HDF5 Data Structure in QTL Viewer

/[dataset]

Attributes of dataset

ATTRIBUTE	DATA TYPE	EXAMPLE	NOTE
name	STRING	Our Big Experiment	Name of the experiment
dfA	NUMERIC	7	Degrees of freedom, autosomal
dfX	NUMERIC	14	Degrees of freedom, X chromosome

/features - dataset of features (gene, transcript, etc) ids (in our case ensemblids),

	NAME	DATA TYPE	EXAMPLE	NOTE
1	feature_id	STRING	ENMUSG00000019966	
2	group_id	STRING	ENMUSG00000019966	
3	chrom	CHAR (2 characters)	10	
4	location	FLOAT	100.01563	location is in Mb
5	name	STRING	Kitl	
6	description	STRING	Kit ligand	

NOTE: if genes, group_id = feature_id,

if pQTL, the group_id will be gene_id while the feature_id will be protein id

/markers - dataset of markers (SNPs)

	NAME	DATA TYPE	EXAMPLE	NOTE
1	marker_id	STRING	rs6412653	
2	chrom	CHAR (2 characters)	X	
3	location	FLOAT	11.232	location is in Mb

/lod/lod - dataset of LOD scores in FLOATING point, features (rows) x markers (columns)

Example: **F** is the number of features, **M** is the number of markers

NOTE: ALL values should be of type FLOAT, if there is no value, leave that row empty

FOR THE COEEFICIENT EFFECT PLOT (not required)

/coef/strains - dataset of strains (example would be CC founders)

	NAME	DATA TYPE	EXAMPLE	NOTE
1	strain_id	STRING	A	
2	name	STRING	A/J	
3	description	STRING		

/coef/coef - dataset of coef scores in FLOATING point, features x strains x markers

Example: ${\bf F}$ is the number of features, ${\bf M}$ is the number of markers, ${\bf N}$ in the number of strains

FOR THE FACTORIAL VIEWER (NOT REQUIRED)

/samples - dataset of samples (mice)

	NAME	DATA TYPE	EXAMPLE	NOTE	
1	sample_id	STRING	Mouse142		
2	name	STRING	Mouse 142		
3	description	STRING			

/phenotypes/factors - dataset of factors (examples are sex, diet, tissue, etc)

	NAME	DATA TYPE	EXAMPLE	NOTE
1	factor_id	STRING	tissue	
2	name	STRING	Tissue	
3	description	STRING	The type of tissue	

/phenotypes/phenotypes - dataset of phenotypes samples (rows) x factors (columns)

Example: ${\bf R}$ is the number of factors, ${\bf S}$ in the number of samples

/genotypes/genotypes – dataset of genotypes markers (rows) x samples (columns)

Example: ${\bf R}$ is the number of factors, ${\bf S}$ in the number of samples

/expression/expression - dataset of expression values, features (rows) x samples (columns)

Example: **F** is the number of features, **S** in the number of samples

Example structure of HDF5

```
/proteomics_do192 Item(path='/proteomics_do192', shape=())
/proteomics_do192/coef Item(path='/proteomics_do192/coef', shape=())
/proteomics_do192/coef/coef Item(path='/proteomics_do192/coef/coef', shape=(6716, 8, 2146))
/proteomics_do192/coef/strains Item(path='/proteomics_do192/coef/strains', shape=(8,))
/proteomics_do192/expression Item(path='/proteomics_do192/expression', shape=())
/proteomics_do192/expression/expression Item(path='/proteomics_do192/expression/expression', shape=(6716, 192))
/proteomics_do192/features Item(path='/proteomics_do192/features', shape=(6716,))
/proteomics_do192/genotypes Item(path='/proteomics_do192/genotypes', shape=())
/proteomics do192/genotypes/genotypes Item(path='/proteomics do192/genotypes/genotypes', shape=(2146, 192))
/proteomics_do192/lod Item(path='/proteomics_do192/lod', shape=())
/proteomics_do192/lod/lod Item(path='/proteomics_do192/lod/lod', shape=(6716, 2146))
/proteomics_do192/markers Item(path='/proteomics_do192/markers', shape=(2146,))
/proteomics_do192/phenotypes Item(path='/proteomics_do192/phenotypes', shape=())
/proteomics_do192/phenotypes/factors Item(path='/proteomics_do192/phenotypes/factors', shape=(2,))
/proteomics_do192/phenotypes/phenotypes Item(path='/proteomics_do192/phenotypes/phenotypes', shape=(192, 2))
/proteomics_do192/samples Item(path='/proteomics_do192/samples', shape=(192,))
```