多元函数微分学

多元函数基本概念

邻域

- δ 邻域: 设 $P_0(x_0,y_0)$ 是 xOy 平面上的一个点, $U(P_0,\delta)$ 表示以 P_0 为中心, 半径为 δ 的圆盘, 即 $U(P_0,\delta)=\{(x,y)|\sqrt{(x-x_0)^2+(y-y_0)^2}<\delta\}$
- 去心 $\,\delta$ 邻域: $\mathring{U}(P_0,\delta)=\{(x,y)|0<\sqrt{(x-x_0)^2+(y-y_0)^2}<\delta\}$

极限

• 设函数 f(x,y) 在区域 D 上有定义, $P_0(x_0,y_0)\in D$ 或为区域 D 边界上的一点,如果对于任意给定的正数 ε ,总存 $\delta>0$,使得当点 $P(x,y)\in D$ 且 $0<\sqrt{(x-x_0)^2+(y-y_0)^2}<\delta$ 时,对应的函数值 f(x,y) 都满足不等式 $|f(x,y)-A|<\varepsilon$,那么称函数 f(x,y) 当 $(x,y)\to(x_0,y_0)$ 时的极限为 A,记为 $\lim_{(x,y)\to(x_0,y_0)}f(x,y)=A$

连续

• 设函数 f(x,y) 在区域 D 上有定义,如果对于区域 D 内任意一点 $P_0(x_0,y_0)$,极限 $\lim_{(x,y)\to(x_0,y_0)}f(x,y)=f(x_0,y_0)$,那么称函数 f(x,y) 在区域 D 上连续

偏导数

- f(x) 在 (x_0, y_0) 的邻域内有定义
- $ullet rac{\partial f}{\partial x}(x_0,y_0) = \lim_{\Delta x o 0} rac{f(x_0 + \Delta x,y_0) f(x_0,y_0)}{\Delta x} = f_x'(x_0,y_0)$
- $ullet rac{\partial f}{\partial y}(x_0,y_0)=\lim_{\Delta y o 0}rac{f(x_0,y_0+\Delta y)-f(x_0,y_0)}{\Delta y}=f_y'(x_0,y_0)$

高阶偏导数

- 二元函数 f(x,y) 的偏导数 $rac{\partial f}{\partial x}$ 和 $rac{\partial f}{\partial y}$ 的偏导数称为 f(x,y) 的二阶偏导数
- $\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right)$
- $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right)$
- $\frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right)$
- $\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right)$

• z=f(x,y) 两个混合偏导数 $\dfrac{\partial^2 z}{\partial x \partial y}$ 和 $\dfrac{\partial^2 z}{\partial y \partial x}$ 在函数 f(x,y) 的定义域内连续,则有 $\dfrac{\partial^2 z}{\partial x \partial y}=\dfrac{\partial^2 z}{\partial y \partial x}$

可微

- ullet 设函数 z=f(x,y) 在点 (x_0,y_0) 的某邻域内有定义, z=f(x,y) 在 (x_0,y_0) 处的全增量 $\Delta z=f(x+\Delta x,y+\Delta y)-f(x,y)$
- 若 $\Delta z=A\Delta x+B\Delta y+o(\sqrt{(\Delta x)^2+(\Delta y)^2})$, 其中 A,B 仅与 x,y 有关,而与 $\Delta x,\Delta y$ 无关, $o(\sqrt{(\Delta x)^2+(\Delta y)^2})$ 是当 $(\Delta x,\Delta y)\to(0,0)$ 时, 比 $\sqrt{(\Delta x)^2+(\Delta y)^2}$ 高阶的无穷小,我们称函数 z=f(x,y) 在点 (x_0,y_0) 处可微,并称 $A\Delta x+B\Delta y$ 为函数 z=f(x,y) 在点 (x_0,y_0) 处的全微分,记为 $dz=A\Delta x+B\Delta y=Adx+Bdy$
- 可微必要条件: 函数 z=f(x,y) 在点 (x_0,y_0) 处可微,则函数 z=f(x,y) 在点 (x_0,y_0) 处的偏导数 $\frac{\partial f}{\partial x}$ 和 $\frac{\partial f}{\partial y}$ 存在,并且有 $A=\frac{\partial f}{\partial x}(x_0,y_0)$, $B=\frac{\partial f}{\partial y}(x_0,y_0)$
- 可微充分条件: 函数 z=f(x,y) 在点 (x_0,y_0) 的某邻域内的偏导数 $\dfrac{\partial f}{\partial x}$ 和 $\dfrac{\partial f}{\partial y}$ 存在, 并且在该邻域内连续, 则函数 z=f(x,y) 在点 (x_0,y_0) 处可微

