Metodi Matematici per l'Informatica (secondo canale) - 15 Gennaio 2018 prima parte: esercizi 1 – 5, seconda parte: esercizi 6 – 9

Nome e	Cognome:
--------	----------

Es 1. Sia $A = \{0, (a, 0), (0, b), \{0, 1\}, a, b, \{0\}\}$. Allora
$\square_V\square_F$ A. A non è un insieme;
$\square_V \square_F$ B. Esistono $x, y, z, t \in A \text{ (con } x \neq y)$ tali che $x \in z$ e $y \in t$;
$\square_V \square_F$ C. A ha quattro elementi;
$\square_V \square_F$ D. Esistono $x, y, z \in A$ tali che $x \in y$ e $y \subseteq z$.
Es 2. Dato un insieme X indichiamo con 2^X l'insieme delle parti di X . Indichiamo con T l'insieme dei multipli di 3 e con Q l'insieme dei multipli di 4 . Allora
$\square_V\square_F$ A. $2^T\subseteq 2^Q$;
$\square_V \square_F \ \mathbf{B.} \ 2^T \cap 2^Q \neq \emptyset;$
$\square_V\square_F$ C. Q è numerabile;
$\square_V\square_F$ D. 2^Q è numerabile.
Es 3. Quali fra le seguenti affermazioni sono corrette?
$\square_V\square_F$ A. Per ogni insieme $A\neq\emptyset$, la relazione $A\times A$ non è antisimmetrica;
$\square_V\square_F$ B. Per ogni insieme $A\neq\emptyset$, la relazione $A\times A$ è una relazione di equivalenza;
$\Box_V \Box_F$ C. Ogni relazione di equivalenza che contenga una coppia (u, v) con $u \neq v$ è esclusivamente riflessiva simmetrica e transitiva;
$\square_V\square_F$ D. Per ogni relazione R su A esiste una relazione di equivalenza su A che contiene R .
Es 4. Scrivere una relazione di equivalenza $R \subseteq \{a, b, c, d\} \times \{a, b, c, d\}$ che abbia due classi di equivalenza indicandone l'insieme quoziente.
Rispondere qui
Es 5. Dimostrare che, per ogni $n \ge 1$:
$\sum_{i=1}^{n} \frac{1}{i(i+1)} = 1 - \frac{1}{n+1}.$
Rispondere qui

$\mathbf{E}\mathbf{s}$	6.	Definire il concetto di soddisfacibilità nella logica proposizionale.
		Rispondere qui
$\mathbf{E}\mathbf{s}$	7.	Formalizzare i seguenti enunciati, usando i connettivi proposizionali e le variabili qui sotto già definite
		${\bf A}={\bf A}$ nita va al cinema, ${\bf B}={\bf M}$ arcello va al cinema, ${\bf C}={\bf M}$ arcello invita Anita
1. Né Anita né Marcello vanno al cinema;		1. Né Anita né Marcello vanno al cinema;
		Rispondere qui
		2. Anita va al cinema solamente se Marcello la invita;
		Rispondere qui
		3. Marcello va al cinema senza invitare Anita;
		Rispondere qui
		4. O Marcello invita Anita oppure Anita non va al cinema.
Es	8.	Le seguenti formule sono tautologie (T), soddisfacibili (S), falsificabili (F) o insoddisfacibili (I)? T S F I $ \Box \ \Box \ \Box \ \neg \neg A \land A; $ $ \Box \ \Box \ \Box \ \Box \ \neg A \lor \neg \neg A; $ $ \Box \ \Box \ \Box \ \Box \ \neg (A \lor B) \leftrightarrow (A \land \neg B); $ $ \Box \ \Box \ \Box \ \Box \ (A \to B) \leftrightarrow (\neg B \to \neg A); $ $ \Box \ \Box \ \Box \ \Box \ (A \land \neg A) \to B. $
$\mathbf{E}\mathbf{s}$	9.	Definire (se possibile) un'interpretazione che verifichi ed una che falsifichi la formula
		$(\exists y P(y) \land \exists z Q(z)) \rightarrow \exists x (P(x) \land Q(x)).$
		Rispondere qui