(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 29. September 2005 (29.09.2005)

PCT

(10) Internationale Veröffentlichungsnummer $WO\ 2005/090394\ A2$

- (51) Internationale Patentklassifikation⁷: C07K 14/21, C12P 13/02
- (21) Internationales Aktenzeichen: PCT/EP2005/002689
- (22) Internationales Anmeldedatum:

14. März 2005 (14.03.2005)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

- (30) Angaben zur Priorität: 10 2004 013 847.8 20. März 2004 (20.03.2004) DE
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): DEGUSSA AG [DE/DE]; Bennigsenplatz 1, 40474 Düsseldorf (DE).

- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): OSSWALD, Steffen [DE/DE]; Landwehrstrasse 33, 63517 Rodenbach (DE). WECKBECKER, Christoph [DE/DE]; August-Imhof-Strasse 25, 63584 Gründau (DE). HUTH-MACHER, Klaus [DE/DE]; Lärchenweg 18, 63571 Gelnhausen (DE). GERASIMOVA, Tatijana [RU/RU]; Podolskih Kursantov, 18/1, fl. 626, Moscow, 117545 (RU). NOVIKOV, Andrey [RU/RU]; Kransnopresnenskaya nab., 1/2, fl. 107, Moscow, 123610 (RU). RYABCHENKO, Ludmila [RU/RU]; Moscow region, Mozajskoe sh., 113, Odintcovo, 14311 (RU). YANENKO, Alexander [RU/RU]; Kutuzovsky pr., 33, fl. 135, Moscow, 12193 (RU). EGOROVA, Ksenia [RU/DE]; Beerentalweg 119, 21077 Hamburg (DE).

[Fortsetzung auf der nächsten Seite]

- (54) Title: CYANIDE TOLERANT NITRILHYDRATASES
- (54) Bezeichnung: CYANIDTOLERANTE NITRILHYDRATASEN

(57) Abstract: The invention relates to cyanide tolerant nitrilhydratases produced from Pseudomonas genus microorganisms which exhibit a high cyanide tolerance. Said invention also relates to the use of said compounds for producing amides from nitriles in the presence of cyanides, polynucleotide sequences coding for said enzymes and and said enzymes.

WO 2005/090394 A2

- (74) Gemeinsamer Vertreter: DEGUSSA AG; Intellectual Property Management, PATENTE und MARKEN, Standort Hanau, Postfach 13 45, 63403 Hanau (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,

ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Erklärung gemäß Regel 4.17:

— Erfindererklärung (Regel 4.17 Ziffer iv) nur für US

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Cyanidtolerante Nitrilhydratasen

Die Erfindung betrifft cyanidtolerante Nitrilhydratasen insbesondere aus Pseudomonas putida- oder Pseudomonas marginalis- Stämmen, die eine erhöhte Cyanidtoleranz aufweisen, ihre Verwendung zur Herstellung von Amiden aus Nitrilen in Gegenwart von Cyaniden und für dieses Enzym kodierende Polynukleotidsequenzen.

Die Umsetzung von α -Hydroxynitrilen (Cyanhydrinen) und α -Aminonitrilen zu den entsprechenden Amiden mittels Nitrilhydratasen eröffnet eine neue Synthesevariante zu α -10 Hydroxysäuren und α -Aminosäuren , da α -Hydroxy- und α -Aminoamide auf einfache Weise verseift werden können (Process and catalysts for the production of methionine. Ponceblanc, Herve; Rossi, Jean-Christophe; Laval, Philip; 15 Gros, Georges. (Rhone-Poulenc Animal Nutrition SA, Fr.), (WO 2001060789). Alternativ können α -Hydroxyamide auch mit Alkali- oder Erdalkalimetallhydroxiden zu den entsprechenden Salzen der Hydroxysäuren umgesetzt werden. Besonders bevorzugt ist hierbei die Umsetzung von 4-Methylthio- α -hydroxybutyramid (MHA-Amid) mit 20 Calciumhydroxid, da Calcium-MHA direkt als alternative Produktform zu Methionin oder MHA als Futtermittelzusatz eingesetzt werden kann.

Allerdings zerfallen α-Hydroxynitrile und α-Aminonitrile
leicht zu Aldehyden und Blausäure bzw. Aldehyden, Blausäure
und Ammoniak. Die entstehende Blausäure ist ein starker
Inhibitor für fast alle bekannten Nitrilhydratasen, mit
Ausnahme der Nitrilhydratase aus Rhodococcus equi XL-1, die
bei 20 mM Cyanid den bisher geringsten bekannten
Aktivitätsverlust zeigt. (Production of amides from
nitriles by Rhodococcus equi cells having a cyanide
resistant-nitrile hydratase. Nagasawa, Tohru;
Matsuyama, Akinobu. (Daicel Chemical Industries, Ltd.,
Japan), (EP 1 266 962 A).

Die geringe Produktivität von ca. 8 g Amid pro g Biotrockenmasse der Ruhezellen, die lange Reaktionszeit von 43 Stunden und die relativ geringe Produktkonzentration von 75 g/L führen zur Suche nach verbesserten Nitrilhydratasen.

Das Ziel der hier beschriebenen Erfindung ist deshalb einen Biokatalysator zur Verfügung zu stellen, der nicht diesen Einschränkungen unterliegt. Ausserdem ist eine noch höhere Toleranz des Biokatalysators gegenüber Cyanid vorteilhaft, da α-Hydroxynitrile und α-Aminonitrile zur Gewährleistung einer schnellen und vollständigen Umsetzung des Aldehyds bevorzugt mit einem 1-3 %-igen Überschuss an Blausäure hergestellt werden, der zum Teil im Produkt verbleibt. Somit können während der Biotransformation Cyanidkonzentrationen auftreten, die 20 mM übersteigen.

15 Nebenprodukte und Reagentien wie als Hilfsbasen eingesetzte

Amine dürfen die Nitrilhydratase-Aktivität ebenfalls nicht

Aufgabe der Erfindung ist es, Nitrilhydratasen bereitzustellen, die gegenüber bei der Umsetzung von Nitrilen zu Amiden in der Reaktionslösung vorhandenen

Cyanidionen eine erhöhte Stabilität aufweisen.

inhibieren.

20

Gegenstand der Erfindung sind isolierte Polynukleotide, insbesondere aus Mikroorganismen der Gattung Pseudonomas, die für Polypeptide mit den Aminosäuresequenzen kodieren, die zu 90 bis 100 % identisch sind mit den in den Sequenzen SEQ ID NO:2, 3, 5, 7, 8, 10 enthaltenden Aminosäuresequenzen, wobei die Polypeptide, enthaltend die Sequenzen SEQ ID NO:2, 3, 5 oder 7, 8, 10, zusammen jeweils die Aktivität einer cyanidtoleranten

Nitrilhydratase besitzen bzw. diese Nitrilhydratase bilden.

Bevorzugt stammen die Polynukleotide aus Pseudonomas putida oder Pseudonomoas marginalis.

Gegenstand der Erfindung sind weiter Polynukleotide, ausgewählt aus der Gruppe

5

- a) Polynukleotide, enthaltend die oder bestehend aus den Nukleotidsequenzen aus den SEQ ID NO:1, 4, 6, 9 oder dazu komplementären Nukleotidsequenzen,
- b) Polynukleotide, enthaltend Nukleotidsequenzen, die den Sequenzen aus a) im Rahmen der Degeneriertheit des genetischen Codes entsprechen,
- c) Polynukleotide enthaltend Nukleotidsequenzen gemäss 10 a), die funktionsneutrale Sinnmutationen enthalten,
 - d) Polynukleotide, die mit den komplementären Sequenzen aus a) oder c) unter stringenten Bedingungen hybridisieren,
- 15 wobei die Polynukleotide für eine cyanidtolerante Nitrilhydratase kodieren.
 - Gegenstand der Erfindung sind ebenso die durch diese Polynukleotide kodierten Polypeptide mit den Sequenzen SEQ ID NO:2, 3, 5 oder 7, 8, 10 mit der Aktivität von
- cyanidtoleranten Nitrilhydratasen aus Mikroorganismen der Gattung Pseudonomas, die sowohl in den Mikroorganismen angereichert oder in isolierter Form vorliegen können.

 SEQ ID NO:2 und 7 kodieren für die alpha-Untereinheiten der Nitrilhydratasen, SEQ ID NO:3 und 8 für die beta-
- 25 Untereinheiten der Nitrilhydratasen und SEQ ID NO:5 und 10 für Aktivatorproteine deren Co-Expression für die Aktivität der Nitrilhydratasen essentiell ist (Nojiri et al., 1999, Journal of Biochemistry, 125:696-704)
- Erfindungsgemäß werden bevorzugt Wirtszellen verwendet, die durch die erfindungsgemäßen Polynukleotide transformiert oder transfektiert wurden.

Die Wirtszellen können zu den Eukaryonten oder Prokaryonten zählen, für die ein stabiles Expressionssystem bekannt ist, insbesondere

Als Host-Organismus dienen bevorzugt Mikroorganismen, für Expressionssysteme gibt, wie z. B. Pseudomonas, Pichia, verschiedene Hefen, Saccaromyces, Aspergillus oder der Familie Streptomyces, isbesondere E. coli. Mikroorganismen der Gattung Rhodococcus sind ebenso geeignet.

10 Vektor DNA kann in eukaryonische oder prokaryonische Zellen durch bekannte Transformations- oder Transfektionstechniken eingeführt werden.

"Transformation", "Transfektion", "Konjugation" und "Transduktion" beziehen sich auf nach dem Stand der Techniken bekannten Maßnahmen, um fremde DNA einzuführen.

15

20

Gegenstand der Erfindung sind ebenso Polynukleotide, die im wesentlichen aus einer Polynukleotidsequenz bestehen, die erhältlich sind durch Screening mittels Hybridisierung einer entsprechenden Genbank von Pseudonomas marginalis oder Pseudonomas putida, die das vollständige Gen oder Teile davon enthält, mit einer Sonde, die die Sequenzen der erfindungsgemäßen Polynukleotide aus der SEQ ID No:1, 4 oder 6, 9 oder Fragmente davon enthält und Isolierung der genannten Polynukleotidsequenz.

Polynukleotide, die die Sequenzen gemäß der Erfindung enthalten, sind als Hybridisierungs-Sonden für RNA, cDNA und DNA geeignet, um Nukleinsäuren beziehungsweise Polynukleotide oder Gene in voller Länge zu isolieren, die für die erfindungsgemäßen Proteine kodieren, oder um solche Nukleinsäuren beziehungsweise Polynukleotide oder Gene zu isolieren, die eine hohe Ähnlichkeit der Sequenzen mit denen der erfindungsgemäßen Gene aufweisen. Sie können ebenso als Sonde auf sogenannte "arrays", "micro arrays"

oder "DNA chips" aufgebracht werden, um die entsprechenden Polynukleotide oder hiervon abgeleitete Sequenzen wie z.B. RNA oder cDNA zu detektieren und zu bestimmen.

Polynukleotide, die die Sequenzen gemäß der Erfindung enthalten, sind weiterhin als Primer geeignet, mit deren Hilfe mit der Polymerase-Kettenreaktion (PCR) DNA von Genen hergestellt werden kann, die für die erfindungsgemäßen Proteine kodieren.

5

25

30

Solche als Sonden oder Primer dienende Oligonukleotide,
10 enthalten mindestens 25 oder 30, bevorzugt mindestens 20,
ganz besonders bevorzugt mindestens 15 aufeinanderfolgende
Nukleotide. Geeignet sind ebenfalls Oligonukleotide mit
einer Länge von mindestens 40 oder 50 Nukleotiden.
Gegebenenfalls sind auch Oligonukleotide mit einer Länge
15 von mindestens 100, 150, 200, 250 oder 300 Nukleotiden
geeignet.

"Isoliert" bedeutet aus seinem natürlichen Umfeld herausgetrennt.

"Polynukleotid" bezieht sich im allgemeinen auf 20 Polyribonukleotide und Polydeoxyribonukleotide, wobei es sich um nicht modifizierte RNA oder DNA oder modifizierte RNA oder DNA handeln kann.

Die Polynukleotide gemäß Erfindung schließen Polynukleotide gemäß SEQ ID No:1, 4, 6, 9 oder darin enthaltene Fragmente und auch solche ein, die zu wenigstens 90 %, 93 %, 95 %, 97 % oder 99% identisch sind mit den Polynukleotiden gemäß SEQ ID NO:1, 4, 6, 9 oder darin enthaltenen Fragmenten.

Unter "Polypeptiden" versteht man Peptide oder Proteine, die zwei oder mehr über Peptidbindungen verbundene Aminosäuren enthalten.

Die Polypeptide gemäß Erfindung schließen Polypeptide gemäß den Sequenzen SEQ ID NO:2, 3, 5, 7, 8, 10, und auch solche

ein, die zu wenigstens 90%, und besonders bevorzugt zu wenigstens 91%, 95%, 97% oder 99% identisch sind mit den Polypeptiden gemäß den Sequenzen SEQ ID NO:2, 3, 5, 7, 8, 10.

Die aus der gewünschten Genbank erhaltenen DNA-Sequenzen können dann mit bekannten Algorithmen bzw. Sequenzanalyse-Programmen wie z.B. dem von Staden (Nucleic Acids Research 14, 217-232(1986)), dem von Marck (Nucleic Acids Research 16, 1829-1836 (1988)) oder dem GCG-Programm von Butler (Methods of Biochemical Analysis 39, 74-97 (1998)) untersucht werden.

Kodierende DNA-Sequenzen, die sich den in aus SEQ ID No. 1, 4, 6, 9 enthaltenen Sequenzen durch die Degeneriertheit des genetischen Kodes ergeben, sind ebenfalls Bestandteil der 15 Erfindung. In gleicher Weise sind DNA-Sequenzen, die mit diesen Sequenzen oder Teilen von davon hybridisieren, Bestandteil der Erfindung. In der Fachwelt sind weiterhin konservative Aminosäureaustausche wie z.B. Austausch von Glycin gegen Alanin oder von Asparaginsäure gegen Glutaminsäure in Proteinen als "Sinnmutationen" ("sense 20 mutations") bekannt, die zu keiner grundsätzlichen Veränderung der Aktivität des Proteins führen, d.h. funktionsneutral sind. Weiterhin ist bekannt, daß Änderungen am N- und/oder C-Terminus eines Proteins dessen .Funktion nicht wesentlich beeinträchtigen oder sogar 25 stabilisieren können. Angaben hierzu findet der Fachmann unter anderem bei Ben-Bassat et al. (Journal of Bacteriology 169:751-757 (1987)), bei O'Regan et al. (Gene

77:237-251 (1989)), bei Sahin-Toth et al. (Protein Sciences 3:240-247 (1994)), bei Hochuli et al. (Bio/Technology 6:1321-1325 (1988)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie.

Schließlich sind DNA-Sequenzen Bestandteil der Erfindung, die durch die Polymerase-Kettenreaktion (PCR) unter Verwendung von Primern hergestellt werden, die sich aus

35

SEQ ID NO: 1, 4, 6, 9 ergeben. Derartige Oligonukleotide haben typischerweise eine Länge von mindestens 15 aufeinanderfolgenden Nukleotiden, insbesondere von 20, 30 oder 40.

- Anleitungen zur Identifizierung von DNA-Sequenzen mittels 5 Hybridisierung findet der Fachmann unter anderem im Handbuch "The DIG System Users Guide for Filter Hybridization" der Firma Boehringer Mannheim GmbH (Mannheim, Deutschland, 1993) und bei Liebl et al.
- (International Journal of Systematic Bacteriology (1991) 10 41: 255-260). Die Hybridisierung findet unter stringenten Bedingungen statt, das heißt, es werden nur Hybride gebildet, bei denen Sonde und Zielsequenz, d. h. die mit der Sonde behandelten Polynukleotide, mindestens 90%
- identisch sind. Es ist bekannt, dass die Stringenz der 15 Hybridisierung einschließlich der Waschschritte durch Variieren der Pufferzusammensetzung, der Temperatur und der Salzkonzentration beeinflusst bzw. bestimmt wird. Die Hybridisierungsreaktion wird vorzugsweise bei relativ
- niedriger Stringenz im Vergleich zu den Waschschritten 20 durchgeführt (Hybaid Hybridisation Guide, Hybaid Limited, Teddington, UK, 1996).

Für die Hybridisierungsreaktion kann beispielsweise ein 5x SSC-Puffer bei einer Temperatur von ca. 50°C - 68°C eingesetzt werden. Dabei können Sonden auch mit 25 Polynukleotiden hybridisieren, die weniger als 70% Identität zur Sequenz der Sonde aufweisen. Solche Hybride sind weniger stabil und werden durch Waschen unter stringenten Bedingungen entfernt. Dies kann beispielsweise durch Senken der Salzkonzentration auf 2x SSC und 30 gegebenenfalls nachfolgend 0,5x SSC (The DIG System User's Guide for Filter Hybridisation, Boehringer Mannheim, Mannheim, Deutschland, 1995) erreicht werden, wobei eine Temperatur von ca. 50°C - 68°C eingestellt wird. Es ist gegebenenfalls möglich die Salzkonzentration bis auf 0,1x

35

SSC zu senken. Durch schrittweise Erhöhung der Hybridisierungstemperatur in Schritten von ca. 1 - 2°C von 50°C auf 68°C können Polynukleotidfragmente isoliert werden, die beispielsweise mindestens 90% bis 95% Identität zur Sequenz der eingesetzten Sonde besitzen. Weitere Anleitungen zur Hybridisierung sind in Form sogenannter Kits am Markt erhältlich (z.B. DIG Easy Hyb von der Firma Roche Diagnostics GmbH, Mannheim, Deutschland, Catalog No. 1603558).

