

목차

- 1. 혼잡도를 예측하는 모델 구현
 - 혼잡도의 개념
 - 시각화
 - 변수선택 / 추가 변수 고려
 - 모델링
- 2. 혼잡도와 미세먼지 사이의 관계
 - 데이터 교체 및 추가
 - 시각화
 - 원인 분석
 - 유의성 검증

연구 과제 1

혼잡도를 예측하는 모델 구현

호답도의 개념 Congestion = Passengers/Capacity×100

	#Passenger (person)	Congestion (%)	Passenger distribution in Subway
	24	, , ,	50% sit
	48	38.7	100% sit
	80	64.5	100% sit , 50% handle
	96	77.4	100% sit, 50% handle, 2 person on each door
	112	90.3	100% sit, 100% handle
ightharpoonup	124	100.0	100% sit, 100% handle, 2 person on each door
	158	127.4	100% sit, 100% handle, 2 person on each
			door, 1 line in middle
	238	1919	100% sit, 100% handle, 10 person on each
			door, 1 line in middle
	272	219.4	100% sit, 100% handle, 10 person on each
			door, 2 line in middle, the passengers are in
			close contact with each door
	300	241.9	subway saturation. Failure some passengers
			boarding

혼잡도 시각화

변수 선택

변수 : 조사일자, 호선, 역 번호, 역명, 구분, 시간별 혼잡도

하루 평균 혼잡 도

추가 변수 고려

Day_of_the_week	0.000000
National_Holiday	0.000000
Season	0.79930
Temp(Avg)	0.60458
Temp(Min)	0.69456
Temp(Max)	0.56700
Prec	0.61691
Line_Cnt	0.000000
Bus_Terminal	0.000000
Bus_Cnt	0.000000

승하차 인원과의 연관성 유의확률

Modeling

독립변수 X: 조사일자, 구분, 호선, 버스터미널 여부

종속변수 Y: 하루 평균 혼잡도

비교 모델: 선형회귀 모형, 랜덤 포레스트 모형

Modeling

	MSE
선형회귀	72.105
→ 랜덤 포레스트	68.459

연구 과제 2

혼잡도와 미세먼지 사이의 관 계

최신 데이터 교체

공개일자 2014.03.28 최신수정일자 2017.12.15

4575_지하역사실내공기질측정결과(1~8호선,07년~<mark>16년)</mark>zip

0.3

2017.12.15

번호 : 23 | 등록일 : 2021·07-12 | 작성자 : 장순열

지하역사 초미세먼지 확정자료(4, 5월)

서울특별시_시간별 (초)미세먼지

서울특별시 대기질 자료(초미세먼지, 미세먼지) 입니다. 2008년 1월부터 2021년 5월까지의 자료로 자치구별 시간 평균 자료(서울시 평균 자료 포함)

내부 vs 외부 미세먼지 비교

내부 vs 외부 미세먼지 비교

정말 혼잡도가 원인일까?

정말 혼잡도가 원인일까?

한 기류형성, 환기에 의한 내외 공기의 교환, 미세먼지농도 차이에 의한 확산 등을 꼽을 수 있다. 그러나 <그림 4>에서와 같이 각 장소에서의 미세먼지농도 변화 패턴이 열차운행빈도 변화 패턴과 상관관계가 높은 것으로 나타나 열차풍에 의한 요인이 가장 큰 것으로 보이며,

그렇다면 지하 역사 안에서의 실내 공기질 상태는 어떻게 파악할 수 있을까? 앞서 언급했듯이 지하철에서 미세먼지를 발생시키는 원인은 차량의 운행이다. 따라서 차량의 운행 횟수와 실내 공기질과는 상관관계가 존재할 것이다. 한편, 기계설비 운영 상태 데이터를 활용하여 실외공기와 실내공기가 교환되는 환기 정도를 파악할 수 있다. 우리는 오랜 기간 지하철 역사에서 실내 공기질을 측정해오고 있으며 지금도 미세먼지 농도와 실내오염도 등을 꾸준히 모니터링하고 있다. 이러한 데이터를 기계학습을 위한 참값 데이터로 활용할 수 있다.

Features: 대기오염 정보, 기상 정보, 교통량 정보, 차량 운행 횟수, 공조 환기 설비 운영 정보 등

Labels: 지하 역사 미세먼지 농도, 지하 역사 초미세먼지 농도

정말 혼잡도가 원인일까?

Difference fine dust

혼잡도는 정말 유의하지 않을까?

혼잡도와 운행 빈도의 관계성

혼잡도와 운행 빈도의 관계성

혼잡도와 운행 빈도의 관계성

Thank you