Neural Networks Applied to Chain-Ladder Reserving

Mario V. Wüthrich*

July 6, 2018

Abstract

Classical claims reserving methods act on so-called claims reserving triangles which are aggregated insurance portfolios. A crucial assumption in classical claims reserving is that these aggregated portfolios are sufficiently homogeneous so that a coarse reserving algorithm can be applied. We start from such a coarse reserving method, which in our case is Mack's chain-ladder method, and show how this approach can be refined for heterogeneity and individual claims feature information using neural networks.

Keywords. Claims reserving, Mack's CL model, individual claims reserving, micro-level reserving, neural networks, individual claims features, claims covariates.

1 Introduction

The starting point of our claims reserving analysis is Mack's chain-ladder (CL) model [14]. For applying Mack's CL model we aggregate individual claims payments by accident period and payment delay. These aggregated claims payments are then assumed to fulfill a (simplified) regression assumption, see formula (2.1) below. The main goal of this work is to extend this simplified regression assumption by allowing for the inclusion of individual claims information. This individual claims information will lead to a refinement of the claims reserves and it will help us to understand structural differences between different types of claims. We explore the framework of neural networks for the modeling of these structural differences, that is, we replace the simplified regression assumption (2.1) by a (non-linear) neural network regression model that accounts for the individual differences between claims. As will become apparent below, this is not possible in Mack's CL model, in general. Therefore, we work in an extended version thereof which is of a similar nature as Schnieper's model [21].

Our approach focuses on differentiating types of claims within Mack's CL model framework. This can be seen as a top-down approach correcting for heterogeneity. Recently, there has been an increasing interest in bottom-up approaches in the spirit of Arjas [2] and Norberg [17, 18], see, for instance, Antonio-Plat [1], Badescu et al. [3, 4], Baudry-Robert [5], Harej et al. [8], Jessen et al. [11], Lopez [13], Pigeon et al. [19], Verrall-Wüthrich [22] or Zarkadoulas [25]. These references aim at modeling claims on a micro-level using either parametric or non-parametric models, and

^{*}ETH Zurich, RiskLab, Department of Mathematics, 8092 Zurich, Switzerland

claims reserves are obtained by aggregating individual reserves. Our approach does not consider individual claims as such, but rather (homogeneous) sub-portfolios of different claim types for which a CL assumption is made and reserves are calculated.

Outline of this paper. In the next section we introduce an extended CL model allowing for the inclusion of individual claims feature information. We also describe the complications that may result from this extension. In Section 3 we describe how neural networks can be used for CL reserving and we describe how these networks are calibrated to our data using the gradient descent method. In Section 4 we treat the previously mentioned complications which require additional modeling. In Section 5 we apply our model to insurance data which consists of 4'970'856 individual claims histories. We benchmark our model with Mack's CL approach and we show that our neural network extended CL model passes the use test. In Section 6 we conclude and give an outlook.

2 Model assumptions

We start by introducing the relevant notation. For describing Mack's CL model we introduce indexes $1 \le i \le I$ for the accident years and indexes $0 \le j \le J$ for the development years under consideration. $C_{i,j}$ denotes the cumulative claims payments for claims with accident year i which are done within the first j development years, and $C_{i,J}$ denotes the total ultimate claim amount of accident year i. The CL algorithm then assumes existence of CL factors (parameters) $f_0, \ldots, f_{J-1} > 0$ such that for all accident years $1 \le i \le I$ and all development years $1 \le j \le J$ we have the simplified regression structure

$$C_{i,j} \approx f_{j-1} C_{i,j-1}.$$
 (2.1)

We are going to be more precise below about the explicit meaning of the symbol " \approx ". Structure (2.1) means that the cumulative claim $C_{i,j}$ is roughly proportional to the previous cumulative claim $C_{i,j-1}$ (of the same accident year i) with a proportionality factor f_j that does not depend on accident year i.

In the present work we are going to refine regression structure (2.1) by describing the claims more accurately using individual claims feature information. We therefore introduce a feature space \mathcal{X} with features $x \in \mathcal{X}$ describing the characteristics of individual claims. In our example the additional feature information comprises:

- the line of business LoB $\in \{1, \ldots, 4\}$ the individual claim is belonging to;
- the claims code $cc \in \{1, \ldots, 53\}$ denoting the labor sector the injured is working in;
- the accident quarter $AQ \in \{1, \dots, 4\}$ of the occurrence of the individual claim;
- the age of the injured age $\{15, 16, \dots, 70\}$ in years at claims occurrence;
- the injured body part $inj_part \in \{10, ..., 99\}$.

Thus, we consider a 5-dimensional feature space \mathcal{X} collecting the features $\mathbf{x} = (x_1, \dots, x_5)' = (\text{LoB}, \text{cc}, \text{AQ}, \text{age}, \text{inj_part})'$. We deliberately omit the accident year i information because a basic assumption of the CL algorithm is that the CL factors f_j do not depend on accident years. We also omit an available claims number because typically the claims number is a unique claims identifier that does not have any predictive power; the explicit choice of the data is illustrated in Listing 1 in the appendix below.

Our feature information considered is static, in particular, it does not change over time. We define $C_{i,j}(\mathbf{x})$ to be all cumulative claims payments for claims with accident year i done within the first j development periods and having feature value $\mathbf{x} \in \mathcal{X}$. The refinement of (2.1) then uses feature individual CL factors $f_0(\mathbf{x}), \ldots, f_{J-1}(\mathbf{x}) > 0$ such that

$$C_{i,j}(x) \approx f_{j-1}(x) C_{i,j-1}(x).$$
 (2.2)

Notice that there is a difficulty with this approach (2.2), namely, there may be relevant features x for which we have $C_{i,j-1}(x) = 0$. This may occur due to two different reasons: (a) we do not have any reported claims for accident year i within the first j development periods for that given feature x, or (b) we have reported claims for that feature x but we did not make any claims payments for these claims within the first j development periods (note that development periods j start in 0). In these two cases the CL algorithm (2.2) will not work for these feature values x, and we need an extension that is similar to Schnieper's model [21], using an intercept.

For all what follows we make the following standing assumptions (not repeated each time):

- Feature space \mathcal{X} is finite. In our case we have $|\mathcal{X}| = 4 \cdot 53 \cdot 4 \cdot 56 \cdot 90 = 4'273'920$ different possible feature values.
- $(\Omega, \mathcal{F}, \mathbb{P}, \mathbb{F})$ is a filtered probability space with discrete time filtration $\mathbb{F} = (\mathcal{F}_t)_{0 \le t \le I+J}$.
- Cumulative claims $C_{i,j}(\boldsymbol{x})$ are \mathcal{F}_{i+j} -measurable for all $1 \leq i \leq I, 0 \leq j \leq J$ and $\boldsymbol{x} \in \mathcal{X}$.
- Cumulative claims $C_{i,j}(\boldsymbol{x})$ are non-negative, \mathbb{P} -a.s., and on all events $\{C_{i,k}(\boldsymbol{x}) > 0\}$ we have $C_{i,j}(\boldsymbol{x}) > 0$, \mathbb{P} -a.s., for all $k \leq j \leq J$.

We make the following model assumptions.

Model Assumptions 2.1 Cumulative claims $C_{i,j}(\mathbf{x})$ of different accident years $1 \leq i \leq I$ or different features $\mathbf{x} \in \mathcal{X}$ are independent. There exist parameters $f_0(\mathbf{x}), \ldots, f_{J-1}(\mathbf{x}) > 0$ such that for all $1 \leq i \leq I$, $1 \leq j \leq J$ and $\mathbf{x} \in \mathcal{X}$

$$\mathbb{E}\left[\left.C_{i,j}(\boldsymbol{x})\right|\mathcal{F}_{i+j-1}\right] = f_{j-1}(\boldsymbol{x}) \ C_{i,j-1}(\boldsymbol{x}) \ + \ \mathbb{E}\left[\left.C_{i,j}(\boldsymbol{x})\right|\mathcal{F}_{i+j-1}\right] \mathbb{1}_{\left\{C_{i,j-1}(\boldsymbol{x})=0\right\}}.$$

There exist parameters $\sigma_0^2, \ldots, \sigma_{J-1}^2 > 0$ such that for all $1 \le i \le I$, $1 \le j \le J$ and $\mathbf{x} \in \mathcal{X}$

$$\operatorname{Var}(C_{i,j}(\boldsymbol{x})|\mathcal{F}_{i+j-1}) = \sigma_{j-1}^2 C_{i,j-1}(\boldsymbol{x}) + \operatorname{Var}(C_{i,j}(\boldsymbol{x})|\mathcal{F}_{i+j-1}) \mathbb{1}_{\{C_{i,j-1}(\boldsymbol{x})=0\}}.$$

We interpret these assumptions. There are two different situations. Either we have strictly positive cumulative claims payments $C_{i,j-1}(x) > 0$ which implies feature based CL property

$$\mathbb{E}\left[C_{i,j}(x)|\mathcal{F}_{i+j-1}\right] = f_{j-1}(x) C_{i,j-1}(x). \tag{2.3}$$

This clarifies the meaning of symbol " \approx " in (2.1) and (2.2). In the situation $C_{i,j-1}(\boldsymbol{x}) = 0$ we still need to specify the model, this is done in Section 4 below on "zero claims features". The situation $C_{i,j-1}(\boldsymbol{x}) = 0$ is occurring more likely if we have very detailed feature information. If we coarsen feature information by merging feature classes to, say, feature information $\boldsymbol{x}^+ \in \mathcal{X}^+$, it will eventually happen that $C_{i,j-1}(\boldsymbol{x}^+) > 0$ for all \boldsymbol{x}^+ . In that case we have a situation that is similar to (2.3) for all feature values $\boldsymbol{x}^+ \in \mathcal{X}^+$ and aggregation provides

$$\mathbb{E}\left[\left.C_{i,j}\right|\mathcal{F}_{i+j-1}\right] = \mathbb{E}\left[\left.\sum_{\boldsymbol{x}^+ \in \mathcal{X}^+} C_{i,j}(\boldsymbol{x}^+)\right| \mathcal{F}_{i+j-1}\right] = \sum_{\boldsymbol{x}^+ \in \mathcal{X}^+} f_{j-1}(\boldsymbol{x}^+) \ C_{i,j-1}(\boldsymbol{x}^+).$$

Under the additional assumption that $f_{j-1}(\mathbf{x}^+)$ does not depend on \mathbf{x}^+ , i.e., $f_{j-1}(\mathbf{x}^+) \equiv f_{j-1}$, we obtain the classical CL model

$$\mathbb{E}[C_{i,j}|\mathcal{F}_{i+j-1}] = f_{j-1}C_{i,j-1}.$$

Note that $C_{i,j}$ always denotes the cumulative claim aggregated over all possible feature values $x \in \mathcal{X}$.

Proposition 2.2 Assume I > J. Under our standing assumptions and under Model Assumptions 2.1 we have for i + J > I and $C_{i,I-i}(x) > 0$

$$\mathbb{E}\left[\left.C_{i,J}(oldsymbol{x})\right|\mathcal{F}_{I}
ight] \;=\; C_{i,I-i}(oldsymbol{x})\prod_{j=I-i}^{J-1}f_{j}(oldsymbol{x}).$$

Proof. The claim follows by (recursive) application of the tower property (under the standing assumptions).

Proposition 2.2 is identical to the classical CL property in Mack's CL model, and there only remains to estimate the regression functions $f_j: \mathcal{X} \to \mathbb{R}_+$. The zero claims features case $C_{i,I-i}(\boldsymbol{x}) = 0$ is more sophisticated. Assume i+j=I+2 then we have, using the tower property,

$$\mathbb{E}\left[C_{i,I-i+2}(\boldsymbol{x})|\mathcal{F}_{I}\right]\mathbb{1}_{\left\{C_{i,I-i}(\boldsymbol{x})=0\right\}} = f_{I-i+1}(\boldsymbol{x})\mathbb{E}\left[C_{i,I-i+1}(\boldsymbol{x})|\mathcal{F}_{I}\right]\mathbb{1}_{\left\{C_{i,I-i}(\boldsymbol{x})=0\right\}} + \mathbb{E}\left[\mathbb{E}\left[C_{i,I-i+2}(\boldsymbol{x})|\mathcal{F}_{I+1}\right]\mathbb{1}_{\left\{C_{i,I-i+1}(\boldsymbol{x})=0\right\}}\middle|\mathcal{F}_{I}\right].$$

$$(2.4)$$

Note that the second line of (2.4) cannot appear in the case $C_{i,I-i}(\mathbf{x}) > 0$ because of the standing assumptions that we stay away from 0 once we have observed a strictly positive claim. Formula (2.4) shows that the case $C_{i,I-i}(\mathbf{x}) = 0$ will result in a complicated structure, we are going to treat this in more detail in Section 4, below. In the next section we consider the case (2.3).

