AAAI 2015

retrieve

Self-paced Curriculum Learning

Lu Jiang ¹, Deyu Meng², Qian Zhao ², Shiguang Shan ³, Alexander G. Hauptmann ¹

¹School of Computer Science, Carnegie Mellon University ²School of Mathematics and Statistics, Xi'an Jiaotong University

³Institute of Computing Technology, Chinese Academy of Sciences

People

CMU Informedia Team

Deyu Meng

Qian Zhao

Shiguang Shan

Alexander Hauptmann

Outline

- Motivation
- Background Knowledge
- Self-paced Curriculum Learning
- Experiments
- Conclusions

Motivations

- Noisy
- Highly unbalanced data
- Training non-convex models?

Many algorithms have been proposed.

One solution is biologically inspired: what we will do if we are asked to learn something from the big data.

Curriculum Learning and Self-paced Learning

- Curriculum Learning (Bengio et al. 2009) or self-paced learning (Kumar et al 2010) represents a recently proposed learning paradigm that is inspired by the learning process of humans and animals.
- The samples are not learned randomly but organized in a meaningful order which illustrates from easy to gradually more complex examples.
- Curriculum: a sequence of gradually learned samples.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In *ICML*, 2009.

Carnegie Mellon University

Curriculum Learning and Self-paced Learning

- Samples are organized in a meaning order (curriculum).
- Learning is conducted iteratively.
- Models are becoming increasingly complex.

$$rac{1}{g-kv}rac{dv}{dt} = 1$$
 $\int_0^T rac{1}{g-kv}rac{dv}{dt} \,dt = \int_0^T \,dt$
 $\int_{v_0}^{v(T)} rac{1}{g-kv} \,dv \,dv = T$
 $-rac{1}{k}\ln|g-kv||_{v_0}^{v(T)} = T$
 $\ln|rac{g-kv(T)}{g-kv_0}| = -kT$
 $rac{g-kv(T)}{g-kv_0} = e^{-kT}$

Curriculum Learning and Self-paced Learning

- Samples are organized in a meaning order (curriculum).
- Learning is conducted iteratively.
- Models are becoming increasingly complex.

Easy and Complex samples in Google Image Search

Samples of "Dog" to learn earlier.

Samples of "Dog" to learn later.

Outline

- Motivation
- Background Knowledge
- Self-paced Curriculum Learning
- Experiments
- Conclusions

Curriculum Learning

- Curriculum Learning (CL): assign learning priorities to training samples, according to prior knowledge or heuristics about specific problems.
- Teaching a robot: leverage human curriculum.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In *ICML*, 2009.

Khan, F.; Zhu, X.; and Mutlu, B. 2011. How do humans teach: On curriculum learning and teaching dimension. In NIPS.

Curriculum Learning

- Curriculum Learning (CL): assign learning priorities to training samples, according to prior knowledge or heuristics about specific problems.
- Teaching a robot: leverage human curriculum.

- Parsing in Natural Language Processing (NLP):
 - From shorter sentences to longer sentence.

Self-paced Learning

- Self-paced Learning (SPL): the curriculum is determined by the learned models.
- Solving a joint optimization problem of the learning objective with the curriculum (a sequence of gradually added samples).
 - From → smaller loss to the already learned model.
 - to → larger loss to the already learned model.

M. P. Kumar, B. Packer, and **D. Koller**. Self-paced learning for latent variable models. In NIPS, pages 1189–1197, 2010.

Jiang, L.; Meng, D.; Yu, S.-I.; Lan, Z.; Shan, S.; and Hauptmann, A. G. 2014b. Self-paced learning with diversity. In NIPS.

Carnegie Mellon University

Curriculum Learning versus Self-paced Learning

Curriculum Learning (CL)

Pros

Flexible to incorporate prior knowledge/heuristics.

Cons

 Curriculum is determined beforehand which may not be consistent with dynamically learned modles.

Self-paced Learning (SPL)

- Pros
 - Learn consistent models.
 - Concise optimization problem.
- Cons
 - Cannot use prior knowledge.
 - Random starting values (can be sensitive to the performance).

Difficult to judge which one is better in practice.

Curriculum Learning versus Self-paced Learning

Curriculum Learning (CL)

Self-paced Learning (SPL)

student-driven

Difficult to judge which one is better in practice.

Self-paced Curriculum Learning Carnegie Mellon Self-paced Curriculum Learning

Curriculum Learning (CL)

instructor-driven

Self-paced Learning (SPL)

student-driven

Self-paced Curriculum Learning (SPCL)

Unified in a single framework: SPCL

Outline

- Motivation
- Background Knowledge
- Self-paced Curriculum Learning
- Experiments
- Conclusions

Self-paced Curriculum Learning

Formulated as an optimization problem (based on SPL).
 Consider a binary classification problem:

$$\arg \min_{\mathbf{w}, \mathbf{v} \in [0,1]^n} \sum_{i=1}^n v_i L(y_i, g(\mathbf{x}_i, \mathbf{w})) + f(\mathbf{v}, \lambda)$$

subject to $\mathbf{v} \in \Psi$

 $\mathbf{w} \Rightarrow \text{parameters in the off-the-shell model}$ $L(y_i, g(\mathbf{x}_i, w)) \Rightarrow \text{loss for the } ith \text{ sample}$ $\mathbf{v} = [v_1, \dots, v_n] \Rightarrow \text{weight vector for all samples}$ $f(\mathbf{v}, \lambda) \Rightarrow \text{regularizer determines the learning scheme}$ $\lambda \Rightarrow \text{model age}$

 $\Psi \Rightarrow$ feasible region that encodes the prior knowledge

Off-the-shell model (SVM, deep neural networks etc.)

