

CPSC 481 Artificial Intelligence

Dr. Mira Kim Mira.kim@fullerton.edu

What we will cover this week

- Decision Trees
- Case Study on Decision Trees

Overview of Decision Tree

- Goal of Decision Tree
 - To make a decision/prediction based on input by splitting the data into subsets based on the value of input features
- Input
 - New observation/data point
- Output
 - Class labels or values
- Usage of Decision Tree
 - Supervised learning such as Classification and regression
 - Capturing non-linear relationships

Elements of Decision Tree

- Root Node
 - Node dividing the whole dataset into two or more sets
- Decision Node
 - Node splitting an input dataset based on some criteria
- Leaf Node (Terminal Node)
 - Class, Result of Classification

 Decision Node

 Decision Node

 Leaf Node

 Leaf Node

 Leaf Node

 Leaf Node

 Leaf Node

Process of Decision Tree

- **1. Model Training**: Construct Decision Tree with a training dataset, where it learns to make decisions based on the features and the target outcome
- 2. New Data Point: After the model has been trained, you can input a new observation
- **3. Prediction**: Decision tree uses the values of the features in the new data point to navigate through the tree until it reaches a leaf node
- **4. Output**: The prediction for the new data point, which could be a class label in classification or a numerical value in regression

Building and Using Decision Tree

- Learning Stage
 - Building a Decision Tree with Training Set
- Categorizing Stage
 - Classifying observation with Decision Tree

Examples of Decision Tree

- Medical Domain
 - Predicting tumor cells as Benign or Malignant
- Finance Domain
 - Classifying credit card transactions as Legitimate or Fraudulent
- Media Domain
 - Categorizing news stories as finance, weather, entertainment, sports, etc.
- Chemical Domain
 - Classifying chemical compounds as hazardous or non-hazardous

Features:

10/01/2023, 51, 5'8", 170lbs, 0, 118, 80

Example 2) How many miles will I run?

Features:

Labels y:

In-class exercise) Predicting home energy usage

- Design a decision tree using the following information
 - For the initial split, Square Footage may be strongly correlated with energy usage since larger homes tend to consume more energy
 - Assume more residents likely lead to higher energy usage
 - Assume older homes might be less energy-efficient
- Use the following features and labels

Features

- Square Footage: the size of the home
- Age of Home: number of years since the home was built
- Number of Residents: number of people living in the home
- Average Outdoor Temperature: the average temperature outside the home

Labels y:

Decision Tree Algorithms

- CART (Classification And Regression Tree)
 - Algorithm for Generating decision trees for classification and regression
 - Typically creates binary trees
- ID3 (Iterative Dichotomiser 3)
 - Algorithm for Generating n-ary trees for classification
 - Uses entropy (measure of unpredictability) and information gain to make the best decision at each node
- C5.0
 - Improved Algorithm from ID3
 - Fast and uses less memory
 - Can handle both continuous and discrete features

Issues in Building Decision Tree

- Greedy Strategy
 - Split the records based on an attribute test that optimizes certain criterion.
- Determine how to split the instances
 - How to specify the attribute test condition?
 - How to determine the best split?
- Determine when to stop splitting

How to Specify Test Condition?

- Depends on attribute types
 - Nominal
 - To consist of discrete values and <u>independence</u> between values
 - i.e., Colors, Countries, Zip codes
 - Splits can be multi-way (one for each category) or binary
 - Ordinal
 - To consist of discrete values and have ordered relationship between values
 - i.e., Lecture Grade, Cancer Stage
 - Splits are often binary and should preserve the order of the categories
 - Continuous
 - To consist of continuous values
 - i.e., Height, weight, age
 - Binary splits are based on a threshold that divides the instances into
 - those with attribute values less or equal
 - those with greater values
- Depends on number of ways to Split
 - 2-way Split ^ℂ Binary Tree
 - Multi-way Split ^ℂ N-ary Tree

Splitting Based on Nominal Attributes

- Multi-way split
 - Use as many partitions as distinct values.

- Binary split
 - Divides values into two subsets.
 - Need to find optimal partitioning.

Splitting Based on Ordinal Attributes

- Multi-way Split
 - Use as many partitions as distinct values. Small

- Binary Split
 - Divides values into two subsets.
 - Need to find optimal partitioning.

Splitting Based on Continuous Attributes

Binary Split

Multi-way Split

Measures of Node Impurity

- Gini impurity probability of misclassifying a randomly chosen element in a set
- Entropy measures the amount of uncertainty or randomness in a set

Gini impurity

Which set is more diverse/impure?

