Vektorit

Juulia Lahdenperä ja Lotta Oinonen

11. helmikuuta 2016

Sisältö

Tehtäviä 1

Tehtävä 0.1. Tarkastele alla olevan kuvan vektoreita. Mitkä niistä ovat vektorin $\bar{v}=2\bar{\imath}+\bar{\jmath}$ kanssa samat vektorit?

Tehtävä 0.2. Määritä sellaiset reaaliluvut r ja s, että vektorit $\bar{v}=-r\bar{\imath}+8\bar{\jmath}$ ja $\bar{w}=5\bar{\imath}-12s\bar{\jmath}$ ovat samat.

Tehtävä 0.3. Tutki vektoria $\overline{AB}=-9\overline{\imath}+5\overline{\jmath}$. Määritä pisteen B paikkavektori, kun

- (a) piste A = (11, 2)
- (b) piste A = (-8, -7).

Tehtävä 0.4. Määritä vektori \overline{AB} , kun

- (a) A = (-5, 2) ja B = (3, 1)
- (b) A = (3, -7) ja B = (-4, 8).

Tehtävä 0.5. Tarkastele pisteitä A=(-2,4), B=(3,1) ja C=(5,-3). Määritä piste D, kun

- (a) $\overline{CD} = \overline{AB}$
- (b) $\overline{DC} = \overline{AB}$
- (c) $\overline{AD} = -\overline{AC}$
- (d) $\overline{BC} = -\overline{AD}$.

Tehtäviä 1

Tehtävä 0.6. Tarkastele alla olevassa kuvassa olevaa vektoria \bar{v} . Piirrä koordinaatisto ja siihen kaksi vektoria, jotka ovat vektorin \bar{v}

- (a) kanssa yhdensuuntaisia
- (b) kanssa samansuuntaisia
- (c) kanssa samat vektorit
- (d) vastavektoreita.

Tehtävä 0.7. Tarkastele alla olevan kuvan vektoria \bar{v} .

- (a) Piirrä eri paikkaan koordinaatistoon vektori \bar{w} , jolle pätee $\bar{w}=\bar{v}$.
- (b) Piirrä vektorin \bar{v} vastavektori $-\bar{v}$.
- (c) Piirrä vektori \bar{u} , joka on samansuuntainen vektorin \bar{v} kanssa ja jonka pituus on 1/4 vektorin \bar{v} pituudesta.

Tehtävä 0.8. Määritä reaaliluku r siten, että vektorit $\bar{v}=(2+3r)\bar{\imath}-4\bar{\jmath}$ ja $\bar{w}=5\bar{\imath}+(r-5)\bar{\jmath}$ ovat

- (a) samansuuntaiset
- (b) samat.

Tehtävä 0.9. Olkoon $\bar{v}, \bar{w} \neq \bar{0}$. Ovatko vektorit \bar{v} ja \bar{w} yhdensuuntaiset, kun

- (a) $\bar{v} = 6\bar{w}$
- (b) $2\bar{v} + 2\bar{w} = 14\bar{w} \bar{v}$?

Tehtävä 0.10. Ovatko vektorit \bar{a} ja \bar{b} yhdensuuntaiset, kun

- (a) $\bar{a}=1/4\bar{\imath}+3\bar{\jmath}$ ja $\bar{b}=\bar{\imath}-12\bar{\jmath}$
- (b) $\bar{a}=-10\bar{\imath}+2/5\bar{\jmath}$ ja $\bar{b}=4/5\bar{\imath}+2\bar{\jmath}$

Tehtävä 0.11. Olkoon A=(-5,2), B=(-1,-1) ja C=(2,1). Tiedetään, että vektorit \overline{AB} ja \overline{CD} ovat yhtä pitkät. Määritä piste D, kun vektorit \overline{AB} ja \overline{CD} ovat

- (a) samansuuntaiset
- (b) vastakkaissuuntaiset.

Tehtävä 0.12. Tarkastele pisteen A paikkavektoria $\overline{OA} = 2\overline{\imath} + 4\overline{\jmath}$.

- (a) Vektori \overline{BC} on samansuuntainen ja kaksi kertaa pidempi kuin vektori \overline{OA} . Määritä piste C, kun piste B=(-2,-5).
- (b) Vektori \overline{DE} on yhdensuuntainen puolet lyhyempi kuin vektori \overline{OA} . Määritä piste E, kun piste D=(2,-1).

Tehtävä 0.13. Tarkastele alla olevaa kuvaa. Piirrä vektorien \bar{v} , \bar{w} ja \bar{u} avulla vektorit

- (a) $\bar{a} = \bar{v} + \bar{w}$
- (b) $\bar{b} = \bar{v} \bar{w} \bar{u}$
- (c) $\bar{c} = \bar{v} \bar{w} + \bar{u}$
- (d) $\bar{d} = \bar{w} \bar{v}$.

