1	Supplementary material to the paper:							
2	"The ω -Condition Number: Applications to							
3	Preconditioning and Low Rank Generalized Jacobian							
4	Updating" *†							
5	Woosuk L. Jung [‡] David Torregrosa-Belén [§] Henry Wolkowicz [‡]							
6	Revising as of January 29, 2025, 9:52am							
7 8 9	Key words and phrases: $\kappa, \omega, \omega^{-2}$ -condition numbers, preconditioning, generaliz Jacobian, iterative methods, clustering of eigenvalues AMS subject classifications: 15A12, 65F35, 65F08, 65G50, 49J52, 49K10, 90C32	ed						
10	Contents							
11 12 13	1 Further ω -Optimal Preconditioners 1.1 Lower Triangular, Two Diagonal Preconditioning	2 2 4						
14 15	2 Further empirical results 2.1 Clustering of eigenvalues for sparse test matrices	7 7						
16	Index	10						
17	List of Tables							
18	2.1 diagonal preconditioners: number of iterations	7						
	*Emails resp.: w2jung@uwaterloo.ca, david.torregrosa@ua.es, hwolkowicz@uwaterloo.ca †This report is available at URL: www.math.uwaterloo.ca/~hwolkowi/henry/reports/ABSTRACTS.ht ‡Department of Combinatorics and Optimization, University of Waterloo, 200 University Avenue We Waterloo, ON N2L 3G1, Canada §Centro de Modelamiento Matemático, Centro de Modelamiento Matemático (CNRS IRL2807), Universidad de Chile, Beauchef 851, Santiago, Chile	st,						

List of Figures

2.1diagonal preconditioners: distribution of eigenvalues for matrix nos4..... 7 20 2.2 8 diagonal preconditioners: distribution of eigenvalues for matrix bcsstk03 . . . 21 diagonal preconditioners: distribution of eigenvalues for matrix bcsstk04 . . . 8 2.3 22 2.4 diagonal preconditioners: distribution of eigenvalues for matrix lund_a . . . 9 23 2.5 diagonal preconditioners: distribution of eigenvalues for matrix Trefethen_150 9 24

₂₅ 1 Further ω -Optimal Preconditioners

- In this section we derive expressions for ω -optimal preconditioner matrices in different forms.

 The first one of them is a lower triangular two diagonal preconditioner. The second is a diagonal + upper triangular preconditioner. The proofs of both results proceed similarly to
- ²⁹ Claim 1 in Theorem 2.7 of the main paper. Therefore, we will not reproduce the complete
- 30 proofs and limit ourselves to highlight the main steps.

1.1 Lower Triangular, Two Diagonal Preconditioning

In this section, we extend the ω -optimal diagonal scaling to an ω -optimal lower triangular two diagonal scaling. We define Diags₂ and diags₂ = Diags₂* in obvious ways to construct the lower triangular two diagonal matrix from a vector and its adjoint. Specifically, for a matrix $L = (L_{ij})_{i,j=1}^n \in \mathbb{R}^{n \times n}$, we get that

$$\operatorname{diags}_{2}(L) = \begin{pmatrix} L_{1,1} \\ L_{2,2} \\ \dots \\ L_{n,n} \\ L_{2,1} \\ L_{3,2} \\ L_{4,3} \\ \dots \\ L_{n,n-1} \end{pmatrix} =: \begin{pmatrix} \bar{l} \\ \hat{l} \end{pmatrix} \in \mathbb{R}^{n+(n-1)},$$

while, given vectors $\bar{d} = (\bar{d}_1, \dots, \bar{d}_n)^T \in \mathbb{R}^n$ and $\hat{d} = (\hat{d}_1, \dots, \hat{d}_{n-1}) \in \mathbb{R}^{n-1}$, we have

$$\operatorname{Diags}_{2}(\bar{d}, \hat{d}) = \begin{bmatrix} \bar{d}_{1} & 0 & \dots & \dots & 0 \\ \hat{d}_{1} & \bar{d}_{2} & 0 & \dots & \dots & 0 \\ 0 & \hat{d}_{2} & \bar{d}_{3} & \vdots & \vdots & 0 \\ \vdots & \dots & \ddots & \ddots & \vdots & \vdots \\ 0 & \dots & \dots & \hat{d}_{n-1} & \bar{d}_{n-1} & 0 \\ 0 & 0 & \dots & 0 & \hat{d}_{n-1} & \bar{d}_{n} \end{bmatrix}.$$

