

### High PSRR, low drop linear regulator IC





DFN6 (2x2)



DFN6 (3x3)

#### **Features**

- Input voltage from 2.5 V to 18 V
- 20 V AMR
- Any fixed output voltages, from 1.2 V to 12 V in 100 mV steps (from 1.2 V to 6.6 V in 50 mV steps) available on request
- Adjustable version from 1.18 V to V<sub>IN</sub> V<sub>DROP(MAX)</sub>
- Guaranteed output current 1.2 A
- Typical dropout 350 mV @ 1.2 A
- · Undervoltage lockout
- Enable function
- Internal thermal, current and power limitation
- High PSRR: 87 dB @ 120 Hz, 75 dB @ 1 kHz
- Operating temperature range: -40 °C to 125 °C
- Packages SO-8 batwing plastic micropackage, DFN6 (3x3) and DFN6 (2x2)

#### **Applications**

- Consumer
- Industrial
- SMPS
- Point-of-load
- · DC-DC post-regulation

#### **Maturity status link**

LDL212

### **Description**

The LDL212 provides 1.2 A of maximum current from an input voltage range from 2.5 V to 18 V, with a typical dropout voltage of 350 mV @ 1.2 A.

The high power supply rejection ratio of 87 dB at 120 Hz, and more than 40 dB at 100 kHz, makes the LDL212 suitable for direct regulation in SMPS and secondary linear regulation in DC-DC converters. The LDL212 goes to shutdown mode due to the enable logic control function, reducing the total current consumption.

The device also includes the current limit, SOA and thermal protections.



## 1 Block diagram

 $V_{\text{OUT}}$ UVLO SENSE RC generator filte r OP-AMP ¢ EN Enable Thermal protection Bandgap Current and power lim it GND

Figure 1. Block diagram (fixed)

GIPD251120151438MT

V<sub>OUT</sub> UVLO Bias RC generator filter OP-AMP ¢ EN Enable ADJ Thermal protection Bandgap reference Current and power limit GND

Figure 2. Block diagram (adjustable)

GIPD251120151438bMT

DS11245 - Rev 5 page 2/28



# 2 Pin configuration

Figure 3. Pin configuration (top view)





GIPD261120151015MT

**Table 1. Pin description** 

| Pin name         | Pin number<br>(SO-8) | Pin number<br>(DFN6) | Description                                                                   |
|------------------|----------------------|----------------------|-------------------------------------------------------------------------------|
| V <sub>IN</sub>  | 4                    | 4                    | Input voltage                                                                 |
| V <sub>OUT</sub> | 1                    | 3                    | Output voltage                                                                |
| GND              | 2, 3, 6, 7           | 1                    | Ground                                                                        |
| ADJ/sense        | 8                    | 2                    | Feedback pin for adjustable version / V <sub>OUT</sub> sense on fixed version |
| EN               | 5                    | 6                    | Enable pin. The device is in off-state when this pin is pulled low            |
| NC               | -                    | 5                    | Not connected                                                                 |
| GND              | -                    | exposed pad          | Exposed pad must be connected to GND                                          |

<sup>1.</sup> The sense pin on the fixed version must be connected to  $V_{\mbox{\scriptsize OUT}}$  for proper operation.

DS11245 - Rev 5 page 3/28



## 3 Typical application

 $V_{IN}$   $C_{In}$   $I_{\mu F}$   $O_{OEF}$   $O_{ON}$   $O_{ON}$ 

Figure 4. Typical application circuit (adjustable version)

GIPD011220151346MT

Figure 5. Typical application circuit (fixed version)

Adjustable version



GIPD011220151347MT

Note: R1 and R2 are calculated according to the following formula:  $R_1 = R_2 \times (V_{OUT}/V_{ADJ} - 1)$ . The output voltage of the adjustable version can be set from 1.18 V to  $V_{IN}-V_{DROP(MAX)}$ , where  $V_{DROP(MAX)}$  is the maximum dropout voltage, as defined in Table 4. Electrical characteristics.

