Studying Attention Models in Sentiment Attitude Extraction Task

Nicolay Rusnachenko¹ Natalia Loukachevitch^{1, 2}

- 1. Bauman Moscow State Technical University, Moscow, Russia kolyarus@yandex.ru
- 2. Research Computing Center of Moscow State University, Moscow, Russia louk nat@mail.ru

25th International Conference on Natural Language and Information Systems
June 24 – June 26, 2020
Saarbrücken, Germany

Introduction

Microbloging posts (Twitter)

Mostly user reviews ⇒ considered a single object for analysis.

Analytical articles:

- Large amount of named entities (NE): Ukraine, Russia, Russian Federation,
- Has complicated structure:

```
Trumpa accused China and Russia of "playing devaluation of currencies"
```

Related:

- Text Analysis Conference (TAC), Knowledge Base Population (KBP) track¹;
- MPQA 3.0: sentiment attitudes towards entities and events;

¹ https://tac.nist.gov/2014/KBP/Sentiment/index.html

Sentiment Attitude Extraction

```
    Input (Context):
        «As is apparent in Washington<sub>subj</sub>, there is no place for objectivity on the subject of Russia<sub>obj</sub>, irrespective of facts and events»

    Output (Extract):
```

Washington \rightarrow Russian, negative

Resources

RuSentRel: Contents

- 73 large analytical articles;
- Text attitudes manual annotation, sentiment towards named entities (NE) as triplets (Object, Subject, Label), where:
 - Subject NE or "author"
 - Object *NE*
 - Label \in {pos, neg}
- Named Entities automatic (CRF based recognizer);
- List S of synonymous NE manually implemented.

Figure 1: Document opinions

RuSentiFrames Lexicon Structure

Describes sentiments and connotations conveyed with a predicate in a verbal or nominal form.

- Role Designation:
 - A0 is an argument exhibiting features of a Prototypical Agent;
 - A1 is a Theme.
- ② Dimensions:
 - the attitude of the author of the text towards mentioned participants;
 - polarity sentiment between participants;
 - effects to participants;
 - mental states of participants related to the described situation.

Frame	"Одобрить" (Approve)				
roles	A0: who approves				
	A1: what is approved				
polarity	AO $ ightarrow$ A1, pos , 1.0				
	A1 $ ightarrow$ A0, pos, 0.7				
effect	A1, pos, 1.0				
state	A0, pos, 1.0				
	A1, pos, 1.0				

Table 1: Example description of frame "Одобрить" (Approve) in RuSentiLex lexicon.

Contexts Attention Attentive Encoders

Attention Models

Sentiment Attitude Extraction

- Introducing context attitude a pair <Subject, Object> its named entities within a context:
 - «Talking about the separation of the Caucasus region_e due to the confrontation between Russia_{obj} and Turkey_{subj} is not necessary, although there is a danger»
- We predict a sentiment label of a pair in three-scale format positive, negative or neutral (extraction).

Context as a sequence of «terms»

Terms:

- Words:
- Entities (Masked);
- Frames;
- Tokens;

Talking about the separation of the Caucasus region_e due to the confrontation between Russia_{obj} and Turkey_{subj} is not necessary, although there is a danger.

Input embedding

- Pretrained Word2Vec model (size of 1000);
- Additional parameters (size of 5 each):
 - Distance embedding is vectorized distance in terms from attitude participants of entry pair (E_{obj} and E_{subj} respectively) to a given term;
 - Closest to synonym distance embedding is a vectorized abs. distance in terms from a given term towards the nearest entity, synonymous to E_{obj} and E_{subj} ;
 - Part-of-speech embedding;
 - A0→A1 polarity embedding is a vectorized «positive» or «negative» value for frame entries in RuSentiFrames

What is Attention?

Attention embed options

Attention Modules (Types and References)

- Based on input embedding: AttCNN^[1] (PCNN^[2]);
- Based on hidden states: IAN^[3]; Att-BLSTM^[4] (BiLSTM as an encoder);

^[1] Yatian Shen and Xuanjing Huang. "Attention-Based Convolutional Neural Network for Semantic Relation Extraction". In: *Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers* (Dec. 2016), pp. 2526–2536.

^[2] Nicolay Rusnachenko and Natalia Loukachevitch. "Using convolutional neural networks for sentiment attitude extraction from analytical texts". In: *EPiC Series in Language and Linguistics* 4 (2019), pp. 1–10.

^[3] Dehong Ma et al. "Interactive attention networks for aspect-level sentiment classification". In: arXiv preprint arXiv:1709.00893 (2017).

^[4] Peng Zhou et al. "Attention-based bidirectional long short-term memory networks for relation classification". In: *Proceedings of the 54th Annual Meeting of the ACL (Volume 2: Short Papers)* (2016), pp. 207–212.

