55

that in Fig. 2.5- before "Fig. 4 is a schematic", and change "Fig. 4 is a schematic" to --Fig. 5 is a schematic--; and

line 12, change "Fig. 5" to --Fig. 6--.

IN THE CLAIMS:

Amend Claim 9 as follows:

Add the following new Claims 10 - 13:

 \sum_{3}^{1}

1

2

7

8

9

10

11

12

13

A Miller-compensated amplifier according to Claims, wherein said capacitor is connected such that a left-hand-plane zero is provided in said compensated amplifier.

1	
2	
3	
1	
2	
3	
4	
5	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	

18

:7 A.	A compensated amplifier according to Claim 16, wherein said
left-hand-p	lane zero is selected so as to optimize compensation for said
compensate	ed amplifier.

Δ

A compensated amplifier according to Claim, wherein said first amplifier stage comprises a diode connected transistor and a ratioed transistor connected together forming a current mirror, and wherein said diode connected transistor senses said capacitive current at said internal node and said ratioed transistor amplifies said capacitive current.

A Miller-compensated amplifier, for amplifying a differential input signal applied to an amplifier input node to provide an output signal at an amplifier output node, comprising:

a differential amplifier, for converting the voltage of said differential input signal to differential input currents;

a bias voltage source;

a first FET and a second FET;

first and second current mirrors each mirroring one of said differential input currents to one of said first and said second FETs, said first current mirror comprising a third FET and a fourth FET having a common gate connection node, and said second current mirror comprising a fifth FET and a sixth FET having a common gate connection node;

a third current mirror providing current to said first FET and to said second FET;

a seventh FET sensing, at a gate thereof, a voltage on one of said first FET and said second FET, and having a source thereof connected to a voltage source;