

DISTRIBUIÇÕES DE PROBABILIDADE

Distribuições de Probabilidade

Exemplo

Duas meias são seleccionadas aleatoriamente de uma gaveta contendo 5 meias castanhas e 3 verdes. Liste os elementos do espaço amostral, as probabilidades correspondentes, os valores da variável aleatória W, que representa o número de meias castanhas seleccionadas.

Elementos	Probabilidade	W
CC	$5/8 \times 4/7 = 20/56$	2
CV	$5/8 \times 3/7 = 15/56$	1
VC	$3/8 \times 5/7 = 15/56$	1
VV	$3/8 \times 2/7 = 6/56$	0

Distribuições de Probabilidade

Estatística

Exemplo

Considere o lançamento de 2 dados. Liste os elementos do espaço amostral, as probabilidades correspondentes, os valores da variável aleatória X, que representa a soma dos pontos.

X	P(X=x)	X	P(X=x)
2	1/36	3	2/36
4	3/36	5	4/36
6	5/36	7	6/36
8	5/36	9	4/36
10	3/36	11	2/36
12	1/36		

$$f(x)=(6-|x-7|)/36$$
 $x=2,...,12$

Função de Probabilidade

Se X é uma variável aleatória discreta, a função dada por f(x) = P(X = x), para cada valor de x na gama de valores de X, é chamada **função de probabilidade** de X.

f(x) é função de probabilidade de uma variável aleatória discreta X se e só se os seus valores satisfazem as seguintes condições:

- 1. $f(x) \ge 0$ para qualquer valor do seu domínio;
- 2. $\sum f(x) = 1$ onde o somatório se estende a todos os valores no seu domínio.

Distribuições de Probabilidade Discretas

Estatística

Exemplo

Encontre a fórmula para a distribuição de probabilidade do número total de caras obtidas no lançamento de 4 moedas equilibradas

```
Resultados possíveis
                     2^4 = 16
       HHHH 4
                      THHT
       HHHT
                      THTH
       HHTH
                      TTHH
       HTHH
       THHH
       HHTT
       HTHT
       HTTH
              f(x) = {}_{4}C_{x}/16
                             x=0,1,2,3,4
```


Função de Probabilidade

Estatística

Exemplo

Verifique se a função dada por

$$f(x) = \frac{x+2}{25}$$
 $x = 1, 2, 3, 4, 5$

pode servir como função de probabilidade de uma variável aleatória

Função de Distribuição

 Existem muitas situações onde há interesse em conhecer a probabilidade de que o valor de uma variável aleatória seja menor ou igual a algum número real x.

• A probabilidade de que X tome um valor menor ou igual a x, dada por $F(x) = P(X \le x)$, é uma função definida para todos os números reais, designada por **função de probabilidade acumulada** da variável aleatória X.

Função de Probabilidade Acumulada

Se X é uma variável aleatória discreta, a função dada por

$$F(x) = P(X \le x) = \sum_{t \le x} f(t) \qquad -\infty < x < \infty$$

onde f(t) é o valor da função de probabilidade de X em t, é chamada a **função de probabilidade acumulada** de X.

A função de probabilidade acumulada F(x) de uma variável aleatória X satisfaz as condições:

- $F(-\infty) = 0$
- $F(\infty) = 1$
- Se a < b, então $F(a) \le F(b)$ para quaisquer números reais $a \in b$.

Função Acumulada

Estatística

Exemplo

Encontre a função de probabilidade acumulada da variável W, número de meias castanhas extraídas da gaveta, e trace o respectivo gráfico.

w Prob.
$$f(w)$$
 $F(w)$
0 3/28 3/28 3/28 $f(0)$
1 15/28 15/28 9/14 $f(0)+f(1)$
2 5/14 5/14 1 $f(0)+f(1)+f(2)$

$$F(w) = \begin{cases} 0 & w < 0 \\ 3/28 & 0 \le w < 1 \\ 9/14 & 1 \le w < 2 \\ 1 & w \ge 2 \end{cases}$$

