110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

0.0°

200' TVD

TEL: (337) 394-1078

Operator				Contractor			County / Parish /	Block		Engineer S	Start Date	24 hr	ftg.		Drilled	I Depth		
	NOLIA (OIL & G	AS		TTERS	ON	WASH	HINGTO		_	4/27/2	-	3,000) ft		3,00	0 ft	
Well Name and No.			011	Rig Name ar			State	-V.4.0		Spud Date			nt ROP		Activit	•		
LEVI G	ЮОДК	ICH U2	- 3H	Report for	248		Field / OCS-G #	EXAS		Fluid Type	4/27/2		400 ft ating Rate	/nr	Circul	PO		
JAMES D	YER / B	ОВВҮ	GWINN	Тс	ol Pus	her	GID	DIGNS			WBM		804 g	pm		1,750		i
	MUD	PROPER	TY SPECIF	ICATION	s		MUD VO	LUME (BB	BL)	Р	PUMP #1		PUMP	#2	RIS	SER BO	DOST	ER
Weight	PV	YP	GELS	pН	API fl	% Solids	In Pits	650) bbl	Liner S	ize	6 Line	er Size	6	Line	r Size		
8.4-9.6	0-10	0-10	<5 <10	8.4-9	<25	2-10	In Hole	601	1 bbl	Stroke	е	12 St	roke	12	Stı	oke		
			•			4/28/20	Active	705	5 bbl	bbl/st	tk 0.	0997 bl	ol/stk	0.099	7 bb	l/stk	0.00	000
Time Sample	Гaken					1:00	Storage)		stk/mi	in	96 st	c/min	96	stk	/min		
Sample Locati	on					suction	Tot. on Loc	cation 125	1 bbl	gal/mi	in ·	402 ga	l/min	402	ga	l/min	0)
Flowline Temp	erature °F	=				100 °F		PHHP = 82	1		CIRCU	LATION D	ATA		n =	0.585	K = 53	3.126
Depth (ft)						2,600'	Bit	Depth = 20	00 '		Was	hout = 5%		Pu	ımp Effic	iency =	95%	,
Mud Weight (p	pg)					9.2	Drill String	Volume	to Bit	3.6 bl	bl S	strokes To B	t 36		Time	To Bit	0 m	nin
Funnel Vis (se	c/qt)		@ 90 °F			32	Disp.	Bottoms U	lp Vol.	51.0 b	obl Bo	tomsUp Stk	511	В	ottomsUp	Time	3 m	nin
600 rpm						6	1.3 bbl	Riser Anı	n. Vol.	35.3 b	obl	Riser Stroke	354	l F	Riser Circ	. Time	2 m	nin
300 rpm						4		DRILLING	G ASS	EMBLY	DATA			SOL	LIDS CC	NTRO	L	
200 rpm						2	Tubulars	OD (in.)	ID	(in.)	Length	Тор	ι	Jnit	Scr	eens	Hou	urs
100 rpm						1	Drill Pipe	5.000	4.2	276	200'	0'	Sha	aker 1	14	0-80	12	0
6 rpm						1	Hevi Wt	5.500	3.0	000		200'	Sha	aker 2	14	0-80	12	:.0
3 rpm						1	Dir. BHA	8.000	2.8	875		200'	Sha	aker 3	14	0-80	12	:.0
Plastic Viscosi	ty (cp)		@ 120 °F			2						200'	Des	sander			12	:.0
Yield Point (lb/	100 ft²)		T0 = 1			2		CASIN	IG & F	IOLE D	ATA		De	silter			12	0
Gel Strength (l	b/100 ft²)	10	sec/10 min			1/2	Casing	OD (in.)	ID	(in.)	Depth	Тор	Cent	rifuge	1		12	0
Gel Strength (l	b/100 ft ²)		30 min			4	Riser	20	19.	.000	108'		VOL	LUME	ACCOL	INTING	(bbl	s)
API Filtrate / C	ake Thick	ness				25/1	Surface					108'	Pre	v. Tota	al on Lo	cation		0.0
HTHP Filtrate	/ Cake Th	ickness	@ 0 °F				Int. Csg.					108'	Tra	nsferre	ed In(+)/	Out(-)		
Retort Solids (Content					6.4%	Washout 1								Oil Add	ed (+)		0.0
Retort Oil Con	tent						Washout 2							Ва	rite Add	ed (+)		0.0
Retort Water 0	Content					93.6%	Oper	n Hole Size	14.	.175	3,000'		Othe	r Prod	luct Usa	ge (+)		3.2
Sand Content						0.5%	ANI	NULAR GE	OME	TRY & R	RHEOLO	GY		Wa	ater Add	ed (+)	20	0.00
M.B.T. (Methy	ene Blue	Capacity)	(ppb)				annular	r me	eas.	veloci	ity flov	v ECD		Left o	on Cuttir	ngs (-)	-2	292.8
рН						8.5	section	de de	epth	ft/mir	n reg	lb/gal	S	and T	rap Disc	harge	-4	173.1
Alkalinity, Mud	Pm					0.1	19x5	10	08'	58.6	S lan	11.16						
Alkalinities, Fil	trate Pf/M	f				0.1/0.2	14.175x	5 20	00'	112.0	0 lan	11.27	E	st. Tota	al on Lo	cation	12	237.4
Chlorides (mg/	'L)					400							Est.	Losse	s/Gains	(-)/(+)		13.7
Calcium (ppm)						80							ı	BIT HY	YDRAUL	ICS D	АТА	
Excess Lime (b/bbl)												Bit H.S	S.I.	Bit ∆P	Nozzl	es (32	2nds)
Average Spec	fic Gravit	y of Solids	3	2.60	2.60	2.60							0.98	3 2	299 psi	14	14	14
Percent Low G	ravity So	lids				6.4%							Bit Imp	nact I	Nozzle Velocity	14	14	14
Percent Drill S	olids					6.4%							Forc	Ω	(ft/sec)	14	14	14
PPA Spurt / To	otal (ml) @	0	@ 0 °F				BIT D	ATA	Ма	ınuf./Typ	oe Ulte	erra/SPL610	730 II	bs	191			
Estimated Total	al LCM in	System	ppb				Size	Depth In	Но	ours	Footage	ROP ft/h	Moto	r/MW[D Cal	c. Circ.	Press	sure
Sample Taken	Ву					A. ROMAN	13 1/2	108 ft	7	7.5	3,000 ft	400.0	1,33	30 psi		1,684	psi	
Remarks/Reco	mmendati	ons:					Rig Activity:											

OBM transfer from 2H ---- 1492 bbls -- 9.5ppg

SWEEP: Fresh water 100bbls / 2sxs SAPP / 5gal DD.

Pump 20bbls every 300' and 60-80 bbls every 500'

Dump Sand trap every 500', Run Centrifuge / D-Sander / D-Silter while drilling / circulating.

Skid Rig from 2H over to the 3H. TIH with Directional BHA, set MWD tool in the BHA, and Spud in at 16:30hrs 4/27/20. Driled 13.5" hole with fresh water with SAPP and Drilling Detergent; Mnaintain constant additions of same through out drilling/circulating process. Implement SAPP and DD sweeps, 20bbls every 300' and 60--80bbls every 500'. Dump sandtrap every 500' to avoid accumulation of sand and the active system, run Centrifuge / DSander / Dsilter while drilling / Circulating. Drilled to 400' and POOH to change out MWD. Resume drilling 19:20hrs. @1800' Circulate Gumbo for 30min, resume drilling and Reach TD 3000' @ 01:30hrs. Pump

2 30bbls Hi-Vis Sweeps and circulate hole clean. POOH to run surface casing.

Mike Washburn Eng. 2: Adolfo Roman MIDLAND WH #2 Rig Phone: Daily Total Cumulative Cost Eng. 1: Phone: 956-821-9994 432-686-7361 Phone: 361-945-5777 Phone: Phone: Any opinion and or recommendation, expressed orally or written herein, has been prepared carefully and may be used if the user so elects, however, no representation is made as to the W Ρ S \$4,356.22 \$4,356.22 g 1 р 0 0 0 validity of this information, and this is a recommendation only. **INCLUDING 3RD PARTY CHARGES** \$4,356.22 \$4,356.22

MATERIAL CONSUMPTION

Date 04/28/20	Operator MAGI	NOLIA OIL	& GAS	Well Name a LEVI G	nd No. OODRICH I		Rig Name and 248	No. Report I	No. Repr	ort #1
04/20/20		USAGE 8			0021110111	0				_ATIVE
			Previous		Closing	Daily	D. 11. O. 1	Cun		
ltem	Unit	Unit Cost	Inventory	Received	Inventory	Usage	Daily Cost	Usaç		Cum Cost
ALUMINUM TRISTEARATE SAPP (50)	25# sk 50# sk	\$162.83 \$44.50		40 95	38 55	40	\$325.66 \$1,780.00		2 40	\$325.66 \$1,780.00
PHPA LIQUID (pail)	5 gal	\$41.36		62	60	2	\$82.72		2	\$82.72
DYNA DET	pail	\$32.23		28	20	8	\$257.84		8	\$257.84
5110(52)	pan	ψ0Σ.20		20	20		Ψ207.01			Ψ207.01
CACL2 (50)	50# sk	\$16.60		112	112					
LIME (50)	50# sk	\$5.00		100	100					
NEW WATE (OAO)(5 - 5 - 7		***								
NEW-WATE (SACK BARITE) BARITE BULK (100)	100# sk 100# sk	\$11.50 \$7.00		160 890	160 890					
OPTI DRILL (OBM)	bbl	\$65.00		1492	1492					
ENGINEERING (24 HR)	each	\$925.00				2				\$1,850.00
ENGINEERING (DIEM)	bbl	\$30.00				2	\$60.00		2	\$60.00
ENGINEERING (MILES)	each	\$1.00								
TRUCKING (ì
TRUCKING (cwt)	each	\$2.50			1			-		
TRUCKING (min)	each	\$795.00								

THIRD PARTY COST SHEET

Date	Operator			Well Name a	nd No.		Rig Name an	d No.	Report No.	
04/28/20	MAGN	NOLIA OIL	& GAS	LEVI G	OODRICH	U2 - 3H	24	48	Repo	ort #1
	DAILY	USAGE 8	& COST						CUMUI	_ATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
			inventory			Usage			Usage	
Diesel Transfer from 2H	gal	\$0.91		7401	7401					
		_								
			<u></u>							
						1				
	Cum	ulative Tota	al AES & 3rd	d Party \$4,3	356.22					
						l				

110 Old Market St. St Martinville, LA 70582

0.0°

0' TVD

TEL: (337) 394-1078

Operator	enerve	st			TERSO	ON		Block arnea		C	Start Date)4/27/20	,	or ftg.			3,00	0 ft	
Well Name and No	OODRIG	:H U2	- 3H	Rig Name and	d No. 248		State TI	EXAS		Spud Dat	•)4/27/20		rent ROP 0 ft/hr		Activity	nsfer	Ren	ort
Report for	- CODINIC	02	. 011	Report for			Field / OSC-G #			Fluid Typ			ulating Rate			ing Pres	-	
JAMES D	YER / BO	DBBY	GWINN	То	ol Pus	her	GID	DIGNS	S		WBM		0 gpm			p:	si	
	MUD P	ROPER	RTY SPECI	FICATION	S		MUD VO	LUME (BBL)		PUMP #1		PUMP #2	!	RISI	ER BO	OST	ER
Weight	PV	ΥP	GELS	рН	API fl	% Solids	In Pits		0 bbl	Liner	Size	6 Lir	ner Size	6	Liner	Size	0	
8.4-9.6	0-10	0-10	<5 <10	8.4-9	<25	2-10	In Hole	2	278 bbl	Strol	ke	12 5	Stroke	12	Stro	ke	0	'
	MU	D PRO	PERTIES				Active		0 bbl	bbl/s	stk 0.0)997 b	obl/stk 0.0	0997	bbl/	stk	0.00)00
Time Sample	Taken			10:30	0:00	1:00	Storage)	<u>0 bbl</u>	stk/n	nin	0 s	tk/min	0	stk/r	min	0	ļ
Sample Locat	ion			suction	0	suction	Tot. on Lo	cation 2	278 bbl	gal/n	nin	0 g	al/min	0	gal/ı	min	0	ı
Flowline Temp	perature °F			110 °F	0 °F	100 °F	Mud Wt. =	9.3	PV=2	YP=	=2 C	IRCULAT	ION DATA		n = 0	.585	K = 5	53.1
Depth (ft)				3,000'	0'	2,600'	E	Bit Depth	n = '		Was	nout = 5%	.	Pump	Efficie	ency =	95%	
Mud Weight (ppg)			9.3	0.0	9.2	Drill String	Volu	me to Bit	0.0 k	bbl S	trokes To E	Bit 0		Time 1	Γο Bit	0 m	nin
Funnel Vis (se	ec/qt)		@ 90 °F	34	0	32	Disp.	Bottoms	s Up Vol.	0.0 k	bbl Bot	omsUp Stl	ks 0	Botto	msUp	Time	0 m	nin
600 rpm				6	0	6	0.0 bbl	Riser	Ann. Vol.	0.0 l	bbl F	Riser Stroke	es 0	Rise	r Circ.	Time	0 m	nin
300 rpm				4	0	4		DRILL	ING AS	SEMBL	Y DATA		s	SOLID	S CO	NTRO	L	
200 rpm			_	3	0	2	Tubulars	OD (in	n.) ID	(in.)	Length	Тор	Unit	:	Scre	ens	Hou	ırs
100 rpm			_	2	0	1	0	0.000	0	.000	0'	0'	Shake	r 1	140	-80	0.0	0
6 rpm				1	0	1	0	0.000	0	.000	0'	0'	Shake	r 2	140	-80	0.0	0
3 rpm				1	0	1	0	0.000	0	.000	0'	0'	Shake	r 3	140	-80	0.0	0
Plastic Viscos	sity (cp)		@ 120 °F	2	0	2	0	0.000	0	.000	0'	0'	Desan	der	O)	0.0	0
Yield Point (lb	/100 ft²)		T0 = 1	2	0	2		CAS	SING &	HOLE D	DATA		Desilt	er	O)	0.0	0
Gel Strength ((lb/100 ft²)	10	sec / 10 min	1/2		1/2	Casing	OD (in	n.) ID	(in.)	Depth	Тор	Centrifu	ge 1	O)	0.0	0
Gel Strength ((lb/100 ft2)		30 min	3	0	4	Riser	20	0	.000	108'		VOLUI	ME AC	COU	NTING	(bbl	s)
API Filtrate / 0	Cake Thick	ness	@ 0 °F	25/1		25/1	Surface	10 3/4	4 9	.950	3,000'	108'	Prev.	Total o	n Loc	ation	12	51.1
HTHP Filtrate	/ Cake Thi	ckness	@ 0 °F				Int. Csg.	0	0	.000	0'	108'	Transf	erred I	n(+)/C	Out(-)	2	78.0
Retort Solids	Content			0.1	0.0	0.1	Washout 1	0	0	.000	0'	0'		Oil	Adde	d (+)		0.0
Retort Oil Cor	ntent			0.0	0.0	0.0	Washout 2	0	0	.000	0'	0'		Barite	Adde	d (+)		0.0
Retort Water	Content			0.9	0.0	0.9	Oper	n Hole Si	ize 0	.000	3,000'		Other P	roduct	Usag	e (+)		0.0
Sand Content				0.0	0.0	0.0	AN	NULAR	GEOME	TRY &	RHEOLO	GY		Water	Adde	d (+)		0.0
M.B.T. (Methy	/lene Blue (Capacity	y) (ppb)	5.0			annula	r	depth	velo	city flow	ECD	Le	eft on (Cutting	gs (-)		0.0
рН				8	0	9	section	1	deptin	ft/m	nin reg	lb/gal		Dis	scharge	ed (-)	-12	50.9
Alkalinity, Muc	d Pm			0	0	0	0	•	0'	0.0	0 0	0.00				0		0.0
Alkalinities, Fi	iltrate Pf/Mf			0.1/0.2		0.1/0.2	0		0'	0.0	0 0	0.00	Est.	Total o	n Loc	ation	2	78.2
Chlorides (mg	ı/L)			500.00	0.00	400.00	0		0'	0.0	0 0	0.00	Est. Los	sses/G	ains (-	-)/(+)		0.0
Calcium (ppm)			120	0	80	0		0'	0.0	0 0	0.00	ВІТ	HYDF	RAULI	CS DA	ATA	
Excess Lime ((lb/bbl)			0.00	0.00	0.00	0		0'	0.0	0 0	0.00	Bit H.S.I.	Bit	ΔΡ	Nozzle	es (32	nds)
Average Spec	cific Gravity	of Solid	ds	2.60	2.60	2.60	0		0'	0.0	0 0	0.00	#DIV/0!	#DI	V/0!	0	0	0
Percent Low 0	Gravity Soli	ds		0.1	0.0	0.1	0		0'	0.0	0 0	0.00	Bit Impact	1	zzle	0	0	0
Percent Drill S	Solids			0.1	0.0	0.1	0		0'	0.0	0 0	0.00	Force	veid	ocity sec)	0	0	0
PPA Spurt / T	otal (ml) @		@ 0 °F				0)	Ma	anuf./Ty	/pe	0	#DIV/0!	()	0	0	0
Estimated Tot	tal LCM in S	System	@ 0 °F	0.0	0.0	0.0	Size	Depth	In H	ours	Footage	ROP ft/h	nr Motor/M	IWD	Calc	. Circ.	Press	sure
Sample Taker	n By			M Washburn	0	A. ROMAN	0	0 ft		0.0	0 ft	0.0	psi	i		#DIV	'/O!	
Remarks/Reco	ommendatio	ns:	_				Rig Activity:						_		_	_		
OBM transfer	from 2H	1492	bbls 9.5p	pg														
OBM transfer	to Grand C	anyon <i>i</i>	A 1H12	37bbls														
0							Transfer sac casing. Tra					and Cany	on A 1H. 27	8bbls	of OBI	M left i	nside	;
0							J											
0																		
3	ike Washbu		Eng. 2: Ado		WH 1:			NH 2:	WH #	#2	Rig Pho	one:	Daily Tota	l	Cu	ımulati	ve Co	st
Phone: 3	g G	7 г р А	Phone: 956 S C	Any opin		recommend	ation, expresse						\$0.00		\$	\$4,356	5.22	
1 1 1	1 1	1 1		carefully a			user so elects, ormation, and t					o trie						

INCLUDING 3RD PARTY CHARGES

\$0.00

\$4,356.22 Previous Cost \$4,356.22

MATERIAL CONSUMPTION

04/29/20	Operator MAG	NOLIA OIL		Well Name a	nd No. OODRICH	U2 - 3H	Rig Name an	d No. Report No. Rep	ort #2
			USAGE 8				I		LATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost	Cum Usage	Cum Cos
ALLINAINI INA TRIOTE ARATE	05# als	\$162.83	-	20	inventory	Usage		Usage	#20F.C
ALUMINUM TRISTEARATE	25# sk		38	-38					
SAPP (50)	50# sk	\$44.50	55	-55					\$1,780.0
PHPA LIQUID (pail)	5 gal	\$41.36	60	-60				2	\$82.7
DYNA DET	pail	\$32.23	20	-20				8	\$257.8
CACL2 (50)	50# sk	\$16.60	112	-112					
-IME (50)	50# sk	\$5.00	100	-100					
BARITE BULK (100)	100# sk 100# sk	\$11.50 \$7.00	160 890	-160 -890					<u> </u>
(.50)	, , , , , , , , , , , , , , , , , , , ,	ψσσ	300	300					
	_		,		,				
OPTI DRILL (OBM)	bbl	\$65.00	1492	-1492					
ENGINEERING (24 HR)	each	\$925.00							\$1,850.0
NGINEERING (DIEM)	bbl	\$30.00							
NGINEERING (MILES)	each	\$1.00							1
TRUCKING (cwt)	each	\$2.50					<u> </u>		
RUCKING (min)	each each	\$795.00							
RUCKING (min)									
FRUCKING (cwt) FRUCKING (min) PALLETS (ea) SHRINK WRAP (ea)	each	\$795.00							

THIRD PARY COST SHEET

Date	Operator			Well Name a	nd No.		Rig Name an	d No.	Report No.	
04/29/20	MAG	NOLIA OIL	. & GAS	LEVI G	OODRICH	U2 - 3H	24	48	Repo	ort #2
		DAILY	USAGE 8	& COST					сими	LATIVE
ltem	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
Diesel Transfer from 2H	gal	\$0.91	7401	-7401						

TEL: (337) 394-1078

110 Old Market St. St Martinville, LA 70582

Eng. 1: Mike Washburn

Phone:

Ρ

361-945-5777

g 1

Eng. 2: Adolfo Roman

Phone: 956-821-9994

O 1

MIDLAND

432-686-7361

Phone:

WH 2:

Phone: Any opinion and or recommendation, expressed orally or written herein, has been prepared carefully and may be used if the user so elects, however, no representation is made as to the validity of this information, and this is a recommendation only.

WH #2

INCLUDING 3RD PARTY CHARGES

Rig Phone:

Daily Total

\$1,910.00

\$1,910.00

Cumulative Cost

\$6,266.22

\$6,266.22

OUTSOURCE FLUID SOLUTIONS LLC.

0.2° 2,699' TVD

Operator MAGN Well Name and No.	NOLIA (OIL & G	SAS	Contractor PA Rig Name ar	TTERSO	ON	County / Parish / WASH	Block HINGTON	1		rt Date /27/20	24 hr f	tg. Oft			oth ,000 1	ft
	OODR	ICH U2	- 3H	Rig Name ar	248			EXAS		Spud Date 04/	/27/20	Currer	0 ft/hr	Ac	tivity	ТІН	
Report for	VED / D			Report for			Field / OCS-G #	DIONO		Fluid Type		Circula	ating Rate	Ci	rculating	Pressure	9
JAMES D					ol Push	ner		DIGNS			OBM WB.#4		0 gpm		DIOCE	psi	0750
\\/ a : a a		ı	TY SPECIF	ı		LITLID		LUME (BB			JMP #1	75 1 1 2 2	PUMP #2			R BOO	SIER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	932		Liner Size					iner S		
9.3-10.2	8-20	5-12	>300	±264K	<10 <25	<10	In Hole			Stroke	1:			2	Stroke		0000
Time Comple	Falsan			5/5/20			Active	1118		bbl/stk stk/min	0.09			915	bbl/st		.0000
Time Sample Time Sample Location				1:00 suction			Storage	e <u>769</u> cation 1916		gal/min					gal/mi		0
Flowline Temp		<u> </u>		Suction			TOL. OII LO	PHHP = 0	וטט			ATION DA					103.420
Depth (ft)	- Crataro 1			3,000'			Rit I	Depth = 2,7	OO '			out = 1%		Pump E			
Mud Weight (p	nna)			9.5				Volume		42.5 bb	1	okes To Bit			me To		
Funnel Vis (se	107		@ 90 °F	51			Drill String Disp.	Bottoms Up				msUp Stks		Bottom			
600 rpm	9, 41,			26			73.2 bbl			1118.4 b		talCirc.Stks		Total (
300 rpm				16				DRILLING						OLIDS	CONT	ROL	
200 rpm				11			Tubulars	OD (in.)	ID	(in.) L	_ength	Тор	Unit	;	Scree	ns F	Hours
100 rpm				9			Drill Pipe	5.000	4.	276	19'	0'	Shaker	1	140-8	0	
6 rpm				5			Other Pipe	6.500	4.	276 2	2,101'	19'	Shaker	2	140-8	0	
3 rpm				4			Hevi Wt	6.500	3.	000	276'	2,120'	Shaker	3	140-8	0	
Plastic Viscosi	ty (cp)		@ 150 °F	10			Dir. BHA	7.750	2.	875	304'	2,396'	Centrifug	ge 1			
Yield Point (lb/	100 ft²)		T0 = 3	6				CASIN	G & F	HOLE DAT	TA						
Gel Strength (I	b/100 ft²)	10	sec/10 min	5/8			Casing	OD (in.)	ID	(in.) I	Depth	Тор					
Gel Strength (I	b/100 ft ²)		30 min	11			Riser						VOLUN	IE ACC	OUNT	ING (b	bls)
HTHP Filtrate	(cm/30 m	in)	@ 300 °F	9.0			Surface	10 3/4	9.	950	3,000'	0'	Prev. T	otal on	Locat	on	278.1
HTHP Cake T	hickness	(32nds)		2.0			Int. Csg.					0'	Transfe	erred In(+)/Ou	t(-)	1638.1
Retort Solids (Content			11%			Washout 1							Oil A	dded	(+)	0.0
Corrected Soli	ds (vol%)			9%			Washout 2						1	Barite A	dded	(+)	0.0
Retort Oil Con	tent			67%			Oper	Hole Size	9.	974 :	3,000'		Other Pr	oduct U	sage	(+)	0.0
Retort Water 0	Content			22%			ANI	NULAR GE	OME	TRY & RH	IEOLOG	iΥ	١	Water A	dded	(+)	
O/W Ratio				75:25			annulai			velocity		ECD	Le	ft on Cu	ittings	(-)	0.0
Whole Mud Ch	nlorides (n	ng/L)		50,000			section	de _l	oth	ft/min	reg	lb/gal	-				
Water Phase S	Salinity (p	pm)		262,745													
Whole Mud All	kalinity, P	om		1.4			9.95x5	19	9'	0.0	lam	9.50	Est. T	otal on	Locati	on	1916.2
Excess Lime (I	b/bbl)			1.8 ppb			9.95x6.	5 2,1	20'	0.0	lam	9.50	Est. Los	ses/Gai	ns (-)/	(+)	0.0
Electrical Stab	ility (volts)		400 v			9.95x6.			0.0	lam	9.50		HYDRA	ULIC	S DAT	4
Average Speci		·	3	3.10			9.95x7.7	75 2,7	00'	0.0	lam	9.50	Bit H.S.I.	Bit ∆			(32nds)
Percent Low G		lids		5.2%			_						0.00	ps		4 14	
ppb Low Gravi				42 ppb			_						Bit Impact Force	Nozz Veloc	ity —	4 14	+
Percent Barite				3.8%									_	(ft/se	c) 1	6 16	6 16
ppb Barite	-11004:-	0 1		55 ppb			BIT D	ı		anuf./Type		RRA/SPL613		0	2-1- 6	Yan Da	
Estimated Total		System	ppb	A Roman	0	0	Size 9 7/8	Depth In 3,000 ft	н	ours F	ootage	ROP ft/hr			Jaic. C	JIC. Pr	essure
Sample Taken Remarks/Reco	-	nns:		A. Roman	U	U	9 7/8 Rig Activity:	5,000 II					1,330 բ	J31			
OBM trans			anven	1701 61	0.5	20	Trig Activity:										
OBM on ha	and1	916bbls	·				Transfer set MWI Moving a	over from all Sack m tools and ahead will o	nateri I star	al and Ol t TIH. At t	BM from	Grand C	anyon A 1	H. Pic to top	k up l of flo	New B	HA,
SWEEP: 1			_		Ι.Μυτ / αι	-nait	11.6EMV	٧.									
Pump 10-1	5 bbls e	very 300'	or as requ	iested.													

MATERIAL CONSUMPTION

Oate 05/05/20	Operator MAGI	NOLIA OIL	& GAS	Well Name a	OODRICH	U2 - 3H	Rig Name and 24	No. Report No. Rep	ort #3
	DAILY	USAGE 8	COST					CUMU	LATIVE
Item	Unit	Unit Cost	Previous	Received	Closing	Daily	Daily Cost	Cum	Cum Cos
item	Unit	Unit Cost	Inventory	Received	Inventory	Usage	Daily Cost	Usage	Cum Cos
ALUMINUM TRISTEARATE	25# sk	\$162.83						2	
SAPP (50)	50# sk	\$44.50						40	\$1,780.0
PHPA LIQUID (pail)	5 gal	\$41.36						2	\$82.7
DYNA DET	pail	\$32.23						8	\$257.8
CACL2 (50)	50# sk	\$14.32		196	196				
IME (50)	50# sk	\$5.00		150					
BENTONE 910 (50)	50# sk	\$59.94		34	34				
BENTONE 990 (50)	50# sk	\$83.59		40					
OPTI G	50# sk	\$30.59		150					
OPTI MUL HP	gal	\$10.75		825	825				
OPTI WET	gal	\$8.34		550	550				
NEW PHALT	50# sk	\$38.72		140	140				
NEWCARB 200	50# sk	\$5.25		140	140				
MAGMAFIBER F (25)	25# sk	\$28.05		60	60				
DIL SORB (25)	25# sk	\$4.75		60	60				
NEW-WATE (SACK BARITE)	100# sk	\$11.50		160				<u></u>	<u> </u>
BARITE BULK (100)	100# sk	\$7.00		1500	1500				
								<u> </u>	
								<u> </u>	
								<u> </u>	
OPTI DRILL (OBM)	bbl	\$65.00		1916	1916			<u></u>	
								<u></u>	
ENGINEERING (24 HR)	each	\$925.00				2	\$1,850.00	4	\$3,700.0
ENGINEERING (DIEM)	bbl	\$30.00				2		4	\$120.0
ENGINEERING (MILES)	each	\$1.00					, JO.00	-	Ţ. _ 0.0
	Gacii	ψ1.00						 	
								 	
								<u> </u>	1
								<u> </u>	
TRUCKING (cwt)	each	\$2.50							
TRUCKING (min)	each	\$795.00			T]		
PALLETS (ea)	each	\$12.00							
ALLETO (Ca)				. —	. — — —	_		· · · · · · · · · · · · · · · · · · ·	
SHRINK WRAP (ea)	each	\$12.00			<u> </u>		<u> </u>		

THIRD PARTY COST SHEET

Date	Operator			Well Name a	nd No.		Rig Name ar	nd No.	Report No.	
05/05/20	MAGI	NOLIA OIL	& GAS	LEVI G	OODRICH	U2 - 3H	2	48	Repo	ort #3
	DAILY	USAGE 8	COST						сими	LATIVE
ltem	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
Diesel Transfer from 2H	gal	\$0.91								
Diesel Transfer from Grand Canyon A - 1H	gal	\$0.87		2000	2000					
Diesel transfer from Grand Canyon A - 1H	gal	\$0.96		7199	7199					
	I	<u>I</u>		<u>I</u>			<u> </u>			[
	Cum	nulative Tota	al AES & 3r	d Party \$6,	266.22					
						-				

FLUID VOLUME ACCOUNTING

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name:

MAGNOLIA OIL & GAS

Rig Name: 248
Well Name: LEVI

LEVI GOODRICH U2 - 3H

					WEEK 1							WEEK 2				Ι			WEEK 3			
ſ	Date	5/5/20	5/6/20	5/7/20	5/8/20	5/9/20	5/10/20	5/11/20	5/12/20	5/13/20	5/14/20			5/17/20	5/18/20	5/19/20	5/20/20	5/21/20		5/23/20	5/24/20	5/25/20
		Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon
	Bit Size	9 7/8																				
Grand	Starting Depth	3,000	3,000																			
Totals	Ending Depth	3,000																				
-	Footage Drilled	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	New Hole Vol.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
	Starting System Volume	215	1,916	1,916	1,916	1,916	1,916	1,916	1,916	1,916	1,916	1,916	1,916	1,916	1,916	1,916	1,916	1,916	1,916	1,916	1,916	1,916
	Chemical Additions																					
	Base Fluid Added																					
	Barite Increase																					
	Weighted Mud Added	1,701																				
	Slurry Added	1																				
	Water Added Added for Washout																					
	Total Additions	1,701	_	_	-		_	_	_	-	_	_	_	_	_	_	_	_	_	_	-	_
		1,701	_	_	-	-	-	-	-	-		-	_	-	-		-	-	-	-	-	-
	Surface Losses Formation Loss																					
	Mud Loss to Cuttings																					
	Unrecoverable Volume																					
	Centrifuge Losses																					
-	Total Losses	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	Mud Transferred Out																					
1,916	Ending System Volume	1,916	1,916	1,916	1,916	1,916	1,916	1,916	1,916	1,916	1,916	1,916	1,916	1,916	1,916	1,916	1,916	1,916	1,916	1,916	1,916	1,916
	Mud Recovered		1	1			1						1									
					omment					I.		omment	· · ·	I.	l				omment	c ·		
		-			omment	.						omment	s.						omment	S.		
		5/5/20			Canyon, Trobls . Pick i			d material	5/12/20							5/19/20						
1,916		5/6/20							5/13/20							5/20/20						
		5/7/20							5/14/20							5/21/20						
		5/8/20							5/15/20							5/22/20						
	5/9/20 5/16/20												5/23/20									
		5/10/20							5/17/20							5/24/20						
		5/11/20							5/18/20							5/25/20						

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

0.7°

7,737' TVD

TEL: (337) 394-1078

Operator				Contractor			County / Parish /			Engineer Start		24 hr fi	=	Drille	ed Depth	
MAGI Well Name and No.	NOLIA (OIL & G	SAS	PA Rig Name ar	TTERSC	ON	WASH State	HINGTO	N	04/2 Spud Date	27/20	Curren	4,750 ft	Activ		50 ft
	OODR	ICH U2	- 3H	itig ivaille ai	248			EXAS			27/20		263 ft/hr		•	g Inter.
Report for				Report for			Field / OCS-G #			Fluid Type			ting Rate		ulating Pre	
JAMES D					ol Push	ner		DINGS			BM		754 gpm) psi
Modelia			TY SPECIF	1		LITUD		LUME (B			MP #1		PUMP #2			OOSTER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits		74 bbl	Liner Size			Size 5.		er Size	
9.3-10.2	8-20	5-12	>300	±270K	<10 <25	<10	In Hole		36 bbl	Stroke	12				troke	0.0000
Time Comple	Talesa			5/6/20		5/5/20	Active		60 bbl	bbl/stk	0.09		/stk 0.0		bl/stk	0.0000
Time Sample				2:00		1:30	Storage		91 bbl	stk/min	98		/min 9		:k/min	0
Sample Locati		_		suction		shaker	Tot. on Lo			gal/min	377	Ŭ	/min 37	J	al/min	0
Flowline Temp	erature -	-		165 °F		140 °F		PHHP = 16				ATION DA				K = 177.275
Depth (ft)				7,130'		4,184'	Bit i	Depth = 7		400.0 h.h.	1	ut = 2%		Pump Effi		
Mud Weight (p			@ 445.0E	9.6		9.5	Drill String Disp.			132.2 bb		kes To Bit	•		e To Bit	7 min
Funnel Vis (se	c/qt)		@ 145 °F	53		58	74.01.11		•	553.5 bbl		nsUp Stks	6,047	BottomsU		31 min
600 rpm				42		39	71.0 bbl			1559.8 bb		alCirc.Stks	17,040	Total Cir		87 min
300 rpm				26 20		24	Tubulana			SEMBLY D		Т	Unit	OLIDS C		
200 rpm						19	Tubulars	, ,		` '	ength	Top			reens	Hours
100 rpm				14		16	Drill Pipe				,069'	0'	Shaker		40-80	18.0
6 rpm				8		7	Other Pipe				,101'	5,069'	Shaker		40-80	18.0
3 rpm			0.450.05	7		6	Hevi Wt				276'	7,170'	Shaker		40-80	18.0
Plastic Viscos			@ 150 °F	16		15	Dir. BHA				304'	7,446'	Centrifug	e 1		6.0
Yield Point (lb.		40	T0 = 6	10		9	0			HOLE DAT		Т				
Gel Strength (10	sec/10 min	7/12		7/10		OD (in.)	טו ו	(in.) D	epth (Тор	V61 11M	F 4000		2 (1.1.1.)
Gel Strength (30 min @ 300 °F	17		12	Riser	40. 0/4	0	050 0	0001	01		E ACCO		` '
HTHP Filtrate	•		@ 300 F	6.0		8.0	Surface	10 3/4	9.	950 2	,989'	0'		otal on Lo		1916.3
HTHP Cake T		(32nds)		2.0		2.0	Int. Csg.					0'	I ranste	rred In(+)	. ,	588.0
Retort Solids (11%		11%	Washout 1								ded (+)	180.2
Corrected Soli	, ,			8.9%		8.7%	Washout 2	0:	40	070 7	750			Barite Ad	. ,	0.0
Retort Oil Con				66%		66%	<u> </u>	Hole Siz			7,750'	,	Other Pr		. ,	19.4
Retort Water (Jontent			23%		23% 74:26	ANI	NULAR G	IEOWIE	TRY & RH	LOLOG			Vater Ad	. ,	111.0
O/W Ratio	-1:	/1)		74:26 52,000			annulai section		neas. Iepth	velocity ft/min	flow reg	ECD lb/gal	Le	ft on Cutt	• ()	-234.1
Whole Mud Cl	`			,		57,000							Nas Das	•	oration	-10.1
Water Phase				261,733		279,856	0.05%		000'	240.6	4	10.04	Non-Rec		. ,	-20.0
Whole Mud Al		om		1.6		1.8	9.95x5		,989'	249.6	turb	10.04		otal on Lo		2550.7
Excess Lime (2.1 ppb 460 v		2.3 ppb 435 v	10.073x		,069'	241.5	lam	10.18	Est. Loss		.,,,	0.0
Electrical Stab							10.073x		',170'	241.5	lam	10.31		HYDRAU		
Average Spec	•		5	3.21		3.05	10.073x6		',446' ',750'	311.9	turb	10.53	Bit H.S.I.	Bit ∆P		les (32nds)
Percent Low C	-	iidS		4.6%		5.2%	10.073x7	.15 /	',750'	446.1	turb	10.79	1.30	226 ps Nozzle	+	14 14
ppb Low Grav				37 ppb		43 ppb							Bit Impact Force	Velocity		14 14
Percent Barite				4.4%		3.5%	DIT 5	ATA	1.7	onuf /Tv		DA/601 040		(ft/sec)	16	16 16
ppb Barite	ol I ONA :	C) rot-:-		63 ppb		50 ppb	BIT D	l		anuf./Type		RA/SPL613	608 lbs	162	lo Circ	Dross
Estimated Tot		oystem	ppb	A D-::::	0		Size	Depth Ir			ŭ	ROP ft/hr	Motor/M\			. Pressure 1 psi
Sample Taker				A. Roman	0	0	9 7/8	3,000 ft	1	8.0 4,	750 ft	263.9	1,330 p	J31	3,21	ι μει
Remarks/Reco	mmendatio	JIIS.					Rig Activity:									

OBM RECEIVED ----2504 bbls

OBM on hand-----2551 bbls

OBM Gain / Loss----(+47bbl)

SWEEP: 100bblsOBM/10Mag.Fiber / 10Cal Carb / 10N.Phalt

Pump 10-15 bbls every 300' or as requested.

Perform FIT to 11.6EMW. Resume drilling operations on Intermediate section. Drilling / Sliding ahead, Maintain constant additions of Diesel and Water for dilution and to offset evaporation. Additions of CaCl2 and Lime for WPS and Alkalinity. Transfer OBM from storage to acitve to maintain volume in the active system. Run Centrifuge for assitance on solids control. No Losses at this time. Continue to Pump LCM Sweeps every 300' for preventive and hole cleaning. Opti G and NewPhalt added for fluid loss maintenance.

