LITTLE LOGIC SELECTION GUIDE

2—Overview

A WINNING DESIGN IS LIKE A PUZZLE. TEXAS INSTRUMENTS GIVES YOU THE RIGHT PIECES.

Little Logic devices from Texas Instruments (TI) are the pieces that help complete the design puzzle. Their extremely small size gives designers the ability to greatly simplify design routing and maximize ASIC design development. Little Logic devices in 5-pin SOT-23, 5-pin SC-70, 6-pin SOT-23, 6-pin SC-70, 8-pin SM-8, 8-pin US-8 and the NanoStarTM and NanoFreeTM packages allow designers to place a particular gate function close to related circuitry, shortening and simplifying routes on a board. This represents a major advance over multiple-gate devices, which require the routing of multiple etches from distinct partitions on a printed circuit board (PCB) through one logic device. In addition, TI's Little Logic devices also allow designers to alter the output of an ASIC without redesign and

manufacture, effectively extending the life of the device and maximizing design investment. TI's growing line of Little Logic products is helping designers in almost every endequipment build more simple, powerful and cost-effective designs. If you would like more information on how TI's Little Logic can help you put all your design pieces together, call your local TI Field Sales office or your authorized TI distributor. Or visit our Web site at:

www.ti.com/littlelogic

CONTENTS Overview Little Logic Products by Performance Little Logic Signal Switches Little Logic Configurables Logic Migration to 3.3-V Future Selection Guide Single-Gate Functions Dual-Gate Functions Friple-Gate Functions Triple-Gate Functions Triple-Gate Functions Translation Functions The Competitor Part Prefixes The Competitor Part

Space-Saving Package Options

Little Logic Technology Simplifies Board Layout and Offers Better Overall Performance

Simplified Routing

Quick Fixes for ASICs

LITTLE LOGIC PRODUCTS BY PERFORMANCE

Performance Comparisons

Family	Operating Voltage Range (V)	Optimized Voltage (V)	Propagation Delay - t _{pd} (typ) (ns)	Output Drive (mA)	Input Tolerance (V)	I _{OFF} Protection
AUP	0.8 to 3.6	3.3	3.5	4	3.6	Yes
AUC	0.8 to 2.7	1.8	2.0	8	3.6	Yes
LVC	1.65 to 5.5	3.3	3.0	24	5.5	Yes
AHC	2.0 to 5.5	5.0	5.0	8	5.5	No
AHCT	4.5 to 5.5	5.0	5.0	8	5.5	No
CBT	4.5 to 5.5	5.0	0.25 [†]	_‡	5.5	Yes
CBTD	4.5 to 5.5	5.0	0.25 [†]	_‡	5.5	Yes
CBTLV	2.3 to 3.6	3.3	0.25 [†]	_‡	3.6	Yes

[†]The progagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance). The value listed is a maximum.

¹The FET switch has no output drive. The drive current at the output terminal is determined by the drive current of the device connected at the input terminal of the FET switch.

AHC (Advanced	High-Speed	(CMOS
---------------	------------	-------

- Operating range: 2 to 5.5-V V_{CC}
- 5-ns typical t_{pd}

SN74AHC1G00	SN74AHC1G14
SN74AHC1G02	SN74AHC1G32
SN74AHC1G04	SN74AHC1G86
SN74AHC1GU04	SN74AHC1G125
SN74AHC1G08	SN74AHC1G126

AHCT (Advanced High-Speed CMOS)

- Operating range: 4.5 to 5.5-V V_{CC}
- 5.0-ns typical t_{pd}

SN74AHCT1G00	SN74AHCT1G32
SN74AHCT1G02	SN74AHCT1G86
SN74AHCT1G04	SN74AHCT1G125
SN74AHCT1G08	SN74AHCT1G126
SN74AHCT1G14	

AUP (Advanced Ultra-Low-Power CMOS)

- Operating range: 0.8 to 3.6-V V_{CC}
- 3.5-ns typical t_{pd}

SN74AUP1G08	SN74AUP1G97
SN74AUP1G57	SN74AUP1G98
SN74AUP1G58	

LVC (Low-Voltage CMOS)

• Operating range: 1.65	5 to 5.5-V V _{CC}	 3.0-ns typical t_{pd} 	
SN74LVC1G00	SN74LVC1G38	SN74LVC1T45	SN74LVC2G80
SN74LVC1G02	SN74LVC1G57	SN74LVC2G00	SN74LVC2G86
SN74LVC1G04	SN74LVC1G58	SN74LVC2G02	SN74LVC2G125
SN74LVC1GU04	SN74LVC1G66	SN74LVC2G04	SN74LVC2G126
SN74LVC1G06	SN74LVC1G79	SN74LVC2GU04	SN74LVC2G157
SN74LVC1G07	SN74LVC1G80	SN74LVC2G06	SN74LVC2G240
SN74LVC1G08	SN74LVC1G86	SN74LVC2G07	SN74LVC2G241
SN74LVC1G10	SN74LVC1G97	SN74LVC2G08	SN74LVC2T45
SN74LVC1G11	SN74LVC1G98	SN74LVC2G14	SN74LVC3G04
SN74LVC1G14	SN74LVC1G125	SN74LVC2G17	SN74LVC3GU04
SN74LVC1G17	SN74LVC1G126	SN74LVC2G32	SN74LVC3G06
SN74LVC1G18	SN74LVC1G240	SN74LVC2G34	SN74LVC3G07
SN74LVC1G19	SN74LVC1G332	SN74LVC2G53	SN74LVC3G14
SN74LVC1G27	SN74LVC1G373	SN74LVC2G66	SN74LVC3G17
SN74LVC1G32	SN74LVC1G374	SN74LVC2G74	SN74LVC3G34
SN74LVC1G34	SN74LVC1G3157	SN74LVC2G79	

AUC (Advanced Ultra-Low-Voltage CMOS)

• Operating range: 0.8	to 2.7-V V _{CC}	 2.0-ns typical t_{pd} 	2.0-ns typical t _{pd}					
SN74AUC1G00	SN74AUC1G79	SN74AUC2G08	SN74AUC2G126					
SN74AUC1G02	SN74AUC1G80	SN74AUC2G14	SN74AUC2G157					
SN74AUC1G04	SN74AUC1G86	SN74AUC2G17	SN74AUC2G240					
SN74AUC1GU04	SN74AUC1G125	SN74AUC2G32	SN74AUC2G241					
SN74AUC1G06	SN74AUC1G126	SN74AUC2G34	SN74AUC3G04					
SN74AUC1G07	SN74AUC1G240	SN74AUC2G53	SN74AUC3GU04					
SN74AUC1G08	SN74AUC2G00	SN74AUC2G66	SN74AUC3G06					
SN74AUC1G14	SN74AUC2G02	SN74AUC2G74	SN74AUC3G07					
SN74AUC1G17	SN74AUC2G04	SN74AUC2G79	SN74AUC3G14					
SN74AUC1G32	SN74AUC2GU04	SN74AUC2G80	SN74AUC3G17					
SN74AUC1G66	SN74AUC2G06	SN74AUC2G86	SN74AUC3G34					
SN74AUC1G74	SN74AUC2G07	SN74AUC2G125						

1**G**97

LITTLE LOGIC SIGNAL SWITCHES

CBT (Bus Switch)

- Operating range: 4-V to 5.5-V V_{CC}
- 0.25-ns typical t_{pd}

SN74CBT1G125 SN74CBT1G384 SN74CBTD1G125 SN74CBTD1G384

CBTLV (Low-Voltage Bus Switch)

- Operating range: 2.3-V to 3.6-V V_{CC}
- 0.25-ns typical t_{pd} SN74CBTLV1G125

CB3T (Low-Voltage Translation Bus Switch)

- Operating range: 2.3-V to 3.6-V V_{CC}
- 0.25-ns typical t_{pd}
 SN74CB3T1G125

LVC (Low-Voltage CMOS)

- Operating range: 1.8-V to 5.5-V V_{CC}
- 3.0-ns typical t_{nd}

SN74LVC1G66 SN74LVC2G53 SN74LVC1G3157 SN74LVC2G66

AUC (Advanced Ultra-Low-Voltage CMOS)

- Operating range: 0.8-V to 2.7-V V_{CC}
- 2.0-ns typical t_{pd}

SN74AUC1G66 SN74AUC2G66 SN74AUC2G53

LVC1G66 TTL-to-LVTTL Level Shifter

The LVC1G66 can be used for simple translation from 5-V TTL levels to LVTTL. The control pin is tolerant to 5.5 V and, with a maximum r_{on} of 15 W at $V_{CC}=3.3$ V, the voltage drop across the switch is only 0.36 V with 24 mA of through current.

