

PROBABILITY & STATISTICS

Empirical models

Simple Linear Regression

Estimating σ^2 Hypothesis
tests
Confidence
intervals
Prediction
Adequacy

Correlation

Summary

Chapter 11: Simple Linear Regression and Correlation

Learning objectives

- 1. Empirical Models
- 2. Simple Linear Regression
- 3. Correlation

Empirical models

Simple Linear Regression

Estimating σ^2 Hypothesis tests
Confidence intervals
Prediction
Adequacy

Correlation

- Many problems in engineering and science involve exploring the relationships between two or more variables.
- **Regression analysis** is a statistical technique that is very useful for these types of problems.
- For example, in a chemical process, suppose that the yield of the product is related to the process-operating temperature.
- Regression analysis can be used to build a model to predict yield at a given temperature level.

Empirical models

Simple Linear Regression

Estimating σ^2 Hypothesis tests

Confidence

intervals

Prediction

Adequacy

Correlation

 Table 11-1
 Oxygen and Hydrocarbon Levels

Observation Number	Hydrocarbon Level $x(\%)$	Purity y(%)
1	0.99	90.01
2	1.02	89.05
3	1.15	91.43
4	1.29	93.74
5	1.46	96.73
6	1.36	94.45
7	0.87	87.59
8	1.23	91.77
9	1.55	99.42
10	1.40	93.65
11	1.19	93.54
12	1.15	92.52
13	0.98	90.56
14	1.01	89.54
15	1.11	89.85
16	1.20	90.39
17	1.26	93.25
18	1.32	93.41
19	1.43	94.98
20	0.95	87.33

Empirical models

Simple Linear Regression

Estimating σ²
Hypothesis
tests
Confidence
intervals

Correlation

Prediction

Adequacy

Figure 11-1 Scatter Diagram of oxygen purity versus hydrocarbon level from Table 11-1.

Empirical models

Simple Linear Regression

Estimating σ^2 Hypothesis
tests
Confidence
intervals
Prediction
Adequacy

Correlation

Summary

Based on the scatter diagram, it is probably reasonable to assume that the mean of the random variable *Y* is related to *x* by the following straight-line relationship:

$$E(Y \mid x) = \mu_{Y \mid x} = \beta_0 + \beta_1 x$$
regression coefficients.

The simple linear regression model is given by

$$Y = \beta_0 + \beta_1 x + \varepsilon$$
 random error

Empirical models

Simple Linear Regression

Estimating σ^2 Hypothesis
tests
Confidence
intervals
Prediction
Adequacy

Correlation

Summary

Suppose that the mean and variance of ε are 0 and σ^2 , respectively, then

$$E(Y \mid x) = E(\beta_0 + \beta_1 x + \varepsilon) = \beta_0 + \beta_1 x + E(\varepsilon) = \beta_0 + \beta_1 x$$

The variance of Y given x is

$$V(Y|x) = V(\beta_0 + \beta_1 x + \varepsilon) = V(\beta_0 + \beta_1 x) + V(\varepsilon) = 0 + \sigma^2 = \sigma^2$$

The true regression model is a line of mean values:

$$\mu_{Y|x} = \beta_0 + \beta_1 x$$

Empirical models

Simple Linear Regression

Estimating σ²
Hypothesis
tests
Confidence
intervals
Prediction

Correlation

Adequacy

Figure 11-2 The distribution of *Y* for a given value of *x* for the oxygen purity-hydrocarbon data.

Empirical models

Simple Linear Regression

Estimating σ^2 Hypothesis
tests
Confidence
intervals
Prediction
Adequacy

Correlation

Summary

• The case of simple linear regression considers a single regressor or predictor *x* and a dependent or response variable *Y*.

• The expected value of *Y* at each level of *x* is a random variable:

$$E(Y \mid x) = \beta_0 + \beta_1 x$$

• We assume that each observation, *Y*, can be described by the model

$$Y = \beta_0 + \beta_1 x + \varepsilon$$

Empirical models

Simple Linear Regression

Estimating σ^2 Hypothesis tests
Confidence intervals
Prediction
Adequacy

Correlation

Summary

Suppose that we have *n* pairs of observations (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) :

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
, $i = 1,...n$

Figure 11-3

Deviations of the data from the estimated regression model.

Empirical models

Simple Linear Regression

Estimating σ^2 Hypothesis tests
Confidence intervals
Prediction
Adequacy

Correlation

Summary

The method of least squares is used to estimate the parameters, β_0 and β_1 by minimizing the sum of the squares of the vertical deviations in Figure 11-3.

Figure 11-3

Deviations of the data from the estimated regression model.

