Partial Differential Equations

Chapter VI - Numerical Linear Algebra

John Cagnol, Pauline Lafitte

The Engineering Program of CentraleSupélec

Lecture 8 – February 24th 2020

VI.1. Introduction

We have explained how to approximate the solution to a PDE using the Finite Element Method.

We have to solve the linear system $A_h u_h = b_h$.

We have explained how to approximate the solution to a PDE using the Finite Element Method.

We have to solve the linear system $A_h u_h = b_h$.

The Gaussian elimination has an arithmetic complexity in n^3 .

We have explained how to approximate the solution to a PDE using the Finite Element Method.

We have to solve the linear system $A_h u_h = b_h$.

The Gaussian elimination has an arithmetic complexity in n^3 .

The matrix A_h can be very large: Solving $A_h u_h = b_h$ can be an issue.

This requires developing strategies.

VI.2. Norms on a matrix

Norms

Let
$$\mathbb{K}=\mathbb{R}$$
 or \mathbb{C} . $E=\mathcal{M}_{q imes p}(\mathbb{K})$ is a \mathbb{K} -linear space.

Norms

Let
$$\mathbb{K} = \mathbb{R}$$
 or \mathbb{C} .
 $E = \mathcal{M}_{q \times p}(\mathbb{K})$ is a \mathbb{K} -linear space.

Recall the definition of a norm from the first lecture of CIP:

Definition VI.2.1

Let E be a \mathbb{K} -linear space. A **norm** $N: E \to \mathbb{R}_+$ is a mapping satisfying:

- $N(x) = 0 \Leftrightarrow x = 0$ (separation);
- $\forall \lambda \in \mathbb{K}, \forall x \in E, \ N(\lambda x) = |\lambda| N(x)$ (homogeneity);
- $\forall x, y \in E$, $N(x+y) \le N(x) + N(y)$ (triangle inequality).

Definition VI.2.2 (Norm)

The mapping $\|\cdot\|$: $\mathcal{M}_{q\times p}\to\mathbb{R}^+$ is **norm** if it satisfies:

- $\forall A, B \in \mathcal{M}_{q \times p}, \| A \| = 0 \Leftrightarrow A = 0$ (separation)
- $\forall \lambda \in \mathbb{K}, \forall A \in \mathcal{M}_{q \times p}, \ \|\|\lambda A\|\| = |\lambda|\| A\| \ \text{(homogeneity)}$
- $\forall A, B \in \mathcal{M}_{q \times p}, \||A + B|| \le ||A|| + ||B||$ (triangle ineq.).

Definition VI.2.2 (Norm)

The mapping $\|\cdot\|: \mathcal{M}_{q \times p} \to \mathbb{R}^+$ is **norm** if it satisfies:

- $\forall A, B \in \mathcal{M}_{q \times p}$, $||A|| = 0 \Leftrightarrow A = 0$ (separation)
- $\forall \lambda \in \mathbb{K}, \forall A \in \mathcal{M}_{q \times p}, \ \| \lambda A \| = |\lambda| \| A \|$ (homogeneity)
- $\forall A, B \in \mathcal{M}_{q \times p}, \|A + B\| \le \|A\| + \|B\|$ (triangle ineq.).

Definition VI.2.3 (Subordinance)

A norm $||| \cdot |||$ on $\mathcal{M}_{q \times p}$ is subordinated if

$$\forall A \in \mathcal{M}_{q \times p}, \|Ax\| \le ||A|| \|x\|$$

Definition VI.2.2 (Norm)

The mapping $\|\cdot\|: \mathcal{M}_{q\times p} \to \mathbb{R}^+$ is **norm** if it satisfies:

- $\forall A, B \in \mathcal{M}_{q \times p}, \| A \| = 0 \Leftrightarrow A = 0$ (separation)
- $\forall \lambda \in \mathbb{K}, \forall A \in \mathcal{M}_{q \times p}, \ \|\|\lambda A\|\| = |\lambda| \|A\| \ \text{(homogeneity)}$
- $\forall A, B \in \mathcal{M}_{q \times p}, \||A + B|| \le ||A|| + ||B||$ (triangle ineq.).

Definition VI.2.3 (Subordinance)

A norm $\|\cdot\|$ on $\mathcal{M}_{q\times p}$ is subordinated if

$$\forall A \in \mathcal{M}_{q \times p}, \|Ax\| \le ||A|| ||x||$$

Definition VI.2.4 (Submultiplicativity)

A norm $\|\cdot\|$ on $\mathcal{M}_{q\times p}$ is submultiplicative if

$$\forall A, B \in \mathcal{M}_{q \times p}, \||AB|| \leq ||A|| \||B||$$

6/49

Induced norm

Consider \mathbb{K}^p and \mathbb{K}^q equipped with a norm $\|\cdot\|$.

