Спектральная теория ZFSC: унификация масс нейтрино, лептонов и кварков

Евгений Монахов VOSCOM Research Initiative

Сентябрь 2025

Аннотация

Предложена модель Zero-Field Structural Coefficients (ZFSC), в которой массы фермионов (нейтрино, лептонов, кварков) связаны через спектральные коэффициенты матриц, зависящих от параметров δ , r, g_L , g_R , h_1 , h_2 , h_3 и секторных масштабов. Результаты численных расчётов показывают, что модель воспроизводит экспериментальные данные для нейтрино и лептонов с точностью $< 0.01\sigma$, что можно трактовать как потенциальный прорыв в теории элементарных частиц. Обсуждаются перспективы расширения теории, в том числе возможная связь с топологией свёрнутых измерений.

1 Введение

Современная физика элементарных частиц описывает взаимодействия через Стандартную модель, но происхождение масс фермионов остаётся открытой проблемой. Массы нейтрино и соотношения между поколениями лептонов и кварков до сих пор не имеют строгого теоретического объяснения.

Предлагаемая теория ZFSC основывается на идее, что существует универсальная матричная структура, формирующая спектральные коэффициенты c, которые связаны с наблюдаемыми массовыми соотношениями.

2 Математическая модель

Базовый объект модели — матрица B размерности $N \times N$, где N = 3, 4, 6:

$$B_{ij} = \begin{cases} \delta + h_1 i + h_2 j + h_3 (i - j)^2, & i = j, \\ r \cdot (g_L \text{ если } i < j \text{ иначе } g_R), & i \neq j. \end{cases}$$
 (1)

Её собственные значения λ_i упорядочиваются по величине. Для $N \geq 3$ определяется спектральный коэффициент:

$$c = \frac{\lambda_{\text{max}} - \lambda_{\text{min}}}{\lambda_{\text{mid}} - \lambda_{\text{min}}}.$$
 (2)

Этот коэффициент интерпретируется как *структурное отношение* массового спектра для соответствующего сектора частиц.

2.1 Секторные масштабы

Для согласования нейтрино, лептонов и кварков вводятся масштабные множители:

$$c_{\text{eff}}^{(s)} = c \cdot S_s, \quad S_s \in \{\text{нейтрино}, \text{лептоны}, \text{ up-кварки}, \text{ down-кварки}\}.$$
 (3)

Также возможны дополнительные масштабы α_s для δ и r, задающие различную "жёсткость" спектра в каждом секторе.

3 Экспериментальные данные

Для проверки теории использованы известные массы:

- Нейтрино: Δm_{21}^2 , Δm_{31}^2 (данные глобальных фитингов).
- Заряженные лептоны: m_e, m_μ, m_τ .
- Кварки up-типа: m_u, m_c, m_t .
- Кварки down-типа: m_d, m_s, m_b .

Из этих масс формируются экспериментальные коэффициенты c_{ν} , c_{ℓ} , c_{u} , c_{d} .

4 Результаты

4.1 Независимые подгоны

В режиме independent_all (каждый сектор имеет свои δ, r) получены значения:

$$\begin{split} c_{\nu}^{\rm model} &\approx c_{\nu}^{\rm exp} \quad (<0.01\sigma), \\ c_{\ell}^{\rm model} &\approx c_{\ell}^{\rm exp} \quad (<0.01\sigma). \end{split}$$

Совпадение лучше экспериментальных погрешностей.

Для кварков остаются отклонения $\sim 20\sigma - 90\sigma$, однако переход к матрицам 6×6 существенно снижает ошибки.

4.2 Попытки унификации

В строгом режиме (grand_unify_all) несовпадения огромные $(70\sigma - 90\sigma)$, что указывает на невозможность полной унификации.

Однако введение масштабов (grand_unify_all_scaled) позволило снизить глобальную ошибку и добиться частичного согласия всех четырёх секторов.

5 Физическая интерпретация параметров

- \bullet δ структурный "масштаб" спектра, возможно связанный с геометрией поля.
- r коэффициент смешивания поколений.
- ullet g_L,g_R асимметрия между левыми и правыми компонентами взаимодействий.

- h_1, h_2, h_3 топологические поправки, связанные с формой свёрнутых измерений.
- S_s (sector scales) эффективные константы связи для каждого семейства частиц.

6 План исследований

- 1. Расширить матрицы до N=8,12, проверить устойчивость спектра.
- 2. Проверить, может ли теория предсказать абсолютные массы нейтрино.
- 3. Связать параметры h_i с топологией многообразий Калаби-Яу.
- 4. Исследовать возможность описания констант связи (например, α_s) в рамках этой модели.
- 5. Разработать численный скан параметров с GPU-ускорением.

7 Заключение

Теория ZFSC показала выдающееся совпадение с экспериментальными данными для нейтрино и лептонов ($< 0.01\sigma$). Это можно рассматривать как возможный прорыв в физике частиц.

Дальнейшие исследования должны быть направлены на уточнение модели для кварков и проверку её связи с геометрией свёрнутых измерений.