

第八章 群

刻世實 shixia@tsinghua.edu.cn

内容回顾: 代数系统的概念

定义7.3.3

- 设A是非空集合, f_1, f_2, \dots, f_s 分别是A的 $k_1, k_2, \dots k_s$ 元运算, $k_i (i = 1, 2, \dots s)$ 是正整数。
- 称集合A和运算 f_1, f_2, \dots, f_s 所组成的系统为一个代数系统(或一个代数结构),简称为一个代数,用记号 $(A, f_1, f_2, \dots, f_s)$ 表示。
- · 当A是有限集合时,也称该系统是有限代数系统。
- 两要素
 - 集合和代数运算

关于代数系统(A,f),下面哪些描述是正确的

- A A是非空的
- B f 是映射
- **运算满足封闭性**
- □ 有单位元

Submit

如何判定一个给定的系统是代数系统?

- 集合是非空的
- 定义的运算应该满足映射成立条件
- 所有运算的封闭性

内容回顾: 代数系统的概念

• 例: 设 $Z_m = \{\overline{0}, \overline{1}, \cdots \overline{m-1}\}$ 是整数模m同余所确定的等价类集合, Z_m 上的运算+定义如下:

$$\overline{i} + \overline{j} = \overline{(i+j)(\operatorname{mod} m)}$$

则(Z_m , +)是代数系统! 我们称该运算为模m加法运算。

内容回顾:交换律

- 代数系统 (X, \cdot) 中,如果 $\forall x_i, x_j \in X$,
- 都有 $x_i \cdot x_j = x_j \cdot x_i$ 成立,
- 则称 (X, \cdot) 对于二元运算·适合交换律。

$$(M_n(R), +)$$

$$(M_n(R), \times)$$

内容回顾:指数律

定理7.3.1

若(X,·)对二元运算·适合结合律,则对于任何正整数*m*和*n*,有

1.
$$x^m \cdot x^n = x^{m+n}$$

2.
$$(x^m)^n = x^{m \times n}$$

指数律!广义结合律

内容回顾:单位元

定义7.3.4

- 给定一个代数系统 $V = (X, \cdot)$
- 如果 $\exists e_L \in X$,使得 $\forall x \in X$,都有 $e_L \cdot x = x$,则称 e_L 是X上关于运算·的一个左单位元。
- 若 e 既是左单位元又是右单位元,则称之为单位元。

内容回顾: 逆元

定义7.3.5

- 设 $V = (X, \cdot)$ 是有单位元e的代数系统,对于 $x \in X$,
- 若 $\exists x' \in X$,使得 $x' \cdot x = e$,则称x是左可逆的, 并称x'是x的一个左可逆元;
- 若 $\exists x'' \in X$,使得 $x \cdot x'' = e$,则称x是右可逆的, 并称x''是x的一个右逆元;

内容回顾:消去律

• 如果代数系统 $V = (X, \cdot)$ 中每个元都有逆元,则 $\forall a, b, c \in X$

$$ab = ac \implies b = c$$

$$ba = ca \implies b = c$$

消去律!

内容回顾:同类型

定义7.4.1

- 设 $V_1 = (X, o_1, o_2, \dots, o_r)$ 和 $V_2 = (Y, \overline{o_1}, \overline{o_2}, \dots, \overline{o_r})$ 是两个代数系统,若 o_i 和 $\overline{o_i}$ 都是 k_i 元运算,且 k_i ($i = 1, 2, \dots, r$)是正整数
- 则说代数系统1/1和1/2是同类型的。

$$(\{a,b\}, \bullet)$$
 $(\{0,1\}, \times)$
 \bullet a b \times 0 1
a a b 0 0 1
b b a 1 1 0

内容回顾: 同构

定义7.4.2

- 设(X, ·)和(Y, *)是两个同类型的代数系统, $f: X \to Y$ 是一个<u>双射</u>。
- 如果 $\forall a,b \in X$,恒有 $f(a \cdot b) = f(a) * f(b)$
- 则称f是(X, ·)到(Y, *)的一个同构映射,并称 (X, ·)与(Y, *)同构,用 $X \cong Y$ 表示。

内容回顾: 同构

• 另外设 $Y = \{a, b, c, d\}$, 并定义Y上的运算如下:

•	а	b	С	d
а	а	b	C	d
b	b	С	d	а
С	С	d	а	b
d	d	а	b	С

+	$\frac{\overline{0}}{\overline{0}}$	<u>1</u>	$\overline{2}$	3
<u>+</u> <u>0</u>	$\overline{0}$	<u>1</u>	$\frac{\overline{2}}{\overline{2}}$	3
<u></u>	- 1	$\frac{\overline{2}}{\overline{3}}$	3	$ \begin{array}{c} \overline{3} \\ \overline{3} \\ \overline{0} \end{array} $
$\frac{1}{2}$	$\frac{\overline{1}}{\overline{2}}$	3	$\frac{\overline{3}}{\overline{0}}$	<u>1</u>
3	3	$\overline{0}$	1	$\overline{2}$

• (Y,\cdot) 与 $(Z_4,+)$ 是同类型的代数系统。现定义 $f: Z_4 \to Y$ 如下: $f: \bar{0} \to a, \bar{1} \to b, \bar{2} \to c, \bar{3} \to d$,可以 判断f是同构映射,因此 $Z_4 \cong Y$

内容回顾: 同态

定义7.4.3

- 设(*X*, ·)和(*Y*, *)是两个同类型的代数系统,
 f: *X* → *Y*是一个<u>映射</u>。
- 如果 $\forall a, b \in X$,恒有 $f(a \cdot b) = f(a) * f(b)$
- 则称f是(X, ·)到(Y, *)的一个同态映射,简称同态。

