A Book of Abstract Algebra | (2nd Edition)

	Problem	
Let F be a field.		
Prove part:		
a is of degree 1 over F iff $a \in F$.		
Ste	p-by-step solution	
	Step 1 of 3	
Let F be a field. Objective is to prove the	at <i>a</i> is of degree 1 over <i>F</i> if a	and only if $a \in F$.
First consider that a is of degree 1 over irreducible. Therefore, $p(x) = x - a$ will $x - a = 0$ and then $x = a$. Thus, $a \in F$	be minimum polynomial of	
Comment		
Commont		

Conversely, assume that $a \in F$. Then degree of $F(a)$ over F will be 1, this is so because in this case $F(a)$ will be same as F , or $F(a) = F$. This shows that minimal polynomial of a will be linear. Thus, degree of a will be 1. Comment		
Step 3 of 3		
Hence, a is of degree 1 over F if and only if $a \in F$.		
Comment		