▶ Discrete random variables and relation between $\mathbb{P}, P_X, F_X, p_X$.

- ▶ Discrete random variables and relation between $\mathbb{P}, P_X, F_X, p_X$.
 - ightharpoonup Relation between p_X and F_X

- ▶ Discrete random variables and relation between $\mathbb{P}, P_X, F_X, p_X$.
 - Pelation between p_X and F_X $F_X(a) = \sum_{x \le a} p_X(x) = \mathbb{P}\{\omega \in \Omega : X(\omega) \le a\}.$

- \triangleright Discrete random variables and relation between $\mathbb{P}, P_X, F_X, p_X$.
 - Relation between p_X and F_X $F_X(a) = \sum_{x \le a} p_X(x) = \mathbb{P}\{\omega \in \Omega : X(\omega) \le a\}.$
 - ightharpoonup Relation between P_X and F_X

- ▶ Discrete random variables and relation between $\mathbb{P}, P_X, F_X, p_X$.
 - Relation between p_X and F_X $F_X(a) = \sum_{x \le a} p_X(x) = \mathbb{P}\{\omega \in \Omega : X(\omega) \le a\}.$
 - Relation between P_X and F_X $F_X(a) := P_X((-\infty, a]) = \mathbb{P}\{\omega \in \Omega : X(\omega) \in (-\infty, a]\}$

- \triangleright Discrete random variables and relation between $\mathbb{P}, P_X, F_X, p_X$.
 - Relation between p_X and F_X $F_X(a) = \sum_{x \le a} p_X(x) = \mathbb{P}\{\omega \in \Omega : X(\omega) \le a\}.$
 - Relation between P_X and F_X $F_X(a) := P_X((-\infty, a]) = \mathbb{P}\{\omega \in \Omega : X(\omega) \in (-\infty, a]\}$
 - ightharpoonup Relation between P_X and p_X

- \triangleright Discrete random variables and relation between $\mathbb{P}, P_X, F_X, p_X$.
 - Relation between p_X and F_X $F_X(a) = \sum_{x \le a} p_X(x) = \mathbb{P}\{\omega \in \Omega : X(\omega) \le a\}.$
 - Relation between P_X and F_X $F_X(a) := P_X((-\infty, a]) = \mathbb{P}\{\omega \in \Omega : X(\omega) \in (-\infty, a]\}$
 - Relation between P_X and p_X $p_X(a) := P_X(\{a\}) = \mathbb{P}\{\omega \in \Omega : X(\omega) = a\}$

- \triangleright Discrete random variables and relation between $\mathbb{P}, P_X, F_X, p_X$.
 - Relation between p_X and F_X $F_X(a) = \sum_{x \le a} p_X(x) = \mathbb{P}\{\omega \in \Omega : X(\omega) \le a\}.$
 - Relation between P_X and F_X $F_X(a) := P_X((-\infty, a]) = \mathbb{P}\{\omega \in \Omega : X(\omega) \in (-\infty, a]\}$
 - Relation between P_X and p_X $p_X(a) := P_X(\{a\}) = \mathbb{P}\{\omega \in \Omega : X(\omega) = a\}$
- ightharpoonup Continuous variables and relation between $\mathbb{P}, P_X, F_X, f_X$

- \triangleright Discrete random variables and relation between $\mathbb{P}, P_X, F_X, p_X$.
 - Relation between p_X and F_X $F_X(a) = \sum_{x \leq a} p_X(x) = \mathbb{P}\{\omega \in \Omega : X(\omega) \leq a\}.$
 - Relation between P_X and F_X $F_X(a) := P_X((-\infty, a]) = \mathbb{P}\{\omega \in \Omega : X(\omega) \in (-\infty, a]\}$
 - Relation between P_X and p_X $p_X(a) := P_X(\{a\}) = \mathbb{P}\{\omega \in \Omega : X(\omega) = a\}$
- ightharpoonup Continuous variables and relation between $\mathbb{P}, P_X, F_X, f_X$
 - ▶ Relation between f_X and F_X is $F_X(a) = \int_{-\infty}^a f_X(x) dx$.