5

20

30

10 Anleitungen zur Amplifikation von DNA-Sequenzen mit Hilfe der Polymerase-Kettenreaktion (PCR) findet der Fachmann unter anderem im Handbuch von Gait: Oligonukleotide synthesis: A Practical Approach (IRL Press, Oxford, UK, 1984) und bei Newton und Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Deutschland, 1994).

Im allgemeinen geht man so vor, dass man ein gut exprimierbares Gen in einen Vektor mit niedriger Kopienzahl, Gene mit schwächerer Expressionsleistung auf einem Vektor mit höherer Kopienzahl und/oder starkem Promotor kloniert. Die Wirtszellen sind mit diesen Vektoren in der Weise transformiert, dass sie im Vergleich zum Startorganismus mindestens jeweils eine zusätzliche Kopie der für die Bildung von Nitrilhydratase kodierenden Nukleotidsequenzen enthalten.

Die so hergestellten transformierten oder rekombinanten Mikroorganismen insbesondere der Gattung Pseudonomas sind ebenfalls Teil der Erfindung.

Es wurde gefunden, dass die Verstärkung der für die erfindungsgemäße Nitrylhydratase und das Helferprotein P47K kodierenden Gene in Mikroorganismen zu einer erhöhten Produktion der Nitrilhydratase oder auch zu einer erhöhten Aktivität der Nitrilhydratase führen.

Der Begriff "Verstärkung" beschreibt in diesem Zusammenhang die Erhöhung der intrazellulären Aktivität eines oder mehrerer Enzyme in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise die Kopienzahl des Gens bzw. der Gene erhöht, einen starken Promotor verwendet oder ein Gen verwendet, das für ein entsprechendes Enzym mit einer hohen Aktivität kodiert und gegebenenfalls diese Maßnahmen kombiniert, im Vergleich zum nicht rekombinierten Startorganismus.

5

- Zur Erzielung einer Überexpression kann die Promotor- und Regluationsregion oder die Ribosomenbindungsstelle, die sich stromaufwärts des Strukturgens befindet, mutiert werden. In gleicher Weise wirken Expressionskassetten, die stromaufwärts des Strukturgens eingebaut werden. Durch induzierbare Promotoren ist es zusätzlich möglich, die Expression im Verlaufe der fermentativen Aminosäure-Produktion zu steigern. Durch Maßnahmen zur Verlängerung der Lebensdauer der m-RNA wird ebenfalls die Expression verbessert.
- Weiterhin wird durch Verhinderung des Abbaus des Enzymproteins ebenfalls die Enzymaktivität verstärkt. Die Gene oder Genkonstrukte können entweder in Plasmiden mit unterschiedlicher Kopienzahl vorliegen oder im Chromosom integriert und amplifiziert sein. Alternativ kann weiterhin eine Überexpression der betreffenden Gene durch Veränderung der Medienzusammensetzung und Kulturführung erreicht werden.

Gegenstand der Erfindung sind ebenso

- 1) ein Verfahren zur enzymatischen Herstellung von Amiden aus Nitrilen, das folgende Schritte aufweist:
 - a) Umsetzung einer (eine) Nitrilgruppe(n)
 enthaltenden Verbindung mit einem mikrobiellen
 Enzym, das Nitrilhydratase-Aktivität aufweist und

b) Abtrennung des gebildeten Amids, wobei man

5

10

30

- c) für die Umsetzung des Nitrils zum Amid eine erfindungsgemäße Nitrilhydratase einsetzt. Deren Restaktivität beträgt nach der Umsetzung von Methacrylnitril in Gegenwart von 20 mM (mM = mmol/1) Cyanidionen bei 20°C nach 30 min. bevorzugt mindestens 90 % der Restaktivität desselben Enzyms, wenn dieses das unter ansonsten denselben Bedingungen in Abwesenheit von Cyanidionen für die Umsetzung eingesetzt wurde.
- 2) ein Verfahren gemäß 1), dadurch gekennzeichnet, dass die Restaktivität nach der Umsetzung in Gegenwart von 50 mM Cyanidionen mindestens 60 % beträgt,
- 3) ein Verfahren gemäß 1) oder 2), dadurch
 15 gekennzeichnet, dass man das Enzym produzierende und
 enthaltende Mikroorganismen oder deren Lysat einsetzt.
 - 4) ein Verfahren gemäß 3), dadurch gekennzeichnet, dass man ruhende Zelle des Mikroorganismus einsetzt,
- 5) ein Verfahren gemäß 1) oder 2), dadurch 20 gekennzeichnet, dass man das gereinigte Enzym einsetzt,
- 6) ein Verfahren gemäß 1) bis 5), dadurch gekennzeichnet, dass das Enzym aus Mikroorganismen der Gattung Pseudomonas stammt, insbesondere Pseudonomas putida oder Pseudonomas marginalis,
 - 7) ein Verfahren gemäß 6, dadurch gekennzeichnet, dass das Enzym aus Mikroorganismen der Gattung Pseudomonas stammt, hinterlegt unter den Nummern DSM 16275 und DSM 16276, und die Aminosäuresequenzen mit den Sequenzen SEQ ID NO:2, 3, 5, 7, 8, 10 aufweisen,

8) ein Verfahren gemäß einem oder mehreren der Punkte 1) bis 7), dadurch gekennzeichnet, dass man Verbindungen der allgemeinen Formeln

5

15

20

25

(I)

in der bedeuten:

X: OH, H, Alkyl mit 1 bis 4 C-Atomen, NH2

10 R: H, gesättigter Alkylrest mit 1 bis 12 C-Atomen, verzweigt oder unverzweigt, gegebenenfalls NH_2 -substituiert

ungesättigte Alkylreste mit einer Doppelbindung und 1 bis 12 C-Atomen, verzweigt oder

unverzweigt, Cycloalkylgruppen mit 3 bis 6 C-Atomen,

mit Alkylthiogruppen substituierte

Alkylenreste, wobei Alkyl hier einem C_1 bis C_3 -Rest

und Alkylen einem zweiwertigen C_3 bis C_8 -Rest entspricht,

R': H, wenn R kein H bedeutet, Alkyl mit 1 bis 3 C-Atomen,

R": ein- oder zweikerniger ungesättigter Ring, mit 6 bis 12 C-Atomen, gegebenenfalls substituiert mit einer oder zwei Alkylgruppen $(C_1 - C_3)$, Cl, BR,F substituiert,

einwertiger Alkylnitrilrest mit 1 bis 6 C-Atomen zu den entsprechenden Amiden umsetzt,

30 9) ein Verfahren gemäß 8), dadurch gekennzeichnet, dass man eine Verbindung der allgemeinen Formel(I) in

Gegenwart von Blausäure oder einem Salz der Blausäure umsetzt,

- 10) ein Verfahren gemäß 9), dadurch gekennzeichnet, dass man die Umsetzung in Gegenwart von 0,1 mol% Cyanid bis 3 mol% Cyanid bezogen auf das eingesetzte Nitril durchführt, bevorzugt > 2 bis 3 mol%. Dies entspricht bei 1 mol Endkonzentration bei 3 mol% 30 mMol Cyanid,
 - 11) ein Verfahren gemäß einem oder mehreren der Punkte 1) bis 10), dadurch gekennzeichnet; dass man als Nitril Methioninnitril einsetzt,

10

- 12) ein Verfahren gemäß einem oder mehreren der Punkte 1) bis 10), dadurch gekennzeichnet, dass man als Nitril 2-Hydroxy-4-methylthiobutyronitril einsetzt.
- Bevorzugt setzt man ein Reaktionsgemisch ein, wie man 15 es erhält , wenn man Blausäure, 3-Methylthiopropionaldehyd in Gegenwart einer Hilfsbase wie z.B. Triethylamin nach dem Stand der Technik umsetzt.
- Es kann vorteilhaft ohne Aufreinigung eingesetzt werden.

Dies weist auf die zusätzliche Stabilität der erfindungsgemäßen Enzyme gegenüber Aldehyden und Aminen hin.

- 13) Ein Verfahren, bei dem man als Vorstufe für
 25 Methacrylamid 2-Hydroxy-2-methylpropionitril,
 einsetzt.
- 14) Die Erfindung ist ebenso ausgerichtet auf isolierte und gereinigte Mikroorganismen der Gattung Pseudomonas, hinterlegt unter den Nummern DSM 16275

 (MA32, Pseudomonas marginalis) und DSM 16276 (MA113, Pseudomonas putida), und

15) Cyanidtolerante Nitrilhydratasen, isoliert aus den Stämmen der Gattung Pseudomonas, insbesondere aus den unter den Nummern DSM 16275 und DSM 16276 hinterlegten Stämmen von Pseudonomas putida und Pseudonomas marginalis.

Die Hinterlegung erfolgte am 09.03.2004 bei der DSMZ, Deutsche Sammlung für Mikroorganismen und Zellkulturen in Braunschweig, nach dem Budapester Vertrag.

Diese Stämme sind besonders geeignet, die erfindungsgemäßen 10 Enzyme zu produzieren.

"Isolierte und gereinigte Mikroorganismen" betrifft Mikroorganismen, die in einer höheren Konzentration als natürlich zu finden vorliegen.

Gegenstand der Erfindung ist ebenso ein Verfahren zur
15 Herstellung der oben beschriebenen cyanidtoleranten
Nitrilhydratase, bei dem man

- a) einen diese Nitrilhydratase produzierenden
 Mikroorganismus, insbesondere der Gattung Pseudomonas
 marginalis oder Pseudomonas putida, unter Bedingungen
 fermentiert, bei denen sich das Enzym in dem
 Mikroorganismus bildet, und
- b) frühestens nach dem Durchlaufen der logarithmischen Wachstumsphase die Zellen erntet.

Anschließend setzt man

5

20

- a) entweder den das Enzym enthaltenden Mikroorganismus als in Form von ruhenden Zellen, gegebenenfalls nach der Erhöhung der Permeabilität der Zellmembran oder
 - b) das Lysat der Zellen oder
- c) das aus den Zellen des Mikroorganismus mit bekannten
 30 Maßnahmen isolierte Enzym

zur erfindungsgemäßen Umwandlung von Nitrilen in Amide ein.

Bei der Nitrilhydratase kann es sich sowohl um ein mit nicht rekombinanten Mikroorganismen erzeugtes als auch um ein rekombinant erzeugtes Enzym handeln.

5 Gegenstand der Erfindung sind weiterhin Verfahren zur rekombinanten Herstellung der erfindungsgemäßen Polypeptide, wobei man einen diese Polypeptide produzierenden Mikroorganismus kultiviert, gegebenenfalls die Expression der zugehörigen Polynukleotide induziert und die Enzyme gegebenenfalls aus der Kultur isoliert.

Es handelt sich im allgemeinen um ein Verfahren, bei dem man

- a) Mikroorganismen insbesondere der Gattungen Pseudonomas marginalis oder Pseudonomas putida fermentiert, in denen man isolierte Polynukleotide aus Mikroorganismus der Familie Pseudonomas, die für Polypeptide mit den Aminosäuresequenzen kodieren, die zu 90 bis 100 % identisch sind mit den Sequenzen in den SEQ ID NO:2, 3 und 5 oder 7, 8 und 10 enthaltenden

 Aminosäuresequenzen, wobei die Polypeptide jeweils gemeinsam die Aktivität einer cyanidtoleranten Nitrilhydratase besitzen, verstärkt, insbesondere rekombinant überexprimiert,
- b) aus diesen Mikroorganismen das Enzym mit
 Nitrilhydrataseaktivität gegebenenfalls isoliert oder eine dieses Enzym enthaltende Proteinfraktion herstellt, und
- c) die Mikroorganismus gemäss a) oder das Enzym gemäss oder die dieses enthaltende Fraktion b) in ein Medium überführt, das ein Nitrilgruppen-haltige Verbindung der allgmeinen Formeln (I) und (II) enthält.

Das zur Fermentation verwendende Kulturmedium muss in geeigneter Weise den Ansprüchen der jeweiligen Stämme genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im Handbuch "Manual of Methods for General Bacteriology" der American Society for Bacteriology (Washington D.C., USA, 1981) enthalten.

5

10

25

30

Als Kohlenstoffquelle können Zucker und Kohlehydrate wie z.B. Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke und Cellulose, Öle und Fette wie z.B. Sojaöl, Sonnenblumenöl, Erdnußöl und Kokosfett, Fettsäuren wie z.B. Palmitinsäure, Stearinsäure und Linolsäure, Alkohole wie z.B. Glycerin und Ethanol und organische Säuren wie z.B. Essigsäure verwendet werden. Diese Stoffe können einzeln oder als Mischung verwendet werden.

- 15 Als Stickstoffquelle können vorteilhaft organische Nitrile oder Säureamide wie Acetonitril, Acetamid,
 Methacrylnitrile, Methacrylamid, Isobutyronitril,
 Isobutyramid oder Harnstoff auch in Kombination mit anderen Stickstoffhaltigen Verbindungen wie Peptone, Hefeextrakt,
 20 Fleischextrakt, Malzextrakt, Maisquellwasser,
 Sojabohnenmehl und oder anorganische Verbindungen wie
 - Sojabohnenmehl und oder anorganische Verbindungen wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und Ammoniumnitrat verwendet werden. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.
 - Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die
 entsprechenden Natrium-haltigen Salze verwendet werden. Das
 Kulturmedium muss weiterhin Salze von Metallen enthalten
 wie z.B. Magnesiumsulfat oder Eisensulfat, die für das
 Wachstum notwendig sind. Schließlich können essentielle
 Wuchsstoffe wie Aminosäuren und Vitamine zusätzlich zu den
 oben genannten Stoffen eingesetzt werden. Die genannten
 Einsatzstoffe können zur Kultur in Form eines einmaligen

Ansatzes hinzugegeben oder in geeigneter Weise während der Kultivierung zugefüttert werden.

Zur pH-Kontrolle der Kultur werden basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw.

- Ammoniakwasser oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure in geeigneter Weise eingesetzt. Zur Kontrolle der Schaumentwicklung können Antischaummittel wie z.B. Fettsäurepolyglykolester eingesetzt werden. Um aerobe Bedingungen aufrechtzuerhalten, werden Sauerstoff oder
- Sauerstoff haltige Gasmischungen wie z.B. Luft in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 10°C bis 40°C und vorzugsweise bei 10°C bis 30°C. Die Kultur wird solange fortgesetzt, bis sie die logarithmische Wachstumsphase durchschritten hat. Dieses
- 2iel wird normalerweise innerhalb von 10 Stunden bis 70 Stunden erreicht. Im Anschluss daran werden die Zellen bevorzugt geerntet, gewaschen und in einem Puffer als Suspension bei einem pH-Wert von 6-9, insbesondere von 6,8 bis 7,9 aufgenommen. Die Zellkonzentration beläuft sich auf
- 20 1-25%, insbesondere 1,5 bis 15% (Feuchtgewicht/v). Die Permeabilität kann mit physikalischen oder chemischen Methoden so, z. B. mit Toluol wie bei Wilms et al., J. Biotechnol., Vol. 86 (2001), 19-30 beschrieben, erhöht werden, dass das umzuwandelnde Nitril die Zellwand durchdringen und das Amid austreten kann.

J darcharingen and and mine adoctocon norm.

Folgende Nitrile werden bevorzugt umgesetzt:

gesättigte Mononitrile:

Acetonitril, Propionitril, Butyronitril, Isobutyronitril, Valeronitril, Isovaleronitril, Capronitril

30 gesättigte Dinitrile:

Malonitril, Succinonitril, Glutaronitril, Adiponitril

aromatische unsubstituierte und substituierte Mono- und Dinitrile:

Benzonitril, 2,6-Difluorbenzonitril, Phthalonitril, Isophthalonitril, Terephthalonitril,

α -Aminonitrile:

 α -Aminopropionitril, α -Aminomethylthiobutyronitril, α 5 Aminobutyronitril, Aminoacetonitril, alle von natürlichen
Aminosäuren abgeleitete Nitrile, α -Amino-3,3dimethylpropionitril α -Amino-2,3-dimethylpropionitril

Nitrile mit Carboxyl-Gruppen: Cyanessigsäure

10 β -Aminonitrile:

Amino-3-propionitril

ungesättigte Nitrile:

Acrylnitril, Methacrylonitril, Allylcyanid, Crotononitril

α -Hydroxynitrile:

15 α -Hydroxy-n-propionitril, α -Hydroxy-n-butyronitril, α Hydroxy-isobutyronitril, α -Hydroxy-n-hexanonitril, α Hydroxy-n-heptanonitril, α -hydroxy-n-octanonitril, α , γ Dihydroxy- β , β -dimethylbutyronitril, Acroleincyanohydrin,
Methacrylaldehyd cyanohydrin, 3-Chlorolactonitril, 4
20 Methylthio- α -hydroxybutyronitril und α -Hydroxy-

phenylpropionitril.

