Cálculo II para Economia

Professora: Yunelsy N Alvarez

Monitores: Guilherme A. Cota e Marcos A. Alves

Lista 1. Noções sobre conjuntos em \mathbb{R}^n

Objetivos

- Compreender os conceitos fundamentais de conjuntos em \mathbb{R}^{n}
- Identificar e descrever geometricamente conjuntos em \mathbb{R}^2 e \mathbb{R}^3 .
- Interpretação de notações envolvendo conjuntos em \mathbb{R}^n
- Identificar conjuntos abertos, fechados, limitados e compactos.
- Interpretar os conceitos de interior, fronteira e complemento de conjuntos.

Exercício 1.1.

Mostre que as bolas abertas são conjuntos abertos.

Solução.

Considere a bola aberta $B(\mathbf{x}_0, R) \subset \mathbb{R}^m$. Queremos mostrar: Se $\mathbf{x} \in B(\mathbf{x}_0, R)$, então existe $r_{\mathbf{x}} > 0$ tal que $B(\mathbf{x}, r_{\mathbf{x}}) \subset B(\mathbf{x}_0, R)$.

Defina $\delta = \operatorname{dist}(\mathbf{x}, \mathbf{x}_0) < R$ e $r_{\mathbf{x}} = \frac{R - \delta}{2} > 0$. Vamos mostrar que $B(\mathbf{x}, r_{\mathbf{x}})$ está dentro da bola $B(\mathbf{x}_0, R)$. A seguinte figura no caso de dimensão 2 pode ajudar.

Para isso, seja $\mathbf{y} \in B(\mathbf{x}, r_{\mathbf{x}})$, vamos mostrar que $\mathbf{y} \in B(\mathbf{x}_0, R)^a$

$$\|\mathbf{y} - \mathbf{x}_0\| = \|\mathbf{y} - \mathbf{x} + \mathbf{x} - \mathbf{x}_0\| \le \|\mathbf{y} - \mathbf{x}_0\| \le \|\mathbf{y} - \mathbf{x}\| + \|\mathbf{x} - \mathbf{x}_0\| < r_{\mathbf{x}} + \delta_{\mathbf{x}} = \frac{R - \delta_{\mathbf{x}}}{2} + \delta_{\mathbf{x}} = \frac{R + \delta_{\mathbf{x}}}{2}$$

Logo:

$$\|\mathbf{y} - \mathbf{x}_0\| < \frac{R + \delta_{\mathbf{x}}}{2} \le R,$$

com isso,

$$B(\mathbf{x}, r_{\mathbf{x}}) \subset B_0(\mathbf{x}_0, R),$$

provando o que queríamos.

^aLembre da desigualdade triangular: $||a+b|| \le ||a|| + ||b||$.

Exercício 1.2.

- (a) Mostre que um conjunto é fechado se ele contêm *todos* os seus pontos de fronteira.
- (b) Mostre que um conjunto é aberto se ele não contêm *nenhum* ponto de fronteira.
- (c) Dê outros exemplos de conjuntos em \mathbb{R}^n $(n \ge 1)$ que não sejam abertos nem fechados.

Solução.

- (a) Sabemos que um conjunto F é fechado se seu complementar é aberto. Seja F um conjunto fechado. Suponha por contradição que F não contenha pelo menos um ponto de fronteira, x₀, logo x₀ pertenceria ao complementar de F. Pela definição de ponto de fronteira, qualquer uma bola aberta com centro em x₀ possui interseção não vazia com F e com seu complementar, logo, não seria possível que essa bola esteja contida em no complementar de F, e, portanto, este não seria um conjunto aberto. Isso implica que F não seria um conjunto fechado, uma contradição.
- (b) Sabemos que um conjunto A é fechado se para qualquer ponto x₀ existe bola aberta centrada em x₀ inteiramente contida em A. Suponha por contradição que A contenha pelo menos um ponto de fronteira, x₀. Pela definição de ponto de fronteira, qualquer uma bola aberta com centro em x₀ possui interseção não vazia com A e com seu complementar, logo, não seria possível que essa bola esteja contida em A, e, portanto, este não seria um conjunto aberto, uma contradição.
- (c) Existem vários exemplos, por exemplo (0,1].