Weight vectors in self-paced learning

Prior knowledge in curriculum learning

Self-paced Curriculum Learning

How to solve (alternative search):

- Fixing \mathbf{v} and optimize model parameters \mathbf{w} .
- Fixing w and optimize weight variables v.
- Increase the model age to train a more complex model.

Carnegie

Self-paced Curriculum Learning Carnegie Mellon University

How to solve (alternative search):

- Fixing v and optimize model parameters w.
- Fixing \boldsymbol{w} and optimize weight variables \boldsymbol{v} .
- Increase the model age to train a more complex model.

Recalculating the loss and select more examples.

Self-paced Curriculum Learning Carnegie Mellon University

How to solve (alternative search):

- Fixing v and optimize model parameters w.
- Fixing w and optimize weight variables v .
- Increase the model age λ to train a more complex model.

Self-paced Curriculum Learning University

Formulated as an optimization problem (based on SPL):

$$\arg\min_{\mathbf{w},\mathbf{v}} \sum_{i=1} v_i L(y_i, g(\mathbf{x}_i, \mathbf{w})) + f(\mathbf{v}, \lambda)$$

subject to
$$\mathbf{v} \in \Psi$$

Carnegie

Self-paced Curriculum Learning

Formulated as an optimization problem (based on SPL):

$$\arg\min_{\mathbf{w},\mathbf{v}}\sum_{i=1}^n v_i L(y_i,g(\mathbf{x}_i,\mathbf{w})) + f(\mathbf{v},\lambda)$$
 subject to $\mathbf{v}\in\Psi$
Novelty: when optimizing \mathbf{v} with the fixedw:

- - Encode heuristics/prior knowledge in the feasible region Ψ :
 - E.g. v1 learned before v3, v2 before v3 $v_1 \geq v_2 \geq v_3$
 - Represent the regularizer to present different learning scheme. Apply different regularizer to different problems:
 - Start from easy to complex examples?
 - From easy and diverse to complex examples?
 - Even from complex to easy (for very smart learner/student for example)?

Carnegie Mellon University

Self-paced Curriculum Learning

Formulated as an optimization problem (based on SPL):

$$\arg\min_{\mathbf{w},\mathbf{v}} \sum_{i=1}^{n} v_i L(y_i, g(\mathbf{x}_i, \mathbf{w})) + f(\mathbf{v}, \lambda)$$

subject to
$$\mathbf{v} \in \Psi$$

- When optimizing ${f v}$ with the fixed ${f w}$:
 - Encode heuristics/prior knowledge in the feasible region
 - E.g. v1 learned before v3, v2 before v3
 - Represent the regularizer to present different learning scheme.
 Apply different regularizers to different problems:
 - Start from easy to complex examples?
 - From diverse to complex examples?
 - Even from complex to easy (for very smart learner/student for example)?

Outline

- Motivation
- Background Knowledge
- Self-paced Curriculum Learning
- Experiments
- Conclusions

Experiments

Matrix factorization:

$$\begin{bmatrix} d & h \\ n & \mathbf{X} \end{bmatrix} = n \begin{bmatrix} h \\ \mathbf{U} \end{bmatrix} \times h \begin{bmatrix} d \\ \mathbf{V^T} \end{bmatrix}$$

Content-based video retrieval:

Experiments

Table 2: Performance comparison of SPCL and baseline methods for matrix factorization.

	L_2 -norm MF			L_1 -norm MF		
	Baseline	SPL	SPCL	Baseline	SPL	SPCL
RMSE	9.3908	0.2585	0.0654	2.8671	0.1117	0.0798
MAE	6.8597	0.0947	0.0497	1.4729	0.0766	0.0607

RMSE (Root Mean Square Error)

Lower -> better

Table 3: Performance comparison of SPCL and baseline methods for zero-example event reranking.

Dataset	CL	SPL	SPCL
MED13Test	10.1	10.8	12.9
MED14Test	7.3	8.6	9.2

MAP(Mean Average Precision)

Higher -> better

Incorporating prior knowledge into statistical learning tends to be instrumental.

Outline

- Motivation
- Background Knowledge
- Self-paced Curriculum Learning
- Experiments
- Conclusions

Conclusions

Take home messages:

- Proposed a novel learning framework that unifies the existing curriculum learning and self-paced learning paradigms.
- SPCL is general and has pluggable components:
 - Off-the-shell model → Student
 - Regularizers → Learning schemes
 - Feasible region → Prior knowledge
- Observed benefits for the non-convex problems and the problems with noisy and unbalanced data.

THANK YOU. Q&A?

Self-paced Curriculum Learning Wellon University

 Self-paced curriculum (SPCL) Learning unified curriculum learning (CL) and self-paced learning (SPL) into a universal framework.

Table 1: Comparison of different learning approaches.

	CL	SPL	Proposed SPCL						
Comparable to human learning	Instructor-driven	Student-driven	Instructor-student collaborative						
Curriculum design	Prior knowledge	Learning objective	Learning objective + prior knowledge						
Learning schemes	Multiple	Single	Multiple						
Iterative training	Heuristic approach	Gradient-based	Gradient-based						