Die Konzentration der umzusetzenden Nitrile in der Reaktionslösung ist nicht auf bestimmte Bereiche begrenzt.

Um eine Inhibierung der Enzymaktivität durch das Substrat zu vermeiden, hält man die Konzentration des Nitrils im allgemeinen auf 0,02 bis 10 w/w%, insbesondere 0,1 bis 2 w/w%, bezogen auf die Menge des Biokatalysators als getrocknete Zellmasse. Das Substrat kann zu Beginn der Umsetzung insgesamt oder im Verlauf der Umsetzung kontinuierlich oder diskontinuierlich zugesetzt werden.

Die Bestimmumng des Trockengewichts erfolgt mit dem Moisture Analyser MA 45 (Sartorius).

Wenn die Löslichkeit der Nitrilverbindung in dem wässrigen Reaktionssystem zu gering ist, kann ein Lösungsvermittler zugesetzt werden.

Die Reaktion kann aber alternativ auch in einem Zweiphasensystem Wasser/organische Lösungsmittel durchgeführt werden.

5

15

Bei der Verwendung von Zellen des Mikroorganismus als enzymatisch aktivem Material, ist die Menge der eingesetzten Zellen im Verhältnis zur Substratmenge bevorzugt 0,02 bis 10 w/w% als getrocknete Zellmasse.

Es ist auch möglich, das isolierte Enzym nach allgemein bekannten Techniken zu immobilisieren und in dieser Form dann einzusetzen.

Die Reaktion wird im allgemeinen bei Temperaturen von -5°C bis 50°C, insbesondere 0°C bis 30°C, und einer Zeitdauer von 0,1 bis 100 Stunden durchgeführt.

Der einzuhaltende pH-Wert des Reaktionsgemisches ist so
lange nicht auf bestimmte Werte begrenzt, wie die
enzymatische Aktivität nicht beeinträchtigt wird. Nach der
Umsetzung kann das gebildete Amid aus der Reaktionslösung
wie bekannt abgetrennt und gereinigt werden.

Gegenstand der Erfindung ist ebenfalls ein Verfahren, bei
dem man das Amid bzw. die das Amid enthaltende Lösung zum
Beispiel von den Zellen der Biomasse abtrennt und das Amid
entweder zu der entsprechenden Säure verseift oder unter
Zusatz von Alkali- oder Erdalkalimetallyhydroxiden zu den
entsprechenden Salzen der Säuren umsetzt. Bevorzugt wird
30 MHA-Amid mit Calziumhydroxid verseift und das entsprechende
Calziumsalz isoliert.

Beispiele

Beispiel 1

Anzuchtbedingungen

Die Vorkulturen wurden innerhalb von 24 h unter Schütteln bei 30°C in einem Volumen von 5 ml in Glasröhrchen angezogen. Mit 1 ml der Vorkultur wurden 100 ml der Hautkultur angeimpft und 42 h bei 25°C in einem Erlenmeyerkolben mit einem Gesamtvolumen von 1000 ml geschüttelt.

Medium für die Vorku	ıltur (pH 7,0)
K ₂ HPO ₄	7 g
KH ₂ PO ₄	3 g
Na-citrat	0,5 g
Glycerin	2 g
FeSO4 * 7 H ₂ O	0,004 g
MgSO4 * 7 H ₂ O	0.1 g
Acetamid	2 g
Spurensalzlösung	0,1 ml
Demineralisiertes Wasser	Ad. 1000 ml

10

Medium für die	Hauptkultur (pH 7,0)
K ₂ HPO ₄	7 g
KH ₂ PO ₄	3 g
Natriumcitrat	0,5 g
Glycerin	2 g
FeSO4 * 7 H ₂ O	0,004 g

MgSO4 * 7 H ₂ O	0.1 g
Acetamid	10 g
Spurensalzlösung	0,1 ml
Demineralisiertes	Ad. 1000 ml
Wasser	

Spurensalzlösung	
EDTA, Na ₂ * 2 H ₂ O	158 mg
Na ₂ MoO ₄ * 2 H ₂ O	4,7 mg
ZnSO ₄ * 7 H ₂ O	70 mg
MnSO ₄ * 4 H ₂ O	18 mg
FeSO ₄ * 7 H ₂ O	16 mg
CuSO ₄ * 5 H ₂ O	4,7 mg
CoSO ₄ * 6 H ₂ O	5,2 mg
Demineralisiertes	Ad. 1000 ml
Wasser	

Beispiel 2

Isolierung und Identifizierung der Mikroorganismen

5 Die beiden Stämme MA32 und MA113 wurden durch Bestimmung der Nitrilhydratase-Aktivität der Ruhezellen in Gegenwart von 2 mM Kaliumcyanid selektiert.

Eigenschaften von MA32:

Zellform Stäbchen

10 Breite 0,6 - 0,8 µm
Länge 1,5 - 3,0 µm

	Beweglichkeit Geißeln	+ polar > 1
5	Gram-Reaktion Lyse durch 3% KOH Aminopeptidase (Cerny) Oxidase Katalase	- + + +
10	Wachstum bei 41°C	-
15	Substratverwertung Adipat Citrat Malat Phenylacetat	- + + -
20	D-Glucose Maltose Mannitol Arabinose Mannose Trehalose	- + + +
25	Sorbitol Erythrol Citraconat Inositol	+ + + +
30	ADH Urease	+
	Hydrolyse von Gelatine Hydrolyse von Esculin	++
35	Levan aus Saccharose	+
	Denitrification	+
40	Lecithinase	+
	Fluoreszens Pyocyanin	+

Das Profil der zellulären Fettsäuren ist typisch für die 45 Gruppe I der Pseudomonaden

Die Analyse eines 484 bp langen Abschnitts der 16S rRNA ergab eine 100%-ige Übereinstimmung mit der Sequenz von Pseudomonas marginalis

Unter Berücksichtigung aller Daten konnte MA32 als *Pseudomonas marginalis* identifiziert werden.

5 Eigenschaften von MA113:

	Zellform Breite Länge	Stäbchen 0,6 - 0,8 µm 1,5 - 3,0 µm
10	Beweglichkeit Geißeln	+ polar > 1
15	Gram-Reaktion Lyse durch 3% KOH Aminopeptidase (Cerny) Oxidase Katalase	 + + +
20	Wachstum bei 41°C	-
20	Substratverwertung Adipat Citrat	, - +
	Malat	+ .
25	Phenylacetat	+
	D-Glucose	+
	Maltose	
	Mannitol (-
	Arabinose	-
30	Mannose	_
	Trehalose	
	Inositol	
	$oldsymbol{eta}$ -Alanin	+
	lpha-Ketoglutarat	+
35	Benzylamin	+
	Hippurat	+
	Azelat	+
	D-Mandelat	+
40	ADH	+
10	Urease	-
	Hydrolyse von Gelatine	-
45	Hydrolyse von Esculin	-
_	Levan aus Saccharose	

WO 2005/090394

Denitrification -

Lecithinase -

5

Fluoreszens + Pyocyanin -

Das Profil der zellulären Fettsäuren ist typisch für die 10 Gruppe I der Pseudomonaden

Die Analyse eines 476 bp langen Abschnitts der 16S rRNA ergab eine 100%-ige Übereinstimmung mit der Sequenz von Pseudomonas putida

PCT/EP2005/002689

15

Unter Berücksichtigung aller Daten konnte MA113 als Pseudomonas putida identifiziert werden.

Beispiel 3

20 Bestimmung der enzymatischen Aktivität

Die Zellen wurden wie in Beispiel 1 beschrieben angezogen, durch Zentrifugation vom Kulturmedium abgetrennt und im Standardpuffer (50 mM Kaliumphosphatpuffer pH 7,5) resuspendiert. 50 µl dieser Zellsuspension wurden zu 700 µl des Standardpuffers gegeben und zum Starten der Reaktion mit 250 µl einer 200 mM Lösung des Nitrils in Standardpuffer versetzt. Die Konzentration der Zellen in der Zellsuspension war hierbei so bemessen, daß das Nitril nach 10 min bei 20°C zu 5-30 % umgesetzt war. Nach 10 min bei 20°C wurde die Reaktion durch Zugabe von 20 µl halbkonzentrierter Phosphorsäure abgestoppt und die Zellen wurden durch Zentrifugation abgetrennt.

HPLC-Analytik					
Säule	Intersil ODS-3V (GL Sciences Inc.)				
Mobile Phase	Gemisch aus 10 mM Kaliumphosphatpuffer pH 2,3 und Acetonitril im Verhältnis 85:15 für Methioninnitril, MHA-Nitil und Acetoncyanhydrin bzw. 99:1 für alle anderen Substrate				
Flußrate	1 ml/min				
Detektion	UV bei 200 nm				

Die Aktivität von einem U ist definiert als die Menge an Enzym, die 1 μ mol Methacrylnitril in einer Minute zum Amid umsetzt. Entstand neben dem Amid auch die Säure, wurde ein U definiert als die Menge an Enzym, die 1 μ mol Methacrylnitril in einer Minute zu Amid und Säure umsetzt.

In Abbildung 1 und in Abbildung 2 werden die relative Aktivitäten der Stämme MA32 und MA113 dargestellt.

Beispiel 4

5

15

20

10 Einfluß von Cyanid auf die Aktivität der Nitrilhydratase

50 µl einer analog zu Beispiel 3 hergestellten Zellsuspension wurden zu 700 µl des Standardpuffers gegeben, der 0; 21,4; 53,6 und 107,1 mM Kaliumcyanid enthielt (Endkonzentration 0, 20, 50, 100 mM Cyanid. Zum starten der Reaktion wurden 200 µl einer 200 mM Lösung des Nitrils im Standardpuffer zugesetzt, der jeweils die selbe Cyanidkonzentration aufwies wie die übrige Reaktionslösung. Die Konzentration der Zellen in der Zellsuspension war hierbei so bemessen, daß das Nitril im Ansatz ohne Cyanid nach 10 min bei 20°C zu 16 % umgesetzt war. Nach 10 min bei 20°C wurde die Reaktion durch Zugabe von 20 µl halbkonzentrierter Phosphorsäure abgestoppt und der Umsatz wurde analog zu Beispiel 2 bestimmt.

In Abbildung 3 und in Abbildung 4 werden die relativen Aktivitäten für die Umsetzung von Methacrylnitril in Abhängigkeit von der Cyanidkonzentration wiedergegeben.

Beispiel 5

5 Umsetzung von Acetoncyanhydrin mit *Pseudomonas marginalis* MA32 Ruhezellen

Pseudomonas marginalis MA32 Zellen wurden wie in Beispiel 1 beschrieben angezogen und abzentrifugiert. Eine solche Menge der Zellen, die 1,16 g Biotrockenmasse enthielt, wurde mit 50 mM Kaliumphosphatpuffer pH 8,0 auf ein 10 Endvolumen von 50 ml verdünnt. Zusätzlich wurden dem Reaktionsgemisch 0,02 mM 2-Methyl-1-propanboronsäure zugesetzt. Frisch destilliertes Acetoncyanhydrin wurde bei 4°C unter heftigem Rühren kontinuierlich mit einer solchen Rate zugegeben, daß die Konzentration während der Reaktion 15 5 g/L zu keinem Zeitpunkt überschritt. Der pH wurde konstant bei 7,5 gehalten. Die Reaktionsverfolgung wurde mittels HPLC wie in Beispiel 3 beschrieben durchgeführt. Nach 140 min waren 10,0 g des Nitrils vollständig zu 10,7 g Amid und 1,4 g Säure umgesetzt worden. 20

In Abbildung 5 wird der mit dem Stamm MA113 erzielte zeitliche Reaktionsablauf dargestellt.

Beispiel 6

30

Umsetzung von rohem MHA-Nitril mit *Pseudomonas* marginalis 25 MA32 Ruhezellen

Pseudomonas marginalis MA32 Zellen wurden wie in Beispiel 1 beschrieben angezogen und abzentrifugiert. Eine solche Menge der Zellen, die 0,34 g Biotrockenmasse enthielt, wurde mit 50 mM Kaliumphosphatpuffer pH 8,0 auf ein Endvolumen von 70 ml verdünnt. Zusätzlich wurden dem Reaktionsgemisch 0,02 mM 2-Methyl-1-propanboronsäure zugesetzt. Das rohe MHA-Nitril wurde bei 4°C unter heftigem

Rühren kontinuierlich mit einer solchen Rate zugegeben, daß die Konzentration während der Reaktion 10 g/L zu keinem Zeitpunkt überschritt. Der pH wurde konstant bei 8,0 gehalten. Die Reaktionsverfolgung wurde mittels HPLC wie in Beispiel 2 beschrieben durchgeführt. Nach 510 min waren 10,05 g des Nitrils vollständig zu 11,13 g Amid und 0,31 g Säure umgesetzt worden. Das entspricht einer Endkonzentration von 139 g Amid pro Liter.

Das MHA-Nitril war direkt aus 3-Methylthiopropionaldehyd und einem leichten Überschuss an Blausäure hergestellt worden. Eine 50 mM Lösung dieses MHA-Nitrils in Wasser enthielt 0,5 mM Cyanid (Spektroquant®, Merck).

In Abbildung 6 wird der mit dem Stamm MA32 erzielte zeitliche Reaktionsablauf dargestellt.

15 Beispiel 7

5

20

25

30

Klonierung des Nitrilhydratase-Gen-clusters aus Pseudomonas marginalis MA 32 und Konstruktion eines Expressionsvektors

Der Gen-Cluster der Nitrilhydratase enthaltend eine α -Untereinheit, β -Untereinheit und einem Nitrilhydratase-Aktivatorprotein, dessen Co-Expression für die Aktivität der Nitrilhydratase essentiell ist (Nojiri et al., 1999, Journal of Biochemistry, 125:696-704), wurde mit den Primern 1F und 1R per PCR amplifiziert, die Schnittstellen für die Restriktionsenzyme NdeI und HindIII einfügten. Das so erhaltene PCR-Produkt wurde in einen mit NdeI und HindIII geschnittene Vekor ligiert, bei dem die eingefügten Gene unter der Kontrolle des Rhamnose-Promotors stehen. Der so entstandene Expressionsvektor heißt pKE31.

Die Restriktionskarte findet sich in Abbildung 7, die Sequenz unter SEQ ID NO:1.

Das Expressionsplasmid wurde in den Stamm E. coli DSM 14459 transformiert, der bei der Deutschen Sammlung von

Mikroorganismen und Zellkulturen GmbH (DSMZ) am 22.08.2001 hinterlegt worden ist.

Primer:

1F	5'-CTC	CAC	CAT	ATG	AGT	ACA	GCT	ACT	TCA	ACG	-3′
1R	5'-CTT	CAT	AAG	CTT	CTA	TCT	CGG	ATC	AAA	TGG-	-3′

5 1F: SEQ ID NO:11

1R: SEQ ID NO:12

Die Gene befinden sich auf den Abschnitten von SEQ ID NO:1:

Gen der α-Untereinheit:

nt 25-609

Gen der β -Untereinheit:

nt 650-1312

10 Gen des Aktivatorproteins: nt

nt 1309-2577

Beispiel 8

Klonierung des Nitrilhydratase-Gen-clusters aus Pseudomonas putida MA113

Der Gen-Cluster der Nitrilhydratase bestehend aus α Untereinheit, β -Untereinheit und einem NitrilhydrataseAktivatorprotein, dessen Co-Expression für die Aktivität der Nitrilhydratase essentiell ist (Nojiri et al., 1999, Journal of Biochemistry, 125:696-704), wurde mit den Primern 1F und 1R per PCR amplifiziert.

20 Die Sequenz findet sich unter SEQ ID NO:6.

Primer:

2F	5′-ATG	ACG	GCA	ACT	TCA	ACC	CCT	GGT	G-3′	
2R	5′-TCA	GCT	CCT	GTC	GGC	AGT	CG-3	3′		

2F:SEQ ID NO:13 2R:SEQ ID NO:14

Die Gene befinden sich auf den Abschnitten von SEQ ID NO:5:

Gen der α -Untereinheit: nt 1-582 Gen der β -Untereinheit: nt 624-1286 Gen des Aktivatorproteins: nt 1283-2360

Beispiel 9

5

Heterologe Expression der Nitrilhydratasen aus Pseudomonas marginalis MA 32 in E. coli DSM 14459

10 E. coli DSM 14459 wurde im Zusammenhang mit der DE 101 55 928 hinterlegt.

Die mit pKE31 transformierten Zellen wurden in LB-Medium (LB Bouillon nach Miller, VWR), das 2 mM Eisen(III)-Citrat und 100 µg/ml Ampicillin enthielt, unter Schütteln bei 37°C angezogen. Nach 12 - 16 Stunden wurde eine solche Menge der Vorkultur in eine Hauptkultur überimpft, dass diese eine OD600 von 0,1 aufwies. Das Kulturmedium der Hauptkultur entsprach dem der Vorkultur, enthielt aber zusätzlich 2 g/L L-Rhamnose. Die Ernte der Zellen erfolgte nach 22 stündiger Kultivierung bei 30°C.

