ELEMENTOS DE ÁLGEBRA :: PROVA 02

PROF. TIAGO MACEDO

Nome:	Assinatura:	RA:

Questão 1. Considere o conjunto dos números racionais $\mathbb Q$ munido da soma e multiplicação usuais.

(a) (1,5 ponto) Mostre que o conjunto $\mathbb{Q}^{\mathbb{N}} = \{(a_0, a_1, a_2, \dots) \mid a_0, a_1, a_2, \dots \in \mathbb{Q}\}$ munido da função $s : \mathbb{Q}^{\mathbb{N}} \times \mathbb{Q}^{\mathbb{N}} \to \mathbb{Q}^{\mathbb{N}}$ dada por

$$s((a_0, a_1, \dots), (b_0, b_1, \dots)) = (a_0 + b_0, a_1 + b_1, \dots)$$

e da função $m \colon \mathbb{Q}^{\mathbb{N}} \times \mathbb{Q}^{\mathbb{N}} \to \mathbb{Q}^{\mathbb{N}}$ dada por

$$m((a_0, a_1, \dots), (b_0, b_1, \dots)) = (a_0b_0, a_1b_1, \dots)$$

é um anel comutativo com identidade.

- (b) (1,0 ponto) Explique por que o subconjunto $S = \{(a_0, a_1, \dots) \in \mathbb{Q}^{\mathbb{N}} \mid \sum_{i=0}^{\infty} a_i = 0\}$ não é um subanel.
- (c) (1,0 ponto) Mostre que o subconjunto $I = \{(a_0, a_1, \dots) \in \mathbb{Q}^{\mathbb{N}} \mid a_i = 0 \text{ para todo } i > 0\}$ é um ideal.
- (d) (1,5 ponto) Mostre que existe um isomorfismo de anéis entre $\mathbb{Q}^{\mathbb{N}}$ e o quociente $\mathbb{Q}^{\mathbb{N}}/I$.
- (a) Primeiro mostre que $(\mathbb{Q}^{\mathbb{N}}, s)$ é um grupo abeliano com $0_{\mathbb{Q}^{\mathbb{N}}} = (0, 0, ...)$ e $-(a_i)_{i \in \mathbb{N}} = (-a_i)_{i \in \mathbb{N}}$. Depois verifique que, para todos $(a_i)_{i \in \mathbb{N}}, (b_i)_{i \in \mathbb{N}}, (c_i)_{i \in \mathbb{N}} \in \mathbb{Q}^{\mathbb{N}}$, temos:
 - $m\left((a_i)_{i\in\mathbb{N}}, m\left((b_i)_{i\in\mathbb{N}}, (c_i)_{i\in\mathbb{N}}\right)\right) = m\left(m\left((a_i)_{i\in\mathbb{N}}, (b_i)_{i\in\mathbb{N}}\right), (c_i)_{i\in\mathbb{N}}\right);$
 - $m\left((a_i)_{i\in\mathbb{N}}, s\left((b_i)_{i\in\mathbb{N}}, (c_i)_{i\in\mathbb{N}}\right)\right) = s\left(m\left((a_i)_{i\in\mathbb{N}}, (b_i)_{i\in\mathbb{N}}\right), m\left((a_i)_{i\in\mathbb{N}}, (c_i)_{i\in\mathbb{N}}\right)\right);$
 - $m(s((a_i)_{i \in \mathbb{N}}, (b_i)_{i \in \mathbb{N}}), (c_i)_{i \in \mathbb{N}}) = s(m((a_i)_{i \in \mathbb{N}}, (c_i)_{i \in \mathbb{N}}), m((b_i)_{i \in \mathbb{N}}, (c_i)_{i \in \mathbb{N}}))$

Isso mostra que (\mathbb{Q}^N, s, m) é um anel. Em seguida, verifique que

$$m\left((a_i)_{i\in\mathbb{N}},\,(b_i)_{i\in\mathbb{N}}\right)=m\left((b_i)_{i\in\mathbb{N}},\,(a_i)_{i\in\mathbb{N}}\right)$$
 para todos $(a_i)_{i\in\mathbb{N}},\,(b_i)_{i\in\mathbb{N}}\in\mathbb{Q}^{\mathbb{N}}$.

Isso mostra que (\mathbb{Q}^N,s,m) é um anel comutativo. Finalmente, verifique que, se $x_i=1_{\mathbb{Q}}$ para todo $i\in\mathbb{N},$ então

$$m\left((a_i)_{i\in\mathbb{N}},\,(x_i)_{i\in\mathbb{N}}\right)=(a_i)_{i\in\mathbb{N}}=m\left((x_i)_{i\in\mathbb{N}},\,(a_i)_{i\in\mathbb{N}}\right)$$
 para todo $(a_i)_{i\in\mathbb{N}}\in\mathbb{Q}^{\mathbb{N}}$.

Isso mostra que (\mathbb{Q}^N, s, m) é um anel comutativo com identidade $(1_{\mathbb{Q}})_{i \in \mathbb{Q}}$.

