Calculating Complex Derivatives

Prabal Gupta

Department of Electrical and Computer Engineering University of Waterloo 2B Candidate for B.A.Sc. in Computer Engineering

July 12th, 2017

Overview

- Vector Space
 - Definition
 - Types of Vector Spaces
- Basis
 - Intuition
 - Example
- Linear Transformation
- Sine, Cosine Pair
 - Properties
 - Derivative as a Linear Transformation
- Fourier Series
 - Derivative as a Linear Transformation
 - Calculating Complex Derivatives

Vector Space

Definition

- $0 \in \mathcal{G}$
- $\mathbf{P2} \ \mathbf{x}, \mathbf{y} \in \mathcal{G} \Longrightarrow \mathbf{x} + \mathbf{y} \in \mathcal{G}$
- $\mathbf{r} = \mathbf{x} \in \mathcal{G} \Longrightarrow \forall k \in \mathcal{R}, k\mathbf{x} \in \mathcal{G}$
- ► All other properties of a Vector Space can be trivially derived

Vector Space

Vectors in \Re^n

A vector
$$\mathbf{x} \in \mathbb{R}^n$$
 is of form $\mathbf{x} =$

$$k_2$$
 k_2
 k_{n-1}
 k_n

, where $k_1, k_2, k_3...k_n \in \Re$

Vector Space

Vectors in $\mathbb{M}_{m \times n}(\mathfrak{R})$

- $ightharpoonup M_{m \times n}(\mathfrak{R})$ is the set of all $m \times n$ matrices with real elements
- $ightharpoonup \mathbb{M}_{m\times n}(\mathfrak{R})$ forms a Vector Space because :
 - $\mathbf{0}_{m\times n}\in\mathbb{M}_{m\times n}(\mathfrak{R})$
 - $\mathbf{x}_{m \times n}, \mathbf{y}_{m \times n} \in \mathbb{M}_{m \times n}(\mathfrak{R}) \Longrightarrow \mathbf{x}_{m \times n} + \mathbf{y}_{m \times n} \in \mathbb{M}_{m \times n}(\mathfrak{R})$
 - P3 $\mathbf{x}_{m \times n} \in \mathcal{M}_{m \times n}(\mathfrak{R}) \Longrightarrow \forall k \in \mathfrak{R}, k \mathbf{x}_{m \times n} \in \mathcal{M}_{m \times n}(\mathfrak{R})$

Basis

Intuition

- Basis of a Vector Space is used to define a coordinate system
- ▶ Basis of a Vector Space allows representation in \Re^n
- ▶ Basis is a set consisting of certain vectors in the Vector Space

Basis

Example

Let
$$\beta = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$
 be our basis

Basis

Example

$$\mathbf{A} = \begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix} = k_{11} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + k_{12} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + k_{21} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + k_{22} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Linear Transformation

Definition

An operation on a Vector that can be represented as multiplication with a matrix is called a Linear Transformation

Sine, Cosine Pair

Properties

$$\beta = \{\sin(kx), \cos(kx)\}\$$
 is a Basis for θ

$$\forall \mathbf{y} \in \mathcal{G}, \mathbf{y} = a \sin(kx) + b \cos(kx) \Rightarrow \mathbf{y}_{\beta} = \begin{bmatrix} a \\ b \end{bmatrix}_{\beta} \text{ in } \Re^2$$

Sine, Cosine Pair

Derivative as a Linear Transformation

$$\forall \mathbf{y} \in \mathcal{G}, \mathbf{y} = a \sin(kx) + b \cos(kx) \Rightarrow \mathbf{y}_{\beta} = \begin{bmatrix} a \\ b \end{bmatrix}_{\beta} \text{ in } \Re^2$$

$$\mathbf{y}^{(1)} = ak\cos(kx) - bk\cos(kx) \Rightarrow \mathbf{y}^{(1)}{}_{\beta} = \begin{bmatrix} ak \\ -bk \end{bmatrix}_{\beta} \text{ in } \Re^2$$

▶ Differentiating $y = a \sin(kx) + b \cos(kx)$ is a Linear Transformation because :

$$\mathbf{y}_{\beta} = \begin{bmatrix} a \\ b \end{bmatrix}_{\beta} \Rightarrow \mathbf{y}^{(1)}{}_{\beta} = \begin{bmatrix} k & 0 \\ 0 & -k \end{bmatrix} \mathbf{y}_{\beta}$$

Sine, Cosine Pair

Derivative as a Linear Transformation

By repeatedly differentiating,

$$\mathbf{y}^{(1)}_{\beta} = \begin{bmatrix} k & 0 \\ 0 & -k \end{bmatrix}^{1} \mathbf{y}_{\beta} \Rightarrow \mathbf{y}^{(m)}_{\beta} = \begin{bmatrix} k & 0 \\ 0 & -k \end{bmatrix}^{m} \mathbf{y}_{\beta}$$

Derivative as a Linear Transformation

Using Fourier Series, any function f(x) that satisfies Dirchtlet's Conditions can be expressed as:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(n\omega x) + b_n \sin(n\omega x))$$

