Types and λ -calculus

Problem Sheet 4

- * 1. Put in all the implicit parentheses required by the official syntax of types for the following examples:
 - (a) $a \rightarrow b \rightarrow a$
 - (b) $\forall bc. (b \rightarrow c) \rightarrow c$
 - (c) $\forall ab. (c \rightarrow c \rightarrow d) \rightarrow a \rightarrow b$
 - (d) $\forall a. (a \rightarrow b) \rightarrow a \rightarrow b$
- * 2. Derive the induction principle for the inductively defined set of monotypes \mathbb{T} .
- ** 3. Prove, by induction on *A*, that $A(\sigma_1 \sigma_2) = (A\sigma_1)\sigma_2$.
- ** 4. Prove, by induction on *M*, that:

if
$$x \in FV(M)$$
 then $FV(M\lceil N/x \rceil) = (FV(M) \setminus \{x\}) \cup FV(N)$.

Hint: You will want to use Lemma 6.1 of the notes.

Hint: In the application case, consider splitting on whether x is free in the operator only, the operand only, or both.

** 5. Prove, by induction on $M \to_{\beta} N$, that: $M \to_{\beta} N$ implies $FV(N) \subseteq FV(M)$.