Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Poly[triaqua[μ_4 -3-(4-carboxylatophenoxy)propionato- κ^4 O:O':O":O""][μ_3 -3-(4-carboxylatophenoxy)propionato- κ^3 O:O':O"]dizinc]

Shan Gao^a and Seik Weng Ng^{b,c}*

^aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia

Correspondence e-mail: seikweng@um.edu.my

Received 24 January 2012; accepted 25 January 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.026; wR factor = 0.074; data-to-parameter ratio = 14.8.

The coordination polymer $[Zn_2(C_{10}H_8O_5)_2(H_2O)_3]_n$ adopts a layer structure in which the two independent Zn^{II} ions exist in trigonal–bipyramidal coordination geometries. One carboxylate dianion binds to a monoaqua-coordinated metal ion through the aliphatic carboxylate end and to the diaqua-coordinated metal ion through the aromatic carboxylate end; the other dianion binds in the reverse manner. Three of the four carboxylate ends of the two dianions are also engaged in bridging interactions; these lead to a layer structure parallel to (100). Adjacent layers are linked by $O-H_{water}\cdots O$ hydrogen bonds into a three-dimensional network.

Related literature

For the cobalt(II) derivative of 3-(4-carboxyphenoxy)-propionic acid, see: Xiao et al. (2006).

Experimental

Crystal data

Data collection

Rigaku R-AXIS RAPID IP diffractometer 10809 measured reflections 4954 independent reflections 4954 independent reflections 4160 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.700$, $T_{\rm max} = 0.790$

Refinement

 $\begin{array}{ll} R[F^2>2\sigma(F^2)]=0.026 & \text{H atoms treated by a mixture of} \\ wR(F^2)=0.074 & \text{independent and constrained} \\ S=1.04 & \text{refinement} \\ 4954 \text{ reflections} & \Delta\rho_{\max}=0.45 \text{ e Å}^{-3} \\ 334 \text{ parameters} & \Delta\rho_{\min}=-0.45 \text{ e Å}^{-3} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
O1W—H11···O4 ⁱ	0.83 (1)	1.99 (1)	2.781 (2)	159 (2)
$O1W-H12\cdots O4^{ii}$	0.83(1)	1.94(1)	2.768 (2)	173 (2)
$O2W-H21\cdots O4^{iii}$	0.83(1)	2.13 (2)	2.854(2)	145 (2)
$O2W-H22\cdots O7^{iv}$	0.84(1)	1.98(1)	2.776 (2)	158 (2)
$O3W-H31\cdots O2^{v}$	0.83(1)	1.91(2)	2.700(2)	158 (3)
$O3W-H32\cdots O9^{vi}$	0.84(1)	2.31 (2)	3.026 (2)	143 (3)

Symmetry codes: (i) x+1, y, z-1; (ii) -x+1, -y+2, -z+1; (iii) x, y, z-1; (iv) -x+1, -y+1, -z+1; (v) -x, -y+2, -z+1; (vi) x-1, y, z+1.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalClear* (Rigaku, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

This work is supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (grant No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (grants No. 12511z023, No. 2011CJHB006), the Innovation Team of the Education Bureau of Heilongjiang Province (grant No. 2010 t d03), Heilongjiang University (grant No. Hdtd2010–04) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5797).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

metal-organic compounds

Rigaku (1998). *RAPID-AUTO*. Rigaku Corporation, Tokyo, Japan. Rigaku (2002). *CrystalClear*. Rigaku/MSC Inc., The Woodlands, Texas, USA. Sheldrick, G. M. (2008). *Acta Cryst*. A**64**, 112–122.