Let,

$$\beta_n = \{\cos(n\omega x), \sin(n\omega x)\}$$

$$\mathbf{y}_n = a_n \cos(n\omega x) + b_n \sin(n\omega x)$$

Thus,
$$\mathbf{y}_{n,\beta_n} = \begin{bmatrix} a_n \\ b_n \end{bmatrix}_{\beta_n}$$
 in \Re^2

Derivative as a Linear Transformation

For simplicity, ignore functions with $a_0 \neq 0$

$$f(x) = \sum_{n=1}^{\infty} (a_n \cos(n\omega x) + b_n \sin(n\omega x))$$

$$f_{\beta}(x) = \sum_{n=1}^{\infty} \mathbf{y}_{n,\beta_n} = \sum_{n=1}^{\infty} \begin{bmatrix} a_n \\ b_n \end{bmatrix}_{\beta_n}$$

► Calculating m^{th} derivative of $f_{\beta}(x)$ as a Linear Transformation :

$$\mathbf{f}^{(m)}_{\beta}(x) = \sum_{n=1}^{\infty} \begin{bmatrix} n\omega & 0 \\ 0 & -n\omega \end{bmatrix}^{m} \begin{bmatrix} a_{n} \\ b_{n} \end{bmatrix}_{\beta_{n}}$$

Derivative as a Linear Transformation

$$\mathbf{f}^{(m)}_{\beta}(x) = \sum_{n=1}^{\infty} \begin{bmatrix} n\omega & 0 \\ 0 & -n\omega \end{bmatrix}^m \begin{bmatrix} a_n \\ b_n \end{bmatrix}_{\beta_n}$$

What happens when we choose m to be a fraction, or an Imaginary Number?

$$f^{(-1)}\beta(x), f^{(-0.5)}\beta(x), f^{(j)}\beta(x)...$$

Square Wave

Square Wave can be represented as:

$$f_{\beta}(x) = \sum_{n=1}^{\infty} \begin{bmatrix} 0 \\ b_n \end{bmatrix}_{\beta_n}$$
, where $b_n = \begin{bmatrix} \frac{2(1-(-1)^n)}{n\pi} \end{bmatrix}$

Derivative with m = -1

where,

$$b_n = \left[\frac{2(1-(-1)^n)}{n\pi}\right]$$

$$\alpha = 0, \beta = -\frac{1}{(n\pi)^2}$$

Derivative with m = -1

Derivative with m = -0.5

where,

$$b_n = \left[\frac{2(1-(-1)^n)}{n\pi}\right]$$

$$\alpha = \frac{1}{\sqrt{2n\pi}}, \beta = -\frac{1}{\sqrt{2(n\pi)^{3/2}}}$$

Derivative with m = -0.5

Derivative with $m = j = \sqrt{-1}$

where,

$$b_n = \left[\frac{2(1-(-1)^n)}{n\pi}\right]$$

$$\alpha = (n\pi)^{j} \cos\left(\frac{\pi}{2}j\right), \beta = (n\pi)^{j-1} \sin\left(\frac{\pi}{2}j\right)$$

Derivative with $m = j = \sqrt{-1}$

$ightharpoonup \operatorname{Im}(\mathbf{f}^{(j)}_{\beta}(x))$

Derivative with $m = -x^{-1}$

$$f^{(-x^{-1})}_{\beta}(x) = \sum_{n=1}^{\infty} \begin{bmatrix} \alpha & \beta n\pi \\ -\beta n\pi & \alpha \end{bmatrix} \begin{bmatrix} 0 \\ b_n \end{bmatrix}_{\beta_n}$$

where,

$$b_n = \left[\frac{2(1-(-1)^n)}{n\pi}\right]$$

$$\alpha = (n\pi)^{-x^{-1}} \cos\left(\frac{\pi}{2}x^{-1}\right), \beta = -(n\pi)^{-x^{-1}-1} \sin\left(\frac{\pi}{2}x^{-1}\right)$$

Derivative with $m = -x^{-1}$

Summary

- ▶ Derivative of $a\sin(kx)+b\cos(kx)$ is a Linear Transformation
- ▶ Derivative Matrix of $a\sin(kx)+b\cos(kx)$ allows calculation of complex derivatives
- We can sometimes calculate complex derivatives of certain functions using their Fourier Expansion

Questions?

References

[1] Ryan Trelford, "ECE 215 Notes", University of Waterloo, 2017

https://learn.uwaterloo.ca

▶ [2] Eduardo Martin-Martinez, "Advanced Calculus for ECE Students", University of Waterloo, 2017

https://sites.google.com/site/emmfis/teaching/math-211

▶ [3] Oxford Mathematical Institute, "Ox-maths-presentation-template.pdf", University of Oxford, 2015

https://www.maths.ox.ac.uk/system/files/attachments/ox-maths-presentation-template.pdf

[4] Douglas Wilhelm Harder, "Guidelines for Technical Presentations",
 University of Waterloo

https://ece.uwaterloo.ca/~dwharder/Presentations/Guideli
nes/