ICS 233, Term 072

Computer Architecture & Assembly Language

HW#1 Solution

Q.1.

Exercise	Term	Description
1.1	Central	Active part of the computer, following the instructions of
	Processor	the program to the letter. It adds numbers, tests numbers,
	Unit(CPU)	controls other components, and so on.
1.2	Abstraction	Approach to the design of hardware or software. The
		system consists of layers, with
		each lower layer hiding details from the level above.
1.3	Bit	Binary digit.
1.4	Computer	Collection of implementation of the same set architecture.
	Family	They are usually made by the same company and vary in
		the price and performance.
1.5	Memory	Component of the computer where all running programs
		and associated data reside.
1.6	Datapath	Component of the processor that performs arithmetic
		operations.
1.7	Control	The component of the processor that tells the datapath,
		memory, and I/O devices what to do according to the
		instructions of the program.
1.8	Desktop or	Computer designed for use by an individual, usually
	personal	incorporating a graphics display, keyboard and mouse.
	computer	
1.9	Embedded	Computer inside another device used for running one
	System	predetermined application or collection of software.
1.10	Server	Computer used for running larger programs for multiple
		users often simultaneously and typically accessed only by
		a network.
1.11	Local area	Computer network that connects a group of computers by
	network (LAN)	a common transmission cable or wireless link within a
		small geographic area (for example within the same floor
		of a building).
1.12	Wide area	Computer network that connects computers spanning
	network (WAN)	great distances, the backbone of the internet.
1.13	Supercomputer	High performance machine, costing more than \$1 million.
1.14	DRAM (Integrated circuit commonly used to construct main
	dynamic random	memory.
	access memory)	

1.15	Defect	Microscopic flaw in a wafer.			
1.16	Chip	Nickname for a die or integrated circuit.			
1.17	Transistor	An on/off switch controlled by electricity.			
1.18	Digital Video	Optical storage medium with a storage capacity of more			
	Disk (DVD)	than 4.7 GB.			
1.19	Yield	The percentage of good dies from the total number of dies on the wafer			
1.20	Assembler	Program that converts symbolic versions of instructions into their binary formats.			
1.21	Operating	Program that manages the resources of a computer for the			
	system	benefit of the programs that run on that machine			
1.22	Compiler	Program that translates from a higher-level notation to			
		assembly language.			
1.23	VLSI (very	Technology in which single chip contains hundreds of			
	large integrated circuit)	thousands to millions of transistors.			
1.24	Instruction	Single software command to a processor			
1.25	Cache	Small fast memory that acts as a buffer for the main memory.			
1.26	Instruction set	Specific interface that the hardware provides the low-level			
	architecture	software.			
1.27	Semiconductor	Substance that does not conduct electricity well but is the			
		foundation of integrated circuits.			
1.28	Wafer	Thin disk sliced from a silicon crystal ingot, which will be later divided into dies.			

Q.2. Briefly describe the main functionality of the program counter register (PC), the instruction register (IR), and the fetch-execute process in a computer.

Program counter register: is the register in the CPU that holds the address for the next instructor to be fetched from memory.

Instruction register: is the register in the CPU that stores the machine language instructions, temporarily, after the instructions are fetched from memory.

Fetch-execute process: In the fetch-execute process, the CPU takes the address stored in the program counter and reads from memory the instruction stored at that address. The instruction read from memory is stored in the instruction register. The program counter is then incremented to point to the next instruction to be fetched from memory. Then, the CPU executes the instruction stored in the instruction register. Execution of the instruction includes decoding the instruction, getting the operands, performing the instruction operation and storing the result back. The process is performed repeatedly until the machine is halted.

Q.3. Describe two advantages for programming in assembly and two advantages for programming in a high-level language.

Advantages of programming in assembly language:

- 1. Space and time efficiency as compilers do not always generate optimum code.
- 2. Accessibly to system hardware.

