

2. Índice

- Contenido:
- 1. Introducción
- 2. Objetivos del Proyecto
- 3. Descripción de la Base de Datos
- 4. Preparación y Limpieza de Datos
- 5. Selección y Transformación de Características
- 6. División del Conjunto de Datos
- 7. Construcción de Modelos Predictivos con Spark ML
- 8. Resultados del Modelo de Regresión Lineal
- 9. Resultados del Modelo Random Forest Regressor
- 10. Comparación de Modelos
- 11. Conclusiones
- 12. Recomendaciones y Trabajos Futuros
- 13. Preguntas y Respuestas

3. Introducción

- •Contexto: Importancia del análisis predictivo en el mercado financiero.
- •Relevancia: Cómo la predicción precisa del precio de cierre puede influir en decisiones de inversión.
- •Tecnología Utilizada: Introducción a Spark ML y sus ventajas en el manejo de grandes volúmenes de datos.

4. Objetivos del Proyecto

•Objetivo General: Desarrollar modelos predictivos para estimar el precio de cierre de acciones de empresas líderes utilizando Spark ML.

Objetivos Específicos:

- •Cargar y preparar los datos financieros.
- •Seleccionar y transformar características relevantes.
- •Construir y evaluar modelos de Regresión Lineal y Random Forest.
- •Comparar el desempeño de los modelos y extraer conclusiones.

5. Descripción de la Base de Datos

Nombre del Archivo: datos_acciones.csv

•Empresas Incluidas:

- o Apple Inc. (AAPL)
- Microsoft Corporation (MSFT)
- Amazon.com, Inc. (AMZN)
- Alphabet Inc. (GOOGL)
- Meta Platforms, Inc. (META)

Estructura del Archivo:

- Date: Fecha de la transacción (Formato: YYYY-MM-DD)
- Ticker: Símbolo bursátil de la empresa
- Attribute: Tipo de atributo financiero (Open, Close, Volume, etc.)
- o **Value:** Valor correspondiente al atributo

	🗖 Date	A ^B c Ticker	^B c Attribute	1.2 Value
503	2021-12-29	AAPL	Adj Close	176.683166503906
504	2021-12-30	AAPL	Adj Close	175.5208740234375
505	2020-01-02	AMZN	Adj Close	94.90049743652344
506	2020-01-03	AMZN	Adj Close	93.74849700927734
507	2020 04 06	4 4 7 5 1	A 1: CI	05.44300740330304

6. Preparación y Limpieza de Datos

- •Conversión de Tipos de Datos: Asegurar que las columnas tengan los tipos de datos correctos (ej. Date como fecha, Value como float).
- •Manejo de Valores Nulos: Eliminación de filas con valores faltantes para garantizar la integridad de los datos.
- •Pivot de Datos: Transformar el DataFrame para tener atributos como columnas, facilitando el análisis.

7. Selección y Transformación de Características

- •Características Seleccionadas: Open, High, Low, Volume
- •Etiqueta: Close (Precio de cierre)
- •Técnicas Utilizadas:
- VectorAssembler: Para ensamblar las características en un solo vector.
- StandardScaler: Para escalar las características y mejorar el rendimiento del modelo.

8. División del Conjunto de Datos

- •Método de División: Random Split (80% entrenamiento, 20% prueba)
- •Justificación: Balancear la cantidad de datos para entrenamiento y evaluación, asegurando representatividad.

Número de filas en entrenamiento: 2068

Número de filas en prueba: 452

- •Modelos Utilizados:
- •Regresión Lineal: Modelo sencillo para relaciones lineales.

Regession lineal

- •Random Forest Regressor: Modelo más complejo capaz de capturar relaciones no lineales.
- •Configuración del Pipeline: Integración de transformación de características y entrenamiento del modelo en un pipeline cohesivo.

	⊡ Date	^B _C Ticker	1.2 Close	1.2 prediction
1-	2020-01-02	GOOGL	68.43399810791016	68.20983063279137
2	2020-01-03	AMZN	93.74849700927734	94.11354101770385
3	2020-01-03	META	208.6699981689453	209.563636856137
4	2020-01-06	META	212.600006103515	211.393781431441
5	2020-01-07	MSFT	157.5800018310547	158.102744681646
6	2020-01-08	META	215.220001220703	215.290660173830
7	2020-01-09	MSFT	162.089996337890	161.559566517294
8	2020-01-13	AAPL	79.23999786376953	78.90020351974532
9	2020-01-15	AAPL	77.83499908447266	78.25375850963206
10	2020-01-15	AMZN	93.10099792480469	93.25530942031982
11	2020-01-15	GOOGL	71.95999908447266	71.96982397105032
12	2020-01-15	MSFT	163.179992675781	163.664964923882
13	2020-01-16	AMZN	93.89700317382812	93.64357975727162
14	2020-01-17	AAPL	79.68250274658203	79.31525542766418
15	2020-01-21	GOOGL	74.11250305175781	74.0923162052441

