desafio

April 25, 2023

1 Desafio - Bázico

1.0.1 Por Vitor Anfrizio

Para este desafio, usei as bibliotecas pandas, numpy, matplotlib e pickle.

Como usei o Google Colab como ambiente, fiz o upload do arquivo "vendas_de_produtos.csv" no Google Drive.

De início, modifiquei a coluna "Data" para o formato aceitável de data e criei uma coluna que indica se a compra foi feita nos últimos 14 dias. Após isso, transformei as descrições em variáveis categóricas, removi dados nulos e algumas colunas que não seriam necessárias à análise.

```
[1]: import pandas as pd
import numpy as np
import pickle

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
```

```
[2]: from google.colab import drive
    drive.mount('/content/drive')

dados = pd.read_excel("/content/drive/MyDrive/vendas_de_produtos.xlsx")
```

Mounted at /content/drive

```
[3]: dados['Data'] = pd.to_datetime(dados['Data'])
dados['Compra_14_Dias'] = (dados['Data'].max() - dados['Data']).dt.days <= 14
dados['Categoria_Produto'] = pd.Categorical(dados['Descrição_Produto']).codes
```

```
[4]: dados = dados.drop(['ID_Produto', 'Descrição_Produto', 'ID_Pedido', \( \triangle 'Preço_Unitário', 'Desconto'], axis=1)\)
dados = dados[dados['ID_Cliente'].notna()]
dados = dados[dados['Data'].notna()]
dados = dados[dados['Compra_14_Dias'].notna()]
```

A partir deste ponto, separei os dados em conjuntos de treino e teste, usando a função train_test_split. Os dados de entrada, que são as informações dos clientes, foram selecionados

usando a função drop. A partir daqui começa a parte preditiva.

70% dos dados foram usados para treino (X_train e y_train) e 30% para teste (X_test e y_test). Essa divisão permitiu avaliar a capacidade de generalização do modelo.

Daqui, criei uma instância da classe Logistic Regression e usei a função fit para treinar o modelo nos dados de treino. Fiz isso para encontrar os coeficientes da equação de regressão logística que se ajustam melhor aos dados.

Como último ponto até aqui, usei o modelo treinado para fazer previsões nos dados de teste (y_pred) e comparei com as respostas reais (y_test) pra avaliar a qualidade do modelo.

```
[6]: modelo = LogisticRegression()
modelo.fit(X_train, y_train)

y_pred = modelo.predict(X_test)

print(classification_report(y_test, y_pred))
```

	precision	recall	f1-score	support
False	0.88	1.00	0.93	4471
True	1.00	0.00	0.01	637
				5 400
accuracy			0.88	5108
macro avg	0.94	0.50	0.47	5108
weighted avg	0.89	0.88	0.82	5108

Como visto acima, o modelo gerado teve uma acurácia de 88% (previu corretamenta, em 88% das vezes, se um cliente faria uma nova compra nos próximos 14 dias ou não).

Em contrapartida, o recall da classe "True" (propensos a fazer recompra) ficou zerado (o modelo não conseguiu identificar corretamente nenhum cliente que realmente fez uma nova compra nesse período), indicando que o modelo precisa de alguns ajustes.

Uma das soluções que me veio à mente foi o uso da técnica SMOTE (Synthetic Minority Oversampling Technique) pra gerar, com base nas observações que já existem, novas observações sintéticas para a classe dos clientes que fizeram recompra.

Para isso, usei a biblioteca *imbalanced-learn*. Apliquei a SMOTE no conjunto de treino, retreinei o modelo e fiz as previsões com o conjunto reamostrado

```
[7]: from imblearn.over_sampling import SMOTE from sklearn.ensemble import RandomForestClassifier
```

```
[9]: sm = SMOTE(random_state=42)
X_train_res, y_train_res = sm.fit_resample(X_train, y_train)

modelo = RandomForestClassifier(random_state=42)
modelo.fit(X_train_res, y_train_res)

y_pred = modelo.predict(X_test)

print(classification_report(y_test, y_pred))

# Salvando o modelo
with open('modelo_classificacao.pkl', 'wb') as arquivo_modelo:
    pickle.dump(modelo, arquivo_modelo)
```

	precision	recall	f1-score	support
False	0.94	0.85	0.90	4471
True	0.38	0.62	0.47	637
accuracy			0.83	5108
macro avg	0.66	0.74	0.68	5108
weighted avg	0.87	0.83	0.84	5108

Com a aplicação da SMOTE, houve uma melhora no recall da classe de clientes que farão recompra (minoritária), passando de 0.0 para 0.65. No entanto, a precisão da classe minoritária caiu, passando de 1.0 para 0.36, indicando que o modelo está prevendo muitos falsos positivos. Em termos mais claros: o modelo está "acertando" 65% das recompras, mas indica que 35% dos clientes que não farão recompra, na verdade, farão.

