

DNESP32S3B 硬件参考手册 V1.0

-正点原子 DNESP32S3B 开发板教程

修订历史:

版本	日期	修改内容
V1.0	2024/08/08	第一次发布

②正点原子

正点原子公司名称 : 广州市星翼电子科技有限公司

原子哥在线教学平台: www.yuanzige.com

开源电子网/论坛: www.openedv.com

正点原子官方网站: www.alientek.com

正点原子淘宝店铺 : https://openedv.taobao.com

正点原子 B 站视频 : https://space.bilibili.com/394620890

电话: 020-38271790 传真: 020-36773971

请下载原子哥 APP,数千讲视频免费学习,更快更流畅。请关注正点原子公众号,资料发布更新我们会通知。

扫码下载"原子哥"APP

扫码关注正点原子公众号

内容简介	1
第一章 实验平台简介	2
1.1, DNESP32S3B 开发板资源初探;	2
1.1.1 DNESP32S3 硬件设计特点	2
1.1.2 DNESP32S3 硬件基本参数	2
1.1.3 DNESP32S3 硬件资源分布	
1.1.4 DNESP32S3 硬件资源列表	3
1.2, DNESP32S3B 开发板资源说明;	4
1.2.1 硬件资源说明	4
1.2.2 DNESP32S3 IO 引脚分配	6
第二章 实验平台硬件资源详解	8
2.1 开发板原理图详解	8
2.1.1 模组	8
2.1.2 引出 IO 口	8
2.1.3 复位电路	9
2.1.4 EEPROM	9
2.1.5 光环境传感器	10
2.1.6 LED_0805 双色& 蓝色电源灯	10
2.1.7 按键	11
2.1.8 摄像头模块接口	11
2.1.9 有源蜂鸣器	12
2.1.10 TF 卡接口	12
2.1.11 电源	13
2.1.12 电源输入输出接口	13
2.1.13 USB 通信接口	13
2.1.14 USB 串口	14
2.1.15 音频编解码器	14
2.1.16 LCD 接口	15
2.2 开发板使用注意事项	16

内容简介

本手册主要介绍 DNESP32S3B 开发板的硬件资源,包括:实验平台简介、实验平台硬件资源详解以及使用注意事项等。通过本手册的学习,大家将会对 DNESP32S3B 开发板的硬件有一个比较全面的了解,对后续的软件学习及程序设计非常有帮助。

本手册是《DNESP32S3 开发指南(IDF 版)》的重要补充教程,强烈建议大家在学习相关例程前,先学习本手册!

第一章 实验平台简介

本章主要介绍我们的实验平台:正点原子 DNESP32S3B 开发板。通过本章的学习,您将对我们后面使用的实验平台有个大概了解,为后面的学习做铺垫。

本章将分为如下几个小节:

- 1.1, DNESP32S3 底板资源初探;
- 1.2, DNESP32S3 底板资源说明;
- 1.3, DNESP32S3 核心板资源初探;
- 1.4, DNESP32S3 核心板资源说明;
- 1.5, DNESP32S3 IO 引脚分配;
- 1.6, DNESP32S3 升级说明;

1.1, DNESP32S3B 开发板资源初探;

ESP32 系列芯片自 2016 年发布以来,经过多年的发展,已经成为了物联网领域的重要选择。该系列芯片不断升级和完善,支持更多的应用场景和功能,因此受到广泛欢迎。最新的 ESP32-S 系列芯片进一步丰富了该系列的产品线,满足了不同领域的需求。为了满足大家对 AIOT 功能的需求,正点原子推出了 HMI 与典型的学习板相结合的 DNESP32S3B 开发板,为开发者提供了一个全面、易用的开发环境。该开发板结合了图形界面和典型学习版的功能,让开发者能够更方便地进行开发和学习。

下面我们开始介绍 DNESP32S3。

1.1.1 DNESP32S3B 硬件设计特点

DNESP32S3B 开发板硬件设计特点包括:

- 1)接口丰富。板子提供十来种标准接口,可以方便的进行各种外设的实验和开发。
- 2) **设计灵活。**板上很多资源都可以灵活配置,以满足不同条件下的使用。我们引出了数十个 **IO** 口,可以极大的方便大家扩展及使用。
- 3)**资源充足。**主控模组采用正点原子提供的 ATK-MWS3S(和乐鑫官方 ESP32S3-WOOD-N16R8 对应),自带 384K ROM(存储官方启动固件,开发者无法使用)、512K SRAM、16MB FLASH 和 8MB PSRAM,满足大数据存储需求。
- 4) **人性化设计。**各个接口都有丝印标注,且用方框框出,使用起来一目了然;部分常用外设大丝印标出,方便查找;接口位置设计合理,方便顺手。资源搭配合理,物尽其用。
- 5) **国产化程度高。**为了支持国产芯片的发展和推广,正点原子优选国产好芯, DNESP32S3B 开发板上凡是能用国产替代的芯片,全部使用国产芯片,国产化率达到98%(数量)。

1.1.2 DNESP32S3B 硬件基本参数

DNESP32S3B 硬件基本参数如表 1.1.2.1 所示:

项目	说明		
产品型号	ATK-DNESP32S3B V1		
模组	ATK-MWS3S, WROOM		
可用 IO	36个		
外形尺寸	64.3mm*47.6mm*15.4mm(带外壳尺寸) / 60.032mm*43.3mm(裸板		
	尺寸)		
工作电压	5V (USB)		
工作电流	83mA~145mA ¹ (@5V)		
工作温度	0℃~+70℃		

表 1.1.2.1 DNESP32S3B 硬件基本参数

注 1: 42mA 对应 CPU 在复位情况下,裸板的工作电流; 180mA 对应 CPU 正常运行时裸板的工作电流。

1.1.3 DNESP32S3B 硬件资源分布

DNESP32S3B 的硬件资源分布如图 1.1.3.1 所示:

图 1.1.3.1 DNESP32S3B 的硬件资源分布图(正面)

1.1.4 DNESP32S3B 硬件资源列表

DNESP32S3B 的硬件资源列表如表 1.1.4.1 所示:

资源	数量	说明		
模组	1 个	ATK-MWS3S; ROM:384KB; SRAM:512KB;		
- Kan	1	FLASH:16MB;PSRAM:8MB;		
EEPROM	1个	2Kb (256B)		
电源指示灯	1个	蓝色		
状态指示灯	2个	红色(LED)、蓝色(BLUE)		
复位按键	1个	用于 Module & LCD 的复位		
功能按键	3个	KEY0、KEY1、BOOT		
电源开关	1个	控制整个板子供电		
蜂鸣器 1个 有源蜂鸣器,用于发出提示音		有源蜂鸣器,用于发出提示音		
光环境传感器	器 1个 用于测量光照强度、接近距离、红外光强等			
音频编解码芯片 1		NS4168,用于音频编解码		
录音咪头 (MIC)	1个	用于录音		
板载扬声器	1个	用于播放音乐或者视频声音		
LCD 接口	1个	可接正点原子 2.4 寸带触摸 LCD 模块		
立式 USB-A 母座	1个	用于连接 USB 摄像头模块(需另外购买)		
USB 转串口	1个	用于 USB 转 TTL 串口通信、仿真调试、下载代码		
USB 从机接口(JTAG)	1个	用于 USB SLAVE(从机)通信		
TF卡接口	1个	用于接TF卡		
扩展 IO 接口	2组	引出了四个普通 IO,每两个普通 IO 钧搭配 5V/GND 引脚		

扩展 EXIO 接口 6个		由IO扩展芯片引出的六个引脚
5V 电源输入/输出口	1组	用于 5V 电源接入/对外提供 5V 电压
六轴传感器	1个	用于测量翻滚角、俯仰角、偏航角以及温度等数值
IO扩展	1个	用于扩展 IO
引出 IO	28 个	用于扩展使用

表 1.1.4.1 DNESP32S3B 的硬件资源列表

1.2, DNESP32S3B 开发板资源说明;

DNESP32S3B 资源说明,我们将分为两个部分:硬件资源说明和 DNESP32S3B IO 引脚分配。

1.2.1 硬件资源说明

这里我们详细介绍 DNESP32S3B 开发板的各个部分(图 1.1.3.1 中的标注部分)的硬件资源, 我们将按开发板的正反面顺序以及逆时针的顺序依次介绍。

1, USB SLAVE

这是开发板板载的一个 Type C USB 头(JTAG/USB_SLAVE),用于 USB 从机(SLAVE) 通信,一般用于 ATK-MWS3S 模组与电脑的 USB 通信和 JTAG 下载调试。

