MTH 2215 APPLIED DISCRETE MATHEMATICS

Chapter 4, Section 4.1 Mathematical Induction

These class notes are based on material from our textbook, **Discrete Mathematics and Its Applications**, 6th ed., by Kenneth H. Rosen, published by McGraw Hill, Boston, MA, 2006. They are intended for classroom use only and are **not** a substitute for reading the textbook.

Mathematical Induction

- Used to prove propositions of the form $\forall nP(n)$, where $n \in \mathbb{Z}^+$
- Can be used only to prove results originally obtained in some other way ---
- Not a tool for discovering new theorems

Steps

- A proof by mathematical induction that P(n) is true for every positive integer n consists of two steps:
 - -Basis step: The proposition P(1) is shown to be true.
 - -Inductive step: The implication $P(k) \rightarrow P(k+1)$ is shown to be true for every positive integer k.

Mathematical Induction

• Expressed as a rule of inference, this proof technique can be stated as

$$[P(1) \land \forall k(P(k) \rightarrow P(k+1))] \rightarrow \forall nP(n)$$

- It is not assumed that P(k) is true for all positive integers!
- It is only shown that if it is assumed that P(k) is true for some individual (but unspecified) k, then P(k+1) is also true.
 - -not a case of circular reasoning

Mathematical Induction

• When we use mathematical induction to prove a theorem, we first show that P(1) is true. Then we know:

$$P(1) \rightarrow P(2)$$
 Therefore, $P(2)$ is true $P(2) \rightarrow P(3)$ Therefore, $P(3)$ is true $P(3) \rightarrow P(4)$ Therefore, $P(4)$ is true

$$P(l-2) \rightarrow P(l-1)$$
 Therefore, $P(l-1)$ is true $P(l-1) \rightarrow P(l)$ Therefore, $P(l)$ is true

- Assume that you live in the 1950's, when postage for a first-class letter weighing 1 ounce or less cost 8¢.
- Heavier letters require more postage: an additional 1¢ for each extra ounce.
- You have a supply of 3¢ and 5¢ stamps.
- Theorem: Using 3¢ anf 5¢ stamps, you can put the correct postage on a letter of any weight.

Three cases

- Base case: A letter weighing ≤ 1 ounce requires 8¢ postage. One 3¢ and one 5¢ stamp = 8¢.
- A letter weighing up to 1 once more than our base case (i.e., 2 ounces) requires 9¢ postage. We observe that: (a) 9¢ is 1¢ more than 8¢, and (b) 6¢ is 1¢ more than 5¢. Since 6¢ is 3¢ + 3¢, we can replace the 5¢ stamp in the base case with two 3¢ stamps: 3¢ + 3¢ + 3¢ = 9¢.
- A letter weighing 3 ounces requires 10ϕ postage. We know: (a) 10ϕ is 1ϕ more than 9ϕ , and (b) two 5ϕ stamps are 1ϕ more than three 3ϕ stamps. So we replace the three 3ϕ stamps in our previous case with two 5ϕ stamps. $5\phi + 5\phi = 10\phi$.

Induction step

- Can we devise a general rule based on these cases? Yes:
- Suppose we have the correct postage for a letter that requires $k\phi$ worth of stamps, and the stamps include at least one 5ϕ stamp. In that case we can supply the correct postage for a letter requiring $(k+1)\phi$ worth of stamps by replacing a 5ϕ stamp with two 3ϕ stamps.
- Suppose we have the correct postage for a letter that requires $k\phi$ worth of stamps, and the stamps include at least three 3ϕ stamps. In that case we can supply the correct postage for a letter requiring $(k+1)\phi$ worth of stamps by replacing three 3ϕ stamps with two 5ϕ stamps.

Does this work for any *k*?