内容回顾: 同态

例

• 一个代数系统 $V_1 = (Z, +, \times)$,其中Z是整数集合, + 和 ×分别是一般的加法和乘法运算;另一个代数系统 $V_2 = (Z_m, +_m, \times_m)$ 中, $Z_m = \{\overline{0}, \overline{1}, \cdots, \overline{m-1}\}$,其中 $+_m$ 和 \times_m 分别是模m的加法和乘法运算,即

$$\frac{\overline{x_1}}{x_1} +_m \frac{\overline{x_2}}{x_2} = \frac{\overline{x_1 + x_2}}{\overline{x_1} \times x_2}$$

• 定义映射 $f: Z \to Z_m$,即 $f(i) = \overline{i}$,则 $f \neq V_1$ 到 V_2 的一个同态

内容回顾: 同态

定义7.4.6

• 代数系统 (X, \cdot) 上的同态映射

 $f \colon X \to X$

• 称为自同态,若f是同构映射,则称之为自同构。

定义8.1.1

- 设S是非空集合,·是S上的一个二元运算,如果·满足结合律,则代数系统(S,·)称为半群(semigroup)。
- 换句话说,如果对于任意的 $a,b,c \in S$,若 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ 成立,则称 (S,\cdot) 为半群。

• 例: (R,+) $\forall a,b,c \in R$ (a+b)+c=a+(b+c)

半群!

• 例: (R,-) $\forall a,b,c \in R$ $(a-b)-c \neq a-(b-c)$

定义8.1.2

- 若半群(*M*,·)中有单位元*e*存在,则称(*M*,·)是一个 含幺半群或简称幺群。
- 幺群有时会用三元组(*M*, ·, *e*) 表示,方便起见,简
 称*M*为幺群,并常用*ab*表示*a* · *b*,称为*a*与*b*的乘积。

• 例: (*R*,+)

$$\forall a, b, c \in R$$
 $(a+b)+c=a+(b+c)$
 $\forall a \in R$ $a+0=0+a=a$

半群! 幺群!

定义8.1.3

设(*M*, ·, *e*) 是一个幺群,若·适合交换律,则称*M* 是交换幺群。

• 例: (*R*,+)

$$\forall a, b, c \in R$$
 $(a+b)+c=a+(b+c)$
 $\forall a \in R$ $a+0=0+a=a$

定理8.1.1

- 如果二元运算·适合结合律,那么也适合广义结合 律。
 - 根据定理显见

$$a^n a^m = a^{n+m} \qquad (a^m)^n = a^{mn}$$

其中定义 $a^0 = e$,即M中的单位元。

- 如果a是M中的一个可逆元,那么一定有 a^{-1} ∈ M,于是 $a^{-1}a^{-1} \cdots a^{-1}$ (n个)可以表示成

$$(a^n)^{-1} = (a^{-1})^n = (a^n)^{-1} = a^{-n}$$

因此上式中的m,n在整数范围内取值都是成立的。

若a可逆,则 a^n 也可逆

定义8.1.4

• 设(M, \cdot, e) 是一个幺群,若存在一个元素 $g \in M$,使得任意的 $a \in M$,a都可以写成g的方幂形式,即 $a = g^m$ (m是非负整数),则称(M, \cdot, e) 是一个循环幺群,并且称g 是M的一个生成元。

8.1 半群

• 例: (*R*,+)

$$\forall a, b, c \in R$$
 $(a+b)+c=a+(b+c)$
 $\forall a \in R$ $a+0=0+a=a$

• 例: (*N*,+)

循环幺群?

定理8.1.2 循环幺群是可交换幺群

• 证明:

设g是循环幺群中的一个生成元,则对任意 $a,b \in M$,有 $a = g^m, b = g^n, (m, n \ge 0)$ 由于二元运算适合结合律,因此 $ab = g^m g^n = g^{m+n} = g^n g^m = ba$ 所以循环幺群是可交换的。

定义8.1.5

• 设(S,\cdot) 是一个半群, $T \subseteq S$,在运算·的作用下如果T是封闭的,则称(T,\cdot) 是(S,\cdot) 的子半群。

定义8.1.6

• 设(M, \cdot, e) 是一个幺群, $T \subseteq M$,在运算·的作用下如果T是封闭的,且 $e \in T$,则称(T, \cdot, e)是(M, \cdot, e)的子幺群。

定义8.1.7

定理8.1.3

- 设f 是从代数系统(A,·) 到(B,*)的满同态,S 是A的非空子集。f(S) 表示S 中的元素在f 下的象的集合,即 $f(S) = \{f(a) | a \in S\}$
- 那么
 - 1. 若 (S,\cdot) 是半群,则(f(S),*) 也是半群。
 - 2. 若 (S,\cdot) 是幺群,则(f(S),*) 也是幺群。

在满同态下,半群和幺群的性质保留

推论

- 设*f* 是从半群(*A*,·) 到代数系统(*B*,*)的满同态,
 (*S*,·) 是(*A*,·) 的子半群。
- 则有
 - 1. (B,*) 是半群。
 - 2. (f(S),*) 是(B,*)的子半群。

半群、幺群、子半群的同态象,仍然是半群、幺群、子半群!

作业题

• 习题八: 11 (a, b)(c, d) = (ac, cb+d)

第八章 群

- 8.1 半群
- 8.2 群、群的基本性质
- 8.3 循环群 群的同构
- 8.4 变换群和置换群 Cayley定理
- 8.5 陪集和群的陪集分解 Lagrange定理
- 8.6 正规子群与商群
- 8.7 群的同态、同态基本定理
- 8.8 群的直积

8.2 群、群的基本性质

定义8.2.1

- 设G是非空集合,·是G上的二元运算,若代数系统 (G,\cdot) 满足
 - 1. 适合结合律,即 $\forall a,b,c \in G$,有(ab)c = a(bc)
 - 2. 存在单位元e,使得 $\forall a \in G$, ae = ea = a
 - 3. G 中的元素都是可逆元。即 $\forall a \in G$, 都 $\exists a^{-1} \in G$, 使得 $aa^{-1} = a^{-1}a = e$
- 则称代数系统 (G,\cdot) 是一个群,或记为 (G,\cdot,e) 。
- 为了方便起见,常用G表示群 (G, \cdot, e)

群的定义:封闭性、结合律、幺元《楚》

對结幺逆 一 凤姐咬你

8.2 群、群的基本性质

定义8.2.2

• 设(G_{r} , e)是含幺半群,e是其单位元,如果 $\forall a \in G_{r}$ 都 $\exists a^{-1} \in G_{r}$,使得

$$aa^{-1} = a^{-1}a = e$$

成立,则称G是一个群。

• G是所有元素都可逆的含幺半群。

常用代数系统的比较

下面哪个代数系统是群?

