บทที่ 1

แนะนำ

วิทยาการคอมพิวเตอร์

วัตถุประสงค์

หลังจากเรียนจบบทที่ 1 แล้ว นักศึกษาต้องสามารถ:

- เข้าใจแนวคิดเกี่ยวกับ black box, a data processor, และ data processor ที่สามารถโปรแกรมได้
- นิยามแบบจำลอง von Neumann และบอกองค์ประกอบของแบบจำลองคือ
 หน่วยความจำ หน่วยคำนวณและตรรกะ หน่วยควบคุม และ หน่วยรับและแสดงผล
- เข้าใจแนวคิดเกี่ยวกับ stored program
- 🔲 เข้าใจการทำงานตามลำดับของคำสั่งในโปรแกรม
- ระบุองค์ประกอบของระบบคอมพิวเตอร์ได้คือ: ฮาร์ดแวร์ ซอฟท์แวร์ และข้อมูล

Computer = Data Processor

- ถ้าเรานิยามคอมพิวเตอร์เป็น "Data processor" จะเห็นว่า คอมพิวเตอร์เปรียบเหมือนกล่องดำที่สามารถ
 - 1. รับ input data
 - 2. ประมวลผล data
 - 3. ส่งผล output data
- ถึงแม้ว่าตามนิยามนี้จะบ่งบอกถึงหน้าที่ของคอมพิวเตอร์ ดังที่เป็นอยู่ทุกวันนี้ แต่จากนิยามก็สามารถสรุปได้ว่าเครื่อง

คิดเลขก็เป็นคอมพิวเตอร์ด้วย!!!!!

รูปที่ 1-1

แบบจำลอง Data processor

แบบจำลอง Data processor (ต่อ)

• ปัญหาอย่างหนึ่งของ data processor model คือ เรา ใม่ทราบว่าคอมพิวเตอร์เป็น

specific-purpose machine คือสามารถ ประมวลผลได้ประเภทเดียวเช่นควบคุมอุณหภูมิภายในอาคาร ควบคุมปริมาณน้ำมันในรถยนต์เป็นต้น หรือเป็น

general-purpose machine คือสามารถ ประมวลผลได้หลายประเภท เช่นคิดเลขได้ ประมวลผลการฝาก และถอนเงินได้ จัดเก็บและสืบค้นข้อมูลได้เป็นต้น

Computer = Programmable Data Processor

Model

- เพื่อให้สะท้อนถึงนิยามที่เป็นจริงกับคอมพิวเตอร์ที่เราใช้กันอยู่ใน ปัจจุบันโมเดลนี้ทำการเพิ่ม program เข้าไป
- คำว่า program หมายถึงชุดของคำสั่งที่สั่งให้คอมพิวเตอร์ประมวลกับ ข้อมูลเพื่อให้ได้ผลลัพธ์ตามที่เราต้องการ
- ในยุคแรกๆของคอมพิวเตอร์ คำสั่งเหล่านี้จะกำหนดโดยการเปลี่ยน สถานะของ switch หลายๆตัวเป็น on และ off สลับกัน
- ในปัจจุบัน program เป็นชุดของคำสั่งที่เขียนโดยใช้ภาษาคอมพิวเตอร์ (computer programming language)

Programmable data processor model

Programmable data processor model

- ภายใต้โมเดลนี้ output data ขึ้นอยู่กับองค์ประกอบ 2 อย่างคือ input data กับ program หมายความว่า ด้วย input data เดียวกันแต่ใช้โปรแกรมที่ต่างกันย่อมได้ผลที่ต่างกันด้วย ในขณะ ที่ถ้าใช้ program เดียวกันแต่ด้วย input data ที่ต่างกันก็จะได้ผล ที่ต่างกันด้วย
- ถ้า input data เดียวกัน และ program เดียวกัน แต่ให้ทำงาน หลายๆครั้ง ผลก็คือจะได้ output data เหมือนกันทุกครั้ง

Same program, different data

แบบจำลอง von NEUMANN

แบบจำลอง Von Neumann

• คอมพิวเตอร์ในปัจจุบันสร้างขึ้นบนพื้นฐานของ von Neumann model (ตั้งชื่อตามนักวิทยาศาสตร์ John von Neumann) โมเดล นี้กำหนดว่าคอมพิวเตอร์ประกอบด้วยองค์ประกอบ 4 ส่วนคือ

หน่วยความจำ (Memory)

หน่วยคำนวณตรรกะ (Arithmetic Logic Unit)

หน่วยควบคุม (Control Unit)

