Orthogonal complement

Let \mathcal{U} be a subspace of \mathcal{W} .

For each vector **b** in \mathcal{W} , we can write $\mathbf{b} = \mathbf{b}^{||\mathcal{U}} + \mathbf{b}^{\perp \mathcal{U}}$ where

- **b** $^{||\mathcal{U}|}$ is in \mathcal{U} , and
- **b** $\mathbf{b}^{\perp \mathcal{U}}$ is orthogonal to every vector in \mathcal{U} .

Let V be the set $\{\mathbf{b}^{\perp \mathcal{U}} : \mathbf{b} \in \mathcal{W}\}$.

Definition: We call $\mathcal V$ the *orthogonal complement* of $\mathcal U$ in $\mathcal W$

Easy observations:

- ightharpoonup Every vector in $\mathcal V$ is orthogonal to every vector in $\mathcal U$.
- Every vector **b** in \mathcal{W} can be written as the sum of a vector in \mathcal{U} and a vector in \mathcal{V} .

Maybe $\mathcal{U} \oplus \mathcal{V} = \mathcal{W}$? To show direct sum of \mathcal{U} and \mathcal{V} is defined, we need to show that the only in vector that is in both \mathcal{U} and \mathcal{V} is the zero vector.

Any vector \mathbf{w} in both \mathcal{U} and \mathcal{V} is orthogonal to itself.

Thus $0 = \langle \mathbf{w}, \mathbf{w} \rangle = \|\mathbf{w}\|^2$.

By Property N2 of norms, that means $\mathbf{w} = \mathbf{0}$.

Therefore $\mathcal{U} \oplus \mathcal{V} = \mathcal{W}$. Recall: $\dim \mathcal{U} + \dim \mathcal{V} = \dim \mathcal{U} \oplus \mathcal{V}$

Orthogonal complement: example

Example: Let $\mathcal{U} = \text{Span } \{[1,1,0,0],[0,0,1,1]\}$. Let \mathcal{V} denote the orthogonal complement of \mathcal{U} in \mathbb{R}^4 . What vectors form a basis for \mathcal{V} ?

Every vector in \mathcal{U} has the form [a, a, b, b].

so Span $\{[1, -1, 0, 0], [0, 0, 1, -1]\} = \mathcal{V}$.

Therefore any vector of the form [c, -c, d, -d] is orthogonal to every vector in \mathcal{U} .

Every vector in Span $\{[1,-1,0,0],[0,0,1,-1]\}$ is orthogonal to every vector in \mathcal{U} so Span $\{[1,-1,0,0],[0,0,1,-1]\}$ is a subspace of \mathcal{V} , the orthogonal complement of \mathcal{U} in \mathbb{R}^4 .

Is it the whole thing?

$$\mathcal{U}\oplus\mathcal{V}=\mathbb{R}^4\text{ so }\dim\mathcal{U}+\dim\mathcal{V}=4.$$

$$\{[1,1,0,0],[0,0,1,1]\}\text{ is linearly independent so }\dim\mathcal{U}=2...\text{ so }\dim\mathcal{V}=2$$

$$\{[1,-1,0,0],[0,0,1,-1]\}\text{ is linearly independent}$$
 so
$$\dim Span\ \{[1,-1,0,0],[0,0,1,-1]\}\text{ is also }2....$$

Orthogonal complement: example

Example: Find a basis for the null space of
$$A = \begin{bmatrix} \frac{1}{0} & 0 & 2 & 4 \\ 0 & 5 & 1 & 2 \\ \hline 0 & 2 & 5 & 6 \end{bmatrix}$$

By the dot-product definition of matrix-vector multiplication, a vector \mathbf{v} is in the null space of A if the dot-product of each row of A with \mathbf{v} is zero.

Thus the null space of A equals the orthogonal complement of Row A in \mathbb{R}^4 .

Since the three rows of A are linearly independent, we know dim Row A=3...

so the dimension of the orthogonal complement of Row A in \mathbb{R}^4 is 4-3=1...

The vector $[1, \frac{1}{10}, \frac{13}{20}, \frac{-23}{40}]$ has a dot-product of zero with every row of A...

so this vector forms a basis for the orthogonal complement.

and thus a basis for the null space of A.

Example: Find the intersection of

- the plane spanned by [1,0,0] and [0,1,-1]
- ightharpoonup the plane spanned by [1,2,-2] and [0,1,1]

The orthogonal complement in \mathbb{R}^3 of the first plane is Span $\{[4,-1,1]\}$

Therefore first plane is
$$\{[x,y,z] \in \mathbb{R}^3 : [4,-1,1] \cdot [x,y,z] = 0\}$$

The orthogonal complement in \mathbb{R}^3 of the second plane is Span $\{[0,1,1]\}$.

Therefore second plane is
$$\{[x, y, z] \in \mathbb{R}^3 : [0, 1, 1] \cdot [x, y, z] = 0\}$$

The intersection of these two sets is the set

$$\{[x,y,z]\in\mathbb{R}^3 : [4,-1,1]\cdot[x,y,z]=0 \text{ and } [0,1,1]\cdot[x,y,z]=0\}$$

By Row-Space/Null-Space Duality, a basis for this vector space is a basis for the nul space of $A = \begin{bmatrix} 4 & -1 & 1 \\ \hline 0 & 1 & 1 \end{bmatrix}$

The null space of A is the orthogonal complement of Span $\{[4, -1, 1], [0, 1, 1]\}$ in \mathbb{R}^3 ... which is Span $\{[1, 2, -2]\}$

Example: Find the intersection of

- ▶ the plane spanned by [1,0,0] and [0,1,-1]
- ightharpoonup the plane spanned by [1,2,-2] and [0,1,1]

The orthogonal complement in \mathbb{R}^3 of the first plane is Span $\{[4,-1,1]\}$.