多元函数微分法则

链式法则

•
$$z = f(u, v), u = \varphi(x, y), v = \phi(x, y)$$

•
$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x}$$

•
$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y}$$

$$\bullet \ \ \frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial u^2} (\frac{\partial u}{\partial x})^2 + \frac{\partial^2 z}{\partial u \partial v} \frac{\partial v}{\partial x} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial u} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 z}{\partial v \partial u} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial^2 z}{\partial v^2} (\frac{\partial v}{\partial x})^2 + \frac{\partial z}{\partial v} \frac{\partial^2 v}{\partial x^2}$$

$$\bullet \ \, \frac{\partial^2 z}{\partial u^2} = \frac{\partial^2 z}{\partial u^2} (\frac{\partial u}{\partial y})^2 + \frac{\partial^2 z}{\partial u \partial v} \frac{\partial v}{\partial y} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial u} \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 z}{\partial v \partial u} \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} + \frac{\partial^2 z}{\partial v^2} (\frac{\partial v}{\partial y})^2 + \frac{\partial z}{\partial v} \frac{\partial^2 v}{\partial y^2}$$

$$\bullet \ \, \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial u^2} \frac{\partial u}{\partial y} \frac{\partial u}{\partial x} + \frac{\partial^2 z}{\partial u \partial v} \frac{\partial v}{\partial y} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial u} \frac{\partial^2 u}{\partial x} + \frac{\partial z}{\partial u} \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 z}{\partial v \partial u} \frac{\partial u}{\partial y} \frac{\partial v}{\partial x} + \frac{\partial^2 z}{\partial v^2} \frac{\partial v}{\partial y} \frac{\partial v}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial^2 v}{\partial x \partial y}$$

$$\bullet \ \, \frac{\partial^2 z}{\partial y \partial x} = \frac{\partial^2 z}{\partial u^2} \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} + \frac{\partial^2 z}{\partial u \partial v} \frac{\partial v}{\partial x} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial u} \frac{\partial^2 u}{\partial y} + \frac{\partial z}{\partial u} \frac{\partial^2 u}{\partial y \partial x} + \frac{\partial^2 z}{\partial v \partial u} \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} + \frac{\partial^2 z}{\partial v^2} \frac{\partial v}{\partial x} \frac{\partial v}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial^2 v}{\partial y \partial x}$$

多元函数的极值和最值

极值

- 设函数 f(x,y) 在点 (x_0,y_0) 处有定义
- 如果存在邻域 $U(P_0,\delta)$,使得对于任意 $(x,y)\in U(P_0,\delta)$,都有 $f(x,y)\leq f(x_0,y_0)$,那么称 $f(x_0,y_0)$ 是函数 f(x,y) 的一个极大值
- 如果存在邻域 $U(P_0,\delta)$,使得对于任意 $(x,y)\in U(P_0,\delta)$,都有 $f(x,y)\geq f(x_0,y_0)$,那么称 $f(x_0,y_0)$ 是函数 f(x,y) 的一个极小值

最值

- 如果对于区域 D 上的任意 (x,y),都有 $f(x,y) \leq f(x_0,y_0)$,那么称 $f(x_0,y_0)$ 是函数 f(x,y) 的一个最大值
- 如果对于区域 D 上的任意 (x,y),都有 $f(x,y)\geq f(x_0,y_0)$,那么称 $f(x_0,y_0)$ 是函数 f(x,y) 的一个最小值

无条件极值

- 二元函数 f(x,y) 在点 (x_0,y_0) 取极值的必要条件: $f_x'(x_0,y_0)=f_y'(x_0,y_0)=0$
- 二元函数 f(x,y) 在点 (x_0,y_0) 取极值的充分条件:

$$egin{cases} f'_{xx}(x_0,y_0) = A \ f'_{xy}(x_0,y_0) = B \ f'_{yy}(x_0,y_0) = C \end{cases} \Delta = AC - B^2 \Rightarrow egin{cases} \Delta > 0, egin{cases} A > 0, & \min \ A < 0, & \max \ \Delta < 0, & \# \& \& \Delta = 0, \% \& \Delta = 0, \Delta = 0,$$

有条件极值(拉格朗日数乘法)

- ・ 求目标函数 u=f(x,y,z) 在条件 $egin{cases} g(x,y,z)=0 \ h(x,y,z)=0 \end{cases}$ 下的最值
- 构造辅助函数: $F(x,y,z,\lambda,\mu)=f(x,y,z)+\lambda g(x,y,z)+\mu h(x,y,z)$

$$\label{eq:force_equation} \bullet \ \ \Leftrightarrow \begin{cases} F_x' = f_x' + \lambda g_x' + \mu h_x' = 0 \\ F_y' = f_y' + \lambda g_y' + \mu h_y' = 0 \\ F_z' = f_z' + \lambda g_z' + \mu h_z' = 0 \\ F_\lambda' = g(x,y,z) = 0 \\ F_\mu' = h(x,y,z) = 0 \end{cases}$$

• 得到所有的备选点 P_i ,计算 $f(P_i)$ 得到最大值和最小值.