- Yes, it does.
- k = 8¢: use one 3¢ and one 5¢ stamp (base case)
- $k = 9\phi$: does k-1 have at least one 5ϕ stamp? Yes; then replace 5ϕ stamp with two 3ϕ stamps.
- $k = 10\phi$: does k-1 have at least one 5ϕ stamp? No. Does k-1 have at least three 3ϕ stamps? Yes; then replace three 3ϕ stamps with two 5ϕ stamps.
- $k = 11\phi$: does k-1 have at least one 5ϕ stamp? Yes; then replace with two 3ϕ stamps.
- $k = 12\phi$: does k-1 have at least one 5ϕ stamp? No. Does k-1 have at least three 3ϕ stamps? Yes; then replace three 3ϕ stamps with two 5ϕ stamps.
- etc. ...

- Let S_n denote the sum of the first n positive integers. Using inductive proof, we want to show that for any $n \ge 1$, $S_n = (n(n + 1))/2$.
- Every inductive proof has the same pattern:
 - (1) we establish that some statement S(k) is true for some particular value of k [the *basis*], and then
 - (2) we prove that, if S(n) is true for n [the *inductive* hypothesis], it **must** be true for n + 1.

- When we ask, "What is the *basis* for this proof?" we are asking, "what do we already know, or could show by demonstration if asked to do so."
- Since the proof involves positive integers and the condition is that $n \ge 1$, we start with n = 1:

$$S_1 = (1 (1 + 1)) / 2 = 2 / 2 = 1$$

- What is the *inductive hypothesis* for this proof?
- We know that S_k is true for some k, namely, k = 1. Our inductive hypothesis is that S_k is true for any k < (n + 1), that is:

$$S_n = (n (n + 1)) / 2$$

• Our job will be to prove that S_{n+1} is also true. That is, we must prove that:

$$S_{n+1} = ((n+1)((n+1)+1))/2$$

(This is our *goal*; we got this by substituting n + 1 for n in our inductive hypothesis.)

Give the proof:

1)
$$S_{n+1} = 1 + 2 + 3 + ... + n + (n + 1)$$

2) =
$$S_n$$
 + $(n + 1)$

$$3) = n(n+1)/2 + (n+1)$$

4) =
$$(n2 + n) / 2$$
 + $(n + 1)$

$$5) = (n2 + n) / 2 + (2n + 2)/2$$

$$6) = (n2 + 3n + 2) / 2$$

$$7) = (n + 1) (n + 2) / 2$$

8) =
$$((n + 1) ((n + 1) + 1)) / 2$$

9) Q.E.D.

definition

substitution

ind. hyp. + sub.

distribution

mult. by 2/2

addition

factoring

2 = 1 + 1

In every inductive proof we need to start from something we already know, and derive the goal statement, using the inductive hypothesis somewhere in the proof.

Homework Exercises

Use mathematical induction to show that

$$a + ar + ar^2 + ... + ar^n = (ar^{n+1} - a)/(r - 1)$$
 for all non-negative integers n .

• Conjecture a formula for the sum of the first *n* positive odd integers. Then prove your conjecture using mathematical induction.

MTH 2215 APPLIED DISCRETE MATHEMATICS

Chapter 4, Section 4.2 Strong Induction and Well-Ordering

Mathematical Induction (Recap)

- A proof by mathematical induction that P(n) is true for every positive integer n consists of two steps:
 - -Basis step: The proposition P(1) is shown to be true.
 - -Inductive step: The implication $P(k) \rightarrow P(k+1)$ is shown to be true for every positive integer k.

Mathematical Induction (Recap)

- The inductive step can be thought of as also consisting of two parts:
 - Assume P(k)
 - Prove P(k + 1)

• Use mathematical induction to prove that $2^k > k$ for all positive integers k.

- What is the *basis* for the proof?
- For this problem, the basis is when k = 1, so P(1) is the assertion that $2^1 > 1$.
- This is obviously true.

- The inductive step is to:
 - Assume P(k)
 - Prove P(k + 1)
- P(k) is the assertion that $2^k > k$. We can assume that this is true.
- Now we try to prove that P(k + 1) is also true. P(k + 1) is the assertion that $2^{k+1} > k + 1$.

