

ICT30010 eForensic Fundamentals

SWINBURNE
UNIVERSITY OF
TECHNOLOGY

Lecture 3
Computer Forensics

Troy Pretty

Digital Forensic Analyst

Outline and learning goals

- Analysis Types
 - Static Analysis
 - Live Analysis
- File analysis
 - Windows registry / event log analysis
 - User files
- Collecting volatile data in Windows
 - Windows memory analysis

Static Analysis

- Static analysis
 - Sometimes 'dead box analysis', 'non-volatile analysis'
 - Observation of static offline storage of a machine
- Static data analysis includes items stored in
 - □ ROM
 - Hard disk drives and their contents
 - USB devices
- Specific items that may be of interest are
 - BIOS settings
 - Registry settings
 - Event logs
 - User files

BIOS settings

- Date
- . Time
- Boot sequence
- Hardware configuration

Registry settings

- The registry in Windows is a database of configuration information
- Structured as keys and values
- Some parts of the registry are volatile
- Some entries in the registry will have time stamps
- Registry analysis is often useful in investigations
 - Registry can be accessed using the regedit.exe command from the CLI

Event Logs

- Significant (and not so significant) events are recorded in Windows event logs
- Windows records events about
 - Applications
 - Security
 - System events
 - Expanding in new versions
- Event log viewer

User Files

- Many different types of files
 - .doc(x), .pdf, .xls(x) etc
- Saved in user accessible locations
- Often user files contain metadata
 - Data about the file
 - May include revision number, author of that revision, when last printed, GPS.
 - Useful during an investigation

Locating User Files

- Allocated Files
 - Entry exists in file allocation table
 - File is on the disk
 - File can be viewed
- Deleted Files
 - File entry marked for deletion (still exists)
 - File is on the disk
 - Hidden in windows, can be viewed with a forensic tool

Locating User Files

- Unallocated file
 - File entry does not exist
 - File now in unallocated space
 - Locate sectors of the file and manually recover
- Renamed Files
 - File extension changed
 - ie. secret.doc renamed secret.jpg
 - Signature Analysis
 - Review file header (first few bytes of file)
 - Look for mismatches

Live Analysis

- Live analysis
 - Observation of an active machine
 - Includes RAM and items resident within RAM such as running processes, open ports
 - Can capture RAM and reconstruct on a different machine
 - Particularly easy in a virtual environment such as VMWare
 - 3rd Party Tools Will overwrite RAM
- Live analysis is of an active machine
 - Want to observe or collect data that can be lost when the machine is powered down
 - Live analysis needs great care
 - By observing the system the analyst inevitably changes it
 - All actions must be documented and recorded

Live Analysis

- Locard's principle: Locard's exchange principle states that "with contact between two items, there will be an exchange"
 - Locard's principle is fundamental to forensics
 - But it also applies to investigation by investigating the system we change it

Live Analysis

- Live analysis items of interest:
 - System time
 - OS Details/Version
 - Logged on users
 - Open files
 - Active processes
 - Port mappings
 - Process memory
 - Network status
 - Clipboard contents
 - Active processes
 - Mapped drives

- Worth noting that most active systems will change without analyst's intervention
 - External user log in and remove incriminating data
 - Windows can generate a 'restore point' every 24 hours
 - Windows can carry out limited defragmentation every 36 hours

Live analysis methodology

Local response

- Sitting at the machine, entering commands at the keyboard and saving results to a removable device or network device that appears as a local device
- Advantage is that it is quick
- Disadvantage is that not scalable when many machines involved and much more likely to affect evidence being collected

Remote response

- Accessing the machine via a network
- Advantage is that it is scalable where many machines involved
- Disadvantage is that it can be slow or difficult to set up network connections
- Hybrid approach is a mixture of both

Guidelines for a live analysis (1)

- Adhere to the site's security policy which should include Incident Handling response procedure
- Capture an accurate picture of the system as soon as possible
- Keep detailed notes including dates and times. You may be called upon to give evidence months or even years later
- Specify whether using UTC, local time or system clock time in notes
- Minimise changes to system as you collect data from it
- (From IETF RFC 3227)

Guidelines for a live analysis (2)

- Isolate the system from the possibility of external change
- If faced with the choice, collect data first, do the analysis later
- Make sure you have well-defined, tested procedures for incident response. Use automation where possible
- For each device on the computer use a methodical approach that follows the guidelines laid down in the collection procedure
- Proceed from volatile to less volatile data
- Make a bit level copy of system's media

Guidelines for a live analysis (3)

- Do not shutdown the system until evidence collection completed
- Minimise use of programs that change access time of all files on the system
- Be careful about removing external access. It may trigger switches that remove evidence
- Respect privacy rules.

Guidelines for a live analysis (4)

- Make sure you have proper authorisation for the analysis
- Make sure you observe legal requirements regarding evidence
- Document each step
- Where feasible use checksums to ensure data has not been tampered with
- Record system times, in particular noting any clock drift
- Make note of people present, their reactions, what they observed

Live analysis of a windows machine

- Order of volatility important to consider
 - Long lived processes
 - daemons in unix, services in Windows
 - Short-lived processes
 - carry out some specific action (perhaps in response to a command) and then exit from RAM
 - TCP connections will timeout within seconds

- RFC3227 has the following example of order of volatility
 - Registers, cache
 - Routing table, arp cache, process table, system statistics
 - Temporary file systems
 - □ Disk
 - Remote logging data
 - Physical configuration
 - Archival media

