Lokalizacja punktu

Lokalizacja punktu na płaszczyźnie

Ogólna definicja problemu:

<u>Dane</u>: poligonowy podziału płaszczyzny (podział planarny) S

Należy go przetworzyć (zapisując wyniki w odpowiedniej strukturze danych) tak, aby umożliwić efektywne osiągnięcie celu.

<u>Cel:</u> odszukanie wielokąta (ściany) zawierającego zadany punkt.

czas odpowiedzi na zapytanie o punkt będzie zależeć od rozmiaru struktury i wyboru metody jej konstrukcji

Lokalizacja punktu na płaszczyźnie

Założenia

- "rozsądna" reprezentacja podziału planarnego (np. w postaci grafu krawędzi i wierzchołków)
- zadany punkt leży wewnątrz jednej ze ścian
 (łatwo rozszerzyć algorytm o specjalne przypadki)

Oczekiwania

- złożoność pamięciowa: O(n)
- złożoność czasowa lokalizacji: O(log n)
- złożoność czasowa konstrukcji: O(n log n)

Ograniczony podział można umieścić w odpowiednio dużym wielokącie wypukłym o małej liczbie boków.

Podział planarny PSLG –(planar straight line graph),

Struktura danych: podwójnie łączona lista krawędzi

Każda krawędź jest zastępowana poprzez dwie półkrawędzie (bliźnięta)

Podział planarny podwójnie łączona lista krawędzi

- wierzchołek
 - √ współrzędne
 - √ incydentna półkrawędź

- półkrawędź
 - √ 3 krawędzie Twin(e), Next(e), Prev(e)
 - √ wierzchołek Origin(e)
 - ✓ ściana IncidentFace(e)
- ściana
 - ✓ półkrawędź z brzegu obszaru
 - ✓ półkrawędź z każdej ściany wewnątrz

Lokalizacja punktu na płaszczyźnie

Metody rozwiązania problemu:

- 1. Metoda warstwowa
- 2. Metoda trapezowa
- 3. Metoda doskonalenia triangulacji
- 4. Metoda separatorów

Metoda warstwowa

Konstrukcja struktury:

Podzielić przestrzeń na warstwy równoległymi prostymi przechodzącymi przez wierzchołki podziału

Metoda warstwowa

Lokalizacja punktu:

Stosując przeszukiwanie binarne znaleźć:

warstwę zawierającą dany punkt,

 odpowiednią część warstwy zawierającą dany punkt.

Określić obszar odpowiadający znalezionej części warstwy.

Metoda warstwowa

- złożoność czasowa wyszukiwania O(log n)
- złożoność pamięciowa pesymistycznie O(n²)
- złożoność konstrukcji struktury O(n²)

Zatem cel:

poszukać innego rozdrobnienia S, które:

- > łatwiej wykonuje zapytanie o położenie punktu
- ma złożoność pamięciową niewiele większą od początkowego podziału S

Mapa trapezowa

Mapa trapezowa T(S) jest podziałem S na wielokąty wypukłe (trapezy lub trójkąty) otrzymanym przez poprowadzenie dwóch rozszerzeń (odcinków) pionowych z każdego końca odcinka w S.

Rozszerzenia kończą się, gdy napotkają inny odcinek S lub brzeg prostokąta.

Mapa trapezowa

Elementy struktury – trapezy lub trójkąty

Mapa trapezowa

- Reprezentacja w postaci zbioru odcinków S={s₁,s₂,...,s_n}
 - odcinki nie przecinają się, poza ewentualnie wierzchołkami

- Dla uproszczenia zakładamy położenie ogólne:
 - żaden odcinek nie jest pionowy
 - wierzchołki żadnych dwóch odcinków nie mają takiej samej współrzędnej x (poza końcami połączonych odcinków)

Bokiem ściany Δ w T(S) jest odcinek o maksymalnej długości zawarty w brzegu ściany

Każdy element mapy (ściana, trapez) posiada

- jeden lub dwa boki pionowe
- dokładnie dwa boki "poziome" (niepionowe)

Mapa trapezowa T(S) zbioru S o *n* odcinkach w położeniu ogólnym zawiera co najwyżej 6*n*+4 wierzchołków i co najwyżej 3*n*+1 trapezów.