หน่วยรับและแสดงผล (Input/Output Units)

ฐปที่ 1-5

แบบจำลอง von Neumann

แบบจำลอง Von Neumann (ต่อ)

- Memory: เป็นพื้นที่ส่วนที่ใช้เก็บ data และ program ระหว่างที่ คอมพิวเตอร์กำลังทำงาน
- Arithmetic Logic Unit: ALU เป็นส่วนที่ใช้สำหรับทำการคำนวณและ ทำ logic operations (เช่น ทำการเปรียบเทียบ ทำการ AND, OR เป็นต้น
- Control Unit: ทำหน้าที่ควบคุมการทำงานของ memory, ALU, และ Input/Output units
- Input/Output: ส่วน input ทำหน้าที่รับ data และ program จาก ภายนอก ส่วน output ทำหน้าที่ส่งผลของการประมวลผลสู่ภายนอก

แบบจำลอง von Neumann (ต่อ)

- Stored Program Concept: von Neumann model กำหนดว่า program ที่สั่งให้คอมพิวเตอร์ทำงานจะต้องถูกจัดเก็บอยู่ใน memory ในขณะที่ คอมพิวเตอร์กำลังประมวลผล ข้อกำหนดนี้แตกต่างอย่างสิ้นเชิงจาก สถาปัตยกรรมของคอมพิวเตอร์สมัยแรกๆ ซึ่งกำหนดว่าเฉพาะ data เท่านั้นที่ต้องอยู่ใน memory
- สถาปัตยกรรมของคอมพิวเตอร์สมัยใหม่มีข้อกำหนดว่าทั้ง data และ program ต้องอยู่ใน memory ขณะประมวลผล ส่งผลให้ทั้ง data และ program ต้องมีรูปแบบการจัดเก็บเหมือนกัน ในรูปแบบที่เรียก ว่า binary patterns (สตริงของ 0 และ 1)

แบบจำลอง Von Neumann (ต่อ)

Sequential Execution of Instructions:

Program หรือชุดคำสั่งใน von Neumann Model ประกอบด้วยเซตของ instruction ที่มีจำนวนจำกัด การทำงาน เริ่มด้วยหน่วยควบคุมทำการดึง (fetch) 1 คำสั่งจาก หน่วยความจำ ทำการตีความหมาย แล้วจึงทำการ execute

โดยทั่วไป คำสั่งจะถูก execute ที่ละ 1 คำสั่งตามลำดับการจัดเรียง คำสั่งในโปรแกรม แม้ว่าบางคำสั่งอาจควบคุมการทำงานซ้ำ (loop) ทำงานแบบเลือกทำ (selection) แต่ก็ยังถือว่าเป็นการทำงานตามลำดับอยู่

Computer Hardware

- von Neumann model ได้กำหนดองค์ประกอบพื้นฐาน 4
 องค์ประกอบที่คอมพิวเตอร์จะต้องมีคือ memory, ALU,
 control unit, และ I/O unit ทั้ง 4 องค์ประกอบนี้รวมกันเรียกว่า
 computer hardware
- ณ ปัจจุบันเราอาจมี memory หลายประเภทเช่น hard disk, tape, punch cards หรือมี I/O หลายประเภทเช่น เครื่องรูดบัตร เครื่องอ่านบาร์โค๊ด ลำโพง (speaker) แต่ก็ยังถือว่าเป็น องค์ประกอบใน 4 ประเภทตาม von Neumann Model

Storing Data

• von Neumann model กำหนดว่า คอมพิวเตอร์เป็นเครื่องจักร ประมวลผลที่ทำการรับข้อมูล ประมวลผล และแสดงผลลัพธ์ แต่ไม่ได้ระบุว่าข้อมูลจะถูกจัดเก็บอย่างไรในหน่วยความจำ เนื่องจากคอมพิวเตอร์เป็นอุปกรณ์อิเล็คทรอนิคส์ (electronic devices) ทางที่ดีที่สุดในการจัดเก็บข้อมูลคือเก็บในรูปของ สัญญาณไฟฟ้า (electrical signal) ที่บ่งบอกสถานะ "presence" หรือ "absence" นั่นคือคอมพิวเตอร์สามารถเก็บข้อมูลโดยใช้ สองสถานะเท่านั้น

Storing Data (ที่อ)

