THE INTERNATIONAL UNIVERSITY - VIETNAM NATIONAL UNIVERSITY - HCMC

CALCULUS 2 MIDTERM

Semester 2, Academic Year 2022-2023 Duration: 90 minutes

Department of Mathematics	Lecturers Man
Nanz	
Nguyen Minh Quan	Ta Quoc Bao, Tran Vu Khanh, Nguyen Anh Tu

Instructions:

• Write the test code MAR086 on your answer sheet.

• You can use two A4 sheets of notes and a calculator. All other documents and electronic

• Each question carries 4 points. For the True/False questions, fill in the circles comdevices are forbidden. pletely.

Only the answer sheet will be graded.

Part A: True/False Questions

1. The series $\sum_{n=1}^{\infty} (-1)^n (\sqrt{n} - \sqrt{n-1})$ converges.

2. The series $\sum_{n=1}^{\infty} (-1)^n \frac{(2n)!}{(n!)^2}$ diverges.

3. The explicit formula of the sequence $\{\frac{2}{25}, \frac{4}{36}, \frac{6}{49}, \frac{8}{64}, \frac{10}{81}, \dots\}$ is $a_n = \frac{2n}{(n+4)^2}$

4. The sequence $a_n = \frac{(2n)!n^2}{(2n+2)!}$ has limit $\frac{1}{4}$.

5. If nonzero vectors \mathbf{u} and \mathbf{v} have the same magnitude, then they make equal angle with vector $\mathbf{u} + \mathbf{v}$.

6. If for some three dimensional vectors \mathbf{u} , \mathbf{v} , \mathbf{w} we have $\mathbf{u} \times \mathbf{v} = \mathbf{u} \times \mathbf{w}$, then $\mathbf{v} = \mathbf{w}$.

7. The series $\sum_{n=1}^{\infty} \frac{3}{n^2+3}$ is divergent.

8. The series $\sum_{n=2}^{\infty} (-1)^n \frac{n^2 - 1}{n^2 + 3}$ is convergent.

9. If u is orthogonal to v, and v is orthogonal to w, then u is orthogonal to w.

10. The series $\sum_{n=1}^{\infty} \frac{n^2}{4n}$ diverges.

11. The vector $\mathbf{u} = \langle -1, -5, 7 \rangle$ is perpendicular to both the line x = 1 + 5t, y = 3 - tand the plane 2x + y + z = 12.

- 12. If $\mathbf{u} + \mathbf{v}$ is orthogonal to $2\mathbf{u} 3\mathbf{v}$ and $\mathbf{u} \mathbf{v}$ is orthogonal to $2\mathbf{u} + 3\mathbf{v}$, then \mathbf{u} is orthogonal to \mathbf{v} .
- 13. The series $\sum_{n=1}^{\infty} ne^{-2n^2}$ converges.
- 14. If u is a three dimensional vector, then $(\mathbf{u} \cdot \mathbf{i})^2 + (\mathbf{u} \cdot \mathbf{j})^2 + (\mathbf{u} \cdot \mathbf{k})^2 = |\mathbf{u}|^2$.
- 15. If \mathbf{u} , \mathbf{v} are three dimensional vectors, then $(\mathbf{u} \mathbf{v}) \times (\mathbf{u} + \mathbf{v}) = 2\mathbf{u} \times \mathbf{v}$.

Part B: Short Answer Questions

- 16. Find the limit $\lim_{(x,y)\to(0,0)} \frac{x^2+4xy}{3x^2+y^2}$ if it exists.
- 17. Determine the radius and interval of convergence of the power series $\sum_{n=2}^{\infty} \frac{2^n(x-3)^n}{n}$
- 18. Let $f(x) = \frac{x^2}{x+2}$. Find the formula for the coefficients c_n in the power series expansion $f(x) = \sum_{n=0}^{\infty} c_n x^n$.
- 19. Evaluate the series $\sum_{n=1}^{\infty} \frac{2^{2n-1}}{5^n}$.
- 20. Find all values of a such that $\langle a, a, 2 \rangle \times \langle 1, a, 3 \rangle = \langle 2, -4, 2 \rangle$.
- 21. Find the area of the triangle T with vertices P(2,-1,4), Q(1,1,-1) and R(-4,1,1)
- 22. Find the line through point (-3,4,2) that is perpendicular to both $\mathbf{u}=\langle 3,1,0\rangle$ and $\mathbf{v}=\langle 2,4,1\rangle$.
- 23. Find the plane passing through the points P(2,-1,4), Q(1,1,-1) and R(-4,1,1).
- 24. Find the volume of the parallepiped determined by $\mathbf{u} = \langle 3, 1, 0 \rangle$, $\mathbf{v} = \langle 2, 4, 1 \rangle$, $\mathbf{w} = \langle 1, 1, 5 \rangle$.
- 25. Find the length of the two-dimensional curve $\mathbf{r}(t) = \langle \cos t + t \sin t \langle \sin t t \cos t \rangle$, for $t \in [0, \pi/2]$.

to= 10+1101.