A
$$(Q, +), (Z, +), (R, +)$$

$$(R-\{0\}, *)$$

$$(P(S), \oplus)$$

$$D \mid (N, +)$$

$$(Z_n, +_n)$$

实例

•
$$(Q, +)$$
, $(Z, +)$, $(R, +)$

•
$$(R-\{0\}, *)$$

•
$$(P(S), \oplus)$$

•
$$(N, +)$$

•
$$(Z_n, +_n)$$

 $\sqrt{}$

 $\sqrt{}$

逆元?

逆元-x

逆元?

$$\sqrt{}$$

$$x = 0, x^{-1} = 0;$$

 $x \ne 0, x^{-1} = n-x$

实例

• 设R={0°,60°,120°,180°,240°,300°} 表示在平面上几何图形绕形心顺时针旋转角度的六种可能情况,设★是R上的二元运算,对于R中任意两个元素a和b,a★b表示平面图形连续旋转a和b得到的总旋转角度。并规定旋转360°等于原来的状态,就看作没有经过旋转。验证<R,★>是一个群。

*	0°	60°	120°	180°	240°	300°
0°	0°	60°	120°	180°	240°	300°
60°	60°	120°	180°	240°	300°	0°
120°	120°	180°	240°	300°	0°	60°
180°	180°	240°	300°	$^{\circ}$	60°	120°
240°	240°	300°	0°	60°	120°	180°
300°	300°	0°	60°	120°	180°	240°

解:由题意,R上的二元运算 \star 的运算表如上所示,由表知,运算 \star 在R上是**封闭的**。

对于任意 $a, b, c \in \mathbb{R}$, $(a \star b) \star c$ 表示将图形依次旋转a, b和c,而 $a \star (b \star c)$ 表示将图形依次旋转b, c和a,而总的旋转角度都是 $a+b+c \pmod{360}$,因此 $(a \star b) \star c=a \star (b \star c)$,即★运算满足结合性。

00是幺元。

60°, 120°, 180°逆元分别是300°, 240°, 180° 因此(R, ★)是个群

练习

• 已知:在整数集 I 上的二元运算*定义为: $a,b \in I$,

$$a * b = a + b - 2$$

证明: (I,*)为群。

单位元: 2

逆元: *x*⁻¹=4-*x*

- 1. 非空集合
- 2. 运算时封闭的
- 3. 满足结合律
- 4. 有单位元
- 5. 有逆元

定义8.2.3

- 若群G的二元运算·满足交换律,即 $\forall a,b \in G$,都 fab = ba
- 则称G是交换群,或阿贝尔(Abel)群。

• 满足交换律的群是交换群!

笑话

- 有人问一个法国四年级小朋友,3+4等于几?回答: 不知道。
- 那4+3等于几?还是回答不知道。
- 那你小学都学了些什么呀?我知道3+4==4+3。
- 为什么呀?
- 因为加法是一个Abel群。

例题

• 设G={ e, a, b, c }, G上的运算由下表给出

适合结合律,有单位元,每个元素都有逆元素

	e	a	b	c
e	e	a	b	c
a	a	e	C	\boldsymbol{b}
b	b	C	e	a
c	c	\boldsymbol{b}	a	e

特征:

- 1. 满足交换律
- 2. 每个元素都是自己的逆元
- 3. *a*, *b*, *c*中任何两个元素运算结果都等于剩下的第三个元素

克莱因(Klein)四元群,也是可交换群

平凡群

• 只含单位元的群称为平凡群 ({0},+)是平凡群

定义

• 规定集合G的基数为群 (G,\cdot) 的阶,当阶为某一整数时,该群为有限群;否则为无限群。

例

- (Q, +, 0)是交换群,对于任意元 $a \in Q$,都有 $-a \in Q$,使得 a + (-a) = (-a) + a = 0。
- $(Q^*, \cdot, 1)$, 其中 Q^* 是非0有理数,对于任意 $a \in Q$,都有1/ $a \in Q$,使 $a \cdot (1/a) = (1/a) \cdot a = 1$ 。 因此 $(Q^*, \cdot, 1)$ 是无限群.

实例: 判断群的阶

- <Z,+>和<R,+>是
 - 无限群
- <Z_n,.>是
 - -有限群,也是n阶群.
- Klein四元群是
 - 4阶群
- 上述群都是交换群

定理8.2.1

- 设G是一个群,则
 - 1. G中的单位元唯一。
 - 2. G中每个元素都有唯一的逆元。
 - 3. 指数律成立: 即∀ $a ∈ G, m \setminus n$ 是任意整数,有 $a^m a^n = a^{m+n} \quad (a^m)^n = a^{mn}$
 - 4. 若ab = ba, 则 $(ab)^n = a^n b^n$

定理8.2.2

• 设半群(G,\cdot)有一个左单位元e, 且对 $\forall a \in G$,都有 左逆元 $a^{-1} \in G$,使得 $a^{-1}a = e$ 成立,则G是群。

• 证明: 因为

$$ae = \underline{eae} = ((\underline{a^{-1}})^{-1}\underline{a^{-1}})a(\underline{a^{-1}a}) = (a^{-1})^{-1}(\underline{a^{-1}a})(a^{-1}a)$$
$$= (a^{-1})^{-1}(ea^{-1})a = ((a^{-1})^{-1}a^{-1})a = ea = a$$

• 所以e也是右单位元。

定理8.2.2

证明(续)

- 以下证 a^{-1} 也是a的右逆元
- 设a'是 a^{-1} 的左逆元,于是有

$$aa^{-1} = eaa^{-1} = (a'a^{-1})aa^{-1} = a'(a^{-1}a)a^{-1} = (a'e)a^{-1} = a'a^{-1} = e$$

因此G是群!