Função Acumulada

Funções de Densidade de Probabilidade

Uma função com valores de f(x) definidos sobre o conjunto de todos os números reais, é chamada uma **função densidade de probabilidade** de uma variável contínua X,

se e só se

$$P(a \le X \le b) = \int_{a}^{b} f(x) dx$$

para quaisquer constantes reais $a \in b$, com $a \le b$.

f(x) é função de densidade de probabilidade de uma variável aleatória contínua X se e só se os seus valores satisfazem as seguintes condições:

$$1. \quad f(x) \ge 0 \qquad -\infty < x < \infty$$

$$2. \quad \int_{-\infty}^{\infty} f(x) dx = 1$$

Funções de Densidade de Probabilidade

De notar que f(c), o valor da função densidade de probabilidade de X em c não é P(X=c), como no caso discreto.

No caso contínuo as probabilidades são sempre dadas por integrais avaliados sobre intervalos, donde P(X=c)=0 para qualquer constante real c; (não interessa se os pontos extremos do intervalo a a b são incluídos).

Se X é uma variável aleatória contínua e a e b são duas constantes reais com $a \le b$, então

$$P(a \le X \le b) = P(a \le X < b) = P(a < X \le b) = P(a < X < b)$$

Funções de Densidade de Probabilidade

Estatística

Exemplo

A função densidade de probabilidade da variável aleatória X é dada por

 $f(x) = \begin{cases} ke^{-3x} & x > 0\\ 0 & \text{outros valores} \end{cases}$

Determine o valor de k e calcule P(0.5<X<1)

$$\int_{-\infty}^{\infty} f(x)dx = \int_{0}^{\infty} ke^{-3x} dx = k \frac{e^{-3x}}{-3} \Big|_{0}^{\infty} = \frac{k}{3} = 1$$

$$\int_{0.5}^{1} 3e^{-3x} dx = -e^{-3x} \Big|_{0.5}^{1} = 0.173$$

Estatística

Função de Distribuição Acumulada

Se X é uma variável aleatória contínua, a função dada por

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt \qquad -\infty < x < \infty$$

onde f(t) é o valor da função densidade de probabilidade de X em t, é chamada **função de distribuição acumulada** de X.

A função de distribuição acumulada F(x) de uma variável aleatória X satisfaz as condições:

- $F(-\infty)=0$
- $F(\infty) = 1$
- Se a < b, então $F(a) \le F(b)$ para quaisquer números reais $a \in b$.

Propriedades

• Se f(x) e F(x) são, respectivamente, as valores da função densidade e da função acumulada de X em x, então

$$P(a \le X \le b) = F(b) - F(a)$$

para quaisquer constantes reais $a \in b$, com $a \le b$, e

$$f(x) = \frac{dF(x)}{dx}$$

onde a derivada existe.

- Uma função de distribuição acumulada é uma função não decrescente de x, que é contínua à direita, com $F(-\infty) = 0$ e $F(\infty) = 1$.
- Se x é um ponto de descontinuidade de F(x), então a probabilidade P(X = x) é igual ao salto que a função de distribuição tem no ponto x.
- Se x é um ponto de continuidade de F(x), então P(X = x) = 0.

Função de Probabilidade Acumulada

Estatística

Exemplo

Determine a função acumulada correspondente à função densidade

$$f(x) = 3e^{-3x}, x > 0$$

e calcule P(0.5<X<1).

$$F(x) = \int_0^x 3e^{-3t} dt = 1 - e^{-3x}$$

$$F(x) = \begin{cases} 0 & x \le 0 \\ 1 - e^{-3x} & x > 0 \end{cases}$$

$$P(0.5 < X < 1) = F(1) - F(0.5) = 0.173$$

Função de Probabilidade Acumulada

Estatística

Exemplo

Encontre a função densidade de probabilidade para a variável aleatória cuja função de distribuição é dada por

$$F(x) = \begin{cases} 0 & x \le 0 \\ x & 0 < x < 1 \\ 1 & x \ge 1 \end{cases}$$

$$f(x) = 1 \qquad 0 < x < 1$$