C08

Visit **www.ti.com/signalswitches** for the Application Report, Selecting the Right TI Signal Switch.

LITTLE LOGIC CONFIGURABLES

AUP (Advanced Ultra-Low-Power CMOS)

- Operating range: 0.8-V to 3.6-V V_{CC}
- 3.5-ns typical t_{pd}

SN74AUP1G57 SN74AUP1G58 SN74AUP1G97 SN74AUP1G98

LVC (Low-Voltage CMOS)

- Operating range: 1.8-V to 5.5-V V_{CC}
- 3.0-ns typical tpd

SN74LVC1G57 SN74LVC1G58 SN74LVC1G97 SN74LVC1G98 The next-generation configurable devices in the Little Logic portfolio are the 1G97/98 functions in both the LVC and AUP technologies. By providing nine single-gate logic solutions in one device, the 1G97/98 allows reductions in device inventory and simplifies part management.

C14

LOGIC MIGRATION TO 3.3-V FUTURE

As portable electronics designers look to extend battery life, operating voltages decrease. TI makes the migration to lower operating system voltages simple by offering numerous logic technologies with mixed voltage operation from 5.0-V to 0.8-V. The graph represents TI's logic technology offering in Little Logic at various operating voltages and propagation delays.

SINGLE-GATE FUNCTIONS

			Per	forma	nce				Pack	age	ge			
Function	Description	AHC	AHCT	LVC	AUC	AUP	DBV	DCK	DCT	DCU	YEP	YZP*		
1G00	Single 2 Input NAND Gate	Α	Α	Α	Α		Α	Α			Α	Α		
1G02	Single 2 Input NOR Gate	Α	Α	Α	Α		Α	Α			Α	Α		
1G04	Single Inverter	Α	Α	Α	Α		Α	Α			Α	Α		
1GU04	Single Unbuffered Inverter	Α	Α	Α	Α		Α	Α			Α	Α		
1G06	Single Inverter Buffer/Driver w/Open Drain Output			Α	Α		Α	Α			Α	Α		
1G07	Single Buffer/Driver w/Open Drain Output			Α	Α		Α	Α			Α	Α		
1G08	Single 2-Input AND Gate	Α	Α	Α	Α	Α	Α	Α			Α	Α		
1G10	Single 3-Input NAND Gate			Α			Α	Α			Α	Α		
1G11	Single 3-Input AND Gate			Α			Α	Α			Α	Α		
1G14	Single Schmitt Trigger Inverter	Α	Α	Α	Α		Α	Α			Α	Α		
1G17	Single Schmitt Trigger Buffer			Α	Α		Α	Α			Α	Α		
1G18	1 of 2 Non-Inverting Mux			Α	Р		Α	Α			Α	Α		
1G19	1 of 2 Decoder/Demultiplexer			Α			Α	Α			Α	Α		
1G27	Singel 3-Input NOR Gate			Α			Α	Α			Α	Α		
1G32	Single 2-Input OR Gate	Α	Α	Α	Α		Α	Α			Α	Α		
1G34	Single Buffer Gate			Α			Α	Α						
1G38	Single 2-Input NAND Gate w/Open Drain Output			Р			Р	Р						
1G74	Single Positive-Edge-Triggered D-Type Flip-Flop				Α				Α	Α	Α	Α		
1G79	Single D-Type Flip-Flop			Α	Α		Α	Α			Α	Α		
1G80	Single D-Type Flip-Flop			Α	Α		Α	Α			Α	Α		
1G86	Single 2-Input Exclusive-OR Gate	Α	Α	Α	Α		Α	Α			Α	Α		
1G125	Single Bus Buffer Gate w/3-State Output	Α	Α	Α	Α		Α	Α			Α	Α		
1G126	Single Bus Buffer Gate w/3-State Output	Α	Α	Α	Α		Α	Α			Α	Α		
1G175	Single D-Type Flip-Flop w/Asynch Clr			Α			Α	Α			Р	Р		
1G240	Single Buffer/Driver w/3-State Output			Α	Α		Α	Α			Α	Α		
1G332	Single 3-Input OR Gate			Α			Α	Α			Α	Α		
1G373	Single D-Type Latch w/3-State Output			Α			Α	Α			Р	Р		
1G374	Single D-Type Flip-Flop w/3-State Output			Α			Α	Α			Р	Р		
1G386	Single 3-Input Exclusive-OR Gate			Α			Α	Α			Α	Α		
/ZP (NanoFre	e) is the Pb-Free version of NanoStar.				А	= Availa	ble	F	e Plann	ed				

^{*}YZP (NanoFree) is the Pb-Free version of NanoStar.

NOTE: Visit www.ti.com/littlelogic for product release updates. Information above valid as of April 2004.

Single-Gate Diagrams

DUAL-GATE FUNCTIONS

		Perfori	mance	Package					
Function	Description	LVC	AUC	DBV (6)	DCK (6)	DCT	DCU	YEP	YZP*
2G00	Dual 2-Input NAND Gate	Α	Α			Α	Α	Α	Α
2G02	Dual 2-Input NOR Gate	Α	Α			Α	Α	Α	Α
2G04	Dual Inverter	Α	Α	Α	Α	Р	Р	Α	Α
2GU04	Dual Unbuffered Inverter	А	Α	А	А			Α	Α
2G06	Dual Inverter w/Open Drain Output	Α	Α	Α	Α			Α	Α
2G07	Dual Non-Inverter w/Open Drain Output	Α	Α	Α	Α			Α	А
2G08	Dual 2-Input AND Gate	Α	Α			Α	Α	Α	Α
2G14	Dual Schmitt Inverter	Α	Р	Α	А			Α	Α
2G17	Dual Schmitt Trigger Input Buffers	Α		Α	Α			Α	Α
2G32	Dual 2-input OR Gate	Α	Α			Α	Α	Α	Α
2G34	Dual Non-Inverter	Α	Α	Α	А			Α	Α
2G38	Dual 2-Input NAND Gate w/Open Drain Output	Α				Α	Α		
2G53	2:1 Analog Multiplexer/Demultiplexer	Α	Α			Α	Α	Α	Α
2G74	Single Positive Edge Triggered D-Type Flip Flop	Α				Α	Α	Α	Α
	w/Clear & Reset								
2G79	Dual Positive-Edge-Triggered D-Type Flip-Flop	Р	Α			Α	Α	Α	Α
2G80	Dual Positive-Edge-Triggered D-Type Flip-Flop	Р	Α			Α	Α	Α	А
2G86	Dual 2-Input Exclusive-OR Gate	Α	Α			Α	Α	Α	Α
2G125	Dual Bus Buffer Gate w/3-State Outputs	Α	Α			Α	Α	Α	Α
2G126	Dual Bus Buffer Gate w/3-State Outputs	Α	Α			Α	Α	Α	Α
2G157	Single 2 Line to 1 Line Data Selector/Multiplexer	Α	Р			Α	Α	Α	А
2G240	Dual Bus Buffer Gate w/3-State Outputs	Α	Α			Α	Α	Α	Α
2G241	Dual Buffer/Driver w/3-State Outputs	А	Α			Α	Α	Α	Α

^{*}YZP (NanoFree) is the Pb-Free version of NanoStar.