DS11245 - Rev 5 page 4/28



# 4 Maximum ratings

Table 2. Absolute maximum ratings

| Symbol             | Parameter                            | Value                          | Unit |
|--------------------|--------------------------------------|--------------------------------|------|
| V <sub>IN</sub>    | DC input voltage                     | - 0.3 to 20                    | V    |
| V <sub>OUT</sub>   | DC output voltage                    | - 0.3 to V <sub>IN</sub> + 0.3 | V    |
| V <sub>EN</sub>    | Enable input voltage                 | - 0.3 to V <sub>IN</sub> + 0.3 | V    |
| V <sub>SENSE</sub> | Output sense pin voltage             | - 0.3 to V <sub>IN</sub> + 0.3 | V    |
| V <sub>ADJ</sub>   | ADJ pin voltage                      | - 0.3 to 2                     | V    |
| I <sub>OUT</sub>   | Output current                       | Internally limited             | mA   |
| P <sub>D</sub>     | Power dissipation                    | Internally limited             | mW   |
| T <sub>STG</sub>   | Storage temperature range            | - 55 to 150                    | °C   |
| T <sub>OP</sub>    | Operating junction temperature range | - 40 to 125                    | °C   |

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Table 3. Thermal data

| Symbol                            | Parameter                              | Value | Unit |
|-----------------------------------|----------------------------------------|-------|------|
| SO-8 batwing plastic micropackage | Thermal resistance junction-to-case    | 20    |      |
|                                   | Thermal resistance junction-to-ambient | 55    |      |
| DFN6 (2x2)                        | Thermal resistance junction-to-case    | 15    | °C/W |
|                                   | Thermal resistance junction-to-ambient | 65    | C/VV |
| DFN6 (3x3)                        | Thermal resistance junction-to-case    | 10    |      |
|                                   | Thermal resistance junction-to-ambient | 55    |      |

DS11245 - Rev 5 page 5/28



### **5** Electrical characteristics

 $T_{J} = 25~^{\circ}C,~V_{IN} = V_{OUT(NOM)} + 1~V,~C_{IN} = 1~\mu\text{F},~C_{OUT} = 4.7~\mu\text{F},~I_{OUT} = 10~\text{mA},~V_{EN} = V_{IN},~\text{unless otherwise specified.}$  ( For  $V_{OUT(NOM)} \le 1.5~V,~V_{IN} = 2.7~V.$ )

