Question 1

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

- The optimal values for Lasso and Ridge regression are 0.001 and 5 respectively. The RMSE values for the same were 0.28 and 0.27 respectively for the above alpha. Also, the Squared Value for the says it was able to explain 87.8% of the Variance in the Test Set for Lasso Regression and 88.8% Variance in the Test Set for Ridge Regression.
- On doubling the value of alpha we could notice the following: The value of the coefficients started to decrease and we had almost 136 features of a coefficient of zero for Lasso Regression.
 As we further increase it the coefficients will further reduce and the model will start getting biased to a few features. Similar is the case for Ridge Regression as well but the Coefficients will not completely drop down to zero.

After the Change is Implemented:

Lasso Regression:

Number of Features with Coefficient Zero

Value of Coefficients:

	Feature	Ranking
25	GrLivArea	0.429
9	OverallQual	0.200
75	Neighborhood_CollgCr	0.164
85	Neighborhood_NoRidge	0.139
90	Neighborhood_SawyerW	0.136
18	BsmtFinSF1	0.133
84	Neighborhood_NWAmes	0.121
96	Condition1_Feedr	0.120
0	constant	0.114
38	GarageCars	0.098
141	Exterior1st_BrkComm	0.092
10	OverallCond	0.083
26	BsmtFullBath	0.079
23	CentralAir	0.072
111	Condition2_RRNn	0.068
3	LotArea	0.065
91	Neighborhood_Somerst	0.058
35	Fireplaces	0.055
118	HouseStyle_1.5Unf	0.045
43	WoodDeckSF	0.041

Ridge Regression:

Value of Coefficients:

	Feature	Ranking
25	GrLivArea	0.373
9	OverallQual	0.183
75	Neighborhood_CollgCr	0.154
85	Neighborhood_NoRidge	0.138
0	constant	0.123
84	Neighborhood_NWAmes	0.123
91	Neighborhood_Somerst	0.119
90	Neighborhood_SawyerW	0.115
141	Exterior1st_BrkComm	0.110
38	GarageCars	0.109
137	RoofMatl_WdShake	0.107
96	Condition1_Feedr	0.105
205	SaleType_Con	0.097
23	CentralAir	0.097
18	BsmtFinSF1	0.096
26	BsmtFullBath	0.085
58	MSZoning_RH	0.082
10	OverallCond	0.080
117	HouseStyle_1.5Fin	0.070
118	HouseStyle_1.5Unf	0.069

Before the Change is Implemented:

Lasso Regression:

```
lassodf['Ranking'].value_counts().sort_values(ascending = False)
-0.000
          122
-0.012
            3
            3
0.003
            3
 0.006
            2
-0.013
            2
-0.006
 0.080
            2
0.008
            2
            2
 0.005
-0.021
            2
```

	Feature	Ranking
25	GrLivArea	0.445
75	Neighborhood_CollgCr	0.203
9	OverallQual	0.177
85	Neighborhood_NoRidge	0.160
91	Neighborhood_Somerst	0.153
90	Neighborhood_SawyerW	0.144
141	Exterior1st_BrkComm	0.139
84	Neighborhood_NWAmes	0.138
18	BsmtFinSF1	0.138
38	GarageCars	0.105
96	Condition1_Feedr	0.101
0	constant	0.097
10	OverallCond	0.085
73	Neighborhood_BrkSide	0.080
26	BsmtFullBath	0.080
23	CentralAir	0.079
205	SaleType_Con	0.078
111	Condition2_RRNn	0.070
3	LotArea	0.069
72	Neighborhood_BrDale	0.067

Ridge Regression:

	Feature	Ranking
25	GrLivArea	0.394
75	Neighborhood_CollgCr	0.177
137	RoofMatl_WdShake	0.172
9	OverallQual	0.169
85	Neighborhood_NoRidge	0.162
91	Neighborhood_Somerst	0.160
205	SaleType_Con	0.153
141	Exterior1st_BrkComm	0.135
84	Neighborhood_NWAmes	0.133
90	Neighborhood_SawyerW	0.131
0	constant	0.116
106	Condition2_Norm	0.115
96	Condition1_Feedr	0.108
38	GarageCars	0.106
58	MSZoning_RH	0.104
23	CentralAir	0.103
57	MSZoning_FV	0.101
196	GarageType_Detchd	0.100
18	BsmtFinSF1	0.098

Important Features after the change is implemented is:		
Las	so:	
	1.	GrLivArea
	2.	OverallQual
	3.	Neighborhood_Crawfor
	4.	Neighborhood_NridgHt
	5.	Neighborhood_Somerst
Rid	ge:	
	1.	GrLivArea
	2.	OverallQual
	3.	Neighborhood_Crawfor
	4.	Neighborhood_NridgHt
	5.	Neighborhood_NoRid
Qu	estic	on 2
Υοι	ı hav	ve determined the optimal value of lambda for ridge and lasso regression during the
		nent. Now, which one will you choose to apply and why?
ass	igiiii	ient. Now, which one will you choose to apply and why:
	-	We will go with the Lasso Regression as both the regression techniques have provided us with
		almost similar performance but Lasso has helped us in choosing the features as well hence
		making the model somewhat simpler as compared to ridge regression.

Question 3

After building the model, you realized that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

- The five most important Predictor Variables Now are:
 - RoofMatl_Membran
 - age_house
 - Neighborhood_OldTown
 - MiscFeature_Shed
 - GarageType_Attch

Question 4

How can you make sure that a model is robust and generalizable? What are the implications of the same for the accuracy of the model and why?

- To make a robust and generalizable model, we need to keep in mind to build a model that will
 not have huge variation on the Model's Predictive Power for any small changes in data. This is
 means the model should perform well on the unseen data as well. Also try to keep the model
 simple so that it can generalized to varying conditions.
- Accuracy of the model depends on the above factors since a data with outliers and missing values can have a huge impact on the accuracy of the model. Hence, we need to create a model that is robust to the outliers.