 \boldsymbol{x}

Empirical models

Simple Linear Regression

Estimating σ^2 Hypothesis
tests
Confidence
intervals
Prediction
Adequacy

Correlation

Summary

The sum of the squares of the deviations of the observations from the true regression line is

$$L = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x)^2$$

The least squares estimators of β_0 and β_1 , say, $\hat{\beta}_0$ and $\hat{\beta}_1$, must satisfy

$$\left. \frac{\partial L}{\partial \beta_0} \right|_{\hat{\beta}_0, \hat{\beta}_1} = -2 \sum_{i=1}^n \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i \right) = 0$$

$$\left. \frac{\partial L}{\partial \beta_1} \right|_{\hat{\beta}_0, \hat{\beta}_1} = -2 \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) x_i = 0$$

Empirical models

Simplifying these two equations yields

Simple Linear Regression

Estimating σ^2 Hypothesis tests
Confidence intervals
Prediction
Adequacy

Correlation

$$n\hat{\beta}_{0} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i}$$

$$\hat{\beta}_{0} \sum_{i=1}^{n} x_{i} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2} = \sum_{i=1}^{n} y_{i}x_{i}$$

Notation
$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n}$$

$$S_{xy} = \sum_{i=1}^{n} (y_i - \overline{y})(x_i - \overline{x}) = \sum_{i=1}^{n} x_i y_i - \frac{\left(\sum_{i=1}^{n} x_i\right)\left(\sum_{i=1}^{n} y_i\right)}{n}$$

Empirical models

Simple Linear Regression

Estimating σ^2 Hypothesis
tests
Confidence
intervals
Prediction
Adequacy

Correlation

Summary

Theorem

The **least squares estimates** of the intercept and slope in the simple linear regression model are

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$$

Estimated regression line is

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

Empirical models

Simple Linear Regression

Estimating σ^2 Hypothesis tests

Confidence intervals

Prediction

Adequacy

Correlation

Summary

Table 11-1 Oxygen and Hydrocarbon Levels Hydrocarbon Level Observation Purity Number x(%)y (%) 0.99 90.01 89.05 1.02 3 1.15 91.43 1.29 93.74 1.46 96.73 5 1.36 94.45 6 0.87 87.59 1.23 91.77 1.55 99.42 9 10 1.40 93.65 11 1.19 93.54 12 1.15 92.52 13 0.98 90.56 89.54 14 1.01 89.85 15 1.11 16 1.20 90.39 17 1.26 93.25 93.41 18 1.32 19 1.43 94.98 20 0.95 87.33

Empirical models

Simple Linear Regression

Estimating σ^2 Hypothesis
tests
Confidence
intervals
Prediction
Adequacy

Correlation

Summary

Example

We will fit a simple linear regression model to the oxygen purity data in Table 11-1. The following quantities may be computed:

$$n = 20$$
 $\sum_{i=1}^{20} x_i = 23.92$ $\sum_{i=1}^{20} y_i = 1,843.21$ $\overline{x} = 1.1960$ $\overline{y} = 92.1605$

$$\sum_{i=1}^{20} y_i^2 = 170,044.5321 \quad \sum_{i=1}^{20} x_i^2 = 29.2892 \quad \sum_{i=1}^{20} x_i y_i = 2,214.6566$$

$$S_{xx} = \sum_{i=1}^{20} x_i^2 - \frac{\left(\sum_{i=1}^{20} x_i\right)^2}{20} = 29.2892 - \frac{(23.92)^2}{20} = 0.68088$$

Empirical models

Simple Linear Regression

Estimating σ^2 Hypothesis
tests
Confidence
intervals
Prediction
Adequacy

Correlation

Summary

$$S_{xy} = \sum_{i=1}^{20} x_i y_i - \frac{\left(\sum_{i=1}^{20} x_i\right) \left(\sum_{i=1}^{20} y_i\right)}{20} = 2,214.6566 - \frac{(23.92)(1,843.21)}{20} = 10.17744$$

Therefore, the least squares estimates of the slope and intercept are

$$\hat{\beta}_1 = \frac{S_{xy}}{S} = \frac{10.17744}{0.68088} = 14.94748$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} = 92.1605 - (14.94748)1.196 = 74.28331$$

Empirical models

Simple Linear Regression

Estimating σ^2 Hypothesis tests
Confidence intervals
Prediction
Adequacy

Correlation

Summary

The fitted simple linear regression model is

$$\hat{y} = 74.283 + 14.947x$$

Estimating σ^2

Empirical models

Estimating σ^2

We have

Simple Linear Regression

The error sum of squares is

$$SS_E = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

Estimating σ^2

Hypothesis

tests

Confidence

intervals

Prediction

Adequacy

Correlation

$$E(SS_{\rm F}) = (n-2)\sigma^2.$$

$$SS_E = SS_T - \hat{\beta}_1 S_{xy}$$

$$SS_T = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} y_i^2 - n\bar{y}^2$$

