TEAM6

資料科學導論競別人。

H24064080 黃思媛 E44065020 何子安 H24041066 羅盼寧

outline

資料前處理

嘗試過的模型方法

未來嘗試及改進 的方向

資料前處理

類別型資料

轉換為數字型態 one-hot encoding

切分資料

原訓練資料共8000筆切分為6000筆訓練資料和2000筆測試資料

特徵選擇

去除的特徵

採用的特徵

Surname	CreditScore	Geography	
RowNumber	Gender	Age	
CustomerId	Tenure	Balance	
	NumOfProducts	HasCrCard	
		EstimatedSalary	

XGBoost

CatBoost

Random Forest

DNN

SVM [最佳結果]

XGBoost & CatBoost

1

先選定一個參數後,透過嘗試此參數在不同數值下建立出的模型結果, 記錄下Accuracy Score, Precision Score, F1 score, 選擇最佳的final score作為調整此參數的依據。

2

將已經選定的參數固定,繼續嘗試調整下一個參數。

XGBoost & CatBoost

XGBoost

learning_rate Max_depth subsample colsample_bytree

0.01

5

0.88

0.85

CatBoost

learning_rate Max_depth subsample

0.01

5

0.88

XGBoost

split train data
Label Encoding
未調整參數
learning_rate調整後
max_depth調整後
subsample調整後
colsample_bytree調整後

85.65%
85.75%
87.30%
87.40%
87.55%
87.55%
Accuracy
0.86

0.8725

0.88

Accuracy

	•
Precision	F1 score
68.40%	56.18%
67.47%	57.75%
77.50%	59.42%
78.15%	59.62%
78.19%	60.41%
79.65%	59.64%
Precision	F1 score
0.6615	0.6056
0.7407	0.6107
0.7959	0.6195

score

score

Label Encodin
未調整參數
調整參數後

upload

CatBoost

split train data
Label Encoding
未調整參數
learning_rate調整後
max_depth調整後
subsample調整後

調整參數後

split train data	Accuracy
Label Encoding	87.35%
未調整參數	87.45%
earning_rate調整後	88.15%
max_depth調整後	88.15%
subsample調整後	88.15%
upload	Accuracy
Label Encoding	0.87
	•

0.87

Precision
75.29%
76.06%
79.22%
79.22%
79.22%
Precision
0.6984
0.7119

F1 score

Random Forest

1

一次只設定一種參數,並根據設定之的參數值畫出對應的評估指標值(包含accuracy、precision、f-score),最後使用與網站排行相同計算方式之加權分數找出最佳的參數設定值。

若該模型之加權分數與基本模型之加權分數相比,分數提升較少,代表該參數對於提升模型效果無明顯影響,則後續的探討不列入使用。

2

比較使用多項參數的模型之間的表現結果,找出最佳模型。

range(1, 100, 5)

range(1, 20)

Random Forest

step 1 result

drop parameter: n_jobs、criterion

	parameter	value	model score	induced
0	n_estimators	165	0.7328	0.0161
1	max_depth	12	0.7383	0.0216
2	min_samples_split	17	0.7420	0.0253
3	min_samples_leaf	12	0.7368	0.0201
4	max_features	2	0.7271	0.0104
5	class_weight	{0: 6, 1: 1}	0.7215	0.0048
6	max_samples	628	0.7413	0.0246

