CS 132 – Spring 2020, Assignment 11

Answer A

$$x \times w = 18 + 2 - 15 = 5$$

$$x \times x = 36 + 4 + 9 = 49$$

$$\frac{x \times w}{x \times x} = \frac{5}{49}$$

$$\frac{5}{49} \times x = \begin{bmatrix} \frac{30}{49} \\ -\frac{10}{49} \\ \frac{15}{49} \end{bmatrix}$$

Answer B

$$||x|| = v \times v = \sqrt{6^2 + (-2)^2 + 3^2} = \sqrt{36 + 4 + 9} = \sqrt{49} = 7$$

Answer C

Let our vector be
$$u = \begin{bmatrix} -6\\4\\-3 \end{bmatrix}$$
, so:

$$||u|| = \sqrt{u \times u} = \sqrt{36 + 16 + 9} = \sqrt{61}$$

$$\frac{u}{\|u\|} = \frac{1}{\|u\|} \times u = \frac{1}{\sqrt{61}} \times u = \begin{bmatrix} \frac{-6}{\sqrt{61}} \\ \frac{4}{\sqrt{61}} \\ \frac{-3}{\sqrt{61}} \end{bmatrix}$$

Answer D

$$dist(u,z) = ||u-z|| = \sqrt{(u-z) \times (u-z)}$$

$$\sqrt{(u-z) \times (u-z)} = \sqrt{(0+4)^2 + (-5+1)^2 + (2-8)^2} = \sqrt{16+16+36} = \sqrt{68}$$

Answer E

Two vectors are orthogonal if their product is zero, so, to check if these vectors are orthogonal we must verify if $u \times v = 0$:

$$u \times v = [12, 3, -5] \times \begin{bmatrix} 2 \\ -3 \\ 3 \end{bmatrix} = 24 - 9 - 15 = 0$$

Hence, since $u \times v = 0$, then these vectors are orthogonal.

Answer F

Two vectors are orthogonal if their product is zero, so, to check if these vectors are orthogonal we must verify if $y \times z = 0$:

$$y \times z = [-3, 7, 4, 0] \times \begin{bmatrix} 1 \\ -8 \\ 15 \\ -7 \end{bmatrix} = -3 - 56 + 60 + 0 = 1$$

Hence, since $y \times z \neq 0$, then these vectors are not orthogonal.

Answer G

a. True, as per theorem 1:
$$u \times v = v \times u$$

c. False, as we saw earlier in the chapter:
$$||cv|| = |c| \times ||v||$$

Answer H

For any u:
$$u \times u \ge 0$$
.

To prove this, we must consider the 3 different cases for the individual components of u: positive, negative and 0.

Since
$$u \times u = [u_1, u_2, ..., u_n] \times \begin{bmatrix} u_1 \\ u_2 \\ ... \\ u_n \end{bmatrix} = u_1^2 + u_2^2 + ... + u_n^2$$
, so, if an individual member of u, let it be u_x is positive,

then u_x^2 is also positive. If u_x is negative, then u_x^2 will be positive, and finally, if u_x is zero, then u_x^2 will be 0.

Hence, since no matter what u_x is, u_x^2 is always either positive or 0, then $u \times u$ MUST be equal to or greater than 0.

$$u \times u$$
 will only be 0 if u is a 0 vector.

Answer I

For any vector w in the span of u, v: $w = c_1v + c_2u$, so, if we calculate $y \times w$ we get that:

$$y \times w = y \times (c_1 v + c_2 u) = y \times (c_1 v) + y \times (c_2 u)$$

Since we know that for any v_x and u_x that are derived from v and u and multiplied by some scalar c then $y \times v_x = 0$ and $y \times u_x = 0$, then we have that:

 $y \times (c_1 v) + y \times (c_2 u) = 0 + 0 = 0$, which means that y is orthogonal to any vector in the span of u and v.

