

Chittagong University of Engineering & Technology

Department of Electrical and Electronic Engineering

Design of a 3- φ Distribution Transformer

COURSE NO. : EEE 352

COURSE TITLE: Electrical Machine Design.

Submitted to	Submitted by
	EVAN MODAK ARUP
Mr. Nipu Kumar Das	ID: 1702074
Assistant Professor	MD. SAYEDUL
Dept. of EEE, CUET.	ID: 1702079
	KAWSHIK NATH
	ID: 1702121

REMARKS

1.1 **Objective**:

- **4** To design a distribution transformer using the given parameter.
- Regulation on full load at 75 °C at unity power factor and at 0.8 power factor lagging.
- ♣ Efficiency at 75 °C on full load,75% load, and 50% load at unity power factor.

1.2 <u>Various Design Parameter</u>:

Rating	456 KVA
Phase	3
Frequency	50 Hz
Primary Voltage	11 KV
Secondary Voltage	415 V
Primary Connection	Delta
Secondary Connection	Wye
Tapping on HV	±2.5, ±5
Load loss	≤ 7 kW
% Z	4.50%
Max Temp. Rise	60 °C
Cooling	Oil-immersed natural cooled

1.3 **Voltage per turn:**

Voltage per turn,
$$E_{t} = \frac{\sqrt{\frac{KVA \times 1000}{No.of \ legs}}}{\frac{40}{3}}$$
$$= \frac{\sqrt{\frac{456 \times 1000}{3}}}{\frac{40}{3}}$$
$$= 9.7467 \ volts/turn$$
$$= 9.75 \ volts/turn$$

1.4 **Specific Magnetic Loading:**

- ➤ Choice of core material: CRGO steel lamination of 0.35 mm thickness; mitered core construction is used; mitered at 45°C.
- \triangleright Choice specific magnetic loading: $B_{max} = 1.7$ Tesla
- \triangleright Choice of current density: $\delta = 2.5 \text{ A/mm}^2$

1.5 Cross Section area of the core:

We know, $E_t = 4.44 \times B_m \times f \times A_i$

Where, $B_m = flux$ density; Tesla f=50 Hz

Net cross sectional area of the core is:

$$A_{i} = \frac{E_{t}}{4.44 \times Bm \times f}$$

$$= \frac{9.75}{4.44 \times 1.7 \times 50} mm^{2}$$

$$= 25834.65819 mm^{2}$$

$$= 25834.66 mm^{2}.$$

1.6 Choice of core section:

Choosing 7 step core, so the area should be nearly circular.

In case of a 7 step core:

 K_i = iron space factor = 0.88 & Stacking factor for laminations, K_s =0.92

$$A_i = K_i \times K_s \times \frac{\pi}{4} \times d^2$$

$$\to d = \sqrt{\frac{25834.66 \times 4}{0.92 \times 0.88 \times \pi}}$$

 $d = 201.57 \text{ mm} \approx 202 \text{ mm}$

Then the area $A_i = K_i \times K_s \times \frac{\pi}{4} \times d^2$

$$A_i = 0.88 \times 0.92 \times \pi \times 202^2 / 4$$

= 25945.56 mm²

With this area,
$$B_m = \frac{E_t}{4.44 \times f \times Ai}$$

$$= \frac{9.75}{4.44 \times 50 \times 25945.56 \times 10^{-6}}$$

$$B_m = 1.69 \text{ Wbm}^{-2}$$

1.7 **Window area(assumption)**:

Window space factor (kw) is taken approximately as 0.30

We know,
$$S = 3.33 \times A_i \times A_w \times K_w \times \delta \times B_m \times f \times 10^{-3}$$

$$A_{w} = \frac{456}{3.33 \times 25945.56 \times 0.3 \times 2.5 \times 1.69 \times 50 \times 10^{-3}}$$
$$= 83279.79 \approx 83280 \text{ mm}^{2}$$

Window width, $W_w = 166 \text{ mm}$

Window height = $\frac{83280}{166}$ mm = 501.68 mm; we choose the height of the window 500 mm.

Now, Window Area = $(166 \times 500) mm^2 = 83000 mm^2$.

So, the main dimension of the core and window are, d = 202 mm

D = distance between the centers of the adjacent limbs

$$=166+(202\times0.95)=358 \text{ mm}$$

For seven step core largest core width is = $(202 \times 0.95) = 192 \text{ mm}$

Total width =
$$(2 \times 358) + (202 \times 0.95) = 908 \text{ mm}$$

Total height = 500+192+192 = 884 mm.