Gini = 0.42 Gini = 0.7

Gini Index = Probability of picking two distinct elements

		Same		
		Different		
		Different		
		Same		
		Same		
		Different		
		Same		
))	Same		
		Same		

Different: 4 out of 10

Different: 7 out of 10

Decision Tree - Case Study

Problem Statement: Iris Classifier

- Purpose
 - This program is to classify 'Iris', blue-eyed grass
- Species of Iris
 - Setosa
 - Versicolor
 - Virginica

Iris Setosa

Iris Versicolor

Iris Virginica

Problem Statement: Iris Classifier

- How to Distinguish Iris Species?
 - Length and Width of Sepal
 - Length and Width of Petal

Dataset of Iris

- Iris Dataset is available for research.
 - A total of 150 Irises
 - 50 for Setosa
 - 50 for Versicolor
 - 50 for Virginica
- Attributes for Iris Instances
 - SepalLengthCm
 - SepalWidthCm
 - PetalLengthCm
 - PetalWidthCm
 - Species (as Label)

Classes	3
Samples per class	50
Samples total	150
Dimensionality	4
Datatype	real, positive

Dataset of Iris

Dataset of 1115					
Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	Petal Width Cm	%pecies
1	5.1	3.5	1.4	0.2	Iris-setosa
2	4.9	3	1.4	0.2	Iris-setosa
3	4.7	3.2	1.3	0.2	Iris-setosa
4	4.6	3.1	1.5	0.2	Iris-setosa
5	5	3.6	1.4	0.2	Iris-setosa
51	7	3.2	4.7	1.4	l/is-versicolor
52	6.4	3.2	4.5	1.5	Iris-versicolo
53	6.9	3.1	4.9	1.5	Iris-versicolor
54	5.5	2.3	4	1.3	Iris-versicolor
55	6.5	2.8	4.6	1.5	Iris-versicolor
56	5.7	2.8	4.5	1.3	ris-versicolor
101	6.3	3.3	6	2.5	Iris-virginica
102	5.8	2.7	5.1	1/9	Iris-virginica
103	7.1	3	5.9	2.1	Iris-virginica
104	6.3	2.9	5.6	1 8	Iris-virginica
105	6.5	3	5.8	2.2	Iris-virginica

Distribution of Iris Instances

- Red for Setosa
- Orange for Vesicolor
- Gray for Virginica

Preparing Training and Test Sets

80% for Training Set

20% for Test Set

[[1.4 0.2]	[1.3 0.3]	[1.4 0.2]	[4.7 1.5]	[1.4 0.2]
[4.5 1.7]	[1.5 0.4]	[5.1 1.9]	[1.6 0.2]	[4.9 1.5]
[4.8 1.4]	[4. 1.3]	[1.3 0.2]	[4.3 1.3]	[1.5 0.2]]
[1.5 0.1]	[4.6 1.4]	[4. 1.3]	[5.1 2.]	
[4. 1.3]	[1.5 0.4]	[5. 2.]	[1.9 0.4]	
[5. 1.9]	[5.4 2.1]	[1.9 0.2]	[1.1 0.1]	
[4.2 1.3]	[5.4 2.3]	[5.1 1.6]	[5.7 2.1]	
[5.1 1.5]	[3.5 1.]	[4.4 1.2]	[6.9 2.3]	
[6.1 2.3]	[3.9 1.4]	[6.7 2.]	[5.5 2.1]	
[6.7 2.2]	[5.7 2.5]	[4.5 1.5]	[4.4 1.3]	
[6.6 2.1]	[4.8 1.8]	[4.6 1.5]	[4.8 1.8]	
[4.5 1.5]	[1.4 0.3]	[5.3 2.3]	[1.7 0.4]	
[3.5 1.]	[4.7 1.4]	[1.5 0.2]	[5.9 2.3]	
[4.1 1.]	[1.3 0.4]	[1.7 0.5]	[4.2 1.3]	
[4. 1.2]	[6.1 1.9]	[1.4 0.2]	[6. 1.8]	
[1.6 0.2]	[1.4 0.2]	[5. 1.5]	[5.9 2.1]	
[1.5 0.3]	[1.4 0.3]	[3.9 1.2]	[1.5 0.2]	
[5.8 1.8]	[5.1 1.9]	[5.8 1.6]	[4.3 1.3]	
[5.5 1.8]	[1.2 0.2]	[3.8 1.1]	[4.7 1.2]	
[1.5 0.4]	[1.3 0.3]	[5.2 2.3]	[4.2 1.2]	
[4.9 1.5]	[1.4 0.1]	[4.9 1.8]	[4.1 1.3]	
[1.6 0.2]	[1.4 0.3]	[4.5 1.6]	[4.4 1.4]	
[6.4 2.]	[3.6 1.3]	[1.5 0.2]	[1.5 0.2]	
[1.6 0.2]	[6. 2.5]	[5.1 2.4]	[5.6 2.1]	
[3.7 1.]	[4.5 1.3]	[4.5 1.5]	[4. 1.]	
[5.6 1.8]	[1.4 0.2]	[1.6 0.6]	[4.2 1.5]	
[5.3 1.9]	[5.1 1.8]	[5.7 2.3]	[1.6 0.2]	
[1.6 0.4]	[4.1 1.3]	[1.5 0.1]	[1.4 0.1]	
[4.9 2.]	[5.6 2.4]	[6.1 2.5]	[1.3 0.2]	
, 2.]	[5.0 2.4]	[3. 1.1]		

