

Recall: S= 3 x e IR 1 x2 < 27. Claim: $\alpha = \sup\{S\}$ satisfies $\alpha^2 = 2$, i.e. $\alpha = \sqrt{2}$. If: Suppose $\alpha^2 < 2$, then $(2)^2 > 2$. $= \frac{1}{2} \left(\frac{2}{2} \right)^{2} < 2.$ $\frac{1}{2} \left(\frac{2}{2} \right)^{2} < 2.$ $\frac{1}{2} \left(\frac{2}{2} \right)^{2} = \frac{1}{2} < \frac{2}{2} < \frac{2}{2}$ $\frac{1}{2} < \frac{2}{2} < \frac{2}{2}$ Contradiction. (iii) Finish tea appre that 2 42. A soquence an has a limit LEIR if ₩ 5.70, 3 N E N 5.4. n7N=D/9n-L/<E. A say converges it it has a limit.

2k = 9k + CK if \exists infinitely many $x k \leq \epsilon k$ then $q_{k+1} = q_k \quad , \quad c_{k+1} = a \; \xi k \; .$ else $q_{k+1} = \xi k \quad , \quad c_{k+1} = c_k \; .$ $\left[\left[a_k, c_k \right] \right] \leq \underbrace{M-L}_{2^{k-1}}$ ak tk ck WS18 Now, ak increasing, ck decreosing and lim ak - ck = 0. let bi= xi & [ai, ci]. Suppose bn E Can, and if [En, ca] is the next interval. ove let in be the smallest integer s.t. xm \(\int \text{Cen, cn} \).

such east define

blc of \(\text{bny} = \text{Xm} \). [24, ca] was constructed. Then & lim by & lim co.

	Exercise: 14.28. a) (qu) bounded and (by) a relacioner.
	if by is manotone. Hen line by converges.
	Ohviers. an for some
	Exercise: 14.78. a) (qu) bounded and (bu) a rebesequese. if but is monotone. then I im but converges. Obvious. an for some b) A peak of (an) Do is n GN s.t.
	am < an, b m)n.
	Review for Exam Z:
Recall 19 grotte	
building up	Neview for Exam 7: 1) Cardinality: deta, countable, how to prove some thing is countable [xam ples.
difficulty.	Examples.
Write anything	
you think	2) Limits: deta, how to check on a seq. converges by deta.
will be	2) Limits: deta, how to check on a seq. converges by deta. Consequences. (R.g. (an) is Couchy & (au) is bounded).
relevent for	
the pt.	3) Monotone Convergence Theorem: statement, how to apply it Sufficient but not necessary. Carely Converging
Etc.	Sufficient but not necessary.
	4) Cauchy sequences: defin., how to check it, Consequences. (i.e. (an) converges).
	4) (auchy sources: detn., how to check it, (en sources.
	(i.e. (an) Converges/.
	1) 181 171 4 7 6 6 7 1 1
	1) 151=171 eif] f: 5 - 7 bijection.
	1011 - 171 4 · N/ -> 7/
	/N/ = /Z/ +:N → Z.
	$ N = Z \qquad f: N \to Z.$ $f _{n} = \left\langle \frac{n}{2} \right\rangle, n \in \mathbb{R}^{n}.$
	$\left(\frac{-(n+1)}{7}, n \text{ odd}\right)$

 $||R| = |(0,1)| \quad b_{\gamma} \quad f: (-\dot{u}/2, \dot{u}/2) \longrightarrow R.$ $f(x) = f_{\alpha u}(x) \cdot 1.$ + massage f.2) Consider an = 2n . lim an = 2"

Clock. Check, $\frac{2n}{2n} = \frac{2n - 2n - 2n - 2}{n+1} = -2$ $\frac{n+1}{n+1} = \frac{2n}{n+1} + \frac{2n}{n}$ $\frac{n+1}{n+1} = \frac{2n}{n+1} + \frac{2n}{n}$ For E70, let NEW be such that Then Ynzw, Z & Z < E. $= \vec{D} / an - 2 / < \epsilon.$ \Rightarrow $\lim_{n \to \infty} a_n = 2.$ (an) is Cauchy $\frac{2n-2m}{n+1}=\frac{2nm+2n-2m}{(n+1)(m+1)}$ = 2/n-m) (h+1) (m+1

$$q_{n+1} = \int_{(n+1)}^{(n+1)} \left(\frac{1}{1-1} \right)^{2} + (n+1)^{2} \right]$$

$$q_{n} = \int_{3}^{3} \left(\frac{1}{1-1} \right)^{2} \cdot \frac{1}{1-1} \cdot \frac{3}{1-1} \cdot \frac{3}{1-$$

Lecture 18:
2. an non decreasing, bu non-increasing.
Claim: Von71, bu7an.
Pf: Suppose Im EN s.t. am > 6m.
Pf: Suppose $\exists m \in \mathbb{N}$ s.t. $am \neq bm$. Since $\forall k \neq m$, $ak \neq am$ and $bk \leq bm$ $\exists M \forall k \neq m$, $ak \neq bk$. $\exists M \Rightarrow m \neq m$ $\exists M \forall k \neq m$, $\exists M \Rightarrow m \neq m$ $\exists M \Rightarrow m \neq m$
Claim = D an & bunded, thus limbu &
limbu & liman.
3. Suppose an « bu « cu d limau = C limau = C.
Let E>O, IN, s.t. YnzN, lawn-LICE & INz, s.t. YnzNz /cn-LICE
Grider. $N = \max_{l} \{N_l, N_l\}, \forall n \neq N$ one has
L-E (an & bn & cn & L+E
=D L-E < bu < L+E , i.e. him bu = L.

