Feuille d'exercices n^o7

Exercice 1 **n** : petites questions

- 1. Montrer qu'un espace localement connexe par arcs est connexe par arcs si et seulement s'il est connexe.
- 2. a) Montrer que \mathbb{R} et \mathbb{R}^2 ne sont pas homéomorphes.
- b) [Plus difficile] Montrer qu'il n'existe pas de bijection continue $\phi: \mathbb{R} \to \mathbb{R}^2$.
- 3. Soit X un espace topologique, x et y deux points de X. Soit U un ouvert-fermé contenant x mais pas y. Montrer que y n'est pas dans la composante connexe de x. A-t-on une réciproque ? (considérer l'ensemble $\{(0,0),(1,0)\}\cup\{(x,\frac{1}{n})\}_{x\in[0;1],n\in\mathbb{N}^*}$.)
- 4. Soient A et B des parties connexes d'un espace topologique X telles que $\overline{A} \cap B \neq \emptyset$. Montrer que $A \cup B$ est connexe.
- 5. Soient A et B des fermés d'un espace X tels que $A \cap B$ et $A \cup B$ soient connexes. Montrer que A et B le sont également mais que le résultat peut tomber en défaut si A et B ne sont pas supposés fermés.

Exercice 2 🏕 🗸 : Théorème de Darboux

Soit $f: I \to \mathbb{R}$ une fonction dérivable définie sur un intervalle. Montrer que sa dérivée vérifie le théorème des valeurs intermédiaires : si J intervalle, f'(J) intervalle.

Exercice 3 #: ovales de Cassini

Soient a et R deux réels positifs. On considère l'ensemble suivant :

$$G := \{ z \in \mathbb{C} : |z^2 - a^2| < R^2 \}.$$

Sa frontière s'appelle un ovale de Cassini. (lemniscate de Bernoulli si a = R.

- 1. On suppose que a < R. Montrer que G est étoilé par rapport à 0 et donc connexe. Est-il toujours convexe?
- 2. Si $a \ge R$, montrer que $G \cap i\mathbb{R} = \emptyset$. L'ensemble G est-il connexe, combien a-t-il de composantes connexes s'il ne l'est pas?

Exercice 4 🗖 🎢 🧷 : encore de la connexité

- 1. On note $E = \{(x, 1) \text{ tq } x \in [0; 1]\} \cup \{(0, 0)\} \cup \{(1/n, y) \text{ tq } n \in \mathbb{N}^*, y \in [0; 1]\}$. Montrer que E est connexe mais pas connexe par arcs.
- 2. On note $E = \{(x, rx) \text{ tq } r \in \mathbb{Q} \cap [0; 1]\}.$

Montrer que E est connexe par arcs mais pas localement connexe par arcs.

Exercice 5 // : connexité de la topologie cofinie

Soit X un ensemble infini. On appelle topologie cofinie sur X la topologie dont les ouverts sont l'ensemble vide et les ensembles de complémentaire fini.

- 1. Montrer que X est connexe et localement connexe.
- 2. Dans cette question, on va montrer que, si $\{F_n\}_{n\in\mathbb{N}}$ est une partition disjointe de [0;1] en fermés, alors tous les F_n sont vides, sauf l'un qui vaut [0;1].

Posons $G = \bigcup \partial F_n$, où ∂F_n désigne le bord de F_n dans [0;1].

- a) Montrer que G est fermé dans [0;1].
- b) Montrer que, si G est non-vide, il existe $a < b \in \mathbb{R}$ tels que $]a; b[\cap G$ est non-vide et inclus dans l'un des F_n .
- c) Montrer qu'il est impossible que G soit non-vide. Conclure.
- d) Montrer que, si X est dénombrable, X n'est pas connexe par arcs.
- 3. On suppose ici que X n'est pas dénombrable. On suppose de plus qu'il existe une injection de \mathbb{R} dans X (c'est le cas si on suppose l'hypothèse du continu). Montrer que X est connexe par arcs.

Exercice 6 ##: Tipi de Cantor

On considère K l'ensemble de Cantor triadique, vivant dans [0;1].

- 1. Montrer que K est totalement discontinu.
- 2. On note K_1 l'ensemble des points de K appartenant à la frontière de l'un des F_n ; on note $K_2 = K K_1$. Soit S le point de \mathbb{R}^2 de coordonnées (0,1). Si P est dans K_1 (resp. K_2), on pose T_P l'ensemble des points du segment [PS] d'ordonnée dans \mathbb{Q} (resp. dans $\mathbb{R} \mathbb{Q}$). On pose T l'union des T_P , pour P dans K. C'est le tipi de Cantor (ou éventail de Knaster-Kuratowski). Montrer que T est connexe mais que $T \{S\}$ est totalement discontinu.

Exercice 7 // : espaces compacts et connexité

Soit $(K_n)_{n\in\mathbb{N}}$ une suite décroissante de compacts connexes non-vides. Soit $K=\bigcap_{n\in\mathbb{N}}K_n$.

- 1. Soient U, V des ouverts disjoints de K_0 qui recouvrent K. Montrer que $K \subset U$ ou $K \subset V$.
- 2. En déduire que K est connexe.

Exercice 8 🕈 🖋 : Compacts et connexité

- 1. Soit X un espace métrique compact et (x_n) une suite telle que $d(x_{n+1}, x_n)$ tende vers 0. Montrer que l'ensemble de ses valeurs d'adhérence est connexe.
- 2. Soit $f:[0;1] \to [0;1]$ continue et (x_n) la suite définie par récurrence à partir de son premier terme et $x_{n+1} = f(x_n)$. Montrer que si $x_{n+1} x_n \to 0$, elle converge.
- 3. Réciproque de la question 1 : si l'on se donne A un fermé de X l'espace métrique compact de la question 1, montrer que l'on peut trouver une suite (x_n) telle que $d(x_{n+1}, x_n)$ tende vers 0 et A soit exactement l'ensemble des valeurs d'adhérence de X. (utiliser la pré-compacité de A et le recouvrir par des boules de rayon de plus en plus petit.)