Algebra/Geometrie II, Übungsblatt 4

Bitte geben Sie die Lösungen in Ihrer Übungsgruppe entweder am 11.5. oder am 13.5. ab. Jede Aufgabe ist 4 Punkte wert.

Aufgabe 1. Sei $V = \mathbb{C}^3$, $U = \langle v_1, v_2 \rangle \subset V$ die lineare Hülle von v_1 und v_2 und H die hermitesche Form auf V, die durch die Matrix A gegeben ist. Berechnen Sie das orthogonale Komplement U_H^{\perp} , falls

(a)
$$A = \begin{pmatrix} 1 & i & 1-i \\ -i & 0 & -2 \\ 1+i & -2 & -2 \end{pmatrix}$$
, $v_1 = (i, 1, -1)$, $v_2 = (1-2i, -i, 3)$;

(b)
$$A = \begin{pmatrix} 0 & -2+i & -i \\ -2-i & 2 & -1+i \\ i & -1-i & -1 \end{pmatrix}$$
, $v_1 = (-i+1,2,0)$, $v_2 = (-1+3i,-3i,2)$.

Aufgabe 2. Sei $A \in M_n(\mathbb{R})$ eine schiefsymmetrische Matrix. Zeigen Sie, dass $det(A) \geq 0$.

Aufgabe 3. Sei V ein euklidischer (oder hermitescher) Raum, $v \in V$ ein Vektor und $U \subseteq V$ ein Unterraum, der durch ein LGS gegeben ist (als die Lösungsmenge). Berechnen Sie den Abstand d(v, U) in den folgenden Fällen.

(a)
$$V = \mathbb{R}^4$$
, $v = (3, 3, -4, 2)$, LGS:
$$\begin{cases} x_1 + 2x_2 + x_3 - x_4 = 0, \\ x_1 + 3x_2 + x_3 - 3x_4 = 0. \end{cases}$$

(b)
$$V = \mathbb{R}^5$$
, $v = (3, 3, -1, 1, -1)$, LGS: $x_1 - 3x_2 + 2x_4 - x_5 = 0$

(c)
$$V = \mathbb{C}^3$$
, $v = (1, -1, i)$, LGS: $x_1 + (5 + 4i)x_2 - ix_3 = 0$.

Aufgabe 4. Berechnen Sie die Kantenlängen und die Winkeln für das Dreieck ABC in \mathbb{R}^5 mit A=(2,4,2,4,2), B=(6,4,4,4,6), C=(5,7,5,7,2).