Fig.1. Schematic of core and assembly.

Design of Windings

1.8 Number of turns in L.V. Winding (Δ -yn):

Voltage per phase = $\frac{415}{\sqrt{3}}$ = 239.6 Volts

Turns per phase = $239.6/9.75 = 24.57 \approx 25 \text{ turns}$

1.9 Number of turns in H.V. Winding (Δ -yn):

Voltage per phase =11 kV (H.V. is delta connected)

Turns per phase = $(11 \times 1000)/9.75 = 1128.2 \approx 1130 \text{ turns (Choosen)}$

Tapings of $\pm 5\%$ and $\pm 2.5\%$ are to be provided on the H.V. winding .

Tapping	5%	Normal	2.5%
More	1187 turns	1130 turns	1158 turns
Less	1074 turns	1130 turns	1102 turns

1.10 L.V. Winding Area(a_2):

Current per phase =
$$\frac{456 \times 10^3}{\sqrt{3} \times 415}$$
 = 634.38 A \approx 635 A

Here, we choose helical cylindrical coil.

Current Density $\delta = 2.5 \text{ A/mm}^2 \text{ (assumed)}$

Area of L.V. conductor, $a_2 = 635/2.5 = 254 \text{ mm}^2$

Choosing, rectangular copper conductor from IS: 1897:1962 specs. For rectangular copper conductors for electrical machines (*Appendix*), giving area near about the required one.

1.11 H.V. Winding Area (a_1) :

Current per phase =
$$\frac{456 \times 10^3}{3 \times 11 \times 10^3}$$
 = 13.81 A \approx 14 A. [being delta connected.]

Area of H.V. conductor, $a_1 = 14/2.5 = 5.6 \text{ mm}^2 \approx 6 \text{ mm}^2$.

Design & Layout of Windings

1.12 Design & Layout of L.V Windings:

Now for L.V winding choosing rectangular copper conductor,

Let, Cross Section = $T \times W$

$$= (5.6 \times 11.33)[4 conductor sytrips]$$

So, Forming conductor of L.V area, $a_2 = (5.6 \times 11.33 \times 4)$

$$= 254 \ mm^2$$

Number of turns in L.V. = 25 turns

Size of conductor: 4 strips of (5.5×11.33) mm, cooper rectangular conductor.

Considering paper insulation of conductor = $\{(5.6 + 0.25) \times (11.33 + 0.25)\}$ mm².

Choosing 1 layer for L.V. winding; turns per layer=25/1 = 25.

Width of conductor (11.33+0.25) = 11.58 mm is taken along the window.

With 4 conductor sides $(5.6 + 0.25) \times 4 = 23.4$ mm forming conductor per layer.

For 1 layer the dimension of conductor width rise is 23.4 mm.

Height of L.V. winding in window = $(25 \times 11.58) = 289.5$ mm.

Thickness of L.V. winding = $1 \times 23.4 = 23.4$ mm.

distance between core and L.V coil = 3.5 mm.

Inside diameter of L.V. $coil = 202 + (2 \times 3.5) = 209$ mm.

Outside diameter of L.V. $coil = \{209 + (2 \times 23.4)\} = 255.8 \text{ mm} \approx 256 \text{ mm}.$

mean diameter of L.V. coil = $(256+209)/2 = 232.5 \ mm \approx 233 \ mm$.

mean length of turn of L.V. coil = $\pi d = \pi \times 233 = 731.99 \ mm \approx 732 \ mm$.

Fig.2. Dimension of single conductor in the layer.

Fig.3. Dimension of 4 strips conductor in a single layer.

Fig.4. Overall layout of L.V winding.

1.13 <u>Design & Layout of H.V Windings</u>:

For H.V winding choosing round conductor, where, d= diameter of the conductor

$$a_1 = \frac{\pi}{4} \times d_1^2$$

$$\rightarrow d_1 = \sqrt{\frac{4 \times 6}{\pi}} = 2.76 \text{ mm}.$$

The area is, $a_1 = 5.98 \text{ mm}^2 \approx 6 \text{ mm}^2$.

So, A_{cu} copper area in window = $2(a_1T_1 + a_2T_2)$ = $2(6 \times 1187 + 254 \times 25)$ = 26944 mm^2 .

