```
In [1]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         %matplotlib inline
         import statsmodels.api as sm
         import warnings
In [2]: |passengers = pd.read_excel('Airlines+Data.xlsx')
         passengers
Out[2]:
                 Month Passengers
           0 1995-01-01
                               112
           1 1995-02-01
                               118
           2 1995-03-01
                               132
             1995-04-01
                               129
             1995-05-01
                               121
          91
             2002-08-01
                               405
          92 2002-09-01
                               355
          93 2002-10-01
                               306
             2002-11-01
                               271
          95 2002-12-01
                               306
         96 rows × 2 columns
In [3]: passengers.head()
Out[3]:
```

	Month	Passengers
0	1995-01-01	112
1	1995-02-01	118
2	1995-03-01	132
3	1995-04-01	129
4	1995-05-01	121

Converting the 'Month' column into proper date time format

```
In [4]: dates = pd.date range(start='1949-01-01', freq='MS',periods=len(passengers))
        dates
                                      '1949-02-01',
                                                     '1949-03-01',
Out[4]: DatetimeIndex(['1949-01-01',
                                                                   '1949-04-01',
                                      '1949-06-01',
                         '1949-05-01',
                                                     '1949-07-01',
                                                                   '1949-08-01',
                                                     '1949-11-01',
                                                                    '1949-12-01',
                        '1949-09-01', '1949-10-01',
                        '1950-01-01', '1950-02-01', '1950-03-01', '1950-04-01',
                        '1950-05-01', '1950-06-01',
                                                     '1950-07-01',
                                                                    '1950-08-01'
                        '1950-09-01',
                                      '1950-10-01',
                                                     '1950-11-01', '1950-12-01',
                        '1951-01-01',
                                      '1951-02-01',
                                                     '1951-03-01', '1951-04-01'
                        '1951-05-01', '1951-06-01',
                                                     '1951-07-01',
                                                                    '1951-08-01',
                        '1951-09-01', '1951-10-01', '1951-11-01', '1951-12-01',
                        '1952-01-01', '1952-02-01',
                                                     '1952-03-01',
                                                                    '1952-04-01'
                        '1952-05-01', '1952-06-01', '1952-07-01', '1952-08-01',
                                      '1952-10-01',
                                                     '1952-11-01',
                        '1952-09-01',
                                                                   '1952-12-01'
                        '1953-01-01',
                                      '1953-02-01',
                                                     '1953-03-01',
                                                                   '1953-04-01',
                        '1953-05-01', '1953-06-01', '1953-07-01', '1953-08-01',
                        '1953-09-01', '1953-10-01',
                                                     '1953-11-01',
                                                                    '1953-12-01'
                        '1954-01-01', '1954-02-01', '1954-03-01', '1954-04-01',
                        '1954-05-01', '1954-06-01',
                                                     '1954-07-01', '1954-08-01'
                        '1954-09-01', '1954-10-01', '1954-11-01',
                                                                   '1954-12-01',
                        '1955-01-01', '1955-02-01', '1955-03-01', '1955-04-01'
                                      '1955-06-01',
                                                     '1955-07-01',
                        '1955-05-01',
                                                                    '1955-08-01'
                        '1955-09-01', '1955-10-01', '1955-11-01', '1955-12-01',
                        '1956-01-01', '1956-02-01', '1956-03-01', '1956-04-01',
                        '1956-05-01', '1956-06-01', '1956-07-01', '1956-08-01',
                        '1956-09-01', '1956-10-01', '1956-11-01', '1956-12-01'],
                       dtype='datetime64[ns]', freq='MS')
In [5]: passengers['Month'] = dates.month
        passengers['Year'] = dates.year
In [6]: passengers.head()
Out[6]:
            Month Passengers
                             Year
         0
                1
                         112
                             1949
                2
                         118 1949
         1
         2
                3
                            1949
                         132
         3
                4
                         129
                             1949
                5
                         121
                             1949
In [7]: passengers.dtypes
Out[7]: Month
                       int64
        Passengers
                       int64
        Year
                       int64
        dtype: object
```

```
In [8]: passengers.head()
```

