第1次讨论课 (YAO G. W.)

¶ 内容

- 1. 一元多项式;
- 2. 线性变换与不变子空间。

¶ 教学要求

- 1. 掌握带余除法求商式和余式;
- 2. 掌握代数基本定理,根与系数的关系,实数域和复数域上的因式分解;
- 3. 掌握线性子空间直和概念,会找出子空间的直和补;
- 4. 掌握不变子空间概念, 会找出线性变换的不变子空间。

Exercise 1 设a,b,c 是三个不同的数,用x-a,x-b,x-c 除一元多项式f(x) 的余式依次为r,s,t, 试求用g(x) = (x - a)(x - b)(x - c) 除f(x) 的余式。

Exercise 2 求p, q, r 之间的关系,使得 $x^3 + px^2 + qx + r$ 的根成等比数列。

Exercise 3 如果任意多项式或者与多项式p(x) 互素,或者能被p(x) 整除,试证明p(x) 不可约。

Exercise 4 证明: $f(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$ $(n \ge 2)$ 在Q上没有重因式。

Exercise 5 $f(x) = f_1(x)f_2(x)$, $deg f_i > 0$,且 $(f_1, f_2) = 1$,试证明: 若deg g(x) < deg f(x),则存 $\Delta Eu_i(x)$ 使得

 $g(x) = u_2(x)f_1(x) + u_1(x)f_2(x), \ \ \exists \ degu_i < degf_i, \ i = 1, 2.$

Exercise 6 $\partial W = L\left(\begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 5 & 4 \end{pmatrix}\right)$, $\vec{x}M_2(\mathbf{F})$ 的一个子空间W', 使得 $W \oplus W' = \mathbf{F}$ $M_2(\mathbf{F})$.

Exercise 7 设 $\alpha_1 = 3x^2 + 1$, $\alpha_2 = x - 1$,试求 $F_3[x]$ 的两个子空间 W_1 和 W_2 ,使得 $F_3[x] =$ $W_1 \oplus L(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2)$,且 $\boldsymbol{F}_3[x] = W_2 + L(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2)$ 但不是直和。 试讨论:

- (1) 满足条件的 W_1 和 W_2 是否唯一?
- (2) 试将本命题在ℝ3 中重新描述,并给出几何解释。

Exercise 8 在 \mathbb{R}^3 上,下列子空间是否是所给线性变换 σ 的不变子空间? (1) $W_1 = \{(a_1, a_2, 0)^T | a_1, a_2 \in \mathbb{R}\}, \ \sigma((a_1, a_2, a_3)^T) = (a_2, a_1, a_3)^T;$

- (2) $W_2 = \{(0, a_2, 0)^T | a_2 \in \mathbb{R}\}, \ \sigma((a_1, a_2, a_3)^T) = (a_2, 0, 0)^T.$

Exercise 9 设 $\sigma \in L(V)$, W 是V 的子空间, $\sigma^{-1}(W)$ 是W 在 σ 下的原像,如果W 是 σ 的不变子 空间时, $\sigma^{-1}(W)$ 是不是 σ 的不变子空间?反之,如果 $\sigma^{-1}(W)$ 是 σ 的不变子空间时,W 是不是 σ 的不 变子空间? 为什么?

Exercise 10 设n 维线性空间V 的线性变换 σ 在基 $\alpha_1, \alpha_2, \cdots, \alpha_n (n \ge 2)$ 下的矩阵是

$$\left(\begin{array}{ccccc}
0 & 1 & & & & \\
& 0 & \ddots & & & \\
& & \ddots & \ddots & & \\
& & & \ddots & \ddots & \\
& & & & \ddots & 1 \\
& & & & & 0
\end{array}\right)$$

- (1) 若 V_0 是 σ 的一个不变子空间,且 $a_1\alpha_1 + a_2\alpha_2 + \cdots + a_k\alpha_k \in V_0$, $1 \le k \le n$, $a_k \ne 0$, 则 $\alpha_1, \alpha_2, \cdots, \alpha_k \in V_0$ 。
 - (2) $\{0\}$, $L(\alpha_1)$, $L(\alpha_1,\alpha_2)$, \cdots , $L(\alpha_1,\alpha_2,\cdots,\alpha_{n-1})$, V 是V 的全部 σ 的不变子空间。
 - (3) 不存在 σ 的不变子空间W使得 $V = L(\alpha_1) \oplus W$.