4

3 Neural network modeling of chain-ladder factors

3.1 Chain-ladder factor modeling

In this section we consider feature values $x \in \mathcal{X}$ with $C_{i,j-1}(x) > 0$ for a given development year $1 \leq j \leq J$ and accident year $1 \leq i \leq I-j$. In this case we study models of type (2.3) and the CL factors $f_{j-1}: \mathcal{X} \to \mathbb{R}_+$ are found by minimizing a given loss function. Given observations \mathcal{F}_I , it is natural under our model assumptions to consider the weighted square loss functions for $1 \leq j \leq J$ given by

$$\mathcal{L}_{j} = \sum_{i=1}^{I-j} \sum_{\boldsymbol{x}: C_{i,j-1}(\boldsymbol{x}) > 0} \frac{\left(C_{i,j}(\boldsymbol{x}) - f_{j-1}(\boldsymbol{x}) C_{i,j-1}(\boldsymbol{x})\right)^{2}}{\sigma_{j-1}^{2} C_{i,j-1}(\boldsymbol{x})}$$

$$= \frac{1}{\sigma_{j-1}^{2}} \sum_{i=1}^{I-j} \sum_{\boldsymbol{x}: C_{i,j-1}(\boldsymbol{x}) > 0} C_{i,j-1}(\boldsymbol{x}) \left(\frac{C_{i,j}(\boldsymbol{x})}{C_{i,j-1}(\boldsymbol{x})} - f_{j-1}(\boldsymbol{x})\right)^{2}.$$
(3.1)

Here and in the sequel we require I > J. This implies that we have at least one observed accident year for each development period $1 \le j \le J$ in the observations \mathcal{F}_I . If we would not consider any feature information in f_{j-1} , then minimizing the loss function \mathcal{L}_j would exactly provide Mack's classical (homogeneous) CL factor estimate for f_{j-1} , see [14].

Remark on choice (3.1). On the one hand, the weighted square loss function (3.1) is a natural choice under the conditional moment assumptions given in Model Assumptions 2.1. On the other hand, the (weighted) square loss function suggests a Gaussian model structure because it is identical to Gaussian deviance statistics. If there is an indication for the weighted square loss function not being appropriate, for instance, because of outliers in the data, an other loss function such as the gamma or the log-normal deviance statistics should be chosen. This may also require that the variance assumption in Model Assumptions 2.1 needs to be changed.

We model the CL factors $f_{j-1}: \mathcal{X} \to \mathbb{R}_+$ by feed-forward neural networks having one hidden layer (called shallow neural networks). The hidden layer is assumed to have q hidden neurons. An example with q=20 is given in Figure 1, and for a general overview on neural networks we refer to LeCun et al. [12] and the references therein. Under these choices we make the following model assumptions. The hidden layer is given by the regression models (we denote the dimension of \mathcal{X} by d)

$$\boldsymbol{x} \mapsto z_k(\boldsymbol{x}) = \tanh\left(w_{k,0} + \sum_{l=1}^d w_{k,l} x_l\right), \quad \text{for } k = 1, \dots, q,$$
 (3.2)

for given weights $(w_{k,l})_{k,l}$ and for hyperbolic tangent activation function. These activations are then propagated (feed-forward) to the output layer describing the CL factor $f_{j-1}: \mathcal{X} \to \mathbb{R}_+$ by

$$\boldsymbol{x} \mapsto \log f_{j-1}(\boldsymbol{x}) = \beta_0 + \sum_{k=1}^q \beta_k z_k(\boldsymbol{x}).$$
 (3.3)

Figure 1: Shallow neural network with one hidden layer having q = 20 hidden neurons.

For a given number $q \in \mathbb{N}$ of hidden neurons we aim at minimizing the loss function

$$\alpha \mapsto \mathcal{L}_j = \mathcal{L}_j(\alpha),$$
 (3.4)

in the neural network parameter

$$\alpha = (\beta_0, \dots, \beta_q, w_{1,0}, \dots, w_{q,d})' \in \mathbb{R}^{q+1+q(d+1)},$$
(3.5)

under the assumption that the CL factor $f_{j-1}(x)$ has regression structure (3.3). Every development period $1 \leq j \leq J$ may have its own number $q = q^{(j-1)}$ of hidden neurons and a different network parameter $\alpha = \alpha^{(j-1)}$. That is, these parameters may depend on $1 \leq j \leq J$, but for the ease of notation we omit these superscripts. Thus, each development period j will have its own neural network architecture which may be optimized over its hyperparameter q and its network parameter α w.r.t. the loss function (3.4).

In Figure 1 we illustrate a shallow neural network having q=20 hidden neurons. The choice of one hidden layer may seem to be arbitrary, but the universality theorems of Cybenko [6], Hornik et al. [9] and Isenbeck-Rüschendorf [10] say that every compactly supported continuous regression function can be approximated arbitrarily well (in supremum norm and L^p norm, $p \ge 1$) if we allow for arbitrarily many hidden neurons in the single hidden layer. Thus, in general, we do not need more complex network architectures to approximate a regression function. Only, neural networks with more hidden layers may have better convergence properties in calibration, we refer to Montúfar et al. [15]. Having this said, we are left with one hyperparameter of freedom, namely, we should choose q optimally (which will determine the complexity of the model). This choice may be done based on an out-of-sample validation, we come back to this below.

3.2 Gradient descent method for loss function minimization

The general aim is to minimize the loss function $\alpha \mapsto \mathcal{L}_j(\alpha)$ in α in order to find the optimal network parameter α (for a given hyperparameter q). State-of-the-art uses the gradient descent algorithm which locally decreases the loss \mathcal{L}_j step by step. Consider the Taylor expansion around α given by

$$\mathcal{L}_{j}(\widetilde{\alpha}) = \mathcal{L}_{j}(\alpha) + (\nabla_{\alpha}\mathcal{L}_{j}(\alpha))'(\widetilde{\alpha} - \alpha) + o(\|\widetilde{\alpha} - \alpha\|),$$

as $\|\widetilde{\boldsymbol{\alpha}} - \boldsymbol{\alpha}\| \to 0$. We see that the locally optimal step points into the direction of the negative gradient $-\nabla_{\boldsymbol{\alpha}} \mathcal{L}_j(\boldsymbol{\alpha})$. If we choose a learning rate $\varrho > 0$ into that direction we obtain a local loss improvement of

$$\mathcal{L}_{i}\left(\alpha - \varrho \nabla_{\alpha} \mathcal{L}_{i}(\alpha)\right) \approx \mathcal{L}_{i}(\alpha) - \varrho \left\|\nabla_{\alpha} \mathcal{L}_{i}(\alpha)\right\|^{2}, \tag{3.6}$$

for ϱ small. Iterative application of these locally optimal steps (with tempered learning rates ϱ) will converge to the (local) minimum of the loss function. Note that different starting points of this algorithm should be explored to see whether we obtain better convergence properties; and the speed of convergence should be fine-tuned in ϱ . Remark that this optimization does not require knowledge of the variance parameter σ_{j-1}^2 , since by assumption it is the same for all accident years $1 \le i \le I$ and features $x \in \mathcal{X}$, see (3.1).

The gradient descent method (3.6) may be improved by considering higher order Taylor expansions. However, in most cases calculation of higher order derivatives is computationally not feasible. For this reason, one often applies a so-called momentum-based improved gradient descent method with momentum coefficient $\nu \in [0, 1)$. For details we refer to Rumelhart et al. [20] and Nielsen [16]. A second modification that is often implemented is that one does not use all data at once (steepest gradient descent) but one iterates the algorithm with random sub-samples of the data (mini batches). The latter is called stochastic gradient descent method and deals with the problem of big data.

There remains the calculation of the gradient. We have

$$\nabla_{\boldsymbol{\alpha}} \mathcal{L}_j(\boldsymbol{\alpha}) = -\frac{2}{\sigma_{j-1}^2} \sum_{i=1}^{I-j} \sum_{\boldsymbol{x}: \ C_{i,j-1}(\boldsymbol{x}) > 0} C_{i,j-1}(\boldsymbol{x}) \left(\frac{C_{i,j}(\boldsymbol{x})}{C_{i,j-1}(\boldsymbol{x})} - f_{j-1}(\boldsymbol{x}) \right) \ \nabla_{\boldsymbol{\alpha}} f_{j-1}(\boldsymbol{x}),$$

with

$$\nabla_{\boldsymbol{\alpha}} f_{j-1}(\boldsymbol{x}) = f_{j-1}(\boldsymbol{x}) \ \nabla_{\boldsymbol{\alpha}} \left(\beta_0 + \sum_{k=1}^q \beta_k z_k(\boldsymbol{x}) \right).$$

For considering this last gradient, we set $\mu(\mathbf{x}) = \beta_0 + \sum_{k=1}^q \beta_k z_k(\mathbf{x})$. We receive the following components, see also (3.5): for $k = 0, \ldots, q$ and setting $z_0(\mathbf{x}) = 1$,

$$\frac{\partial \mu(\boldsymbol{x})}{\partial \beta_k} = z_k(\boldsymbol{x});$$

the derivatives w.r.t. the weights $w_{k,l}$ are given by

$$\frac{\partial \mu(\boldsymbol{x})}{\partial w_{k,l}} = \beta_k \left(1 - z_k(\boldsymbol{x})^2 \right) x_l,$$

where we set $x_0 = 1$. These formulas show that the optimization problem can be solved using the back-propagation method, see Werbos [23] and Chapter 2 in Nielsen [16].

3.3 Feature pre-processing

Typically, the feature components of $x \in \mathcal{X}$ need pre-processing, otherwise the gradient descent method may not result in a reasonable regression function. There are two problems that we have to deal with (i) categorical feature components should be converted to numerical ones, and (ii) all (continuous) feature components should live on a similar scale.

(i) Categorical feature components. We have the three unordered categorical (nominal) feature components $LoB \in \{1, ..., 4\}$, $cc \in \{1, ..., 53\}$ and $inj_part \in \{10, ..., 99\}$. We need to map their categorical labels to numerical ones for neural network modeling. We apply dummy coding (also called one-hot encoding) to achieve this. We illustrate this for $LoB \in \{1, ..., 4\}$. In dummy coding we replace the r=4 different categorical labels by (r-1)-dimensional binary vectors indicating which label a particular feature component possesses. For feature component LoB we therefore consider the mapping provided in Table 1. Note that each of the 4 labels is mapped

x_1	dummy \boldsymbol{x}_1^*					
LoB 1	0	0	0			
LoB 2	1	0	0			
LoB 3	0	1	0			
LoB 4	0	0	1			

Table 1: Dummy coding for $LoB \in \{1, ..., 4\}$.

to a 3-dimensional feature vector \boldsymbol{x}_1^* in $\{0,1\}^3$, with reference label being LoB 1. Typically, the label with the biggest volume is chosen as reference label. In our example, dummy coding provides for the three unordered categorical feature components a 3+52+89=144 dimensional feature vector.

(ii) Continuous feature components. We should apply scaling to continuous feature components such that they all live on a comparable scale. This is important in the application of the gradient descent method in order to get reasonable calibrations. Because the activation function lives around the origin we choose bijection

$$x_l \mapsto x_l^* = 2 \frac{x_l - \min x_l}{\max x_l - \min x_l} - 1,$$
 (3.7)

for the two continuous feature components l = 3, 4, and the minimum and the maximum in (3.7) correspond to the minimal and maximal value of the corresponding feature component x_l (note that \mathcal{X} is bounded). Transformation (3.7) is also called MinMaxScaler.

We have now specified all parts and we can start to fit the regression models. This is done in the next section.

3.4 Model calibration and model selection: part 1

We start by fitting the model to the data with $C_{i,j-1}(x) > 0$; this is referred to "part 1" in this section heading. We first describe the data. The individual claims data has been generated by the scenario generator developed in [7]. The specific parameter choices of the chosen simulation are described in Listing 1 in Appendix A. Moreover, we provide selected summary statistics in that appendix. The simulation provides 4'970'856 reported individual claims at time I = 12 with accident years $1 \le i \le I$ (for the ease of notation we have relabeled the accident years compared to Listing 1). These claims are established with feature information x and corresponding claims payment information. The claims payment information is summarized in upper triangles in Table 4 of Appendix A.

