

Introduction to Electronics

An introduction to electronic components and a study of circuits containing such devices.

Week 2: Op Amps Part 1

Introduction and Ideal Behavior

Dr. Bonnie H. Ferri
Professor and Associate Chair
School of Electrical and
Computer Engineering

Introduce Op Amps and examine ideal behavior

Lesson Objectives

- Introduce Operational Amplifiers
- Describe Ideal Op Amp Behavior
- Introduce Comparator and Buffer Circuits

Operational Amplifiers (Op Amps)

Specialized circuit made up of transistors, resistors, and capacitors fabricated on an integrated chip

Uses:

- Amplifiers
- Active Filters
- Analog Computers

Op Amps in Circuits

- Active Element: has its own power supply
- Symbol ignores the +/- V_s in the symbol since it does not affect circuit behavior

Open Loop Behavior

 $v_0 = A(v_+ - v_-)$

Comparator Circuit

$$V_{o} = \begin{cases} V_{s} & \text{if } v_{in} > 0 \\ -V_{s} & \text{if } v_{in} < 0 \end{cases}$$

Example

Ideal Op Amp Behavior

$$i_{+} = i_{-} = 0$$

 $v_{+} - v_{-} = 0$

Buffer Circuit

$$V_{in} = V_{o}$$

Summary

- Op amps are active devices that can be used to filter or amplify signals linearly
- Ideal op amps:

$$i_{+} = i_{-} = 0$$

 $v_{+} - v_{-} = 0$

Circuits: comparator and buffer

Remainder of Module 2: Op Amps

- Buffer Circuit
- Basic Amplifier Configurations
- Differentiators and Integrators
- Active Filters

Buffer Circuits

Dr. Bonnie H. Ferri
Professor and Associate Chair
School of Electrical and
Computer Engineering

Demonstrate buffer circuit behavior

Lesson Objectives

- Introduce physical op amps in circuits
- Examine Buffer Circuit behavior

Buffer Circuit

Use to boost power without changing voltage waveform

Example: Without Buffer

Physical Op Amps

$$V_s = 15V$$

Signal	PIN
V_	2
V ₊	3
-V _s	4
V_{o}	6
+V _s	7

Example: With Buffer

Example: With Buffer

Summary

- Buffers boost the power without changing the voltage waveform
- Demonstrated physical op amp circuits

Basic Op Amp Amplifier Configurations

Dr. Bonnie H. Ferri
Professor and Associate Chair
School of Electrical and
Computer Engineering

Introduce Inverting and Non-Inverting Amplifiers, Difference and Summing Amplifiers

Lesson Objectives

- Introduce
 - Inverting and Non-Inverting Configurations
 - Difference and Summing Configurations
- Introduce the Gain of a circuit

Non-Inverting Amplifiers

$$V_o = \frac{R_2 + R_3}{R_3} V_{in}$$

$$V_0 = GV_{in}$$
 Gain: $G = \frac{R_2 + R_3}{R_3}$

Non-Inverting Amplifier Example

- Since,G > 1, the input is amplified
- If G < 1, the input is attenuated

Inverting Amplifier

$$V_{o} = -\frac{R_{f}}{R_{1}}V_{in}$$

$$V_o = GV_{in}$$

Inverting Amplifier Example

$$R_1 = 1000\Omega, R_f = 2000\Omega$$

- If,G > 1, the input is amplified
- If G < 1, the input is attenuated

Difference Circuit

$$V_0 = \frac{R_F}{R_1} (V_2 - V_1)$$

Difference Circuit

$$V_0 = \frac{R_F}{R_1} (V_2 - V_1)$$

Summing Amplifier

$$V_{0} = G_{1}V_{1} + G_{2}V_{2}$$

$$G_{1} = -\frac{R_{F}}{R_{1}} \quad G_{2} = -\frac{R_{F}}{R_{2}}$$

Summary

- Gain: $V_o = GV_{in}$
- Amplifier Circuit Configurations
 - Non-Inverting Amplifier
 - Inverting Amplifier
 - Difference Amplifier
 - Summing Amplifier

Differentiators and Integrators

Professor and Associate Chair School of Electrical and Computer Engineering

Introduce Integrating and Differentiating Op Amp Circuits

Lesson Objectives

- Introduce Differentiators and Integrators
- Demonstrate the performance of both circuits on an oscilloscope

Differentiator Circuit

$$V_{o} = -RC \frac{dV_{in}}{dt}$$

$$i = C \frac{dV_c}{dt} V_c$$

Differentiator Circuit

$$V_{o} = -RC \frac{dV_{in}}{dt}$$

Derivation:

1. KVL:
$$V_{in} = V_c + Ri + V_o$$

2.
$$V_{in} = V_c$$

3.
$$V_o = -Ri = -RC(dV_{in} / dt)$$

Differentiator Example

Results

$$V_{o} = -RC \frac{dV_{in}}{dt}$$

Integrator Circuit

$$V_{o} = \frac{-1}{RC} \int_{0}^{t} V_{in} dt$$

$$i = C \frac{dV_c}{dt} V_c$$
 $V_c = \frac{1}{C} \int_0^t i dt$

Integrator Circuit

$$V_{o} = \frac{-1}{RC} \int_{0}^{t} V_{in} dt$$

$$i = C \frac{dV_c}{dt} V_c$$
 $V_c = \frac{1}{C} \int_0^t i dt$

Derivation:

For t<0:
$$V_{in} = iR$$
 and $V_{o} = 0$

For t>0:
$$V_{in} = iR$$
 $i = V_{in}/R$

$$V_{in} = iR + V_c + V_o$$

$$V_o = -V_c = -1/C \int_0^t V_{in}/R dt$$

Integrator Example

Results

$$V_{o} = \frac{-1}{RC} \int_{0}^{t} V_{in} dt$$

Summary

Differentiator and Integrator Op Amp circuits examined

Active Filters

Professor and Associate Chair School of Electrical and Computer Engineering

Introduce active filters and show different types of filters

Lesson Objectives

Introduce active filter circuits

Analog Filters

Quiz

$$V_{in} = 1 + \cos(10(2\pi t)) + \cos(100(2\pi t))$$

$$V_{\text{out}} = 0.45\cos(10(2\pi t) + \theta_1) + 0.97\cos(100(2\pi t) + \theta_2)$$

Summary of RC and RLC (Passive) Filters

RC Highpass:

RLC Lowpass:

Limitations of RLC Passive Filters

Depletes power

No isolation

Active Filters

Active – has its own power supply

- Most common active filters are made from op amps
- Provide isolation

Summary

- An analog filter is a circuit that has a specific shaped frequency response
- A active filter is made of op amps and has its own power supply.
 Advantages over RLC passive filters:
 - Provides isolation (cascade filters)
 - Boosts the power
 - Can provide sharper roll-off