ECON 703 - PS 5

Alex von Hafften*

9/16/2020

- (1) In this exercise you will prove the following theorem. Suppose X and Y are normed vector spaces and $T \in L(X,Y)$. The inverse function $T^{-1}(\cdot)$ exists and is a continuous linear operator on T(X) if and only if there exists some m > 0 such that $m||x|| \leq ||T(x)||$ for all $x \in X$.
- (a) Show that if there exists some m > 0 such that $m||x|| \le ||T(x)||$, then T is one-to-one (and therefore invertible on T(X)). Hint: Think about the norm of elements which are glued together if T is not one-to-one.

Proof: A theorem on slide 11 of lecture 8 states that $T \in L(X,Y)$ is one-to-one iff $\ker T \equiv \{\bar{0}\}$. Consider $x \in \ker\{T\}$, $m||x|| \le ||T(x)|| \implies m||x|| \le 0$. Since m > 0, ||x|| = 0 because norms cannot be negative. By definition of a norm, $||x|| = 0 \iff x = \bar{0}$. Thus, T is one-to-one. \square

(b) Use theorem with five equivalent properties (various continuity notions and boundedness) from the lecture notes to show that $T^{-1}(\cdot)$ is continuous on T(X).

Proof: By (a), T is invertible. Thus, for all $x \in X$, $m||x|| \le ||T(x)|| \implies ||T^{-1}(y)|| \le m^{-1}||y||$ where $y = T(x) \in T(X)$. Thus, because $m > 0 \implies m^{-1} \in \mathbb{R}$, T^{-1} is bounded on T(X). By a theorem on slide 5 of lecture 11, T^{-1} is continuous on T(X). \square

(c) Use the same theorem from the lecture notes to show that if T^{-1} is continuous on T(X), then there exists some m > 0 such that $m||x|| \le ||T(x)||$.

Proof: If T^{-1} is continuous on T(X), then T^{-1} is bounded on T(X). Thus, we can choose β such that $||T^{-1}(y)|| \leq \beta ||y|| \ \forall y \in T(X)$. Note that, since norms are nonnegative, we can choose $\beta > 0$, so β^{-1} is positive and finite. Thus, $\beta^{-1}||x|| \leq ||T(x)||$ where $x = T^{-1}(y) \in X$. Define $m = \beta^{-1}$, so $m||x|| \leq ||T(x)||$ for m > 0. \square

^{*}I worked on this problem set with a study group of Michael Nattinger, Andrew Smith, and Ryan Mather. I also discussed problems with Emily Case, Sarah Bass, and Danny Edgel.

- (2) Consider a linear operator $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x,y) = (x+5y, 8x+7y).
- (a) Calculate ||T|| given the norm $||(x,y)||_1 = |x| + |y|$ in \mathbb{R}^2 .

By the theorem on slide 5 of lecture 11, since $\dim \mathbb{R}^2 = 2$, T is bounded. So,

$$||T|| = \sup_{||(x,y)||_1 = 1} \{||T(x,y)||_1\}$$

Since $|x|, |y| \ge 0$, we can assume that $x, y \ge 0$ without loss of generality. Further, we can rewrite y = 1 - x, so

$$||T|| = \sup_{x \in [0,1]} \{|x + 5(1 - x)| + |8x + 7(1 - x)|\}$$

$$= \sup_{x \in [0,1]} \{|5 - 4x| + |x + 7|\}$$

$$= 5 + 7$$

$$= 12$$

(b) Calculate ||T|| given the norm $||(x,y)||_{\infty} = \max\{|x|,|y|\}$ in \mathbb{R}^2 .

By the theorem on slide 5 of lecture 11, since $\dim \mathbb{R}^2 = 2$, T is bounded. So,

$$||T|| = \sup_{||(x,y)||_{\infty} = 1} \{||T(x,y)||_{\infty}\}$$

Define $X = \{(x,y) \in \mathbb{R}^2 : ||(x,y)||_{\infty} = 1\} = \{(1,w),(x,1),(-1,y),(-1,z) : w,x,y,z \in [-1,1]\}$. Since the linear transformation is increasing in x,y, it is maximized at (1,1). Thus, $||T|| = \sup\{X\} = \max\{6,15\} = 15$.

