Coordinates

Patrick Chen

Nov 7, 2024

Coordinates

If B is a basis for a vector space V, then any $v \in V$ can be written uniquely as a linear combination of the vectors in B. The notation $[v]_B$ means the coordinates of vector v with respect to the basis B. If the basis B contains the vector $v_1, \ldots v_n$ and $c_1v_1 + \cdots + c_nv_n = v$, then $[v]_B = [c_1 \ldots c_n]^T$.

$$A = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix}$$

$$A[v]_B = v$$

$$[v]_B = A^{-1}v$$

Example

$$B = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\} \qquad \qquad v = \begin{bmatrix} 2\\3\\-1 \end{bmatrix}$$

$$c_1v_1 + c_2v_2 + c_3v_3 = v$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}$$

$$[v]_B = \begin{bmatrix} -1 \\ 4 \\ -1 \end{bmatrix}$$

Example 2

 P_3 is the set of polynomials with degree ≤ 3 and $B = \{1, x, x^2, x^3\}$.

$$p = 1 - 3x^{2} + 2x^{3}$$
$$[p]_{B} = \begin{bmatrix} 1\\0\\-3\\2 \end{bmatrix}$$