- (b) Para que S seja um subanel, S deve satisfazer as seguintes condições:
 - (i) (S, s) é um subgrupo de (\mathbb{Q}^N, s) ;
 - (ii) $m(s_1, s_2) \in S$ para todo $s_1, s_2 \in S$.

Observe que $(1, -1, 0, 0, ...) \in S$, mas

$$m((1,-1,0,0,\ldots),(1,-1,0,0,\ldots)) = (1,1,0,0,\ldots) \notin S.$$

Isso mostra que S não satisfaz a condição (ii) e portanto não é um subanel de $\mathbb{Q}^{\mathbb{N}}$.

- (c) Como $\mathbb{Q}^{\mathbb{N}}$ é um anel comutativo, para que I seja um ideal, I deve satisfazer as seguintes condições:
 - (i) (I, s, m) é um subanel de (\mathbb{Q}^N, s, m) ;
 - (ii) $m(i, x) \in I$ para todo $i \in I$, $x \in \mathbb{Q}^{\mathbb{N}}$.

Primeiro, vamos verificar que (I, s) é um subgrupo de $(\mathbb{Q}^{\mathbb{N}}, s)$:

• Se $(a_0, 0, 0, \dots), (b_0, 0, 0, \dots) \in I$, então

$$s((a_0,0,0,\ldots),(b_0,0,0,\ldots)) = (a_0 + b_0,0,0,\ldots) \in I.$$

- Se $(a_0,0,0,\dots) \in I$, então $-(a_0,0,0,\dots) = (-a_0,0,0,\dots) \in I$. Agora, vamos verificar a condição (ii). Para todos $(a_0,0,0,\dots) \in I$ e $(x_0,x_1,\dots) \in \mathbb{Q}^{\mathbb{N}}$, temos que $m((a_0,0,0,\dots),(x_0,x_1,x_2,\dots)) = (a_0x_0,0,0,\dots) \in I$. Isso mostra que $I \subset \mathbb{Q}^{\mathbb{N}}$ é um ideal.
- (d) Considere a função $f: \mathbb{Q}^{\mathbb{N}} \to \mathbb{Q}^{\mathbb{N}}$ dada por $f(a_0, a_1, a_2, \dots) = (a_1, a_2, \dots)$. Vamos verificar que f é um homomorfismo de anéis. Para todos $(a_i)_{i \in \mathbb{N}}, (b_i)_{i \in \mathbb{N}} \in \mathbb{Q}^{\mathbb{N}}$, temos:

$$f(s((a_{i})_{i\in\mathbb{N}}, (b_{i})_{i\in\mathbb{N}})) = f((a_{0} + b_{0}), (a_{1} + b_{1}), (a_{2} + b_{2}), \dots)$$

$$= ((a_{1} + b_{1}), (a_{2} + b_{2}), \dots)$$

$$= s((a_{1}, a_{2}, \dots), (b_{1}, b_{2}, \dots))$$

$$= s(f(a_{i})_{i\in\mathbb{N}}, f(b_{i})_{i\in\mathbb{N}})$$

$$e$$

$$f(m((a_{i})_{i\in\mathbb{N}}, (b_{i})_{i\in\mathbb{N}})) = f((a_{0}b_{0}), (a_{1}b_{1}), (a_{2}b_{2}), \dots)$$

$$= ((a_{1}b_{1}), (a_{2}b_{2}), \dots)$$

$$= m((a_{1}, a_{2}, \dots), (b_{1}, b_{2}, \dots))$$

$$= m(f(a_{i})_{i\in\mathbb{N}}, f(b_{i})_{i\in\mathbb{N}}).$$

Agora observe que f é sobrejetor. De fato, para todo $(a_0, a_1, \dots) \in \mathbb{Q}^{\mathbb{N}}$, temos que $f(0, a_0, a_1, \dots) = (a_0, a_1, \dots)$. Pelo Primeiro Teorema de Isomorfismo de anéis, existe um isomorfismo de anéis entre $\mathbb{Q}^{\mathbb{N}}/\ker(f)$ e $\mathbb{Q}^{\mathbb{N}}$. Como

$$\ker(f) = \{(a_0, a_1, a_2, \dots) \in \mathbb{Q}^{\mathbb{N}} \mid f(a_0, a_1, a_2, \dots) = 0_{\mathbb{Q}^{\mathbb{N}}}\}$$

$$= \{(a_0, a_1, a_2, \dots) \in \mathbb{Q}^{\mathbb{N}} \mid (a_1, a_2, \dots) = (0, 0, \dots)\}$$

$$= I,$$

segue que existe um isomorfismo de anéis entre $\mathbb{Q}^{\mathbb{N}}/I$ e $\mathbb{Q}^{\mathbb{N}}$.

Questão 2. Considere o conjunto dos números reais $\mathbb R$ munido da soma e multiplicação usuais.