4

Out[8]: Month Passengers Year 0 1 112 1949 1 2 118 1949 2 3 132 1949 3 4 129 1949

5

121 1949

```
In [9]: import calendar
    passengers['Month'] = passengers['Month'].apply(lambda x: calendar.month_abbr[x])
    passengers.rename({'#Passengers':'Passengers'},axis=1,inplace=True)
    passengers = passengers[['Month','Year','Passengers']]
```

In [10]: passengers.head()

Out[10]:

	Month	Year	Passengers
0	Jan	1949	112
1	Feb	1949	118
2	Mar	1949	132
3	Apr	1949	129
4	May	1949	121

```
In [11]: passengers['Date'] = dates
    passengers.set_index('Date',inplace=True)
```

C:\Users\PRASHA~1\AppData\Local\Temp/ipykernel_3360/3979590641.py:1: SettingWit
hCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

passengers['Date'] = dates

In [12]: passengers.head()

Out[12]:

Date			
1949-01-01	Jan	1949	112
1949-02-01	Feb	1949	118
1949-03-01	Mar	1949	132
1949-04-01	Apr	1949	129
1949-05-01	May	1949	121

Month Year Passengers

In [14]: print('From the above figure we can see that passengers are increasing with the i

From the above figure we can see that passengers are increasing with the increase in the year

In [16]: print('From the above figure we can see that more passengers can be seen between

From the above figure we can see that more passengers can be seen between month s June to September.

Lets plot the data to see the trend and seasonality

```
In [17]: passengers_count = passengers['Passengers']
```

```
In [18]: plt.figure(figsize=(10,8))
    passengers_count.plot()
    plt.xlabel('Year')
    plt.ylabel('Number of Passengers')
    plt.show()
```


Now we start with time series decomposition of this data to understand underlying patterns such as trend, seasonality, cycle and irregular remainder

```
In [19]: decompose = sm.tsa.seasonal_decompose(passengers_count,model='multiplicative',ext
```

```
In [20]: fig = decompose.plot()
    fig.set_figheight(10)
    fig.set_figwidth(8)
    fig.suptitle('Decomposition of Time Series')
```

Out[20]: Text(0.5, 0.98, 'Decomposition of Time Series')

Decomposition of Time Series


```
In [21]: fig,axes = plt.subplots(2,2)
         fig.set figheight(10)
         fig.set figwidth(15)
         axes[0][0].plot(passengers.index,passengers count,label='Actual')
         axes[0][0].plot(passengers.index,passengers count.rolling(window=4).mean(),label=
         axes[0][0].set_xlabel('Year')
         axes[0][0].set ylabel('Number of Passengers')
         axes[0][0].set title('4 Months Rolling Mean')
         axes[0][0].legend(loc='best')
         axes[0][1].plot(passengers.index,passengers_count,label='Actual')
         axes[0][1].plot(passengers.index,passengers_count.rolling(window=6).mean(),label=
         axes[0][1].set xlabel('Year')
         axes[0][1].set ylabel('Number of Passengers')
         axes[0][1].set title('6 Months Rolling Mean')
         axes[0][1].legend(loc='best')
         axes[1][0].plot(passengers.index,passengers count,label='Actual')
         axes[1][0].plot(passengers.index,passengers_count.rolling(window=8).mean(),label=
         axes[1][0].set xlabel('Year')
         axes[1][0].set_ylabel('Number of Passengers')
         axes[1][0].set_title('8 Months Rolling Mean')
         axes[1][0].legend(loc='best')
         axes[1][1].plot(passengers.index,passengers count,label='Actual')
         axes[1][1].plot(passengers.index,passengers count.rolling(window=12).mean(),label
         axes[1][1].set_xlabel('Year')
         axes[1][1].set_ylabel('Number of Passengers')
         axes[1][1].set title('12 Months Rolling Mean')
         axes[1][1].legend(loc='best')
         plt.tight layout()
         plt.show()
```


As we could see in the above plots, 12-month moving average could produce a wrinkle free curve as desired. This on some level is expected since we are using month-wise data for our analysis and there is expected monthly-seasonal effect in our data.

