Abschlussvortrag Bachelorarbeit

Hauke Hinrichs

Lokalisierung von Windenergieanlagen aus Satellitenbildern mittels Convolutional Neural Networks

25.09.2020

LEIBNIZ UNIVERSITÄT HANNOVER, INSTITUT FÜR INFORMATIONSVERARBEITUNG

Agenda

- 1. Motivation
- 2. Lösungsansatz
- 3. Daten
- 4. Experimente
- 5. Ergebnisse
- 6. Zusammenfassung und Ausblick

1. Motivation

Standorte von WEA essenziell für diverse Forschungsbelange

Qualitativ gute öffentliche Datenbanken sind rar

Pflege einer WEA Datenbank aufwändig

Ziel 1: Überprüfung von (alten) Standorten

Ziel 2: Lokalisierung von neuen Standorten

2. Lösungsansatz – Objekt Detektierung

Computer Vision: Objekt Detektierung mittels Convolutional Neural Networks

Im Vergleich zur Klassifikation:

Variable Ausgabedimension und Lokalisierung von Objekten im Bild mittels Bounding Boxen

Voraussetzung: Trainingsdaten annotiert mit Bounding Boxen

Modelle: SSD, YOLOv4, Faster R-CNN

Classification

CAT

Object Detection

CAT, DOG, DUCK

https://www.datacamp.com/community/tutorials/object-detection-guide

2. Lösungsansatz – Faster R-CNN

Fully Convolutional Net erzeugt Feature Maps

Region Proposal Network produziert aus Feature Maps Objektvorschläge (RoI)

Rol Pooling bringt Rol auf feste Größe (bspw. 7x7)

Classifier klassifiziert jede Rol

S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," in IEEE Transactions on Pattern Analysis and Machine Intelligence

2. Lösungsansatz – RPN

Jede Position (Anchor) des Sliding Window produziert k Anchor Boxes

Anchor Box Größen * Anchor Box Seitenverhältnisse = k

Ouput:

- cls layer: Objekt Score
- reg layer: Anpassung der Anchor Box

S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," in IEEE Transactions on Pattern Analysis and Machine Intelligence

3. Daten – Auswahl der Bildquelle

ESA Sentinel-2

Google Maps Static API

- 10x10m pro Pixel
- Wolken

- + ca. 0,7x0,7m pro Pixel
- unvollständige Meta-Informationen Imagery ©2020, GeoBasis-DE/BKG, GeoContent, Maxar Technologies

3. Daten – Annotation von Boxen

Aktuelle Datenbank aller WEA Deutschlands, sowie den USA

Autom. Annotation der Bounding Boxes in Abhängigkeit der WEA Größe

Problem: Datum der Aufnahme nicht bekannt -> 2 Arten Fehlannotationen

- 1. Box ohne Anlage
- 2. Anlage ohne Box

3. Daten – Evaluation der Datenqualität

Sample mit 2000 Bildern:

104 Boxen ohne Anlage, 209 Anlagen ohne Box

141 (7%) Bilder enthielten Fehler

Im Mittel 4,2 Boxen pro Bild => Von den ca. 8400 Boxen im Sample sind 1,2% falsch

3. Daten – Augmentation & Normalisierung

Rotation, vert. und hor. Flips, Entfernung des Labels, Translation

3. Daten – Set Splits

Geschachtelte Umkreissuche ⇒ Ein Windpark taucht nur in einem Set auf

Set Größen:

	Training	Validation	Test
DEU	17820	2970	2970
USA	5144	858	857

USA: Häufiger ältere Aufnahmen, dadurch viel mehr Fehler

Händische Prüfung von 12000 Bildern: 6859 fehlerfrei

3. Daten – Unterschiede USA \longleftrightarrow DEU

Struktur der Windparks unterscheidet sich z.T. stark von DEU

Häufiger sehr große Windparks an Standorten mit hohen Windaufkommen WEA stehen dort meist sehr nah beieinander

Problem:

Überrepräsentation kleiner Anlagen

⇒ Nur Anlagen nach 2000 berücksichtigt

4. Experimente – Implementierung

Implementierung von Github:

https://github.com/kentaroy47/frcnn-from-scratch-with-keras

Keras 2.3.1 mit Tensorflow 2.1.0 Backend

Backbone Netz: ResNet-50

Vortrainierte Gewichte:

https://github.com/fchollet/deep-learning-models/releases

4. Experimente

GTB sind stets quadratisch und Anchor Box Seitenverhältnis (1:1) nehmen relativ wenig Platz im Bild ein Anchor Box Größen klein wählen

- 1. RPN allein
- 2. RPN + Classifier
- 3. RPN + Classifier größere GTB und Anchor Boxen
- 4. Geographische Abhängigkeit des Modells aus 3. am Beispiel der USA