- ในชีวิตจริงเรามีข้อมูลที่ต้องจัดเก็บหลายประเภทเช่นเลข 0-9 ต้องใช้ถึง 10 สถานะในการจัดเก็บ จึงเก็บไม่ได้ ต้องหาหรือ เปลี่ยนแปลงระบบใหม่
- มีรูปแบบของข้อมูลประเภทอื่นอีกที่ต้องการการประมวลผลเช่น text, image, audio, video ซึ่งไม่สามารถเก็บในหน่วยความจำ ของคอมพิวเตอร์ได้โดยตรง แต่ต้องปรับรูปแบบใหม่เช่นกัน
- ในบทที่ 2-3 จะอธิบายถึงรูปแบบการเก็บข้อมูลประเภทต่างๆโดย ใช้ binary patterns (sequence ของ 0 กับ 1)

การจัดรูปแบบข้อมูล

- ถึงแม้ว่าข้อมูลที่เก็บภายในคอมพิวเตอร์จะมีเพียงรูปแบบเดียว คือ binary pattern แต่ข้อมูลที่เก็บภายนอกคอมพิวเตอร์อาจมี หลายรูปแบบ จึงมีการสร้างสาขาใหม่ทางวิทยาการคอมพิวเตอร์ ที่ทำการศึกษาเกี่ยวกับเรื่องนี้คือ "data organization"
- ในปัจจุบันข้อมูลมีการจัดการอย่างเป็นระบบโดยแยกเป็นข้อมูล หน่วยเล็กๆรวมกันเป็นหน่วยใหญ่ขึ้น และใหญ่ขึ้นๆ

Programming

- คุณลักษณะพิเศษของ von Neumann model คือ program หรือ ชุดคำสั่ง ต้องอยู่ใน memory ในขณะที่คอมพิวเตอร์กำลังทำงาน ในประเด็นนี้ von Neumann model ได้เปลี่ยนความหมายของ คำว่า programming ไป จากที่เคยขึ้นอยู่กับ operator เป็น ผู้กระทำ มาเป็นคอมพิวเตอร์เป็นผู้กระทำโดยอัตโนมัติ
- มีประเด็นที่สำคัญ 2 ประเด็นที่จะต้องทำความเข้าใจคือ
 - # Programs must be stored
 - **# Sequence of instructions**

รูปที่ 1-6

Program and data in memory

Program Data Memory

ฐปที่ 1-7

โปรแกรมประกอบด้วยชุดของคำสั่ง

- 1. Input first data item into memory.
- 2. Input second data item into memory.
- 3. Add the two together and store the result in memory.
- 4. Output the result.

Program

วิวัฒนาการของคอมพิวเตอร์แบ่งออกเป็น 3 ยุค

• Mechanical Machines (ก่อน พ.ศ. 2473) ... มีการพัฒนา คอมพิวเตอร์ออกมาหลายรุ่นซึ่งแตกต่างจากคอมพิวเตอร์ สมัยใหม่อย่างมาก ที่สำคัญๆมีดังนี้

#ในศตวรรษที่ 17 นักปรัชญาและนักคณิตศาสตร์ชาวฝรั่งเศส ชื่อ Blaise Pascal ได้คิดค้นเครื่องคิดเลขชื่อว่า Pascaline ที่ สามารถทำการ บวก และ ลบได้ ต่อมาในศตวรรษที่ 20 ศาสตราจารย์ Niklaus Wirth ได้สร้างภาษาคอมพิวเตอร์เชิง โครงสร้าง (structured programming) และตั้งชื่อภาษาใหม่นี้ว่า

Mechanical Machines (ต่อ)

ตอนปลายศตวรรษที่ 17 นักคณิตศาสตร์ชาวเยอรมันชื่อ
Gottfried Leibnitz ได้คิดค้นและสร้างเครื่องคิดเลขที่
ซับซ้อนมากขึ้นที่สามารถ ทำการบวก ลบ คูณ และ หารได้
และเขาตั้งชื่อว่า Leibnitz's Wheel

ตอนต้นของศตวรรษที่ 19 นักประดิษฐ์ชื่อ Joseph-Marie Jacquard ได้ประดิษฐ์เครื่องจักรที่ใช้แนวความคิดเกี่ยวกับ storage และ programming โดยใช้ punched cards (เหมือนกับ stored program) เพื่อควบคุมการจัดการเส้นด้าย

Mechanical Machines (ที่อ)