Westrip, S. P. (2010). *J. Appl. Cryst.* **43**, 920–925. Xiao, Y.-H., Gao, S. & Ng, S. W. (2006). *Acta Cryst.* E**62**, m2274–m2276.

supplementary m	aterials	

Acta Cryst. (2012). E68, m223-m224 [doi:10.1107/S1600536812003200]

Poly[triaqua[μ_4 -3-(4-carboxylatophenoxy)propionato- $\kappa^4 O:O':O'':O'''$][μ_3 -3-(4-carboxylatophenoxy)propionato- $\kappa^3 O:O':O''$]dizinc]

S. Gao and S. W. Ng

Comment

We reported the crystal structure of 3-(4-carboxyphenoxy)propropionic acid. We also reported the crystal structures of some metal derivatives. In the water-coordinated cobalt(II) derivative, two tetraaquacobalt cations are bridged by two 3-(4-carboxylatophenoxy)propionate dianions across a center of inversion to form a dinuclear molecule (Xiao *et al.*, 2006). The title coordination polymer (Scheme I) adopts a layer structure in which the two independent Zn^{II} atoms exist in trigonal bipyramidal geometries. One carboxylate dianion binds to a mono-aqua coordinated metal atom through the aliphatic carboxyl end and to the di-aqua coordinated metal atom through the aromatic carboxyl end; the other dianion binds in the reverse manner (Fig.1). Three of the four carboxyl ends of the two dianions are also engaged in bridging interactions; these lead to a layer structure. Adjacent layers are linked by O–H_{water}···O hydrogen bonds into a three-dimensional network (Table 1).

Experimental

Zinc acetate (1 mmol) and 3-(4-carboxyphenoxy)propionic acid (1 mmol) were dissolved in water (10 ml). Sodium hydroxide (1 *M*) was added in drops until the solution registered a pH of 7. The solution was then set aside for the growth of colorless crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C-H 0.93-0.97 Å) and were included in the refinement in the riding model approximation with U(H) set to 1.2-1.5U(C). The water H-atoms were located in a difference Fourier map, and were refined with distance restraints of O-H 0.84 ± 0.01 and H···H 1.37 ± 0.01 Å; their displacement factors were set to $1.5U_{eq}(O)$.

Figures

Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of a portion of polymeric $[Zn_2(H_2O)_3(C_{10}H_8O_5)_2]_n$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Poly[triaqua[μ_4 -3-(4-carboxylatophenoxy)propionato- κ^4 O:O':O'':O'''][μ_3 -3-(4carboxylatophenoxy)propionato- $\kappa^3 O: O: O: O: [dizinc]$

Crystal data

$[Zn_2(C_{10}H_8O_5)_2(H_2O)_3]$	Z = 2
$M_r = 601.12$	F(000) = 612
Triclinic, PT	$D_{\rm v} = 1.818 {\rm Mg \ m}^{-3}$

Hall symbol: -P 1 Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8993 reflections a = 7.6518 (3) Å b = 11.3553 (5) Å $\theta = 3.1 - 27.5^{\circ}$ c = 13.5294 (6) Å $\mu = 2.26 \text{ mm}^{-1}$

T = 293 K $\alpha = 77.2436 (14)^{\circ}$ $\beta = 85.6236 (13)^{\circ}$ Prism, colorless $\gamma = 73.3105 (13)^{\circ}$ $0.17\times0.13\times0.11~mm$

 $V = 1098.13 (8) \text{ Å}^3$

Data collection

Rigaku R-AXIS RAPID IP 4954 independent reflections diffractometer

Radiation source: fine-focus sealed tube 4160 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.019$ graphite

 $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$ ω scan

Absorption correction: multi-scan $h = -9 \rightarrow 9$ (ABSCOR; Higashi, 1995) $T_{\min} = 0.700, T_{\max} = 0.790$ $k = -14 \rightarrow 14$

10809 measured reflections

Refinement

Primary atom site location: structure-invariant direct Refinement on F^2 methods

 $l = -17 \rightarrow 17$

Least-squares matrix: full Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring $R[F^2 > 2\sigma(F^2)] = 0.026$