Table 4. Electrical characteristics

| Symbol            | Parameter                    | Test conditions                                                           | Min. | Тур.   | Max.   | Unit                                    |
|-------------------|------------------------------|---------------------------------------------------------------------------|------|--------|--------|-----------------------------------------|
| V <sub>IN</sub>   | Operating input voltage      |                                                                           | 2.5  |        | 18     | V                                       |
| V                 | Turn-on threshold            |                                                                           |      | 2.3    | 2.4    | V                                       |
| $V_{UVLO}$        | Hysteresis                   |                                                                           |      | 200    |        | mV                                      |
|                   |                              | I <sub>OUT</sub> = 10 mA                                                  |      |        |        | 0/                                      |
| W                 | V <sub>OUT</sub> accuracy    | T <sub>J</sub> = 25 °C                                                    | -2   |        | 2      | %                                       |
| V <sub>OUT</sub>  | V <sub>OUT</sub> accuracy    | I <sub>OUT</sub> = 10 mA                                                  |      |        |        | 0/                                      |
|                   |                              | -40 °C < T <sub>J</sub> < 125 °C                                          | -3   |        | 3      | %                                       |
|                   |                              | V <sub>IN</sub> = 2.5 V, I <sub>OUT</sub> = 10 mA                         |      | 1.18   |        | V                                       |
| \/                |                              | T <sub>J</sub> = 25 °C                                                    | -2   |        | +2     | %                                       |
| $V_{ADJ}$         | Adjustable pin voltage       | V <sub>IN</sub> = 2.5 V, I <sub>OUT</sub> = 10 mA                         |      |        | . 0    | 0/                                      |
|                   |                              | -40 °C < T <sub>J</sub> < 125 °C                                          | -3   |        | +3     | %                                       |
| I <sub>ADJ</sub>  | Adjustable pin current       | V <sub>IN</sub> = 2.5 V, I <sub>OUT</sub> = 10 mA                         |      | 20     |        | nA                                      |
| ΔV <sub>OUT</sub> | Line regulation              | V <sub>OUT</sub> + 1 V ≤ V <sub>IN</sub> ≤ 18 V, I <sub>OUT</sub> = 10 mA |      | 0.002  | 0.01   | %/V                                     |
| ΔV <sub>OUT</sub> | Load regulation              | I <sub>OUT</sub> = 10 mA to 1.2 A                                         |      | 0.0001 | 0.0005 | %/mA                                    |
| .,                | Dropout voltage (1)          | I <sub>OUT</sub> = 1.2 A V <sub>OUT</sub> > 3 V                           |      | 350    | 600    |                                         |
| $V_{DROP}$        | Dropout voltage for SO-8 (1) | -40 °C < T <sub>J</sub> < 125 °C                                          |      |        | 700    | - mV                                    |
| eN                | Output noise voltage         | 10 Hz to 100 kHz, I <sub>OUT</sub> = 100 mA                               |      | 60     |        | μV <sub>RMS</sub> /<br>V <sub>OUT</sub> |
|                   |                              | V <sub>IN</sub> = V <sub>OUT(NOM)</sub> + 1 V ± V <sub>RIPPLE</sub>       |      |        |        |                                         |
|                   |                              | V <sub>RIPPLE</sub> = 0.5 V, f = 120 Hz                                   |      | 87     |        |                                         |
|                   |                              | V <sub>IN</sub> = V <sub>OUT(NOM)</sub> + 1 V ± V <sub>RIPPLE</sub>       |      |        |        |                                         |
| SVR               | Supply voltage rejection     | V <sub>RIPPLE</sub> = 0.5 V, f = 1 kHz                                    |      | 75     |        | dB                                      |
|                   |                              | V <sub>IN</sub> = V <sub>OUT(NOM)</sub> + 1 V ± V <sub>RIPPLE</sub>       |      |        |        |                                         |
|                   |                              | V <sub>RIPPLE</sub> = 0.5 V, f = 100 kHz                                  |      | 50     |        |                                         |
|                   |                              | I <sub>OUT</sub> = 0 mA to 1.2 A                                          |      |        |        |                                         |
|                   |                              | -40 °C < T <sub>J</sub> < 125 °C                                          |      | 250    | 380    |                                         |
| IQ                | Quiescent current            | V <sub>IN</sub> input current in OFF mode                                 |      |        |        | μA                                      |
|                   |                              | V <sub>EN</sub> = GND V <sub>IN</sub> = 18 V                              |      | 0.3    | 1.5    |                                         |
| I <sub>SC</sub>   | Short-circuit current        | R <sub>L</sub> = 0                                                        | 1.5  | 2      |        | Α                                       |
|                   |                              | V <sub>IN</sub> = 2.5 V to 18 V                                           |      |        |        |                                         |
| $V_{EN}$          | Enable input logic low       | -40 °C < T <sub>J</sub> < 85 °C                                           |      | 0.4    |        | V                                       |
|                   | Enable input logic high      | V <sub>IN</sub> = 2.5 V to 18 V                                           | 1.2  |        |        | -                                       |

DS11245 - Rev 5 page 6/28



| Symbol            | Parameter                            | Test conditions                                            | Min. | Тур. | Max. | Unit |
|-------------------|--------------------------------------|------------------------------------------------------------|------|------|------|------|
| V <sub>EN</sub>   |                                      | -40 °C < T <sub>J</sub> < 85 °C                            |      |      |      | V    |
| 1                 | I <sub>EN</sub> Enable input current |                                                            |      | 1.5  |      |      |
| IEN               |                                      | V <sub>EN</sub> = V <sub>IN</sub> , V <sub>IN</sub> = 18 V |      | 16   | 20   | μA   |
| T <sub>ON</sub>   | Turn-on time (2)                     |                                                            |      | 120  |      | μs   |
| Тольы             | Thermal shutdown                     |                                                            |      | 175  |      | °C   |
| T <sub>SHDN</sub> | Hysteresis                           |                                                            |      | 25   |      | -0   |

<sup>1.</sup> Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value. This specification is not valid for output voltages below 2.2 V.

DS11245 - Rev 5 page 7/28

<sup>2.</sup> Turn-on time is the time measured between the enable input just exceeding  $V_{EN}$  high value and the output voltage just reaching 95% of its nominal value.



