Mohamadreza. Ardestani-9513004-HW.no1

1)

First step: decision variables is x1, x2, x3 that is the number of produced basket type one and type two and type three respectively.

Second step is finding our objective function. $\max z = 50x1 + 30x2 + 60x3$ and z is our sales profit.

Third step is finding all constrains over our variables:

$$30x1 + 10x2 + 20x2 \le 100$$

$$20x1 + 40x2 + 15x3 \le 800$$

$$4x1 + 3x2 + 10x3 \le 100$$

Forth step is finding our restrictions over type and sing of our variable (real or integer, positive or negative)

$$x1, x2, x3 >= 0$$

gin x1 x2 x3

! if we write gin we don't need "x1, x2, x3 \geq = 0" any more, but there is no problem with solution

I find another solution for this problem intuitively that is x3 =5 but Lingo didn't tell about that. Why ???

12) if each cutting had a cost for us we should cosider all possible cutting model and if the cost of 20 foot and 17 foot was different we must multiplied their cutting model number with corresponding cost in objective function

Cutting model	Num 3 foot	Numb of 5 foot	Numb of 9 foot	Exact wasted wood
Y1	6	0	0	2
Y2	5	1	0	0
Y3	3	2	0	1
Y4	3	0	1	2
Y5	2	1	1	0
Y6	1	3	0	2
Y7	0	4	0	0
Y8	0	2	1	1
Y9	0	0	2	2

because each cut haven't any cost for us,I intuitively considered models that have a "exact waste" less that our smallest peace of wood (means 3)

Min X1+x2+x3+x4+x5+x6+Y1+Y2+Y3+Y4+Y5+Y6+Y7+Y8+Y9 s.t.

5X1+4x2+2x3+2x4+1x5+6Y1+5Y2+3Y3+3Y4+2Y5+1Y6>=25 x2+2x3+x5+3x6+1Y2+2Y3+1Y5+3Y6+4Y7+2Y8>=20 x4+x5+Y4+Y5+Y8+2Y9>=15 end gin X1,x2,x3,x4,x5,x6,Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9

Global optimal solution found. Objective value: Objective bound: Infeasibilities: Extended solver steps:	16.00000 16.00000 0.000000		Min x1+x2+x3+x4+x5+x6+Y1+Y2+Y3+Y4+Y5+Y6+Y7+Y8+Y9 s.t. 5X1+4x2+2x3+2x4+1x5+6Y1+5Y2+3Y3+3Y4+2Y5+1Y6>=25
Total solver iterations: Elapsed runtime seconds:	7 0.47		x2+2x3+x5+3x6+1Y2+2Y3+1Y5+3Y6+4Y7+2Y8>=20
Model Class:	PILP		x4+x5+Y4+Y5+Y8+2Y9>=15
Total variables: 15 Nonlinear variables: 0 Integer variables: 15			end
Total constraints: 4			gin x1
Nonlinear constraints: 0			gin x2
Total nonzeros: 42 Nonlinear nonzeros: 0			gin x3
			gin x4
Variable	Value	Reduced Cost	gin x5
X1 X2	0.000000 0.000000	1.000000 1.000000	gin x6
X3	0.000000	1.000000	8
X4	0.000000	1.000000	gin Y1
X5 X6	0.000000 0.000000	1.000000 1.000000	rin V2
Y1	0.000000	1.000000	gin Y2
Y2	0.000000	1.000000	gin Y3
Y3	0.000000	1.000000	8
Y4 Y5	0.000000	1.000000 1.000000	gin Y4
15 Y6	13.00000 0.000000	1.000000	nin M5
Y7	1.000000	1.000000	gin Y5
Y8	2.000000	1.000000	gin Y6
Y9	0.000000	1.000000	g
Row	Slack or Surplus	Dual Price	gin Y7
1	16.00000	-1.000000	
2	1.000000	0.000000	gin Y8
3 4	1.000000 0.000000	0.000000 0.000000	gin Y9

