Symulacja procesów dyskretnych – Ewa Figielska

Zadanie

Rozważany jest system obsługi, w którym 5 zadań jest obsługiwanych kolejno przez dwa procesory.

Każdy procesor może w danej chwili obsługiwać tylko jedno zadanie. Przed każdym z procesorów znajduje się bufor, w którym zadania mogą czekać na obsługę, gdy procesor jest zajęty obsługą innego zadania. Z pierwszego bufora zadania mogą być pobierane w dowolnej kolejności; w chwili początkowej bufor ten mieści wszystkie zadania. W buforze drugim przechowywane są zadania opuszczające pierwszy procesor; zadania przebywające w tym buforze opuszczają go w takiej samej kolejności, w jakiej do niego wchodzą. Czasy wykonywania zadań na poszczególnych procesorach podane są w tabeli:

	Zadanie 1	Zadanie 2	Zadanie 3	Zadanie 4	Zadanie 5
Procesor 1	5	5	35	8	3
Procesor 2	7	2	5	35	4

A. Przeprowadzić symulację obsługi zadań na dwóch procesorach, przy nieograniczonej pojemności drugiego bufora i różnych regułach kolejności pobierania zadań z bufora pierwszego. Wyznaczyć długość uszeregowania, *T*, oraz średni czas przebywania zadania w systemie, *SCP*.

Zadania ustawione są w kolejności:

- 1. naturalnej
- 2. według niemalejących czasów obsługi na procesorze1 (SPT)
- 3. zgodnie z regułą Johnsona

	Zadanie 1		Zadanie 2	Zadanie 3	Zadanie 4		Zada	nie 5
Procesor 1	5	5	5	35	8		3	3
Procesor 2		<mark>7</mark>	2	5	3.	<mark>5</mark>		<u> </u>

Bufor przed p2 ma nieograniczoną pojemność

Uszeregowanie zadań w kolejności naturalnej: z1, z2, z3, z4, z5

T = 92 SCP = (12+14+50+88+92)/5 = 51.2

Uszeregowanie zadań w kolejności SPT: z5, z1, z2, z4, z3

T = 61 SCP = (7+15+17+56+61)/5 = 31.2 Mała wartość, ale niekoniecznie optymalna

Uszeregowanie zadań za pomocą algorytmu Johnsona: z5, z1, z4, z3, z2

T = 58 Wartość optymalna SCP = (7+15+51+56+58)/5 = 37.4

Algorytm Johnsona:

Wybierz zadania, dla których czas wykonywania na pierwszym procesorze jest nie większy niż czas wykonywania na drugim procesorze. Przydzielaj te zadania do procesorów w kolejności niemalejących czasów wykonywania na pierwszym procesorze.

Pozostałe zadania przydzielaj do procesorów w kolejności nierosnących wartości czasów wykonywania na drugim procesorze.

Algorytm ten daje uszeregowanie na dwóch procesorach o najmniejszej możliwej długości.

	P1	P2	P1		P2		
Zadanie	Czas wykonywania,	Czas wykonywania,	Najwcześniejszy czas rozpoczęcia,	Najwcześniejszy czas zakończenia,	Najwcześniejszy czas rozpoczęcia,	Najwcześniejszy czas zakończenia,	
	t1	t2	RP1	ZP1	RP2	ZP2	
1	t1(1)	t2(1)	0	RP1(1) + t1(1)	ZP1 (1)	RP2(1) + t2(1)	
2	t1(2)	t2(2)	ZP1 (1)	RP1(2) + t1(2)	max(ZP1(2), ZP2(1))	RP2(2) + t2(2)	
3	t1(3)	t2(3)	ZP1(2)	RP1(3) + t1(3)	max(ZP1(3), ZP2(2))	RP2(3) + t2(3)	
4	t1(4)	t2(4)	ZP1(3)	RP1(4) + t1(4)	max(ZP1(4), ZP2(3))	RP2(4) + t2(4)	
5	t1(5)	t2(5)	ZP1(4)	RP1(5) + t1(5)	max(ZP1(5), ZP2(4))	RP2(5) + t2(5)	

Długość uszeregowania: $T = max\{C_j\}$, gdzie C_j jest to czas zakończenia zadania j na ostatnim procesorze. Średni czas przepływu: $SCP = \frac{1}{n}\sum C_j$, gdzie n jest liczbą zadań.

Uszeregowanie zadań w kolejności naturalnej: z1, z2, z3, z4, z5

	P1	P2	P1		P2	
Zadanie	Czas wykony wania, t1	Czas wykony wania, t2	Najwcześniejszy czas rozpoczęcia, RP1	Najwcześniejszy czas zakończenia, ZP1	Najwcześniejszy czas rozpoczęcia, RP2	Najwcześniejszy czas zakończenia, ZP2
1	5	7	0	5	5	12
2	5	2	5	10	12	14
3	35	5	10	45	45	50
4	8	35	45	53	53	88
5	3	4	53	56	88	92

B. Dla kolejności SPT1 przeprowadzić symulację obsługi zadań przy założeniu braku bufora przed procesorem drugim (bufor ma pojemność 0).

Uszeregowanie zadań w kolejności SPT: z5, z1, z2, z4, z3

T = 61 SCP = (7+15+17+56+61)/5 = 31.2

Mała wartość, ale niekoniecznie optymalna

SCP = (7+15+17+58+63)/5 = 32

Uwaga: Gdy b = 0, to do rozpoczęcia obsługi zadania n (tzn. n-tego z kolei) na p1 trzeba, by zakończyła się obsługa zadania n - 2 (tzn. n - 2 z kolei) na p2

	P1	P2	P1		P2		
Zadanie	Czas wykonywania, t1	Czas wykonywania, t2	Najwcześniejszy czas rozpoczęcia, RP1	Najwcześniejszy czas zakończenia, ZP1	Najwcześniejszy czas rozpoczęcia, RP2	Najwcześniejszy czas zakończenia, ZP2	
1	t1(1)	t2(1)	0	RP1(1) + t1(1)	ZP1 (1)	RP2(1) + t2(1)	
2	t1(2)	t2(2)	ZP1 (1)	RP1(2) + t1(2)	max(ZP1(2), ZP2(1))	RP2(2) + t2(2)	
3	t1(3)	t2(3)	max(ZP1(2), ZP2(1))	RP1(3) + t1(3)	max(ZP1(3), ZP2(2))	RP2(3) + t2(3)	
4	t1(4)	t2(4)	max(ZP1(3), ZP2(2))	RP1(4) + t1(4)	max(ZP1(4), ZP2(3))	RP2(4) + t2(4)	
5	t1(5)	t2(5)	max(ZP1(4), ZP2(3))	RP1(5) + t1(5)	max(ZP1(5), ZP2(4))	RP2(5) + t2(5)	

Uwaga: Gdy b=1, żądać trzeba, by na p2 zakończyła się obsługa zadania n-3 (n-2 może być w buforze)