Е	ng. 1:	Mi	ke W	ashb	urn	Er	ng. 2:	Adolfo	Roman	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Р	none:	30	61-94	5-57	77	Pł	none:	956-8	21-9994	Phone:	432-686-7361	Phone:	-			
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be	ecommendation, ex used if the user so ation, and this is a	elects, however	, no representation	nas been prepared on is made as to the	\$8,147.33	\$14,413.55
												INCLUDI	NG 3RD PAR	TY CHARGES	\$14,955.17	\$21,221.39

MATERIAL CONSUMPTION

Date 05/06/20	Operator MAGI	NOLIA OIL	& GAS	Well Name a	OODRICH	U2 - 3H	Rig Name and No. 248	Report No.	ort #4
	DAILY	USAGE 8	COST	•				CUMU	LATIVE
H-m-	11-14	U-1 01	Previous	Desciond	Closing	Daily	D=31- O==4	Cum	
Item	Unit	Unit Cost	Inventory	Received	Inventory	Usage	Daily Cost	Usage	Cum Cos
ALUMINUM TRISTEARATE	25# sk	\$162.83						2	
SAPP (50)	50# sk	\$44.50						40	
PHPA LIQUID (pail)	5 gal	\$41.36						2	
DYNA DET	pail	\$32.23						8	\$257.8
CACL2 (50)	50# sk	\$14.32	196		140	56	\$801.92	56	\$801.9
LIME (50)	50# sk	\$5.00	150		100	50		50	
BENTONE 910 (50)	50# sk	\$59.94	34		30	4	\$239.76	4	\$239.7
BENTONE 990 (50)	50# sk	\$83.59	40		40				
OPTI G	50# sk	\$30.59	150		120	30		30	
OPTI MUL HP	gal	\$10.75	825		680	145		145	
OPTI WET	gal	\$8.34	550		405	145		145	
NEW PHALT	50# sk	\$38.72	140		120	20		20	
NEWCARB 200	50# sk	\$5.25	140		110	30		30	
MAGMAFIBER F (25)	25# sk	\$28.05	60		50	10	\$280.50	10	\$280.5
OIL SORB (25)	25# sk	\$4.75	60		50	10	\$47.50	10	\$47.5
NEW-WATE (SACK BARITE)	100# sk	\$11.50	160		160				<u> </u>
BARITE BULK (100)	100# sk	\$7.00	1500		1500	_			
OPTI DRILL (OBM)	bbl	\$65.00	1916	588	2504				
									<u> </u>
ENGINEEDING (OALIE)		0005.55					#4 050 00		фг
ENGINEERING (24 HR)	each	\$925.00				2		6	
ENGINEERING (DIEM)	bbl	\$30.00				2	\$60.00	6	\$180.0
ENGINEERING (MILES)	each	\$1.00							-
FRUCKING (cwt)	each	\$2.50							
TRUCKING (cwt) TRUCKING (min)	each	\$2.50 \$795.00					 		1
		\$12.00					 		1
PALLETS (ea) SHRINK WRAP (ea)	each each	\$12.00 \$12.00					 		
CITALINIA VIINAL (Ca)	Edill	ψ1∠.∪∪		l					l
							1		

THIRD PARTY COST SHEET

Date	Operator			Well Name a	ind No.		Rig Name an	d No.	Report No.	
05/06/20	MAGI	NOLIA OIL	& GAS	LEVI G	OODRICH	U2 - 3H	2.	48	Repo	ort #4
	DAILY	USAGE 8	& COST						CUMUL	ATIVE
ltem	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
Diesel Transfer from 2H	gal	\$0.91								
Diesel Transfer from Grand Canyon A - 1H	gal	\$0.87	2000			2000	\$1,740.00		2000	\$1,740.00
Diesel transfer from Grand Canyon A - 1H	gal	\$0.96	7199		1920	5279	\$5,067.84		5279	\$5,067.84
	ı	<u>I</u>	ı	ı	Daily 9	ub-Total \$6	5.807.84		\$6,80	7.84
					Daily 3	ab-i∪tai ⊅t	.,ooo +		φυ,οι	
	Cum	ulative Tota	al AES & 3rd	l Party \$21,	,221.39					
						-				

FLUID VOLUME ACCOUNTING

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name:

Well Name:

MAGNOLIA OIL & GAS

e: 248

LEVI GOODRICH U2 - 3H

					WEEK 1							WEEK 2				I			WEEK 3			
	Date	5/5/20	5/6/20	5/7/20	5/8/20	5/9/20	5/10/20	5/11/20	5/12/20	5/13/20	5/14/20	5/15/20		5/17/20	5/18/20	5/19/20	5/20/20	5/21/20	5/22/20	5/23/20	5/24/20	5/25/20
		Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon
	Bit Size	9 7/8	9 7/8												-							
Grand	Starting Depth	3,000	3,000	7,750																		
Totals	Ending Depth	3,000	7,750	,																		
	Footage Drilled	-	4,750	-	-	_	-	_	_	_	-	_	_	_	-	-	_	_	_	-	_	-
•	New Hole Vol.		450	-				-				-										_
+30	Starting System Volume	215		2,551	2,551	2,551	2,551	2,551	2,551	2,551	2,551	2,551	2,551	2,551	2,551	2,551	2,551	2,551	2,551	2,551	2,551	2,551
40	Chemical Additions	213		2,331	2,331	2,331	2,331	2,331	2,331	2,331	2,331	2,331	2,331	2,331	2,331	2,331	2,331	2,331	2,331	2,331	2,331	2,331
	Base Fluid Added		19 180																			
100	Barite Increase	1	100																			
2 280	Weighted Mud Added	1,701	588																			
-	Slurry Added	1,701	-																			
	Water Added		111																			
-	Added for Washout		-																			
2,600	Total Additions	1,701	899	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	_	-	_	-
-	Surface Losses	.,. • .	-																			
	Formation Loss		_																			
	Mud Loss to Cuttings		234																			
	Unrecoverable Volume		10																			
	Centrifuge Losses		20																			
264	Total Losses	_	264	-	_		_		_	_		_	_		_			_		_	_	
204			204	_		_				-	-	_		-			_		_	-		
-	Mud Transferred Out																					
2,551	Ending System Volume	1,916	2,551	2,551	2,551	2,551	2,551	2,551	2,551	2,551	2,551	2,551	2,551	2,551	2,551	2,551	2,551	2,551	2,551	2,551	2,551	2,551
-	Mud Recovered																					
				C	Comment	s:					С	omment	s:					С	omment	s:		
		5/5/20			Canyon, Tr				5/12/20							5/19/20						
2,504		5/6/20			ermediate s Receive 5				5/13/20							5/20/20						
	1	5/7/20							5/14/20							5/21/20						
		5/8/20							5/15/20							5/22/20						
		5/9/20							5/16/20							5/23/20						
		5/10/20							5/17/20							5/24/20						
		5/11/20		-					5/18/20					-		5/25/20			-	-		-

110 Old Market St.

St Martinville, LA 70582

TEL: (337) 394-1078

1.0° 9,420' TVD

MAGNOLIA OIL & GAS		TTERSO	N	_	I/Block	N		27/20	24 hr f	1,685 ft			35 ft
Well Name and No. LEVI GOODRICH U2 - 3H	Rig Name ar	nd No. 248		State Ti	EXAS		Spud Date 04/ 2	27/20	Curren	t ROP 244 ft/hr	Activ	•	ling
Report for	Report for	-1.01		Field / OSC-G #			Fluid Type	D14		ating Rate		lating Pre	
JAMES DYER / BOBBY GWINN		ol Push	ner		DINGS	DI.)		BM MP #1		696 gpm			ooster
Weight PV YP E.S.	CaCl2	GELS	HTHP	In Pits	LUME (BI	BL) 2 bbl	Liner Size		Lina			er Size	OOSTER
9.3-10.2 8-20 5-12 >300	±270K	<10 <25	<10	In Hole		bbl bbl	Stroke	12				er Size	
MUD PROPERTIES	±270K	< 10 <25	<10	Active		3 bbl	bbl/stk	0.09				bl/stk	
Time Sample Taken	2:00		11:00	Storage		1 bbl	stk/min	90		/sik 0.0 /min 9		k/min	
Sample Location	suction		shaker	Tot. on Loc			gal/min	346				al/min	
Flowline Temperature °F	165 °F		168 °F	Mud Wt. =		=16	YP=10		CULATIO				K = 177
Depth (ft)	7,130'		9,435'		Depth = 9,4		11-10		ut = 2%	1	Pump Effi		
Mud Weight (ppg)	9.6		9.7				162.1 bb	1	kes To Bit				10 mir
Funnel Vis (sec/qt) @ 145 °F			54	Drill String Disp.			678.7 bb		nsUp Stks	,	BottomsU		
600 rpm	42		44	82.0 bbl			1442.8 bb		lCirc.Stks		Total Cir	•	
300 rpm	26		27				SEMBLY [· I	OLIDS C		
200 rpm	20		20	Tubulars	OD (in.)	ID	(in.) Le	ength	Тор	Unit	Sc	reens	Hours
100 rpm	14		16	Drill Pipe	5.000	4.2	276 6,	754'	·	Shaker	1 14	10-80	12.0
6 rpm	8		8	Other Pipe	5.000	4.2	276 2,	101'	6,754'	Shaker	2 14	10-80	12.0
3 rpm	7		7	Hevi Wt	6.500	3.0	000 2	276'	8,855'	Shaker	3 14	10-80	12.0
Plastic Viscosity (cp) @ 150 °F	16		17	Dir. BHA	7.750	2.8	375 3	304'	9,131'	Centrifuç	je 1		1.0
Yield Point (lb/100 ft²) T0 = 6	10		10		CASIN	IG & I	HOLE DA	TA					
Gel Strength (lb/100 ft²) 10 sec / 10 mir	7/12		8/12	Casing	OD (in.)	ID	(in.) D	epth	Тор				
Gel Strength (lb/100 ft2) 30 mir	17		16	Riser						VOLUN	IE ACCO	UNTIN	G (bbls)
HTHP Filtrate (cm/30 min) @ 300 °F	6.0		6.0	Surface	10 3/4	9.9	950 2,	989'		Prev. T	otal on Lo	cation	2550
HTHP Cake Thickness (32nds)	2.0		2.0	Int. Csg.						Transfe	rred In(+)	/Out(-)	190
Retort Solids Content	11%		12%	Washout 1							Oil Add	ded (+)	
Corrected Solids (vol%)	8.9%		9.9%	Washout 2							Barite Add	ded (+)	
Retort Oil Content	66%		66%	Open	Hole Size	10.	073 9,	435'		Other Pr	oduct Usa	age (+)	
Retort Water Content	23%		22%	ANN	NULAR GE	ЕОМЕ	TRY & RI	HEOLOG	SY .	١	Nater Add	ded (+)	
O/W Ratio	74:26		75:25	annula	r .		velocity	flow	ECD	Le	ft on Cutti	ngs (-)	-99
Whole Mud Chlorides (mg/L)	52,000		52,000	section	ı ue	pth	ft/min	reg	lb/gal		Evapo	ration	
Water Phase Salinity (ppm)	261,733		270,413							Non-Rec	overable	Vol. (-)	-7
Whole Mud Alkalinity, Pom	1.6		2.0	9.95x5	5 2,9	989'	230.5	lam	10.04	Est. T	otal on Lo	ocation	2633
Excess Lime (lb/bbl)	2.1 ppb		2.6 ppb	10.073x	¢5 6,7	754'	223.0	lam	10.14	Est. Los	ses/Gains	(-)/(+)	0
Electrical Stability (volts)	460 v		491 v	10.073x	¢5 8,8	355'	223.0	lam	10.30	ВІТ	HYDRAU	LICS D	ATA
Average Specific Gravity of Solids	3.21		3.10	10.073x6	6.5 9,1	131'	288.0	turb	10.53	Bit H.S.I.	Bit ∆P	Nozz	les (32nd
Percent Low Gravity Solids	4.6%		5.7%	10.073x7	.75 9,4	135'	411.9	turb	10.77	1.02	193 ps	14	14 1
ppb Low Gravity Solids	37 ppb		47 ppb							Bit Impact	Nozzle	14	14 1
Percent Barite	4.4%		4.3%							Force	Velocity (ft/sec)	16	16 10
ppb Barite	63 ppb		61 ppb	BIT D	ATA	Ма	nuf./Type	ULTER	RA/SPL613	518 lbs	150		
Estimated Total LCM in System				Size	Depth In	Но	urs Fo	otage	ROP ft/hr	Motor/M	WD Ca	lc. Circ	. Pressur
								1		i .			

Afternoon Remarks/Recommendations:

Pump a 10 bbl sweep every 300 ft. Sweep Contains:

10 ppb NewCarb, 10 ppb Newphalt and 10 ppb Magnafiber fine

Afternoon Rig Activity:

Drilling ahead and sliding as needed to maintian the hole angle in the 9 7/8" hole section. Pumping a 20 bbls LCM sweep every 300'. Adding Optimul HP and lime for ES maintenance and alkalinity, Optiwet for oil wetting of solids and Bentone 910 to gradually increase flow propeties. Received 190 bbls 9.5 OBM from Newpark Madisonville facility.

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

0.6°

2,397' TVD

TEL: (337) 394-1078

MAGNOLIA OIL & GAS	Contractor			County / Parish /	DIUCK			Date	24 hr ft	y.		Drilled	Depth		
		TERSO	ON		IINGTON		04/2	7/20		2,495	ft		10,2	45 ft	t
Well Name and No. LEVI GOODRICH U2 - 3H	Rig Name an	d No. 248		State	EXAS		Spud Date 04/2	7/20	Curren	ROP 244 ft/	'hr	Activity	TO	Л Ц	
	Report for	240		Field / OCS-G #	LAAS		Fluid Type	1120		ting Rate	111	Circula	ting Pre		
KEVIN BURT/ JIM HARRISON	То	ol Pusi	ner	GID	DINGS		OE	ВМ		0 gpi	n				
MUD PROPERTY SPECIF	ICATION	S		MUD VO	LUME (BB	L)	PUM	P #1		PUMP	#2	RIS	ER B	oos	TER
Weight PV YP E.S.	CaCl2	GELS	HTHP	In Pits	787	bbl	Liner Size	5.75	Liner	Size	5.75	Liner	Size		
9.3-10.2 8-20 5-12 >300	±270K	<10 <25	<10	In Hole	967	bbl	Stroke	12	Stro	oke	12	Stro	oke		
	5/6/20		5/6/20	Active	981	bbl	bbl/stk	0.0915	bbl	stk (0.0915	bbl	/stk	0.0	0000
Time Sample Taken	1:30		11:00	Storage	902	bbl	stk/min		stk/	min		stk/	min (
Sample Location	suction		shaker	Tot. on Loc	cation 2656	6 bbl	gal/min	0	gal/	min	0	gal/	min /	(0
Flowline Temperature °F			168 °F		PHHP = 0		CI	RCULAT	ION DA	TA		n = 0).716	K = 16	64.036
Depth (ft)	10,245'		9,435'	Bit I	Depth = 2,3	97 '		Washout	= 2%		Pump	Effici	ency :	= 95%	6
Mud Weight (ppg)	9.9		9.7	Drill String	Volume	to Bit	37.1 bbl	Stroke	s To Bit	•		Time	To Bit		
Funnel Vis (sec/qt) @ 159 °F	49		54	Disp.	Bottoms Up	p Vol.	157.3 bbl	Bottoms	Up Stks		Botto	omsUp	Time		
600 rpm	46		44	36.1 bbl	TotalCire	c.Vol.	981.5 bbl	TotalC	irc.Stks		Tot	al Circ.	Time		
300 rpm	28		27		DRILLING	S ASS	EMBLY DA	TA			SOLIE	s co	NTRO	L	
200 rpm	23		20	Tubulars	OD (in.)	ID	(in.) Le	ngth	Тор	U	nit	Scre	eens	Но	ours
100 rpm	16		16	Drill Pipe	5.000	4.2	276 1,8	317'	0'	Sha	ker 1	140	0-80	24	4.0
6 rpm	8		8	Other Pipe	5.000	4.2	276	1	,817'	Sha	ker 2	140	08-0	24	4.0
3 rpm	7		7	Hevi Wt	6.500	3.0	000 2	76' 1	,817'	Sha	ker 3	140	0-80	24	4.0
Plastic Viscosity (cp) @ 150 °F	18		17	Dir. BHA	7.750	2.8	875 3	04' 2	2,093'	Centr	fuge 1			2	2.0
Yield Point (lb/100 ft²) T0 = 6	10		10		CASIN	G & F	OLE DATA	1							
Gel Strength (lb/100 ft²) 10 sec/10 min	8/11		8/12	Casing	OD (in.)	ID	(in.) De	epth	Тор						
Gel Strength (lb/100 ft ²) 30 min	14		16	Riser						VOL	UME A	ccou	NTING	3 (bb	ls)
HTHP Filtrate (cm/30 min) @ 300 °F	6.0		6.0	Surface	10 3/4	9.9	950 2,9	989'	0'	Prev	. Total	on Loc	ation	25	550.8
HTHP Cake Thickness (32nds)	2.0		2.0	Int. Csg.					0'	Tran	sferred	In(+)/0	Out(-)	•	190.0
Retort Solids Content	12%		12%	Washout 1							0	l Adde	ed (+)		98.5
Corrected Solids (vol%)	10.1%		9.9%	Washout 2							Barite	e Adde	ed (+)		19.1
Retort Oil Content	67%		66%	Oper	Hole Size	10.	.073 10,	245'		Other	Produc	t Usag	je (+)		0.0
Retort Water Content	21%		22%	ANI	NULAR GE	OME	TRY & RHE	OLOGY			Wate	r Adde	ed (+)		30.0
O/W Ratio	76:24		75:25	annular	. me	as.	velocity	flow	ECD		Left on	Cuttin	gs (-)	-1	196.7
Whole Mud Chlorides (mg/L)	48,000		52,000	section			ft/min	1	b/gal		Е	vapora	ation		-20.0
Water Phase Salinity (ppm)	263,850		270,413							Non-F	ecover	able V	ol. (-)		-16.1
Whole Mud Alkalinity, Pom	1.7		2.0	9.95x5	1,8	317'	0.0	lam	9.90	Es	. Total	on Loc	ation	26	655.6
Excess Lime (lb/bbl)	2.2 ppb		2.6 ppb	9.95x6.	5 2,0	93'	0.0	lam	9.90	Est. L	osses/C	ains (-)/(+)		0.0
Electrical Stability (volts)	408 v		491 v	9.95x7.7	5 2,3	97'	0.0	lam	9.90	В	IT HYD	RAUL	ICS D	ATA	
Average Specific Gravity of Solids	3.37		3.10							Bit H.S	.l. Bi	tΔP	Nozz	les (32	2nds)
Percent Low Gravity Solids	4.2%		5.7%							0.00		psi	14	14	14
ppb Low Gravity Solids	34 ppb		47 ppb							Bit Impa	nct I	zzle	14	14	14
	5.9%		4.3%							Force	vei	ocity sec)	16	16	16
Percent Barite			04 1	DIT D	ATA	Ма	nuf./Type	ULTERRA	/SPL613	0 lbs		0			
Percent Barite ppb Barite	84 ppb		61 ppb	ט ווט							J.	•			
	84 ppb		61 ppb	Size	Depth In	Нс	- 1	otage R0	OP ft/hr	Motor	/MWD	1	. Circ	. Pres	sure
ppb Barite Estimated Total LCM in System ppb	84 ppb	0	M.Meehan				ours Foo		OP ft/hr 190.7			1	. Circ	. Pres	ssure

OBM RECEIVED ----2,694 bbls

OBM on hand----- 2656bbls

OBM Gain / Loss-----(-38)

SWEEP: 100bblsOBM/10Mag.Fiber / 10Cal Carb / 10N.Phalt

Pump 10-15 bbls every 300' or as requested.

Drilled ahead in the intermediate section from 7,750'MD to TD of the section at 10,245'MD. Increased active density from 9.6ppg to 9.8ppg. Pumped preventative LCM sweeps in 10/bbl increments every 300' or as requested. Continual additions of diesel and drill H2O to maintain hole volume. Pumped (2) 30/bbl sweeps for the cleanup cycle, observed little no increase in cuttings load at the shakers. Sweeps came back to surface at calculated strokes. Pumped a 50/bbl slug 2.5ppg over the active MW of 9.8ppg. At the time of the morning report tripping out of the hole at 2,397'MD.

Eng	j. 1:	Ro	obert	Bowl	in	Er	ng. 2:	Matt	Meehan	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Pho	ne:	22	28-99	0-105	55	Pł	none:	985-3	351-7561	Phone:	432-686-736	1 Phone:	-			
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be	used if the use		ver, no represent	n, has been prepared tation is made as to the	\$8,364.20	\$22,777.75
												INCLU	DING 3RD PA	ARTY CHARGES	\$12,150.50	\$33,371.89

110 Old Market St. St Martinville, LA 70582

TEL: (337) 394-1078

OUTSOURCE FLUID SOLUTIONS LLC.

0.6° 111' TVD

		OIL & G	AS		TTERSO	ON		h / Block HINGTO	N	(or Start Date)	4 hr ftg				10,24	5 ft	
Well Name and No.		CH U2 -	- 3H	Rig Name ar	nd No. 248		State T	EXAS		Spud Da	ate 04/27/20		urrent	ROP		Activity R	un Ca	asin	g
Report for				Report for			Field / OSC-G	#		Fluid Ty	ре	С	irculati	ng Rate		Circula	ting Pres	sure	
KEVIN BU	JRT/ JII	M HARF	RISON	To	ol Pusi	ner	GII	DDINGS			OBM								
	MUD	PROPER1	TY SPECI	FICATION	NS .	T	MUD V	OLUME (BE	BL)		PUMP #1			PUMP #2		RIS	ER BC	OST	ER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	650	bbl	Liner	Size 5.	75 l	_iner	Size 5.	75	Line	Size		
9.3-10.2	8-20	5-12	>300	±270K	<10 <25	<10	In Hol	e 100°	1 bbl	Strol	ke 1	2	Strol	ke 1	2	Str	oke		
	M	UD PROP	ERTIES	ı	1	Γ	Active	e 660	bbl	bbl/s	stk 0.0	915	bbl/s	stk 0.0	915	bb	/stk		
Time Sample	Taken			1:30		11:00	Storag	e <u>972</u>	bbl	stk/n	min		stk/n	nin		stk	/min		
Sample Locati	on			suction		shaker	Tot. on Lo	cation 2623	3 bbl	gal/n	min		gal/n	nin		gal	/min		
Flowline Temp	erature °	F					Mud Wt.	= 9.9 PV:	=18	YP=	:10 CI	RCULA	TION	N DATA		n = ().716 I	K = 1	64.0
Depth (ft)				10,245'		10,245'	Bit	Depth = 11	11 '		Wash	out = 2	!%	F	Pump	Effic	ency =	95%	1
Mud Weight (p	opg)			9.9		9.9	Drill String	Volume	to Bit	5.1 l	bbl St	rokes To	Bit			Time	To Bit		
Funnel Vis (se	ec/qt)		@ 159 °F	49		55	Disp.	Bottoms U	o Vol.	4.4	bbl Botto	omsUp S	Stks		Botto	msUp	Time		
600 rpm				46		47	1.2 bbl	TotalCir	c.Vol.	659.5	bbl To	talCirc.	Stks		Tota	l Circ.	Time		
300 rpm				28		28		DRILLING	S ASS	SEMBL	LY DATA			S	OLID	s co	NTROL	-	
200 rpm				23		22	Tubulars	OD (in.)	ID	(in.)	Length	Top)	Unit		Scr	eens	Ho	ırs
100 rpm				16		16		7.625	6.8	375	111'			Shaker	1	140	0-80		
6 rpm				8		8						111	'	Shaker	2	140	0-80		
3 rpm				7		7						111	'	Shaker	3	140	0-80		
Plastic Viscos	ity (cp)		@ 150 °F	18		19						111	'	Centrifug	je 1				
Yield Point (lb.	/100 ft²)		T0 = 6	10		9		CASIN	G & I	HOLE	DATA								
Gel Strength (lb/100 ft²)	10 se	ec / 10 min	8/11		8/12	Casing	OD (in.)	ID	(in.)	Depth	Тор)						
Gel Strength (lb/100 ft2)	30 min	14		15	Riser							VOLUM	IE AC	COU	NTING	(bbl	s)
HTHP Filtrate	(cm/30 m	in)	@ 300 °F	6.0		6.0	Surface	10 3/4	9.9	950	2,989'			Prev. T	otal o	n Loc	ation	26	55.6
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.							Transfe	rred I	n(+)/0	Out(-)		
Retort Solids (Content			12%		12.5%	Washout 1								Oil	Adde	ed (+)		
Corrected Soli	ds (vol%)	1		10.1%		10.7%	Washout 2								Barite	Adde	ed (+)		
Retort Oil Con	tent			67%		66.5%	Oper	Hole Size	10.	073	10,245'			Other Pr	oduct	Usaç	ge (+)		
Retort Water (Content			21%		21%	AN	NULAR GE	OME	TRY &	RHEOLO	GY		١	Vater	Adde	ed (+)		
O/W Ratio				76:24		76:24	annula	ar de	oth	velo	city flow	ECI	5	Let	ft on (Cuttin	gs (-)		
Whole Mud Cl	nlorides (ı	mg/L)		48,000		47,000	sectio	n ao	P	ft/m	nin reg	lb/ga	al		E۱	apor	ation		
Water Phase	Salinity (p	pm)		263,850		259,781								Non-Rec	overa	ble V	ol. (-)		32.1
Whole Mud Al	kalinity, F	om		1.7		1.5	9.95x7.6	625 11	1'		lam	9.90	0	Est. T	otal o	n Loc	ation_	26	23.5
Excess Lime (lb/bbl)			2.2 ppb		2 ppb								Est. Loss	ses/G	ains ((-)/(+)		0.0
Electrical Stab	ility (volts	s)		408 v		481 v								BIT	HYDF	RAUL	ICS DA	ATA	
Average Spec	ific Gravit	ty of Solids	s	3.37		3.25								Bit H.S.I.	Bit	ΔΡ	Nozzle	es (32	inds)
Percent Low G	Gravity So	lids		4.2%		5.2%								#DIV/0!	#DI	V/0!			
ppb Low Grav	ity Solids			34 ppb		43 ppb							E	Bit Impact	No: Velo	zzle			
Percent Barite				5.9%		5.5%								Force	(ft/s	-			
ppb Barite				84 ppb		78 ppb	BIT I	DATA	Ма	nuf./Ty	/pe			#DIV/0!					
Estimated Total	al LCM in	System					Size	Depth In	Но	ours	Footage	ROP f	t/hr	Motor/M\	WD	Calc	. Circ.	Pres	sure
Sample Taker	Ву			R. Bowlin		M.Meehan	9 7/8	10,245 ft									#DIV	/0!	
Afternoon Rema	arks/Reco	mmendatio	ons:				Afternoon F	Rig Activity:											
Pump a 1	0 bbl swe	eep every	300 ft. Sw	eep Cont	ains:														
10 ppb N	ewCarb, ′	10 ppb Ne	wphalt an	d 10 ppb l	Magnafibe	er fine													
								tinue to PC PS. Rigged											

TEL: (337) 394-1078

0' TVD

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

0.0°

Operator				Contractor			County / Parish /			Engineer Star		24 hr	-		Drilled [
MAGI Well Name and No.	NOLIA (OIL & G	SAS	PA ⁻ Rig Name ar	TTERSO	ON	WASh State	HINGTO	N	O4/2	27/20	Curre	0 ft		Activity		45 ft
LEVI G	OODR	ICH U2	- 3H	-	248		TI	EXAS		04/	27/20		0 ft/hr		Pr	ep to	o Skid
Report for KEVIN B	URT/.II	Μ ΗΔΡ	RISON	Report for	ol Pusi	her	Field / OCS-G #	DINGS		Fluid Type	вм	Circu	ating Rate 0 gpm		Circulat	ing Pres	ssure
			RTY SPECIF					LUME (BI	BL)		MP #1		PUMP #2		RISI	ER BO	OOSTER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits			Liner Size	5.	75 Line	er Size 5	.75	Liner	Size	
9.3-10.2	8-20	5-12	>300	±270K	<10 <25	<10	In Hole	47	'0 bbl	Stroke	1	2 St	roke	12	Stro	ke	
				5/8/20		5/7/20	Active	0	bbl	bbl/stk	0.0	915 bt	ol/stk 0.0	915	bbl/	stk	0.0000
Time Sample	Taken			1:30		11:00	Storage)		stk/min		stl	c/min		stk/r	min	
Sample Locati	on			suction		shaker	Tot. on Lo	cation 47	'0 bbl	gal/min	() ga	l/min	0	gal/ı	min	0
Flowline Temp	erature °F	=						PHHP = ()		CIRCUL	ATION D	ATA		n = 0	.716	K = 164.036
Depth (ft)				10,245'		10,245'					Wash	out = 0%		Pump	Efficie	ency =	= 95%
Mud Weight (p	ppg)			9.9		9.9	Drill String	Volum	e to Bit	0.0 bbl	Str	rokes To Bi	t		Time 1	Го Bit	
Funnel Vis (se	ec/qt)		@ 125 °F	55		55	Disp.	Bottoms I	Jp Vol.	0.0 bbl	Botto	msUp Stks	3	Botto	msUp	Time	
600 rpm				46		47	0.0 bbl	TotalC	irc.Vol.	0.0 bbl	То	talCirc.Stk	5	Tota	l Circ.	Time	
300 rpm				28		28		DRILLIN	IG AS	SEMBLY D	ATA		8	OLID	S CON	NTRO	L
200 rpm				22		22	Tubulars	OD (in.)	ID	(in.) L	ength	Тор	Unit		Scre	ens	Hours
100 rpm				17		16					0'	0'	Shake	r 1	140	-80	6.0
6 rpm				8		8						0'	Shake	r 2	140	-80	6.0
3 rpm				7		7						0'	Shake	r 3	140	-80	6.0
Plastic Viscosi	ity (cp)		@ 150 °F	18		19						0'	Centrifu	ge 1			
Yield Point (lb/	/100 ft²)		T0 = 6	10		9		CASI	NG & I	HOLE DAT	Ά						
Gel Strength (lb/100 ft²)	10	sec/10 min	8/11		8/12	Casing	OD (in.)	ID	(in.)	epth	Тор					
Gel Strength (lb/100 ft ²)		30 min	14		15	Riser						VOLU	/IE AC	COU	NTING	G (bbls)
HTHP Filtrate	(cm/30 m	in)	@ 300 °F	6.0		6.0	Surface	10 3/4		2	,989'	0'	Prev.	Total c	n Loc	ation	2655.6
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.	.875 10	0,237'	0'	Transf	erred I	n(+)/C	Out(-)	-2101.0
Retort Solids (Content			12.5%		12.5%	Washout 1							Oil	Adde	d (+)	0.0
Corrected Soli	ds (vol%)			10.7%		10.7%	Washout 2							Barite	Adde	d (+)	0.0
Retort Oil Con	tent			66.5%		66.5%	Oper	n Hole Size	e 0.	.000 10	0,245'		Other P	roduct	Usag	e (+)	0.0
Retort Water (Content			21%		21%	AN	NULAR G	EOME	TRY & RH	EOLOG	¥Υ		Water	Adde	d (+)	
O/W Ratio				76:24		76:24	annula	r m	eas.	velocity	flow	ECD	Le	eft on (Cutting	gs (-)	0.0
Whole Mud Ch	nlorides (n	ng/L)		46,000		47,000	section	n d	epth	ft/min	reg	lb/gal	Spacer	Interf	ace/ E	vap	-31.0
Water Phase	Salinity (p	pm)		255,667		259,781							Non-Re	covera	ble Vo	ol. (-)	-53.6
Whole Mud Al	kalinity, P	om		1.5		1.5							Est.	Total o	n Loc	ation _	470.0
Excess Lime (lb/bbl)			2 ppb		2 ppb							Est. Los	ses/G	ains (-	-)/(+)	0.0
Electrical Stab	ility (volts)		422 v		481 v							ВІТ	HYDF	RAULI	CS D	ATA
Average Spec	ific Gravit	y of Solids	S	3.25		3.25							Bit H.S.I.	Bit	ΔΡ	Nozzl	les (32nds)
Percent Low G	Gravity So	lids		5.2%		5.2%											
ppb Low Grav	ity Solids			42 ppb		43 ppb							Bit Impact		zzle		
Percent Barite				5.5%		5.5%							Force		sec)		
ppb Barite				79 ppb		78 ppb	BIT D	ATA	Ma	anuf./Type							
Estimated Total	al LCM in	System	ppb				Size	Depth In	H	ours Fo	ootage	ROP ft/h	Motor/M	WD	Calc.	Circ.	Pressure
Sample Taken	в Ву			R. Bowlin	0	M.Meehan							psi				
Remarks/Reco	mmendati	one:					Ria Activity:										

OBM RECEIVED ----2,694 bbls

OBM on hand----- 2571bbls

OBM Gain / Loss-----(-123)

Left in Casing 470bbls

Skid Vol 2101

Rig Activity:

Finished TOOH, LD the 9.875" directional BHA. RU casing crew, MU the shoe track and ran the 7.625" intermediate casing to bottom setting shoe at 10,237'MD, RD casing crew. Circulate 1X casing volume, RU cementing crew and cement the the same, pumped 40bbls spacer, 285bbls lead, 78bbls tail and displaced with 9.9ppg OBM 446bbls and 20bbls H2O last. Trans excess volume to the frac storage for use on the 2H. Good returns during the cement job. The active volume will be conditioned and the density will be decreased to 9.5ppg with diesel for drill out. Began dumping interface/spacer at 440bbls into the displacement, dumped a total of 26bbls.

Е	ng. 1:	R	obert	Bowl	in	Er	na. 2:	Matt	Meehan	WH 1:	MIDLA	.ND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
	none:			0-10			9		351-7561	Phone:	432-686-	-7361	Phone:	-		,	
W 1	P 1	Y 1	E 1	C 0	g 1	G 1	H 1	O 1	carefully	and may be	used if the	user so		no representation	nas been prepared on is made as to the	\$8,600.00	\$31,377.75
													INCLUDI	NG 3RD PAR	TY CHARGES	\$8,600.00	\$41,971.89

110 Old Market St. St Martinville, LA 70582

TEL: (337) 394-1078

	IOLIA C	IL & G	AS		TTERSO	ON	_	HINGTO	N		27/20		r ftg.			10,24	5 ft	i
Well Name and No.	OODRI	CH U2	- 3H	Rig Name a	248			EXAS			27/20		ent ROP			Skid		
Report for KEVIN BU	IRT/ III	M HARI	SISON	Report for	ol Push	ner	Field / OSC-G	# DDINGS		Fluid Type	ВМ	Circ	ulating Rate		Circula	ting Press	sure	
KEVIII DO			TY SPECI			101		OLUME (BE	RI)		MP #1		PUMP #2		RIS	ER BC	OST	
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	•	<i>,</i>	Liner Size		75 Lin		.75		Size		
9.3-10.2	8-20	5-12	>300	±270K	<10 <25	<10	In Hole		bbl	Stroke	12			12	Stro			
		JD PROP					Active			bbl/stk	0.09			915		/stk		
Time Sample				1:30		11:00	Storag			stk/min			tk/min		stk/			
Sample Locati				suction		suction	Tot. on Lo		bbl	gal/min		a	al/min		gal/			
Flowline Temp		-					Mud Wt. =	= 9.9 PV:	=18	YP=10	CIR		ION DATA			.716 I	< = 1	64.0
Depth (ft)				10,245'		10,245'					Washo			Pump	Effici	ency =	95%	, o
Mud Weight (p	pg)			9.9		9.5	Drill String	Volume	to Bit		Stro	okes To E	l Bit	Ι.	Time ⁻	Γο Bit		
Funnel Vis (se	c/qt)		@ 125 °F	55		50	Disp.	Bottoms U	p Vol.		Botto	msUp Stł	(S	Botto	msUp	Time		
600 rpm				46		34		TotalCir	c.Vol.		Tot	alCirc.Stl	(S	Tota	l Circ.	Time		
300 rpm				28		21		DRILLING	3 ASS	SEMBLY I	DATA		5	SOLID	s co	NTROL		
200 rpm				22		15	Tubulars	OD (in.)	ID	(in.) Le	ength	Тор	Unit	:	Scre	ens	Ho	urs
100 rpm				17		10							Shake	r 1	140	-80		
6 rpm				8		5							Shake	r 2	140	-80		
3 rpm				7		4							Shake	r 3	140	-80		
Plastic Viscosi	ty (cp)		@ 150 °F	18		13							Centrifu	ge 1				
Yield Point (lb/	′100 ft²)		T0 = 6	10		8		CASIN	IG & I	HOLE DA	TA							
Gel Strength (b/100 ft ²)	10 s	ec / 10 min	8/11		5/7	Casing	OD (in.)	ID	(in.) D	epth	Тор						
Gel Strength (b/100 ft2))	30 min	14		9	Riser						VOLU	VE AC	COU	NTING	(bbl	s)
HTHP Filtrate	(cm/30 m	in)	@ 300 °F	6.0		8.0	Surface	10 3/4		2	,989'		Prev.	Γotal o	n Loc	ation	4	170.0
HTHP Cake TI	nickness ((32nds)		2.0		2.0	Int. Csg.	7 5/8	6.8	375 10),237'		Transfe	erred I	n(+)/C	Out(-)		
Retort Solids (Content			12.5%		10.5%	Washout 1							Oil	Adde	d (+)		
Corrected Soli	ds (vol%)			10.7%		8.5%	Washout 2							Barite	Adde	d (+)		
Retort Oil Con	tent			66.5%		66.5%	Oper	n Hole Size		10),245'		Other P	roduct	Usag	e (+)		
Retort Water (Content			21%		23%	AN	NULAR GE	ОМЕ	TRY & RI	HEOLO	GY		Water	Adde	d (+)		
O/W Ratio				76:24		74:26	annula	ar de	pth	velocity	flow	ECD	Le	eft on C	Cuttin	gs (-)		
Whole Mud Ch	nlorides (r	ng/L)		46,000		52,000	section	n de	Pill	ft/min	reg	lb/gal	Spacer/	Interfa	ace/ E	vap		
Water Phase S	Salinity (p	pm)		255,667		261,733							Non-Red	covera	ble V	ol. (-)		
Whole Mud Al	kalinity, P	om		1.5		2.1							Est.	Γotal o	n Loc	ation _	4	170.0
Excess Lime (lb/bbl)			2 ppb		2.7 ppb							Est. Los	ses/G	ains (-)/(+)		
Electrical Stab	ility (volts)		422 v		420 v							BIT	HYDR	RAUL	CS DA	ΤA	
Average Spec	ific Gravit	y of Solid	S	3.25		3.19							Bit H.S.I.	Bit	ΔΡ	Nozzle	s (32	2nds
Percent Low G	ravity So	lids		5.2%		4.4%							#DIV/0!	#DI	V/0!			
ppb Low Gravi	ty Solids			42 ppb		36 ppb							Bit Impact	Noz Velo				
Percent Barite				5.5%		4.1%			1				Force	(ft/s	•			
ppb Barite				79 ppb		58 ppb	BIT [DATA	Ма	nuf./Type	1		#DIV/0!					
Estimated Total	al LCM in	System					Size	Depth In	Но	ours Fo	otage	ROP ft/h	nr Motor/M	IWD	Calc	. Circ.	Pres	sure
Sample Taken	Ву			R. Bowlin		M.Meehan										#DIV	/0!	
Afternoon Rema	arks/Recor	nmendatio	ons:				Afternoon R	Rig Activity:										
·		. ,	300 ft. Sw wphalt an	·		er fine	Levi 9.5 p in pr	Goodrick opg with die eparation f	U2-2 esel. for ra	H well. Ci Pretreatii pid drillin	irculate ng the s g in the	d the m system v vertica	kid the rig. S ud pits and with 100 ga I section. Ac crease the C	reduc Is of C dding	ed th Optim Lime	e mud ul and to inci	wt. Opt eas	to iwe e

worn shale shaker screens to 140 mesh.

0' TVD

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

TEL: (337) 394-1078

0.0°

	NOLIA (OIL & C	GAS		TERSO	ON_		HINGTO	N		7/20	24 hr ftg	0 ft				15 ft
Well Name and No	OODR	ICH U2	: - 3H	Rig Name ar	nd No. 248		State T	EXAS		Spud Date 04/2	7/20	Current	ROP Oft/hr		Activity Skid	Rig/	Transfer
Report for				Report for			Field / OCS-G #			Fluid Type		Circulat	ing Rate		Circulati	ng Pres	sure
KEVIN B					ol Pusi	ner		DINGS		_	3 M		0 gpm		2101		si
		1	RTY SPECIF					LUME (B			IP #1	1	PUMP #2				OOSTER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits		4 bbl	Liner Size	5.25	Liner		.25	Liner		
9.3-10.2	8-20	5-12	>300	±270K	<10 <25	<10	In Hole		0 bbl	Stroke	12	Stro		12	Stro		0.0000
Time Comple	Takan			5/8/20			Active		4 bbl	bbl/stk	0.0763	bbl/		0763	bbl/s		0.0000
Time Sample Sample Locati				1:30 suction			Storage		26 bbl	stk/min	0	stk/r		0	stk/r		0
Flowline Temp		=		Suction			TOL. OIT LO	cation 24 PHHP = 0		gal/min	IRCULATIO	gal/i		0	gal/r		K = 164.036
Depth (ft)	Delature i			10,245'				Bit Depth =			Washout =			Pumn	Efficie		
Mud Weight (r	ona)			9.9					e to Bit	0.0 bbl	Strokes				Time T		. 90 /0
Funnel Vis (se	,		@ 125 °F	55			Drill String Disp.	Bottoms		0.0 bbl	BottomsU				msUp		
600 rpm	,c/qt/		@ 120 T	46			0.0 bbl			844.0 bbl	TotalCi				al Circ.		
300 rpm				28			0.0 22.			SEMBLY DA		0.0110	S		S CON		L
200 rpm				22			Tubulars	OD (in.)				Гор	Unit		Scre		Hours
100 rpm				17				()		` ,	0'	0'	Shakei		17		
6 rpm				8								0'	Shakeı	r 2	17	0	
3 rpm				7								0'	Shakeı	r 3	17	0	
Plastic Viscos	ity (cp)		@ 150 °F	18								0'	Centrifuç	ge 1			
Yield Point (lb.	/100 ft²)		T0 = 6	10				CASI	NG & I	HOLE DATA	A						
Gel Strength (lb/100 ft²)	10	sec/10 min	8/11			Casing	OD (in.)	ID	(in.) De	epth 7	Гор					
Gel Strength (lb/100 ft ²)		30 min	14			Riser					=	VOLUN	/IE AC	COUN	ITING	(bbls)
HTHP Filtrate	(cm/30 m	in)	@ 300 °F	6.0			Surface	10 3/4		2,	989'	0'	Prev. T	Γotal c	n Loca	ation	470.0
HTHP Cake T	hickness	(32nds)		2.0			Int. Csg.	7 5/8	6.	875 10	,237'	0'	Transfe	erred I	ln(+)/O	ut(-)	1970.0
Retort Solids (Content			12.5%			Washout 1							Oil	l Adde	(+) b	0.0
Corrected Sol	ids (vol%)			10.7%			Washout 2							Barite	Adde	(+) b	0.0
Retort Oil Con	itent			66.5%			Орег	n Hole Size	e 0.	000 10	,245'		Other Pr	roduct	Usag	e (+)	0.0
Retort Water	Content			21%			AN	NULAR G	EOME	TRY & RHE	OLOGY		,	Water	Adde	(+) b	
O/W Ratio				76:24			annula	r m	eas.	velocity	flow E	CD	Le	eft on (Cutting	ıs (-)	0.0
Whole Mud C	hlorides (r	ng/L)		46,000			section	n d	epth	ft/min	reg lb	/gal	Spacer/	Interf	ace/ E	vap	
Water Phase	Salinity (p	pm)		255,667									Non-Red	covera	able Vo	ol. (-)	
Whole Mud Al	kalinity, P	om		1.5									Est. 7	Γotal c	n Loca	ation _	2440.0
Excess Lime (lb/bbl)			2 ppb									Est. Los	ses/G	ains (-)/(+)	0.0
Electrical Stab	oility (volts)		422 v									BIT	HYDI	RAULI	CS D	ATA
Average Spec	ific Gravit	y of Solid	s	3.25									Bit H.S.I.	Bit	ΔΡ	Nozzl	es (32nds)
Percent Low 0	Gravity So	lids		5.2%													
ppb Low Grav	ity Solids			42 ppb									Bit Impact		zzle ocity		
Percent Barite	•			5.5%					1				Force		sec)		
ppb Barite				79 ppb			BIT D			anuf./Type	ı				1		
Estimated Tot		System	ppb		_		Size	Depth In	H	ours Foo	otage RO	P ft/hr	Motor/M		Calc.	Circ.	Pressure
Sample Taker Remarks/Reco				R. Bowlin	0	M.Meehan							psi				
OBM REC	EIVED - and	1,970 2440 bb) bbls ls (storage // 15# // \$			ng)	Rig Activity: Skid Rig	from 2H,	Trans	sfer all sacl	< material	and O	BM to inv	entor	y.		
						00/651											
Discounte			12.5# 3 ing. 2: Matt	77bbls 9. Meehan	.8# // \$15 WH 1:		AND '	WH 2:	WH#	2 0	ig Phone:		Daily Total		Cir	mulati	ve Cost
-	56-821-999 E C 1 0		· ·	351-7561 Any opir carefully	Phone: nion and or and may b	432-686 recommendate used if the	ation, expresse user so elects	Phone: d orally or w , however, n	ritten he	rein, has beer	n prepared		\$0.00			muiati 31,37	
- 1 1	, 0	1 1	1 1	validity	or this inforr	nation, and t	this is a recomm		•	PARTY CH	ARGES		\$0.00		\$	41,97	71 89

