

CSE3103 : Database FALL 2020

Nazmus Sakib
Assistant Professor
Department of Computer Science and Engineering
Ahsanullah University of Science and Technology

- Stripes data across disks similar to Level-0
 - difference is data is bit interleaved instead of block interleaved
- Uses ECC to monitor correctness of information on disk
- Multiple disks record the ECC information to determine which disk is in fault
- A parity disk is then used to reconstruct corrupted or lost data

- Reconstructing data
 - assume data striped across eight disks
 - correct data: 10011010
 - parity: 0
 - data read: 10011110
 - if we can determine that disk 2 is in error
 - just use read data and parity to know which bit to flip

- Requires fewer disks than Level-1 to provide redundancy
- Still needs quite a few more disks
 - for 10 data disks need 4 check disks plus parity disk
- Big problem is performance
 - must read data plus ECC code from other disks
 - for a write, have to modify data, ECC, and parity disks
- Another big problem is only one read at a time
 - while a read of a single block can be done in parallel
 - multiple blocks from multiple files can't be read because of the bitinterleaved placement of data

- One big problem with Level-2 are the disks needed to detect which disk had an error
- Modern disks can already determine if there is an error
 - using ECC codes with each sector
- So just need to include a parity disk
 - if a sector is bad, the disk itself tells us, and use the parity disk to correct it

- Big problem with Level-2 and Level-3 is the bit interleavening
 - to access a single file block of data, must access all the disks
 - allows good parallelism for a single access but doesn't allow multiple I/O's
- Level-4 interleaves file blocks
 - allows multiple small I/O's to be done at once

- Still use a single disk for parity
- Now the parity is calculated over data from multiple blocks
 - Level-2,3 calculate it over a single block
- If an error detected, need to read other blocks on other disks to reconstruct data

Level-4 vs. Level-2,3

10

- Reads are simple to understand
 - want to read block A, read it from disk 0
 - if there is an error, read in blocks B,C, D, and parity block and calculate correct data
- What about writes?
 - it looks like a write still requires access to 4 data disks to recalculate the parity data
 - not true, can use the following formula
 - new parity = (old data xor new data) xor old parity
 - a write requires 2 reads and 2 writes

- Doing multiple small reads is now faster than before
- However, writes are still very slow
 - this is because of calculating and writing the parity blocks
- Also, only one write is allowed at a time
 - all writes must access the check disk so other writes have to wait