Seasonality

Let us see how many passengers travelled in flights on a month on month basis. We will plot a stacked annual plot to observe seasonality in our data.

In [22]: passengers.head()

Out	[22]	:

	wontn	rear	Passengers
Date			
1949-01-01	Jan	1949	112
1949-02-01	Feb	1949	118
1949-03-01	Mar	1949	132
1949-04-01	Apr	1949	129
1949-05-01	May	1949	121

In [23]: monthly = pd.pivot_table(data=passengers,values='Passengers',index='Month',column
monthly = monthly.reindex(index=['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug',
monthly

Out[23]: Year 1949 1950 1951 1952 1953 1954 1955 1956

Month								
Jan	112	115	145	171	196	204	242	284
Feb	118	126	150	180	196	188	233	277
Mar	132	141	178	193	236	235	267	317
Apr	129	135	163	181	235	227	269	313
May	121	125	172	183	229	234	270	318
Jun	135	149	178	218	243	264	315	374
Jul	148	170	199	230	264	302	364	413
Aug	148	170	199	242	272	293	347	405
Sep	136	158	184	209	237	259	312	355
Oct	119	133	162	191	211	229	274	306
Nov	104	114	146	172	180	203	237	271
Dec	118	140	166	194	201	229	278	306

In [25]: yearly = pd.pivot_table(data=passengers,values='Passengers',index='Year',columns=
yearly = yearly[['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov
yearly

Out[25]: Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year

In [26]: yearly.plot(figsize=(8,6))
 plt.show()

In [27]: yearly.plot(kind='box',figsize=(8,6))
plt.show()

Important Inferences

The passengers are increasing without fail every year.

July and August are the peak months for passengers.

We can see a seasonal cycle of 12 months where the mean value of each month starts with a increasing trend in the beginning of the year and drops down towards the end of the year. We can see a seasonal effect with a cycle of 12 months.

ARIMA Modelling

Dickey-Fuller Test

```
In [28]: # Perform Dickey-Fuller test:
         from statsmodels.tsa.stattools import adfuller
         adfuller(passengers_count)
Out[28]: (1.3402479596466985,
          0.9968250481137263,
          12,
          83,
           {'1%': -3.5117123057187376,
            '5%': -2.8970475206326833,
           '10%': -2.5857126912469153},
          626.0084713813505)
In [29]: | adfuller_results = pd.Series(adfuller(passengers_count)[:4],index=['T stats','p-v
         for key,value in adfuller(passengers_count)[4].items():
             adfuller_results['Critical Value'+' '+ key] = value
         print(adfuller results)
         T stats
                                     1.340248
         p-value
                                     0.996825
         lags used
                                    12.000000
         Number of observations
                                    83.000000
         Critical Value 1%
                                    -3.511712
         Critical Value 5%
                                    -2.897048
         Critical Value 10%
                                    -2.585713
         dtype: float64
```

The p-value is greater than 0.05 (Coinfidence Interval 95%).

```
In [30]: passengers_count.plot()
   plt.show()
```


Let's do log transformation to convert the TS to stationary TS

```
In [31]: passengers_log = np.log10(passengers_count)
```

```
In [32]: passengers_log.plot()
   plt.show()
```



```
In [33]: # Perform Dickey-Fuller test:
    from statsmodels.tsa.stattools import adfuller
    adfuller(passengers_log)
    adfuller_results = pd.Series(adfuller(passengers_log)[:4],index=['T stats','p-val
    for key,value in adfuller(passengers_log)[4].items():
        adfuller_results['Critical Value (%s)'%key] = value
    print(adfuller_results)
```

```
T stats -0.723027
p-value 0.840695
lags used 12.000000
Number of observations 83.000000
Critical Value (1%) -3.511712
Critical Value (5%) -2.897048
Critical Value (10%) -2.585713
dtype: float64
```

The p-value is still greater than 0.05 (Coinfidence Interval 95%).

The log transformation has made variance stationary but mean is still increasing.

