Parallel computing in Python using Dask, Modin and Joblib

April 22, 2024

Dask basics

Material taken from <u>Dask documentation</u> and other links (indicated as appropriate)

- flexible library for parallel computing in Python
- it is implemented on top of multiprocessing and multithreading
- Composed of two parts:
 - dynamic task scheduling optimized for interactive computational workloads
 - big data collections: parallel arrays, dataframes and lists (extends common interfaces like numpy, pandas or iterators)

Dask basics

Advantages:

- Familiar: provides parallelized numpy array and pandas dataframe objects
- Flexible: provides a task scheduling interface
- Native: enables ditributed computing in pure Python with access to the PyData stack
- Fast: low overhead, low latency, and minimal serialization
- Scales up: runs on clusters with 1000s of cores
- Scales down: can trivially run in a laptop using a single process
- ▶ Responsive: designed for interactive computing, providing rapid feedback

Dask vs. PySpark

- In general, Dask is smaller and lighter weight than Spark
- It has fewer features and, instead, is used in conjunction with other libraries, particularly those in the numeric Python ecosystem
- It couples with libraries like Pandas or Scikit-Learn
- Spark is written in Scala and supports various languages, dask is written in Python and only supports Python
- specifically, PySpark runs on JVM

Dask basics

General overview of Dask components

Dask will run in a single machine, but if using dask.distributed, it will create processes in several machines

Dask familiar user interface: dataframe example

```
import pandas as pd
df = pd.read_csv('2015-01-01.csv')
df.groupby(df.user_id).value.mean()
import dask.dataframe as dd
df = dd.read_csv('2015-*-*.csv')
df.groupby(df.user_id).value.mean().compute()
```

Dask familiar user interface: numpy example

```
import numpy as np
f = h5py.File('myfile.hdf5')
x = np.array(f['/small-data'])
x - x.mean(axis=1)
import dask.array as da
f = h5py.File('myfile.hdf5')
x = da.from_array(f['/big-data'],
chunks=(1000, 1000))
x - x.mean(axis=1).compute()
```

chunks tell dask.array how to break up the underlying array into chunks (refer to <u>Dask chunks documentation</u>)

Dask familiar user interface: numpy example

```
import dask.array as da
x = da.ones((15, 15), chunks=(5, 5))
y = x + x.T
# y.compute()
y.visualize(filename='transpose.svg')
```


Dask familiar user interface: iterators, Toolz and PySpark

```
import dask.bag as db
b = db.read_text('2015-*-*.json.gz').map(json.loads)
b.pluck('name').frequencies().topk(10, lambda pair: pair[1]).compute()
```

Dask familiar user interface: for loop and custom code

```
from dask import delayed
L = []
for fn in filenames:
    data = delayed(load)(fn)
    L.append(delayed(process)(data))
result = delayed(summarize)(L)
result.compute()
```

Dask familiar user interface: futures

```
from dask.distributed import Client
client = Client('scheduler:port')
futures = []
for fn in filenames:
    future = client.submit(load, fn)
    futures.append(future)
summary = client.submit(summarize, futures)
summary.result()
```

Dask familiar user interface: futures

• Client is needed to use with future interfaces

```
from dask.distributed import Client

client = Client() # start local workers as processes
# or
client = Client(processes=False) # start local workers as threads
```

Dask distributed

- If you create a Client without providing an address it will start up a local scheduler and worker
- Dask distribute allows you to manage clusters
 python -m pip install dask distributed --upgrade

```
$ dask-scheduler
Scheduler started at 127.0.0.1:8786
$ dask-worker 127.0.0.1:8786
$ dask-worker 127.0.0.1:8786
$ dask-worker 127.0.0.1:8786
>>> from dask.distributed import Client
>>> client = Client('127.0.0.1:8786')
```

Dask task graphs

Dask encodes programs as dictionaries or similar, which are represented as graphs

```
def inc(i):
    return i + 1

def add(a, b):
    return a + b

x = 1
y = inc(x)
z = add(y, 10)
```

```
d = {'x': 1,
    'y': (inc, 'x'),
    'z': (add, 'y', 10)}
```