2, 立式 USB-A 母座

该接口连接 USB 摄像头,用于运行 USB 摄像头实验(正点原子并未提供,需另外购买)。

3, 电源指示灯

这是开发板板载的一颗蓝色的 LED 灯(PWR),用于指示电源状态。在电源开启的时候(通过板上的电源开关控制),该灯会亮,否则不亮。通过这个 LED,可以判断开发板的上电情况。

4,ATK-MWS3S 模组

这是开发板的核心模组(U1),型号为:ATK-MWS3S模组。该模组内部资源非常丰富,详见表 1.2.1.1:

ATK-MWS3S 内部资源						
内核	Xtensa 双核	12位 ADC	2			
主频	240Mhz	ADC 通道数	20			
ROM	384KB	SPI	4			
SRAM	AM 512KB I2S		2			
FLASH	16MB	IIC	2			
PSRAM	8MB	LED PWM	1			
封装	WROOM	RMT	1			
IO 数量	36	UART	3			
工作电压	3.0 ~ 3.6 V	SD/MMC	2			
USB OTG	1	RTC	1			
TIMG	2组	TWAI	1			

表 1.2.1.1 ATK-MWS3S 内部资源表

5, TF 卡接口

这是开发板板载的一个 TF 卡接口(也叫 Micro SD 卡,在板子背面),SDIO 方式驱动,TF 卡容量选择范围非常宽(最大可达 TB 级),有了这个接口,就可以满足海量数据存储的需求。

6,0805 红蓝双色 LED

这是开发板板载的一个 0805 红蓝双色的 LED 灯,主要是方便大家识别。值得注意的是,蓝色灯珠连接 ESP32S3 的普通 IO,而红色灯珠则连接到下面要提到的 IO 扩展芯片上。

在调试代码的时候,使用 LED (蓝色)来指示程序状态,是非常不错的一个辅助调试方法。 DNESP32S3B 开发板几乎每个实例都使用了 LED (蓝色)来指示程序的运行状态。

7, 引出的 IO 口

这是 1 个由 4 个排针组成的一个接口(J2, 开发板同侧还有一个 J3)。这两组端口分别引出

了两个普通 IO 以及一组 5V/GND 的引脚组合。引出的普通的 IO 可供开发者连接一些外设,用于开发板的扩展实验。

8, USB 转串口

这是开发板板载的另外一个 Type C USB 头(USB_UART),用于 USB 连接 CH340 芯片,从而实现 USB 转 TTL 串口。同时,此接头也是开发板电源的主要提供口。

9,3个按键

这是开发板板载的 5 个机械式输入按键(KEY0、KEY1 和 BOOT),其中 KEY0、KEY1 按键都使用 IO 扩展 IC 来读取电平,并且都是低电平有效。BOOT 按键可用来切换启动模式,当启动完成后,可当普通按键来使用,此按键也是低电平有效。

10, 24C02 EEPROM

这是开发板板载的 EEPROM 芯片 (U6),容量为 2Kb,也就是 256 字节。用于存储一些掉电不能丢失的重要数据,比如系统设置的一些参数/触摸屏校准数据等。有了这个就可以方便的实现掉电数据保存。

11,复位按钮

这是开发板板载的复位按键(RESET),用于复位 ATK-MWS3S 模组,还具有复位液晶的功能,因为液晶模块的复位引脚和 ATK-MWS3S 模组的复位引脚是连接在一起的,当按下该键的时候,ATK-MWS3S 模组和液晶一并被复位。

12, 引出的扩展芯片 IO 口

这是 1 个由 1 个 2*3 的排针组成的一个接口。这个端口分别引出了 IO 扩展芯片的引脚。引出的 IO 可供开发者连接一些外设,用于开发板的扩展实验。

13, 光环境传感器

这是开发板板载的一个光环境三合一传感器(U5),它可以作为环境光传感器、接近传感器和红外传感器。通过该传感器,开发板可以感知周围环境光线的变化,接近距离等,从而实现类似手机的自动背光控制。

14, MIC (咪头)