- \triangleright Discrete random variables and relation between $\mathbb{P}, P_X, F_X, p_X$.
 - Relation between p_X and F_X $F_X(a) = \sum_{x \leq a} p_X(x) = \mathbb{P}\{\omega \in \Omega : X(\omega) \leq a\}.$
 - Relation between P_X and F_X $F_X(a) := P_X((-\infty, a]) = \mathbb{P}\{\omega \in \Omega : X(\omega) \in (-\infty, a]\}$
 - Relation between P_X and p_X $p_X(a) := P_X(\{a\}) = \mathbb{P}\{\omega \in \Omega : X(\omega) = a\}$
- ▶ Continuous variables and relation between $\mathbb{P}, P_X, F_X, f_X$
 - ▶ Relation between f_X and F_X is $F_X(a) = \int_{-\infty}^a f_X(x) dx$.

- \triangleright Discrete random variables and relation between $\mathbb{P}, P_X, F_X, p_X$.
 - Relation between p_X and F_X $F_X(a) = \sum_{x \leq a} p_X(x) = \mathbb{P}\{\omega \in \Omega : X(\omega) \leq a\}.$
 - Relation between P_X and F_X $F_X(a) := P_X((-\infty, a]) = \mathbb{P}\{\omega \in \Omega : X(\omega) \in (-\infty, a]\}$
 - Relation between P_X and p_X $p_X(a) := P_X(\{a\}) = \mathbb{P}\{\omega \in \Omega : X(\omega) = a\}$
- ▶ Continuous variables and relation between $\mathbb{P}, P_X, F_X, f_X$
 - ▶ Relation between f_X and F_X is $F_X(a) = \int_{-\infty}^a f_X(x) dx$.
- ▶ Mean, Variance, Moments, E[g(X)], Linearity & Examples

- \triangleright Discrete random variables and relation between $\mathbb{P}, P_X, F_X, p_X$.
 - Relation between p_X and F_X $F_X(a) = \sum_{x \leq a} p_X(x) = \mathbb{P}\{\omega \in \Omega : X(\omega) \leq a\}.$
 - Relation between P_X and F_X $F_X(a) := P_X((-\infty, a]) = \mathbb{P}\{\omega \in \Omega : X(\omega) \in (-\infty, a]\}$
 - Relation between P_X and p_X $p_X(a) := P_X(\{a\}) = \mathbb{P}\{\omega \in \Omega : X(\omega) = a\}$
- ▶ Continuous variables and relation between $\mathbb{P}, P_X, F_X, f_X$
 - ▶ Relation between f_X and F_X is $F_X(a) = \int_{-\infty}^a f_X(x) dx$.
- ▶ Mean, Variance, Moments, E[g(X)], Linearity & Examples

 $F_X:\mathbb{R} o [0,1]$ is non-decreasing and right continuous.

ightharpoonup This is a real valued r.v. with two parameters, μ and σ .

ightharpoonup This is a real valued r.v. with two parameters, μ and σ .

Its pdf
$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$
 for all $x \in \mathbb{R}$.

- ightharpoonup This is a real valued r.v. with two parameters, μ and σ .
- Its pdf $f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ for all $x \in \mathbb{R}$.
- ▶ Verify: $\int_{-\infty}^{\infty} f_X(x) dx \ E[X] = \mu \text{ and } Var(X) = \sigma^2$.

▶ When $\mu = 0$ and $\sigma = 1$, it is called as a standard normal.

- ▶ When $\mu = 0$ and $\sigma = 1$, it is called as a standard normal.
- In this case $f_X(x) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$.

- ▶ When $\mu = 0$ and $\sigma = 1$, it is called as a standard normal.
- ► In this case $f_X(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}$.
- $\blacktriangleright \text{ What is } \int_{-\infty}^{\infty} e^{\frac{-x^2}{2}} dx ?$

- ▶ When $\mu = 0$ and $\sigma = 1$, it is called as a standard normal.
- In this case $f_X(x) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$.
- ► What is $\int_{-\infty}^{\infty} e^{\frac{-x^2}{2}} dx$? How do you even solve this?

- ▶ When $\mu = 0$ and $\sigma = 1$, it is called as a standard normal.
- In this case $f_X(x) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$.
- ► What is $\int_{-\infty}^{\infty} e^{\frac{-x^2}{2}} dx$? How do you even solve this? $(=\sqrt{2\pi})$

- ▶ When $\mu = 0$ and $\sigma = 1$, it is called as a standard normal.
- In this case $f_X(x) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$.
- ► What is $\int_{-\infty}^{\infty} e^{\frac{-x^2}{2}} dx$? How do you even solve this? $(=\sqrt{2\pi})$
- ▶ The CDF of standard normal, denoted by $\Phi(x)$ is given by