- Note that Diags₂: $\mathbb{R}^{2n-1} \to \mathbb{R}^{n \times n}$ and $\langle \text{Diags}_2(\bar{d}, \hat{d}), L \rangle = \left\langle \begin{pmatrix} d \\ \hat{d} \end{pmatrix}, \text{diags}_2(L) \right\rangle$, for any squared matrix $L \in \mathbb{R}^{n \times n}$.
- Theorem 1.1. Let $W \in \mathbb{S}_{++}^n$ and set

$$\bar{d}_{i}^{*} = \begin{cases} \left(W_{i,i} - \frac{W_{i,i+1}^{2}}{W_{i+1,i+1}}\right)^{-1/2} = \left(\frac{W_{i,i}W_{i+1,i+1} - W_{i,i+1}^{2}}{W_{i+1,i+1}}\right)^{-1/2}, & if \ i \in [n-1]; \\ W_{n,n}^{-1/2}, & if \ i = n \end{cases}$$

40 and

$$\hat{d}_i^* = -\frac{W_{i,i+1}}{W_{i+1,i+1}} \bar{d}_i^*, \quad i \in [n-1].$$

Then the ω -optimal lower triangular two diagonal scaling of W is given by

$$(\bar{d}^*, \hat{d}^*) = \operatorname*{argmin}_{(\bar{d}, \hat{d}) \in \mathbb{R}_{++}^n \times \mathbb{R}^{n-1}} \omega(\bar{d}, \hat{d}), \tag{1.1}$$

- where $\omega(\bar{d}, \hat{d}) := \omega\left(\mathrm{Diags}_2(\bar{d}, \hat{d})^T W \, \mathrm{Diags}_2(\bar{d}, \hat{d})\right)$.
- Proof. First we note, since the 2×2 principal minors for W>0 are all positive, the definitions
- of the optimal d^* are well defined. Let $\bar{d} \in \mathbb{R}^n_{++}$ and $\hat{d} \in \mathbb{R}^{n-1}$. Define the ω -condition number,
- f and g as functions of a pair $(\bar{d}, \hat{d}) \in \mathbb{R}^n_{++} \times \mathbb{R}^{n-1}$. This is

$$\omega(\bar{d}, \hat{d}) = \frac{f(\bar{d}, \hat{d})}{g(d, \hat{d})} := \frac{\operatorname{tr}\left(\operatorname{Diags}_{2}(\bar{d}, \hat{d})^{T}W \operatorname{Diags}_{2}(\bar{d}, \hat{d})\right)/n}{\det(W)^{1/n} \prod_{i=1}^{n} (\bar{d}_{i})^{2/n}}.$$

Differentiating the pseudoconvex ω and equating to 0, we get the optimality condition

$$(\operatorname{diags}_{2} W \operatorname{Diags}_{2}) (\bar{d}, \hat{d}) = \begin{pmatrix} \bar{d}^{-1} \\ 0_{n-1} \end{pmatrix}$$

$$(1.2)$$

Solving (1.2) for (\bar{d},\hat{d}) , results in

$$\bar{d}_i = \begin{cases} \left(W_{i,i} - \frac{W_{i,i+1}^2}{W_{i+1,i+1}}\right)^{-1/2} = \left(\frac{W_{i,i}W_{i+1,i+1} - W_{i,i+1}^2}{W_{i+1,i+1}}\right)^{-1/2}, & \text{if } i \in [n-1]; \\ W_{n,n}^{-1/2}, & \text{if } i = n; \end{cases}$$

48 and

49

50

$$\hat{d}_i = -\frac{W_{i,i+1}}{W_{i+1,i+1}}\bar{d}_i, \quad i \in [n-1].$$

3

1.2 Upper Triangular D_{+k} Diagonal Preconditioning

We note that the ω -optimal lower triangular two diagonal preconditioner in Theorem 1.1 is sparse but its inverse though still lower triangular is not necessarily as sparse, i.e., the two diagonal structure can be lost completely, sparsity can be lost. We now consider the diagonal with upper triangular elements that maintain the same structure in the inverse, i.e., maintain sparsity for the inverse. Recall that the triangular number t(k) = k(k+1)/2 and define the transformation $D_{+k}: \mathbb{R}^{n+t(k)} \to \mathbb{R}^{n \times n}$:

$$D_{+k}(d,\alpha) = \text{Diag}(d) + \left[\begin{bmatrix} 0_{n \times n-k} \end{bmatrix} \mid \begin{bmatrix} \begin{bmatrix} \text{Triu}(\alpha) \\ 0_{n-k \times k} \end{bmatrix} \end{bmatrix} \right]$$