Based on this data we could now do a model and hyperparameter q selection based on an out-of-sample validation analysis. In neural network calibration, one often finds several models with a similar predictive performance, i.e., one has multiple models with a comparable predictive power. This makes it difficult to choose "a best model" and, therefore, the hyperparameter choice is often done subjectively by an expert. Typically, q should not be chosen too small because otherwise the resulting regression function might be too simple and the gradient descent method may get trapped in saddle points. That is, we should leave the algorithm sufficiently many degrees of freedom. On the other hand, a model with a large q is more prone to over-fitting. Typically, over-fitting is taken care of by stopping the gradient descent method not too late (called early stopping rule) which, of course, is more art than science. For our models, we have chosen q = 20 for all $1 \le j \le J$, and we have stopped the gradient descent method as soon as the in-sample loss did not change significantly anymore, more details are provided in Appendix B.

In Figures 8-9 we present the resulting calibrations and sensitivities: each row corresponds to a different delay $j=1,\ldots,11$, and the columns correspond to the sensitivities in the feature components LoB, cc, AQ, age and inj_part, respectively. For these plots we calculate the predicted claim amounts in the upper triangle

$$\widehat{C}_{i,j}(\boldsymbol{x}) = \widehat{f}_{j-1}(\boldsymbol{x}) \ C_{i,j-1}(\boldsymbol{x}),$$

of all features x with $C_{i,j-1}(x) > 0$, and where $\widehat{f}_{j-1}(x)$ denotes the estimated CL factor using the optimal neural network parameter $\widehat{\alpha} = \widehat{\alpha}^{(j-1)}$ for q = 20. This allows us to calculate the average neural network parameter (averaged over our portfolio) defined by

$$\bar{f}_{j-1}^{\text{NN}} = \frac{\sum_{i=1}^{I-j} \sum_{\boldsymbol{x}} \hat{f}_{j-1}(\boldsymbol{x}) C_{i,j-1}(\boldsymbol{x})}{\sum_{i=1}^{I-j} \sum_{\boldsymbol{x}} C_{i,j-1}(\boldsymbol{x})}.$$
(3.8)

These values correspond to the gray dotted lines in Figures 8-9. The sensitivities (blue graphs in Figures 8-9) are then obtained by considering marginalized versions instead of (3.8), i.e., we consider the average CL factor as a function of the different labels of one fixed feature component. As seen on the first line of Figure 8, the first development factor $\hat{f_0}: \mathcal{X} \to \mathbb{R}_+$ is most sensitive in the accident quarter AQ information, followed by the injured body part inj_part component. Similar conclusions can be drawn for the other development periods. In particular, we see that

the injured body part is an important feature component, whereas the age of the injured seems to be less important in our data. This finishes part 1 of the calibration.

4 Zero claims features

We now turn to the case $C_{i,j-1}(\boldsymbol{x}) = 0$ called zero claims features. From formula (2.4) we see that this may result in an involved model. Therefore we are going to define a crude model for this latter case. This crude model will not consider any feature information: note that we have $|\mathcal{X}| = 4'273'920$ different possible feature values, however, for only 830'380 of these feature values we have a positive observation $C_{i,0}(\boldsymbol{x}) > 0$ (if we consider development period j = 1). From this it is obvious that we cannot model all these missing features individually because it would result in too high complexity, but we need a collective model for all zero claims features \boldsymbol{x} , i.e., with $C_{i,j-1}(\boldsymbol{x}) = 0$.

4.1 Model for zero claims features

First note that under our standing assumptions we know that if $C_{i,k}(\boldsymbol{x})$ is strictly positive then it remains strictly positive in all subsequent development periods. Therefore, for the prediction of accident years i > I - J at time I, i.e., given \mathcal{F}_I , we can focus in this second case on the features \boldsymbol{x} with $C_{i,I-i}(\boldsymbol{x}) = 0$ (and all other (non-zero claims) features are treated in Section 3). For these zero claims features we define on the lower triangle j + i > I

$$C_{i,j}^* = \sum_{\boldsymbol{x}: C_{i,I-i}(\boldsymbol{x})=0} C_{i,j}(\boldsymbol{x}).$$
 (4.1)

We assume that the following approximation is reasonable for i + j > I

$$C_{i,j}^* \approx C_{i,I-i} \prod_{l=I-i}^{j-1} g_l^{(i)},$$
 (4.2)

for given parameters $g_{I-i}^{(i)}, \ldots, g_{J-1}^{(i)}$. Thus, for predicting the ultimate claim $C_{i,J}^*$ of zero claims features \boldsymbol{x} at time I, we choose the \mathcal{F}_I -measurable volume $C_{i,I-i} = \sum_{\boldsymbol{x} \in \mathcal{X}} C_{i,I-i}(\boldsymbol{x})$ and project it to the last development period J using the CL factors $g_{I-i}^{(i)}, \ldots, g_{J-1}^{(i)}$. In some sense this is similar to Schnieper [21], however, using a different measure for the exposure. Note that these CL factors $g_{I-i}^{(i)}, \ldots, g_{J-1}^{(i)}$ depend on accident year i through the fact that \boldsymbol{x} is a zero claim feature at development period I-i for accident year i.

4.2 Model calibration for zero claims features: part 2

In view of (4.2) there remains to estimate the CL factors $g_{I-i}^{(i)}, \dots, g_{J-1}^{(i)}$. We therefore define the zero claims features of accident year $1 \le k \le i$ at development period I-i by

$$\mathcal{X}_k^{(i)} = \{ \boldsymbol{x} \in \mathcal{X}; \ C_{k,I-i}(\boldsymbol{x}) = 0 \}.$$

This allows us to define the total claim $C_{k,j}^{(*i)}$ in development period j > I - i of these zero claims features by

$$C_{k,j}^{(*i)} = \sum_{oldsymbol{x} \in \mathcal{X}_k^{(i)}} C_{k,j}(oldsymbol{x}).$$

Natural estimators for the CL factors $g_{I-i}^{(i)}, \dots, g_{J-1}^{(i)}$ are then given by

$$\widehat{g}_{I-i}^{(i)} = \frac{\sum_{k=1}^{i-1} C_{k,I-i+1}^{(*i)}}{\sum_{k=1}^{i-1} C_{k,I-i}}, \quad \text{and for } I-i < j < J \quad \widehat{g}_{j}^{(i)} = \frac{\sum_{k=1}^{I-j-1} C_{k,j+1}^{(*i)}}{\sum_{k=1}^{I-j-1} C_{k,j}^{(*i)}},$$

supposed that all denominators are positive. This then motivates the ultimate claim predictor for zero claims features at time I

$$\widehat{C}_{i,J}^* = C_{i,I-i} \prod_{j=I-i}^{J-1} \widehat{g}_j^{(i)}.$$

This finishes part 2 of the calibration. Now we have a fully calibrated model that allows us to calculate the claims reserves for the outstanding loss liabilities at time I.

5 Claims reserves

5.1 Neural network results versus Mack's CL reserves

Our model is now fully calibrated, in Section 3 for non-zero claims features (referred to part 1 in our derivations) and in Section 4 for zero claims features (referred part 2). The total ultimate claim predictor for accident year i > I - J at time I is given by

$$\widehat{C}_{i,J} = \sum_{{m x} \in \mathcal{X}} C_{i,I-i}({m x}) \prod_{j=I-i}^{J-1} \widehat{f}_j({m x}) + C_{i,I-i} \prod_{j=I-i}^{J-1} \widehat{g}_j^{(i)},$$

where the CL factor estimates $\widehat{f}_{j-1}(x)$ are given by (3.3), using the optimal neural network parameter $\widehat{\alpha} = \widehat{\alpha}^{(j-1)}$ for all development periods $j = 1, \dots, J = 11$ (for q = 20 hidden neurons). This allows us to define the neural network (NN) reserves for each accident year i > I - J at time I given by

$$\widehat{R}_{i}^{\text{NN}} = \widehat{C}_{i,J} - C_{i,I-i} = \sum_{\boldsymbol{x} \in \mathcal{X}} C_{i,I-i}(\boldsymbol{x}) \prod_{j=I-i}^{J-1} \left(\widehat{f}_{j}(\boldsymbol{x}) - 1 \right) + C_{i,I-i} \prod_{j=I-i}^{J-1} \widehat{g}_{j}^{(i)}.$$
 (5.1)

We calculate these NN reserves $\widehat{R}_i^{\text{NN}}$ and consider them for each line of business LoB separately. This requires that we calculate the reserves for zero claims features for each line of business separately, i.e. with LoB dependent CL factors $g_{I-i}^{(i)},\ldots,g_{J-1}^{(i)}$. Moreover, we compare these NN reserves to Mack's classical CL reserves calculated for each line of business separately as well. These can be obtained by applying the CL algorithm to the four claims development triangles given in Table 4.

	line of business LoB 1								
	true NN res. Mack [14]								
	payments	$\widehat{R}_i^{ ext{NN}}$	CL res.	$\sqrt{\mathrm{msep}}$					
1994	0	0	0	0					
1995	1'047	996	1'049	42					
1996	2'337	2'220	2'338	55					
1997	3'741	3'759	3'894	66					
1998	5'559	5'571	5'728	80					
1999	8'314	8'059	8'272	90					
2000	12'129	11'612	11'681	121					
2001	17'568	16'785	16'751	182					
2002	21'498	22'716	22'926	463					
2003	32'053	33'232	32'827	810					
2004	58'110	55'195	53'049	1'776					
2005	105'980	107'022	102'827	4'278					
total	268'338	267'167	261'342	4'886					

1: f 1i I -P 0									
	line of business LoB 2								
	true	NN res.	Mack	[14]					
	payments	$\widehat{R}_i^{\mathrm{NN}}$	CL res.	$\sqrt{\mathrm{msep}}$					
1994	0	0	0	0					
1995	89	-257	-299	33					
1996	76	237	156	95					
1997	1'297	1'023	869	94					
1998	1'947	1'897	1'749	293					
1999	2'803	3'231	2'981	359					
2000	4'716	4'984	4'658	463					
2001	7'883	7'592	7'138	585					
2002	10'135	12'791	11'888	690					
2003	23'172	22'082	21'262	885					
2004	47'917	47'679	44'010	2'586					
2005	108'341	108'705	100'426	6'815					
total	208'376	209'964	194'838	7'699					

Table 2: True outstanding payments obtained from Table 4, resulting NN reserves $\widehat{R}_i^{\text{NN}}$, Mack's CL reserves and Mack's rooted mean square error of prediction [14] at time I (in 1'000) for LoB 1 and LoB 2.

Figure 2: NN reserves for each label of the feature component cc (over all LoBs).

We present the results in Tables 2 and 3: the column 'true payments' provides the true outstanding claims payments (which, exceptionally, are available in our analysis because we have fully developed claims from the scenario generator [7]); the column 'NN res.' provides the NN reserves

	line of business LoB 3								
	true	NN res.	Mack [14]						
	payments	$\widehat{R}_i^{\mathrm{NN}}$	CL res.	$\sqrt{\text{msep}}$					
1994	0	0	0	0					
1995	502	679	602	139					
1996	1'534	1'593	1'532	226					
1997	1'973	2,695	2,596	336					
1998	3'072	4'187	3'839	386					
1999	5'042	5'638	5'340	444					
2000	5'833	7'414	7'556	462					
2001	7'835	11'087	10'544	558					
2002	14'202	15'497	16'091	655					
2003	25'107	27'749	26'598	780					
2004	37'804	48'819	46'574	1'623					
2005	111'863	120'021	113'488	3'544					
total	214'768	245'378	234'760	4'736					

	line of business LoB 4								
	true	NN res.	[14]						
	payments	$\widehat{R}_i^{ ext{NN}}$	CL res.	$\sqrt{\mathrm{msep}}$					
1994	0	0	0	0					
1995	1'600	1'562	1'620	22					
1996	4'388	3'859	3'862	67					
1997	6'612	6'204	6'341	197					
1998	10'068	9,519	9'543	238					
1999	14'040	13'942	13'947	306					
2000	19'391	19'172	19'057	352					
2001	23'280	25'364	25'518	509					
2002	36'204	37'245	36'917	801					
2003	59'007	56'141	55'400	1'326					
2004	84'607	83'574	83'010	2'907					
2005	165'539	162'339	154'628	5'285					
total	424'738	418'923	409'843	6'663					

Table 3: True outstanding payments obtained from Table 4, resulting NN reserves $\widehat{R}_i^{\rm NN}$, Mack's CL reserves and Mack's rooted mean square error of prediction [14] at time I (in 1'000) for LoB 3 and LoB 4.