Consider \mathbb{K}^p and \mathbb{K}^q equipped with a norm $\|\cdot\|$.

Let $A \in \mathcal{M}_{q \times p}(\mathbb{K})$ be a matrix. It represents a linear application from \mathbb{K}^p to \mathbb{K}^q .

Consider \mathbb{K}^p and \mathbb{K}^q equipped with a norm $\|\cdot\|$.

Let $A \in \mathcal{M}_{q \times p}(\mathbb{K})$ be a matrix. It represents a linear application from \mathbb{K}^p to \mathbb{K}^q .

For $x \in \mathbb{K}^p \setminus \{0\}$, the non-negative number

$$\frac{\|Ax\|}{\|x\|}$$

gives the gain (or amplification) of A in the direction of x.

Consider \mathbb{K}^p and \mathbb{K}^q equipped with a norm $\|\cdot\|$.

Let $A \in \mathcal{M}_{q \times p}(\mathbb{K})$ be a matrix. It represents a linear application from \mathbb{K}^p to \mathbb{K}^q .

For $x \in \mathbb{K}^p \setminus \{0\}$, the non-negative number

$$\frac{\|Ax\|}{\|x\|}$$

gives the gain (or amplification) of A in the direction of x.

The amplification factor will vary with the direction of x.

Consider \mathbb{K}^p and \mathbb{K}^q equipped with a norm $\|\cdot\|$.

Let $A \in \mathcal{M}_{q \times p}(\mathbb{K})$ be a matrix. It represents a linear application from \mathbb{K}^p to \mathbb{K}^q .

For $x \in \mathbb{K}^p \setminus \{0\}$, the non-negative number

$$\frac{\|Ax\|}{\|x\|}$$

gives the gain (or amplification) of A in the direction of x.

The amplification factor will vary with the direction of x. What is the maximum possible gain of A?

Definition-Proposition VI.2.5

The maximum gain of A

$$\sup_{x \neq 0} \frac{\|Ax\|}{\|x\|}$$

is a norm on the linear space $\mathcal{M}_{q \times p}(\mathbb{K})$ called the **induced norm**. It depends on the norm defined on the linear space \mathbb{K} : different norms on \mathbb{K} will produce different induced norms on $\mathcal{M}_{q \times p}(\mathbb{K})$

Remark VI.2.6

The induced normed is subordinated: $||Ax|| \le ||A|| ||x||$.

Proposition VI.2.7

The induced norm is submultiplicative.

Let q = p and $\mathbb{K} = \mathbb{R}$.

Example

Consider the norm $\|\cdot\|_1$ on \mathbb{R}^q :

For
$$x = (x_1, ..., x_q) \in \mathbb{R}^q$$
, $||x|| = \sum_{i=1}^q |x_i|$.

The induced matrix norm $\|\cdot\|_1$ is given by

$$|||A||_1 = \max_{1 \le j \le q} \sum_{i=1}^q |a_{ij}|$$

which is the maximum absolute column sum of the matrix.

Let q = p and $\mathbb{K} = \mathbb{R}$.

Example

Consider the norm $\|\cdot\|_{\infty}$ on \mathbb{R}^q :

For
$$x = (x_1, \ldots, x_q) \in \mathbb{R}^q$$
, $||x||_{\infty} = \max_{1 \le n \le q} |x_i|$.

The induced matrix norm $\|\cdot\|_{\infty}$ is given by

$$|||A||_{\infty} = \max_{1 \le i \le q} \sum_{i=1}^{q} |a_{ij}|$$

which is the maximum absolute row sum of the matrix.

Let q = p and $\mathbb{K} = \mathbb{R}$.

Example

Consider the norm $\|\cdot\|_2$ on \mathbb{R}^q :

For
$$x = (x_1, \dots, x_q) \in \mathbb{R}^q$$
, $||x||_2 = \sqrt{\sum_{i=1}^q x_i^2}$.

The induced matrix norm $\|\cdot\|$ is given by

$$||A||_2 = \sigma_{\mathsf{max}}(A)$$

which is the largest singular value of the matrix A.

(Reminder: the singular values of A are the square roots of the eigenvalues of A^*A).