Multi-Layer Perceptron (MLP) Based Attention (AttCNN)

Feature f: attitude ends, frames;

$$h_i = [x_i, f]$$

Weight calculation:

$$u_i = W_a \left(\tanh(W_{we} \cdot h_i + b_{we}) \right) + b_a$$

4 Attention Embedding:

$$\alpha = softmax(u)$$

$$\hat{s} = \sum_{i=1}^{n} x_i \cdot \alpha_i$$

$$s_{feat} = avg_{i=1..k}(\hat{s})$$

Interactive Attention Network (IAN)

- Feature (p): avg. pooling across:
 - Context (p_c) ;
 - Aspects (Features) (p_f) ;
- Weight calculation:

$$u_i^c = \tanh(h_i^c \cdot W_f \cdot p_f + b_f)$$

$$u_i^f = \tanh(h_i^f \cdot W_c \cdot p_c + b_c)$$

Result Embedding:

$$s_c = \sum_{i=1}^n \alpha_i^c \cdot h_i^c \quad s_f = \sum_{j=1}^k \alpha_j^f \cdot h_j^f$$

Self-Based Attention

Hidden state w.

$$h_i = \overrightarrow{h_i} + \overleftarrow{h_i}, \ i \in \overline{1..n}.$$

Attention (Att-BLSTM):

$$m_i = anh(h_i)$$
 $u_i = m_i^T \cdot \mathbf{w}$
 $lpha = softmax(u)$
 $s = anh(H \cdot lpha)$

Output Class Probabilities

• s – is a context embedding;

$$r = W_r \cdot \tanh(s) + b_r$$

$$o = softmax(r)$$

$$label = argmax(o)$$

Results Weight Distribution Analysis Conclusion

Experiments

Experiment Details

- Experiment format:
 - Three-scale positive, negative or neutral (extraction).
- Output: document level opinions;
- Evaluation formats:
 - Measure: F1-score;
 - 3-Fold CV average results (F_{avg}) ;
 - Fixed Test separation of RuSentRel² (F_{test}).
- Model groups: AttPCNN, IAN, Att-BLSTM;

² https://miem.hse.ru/clschool/results

Results

Model	F1 _{avg}	$F1^1_{cv}$	$F1_{cv}^2$	$F1_{cv}^3$	$F1_{ m test}$
Att-BLSTM	0.314	0.35	0.27	0.32	0.35
BiLSTM	0.286	0.32	0.26	0.28	0.34
IAN_{ef}	0.289	0.31	0.28	0.27	0.32
IAN_{ends}	0.286	0.31	0.26	0.29	0.32
LSTM	0.284	0.28	0.27	0.29	0.32
$AttPCNN_e$	0.297	0.32	0.29	0.28	0.35
$AttPCNN_{ef}$	0.289	0.31	0.25	0.31	0.31
PCNN	0.285	0.29	0.27	0.30	0.32

Weight Distribution Analysis

- Term groups presented in analysis:
 - Frames;
 - Words → Prepositions, Sentiment³;
- **2** Context-level weight of a particular term group is a weighted sum of terms which both appear in the context and belong to the corresponding term group.
- **1** We utilize distributions (ρ_S, ρ_N) of context-levels weights across:
 - Sentiment contexts (S) contexts labeled with positive or negative labels;
 - Neutral contexts (N) contexts labeled as neutral;

³ Contains words and expressions of the Russian language with sentiment labels

Weight Distribution Analysis

Weight distribution visualization on sentiment contexts

Att-BLSTM

 E_{subj} также должный предоставлять дополнительный экономический помощь E_{obj} E_{subj} also should provide additional economic assistance E_{obj}

 $\underline{\mathbf{E}}_{subj}$, в свою очередь, приходиться идти на силовой демонстрация, чтобы принуждать $\underline{\mathbf{E}}_{obj}$ к поиск компромисс $\underline{\mathbf{E}}_{subj}$, in turn, have to go to millitary demonstration, to force $\underline{\mathbf{E}}_{obj}$ to seek compromises

 \mathbf{E} спасать \mathbf{E}_{obj} от \mathbf{E}_{subj} и \mathbf{E} , но ее больше не ждать за европейский стол для почетный гость

E saves \underline{E}_{obj} from \underline{E}_{subj} and E, but she is no longer waiting at the European table for honored guest

Conclusion

- We consider sentiment attitude extraction task as three-scale classification onto the following classes: positive, negative, neutral.
- We study the attention-based neural networks. The application of attentive context encoders illustrates the classification improvement in 1.5-5.9% range by F1;
- Model with self-attentive encoders (Att-BLSTM) illustrates the greatest discrepancy in weight distributions on sentiment and neutral contexts across all the term groups presented in the analysis;

Links

- RuSentRel: https://github.com/nicolay-r/RuSentRel/tree/v1.1
- RuSentiFrames: https://github.com/nicolay-r/RuSentiFrames/tree/v1.0
- Experiments: https://github.com/nicolay-r/attitude-extraction-with-attention
- Word2Vec News embedding⁴;

⁴ http://rusvectores.org/static/models/rusvectores2/news_mystem_skipgram_1000_20_2015.bin.gz