4. Experimente – Post Processing

Prädizierte Boxen überlappen sich häufig Lösung: **Non-Maximum-Suppression** (NMS)

Experimente 1 – 3: Strikte NMS Schwellwert nur minimal größer als 0

https://www.pyimagesearch.com/2016/11/07/intersectionover-union-iou-for-object-detection/

Ohne NMS:

Mit NMS:

4. Experimente – Metriken

TP: IoU(Prädizierte Box, GTB) $\geq \lambda_{IoU}$

FP: IoU(Prädizierte Box, GTB) $< \lambda_{IoU}$

FN: Es ex. für eine GTB keine Prädiktion mit IoU $\geq \lambda_{IoU}$

Precision (P), Recall (R), F1-Score (F1)

 \overline{D} : Durchschnittliche Distanz der Mittelpunkte von Prädizierter und GTB in Metern von TPs

Variierung von λ_{IoU} um bestmögliche Balance zu finden

4. Experimente – Metriken

Anlagen werden in 3 Größenkategorien eingeteilt:

Klein, mittel und groß

Werte werden für jede Kategorie separat ermittelt

Rotordurchmesser

5. Ergebnisse – RPN allein

5. Ergebnisse – RPN + Classifier

λ_{IoU}	P	R	<i>F</i> 1	\overline{D}	R_k	R_m	$R_{\mathcal{g}}$
0,1	0,98	0,74	0,84	7,87m	0,06	0,61	0,82
0,4	0,6	0,45	0,52	5, 26m	0	0,1	0,68

5. Ergebnisse – RPN + Classifier

5. Ergebnisse – RPN + Classifier größere GTB

λ_{IoU}	P	R	F1	\overline{D}	R_k	R_m	R_g	
0,1	0,98	0,74	0,84	7,87m	0,06	0,61	0,82	Vlainara CTD
0,4	0,6	0,45	0,52	5, 26m	0	0,1	0,68	Kleinere GTB
0,1	0,97	0,86	0,91	13,36m	0,6	0,84	0,89	Größere GTB
0,4	0,72	0,64	0,66	9, 16m	0,003	0,57	0,73	GIOISELE GIB

5. Ergebnisse – RPN + Classifier größere GTB

Kleinere GTB

Größere GTB

5. Ergebnisse – Geographische Abhängigkeit

λ_{IoU}	P	R	F1	\overline{D}	R_k	R_m	R_g
0,1	0,97	0,86	0,91	13,36m	0,6	0,84	0,89
0,4	0,72	0,64	0,66	9, 16m	0,003	0,57	0,73
0,1	0,88	0,72	0,79	15,34m	0,09	0,31	0,79
0,4	0,77	0,63	0,69	11,56m	0	0,2	0,7
0,1	0,85	0,88	0,86	19,42m	0,17	0,75	0,93
0,4	0,7	0,72	0,71	15,64m	0	0,27	0,82

DEU USA ohne **Nachtraining**

USA mit **Nachtraining**

5. Ergebnisse – Geographische Abhängigkeit

Ohne Nachtraining

Mit Nachtraining

6. Zusammenfassung und Ausblick

Motivation: Pflege einer WEA Datenbank → Lösungsansatz: Objekt Detektierung Verwendetes Modell: Faster R-CNN

Bilddaten über Google Static Maps API

Autom. Annotation von Bounding Boxen mithilfe vorliegender WEA Datenbank

Gute Ergebnisse für DEU

Modell	P	R	<i>F</i> 1	\overline{D}
Kleinere GTB	0,98	0,74	0,84	7,87m
Größere GTB	0,97	0,86	0,91	13,36m

Möglichkeiten der Weiterentwicklung:

Domänenadaption (Problem mit Strukturunterschieden der Windparks)

Anpassung Verlust Funktion (RPN) an Problem, weniger Gewichtung auf IoU Experimente mit kompakteren Ansätzen

Backup Folien

Ergebnisse – RPN allein

λ_{obj}	λ_{IoU}	P	R	F1	\overline{D}	R_k	R_m	R_g
0,9	0,1	0,36	0,95	0,52	6,63	0,81	0,95	0,96
0,9	0,4	0,27	0,71	0,39	5,47	0,003	0,49	0,9
0,99999	0,1	0,6	0,9	0,72	6,45	0,68	0,87	0,93
0,99999	0,4	0,46	0,68	0,55	5,45	0,003	0,45	0,88

Daten – Evaluation der Datenqualität

Experiment – Modifiziertes RPN

Modifikation: Nur Koordinaten statt Bounding Boxen prädizieren

Training konvergiert nicht