The Frobenius norm

Definition VI.2.8 (The Frobenius inner product)

 $\mathcal{M}_{q \times p}(\mathbb{R})$ can be endowed with the inner product:

$$\langle A, B \rangle_F = \sum_{i=1}^p \sum_{j=1}^q A_{ij} B_{ij}$$

It is called the Frobenius inner product.

It can also be defined on $\mathcal{M}_{q \times p}(\mathbb{C})$ by conjugating A_{ij} .

The Frobenius norm

Definition VI.2.9 (The Frobenius norm)

The norm deriving from the Frobenius inner product is the **Frobenius norm**. It is defined by

$$|||A||_F = \sqrt{\sum_{i=1}^p \sum_{j=1}^q A_{ij}^2}$$

It can also be defined on $\mathcal{M}_{q\times p}(\mathbb{C})$ by replacing A_{ij}^2 by $|A_{ij}|^2$.

Proposition VI.2.10

The Frobenius norm is submultiplicative.

13/49

The Frobenius norm

Proposition VI.2.11

Let $\|\cdot\|_2$ be the norm induced by the norm $\|\cdot\|_2$ on \mathbb{R}^p and \mathbb{R}^q , Let $\|\cdot\|_F$ be the Frobenius norm, Then

$$\| \cdot \|_2 \le \| \cdot \|_F$$

The Frobenius norm is easy to compute. This gives a simple way to estimate a bound of $||Ax||_2$.

$$||Ax||_2 \le |||A|||_F ||x||_2$$

Definition VI.2.12 (Condition number)

Let $\|\cdot\|$ be a norm on \mathbb{K}^q and $\|\cdot\|$ be the induced norm on $\mathcal{M}_{q\times p}(\mathbb{K})$.

Let $A \in \mathcal{M}_{q \times p}(\mathbb{K})$ be a non-singular matrix.

The condition number of A relative to $\|\cdot\|$ is defined by

$$\kappa(A) = ||A|| \, ||A^{-1}||$$

Example

Let
$$\|\cdot\| = \|\cdot\|_2$$
 and

$$A = \frac{1}{10} \left[\begin{array}{cc} 41 & 28 \\ 97 & 66 \end{array} \right]$$

Example

Let $\|\cdot\| = \|\cdot\|_2$ and

$$A = \frac{1}{10} \left[\begin{array}{cc} 41 & 28 \\ 97 & 66 \end{array} \right]$$

The eigenvalues of A* A are

$$\lambda_1 = \frac{1623 - 5\sqrt{105365}}{20}$$

$$\lambda_2 = \frac{1623 + 5\sqrt{105365}}{20}$$

The largest eigenvalue of A^*A is λ_2 .

Thus
$$||A|| = \sqrt{\lambda_2}$$

Example

Let $\|\cdot\| = \|\cdot\|_2$ and

$$A = \frac{1}{10} \left[\begin{array}{cc} 41 & 28 \\ 97 & 66 \end{array} \right]$$

The eigenvalues of A^* A are approximately

$$\lambda_1 \simeq 6 \, 10^{-5}$$
 $\lambda_2 \simeq 162$

The largest eigenvalue of A^*A is λ_2 .

Thus $||A|| \simeq 12.7$.

Example

Let
$$\|\cdot\| = \|\cdot\|_2$$
 and

$$A = \frac{1}{10} \left[\begin{array}{cc} 41 & 28 \\ 97 & 66 \end{array} \right]$$

$$||A|| \simeq 12.7.$$

Example

Let $\|\cdot\| = \|\cdot\|_2$ and

$$A = \frac{1}{10} \left[\begin{array}{cc} 41 & 28 \\ 97 & 66 \end{array} \right]$$

 $||A|| \simeq 12.7.$

The eigenvalues of $(A^{-1})^* A^{-1}$ are approximately

$$\mu_1 = 8115 - 25\sqrt{105365}$$

 $\mu_2 = 8115 + 25\sqrt{105365}$

The largest eigenvalue of $(A^{-1})^* A^{-1}$ is μ_2 .

Thus
$$||A^{-1}|| = \sqrt{\mu_2}$$

Example

Let $\|\cdot\| = \|\cdot\|_2$ and

$$A = \frac{1}{10} \left[\begin{array}{cc} 41 & 28 \\ 97 & 66 \end{array} \right]$$

 $||A|| \simeq 12.7.$

The eigenvalues of $(A^{-1})^* A^{-1}$ are approximately

$$\mu_1 \simeq 6 \, 10^{-3}$$
 $\mu_2 \simeq 16227$

The largest eigenvalue of $(A^{-1})^* A^{-1}$ is μ_2 . Thus $\|A^{-1}\| \simeq 127.4$.

