Lighting and Shading

Prof. Vladlen Koltun
Computer Science Department
Stanford University

Lighting

 The appearance of objects arises out of their interaction with light. Without light, nothing is visible. The simulation of materials interacting with light is at the core of rendering.

Lighting

 Accurate lighting simulation must account for interreflections between objects, shadows that arise due to occlusion, soft shadows due to area light sources, translucency, subsurface scattering, and other phenomena.

Lighting

 To integrate extremely fast shading into the graphics pipeline, we use a local approximation that only considers direct interactions between individual light sources and surfaces. Interactions between multiple objects are not taken into account.

Lighting Approximation

Three key components:

- Different wavelengths
- Idealized light sources
- Approximation of possible material structures by combinations of two components: specular and diffuse

Different Wavelengths

- Instead of considering the full visible spectrum, we perform lighting calculations independently for the three primary colors: red, green, and blue
- Each light and each material will have separate parameters for each color channel
- From now on, we will discuss single-channel lighting calculations, assuming that all the parameters and computations are performed in parallel for all three channels

Idealized light sources

- In nature, photons are emitted by objects with varying geometry.
- Our approximation considers only four types of idealized light sources: ambient light, point lights, spotlights, and directional lights.

Ambient Light

- A crude approximation to global scattering effects
- Softens the lighting and makes sure that even back-facing surfaces are not completely black.
- Allows us to avoid a large number of lights to cover a wide area
- ullet Has a scalar intensity parameter L_a

Point Lights

- Approximates the effect of streetlights, candles, light bulbs, and other small omnidirectional light sources
- ullet Emits light with equal intensity, L_p , in all directions from a single point
- In principle, light intensity falls off quadratically with distance. Thus the received intensity is

 $\frac{1}{d^2}L_p$

 In practice this results in a sharp falloff. To better control the light distribution and avoid placing a large number of lights, we work with a more general falloff

$$\frac{1}{ad^2 + bd + c}L_p$$

This leads to smoother and softer falloff and longer-range influence

Spotlights

- Akin to a theatrical light that emits light within a cone of directions of radius θ , centered around the spotlight direction ℓ_0
- Light falls off around ℓ_0 as a function of the cosine of direction ϕ with ℓ_0 . Thus the intensity of light in direction ℓ is modeled as

$$\cos^a(\phi) = (\ell_0 \cdot \ell)^a$$

ullet The exponent a controls the speed of the falloff, and thus how focused the spotlight is around its direction

Directional Lights

- Model distant light sources such as the sun, for which the amount of illumination depends only on the surface's angle to the light, not on distance.
- Shading computation for directional lights depends only on the orientation of the surface, not its position in space

Material Approximation

Materials are approximated by a combination of two components:

- Diffuse: rough surfaces that diffuse light omni-directionally
- Specular: smooth surfaces that reflect light in a narrow range around the angle of reflection

Phong Lighting Model

- Computed separately for each light. Contributions of individual lights are added together
- Each light has a separate ambient, diffuse, and specular component
- The surface also has independent ambient, diffuse, and specular components

Phong Lighting Model

For each light, the reflected intensity is

$$I = I_a + I_d + I_s = R_a L_a + R_d L_d + R_s L_s$$

where the L terms represent the intensity of incoming ambient, diffuse, and specular illumination from the considered light source, and the R terms represent how much of the illumination is reflected by the surface.

Ambient Reflection

• The ambient reflection term is just a constant:

$$R_a = k_a, \quad 0 \le k_a \le 1$$

Diffuse Reflection

- Independent of viewing direction: perfectly diffuse lighting is reflected equally in all directions.
- Does depend on angle of incoming light.

Diffuse Reflection

 Lambert's law: reflected diffuse intensity is proportional to the cosine of the angle of the light direction with the normal direction:

$$R_d = k_d \cos \theta = k_d (\mathbf{l} \cdot \mathbf{n})$$

where n is the normal vector, I is the unit vector from the surface point in the direction of the light source, and k_d is a diffuse reflection coefficient.

ullet To avoid negative values, we use $\max(0,\mathbf{l}\cdot\mathbf{n})$

Specular Reflection

Depends on the viewing angle:

$$R_s = k_s \cos^{\alpha} \phi = k_s (\mathbf{r} \cdot \mathbf{v})^{\alpha}$$

where r is the reflected light direction, v is the unit vector from the surface point to the viewer, and k_s is a specular reflection coefficient.

ullet To avoid negative values, we again use $\max(0, \mathbf{r} \cdot \mathbf{v})$

Specular Reflection

• α is the shininess coefficient of the material. The higher it is, the more concentrated the specular highlights are about the reflection direction, and the smoother the surface appears.

Computing Reflection Vectors

$$\frac{\mathbf{l} + \mathbf{r}}{|\mathbf{l} + \mathbf{r}|} = \mathbf{n} \quad \Rightarrow \quad \mathbf{l} + \mathbf{r} = |\mathbf{l} + \mathbf{r}|\mathbf{n}$$

$$|\mathbf{l} + \mathbf{r}| = 2 \operatorname{proj}_{\mathbf{n}}(\mathbf{l}) = 2(\mathbf{l} \cdot \mathbf{n})$$

$$\mathbf{r} = 2(\mathbf{l} \cdot \mathbf{n})\mathbf{n} - \mathbf{l}$$

Blinn-Phong Model

- Avoids computation of reflection vector
- \bullet Replaces angle ϕ with the halfway angle ψ
- Requires computing the halfway vector

$$\mathbf{h} = rac{\mathbf{l} + \mathbf{v}}{|\mathbf{l} + \mathbf{v}|}$$

Phong vs. Blinn-Phong

Shading Models

- Flat shading: Perform lighting calculations per face using normal vector to the face.
- Gouraud shading: Perform lighting calculations per vertex using vertex normals.
- Phong shading: Perform lighting calculations per fragment using interpolated normals.

Normal Vectors

The unnormalized normal vector is the cross-product

$$n = (p_1 - p_0) \times (p_2 - p_0)$$

- The vertices p_0 , p_1 , and p_2 should be in counterclockwise order around the face, when viewed from outside the object. (Right-hand rule.)
- Important since the cross-product is not commutative.

Vertex Normals

- III-defined: we don't know what the right normal is
- Can be obtained by averaging the normals of the incident faces
- Can be weighted by the area of each face or (better) by the incident angle of the face at the vertex

Interpolating Normals

- Again ill-defined: we don't know the curvature of the surface inside the polygon
- Not seeking correctness, merely consistency
- Linear interpolation in world space, or perspective-correct interpolation in screen space

 Applying the same modelview transform to normals can break orthogonality.

- We store normals in Cartesian coordinates (x,y,z), since translation is irrelevant.
- Let M be the upper 3x3 of the modelview transform. We wish to find a transform N that keeps the normal orthogonal to surface.

Consider a tangent vector t and the normal n. We know that

$$n \cdot t = 0$$

The vector t is transformed by the matrix M into $t^\prime=Mt$

Our goal is to find a matrix N that transforms n into $\,n'=Nn\,$ such that $\,n'\cdot t'=0\,$

Equivalently,

$$(n')^T t' = 0$$
$$(Nn)^T M t = 0$$
$$n^T N^T M t = 0$$

$$n^T N^T M t = 0$$

Since $n^T t = 0$, this condition is satisfied when

$$N^T M = I$$

$$N = (M^{-1})^T$$

This is the correct transform for the normal.

Note that we must normalize the transformed normal n'.