MATERIAL CONSUMPTION

Item ALUMINUM TRISTEARATE SAPP (50) PHPA LIQUID (pail) DYNA DET EVO-LUBE GEL (100) BENTONE 38 (50) CACL2 (50) LIME (50) BENTONE 910 (50) BENTONE 990 (50) OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25) NEWCARB 100 OIL SORB (25) CYBERSEAL NEW-WATE (SACK BARITE) BARITE BULK (100) DYNA FIBER MED. FIBER PLUG MAGMAFIBER R (30)	DAILY Unit 25# sk 50# sk 5 gal pail gal 100# sk 50# sk 50# sk 50# sk 50# sk 50# sk 50# sk 100# sk 100# sk 25# sk each 25# sk each 100# sk	USAGE 8 Unit Cost \$162.83 \$44.50 \$41.36 \$32.23 \$9.31 \$10.00 \$163.94 \$14.32 \$5.00 \$59.94 \$83.59 \$10.75 \$8.34 \$38.72 \$5.25 \$28.05 \$5.37 \$4.75 \$21.47 \$11.50 \$7.00 \$53.67 \$30.37	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		CUMUI Cum Usage	\$1,780.00 \$82.72 \$257.84 \$257.84 \$801.92 \$250.00 \$239.76 \$917.70 \$1,881.25 \$1,459.50 \$774.40 \$157.50 \$280.50
ALUMINUM TRISTEARATE SAPP (50) PHPA LIQUID (pail) DYNA DET EVO-LUBE GEL (100) BENTONE 38 (50) CACL2 (50) LIME (50) BENTONE 910 (50) BENTONE 990 (50) OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25) NEWCARB 100 OIL SORB (25) CYBERSEAL NEW-WATE (SACK BARITE) BARITE BULK (100) DYNA FIBER MED. FIBER PLUG	Unit 25# sk 50# sk 5 gal pail gal 100# sk 50# sk 100# sk 100# sk 100# sk 100# sk	Unit Cost \$162.83 \$44.50 \$41.36 \$32.23 \$9.31 \$10.00 \$163.94 \$14.32 \$5.00 \$59.94 \$83.59 \$30.59 \$10.75 \$8.34 \$38.72 \$5.25 \$28.05 \$5.37 \$4.75 \$21.47	Previous Inventory	88 975 70 20 110 110 30 35 80 275 330 40 36 20 50 30 180 1760 85 30	Inventory	-	Daily Cost		Cum Usage 2 40 2 8 56 50 4 175 175 20 30 10 20	\$325.66 \$1,780.00 \$82.72 \$257.84 \$801.92 \$250.00 \$239.76 \$917.70 \$1,881.25 \$1,459.50 \$774.40 \$157.50 \$280.50
ALUMINUM TRISTEARATE SAPP (50) PHPA LIQUID (pail) DYNA DET EVO-LUBE GEL (100) BENTONE 38 (50) CACL2 (50) LIME (50) BENTONE 910 (50) BENTONE 990 (50) OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25) NEWCARB 100 OIL SORB (25) CYBERSEAL NEW-WATE (SACK BARITE) BARITE BULK (100) DYNA FIBER MED. FIBER PLUG	25# sk 50# sk 5 gal pail gal 100# sk 50# sk 25# sk 25# sk each 25# sk 100# sk	\$162.83 \$44.50 \$41.36 \$32.23 \$9.31 \$10.00 \$163.94 \$14.32 \$5.00 \$59.94 \$83.59 \$10.75 \$8.34 \$38.72 \$5.25 \$28.05 \$5.37 \$4.75 \$21.47	Inventory	88 975 70 20 110 110 30 35 80 275 330 40 36 20 50 30 180 1760 85 30	Inventory	-	Daily Cost		Usage 2 40 2 8 56 50 4 30 175 175 20 30 10 20	\$325.66 \$1,780.00 \$82.72 \$257.84 \$801.92 \$250.00 \$239.76 \$917.70 \$1,881.25 \$1,459.50 \$774.40 \$157.50 \$280.50
SAPP (50) PHPA LIQUID (pail) DYNA DET EVO-LUBE GEL (100) BENTONE 38 (50) CACL2 (50) LIME (50) BENTONE 910 (50) BENTONE 990 (50) OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25) NEWCARB 100 OIL SORB (25) CYBERSEAL NEW-WATE (SACK BARITE) BARITE BULK (100) DYNA FIBER MED. FIBER PLUG	50# sk 5 gal pail gal 100# sk 50# sk 25# sk each 25# sk each 100# sk	\$44.50 \$41.36 \$32.23 \$9.31 \$10.00 \$163.94 \$14.32 \$5.00 \$59.94 \$83.59 \$10.75 \$8.34 \$38.72 \$5.25 \$28.05 \$1.47 \$11.50 \$7.00		975 70 20 110 110 30 35 80 275 330 40 36 20 50 180 1760	975 70 20 110 110 30 35 80 275 330 40 36 20 50 180 160 1300 85 30				40 2 8 56 50 4 30 175 175 20 30 10	\$1,780.00 \$82.72 \$257.84 \$257.84 \$801.92 \$250.00 \$239.76 \$917.70 \$1,881.25 \$1,459.50 \$774.40 \$157.50 \$280.50
PHPA LIQUID (pail) DYNA DET EVO-LUBE GEL (100) BENTONE 38 (50) CACL2 (50) LIME (50) BENTONE 910 (50) BENTONE 990 (50) OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25) NEWCARB 100 OIL SORB (25) CYBERSEAL NEW-WATE (SACK BARITE) BARITE BULK (100) DYNA FIBER MED. FIBER PLUG	5 gal pail gal 100# sk 50# sk 25# sk each 25# sk each 100# sk	\$41.36 \$32.23 \$9.31 \$10.00 \$163.94 \$14.32 \$5.00 \$59.94 \$83.59 \$10.75 \$8.34 \$38.72 \$5.25 \$28.05 \$21.47 \$7.00 \$53.67 \$30.37		975 70 20 110 110 30 35 80 275 330 40 36 20 50 180 1760	975 70 20 110 110 30 35 80 275 330 40 36 20 50 180 160 1300 85 30				2 8 56 50 4 30 175 175 20 30 10	\$82.72 \$257.84 \$801.92 \$250.00 \$239.76 \$917.70 \$1,881.25 \$1,459.50 \$774.40 \$157.50 \$280.50
DYNA DET EVO-LUBE GEL (100) BENTONE 38 (50) CACL2 (50) LIME (50) BENTONE 910 (50) BENTONE 990 (50) OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25) NEWCARB 100 OIL SORB (25) CYBERSEAL NEW-WATE (SACK BARITE) BARITE BULK (100) DYNA FIBER MED. FIBER PLUG	pail gal 100# sk 50# sk 25# sk each 25# sk each 100# sk 100# sk	\$32.23 \$9.31 \$10.00 \$163.94 \$14.32 \$5.00 \$59.94 \$83.59 \$10.75 \$8.34 \$38.72 \$5.25 \$28.05 \$5.37 \$4.75 \$21.47 \$7.00		975 70 20 110 110 30 35 80 275 330 40 36 20 50 180 1760	975 70 20 110 110 30 35 80 275 330 40 36 20 50 180 160 1300 85 30				56 50 4 30 175 175 20 30 10	\$257.84 \$801.92 \$250.00 \$239.76 \$917.70 \$1,881.25 \$1,459.50 \$774.40 \$157.50 \$280.50
EVO-LUBE GEL (100) BENTONE 38 (50) CACL2 (50) LIME (50) BENTONE 910 (50) BENTONE 990 (50) OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25) NEWCARB 100 OIL SORB (25) CYBERSEAL NEW-WATE (SACK BARITE) BARITE BULK (100) DYNA FIBER MED. FIBER PLUG	gal 100# sk 50# sk 25# sk each 25# sk each 100# sk 100# sk	\$9.31 \$10.00 \$163.94 \$14.32 \$5.00 \$59.94 \$83.59 \$10.75 \$8.34 \$38.72 \$5.25 \$28.05 \$1.47 \$11.50 \$7.00		70 20 110 110 30 35 80 275 330 40 36 20 50 180 1760	20 110 110 30 35 80 275 330 40 36 20 50 30 180 160 1300				56 50 4 30 175 175 20 30 10	\$801.92 \$250.00 \$239.76 \$917.70 \$1,881.25 \$1,459.50 \$774.40 \$157.50 \$280.50
GEL (100) BENTONE 38 (50) CACL2 (50) LIME (50) BENTONE 910 (50) BENTONE 990 (50) OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25) NEWCARB 100 OIL SORB (25) CYBERSEAL NEW-WATE (SACK BARITE) BARITE BULK (100) DYNA FIBER MED. FIBER PLUG	100# sk 50# sk 25# sk each 25# sk each 100# sk 100# sk	\$10.00 \$163.94 \$14.32 \$5.00 \$59.94 \$83.59 \$10.75 \$8.34 \$38.72 \$5.25 \$28.05 \$5.37 \$4.75 \$21.47 \$7.00 \$53.67 \$30.37		70 20 110 110 30 35 80 275 330 40 36 20 50 180 1760	20 110 110 30 35 80 275 330 40 36 20 50 30 180 160 1300				30 175 175 20 30 10	\$250.00 \$239.76 \$917.70 \$1,881.25 \$1,459.50 \$774.40 \$157.50 \$280.50
BENTONE 38 (50) CACL2 (50) LIME (50) BENTONE 910 (50) BENTONE 990 (50) OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25) NEWCARB 100 OIL SORB (25) CYBERSEAL NEW-WATE (SACK BARITE) BARITE BULK (100) DYNA FIBER MED. FIBER PLUG	50# sk 50# sk 50# sk 50# sk 50# sk 50# sk gal gal 50# sk 25# sk each 25# sk each 100# sk	\$14.32 \$5.00 \$59.94 \$83.59 \$10.75 \$8.34 \$38.72 \$5.25 \$28.05 \$5.37 \$4.75 \$21.47 \$7.00 \$53.67 \$30.37		110 110 30 35 80 275 330 40 36 20 50 30 180 1760	110 110 30 35 80 275 330 40 36 20 50 30 180 160 1300 85 30				30 175 175 20 30 10	\$250.00 \$239.76 \$917.70 \$1,881.25 \$1,459.50 \$774.40 \$157.50 \$280.50
CACL2 (50) LIME (50) BENTONE 910 (50) BENTONE 990 (50) OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25) NEWCARB 100 OIL SORB (25) CYBERSEAL NEW-WATE (SACK BARITE) BARITE BULK (100) DYNA FIBER MED. FIBER PLUG	50# sk 50# sk 50# sk 50# sk 50# sk gal gal 50# sk 25# sk each 25# sk each 100# sk	\$14.32 \$5.00 \$59.94 \$83.59 \$10.75 \$8.34 \$38.72 \$5.25 \$28.05 \$5.37 \$4.75 \$21.47 \$7.00 \$53.67 \$30.37		110 110 30 35 80 275 330 40 36 20 50 30 180 1760	110 110 30 35 80 275 330 40 36 20 50 30 180 160 1300 85 30				30 175 175 20 30 10	\$250.00 \$239.76 \$917.70 \$1,881.25 \$1,459.50 \$774.40 \$157.50 \$280.50
LIME (50) BENTONE 910 (50) BENTONE 990 (50) OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25) NEWCARB 100 OIL SORB (25) CYBERSEAL NEW-WATE (SACK BARITE) BARITE BULK (100) DYNA FIBER MED. FIBER PLUG	50# sk 50# sk 50# sk 50# sk gal gal 50# sk 25# sk each 25# sk each 100# sk	\$5.00 \$59.94 \$83.59 \$30.59 \$10.75 \$8.34 \$38.72 \$5.25 \$28.05 \$5.37 \$4.75 \$21.47 \$11.50 \$7.00		110 30 35 80 275 330 40 36 20 50 30 180 1760	110 30 35 80 275 330 40 36 20 50 30 180 160 1300 85 30				30 175 175 20 30 10	\$250.00 \$239.76 \$917.70 \$1,881.25 \$1,459.50 \$774.40 \$157.50 \$280.50
BENTONE 910 (50) BENTONE 990 (50) OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25) NEWCARB 100 OIL SORB (25) CYBERSEAL NEW-WATE (SACK BARITE) BARITE BULK (100) DYNA FIBER MED. FIBER PLUG	50# sk 50# sk 50# sk gal gal 50# sk 50# sk 25# sk each 25# sk each 100# sk 100# sk	\$59.94 \$83.59 \$10.75 \$8.34 \$38.72 \$5.25 \$28.05 \$5.37 \$4.75 \$21.47 \$11.50 \$7.00		30 35 80 275 330 40 36 20 50 30 180 1760	30 35 80 275 330 40 36 20 50 30 180 1300				30 175 175 20 30 10	\$239.76 \$917.70 \$1,881.25 \$1,459.50 \$774.40 \$157.50 \$280.50
BENTONE 990 (50) OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25) NEWCARB 100 OIL SORB (25) CYBERSEAL NEW-WATE (SACK BARITE) BARITE BULK (100) DYNA FIBER MED. FIBER PLUG	50# sk 50# sk gal gal 50# sk 50# sk 25# sk each 25# sk each 100# sk	\$83.59 \$30.59 \$10.75 \$8.34 \$38.72 \$5.25 \$28.05 \$5.37 \$4.75 \$21.47 \$11.50 \$7.00		35 80 275 330 40 36 20 50 30 180 1760	35 80 275 330 40 36 20 50 30 180 160 1300				30 175 175 20 30 10	\$917.70 \$1,881.25 \$1,459.50 \$774.40 \$157.50 \$280.50
OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25) NEWCARB 100 OIL SORB (25) CYBERSEAL NEW-WATE (SACK BARITE) BARITE BULK (100) DYNA FIBER MED. FIBER PLUG	50# sk gal gal 50# sk 50# sk 25# sk each 25# sk 100# sk	\$30.59 \$10.75 \$8.34 \$38.72 \$5.25 \$28.05 \$5.37 \$4.75 \$21.47 \$11.50 \$7.00		80 275 330 40 36 20 50 30 180 1760	80 275 330 40 36 20 50 30 180 160 1300				175 175 20 30 10	\$1,881.25 \$1,459.50 \$774.40 \$157.50 \$280.50
OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25) NEWCARB 100 OIL SORB (25) CYBERSEAL NEW-WATE (SACK BARITE) BARITE BULK (100) DYNA FIBER MED. FIBER PLUG	gal gal gal 50# sk 50# sk 25# sk each 25# sk each 100# sk	\$10.75 \$8.34 \$38.72 \$5.25 \$28.05 \$5.37 \$4.75 \$21.47 \$11.50 \$7.00		275 330 40 36 20 50 30 180 1760	275 330 40 36 20 50 30 180 160 1300				175 175 20 30 10	\$1,881.25 \$1,459.50 \$774.40 \$157.50 \$280.50
OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25) NEWCARB 100 OIL SORB (25) CYBERSEAL NEW-WATE (SACK BARITE) BARITE BULK (100) DYNA FIBER MED. FIBER PLUG	gal 50# sk 50# sk 25# sk each 25# sk each 100# sk 100# sk	\$8.34 \$38.72 \$5.25 \$28.05 \$5.37 \$4.75 \$21.47 \$11.50 \$7.00		330 40 36 20 50 30 180 160 1760	330 40 36 20 50 30 180 160 1300				175 20 30 10	\$1,459.50 \$774.40 \$157.50 \$280.50 \$95.00
NEW PHALT NEWCARB 200 MAGMAFIBER F (25) NEWCARB 100 OIL SORB (25) CYBERSEAL NEW-WATE (SACK BARITE) BARITE BULK (100) DYNA FIBER MED. FIBER PLUG	50# sk 50# sk 25# sk each 25# sk each 100# sk 100# sk	\$38.72 \$5.25 \$28.05 \$5.37 \$4.75 \$21.47 \$11.50 \$7.00 \$53.67 \$30.37		40 36 20 50 30 180 160 1760	40 36 20 50 30 180 160 1300				20 30 10 20	\$774.40 \$157.50 \$280.50 \$95.00
NEWCARB 200 MAGMAFIBER F (25) NEWCARB 100 OIL SORB (25) CYBERSEAL NEW-WATE (SACK BARITE) BARITE BULK (100) DYNA FIBER MED. FIBER PLUG	50# sk 25# sk each 25# sk each 100# sk 100# sk	\$5.25 \$28.05 \$5.37 \$4.75 \$21.47 \$11.50 \$7.00 \$53.67 \$30.37		36 20 50 30 180 160 1760	36 20 50 30 180 160 1300				20	\$157.50 \$280.50 \$95.00
NEWCARB 100 OIL SORB (25) CYBERSEAL NEW-WATE (SACK BARITE) BARITE BULK (100) DYNA FIBER MED. FIBER PLUG	each 25# sk each 100# sk 100# sk each each	\$5.37 \$4.75 \$21.47 \$11.50 \$7.00 \$53.67 \$30.37		50 30 180 160 1760 85 30	50 30 180 160 1300 85 30				20	\$95.00
OIL SORB (25) CYBERSEAL NEW-WATE (SACK BARITE) BARITE BULK (100) DYNA FIBER MED. FIBER PLUG	25# sk each 100# sk 100# sk each each	\$4.75 \$21.47 \$11.50 \$7.00 \$53.67 \$30.37		30 180 160 1760 85 30	30 180 160 1300 85 30					
CYBERSEAL NEW-WATE (SACK BARITE) BARITE BULK (100) DYNA FIBER MED. FIBER PLUG	each 100# sk 100# sk each each	\$21.47 \$11.50 \$7.00 \$53.67 \$30.37		180 160 1760 85 30	180 160 1300 85 30					
NEW-WATE (SACK BARITE) BARITE BULK (100) DYNA FIBER MED. FIBER PLUG	100# sk 100# sk each	\$11.50 \$7.00 \$53.67 \$30.37		160 1760 85 30	160 1300 85 30				275	\$1,925.00
BARITE BULK (100) DYNA FIBER MED. FIBER PLUG	100# sk each	\$7.00 \$53.67 \$30.37		1760 85 30	1300 85 30				275	\$1,925.00
BARITE BULK (100) DYNA FIBER MED. FIBER PLUG	100# sk each	\$7.00 \$53.67 \$30.37		1760 85 30	1300 85 30				275	\$1,925.00
DYNA FIBER MED. FIBER PLUG	each each	\$53.67 \$30.37	-460	85 30	85 30				275	\$1,925.00
FIBER PLUG	each	\$30.37		30	30					
FIBER PLUG	each	\$30.37		30	30					
FIBER PLUG	each	\$30.37		30	30					
							+			i
ODTI DDILL (ODM)	la la I	#05.00	470	000	4000				400	Ф7 005 00
OPTI DRILL (OBM)	bbl	\$65.00	470	890	1360				123	\$7,995.00
MAGNOLIA OBM	bbl			166	166					
III. CITOLIN COM	551			100	100					
DISCOUNTED OBM	bbl	\$15.00		914	914					
ENCINEEDING (CALUE)	<u>.</u>	0005								#C 050 5
ENGINEERING (24 HR) ENGINEERING (DIEM)	each	\$925.00 \$30.00							10	\$9,250.00 \$300.00
ENGINEERING (DIEM) ENGINEERING (MILES)	bbl each	\$30.00					1			\$300.00
LITORALLINIAO (MILLO)	cacii	φ1.00							1438	ψ1,703.00
SCALE TICKET		\$15.00							1	\$15.00
		J. 3.00								, , , , , , ,
TRUCKING (cwt)	each	\$2.50							460	\$1,150.00
TRUCKING (min)	each	\$795.00								
PALLETS (ea)	each	\$12.00								
SHRINK WRAP (ea)		\$12.00								
	each								604.0	77.75

THIRD PARTY COST SHEET

Date	Operator			Well Name a	nd No.		Rig Name an	d No.	Report No.	
06/07/20	MAG	NOLIA OIL	& GAS	LEVI G	OODRICH	U2 - 3H	24	48	Repo	rt #7
	DAILY	USAGE 8	& COST						CUMUL	ATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
Diesel Transfer from 2H	gal	\$0.91								
Diesel Transfer from Grand Canyon A - 1H	gal	\$0.87							2000	\$1,740.00
Diesel transfer from Grand Canyon A - 1H	gal	\$0.96							7199	\$6,911.04
Diesel 5/6/20	gal	\$0.90							2159	\$1,943.10
DIESEL TRANSFER FROM 2H	gal	\$1.16		7872	7872					
TURBO CHEM FIRST RESPONSE	each	\$41.75		180	180					
	1	ı					1		\$10,5	94.14
	Cum	ulative Tota	al AES & 3rc	l Party \$41,	971.89					

FLUID VOLUME ACCOUNTING

OUTSOURCE FLUID SOLUTIONS LLC.

Operator:

MAGNOLIA OIL & GAS

Rig Name: 248
Well Name: LEVI

LEVI GOODRICH U2 - 3H

					WEEK 1							WEEK 2							WEEK 3			
li li	Date	6/7/20	6/8/20	6/9/20	6/10/20	6/11/20	6/12/20	6/13/20	6/14/20	6/15/20	6/16/20	6/17/20		6/19/20	6/20/20	6/21/20	6/22/20	6/23/20		6/25/20	6/26/20	6/27/20
		Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat
Ī	Bit Size	6 3/4																				
Grand	Starting Depth	10,245	10,245																			
-	Ending Depth	10,245																				
	Footage Drilled	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-		-	-	-	_	-
	New Hole Vol.	-	-	-	_	-	-	_	-	-	_	_	-	_	-	-		-	_	-	_	_
	Starting System Volume	470	2,440	2,440	2,440	2,440	2,440	2,440	2,440	2,440	2,440	2,440	2,440	2,440	2,440	2,440	2,440	2,440	2,440	2,440	2,440	2,440
	Chemical Additions	-	_,	_,	_,	_,	_,:::	_,	_,	_,	_,	_,	_,	_,	_,	_,	_,	_,	_,	_,	_,	_,
	Base Fluid Added	-																				
	Barite Increase	-																				
	Weighted Mud Added	1,970																				
	Slurry Added	-																				
- 1	Water Added	-																				
-	Added for Washout	-																				
1,970	Total Additions	1,970	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
	Surface Losses	,-																				
	Formation Loss	-																				
	Mud Loss to Cuttings	-																				
	Unrecoverable Volume	-																				
	Centrifuge Losses	-																				
-	Total Losses	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
- 1	Mud Transferred Out	-																				
2,440	Ending System Volume	2,440	2,440	2,440	2,440	2,440	2,440	2,440	2,440	2,440	2,440	2,440	2,440	2,440	2,440	2,440	2,440	2,440	2,440	2,440	2,440	2,440
- 1	Mud Recovered																					
I				C	omment	s.					C	omment	s.					C	omment	s.		
					omment.	<u>. </u>						Ommone	.						Ommone	<u>. </u>		
		6/7/20	TRANSFE	R FROM 2	2H.				6/14/20							6/21/20						
2,440		6/8/20							6/15/20							6/22/20						
		6/9/20							6/16/20							6/23/20						
		0/3/20							0/10/20							0/23/20						
		6/10/20							6/17/20							6/24/20						
		6/11/20							6/18/20							6/25/20						
		6/12/20														6/26/20						

0' TVD

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

TEL: (337) 394-1078

0.0°

		NC		HINGTON	1	_		20	Current	O ft			10,24	45 ft	:
Nig Name a	248			EXAS		l -		20	Current	0 ft/hr		,		BOI	P's
Report for			Field / OCS-G #			Fluid Type			Circulati	ing Rate		Circula	ting Pres	ssure	
I To	ool Pus	her	GID	DINGS			OBN	Л		0 gpm			р	si	
CIFICATION	S	1	MUD VC	LUME (BB	L)	P	PUMP	#1		PUMP #2		RIS	ER BO	oosi	ſER
CaCl2	GELS	HTHP	In Pits	844	bbl	Liner S	ize	5.25	Liner	Size 5.	.25	Liner	Size		
±250K	<10 <25	<10	In Hole	470	bbl	Stroke	е	12	Stro	ke 1	12	Stro	ke		
6/8/20		6/7/20	Active	844	bbl	bbl/st	tk	0.0763	bbl/s	stk 0.0	763	bbl	/stk	0.00	000
2:00		11:00	Storage	e <u>1615</u>	<u>5 bbl</u>	stk/m	in	0	stk/r	min	0	stk/	min		
suction		suction	Tot. on Lo	cation 2929) bbl	gal/m	in	0	gal/r	min	0	gal/	min	()
				PHHP = 0		1	CIR	CULATIO	N DAT	ГА		n = 0).737	K = 92	2.647
10,245'		10,245'	E	Bit Depth =	'		W	ashout =	0%		Pump	Effici	ency =	95%	·
10.0		10.1	Drill String	Volume	to Bit	0.0 bl	bl	Strokes	To Bit			Time ⁻	To Bit		
°F 50		47	Disp.	Bottoms U	Vol.	0.0 b	bl I	BottomsUp	Stks		Botto	msUp	Time		
30		29	0.0 bbl	TotalCir	c.Vol.	844.0	bbl	TotalCirc	c.Stks		Tota	l Circ.	Time		
18		18		DRILLING	ASS	SEMBLY	DAT	A		S	OLID	s coi	NTRO	L	
15		15	Tubulars	OD (in.)	ID	(in.)	Leng	th To	ор	Unit		Scre	ens	Ho	urs
10		12					0'	()'	Shaker	r 1	17	70	0.	.0
6		5						()'	Shakei	r 2	17	70	0.	.0
4		4						()'	Shaker	r 3	17	70	0.	.0
°F 12		11						()'	Centrifuç	ge 1			0.	.0
2 6		7		CASIN	G & F	HOLE D	ATA								
nin 6/9		5/7	Casing	OD (in.)	ID	(in.)	Dep	h To	ор						
nin 11		9	Riser							VOLUM	IE AC	cou	NTING	(bbl	is)
°F 8.0		8.0	Surface	10 3/4			2,98	9' ()'	Prev. T	Total o	n Loc	ation	24	140.0
2.0		2.0	Int. Csg.	7 5/8	6.	875	10,23	37')'	Transfe	erred I	n(+)/C	Out(-)	4	489.0
13%		13%	Washout 1								Oil	Adde	d (+)		0.0
11.3%		11.4%	Washout 2								Barite	Adde	d (+)		0.0
68%		68%	Орег	n Hole Size	0.	000	10,24	! 5'		Other Pi	roduct	Usag	e (+)		0.0
19%		19%	AN	NULAR GE	OME	TRY & F	RHEO	LOGY		,	Water	Adde	d (+)		0.0
78:22		78:22	annula	r me	as.	veloci	ity f	low E0	CD	Le	eft on (Cutting	gs (-)		0.0
42,000		41,000	section	n de _l	oth	ft/mii	n I	reg lb/	gal						
257,405		252,826		•			,								
1.8		1.4								Est. T	Total o	n Loc	ation	29	929.0
2.3 ppb		1.8 ppb								Est. Los	ses/G	ains (-)/(+)		0.0
422 v		438 v								BIT	HYDR	RAULI	CS D	ATA	
3.29		3.39								Bit H.S.I.	Bit	ΔΡ	Nozzl	es (32	2nds)
5.2%		4.6%													
43 ppb		38 ppb	1							Bit Impact					
6.1%		6.8%	1							Force		•			
87 ppb		97 ppb	BIT C	DATA	Ma	anuf./Typ	ре								
			Size	Depth In	Н	ours	Foota	ge ROP	ft/hr	Motor/M	WD	Calc	. Circ.	Pres	sure
A. ROMAN	0	M.Meehan	1							psi					ļ
<u>I</u>	1	I.	Rig Activity:	ı		I.		I	<u>l</u>			<u> </u>			
			ĺ												
5 n	Report for N TC CaCI2 CaCIC CaCI2 CaCIC CaCI2 CaCIC CaCIC	Rig Name and No. 248 Report for Tool Pus CaCl2 GELS 6/8/20 2:00 suction 10,245' 10.0 6°F 50 30 18 15 10 6 4 0°F 12 2 6 min 6/9 min 11 0°F 8.0 2.0 13% 11.3% 68% 19% 78:22 42,000 257,405 1.8 2.3 ppb 422 v 3.29 5.2% 43 ppb 6.1% 87 ppb	Report for Tool Pusher	Rig Name and No. 248	Rig Name and No. 248 TEXAS Report for Tool Pusher Fleid / OCS-G # GIDDINGS CaCl2	Rig Name and No. 248	Rig Name and No. 248 TEXAS Go	Right Report for Tool Pusher Fleid / OCS-G = GIDDINGS Fluid Type OBA	Page	Name and No. 248	Page	Name and No. 248	Mag Name and No. 248 TEXAS Square Date Od. Od. Od. Od. Od.	Na Name and No. 248	No. 248

OBM on hand----- 2,929bbls (storage + Active + in Casing)

OBM Gain / Loss-----()

Kill mud on Hand: 372bbls // 15# // \$65.00/bbl

Discounted OBM: 372bbl//12.5# --382bbls 9.8#--489 bbls //10.9#

-----\$15.00/bbl

Testing BOP's. Upper Ram's not testing. Change out Ram inserts and changing out Annular Preventer Element. Shakers dressed up and pre-treat OBM in active system in preparation to drilling out from Intermediate casing shoe. 489bbls of Discounted OBM 10.9ppg received from Madisonville Mud Plant.

E	ng. 1:	ADO	OLFC	RON	ΛAN	Er	ng. 2:	Matt	Meehan	WH 1:	MIDLAN	D 1	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Р	hone:	9	56-82	1-999	94	Pł	none:	985-3	51-7561	Phone:	432-686-7	361 P	hone:	-			
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be		ser so elects	, howeve		is been prepared in is made as to the	\$1,910.00	\$33,287.75
												ll ll	NCLUE	DING 3RD PART	Y CHARGES	\$1,910.00	\$43,881.89

MATERIAL CONSUMPTION

Name	Date 06/08/20	Operator MAG I	NOLIA OIL		Well Name a	nd No. OODRICH	U2 - 3H	Rig Name ar	id No. 48	Report No. Repo	ort #8
Number Unit Unit Cost Perviously Received Charling Charly Unique Cost											
Manual Content Manu				1		Closina	Dailv	.			
SAPP 600	Item	Unit	Unit Cost		Received	_	_	Daily Cost			Cum Cost
PREAD LOUIS (1989)											
DOWN DET						00					
SPAILURE	" '			88		88					
GEL (190)		-	-	975		975				-	φ257.04
BENTONNE 30 (50)											
CACLE (50)			,	_							
MINE (95)	BENTONE 38 (50)	50# sk	\$163.94	20		20					
SENTONE 910 (20)		50# sk	\$14.32	110		110				56	\$801.92
SENTONE SOL (50)											
OPTIO										4	\$239.76
OPTI MUET 98 \$10.75 275 275 175 51.6 175										20	CO17 70
OPTIVET 98 59.54 330 330 775 51.4 76 51.5 76 51.5 76 51.5 76 76 51.5 76 76 76 76 76 76 76 76 76 76 76 76 76											<u> </u>
NEW PHAILT											
NEWCARD 300											
NEWCARD 100 OBJ SORR (25) 26 sk S 475 30 30 30 CYBERSEAL OBCH S21.47 100 NEW-WATE ISACK BARRIE 100 sk S 11.50 INDEX ST 20 SATE BULK (100) 100 sk S 11.50 INDEX ST 20 SATE BULK (100) INDEX ST 20 SATE											
OBL SORD (25) OBL SO	MAGMAFIBER F (25)	25# sk	\$28.05	20		20				10	\$280.50
CYBERSEAL sech	NEWCARB 100	each	\$5.37	50		50					
NEW WATE (SACK BARITE) 1000 sk. \$11.50 160 150 120		25# sk	\$4.75	30		30				20	\$95.00
BARITE BULK (100) 100 etc. \$7.00 1300 1300 276 \$1.5	CYBERSEAL	each	\$21.47	180		180					
BARITE BULK (100) 100 etc. \$7.00 1300 1300 276 \$1.5											
DYNA FIBER MED											A
FIBER PLUG	BARIIE BULK (100)	100# sk	\$7.00	1300		1300		1		275	\$1,925.00
FIBER PLUG											
FIBER PLUG	DYNA FIBER MED	each	\$53.67	85		85					
MAGNAPIBER R (30) 308 8k \$28.05 80 80 80 80 80 80 80 80 80 80 80 80 80											
OPTI DRILL (OBM) bbl \$65.00 1360 1360 DISCOUNTED OBM bbl \$166 166 DISCOUNTED OBM bbl \$15.00 914 489 1403 ENGINEERING (24 HR) ENGINEERING (0IEM) bbl \$30.00 2 2 \$60.00 12 \$11.00 ENGINEERING (MILES) Gach \$75.00 TRUCKING (cwt) EAGALE TICKET \$15.00 SHRINK WRAP (ea) EAGALE TICKET SHRINK WRAP (ea)											
MAGNOLIA OBM bbl 166 166 DISCOUNTED OBM bbl \$15.00 914 489 1403 ENGINEERING (24 HR) each \$925.00 2 \$1,850.00 12 \$11,00 12 \$3.00 1439 \$1,40 14	,										
MAGNOLIA OBM bbl 166 166											
MAGNOLIA OBM bbl 166 166 DISCOUNTED OBM bbl \$15.00 914 489 1403 ENGINEERING (24 HR) each \$925.00 2 \$1,850.00 12 \$11,00 12 \$3.00 1439 \$1,40 14											
MAGNOLIA OBM bbl 166 166											
MAGNOLIA OBM bbl 166 166											
MAGNOLIA OBM bbl 166 166											
MAGNOLIA OBM bbl 166 166											
MAGNOLIA OBM bbl 166 166											
MAGNOLIA OBM bbl 166 166											
MAGNOLIA OBM bbl 166 166											
MAGNOLIA OBM bbl 166 166											
MAGNOLIA OBM bbl 166 166											
MAGNOLIA OBM bbl 166 166											
MAGNOLIA OBM bbl 166 166											
MAGNOLIA OBM bbl 166 166											
MAGNOLIA OBM bbl 166 166											
MAGNOLIA OBM bbl 166 166											
MAGNOLIA OBM bbl 166 166											
MAGNOLIA OBM bbl 166 166								<u> </u>			
MAGNOLIA OBM bbl 166 166											
MAGNOLIA OBM bbl 166 166										-	
MAGNOLIA OBM bbl 166 166	ODTI DDILL (ODM)	F.F.1	#0F 00	4000		4000				400	₾7.005.00
DISCOUNTED OBM bbl \$15.00 914 489 1403	OPTI DRILL (OBM)	DDI	\$65.00	1360		1360				123	\$7,995.00
DISCOUNTED OBM bbl \$15.00 914 489 1403	MAGNOLIA ORM	bbl		166		166					
ENGINEERING (24 HR) each \$925.00	III. CONOCIN COM	551		100		100					
ENGINEERING (24 HR) each \$925.00	DISCOUNTED OBM	bbl	\$15.00	914	489	1403					
ENGINEERING (DIEM) ENGINEERING (MILES) ENGINEERIN				-							
ENGINEERING (DIEM) ENGINEERING (MILES) ENGINEERIN											
ENGINEERING (DIEM) ENGINEERING (MILES) ENGINEERIN											
ENGINEERING (DIEM) ENGINEERING (MILES) ENGINEERIN											
ENGINEERING (DIEM) ENGINEERING (MILES) ENGINEERIN											
ENGINEERING (DIEM) ENGINEERING (MILES) ENGINEERIN											
ENGINEERING (DIEM) ENGINEERING (MILES) ENGINEERIN											
ENGINEERING (DIEM) ENGINEERING (MILES) ENGINEERIN	ENGINEEDING (04 / IB)		0005				_	M4 050 5			Φ44.400 T
ENGINEERING (MILES) each \$1.00											
SCALE TICKET \$15.00 1 1 \$ TRUCKING (cwt) each \$2.50 1 460 \$1,1 TRUCKING (min) each \$795.00 1 1							2	. φου.υσ			
TRUCKING (cwt)	ETTORIVE ETTATO (MILEO)	EdUII	φ1.00							1439	ψ1,408.00
TRUCKING (cwt)	SCALE TICKET		\$15 00							1	\$15.00
TRUCKING (min) each \$795.00			, , 5, 50							<u> </u>	J. 3.00
TRUCKING (min) each \$795.00 PALLETS (ea) each \$12.00 SHRINK WRAP (ea) each \$12.00	TRUCKING (cwt)	each	\$2.50							460	\$1,150.00
PALLETS (ea)											
		each	\$12.00								
	SHRINK WRAP (ea)	each	\$12.00								
Daily Sub-Total \$1,910.00			Doile 0	ub-Total &	010.00	Cumular	ive Total 4	22 207 75		\$22.0	97 75

THIRD PARTY COST SHEET

Date	Operator			Well Name a	ind No.		Rig Name and	d No.	Report No.	
06/08/20	MAGI	NOLIA OIL	& GAS	LEVI G	OODRICH	U2 - 3H	24	8	Repo	rt #8
	DAILY	USAGE 8	& COST						CUMUL	ATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
Diesel Transfer from 2H	gal	\$0.91								
Diesel Transfer from Grand Canyon A - 1H	gal	\$0.87							2000	\$1,740.00
Diesel transfer from Grand Canyon A - 1H	gal	\$0.96							7199	\$6,911.04
Diesel 5/6/20	gal	\$0.90							2159	\$1,943.10
DIESEL TRANSFER FROM 2H	gal	\$1.16	7872		7872					
TURBO CHEM FIRST RESPONSE	each	\$41.75	180		180					
									\$10,5	94.14
	Cum	ulative Tota	al AES & 3rd	d Party \$43	,881.89					
	<u> </u>					<u> </u>				

FLUID VOLUME ACCOUNTING

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name:

MAGNOLIA OIL & GAS

Rig Name: 248
Well Name: LEVI

LEVI GOODRICH U2 - 3H

					WEEK 1				1			WEEK 2							WEEK 3			
	Date	6/7/20	6/8/20	6/9/20	6/10/20	6/11/20	6/12/20	6/13/20	6/14/20	6/15/20	6/16/20	6/17/20	6/18/20	6/19/20	6/20/20	6/21/20	6/22/20	6/23/20	6/24/20	6/25/20	6/26/20	6/27/20
		Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat
	Bit Size	6 3/4	6 3/4														_					
Grand	Starting Depth	10,245	10,245	10,245																		
Totals	Ending Depth	10,245	10,245	10,=10																		
-		-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
	Footage Drilled																					-
-	New Hole Vol.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	Starting System Volume	470	2,440	2,929	2,929	2,929	2,929	2,929	2,929	2,929	2,929	2,929	2,929	2,929	2,929	2,929	2,929	2,929	2,929	2,929	2,929	2,929
-	Chemical Additions	-	-																			
-	Base Fluid Added	-	-																			
	Barite Increase	-	-																			
	Weighted Mud Added	1,970	489																			
-	Slurry Added	-	-																			
-	Water Added	-	-																			
	Added for Washout	-	-																			
2,459	Total Additions	1,970	489	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	Surface Losses	-	-																			
-	Formation Loss	-	-																			
-	Mud Loss to Cuttings	-	-																			
-	Unrecoverable Volume	-	-																			
-	Centrifuge Losses	-	-																			
-	Total Losses	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	Mud Transferred Out	-	-																			
2,929	Ending System Volume	2,440	2,929	2,929	2,929	2,929	2,929	2,929	2,929	2,929	2,929	2,929	2,929	2,929	2,929	2,929	2,929	2,929	2,929	2,929	2,929	2,929
-	Mud Recovered																					
	<u>.</u>			С	omment	s:					C	omment	s:					С	omment	s:		
		6/7/20	TRANSFE	R FROM 2	?H.				6/14/20							6/21/20						
2,929		6/8/20	Testing ar Discounte		BOP's. Re	ceived 489	bbls 10.9#		6/15/20							6/22/20						
	1	6/9/20							6/16/20							6/23/20						
		6/10/20							6/17/20							6/24/20						
		6/11/20							6/18/20							6/25/20						
		6/12/20							6/19/20							6/26/20						
		6/13/20							6/20/20							6/27/20						

110 Old Market St.

St Martinville, LA 70582

TEL: (337) 394-1078

MAGNOLIA OIL & GAS PATTERSON WASHINGTON 04/27/20 10,245 ft Current ROP LEVI GOODRICH U2 - 3H **TEXAS** 04/27/20 **Test BOPS** 248 ield / OSC-G # Fluid Type irculating Rate **KEVIN BURT/JIM HARRISON Tool Pusher GIDDINGS** OBM **MUD PROPERTY SPECIFICATIONS** MUD VOLUME (BBL) PUMP #1 PUMP #2 RISER BOOSTER E.S. CaCl2 **GELS** In Pits 844 bbl 5.25 Weight P\/ YΡ HTHP Liner Size 5.25 Liner Size Liner Size 9.3-10.2 8-20 5-12 >300 ±250K <10 <25 <10 In Hole 470 bbl Stroke 12 Stroke 12 Stroke **MUD PROPERTIES** 844 bbl 0.0763 0.0763 bbl/stk bbl/stk bbl/stk Active 2:00 Time Sample Taken 11:00 1615 bbl Storage stk/min stk/min stk/min Tot on Location 2929 bbl Sample Location suction suction gal/min gal/min gal/min Mud Wt = 10.0Flowline Temperature °F PV=12 YP=6 **CIRCULATION DATA** n = 0.737 K = 92.6 Depth (ft) 10.245 10.245 Washout = Pump Efficiency = 95% Mud Weight (ppg) 10.0 10.0 Volume to Bit Strokes To Bit Time To Bit Drill String @ 125 °F 51 Funnel Vis (sec/qt) 50 Bottoms Up Vol. BottomsUp Stks BottomsUp Time 600 rpm 30 29 TotalCirc.Vol. 844.0 bbl TotalCirc.Stks Total Circ. Time DRILLING ASSEMBLY DATA SOLIDS CONTROL 300 rpm 18 18 200 rpm 15 15 Tubulars OD (in.) ID (in.) Top Unit Screens Hours Length 100 rpm 10 12 Shaker 1 170 6 6 Shaker 2 170 6 rpm 4 4 Shaker 3 3 rpm 170 @ 150 °F 12 11 Centrifuge 1 Plastic Viscosity (cp) 6 7 **CASING & HOLE DATA** Yield Point (lb/100 ft2) T0 = 6/9 OD (in.) Gel Strength (lb/100 ft2) 10 sec / 10 min 6/9 Casing ID (in.) Depth Top **VOLUME ACCOUNTING (bbls)** 30 min 11 11 Gel Strength (lb/100 ft2) Riser HTHP Filtrate (cm/30 min) @ 300 °F 8.0 68 Surface 10 3/4 2.989' 2929.0 Prev. Total on Location 2.0 2.0 7 5/8 6.875 10,237 HTHP Cake Thickness (32nds) Int. Csg. Transferred In(+)/Out(-) Retort Solids Content 13% 13% Oil Added (+) Washout 1 11.3% 11.4% Corrected Solids (vol%) Washout 2 Barite Added (+) 68% 68% 10,245 Retort Oil Content Open Hole Size Other Product Usage (+) 19% 19% **ANNULAR GEOMETRY & RHEOLOGY** Retort Water Content Water Added (+) O/W Ratio 78:22 78.22 Left on Cuttings (-) ECD annular velocity flow depth section ft/min reg lb/gal Whole Mud Chlorides (mg/L) 42.000 41.000 257,405 252.826 Water Phase Salinity (ppm) 2929.0 1.8 1.8 Whole Mud Alkalinity, Pom Est. Total on Location Excess Lime (lb/bbl) 2.3 ppb 2.3 ppb Est. Losses/Gains (-)/(+) 422 v 431 v **BIT HYDRAULICS DATA** Electrical Stability (volts) Nozzles (32nds) 3.29 3.29 Bit H.S.I. Average Specific Gravity of Solids Bit AP Percent Low Gravity Solids 5.2% 5.3% #DIV/0! #DIV/0! ppb Low Gravity Solids 43 ppb 44 ppb Nozzle Bit Impac Velocitv Force Percent Barite 6.1% 6.1% (ft/sec) **BIT DATA** ppb Barite 87 ppb 88 ppb Manuf./Type #DIV/0! Estimated Total LCM in System Size Depth In Hours ROP ft/hi Motor/MWD Calc. Circ. Pressure Footage M.Meehan #DIV/0! Sample Taken By A. ROMAN Afternoon Remarks/Recommendations: Afternoon Rig Activity: Pump a 10 bbl sweep every 300 ft. Sweep Contains: Completed changing out the Annular Preventer Element. Continue to test 10 ppb NewCarb, 10 ppb Newphalt and 10 ppb Magnafiber fine BOPS. Will make up BHA and RIH to drill out the casing. Will blend the mud in the system with the 9.5 ppg mud in the hole and adjust to 9.8 ppg mud for drilling out. Added Bentone 990 to increase the 6/3 RPM. Added Opti-G to lower the HTHP fluid loss. Mixed a tank of LCM sweep mud.

