Acute Leukaemia

Dr Durga Moratuwagama

- Definition
- Classification
- Clinical features
- Diagnosis
- Treatment

Acute leukaemia

- Malignant transformation at HSC/Early progenitors
- 1. Block in cellular differentiation
- 2. Increased proliferation
- 3. Reduced apoptosis

Accumulation of early haemopoietic cells 'Blasts'

Two-hit model of leukemogenesis

Loss of function of transcription factors needed for differentiation

eg. AML1-ETO CBF β -SMMHC PML-RAR α

Gain of function mutations of tyrosine kinases

eg. FLT3, c-KIT mutations
N- and K-RAS mutations
BCR-ABL
TEL-PDGFβR

Myeloid maturation

How many blast cells?

Peripheral Blood-No blasts

• Normal BM < 5%

Blasts > 20% in blood or BM

Normal human blood

Blood with leukemia

Normal bone marrow

Bone marrow with acute leukaemia

Classification of Leukaemia

Lineage	Acute	Chronic
Myeloid	Myeloblastic (AML)	Myeloid(CML)
Lymphoid	Lymphoblastic (ALL)	Lymphocytic(CLL)

Leukaemia

 Acute leukaemias: rapid onset, rapid death if treatment is not successful

• Chronic leukaemias: natural history measured in years, even without initial treatment

Classification of acute leukaemias

ALL

mainly children

Commonest childhood cancer

- curable in 85% of children
- curable in minority of adults

AML

mainly adults

curable in minority of adults

Classification of AML & ALL

TABLE 1: 2008 WHO classification of acute myelogenous leukemia (AML)

AML with recurrent genetic abnormalities

AML with t(8;21)(q22;q22); RUNX1-RUNX1T1

AML with inv(16)(p13,1q22) or t(16;16)(p13.1;q22); CBFB-MYH11

AML with t(15;17)(q22;q12); PML-RARA

AML with t(9;11)(p22;q23); MLLT3-MLL

AML with t(6;9)(p23;q34); DEK-NUP214

AML with inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1

AML (megakaryoblastic) with t(1;22)(p13;q13); RBM15-MKL1

Provisional entity: AML with mutated NPM1 Provisional entity: AML with mutated CEBPA

AML with myelodysplasia-related changes

Therapy-related myeloid neoplasms

AML, not otherwise specified

AML with minimal differentiation

AML without maturation

AML with maturation

Acute myelomonocytic leukemia

Acute monoblastic/monocytic leukemia

Acute erythroid leukemias

Pure erythroid leukemia

Erythroleukemia, erythroid/myeloid

Acute megakaryoblastic leukemia

Acute basophilic leukemia

Acute panmyelosis with myelofibrosis

Myeloid sarcoma

WHO = World Health Organization

Swerdlow SH, Campo E, Harris NL, et al (eds): WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon, France: IARC Press; 109-138, 2009.

Vardiman JW, Thiele J, Arber DA, et al: The 2008 revision of the World Health Organization classification of myeloid neoplasms and acute leukemia: Rationale and important changes. Blood 114:937-951, 2009

Acute lymphoblastic leukemia (ALL): WHO classification

Precursor lymphoid neoplasms

B-cell lymphoblastic leukemia/lymphoma, not otherwise specified B-cell lymphoblastic leukemia/lymphoma with recurrent genetic abnormalities

B-cell lymphoblastic leukemia/lymphoma with t(9;22)(q34;q11.2); BCR-ABL1

B-cell lymphoblastic leukemia/lymphoma with t(v;11q23); MLL rearranged

B-cell lymphoblastic leukemia/lymphoma with t(12;21)(p13;q22);

TEL-AML1 (ETV6-RUNX1)

B-cell lymphoblastic leukemia/lymphoma with hyperploidy

B-cell lymphoblastic leukemia/lymphoma with hypoploidy (hypodiploid ALL)

B-cell lymphoblastic leukemia/lymphoma with t(5;14)(q31;q32); IL3-IGH

B-cell lymphoblastic leukemia/lymphoma with t(1;19)(q23;p13.3);