- ▶ When $\mu = 0$ and $\sigma = 1$, it is called as a standard normal.
- In this case $f_X(x) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$.
- ► What is $\int_{-\infty}^{\infty} e^{\frac{-x^2}{2}} dx$? How do you even solve this? $(=\sqrt{2\pi})$
- \triangleright The CDF of standard normal, denoted by $\Phi(x)$ is given by

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

- ▶ When $\mu = 0$ and $\sigma = 1$, it is called as a standard normal.
- In this case $f_X(x) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$.
- ► What is $\int_{-\infty}^{\infty} e^{\frac{-x^2}{2}} dx$? How do you even solve this? $(=\sqrt{2\pi})$
- \triangleright The CDF of standard normal, denoted by $\Phi(x)$ is given by

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

 $ightharpoonup Q(x) := 1 - \Phi(x)$ is the Complimentary CDF (P(X > x)).

- ▶ When $\mu = 0$ and $\sigma = 1$, it is called as a standard normal.
- ► In this case $f_X(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}$.
- ► What is $\int_{-\infty}^{\infty} e^{\frac{-x^2}{2}} dx$? How do you even solve this? $(=\sqrt{2\pi})$
- ▶ The CDF of standard normal, denoted by $\Phi(x)$ is given by

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

► $Q(x) := 1 - \Phi(x)$ is the Complimentary CDF (P(X > x)). A closely related cousin in the error function $erf(x) = \frac{2}{\sqrt{pi}} \int_0^x e^{t^2} dt$.

- ▶ When $\mu = 0$ and $\sigma = 1$, it is called as a standard normal.
- ► In this case $f_X(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}$.
- ► What is $\int_{-\infty}^{\infty} e^{\frac{-x^2}{2}} dx$? How do you even solve this? $(=\sqrt{2\pi})$
- \triangleright The CDF of standard normal, denoted by $\Phi(x)$ is given by

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

- ► Q(x) := 1 Φ(x) is the Complimentary CDF (P(X > x)). A closely related cousin in the error function $erf(x) = \frac{2}{\sqrt{pi}} \int_0^x e^{t^2} dt$.
- ightharpoonup = These values are recorded in a table. (Fig. 3.10 in Bertsekas)

- ▶ When $\mu = 0$ and $\sigma = 1$, it is called as a standard normal.
- ► In this case $f_X(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}$.
- ► What is $\int_{-\infty}^{\infty} e^{\frac{-x^2}{2}} dx$? How do you even solve this? $(=\sqrt{2\pi})$
- \triangleright The CDF of standard normal, denoted by $\Phi(x)$ is given by

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

- ► $Q(x) := 1 \Phi(x)$ is the Complimentary CDF (P(X > x)). A closely related cousin in the error function $erf(x) = \frac{2}{\sqrt{pi}} \int_0^x e^{t^2} dt$.
- $ightharpoonup \Phi =$ These values are recorded in a table. (Fig. 3.10 in Bertsekas)
- https://en.wikipedia.org/wiki/Gaussian_function

If $X \sim \mathcal{N}(\mu, \sigma^2)$, then Y = aX + b is also a normal variable with $E[Y] = a\mu + b$ and variance $a^2\sigma^2$. (To be proved later)

If
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, then $Y = aX + b$ is also a normal variable with $E[Y] = a\mu + b$ and variance $a^2\sigma^2$. (To be proved later)

Suppose X is standard normal, then find a and b such that $Y \sim \mathcal{N}(\mu, \sigma^2)$

If
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, then $Y = aX + b$ is also a normal variable with $E[Y] = a\mu + b$ and variance $a^2\sigma^2$. (To be proved later)

▶ Suppose X is standard normal, then find a and b such that $Y \sim \mathcal{N}(\mu, \sigma^2)$

▶ In this case, the CDF of Y in terms of X is given by $\Phi(\frac{x-\mu}{\sigma})$.

Significance of Gaussian r.v.

Significance of Gaussian r.v.

► Key role in Central limit theorem.

Significance of Gaussian r.v.

- ► Key role in Central limit theorem.
- ▶ $\frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$ where X_i is any random variable with mean μ and variance σ^2 .

- Key role in Central limit theorem.
- ▶ $\frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$ where X_i is any random variable with mean μ and variance σ^2 .
- Building block for multinomial Gaussian vector and Gaussian processes (GP).