Therefore first plane is $\{[x,y,z] \in \mathbb{R}^3 : [4,-1,1] \cdot [x,y,z] = 0\}$

The orthogonal complement in \mathbb{R}^3 of the second plane is Span $\{[0,1,1]\}$

Therefore second plane is $\{[x, y, z] \in \mathbb{R}^3 : [0, 1, 1] \cdot [x, y, z] = 0\}$

The intersection of these two sets is the set

$$\{[x,y,z] \in \mathbb{R}^3 : [4,-1,1] \cdot [x,y,z] = 0 \text{ and } [0,1,1] \cdot [x,y,z] = 0\}$$

By Row-Space/Null-Space Duality, a basis for this vector space is a basis for the nul space of $A = \begin{bmatrix} 4 & -1 & 1 \\ \hline 0 & 1 & 1 \end{bmatrix}$

The null space of A is the orthogonal complement of Span $\{[4,-1,1],[0,1,1]\}$ in \mathbb{R}^3 .. which is Span $\{[1,2,-2]\}$

Example: Find the intersection of

- ▶ the plane spanned by [1,0,0] and [0,1,-1]
- ▶ the plane spanned by [1, 2, -2] and [0, 1, 1]

The orthogonal complement in \mathbb{R}^3 of the first plane is Span $\{[4,-1,1]\}$

Therefore first plane is
$$\{[x,y,z] \in \mathbb{R}^3 : [4,-1,1] \cdot [x,y,z] = 0\}$$

The orthogonal complement in \mathbb{R}^3 of the second plane is Span $\{[0,1,1]\}$

Therefore second plane is
$$\{[x,y,z] \in \mathbb{R}^3 : [0,1,1] \cdot [x,y,z] = 0\}$$

The intersection of these two sets is the set

$$\{[x,y,z] \in \mathbb{R}^3 : [4,-1,1] \cdot [x,y,z] = 0 \text{ and } [0,1,1] \cdot [x,y,z] = 0\}$$

By Row-Space/Null-Space Duality, a basis for this vector space is a basis for the nul space of $A = \begin{bmatrix} 4 & -1 & 1 \\ \hline 0 & 1 & 1 \end{bmatrix}$

The null space of A is the orthogonal complement of Span $\{[4, -1, 1], [0, 1, 1]\}$ in \mathbb{R}^3 ... which is Span $\{[1, 2, -2]\}$

Example: Find the intersection of

- the plane spanned by [1,0,0] and [0,1,-1]
- ightharpoonup the plane spanned by [1,2,-2] and [0,1,1]

Therefore first plane is
$$\{[x,y,z] \in \mathbb{R}^3 : [4,-1,1] \cdot [x,y,z] = 0\}$$

The orthogonal complement in \mathbb{R}^3 of the second plane is Span $\{[0,1,1]\}$.

Therefore second plane is
$$\{[x, y, z] \in \mathbb{R}^3 : [0, 1, 1] \cdot [x, y, z] = 0\}$$

The intersection of these two sets is the set

$$\{[x,y,z]\in\mathbb{R}^3 : [4,-1,1]\cdot[x,y,z]=0 \text{ and } [0,1,1]\cdot[x,y,z]=0\}$$

By Row-Space/Null-Space Duality, a basis for this vector space is a basis for the null space of $A = \begin{bmatrix} 4 & -1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

The null space of A is the orthogonal complement of Span $\{[4,-1,1],[0,1,1]\}$ in \mathbb{R}^3 ... which is Span $\{[1,2,-2]\}$

Computing the orthogonal complement

Suppose we have a basis $\mathbf{u}_1, \dots, \mathbf{u}_k$ for \mathcal{U} and a basis $\mathbf{w}_1, \dots, \mathbf{w}_n$ for \mathcal{W} . How can we compute a basis for the orthogonal complement of \mathcal{U} in \mathcal{W} ?

One way: use orthogonalize(vlist) with

$$vlist = [\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{w}_1, \dots, \mathbf{w}_n]$$

Write list returned as $[\mathbf{u}_1^*, \dots, \mathbf{u}_k^*, \mathbf{w}_1^*, \dots, \mathbf{w}_n^*]$

These span the same space as input vectors $\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{w}_1, \dots, \mathbf{w}_n^*$, namely \mathcal{W} , which has dimension n.

Therefore exactly n of the output vectors $\mathbf{u}_1^*, \dots, \mathbf{u}_{k}^*, \mathbf{w}_1^*, \dots, \mathbf{w}_{n}^*$ are nonzero.

The vectors $\mathbf{u}_1^*, \dots, \mathbf{u}_k^*$ have same span as $\mathbf{u}_1, \dots, \mathbf{u}_k$ and are all nonzero since $\mathbf{u}_1, \dots, \mathbf{u}_k$ are linearly independent.

Therefore exactly n - k of the remaining vectors $\mathbf{w}_1^*, \dots, \mathbf{w}_n^*$ are nonzero.

Every one of them is orthogonal to $\mathbf{u}_1, \dots, \mathbf{u}_n$... so they are orthogonal to every vector in \mathcal{U} ... so they lie in the orthogonal complement of \mathcal{U} .

By Direct-Sum Dimension Lemma, orthogonal complement has dimension n - k, so the remaining nonzero vectors are a basis for the orthogonal complement.