H atoms treated by a mixture of independent and $wR(F^2) = 0.074$

constrained refinement

 $w = 1/[\sigma^2(F_0^2) + (0.0397P)^2 + 0.4093P]$ S = 1.04

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.001$ 4954 reflections $\Delta \rho_{max} = 0.45 \text{ e Å}^{-3}$ 334 parameters

 $\Delta \rho_{min} = -0.45 \text{ e Å}^{-3}$ 9 restraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(\mathring{\mathbb{A}}^2)$

	x	y	z	$U_{\rm iso}*/U_{\rm eq}$
Zn1	0.63992 (3)	0.83763 (2)	0.070119 (16)	0.02491 (8)
Zn2	0.26901 (4)	0.60896 (2)	0.918931 (17)	0.03034 (8)
01	0.54606 (19)	0.99522 (13)	0.12262 (11)	0.0303(3)
O2	0.3096 (2)	1.16123 (14)	0.07830 (10)	0.0327(3)
O3	0.1731 (2)	1.04925 (14)	0.55209 (10)	0.0362 (4)
O4	0.1231 (2)	0.89307 (14)	0.90191 (11)	0.0338(3)
O5	0.2209 (2)	0.75470 (14)	0.80329 (11)	0.0367 (4)
O6	0.5517 (2)	0.57863 (14)	0.89038 (11)	0.0354 (4)
O7	0.7337 (2)	0.38375 (14)	0.93679 (10)	0.0340(3)
O8	0.8141 (2)	0.43774 (14)	0.46231 (10)	0.0385 (4)
O9	0.7217 (2)	0.55924 (13)	0.10884 (11)	0.0329(3)
O10	0.7013 (2)	0.70540 (13)	0.19529 (11)	0.0324(3)
O1W	0.9003 (2)	0.86744 (15)	0.07296 (12)	0.0335 (3)
H11	0.959(3)	0.860(2)	0.0192 (13)	0.050*
H12	0.888 (4)	0.9382 (14)	0.0853 (18)	0.050*
O2W	0.3716 (2)	0.83032 (16)	0.06475 (12)	0.0380(4)
H21	0.328 (4)	0.870(2)	0.0085 (12)	0.057*
H22	0.361 (4)	0.7572 (12)	0.077 (2)	0.057*
O3W	-0.0265 (2)	0.62923 (17)	0.93647 (14)	0.0452 (4)
H31	-0.105 (3)	0.6968 (18)	0.9157 (19)	0.068*
H32	-0.048 (4)	0.600(3)	0.9969 (10)	0.068*
C1	0.4045 (3)	1.07348 (18)	0.14434 (14)	0.0234 (4)
C2	0.3465 (3)	1.06585 (18)	0.25246 (14)	0.0245 (4)
C3	0.2374 (3)	1.17051 (19)	0.28675 (15)	0.0279 (4)
H3	0.1999	1.2472	0.2413	0.033*
C4	0.1841 (3)	1.16205 (19)	0.38719 (15)	0.0298 (4)
H4	0.1133	1.2332	0.4092	0.036*
C5	0.2360 (3)	1.0472 (2)	0.45583 (15)	0.0281 (4)
C6	0.3438 (3)	0.9416 (2)	0.42285 (16)	0.0341 (5)
H6	0.3781	0.8646	0.4681	0.041*
C7	0.4005 (3)	0.9514 (2)	0.32176 (16)	0.0312 (5)
H7	0.4751	0.8810	0.3002	0.037*
C8	0.2217 (3)	0.93520 (19)	0.62779 (15)	0.0296 (4)
H8A	0.3531	0.9033	0.6343	0.036*
H8B	0.1750	0.8713	0.6108	0.036*
C9	0.1340 (3)	0.97182 (19)	0.72457 (15)	0.0286 (4)
H9A	0.1824	1.0365	0.7386	0.034*
Н9В	0.0040	1.0082	0.7139	0.034*
C10	0.1618 (3)	0.86549 (19)	0.81669 (14)	0.0246 (4)
C11	0.6559 (3)	0.4798 (2)	0.86980 (15)	0.0275 (4)
C12	0.6964 (3)	0.46932 (19)	0.76157 (14)	0.0267 (4)
C13	0.6249 (3)	0.57192 (19)	0.68433 (15)	0.0288 (4)
H13	0.5507	0.6458	0.7007	0.035*
C14	0.6621 (3)	0.5661 (2)	0.58321 (15)	0.0325 (5)
H14	0.6153	0.6361	0.5324	0.039*