Tehtävä 0.14. Tarkastele alla olevaan kuvaa. Ilmaise vektorit $\bar{b}, \bar{c}, \bar{d}$ ja \bar{e} vektorin \bar{a} avulla.

Tehtävä 0.15. Tarkastele vektoreita $\bar{v}=-2\bar{\imath}+7\bar{\jmath},\ \bar{w}=6\bar{\imath}-10\bar{\jmath}$ ja $\bar{u}=-3\bar{\imath}+5\bar{\jmath}.$ Sievennä seuraavat lausekkeet:

- (a) $(\bar{v} + \bar{w}) (\bar{w} + \bar{u})$
- (b) $(\bar{v} + \bar{w}) (\bar{v} \bar{u}) (\bar{w} + \bar{u})$.

Tehtävä 0.16. Vedät pulkkaa 150~N voimalla. Voima jaetaan kahteen vektoreiden $\bar{\imath}$ ja $\bar{\jmath}$ suuntaiseen komponenttiin.

- (a) Toinen komponentti on $90\ N$. Mikä on toisen komponentin suuruus?
- (b) Kuinka suuret komponentit ovat, jos ne ovat yhtä suuret?

Tehtävä 0.17. Tarkastele alla olevaa kuvaa. Mihin pisteeseen päädyt, kun lähdet pisteestä (2,3) ja kuljet ensin

- (a) vektorin \bar{a}
- (b) ensin vektorin \bar{a} ja sitten vektorin \bar{b}
- (c) vektorin $-\bar{b}$
- (d) ensin vektorin $-\bar{a}$ ja sitten vektorin \bar{b} .

Tehtävä 0.18. Tarkastele alla olevaa kuvaa.

- (a) Ilmoita vektorit \bar{v} ja \bar{w} vektoreiden $\bar{\imath}$ ja $\bar{\jmath}$ avulla.
- (b) Laske vektoreiden \bar{v} ja \bar{w} pituudet.
- (c) Muodosta vektori $3\bar{v}-4\bar{w}$, ilmaise se vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla ja laske sen pituus.

Tehtävä 0.19. Mihin pisteeseen päädyt, kun siirryt pisteestä

- (a) A=(3,-16) kuusi pituusyksikköä vektorin $\bar{v}=-5\bar{\imath}+9\bar{\jmath}$ suuntaan
- (b) B=(7,3) viisi pituusyksikköä vektorin $\bar{v}=3\bar{\imath}-4\bar{\jmath}$ suuntaan?

Tehtävä 0.20. Tarkastele alla olevaa kuvaa. Mitkä kuvan vektoreista ovat samanpituisia vektorin \bar{v} kanssa?

Tehtävä 0.21. Kuumailmapallo nousee ylöspäin nopeudella 3 m/s. Tuuli puhaltaa idästä 4 m/s.

- (a) Kuinka korkealla kuumailmapallo on kahden minuutin kuluttua lähdöstä?
- (b) Mikä on kuumailmapallon etäisyys lähtöpaikasta kahden minuutin kuluttua?

Tehtävä 0.22. Vektorin \bar{v} pituus on 24. Määritä vektorien

- (a) $-6\bar{a}$
- (b) $1/8\bar{a}$

pituus ja vertaa niiden suuntaa vektorin \bar{v} suuntaan.

Tehtävä 0.23. Vektorien \bar{v} ja \bar{w} ovat yksikkövektoreita eli niiden pituus on 1. Määritä vektorin $4\bar{v}+11\bar{w}$ pituus, kun vektorit \bar{v} ja \bar{w} ovat

- (a) samansuuntaiset
- (b) vastakkaissuuntaiset
- (c) kohtisuorassa toisiaan vastaan.

Tehtävä 0.24. Muodosta vektorin $\bar{v} = -5\bar{\imath} + 9\bar{\jmath}$ kanssa

- (a) samansuuntainen yksikkövektori
- (b) samansuuntainen vektori, jonka pituus on 4.

Tehtävä 0.25. Määritä vektorin \bar{v} kanssa samansuuntainen yksikkövektori ja vektori, jonka pituus on 1/4 vektorin \bar{v} pituudesta, kun vektorin \bar{v} pituus on

(a) 4

- (b) 3/4
- (c) $\sqrt{5}$.

Tehtävä 0.26. Laiva kulkee suoraan tasaisella nopeudella. Eräällä hetkellä laiva on pisteessä A=(-7,10) ja tuntia myöhemmin pisteessä B=(6,-5).