- The inductive step is to:
 - Assume P(k)
 - Prove P(k + 1)
- P(k) is the assertion that $2^k > k$. We can assume that this is true.
- Now we try to prove that P(k + 1) is also true. P(k + 1) is the assertion that $2^{k+1} > k + 1$.

• Work through the proof:

$$2^{k+1} = 2^k \cdot 2$$

$$2^k > k$$

$$2^{k} \cdot 2 > k \cdot 2$$

$$2^{k+1} > k \cdot 2$$

$$k \cdot 2 = k + k$$

$$2^{k+1} > k + k$$

$$k + k > k + 1$$

$$2^{k+1} > k+1$$

Q.E.D.

Def. of 2^{k+1}

Inductive hypothesis

Mult. both sides by 2

Substitution

Def. of "times 2"

Substitution

True if *k* is a pos. int.

Substitution

• Use mathematical induction to prove that $k^3 - k$ is divisible by 3 whenever k is a positive integer.

- What is the *basis* for the proof?
- For this problem, the basis is when k = 1, so P(1) is the assertion that $1^3 1$ is divisible by 3.
- $1^3 1 = 0$, which is divisible by 3 (with no remainer). This is obviously true.

- The inductive step is to:
 - Assume P(k)
 - Prove P(k + 1)
- P(k) is the assertion that $k^3 k$ is divisible by 3. We can assume that this is true.
- Now we try to prove that P(k + 1) is also true. P(k + 1) is the assertion that $(k + 1)^3 (k + 1)$ is divisible by 3.

$$(k+1)^3 - (k+1)$$
 $= (k^3 + 3k^2 + 3k + 1) - (k+1)$ Carrying out the mult.
 $= (k^3 + 3k^2 + 3k + 1) - k - 1$ Distrib. the - $= (k^3 - k) + 3(k^2 + k)$ Rearrange & subtract $(k^3 - k)$ is divisible by 3 Ind. hyp. $3(k^2 + k)$ Def. of "3 *" $\therefore (k^3 - k) + 3(k^2 + k)$ is divisible by 3 O.E.D.

Well-Ordered Sets

- The validity of mathematical induction follows from a fundamental axiom about the set of integers called the *Well-Ordering Property:*
 - -Every nonempty set of nonnegative integers has a *least element*

Why Mathematical Induction Is Valid

- Suppose we know that P(1) is true and that the proposition $P(k) \rightarrow P(k+1)$ is true for all positive integers k.
- To show that P(n) must be true for all positive integers, assume that there is at least one positive integer for which P(n) is false.
- Then the set S of positive integers for which P(n) is false is nonempty.

Why Mathematical Induction Is Valid

- By the well-ordering property, S has a <u>least</u> <u>element</u>, which will be denoted by m. We know that m cannot be 1, since P(1) is true.
- Since m > 1, m 1 is a positive integer.
- Furthermore, since m 1 is less than m, it is not in S, so P(m 1) must be true.

Why Mathematical Induction Is Valid

- Since the implication $P(m-1) \rightarrow P(m)$ is also true, it must be the case that P(m) is true.
- This contradicts the choice of m.
- Hence, P(n) must be true for every positive integer n.

Strong Induction

- To prove that P(n) is true for every positive integer n consists of two steps:
 - -Basis step: The proposition P(1) is shown to be true.
 - -Inductive step: The implication $[P(1) \land P(2) \land \dots \land P(k)] \rightarrow P(k+1)$ is shown to be true for every positive integer k.

Strong Induction

- We can express the principle of strong induction in a slightly different way that may be a little clearer: The following two statements:
- P(1) is true
- $[(\forall k)P(r)]$ is true for all r, where $1 \le r \le k$, $\rightarrow P(k+1)$ is true

mean that

• P(n) must be true for every positive integer k.

• Use Strong Induction to show that if n is an integer greater than 1, then n can be written as the product of primes.

- Let P(n) mean "n can be written as the product of primes"
- Can we find a basis step? Yes; 2 is the product of one prime, itself. So P(2) is true.
- What is the inductive hypothesis. Since this is a strong induction proof, we assume that P(j) is true for all positive integers j with j ≤ k.