Dask dataframes

Material from Dask dataframe doc

- Dask dataFrame: used usually when Pandas fails due to data size or computation speed:
 - Manipulating large datasets, even when those datasets don't fit in memory
 - Accelerating long computations by using many cores
 - Distributed computing on large datasets with standard pandas operations like groupby, join, and time series computations

Dask dataframes

- Dask dataFrame may not be the best choice in the following situations:
 - ▶ If the dataset fits into RAM
 - ► If the dataset doesn't fit into the pandas tabular model (in that case if the data fits, you may use dask.bag or dask.array)
 - ▶ If you need functions that are not implemented in Dask dataFrame
 - If you need database optimized operations

Dask dataframe example

Dask dataframes and pandas

- Trivially parallelizable operations: element-wise, row-wise, loc, aggregations, etc
- Cleverly parallelizable operations: groupby (agg and index), counts, drop_duplicates, merge etc

Dask dataframes and pandas

- Dask does not implement all pandas interface
- Some limitations:
 - setting a new index from an unsorted column is expensive
 - operations like groupby-apply and join on unsorted columns require setting the index, which as said above, is expensive
 - operations that are slow in pandas, like iterating row-by-row will remain slow in dask

Dask dataframes overheads

- A note on GIL (Global Interpreter Lock):
 - pandas is more GIL bound than numpy, therefore operations on dask arrays should be faster than operations on dask dataframes

Dask ML

```
>>> from dask_glm.datasets import make_classification
>>> X, y = make_classification()
>>> lr = LogisticRegression()
>>> lr.fit(X, y)
>>> lr.decision_function(X)
>>> lr.predict(X)
>>> lr.predict_proba(X)
>>> lr.score(X, y)

from dask_ml.xgboost import XGBRegressor
est = XGBRegressor(...)
est.fit(train, train labels)
```

Modin documentation in github Modin documentation in readthedocs

Scale your pandas workflows by changing one line of code! (is this serious?? :)

```
# import pandas as pd
import modin.pandas as pd
```



```
pip install modin[ray] # Install Modin dependencies and Ray to run on Ray
pip install modin[dask] # Install Modin dependencies and Dask to run on Dask
pip install modin[all] # Install all of the above
```

Q: What is Modin?

A: An alternative to handle 100GB or 1TB datasets not supported by pandas

Top 20 Most Used Pandas methods in Kaggle

From the top 1800 upvoted scripts and notebooks in Kaggle

Pandas implemented functions from Kaggle's most used

Source: https://towardsdatascience.com/how-to-speed-up-pandas-with-modin-84aa6a87bcdb

pandas Object	Modin's Ray Engine Coverage	Modin's Dask Engine Coverage	Modin's Unidist Engine Coverage
pd.DataFrame	api coverage 90.8%	api coverage 90.8%	api coverage 90.8%
pd.Series	api coverage 88.05%	api coverage 88.05%	api coverage 88.05%
pd.read_csv	✓	▽	✓
pd.read_table	✓	✓	✓
pd.read_parquet	✓	✓	✓
pd.read_sql	✓	✓	✓
pd.read_feather	✓	~	✓
pd.read_excel	✓	✓	✓
pd.read_json	*	<u>*</u>	<u>*</u>
pd.read_ <other></other>	<u>*</u>	<u>*</u>	<u>*</u>

 $Source: \ https://github.com/modin-project/modin?tab=readme-ov-file\#pandas-api-coverage$

Modin abstract architecture

Source: https://modin.readthedocs.io/en/stable/development/architecture.html

Modin execution engines

 $Source: \ https://modin.readthedocs.io/en/stable/development/architecture.html \\$

Modin details for Ray execution

Source: https://modin.readthedocs.io/en/stable/development/architecture.html

Joblib

Joblib

- Transparent and fast disk-caching
- Embarrassingly parallel
- Fast compressed Persistence

Joblib

Switching different Parallel Computing Back-ends:

- "loky"
- "multiprocessing"
- "threading"
- "dask"