C15	0.7701 (3)	0.4548 (2)	0.55855 (15)	0.0288(4)
C16	0.8419 (3)	0.3509 (2)	0.63521 (16)	0.0335 (5)
H16	0.9131	0.2762	0.6187	0.040*
C17	0.8074(3)	0.3587 (2)	0.73571 (15)	0.0318 (5)
H17	0.8584	0.2899	0.7866	0.038*
C18	0.7454 (3)	0.54209 (19)	0.38040 (14)	0.0294 (4)
H18A	0.7940	0.6114	0.3831	0.035*
H18B	0.6133	0.5708	0.3838	0.035*
C19	0.8078 (3)	0.49400 (19)	0.28414 (14)	0.0278 (4)
H19A	0.9401	0.4677	0.2815	0.033*
H19B	0.7653	0.4210	0.2854	0.033*
C20	0.7379(3)	0.59226 (18)	0.18999 (14)	0.0226 (4)

Atomic displacement parameters (\mathring{A}^2)

•	-					
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.03290 (14)	0.02110 (12)	0.01676 (12)	-0.00311 (9)	0.00282 (9)	-0.00263 (9)
Zn2	0.04902 (16)	0.02167 (13)	0.01550 (12)	-0.00240 (10)	-0.00106 (10)	-0.00351 (9)
O1	0.0326 (8)	0.0254 (7)	0.0311 (8)	-0.0037 (6)	0.0074 (6)	-0.0105 (6)
O2	0.0363 (8)	0.0361 (8)	0.0169 (7)	0.0019 (6)	0.0014 (6)	-0.0039 (6)
O3	0.0516 (10)	0.0296 (8)	0.0173 (7)	-0.0020 (7)	0.0065 (6)	0.0012 (6)
O4	0.0487 (9)	0.0341 (8)	0.0196 (7)	-0.0153 (7)	0.0066 (6)	-0.0047 (6)
O5	0.0563 (10)	0.0235 (7)	0.0211 (7)	-0.0011 (7)	0.0014 (7)	0.0002 (6)
O6	0.0450 (9)	0.0317 (8)	0.0274 (8)	-0.0068 (7)	0.0057 (7)	-0.0088 (6)
O7	0.0493 (9)	0.0333 (8)	0.0146 (7)	-0.0046 (7)	0.0004 (6)	-0.0044 (6)
O8	0.0595 (10)	0.0306 (8)	0.0141 (7)	0.0012 (7)	0.0011 (7)	0.0001 (6)
O9	0.0518 (9)	0.0240 (7)	0.0197 (7)	-0.0048 (7)	-0.0053 (6)	-0.0037 (6)
O10	0.0538 (9)	0.0205 (7)	0.0219 (7)	-0.0101 (6)	-0.0048 (7)	-0.0007 (6)