## **6** Typical performance characteristics





DS11245 - Rev 5 page 8/28



Figure 10. Line regulation vs. temperature ( $V_{IN} = 6$ Figure 11. Line regulation vs. temperature ( $V_{IN} = 2.5$ to 18 V,  $V_{OUT}$  = 5 V,  $I_{OUT}$  = 10 mA ) to 18 V,  $V_{OUT} = V_{ADJ}$ ,  $I_{OUT} = 10$  mA) 0.04 0.03 J.L 0.025 % [%] Line regulation [ 0.005 0.005 Line regulation 0.02 0.005 0 -40 -25 0 25 55 85 125 Temperature [°C] Temperature [°C] GIPD261120151220MT GIPD261120151221MT





DS11245 - Rev 5 page 9/28





Figure 17. Quiescent current vs. temperature  $(V_{OUT} = 5 V, I_{OUT} = 0 mA)$ 600 VIN =12V VIN =18V 400 [F  $\underline{\sigma}$ 200 -25 25 55 85 125  $V_{OUT} = 5 V$ Temperature [°C] GIPD261120151226bMT









DS11245 - Rev 5 page 10/28





Figure 24. Short-circuit current vs. dropout voltage  $(V_{OUT} = 5 V)$ 2.5 ISHORT [A] T=85° C 2 ISHORT [A] T=25° C ISHORT [A] T=0° C ISHORT (A) T=-25° ( **≤** 1.5 ISHORT[A] T=40° SHORT 1 0.5 8 10 12 14 16 18 20  $V_{EN}$  to  $V_{IN}$ ,  $C_{IN}$ =1 $\mu$ F,  $C_{OUT}$ =4.7 $\mu$ F GIPD261120151233MT







DS11245 - Rev 5 page 11/28















DS11245 - Rev 5 page 12/28









DS11245 - Rev 5 page 13/28



## 7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

### 7.1 DFN6 (3x3) package information

Figure 40. DFN6 (3x3) package outline



7946637\_C

DS11245 - Rev 5 page 14/28



Table 5. DFN6 (3x3) mechanical data

| Dim.   |      | mm   |      |
|--------|------|------|------|
| Dilli. | Min. | Тур. | Max. |
| Α      | 0.80 |      | 1    |
| A1     | 0    | 0.02 | 0.05 |
| A3     |      | 0.20 |      |
| b      | 0.23 |      | 0.45 |
| D      | 2.90 | 3    | 3.10 |
| D2     | 2.23 |      | 2.50 |
| E      | 2.90 | 3    | 3.10 |
| E2     | 1.50 |      | 1.75 |
| е      |      | 0.95 |      |
| L      | 0.30 | 0.40 | 0.50 |

Figure 41. DFN6 (3x3) recommended footprint

#### FOOTPRINT RECOMMENDED



7946637\_C

DS11245 - Rev 5 page 15/28



## 7.2 DFN6 (3x3) packing information

Figure 42. DFN6 (3x3) tape outline



 $\stackrel{*}{-}$  10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE  $\pm 0.20$ 

7875978\_N

DS11245 - Rev 5 page 16/28





Figure 43. DFN6 (3x3) reel outline

7875978\_N

Table 6. DFN6 (3x3) tape and reel mechanical data

| Dim. | mm   |      |      |  |  |
|------|------|------|------|--|--|
|      | Min. | Тур. | Max. |  |  |
| A0   | 3.20 | 3.30 | 3.40 |  |  |
| В0   | 3.20 | 3.30 | 3.40 |  |  |
| K0   | 1    | 1.10 | 1.20 |  |  |

DS11245 - Rev 5 page 17/28



## 7.3 DFN6 (2x2) package information

Figure 44. DFN6 (2x2) package outline







7733060

DS11245 - Rev 5 page 18/28



Table 7. DFN6 (2x2) mechanical data

| Dim. |      | mm        |      |
|------|------|-----------|------|
| Dim. | Min. | Тур.      | Max. |
| Α    | 0.70 | 0.75      | 0.80 |
| A1   | 0.00 | 0.02      | 0.05 |
| A3   | -    | 0.203 ref | -    |
| b    | 0.25 | 0.30      | 0.35 |
| D    | -    | 2.00      | -    |
| E    | -    | 2.00      | -    |
| е    | -    | 0.50      | -    |
| D2   | 0.77 | 0.92      | 1.02 |
| E2   | 1.30 | 1.45      | 1.55 |
| K    | 0.15 | -         | -    |
| L    | 0.20 | 0.30      | 0.40 |
| aaa  | -    | 0.05      | -    |
| bbb  | -    | 0.10      | -    |
| ccc  | -    | 0.10      | -    |
| ddd  | -    | 0.05      | -    |
| eee  | -    | 0.08      | -    |

