Reinforcement learning

Geonhee Lee gunhee6392@gmail.com

Outline

- Introduction to Reinforcement learning
- Markov Decision Process(MDP)
- Dynamic Programming(DP)
- Monte Carlo Method(MC)
- Temporal Difference Method(TD)
 - SARSA
 - Q-Learning
- Planning and Learning with Tabular Methods
- On-policy Control with with Approximation
- On-policy Prediction with Approximation
- Policy Gradient Method
- Actor Critic Method

Introduction to Reinforcement learn

RL 특성

다른 ML paradigms과의 차이점

- No supervisor, 오직 reward signal.
- Feedback이 즉각적이지 않고 delay 된다.
- Time이 큰 문제가 된다(연속적인, Independent and Identically Distributed(i.i.d, 독립항등분포) data가 아니다).
- Agent의 행동이 agent가 수용하는 연속적인 data에 영향을 준다.

Reward

- Reward: scalar feedback signal.
- agent가 step t에서 얼마나 잘 수행하는 지 나타냄.
- agent의 목표는 전체 reward의 합을 최대화하는 것

Sequential Decision Making

- Goal: Total future reward를 최대화하는 action 선택.
- Action들은 long term 결과들을 가질 것.
- Reward는 지연될 것.
- long-term reward를 더 크게 얻기 위해 즉각적인 reward를 희생하는 것이 나을 수도 있음.

History and State

- history: observations, actions, rewards의 연속.
- State: 다음에 어떤 일이 일어날 것인지 결정하기 위해 사용된 정보(다음 수식을 위한 정의로 보임)
- 공식으로는, state는 history의 함수이다.

$$S_t = f(H_t)$$

Information State

- Information state(a.k.a. Markov state)는 history로부터 모든 유용한 정보를 포함한다.
- 정보이론 관점에서의 information state 혹은 Markov state라는 상태가 있다. 데어터 관점에서 history의 유용한 정보 들을 포함하고 있는 state를 의미한다.

Definition

state S_t 는 Markov 이다 if and only if $P[S_{t+1}|S_t] = P[S_{t+1}|S_1,\dots,S_t]$

- 미래는 현재의 과거와 독립적이다.
- State가 주어지면, history는 버려질 수 있다.

Fully Observable Environments

• Full observability: agent는 직접적으로 enviroment state를 관찰한다.

$$O_t = S_t^a = S_t^e$$

- Agent state = environment state = information state.
- 형식적으로, 이것은 Markov decision precess(MDP).

Partially Observable Environments

- Partial observability: agent는 간접적으로 environment를 관찰.
 - o (ex)robot이 카메라를 가지고 절대적인 위치를 알지못하는 것.
 - o (ex)포커를 하는 agent는 오직 오픈한 card들만 볼 수 있는 것.
- 여기서는, agent state ≠ environment state.
- 형식적으로, 이것을 partially observable Markob decision process(POMDP).
- Agent는 자체 state representation S^a_t 을 구성해야만 한다.
 - o 다음과 같은 방법으로 만들 수 있다(1. 전체 history 사용, 2. 확률을 사용, 3. RNN 방식 사용).
 - Complete history: $S_t^a = H_t$.
 - lacksquare Beliefs of environment state: $S^a_t = \mathbb{P}\left[S^e_t = s^1
 ight], \ldots, \mathbb{P}[S^e_t = s^n]$).
 - \blacksquare Recurrent neural network: $S^a_t = \sigma(S^a_{t-1}W_s + O_tW_o).$

RL Agent의 주요 성분

• **Policy**: agent의 행동 함수.

• **Value function**: 각 state 및/혹은 action이 얼마나 좋은지.

• **Model**: agent's representation of the environment.

Policy

• Policy: Agent의 행동.

• State에서 action으로 매핑.

• Deterministic policy: $a = \pi(s)$.

 \circ Stochastic policy: $\pi(a|s)$ = $\mathbb{P}[A_t=a|S_t=s]$.

