B. Taxes

time limit per test: 2 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

Mr. Funt now lives in a country with a very specific tax laws. The total income of mr. Funt during this year is equal to $n (n \ge 2)$ burles and the amount of tax he has to pay is calculated as the maximum divisor of n (not equal to n, of course). For example, if n = 6 then Funt has to pay 3 burles, while for n = 25 he needs to pay 5 and if n = 2 he pays only 1 burle.

As mr. Funt is a very opportunistic person he wants to cheat a bit. In particular, he wants to split the initial n in several parts $n_1 + n_2 + ... + n_k = n$ (here k is arbitrary, even k = 1 is allowed) and pay the taxes for each part separately. He can't make some part equal to 1 because it will reveal him. So, the condition $n_i \ge 2$ should hold for all i from 1 to k.

Ostap Bender wonders, how many money Funt has to pay (i.e. minimal) if he chooses and optimal way to split n in parts.

Input

The first line of the input contains a single integer n ($2 \le n \le 2 \cdot 10^9$) — the total year income of mr. Funt.

Output

Print one integer — minimum possible number of burles that mr. Funt has to pay as a tax.

Examples

Examples	
input	
4	
output	
2	

input	
27	
output	
3	