Scoring (Vector Space Model)

CE-324: Modern Information Retrieval Sharif University of Technology

M. Soleymani Fall 2018

Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

Outline

- Ranked retrieval
- Scoring documents
 - Term frequency
 - Collection statistics
 - Term weighting
 - Weighting schemes
 - Vector space scoring

Ranked retrieval

- Boolean models:
 - Queries have all been Boolean.
 - Documents either match or don't.
- Boolean models are not good for the majority of users.
 - Most users incapable of writing Boolean queries.
 - a query language of operators and expressions
 - Most users don't want to wade through 1000s of results.
 - This is particularly true of web search.

Problem with Boolean search: feast or famine

- ▶ Too few (=0) or too many unranked results.
- It takes a lot of skill to come up with a query that produces a manageable number of hits.
 - AND gives too few; OR gives too many

Ranked retrieval models

- Return an ordering over the (top) documents in the collection for a query
 - Ranking rather than a set of documents
 - Free text queries: query is just one or more words in a human language

In practice, ranked retrieval has normally been associated with free text queries and vice versa

Feast or famine: not a problem in ranked retrieval

- When a system produces a ranked result set, large result sets are not an issue
 - We just show the top $k \ (\approx 10)$ results
 - We don't overwhelm the user
- Premise: the ranking algorithm works

Ch. 6

Scoring as the basis of ranked retrieval

Return in order the docs most likely to be useful to the searcher

- How can we rank-order docs in the collection with respect to a query?
 - Assign a score (e.g. in [0, 1]) to each document
 - measures how well doc and query "match"

Query-document matching scores

- Assigning a <u>score</u> to a query/document pair
- Start with a one-term query
 - Score 0 when query term does not occur in doc
 - More frequent query term in doc gets higher score

Bag of words model

- Vector representation doesn't consider the ordering of words in a doc
 - John is quicker than Mary and Mary is quicker than John have the same vectors

- ▶ This is called the **bag of words** model.
 - "recovering" positional information later in this course.
- For now: bag of words model

Term-document count matrices

- Number of occurrences of a term in a document:
 - ▶ Each doc is a **count vector** $\in \mathbb{N}^{|V|}$ (a column below)

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Term frequency tf

- ▶ Term frequency $tf_{t,d}$: the number of times that term t occurs in doc d.
- ▶ How to compute query-doc match scores using $tf_{t,d}$?
 - Raw term frequency is not what we want:
 - ▶ A doc with tf=10 occurrence of a term is more relevant than a doc with tf=1.
 - ☐ But not 10 times more relevant.
 - Relevance does not increase proportionally with $tf_{t,d}$.

frequency = count in IR

Log-frequency weighting

 \blacktriangleright The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases} 1 + \log_{10} t f_{t,d}, & t f_{t,d} > 0 \\ 0, & otherwise \end{cases}$$

- Example:
 - $\rightarrow 0 \rightarrow 0$
 - \rightarrow 1 \rightarrow 1
 - \rightarrow 2 \rightarrow 1.3
 - \rightarrow 10 \rightarrow 2
 - ► 1000 → 4

First idea

• Score for a doc-query pair (q, d_i) :

$$score(q, d_i) = \sum_{t \in q} w_{t,i} = \sum_{t \in q \cap d_i} \left(1 + \log_{10} t f_{t,i}\right)$$

It is 0 if none of the query terms is present in doc.

