$(\partial_{\alpha}\mathcal{A}^{\alpha_{i}\theta}-2\,\partial^{\theta}\mathcal{A}^{\alpha_{i}}_{\phantom{\alpha_{i}}\alpha})\,(\partial_{\kappa}\mathcal{A}_{i}^{\kappa}_{\theta}-\partial_{\kappa}\mathcal{A}_{\theta_{-i}}^{\kappa})))[t,\,x,\,y,\,z]\,dz\,dy\,dx\,dt$ **Wave operator** ${\stackrel{0^+}{\cdot}}\mathcal{H}^{\parallel \ 0^+_{\cdot}}f^{\parallel \ 0^+_{\cdot}}f^{\perp}$ $^{0}\mathcal{A}^{\parallel}$ ^{0,⁺}*Я*[∥]† $0.+f^{\parallel}$ † $0.^{+}f^{\perp}$ † ^{0.} A∥ † ${}^{1}\mathcal{A}^{\perp}{}_{\alpha}\,{}^{1}f^{\parallel}{}_{\alpha}$ $1^+\mathcal{F}_{\alpha\beta}$ $1^+f_{\alpha\beta}$ ${}^1\mathcal{A}^{\parallel}{}_{\alpha}$ $^{1^{+}}\mathcal{A}^{\parallel} + ^{\alpha\beta} k^{2} (2r_{1} + r_{1})$ $^{1^+}\mathcal{H}^{\scriptscriptstyle\perp}\dagger^{\alpha\beta}$ $^{1^{+}}f^{\parallel}$ $^{\alpha\beta}$ $k^2 (r_1 + r_2)$ $^{1}\mathcal{A}^{\parallel}$ † $^{\alpha}$ $^{1}\mathcal{A}^{\perp}\dagger^{\alpha}$ $f^{\parallel} + \alpha$ $^{1}f^{\perp}\dagger^{\alpha}$ $^{2^{+}}\mathcal{A}^{\parallel}_{\alpha\beta} \, ^{2^{+}}f^{\parallel}_{\alpha\beta} \, ^{2}\,\mathcal{A}^{\parallel}_{\alpha\beta\chi}$ $^{2,+}\mathcal{A}^{\parallel}\dagger^{\alpha\beta}$ $2^+f^{\parallel} + ^{\alpha\beta}$ $k^2 r_1$

 $2^{-}\mathcal{A}^{\parallel} + \alpha \beta \chi$

 $\iiint (\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau (\Delta + \mathcal{K})_{\alpha\beta} - \frac{2}{3} r_{1} (2 \, \partial_{\beta}\mathcal{A}_{\alpha_{i}\theta} - \partial_{\beta}\mathcal{A}_{\alpha\theta_{i}} + 4 \, \partial_{\beta}\mathcal{A}_{i\theta\alpha} + \partial_{i}\mathcal{A}_{\alpha\beta\theta} - \partial_{\theta}\mathcal{A}_{\alpha\beta_{i}} - \partial_{\theta}\mathcal{A}_{\alpha_{i}\beta}) \, \partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + r_{5} +$

 $(\partial_{\iota}\mathcal{A}_{\theta \ \kappa}^{\ \kappa}\partial^{\theta}\mathcal{A}_{\alpha}^{\alpha \iota} - \partial_{\theta}\mathcal{A}_{\iota \ \kappa}^{\ \kappa}\partial^{\theta}\mathcal{A}_{\alpha}^{\alpha \iota} -$

$0.^{+}\sigma^{\parallel} + 0$

Saturated propagator

 $0.\sigma^{\parallel}$

 $^{1^+}\sigma^{\scriptscriptstyle \perp}\,\dagger^{\alpha\beta}$

 $1.^{+}\tau^{\parallel} + \alpha^{\beta}$

 $\frac{1}{k^2} \sigma^{\parallel} + \frac{1}{k^2 (2r + r)}$

 $\overset{0^+}{\cdot}\sigma^{\parallel}\overset{0^+}{\cdot}\tau^{\parallel}\overset{0^+}{\cdot}\tau^{\scriptscriptstyle \perp}$