(3) Consider the standard basis in \mathbb{R}^2 , W, and another orthonormal basis $V = \{(a_1, a_2), (b_1, b_2)\}$ (written in coordinates of W). Prove that Euclidean norm (length) of any vector $(x, y) \in \mathbb{R}^2$ is the same in W and V. (Thus, length of a vector does not depend on a choice of orthonormal basis.) Reminder: Orthonormal basis means that $a_1^2 + a_2^2 = b_1^2 + b_2^2 = 1$, $a_1b_1 + a_2b_2 = 0$.

Proof: Define $M = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}$. Consider (x,y)' in the standard basis for \mathbb{R}^2 . There exists $(w,z)' \in \mathbb{R}^2$ such that

$$\begin{pmatrix} x \\ y \end{pmatrix} = M \begin{pmatrix} w \\ z \end{pmatrix}$$

$$= \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} \begin{pmatrix} w \\ z \end{pmatrix}$$

$$= \begin{pmatrix} wa_1 + zb_1 \\ wa_2 + zb_2 \end{pmatrix}$$

$$= w \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + z \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

Thus, (w, z)' represent (x, y)' in basis $V = \{(a_1, a_2), (b_1, b_2)\}$. Notice that M'M = I:

$$\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}' \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} = \begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \end{pmatrix} \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}$$
$$= \begin{pmatrix} a_1^2 + a_2^2 & a_1b_1 + a_2b_2 \\ a_1b_1 + a_2b_2 & b_1^2 + b_2^2 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= I$$

Thus, we can show the Euclidean norms of (w, z)' and (x, y)' are equal:

$$||(x,y)'|| = \sqrt{(x,y)'(x,y)}$$

$$= \sqrt{(M(w,z)')'M(w,z)'}$$

$$= \sqrt{(w,z)M'M(w,z)'}$$

$$= \sqrt{(w,z)(w,z)'}$$

$$= \sqrt{(w,z)'(w,z)}$$

$$= ||(w,z)'||$$

(4) In this exercise you will learn to solve first order linear differential equations in n variables. We want to find an n-dimensional process y(t), such that

$$\frac{d}{dt}y(t) = Ay(t) \tag{1}$$

where $A \in M_{n \times n}$ and $y(0) \in \mathbb{R}^n$ are given. When n = 1 we know that solution to Eq. (1) is $y(t) = e^{At}y(0)$. Turns out, it remains the same when n > 1, thus, it involves exponent of a matrix, which we have not defined before. To properly define e^{At} , $A \in M_{n \times n}$ we use Taylor expansion and say that

$$e^{At} = I + At + \frac{1}{2}A^2t^2 + \frac{1}{6}A^3t^3 + \dots = \sum_{k=0}^{\infty} \frac{1}{k!}A^kt^k.$$

To calculate e^{At} we will use diagonalization. Suppose that $A=Pdiag\{\lambda_1,...,\lambda_n\}P^{-1}$, so that $A^k=Pdiag\{\lambda_1^k,...,\lambda_n^k\}P^{-1}$ and

$$\begin{split} e^{At} &= P\Big(\sum_{k=0}^{\infty} \frac{1}{k!} diag\{t^k \lambda_1^k, ..., t^k \lambda_n^k\}\Big) P^{-1} \\ &= P\Big(diag\Big\{\sum_{k=0}^{\infty} \frac{1}{k!} t^k \lambda_1^k, ..., \sum_{k=0}^{\infty} \frac{1}{k!} t^k \lambda_n^k\Big\}\Big) P^{-1} \\ &= Pdiag\{e^{t\lambda_1}, ..., e^{t\lambda_n}\} P - 1 \end{split}$$

Thus, solution to Eq. (1) is

$$y(t) = Pdiag\{e^{t\lambda_1}, \dots, e^{t\lambda_n}\}P - 1y(0)$$
(2)

Implement the above approach to solve for $y(t) \in \mathbb{R}^2$

$$\frac{d}{dt}y(t) = \begin{pmatrix} 1 & 1\\ 3 & -1 \end{pmatrix} y(t), y(0) = \begin{pmatrix} 1\\ 3 \end{pmatrix}.$$

Simplify you answer as much as possible.

