# Language Models



Dan Klein, John DeNero UC Berkeley

# Language Models



# Language Models





# **Acoustic Confusions**

| the station signs are in deep in english     | -14732 |
|----------------------------------------------|--------|
| the stations signs are in deep in english    | -14735 |
| the station signs are in deep into english   | -14739 |
| the station 's signs are in deep in english  | -14740 |
| the station signs are in deep in the english | -14741 |
| the station signs are indeed in english      | -14757 |
| the station 's signs are indeed in english   | -14760 |
| the station signs are indians in english     | -14790 |



## Noisy Channel Model: ASR

■ We want to predict a sentence given acoustics:

$$w^* = \arg\max_{w} P(w|a)$$

■ The noisy-channel approach:

$$w^* = \arg\max_w P(w|a)$$

$$= \arg\max_w P(a|w)P(w)/P(a)$$

$$\propto \arg\max_w P(a|w)P(w)$$

Acoustic model: score fit between sounds and words

Language model: score plausibility of word sequences





## **Perplexity**

- How do we measure LM "goodness"?
- The Shannon game: predict the next word

When I eat pizza, I wipe off the

■ Formally: test set log likelihood

$$\log P(X|\theta) = \sum_{w \in X} \log(P(w|\theta))$$

Perplexity: "average per word branching factor" (not per-step)

$$perp(X, \theta) = exp\left(-\frac{\log P(X|\theta)}{|X|}\right)$$

- grease 0.5
sauce 0.4
dust 0.05
....
mice 0.0001
....
the 1e-100

3516 wipe off the excess 1034 wipe off the dust 547 wipe off the sweat 518 wipe off the mouthpiece

120 wipe off the grease 0 wipe off the sauce 0 wipe off the mice

28048 wipe off the \*



## Noisy Channel Model: Translation

"Also knowing nothing official about, but having guessed and inferred considerable about, the powerful new mechanized methods in cryptography—methods which I believe succeed even when one does not know what language has been coded—one naturally wonders if the problem of translation could conceivably be treated as a problem in cryptography. When I look at an article in Russian, I say: 'This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.' "

Warren Weaver (1947)

## N-Gram Models



## **N-Gram Models**

Use chain rule to generate words left-to-right

$$P(w_1 \dots w_n) = \prod_i P(w_i | w_1 \dots w_{i-1})$$

Can't condition atomically on the entire left context

P(??? | The computer I had put into the machine room on the fifth floor just)

N-gram models make a Markov assumption

$$P(w_1 \dots w_n) = \prod_i P(w_i | w_{i-k} \dots w_{i-1})$$
  
 
$$P(\text{please close the door}) = P(\text{please}|\text{START})P(\text{close}|\text{please}) \dots P(\text{STOP}|\text{door})$$



## **Increasing N-Gram Order**

Higher orders capture more correlations

#### Bigram Model

| 198015222  | the first     |
|------------|---------------|
| 194623024  | the same      |
| 168504105  | the following |
| 158562063  | the world     |
|            |               |
| 14112454   | the door      |
|            | -             |
| 2313585116 | 2 the *       |
|            |               |

#### Trigram Model

| ilig                                          | Tarri Woder                                                                               |
|-----------------------------------------------|-------------------------------------------------------------------------------------------|
| 197302<br>191125<br>152500<br>116451<br>87298 | close the window<br>close the door<br>close the gap<br>close the thread<br>close the deal |
| 3785230                                       | <br>) close the *                                                                         |

P(door | the) = 0.0006

P(door | close the) = 0.05



## **Empirical N-Grams**

Use statistics from data (examples here from Google N-Grams)



$$\hat{P}(\text{door}|\text{the}) = \frac{14112454}{23135851162}$$
  
= 0.0006

This is the maximum likelihood estimate, which needs modification



## Increasing N-Gram Order

- To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have
- Every enter now severally so, let
- . Hill he late speaks; or! a more to leg less first you enter
- Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near; vile like



## What's in an N-Gram?

#### Just about every local correlation!

| • | Word class restrictions: "will have been" |
|---|-------------------------------------------|
| • | Morphology: "she", "they"                 |
| • | Semantic class restrictions: "danced a"   |
| • | Idioms: "add insult to"                   |
| • | World knowledge: "ice caps have"          |
| • | Pop culture: "the empire strikes"         |

#### But not the long-distance ones

"The computer which I had put into the machine room on the fifth floor just \_\_\_\_."



## Structured Language Models

#### Bigram model:

- [texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred, fifty, five, yen]
- [outside, new, car, parking, lot, of, the, agreement, reached]
- [this, would, be, a, record, november]

#### PCFG model:

- [This, quarter, 's, surprisingly, independent, attack, paid, off, the, risk, involving, IRS, leaders, and, transportation, prices, .]
- [It, could, be, announced, sometime, .]
- [Mr., Toseland, believes, the, average, defense, economy, is, drafted, from, slightly, more, than, 12, stocks, .]