Example

Let
$$\|\cdot\| = \|\cdot\|_2$$
 and

$$A = \frac{1}{10} \left[\begin{array}{cc} 41 & 28 \\ 97 & 66 \end{array} \right]$$

$$||A|| \simeq 12.7.$$

$$||A^{-1}|| \simeq 127.4.$$

Therefore $\kappa(A) \simeq 1618$

Proposition VI.2.13

Consider $A \in \mathcal{M}_{q \times p}(\mathbb{R})$ a non-singular matrix.

Let b_1 and b_2 be two vectors in \mathbb{R}^q .

Let
$$x_1 = A^{-1}b_1$$
 and $x_2 = A^{-1}b_2$.

Proposition VI.2.13

Consider $A \in \mathcal{M}_{q \times p}(\mathbb{R})$ a non-singular matrix.

Let b_1 and b_2 be two vectors in \mathbb{R}^q .

Let $x_1 = A^{-1}b_1$ and $x_2 = A^{-1}b_2$. Then

$$\frac{\|x_2 - x_1\|}{\|x_1\|} \le \kappa(A) \frac{\|b_2 - b_1\|}{\|b_1\|}$$

Where κ is the condition number relative to the matrix norm induced by $\|\cdot\|$.

Proposition VI.2.13

Consider $A \in \mathcal{M}_{q \times p}(\mathbb{R})$ a non-singular matrix.

Let b_1 and b_2 be two vectors in \mathbb{R}^q .

Let $x_1 = A^{-1}b_1$ and $x_2 = A^{-1}b_2$. Then

$$\frac{\|x_2 - x_1\|}{\|x_1\|} \le \kappa(A) \frac{\|b_2 - b_1\|}{\|b_1\|}$$

Where κ is the condition number relative to the matrix norm induced by $\|\cdot\|$.

In other words, the error on solution x to Ax = b is of the same order of magnitude as the error on b multiplied by $\kappa(A)$.

Example

With the matrix A from the previous example, a relative variation of 0.1 on b can lead to a relative variation of up to 161.8 on the solution.

The condition number is always greater or equal to 1.

When solving a linear system of equation, we hope for the condition number to be as small as possible (as close to 1 as possible).

Definition VI.2.14

A preconditioner P of a matrix A is a matrix such that

$$\kappa(PA) < \kappa(A)$$

Conditioning

Definition VI.2.14

A preconditioner P of a matrix A is a matrix such that

$$\kappa(PA) < \kappa(A)$$

For a non-singular matrix A, the best preconditioner is $P = A^{-1}$ but if A^{-1} is known, the problem was solved in the first place.

Finding a suitable P is often a trade-off.

Conditioning

Proposition VI.2.15

Let $A \in \mathcal{M}_q(\mathbb{R})$ be a positive definite symmetric matrix with eigenvalues $0 < \lambda_1 \leq \ldots \leq \lambda_q$.

The condition number κ_2 relative to the matrix norm induced by $\|\cdot\|_2$ is given by

$$\kappa_2(A) = \frac{\lambda_q}{\lambda_1}$$

Introduction Norms on a matrix **Spectral Properties** Iteration Matrix Solving Linear Systems

VI.3. Spectral Properties

Eigenvalues, Eigenvectors

As you know, every matrix $A \in \mathcal{M}_q$ has q eigenvalues in \mathbb{C} .

The **spectrum of** A, denoted $\sigma(A)$, is the set of the eigenvalues of A in \mathbb{C} .

Eigenvalues, Eigenvectors

As you know, every matrix $A \in \mathcal{M}_q$ has q eigenvalues in \mathbb{C} .

The **spectrum of** A, denoted $\sigma(A)$, is the set of the eigenvalues of A in \mathbb{C} .

Definition VI.3.1 (Schur)

Let $A \in \mathcal{M}_q$. Then, there exist

- an upper triangular matrix T
- a unitary matrix U

such that
$$A = UTU^{-1}$$
.

(Reminder: U is unitary iff $U^* = U^{-1}$)

Finding the spectrum

Computing the eigenvalues of $A \in \mathcal{M}_q$ has a complexity in q^3 .

Recent algorithms can bring down the complexity to $q^{2.3}$.

A "brute force" direct computation is rarely achieved on a large matrix.

It is a difficult problem.

Finding the spectrum: The Gershgörin circle theorem

Let $A \in \mathcal{M}_q(\mathbb{C})$.

We denote A_{ij} the components of A.

Definition VI.3.2 (Gershgörin discs)

For $i \in \{1, ..., q\}$, let $R_i = \sum_{j \neq i} |Aij|$. The closed disc $D_i = B(a_{ii}, R_i) \subseteq \mathbb{C}$ is called a Gershgorin disc.

