Vol. 9 No. 3 September, 1995

医学视听教育 MEDICAL AUDIO-VISUAL EDUCATION

彩色正片反转冲洗配方及工艺的试验研究

侯文启 靳启彪 汤保卫

(解放军北京医高专 北京 100071)

当前,彩色幻灯片已成为传递科技信息 有效的国际"语言",广泛地应用在医疗、教 学、科研领域里,发挥着重要的作用。彩色幻 灯片的制作方法有两种,--是直接用彩色反 转片摄制,二是用彩色负片和彩色正片拷贝 获得。前者是拍摄后经反转冲洗获得的彩色 正像(幻灯片),此法方便快捷,适合用于只 需一二套幻灯片的情况。但由于彩色反转片 价格昂贵,底拷正法价格也较高且费时,因 此,我们试用彩色正片拍摄,然后反转冲洗, 直接获得幻灯片的研究,获得成功。既节省 了时间,又提高了工作效率,放映效果也较 好。

1. 原理

彩色反转片,彩色正片的构造虽有区 别,但都是根据减色原理制造的,都含有感 蓝、感绿、感红三层乳剂,而感蓝光乳剂层经 感光、显影等过程都产生黄色染料;感绿光 乳剂层,经感光、显影等过程都产生品红色 染料;感红光乳剂层经感光、显影等过程,都 会产生青色染料。景物的颜色还原,都是光 作用于三层乳剂后经显影等过程(产生黄、 品、青染料)而形成的。由此可见,这两种感 光材料的基本构造原理是相同的,只不过反

转片的构造更复杂些罢了。彩色反转片既要 当作彩色底片来拍摄,又要当作彩色正片来 观看,因此,必须具备底片和正片两重性。彩 色反转片乳剂的敏感性与彩色负片相同,三 层乳剂的排列顺序也和彩色负片相同,都是 正型排列,并有较高的感光度。影像成色染. 料的吸收应符合彩色正片的要求,并具有 良好的彩色还原质量,颗粒度较低,清晰度 高。彩色正片根据人眼对可见光中绿光最敏 感的特性, 所以现在用的彩色正片, 都采用 了合理的乳剂排列顺序,即上层感绿,中层 感红,下层感蓝的倒型排列顺序,这种排列 可保证感绿层得到最清晰的影像,从而大大 提高彩色正片的解像力和清晰度, 使解像 力提高三倍以上。

经过拍摄、反转冲洗而获得的彩色正像 最终是由三层乳剂中的黄、品、青三种染料 形成的,根据前面分析,二者能达到同样的 正片效果,其原理如示意图。

2. 效果比较

彩色反转片拍摄,反转冲洗;彩色正片 拍摄,反转冲洗;彩色负片拍摄,冲出底片后 拷贝彩色正片,所得三种彩色幻灯片比较 (表 2)

表 1 彩色反转片、彩色正片的性能比较

片型	最小密度	反差系数	感光度	解像力	宽容度	最大密度
彩色正片	€0.12	2.6~3.1	2	≥200	≥0.7	>2.5
彩色反转片	< 0.2	1.8~2.1	100	<200	≈1.7	>2.5

图 1 彩色正片拍摄,反转冲洗成色原理示意图 表 2 三种方法所得幻灯片比较

片 型	反差	层次	灰雾度	颗粒度	价格	效率
彩色反转片	适中	丰富	较小	较细	59 元	髙
彩色正片	较大	较丰富	小	细	2 元	髙
彩底拷正	较大	较丰富	较小	较细	21 元	低一倍

3. 配方及工艺

首	显液	首显	液
蒸馏水(约 40℃)	750ml	蒸馏水(约 40℃)	750ml
菲尼酮	0.5g	米吐尔	6g
对苯二酚	2g	对苯二酚	3g
无水亚硫酸钠	20g	无水亚硫酸钠	25g
硼砂	2.5g	硼砂	2.5g
溴化钾	0.4g	溴化钾	0.4g
硫氰酸钾	0.75g		
1%六硝基苯骈		1%六硝基苯骈	
咪唑硝酸盐溶液	10ml	咪唑硝酸盐溶液	2ml
加水至	1000ml	加水至	1000ml

彩显液

蒸馏水(约50~60℃) 750ml

苯甲醇	5ml
无水亚硫酸钠	3 g
氢氧化钠	5 g
磷酸三钠	25g
EDTA 二钠	8 g
柠嗪酸	1.2g
溴化钾	1.5g
CD-3	8g
加水至	1000ml
加水至	1000ml
定影液	
蒸馏水(50~60℃)	750ml
硫代硫酸钠	180g
偏重亚硫酸钠	14g
加水至	1000ml

程序	温度(℃)	时间(分)	
首显	38±0.3	6	
水洗	自来水	1	
二次曝光(1.3KW 碘钨灯距胶片 0.4 米)			
30(每面)			
彩显	38 ± 0.3	6	
水洗	自来水	4	
滑洁	38 ± 22		
水洗	自来水	1	
漂白	38 ± 25		
水洗	自来水	1	
定影	38 ± 24		
水洗	自来水	1	
_ 稳定	38 ± 2	0.5	