A = Available

P = Planned

NOTE: Visit www.ti.com/littlelogic for product release updates. Information above valid as of April 2004.

Dual-Gate Diagrams

TRIPLE-GATE FUNCTIONS

		Performance		Package				
Function	Description	LVC	AUC	DCT	DCU	YEP	YZP*	
3G04	Triple Inverter Gate	Α	Р	А	Α	Α	Α	
3GU04	Triple Inverter Gate (Unbuffered)	А	Р	А	Α	А	Α	
3G06	Triple Inverter Buffer/Driver w/Open Drain Output	Α	Р	Α	Α	Α	Α	
3G07	Triple Buffer/Driver w/Open Drain Output	А	Р	Α	Α	Α	Α	
3G14	Triple Schmitt Trigger Inverter	Α	Р	Α	Α	Α	Α	
3G17	Triple Schmitt Trigger Buffer	А	Р	А	Α	А	Α	
3G34	Triple Buffer Gate	Α	Р	Α	Α	Α	Α	

^{*}YZP (NanoFree) is the Pb-Free version of NanoStar.

NOTE: Visit www.ti.com/littlelogic for product release updates. Information above valid as of April 2004.

A = Available P = Planned

Triple-Gate Diagrams

SIGNAL-SWITCH FUNCTIONS

			Performance			Packaging									
Function	Description	CBT	CB3T	CBTD	CBTLV	LVC	AUC	DBV (5)	DCK (5)	DBV (6)	DCK (6)	DCT	DCU	YEP	YZP*
1G66	Single Analog Switch					Α	Α	Α	Α					Α	Α
1G125	Single FET Bus Switch	Α	Α	Α	Α			Α	Α					Р	Р
1G384	Single FET Bus Switch	Α		Α				Α	Α					Р	Р
1G3157	Single-Pole, Double-Throw					Α				Α	Α			Α	Α
	(SPDT) Analog Switch														
2G53	Single-Pole, Double-Throw					Α	Α					Α	Α	Α	Α
	(SPDT) Analog Switch														
2G66	Dual Analog Switch					Α	Α					Α	Α	Α	Α

^{*}YZP (NanoFree) is the Pb-Free version of NanoStar.

A = Available P = Planned

NOTE: Visit www.ti.com/littlelogic for product release updates. Information above valid as of April 2004.

Signal-Switch Diagrams

CONFIGURABLE FUNCTIONS

		Performance		Package					
Function	Description	LVC	AUP	DBV	DCK	YEP	YZP*		
1G57	Configurable Multiple-Function Gate	Α	А	А	Α	А	Α		
1G58	Configurable Multiple-Function Gate	Α	А	А	А	А	А		
1G97	Configurable Multiple-Function Gate	Α	Α	А	А	Α	А		
1G98	Configurable Multiple-Function Gate	Α	А	А	А	А	А		

*YZP (NanoFree) is the Pb-Free version of NanoStar.

A = Available P = Planned

NOTE: Visit www.ti.com/littlelogic for product release updates. Information above valid as of April 2004.

Configurable Diagrams

TRANSLATION FUNCTIONS

		Performance Package							
Function	Description	LVC	AVC	DBV	DCK	DCT	DCU	YEP	YZP*
1T45	Single-Bit Dual-Supply Transceiver w/Configurable	Α	Р	Α	Α			Р	Р
	Voltage Translation and 3-State Outputs								
2T45	Dual-Bit Dual-Supply Transceiver w/Configurable	Α	Р			Α	Α	Р	Р
	Voltage Translation and 3-State Outputs								

^{*}YZP (NanoFree) is the Pb-Free version of NanoStar.

A = Available P = Planned

NOTE: Visit www.ti.com/littlelogic for product release updates. Information above valid as of April 2004.

Translation Diagrams

COMPETITOR CROSS-REFERENCE

AHC Devices (5-pin, unless noted)

For up-to-date cross-reference information, visit www.ti.com/littlelogic

Function	Company (Prefix):	TI (AHC)	Toshiba (TC7S/W)	Fairchild (NC7S)	ON (VHC)	STMicro (V1G)	Philips
1G00	Single 2-Input NAND Gate	SN74AHC1G00	TC7SH00	NC7S00	MC74VHC1G00	74V1G00	74AHC1G00
1G02	Single 2-Input NOR	SN74AHC1G02	TC7SH02	NC7S02	MC74VHC1G02	74V1G02	74AHC1G02
1G04	Single Inverter	SN74AHC1G04	TC7SH04	NC7S04	MC74VHC1G04	74V1G04	74AHC1G04
1GU04	Single Inverter (Unbuffered)	SN74AHC1GU04	TC7SHU04	NC7SU04	MC74VHC1GU04	74V1GU04	74AHC1GU04
1G08	Single 2-Input AND	SN74AHC1G08	TC7SH08	NC7S08	MC74VHC1G08	74V1G08	74AHC1G08
1G14	Single Inverter w/Schmitt Trigger	SN74AHC1G14	TC7SH14	NC7S14	MC74VHC1G14	74V1G14	74AHC1G14
1G32	Single 2-Input OR	SN74AHC1G32	TC7SH32	NC7S32	MC74VHC1G32	74V1G32	74AHC1G32
1G86	Single 2-Input Exclusive-OR	SN74AHC1G86	TC7SH86	NC7S86	MC74VHC1G86	74V1G86	74AHC1G86
1G125	Single Bus Buffer Gate w/3-State	SN74AHC1G125			MC74VHC1G125	74V1G125	74AHC1G125
1G126	Single Bus Buffer Gate w/3-State	SN74AHC1G126			MC74VHC1G126	74V1G126	74AHC1G126

AHCT Devices (5-pin, unless noted)

Function	Company (Prefix):	TI (AHCT)	Toshiba (TC7SE/WT)	Fairchild (NC7ST)	ON (VHC1GT)	STMicro (V1T)	Philips
1G00	Single 2-Input NAND	SN74AHCT1G00	TC7SET00	NC7ST00	MC74VHC1GT00	74V1T00	74AHCT1G00
1G02	Single 2-Input NOR	SN74AHCT1G02	TC7SET02	NC7ST02	MC74VHC1GT02	74V1T02	74AHCT1G02
1G04	Single Inverter	SN74AHCT1G04	TC7SET04	NC7ST04	MC74VCH1GT04	74V1T04	74AHCT1G04
1G08	Single 2-Input AND	SN74AHCT1G08	TC7SET08	NC7ST08	MC74VHC1GT08	74V1T08	74AHCT1G08
1G14	Single Inverter w/Schmitt Trigger	SN74AHCT1G14			MC74VHC1GT14	74V1T14	74AHCT1G14
1G32	Single 2-Input OR	SN74AHCT1G32	TC7SET32	NC7ST32	MC74VHC1GT32	74V1T32	74AHCT1G32
1G86	Single 2-Input Exclusive-OR	SN74AHCT1G86	TC7SET86	NC7ST86	MC74VHC1GT86	74V1T86	74AHCT1G86
1G125	Single Bus Buffer Gate w/3-State	SN74AHCT1G125			MC74VHC1GT125	74V1T125	74AHCT1G125
1G126	Single Bus Buffer Gate w/3-State	SN74AHTC1G126			MC74VHC1GT126	74V1T126	74AHCT1G126