- This means that we can assume that j can be written as the product of primes whenever j is a positive integer ≥ 2 and $j \leq k$.
- What do we need to prove? That P(k+1) is also true; that is, that k+1 can also be written as the product of primes.

- Proof, case 1: Consider the case that k + 1 is prime. Then (k + 1) can be written as the product of one prime, itself. Q.E.D.
- Case 2: Consider the case that k + 1 is not prime. Then k + 1 must be a *composite* positive integer which, by definition, can be written as the product of two positive integers a and b, with $2 \le a \le b \le k$.

- Remember that our inductive hypothesis says that we can assume that a (or b) can be written as the product of primes whenever a (or b) is a positive integer ≥ 2 and a (or b) $\leq k$.
- Therefore, k + 1 = (the primes in the prime factorization of a) (the primes in the prime factorization of b). Q.E.D.

MTH2215 APPLIED DISCRETE MATHEMATICS

Chapter 4, Section 4.3 Recursive Definitions

Recursion

- We can define a sequence, series, or function in terms of itself. This process is called *recursion*.
- To define a function with the set of nonnegative integers as its domain:
 - -Specify the value of the function at zero
 - -Give a rule for finding its value at an integer from its values at smaller integers

• The sequence of powers of 2 can be written explicitly as

$$a_n = 2^n$$

 However, this sequence can also be defined using recursions as

$$a_0 = 1$$
, $a_{n+1} = 2a_n$

• Suppose that f is defined recursively by

$$f(0) = 3$$

 $f(n + 1) = 2f(n) + 3$

• Find f(1), f(2), f(3), and f(4)

• If f is defined recursively by

$$f(0) = 3$$

 $f(n + 1) = 2f(n) + 3$

• Then:

$$f(1) = 2f(0) + 3 = 2 \cdot 3 + 3 = 9$$

 $f(2) = 2f(1) + 3 = 2 \cdot 9 + 3 = 21$
 $f(3) = 2f(2) + 3 = 2 \cdot 21 + 3 = 45$
 $f(4) = 2f(3) + 3 = 2 \cdot 45 + 3 = 93$

- Give a recursive definition of a^n where a is a nonzero real number and n is a nonnegative integer.
- First, define the <u>base case</u> a^0 as $a^0 = 1$.
- Next, define a rule for finding a^{n+1} from a^n for all $n \ge 0$: $a^{n+1} = a \cdot a^n$
- Now we know how to find a^0 , a^1 , a^2 , a^3 , ...

- Give a recursive definition of the factorial function F(n) = n!
- First, define the base case F(0) = 1
- Next, define a rule for finding F(n+1) from F(n) for all $n \ge 0$: F(n+1) = (n+1)F(n)
- Now, to find F(3) we just compute (3)F(2). To find F(2) we just compute (2)F(1). To find F(1) we just compute (1)F(0).

- We know that F(0) = 1.
- So:

$$F(3) = (3)(2)(1)F(0)$$
, or $3 \cdot 2 \cdot 1 \cdot 1 = 6$

- Give a recursive definition for the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21 ...
- First, define the <u>base case</u>. For the Fibonacci numbers there are two base cases: f(0) = 0 and f(1) = 1
- Next, define a rule for finding f(n+1) from f(n) for all $n \ge 1$: f(n+1) = f(n) + f(n-1)

• So:

$$f(0) = 0$$

$$f(1) = 1$$

$$f(2) = f(1) + f(0) = 1 + 0 = 1$$

$$f(3) = f(2) + f(1) = 1 + 1 = 2$$

$$f(4) = f(3) + f(2) = 2 + 1 = 3$$

$$f(5) = f(4) + f(3) = 3 + 2 = 5$$

$$f(6) = f(5) + f(4) = 5 + 3 = 8$$

Conclusion

- In this chapter we have covered:
- Mathematical induction
- Strong induction
- Well-ordering
- Recursive definitions