Term specificity

- Weighting the terms differently according to their specificity:
 - Term specificity: accuracy of the term as a descriptor of a doc topic
 - It can be quantified as an inverse function of the number of docs in which occur

inverse doc frequency

Document frequency

- Rare terms can be more informative than frequent terms
 - Stop words are not informative
 - frequent terms in the collection (e.g., high, increase, line)
 - A doc containing them is more likely to be relevant than a doc that doesn't
 - But it's not a sure indicator of relevance
 - ☐ High positive weights for such words
 - ☐ But lower weights than for rare terms
 - a query term that is rare in the collection (e.g., arachnocentric)
 - A doc containing it is very likely to be relevant to the query
- Frequent terms are less informative than rare terms
 - We want a high weight for rare terms

idf weight

- df_t (document frequency of t): the number of docs that contain t
 - $ightharpoonup df_t$ is an **inverse measure of informativeness** of t
 - \rightarrow df_t $\leq N$
- idf (inverse document frequency of t)
 - ▶ $log(N/df_t)$ instead of N/df_t to "dampen" the effect of idf.

$$idf_t = \log_{10} N / df_t$$

Will turn out the base of the log is immaterial.

idf example, suppose N = 1 million

term	df _t	idf _t
calpurnia	1	
animal	100	
sunday	1,000	
fly	10,000	-
under	100,000	
the	1,000,000	0

$$idf_t = \log_{10} N/df_t$$

There is one idf value for each term *t* in a collection.

idf example, suppose N = 1 million

term	df _t	idf _t
calpurnia	1	6
animal	100	4
sunday	1,000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

$$idf_t = \log_{10} N/df_t$$

There is one idf value for each term *t* in a collection.

Collection frequency vs. Doc frequency

▶ Collection frequency of t: number of occurrences of t in the collection, counting multiple occurrences.

Example:

Word	Collection frequency	Document frequency	
insurance	10440	3997	
try	10422	8760	

Which word is a better search term (and should get a higher weight)?

Effect of idf on ranking

- idf has no effect on ranking one term queries
 - affects for queries with at least two terms
 - Example query: capricious person
 - idf weighting makes occurrences of capricious count for much more in final doc ranking than occurrences of person.

TF-IDF weighting

- The <u>tf-idf</u> weight of a term is the product of its tf weight and its idf weight.
 - Increases with number of occurrences within a doc
 - Increases with the <u>rarity</u> of the term in the collection

$$tf.idf_{t,d} = tf_{t,d} \times idf_t$$

- Best known weighting scheme in information retrieval
 - Alternative names: tf.idf, tf x idf

TF-IDF weighting

A common tf-idf:

$$w_{t,i} = \begin{cases} (1 + \log_{10} \mathsf{tf}_{t,i}) \times \log_{10} N/\mathsf{df}_t, & t \in d_i \\ 0, & otherwise \end{cases}$$

Score for a document given a query via tf-idf:

$$score(q, d_i) = \sum_{t \in q} w_{t,i}$$
$$= \sum_{t \in q \cap d_i} (1 + \log_{10} tf_{t,i}) \times \log_{10} N/df_t$$

Document length normalization

- Doc sizes might vary widely
- Problem: Longer docs are more likely to be retrieved
- Solution: divide the rank of each doc by its length
- How to compute document lengths:
 - Number of words
 - Vector norms: $\|\vec{d}_j\| = \sqrt{\sum_{i=1}^m w_{i,j}^2}$

Sec. 6.3

Documents as vectors

- $\mid V \mid$ -dimensional vector space:
 - Terms are axes of the space
 - Docs are points or vectors in this space
- Very high-dimensional: tens of millions of dimensions for a web search engine
- ▶ These are very sparse vectors (most entries are zero).

Sec. 6.3

Binary → count → weight matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Each doc is now represented by a real-valued vector $(\subseteq R^{|V|})$ of tf-idf weights

Queries as vectors

- Key idea 1: Represent docs also as vectors
- Key idea 2: Rank docs according to their proximity to the query in this space
- proximity = similarity of vectors
- ▶ proximity ≈ inverse of distance
- ▶ To get away from you're-either-in-or-out Boolean model.
 - Instead: rank more relevant docs higher than less relevant docs

Formalizing vector space proximity

- First cut: distance between two points
 - distance between the end points of the two vectors
- Euclidean distance?
 - Euclidean distance is not a good idea . . .
 - It is large for vectors of different lengths.