10. Resultados del Modelo de Regresión Lineal

- •**RMSE**: 1.3438
- •R²: 0.9997
- •Interpretación:
- o RMSE Bajo: Alta precisión en las predicciones.
- R² Cercano a 1: El modelo explica casi toda la variabilidad en el precio de cierre.

Resultado

El modelo de Regresión Lineal ha mostrado un desempeño excepcional, con un RMSE muy bajo y un R² cercano a 1. Esto sugiere que el modelo es altamente preciso en la predicción del precio de cierre de las acciones y explica casi toda la variabilidad observada en los datos. La simplicidad y la interpretabilidad de la regresión lineal han sido ventajosas en este contexto, proporcionando resultados claros y confiables.

	⊟ Date	^B _C Ticker	1.2 Close	1.2 prediction
1-	2020-01-02	GOOGL	68.43399810791016	67.29238108587458
2	2020-01-03	AMZN	93.74849700927734	92.94757013212997
3	2020-01-03	META	208.6699981689453	210.155748402058
4	2020-01-06	META	212.600006103515	210.155748402058
5	2020-01-07	MSFT	157.5800018310547	158.9027527657248
6	2020-01-08	META	215.220001220703	217.232283925879
7	2020-01-09	MSFT	162.089996337890	162.811547803445
8	2020-01-13	AAPL	79.23999786376953	75.48666506936904
9	2020-01-15	AAPL	77.83499908447266	75.48666506936904
10	2020-01-15	AMZN	93.10099792480469	92.94757013212997
11	2020-01-15	GOOGL	71.95999908447266	73.96333066014977
12	2020-01-15	MSFT	163.179992675781	163.272526581245
13	2020-01-16	AMZN	93.89700317382812	92.94757013212997
14	2020-01-17	AAPL	79.68250274658203	75.48666506936904
15	2020-01-21	GOOGL	74.11250305175781	74.68079481907854

11. Resultados del Modelo Random Forest Regressor

•RMSE: 3.8549

•R²: 0.9977

•Interpretación:

- RMSE Mayor que Regresión Lineal: Menor precisión en comparación con la regresión lineal.
- R² Alto: El modelo aún explica una gran parte de la variabilidad, pero no tan cerca de 1 como la regresión lineal.

Resultados:

el modelo de Random Forest Regressor también ha demostrado un rendimiento sólido, con un RMSE ligeramente mayor pero aún significativamente bajo, y un R² alto. Aunque este modelo es más complejo y puede capturar relaciones no lineales en los datos

12. Comparación de Modelos

•Regresión Lineal vs Random Forest:

- o **RMSE:** Regresión Lineal < Random Forest (1.3438 vs 3.8549)
- R²: Regresión Lineal > Random Forest (0.9997 vs 0.9977)

•Conclusión:

 Regresión Lineal Supera a Random Forest: En este caso específico, la Regresión Lineal ha superado al Random Forest en términos de precisión predictiva. Esto podría deberse a la naturaleza lineal de la relación entre las características seleccionadas y el precio de cierre, haciendo que un modelo lineal sea más adecuado para este conjunto de datos.

13. Conclusiones

- •Eficacia de Spark ML: Spark ML facilitó la construcción y evaluación de modelos predictivos de manera eficiente y escalable.
- Desempeño de Modelos:
- Regresión Lineal: Excelente precisión y capacidad explicativa para la predicción del precio de cierre.
- Random Forest Regressor: Buen desempeño, pero inferior a la regresión lineal en este caso específico.
- •Implicaciones para la Tesis: Los modelos desarrollados proporcionan herramientas robustas para la predicción financiera, con potencial para integrarse en estrategias de inversión.
- •Este challenge ha demostrado que Spark ML es una herramienta poderosa para el modelado predictivo en el ámbito financiero, permitiendo construir modelos precisos y eficientes. Los excelentes resultados obtenidos con la Regresión Lineal destacan la importancia de seleccionar modelos alineados con la naturaleza de los datos. Continuar explorando y refinando estos modelos fortalecerá aún más la capacidad predictiva y aportará valiosos insights para mi investigación de tesis.