O1W	0.0325 (8)	0.0375 (9)	0.0313 (8)	-0.0102 (7)	0.0100 (6)	-0.0117 (7)
O2W	0.0416 (9)	0.0407 (9)	0.0327 (9)	-0.0189 (8)	-0.0044 (7)	0.0014(7)
O3W	0.0379 (9)	0.0383 (10)	0.0460 (11)	-0.0004 (7)	0.0048 (8)	0.0038 (8)
C1	0.0284 (10)	0.0228 (9)	0.0205 (9)	-0.0086 (8)	0.0031 (8)	-0.0068 (7)
C2	0.0279 (10)	0.0259 (10)	0.0179 (9)	-0.0056 (8)	0.0015 (7)	-0.0036 (7)
C3	0.0372 (11)	0.0221 (9)	0.0198 (9)	-0.0042 (8)	0.0003 (8)	-0.0004 (7)
C4	0.0398 (11)	0.0230 (10)	0.0214 (10)	-0.0017 (8)	0.0026 (8)	-0.0039 (8)
C5	0.0333 (11)	0.0305 (11)	0.0172 (9)	-0.0071 (8)	0.0017 (8)	-0.0013 (8)
C6	0.0440 (13)	0.0238 (10)	0.0244 (10)	-0.0011 (9)	0.0019 (9)	0.0041 (8)
C7	0.0356 (11)	0.0246 (10)	0.0261 (10)	0.0003 (8)	0.0042 (9)	-0.0031 (8)
C8	0.0382 (11)	0.0270 (10)	0.0181 (9)	-0.0056 (9)	0.0010(8)	0.0016 (8)
C9	0.0370 (11)	0.0249 (10)	0.0197 (9)	-0.0068 (8)	0.0014 (8)	0.0012 (8)
C10	0.0265 (10)	0.0272 (10)	0.0187 (9)	-0.0083 (8)	0.0011 (7)	-0.0009(8)
C11	0.0335 (10)	0.0298 (10)	0.0196 (9)	-0.0101 (8)	0.0021 (8)	-0.0051 (8)
C12	0.0338 (11)	0.0292 (10)	0.0164 (9)	-0.0092 (8)	0.0012 (8)	-0.0033 (8)
C13	0.0363 (11)	0.0243 (10)	0.0231 (10)	-0.0049(8)	0.0004 (8)	-0.0042 (8)
C14	0.0469 (13)	0.0271 (10)	0.0183 (9)	-0.0057 (9)	-0.0013 (9)	0.0003 (8)
C15	0.0392 (11)	0.0289 (10)	0.0165 (9)	-0.0079 (9)	0.0005 (8)	-0.0028 (8)
C16	0.0436 (12)	0.0276 (11)	0.0218 (10)	-0.0006 (9)	0.0022 (9)	-0.0027 (8)
C17	0.0392 (12)	0.0283 (11)	0.0204 (10)	-0.0017 (9)	-0.0007 (9)	0.0005 (8)

