of f(x,y) of size W, XW2 $(\mu\nu) = \frac{1}{\sqrt{w_1w_2}} = \frac{\sqrt{-j2}}{\sqrt{x=0}} + (x,y) = \frac{1}{\sqrt{x=0}}$ $\overline{\pm}^*(u, N) = \overline{\pm}(-u, -N)$ $\Rightarrow F(u,v) = \left(\frac{1}{\sqrt{w_1w_2}} \frac{w_2y}{x=0} + (x,y) e^{-j27t(\frac{\mu x}{w_1} + \frac{vy}{w_2})} \right)$ $\Rightarrow V(u,v) = \left(\frac{1}{\sqrt{w_1w_2}} \frac{w_2y}{x=0} + (x,y) e^{-j27t(\frac{\mu x}{w_1} + \frac{vy}{w_2})} \right)$ $= \frac{1}{\sqrt{w_1w_2}} \sum_{x=0}^{w_1-1} \frac{w_2-1}{y=0} + (\alpha_1y) \left(\frac{u_1}{w_1} + \frac{v_2}{w_2} \right)$ $\frac{1}{\sqrt{w_1w_2}} = \frac{\sqrt{w_2-1}}{\sqrt{w_1w_2}} = \frac{\sqrt{w_1w_2}}{\sqrt{w_1w_2}} = \frac{w_1w_2}{\sqrt{w_1w_2}} =$ W_1-1 W_2-1 t(a,g) $e^{-j2\pi i}$ (-jax) +vg $= F_{4}(-\mu, -\nu) = RHS$

LHS=RHS
flance Roved!

b)
To show: f(x,y) is real beven

F(u,n) is real beven (f(x,y)=f(-x,-y))(we know that f(y,y)=f(-y,-y) (using a) f(y,y)=f(-y,-y) f(y,y= 1 W1-1 W2-1 +5250 (-M1-x), (-W1-y) = 1250 (-M1-x), (-W1-y) = 1250 (-M1-x), (-W1-y) $= \frac{1}{\sqrt{w_1 w_2}} = \frac{1}{\sqrt{w_$ = f(u,v) f(u,v)As $f(u,v) = f(u,v) \Rightarrow f(u,v)$ is seal Now, f(u,v) = f(u,v) = f(-u,-v) (using a) $\Rightarrow \overline{g(u,v)} = \overline{g(u,v)} \Rightarrow \overline{g(u,v)} \Rightarrow even$ Mence Roved!