

Mansoura University Faculty of Computers and Information Department of Information System

[IS311T] Information Theory

Grade: 3rd grade (IS)

Dr. Islam Reda

Outline

- Sample spaces
- Events
- Conditional probability
- Total probability
- Tree diagram
- Bayes' rule
- Random variable
- Expected value & variance

Sample space

- A sample space (S): The set of all possible outcomes to an experiment.
 - **Example:** Throw a dice, $S = \{1, 2, 3, 4, 5, 6\}$. In this case, each outcome is equally likely (p(any outcome) = $\frac{1}{6}$).
- A probability measure (P) on a sample space S: A rule that assigns to each outcome $s \in S$ a probability $p(s) \ge 0$ satisfying:

$$\sum_{s \in S} p(s) = 1$$

Example: Throw two dice, count the total, $S = \{2, 3, ..., 12\}$. In this case, the outcomes are not equally likely.

S	2	3	4	5	6	7	8	9	10	11	12
m(n)	1	2	3	4	5	6	5	4	3	2	1
p(s)	36	36	36	36	36	36	36	36	36	36	36

Events

• An event (E): A subset of sample space S ($E \subseteq S$).

The probability of the event E is:

$$p(E) = \sum_{s \in E} p(s)$$

Example: Roll a dice. Let E be the event of getting an odd number.

$$E = \{1, 3, 5\}.$$

$$p(E) = p(1) + P(3) + P(5) = \frac{3}{6} = \frac{1}{2}$$

Example: Roll two dice. Let E be the event of getting an even total.

$$p(E) = \frac{1}{36} + \frac{3}{36} + \frac{5}{36} + \frac{5}{36} + \frac{3}{36} + \frac{1}{36} = \frac{18}{36} = \frac{1}{2}$$

Combination of events and independent events

$$\overline{E} = \{ s \in S | s \notin E \}$$
 $p(\overline{E}) = 1 - p(E)$
 $p(A \cup B) = p(A) + p(B) - p(A \cap B)$

- If A, B are mutually exclusive, then $p(A \cup B) = p(A) + p(B)$
- A, B are independent events if knowing one gives no information about the probability of the other.

$$p(A \cap B) = p(A)p(B)$$

- If A, B are independent events, then
- i. A and \bar{B} are independent
- ii. \bar{A} and B are independent
- iii. \bar{A} and \bar{B} are independent

Independent events

Proof of (i)

Suppose A, B are independent, then $p(A \cap B) = p(A)p(B)$

$$A = (A \cap B) \cup (A \cap \overline{B})$$

$$p(A) = p(A \cap B) + p(A \cap \overline{B})$$

$$p(A \cap \overline{B}) = p(A) - p(A \cap B)$$

$$p(A \cap \overline{B}) = p(A) - p(A)p(B)$$

$$p(A \cap \overline{B}) = p(A)(1 - p(B))$$

$$p(A \cap \overline{B}) = p(A)p(\overline{B})$$

Conditional probabilities

Assume 12 equally likely outcomes

$$p(A) = \frac{5}{12}$$
 $p(B) = \frac{6}{12}$

If B occurred

$$p(A|B) = \frac{2}{6}$$
 $p(B|B) = 1$

Conditional probabilities

• If A, B are events, then the conditional probability of A given B is

$$p(A|B) = \frac{p(A \cap B)}{p(B)}$$

- The probability of A if you know that you are in B. Think of B as the new sample space.
- Conditional probability is not symmetric

$$p(A|B) \neq p(B|A)$$

• If A, B are independent, then

$$p(A|B) = p(A)$$

Total probability

- The collection of events $A_1, A_2, ..., A_n$ is said to partition a sample space S if
 - (a) $A_1 \cup A_2, \cup \cdots, \cup A_n = S$
 - (b) $A_i \cap A_j = \phi \ \forall i, j$
 - (c) $A_i \neq \phi \ \forall i$
- In essence, a partition is a collection of non-empty, non-overlapping subsets of a sample space whose union is the sample space itself.
- Suppose B is an event in S

$$p(B) = \sum_{i=1}^{n} p(B|A_i)p(A_i)$$

Total probability

$$B = (B \cap A_1) \cup (B \cap A_2) \cup \dots \cup (B \cap A_n)$$

$$p(B) = p(B \cap A_1) + p(B \cap A_2) + \dots + (pB \cap A_n)$$

$$p(B) = p(B|A_1)p(A_1) + p(B|A_2)p(A_2) + \dots + p(B|A_n)p(A_n)$$

$$S$$

Total probability

• Example: Does it rain more on weekends? After a year of observation, we find probability of rain (R) on a workday (W) is 0.2, and probability of rain on a weekend day (H) is 0.3. What is the overall probability of rain on a random day.

Bayes' Rule

Referring to the same figure of total probability

$$p(A_j|B) = \frac{p(B|A_j)p(A_j)}{p(B)}$$

$$p(A_j|B) = \frac{p(B|A_j)p(A_j)}{\sum_{i=1}^n p(B|A_i)p(A_i)}$$

• In the previous example: Suppose on a certain day it rains. What is the probability that this day was a weekend (H) day?

$$p(H|R) = \frac{p(R|H)p(H)}{p(R)}$$

$$p(H|R) = \frac{0.3 \times \frac{2}{7}}{0.2286} = 0.375$$

Bayes' Rule

Example: The probability of having a side effect for a drug is 10% for females. The probability of not having the side effect for males is 95%. 40% of the study was females. Given a person having a side effect what is the probability that person is male?

Random variable

- **Definition**: A random variable (X) is a function from sample space to a number system (\mathcal{R}). $X: S \to \mathcal{R}$
- Examples: Rolling a dice. $S = \{1, 2, 3, 4, 5, 6\}.$
 - > X(s) = s

$$X(1) = 1, X(2) = 2, ..., X(6) = 6$$

Y(s) = no. of letters in English word for s.

$$X(1) = X(2) = X(6) = 3,$$

$$X(4) = X(5) = 4, X(3) = 5$$

х	3	4	5		
p(x)	1/2	1/3	1/6		

- For every random variable (X), there are two important values associated with its probability distribution. These numbers are:
 - 1. Expected value of X(E(X)) or the mean (μ)
 - 2. Variance of X(Var(X))

Random variable

 Expectation: when the experiment is repeated many times, the expected value is the average number that is obtained. The value where the probability distribution balances (center of mass)

$$\mu = E(X) = \sum xp(x)$$

Variance: measures the spread out of the values from mean

$$\sigma^2 = E((X - \mu)^2) = E(X^2) - \mu^2$$

Examples:

$$E(X) = 3 \times \frac{1}{2} + 4 \times \frac{1}{3} + 5 \times \frac{1}{6} = \frac{11}{3}$$

$$Var(X) = \left(\frac{2}{3}\right)^2 \times \frac{1}{2} + \left(\frac{1}{3}\right)^2 \times \frac{1}{3} + \left(\frac{4}{3}\right)^2 \times \frac{1}{6} = \frac{5}{9}$$

THANK YOU