Controle de Sistemas Dinâmicos

Centro Federal de Educação Tecnológica de Minas Gerais

02 de dezembro de 2024

Campus Timóteo

Resolução da lista de exercícios VII

Eliel Vitor Almeida João Pedro Ferreira Duarte Marcos Vinícius de Oliveira Silva

Em sequência, estão os comandos e resoluções das questões da avaliação.

1. Crie as seguintes funções de transferência na forma polinomial:

$$\begin{array}{cccc} \frac{3}{2s+1} & \frac{3}{2s-1} & \frac{5}{(s+2)\cdot(s+5)} \\ \frac{5}{(s-2)\cdot(s-5)} & \frac{5}{s^2+2s+5} & \frac{5}{s^2-2s+5} \\ \frac{5}{s^2+16} & \frac{5}{s^2-16} & \frac{5}{s^2+6s+9} \end{array}$$

- (a) Calcule os pólos de cada função de transferência.
- (b) Plote a resposta ao degrau de cada função de transferência. Use a função step.
- (c) Descreva o comportamento de cada resposta obtida, fale sobre a estabilidade do sistema e relacione este comportamento aos pólos. Comente e conclua.

Em resposta aos itens anteriores:

```
pkg load control;

numerador_A = 3;
denominador_A = [2, 1];

numerador_B = 3;
denominador_B = [2, -1];
```

```
9 numerador_C = 5;
denominador_C = [-2, -5];
12 numerador_D = 5;
denominador_D = [2,5];
15 numerador_E = 5;
denominador_E = [1,2,5];
_{18} numerador_F = 5;
denominador_F = [1,-2,5];
_{21} numerador_G = 5;
_{22} denominador_G = [1,0,16];
_{24} numerador_H = 5;
denominador_H = [1,0,-16];
27 numerador_I = 5;
denominador_I = [1,6,9];
29 % Calcular os p los (ra zes do denominador)
poles_A = roots(denominador_A);
poles_B = roots(denominador_B);
poles_C = roots(denominador_C);
poles_D = roots(denominador_D);
poles_E = roots(denominador_E);
poles_F = roots(denominador_F);
poles_G = roots(denominador_G);
poles_H = roots(denominador_H);
poles_I = roots(denominador_I);
40 % Exibir os p los
disp('P los de A:');
42 disp(poles_A);
44 disp('P los de B:');
disp(poles_B);
disp('P los de C:');
```

```
48 disp(poles_C);
49
50 disp('P los de D:');
51 disp(poles_D);
disp('P los de E:');
54 disp(poles_E);
56 disp('P los de F:');
disp(poles_F);
59 disp('P los de G:');
60 disp(poles_G);
61
62 disp('P los de H:');
63 disp(poles_H);
disp('P los de I:');
66 disp(poles_I);
68 %Plotar no grafico
70 plot_A = tf(numerador_A, denominador_A);
step(plot_A,10);
plot_B = tf(numerador_B,denominador_B);
74 step(plot_B,10);
75
76 plot_C = tf(numerador_C,denominador_C);
step(plot_C,10);
78
79 plot_D = tf(numerador_D,denominador_D);
so step(plot_D,10);
81
82 plot_E = tf(numerador_E,denominador_E);
83 step(plot_E,10);
85 plot_F = tf(numerador_F,denominador_F);
step(plot_F,10);
87
```

```
plot_G = tf(numerador_G,denominador_G);
step(plot_G,10);

plot_H = tf(numerador_H,denominador_H);
step(plot_H,10);

plot_I = tf(numerador_I,denominador_I);
step(plot_I,10);
```

2. Sejam os sistemas representados pelas seguintes funções:

$$G_1 = \frac{1}{2s+1}, \quad G_2 = \frac{1}{s^2 + 0.5s + 1}$$

- (a) Verifique como tais sistemas respondem às seguintes entradas:
 - i. Rampa.
 - ii. Impulso.
 - iii. Plote o gráfico de cada uma das funções.
- 3. Considere o sistema com realimentação descrito na figura abaixo:
 - (a) Calcule a função de transferência em malha fechada usando as funções series e feedback.
 - (b) Obtenha a resposta ao degrau unitário do sistema em malha fechada com a função step e verifique que o valor final da saída é $\frac{2}{5}$.
- 4. Um sistema possui a seguinte função de transferência:

$$\frac{X(s)}{R(s)} = \frac{\frac{20}{z} \cdot (s+z)}{s^2 + 3s + 20} \tag{1}$$

- (a) Obtenha a resposta ao degrau unitário do sistema para o parâmetro $z=5,\,z=10,$ e z=15.
- (b) Plote as 3 curvas no mesmo gráfico. Compare, comente e conclua.