$$= \text{Diag}(d) + \text{Triu}_{k}(\alpha) = \left[\text{Diag} \quad \text{Triu}_{k} \right] \begin{pmatrix} d \\ \alpha \end{pmatrix}$$

$$= \begin{pmatrix} d_{1} & 0 & \dots & 0 & \dots & \alpha_{1,n-k+1} & \alpha_{1,n-k+2} & \dots & \alpha_{1,n} \\ 0 & d_{2} & \dots & 0 & \dots & 0 & \alpha_{2,n-k+2} & \dots & \alpha_{2,n} \\ \vdots & \vdots & \ddots & \vdots & \dots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_{k} & \dots & 0 & 0 & 0 & \alpha_{k,n} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & \dots & d_{n-k+1} & 0 & 0 & 0 \\ 0 & 0 & \dots & 0 & \dots & 0 & d_{n-k+2} & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \dots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & \dots & 0 & 0 & 0 & d_{n} \end{pmatrix}$$

$$(1.3)$$

where $d \in \mathbb{R}^n$ and $\alpha := (\alpha_{1,n-k+1}, \alpha_{1,n-k+2}, \alpha_{2,n-k+2}, \dots, \alpha_{1,n}, \dots, \alpha_{k,n})^T \in \mathbb{R}^{t(k)}$. Then the optimal upper triangular $D_{+k}(d,\alpha)$ diagonal preconditioner is given by solving the following optimization problem:

$$(\bar{d}, \bar{\alpha}) := \underset{(d, \alpha) \in \mathbb{R}_{++}^n \times \mathbb{R}^{t(k)}}{\operatorname{argmin}} \omega \left(D_{+k}(d, \alpha)^T W D_{+k}(d, \alpha) \right). \tag{1.4}$$

Theorem 1.2. Let $W \in \mathbb{S}_{++}^n$ be given and let $(\bar{d}, \bar{\alpha}) \in \mathbb{R}^{n+t(k)}$ such that

$$\bar{d}_i = W_{i,i}^{-1/2}, \quad i \in [n-k]$$
 (1.5)

and the following hold for each $i \in [n-k+1, n]$:

$$W_{i,i}\bar{d}_i + \sum_{\ell=1}^{i-n+k} \bar{\alpha}_{\ell,i} W_{\ell,i} = 1/\bar{d}_i, W_{i,j}\bar{d}_i + \sum_{\ell=1}^{i-n+k} \bar{\alpha}_{\ell,i} W_{\ell,j} = 0, \quad j \in [i-n+k].$$
(1.6)

- Then, $(\bar{d}, \bar{\alpha})$ is the optimal solution of (1.4).
- 64 Proof. Define the transformations (isometries) Triu: $\mathbb{R}^{t(k)} \to \mathbb{R}^{k \times k}$ and Triu_k: $\mathbb{R}^{t(k)} \to \mathbb{R}^{n \times n}$
- according to (1.3). We denote the adjoints by triu and triu_k, respectively, and note that

$$triu^{\dagger} = triu^*, Triu^{\dagger} = Triu^*.$$

66 Hence,

$$D_{+k}(d,\alpha) = \text{Diag}(d) + \text{Triu}_{k}(\alpha)$$
$$= \left[\text{Diag Triu}_{k}\right] \begin{pmatrix} d \\ \alpha \end{pmatrix}.$$

67 Denote

$$\omega_{k}(d,\alpha) := \omega \left(D_{+k}(d,\alpha)^{T}WD_{+k}(d,\alpha)\right)$$

$$= \frac{\operatorname{tr}\left(D_{+k}(d,\alpha)^{T}WD_{+k}(d,\alpha)\right)/n}{\det\left(D_{+k}(d,\alpha)^{T}WD_{+k}(d,\alpha)\right)^{1/n}}$$

$$= \frac{\operatorname{tr}\left(D_{+k}(d,\alpha)^{T}WD_{+k}(d,\alpha)\right)}{\det(W)^{1/n}\prod_{i=1}^{n}d_{i}^{2/n}}.$$