- Key role in Central limit theorem.
- ▶ $\frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$ where X_i is any random variable with mean μ and variance σ^2 .
- Building block for multinomial Gaussian vector and Gaussian processes (GP).
- Gaussian process are used in Bayesian Optimization (black-box optimization).

- Key role in Central limit theorem.
- ▶ $\frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$ where X_i is any random variable with mean μ and variance σ^2 .
- Building block for multinomial Gaussian vector and Gaussian processes (GP).
- Gaussian process are used in Bayesian Optimization (black-box optimization).
- Brownian motion is a type of GP and is used in Finance.

- Key role in Central limit theorem.
- ▶ $\frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$ where X_i is any random variable with mean μ and variance σ^2 .
- Building block for multinomial Gaussian vector and Gaussian processes (GP).
- Gaussian process are used in Bayesian Optimization (black-box optimization).
- Brownian motion is a type of GP and is used in Finance.
- ▶ GP Regression, Gaussian mixture models, used widely in ML.

List of Probability distributions ...

List of Probability distributions ...

https://en.wikipedia.org/wiki/List_of_probability_distributions

List of Probability distributions ...

https://en.wikipedia.org/wiki/List_of_probability_distributions

Important ones are Beta, Gamma, Erlang, Logistic, Weibull

The moment generating function (MGF) of a random variable X is a function $M_X : \mathbb{R} \to [0, \infty]$ defined by $M_X(t) = E[e^{tX}]$.

- The moment generating function (MGF) of a random variable X is a function $M_X : \mathbb{R} \to [0, \infty]$ defined by $M_X(t) = E[e^{tX}]$.
- ▶ If X is discrete, $M_X(t) = \sum_{x \in \Omega'} e^{tx} p_X(x)$.

- The moment generating function (MGF) of a random variable X is a function $M_X : \mathbb{R} \to [0, \infty]$ defined by $M_X(t) = E[e^{tX}]$.
- ▶ If X is discrete, $M_X(t) = \sum_{x \in \Omega'} e^{tx} p_X(x)$.
- ▶ If X is continuous, $M_X(t) = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx$.

- The moment generating function (MGF) of a random variable X is a function $M_X : \mathbb{R} \to [0, \infty]$ defined by $M_X(t) = E[e^{tX}]$.
- ▶ If X is discrete, $M_X(t) = \sum_{x \in \Omega'} e^{tx} p_X(x)$.
- ▶ If X is continuous, $M_X(t) = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx$.
- ▶ For $Exp(\lambda)$ variable, $M_X(t) = \frac{\lambda}{\lambda t}$ for $\lambda < t$.

- The moment generating function (MGF) of a random variable X is a function $M_X : \mathbb{R} \to [0, \infty]$ defined by $M_X(t) = E[e^{tX}]$.
- ▶ If X is discrete, $M_X(t) = \sum_{x \in \Omega'} e^{tx} p_X(x)$.
- ▶ If X is continuous, $M_X(t) = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx$.
- ▶ For $Exp(\lambda)$ variable, $M_X(t) = \frac{\lambda}{\lambda t}$ for $\lambda < t$.
- ▶ Define $D_X := \{t : M_X(t) < \infty\}$. D_X is called the region of convergence (ROC).

- The moment generating function (MGF) of a random variable X is a function $M_X : \mathbb{R} \to [0, \infty]$ defined by $M_X(t) = E[e^{tX}]$.
- ▶ If X is discrete, $M_X(t) = \sum_{x \in \Omega'} e^{tx} p_X(x)$.
- ▶ If X is continuous, $M_X(t) = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx$.
- ▶ For $Exp(\lambda)$ variable, $M_X(t) = \frac{\lambda}{\lambda t}$ for $\lambda < t$.
- ▶ Define $D_X := \{t : M_X(t) < \infty\}$. D_X is called the region of convergence (ROC).t = 0 is always part of ROC.

- The moment generating function (MGF) of a random variable X is a function $M_X : \mathbb{R} \to [0, \infty]$ defined by $M_X(t) = E[e^{tX}]$.
- ▶ If X is discrete, $M_X(t) = \sum_{x \in \Omega'} e^{tx} p_X(x)$.
- ▶ If X is continuous, $M_X(t) = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx$.
- ▶ For $Exp(\lambda)$ variable, $M_X(t) = \frac{\lambda}{\lambda t}$ for $\lambda < t$.
- ▶ Define $D_X := \{t : M_X(t) < \infty\}$. D_X is called the region of convergence (ROC).t = 0 is always part of ROC.
- Normal With the MGF for a random variable X that has the following distributions: Binomial(n,p), Normal $\mathcal{N}(0,1)$, Poisson(λ)