Now, for this dimensions we get window space factor,

$$\mathbf{K_w} = \frac{A_{Cu}}{A_{wv}} = \frac{26944}{83000} = 0.324 \approx 0.32$$
; which is near to 0.3(chosen);

The distance between L.V & and H.V winding = 12 mm.

Inside diameter of H.V. = $256 + (12 \times 2) = 280$ mm.

Now split H.V winding in two coils each with turns = $\frac{1187}{2}$ = 594

The size of conductor is 2.76 mm.

With paper insulation on the conductor the diameter = (2.76+0.25) mm.

$$= 3.01 \text{ mm}.$$

Choosing 8 layers turns per layer = 594/8 = 74 turns.

Height of winding in each H.V coil = $(74 \times 3.01) = 223$ mm.

Thickness of each coil = $(8 \times 3.01) = 24.08 \ mm \approx 24 \ mm$.

Outside diameter of H.V. coil = $\{280 + (24 \times 2)\}$ = 328 mm.

Mean diameter of H.V coil = (280+24) = 304 mm.

Mean length of turn = $\pi d = 304 \times \pi = 955$ mm.

Height of H.V coils in window = $\{(223 \times 2) + 8\} = 454 \text{ mm}$.

The space required between coils and core on either side is taken as 23 mm.

The height of window required = $\{454+46\} = 500 \text{ mm}$

Fig.05. Dimension of single conductor in the layer.

Fig.06. Dimension of H.V coil with 8 layer.

Fig.7. Overall layout of H.V coil.

Fig.8. Overall Design of H.V & L.V Winding with Core.

1.14 Percentage of Reactance:

L.V mean length of turn = 732 mm

H.V mean length of turn = 955 mm

Average,
$$L_{mt} = (732+955)/2 = 844 \text{ mm}$$

Mean height of the coil, $h_c = (290+454)/2 = 372 \text{ mm}$

A = 12 mm, b = width of L.V coil = 23.4 mm, width of H.V coil, $b_2 = 24 \text{ mm}$

So,
$$a + \frac{b1+b2}{3} = (12 + \frac{23.4 + 24}{3}) = 27.8 \text{ mm} \approx 28 \text{ mm}$$

AT (L.V. coil) =
$$635 \times 25 = 15875$$
 AT

$$\%X = \frac{2\pi f \mu L_{mt} (AT)}{h_c E_T} \times (a + \frac{b1+b2}{3})$$

$$= \frac{2\pi \times 50 \times \mu \times 844 \times 10^{-3} \times 15875 \times 28 \times 10^{-3}}{372 \times 10^{-3} \times 9.75}$$

$$= 0.04083 \text{ p.u}$$

$$\%$$
X= 4.083%

1.15 Percentage of Resistance:

Now,
$$\rho_{20} = 0.01724 \text{ ohm/mm}^2 / \text{m & } \alpha_{20} = 0.00393$$

At 75°C,
$$\rho$$
75 = ρ_{20} {1 + α_{20} (75 – 20)}
= 0.01724(1 + 0.00393 × 55)
= 0.021 ohm/mm²/m

Resistance of low voltage winding (per phase) =
$$\frac{0.021 \times 732 \times 25}{254 \times 1000}$$

= 0.00151 ohm/phase.

Resistance of H.V. winding =
$$\frac{0.021 \times 955 \times 1187}{6 \times 1000}$$
$$= 3.97 \text{ ohm per phase}$$

Here, Ratio of Transformation =
$$\frac{11 \times 10^3}{239} = 46$$

Now, the equivalent resistance referred to H.V side (per phase) is:

$$R = 3.97 + (46)^2 \times 0.00151$$
$$= 7.17 \text{ ohm}$$

Percentage of resistance =
$$\frac{Equivalent\ Resistance}{Base\ Resistance} \times 100\%$$

= $\frac{7.17}{\frac{11\times10^3}{14}} \times 100\%$
= 0.91%

Here, %X = 4.083 and %R = 0.91

1.16 Percentage of Impedance:

So, Percentage Impedance
$$\%Z = \sqrt{(4.083)^2 + (0.91)^2}$$

= 4.18% Which is within the permissible limit.

1.17 Weight of Iron in Core & Yoke Assembly:

From main dimension the volume of the core and yoke is given by;

$$= A_i \times \{(908 \times 2) + (500 \times 3)\}\$$

$$= 86035476.96 \approx 86035477 \text{ mm}^3$$

Weight of Iron = $7.85 \times 1000 \text{ Kg/m}^3$

Weight of core & yoke =
$$\frac{86035477 \times 7.85}{1000 \times 1000}$$
 = 675.378 \approx 676 Kg.

