ĐÀO TẠO KIỂM KÊ KHÍ NHÀ KÍNH CHO CƠ SỞ SẢN XUẤT NHỰA CÔNG NGHIỆP

Phần 3: Thực hành tính toán phát thải khí nhà kính

Thực thi bởi

THỰC HÀNH TÍNH TOÁN PHÁT THẢI KHÍ NHÀ KÍNH

Công ty sản xuất các sản phẩm nhựa công nghiệp, Công ty có kế hoạch thực hiện kiểm kê lượng phát thải KNK phạm vi 1 và 2. Các nguồn phát thải KNK chính đã được xác định và thu thập dữ liệu, bao gồm:

- 1. Nguồn phát thải từ sử dụng năng lượng gồm: điện, dầu, xăng;
- 2. Nguồn phát thải do sử dụng **môi chất lạnh, chất bôi trơn**
- 3. Nguồn phát thải do xử lý nước thải sinh hoạt và công nghiệp
- 4. Nguồn phát thải do nguồn rò rỉ bình chữa cháy CO₂

Các số liệu hoạt động liên quan đến các nguồn phát thải được tổng hợp ở bảng trong file excel.

Hãy sử dụng số liệu được cung cấp để:

- 1. Phân loại các nguồn phát thải theo **phạm vi 1, 2** và tính toán phát thải khí nhà kính cho từng nguồn phát thải và theo phạm vi phát thải.
- 2. Tính toán phát thải khí nhà kính của Công ty.

Các hệ số tính toán phát thải

- Hệ số phát thải KNK của các nguồn phát thải tra theo Quyết định 2626/QĐ-BTNMT ngày 10/10/2022 của Bộ Tài nguyên và Môi trường
- Hệ số phát thải của lưới điện: 0,6766 tấn CO₂/MWh
- Hệ số chuyển đổi/ nhiệt trị của một số loại năng lượng sử dụng trong bảng dưới đây:

STT	Loại năng lượng	Đơn vị tính	Nhiệt trị		
1	Dầu DO	TJ/Gg	43		
2	Xăng	TJ/Gg	44,3		

Nguồn: IPCC 2006

Hệ số ấm lên toàn cầu của một số loại khí nhà kính được cho trong bảng sau:

STT	Loại khí nhà kính	GWP
1	CO ₂	1
2	CH ₄	27,9
3	N ₂ O	273
4	R-134A	1.530
5	R-22	1.960

Nguồn: IPCC, Chapter 7, AR6

Khối lượng riêng của một số loại năng lượng được cho trong bảng sau:

STT	Loại năng lượng	Đơn vị tính	Giá trị	
1	Dầu DO	kg/lít	0,84	
2	Xăng	kg/lít	0,73	

Nguồn: Tiêu chuẩn TCCS 03:2015/PLX

Các số liệu hoạt động

> Tiêu thụ năng lượng:

Loại năng lượng	Mục đích sử dụng	Đơn vị	Lượng tiêu thụ
Dầu DO	Vận hành máy phát điện	Lít	5000
Dầu DO	Vận tải nội bộ nhà máy	Lít	5.000
Dầu DO	Dùng cho phương tiện vận tải ngoài nhà máy	Lít	13.100
Xăng	Dùng cho xe chở cán bộ	Lít	26.414
Điện	Vận hành thiết bị, máy móc	kWh	12.500.000

> Số liệu tiêu thụ môi chất lạnh

STT	Loại môi chất lạnh sử dụng	Đơn vị tính	Giá trị
1	R-134A	Kg	201
2	R-22	Kg	47

> Chất bôi trơn

STT	Loại chất bôi trơn	Đơn vị	Giá trị
1	Dầu động cơ	Lít	100
2	Mỡ bôi trơn	Kg	150

➢ Bình chữa cháy CO₂

STT	Loại bình	Đơn vị	Trọng lượng	Số lượng bình	Số bình đã sử dụng
1	МТ3	Kg	3	50	10
2	MT5	Kg	5	100	Ο

Các số liệu hoạt động

> Xử lý nước thải

STT	Loại nước thải xử lý	Đơn vị tính	Giá trị
1	Nước thải sinh hoạt	m³/ngày	100

	Đợt 1		Đợt 2		Đợt 3		Đợt 4	
Nước thải sinh hoạt	Đầu vào	Đầu ra						
BOD_5 (mg/l)	56.8	35.4	40.3	26.7	38.9	24.3	44.7	28.1
Tổng N (mg/l)	192	167.5	103	85.6	116	100.2	112	92.7

Số lượng nhân viên: 600 người

Số ngày vận hành: 355 ngày/năm

Nguồn phát thải từ đốt cố định

> Nguồn phát thải cố định: Dầu DO, than, sinh khối... được tính toán như sau:

Lưu ý: Đối với những nhiên liệu không tìm được hệ số phát thải trong **Quyết định 2626/QĐ-BTNMT** thì sẽ tham khảo tại **Hướng dẫn IPCC 2006.**

