Understanding Load Impact and Power Outages

Michael Roberts, Prasoon Karmacharya and Stacey Andreadakis

Our Objective: Predict Duration of Power Outages

The Reality: Finding Good Data is Difficult

METHODOLOGY

ITERATIONS OF DATA

Phase 1	Columbia University IP Address Data Set	PowerOutage.Us Data Set	Collected Tweets using twitterscraper
Phase 2	NYISO Load Data Set	Collected Tweets using twitterscraper	
Phase 3	NYISO Load Data Set	Energy.Gov Outage Data (OE-417)	Tweets Collected from 2nd Phase
Phase 4	NYISO Load Data Set	Energy.Gov Outage Data (OE-417)	Weather Data Collected using API

ITERATIONS OF MODELS

Phase 4	Univariate + Multivariate Time Series Models	Determine Duration of Power Outages	Variables in Multivariate Model
Phase 3	Logistic Regression Model	Features in Regression Model	Sentiment Analysis
Phase 2	Logistic Regression Model	Sentiment Analysis	
Phase 1	Logistic Regression Model	Features in Regression Model	Sentiment Analysis

ANALYSIS OF OUTAGE DATA

- Collecting and Cleaning
- EDA
- Visualizations
- Incompatibility with
 - Time Series
 - ISO Load Data

COLLECTING, CLEANING & ANALYZING

- What was in the data
 - Date/time of outage and restoration
 - Area Affected
 - Alert Criteria
 - 0 2015-2020
- Creating timedelta objects
 - Calculating restoration time
- Duplicating rows for observations with multiple states

Average Length of Power Outages by State

Number of Outages by State

INCOMPATIBILITY OF DATA

ISO Load Data

There was not enough observations in the Energy.Gov Data for New York to either engineer features or create target columns for that dataset to accompany Load Data.

Time Series

While our knowledge of time series models was fairly new, after EDA it became clear that the Energy.Gov Outage Data could not be used in conjunction with ARIMA or VAR models

MODEL 1: UNIVARIATE TIME SERIES

- MODEL : ARIMA (AutoRegressive Integrated Moving Average)
- Checking Seasonality, Trends and Stationarity
- Identifying the lag time
- o Grid search on p, q, d
- Forecasting
- Evaluating the model

POWER LOAD DATA

- Load Data for NYC (2018, 2019)
- Source: NYISO
- Test/Train Split: 90/10

TREND, SEASONALITY AND STATIONARITY - UNIVARIATE

Augmented Dickey-Fuller Test: (p-value = 0.0)

IDENTIFYING LAG - UNIVARIATE

Lag (p) = 7, based on PACF and Augmented Dickey-Fuller Test

UNIVARIATE TIME SERIES ANALYSIS

UNIVARIATE TIME SERIES ANALYSIS

RMSE = 888.4091 MW

MODEL 2: MULTIVARIATE TIME SERIES

- MODEL: VAR (Vector AutoRegression)
- Endogenous and Exogenous Variables
- Checking Seasonality and Trends
- Cointegration and Stationarity Test
- Criteria to determine Lag
- Forecasting
- Evaluating the model

MULTIVARIATE TIME SERIES ANALYSIS: ENDOGENOUS VARIABLES

TREND AND SEASONALITY - MULTIVARIATE

CHECK FOR STATIONARITY: JOHANSEN TEST

VARIABLE	TYPE	EIG VALUE	STATIONARY
RTD LOAD (MW)	ENDOGENOUS	.2	YES
WIND GUST (KMPH)	ENDOGENOUS	.05	YES
WINDCHILL (C)	EXOGENOUS	.07	YES
HUMIDITY	EXOGENOUS	.03	YES
PRESSURE	EXOGENOUS	.02	YES
TEMP (C)	EXOGENOUS	.004	YES

TO BIC OR NOT TO BIC? LAG IS THE QUESTION

AIC =
$$2k - 2\ln(\hat{L})$$
 $||y - X\beta||^2 + \alpha ||\beta||^2$

BIC =
$$k \ln(n) - 2 \ln(\hat{L})$$
 $||y - X\beta||^2 + \alpha ||\beta||_1$

MULTIVARIATE TIME SERIES ANALYSIS

Stationary RTD Load Data VAR Model & Predictions

- RMSE RTD Load = 846.185 MW
- RMSE Wind Gust Actual = 15.0587 mph

MULTIVARIATE TIME SERIES ANALYSIS

- RMSE RTD Load = 846.185 MW
- o RMSE Wind Gust Actual = 15.0587 mph

LESSONS LEARNED

 80% of Data Science truly is about the collection of data, understanding the structure of the data and the rest is cake

 Working with a great team can go a long way in an otherwise arduous process

Acknowledgments

Travis Whalen

All my homies hate niloofar

Noelle Brown

Dan Wilhelm

Niloofar Bayat

Kunal Mahajan

Vishal Misra

Dan Rubenstein
