BMB202. Veritabanı Yönetimi

Ders 4. Normalizasyon

Dersin Planı

- Normalizasyon
- Normalizasyonun Amaçları
- Normalizasyon Aşamaları
 - -Birinci Normal Form
 - İkinci Normal Form
 - Üçüncü Normal Form
 - Boyce-Codd Normal Formu
 - Dördüncü Normal Form

— . . .

Veri Modelini Normalleştirmek

- İlişkisel veri tabanı tasarlanması aşamasında verinin tekrarlanmasını, kaybını veya yetersizliğini önlemek için normalleştirme (normalization) işlemi uygulanır.
- Normalleştirme, aynı zamanda "ilk taslak" veri tabanı tasarımının üzerinde revizyonlar yapmanın yolu, taslağı son haline yaklaştırmanın yöntemlerden birisidir.

Normalleştirmenin Amaçları - 1 Veri bütünlüğünü sağlamak

- Eğer veri gereksiz yere tekrarlanıyorsa, bu değişik kopyalar, bunlardan habersiz olan uygulama kodları yüzünden bir süre sonra birbirinden farklı değerleri taşımaya başlayabilirler. Bu, doğruluk ve tutarlılık açısından çok kötü bir sonuçtur.
- Bu gibi durumlarda ilişkisel veri tabanı yönetim sisteminin otomatik bütünlük (automatic integrity) mekanizmaları bile işe yaramaz. Düzeltmenin, uygulama seviyesinde yapılması gerekir. Fakat bu da uygulama programlarını daha karmaşık hale getirecek, dolayısıyla bakımını zorlaştıracaktır.

Normalleştirmenin Amaçları - 2 Uygulamadan bağımsızlık

- Normalleştirme, "ilişkisel model, verinin içeriğine göre kurulmalı, uygulamaya göre değil" kavramını bir adım daha öne alır.
- •Bu sayede veri modeli, üzerinde onu kullanan uygulama değişse bile, daha tutarlı, sabit ve değişmez olarak kalacaktır.
- Uygulama programının gereksinimlerinin veri tabanının mantıksal modeli üzerinde minimum etkisi olmalıdır.

Normalleştirmenin Amaçları - 3 Performansı arttırmak

- Dış anahtarların haricinde, tamamıyla normalleştirilmiş bir veri tabanı gereksiz yere kopyalanmış veri miktarını en aza indirecektir.
- Verilerin daha az kopyasının olması saklama kapasitesinin azalmasına ve veri tabanı motorunun arama süresinin azalmasına yol açar. Bu da performansın artması demektir.

İşlevsel Bağımlılık

- R bir ilişki şeması, X ve Y nitelik kümeleri ise R'nin alt kümeleri olsun (X ⊆ R, Y ⊆ R).
- Eğer X nitelik kümesinin değerleri Y nitelik kümesinin değerlerini belirliyorsa (X'in her farklı değeri Y'nin belirli bir değerine karşılık geliyorsa); "Y niteliği X niteliğine işlevsel bağımlıdır" denir ve "X → Y" şeklinde gösterilir.
- X'ten bir nitelik çıkarıldığı halde bu bağımlılık hâlâ geçerli ise kısmi bağımlılık (partial dependency) söz konusudur.

İşlevsel Bağımlılık

DAĞITIM (<u>müşteri_no</u>, şehir_kodu, şehir_adı, <u>gönderi_no</u>, miktar)

- 1. müşteri_no → şehir_kodu, şehir_adı
- 2. (müşteri_no, gönderi_no) → miktar
- şehir_kodu → şehir_adı (geçişli bağımlılık)
- İlkinde anahtar alanı oluşturan niteliklerden 1 tanesi, iki farklı niteliği belirleyebiliyor (kısmi bağımlılık)
- Bir müşteriye birden fazla defa ürün gönderilebildiği için ikincisinde iki nitelik bir anahtar oluşturuyor.
- İlk ikisi anahtara göre bağımlı, üçüncüsü geçişli bağımlı (transitive dependent).

Normalleştirme Aşamaları

Birinci Normal Form

İkinci Normal Form

Üçüncü Normal Form

Boyce-Codd Normal Formu

Dördüncü Normal Form

. . .

Normal Olmayan Form

İlişkisel veri tabanı modelinin temel kuralına göre bütün niteliklerin aldığı değerler atomik (tek ve basit) olmalıdır.