Answer J

For us to get x as a linear combination of u's, we must solve $[u_1u_2u_3] = x$:

$$\begin{bmatrix} 3 & 2 & 1 & 5 \\ -3 & 2 & 1 & -3 \\ 0 & -1 & 4 & 1 \end{bmatrix} \equiv \begin{bmatrix} 1 & 2/3 & 1/3 & 5/3 \\ 0 & 1 & 1/2 & 1/2 \\ 0 & 0 & 1 & 1/3 \end{bmatrix} \equiv \begin{bmatrix} 1 & 0 & 0 & 4/3 \\ 0 & 1 & 0 & 1/3 \\ 0 & 0 & 1 & 1/3 \end{bmatrix}$$

$$x = 4/3 \times u_1 + 1/3 \times u_2 + 1/3 \times u_3$$

Answer K

Let
$$y=\begin{bmatrix}1\\-1\end{bmatrix}$$
 and $u=\begin{bmatrix}-1\\3\end{bmatrix}$ then: $\hat{y}=\frac{y\times u}{u\times u}\times u$

$$y \times u = -1 - 3 = -4$$
 and $u \times u = 1 + 9 = 10$

So:
$$\hat{y} = \frac{-2}{5} \times u = \begin{bmatrix} 2/5 \\ -6/5 \end{bmatrix}$$

Answer L

First we will calculate the orthogonal projection, let it be $\hat{y} = \frac{y \times u}{u \times u} \times u$:

$$y \times u = 14 + 6 = 20$$
 and $u \times u = 49 + 1 = 50$ so: $\hat{y} = \frac{y \times u}{u \times u} \times u = \frac{2}{5} \times u = \begin{bmatrix} 14/5 \\ 2/5 \end{bmatrix}$

Since \hat{y} is in the span of u, then we must calculate the remaining: $y - \hat{y} = \begin{bmatrix} -4/5 \\ 28/5 \end{bmatrix}$

$$y = \begin{bmatrix} 14/5 \\ 2/5 \end{bmatrix} + \begin{bmatrix} -4/5 \\ 28/5 \end{bmatrix}$$

Answer M

a. True, as, if the set contains the 0 vector it won't be linearly independent

b. False, this case describes an orthogonal set, not an orthonormal one. To be orthonormal the magnitudes of all vectors have to be 1.

c. True, as per theorem 7

d. True, as
$$\hat{y_2} = \frac{y \times uc_1}{uc_1 \times uc_1} \times uc_1 = \frac{c_1^2(y \times u)}{c_1^2(u \times u)} \times u = \frac{y \times u}{u \times u} \times u = \hat{y}$$

e. True, as it will be a square matrix with linearly independent columns

Answer N

In order to prove that the inverse exists, we must see if the determinant is nonzero:

 $det(UV) = det(U) \times det(V) = +/-1 \times +/-1 = +/-1$, so we can verify that it does have an inverse.

Now, in order to prove that $(UV)^T$ is the inverse of UV, we need to prove that $(UV)\times (UV)^T=(UV)^T\times (UV)=I$:

$$\begin{array}{l} (UV)\times (UV)^T = UV\times V^TU^T = U\times I\times U^T = UU^T = I\\ (UV)^T\times (UV) = V^TU^T\times UV = V^T\times I\times V = V^TV = I \end{array}$$

So, since $(UV) \times (UV)^T = (UV)^T \times (UV) = I$, and UV is invertible, then UV is an orthogonal matrix.

Answer O

In order to solve this, I multiplied each column by each other column and checked if all the results were 0.

```
In [6]: import numpy as np
          A = np.array([[-6, -3, 6, 1],
                            [-1, 2, 1, -6],
[3, 6, 3, -2],
[6, -3, 6, -1],
                            [ 2, -1, 2, 3],
[-3, 6, 3, 2],
[-2, -1, 2, -3],
                             [1, 2, 1, 6]])
          A1 = np.array([-6, -1, 3, 6, 2, -3, -2, 1])
          A2 = np.array([-3, 2, 6, -3, -1, 6, -1, 2])
A3 = np.array([6, 1, 3, 6, 2, 3, 2, 1])
          A4 = np.array([1, -6, -2, -1, 3, 2, -3, 6])
          a12 = A1.dot(A2)
          a13 = A1.dot(A3)
          a14 = A1.dot(A4)
          a21 = A2.dot(A1)
          a23 = A2.dot(A3)
          a24 = A2.dot(A4)
          a31 = A3.dot(A1)
          a32 = A3.dot(A2)
          a34 = A3.dot(A4)
          a41 = A4.dot(A1)
          a42 = A4.dot(A2)
a43 = A4.dot(A3)
          a1 = (a12 == \theta and a13 == \theta and a14 == \theta)
          a2 = (a21 == 0 \text{ and } a23 == 0 \text{ and } a24 == 0)
          a3 = (a31 == 0 \text{ and } a32 == 0 \text{ and } a34 == 0)
          a4 = (a41 == 0 \text{ and } a42 == 0 \text{ and } a43 == 0)
          isOrtho = a1 and a2 and a3 and a4
          print(isOrtho)
```

True