Figure 45. DFN6 (2x2) recommended footprint



Notes:

1) This footprint is able to ensure insulation up to 32 Vrms (according to CEI IEC 664-1)

2) The device must be positioned within  $\bigcirc$  0.02 A B

7733060 revE

DS11245 - Rev 5 page 19/28



## 7.4 DFN6 (2x2) packing information

Figure 46. DFN6 (2 x 2 mm) reel outline



Table 8. DFN6 (2 x 2 mm) tape and reel mechanical data

| Dim. |      | mm   |      |
|------|------|------|------|
|      | Min. | Тур. | Max. |
| Α    |      |      | 180  |
| С    | 12.8 |      | 13.2 |
| D    | 20.2 |      |      |
| N    | 60   |      |      |
| Т    |      |      | 14.4 |
| A0   |      | 2.4  |      |
| В0   |      | 2.4  |      |
| K0   |      | 1.3  |      |
| P0   |      | 4    |      |
| Р    |      | 4    |      |

DS11245 - Rev 5 page 20/28



## 7.5 SO8 package information

Figure 47. SO-8 batwing package outline



Table 9. SO-8 batwing mechanical data

| Dim.   |      | mm   |      |
|--------|------|------|------|
| Dilli. | Min. | Тур. | Max. |
| Α      |      |      | 1.75 |
| A1     | 0.10 |      | 0.25 |
| A2     | 1.25 |      |      |
| b      | 0.31 |      | 0.51 |
| b1     | 0.28 |      | 0.48 |
| С      | 0.10 |      | 0.25 |
| c1     | 0.10 |      | 0.23 |
| D      | 4.80 | 4.90 | 5.00 |
| E      | 5.80 | 6.00 | 6.20 |
| E1     | 3.80 | 3.90 | 4.00 |
| е      |      | 1.27 |      |
| h      | 0.25 |      | 0.50 |
| L      | 0.40 |      | 1.27 |
| L1     |      | 1.04 |      |
| L2     |      | 0.25 |      |
| k      | 0°   |      | 8°   |
| CCC    |      |      | 0.10 |

DS11245 - Rev 5 page 21/28



0.6 (x8)

Figure 48. SO-8 batwing recommended footprint



0016023\_GU

DS11245 - Rev 5 page 22/28



# 8 Ordering information

Table 10. Order code

| DFN6 (3x3)      | DFN6 (2x2)  | SO-8 batwing plastic<br>micropackage | Output voltage (V) |
|-----------------|-------------|--------------------------------------|--------------------|
| LDL212PU12R (1) |             |                                      | 1.2                |
| LDL212PU15R     |             |                                      | 1.5                |
| LDL212PU18R (1) |             |                                      | 1.8                |
| LDL212PU25R (1) |             |                                      | 2.5                |
| LDL212PU30R (1) |             |                                      | 3                  |
|                 | LDL212PV33R | LDL212D33R                           | 3.3                |
| LDL212PU50R     |             |                                      | 5                  |
| LDL212PUR       | LDL212PVR   | LDL212DR                             | Adjustable         |

<sup>1.</sup> Available on request.

DS11245 - Rev 5 page 23/28



## **Revision history**

**Table 11. Document revision history** 

| Date        | Revision | Changes                                                                                                                  |
|-------------|----------|--------------------------------------------------------------------------------------------------------------------------|
| 02-Mar-2016 | 1        | Initial release.                                                                                                         |
| 19-Sep-2016 | 2        | Updated Table 3: "Thermal data" and Section 5: "Electrical characteristics".  Minor text changes.                        |
| 17-Sep-2018 | 3        | Added: GND pin name in Table 1. Pin description and new order code LDL212D33R in Table 10. Order code.                   |
| 16-Apr-2019 | 4        | In Table 10. Order code, in LDL2012D33R the note has been removed.  Updated GND description in Table 1. Pin description. |
| 21-Feb-2020 | 5        | Added dropout voltage for SO-8 in Table 4. Electrical characteristics.                                                   |