## Linguistic Pain

#### The N-Gram assumption hurts your inner linguist

- Many linguistic arguments that language isn't regular
- Long-distance dependencies
- Recursive structure
- At the core of the early hesitance in linguistics about statistical methods

#### Answers

- N-grams only model local correlations... but they get them all
- As N increases, they catch even more correlations
- N-gram models scale much more easily than combinatorially-structured LMs
- Can build LMs from structured models, eg grammars (though people generally don't)

N-Gram Models: Challenges



## Sparsity

Please close the first door on the left.



## Back-off

#### Please close the first door on the left.





## **Smoothing**

• We often want to make estimates from sparse statistics:



Smoothing flattens spiky distributions so they generalize better:



Very important all over NLP, but easy to do badly



## Discounting

Observation: N-grams occur more in training data than they will later

Empirical Bigram Counts (Church and Gale, 91)

| Count in 22M Words | Future c* (Next 22M) |
|--------------------|----------------------|
| 1                  |                      |
| 2                  |                      |
| 3                  |                      |
| 4                  |                      |
| 5                  |                      |

Absolute discounting: reduce counts by a small constant, redistribute "shaved" mass to a model of new events

$$P_{\mathsf{ad}}(w|w') = \frac{c(w',w) - d}{c(w')} + \alpha(w')\hat{P}(w)$$



## Fertility

■ Shannon game: "There was an unexpected \_\_\_\_\_\_"

delay?

Francisco?

- Context fertility: number of distinct context types that a word occurs in
- What is the fertility of "delay"?
- What is the fertility of "Francisco"?
- Which is more likely in an arbitrary new context?
- Kneser-Ney smoothing: new events proportional to context fertility, not frequency
   [Kneser & Ney, 1995]

$$P(w) \propto |\{w': c(w', w) > 0\}|$$

■ Can be derived as inference in a hierarchical Pitman-Yor process [Teh, 2006]



## More Data?



[Brants et al, 2007]



## **Better Methods?**





## Storage

| searching for the best     | 192593 |
|----------------------------|--------|
| searching for the right    | 45805  |
| searching for the cheapest | 44965  |
| searching for the perfect  | 43959  |
| searching for the truth    | 23165  |
| searching for the "        | 19086  |
| searching for the most     | 15512  |
| searching for the latest   | 12670  |
| searching for the next     | 10120  |
| searching for the lowest   | 10080  |
| searching for the name     | 8402   |
| searching for the finest   | 8171   |
|                            |        |

#### Google N-grams

- 14 million < 2<sup>24</sup> words
  2 billion < 2<sup>31</sup> 5-grams
- 770 000 < 2<sup>20</sup> unique counts
- 4 billion n-grams total



## Storage

 For 5+-gram models, need to store between 100M and 10B contextword-count triples

| (a) Context-Encoding |          |     |   | (b) Context Deltas |            |     |   | (c) Bits Required |              |     |
|----------------------|----------|-----|---|--------------------|------------|-----|---|-------------------|--------------|-----|
| w                    | c        | val | ] | $\Delta w$         | $\Delta c$ | val | ] | $ \Delta w $      | $ \Delta c $ | val |
| 1933                 | 15176585 | 3   | П | 1933               | 15176585   | 3   | П | 24                | 40           | 3   |
| 1933                 | 15176587 | 2   | П | +0                 | +2         | 1   |   | 2                 | 3            | 3   |
| 1933                 | 15176593 | 1   |   | +0                 | +5         | 1   |   | 2                 | 3            | 3   |
| 1933                 | 15176613 | 8   |   | +0                 | +40        | 8   |   | 2                 | 9            | 6   |
| 1933                 | 15179801 | 1   |   | +0                 | +188       | 1   |   | 2                 | 12           | 3   |
| 1935                 | 15176585 | 298 |   | +2                 | 15176585   | 298 |   | 4                 | 36           | 15  |
| 1935                 | 15176589 | 1   |   | +0                 | +4         | 1   |   | 2                 | 6            | 3   |

 Make it fit in memory by delta encoding scheme: store deltas instead of values and use variable-length encoding

Pauls and Klein (2011), Heafield (2011)

Slide: Greg Durrett



## **Entirely Unseen Words**

- What about totally unseen words?
- Classical real world option: systems are actually closed vocabulary
- ASR systems will only propose words that are in their pronunciation dictionary
- MT systems will only propose words that are in their phrase tables (modulo special models for numbers, etc)
- Classical theoretical option: build open vocabulary LMs
- Models over character sequences rather than word sequences
- N-Grams: back-off needs to go down into a "generate new word" model
- Typically if you need this, a high-order character model will do
- Modern approach: syllable-sized subword units (more later)



## **Graveyard of Correlations**

- Skip-grams
- Cluster models
- Topic variables
- Cache models
- Structural zeros
- Dependency models
- Maximum entropy models
- Subword models
- ...

