

Boundary Cues for 3D Object Shape Recovery

Kevin Karsch¹, Zicheng Liao¹, Jason Rock¹, Jonathan T. Barron², Derek Hoiem¹ ¹University of Illinois at Urbana-Champaign ²University of California Berkeley

We evaluate how a variety of single-image "boundary" cues affect shape reconstruction for real pictures.

Image from PASCAL

Annotated boundary cues

Shape is computed through a novel SFS optimization (extending [1,2]):

 $\underset{Z}{\text{minimize}} \ \delta_{sfc} f_{sfc}(Z) + \delta_{selfocc} f_{selfocc}(Z)$ $+\delta_{fold}f_{fold}(Z) + \delta_{reg}f_{reg}(Z) + \delta_{sfs}(g(R) + h(L))$

(Z: shape, R: reflectance, L: illumination)

subject to $c_{sfs}(Z, R, L) = 0$

Our experiments aim to find:

- How accurate are reconstructions?
- Are the shapes recognizable?
- Which cues are "most important"?
- Directions for improving SFS

We evaluate the following cue combinations (variations of Eq. 1)

^[1] J Malik and D Maydan. "Recovering three-dimensional shape from a single image of curved objects." TPAMI, 1989. [2] JT Barron and J Malik. "Color constancy, intrinsic images, and shape estimation." ECCV, 2012.

Reconstruction Quality

- Subjects consistently prefer reconstructions using self occlusion and folds to other cue combinations
- Reconstructions using both self occlusions and folds rated higher than using one or none of these cues by a ratio of about 5:1
- No method achieves good/very good ratings consistently

- ♦ Optimization weights set uniformly (=1) † Optimization weights trained from held out set
- Quantitative errors roughly consistent with preferences found in user study
- Uniform and trained weights produce perceptually similar results yet significant differences in error
- Training improves performance on synthetic data; no training data available yet for real images (e.g. PASCAL)

Shape Recognition

- Both shading and boundary cues aid human recognition of object classes, but silhouette alone is already a very revealing cue
- Viewing only annotation lines is nearly as helpful (gestalt effect)
- Masking object boundary makes classification much more difficult (e.g. "masked" results)

Automatic recognition rate on PASCAL VOC with different features

	RGBD kernel	PHOW
rgb	55.29	-
+occ+folds+rgb	70.00	-
+shading+occ+folds+rgb	62.35	_
silh	47.06	45.29
+selfocc	65.88	54.12
+folds	51.76	47.65
+occ+folds	65.88	51.76
+shading	48.24	41.76
+shading+occ+folds	52.94	42.94

- Approximate depth is very useful for building classification features
- Boundary cues appear to drive classification; high frequency shading features seem to confuse classifiers
- RGB features (results above double lines) greatly improve accuracy

VOC Reconstructions

Conclusions

- Boundary cues provide coarse shape detail, complementing fine-scale detail provided by shading cues
- Automatically detecting boundary cues like self occlusions and folds can greatly improve single-image shape reconstruction
- Features extracted from shape reconstructions improve existing object descriptors/classifiers (e.g. RGB+approximate depth)