Report 9 pm

TEL: (337) 394-1078

64.5° 10,585' TVD

	IOLIA (OIL & G	GAS		TERSO	DN	_	h / Block	N		or Start Date		510 ft			epth 10,82	1 ft	:
Well Name and No.	OODRI	CH U2	- 3H	Rig Name ar	nd No. 248		State T	EXAS		Spud Da	^{ate} 04/27/20		_{nt ROP} 163 ft/hi		Activity Dri l	ling	Cui	rve
Report for KEVIN BU	IDT/ II	МПУР	DISON	Report for	ol Pusł	oor	Field / OSC-G	# DDINGS		Fluid Ty	obM	Circu	ating Rate 391 gpm		Circulati	ng Pres ,842		
KLVIN BO			TY SPECI			ICI		DLUME (B	RI \		PUMP #1		PUMP #2			,042 ER BC		
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits		4 bbl	Liner		25 Line		25	Liner		,031	
9.3-10.2	8-20	5-12	>300	±250K	<10 <25	<10	In Hole		4 bbl	Stro				2	Stro			
			PERTIES				Active		8 bbl	bbl/				763	bbl/s			
Time Sample				3:00		11:00	Storag		0 bbl	stk/r				81	stk/r			
Sample Locati				suction		suction	Ĭ	cation 289		gal/r	min 19	96 ga	I/min 1	96	gal/r	nin		
Flowline Temp				120 °F		140 °F	Mud Wt. =	= 9.9 PV	′=10	YP:		RCULATION	ON DATA		n = 0.	.637	Κ = 1	72.4
Depth (ft)				10,256'		10,821'	Bit D	Depth = 10,	,821 '		Wash	out =		Pump	Efficie	ncy =	95%	, o
Mud Weight (p	ppg)			9.9		9.8	Daill Otain a	Volume	to Bit	152.4		okes To Bi	l t 1,997		Time T	o Bit	16 ו	 min
Funnel Vis (se			@ 90 °F	50		45	Drill String Disp.	Bottoms U	lp Vol.	281.7	bbl Botto	msUp Stk	3,691	Bottor	nsUp ⁻	Γime	30 ı	min
600 rpm	.,			28		33	61.8 bbl	TotalCi	rc.Vol.	1278.	1 bbl To	talCirc.Stk	s 16,749	Total	Circ.	Гime	137	min
300 rpm				18		21		DRILLIN	G ASS	SEMBI	LY DATA		S	OLIDS	S CON	ITROI	_	
200 rpm				14		15	Tubulars	OD (in.)	ID	(in.)	Length	Тор	Unit		Scre	ens	Ho	urs
100 rpm				10		12	Drill Pipe	4.500	3.8	326	8,026'		Shaker	· 1	17	0	12	2.0
6 rpm				6		7	Agitator	5.250	2.7	750	43'	8,026'	Shaker	2	17	0	12	2.0
3 rpm				4		6	Drill Pipe	4.500	3.8	326	2,609'	8,069'	Shaker	. 3	17	0	12	2.0
Plastic Viscosi	ity (cp)		@ 150 °F	10		12	Direct. BHA	5.250	2.5	500	144'	10,677'	Centrifuç	ge 1			1.	.0
Yield Point (lb/	/100 ft²)		T0 = 2	8		9		CASI	NG & I	HOLE	DATA		-					
Gel Strength (lb/100 ft²)	10 :	sec / 10 min	6/10		7/10	Casing	OD (in.)	ID	(in.)	Depth	Тор						
Gel Strength (lb/100 ft2)	30 min	13		13	Riser						VOLUN	IE AC	COUN	ITING	(bbl	is)
HTHP Filtrate	(cm/30 m	nin)	@ 250 °F	7.0		6.4	Surface	10 3/4			2,989'		Prev. T	otal o	n Loca	ation	29	900.3
HTHP Cake TI	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.8	375	10,237'		Transfe	erred Ir	n(+)/O	ut(-)		
Retort Solids (Content			13%		12%								Oil	Adde	(+) b		
Corrected Soli	ds (vol%))		11.5%		10.3%								Barite	Adde	(+) t		
Retort Oil Con	tent			68%		67%	Oper	Hole Size	6.7	750	10,821'		Other Pr	oduct	Usage	e (+)		
Retort Water (Content			19%		21%	AN	NULAR GI	EOME	TRY 8	RHEOLO	GY	,	Water	Added	(+)		20.4
O/W Ratio				78:22		76:24	annula	ar de	epth	velo	city flow	ECD	Le	ft on C	Cutting	s (-)		-22.6
Whole Mud Ch	nlorides (mg/L)		39,000		45,000	section	n ac	γui	ft/m	nin reg	lb/gal		Gas	Buste	r Fill		
Water Phase S	Salinity (p	pm)		243,496		251,507								Disc	harge	d (-)		
Whole Mud Al	kalinity, F	om		2.0		2.2	6.875x4	1.5 8,0	026'	354	1.7 turb	10.93	Est. T	otal o	n Loca	ation _	28	398.1
Excess Lime (lb/bbl)			2.6 ppb		2.9 ppb	6.875x5	.25 8,0	069'	486	6.4 turb	11.06	Est. Los	ses/Ga	ains (-)/(+)		0.0
Electrical Stab	ility (volts	s)		500 v		431 v	6.875x4	l.5 10,	237'	354	1.7 turb	11.13	BIT	HYDR	AULI	CS DA	ATA	
Average Spec	ific Gravi	ty of Solid	ds	3.23		3.25	6.75x4	.5 10,	677'	378	3.6 turb	11.26	Bit H.S.I.	Bit	ΔΡ	Nozzle	es (32	2nds)
Percent Low G	Gravity Sc	olids		5.7%		5%	6.75x5.	25 10,	821'	532	2.4 turb	11.42	0.64	101	psi	16	16	16
ppb Low Gravi	ity Solids			47 ppb		41 ppb							Bit Impact	Noz Velo		16	16	16
Percent Barite	1			5.8%		5.3%			1				Force	(ft/s	-			<u> </u>
ppb Barite				83 ppb		75 ppb	BIT [DATA	Ма	nuf./Ty	/pe Ulte	rra/U611S	214 lbs	10	06			<u> </u>
Estimated Total	al LCM in	System					Size	Depth In	Но	ours	Footage	ROP ft/h	Motor/M	WD	Calc.	Circ.	Pres	sure
Sample Taken	Ву			A. ROMAN		M.Meehan	6 3/4	10,245 ft	10	0.0	584 ft	58.4	3,300	osi		4,842	psi	
Afternoon Rema	arks/Reco	mmendati	ons:				Afternoon F	Rig Activity:										

Pump a 10 bbl sweep every 300 ft. Sweep Contains:

10 ppb NewCarb, 10 ppb Newphalt and 10 ppb Magnafiber fine

Sliding ahead and increasing the angle while continuing to build the curve.Pump a 10 bbl LCM sweep every 300 ft. Added Opti-G to lower the HTHP fluid loss. Added Bentone 38 and Bentone 990 to increase the Yield Point and 6/3 RPM readings. Added Calcium Chloride to increase the chloride content. Ran the centrifuge to lower the mud wt. to 9.8 ppg.

OUTSOURCE FLUID SOLUTIONS LLC.

93.4°

10,523' TVD

Operator MAGI	NOLIA (OIL & (GAS	Contractor PA1	TERSO	NC	County / Parish /	Block HINGTO		Engineer Start I	Date 17/20	24 hr fi	1,992 ft		rilled Depth	303 ft
Well Name and No.	OODR	ICH III	. эц	Rig Name an	id No.		State	EXAS		Spud Date	7/20	Curren	91 ft/hr		ctivity	n I otorol
Report for	OODR	ICH UZ	2 - ЗП	Report for	246		Field / OCS-G #	EXAS		Fluid Type	7/20	Circula	ating Rate		irculating P	g Lateral
KEVIN B	URT/ JI	M HAR	RISON	То	ol Pusi	ner	GID	DINGS		OE	ЗМ		346 gpm	1	3,50	9 psi
	MUD	PROPER	RTY SPECIF	ICATION	S		MUD VO	LUME (BE	BL)	PUM	IP #1		PUMP #2		RISER	BOOSTER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	70	0 bbl	Liner Size	5.25	Line	r Size 5.	25 I	Liner Size)
9.3-10.2	8-20	5-12	>300	±250K	<10 <25	<10	In Hole	49	5 bbl	Stroke	12	Str	oke 1	2	Stroke	
	I	I		6/10/20		6/8/20	Active	119	95 bbl	bbl/stk	0.0763	B bb	/stk 0.0	763	bbl/stk	0.0000
Time Sample	Taken			3:00		11:00	Storage	156	60 bbl	stk/min	54	stk	min 5	54	stk/min	
Sample Locati	on			suction		suction	Tot. on Lo	cation 275	55 bbl	gal/min	173	gal	/min 1	73	gal/min	0
Flowline Temp	erature °F	F		165 °F		140 °F		PHHP = 70	9	CI	IRCULAT	ION DA	TA	r	n = 0.642	2 K = 233.31
Depth (ft)				12,195'		10,821'	Bit D	epth = 12	,303 '		Washout	= 2%		Pump E	fficiency	v = 95%
Mud Weight (p	ppg)			9.8		9.8	Drill String	Volume	e to Bit	173.5 bbl	Stroke	es To Bit	2,273	Т	ime To B	it 21 min
Funnel Vis (se	c/qt)		@ 120 °F	54		45	Disp.	Bottoms U	Jp Vol.	321.8 bbl	Bottoms	Up Stks	4,217	Bottom	sUp Time	e 39 min
600 rpm				39		33	69.9 bbl	TotalCi	irc.Vol.	1195.3 bbl	Total	Circ.Stks	15,664	Total	Circ. Time	e 145 min
300 rpm				25		21		DRILLIN	G ASS	SEMBLY DA	ATA		s	OLIDS	CONTR	OL
200 rpm				18		15	Tubulars	OD (in.)	ID	(in.) Le	ngth	Тор	Unit		Screens	Hours
100 rpm				12		12	Drill Pipe	4.500	3.	826 9,	508'	0'	Shaker	1	170	24.0
6 rpm				7		7	Agitator	5.250	2.	750 4	13'	9,508'	Shaker	2	170	24.0
3 rpm				6		6	Drill Pipe	4.500	3.	826 2,6	609'	9,551'	Shaker	3	170	24.0
Plastic Viscos	ity (cp)		@ 150 °F	14		12	Direct. BHA	5.250	2.	500 1	44' 1	2,159'	Centrifuç	ge 1		8.0
Yield Point (lb.	/100 ft²)		T0 = 5	11		9		CASI	NG & F	HOLE DATA	١					
Gel Strength (lb/100 ft²)	10	sec/10 min	6/12		7/10	Casing	OD (in.)	ID	(in.) De	epth	Тор				
Gel Strength (lb/100 ft ²)		30 min	15		13	Riser						VOLUM	IE ACC	OUNTIN	IG (bbls)
HTHP Filtrate	(cm/30 m	in)	@ 250 °F	6.0		6.4	Surface	10 3/4		2,9	989'	0'	Prev. T	otal on	Location	n 2900.3
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.	875 10,	,237'	0'	Transfe	erred In	(+)/Out(-)
Retort Solids (Content			13%		12%								Oil A	Added (+) 54.6
Corrected Soli	ds (vol%)			11.2%		10.3%								Barite A	Added (+) 0.0
Retort Oil Con	tent			67%		67%	Oper	Hole Size	6.	885 12,	,303'		Other Pr	oduct (Jsage (+) 11.5
Retort Water (Content			20%		21%	ANI	NULAR GI	EOME.	TRY & RHE	OLOGY		,	Water A	Added (+) 50.0
O/W Ratio				77:23		76:24	annulai	r m	eas.	velocity	flow	ECD	Le	ft on C	uttings (-) -91.7
Whole Mud Cl	nlorides (n	ng/L)		44,000		45,000	section	de	epth	ft/min	reg	lb/gal	C	Centrifu	ge Disch	24.0
Water Phase	Salinity (p	pm)		256,494		251,507							Non-Red	overab	le Vol. (-) -145.3
Whole Mud Al	kalinity, P	om		2.5		2.2	6.875x4	.5 9,	508'	314.0	turb	10.68	Est. T	otal on	Location	n 2755.3
Excess Lime (lb/bbl)			3.3 ppb		2.9 ppb	6.875x5.	25 9,	551'	430.6	turb	10.76	Est. Los	ses/Ga	ins (-)/(+) 0.0
Electrical Stab	ility (volts)		514 v		431 v	6.875x4	.5 10	,237'	314.0	turb	10.84	ВІТ	HYDRA	AULICS	DATA
Average Spec	ific Gravit	y of Solid	s	3.10		3.25	6.885x4	.5 12	,159'	312.4	turb	11.02	Bit H.S.I.	Bit ∆	P Noz	zles (32nds
Percent Low 0	Gravity So	lids		6.4%		5%	6.885x5.	25 12	,303'	427.6	turb	11.13	0.44	78 p	osi 16	16 16
ppb Low Grav	ity Solids			53 ppb		41 ppb							Bit Impact	Nozz Veloc		16 16
Percent Barite	l			4.8%		5.3%							Force	(ft/se	-	
ppb Barite				69 ppb		75 ppb	BIT D	ATA	Ма	nuf./Type	Ulterra	/U611S	166 lbs	94		
Estimated Tot	al LCM in	System	ppb				Size	Depth In	Но	ours Foo	otage R	OP ft/hr	Motor/M	WD	Calc. Cir	c. Pressure
Sample Taker	в Ву			A. ROMAN	0	M.Meehan	6 3/4	10,245 ft	2	4.0 2,5	76 ft	107.3	2,240	osi	3,72	22 psi
Remarks/Reco	mmendatio	ons:		-			Rig Activity:	-		-						

OBM RECEIVED ----2,929 bbls

OBM on Surface ----- 2,260 bbls (storage + Active)

OBM Daily Gain / Loss--(-169bbls) // Total G/L (-190bbls)

Kill mud on Hand: 372bbls // 15# // \$65.00/bbl

-----\$15.00/bbl

Discounted OBM: 372bbl//12.5# --320bbls 9.8#--489 bbls //10.9#

Rig Activity:

Continue drilling ahead on lateral section. Curve landed @11,055'MD / 10,594'TVD. While drilling ahead pump LCM sweeps (1st Response / MagmaFiber / NewCarb M / Cyberseal 5sx ea) every 300'. @11,400'MD seepeage noted, monitor losses and Increase Sweeps to 10bbls every connection- Lower pump rate to 350gpm and reduce MW 9.7ppg with diesel and Centrifuge at this time, will continue down to 9.6ppg. Additions of LCM (first response / Cyberseal / NewCarb- 3sxs ea) to active system attempting to minimize losses down hole. Treatment with Lime for Alkalinity, CaCl2 for WPS. Opti G for Fluid loss, and bentone for Rheology.

ng. 1:				9		Meehan	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
P 1		C 1			985-3 O 1	carefully	and may be	used if the user	expressed orally of	r, no representati	nas been prepared on is made as to the	\$9,442.14	\$49,774.21
									INCLUD	ING 3RD PAR	TY CHARGES	\$12,889.41	\$64,024.37

MATERIAL CONSUMPTION

	IVIAGI	NOLIA OIL	& GAS	Well Name a LEVI G	OODRICH		Rig Name and 24	B Rep	ort #10
	DAILY	USAGE 8	& COST						LATIVE
			Previous		Closing	Daily		Cum	
ltem	Unit	Unit Cost	Inventory	Received	Inventory	Usage	Daily Cost	Usage	Cum Cos
ALUMINUM TRISTEARATE	25# sk	\$162.83							\$325.6
SAPP (50)	50# sk	\$44.50			00			4	
PHPA LIQUID (pail) DYNA DET	5 gal	\$41.36	88		88				
EVO-LUBE	pail gal	\$32.23 \$9.31	975		975				φ257.0
GEL (100)	100# sk	\$10.00	70		70				
322 (100)	100# 6K	Ψ10.00	70		70				
BENTONE 38 (50)	50# sk	\$163.94	16		9	7	\$1,147.58	1	\$1,803.3
CACL2 (50)	50# sk	\$14.32	182		182		* /	9	
LIME (50)	50# sk	\$5.00	240		215	25	\$125.00	9:	
BENTONE 910 (50)	50# sk	\$59.94	30		30				\$239.7
BENTONE 990 (50)	50# sk	\$83.59	31		20	11	\$919.49	1:	\$1,253.8
OPTI G	50# sk	\$30.59	140		100	40	\$1,223.60	9	\$2,753.1
OPTI MUL HP	gal	\$10.75	615		450	165	\$1,773.75	44	\$4,730.0
OPTI WET	gal	\$8.34	275		220	55	\$458.70	28	\$2,376.9
NEW PHALT	50# sk	\$38.72	120		100	20	\$774.40	4	\$1,548.8
NEWCARB 200	50# sk	\$5.25	91		91			3	\$183.7
MAGMAFIBER F (25)	25# sk	\$28.05	15		15			1:	\$420.7
NEWCARB 100	each	\$5.37	50		24	26	\$139.62	2	\$139.6
OIL SORB (25)	25# sk	\$4.75	30		30			2	· ·
CYBERSEAL	each	\$21.47	175		175				\$107.3
NEW-WATE (SACK BARITE)	100# sk	\$11.50	160		160				
BARITE BULK (100)	100# sk	\$7.00	1300		1300			27	\$1,925.0
DYNA FIBER MED.	each	\$53.67	85		85				
FIBER PLUG	each	\$30.37	30		30				
MAGMAFIBER R (30)	30# sk	\$28.05	80		80				
									1
									1
									-
	+								
	+								
	+							-	
<u> </u>									
	+							-	
	+							-	
OPTI DRILL (OBM)	bbl	\$65.00	1360		1352	8	\$520.00	13	\$8,515.0
	551	400.00	.500		1002	3	\$525.00	13	20,010.0
MAGNOLIA OBM	bbl		145			145		16	;
			0						
DISCOUNTED OBM	bbl	\$15.00	1403		1403				
	221	Ţ.5.00	. 100		. 100				1
ENGINEERING (24 HR)	each	\$925.00				2	\$1,850.00	1	\$14,800.0
ENGINEERING (DIEM)	bbl	\$30.00				2	\$60.00	1	\$480.0
ENGINEERING (MILES)	each	\$1.00				450	\$450.00	188	\$1,889.0
SCALE TICKET		\$15.00							\$15.0
	each	\$2.50						76	\$1,914.0
TRUCKING (cwt)	040								
TRUCKING (min)	each	\$795.00							
TRUCKING (min) PALLETS (ea)	each each	\$12.00						1:	<u> </u>
TRUCKING (min)	each							1.	+

THIRD PARTY COST SHEET

	Unit Cost \$0.91 \$0.87 \$0.90 \$1.16	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		ULATIVE Cum Cost
Unit gal gal gal gal	Unit Cost \$0.91 \$0.87 \$0.96 \$0.90	Previous Inventory	Received			Daily Cost	Cum	
gal gal gal	\$0.91 \$0.87 \$0.96 \$0.90	Inventory	Received			Daily Cost		Cum Cost
gal gal gal	\$0.87 \$0.96 \$0.90							
gal gal gal	\$0.87 \$0.96 \$0.90				<u> </u>			1
gal gal	\$0.96 \$0.90				, ,		200	00 \$1,740.00
gal	\$0.90							99 \$6,911.04
							215	
gai	ψιιο			5800	2072	\$2,403.52	207	_
				5600	2072	\$2,403.52	207	2 \$2,403.52
					<u> </u>			
each	\$41.75	175	350	500	25	\$1,043.75	3	30 \$1,252.50
							-	
					ļ			
	I				1			1
	<u> </u>			Daily S	ıb-Total ¢2	3.447 27	¢1,	L250 16
	l			Daily S	ub-Total \$3	3,447.27	\$14	l,250.16
	l			Daily S	ub-Total \$3	3,447.27	\$14	I,250.16
	each	each \$41.75	each \$41.75 175	each \$41.75 175 350	each \$41.75 175 350 500	each \$41.75 175 350 500 25	each \$41.75 175 350 500 25 \$1,043.75	each \$41.75 175 350 500 25 \$1,043.75

FLUID VOLUME ACCOUNTING

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name: Well Name: MAGNOLIA OIL & GAS

248

LEVI GOODRICH U2 - 3H

					WEEK 1				WEEK 2								WEEK 3							
ŗ	Date	6/7/20	6/8/20	6/9/20	6/10/20	6/11/20	6/12/20	6/13/20	6/14/20	6/15/20	6/16/20	6/17/20	6/18/20	6/19/20	6/20/20									
		Sun	Mon	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat						
	Bit Size	6 3/4	6 3/4	Tue 6 3/4	Wed 6 3/4	Thu	Fri																	
Grand	Starting Depth	10,245	10,245	10,245	10,311	12,303																		
	Ending Depth	10,245	10,245	10,311	12,303	,																		
	Footage Drilled	-	-	66	1,992	_	-	-	-	-	-	_	_	-	_	-	_	_	_	-	-	-		
	New Hole Vol.	 	-	3	88	-	-	-			-		-	-		-	-	-	-	-		-		
91																						2,755		
	Starting System Volume	470	2,440	2,929	2,908	2,755	2,755	2,755	2,755	2,755	2,755	2,755	2,755	2,755	2,755	2,755	2,755	2,755	2,755	2,755	2,755	2,755		
	Chemical Additions Base Fluid Added	-	-	9	12 55																			
	Barite Increase	<u> </u>	-	12	- 55																			
	Weighted Mud Added	1,970	489	-	-																			
	Slurry Added	1,970	409	-	-																			
	Water Added	-	-	-	50																			
-	Added for Washout																							
•	6 Total Additions 1,970 489 20 116											-	-	-	-	-	-	-	-	-	-	-		
	Surface Losses	-	-	8	-																			
	Formation Loss	-	-	-	150																			
	Mud Loss to Cuttings	-	-	3	92																			
	Unrecoverable Volume	-	-	30	-																			
28	Centrifuge Losses	-	-	-	28																			
311	Total Losses	-	-	41	270	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
-	Mud Transferred Out	-	-	-																				
2,755	Ending System Volume	0.755	0.755		1									0.755	2,755	0.755								
	· · ·	2,755	2,755	2,755	2,755	2,755	2,755	2,755	2,755	2,755	2,755	2,755	2,755	2,755	2,733	2,755								
-	Mud Recovered	2,440	2,929	2,908	2,755	2,755	2,755	2,755	2,755	2,755	2,755	2,755	2,755	2,755	2,755	2,755	2,755	2,755	2,755	2,755	2,733	2,755		
-		2,440	2,323	,	comment		2,733	2,755	2,755	2,755		2,755 omment		2,755	2,755	2,755	2,755		2,755 comments		2,733	2,755		
-		2,440	2,323	,	,		2,733	2,755	2,755	2,755		•		2,755	2,755	2,755	2,755				2,755	2,755		
-			TRANSFE	C	comment		2,733	2,755	6/14/20	2,755		•		2,755	2,755	6/21/20	2,755				2,733	2,755		
-				C	comment		2,733	2,755		2,755		•		2,755	2,755	,	2,755				2,755	2,755		
-		6/7/20	TRANSFE	C ER FROM 2	comment.	s:			6/14/20	2,755		•		2,755	2,755	6/21/20	2,755				2,733	2,755		
2,929			TRANSFE	CER FROM 2	comment.	s:				2,755		•		2,755	2,755	,	2,755				2,733	2,755		
2,929		6/7/20	TRANSFE Testing an	CER FROM 2	comment.	s:			6/14/20	2,755		•		2,755	2,755	6/21/20	2,755				2,733	2,755		
2,929		6/7/20	TRANSFE Testing an	CER FROM 2	omment H. BOP's. Re	s:	9bbls 10.9#		6/14/20	2,755		•		2,755	2,755	6/21/20	2,755				2,755	2,755		
2,929		6/7/20	TRANSFE Testing an Discounted	CER FROM 2 and repair to d mud. 3emw / 160	enment. BOP's. Re	s: eceived 489 ing ahead o	Dibbls 10.9#	ection.	6/14/20 6/15/20	2,755		•		2,755	2,755	6/21/20	2,755				2,733	2,/55		
2,929		6/7/20 6/8/20 6/9/20	TRANSFE Testing an Discounter TIH, FIT 1 Drilling on MW to 9.6	CER FROM 2 and repair to d mud. 3emw / 160 lateral sec	BOP's. Re	s: cecived 489 ing ahead of aking mud active systems	Dbbls 10.9#	ection.	6/14/20 6/15/20	2,755		•		2,755	2,755	6/21/20	2,755				2,733	2,/55		
2,929		6/7/20 6/8/20 6/9/20	TRANSFE Testing an Discounter TIH, FIT 1 Drilling on MW to 9.6	CER FROM 2 and repair to d mud. 3emw / 160	BOP's. Re	s: cecived 489 ing ahead of aking mud active systems	Dbbls 10.9#	ection.	6/14/20 6/15/20 6/16/20	2,755		•		2,755	2,755	6/21/20 6/22/20 6/23/20	2,755				2,133	2,755		
2,929		6/7/20 6/8/20 6/9/20 6/10/20	TRANSFE Testing an Discounter TIH, FIT 1 Drilling on MW to 9.6	CER FROM 2 and repair to d mud. 3emw / 160 lateral sec	BOP's. Re	s: cecived 489 ing ahead of aking mud active systems	Dbbls 10.9#	ection.	6/14/20 6/15/20 6/16/20 6/17/20	2,755		•		2,755	2,755	6/21/20 6/22/20 6/23/20 6/24/20	2,755				2,733	2,/55		
2,929		6/7/20 6/8/20 6/9/20	TRANSFE Testing an Discounter TIH, FIT 1 Drilling on MW to 9.6	CER FROM 2 and repair to d mud. 3emw / 160 lateral sec	BOP's. Re	s: cecived 489 ing ahead of aking mud active systems	Dbbls 10.9#	ection.	6/14/20 6/15/20 6/16/20	2,755		•		2,755	2,755	6/21/20 6/22/20 6/23/20	2,755				2,733	2,/55		
2,929		6/7/20 6/8/20 6/9/20 6/10/20	TRANSFE Testing an Discounter TIH, FIT 1 Drilling on MW to 9.6	CER FROM 2 and repair to d mud. 3emw / 160 lateral sec	BOP's. Re	s: cecived 489 ing ahead of aking mud active systems	Dbbls 10.9#	ection.	6/14/20 6/15/20 6/16/20 6/17/20	2,755		•		2,755	2,755	6/21/20 6/22/20 6/23/20 6/24/20	2,755				2,733	2,/55		
2,929		6/7/20 6/8/20 6/9/20 6/10/20	TRANSFE Testing an Discounter TIH, FIT 1 Drilling on MW to 9.6	CER FROM 2 and repair to d mud. 3emw / 160 lateral sec	BOP's. Re	s: cecived 489 ing ahead of aking mud active systems	Dbbls 10.9#	ection.	6/14/20 6/15/20 6/16/20 6/17/20	2,755		•		2,755	2,755	6/21/20 6/22/20 6/23/20 6/24/20	2,755				2,733	2,755		
2,929		6/7/20 6/8/20 6/9/20 6/10/20	TRANSFE Testing an Discounter TIH, FIT 1 Drilling on MW to 9.6	CER FROM 2 and repair to d mud. 3emw / 160 lateral sec	BOP's. Re	s: cecived 489 ing ahead of aking mud active systems	Dbbls 10.9#	ection.	6/14/20 6/15/20 6/16/20 6/17/20	2,755		•		2,755	2,755	6/21/20 6/22/20 6/23/20 6/24/20	2,755				2,733	2,/55		

OUTSOURCE FLUID SOLUTIONS LLC.

92.3° 10,454' TVD

LEVI GOODRICH U2 - 3H		NOLIA (OIL &	GAS		TTERSO	ON		Block HINGTO	N	_)4/27		24 hr ft	1,770 ft			14,0	73 ft
Name	Well Name and No.	OODBI	ICH II	э э <u>ц</u>	Rig Name ar			State			//20				Activity Drilling Later				
MUD PROPERTY SPECIFICATIONS		z - 3n	Report for	240			_		720					_					
Weight	KEVIN B	RRISON	To	ol Pusi	her	GID		ОВ	М	;	_			4,676 p					
9.3-10.2 8-20 5-12 >300 2250K >10 0 25 >10		MUD	PROPE	RTY SPECIF	ICATION	s		MUD VO	ı	PUMF	P #1					RISER BO			
	Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	750			Size	5.25	Liner	Size 5.	5.25 Line		Size	
Time Sample Taken	9.3-10.2	8-20	5-12	>300	±250K	<10 <25	<10	In Hole	567	7 bbl	Strok			Stro	oke 1	2 Stro		oke	
Sample Location Suction Suction Suction Suction Tot. on Location 2547 bbl gal/min 189 gal/min 180 gal/					6/11/20		6/10/20	Active	131	7 bbl	bbl/s	stk	0.0763	bbl	/stk 0.0	763	bbl	/stk	0.0000
Flowline Temperature "F	Time Sample Taken				2:00		11:00	Storage	<u>123</u>	80 bbl	stk/m	nin	59	stk/	min 5			min	
Depth (ft)	Sample Location			suction		suction	Tot. on Loc	cation 254	7 bbl	gal/m	nin	189	gal/	min 1	89	gal/	min	0	
Mud Weight (ppg) 9.2 9.6 Drill String Disp. Funnel Vis (sec/qt) 9.19 °F 41 47 Disp. Drill String Disp. Funnel Vis (sec/qt) 9.0 Drill String Disp. Drill String Drill Dril				156 °F		168 °F	F	PHHP = 103	32		CIF	CULATION	ON DA	TA		n = 0).585	K = 265.62	
Dimis ring Bottoms Up Vol. 368.5 bbl Bottoms Up Siks 4,829 Total Circ. Time 146.1 Total Circ. Siks 17,261 Total Circ. Time 146.1 Total Circ. Time 146.1 Total Circ. Siks 17,261 Total Circ. Time 146.1 Total Circ. Time 146.1 Total Circ. Siks 17,261 Total Circ. Siks 17,261 Total Circ. Siks 17,261 Total Circ. Siks 14.1 Total Circ.	·				14,003'		12,897'	Bit D	Depth = 14,	073 '		٧	Vashout =	: 2%		Pump	Effici	ency :	= 95%
Funnel Vis (sec/qt)	Mud Weight (p	pg)			9.2		9.6	Drill String	Volume	to Bit	198.7	bbl	Strokes	To Bit	2,603		Time ⁻	To Bit	22 min
200 rpm	Funnel Vis (se	c/qt)		@ 119 °F	41		47		Bottoms U	Jp Vol.	368.5	bbl	BottomsU	p Stks	4,829	Botto	msUp	Time	41 min
200 rpm	600 rpm				30		32	79.5 bbl	TotalCi	rc.Vol.	1317.2	2 bbl	TotalCi	c.Stks	17,261	Tota	l Circ.	Time	146 mir
100 rpm	·			20		21		G ASS	SEMBL				S	OLIDS CONTRO)L		
6 rpm 6 rpm 6 6 6 6 Agitator 5.250 2.750 43' 11,278' Shaker 2 170 24. 3 rpm 5 5 5 Drill Pipe 4.500 3.826 2.609' 11,321' Shaker 3 170 24. Plastic Viscosity (cp) @ 150 °F 10 11 Direct. BHA 5.250 2.500 144' 13,929' Centrifuge 1 6.60 Yield Point (lb/100 ft²) To = 4 10 10 CASING & HOLE DATA Gel Strength (lb/100 ft²) 10 sec/10 min 6/11 6/10 Casing OD (in.) ID (in.) Depth Top Gel Strength (lb/100 ft²) 30 min 14 13 Riser HTHP Filtrate (cm/30 min) @ 250 °F 6.0 6.0 Surface 10 3/4 2.989' 0' Prev. Total on Location 27: HTHP Cake Thickness (32nds) 2.0 2.0 Int. Csg. 7 5/8 6.875 10,237' 0' Transferred In(+)/Out(-) Retort Solids Content 10.5% 12% Corrected Solids (vol%) 8.8% 10.3% Retort Oil Content 69.2% 68% Open Hole Size 6.885 14,073' Other Product Usage (+) Retort Water Content 20.3% 20% ANNULAR GEOMETRY & RHEOLOGY Whole Mud Chlorides (mg/L) 43,000 43,000 Section depth ft/min reg lb/gal Water Phase Salinity (ppm) 249,337 252,134 Lost Returns (-) -33				16		18	Tubulars	OD (in.)			(in.) Lengt		ор	Unit			ens	Hours	
3 rpm	100 rpm				11		12	Drill Pipe	4.500	3.	826	11,2	78'	0'	Shake	r 1	17	70	24.0
Plastic Viscosity (cp)	6 rpm				6		6	Agitator	5.250	2.	750	43	3' 11	,278'	Shake	r 2	17	70	24.0
Yield Point (lb/100 ft²) T0 = 4 10 10 CASING & HOLE DATA Gel Strength (lb/100 ft²) 10 sec/10 min 6/11 6/10 Casing OD (in.) ID (in.) Depth Top Gel Strength (lb/100 ft²) 30 min 14 13 Riser VOLUME ACCOUNTING (bbls) HTHP Filtrate (cm/30 min) @ 250 °F 6.0 6.0 Surface 10 3/4 2,989' 0' Prev. Total on Location 275 HTHP Cake Thickness (32nds) 2.0 2.0 Int. Csg. 7 5/8 6.875 10,237' 0' Transferred In(+)/Out(-) Transferred In(+)/Out(-) Retort Solids Content 10.5% 12% 12% Barite Added (+) Oil Added (+) Corrected Solids (vol%) 8.8% 10.3% Open Hole Size 6.885 14,073' Other Product Usage (+) Retort Oil Content 69.2% 68% Open Hole Size 6.885 14,073' Other Product Usage (+) Water Added (+) O/W Ratio 77:23 77:23 annular section meas. velocity flow legth fl/min reg ECD lb/gal Water Phase Salinity (ppm) 249,337 252,134 252,134 Lost Returns (-) -35	3 rpm				5		5	Drill Pipe	4.500	3.	826	2,6	09' 11	,321'	Shake	r 3	17	70	24.0
Gel Strength (lb/100 ft²) 10 sec/10 min 6/11 6/10 Casing OD (in.) ID (in.) Depth Top Gel Strength (lb/100 ft²) 30 min 14 13 Riser HTHP Filtrate (cm/30 min) @ 250 °F 6.0 6.0 Surface 10 3/4 2,989' 0' Prev. Total on Location 275 HTHP Cake Thickness (32nds) 2.0 2.0 Int. Csg. 7 5/8 6.875 10,237' 0' Transferred In(+)/Out(-) Retort Solids Content 10.5% 12% Open Hole Size 6.885 14,073' Other Product Usage (+) Retort Oil Content 69.2% 68% Open Hole Size 6.885 14,073' Other Product Usage (+) Retort Water Content 20.3% 20% ANNULAR GEOMETRY & RHEOLOGY Whole Mud Chlorides (mg/L) 43,000 43,000 Section depth ft/min reg lb/gal Water Phase Salinity (ppm) 249,337 252,134 Lost Returns (-) -35	Plastic Viscosi	ty (cp)		@ 150 °F	10		11	Direct. BHA	5.250	2.	500	14	4' 13	,929'	Centrifuç	ge 1			6.0
Gel Strength (lb/100 ft²) 30 min 14 13 Riser WOLUME ACCOUNTING (bbls HTHP Filtrate (cm/30 min) @ 250 °F 6.0 6.0 Surface 10 3/4 2,989' 0' Prev. Total on Location 275 Prev. Total on Location	(-1)			T0 = 4	10		10		CASIN	IG & I	HOLE D	ATA							
HTHP Filtrate (cm/30 min)	Gel Strength (I	b/100 ft²)	10	0 sec/10 min	6/11		6/10	Casing	OD (in.)	ID	(in.)	Dep	oth 7	ор					
HTHP Cake Thickness (32nds) 2.0 2.0 Int. Csg. 7 5/8 6.875 10,237' 0' Transferred In(+)/Out(-)	Gel Strength (I	b/100 ft ²)		30 min	14		13	Riser							VOLUN	ME AC	coul	NTING	G (bbls)
Retort Solids Content 10.5% 12%	HTHP Filtrate	(cm/30 mi	in)	@ 250 °F	6.0		6.0	Surface	10 3/4			2,9	39'	0'	Prev. 7	otal o	n Loc	ation	2755.
Corrected Solids (vol%) 8.8% 10.3% Den Hole Size 6.885 14,073' Other Product Usage (+) Other Product Usa	HTHP Cake TI	nickness ((32nds)		2.0		2.0	Int. Csg.	7 5/8	6.	875	10,2	37'	0'	Transfe	erred I	n(+)/C	Out(-)	
Retort Oil Content 69.2% 68% Open Hole Size 6.885 14,073' Other Product Usage (+) Retort Water Content 20.3% 20% ANNULAR GEOMETRY & RHEOLOGY Water Added (+) 10 O/W Ratio 77:23 annular section meas. depth velocity flow reg ECD lb/gal Left on Cuttings (-) -4 Water Phase Salinity (ppm) 249,337 252,134 252,134 Lost Returns (-) -3	Retort Solids C	Content			10.5%		12%	1								Oil	Adde	ed (+)	204.
Retort Water Content 20.3% 20% ANNULAR GEOMETRY & RHEOLOGY Water Added (+) Trick Whole Mud Chlorides (mg/L) Water Phase Salinity (ppm) 20.3% 20% ANNULAR GEOMETRY & RHEOLOGY Water Added (+) If low reg lb/gal Centrifuge Disch. Lost Returns (-) -3:	Corrected Solid	ds (vol%)			8.8%		10.3%	1								Barite	Adde	ed (+)	0.
O/W Ratio 77:23 77:23 annular meas. velocity flow reg lb/gal Left on Cuttings (-) -6 Whole Mud Chlorides (mg/L) 43,000 43,000 section depth ft/min reg lb/gal Centrifuge Disch6 Water Phase Salinity (ppm) 249,337 252,134	Retort Oil Cont	tent			69.2%		68%	Oper	Hole Size	6.	885	14,0	73'		Other P	roduct	Usag	je (+)	11.
Whole Mud Chlorides (mg/L) Water Phase Salinity (ppm) 43,000	Retort Water C	Content			20.3%		20%	ANI	NULAR GE	ЕОМЕ	TRY &	RHEC	LOGY		,	Water	Adde	ed (+)	102.
Whole Mud Chlorides (mg/L) 43,000 43,000 section depth ft/min reg lb/gal Centrifuge Disch. -(Water Phase Salinity (ppm) 249,337 252,134 Lost Returns (-) -3	O/W Ratio				77:23		77:23	annulai	r me	eas.	veloc	city	flow E	CD	Le	eft on (Cutting	gs (-)	-81.
	Whole Mud Ch	lorides (n	ng/L)		43,000		43,000					,			(Centrif	uge D	isch.	-66.
Whole Mud Alkalinity, Pom 1.5 2.4 6.875x4.5 10,237' 343.1 turb 10.11 Est. Total on Location 25-	Water Phase S	Salinity (pp	om)		249,337		252,134		I		I					Lost	Returi	ns (-)	-378.
	Whole Mud All	kalinity, Po	om		1.5		2.4	6.875x4.	.5 10,	,237'	343	.1	turb 10	0.11	Est. 7	Total o	n Loc	ation	2547.
Excess Lime (lb/bbl) 2 ppb 3.1 ppb 6.885x4.5 11,278' 341.4 turb 10.30 Est. Losses/Gains (-)/(+)	Excess Lime (I	b/bbl)			2 ppb		3.1 ppb	6.885x4.	.5 11,	,278'	341	.4	turb 10	0.30	Est. Los	ses/G	ains (-)/(+)	0.
Electrical Stability (volts) 517 v 522 v 6.885x5.25 11,321 467.2 turb 10.45 BIT HYDRAULICS DATA	Electrical Stab	ility (volts))		517 v		522 v	6.885x5.2	25 11,	,321'	467	.2	turb 10	0.45	BIT	HYDR	RAULI	ICS D	ATA
Average Specific Gravity of Solids 2.87 3.04 6.885x4.5 13,929' 341.4 turb 10.80 Bit H.S.I. Bit △P Nozzles (32)	Average Speci	fic Gravity	y of Solid	ds	2.87		3.04	6.885x4.	.5 13,	,929'	341	.4	turb 10	0.80	Bit H.S.I.	Bit	ΔΡ	Nozz	les (32nds
Percent Low Gravity Solids 6.2% 6.885x5.25 14,073' 467.2 turb 10.97 0.54 87 psi 16 16	Percent Low G	ravity Sol	ids		6.2%		6.3%	6.885x5.2	25 14,	,073'	467	.2	turb 10	0.97	0.54	87	psi	16	16 16
ppb Low Gravity Solids 51 ppb 52 ppb Bit Impact Volceity 16 16	ppb Low Gravi	ty Solids			51 ppb		52 ppb	1							Bit Impact N		Nozzle 16		16 16
Percent Barite 2.6% 4.1% Velocity (ft/sec)	Percent Barite				2.6%		4.1%	1							Force VE		•		
ppb Barite 37 ppb 58 ppb BIT DATA Manuf./Type Ulterra/U611S 186 lbs 103	ppb Barite				37 ppb		58 ppb	BIT D	ATA	Ma	anuf./Ty	Ulterra/U	611S	186 lbs	10	03			
Estimated Total LCM in System ppb Size Depth In Hours Footage ROP ft/hr Motor/MWD Calc. Circ. Press	Estimated Total	al LCM in	System	ppb				Size	Depth In	Н			age RO	P ft/hr					. Pressure
Sample Taken By R. Bowlin 0 M.Meehan 6 3/4 10,245 ft 45.0 3,828 ft 85.1 2,700 psi 4,411 psi	Sample Taken	Ву			R. Bowlin	0	M.Meehan	6 3/4	10,245 ft	4	5.0	3,82	8 ft 8	5.1	2,700	psi		4,41	1 psi

Remarks/Recommendations:

OBM RECEIVED ----2,929 bbls

OBM on Surface ----- 1980 bbls (storage + Active)

OBM Daily Gain / Loss--(-444bbls) // Total G/L (-634bbls)

Kill mud on Hand: 372bbls // 15# // \$65.00/bbl

----\$15.00/bbl

Discounted OBM: 357bbl//12.5# --55bbls 9.8#--446 bbls //10.9#

Rig Activity:

Continued drilling ahead on the lateral section F-12,303'MD T-14,073'MD at the time of the morning report. Observed seepage and partial to moderate losses throughout the past 24 hours. The MW was cut back from 9.6ppg to 9.5ppg, losses subsided. Again observed 35-bbls per hour lost down hole from 13,565'MD to 13,732'MD. Decreased active MW to 9.4ppg, LCM sweeps continue to be pumped in 10-bbls increments every stand, additions of background LCM being added to the active hourly. Active MW currently at 9.2ppg losses have subsided. Chemical treatments will be made as necessary to maintain the drilling fluid within the recommended parameters.

