Zadaci

Zadatak 1.

Zadan vam je model perceptrona sa parametrima $\theta = [\theta_1, \theta_2] = [2.5, 3]$. Skicirajte (nacrtajte) klasifikacijsku hiperravninu (pravac) definiran ovim parametrima. Klasificira li ispravno ovaj model sljedeće podatke

$$X = [(0, -0.8), (-1, 0), (-0.5, -0.5), (0, 1), (0.5, 0.8)]$$

sa pripadnim oznakama klasa

$$y = [-1, -1, -1, -1, 1].$$

Zadatak 2.

Kao što smo na vježbama radili, pomoću perceptrona implementirajte logičke XNOR, NAND i NOR.

Zadatak 3.

Vaš zadatak će biti implementirati perceptron koji će rješavati problem klasifikacije podataka s obzirom na jednu od dvije klase $\{1, -1\}$.

Na predavanju je pokazan perceptron algoritam za podatke koji su linearno separabilni kroz ishodište. Drugim riječima, definirali smo da su podaci $\{(x^{(i)},y^{(i)}):i=1,\cdots,m\}$ linearno separabilni kroz ishodište ako postoji $\theta=[\theta_1,\cdots,\theta_n]$ takav da je $y^{(i)}\theta^Tx^{(i)}>0, \forall i=1,\cdots,m$.

U zadaći želimo ovaj koncept generalizirati tako da separabilnost ne bude nužno kroz ishodište.

Tada možemo reći da će podaci $\{(x^{(i)}, y^{(i)}) : i = 1, \dots, m\}$ biti linearno separabilni ako postoji $\theta = [\theta_0, \theta_1, \dots, \theta_n]$ takav da je $y^{(i)}\theta^Tx^{(i)} > 0$, $\forall i = 1, \dots, m$, pri čemu je svaki podatak oblika $x^{(i)} = [1, x_1^{(i)}, \dots, x_n^{(i)}]$.

- a) implementirajte algoritam perceptrona koji na ulazu ima argumente: $X \in \mathbb{R}^{(m \times (n+1))}$ i $y \in \mathbb{R}^{(m \times 1)}$, gdje je m ukupan broj ulaznih podataka, a n broj varijabli ulaznog podatka. Algoritam treba vratiti vektor parametera $\theta \in \mathbb{R}^{(n+1) \times 1}$ i broj k koji predstavlja koliko je puta ažurirana vrijednost θ . Kao što je pokazano na predavanju, algoritam treba ciklički prolaziti kroz podatke i prilagođavati parametre.
- b) Učitajte podatke koji su vam dani $X_a.csv$ i $y_a.csv$ te na njima pokrenite algoritam iz prethodnog zadatke. Ispište dobivenu vrijednost parametara θ i broj ažuriranja k. To ponovite na podacima $X_b.csv$ i $y_b.csv$

(Dalje ćemo u zadacima govoriti paralelno za oba skupa podataka i uvesti oznake s indeksima a tj. b koje će se odnositi na podatke iz X_a.csv tj. X_b.csv)

- c) Izračunajte vrijednosti γ_{geom}^a i γ_{geom}^b vašeg klasifikatora, tj. najmanju udaljenost podatka do hiperravnine određene formulom $\theta_a^T x = 0$ odnosno hiperravnine $\theta_b^T x = 0$ za podatke iz drugog skupa.
- d) Vizualizirajte podatke X_a i dobiveni dobiveni pravac $\theta_a x = 0$ te analogno podatke X_b i pravac $\theta_b x = 0$. Na oba grafička prikaza treba biti naznačeno pripadanje podataka jednoj od dvije klase. (Npr. drugim bojama i sl.primjer)
- e) Na temelju zadatka 3. i 4. interpretirajte koji je od ova dva problema teži za klasificirati.
- f) U analizi ovog algoritma, napravljena je pretpotstavka o tome kako su norme svih podataka ograničene s nekim brojem *R*. Izračunajte te brojeve *R* za vaše skupove podataka.

Zadatak 4.

U datotekama i su vam zadani podaci koje koje je potrebno klasificirati perceptron algoritmom.

- a) Učitajte podatke 2*X_a*, 2*y_a* vizualizirajte ih.
- b) Odredite kojom biste klasom funkcija mogli separirati ove podatke. Parametre funkcije iz te klase trebate pronaći koristeći perceptron algoritam.

Zadatak 5.

Nadogradite implementaciju perceptron algoritma tako da u svakoj iteraciji vizualizirate podatke i dobiveni pravac koji separira te podatke.

Pokrenite algoritam na podacima koje ćete dobiti koristeći ugrađenu funkciju iz scikitlearn *make_blobs* sa sljedećim parametrima:

make_blobs(n_samples=500, n_features=2, centers=2, random_state=4).

Opišite dobiveni rezultat.

