Problem 3.4. Let $(V, \langle \cdot, \cdot \rangle)$ be a real or complex Hilbert space. Assume V is separable – that is, assume there exists a countable set E which is dense in V. Construct an orthonomral Schauder basis for V, using the following process:

- (a) Fill in the details of the following procedure: Pick $v_1 \in E \setminus \{0\}$. Given vectors $v_1, \ldots, v_n \in V$ which are pairwise orthogonal and nonzero, pick an arbitrary $u \in E$. If $u \in \text{span}\{v_1, \cdots, v_n\}$, discard it; otherwise, take v_{n+1} to the part of u that lies in $\text{span}\{v_1, \cdots, v_n\}^{\perp}$. This gives you a sequence $(v_n)_{n=1}^{\infty}$ of orthogonal vectors (briefly say why).
- (b) Put $W = \operatorname{span}\{v_j\}_{j=1}^{\infty}$ and prove that $\overline{W} = V$.
- (c) Using Bessel's inequality in the next section, Exercise 2.7 from Chapter 3, and the fact that $W^{\perp} = \{0\}$ to prove that $(v_j)_{j=1}^{\infty}$ is a Schauder basis for V.

Proof. We proceed with each part separately:

- (a) The steps are already laid out, so we'll just give some quick justification. Since every new v_{n+1} is chosen to be in span $\{v_1, \ldots, v_n\}^{\perp}$, it is guaranteed to be orthogonal to $\{v_1, \ldots, v_n\}$. Applying transfinite induction, the entire sequence $(v_n)_{n=1}^{\infty}$ will be pairwise orthogonal.
- (b) Note that $W = \operatorname{span}\{v_j\}_{j=1}^{\infty} = \operatorname{span} E$. If this wasn't the case, then there would exist some $u \in E$ such that some part of u lies in $(\operatorname{span}\{v_j\}_{j=1}^{\infty})^{\perp}$. But this is impossible by the construction of W, therefore we must have W = E. Since E is dense in V, then so must be W, as desired.
- (c) Aside: the author gave up on this one, although he has the right idea? Essentially, if $(v_n)_{n=1}^{\infty}$ is a (Hamel) basis for W, then it is a Schauder basis for \overline{W} , or something like this, but the author has no idea how to write this intuition out formally.

Problem 3.5. Let $(V, \langle \cdot, \cdot \rangle)$ be a real or complex inner product space, and let $U, W \leq V$.

- (a) Show that if $U \subseteq W$, then $W^{\perp} \subseteq U^{\perp}$.
- (b) Prove that W^{\perp} is always a *closed* subspace of V.
- (c) Show that if $V = W \oplus W^{\perp}$, then $(W^{\perp})^{\perp} = W$.
- (d) Prove by way of example that the equality $(W^{\perp})^{\perp} = W$ can fail.
- (e) Show that if V is a Hilbert space, then in general we have $(W^{\perp})^{\perp} = \overline{W}$, where \overline{W} denotes the closure of W in V.

1

Page 1

Math 425B W10P1 Hanting Zhang

Proof. We proceed with each part separately.

(a) Suppose $w \in W^{\perp}$, then for all $v \in W$, we have $\langle w, v \rangle = 0$, but $U \subseteq W$, so this implies for all $v \in U$, we have $\langle w, v \rangle = 0$, which exactly means $w \in U^{\perp}$.

- (b) We show that W^{\perp} contains its closure, i.e. let $v \in \overline{W}$ and let $(v_n)_{n=1}^{\infty}$ be a sequence in W^{\perp} such that $v_n \to v \in V$. By definition, we have $\langle v_n, w \rangle = 0$ for all $w \in W$, so $\lim_{n \to \infty} \langle v_n, w \rangle = \langle \lim_{n \to \infty} v_n, w \rangle = \langle v, w \rangle = 0$, as desired.
- (c) We show both inclusions.

First $(W^{\perp})^{\perp} \subseteq W$: Suppose $v \in (W^{\perp})^{\perp}$. Since we know that $V = W \oplus W^{\perp}$, write $v = w + w^{\perp}$. By definition, for all $w' \in W^{\perp}$, we have $\langle v, w' \rangle = 0$. Thus:

$$0 = \langle w + w^{\perp}, w' \rangle = \langle w, w' \rangle + \langle w^{\perp}, w' \rangle = \langle w^{\perp}, w' \rangle.$$

This must hold for all w', so choose $w' = w^{\perp}$ to conclude that $\langle w^{\perp}, w^{\perp} \rangle = 0 \Rightarrow w^{\perp} = 0$. Thus $v = w \in W$.

For the other side, suppose $w \in W$. We want to show that, for all $w^{\perp} \in W^{\perp}$, $\langle v, w' \rangle = 0$. But this is clearly true, so $w \in (W^{\perp})^{\perp}$.

(d) Consider the space $\ell^2(\mathbb{N}; \mathbb{R})$. Let W be the subspace of finitely supported sequences such that $a_1 = 0$. i.e.

$$W = \{a_n \in \mathbb{R}^{\mathbb{N}} \mid \sum_{n=1}^{\infty} |a_n|^2 < \infty, a_1 = 0, a_n \text{ finitely supported}\}.$$

Then W^{\perp} are the sequences such that $a_n = 0$ for all $n \neq 1$. Then

$$(W^{\perp})^{\perp} = \{a_n \in \mathbb{R}^{\mathbb{N}} \mid \sum_{n=1}^{\infty} |a_n|^2 < \infty, a_1 = 0\},\$$

and we don't necessarily need to be finitely supported anymore.

(e) We show both inclusions.

First $\overline{W} \subseteq (W^{\perp})^{\perp}$: Suppose $w \in W$, then trivially $\langle w, w^{\perp} \rangle = 0$ for all $w^{\perp} in W^{\perp}$, so $w \in (W^{\perp})^{\perp}$. From part (b), $(W^{\perp})^{\perp}$ is closed. \overline{W} is the smallest closed set containing W, so it must be that $\overline{W} \subseteq (W^{\perp})^{\perp}$.

On the other hand, we show the contrapositive. Suppose $v \notin \overline{W}$. Then there exists some $w \perp \in \overline{W}^{\perp}$, $w \neq 0$ and $w \in \overline{W}$ such that $v = w^p erp + w$. Since $W \subseteq \overline{W}$, part (a) shows $w^{\perp} \in \overline{W}^{\perp} \subseteq W^{\perp}$. But then $\langle v, w^{\perp} \rangle = \langle w^{\perp} + w, w^{\perp} \rangle = \langle w^{\perp}, w^{\perp} \rangle \neq 0$. Thus

Page 2

 $v \notin (W^{\perp})^{\perp}$, as desired.

Problem 1.1. (The Basel Problem)

- (a) Compute the Fourier coefficients of the function $f:[-\pi,\pi]\to\mathbb{C}$ given by f(x)=x.
- (b) Using Parseval's identity, together with part (a), prove that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Proof. We proceed with each part separately:

(a) We compute, for $n \neq 0$:

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} x e^{-inx} dx = \frac{i(-1)^n}{n}$$

(we leave out the work to keep things simple) and $c_0 = 0$, since x is odd.

(b) So then

$$||f(x)||^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{\pi^2}{3}$$
$$= \sum_{n=-\infty}^{\infty} \left| \frac{i(-1)^n}{n} \right|^2 = \sum_{n=1}^{\infty} \frac{2}{n^2}.$$

Thus we conclude:

$$\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2}.$$

Page 3