Road Map

- Evolution of Technology
- Types of Data
- Big Data- Definition Aspect
- Big data Vs Not Big data
- Challenges of big data

Evolution of Technology

Internet of Things

Social Media Usage

Classification of Digital Data

Data → Information

Information -> Insights

Digital Data

Structured data

- When do we say that the data is structured??
- Sources of structured data

Figure 1.4 Sources of structured data.

Working with structured data

- Insert/update/delete
- Indexing
- Transaction processing
- Security
- Scalability

Semi-structured data

- It does not conform to the data models that one typically associates with relational databases or any other form of data tables
- It uses tags to segregate semantic elements

Sources of semi-structured data

Unstructured data

- Does not conform to any predefined data model
- The structure can be unpredictable.

Sources of unstructured data

How to deal with unstructured data?

Inclass#exercise

A. Place Me in the Basket

Structured	Unstructured	Semi-Structured

Following words are to be placed in the relevant basket:

Email Relations/Tables

MS Access Facebook
Images Videos
Database MS Excel

Chat conversations XML

Solution

Answer:

Structured	Unstructured	Semi-Structured	
MS Access	Email	XML	
Database	Images		
Relations/Tables	Chat conversations		
MS Excel	Facebook		
	Videos		

Let's Discuss

- Why email in unstructured category?
- Where should we put CCTV footage?

You are at city shopping mall. You see few people are browsing the items. Some of them are looking for discounts. Some of them are filling feedback form. Few people are at billing counter. You may consider other things and events happening in this scenario. Think for while on the different types of data generated. Mention each of them with proper logic

You are at university library. You see few students browsing through the library catalog on kiosk. You see the working of librarians and other staff to issue/return books, magazines, and journals. Few students are using the e-library service, too. Which type of data is generated in this scenario? Support your answer by considering big data

Big Data – Definitional Aspects

Characteristics of Big data

Gartner's 3V casted by Douglas Laney in 2001 Volume, Velocity and Variety

IBM's 4V casted by Zikopoulos

Volume, Velocity, Variety and Veracity

Yuri Demchenko's 5V

Volume , Velocity , Variety , Veracity and Value

Microsoft's 6V

Volume, Velocity, Variety, Veracity, Value and Visibility

Volume

Byte Comparison Table			
Metric	Value	Bytes	
Byte (B)	1	1	
Kilobyte (KB)	1,024 ¹	1,024	
Megabyte (MB)	1,024 ²	1,048,576	
Gigabyte (GB)	1,024 ³	1,073,741,824	
Terabyte (TB)	1,0244	1,099,511,627,776	
Petabyte (PB)	1,024 ⁵	1,125,899,906,842,624	
Exabyte (EB)	1,024 ⁶	1,152,921,504,606,846,976	
Zettabyte (ZB)	1,024 ⁷	1,180,591,620,717,411,303,424	
Yottabyte (YB)	1,0248	1,208,925,819,614,629,174,706,176	

class	size	manage with	how it fits	examples
small	< 10 GB	Excel, R	fits in one machine's memory	thousands of sales figures
medium	10GB-1TB	indexed files, monolothic DB	fits on one machine's disk	millions of web pages
Big	> 1TB	Hadoop, distributed DBs	stored across many machines	billions of web clicks

Velocity

Accelerating innovation and time to value

Variety

Variety refers to heterogeneous sources and the nature of data, both structured and unstructured. During earlier days, spreadsheets and databases were the only sources of data considered by most of the applications. Nowadays, data in the form of emails, photos, videos, monitoring devices, PDFs, audio, etc. are also being considered in the analysis applications. This variety of unstructured data poses certain issues for storage, mining and analyzing data.

Veracity

Min ec	Max	Mean	SD
4.3	?	5.84	0.83
2.0	4.4	3.05	50000000
15000	7.9	1.20	0.43
0.1	2.5	?	0.76

Uncertainty and inconsistencies in the data

Data by itself, regardless of its volume, usually isn't very useful — to be valuable, it needs to be converted into insights information, and that is where data processing steps in. By using custom processing software, you can derive useful insights from gathered data, and that can add value to your decision-making process.

Value

What is big data about?