0.0

PSALTer results panel

		$\frac{1}{2}\sigma^{\parallel} + \alpha$	0	0	0	$\frac{1}{k^2 (r_1 + r_1)}$	0	0	0				
		$\frac{1}{2}\sigma^{\perp}\uparrow^{\alpha}$	0	0	0	0	0	0	0				
		$1 \tau^{\parallel} + \alpha$	0	0	0	0	0	0	0				
		$1.\tau^{\perp} + \alpha$	0	0	0	0	0	0	0	$2.^+\sigma^{\parallel}_{\alpha\beta}$	$2^+_{\cdot} \tau^{\parallel}_{\alpha\beta}$	$2^{-}\sigma^{\parallel}_{\alpha\beta\chi}$	
		•							$^{2^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	0	0	0	
									$\overset{2^+}{\cdot} \tau^{\parallel} \uparrow^{\alpha\beta}$	0	0	0	
									$\dot{z} \sigma^{\parallel} + \alpha^{\alpha\beta\chi}$	0	0	$\frac{1}{k^2 r_1}$	
•	Source con	straint	:S										
	Spin-parity form	Covariant	form									М	ultiplic
	$0.\sigma^{\parallel} == 0$	$\epsilon \eta_{\alpha\beta\chi\delta} \partial^{\delta} c$	$\sigma^{\alpha\beta\chi} == 0$									1	
	0. ⁺ τ [±] == 0	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta+\mathcal{I}\right)$	\mathcal{K}) $^{\alpha\beta} == 0$									1	
	$0^+_{\cdot}\tau^{\parallel}==0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta+\mathcal{I}\right)$	$\mathcal{K})^{\alpha\beta} == \partial_{\beta}$	$_{3}\partial^{\beta}\tau\left(\Delta+\right)$	$\mathcal{K})^{lpha}_{lpha}$							1	
	$0^+ \sigma^{\parallel} == 0$	$\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta} == 0$)									1	
	1- μα Ο	2 2 2α_/Λ	, ας\βχ	a aXa _	(1 . 70)	αβ						2	

 $1^{+}\sigma^{\parallel}{}_{\alpha\beta} \quad 1^{+}\sigma^{\perp}{}_{\alpha\beta} \quad 1^{+}\tau^{\parallel}{}_{\alpha\beta} \quad 1 \quad \sigma^{\parallel}{}_{\alpha} \quad 1 \quad \sigma^{\perp}{}_{\alpha} \quad 1 \quad \tau^{\parallel}{}_{\alpha} \quad 1 \quad \tau^{\perp}{}_{\alpha}$

Spin-parity form	Covariant form	Multiplicities
$0^{-}\sigma^{\parallel}==0$	$\epsilon \eta_{\alpha\beta\chi\delta} \ \partial^{\delta} \sigma^{\alpha\beta\chi} == 0$	1
$0^+_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}==0$	1
$0^+_{\cdot}\tau^{\parallel}==0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha}$	1
$0^+ \sigma^{\parallel} == 0$	$\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta} = 0$	1
1-τ ^Δ == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}$	3
$\frac{1}{1} \tau^{\parallel^{\alpha}} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$\frac{1}{1}\sigma^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi} == 0$	3
$\frac{1 + \tau^{\ \alpha\beta\ }}{1 + \tau^{\ \alpha\beta\ }} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}==$	3
	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	
$\frac{1^+_{\cdot}\sigma^{\perp}{}^{\alpha\beta}}{}==0$	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3
$2^+_{\cdot} \tau^{\parallel^{\alpha\beta}} == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\chi}_{\chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau \left(\Delta + \mathcal{K} \right)^{\alpha \beta} +$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} =$	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi}+$	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}+2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\tau(\Delta+\mathcal{K})^{\chi}_{\chi}$	
$2^+_{\cdot}\sigma^{\parallel^{\alpha\beta}}=0$	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\chi \beta \delta} + 3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \sigma^{\chi \delta}_{\chi} = =$	5
	$2\partial_{\delta}\partial^{\beta}\partial^{\alpha}\sigma_{\chi}^{\chi}{}^{\delta} + 3(\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi})$	
Total expected	gauge generators:	29
Massive sp	pectrum	
(No particles)		

(No particles)

Massless spectrum

Massless particle

 $\left| \frac{3}{r_{.}} - \frac{3}{r_{.} + r_{.}} + \frac{8}{2r_{.} + r_{.}} \right| > 0$ Polarisations: 2

Unitarity conditions $(r. < 0 \&\& (r. < -r. || r. > -2 r.)) \mid| (r. > 0 \&\& -2 r. < r. < -r.)$