Н

Exercício 1.3.

Para cada um dos conjuntos abaixo, execute as seguintes tarefas:

- Represente-o graficamente.
- Determine o seu complemento, o seu interior e a sua fronteira.
- Verifique se o conjunto é fechado, limitado e/ou compacto, justificando a resposta.
- (a) $A = \{(x, y) \in \mathbb{R}^2; x^2 + y^2 \le 4, y \ge x\};$
- (b) $B = \{(x, y); y \le x^2, x \le 1 \ y \ge 0, \};$
- (c) $C = \{(x, y) \in \mathbb{R}^2; x^2 + y^2 \ge 1\} \cup [-1, 1] \times [-1, 1];$
- (d) $D = \{(x, y, z); z = x^2 + y^2\};$
- (e) $E = \{(x, y, z); x^2 + y^2 + z^2 < 16, z \ge 2\}.$

Solução.

(a) Para o conjunto $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4, y \ge x\}$:

Figura 1.1

• Complemento: $A^c = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 > 4\} \cup \{(x, y) \in \mathbb{R}^2 : y < x\}$

- **Interior**: $int(A) = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 4, y > x\}$
- Fronteira: $\partial A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 4, y \ge x\} \cup \{(x, y) \in \mathbb{R}^2 : y = x, x^2 + y^2 \le 4\}$
- Fechado: Sim, pois contém sua fronteira.
- Limitado: Sim, pois está contido no disco de raio 2.
- Compacto: Sim, pois é fechado e limitado.
- (b) Para o conjunto $B = \{(x, y) : y \le x^2, x \le 1, y \ge 0\}$:

Figura 1.2

- Complemento: $B^c = \{(x, y) \in \mathbb{R}^2 : y > x^2\} \cup \{(x, y) \in \mathbb{R}^2 : x > 1\} \cup \{(x, y) \in \mathbb{R}^2 : y < 0\}$
- **Interior**: $int(B) = \{(x, y) \in \mathbb{R}^2 : y < x^2, x < 1, y > 0\}$
- Fronteira: $\partial B = \{(x, y) \in \mathbb{R}^2 : y = x^2, y \ge 0, x \le 1\} \cup \{(x, y) \in \mathbb{R}^2 : x = 1, y \ge 0\} \cup \{(x, y) \in \mathbb{R}^2 : y = 0, x \le 1\}$
- Fechado: Sim, pois contém os pontos de fronteira.
- **Limitado**: Não, pois para qualquer bola B(O,r), que escolhermos, o ponto (-2r,0), que está dentro do conjunto, fica fora da bola. Logo, esse conjunto não está contido em nenhuma bola. Isso é equivalente a dizer que x e y podem tomar valores que, em módulo, são arbitrariamente grandes.

- Compacto: Não, pois não é limitado.
- (c) Para $C = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \ge 1\} \cup [-1, 1] \times [-1, 1]$:

Figura 1.3

- Complemento: $C^c = \emptyset$
- **Interior**: $int(C) = \mathbb{R}^2$
- Fronteira: $\partial C = \emptyset$
- Fechado: Sim, ambos os conjuntos s\u00e3o fechados e a uni\u00e3o de fechados \u00e9
 fechada.
- Limitado: Não.
- Compacto: Não, pois não é limitado.
- (d) Para $D = \{(x, y, z) : z = x^2 + y^2\}$:

Figura 1.4

- **Complemento**: $D^c = \{(x, y, z) \in \mathbb{R}^3 : z \neq x^2 + y^2\}$
- Interior: $int(D) = \emptyset$ pois não contém bolas abertas (toda superfície em \mathbb{R}^3 tem interior vazio).
- **Fronteira**: $\partial D = D$ (toda superfície é sua própria fronteira em \mathbb{R}^3).
- Fechado: Sim, pois é o conjunto de zeros de uma função contínua.
- **Limitado**: Não, pois x, y podem ser arbitrariamente grandes.
- Compacto: Não, pois não é limitado.
- (e) Para $E = \{(x, y, z) : x^2 + y^2 + z^2 < 16, z \ge 2\}$:

Figura 1.5

• **Complemento**: $E^c = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \ge 16 \text{ ou } z < 2\}$

- **Interior**: $int(E) = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 16, z > 2\}$
- Fronteira: $\partial E = \{(x, y, z) : x^2 + y^2 + z^2 = 16, z \ge 2\} \cup \{(x, y, z) : x^2 + y^2 + z^2 < 16, z = 2\}$
- **Fechado**: Não, pois não inclui os pontos onde $x^2 + y^2 + z^2 = 16$.
- Limitado: Sim, pois está contido na esfera de raio 4.
- Compacto: Não, pois não é fechado.