Theorem VI.3.3 (Gershgörin)

$$\operatorname{Sp}(A) \subset \bigcup_{k=1}^q D_k$$

Consider

$$A = \left[\begin{array}{rrrr} 5 & 2 & 0 & 1 \\ -1 & 3 & 2 & 1 \\ 0 & 0 & -2 & 0 \\ 1 & -1 & 0 & 8 \end{array} \right]$$

Consider

$$A = \left[\begin{array}{rrrr} 5 & 2 & 0 & 1 \\ -1 & 3 & 2 & 1 \\ 0 & 0 & -2 & 0 \\ 1 & -1 & 0 & 8 \end{array} \right]$$

$$A_{11} = 5$$
 $R_1 = 2 + 0 + 1$

Consider

$$A = \left[\begin{array}{rrrr} 5 & 2 & 0 & 1 \\ -1 & 3 & 2 & 1 \\ 0 & 0 & -2 & 0 \\ 1 & -1 & 0 & 8 \end{array} \right]$$

$$A_{11} = 5$$
 $R_1 = 3$

Consider

$$A = \left[\begin{array}{rrrr} 5 & 2 & 0 & 1 \\ -1 & 3 & 2 & 1 \\ 0 & 0 & -2 & 0 \\ 1 & -1 & 0 & 8 \end{array} \right]$$

$$A_{11} = 5$$
 $R_1 = 3$ $A_{22} = 3$ $R_2 = 1 + 2 + 1$

Consider

$$A = \left[\begin{array}{rrrr} 5 & 2 & 0 & 1 \\ -1 & 3 & 2 & 1 \\ 0 & 0 & -2 & 0 \\ 1 & -1 & 0 & 8 \end{array} \right]$$

$$A_{11} = 5$$
 $R_1 = 3$ $A_{22} = 3$ $R_2 = 4$

Consider

$$A = \left[\begin{array}{rrrr} 5 & 2 & 0 & 1 \\ -1 & 3 & 2 & 1 \\ 0 & 0 & -2 & 0 \\ 1 & -1 & 0 & 8 \end{array} \right]$$

$$A_{11} = 5$$
 $R_1 = 3$
 $A_{22} = 3$ $R_2 = 4$
 $A_{33} = -2$ $R_3 = 0 + 0 + 0$

Consider

$$A = \left[\begin{array}{rrrr} 5 & 2 & 0 & 1 \\ -1 & 3 & 2 & 1 \\ 0 & 0 & -2 & 0 \\ 1 & -1 & 0 & 8 \end{array} \right]$$

$$A_{11} = 5$$
 $R_1 = 3$
 $A_{22} = 3$ $R_2 = 4$
 $A_{33} = -2$ $R_3 = 0$

Consider

$$A = \left[\begin{array}{rrrr} 5 & 2 & 0 & 1 \\ -1 & 3 & 2 & 1 \\ 0 & 0 & -2 & 0 \\ 1 & -1 & 0 & 8 \end{array} \right]$$

$$A_{11} = 5$$
 $R_1 = 3$
 $A_{22} = 3$ $R_2 = 4$
 $A_{33} = -2$ $R_3 = 0$
 $A_{44} = 8$ $R_4 = 1 + 1 + 0$

Consider

$$A = \left[\begin{array}{rrrr} 5 & 2 & 0 & 1 \\ -1 & 3 & 2 & 1 \\ 0 & 0 & -2 & 0 \\ 1 & -1 & 0 & 8 \end{array} \right]$$

$$A_{11} = 5$$
 $R_1 = 3$
 $A_{22} = 3$ $R_2 = 4$
 $A_{33} = -2$ $R_3 = 0$
 $A_{44} = 8$ $R_4 = 2$

Consider

$$A = \left[\begin{array}{rrrr} 5 & 2 & 0 & 1 \\ -1 & 3 & 2 & 1 \\ 0 & 0 & -2 & 0 \\ 1 & -1 & 0 & 8 \end{array} \right]$$

$$A_{11} = 5$$
 $R_1 = 3$
 $A_{22} = 3$ $R_2 = 4$
 $A_{33} = -2$ $R_3 = 0$
 $A_{44} = 8$ $R_4 = 2$

Consider

$$A = \left[\begin{array}{rrrr} 5 & 2 & 0 & 1 \\ -1 & 3 & 2 & 1 \\ 0 & 0 & -2 & 0 \\ 1 & -1 & 0 & 8 \end{array} \right]$$