E2A-PBX1 (TCF3-PBX1)

T-cell lymphoblastic leukemia/lymphoma

WHO = World Health Organization

Swerdlow SH, Campo E, Harris NL, et al (eds): WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon, France: IARC Press; 109–138, 2009.

http://imaging.ubm/medica.com/cancernetwork/cmhb13/13-29-Table2.gif

Risk Factors-AML

- Pre-existing haematological disorders
- · Age Older adults are more likely to develop AML
- Smoking
 - 20% of AML cases are linked to smoking
 - Doubles the risk of disease in people older than 60
- · Genetic disorders Down syndrome, Fanconi anemia
- · High doses of radiation
 - Long-term survivors of atomic bombs
- Previous chemotherapy treatment
 - · Breast cancer, ovarian cancer, lymphoma
- Exposure to industrial chemicals Benzene

Risk Factors-ALL

- Prenatal exposure to x-rays
- Postnatal exposure to high doses of radiation (e.g., therapeutic radiation as previously used for conditions such as tinea capitis and thymus enlargement)
- Exposure to high levels of certain chemicals, such as benzene, which is used in oil refineries, chemical plants, and other industries
- Genetic conditions, including Down syndrome, neurofibromatosis, Shwachman-Diamond syndrome, Bloom syndrome, ataxia-telangiectasia, Diamond-Blackfan anemia, Fanconi anemia, Klinefelter syndrome, Li-Fraumeni syndrome, and trisomy 8
- Severe congenital neutropenia (also called Kostmann syndrome)
- · Inherited genetic polymorphisms
- Having a sibling with a history of ALL

Clincal manifestations

- Symptoms due to:
 - marrow failure
 - tissue infiltration
 - leukostasis
 - constitutional symptoms
 - others- DIC (acute promyelocytic leukaemia)
- usually short duration of symptoms

Marrow failure

• Neutropenia: :infections, sepsis

• Anaemia : fatigue, pallor

• Thrombocytopenia: bleeding

Petechiae

Infiltration of tissues/organs

• enlargement of liver, spleen, lymph nodes

gum hypertrophy

• bone pain

• other organs: CNS, skin, testis, any organ

AML – gingival hypertrophy

BONE PAIN-ALL

From: Essential Haematology, 6th Edn. © A. V. Hoffbrand & P. A. H. Moss. Published 2011 by Blackwell Publishing Ltd.

T ALL

Source: K. Kaushansky, M.A. Lichtman, J.T. Prchal, M.M. Levi, O.W. Press, L.J. Burns, M. Caligiuri: Williams Hematology, 9th edition www.accessmedicine.com
Copyright © McGraw-Hill Education. All rights reserved.

Constitutional symptoms

- Fever
- Sweats
- Weight loss
- Loss of appetite

Investigations

- FBC+BP
- Bone marrow aspiration & trephine biopsy

demonstrate the presence of excess blasts

- Special stains-Sudan black/PAS
- Flow cytometry
- Cytogenetics

EX: t(15,17)

Acute promyelocytic Leukaemia

Lineage(Myeloid/lymphoid)

Help diagnosis/prognosis/MRD assessment

Other supportive Ix

Acute Leukemia

accumulation of blasts in the PB/BM

Bone Marrow Aspiration

Photo credit: Mihaela Onciu, MD/St Jude Children's Research Hospital

HOW DO YOU IDENTIFY A BLAST CELL?

- Large nucleus, immature chromatin, a prominent nucleolus, scant cytoplasm and few or no cytoplasmic granules.
- Cell size Medium to large cells. Larger than a lymphocyte
- Large nucleus -a high N/C ratio
- Immature chromatin the nuclear chromatin looks as if it composed of fine dots.
- Prominent nucleolus.
- Scant cytoplasm.
- Granules- +/ Acute promyelocytic leukemia : Granules+++
- Auer rods orange-pink, needle-like cytoplasmic structures in blasts of myeloid lineage. These may be numerous in acute promyelocytic leukemia.

