- 1. Consider an instance of the single-source shortest path problem with n vertices, m edges, a source vertex s, and no negative cycles. Which of the following is true?
 - 1. For every vertex v reachable from source s, there is a shortest s-v path with at most n-1 edges.
 - 2. For every vertex v reachable from the source s, there is a shortest s-v path with at most n edges.
 - 3. For every vertex v reachable from the source s, there is a shortest s-v path with at most m edges.
 - 4. There is no finite upper bound on the fewest number of edges in a shortest s-v path.
- (1) is the correct answer. If we had a shortest s-v path with more than n-1 edges then we have a non-negative cycle, removing this cycle would produce a s-v path of at most n-1 edges that is better than the previous solution.
- **2** How many candiates are there for an optimal solution to a subproblem with the destination v?
 - 1. 2
 - 2. 1 + the in degree of v
 - 3. 1 + the out degree of v
 - 4. n
- (2) is the correct answer. The first case of the recurrence relation gives us a one candidate and the second case gives uses all neighbors of v that have v as a head node, which is the $in-degree\ of\ v$. Hence we have $1+the\ in-degree\ of\ -v$.
- **3** What's the running time of the Bellman-Ford algorithm, as a function of m and n?
 - 1. $O(n^2)$
 - 2. $O(m \cdot n)$
 - 3. $O(n^3)$
 - 4. $O(m \cdot n^2)$
- (2) is the correct answer. Given an adjance ny list representation we have V-1 iterations which is the number of sub-problems, then we choose all E edges to determine if we could relax it. Thus we have $O(V \cdot E)$. Note that when $E = O(V^2)$ this becomes $O(V^3)$ showing that $O(V \cdot E)$ is the tightest correct bound.