- (a) Missä pisteessä laiva oli kaksi tuntia ennen saapumistaan pisteeseen A?
- (b) Missä pisteessä laiva on 40 minuuttia sen jälkeen, kun se jätti pisteen B?

Tehtävä 0.27. Laske vektorien \bar{a} ja \bar{b} pistetulo, kun

(a)
$$\bar{a}=1/2\bar{\imath}-3\bar{\jmath}$$
 ja $\bar{b}=10\bar{\imath}+7\bar{\jmath}$

(b)
$$\bar{a}=9\bar{\imath}+11\bar{\jmath}$$
 ja $\bar{b}=2/3\bar{\imath}-2\bar{\jmath}$

Tehtävä 0.28. Kolmion kärjet ovat A=(-4,3), B=(5,2) ja C=(1,-2).

- (a) Muodosta vektorit \overline{AB} , \overline{BC} ja \overline{CA} .
- (b) Osoita edellisen kohdan vektorien avulla, että kolmio on suorakulmainen.

Tehtävä 0.29. Tarkastele alla olevan kuvan kolmiota. Määritä kulmat

- (a) $\triangleleft(\overline{AB}, \overline{AC})$
- (b) $\triangleleft (\overline{AB}, \overline{CB})$
- (c) $\triangleleft(\overline{CA}, \overline{CB})$

asteen tarkkuudella.

Tehtävä 0.30. Tarkastele koolmiota ABC. Vektorin \overline{AB} pituus on 4 ja vektorin \overline{AC} pituus on 6. Kuinka pitä on kolmion sivuvektori \overline{BC} , kun

(a)
$$\overline{AB} \cdot \overline{AC} = 5$$

(b)
$$\overline{AB} \cdot \overline{AC} = -5$$
?

Tehtävä 0.31. Tarkastele vektoria \bar{a} , jonka pituus on 4 ja vektoria \bar{b} , jonka pituus on 7. Vektorien \bar{a} ja \bar{b} välinen kulma on 72° . Laske

- (a) vektorin $\bar{a} + \bar{b}$ pituus
- (b) vektorin $\bar{a} \bar{b}$ pituus

yhden desimaalin tarkkuudella.

Tehtävä 0.32. Kerro sanallisesti, miten vektorille $\bar{v}=x\bar{\imath}+y\bar{\jmath}$ löydetään yhtä pitkä vektoria \bar{v} vasten kohtisuoraan suuntaan osoittava vektori \bar{w} .

Tehtäviä 2

Tehtävä 0.33. Tarkastele vektoreita $\bar{a}, \bar{b} \neq \bar{0}$. Tiedetään, että

$$\bar{b} - 3\bar{a} = 5(\bar{a} - \bar{b}).$$

- (a) Osoita, että vektorit \bar{a} ja \bar{b} ovat yhdensuuntaiset.
- (b) Ovatko vektorit \bar{a} ja \bar{b} saman- vai vastakkaissuuntaiset?

Tehtävä 0.34. Tarkastele vektoreita $\bar{a}, \bar{b} \neq \bar{0}$. Oletetaan, että vektorit eivät ole yhdensuuntaiset. Osoita, että vektori $3\bar{a} + \bar{b}$ ei ole yhdensuuntainen vektorin \bar{a} kanssa.

Tehtävä 0.35. Tarkastele vektoreita $\bar{a}, \bar{b} \neq \bar{0}, \ \bar{a} \not\parallel \bar{b}$. Osoita, että vektori $-2\bar{a}+15\bar{b}$ ei ole nollavektori.

Tehtävä 0.36. Mitä tiedät vektorien \bar{a} ja \bar{b} suunnasta ja pituudesta, kun

$$2(2\bar{a} - 3\bar{b}) - 5\bar{a} - (3\bar{a} - 4\bar{b}) = \bar{0}.$$

Tehtävä 0.37. Jaa voima, jonka suuruus on 84~N, vektorien $\bar{\imath}$ ja $\bar{\jmath}$ suuntaisiin komponentteihin. Laske vektorin $\bar{\jmath}$ suuntaisen komponentin suuruus, kun vektorin $\bar{\imath}$ suuntaisen komponentin suuruus on 60,2~N.

Tehtävä 0.38. Lentokone lentää länteen tasaisella vauhdilla. Tyynessä säässä lentokone liikkuisi länttä kohti $210 \ km/h$. Tuuli puhaltaa pohjoisesta $25 \ m/s = 90 \ km/h$.

- (a) Mihin suuntaan lentokone lentää?
- (b) Mikä on lentokoneen vauhti maan suhteen?