这是开发板的板载录音输入口(MIC),该咪头直接接到 NS4168 的输入上,可以用来实现录音功能。

15, NS4168 音频芯片

这是一款 I2S 数字音频信号输入/输出放大器,可以实现 MP3/PMP, Mini 音箱等功能。

NS4168 信号直接连接在 ESP32S3 芯片的引脚上(IO13/IO14/IO21/IO47),需要通过 I2S 控制 NS4168。

16, 扬声器 (喇叭)

这是开发板自带的一个 8Ω 1W 的小喇叭,安装在开发板的正面,可以用来播放音频。 该喇叭由 MD8002A 单声道桥接音频功率放大器 IC 进行驱动,输出功率可达 3W。

17, 有源蜂鸣器

这是开发板的板载蜂鸣器(BEEP),可以实现简单的报警/闹铃等功能。

BEEP 信号直接连接在 XL9555(IIC IO 扩展芯片)的 P0_2 引脚上,需要通过 IIC 控制 XL9555,间接控制蜂鸣器开关。

以上是板子正面的元器件,接下来我们介绍板子的反面。

18, OMI8658A 姿态传感器(六轴)

这是开发板板载的一个六轴传感器: QMI8658A 通过 IIC 协议进行通信,可用于测量翻滚角、俯仰角、偏航角以及温度等数值。这款传感器尺寸小,功耗低,能提供高精度的姿态检测,具有出色的温度稳定性。

19, 触摸屏(6Pin)接口

这是 2.4 寸 LCD 屏幕的触摸 IC 接口,连接正点原子 LCD 屏模的触摸 IC 部分。

20, LCD 接口

这是 2.4 寸 LCD 接口 (LCD),可以连接正点原子 2.4 寸 LCD 模块,并且支持触摸屏。为了节省 IO 口,采用的是 RGB565 格式,虽然降低了颜色深度,但是节省了 IO,且 RGB565 格式,程序上更通用一些。

21, CH343P 芯片

这是开发板板载的 USB 转串口芯片,型号为: CH343P。有了这个芯片,我们就可以实现 USB 转串口,从而能实现 USB 下载代码,串口通信等。

1.2.2 DNESP32S3B IO 引脚分配

为了让大家更快更好的使用我们的 DNESP32S3B 开发板,这里特地将 DNESP32S3B 开发板主控模组: ATK-MWS3S 模组的 IO 资源分配做了一个总表,以便大家查阅。DNESP32S3B 的 IO 引脚分配总表如表: 1.2.2.1 所示:

IO 引脚分配总表如表: 1.2.2.1 所示: DNESD2282D IO 答循스嗣書					
DNESP32S3B IO 资源分配表 引脚 cpro					
标号	GPIO	连接资源		独立	连接关系
14. 3				7,5,-	1,RGBLCD 的 DE 信号
4	IO4	LED0	OV_D0	N	2, 摄像头的 D0 信号
					3,LED信号
5	IO5			Y	该引脚完全独立
6	IO6			Y	该引脚完全独立
7	IO7	SPI_SCK		N	SPI2 口的 SCK 信号
8	IO15	SPI_MISO		N	SPI2 口的 MISO 信号
9	IO16	SPI_MOSI		N	SPI2 口的 MOSI 信号
10	IO17	TF_CS		N	触摸 IC 的 CS 信号
11	IO18			Y	该引脚完全独立
12	IO8			Y	该引脚完全独立
13	IO19	USB_D-		N	USB D-信号
14	IO20	USB_D+		N	USB D+信号
15	IO3	IIC_INT		N	XL9555 的 INT 信号
16	IO46	LCD_D7		N	LCD 的 D7 信号
17	IO9	LCD_D6		N	LCD 的 D6 信号
18	IO10	LCD_D5		N	LCD 的 D5 信号
19	IO11	LCD_D4		N	LCD 的 D4 信号
20	IO12	LCD_D3		N	LCD 的 D3 信号
21	IO13	IIS_LRCK		N	音频的 LRCK 信号
22	IO14	IIS_SDOUT		N	音频的 SDOUT 信号
23	IO21	IIS_BCK		N	音频的 BCK 信号
24	IO47	IIS_SDIN		N	MIC的 SDIN 信号
25	1049	CTD CDA	HC CDA	27	1, 触摸 IC 的 SDA 信号
25	IO48	CTP_SDA	IIC_SDA	N	2,IIC0的 SDA 信号
26	IO45	CTD SCI	IIC_SCL	N	1, 触摸 IC 的 SCL 信号
20	1043	IO45 CTP_SCL IIC_SCL N	IN	2,IIC0的 SCL 信号	
27	IO0	BOOT		N	BOOT 按键信号
28	IO35			Y	勿用
29	IO36			Y	勿用
30	IO37			Y	勿用
31	IO38	LCD_D2		N	LCD 的 D2 信号
32	IO39	LCD_D1		N	LCD 的 D1 信号
33	IO40	LCD_D0		N	LCD 的 D0 信号
34	IO41	IIC_SDA		N	IIC0的 SDA 信号
35	IO42	IIC_SCL		N	IIC0的 SCL 信号

