Anmerkungen und Lösungen zu

Einführung in die Algebra

Blatt 8

Jendrik Stelzner

Letzte Änderung: 14. Dezember 2017

Aufgabe 3

(d)

Lemma 1. Es sei R ein kommutativer Ring von Charakteristik char(R) = p prim. Dann ist die Abbildung

$$\sigma \colon R \to R, \quad x \mapsto x^p$$

ein Ringhomomorphismus.

Beweis. Es gilt $\sigma(1) = 1^p = 1$, und für alle $x, y \in R$ gilt

$$\sigma(xy) = (xy)^p = x^p y^p = \sigma(x)\sigma(y),$$

da R kommutativ ist. Für alle $x,y\in R$ folgt aus der Kommutativität von R, dass

$$\sigma(x+y) = (x+y)^p = \sum_{k=0}^p \binom{p}{k} x^k y^{p-k}$$
 (1)

gilt. Für alle 0 < k < p gelten dabei $p \nmid k!$ und $p \nmid (p - k)!$, und somit

$$p \mid \frac{p!}{k!(p-k)!} = \binom{p}{k}.$$

Damit folgt aus (1) die Gleichheit

$$\sigma(x+y) = (x+y)^p = x^p + y^p = \sigma(x) + \sigma(y).$$

Bemerkung 2. Man bezeichnet den Ringhomomorphismus σ aus Lemma 1 als den Frobenius-Homomorphismus.

Wir bemerken, dass $\zeta = e^{2\pi i/p^2}$ eine p^2 -te primitive Einheitswurzel ist, und somit eine Nullstelle des Kreisteilungspolynoms $\Phi_{p^2}(t) \in \mathbb{Z}[t] \subseteq \mathbb{Q}[t]$. Das Polynom $\Phi_{p^2}(t)$ ist normiert, und wir zeigen im Folgenden, dass es irreduzibel ist; dann ist $\Phi_{p^2}(t)$ bereits das Minimalpolynom von ζ über \mathbb{Q} .

In der Vorlesung haben wir die Irreduziblität von $\Phi_p(t)$ gezeigt, indem wir das Einstein-Kriterium für $\Phi_p(t+1)$ bezüglich der Primzahl p angewendet haben. Auf gleiche Weise zeigen wir, dass auch $\Phi_{p^2}(t)$ irreduzibel ist, d.h. wir zeigen, dass sich auf $f(t) := \Phi_{p^2}(t+1)$ das Eisenstein-Kriterium mit der Primzahl p anwenden lässt. Hierfür nutzen wir, dass $\Phi_{p^2}(t) = \Phi_p(t^p)$ gilt.

- Das Kreisteilungspolynom $\Phi_{p^2}(t)$ ist normiert, also ist es auch $f(t) = \Phi_{p^2}(t+1)$. Insbesondere ist der Leitkoeffizient von f nicht durch p teilbar.
- Wir müssen zeigen, dass alle anderen Koeffizienten von f(t) durch p teilbar sein. Hierfür betrachten wir den Ringhomomorphismus

$$\mathbb{Z}[t] \to \mathbb{F}_p[t], \quad g = \sum_i a_i t^i \mapsto \sum_i \overline{a_i} t^i = \overline{g}.$$

Für $g_1, g_2 \in \mathbb{Z}[t]$ schreiben wir im Folgenden

$$g_1 \equiv g_2 \mod p$$

falls $\overline{g_1} = \overline{g_2}$ gilt.

Wir wissen bereits, dass das Polynom $\Phi_p(t+1)$ mit deg $\Phi_p(t+1) = \deg \Phi(t) = p-1$ das Eisenstein-Kriterium erfüllt, weshalb

$$\Phi_p(t+1) \equiv t^{p-1} \mod p$$

gilt. Indem wir für die Variable t das Polynom t^p einsetzen, erhalten wir, dass

$$\Phi_p(t^p + 1) \equiv (t^p)^{p-1} = t^{p(p-1)} \mod p$$

gilt. Wir möchten zeigen, dass bis auf Leitkoeffizienten von $\Phi_{p^2}(t+1)$ alle Koeffizienten dieses Polynoms durch p teilbar sind. Da