$$A_{11} = 5$$
 $R_1 = 3$
 $A_{22} = 3$ $R_2 = 4$
 $A_{33} = -2$ $R_3 = 0$
 $A_{44} = 8$ $R_4 = 2$

Consider

$$A = \left[\begin{array}{rrrr} 5 & 2 & 0 & 1 \\ -1 & 3 & 2 & 1 \\ 0 & 0 & -2 & 0 \\ 1 & -1 & 0 & 8 \end{array} \right]$$

$$\begin{array}{lll} A_{11} = 5 & R_1 = 3 \\ A_{22} = 3 & R_2 = 4 \\ A_{33} = -2 & R_3 = 0 \\ A_{44} = 8 & R_4 = 2 \end{array}$$

Consider

$$A = \left[\begin{array}{rrrr} 5 & 2 & 0 & 1 \\ -1 & 3 & 2 & 1 \\ 0 & 0 & -2 & 0 \\ 1 & -1 & 0 & 8 \end{array} \right]$$

$$A_{11} = 5$$
 $R_1 = 3$
 $A_{22} = 3$ $R_2 = 4$
 $A_{33} = -2$ $R_3 = 0$
 $A_{44} = 8$ $R_4 = 2$

Consider

$$A = \left[\begin{array}{rrrr} 5 & 2 & 0 & 1 \\ -1 & 3 & 2 & 1 \\ 0 & 0 & -2 & 0 \\ 1 & -1 & 0 & 8 \end{array} \right]$$

$$A_{11} = 5$$
 $R_1 = 3$
 $A_{22} = 3$ $R_2 = 4$
 $A_{33} = -2$ $R_3 = 0$
 $A_{44} = 8$ $R_4 = 2$

Consider

$$A = \left[\begin{array}{rrrr} 5 & 2 & 0 & 1 \\ -1 & 3 & 2 & 1 \\ 0 & 0 & -2 & 0 \\ 1 & -1 & 0 & 8 \end{array} \right]$$

$$A_{11} = 5$$
 $R_1 = 3$
 $A_{22} = 3$ $R_2 = 4$
 $A_{33} = -2$ $R_3 = 0$
 $A_{44} = 8$ $R_4 = 2$

An interesting application of the Gershgörin circle theorem

When looking for a preconditioner P for matrix A, the eigenvalues of PA should all be close to 1.

An interesting application of the Gershgörin circle theorem

When looking for a preconditioner P for matrix A, the eigenvalues of PA should all be close to 1.

The Gershgorin circle theorem yields that every eigenvalue of *PA* lies within a known area.

An interesting application of the Gershgörin circle theorem

When looking for a preconditioner P for matrix A, the eigenvalues of PA should all be close to 1.

The Gershgorin circle theorem yields that every eigenvalue of *PA* lies within a known area.

We can get an estimate of how good our choice of P is.

Spectral radius

Definition VI.3.4

Let $A \in \mathcal{M}_q(\mathbb{C})$. The spectral radius of A is the non-negative number

$$\rho(A) = \max\{|\lambda|, \ \lambda \in \sigma(A)\}.$$

Spectral radius

Definition VI.3.4

Let $A \in \mathcal{M}_q(\mathbb{C})$. The spectral radius of A is the non-negative number

$$\rho(A) = \max\{|\lambda|, \ \lambda \in \sigma(A)\}.$$

Proposition VI.3.5

Let $\|\cdot\|$ be an induced norm on $\mathcal{M}_q(\mathbb{C})$, then

$$\forall A \in \mathcal{M}_q(\mathbb{C}), \ \rho(A) \leq ||A||$$

Spectral radius

Definition VI.3.4

Let $A \in \mathcal{M}_q(\mathbb{C})$. The spectral radius of A is the non-negative number

$$\rho(A) = \max\{|\lambda|, \ \lambda \in \sigma(A)\}.$$

Proposition VI.3.5

Let $\|\cdot\|$ be an induced norm on $\mathcal{M}_q(\mathbb{C})$, then

$$\forall A \in \mathcal{M}_q(\mathbb{C}), \ \rho(A) \leq ||A||$$

Remark VI.3.6

Let $A \in \mathcal{M}_q(\mathbb{C})$, then $||A||_2 = \sqrt{\rho(A^*A)}$ Furthermore if A is symmetric positive definite then $||A|| = \rho(A)$.