3) Global optimal solution found	l.	
Objective value:	5370.0	00
Objective bound:	5370.0	00
Infeasibilities:	0.0000	00
Extended solver steps:		0
Total solver iterations:		9
Elapsed runtime seconds:	1.	16
Model Class:	PI	LΡ
Total variables:	21	
Nonlinear variables:	0	
Integer variables:	21	
Total constraints:	15	
Nonlinear constraints:	0	
Total non zeros:	91	
Nonlinear non zeros:	0	

V	ariable	Value	Reduced Cost
	X1	8.000000	250.0000
	X2	0.00000	250.0000
	Х3	2.000000	250.0000
Front table means we must hire (8+2+4+5=) 19	X4	4.000000	250.0000
	X5	0.000000	250.0000
people for our company and distribute them in	Х6	5.000000	250.0000
a week days in this order 8-0-2-4-0-5-0	X7	0.000000	250.0000
means in first day 8 people should start their	Y1	5.000000	62.00000
work and so on. Also extra work for i'th day is	Y2	0.000000	62.00000
	Y3	0.000000	62.00000
showed by yi and wi.	Y4	0.000000	62.00000
For example y1=5 means the 5 people that	Y5	0.000000	62.00000
started their work in day 1 must go extra work	Y6	5.000000	62.00000
at day six and w1=0 means we don't need any	¥7	0.000000	62.00000
	W1	0.000000	62.00000
people that started its work in first day to work	W2	0.000000	62.00000
in day number 7 and so on	W3	0.000000	62.00000
	W4	0.000000	62.00000
	W5	0.000000	62.00000
	W6	0.000000	62.00000
	W7	0.000000	62.00000

Row	Slack or Surplus	Dual Price
1	5370.000	-1.000000
2	0.000000	0.000000
3	0.000000	0.000000
4	0.000000	0.000000
5	0.000000	0.000000
6	0.000000	0.000000
7	0.000000	0.000000
8	0.000000	0.000000
9	3.000000	0.000000
10	0.000000	0.000000
11	2.000000	0.000000
12	4.000000	0.000000
13	0.000000	0.000000
14	0.000000	0.000000
15	0.000000	0.000000

Min 250x1+250x2+250x3+250x4+250x5+250x6+250x7+62y1+62y2+62y3+62y4+62y5+62y6+62y7+62w1+62w2+62w3+62w4+62w5+62w6+62w7

```
s.t.
x1+x7+x6+x5+x4+y3+w2>=17
x2+x1+x7+x6+x5+w3+y4>=13
x3+x2+x1+x7+x6+w4+y5>=15
x4+x3+x2+x1+x7+w5+y6>=19
x5+x4+x3+x2+x1+w6+y7>=14
x6+x5+x4+x3+x2+w7+y1>=16
x7+x6+x5+x4+x3+w1+y2>=11
y1+w1-x1 <= 0
y2+w2-x2 <= 0
y3+w3-x3 <= 0
y4+w4-x4 <= 0
y5+w5-x5 <= 0
y6+w6-x6 <= 0
y7+w7-x7 <= 0
end
gin x1
gin x2
gin x3
gin x4
gin x5
gin x6
gin x7
gin y1
gin y2
gin y3
gin y4
gin y5
gin y6
gin y7
gin w1
gin w2
gin w3
gin w4
gin w5
gin w6
gin w7
```

Xi means number of people that start their work at the I'th day yi means number of people that start their work at I'th day and will work extra at 5 days after their start day

And Wi is number of people that start their work at I'th day and will work extra at 6 days after their start da

we have tree layer of decision and in each layer we have 3 and 3 and 5 element respectively. So we must hase 3*3*5=45 decesion variables. But we are lucky because we can assume that some event (variables) in our models are with probability of zero, in other word (for example we have not any road from W1 to C2 or we have not any road from C1 to receiver 3,4,5):

fisrt layer:

Name of workshop	Total ability for production	Production decision varables
		name
1	400	W1
2	400	W2
3	400	W3

Second layer for first workshop:

Name of rode	Cost for that	Number of production passed by this center decision variable name
(1,1)	C(1,1)	C1
(1,2)	Infinite*	C2
(1,3)	C(1,3)	C3

^(1,1) means from first workshop to first center

C(i,j) is a parametric cost

And in same way we have some non zero probability decision variables in third layer.