Е	ng. 1:	-	Rob E	Bowlin	1	Er	ng. 2:	Matt	Meehan	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Р	hone:	2	28-99	0-105	55	Ph	one:	985-3	51-7561	Phone:	432-686-7361					
W 0	P 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be	ecommendation, ex used if the user so ation, and this is a	elects, however	, no representation	as been prepared on is made as to the	\$10,583.55	\$60,357.76
												INCLUDI	NG 3RD PAR	TY CHARGES	\$21,385.79	\$85,410.16

110 Old Market St.

St Martinville, LA 70582

TEL: (337) 394-1078

92.4° 10,492' TVD

Operator MAGNO Well Name and No.	OLIA (OIL & (GAS	Contractor PAT Rig Name ar	TERSO)N	County / Parisi WASI		TON	_	r Start Date 04/27/20 Ite		ftg. 251 ft		Drilled Depth 15,610 ft Activity			
LEVI GO	ODRI	CH U2	2 - 3H	Ü	248		TEXAS			-	4/27/20				W	'iper	Trij	р
Report for	DT/ III		DICON	Report for	al Duak					Fluid Typ		Circul	Circulating Rate			Circulating Pressure		
KEVIN BUI			RTY SPECII		ol Push	iei	GIDDINGS			OBM PUMP #1			295 gpm			, 034 ER BC	•	
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits 640 bbl					25 Line	PUMP #2			Size	.031	
9-10.2	8-20	5-12	>300	±250K	<10 <25	<10	In Hole		638 bbl	Liner Size 5.25 L Stroke 12			Liner Size 5.25 Stroke 12					
3 10.2			PERTIES	120011	110 120		Active	1166 bbl	bbl/s				763	Stroke 3 bbl/stk				
Time Sample Ta				2:30	21:00	11:00	Storage		1092 bbl	stk/m				6	stk/r			
Sample Location				Suction	shaker	suction	Tot. on Loc		<u> </u>	gal/m				47	gal/r			
Flowline Temperature °F				134 °F	156 °F	150 °F	Mud Wt. =		PV=11	YP=		RCULATION				659 I	\(= 1	59.1
Depth (ft)				15,359'	15,098'	15,610'	Bit D	Depth =	: 13,117 '			out = 1%		Pump	Efficie	ncy =	95%	
Mud Weight (ppg)			9.0	9.1	9.0	Drill String	Vol	ume to Bit	185.1		okes To Bi	t 2,425		Time T	o Bit	26 r	min	
Funnel Vis (sec/qt) @ 106 °F			41	42	42	Disp.	Botton	ns Up Vol.	340.7	bbl Botto	msUp Stks	4,465	Botto	msUp ⁻	Γime	49 r	min	
600 rpm			30	37	31	74.3 bbl	Tota	alCirc.Vol.	1165.8	B bbl To	talCirc.Stks	'			ttomsUp Time			
300 rpm			19	24	20		DRIL	LING ASS	SEMBL	Y DATA		s	OLID	DS CONTROL				
200 rpm				13	20	14	Tubulars	OD (i	in.) ID	(in.)	Length	Тор	Unit		Screens		Hou	urs
100 rpm				9	13	11	Drill Pipe	4.50	00 3.8	326	10,322'		Shaker	1	17	0	12	.0
6 rpm				5	6	6	Agitator	5.25	50 2.7	750	43'	10,322'	Shaker	2	17	0	12	.0
3 rpm				4	5	5	Drill Pipe	4.50	00 3.8	326	2,609'	10,365'	Shaker	3	17	0	12	.0
Plastic Viscosity (cp) @ 150 °F			11	13	11	Direct. BHA	5.25	50 2.5	500	144'	12,973'	Centrifug	ge 1			3.	0	
Yield Point (lb/100 ft²) T0 = 3			8	11	9		CA	ASING & I	HOLE I	DATA		1						
Gel Strength (lb	/100 ft²)	10	sec / 10 min	4/9	6/12	6/10	Casing	OD (i	in.) ID	(in.)	Depth	Тор	1					
Gel Strength (lb	/100 ft2)	30 min	11	15	12	Riser						VOLUN	IE AC	COUN	ITING	(bbl	s)
HTHP Filtrate (c	cm/30 m	nin)	@ 250 °F	6.0	6.4	6.0	Surface	10 3	3/4		2,989'		Prev. T	otal o	n Loca	ition	26	602.8
HTHP Cake Thi	ickness	(32nds)		2.0	2.0	2.0	Int. Csg.	7 5/	/8 6.8	375	10,237'		Transfe	rred l	n(+)/O	ut(-)		
Retort Solids Co	ontent			10%	11%	10%								Oil	Added	d (+)		69.7
Corrected Solids	s (vol%))		8.3%	9.4%	8.4%								Barite	Added	d (+)		
Retort Oil Conte	ent			69.5%	68.5%	70%	Open	Hole S	Size 6.8	318	15,610'		Other Pr	oduct	Usage	e (+)		
Retort Water Co	ontent			20.5%	20.5%	20%	AN	NULAF	R GEOME	TRY &	RHEOLO	GY	\	Nater	Added	d (+)		20.2
O/W Ratio				77:23	77:23	78:22	annula	ar	denth	veloc	city flow	ECD	Le	ft on C	Cutting	s (-)	-	-11.3
Whole Mud Chl	orides (ı	mg/L)		42,000	41,000	42,000	section	i debin		ft/m	in reg	lb/gal	_	Cent/ Ev		vap		
Water Phase Sa	alinity (p	pm)		243,150	238,743	247,723								Lost I	Return	s (-)	-3	311.0
Whole Mud Alka	alinity, F	om		1.5	1.6	1.7	6.875x4	1.5	10,237'	267	.5 turb	9.50	Est. T	otal o	n Loca	ition _	23	370.4
Excess Lime (lb	o/bbl)			2 ppb	2.1 ppb	2.2 ppb	6.818x4	1.5	10,322'	275	.5 turb	9.50	Est. Los	ses/G	ains (-)/(+)		0.0
Electrical Stabili	ity (volts	s)		408 v	390 v	435 v	6.818x5	.25	10,365'	381	.9 turb	9.51	ВІТ	HYDR	AULI	CS DA	ΤA	
Average Specifi	ic Gravit	ty of Sol	ids	2.70	2.63	2.70	6.818x4	1.5	12,973'	275	.5 turb	9.63	Bit H.S.I.	Bit	ΔΡ	Nozzle	es (32	?nds)
Percent Low Gra	avity So	olids		6.7%	7.9%	6.7%	6.818x5	.25	13,117'	381	.9 turb	9.65	0.25	52	psi	16	16	16
ppb Low Gravity	y Solids			55 ppb	65 ppb	55 ppb							Bit Impact	Noz Velc		16	16	16
Percent Barite				1.7%	1.5%	1.7%							Force	(ft/s	-			
ppb Barite				24 ppb	21 ppb	24 ppb	BIT [DATA	Ма	nuf./Ty	pe Ulte	ra/U611S	1	8	0			
Estimated Total	LCM in	System	l				Size	Depth		ours	Footage	ROP ft/hi			Calc.	Circ.	Pres	sure
Sample Taken By				R. Bowlin	R. Bowlin	M.Meehan	6 3/4	10,24	5 ft 71	1.0	5,365 ft	75.6	800 ps	si	1,854 psi			

Pump a 10 bbl sweep every 300 ft. Sweep Contains:

10 ppb NewCarb, 10 ppb Newphalt and 10 ppb Magnafiber fine

Afternoon Rig Activity:

Drilling ahead and sliding as needed in the lateral section. At 15610 ft. making a Drilling ahead and sliding as needed in the lateral section. At 15610 ft. making a 30 stand wiper trip while backreaming out of the hole. Pumping 10 bbl LCM sweep every connection. Reduced the mud wt. to 9.0 ppg with additions of diesel and running the centrifuge on the active system. Monitoring moderate losses. Making additions of LCM (first response / Cyberseal / NewCarb- 3sxs ea) to active system attempting to minimize losses down hole. Treatment with Lime for Alkalinity, CaCl2 for WPS. Newphalt for Fluid loss, and bentone for Pheology. Rheology.

110 Old Market St.

St Martinville, LA 70582

95.0°

10,535' TVD

TEL: (337) 394-1078

MAGN Well Name and No.	AS		TERSO	ON		h / Block HINGTOI	N	0	Start Date		95 ft			Drilled Depth 16,365 ft				
Well Name and No		CH U2 -	. 3H	Rig Name ar	nd No. 248		TEXAS			Spud Da	^{te} 14/27/20		nt ROP		Activity POOH			
Report for	OODIKI	011 02	011	Report for			Field / OSC-G #			Fluid Typ			ating Rate		Circulating Pressure			
KEVIN BU	JRT/ JI	M HARF	RISON	То	ol Pusi	ner	GIDDINGS				OBM							
	MUD	PROPERT	Y SPECI	FICATION	IS		MUD VO	MUD VOLUME (BBL)		ı	PUMP #1		PUMP #2			RISER BOOSTI		
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	HP In Pits 725 bbl				Size 5.	25 Line	Liner Size 5.25			Liner Size		
9-10.2	8-20	5-12	>300	±250K	<10 <25	<10	In Hole	e 678	bbl	Strok	ke 1	2 Sti	roke 1	2	Stro	oke		
	М	UD PROP	ERTIES				Active	1207	7 bbl	bbl/s	tk 0.0	763 bb	l/stk 0.0	763	bbl	/stk		
Time Sample	Taken			2:30		11:00	Storage	e <u>1600</u>	O bbl	stk/m	nin	stk	:/min		stk/	min		
Sample Location				suction		suction	Tot. on Loc	cation 3003	3 bbl	gal/m	nin	ga	l/min		gal/	min		
Flowline Temperature °F				134 °F			Mud Wt. =	= 9.0 PV=	=10	YP=	:9 CI I	RCULATIO	ON DATA		n = 0).610	K = 2	215.8
Depth (ft)				16,272'		16,365'	Bit D	epth = 12,0	025 '		Wash	out = 1%	I	ump	Effici	ency =	95%	ó
Mud Weight (բ	opg)			9.0		9.0	Drill String	Volume	to Bit	169.5	bbl Str	okes To Bi	t	-	Time ⁻	To Bit		
Funnel Vis (se	ec/qt)		@ 111 °F	43		45	Disp.	Bottoms Up	p Vol.	312.9	bbl Botto	msUp Stks	3	Bottor	nsUp	Time		
600 rpm				29		30	68.3 bbl	TotalCire	c.Vol.	1207.4	bbl To	talCirc.Stks	s	Total	Circ.	Time		
300 rpm				19		19		DRILLING	S ASS	EMBL	Y DATA		s	OLIDS	s co	NTRO	L	
200 rpm				15		15	Tubulars	OD (in.)	ID (in.)	Length	Тор	Unit		Scre	ens	Ho	urs
100 rpm				14		12	Drill Pipe	4.500	3.8	26	9,230'		Shaker	1	17	70	6.	.0
6 rpm				7		6	Agitator	5.250	2.7	50	43'	9,230'	Shaker	2	17	70	6.	.0
3 rpm				6		5	Drill Pipe	4.500	3.8	26	2,609'	9,273'	Shaker	3	17	70	6.	.0
Plastic Viscos	ity (cp)		@ 150 °F	10		11	Direct. BHA	5.250	2.5	00	144'	11,881'	Centrifug	je 1			1.	.0
Yield Point (lb.	/100 ft²)		T0 = 5	9		8		CASIN	IG & F	HOLE I	DATA							
Gel Strength (lb/100 ft ²) 10 se	ec / 10 min	7/12		7/11	Casing	OD (in.)	ID (in.)	Depth	Тор						
Gel Strength (lb/100 ft2	2)	30 min	15		14	Riser						VOLUM	IE AC	cou	NTING	(bbl	is)
HTHP Filtrate	(cm/30 m	nin)	@ 250 °F	6.2		6.2	Surface	10 3/4			2,989'		Prev. T	otal o	n Loc	ation	30	082.1
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.8	375	10,237'		Transfe	rred li	n(+)/C	Out(-)		
Retort Solids (Content			9.5%		9.5%								Oil	Adde	ed (+)		29.7
Corrected Soli	ids (vol%))		7.8%		7.8%							1	Barite	Adde	ed (+)		
Retort Oil Con	itent			69%		69.5%	Open	Hole Size	6.8	18	16,365'		Other Pr	oduct	Usag	je (+)		
Retort Water (Content			21.5%		21%	ANI	NULAR GE	OME	TRY &	RHEOLO	GY	\	Nater	Adde	ed (+)		
O/W Ratio				76:24		77:23	annula	ır dej	nth	veloc	city flow	ECD	Le	ft on C	n Cuttings (-)			-4.3
Whole Mud Cl	hlorides (mg/L)		44,000		44,000	section		pui	ft/m	in reg	lb/gal		C	Cent/	Evap		-10.4
Water Phase	Salinity (p	ppm)		242,946		247,300		·			•			Lost F	Retur	ns (-)		-93.7
Whole Mud Al	kalinity, F	om		1.7		1.6	6.875x4	9,2	30'		lam	9.00	Est. T	otal o	n Loc	ation	30	003.4
Excess Lime ((lb/bbl)			2.2 ppb		2.1 ppb	6.875x5.	.25 9,2	73'		lam	9.00	Est. Los	ses/G	ains (-)/(+)		0.0
Electrical Stab	oility (volts	s)		402 v		422 v	6.875x4	10,2	237'		lam	9.00	BIT	HYDR	AUL	ICS DA	ATA	
Average Spec	ific Gravi	ty of Solids	3	2.78		2.79	6.818x4	11,8	881'		lam	9.00	Bit H.S.I.	Bit	ΔΡ	Nozzle	es (32	2nds)
Percent Low 0	Gravity Sc	olids		5.8%		5.8%	6.818x5.	.25 12,0	025'		lam	9.00				16	16	16
ppb Low Grav	ity Solids			48 ppb		48 ppb							Bit Impact	Noz Velo		16	16	16
Percent Barite)			1.9%		2%							Force	(ft/s	-			
ppb Barite				28 ppb		28 ppb	BIT D	DATA	Mar	nuf./Ty	pe Ulte	rra/U611S						
Estimated Tot	al LCM in	System					Size	Depth In	Ho	urs	Footage	ROP ft/hr	Motor/M	WD	Calc	. Circ.	Pres	sure
Sample Taker	п Ву			R. Bowlin		M.Meehan	6 3/4	10,245 ft	85	5.0	6,120 ft	72.0				230	psi	
Afternoon Rem	arks/Reco	mmendatio	ns:				Afternoon R	Rig Activity:				·						

Pump a 10 bbl sweep every 300 ft. Sweep Contains:

10 ppb NewCarb, 10 ppb Newphalt and 10 ppb Magnafiber fine

Drilling ahead and sliding as needed in the lateral section to 16365 ft. Pumped a 20 bbl LCM sweep and circulated B/U. POOH to 14500 ft. Pumped a slug. Stripping out of the hole while keeping 11.0 ppg mud on the backside to control pressure. Losses of 10 bbl/hr continue while circulating and tripping out of the

110 Old Market St.

St Martinville, LA 70582

95.0°

10,535' TVD

TEL: (337) 394-1078

		OIL & G	AS		TERSO	ON		HINGTOI	N	0	Start Date 4/27/20		95 ft			16,36	65 ft	1
Well Name and No		ICH U2 ·	. 3H	Rig Name ar	nd No. 248		State T	EXAS		Spud Dat	^{te} 4/27/20		nt ROP		Activity	PO	ЭН	ļ
Report for				Report for			Field / OSC-G			Fluid Typ			ating Rate		Circula	ting Pres		
KEVIN BI	URT/ JI	M HARF	RISON	То	ol Pusi	ner	GIE	DINGS			OBM							
	MUD	PROPERT	TY SPECI	FICATION	IS		MUD VC	DLUME (BE	BL)	F	PUMP #1		PUMP #2		RIS	ER BO	osı	ΓER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	725	bbl	Liner S	Size 5.	25 Line	r Size 5.	25	Liner	Size		
9-10.2	8-20	5-12	>300	±250K	<10 <25	<10	In Hole	e 678	bbl	Strok	e 1	2 St	roke 1	2	Stro	oke		
	М	UD PROP	ERTIES			•	Active	1207	7 bbl	bbl/s	tk 0.0	763 bb	l/stk 0.0	763	bbl	/stk		ļ
Time Sample	Taken			2:30		11:00	Storage	e <u>1600</u>	<u>ddd C</u>	stk/m	nin	stk	:/min		stk/	min		
Sample Locat	ion			suction		suction	Tot. on Loc	cation 3003	3 bbl	gal/m	nin	ga	l/min		gal/	min (
Flowline Temp	oerature °	'F		134 °F			Mud Wt. =	= 9.0 PV=	=10	YP=	9 C II	RCULATIO	ON DATA		n = 0).610	K = 2	215.8
Depth (ft)				16,272'		16,365'	Bit D	epth = 12,0	025 '		Wash	out = 1%	ı	ump	Effici	ency =	95%	ó
Mud Weight (ppg)			9.0		9.0	Drill String	Volume	to Bit	169.5	bbl Str	okes To Bi	t	-	Time ⁻	To Bit		
Funnel Vis (se	ec/qt)		@ 111 °F	43		45	Disp.	Bottoms Up	p Vol.	312.9	bbl Botto	omsUp Stks	;	Bottor	nsUp	Time		ļ
600 rpm				29		30	68.3 bbl	TotalCirc	c.Vol.	1207.4	bbl To	talCirc.Stks	S	Total	Circ.	Time		
300 rpm				19		19		DRILLING	3 ASS	EMBL	Y DATA		s	OLIDS	s co	NTRO	L	
200 rpm				15		15	Tubulars	OD (in.)	ID (in.)	Length	Тор	Unit		Scre	eens	Но	urs
100 rpm				14		12	Drill Pipe	4.500	3.8	26	9,230'		Shaker	1	17	70	6.	.0
6 rpm				7		6	Agitator	5.250	2.7	50	43'	9,230'	Shaker	2	17	70	6.	.0
3 rpm				6		5	Drill Pipe	4.500	3.8	26	2,609'	9,273'	Shaker	3	17	70	6.	.0
Plastic Viscos	sity (cp)		@ 150 °F	10		11	Direct. BHA	5.250	2.5	00	144'	11,881'	Centrifug	je 1			1.	.0
Yield Point (lb	/100 ft²)		T0 = 5	9		8		CASIN	IG & F	IOLE [DATA							
Gel Strength ((lb/100 ft ²) 10 s	ec / 10 min	7/12		7/11	Casing	OD (in.)	ID (in.)	Depth	Тор						ļ
Gel Strength ((lb/100 ft2	2)	30 min	15		14	Riser						VOLUM	IE AC	COU	NTING	(bbl	is)
HTHP Filtrate	(cm/30 m	nin)	@ 250 °F	6.2		6.2	Surface	10 3/4			2,989'		Prev. T	otal o	n Loc	ation	30	082.1
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.8	75	10,237'		Transfe	rred li	n(+)/C	Out(-)		
Retort Solids	Content			9.5%		9.5%								Oil	Adde	ed (+)		29.7
Corrected Sol	ids (vol%)		7.8%		7.8%							ı	Barite	Adde	ed (+)		
Retort Oil Cor	ntent			69%		69.5%	Open	Hole Size	6.8	18	16,365'		Other Pr	oduct	Usag	je (+)		
Retort Water	Content			21.5%		21%	ANI	NULAR GE	ОМЕ	TRY &	RHEOLO	GY	\	Nater	Adde	ed (+)		
O/W Ratio				76:24		77:23	annula	ır .		veloc	ity flow	ECD	Le	ft on C	Cutting	gs (-)		-4.3
Whole Mud C	hlorides (mg/L)		44,000		44,000	section	der	ptn	ft/mi	-	lb/gal		C	Cent/	Evap		-10.4
Water Phase	Salinity (p	opm)		242,946		247,300		!						Lost F	Retur	ns (-)		-93.7
Whole Mud A	lkalinity, F	Pom		1.7		1.6	6.875x4	1.5 9,2	30'		lam	9.00	Est. T	otal o	n Loc	ation	30	003.4
Excess Lime	(lb/bbl)			2.2 ppb		2.1 ppb	6.875x5.	.25 9,2	73'		lam	9.00	Est. Los	ses/Ga	ains (-)/(+)		0.0
Electrical Stat	oility (volt	s)		402 v		422 v	6.875x4	1.5 10,2	237'		lam	9.00	ВІТ	HYDR	AUL	ICS DA	ATA	
Average Spec	ific Gravi	ty of Solid	S	2.78		2.79	6.818x4	1.5 11,8	881'		lam	9.00	Bit H.S.I.	Bit	ΔΡ	Nozzl	es (32	2nds)
Percent Low 0	Gravity So	olids		5.8%		5.8%	6.818x5.	.25 12,0	025'		lam	9.00				16	16	16
ppb Low Grav	rity Solids			48 ppb		48 ppb							Bit Impact	Noz		16	16	16
Percent Barite)			1.9%		2%							Force	Velo (ft/s	-			
ppb Barite				28 ppb		28 ppb	BIT C	DATA	Mar	ոսք./Туր	pe Ulte	rra/U611S						
Estimated Tot	al LCM ir	System					Size	Depth In	Но	urs	Footage	ROP ft/hr	Motor/M	WD	Calc	. Circ.	Pres	sure
Sample Taker	n By			R. Bowlin		M.Meehan	6 3/4	10,245 ft	85	.0	6,120 ft	72.0				230	psi	
Afternoon Rem	arks/Reco	mmendatio	ons:				Afternoon R	Rig Activity:					•	•				

Pump a 10 bbl sweep every 300 ft. Sweep Contains:

10 ppb NewCarb, 10 ppb Newphalt and 10 ppb Magnafiber fine

Drilling ahead and sliding as needed in the lateral section to 16365 ft. Pumped a 20 bbl LCM sweep and circulated B/U. POOH to 14500 ft. Pumped a slug. Stripping out of the hole while keeping 11.0 ppg mud on the backside to control pressure. Losses of 10 bbl/hr continue while circulating and tripping out of the

110 Old Market St.

St Martinville, LA 70582

TEL: (337) 394-1078

0.8° 7,986' TVD

Operator MAGI	NOLIA O	IL & G	AS	Contractor PA1	TERSO)N	County / Parish WASI	n / Block HINGTO	N	_	er Start Date 04/27/20		hr ftg.			Drilled	Depth 16,30	65 ft	 t
Well Name and No				Rig Name ar	id No.		State			Spud D	ate	Cu	rrent ROF)		Activity	,		
LEVI G	OODRI	CH U2	- 3H	Report for	248		T Field / OSC-G	EXAS		Fluid Ty	04/27/20		culating R	ate		Circula	RI ting Pre		
KEVIN B	JRT/ JIN	/ HAR	RISON	-	ol Pusi	ner		DINGS		i iuiu i y	ОВМ		ouldting in	dic		Ollodia	ung r re-	Jouro	
	MUD P	ROPER	TY SPECII	FICATION	IS		MUD VC	DLUME (B	BL)		PUMP #1		PU	MP #2		RIS	ER B	oos	ΓER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	784	4 bbl	Liner	Size 5	.25 Li	iner Size	e 5.	25	Line	Size		
9-10.2	8-20	5-12	>300	±250K	<10 <25	<10	In Hole	e 700) bbl	Stro	ke '	12	Stroke	1	2	Str	oke		
	MU	D PROF	PERTIES				Active	110	5 bbl	bbl/	stk 0.0	763	bbl/stk	0.0	763	bbl	/stk		
Time Sample	Taken			1:30		11:00	Storage	e <u>147</u>	5 bbl	stk/ı	min	:	stk/min			stk/	min		
Sample Locat	ion			suction		suction	Tot. on Loc	cation 295	9 bbl	gal/ı	min	,	gal/min			gal	min		
Flowline Temp	oerature °F						Mud Wt. =	= 9.1 PV	′=11	YP	=9 CI	RCULAT	TION D	ATA		n = ().632	K = 1	197.8
Depth (ft)				16,365'		16,365'	Bit [Depth = 8,	000 '		Wash	nout = 1%	%	-	Pump	Effici	ency =	= 95%	6
Mud Weight (ppg)			9.1		9.0	Drill String	Volume	to Bit	112.3	3 bbl St	rokes To	Bit	•		Time '	To Bit		
Funnel Vis (se	ec/qt)		@ 98 °F	45		42	Disp.	Bottoms U	lp Vol.	208.6	6 bbl Bott	omsUp S	tks		Botto	msUp	Time		
600 rpm				31		29	46.4 bbl	TotalCi	rc.Vol.	1104.	9 bbl To	otalCirc.S	tks		Tota	l Circ.	Time		
300 rpm				20		18		DRILLIN	G ASS	SEMB	LY DATA			s	OLID	s co	NTRO	L	
200 rpm				16		15	Tubulars	OD (in.)	ID	(in.)	Length	Тор		Unit		Scre	ens	Но	urs
100 rpm				13		12	Drill Pipe	4.500	3.8	326	5,205'		,	Shaker	1	17	70	6.	.0
6 rpm				6		6	Agitator	5.250	2.7	750	43'	5,205	5'	Shaker	2	17	70	6.	.0
3 rpm				5		5	Drill Pipe	4.500	3.8	326	2,609'	5,248	3'	Shaker	3	17	70	6.	.0
Plastic Viscos	ity (cp)		@ 150 °F	11		11	Direct. BHA	5.250	2.5	500	144'	7,856	6' C	entrifuç	ge 1			2.	.0
Yield Point (lb	/100 ft²)		T0 = 4	9		7		CASI	NG & I	HOLE	DATA								
Gel Strength	(lb/100 ft²)	10 s	sec / 10 min	6/11		6/10	Casing	OD (in.)	ID	(in.)	Depth	Тор							
Gel Strength	(lb/100 ft2)		30 min	14		13	Riser						\	/OLUN	IE AC	cou	NTING	(bbl	ls)
HTHP Filtrate	(cm/30 mi	n)	@ 250 °F	6.2		6.2	Surface	10 3/4			2,989'			Prev. T	otal o	n Loc	ation	31	111.7
HTHP Cake T	hickness (32nds)		2.0		2.0	Int. Csg.	7 5/8	6.8	375	10,237'		-	Fransfe	rred I	n(+)/0	Out(-)		
Retort Solids	Content			9.5%		9%									Oil	Adde	ed (+)		64.0
Corrected Sol	ids (vol%)			7.8%		7.3%								1	Barite	Adde	ed (+)		
Retort Oil Cor	ntent			69.5%		69.5%	Open	Hole Size	6.8	318	16,365'		0	ther Pr	oduct	Usag	je (+)		
Retort Water	Content			21%		21.5%	ANI	NULAR G	EOME	TRY 8	RHEOL	OGY		١	Nater	Adde	ed (+)		10.0
O/W Ratio				77:23		76:24	annula	ır	415	velo	city flow	ECD		Le	ft on (Cuttin	gs (-)		
Whole Mud C	hlorides (m	ng/L)		44,000		45,000	section	n de	epth	ft/m	nin reg	lb/gal	ı		(Cent/	Evap		-10.0
Water Phase	Salinity (pp	om)		247,300		247,103		*		•	•	•			Lost	Retur	ns (-)	-2	216.4
Whole Mud A	Ikalinity, Po	om		1.5		1.5	6.875x4	1.5 5,	205'		lam	9.10		Est. T	otal o	n Loc	ation	29	959.3
Excess Lime	(lb/bbl)			2 ppb		2 ppb	6.875x5	.25 5,	248'		lam	9.10	E	st. Los	ses/G	ains (-)/(+)		0.0
Electrical Stal	oility (volts)	١		415 v		402 v	6.875x4	1.5 7,8	356'		lam	9.10		BIT	HYDF	RAUL	ICS D	ATA	
Average Spec	cific Gravity	of Solid	ls	2.95		2.91	6.875x5	.25 8,0	000'		lam	9.10	Bit	H.S.I.	Bit	ΔΡ	Nozzl	es (32	2nds)
Percent Low 0	Gravity Sol	ids		5.1%		5%											16	16	16
ppb Low Grav	ity Solids			42 ppb		41 ppb							Bit	mpact		zzle	16	16	16
Percent Barite)			2.7%		2.3%								orce		ec)			
ppb Barite				38 ppb		33 ppb	BIT D	DATA	Ма	nuf./Ty	ype Ulte	erra/U611	IS						
Estimated To	al LCM in	System					Size	Depth In	Но	urs	Footage	ROP ft/	/hr M	otor/M	WD	Calc	. Circ.	Pres	sure
Sample Taker	n By			R. Bowlin		M.Meehan	6 3/4	16,365 ft									153	psi	

Pump a 10 bbl sweep every 300 ft. Sweep Contains:

10 ppb NewCarb, 10 ppb Newphalt and 10 ppb Magnafiber fine

POOH to 8000 ft. Circulate and adjust the mud wt. to 9.0 ppg with diesel additions and running the centrifuge. Receiving 600 bbl of 9.0 ppg mud from the Madisonville warehouse. Adding Bentone 38 and Bentone 990 to increase the Yield Point and 6/3 RPM readings. Adding Optimul and Lime to increase the electrical stability. Increasing the chloride concentration with CaCL2.

OUTSOURCE FLUID SOLUTIONS LLC.

94.6°

10,376' TVD

Operator MAGN	NOLIA (OIL & C	BAS	Contractor PA	TERSO	ON	County / Parish /	Block HINGTO	N	Engineer (Start Dat 04/27		24 hr ftg	255 f	t		Depth 16,6	20 ft	t
Well Name and No.	OODR	ICH U2	- 3H	Rig Name ar	nd No. 248		State T E	EXAS		Spud Dat	te)4/27,	/20	Current	ROP O ft/h	r	Activit	то	ОН	
Report for	UDT/ II		DIOON	Report for			Field / OCS-G #	DINIOO		Fluid Typ		\ -	Circulati	ing Rate	_	Circula	ating Pre	ssure	
KEVIN B					ol Pusi	ner		DINGS			OBI			0 gpn		DIC		0007	
Weight	PV	YP	RTY SPECIF	1		UTUD		LUME (B			PUMP			PUMP #			ER B	0051	IER
Weight			E.S.	CaCl2	GELS	HTHP	In Pits		40 bbl	Liner		5.25	Liner		5.25		r Size		
9-10.2	8-20	5-12	>300	±250K	<10 <25	<10	In Hole		73 bbl	Stro		12	Stro		12		oke	0.00	.000
Time Cample 7	Falsas			6/15/20		6/14/20	Active		49 bbl	bbl/s		0.0763	bbl/s		0.0763		l/stk	0.00	000
Time Sample				2:30		11:00	Storage		67 bbl	stk/r		0	stk/r		0		/min	,	0
Sample Location		_		suction		suction	Tot. on Loc			gal/r		0	gal/r		0	ŭ	/min		72.000
Flowline Temp	erature r	-		16 600		16 265	Dia F	PHHP = Depth = 15				CULATIO		IA	Dun		0.670		
Depth (ft)				16,620'		16,365'	Bit L	I .		044.0		/ashout =			Pun	np Effic		= 95%	0
Mud Weight (p			@ 400 °F	9.1		9.0	Drill String Disp.			214.9		Strokes					To Bit		
Funnel Vis (se	c/qt)		@ 100 °F	43		42	05.7111	Bottoms	•			BottomsU				tomsUp			
600 rpm				35		29	85.7 bbl			1349.		TotalCir	c.Stks			otal Circ			
300 rpm				22		18		DRILLI								DS CO			
200 rpm				15		15	Tubulars			(in.)	Leng	,	ор	Ur			eens	Ho	
100 rpm				13 6		12	Drill Pipe			826	12,42		0'	Shak			70		4.0
6 rpm						6	Agitator			750	43	,	420'	Shak			70		4.0
3 rpm	•					5	Drill Pipe			826	2,60		463'	Shak		1	70		4.0
	estic Viscosity (cp) @ 150					11	Direct. BHA			500	144	l' 15,	071'	Centrif	fuge 1			4.	.0
Yield Point (lb/			T0 = 4	9		7				HOLE [
Gel Strength (I		10	sec/10 min	6/12		6/10	Casing	OD (in.)) ID	(in.)	Dep	th T	ор						
Gel Strength (I	b/100 ft ²)		30 min	13		13	Riser							VOL	JME A	CCOU	NTING	(bbl	ls)
HTHP Filtrate	(cm/30 mi	in)	@ 250 °F	6.0		6.2	Surface	10 3/4			2,98	9'	0'	Prev	. Tota	on Lo	cation	31	111.7
HTHP Cake T	hickness ((32nds)		2.0		2.0	Int. Csg.	7 5/8	6.	875	10,2	37'	0'	Trans	sferre	d In(+)/	Out(-)	5	565.0
Retort Solids C	Content			9.5%		9%									(Oil Adde	ed (+)	1	156.1
Corrected Soli	ds (vol%)			7.8%		7.3%									Bari	te Add	ed (+)		0.0
Retort Oil Con	tent			70.5%		69.5%	Oper	n Hole Siz	e 6.	818	16,62	20'		Other	Produ	ct Usa	ge (+)		6.9
Retort Water 0	Content			20%		21.5%	ANI	NULAR G	EOME	TRY &	RHEO	LOGY			Wat	er Add	ed (+)		42.0
O/W Ratio				78:22		76:24	annulai		neas.	velo	-		CD	I	Left or	n Cuttin	gs (-)		-11.5
Whole Mud Ch	nlorides (n	ng/L)		42,000		45,000	section	1 0	lepth	ft/m	iin	reg lb/	'gal			Cent/	Evap		-25.0
Water Phase S	Salinity (p	om)		247,723		247,103									Los	t Retu	ns (-)	-10	065.7
Whole Mud All	kalinity, P	om		1.5		1.5	6.875x4	.5 10	0,237'	0.0	0	lam 9.	.10	Est	. Tota	on Lo	cation	27	779.5
Excess Lime (b/bbl)			2 ppb		2 ppb	6.818x4	.5 12	2,420'	0.0	0	lam 9.	.10	Est. Lo	osses/	Gains ((-)/(+)		0.0
Electrical Stab	ility (volts))		411 v		402 v	6.818x5.	25 12	2,463'	0.0	0	lam 9.	.10	ВІ	Т НҮІ	DRAUL	ICS D	ATA	
Average Speci	fic Gravity	y of Solid	s	2.98		2.91	6.818x4	.5 1	5,071'	0.0	0	lam 9.	.10	Bit H.S.	I. E	Bit ∆P	Nozz	es (32	2nds)
Percent Low G	Gravity Sol	ids		5%		5%	6.818x5.2	25 1	5,215'	0.0	0	lam 9.	.10	0.00		psi	16	16	16
ppb Low Gravi	ty Solids			41 ppb		41 ppb								Bit Impa	ct V	ozzle elocity	16	16	16
Percent Barite				2.8%		2.3%								Force		t/sec)			
ppb Barite				41 ppb		33 ppb	BIT D	ATA	Ma	anuf./Ty	/pe	Ulterra/U	611S	0 lbs		0			
Estimated Total	al LCM in	System	ppb				Size	Depth Ir) He	ours	Foota	age ROF	ft/hr	Motor/	MWD	Cald	c. Circ	Pres	sure
Sample Taken	Ву			R. Bowlin	0	M.Meehan	6 3/4	16,365 f	t 4	4.0	255	ft 63	3.8						
Remarks/Reco	mmendatio	ons:					Rig Activity:												

OBM RECEIVED __5,242-bbls__Rec._565-bbl of 9.0ppg

OBM on Surface _2,107-bbls (storage + Active)

OBM Daily Gain / Loss __(-1090bbls) / Total G/L (-3,403-bbls)

Kill mud& New Build: 219bbls-15# 2,003bbls-9# \$65.00/bbl

Discounted OBM: 558bbl_11.0# _\$15.00/bbl

Over the past 24 hours Patterson 248 staged in the hole, circulating out heavy densities. Observed moderate/severe losses while circulating. Drilled ahead to 16,620'MD whereas experienced a mud motor failure, circulate gas from wellbore began TOOH. At the time of the am report TOOH at 15,215'MD.

_																	
E	ng. 1:	F	Rob E	Bowlin	1	Er	ng. 2:	Matt	Meehan	WH 1:	MIDLA	ND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Р	none:	22	28-99	0-10	55	Pł	hone:	985-3	351-7561	Phone:	432-686	-7361	Phone:	-			
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be	used if the	user so e		no representation	nas been prepared on is made as to the	\$60,504.82	\$195,872.50
										•	•	•	INCLUDI	NG 3RD PAR	TY CHARGES	\$70,199.03	\$260,996.41

0' TVD

OUTSOURCE FLUID SOLUTIONS LLC.

TEL: (337) 394-1078

0.0°

_	NOLIA (OIL &	GAS		TTERSO	ON		Block HINGTOI	N	_)4/27		24 hr ft	0 ft			16,6	20 ft	
Well Name and No.	OODR	ICH II	э э <u>ц</u>	Rig Name ar	nd No. 248		State	EXAS		Spud Date	e)4/27	7/20	Curren	t ROP O ft/hr		Activity		IH	
Report for	OODK	ICH UZ	2 - 3Π	Report for	240		Field / OCS-G #	EAAS		Fluid Type		720	Circula	ating Rate		Circula	ting Pre		
KEVIN B	URT/ JI	M HAF	RRISON	To	ol Pusi	her	GID	DINGS			ОВ	М		0 gpm					
	MUD	PROPE	RTY SPECIF	ICATION	s		MUD VO	LUME (BE	BL)	ı	PUMF	P #1		PUMP #2	2	RIS	ER B	OOSTI	ER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	699	9 bbl	Liner S	Size	5.25	Line	r Size 5	.25	Liner	Size		
9-10.2	8-20	5-12	>300	±250K	<10 <25	<10	In Hole	682	2 bbl	Strok	ke	12	Str	oke	12	Stro	oke		
		l .	I	6/16/20		6/15/20	Active	123	7 bbl	bbl/s	stk	0.0763	bbl	/stk 0.0	0763	bbl	/stk	0.00	000
Time Sample	Γaken			2:00		11:00	Storage	160	18 bbl	stk/m	nin		stk	/min		stk/	min 'm		
Sample Location	on			suction		suction	Tot. on Loc	cation 298	9 bbl	gal/m	nin	0	gal	/min	0	gal/	min 'min	0	1
Flowline Temp	erature °F	=						PHHP = 0		I	CIF	RCULATIO	ON DA	TA		n = 0	0.628	K = 223	3.367
Depth (ft)				16,630'		16,620'	Bit C	epth = 13,	431 '		٧	Vashout =	= 1%		Pump	Effici	ency	= 95%	
Mud Weight (p	pg)			9.1		9.0	Drill String	Volume	to Bit	189.5	bbl	Strokes	To Bit			Time	To Bit		
Funnel Vis (se	c/qt)		@ 80 °F	44		45	Disp.	Bottoms U	Jp Vol.	348.7	bbl	BottomsU	lp Stks		Botto	msUp	Time		
600 rpm				34		33	76.0 bbl	TotalCi	rc.Vol.	1237.3	3 bbl	TotalCi	rc.Stks		Tota	al Circ.	Time		
300 rpm				22		21		DRILLING	G ASS	SEMBL	Y DA	ГА			SOLID	s co	NTRC)L	
200 rpm				17		16	Tubulars	OD (in.)	ID	(in.)	Len	gth ⁻	Гор	Uni	i	Scre	eens	Hou	ırs
100 rpm				15		13	Drill Pipe	4.500	3.	826	10,6	36'	0'	Shake	r 1	17	70	12.	.0
6 rpm				7		6	Agitator	5.250	2.	750	43	3' 10	,636'	Shake	r 2	17	70	12.	.0
3 rpm				6		5	Drill Pipe	4.500	3.	826	2,6	09' 10	,679'	Shake	r 3	17	70	12.	.0
Plastic Viscosi	ty (cp)		@ 150 °F	12		12	Direct. BHA	5.250	2.	500	14	4' 13	,287'	Centrifu	ge 1			0.0	0
Yield Point (lb/	100 ft²)		T0 = 5	10		9		CASIN	IG & I	HOLE D	ATA								
Gel Strength (I	b/100 ft²)	10	sec/10 min	7/12		6/11	Casing	OD (in.)	ID	(in.)	Dep	oth	Гор						
Gel Strength (I	b/100 ft ²)		30 min	15		13	Riser							VOLUI	ME AC	cou	NTIN	G (bbls	s)
HTHP Filtrate	(cm/30 mi	in)	@ 250 °F	6.4		6.0	Surface	10 3/4			2,9	89'	0'	Prev.	Total c	n Loc	ation	277	79.5
HTHP Cake T	hickness ((32nds)		2.0		2.0	Int. Csg.	7 5/8	6.	875	10,2	237'	0'	Transf	erred I	ln(+)/0	Out(-)	79	99.0
Retort Solids 0	Content			9%		9%									Oil	l Adde	ed (+)	{	87.8
Corrected Soli	ds (vol%)			7.2%		7.3%									Barite	Adde	ed (+)		0.0
Retort Oil Con	tent			69%		70%	Oper	Hole Size	6.	818	16,6	320'		Other P	roduct	Usag	je (+)		1.1
Retort Water 0	Content			22%		21%	ANI	NULAR GE	ОМЕ	TRY &	RHEC	DLOGY			Water	Adde	ed (+)	2	20.0
O/W Ratio				76:24		77:23	annular	· me	eas.	veloc	city	flow E	CD	L	eft on (Cuttin	gs (-)		0.0
Whole Mud Ch	nlorides (n	ng/L)		45,000		44,000	section	de	epth	ft/m	in	reg lb	/gal		E	Evap/	Trips	-2	25.0
Water Phase S	Salinity (p	pm)		242,851		247,300									Lost	Retur	ns (-)	-67	73.2
Whole Mud All	kalinity, P	om		1.6		1.6	6.875x4.	5 10,	,237'	0.0)	lam		Est.	Total c	n Loc	ation	298	89.3
Excess Lime (I	b/bbl)			2.1 ppb		2.1 ppb	6.818x4.	5 10,	,636'	0.0)	lam		Est. Los	sses/G	ains (-)/(+)		0.0
Electrical Stab	ility (volts))		395 v		404 v	6.818x5.2	25 10,	,679'	0.0)	lam		ВІТ	HYDE	RAUL	ICS D	ATA	
Average Speci	fic Gravity	y of Solid	ls	3.07		2.92	6.818x4.	5 13,	,287'	0.0)	lam		Bit H.S.I.	Bit	ΔΡ	Nozz	des (32r	nds)
Percent Low G	Gravity Sol	lids		4.3%		4.9%	6.818x5.2	25 13,	,431'	0.0)	lam		0.00		osi	16	16	16
ppb Low Gravi	ty Solids			35 ppb		40 ppb								Bit Impac		zzle ocity	16	16	16
Percent Barite				3%		2.4%								Force		sec)			
ppb Barite				42 ppb		34 ppb	BIT D	ATA	Ma	anuf./Ty	ре	Ulterra/L	l611S	0 lbs		0			
Estimated Total	al LCM in	System	ppb				Size	Depth In	Н	ours	Foot	age RO	P ft/hr	Motor/M	1WD	Calc	. Circ	. Press	sure
Sample Taken	Ву			R. Bowlin	0	M.Meehan	6 3/4	16,620 ft	(0.0		#0	IV/0!						

Remarks/Recommendations:

OBM REC. _6,041-bbls__Rec._529-bbl_9.0ppg 270-bbls 14.9ppg

OBM on Surface _2,307-bbls (storage + Active)

OBM Daily Gain / Loss ___(-698-bbls) / Total G/L (-4,101-bbls)

Kill mud& New Build: 454bbls-14.9# 1977bbls-9# \$65.00/bbl

Discounted OBM: 558bbl_11.0# _\$15.00/bbl

Rig Activity:

TOOH to swap out the BHA, TIH to 6,083'MD circulated BU observed highest MW of 9.4ppg. Continued staging in the hole to 8,087'MD, circ observing MW of 9.3ppg and again staged to the shoe at 10,395'MD circ. 9.0ppg observed. The drilling fluid will be conditioned as needed to maintain the drilling fluid within the recommended parameters while the hole is circulated. At the time of report TIH at 13,431'MD. Conditioned surface volumes with Bentone 38/990 and preparing LCM sweeps in slug tank currently.