定理8.2.3

• 设(G,·)是半群,如果对G中任意两个元素a,b,方程ax = b和ya = b在G中都有解,则G是一个群。

• 证明:

 $-: \forall a, b \in G, \quad ya = b$ 有解

-: ∀a ∈ G, ya = a有解,不妨设某个解为e

定理8.2.3

ya = a有解,不妨设某个解为e ea = a

- 证明(续):
 - 对方程ax = b,设x'是其中的一个解,那么 $\forall b \in G$ eb = e(ax') = (ea)x' = ax' = b 所以e就是左单位元;
 - 此外, $\forall a \in G, ya = e$ 有解y', 所以y'是a的左逆元。
 - 由定理8.2.2, *G*是群。

例题

 设群*G*=(*P*({*a*,*b*}),⊕), 其中⊕为对称差. 解下列群 方程

$$\{a\} \oplus X = \emptyset, Y \oplus \{a,b\} = \{b\}$$

• 解
$$X=\{a\}^{-1}\oplus\emptyset=\{a\}\oplus\emptyset=\{a\}$$
, $Y=\{b\}\oplus\{a,b\}^{-1}=\{b\}\oplus\{a,b\}=\{a\}$

例题

• 设
$$G = (\{a_1, a_2, ..., a_n\}, \cdot\}$$
是 n 阶群,令
$$a_iG = \{a_i \cdot a_i \mid j=1, 2, ..., n\}$$

证明 $a_iG = G$.

证 由群中运算的封闭性有 $a_iG\subseteq G$. 假设 $a_iG\subset G$,即 $|a_iG|< n$.

必有 $a_j, a_k \in G$ 使得

$$a_i \cdot a_j = a_i \cdot a_k \quad (j \neq k)$$

由消去律得 $a_j = a_k$, 与 |G| = n矛盾.

定理8.2.4

• 设G是一个群, $\forall a, b \in G$ 恒有 $(a^{-1})^{-1} = a, \quad (ab)^{-1} = b^{-1}a^{-1}$

证明:

$$(a^{-1})^{-1} = (a^{-1})^{-1} e = (a^{-1})^{-1} a^{-1} a = ea = a$$

$$(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = aea^{-1} = e$$

$$\therefore (ab)^{-1} = b^{-1}a^{-1}$$

定义8.2.4

• 设a是G中的一个元素,若有正整数k存在,使 $a^k = e$,则满足 $a^k = e$ 的最小正整数k称为元素a的阶(或周期),记为0 < a >,并称a是有限阶元素。

• 例: (Z₆,·)

设 $Z_6 = \{\overline{0}, \overline{1}, \cdots, \overline{5}\}, \, \mathcal{E}Z_6$ 上的模6加法运算。

$$0 < \overline{1} > = 6$$

$$0 < \overline{3} > = 2$$

定理8.2.5

- 设a是群G中的一个r阶元素,k是正整数,则
 - 1. $a^k = e$, 当且仅当 r|k
 - 2. $0 < a > = 0 < a^{-1} >$
 - 3. $r \leq |G|$

定理8.2.5

- 设a是群G中的一个r阶元素,k是正整数,则 1. $a^k = e$,当且仅当 r|k
- 证明:
 - 充分性: r|k, 则k = rm, 得 $a^k = a^{rm} = (a^r)^m = e^m = e^m$
 - 必要性: 若 $a^k = e$, $k = pr + q(0 \le q \le r)$, 得 $a^k = a^q = e$
 - -r是a的阶,所以q=0,故r|k

定理8.2.5

• 设a是群G中的一个r阶元素,k是正整数,则

2.
$$0 < a > = 0 < a^{-1} >$$

- 证明:
 - -设 $0 < a > = r, 0 < a^{-1} > = r'$
 - 定理8. 2. 1得 $(a^{-1})^r = (a^r)^{-1} = e$, 所以r'|r
 - -同理,r|r',故r=r'

定理8.2.5

- 设a是群G中的一个r阶元素,k是正整数,则 3. $r \leq |G|$
- 思路:证明 e_1, a_2, \dots, a^{r-1} 是不同的元素
- 证明:

```
设e = a^0,且a, ..., a^{r-1}中a^i = a^j,其中0 \le i < j < r
a^{j-i} = e,即0 < j-i < r,与a的阶是r相矛盾e, a, ..., a^{r-1}是G中不同的元素,r \le |G|。
```

实例

- 例5 设G是群, $a,b \in G$ 是有限阶元.证明
- (1) $0 < b^{-1}ab > = 0 < a >$ (2) 0 < ab > = 0 < ba >

证 (1) 设
$$O < a > = r$$
, $O < b^{-1}ab > = t$, 则有

$$(b^{-1}ab)^r = \underbrace{(b^{-1}ab)(b^{-1}ab)...(b^{-1}ab)}_{r\uparrow}$$

$$=b^{-1}a^{r}b=b^{-1}eb=e$$

从而有 $t \mid r$.

另一方面,由 $a = (b^{-1})^{-1}(b^{-1}ab)b^{-1}$ 可知 $r \mid t$. 从而有 $0 < b^{-1}ab > = 0 < a >$.