$$\deg \Phi_{p^2}(t+1) = \deg \Phi_{p^2}(t) = \deg \Phi_p(t^p) = p \deg \Phi_p(t) = p(p-1)$$

gilt, müssen wir also zeigen, dass

$$\Phi_{p^2}(t+1) \equiv t^{p(p-1)} \mod p$$

gilt. Setzen wir in der Gleichung $\Phi_{p^2}(t) = \Phi_p(t^p)$ für die Variable t das Polynom t+1 ein, so erhalten wir dabei, dass $\Phi_{p^2}(t+1) = \Phi_p((t+1)^p)$ gilt. Wir müssen also zeigen, dass

$$\Phi_p((t+1)^p) \equiv t^{p(p-1)} \mod p$$

gilt. Nach Lemma 1 gilt

$$(t+1)^p \equiv t^p + 1^p = t^p + 1 \mod p,$$

und somit gilt

$$\Phi_p((t+1)^p) \equiv \Phi_p(t^p+1) \mod p.$$

Damit erhalten wir insgesamt, dass

$$\Phi_{p^2}(t+1) = \Phi_p((t+1)^p) \equiv \Phi_p(t^p+1) \equiv t^{p(p-1)}$$

gilt. Also sind alle Koeffizienten von $\Phi_{p^2}(t+1)$, bis auf den Leitkoeffizienten, durch p teilbar.

• Wir müssen noch zeigen, dass der konstante Term von $\Phi_{p^2}(t+1)$ nicht durch p^2 teilbar ist. Dieser konstante Teil lässt sich dadurch bestimmen, dass wir für die Variable t die Zahl $0 \in \mathbb{Z}$ einsetzen. Wir erhalten die Gleichungskette

$$\Phi_{p^2}(0+1) = \Phi_{p^2}(1) = \Phi_p(1^p) = \Phi_p(1) = 1^{p-1} + 1^{p-2} + \dots + 1^1 + 1^0 = p.$$

Der konstante Koeffizient von $\Phi_{p^2}(t+1)$ ist also p, und somit nicht durch p^2 teilbar.

Aufgabe 4

(a)

Die Idee hinter der Aussage ist, dass $\phi(1)=1$ gelten, und sich alle Elemente des Primkörpers durch iteratives Anwenden den Körperoperationen (Addition, Subtraktion, Multiplikation, Division) aus 1 ergeben. Da ϕ mit diesen Operationen verträglich ist, sollte somit bereits $\phi(x)=x$ für alle $x\in P$ gelten.

Um diese Anschauung zu formalisieren, zeigen wir, dass die Menge

$$K^{\phi} = \{ x \in K \mid \phi(x) = x \}$$

ein Unterkörper von K ist. Dann gilt $P\subseteq K,$ da P in jedem Unterkörper von K enthalten ist.

Es gelten $\phi(0) = 0$ und $\phi(1) = 1$ und somit $0, 1 \in K$. Für alle $x, y \in K$ gelten auch

$$\phi(x+y) = \phi(x) + \phi(y) = x+y$$
 und $\phi(xy) = \phi(x)\phi(y) = xy$,

und somit $x + y, xy \in K$. Für jedes $x \in K$ gilt

$$\phi(-x) = -\phi(x) = -x$$

und somit $-x \in K$, und falls zusätzlich $x \neq 0$ gilt, dann gilt auch

$$\phi(x^{-1}) = \phi(x)^{-1} = x^{-1},$$

und somit $x^{-1} \in K$. Ingesamt zeigt dies, dass K^{ϕ} ein Unterkörper von K ist.

(b)

Die Abbildung $\phi \colon K \to K$ ist per Annahme bijektiv und additiv. Für alle $\lambda \in P$, $x \in K$ gilt nach dem vorherigen Sinne, dass

$$\phi(\lambda x) = \phi(\lambda)\phi(x) = \lambda\phi(x).$$

Dies zeigt insgesamt, dass ϕ ein K-Vektorraum-Automorphismus ist.