可以看出調整
"min_samples_split"
時有最好的表現

step 2 result

Random Forest

5:使用所有第二階段被調整過的參數

	model	асс	precision	f_score	final_score
0	base	0.8675	0.755274	0.5746	0.716672
1	RandomForestClassifier(max_depth=12, n_estimators=165, random_state=6)	0.8735	0.806500	0.5804	0.736200
2	RandomForestClassifier(max_depth=12, min_samples_split=17, n_estimators=165,\n random_state=6)	0.8745	0.802700	0.5878	0.738300
3	RandomForestClassifier(max_depth=12, min_samples_leaf=12, min_samples_split=17,\n n_estimators=165, random_state=6)	0.8705	0.792600	0.5705	0.727100
5	RandomForestClassifier(max_depth=12, max_features=2, max_samples=628,\n min_samples_leaf=12, min_samples_split=17,\n n_estimators=165, random_state=6)	0.8395	0.842100	0.3326	0.637500
4	RandomForestClassifier(max_depth=12, max_features=2, min_samples_leaf=12,\n min_samples_split=17, n_estimators=165, random_state=6)	0.8680	0.814400	0.5448	0.722600
6	RandomForestClassifier(max_depth=12, min_samples_split=17, random_state=6)	0.8710	0.793600	0.5728	0.728500
7	RandomForestClassifier(min_samples_split=17, n_estimators=165, random_state=6)	0.8745	0.805400	0.5865	0.738600
10	RandomForestClassifier(max_samples=628, min_samples_split=17, random_state=6)	0.8680	0.811200	0.5464	0.722300
11	RandomForestClassifier(max_features=2, min_samples_leaf=12, random_state=6)	0.8695	0.827200	0.5477	0.728100
12	RandomForestClassifier(max_features=2, max_samples=628, min_samples_leaf=12,\n random_state=6)	0.8440	0.836400	0.3710	0.652500
13	RandomForestClassifier(max_samples=628, n_estimators=165, random_state=6)	0.8730	0.814300	0.5738	0.735700
14	RandomForestClassifier(max_features=2, max_samples=628, random_state=6)	0.8640	0.813200	0.5211	0.711600
15	RandomForestClassifier(max_features=2, max_samples=628, n_estimators=165,\n random_state=6)	0.8665	0.821600	0.5324	0.719400
16	RandomForestClassifier(min_samples_split=17, random_state=6)	0.8760	0.808000	0.5934	0.742600

Random Forest

	Accuracy	Precision	F1 score	Final score
split train data				
base model	0.8675	0.7553	0.5746	0.7167
final model	0.8760	0.808	0.5934	0.7426
upload				
base model	0.8525	0.6607	?	?
final model	0.88	0.7736	0.6308	0.7484

DNN資料前處理

訓練模型的特徵對其做標準化 (standardization)

對 HasCrCard 與 IsActiveMember 的值從(0,1)換為(-1,1)

對 label(0,1)做 one-hot encoding 為讓模型輸出兩個值

流程中使用 Synthetic Minority
Oversampling Technique (SMOTE)
來處理資料不平衡的方式

DNN

early stopping	settings	metrics	settings	compile	settings
monitor min delta patience verbose model	val_accuracy 0.01 300 1 max	accuracy precision f1-score	none thresholds=0.7 num_classes=2	loss optimizer metrics	binary_crossentropy rmsprop accuracy, precision, f1-score

DNN

dimension of features input layers hidden layers 4 layers (30 each) neurons output layers input layers relu activations hidden layers relu output layers sigmoid 1000 epochs fit 50 batch_size callbacks early_stopping

DNN

- 調整隱藏層數量比調整神經元數量會更能影響DNN的表現
 - https://case.ntu.edu.tw/blog/?p=26340
 - https://zhuanlan.zhihu.com/p/100419971
- 小batch size對DNN的表現會更勝於大batch size
 - https://youtu.be/zzbr1h9sF54
 - https://arxiv.org/abs/1609.04836

SVM

before one-hot encoding

after one-hot encoding

對特徵項做標準化

對特徵項做標準化

kernel = {rbf, linear, poly,
sigmoid, precomputed}

kernel = rbf

training set = $\{6000, 8000\}$

training set = 6000

推測為在切分訓練與測試資料集時所使用的 random_state 參數剛好能將資料切分為對 未知資料所能得到最好表現的分佈

Vote

取所有模型所預測出來的值

2 以模型所預測出來的結果之比例 來決定新一份預測檔案的值

但這樣的作法並沒有「預測」出更好的結果

未來嘗試及改進 的方向

感謝受聽!

大家都辛苦为,祝大家有一個健康的期末 ><

