Assignment Project Exiden Help

https://powcoder.com

Regression III: Kernels

Assignment Project Exam Help

https://powcoder.com

Outline

- Dual form of ridge regression

Assignment Project Exam Help

https://powcoder.com

Linear algebraic identity

$$\textbf{Assignment} x \textbf{Project Exam} \overset{[y_1]}{\vdash} \underbrace{\textbf{Help}}$$

https://dpowcoder...com

▶ Check: multiply both sides by $A^{\mathsf{T}}A + \lambda I$ and "factor".

Alternative (dual) form for ridge regression (1)

► Implications for ridge regression

Assignment Project Exm. Help

- $\begin{array}{c} \text{https://powerkenewkern} \\ K_{i,j} = x_i^{\mathsf{T}} x_j. \end{array}$
- Padicion with encel point power $x^{\mathsf{T}} \hat{w} = \sum_{n} \hat{\alpha}_{i} \cdot x^{\mathsf{T}} x_{i}$

Alternative (dual) form for ridge regression (2)

Therefore, can "represent" predictor via data points x_1, \ldots, x_n and $\hat{\alpha}$.

Assignmentest reprojectiff, ecentary and Help

- To make prediction on x: iterate through the x_i to compute inner products with x; take appropriate weighted sum of results
- https://powcoder.com

Quadratic expansion

Suppose we want to do feature expansion to get all quadratic terms in $\varphi(x)$

- ► hitens expanowed en expans
 - Explicitly computing $\varphi(x)$, $\varphi(x')$, and then $\varphi(x)^{\mathsf{T}}\varphi(x')$ would take $\Theta(d^2)$ time.

Add WeChat powcoder "Kernel trick": can compute $\varphi(x)$ $\varphi(x')$ in O(d) time:

$$\varphi(x)^{\mathsf{T}}\varphi(x') = (1 + x^{\mathsf{T}}x')^{2}.$$

Similar trick for cubic expansion, quartic expansion, etc.

Gaussian kernel

For any $\sigma > 0$, there is an infinite-dimensional feature

hittage donpre word to the Com Called Gaussian kernel or Radial Basis Function (RBF) kernel

(with bandwidth σ).

Add WeChat powcoder

Feature expansion for d=1 and $\sigma=1$ case:

$$\varphi(x) = e^{-x^2/2} \left(1, x, \frac{x^2}{\sqrt{2!}}, \frac{x^3}{\sqrt{3!}}, \dots \right).$$

Kernels

- - ▶ **Record of Stop and Policy General Charles** ists a feature map $\varphi \colon \mathcal{X} \to H$ such that $\varphi(x)^\mathsf{T} \varphi(x') = \mathsf{k}(x,x')$ for all $x,x' \in \mathcal{X}$.
 - A Hire H is pecial hind of inner product space called the expedducing Kenny Hilbert space (RXM) to responding to k.

 \blacktriangleright Algorithmically, we don't have to worry about what φ is. Instead, just use k.

Kernel ridge regression (1)

- ▶ Training data $(x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathbb{R}$
- Assignment $\underset{n}{\text{Project}} \underset{\text{Exam}}{\text{Exam}} \text{Help}$

$$rac{1}{n} \sum_{i=1}^{n} (arphi(x_i) \| w - y_i)^2 + \lambda \| w \|_2^2$$

https://poweoder.com

$$K_{i,j} = \mathsf{k}(x_i, x_j).$$

LAting 10 = W1 e Carrent TO WOODET

$$\frac{1}{n} \|K\alpha - y\|_2^2 + \lambda \alpha^\mathsf{T} K \alpha$$

where
$$y = (y_1, \dots, y_n) \in \mathbb{R}^n$$
.

Kernel ridge regression (2)

lacktriangle Minimizer wrt lpha is solution \hat{lpha} to linear system of equations

Assignment Project Exam Help

- ▶ Return predictor that is represented by $\hat{\alpha} \in \mathbb{R}^n$ and x_1, \dots, x_n
 - ▶ To make prediction on new $x \in \mathcal{X}$: output

https://pow.coder.com

Inductive Dia We Chat powcoder $|\hat{w}^{\mathsf{T}}\varphi(x) - \hat{w}^{\mathsf{T}}\varphi(x')| \leq ||\hat{w}||_2 \cdot ||\varphi(x) - \varphi(x')||_2$ $= \sqrt{\hat{\alpha}^{\mathsf{T}}K\hat{\alpha}} \cdot ||\varphi(x) - \varphi(x')||_2$

Kernel methods

for α .

► Many methods / algorithms can be "kernelized" into kernel methods

https://powcoder.com

Figure 1: Polynomial kernel with Kernel Ridge Regression and Kernel PCR

Add WeChat powcoder

Figure 3: RBF kernel with Kernel PCR

New kernels from old kernels

- ▶ Suppose k_1 and k_2 are positive definite kernel functions.
- Assignment Project Exam Help function?
 - $k(x, x') = k_1(x, x') k_2(x, x')$ a positive definite kernel full S://powcoder.com

Postscript

- ▶ Problem with kernel methods when n is large

Kernel matrix K is of size n^2 Igniment tipe ect Exam Help Some possible solutions:

- Nystrom approximations
- https://wripterw.coder.com