Neural LMs: Preview



### A GPT2 Continuation

■ The computer I had put into the machine room on the fifth floor just just outside our landing was taken by a lot of people. It was going to be recovered from outside the machine room as soon as we could, but after the machine room was shut down, we had to open all of the windows and doors to save ourselves, and the computer would have been lost. Luckily we are prepared for this. We had five steel doors on each side of the landing to hold any rain and wind that might have hit, so we weren't affected by the storm.

The situation was really grim for days. A few days before, the Apache at Qush Tefah had been shot. This was the most damaged machine in the Armies Corps. The command was only meant to repair Qush

Words: Clusterings and Embeddings



### A GPT2 Continuation

■ I shall go seek the traitor Gloucester, when he hath declared his vengeance. Cunegund Shall I back her to kill my cousin in my stead? Witbane Far first shall the brother take his Queen's soul and that in the flames. Clotilda For to slay the King of Scotland with, the blood of my cousin, lie true; And she shall have the right to my feather." Sefton leapt into the rushes, and stole along in the sunlight: the small figure flashed like lightning in the west. In the likeness of a snare he had laid to catch the rushes and made of them a snares, a road to flee from his pursuers; but he now came to an oak where the branches were wreathed in an oak-



## Stuffing Words into Vector Spaces?



Cartoon: Greg Durrett



## **Distributional Similarity**

- Key idea in clustering and embedding methods: characterize a word by the words it occurs with (cf Harris' distributional hypothesis, 1954)
- "You can tell a word by the company it keeps." [Firth, 1957]
- Harris / Chomsky divide in linguistic methodology





## Clusterings

Automatic (Finch and Chater 92, Shuetze 93, many others)

| word        | nearest neighbors                                                                   |
|-------------|-------------------------------------------------------------------------------------|
| accompanied | submitted banned financed developed authorized headed canceled awarded barred       |
| almost      | virtually merely formally fully quite officially just nearly only less              |
| causing     | reflecting forcing providing creating producing becoming carrying particularly      |
| classes     | elections courses payments losses computers performances violations levels pictures |
| directors   | professionals investigations materials competitors agreements papers transactions   |
| goal        | mood roof eye image tool song pool scene gap voice                                  |
| japanese    | chinese iraqi american western arab foreign european federal soviet indian          |
| represent   | reveal attend deliver reflect choose contain impose manage establish retain         |
| think       | believe wish know realize wonder assume feel say mean bet                           |
| york        | angeles francisco sox rouge kong diego zone vegas inning layer                      |
| on          | through in at over into with from for by across                                     |
| must        | might would could cannot will should can may does helps                             |
| they        | we you i he she nobody who it everybody there                                       |

Manual (e.g. thesauri, WordNet)

## Clusterings



# "Vector Space" Methods

- Treat words as points in R<sup>n</sup> (eg Shuetze, 93)
- Form matrix of co-occurrence counts
- SVD or similar to reduce rank (cf LSA)
- Cluster projections
- People worried about things like: log of counts, U vs U $\Sigma$
- This is actually more of an embedding method (but we didn't want that in 1993)





Cluster these 50-200 dim vectors instead.



## **Models: Brown Clustering**

- Classic model-based clustering (Brown et al, 92)
- Each word starts in its own cluster
- Each cluster has co-occurrence stats
- Greedily merge clusters based on a mutual information criterion
- Equivalent to optimizing a class-based bigram LM.

$$P(w_i|w_{i-1}) = P(c_i|c_{i-1})P(w_i|c_i)$$



Produces a dendrogram (hierarchy) of clusters



## **Embeddings**

- Embeddings map discrete words (eg |V| = 50k) to continuous vectors (eg d = 100)
- Why do we care about embeddings?
- Neural methods want them
- Nuanced similarity possible; generalize across words
- We hope embeddings will have structure that exposes word correlations (and thereby meanings)



## **Embeddings**

Most slides from Greg Durrett



## **Embedding Models**

Idea: compute a representation of each word from co-occurring words

|V| the dog bit the man word pair counts

Token-Level

Type-Level

 We'll build up several ideas that can be mixed-and-matched and which frequently get used in other contexts