To find A's eignevalues, use the characteristic polynomial of A:

$$(1 - \lambda)(-1 - \lambda) - 1 * 3 = \lambda^2 - 4$$

= $(\lambda - 2)(\lambda + 2)$

The eigenvalues are $\lambda_1=2$ and $\lambda_2=-2$. The cooresponding eigenvectors are:

$$\begin{pmatrix} -1 & 1 \\ 3 & -3 \end{pmatrix} \mathbf{v}_1 = 0$$
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix} \mathbf{v}_2 = 0$$
$$\mathbf{v}_2 = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

We have P and P^{-1} .

$$P = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix}$$
$$P^{-1} = \begin{pmatrix} 3/4 & 1/4 \\ -1/4 & 1/4 \end{pmatrix}$$

Substituting into Eq. 2,

$$\begin{split} y(t) &= P diag\{e^{t\lambda_1}, ..., e^{t\lambda_n}\}P - 1y(0) \\ &= \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} e^{2t} & 0 \\ 0 & e^{-2t} \end{pmatrix} \begin{pmatrix} 3/4 & 1/4 \\ -1/4 & 1/4 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} \\ &= \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} e^{2t} & 0 \\ 0 & e^{-2t} \end{pmatrix} \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix} \\ &= \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} (3/2)e^{2t} \\ (1/2)e^{-2t} \end{pmatrix} \\ &= \begin{pmatrix} (3/2)e^{2t} - (1/2)e^{-2t} \\ (3/2)e^{2t} + (3/2)e^{-2t} \end{pmatrix} \end{split}$$

Here's R code that implements this approach as well.

```
library(matlib)
a \leftarrow matrix(c(1, 3, 1, -1), ncol = 2)
print(a)
##
        [,1] [,2]
## [1,]
        1 1
## [2,]
           3 -1
ev <- eigen(a)
p <- t(t(ev$vectors))</pre>
print(p)
##
             [,1]
                        [,2]
## [1,] 0.7071068 -0.3162278
## [2,] 0.7071068 0.9486833
y_0 < c(1, 3)
for (t in 0:5) {
 print(paste("For t =", t))
 print(p %*% diag(exp(t*ev$values)) %*% inv(p) %*% y_0)
## [1] "For t = 0"
       [,1]
##
## [1,]
## [2,]
         3
## [1] "For t = 1"
            [,1]
## [1,] 11.01592
## [2,] 11.28659
## [1] "For t = 2"
##
            [,1]
## [1,] 81.88807
## [2,] 81.92470
## [1] "For t = 3"
##
           [,1]
## [1,] 605.1419
## [2,] 605.1469
## [1] "For t = 4"
          [,1]
## [1,] 4471.437
## [2,] 4471.437
## [1] "For t = 5"
           [,1]
## [1,] 33039.7
## [2,] 33039.7
```

(5) Solution to different equation (1) is stable if small perturbation of the initial condition y(0) does not significantly change the solution y(t). Formally, it means that $\forall \varepsilon > 0$ there exists $\delta > 0$ such that if $||y(0) - \tilde{y}(0)|| < \delta$, then $||y(t) - \tilde{y}(t)|| < \varepsilon$, where $\tilde{y}(t)$ is the solution with initial condition $\tilde{y}(0)$. Notice that if one of the eigenvalues λ_i is positive (has positive real part if they are complex), then the solution will have a term $c(y(0))e^{\lambda_i t}$, $\lambda_i > 0$ where $c(\cdot)$ is a constant which depends on the initial condition. Hence, $||y(t) - \tilde{y}(t)|| \ge |c(y(0)) - c(\tilde{y}(0))|e^{\lambda_i t} \to \infty$ as $t \to \infty$. Thus, the solution is not stable. In constrast, if all eigenvalues are negative (have negative real part if they are complex), then for all $i = 1, ..., n, e^{\lambda_i t} \to 0$ as $t \to \infty$, and solutions do not diverge, i.e. are stable. Check whether your solution to Problem 4 is stable.

My solution to Problem 4 is not stable because $\lambda_1 = 2 > 0$.