For the numerator of ω_k we use

$$f(d,\alpha) := \frac{1}{n} \operatorname{tr} \left(D_{+k}(d,\alpha)^T W D_{+k}(d,\alpha) \right)$$

$$= \frac{1}{n} \left\langle D_{+k}(d,\alpha), W D_{+k}(d,\alpha) \right\rangle$$

$$= \frac{1}{n} \left\langle \begin{pmatrix} d \\ \alpha \end{pmatrix}, D_{+k}^* (W D_{+k}(d,\alpha)) \right\rangle$$

$$= \frac{1}{n} \begin{pmatrix} d \\ \alpha \end{pmatrix}^T D_{+k}^* (W D_{+k}(d,\alpha))$$

$$= \frac{1}{n} \begin{pmatrix} d \\ \alpha \end{pmatrix}^T \begin{bmatrix} \operatorname{diag} \\ \operatorname{triu}_k \end{bmatrix} (W D_{+k}(d,\alpha))$$

$$= \frac{1}{n} \begin{pmatrix} d \\ \alpha \end{pmatrix}^T \begin{bmatrix} \operatorname{diag} W \left(\operatorname{Diag}(d) + \operatorname{Triu}_k(\alpha) \right) \\ \operatorname{triu}_k W \left(\operatorname{Diag}(d) + \operatorname{Triu}_k(\alpha) \right) \end{bmatrix}$$

$$= \frac{1}{n} \begin{pmatrix} d \\ \alpha \end{pmatrix}^T \begin{bmatrix} \operatorname{diag} W \operatorname{Diag} & \operatorname{diag} W \operatorname{Triu}_k \\ \operatorname{triu}_k W \operatorname{Diag} & \operatorname{triu}_k W \operatorname{Triu}_k \end{bmatrix} \begin{pmatrix} d \\ \alpha \end{pmatrix}.$$

and the gradient is therefore

$$\nabla f(d, \alpha) = \frac{2}{n} \begin{bmatrix} \operatorname{diag} W \operatorname{Diag} & \operatorname{diag} W \operatorname{Triu_k} \\ \operatorname{triu_k} W \operatorname{Diag} & \operatorname{triu_k} W \operatorname{Triu_k} \end{bmatrix} \begin{pmatrix} d \\ \alpha \end{pmatrix}.$$

The denominator of ω_k is

$$g(d, \alpha) := \det(W)^{1/n} \prod_{i=1}^{n} d_i^{2/n}$$

71 and thus

$$\nabla g(d,\alpha) = \frac{2}{n}g(d,\alpha) \begin{pmatrix} 1/d_1\\ 1/d_2\\ \vdots\\ 1/d_n\\ 0\\ \vdots\\ 0 \end{pmatrix}.$$

For simplicity, denote $\bar{d}^{-1} := (1/\bar{d}_1, 1/\bar{d}_2, \dots, 1/\bar{d}_n)^T \in \mathbb{R}^n$. Then,

$$\nabla \omega_k(d,\alpha) = \frac{1}{g(d,\alpha)^2} \left(g(d,\alpha) \nabla f(d,\alpha) - f(d,\alpha) \nabla g(d,\alpha) \right)$$
$$= \frac{1}{g(d,\alpha)} \left(\nabla f(d,\alpha) - \frac{2}{n} f(d,\alpha) \begin{pmatrix} d^{-1} \\ 0_{t(k)} \end{pmatrix} \right).$$

Finally, the proof follows from noticing that

$$(\bar{d}, \bar{\alpha})$$
 satisfies (1.5) and (1.6) $\iff \frac{n}{2} \nabla f(\bar{d}, \bar{\alpha}) = \begin{pmatrix} \bar{d}^{-1} \\ 0_{t(k)} \end{pmatrix}$ $\implies f(\bar{d}, \bar{\alpha}) = 1.$

Hence, (1.5) and (1.6) implies $\nabla \omega_k(\bar{d}, \bar{\alpha}) = 0$, i.e., $(\bar{d}, \bar{\alpha})$ is optimal.

75 76

The following Example 1.3 and Example 1.4 solve (1.6) for k = 1 and k = 2.

Example 1.3 (k = 1). Let $W \in \mathbb{S}_{++}^n$ be given. Set

$$\bar{d}_{i} = \begin{cases} W_{i,i}^{-1/2}, & \text{if } i \in [n-1] \\ \left(\frac{W_{1,1}W_{n,n} - W_{1,n}^{2}}{W_{1,1}}\right)^{-1/2}, & \text{if } i = n. \end{cases}$$

79 and

$$\bar{\alpha} = -\frac{W_{1n}}{W_{11}}\bar{d}_n.$$

Then the optimal D_{+1} -diagonal upper triangular scaling is given by

$$(\bar{d}, \bar{\alpha}) = \operatorname*{argmin}_{d \in \mathbb{R}_{++}^n, \alpha \in \mathbb{R}} \omega (D_{+1}(d, \alpha)^T W D_{+1}(d, \alpha)).$$

