	DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY	, LONERE								
	Regular and Supplementary Summer 2024									
	Course: B. Tech. Branch: Electronics and Computer Engineering /	Electronics								
	and Computer Science Engineering Semeste	er : IV								
	Subject Code & Name: BTBS404 Probability Theory and Random Processes									
	Max Marks: 60 Date: 20/06/2024 Duration: 3	Duration: 3.00 Hr.								
	 Instructions to the Students: All the questions are compulsory. Use of non-programmable scientific calculators is allowed. Assume suitable data wherever necessary and mention it clearly. 	(Level/CO)	Marks							
Q. 1	Solve Any Two of the following.		12							
A)	A bag contains 7 white, 6 green and 5 black balls. Two balls are drawn		6							
n,	at random. Find the probability that they will both be white.	CO1	Ü							
B)	A Problem on calculus is given to two students Seeta & Geeta whose chances of solving it are $\frac{1}{3}$ and $\frac{1}{4}$ respectively. Find the probability of the problem being solved, if both of them try independently.	CO1	6							
С)	If a machine is set up correctly it produce 90% good items, if it is incorrectly set up then it produce 10% of good items. Chances for a setting to be correct & incorrect are in the ratio 7:3 after a setting is made the first two items produced are found to be good items. What is the chance that the setting was correct?	CO1	6							
Q.2	Solve Any Two of the following.		12							
A)	Consider that the lifetime(x) & the brightness (Y) of a light tube are continuous random variables. The joint probability density function $f_{x,y}(X,Y) = \lambda_1 \lambda_2 e^{-(\lambda_1 X + \lambda_2 Y)}, 0 < X < \infty, 0 < Y < \infty$, than find marginal density functions.	CO2	6							
В)	The probability that a bomb dropped from a plane will strike the target is $\frac{1}{5}$. If six bombs are dropped, find the probability that i) Exactly two will strike the target. ii) At least two will strike the target.									
C)	The life of army shoes is normally distributed with mean eight months & S.D. two months. If 5000 pairs are issued, how many pairs would be expected to need replacement after 12 months? (The area under standard normal curve between 0 to 2 is 0.4772)	CO2	6							
Q. 3	Solve Any Two of the following.		12							
A)	Calculate the coefficient of correlation by Karl Pearson's method for following table	CO3	6							
	X 10 14 18 22 26 30 Y 18 12 24 6 30 36									

B)	If $r = 0.8$, $\sum xy = 60$, $\sigma_y = 2.5$ & $\sum x^2 = 90$ then find the number										CO3	6	
	of items (n). Where x and y are the deviation from the arithmetic												
C	mean. Obtain the Spearman's rapk correlation coefficient to the following										CO2		
C)	Obtain the Spearman's rank correlation coefficient to the following data											CO3	6
	X	70	64	82	55	64	90	82	50	60	64		
	Y	70	62	75	52	85	65	75	45	60	80		
Q.4	Solve Any Two of the following.												12
A)	If θ is the acute angle between the two regression lines for two variables X and Y, then show that									CO4	6		
	$\tan\theta = \left \frac{\sigma_{x} \sigma_{y}}{\sigma_{x}^{2} + \sigma_{y}^{2}} \left(\frac{r^{2} - 1}{r} \right) \right $												
В)	Two lines of regressions are 5y-8x+17=0 and 2y-5x+14=0. If σ_y^2 = 16 find i) The mean values of x and y. ii) The variance of x. iii) Correlation coefficient between x and y.										CO4	6	
C)	If \overline{x} =8.2, \overline{y} = 12.4, σ_x = 6.2, σ_y = 20, $r(x,y)$ = 0.9 than find the lines of regression. Estimate the value of x for y = 10 & estimate the value of y for X = 10.										CO4	6	
Q. 5	Solve Any Two of the following.											12	
A)	In a random sample of 340 students, 178 of the 210 females and 90 of the 130 males passed Statistics and Probability on their first take. Construct a 90% confidence interval for the population proportion of students who passed the subject.										CO5	6	
В)	A stenographer claims that she can take dictation at the rate of 120 words per minute. Can we reject her claim on the basis of 100 trails in which she demonstrates a mean of 116 words with a standard deviation of 15 words? Use 5 percent level of significance.										CO5	6	
C)	700 ladies, out of sample of 1000, were consumers of lipsticks before GST. After GST 600 ladies, were consumers of lipsticks in a sample of 900 persons. Find out whether there is significant decrease in the consumption of lipsticks after GST. Given 1 % level of significance $Z_{\alpha}=2.33$									CO5	6		
	*** End ***												