Why distance is a bad idea

• Euclidean (q,d_2) is large

• While distribution of terms in q and d_2 are very similar.

Sec. 6.3

Use angle instead of distance

- Experiment:
 - lacktriangle Take d and append it to itself. Call it d'.
 - "Semantically" d and d' have the same content
 - Euclidean distance between them can be quite large
 - Angle between them is 0, corresponding to maximal similarity.
- Key idea: Rank docs according to angle with query.

From angles to cosines

- The following two notions are equivalent.
 - Rank docs in decreasing order of the angle(q, d)
 - Rank docs in increasing order of cosine(q, d)
- Cosine is a monotonically decreasing function for the interval [0°, 180°]
 - ▶ But how and why should we be computing cosines?

Sec. 6.3

Length normalization

▶ Length (L₂ norm) of vectors:

$$\|\vec{x}\|_2 = \sqrt{\sum_i x_i^2}$$

- (length-) normalized Vector: Dividing a vector by its length
 - Makes a unit (length) vector
 - Vector on surface of unit hypersphere

$$\frac{\vec{x}}{\|\vec{x}\|}$$

Length normalization

- lacktriangleright d and d' (d appended to itself) have identical vectors after length-normalization.
 - Long and short docs now have comparable weights

Cosine similarity amongst 3 documents

How similar are these novels?

SaS: Sense and Sensibility

PaP: Pride and Prejudice

WH: Wuthering Heights

Term frequencies (counts)

term	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

Note: To simplify this example, we don't do idf weighting.

3 documents example contd.

Log frequency weighting

term	SaS	PaP	WH
affection	3.06	2.76	2.30
jealous	2.00	1.85	2.04
gossip	1.30	0	1.78
wuthering	0	0	2.58

After length normalization

term	SaS	PaP	WH
affection	0.789	0.832	0.524
jealous	0.515	0.555	0.465
gossip	0.335	0	0.405
wuthering	0	0	0.588

 $cos(SaS,PaP) \approx 0.94$ $cos(SaS,WH) \approx 0.79$ $cos(PaP,WH) \approx 0.69$

Why do we have cos(SaS,PaP) > cos(SaS,WH)?

Cosine (query, document)

Dot product
$$cos(\vec{d}, \vec{q}) = \frac{\vec{d} \cdot \vec{q}}{\|\vec{d}\| \|\vec{q}\|} = \frac{\vec{d}}{\|\vec{d}\|} \cdot \frac{\vec{q}}{\|\vec{q}\|}$$

 q_t : tf-idf weight of term t in query

 d_t : tf-idf weight of term t in doc

 $\cos(\vec{q}, \vec{d})$: cosine similarity of q and d (cosine of the angle between q and d.)

Cosine (query, document)

$$cos(\vec{d}, \vec{q}) = \frac{\vec{d} \cdot \vec{q}}{\|\vec{d}\| \|\vec{q}\|} = \frac{\vec{d}}{\|\vec{d}\|} \cdot \frac{\vec{q}}{\|\vec{q}\|}$$

$$sim(d,q) = \frac{\vec{d}.\vec{q}}{\|\vec{d}\| \|\vec{q}\|} = \frac{\sum_{t=1}^{m} w_{t,d} \times w_{t,q}}{\sqrt{\sum_{t=1}^{m} w_{t,d}^2} \times \sqrt{\sum_{t=1}^{m} w_{t,q}^2}}$$

 $\cos(\vec{q}, \vec{d})$: cosine similarity of q and d (cosine of the angle between q and d.)