Nguồn phát thải từ đốt di động

Nguồn phát thải di động: Dầu, xăng... sẽ tính toán tương tự như nguồn phát thải cố định. Tuy nhiên, hệ số phát thải sẽ được chia được hai loại:

STT	Tên hệ số phát thải khí nhà kính	Loại khí nhà kính	Nguồn phát thải	Giá trị	Đơn vị
1.46	Hệ số phát thải CO ₂ của dầu diesel	CO ₂	Giao thông vận tải đường bộ	74.100	Kg CO ₂ /TJ
1.47	Hệ số phát thải CH4 của dầu diesel	CH ₄	Giao thông vận tải đường bộ	3,9	Kg CH ₄ /TJ
1.48	Hệ số phát thải N2O của dầu diesel	N ₂ O	Giao thông vận tải đường bộ	3,9	Kg N ₂ O/TJ

Hệ số phát thải cho phương tiện giao thông vận tải đường bộ (xe con, xe đưa đón CBCNV...) theo **Quyết định 2626/QĐ-BTNMT**

Nguồn: QĐ2626/QĐ-BTNMT

Hệ số phát thải cho phương tiện chỉ di chuyển nội bộ trong khuôn viên của cơ sở (xe nâng, máy xúc, xe cẩu ...) theo **Hướng dẫn IPCC 2006**.

TABLE 3.3.1 DEFAULT EMISSION FACTORS FOR OFF-ROAD MOBILE SOURCES AND MACHINERY (a)											
		CO ₂			CH ₄ (b)		N ₂ O (°)				
Off- Road Source	Default (kg/TJ)	Lower	Upper	Default (kg/TJ)	Lower	Upper	Default (kg/TJ)	Lower	Upper		
					Diesel						
Agriculture	74 100	72 600	74 800	4.15	1.67	10.4	28.6	14.3	85.8		
Forestry	74 100	72 600	74 800	4.15	1.67	10.4	28.6	14.3	85.8		
Industry	74 100	72 600	74 800	4.15	1.67	10.4	28.6	14.3	85.8		
Household	74 100	72 600	74 800	4.15	1.67	10.4	28.6	14.3	85.8		

Nguồn phát thải từ quá trình công nghiệp (IPPU)

Anh chị thu thập dữ liệu hoạt động về chất làm lạnh như thế nào và anh chị sẽ tìm thông tin ở đâu?

Một số thông tin gợi ý (ở mức tối thiểu):

- 1. Loại thiết bị được sử dụng và ghi chú lại xem thiết bị cũ hay mới
- 2. Kiểm tra loại chất làm lạnh
- 3. Kiểm tra hóa đơn mua chất làm lạnh (đây sẽ là giả định mà chúng tôi sử dụng để ước tính rò rỉ)

DỮ LIỆU HOẠT ĐỘNG

HỆ SỐ PHÁT THẢI

LƯỢNG PHÁT THẢI CO₂e

Các chất làm lạnh không được quy định theo Nghị định thư Kyoto phải được báo cáo riêng.

Nguồn phát thải từ điện lưới

Anh chị sẽ tính toán lượng phát thải CO₂e từ việc sử dụng **điện lưới** như thế nào?

Nguồn: Hệ số phát thải của lưới điện Việt Nam tra theo **Công văn số 327/BĐKH-PTCBT** ngày 19/03/2024 của Cục Biến đổi khí hậu, Bộ Tài Nguyên và Môi trường

Nguồn phát thải từ hơi nước

Anh chị sẽ tính toán lượng phát thải KNK từ việc sử dụng **hơi nước** đã mua như thế nào?

Tìm dữ liêu hoat đông Tìm hệ số phát thải Tìm hiệu suất nhiệt Tham khảo hồ sơ mua hơi hàng năm Tham khảo ý kiến nhà cung cấp về Tham khảo ý kiến nhà cung cấp hoặc (tính bằng kWh hoặc loai nhiên liêu được sử dụng giả định hiệu suất nhiệt của quá trình đơn vi năng lương) (ví du: khí thiên nhiên) tao hơi là 80% Dữ liệu hoạt động Hệ số phát thải Hiệu suất nhiệt *Chuyển đổi đơn vi khối lương phát thải (t) thành đơn vi năng lương Hơi (kWh) = hơi (tấn) x 1.000 kg / tấn x enthalpy riêng của hơi nước (MJ/kg) ÷ 3,6

Tính toán Nhân dữ liệu hoạt động với hệ số phát thải và hiệu suất nhiệt

MJ/kWh

Nguồn phát thải từ hơi nước

Bảng tra Enthalpy riêng của hơi nước

Nguồn: Saturated Steam - Properties for Pressure in Bar (engineeringtoolbox.com)