- Wszystkie boczne krawędzie trapezów są pionowe
- Każdy trapez jest definiowany przez cztery elementy podziału
 - odcinek dolny: bottom(△)
 - odcinek górny: top(△)
 - wierzchołek lewy: leftp(△)
 - wierzchołek prawy: rightp(△)

Przypadki dla lewego boku:

Sąsiedztwo

- dwa trapezy są sąsiadami wtedy i tylko wtedy, gdy mają wspólną krawędź pionową
- każdy trapez ma co najwyżej czterech sąsiadów

Struktura danych

- podwójnie łączona lista krawędzi
- albo <u>prościej</u> tylko powiązania sąsiedzkie
 - wierzchołki odcinków w S są reprezentowane przez ich współrzędne
 - odcinki w S są reprezentowane przez dwa wierzchołki
 - każdy trapez ∆ mapy T(S) ma wskaźniki do
 - bottom(Δ), top(Δ)
 - leftp(Δ), rightp(Δ)
 - (co najwyżej) czterech sąsiadów

Randomizowany algorytm przyrostowy konstrukcji T(S)

Dane wejściowe:

zbiór odcinków $S=\{s_1,s_2,...,s_n\}$ w położeniu ogólnym

Wynik:

mapa trapezowa T(S) i struktura przeszukiwań D dla T(S)

Wstęp

- wyznaczenie losowej permutacji (s₁,s₂,...,s_n) dla zbioru odcinków S
- inicjalizacja struktury danych dla prostokąta zewnętrznego

Randomizowany algorytm przyrostowy konstrukcji T(S)

Na etapie *i* – wstawienia odcinka s_i:

utworzone T_{i-1} i D_{i-1}

- Znajdź zbiór $\Delta_0, \Delta_1, \ldots, \Delta_k$ trapezów przeciętych przez s_i
- Usuń $\Delta_0, \Delta_1, \ldots, \Delta_k$ i zastąp je przez nowe trapezy
- Uaktualnij T_i oraz D_i .

- Wstawienie s_i
 - s_i może przecinać kilka trapezów z T(S_{i-1})

- Wstawienie s_i
 - każdy trapez może zostać podzielony na maksymalnie cztery trapezy

- Wstawienie s_i
 - niektóre trapezy mogą zostać połączone

- Strefa dla s_i
 - strefę dla s_i w $T(S_{i-1})$ tworzą wszystkie trapezy przecinające s_i
 - jest to też suma wszystkich trapezów, które zostaną usunięte

- Strefa dla s_i
 - strefę dla s_i w T(S_i) tworzą wszystkie trapezy przecinające s_i
 - jest to też suma wszystkich trapezów, które zostaną stworzone

Konstrukcja T(S) – wyznaczenie strefy dla s_i

Przeszukaj dla p strukturę D aż do znalezienia Δ_0 jeśli p istniało już w strukturze – uwaga!


```
\mathbf{j} \leftarrow 0

while q leży na prawo od \mathit{rightp}(\Delta_j)

if \mathit{rightp}(\Delta_j) leży powyżej s_i

then niech \Delta_{j+1} będzie dolnym prawym sąsiadem \Delta_j

else niech \Delta_{j+1} będzie górnym prawym sąsiadem \Delta_j

j \leftarrow j + 1

return \Delta_0, \Delta_1, \ldots, \Delta_k
```

Konstrukcja T(S) – wyznaczenie strefy dla s_i

Jeśli p jest już w strukturze

- p leży na prostej pionowej
 - przyjmujemy, że leży po prawej stronie
- p jest wspólnym początkiem z innym odcinkiem s
 - porównujemy nachylenie:

jeżeli nachylenie jest mniejsze od s, to p leży poniżej s

- Usuwamy ∆ z T
- Zastępujemy przez 4 trapezy
- Aktualizujemy informacje dla trapezów o sąsiadach, bottom(Δ), top(Δ) leftp(Δ), rightp(Δ)

Wstawiamy rozszerzenia pionowe przechodzące przez końce s – każde dzieli trapezy Δ_0 i Δ_k na trzy nowe trapezy Skracamy rozszerzenia pionowe, żeby stykały się z s Aktualizujemy informacje dla trapezów

Oczekiwany czas konstrukcji mapy trapezowej - *O*(*n* log *n*)