Figure 3: NN reserves for each label of the feature component inj_part (over all LoBs).

Figure 4: NN reserves relative to the true outstanding claims payments for cc, age and inj_part (aggregated over all LoBs).

(5.1); the column 'CL res.' gives the classical CL reserves; and the column ' $\sqrt{\text{msep}}$ ' illustrates Mack's [14] rooted mean square error of prediction, which serves as a prediction uncertainty measure (related to one standard deviation). Remark that the latter uncertainty measure is the only place where we need estimates for σ_j^2 , we use the standard estimates proposed by [14].

The first observation is that the resulting reserves are remarkably good. The resulting overall reserves from the neural network approach are perfect for the first two lines of business LoB 1 and 2: they almost completely coincide with the true outstanding claims payments, see Table 2. Mack's CL reserves are in both lines of business LoB 1 and 2 too low, but still within two standard deviations of the prediction uncertainty.

The results in lines of business LoB 3 and 4 are less accurate. In LoB 3, both the NN and the CL reserves are too high, beyond Mack's prediction uncertainty measure. In LoB 4, the NN reserves are slightly too low (but still very accurate), where as the CL reserves are too low (they deviate more than two standard deviations of prediction uncertainty from the true outstanding claims payments).

Concluding, these claims reserving results are very much in favor of the neural network regression approach. A main difference to the classical CL method is that the neural network approach considers all data simultaneously, whereas the CL method considers each line of business separately (because of the required homogeneity on CL claims reserving triangles). The latter is not always sensible: in our analysis we consider claims that belong to accident insurance and we would expect that if the same body part is injured, then the recovery process is similar regardless of the line of business affected. Of course, this idea leads to a multivariate analysis (if several feature components are involved simultaneously) which is exactly considered in the neural network regression model.

There is another major advantage of the neural network approach. We are now able to set up claims reserves for different types of claims. In Figure 2 we illustrate the NN reserves per label of the feature component cc and in Figure 3 we illustrate the NN reserves per label of the feature component inj_part. These reserves respect the sensitivities obtained in Figures 8 and 9, and

the plots show that the reserves per type of claim are very accurate. In Figure 4 we provide the ratio between the NN reserves and the true outstanding claims payments per label of the feature components cc, age and inj_part. Again this shows that the neural network partition is very sensible because these ratios fluctuate around 1 (the few outliers are observed on labels with very small volumes). This partition on types of claims is very useful in insurance, for instance, it allows the insurance company to price different claims modules individually because it has now sensible claims reserves on each of these modules.

We close with a remark on calendar year inflation. For the CL method being appropriate it needs to be assumed that calendar year inflation is (approximately) constant over all calendar years under consideration. If this is not the case, the CL method will result in a bias. For this reason, betimes, claims are deflated before applying the CL method. Our analysis does not consider this, i.e., it uses a roughly constant calendar year inflation assumption over time. The neural network approach would allow us to include calendar year inflation. This would require an additional feature component for the calendar year in which a particular payment has been done (i.e. a feature component $x_l = i + j$ for a payment of accident year i with a development delay j). However, we recommend to only use this approach with restraint because it will also require that we extrapolate a calendar year inflation pattern over the next J = 11 development years (in the lower triangle), where a constant inflation often provides the best predictions.

6 Conclusions and outlook

We have extended Mack's CL model for claims reserving to include individual claims feature information. This extension was done by using a neural network model for the CL factors, i.e., we have augmented the homogeneous CL factors by considering (heterogeneous) individual claims feature information. This extended model has the advantage that we can analyze reserves on individual claims, which allows us, for instance, to capture changing portfolio mixes.

We admit that our work is only the starting point of a much broader modeling task and several next steps have to be considered. We mention two of them. Our analysis only considers static feature information, i.e., the feature labels do not change over time. The modeling task becomes much more complex for dynamic feature components, because dynamic features will require modeling of multidimensional stochastic processes. An example of a dynamic feature component is a disability degree that may change over time. A first attempt to treat such a dynamic feature component has been done in [24]. Moreover, in the dynamic approach one may also use other time scales than an annual grid. Of course, this choice will be closely related to the available data.

Another issue which goes beyond this work is prediction uncertainty. Triggers of prediction uncertainty are model uncertainty and parameter estimation error. In many situations this is dealt with by doing a bootstrap or bagging analysis. At the moment, these techniques are not feasible for several reasons in our neural network approach: the computational time is still too large, see Appendix B, and it is unclear how we should deal with model uncertainty, in particular, in the situation of over-parametrized models that are prone to over-fitting and contain potential

redundancies. For these reasons alternatives need to be found to analyze prediction uncertainty. A straightforward idea is to use Bayesian methods, however, also here we face the curse of dimensionality which may result in Markov chain Monte Carlo simulations that are far too time consuming.

Acknowledgment. We would like to kindly thank Philipp Reinmann (AXA) and Ronald Richman (AIG) who have provided very useful remarks on previous versions of this manuscript.

References

- [1] Antonio, K., Plat, R. (2014). Micro-level stochastic loss reserving for general insurance. *Scandinavian Actuarial Journal* **2014/7**, 649-669.
- [2] Arjas, E. (1989). The claims reserving problem in non-life insurance: some structural ideas. *ASTIN Bulletin* **19/2**, 139-152.
- [3] Badescu, A.L., Lin, X.S., Tang, D. (2016). A marked Cox model for the number of IBNR claims: theory. *Insurance: Mathematics & Economics* **69**, 29-37.
- [4] Badescu, A.L., Lin, X.S., Tang, D. (2016). A marked Cox model for the number of IBNR claims: estimation and application. Version March 14, 2016. SSRN Manuscript 2747223.
- [5] Baudry, M., Robert, C.Y. (2017). Non parametric individual claim reserving in insurance. Preprint.
- [6] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. *Mathematics of Control, Signals, and Systems (MCSS)* **2/4**, 303-314.
- [7] Gabrielli, A., Wüthrich, M.V. (2018). An individual claims history simulation machine. *Risks* **6/2**, 29.
- [8] Harej, B., Gächter, R., Jamal, S. (2017). Individual claim development with machine learning. ASTIN Report.
- [9] Hornik, K., Stinchcombe, M., White, H. (1989). Multilayer feedforward networks are universal approximators. *Neural Networks* **2/5**, 359-366.
- [10] Isenbeck, M., Rüschendorf, L. (1992). Completeness in location families. Probability and Mathematical Statistics 13, 321-343.
- [11] Jessen, A.H., Mikosch, T., Samorodnitsky, G. (2011). Prediction of outstanding payments in a Poisson cluster model. *Scandinavian Actuarial Journal* **2011/3**, 214-237.
- [12] LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning. Nature 521/7553, 436-444.
- [13] Lopez, O. (2018). A censored copula model for micro-level claim reserving. HAL Id: hal-01706935.
- [14] Mack, T. (1993). Distribution-free calculation of the standard error of chain ladder reserve estimates. ASTIN Bulletin 23/2, 213-225.
- [15] Montúfar, G., Pascanu, R., Cho, K., Bengio, Y. (2014). On the number of linear regions of deep neural networks. Neural Information Processing Systems Proceedings^β 27, 2924-2932.
- [16] Nielsen, M. (2017). Neural Networks and Deep Learning. Online book available on http://neuralnetworksanddeeplearning.com

- [17] Norberg, R. (1993). Prediction of outstanding liabilities in non-life insurance. ASTIN Bulletin 23/1, 95-115.
- [18] Norberg, R. (1999). Prediction of outstanding liabilities II. Model variations and extensions. *ASTIN Bulletin* **29/1**, 5-25.
- [19] Pigeon, M., Antonio, K., Denuit, M. (2013). Individual loss reserving with the multivariate skew normal framework. *ASTIN Bulletin* **43/3**, 399-428.
- [20] Rumelhart, D.E., Hinton, G.E., Williams, R.J. (1986). Learning representations by back-propagating errors. *Nature* **323/6088**, 533-536.
- [21] Schnieper, R. (1991). Separating true IBNR and IBNER claims. ASTIN Bulletin 21/1, 111-127.
- [22] Verrall, R.J., Wüthrich, M.V. (2016). Understanding reporting delay in general insurance. *Risks* 4/3, 25.
- [23] Werbos, P. (1982). Applications of advances in nonlinear sensitivity analysis. System Modeling and Optimization 1982, 762-770.
- [24] Wüthrich, M.V. (2018). Machine learning in individual claims reserving. Scandinavian Actuarial Journal 2018/6, 465-480.
- [25] Zarkadoulas, A. (2017). Neural network algorithms for the development of individual losses. MSc thesis, University of Lausanne.

A Data

We generate synthetic individual claims data using the scenario generator provided in [7]. The

Listing 1: Simulating individual claims histories using the scenario generator [7].

```
> source(file="./Functions.V1.R")
   > V <- 5000000
   > LoB.dist < c(0.35,0.20,0.15,0.30)
   > growth <- c(0,0,0,0)
4
  > seed1 <- 100
   > features <- Feature.Generation(V=V,LoB.dist=LoB.dist,inflation=growth,seed1=seed1)
7
   > str(features)
8
   'data.frame':
                   5003204 obs. of 7 variables:
9
            : int 1 2 3 4 5 6 7 8 9 10 ...
              : Factor w/ 4 levels "1", "2", "3", "4": 3 2 4 2 1 1 2 4 1 4 ...
10
    $ LoB
              : Factor w/ 51 levels "1", "3", "4", "5",..: 16 5 4 16 16 5 16 19 28 25 ...
    $ cc
11
12
    $ AY
              : num 1994 1994 1994 1994 ...
13
    $ AQ
              : num 1 3 1 2 2 1 4 2 3 3 ...
    $ age
             : num 67 39 55 22 38 16 36 45 29 45 ...
14
    $ inj_part: Factor w/ 46 levels "10","11","12",...: 31 26 6 34 31 36 9 15 21 41 ...
15
16
17
   > npb <- nrow(features)
   > seed1 <- 100
18
   > sd1 <- 0.85
  > sd2 <- 0.85
20
21
  > output <- Simulation.Machine(features=features,npb=npb,seed1=seed1,std1=sd1,std2=sd2)
```

use and parametrization of this scenario generator is illustrated in Listing 1. On lines 2-6 we generate a claims portfolio consisting of feature components LoB, cc, AY, AQ, age and inj_part, see lines 8-15 of Listing 1. We receive 5'003'204 individual claims. The marginal distributions of these feature components are illustrated in Figure 5 and the two-dimensional contour plots are given in Figure 6. The latter contour plots do not show co-linearity in feature components. This portfolio of 5'003'204 individual claims features is then used to generate fully developed individual claims histories. This is done on lines 17-21 of Listing 1 and provides an individual reporting delay RepDel as well as claims payments over 12 development years for each claim. In claims reserving problems, we typically do not have information about the full claims developments. If the latest observed calendar year is 2005, we only have information about the reported claims with $AY + RepDel \le 2005$ (upper triangles). In our synthetic data set, these are 4'970'856 reported claims, and the remaining 32'348 claims are only reported after calendar year 2005. Therefore, these latter claims are not available at the end of 2005. The 4'970'856 reported claims provide claims payments in upper claims reserving triangles. These payments aggregated per line of business LoB $\in \{1, \ldots, 4\}$ are shown in Table 4. In our special situation of simulated claims histories we also know the total ultimate claim amounts $C_{i,J}$. These are provided in the last columns of Table 4. The general aim is to predict these last columns based on the given upper claims development triangles illustrated in Table 4.

Figure 5: Marginal distributions of the feature components LoB, cc, AY, AQ, age, inj_part.

Figure 6: Two-dimensional contour plots of the portfolio distributions of the feature components LoB, cc, age, inj_part.

