Optimal Merging Of Runs

$$Cost = 44$$

Best merge order?

Weighted External Path Length

WEPL(T) = Σ (weight of external node i) * (distance of node i from root of T)

Weighted External Path Length

WEPL(T) = Σ (weight of external node i) * (distance of node i from root of T)

Other Applications

- Message coding and decoding.
- Lossless data compression.

Message Coding & Decoding

- Messages M_0 , M_1 , M_2 , ..., M_{n-1} are to be transmitted.
- The messages do not change.
- Both sender and receiver know the messages.
- So, it is adequate to transmit a code that identifies the message (e.g., message index).
- M_i is sent with frequency f_i .
- Select message codes so as to minimize transmission and decoding times.

- n = 4 messages.
- The frequencies are [2, 4, 8, 100].
- Use 2-bit codes [00, 01, 10, 11].
- Transmission cost = 2*2 + 4*2 + 8*2 + 100*2= 228.
- Decoding is done using a binary tree.

- Decoding cost = 2*2 + 4*2 + 8*2 + 100*2= 228
 - = transmission cost
 - = WEPL

• Every binary tree with n external nodes defines a code set for n messages.

Decoding cost

$$= 2*3 + 4*3 + 8*2 + 100*1$$

= 144

= transmission cost

= WEPL

Another Example

No code is a prefix of another!

Lossless Data Compression

- Alphabet = $\{a, b, c, d\}$.
- String with 10 as, 5 bs, 100 cs, and 900 ds.
- Use a 2-bit code.
 - a = 00, b = 01, c = 10, d = 11.
 - Size of string = 10*2 + 5*2 + 100*2 + 900*2= 2030 bits.
 - Plus size of code table.

Lossless Data Compression

- Use a variable length code that satisfies prefix property (no code is a prefix of another).
 - a = 000, b = 001, c = 01, d = 1.
 - Size of string = 10*3 + 5*3 + 100*2 + 900*1= 1145 bits.
 - Plus size of code table.
 - Compression ratio is approx. $\frac{2030}{1145} = 1.8$.

Lossless Data Compression

- Decode 0001100101...
- addbc...
- Compression ratio is maximized when the decode tree has minimum WEPL.

Huffman Trees

- Trees that have minimum WEPL.
- Binary trees with minimum WEPL may be constructed using a greedy algorithm.
- For higher order trees with minimum WEPL, a preprocessing step followed by the greedy algorithm may be used.
- Huffman codes: codes defined by minimum WEPL trees.

Greedy Algorithm For Binary Trees

- Start with a collection of external nodes, each with one of the given weights. Each external node defines a different tree.
- Reduce number of trees by 1.
 - Select 2 trees with minimum weight.
 - Combine them by making them children of a new root node.
 - The weight of the new tree is the sum of the weights of the individual trees.
 - Add new tree to tree collection.
- Repeat reduce step until only 1 tree remains.

Data Structure For Tree Collection

- Operations are:
 - Initialize with n trees.
 - Remove 2 trees with least weight.
 - Insert new tree.
- Use a min heap.
- Initialize ... O(n).
- 2(n-1) remove min operations ... $O(n \log n)$.
- n-1 insert operations ... $O(n \log n)$.
- Total time is O(n log n).
- Or, (n-1) remove mins and (n-1) change mins.

Higher Order Trees

- Greedy scheme doesn't work!
- 3-way tree with weights [3, 6, 1, 9].

Cause Of Failure

- One node is not a 3-way node.
- A 2-way node is like a 3-way node, one of whose children has a weight of 0.
- Must start with enough runs/weights of length 0 so that all nodes are 3-way nodes.

How Many Length 0 Runs To Add?

- k-way tree, k > 1.
- Initial number of runs is r.
- Add least $q \ge 0$ runs of length 0.
- Each k-way merge reduces the number of runs by k-1.
- Number of runs after s k-way merges is r + q s(k 1)
- For some positive integer s, the number of remaining runs must become 1.

How Many Length 0 Runs To Add?

• So, we want

$$r + q - s(k-1) = 1$$

for some positive integer s.

- So, r + q 1 = s(k 1).
- Or, $(r + q 1) \mod (k 1) = 0$.
- Or, r + q 1 is divisible by k 1.
 - This implies that q < k 1.
- $(r-1) \mod (k-1) = 0 \Longrightarrow q = 0$.
- $(r-1) \mod (k-1) != 0 \Longrightarrow$ $q = k-1 - (r-1) \mod (k-1).$
- Or, $q = (1 r) \mod (k 1)$.

- k = 2.
 - $q = (1 r) \mod (k 1) = (1 r) \mod 1 = 0.$
 - So, no runs of length 0 are to be added.
- k = 4, r = 6.
 - $q = (1 r) \mod (k 1) = (1 6) \mod 3$ $= (-5) \mod 3$ $= (6 5) \mod 3$ = 1.
 - So, must start with 7 runs, and then apply greedy method.