DS11245 - Rev 5 page 24/28



## **Contents**

| 1   | Blo      | ck diagram                       | 2  |
|-----|----------|----------------------------------|----|
| 2   | Pin      | configuration                    | 3  |
| 3   | Тур      | ical application                 | 4  |
| 4   | Max      | kimum ratings                    | 5  |
| 5   | Elec     | ctrical characteristics          | 6  |
| 6   | Тур      | ical performance characteristics | 8  |
| 7   | Pac      | kage information                 | 14 |
|     | 7.1      | DFN6 (3x3) package information   | 14 |
|     | 7.2      | DFN6 (3x3) packing information   | 16 |
|     | 7.3      | DFN6 (2x2) package information   | 18 |
|     | 7.4      | DFN6 (2x2) packing information   | 20 |
|     | 7.5      | SO8-batwing package information  | 21 |
|     | 7.6      | SO8-batwing packing information  | 0  |
| 8   | Ord      | ering information                | 23 |
| Rev | /ision   | history                          | 24 |
| Coı | ntents   | \$                               | 25 |
| Lis | t of ta  | bles                             | 26 |
| Lis | t of fig | gures                            | 27 |





## **List of tables**

| Table 1.  | Pin description                               | . 3 |
|-----------|-----------------------------------------------|-----|
| Table 2.  | Absolute maximum ratings                      | . 5 |
| Table 3.  | Thermal data                                  | . 5 |
| Table 4.  | Electrical characteristics                    | . 6 |
| Table 5.  | DFN6 (3x3) mechanical data                    | 15  |
| Table 6.  | DFN6 (3x3) tape and reel mechanical data      | 17  |
| Table 7.  | DFN6 (2x2) mechanical data                    | 19  |
| Table 8.  | DFN6 (2 x 2 mm) tape and reel mechanical data | 20  |
|           | SO-8 batwing mechanical data                  |     |
| Table 10. | Order code                                    | 23  |
| Table 11. | Document revision history                     | 24  |