1996 71/28 108/869 121/88 129/82 134/347 134/38 14/989 14/31/41 144/87 14/350 14/76 14/86 16/32 14/86 16/32 14/86 16/32 14/86 16/32 14/86														
1996 71/28 10/88 91/18 129/48 314/34 318/33 40/98 43/14 144/87 146/30 47/68 48/66 149/67 1997 71/56 10/97 17/56 129/30 31/987	LoB 1	0	1	2	3	4	5	6	7	8	9	10	11	$C_{i,J}$
1996 1972 1975 1970	1994	70'866	106'683	118'701	125'633	130'217	133'723	136'347	138'459	140'124	141'549	142'816	143'832	143'832
1995 17158 1997 19178 123960 131987 137980 141008 1437809 1461035 14717 171580 154181 1999 73396 144'01 129591 138'254 143'965 148'013 151'104 148'028	1995	71'258	108'859	121'983	129'482	134'473	138'133	140'959	143'141	144'837	146'350	147'618		148'666
1999 73721 111689 127837 1341012 139489 143408 1467361 1487628	1996	71'025	109'063	122'152	129'612	134'535	138'104	140'884	143'140	144'869	146'324			148'661
1999 73721														
1990														
165-000 173-34 1870-43 134-05 143-159 149-221 153-477 150-200 175-000 175-000 175-000 154-05 1		1												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1						101 104						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1					100 411							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1				100 409								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1			132 409									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				145 697										
LoB 2			138/105											
1994 102186	2005	887805												1947785
1994 102'186												10		
1995 98:294 145:309 162:863 170:519 174:620 177:275 179:322 180:7759 182:002 182:817 183:222 183:31 1996 96:593 143:401 160:746 168:511 172:492 174:754 176:428 176:428 178:154 178:155 178:955 161:919 1997 90:397 132:134 147:124 154:363 158:585 161:919 162:861 164:078 164:853 164:853 166:15598 166:15598 169:276 170:333 171:796 171:354 178:155 173:744 178:155 174:786 176:043 173:744 176:271 160:717 166:716 176:717 176:933 171:796 176:933 142:683 162:677 170:766 174:711 177:092 178:579 176:343 142:83 162:677 176:767 176:933 176:766 158:590 181:086 180:276 178:345 180:276 182:476 182														
1996 96'593 143'401 160'46 168'511 172'492 174'784 176'428 177'548 178'154 178'950													181'357	!
166-15 1998 90'397 132'134 147'124 154'363 155'585 161'291 162'861 164'078 164'853												183'222		!
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											178'950			1
178'84 179'9 92'431 141'721 160'717 168'701 172'552 174'786 176'043										164'853				166'150
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									171'796					173'743
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						172'552		176'043						178'846
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2000	91'363	142'683	162'677	170'766	174'711	177'092							181'808
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2001	92'501	144'275	164'144	172'677	176'933								184'816
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2002	97'416	152'027	173'579	182'476									192'612
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2003	101'666	158'590	181'086										204'259
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2004	106'343	168'333											216'249
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2005	108'877												217'218
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
1995 86'903 141'337 160'678 168'916 173'832 176'827 179'108 180'799 182'128 183'155 183'998 184'500 1996 85'846 138'819 157'035 165'845 170'977 174'339 176'497 178'412 179'719 181'112 182'647 1997 84'424 137'015 154'629 162'761 167'257 170'343 172'427 173'732 174'847 173'427 1998 80'764 132'191 150'684 159'278 164'040 167'222 169'495 171'082 174'847 174'47 1999 80'213 130'047 147'850 156'333 161'001 164'067 166'289 171'082 174'351 2000 81'435 131'821 150'546 158'948 163'485 165'923 175'871 130'723 150'625 158'874 163'024 2002 83'479 138'681 159'421 168'147 182'348 2003 91'806 149'656 170'513 182'348 163'485 165'923 182'349 2004 91'127 147'471 147'471 182'34 182'348 2005 99'324 188'818 159'421 168'147 188'348 2006 88'0645 129'535 148'090 159'028 166'938 171'395 175'621 178'956 181'585 183'937 185'961 187'579 187'57 1996 88'102 135'243 156'091 168'427 176'687 182'746 187'385 191'093 194'131 196'916 201'30 1997 80'330 132'219 152'781 165'008 173'219 179'216 183'704 187'486 190'459 187'907 1998 80'761 135'037 157'073 169'781 178'602 185'059 189'949 193'868 141'788 166'003 180'699 189'424 196'222 199'254 2000 83'936 141'788 166'003 180'069 189'424 196'222 199'254 185'082 142'611 166'530 180'329 189'252 189'949 193'868 185'048 142'43 186'201 197'07 2004 88'970 166'962 176'637 193'228 189'252 189'252 185'058 187'858 187'585 199'254 185'058 187'585 199'254 185'058 187'585 189'252 125'56 185'058 187'585 189'252 125'56 185'058 187'573 187'507 187'507 187'507 187'507 187'507 187'507 187'507 187'507 187'507 187'507 187'507 187'507 187'507 187'507 187'507 187'507 187'507 187'507 187'5														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LoB 3	0	1	2	3	4	5	6	7	8	9	10	11	$C_{i,J}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														$\frac{C_{i,J}}{184'325}$
1998 80'764 132'191 150'684 159'278 164'040 167'222 169'495 171'082 174'155 1999 80'213 130'047 147'850 156'333 161'001 164'067 166'289	1994	88'735	140'690	158'553	167'405	172'571	175'914	178'285	180'068	181'654	182'675	183'724		
1999 80'213 130'047 147'850 156'333 161'001 164'067 166'289 171'331 171'756 181'435 131'821 150'546 158'948 163'485 165'923 170'855 138'479 138'681 159'421 168'147 182'346 170'855 185'371 182'346 170'855 185'271 147'471 182'346 170'855 185'271	1994 1995	88'735 86'903	140'690 141'337	158'553 160'678	167'405 168'916	172'571 173'832	175'914 176'827	178'285 179'108	180'068 180'799	181'654 182'128	182'675 183'155	183'724		184'325
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1994 1995 1996	88'735 86'903 85'846	140'690 141'337 138'819	158'553 160'678 157'035	167'405 168'916 165'845	172'571 173'832 170'977	175'914 176'827 174'339	178'285 179'108 176'497	180'068 180'799 178'412	181'654 182'128 179'719	182'675 183'155	183'724		184'325 184'500
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1994 1995 1996 1997	88'735 86'903 85'846 84'424	140'690 141'337 138'819 137'015	158'553 160'678 157'035 154'629	167'405 168'916 165'845 162'761	172'571 173'832 170'977 167'257	175'914 176'827 174'339 170'343	178'285 179'108 176'497 172'427	180'068 180'799 178'412 173'732	181'654 182'128 179'719	182'675 183'155	183'724		184'325 184'500 182'647
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1994 1995 1996 1997 1998	88'735 86'903 85'846 84'424 80'764	140'690 141'337 138'819 137'015 132'191	158'553 160'678 157'035 154'629 150'684	167'405 168'916 165'845 162'761 159'278	172'571 173'832 170'977 167'257 164'040	175'914 176'827 174'339 170'343 167'222	178'285 179'108 176'497 172'427 169'495	180'068 180'799 178'412 173'732	181'654 182'128 179'719	182'675 183'155	183'724		184'325 184'500 182'647 176'820
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1994 1995 1996 1997 1998 1999	88'735 86'903 85'846 84'424 80'764 80'213	140'690 141'337 138'819 137'015 132'191 130'047	158'553 160'678 157'035 154'629 150'684 147'850	167'405 168'916 165'845 162'761 159'278 156'333	172'571 173'832 170'977 167'257 164'040 161'001	175'914 176'827 174'339 170'343 167'222 164'067	178'285 179'108 176'497 172'427 169'495	180'068 180'799 178'412 173'732	181'654 182'128 179'719	182'675 183'155	183'724		184'325 184'500 182'647 176'820 174'155 171'331
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1994 1995 1996 1997 1998 1999 2000	88'735 86'903 85'846 84'424 80'764 80'213 81'435	140'690 141'337 138'819 137'015 132'191 130'047 131'821	158'553 160'678 157'035 154'629 150'684 147'850 150'546	167'405 168'916 165'845 162'761 159'278 156'333 158'948	172'571 173'832 170'977 167'257 164'040 161'001 163'485	175'914 176'827 174'339 170'343 167'222 164'067	178'285 179'108 176'497 172'427 169'495	180'068 180'799 178'412 173'732	181'654 182'128 179'719	182'675 183'155	183'724		184'325 184'500 182'647 176'820 174'155 171'331 171'756
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1994 1995 1996 1997 1998 1999 2000 2001	88'735 86'903 85'846 84'424 80'764 80'213 81'435 77'781	140'690 141'337 138'819 137'015 132'191 130'047 131'821 130'723	158'553 160'678 157'035 154'629 150'684 147'850 150'546 150'625	167'405 168'916 165'845 162'761 159'278 156'333 158'948 158'874	172'571 173'832 170'977 167'257 164'040 161'001 163'485	175'914 176'827 174'339 170'343 167'222 164'067	178'285 179'108 176'497 172'427 169'495	180'068 180'799 178'412 173'732	181'654 182'128 179'719	182'675 183'155	183'724		184'325 184'500 182'647 176'820 174'155 171'331 171'756 170'859
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1994 1995 1996 1997 1998 1999 2000 2001 2002	88'735 86'903 85'846 84'424 80'764 80'213 81'435 77'781 83'479	140'690 141'337 138'819 137'015 132'191 130'047 131'821 130'723 138'681	158'553 160'678 157'035 154'629 150'684 147'850 150'546 150'625 159'421	167'405 168'916 165'845 162'761 159'278 156'333 158'948 158'874	172'571 173'832 170'977 167'257 164'040 161'001 163'485	175'914 176'827 174'339 170'343 167'222 164'067	178'285 179'108 176'497 172'427 169'495	180'068 180'799 178'412 173'732	181'654 182'128 179'719	182'675 183'155	183'724		184'325 184'500 182'647 176'820 174'155 171'331 171'756 170'859 182'348
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1994 1995 1996 1997 1998 1999 2000 2001 2002 2003	88'735 86'903 85'846 84'424 80'764 80'213 81'435 77'781 83'479 91'806	140'690 141'337 138'819 137'015 132'191 130'047 131'821 130'723 138'681 149'656	158'553 160'678 157'035 154'629 150'684 147'850 150'546 150'625 159'421	167'405 168'916 165'845 162'761 159'278 156'333 158'948 158'874	172'571 173'832 170'977 167'257 164'040 161'001 163'485	175'914 176'827 174'339 170'343 167'222 164'067	178'285 179'108 176'497 172'427 169'495	180'068 180'799 178'412 173'732	181'654 182'128 179'719	182'675 183'155	183'724		184'325 184'500 182'647 176'820 174'155 171'331 171'756 170'859 182'348 195'620