Core loss at B_{max} = 1.69 Wbm⁻² is 1.5 watts/Kg

Core loss in transformer = $1.5 \times 676 = 1014$ watts.

1.18 **Magnetizing Volt Amperes**:

For $B_{max} = 1.69 \text{ Wbm}^{-2}$, VA/Kg from the curve is 13 VA/Kg.

Magnetizing volt amperes = $(676 \times 13) = 8788 \text{ A}$.

1.19 Weight of L.V Winding:

We know density of copper = 8.89 gm/cm^3

Number of turns = 25, $a_2 = 254 \text{ mm}^2$ & Mean length of turn= 732 mm.

Weight of L.V winding (per limb) =
$$\frac{8.89 \times 254 \times 732 \times 25}{10^6}$$
$$= 41.322 \text{ Kg}.$$

1.20 Weight of the h.v. winding (per limb):

Number of turns = 1187, normal = 1130, a_1 = 6 mm² & Mean length of turn = 955 mm.

Weight of 2 coils(one limb) =
$$\frac{8.89 \times 6 \times 955 \times 1187}{10^6}$$
 = 60.465 Kg.(for all turns.)

For normal turn, the weight of coils(one limb) = $\frac{8.89 \times 6 \times 955 \times 1130}{10^6}$ = 57.56 Kg.

1.21 Total weight of copper in transformer:

We can write, 3(L.V+H.V) = 3(41.32+57.56) = 296.64 kg.

1.22 Copper loss and load loss at 75°C:

H.V current per phase = 14 A

Copper losses for 3 phases = $(3 \times 14^2 \times 7.17)$ = 4216 W

Let, stray load loss for about 7%,

Then load loss at 75° C = $(4216 \times 1.07) = 4511$ Watts.

Iron loss = 1014 watts.

Therefore, total loss= (4511+1014) =5525 watts. [which is less than 7 KW]

1.23 Calculation of Performance:

Efficiency on full load at unity p.f;

Output = 456×10^3 Watts

Efficiency =
$$\frac{456 \times 10^3}{456 \times 10^3 + 5} \times 100\%$$

= 98.80%

Efficiency on 3/4th full load at unity p.f;

Core loss=1014 watts

Load loss on
$$3/4^{th}$$
 load = $4511 \times \left(\frac{3}{4}\right)^2 = 2537$ watt

Total loss=
$$(2537+1014) = 3551$$
 Watts

Efficiency at
$$3/4^{\text{th}}$$
 load = $\frac{456 \times 10^3 \times 0.75}{456 \times 10^3 \times 0.75 + 3551} \times 100\%$
= 98.97%

Efficiency on ½ of full load at unity p.f;

Core loss = 1014 Watts, load loss on
$$\frac{1}{2}$$
 load = 4511 $\times \left(\frac{1}{2}\right)^2$ = 1128 Watt

Total loss =
$$(1128+1014) = 2142$$
 Watts

Efficiency at ½ of full load =
$$\frac{456 \times 10^3 \times 0.5}{456 \times 10^3 \times 0.5 + 214} \times 100 = 99.06\%$$
.

1.24 Voltage Regulation:

Regulation on full load at unity power factor:

$$%R = 0.91\%, %X = 4.083\%$$

Now,
$$(V+IR)^2 + (IX)^2 = E^2$$

$$(1+0.0091)^2 + (0.04083)^2 = E^2$$

$$E = 1.0099$$

Regulation = (1.0099-1) p.u.= 0.99%.

Regulation on full load at 0.8 pf lagging:

$$= [IR \cos \varphi + IX \sin \varphi] \%$$

$$= [0.091 \times 0.8 + 4.083 \times 0.6] \%$$

$$= 3.18\%.$$

1.25 Core loss Current:

Core loss = 1014 watts

Core loss current,
$$I_c = \frac{1014}{3 \times 11 \times 10^3} = 0.031 \text{ A}.$$

1.26 Magnetizing Current:

Magnetizing VA = 8788 VA

Magnetizing Current,
$$I_m = \frac{8788}{3 \times 11 \times 10^3} = 0.27 \text{A}.$$

1.27 No-load Current:

No load current per phase, $I_0 = \sqrt{(0.27)2 + (0.031)2} = 0.271 \text{ A}.$

Current per phase = 14 A

No load current = $(0.27/14) \times 100\% = 1.93\%$ of full load current.