LVC Devices

Function	Company (Prefix):	TI (LVC)	Fairchild (NC7S/WZ)	ON (SZ)	Toshiba (TC7S/WZ)	Philips (LVC)	Pericom (STX)	STMicro (LX)	IDT (LVC)
Single Ga	te (5-pin, unless noted)								
1G00	Single 2-Input NAND	SN74LVC1G00	NC7SZ00	NL17SZ00	TC7SZ00	74LVC1G00	PI74STX1G00	74LX1G00	IDT74LVC1G00A
1G02	Single 2-Input NOR	SN74LVC1G02	NC7SZ02	NL17SZ02	TC7SZ02	74LVC1G02	PI74STX1G02	74LX1G02	IDT74LVC1G02
1G04	Single Inverter	SN74LVC1G04	NC7SZ04	NL17SZ04	TC7SZ04	74LVC1G04	PI74STX1G04	74LX1G04	IDT74LVC1G04A
1GU04	Single Inverter (Unbuffered)	SN74LVC1GU04	NC7SZU04	NL17SZU04	TC7SZU04	74LVC1GU04	PI74STX1GU04	74LX1GU04	IDT74LVC1GU04A
1GX04	Crystal Driver	SN74LVC1GX04 ¹				74LVC1GX04			
1G06	Single Inverter Buffer/Driver w/Open Drain	SN74LVC1G06		NL17SZ06		74LVC1G06			IDT74LVC1G06A
1G07	Single Buffer/Driver w/Open Drain	SN74LVC1G07		NL17SZ07		74LVC1G07		74LX1G07	IDT74LVC1G07A
1G08	Single 2-Input AND	SN74LVC1G08	NC7SZ08	NL17SZ08	TC7SZ08	74LVC1G08	PI74STX1G08	74LX1G08	IDT74LVC1G08A
1G10	Single 3-Input NAND	SN74LVC1G10	NC7SZ10 ²						
1G11	Single 3-Input AND	SN74LVC1G11 ²	NC7SZ11 ²						

¹Preview ²6-pin package

Resources and Support WCSP Design Summary Packaging Cross-Reference Selection Guide Overview

$\textbf{COMPETITOR CROSS-REFERENCE} \hspace{0.1cm} \textbf{(Continued)} \\$

LVC Devices

LVC Device	ees								
Function	Company (Prefix):	TI (LVC)	Fairchild (NC7S/WZ)	ON (SZ)	Toshiba (TC7S/WZ)	Philips (LVC)	Pericom (STX)	STMicro (LX)	IDT (LVC)
Single G	ate (5-pin, unless noted) (Continued)								
1G14	Single Inverter w/Schmitt Trigger	SN74LVC1G14	NC7SZ14	NL17SZ14		74LVC1G14	PI74STX1G14	74LX1G14	
1G17	Single Buffer w/Schmitt Trigger	SN74LVC1G17		NL17SZ17		74LVC1G17			
1G18	1 of 2 Non-Inverting Mux	SN74LVC1G18 ²	NC7SZ18 ²	NL7SZ18 ²		74LVC1G18 ²			
1G19	1 of 2 Decoder	SN74LVC1G19 ²	NC7SZ19 ²	NL7SZ19 ²		74LVC1G19 ²			
1G27	Single 3-Input NOR	SN74LVC1G27 ²	NC7SZ27 ²						
1G32	Single 2-Input OR	SN74LVC1G32	NC7SZ32	NL17SZ32	TC7SZ32	74LVC1G32	PI74STX1G32	74LX1G32	IDT74LVC1G32A
1G34	Single Buffer Gate	SN74LVC1G34		NL17SZ16					
1G38	Single 2-Input NAND w/Open Drain	SN74LVC1G38 ¹	NC7SZ38						
1G79	Single D-Type Flip-Flop	SN74LVC1G79				74LVC1G79	PI74STX1G79		IDT74LVC1G79A
1G80	Single D-Type Flip-Flop	SN74LVC1G80				74LVC1G80			
1G86	Single 2-Input EX-OR	SN74LVC1G86	NC7SZ86	NL17SZ86	TC7SZ86	74LVC1G86	PI74STX1G86	74LX1G86	IDT74LVC1G86A
1G125	Single Bus Buffer Gate w/3-State	SN74LVC1G125	NC7SZ125	NL17SZ125	TC7SZ125	74LVC1G125	PI74STX1G125	74LX1G125	IDT74LVC1G125A
1G126	Single Bus Buffer Gate w/3-State	SN74LVC1G126	NC7SZ126	NL17SZ126	TC7SZ126	74LVC1G126	PI74STX1G126	74LX1G126	IDT74LVC1G126A
1G132	Single 2-Input NAND w/Schmitt Trigger	SN74LVC1G132 ¹						74LX1G132	
1G157	2-input Non-Inverting Mux	SN74LVC1G157 ²	NC7SZ157 ²						
1G175	Single D-Type Flip-Flop w/Asynch Clr	SN74LVC1G175 ²	NC7SZ175 ²						
1G240	Single bus Buffer Gate w/3-state	SN74LVC1G240							
1G332	Single 3-Input OR	SN74LVC1G332 ²	NC7SZ332 ²					`	
1G373	Single D-Type Latch w/3-State	SN74LVC1G373 ²	NC7SZ373 ²						
1G374	Single D-Type Flip-Flop w/3-State	SN74LVC1G374 ²	NC7SZ374 ²						
1G386	Single 3-Input Exclusive-OR	SN74LVC1G386 ²	NC7SZ386 ²			74LVC1G386			
Dual Gat	e (8-pin, unless noted)								
2G00	Dual 2-Input NAND	SN74LVC2G00	NC7WZ00	NL27WZ00	TC7WZ00	74LVC2G00	PI74STX2G00		
2G02	Dual 2-Input NOR	SN74LVC2G02	NC7WZ02	NL27WZ02	TC7WZ02	74LVC2G02	PI74STX2G02		
2G04	Dual Inverter	SN74LVC2G04 ²	NC7WZ04 ²	NL27WZ04 ²	TC7WZ04	74LVC2G04 ²	PI74STX2G04		
2GU04	Dual Inverter (Unbuffered)	SN74LVC2GU04	NC7WZU04 ²	NL27WZU04 ²	TC7WZU04	74LVC2GU04 ²	PI74STX2GU04		
2G06	Dual Inverter Buffer/Driver w/Open Drain	SN74LVC2G06 ²		NL27WZ06 ²		74LVC2G06			
2G07	Dual BufferDriver w/Open Drain Output	SN74LVC2G07 ²	NC7WZ07 ²	NL27WZ07 ²		74LVC2G07 ²			
2G08	Dual 2-Input AND	SN74LVC2G08	NC7WZ08	NL27WZ08	TC7WZ08	74LVC2G08	PI74STX2G08		
2G14	Dual Inverter w/Schmitt Trigger	SN74LVC2G14 ²	NC7WZ14 ²	NL27WZ14 ²	TC7WZ14	74LVC2G14 ²	PI74STX2G14		
2G17	Dual Buffer w/Schmitt Trigger Input	SN74LVC2G17 ²	NC7WZ17 ²	NL27WZ17 ²		74LVC2G17 ²			
2G32	Dual 2-Input OR	SN74LVC2G32	NCWZ32	NL27WZ32	TC7WZ32	74LVC2G32	PI74STX2G32		
2G34	Dual Buffer Gate	SN74LVC2G34 ²	NC7WZ16 ²	NL27WZ16 ²	TC7WZ34	74LVC2G34 ²			
2G38	Dual 2-Input NAND w/Open Drain	SN74LVC2G38 ¹	NCWZ38		TC7WZ38	74LVC2G38			
2G74	D-Type Flip-Flop w/Pre & CLR	SN74LVC2G74	NC7SZ74	NL17SZ74	TC7WZ74		PI74STX2G74		
2G79	Dual D-Type Flip-Flop	SN74LVC2G79					PI74STX2G79		

¹Preview

²6-pin package

COMPETITOR CROSS-REFERENCE (Continued)

LVC Devices (Continued)

