MAE 8 - Spring 2022 Homework 2

Instructions: Follow the homework solution template. Put all answers in a MATLAB script named **hw2.m**. Submit **hw2.m** in CANVAS before 10 PM on Friday 4/15/2022. Use double precision unless otherwise stated.

Problem 1: Perform the following exercises.

- a) Create a 5 x 5 matrix **p1a** with a value of 5 for every element.
- b) Copy the matrix in part a into a new matrix **p1b**. Modify the matrix **p1b** such that all elements on the second column have a value of 0.
 - c) Transpose the matrix in part (b) and put the answer in **p1c**.
 - d) Rotate the matrix in part (b) 90° counterclockwise 3 times and put the answer in **p1d**.
- e) Are the matrices in part (c) and (d) the same? Put the answer in **p1e**. Do not use function **isequal** for this problem.

Problem 2:

(a) Create the following matrix and put the answer in **p2a**. Do not input element by element.

Γ1	0	0	0	0	1	1	0	0	0	0	17
0	2	0	0	2	0	0	2	0	0	2	0
0	0	3	3	0	0	0	0	3	3	0	0
0	0	4	4	0	0	0	0	4	4	0	0
0	5	0	0	5	0	0	5	0	0	5	0
6	0	0	0	0	6	6	0	0	0	0	6
1	0	0	0	0	1	1	0	0	0	0	1
0	2	0	0	2	0	0	2	0	0	2	0
0	0	3	3	0	0	0	0	3	3	0	0
0	0	4	4	0	0	0	0	4	4	0	0
0	5	0	0	5	0	0	5	0	0	5	0
6	0	0	0	0	6	6	0	0	0	0	6

- (b) Extract the 4-by-4 submatrix on the upper left corner of the matrix and put the answer in **p2b**.
- (c) Extract the 4-by-4 submatrix on the upper right corner of the matrix and put the answer in **p2c**.
- (d) Extract the 4-by-4 submatrix on the lower right corner of the matrix and put the answer in $\mathbf{p2d}$.
- (e) Extract all the elements that are on the middle six rows and middle six columns into a 6-by-6 matrix **p2e**.
- (f) Extract the first, third, fifth, seventh, eighth and last rows of the matrix and put them into a 6-by-12 matrix **p2f**.
- (g) Extract the four elements at the four corners of the matrix and put them into a 2-by-2 matrix **p2g**.

Problem 3:

Let $\mathbf{x} = 1:10$ and $\mathbf{y} = 10:10:100$. Evaluate the following expressions using element-wise operations:

- (a) xy. Put the answer in **p3a**.
- (b) $x^{log_{10}(y)}$. Put the answer in **p3b**.
- (c) $\frac{\sin(y^x)}{e^{y/x}}$. Put the answer in **p3c**.
- (d) $\frac{x+e^{-y^x}}{y+\ln(x^y)}$. Put the answer in **p3d**.

Problem 4:

Find the sum of the first 100 terms of the following series:

$$-1 + \frac{1}{3} - \frac{1}{5} + \frac{1}{7} - \frac{1}{9} + \dots$$

Put the answer in **p4**.

Hint: (a) Create a row vector **tmp1** having 100 elements with alternating values of -1 and 1; (b) Create a row vector **tmp2** containing the first 100 odd positive integer numbers; (c) Use function **sum** with the vectors in part (a) and (b) to obtain the sum of the series. You are not required to use this method.

Problem 5:

In the following exercises, you will use the matrices below to perform matrix algebra. The matrices have N x M dimensions, meaning N rows and M columns. Inner matrix dimensions need to match in order for the matrices to be multiplied. If MATLAB gives an error for the question asked, your answer should be a string 'error' (for example, p4a = 'error').

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \quad B = \begin{bmatrix} 7 & 8 \\ 9 & 10 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 3 & 11 \\ 2 & 7 & 4 \end{bmatrix} \quad D = \begin{bmatrix} 9 & 4 \\ 8 & 5 \\ 3 & 2 \end{bmatrix}$$

- a) Compute A^2 and put the result in **p5a**.
- b) Compute A * B and put the result in **p5b**.
- c) Compute A * C and put the result in **p5c**.
- d) Compute A * D and put the result in **p5d**.
- e) Compute B * A and put the result in **p5e**.
- f) Compute D * B and put the result in **p5f**.
- g) Compute B * C and put the result in **p5g**.
- h) Compute C * B and put the result in **p5h**.
- i) Compute D^2 and put the result in **p5i**.

j) Is C*D equal to D*C? Put the answer in **p5j**. The answer should be a logical, look up in MATLAB **help isequal**.

Problem 6: Explore different ways to solve a linear system of equations by typing **help** inv and **help** \ in command window, and then perform the following exercises.

a) Create a 3×3 matrix **A** with the following values and set **p6a=A**.

$$A = \begin{bmatrix} 9 & 8 & 7 \\ 6 & 9 & 7 \\ 1 & 7 & 4 \end{bmatrix}$$

- b) Create a 3-element column vector \mathbf{b} with values of 1, 3 and 5. Set $\mathbf{p6b} = \mathbf{b}$.
- c) Using \setminus operator, solve the system of equations $\mathbf{A}\mathbf{x} = \mathbf{b}$ for \mathbf{x} . Set $\mathbf{p6c} = \mathbf{x}$.
- d) Using function inv, solve the system of equations Ax=b for x. Set p6d=x.
- e) Is the answer in part (c) and part (d) the same? Put the answer in **p6e**. Hint: Check by setting them equal.
 - f) Compute the difference between part (c) and (d) and put the answer in **p6f**.