Course	210903041	Course	COMPILED DESIGN	Course	C	PROFESSIONAL CORE	L	Т	Р	С
Code	210303043	Name	COMPILER DESIGN	Category	C	PROFESSIONAL CORE	2	0	2	3

Pre-requisite Courses	Nil	Co- requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		School of Computing	Data Book / Codes / Standards		Nil

Course L	earning Rationale (CLR):	The purpose of learning this course is to:		Program Outcomes (PO)											Program			
CLR-1:	: outline the implementation of Lexical Analyzer		1	2	3	4	5	6	7	8	9	10	11	12	Specific Outcomes			
CLR-2:	LR-2: learn the various parsing techniques					of	ડા					Work		e				
CLR-3:	LR-3: familiarize the intermediate code generation and run-time environment		Knowledge	S	nent	investigations lex problems	Usage	ъ			_	tion	Finance	Бu				
CLR-4:	R-4: learn the implementation of code generator			alysis	lopr	estig orobl	l Us	er and	t &		Team		∞	eaming				
CLR-5:	identify the various methods	for Code Optimizer		ering	An	/deve	ct inv	Tool	engineer ety	nmen		ual &	unica	Mgt.				
Course C	Outcomes (CO):	At the end of this course, learners will be able to:		Engineering	Problem	Design/development solutions	Conduct ii of comple	Modern	The er	Environment 8 Sustainability	Ethics	Individual	Communication	Project Mgt.	Life Long I	PS0-1	PSO-2	PSO-3
CO-1:	acquire knowledge of Lexica	I Analyzer from a specification of a language's lexical rules		3	2	-	-	2	-	-	-	-	-	-	-	-	1	-
CO-2:	D-2: apply different parsing algorithms to develop the parsers for a given grammar			3	3	-	-	2	-	-	-	-	-	-	-	-	1	-
CO-3:	9-3: gain knowledge to translate a system into various intermediate codes			3	2	-	-	2	-		-	-	-	-	-	-	1	-
CO-4:	20-4: analyze the methods of implementing a Code Generator for compilers			3	2	-	3	-	-	-	-	-	-	-	-	-	1	-
CO-5:	design the methods of developing a Code Optimizer		3	-	2	3	-	-	-	-	-	-	-	-	-	1	-	

Unit-1 - Introduction 12 Hour

Compilers-Phases of Compiler-Cousins of the Compiler-Grouping of Phases-Compiler construction tools- Lexical Analysis-Role of Lexical Analyzer-Input Buffering -Specification of Tokens -LEX -Finite Automata-Regular Expressions to Automata -Minimizing DFA.

Unit-2 – Top Down Parsing

Role of Parser-Grammars-Error Handling-Context-Free Grammars-Writing a grammar- Elimination of Ambiguity-Left Recursion- Left Factoring-Top Down Parsing — Recursive Descent Parser- Predictive Parser- LL(1) Parser- Computation of FIRST-Computation of FOLLOW-Construction of a predictive parsing table-Predictive Parsers LL(1) Grammars- Predictive Parsing Algorithm- Problems related to Predictive Parser - Error Recovery in Predictive Parsing-.

Unit-3 – Bottom-Up Parsing

12 Hour

Bottom Up Parsing-Reductions-Handle Pruning-Shift Reduce Parser-Problems related to Shift Reduce Parsing-Operator Precedence Parser, LEADING, TRAILING -LR Parser- LR Parsers- Need of LR Parsers-LR (0)Item-Closure of Item Sets- Construction of SLR Parsing Table -Problems related to SLR-Construction of Canonical LR(1)- Problems related to CLR - LALR Parser — Problems related to LALR-YACC.

Unit-4 – Code Generation 12 Hour

Intermediate Code Generation- prefix – postfix notation- Quadruple - triple - indirect triples Representation- Syntax tree- Evaluation of expression - Three-address code- Synthesized attributes – Inherited attributes - Intermediate languages – Declarations- Assignment Statements- Boolean Expressions- Case Statements- Back patching – Procedure calls- Code Generation- Issues in the design of code generator- The target machine – Runtime Storage management- A simple Code generator- Code Generation Algorithm- Register and Address Descriptors.

Unit-5 – Code Optimization 12 Hour

Code optimization -Principal Sources of Optimization- Function Preserving Transformation- Loop Optimization- Peephole optimization — DAG- Basic Blocks- Flow Graphs- Global Data Flow Analysis — Efficient Data Flow Algorithm- Runtime Environments- Source Language issues- Storage Organization- Activation Records- Storage Allocation strategies.

Lab Experiments	
Lab 1 - Implementation of Lexical Analyzer	Lab 9 Computation of LR (0) items
Lab 2 conversion from Regular Expression to NFA	Lab 10-Intermediate code generation – Postfix, Prefix
Lab 3 Conversion from NFA to DFA	Lab 11 Intermediate code generation – Quadruple, Triple, Indirect triple
Lab 4 Elimation of Ambiguity, Left Recursion and Left Factoring	Lab 12: A simple code Generator
Lab 5 -FIRST AND FOLLOW computation	Lab 13 Implementation of DAG
Lab 6 Predictive Parsing Table	Lab 14: Implementation of Global Data Flow Analysis
Lab 7 - Shift Reduce Parsing	Lab 15: Implement any one storage allocation strategies (heap, stack, static)
Lab 8- Computation of LEADING AND TRAILING	

	1.	Airred V. Ano, Monica S. Lam, Ravi Setni, Jenrey D. Oliman, Compilers: Principles, Techniques	4.	David Galles, Modern Compiler D	esigri , Pearson Eauca	ation, Reprit 2012.		
Learning		and Tools, Second Edition, Pearson Education, 2011.	5.	Raghavan V., "Principles of Comp	oilerDesign", Tata McC	Graw Hill Education Pvt. Ltd		
Resources	2.	S. Godfrey Winster, S. Aruna Devi, R. Sujatha, "Compiler Design", Yesdee Publishing Pvt.Ltd, 2016		2010.				
	3.	K .Muneeswaran,"CompilerDesign", Oxford Higher Education, Fourth Edition, 2015.						
Learning Assessment								
		Continuous Learning Assess	nent	(CLA)	_			

			Continuous Learning	Summative			
	Bloom's Level of Thinking	CLA-1 Avera	native ge of unit test 5%)	CL	g Learning .A-2 5%)	Final Examination (40% weightage)	
		Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	15%	-	-	15%	15%	-
Level 2	Understand	25%	-	-	20%	25%	-
Level 3	Apply	30%	-	-	25%	30%	-
Level 4	Analyze	30%	-	-	25%	30%	-
Level 5	Evaluate	-	-	-	10%	-	-
Level 6	Create	-	-	-	5%	-	-
	Total	10	0 %	10	0 %	10	0 %

Course Designers									
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts							
1. Saranya Baskar, Lead Software Testing Engineer, EPAM	1. Dr. E. Ilavarasan, Professor, Department of Computer Science	1. Dr. M. Baskar, SRMIST							
Systems India Private Limited, Hyderabad.	and Engineering, Puducherry Technological University,								
saranya_baskar@epam.com	Puducherry.								
	2. Dr. M. Shyamala Devi, Professor, Department of Computer	2. Dr. Godfrey Winster S SRMIST							
	Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R								
	& D Institute of Science and Technology, Chennai.								