C18 C19	0.0416 (12) 0.0395 (11)	0.0264 (10) 0.0228 (10)	0.0158 (9) 0.0166 (9)	-0.0068 (9) -0.0051 (8)	-0.0003 (8) -0.0003 (8)	0.0005 (8) 0.0006 (7)
C20	0.0267 (9)	0.0236 (9)	0.0155 (8)	-0.0071 (7)	0.0032 (7)	-0.0010 (7)
Geometric para	umeters (Å, °)					
Zn1—O1		1.9919 (14)	C2—	C7	1.39	97 (3)
Zn1—O2 ⁱ		2.0136 (14)	С3—	C4		79 (3)
Zn1—O10		1.9840 (14)	С3—	Н3	0.93	
Zn1—O1W		2.1188 (15)	C4—		1.39	95 (3)
Zn1—O2W		2.0855 (16)	C4—	H4	0.93	300
Zn2—O5		1.9791 (14)	C5—	C6	1.38	39 (3)
Zn2—O6		2.1093 (16)	C6—	C7	1.39	93 (3)
Zn2—O9 ⁱⁱ		2.0073 (15)	C6—	Н6	0.93	300
Zn2—O7 ⁱⁱⁱ		1.9702 (14)	C7—	Н7	0.93	300
Zn2—O3W		2.2055 (17)	C8—	C9	1.5	11 (3)
O1—C1		1.250(2)	C8—	H8A	0.9	700
O2—C1		1.268 (2)	C8—	H8B	0.9	700
O2—Zn1 ⁱ		2.0136 (14)	C9—	C10	1.5	12 (3)
O3—C5		1.356 (2)	C9—	Н9А	0.9	700
O3—C8		1.435 (2)	С9—	Н9В	0.9	700
O4—C10		1.253 (2)	C11-	-C12	1.49	97 (3)
O5—C10		1.258 (2)	C12-	-C13	1.39	90 (3)
O6—C11		1.250(3)	C12-	-C17	1.39	99 (3)
O7—C11		1.280 (2)	C13-	-C14	1.38	38 (3)
O7—Zn2 ⁱⁱⁱ		1.9702 (14)	C13-	–H13	0.93	300
O8—C15		1.361 (2)	C14-	-C15	1.39	92 (3)
O8—C18		1.435 (2)	C14-	–H14	0.93	300
O9—C20		1.261 (2)	C15-	-C16	1.39	94 (3)
O9—Zn2 ⁱⁱ		2.0073 (15)	C16-	-C17	1.38	33 (3)
O10—C20		1.251 (2)	C16-	–H16	0.93	300
O1W—H11		0.833 (9)	C17-	–H17	0.93	300
O1W—H12		0.834 (9)	C18-			14 (3)
O2W—H21		0.832 (9)		–H18A	0.9	
O2W—H22		0.836 (10)		-H18B	0.9	
O3W—H31		0.833 (10)	C19–			12 (2)
O3W—H32		0.835 (10)		-H19A	0.9	
C1—C2		1.487 (3)	C19_	–H19B	0.9	/00
C2—C3		1.393 (3)	-			
O10—Zn1—O1		103.22 (6)		С6—Н6	120	
O10—Zn1—O2	Į.	133.60 (6)	С6—	C7—C2	120	.67 (19)
O1—Zn1—O2 ⁱ		122.33 (6)		C7—H7	119	
O10—Zn1—O2		95.04 (7)		С7—Н7	119	
O1—Zn1—O2W	Į.	88.80 (7)	O3—	C8—C9		.73 (16)
O2 ⁱ —Zn1—O2V		94.31 (7)	O3—	C8—H8A	110	.8
O10—Zn1—O1	W	89.29 (6)	C9—	C8—H8A	110	
O1—Zn1—O1W	Į.	85.51 (6)	O3—	C8—H8B	110	.8