If $M_X(t)$ is finite for all $|t| \le \epsilon$ and for some $\epsilon > 0$ then $M_X(t)$ is infinitely differentiable on $(-\epsilon, \epsilon)$. (Property without proof)

- If $M_X(t)$ is finite for all $|t| \le \epsilon$ and for some $\epsilon > 0$ then $M_X(t)$ is infinitely differentiable on $(-\epsilon, \epsilon)$. (Property without proof)
- Let $M_X^{(r)}(t) := \frac{d^r}{dt^r} M_X(t)$ $(r^{th}$ -derivative of $M_X(t)$)

- If $M_X(t)$ is finite for all $|t| \le \epsilon$ and for some $\epsilon > 0$ then $M_X(t)$ is infinitely differentiable on $(-\epsilon, \epsilon)$. (Property without proof)
- Let $M_X^{(r)}(t) := \frac{d^r}{dt^r} M_X(t) (r^{th}$ -derivative of $M_X(t)$)
- It can be shown that $M_X^{(r)}(t) = E[e^{tX}X^r]$ for all r and $|t| \le \epsilon$.

- If $M_X(t)$ is finite for all $|t| \le \epsilon$ and for some $\epsilon > 0$ then $M_X(t)$ is infinitely differentiable on $(-\epsilon, \epsilon)$. (Property without proof)
- Let $M_X^{(r)}(t) := \frac{d^r}{dt^r} M_X(t) (r^{th}$ -derivative of $M_X(t)$)
- It can be shown that $M_X^{(r)}(t) = E[e^{tX}X^r]$ for all r and $|t| \le \epsilon$.
- $ightharpoonup E[X^r] = M_X^{(r)}(0)$

- If $M_X(t)$ is finite for all $|t| \le \epsilon$ and for some $\epsilon > 0$ then $M_X(t)$ is infinitely differentiable on $(-\epsilon, \epsilon)$. (Property without proof)
- Let $M_X^{(r)}(t) := \frac{d^r}{dt^r} M_X(t) (r^{th}$ -derivative of $M_X(t)$)
- It can be shown that $M_X^{(r)}(t) = E[e^{tX}X^r]$ for all r and $|t| \le \epsilon$.
- $ightharpoonup E[X^r] = M_X^{(r)}(0)$
- ► For $Exp(\lambda)$, $M_X^{(1)}(t) = \frac{\lambda}{(\lambda t)^2}$ and $M_X^{(1)}(0) = E[X] = \frac{1}{\lambda}$

- If $M_X(t)$ is finite for all $|t| \le \epsilon$ and for some $\epsilon > 0$ then $M_X(t)$ is infinitely differentiable on $(-\epsilon, \epsilon)$. (Property without proof)
- Let $M_X^{(r)}(t) := \frac{d^r}{dt^r} M_X(t) (r^{th}$ -derivative of $M_X(t)$)
- It can be shown that $M_X^{(r)}(t) = E[e^{tX}X^r]$ for all r and $|t| \le \epsilon$.
- $ightharpoonup E[X^r] = M_X^{(r)}(0)$
- ► For $Exp(\lambda)$, $M_X^{(1)}(t) = \frac{\lambda}{(\lambda t)^2}$ and $M_X^{(1)}(0) = E[X] = \frac{1}{\lambda}$
- $M_X^{(r)}(0) = \frac{r!}{\lambda^r}$

- If $M_X(t)$ is finite for all $|t| \le \epsilon$ and for some $\epsilon > 0$ then $M_X(t)$ is infinitely differentiable on $(-\epsilon, \epsilon)$. (Property without proof)
- Let $M_X^{(r)}(t) := \frac{d^r}{dt^r} M_X(t) (r^{th}$ -derivative of $M_X(t)$)
- It can be shown that $M_X^{(r)}(t) = E[e^{tX}X^r]$ for all r and $|t| \le \epsilon$.
- $ightharpoonup E[X^r] = M_X^{(r)}(0)$
- ► For $Exp(\lambda)$, $M_X^{(1)}(t) = \frac{\lambda}{(\lambda t)^2}$ and $M_X^{(1)}(0) = E[X] = \frac{1}{\lambda}$
- $M_X^{(r)}(0) = \frac{r!}{\lambda^r}$
- HW: Find MGF of all random variables seen till now and use it to obtain moments.