- (a) (1,0 ponto) Mostre que $J \subseteq \mathbb{R}$ é um ideal se, e somente se, $J = \{0\}$ ou $J = \mathbb{R}$.
- (b) (1,0 ponto) Mostre que, se $S \subseteq \mathbb{R}$ é um subanel e $1_{\mathbb{R}} \in S$, então S é um domínio.
- (a) "se": Primeiro vamos verificar que $J = \{0\}$ é um ideal:
 - $0+0=0 \in \{0\};$
 - $-0 = 0 \in \{0\};$
 - $0 \cdot 0 = 0 \in \{0\}.$

Agora vamos verificar que $J = \mathbb{R}$ é um ideal:

- $x + y \in \mathbb{R}$ para todos $x, y \in \mathbb{R}$;
- $-x \in \mathbb{R}$ para todo $x \in \mathbb{R}$;
- $x \cdot y \in \mathbb{R}$ para todos $x, y \in \mathbb{R}$.

"somente se": Seja $J \subseteq \mathbb{R}$ um ideal. Se $J = \{0\}$, já vimos que J é um ideal de \mathbb{R} . Então vamos supor que $J \neq \{0\}$ e vamos mostrar que $J = \mathbb{R}$. Como $J \neq \{0\}$, existe $r \in J$ tal que $r \neq 0$. Como J é um ideal, então $x = \frac{x}{r} \cdot r \in J$ para todo $x \in \mathbb{R}$. Isso mostra que $\mathbb{R} \subseteq J$ e, consequentemente, $J = \mathbb{R}$

(b) Como \mathbb{R} é um anel comutativo com identidade $1_{\mathbb{R}} = 1$, basta mostrar que S não contém nenhum divisor de zero. De fato, se $x, y \in S$, então $x \cdot y = 0$ se, e somente se, x = 0 ou y = 0. Portanto S é um domínio.

Questão 3. Dado um anel não-trivial $(R, +, \cdot)$, um elemento $r \in R$ é dito nilpotente quando existe $n \in \mathbb{Z}$, n > 0, tal que $r^n = 0_R$.

- (a) (1,0 ponto) Mostre que, se $r \in R$ é nilpotente, então r não é uma unidade.
- (b) (1,0 ponto) Mostre que, se $f: R \to S$ for um homomorfismo de anéis e $r \in R$ é nilpotente, então f(r) é nilpotente.
- (c) (1,0 ponto) Considere o anel de polinômios R[x], o ideal

$$K = \{r_0 + \dots + r_n x^n \in R[x] \mid r_0 = r_1 = 0_R\},\$$

e a projeção canônica $\pi\colon R[x]\to R[x]/K$. Mostre que $x\in R[x]$ não é nilpotente, mas $\pi(x)\in R[x]/K$ é nilpotente.

- (d) (2,0 pontos) Mostre que, se R for comutativo, então $N = \{r \in R \mid r \text{ \'e nilpotente}\}$ é um ideal de R.
- (a) Para que $r \in R$ seja uma unidade, deve existir $u \in R$ tal que $r \cdot u = 1_R = u \cdot r$. Se r for nilpotente, então existe $n \in \mathbb{Z}$, n > 0, tal que $0_R = r^n \cdot u$ para todo $u \in R$. Como R é não-trivial, então $0_R \neq 1_R$ e, consequentemente, r não é uma unidade.
- (b) Lembre que, se f é um homomorfismo de anéis, então $f(0_R) = 0_S$ e $f(r^n) = f(r)^n$ para todos $r \in R$ e $n \in \mathbb{Z}$, n > 0. Portanto, se $r \in R$ for um elemento nilpotente, então existe $n \in \mathbb{Z}$, n > 0, tal que $r^n = R$. Consequentemente, $f(r)^n = f(r^n) = f(0_R) = 0_S$. Isso mostra que $f(r) \in S$ é nilpotente.
- (c) Para todo $n \in \mathbb{Z}$, n > 0, temos que $x^n \neq 0_{R[x]}$. Portanto, $x \in R[x]$ não é nilpotente. No entanto, $\pi(x)^2 = \pi(x^2) = 0_{R[x]/K}$, pois $x^2 \in K$ (ou seja, $\overline{x^2} = \overline{0}$).
- (d) Primeiro vamos mostrar que (N, +) é um grupo abeliano.
 - Se $r, s \in N$, então existem $n, m \in \mathbb{Z}$, n, m > 0, tais que $r^n = 0_R = s^m$. Como R é comutativo, temos que

$$(r+s)^{n+m} = \sum_{i=0}^{n+m} \binom{n+m}{i} r^i s^{n+m-i}$$

$$= \sum_{i=0}^{n-1} \binom{n+m}{i} r^i s^{(n-i)+m} + \sum_{i=n}^{n+m} \binom{n+m}{i} r^i s^{n+m-i}$$

$$= 0_R + 0_R$$

$$= 0_R.$$

• Se $r \in N$, então existe $n \in \mathbb{Z}$, n > 0, tal que $r^n = 0_R$. Consequentemente, $(-r)^n = (-1)^n \cdot r^n = 0_R$. Logo $(-r) \in N$.

Agora vamos mostrar que $r \cdot s \in N$ para todos $r \in R$ e $s \in N$. Como R é comutativo, então existe $n \in \mathbb{Z}$, n > 0, tal que $(r \cdot s)^n = r^n \cdot s^n = r^n \cdot 0_R = 0_R$. Como R é comutativo, isso mostra que N é um ideal de R.