Aşağıdaki DAĞITIM tablosu bu kurala uymamaktadır, bu yüzden normal değildir.

müşteri_no	şehir_kodu	şehir_adı	gönderi_no	miktar
1	34	İstanbul	1,2,3,4,6	300,200,400,200,100
2	6	Ankara	1,2	300,400
3	6	Ankara	2	200
4	34	İstanbul	2,4,5	200,300,400

Birinci Normal Form Uygulandığında:

müşteri_no	şehir_kodu	şehir_adı	gönderi_no	miktar
1	34	İstanbul	1	300
1	34	İstanbul	2	200
1	34	İstanbul	3	400
1	34	İstanbul	4	200
1	34	İstanbul	6	100
2	6	Ankara	1	300
2	6	Ankara	2	400
3	6	Ankara	2	200
4	34	İstanbul	2	200
4	34	İstanbul	4	300
4	34	İstanbul	5	400

Birinci Normal Formun Sorunları

Birinci normal formdaki bir tablo bazı alanlarda tekrarlı verilere sahiptir. Örneğimizde şehir_kodu ve şehir_adı alanlarında her müşteri için tekrarlı veriler vardır.

Bu tekrarlar ekleme, silme ve güncelleme işlemlerinde sorunlara neden olacaktır.

Satır Ekleme Sorunu

Başka bir müşterinin bilgilerinin (müşteri_no, şehir_kodu, şehir_adı) girilmesi için mutlaka o müşteriye bir dağıtım işleminin yapılması (gönderi_no ve miktar değerlerinin girilmiş olması) gerekiyor.

müşteri_no	şehir_kodu	şehir_adı	gönderi_no	miktar
1	34	İstanbul	1	300
	•••			•••
4	34	İstanbul	5	400

5	35	İzmir	

Satır Silme Sorunu

Bir müşteriye tek bir dağıtım yapıldıysa (örn. 3 no'lu müşteri), o dağıtım işlemi iptal edildiğinde, sadece gönderi_no ve miktarı değil, o dağıtımın yapıldığı müşteri hakkındaki diğer bilgiler de (müşteri_no, şehir_kodu, şehir_adı) yok olur.

müşteri_no	şehir_kodu	şehir_adı	gönderi_no	miktar
1	34	İstanbul	1	300
1	34	İstanbul	2	200
3	6	Ankara	2	200

Güncelleme Sorunu

1 numaralı müşteri Ankara'ya taşınırsa, bu müşteri ile ilgili tüm satırların güncelleştirilmesi gerekecektir. Eğer tablo çok büyük ise, sadece bir müşteri ile ilgili küçük bir değişiklik bile binlerce kaydın güncelleştirilmesini gerektirebilir.

müşteri_no	şehir_kodu	şehir_adı	gönderi_no	miktar
1	34	İstanbul	1	300
1	34	İstanbul	2	200
1	34	İstanbul	3	400
1	34	İstanbul	4	200
	•••			•••

İkinci Normal Form

Birinci normal formdaki sorunlardan (en azından güncelleme sorunundan) kurtulmak için nitelikler arasındaki işlevsel bağımlılıktan yararlanılarak birinci normal form (1NF) tablolarının birden fazla tabloya dönüştürülmesi sonucunda ikinci normal forma (2NF) ulaşılır.

İkinci normal formda, ilişkisel tablonun her bir anahtar olmayan sütunu birincil anahtara kısmi bağımlı değil, tam işlevsel bağımlı olmalıdır.

İkinci Normal Form

şehir_kodu ve şehir_adı nitelikleri (müşteri_no, gönderi_no) birleşik anahtarının sadece müşteri_no niteliği üzerinde tam işlevsel bağımlıdır.

O halde şehir_kodu ve şehir_adı nitelikleri müşteri_no ile beraber ayrı bir tablo oluşturmalıdır.

```
DAĞITIM(müşteri_no, şehir_kodu, şehir_adı, gönderi_no, miktar)

MÜŞTERİLER(müşteri_no, şehir_kodu, şehir_adı)

MİKTARLAR(müşteri_no, gönderi_no, miktar)
```

İkinci Normal Form Uygulandığında:

müşteri_no	şehir_kodu	şehir_adı
1	34	İstanbul
2	6	Ankara
3	6	Ankara
4	34	İstanbul

müşteri_no	gönderi_no	miktar
1	1	300
1	2	200
1	3	400
1	4	200
1	6	100
2	1	300
2	2	400
3	2	200
4	2	200
4	4	300
4	5	400

İkinci Normal Formun Sorunları

Birinci normal formdaki güncelleme sorununu ikinci normal forma dönüştürme ile ortadan kaldırmış olsak ta, ikinci normal formda da ekleme ve silme sorunları olabilmektedir.