实例

(2) 设
$$O < ab > = r$$
, $O < ba > = t$, 则有

$$(ab)^{t+1} = \underbrace{(ab)(ab)...(ab)}_{t+1 \uparrow \uparrow}$$

$$= a\underbrace{(ba)(ba)...(ba)b}_{t \uparrow \uparrow}$$

$$= a(ba)^{t}b = aeb = ab$$

由消去律得 $(ab)^t = e$,从而可知, $r \mid t$. 同理可证 $t \mid r$. 因此O < ab > = O < ba >

定义8.2.5

- 设H是群G的一个非空子集,若H对于G的运算仍然构成群,则称H是G的一个子群,记为 $H \leq G$ 。
 - $-G,\{e\}$ 都是群,称为G的平凡子群。
 - 如果G的子群 $H \neq G$,则称H为G的真子群,记为H < G

• 例

- -(Z,+,0)是一个群,设T是正整数m整倍数的集合,则 (T,+,0)是(Z,+,0)的一个子群。
- 设G是全体 $n \times n$ 阶实可逆矩阵的集合,它对矩阵乘法构成群。令 H 是行列式值为1的矩阵的集合,则 H < G。

定理8.2.6

- *H*是*G*的子群的充要条件是:
 - 1. H对G的乘法运算是封闭的,即∀a,b ∈ H,都有 ab ∈ H
 - 2. H中有单位元e',且e'=e
 - 3. $\forall a \in H$,都有 $a^{-1} \in H$,且 a^{-1} 是a在G中的逆元

定理8.2.6

- 证明
 - -H是子群,所以H对G的运算封闭,并存在单位元e' G中,e'e=e',H中e'e'=e',故e'e=e'e',e'=e
 - 任取 $a \in H$,要证都有 $a^{-1} \in H$ 设a在H中的逆元是a',在G中的逆元是 a^{-1} $aa^{-1} = e = e$ ' = aa',故 $a^{-1} = a$ ',必要性得证
 - 充分性是显然的, 定理得证

定理8.2.7

• G的非空子集H是G的子群的充要条件是 $\forall a,b \in H$,都有 $ab^{-1} \in H$

定理8.2.7

- 证明
 - 需要证明H满足子群充要条件:

封闭性、单位元、逆元素

- $\forall a, b \in H, ab^{-1} \in H, 故 \forall a \in H, 令 b = a, 则 e = aa^{-1} \in H$ (单位元)
- $\forall b \in H, b^{-1} = eb^{-1} \in H$ (逆元)
- $\forall a, b \in H$, $b^{-1} \in H$, 故 $ab = a(b^{-1})^{-1} \in H$ (封闭性)
- 证毕!

设 H_1, H_2 是G的两个子群,则 $H = H_1 \cap H_2$

- A 是群G的子群
- B 不是是群G的子群
- 与G没有关系

例

• 设 H_1, H_2 是G的两个子群,则 $H = H_1 \cap H_2$ 也是G的子群。

• 证明:

- G单位元e ∈ H_1 , H_2 , 所以e ∈ H, 即H非空。
- 任设 $a,b \in H$,则 $a,b \in H_1$, $a,b \in H_2$,由定理8.2.7 有 $ab^{-1} \in H_1$, $ab^{-1} \in H_2$,因此 $ab^{-1} \in H$,
- 所以H是G的子群。

例

• 设a是群G中的任一元素,则 $< a > = \{a^k | k \in Z\}$ 是G的子群。

• 证明:

- $-a^0 = e \in \langle a \rangle$, 所以 $\langle a \rangle$ 非空。
- 任取 $a^m, a^n \in \langle a \rangle$, 有 $a^m(a^n)^{-1} = a^m a^{-n} = a^{m-n} \in \langle a \rangle$
- 由定理8.2.7, $< a > \le G$ 。

总结: 群的性质

性质1 设(G, ·)为群,则 $\forall a \in G$, a的左逆元也是a的右逆元.

性质2 设 (G,\cdot) 为群,则G的左单位元e也是右单位元.

性质3 设(G, ·)为群,则 $\forall a,b \in G$,方程 $a \cdot x = b$ 和 $y \cdot a = b$ 在G中的解唯一.

总结: 群的性质

性质4设(G,·)为群,则

- (1) $\forall a \in G, (a^{-1})^{-1} = a;$
- (2) $\forall a,b \in G$, $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$.

性质5 群(G,·)中的乘法满足消去律,即 $\forall a,b,c \in G$ 有

- (1) 若 $a \cdot b = a \cdot c$,则 b = c(左消去律)
- (2) 若 $b \cdot a = c \cdot a$,则 b = c(右消去律)

总结: 群的性质

性质6 设G 为群,则G中的幂运算满足:

- (1) $\forall a \in G$, $a^n a^m = a^{n+m}$, $n, m \in \mathbb{Z}$
- (2) $\forall a \in G$, $(a^n)^m = a^{nm}$, $n, m \in \mathbb{Z}$
- (3) 若G为交换群,则 $(ab)^n = a^n b^n$.

性质7 G为群, $a \in G$ 且 |a| = r. 设k是整数,则

- $(1) a^k = e$ 当且仅当 $r \mid k$.
- $(2) 0 < a^{-1} > = 0 < a > .$

8.2 群、群的基本性质

第八章 群

- 8.1 半群
- 8.2 群、群的基本性质
- 8.3 循环群 群的同构
- 8.4 变换群和置换群 Cayley定理
- 8.5 陪集和群的陪集分解 Lagrange定理
- 8.6 正规子群与商群
- 8.7 群的同态、同态基本定理
- 8.8 群的直积

RSA密码系统

- RSA公钥加密算法是1977年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的。1987年首次公布,RSA就是他们三人姓氏开头字母拼在一起组成的
- RSA是目前最有影响力的公钥加密算法,它能够抵抗到目前为止已知的绝大多数密码攻击,已被ISO推荐为公钥数据加密标准