1.28 Design of tank:

Outside diameter of H.V coil is 328 mm

The distance between adjacent coils and adjacent limbs = $\{166 - 2\left(\frac{328}{2} - \frac{192}{2}\right)\}$ = 30 mm.

Clearance at each end = $70 \, mm$.

Thus, the length of the tank = $(328 \times 3 + 30 \times 2 + 70 \times 2) = 1184$ mm.

Breadth of the tank = $328 + (60 \times 2) = 448$ mm; Chosen 450 mm.

Height = 884 + 100 mm for base +250 mm oil level above oil level

+350 mm for leads.

= 1234 mm up to oil level + 350 mm for leads

= 1584 mm.

Inside dimensions of the tank of the transformer is = (length \times breadth \times height)

 $= (1184 \times 450 \times 1584)$

 $= 843955200 \text{ mm}^3.$

Fig.9. Dimension of Tank.

1.29 Temperature Rise:

Now, for dissipation of heat only 4 surfaces of the tank are taken into consideration. The top and bottom are not considered.

Surface of tank =
$$\left(\frac{1584}{1000} \times \frac{450}{1000}\right) \times 2 = 1.4256 \text{ mm}^2 \approx 1.43 \text{mm}^2$$

= $\left(\frac{1584}{1000} \times \frac{1184}{1000}\right) \times 2 = 3.75 \text{ mm}^2$

Total dissipating surface area, $S_t = (1.43 + 3.75) = 5.18 \text{ mm}^2$

Full load to be dissipated = 5525 watts

Now, it will dissipate 12.5 S_t W/ 0 C temperature due to convection (6.5W) & radiation $6W = \frac{5525}{12.5 \times 5.18} = 85.3^{\circ}$ C

Now, to maintain the temperature of transformer walls limited to 45° C (to limit temperature rise of oil below 60° C)

In that case, the surface of the tank for cooling has to be increased either by radiations or tubes attached to the tank.

If total surface area is considered x times the tank surface area,

We get,
$$5.18 \times x(8.8 + \frac{3.7}{x}) \times 45 = 5525$$

 $\Rightarrow x = 2.27$.

Thus, additional area to be provided = $5.18 \times 1.27 = 6.5786 \text{ m}^2 \approx 6.58 \text{ m}^2$

As 1234 mm is height up to oil level, Height of tube is taken as 1184 mm.

Surface of 1 tube of mm diameter= $\pi \times 50 \times 1184 \times 10^{-6} = 0.1859 \text{ m}^2 \approx 0.19 \text{ m}^2$

Number of tubes required = 6.58/0.19 = 34.62 \approx 34 tubes

1.30 **Volume and weight of Coil:**

Volume of tank up to oil level =
$$\left(\frac{1184}{1000} \times \frac{450}{1000} \times \frac{1234}{1000}\right) = 0.657 \text{ m}^3 \approx 0.66 \text{ m}^3$$

Volume of transformer core and copper =
$$\left(\frac{676}{7.85 \times 1000} + \frac{296.64}{8.89 \times 1000}\right)$$

= 0.12 m³

Volume of oil = $(0.66-0.12) \text{ m}^3 = 0.54 \text{ m}^3$

Oil required in transformer = $(0.54 \times 1000) = 540$ liters

Weight of Oil required in transformer = $(540 \times 0.89) = 480.6 \text{ Kg}$.

1.31 **Volume & Weight of Tank:**

If the thickness of tank wall is taken as 5 mm

Weight of tank =
$$0.005 \times \{(\frac{1184}{1000} \times \frac{1584}{1000} \times 2 + \frac{1184}{1000} \times \frac{450}{1000} \times 2 + \frac{1584}{1000} \times \frac{450}{1000} \times 2) \times 1000 \times 7.85\}$$

= 245 Kg

Fig.10. Top view of Transformer with tube.

Fig.11. Side view of Transformer with tube (length).

Fig.12. Side view of transformer with radiator (breadth).

1.32 **Volume and weight of oil in tubes:**

40 tubes each with 50 mm diameter & 1.184 m length

Volume =
$$\frac{\pi}{4} \times (\frac{50}{1000})^2 \times 1.184 \times 40 = 0.093 \text{ m}^3$$

Volume of oil in tubes = $(0.093 \times 1000) = 93$ liters

Weight of oil in tube = (93×0.89) = 82.77 Kg.

