CS1101 Discrete Structures 1

Chapter 01

The Foundations: Proofs

Some Terminology

Definition 1. A **theorem** (fact/result) is a statement that can be shown to be true. We demonstrate that a theorem is true with a proof.

Definition 2. A **proof** is a valid argument that establishes the truth of a theorem.

<u>Definition 3</u>. A <u>lemma</u> is a 'helping theorem' or a <u>result</u> which is needed to prove a theorem. Complicated proofs are usually easier to understand when they are proved using a series of lemmas, where each lemma is proved individually.

2

3

Even Integer

$$2 * (Any Integer) = even$$

if a is an even number, so you can write it as follows:

$$a = 2n$$
, where n is integer

Even
$$+ 1 = Odd$$

$$Odd + 1 = Even$$

$$\neg$$
Even = Odd

Odd Integer

if a is an odd number, so you can write it as follows:

$$a = 2m + 1$$
,

where m is integer

Prefect Square

if a is a prefect square, so you can write it as follows:

$$a = (n)^2$$
, where *n* is integer

Rational Number

if a is a rational number, so you can write it as follows:

$$a = \frac{n}{-}$$
, where n , and m are integers with NO common factor, and $m \neq 0$

- ¬Rational = Irrational
- ¬Irrational = Rational

Direct Proof

$$p \rightarrow q$$

- 1. We assume that p is true
- 2. We try to prove that q is also true
- 3. Then $p \rightarrow q$ is true.

Example1

Give a direct proof of the theorem "If n is an odd integer, then n^2 is odd."

10

Example1

Give a direct proof of the theorem "If n is an odd integer, then n^2 is odd."

p

q

$$p \rightarrow q$$

Example1

Give a direct proof of the theorem "If n is an odd integer, then n^2 is odd."

p

Q

$$p \rightarrow q$$

- 1. We assume that p is true
- 2. We try to prove that q is also true
- 3. Then $p \rightarrow q$ is true.

Example1

Give a direct proof of the theorem "If n is an odd integer, then n^2 is odd."

2 * (Any Integer) = even

1. We assume that p is true n = 2m + 1, where m is integer.

Example1

Give a direct proof of the theorem "If n is an odd integer, then n^2 is odd."

2 * (Any Integer) = even

1. We assume that p is true

$$n = 2m + 1$$
, where m is integer.

2. We try to prove that q is also true

$$n^{2} = (2m + 1)^{2}$$

$$= 4m^{2} + 4m + 1$$

$$= 2(2m^{2} + 2m) + 1$$

$$= even + 1 = odd$$

Example1

Give a direct proof of the theorem "If n is an odd integer, then n^2 is odd."

1. We assume that p is true

$$n = 2m + 1$$
, where m is integer.

2. We try to prove that q is also true

$$n^{2} = (2m + 1)^{2}$$

= $4m^{2} + 4m + 1$
= $2(2m^{2} + 2m) + 1$
= $even$ $+ 1 = odd$

3. ∴ $p \rightarrow q$ is true.

Indirect Proof (Contraposition)

$$p \rightarrow q$$

$$\neg q \rightarrow \neg p$$

- 1. We assume that $\neg q$ is true
- 2. We try to prove that $\neg p$ is also true
- 3. Then $\neg q \rightarrow \neg p$ is true.
- 4. The $p \rightarrow q$ is also true.

Example1

Prove by contraposition that if n is an integer and 3n + 2 is odd, then n is odd.

17

Example1

Prove by contraposition that if n is an integer and 3n + 2 is odd, then n is odd.

$$\stackrel{
ightarrow}{p}$$
 q

$$\neg q \rightarrow \neg p$$
 contraposition

Example1

Prove by contraposition that if n is an integer and 2n + 2 is odd, then n is odd.

$$\frac{3n + 2 \text{ is odd, then } n \text{ is odd.}}{n}$$

$$\neg q \rightarrow \neg p$$

contraposition

$$\neg q$$
 is $(n \text{ is even})$
 $\neg p$ is $(3n + 2 \text{ is even})$

Example1

Prove by contraposition that if n is an integer and 3n + 2 is odd, then n is odd.

$$\dot{p}$$

 \dot{q}

$$\neg q \rightarrow \neg p$$

$$\neg q$$
 is $(n \text{ is even })$
 $\neg p$ is $(3n + 2 \text{ is even })$

Example1

Prove by contraposition that if n is an integer and 3n + 2 is odd, then n is odd.

$$\dot{p}$$

 \dot{q}

$$\neg q$$
 is $(n \text{ is even})$
 $\neg p$ is $(3n + 2 \text{ is even})$

2.
$$(3n+2) = (3(2m)+2)$$

= $(6m+2) = 2 \mbox{ } 3m+1) = \text{even}$
 $\therefore (3n+2) \approx \text{even}$

Example1

Prove by contraposition that if n is an integer and 3n + 2 is odd, then n is odd.

$$\dot{p}$$

7

$$\neg q \rightarrow \neg p$$

$$\neg q$$
 is $(n \text{ is even })$
 $\neg p$ is $(3n + 2 \text{ is even })$

2.
$$(3n+2) = (3(2m)+2)$$

= $(6m+2) = 2(3m+1) = \text{even}$
: $(3n+2)$ even

3.
$$\because \neg q \rightarrow \neg p$$
 is true, then $p \rightarrow q$ is also true.

Indirect Proof (Contradiction)

A – We want to prove p.

We show that:

- 1. $\neg p \rightarrow F$ (i.e., a False statement)
- 2. We conclude that $\neg p$ is False since (1) is True and therefore p is True.

Indirect Proof (Contradiction)

B – We want to show
$$p \leftrightarrow q$$

- 1. Assume the negation of the conclusion, i.e., $\neg q$
- 2. Show that $(p \land \neg q) \rightarrow F$
- 3. Since $((p \land \neg q) \rightarrow F) \Leftrightarrow (p \rightarrow q)$ we are done

(why?)

$$((p \land \neg q) \to F) \Leftrightarrow \neg (p \land \neg q)$$
$$\Leftrightarrow p \to q$$

Example1

Give a proof by contradiction of the theorem "If 3n + 2 is odd, then n is odd".

25

Example1

Give a proof by contradiction of the theorem "If 3n + 2 is odd, then n is odd".

p

 $p \land \neg q$

```
\neg q is (n \text{ is even})
p \text{ is } (3n + 2 \text{ is odd})
```

Example1

Give a proof by contradiction of the theorem "If 3n + 2 is odd, then n is odd".

$$\stackrel{
ightarrow}{p}$$

$$p \land \neg q$$

$$\neg q$$
 is $(n \text{ is even})$
 p is $(3n + 2 \text{ is odd})$

Example1

Give a proof by contradiction of the theorem "If 3n + 2 is odd, then n is odd".

$$p$$
 q

$$p \land \neg q$$

$$\neg q$$
 is $(n \text{ is even})$
 p is $(3n + 2 \text{ is odd})$

2.
$$(3n+2) = (3(2m)+2)$$

= $(6m+2) = 2 \mbox{ } 3m+1) = \text{even}$
 $\therefore (3n+2) \text{ is even}$

Example1

Give a proof by contradiction of the theorem "If 3n + 2 is odd, then n is odd".

$$p$$
 q

$$p \land \neg q$$

$$\neg q$$
 is $(n \text{ is even})$
 p is $(3n + 2 \text{ is odd})$

2.
$$(3n+2) = (3(2m)+2)$$

= $(6m+2) = 2(3m+1) = even$

- \therefore (3n + 2) is even, then p is false.
- 3. $p \land \neg q$ is false, then by contradiction $p \rightarrow q$ is true.

Example2

Prove that $\sqrt{2}$ is irrational by giving a proof by contradiction.

Let p the proposition " $\sqrt{2}$ is irrational". Suppose that $\neg p$ is true $\sqrt{2}$ then 2 is rational

30

Rational Number

if a is a rational number, so you can write it as follows:

$$a = \frac{n}{-}$$
, where n , and m are integers with NO common factor, and $m \neq 0$

- ¬Rational = Irrational
- ¬Irrational = Rational

Example2 Answer:

Let *p* the proposition " $\sqrt{2}$ is irrational".

- 1) To start a proof by contradiction, we suppose that $\neg p$ is true, then $\sqrt{2}$ is rational.
- 2) $\sqrt{2} = \frac{a}{b}$, where a and b are intergers without common factor and $b \neq 0$
- 3) $2 = \frac{a^2}{b^2}$
- 4) $a^2 = 2b^2$, then a is even, and you can write a = 2m, where m is integer.
- 5) $(2m)^2 = 2b^2$, then $4m^2 = 2b^2$.
- 6) $b^2 = 2m^2$, then b is also even.
- 7) Because a and b are even, then a and b have a common factor 2.
- Therefore, $\sqrt{2} = \frac{a}{b}$ is not rational, then $\neg p$ is false.
- 9) Therefore, p is true and $\sqrt{2}$ is irrational.