Assignment 7 Zhiyuan We; zwei 26 EN553.632.02 1. Yij= Mt Wit &ij, i=1,..., I, j=1,..., J Then Yi ~ N (M+d;, 02) P(Y|di,..., oz) = It It P(4) | \(\alpha_i, \mu, \sighta_e) = 11 1 57.6 exp (- (41)-4-41)) P(uldi,..., de, oe, Y) & Till P(yij di, u, oe), for u has a flat prior $\propto \exp\left(-\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}(y_{ij}-\mu-\alpha_{i})^{2}\right)$ (xexp(-2(an2 -2bn+c)) for $a = \frac{\overline{IJ}}{\overline{O_e^2}}$, $b = \frac{\sum_{i=1}^{1} y_{ij} - J\sum_{i=1}^{1} \lambda_i}{y_{ij} - J\sum_{i=1}^{1} \lambda_i}$ We have P(M/d,, wI, oz, Y)~N(, y-Z, oz P(\(\lambda\) \(\mathbb{\mathba{\mathbb{\mathba{\mathba\\\\\\\\\\\\\mathba{\mathba{\mathba{\mathba{\mathba{\mathba\\\\\\\\\\\\\\\\\\\ dep(06 d; + 52 [4:j-4-4:)2) ~ exp(- ± (ax;2-26x;+C)) Normal (Xi; à, à

oi + oi , lo = yu-Ju

So We have P(X; M, oz, Y) ~ N(\(\frac{J(\frac{y_i-u}{y_i-u}}{J} \) , \(\frac{J}{\sigma_e^2} \) + \(\frac{J}{\sigma_e^2} \) = \(

	IJ
	$P(\sigma_{e}^{2} X_{1},X_{T},\mu,Y) \propto \prod_{i} P(y_{ij} X_{i},\mu,\sigma_{e}^{2}) P(\sigma_{e}^{2})$ $\propto (\sigma_{e})^{2} \exp(-\frac{\epsilon^{2}\epsilon^{3}(y_{ij}-\mu-\alpha_{i})^{2}}{2\sigma_{e}^{2}}) b_{f(a)}^{q}(\sigma_{e}) \exp(-\frac{b}{\sigma_{e}^{2}})$
	$\propto (O_a)^{TJ} \exp(-\Xi^T \Xi^J (y_{ij} - \mu - \alpha_i)^2) h^q = \frac{1}{(\sigma^2)^2 - q+1}$
	200) (a) (ve) exp(=00)
	$(\sigma_{\epsilon}^{2}) \stackrel{(a+\frac{11}{2})+1}{=} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \frac{1}{(y_{ij}-u-\alpha_{i})^{2}} \frac{1}{\sigma_{\epsilon}^{2}}$
	< (O ₆) exp(-(bt ≥ z)(y:j-u-d:) ² + 2)
	Thus, P(02/d,, dI, u, Y)~ Inverse Jamma (a+ I) b+ ZZJ(yij-4-00)
u state	5 (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
2	Convergence diagnosis is to check whether the MCMC algorithm
	converged at certain iteration T so that the output can be the the simulation of the true distribution for all
	be the true simulation of the true distribution for all
	t > T. Otherwise, the simulation will be baised.
	La State of the same of the sa
	We can use traveplot or autocorrelation plot to check
	We can use traceplot or autocorrelation plot to check for convergence.
	If the samples is suffering from slow convergence We can
· 冰 元:	If the sampler is suffering from slow convergence, We can either discard some parameters that are have high computation cost or design a better model to reduce the autocorrelations.
	cost as driver in hottor wild to make the outs correlations
	Cost of acign a sector model to feather the that contents.
3	Conditions that inight areation the identificiality of the garangeor
	Conditions that might weaken the identifiability of the parameter can be a biased prior of M and Low group size I that cause not enough also cause limited information.
	that save almost the save and cow group sizes
-	That case not enough also cause limited information.
7	Es avi hure P(X/M, of Y) ~ MC - Co
1 10	