[[1.3 0.2] $[4.9 \ 1.8]$ [3.3 1.] [3.3 1.] $[1.3 \ 0.2]$ [4.7 1.6] [1. 0.2] $[1.7 \ 0.2]$ [5.2 2.] $[4.5 \ 1.5]$ [6.3 1.8] $[5.1 \ 2.3]$ [5.8 2.2] $[4.5 \ 1.5]$ $[1.5 \ 0.2]$ [1.4 0.2] $[1.2 \ 0.2]$ [3.9 1.1] $[4.7 \ 1.4]$ [4.8 1.8] [1.5 0.2] $[5.6 \ 2.4]$ [4.6 1.3] [5.6 1.4] [5.6 2.2][5. 1.7] $[4.4 \ 1.4]$ $[1.7 \ 0.3]$ [5.5 1.8] [1.4 0.2]]

Library

- Scikit-Learn
 - ML Library for Python
 - DecisionTreeClassifier class
- Hyperparameters
 - max_depth: '2'
 - criterion: 'gini'
 - splitter: 'best'
 - min_samples_split: 2
 - min_samples_leaf: 1
 - min_weight_fraction_leaf: 0.0
 - max_features: None
 - max_leaf_nodes: None
 - min_impurity_decrease: 0.0

Step 1. Loading Dataset

- To load iris dataset from Scikit-Learn
 - To use load_iris() method
 - The iris dataset is provided from scikit-learn library as default

```
from sklearn.metrics import classification_report, accuracy_score
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from joblib import dump, load

# To load Iris Dataset
data_iris = load_iris()
```


Step 2. Splitting Dataset

- To split the dataset as Training set and Test set
 - To apply petal length and petal width as features
 - Values for Training Set
 - X_train, y_train
 - Values for Test Set
 - X_test, y_test

```
X = data_iris.data[:, 2:]  # To set petal length and petal width to features
y = data_iris.target  # To set labels

# To split dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)
```


Step 3. Training Model

- To train Decision Tree Model
 - Code
 - To use fit() method

```
iris_classifier = DecisionTreeClassifier(criterion="gini", max_depth=2) # To define classifier object
iris_classifier.fit(X_train, y_train) # To train model using training set
```

- To save and Load the model
 - Code

```
dump(iris_classifier, "iris_classifier.joblib")  # To save trained model
iris classifier = load("iris classifier.joblib")  # To load saved model
```

Result

iris_classifier.joblib 10/22/2020 9:43 PM JOBLIB File 2 KB

Step 3. Training Model

- To visualize the generated Decision Tree
 - To use graphviz library

Step 4. Predicting Test Set

- Code to predict with test set
 - To use predict() method in trained model object
 - To predict labels for training set and test set

```
y_pred_train = iris_classifier.predict(X_train)
y pred test = iris classifier.predict(X test)
```


Step 5. Evaluating Model

Use the evaluation methods

```
print("Accuracy for Training Set: ", round(accuracy_score(y_train, y_pred_train),2))
print("Accuracy for Test Set: ", round(accuracy score(y test, y pred test),2))

print(classification_report(y_train, y_pred_train))
print(classification_report(y_test, y_pred_test))
```

Step 5. Evaluating Model

- To compare the accuracy
 - Accuracy of Training set
 - 0.97 Accuracy for Training Set: 0.97
 - Accuracy of Test set
 - 0.93 Accuracy for Test Set: 0.93
- To check precision (accuracy of positive predictions), recall (true positive rates), and f1-score (balance of precision and recall)

Performance for Training Set

	precision	recall	f1-score	support
0	1.00	1.00	1.00	40
1	0.93	0.97	0.95	40
2	0.97	0.93	0.95	40
accuracy	•		0.97	120
macro avo	0.97	0.97	0.97	120
weighted avo	0.97	0.97	0.97	120

Performance for Test Set

	precision	recall	f1-score	support
0	1.00	1.00	1.00	10
1	0.90	0.90	0.90	10
2	0.90	0.90	0.90	10
accuracy			0.93	30
macro avg	0.93	0.93	0.93	30
weighted avg	0.93	0.93	0.93	30

Step 6. Fine-Tuning Model

- Comparing criterion='gini' and criterion='entropy'
 - The results are same
- Comparison by the max_depth
 - The performance of model is best when max_depth is 3.

Step 6. Fine-Tuning Model

- To check max_depth from 1 to 9
 - max_depth=4
 - overfitted
 - max_depth=3
 - better performance than max_depth of 2

References

- Russel and Norvig, Artificial Intelligence: A Modern Approach, 3rd edition, Prentice Hall, 2010.
- https://tamarabroderick.com/files/ml_6036_2020_lectures/ broderick_lecture_12.pdf