RSA密码系统

- RSA算法的主要思想: 当p和q是一个大素数的时候, 从它们的积pq去分解因子p和q,这是一个公认的 数学难题。
- RSA的主要运算是取自Z_n中的指数运算
- Z_n是整数模n的同余类的加法群,在本节课中,我们将会学到Z_n是一种循环群。

http://baike.baidu.com/link?url=1TWtkiuBAZ5iXFYB-FtnyCeTsDny6T2TQZUSoztBOXEV9Cr1VNKoxRLBPbWvhRtHWuq4EUV mecfSvKBWuYnZ K

定义8.3.1

若群*G*中存在一个元素*a*,使得*G*中的任意元素*g*,都可以表示成*a*的幂的形式,即
 G = {*a^k*|*k* ∈ *Z*},

• 则称G是循环群,记作 $G = \langle a \rangle$,a称为G的生成元。

内容回顾:循环幺群

定义8.1.4

• 设(M, \cdot, e) 是一个幺群,若存在一个元素 $g \in M$,使得任意的 $a \in M$,a都可以写成g的方幂形式,即 $a = g^m$ (m是非负整数),则称(M, \cdot, e) 是一个循环幺群,并且称g 是M的一个生成元。

- 思考:
 - 循环群和循环幺群的区别是什么?
 - 例:

$$(N,+)$$

$$(Z_m, \cdot)$$
 $Z_m = {\overline{0}, \overline{1}, \cdots, \overline{m-1}}$

是否有逆元

思考

- 生成元的阶与循环群元素数相互关系?
 - 相等

定义

• 对于循环群 $G = \langle a \rangle$,若生成元a的阶数|a| = n,也可记为O(a),则 $G = \langle a \rangle = \{e, a, a^2, \dots, a^{n-1}\}$,称为n阶循环群;

• 若|a|不存在,则 $G = \langle a \rangle = \{e, a, a^{-1}, a^2, a^{-2}, \cdots\}$ 也是 无限的,称为无限阶循环群

关于循环群的一个结论

• 所有的循环群都同构于(Z,+)或 $(Z_n,+)$

- 当 $o(a)=\infty$ 时, $G\cong (Z,+)$ 无限循环群
- 当o(a)=n时, $G \cong (Z_n,+)n$ 阶循环群

- 思考:
 - 循环群的生成元有几个?
 - 例:

$$(Z, +)$$

$$1, -1$$

$$(Z_6, \bullet)$$

$$(Z_6, \bullet)$$
 $Z_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$

$$(\overline{5})^0 = \overline{0}$$

$$\left(\overline{5}\right)^2 = \overline{4}$$

$$\left(\overline{5}\right)^4 = \overline{2} \qquad \left(\overline{5}\right)^6 = \overline{0}$$

$$\left(\overline{5}\right)^6 = \overline{0}$$

$$\left(\overline{5}\right)^{1} = \overline{5}$$

$$\left(\overline{5}\right)^3 = \overline{3}$$

$$\left(\overline{5}\right)^3 = \overline{3}$$
 $\left(\overline{5}\right)^5 = \overline{1}$

- 设 $G = \langle a \rangle$, 则
- - 其中 $\varphi(n)$ 是欧拉函数,它表示小于n且与n互素的正整数个数。

- 证明:
 - 当 $o\langle a\rangle$ = ∞时,显然a是生成元。同时, $\forall a^k \in G$, $a^k = (a^{-1})^{-k}$,因此 a^{-1} 也是G的一个生成元
 - 假设还有另外一个生成元b,则不妨设 $b = a^{j}$
 - 由于b也是生成元,则a可以写为 $a = b^t$
 - 则必有 $a = b^t = (a^j)^t = a^{jt}$,由消去率, $a^{jt-1} = e$
 - -a为无限阶,则必有jt-1=0,故只能有j=t=1或 j=t=-1

定理8.3.1

- 证明(续):
 - 当 $o\langle a \rangle = n$ 时,若 $G = \langle a \rangle = \langle a^r \rangle$,则存在p使 $a = (a^r)^p$,即 $a^{rp-1} = e$
 - 故存在q,使得rp-1=qn
 - 即(r,n) = 1

证毕!

循环群中,若某元素的幂次与*n*互素,则可以作为另一生成元!

例

• 思考:

循环群G的子群H是否仍然是循环群? YES! 分析: 子群H的生成元? G的子群H,可以写为 $H = \{e, a^{k_1}, a^{k_2}, \cdots, a^{k_m}, \cdots\}$ 不妨设H所有元素的幂次中, k_1 是最小值 则对于H中其他元素 a^{k_m} 幂次进行分析,一定有 $k_m = l$ · $k_1 + r$, 其中 $0 \le r < k_1$ 。 故 $a^{k_m} = a^{r+l\cdot k_1} = a^r a^{l\cdot k_1} \implies a^r = a^{k_m} (a^{l\cdot k_1})^{-1} \Longrightarrow$ $a^r \in H$ r = 0

• 思考:

G为循环群时, G的子群是什么特征?

- 若<math>G为无限循环群:

假设子群H生成元是 a^k ,则该生成元的阶数一定为 ∞ 否则若存在正整数q,使得 $(a^k)^q = e$,将说明a为有限阶元,矛盾!

- 若G为无限循环群,则其子群也为无限循环群!

• 思考:

G为循环群时, G的子群是什么特征?

- 若 G 为 n 阶 循 环 群:

假设子群H生成元是 a^{k_1} ,设其阶数为d由于 $(a^{k_1})^n = (a^n)^{k_1} = (e)^{k_1} = e$ (定理8. 2. 5)则必定有 $d \mid n$

- 若G为n阶循环群,则其子群生成元阶数为n 因数!