Function	Company (Prefix):	TI (LVC)	Fairchild (NC7S/WZ)	ON (SZ)	Toshiba (TC7S/WZ)	Philips (LVC)	Pericom (STX)	STMicro (LX)	IDT (LVC)
Dual Gate	(8-pin, unless noted) (Continued)								
2G80	Dual D-Type Flip-Flop	SN74LVC2G80							
2G86	Dual 2-Input Exclusive-OR	SN74LVC2G86	NC7WZ86	NL27WZ86		74LVC2G86	PI74STX2G86		
2G125	Dual Bus Buffer Gate w/3-State	SN74LVC2G125	NC7WZ125	NL27WZ125		74LVC2G125	PI74STX2G125		
2G126	Dual Bus Buffer Gate w/3-State	SN74LVC2G126	NC7WZ126	NL27WZ126		74LVC2G126	PI74STX2G126		
2G132	Dual 2-Input NAND w/Schmitt Trigger Input	SN74LVC2G132 ¹	NC7WZ132						
2G157	2-input Non-Inverting Mux	SN74LVC2G157							
2G240	Dual Bus Buffer Gate w/3-State	SN74LVC2G240	NC7WZ240			74LVC2G240			
2G241	Dual Bus Buffer Gate w/3-State	SN74LVC2G241	NC7WZ241			74LVC2G241			
Triple Gat	e (8-pin, unless noted)								
3G04	Triple Inverter	SN74LVC3G04	NC7NZ04	NL37WZ04	TC7WZ04		PI74STX3G04		
3GU04	Triple Inverter (Unbuffered)	SN74LVC3GU04 ¹	NC7NZU04		TC7WZU04		PI74STX3GU04		
3G06	Triple Inverter Buffer/Driver w/Open Drain	SN74LVC3G06		NL37WZ06					
3G07	Triple Buffer/Driver w/Open Drain	SN74LVC3G07		NL37WZ07					
3G14	Triple Inverter w/Schmitt Trigger	SN74LVC3G14	NC7NZ14	NL37WZ14	TC7WZ14		PI74STX3G14		
3G17	Triple Buffer w/Schmitt Trigger	SN74LVC3G17	NC7NZ17	NL37WZ17					
3G34	Triple Buffer	SN74LVC3G34	NC7NZ34	NL37WZ16	TC7WZ34				

¹Preview ²6-pin package

Resources and Support WCSP Design Summary Packaging Cross-Reference Selection Guide Overview

COMPETITOR CROSS-REFERENCE (Continued)

AUC Devices

AUC Devices										
Function	Company (Prefix):	TI (AUC)	Fairchild (NC7SV)	ON (SV)						
Single G	ate (5-pin, unless noted)									
1G1G00	Single 2-Input NAND	SN74AUC1G00	NC7SV00	NL17SV00						
1G02	Single 2-Input NOR	SN74AUC1G02	NC7SV02	NL17SV02						
1G04	Single Inverter	SN74AUC1G04	NC7SV04	NL17SV04						
1GU04	Single Inverter (Unbuffered)	SN74AUC1GU04	NC7SVU04							
1G06	Single Inverter Buffer/Driver w/Open Drain	SN74AUC1G06								
1G07	Single Buffer/Driver w/Open Drain	SN74AUC1G07								
1G08	Single 2-Input AND	SN74AUC1G08	NC7SV08	NL17SV08						
1G11	Single 3-Input AND	SN74AUC1G11 ¹	NC7SV11							
1G14	Single Inverter w/Schmitt Trigger	SN74AUC1G14	NC7SV14							
1G17	Single Buffer w/Schmitt Trigger	SN74AUC1G17	NC7SV17							
1G32	Single 2-Input OR	SN74AUC1G32	NC7SV32	NL17SV32						
1G74	D-Type Flip-Flop w/Pre & CLR	SN74AUC1G74	NC7SV74							
1G79	Single D-Type Flip-Flop	SN74AUC1G79								
1G80	Single D-Type Flip-Flop	SN74AUC1G80								
1G86	Single 2-Input Exclusive-OR	SN74AUC1G86	NC7SV86							
1G125	Single Bus Buffer Gate w/3-State	SN74AUC1G125	NC7SV125							
1G126	Single Bus Buffer Gate w/3-State	SN74AUC1G126	NC7SV126							
1G240	Single Bus Buffer Gate w/3-State	SN74AUC1G240								
Dual Ga	te (8-pin, unless noted)									
2G00	Dual 2-Input NAND	SN74AUC2G00								
2G02	Dual 2-Input NOR	SN74AUC2G02								
2G04	Dual Inverter	SN74AUC2G04 ²	NC7WV04							
2GU04	Dual Inverter (Unbuffered)	SN74AUC2GU04								
2G06	Dual Inverter Buffer/Driver w/Open Drain Output	SN74AUC2G06 ²								
2G07	Dual Buffer/Driver w/Open Drain Output	SN74AUC2G07 ²	NC7WV07							
2G08	Dual 2-Input AND	SN74AUC2G08								
2G14	Dual Inverter w/Schmitt Trigger	SN74AUC2G14 ¹	NC7WV14							
2G17	Dual Buffer w/Schmitt Trigger Input	SN74AUC2G17 ¹	NC7WV17							
2G32	Dual 2-Input OR	SN74AUC2G32								
2G34	Dual Buffer	SN74AUC2G34 ²	NC7WV16							
2G79	Dual D-Type Flip-Flop	SN74AUC2G79								
2G80	Dual D-Type Flip-Flop	SN74AUC2G80								
2G86	Dual 2-Input Exclusive-OR	SN74AUC2G86								
2G125	Dual Bus Buffer Gate w/3-State	SN74AUC2G125	NC7WV125							
2G126	Dual Bus Buffer Gate w/3-State	SN74AUC2G126								
2G240	Dual Bus Buffer Gate w/3-State	SN74AUC2G240								
2G241	Dual Bus Buffer Gate w/3-State	SN74AUC2G241								

¹Preview ²6-pin package

COMPETITOR CROSS-REFERENCE (Continued)

AUP Devices (5-pin, unless noted)

Function	Company (Prefix):	TI (AUC)	Fairchild (NC7SV)
1G00	Single 2-Input NAND	SN74AUP1G00 ¹	NC7SP00
1G02	Single 2-Input NOR	SN74AUP1G02 ¹	NC7SP02
1G04	Single Inverter	SN74AUP1G04 ¹	NC7SP04
1G06	Single Inverter Buffer/Driver w/Open Drain	SN74AUP1G06 ¹	
1G07	Single Buffer/Driver w/Open Drain	SN74AUP1G07 ¹	
1G08	Single 2-input AND	SN74AUP1G08	NC7SP08
1G14	Single Inverter w/Schmitt Trigger	SN74AUP1G14 ¹	NC7SP14
1G17	Single Buffer w/Schmitt Trigger	SN74AUP1G17 ¹	NC7SP17
1G32	Single 2-Input OR	SN74AUP1G32 ¹	NC7SP32
1G34	Single Buffer	SN74AUP1G34 ¹	NC7SP34
1G79	Single D-Type Flip-Flop	SN74AUP1G79 ¹	
1G80	Single D-Type Flip-Flop	SN74AUP1G80 ¹	
1G125	Single Bus Buffer Gate w/3-State	SN74AUP1G125 ¹	NC7SP125
1G126	Single Bus Buffer Gate w/3-State	SN74AUP1G126 ¹	NC7SP126
1G240	Single Bus Buffer Gate w/3-State	SN74AUP1G240 ¹	

¹Preview

Signal-Switch Devices

Function	Company:	TI	Toshiba	Fairchild	Philips	Pericom
CBT1G125	Single FET Bus Switch	SN74CBT1G125				P15A125
CBTD1G125	Single FET Bus Switch	SN74CBTD1G125				
CBT1G384	Single Low Power Bus Switch	SN74CBT1G384	TC7SB384	NC7SZ384		
CBTD1G384	384 Function w/Level Shifting	SN74CBTD1G384	TC7SBD384	NC7SZD384		
CBTLV1G125	Single LV FET Bus Switch	SN74CBTLV1G125				P13A125
AUC1G66	Single Analog Switch	SN74AUC1G66				
AUC2G53	SPDT Analog Switch	SN74AUC2G53	TC7PA53			
AUC2G66	Dual Analog Switch	SN74AUC2G66				
LVC1G66	Single Analog Switch	SN74LVC1G66		NC7SZ66	74LVC1G66	
LVC1G3157	SPDT Analog Switch	SN74LVC1G3157		NC7SB3157		
LVC2G53	SPDT Analog Switch	SN74LVC2G53				
LVC2G66	Dual Analog Switch	SN74LVC2G66		NC7WB66		

