三、区域子分割算法(Warnock算法)

John E. Warnock 博士, Adobe创始人之一, 曾担任董事会主席

In his 1969 doctoral thesis, Warnock invented the Warnock algorithm for hidden surface determination in computer graphics

Warnock算法是图像空间中非常经典的一个算法

Warnock算法的重要性不在于它的效率比别的算法高,而 在于采用了分而治之的思想,利用了堆栈的数据结构

把物体投影到全屏幕窗口上,然后递归分割窗口,直到窗口内目标足够简单,可以显示为止

一、什么样的情况下,画面足够简单可以立即显示?

(1) 窗口中仅包含一个多边形

(2) 窗口与一个多边形相交,且 窗口内无其它多边形

(3) 窗口为一个多边形所包围

(4) 窗口与一个多边形相分离

如何判别一个多边形和窗口是分离的?

当满足下列条件时,多边形 和窗口分离:

$$x_{\min} > x_R$$
 or $x_{\max} < x_L$

$$y_{\min} > y_T$$
 or $y_{\max} < y_B$

如何判别一个多边形在窗口内?

当满足下列条件时,多边形被窗口包含:

$$x_{\min} \ge x_L$$
 & $x_{\max} \le x_R$

$$y_{\min} \ge y_B \& y_{\max} \le y_T$$

多边形与窗口相交的判别 ,可以采用直线方程作为 判别函数来判定一个多边 形是否与窗口相交

二、窗口有多个多边形投影面,如何显示?

Warnock算法的重要性不在于它的效率比别的算法高,而 在于采用了分而治之的思想,利用了堆栈的数据结构

把物体投影到全屏幕窗口上,然后递归分割窗口,直到窗口内目标足够简单,可以显示为止

算法步骤:

- (1) 如果窗口内没有物体则按 背景色显示
- (2) 若窗口内只有一个面,则 把该面显示出来

(3) 否则,窗口内含有两个以上的面,则把窗口等分成四个子窗口。对每个小窗口再做上述同样的处理。 这样反复地进行下去 (3) 窗口内含有两个以上的面,则把窗口等分成四个子窗口。对每个小窗口再做上述同样的处理。这样反复地进行下去

把四个子窗口压在一个堆栈里 (后进先出)。

假设显示器分辨率(1024*1024),

窗口最多分几次?

如果到某个时刻,窗口仅有象素那么大,而窗口内仍有两个以上的面,如何处理?

这时不必再分割,只要取窗口内最近的可见面的颜色或 所有可见面的平均颜色作为该象素的值