Estimating σ^2

Empirical models

Estimating σ^2

Simple Linear Regression

Estimating σ^2

Hypothesis

tests

Confidence

intervals

Prediction

Adequacy

Correlation

Summary

Theorem

An **unbiased estimator** of σ^2 is

$$\hat{\sigma}^2 = \frac{SS_E}{n-2}$$

where

$$SS_E = SS_T - \hat{\beta}_1 S_{xy}$$

ć

Standard error

Empirical models

Test on the β_1

Simple Linear

 H_0 : $\beta_1 = \beta_{1,0}$

Regression

 H_1 : $\beta_1 \neq \beta_{1,0}$

Estimating σ^2

Test statistic

Hypothesis tests

Confidence

intervals

Prediction

Adequacy

has the t distribution with n - 2 degrees of freedom.

 $T_0 = \frac{\beta_1 - \beta_{1,0}}{\sqrt{\hat{\sigma}^2/S}}$

Correlation

If $t_0 > t_{\alpha/2, n-2}$: reject H_0

Summary

If $t_0/< t_{\alpha/2, \text{ n-2}}$: fail to reject H_0

Empirical models

Test on the β_1

Simple Linear Regression

Estimating σ^2

Hypothesis tests

Confidence intervals

Prediction Adequacy

Correlation

Summary

An important special case

 H_0 : $\beta_1 = 0$

 H_1 : $\beta_1 \neq 0$

These hypotheses relate to the **significance of regression**.

Failure to reject H_0 is equivalent to concluding that there is no linear relationship between x and Y.

Empirical models

Test on the β_1

Simple Linear Regression

Estimating σ^2

Hypothesis tests

Confidence

intervals

Prediction

Adequacy

Correlation

Figure 11-5 The hypothesis H_0 : $\beta_1 = 0$ is not rejected.

Empirical models

Test on the β_1

Simple Linear Regression

Estimating σ^2

Hypothesis tests

Confidence

intervals

Prediction

Adequacy

Correlation

Summary

Figure 11-6 The hypothesis H_0 : $\beta_1 = 0$ is rejected.

Empirical models

Simple Linear Regression

Estimating σ^2

Hypothesis tests

Confidence intervals

Prediction Adequacy

Correlation

Summary

Example

We will test for significance of regression using the model for the oxygen purity data from Table 11-1. The hypotheses are

$$H_0$$
: $\beta_1 = 0$

$$H_1$$
: $\beta_1 \neq 0$

and we will use $\alpha = 0.01$.

Recall $\hat{\beta}_1 = 14.97$ n = 20, $S_{xx} = 0.68088$, $\hat{\sigma}^2 = 1.18$

Test statistic
$$t_0 = \frac{\hat{\beta}_1}{\sqrt{\hat{\sigma}^2/S_{xx}}} = \frac{\hat{\beta}_1}{se(\hat{\beta}_1)} = \frac{14.947}{\sqrt{1.18/0.68088}} = 11.35$$

Empirical models

Simple Linear Regression

Estimating σ^2

Hypothesis tests

Confidence

intervals

Prediction

Adequacy

Correlation

Summary

$$t_{\alpha/2, \text{ n-2}} = t_{0.005, 18} = 2.88 < |t_0|$$

Reject H_0

If
$$t_0 / > t_{\alpha/2, \text{ n-2}}$$
: reject H_0

If $t_0/< t_{\alpha/2, \text{ n--}2}$: fail to reject H_0

Test on the β_0

$$H_0$$
: $\beta_0 = \beta_{0,0}$

$$H_1$$
: $\beta_0 \neq \beta_{0,0}$

Test statistic

$$T_0 = \frac{\hat{\beta}_0 - \beta_{0,0}}{\sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right]}} = \frac{\hat{\beta}_0 - \beta_{0,0}}{se(\hat{\beta}_0)}$$

Empirical models

Simple Linear Regression

Estimating σ^2 Hypothesis tests

Confidence intervals

Prediction Adequacy

Correlation

Summary

Confidence Intervals on the Slope and Intercept

Under the assumption that the observations are normally and independently distributed, a $100(1-\alpha)\%$ confidence interval on the slope β_1 in simple linear regression is

$$\hat{\beta}_1 - t_{\alpha/2, n-2} \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}} \le \beta_1 \le \hat{\beta}_1 + t_{\alpha/2, n-2} \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}$$

