18.2 Standing Waves

- Superposition of two waves propagating in opposite directions.
- Wave function of a standing wave :

$$y = [2A \sin(kx)] \cos(\omega t)$$

- \Rightarrow A particle at any position x vibrates in SHM (because of the factor $\cos(\omega t)$), and all particles in the wave vibrate with same frequency $f = \omega/2\pi$ with amplitude $2A \sin(kx)$.
- Standing wave pattern: Nodes & Antinodes

18.3 Standing waves in a string fixed at both ends

Oscillation modes for standing waves in the string:

(a) A string of length L fixed at both ends. The normal modes of vibration form a harmonic series: (b) the fundamental, or first harmonic; (c) the second harmonic; (d) the third harmonic.

$$\lambda_{\rm n} = 2L/n$$

[Wavelength of normal n^{th} normal mode of oscillation]

$$f_n = (n/2L) (T/\mu)^{1/2}$$
$$= n f_1$$

[Natural frequencies for standing waves]

18.4 Resonance (descriptive)

An oscillating system is <u>in resonance</u> with some driving force whenever the frequency of the driving force matches one of the natural frequencies of the system.

Resonance frequency of the string:

$$f_n = (n/2L) (T/\mu)^{1/2}$$

[natural frequencies for standing waves]

Standing wave patterns

Only frequencies that correspond to natural frequencies will persist, and other frequency components will die quickly.