Let's try differencing by 1.

```
In [34]: diff1 = passengers_count.diff(1)
    diff1.head()
```

```
Out[34]: Date

1949-01-01 NaN

1949-02-01 6.0

1949-03-01 14.0

1949-04-01 -3.0

1949-05-01 -8.0
```

Name: Passengers, dtype: float64

```
In [35]: diff1.dropna(axis=0,inplace=True)
```

```
In [36]: diff1.plot()
plt.show()
```

```
60

40

20

-20

-40

1950 1951 1952 1953 1954 1955 1956

Date
```

In [37]: # Perform Dickey-Fuller test: from statsmodels.tsa.stattools import adfuller adfuller(diff1) adfuller_results = pd.Series(adfuller(diff1)[:4],index=['T stats','p-value','lags for key,value in adfuller(diff1)[4].items(): adfuller_results['Critical Value (%s)'%key] = value print(adfuller_results)

```
T stats -2.150002
p-value 0.224889
lags used 12.000000
Number of observations 82.000000
Critical Value (1%) -3.512738
Critical Value (5%) -2.897490
Critical Value (10%) -2.585949
dtype: float64
```

The p-value is still greater than 0.05 (Coinfidence Interval 95%).

The differencing by 1 has made mean stationary but variance is changing.

Let's try differencing by 1 on the log transformation.

```
In [38]: log_diff1 = passengers_log.diff(1)
    log_diff1.head()
```

Out[38]: Date

1949-01-01 NaN 1949-02-01 0.022664 1949-03-01 0.048692 1949-04-01 -0.009984 1949-05-01 -0.027804

Name: Passengers, dtype: float64

In [40]: # Perform Dickey-Fuller test: from statsmodels.tsa.stattools import adfuller adfuller(log_diff1) adfuller_results = pd.Series(adfuller(log_diff1)[:4],index=['T stats','p-value', for key,value in adfuller(log_diff1)[4].items(): adfuller_results['Critical Value (%s)'%key] = value print(adfuller_results)

dtype: float64

p-value is still greateer than 0.05.

```
In [41]: log_diff2 = passengers_log.diff(2)
log_diff2.head()
```

Out[41]: Date

```
1949-01-01 NaN
1949-02-01 NaN
1949-03-01 0.071356
1949-04-01 0.038708
1949-05-01 -0.037789
```

Name: Passengers, dtype: float64

In [42]: log_diff2.dropna(axis=0,inplace=True) log_diff2.plot() plt.show()


```
T stats -2.787629
p-value 0.060063
lags used 11.000000
Number of observations 82.000000
Critical Value (1%) -3.512738
Critical Value (5%) -2.897490
Critical Value (10%) -2.585949
dtype: float64
```

p-value is less than 0.05. In this case we reject null hypothesis that TS is non stationary.

Iterate the process to find the best values for p, d, q and P, D, Q

```
In [44]: import itertools
         # Define the p, d and q parameters to take any value between 0 and 2
         p = q = range(0, 3)
         d = range(0,1)
         # Generate all different combinations of p, d and q triplets
         pdq = list(itertools.product(p, d, q))
         pdq
Out[44]: [(0, 0, 0),
          (0, 0, 1),
           (0, 0, 2),
           (1, 0, 0),
           (1, 0, 1),
           (1, 0, 2),
          (2, 0, 0),
          (2, 0, 1),
          (2, 0, 2)
In [45]: # Generate all different combinations of seasonal p, q and q triplets
         D = range(0,3)
         P = Q = range(0, 3)
         seasonal pdq = [(x[0], x[1], x[2], 12) for x in list(itertools.product(P, D, Q))
         seasonal pdq
Out[45]: [(0, 0, 0, 12),
           (0, 0, 1, 12),
           (0, 0, 2, 12),
           (0, 1, 0, 12),
           (0, 1, 1, 12),
           (0, 1, 2, 12),
           (0, 2, 0, 12),
           (0, 2, 1, 12),
           (0, 2, 2, 12),
           (1, 0, 0, 12),
           (1, 0, 1, 12),
           (1, 0, 2, 12),
           (1, 1, 0, 12),
           (1, 1, 1, 12),
           (1, 1, 2, 12),
           (1, 2, 0, 12),
           (1, 2, 1, 12),
           (1, 2, 2, 12),
           (2, 0, 0, 12),
           (2, 0, 1, 12),
           (2, 0, 2, 12),
           (2, 1, 0, 12),
          (2, 1, 1, 12),
           (2, 1, 2, 12),
           (2, 2, 0, 12),
           (2, 2, 1, 12),
           (2, 2, 2, 12)
```

```
In [46]: import sys
         warnings.filterwarnings("ignore") # specify to ignore warning messages
         best aic = np.inf
         best pdq = None
         best seasonal pdq = None
         temp model = None
         for param in pdq:
             for param_seasonal in seasonal_pdq:
                  try:
                      temp_model = sm.tsa.statespace.SARIMAX(log_diff2,
                                                        order = param,
                                                        seasonal order = param seasonal,
                                                        enforce stationarity=False,
                                                        enforce invertibility=False)
                      results = temp model.fit()
                     # print("SARIMAX{}x{}12 - AIC:{}".format(param, param seasonal, result
                      if results.aic < best aic:</pre>
                          best aic = results.aic
                          best pdq = param
                          best_seasonal_pdq = param_seasonal
                  except:
                      #print("Unexpected error:", sys.exc info()[0])
                      continue
         print("Best SARIMAX{}x{}12 model - AIC:{}".format(best_pdq, best_seasonal_pdq, be
```