AML

Auer rod

Auer rods in Acute promyelocytic leukaemia-Faggot cells

ALL

Distinguishing AML from ALL

- light microscopy
 - AML: Auer rods, cytoplasmic granules
 - · ALL: no Auer rods or granules.
- special stains (cytochemistry)
- surface markers (immunophenotype)
- cytogenetics

Myeloblast

Larger Moderate May be present Fine Prominent, 1–4

Lymphoblast

Smaller Scanty Absent Coarse Indistinct

Size Cytoplasm Auer rod Nuclear chromatin Nucleoli

AML

delicate chromatin

much cytoplasm

fine granules/Auer rods

ALL coarse chromatin scanty cytoplasm no granules

Cytochemical Reactions in Acute Leukemia

Cytochemical Reaction	Cellular Element Stained	Blasts Identified
Myeloperoxidase (MPO)	Neutrophil primary granules	Myeloblasts strong positive; monoblasts faint positive
Sudan Black B (SBB)	Phospholipids	Myeloblasts strong positive; monoblasts faint positive
Specific esterase	Cellular enzyme	Myeloblasts strong positive
Nonspecific esterase (NSE)	Cellular enzyme	Monoblasts strong positive
Periodic acid-Schiff	Glycogen and related substances	Variable, coarse or block-like positivity often seen in lymphoblasts and pronormoblasts, myeloblasts usually negative although faint diffuse reaction may occasionally be seen

Lymphoblasts-SBB and MPO - Negative

PAS STAIN

LYMPHOBLAST WITH BLOCK & COARSE GRANULAR STAINING

Flow cytometry

Acute Leukemia

t(15;17) translocation in AML

Karyotyping FISH PCR

Principles of treatment

Aim: Eradicate the blasts / Establish Normal Bone marrow

- combination chemotherapy
 - first goal is complete remission
 - further Rx to prevent relapse
- supportive medical care
 - transfusions, antibiotics, nutrition
- psychosocial support
 - patient and family

Chemotherapy for ALL

- Phases of ALL treatment
 - Induction
 - intensification
 - CNS prophylaxis
 - Maintenance or transplant

Prognosis for AML

Survival rates greatly improved over past 25 years.

Majority of patients still succumb to the disease.

Remission rates inversely related to age.

5-year survival rate in adults under 65 is 33%

5-Year survival rate in adults over 65 is 4%

Dependent upon several factors.

Presence of chromosome translocations in bone marrow Age

Preceding haematological disorder

Prognostic factors in AML

parameters	Favorable	unfavorable
Cytogentics	T(15;17). T(8;21). Inv(16).	Deletion of chromosome5or7. 11q23 T(6;9) Abn(3q)complex rearrangments
BM response to remission induction	<5% blasts after first course	>20% blasts after first course.
age	<60yrs	>60yrs

Cure model-based estimates of proportion of infants, children (three age classes), adolescents, and young adults cured of acute lymphoblastic leukemia by diagnosis period (3-year periods from 1982 to 2002) in Europe.

Gemma Gatta et al. Haematologica 2013;98:744-752

Prognostic factors in ALL

Risk Factor	Favorable	Unfavorable
Age	1-10 years	<1 or ≥ 10 years
Gender	Female	Male
Race/ethnicity	Caucasian, Asian	Black, Hispanic
White blood cell count at diagnosis	<50,000/μl	≥50,000/µl
Immunophenotype	B-precursor	T-cell, mature B-cell
Genetic features	Hyperdiploidy ETV6-RUNX1/t (12;21)	BCR-ABL1/t (9;22) MLL rearrangement Hypodiploidy iAmp(21) CRLF2 overexpression
Extramedullary involvement (CNS, testicular)	No	Yes
Early treatment response Predisone window	Peripheral absolute blast count <1,0000/μl	Peripheral absolute blast count >1,000/μ
Induction day 8 peripheral blood MRD	<0.01-1%	>1%
Induction day 8 and day 15 bone marrow morphology	M1	M2 or M3
Later treatment response End-induction bone marrow MRD	<0.01%	≥0.01%

Summary

- Emergency
- Accurate and prompt diagnosis
- Immediate treatment
- ALL is curable
- Out come continue to improve