DNESP32S3B 硬件参考手册

正点原子 DNESP32S3B 教程

36	RXD0	U0RXD	N	串口 RX 信号
37	TXD0	U0TXD	N	串口 TX 信号
38	IO2	LCD_RS	N	LCD的 RS 信号
39	IO1	LCD_CS	N	LCD的 CS 信号

表 1.2.2.1 DNESP32S3B IO 资源分配总表

表 1.2.2.1 中,引脚栏即 ATK-MWS3S 模组的引脚编号;GPIO 栏则表示 GPIO;连接资源栏表示了对应 GPIO 所连接到的网络;独立栏,表示该 IO 是否可以完全独立(不接其他任何外设和上下拉电阻)使用,通过一定的方法,可以达到完全独立使用该 IO,Y表示可做独立 IO,N表示不可做独立 IO;连接关系栏,则对每个 IO 的连接做了简单的介绍。

该表在: A 盘 3, 原理图 文件夹下有提供 Excel 格式,并注有详细说明和使用建议,大家可以打开该表格的 Excel 版本,详细查看。

第二章 实验平台硬件资源详解

本章,我们将节将向大家详细介绍正点原子 DNESP32S3B 各部分的硬件原理图,让大家对该开发板的各部分硬件原理有个深入理解,并向大家介绍开发板的使用注意事项,为后面的学习做好准备。

本章将分为如下两节:

- 2.1, 开发板原理图详解;
- 2.2, 开发板使用注意事项;

2.1 开发板原理图详解

2.1.1 模组

正点原子 DNESP32S3B 开发板选择的是 ATK-MWS3S 模组作为主控模组,该模组功能非常强大,它拥有的资源包括: 384KB ROM、512KB SRAM、16MB FLASH、8MBP SRAM、高达240MHz 主频、支持 KPU 神经网络等,详见 1.2 节的表 1.2.1.1。

模组的原理如图 2.1.1.1 所示:

图 2.1.1.1 模组原理图

图中 U1 为我们的主控模组: ATK-MWS3S 模组。

2.1.2 引出 IO 口

正点原子 DNESP32S3B 通过排针引出了 28 个 IO 口,如图 2.1.2.1 所示:

图 2.1.2.1 引出 IO 口

这是开发板 IO 引出端口,总共三组 IO 引出口: J1、J2、J3。其中,J1 采用 2*3 双排针引出并连接到板载 IO 扩展芯片上,J2 和 J3 则采用 1*4 单排针引出。

2.1.3 复位电路

正点原子 DNESP32S3B 的复位电路如图 2.1.5.1 所示:

图 2.1.3.1 复位电路

因为 ATK-MWS3S 模组是低电平复位的,所以我们设计的电路也是低电平复位的,这样这个复位按钮不仅可以用来复位 ATK-MWS3S 模组,还可以复位 LCD。

2.1.4 EEPROM

正点原子 DNESP32S3B 板载的 EEPROM 电路如图 2.1.6.1 所示:

图 2.1.4.1 EEPROM

EEPROM 芯片我们使用的是 24C02,该芯片的容量为 2Kb,也就是 256 个字节,对于我们普通应用来说是足够了的。当然,你也可以选择换大容量的芯片,因为我们的电路在原理上是兼容 24C02~24C512 全系列 EEPROM 芯片的。

这里我们把 A0~A2 均接地,对 24C02 来说也就是把地址位设置成了 0 了,写程序的时候要注意这点。

2.1.5 光环境传感器

正点原子 DNESP32S3B 板载了一个光环境传感器,可以用来感应周围光线强度、接近距离和红外线强度等,该部分电路如图 2.1.5.1 所示:

图 2.1.5.1 光敏传感器电路

图中的 U3 就是光环境传感器: AP3216C,它集成了光照强度、近距离、红外三个传感器功能于一身,被广泛应用于各种智能手机。该芯片采用 IIC 接口,IIC_SCL 和 IIC_SDA 分别连接 IO45 和 IO48 上。

2.1.6 LED 0805 双色& 蓝色电源灯

正点原子 DNESP32S3B 板载只有 $1 \uparrow 0805$ 规格的红蓝双色 LED 以及一个蓝色电源灯,其原理图如图 2.1.6.1 所示:

图 2.1.6.1 LED

其中PWR是系统电源指示灯,为蓝色。接在IO1上。

2.1.7 按键

正点原子 DNESP32S3B 板载总共有 5 个输入按键, 其原理图如图 2.1.12.1 所示:

图 2.1.7.1 输入按键

上图中的 KEY0~KEY1 按键都是通过 IO 扩展 IC 来读取按键的电平,BOOT 按键另一端连接在 ATK-MWS3S 模组的 IO0 上。

2.1.8 摄像头模块接口

正点原子 DNESP32S3B 板载了一个摄像头模块接口, 其原理图如图 2.1.8.1 所示:

图 2.1.8.1 USB 摄像头模块接口

该接口可以用来连接 USB 摄像头模块 (需另外购买)。

2.1.9 有源蜂鸣器

正点原子 DNESP32S3B 板载了一个有源蜂鸣器,其原理图如图 2.1.9.1 所示:

图 2.1.9.1 有源蜂鸣器

有源蜂鸣器是指自带了震荡电路的蜂鸣器,这种蜂鸣器一接上电就会自己震荡发声。而如果是无源蜂鸣器,则需要外加一定频率(2~5Khz)的驱动信号,才会发声。这里我们选择使用有源蜂鸣器,方便大家使用。

图中 Q2 是用来扩流,R11 则是一个限流电阻,避免在 ATK_MWS3S 模组复位的时候,蜂鸣器可能发声的现象。BEEP 信号直接连接在 XL9555 扩展 IC 的 P0_2 管脚上面。

2.1.10 TF 卡接口

正点原子 DNESP32S3B 板载了一个 TF 卡 (小卡/Micro SD 卡) 接口, 其原理图如图 2.1.10.1 所示:

图 2.1.10.1 TF 卡接口

图中 TF_CARD 为 TF 卡接口,采用 SPI 方式驱动,理论上最大速度可以达到 24MB/S,非常适合需要高速存储的情况。

注意: TF卡接口和 SPILCD接口共用一个 SPI接口。

2.1.11 电源

正点原子 DNESP32S3B 开发板板载的电源供电部分,其原理图如图 2.1.18.1 所示:

图 2.1.11.1 电源

图中 U9 和 U10 是一样的芯片,这是一款稳压芯片(LDO),型号为:RT9013-33GB,作用是将 5V 电压稳压成 3.3V,给开发板和各个元器件提供稳定的 3.3V 电源。F1 为 1000ma 自恢复保险丝,用于保护 USB。

这里还有 USB 供电部分没有列出来,其中 VUSB 就是来自 USB 供电部分,我们将在 2.1.12 节进行介绍。

2.1.12 电源输入输出接口

正点原子 DNESP32S3B 开发板板载了两组简单电源输入输出接口,其原理图如图 2.1.19.1 所示:

图 2.1.19.1 电源

图中, VOUT1 和 VOUT2 分别是 3.3V 和 5V 的电源输入输出接口,有了这组接口,我们可以通过开发板给外部提供稳定的电源了,虽然功率不大(最大 500ma),但是一般情况都够用了,大家在调试自己的小电路板的时候,有这两组电源还是比较方便的。同时这两组端口,也可以用来由外部给开发板供电。

图中 D1 和 D2 为 TVS 管,可以有效避免 VOUT 外接电源/负载不稳的时候(尤其是开发板外接电机/继电器/电磁阀等感性负载的时候),对开发板造成的损坏。同时还能一定程度防止外接电源接反,对开发板造成的损坏。

2.1.13 USB 通信接口

正点原子 DNESP32S3B 板载了 USB 通信接口 (USB_Slave/JTAG), 其原理图如图 2.1.13.1 所示:

图 2.1.13.1 USB Slave 接口

USB_Slave 是 USB 从机接口,使用的是 Type C USB 座,通过 USB 线连接电脑可以用于 USB 从机通信,如: USB CDC、USB MSC、USB HID 等。

注意: USB_Slave 可以作为 JTAG 接口,用来下载和调试代码。

2.1.14 USB 串口

正点原子 DNESP32S3B 开发板板载了一个 USB 串口,其原理图如图 2.1.14.1 所示:

图 2.1.14.1 USB 串口

USB 转串口芯片,我们选择的是 CH343P,无需外部晶振,是 CH340G 的升级版本,非常好用。USB_UART 是一个 Type C USB 座,提供 CH343P 和电脑通信的接口,同时可以给开发板供电,VUSB 就是来自电脑 USB 的电源,USB_UART 是本开发板的主要供电口。

2.1.15 音频编解码器

正点原子 DNESP32S3B 开发板板载 NS4168 高性能音频编解码芯片,其原理图如图 2.1.15.1 所示:

2.1.15.1 音频编解码芯片

NS4168 是一款支持 I2S 数字音频信号输入且输出具有防失真功能的单声道 D 类音频功率放大器。内置有数模转换器(DAC)和多级 D 类调制器,具备出色的音频性能。利用 NS4168 的 I2S 数字音频串行接口传送至放大器,可以显著降低噪声源对所传输音频的影响。另外还避免了 MCU 主控芯片内置音频解码 DAC 所带来的噪声,最终获得较高的信噪比以及较小失真度。

NS4168 采用独特的防失真功能可以有效防止输入信号过载、电池电压下降导致的输出信号失真,同时可以有效保护在大功率输出时扬声器不被损坏。NS4168 为单声道音频功放。左右声道选择通过 CTRL 管脚电平可以设置。立体声产品可选用两个芯片,非常灵活。NS4168 内置过流保护、过热保护及欠压保护功能,有效地保护芯片在异常工作状况下不被损坏。

图中,VoN 和 VoP 连接板载的 8 Ω 1W 小喇叭。MSM261S4030H0R 是板载的麦克风,可用于录音机实验,实现录音。

该芯片采用 I2S 与 ATK-MWS3S 模组的 I2S 接口连接,图中: I2S_BCK/IIS_LRCK/I2S_SDI N/IIS_SDOUT 分别接在 ATK-MWS3S 模组的: IO21/IO13/IO47/IO14 上,其中 SPK_CTRL 接在了 IO 扩展芯片上。

2.1.16 LCD 接口

DNESP32S3B 核心板板载了 LCD 接口,此部分电路如图 2.1.16.1 所示:

图 2.1.16.1 LCD 接口 & 6Pin 触摸屏接口

图中 J5 就是 LCD 接口,采用 RGB565 数据格式,并支持触摸屏。该接口仅支持 RGB 接口的液晶(不支持 MCU 接口的液晶),注意本开发板仅支持正点原子 2.4 寸 RGB 屏。

2.2 开发板使用注意事项

为了让大家更好的使用正点原子 DNESP32S3B 开发板,我们在这里总结该开发板使用的时候尤其要注意的一些问题,希望大家在使用的时候多多注意,以减少不必要的问题。

- 1, 1 个 USB 供电最多 500mA,且由于导线电阻存在,供到开发板的电压,一般都不会有5V,如果使用了很多大负载外设,比如 LCD 和多个外设一起工作,那么可能引起USB 供电不够,所以作者建议可以同时插 2 个 USB 口,并插上 JTAG,这样供电可以更足一些。
- 2, 当你想使用某个 IO 口用作其他用处的时候,请先看看开发板的原理图,该 IO 口是否有连接在开发板的某个外设上,如果有,该外设的这个信号是否会对你的使用造成干扰,先确定无干扰,再使用这个 IO。比如 IO1 就不怎么适合用做输入检测,因为他接了 2.4 寸屏幕的 CS 信号,随时可能会受到干扰。

至此,本手册的实验平台(正点原子 DNESP32S3B 开发板)的硬件部分就介绍完了,了解了整个硬件对我们后面的学习会有很大帮助,有助于理解后面的代码,在编写软件的时候,可以事半功倍,希望大家细读! 另外正点原子开发板的其他资料及教程更新,都可以在技术论坛www.openedv.com/forum.php 下载到,大家可以经常去这个论坛获取更新的信息。