Laboratorio IoT

Prof. Paolo Napoletano a.a. 2021/2022

Seismograph System – Assignment 3

Team overlap

- O Nicholas Carlotti 883229
- O Simone Benitozzi 889407

Materials

Description of the ingredients employed

Materials

Description of the ingredients employed

- Nodo Master
 - Server python
- Boards:
 - ARDUINO MKR1000
- Earthquake Detection
 - IMU 10 DOF: Accelerometri per il rilevamento delle vibrazioni

Assignment 1: Earthquake Detection

Project Overview: past steps

- Signal Sampling: Rilevazione delle vibrazioni sull'accelerometro
- Fast Fourier Transform: Conversione dei segnali in una rappresentazione nel dominio delle frequenze

Instrumental Intensity	Acceleration (g)	Velocity (cm/s)	Perceived shaking	Potential damage
1	< 0.000464	< 0.0215	Not felt	None
II–III	0.000464 - 0.00297	0.135 - 1.41	Weak	None
IV	0.00297 - 0.0276	1.41 – 4.65	Light	None
V	0.0276 - 0.115	4.65 - 9.64	Moderate	Very light
VI	0.115 - 0.215	9.64 – 20	Strong	Light
VII	0.215 - 0.401	20 – 41.4	Very strong	Moderate
VIII	0.401 - 0.747	41.4 – 85.8	Severe	Moderate to heavy
IX	0.747 – 1.39	85.8 – 178	Violent	Heavy
X+	> 1.39	> 178	Extreme	Very heavy

- Frequency Segmentation: Estrazione e segmentazione delle frequenze rilevanti (2-20Hz)
- Conversione in Scala Mercalli:

 Conversione del valore rilevato in scala di intensità Mercalli

Assignment 2: Nodo Master

Project Overview: past steps

Funzionamento:

- Il nodo master è rappresentato da un server esterno, iscritto ad un topic mqtt
- Resta in attesa di eventi significativi, che procede a salvare in un database

Vantaggi ottenuti:

- Assorbe la logica di scrittura al database di tutti i sensori
- Ha permesso di aumentare l'efficienza di calcolo delle boards, risparmiandogli carico computazionale

Assignment 2: Dashboard di Monitoring

Project Overview: past steps

Funzionamento:

- Mostra in tempo reale le rilevazioni ricevute dai sismografi
- Ad ogni nodo, collegatosi dinamicamente, corrisponde un grafico diverso
- Gli eventi significativi vengono evidenziati separatamente

Use Case:

- Consente l'osservazione in tempo reale di misurazioni da diverse stazioni di rilevazione
- Fornisce così un'overview su più zone monitorate, in modo da confrontare l'intensità di un evento sismico

Method: API Usage

Description system: choices, parameters, use cases

Overview:

- Fonte: USGS Istituto Geologico degli Stati
 Uniti
- Rilevazione di sismi di magnitudo 2.5+ derivati in tempo reale dall'intero globo terrestre, aggiornati ogni 5 minuti

https://earthquake.usgs.gov/earthquakes/map

Gestione return payload:

- Specifiche dettagliate per ciascun sisma restituite in formato GeoJSON
- Sono state utilizzate solo le più rilevanti per il sistema

Use Cases:

- Rilevazione dei terremoti in tempo reale
 - Recupero degli ultimi terremoti rilevati entro un certo limite

Method: Telegram Bot

Description system: choices, parameters, use cases

Funzionamento:

- Permette di registarsi attraverso una posizione e un raggio a scelta
- L'utente riceverà aggiornamenti in caso di terremoti rilevati entro il raggio scelto

@IoTLab_overlapbot

Method: Telegram Bot

Description system: choices, parameters, use cases

Specifiche di Implementazione:

- I terremoti segnalati agli utenti sono sia quelli rilevati dal sismografo che ricevuti dalle API
- Libreria utilizzata: python-telegram-bot (asincrona)
- L'intero master-node è stato riprogettato per poter girare attorno ad asyncio

Nodes Communication

Tabular description of communication between nodes

Tabular description of confindincation between nodes								
URI or MQTT Topic	Method	Operation	Format of request payload	Return Codes	Format of return payload			
mqtt:// localhost:1883/ status/sensor_id	Publish	Segnala lo stato del sismografo attraverso protocollo LWT	{"online": bool}	none	none			
mqtt:// localhost:1883/ seism/sensor_id/raw	Publish	Pubblica le rilevazioni del sismografo in tempo reale	{"raw": double}	none	none			
mqtt:// localhost:1883/ seism/sensor_id/ events	Publish	Pubblica gli eventi significativi rilevati dal sismografo	{"frequency": double, "magnitude": double, "mercalli": double, "ts_s": long int, "lat": double, "lng": double}	none	none			
http://host:port/ seismograph/ sensor_id/events? limit=\${count}	GET	Recupera eventi passati antro un certo limite	none	200 OK 204 No Content 400 Bad Request	{"timestamp": long int, "magnitude": double, "frequency": double, "mercalli": double}			
https:// earthquake.usgs.gov /earthquakes/feed/ v1.0/summary/ all_hour.geojson * https://earthquake.us	GET gs.gov/data	Recupera eventi rilevati in tempo reale /comcat/index.php	none	200 OK 204 No Content 404 Not <u>Found</u>	* Documentazione completa Informazioni utilizzate: {"magnitude": double, "latitude": double, "longitude": double}			

Team overlap - Laboratorio IoT@UniMiB

Final remarks: Results & Future Developments

Results, Discussion, conclusion

Risultati ottenuti

- L'utilizzo di API ha consentito l'integrazione della nostra rete di sismografi a dati reali.
- L'implementazione del Bot Telegram ha inoltre permesso un sistema di notifica più user-friendly, consentendo agli utenti di rimanere aggiornati su possibili eventi sismici.
- Il tutto è stato integrato in modo da ottenere un flusso di dati seamless, a prescindere che la fonte sia la rete globale di sismografi o i nodi da noi creati.

Sviluppi Futuri

- La possibilità di utilizzare più accelerometri per effettuare analisi aggiuntive sui sismi, con la possibilità di identificarne l'epicentro
- Un sensore di rilevazione della posizione delle schede per rilevarne la posizione effettiva, attualmente fissata staticamente