#ปี ค.ศ. 1823 Charles Babbage ได้ประดิษฐ์เครื่อง Difference Engine ซึ่งนอกจากจะสามารถทำการบวก ลบ คูณ หาร ได้แล้วยังสามารถแก้ สมการโพลิโนเมียล (polynomial equations) ได้อีกด้วย ต่อมา Charles Babbage ก็ได้ประดิษฐ์เครื่อง Analytical Engine ซึ่งมีลักษณะ คล้ายคลึงกับคอมพิวเตอร์สมัยใหม่คือมี 4 องค์ประกอบคือ a mill (modern ALU), a store (memory), an operator (control unit), และ output (input/output)

#ปี ค.ศ. 1890 Herman Hollerith ได้ออกแบบและสร้าง programmer machine ที่สามารถ อ่าน (read) แจงนับ (tally) และเรียงลำดับ (sort) ข้อมูลที่จัดเก็บใน punched cards

กำเนิดของอิเล็กทรอนิกส์คอมพิวเตอร์ (ค.ศ.1930-1950)

ช่วงระหว่างปี 1930-1950 นักวิทยาศาสตร์ได้ผลิตคอมพิวเตอร์ ขึ้นเป็นจำนวนมาก ซึ่งนักวิทยาศาสตร์เหล่านี้ถือเป็นผู้บุกเบิก อุตสาหกรรมอิเล็กทรอนิกส์คอมพิวเตอร์สมัยใหม่
 # คอมพิวเตอร์เครื่องแรกๆของระยะนี้ยังไม่ได้เก็บโปรแกรมไว้ ในหน่วยความจำ คำสั่งทั้งหมดกระทำจากภายนอก คอมพิวเตอร์ที่โดดเด่นในช่วงนี้มี 5 เครื่องด้วยกันคือ

* ปี ค.ศ.1939: ABC (Atanasoff Berry Computer) เป็น specific-purpose computer ที่ออกแบบมาเพื่อแก้ระบบสมการ ที่ตัวแปรมีกำลังเป็นหนึ่ง (system of linear equations)

กำเนิดของอิเล็กทรอนิกส์คอมพิวเตอร์

(ค.ศ.1930-1950)

- * นักคณิตศาสตร์เยอรมันชื่อ Konrad Zuse ได้ออกแบบเครื่องจักร อเนกประสงค์ (general-purpose machine) ชื่อ Z1
- * ปี ค.ศ.1930: กองทัพเรือสหรัฐร่วมกับบริษัทใจบีเอ็มได้ร่วมกันให้การ สนับสนุนโครงการที่มหาวิทยาลัยฮาวาร์ดตามแนวคิดของศาสตราจารย์ Howard Aiken เพื่อสร้างคอมพิวเตอร์ขนาดใหญ่ชื่อ Mark I คอมพิวเตอร์เครื่องนี้ใช้ทั้ง electrical และ mechanical components
- * ในประเทศอังกฤษ ศาสตราจารย์ Alan Turing ได้คิดค้นและสร้าง เครื่องคอมพิวเตอร์ชื่อ Colossus ที่ออกแบบเพื่อถอดรหัส Enigma ของ เยอรมัน (German Enigma Code)

กำเนิดของอิเล็กทรอนิกส์คอมพิวเตอร์ (ค.ศ.1930-1950)

* ปี ค.ศ.1946: เครื่องคอมพิวเตอร์อเนกประสงค์เครื่องแรกที่เป็น electronic computer ได้รับการสร้างขึ้นสำเร็จโดย John Mauchly และ J. Presper Eckert และมีชื่อว่า ENIAC (Electronic Numerical Integrator and Calculator) ประกอบด้วยหลอดสุญญากาศจำรวน 18,000 หลอด ยาว 100 ฟุต สูง 10 ฟุต และหนัก 30 ตัน

เครื่องคอมพิวเตอร์บนพื้นฐานของ von Neumann

Model

- คอมพิวเตอร์ทั้งห้าที่กล่าวมาใช้หน่วยความจำเก็บข้อมูลเท่านั้น การ โปรแกรมทำจากภายนอกโดยใช้ wires และ switches ในช่วงเวลานี้เองที่ von Neumann ได้เสนอให้ทั้งโปรแกรมและข้อมูลควรจะเก็บอยู่ใน หน่วยความจำ ด้วยเหตุนี้ทำให้ทุกครั้งที่เราใช้คอมพิวเตอร์ในการทำงาน ใดก็ตาม เราเพียงแต่เปลี่ยนโปรแกรมเท่านั้น
- ก.ศ.1950: คอมพิวเตอร์เครื่องแรกที่สร้างขึ้นโดยใช้ von Neumann model โดยสร้างขึ้นที่มหาวิทยาลัยเพนซิลวาเนีย สหรัฐอเมริกา มีชื่อว่า EDVAC เวลาเดียวกัน ที่มหาวิทยาลัยแคมบริดจ์ ประเทศอังกฤษก็ได้ สร้างคอมพิวเตอร์ชื่อ EDSAC โดยนักวิทยาสาสตร์ชื่อ Maurice Wilkes