Absolute Pressure	Boiling Point	Specific Volume (steam)	Density (steam)	Specific Enthal (sensi	py of Liquid Water ble heat)	Specific Entl (tota	cific Enthalpy of Steam (total heat) Latent heat of Vaporizatio		of Vaporization	Specific Heat
(bar)	(°C)	(m ³ /kg)	(kg/m ³)	(kJ/kg)	(kcal/kg)	(kJ/kg)	(kcal/kg)	(kJ/kg)	(kcal/kg)	(kJ/kg K)
0.02	17.51	67.006	0.015	73.45	17.54	2533.64	605.15	2480.19	587.61	1.8844
0.03	24.10	45.887	0.022	101.00	24.12	2545.64	608.02	2444.65	583.89	1.8694
0.04	28.98	34.802	0.029	121.41	29.00	2554.51	610.13	2433.10	581.14	1.8738
0.05	32.90	28.194	0.035	137.77	32.91	2561.59	611.83	2423.82	578.92	1.8774
0.06	36.18	23.741	0.042	151.50	36.19	2587.51	613.24	2416.01	577.05	1.8808
0.07	39.02	20.531	0.049	163.38	39.02	2572.62	614.46	2409.24	575.44	1.8840
0.08	41.53	18.105	0.055	173.87	41.53	2577.11	615.53	2403.25	574.01	1.8871
0.09	43.79	16.204	0.082	183.28	43.78	2581.14	616.49	2397.85	572.72	1.8899
0.1	45.83	14.875	0.068	191.84	45.82	2584.78	617.36	2392.94	571.54	1.8927
0.2	60.09	7.650	0.131	251.46	60.08	2609.86	623.35	2358.40	563.30	1.9158
0.3	69.13	5.229	0.191	289.31	69.10	2625.43	627.07	2336.13	557.97	1.9343
0.4	75.89	3.993	0.250	317.65	75.87	2636.88	629.81	2319.23	553.94	1.9508
0.5	81.35	3.240	0.309	340.57	81.34	2645.99	631.98	2305.42	550.64	1.9654
0.6	85.95	2.732	0.388	359.93	85.97	2653.57	633.79	2293.64	547.83	1.9790
0.7	89.96	2.385	0.423	376.77	89.99	2660.07	635.35	2283.30	545.38	1.9919
0.8	93.51	2.087	0.479	391.73	93.56	2665.77	636.71	2274.05	543.15	2.0040
0.9	98.71	1.889	0.535	405.21	96.78	2670.85	637.92	2265.65	541.14	2.0158
11)	99.63	1.694	0.590	417.51	99.72	2675.43	639.02	2257.92	539.30	2.0267
1.1	102.32	1.549	0.645	428.84	102.43	2679.61	640.01	2250.76	537.59	2.0373
1.2	104.81	1.428	0.700	439.38	104.94	2683.44	640.93	2244.08	535.99	2.0478
1.3	107.13	1.325	0.755	449.19	107.29	2686.98	641.77	2237.79	534.49	2.0578
1.4	109.32	1.238	0.809	458.42	109.49	2690.28	642.56	2231.86	533.07	2.0873
1.5	111.37	1.159	0.863	467.13	111.57	2693.36	643.30	2226.23	531.73	2.0768
1.6	113.32	1.091	0.916	475.38	113.54	2696.25	643.99	2220.87	530.45	2.0880
1.7	115.17	1.031	0.970	483.22	115.42	2698.97	644.64	2215.75	529.22	2.0950
1.8	116.93	0.977	1.023	490.70	117.20	2701.54	645.25	2210.84	528.05	2.1037
1.9	118.62	0.929	1.076	497.85	118.91	2703.98	645.83	2206.13	526.92	2.1124
2	120.23	0.885	1.129	504.71	120.55	2706.29	646.39	2201.59	525.84	2.1208
2.2	123.27	0.810	1.235	517.63	123.63	2710.60	647.42	2192.98	523.78	2.1372
2.4	126.09	0.748	1.340	529.64	126.50	2714.55	648.36	2184.91	521.88	2.1531
2.6	128.73	0.693	1.444	540.88	129.19	2718.17	649.22	2177.30	520.04	2.1685
2.8	131.20	0.646	1.548	551.45	131.71	2721.54	650.03	2170.08	518.32	2.1835
3	133.54	0.606	1.651	561.44	134.10	2724.66	650.77	2163.22	516.68	2.1981
3.5	138.87	0.524	1.908	584.28	139.55	2731.63	652.44	2147.35	512.89	2.2331
4	143.63	0.482	2.163	604.68	144.43	2737.63	653.87	2132.95	509.45	2.2664
4.5	147.92	0.414	2.417	623.17	148.84	2742.88	655.13	2119.71	506.29	2.2983
5	151.85	0.375	2.669	640.12	152.89	2747.54	656.24	2107.42	503.35	2.3289
5.5	155.47	0.342	2.920	655.81	158.64	2751.70	657.23	2095.90	500.60	2.3585
6	158.84	0.315	3.170	670.43	160.13	2755.46	658.13	2085.03	498.00	2.3873
6.5	161.99	0.292	3.419	684.14	163.40	2758.87	658.94	2074.73	495.54	2.4152
7	164.96	0.273	3.667	697.07	166.49	2761.98	659.69	2084.92	493.20	2.4424

