Notes for Foundations of Modern Analysis by Avner Friedman

 $Anton\ Ottosson-antonott@kth.se$

August 22, 2024

Chapter 1 – Measure Theory

Section 1.1 – Rings and algebras

Problems

1.1.1

$$\left(\underline{\lim_{n}} E_{n}\right)^{c} = \overline{\lim_{n}} E_{n}^{c}, \quad \left(\overline{\lim_{n}} E_{n}\right)^{c} = \underline{\lim_{n}} E_{n}^{c}.$$

Solution. For the first identity, note that

$$x \in \left(\underline{\lim}_{n} E_{n}\right)^{c} \iff x \notin \underline{\lim}_{n} E_{n}$$
 $\iff x \notin E_{n} \text{ for infinitely many } n$
 $\iff x \in \overline{\lim}_{n} E_{n}^{c}.$

For the second,

$$x \in \left(\overline{\lim}_n E_n\right)^c \iff x \notin \overline{\lim}_n E_n$$

$$\iff x \in E_n \text{ for finitely many } n$$

$$\iff x \in E_n^c \text{ for all but finitely many } n$$

$$\iff x \in \underline{\lim}_n E_n^c.$$

1.1.2

$$\overline{\lim}_{n} E_{n} = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_{n}, \quad \underline{\lim}_{n} E_{n} = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} E_{n}.$$

Solution. Suppose $x \in \overline{\lim}_n E_n$. Then $x \in E_n$ for infinitely many n. It follows that $x \in \bigcup_{n=k}^{\infty} E_n$ for all $k \in \mathbb{N}$, and hence that $x \in \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_n$. Conversely, assume that $x \in \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_n$. Then $x \in \bigcup_{n=k}^{\infty} E_n$ for all $k \in \mathbb{N}$. It follows that $x \in E_n$ for infinitely many n, and thus that $x \in \overline{\lim}_n E_n$. This proves the first identity.

Next, suppose that $x \in \underline{\lim}_n E_n$. Then $x \in E_n$ for all but finitely many n, so there is some $k' \in \mathbb{N}$ such that $x \in E_n$ for all $n \geq k'$. It follows that $x \in \bigcap_{n=k'}^{\infty} E_n$, and hence that $x \in \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} E_n$.

Conversely, assume that $x \in \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} E_n$. Then $x \in \bigcap_{n=k'}^{\infty} E_n$ for some $k' \in \mathbb{N}$, which means that $x \in E_n$ for all $n \geq k'$. It follows that $x \in E_n$ for all but finitely many n that is $n \in \lim_{n \to \infty} E_n$.

but finitely many n; that is, $x \in \underline{\lim}_n E_n$.