Configurable Devices

Comingulation	, 5011000			
Function	Com	oany:	TI	Fairchild
LVC1G57	Single Configurable (5 functions)	SN	N74LVC1G57	NC7SZ57
LVC1G58	Single Configurable (5 functions)	SN	N74LVC1G58	NC7SZ58
LVC1G97	Single Configurable (9 functions)	SN	N74LVC1G97	
LVC1G98	Single Configurable (9 functions)	SN	N74LVC1G98	
AUP1G57	Single Configurable (5 functions)	SN	174AUP1G57	NC7SP57
AUP1G58	Single Configurable (5 functions)	SN	174AUP1G58	NC7SP58
AUP1G97	Single Configurable (9 functions)	SN	I74AUP1G97	
AUP1G98	Single Configurable (9 functions)	SN	174AUP1G98	
AUC1G57	Single Configurable (5 functions)	SN	74AUC1G57 ¹	NC7SV57
AUC1G58	Single Configurable (5 functions)	SN	74AUC1G58 ¹	NC7SV58

¹Preview

Translation Devices

Function		Company:	TI	Fairchild	Pericom	IDT
LVC1T45	Single-Bit	All devices are Duel Correly Due	SN74LVC1T45			
LVC2T45	Dual-Bit	All devices are Dual-Supply Bus	SN74LVC2T45			
AVC1T45	Single-Bit	Transceivers w/Configurable Voltage Translation and 3-State Outputs	SN74AVC1T45 ¹			
AVC2T45	Dual-Bit	Translation and 3-State Outputs	SN74AVC2T45 ¹			
AVCH1T45	Single-Bit (v	v/Bus Hold)	SN74AVCH1T45 ¹			
AVCH2T45	Dual-Bit (w/	Bus Hold)	SN74AVCH2T45 ¹			

¹Preview

Overv

Selection Guide

Cross-Reference

аскадіпд

PART NUMBER DEFINITION

COMPETITOR PART PREFIXES

TI	Toshiba	Fairchild	ON	STMicro	Philips	IDT	Pericom
Little Logic							
SN74AHC1G	TC7S	NC7S	MC74VHC1G	74V1G	74AHC1G		
SN74AHCT1G	TC7SET	NC7ST	MC74VHC1GT	74V1T	74AHCT1G		
SN74AUC1G		NC7SV	NL17SV				
SN74AUC2G		NC7WV					
SN74AUP1G		NC7SP					
SN74LVC1G	TC7SZ	NC7SZ	NL17SZ	74LX1G	74LVC1G	IDT74LVC1G	P174STX1G
SN74LVC2G	TC7WZ	NC7WZ	NL27WZ		74LVC2G		P174STX2G
SN74LVC3G	TC7WZ	NC7NZ	NL37WZ				P174STX3G
Little Logic Signal S	Switches						
SN74AUC2G	TC7PA						
SN74CBT1G	TC7SB	NC7SZ					P15A
SN74CBTD1G	TC7SBD	NC7SZD					
SN74CBTLV1G	TC7SBL						P13A
SN74LVC1G66		NC7SZ66			74LVC1G66		
SN74LVC2G66		NC7WB66					
Little Logic Configu	rables						
SN74AUP1G57		NC7SP57					
SN74AUP1G58		NC7SP58					
SN74LVC1G57		NC7SZ57					
SN74LVC1G58		NC7SZ58					
Little Logic Transla	tion						
SN74LVC1T45							
SN74LVC2T45							

LITTLE LOGIC PACKAGING AND MECHANICAL DATA

Package Data	DCT 8-pin	DCU 8-pin	DBV 5- or 6-pin	DCK 5- or 6-pin	YEP/YZP 5- or 6-pin	YEP/YZP 8-pin
Length (mm)	2,95 ± 0,20	2,0 ± 0,1	2,90 ± 0,1	2,00 ± 0,15	1,40 ± 0,05	1,90 ± 0,05
Width (mm)	4,00 ± 0,25	3,1 ± 0,1	2,80 ± 0,2	2,10 ± 0,2	0,90 ± 0,05	0,90 ± 0,05
Height (mm)	1,30	0,90	1,20	0,95	0,50	0,50
Footprint Area (mm²)	11,80	6,20	8,12	4,20	1,26	1,71
Weight (gm)	0,0206	0,0095	0,0135	0,006	≤ 0,001	0,0013

LITTLE LOGIC PACKAGE CROSS-REFERENCE

	TI	Fairchild	ON	Toshiba	Philips	IDT	Pericom	STMicro
NanoStar	YEP	L6*						
NanoFree	YZP							
SOT-23 (5-pin)	DBV	M5	DT	F	GV		TX	ST
SC-70 (5-pin)	DCK	P5	DF	FU	GW	DY	CX	CT
SOT-23 (6-pin)	DBV	DT			GV			
SC-70 (6-pin)	DCK	P6	DF		DW			
SM-8 (8-pin)	DCT			FU				
US-8 (8-pin)	DCU	K8	US	FK	DC			

*Nanostar measures smaller than L6 package.

Note: Pb-Free, NanoFree classified per J-STD-020B MSL-1 rated.

www.ti.com/nanostar

TI Package Suffix Decoder

YEP is NanoStar YZP is NanoFree, Pb-Free DBV is 5 and 6-pin leadframe DCK is 5 and 6-pin leadframe, slightly smaller than DBV DBV is 5 and 6-pin leadframe DCK is 5 and 6-pin leadframe, slightly smaller than DBV DCT is 8-pin leadframe DCU is 8-pin leadframe, slightly smaller than DCT

INTRODUCTION TO NanoStar AND NanoFree

As the marketplace continues to demand size reductions in various consumer electronic products such as cell phones, PDAs, MP3/CD players and other portable devices, the need for smaller logic packaging becomes paramount. The major challenge of today's digital processing industry is the overall system cost reduction as complexity and functionality increase. These marketplace forces have resulted in circuit integration and board miniaturization becoming a necessary trend for successful competition. To address these rapidly evolving customer requirements, TI has defined the latest innovation in logic packaging: NanoStar and NanoFree. This is a wafer-chip-scale package (WCSP) and, to date, is the world's smallest 5-, 6- and 8-pin logic solution for Little Logic functions. NanoStar and NanoFree are registered under JEDEC MO-211, and are the only waferlevel logic solutions available to date. NanoStar uses an eutectic SnPb ball, and NanoFree uses a Pb-Free (SnAgCu) ball. Other than ball metallurgy, there is no difference between NanoStar (YEA) and NanoFree (YZA). TI offers both a small ball and a large ball version of the WCSP.

Package Designators

YEP = SnPb Large Ball YZP = Pb-Free Large Ball

PACKAGE DATA

Package Comparisons

i donago companicono				
	SOT-23 (5-pin)	SC-70 (5-pin)		WCSP (5-/6-pin)
Package Data	TI – DBV	TI – DCK	ESV*	TI – YEP/YZP
Length (mm)	2,90 ± 0,10	2,00 ± 0,15	1,60 ± 0,05	1,40 ± 0,05
Width (mm)	2,80 ± 0,20	2,10 ± 0,30	1,60 ± 0,05	0,90 ± 0,05
Height Max (mm)	1,45	1,10	0,60	0,50
Footprint Area (mm²)	8,12	4,20	2,56	1,26
Approx. Weight (g)	0,0135	0,006	0,003	≤0,00113

^{*}Available 30 2004.

