Vertical Sticks

Given an array of integers $Y=[y_1,y_2,\ldots,y_n]$, we have n line segments, such that, the endpoints of i^{th} segment are (i,0) and (i,y_i) . Imagine that from the top of each segment a horizontal ray is shot to the left, and this ray stops when it touches another segment or it hits the y-axis. We construct an array of n integers, $[v_1,v_2,\ldots,v_n]$, where v_i is equal to length of ray shot from the top of segment i. We define $V(y_1,y_2,\ldots,y_n)=v_1+v_2+\ldots+v_n$.

For example, if we have Y = [3, 2, 5, 3, 3, 4, 1, 2], then $v_1, v_2, \dots, v_8 = [1, 1, 3, 1, 1, 3, 1, 2]$, as shown in the picture below:

For each permutation p of $[1,2,\ldots,n]$, we can calculate $V(y_{p_1},y_{p_2},\ldots,y_{p_n})$. If we choose a uniformly random permutation p of $[1,2,\ldots,n]$, what is the expected value of $V(y_{p_1},y_{p_2},\ldots,y_{p_n})$?

Input Format

The first line contains a single integer $T(1 \le T \le 100)$. Ttest cases follow.

The first line of each test-case is a single integer N (1 <= n <= 50), and the next line contains positive integer numbers y_1, y_2, \dots, y_n separated by a single space (0 < y_i <= 1000).

Output Format

For each test-case output expected value of $V(y_{p_1}, y_{p_2}, \dots, y_{p_n})$, rounded to two digits after the decimal point.

Sample Input

```
6
3
123
3
333
3
34
4
10244
5
101010510
6
123456
```

Sample Output

```
4.33
3.00
4.00
6.00
5.80
11.15
```

Explanation

Case 1: We have V(1,2,3)=1+2+3=6, V(1,3,2)=1+2+1=4, V(2,1,3)=1+1+3=5 , V(2,3,1)=1+2+1=4, V(3,1,2)=1+1+2=4, V(3,2,1)=1+1+1=3 .

Average of these values is 4.33.

Case 2: No matter what the permutation is, $V(y_{p_1},y_{p_2},y_{p_3})=1+1+1=3$, so the answer is 3.00.

Case 3: $V(y_1,y_2,y_3) = V(y_2,y_1,y_3) = 5$,

 $V(y_1,y_3,y_2)=V(y_2,y_3,y_1)=4$,

 $V(y_3,y_1,y_2)=V(y_3,y_2,y_1)=3$,

and average of these values is 4.00.