Beispiel 10

25

Bestimmung der enzymatischen Aktivitäten

Die Anzucht der Zellen und die Bestimmung der Aktivität wurden wie in Beispiel 9 und Beispiel 3 beschrieben durchgeführt.

Die mit dem Plasmid pKE31 transformierten Zellen des Stamms E. coli DSM 14459 wiesen eine spezifische Aktivität von 17 U/mg BTM auf.

Beispiel 11

Bestimmung der enzymatischen Aktivitäten in Gegenwart von 100 mM Kaliumcyanid

Die Anzucht der Zellen und die Bestimmung der Aktivitäten 5 in Gegenwart von 100 mM Kaliumcyanid wurden wie in Beispiel 9 und Beispiel 4 beschrieben durchgeführt.

Die mit dem Plasmid pKE31 transformierten Zellen des Stamms E. coli DSM 14459 wiesen eine spezifische Aktivität von 11 U/mg BTM auf.

BUDAFESTER VER'IRAG ÜBER DIE INTERNATIONALE PC ANERKENNUNG DER HINTERLEGUNG VON MIKROORGANISMEN FOR DIE ZWECKE VON PATENTVERFAHREN

INTERNATIONALES FORMBLATT

Degussa AG Projekthaus Biotechnologie Rodenbacher Chaussee 63457 Hanau

EMPFANGSBESTÄTIOUNG BEI ERSTHINTERLEOUNG, ausgestellt gomaß Rogel 7.1 von der unten augegebenom INTERNATIONALEN HINTERLEGUNGSSTELLE

(. KENNZEICHNUNG DES MIKROORGANISMUS					
Vom HINTERLEGER zugeneiltes Bezugszeichen: JMI09 (deltarhab)	Vor der internationalen hinterlegungsstelle zugeleilt eingangsnummer: DSM 14459				
II. WISSENSCHAFTLICHE BESCHREIBUNG UND/ODER VORGESCHI	AGENE TAXONOMISCHE BEZEICHNUNG				
Mit dem unter I. bezeichnamn Mikraonganismus wurde					
() cine wissonschaftliche Beschreibung (×) alee vorgoschlagene untonomische Bezeichnung					
cingercioht (Zubreffendes ankrouzen).					
III. BINGANG UND ANNAHME					
Diese internationale fünterlegungsstelle nimmt den unter I bezeichneten Miki Erathinterlegung)' eingegangen ist	porganismus an, der bei ühr am 2001-08-22 (Datum der				
IV. EINGANG DES ANTRAGS AUF UMWANDLUNG					
Dor unter I bezeichnete Mikroorganismus ist bei dieser Internationalen Hinterlogungsstelle am eingegangen (Datum der Ersthinterlogung) und ein Antrag auf Umwandlung dieser Ersthinterlogung in eine Hinterlogung gemaß Budapester Vertrag ist am eingegangen (Datum des Eingangs das Antrags auf Umwandlung).					
V. INTERNATIONALE HINTERLEGUNGSSTELLE					
Name: DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN Grabh Anschriß: Masobetoder Wog 1b D-38124 Brunnschweig	Unterschrift(en) der zur Vervotung der internationalen Hinterlogungsstelle bezugten Person(en) oder den (der) von ihr omsichtigten Bediensteten:				
	Danum: 2001-08-24				

Formblan DSMZ-BP/4 (cinzigo Soite) 0196

¹ Falls Regel 6.4 Buchstabe d zutrifft, ist dies der Zeitpunkt, zu dem der Status einer internationalen Minterlagungzatelle erworben worden ist.

WO 2005/090394

BUDAPESTER VERTRAG ÜBER DIE INTERNATIONALE PCT/EP2005/002689 ANERKENNUNG DER HINTERLEGUNG VON MIKROORDANISMEN FÜR DIE ZWECKE VON PATENTVERFAHREN

INTERNATIONALES FORMBLATT

Degussa AG Projekthaus Biotechnologie Rodenbacher Chaussee 63457 Hanau

LEBENSFÄHIGKEITSBESCHEINIGUNG ausgestellt gemäß Regel 10.2 von der unten angegebenen INTERNATIONALEN HINTERLEGUNGSSTELLE

[, HINTERLEGER	n. Kennzeichnung des Mikroorganismus
Neme: Degussa AG Projekthaus Biotechnologie Auschrift Rodenbacher Chaussee 63457 Hanau	Von der Internationalen Hinterlegungsstelle zugeheile eingangsnummer: DSM 14459 Datum der Hinterlegung oder Weiterleining!: 2001-08-22
III. LEBENSFÄHIGKEITSBESCHEINIGUNG	
Die Lebensfähigkoit des unter II genennten Mikroorganismus ist am 20 Zu diesem Zeitpunkt war der Mikroorganismus (20) ³ lebensfähig () ³ nicht mohr lebenefählg	001 - 08 - 22 ² geprüft worden.
IV. BEDINOUNGEN, UNTER DENEN DIE LEBENSFÄHIGKEITSPRÜI	fung durchgeführt worden ist
v. Internationale hinterlegungsstelle	
Name: DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH Ansohrift: Maschoroder Wog 1b D-38124 Hraunschweig	Unterschrift(on) der zur Vertreuung der internationalen Hinterlegungsstelle befugten Person(en) oder des (der) von ihr ermitichtigten Bedieristeten: [Datum: 2001-08-24]

Angabe des Datums der Ersthinterlegung. Wenn eine enwute Hinterlegung oder eine Weiterleitung, vorgenommen worden ist, Angabe des Datums der Jeweile letzten ordeuten Hinterlegung oder Weiterleitung.

Zutreffendes ankreuzen.

Formblan DSMZ-BP/9 (cinzige Seite) 0196

In den in Rogel 10.2 Buchstabe a Ziffer it und iij vorgesschenen Fällen Angabe der letzten Lobonstädigkeitsprufung.

Ausfüllen, wenn die Angaben bennungt worden sind und wonn die Ergebnisse der Prüfung negativ waten,

WO 2005/090394

BUDAPESTER VERTRAG ÜBER DIE INTERNATIONATI ANERKENNUNG DER HINTERLEGUNG VON MIKROOR FÜR DIE ZWECKE VON PATENTVERFAHREN

INTERNATIONALES FORMBLATT

Degussa AG Service Center Biokatalyse Rodenbacher Chaussee 4 63457 Hanau

EMPFANGSBESTÄTIGUNG BEI ERSTHINTERLEGUNG, ausgestellt gemäß Regel 7.1 von der unten angegebenen INTERNATIONALEN HINTERLEGUNGSSTELLE

I. KENNZEICHNUNG DES MIKROORGANISMUS	
Vom HINTERLEGER zugeteiltes Bezugszeichen: MA32	Von der INTERNATIONALEN HINTERLEGUNGSSTELLE zugeteilte EINGANGSNUMMER: DSM 16275
II. WISSENSCHAFTLICHE BESCHREIBUNG UND/ODER VORGESCH	LAGENE TAXONOMISCHE BEZEICHNUNG
Mit dem unter I. bezeichneten Mikroorganismus wurde	
() eine wissenschaftliche Beschreibung ($_{\rm X}$) eine vorgeschlagene taxonomische Bezeichnung eingereicht. (Zutreffendes ankreuzen).	
III. EINGANG UND ANNAHME	٠.
Diese internationale Hinterlegungsstelle nimmt den unter I bezeichneten Mi hinterlegung)¹ eingegangen ist.	kroorganismus an, der bei ihr am 2004-03-04 (Datum der Erst-
IV. EINGANG DES ANTRAGS AUF UMWANDLUNG	
Der unter I bezeichnete Mikroorganismus ist bei dieser Internationalen Hint hinterlegung) und ein Antrag auf Umwandlung dieser Ersthinterlegung in e eingegangen (Datum des Eingangs des Antrags auf Umwandlung).	erlegungsstelle am eingegangen (Datum der Erst- ine Hinterlegung gemäß Budapester Vertrag ist am
V. INTERNATIONALE HINTERLEGUNGSSTELLE	
Name: DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH Anschrift: Mascheroder Weg 1b D-38124 Braunschweig	Unterschrift(en) der zur Vertretung der internationalen Hinterlegungsstelle befugten Person(en) oder des (der) von ihr ermächtigten Bediensteten:

Datum: 2004-03-09

Falls Regel 6.4 Buchstabe d zutrifft, ist dies der Zeitpunkt, zu dem de 32. atus einer internationalen Hinterlegungsstelle erworben worden ist.

BUDAPESTER VERTRAG ÜBER DIE INTERNATION LIERKENNUNG DER HINTERLEGUNG VON MIKROOR FÜR DIE ZWECKE VON PATENTVERFAHREN

INTERNATIONALES FORMBLATT

Degussa AG Service Center Biokatalyse Rodenbacher Chaussee 4 63457 Hanau

LEBENSFÄHIGKEITSBESCHEINIGUNG ausgestellt gemäß Regel 10.2 von der unten angegebenen INTERNATIONALEN HINTERLEGUNGSSTELLE

I. HINTERLEGER		II. KENNZEICHNUNG DES MIKROORGANISMUS	
Name:	Degussa AG Service Center Biokatalyse Rodenbacher Chaussee 4	Von der INTERNATIONALEN HINTERLEGUNGSSTELLE zugeteilte EINGANGSNUMMER: DSM 16275	
	63457 Hanau	Datum der Hinterlegung oder Weiterleitung¹:	
		2004-03-04	
III. LEBEN	SFÄHIGKEITSBESCHEINIGUNG		
Die Lebensfähigkeit des unter II genannten Mikroorganismus ist am 2004-03-08 ² geprüft worden. Zu diesem Zeitpunkt war der Mikroorganismus			
	() ³ lebensfähig) ³ nicht mehr lebensfähig	·	
IV. BEDIN	IGUNGEN, UNTER DENEN DIE LEBENSFÄHIGKEITSPRÜFU	NG DÙRCHGEFÜHRT WORDEN IST⁴ .	

p.			
V. INTERI	NATIONALE HINTERLEGUNGSSTELLE		
	DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH	Unterschrift(en) der zur Vertretung der internationalen Hinterlegungsstelle befugten Person(en) oder des (der) von ihr ermächtigten Bediensteten:	
Name:	MILKOOKOI LIDINELI CII. DEBELLE CII.	V. We'ho	

Angabe des Datums der Ersthinterlegung. Wenn eine erneute Hinterlegung oder eine Weiterleitung vorgenommen worden ist, Angabe des Datums der jeweils letzten erneuten Hinterlegung oder Weiterleitung. In den in Regel 10.2 Buchstabe a Ziffer ii und iii vorgesehenen Fällen Angabe der letzten Lebensfähigkeitsprüfung.

Ausfüllen, wenn die Angaben beantragt worden sind und wenn die Ergebnisse der Prüfung negativ waren.

WO 2005/090394

BUDAPESTER VERTRAG ÜBER DIE INTERNAT ANERKENNUNG DER HINTERLEGUNG VON MIKROORGENIEM FÜR DIE ZWECKE VON PATENTVERFAHREN PCT/EP2005/002689

Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

INTERNATIONALES FORMBLATT

Degussa AG Service Center Biokatalyse Rodenbacher Chaussee 4 63457 Hanau

EMPFANGSBESTÄTIGUNG BEI ERSTHINTERLEGUNG, ausgestellt gemäß Regel 7.1 von der unten angegebenen INTERNATIONALEN HINTERLEGUNGSSTELLE

I. KENNZEICHNUNG DES MIKROORGANISMUS			
Vom HINTERLEGER zugeteiltes Bezugszeichen: MA113	Von der INTERNATIONALEN HINTERLEGUNGSSTELLE zugeteilte EINGANGSNUMMER: DSM 16276		
II. WISSENSCHAFTLICHE BESCHREIBUNG UND/ODER VORGESCHLAGENE TAXONOMISCHE BEZEICHNUNG			
Mit dem unter I. bezeichneten Mikroorganismus wurde			
() eine wissenschaftliche Beschreibung ($_{ m X}$) eine vorgeschlagene taxonomische Bezeichnung eingereicht. (Zutreffendes ankreuzen).			
III. EINGANG UND ANNAHME			
Diese internationale Hinterlegungsstelle nimmt den unter I bezeichneten Mikroorganismus an, der bei ihr am 2004-03-04 (Datum der Ersthinterlegung) ¹ eingegangen ist.			
IV. EINGANG DES ANTRAGS AUF UMWANDLUNG			
Der unter I bezeichnete Mikroorganismus ist bei dieser Internationalen Hinterlegungsstelle am eingegangen (Datum der Ersthinterlegung) und ein Antrag auf Umwandlung dieser Ersthinterlegung in eine Hinterlegung gemäß Budapester Vertrag ist am eingegangen (Datum des Eingangs des Antrags auf Umwandlung).			
V. INTERNATIONALE HINTERLEGUNGSSTELLE			
Name: DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH Anschrift: Mascheroder Weg 1b D-38124 Braunschweig	Unterschrift(en) der zur Vertretung der internationalen Hinterlegungsstelle befugten Person(en) oder des (der) von ihr ermächtigten Bediensteten:		

Datum: 2004-03-09

Falls Regel 6.4 Buchstabe d zutrifft, ist dies der Zeitpunkt, zu dem der Status einer internationalen Hinterlegungsstelle erworben worden ist.

BUDAPESTER VERTRAG ÜBER DIE INTERNATIONAL ANERKENNUNG DER HINTERLEGUNG VON MIKROGELA FÜR DIE ZWECKE VON PATENTVERFAHREN

INTERNATIONALES FORMBLATT

Degussa AG Service Center Biokatalyse Rodenbacher Chaussee 4 63457 Hanau

LEBENSFÄHIGKEITSBESCHEINIGUNG ausgestellt gemäß Regel 10.2 von der unten angegebenen INTERNATIONALEN HINTERLEGUNGSSTELLE

I. HINTERL	EGER	II. KENNZEICHNUNG DES MIKROORGANISMUS
Name: Anschrift:	Degussa AG Service Center Biokatalyse Rodenbacher Chaussee 4 63457 Hanau	Von der INTERNATIONALEN HINTERLEGUNGSSTELLE zugeteilte EINGANGSNUMMER: DSM 16276 Datum der Hinterlegung oder Weiterleitung ¹ : 2004-03-04
III. LEBEN	SFÄHIGKEITSBESCHEINIGUNG	•
Zu diesem 2	fähigkeit des unter II genannten Mikroorganismus ist am 2004–03 Zeitpunkt war der Mikroorganismus) ³ lebensfähig) ³ nicht mehr lebensfähig	-08 ² geprüft worden.
IV. BEDIN	GUNGEN, UNTER DENEN DIE LEBENSFÄHIGKEITSPRÜFUNG	DURCHGEFÜHRT WORDEN IST⁴
·		
V. INTERN	NATIONALE HINTERLEGUNGSSTELLE	
Name: Anschrift:	DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH Mascheroder Weg 1b D-38124 Braunschweig	Unterschrift(en) der zur Vertretung der internationalen Hinterlegungsstelle befugten Person(en) oder des (der) von ihr ermächtigten Bediensteten: Datum: 2004-03-09

Angabe des Datums der Ersthinterlegung. Wenn eine erneute Hinterlegung oder eine Weiterleitung vorgenommen worden ist, Angabe des Datums der jeweils letzten erneuten Hinterlegung oder Weiterleitung.
In den in Regel 10.2 Buchstabe a Ziffer ii und iii vorgesehenen Fällen Angabe der letzten Lebensfähigkeitsprüfung.
Zutreffendes ankreuzen.
Ausfüllen, wenn die Angaben beantragt worden sind und wenn die Ergebnisse der Prüfung negativ waren. i

	Formular PCT/RO/134 (SAFE)		
0-1	Angaben zu einem hinterlegten	·	
	Mikroorganismus und/oder anderem		
	hinterlegten biologischen Material		
0-1-1	erstellt mit	PCT-SAFE [EASY mode]	
		Version 3.50 (Build 0002.169)	
0-2	Internationales Aktenzeichen		
0-3	Aktenzeichen des Anmelders oder Anwalts	040061 BT	
1	Die nachstehenden Angaben betreffen den Mikroorganismus und/ oder anderes biologisches Material, der/das in der Beschreibung genannt ist		
1-1	Seite	30-31	
1-2	Zeile	_	
1-3	Angaben betr. Hinterlegung		
1-3-1	Name der Hinterlegungsstelle	DSMZ DSMZ-Deutsche Sammlung von ganismen und Zellkulturen GmbH	Mikroor-
1-3-2	Anschrift der Hinterlegungsstelle	Mascheroder Weg 1b, D-38124 Braunschweig, Germany	
1-3-3	Datum der Hinterlegung	22. August 2001 (22.08.2001)	
1-3-4	Eingangsnummer	DSMZ 14459	
1-5	Bestimmungsstaaten, für die besondere Angaben gemacht werden	alle Bestimmungsstaaten	<u></u>
2	Die nachstehenden Angaben betreffen den Mikroorganismus und/ oder anderes biologisches Material, der/das in der Beschreibung genannt ist	-	
2-1	Seite	32-33	
2-2	Zeile	-	
2-3	Angaben betr. Hinterlegung		
2-3-1	Name der Hinterlegungsstelle	DSMZ DSMZ-Deutsche Sammlung von ganismen und Zellkulturen GmbH	Mikroor-
2-3-2	Anschrift der Hinterlegungsstelle	Mascheroder Weg 1b, D-38124 Braunschweig, Germany	
2-3-3	Datum der Hinterlegung	04. März 2004 (04.03.2004)	
2-3-4	Eingangsnummer	DSMZ 16275	
2-5	Bestimmungsstaaten, für die besondere Angaben gemacht werden	alle Bestimmungsstaaten	

