E: Campo Electrico

B: Campo Magnético

Pa: Densidad de carga eléctrica J: Densidad de corriente eléctrica

Los ecuaciones de Maxwell son

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho_4}{\varepsilon_0} \qquad (Gauss)$$

$$\vec{\nabla} \times \vec{E} = -\frac{\vec{\partial} \vec{B}}{\vec{\partial} t} \qquad (Foradoy)$$

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} \qquad (Ampere)$$

La dinánica de los campos en un fluido está ligada por la Ley de Ohm,

donde η_e es la resistividad eléctrica del fluido y \tilde{E}' es el campo eléctrico medido en un sistema que se mueve con velocidad \tilde{v} (i.e. se mueve con el fluido) Una Transformación de Lorentz permite relacionar \tilde{E}' con los campos \tilde{E} y \tilde{B} en el sistema de referencia estacionario,

$$\vec{E}' = \frac{\vec{E} + \vec{\nabla} \times \vec{B}}{\sqrt{1 - \frac{\vec{\nabla}^2}{2}}}$$

Ya que la MHD no se construira en forma completamente relativista, se realizará la aproximación

$$\left(1 - \frac{v^{2}}{c^{2}}\right)^{-\frac{1}{2}} = 1 - \frac{1}{2} \frac{v^{2}}{c^{2}} + \dots$$

Así, se tendrá

$$\vec{E}' = (\vec{E} + \vec{\nabla} \times \vec{B}) \left(1 - \frac{1}{2} \frac{\vec{v}'}{c^2} + \cdots \right)$$

$$\vec{E}' = \vec{E} + \vec{\nabla} \times \vec{B} + O\left(\frac{c^2}{v^2}\right)$$

De esta manera, la ley de Ohm se convierte, a primer orden en $\frac{v^{L}}{c^{L}}$, en

LEY DE AMPERE APROXIMADA

Al ignal que con la ley de Ohm, aproximaremos la ley de Ampere notando que $\frac{\left|\frac{1}{c^{1}} \frac{\partial \vec{E}}{\partial t}\right|}{\left|\vec{\nabla} \times \vec{E}\right|} \sim \frac{E_{0}\omega}{c^{1}} \sim \frac{V_{0}\omega L}{c^{1}} \sim \frac{V_{0}^{1}}{c^{1}} < 1$

donde se ha considerado que en un modelo MHD ideal (con 1/e=0) la ley de Ohm establecería que Eo ~ VoBo

Ademais se han introducido las cantidades coracterísticas

L: Distancia macroscópicamente relevante más pequeña.

w: frecuencia característica

Movimiento de baja-frecuencia: Vol << 1

Con YouL -> wick ci

De esta manera, la ley de Ampere se puede aproximar en la forma

FUCESA DE LOBENTE

La fuerza de Lorentz (por unidad de volumen) es

Sin embargo es importante notar que

A partir de la ley de Gowss.

y de la ley de Ampere,

De esta forma

A partir de esta relación, podemos despreciar el término 9, É en la juerta de Lorente en la MHD,

ECNACIONES DE LA MAD

Reuniendo toda la información que tenemos hasta este momento, las 16 ecuaciones de la MHD son

$$\frac{\partial P}{\partial t} + \vec{\nabla} \cdot (P\vec{\nabla}) = 0 \qquad (1)$$

$$P\left(\frac{\partial \vec{\nabla}}{\partial t} + \vec{\nabla} \cdot \vec{\nabla} \vec{\nabla}\right) = -\vec{\nabla}P + \vec{\nabla} \cdot \vec{u} + \vec{f} + \vec{J} \times \vec{B} \qquad (3)$$

$$\frac{\partial}{\partial t} (Pe) + \vec{\nabla} \cdot (Pe\vec{V}) = -P\vec{\nabla} \cdot \vec{V} - \vec{\nabla} \cdot \vec{q} + \vec{f} \cdot \vec{V} - \vec{\nabla} \cdot \vec{F}_{rad} + Q^{(vo)} + \eta_e \vec{J}^{\dagger} \qquad (1)$$

$$\vec{\nabla} \cdot \vec{E} = \frac{Pq}{E_o} \qquad (1)$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad (3)$$

$$\vec{\nabla} \times \vec{B} = 0 \qquad (1)$$

$$\vec{\nabla} \times \vec{B} = \eta \cdot \vec{J} \qquad (3)$$

$$\vec{E} + \vec{V} \times \vec{B} = \eta \cdot \vec{J} \qquad (3)$$

Las cantidades desconocidas son 29,

Al considerar la ley de Gauss en la forma

se define la densidad de carga eléctrica completamente y evitamos una variable.

También es posible combinar la ley de Faraday, Ohn y Ampere para eliminar É y J de las ecuaciones,

$$-\frac{\partial \vec{B}}{\partial t} = \vec{\nabla} \times \vec{E} = \vec{\nabla} \times (\eta_e \vec{J} - \vec{v} \times \vec{B})$$

$$\frac{\partial \vec{B}}{\partial t} = \vec{\nabla} \times (\vec{v} \times \vec{B} - \underline{\eta}_e \vec{\nabla} \times \vec{B})$$

Finalmente, la MHD estavá descrita por 9 ecuaciones

$$\frac{\partial f}{\partial b} + \hat{\nabla} \cdot (b \hat{\Delta}) = 0 \tag{1}$$

$$P\left(\frac{\partial \vec{\nabla}}{\partial t} + \vec{\nabla} \cdot \vec{\nabla} \vec{\nabla}\right) = -\vec{\nabla} p + \vec{\nabla} \cdot \vec{\sigma} + \vec{f} + \underline{I}(\vec{\nabla} \times \vec{B}) \times \vec{B}$$
 (3)

$$\frac{\partial}{\partial t}(Pe) + \vec{\nabla} \cdot (Pe\vec{v}) = - p \vec{\nabla} \cdot \vec{v} - \vec{\nabla} \cdot \vec{q} + \vec{f} \cdot \vec{v} - \vec{\nabla} \cdot \vec{F}_{rad} + \vec{v} \cdot \vec{\nabla} \vec{v} + \eta_e \vec{v}$$

$$\frac{\partial \vec{B}}{\partial t} = \vec{\nabla} \times \left(\vec{\nabla} \times \vec{B} - \frac{\gamma_e}{\gamma_e} \vec{\nabla} \times \vec{B} \right)$$
 (3)

$$\vec{\nabla} \cdot \vec{B} = 0$$
 (1)

para encontrar 22 variables.

- (1)

- (3) **(**6)
- (3)
- (1)

Esto quiere decir que hacen falta 13 ecuaciones para cerrar el sistema.