Last time: De Archinedean Property: Vay 6 & IR 4,6 > 0 ∃N ∈ N. s.t. Na>b. Claim: N has no upper bound. If & D an upper bound, then completeness =10 & I = sup (N) i.e. a least upper bound. =D &-1 is not an upper bound. i.e. In eN s.t. $n > \alpha - 1 \Rightarrow p$ $n + 1 > \alpha \Rightarrow p$ contradiction N. (Claim: = A.P.) Check this. A sequence (xn) is morotono if (i) $x_n \leqslant x_{n+1}$ or $\forall n \in \mathbb{N}$. (i) In Exn+1 (ii) Intil Xn It is bounded if I M & IR s.t. Rulet (a) Xn EM Y nE NI (6) +M & In V n EN.

If a sequence satisfies (i) and (a) =D it ouverges.

	lotivation: So bounded, x = sup(S).
	and $\lim_{n \to \infty} x_n = \alpha$.
Q	How to express the completeness of IR using equences? Before SSIR landed above = D S has a bost upp i.e. a supremum.
- 44	nd a property all convergent sequences have.
E E	x: $an = n$, fix $\epsilon > 0$, consider $N \in \mathbb{N}$ s.f. $n+1$
	1 < E let nom 7N, then an -am =
	$= \frac{n}{n+1} - \frac{n}{m+1} = \frac{n-n}{(n+1)/(m+1)} < \frac{n-n}{n+1}$
	$=\frac{1}{n}-\frac{1}{n}<\varepsilon. \Rightarrow \left \frac{1}{n}-\frac{1}{n}\right <\varepsilon.$
Der H	for every £70, 7 NEN s.t. Vunn 7 No
1	cosition: Every 2000 convergent sequence (In) may is a Can chy sequence.

- (i) Monotone convergence theorem says a segmence converges if its bounded and monotone.
 - · It's manabase

Monolone

· It's bounded

$$\frac{1+h}{1+2h} \leq \frac{1+2h}{1+2h} \leq 1$$

Limit exists

$$=1-\frac{n}{1+2n}=1-\frac{n\rightarrow\infty}{1+2n\rightarrow\infty}$$
 undefined

(i)
$$X_n = \frac{1+h}{1+2h} \le \frac{1+(n+1)}{1+2h} \le \frac{1+(n+1)}{1+(n+1)^2} = X_{n+1}$$

Since this holds for all n, xn is monotone, non-decreasing.

Also xn si for all n.

Limit exists

Let n > N, then

$$X_n = \frac{1}{1+2n} + \frac{n}{1+2n} \le \frac{1}{2} + \frac{1}{2n}$$

$$\frac{1}{2+(\frac{1}{2}+n)}=X_n$$

-(1xn-11<2)

(i)
$$N=1$$
 $X_n=\frac{2}{3}$

$$N=2$$
 $X_{x}=\frac{1+2}{1+2\cdot 2}=\frac{3}{5}$

/

$$h=3$$
 $X_{n}=\frac{1+3}{1+2\cdot 3}=\frac{4}{7}$

V

$$N = 4$$
 $X_{\Lambda} = \frac{1+4}{1+24} = \frac{5}{9}$

$$h=5$$
 $X_{n}=\frac{1+5}{1+2.5}=\frac{1}{11}$

Decreasing! Limit exists

(ii) By definition
$$\forall \varepsilon > 0 \exists N \in \mathbb{N}$$
, so $\forall n \geq \mathbb{N}$
 $|x_n - \frac{1}{2}| < \varepsilon$

Relation between least upper bound property and sequences. A) & Exteinsic: S has a loost upper band. (B) & Intrinsic. a is an upper bound of S and I som (xn)n a sequence in S Suppose $\alpha = \sup S$.

Suppose $\alpha = \sup S$.

Consider $\alpha = 1/n$, not an upper bound $= \mathbb{D} \ \mathbb{F}$ are $x \in S$. S.t. $x_n > x_- 1/n$. Choose (x_n) as indicated. Check: $\lim_{n \to \infty} a_n = x$. Given $x \in \mathbb{R} > 0$, let $x \in \mathbb{R} > 1$. Then $x \in \mathbb{R} > 1$. $d-\mathcal{E} < x-\frac{1}{n} < xn < x < x + \mathcal{E}.$ $= D |xn-x| < \mathcal{E}.$ Chaim: If $\beta \in \alpha$, then β is not an upper bound. Delcal (Claim - 1 (A)) Clock this. Consider E = <- B > 0, since De lim xn = a, F N, s.t. $\forall n \ni N$ $|x_n - \alpha| < \varepsilon$. $\Rightarrow P - (\omega x_n - \alpha) < \varepsilon = D \times m^2 \alpha - \varepsilon$ i.e. $x_n \in S$ and $x_n > \beta$. $(x_n - \alpha < \varepsilon) = Cq_n + \varepsilon$ be the

Pf: Consider the set S= 191, 97, ... 7. It has $\alpha = \sup(S)$. Claim: lim an = a (Notice this is not automatic from privious result.) YOUNG / X NOX. /EST Consider d-E, this is not an upper bound of S., i.e. 7 NEN s.t. an > x-E. = D=Zan zan > x-E. $-D \quad |an-\alpha| < E \quad -D \quad |im \quad an \quad = \alpha.$ Example: For k72, xn= 1/kn can verges. $\frac{1}{k^n} \leq \frac{1}{2^n} \otimes \frac{1}{n}.$ Since. $n < 2^n, \forall n > 1.$ Thus, for ny! any my n one has $-\frac{1}{\varepsilon} < 0 < xm = \langle \frac{1}{\varepsilon} = \mathbb{Z} \text{ [lim } xn = 0.]$ is bounded by I and xn+1 & xn Vn. Monetone = D (xn) has a limit.