Weight of tubes = $\pi Dl \times 0.005 \times 40 \times 7.85 \times 1000$

$$=\pi \times 50 \times 10^{-3} \times 1.184 \times 0.005 \times 40 \times 7.85 \times 1000$$

$$= 292 \text{ Kg}.$$

1.33 Total Weight of Transformer:

Weight of core & yoke assembly	676 kg
Weight of copper in windings	296.64 kg
Weight of tank	245 kg
Weight of tubes	292 kg
Weight of oil in tank	480.6 kg
Weight of oil in tubes	82.77 kg
Total Weight	2073.01 kg

1.34 <u>Summary</u>:

Specifications:

Transformer designed as per IS: 1897:1962;

kVA	456 kVA
H.V. volts	11kV
L.V. volts(No load)	415 V
Phase	3
Connection	Delta/star
Vector group	DY11
Percentage impedance	4.5%
H.V. tapping	±2.5% and ±5%
Temperature rise over oil less than	60 °C
Type of cooling	Self-Oil Cooled
Load loss less than	7 KW

Core and yoke:

Material: CRGO (cold rolled grain oriented) steel laminations 0.35 mm thick; mitered core construction 45° cut. Voltage per turn, 9.75 volts; Flux density $B_{max}=1.69 \text{ Wb/m}^2$; Net area of cross-section of core = 25834.66 m²; circumscribing circle diameter = 202 mm.

Size of core, yoke, and frame: Yoke made of the same section as the core. Distance between centers of adjacent limbs= 358 mm: width of the window= 166 mm; the height of window= 500 mm; overall height of frame = 884 mm; overall width of core frame = 908 mm. Weight Of core & yoke assembly 676 kg. Core loss at B_{max} =1.69 wb/m²,1.5 watts/kg. Magnetizing VA/kg = 13 VA/kg.

Windings	L.V.	H.V.
Type of winding	Helical	Dick
Current density	2.5 A/mm ²	2.5 A/mm ²
Cross-sectional area of conductor	254 mm ²	6 mm ²
Conductor: Copper	4 strips of	Diameter
	5.5×11.33	2.76 mm
	mm	
Number of Layers per limb	1	8 discs
Number of turns	25	1130 Normal
		1187 max
		tapping
Number of turns per layer	25	74
Height of winding in window	289.5 mm	454 mm
Thickness of coil	23.4 mm	24 mm
Inside diameter of coil	209 mm	280 mm
Outside diameter of coil	256 mm	328 mm
Mean length of turn	732 mm	955 mm
Resistance at 75 °C	0.00151 ohms	3.97ohms
Weight of copper for winding per limp	41.322 kg	57.56 kg
Total Weight of Copper	296.64 kg	

Insulation:

Insulation between core and l.v. winding: pressboard paper

Insulation for conductors: paper

Insulation between layers : Crape paper

Insulation between l.v. and h.v. windings: bakelized paper cylinder; Laminated

pressed wood sticks for spacers for cooling.

Class A insulation for ON-type transformers.

Tapping:

The tapping H.V winding;

Tapping	5%	Normal	2.5%
More	1187 turns	1130 turns	1158 turns
Less	1074 turns		1102 turns

Tank:

Temperature rise of oil $85.3\,^{0}$ C. Inside dimensions of tank: length $1184\,\mathrm{mm}$; breadth $450\,\mathrm{mm}$; height $1584\,\mathrm{mm}$ Tubes 34, each of $50\,\mathrm{mm}$ diameter; $1184\,\mathrm{mm}$ long.

Oil in transformer tank	540 liters
Oil in Tubes	93 liters
Weight of oil in tank	480.6 kg
Weight of oil in tubes	82.77 kg
Weight of tank	245 Kg
Weight of tubes	292 Kg
weight of complete transformer	2073.01 kg

Performance:

Percentage resistance	0.91 %
Percentage reactance	4.083%
Percentage impedance	4.18%
Iron loss	1014 watts
Copper and stray load loss, i.e. load loss at 75° C	4511 watts
Total loss on full load	5525 watts
Efficiency on full load at unity power factor	98.80%
Efficiency on 3/4 th full load at unity power factor	98.97%
Efficiency on 1/2 full load at unity power factor	99.06%
Regulation on full load at unity power factor	0.99%
Regulation on full load at 0.8 power factor lagging	3.18%
Core loss current per phase	0.031 A
Magnetizing current per phase	0.27 A
No load current per phase	0.271 A