Konstrukcja T(S) – wersja 2

Wstęp

- wyznaczenie losowej permutacji (s₁,s₂,...,s_n) dla zbioru odcinków S
- inicjalizacja struktury danych dla prostokąta zewnętrznego
- inicjalizacja <u>list konfliktów</u> dla lewych wierzchołków odcinków w S
 - początkowo, jest tylko jedna lista konfliktów (dla wnętrza prostokąta zewnętrznego) obejmująca wszystkie odcinki
 - każdy odcinek zawiera wskaźnik do swojego konfliktowego trapezu (czyli na początku do prostokąta zewnętrznego)

Listy konfliktów – przykład

- $\bullet \ \mathcal{L}(\Delta) = \{s_5, s_8\}$
- $\mathcal{L}(\Delta') = \{s_6\}$
- $\mathcal{L}(\Delta'') = \{s_7\}$

Konstrukcja T(S) – wersja 2

- W i-tym kroku dysponujemy
 - reprezentacją $T(S_i)$, $S_i = \{s_1, s_2, ..., s_i\}$
 - dla każdego trapezu ∆ z T(S_i)
 - lista konfliktów $L(\Delta)$ ze wskaźnikami do wszystkich odcinków w S \ S_i których lewe wierzchołki znajdują się w Δ
 - − dla każdego odcinka s z S \ S_i
 - wskaźnik do trapezu ∆ z T(S_i), który zawiera lewy wierzchołek
- ... i wstawiamy s_{i+1} z uaktualnieniem struktury danych

Uaktualnienie mapy trapezowej dla wprowadzanego odcinka s_i

- wiadomo, który trapez w T(S_{i-1}) zawiera lewy wierzchołek s_i - dzięki liście konfliktów
- wszystko jest przeprowadzane w strefie dla s_i
- idziemy (miotłą) od lewej do prawej, uaktualniając mapę trapezów
- miotła przecina na raz nie więcej niż dwa trapezy
- k_i liczba trapezów w T(S_i) definiowanych przez s_i,
 to jednocześnie maksymalna liczba zdarzeń w procedurze zamiatania
- aktualizacja jest przeprowadzana w czasie $O(k_i)$

Uaktualnienie list konfliktów

- musimy także uaktualnić listy konfliktów
- lewe wierzchołki jeszcze niewstawionych odcinków są przenoszone z usuniętych trapezów do nowo stworzonych
- każdy usuwany trapez jest zawarty w sumie czterech nowych trapezów
- aktualizacja może zostać przeprowadzona w czasie O(X_i), gdzie X_i jest liczbą lewych wierzchołków niewstawionych odcinków w strefie dla s_i

Procedura konstrukcji mapy trapezowej tą metodą ma złożoność $O(n \log n)$

Struktura przeszukiwań D – wersja 1: graf historii

Graf historii dla konstrukcji mapy trapezowej

mapa trapezowa

korzeń odpowiada prostokątowi zewnętrznemu

graf historii

Uaktualnienie grafu historii (1)

mapa trapezowa

A' i B' zostają usunięte z mapy trapezów, ale pozostają w grafie historii

graf historii

Uaktualnienie grafu historii (2)

połączenie każdego usuniętego trapezu z wszystkimi nowymi trapezami, które mają z nim część wspólną (więcej niż tylko wspólną krawędź)

graf historii nie jest drzewem! Acykliczny graf skierowany

Uaktualnienie grafu historii (3)

Uaktualnienie grafu historii (4)

Uaktualnianie grafu historii – koszt *O*(*n*)

Udzielanie odpowiedzi z wykorzystaniem grafu historii

- zadany punkt q jest definiowany przez swoje współrzędne
- jeśli bieżący element grafu jest liściem, koniec
- w przeciwnym wypadku jeden z trapezów potomków w grafie zawiera punkt q
 - maksymalnie 4 trapezy potomne
- przechodzimy w dół do potomka i powtarzamy procedurę

Struktura przeszukiwań D - wersja 2: graf wyszukiwania

Alternatywna wersja grafu wyszukiwania dla mapy trapezowej

- ściany wyłącznie w liściach
- węzły wewnętrzne dwóch kategorii
 - x-węzły związane z wierzchołkiem (współrzędna wierzchołka)
 - y-węzły związane z odcinkiem (wskaźnik do odcinka)

Trapez z T(S) ma wskaźnik do odpowiadającego mu liścia w D, a liść w D ma wskaźnik do odpowiadającemu mu trapezu w T(S)

Graf wyszukiwania

W każdym węźle na ścieżce punkt q jest sprawdzany, do którego dziecka węzła go skierować

- w x-węźle test: czy q leży na lewo, czy prawo pionowej prostej przechodzącej przez p?
- w y-węźle test: czy q leży powyżej, czy poniżej odcinka s?

Graf wyszukiwania

Przyrostowa konstrukcja grafu

- usuwany trapez jest zastępowany fragmentem struktury wyszukiwania kierującym do jednego z nowo stworzonych trapezów
 - przypadek 1 pojedynczy trapez A (zawierający jeden wierzchołek odcinka) jest zastępowany przez trzy trapezy X, Y i Z

Graf wyszukiwania

Przyrostowa konstrukcja grafu

- przypadek 2 pojedynczy trapez A (przecięty całkowicie) jest zastępowany przez dwa trapezy Y i Z
- przypadek 3 pojedynczy trapez zawiera cały odcinek i zostaje podzielony na cztery trapezy U, X, Y i Z

Graf wyszukiwania Przykład konstrukcji

Oczekiwany czas konstrukcji grafu przeszukiwań - O(n log n) (razem z konstrukcją mapy trapezowej)

Oczekiwany rozmiar grafu przeszukiwań O(n)

Dla dowolnego punktu q oczekiwany czas zapytania O(log n)

Metoda doskonalenia triangulacji Algorytm Kirkpatrick'a

Założenie: dany podział S jest triangulacją

Tworzymy sekwencję T_0 , T_1 , ..., T_k coraz <u>zgrubniejszych</u> triangulacji, gdzie: T_0 jest początkową triangulacją, T_k jest trójkątem *abc* otaczającym obszar Każdy trójkąt w T_{i+1} zachodzi na pewne trójkąty T_i

Metoda doskonalenia triangulacji

W kolejnych krokach usuwamy pewne wierzchołki i retriangulujemy wnękę

Jeśli usuwany wierzchołek ma stopień *d*, to wnęka może być wypełniona *d* – 2 trójkątami.

Jeżeli wierzchołki rozpatrywane są niezależne, to czyni retriangulację łatwiejszą. Wnęki mogą być rozpatrywane osobno.

Metoda doskonalenia triangulacji

```
procedure TRIANGLE(S)
T := zbiór trójkatów tworzących S;
V := \{odpowiedniki trójkątów\}; E := \emptyset;
while |T| > 1 do
  wybierz niezależny zbiór wewnętrznych wierzchołków;
  usuń z T trójkąty z tymi wierzchołkami;
  usuń z S wybrane wierzchołki wraz
              z incydentnymi krawędziami;
  ponownie strianguluj S i dodaj nowe trójkąty do T;
  V := V \cup \{\text{nowe tr\'ojkaty}\};
  E := E \cup \{(N,U): N-nowy, U-usuniety, N \cap S \neq \emptyset\};
return (V, E);
```


Usuwane i tworzone trójkąty odpowiadają wierzchołkom grafu skierowanego

Każdy poziom odpowiada nowym trójkątom Krawędzie są skierowane w dół i łączą trójkąty, których przecięcie nie jest puste

Liczba poziomów w grafie jest logarytmiczna Jego rozmiar jest liniowy ze względu na liczbę wierzchołków Każdy węzeł ma stopień ograniczony przez stałą

Przeszukiwanie

Wyszukujemy właściwy trójkąt idąc od korzenia (pojedynczego trójkąta) sprawdzając, do których trójkątów należy dany punkt Na każdym poziomie wykonujemy stałą liczbę porównań

Dla obszaru striangulowanego o n trójkątach można

- zlokalizować punkt w czasie O(log n)
- z pomocą struktury o rozmiarze O(n) stworzonej w czasie O(n)

Czas preprocessingu – triangulacji: O(n log n)

Wejście – obszar z podziałem poligonowym dany jako graf acykliczny z jednym źródłem i jednym ujściem

Definicja

Separatorem nazywamy łamaną monotoniczną względem danego kierunku, rozdzielającą podział i tworzoną przez jego krawędzie.