Spectral radius: The Power Method

Theorem VI.3.7 (The Power Method)

Let $A \in \mathcal{M}_a$, and $\|\cdot\|$ be a norm on \mathbb{K}^q ,

Let $\lambda_1, \ldots, \lambda_q$ be the eigenvalue of A with $|\lambda_1| > |\lambda_2| \geq \ldots \geq |\lambda_q|$

Let e_1 be an eigenvector associated to λ_1 and $F = \text{Im}(A - \lambda_1 I)$.

Let $x_0 = \mu e_1 + f$, with $\mu \neq 0$ and $f \in F$.

Define the sequence $(x_n)_{n\in\mathbb{N}}$ by

$$x_{n+1} = \frac{Ax_n}{\|Ax_n\|}$$

Then $\lim_{n\to\infty} ||Ax_n|| = \rho(A)$.

Spectral radius: The Power Method

Theorem VI.3.7 (The Power Method)

Let $A \in \mathcal{M}_q$, and $\|\cdot\|$ be a norm on \mathbb{K}^q ,

Let $\lambda_1, \ldots, \lambda_q$ be the eigenvalue of A with $|\lambda_1| > |\lambda_2| \geq \ldots \geq |\lambda_q|$

Let e_1 be an eigenvector associated to λ_1 and $F = \text{Im}(A - \lambda_1 I)$.

Let $x_0 = \mu e_1 + f$, with $\mu \neq 0$ and $f \in F$.

Define the sequence $(x_n)_{n\in\mathbb{N}}$ by

$$x_{n+1} = \frac{Ax_n}{\|Ax_n\|}$$

Then $\lim_{n\to\infty} ||Ax_n|| = \rho(A)$.

We start with a vector x which has a non-zero component in the direction of an eigenvector associated e_1 . We apply A to x and we normalize it. Intuitively, the dominant eigenvalue λ_1 will "pull" x toward the direction of e_1 .

Spectral radius: The Power Method (example)

```
import numpy as np
A = np.array([
    [ 5, 2, 0, 1],
    [-1, 3, 2, 1]
    [0, 0, -2, 0],
[1, -1, 1, 8]])
x = np.random.rand(A.shape[1])
nb iterations = 10
for n in range(nb_iterations):
    Ax = np.dot(A, x)
    Ax_norm = np.linalg.norm(Ax)
    x = Ax / Ax_norm;
    print (" | | Ax(%d) | | = \%f" %(n, Ax_norm));
```

Spectral radius: The Power Method (example)

Example

With the previous matrix A

```
||Ax(0)|| = 3.383218

||Ax(1)|| = 7.280632

||Ax(2)|| = 8.182650

||Ax(3)|| = 8.184859

||Ax(4)|| = 8.249779

||Ax(5)|| = 8.258322

||Ax(6)|| = 8.263641

||Ax(7)|| = 8.263286

||Ax(8)|| = 8.262592

||Ax(9)|| = 8.261866
```

Introduction
Norms on a matrix
Spectral Properties
Iteration Matrix
Solving Linear Systems

VI.4. Iteration Matrix

Linear Recurrence Relation

Definition VI.4.1 (Linear recurrence relation)

Let $M \in \mathcal{M}_q(\mathbb{K})$ and $b, x_0 \in \mathbb{K}^q$. The sequence $(x_n)_{n \in \mathbb{N}}$ defined by

$$x_{n+1} = M x_n + b$$

is called a linear recurrence relation.

The matrix M is called the **iteration matrix**.

Linear Recurrence Relation

Definition VI.4.2

Consider a linear recurrence relation with the iteration matrix M and a non-empty set of possible initial conditions $C \subset \mathbb{K}^q$.

$$\begin{cases} x_0 \in C \\ \forall n \ge 0, \quad x_{n+1} = M x_n + b \end{cases}$$

The sequence is a **convergent numerical method** if for all $b \in \mathbb{K}^q$, $(x_n)_{n \in \mathbb{N}}$ converges.

Convergence error

Definition VI.4.3

Consider a convergent numerical method $(x_n)_{n\in\mathbb{N}}$.

Let $x = \lim x_n$ and $e_n = x_n - x$ pour tout $n \ge 0$.

The convergence rate of $(x_n)_{n\in\mathbb{N}}$ is a measure of the decline of $(e_n)_{n\in\mathbb{N}}$ toward 0.

Linear Recurrence Relation

Example

Let q=1 and $m\in\mathbb{C}$.

m is a 1×1 matrix.

Consider

$$\begin{cases} x_0 \in \mathbb{C} \\ \forall n \geq 0, \quad x_{n+1} = mx_n. \end{cases}$$

This numerical method converges iff |m| < 1 or m = 1.

If |m| < 1, we have $e_n = m^n x_0$.