And finally we must multiply all of these layers's variables to get a final variable.

So we have 22 decision variables:

W1c1r1, W1c1r2, W1c3r3, W1c3r4, W1c3r5

W2c1r1, W2c1r2, W2c2r1, W2c2r2, W2c2r3, W2c2r4, W2c2r5, W2c3r3, W2c3r4, W2c3r5

W3c1r1, W3c1r2, W3c2r1, W3c2r2, W3c2r3, W3c2r4, W3c2r5

and each decesion variable has its own cost coefficient

cost coefficient for xicjrk is (C(i,j)+d(j,k)) and xicjrk means number of production that we must produce

in I'th Workshop and sent to j'th Center and then use k'th road to send to the k'th receiver our conditions is satisfying that we don't produce more than 400 in each workshop (<=) and also checking that we send enough (or exact – means using = instead of >=) product to each costumer.

 $\begin{aligned} & \text{Min} \left(\ C(1,1) + d(1,1) \ \right) \ W1c1r1 + \left(\ C(1,1) + d(1,k2) \ \right) \ W1c1r2 + \left(\ C(1,3) + d(3,3) \ \right) \ W1c3r3 + \left(\ C(1,3) + d(3,4) \ \right) \\ & \text{W1c3r4} + \left(\ C(1,3) + d(3,5) \ \right) \ W1c3r5 + \left(\ C(2,1) + d(1,1) \ \right) \ W2c1r1 + \left(\ C(2,1) + d(1,2) \ \right) \ W2c1r2 + \left(\ C(2,2) + d(2,1) \ \right) \\ & \text{W2c2r1} + \left(\ C(2,2) + d(2,2) \ \right) \ W2c2r2 + \left(\ C(2,2) + d(2,3) \ \right) \ W2c2r3 + \left(\ C(2,2) + d(2,4) \ \right) \ W2c2r4 + \left(\ C(2,2) + d(2,5) \ \right) \\ & \text{W2c2r5} + \left(\ C(2,3) + d(3,3) \ \right) \ W2c3r3 + \left(\ C(2,3) + d(3,4) \ \right) \ W2c3r4 + \left(\ C(2,3) + d(3,5) \ \right) \ W2c3r5 + \left(\ C(3,1) + d(1,1) \ \right) \\ & \text{W3c1r1}, \left(\ C(3,1) + d(1,2) \ \right) \ W3c1r2, \left(\ C(3,2) + d(2,1) \ \right) \ W3c2r1 + \left(\ C(3,2) + d(2,2) \ \right) \ W3c2r2 + \left(\ C(3,2) + d(2,3) \ \right) \\ & \text{W3c2r3} + \left(\ C(3,2) + d(2,4) \ \right) \ W3c2r4 + \left(\ C(3,2) + d(2,5) \ \right) \ W3c2r5 \end{aligned}$

^{*} Infinite =probabilty zero for this event , if we want to use literature of probability theory

W1c1r1 + W1c1r2 + W1c3r3 + W1c3r4n+ W1c3r5 <=400

W2c1r1+ W2c1r2+ W2c2r1+ W2c2r2 +W2c2r3+ W2c2r4+ W2c2r5+ W2c3r3+ W2c3r4+ W2c3r5 <= 400

W3c1r1+ W3c1r2+ W3c2r1+ W3c2r2+ W3c2r3+ W3c2r4+ W3c2r5 <= 400

W1c1r1+ W2c1r1+ W3c1r1+ W3c2r1+ W2c2r1 =100

W1c1r2+ W2c1r2+ W3c1r2+ W2c2r2+ W3c2r2 = 200

W1c3r3 + W2c2r3+ W3c2r3+ W2c3r3 =150

W1c3r4+ W2c2r4+ W3c2r4+ W2c3r4 =50

W1c3r5 +W2c2r5+ W2c3r5+ W3c2r5 = 300

End

Gin(All variables)