加工工艺

4. 小结

- 4.1 实践证明:用彩正拍摄,反转冲洗,所得幻灯片其客观指标与其它方法相似(表 2),突出表现为价格低廉,只有反转片的 1/25,底拷正的 1/10,效率接近反转片,优于底拷正,(约提高一倍)。
- 4.2 彩正的反差较大,它是配合具有 0.50~0.65 反差系数的底片印制正像画面 而设计的。其反差系数应有 2.6~3.2 才能

蒸馏水(约 20℃)	750ml
冰醋酸(98%)	10ml
醋酸钠	10g
加水至 1000ml	
漂白液	
蒸馏水(20℃)	750ml
铁氰化钾	50 g
硫氰化钾	7.5g
溴化钾	15 g
磷酸氢二钠	2g

稳定液

蒸馏水(20℃)	750ml
甲醛 36%~38%	30 m l
润湿剂(10%)	10ml
加水至	1000ml

达到总反差为 1.60 的色彩饱和的正像画面。使正片反转冲洗后的反差、层次接近于反转片的方法:因为影响反差和层次的因素,除胶片本身特性外,在其它条件相同时,随着显影液成分的不同和改变,所得的 r 值也不同。所以,在一定范围内,可以适当调整显影液中各种药品的含量,来达到降低彩正反差,改变层次的需要。

图 2 不同首显液对 r 值的影响

首显液主要由四部分组成:即①显影剂;②保护剂;③促进剂;①抑制剂。影响反差和层次的主要是①③①。通常情况下,米吐尔和对苯二酚常合起来使用,这就是二者的超加和(即 M-Q 超加和)作用,米吐尔

的特点是能使曝光不足的阴影部分密度显影加快;而对强光部分密度显影缓慢,因此,影调柔和、反差小、层次丰富。对苯二酚与米吐尔相反。一般情况下前者与后者的比例是2:1或3:1,对苯二酚的比例越大,反差越强;反之,若将二者的比例倒过来变为1:2或1:4,反差就随之减弱。促进剂是一种碱性物质,其主要作用是提高显影液的pH值高,反差大。在显影液中增加对苯二酚、氢氧化钠、硫氰酸钾的含量,显影液的pH值就会增高,反差就会增大,使正像强光部分透明。抑制剂在显影过程中对阴影部分抑制作用强,对强光部分抑制作用小,不会影响强光部分的密度。增加反差会使影像的影纹层次受到一定影响。

为了降低反差,增加层次,可适当减少 能提高反差的药品含量,甚至可用弱碱替换 强碱而使银粒子变细,从而降低反差,丰富 层次,提高解像力。

- 4.3 利用彩正替代彩色反转片的唯一 缺点就是感光度较低,因而在使用上受到很 多限制。感光度低是由它本身的特性所决定 的,它本来只用着拷贝,而不用着拍摄,对它 的要求主要是反差大、颗粒细、解像力高、灰 雾度小,同时要层次比较丰富。为此,涂布 在片基上的卤化银颗粒必须细小而均匀,加 上正片未经光谱增感,只对蓝光敏感,所以 感光度低。而负片、翻转片不仅卤化银颗粒 粗大,而且进行了光谱增感,对红、绿、蓝光 都敏感,所以可以直接用于拍摄。
- 4.5 综上所述,除动体外,用油溶性彩色正片拍摄(用色温 3200K 的碘钨灯做光源,加黄 80、青 20 滤色片,f5.6、1/2 秒,供参考)进行反转冲洗所得幻灯片质量是较好的,比较适用。此外,采用扩印冲片后的旧彩显液和漂定液替换上述配方,同样可得到较满意的效果。

(上接第 167 页)

难免的。所以在制作组织学视听教材时,在 以组织学内容为主的前提下,适量的穿插入 解剖学等相关学科的东西,能更加突出组织 学的典型性。

2. 配乐问题

就组织学视听教材来说,笔者以为配乐 是很有必要的。①医学视听教材的配乐,虽 然和艺术片的配乐有继承关系,但它更有自 己的目的和作用。组织学的学科性质决定了 它的教材制作不同于其它专业,它没有任何 情节可凭借,更无过多的艺术延伸空间,单 调严肃的解说词,会使画面显得苍白无力。 随着现代暗示心理学的发展,人们愈来愈重 视非语言符号的作用,及时适当地配乐(非语言符号),可以弥补画面的苍白,缓冲学生的枯燥情绪,造成轻松娱快的氛围。②组织学视听教材的配乐应以平稳、柔和的轻音乐为主。切忌盲目配乐,更不能采用流行音乐或声奏较强的打击乐,以免造成喧宾夺主的消极影响。配乐也可断可续,不拘一格,如典型的细胞结构特写画面,就可以终止配乐,成功的配乐能将听觉感受转化为视觉效果。

当然,一套优秀的视听教材其成功是多方面的,但总的来说无非是内容和形式问题。其成功与否,只有在实践中探索,也只有 靠实践才能检验。