3	Die nachstehenden Angaben betreffen den Mikroorganismus und/ oder anderes biologisches Material, der/das in der Beschreibung genannt ist		
3-1	Seite	34-35	
3-2	Zeile	_	
3-3	Angaben betr. Hinterlegung		
3-3-1	Name der Hinterlegungsstelle	DSMZ DSMZ-Deutsche Sammlung von ganismen und Zellkulturen GmbH	Mikroor-
3-3-2	Anschrift der Hinterlegungsstelle	Mascheroder Weg 1b, D-38124 Braunschweig, Germany	
3-3-3	Datum der Hinterlegung	04. März 2004 (04.03.2004)	
3-3-4	Eingangsnummer	DSMZ 16276	
3-5	Bestimmungsstaaten, für die besondere Angaben gemacht werden	alle Bestimmungsstaaten	

VOM ANMELDEAMT AUSZUFÜLLEN

	Dieses Formular ist mit der interna- tionalen Anmeldung eingegangen (ja oder nein)	ja
0-4-1	Bevollmächtigter Bediensteter	Y. Mariaus-v.d. Plauwakini

VOM INTERNATIONALEN BÜRO AUSZUFÜLLEN

	Dieses Formular ist an folgendem Datum beim internationalen Büro	
	eingegangen	
0-5-1	Bevollmächtigter Bediensteter	

Patentansprüche

5

- 1. Isolierte Polynukleotide, die für Polypeptide mit den Aminosäuresequenzen kodieren, die zu 90 bis 100 % identisch sind mit den in den Sequenzen SEQ ID NO:2, 3 und 5 oder 7, 8 und 10 enthaltenden Aminosäuresequenzen.
- 2. Polynukleotide gemäss Anspruch 1, ausgewählt aus der Gruppe:
- a) Polynukleotide, enthaltend die Nukleotidsequenzen SEQ ID NO:1, 4, 6, 9 oder dazu komplementäre Nukleotidsequenzen,
 - b) Polynukleotide enthaltend Nukleotidsequenzen, die den Sequenzen aus a) im Rahmen der Degeneriertheit des genetischen Codes entsprechen,
 - c) Polynukleotide enthaltend Nukleotidsequenzen gemäss a), die funktionsneutrale Sinnmutationen enthalten,
- d) Polynukleotide, die mit den komplementären

 Sequenzen aus a) unter stringenten Bedingungen
 hybridisieren, wobei unter stringenten Bedingungen
 das Waschen in 5XSSC bei einer Temperatur von 50
 bis 65°C verstanden wird,
- wobei die Polynukleotide für eine cyanidtolerante 25 Nitrilhydratase kodieren.
 - 3. Polypeptide, enthaltend Aminsäuresequenzen, die zu 90 bis 100 % identisch sind mit den Sequenzen mit den Sequenzen SEQ ID NO:2, 3 und 5 oder 7, 8 und 10.
- 4. Polypetide mit der Aktivität von cyanidtoleranten 30 Nitrilhydratasen gemäß Anspruch 3, deren Restaktivität

nach der Umsetzung von Methacrylnitril in Gegenwart von 20 mM (mM=mmol/1) Cyanidionen bei 20°C nach 30 min. mindestens 90 % der Restaktivität desselben Enzyms beträgt, wenn diese unter ansonsten denselben Bedingungen in Abwesenheit von Cyanidionen für die Umsetzung eingestuft wurde.

5. Sonde oder Primer, enthaltend mindestens 20 aufeinanderfolgende Nukleotide aus den Sequenzen SEQ ID NO:1, 4, 6, 9.

5

20

- 10 6. Vektoren, enhaltend ein Polynukleotid, ausgewählt aus den gemäss den Ansprüchen 1 oder 2.
 - 7. Wirtszelle, transformiert oder transfektiert durch die Einführung eines Polynukleotids gemäss einem oder mehreren der Ansprüche 1 oder 2.
- 15 8. Wirtszelle, transformiert durch die Einführung eines Vektors gemäss Anspruch 6.
 - 9. Verfahren zur enzymatischen Herstellung von Amiden aus Nitrilen, das folgende Schritte aufweist:
 - a) Umsetzung einer Nitrilgruppen enthaltenden Verbindung mit einem mikrobiellen Enzym (Polypeptid), das Nitrilhydratase-Aktivität aufweist und
 - b) Abtrennung des gebildeten Amids
- wobei man für die Umsetzung des Nitrils zum Amid eine cyanidtolerante Nitrilhydratase gemäß den Ansprüchen 3 oder 4 einsetzt.
 - 10. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass man das genannte Enzym produzierende und enthaltende Mikroorganismen gemäss den Ansprüchen 7 oder 8 oder deren Lysat einsetzt.

10

25

- 11. Verfahren gemäß Anspruch 10, dadurch gekennzeichnet, dass man ruhende Zelle des Mikroorganismus einsetzt.
- 12. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass man eine gereinigte Nitrilhydratase einsetzt.
- 5 13. Verfahren gemäß einem oder mehreren der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass das Enzym aus Mikroorganismen der Gattung Pseudomonas stammt.
 - 14. Verfahren gemäß Anspruch 13, dadurch gekennzeichnet, dass das Enzym aus eingesetzten Mikroorganismen der Species Pseudonomas putida oder Pseudonomas marginalis stammt.
 - 15. Verfahren gemäß Anspruch 14, dadurch gekennzeichnet, dass die eingesetzten Mikroorganismen unter den Nummern DSM 16275 und DSM 16276 hinterlegt sind.
- 15 16. Verfahren gemäß einem oder mehreren der Ansprüche 9 bis 15, dadurch gekennzeichnet, dass man Verbindungen der allgemeinen Formel

20

$$R"-CN$$
 (II)

in der bedeuten:

 $X: OH, H, Alkyl, NH_2;$

R: H, gesättigter Alkylrest mit 1 bis 12 C-Atomen, verzweigt oder unverzweigt, gegebenenfalls NH₂-substituiert, ungesättigte Alkylreste mit einer Doppelbindung und 1 bis 12 C-Atomen, verzweigt oder

unverzweigt, Cycloalkylgruppen mit 3 bis 6 C-Atomen,

mit Alkylthiogruppen substituierte Alkylenreste, wobei Alkyl hier einem C_1 bis C_3 -Rest

und Alkylen einem zweiwertigen C_3 bis C_8 -Rest entspricht,

R': H, Alkyl mit 1 bis 3 C-Atomen,

5

10

30

R": ein- oder zweikerniger ungesättigter Ring, mit 6 bis 12 C-Atomen, gegebenenfalls mit einer oder zwei Alkylgruppen (C_1 - C_3), C_1 , C_3 , C_4 , C_5 , C_6 , C_7 , C_8 , C_9 ,

Alkylnitrilrest mit 1 bis 6 C-Atomen zu den entsprechenden Amiden umsetzt.

- 17. Verfahren gemäß Anspruch 16, dadurch gekennzeichnet,
 15 dass man eine Verbindung der allgemeinen Formel(I) in
 Gegenwart von Blausäure oder einem Salz der Blausäure
 umsetzt.
- 18. Verfahren gemäß Anspruch 17, dadurch gekennzeichnet, dass man die Umsetzung in Gegenwart einer
 20 Anfangskonzentration von mehr als 0,5 mol% Cyanid bis 3 mol% Cyanid, bezogen auf das eingesetzte Nitril, durchführt.
- 19. Verfahren gemäß einem oder mehreren der Ansprüche 9 bis 18, dadurch gekennzeichnet, dass man als Nitril 2- Amino-4-methylthiobutyronitril einsetzt.
 - 20. Verfahren gemäß einem oder mehreren der Ansprüche 9 bis 18, dadurch gekennzeichnet, dass man als Nitril 2-Hydroxy-4-methylthiobutyronitril einsetzt, gegebenenfalls enthalten in der Reaktionsmischung aus der Herstellung dieses Nitrils.
 - 21. Verfahren gemäß einem oder mehreren der Ansprüche 9 bis 18, dadurch gekennzeichnet, dass man als Nitril 2-Hydroxy-2-methylpropionitril einsetzt.

- 22. Verfahren gemäss den Ansprüchen 9 bis 21, dadurch gekennzeichnet, dass man das Amid bzw. die das Amid enthaltende Lösung von den Zellen der Biomasse trennt und das Amid zu der entsprechenden Säure verseift.
- 5 23. Verfahren gemäss den Ansprüchen 9 bis 21, dadurch gekennzeichnet, dass man das Amid bzw. die das Amid enthaltende Lösung von den Zellen der Biomasse trennt und das Amid mit Alkali- oder Erdalkalimetallhydroxiden zu den Salzen der entsprechenden Carbonsäuren verseift.
 - 24. Verfahren gemsäss Anspruch 23, dadurch gekennzeichnet, dass man MHA-Amid mit Calziumhydroxid verseift und das Calziumsalz gewinnt.
- 25. Verfahren nach einem oder mehreren der Ansprüche 9 bis 24, wobei man
 - a) Mikroorganismen der Gattung Pseudonomas fermentiert, in denen man isolierte Polynukleotide, die für Polypeptide mit den Aminosäuresequenzen kodieren, die zu 90 bis 100 % identisch sind mit den in den Sequenzen mit den Sequenzen SEQ ID NO:2, 3, 5, 7, 8, 10 enthaltenden Aminosäuresequenzen, wobei die Polypeptide die Aktivität einer cyanidtoleranten Nitrilhydratase besitzen, verstärkt, insbesondere rekombinant überexprimiert,

20

- b) aus diesen Mikroorganismen das rekombinant erzeugte Enzym mit Nitrilhydrataseaktivität gegebenenefalls isoliert oder eine dieses Enzym enthaltende Proteinfraktion herstellt, und
- 30 c) die Mikroorganismen gemäss a) oder das Enzym oder die dieses enthaltende Fraktion gemäss b) in ein Medium überführt, das eine Nitrilgruppen-haltige

Verbindung der allgemeinen Formeln (I) oder (II) enthält.

- 26. Verfahren gemäss einem oder mehreren der Ansprüche 9 bis 24, wobei man Wirtszellen gemäss den Ansprüchen 7 oder 8 einsetzt.
- 27. Mikroorganismen der Gattung Pseudomonas, hinterlegt unter den Nummern DSM 16275 und DSM 16276.

5

28. Cyanidtolerante Nitrilhydratasen, isoliert aus den Stämmen der Gattung Pseudonomas, hinterlegt unter den Nummern DSM 16275 und DSM 16276.

1/7

Abbildung 1

2/7

Abbildung 2

3/7

Abbildung 3

4/7

Abbildung 4

Abbildung 5

Abbildung 6

Abbildung 7

SEQUENCE LISTING <110> Degussa AG 5 <120> Cyanidtolerante Nitrilhydratasen. <130> 040061 <160> 14 10 <170> PatentIn version 3.3 <210> 1 <211> 6828 15 <212> DNA <213> Pseudomonas marginalis <220> 20 <221> CDS <222> (25)..(609) <223> Gen der Kodierregion der alpha-Untereinheit <220> 25 <221> CDS <222> (650)..(1312) Gen der Kodierregion der beta-Unterinheit <220> 30 <221> gene (1309)..(2577) <222> <223> Gen des Aktivatorproteins <400> 1 aattottaag aaggagatat acat atg agt aca got act toa acg coc ggo 51 35 Met Ser Thr Ala Thr Ser Thr Pro Gly 1 gaa aga gcc tgg gca ttg ttt caa gtc ctc aag agc aag gaa ctc atc 99 Glu Arg Ala Trp Ala Leu Phe Gln Val Leu Lys Ser Lys Glu Leu Ile 40 15 ccg gag ggc tat gtc gag cag ctc acg caa ttg atg gag cac ggc tgg 147 Pro Glu Gly Tyr Val Glu Gln Leu Thr Gln Leu Met Glu His Gly Trp 45 30 35 195 age eee gag aac gge gee egt gtg gtg gee aag geg tgg gte gat eeg Ser Pro Glu Asn Gly Ala Arg Val Val Ala Lys Ala Trp Val Asp Pro 45 50 cag ttc cgg gca ctg ttg ctc aag gac ggc acc gcg gcc tgc gcc cag 243 Gln Phe Arg Ala Leu Leu Leu Lys Asp Gly Thr Ala Ala Cys Ala Gln ttc ggc tac acc ggc ccc cag ggc gaa tac atc gtt gcc ctg gag gat 291 55 Phe Gly Tyr Thr Gly Pro Gln Gly Glu Tyr Ile Val Ala Leu Glu Asp acg ccg acg ctg aag aac gtg att gtc tgc agc ctg tgc tcc tgc acc 339 Thr Pro Thr Leu Lys Asn Val Ile Val Cys Ser Leu Cys Ser Cys Thr 60

100

95

			_				_		-	-	Trp	tac Tyr					387
5												gta Val					435
10		_		_				_	-			gtc Val				-	483
15	_	-	_	_			-					ccg Pro 165					531
20												acc Thr					579
-					ctg Leu 190					tga	gaad	caaca	acc 1	tcat	catc	gt	629
25	tcad	etec	egg a	agtt	tgat	Me					is As					cc caa ne Gln 205	682
30												ctg Leu					730
35				_	-		_		_	-		agc Ser					778
40												gaa Glu					826
10												acc Thr 265					874
45	cgc Arg 270	tac Tyr	gtc Val	atc Ile	gcg Ala	acc Thr 275	gcc Ala	acc Thr	ctg Leu	ctg Leu	gtc Val 280	gaa Glu	acc Thr	ggc Gly	gtg Val	atc Ile 285	922
50	acc Thr	cag Gln	gcg Ala	gag Glu	ctt Leu 290	gat Asp	cag Gln	gcc Ala	ttg Leu	ggc Gly 295	tcc Ser	cac His	ttc Phe	aag Lys	ctg Leu 300	gcg Ala	970
55	aat Asn	ccc Pro	gcc Ala	cat His 305	gcc Ala	gag Glu	ggc Gly	cgc Arg	ccg Pro 310	gcg Ala	att Ile	acg Thr	GJA aaa	cgg Arg 315	ccg Pro	ccc Pro	1018
	ttc Phe	gag Glu	gtg Val 320	Gl ^À aaa	gat Asp	cgg Arg	gtg Val	gtg Val 325	gtg Val	cga Arg	gac Asp	gaa Glu	tat Tyr 330	gtg Val	gct Ala	gga Gly	1066