Similarly, a $100(1-\alpha)\%$ confidence interval on the intercept β_0 is

$$\hat{\beta}_{0} - t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^{2} \left[\frac{1}{n} + \frac{\bar{x}^{2}}{S_{xx}} \right]} \leq \beta_{0} \leq \hat{\beta}_{0} + t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^{2} \left[\frac{1}{n} + \frac{\bar{x}^{2}}{S_{xx}} \right]}$$

Empirical models

Simple Linear Regression

Estimating σ²
Hypothesis
tests

Confidence intervals

Prediction Adequacy

Correlation

Summary

Example

We will find a 95% confidence interval on the slope of the regression line using the data in Table 11-1.

Recall $\hat{\beta}_1 = 14.947$, $S_{xx} = 0.68088$, and $\hat{\sigma}^2 = 1.18$

CI 95% for β_1 :

$$\hat{\beta}_1 - t_{0.025,18} \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}} \le \beta_1 \le \hat{\beta}_1 + t_{0.025,18} \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}$$

$$14.947 - 2.101\sqrt{\frac{1.18}{0.68088}} \le \beta_1 \le 14.947 + 2.101\sqrt{\frac{1.18}{0.68088}}$$

$$12.197 \leq \beta_1 \leq 17.697$$

Empirical models

Confidence Interval on the Mean Response

Simple Linear Regression

Estimating σ^2 Hypothesis tests

Confidence intervals

Prediction Adequacy

Correlation

Summary

$$\hat{\mu}_{Y|x_0} = \hat{\beta}_0 + \hat{\beta}_1 x_0$$

A $100(1-\alpha)\%$ confidence interval about the mean response at the value of $x=x_0$ is given by

$$\hat{\mu}_{Y|x_0} - t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}} \right]}$$

$$\leq \mu_{Y|x_0} \leq \hat{\mu}_{Y|x_0} + t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}} \right]}$$

Empirical models

Simple Linear Regression

Estimating σ^2 Hypothesis tests

Confidence intervals

Prediction Adequacy

Correlation

Summary

Example

We will find a 95% confidence interval about the mean response for the data in Table 11-1.

The fitted model is $\hat{\mu}_{Y|x_0} = 74.283 + 14.947x_0$,

If we are interested in predicting mean oxygen purity when $x_0 = 100\%$ then

$$\hat{\mu}_{Y|x_{100}} = 74.283 + 14.947(1.00) = 89.23$$

CI 95% on $\mu_{Y|x_0}$

$$\hat{\mu}_{Y|x_0} \pm 2.101 \sqrt{1.18 \left[\frac{1}{20} + \frac{(x_0 - 1.1960)^2}{0.68088} \right]}$$

Empirical models

Simple Linear Regression

Estimating σ^2 Hypothesis tests

Confidence intervals

Prediction Adequacy

Correlation

Summary

$$\left\{89.23 \pm 2.101 \sqrt{1.18 \left[\frac{1}{20} + \frac{(1.00 - 1.1960)^2}{0.68088} \right]} \right\}$$

$$88.48 \le \mu_{Y|1.00} \le 89.98$$

Scatter diagram of oxygen purity with fitted regression line and 95% confidence limits on $\mu_{Y|x0}$.

Prediction of New Observations

Empirical models

Simple Linear Regression

Estimating σ^2 Hypothesis tests Confidence intervals

Prediction

Adequacy

Correlation

Summary

A $100(1-\alpha)\%$ prediction interval on a future observation Y_0 at the value x_0 is given by

$$\hat{y}_0 - t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^2 \left[1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}} \right]}$$

$$\leq Y_0 \leq \hat{y}_0 + t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^2 \left[1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}} \right]}$$

Return to Table 11.1, confidence interval 95% on

$$Y_0 \text{ at } x_0 = 100\%$$

$$89.23 - 2.101\sqrt{1.18 \left[1 + \frac{1}{20} + \frac{(1.00 - 1.1960)^2}{0.68088}\right]}$$

$$\leq Y_0 \leq 89.23 + 2.101\sqrt{1.18 \left[1 + \frac{1}{20} + \frac{(1.00 - 1.1960)^2}{0.68088}\right]}$$

Prediction of New Observations

Empirical models

Simple Linear Regression

Estimating σ^2 Hypothesis tests
Confidence intervals

Prediction

Adequacy

Correlation

Summary

Scatter diagram of oxygen purity data from Table 11.1 with fitted regression line, 95% prediction limits, and 95% confidence limits on $\mu_{Y|x0}$.

