HW-1

Chi Zhang

09/16/2015

Problem - 1

a

$$N = \frac{\pi w_r^2}{d_e^2} - \frac{2\pi w_r}{\sqrt{2}d_e} = \pi (\frac{w_r}{d_e})^2 - \sqrt{2}\pi \frac{w_r}{d_e} = \pi \frac{w_r}{d_e} (\frac{w_r}{d_e} - \sqrt{2})$$
 (1)

Where N is the number of useful dies on the wafer in terms of w_r and d_e .

b

With result from a, it is clear that N > 0. Thus $\frac{w_r}{d_e} > \sqrt{2}$.

 \mathbf{c}

Let $R_{wd} = \frac{w_r}{d_e}$. Thus

$$N = \pi R_{wd} (R_{wd} - \sqrt{2}) \tag{2}$$

 \mathbf{d}

As die yield formula is not allowed to use in HW-1. I could only assume that dies on the wafer with defect is ND-d, Thus wafer yield can be calculated as following:

$$Y = N(1 - D_d) = \pi \frac{w_r}{d_e} (\frac{w_r}{d_e} - \sqrt{2})(1 - D_d)$$
 (3)

Problem - 2

T:	C-4t:
Linear opeartion	Saturation operation
$\frac{\partial I_D}{\partial V_d} = \mu_n C_{OX}(\frac{W}{L})(V_{gs} - V_T - V_d)$	$\frac{\partial I_D}{\partial V_d} = \frac{1}{2} \lambda \mu C_{OX}(\frac{W}{L}) (V_{gs} - V_T)^2$
3 - 10 ⁵	3.5
	≈ 3
0 -5 0 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
V_{ds}	V_{ds}
0.8	150 -
≈ 0.4	
0.2	50 -
0 5 10	0 5 10
V_{gs}	V_{gs}

Problem - 3

While $V_{gs} < V_T$,

$$I_{DS} = I_0 exp\left(\frac{q(V_{gs} - V_T)}{nk_B T}\right) \left(1 - exp\left(-\frac{qV_{ds}}{k_B T}\right)\right) \tag{4}$$

As $V_{ds} >> k_B T/q$

$$I_{DS} = I_0 exp\left(\frac{q(V_{gs} - V_T)}{nk_B T}\right) (1 - exp(-V_{ds}))$$
(5)