O2 ⁱ —Zn1—O1W	86.15 (6)	C9—C8—H8B	110.8
O2W—Zn1—O1W	173.51 (6)	H8A—C8—H8B	108.9
O7 ⁱⁱⁱ —Zn2—O5	126.07 (6)	C10—C9—C8	115.08 (17)
O7 ⁱⁱⁱ —Zn2—O9 ⁱⁱ	115.44 (6)	C10—C9—H9A	108.5
O5—Zn2—O9 ⁱⁱ	117.57 (6)	C8—C9—H9A	108.5
O7 ⁱⁱⁱ —Zn2—O6	98.39 (6)	С10—С9—Н9В	108.5
O5—Zn2—O6	89.55 (7)	С8—С9—Н9В	108.5
O9 ⁱⁱ —Zn2—O6	91.48 (6)	Н9А—С9—Н9В	107.5
O7 ⁱⁱⁱ —Zn2—O3W	86.84 (7)	O4—C10—O5	123.89 (18)
O5—Zn2—O3W	89.82 (7)	O4—C10—C9	117.94 (18)
O9 ⁱⁱ —Zn2—O3W	83.49 (7)	O5—C10—C9	118.18 (17)
O6—Zn2—O3W	173.95 (7)	06—C11—O7	123.78 (18)
C1—O1—Zn1	144.10 (14)	06—C11—C12	120.02 (18)
C1—O2—Zn1 ⁱ	119.96 (13)	07—C11—C12	116.20 (18)
C5—O3—C8	118.82 (16)	C13—C12—C17	118.71 (18)
C10—O5—Zn2	121.42 (13)	C13—C12—C17 C13—C12—C11	119.70 (18)
C10—O5—Zn2	124.43 (15)	C13—C12—C11 C17—C12—C11	` ,
			121.58 (17)
C11—O7—Zn2 ⁱⁱⁱ	121.58 (13)	C14—C13—C12	121.23 (19)
C15—O8—C18	117.79 (16)	C14—C13—H13	119.4
C20—O9—Zn2 ⁱⁱ	131.33 (13)	C12—C13—H13	119.4
C20—O10—Zn1	119.49 (12)	C13—C14—C15	119.43 (18)
Zn1—O1W—H11	112.2 (19)	C13—C14—H14	120.3
Zn1—O1W—H12	109.3 (19)	C15—C14—H14	120.3
H11—O1W—H12	111.0 (16)	O8—C15—C14	124.62 (18)
Zn1—O2W—H21	109 (2)	O8—C15—C16	115.42 (18)
Zn1—O2W—H22	114 (2)	C14—C15—C16	119.96 (19)
H21—O2W—H22	110.4 (16)	C17—C16—C15	120.07 (19)
Zn2—O3W—H31	123 (2)	C17—C16—H16	120.0
Zn2—O3W—H32	108 (2)	C15—C16—H16	120.0
H31—O3W—H32	110.0 (16)	C16—C17—C12	120.56 (18)
O1—C1—O2	122.88 (18)	C16—C17—H17	119.7
O1—C1—C2	118.88 (17)	C12—C17—H17	119.7
O2—C1—C2	118.22 (17)	O8—C18—C19	105.89 (16)
C3—C2—C7	118.70 (18)	O8—C18—H18A	110.6
C3—C2—C1	121.49 (17)	C19—C18—H18A	110.6
C7—C2—C1	119.80 (18)	O8—C18—H18B	110.6
C4—C3—C2	120.90 (18)	C19—C18—H18B	110.6
C4—C3—H3	119.5	H18A—C18—H18B	108.7
C2—C3—H3	119.5	C20—C19—C18	112.35 (16)
C3—C4—C5	120.22 (19)	C20—C19—H19A	109.1
C3—C4—H4	119.9	C18—C19—H19A	109.1
C5—C4—H4	119.9	C20—C19—H19B	109.1
O3—C5—C6	125.13 (18)	C18—C19—H19B	109.1
O3—C5—C4	115.20 (18)	H19A—C19—H19B	107.9
C6—C5—C4	119.68 (18)	O10—C20—O9	122.00 (17)
C5—C6—C7	119.81 (18)	O10—C20—C19	117.89 (17)
C5—C6—H6	120.1	O9—C20—C19	120.09 (17)

