1.Get and load a dataset. Study the structure of the dataset .Visualize all statistical measures like- mean, median, mode, range, Inter quartile range, Histograms, boxplots and scatterplots.

▼ Importing Required packages

```
import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from google.colab import drive
drive.mount('/content/drive')

#Loading the 'Titanic' data set
titanic = pd.read_csv("/content/Titanic Data Set.csv")

#Printing the first 5 rows from the data set
titanic.head()
```

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN

#Printing the basic info about the data set
titanic.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
# Column
                Non-Null Count Dtype
0 PassengerId 891 non-null int64
    Survived
                891 non-null
                               int64
    Pclass
                 891 non-null
                               int64
                               object
    Name
                 891 non-null
                 891 non-null
    Sex
                               object
                714 non-null
                               float64
    Age
    SibSp
                 891 non-null
                               int64
    Parch
                 891 non-null
    Ticket
                891 non-null
                               object
    Fare
                 891 non-null
                               float64
10 Cabin
                 204 non-null
                               object
11 Embarked
                 889 non-null
                               object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
```

#Printing the basic info about the data set
titanic.describe()

Passe	engerId	Survived	Pclass	Age	SibSp	Parch	Fare				
#Checking for null values											
titanic.isnull().	sum()										
PassengerId	0										
Survived	0										
Pclass	0										
Name	0										
Sex	0										
Age	177										
SibSp	0										
Parch	0										
Ticket	0										
Fare	0										
Cabin	687										
Embarked	2										
dtype: int64											

#Plots to find relationships between the variables
sns.histplot(titanic['Age'])
plt.show()

The above Histogram represents the count of people of different age groups.

From this graph, I can observe that most of the passengers belongs to 20-30 age group and a very less no. of passengers belongs to 60-80 age group.

```
sns.displot(x = "Age",kde=True,bins = 5 ,hue = titanic["Survived"] , palette = 'Set1', data=titanic) plt.show()
```


The above graph represents the relation between the age groups of the people and their Survival state

From this graph, I can observe that both most no. of the passengers Survived and most no. of passengers Dead belongs to the age group of 20-30, as most of the passengers are of that age group..!

The above bar graph represent the Survival rate of people based on their Gender. From this plot, I can say that most of the males died and most of the females survived.

sns.violinplot(x ="Sex", y ="Age", hue ="Survived", data = titanic, split = True)
$$plt.show()$$

The above plot represent the relation between Survival rate and age groups of the passengers.

From the above plots, I can Observe that both Survival rate and death rate is more in the age group of 20-30 as most of the passengers belongs to that group.

```
sns.catplot(x ="Embarked", hue ="Survived", col ="Sex", kind="count",data = titanic)
plt.show()
```


The above sub plots represent the relation between count of passengers embarking at each station and Survival status according to thir Gender.

From the above plot, I can observe that more no. of passengers were embarking at station S and less no. of passengers at station Q of both genders. So, The survival rate and death rate is also high at Station S. Also, more than half of the male passengers died and more than half of female passengers Survived at all stations.

```
one=two=three=0
for i in titanic["Pclass"]:
    if(i==1):
        one+=1
    elif(i==2):
        two+=1
    elif(i==3):
        three+=1
data = [one,two,three]
keys = ['Class 1', 'Class 2', 'CLass 3']
palette_color = sns.color_palette('bright')
plt.pie(data, labels=keys, colors=palette_color, autopct='%.0f%%')
plt.show()
```

This is a pie chart which represents the percentages of passengers who travel in different classes. From this, I can say that many passengers travelled in class 3

The above represents the relation between Survival rate and Pclass.

From this, I can say that more no. of passengers died who travelled in class 3.

→ Conclusion:

From the above Graphs , I can say that whether a passenger Survived or not depends upon the Features Pclass, Age, Cabin, Embarked.