WCSP Design Summary—17

PACKAGE DATA (Continued)

Dual-/Triple-Gate Comparisons

	SOT-23 (6-pin)	SC-70 (6-pin)	SSOP (8-pin)	VSOP (8-pin)	WCSP (8-pin)
Package Data	TI – DBV	TI – DCK	TI – DCT	TI – DCU	TI – YEP/YZP
Length (mm)	2,90 ± 0,10	2,00 ± 0,15	$2,95 \pm 0,20$	2,0 ± 0,10	1,90 ± 0,05
Width (mm)	2,80 ± 0,20	2,10 ± 0,30	4,0 ± 0,25	$3,10 \pm 0,10$	0.90 ± 0.05
Height (mm)	1,20 ± 0,25	0.95 ± 0.15	1,30 max	0,90 max	0,50 max
Footprint Area (mm²)	8,12	4,20	11,80	6,20	1,71
Weight (g)	0,0135	0,006	0,0206	0,0095	0,00153

Package Attributes

•			
Attribute	5-Ball	6-Ball	8-Ball
Ball Pitch (mm)	0,5	0,5	0,5
Ball Diameter (mm)	Small Ball = 0,17 Large Ball = 0,23	Small Ball = 0,17 Large Ball = 0,23	Small Ball = 0,17 Large Ball = 0,23
Package Length (mm)	1,4	1,4	1,9
Package Width (mm)	0,9	0,9	0,9
Package Height (mm)	0,5 max	0,5 max	0,5 max
Ball Matrix (rows, columns)	3 x 2, depopulate 1	3 x 2	4 x 2
Weight (mg)	Small Ball = 0,995 Large Ball = 1,07	Small Ball = 0,998 Large Ball = 1,13	Small Ball = 1,30 Large Ball = 1,53
Ball Metallurgy	SnPb or Pb-Free	SnPb or Pb-Free	SnPb or Pb-Free
Moisture Level	Level 1 @ 260°C	Level 1 @ 260°C	Level 1 @ 260°C

5-Ball Package

6-Ball Package

8-Ball Package

PCB DESIGN GUIDELINES

Solder Ball Composition

Package Area Configuration (0,5-mm Ball Pitch)

PCB Design

Non-Solder N (NSMD) Prefe		Solder Mask Defined (SMD)		
	Solder Mask		Solder Mask	
Copper Pad	Opening	Copper Pad	Opening	
"A"	"B"	"C"	"D"	
Small Ball (YE	A, YZA)			
0,175 mm	0,350 mm	0,350 mm	0,175 mm	
+ 0,0/-0,025 mm	± 0,025 mm	± 0,025 mm	+ 0,0/-0,025 mm	
Large Ball (YEF	P, YZP)			
0,225 mm	0,350 mm	0,350 mm	0,225 mm	
± 0,025 mm	± 0,025 mm	± 0,025 mm	± 0,025 mm	

5-/6-Ball PCB Pattern

8-Ball PCB Pattern

Note: Trace width shall be $\leq \frac{2}{3}$ pad diameter.

IR REFLOW PROFILE

Reflow Parameters

	Pb Assy	Pb-Free
Ramp Rate:	3°C/sec. Max.	3°C/sec. Max.
Preheat	135 to 165°C	150 to 180°C
	60 to 120 sec.	60 to 120 sec.
Time Above	183°C	220°C
Liquidus:	30 to 90 sec.	30 to 90 sec.
Peak Temp.	235°C ±5°C	255°C ±5°C
Time Within 5°C	20 to 40 sec.	20 to 40 sec.
Peak Temp.		
Ramp Down Rate	6°C/sec. Max.	6°C/sec. Max.

Note: These are ideal profiles, and actual conditions obtained in any specified reflow oven will vary. The profiles are based on convection or RF plus forced convection heating.

SnPb Eutectic (AT-Alloy and S2062) Recommended Temperature Profile

Pb-Free Ball NanoFree Recommended Temperature Profile

STENCIL VITALS

Solder Paste

TI recommends the use of type 3 or finer solder paste when mounting the WCSP. The use of paste offers the following advantages:

- Paste aids wetting of the solder ball to the PCB land.
- The adhesive properties of the paste will hold the component in place during reflow.
- Paste contributes to the final volume of solder in the joint, and thus allows this volume to be varied to give an optimum joint.
- Paste selection is normally driven by overall system assembly requirements. In general, the "no clean" compositions are preferred due to the difficulty in cleaning under the mounted components.

5-/6-Ball Solder Stencil (Small/Large Ball)

Stencil Thickness = 0,125 mm

8-Ball Solder Stencil (Small/Large Ball)

Stencil Thickness = 0,125 mm

Overview

THERMAL CHARACTERISTICS

Thermal Impedance Values at Various Airflow Rates (Model data per JESD 51-7 and JESD 51-3)

		Thermal	Airflow (linear ft/minute)				
Package		Impedance	0	150	250	500	
Small Ba	II						
5-Ball	1S0P	R _{0JA} (°C/W)	251.66	233.62	224.28	211.12	
		R _{OJC} (°C/W)	21.4	_	_	_	
	1S2P	R _{OJA} (°C/W)	154.32	152.05	150.73	148.72	
		R _{OJC} (°C/W)	18.75	_	_	_	
6-Ball	1S0P	R _{OJA} (°C/W)	236.83	219.01	210.02	197.39	
		R _{OJC} (°C/W)	21.03	_	_	_	
	1S2P	R _{OJA} (°C/W)	143.47	141.14	139.87	137.93	
		R _{OJC} (°C/W)	18.48	_	_	_	
8-Ball	1S0P	R _{OJA} (°C/W)	236.59	218.76	209.46	196.32	
		R _{OJC} (°C/W)	16.45	_	_	_	
	1S2P	R _{OJA} (°C/W)	139.87	137.69	136.34	134.34	
		R _{OJC} (°C/W)	14.80	_	_	_	
Large Ba	II						
5-Ball	1S2P	R _{0JA} (°C/W)	131.56	129.26	128	126.08	
		R _{OJC} (°C/W)	18.0	_	_	_	
6-Ball	1S2P	R _{0JA} (°C/W)	123.36	121.03	119.8	119.3	
		R _{OJC} (°C/W)	17.6	_	_	_	
8-Ball	1S2P	R _{OJA} (°C/W)	101.92	99.69	98.5	96.75	
		R _{OJC} (°C/W)	13.79	_	_	_	

BOARD-LEVEL RELIABILITY DATA

Board-Level Reliability $\mathbf{N_1}$ (cycles to first failure)

NanoStar/NanoFree (YEA/YZA)

>1000 cycles

No underfill or adhesive was used, nor is required for these packages.

Test Parameters:

2 cycles/hr: -40 to +125 °C 0.8-mm thick FR4 epoxy board per IPC-9701, TC3, NTC-C

BOARD-MOUNTING PICK-UP TOOLS

Due to the package size and configuration, a rectangular or circular shaped pick-up tool is recommended. It is also recommended the tool have an outside diameter smaller than the package body, with a compliant tip. Recommended placement force is 200 gF.

WCSP TESTABILITY

Solder Balls Provide Easy Access

Due to the ideal placement of the solder balls along the outside of the package along with sufficient ball height, probe tips can easily create a dedicated contact to the individual pins.

WCSP (YEA/YZA)

			C (pF)		
	R (Ω)	L (nH)	5-Ball	6-Ball	8-Ball
Mean	0.001	0.021	0.046	0.046	0.043

Note: Electrical package parasitic was achieved through electrical modeling and is based on a 3D model. Actual electrical data may differ slightly from simulated results

Little Logic Product Portfolio Electrical Performance

	Operating					
	Voltage	Optimized	Propagation	Output	Input	
	Range	Voltage	Delay (typ)	Drive	Tolerance	I _{OFF}
Family	(V)	(V)	(ns)	(mA)	(V)	Protection
AUC	0.8 to 2.7	1.8	2.0	8	3.6	Yes
LVC	1.65 to 5.5	3.3	3.0	24	5.5	Yes
AHC	2.0 to 5.5	5	5.0	8	5.5	No
AHCT	4.5 to 5.5	5	5.0	8	5.5	No
CBT	4.5 to 5.5	5	0.25*	<u></u> **	5.5	Yes
CBTD	4.5 to 5.5	5	0.25*	<u></u> **	5.5	Yes
CBTLV	2.3 to 3.6	3.3	0.25*	<u></u> **	3.6	Yes

^{*}The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impedance). The value listed is a maximum.