# **List of figures**

| Figure 1.                | Block diagram (fixed)                                                                                                            |     |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 2.                | Block diagram (adjustable)                                                                                                       |     |
| Figure 3.                | Pin configuration (top view)                                                                                                     |     |
| Figure 4.                | Typical application circuit (adjustable version)                                                                                 |     |
| Figure 5.                | Typical application circuit (fixed version)                                                                                      |     |
| Figure 6.                | Output voltage vs. temperature (V <sub>IN</sub> = 2.5 V, V <sub>OUT</sub> = V <sub>ADJ</sub> , I <sub>OUT</sub> = 0 mA)          |     |
| Figure 7.                | Output voltage vs. temperature (V <sub>IN</sub> = 2.5 V, V <sub>OUT</sub> = V <sub>ADJ</sub> , I <sub>OUT</sub> = 1200 mA)       |     |
| Figure 8.                | Output voltage vs. temperature (V <sub>IN</sub> = 6 V, V <sub>OUT</sub> = 5 V, I <sub>OUT</sub> = 10 mA)                         |     |
| Figure 9.                | Output voltage vs. temperature (V <sub>IN</sub> = 6 V, V <sub>OUT</sub> = 5 V, I <sub>OUT</sub> = 1200 mA)                       |     |
| Figure 10.               | Line regulation vs. temperature ( $V_{IN}$ = 6 to 18 V, $V_{OUT}$ = 5 V, $I_{OUT}$ = 10 mA )                                     | . 9 |
| Figure 11.               | Line regulation vs. temperature ( $V_{IN}$ = 2.5 to 18 V, $V_{OUT}$ = $V_{ADJ}$ , $I_{OUT}$ = 10 mA)                             | . 9 |
| Figure 12.               | Load regulation vs. temperature ( $V_{IN}$ = 6 V, $V_{OUT}$ = 5 V, $I_{OUT}$ = 10 to 1200 mA )                                   | . 9 |
| Figure 13.               | Load regulation vs. temperature (V <sub>IN</sub> = 2.5 V, V <sub>OUT</sub> = V <sub>ADJ</sub> , I <sub>OUT</sub> = 0 to 1200 mA) | . 9 |
| Figure 14.               | Enable thresholds vs. temperature (V <sub>OUT</sub> = V <sub>ADJ</sub> )                                                         | . 9 |
| Figure 15.               | Enable thresholds vs. temperature(V <sub>OUT</sub> = 5 V)                                                                        | . 9 |
| Figure 16.               | Dropout voltage vs. temperature                                                                                                  | 10  |
| Figure 17.               | Quiescent current vs. temperature (V <sub>OUT</sub> = 5 V, I <sub>OUT</sub> = 0 mA)                                              | 10  |
| Figure 18.               | Quiescent current vs. temperature (V <sub>OUT</sub> = 5 V, I <sub>OUT</sub> = 600 mA, 1.2 A)                                     | 10  |
| Figure 19.               | Quiescent current vs. temperature (V <sub>OUT</sub> = V <sub>ADJ</sub> , I <sub>OUT</sub> = 0 mA)                                | 10  |
| Figure 20.               | Quiescent current vs. temperature (V <sub>OUT</sub> = V <sub>ADJ</sub> , I <sub>OUT</sub> = 600 mA)                              |     |
| Figure 21.               | Quiescent current vs. temperature (V <sub>OUT</sub> = V <sub>ADJ</sub> , I <sub>OUT</sub> = 1.2 A)                               |     |
| Figure 22.               | Off-state current vs. temperature (V <sub>OUT</sub> = 5 V)                                                                       |     |
| Figure 23.               | Off-state current vs. temperature (V <sub>OUT</sub> = V <sub>ADJ</sub> )                                                         |     |
| Figure 24.               | Short-circuit current vs. dropout voltage (V <sub>OUT</sub> = 5 V)                                                               |     |
| Figure 25.               | Short-circuit current vs. dropout voltage (V <sub>OUT</sub> = V <sub>ADJ</sub> )                                                 |     |
| Figure 26.               | SVR vs. frequency                                                                                                                |     |
| Figure 27.               | Output noise spectral density (V <sub>O</sub> = V <sub>ADJ</sub> )                                                               |     |
| Figure 28.               | Output noise spectral density (V <sub>O</sub> = 5 V)                                                                             |     |
| Figure 29.               | Output noise spectral density (V <sub>O</sub> = 12 V)                                                                            |     |
| Figure 30.               | Stability plan (V <sub>OUT</sub> = 5 V)                                                                                          |     |
| Figure 31.               | Stability plan (V <sub>OUT</sub> = V <sub>ADJ</sub> )                                                                            |     |
| Figure 32.               | Startup with enable (V <sub>OUT</sub> = 5 V)                                                                                     |     |
| Figure 33.               | Startup with enable (V <sub>OUT</sub> = V <sub>ADJ</sub> )                                                                       |     |
| Figure 34.               | Turn-on time (V <sub>OUT</sub> = 5 V)                                                                                            |     |
|                          | Turn-on time ( $V_{OUT} = V_{ADJ}$ )                                                                                             |     |
| Figure 35.<br>Figure 36. | Line transient (V <sub>OUT</sub> = 5 V)                                                                                          |     |
|                          | Line transient (V <sub>OUT</sub> = V <sub>ADJ</sub> )                                                                            |     |
| Figure 37.               |                                                                                                                                  |     |
| Figure 38.               | Load transient (V <sub>OUT</sub> = 5 V)                                                                                          |     |
| Figure 39.               | Load transient (V <sub>OUT</sub> = V <sub>ADJ</sub> )                                                                            |     |
| Figure 40.               | DFN6 (3x3) package outline                                                                                                       |     |
| Figure 41.<br>Figure 42. | DFN6 (3x3) recommended footprint                                                                                                 |     |
| Figure 42.<br>Figure 43. | DFN6 (3x3) reel outline                                                                                                          |     |
| Figure 43.<br>Figure 44. | DFN6 (2x2) package outline                                                                                                       |     |
| Figure 44.               | DFN6 (2x2) recommended footprint.                                                                                                |     |
| Figure 46.               | DFN6 (2 x 2 mm) reel outline                                                                                                     |     |
| Figure 47.               | SO-8 batwing package outline                                                                                                     |     |
| Figure 48.               | SO-8 batwing recommended footprint                                                                                               |     |

DS11245 - Rev 5 page 27/28



#### **IMPORTANT NOTICE - PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics - All rights reserved

DS11245 - Rev 5 page 28/28