定理8.2.5 设a是群G中的一个r阶元素,k是正整数,则 1. $a^k = e$,当且仅当 r|k

- 设 $G = \langle a \rangle$ 是循环群,则
 - 1. G的子群H都是循环群。
 - 2. 若G是无限群,则子群 $H(H \neq \{e\})$ 也是无限群,若G是有限群时,设|G| = n,且 a^k 是H中a的最小正幂,则|H| = n/k。

- 证明:
 - 1. G的子群H都是循环群
 - -H是G子群,则H中的元素可以表示成a的方幂的形式
 - 设 a^k 是H中a的最小正幂,任取 a^s ∈ H, s = pk + $r(0 \le r < k)$,所以 $a^r = a^{s-pk} = a^s a^{-pk} = a^s (a^k)^{-p}$ ∈ H
 - $-a^k$ 是最小正幂,故r=0,即 $a^s=(a^k)^p$,故 $H=\langle a^k\rangle$

- 证明:
 - 2. 若G是无限群,则 $H(H \neq \{e\})$ 也是无限循环群
 - 反证法
 - 设 $a^k(k \neq 0)$ 是H的一个生成元,且 a^k 是n阶元
 - $-(a^k)^n = e$,即 $a^{kn} = e$,与a是无限阶元矛盾
 - $-a^k$ 是无限阶元
 - H是无限阶循环群

- 证明:
- $3. |G| = n, 且a^k 是 H 中的a 的最小正幂,则<math>|H| = n/k$
 - $-O\langle a\rangle=n$, $\square a^n=e$
 - $-a^{k}$ 是循环群H中a的最小正幂(即 $H = \langle a^{k} \rangle$)
 - 存在最小正整数m,使 $(a^k)^m = e = a^n$,即km = n
 - $-a^k$ 的阶m=n/k,即|H|=n/k。

问题:

- n阶循环群,对于n的某个因子,可有几个子群
- 例如:10阶循环群,因子为2、5,则对应生成元 阶为2的循环子群有几个?

定理8.3.3

• 设G是n阶循环群,则对于n的每一个正因子d,G有且只有一个d阶子群。

证明:

由于d为n的正因子,可知 $H = \langle a^{\frac{n}{d}} \rangle$ 是G的d阶子群。 假设存在 $H_1 = \langle a^m \rangle$ 也是G的d阶子群,且 a^m 是 H_1 中最小正幂元。

定理8.3.3

证明(续):

显然,
$$a^{md} = (a^m)^d = e$$
, 则有 $n|md \longrightarrow \frac{n}{d}|m$

令
$$m = \frac{n}{d} \cdot t(t \in Z)$$
 则有:
$$a^{m} = a^{\frac{n}{d} \cdot t} = (a^{\frac{n}{d}})^{t} \in H$$

此时可以看出, a^m 是 H_1 的生成元,但是却是H中的一个元素。因此必然有 $H_1 \subseteq H$ 。但是二者的阶数又相等,因而 $H_1 = H$ 。

$$H = \langle a^{\frac{n}{d}} \rangle$$

假设存在 $H_1 = \langle a^m \rangle$ 也是G的d阶子群,且 a^m 是 H_1 中最小正幂元。

定理8.3.3

• 设G是n阶循环群,则对于n的每一个正因子d,G有且只有一个d阶子群。

n 阶循环群,n 的因子有几个,子群就有几个!

群(Z₁₄,+)的子群为

- A Z_{14}
- $\langle \overline{2} \rangle$
- $\langle \overline{7} \rangle$
- $\langle \overline{0} \rangle$

实例

• 剩余类加群(Z_{14} , +)中14的正因子有1,2,7,14,因此 Z_{14} 有4个子群:它自身,单位元群($\overline{0}$),以及 $\langle \overline{2} \rangle$, $\langle \overline{7} \rangle$,其中0($\overline{2} \rangle$ = 7,0($\overline{7} \rangle$ = 2

定义8.3.2

- 设 (G,\cdot) 和(G',*)是两个群, $f: G \to G'$ 是双射,如果 $\forall a,b \in G$ 都有f(ab) = f(a)*f(b)
- 则称f是G到G'的一个同构,记作 $G \cong G$

群同构的充分条件: 1. 双射 2. 保持运算!

例:

• 设 $G = (R^+, \times), G' = (R, +), \ \diamondsuit f: x \to lnx$ 则f是从G到G'的一个双射,且 $\forall x, y \in G$ $f(x \times y) = \ln(xy) = lnx + lny = f(x) + f(y)$ 因此, $G \cong G'$

同构示意图

- 设G是循环群,a为生成元
- 1. 若 $O(a) = \infty$,则G与(Z, +)同构
- 2. 若O(a) = n,则G与(Z_n , +)同构

- - 对于 $O(a) = \infty$, $\forall m, n \in Z^+(m \neq n)$, 一定有 $a^m \neq a^n$
 - 否则若 $a^{m} = a^{n}$,就有 $a^{(m-n)} = e^{-n}$
 - 无限循环群中,任何两个不等的元素幂次也不等

- 证明(续): 1. 若 $O(a) = \infty$,则G与(Z,+)同构
 - 构造群G到Z的映射关系f: $a^k \rightarrow k$
 - $∀a ∈ G, f(a) = f(a^k) = k ∈ Z$ 说明f为映射
 - $\forall a^m, a^n \in G(a^m \neq a^n) \longrightarrow m \neq n \longrightarrow f(a^m) \neq f(a^n)$
 - $\forall k \in \mathbb{Z}$,必定 $\exists a^k \in G$,使得 $f(a^k) = k$
 - 因此*f* 是双射!

