Paper Digest Meeting

DreamSampler: Unifying Diffusion Sampling and Score Distillation for Image Manipulation

Jeongsol Kim^{1,*}, Geon Yeong Park^{1,*}, and Jong Chul Ye²

- ¹ Dept. of Bio & Brain Engineering, KAIST
- ² Kim Jae Chul AI graduate school, KAIST

2024.08.04 Jaihoon Kim KAIST Visual AI Group

Problem Definition

Motivation: Reverse process sampling lacks flexibility, and SDS suffers from mode collapse.

Goal: Combine the benefits of the two sampling methods for flexible and high-quality generation.

Key Ideas

DDIM Sampling from Optimization Perspective.

$$z_{t-1} = \sqrt{\bar{\alpha}_{t-1}}\bar{z} + \sqrt{1-\bar{\alpha}_{t-1}}\tilde{\epsilon}, \text{ where } \bar{z} = \operatorname*{arg\,min}_{z} \|z - \hat{z}_{0|t}\|^2$$

1. Connection to Score Distillation Sampling (SDS):

$$\begin{aligned} \|\boldsymbol{z} - \hat{\boldsymbol{z}}_{0|t}\|^2 &= \left\| \frac{\boldsymbol{z}_t - \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}}{\sqrt{\bar{\alpha}_t}} - \frac{\boldsymbol{z}_t - \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}_{\theta}(\boldsymbol{z}_t, t)}{\sqrt{\bar{\alpha}_t}} \right\|^2 \\ &= \frac{\sqrt{1 - \bar{\alpha}_t}}{\sqrt{\bar{\alpha}_t}} \|\boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\boldsymbol{z}_t, t)\|^2, \end{aligned}$$

1. Add arbitrary regularization function:

$$\min_{\boldsymbol{z}} \|\boldsymbol{z} - \hat{\boldsymbol{z}}_{0|t}\|_2^2 + \lambda_{reg} \mathcal{R}(\boldsymbol{z})$$

Method

DreamSampler Framework:

Algorithm 1 Score Distillation	Algorithm 2 DreamSampler
Require: $T, \zeta, g, \psi, \mathcal{E}_{\phi}, \{\bar{\alpha}_t\}_{t=1}^T$	Require: $T, \zeta, g, \psi, \mathcal{E}_{\phi}, \{\bar{\alpha}_t\}_{t=1}^T$
$1: \; \boldsymbol{z}_0 \leftarrow \mathcal{E}_{\phi}(\boldsymbol{x}_0)$	$1: \ \boldsymbol{z}_0 \leftarrow \mathcal{E}_{\phi}(\boldsymbol{x}_0), \boldsymbol{\epsilon}_{\theta}(\boldsymbol{z}_{T+1}) := \boldsymbol{\epsilon} \sim \mathcal{N}(0, \boldsymbol{I})$
2: for $i = T$ to 1 do	2: for $i = T$ to 1 do
3: $t \sim U[0,T]$	3: $t \leftarrow i, \ \epsilon \sim \mathcal{N}(0, I)$
4: $\tilde{\boldsymbol{\epsilon}} \sim \mathcal{N}(0, \boldsymbol{I})$	4: $\tilde{\epsilon} \leftarrow \frac{\sqrt{1-\bar{lpha}_{t-1}-\eta^2eta_t^2}\hat{\epsilon}_{ heta}+\etaeta_t\epsilon}{\sqrt{1-\bar{lpha}_t}}$
5: $\mathbf{z}_t \leftarrow \sqrt{\bar{\alpha}_t} \mathbf{z}_0 + \sqrt{1 - \bar{\alpha}_t} \tilde{\boldsymbol{\epsilon}}$	5: $\mathbf{z}_t \leftarrow \sqrt{\bar{\alpha}_t} \mathbf{z}_0 + \sqrt{1 - \bar{\alpha}_t} \tilde{\boldsymbol{\epsilon}}$
6: $\hat{\boldsymbol{\epsilon}}_{\theta} \leftarrow \boldsymbol{\epsilon}_{\theta}^{\omega}(\boldsymbol{z}_{t}, t, c)$	6: $\hat{\boldsymbol{\epsilon}}_{\theta} \leftarrow \boldsymbol{\epsilon}_{\theta}^{\omega}(\boldsymbol{z}_{t}, t, c)$
7: $\nabla_{\psi} \mathcal{L}_{ds} \leftarrow \tilde{\boldsymbol{\epsilon}} - \hat{\boldsymbol{\epsilon}}_{\theta}$	7: $\nabla_{\psi} \mathcal{L}_{ds} \leftarrow \tilde{\boldsymbol{\epsilon}} - \hat{\boldsymbol{\epsilon}}_{\theta}$
8: $\psi \leftarrow \psi - \zeta \nabla_{\psi} \mathcal{L}_{ds}$	8: $\psi \leftarrow \psi - \zeta [\nabla_{\psi} \mathcal{L}_{ds} + \lambda_{reg} \nabla_{\psi} \mathcal{R}]$
9: $z_0 \leftarrow \mathcal{E}_{\phi}(g(\psi))$	9: $oldsymbol{z}_0 \leftarrow \mathcal{E}_\phi(g(\psi))$
10: end for	10: end for
11: return ψ	11: return ψ

Application

Real Image Editing

$$\min_{\mathbf{z}} \|\mathbf{z} - \hat{\mathbf{z}}_{0|t}(c_{\phi})\|^2 + \gamma R(\mathbf{z}), \quad where \quad R(\mathbf{z}) := \frac{\|\mathbf{z} - \hat{\mathbf{z}}_{0|t}(c_{tgt})\|^2}{(1 - \gamma)}$$

Algorithm 3 DreamSampler for Image Editing

Require: source image x, image encoder \mathcal{E}_{ϕ} , latent diffusion model ϵ_{θ} , null-text embedding c_{ϕ} , conditioning text embedding c_{tqt} .

$$\begin{split} & \boldsymbol{z}_0 \leftarrow \mathcal{E}_{\phi}(\boldsymbol{x}) \\ & \boldsymbol{z}_T \leftarrow \operatorname{Inversion}(\boldsymbol{z}_0) \\ & \text{for } t \in [T, 0] \text{ do} \\ & \quad \quad \hat{\boldsymbol{\epsilon}}_{\theta} \leftarrow \boldsymbol{\epsilon}_{\theta}(\boldsymbol{z}_t, t, c_{\phi}) + \gamma [\boldsymbol{\epsilon}_{\theta}(\boldsymbol{z}_t, t, c_{tgt}) - \boldsymbol{\epsilon}_{\theta}(\boldsymbol{z}_t, t, c_{\phi})] \\ & \quad \quad \bar{\boldsymbol{z}} \leftarrow (\boldsymbol{z}_t - \sqrt{1 - \bar{\alpha}_t \hat{\boldsymbol{\epsilon}}_{\theta}}) / \sqrt{\bar{\alpha}_t} \\ & \quad \quad \tilde{\boldsymbol{\epsilon}} \leftarrow (\sqrt{1 - \bar{\alpha}_{t-1} - \eta^2 \beta_t^2 \hat{\boldsymbol{\epsilon}}_{\theta}} + \eta \beta_t \boldsymbol{\epsilon}) / \sqrt{1 - \bar{\alpha}_{t-1}} \\ & \quad \quad \boldsymbol{z}_t \leftarrow \sqrt{\bar{\alpha}_{t-1}} \bar{\boldsymbol{z}} + \sqrt{1 - \bar{\alpha}_{t-1}} \tilde{\boldsymbol{\epsilon}} \\ & \quad \text{end for} \end{split}$$

Inverse Problems

$$\min_{\boldsymbol{\psi}}(1-\gamma)\lambda_{SDS}\|\mathcal{E}(g(\boldsymbol{\psi}))-\hat{\boldsymbol{z}}_{0|t}(c_{\boldsymbol{y}})\|^2+\gamma\lambda_{DC}\|\boldsymbol{y}-\mathcal{A}g(\boldsymbol{\psi})\|^2,$$

Experiments

Identity Renderer (g)

Real Image Editing

Image Inpainting

Experiments

Non-Identity Renderer (*g*)

SVG Inverse Problem

Novel View Synthesis from Blurry Inputs