Answers are often "too big to"

- Load into memory......Store on a hard drive......Fit in a standard database
- "Fast changing".....Not just relational
- "Digital breadcrumbs" left behind (communication transactions..)—Hard little data particles left behind as people go about their daily lives
- Open web data/social media data (facebook, twitter, blogs, online news, videos....)
- Remote sensing (satellite, meters...)

What is big data about - and not about?

"Big Data is not about the data" (Gary King)

Institute for social science, Harvard university

- It's about the analytics—the insights gleaned from the data; and the necessary capacities to do so—human, technological
- One step further: it's about knowledge: getting near to the 'true' meaning of a facebook status update;
- It's about sharing and diffusion visualizations

Big data Definition

High-volume High-velocity High-variety Cost-effective, innovative forms of information processing Enhanced insight & decision making

Big Data is high-volume, high-velocity, and high-variety information assets that demand cost effective, innovative forms of information processing for enhanced insight and decision making.

Source: Gartner IT Glossary

Challenges with Big data

Problem 1: Storing exponentially growing huge datasets

- · Data generated in past 2 years is more than the previous history in total
- By 2020, total digital data will grow to 44 Zettabytes approximately
- By 2020, about 1.7 MB of new info will be created every second for every person

Problem 2: Processing data having complex structure

Problem 3: Processing data faster

The data is growing at much faster rate than that of disk read/write speed

Relative Improvment Hard Disk Capacity v.s. Disk Transfer Performance

Source: Tom's Hardware

Bringing huge amount of data to computation unit becomes a bottleneck

A big data analytics cycle can be described by the following stage -

- 1. Business Problem Definition
- 2. Data Identification
- 3. Data Acquisition & Filtering
- 4. Data Extraction
- 5. Exploratory Data Analysis
- 6. Data Preparation for Modeling and Assessment
- 7. Data Visualization
- 8. Analysis of Results

Classification of Data Analytics

Descriptive Analytics

"What happened"

 Provides insights into past events

Diagnostic Analytics

"Why did it happen"

 Takes the insights from descriptive analytics to dig deeper to find the cause of the outcome

Predictive Analytics

"What will happen next"

 Leverages historical data and trends to predict future outcomes

Prescriptive Analytics

"What should be done about it"

 Analyzes past decisions and events to estimate the likelihood of different outcomes

Big data Analytics-Case studies

Healthcare

Traditional Vs Big data Approach

- **OLTP:** Online Transaction Processing
 - DBMSs
- **OLAP:** Online Analytical Processing
 - Data Warehousing
- **RTAP:** Real-Time Analytics Processing
 - Big Data Architecture & Technology
 - https://www.geeksforgeeks.org/difference-between-olap-and-oltp-in-dbms/

Online Analytical Processing (OLAP): Online Analytical Processing consists of a type of software tools that are used for data analysis for business decisions. OLAP provides an environment to get insights from the database retrieved from multiple database systems at one time. Examples – Any type of Data warehouse system is an OLAP system. The uses of OLAP are as follows:

- Spotify analyzed songs by users to come up with a personalized homepage of their songs and playlist.
- Netflix movie recommendation system.

Online transaction processing (OLTP): Online transaction processing provides transaction-oriented applications in a 3-tier architecture. OLTP administers the day-to-day transactions of an organization.

Examples: Uses of OLTP are as follows:

- ATM center is an OLTP application.
- OLTP handles the ACID properties during data transactions via the application.
- It's also used for Online banking, Online airline ticket booking, sending a text message, add a book to the shopping cart.

Category	OLAP (Online analytical processing)	OLTP (Online transaction processing)
Definition	It is well-known as an online database query management system.	It is well-known as an online database modifying system.
Data source	Consists of historical data from various Databases. In other words, different OLTP databases are used as data sources for OLAP.	Consists of only of operational current data. In other words, the original data source is OLTP and its transactions.
Method used	It makes use of a data warehouse.	It makes use of a standard database management system (DBMS).
Application	It is subject-oriented. Used for Data Mining, Analytics, Decisions making, etc.	It is application-oriented. Used for business tasks.
Normalized	In an OLAP database, tables are not normalized.	In an OLTP database, tables are normalized (3NF).
Usage of data	The data is used in planning, problem-solving, and decision-making.	The data is used to perform day-to-day fundamental operations.
Task	It reveals a snapshot of present business tasks.	It provides a multi-dimensional view of different business tasks.