## word2vec: Continuous Bag-of-Words



▶ Parameters: d x |V| (one d-length context vector per voc word),
 |V| x d output parameters (W)
 Mikolov et al. (2013)



bit

## word2vec: Skip-Grams

▶ Predict one word of context from word

softmax



• Another training example: bit -> the

Multiply

by W

Parameters: d x |V| vectors, |V| x d output parameters (W) (also usable as vectors!)
 Mikolov et al. (2013)



## word2vec: Hierarchical Softmax

$$P(w|w_{-1}, w_{+1}) = \operatorname{softmax}(W(c(w_{-1}) + c(w_{+1}))) \qquad P(w'|w) = \operatorname{softmax}(We(w))$$

▶ Matmul + softmax over |V| is very slow to compute for CBOW and SG





- Huffman encode vocabulary, use binary classifiers to decide which branch to take
- ▶ log(|V|) binary decisions

Mikolov et al. (2013)

- ▶ Standard softmax: [|V| x d] x d
- ▶ Hierarchical softmax: log(|V|) dot products of size d, |V| x d parameters

## word2vec: Negative Sampling

▶ Take (word, context) pairs and classify them as "real" or not. Create random negative examples by sampling from unigram distribution

$$\begin{array}{ll} \textit{(bit, the)} => +1 \\ \textit{(bit, cat)} => -1 \\ \textit{(bit, a)} => -1 \\ \textit{(bit, fish)} => -1 \end{array} \qquad \begin{array}{ll} P(y=1|w,c) = \frac{e^{w\cdot c}}{e^{w\cdot c}+1} & \text{words in similar contexts select for similar $c$ vectors} \end{array}$$

- $ightharpoonup d \ x \ |V| \ vectors, \ d \ x \ |V| \ context \ vectors \ (same \# \ of \ params \ as \ before)$
- $\blacktriangleright$  Objective =  $\log P(y=1|w,c) + \frac{1}{k} \sum_{i=1}^n \log P(y=0|w_i,c)$

Mikolov et al. (2013)



## fastText: Character-Level Models

▶ Same as SGNS, but break words down into n-grams with n = 3 to 6

where:

3-grams: <wh, whe, her, ere, re> 4-grams: <whe, wher, here, ere>, 5-grams: <wher, where, here>, 6-grams: <where, where>

- Replace  $w \cdot c$  in skip-gram computation with  $\left(\sum_{g \in \operatorname{ngrams}} w_g \cdot c\right)$
- Advantages?

Bojanowski et al. (2017)



## GloVe

Idea: Fit co-occurrence matrix directly (weighted least squares)



$$J = \sum_{i,j=1}^{V} f(X_{ij}) \left( w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij} \right)^2 \qquad f(X_{ij}) \Big|_{0.4}^{10}$$

- Type-level computations (so constant in data size)
- Currently the most common word embedding method

Pennington et al, 2014



## **Bottleneck vs Co-occurrence**

- Two main views of inducing word structure
- Co-occurrence: model which words occur in similar contexts
- Bottleneck: model latent structure that mediates between words and their behaviors
- These turn out to be closely related!



## Structure of Embedding Spaces

- How can you fit 50K words into a 64dimensional hypercube?
- Orthogonality: Can each axis have a global "meaning" (number, gender, animacy, etc)?
- Global structure: Can embeddings have algebraic structure (eg king – man + woman = queen)?





## Bias in Embeddings

■ Embeddings can capture biases in the data! (Bolukbasi et al 16)

$$\overrightarrow{\text{man}} - \overrightarrow{\text{woman}} \approx \overrightarrow{\text{king}} - \overrightarrow{\text{queen}}$$

• Debiasing methods (as in Bolukbasi et al 16) are an active area of research

# Neural Language Models



## Debiasing?

- Identify gender subspace with gendered words
- ▶ Project words onto this subspace
- ► Subtract those projections from the original word



Bolukbasi et al. (2016)



## Reminder: Feedforward Neural Nets





## A Feedforward N-Gram Model?





## Early Neural Language Models

- Fixed-order feed-forward neural LMs
- Eg Bengio et al, 03
- Allow generalization across contexts in more nuanced ways than prefixing
- Allow different kinds of pooling in different contexts
- Much more expensive to train



Bengio et al, 03



# Using Word Embeddings?





## **Using Word Embeddings**

- ▶ Approach 1: learn embeddings as parameters from your data
  - ▶ Often works pretty well
- ▶ Approach 2: initialize using GloVe, keep fixed
  - ▶ Faster because no need to update these parameters
- ▶ Approach 3: initialize using GloVe, fine-tune
  - ▶ Works best for some tasks



## Limitations of Fixed-Window NN LMs?

- What have we gained over N-Grams LMs?
- What have we lost?
- What have we not changed?