5	cac atc cgc atg ccc gcc tac gtg cgc ggc aag gaa ggc gtg gtc ctg His Ile Arg Met Pro Ala Tyr Val Arg Gly Lys Glu Gly Val Val Leu 335 340 345	1114
J	cac cgc acg tca gag aaa tgg ccg ttc ccc gac gca atc ggg cat ggc His Arg Thr Ser Glu Lys Trp Pro Phe Pro Asp Ala Ile Gly His Gly 350 355 360 365	1162
10	gat gta agc gca gcc cat caa ccc acc tac cac gtc gag ttc gcc gtg Asp Val Ser Ala Ala His Gln Pro Thr Tyr His Val Glu Phe Ala Val 370 375 380	1210
15	aag gac ctg tgg gga gat gcc gcc gat gag ggt ttt gtg gtg gtc gac Lys Asp Leu Trp Gly Asp Ala Ala Asp Glu Gly Phe Val Val Val Asp 385 390 395	1258
20	ctg ttc gaa age tac ctg gac aag gcc gcc ggc gcg cgc gcg gtg aac Leu Phe Glu Ser Tyr Leu Asp Lys Ala Ala Gly Ala Arg Ala Val Asn 400 405 410	1306
	cca tga cagacggcgc ccaggcaagc cgactgccgg tgacggtcct ttcgggcttc Pro	1362
25	ctcggcgccg gcaagaccac cctgctcaac cacatcctgc gcaatcgcga aggcctgcgc	1422
	gtggccgtca tcgtcaatga catgagcgaa gtcaatatcg atgccgaaga ggtgcagcgc	1482
30	gatgtcgcgc tgcaccgtgg tcgcgatgag ctgatcgaga tgagcaacgg gtgcatctgc	1542
	tgcaccctgc gcgccgattt gctcgagcag atcagcatgc tcgcacgcca acagcgtttc	1602
35	gattacctgc tgattgaatc cacggggatc tccgagccga tgccggtcgc ggagacgttc	1662
33	geetteettg acgetgatgg etteageete agegaactgg egegeetgga eacettggtg	1722
	acggtggtcg atggcagtcg tttccaggaa ctgctcgaat cgccgcacac cgttgaccag	1782
40	gatgacgcca cgccagacgc acccaagcgc cacctggccg atctgctgat cgaacaggtg	1842
	gagtacgcca acgtcattct cgtcaataag ctggatctga tcgatgcagc gcagtatcag	1902
45	geegtgeagg egateeteae aggeettaae eegaeggege ggateatgee gatggeeeae	1962
45	ggtaacatcc catcagccag cctgctcggc acccatctgt ttgatttacc cagcctcgcg	2022
	gegtegeegg getggatgeg gaaaatggag geggeagaeg egeeggeete egagteggae	2082
50	acctatggcg tgacgtcctg ggtgtaccgt gagcgcgcac ctttccaccc gcaacggttg	2142
	ctcgactttc tccagcagcc ctggtgcaac gggcggttgc tgcgcagcaa aggttacttc	2202
55	tggcttgcca gccgccacct ggaaaccggc ctgctggtgc aaagcggcaa gcggttccag	2262
رر	tgggactatg tcgggcgctg gtggaacttc atcgagccgt cgcaatggcc ccgggacgaa	2322
	taccggctgc agggcatcag ggccaaatgg gacagcgtgg tcggcgactg ccggcaggag	2382
60	ttggtgttta tcggccaggg cctcgacacc gacgcgttac agcgcgagct cgaccactgc	2442
	ctgctgagcg cccaggaaat cgccgccggc ccactggcct ggcaagcgct gccaggggcg	2502

	accgcctttg	accgacagac	ccttgcccgc	ccccacaca	gcccatggcg	attgccccca	2562
5	tttgatccga	gatagaagct	tctgttttgg	cggatgagag	aagattttca	gcctgataca	2622
9	gattaaatca	gaacgcagaa	gcggtctgat	aaaacagaat	ttgcctggcg	gcagtagcgc	2682
	ggtggtccca	cctgacccca	tgccgaactc	agaagtgaaa	cgccgtagcg	ccgatggtag	2742
10	tgtggggtct	ccccatgcga	gagtagggaa	ctgccaggca	tcaaataaaa	cgaaaggctc	2802
	agtcgaaaga	ctgggccttt	cgttttatct	gttgtttgtc	ggtgaacgct	ctcctgagta	2862
15	ggacaaatcc	gccgggagcg	gatttgaacg	ttgcgaagca	acggcccgga	gggtggcggg	2922
7.0	caggacgccc	gccataaact	gccaggcatc	aaattaagca	gaaggccatc	ctgacggatg	2982
	gcctttttgc	gtttctacaa	actcttttgt	ttatttttct	aaatacattc	aaatatgtat	3042
20	ccgctcatga	gacaataacc	ctgataaatg	cttcaataat	attgaaaaag	gaagagtatg	3102
	agtattcaac	atttccgtgt	cgcccttatt	cccttttttg	cggcattttg	ccttcctgtt	3162
25	tttgctcacc	cagaaacgct	ggtgaaagta	aaagatgctg	aagatcagtt	gggtgcacga	3222
20	gtgggttaca	tcgaactgga	tctcaacagc	ggtaagatcc	ttgagagttt	tegeceegaa	3282
	gaacgttttc	caatgatgag	cacttttaaa	gttctgctat	gtggcgcggt	attatcccgt	3342
30	gttgacgccg	ggcaagagca	actcggtcgc	cgcatacact	attctcagaa	tgacttggtt	3402
	gagtactcac	cagtcacaga	aaagcatctt	acggatggca	tgacagtaag	agaattatgc	3462
35	agtgctgcca	taaccatgag	tgataacact	geggeeaact	tacttctgac	aacgatcgga	3522
33	ggaccgaagg	agctaaccgc	ttttttgcac	aacatggggg	atcatgtaac	tcgccttgat	3582
	cgttgggaac	cggagctgaa	tgaagccata	ccaaacgacg	agcgtgacac	cacgatgcct	3642
40	gtagcaatgg	caacaacgtt	gcgcaaacta	ttaactggcg	aactacttac	tctagcttcc	3702
	cggcaacaat	taatagactg	gatggaggcg	gataaagttg	caggaccact	tctgcgctcg	3762
45	gcccttccgg	ctggctggtt	tattgctgat	aaatctggag	ccggtgagcg	tgggtctcgc	3822
40	ggtatcattg	cagcactggg	gccagatggt	aagccctccc	gtatcgtagt	tatctacacg	3882
	acggggagtc	aggcaactat	ggatgaacga	aatagacaga	tcgctgagat	aggtgcctca	3942
50	ctgattaagc	attggtaact	gtcagaccaa	gtttactcat	atatacttta	gattgattta	4002
	aaacttcatt	tttaatttaa	aaggatctag	gtgaagatcc	tttttgataa	tctcatgacc	4062
55	aaaatccctt	aacgtgagtt	ttcgttccac	tgagcgtcag	accccgtaga	aaagatcaaa	4122
55	ggatcttctt	gagatccttt	ttttctgcgc	gtaatctgct	gcttgcaaac	aaaaaacca	4182
	ccgctaccag	cggtggtttg	tttgccggat	caagagctac	caactctttt	tccgaaggta	4242
60	actggcttca	gcagagcgca	gataccaaat	actgtccttc	tagtgtagcc	gtagttaggc	4302
	caccacttca	agaactctgt	agcaccgcct	acatacctcg	ctctgctaat	cctgttacca	4362

				•			
	gtggctgctg	ccagtggcga	taagtcgtgt	cttaccgggt	tggactcaag	acgatagtta	4422
5	ccggataagg	cgcagcggtc	gggctgaacg	gggggttegt	gcacacagcc	cagcttggag	4482
5	cgaacgacct	acaccgaact	gagataccta	cagcgtgagc	tatgagaaag	cgccacgctt	4542
	cccgaaggga	gaaaggcgga	caggtatccg	gtaagcggca	gggtcggaac	aggagagcgc	4602
10	acgagggagc	ttccaggggg	aaacgcctgg	tatctttata	gtcctgtcgg	gtttcgccac	4662
	ctctgacttg	agcgtcgatt	tttgtgatgc	tcgtcagggg	ggcggagcct	atggaaaaac	4722
15	gccagcaacg	cggccttttt	acggttcctg	gccttttgct	ggccttttgc	tcacatgttc	4782
	tttcctgcgt	tatcccctga	ttctgtggat	aaccgtatta	ccgcctttga	gtgagctgat	4842
	accgctcgcc	gcagccgaac	gaccgagcgc	agcgagtcag	tgagcgagga	agcggaagag	4902
20	cgcctgatgc	ggtattttct	ccttacgcat	ctgtgcggta	tttcacaccg	catatatggt	4962
	gcactctcag	tacaatctgc	tctgatgccg	catagṭtaag	ccagtataca	ctccgctatc	5022
25	gctacgtgac	tgggtcatgg	ctgcgccccg	acacccgcca	acacccgctg	acgcgccctg	5082
25	acgggcttgt	ctgctcccgg	catccgctta	cagacaagct	gtgaccgtct	ccgggagctg	5142
ı	catgtgtcag	aggttttcac	cgtcatcacc	gaaacgcgcg	aggcagctgc	ggtaaagctc	5202
30	atcagcgtgg	tcgtgaagcg	attcacagat	gtctgcctgt	tcatccgcgt	ccagctcgtt	5262
	gagtttctcc	agaagcgtta	atgtctggct	tctgataaag	cgggccatgt	taagggcggt	5322
35	tttttcctgt	ttggtcactt	gatgcctccg	tgtaaggggg	aatttctgtt	catgggggta	5382
33	atgataccga	tgaaacgaga	gaggatgctc	acgatacggg	ttactgatga	tgaacatgcc	5442
	cggttactgg	aacgttgtga	gggtaaacaa	ctggcggtat	ggatgcggcg	ggaccagaga	5502
40	aaaatcactc	agggtcaatg	ccagcgcttc	gttaatacag	atgtaggtgt	tccacagggt	5562
	agccagcagc	atcctgcgat	gcagatccgg	aacataatgg	tgcagggcgc	tgacttccgc	5622
45	gtttccagac	tttacgaaac	acggaaaccg	aagaccattc	atgttgttgc	tcaggtcgca	5682
40	gacgttttgc	agcagcagtc	gcttcacgtt	cgctcgcgta	teggtgatte	attctgctaa	5742
	ccagtaaggc	aaccccgcca	gcctagccgg	gtcctcaacg	acaggagcac	gatcatgcgc	5802
50	acccgtggcc	aggacccaac	gctgcccgag	atgcgccgcg	tgeggetget	ggagatggcg	5862
	gacgcgatgg	atatgttctg	ccaagggttg	gtttgcgcat	tcacagttct	ccgcaagaat	5922
55	tgattggctc	caattcttgg	agtggtgaat	ccgttagcga	ggtgccgccg	gcttccattc	5982
23	aggtcgaggt	ggcccggctc	catgcaccgc	gacgcaacgc	ggggaggcag	acaaggtata	6042
	gggcggcgcg	cctacaatcc	atgccaaccc	gttccatgtg	ctcgccgagg	cggcataaat	6102
60	cgccgtgacg	atcagcggtc	cagtgatcga	agttaggctg	gtaagagccg	cgagcgatcc	6162
	ttgaagctgt	ccctgatggt	cgtcatctac	ctgcctggac	agcatggcct	gcaacgcggg	6222

	catcccgatg ccgccggaag cgagaagaat cataatgggg aaggccatcc agcctcgcgt	6282
- -	cgcgaacgcc agcaagacgt agcccagcgc gtcggccgcc atgccggcga taatggcctg	6342
5	cttctcgccg aaacgtttgg tggcgggacc agtgacgaag gcttgagcga gggcgtgcaa	6402
	gattccgaat accgcaagcg acaggccgat catcgtcgcg ctccagcgaa agcggtcctc	6462
LO	gccgaaaatg acccagagcg ctgccggcac ctgtcctacg agttgcatga taaagaagac	6522
	agtcataagt gcggcgacga tagtcatgcc ccgcgcccac cggaaggagc tgactgggtt	6582
L5	gaaggetete aagggeateg gtegaegete teeettatge gaeteetgea ttaggaagea	6642
LO	gcccagtagt aggttgaggc cgttgagcac cgccgccgca aggaatggtg catgcatcga	6702
	tcaccacaat tcagcaaatt gtgaacatca tcacgttcat ctttccctgg ttgccaatgg	6762
20	cccattttcc tgtcagtaac gagaaggtcg cgaattcagg cgctttttag actggtcgta	6822
	atgaac	6828
25	<210> 2 <211> 194 <212> PRT <213> Pseudomonas marginalis	
3 0	<400> 2	
	Met Ser Thr Ala Thr Ser Thr Pro Gly Glu Arg Ala Trp Ala Leu Phe 1 5 10 15	
35	Gln Val Leu Lys Ser Lys Glu Leu Ile Pro Glu Gly Tyr Val Glu Gln 20 25 30	
40	Leu Thr Gln Leu Met Glu His Gly Trp Ser Pro Glu Asn Gly Ala Arg 35 40 45	
45	Val Val Ala Lys Ala Trp Val Asp Pro Gln Phe Arg Ala Leu Leu Leu 50 55 60	
50	Lys Asp Gly Thr Ala Ala Cys Ala Gln Phe Gly Tyr Thr Gly Pro Gln 65 70 75 80	
	Gly Glu Tyr Ile Val Ala Leu Glu Asp Thr Pro Thr Leu Lys Asn Val 85 90 95	
55	Ile Val Cys Ser Leu Cys Ser Cys Thr Asn Trp Pro Val Leu Gly Leu 100 105 110	
60	Pro Pro Glu Trp Tyr Lys Gly Phe Glu Phe Arg Ala Arg Leu Val Arg 115 120 125	

	Glu	Gly 130	Arg	Thr	Val.	Leu	Arg 135	Glu	Leu	Gly	Thr	Glu 140	Leu	Pro	Arg	Asp
5	Met 145	Val	Val	Lys	Val	Trp 150	Asp	Thr	Ser	Ala	Glu 155	Ser	Arg	Tyr	Leu	Val 160
10	Leu	Pro	Val	Arg	Pro 165	Glu	Gly	Ser	Glu	His 170	Met	Ser	Glu	Glu	Gln 175	Leu
15	Gln	Ala	Leu	Val 180	Thr	Lys	Asp	Val	Leu 185	Ile	Gly	Val	Ala	Leu 190	Pro	Arg
20	Val	Gly														
25	<210 <211 <212 <213	L> 2 2> E	3 220 PRT Pseud	domor	nas r	margi	nali	Ĺs			٠.			,		
	<400)> 3	3													
3 0	Met 1	Asp	Gly	Phe	His 5	Asp	Leu	Gly	Gly	Phe 10	Gln	Gly	Phe	Gly	Lys 15	Val
35	Pro	His	Thr	Ile 20	Asn	Ser	Leu	Ser	Tyr 25	Lys	Gln	Val	Phe	Lys 30	Gln	Asp
	Trp	Glu	His 35	Leu	Ala	Tyr	Ser	Leu 40	Met	Phe	Ile	Gly	Ala 45	Asp	His	Leu
40	Lys	Lys 50	Phe	Ser	Val	Asp	Glu 55	Val	Arg	His	Alą	Val 60	Glu	Arg	Leu	Asp
45	Val 65	Arg	Gln	His	Val	Gly 70	Thr	Gln	Tyr	Tyr	Glu 75	Arg	Туг	Val	Ile	Ala 80
50	Thr	Ala	Thr	Leu	Leu 85	Val	Glu	Thr	Gly	Val 90	Ile	Thr	Gln	Ala	Glu 95	Leu
55	Asp	Gln	Ala	Leu 100	Gly	Ser	His	Phe	Lys 105	Leu	Ala	Asn	Pro	Ala 110	His	Ala
	Glu	Gly	Arg 115	Pro	Ala	Ile	Thr	Gly 120	Arg	Pro	Pro	Phe	Glu 125	Val	Gly	Asp
50	Arg	Val 130	Val	Val	Arg	Asp	Glu 135	Tyr	Val	Ala	Gly	His 140	Ile	Arg	Met	Pro

5	Ala 145	Tyr	Val	Arg	Gly	Lys 150	Glu	Gly	Val	Val	Leu 155	His	Arg	Thr	Ser	Glu 160	
	Lys	Trp	Pro	Phe	Pro 165	Asp	Ala	Ile	Gly	His 170	Gly	Asp	Val	Ser	Ala 175	Ala	
10	His	Gln	Pro	Thr 180	Tyr	His	Val	Glu	Phe 185	Ala	Val	Lys	Asp	Leu 190	Trp	Gly	
15	Asp	Ala	Ala 195	Asp	Glu	Gly	Phe	Val 200	Val	Val	Asp	Leu	Phe 205	Glu	Ser	Tyr	
20	Leu	Asp 210	Lys	Ala	Ala	Gly	Ala 215	Arg	Ala	Val	Asn	Pro 220					
25	<210 <211 <212 <213	L> 1 2> I	.269 NA	lomor	nas n	margi	inali	s			•						
30	<220 <221 <222	L> (DS		-0)												
	<223		(1) Jen d			erreg	gion	des	Akti	Lvato	orpro	oteir	ıs				
35	<223	3> ()> 4 aca	Jen d l gac	der E	gcc	cag Gln	gca	agc	cga	ctg	ccg	gtg	acg	gtc Val	ctt Leu 15	tcg Ser	48
35 40	<223 <400 atg Met 1	3> ()> 4 aca Thr	en d gac Asp	ggc Gly	gcc Ala 5	cag	gca Ala aag	agc Ser	cga Arg	ctg Leu 10 ctg	ccg Pro	gtg Val	acg Thr	Val atc	Leu 15 ctg	Ser	<u>4</u> 8 96
	<223 <400 atg Met 1 ggc Gly	3> (aca Thr ttc Phe	gac Asp ctc Leu	ggc Gly ggc Gly 20	gcc Ala 5 gcc Ala	cag Gln ggc	gca Ala aag Lys	agc Ser acc Thr	cga Arg acc Thr 25	ctg Leu 10 ctg Leu	ccg Pro ctc Leu	gtg Val aac Asn	acg Thr cac His	val atc Ile 30 atg	Leu 15 ctg Leu agc	cgc Arg	
40 45	<223 <400 atg Met 1 ggc Gly aat Asn	3> () aca Thr ttc Phe cgc Arg	gac Asp ctc Leu gaa Glu 35	ggc Gly ggc Gly 20 ggc Gly	gcc Ala 5 gcc Ala ctg Leu	cag Gln ggc Gly	gca Ala aag Lys gtg Val	agc Ser acc Thr gcc Ala 40	cga Arg acc Thr 25 gtc Val	ctg Leu 10 ctg Leu atc Ile	ccg Pro ctc Leu gtc Val	gtg Val aac Asn aat Asn	acg Thr cac His gac Asp 45	val atc Ile 30 atg Met	Leu 15 ctg Leu agc ser	cgc Arg gaa Glu	96
40	<223 <400 atg Met 1 ggc Gly aat Asn gtc Val	3> Constant of the constant of	gac Asp ctc Leu gaa Glu 35 atc Ile	ggc Gly ggc Gly 20 ggc Gly gat Asp	gcc Ala 5 gcc Ala ctg Leu gcc Ala	cag Gln ggc Gly cgc Arg	gca Ala aag Lys gtg Val gag Glu 55	agc Ser acc Thr gcc Ala 40 gtg Val	cga Arg acc Thr 25 gtc Val cag Gln	ctg Leu 10 ctg Leu atc Ile cgc Arg	ccg Pro ctc Leu gtc Val gat Asp	gtg Val aac Asn aat Asn gtc Val 60	acg Thr cac His gac Asp 45 gcg Ala	atc Ile 30 atg Met ctg Leu	Leu 15 ctg Leu agc Ser cac His	cgc Arg gaa Glu cgt Arg	96 144
40 45	<223 <400 atg Met 1 ggc Gly aat Asn gtc Val ggt Gly 65	3> Coccording Coccordina Coccording Coccordina Coccordi	gac Asp ctc Leu gaa Glu 35 atc Ile gat Asp	ggc Gly ggc Gly 20 ggc Gly gat Asp gag Glu	gcc Ala 5 gcc Ala ctg Leu ctg Leu ttg	cag Gln ggc Gly cgc Arg gaa Glu atc	gca Ala aag Lys gtg Val gag Glu 55 gag Glu	agc Ser acc Thr gcc Ala 40 gtg Val atg Met	cga Arg acc Thr 25 gtc Val cag Gln agc Ser	ctg Leu 10 ctg Leu atc Ile cgc Arg	ccg Pro ctc Leu gtc Val gat Asp ggg Gly 75 atg	gtg Val aac Asn aat Asn gtc Val 60 tgc Cys	acg Thr cac His gac Asp 45 gcg Ala atc Ile	atc Ile 30 atg Met ctg Leu tgc Cys cgc	Leu 15 ctg Leu agc Ser cac His tgc Cys	cgc Arg gaa Glu cgt Arg acc Thr 80 cag	96 144 192