Cel: stworzyć ciąg separatorów (C_n) taki, że:

- każde dwa sąsiednie separatory wyznaczają dokładnie jeden obszar należący do podziału S,
- każdy obszar podziału jest wyznaczany jednoznacznie przez separatory,
- wszystkie wierzchołki separatorów o niższych numerach leżą po tej samej stronie separatora o numerze wyższym.

Definicja.

Niech zbiór wierzchołków podziału tworzy ciąg uporządkowany względem współrzędnej *y*-owej (w przypadku równych wartości - względem współrzędnej *x*-owej).

Wierzchołek v_k jest *regularny*, gdy istnieją krawędzie (v_i, v_k) i (v_k, v_j) dla i < k < j. Podział jest regularny, gdy wszystkie wierzchołki ciągu poza pierwszym i ostatnim są regularne.

Każdy podział można zregularyzować stosując algorytm podobny do algorytmu podziału wielokąta na wielokąty monotoniczne (łączymy krawędzią wierzchołek nieregularny v z pomocnikiem sąsiadującej z v krawędzi) lub triangulując otoczkę wypukłą podziału.

- Inicjujemy graf
- Wyznaczamy wagi krawędzi
 - liczba separatorów, do których będzie należeć dana krawędź

Wyznaczamy separatory

Zakładamy, że krawędzie podziału są skierowane od wierzchołka o mniejszym indeksie do wierzchołka o większym indeksie.

IN(v) – zbiór krawędzi dochodzących do wierzchołka vOUT(v) – zbiór krawędzi odchodzących od wierzchołka v

W(e) – waga krawędzi e (liczba separatorów, do których należy e)

$$W_{IN}(v) := \Sigma_{e \in IN(v)} W(e) \text{ oraz } W_{OUT}(v) := \Sigma_{e \in OUT(v)} W(e)$$
 .

Wagi można tak dobrać, aby:

każda krawędź należy do co najmniej jednego łańcucha

waga każdej krawędzi była dodatnia,

 $-W_{IN}(v) = W_{OUT}(v)$ dla każdego v.

separatory nie przecinają się

Wyznaczanie wag

Przypisz każdej krawędzi wagę według następującego algorytmu:

for każda krawędź e: W(e) := 1

for każdy wierzchołek v w kolejności indeksów rosnących:

$$W_{IN}(v) := \Sigma_{e \in IN(v)} W(e)$$

d: = pierwsza z lewej krawędź odchodząca z v

if
$$W_{IN}(v) > W_{OUT}(v)$$

then $W(d) := W_{IN}(v) - W_{OUT}(v) + W(d)$;

for każdy wierzchołek v w kolejności indeksów malejących:

$$W_{OUT}(v) := \Sigma_{e \in OUT(v)} W(e)$$

d := pierwsza z lewej krawędź dochodząca do v

if
$$W_{OUT}(v) > W_{IN}(v)$$

then $W(d) := W_{OUT}(v) - W_{IN}(v) + W(d)$

Po wyznaczeniu wag krawędzi możemy wyznaczyć separatory w odpowiedniej kolejności tak, by były od razu posortowane

W każdym wierzchołku od źródła do ujścia wybieramy pierwszą z lewej krawędź, która ma niezerową wagę.

Zmniejszamy wagę tej krawędzi o jeden i przechodzimy rekurencyjnie dalej

Jedno przejście od źródła do ujścia wyznacza jeden separator

struktura danych:

Drzewo binarne:

- liście podobszar S
- węzły: ciąg krawędzi separatora

Ale: każda krawędź separatora jest przechowywana tylko raz.

W danym węźle przechowujemy tylko te krawędzie separatora, które jeszcze nie zostały zapamiętane w węźle przodku

Struktura o liniowym rozmiarze względem liczby krawędzi obszarów

Strukturę można utworzyć w czasie *O(n* log *n)*

Wyszukujemy binarnie separator, który znajduje się powyżej lokalizowanego punktu i taki, że poprzedzający go separator znajduje się poniżej tego punktu (wyszukujemy odpowiednią krawędź separatora i sprawdzamy, czy jest powyżej, czy poniżej danego punktu).

Kontynuujemy poszukiwanie w zawężonym obszarze. Wyznaczamy w ten sposób obszar zawierający punkt.

Czas lokalizacji punktu w *n*-wierzchołkowym podziale wynosi $O(\log^2 n)$