Best SARIMAX(1, 0, 1) $x(1, 0, 1, 12)12 \mod - AIC:-401.1413191266139$

Best SARIMAX(1, 0, 1)x(1, 0, 1, 12)12 model - AIC:-671.0386830029513 The best fit model is selected based on Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC) values. The idea is to choose a model with minimum AIC and BIC values.

Predict sales on in-sample date using the best fit ARIMA model

The next step is to predict passengers for in-sample data and find out how close is the model prediction on the in-sample data to the actual truth.

```
In [47]: sarima = sm.tsa.statespace.SARIMAX(log_diff2,order=(1,0,1),seasonal_order=(1,0,1,sarima_results = sarima.fit()
    print(sarima_results.summary())
```

SARIMAX Results

========		
Dep. Variable:	Passengers	No. Observations:
Model: 205.571	SARIMAX(1, 0, 1)x(1, 0, 1, 12)	Log Likelihood
Date: -401.141	Sun, 30 Jan 2022	AIC
Time: -389.231	12:45:22	BIC
Sample: -396.366	03-01-1949	HQIC

Covariance Type:

- 12-01-1956 opg

	coef	std err	z	P> z	[0.025	0.975]
ar.L1	-0.3152	0.118	-2.673	0.008	-0.546	-0.084
ma.L1	1.0001	43.412	0.023	0.982	-84.086	86.086
ar.S.L12	0.9976	0.024	41.513	0.000	0.950	1.045
ma.S.L12	-0.6116	0.142	-4.299	0.000	-0.890	-0.333
sigma2	0.0003	0.013	0.023	0.982	-0.025	0.026

====

Ljung-Box (L1) (Q): 0.05 Jarque-Bera (JB):

0.00

Prob(Q): 0.83 Prob(JB):

1.00

Heteroskedasticity (H): 0.33 Skew:

0.01

Prob(H) (two-sided): 0.00 Kurtosis:

3.02

====

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
In [48]: passengers count.tail(15)
Out[48]: Date
         1955-10-01
                        274
         1955-11-01
                        237
         1955-12-01
                        278
         1956-01-01
                        284
         1956-02-01
                        277
         1956-03-01
                        317
         1956-04-01
                        313
         1956-05-01
                        318
         1956-06-01
                        374
                        413
         1956-07-01
         1956-08-01
                        405
                        355
         1956-09-01
         1956-10-01
                        306
         1956-11-01
                        271
         1956-12-01
                        306
         Name: Passengers, dtype: int64
In [49]: prediction = sarima results.get prediction(start=pd.to datetime('1960-01-01'),ful
         prediction.predicted_mean
Out[49]: 1960-01-01
                       0.069703
         Freq: MS, dtype: float64
In [50]: predicted_values = np.power(10,prediction.predicted_mean)
         predicted values
Out[50]: 1960-01-01
                        1.174095
         Freq: MS, dtype: float64
In [51]: | actual = passengers count['1960-01-01':]
Out[51]: Series([], Name: Passengers, dtype: int64)
In [52]: # mean absolute percentage error
         mape = np.mean(np.abs(actual - predicted_values)/actual)
         mape
Out[52]: nan
In [53]: # mean square error
         mse = np.mean((actual - predicted values) ** 2)
         mse
Out[53]: nan
```

Forecast sales using the best fit ARIMA model

The next step is to foercast passengers for next 3 years i.e. for 1961, 1962, and 1963 through the above model.