															agc Ser		384
5	agc Ser	gaa Glu 130	ctg Leu	gcg Ala	cgc Arg	ctg Leu	gac Asp 135	acc Thr	ttg Leu	gtg Val	acg Thr	gtg Val 140	gtc Val	gat Asp	ggc Gly	agt Ser	432
10												Val			gat Asp		480
15	gcc Ala	acg Thr	cca Pro	gac Asp	gca Ala 165	ccc Pro	aag Lys	cgc Arg	cac His	ctg Leu 170	gcc Ala	gat Asp	ctg Leu	ctg Leu	atc Ile 175	gaa Glu	528
20	cag Gln	gtg Val	gag Glu	tac Tyr 180	gcc Ala	aac Asn	gtc Val	att Ile	ctc Leu 185	gtc Val	aat Asn	aag Lys	ctg Leu	gat Asp 190	ctg Leu	atc Ile	576
20	gat Asp	gca Ala	gcg Ala 195	cag Gln	tat Tyr	cag Gln	gcc Ala	gtg Val 200	cag Gln	gcg Ala	atc Ile	ctc Leu	aca Thr 205	Gly	ctt Leu	aac Asn	624
25	ccg Pro	acg Thr 210	gcg Ala	cgg Arg	atc Ile	atg Met	ccg Pro 215	atg Met	gcc Ala	cac His	ggt Gly	aac Asn 220	atc Ile	cca Pro	tca Ser	gcc Ala	672
30	agc Ser 225	ctg Leu	ctc Leu	ggc Gly	acc Thr	cat His 230	ctg Leu	ttt Phe	gat Asp	tta Leu	ccc Pro 235	agc Ser	ctc Leu	gcg Ala	gcg Ala	tcg Ser 240	720
35	ccg Pro	Gly	tgg Trp	atg Met	cgg Arg 245	aaa Lys	atg Met	gag Glu	gcg Ala	gca Ala 250	gac Asp	gcg Ala	ccg Pro	gcc Ala	tcc Ser 255	gag Glu	768
40	tcg Ser	gac Asp	acc Thr	tat Tyr 260	ggc	gtg Val	acg Thr	tcc Ser	tgg Trp 265	gtg Val	tac Tyr	cgt Arg	gag Glu	,cgc Arg 270	gca Ala	cct Pro	816
∓ 0	ttc Phe	cac His	ccg Pro 275	caa Gln	cgg Arg	ttg Leu	ctc Leu	gac Asp 280	ttt Phe	ctc Leu	cag Gln	cag Gln	ccc Pro 285	tgg Trp	tgc Cys	aac Asn	864
45	GJÀ aaa	cgg Arg 290	ttg Leu	ctg Leu	cgc Arg	agc Ser	aaa Lys 295	ggt Gly	tac Tyr	ttc Phe	tgg Trp	ctt Leu 300	gcc Ala	agc Ser	cgc Arg	cac His	912
50	ctg Leu 305	gaa Glu	acc Thr	ggc	ctg Leu	ctg Leu 310	gtg Val	caa Gln	agc Ser	ggc	aag Lys 315	cgg Arg	ttc Phe	cag Gln	tgg Trp	gac Asp 320	960
55	tat Tyr	gtc Val	Gly aaa	cgc Arg	tgg Trp 325	tgg Trp	aac Asn	ttc Phe	atc Ile	gag Glu 330	ccg Pro	tcg Ser	caa Gln	tgg Trp	ccc Pro 335	cgg Arg	1008
	gac Asp	gaa Glu	tac Tyr	cgg Arg 340	ctg Leu	cag Gln	ggc	atc Ile	agg Arg 345	gcc Ala	aaa Lys	tgg Trp	gac Asp	agc Ser 350	gtg Val	gtc Val	1056

5		gac Asp															1104
5		gcg Ala 370															1152
10		gcc Ala															1200
15		gac Asp															1248
20		cca Pro		_	_		tag										1269
25	<210 <211 <212 <213	1> 4 2> I	5 122 PRT Pseud	iomo	nas 1	margi	inali	ls									
	<400	0> 5	5														
30	Met 1	Thr	Asp	Gly	Ala 5	Gln	Ala	Ser	Arg	Leu 10	Pro	Val	Thr	Val	Leu 15	Ser	
35	Gly	Phe	Leu	Gly 20	Ala	Gly	Lys	Thr	Thr 25	Leu	Leu	Asn	His	Ile 30	Leu	Arg	
40	Asn	Arg	Glu 35	Gly	Leu	Arg	Val	Ala 40	Val	Ile	Val	Asn	Asp 45	Met	Ser	Glu	
	Val	Asn 50	Ile	Asp	Ala	Glu	Glu 55	Val	Gln	Arg	Asp	Val 60	Ala	Leu	His	Arg	
45	Gly 65	Arg	Asp	Glu	Leu	Ile 70	Glu	Met	Ser	Asn	Gly 75	Cys	Ile	Cys	.CÀ2	Thr 80	
50	Leu	Arg	Ala	Asp	Leu 85	Leu	Glu	Gln	Ile	Ser 90	Met	Leu	Ala	Arg	Gln 95	Gln	
55	Arg	Phe	Asp	Туr 100	Leu	Leu	Ile	Glu	Ser 105	Thr	Gly	Ile	Ser	Glu 110	Pro	Met	
60	Pro	Val	Ala 115	Glu	Thr	Phe	Ala	Phe 120	Leu	Asp	Ala	Asp	Gly 125	Phe	Ser	Leu	

	Ser	Glu 130	Leu	Ala	Arg	Leu	Asp 135	Thr	Leu	Val	Thr	Val 140	Val	Asp	Gly	Ser
5	Arg 145	Phe	Gln	Glu	Leu	Leu 150	Glu	Ser	Pro	His	Thr 155	Val	Asp	Gln	Asp	Asp 160
10	Ala	Thr	Pro	Asp	Ala 165	Pro	Lys	Arg	His	Leu 170	Ala	Asp	Leu	Leu	Ile 175	Glu
15	Gln	Val	Glu	Tyr 180	Ala	Asn	Val	Ile	Leu 185	Val	Asn	Lys	Leu	Asp 190	Leu	Ile
20	Asp	Ala	Ala 195	Gln	Tyr	Gln	Ala	Val 200	Gln	Ala	Ile	Leu	Thr 205	Gly	Leu	Asn
20	Pro	Thr 210	Ala	Arg	Ile	Met	Pro 215	Met	Ala	His		Asn 220	Ile	Pro	Ser	Ala
25	Ser 225	Leu	Leu	Gly	Thr	His 230	Leu	Phe	Asp	Leu	Pro 235	Ser	Leu	Ala	Ala	Ser 240
30	Pro	Gly	Trp	Met	Arg 245	Lys	Met	Glu	Ala	Ala 250		Ala	Pro	Ala	Ser 255	Glu
35	Ser	Asp	Thr	Tyr 260	Gly	Val	Thr	Ser	Trp 265	Val	Tyr	Arg	Glu	Arg 270	Ala	Pro
	Phe	His	Pro 275	Gln	Arg	Leu	Leu	Asp 280	Phe	Leu		Gln · ·	Pro 285	Trp	Cys	Asn
40	Gly	Arg 290	Leu	Leu	Arg	Ser	Lys 295	Gly	Tyr	Phe	Trp	Leu 300	Ala	Ser	Arg	His
45	Leu 305	Glu	Thr	Gly	Leu	Leu 310	Val	Gln	Ser	Gly	Lys 315	Arg	Phe	Gln	Trp	Asp 320
50	Tyr	Val	Gly	Arg	Trp 325	Trp	Asn	Phe	Ile	Glu 330	Pro	Ser	Gln	Trp	Pro 335	Arg
55	Asp	Glu	Tyr	Arg 340	Leu	Gln	Gly	Ile	Arg 345	Ala	Lys	Trp	Asp	Ser 350	Val	Val
	Gly	Asp	Cys 355	Arg	Gln	Glu	Leu	Val 360	Phe	Ile	Gly	Gln	Gly 365	Leu	Asp	Thr
60	Asp	Ala 370	Leu	Gln	Arg	Glu	Leu 375	Asp	His	Cys	Leu	Leu 380	Ser	Ala	Gln	Glu

	Ile Ala 385	a Ala	Gly	Pro	Leu 390	Ala	Trp	Gln	Ala	Leu 395	Pro	Gly	Ala	Thr	Ala 400	
5	Phe Asj	o Arg	Gln	Thr 405	Leu	Ala	Arg	Pro	Pro 410	His	Ser	Pro	Trp	Arg 415	Leu	
10	Pro Pro	o Phe	Asp 420	Pro	Arg											
15	<210> <211> <212> <213>	6 2371 DNA Pseud	domor	ıas <u>r</u>	outid	la										
20	<220> <221> <222> <223>	CDS (1). Gen (erreç	gion	der	alph	ıa-Ur	ntere	einhe	eit				
25	<220> <221> <222> <223>	CDS (624 Gen		-		gion	der	beta	a-Unt	erei	Lnhei	Ĺŧ				
30	<220> <221> <222> <223>	gene (128: Gen				rprot	ceins	, 5	٠							
35	<400> atg acg Met The	6 g gca r Ala	act Thr	tca Ser 5	acc Thr	cct Pro	ggt Gly	gag Glu	cgg Arg 10	gca Ala	cgc Arg	gca Ala	ttg Leu	ttt Phe 15	gca Ala	48
40	gtg cto Val Le	c aag ı Lys	cgc Arg 20	aaa Lys	gac Asp	ctc Leu	atc Ile	ccc Pro 25	gag Glu	ggc Gly	tac Tyr	atc Ile	gaa Glu 30	cag Gln	ctc Leu	96
45	acc car															144
E 0	gtc gcc Val Ala 50	c aag a Lys	gcc Ala	tgg Trp	gtc Val	gat Asp 55	ccg Pro	cag Gln	ttt Phe	cgc Arg	gag Glu 60	ctg Leu	ctg Leu	ctc Leu	aag Lys	192
50	gac gg Asp Gl	t acg y Thr	gcc Ala	gcc Ala	tgc Cys 70	gcc Ala	cag Gln	ttc Phe	Gly ggc	ttc Phe 75	acc Thr	Gly ggc	cca Pro	caa Gln	ggc 80	240
55	gaa ta Glu Ty:	c atc r Ile	gtc Val	gcc Ala 85	ctg Leu	gaa Glu	gac Asp	acc Thr	ccg Pro 90	cag Gln	ttg Leu	aaa Lys	aac Asn	gtg Val 95	atc Ile	288
60	gtc tg Val Cy	t agc s Ser	ctg Leu 100	tgc Cys	tcc Ser	tgc Cys	acg Thr	aac Asn 105	tgg Trp	ccg Pro	gtg Val	ctg Leu	ggc Gly 110	ctg Leu	cca Pro	336

	cct Pro	gag Glu	tgg Trp 115	tac Tyr	aag Lys	ggc Gly	ttc Phe	gag Glu 120	ttc Phe	cgt Arg	gcg Ala	cgg Arg	ttg Leu 125	gtc Val	cgg Arg	gag Glu	384
5					ttg Leu												432
10					tgg Trp												480
15	ccg Pro	caa Gln	cga Arg	cca Pro	gcg Ala 165	ggc ggc	tca Ser	gag Glu	cat His	atg Met 170	agc Ser	gaa Glu	gag Glu	cag Gln	ttg Leu 175	cgg Arg	528
20	caa Gln	ctg Leu	gtc Val	acc Thr 180	aag Lys	gac Asp	gtg Val	ctg Leu	atc Ile 185	ggc Gly	gtc Val	gcc Ala	ctg Leu	ccc Pro 190	cgc Arg	gtt Val	576
20	ggc	tga	gcaa	aggco	cgc (ccaa	ccca	at to	caact	tecç	g gag	gtgt	ccaa		et A	at ggc sp Gly 95	
25					ggc Gly												680
30	atc Ile	aac Asn	agc Ser 215	ctg Leu	agc Ser	tac Tyr	aag Lys	cag Gln 220	gtg Val	ttc Phe	aag Lys	cag Gln	gac Asp 225	tgg Trp	gaa Glu	cac His	728
35	ctg Leu	gcc Ala 230	tac Tyr	agc Ser	ctg Leu	atg Met	ttc Phe 235	atc Ile	ggc Gly	gtc Val	gac Asp	cac His 240	ctg Leu	aac Asn	aag Lys	ttc Phe	776
40	agc Ser 245	gtc Val	gac Asp	gaa Glu	ata Ile	cgt Arg 250	cat His	gcc Ala	gtc Val	gaa Glu	cgc Arg 255	att Ile	gac Asp	gtg Val	cgc Arg	cag Gln 260	824
40	cac His	gtc Val	ggc Gly	acc Thr	gaa Glu 265	tac Tyr	tac Tyr	gaa Glu	cgt Arg	tat Tyr 270	gtg Val	atc Ile	gcc Ala	act Thr	gcc Ala 275	acg Thr	872
45	ctg Leu	ctg Leu	gtc Val	gaa Glu 280	aca Thr	ggc Gly	gtc Val	atc Ile	acc Thr 285	cag Gln	gcc Ala	gaa Glu	ctg Leu	gat Asp 290	gaa Glu	gca Ala	920
.50	ctc Leu	Gly ggc	tcg Ser 295	cac His	ttc Phe	aag Lys	ctg Leu	gcc Ala 300	aac Asn	ccc Pro	gcc Ala	cat His	gcg Ala 305	Gln	Gly ggg	cgt Arg	968
55	gct Ala	gca Ala 310	att Ile	atc Ile	GJA āāā	cga Arg	gcg Ala 315	cct Pro	ttt Phe	gaa Glu	gtg Val	ggc Gly 320	gat Asp	cgg Arg	gtc Val	atc Ile	1016
60	gta Val 325	cgc Arg	gat Asp	gaa Glu	tac Tyr	gtg Val 330	gcc Ala	GJA aaa	cat His	gtg Val	cgc Arg 335	atg Met	cct Pro	gca Ala	tac Tyr	gtg Val 340	1064

	cgc ggc aag Arg Gly Lys	g caa ggc gt s Gln Gly Va 345	a gtg ctg 1 Val Leu	cac cgg acc His Arg Thr 350	act gaa cag tgg of Thr Glu Gln Trp I 355	ccg 1112 Pro
5	ttt ccg gac Phe Pro Asp	gcg att gc Ala Ile GI 360	c cat ggc y His Gly	gac cag agc Asp Gln Ser 365	gct gcg cat caa c Ala Ala His Gln I 370	ccg 1160 Pro
10	acc tac cat Thr Tyr His 375	s Val Glu Pł	c cgc gtg ne Arg Val 380	cgg gac ctg Arg Asp Leu	tgg ggc gat gcc g Trp Gly Asp Ala A 385	gca 1208 Ala
15	gac gac ggc Asp Asp Gly 390	c ctg gtg gt 7 Leu Val Va	g gta gac al Val Asp 395	ctg ttc gaa Leu Phe Glu	agc tat ctg gac a Ser Tyr Leu Asp A 400	agg 1256 Arg
20		c ccg cga gt r Pro Arg Va 41	ıl Val Arg		ceggege ceaggeagge	z 1306
	cggctgccgg	tgacggtcct	ttcaggcttc	ctcggcgcag	gcaagaccac cctgct	tcaac 1366
	cacatcctgc	gcaaccgcca	gggcctgaag	g gtggcggtta	tcgtcaatga catgag	gcgag 1426
25	gtcaacatcg	atgccgccca	ggtccagcgc	gacgttgcgc	tgtatcgtgg ccagga	atgaa 1486
	ttgatagaga	tgagcaacgg	ctgtatctgo	tgcaccctgc	gcgccgacct gcttga	agcag 1546
30	atcagcgcgc	tggcgcgcca	gcagcgtttc	gattacctgt	tgatcgagtc caccgg	ggatt 1606
	tccgagccga	tgccagtcgc	cgagaccttt	geettteteg	acgccaacgg tttcag	gaata 1666
	agcgaactgg	cgcggctgga	tacgctggtg	g acggtggtcg	atgecageca gttcat	tggcc 1726
35	atgctcgact	ctcccgaaac	cgtcgcgcgg	g gccgacgtca	ccacggatga cagcag	ggcgc 1786
	ccgctggccg	atctgctgat	cgagcaggto	gagtatgcca	atgtgattct ggtcaa	acaaa 1846
40	cgcgacctgg	tcgacgaggc	gcagtaccag	g gccctgcagg	cagttctcgc cgggct	tcaat 1906
10	ccaggcgcac	agatcctgcc	gatggtggc	ggcaacgtcg	ccctgtcgag cgtcc	ttggt 1966
	acccagctgt	tcgatttgcc	cagccttgc	gcagcgcccg	gctggatgaa acagat	tggac 2026
45	gcgcacgaca	ccccggccgg	cgagtcgcag	g acctatggcg	tgacgtcatg ggtgta	accga 2086
	gegegegeee	cgttccatcc	gcaacgcttq	g cttgattttc	tegeceggee etgge	gcgac 2146
50	ggccgtcttc	tgcgcagcaa	aggttattt	e tggcttgcca	gccgccaccg cgaaal	tegge 2206
50	ttgctggtac	acagcggcca	gcagtttcaa	a tgggactatg	ttggccattg gtggaa	acttc 2266
	atcgacacgt	cacagtggcc	acaggacaag	g tategettge	agggcatcat ggccaa	agtgg 2326
55	gacagcatcg	tcggcgactg	ccgacaggag	g ctgaaaagct	tatga	2371