The convergence rate is |m|.

Convergence of numerical methods

Theorem VI.4.4

Let $M \in \mathcal{M}_q(\mathbb{K})$.

These statements are equivalent:

- $\forall x \in \mathbb{K}^q$, the sequence $(x_n)_{n \in \mathbb{N}}$ defined by $x_0 = x$ and $\forall n \geq 0 \ x_{n+1} = Mx_n$ converges toward 0
- **0** $\rho(M) < 1$

Applications

Two main applications of iteration matrices will be considered:

- Solving linear systems (next section)
- Parabolic PDEs (chapter VIII)

Introduction Direct methods Iterative Methods

VI.5. Solving Linear Systems

Introduction Direct methods Iterative Methods

VI.5.1. Introduction

There are two main types of methods to solve Ax = b.

• The direct methods:

A is decomposed in A = BC Ax = b is replaced by Cy = b and Bx = yExamples: LU and QR

• The iterative methods:

We build a sequence $(x_n)_{n\in\mathbb{N}}$ that converges toward x. Examples: Jacobi, Gauß-Seidel, Conjugate gradient

Introduction
Direct methods
Iterative Methods

VI.5.2. Direct methods

LU decomposition

Definition VI.5.1

Let $A \in GL_q(\mathbb{K})$.

A has a LU decomposition if there exist

- a lower triangular matrix L with 1 on the diagonal
- an upper triangular matrix U

such that A = LU

This works using the Gaussian elimination.

If you are not familiar with the method watch the video by Gilbert Strang at cagnol.link/fact

LU decomposition

- Pros:
 - Very useful if we have to solve Ax = b for several b.
 - Sparse matrices stay sparse in the process.
- Cons: the complexity is q^3 .

Remark VI.5.2

We solve the system Ax = b. We do not inverse A.

Theorem VI.5.3

There exists a LU decomposition if the gauss elimination works out. In this case it is unique.

Cholesky decomposition

Theorem VI.5.4

Let $A \in GL_q(\mathbb{R})$ symmetric positive definite.

There exists a lower triangular matrix B with with positive diagonal terms such that $BB^* = A$.

This applies to the QR decomposition (Gram-Schmidt)

Theorem VI.5.5 (Decomposition QR)

Every matrix $A \in GL_q(\mathbb{R})$ can be uniquely decomposed

$$A = QR$$

where $Q \in O_q(\mathbb{R})$ and R are upper triangular matrices with positive terms on the diagonal.

Introduction Direct methods Iterative Methods

VI.5.3. Iterative Methods

Definition VI.5.6

Solving a linear system using an iterative method consists of

- decomposing A in A = M N where M is a non-singular matrix.
- considering the numerical method

$$\begin{cases} x_0 \in \mathbb{K}^q \\ \forall n \geq 0, \quad Mx_{n+1} = Nx_n + b. \end{cases}$$

Remark VI.5.7

At each iteration, one needs to solve a system. The matrix M needs to be chosen so this system is simple.

Theorem VI.5.8

If $\rho(M^{-1}N) < 1$, the numerical method converges.

Jacobi

Definition VI.5.9 (Jacobi)

Consider
$$M = diag(A)$$
 and $N = -A + diag(A)$

Gauß-Seidel

Definition VI.5.10 (Gauß-Seidel)

For

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

Define

$$M = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

$$M = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \qquad N = - \begin{bmatrix} 0 & a_{12} & \cdots & a_{1n} \\ 0 & 0 & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

Conjugate Gradient

Definition VI.5.11

Let $A \in \mathcal{M}_q$ be symmetric and positive definite. Consider

- The sequence $(x_n)_{n\in\mathbb{N}}$ that will converge toward the solution
- The sequence $(r_n)_{n\in\mathbb{N}}$ of "residuals" $(r_n = b Ax_n)$
- The sequence $(p_n)_{n\in\mathbb{N}}$ of "directions"

We initialize with any $x_0 \in \mathbb{R}^q$ (if possible, close to the solution to be found) and $r_0 = b - Ax_0$ and $p_0 = b - Ax_0$. Then, for $n \ge 0$:

- $x_{n+1} = x_n + \alpha_n p_n$
- $\bullet r_{n+1} = r_n \alpha_n A p_n$
- $\bullet p_{n+1} = r_{n+1} + \beta_n p_n$

Where α_n and β_n are numbers: $\alpha_n = \frac{\|r_n\|^2}{Ap_n \cdot p_n}$ and $\beta_n = \frac{\|r_{n+1}\|^2}{\|r_n\|^2}$.