定理8.3.4

- 证明(续): 1. 若 $O(a) = \infty$,则G与(Z,+)同构
 - 群G到Z的映射关系f: a^k → k为双射
 - 考察∀ $x, y \in G$,其中 $x = a^m, y = a^n$ $f(xy) = f(a^m a^n) = f(a^{m+n}) = m + n$ = f(x) + f(y)
 - 因此f是G到Z的一个同构映射
 - $-G \cong Z$

定理8.3.4

- 证明(续): 2. 若O(a) = n,则 $G = (Z_n, +)$ 同构
 - 群G到 Z_n 的映射关系 $f: a^k \to \overline{k} (0 \le k < n)$
 - 由于G = O(a), 故G中所有元素为 $e, a^1, a^2, \cdots, a^{n-1}$
 - $-Z_n$ 中所有元素为 $\overline{0}$, $\overline{1}$, $\overline{2}$, ..., $\overline{n-1}$
 - 易证,映射f是从G到 Z_n 的双射!

定理8.3.4

- 证明(续): 2. 若O(a) = n, 则 $G = (Z_n, +)$ 同构
 - 群G到 Z_n 的映射关系 $f: a^k \to \overline{k} (0 \le k < n)$
 - 考察 $\forall x, y \in G$,其中 $x = a^{m_1}, y = a^{m_2} (0 \le m_1 \le m_2 < n)$
 - $-f(xy) = f(a^{m_1}a^{m_2}) = f(a^{m_1+m_2}) = f(a^{m_1+m_2}) = f(a^{(m_1+m_2)mod n}) = (m_1 + m_2)mod n = f(x) + f(y)$
 - 因此, $f \in G$ 到 Z_n 的一个同构映射!
 - $-G\cong Z_n$ 证毕!

定理8.3.4

- 设G是循环群,a为生成元
- 1. 若 $O(a) = \infty$,则G与(Z, +)同构
- 2. 若O(a) = n, 则G与 $(Z_n, +)$ 同构

任何两个阶相同的循环群同构!

定理8.3.5

• 设G是一个群,(G',*)是一个代数系统,如存在G到G'的双射f,且保持运算,即 $\forall a,b \in G$,有f(ab) = f(a) * f(b)则G'也是一个群。

依据同构映射,可以做群的判定!

• 小结:

- 循环群的定义
- 生成元相关定理、性质
- 子群相关定理、性质
- 群的同构概念
- 循环群的同构性质
- 利用同构做群的判定

第八章 群

- 8.1 半群
- 8.2 群、群的基本性质
- 8.3 循环群 群的同构
- 8.4 变换群和置换群 Cayley定理
- 8.5 陪集和群的陪集分解 Lagrange定理
- 8.6 正规子群与商群
- 8.7 群的同态、同态基本定理
- 8.8 群的直积

三维空间中有多少种正多面体

• 我们的证明方式是利用欧拉公式:

$$v + f - e = 2$$

• 假设每个面的边数为n, 每个顶点发射的边数为m:

$$\frac{vm}{2} = \frac{fn}{2} = e$$

• 因此带入v=2e/m以及f=2e/n, 我们有:

$$\frac{1}{n} + \frac{1}{m} = \frac{1}{2} + \frac{1}{e} > \frac{1}{2}$$

• 其中m, n>2, 且为正整数

三维空间中有多少种正多面体

$$\frac{1}{n} + \frac{1}{m} = \frac{1}{2} + \frac{1}{e} > \frac{1}{2}$$

- 该方程解有限: (3,3), (3,4), (4,3), (3,5), (5,3)
- 因此只有五种正多面体
- 在本节课中,我们将会学到正多面体的旋转群都 是三维旋转群S03的子群
- S03是将三维物体绕一定旋转轴旋转一定角度的变换组成的变换群

正多面体

旋转

定义8.4.0

• 设 $A = \{a_1, a_2, \cdots\}$ 是一个非空集合,A到A的一个映射f称为A的一个变换,记做

$$f:\begin{bmatrix} a_1 & a_2 & \cdots \\ f(a_1) & f(a_2) & \cdots \end{bmatrix}$$

• 其中, 恒等变换记为1

• 思考:

变换有什么特点?

- 定义域和值域为同一个集合
- 如果变换是满射,则一定是单射,也就是双射

- 记集合A上全部变换的集合为M(A)
 - 若|A| = n, 则 $|M(A)| = n^n$
- 如果变换是双射的话,我们称之为一一变换。

• 对于A中的两个变换f,g,定义A的另一个变换gf 为:

$$gf(a) = g(f(a)) \quad \forall a \in A$$

• 称为变换f与g的乘积(或乘法运算)

- 对于代数系统(M(A),·):
 - 变换乘法运算符合结合律
 - -fI = If = f

定义8.4.1

• 非空集合A的所有一一变换关于变换的乘法所作成的群叫做A的一一变换群,用E(A)表示,E(A)的子群叫做变换群

• 当集合A为有限集合时,即|A| = n时,A中的一个一一变换称为一个n元置换,由置换构成的群称为置换群。

• 思考:

置换群与变换群的区别?

变换群 一个集合A的一一变换所组成的群 置换群 一个有限集合A的一一变换所组成的群

• 对于n元置换,可表示为:

$$\sigma:\begin{bmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{bmatrix}$$

- 显然, $\sigma(1)$, $\sigma(2)$, … $\sigma(n)$ 就是 $1\sim n$ 的一个排列。
- 反之, $1 \sim n$ 的一个排列,唯一对应一个 n 元置换,则共有n!个n元置换。
- 用 S_n 表示这n!个n元置换的集合

• 例

$$-A = \{1,2,3\}, \ \$$
 则 $S_3 = \{\sigma_1, \sigma_2, \cdots, \sigma_6\}, \ \$ 其中

$$\sigma_{1} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}, \quad \sigma_{2} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix}, \quad \sigma_{3} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix},$$

$$\sigma_{4} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}, \quad \sigma_{5} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}, \quad \sigma_{6} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix},$$

- 计算置换乘法 $\sigma_2\sigma_4$: $i \rightarrow \sigma_2(\sigma_4(i))$

$$-\sigma_2(\sigma_4(1)) = \sigma_2(2) = 3, \cdots$$

$$\sigma_2 \sigma_4 = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

谢谢 shixia@tsinghua.edu.cn