Tehtävä 0.39. Tarkastele alla olevaa kuvaa. Esitä vektori

- (a) \overline{AC} vektorien \bar{a} ja \bar{b} avulla
- (b) \overline{BE} vektorien \bar{b} , \bar{c} ja \bar{d} avulla
- (c) \overline{EC} kahdella eri tavalla.

Tehtävä 0.40. Vektorin \bar{a} pituus on 6 ja vektorin \bar{b} pituus on 3. Laske vektorin $\bar{a}+\bar{b}$ pituus, kun

- (a) vektorit \bar{a} ja \bar{b} ovat samansuuntaiset
- (b) vektorit \bar{a} ja \bar{b} ovat vastakkaissuuntaiset
- (c) vektoreiden \bar{a} ja \bar{b} ovat kohtisuorassa toisiaan vasten.

Tehtävä 0.41. Tarkastele vektoreita $\bar{a}, \bar{b} \neq \bar{0}$. Vektorit \bar{a} ja \bar{b} eivät ole yhdensuuntaisia. Osoita, että vektori $2\bar{a} + \bar{b}$ ei ole yhdensuuntainen vektorin \bar{a} kanssa.

Tehtävä 0.42. Osoita seuraava väite joko todeksi tai epätodeksi: Jos $\bar{a} \neq \bar{0}$ ja $\bar{a} \cdot \bar{b} = \bar{a} \cdot \bar{c}$, niin $\bar{b} = vc$.

Tehtävä 0.43. Vektorin pistetulo itsensä kanssa on sama kuin vektorin pituuden neliö, eli $(\bar{v} + \bar{w}) \cdot (\bar{v} + \bar{w}) = |\bar{v} + \bar{w}^2$.

Sievennä lauseke käyttämällä pistetulon ominaisuuksia.

Sievennä lauseke $|\bar{v} - \bar{w}|^2$.

Kuinka pitkiä vektorit $\bar{v}+\bar{w}$ ja $\bar{v}-\bar{w}$ ovat, kun $|\bar{v}|=7, |\bar{w}|=5$ ja $\bar{v}\cdot\bar{w}=1$?

Tehtävä 0.44. Tarkastele alla olevaa kuvaa.

- (a) Laske vektorien \bar{a} , \bar{b} ja \bar{c} pituudet.
- (b) Laske kulma $\triangleleft(\bar{a},\bar{b})$.

(c) Laske kulma $\triangleleft(\bar{b},\bar{c})$.

Tehtävä 0.45. Vektorit $\overline{OA}=\bar{a}(\neq\bar{0})$ ja $\overline{OB}=\bar{b}$ toteuttavat ehdon $\bar{a}\cdot\bar{a}=2\bar{a}\cdot\bar{b}$. Osoita, että kolmio OAB on tasakylkinen. [S2008, 11]

Tehtävä 0.46. Tarkastele kolmiota, jonka eräästä kärjestä alkavat sivuvektorit ovat

- (a) $\bar{a}=3\bar{\imath}+\bar{\jmath}$ ja $\bar{b}=2\bar{\imath}+6\bar{\jmath}$
- (b) $\bar{a} = -4\bar{\imath} 3\bar{\jmath}$ ja $\bar{b} = -2\bar{\imath} 4\bar{\jmath}$.

Onko kolmio suorakulmainen?

Tehtävä 0.47. Kolmiossa ABC vektori $\overline{AB}=2,2\overline{\imath}+7,3\overline{\jmath}$ ja vektori $\overline{AC}=5,9\overline{\imath}-2,1\overline{\jmath}.$

- (a) Määritä kolmion kolmas sivuvektori \overline{BC} .
- (b) Osoita, että \overline{BC} on kolmion pisin sivu.
- (c) Määritä kulman BAC suuruus pistetulon avulla 0,1 asteen tarkkuudella. [S2007, 3]

Tehtävä 0.48. Origosta alkavan vektorin $\bar{a}=2\bar{\imath}+7\bar{\jmath}$ päätepisteestä P alkava ja x-akselin pisteeseen Q päättyvä vektori \bar{b} on kohtisuorassa vektoria \bar{a} vasten.

- (a) Määritä pisteet P ja Q.
- (b) Määritä vektori \bar{b} . [lyhyt K1989, 6a]

Tehtävä 0.49. Tarkastele tason vektoria $\overline{OA}=7\overline{\imath}+9\overline{\jmath}$. Määritä kaikki sellaiset vektorit \overline{OB} , että kulma OAB on suora ja vektorin \overline{AB} pituus on puolet vektorin \overline{OA} pituudesta. [K2005, 4]