Live analysis toolkit

- Rather than using software loaded from the machine under investigation, a trusted set of evidence collection programs should be used
 - Should be on a read-only medium such as a CD
 - Should be statically linked and not require any libraries from the machine under investigation
- Should include programs to do the following
 - Examining processes
 - Examining system state
 - Generating checksums
 - Capturing memory dumps

System time

- Should check system time
 - May need to correlate with other events
 - Replay attacks may require a specific time
- System time can be obtained in Windows from mscmd window
 - time, date or date/t

```
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\>time
The current time is: 10:06:44.06
Enter the new time:

C:\>date
The current date is: Tue 08/03/2011
Enter the new date: (dd-mm-yy)

C:\>
```


Logged on users

- What users are logged onto this machine?
- May be logged on remotely
 - . Net sessions
 - Native to Windows
 - PsLoggedOn.exe
 - LogonSessions.exe
 - Available from technet.microsoft.com

```
c:\>psloggedon

PsLoggedon

PsLoggedon v1.34 - See who's logged on
Copyright (C) 2000-2010 Mark Russinovich
Sysinternals - www.sysinternals.com

Users logged on locally:
3/8/2011 7:12:03 PM philip-PC\philip

No one is logged on via resource shares.

c:\>
```


Open Files

- . Net file, psfile and openfiles
 - Will all show files opened remotely
 - Openfiles will show locally opened files

Active processes

- Important to know what processes active
 - Task manager simplest, but usually want more information than it provides
- Information needed includes
 - Full path to the executable image
 - Command line used to launch process (if any)
 - Time process has been running
 - Security and user context in which process running
 - Modules (DLLs) loaded by process
 - Memory contents of the process

Active processes

- Tasklist.exe
 - Native to Windows
- Pslist
 - Additional information such as memory usage
- ListDLLs
 - Information about dynamically linked libraries

Port mappings

- A host may be running a server
 - Webserver, telnet server, email server
- A server listens for messages on a particular port number
 - Eg http traffic is usually directed to port 80
- Important to know what processes are listening to which ports
 - Can be done with netstat, fport, tcpvcon
- Externally, can be done via a port scan using tools such as nmap
 - Needs to be done with caution Consider corporate policy

Network Status

- Netstat
 - Shows connections and their states
- Ipconfig
 - Shows network interface cards and IP addresses

```
Active Connections

Proto Local Address Foreign Address State
TCP 127.0.0.1:49574 philip-PC:49575 ESTABLISHED
TCP 127.0.0.1:49575 philip-PC:49574 ESTABLISHED
TCP 127.0.0.1:49579 philip-PC:49580 ESTABLISHED
TCP 127.0.0.1:49580 philip-PC:49579 ESTABLISHED
TCP 192.168.1.6:49448 a-61-9-129-150:http CLOSE_WAIT
TCP 192.168.1.6:50429 192.168.1.1:http TIME_WAIT
TCP 192.168.1.6:50431 192.168.1.1:http TIME_WAIT
TCP 192.168.1.6:50432 192.168.1.1:http TIME_WAIT
TCP 192.168.1.6:50433 192.168.1.1:http TIME_WAIT
TCP 192.168.1.6:50434 192.168.1.1:http TIME_WAIT
TCP 192.168.1.6:50435 192.168.1.1:http TIME_WAIT
TCP 192.168.1.6:50437 192.168.1.1:http TIME_WAIT
```


Clipboard contents and command history

- Can be useful to see what information has been cut or copied
 - Contents is stored in clipboard
 - Can be obtained by opening notepad.exe and Control + V to paste contents
- Command history can be obtained from

```
Windows: Doskey /history
```

Linux: .bash_history file

Mapped drives and shares

- What are the drive mappings?
 - Drive mappings may have been created maliciously
 - May be relevant in IP theft investigations
- . di.exe
 - Shows mapping, type, file system and space
- net use
 - Built in windows command (shows mapping only)
- Shares are areas of the computer's hard disk that is available for others on the network to use
 - More difficult to identify
 - CLI command share.exe

Memory capture and analysis

- Capture and analyse the contents of RAM
- Many tools available to capture memory
 - Nigilant32, ProDiscover, KnTDD, MDD, Win32dd,
 FTK Imager, Magnet RAM to name a few
 - If virtualization (such as VMWare) being used then if the session has been suspended then the contents of memory will have been written to a .vmem file
 - Hibernation also writes memory to a file

Memory analysis

- A number of commercial systems allow memory, once captured, to be analysed (parsed)
 - BGary Responder
 - Memoryze
- Open Source Analysis
 - Volitility Framework
- Can determine information such as
 - Active processes
 - Open files
 - Loaded modules

Live analysis in a virtual environment

- An environment such as vmware can be particularly useful for live analysis
- The virtualisation software writes a snapshot file that enables the environment to be reconstructed at a later time
- If an investigation is of a virtual environment it may be that such a file can be used in an analysis

Live analysis summary

- Main goal is to capture volatile information
 - Needs great care by observing the system, you change it
 - Locard's principle
- Can be done locally, remotely or both
- Volatile information will be gone when the system shuts down, or may timeout or otherwise change without intervention
- In this unit you are not expected to know all these commands, but to appreciate that there are a large number of options for live analysis

Summary

- Computer forensics involves the capture and analysis of volatile and non-volatile data
- The analysis of volatile data needs to be carried out with caution
 - Live analysis will modify the system being investigated
 - Many tools available
- Analysis of non-volatile data more robust
 - Includes BIOS, Registry, Event logs, Device information and User files

References

References:

- H. Carvey, "Windows Forensic Analysis", 2009
- IETF RFC3227 "Guidelines for Evidence Collection and Archiving", 2002
- B. Carrier, "File System Forensic Analysis", 2005