1994 80'645 129'535 148'090 159'028 166'099 171'395 175'621 178'956 181'585 183'937 185'961 187'579 187'57 1995 79'549 129'207 147'986 158'932 166'338 171'668 175'858 179'179 181'899 184'243 186'201 187'80 1996 82'102 135'243 156'091 168'427 176'687 182'746 187'385 191'093 194'131 196'916 201'30 1997 80'330 132'219 152'781 165'008 173'219 179'216 183'704 187'486 190'459 199'47 199'8 80'761 135'037 157'073 169'781 178'602 185'059 189'949 193'868 203'93 199'94 141'255 164'606 178'268 187'585 194'202 199'254 213'29 2000 83'936 141'788 166'030 180'069 189'424 196'222 215'61 2001 85'202 142'611 166'530 180'329 189'252 212'53 2002 89'256 150'820 177'637 193'228 229'43 2003 96'335 163'538 192'737 2204 98'797 166'962 251'56	1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004	88'735 86'903 85'846 84'424 80'764 80'213 81'435 77'781 83'479 91'806 91'127	140'690 141'337 138'819 137'015 132'191 130'047 131'821 130'723 138'681 149'656	158'553 160'678 157'035 154'629 150'684 147'850 150'546 150'625 159'421	167'405 168'916 165'845 162'761 159'278 156'333 158'948 158'874	172'571 173'832 170'977 167'257 164'040 161'001 163'485	175'914 176'827 174'339 170'343 167'222 164'067	178'285 179'108 176'497 172'427 169'495	180'068 180'799 178'412 173'732	181'654 182'128 179'719	182'675 183'155	183'724		184'325 184'500 182'647 176'820 174'155 171'331 171'756 170'859 182'348 195'620 185'275
1994 80'645 129'535 148'090 159'028 166'099 171'395 175'621 178'956 181'585 183'937 185'961 187'579 187'57 1995 79'549 129'207 147'986 158'932 166'338 171'668 175'858 179'179 181'899 184'243 186'201 187'80 1996 82'102 135'243 156'091 168'427 176'687 182'746 187'385 191'093 194'131 196'916 201'30 1997 80'330 132'219 152'781 165'008 173'219 179'216 183'704 187'486 190'459 199'47 199'8 80'761 135'037 157'073 169'781 178'602 185'059 189'949 193'868 203'93 199'94 141'255 164'606 178'268 187'585 194'202 199'254 213'29 2000 83'936 141'788 166'030 180'069 189'424 196'222 215'61 2001 85'202 142'611 166'530 180'329 189'252 212'53 2002 89'256 150'820 177'637 193'228 229'43 2003 96'335 163'538 192'737 2204 98'797 166'962 251'56	1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004	88'735 86'903 85'846 84'424 80'764 80'213 81'435 77'781 83'479 91'806 91'127	140'690 141'337 138'819 137'015 132'191 130'047 131'821 130'723 138'681 149'656	158'553 160'678 157'035 154'629 150'684 147'850 150'546 150'625 159'421	167'405 168'916 165'845 162'761 159'278 156'333 158'948 158'874	172'571 173'832 170'977 167'257 164'040 161'001 163'485	175'914 176'827 174'339 170'343 167'222 164'067	178'285 179'108 176'497 172'427 169'495	180'068 180'799 178'412 173'732	181'654 182'128 179'719	182'675 183'155	183'724		184'325 184'500 182'647 176'820 174'155 171'331 171'756 170'859 182'348 195'620
1995 79'549 129'207 147'986 158'932 166'338 171'668 175'858 179'179 181'899 184'243 186'201 187'80 1996 82'102 135'243 156'091 168'427 176'687 182'746 187'385 191'093 194'131 196'916 201'30 1997 80'330 132'219 152'781 165'008 173'219 179'216 183'704 187'486 190'459 197'07 1998 80'761 135'037 157'073 169'781 178'602 185'059 189'949 193'868 203'93 1999 84'814 141'255 164'606 178'268 187'585 194'202 199'254 213'29 2001 83'936 141'788 166'003 180'039 189'424 196'222 215'61 2001 85'202 142'611 166'530 180'329 189'252 212'53 2002 89'256 150'820 177'637 193'228 229'43 2003	1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005	88'735 86'903 85'846 84'424 80'764 80'213 81'435 77'781 83'479 91'806 91'127 99'324	140'690 141'337 138'819 137'015 132'191 130'047 131'821 130'723 138'681 149'656 147'471	158'553 160'678 157'035 154'629 150'684 147'850 150'546 150'625 159'421 170'513	167'405 168'916 165'845 162'761 159'278 156'333 158'948 158'874 168'147	172'571 173'832 170'977 167'257 164'040 161'001 163'485 163'024	175'914 176'827 174'339 170'343 167'222 164'067 165'923	178'285 179'108 176'497 172'427 169'495 166'289	180'068 180'799 178'412 173'732 171'082	181'654 182'128 179'719 174'847	182'675 183'155 181'112	183'724 183'998	184'325	184'325 184'500 182'647 176'820 174'155 171'331 171'756 170'859 182'348 195'620 185'275 211'186
1996 82'102 135'243 156'091 168'427 176'687 182'746 187'385 191'093 194'131 196'916 201'30 1997 80'330 132'219 152'781 165'008 173'219 179'216 183'704 187'486 190'459 197'07 1998 80'761 135'037 157'073 169'781 178'602 185'059 189'949 193'868 203'93 1999 84'814 141'255 164'606 178'268 187'585 194'202 199'254 213'29 2000 83'936 141'788 166'030 180'069 189'424 196'222 215'61 2001 85'202 142'611 166'530 180'329 189'252 212'53 2002 89'256 150'820 177'637 193'228 229'43 2003 96'335 163'538 192'737 251'74 2004 98'797 166'962 251'56	1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005	88'735 86'903 85'846 84'424 80'764 80'213 81'435 77'781 83'479 91'806 91'127 99'324	140'690 141'337 138'819 137'015 132'191 130'047 131'821 130'723 138'681 149'656 147'471	158'553 160'678 157'035 154'629 150'684 147'850 150'546 150'625 159'421 170'513	167'405 168'916 165'845 162'761 159'278 156'333 158'948 158'874 168'147	172'571 173'832 170'977 167'257 164'040 161'001 163'485 163'024	175'914 176'827 174'339 170'343 167'222 164'067 165'923	178'285 179'108 176'497 172'427 169'495 166'289	180'068 180'799 178'412 173'732 171'082	181'654 182'128 179'719 174'847	182'675 183'155 181'112	183'724 183'998	184'325	184'325 184'500 182'647 176'820 174'155 171'331 171'756 170'859 182'348 195'620 185'275 211'186
1997 80'330 132'219 152'781 165'008 173'219 179'216 183'704 187'486 190'459 197'07 1998 80'761 135'037 157'073 169'781 178'602 185'059 189'949 193'868 203'93 1999 84'814 141'255 164'606 178'268 187'585 194'202 199'254 213'29 2000 83'936 141'788 166'003 180'069 189'424 196'222 2215'61 2001 85'202 142'611 166'530 180'329 189'252 212'53 2002 89'256 150'820 177'637 193'228 229'43 2003 96'335 163'538 192'737 251'74 2004 98'797 166'962 251'56	1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005	88'735 86'903 85'846 84'424 80'764 80'213 81'435 77'781 83'479 91'806 91'127 99'324	140'690 141'337 138'819 137'015 132'191 130'047 131'821 130'723 138'681 149'656 147'471	158'553 160'678 157'035 154'629 150'684 147'850 150'546 150'625 159'421 170'513	167'405 168'916 165'845 162'761 159'278 156'333 158'948 158'874 168'147	172'571 173'832 170'977 167'257 164'040 161'001 163'485 163'024 4 166'099	175'914 176'827 174'339 170'343 167'222 164'067 165'923 5 171'395	178'285 179'108 176'497 172'427 169'495 166'289	180'068 180'799 178'412 173'732 171'082 7 178'956	181'654 182'128 179'719 174'847 8 181'585	182'675 183'155 181'112	183'724 183'998 183'998	184'325	$\begin{array}{c} 184'325 \\ 184'500 \\ 182'647 \\ 176'820 \\ 174'155 \\ 171'331 \\ 171'756 \\ 170'859 \\ 182'348 \\ 195'620 \\ 185'275 \\ 211'186 \\ \hline \\ C_{i,J} \\ 187'579 \\ \hline \end{array}$
1998 80'761 135'037 157'073 169'781 178'602 185'059 189'949 193'868 203'93 1999 84'814 141'255 164'606 178'268 187'585 194'202 199'254 213'29 2000 83'936 141'788 166'003 180'069 189'424 196'222 215'61 2001 85'202 142'611 166'530 180'329 189'252 212'53 2002 89'256 150'820 177'637 193'228 229'43 2003 96'335 163'538 192'737 251'74 2004 98'797 166'962 251'56	1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 LoB 4 1994 1995	88'735 86'903 85'846 84'424 80'764 80'213 81'435 77'781 83'479 91'806 91'127 99'324 0 80'645 79'549	140'690 141'337 138'819 137'015 132'191 130'047 131'821 130'723 138'681 149'656 147'471 129'535 129'207	158'553 160'678 157'035 154'629 150'684 147'850 150'625 159'421 170'513 2 148'090 147'986	167'405 168'916 165'845 162'761 159'278 156'333 158'948 158'874 168'147 3 159'028 158'932	172'571 173'832 170'977 167'257 164'040 161'001 163'485 163'024 4 166'099 166'338	175'914 176'827 174'339 170'343 167'222 164'067 165'923 5 171'395 171'668	178'285 179'108 176'497 172'427 169'495 166'289 6 175'621 175'858	180'068 180'799 178'412 173'732 171'082 7 178'956 179'179	181'654 182'128 179'719 174'847 8 181'585 181'899	182'675 183'155 181'112 9 183'937 184'243	183'724 183'998 183'998	184'325	$\begin{array}{c} 184'325 \\ 184'500 \\ 182'647 \\ 176'820 \\ 174'155 \\ 171'331 \\ 171'756 \\ 170'859 \\ 182'348 \\ 195'620 \\ 185'275 \\ 211'186 \\ \hline \\ C_{i,J} \\ 187'579 \\ 187'801 \\ \hline \end{array}$
1999 84'814 141'255 164'606 178'268 187'585 194'202 199'254 213'29 2000 83'936 141'788 166'003 180'069 189'424 196'222 215'61 2001 85'202 142'611 166'530 180'329 189'252 212'53 2002 89'256 150'820 177'637 193'228 229'43 2003 96'335 163'538 192'737 251'74 2004 98'797 166'962 251'56	1994 1995 1996 1997 1998 2000 2001 2002 2003 2004 2005 LoB 4 1995 1996	88'735 86'903 85'846 84'424 80'764 80'213 81'435 77'781 83'479 91'806 91'127 99'324 0 80'645 79'549 82'102	140'690 141'337 138'819 137'015 132'191 130'047 131'821 130'723 138'681 149'656 147'471 129'535 129'207 135'243	158'553 160'678 157'035 154'629 150'684 147'850 150'546 150'625 159'421 170'513 2 148'090 147'986 156'091	167'405 168'916 165'845 162'761 159'278 156'333 158'948 158'874 168'147	172'571 173'832 170'977 167'257 164'040 161'001 163'485 163'024 4 166'099 166'338 176'687	175'914 176'827 174'339 170'343 167'222 164'067 165'923 5 171'395 171'668 182'746	178'285 179'108 176'497 172'427 169'495 166'289 6 6 175'621 175'858 187'385	180'068 180'799 178'412 173'732 171'082 7 7 178'956 179'179 191'093	181'654 182'128 179'719 174'847 8 8 181'585 181'899	182'675 183'155 181'112 9 183'937 184'243	183'724 183'998 183'998	184'325	$\begin{array}{c} 184'325 \\ 184'500 \\ 182'647 \\ 176'820 \\ 174'155 \\ 171'331 \\ 171'756 \\ 170'859 \\ 182'348 \\ 195'620 \\ 185'275 \\ 211'186 \\ \hline \\ \hline \\ C_{i,J} \\ 187'579 \\ 187'801 \\ 201'304 \\ \hline \end{array}$
2000 83'936 141'788 166'003 180'069 189'424 196'222 215'61 2001 85'202 142'611 166'530 180'329 189'252 212'53 2002 89'256 150'820 177'637 193'228 229'43 2003 96'335 163'538 192'737 251'74 2004 98'797 166'962 251'56	1994 1995 1996 1997 1998 2000 2001 2002 2003 2004 2005 LoB 4 1994 1995 1996 1997	88'735 86'903 85'846 84'424 80'764 80'213 81'435 77'781 83'479 91'806 91'127 99'324 0 80'645 79'549 82'102 80'330	140'690 141'337 138'819 137'015 132'191 130'047 131'821 130'723 138'681 149'656 147'471 129'535 129'207 135'243 132'219	158'553 160'678 157'035 154'629 150'684 147'850 150'546 150'625 159'421 170'513 2 148'090 147'986 156'091 152'781	167'405 168'916 165'845 162'761 159'278 156'333 158'948 158'874 168'147 3 159'028 158'932 168'427 165'008	172'571 173'832 170'977 167'257 164'040 161'001 163'485 163'024 4 166'099 166'388 176'687 173'219	175'914 176'827 174'339 170'343 167'222 164'067 165'923 5 171'395 171'395 171'668 182'746 179'216	178'285 179'108 176'497 172'427 169'495 166'289 6 175'621 175'858 187'385 183'704	180'068 180'799 178'412 173'732 171'082 7 7 178'956 179'179 191'093 187'486	181'654 182'128 179'719 174'847 8 8 181'585 181'899	182'675 183'155 181'112 9 183'937 184'243	183'724 183'998 183'998	184'325	$\begin{array}{c} 184'325 \\ 184'500 \\ 182'647 \\ 176'820 \\ 174'155 \\ 171'331 \\ 171'756 \\ 170'859 \\ 182'348 \\ 195'620 \\ 185'275 \\ 211'186 \\ \hline \\ C_{i,J} \\ 187'579 \\ 187'801 \\ 201'304 \\ 197'071 \\ \end{array}$