O10—Zn1—O1—C1	-97.8 (2)	C5—O3—C8—C9	178.69 (18)		
O2 ⁱ —Zn1—O1—C1	91.4 (2)	O3—C8—C9—C10	178.60 (17)		
O2W—Zn1—O1—C1	-3.0 (2)	Zn2—O5—C10—O4	-2.4 (3)		
O1W—Zn1—O1—C1	173.9 (2)	Zn2—O5—C10—C9	178.16 (14)		
O7 ⁱⁱⁱ —Zn2—O5—C10	-9.1 (2)	C8—C9—C10—O4	166.79 (19)		
O9 ⁱⁱ —Zn2—O5—C10	159.36 (15)	C8—C9—C10—O5	-13.7 (3)		
O6—Zn2—O5—C10	-109.21 (17)	Zn2—O6—C11—O7	-86.4 (2)		
O3W—Zn2—O5—C10	76.81 (17)	Zn2—O6—C11—C12	93.8 (2)		
O7 ⁱⁱⁱ —Zn2—O6—C11	113.26 (16)	Zn2 ⁱⁱⁱ —O7—C11—O6	-10.7 (3)		
O5—Zn2—O6—C11	-120.30 (16)	Zn2 ⁱⁱⁱ —O7—C11—C12	169.15 (14)		
O9 ⁱⁱ —Zn2—O6—C11	-2.73 (16)	O6—C11—C12—C13	3.2 (3)		
O1—Zn1—O10—C20	168.90 (15)	O7—C11—C12—C13	-176.66 (19)		
O2 ⁱ —Zn1—O10—C20	-21.89 (19)	O6—C11—C12—C17	-177.8 (2)		
O2W—Zn1—O10—C20	78.96 (16)	O7—C11—C12—C17	2.4 (3)		
O1W—Zn1—O10—C20	-105.88 (16)	C17—C12—C13—C14	-0.2 (3)		
Zn1—O1—C1—O2	-80.4 (3)	C11—C12—C13—C14	178.9 (2)		
Zn1—O1—C1—C2	101.1 (2)	C12—C13—C14—C15	1.3 (3)		
Zn1 ⁱ —O2—C1—O1	10.1 (3)	C18—O8—C15—C14	0.4(3)		
Zn1 ⁱ —O2—C1—C2	-171.43 (13)	C18—O8—C15—C16	-179.35 (19)		
O1—C1—C2—C3	155.8 (2)	C13—C14—C15—O8	179.3 (2)		
O2—C1—C2—C3	-22.7 (3)	C13—C14—C15—C16	-0.9(3)		
O1—C1—C2—C7	-24.7 (3)	O8—C15—C16—C17	179.2 (2)		
O2—C1—C2—C7	156.8 (2)	C14—C15—C16—C17	-0.6(4)		
C7—C2—C3—C4	0.3 (3)	C15—C16—C17—C12	1.8 (4)		
C1—C2—C3—C4	179.79 (19)	C13—C12—C17—C16	-1.4 (3)		
C2—C3—C4—C5	-1.3 (3)	C11—C12—C17—C16	179.6 (2)		
C8—O3—C5—C6	0.9 (3)	C15—O8—C18—C19	-177.33 (19)		
C8—O3—C5—C4	-179.40 (19)	O8—C18—C19—C20	177.22 (17)		
C3—C4—C5—O3	-178.8 (2)	Zn1—O10—C20—O9	-6.3 (3)		
C3—C4—C5—C6	0.9 (3)	Zn1—O10—C20—C19	172.15 (13)		
O3—C5—C6—C7	-179.8 (2)	Zn2 ⁱⁱ —O9—C20—O10	-169.17 (15)		
C4—C5—C6—C7	0.5 (3)	Zn2 ⁱⁱ —O9—C20—C19	12.4 (3)		
C5—C6—C7—C2	-1.5 (3)	C18—C19—C20—O10	25.9 (3)		
C3—C2—C7—C6	1.1 (3)	C18—C19—C20—O9	-155.68 (19)		
C1—C2—C7—C6	-178.4 (2)				
Symmetry codes: (i) $-x+1$, $-y+2$, $-z$; (ii) $-x+1$, $-y+1$, $-z+1$; (iii) $-x+1$, $-y+1$, $-z+2$.					

Hydrogen-bond geometry (Å, °)

D— H ··· A	<i>D</i> —H	$H\cdots A$	D··· A	D— H ··· A
O1W—H11···O4 ^{iv}	0.83 (1)	1.99(1)	2.781 (2)	159 (2)
O1W—H12···O4 ^v	0.83 (1)	1.94(1)	2.768 (2)	173 (2)
O2W—H21···O4 ^{vi}	0.83 (1)	2.13 (2)	2.854 (2)	145 (2)
O2W—H22···O7 ⁱⁱ	0.84(1)	1.98 (1)	2.776 (2)	158 (2)
O3W—H31···O2 ^{vii}	0.83(1)	1.91(2)	2.700(2)	158 (3)

O3W—H32···O9^{viii} 0.84 (1) 2.31 (2) 3.026 (2) 143 (3) Symmetry codes: (iv) x+1, y, z-1; (v) -x+1, -y+2, -z+1; (vii) x, y, z-1; (ii) -x+1, -y+1, -z+1; (vii) -x, -y+2, -z+1; (viii) x-1, y, z+1.

Fig. 1

