Estruturas de Informação

Recursividade

Departamento de Engenharia Informática (DEI/ISEP) Fátima Rodrigues mfc@isep.ipp.pt

Definição

- Um método é recursivo se é definido parcialmente em termos de si próprio
- Recursividade é uma técnica poderosa em definições matemáticas. O poder da recursividade está na possibilidade de se definir elementos com base em versões mais simples deles mesmos

Exemplo: potência positiva (n>=0) de um número X $x^n = 1$ se n=0

$$x^n = x * x^{n-1} se n > 0$$

 A única ferramenta necessária para expressar operações recursivamente é o próprio procedimento ou a função, que tem a capacidade de se invocar a si próprio

Estrutura de um Algoritmo Recursivo

Os problemas que podem ser resolvidos recursivamente têm normalmente as seguintes características:

- -um ou mais casos de paragem, em que a solução é não recursiva e conhecida
- casos em que o problema pode ser diminuído recursivamente até se atingirem os casos de paragem

Estrutura de um Algoritmo Recursivo

<u>se</u> caso de paragem atingido <u>então</u> resolver o problema

<u>senão</u>

fazer uma ou mais invocações recursivas

Factorial

```
Factorial: 0! = 1
             n! = n \times (n-1)!
 long factorial recurs(long num)
 {
    if (num == 0)
       return 1 ;
    else
       return num*factorial recurs(num-1) ;
A sequência de chamadas factorial recurs (5) é dada por:
                                         1*1 | 2*1 | 3*2 | 4*6 | 5*24
5*factorial recurs(4)
   4*factorial recurs(3)
      3*factorial recurs(2)
        2*factorial recurs(1)
         1*factorial recurs(0)
                        return 1 ____ 1
                                          if (num < 0)
 factorial recursiv(-1) ?
                                             break:
```

Soma dos Elementos de um vector

Se definirmos soma(k) como a soma dos valores de v com indices de 1 a k:

Soma dos Elementos de um vector

```
void main ()
  int vector[5] = \{3,6,7,9,5\};
  cout << "Soma recursiva dos elementos do vector -> " ;
  cout << soma vect(vector,5) << endl ;</pre>
A sequência de chamadas soma vect (vector, 5) é dada por:
soma vect(vector,5)
  5 + soma vect(vector, 4)
                                                                  5+25
                                                             9 + 16
        9 + soma vect(vector,3)
          7 + soma vect(vector,2)
                                                         7+9
                6 + soma vect(vector,1)
                                                     6+3
                  3 + soma vect(vector,0)
                                                  3+0
                                        return 0
```

Visualização dos Elementos de um vector

Qual a diferença entre as duas funções abaixo ?

```
void imprime1 vect (const int v[], int dim, int i)
  if (i < dim)
      cout << v[i] << " ";
      imprime1 vect (v,dim,i+1) ;
void imprime2 vect (const int v[], int dim, int i)
  if (i < dim)
    imprime2 vect (v,dim,i+1) ;
    cout << v[i] << " " ;
```

Visualização dos Elementos de um vector

```
void main ()
 { int vector[5] = \{3,6,7,9,5\};
   cout << "Imprime 1 -> " ; imprime1 vect(vector, 5, 0) ;
   cout << "Imprime 2 -> " ; imprime2 vect(vector, 5, 0) ;
                                     Sequência de chamadas imprime2_vect:
Sequência de chamadas imprime1_vect:
                                     imprime2 vect(vector, 5, 0)
imprime1 vect(vector, 5, 0)
                                        imprime2 vect(vector,5,1)
  imprime1 vect(vector,5,1)
```

```
imprime1 vect(vector,5,2)
 imprime1 vect(vector,5,3)
  imprime1 vect(vector, 5, 4)
    imprime1 vect(vector, 5, 5)
```

imprime2 vect(vector,5,2) imprime2 vect(vector,5,3) imprime2 vect(vector, 5, 4) imprime2 vect(vector,5,5) 3

Recursividade Indirecta

Dadas duas funções a e b,
 recursividade indirecta ocorre quando a invoca b e b invoca a

```
bool par (int num) ;
                                       bool par (int num)
bool impar (int num)
                                         if (num == 0)
  if (num == 0)
                                               return true ;
        return false ;
                                         else
  else
                                               if (num == 1)
        if (num == 1)
                                                 return false ;
          return true ;
                                               else
       else
                                                 return impar(num-1) ;
          return par(num-1) ;
```

Sequência Fibonacci

Fibonacci Iteractivo:

```
int fib iter (int n)
   if (n == 0 || n == 1)
     return n;
   segano=0;
   ano=1;
   for (i = 2; i \le n; i++)
      corrente = segano + ano;
      segano = ano;
      ano = corrente;
   return corrente;
```