Adequacy of the Regression Model

Empirical models

Simple Linear Regression

Estimating σ^2 Hypothesis tests
Confidence intervals
Prediction

Adequacy

Correlation

- Fitting a regression model requires several assumptions.
 - 1. Errors are uncorrelated random variables with mean zero;
 - 2. Errors have constant variance; and,
 - 3. Errors be normally distributed.
- The analyst should always consider the validity of these assumptions to be doubtful and conduct analyses to examine the adequacy of the model

Adequacy of the Regression Model

Empirical models

Coefficient of Determination (R²)

Simple Linear Regression

Estimating σ^2 Hypothesis tests
Confidence intervals
Prediction

Adequacy

Correlation

Summary

$$R^2 = \frac{SS_R}{SS_T} = 1 - \frac{SS_E}{SS_T}$$

is called the **coefficient of determination** and is often used to judge the adequacy of a regression model.

$$SS_R = \sum_{i=1}^n (\hat{y}_i - \bar{y})^2 = \hat{\beta}_1 S_{xy}.$$

- $0 \le R^2 \le 1$;
- We often refer to R^2 as the amount of variability in the data explained or accounted for by the regression model.

Adequacy of the Regression Model

Empirical models

Simple Linear Regression

Estimating σ^2 Hypothesis tests
Confidence intervals
Prediction

Adequacy

Correlation

Summary

Example

For the oxygen purity regression model,

$$R^2 = SS_R/SS_T$$

= 152.13/173.38
= 0.877

Thus, the model accounts for 87.7% of the variability in the data.

Empirical models

Simple Linear Regression

Estimating σ^2 Hypothesis tests
Confidence intervals
Prediction
Adequacy

Correlation

Summary

Definition

The sample correlation coefficient

$$R = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2 \sum_{i=1}^{n} (Y_i - \overline{Y})^2}} = \frac{S_{XY}}{\sqrt{S_{XX}SS_T}}$$

Note that

$$\hat{\beta}_1 = \left(\frac{SS_T}{S_{XX}}\right)^{1/2} R$$

We may also write:

$$R^2 = \hat{\beta}_1^2 \frac{S_{XX}}{S_{YY}} = \frac{\hat{\beta}_1 S_{XY}}{SS_T} = \frac{SS_R}{SS_T}$$

Empirical models

Simple Linear Regression

Estimating σ^2 Hypothesis
tests
Confidence
intervals
Prediction
Adequacy

Correlation

Summary

Properties of the Linear Correlation Coefficient r

- 1. $-1 \le r \le 1$
- 2. The value of *r* does not change if all values of either variable are converted to a different scale.
- 3. The value of *r* is not affected by the choice of *x* and *y*. Interchange all *x* and *y*-values and the value of *r* will not change.
- 4. r measures strength of a linear relationship.

Empirical models

Simple Linear Regression

Estimating σ^2 Hypothesis
tests
Confidence
intervals
Prediction
Adequacy

Correlation

Summary

Strong negative correlation

Strong positive correlation

Weak positive correlation

Nonlinear Correlation

Empirical models

Simple Linear Regression

Estimating σ^2 Hypothesis tests
Confidence intervals
Prediction

Correlation

Adequacy

Summary

Test on the ρ

$$H_0: \rho = 0$$

$$H_1$$
: $\rho \neq 0$

Test statistic

$$T_0 = \frac{R\sqrt{n-2}}{\sqrt{1-R^2}}$$

has the t distribution with n - 2 degrees of freedom.

If $t_0 > t_{\alpha/2, n-2}$: reject H_0

If $t_0/< t_{\alpha/2, \text{ n-2}}$: fail to reject H_0

Empirical models

Simple Linear Regression

Estimating σ^2 Hypothesis tests
Confidence intervals
Prediction
Adequacy

Correlation

Summary

Test on the ρ

$$H_0$$
: $\rho = \rho_0$

$$H_1: \rho \neq \rho_0$$

Test statistic $Z_0 = (\operatorname{arctanh} R - \operatorname{arctanh} \rho_0) \sqrt{n-3}$

$$\tanh u = (e^u - e^{-u})/(e^u + e^{-u})$$

If $t_0 > z_{\alpha/2}$: reject H_0

If $t_0/< z_{\alpha/2}$: fail to reject H_0

SUMMARY

Empirical models

We have studied:

Simple Linear Regression

1. Empirical Models

3. Correlation

Estimating σ^2 Hypothesis tests

2. Simple Linear Regression

Confidence

intervals

Prediction

Adequacy

Correlation

Summary

Homework: Read slides of the next lecture.