REPORT

11주차 과제

과 목 명 | 서보기기제어

담당교수 | 홍선기 교수님

학 과 | 시스템제어공학과

학 번 | 20210710

이 름 I 맹지우

제 출일 | 2023.11.13.

아두이노를 이용한 BLDCM 구동

맹지우_20210710

호서대학교 시스템제어공학과

(H.P: 010-9332-6526, E-mail: 20210710@vision.hoseo.edu)

1. 인버터 회로를 그리시오.

[그림 1] 인버터 회로

[그림 1]의 인버터 회로는 홀센서를 가지고 6개의 신호를 만든 다음, 나온 신호를 모터에 바로 인가시켜도 동작이 일어나지 않는다. 그 이유는 스위칭이 되지 않기 때문이다. 따라서 추가로 회로가 필요한데, 이에 대한 회로는 [그림 2]와 [그림 3]을 보면 된다.

[그림 2] 포토커플러를 사용한 회로

[그림 3] 분리된 전원이 없는 인버터

먼저 [그림 2]는 포토커플러를 사용한 회로이다. 포토커플러 회로에서는 전압원이 여러 개가 필요하다는 단점이 있다. 또한 서로 다른 2개의 GND가 필요한데, 같은 GND를 사용하게 되면 쇼트가 나서 스위칭이 되지 않는 문제가 생기기 때문이다.

[그림 2]에서는 공통 GND를 사용하면 쇼트가 나기 때문에 스위칭이 되지 않는 문제가 있었다. 이를 해결한 방법으로는 [그림 3]과 같이 PNP형과 NPN형을 같이 사용한 달링턴 트랜지스터와 FET를 사용하였다. 회로 오른쪽 위에 총 6개의 트랜지스터가 존재한다. 이때, 왼쪽 3개가 NPN형이고 오른쪽 3개는 PNP형이다. NPN은 소용량, PNP는 고용량 트랜지스터를 달았다. 따라서 증폭 후에 GND 쪽으로 전류가내려가 사고가 나지 않는다.