4	For two parameterizations:
We 1	have ii) (a, \angle) : when $N(\bar{y}-\bar{z}, \frac{\sigma_{\epsilon}}{IJ})$
	(Xi) rou ~ 11/J (5:-1)
	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$(\sqrt{\frac{J(5:-1)}{J}})$ $(\sqrt{\frac{J(5:-1)}{J}})$ $(\sqrt{\frac{J(5:-1)}{J}})$ $(\sqrt{\frac{J(5:-1)}{J}})$ $(\sqrt{\frac{J(5:-1)}{J}})$
1333	(μ, η) : $\mu red \sim N(\bar{\eta}, \frac{G^2}{2})$
(1)	you, you rest to /v(1), I)
	$\frac{\mathcal{J}_{i}}{\mathcal{J}_{i}} + \frac{\mathcal{J}_{i}}{\mathcal{J}_{i}} + \frac{\mathcal{J}_{i}}{\mathcal{J}_{i}}$
	J. J. J.
	$\frac{1}{R^2} + \frac{1}{R^2} + \frac{1}{R^2}$
Mb	150 the following shows to implyed to Cithe Com-
21/2	use the following above to implement a Gibbs sample have the both parameter parametrizations, a form the result of autocorrelation plots show to performances for two parameter spaces are similar
BOEL	of the recult of outerablets about of
1-10	mi forman lac for Ain nammeter chance are cimila
PHE	projumentos de mo promos con sintila
-	
5.	We implemented the Gibbs samplers above again, be of = 10 into
with	$Q^2 = 10$
The	result shows that with (M) (M, M), we have ber performance than (u, x) large value of the hierarchic tering reparametrizations are preferred.
heft	for performance than (4 x
Ano	this suggests that with large value of the hierarchic
CPAT	tering reparametrizations are preferred
30.5	
	아마면 사람들에게 하면 되었다. 그렇게 하는 사람이라는 그녀들이 되는 그 나를 하는 것이다. 그 가는 그리는 그렇게 되었다. 그렇게 현재하였다. 그 점점에게 되었다.

Assignment 7(2)

8.3

```
library(dplyr)
library(tidyr)
library(MCMCpack)
library(coda)
library(MASS)
schools.list = lapply(1:8, function(i) {
    f = paste("school",i,".dat",sep="")
    w = read.table(f)

    data.frame(
        school = i,
        hours = w[, 1] %>% as.numeric
    )
})
Y = do.call(rbind, schools.list)
```

(a)

```
# Prior
mu0 = 7
g0_square = 5
tau0_square = 10
eta0 = 2
sigma0_square = 15
nu0 = 2
m=8
# Starting values
n = sample_var = ybar = rep(NA, m)
for (i in 1:m) {
 Y_i = Y[Y[, 1] == i, 2]
 ybar[i] = mean(Y_i)
  sample_var[i] = var(Y_i)
 n[i] = length(Y_i)
}
theta = ybar
sigma2 = mean(sample_var)
mu = mean(theta)
tau2 = var(theta)
#Gibbs
S = 2000
THETA = matrix(nrow = S, ncol = m)
SMT = matrix(nrow = S, ncol = 3)
colnames(SMT) = c('sigma2', 'mu', 'tau2')
for (s in 1:S) {
```

```
# Sample theta
  for (j in 1:m) {
   vtheta = 1 / (n[j] / sigma2 + 1 / tau2)
    etheta = vtheta * (ybar[j] * n[j] / sigma2 + mu / tau2)
   theta[j] = rnorm(1, etheta, sqrt(vtheta))
  # Sample sigma square
  nun = nu0 + sum(n)
  ss = nu0 * sigma0_square
  for (j in 1:m) {
   ss = ss + sum((Y[Y[, 1] == j, 2] - theta[j])^2)
  sigma2 = 1 / rgamma(1, nun / 2, ss / 2)
  # Sample mu
  vmu = 1 / (m / tau2 + 1 /g0_square)
  emu = vmu * (m * mean(theta) / tau2 + mu0 / g0_square)
  mu = rnorm(1, emu, sqrt(vmu))
  # Sample tau square
  etam = eta0 + m
  ss = eta0 * tau0_square + sum((theta - mu)^2)
  tau2 = 1 / rgamma(1, etam / 2, ss / 2)
 THETA[s,] = theta
  SMT[s, ] = c(sigma2, mu, tau2)
}
par(mfrow = c(3,1))
plot(SMT[,1],type = "l",ylab = "Sigma square")
plot(SMT[,2],type = "1",ylab = "Mu")
plot(SMT[,3],type = "l",ylab = "Tau square",ylim = c(0,20))
```