<210> 7

<211> 193

60 <212> PRT

<213> Pseudomonas putida

<400> 7

Met Thr Ala Thr Ser Thr Pro Gly Glu Arg Ala Arg Ala Leu Phe Ala

5

Val Leu Lys Arg Lys Asp Leu Ile Pro Glu Gly Tyr Ile Glu Gln Leu 20 25

10

Thr Gln Leu Met Glu His Gly Trp Ser Pro Glu Asn Gly Ala Arg Ile 35

15

Val Ala Lys Ala Trp Val Asp Pro Gln Phe Arg Glu Leu Leu Lys 55

20

Asp Gly Thr Ala Ala Cys Ala Gln Phe Gly Phe Thr Gly Pro Gln Gly

Glu Tyr Ile Val Ala Leu Glu Asp Thr Pro Gln Leu Lys Asn Val Ile 85

25

Val Cys Ser Leu Cys Ser Cys Thr Asn Trp Pro Val Leu Gly Leu Pro 105

30

Pro Glu Trp Tyr Lys Gly Phe Glu Phe Arg Ala Arg Leu Val Arg Glu 120

35

Gly Arg Thr Val Leu Arg Glu Leu Gly Thr Glu Leu Pro Gly Asp Met 140 135 130

40

Val Val Lys Val Trp Asp Thr Ser Ala Glu Ser Arg Tyr Leu Val Leu 150 155

Pro Gln Arg Pro Ala Gly Ser Glu His Met Ser Glu Glu Gln Leu Arg 170 165

45

Gln Leu Val Thr Lys Asp Val Leu Ile Gly Val Ala Leu Pro Arg Val 185

50

Gly

55

<210> 8

<211> 220

<212> PRT

<213> Pseudomonas putida

60 <400> 8

	Met 1	Asp	Gly	Phe	His 5	Asp	Leu	Gly	Gly	Phe 10	Gln	Gly	Phe	Gly	Lys 15	Val
5	Pro	His	Arg	Ile 20	Asn	Ser	Leu	Ser	Tyr 25	Lys	Gln	Val	Phe	Lys 30	Gln	Asp
10	Trp	Glu	His 35	Leu	Ala	Tyr	Ser	Leu 40	Met	Phe	Ile	Gly	Val 45	Asp	His	Leu
15	Asn	Lys 50	Phe	Ser	Val	Asp	Glu 55	Ile	Arg	His	Ala	Val 60	Glu	Arg	Ile	Asp
	Val 65	Arg	Gln	His	Val	Gly 70	Thr	Glu	Tyr	Tyr	Glu 75	Arg	Tyr	Val	Ile	Ala 80
20	Thr	Ala	Thr	Leu	Leu 85	Val	Glu	Thr	Gly	Val 90	Ile	Thr	Gln	Ala	Glu 95	Leu
25	Asp	Glu	Ala	Leu 100	G1y	Ser	His	Phe	Lys 105	Leu	Ala	Asn	Pro	Ala 110		Ala
30	Gln	Gly	Arg 115	Ala	Ala	Ile	Ile	Gly 120	Arg	Ala	Pro	Phe	Glu 125	Val	Gly	Asp
35	Arg	Val 130	Ile	Val	Arg	Asp	Glu 135	Tyr	Val	Ala	Gly	His 140	Val	Arg	Met	Pro
	Ala 145	Tyr	Val	Arg	Gly	Lys 150	Gln	Gly	Val	Val	Leu 155	His	Arg	Thr	Thr	Glu 160
40	Gln	Trp	Pro	Phe	Pro 165	Asp	Ala	Ile	Gly	His 170	Gly	Asp	Gln	Ser	Ala 175	Ala
45	His	Gln	Pro	Thr 180	Tyr	His	Val	Glu	Phe 185	Arg	Val	Arg	Asp	Leu 190	Trp	Gly
50	Asp	Ala	Ala 195	Asp	Asp	Gly	Leu	Val 200	Val	Val	Asp	Leu	Phe 205	Glu	Ser	Tyr
55	Leu	Asp 210	Arg	Val	Glu	Ser	Pro 215	Arg	Val	Val	Arg	Ala 220				
60	<210 <211 <212 <213	L> 1 2> I) L089 DNA Pseud	lomor	nas p	outid	la									

5	<220 <221 <222 <223	.> (CDS (1) Gen d			erreg	jion	đes	Akti	.vato	rpro	oteir	ıs				
3	<400 atg Met 1	agt	gcc Ala	Gly ggc	gcc Ala 5	cag Gln	gca Ala	ggc Gly	cgg Arg	ctg Leu 10	ccg Pro	gtg Val	acg Thr	gtc Val	ctt Leu 15	tca Ser	48
10	ggc Gly	ttc Phe	ctc Leu	ggc Gly 20	gca Ala	ggc Gly	aag Lys	acc Thr	acc Thr 25	ctg Leu	ctc Leu	aac Asn	cac His	atc Ile 30	ctg Leu	cgc Arg	96
15	aac Asn	cgc Arg	cag Gln 35	Gly ggc	ctg Leu	aag Lys	gtg Val	gcg Ala 40	gtt Val	atc Ile	gtc Val	aat Asn	gac Asp 45	atg Met	agc Ser	gag Glu	144
20	gtc Val	aac Asn 50	atc Ile	gat Asp	gcc Ala	gcc Ala	cag Gln 55	gtc Val	cag Gln	cgc Arg	gac Asp	gtt Val 60	gcg Ala	ctg Leu	tat Tyr	cgt Àrg	192
25	ggc Gly 65	cag Gln	gat Asp	gaa Glu	ttg Leu	ata Ile 70	gag Glu	atg Met	agc Ser	aac Asn	ggc Gly 75	tgt Cys	atc Ile	tgc Cys	tgc Cys	acc Thr 80	240
2.0	ctg Leu	cgc Arg	gcc Ala	gac Asp	ctg Leu 85	ctt Leu	gag Glu	cag Gln	atc Ile	agc Ser 90	gcg Ala	ctg Leu	gcg Ala	cgc Arg	cag Gln 95	cag Gln	288
30	cgt Arg	ttc Phe	gat Asp	tac Tyr 100	ctg Leu	ttg Leu	atc Ile	gag Glu	tcc Ser 105	acc Thr	GJÀ aaa	att Ile	tcc Ser	gag Glu 110	ccg Pro	atg Met	336
35	cca Pro	gtc Val	gcc Ala 115	gag Glu	acc Thr	ttt Phe	gcc Ala	ttt Phe 120	ctc Leu	gac Asp	gcc Ala	aac Asn	ggt Gly 125	ttc Phe	agc Ser	ctc Leu	384
40	agc Ser	gaa Glu 130	ctg Leu	gcg Ala	cgg Arg	ctg Leu	gat Asp 135	acg Thr	ctg Leu	gtg Val	acg Thr	gtg Val 140	gtc Val	gat Asp	gcc Ala	agc Ser	432
45	cag Gln 145	ttc Phe	atg Met	gcc Ala	atg Met	ctc Leu 150	gac Asp	tct Ser	ccc Pro	gaa Glu	acc Thr 155	gtc Val	gcg Ala	arg Arg	gcc Ala	gac Asp 160	480
F.0	gtc Val	acc Thr	acg Thr	gat Asp	gac Asp 165	agc Ser	agg Arg	cgc Arg	ccg Pro	ctg Leu 170	gcc Ala	gat Asp	ctg Leu	ctg Leu	atc Ile 175	gag Glu	528
50	cag Gln	gtc Val	gag Glu	tat Tyr 180	gcc Ala	aat Asn	gtg Val	att Ile	ctg Leu 185	gtc Val	aac Asn	aaa Lys	cgc Arg	gac Asp 190	ctg Leu	gtc Val	576
55	gac Asp	gag Glu	gcg Ala 195	cag Gln	tac Tyr	cag Gln	gcc Ala	ctg Leu 200	cag Gln	gca Ala	gtt Val	ctc Leu	gcc Ala 205	GJA aaa	ctc Leu	aat Asn	624
60	cca Pro	ggc Gly 210	gca Ala	cag Gln	atc Ile	ctg Leu	ccg Pro 215	atg Met	gtg Val	gcc Ala	ggc Gly	aac Asn 220	gtc Val	gcc Ala	ctg Leu	tcg Ser	672

																	*
	agc Ser 225	gtc Val	ctt Leu	ggt Gly	acc Thr	cag Gln 230	ctg Leu	ttc Phe	gat Asp	ttg Leu	ccc Pro 235	agc Ser	ctt Leu	gcc Ala	gca Ala	gcg Ala 240	720
5	ccc Pro	ggc Gly	tgg Trp	atg Met	aaa Lys 245	cag Gln	atg Met	gac Asp	gcg Ala	cac His 250	gac Asp	acc Thr	ccg Pro	gcc Ala	ggc Gly 255	gag Glu	768
10	tcg Ser	cag Gln	acc Thr	tat Tyr 260	Gly	gtg Val	acg Thr	tca Ser	tgg Trp 265	gtg Val	tac Tyr	cga Arg	gcg Ala	cgc Arg 270	gcc Ala	ccg Pro	816
15	ttc Phe	cat His	ccg Pro 275	caa Gln	cgc Arg	ttg Leu	ctt Leu	gat Asp 280	ttt Phe	ctc Leu	gcc Ala	cgg Arg	ccc Pro 285	tgg Trp	cgc Arg	gac Asp	864
20	ggc	cgt Arg 290	ctt Leu	ctg Leu	cgc Arg	agc Ser	aaa Lys 295	ggt Gly	tat Tyr	ttc Phe	tgg Trp	ctt Leu 300	gcc Ala	agc Ser	cgc Arg	cac His	912
	cgc Arg 305	gaa Glu	atc Ile	ggc Gly	ttg Leu	ctg Leu 310	gta Val	cac His	agc Ser	Gly ggc	cag Gln 315	cag Gln	ttt Phe	caa Gln	tgg Trp	gac Asp 320	960
25	tat Tyr	gtt Val	ggc	cat His	tgg Trp 325	tgg Trp	aac Asn	ttc Phe	atc Ile	gac Asp 330	acg Thr	tca Ser	cag Gln	tgg Trp	cca Pro 335	cag Gln	1008
30	gac Asp	aag Lys	tat Tyr	cgc Arg 340	ttg Leu	cag Gln	ggc	atc Ile	atg Met 345	gcc Ala	aag Lys	tgg Trp	gac Asp	agc Ser 350	atc Ile	gtc Val	1056
35	Gly ggc	gac Asp	tgc Cys 355	cga Arg	cag Gln	gag Glu	ctg Leu	aaa Lys 360	agc Ser	tta Leu	tga						1089
40	<21 <21 <21 <21	1> 2>	10 362 PRT Pseu	domo	nas j	puti	da					~ .					
	<40	0>	10												<i>:</i>		
45	Met 1	Ser	Ala	Gly	Ala 5	Gln	Ala	Gly	Arg	Leu 10	Pro	Val	Thr	Val	Leu 15	Ser	
50	Gly	Phe	Leu	Gly 20	Ala	Gly	Lys	Thr	Thr 25	Leu	Leu	Asn	His	Ile 30	Leu	Arg	,
55	Asn	Arg	Gln 35	Gly	Leu	Lys	Val	Ala 40	Val	Ile	Val	Asn	Asp 45	Met	Ser	Glu	
	Val	Asn 50	. Ile	Asp	Ala	Ala	Gln 55	Val	Gln	Arg	Asp	Val 60	Ala	Leu	Tyr	Arg	
60	Gly 65	Gln	. Asp	Glu	Leu	Ile 70	Glu	Met	Ser	Asn	Gly 75	Cys	Ile	Cys	Cys	Thr 80	

												*			•	
	Leu	Arg	Ala	Asp	Leu 85	Leu	Glu	Gln	Ile	Ser 90	Ala	Leu	Ala	Arg	Gln 95	Gln
5	Arg	Phe	Asp	Туr 100	Leu	Leu	Ile	Glu	Ser 105	Thr	Gly	Ile	Ser	Glu 110	Pro	Met
10	Pro	Val	Ala 115	Glu	Thr	Phe	Ala	Phe 120	Leu	Asp	Ala	Asn ,	Gly 125	Phe	Ser	Leu
15	Ser	Glu 130	Leu	Ala	Arg	Leu	Asp 135	Thr	Leu	Val	Thr	Val 140	Val	Asp	Ala	Ser
	Gln 145	Phe	Met	Ala	Met	Leu 150	Asp	Ser	Pro	Glu	Thr 155	Val	Ala	Arg	Ala	Asp 160
20	Val	Thr	Thr	Asp	Asp 165	Ser	Arg	Arg	Pro	Leu 170	Ala	Asp	Leu	Leu	Ile 175	Glu
25	Gln	Val	Glu	Tyr 180	Ala	Asn	Val	Ile	Leu 185	Val	Åsn	Lys	Arg	Asp 190	Leu	Val
30	Asp	Glu	Ala 195	Gln	Tyr	Gln	Ala	Leu 200	Gln	Ala	Val	Leu	Ala 205	Gly	Leu	Asn
35	Pro	Gly 210	Ala	Gln	Ile	Leu	Pro 215	Met	Val	Ala	Gly	Asn 220	Val	Ala	Leu	Ser
	Ser 225	Val	Leu	Gly	Thr	Gln 230	Leu	Phe	Asp	Leu	Pro 235	Ser	Leu	Ala	Ala	Ala 240
40	Pro	Gly	Trp	Met	Lys 245	Gln	Met	Asp	Ala	His 250	Asp	Thr	Pro	Ala	Gly 255	Glu
45	Ser	Gln	Thr	Tyr 260	Gly	Val	Thr	Ser	Trp 265	Val	Tyr	Arg	Ala	Arg 270	Ala	Pro
50	Phe	His	Pro 275	Gln	Arg	Leu	Leu	Asp 280	Phe	Leu	Ala	Arg	Pro 285	Trp	Arg	Asp
55	Gly	Arg 290	Leu	Leu	Arg	Ser	Lys 295	Gly	Tyr	Phe	Trp	Leu 300	Ala	Ser	Arg	His
J J	Arg 305	Glu	Ile	Gly	Leu	Leu 310	Val	His	Ser	Gly	Gln 315	Gln	Phe	Gln	Trp	Asp 320
60	Tyr	Val	Gly	His	Trp 325	Trp	Asn	Phe	Ile	Asp 330	Thr	Ser	Gln	Trp	Pro 335	Gln

	Asp Lys Tyr Arg Leu Gln Gly Ile Met Ala Lys Trp Asp Ser Ile Val 340 345 350	
5	Gly Asp Cys Arg Gln Glu Leu Lys Ser Leu 355 360	
10	<210> 11 <211> 30 <212> DNA <213> Artificial Sequence	
15	<220> <223> Primer 1F	
	<400> 11 ctccaccata tgagtacage tacttcaacg	30
20	<210> 12 <211> 30 <212> DNA <213> Artificial Sequence	
25	<220> <223> Primer 1R	
30	<400> 12 cttcataagc ttctatctcg gatcaaatgg	30
35	<210> 13 <211> 25 <212> DNA <213> Artificial Sequence	
40	<220> <223> Primer 2F	
	<400> 13 atgacggcaa cttcaacccc tggtg	25
45	<210> 14 <211> 20 <212> DNA <213> Artificial Sequence	
50	<220> <223> Primer 2R	
	<400> 14 tcagctcctg tcggcagtcg	20
55	204900009 0099049009	