

A	Α	
1	0	
2	6	
3	16	
4	15	
5	22	
6	24	
7	42	
8	25	
9	31	
10	54	
11	60	
40		

4. Video Presentasi

https://drive.google.com/file/d/1PG9sHg4BqUaPysBnjusfmOiAvgfuseic/view?usp=s haring