# Introdução à Inteligência Artificial

João Paulo Aires







# Objetivos

- Busca não-determinística
- Busca Adversária
  - Hill Climbing / Simulated Annealing
- Algorítmos genéticos

# Índice

- 01 → Hill Climbing
- 02 --> Simulated Annealing
- 03 --- Algoritmos Genéticos

**01** →

# Hill Climbing

- É uma técnica de busca informada focada no objetivo;
  - Ela foca no objetivo e n\u00e3o no caminho para o objetivo;
- Também conhecida por **Greedy Local Search** (Ou Busca Local Gulosa)



- O objetivo é alcançar o topo de uma colina, onde a busca terminará;
- A estratégia de busca é a seguinte:
  - Não olhar para frente dos seus vizinhos imediatos do estado atual.

- O objetivo é alcançar o topo de uma colina, onde a busca terminará;
- A estratégia de busca é a seguinte:
  - Não olhar para frente dos seus vizinhos imediatos do estado atual.
  - Não retroceder, porque não possui uma árvore de busca

- O objetivo é alcançar o topo de uma colina, onde a busca terminará;
- A estratégia de busca é a seguinte:
  - Não olhar para frente dos seus vizinhos imediatos do estado atual.
  - Não retroceder, porque não possui uma árvore de busca
  - Escolha aleatoriamente entre o conjunto de melhores sucessores, se existe um.

- O objetivo é alcançar o topo de uma colina, onde a busca terminará;
- A estratégia de busca é a seguinte:
  - Não olhar para frente dos seus vizinhos imediatos do estado atual.
  - Não retroceder, porque não possui uma árvore de busca
  - Escolha aleatoriamente entre o conjunto de melhores sucessores, se existe um.
  - Registrar apenas o estado e o valor de sua função objetivo (global máximo ou global mínimo)

**Busca Hill Climbing** 



Escolha um ponto aleatório no espaço de busca

**Busca Hill Climbing** 



Cheque os vizinhos do estado selecionado.

**Busca Hill Climbing** 



Verifique o melhor e mova-se para o melhor estado.





#### Problema das 4 Rainhas

- Objetivo: Nenhuma rainha pode atacar a outra;
- h = número de pares de rainhas que estão atacando outras



#### **Problema das 4 Rainhas**



#### **Desvantagens**



A one-dimensional state-space landscape in which elevation corresponds to the objective function

**02** →

# Simulated Annealing

#### **Simulated Annealing**

- Mesmo com reinicializações aleatórias
  - A otimização nem sempre melhora (exploit)
  - Às vezes você precisa buscar (explorar)
- Origem: Metalurgia
- Aquecimento e resfriamento repetidos fortalecem a lâmina



#### Algoritmo de meta-heurística

- Se baseia em conceitos simples e "fáceis" de implementar;
- Pode superar limitações de local máxima;
- Pode ser adaptado para problemas alternativos de outras disciplinas



Algoritmo de meta-heurística



Algoritmo de meta-heurística



- $\Delta E = E_{atual} E_{próximo} < 0$ ; probabilidade 1;
- $\Delta E = E_{atual} E_{próximo} > 0$ ; probabilidade:
  - P(Aceitar próximo) =  $e^{\Delta E/T}$ ;
  - T = temperatura no tempo atual





















# **03** →

# Algoritmos Genéticos

#### **Algoritmos Genéticos**

- População de indivíduos
- Mutação busca local N(x)
- Cruzamento a população detém informações
- Gerações iterações de melhoria



#### **Algoritmos Genéticos**

- Exemplo: problema das n-rainhas
- Caractere i refere-se à linha da rainha i;



#### **Terminologia**

- Gene caracteres na string que representa o estado
- Cromossomo blocos de genes na cadeia em um estado
- População vizinhos na busca
- Seleção, cruzamento, mutação

#### **1-point Crossover**

- Escolha um ponto aleatório nos dois pais
- Pais separados neste ponto de cruzamento
- Crie filhos trocando partes



#### n-point Crossover

- Escolha n pontos de cruzamento aleatórios
- Dividir ao longo desses pontos
- Cole as peças, alternando entre os pais



#### Mutação

- Altere cada gene independentemente com uma probabilidade Pm
- Pm é chamado de taxa de mutação
- Normalmente entre 1/tamanho\_pop e 1/tamanho\_cromo



#### **Crossover vs Mutação**

- Exploração: Descobrir áreas promissoras no espaço de busca, ou seja,
  obter informações sobre o problema
- Exploitation: Otimização dentro de uma área promissora, ou seja, usando informações
- Existe cooperação e competição entre eles
- O crossover é exploratório, dá um grande salto para uma área em algum lugar "entre" duas áreas (pai)
- A mutação é exploitative, cria pequenas diversões aleatórias, permanecendo assim perto (na área) do pai

#### **Crossover vs Mutação**

- Somente o crossover pode combinar informações de dois pais
- Somente a mutação pode introduzir novas informações (alelos)
- O crossover não altera as frequências alélicas da população
- Para atingir o nível ideal, muitas vezes você precisa de uma mutação de "sorte"

#### **Exemplo de Algoritmo Genético**



Mar I/O

https://www.youtube.com/watch?v=qv6UVOQ0F44