FMI, Info, Anul I

Logică matematică și computațională

Seminar 13

(S13.1) Fie \mathcal{L} un limbaj de ordinul întâi care conține

- ullet două simboluri de relații unare R, S și două simboluri de relații binare P, Q;
- un simbol de funcție unară f și un simbol de funcție binară g;
- două simboluri de constante c, d.

Să se găsească o formă normală Skolem pentru enunțul φ în formă normală prenex, unde φ este, pe rând:

- (i) $\forall x \exists z (f(x) = c \land \neg (g(x, z) = d));$
- (ii) $\forall y \exists z \exists u (P(u, y) \rightarrow Q(y, z));$
- (iii) $\exists x \forall u \forall y \exists z (P(x, u) \lor \neg(S(y) \to R(z)));$
- (iv) $\forall z \forall x \exists u \forall v ((Q(x,z) \lor R(x)) \to (R(u) \lor \neg Q(v,u))).$

(S13.2) Să se axiomatizeze următoarele clase de mulțimi:

- (i) multimile care au între 3 și 5 elemente;
- (ii) mulțimile nevide care au mai puțin de 7 elemente;
- (iii) mulțimile care au între 20 și 300 elemente;
- (iv) multimile care au cel putin 10 elemente.

(S13.3) Să se axiomatizeze următoarele clase de grafuri:

- (i) grafurile complete;
- (ii) grafurile cu proprietatea că orice vârf are exact o muchie incidentă;
- (iii) grafurile infinite;

(iv) grafurile care au cel puţin un ciclu de lungime 3.

Definiția 1. O \mathcal{L} -teorie T se numește completă dacă pentru orice enunț φ , avem că $\varphi \in T$ sau $\neg \varphi \in T$.

(S13.4) Pentru orice \mathcal{L} -structură \mathcal{A} , definim

$$Th(\mathcal{A}) := \{ \varphi \mid \varphi \text{ este enunt } \mathfrak{s}i \ \mathcal{A} \vDash \varphi \}.$$

Demonstrați că Th(A) este o teorie completă.

(S13.5) Peste orice limbaj \mathcal{L} , pentru orice enunţ φ , numim spectrul finit al lui φ mulţimea acelor $n \in \mathbb{N}^*$ cu proprietatea că există o \mathcal{L} -structură cu n elemente care satisface φ .

- (i) Dacă \mathcal{L} este limbajul cu un singur simbol de relație de aritate 2, să se scrie un enunț φ ce spune că relația asociată simbolului este o relație de echivalență cu proprietatea că fiecare clasă a sa are exact două elemente. Să se determine spectrul finit al lui φ .
- (ii) Să se găsească câte un limbaj şi câte un enunţ peste el astfel încât spectrul finit al enunţului să fie, pe rând:
 - (a) mulţimea puterilor de numere prime;
 - (b) multimea numerelor de forma $2^n 3^m$, cu $n, m \ge 0$;
 - (c) multimea numerelor compuse.

Teorema 2 (N. D. Jones, A. L. Selman, 1974). O mulțime de numere naturale este spectrul finit al unui enunț dacă și numai dacă există o mașină Turing nedeterministă care decide în timp exponențial dacă un număr aparține mulțimii respective.

Problemă deschisă (G. Asser, 1955): Este complementul unui spectru tot un spectru? Vezi şi: A. Durand, N. D. Jones, J. A. Makowsky, M. More, Fifty years of the spectrum problem: survey and new results. *Bull. Symbolic Logic* 18 (2012), no. 4, 505–553. Disponibil la https://arxiv.org/abs/0907.5495.