Maciej Byczko	Prowadzący:	Numer ćwiczenia		
Bartosz Matysiak	dr inż. Jacek Mazurkiewicz	2		
PN 10:50 TP	Temat ćwiczenia:	Ocena:		
1 10.00 11	Układy Kombinacyjne	Ocena.		
Grupa:	Data wykonania:			
В	10 Października 2021			

Spis treści

1	$\mathbf{Z}\mathbf{ad}$	anie 1									
	1.1	Polecenie									
	1.2	Rozwiązanie									
	1.3	Schemat stanów									
	1.4										
	1.5	Siatki Karnaugh									
		1.5.1 Schemat układu									
		1.5.2 Kod VHDL									
		1.5.3 Symulacja									
2	Zad	danie 2									
	2.1	1 Polecenie									
	2.2	Rozwiązanie									
	2.3	Opis symboliki									
	2.4	Schemat grafowy									
		2.4.1 Tabela prawdy									
		2.4.2 Siatka Karnaugh									
		2.4.3 Schemat układu									
		2.4.4 Kod VHDL									
		2.4.5 Symulacja									
3	Wni	ioski									

1 Zadanie 1

1.1 Polecenie

Zaprojektować licznik synchroniczny liczący w tył na bazie kodu Aikena w zakresie 0-6 (mod 7).

1.2 Rozwiązanie

1.3 Schemat stanów

1.4 Tabela prawdy

10	Q(t)				Q(t+1)				JK							
n	Q_3	Q_2	Q_1	Q_0	Q_3	Q_2	Q_1	Q_0	J_3	K_3	J_2	K_2	J_1	K_1	J_0	K_0
0	0	0	0	0	1	1	0	0	1	_	1	_	0	_	0	_
1	0	0	0	1	0	0	0	0	0	-	0	-	0	_	-	1
2	0	0	1	0	0	0	0	1	0	-	0	-	-	1	1	-
3	0	0	1	1	0	0	1	0	0	-	0	-	-	0	-	1
4	0	1	0	0	0	0	1	1	0	-	-	1	1	-	1	-
5	1	0	1	1	0	1	0	0	-	1	1	-	-	1	-	1
6	1	1	0	0	1	0	1	1	-	0	-	1	1	-	1	-

1.5 Siatki Karnaugh

1.5.1 Schemat układu

1.5.2 Kod VHDL

1.5.3 Symulacja

2 Zadanie 2

2.1 Polecenie

Detektor sekwencji 11011, automat Mealy-ego, jedno wejście, jedno wyjście, brak resetu, sekwencja prawidłowa 5-bitowa.

2.2 Rozwiązanie

2.3 Opis symboliki

Alfabet wejściowy

- $z_0 = 0$
- $z_1 = 1$

Stany wewnętrzne

- q_0 stan początkowy | wprowadzono niepoprawny ciąg bitów
- q_1 wprowadzono pierwszą cyfrę prawidłowego ciągu
- q_2 wprowadzono drugą cyfrę prawidłowego ciągu
- q_3 wprowadzono trzecią cyfrę prawidłowego ciągu
- q_4 wprowadzono czwartą cyfrę prawidłowego ciągu
- q_5 wprowadzono poprawną sekwencję

Alfabet wyjścia

- y_0 Wprowadzony ciąg nadal jest niepoprawny
- y_1 Wprowadzono poprawną sekwencję

2.4 Schemat grafowy

2.4.1 Tabela prawdy

S	Q(t)			7	($\sqrt{(t+1)}$.)	3 7	D(t)		
	Q_2	Q_1	Q_0	Z	Q_2	Q_1	Q_0	Y	T_2	T_1	T_0
Q_0	0	0	0	0	0	0	0	0	0	0	0
Q_0	0	0	0	1	0	0	1	0	0	0	1
Q_1	0	0	1	0	0	0	0	0	0	0	1
Q_1	0	0	1	1	0	1	0	0	0	1	1
Q_2	0	1	0	0	0	1	1	0	0	0	1
Q_2	0	1	0	1	0	1	0	0	0	0	0
Q_3	0	1	1	0	0	0	0	0	0	1	1
Q_3	0	1	1	1	1	0	0	0	1	1	1
Q_4	1	0	0	0	0	0	0	0	1	0	0
Q_4	1	0	0	1	1	0	1	0	0	0	1
Q_5	1	0	1	0	0	1	1	1	1	1	0
Q_5	1	0	1	1	0	0	1	1	1	0	0
-	1	1	0	0	-	-	_	_	-	_	_
_	1	1	0	1	_	_	_	-	_	_	_
-	1	1	1	0	-	-	_	_	-	_	_
_	1	1	1	1	_	_	_	_	_	_	_

11

1

0

11

0

0

10

0

1

10

0

0

1

2.4.2 Siatka Karnaugh

- 2.4.3Schemat układu
- 2.4.4 Kod VHDL
- 2.4.5 Symulacja
- Wnioski 3