Chapter Summary — Sets

(This document is a very rough summary of the the concepts and tasks that we covered in this chapter. The plan is to write a similar document at the end of each chapter, but time will tell (however it would be better if you did this yourself).

I hope this document will be use to you when revising the chapter. However, please do not think that this comes with any guarantee of completeness — the probability of me overlooking something is large. Please ask if you think I have omitted anything.

— kmurphy, 5 Oct, 2021/

Section A: Concepts

□ Set Definition	
☐ As a list	
\square Use of ellipses, how distinguish between	een finite and infinite lists.
\square Builder notation	
\square {pattern rule/criteria}	
\square {pattern set to draw from, rule/crite	eria}
☐ Use of qualifiers	
\Box The empty set: \emptyset , $\{\}$	(in Python set())
\square Relationship between sets	
\square subset and proper subset	(in Python a.issubset(b))
\square superset and proper superset	(in Python a. issuperset(b))
□ Properties of sets	
□ Cardinality	$\big(\text{in Python len}(a) \big)$
□ Power Set	
\square Operations	
$\hfill\Box$ Definition, representation using Venn d	iagrams, properties
☐ Intersection	(in Python a. intersection (b))
☐ Disjoint sets	(in Python a. isdisjoint (b))
□ Union	$\left(in\ Python\ a.union(b)\right)$
☐ Set difference	(in Python a. difference (b))
\square Symmetric difference	$\left(in\ Python\ a.symmetric_difference(b)\right)$
□ Complement	
☐ Universal set	
\square Expressing complement, \overline{A} , as a set of (in python no complement of	difference with the universal, $U \setminus A$ perator \Rightarrow need to rewrite as set difference.)
\square Expressing set difference, $A \setminus B$, as a	intersection with the complement set, $A\cap \overline{B}$
☐ Cartesian product	
\square Identities involving sets	
\square Correspondence between set operations	and logical operations
\square Intersection \leftrightarrow AND (\land)	
\square Union \leftrightarrow OR (\lor)	
\square Complement \leftrightarrow Not (\neg)	
$\hfill\Box$ Proving identities using predicate logic	arguments
☐ Proving identities using membership ta	bles

Section B: Tasks

□ Constructing sets
\square Construct a set via builder notation in mathematics and in python.
□ Set operations
\square Given sets apply set operations.
\square Given sets determine the truth value of an expression involving sets.
□ Prove identities (expressions) involving sets
\square using predicate logic
□ using Venn diagram
\square using membership tables.
$\hfill\Box$ Construct a set given various criteria (e.g. given output of various set operations).
Section C: Stuff not Covered (Yet)
You are probably asking "Why is this section here?". I have a number of reasons: 1) To highlight possible differences between this iteration of Discrete Mathematics and previous years. 2) To show those or you who are interested in more, where to go next. 3) To remind me of what I should do next, if miracles of miracles, we end up in week 11/12 with nothing to do but tell maths jokes
$\hfill\square$ Nothing here, at present, I think we have covered everything at this point.