effectiveSize(SMT[, 1])

var1 ## 2000

```
effectiveSize(SMT[, 2])
##
      var1
## 1688.83
effectiveSize(SMT[, 3])
##
       var1
## 1397.734
We can see from the trace plot that our Markov Chain is stationary and converge to certain value instead of
bouncing up and down. And we ran the chain long enough since we can see that the effective sizes for \sigma^2,
\mu, and \tau^2 are all above 1000.
(b)
#posterior means of sigma square
mean(SMT[,1])
## [1] 14.45891
#95% confidence region for sigma square
quantile(SMT[,1], prob=c(0.025,0.975))
##
       2.5%
               97.5%
## 11.68156 17.80508
#posterior means of mu
mean(SMT[,2])
## [1] 7.55811
#95% confidence region for mu
quantile(SMT[,2],prob=c(0.025,0.975))
##
       2.5%
               97.5%
## 5.895801 9.093516
#posterior means of tau square
mean(SMT[,3])
## [1] 5.477331
#95% confidence region for tau square
quantile(SMT[,3], prob=c(0.025,0.975))
##
        2.5%
                 97.5%
   1.885764 14.077872
par(mfrow = c(1,3))
seq1 = seq(0.1, 100, by = 0.1)
plot(density(SMT[,1]),main = "",xlab="sigma square",col="gold",lwd=2)
lines(seq1, dinvgamma(seq1, nu0/2, nu0*sigma0_square/2),col="red",lwd=2)
plot(density(SMT[,2]),main = "",xlab="mu",col="gold",lwd=2)
lines(seq1, dnorm(seq1, mu0, sqrt(g0_square)),col="red",lwd=2)
plot(density(SMT[,3]),main = "",xlab="tau square",col="gold",lwd=2)
lines(seq1, dinvgamma(seq1, eta0/2, eta0*tau0_square/2),col="red",lwd=2)
legend('topright', lty = 1, legend = c('posterior', 'prior'), col=c("gold", "red"))
```


The posterior means and 95% confidence regions for σ^2 , μ , and τ^2 are above. We can also see from the plots that our prior beliefs for σ^2 , μ , and τ^2 are more widespread, and the densities for posterior show a more certain update on our beliefs. All three parameters changed a lot visually, while the distribution for σ^2 is the farthest from out prior belief.

(C)

```
r_post = SMT[,3]/(SMT[,1]+SMT[,3])
tau0_square_sample = 1/rgamma(S, eta0/2, eta0*tau0_square/2)
sigma0_square_sample = 1/rgamma(S, nu0/2, nu0*sigma0_square/2)
r_prior = tau0_square_sample/(sigma0_square_sample+tau0_square_sample)
plot(density(r_post), col = "gold", xlab = "R",main = 'Density of R',lwd=2)
lines(density(r_prior), col = "red",lwd=2)
legend('topright', lty = 1, col = c("gold", "red"), legend = c('Posterior', 'Prior'))
```

Density of R

mean(r_post)

[1] 0.2589224

R is the variation between schools over total variation. And we found out that around 26% of the variation is between-school variation.

```
(d)
```

```
mean(THETA[, 7] < THETA[, 6])
```

[1] 0.531

```
mean(apply(THETA, 1, which.min) == 7)
```

[1] 0.322

We can see that $P(\theta_7 < \theta_6|rest) \approx 0.52$ and $P(\theta_7 = min(\theta)|rest) \approx 0.33$.

(e)

```
post_expect = colMeans(THETA)
plot(post_expect,ybar,pch=1,xlab = "Posterior Expectations",ylab = " Sample Averages")
abline(a = 0, b = 1,col="red")
```



```
#sample mean of all observations
mean(Y[, 2])

## [1] 7.691278

#posterior mean of mu
mean(SMT[, 2])
```

[1] 7.55811

Our sample mean of all observations is around 7.691 and posterior mean of μ is around 7.546. From the plot, we can see that there is a strong relationship between the sample averages and the posterior expectations. Also, schools with high or low sample averages tend to pull away from the posterior expectations while schools with sample averages close to the global mean have a less difference between its group posterior expectations and group sample average.