ยุคของคอมพิวเตอร์ (ค.ศ.1950-ปัจจุบัน)

- เครื่องคอมพิวเตอร์ที่สร้างขึ้นหลังจากปี ค.ศ.1950 จะสร้างโดยยึด von Neumann model เป็นหลัก เครื่องคอมพิวเตอร์ที่สร้างขึ้นมีความเร็วมาก ขึ้น ขนาดเล็กลง และราคาก็ถูกลง นักประวัติศาสตร์ได้แบ่งช่วงเวลาการ พัฒนาออกเป็น 5 ช่วงเวลา (generations) โดยอาศัยการเปลี่ยนทางด้าน ฮาร์ดแวร์และซอฟท์แวร์เป็นหลัก แต่ model ไม่เปลี่ยนแปลง
 - * ช่วงที่ 1: 1950-1959: เริ่มผลิตคอมพิวเตอร์เชิงการค้า การใช้จะถูก จำกัดอยู่ในห้อง จะมีเฉพาะ operator และผู้เชี่ยวชาญเท่านั้นที่จะเข้าถึง ได้ เครื่องมีขนาดใหญ่ มีน้ำหนักมาก ใช้หลอดสุญญากาศเป็น electronic switches เฉพาะองค์กรใหญ่ๆเท่านั้นที่จะสามารถเป็นเจ้าของได้

ยุคของคอมพิวเตอร์ (ค.ศ.1950-ปัจจุบัน)

* ช่วงที่ 2:1959-1965: ใช้ transistor แทนหลอดสูญญากาศ ทำให้ ตัวเครื่องมีขนาดเล็กลง องค์กรขนาดกลางและขนาดเล็กสามารถเป็น เจ้าของได้ ภาษาคอมพิวเตอร์ระดับสูง 2 ภาษาที่ถูกพัฒนาขึ้นในช่วงนี้ คือภาษา FORTRAN ภาษา COBOL ทำให้งานด้านโปรแกรมถูกแยกมา จาก operator อย่างสินเชิง

* ช่วงที่ 3:1965-1975: มีการคิดค้นและสร้าง integrated circuit (IC: ซึ่ง ประกอบด้วย transistors, wiring, และองค์ประกอบอื่นใส่ลงใน chip) ทำให้ขนาดเล็กลง ราคาก็ถูกลงมาก เครื่องมีนิคอมพิวเตอร์เริ่มผลิตและ ซื้อขาย มีการพัฒนาและใช้ซอฟท์แวร์สำเร็จรูปแทนที่จะเขียนโปรแกรม เอง ก่อให้เกิดอุตสาหกรรมซอฟท์แวร์มากขึ้น

ยุคของคอมพิวเตอร์ (ค.ศ.1950-ปัจจุบัน)

* ช่วงที่ 4:1975-1985: เริ่มมีการผลิต microcomputer เครื่อง desktop calculator เครื่องแรกสร้างขึ้นในปี ค.ศ. 1975 ด้วยความก้าวหน้าทาง อุตสาหกรรมอิเล็คทรอนิคส์ ทำให้คอมพิวเตอร์ทั้งเครื่องสามารถสร้าง ขึ้นบน circuit board แผ่นเล็กๆเพียงแผ่นเดียว ขณะเดียวกันการพัฒนา เครื่อข่ายคอมพิวเตอร์ (computer networks) ก็เกิดขึ้นในช่วงนี้ * ช่วงที่ 5:1985-ปัจจุบัน: เป็นการเปิดศักราชของการพัฒนา คอมพิวเตอร์อย่างกว้างขวาง มีการผลิตคอมพิวเตอร์ประเภท laptop และ palmtop ออกสู่ตลาด มีการพัฒนาและปรับปรุงประสิทธิภาพของ หน่วยความจำลำรองเช่น CD-ROM, DVD และมีการใช้อย่างแพร่หลาย มีการพัฒนาข้อมูลประเภทสื่อผสม (multimedia) มีการสร้างระบบ เสมือนจริง (virtual reality)

คำสำคัญในบทที่ 1

- Algorithm ALU black box
- Computer Languages Computer Science
- Control Unit data processor input data
- Instruction integrated circuit memory
- Microcomputer operating system
- Output data program
- Programmable data processor
- Software von Neumann model