Advantages of programming in high-level language:

- 1. Programs are portable, i.e. they can run on different machines.
- 2. Programs are easier to understand, write and maintain.
- **Q.4.** Given a magnetic disk with the following properties: Rotation speed = 7200 RPM (rotations per minute), Average seek = 8 ms, Sector = 512 bytes, Track = 200 sectors. Calculate the following:
 - (i) Time of one rotation (in milliseconds).

```
Number of rotations per second = 7200/60 = 120 \text{ RPS}
Rotation time in milliseconds = 1000/120 = 8.33 \text{ ms}
```

(ii) Average time to access a block of 32 consecutive sectors.

```
Average access time = Seek Time + Rotation Latency + Transfer Time
Average rotational latency = time of half rotation = 4.17 ms
Time to transfer 32 sectors = (32/200) * 8.33 = 1.33 ms
Average access time = 8 + 4.17 + 1.33 = 13.5 ms
```

Q.5. Assume you are in a company that will market a certain IC chip. The fixed costs, including R&D, fabrication and equipments, and so on, add up to \$500,000. The cost per wafer is \$6000, and each wafer can be diced into 1500 dies. The die yield is 50%. Finally, the dies are packaged and tested, with a cost of \$10 per chip. The test yield is 90%; only those that pass the test will be sold to customers. If the retail price is 40% more than the cost, at least how many chips have to be sold to break even?

To break even we need to have the revenue equal to the cost of manufacturing. Let us assume that the number of chips sold is n_s and the number of chips fabricated equal to n_f .

```
Cost of a good die = 6000/(0.5*1500) = $8

Cost of fabricating a chip = 8 + 10 = $18

The cost of fabricating n_f chips = 500,000 + 18* n_f

It should be observed that the number of chips sold n_s = 0.90 n_f \Rightarrow n_f = 1.11 n_s

Chip selling price = 18*1.4 = $25.2

Revenue = 25.2*n_s

Thus, 25.2*n_s = 500,000 + 18* n_f
```

$$\Rightarrow$$
 25.2* n_s = 500,000 + 18*1.11 n_s

$$\Rightarrow$$
 n_s = 500,000/(5.22) = 95,785.44

Thus, 95,786 chips need to be fabricated to break even.

- **Q.6.** Represent the following numbers in binary and hexadecimal. Use as many bits as needed, and approximate the fraction up to 3 digits:
 - (i) 250.375

Hexadecimal = FA.600

(ii) 4444.4

Hexadecimal = 115C.666

- **Q.7.** Express the following numbers in sign-magnitude, 1's complement, and 2's complement notations, assuming 8-bit representation:
 - (i) -119

```
Sign-magnitude = 1111\ 0111
```

(ii) -55

Sign-magnitude =
$$1011\ 0111$$

- **Q.8.** Show how the decimal integer -120 would be represented in 2's complement notation using:
 - (i) $8 \text{ bits} = 1000 \ 1000$
 - (ii) 16 bits = 1111 1111 1000 1000
- **Q.9.** Perform the following operations assuming 8-bit 2's complement representation of numbers. Indicate in your answer when an overflow occurs:
 - (i) 01010011 + 111111111 = 01010010
 - (ii) 10110000 01110110=10110000 + 10001010=0011 1010 (overflow)
 - (iii) AF + FF = AE
 - (iv) AF 70 = AF + 90 = 3F (overflow)

Q.10.	A micro	nicrocontroller uses 8-bit registers. Give the following in both binary and decimal:							
	(i) The maximum unsigned number that can be stored.								
	Binary = 1111 1111								
	Decimal = 255								
	(ii) The smallest (negative) number and the largest (positive) number that can be stored using the sign-magnitude notation.								
	Sma	llest in Binary	$y = 1111 \ 111$	11					
	Smallest in Decimal = -127								
	Largest in Binary = 0111 1111								
	Largest in Decimal = $+127$								
	(iii) The smallest (negative) number and the largest (positive) number that can be stored using the 2's complement notation.								
	Smallest in Binary =1000 0000								
	Smallest in Decimal = -128								
	Largest in Binary = 0111 1111								
	Larg	gest in Decima	al = +127						
Q.11.	Q.11. If you type the phrase ICS233 on your keyboard, what is the binary sequence computer using 8-bit ASCII with the 8 th bit being an even parity bit.								
	I 1100 100	C 01 1100 0011	S 0101 0011 1	2 1011 0010	3 0011 0011	3 0011 0011			
Q.12.		ber should be				-	s `0` to `9`. What merical form of		
	We need to subtract from it 30h.								