Cosine for length-normalized vectors

For length-normalized vectors, cosine similarity is simply the dot product (or scalar product):

$$cos(\vec{d}, \vec{q}) = \frac{\vec{d}.\vec{q}}{\|\vec{d}\| \|\vec{q}\|} = \vec{d}.\vec{q}$$

for length-normalized q, d

Cosine similarity illustrated

RICH

Cosine similarity score

A doc may have a high cosine score for a query even if it does not contain all query terms

We use the inverted index to speed up the computation of the cosine score

Computing cosine scores

```
CosineScore(q)
     float Scores[N] = 0
    float Length[N]
     for each query term t
     do calculate w_{t,q} and fetch postings list for t
         for each pair(d, tf_{t,d}) in postings list
         do Scores[d] + = w_{t,d} \times w_{t,q}
     Read the array Length
     for each d
  8
     do Scores[d] = Scores[d]/Length[d]
    return Top K components of Scores[]
10
```

Some variants of TF

Weighting scheme	TF weight
binary	{0,1}
raw frequency	$tf_{t,d}$
log normalization	$1 + \log t f_{t,d}$
double normalization 0.5	$0.5 + 0.5 \frac{t f_{t,d}}{\max_{t} t f_{t,d}}$

Variants of IDF

Weighting scheme	IDF weight
unary	1
inverse frequency	$\log \frac{N}{df_t}$
inverse frequency smooth	$\log\left(1+\frac{N}{df_t}\right)$
inverse frequency max	$\log\left(1 + \frac{\max_{t} df_{t}}{df_{t}}\right)$
Probabilistic inverse frequency	$\log \frac{N - df_t}{df_t}$

Sec. 6.4

TF-IDF weighting has many variants

Term f	frequency	Docum	ent frequency	Normalization			
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1	Default	
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df}_t}$	c (cosine)	$\sqrt{w_1^2+w}$	$\frac{1}{v_2^2 + + w_M^2}$	
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log rac{N-\mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/u		
b (boolean)	$\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{Char}$ $lpha < 1$	Length lpha ,	
L (log ave)	$\frac{1 + \log(tf_{t,d})}{1 + \log(ave_{t \in d}(tf_{t,d}))}$						

Columns headed 'n' are acronyms for weight schemes.

Why is the base of the log in idf immaterial?

Sec. 6.4

Weighting may differ in queries vs docs

- Many search engines allow for different weightings for queries vs. docs
- SMART Notation: denotes the combination in use in an engine, with the notation ddd.qqq
 - A very standard weighting scheme is: <u>Inc.ltc</u>

ddd.qqq: example lnc.ltn

Document:

- l: logarithmic tf
- n: no idf
- c: cosine normalization

Query:

- l: logarithmic tf
- t: idf (t in second column)
- n: no normalization

Isn't it bad to not idf-weight the document?

tf-idf example: lnc.ltc

Document: car insurance auto insurance

Query: best car insurance

Term	Query						Document			Prod	
	tf-raw						tf-raw				
auto	0						I				
best	I						0				
car	1						I				
insurance	ı						2				

Exercise: what is *N*, the number of docs?

Doc length =
$$\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$$

Score =
$$0+0+0.27+0.53 = 0.8$$

tf-idf example: lnc.ltc

Document: car insurance auto insurance

Query: best car insurance

Term	Query						Document				Prod
	tf-raw	tf-wt	df	idf	wt	n'lize	tf-raw	tf-wt	wt	n'lize	
auto	0	0	5000	2.3	0	0	I	I	I	0.52	0
best	I	I	50000	1.3	1.3	0.34	0	0	0	0	0
car	I	I	10000	2.0	2.0	0.52	I	I	1	0.52	0.27
insurance	I		1000	3.0	3.0	0.78	2	1.3	1.3	0.68	0.53

Exercise: what is *N*, the number of docs?

Doc length =
$$\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$$

Score =
$$0+0+0.27+0.53 = 0.8$$

Summary

- Represent the query as a weighted tf-idf vector
- Represent each doc as a weighted tf-idf vector
- Compute the similarity score of the query vector to doc vectors
 - May be different weighing for the query and docs
- Rank doc with respect to the query by score
- ▶ Return the top K (e.g., K = 10) to the user

Resources

► IIR 6.2 – 6.4.3