2001 85'202 142'611 166'530 180'329 189'252 212'53 2002 89'256 150'820 177'637 193'228 229'43 2003 96'335 163'538 192'737 251'74 2004 98'797 166'962 251'56	1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 1994 1995 1996 1997 1998	88'735 86'903 85'846 84'424 80'764 80'213 81'435 77'781 83'479 91'127 99'324 0 80'645 79'549 82'102 80'330 80'761	140'690 141'337 138'819 137'015 132'191 130'047 131'821 130'723 138'681 149'656 147'471 129'535 129'207 135'243 132'219 135'037	158'553 160'678 157'035 154'629 150'684 147'850 150'546 150'625 159'421 170'513 2 148'090 147'986 156'091 156'091 152'781 157'073	167'405 168'916 165'845 162'761 159'278 156'333 158'948 158'874 168'147 3 159'028 158'932 168'427 165'008 169'781	172'571 173'832 170'977 167'257 164'040 161'001 163'485 163'024 4 166'099 166'338 176'687 173'219 178'602	175'914 176'827 174'339 170'343 167'222 164'067 165'923 5 171'395 171'696 171'666 182'746 179'216 185'059	178'285 179'108 176'497 172'427 169'495 166'289 6 175'621 175'821 187'385 183'704 189'949	180'068 180'799 178'412 173'732 171'082 7 7 178'956 179'179 191'093 187'486	181'654 182'128 179'719 174'847 8 8 181'585 181'899	182'675 183'155 181'112 9 183'937 184'243	183'724 183'998 183'998	184'325	$\begin{array}{c} 184'325 \\ 184'500 \\ 182'647 \\ 176'820 \\ 174'155 \\ 171'331 \\ 171'756 \\ 170'859 \\ 182'348 \\ 195'620 \\ 185'275 \\ 211'186 \\ \hline \\ \hline C_{i,J} \\ 187'579 \\ 187'801 \\ 201'304 \\ 197'071 \\ 203'937 \\ \end{array}$
2002 89'256 150'820 177'637 193'228 229'43 2003 96'335 163'538 192'737 251'74 2004 98'797 166'962 251'56	1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 LoB 4 1994 1995 1996 1997 1998	88'735 86'903 85'846 84'424 80'764 80'213 81'435 77'781 83'479 91'806 91'127 99'324 0 80'645 79'549 82'102 80'330 80'761 84'814	140'690 141'337 138'819 137'015 132'191 130'047 131'821 130'723 138'681 149'656 147'471 1 129'535 129'207 135'247 132'219 135'037 141'255	158'553 160'678 157'035 154'629 150'684 147'850 150'546 150'625 159'421 170'513 2 148'090 147'986 156'091 152'781 152'781 157'073 164'606	167'405 168'916 165'845 162'761 159'278 156'333 158'948 158'874 168'147 3 159'028 158'932 168'427 165'008 169'781 178'268	172'571 173'832 170'977 164'040 161'001 163'485 163'024 4 166'099 166'338 176'687 173'219 178'602 187'585	175'914 176'827 174'339 170'343 167'222 164'067 165'923 5 171'395 171'668 182'746 182'746 185'059 194'202	178'285 179'108 176'497 172'427 169'495 166'289 6 175'621 175'821 187'385 183'704 189'949	180'068 180'799 178'412 173'732 171'082 7 7 178'956 179'179 191'093 187'486	181'654 182'128 179'719 174'847 8 8 181'585 181'899	182'675 183'155 181'112 9 183'937 184'243	183'724 183'998 183'998	184'325	$\begin{array}{c} 184'325 \\ 184'500 \\ 182'647 \\ 176'820 \\ 174'155 \\ 171'331 \\ 171'756 \\ 170'859 \\ 182'348 \\ 195'620 \\ 185'275 \\ 211'186 \\ \hline \\ C_{i,J} \\ 187'579 \\ 187'801 \\ 201'304 \\ 197'071 \\ 203'937 \\ 213'294 \\ \end{array}$
2003 96'335 163'538 192'737 251'74 2004 98'797 166'962 251'56	1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 LoB 4 1994 1995 1996 1997 1998 1999 2000	88'735 86'903 85'846 84'424 80'764 80'213 81'435 77'781 83'479 91'806 91'127 99'324 0 80'645 79'549 82'102 80'330 80'761 84'814 83'936	140'690 141'337 138'819 137'015 132'191 130'047 131'821 130'723 138'681 149'656 147'471 129'535 129'207 135'243 132'219 135'037 141'255 141'788	158'553 160'678 157'035 154'629 150'684 147'850 150'546 150'625 159'421 170'513 2 148'090 147'986 156'091 152'781 157'073 164'606 166'003	167'405 168'916 165'845 162'761 159'278 156'333 158'948 158'874 168'147 3 159'028 158'932 168'427 165'008 169'781 178'268 180'069	172'571 173'832 170'977 164'040 161'001 163'485 163'024 4 166'099 166'338 176'687 173'219 178'602 187'585 189'424	175'914 176'827 174'339 170'343 167'222 164'067 165'923 5 171'395 171'668 182'746 182'746 185'059 194'202	178'285 179'108 176'497 172'427 169'495 166'289 6 175'621 175'821 187'385 183'704 189'949	180'068 180'799 178'412 173'732 171'082 7 7 178'956 179'179 191'093 187'486	181'654 182'128 179'719 174'847 8 8 181'585 181'899	182'675 183'155 181'112 9 183'937 184'243	183'724 183'998 183'998	184'325	$\begin{array}{c} 184'325 \\ 184'500 \\ 182'647 \\ 176'820 \\ 174'155 \\ 171'331 \\ 171'756 \\ 170'859 \\ 182'348 \\ 195'620 \\ 185'275 \\ 211'186 \\ \hline \\ C_{i,J} \\ 187'579 \\ 187'801 \\ 201'304 \\ 197'071 \\ 203'937 \\ 213'294 \\ 215'613 \\ \hline \end{array}$
2004 98'797 166'962 251'56	1994 1995 1996 1997 1998 2000 2001 2002 2003 2004 2005 LoB 4 1995 1996 1997 1998 1999 2000 2001	88'735 86'903 85'846 84'424 80'213 81'435 77'781 83'479 91'806 91'127 99'324 0 80'645 79'549 82'102 80'330 80'761 84'814 83'936 85'202	140'690 141'337 138'819 137'015 132'191 130'047 131'821 130'723 138'681 149'656 147'471 129'535 129'207 135'243 132'219 135'037 141'255 141'758 142'611	158'553 160'678 157'035 154'629 150'684 147'850 150'546 150'625 159'421 170'513 2 148'090 147'986 156'091 152'781 157'073 164'606 166'003 166'530	167'405 168'916 165'845 162'761 159'278 156'333 158'948 158'874 168'147 3 159'028 168'427 165'008 169'781 178'268 180'069 180'329	172'571 173'832 170'977 164'040 161'001 163'485 163'024 4 166'099 166'338 176'687 173'219 178'602 187'585 189'424	175'914 176'827 174'339 170'343 167'222 164'067 165'923 5 171'395 171'668 182'746 182'746 185'059 194'202	178'285 179'108 176'497 172'427 169'495 166'289 6 175'621 175'821 187'385 183'704 189'949	180'068 180'799 178'412 173'732 171'082 7 7 178'956 179'179 191'093 187'486	181'654 182'128 179'719 174'847 8 8 181'585 181'899	182'675 183'155 181'112 9 183'937 184'243	183'724 183'998 183'998	184'325	$\begin{array}{c} 184'325 \\ 184'500 \\ 182'647 \\ 176'820 \\ 174'155 \\ 171'331 \\ 171'756 \\ 170'859 \\ 182'348 \\ 195'620 \\ 185'275 \\ 211'186 \\ \hline \\ \hline \\ C_{i,J} \\ 187'579 \\ 187'801 \\ 201'304 \\ 197'071 \\ 203'937 \\ 213'294 \\ 215'613 \\ 212'533 \\ \hline \end{array}$
	1994 1995 1996 1997 1998 2000 2001 2002 2003 2004 2005 LoB 4 1994 1995 1996 1997 1998 1999 2000 2001 2002	88'735 86'903 85'846 84'424 80'764 80'213 81'435 77'781 83'479 91'806 91'127 99'324 0 80'645 79'549 82'102 80'330 80'761 84'814 83'936 85'202 89'256	140'690 141'337 138'819 137'015 132'191 130'047 131'821 130'723 138'681 149'656 147'471 129'535 129'207 135'243 132'219 135'037 141'258 142'611 150'820	158'553 160'678 157'035 154'629 150'684 147'850 150'546 150'625 159'421 170'513 2 148'090 147'986 156'091 152'781 157'073 166'603 166'530 177'637	167'405 168'916 165'845 162'761 159'278 156'333 158'948 158'874 168'147 3 159'028 168'427 165'008 169'781 178'268 180'069 180'329	172'571 173'832 170'977 164'040 161'001 163'485 163'024 4 166'099 166'338 176'687 173'219 178'602 187'585 189'424	175'914 176'827 174'339 170'343 167'222 164'067 165'923 5 171'395 171'668 182'746 182'746 185'059 194'202	178'285 179'108 176'497 172'427 169'495 166'289 6 175'621 175'821 187'385 183'704 189'949	180'068 180'799 178'412 173'732 171'082 7 7 178'956 179'179 191'093 187'486	181'654 182'128 179'719 174'847 8 8 181'585 181'899	182'675 183'155 181'112 9 183'937 184'243	183'724 183'998 183'998	184'325	$\begin{array}{c} 184'325 \\ 184'500 \\ 182'647 \\ 176'820 \\ 174'155 \\ 171'331 \\ 171'756 \\ 170'859 \\ 182'348 \\ 195'620 \\ 185'275 \\ 211'186 \\ \hline \\ C_{i,J} \\ 187'579 \\ 187'801 \\ 201'304 \\ 197'071 \\ 203'937 \\ 213'294 \\ 215'613 \\ 212'533 \\ 229'433 \\ \end{array}$
2005 103′556 269′09	1994 1995 1996 1997 1998 2000 2001 2002 2003 2004 2005 LoB 4 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003	88'735 86'903 85'846 84'424 80'764 80'213 81'435 77'781 83'479 91'806 91'127 99'324 0 80'645 79'549 82'102 80'330 80'761 84'814 83'936 85'202 89'256 96'335	140'690 141'337 138'819 137'015 132'191 130'047 131'821 130'723 138'681 149'656 147'471 129'207 135'243 132'219 135'037 141'285 141'285 142'611 150'820 163'538	158'553 160'678 157'035 154'629 150'684 147'850 150'546 150'625 159'421 170'513 2 148'090 147'986 156'091 152'781 157'073 166'603 166'530 177'637	167'405 168'916 165'845 162'761 159'278 156'333 158'948 158'874 168'147 3 159'028 168'427 165'008 169'781 178'268 180'069 180'329	172'571 173'832 170'977 164'040 161'001 163'485 163'024 4 166'099 166'338 176'687 173'219 178'602 187'585 189'424	175'914 176'827 174'339 170'343 167'222 164'067 165'923 5 171'395 171'668 182'746 182'746 185'059 194'202	178'285 179'108 176'497 172'427 169'495 166'289 6 175'621 175'821 187'385 183'704 189'949	180'068 180'799 178'412 173'732 171'082 7 7 178'956 179'179 191'093 187'486	181'654 182'128 179'719 174'847 8 8 181'585 181'899	182'675 183'155 181'112 9 183'937 184'243	183'724 183'998 183'998	184'325	$\begin{array}{c} 184'325 \\ 184'500 \\ 182'647 \\ 176'820 \\ 174'155 \\ 171'331 \\ 171'756 \\ 170'859 \\ 182'348 \\ 195'620 \\ 185'275 \\ 211'186 \\ \hline \\ C_{i,J} \\ 187'579 \\ 187'801 \\ 201'304 \\ 197'071 \\ 203'937 \\ 213'294 \\ 215'613 \\ 212'533 \\ 229'433 \\ 251'745 \\ \end{array}$
	1994 1995 1996 1997 1998 2000 2001 2002 2003 2004 2005 1994 1999 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005	88'735 86'903 85'846 84'424 80'764 80'213 81'435 77'781 83'479 91'806 91'127 99'324 0 80'645 79'549 82'102 80'330 80'761 84'814 83'936 85'202 89'256 96'335 98'797	140'690 141'337 138'819 137'015 132'191 130'047 131'821 130'723 138'681 149'656 147'471 129'207 135'243 132'219 135'037 141'285 141'285 142'611 150'820 163'538	158'553 160'678 157'035 154'629 150'684 147'850 150'546 150'625 159'421 170'513 2 148'090 147'986 156'091 152'781 157'073 166'003 166'530 177'637	167'405 168'916 165'845 162'761 159'278 156'333 158'948 158'874 168'147 3 159'028 168'427 165'008 169'781 178'268 180'069 180'329	172'571 173'832 170'977 164'040 161'001 163'485 163'024 4 166'099 166'338 176'687 173'219 178'602 187'585 189'424	175'914 176'827 174'339 170'343 167'222 164'067 165'923 5 171'395 171'668 182'746 182'746 185'059 194'202	178'285 179'108 176'497 172'427 169'495 166'289 6 175'621 175'821 187'385 183'704 189'949	180'068 180'799 178'412 173'732 171'082 7 7 178'956 179'179 191'093 187'486	181'654 182'128 179'719 174'847 8 8 181'585 181'899	182'675 183'155 181'112 9 183'937 184'243	183'724 183'998 183'998	184'325	$\begin{array}{c} 184'325 \\ 184'500 \\ 182'647 \\ 176'820 \\ 174'155 \\ 171'331 \\ 171'756 \\ 170'859 \\ 182'348 \\ 195'620 \\ 185'275 \\ 211'186 \\ \hline \\ C_{i,J} \\ 187'579 \\ 187'801 \\ 201'304 \\ 197'071 \\ 203'937 \\ 213'294 \\ 215'613 \\ 212'533 \\ 229'433 \\ 251'745 \\ 251'569 \\ \end{array}$

