4.2. Реализовать метод стрельбы и конечно-разностный метод решения краевой задачи для ОДУ в виде программ. С использованием разработанного программного обеспечения решить краевую задачу для обыкновенного дифференциального уравнения 2-го порядка на указанном отрезке. Оценить погрешность численного решения с использованием метода Рунге – Ромберга и путем сравнения с точным решением.

№	Краевая задача	Точное решение
1	ху"+2y'-ху=0,	
	y'(1)=0,	$y(x) = \frac{e^x}{x}$
	$1.5y(2)+y'(2)=e^2$	x x
2	xy"+2y'-xy=0,	e^{-x}
	$v(1)=e^{-1}$	$y(x) = \frac{e^{-x}}{x}$
	$y(2)=0.5e^{-2}$ $x^{2}(x+1) y''-2y=0,$, , , , , , , , , , , , , , , , , , ,
3	$x^{2}(x+1) y''-2y=0,$	$y(x) = \frac{1}{x} + 1$
	y'(1)=-1,	y(X) = -+1
	2y(2) - 4 y'(2) = 4 x ² (x+1) y"-2y=0,	
4		$y(x) = -1 + \frac{2}{x} + \frac{2(x+1)}{x} \ln x+1 $
	$y(1)=1+4 \ln 2$,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
5	$y(2)=-1+3 \ln 2$	
3	$y''-2(1+(tgx)^2)y=0,$	
	$y'(\frac{\pi}{4}) = 3 + \frac{\pi}{2}$,	y(x) = 1 + tg(x(x+1))
	4 2	7 () = 1 () () () () () () () () () (
	$y'(\frac{\pi}{3}) - y(\frac{\pi}{3}) = 3 + \frac{\pi(4 - \sqrt{3})}{3}$	
6	$y''-2(1+(tgx)^2)y=0,$	
	y(0)=0,	
	$y(\frac{\pi}{6}) = -\frac{\sqrt{3}}{3}$	y(x) = -tgx
	$\sqrt{6}$ $\sqrt{-3}$	
7	(2x+1) y"+4xy'-4y=0,	
	y'(0) = -1,	$y(x) = x + e^{-2x}$
	y'(1)+2y(1)=3	
8	(2x+1) y"+4xy'-4y=0,	2*
	y'(-2)+2y(-2)=-9,	$y(x) = 3x + e^{-2x}$
	y'(0)=1	
9	xy''-(2x+1)y'+(x+1)y=0,	x (2 + 1)
	y'(0)=1,	$y(x) = e^x (x^2 + 1)$
10	y'(1)-2y(1)=0 xy''-(2x+1)y'+(x+1)y=0,	
10	y'(1)=3e,	$y(x) = e^x x^2$
	y'(1)=3e, y'(2)=2y(2)=0	$y(x) - \epsilon x$
11	x(x-1)y''-xy'+y=0,	$y(x)=1+x+x \ln x $
	y'(1)=2,	
	2y'(2)-y(2)=1	
	-	

12	x(x-1)y''-xy'+y=0	$y(x)=2+x+2x \ln x $
	y'(1)=3	
	y(3)-3y'(3)=-4	
No	Краевая задача	Точное решение
13	$(e^{x}+1) y''-2y'-e^{x}y=0,$	
	$y'(0) = \frac{3}{4}$,	$y(x) = e^x - 1 + \frac{1}{e^x + 1}$
	4	$e^x + 1$
	$e^{2}(e+2)$	
	$y^{\dagger}(1) = \frac{e^2(e+2)}{(e+1)^2}$	
14	$(e^{x}+1) y''-2y'-e^{x}y=0,$	
	y' (0)=1,	$y(x) = e^x - 1$
	y' (1)-y(1)=1	
15	$y'(1)-y(1)=1 x^2 lnx y'' - xy'+y=0,$	
	y' (-1)=0,	$y(x)=1+x+\ln x$
	y'(1)-y(1)=0 y''- tgx y' +2y=0,	
16	1	
	y(0)=2,	$y(x) = \sin x + 2 - \sin x \cdot \ln \left(\frac{1 + \sin x}{1 - \sin x} \right)$
	$y(\frac{\pi}{6}) = 2.5 - 0.5 \cdot \ln 3$	$(1-\sin x)$
17	$(x^2-1) y''+(x-3)y'-y=0,$	
1/	1	1
	y'(0)=0, y'(1)+y(1)=-0.75	$y(x) = x - 3 + \frac{1}{x + 1}$
	y(1)+y(1)=-0.73	X+1
18	x y''-(x+1)y'-2(x-1)y=0,	
	y'(0)=4,	$y(x) = e^{2x} + (3x+1) e^{-x}$
	$y'(1)-2y(1)=-9e^{-1}$	
19	$y'(1)-2y(1) = -9e^{-1}$ $y''+4xy'+(4x^2+2)y=0,$	
	y'(0)=1,	$y(x) = (1+x)e^{-x^2}$
20	4y(2)-y'(2)=23e ⁻⁴	
20	xy''-(2x+1)y'++2y=0,	2
	y'(0)=4,	$y(x) = 2x + 1 + e^{2x}$
21	y'(1)-2y(1) = -4 x(2x+1)y''+2(x+1)y'-2y=0,	
21	y'(1)=0,	1
	1 2 1 7	$y(x) = x + 1 + \frac{1}{x}$
	$y(3)-y'(3)=\frac{31}{9}$	Λ
22	x(x+4)y''-(2x+4)y'+2y=0,	
	y'(0)=1,	$y(x)=x^2+x+2$
	y(2)-y'(2)=3	
23	$x(x^2+6)y''-4(x^2+3)y'+6xy=0,$	3 2 -
	y'(0)=0,	$y(x)=x^3+x^2+2$
2 1	y(4)-y'(4)=26 $(x^2+1)y''-2y=0$	
24	T = = = = = = = = = = = = = = = = = = =	$y(x)=x^2+x+1+$
	y'(0)=2	$+(x^2+1)arctg(x)$
	$y(1) = 3 + \frac{\pi}{2}$	
25		
25	2x(x+2)y''+(2-x)y'+y=0,	

	$y'(4)+y(4)=\frac{21}{4}$,	$y(x) = \sqrt{ x + x - 2}$
No	Краевая задача	Точное решение
26	$x(x+1)y''+(x+2)y'-y=x+\frac{1}{x}$,	7 1 (x)
	$y'(1) = \frac{3}{2}$, $4y'(2) + y(2) = 13 + 4\ln 2$	$y(x) = x + \frac{7}{2} + \frac{1}{x} + \left(\frac{x}{2} + 1\right) \ln x $
	3 () 3 ()	
27	$(2x+1)y''+(2x-1)y'-2y=x^2+x,$ y'(0)=1,	$y(x) = 2x - 1 + e^{-x} + \frac{x^2 + 1}{2}$
	y'(1)+y(1)=5	_
28	xy''-(2x+1)y'++2y=0,	
	y'(0)=2,	$y(x) = e^{2x}$
	$y(1)=e^{2}$	y(x) = c
29	$y(1)=e^{2}$ $(x^{2}-1)y''+(x-3)y'-y=0,$	
	y(0)=-18,	y(x)=6x-18
	y(3) = 0	
30	$(x^2+1)y''-2y=0,$	
	y'(0)=0,	$y(x)=x^2+1$
	y(0)=0, y(2)-y'(2)=1	
	y(2)-y (2)-1	