TD 11. Limites et continuité.

Exercice 1. VRAI ou FAUX?

- a) Si $\lim_{x \to \infty} f(x) = +\infty$ alors f croît au voisinage de $+\infty$.
- b) Si $\lim_{x\to a} f(x) \le \lim_{x\to a} g(x)$ alors $f \le g$ au voisinage de a.
- c) Si f a une limite finie en a et si g n'a pas de limite en a alors f + g n'a pas de limite en a.
- d) Si f a une limite infinie en a et si g n'a pas de limite en a alors f+g n'a pas de limite en a.
- e) Si f et g ne sont pas continues en a alors f + g non plus.
- f) Si $f:[a,b]\to\mathbb{R}$ est continue et strictement positive, alors $\exists c>0, \ \forall x\in[a,b], \ f(x)\geq c$.
- g) L'image d'un intervalle ouvert par une fonction continue est un intervalle ouvert.
- h) L'image d'un segment par une fonction continue est un segment.
- i) L'image d'un intervalle borné par une fonction continue est un intervalle borné.

Exercice 2. Calcul des limites suivantes :

$$\mathbf{1}^{\circ}) \lim_{x \to 0^{+}} \frac{\sin(x \ln x)}{x}$$

$$4^{\circ}) \lim_{x \to +\infty} \frac{x \ln x - x}{x + \cos x}$$

7°)
$$\lim_{x \to +\infty} x \left(e^{\frac{1}{x}} + e^{\frac{2}{x}} - 2 \right)$$

$$2^{\circ}$$
) $\lim_{x\to+\infty} \left(1+\frac{1}{x}\right)^x$

$$\mathbf{5}^{\circ}) \lim_{x \to 0^{+}} x \ln \left(1 + \frac{1}{x} \right) \qquad \mathbf{8}^{\circ}) \lim_{x \to \frac{\pi}{2}} \tan(x) \tan(2x)$$

8°)
$$\lim_{x \to \frac{\pi}{2}} \tan(x) \tan(2x)$$

$$\mathbf{3}^{\circ}$$
) $\lim_{x\to 0^+} x^3 \sin\left(\frac{1}{x}\right)$

6°)
$$\lim_{x \to +\infty} x^3 (\ln x)^2 e^{-x}$$

9°)
$$\lim_{x \to +\infty} \sqrt{x^2 + 1} - x$$

Exercice 3. Montrer qu'une fonction de \mathbb{R} dans \mathbb{R} périodique et non constante n'a pas de limite en $+\infty$.

Exercice 4. Étudier la continuité en tout point de \mathbb{R} de $f: x \mapsto \lfloor x \rfloor + \sqrt{x - \lfloor x \rfloor}$.

Exercice 5. On pose : $f: x \mapsto \frac{x^2 - 2x - 3}{\sqrt{x + 1}}$.

- a) Donner le domaine de définition et de continuité de f.
- b) Peut-on prolonger f par continuité?

Exercice 6. Montrer que $f: \]0, \frac{\pi}{4}[\ \to \ \mathbb{R}$ $x \quad \mapsto \ (\tan x)^{\tan(2x)}$ est bien définie et qu'elle est prolongeable

par continuité en 0.

Exercice 7. Soit $f: \mathbb{R} \to \mathbb{R}$, continue en 0, et telle que : $\forall x \in \mathbb{R}$, f(2x) + f(x) = 0.

- a) Que vaut f(0)?
- b) Soit $x_0 \in \mathbb{R}$. Montrer: $\forall n \in \mathbb{N}, f(x_0) = (-1)^n f\left(\frac{x_0}{2n}\right)$.
- c) En déduire que f est constante.

Exercice 8. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue sur \mathbb{R} telle que : $\forall (x,y) \in \mathbb{R}^2$, f(x+y) = f(x) + f(y).

- a) Que vaut f(0)? Montrer que f est impaire.
- b) Soit $x \in \mathbb{R}$. Montrer que pour tout $n \in \mathbb{Z}$, f(nx) = nf(x).
- c) Notons a = f(1). Exprimer, pour tout $x \in \mathbb{Q}$, f(x) en fonction de x et de a.
- d) En déduire f.

Exercice 9. Un cycliste parcourt 30 km en une heure. Montrer qu'il existe un intervalle d'une demiheure durant lequel il parcourt exactement 15 km.

Indication : introduire la fonction $d:[0;1] \to \mathbb{R}$ qui, à $t \in [0;1]$ (temps exprimé en heure), associe la distance d(t) parcourue (en km) entre l'instant 0 et l'instant t.

Exercice 10. Soit f une fonction de [0,1] dans [0,1], continue. Soit $n \in \mathbb{N}^*$.

- a) Montrer: $\exists x_0 \in [0,1], f(x_0) = (1-x_0)^n$.
- b) Montrer l'unicité dans le cas où f est croissante.

Exercice 11. Déterminer les applications continues de \mathbb{R} dans \mathbb{R} telles que :

$$\forall x \in \mathbb{R}, f(x)^2 - 2f(x) - 1 = 0$$

Exercice 12. Soit $f:[0;+\infty[\to\mathbb{R}]$ une fonction continue ayant une limite finie en $+\infty$.

- a) Montrer que f est bornée.
- b) f atteint-elle ses bornes?

Exercice 13. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue. Montrer que $\lim_{x \to +\infty} \frac{f(\sin x)}{x} = 0$.