Е	ng. 1:	-	Rob E	Bowlin	1	Er	ng. 2:	Matt	Meehan	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Р	hone:	2	28-99	0-10	55	Pł	none:	985-3	351-7561	Phone:	432-686-736	1 Phone:	-			
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be	used if the user		er, no representati	has been prepared on is made as to the	\$35,975.60	\$231,848.10
												INCLUD	ING 3RD PAR	TY CHARGES	\$49,192.64	\$310,189.05

TEL: (337) 394-1078

110 Old Market St. St Martinville, LA 70582

63.3° 10,528' TVD

Operator	10: :: :			Contractor			County / Parish		T 6 1 .	_	r Start Date	24 hr	ftg.	1	Drilled De		o (:
MAGN Well Name and No.	IOLIA O	IL & G	AS	PAT Rig Name an	TERSC	N	WASI State	HING	TON	Spud Da)4/27/20		nt ROP		16 Activity	5,620	D ft
	OODRIG	CH U2	- 3H	name ar	248			EXAS	6		nte 04/27/20		II NOF	,	-	cula	ting
Report for				Report for			Field / OSC-G	#		Fluid Typ	ре		ating Rate		Circulating	Press	ure
KEVIN BU	JRT/ JIN	/I HARI	RISON	То	ol Push	er	GID	DINC	S		ОВМ		122 gpm	1	1,3	330	psi
	MUD P	ROPER	TY SPECI	FICATION	IS		MUD VC	DLUME	(BBL)	1	PUMP #1		PUMP #2		RISE	R BO	OSTER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	i	755 bbl	Liner	Size 5.	25 Line	r Size 5.	25	Liner S	ize	
9-10.2	8-20	5-12	>300	±250K	<10 <25	<10	In Hole	9	697 bbl	Strok	ке 1	2 St	roke 1	2	Stroke)	
	MU	ID PROP	PERTIES				Active	!	1184 bbl	bbl/s	stk 0.0	763 bb	l/stk 0.0	763	bbl/st	k	
Time Sample	Taken			2:00		12:00	Storage	е	1127 bbl	stk/n	nin 1	9 stk	:/min 1	9	stk/mi	n	
Sample Locati	ion			suction		suction	Tot. on Loc	cation	2579 bbl	gal/n	nin 6	1 ga	I/min 6	51	gal/mi	n	
Flowline Temp	erature °F	=					Mud Wt. =	= 9.1	PV=12	YP=	10 CII	RCULATIO	ON DATA		n = 0.6	28 K	X = 223.4
Depth (ft)				16,630'		16,630'	Bit D	epth =	10,690 '		Wash	out = 1%	1	Pump l	Efficien	cy = 9	95%
Mud Weight (p	opg)			9.1		9.0	Drill String	Vol	ume to Bit	150.5	bbl Str	okes To Bi	1,973	T	ime To	Bit	52 min
Funnel Vis (se	ec/qt)		@ 80 °F	44		42	Disp.	Botton	ns Up Vol.	278.9	bbl Botto	msUp Stks	3,655	Botton	nsUp Ti	me	96 min
600 rpm				34		31	61.1 bbl	Tota	alCirc.Vol.	1184.4	1 bbl To	talCirc.Stks	15,521	Total	Circ. Ti	me 4	408 min
300 rpm				22		20		DRIL	LING AS	SEMBL	Y DATA		s	OLIDS	CONT	ROL	
200 rpm				17		16	Tubulars	OD (i	n.) ID	(in.)	Length	Тор	Unit		Scree	าร	Hours
100 rpm				15		13	Drill Pipe	4.50	3.8	826	7,895'		Shaker	1	170		
6 rpm	·					6	Agitator	5.25	50 2.7	750	43'	7,895'	Shaker	2	170		
3 rpm				6		5	Drill Pipe	4.50	00 3.8	826	2,609'	7,938'	Shaker	3	170		
Plastic Viscos	ity (cp)		@ 150 °F	12		11	Direct. BHA	5.25	50 2.5	500	144'	10,546'	Centrifug	ge 1			
Yield Point (lb.	/100 ft²)		T0 = 5	10		9		CA	SING &	HOLE	DATA						
Gel Strength (lb/100 ft²)	10 s	sec / 10 min	7/12		6/11	Casing	OD (i	n.) ID	(in.)	Depth	Тор					
Gel Strength (lb/100 ft2)		30 min	15		13	Riser						VOLUM	IE AC	COUNT	ING	(bbls)
HTHP Filtrate	(cm/30 mi	n)	@ 250 °F	6.4		7.0	Surface	10 3	/4		2,989'		Prev. T	otal or	n Locat	on	2989.3
HTHP Cake T	hickness (32nds)		2.0		2.0	Int. Csg.	7 5/	8 6.8	875	10,237'		Transfe	rred Ir	n(+)/Ou	t(-)	111.0
Retort Solids (Content			9%		9%								Oil	Added	(+)	
Corrected Soli	ids (vol%)			7.2%		7.3%								Barite .	Added	(+)	
Retort Oil Con	tent			69%		69%	Open	Hole S	Size 6.8	818	16,620'		Other Pr	oduct	Usage	(+)	
Retort Water (Content			22%		22%	ANI	NULAF	R GEOME	TRY &	RHEOLO	GY	,	Nater .	Added	(+)	
O/W Ratio				76:24		76:24	annula	ır		veloc	city flow	ECD	Le	ft on C	uttings	(-)	
Whole Mud Cl	hlorides (m	ng/L)		45,000		45,000	section		depth	ft/m		lb/gal		E	vap/ Tr	ips	
Water Phase	Salinity (pr	om)		242,851		242,851								Lost F	Returns	(-)	-521.1
Whole Mud Al	kalinity, Po	om		1.6		1.5	6.875x4	1.5	7,895'	110	.5 lam	9.52	Est. T	otal or	n Locati	on	2579.2
Excess Lime (lb/bbl)			2.1 ppb		2 ppb	6.875x5.	.25	7,938'	151	.5 lam	9.52	Est. Los	ses/Ga	ains (-)/	(+)	0.0
Electrical Stab	,)		395 v		380 v	6.875x4	l.5	10,237'	110	.5 lam	9.52			AULIC		TA
Average Spec	- , ,		ls	3.07		2.89	6.818x4	1.5	10,546'	113		9.52	Bit H.S.I.	Bit 2	ΔP N	ozzles	s (32nds)
Percent Low G				4.3%		5%	6.818x5.	.25	10,690'	157	.7 lam	9.53	0.02	9 p	osi –	16	16 16
ppb Low Grav				35 ppb		41 ppb								Noz	_	-	16 16
Percent Barite				3%		2.2%							Bit Impact Force	Velo	city —		- .5
ppb Barite				42 ppb		32 ppb	BIT D	DATA	Ma	nuf./Ty	pe Ulte	ra/U611S	19 lbs	33	´ -	+	-
Estimated Total	al LCM in	System		- 1-10-0			Size	Depth		Ť	Footage	ROP ft/hr		l		irc F	Pressure
Sample Taker				R. Bowlin		M.Meehan	6 3/4	16,62			- 3.0.90	#DIV/0!				384 p	
Afternoon Rema				2011111			Afternoon R					2	1				

Pump a 10 bbl sweep every 300 ft. Sweep Contains:

10 ppb NewCarb, 10 ppb Newphalt and 10 ppb Magnafiber fine

POOH to 12000 ft. Circulate and pumped a 20 bbl LCM sweep with losses of 100 bbl/hr. Pulled up to 10631 ft. Continue to circulate with reduced losses of 50 bbl/hr. Receiving mud from the Madisonville warehouse. Received Barite and Diesel to replenish stocks. Continuing to treat the system with Optimul and Lime to maintain the emulsion. Adding Bentone 38 and Bentone 990 to increase the rheology. Adding Opti-G to reduce the HTHP fluid loss.

110 Old Market St. St Martinville, LA 70582

TEL: (337) 394-1078

10,247' TVD 92.7°

Operator MAGN Well Name and No.	IOLIA C	OIL & G	AS	Contractor PAT Rig Name ar	TTERSO)N	County / Parish WASI	n / Block HINGTOI	N	_	er Start Date 04/27/20)	874 ft		Drilled	17,90)2 ft	
LEVI G	OODRI	CH U2	- 3H	rtig ivallie al	248			EXAS		l '	04/27/20		95 ft/hr		,	RILL	LINC	3
Report for	VED / E	OBBV	CMUNI	Report for	al Duak		Field / OSC-G			Fluid Ty		Circ	ulating Rate	_		ting Pres		
JAMES D					ol Push	ier		DINGS) \		OBM PUMP #1		295 gpn			2,680 ER BO		
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	658 658		Liner				.25		Size	0001	EK
9-10.2	8-20	5-12	>300	±260K	<10 <25	<10	In Hole			Stro				12	Stro			
0 1012		JD PROP			110 120		Active			bbl				763		/stk		
Time Sample				2:00		1:30	Storage			stk/				46		min		
Sample Locati				suction		shaker	_	cation 3363		gal/				47		min		
Flowline Temp		=		120 °F		118 °F	Mud Wt. =			YP			ION DATA		Ŭ).720	K = 9	97.3
Depth (ft)	oracaro i			16,900'		17,902'		Depth = 17,9				nout = 1%		Pumn		ency =		
Mud Weight (p	nna)			9.0		9.0		Volume		253		rokes To E		T		To Bit		
Funnel Vis (se			@ 108 °F	44		46	Drill String Disp.	Bottoms Ut				omsUp Stl	,	Botto	msUp		66 1	
600 rpm	71		00 1	28		32	100.4 bbl	TotalCire				otalCirc.Stl			•	Time		
300 rpm				17		21		DRILLING					<u> </u>			NTRO		
200 rpm				14		18	Tubulars			(in.)	Length	Тор	Unit			ens	Ho	urs
100 rpm				10		13	Drill Pipe	4.500		326	15,107'		Shake			70		
6 rpm				6		7	Agitator	5.250	2.7	750	43'	15,107	' Shake	r 2	17	70		
3 rpm				5		6	Drill Pipe	4.500	3.8	326	2,609'	15,150	' Shake	r 3	17	70		
Plastic Viscosi	tv (cp)		@ 150 °F	11		11	Direct. BHA	5.250	2.5	500	144'	17,758		ge 1				
Yield Point (lb/	,		T0 = 4	6		10		CASIN	G & I	HOLE	DATA							
Gel Strength (I	b/100 ft²)	10 s	ec / 10 min	6/10		6/12	Casing	OD (in.)	ID	(in.)	Depth	Тор						
Gel Strength (I	b/100 ft2))	30 min	14		13	Riser						VOLU	ME AC	COU	NTING	i (bbl	
HTHP Filtrate	(cm/30 m	in)	@ 250 °F	6.0		6.0	Surface	10 3/4			2,989'		Prev.	Γotal c	on Loc	ation	33	332.1
HTHP Cake Ti	nickness	(32nds)		3.0		2.0	Int. Csg.	7 5/8	6.8	375	10,237'		Transfe	erred	In(+)/0	Out(-)		
Retort Solids (Content			9%		9%								Oi	l Adde	ed (+)		
Corrected Soli	ds (vol%)			7.2%		7.2%								Barite	Adde	ed (+)		
Retort Oil Con	tent			71%		71%	Open	Hole Size	6.8	318	17,902'		Other P	roduc	t Usag	je (+)		
Retort Water 0	Content			20%		20%	ANI	NULAR GE	ОМЕ	TRY 8	& RHEOL	OGY		Wateı	r Adde	ed (+)		
O/W Ratio				78:22		78:22	annula	ır .		velo	ocity flow	ECD	Le	eft on	Cuttin	gs (-)		-39.5
Whole Mud Ch	nlorides (r	ng/L)		44,000		46,500	section	i dei	pth	ft/n	-		E	Evap/	Trips/	Cent		
Water Phase S	Salinity (p	pm)		256,494		267,174		!						Lost	Retur	ns (-)		
Whole Mud All	kalinity, P	om		2.0		1.7	6.875x4	1.5 10,2	237'	267	7.5 turb	9.61	Est.	Γotal c	on Loc	ation	32	292.7
Excess Lime (b/bbl)			2.6 ppb		2.2 ppb	6.818x4	l.5 15,1	107'	27	5.5 turb	9.96	Est. Los	ses/G	ains (-)/(+)		70.1
Electrical Stab	ility (volts)		435 v		455 v	6.818x5.	.25 15,1	150'	38	1.9 turb	10.08	ВІТ	HYDI	RAUL	ICS DA	ATA	
Average Spec	fic Gravit	y of Solid	s	2.96		2.94	6.818x4	1.5 17,7	758'	27	5.5 turb	10.34	Bit H.S.I.	Bit	ΔΡ	Nozzle	es (32	2nds)
Percent Low G	ravity So	lids		4.7%		4.7%	6.818x5.	.25 17,9	902'	38	1.9 turb	10.47	0.25	52	psi	16	16	16
ppb Low Gravi	ty Solids			39 ppb		39 ppb							Bit Impact	+ I	zzle	16	16	16
Percent Barite				2.5%		2.4%							Force	vei	ocity sec)			
ppb Barite				36 ppb		35 ppb	BIT D	DATA	Ма	nuf./T	ype Ulte	erra/U611	S 110 lbs	8	30			
Estimated Total	al LCM in	System					Size	Depth In	Но	ours	Footage	ROP ft/h	nr Motor/M	IWD	Calc	. Circ.	Pres	sure
Sample Taken	Ву			A Roman		M Washburn	6 3/4	16,620 ft	16	6.0	1,384 ft	86.5	1,200	psi		2,605	psi	
Afternoon Rema	arks/Recor	nmendatio	ons:				Afternoon R	Rig Activity:										_
							fault losse from Main subs	in graben es ranging 20 to 30 F taining LC	struc from PPB a M in	ture. 10 - 4 and active	Maintain (40 bbls / I dding add e system.	mud wt @ nr. Increa itional ma Preparin	100% Austii 9.0. Expense LCM consedium to congregation of the ground to the ground state of the ground st	rienci ncent arse (an ur	ng pe ration grade o cycl	riodic s in s\ seala e and	mud veep	

OUTSOURCE FLUID SOLUTIONS LLC.

95.1° 10,207' TVD

Operator MAGI Well Name and No.	NOLIA (OIL &	GAS	Contractor PAT	TTERSO	ON	County / Parish / WASH	Block	N	Engineer Start 04/2 Spud Date	Date 27/20	24 hr f	510 ft		rilled Depti	130	ft
	OODR	ICH U	12 - 3H	rag ramo a	248			EXAS		•	27/20	Guiro	128 ft/h		Drillin	g La	ateral
Report for				Report for			Field / OCS-G #			Fluid Type			ating Rate		irculating F		
JAMES D					ol Pusi	ner		DINGS			BM		295 gpn		2,7		
	1		ERTY SPECIF		l			LUME (BE			/IP #1		PUMP #2		RISER		STER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits		8 bbl	Liner Size					_iner Siz	9	
9-10.2	8-20	5-12	>300	±260K	<10 <25	<10	In Hole		5 bbl	Stroke	12			12	Stroke		
				6/18/20		6/17/20	Active		13 bbl	bbl/stk	0.076			763	bbl/stk	0	0.0000
Time Sample				2:00		15:00	Storage		<u>89 bbl</u>	stk/min	46			46	stk/min		
Sample Locati				suction		suction	Tot. on Loc			gal/min	147	Ů		47	gal/min		0
Flowline Temp	erature °F	F		120 °F				PHHP = 47		C	IRCULA	TION DA					97.330
Depth (ft)				16,900'		17,028'	Bit D	epth = 17	,130 '		Washo	ut = 1%		Pump E			
Mud Weight (p	opg)			9.0		9.0	Drill String Disp.	Volume	e to Bit	242.1 bbl	Stro	kes To Bit	3,173	Ti	ime To E	it 3	4 min
Funnel Vis (se	ec/qt)		@ 105 °F	44		45	ызр.	Bottoms U	Jp Vol.	443.0 bbl	Botton	sUp Stks	5,805	Bottom	sUp Tim	e 6	3 min
600 rpm				28		32	96.2 bbl	TotalC	irc.Vol.	1343.1 bb	l Tota	ICirc.Stks	17,601	Total (Circ. Tim	e 19	91 min
300 rpm				17		21		DRILLIN	G ASS	SEMBLY D	ATA		S	OLIDS	CONTR	OL	
200 rpm				14		18	Tubulars	OD (in.)	ID	(in.) Le	ength	Тор	Unit		Screens	: H	Hours
100 rpm				10		13	Drill Pipe	4.500	3.	826 14	1,335'	0'	Shake	r 1	170		24.0
6 rpm				6		7	Agitator	5.250	2.	750	43'	14,335'	Shake	r 2	170		24.0
3 rpm				5		6	Drill Pipe	4.500	3.	826 2	,609'	14,378'	Shake	r 3	170		24.0
Plastic Viscosi	ity (cp)		@ 150 °F	11		11	Direct. BHA	5.250	2.	500	144'	16,986'	Centrifuç	ge 1			
Yield Point (lb/	/100 ft²)		T0 = 4	6		10		CASII	NG & I	HOLE DAT	A						
Gel Strength (lb/100 ft ²)	1	10 sec/10 min	6/10		6/12	Casing	OD (in.)	ID	(in.) D	epth	Тор					
Gel Strength (lb/100 ft ²)		30 min	14		13	Riser						VOLUN	IE ACC	OUNTI	NG (k	obls)
HTHP Filtrate	(cm/30 mi	in)	@ 250 °F	6.0		6.2	Surface	10 3/4		2	,989'	0'	Prev. 7	Γotal on	Locatio	n	3511.7
HTHP Cake T	hickness ((32nds)		3.0		2.0	Int. Csg.	7 5/8	6.	875 10),237'	0'	Transfe	erred In((+)/Out(·)	762.0
Retort Solids (Content			9%		9%								Oil A	Added (+	·)	67.4
Corrected Soli	ds (vol%)			7.2%		7.2%								Barite A	Added (+	·)	13.9
Retort Oil Con	tent			71%		70%	Open	Hole Size	6.	818 17	7,130'		Other P	roduct L	Jsage (+	·)	3.4
Retort Water (Content			20%		21%	ANI	NULAR GI	EOME	TRY & RHI	EOLOGY	•	,	Water A	Added (+	·)	10.0
O/W Ratio				78:22		77:23	annular	m	eas.	velocity	flow	ECD	Le	eft on Cu	uttings (·)	-23.0
Whole Mud Ch	nlorides (n	ng/L)		44,000		46,500	section	de	epth	ft/min	reg	lb/gal	E	Evap/ Tr	ips/ Cer	nt	-65.0
Water Phase	Salinity (p	pm)		256,494		257,730								Lost R	eturns (·)	-948.3
Whole Mud Al	kalinity, P	om		2.0		1.4	6.875x4.	5 10	,237'	267.5	turb	9.65	Est. 7	Γotal on	Locatio	n	3332.1
Excess Lime (lb/bbl)			2.6 ppb		1.8 ppb	6.818x4.	5 14	,335'	275.5	turb	9.99	Est. Los	ses/Gai	ins (-)/(+	·)	0.0
Electrical Stab	ility (volts))		435 v		420 v	6.818x5.2	25 14	,378'	381.9	turb	10.14	BIT	HYDRA	AULICS	DAT	A
Average Spec	ific Gravity	y of Sol	ids	2.96		2.91	6.818x4.	5 16	,986'	275.5	turb	10.45	Bit H.S.I.	Bit Δ	P No	zzles	(32nds)
Percent Low C	Gravity Sol	lids		4.7%		4.9%	6.818x5.2	25 17	,130'	381.9	turb	10.62	0.25	52 p	si 16	16	6 16
ppb Low Grav	ity Solids			39 ppb		40 ppb							Bit Impact	Nozz		10	6 16
Percent Barite	1			2.5%		2.3%							Force	Veloc (ft/se	-		
ppb Barite				36 ppb		33 ppb	BIT D	ATA	Ma	anuf./Type	Ulterra	a/U611S	110 lbs	80			
Estimated Total	al LCM in	System	n ppb				Size	Depth In	Н	ours Fo	otage F	ROP ft/hr	Motor/M	WD (Calc. Ci	c. Pr	essure
Sample Taker	n By			A Roman	0	M Washburn	6 3/4	16,620 ft	4	4.0 5	10 ft	127.5	1,200	psi	2,5	48 p	si
				<u> </u>	l		Dia Activity						1				

Remarks/Recommendations:

OBM REC. --7807 bbls Daily Rec 762bbls

OBM on Surface _2,647-bbls (storage + Active)

OBM Daily Gain / Loss (-998bbls) $\,$ / Total G/L (-5,099-bbls)

Kill mud& New Build: 471bbls-14.9# --1197bbls-9# \$65.00/bbl

Discounted OBM: 321bbl_11.0# _\$15.00/bbl

Rig Activity:

TIH back to bottom, Wash and ream last 5 stands. Resume drilling operations. Maintain MW 9.0ppg, Transfer OBM from storage to active to maintain volume. Well continues to take mud, about 46bbls per hr. while drilling, lost 65bbls while TIH. Maintain LCM sweep pumping 10bbls / connection, as well as mixing First Response / Cyberseal / NewCarb into Active system to assist on Losses, proving to be ineffective

	ng. 1: Phone:		ke W 61-94			5		o Roman 321-9994	WH 1: Phone:	MIDLAND 432-686-7361	WH 2: Phone:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
-	P 1	Y 1	E 1	C 1	g 1	 	0	Any opin carefully	nion and or re	ecommendation, exp	oressed orally o elects, however	, no representation	as been prepared on is made as to the	\$60,449.09	\$327,095.92
											INCLUD	NG 3RD PAR	TY CHARGES	\$65,024.62	\$434,641.52

MATERIAL CONSUMPTION

ll Name and No. LEVI GOODRICH U2 - :	Rig Name and N 248		ort #18
	·	СПМП	LATIVE
CEIVED	aily Daily Cost	Cum	Cum Cos
Inventory Us	age Daily Good	Usage	
		40	1
88		2	
		8	
975			
70			
17			\$7,049.42
112		390	
200		310	
16		59	
135		135	1
		890	1
55		450	\$3,753.00
55		85	\$3,291.20
90	24 \$126.00	96	\$504.00
		30	· ·
		50	
28	27 0570.00	22	
100	27 \$579.69	200	\$4,294.00
160		 	
1200	200 \$1,400.00	1175	\$8,225.00
1200	ψ.,.50.50	1.75	+3,220.00
60	20 \$1,073.40	25	\$1,341.75
30			
80			
+ +		<u> </u>	
+ +			
+ +			
762 3011	813 \$52,845.00	3244	\$210,860.00
		166	
321	129 \$1,935.00	1082	\$16,230.00
		-	
		 	
	2 \$1,850.00		\$29,600.00
	2 \$60.00	32	1
	580 \$580.00	4068	\$4,068.00
			*
		3	\$45.00
		1930	\$4,824.05
+ +		1930	φ4,0∠4.05
+ +		27	\$324.00
+ +		27	
<u> </u>			
19.09 Cum	ulative To	ulative Total \$327,095.92	27

THIRD PARTY COST SHEET

Date	Operator			Well Name a	nd No.		Rig Name an	id No.	Report No.	
06/18/20	MAGI	NOLIA OIL	& GAS	LEVI G	OODRICH	U2 - 3H	24	48	Repo	rt #18
	DAILY	USAGE 8	& COST						СПМП	LATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
Diesel Transfer from 2H	gal	\$0.91								
Diesel Transfer from Grand Canyon A - 1H	gal	\$0.87							2000	\$1,740.00
Diesel transfer from Grand Canyon A - 1H	gal	\$0.96							7199	\$6,911.04
Diesel 5/6/20	gal	\$0.90							2159	\$1,943.10
DIESEL TRANSFER FROM 2H	gal	\$1.16							7872	\$9,131.52
DIESEL 6/10/20	gal	\$1.22							7400	\$9,028.00
Diesel 6_11_20	gal	\$1.26							7399	\$9,322.74
DIESEL 6/12/20	gal	\$1.28							7400	\$9,472.00
DIESEL 6/12/20	gal	\$1.28							7400	\$9,472.00
DIESEL 6/14/29	gal	\$1.21							7200	\$8,712.00
Diesel 6_15_20	gal	\$1.20							7431	\$8,917.20
DIESEL 6/16/20	gal	\$1.22							7200	\$8,784.00
DIESEL 6/16/20	gal	\$1.22	1824			1824	\$2,225.28		7400	
DIESEL 6/17/20	gal	\$1.30		7005	6000				1005	
DIESEL 6/17/20	gal	\$1.30		2200	2200					
TURBO CHEM FIRST RESPONSE	each	\$41.75	225		200	25	\$1,043.75		330	\$13,777.50
	<u> </u>									
					Daily S	ub-Total \$4	4,575.53		\$107,5	545.60
	Cum	ulative Total	I AES & 3rd	Party \$434	,641.52					
						-				

FLUID VOLUME ACCOUNTING

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name: MAGNOLIA OIL & GAS

Rig Name: 248
Well Name: LEVI

LEVI GOODRICH U2 - 3H

					WEEK 1							WEEK 2							WEEK 3			
	Date	6/7/20	6/8/20	6/9/20	6/10/20	6/11/20	6/12/20	6/13/20	6/14/20	6/15/20	6/16/20	6/17/20	6/18/20	6/19/20	6/20/20	6/21/20	6/22/20	6/23/20	6/24/20	6/25/20	6/26/20	6/27/20
		Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat
	Bit Size	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4									
Grand	Starting Depth	10,245	10,245	10,245	10,311	12,303	14,073	15,359	16,272	16,365	16,620	16,620	16,620	17,130								
Totals	Ending Depth	10,245	10,245	10,311	12,303	14,073	15,359	16,272	16,365	16,620	16,620	16,620	17,130									
	Footage Drilled	-	-	66	1,992	1,770	1,286	913	93	255	-	-	510	-	-	-	-	-	_	-	-	-
,	New Hole Vol.	_	<u> </u>	3	88	78	57	40	4	11	-	-	23	_		_			_			-
	Starting System Volume	470	2,440	2,929	2,908	2,755	2,546	2,601	3,081	3,111	2,769	2,978	3,511	3,332	3,332	3,332	3,332	3,332	3,332	3,332	3,332	3,332
07	Chemical Additions	-	2,110	9	12	11	16	17	1	7	1	10	3	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002
	Base Fluid Added	 	<u> </u>	12	55	205	218	209	40	156	88	422	67									
	Barite Increase	-	H	- 12	-	203	210	17	32	130	00	422	14									
	Weighted Mud Added	1,970	489	-	-		407	811	530	565	799	1,004	762									
- 1,551	Slurry Added	-	-	-	-		401	011	330	303	133	1,004	-									
526	Water Added	-	-	-	50	102	100	100	17	42	20	85	10									
	Added for Washout	-	_	-	-	102	100	100	- 17	72	20	10	-									
		1,970	489	20	116	318	741	1 454	620	770	908	1,531	856				_					_
	Total Additions	<u> </u>						1,154				-		-		•	-	•	-	-	-	-
	Surface Losses	-	-	8	-	36	35	35	5	15	25	40	65									
	Formation Loss	-	-	-	150	378	563	568	577	1,066	673	928	948									
	Mud Loss to Cuttings	-	-	3	92	82	58	41	4	12		-	23									
	Unrecoverable Volume	-	-	30	-								-									
173	Centrifuge Losses	-	-	-	28	30	30	30	5	20		30	-									
6,633	Total Losses	-	-	41	270	526	686	674	591	1,112	698	998	1,036	-	-	-	-	-	-	-	-	-
-	Mud Transferred Out	-	-	-																		
3,332	Ending System Volume	2,440	2,929	2,908	2,755	2,546	2,601	3,081	3,111	2,769	2,978	3,511	3,332	3,332	3,332	3,332	3,332	3,332	3,332	3,332	3,332	3,332
_		•										-,				0,00-	-,	-,	-,			
	Mud Recovered	İ										-,	-,	,	-,	0,002	5,552	0,002	0,000	.,		
_	Mud Recovered											,	,		-,	0,002	3,000	,	,	•		
	Mud Recovered			С	omment	s:					С	omment	,				,,,,,,	,	comments	•		
	Mud Recovered	6/7/20	TRANSFE			s:			6/14/20		С	,	,			,		,	,	•		
	Mud Recovered	6/7/20	TRANSFE			s:			6/14/20		С	,	,	,		6/21/20	3,500	,	,	•		
	Mud Recovered			R FROM 2	H.		Whole 10 9#				C	,	,			6/21/20	3,000	,	,	•		
7,807	Mud Recovered	6/7/20 6/8/20		R FROM 2	H.		9bbls 10.9#		6/14/20		С	,	,			,		,	,	•		
7,807	Mud Recovered		Testing an	R FROM 2	H.		9bbls 10.9#				C	,	,			6/21/20	3,000	,	,	•		
7,807	Mud Recovered	6/8/20	Testing an	R FROM 2 nd repair to d mud.	H. BOP's. Re	eceived 489		:			С	,	,			6/21/20		,	,	•		
7,807	Mud Recovered	6/8/20	Testing an	R FROM 2 nd repair to d mud.	H. BOP's. Re	eceived 489		:	6/15/20		C	,	,	2		6/21/20		,	,	•		
7,807	Mud Recovered	6/8/20	Testing an Discounted	er FROM 2 and repair to d mud.	H. BOP's. Re DOpsi. Drill tion. Well tr	eceived 489 ing ahead o	on Curve se	ection.	6/15/20 6/16/20		C	,	,	-		6/21/20 6/22/20 6/23/20		,	,	•		
7,807	Mud Recovered	6/8/20	Testing an Discounted TIH, FIT 1 Drilling on MW to 9.6	er FROM 2 and repair to d mud.	H. BOP's. Re DOpsi. Drill tion. Well to	eceived 489 ing ahead of aking mud active systematics	on Curve se	ection.	6/15/20		c	,	,			6/21/20		,	,	•		
7,807	Mud Recovered	6/8/20 6/9/20 6/10/20	Testing an Discounted TIH, FIT 1 Drilling on MW to 9.6	er FROM 2 and repair to a mud. 3emw / 160 lateral sectors, Addir	H. BOP's. Re DOpsi. Drill tion. Well to	eceived 489 ing ahead of aking mud active systematics	on Curve se	ection.	6/15/20 6/16/20 6/17/20			omment	s:			6/21/20 6/22/20 6/23/20 6/24/20		,	,	•		
7,807	Mud Recovered	6/8/20	Testing an Discounted TIH, FIT 1 Drilling on MW to 9.6	er FROM 2 and repair to a mud. 3emw / 160 lateral sectors, Addir	H. BOP's. Re DOpsi. Drill tion. Well to	eceived 489 ing ahead of aking mud active systematics	on Curve se	ection.	6/15/20 6/16/20	Resume di		omment	s:	ıd.		6/21/20 6/22/20 6/23/20		,	,	•		
7,807	Mud Recovered	6/8/20 6/9/20 6/10/20	Testing an Discounted TIH, FIT 1 Drilling on MW to 9.6	er FROM 2 and repair to a mud. 3emw / 160 lateral sectors, Addir	H. BOP's. Re DOpsi. Drill tion. Well to	eceived 489 ing ahead of aking mud active systematics	on Curve se	ection.	6/15/20 6/16/20 6/17/20 6/18/20	Resume di		omment	s:	id.		6/21/20 6/22/20 6/23/20 6/24/20		,	,	•		
7,807	Mud Recovered	6/8/20 6/9/20 6/10/20	Testing an Discounted TIH, FIT 1 Drilling on MW to 9.6	er FROM 2 and repair to a mud. 3emw / 160 lateral sectors, Addir	H. BOP's. Re DOpsi. Drill tion. Well to	eceived 489 ing ahead of aking mud active systematics	on Curve se	ection.	6/15/20 6/16/20 6/17/20	Resume di		omment	s:	ud.		6/21/20 6/22/20 6/23/20 6/24/20		,	,	•		
7,807	Mud Recovered	6/8/20 6/9/20 6/10/20	Testing an Discounted TIH, FIT 1 Drilling on MW to 9.6	er FROM 2 and repair to a mud. 3emw / 160 lateral sectors, Addir	H. BOP's. Re DOpsi. Drill tion. Well to	eceived 489 ing ahead of aking mud active systematics	on Curve se	ection.	6/15/20 6/16/20 6/17/20 6/18/20	Resume di		omment	s:	id.		6/21/20 6/22/20 6/23/20 6/24/20		,	,	•		

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

92.2° 10,570' TVD

MAGNOLIA OIL & GAS PATTERSON WASHINGTON 04/27/20 909 ft 18,039 ft Name and No. **LEVI GOODRICH U2 - 3H** 248 **TEXAS** 04/27/20 95 ft/hr POOH Field / OCS-G # luid Type irculating Rate Circulating Pressure **JAMES DYER / BOBBY GWIN Tool Pusher GIDDINGS OBM** 64 gpm psi MUD PROPERTY SPECIFICATIONS PUMP #1 PUMP #2 RISER BOOSTER MUD VOLUME (BBL) Weight CaCl2 **GELS** HTHP In Pits 891 bbl Liner Size Liner Size 5.25 Liner Size 5.25 9-10.2 8-20 5-12 >300 ±260K <10 <25 <10 In Hole 756 bbl Stroke 12 Stroke 12 Stroke 6/19/20 6/18/20 1357 bbl 0.0763 bbl/stk 0.0763 bbl/stk 0.0000 20 0 Time Sample Taken 2:00 1:30 Storage 2050 bbl stk/min stk/min stk/min gal/min gal/min 3697 bbl gal/min Sample Location suction shaker Tot. on Location 64 0 O n = 0.610 K = 215.795 Flowline Temperature °F 120 °F 118 °F PHHP = 0**CIRCULATION DATA** Depth (ft) 18.039 17 902 Bit Depth = 11,600 ' Washout = 1% Pump Efficiency = 95% Mud Weight (ppg) 9.0 9.0 Volume to Bit 163.5 bbl Strokes To Bit 2 142 Time To Bit 107 min **Drill String** Disp. Funnel Vis (sec/qt) @ 108 °F 45 46 Bottoms Up Vol. 302.1 bbl BottomsUp Stks 3,959 BottomsUp Time 198 min 600 rpm 29 32 66.0 bbl TotalCirc Vol. 1356.6 bbl TotalCirc Stks 17.777 Total Circ Time 889 min **DRILLING ASSEMBLY DATA** 300 rpm 19 21 **SOLIDS CONTROL** 15 18 OD (in.) Screens 200 rpm **Tubulars** ID (in.) Length Top Unit Hours 10 13 Drill Pipe 0' Shaker 1 170 24.0 100 rpm 4.500 3.826 8,805 6 5.250 43' 8,805 Shaker 2 170 Agitator 2.750 24.0 6 rpm 5 6 Drill Pipe 4.500 3.826 2,609' 8,848' Shaker 3 170 24.0 3 rpm 10 11 Direct. BHA 5.250 11.456 Centrifuae 1 Plastic Viscosity (cp) Yield Point (lb/100 ft²) T0 = 9 10 **CASING & HOLE DATA** 6/11 6/12 Casing OD (in.) ID (in.) Gel Strength (lb/100 ft2) 10 sec/10 min Depth Top 30 min 14 13 **VOLUME ACCOUNTING (bbls)** Riser Gel Strength (lb/100 ft2) @ 250 °F 6.0 6.0 Surface 10 3/4 2.989 0' 3332.1 HTHP Filtrate (cm/30 min) Prev. Total on Location Int. Csg. HTHP Cake Thickness (32nds) 3.0 2.0 7 5/8 6.875 10,237 0' Transferred In(+)/Out(-) 778.0 Retort Solids Content 9% 9% Oil Added (+) 122 1 Corrected Solids (vol%) 7.1% 7.2% Barite Added (+) 0.0 Retort Oil Content 71% 71% Open Hole Size 6.818 18.039 Other Product Usage (+) 13.9 **ANNULAR GEOMETRY & RHEOLOGY** Retort Water Content 20% 20% Water Added (+) 100.0 78:22 O/W Ratio 78:22 Left on Cuttings (-) -41.0 annular meas velocity flow ECD section depth ft/min reg lb/gal 46,000 46.500 Whole Mud Chlorides (ma/L) Evap/ Trips/ Cent -45.0 265,062 267,174 -562.8 Water Phase Salinity (ppm) Formation losses Whole Mud Alkalinity, Pom 1.5 1.7 6.875x4.5 8,805' 58.2 9.85 Est. Total on Location 3697.3 lam 2 ppb 2.2 ppb 6.875x5.25 8,848 79.7 10.34 Est. Losses/Gains (-)/(+) 0.0 Excess Lime (lb/bbl) lam 455 v 440 v 6.875x4.5 **BIT HYDRAULICS DATA** Electrical Stability (volts) 10,237 58.2 lam 10.71 2.95 2.94 6.818x4.5 11,456' 11.23 Bit H.S.I. Average Specific Gravity of Solids 59.9 lam Bit ΔP Nozzles (32nds) 4.7% 4.7% 6.818x5.25 Percent Low Gravity Solids 11,600' 83.0 11.76 0.00 2 psi 16 16 16 Nozzle 16 16 ppb Low Gravity Solids 39 ppb 39 ppb 16 Bit Impact Velocity Force Percent Barite 2.5% 2 4% ppb Barite 35 ppb 35 ppb **BIT DATA** Manuf./Type Ulterra/U611S 5 lbs 17 Estimated Total LCM in System Size Depth In Hours Footage ROP ft/hr Motor/MWD Calc. Circ. Pressure ppb

Remarks/Recommendations:

Sample Taken By

OBM REC. --8585 bbls Daily Rec 778bbls

OBM on Surface _2,941-bbls (storage + Active)

OBM Daily Gain / Loss (-998bbls) / Total G/L (-5,099-bbls)

Kill mud& New Build: 393bbls-14.5# --1366bbls-9# \$65.00/bbl

A Roman

Discounted OBM: 291 bbl_11.0# _\$15.00/bbl

6 3/4 Rig Activity:

M Washburi

16.620 ft

Drilled to TD 18039'MD / 10,221' TVD. Pump 3, 30ppb sweep and circulate clean up cycle prior to wash and ream back to 16300'. At this depth circulate BU and pump 240bbls of 30ppb LCM (1st Response / New Carb M / CyberSeal) spot it out the bit. Continue POOH in good fashion, keeping hole full on back side. Plan forward, Stop POOH at the shoe and spot heavy OBM outside the bit for mud cap. will resume POOH. At the time of report bit passing 10668'.