2. 전동기에서 나오는 홀신호를 이용하여 120도 구동 신호를 만드는 식을 아두이노로 코딩하시오.

```
#include "Timer.h"
                                                       pinMode(hall1, INPUT);
                                                       pinMode(hall2, INPUT);
Timer t;
                                                       pinMode(hall3, INPUT);
int hall 1 = 2;
                                                       pinMode(A0, INPUT);
int hall 2 = 5;
                                                       for (int i =7; i <13; i++)
int hall 3 = 6;
int SAM = 7;
                                                           pinMode(i, OUTPUT);
int SBM =8;
int SCM = 12;
                                                       t.every(1, switching);
int SAP = 9;
                                                   }
int SBP =11;
                                                   void loop()
int SCP =10;
int sw =3;
                                                       a = millis();
int rpm;
                                                       t.update();
                                                       if (a - b > = 30)
int hall1_state;
int hall2_state;
int hall3_state;
                                                           Serial.println(rpm);
int state;
                                                           b = a;
int sensor_value; // 가변저항 값
int dirsed_rpm; // 목표 rpm
                                                       // put your main code here, to run
int error;
                                                   repeatedly:
int sw_state;
                                                       if (state ==5)
int count =0; // 스위치 누른 횟수를 저항하는
함수
                                                           digitalWrite(SAP, duty);
                                                           digitalWrite(SBP, LOW);
unsigned long current_time;
                                                           digitalWrite(SCP, LOW);
unsigned long previous_time;
                                                           digitalWrite(SAM, LOW);
unsigned long a, b; // millis()함수 사용을 위한
                                                           digitalWrite(SBM, HIGH);
변수
                                                           digitalWrite(SCM, LOW);
                                                       }
float frequency;
                                                       else if (state ==4)
float period;
                                                       {
float kp = 0.01;
                                                           digitalWrite(SAP, duty);
float ki = 0.1;
                                                           digitalWrite(SBP, LOW);
float p, i, pi;
                                                           digitalWrite(SCP, LOW);
float duty;
                                                           digitalWrite(SAM, LOW);
                                                           digitalWrite(SBM, LOW);
void setup()
                                                           digitalWrite(SCM, HIGH);
                                                       else if (state ==6)
    attachInterrupt(0, fucncion, RISING);
    Serial.begin(2000000);
```

```
digitalWrite(SAP, LOW);
                                                      digitalWrite(SAM, LOW);
    digitalWrite(SBP, duty);
                                                      digitalWrite(SBM, HIGH);
    digitalWrite(SCP, LOW);
                                                      digitalWrite(SCM, LOW);
                                                  }
    digitalWrite(SAM, LOW);
    digitalWrite(SBM, LOW);
                                              }
    digitalWrite(SCM, HIGH);
                                              void fucncion()
}
else if (state ==2)
                                                  current_time = micros();
                                                  period = (current_time - previous_time);
    digitalWrite(SAP, LOW);
                                                  previous_time = current_time;
                                                  frequency = (1 / period) *1000000;
    digitalWrite(SBP, duty);
                                                  rpm = (120 * frequency) /4;
    digitalWrite(SCP, LOW);
    digitalWrite(SAM, HIGH);
                                                  sensor_value = analogRead(A0);
    digitalWrite(SBM, LOW);
                                                  dirsed_rpm = map(sensor_value, 0, 1023,
    digitalWrite(SCM, LOW);
                                              800, 1500);
}
                                                  error = dirsed_rpm - rpm;
else if (state ==3)
                                                  p = kp * error;
{
                                                  pi = p + i;
    digitalWrite(SAP, LOW);
                                                  duty = duty + pi;
    digitalWrite(SBP, LOW);
    digitalWrite(SCP, duty);
                                              void switching()
    digitalWrite(SAM, HIGH);
                                              {
    digitalWrite(SBM, LOW);
                                                  i = (ki * error *0.001);
    digitalWrite(SCM, LOW);
                                                  hall1_state = digitalRead(hall1);
                                                  hall2_state = digitalRead(hall2);
}
else if (state ==1)
                                                  hall3_state = digitalRead(hall3);
                                                  state =4 * hall1_state +2 * hall2_state *
                                              hall3_state;
    digitalWrite(SAP, LOW);
    digitalWrite(SBP, LOW);
    digitalWrite(SCP, duty);
```

3. 아두이노, 전동기, 인버터 3개의 배선도를 그리시오.

4. 소감 및 결론

기존에 많이 보았던 인버터 회로는 [그림 1]이었는데, 이번 과제를 통해 [그림 2]나 [그림 3]과 같은 회로도 알게 되었다. 또한 [그림 2]의 포토커플러 회로는 처음 들어보았는데, 전압원과 GND가 여러 개가 필요하다는 단점을 교수님의 설명 덕분에 알게 되었다. [그림 3]의 분리된 전원이 없는 인버터에서는 [그림 2]의 단점을 보완하여 나온 것인데, 보완을 위해 사용된 "달링턴" 트랜지스터라는 단어를 처음접하게 되었다. 어려운 단어처럼 들려서 새로운 이론인가 했는데, 알고 보니 PNP형과 NPN형을 같이 사용하였을 때 달링턴 트랜지스터라고 한다는 부가 설명을 듣고 다 기초적인 지식에서 응용된다는 생각이 들었다.

지금까지는 사실 하드웨어 부분을 개인적으로 좋아하지 않아서 기피 하였는데, 아두이노로 전동기에서 나오는 홀신호를 이용하여 120도 구동 신호를 만드는 식을 코딩하면서 소프트웨어만 공부해서는 안되 고 하드웨어도 깊이는 아니더라도 어느 정도 공부하고 알아야겠다는 생각이 들었다.