Apesar disso, apliquei a curva ROC para avaliar melhor o desempenho do modelo. Separei o conjunto de teste, calculei as probabilidades de classe, AUC e plotei o gráfico da curva:

```
[10]: from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt

[11]: X_test = dados.drop(['ID_Cliente', 'Data', 'Compra_14_Dias'], axis=1)
y_test = dados['Compra_14_Dias']
```

```
[12]: y_pred = modelo.predict(X_test)
y_prob = modelo.predict_proba(X_test)[:, 1]
fpr, tpr, thresholds = roc_curve(y_test, y_prob)
roc_auc = auc(fpr, tpr)
```

```
plt.plot(fpr, tpr, color='darkorange', lw=2, label='curva ROC (área = %0.2f)' %uroc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('Taxa de Falsos Positivos')
plt.ylabel('Taxa de Verdadeiros Positivos')
plt.title('ROC - Receiver Operating Characteristic')
plt.legend(loc="lower right")
plt.show()
```


Após a aplicação do SMOTE, a área da curva ROC, indicada no gráfico acima, foi de 0.94, indicando que o modelo teve um desempenho bastante satisfatório, sendo capaz distinguir muito bem entre as classes positivas e negativas, tendo uma alta taxa de assertividade. Abaixo, seguem as tabelas pré e pós-aplicação da SMOTE:

1.0.2 Pre-SMOTE

	Precision	Recall	F1-Score	Support
False	0.88	1.00	0.93	4471

	Precision	Recall	F1-Score	Support
True	1.00	0.00	0.01	637
Accuracy			0.88	5108
Macro Average	0.94	0.5	0.47	5108
Weighted Average	0.98	0.88	0.82	5108

1.0.3 Post-SMOTE

	Precision	Recall	F1-Score	Support
False	0.94	0.84	0.89	2991
True	0.36	0.65	0.47	415
Accuracy			0.82	3406
Macro Average	0.65	0.74	0.68	3406
Weighted Average	0.87	0.82	0.84	3406

Para finalizar, carreguei o modelo salvo e apliquei ao conjunto de clientes que ainda não fizeram uma recompra. Daí, classifiquei-os de acordo com as probabilidades geradas pelo modelo. No final, "imprimi" a lista de clientes ordenada por probabilidade de recompra e, logo após, imprimi a lista dos 100 clientes com a maior probabilidade de recompra, segundo o modelo.

```
[14]: with open('modelo_classificacao.pkl', 'rb') as arquivo_modelo:
    modelo_carregado = pickle.load(arquivo_modelo)
```

	ID_Cliente	Probabilidade_Recompra
15894	15894	1.0
16195	16195	1.0
12851	12851	1.0
12866	12866	1.0
16301	16301	1.0
•••	•••	•••
8666	8666	0.0
8667	8667	0.0
8668	8668	0.0
2993	2993	0.0
0	0	0.0

[17026 rows x 2 columns]

[18]: top_100_clientes = dados_probabilidades.head(100)['ID_Cliente'].tolist()
 print(top_100_clientes)

[15894, 16195, 12851, 12866, 16301, 12902, 12903, 16741, 3036, 8347, 12937, 16295, 16291, 16290, 8155, 8154, 8153, 8141, 16278, 16277, 3098, 1962, 16275, 16273, 7875, 16733, 8521, 16305, 16355, 16382, 12427, 9190, 16379, 16371, 16368, 12474, 16703, 16357, 16705, 16710, 16306, 8696, 8671, 3006, 16333, 16331, 16320, 12664, 16317, 16727, 12774, 7852, 7849, 16765, 13548, 233, 16549, 16211, 3193, 16779, 16780, 16781, 16210, 16784, 16785, 13551, 13280, 7267, 16207, 16790, 13599, 7265, 214, 16203, 13626, 13654, 16198, 16214, 16231, 7813, 13233, 16272, 7729, 16268, 13145, 16257, 16256, 16775, 16251, 256, 255, 252, 238, 13251, 16247, 16240, 16778, 3164, 16239, 16238]