86.5

1.200 psi

1.480 psi

1.384 ft

16.0

En	g. 1:	Mil	ke W	ashbı	urn	Er	ng. 2:	Adolf	o Roman	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Ph	one:	36	61-94	5-57	77	Ph	none:	956-8	321-9994	Phone:	432-686-7361	Phone:	-			
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be	ecommendation, exp used if the user so ation, and this is a r	elects, however	, no representation	nas been prepared on is made as to the	\$32,390.15	\$359,486.07
												INCLUDI	NG 3RD PAR	TY CHARGES	\$41,979.05	\$476,620.57

MATERIAL CONSUMPTION

	MAG	NOLIA OIL		Well Name a	OODRICH (Rig Name and 24		ort #19
	DAILY	USAGE 8	& COST					СИМІ	JLATIVE
Item	Unit	Unit Cost	Previous	Received	Closing	Daily	Daily Cost	Cum	Cum Cost
ALUMINUM TRISTEARATE	25# sk	\$162.83	Inventory	Roodivou	Inventory	Usage	Daily Goot	Usage	2 \$325.66
SAPP (50)	50# sk	\$44.50						4	
PHPA LIQUID (pail)	5 gal	\$41.36	88		88				2 \$82.72
DYNA DET	pail	\$32.23							8 \$257.84
EVO-LUBE	gal	\$9.31	975		975				
GEL (100)	100# sk	\$10.00	70		70				
DENTONE OF (50)	50" 1	* 400.04	47	40	50		04.447.50		0 407.00
BENTONE 38 (50) CACL2 (50)	50# sk 50# sk	\$163.94 \$14.32	17 112	40 112		7	\$1,147.58	39	0 \$8,197.00 0 \$5,584.80
LIME (50)	50# sk	\$5.00	200	50		40	\$200.00	35	
BENTONE 910 (50)	50# sk	\$59.94	1		1	10	Ψ200.00	3	_
BENTONE 990 (50)	50# sk	\$83.59	16	40	53	3	\$250.77	6	
OPTI G	50# sk	\$30.59	135	40	175			13	5 \$4,129.65
OPTI MUL HP	gal	\$10.75		550	550			89	0 \$9,567.50
OPTI WET	gal	\$8.34	55	440	495			45	0 \$3,753.00
NEW PHALT	50# sk	\$38.72	55		55			8	
NEWCARB 200	50# sk	\$5.25	90		15	75	\$393.75	17	
MAGMAFIBER F (25)	25# sk	\$28.05						3	
NEWCARB 100 OIL SORB (25)	each 25# sk	\$5.37 \$4.75	28		28			5	
CYBERSEAL	25# SK each	\$4.75 \$21.47	100	60		40	\$858.80	24	
<u></u>	Juli	Ψ=1.71	100	- 55	.20		\$550.00	24	
NEW-WATE (SACK BARITE)	100# sk	\$11.50	160		160				1
BARITE BULK (100)	100# sk	\$7.00	1200		1200			117	5 \$8,225.00
									<u> </u>
DYNA FIBER MED.	each	\$53.67	60	80			\$1,073.40	4	
FIBER PLUG	each	\$30.37	30		25	5	\$151.85		5 \$151.85
MAGMAFIBER R (30)	30# sk	\$28.05	80		80				
									+
									+
									+
									+
									-
OPTI DRILL (OBM)	bbl	\$65.00	3011	778	3406	383	\$24,895.00	362	7 \$235,755.00
MAGNOLIA OBM	bbl	-						16	6
WAYOUNG ODIVI	ומט	 						16	1
DISCOUNTED OBM	bbl	\$15.00	321		291	30	\$450.00	111	2 \$16,680.00
DIOCOCKY ED ODIN	551	ψ10.00	OZ I		201		Ψ100.00		- 4.0,000.00
		1						<u> </u>	
									
ENGINEEDING (24 HP)	L	\$925.00					¢1 050 00		4 \$31,450.00
ENGINEERING (24 HR) ENGINEERING (DIEM)	each bbl	\$925.00				2	\$1,850.00 \$60.00		4 \$31,450.00 4 \$1,020.00
ENGINEERING (DIEM) ENGINEERING (MILES)	each	\$1.00					ψου.υυ	406	
	Juli	ψ1.00						400	,,555.00
SCALE TICKET		\$15.00							3 \$45.00
					1 1			193	0 \$4,824.05
TRUCKING (cwt)	each	\$2.50						193	0 \$4,624.05
TRUCKING (cwt) TRUCKING (min)	each each	\$2.50 \$795.00				1	\$795.00		1 \$795.00
TRUCKING (cwt) TRUCKING (min) PALLETS (ea)	each each	\$795.00 \$12.00				12	\$144.00	3	1 \$795.00 9 \$468.00
TRUCKING (cwt) TRUCKING (min)	each	\$795.00							1 \$795.00 9 \$468.00

THIRD PARTY COST SHEET

Date	Operator			Well Name a	nd No.		Rig Name an	d No.	Report No.	
06/19/20	MAGI	NOLIA OIL	& GAS	LEVI G	OODRICH	U2 - 3H	2	48	Repo	rt #19
	DAILY	USAGE 8	& COST						CUMU	LATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost	- - -	Cum Usage	Cum Cost
Diesel Transfer from 2H	gal	\$0.91								
Diesel Transfer from Grand Canyon A - 1H	gal	\$0.87							2000	\$1,740.00
Diesel transfer from Grand Canyon A - 1H	gal	\$0.96						-	7199	\$6,911.04
Diesel 5/6/20	gal	\$0.90							2159	\$1,943.10
DIESEL TRANSFER FROM 2H	gal	\$1.16							7872	\$9,131.52
DIESEL 6/10/20	gal	\$1.22							7400	\$9,028.00
Diesel 6_11_20	gal	\$1.26							7399	\$9,322.74
DIESEL 6/12/20	gal	\$1.28							7400	\$9,472.00
DIESEL 6/12/20	gal	\$1.28						<u> </u>	7400	\$9,472.00
DIESEL 6/14/29	gal	\$1.21							7200	\$8,712.00
Diesel 6_15_20	gal	\$1.20							7431	
DIESEL 6/16/20	gal	\$1.22						_	7200	\$8,784.00
DIESEL 6/16/20	gal	\$1.22							7400	
DIESEL 6/17/20	gal	\$1.30			872	5128	\$6,666.40		6133	\$7,972.90
DIESEL 6/17/20	gal	\$1.30			2200					
DIESEL 6/18/20	gal	\$1.30		7200	7200			-		
								- - -		
								-		
								 - 		
TURBO CHEM FIRST RESPONSE	each	\$41.75	200		130	70	\$2,922.50	<u>-</u>	400	\$16,700.00
								- -		
								- -		
								-		
								-		
								-		
								-		
								<u>-</u>		
								-		
								-		
					Daily S	ub-Total \$	9,588.90		\$117, ⁻	134.50
	Cumi	ulative Total	I AES & 3rd	Party \$476	,620.57					

FLUID VOLUME ACCOUNTING

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name: MAGNOLIA OIL & GAS

Rig Name: 248
Well Name: LEVI

LEVI GOODRICH U2 - 3H

Grand Totals	Date Bit Size	6/7/20	6/8/20									WEEK 2							WEEK 3			
Grand Totals	Bit Size		0/0/20	6/9/20	6/10/20	6/11/20	6/12/20	6/13/20	6/14/20	6/15/20	6/16/20	6/17/20	6/18/20	6/19/20	6/20/20	6/21/20	6/22/20	6/23/20	6/24/20	6/25/20	6/26/20	6/27/20
Grand Totals	Bit Size	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat
Totals		6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4								
	Starting Depth	10,245	10,245	10,245	10,311	12,303	14,073	15,359	16,272	16,365	16,620	16,620	16,620	17,130	18,039							
7,794	Ending Depth	10,245	10,245	10,311	12,303	14,073	15,359	16,272	16,365	16,620	16,620	16,620	17,130	18,039								
, -	Footage Drilled	-	-	66	1,992	1,770	1,286	913	93	255	-	-	510	909	-	-	-	-	-	-	-	-
345	New Hole Vol.	-	-	3	88	78	57	40	4	11		-	23	40	_	_	-	_	_	-	-	_
	Starting System Volume	470	2,440	2,929	2,908	2,755	2,546	2,601	3,081	3,111	2,769	2,978	3,511	3,332	3,697	3,697	3,697	3,697	3,697	3,697	3,697	3,697
101	Chemical Additions	-	_	9	12	11	16	17	1	7	1	10	3	14		,	,		•		ŕ	
	Base Fluid Added	-	-	12	55	205	218	209	40	156	88	422	67	122								
,	Barite Increase	-	-	-	-			17	32				14	-								
	Weighted Mud Added	1,970	489	-	-		407	811	530	565	799	1,004	762	778								
	Slurry Added	-	-	-	-							,	-	-								
626	Water Added	-	-	-	50	102	100	100	17	42	20	85	10	100								
10	Added for Washout	-	-	-	-							10	-	-								
10.508	Total Additions	1,970	489	20	116	318	741	1,154	620	770	908	1,531	856	1,014	-	-	-	-	-	-	-	-
•	Surface Losses	-,		8	-	36	35	35	5	15	25	40	65	45								
	Formation Loss	_	_	-	150	378	563	568	577	1,066	673	928	948	563								
	Mud Loss to Cuttings	-	_	3	92	82	58	41	4	12	0/0	-	23	41								
	Unrecoverable Volume	-	_	30	-				<u> </u>				-									
	Centrifuge Losses	-	-	-	28	30	30	30	5	20		30	-	_								
7,281	Total Losses	-	-	41	270	526	686	674	591	1,112	698	998	1,036	649	-	-	-	-	-	-	-	-
-	Mud Transferred Out	-	-	-																		
3,697	Ending System Volume	2,440	2,929	2,908	2,755	2,546	2,601	3,081	3,111	2,769	2,978	3,511	3,332	3,697	3,697	3,697	3,697	3,697	3,697	3,697	3,697	3,697
-	Mud Recovered																					
			ı	_	omment	· ·		·	'			omment	·					_	omment			
				U	omment	S.					U	Omment	S.					U	omment	s.		
		6/7/20	TRANSEE	R FROM 2	ч				6/14/20							6/21/20						
		0///20	TIVALIO	INT NOW 2					0/14/20							0/21/20						
]																					
8,585		6/8/20			BOP's. Re	ceived 489	bbls 10.9#		6/15/20							6/22/20						
,			Discounte	a mua.																		
	•																					
		6/9/20	TIH, FIT 1	3emw / 160	00psi. Drill	ing ahead o	on Curve se	ection.	6/16/20							6/23/20						
				lateral sec																		
		6/10/20		ippg. Addir Cyberseal/r			m First		6/17/20							6/24/20						
			.0000.100/			<i>-</i>																
		6/11/20							6/18/20	Resume di	rilling We	Il continues	to take mu	ıd		6/25/20						
		0,11,20							0/10/20		g		to tano mo			0/20/20						
										Drilled to T	D 18039',	circulate 3	sweeps out	t of hole. W	ash &							
		6/12/20							6/19/20	Ream up to	o 16300', c	irculate BU	and spot 2	40bbls of 3		6/26/20						
		6/12/20							6/19/20	Ream up to	o 16300', c	irculate BU		40bbls of 3		6/26/20						
		6/12/20 6/13/20							6/19/20	Ream up to	o 16300', c	irculate BU	and spot 2	40bbls of 3		6/26/20 6/27/20						
8,585		6/8/20	Testing an		BOP's. Re			:														

110 Old Market St. St Martinville, LA 70582

TEL: (337) 394-1078

0.3° 2,795' TVD

Operator MAGN	IOLIA C	IL & G	AS	Contractor PA	TTERSO)N	County / Parish WASI	n / Block HINGTO		_	Start Date 4/27/20		hr ftg.		D	rilled [Depth 18,039	ft
Well Name and No				Rig Name a			State			Spud Dat			urrent R	ROP	A	ctivity	-,	
	OODRI	CH U2	- 3H		248			EXAS			4/27/20						D / PO	
Report for JAMES D	YFR / F	ROBBY	GWIN	Report for	ool Push	nor	Field / OSC-G	# DDINGS		Fluid Typ	• OBM	Cir	rculatin	g Rate	С	irculat	ing Pressu	re
JANESD			TY SPECI			101		DLUME (BI	BI /		PUMP #1			PUMP #2		RISI	ER BOO	STE
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits		bbl	Liner S		.25 L	iner S			Liner		,O1L
9-10.2	8-20	5-12	>300	±260K	<10 <25	<10	In Hole		bbl bbl	Strok			Strok			Stro		
3-10.2		JD PROF		±20010	10 \23	\10	Active		l bbl	bbl/st		763	bbl/st			bbl/		
Time Sample		JD I KOI	LIVIILO	2:00		14:00	Storage		3 bbl	stk/m			stk/m		703	stk/r		
Sample Locati				suction		suction	Tot. on Loc	' <u></u>	7 bbl	gal/m			gal/m			gal/r		
Flowline Temp		=		120 °F		300001	Mud Wt. =		=10	YP=		RCULA			r		.610 K	- 21
Depth (ft)	- Cratare 1			18,039'		18,039'		Depth = 2				out = 19					ency = 9	
Mud Weight (r	ona)			9.0		9.0		•		2.1 b		rokes To					o Bit	70
Funnel Vis (se	,		@ 108 °F	45		43	Drill String Disp.	Bottoms U				omsUp S			Bottom			
600 rpm	,0,41,			29		30	18.0 bbl		•	864.1		otalCirc.S			Total (
300 rpm				19		20	10.0 001	DRILLIN				otaione.e	, into	S			NTROL	
200 rpm				15		17	Tubulars			(in.)	Length	Тор		Unit		Scre		Hour
100 rpm				10		12	Drill Pipe	4.500		326	-2,545'	. 04		Shaker		17		
6 rpm				6		6	Agitator	5.250		750	43'	-2,54	5'	Shaker		17		
3 rpm				5		5	Drill Pipe	4.500		326	2,609'	-2,502		Shaker		17		
Plastic Viscos	ity (cn)		@ 150 °F	10			Direct. BHA	5.250		500	144'	106'		Centrifug		•••		
Yield Point (lb.	,		T0 = 4	9		10	2			HOLE D				90				
Gel Strength (10 s	ec / 10 min	6/11		5/12	Casing			(in.)	Depth	Тор						
Gel Strength (30 min	14		13	Riser	- ()		,				VOLUM	E ACC	OUN	NTING (bbls)
HTHP Filtrate			@ 250 °F	6.0		6.0		10 3/4			2,989'			Prev. T				369
HTHP Cake T	•			3.0		2.0	Int. Csg.	7 5/8	6.8	375	10,237'			Transfe				
Retort Solids (,		9%		9%					,				Oil A			
Corrected Soli	ids (vol%)			7.1%		7.2%								E	Barite A		. ,	
Retort Oil Con	tent			71%		71%	Open	Hole Size	6.8	318	18,039'			Other Pro	oduct L	Jsag	e (+)	
Retort Water (Content			20%		20%	ANI	NULAR GI	OME	TRY &	RHEOLO	OGY		٧	Vater A	Adde	d (+)	
O/W Ratio				78:22		78:22	annula	ır		veloc	ity flow	ECD		Lef	t on Cu	utting	js (-)	
Whole Mud Cl	hlorides (n	ng/L)		46,000		46,000	section	ı ae	pth	ft/mi	-	lb/ga		E	vap/ Tr	ips/	Cent	
Water Phase	Salinity (p	pm)		265,062		265,062				ļ		<u> </u>		F	ormatio	on lo	sses	
Whole Mud Al	kalinity, P	om		1.5		1.4	6.875x5.	.25 4	3'		lam	9.00	,	Est. T	otal on	Loca	ation	369
Excess Lime (lb/bbl)			2 ppb		1.8 ppb	6.875x4	1.5 2,6	652'		lam	9.00	,	Est. Loss	ses/Gai	ins (-	 ·)/(+)	-130
Electrical Stab	oility (volts)		440 v		450 v	6.875x5.	.25 2,7	795'		lam	9.00	,	BIT	HYDRA	AULI	CS DAT	Ά
Average Spec	ific Gravit	y of Solid	s	2.95		2.94							E	Bit H.S.I.	Bit Δ	·P	Nozzles	(32nd
Percent Low 0	Gravity So	lids		4.7%		4.7%										-	16 1	6
ppb Low Grav	ity Solids			39 ppb		39 ppb							R	Bit Impact	Nozz		16 1	6 1
Percent Barite	1			2.5%		2.4%								Force	Veloc (ft/se	,		
ppb Barite				35 ppb		35 ppb	BIT D	DATA	Ма	nuf./Typ	oe Ulte	rra/U61	18			-		
Estimated Tot	al LCM in	System					Size	Depth In	Но	ours	Footage	ROP ft	/hr	Motor/M\	ND 0	Calc.	Circ. P	ressu
Sample Taker	п Ву			A Roman		M Washburn	6 3/4	16,620 ft	16	6.0	1,384 ft	86.5	,	1,200 p	osi		1,255 p	osi
Afternoon Rema	arks/Recor	nmendatio	ons:				Afternoon R	Rig Activity:				•			!			
							kill m conti	inue pullir nud down nue pullin continue	drill p g out	ipe and of hole	d displace, momite	e into a or fill on	nnulu trip t	us, leavin tank, at 7	ig 2000 100' p	0' ins ump	side pip 30 bbl	e,

OUTSOURCE FLUID SOLUTIONS LLC.

0.4° 7,228' TVD

Operator	NOLIA /	OIL & G	. 4 6	Contractor	TERSO	NI.	County / Parish /			Engineer Start D		24 hr fi	g. O ft		Drilled D	-	O 44	
Well Name and No.	NOLIA	OIL & C	DAO	Rig Name an		JIN .	State	IINGTO	N	Spud Date	1120	Curren			Activity	8,03	9 11	_
	OODR	ICH U2	- 3H		248			EXAS		04/2	7/20		0 ft/hr				asing	j
Report for JAMES D	YFR /	ROBBY	CWIN	Report for	ol Pusi	nor.	Field / OCS-G #	DINGS		Fluid Type OE	RМ		ating Rate 224 gpm		Circulati	ng Pres 700		
UANIEU			TY SPECIF			101		LUME (BB	sL)	PUM			PUMP #2				OSTE	R
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	•	2 bbl	Liner Size	5.25	Line		25	Liner			
8.5-10.2	8-20	5-12	>300	±260K	<10 <25	<10	In Hole		5 bbl	Stroke	12			2	Stro			
				6/20/20		6/19/20	Active	112	7 bbl	bbl/stk	0.0763	bb	/stk 0.0	763	bbl/s	stk	0.000	00
Time Sample	Taken			2:00		14:00	Storage	197	3 bbl	stk/min	0	stk	min 7	70	stk/n	nin		
Sample Locati	on			suction		suction	Tot. on Lo	cation 359	0 bbl	gal/min	0	gal	/min 2	24	gal/r	nin	0	
Flowline Temp	erature °l	F		100 °F				PHHP = 92	<u> </u>	CI	RCULATI	ON DA	TA		n = 0.	.637 I	< = 172.	351
Depth (ft)				18,039'		18,039'	Bit I	Depth = 7,2	241 '		Washout	= 1%		Pump	Efficie	ency =	95%	
Mud Weight (p	pg)			8.9		9.0	Drill String	Volume	to Bit	128.6 bbl	Stroke	s To Bit	1,685		Time T	o Bit	24 mi	in
Funnel Vis (se	c/qt)		@ 108 °F	41		43	Disp.	Bottoms U	p Vol.	156.6 bbl	Bottoms	Jp Stks	2,052	Botto	msUp ⁻	Time	29 mi	in
600 rpm				28		30	47.2 bbl	TotalCir	c.Vol.	1127.2 bbl	TotalC	irc.Stks	14,772	Tota	l Circ.	Time	211 m	iin
300 rpm				18		20		DRILLING	G ASS	SEMBLY DA	TA		s	OLIDS	S CON	ITRO	L	
200 rpm				15		17	Tubulars	OD (in.)	ID	(in.) Ler	ngth	Тор	Unit		Scre	ens	Hour	s
100 rpm				9		12	Casing	5.500	4.	670	0'	0'	Shakei	1	17	0	12.0)
6 rpm				5		6	Casing	5.000	4.	276 7,2	241'	0'	Shaker	2	17	0	12.0)
3 rpm				4		5					7	,241'	Shaker	. 3	17	0	12.0)
Plastic Viscosi	ity (cp)		@ 150 °F	10		10					7	,241'	Centrifuç	ge 1				
Yield Point (lb/	/100 ft²)		T0 = 3	8		10		CASIN	IG & F	HOLE DATA								
Gel Strength (lb/100 ft²)	10	sec/10 min	5/10		5/12	Casing	OD (in.)	ID	(in.) De	pth	Тор						
Gel Strength (lb/100 ft ²)		30 min	13		13	Riser						VOLUN	IE AC	COUN	ITING	(bbls)	,
HTHP Filtrate	(cm/30 m	in)	@ 250 °F	8.0		6.0	Surface	10 3/4		2,9	989'	0'	Prev. T	otal o	n Loca	ation	369	7.3
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.	875 10,	237'	0'	Transfe	erred li	n(+)/O	ut(-)		
Retort Solids (Content			8%		9%								Oil	Added	(+) b	20	8.0
Corrected Soli	ds (vol%)	1		6.2%		7.2%								Barite	Added	(+) b	(0.0
Retort Oil Con	tent			72%		71%	Oper	Hole Size	6.	818 18,	039'		Other Pr	roduct	Usage	e (+)	(0.0
Retort Water (Content			20%		20%	ANI	NULAR GE	OME	TRY & RHE	OLOGY		,	Water	Added	(+) b		
O/W Ratio				78:22		78:22	annulai		eas.	velocity		ECD	Le	ft on C	Cutting	ıs (-)	(0.0
Whole Mud Ch	nlorides (r	mg/L)		44,000		46,000	section	de	pth	ft/min	reg l	b/gal	E	vap/ ٦	Γrips/ (Cent		
Water Phase	Salinity (p	pm)		256,494		265,062							F	ormat	tion los	sses	-12	8.0
Whole Mud Al	kalinity, P	om		1.5		1.4	6.875x5	7,2	241'	247.0	turb	9.43	Est. 7	otal o	n Loca	ation _	359	0.1
Excess Lime (lb/bbl)			2 ppb		1.8 ppb							Est. Los	ses/G	ains (-)/(+)	(0.0
Electrical Stab	ility (volts)		444 v		450 v							BIT	HYDR	RAULI	CS DA	ATA	
Average Spec	ific Gravit	y of Solids	3	3.11		2.94							Bit H.S.I.	Bit	ΔΡ	Nozzle	es (32n	ds)
Percent Low G	Bravity So	lids		3.5%		4.7%												
ppb Low Grav	ity Solids			29 ppb		39 ppb							Bit Impact	Noz Velc				
Percent Barite				2.7%		2.4%							Force	(ft/s	-			
ppb Barite				39 ppb		35 ppb	BIT D		Ма	anuf./Type	Г			<u> </u>				
Estimated Total	al LCM in	System	ppb				Size	Depth In	Ho	ours Foo	tage RC	P ft/hr	Motor/M	WD	Calc.	Circ.	Pressu	ıre
Sample Taker	Ву			A Roman	0	M Washburn	6 3/4											_
Remarks/Reco	mmendati	ons:					Rig Activity:											I

OBM REC. --8585 bbls Daily Rec --bbls

OBM on Surface _2,815-bbls (storage + Active)

OBM Daily Gain / Loss (-109bbls) / Total G/L (-5,621-bbls)

Kill mud& New Build: 316bbls-14.5# --1366bbls-9# \$65.00/bbl

Discounted OBM: 291 bbl_11.0# _\$15.00/bbl

Rig Activity:

Finish POOH and lay down Directional tools. Clean up Rig floor and Rig up Casing tools. Make up Casing shoe and start running 5" casing in the hole. Breake circulation at 5000', continue TIH, @7100' lost displacement, Circulate BU and monitor losses, +- 45bbls lost while circulating. Shut down circulation and perform flow ck. Well Flowing; shut well in and monitor Casing presure while installing Rotating head to continue Stripping casing in the hole. At this time installing Rotating head,

Е	ng. 1:	Mi	ke W	ashbı	urn	Er	ng. 2:	Adolf	o Roman	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
P	hone:	36	61-94	5-57	77	Pł	none:	956-8	321-9994	Phone:	432-686-73	61 Phone:	-			
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be	used if the use		ver, no represen	in, has been prepared tation is made as to the	\$8,865.00	\$368,351.07
												INCLU	IDING 3RD P	ARTY CHARGES	\$9,998.60	\$486,619.17

MATERIAL CONSUMPTION

Date 06/20/20	Operator MAGI	NOLIA OIL		Well Name a LEVI G	nd No.	U2 - 3H	Rig Name ar	id No. 48	Report No. Repo	rt #20
	DAILY	USAGE 8	& COST						CUMUI	ATIVE
Item	Unit	Unit Cost	Previous	Received	Closing	Daily	Daily Cost		Cum	Cum Cost
ALUMINUM TRISTEARATE	25# sk	\$162.83	Inventory	Roodivou	Inventory	Usage	Duny Good		Usage	\$325.66
SAPP (50)	50# sk	\$44.50							40	
PHPA LIQUID (pail)	5 gal	\$41.36			88				2	\$82.72
DYNA DET	pail	\$32.23							8	\$257.84
EVO-LUBE	gal	\$9.31	975		975					
GEL (100)	100# sk	\$10.00	70		70					
DENTONE 00 (50)	50"	* 400.04								#0.107.00
BENTONE 38 (50) CACL2 (50)	50# sk 50# sk	\$163.94 \$14.32	50 224		50 224				390	\$8,197.00 \$5,584.80
LIME (50)	50# sk	\$5.00			210				350	\$1,750.00
BENTONE 910 (50)	50# sk	\$59.94	1		1				33	\$1,978.02
BENTONE 990 (50)	50# sk	\$83.59			53				62	
OPTI G	50# sk	\$30.59	175		175				135	\$4,129.65
OPTI MUL HP	gal	\$10.75	550		550				890	\$9,567.50
OPTI WET	gal	\$8.34	495		495				450	\$3,753.00
NEW PHALT	50# sk	\$38.72	55		55				85	\$3,291.20
NEWCARB 200	50# sk	\$5.25	15		15				171	\$897.75
MAGMAFIBER F (25)	25# sk	\$28.05							30	\$841.50
NEWCARB 100	each	\$5.37			00				50	\$268.50
OIL SORB (25) CYBERSEAL	25# sk each	\$4.75 \$21.47	28 120		28 120				22 240	\$104.50 \$5,152.80
OIBLIVOLAL	eacn	φ∠1.47	120		120			}	240	ψυ, ισ∠.δ0
NEW-WATE (SACK BARITE)	100# sk	\$11.50	160		160			1		
BARITE BULK (100)	100# sk	\$7.00			1200			1	1175	\$8,225.00
										, , , , , , , , , , , , , , , , , , , ,
]		
DYNA FIBER MED.	each	\$53.67	120		120				45	\$2,415.15
FIBER PLUG	each	\$30.37	25		25				5	\$151.85
MAGMAFIBER R (30)	30# sk	\$28.05	80		80					
								1		
								1		
]		
OPTI DRILL (OBM)	bbl	\$65.00	3406		3299	107	\$6,955.00]	3734	\$242,710.00
MAGNOLIA OBM	bbl								166	
DIOCOLINITES 2511		*								040.55
DISCOUNTED OBM	bbl	\$15.00	291		291				1112	\$16,680.00
		 						}		
		1						1		
								1		
								1		
ENGINEERING (24 HR)	each	\$925.00					\$1,850.00			\$33,300.00
ENGINEERING (DIEM)	bbl	\$30.00				2	\$60.00			\$1,080.00
ENGINEERING (MILES)	each	\$1.00							4068	\$4,068.00
OOM E TIQUET		*								*
SCALE TICKET		\$15.00						-	3	\$45.00
TRUCKING (out)	- Occh	\$2.50						-	1930	¢/ 02/ 05
TRUCKING (cwt) TRUCKING (min)	each each	\$2.50 \$795.00						-	1930	\$4,824.05 \$795.00
PALLETS (ea)	each	\$12.00					1	1	39	\$468.00
SHRINK WRAP (ea)	each	\$12.00						1	37	\$444.00
X7			1	i			1	İ		
		Daily S	ub-Total \$8	3,865.00	Cumulati	ve Total \$3	368,351.07		\$368,	

THIRD PARTY COST SHEET

Date	Operator			Well Name a	ınd No.		Rig Name an	d No.	Report No.	
06/20/20	MAGI	NOLIA OIL	& GAS	LEVI G	OODRICH	U2 - 3H	2	48	Repo	rt #20
	DAILY	USAGE 8	& COST						CUMUI	_ATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost	-	Cum Usage	Cum Cost
Diesel Transfer from 2H	gal	\$0.91						-		
Diesel Transfer from Grand Canyon A - 1H	gal	\$0.87						Ī	2000	\$1,740.00
Diesel transfer from Grand Canyon A - 1H	gal	\$0.96							7199	\$6,911.04
Diesel 5/6/20	gal	\$0.90							2159	\$1,943.10
DIESEL TRANSFER FROM 2H	gal	\$1.16							7872	\$9,131.52
DIESEL 6/10/20	gal	\$1.22							7400	\$9,028.00
Diesel 6_11_20	gal	\$1.26						_	7399	\$9,322.74
DIESEL 6/12/20	gal	\$1.28							7400	\$9,472.00
DIESEL 6/12/20	gal	\$1.28						_	7400	\$9,472.00
DIESEL 6/14/29	gal	\$1.21						_	7200	
Diesel 6_15_20	gal	\$1.20						_	7431	
DIESEL 6/16/20	gal	\$1.22							7200	
DIESEL 6/16/20	gal	\$1.22							7400	
DIESEL 6/17/20	gal	\$1.30				872	\$1,133.60		7005	\$9,106.50
DIESEL 6/17/20	gal	\$1.30			2200			-		
DIESEL 6/18/20	gal	\$1.30	7200		7200			-		
								<u>-</u>		
								_		
								_		
								_		
								_		
TURBO CHEM FIRST RESPONSE	each	\$41.75	130		130				400	\$16,700.00
	ļ									
	<u> </u>									
	<u> </u>							-		
	 							-		
	 									
	+									
	 							-		
	+							-		
	 									
								-		
	+									
	+							}		
	+							}		
	+									
	+									
	 									
	1									
					Daily S	ub-Total \$	1,133.60		\$118,2	268.10
	Cumi	ulative Total	I AES & 3rd	Party \$486	5,619.17					
						ı				

FLUID VOLUME ACCOUNTING

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name: Well Name: MAGNOLIA OIL & GAS

248

LEVI GOODRICH U2 - 3H

					WEEK 1				1			WEEK 2							WEEK 3			
	Date	6/7/20	6/8/20	6/9/20	6/10/20	6/11/20	6/12/20	6/13/20	6/14/20	6/15/20	6/16/20	6/17/20	6/18/20	6/19/20	6/20/20	6/21/20	6/22/20	6/23/20	6/24/20	6/25/20	6/26/20	6/27/20
	Date	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat
	Bit Size	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	Oun	WOII	Tuc	1100	ina	• • • • • • • • • • • • • • • • • • • •	Out
	Starting Depth	10,245	10,245	10,245	10,311	12,303	14,073	15,359	16,272	16,365	16,620	16,620	16,620	17,130	18,039	18,039						
	Ending Depth		10,245	10,311	12,303	14,073	15,359	16,272	16,365	16,620	16,620	16,620	17,130	18,039	18,039	10,000						
	<u> </u>	10,245	10,245	· ·								<u> </u>										
· ·	Footage Drilled	-	-	66	1,992	1,770	1,286	913	93	255	-	-	510	909	-	-	-	-	-	-	-	-
	New Hole Vol.	-	-	3	88	78	57	40	4	11	-	-	23	40	-	-	-	-	-	-	-	-
	Starting System Volume	470	2,440	2,929	2,908	2,755	2,546	2,601	3,081	3,111	2,769	2,978	3,511	3,332	3,697	3,590	3,590	3,590	3,590	3,590	3,590	3,590
	Chemical Additions	-	-	9	12	11	16	17	1	7	1	10	3	14	-							
	Base Fluid Added	-		12	55	205	218	209	40	156	88	422	67	122	21							
	Barite Increase	-	-	-	-			17	32				14	-	-							
,	Weighted Mud Added	1,970	489	-	-		407	811	530	565	799	1,004	762	778	-							
	Slurry Added	-	-	-	-								-	-	-							
	Water Added	-	-	-	50	102	100	100	17	42	20	85	10	100	-							
	Added for Washout	-	-	-	-							10	-	-	-							
10,529	Total Additions	1,970	489	20	116	318	741	1,154	620	770	908	1,531	856	1,014	21	-	-	-	-	-	-	-
	Surface Losses	-	-	8	-	36	35	35	5	15	25	40	65	45	-							
	Formation Loss	-	-	-	150	378	563	568	577	1,066	673	928	948	563	128							
	Mud Loss to Cuttings	-	-	3	92	82	58	41	4	12		-	23	41	-							
	Unrecoverable Volume	-	-	30	-								-	-	-							
173	Centrifuge Losses	-	-	-	28	30	30	30	5	20		30	-	-	-							
7,409	Total Losses	-	-	41	270	526	686	674	591	1,112	698	998	1,036	649	128	-	-	-	-	-	-	-
-	Mud Transferred Out	-	-	-																		
3,590	Ending System Volume	2,440	2,929	2,908	2,755	2,546	2,601	3,081	3,111	2,769	2,978	3,511	3,332	3,697	3,590	3,590	3,590	3,590	3,590	3,590	3,590	3,590
_	Mud Recovered																					
				-			I				-										I	
					omment	S.					U	omment	S.						omment	S.		
		6/7/20	TRANSFE	R FROM 2	н				6/14/20							6/21/20						
		0/1/20	TIVALION	IN I NOW 2					0/14/20							0/21/20						
			Testing an	d repair to	BOP's. Re	ceived 489	bbls 10.9#															
8,585		6/8/20	Discounte						6/15/20							6/22/20						
	•	CIOIOO	TIH, FIT 1	20mu / 160	Onoi Drill	ing aboad (on Cum 10 or	action	6/16/20							C/02/00						
		6/9/20	1111, 1111 1	Selliw / Too	лоры. Біш	ing aneau t	on curve se	ection.	0/10/20							6/23/20						
		6/10/20	Drilling on MW to 9.6	lateral sec					6/17/20							6/24/20						
		0/10/20		Cyberseal/r					0/11/20							0/24/20						
		6/11/20							6/18/20	Resume d	rilling. We	II continues	s to take mu	ıd.		6/25/20						
										Drilled to T	TD 18039',	circulate 3	sweeps ou	t of hole. W	ash &							
		6/12/20								LCM swee	p outside b	oit. Continu	e POOH to			6/26/20						
		6/13/20							6/20/20	hole.@710	00 lost disp	lacement.	Circulate Bl	on casing ir U and lost 4 n the hole w	5bbls.	6/27/20						

110 Old Market St. St Martinville, LA 70582

TEL: (337) 394-1078

10,163' TVD 21.4°

Operator MAGN	NOLIA C	OIL & G	AS	Contractor PA	TTERSO)N	County / Paris	h / Block	N	Engineer St	tart Date		4 hr ftg	J.		Drilled De	epth 8,03	9 ft
Well Name and No.		CH U2	- 3H	Rig Name a	nd No. 248			EXAS			/27/20	١	urrent					d Csg
Report for	VED / F	,	OWIN	Report for	- I DI		Field / OSC-G			Fluid Type	2014	С	irculati	ng Rate		Circulatin	-	
JAMES D					ol Pusi	ner		DDINGS			OBM						200	•
	l		TY SPECI	l			MUD VO	DLUME (B	BL)	PU	JMP #1			PUMP #2		RISE	R BO	OSTER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	s 770) bbl	Liner Siz	ze 5.	25 I	Liner	Size 5.2	25	Liner S	Size	
8.5-10.2	8-20	5-12	>300	±260K	<10 <25	<10	In Hole	e 75 ⁻	1 bbl	Stroke	1	2	Strol	ke 1:	2	Strok	æ	
		JD PROP	PERTIES	Π	T		Active	116	7 bbl	bbl/stk	0.0	763	bbl/s	stk 0.07	763	bbl/s	tk	
Time Sample	Taken			2:00		14:00	Storag		3 bbl	stk/min	1		stk/n	nin		stk/m	iin	
Sample Locati				suction		suction	Tot. on Loc	cation 349		gal/min			gal/n	nin		gal/m		
Flowline Temp	erature °l	=		100 °F			Mud Wt. =		′=10	YP=8	CII	RCULA	TION	N DATA		n = 0.0	637 k	(= 172.4
Depth (ft)				18,039'		18,039'	Bit D	Depth = 10	,194 '		Wash	out = 1	%	F	Pump	Efficie	ncy =	95%
Mud Weight (p	opg)			8.9		8.9	Drill String	Volume	to Bit	191.2 bl	bl Sti	okes To	Bit		7	Time To	Bit	
Funnel Vis (se	ec/qt)		@ 108 °F	41		40	Disp.	Bottoms L	lp Vol.	205.4 b	bl Botto	omsUp S	Stks		Bottor	nsUp T	ime	
600 rpm				28		27	71.5 bbl	TotalCi	rc.Vol.	1166.6 b	obl To	talCirc.S	Stks		Total	Circ. T	ime	
300 rpm				18		18		DRILLIN	G AS	SEMBLY	DATA			S	OLIDS	CON	TROL	
200 rpm				15		16	Tubulars	OD (in.)	ID	(in.) L	ength	Тор)	Unit		Scree	ens	Hours
100 rpm				9		10	Casing	5.500	4.0	670 2	2,953'			Shaker	1	170)	
6 rpm				5		6	Casing	5.000	4.:	276 7	7,241'	2,95	3'	Shaker	2	170)	
3 rpm				4		5						10,19	94'	Shaker	3	170)	
Plastic Viscos	ity (cp)		@ 150 °F	10		9						10,19	94'	Centrifug	je 1			
Yield Point (lb.	/100 ft²)		T0 = 3	8		9		CASI	NG &	HOLE DA	ATA							
Gel Strength (lb/100 ft²)	10 s	sec / 10 min	5/10		5/11	Casing	OD (in.)	ID	(in.) [Depth	Top						
Gel Strength (lb/100 ft2)	30 min	13		12	Riser							VOLUM	IE AC	COUN	TING	(bbls)
HTHP Filtrate	(cm/30 m	in)	@ 250 °F	8.0		8.2	Surface	10 3/4		2	2,989'			Prev. T	otal or	n Loca	tion	3590.
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.	875 1	0,237'			Transfe	rred Ir	า(+)/Oเ	ut(-)	
Retort Solids (Content			8%		8%									Oil	Added	(+)	
Corrected Soli	ids (vol%)			6.2%		6.2%								E	Barite	Added	(+)	
Retort Oil Con	itent			72%		72%	Oper	Hole Size	6.	818 1	8,039'			Other Pro	oduct	Usage	(+)	
Retort Water (Content			20%		20%	AN	NULAR G	ЕОМЕ	TRY & R	HEOLO	GY		٧	Nater	Added	(+)	
O/W Ratio				78:22		78:22	annula	ar	41-	velocity	y flow	ECI		Lef	ft on C	Cuttings	s (-)	
Whole Mud Cl	hlorides (r	ng/L)		44,000		45,000	section	ı ae	pth	ft/min	, I	lb/ga		E	vap/ T	rips/ C	ent	
Water Phase	Salinity (p	pm)		256,494		260,803		4			•			F	ormat	ion los	ses	
Whole Mud Al	kalinity, P	om		1.5		1.4	6.875x5	5.5 2,9	953'		lam	8.90	0	Est. T	otal or	n Loca	tion	3590.1
Excess Lime ((lb/bbl)			2 ppb		1.8 ppb	6.875x	5 10,	194'		lam	8.90	0	Est. Loss	ses/Ga	ains (-)	/(+)	-96.2
Electrical Stab	oility (volts)		444 v		435 v								BIT I	HYDR	AULIC	S DA	TA
Average Spec	ific Gravit	y of Solid	ls	3.11		3.09								Bit H.S.I.	Bit .	ΔΡΙ	Nozzle	s (32nds)
Percent Low G	Gravity So	lids		3.5%		3.6%								#DIV/0!	#DI\	//0!		
ppb Low Grav	ity Solids			29 ppb		30 ppb								Bit Impact	Noz			
Percent Barite)			2.7%		2.6%								Force	Velo (ft/s	-		
ppb Barite				39 ppb		38 ppb	BIT [DATA	Ма	ınuf./Type)			#DIV/0!		F		
Estimated Total	al LCM in	System					Size	Depth In	Но	ours Fo	ootage	ROP f	t/hr	Motor/M\	WD	Calc.	Circ. I	Pressure
Sample Taker				A Roman		M Washburn	6 3/4										#DIV	0!
Afternoon Rema	arks/Recor	nmendatio	ons:	<u>I</u>	<u> </u>	<u> </u>	Afternoon R	Rig Activity:	<u> </u>	ļ			ļ		ļ			
							and bbls circu lost (gas buste to formati late botto 30 bbls do	r, ma on. R ms up wnho	ximum m tun 5" ca p thru chole. Run t from 8.9	nud cut sing to oke and casing 9 to 8.7	from 9 8562 o d gas b to 1019 , 450 u	0.0 to chang ouste 94, c	irculate bo 8.7 with 6 ge to 5-1/2 er, max mu irculate B lost 8 bbl	600 ui 2" cas ud cut /U thr	nits ga sing ru t 8.7, 5 u chol	as, los in to 9 500 ui ke an	st 38 9000, nits gas d gas

report continue to stage in the hole.

Report #22 TEL: (337) 394-1078

0' TVD

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

0.0°

Operator MAGI	NOLIA (OIL &	GAS	Contractor PA	TTERSO)N	County / Parish /	Block HINGTOI	N	Engineer	Start D		24 hr ft	0 ft	1	Drilled I	Depth 18,0	19 f	t
Well Name and No.				Rig Name ar			State			Spud Dat			Curren			Activity			
Report for	OODR	ICH UZ	2 - 3H	Report for	248		Field / OCS-G #	EXAS		Fluid Typ	04/27	//20	Circula	0 ft/hr			ing Pres		l Rig
JAMES D	YER /	вовв	Y GWIN		ol Pusi	ner		DINGS		, ,	ОВ	М		0 gpm			-	si	
	MUD	PROPE	RTY SPECIF	ICATION	S		MUD VO	LUME (BE	3L)		PUMI	P #1		PUMP #2		RIS	ER B	os.	TER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	0	bbl	Liner	Size	5.25	Liner	Size 5.	.25	Liner	Size		
8.5-10.2	8-20	5-12	>300	±260K	<10 <25	<10	In Hole	0	bbl	Strol	ke	12	Stro	oke 1	12	Stro	ke		
				6/22/20		6/21/20	Active	0	bbl	bbl/s	stk	0.0763	bbl	/stk 0.0	763	bbl/	stk (0.0	0000
Time Sample	Taken			2:00		11:00	Storage	<u>0</u>	bbl	stk/n	nin	0	stk/	min 'min	0	stk/	min		
Sample Locati	on			suction		suction	Tot. on Loc	cation 0	bbl	gal/n	nin	0	gal/	min 'min	0	gal/	min	1	0
Flowline Temp	erature °F	=				110 °F		PHHP = 0		1	CIF	RCULATI	ON DA	TA		n = 0	.667	K = 1	35.006
Depth (ft)				18,019'		18,059'	Е	Bit Depth =	1		١	Nashout :	= 0%		Pump	Effici	ency =	= 95%	6
Mud Weight (p	pg)			9.0		9.0	Drill String	Volume	to Bit	0.0	bbl	Stroke	s To Bit	<u>l</u>	1	Γime ⁻	Го Bit		
Funnel Vis (se	c/qt)		@ 98 °F	40		41	Disp.	Bottoms U	Jp Vol.	0.0	bbl	Bottomsl	Jp Stks		Botton	nsUp	Time		
600 rpm				27		26	0.0 bbl	TotalCi	rc.Vol.	0.0	bbl	TotalC	rc.Stks		Total	Circ.	Time		
300 rpm				17		17		DRILLIN	G ASS	SEMBL	Y DA	TA		s	OLIDS	COI	NTRO	L	
200 rpm				14		14	Tubulars	OD (in.)	ID	(in.)	Len	gth	Гор	Unit		Scre	ens	Нс	ours
100 rpm				9		10					C)'	0'	Shaker	r 1	17	7 0	18	5.0
6 rpm				5		5							0'	Shaker	r 2	17	7 0	18	5.0
3 rpm				4		4							0'	Shaker	r 3	17	7 0	18	5.0
Plastic Viscosi	ity (cp)		@ 150 °F	10		9							0'	Centrifuç	ge 1				
Yield Point (lb/	/100 ft²)		T0 = 3	7		8		CASIN	IG & I	HOLE [DATA								
Gel Strength (lb/100 ft²)	10	0 sec/10 min	5/9		5/10	Casing	OD (in.)	ID	(in.)	De	pth	Гор						
Gel Strength (lb/100 ft ²)		30 min	12		12	Riser							VOLUN	ME AC	cou	NTING	dd) i	ls)
HTHP Filtrate	(cm/30 m	in)	@ 250 °F	8.0		8.0	Surface	10 3/4			2,9	89'	0'	Prev. T	Total or	n Loc	ation	3.	201.2
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8			10,2	237'	0'	Transfe	erred In	n(+)/C	Out(-)	-2	840.0
Retort Solids (Content			9%		8%	Prod.	5 1/2			9,5	15'	0'		Oil	Adde	d (+)		26.1
Corrected Soli	ds (vol%)			7.2%		6.3%	Prod.	5			18,0	019' 9	,515'		Barite	Adde	d (+)		0.0
Retort Oil Con	tent			71%		72%	Oper	n Hole Size	0.	000	18,0	019'		Other Pr	roduct	Usag	e (+)		0.0
Retort Water (Content			20%		20%	ANI	NULAR GE	ЕОМЕ	TRY &	RHE	DLOGY		,	Water	Adde	d (+)		
O/W Ratio				78:22		78:22	annular	r me	eas.	velo	,	flow E	CD	Le	eft on C	Cutting	gs (-)		0.0
Whole Mud Ch	nlorides (n	ng/L)		44,000		44,500	section	de	epth	ft/m	nin	reg II	o/gal	Csg.	Run / C	Circul	ation	-2	204.0
Water Phase	Salinity (p	pm)		256,494		258,654								Lost OB	M on C	emer	nt job	-	183.3
Whole Mud Al	kalinity, P	om		1.4		1.4								Est. 7	Total or	n Loc	ation _		0.0
Excess Lime (lb/bbl)			1.8 ppb		1.8 ppb								Est. Los	ses/Ga	ains (-)/(+)		0.0
Electrical Stab	ility (volts)		400 v		435 v								BIT	HYDR	AULI	CS D	ATA	
Average Spec	ific Gravit	y of Solid	ds	2.96		3.29								Bit H.S.I.	Bit 4	ΔΡ	Nozzl	es (3	2nds)
Percent Low G	Gravity So	lids		4.7%		2.9%													
ppb Low Grav	ity Solids			39 ppb		24 ppb								Bit Impact	Noz: Velo				
Percent Barite				2.5%		3.3%								Force	(ft/se	-			
ppb Barite				36 ppb		48 ppb	BIT D	ATA	Ma	anuf./Ty	/ре								
Estimated Total	al LCM in	System	ppb				Size	Depth In	Н	ours	Foot	tage RC	P ft/hr	Motor/M	WD	Calc	. Circ.	Pres	ssure
Sample Taken	Ву			A Roman	0	M Washburn													

Remarks/Recommendations:

OBM REC. --8585 bbls Daily Rec --bbls

OBM on Surface _2,840-bbls (storage + Active)

OBM Daily Gain / Loss (--387bbls) / Total G/L (-6,411-bbls)

Kill mud& New Build: 408bbls-14.5# --1230bbls-9# \$65.00/bbl

Discounted OBM: 260 bbl_11.0# _\$15.00/bbl

Rig Activity:

Finish casing run to 18,019'. Set casing and circulate 14567stks. With back side gas free, transfer operations to Cementing casing. Pump Cement: 50bbl Spacer (9.5#); 257bbl Cement (13.5#); Displace with 351bbls of fresh water. Bump plug 1000psi over lift pressure, chek floats and procced to set pack off and secure well prior to Nipple down. OBM lost on last 5100' of csg run and circulation prior to cement (-204bbls). OBM lost while cementing (-183bbls). Total losses for this well (-6411bbls). Reconcile all chemicals and OBM to be transfer to next well (Grand Canyon A-1H). LAST REPORT FOR THIS WELL. THANK YOU.