Example 1.4 (k=2). Let $W \in \mathbb{S}^n_{++}$ be given. Set

$$\bar{d}_{i} = \begin{cases} W_{i,i}^{-1/2}, & \text{if } i \in [n-2] \\ \left(\frac{W_{1,1}W_{n-1,n-1} - W_{1,n-1}^{2}}{W_{1,1}}\right)^{-1/2}, & \text{if } i = n-1 \\ \left(W_{n,n} + \frac{W_{1,n}^{2}W_{2,2} - 2W_{1,n}W_{2,n}W_{1,2} + W_{2,n}^{2}W_{1,1}}{W_{1,2}^{2} - W_{1,1}W_{2,2}}\right)^{-1/2}, & \text{if } i = n. \end{cases}$$

$$\bar{\alpha}_{1,n} = \left(\frac{W_{1,n}W_{2,2} - W_{1,2}W_{2,n}}{W_{2,n}^{2} - W_{1,2}W_{2,n}}\right) \bar{d}_{n},$$

82

$$\begin{split} \bar{\alpha}_{1,n} &= \left(\frac{W_{1,n}W_{2,2} - W_{1,2}W_{2,n}}{W_{1,2}^2 - W_{1,1}W_{2,2}}\right)\bar{d}_n, \\ \bar{\alpha}_{1,n-1} &= -\frac{W_{1,n-1}}{W_{1,1}}\bar{d}_{n-1}, \\ \bar{\alpha}_{2,n} &= \left(\frac{W_{1,1}W_{2,n} - W_{1,2}W_{1,n}}{W_{1,2}^2 - W_{1,1}W_{2,2}}\right)\bar{d}_n. \end{split}$$

 83 Then the optimal D_{+2} -diagonal upper triangular scaling is given by

$$(\bar{d}, \bar{\alpha}) = \operatorname*{argmin}_{d \in \mathbb{R}_{++}^n, \alpha \in \mathbb{R}^3} \omega (D_{+2}(d, \alpha)^T W D_{+2}(d, \alpha)).$$

2 Further empirical results

2.1 Clustering of eigenvalues for sparse test matrices

In this section, we provide further numerical results to illustrate the advantage of the ω optimal diagonal preconditioner over the κ -optimal diagonal preconditioner. We use 5 distinct test matrices from the SuiteSparse Matrix Collection of sizes between 100 and 150. We
do not use larger matrices as the computation of the κ -optimal diagonal preconditioner is
very inefficient. For this matrices we compare the efficacy of the optimal ω and κ diagonal
preconditioners for (1) cluster the eigenvalues and (2) reducing the number of iterations of
Matlab's preconditioner conjugate gradient. For (1) we perform the same experiment than
in Section 2.2 of the main paper and for (2) we replicate the empirics in Section 4.1 of the
main paper. The results for (1) are illustrated in Figures 2.1 to 2.5 while the conclusions
from (2) are presented in Table 2.1.

Figure 2.1: diagonal preconditioners: distribution of eigenvalues for matrix nos4

name	n	nnz(W)	None	Omega	Kappa
nos4	100	594	76	68	70
bcsstk03	112	604	569	132	141
bcsstk04	132	3,648	550	67	86
lund_a	147	$2,\!449$	343	85	93
Trefethen_150	150	2,040	95	9	14

Table 2.1: diagonal preconditioners: number of iterations

Figure 2.2: diagonal preconditioners: distribution of eigenvalues for matrix bcsstk03

Figure 2.3: diagonal preconditioners: distribution of eigenvalues for matrix bcsstk04

Figure 2.4: diagonal preconditioners: distribution of eigenvalues for matrix lund_a

Figure 2.5: diagonal preconditioners: distribution of eigenvalues for matrix Trefethen_150

Index

```
96 D_{+k}: \mathbb{R}^{n+t(k)} \to \mathbb{R}^{n \times n}, 4

97 \operatorname{Diags}_2, 2

98 \operatorname{Triu}: \mathbb{R}^{t(k)} \to \mathbb{R}^{k \times k}, 4

99 \operatorname{Triu}_k: \mathbb{R}^{t(k)} \to \mathbb{R}^{n \times n}, 4

100 \omega(\bar{d}, \hat{d}) := \omega\left(\operatorname{Diags}_2(\bar{d}, \hat{d})^T W \operatorname{Diags}_2(\bar{d}, \hat{d})\right),

101 3

102 \operatorname{diags}_2 = \operatorname{Diags}_2^*, 2

103 \operatorname{triu}, 4

104 \operatorname{triu}_k, 4

105 lower triangular two diagonal scaling, 2
```