```
In [54]: # Get forecast 36 steps (3 years) ahead in future
    n_steps = 36
    pred_uc_99 = sarima_results.get_forecast(steps=36, alpha=0.01) # alpha=0.01 signi
    pred_uc_95 = sarima_results.get_forecast(steps=36, alpha=0.05) # alpha=0.05 95% (

# Get confidence intervals 95% & 99% of the forecasts
    pred_ci_99 = pred_uc_99.conf_int()
    pred_ci_95 = pred_uc_95.conf_int()
    pred_ci_99.head()
```

Out[54]:

	lower Passengers	upper Passengers
1957-01-01	0.034234	0.102566
1957-02-01	-0.038543	0.043521
1957-03-01	0.012618	0.095923
1957-04-01	0.015624	0.099040
1957-05-01	-0.045416	0.038007

In [55]: pred_ci_95.head()

Out[55]:

	lower Passengers	upper Passengers
1957-01-01	0.034234	0.102566
1957-02-01	-0.038543	0.043521
1957-03-01	0.012618	0.095923
1957-04-01	0.015624	0.099040
1957-05-01	-0.045416	0.038007

Lower Becommers Junear Becommers

Out[56]:

	torecast	iower_ci_95	upper_ci_95
1956-12-01	1.170577	1.082017	1.266386
1957-01-01	1.005748	0.915076	1.105404
1957-02-01	1.133106	1.029481	1.247162
1957-03-01	1.141122	1.036630	1.256147
1957-04-01	0.991506	0.900708	1.091458

In [57]: fc_99.head()

Out[57]:

	lower_ci_99	upper_ci_99
1956-12-01	1.082017	1.266386
1957-01-01	0.915076	1.105404
1957-02-01	1.029481	1.247162
1957-03-01	1.036630	1.256147
1957-04-01	0.900708	1.091458

```
In [58]: fc_all = fc_95.combine_first(fc_99)
fc_all = fc_all[['forecast', 'lower_ci_95', 'upper_ci_95', 'lower_ci_99', 'upper_fc_all.head()
```

Out[58]:

	forecast	lower_ci_95	upper_ci_95	lower_ci_99	upper_ci_99
1956-12-01	1.170577	1.082017	1.266386	1.082017	1.266386
1957-01-01	1.005748	0.915076	1.105404	0.915076	1.105404
1957-02-01	1.133106	1.029481	1.247162	1.029481	1.247162
1957-03-01	1.141122	1.036630	1.256147	1.036630	1.256147
1957-04-01	0.991506	0.900708	1.091458	0.900708	1.091458

```
In [59]: # plot the forecast along with the confidence band
    axis = passengers_count.plot(label='Observed', figsize=(15, 6))
    fc_all['forecast'].plot(ax=axis, label='Forecast', alpha=0.7)
    #axis.fill_between(fc_all.index, fc_all['lower_ci_95'], fc_all['upper_ci_95'], col
    axis.fill_between(fc_all.index, fc_all['lower_ci_99'], fc_all['upper_ci_99'], col
    axis.set_xlabel('Years')
    axis.set_ylabel('Tractor Sales')
    plt.legend(loc='best')
    plt.show()
```


Diagnostics

- 1. Errors follows normality
- 2. Errors should not have auto correlation (ACF, no spikes beyond the limits)
- 3. Errors should not have any spikes (if the spikes are present, that particular time period, model didn't predict propoerly)

In [60]: sarima_results.plot_diagnostics(lags=30,figsize=(10,8))

In []: