нельзя мажорировать сходящимся числовым рядом с неотрицательными членами.

2787. Доказать, что если ряд $\sum_{n=1}^{\infty} \varphi_n(x)$, члены которого суть монотонные функции на сегменте [a, b], сходится абсолютно в концевых точках этого сегмента, то данный ряд сходится абсолютно и равномерно на сегменте [a, b].

2788. Доказать, что степенной ряд $\sum_{n=0}^{\infty} a_n x^n$ сходится абсолютно и равномерно на любом сегменте, целиком лежащем внутри его интервала сходимости.

2789. Пусть
$$a_n \to \infty$$
 так, что ряд $\sum_{n=1}^{\infty} \left| \frac{1}{a_n} \right|$ сходится.

Доказать, что ряд $\sum_{n=1}^{\infty} \frac{1}{x-a_n}$ сходится абсолютно и равно-

мерно на любом ограниченном замкнутом множестве, не содержащем точек a_n $(n=1, 2, \ldots)$.

2790. Доказать, что если ряд $\sum_{n=1}^{\infty} a_n$ сходится, то *ряд* Дирихле $\sum_{n=1}^{\infty} \frac{a_n}{n^x}$ сходится равномерно при $x \geqslant 0$.

2791. Пусть ряд $\sum_{n=1}^{\infty} a_n$ сходится. Доказать, что ряд $\sum_{n=1}^{\infty} a_n e^{-nx}$ сходится равномерно в области $x \geqslant 0$.

2792. Показать, что функция $f(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$ непрерывна и имеет непрерывную производную в области $-\infty < x < +\infty$.

2793. Показать, что функция

$$f(x) = \sum_{n=-\infty}^{+\infty} \frac{1}{(n-x)^3}$$

а) определена и непрерывна во всех точках, за исключе-