Value function

- Value functionn: Future reward 예측 값.
- State의 좋은것/나쁜것인지 판단하기 위해 사용.
- Value function을 이용하여 action 선택

$$V_\pi = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \ldots | S_t = s]$$

Model

- Model: environment에서 다음에 행해질게 무엇인지 예측.
- *P*: 다음 state를 예측.
- R: 다음(즉각적인) reward를 예측.

$$P^a_{ss'}$$
 = $\mathbb{P}\left[S_{t+1}=s'|S_t=s,A_t=a
ight]$

$$R_s^a$$
 = $\mathbb{E}\left[R_{t+1}|S_t=s,A_t=a
ight]$

- Agent는 env의 내부 모델을 가지고 있다고 가정.
 - Dynamics: action들이 state를 변화시키는 방법.
 - Rewards: 각 state으로부터 얼마의 reward를 받는 지.
 - o Model은 불완전할 것.
- ullet Grid layout은 transition model ($P_{ss'}^a$)를 나타낸다.
- 숫자들은 (모든 행동에 동일한) 각 state s로부터 즉각적인 reward (R^a_s) 를 나타낸다.

RL Agent 분류

Learnign and Planning

Sequential decision making에서 두 가지 근본적인 문제

- Reinforcement Learning:
 - o Env는 초기에 알려져있지 않음.
 - o Agent는 Env와 상호작용.
 - o Agent는 policy를 향상시킴.
- Planning:
 - o Env 모델은 알려져 있음.
 - o Agent는 (어떠한 외부 상호작용 없이) 모델과 계산을 수행.
 - o Agent는 policy를 향상시킴.
 - a.k.a. deliberation, reasoning, introspection, pondering, thought, search.

Exploration and Exploitation

- RL은 trial-and-error learning과 유사.
- Agent는 good policy를 발견해야만 한다.
 - o Env의 경험으로부터
 - o 도중에 많은 reward를 잃지 않도록
- Exploration은 Env에 대한 더 많은 정보를 찾는다.
- Exploitation은 reward를 최대화하기 위해 알려진 정보를 exploit.
- Exploit만큼 explore도 일반적으로 중요하다.

Prediction and Control

- **Prediction**: future를 평가.
 - o 주어진 policy를 이용하여 계산 및 평가.
 - (아래그림)Uniform random policy의 value function은 무엇인가?

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

- **Control**: future를 최적화.
 - o best policy를 찾는 것.
 - (아래그림)모든 가능한 정책들에서 optimal value function은 무엇인가?
 - (아래그림)Optimal policy는 무엇인가?

a) gridworld

b) v_{st}

c) π_*

Markov Decision Process(MDP)

Outline

- Markov Processes
- Markob Reward Processes
- Markov Decision Processes
- Extensions to MDPs

Introduction to MDPs

- Markov decision processes(MDP)는 RL에서 Env를 형식적으로 기술.
 - o 여기서 Env는 fully observable.
 - o i.e., 현재 state는 완전하게 process의 특성을 나타냄.
- 대부분 모든 RL 문제들은 MDPs 로 공식화될 수 있다.
 - Optimal control은 주로 continous MDPs를 다룬다.
 - Partially Observable problem은 MDPs로 변환을 할 수 있다.
 - Bandits은 하나의 state를 가진 MDPs이다.

Markov Property

"미래는 현재에서의 과거와 독립적이다."

Definition

state S_t : Markov if and only if $\mathbb{P}[S_{t+1}|S_t] = \mathbb{P}[S_{t+1}|S_1,]$

Dynamic Programming(DP)

Monte Carlo Method(MC)

Temporal Difference Method(TD)

Planning and Learning with Tabular Methods

On-policy Control with with Approximation

Policy Gradient Method

Actor Critic Method

Reference

- [1] UCL Course on RL
- [2] Reinforcement Learning: Tutorial(Seoul National University of Sceience and Technology)
- [3] Reinforcement Learning: An Introduction, Sutton
- [4] jay.tech.blog
- [5] 대손의 스마트 웹