Н

Exercício 1.4.

Para cada um dos conjuntos ilustrados abaixo, execute as seguintes tarefas:

- Descreva-o analiticamente na forma $\{(x,y) \in \mathbb{R}^2; \ f(x) \le y \le g(x), \ a \le x \le b\}.$
- Descreva-o analiticamente na forma $\{(x,y) \in \mathbb{R}^2; \ f(y) \le x \le g(y), \ a \le y \le b\}.$
- Diga se o conjunto é fechado, limitado e/ou compacto. Justifique

(d)

(a) y 2 -----

(b) y 1 1 2 5 5

(c) y 2 2 x

y20
15
10 $y = x^2$ 1 2 3 4 5 x

Solução.

(a) Forma: $\{(x,y) \in \mathbb{R}^2; \ f(x) \le y \le g(x), \ a \le x \le b\}$ Analisando o gráfico, temos: Para x entre 2 e 6, y entre a linha abaixo (f(x)) e acima (g(x)).

As funções são:

f(x) = 0 (reta sobre *x*-eixo)

g(x) é uma função triangular, cujo pico está em x = 4, y = 2. De x = 2 a x = 4,

$$g(x) = x - 2$$
; De $x = 4$ a $x = 6$, $g(x) = 6 - x$.

Então:

$$A = \{(x, y) \in \mathbb{R}^2 : 0 \le y \le x - 2, 2 \le x \le 4\} \cup \{(x, y) \in \mathbb{R}^2 : 0 \le y \le 6 - x, 4 \le x \le 6\}.$$

Forma:
$$\{(x, y) \in \mathbb{R}^2; \ f(y) \le x \le g(y), \ a \le y \le b\}$$

Para y entre 0 e 2, o triângulo começa de x = 2 até x = 6, com as funções:

Para cada y, lados em x = y + 2 (esquerda) e x = 6 - y (direita).

$$A = \{(x, y) \in \mathbb{R}^2; \ y + 2 \le x \le 6 - y, \ 0 \le y \le 2\}$$

Fechado, limitado e compacto:

O conjunto é **fechado** (inclui fronteiras), **limitado** (restrito em x e y), logo **compacto**.

(b) **Forma:** $\{(x, y) \in \mathbb{R}^2; f(x) \le y \le g(x), a \le x \le b\}$

Para *x* de 0 a 5:

Inferior: y = f(x):

Para $0 \le x \le 1$: y = 1 - x; Para $1 \le x \le 5$: y = 0.

Superior: y = g(x):

Para $1 \le x \le 3$: y = x + 1; Para $3 \le x \le 5$: y = 5 - x.

Então:

$$B = \{(x, y) \in \mathbb{R}^2 : 1 - x \le y \le x + 1, 0 \le x < 1\}$$

$$\cup \{(x, y) \in \mathbb{R}^2 : 0 < y \le x + 1, 1 \le x < 2\}$$

$$\cup \{(x, y) \in \mathbb{R}^2 : 0 < y < 5 - x, 2 \le x \le 5\}$$

Forma: $\{(x, y) \in \mathbb{R}^2; f(y) \le x \le g(y), a \le y \le b\}$

Para y entre 1 e 3:

Limite inferior: Para y entre 0 e 1: x = 1 - y; Para y entre 1 e 3: x = y - 1.

Limite superior: x = 5 - y.

$$B = \{(x, y) \in \mathbb{R}^2 : 1 - y \le x < 5 - y, 0 < y < 1\}$$
$$\cup \{(x, y) \in \mathbb{R}^2 : y - 1 \le x < 5 - y, 1 \le y \le 3\}$$

Fechado, limitado e compacto:

O conjunto é não é fechado, é limitado e, portanto, não é compacto.

