Измерение модуля Юнга методом акустического резонанса

Шакиров Тимур Тагирович

Декабрь 2021

Цель работы: Исследовать явление акустического резонанса в тонком стержне, измерить скорость распространения продольных звуковых колебаний в тонких стержнях из различных материалов. Измерить модуль Юнга различных материалов.

В работе используются: генератор звуковых частот, частотометр, осцилограф, э/м излучатель и приемник колебаний, набор стержней.

Теория.

Для элемента среды верно:

$$\sigma = \varepsilon E \tag{1}$$

В тонком стержне выполняется равенство:

$$\frac{\partial^2 \xi}{\partial t^2} = \frac{E}{\rho} \frac{\partial^2 \xi}{\partial x^2} = u^2 \frac{\partial^2 \xi}{\partial x^2} \tag{2}$$

Произвольная функция $\phi(x \pm ut)$ — решение уравнения выше. А общее решение этого уравнения представляется в виде $\phi_1(x + ut) + \phi_2(x - ut)$. В случае гармонического возбуждения с частотой f:

$$\xi(x,t) = A_1 \sin(\omega t - kx + \varphi_1) + A_2 \sin(\omega t + kx + \varphi_2)$$
(3)

 $\omega=2\pi f,\,k=rac{2\pi}{\lambda},\,\lambda$ — длина волны.

Если концы стержня не закреплены, то $A_1 = A_2, \ \varphi_1 = \varphi_2.$

Тогда $\xi(x,t)=2Acos(kx)sin(\omega t+\varphi)$ — уравнение гармонической стоячей волны.

Из граничного условия ($\sigma_L = 0$) получим, что sin(kL) = 0, откуда получим условие на λ : в длине стержня должно укладываться целое число полуволн. Допустимые значения частот $f_n = n \frac{u}{2L}$ называют собсвтенными частотами колебаний. Выразив u, получим $u = 2L \frac{f_n}{n}$.

Ход работы

- Настроили осцилограф, генератор, разместили стержень на подставку, установили источник и приемник сигнала.
- Оценили частоту первого резонанса в стержнях, зная, что $u_m \approx$
- В режиме X-Y осцилографа нашли первые 3 гармоники стержней из меди, стали, дюраля. Результаты измерений внесли в таблицу.

$N_{\overline{0}}$	1	2	3
f_m , Гц	3251.7	6465.2	9755.0
f_s , Гц	4117.6	8235.4	12354.9
f_d , Гц	4261.4	8521.2	12785.1

При повторении экспериментов значение резонансной частоты не менялось, так что считаем $\sigma_f^{\rm cn}\ll\sigma_f^{\rm cuct}=0.1~\Gamma$ ц. $\sigma_f=0.1~\Gamma$ ц

• Определили плотность материалов. Для этого измерили геометрические размеры и массы образцов материалов. Результаты привели ниже:

$N_{\overline{0}}$	1	2	3	$D_{\rm cp}$
D_m	1.20	1.20	1.20	1.20
D_s	1.22	1.22	1.23	1.22
D_d	1.16	1.17	1.17	1.17

$$\begin{split} &\sigma_D^{\text{cm}} \approx \sigma_D^{\text{cmct}} = 0.01 \text{ cm.} \\ &\sigma_D = 0.01 \text{ cm} \\ &\sigma_\rho = \rho \sqrt{\varepsilon_m^2 + \varepsilon_l^2 + 4\varepsilon_D^2} \end{split}$$

• Построили графики f(n) для разных материалов, наилучшие прямые этих графиков (смотреть в приложении). Из графиков вычислили

№	D, мм	l, мм	т, г	$\rho, \frac{\kappa \Gamma}{M^3}$	$\sigma_{\rho}, \frac{\kappa \Gamma}{M^3}$
Медь	12.0	39.7	39.42	8780	140
Сталь	12.2	41.3	37.11	7680	120
Дюраль	11.7	40.1	11.80	2730	50

величину $\frac{u}{2L}$, из которой определили u, E.

Nº	1	2	3
$u, \frac{M}{C}$	3900	4940	5110
$\sigma_u, \frac{M}{C}$	120	20	40
$E, \Gamma \Pi a$	133	187	71
σ_E , $\Gamma\Pi a$	4	1	1
$E_{\text{табл}}, \Gamma \Pi a$	110	190 - 210	74

$$\sigma_u = 2L \frac{1}{\sqrt{3}} \sqrt{\frac{\bar{f}_n^2}{n^2} - \frac{f_n^2}{n}}$$
$$\sigma_E = E\varepsilon_E = E\varepsilon_u$$

С помощью явления акустического резонанса мы с хорошей точностью сумели измерить модули Юнга различных веществ. Небольшое несоответствие полученных значений с табличными скорее всего связаны с несовершенством источника и приемника сигналов.

Приложение