PACKAGING TAPE AND REEL

Reel Tape Configuration (Small/Large Ball)

Dimensions	5- and 6-Ball	8-Ball
Pocket Width, A ₀ (mm)	1,10 ± 0,05	1,10 ± 0,05
Pocket Length, B ₀ (mm)	1,60 ± 0,05	2,10 ± 0,05
Pocket Depth, K ₀ (mm)	$0,56 \pm 0,05$	$0,56 \pm 0,05$
Pocket Pitch, P ₁ (mm)	4,0 ± 0,1	4,0 ± 0,1
Sprocket Hole-to-Pocket Centerline, F (mm)	3,50 ± 0,05	3,50 ± 0,05
Sprocket Hole-to-Pocket Offset, P ₂ (mm)	2,0 ± 0,05	2,0 ± 0,05
Sprocket Hole Pitch, P ₀ (mm)	4.,00 ± 0,1	4,00 ± 0,1
Tape Width, W (mm)	8,00 ± 0,3	8,00 ± 0,3
Reel Diameter (mm) Max.	178	178

^{**}The FET switch has no output drive. The drive current at the output terminal is determined by the drive current of the device connected at the input terminal of the FET switch.

REWORK PROCEDURE

There are several rework equipment vendors in the market offering well designed equipment and established processes. Air-Vac Engineering (www.air-vac-eng.com) has established NanoStar reflow profiles for both convection and contact heat (conduction) rework processes. A typical process for the convection using DRS-24NC equipment for a 0.056-inch thick FR4 board can be:

Eutectic Balls

- 1) Apply flux to component using Auto Flux feature of DRS24
- 2) Align device over pads
- 3) Place device on board
- 4) Raise nozzle .050"
- 5) Preheat board to 90°C, nozzle warming up 20% air flow, $100^{\circ}\mathrm{C}$
- 6) Soak Stage—20% air flow, 200°C, 90 seconds

- 7) Ramp Stage—20% air flow, 300°C, 30 seconds
- 8) Reflow Stage—25% air flow, 325°C, 55 seconds
- 9) Cooldown Stage—40% air flow, 25°C, 30 seconds

Pb-Free Balls

Apply flux to component using Auto Flux feature of DRS24:

- 1) Align device over pads
- 2) Place device on board
- 3) Raise nozzle .050"
- 4) Preheat board to 90°C, nozzle warming up 20% air flow, 125°C
- 5) Soak Stage—20% air flow, 225°C, 90 seconds
- 6) Ramp Stage—20% air flow, 335°C, 30 seconds
- 7) Reflow Stage—25% air flow, 370°C, 65 seconds
- 8) Cooldown Stage—40% air flow, 25°C, 50 seconds

The recommended tooling for both the convection and conduction processes is:

Process	Nozzle Description	Nozzle Part Number	Tray
Hot Gas	NanoStar .0365" x .0560" x .0155" 5-ball	N09DVG-7	A04DVG06
Contact	NanoStar .0365" x .0560" x .0155" 5-ball	CE037-056TI	A0201X8-0X

GEOMETRIC DIMENSIONAL TOLERANCES

Coplanarity

This package meets a coplanarity of 0,05 mm as shown. Coplanarity is defined as a unilateral tolerance zone measured upward from the seating plane. (Reference ASME Y14.5M - 1994)

ON-LINE HELP

For information regarding TI's Little Logic portfolio visit:

www.ti.com/littlelogic

For additional logic information including application reports, samples, and data sheets visit:

logic.ti.com

To access the TI Logic Knowledge Base and get answers to your technical questions go to:

www.ti.com/logickb

To subscribe to Logic News, a monthly newsletter featuring new products and other TI Logic news, visit:

www.ti.com/logicnews

LITERATURE

Selection Guides Logic Selection Guide	Lit. NumberSDYU001*
Advanced Bus Interface Logic Selection Guide	
Data BooksLittle Logic Data BookLogic Pocket Data BookSignal Switch Data BookAHC/AHCT Data Book	SCYD013*
Application Notes Application of the Texas Instruments AUC Sub-1-V Little Logic Devices . Selecting the Right Texas Instruments Signal Switch	S

Lit. Number
SCYB004
SCEB011
SCDB002A
SCYB010*
SCYB011
ies
SCYB014*

To order any TI Logic literature listed, please contact the Texas Instruments Literature Response Center at 1-800-477-8924 and provide the literature number.

*Literature available on the Web by substituting the **Lit. Number** (all lower-case) in the following address:

www-s.ti.com/sc/techlit/litnumber

LITTLE LOGIC SAMPLE REQUESTS

Working day and night and need a free TI product sample fast? Orders for material in stock received by 7 p.m. CST shipped before midnight the same day.

We're waiting to take your order online 24/7.

We'll help you. That's what our Product Sample program is all about. Helping you place your order for FREE product samples when you're ready to place it.

- 10,000 different devices plus package options.
- No waiting to talk to TI sales or distributors.
- Free—including shipping.

- Orders for material in stock received by 7 p.m. CST shipped before midnight the same day.
- Shipping will be UPS "Next Day" in the U.S. and "Priority 1" internationally.
- Shipping confirmation notice lets you track your order on the UPS Web site.
- Phone option—if you need help selecting a sample part, call your regional Product Information Center found on the back cover of this guide or visit:

support.ti.com

TI Worldwide Technical Support

Internet

TI Semiconductor Product Information Center Home Page

support.ti.com

TI Semiconductor KnowledgeBase Home Page

support.ti.com/sc/knowledgebase

Product Information Centers

Americas

Phone +1(972) 644-5580 Fax +1(972) 927-6377

Internet/Email support.ti.com/sc/pic/americas.htm

Europe, Middle East, and Africa

Phone

Belgium (English) +32 (0) 27 45 55 32 Finland (English) +358 (0) 9 25173948 France +33 (0) 1 30 70 11 64 Germany +49 (0) 8161 80 33 11 Israel (English) 1800 949 0107 800 79 11 37 Italy Netherlands (English) +31 (0) 546 87 95 45 Spain +34 902 35 40 28 Sweden (English) +46 (0) 8587 555 22 United Kingdom +44 (0) 1604 66 33 99 Fax +(49) (0) 8161 80 2045 Internet support.ti.com/sc/pic/euro.htm

Japan

Fax International +81-3-3344-5317
Domestic 0120-81-0036
Internet/Email International support.ti.com/sc/pic/japan.htm
Domestic www.tij.co.jp/pic

Reliable. Logic. Innovation.; the black/red banner; NanoStar; NanoFree; Little Logic; MicroStar BGA; and MicroStar Jr. are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

Asia

Phone

 International
 +886-2-23786800

 Domestic
 Toll-Free Number

 Australia
 1-800-999-084

 China
 800-820-8682

 Hong Kong
 800-96-5941

 Indonesia
 001-803-8861-1006

Indonesia 001-803-8861-1006 Korea 080-551-2804 Malaysia 1-800-80-3973 New Zealand 0800-446-934 **Philippines** 1-800-765-7404 Singapore 800-886-1028 Taiwan 0800-006800 Thailand 001-800-886-0010

Fax 886-2-2378-6808 Email tiasia@ti.com ti-china@ti.com

Internet support.ti.com/sc/pic/asia.htm

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI's standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer's applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company's products or services does not constitute TI's approval, warranty or endorsement thereof.

A111103

