# Word Embeddings vs Word Types for Sequence Labeling: the Curious Case of CV Parsing

Melanie Tosik<sup>†</sup>, Carsten L. Hansen<sup>‡</sup>, Gerard Goossen<sup>‡</sup>, and Mihai Rotaru<sup>‡</sup>

<sup>†</sup>University of Potsdam, <sup>‡</sup>Textkernel B.V.

# Objective

We explore new methods of improving upon Curriculum Vitæ (CV or resume) parsing for German. Our approach integrates word embeddings as features for a probabilistic sequence labeling model that relies on the Conditional Random Field (CRF) framework.

## Introduction

Information extraction from CVs is one of the success stories of applying NLP in industry.

- ► Traditional approach: word types as features for CRF or HMM
- ► Challenge: high variance in data, many unknown words, poor generalization to CVs from new sectors
- ► Possible solution: annotate more CVs from these sectors expensive
- Our approach: replace word types with continuous vector representations of words that can be induced from large, unlabeled data sets

#### **CV Extraction Task**

The task is to extract entities from sections in the CV (e.g. personal, experience, education, or skills).

- Personal section entities: *name, address, birthday, phone number, nationality*, and *email address.*
- Experience section entities: job title, job duration and company and location.

| 2003 — presen | FREELANCE PROJECTS, Brussels                                                                                                                                 |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | Global Communications Officer, Huntsman Advanced Materials                                                                                                   |
|               | Global communication function post re-structuring                                                                                                            |
| 1999 — 2003   | TOYOTA MOTOR EUROPE, Brussels  Manager, Organisational Identity and Brand Management  Strategic development and implementation of the Toyota brand in Europe |
| 1996 — 1999   | SCOTTISH INDUSTRIAL AND TRADE EXHIBITIONS, Edinburgh Sales and Marketing Assistant;                                                                          |
| Experi        | ence date ——— Company name, location ==== Job title                                                                                                          |

## Model setup

- ► Conditional Random Fields (L-BFGS) for phrase extraction implemented in *CRFsuite*
- ▶ Word embeddings learned from 200k German CVs containing  $\sim$ 145.5M tokens
- Generating word embeddings: word2vec (Skip-gram; default parameters; 150 dimensions)

#### **Features**

- ► Hand-crafted features: beginning / end of line, unknown words, digits, single chars, multi-spaces, capitalization, first / last token of line, most frequent words
- Word types: one-hot representation of all words occurring at least twice
- ► Word embeddings: generated w/ word2vec

# Results

|                            | Personal              | Experience            |  |
|----------------------------|-----------------------|-----------------------|--|
| Model                      | Prec Rec F1           | Prec Rec F1           |  |
| Hand-crafted features      | 94.5 94.0 94.3        | 84.7 69.8 76.4        |  |
| Word types                 | 94.7 91.2 92.3        | 85.3 67.7 75.3        |  |
| Word embeddings            | 94.9 93.1 93.9        | 87.0 74.6 80.3        |  |
| Word types + features      | 95.2 95.0 95.1        | 88.4 74.3 80.6        |  |
| Word embeddings + features | 96.3 95.7 <b>96.0</b> | 89.6 79.2 <b>84.0</b> |  |

Table 1: Macro-averaged precision, recall, and F1 on main test partition for Personal section and Experience Section.

|                            | Test set       | OOS set               |  |
|----------------------------|----------------|-----------------------|--|
| Model                      | Prec Rec F1    | Prec Rec F1           |  |
| Word types + features      | 88.4 74.3 80.6 | 82.3 57.0 65.6        |  |
| Word embeddings + features | 89.6 79.2 84.0 | 83.3 <b>67.1</b> 73.8 |  |

Table 2: Experience phrase extraction on test partition and out-of-sample dataset.

#### **Data**

- Main set standard train, dev and test split
- Out-of-sample set to evaluate on intrinsically different data

|       | M     | oos  |      |      |
|-------|-------|------|------|------|
|       | Train | Dev  | Test | Test |
| #Docs | 1010  | 233  | 214  | 25   |
| #Pers | 6736  | 1634 | 1388 | n/a  |
| #Exp  | 20687 | 4569 | 4410 | 356  |

Table 3: Distribution of documents and entities across the two data sets.

#### Conclusions

Word embeddings can be successfully applied to CV Parsing.

- Best results on both extraction tasks are obtained by the model which combines word embeddings and hand-crafted features, outperforming word types.
- ► Results on personal sections show that hand-crafted features outperform word types and word embeddings alone.
- Improvements are consistent throughout different sections of target documents.
- ► Effect of the word embeddings is strongest on semi-structured, out-of-sample data.
- ► Best-performing word embeddings are generated from a large set of German CVs.