Table 4: Cumulative payments (in 1'000) of LoBs 1-4 for accident years $1994 \le i \le 2005$ and development years $0 \le j \le J = 11$; the last column gives the true ultimate claims $C_{i,J}(\cdot)$ for each accident year $AY = i \in \{1994, \dots, 2005\}$ and line of business $LoB \in \{1, \dots, 4\}$.

B Neural network architecture and calibration

We come back to the choice of the network architecture and to the network calibration mentioned in Section 3.4. In our case, the network architecture requires the choice of the number of hidden neurons q (we also remind of the universality theorems mentioned in Section 3.1). The first step in the neuron activation (3.2) is the scalar product

$$\langle \boldsymbol{w}_k, \boldsymbol{x} \rangle = \sum_{l=1}^d w_{k,l} x_l,$$

that projects the d-dimensional feature x to a scalar for each neuron $1 \le k \le q$. All features x that lie in hyperplanes orthogonal to w_k give the same neuron activation $z_k(x)$ in the k-th neuron. This implies that each neuron provides a substantial reduction in dimension at the price of a loss of information. Therefore, we need an appropriate minimal number q of hidden neurons (with different w_k 's) so that we are still able to capture in the hidden layer the main differences between the claim types. On the other hand, q should not be chosen too large because this acts negatively on computational time, leads to proneness to over-fitting, and provides more model redundancies (if early stopping in calibration is applied). For these reasons, people often perform a grid search to find a good hyperparameter q. Our experience is that a hyperparameter q that is roughly 1 to 3 times larger than the dimension d of the feature space is often a good choice, if the wanted regression function should not look too wildly.

Listing 2: R script for fitting networks in Keras.

```
librarv(keras)
   # we fit j=0 with feature matrix dat.X, claims dat$C1 and volumes dat$C0
   dat.Y <- as.matrix(dat$C1/sqrt(dat$C0))</pre>
                                                     # observed responses
   dat.W <- as.matrix(sqrt(dat$C0))</pre>
4
                                                      # volumes used as offsets
5
   q <- 20
                                                      # number of hidden neurons
6
   # definition of neural network
7
   features <- layer_input(shape=c(ncol(dat.X)))</pre>
  net <- features %>%
8
9
        layer_dense(units = q, activation = 'tanh') %>%
10
        layer_dense(units = 1, activation = k_exp)
   volumes <- layer_input(shape=c(1))</pre>
11
12
   offset <- volumes %>%
13
         layer_dense(units = 1, activation = 'linear', use_bias=FALSE, trainable=FALSE,
                                                         weights=list(array(1, dim=c(1,1))))
14
15
   merged <- list(net, offset) %>%
         layer_multiply()
16
   model <- keras_model(inputs=list(features, volumes), outputs=merged)</pre>
17
   model %>% compile(loss = 'mse', optimizer = 'rmsprop')
18
   # fit neural network
19
   fit <- model %>% fit(list(dat.X, dat.W), dat.Y, epochs=100, batch_size=10000,
20
21
22
  # predict claims dat$C1 and in-sample loss
  dat$pred <- as.vector(model %>% predict(list(dat.X, dat.W)))*sqrt(dat$C0)
   sum((dat$C1 - dat$pred)^2/dat$C0)
```

With this in mind we fit the model. We use the R interface to Keras which is a user-friendly application programming interface (API) to TensorFlow. The corresponding code is provided in

Listing 2. The first remark is that among the available loss functions in Keras there is the square loss function (called 'mse', see line 18 of Listing 2), but not a weighted square loss function. For this reason, we modify (3.1) to

$$\mathcal{L}_{j}^{0} = \sigma_{j-1}^{2} \mathcal{L}_{j} = \sum_{i=1}^{I-j} \sum_{\boldsymbol{x}: C_{i,j-1}(\boldsymbol{x}) > 0} \left(\frac{C_{i,j}(\boldsymbol{x})}{\sqrt{C_{i,j-1}(\boldsymbol{x})}} - f_{j-1}(\boldsymbol{x}) \sqrt{C_{i,j-1}(\boldsymbol{x})} \right)^{2}.$$
(B.1)

We remark that the explicit choice of $\sigma_{j-1}^2 > 0$ does not influence the calibration. Therefore, it can be dropped. Secondly, the loss function \mathcal{L}_j^0 on the right-hand side of (B.1) is now an un-weighted square loss function, and we can use 'mse' on line 18 of Listing 2. The responses are given by $Y_{i,j}(\mathbf{x}) = C_{i,j}(\mathbf{x})/\sqrt{C_{i,j-1}(\mathbf{x})}$, and the corresponding regression function reads as

$$x \mapsto f_{j-1}^0(x) = f_{j-1}(x)\sqrt{C_{i,j-1}(x)} = \exp\left\{\beta_0 + \sum_{k=1}^q \beta_k z_k(x) + \frac{1}{2}\log C_{i,j-1}(x)\right\},$$
 (B.2)

see (3.3), and where $\frac{1}{2} \log C_{i,j-1}(x)$ plays the role of an offset. The responses $Y_{i,j}(x)$ are defined on line 3 of Listing 2 and the offsets (on the exponential scale) are given on line 4. Lines 7-17 then define the regression function: on lines 7-10 we build network (3.3) with q hidden neurons and excluding the offset. On lines 11-14 we build the offset part. On lines 15-17 we merge the two parts to regression function (B.2). On line 18 we compile the model using the square loss function 'mse' and the optimizer 'rmsprop'. Note that there are different available optimizers in Keras which are different versions of the gradient descent method. 'rmsprop' stands for 'root mean square propagation' and it is momentum-based improved version of the gradient descent method with integrated optimal learning rates ϱ and momentum coefficients ν .

Finally, the model is fitted on lines 20-21 of Listing 2. We choose mini batches of size 10'000, i.e. every gradient descent step is based on 10'000 observations. We run these gradient descent steps for 100 epochs which means that every claim is considered 100 times during the optimization. Finally, we choose validation_split=0.1 which means that 10% of the data is used for out-of-sample validation.

In Figure 7 we show the decrease in the loss functions \mathcal{L}_{j}^{0} during the 100 epochs of the gradient descent algorithm. The left-hand side shows the model with q=5 hidden neurons and the right-hand side the model with q=20 hidden neurons; the red color shows the in-sample loss and the green color the validation loss on the 10% of observations chosen for out-of-sample validation. We observe in all cases a decrease in loss function which indicates that we do not over-fit by running the gradient descent algorithm in Listing 2 for 100 epochs on mini batches of size 10'000. We could now fine-tune these calibrations for the number of epochs, the mini batch sizes, the optimizer, etc. We refrain from doing so, but run the algorithm in Listing 2 for 100 epochs on mini batches of size 10'000. We do this for neural networks with q=5,10,20 hidden neurons in the single hidden layer.

The results are presented in Table 5. The first block of Table 5 shows the results in the homogeneous case which corresponds to Mack's CL model. This model has one parameter (CL factor) for each development period j = 1, ..., 11 and results in the in-sample losses given on the last line of the first block. The remaining three blocks give the neural network results for

Figure 7: Decrease in loss function during the gradient descent algorithm for j = 1: in-sample loss in red color and validation loss in green color for the 100 epochs; the left-hand side shows the model with q = 5 hidden neurons and the right-hand side the model with q = 20 hidden neurons.

		development period j									
	1	2	3	4	5	6	7	8	9	10	11
homogeneous model											
number of parameters	1	1	1	1	1	1	1	1	1	1	1
losses \mathcal{L}_{j}^{0} (in millions)	2255.9	252.9	51.4	24.6	16.9	8.7	5.9	2.0	1.3	1.2	0.4
q = 5 hidden neurons											
number of parameters	511	511	511	511	511	511	511	511	511	511	511
run time (in seconds)	116	125	120	107	100	93	84	74	63	48	30
losses \mathcal{L}_{j}^{0} (in millions)	1906.5	224.8	46.4	22.8	16.0	8.3	5.7	1.9	1.2	1.1	0.4
q = 10 hidden neurons											
number of parameters	1021	1021	1021	1021	1021	1021	1021	1021	1021	1021	1021
run time (in seconds)	122	132	129	112	105	97	89	78	67	52	32
losses \mathcal{L}_{j}^{0} (in millions)	1901.8	224.5	46.7	22.8	16.0	8.3	5.7	1.9	1.2	1.1	0.4
q = 20 hidden neurons											
number of parameters	2041	2041	2041	2041	2041	2041	2041	2041	2041	2041	2041
run time (in seconds)	138	150	135	127	121	111	101	89	76	59	36
losses \mathcal{L}_{j}^{0} (in millions)	1892.9	224.1	46.6	22.8	16.1	8.2	5.7	1.9	1.2	1.1	0.4

Table 5: Results of the gradient descent algorithm in Listing 2 for q = 5, 10, 20 hidden neurons after 100 epochs with mini batch of 10'000 observations.

q=5,10,20 hidden neurons. The first lines in these blocks provide the number of network parameters involved, i.e. the dimension q+1+q(d+1) of the network parameters α . The second lines in these blocks provide the run times for 100 epochs. These run times were obtained

on a personal laptop with CPU @ 2.50GHz (4 CPUs) with 16GB RAM. We observe that the run times increase in the number of hidden neurons q and they decrease in the development periods j because we have less accident years and observations in later development years. The maximal run time of 150 seconds has been observed for q=20 and j=2, thus, if one parallelizes optimizations for the development periods it takes roughly 3 minutes to fit the model.

Finally, the last lines of the blocks provide the resulting in-sample losses \mathcal{L}_{j}^{0} of the three network models. Firstly, the neural network regression models provide clearly lower losses than the homogeneous model. From this we conclude that we should refine Mack's CL model for heterogeneity. Secondly, for periods j=1,2 the model with q=20 hidden neurons outperforms the other two network models. For higher development periods $j\geq 3$ the situation is less clear and we could also opt for a regression model with less hidden neurons.

C Sensitivities of neural network calibrations

Figure 8: Sensitivities of the estimated CL factors $\hat{f}_{j-1}(x)$ in individual feature components for $j=1,\ldots,5$ (in blue color); the gray dotted lines show the average neural network factor $\bar{f}_{j-1}^{\rm NN}$, see (3.8); the y-scales are same on each row.

Figure 9: Sensitivities of the estimated CL factors $\widehat{f}_{j-1}(\boldsymbol{x})$ in individual feature components for $j=6,\ldots,11$ (in blue color); the gray dotted lines show the average neural network factor $\bar{f}_{j-1}^{\text{NN}}$, see (3.8); the y-scales are the same on each row.