Е	ng. 1:	Mi	ke W	ashbı	urn	Er	ng. 2:	Adolf	o Roman	WH 1:	MIDLAND) WH	2: WH #2	Rig Phone:	Daily Total	Cumulative Cost
Р	hone:	30	61-94	5-57	77	Pł	none:	956-8	321-9994	Phone:	432-686-73	861 Phor	ie: -			
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be	used if the us		wever, no represe	ein, has been prepared entation is made as to the	\$25,825.00	\$421,580.87
												INC	UDING 3RD I	PARTY CHARGES	\$27,249.80	\$541,273.77

MATERIAL CONSUMPTION

Item ALUMINUM TRISTEARATE SAPP (50) PHPA LIQUID (pail) DYNA DET EVO-LUBE GEL (100) BENTONE 38 (50) CACL2 (50) LIME (50) BENTONE 910 (50) BENTONE 990 (50) OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25)	DAILY Unit 25# sk 50# sk 5 gal pail gal 100# sk 50# sk	USAGE 8 Unit Cost \$162.83 \$44.50 \$41.36 \$32.23 \$9.31 \$10.00 \$163.94 \$14.32 \$5.00 \$59.94 \$83.59 \$30.59 \$10.75	Previous Inventory	-88 -975 -70 -50 -224	Closing Inventory	Daily Usage	Daily Cost	CUI Cum Usag	I Cum Co
ALUMINUM TRISTEARATE SAPP (50) PHPA LIQUID (pail) DYNA DET EVO-LUBE GEL (100) BENTONE 38 (50) CACL2 (50) LIME (50) BENTONE 910 (50) BENTONE 990 (50) OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25)	25# sk 50# sk 5 gal pail gal 100# sk 50# sk 50# sk 50# sk 50# sk 50# sk 50# sk 50# sk	\$162.83 \$44.50 \$41.36 \$32.23 \$9.31 \$10.00 \$163.94 \$14.32 \$5.00 \$59.94 \$83.59 \$30.59 \$10.75	88 975 70 50 224 210 1 53	-88 -975 -70 -50 -224 -210	-	-	Daily Cost		2 \$325 40 \$1,780 2 \$82
ALUMINUM TRISTEARATE SAPP (50) PHPA LIQUID (pail) DYNA DET EVO-LUBE GEL (100) BENTONE 38 (50) CACL2 (50) LIME (50) BENTONE 910 (50) BENTONE 990 (50) OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25)	25# sk 50# sk 5 gal pail gal 100# sk 50# sk 50# sk 50# sk 50# sk 50# sk 50# sk 50# sk	\$162.83 \$44.50 \$41.36 \$32.23 \$9.31 \$10.00 \$163.94 \$14.32 \$5.00 \$59.94 \$83.59 \$30.59 \$10.75	88 975 70 50 224 210 1 53	-88 -975 -70 -50 -224 -210	Inventory	Usage	Daily Cost	Usaç	2 \$325 40 \$1,780 2 \$82
SAPP (50) PHPA LIQUID (pail) DYNA DET EVO-LUBE GEL (100) BENTONE 38 (50) CACL2 (50) LIME (50) BENTONE 910 (50) BENTONE 990 (50) OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25)	50# sk 5 gal pail gal 100# sk 50# sk	\$44.50 \$41.36 \$32.23 \$9.31 \$10.00 \$163.94 \$14.32 \$5.00 \$59.94 \$83.59 \$30.59 \$10.75	975 70 50 224 210 1 53	-975 -70 -50 -224 -210					40 \$1,780 2 \$82
PHPA LIQUID (pail) DYNA DET EVO-LUBE GEL (100) BENTONE 38 (50) CACL2 (50) LIME (50) BENTONE 910 (50) BENTONE 990 (50) OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25)	5 gal pail gal 100# sk 50# sk	\$41.36 \$32.23 \$9.31 \$10.00 \$163.94 \$14.32 \$5.00 \$59.94 \$83.59 \$30.59 \$10.75	975 70 50 224 210 1 53	-975 -70 -50 -224 -210					2 \$82
DYNA DET EVO-LUBE GEL (100) BENTONE 38 (50) CACL2 (50) LIME (50) BENTONE 910 (50) BENTONE 990 (50) OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25)	pail gal 100# sk 50# sk	\$32.23 \$9.31 \$10.00 \$163.94 \$14.32 \$5.00 \$59.94 \$83.59 \$30.59 \$10.75	975 70 50 224 210 1 53	-975 -70 -50 -224 -210					
EVO-LUBE GEL (100) BENTONE 38 (50) CACL2 (50) LIME (50) BENTONE 910 (50) BENTONE 990 (50) OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25)	gal 100# sk 50# sk 50# sk 50# sk 50# sk 50# sk 50# sk gal gal 50# sk	\$9.31 \$10.00 \$163.94 \$14.32 \$5.00 \$59.94 \$83.59 \$30.59 \$10.75	70 50 224 210 1 53	-70 -50 -224 -210					-
BENTONE 38 (50) CACL2 (50) LIME (50) BENTONE 910 (50) BENTONE 990 (50) OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25)	100# sk 50# sk 50# sk 50# sk 50# sk 50# sk 50# sk gal gal 50# sk	\$163.94 \$14.32 \$5.00 \$59.94 \$83.59 \$30.59 \$10.75	50 224 210 1 53	-50 -224 -210					1
CACL2 (50) LIME (50) BENTONE 910 (50) BENTONE 990 (50) OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25)	50# sk 50# sk 50# sk 50# sk 50# sk gal gal 50# sk	\$14.32 \$5.00 \$59.94 \$83.59 \$30.59 \$10.75	224 210 1 53	-224 -210					
CACL2 (50) LIME (50) BENTONE 910 (50) BENTONE 990 (50) OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25)	50# sk 50# sk 50# sk 50# sk 50# sk gal gal 50# sk	\$14.32 \$5.00 \$59.94 \$83.59 \$30.59 \$10.75	224 210 1 53	-224 -210					
LIME (50) BENTONE 910 (50) BENTONE 990 (50) OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25)	50# sk 50# sk 50# sk 50# sk gal gal 50# sk	\$5.00 \$59.94 \$83.59 \$30.59 \$10.75	210 1 53	-210					50 \$8,197
BENTONE 910 (50) BENTONE 990 (50) OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25)	50# sk 50# sk 50# sk gal gal 50# sk	\$59.94 \$83.59 \$30.59 \$10.75	1 53						390 \$5,584
BENTONE 990 (50) OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25)	50# sk 50# sk gal gal 50# sk	\$83.59 \$30.59 \$10.75	53						350 \$1,750
OPTI G OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25)	50# sk gal gal 50# sk	\$30.59 \$10.75		-1					33 \$1,978
OPTI MUL HP OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25)	gal gal 50# sk	\$10.75	475	-53					62 \$5,182
OPTI WET NEW PHALT NEWCARB 200 MAGMAFIBER F (25)	gal 50# sk		175 550	-175 -550					135 \$4,129 390 \$9,567
NEW PHALT NEWCARB 200 MAGMAFIBER F (25)	50# sk		495	-495					450 \$3,753
NEWCARB 200 MAGMAFIBER F (25)		\$8.34 \$38.72	55	-495					85 \$3,291
MAGMAFIBER F (25)		\$5.25	15	-15					171 \$897
` '	25# sk	\$28.05							30 \$841
NEWCARB 100	each	\$5.37							50 \$268
OIL SORB (25)	25# sk	\$4.75	28	-28					22 \$104
CYBERSEAL	each	\$21.47	120	-120					240 \$5,152
NEW-WATE (SACK BARITE)	100# sk	\$11.50	160	-160					
BARITE BULK (100)	100# sk	\$7.00	1000	-1000			ļ	1	375 \$9,625
								<u> </u>	
DVALA FIDED MED		A EC 5-						<u> </u>	45 00 ::-
DYNA FIBER MED. FIBER PLUG	each	\$53.67	120	-120					45 \$2,415
MAGMAFIBER R (30)	each 30# sk	\$30.37 \$28.05	15 78	-15 -78					15 \$455 2 \$56
WAGWAFIBER R (30)	30# SK	\$20.05	70	-70					2 \$30
									1
OPTI DRILL (OBM)	bbl	\$65.00	2941	-2580		361	\$23,465.00	4	\$289,445
MAGNOLIA OBM	bbl							<u> </u>	166
DISCOUNTED OBM	bbl	\$15.00	260	-260				1	143 \$17,145
							 	 	+
ENGINEERING (24 HR)	each	\$925.00				2	\$1,850.00		40 \$37,000
ENGINEERING (DIEM)	bbl	\$30.00				2	\$60.00		40 \$1,200
ENGINEERING (MILES)	each	\$1.00				450	\$450.00	4	518 \$4,518
SCALE TICKET		\$15.00							3 \$45
								<u> </u>	
TRUCKING (cwt)	each	\$2.50						1	930 \$4,824
TRUCKING (min)	each	\$795.00					<u> </u>	<u> </u>	1 \$795
PALLETS (ea)	each	\$12.00						<u> </u>	39 \$468
SHRINK WRAP (ea)	each	\$12.00					L	<u> </u>	37 \$444
		Daily Su	ıb-Total \$2	5,825.00	Cumulativ	e Total \$4	121,580.87	\$4	21,580.87

THIRD PARTY COST SHEET

Date	Operator			Well Name a	ind No.		Rig Name an	d No.	Report No.	
06/22/20	MAG	NOLIA OIL	& GAS	LEVI G	OODRICH	U2 - 3H	24	48	Repo	rt #22
	DAILY	USAGE 8	& COST						CUMUI	LATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost	-	Cum Usage	Cum Cost
Diesel Transfer from 2H	gal	\$0.91						-		
Diesel Transfer from Grand Canyon A - 1H	gal	\$0.87						-	2000	\$1,740.00
Diesel transfer from Grand Canyon A - 1H	gal	\$0.96						=	7199	\$6,911.04
Diesel 5/6/20	gal	\$0.90						-	2159	\$1,943.10
DIESEL TRANSFER FROM 2H	gal	\$1.16						=	7872	\$9,131.52
DIESEL 6/10/20	gal	\$1.22						=	7400	\$9,028.00
Diesel 6_11_20	gal	\$1.26							7399	\$9,322.74
DIESEL 6/12/20	gal	\$1.28						=	7400	\$9,472.00
DIESEL 6/12/20	gal	\$1.28						-	7400	
DIESEL 6/14/29	gal	\$1.21						-	7200	
Diesel 6_15_20	gal	\$1.20						-	7431	
DIESEL 6/16/20	gal	\$1.22						=	7200	
DIESEL 6/16/20	gal	\$1.22						-	7400	
DIESEL 6/17/20	gal	\$1.30							7005	
DIESEL 6/17/20	gal	\$1.30		-1104		1096	\$1,424.80	-	1096	
DIESEL 6/18/20	gal	\$1.30	7200	-7200		1000	ψ1, 12 1.00	-	1000	ψ1, 12 1.00
								-		
								-		
								-		
								-		
								-		
								-		
TURBO CHEM FIRST RESPONSE	each	\$41.75	130	-130				-	400	\$16,700.00
								<u>-</u>		
								-		
								-		
								- -		
								-		
								- -		
								-		
	-							-		
								-		
								-		
		I	l	l	Daily S	ub-Total \$1	,424.80		\$119,0	692.90
	<u> </u>	ulative T- ()	I VEG 0 0	Darty &C.4.	272 77]				
	Cumi	ulative Total	AES & 3rd	rarty \$541	,213.//					

FLUID VOLUME ACCOUNTING

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name: MAGNOLIA OIL & GAS

Rig Name: 248
Well Name: LEVI

LEVI GOODRICH U2 - 3H

					WEEK 1							WEEK 2							WEEK 3			
r	Date	6/7/20	6/8/20	6/9/20	6/10/20	6/11/20	6/12/20	6/13/20	6/14/20	6/15/20	6/16/20	6/17/20		6/19/20	6/20/20	6/21/20	6/22/20	6/23/20	6/24/20	6/25/20	6/26/20	6/27/20
ŀ	Date	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat
ŀ	Bit Size	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	140	· · · · ·	iiiu	• • • • • • • • • • • • • • • • • • • •	Out
	Starting Depth	10,245	10,245	10,245	10,311	12,303	14,073	15,359	16,272	16,365	16,620	16,620	16,620	17,130	18,039	18,039	18,039	18,019				
	Ending Depth			10,311	12,303	14,073	15,359		16,365	16,620	16,620	16,620	17,130	18,039	18,039	18,039	18,019	10,013				
		10,245	10,245					16,272				10,020	-	<u> </u>		10,039	10,019					
	Footage Drilled	-	-	66	1,992	1,770	1,286	913	93	255	-	-	510	909	-	-	-	-	-	•	-	-
	New Hole Vol.	-	-	3	88	78	57	40	4	11	-	-	23	40	-	-	-	-	-	-	-	-
	Starting System Volume	470	2,440	2,929	2,908	2,755	2,546	2,601	3,081	3,111	2,769	2,978	3,511	3,332	3,697	3,590	3,201	(0)	(0)	(0)	(0)	(0)
	Chemical Additions	-	-	9	12	11	16	17	1	7	1	10	3	14	-	-	-					
	Base Fluid Added	-	-	12	55	205	218	209	40	156	88	422	67	122	21	-	26					
	Barite Increase	-	-	-	-			17	32				14	-	-	14	-					
	Weighted Mud Added	1,970	489	-	-		407	811	530	565	799	1,004	762	778	-	-	-					
	Slurry Added	-	-	-	-								-	-	-	-	-					
	Water Added	-	-	-	50	102	100	100	17	42	20	85	10	100	-	-	-					
	Added for Washout	-	-	-	-							10	-	-	-	-	-					
10,569	Total Additions	1,970	489	20	116	318	741	1,154	620	770	908	1,531	856	1,014	21	14	26	-			-	
309	Surface Losses	-	-	8	-	36	35	35	5	15	25	40	65	45	-	-	-					
7,331	Formation Loss	-	-	-	150	378	563	568	577	1,066	673	928	948	563	128	403	387					
356	Mud Loss to Cuttings	-	-	3	92	82	58	41	4	12		-	23	41	-	-	-					
30	Unrecoverable Volume	-	-	30	-								-	-	-	-	-					
173	Centrifuge Losses	-	-	-	28	30	30	30	5	20		30	-	-	-	-	-					
0.400				4.4	.=.			0=4	E0.1	4.440			4.000	242	400	400						
5,100	Total Losses	-	-	41	270	526	686	674	591	1,112	698	998	1,036	649	128	403	387	-	-	-	-	-
2,840	Mud Transferred Out	-	-	-													2,840					
(0)	Ending System Volume	2,440	2,929	2,908	2,755	2,546	2,601	3,081	3,111	2,769	2,978	3,511	3,332	3,697	3,590	3,201	(0)	(0)	(0)	(0)	(0)	(0)
-	Mud Recovered																					
				С	omment	s:					С	omment	s:					С	omment	s:		
		6/7/20	TRANSFE	R FROM 2	H.				6/14/20							6/21/20		roduction continue to lo				500' after
																	10,000. co	ontinue to io	ose mua to	iormation.	402bbis	
			Testing an	d repair to	BOP's Re	ceived 489	9bbls 10 9#										Casing on	bottom, Ci	rculate das	out (Lost 2	04bbls) C	ement
5,745		6/8/20	Discounted		DO1 0. 110	001100 100	10.01		6/15/20									losses of 1				
		6/9/20	TIH, FIT 1:	3emw / 160	00psi. Drill	ing ahead o	on Curve se	ection.	6/16/20							6/23/20						
			Drilling on	lateral sec	tion. Well to	aking mud	after 11400)'. Lower														
		6/10/20	MW to 9.6 response/0				em First		6/17/20							6/24/20						
		6/11/20							6/18/20	Resume d	rillina. We	Il continues	s to take mu	ıd.		6/25/20						
		6/12/20								Ream up t	o 16300', c	irculate BL		t of hole. W 240bbls of 3 the shoe.		6/26/20						
		response/Cyberseal/newcarb 3 sxs ea. 6/11/20 6/12/20										lacement.	Circulate Bl	on casing ir U and lost 4 n the hole v	15bbls.	6/27/20						

OUTSOURCE FLUID SOLUTIONS LLC.

93.1° 10,488' TVD

Operator MAGI	NOLIA	OIL & (GAS	Contractor PA1	TERSO	ON	County / Parish /	Block HINGTO	N	Engineer St	tart Date 1/27/20	24 hr	ftg. Oft	[Drilled De	epth 8,03	9 ft
Well Name and No.		101111		Rig Name an			State			Spud Date	1/27/20		ent ROP	,	Activity	D==	d Co.
Report for	OODR	ICH UZ	2 - 3H	Report for	248		Field / OCS-G #	EXAS		Fluid Type	1/27/20		0 ft/hr	(Run Circulatin		d Csg
JAMES [YER /	BOBB'	Y GWIN		ol Pusi	ner	GID	DINGS			ОВМ		160 gpn			81	
	MUD	PROPE	RTY SPECIF	ICATION	s		MUD VO	LUME (BI	3L)	P	UMP #1		PUMP #2		RISE	R BO	OSTER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	80	5 bbl	Liner Si	ze 5.	25 Line	er Size 5	.25	Liner S	Size	
8.5-10.2	8-20	5-12	>300	±260K	<10 <25	<10	In Hole	72	6 bbl	Stroke	• 1	2 St	roke	12	Strok	æ	
	I.		1	6/21/20		6/20/20	Active	131	3 bbl	bbl/stk	< 0.0	763 bi	ol/stk 0.0	763	bbl/s	tk	0.0000
Time Sample	Taken			2:00		14:00	Storage	e <u>167</u>	<u> 10 bbl</u>	stk/mir	n (0 stl	k/min {	50	stk/m	iin	
Sample Locati	on			suction		suction	Tot. on Lo	cation 320)1 bbl	gal/mir	n (0 ga	ıl/min 1	60	gal/m	nin	0
Flowline Temp	erature °	F		100 °F				PHHP = 5	4	l .	CIRCUL	ATION D	ATA		n = 0.6	667 K	ζ = 135.006
Depth (ft)				12,897'		18,039'	Bit D	Depth = 13	,200 '		Wash	out = 1%		Pump	Efficie	ncy =	95%
Mud Weight (p	ppg)			9.0		8.9	Drill String	Volum	e to Bit	254.9 b	obl St	rokes To B	it 3,340	7	Time To	Bit	67 min
Funnel Vis (se	c/qt)		@ 90 °F	40		40	Disp.	Bottoms l	Jp Vol.	252.9 b	obl Botto	omsUp Stk	s 3,314	Botton	nsUp T	īme	66 min
600 rpm				27		27	96.1 bbl	TotalC	irc.Vol.	1312.7	bbl To	otalCirc.Stk	s 17,203	Total	Circ. T	īme	344 min
300 rpm				17		18		DRILLIN	G ASS	SEMBLY	DATA		S	OLIDS	CON	TROL	-
200 rpm				14		16	Tubulars	OD (in.)	ID	(in.)	Length	Тор	Unit		Scree	ens	Hours
100 rpm				9		10	Casing	5.500	4.	670	5,959'	0'	Shake	r 1	170)	24.0
6 rpm				5		6	Casing	5.000	4.	276	7,241'	5,959'	Shake	r 2	170)	24.0
3 rpm				4		5						13,200'	Shake	r 3	170)	24.0
Plastic Viscos	ity (cp)		@ 150 °F	10		9						13,200'	Centrifu	ge 1			
Yield Point (lb.	/100 ft²)		T0 = 3	7		9		CASII	NG & I	HOLE DA	ATA						
Gel Strength (lb/100 ft²)	10	sec/10 min	5/9		5/11	Casing	OD (in.)	ID	(in.)	Depth	Тор					
Gel Strength (lb/100 ft ²)		30 min	12		12	Riser						VOLUM	ME AC	COUN	TING	(bbls)
HTHP Filtrate	(cm/30 m	in)	@ 250 °F	8.0		8.2	Surface	10 3/4			2,989'	0'	Prev.	Total or	n Loca	tion	3590.1
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.	875	10,237'	0'	Transfe	erred Ir	า(+)/Oเ	ut(-)	
Retort Solids (Content			9%		8%								Oil	Added	(+)	0.0
Corrected Soli	ds (vol%)			7.2%		6.2%								Barite	Added	(+)	13.9
Retort Oil Con	tent			71%		72%	Oper	n Hole Size	6.	818	18,039'		Other P	roduct	Usage	(+)	0.1
Retort Water (Content			20%		20%	ANI	NULAR G	EOME	TRY & R	HEOLOG	3Y		Water	Added	(+)	
O/W Ratio				78:22		78:22	annulai	r m	eas.	velocit	ty flow	ECD	Le	eft on C	Cuttings	s (-)	0.0
Whole Mud Cl	nlorides (r	ng/L)		44,000		45,000	section	n de	epth	ft/min	reg	lb/gal	E	Evap/ T	rips/ C	ent	
Water Phase	Salinity (p	pm)		256,494		260,803								Format	ion los	ses	-402.8
Whole Mud Al	kalinity, P	om		1.4		1.4	6.875x5	.5 5,	959'	230.8	3 turb	9.70	Est.	Total or	n Loca	tion	3201.3
Excess Lime (lb/bbl)			1.8 ppb		1.8 ppb	6.875x5	5 10	,237'	176.4	l lam	9.59	Est. Los	ses/Ga	ains (-)	/(+)	0.0
Electrical Stab	ility (volts)		400 v		435 v	6.818x5	5 13	,200'	182.8	3 lam	9.70	BIT	HYDR	AULIC	S DA	TA
Average Spec	ific Gravit	y of Solid	ls	2.96		3.09							Bit H.S.I.	Bit A	ΔP	Nozzle	s (32nds)
Percent Low 0	Gravity So	lids		4.7%		3.6%											
ppb Low Grav	ity Solids			39 ppb		30 ppb							Bit Impact	Noz Velo			
Percent Barite	1			2.5%		2.6%							Force	(ft/se	•		
ppb Barite				36 ppb		38 ppb	BIT D	ATA	Ma	anuf./Type	e		<u> </u>				
Estimated Tot	al LCM in	System	ppb				Size	Depth In	Н	ours F	Footage	ROP ft/h	r Motor/M	WD	Calc.	Circ.	Pressure
Sample Taker	Ву			A Roman	0	M Washburn	6 3/4						<u> </u>				
Domorko/Door							Dia Activity										

Remarks/Recommendations:

OBM REC. --8585 bbls Daily Rec --bbls

OBM on Surface _2,475-bbls (storage + Active)

OBM Daily Gain / Loss (-403bbls) / Total G/L (-6,024-bbls)

Kill mud& New Build: 408bbls-14.5# --1002bbls-9# \$65.00/bbl

Discounted OBM: 260 bbl_11.0# _\$15.00/bbl

Rig Activity:

Continue running producion casing in the hole, Circulating every 500' after 8000', down to 12900'. OBM lost while circulating as follows: 8000'-56bbl / 9000'-73bbl / 10100'-19bbl / 10700'-57bbl / 11200'-95bbl / 11767'-127bbl / 12330'-154bbl / 12900'-90bbl. After 12900' call was made to continue Running casing to bottom, pausing for fill up and continue. Transfer OBM from storage to active to maintain Volume in the system. At this time casing shoe passing 13200'.

	Eng. 1:	Mi	ke W	ashb	urn	Er	ng. 2:	Adolf	o Roman	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
	Phone:	3	61-94	15-57	77	Ph	none:	956-8	321-9994	Phone:	432-686-7361	Phone:	-			
V 1	/ P 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be	ecommendation, exp used if the user so ation, and this is a r	elects, however	, no representati	has been prepared on is made as to the	\$27,404.80	\$395,755.87
										•		INCLUDI	NG 3RD PAR	TY CHARGES	\$27,404.80	\$514,023.97

MATERIAL CONSUMPTION

SAPP (60) PREAL DIOLO (pagil) 9 pg 34-136 88 88 1 2 2 2 2 2 3 3 3 5 5 5 5 5 5 5	Date 06/21/20	Operator MAG I	NOLIA OIL		Well Name a	OODRICH	U2 - 3H	Rig Name an	d No. 18	Report No. Repo	rt #21
No. No.		DAILY	USAGE 8	& COST						CUMUI	ATIVE
Marche March Mar				1		Closing	Daily			Cum	
SAPP 600	Item	Unit	Unit Cost		Received	_	-	Daily Cost			Cum Cost
PREAD LIDEO GROWN PARK DET											\$325.66
DYNA CIT						20					
EVOLUBIE				88		88				-	
SELTIONS (1909)				975		975				- 0	Ψ257.04
BERTONES 88 (80) ACREL 26(9)											
CADLE (50)											
IMME (BIO)	BENTONE 38 (50)	50# sk	\$163.94	50		50				50	\$8,197.00
BENTONE 90 (10 (50)											· '
BENTONE 90(50)										-	
OPTI OG											
OPTI NUEL HP											
OPTIVET 91 91 89.4 485 485 486 885 486 885 885 885 885 885 885 885 885 885 8											
NEW PHALT											\$3,753.00
MAGNAMPBER F (20) 25 94 8 928.05 101. SORD (20) 25 94 8 94.75 25 94 94.75 25 94 94.75 25 94 94.75 25 94 94.75 26 94 94.75 27 94.75 28 94.75 29 92 92 92 92 92 92 92 92 92 92 92 92 9	NEW PHALT		\$38.72	55		55				85	\$3,291.20
NEWCATATION	NEWCARB 200	50# sk	\$5.25	15		15				171	\$897.75
OIL SORP (25)	MAGMAFIBER F (25)	25# sk	\$28.05							30	\$841.50
CYBERSEAL											\$268.50
NEW-WATE (SACK BARTE) BARRE BULK (100) 1008 sk 57.00 1200 1000 sk 57.00 1200 1000 200 51,000.00 1375 58,625.00 1376 58,625.00 1376 58,625.00 1376 58,625.00 1376 58,625.00 1376 58,625.00 1376 58,625.00 1376 58,625.00 1376 58,625.00 1376 58,625.00 1376 58,625.00 1376 58,625.00 1376 58,625.00 1376 58,625.00 1377 58,625.00 1376 58,625.00 1377 58,625.00 1377 58,625.00 1377 58,625.00 1377 58,625.00 1											\$104.50
BARTIE BULK (100) 100F ak \$7.00 1200 100F ak \$7.00 1200 1000 200 \$1,400,000 1375 \$2,825,00 120 1300	CYBERSEAL	each	\$21.47	120		120				240	\$5,152.80
BARTIE BULK (100) 100F ak \$7.00 1200 100F ak \$7.00 1200 1000 200 \$1,400,000 1375 \$2,825,00 120 1300	NEM-MATE (SACK DADITE)	100# al-	¢11 E0	160		160					
DYNA FIBER MED. esch \$53.67 120 120 120 145 523.70 15 15 10 \$503.70 15 \$455.51 645.51							200	\$1,400.00		1375	\$9,625,00
FIBER PLUG		100# 31	Ψ1.00	1200		1000	200	ψ1, NOO.00		13/3	¥3,020.00
FIBER PLUG											
MAGMARIBER R (30) 30w sk	DYNA FIBER MED.	each	\$53.67	120		120				45	\$2,415.15
OPTI DRILL (OBM) bbl \$86.00 3299 2941 388 \$23.270.00 MAGNOLIA OBM bbl \$15.00 291 280 31 \$465.00 DISCOUNTED OBM bbl \$30.00 22 \$1.650.00 ENGINEERING (PIEN) bbl \$30.00 2 2 \$1.650.00 ENGINEERING (MIES) each \$1.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FIBER PLUG	each	\$30.37	25		15	10	\$303.70		15	\$455.55
MAGNOLIA OBM bbl \$15.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$46	MAGMAFIBER R (30)	30# sk	\$28.05	80		78	2	\$56.10		2	\$56.10
MAGNOLIA OBM bbl \$15.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$46											
MAGNOLIA OBM bbl \$15.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$46											
MAGNOLIA OBM bbl \$15.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$46											
MAGNOLIA OBM bbl \$15.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$46											
MAGNOLIA OBM bbl \$15.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$46											
MAGNOLIA OBM bbl \$15.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$46		+									
MAGNOLIA OBM bbl \$15.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$46											
MAGNOLIA OBM bbl \$15.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$46											
MAGNOLIA OBM bbl \$15.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$46											
MAGNOLIA OBM bbl \$15.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$46											
MAGNOLIA OBM bbl \$15.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$46											
MAGNOLIA OBM bbl \$15.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$46											
MAGNOLIA OBM bbl \$15.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$46											
MAGNOLIA OBM bbl \$15.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$46											
MAGNOLIA OBM bbl \$15.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$46											
MAGNOLIA OBM bbl \$15.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$46											
MAGNOLIA OBM bbl \$15.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$46											
MAGNOLIA OBM bbl \$15.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$46											
MAGNOLIA OBM bbl \$15.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$46											
MAGNOLIA OBM bbl \$15.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$46		 									
MAGNOLIA OBM bbl \$15.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$46		+									
MAGNOLIA OBM bbl \$15.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$465.00 1143 \$17,145.00 291 260 31 \$46	OPTI DRILL (OBM)	bbl	\$65.00	3299		2941	358	\$23,270.00		4092	\$265,980.00
DISCOUNTED OBM bbl \$15.00 291 260 31 \$465.00 1143 \$17,145.00 1											
ENGINEERING (24 HR) each \$925.00	MAGNOLIA OBM	bbl								166	
ENGINEERING (24 HR) each \$925.00										<u> </u>	
ENGINEERING (DIEM) bbl \$30.00	DISCOUNTED OBM	bbl	\$15.00	291		260	31	\$465.00		1143	\$17,145.00
ENGINEERING (DIEM) bbl \$30.00											
ENGINEERING (DIEM) bbl \$30.00		+								-	
ENGINEERING (DIEM) bbl \$30.00											
ENGINEERING (DIEM) bbl \$30.00											
ENGINEERING (DIEM) bbl \$30.00											
ENGINEERING (DIEM) bbl \$30.00											
ENGINEERING (DIEM) bbl \$30.00											
ENGINEERING (MILES) each \$1.00	ENGINEERING (24 HR)	each									
SCALE TICKET \$15.00 \$15.00 \$3 \$45.00 \$3 \$45.00 \$15.							2	\$60.00			
TRUCKING (cwt) each \$2.50	ENGINEERING (MILES)	each	\$1.00							4068	\$4,068.00
TRUCKING (cwt) each \$2.50	SCALE TICKET		¢4E 00								¢4E 00
TRUCKING (min) each \$795.00 1 \$795.00 PALLETS (ea) each \$12.00 339 \$468.00 SHRINK WRAP (ea) each \$12.00 370 \$4444.00	SOALE HUNET	+	\$15.00							3	φ45.00
TRUCKING (min) each \$795.00 1 \$795.00 PALLETS (ea) each \$12.00 339 \$468.00 SHRINK WRAP (ea) each \$12.00 370 \$4444.00	TRUCKING (cwt)	each	\$2.50							1930	\$4,824.05
PALLETS (ea) each \$12.00 39 \$468.00 SHRINK WRAP (ea) each \$12.00 37 \$444.00											\$795.00
SHRINK WRAP (ea) each \$12.00 37 \$444.00											\$468.00
Doily Sub Total \$27 404 00 Computation Total \$205 755 07										-	\$444.00
Daily Cub Talai Egy and on a Commission Talai Eggs 757 07			5		7 404 05			.05 755			

THIRD PARTY COST SHEET

Date	Operator			Well Name a	ind No.		Rig Name an	d No.	Report No.	
06/21/20	MAGI	NOLIA OIL	& GAS	LEVI G	OODRICH	U2 - 3H	24	48	Repo	rt #21
	DAILY	USAGE 8	& COST						CUMUI	LATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
Diesel Transfer from 2H	gal	\$0.91								
Diesel Transfer from Grand Canyon A - 1H	gal	\$0.87							2000	\$1,740.00
Diesel transfer from Grand Canyon A - 1H	gal	\$0.96							7199	\$6,911.04
Diesel 5/6/20	gal	\$0.90							2159	\$1,943.10
DIESEL TRANSFER FROM 2H	gal	\$1.16							7872	\$9,131.52
DIESEL 6/10/20	gal	\$1.22							7400	
Diesel 6_11_20	gal	\$1.26						_	7399	
DIESEL 6/12/20	gal	\$1.28					1	_	7400	
DIESEL 6/12/20	gal	\$1.28						-	7400	
DIESEL 6/14/29	gal	\$1.21					1	-	7200	
Diesel 6_15_20	gal	\$1.20						-	7431	
DIESEL 6/16/20 DIESEL 6/16/20	gal	\$1.22					1		7200	
DIESEL 6/17/20	gal	\$1.22 \$1.30						-	7400 7005	
DIESEL 6/17/20	gal gal	\$1.30			2200		1		1000	ψο, 100.50
DIESEL 6/18/20	gal	\$1.30			7200			-		
DIEGEE 0/10/20	gai	ψ1.50	7200		7200					
								_		
								-		
TURBO CHEM FIRST RESPONSE	each	\$41.75	130		130			-	400	\$16,700.00
TORBO GILWITIKOT KEGI GNOL	eacii	Ψ+1.75	130		130			-	400	\$10,700.00
	+						1	-		
								-		
								_		
								-		
	+						 			
	+	1					+	-		
	+									
	+						+			
	+						+			
									\$118,2	268.10
								L		
	Cumi	ulative Total	I AES & 3rd	Party \$514	,023.97					
						1				

FLUID VOLUME ACCOUNTING

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name:

MAGNOLIA OIL & GAS 248

Well Name:

LEVI GOODRICH U2 - 3H

					WEEK 1							WEEK 2							WEEK 3			
ī	Date	6/7/20	6/8/20	6/9/20	6/10/20	6/11/20	6/12/20	6/13/20	6/14/20	6/15/20	6/16/20	6/17/20	6/18/20	6/19/20	6/20/20	6/21/20	6/22/20	6/23/20	6/24/20	6/25/20	6/26/20	6/27/20
		Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat
	Bit Size	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	-					
Grand	Starting Depth	10,245	10,245	10,245	10,311	12,303	14,073	15,359	16,272	16,365	16,620	16,620	16,620	17,130	18,039	18,039	18,039					
	Ending Depth	10,245	10,245	10,311	12,303	14,073	15,359	16,272	16,365	16,620	16,620	16,620	17,130	18,039	18,039	18,039	-,					
	Footage Drilled		-	66	1,992	1,770	1,286	913	93	255	-	-	510	909	-	-	_	_	_			_
	New Hole Vol.	-	-	3	88	78	57	40	4	11	-	-	23	40				-	-			-
	Starting System Volume Chemical Additions	470	2,440	2,929	2,908	2,755	2,546	2,601	3,081	3,111	2,769	2,978	3,511	3,332	3,697	3,590	3,201	3,201	3,201	3,201	3,201	3,201
	Base Fluid Added	-	-	9 12	12 55	205	218	209	40	7 156	88	422	3 67	14 122	21	-						
	Barite Increase		-	- 12	-	203	210	17	32	150	00	422	14	-	-	14						
	Weighted Mud Added	1,970	489	-			407	811	530	565	799	1,004	762	778	- -	-						
	Slurry Added	1,970	-	-			407	011	330	303	199	1,004	702	- 110	<u> </u>							
	Water Added				50	102	100	100	17	42	20	85	10	100								
	Added for Washout	-	-	_	-	102	100	100	17	72	20	10	-	-		_						
						240	744	4.454	620	770	000											
	Total Additions	1,970	489	20	116	318	741	1,154	620	770	908	1,531	856	1,014	21	14	-	-	-	-	-	-
	Surface Losses	-	-	8	-	36	35	35	5	15	25	40	65	45	-	-						
-,	Formation Loss	-	-	-	150	378	563	568	577	1,066	673	928	948	563	128	403						
	Mud Loss to Cuttings	-	-	3	92	82	58	41	4	12		-	23	41	-	-						
	Unrecoverable Volume	-	-	30	-	00	00			00		00	-	-	-	-						
173	Centrifuge Losses	-	-	-	28	30	30	30	5	20		30	-	-	-	-		<u> </u>				
7,812	Total Losses	-	-	41	270	526	686	674	591	1,112	698	998	1,036	649	128	403	-	-	-	-	-	-
-	Mud Transferred Out	-	-	-																		
3,201	Ending System Volume	2,440	2,929	2,908	2,755	2,546	2,601	3,081	3,111	2,769	2,978	3,511	3,332	3,697	3,590	3,201	3,201	3,201	3,201	3,201	3,201	3,201
	Mud Recovered																					
		System Volume 2,440 2,929 2,908 2,755 2,546 2,601 3,081 3,111 2,769 2,978 3,511 3,332 3,697 3,590														omment	•					
					Omment	3.						Omment	J.						Omment	· ·		
		6/7/20	TRANSFE	R FROM 2	H.				6/14/20									roduction continue to lo				500' after
8,585		6/8/20	Testing an Discounted	d repair to l d mud.	BOP's. Re	ceived 489	9bbls 10.9#		6/15/20							6/22/20						
	1	6/9/20	TIH, FIT 1:	3emw / 160	00psi. Drill	ing ahead o	on Curve se	ection.	6/16/20							6/23/20						
			Drilling on	latoral cost	tion Wall t	aking mud	ofter 11400	n' Lower														
		Drilling on lateral section. Well taking mud after 11400'. Lower 6/10/20 MW to 9.6ppg. Adding LCM to active system First response/Cyberseal/newcarb 3 sxs ea. 6/17/20														6/24/20						
		6/11/20							6/18/20	Resume d	rilling. We	II continues	s to take mu	ıd.		6/25/20						
		6/12/20							6/19/20	Ream up t	o 16300', c	irculate BL		t of hole. W 240bbls of 3 the shoe.		6/26/20						
		6/13/20							6/20/20	hole.@710	00 lost disp	lacement.	Circulate B	on casing ir U and lost 4 n the hole w	5bbls.	6/27/20						

110 Old Market St. St Martinville, LA 70582

91.3° 10,256' TVD

MAGN Well Name and No.	IOLIA C	OIL & G	SAS	PA Rig Name a	TTERSO	N	County / Paris WAS State	h / Block HINGTC	N	_	er Start Date 04/27/2 Date		24 hr f	nt ROP		Drilled Activity	Depth 18,0	59 ft	1
LEVI G	OODRI	CH U2	- 3H	_	248		-	EXAS			04/27/2	0					Csg		Btm
Report for JAMES D	VFR / F	ROBBY	GWIN	Report for	ool Push	nor.	Field / OSC-G	# DDINGS		Fluid T	ype OBM			ating Rate 160 gpm			ting Pres 248		
UAINEO D			TY SPECI					DLUME (B	BI)		PUMP #	1		PUMP #2			ER BO	•	
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits		, 4 bbl	Liner		5.25	Line		25	Liner			
8.5-10.2	8-20	5-12	>300	±260K	<10 <25	<10	In Hole	e 68	8 bbl	Stro	oke	12	Str	oke 1	2	Stro	ke		
	MU	JD PROF	PERTIES				Active	146	o bbl	bbl	/stk 0	0763	bbl	l/stk 0.0	763	bbl	/stk		
Time Sample	Taken			2:00		11:00	Storag	e <u>166</u>	66 bbl	stk/	min		stk	/min 5	0	stk/	min		
Sample Locati	on			suction		suction	Tot. on Lo	cation 312	28 bbl	gal/	min		gal	/min 16	60	gal/	min		
Flowline Temp	erature °F	=		100 °F		110 °F	Mud Wt. :	= 9.0 P\	/=10	YP	9=7 (IRCUL	.ATIO	N DATA		n = 0	.667	K = '	135.0
Depth (ft)				12,897'		18,059'	Bit [Depth = 18	,019 '			shout =		1	Pump	Effici	ency =	95%	
Mud Weight (p	(pa			9.0		9.0		Volume		357.		Strokes					Γο Bit		min
Funnel Vis (se	. 07		@ 98 °F	40		41	Drill String Disp.	Bottoms U				ttomsUp				msUp			min
600 rpm				27		26	135.6 bbl	TotalCi				otalCirc		•		·	Time		
300 rpm				17		17					LY DATA		9				NTRO		
200 rpm				14		14	Tubulars	OD (in.)		(in.)	Length		op qc	Unit		Scre			urs
100 rpm				9		10	Casing	5.500		670	10,778			Shaker	1	17			
6 rpm				5		5	Casing	5.000		276	7,241'	10.7	778'	Shaker		17			
3 rpm				4		4	- Cuonig	0.000		0	.,	•	019'	Shaker			70		
Plastic Viscosi	ty (cn)		@ 150 °F	10		9							019'	Centrifug			Ū		
Yield Point (lb/	,		T0 = 3			8		CASII	NG & I	HOLE	DATA	, .			,				
Gel Strength (10 s	sec / 10 min	5/9		5/10	Casing			(in.)	Depth	To	op	_					
Gel Strength (30 min	12		12	Riser	()		()				VOLUM	IE AC	COU	NTING	(bb	ls)
HTHP Filtrate			@ 250 °F	8.0		8.0		10 3/4			2,989'			Prev. T					201.2
HTHP Cake TI	•			2.0		2.0	Int. Csg.	7 5/8	6.8	375	10,237			Transfe	rred I	n(+)/C	Out(-)		
Retort Solids ((9%		8%					,					Adde	` ,		
Corrected Soli	ds (vol%)			7.2%		6.3%										Adde	()		
Retort Oil Con				71%		72%	Oper	n Hole Size	6.8	318	18,059			Other Pr			` ,		
Retort Water (Content			20%		20%		NULAR G		TRY	& RHEOL	.OGY				Adde	` ,		
O/W Ratio				78:22		78:22		_				50		Le [.]	ft on C	Cutting	gs (-)		
Whole Mud Ch	nlorides (r	ng/L)		44,000		44,500	annula sectio	1 (16	epth	ft/n	ocity flor		CD gal	E	vap/ 1	Trips/	Cent		
Water Phase \$	•			256,494		258,654				<u> </u>		ļ		F	ormat	tion lo	sses		
Whole Mud Al		. /		1.4		1.4	6.875x5	5.5 10	,237'	230	0.8 tur	b 9.	70	Est. T	otal o	n Loc	ation	32	201.2
Excess Lime (1.8 ppb		1.8 ppb	6.818x5	5.5 10	,778'	24	1.9 tur	b 9.	71	Est. Loss	ses/G	ains (-)/(+)		-73.6
Electrical Stab		.)		400 v		435 v	6.818x	s 18	,019'	18:			.05				CS D	ATA	
Average Spec		<u> </u>	ds	2.96		3.29			,					Bit H.S.I.	Bit	ΔΡ	Nozzl	es (3	2nds)
Percent Low G		-		4.7%		2.9%								#DIV/0!	#DI	ŀ			,
ppb Low Gravi				39 ppb		24 ppb									Noz				
Percent Barite				2.5%		3.3%								Bit Impact Force	Velo	,			
ppb Barite				36 ppb		48 ppb	BIT I	DATA	Ма	nuf./T	уре			#DIV/0!	,,	/			
Estimated Total	al LCM in	System					Size	Depth In		urs	Footage	ROP	ft/hr		WD	Calc	. Circ.	Pres	sure
Sample Taken		-		A Roman		M Washburn	6 3/4										#DI\		
•		mmendati	ons:	<u> </u>	<u>[</u>		Afternoon F	Rig Activity	<u> </u>					<u> </u>		<u> </u>			
	ernoon Remarks/Recommendations:						with mud	full return	s, obs with a	serve applica	LCM spo	otted in entrifu	opei ge ar	nd circulate n hole at s nd diesel a ions.	hale s	shake	rs. M	ainta	