(c) **Forma:** $\{(x, y) \in \mathbb{R}^2 : f(x) \le y \le g(x), a \le x \le b\}$

Para x de -2 a 0: y de $-\sqrt{4-x^2}$ até $\sqrt{4-x^2}$;

Para x de 0 a 2: y de x-2 até $\sqrt{4-x^2}$

$$C = \left\{ (x, y) \in \mathbb{R}^2 : -\sqrt{4 - x^2} \le y \le \sqrt{4 - x^2}, \ -2 \le x \le 0 \right\}$$
$$\cup \left\{ (x, y) \in \mathbb{R}^2 : \ x - 2 \le y \le \sqrt{4 - x^2}, \ 0 < x \le 2 \right\}$$

Forma: $\{(x, y) \in \mathbb{R}^2; f(y) \le x \le g(y), a \le y \le b\}$

Para y de -2 a 0: x de x + 2 até $\sqrt{4 - y^2}$

Para y de 0 a 2: x de $-\sqrt{4-y^2}$ até $\sqrt{4-y^2}$

$$C = \left\{ (x, y) \in \mathbb{R}^2; -\sqrt{4 - y^2} \le x \le y + 2, \ -2 \le y \le 0 \right\}$$

$$\cup \left\{ (x, y) \in \mathbb{R}^2; -\sqrt{4 - y^2} \le x \le \sqrt{4 - y^2}, \ 0 < y \le 2 \right\}$$

Fechado, limitado e compacto:

O conjunto é fechado (inclui fronteira), limitado, logo compacto.

(d) **Forma:** $\{(x, y) \in \mathbb{R}^2; f(x) \le y \le g(x), a \le x \le b\}$

Da figura: - x de 2 em diante: Inferior: y = x; Superior: $y = x^2$.

$$D = \{(x, y) \in \mathbb{R}^2; \ x \le y \le x^2, \ x \ge 2\}$$

Forma:
$$\{(x, y) \in \mathbb{R}^2; f(y) \le x \le g(y), a \le y \le b\}$$

Para y entre 2 e 4: $2 \le x \le y$

Para y de maior que 4: $x \le y \le x^2 \implies x \in [\sqrt{y}, y]$.

$$D = \{(x, y) \in \mathbb{R}^2; \ 2 \le x \le y, \ 2 \le y < 4\}$$
$$\cup \{(x, y) \in \mathbb{R}^2; \ \sqrt{y} \le x \le y, \ y \ge 4\}$$

Fechado, limitado e compacto:

O conjunto é fechado, não é limitado, logo não é compacto.

Exercício 1.5 (Fecho de um conjunto).

Seja $D \subset \mathbb{R}^n$ e considere a distância euclidiana usual.

Definimos o *fecho* do conjunto D, denotado por \overline{D} , como o conjunto interseção de todos os conjuntos fechados de \mathbb{R}^n que contêm D, isto é,

$$\overline{D} = \bigcap \{ F \subset \mathbb{R}^n ; F \text{ \'e fechado e } D \subset F \}.$$

- (a) Mostre que \overline{D} é um conjunto fechado que contém D.
- (b) Prove que \overline{D} é o menor conjunto fechado que contém D, no sentido de inclusão.
- (c) Mostre que $\overline{D} = D \cup \partial D$.

Solução.

(a) Como cada F na família considerada é fechado, e a interseção arbitrária de conjuntos fechados em \mathbb{R}^n é fechada, segue que \overline{D} é fechado. Além disso, como $D \subset F$ para todo F considerado, temos $D \subset \overline{D}$.

П

- (b) Seja C qualquer conjunto fechado tal que $D \subset C$. Então C aparece na família de conjuntos cuja interseção é \overline{D} , logo $\overline{D} \subset C$.
- (c) Para mostrar que $\overline{D} = D \cup \partial D$ precisamos mostrar que $D \cup \partial D$ é o menor conjunto fechado que contém D.

Note que $D \cup \partial D$ é fechado e contém D. Suponha por contradição que exista outro conjunto fechado, F, que contem D de modo que $F \subset D \cup \partial D$ e $F \neq D \cup \partial D$. Neste caso, como F contém D, F não contém algum dos ponto de fronteira de D e, portanto, F não pode ser fechado.

÷