Fibonacci recursivo:

```
int fib (int n)
{
  if (n <= 1)
    return n ;
  else
    return fib(n-1) + fib(n-2);
}</pre>
```

 Apesar da função recursiva ser mais simples em termos de código, é claramente ineficiente, pois para calcular um dado elemento da sequencia, cálculos serão repetidos

Permutações

Imprimir todas as permutações de um conjunto N de caracteres

Exemplo:

```
Conjunto {a,b,c} apresenta { (a,b,c), (a,c,b), (b,a,c), (b,c,a), (c,a,b), (c,b,a) } existem N! permutações
```

Permutações do conjunto {a,b,c,d}, são os quatro seguintes grupos de permutações:

- a seguido de permutações do conjunto {b,c,d}
- b seguido de permutações do conjunto {a,c,d}
- c seguido de permutações do conjunto {a,b,d}
- d seguido de permutações do conjunto {a,b,c}

É possível resolver eficientemente o problema para N caracteres se tivermos um **algoritmo recursivo** que funcione para N-1 caracteres

Permutações

```
void permutacoes (string s, int k)
   if (k == s.length()-1)
      cout << s << endl ;</pre>
   else
      for (int i = k; i < s.length(); i++)</pre>
      {
           char temp;
           temp = s[i];
           s[i] = s[k];
           s[k] = temp ;
           permutacoes(s,k+1);
```

Torres de Hanói

É um problema cuja solução iterativa é muito mais complexa que a correspondente recursiva

É constituído de um conjunto de N discos de tamanhos diferentes todos enfiados na Torre A e três Torres verticais, nos quais os discos podem ser encaixados

O objectivo é mudar os discos para a Torre B, obedecendo às seguintes condições:

- só se pode mudar um disco de cada vez
- só se pode retirar o disco de cima
- nunca se pode colocar um disco sobre outro mais pequeno

Torres de Hanói

- A solução deste problema é trivial caso o número de discos seja 1
- Se tivermos N discos na Torre A a solução consiste em diminuir a complexidade do problema até à situação em que temos apenas 1 disco e para a qual conhecemos a solução

```
Torres-Hanoi (N, TorreA, TorreB, TorreC)

<u>Se</u> (N = 1)

Mover disco TorreA → TorreB

<u>Senão</u>

Torres-Hanoi (N-1, TorreA, TorreC, TorreB)

Torres-Hanoi (1, TorreA, TorreB, TorreC)

Torres-Hanoi (N-1, TorreC, TorreB, TorreA)
```

Consultar http://pt.wikipedia.org/wiki/Torre_de_Hanoi

Backtracking

Em problemas recursivos que envolvam backtraking os passos em direção à solução do problema são testados e guardados, mas se estes não conduzirem a uma solução final, os passos são desfeitos, ou seja, volta-se para trás na recursividade, e experimentam-se novas possibilidades

Os passos gerais de qualquer problema recursivo que envolva backtraking, assumindo que o número de potenciais candidatos em cada passo é finito, são:

Inicializar seleção de candidatos
Repetir
Selecionar próximo
Se aceitável
Guardar
Se solução incompleta
Tentar próximo passo
Se insucesso
Cancelar
Até sucesso ou não existir mais candidatos

Backtracking

Encontrar um caminho da posição $P_0 \rightarrow P_{16}$ Direcções de movimento: Norte, Oeste

Custo da Recursividade

- A invocação de uma função recursiva produz um desperdício de tempo e de memória devido:
 - à criação de uma cópia local dos parâmetros de entrada que são passados por valor
 - à recolha do endereço dos parâmetros passados por referência
 - espaço para guardar variáveis locais
 - bem como a salvaguarda do estado do programa na altura da invocação - memória stack - para que o programa possa retomar a execução na instrução seguinte à invocação da função, quando a execução da função terminar

Esquemas Recursivos não apropriados

- Quando existe uma única chamada do procedimento/função recursivo no fim ou no começo, o procedimento/função é facilmente transformado numa iteração simples
- É boa politica não usar recursividade quando existe um algoritmo iterativo mais simples ou igualmente claro que resolva o problema. É o caso da função Par() vista anteriormente
- Quando o uso de recursividade acarreta num número maior de cálculos, exemplo função Fibonacci

Quando usar Recursividade

- Algoritmos recursivos são apropriados quando o problema a ser resolvido, a função ou os dados, estão definidos em termos recursivos ou por indução
- O problema é naturalmente recursivo (clareza) e a versão recursiva do algoritmo não gera ineficiência evidente se comparado com a versão iterativa do mesmo algoritmo

Exemplos: Permutações, Torres de Hanoi, ...