Satır Ekleme Sorunu

MÜŞTERİLER tablosuna yeni bir müşteri kaydı girilmediği sürece yeni bir şehir tanımı yapılamaz. İzmir ilini tabloya dahil edebilmek için İzmir'de bulunan bir müşteriye ihtiyaç vardır.

müşteri_no	şehir_kodu	şehir_adı
1	34	İstanbul
2	6	Ankara
3	6	Ankara
4	34	İstanbul
	1	
	35	İzmir

Satır Silme Sorunu

Tablodan bir müşteri silindiğinde, eğer o şehirdeki tek müşteri ise, şehir_kodu ve şehir_adı bilgileri de yok olacaktır.

müşteri_no	şehir_kodu	şehir_adı
1	34	İstanbul
2	6	Ankara
3	6	Ankara
4	34	İstanbul
5	35	İzmir

Üçüncü Normal Form

Birinci normal formdaki sorunlardan kurtulmak için nitelikler arasındaki <u>kısmi</u> işlevsel bağımlılıkları ortadan kaldırmıştık.

İkinci normal formdaki sorunlardan kurtulmak için de nitelikler arasındaki <u>geçişli</u> işlevsel bağımlılıkları ortadan kaldırmamız gerekir.

Örneğimizde "şehir_kodu → şehir_adı" işlevsel bağımlılığının geçişli olduğunu belirtmiştik. Bir anahtara bağlı olmayan bu bağımlılığı ayrı bir tabloya dönüştürerek üçüncü normal formu (3NF) elde edebiliriz.

Üçüncü Normal Form Uygulandığında:

ŞEHİRLER

şehir_kodu	şehir_adı
6	Ankara
34	İstanbul
35	İzmir

MÜŞTERİLER

müşteri_no	şehir_kodu
1	34
2	6
3	6
4	34
5	35

MİKTARLAR

müşteri_no	gönderi_no	miktar
1	1	300
1	2	200
1	3	400
1	4	200
1	6	100
2	1	300
2	2	400
3	2	200
4	2	200
4	4	300
4	5	400

Boyce-Codd Normal Formu

- Her belirleyicinin bir anahtar oluşu halidir.
- Örnek olarak aşağıdaki ilişkiyi düşünelim:

ÖĞRENCİ(ÖğrNo, Bölüm, Danışman)

ÖĞRENCİ

<u>ÖğrNo</u>	<u>Bölüm</u>	Danışman
123	Fizik	A. ERCAN
123	Kimya	M. AKINCI
456	Biyoloji	K. SÖNMEZ
789	Fizik	A. ERCAN
999	Kimya	B. ÖZKAN

Boyce-Codd Normal Formu

<u>ÖğrNo</u>	<u>Bölüm</u>	Danışman
123	Fizik	A. ERCAN
123	Kimya	M. AKINCI
456	Biyoloji	K. SÖNMEZ
789	Fizik	A. ERCAN
999	Kimya	B. ÖZKAN

1NF ? EVET (bütün niteliklerin aldığı değerler atomik)

2NF ? EVET (kısmi bağımlılık yok)

3NF ? EVET (geçişli bağımlılık yok)

Boyce-Codd Normal Formu

<u>ÖğrNo</u>	<u>Bölüm</u>	Danışman
123	Fizik	A. ERCAN
123	Kimya	M. AKINCI
456	Biyoloji	K. SÖNMEZ
789	Fizik	A. ERCAN
999	Kimya	B. ÖZKAN

- Her üç normal formu da sağlıyor. Sorun var mı?
- EVET
- 1. 456 numaralı öğrenci silinirse Biyoloji ve K.SÖNMEZ yok olacak
- 2. Bir öğrenci Matematik bölümüne kayıt olana kadar bu bölüm var olmayacak.

Çözüm: Belirleyicileri anahtar yap

- Birincil Anahtar:
 - -(ÖğrNo, Bölüm)
- Aday Anahtar:
 - (ÖğrNo, Danışman)
- İşlevsel Bağımlılıklar:
 - (ÖğrNo, Bölüm) → Danışman
 - Danışman → Bölüm

ınışı	lić	1 Γ1 →	BO
Belirl	ey	iciler	

<u>ÖğrNo</u>	<u>Bölüm</u>	Danışman
123	Fizik	A. ERCAN
123	Kimya	M. AKINCI
456	Biyoloji	K. SÖNMEZ
789	Fizik	A. ERCAN
999	Kimya	B. ÖZKAN

Boyce-Codd Normal Formu (BCNF) Uygulandığında:

ÖĞRENCİ

<u>ÖğrNo</u>	<u>Bölüm</u>	Danışman
123	Fizik	A. ERCAN
123	Kimya	M. AKINCI
456	Biyoloji	K. SÖNMEZ
789	Fizik	A. ERCAN
999	Kimya	B. ÖZKAN

ÖĞRENCİ_DANIŞMAN

<u>ÖğrNo</u>	<u>Danışman</u>
123	A. ERCAN
123	M. AKINCI
456	K. SÖNMEZ
789	A. ERCAN
999	B. ÖZKAN

DANIŞMAN_BÖLÜM

<u>Danışman</u>	Bölüm
A. ERCAN	Fizik
M. AKINCI	Kimya
K. SÖNMEZ	Biyoloji
B. ÖZKAN	Kimya

Özet

NF: Normal olmayan form

1NF: Bütün alan değerleri atomik ise R 1NF'de

2NF: R 1NF'de ise ve anahtar olmayan tüm nitelikler anahtara tam bağımlı ise R 2NF'de

3NF: R 2NF'de ise ve anahtar olmayan tüm nitelikler anahtara geçişsiz bağımlı ise R 3NF'de

BCNF: Her belirleyici bir aday anahtar ise R BCNF'de

Belirleyici: Başka bir niteliğin tam işlevsel bağımlı olduğu nitelik

Dördüncü Normal Form

Bazı durumlarda BCNF'daki bir ilişkide de sorunlar görülebilmektedir. Örneğin;

ÖĞRENCİ(ÖğrNo, Bölüm, Spor)

ÖĞRENCİ

ÖğrNo	Bölüm	Spor
123	Fizik	Kayak
123	Kimya	Kayak
123	Fizik	Tenis
123	Kimya	Tenis
999	Kimya	Tenis

Dördüncü Normal Form

Burada bir öğrenci birden çok bölüme kayıt olabilmekte ve birden çok spor etkinliğine katılabilmektedir.

Bu nedenle ÖğrNo ile Bölüm ve ÖğrNo ile Spor arasındaki ilişkiler birer işlevsel bağımlılık değil çok-değerli bağımlılık (multivalued dependency) halindedir.

ÖĞRENCİ

ÖğrNo	Bölüm	Spor
123	Fizik	Kayak
123	Kimya	Kayak
123	Fizik	Tenis
123	Kimya	Tenis
999	Kimya	Tenis

Dördüncü Normal Form

123 numaralı öğrencinin bir bölüme daha kayıt olması yada bir spor etkinliğine daha katılması halinde iki kayıt daha ilave edilmelidir.

Bu gibi yineleme sorunlarını ortadan kaldırmak için ÖĞRENCİ ilişkisi ikiye ayrılırak dördüncü normal form (4NF) oluşturulur.

ÖĞRENCİ_BÖLÜM

ÖğrNo	Bölüm
123	Fizik
123	Kimya
999	Biyoloji

ÖĞRENCİ_SPOR

ÖğrNo	Spor
123	Kayak
123	Tenis
999	Yüzme

Örnek 1

Ö.NO	Ö.AD	Ö.SOYAD	DERS_NO	DERS_ADI	VIZE	FINAL	H.NO	H.AD	H.SOYAD
2001001	Ahmet	Solmaz	202	Matematik 2	70	60	11	Özlem	UÇAR
2001001	Ahmet	Solmaz	203	Fizik 2	80	40	11	Özlem	UÇAR
2001001	Ahmet	Solmaz	204	Bilgisayar Mühendisliğine Giriş 2	60	45	3	Aydın	CARUS
2001001	Ahmet	Solmaz	205	Atatürk İlkeleri ve İnkılap Tarihi 2	90	95	9	Zeki	DURMUŞ
2001001	Ahmet	Solmaz	206	Türk Dili 2	70	75	12	Nebahat	YILDIZ
2001005	Seyhan	Gülmez	202	Matematik 2	80	95	11	Özlem	UÇAR
2001005	Seyhan	Gülmez	203	Fizik 2	80	70	11	Özlem	UÇAR
2001005	Seyhan	Gülmez	204	Bilgisayar Mühendisliğine Giriş 2	60	70	3	Aydın	CARUS
2001002	Selim	Solmaz	702	Veri Tabanı Yönetimi	60	50	6	Altan	MESUT
2001003	Ahmet	Vardar	702	Veri Tabanı Yönetimi	60	60	6	Altan	MESUT
2001004	Sezai	Kantar	702	Veri Tabanı Yönetimi	65	55	6	Altan	MESUT

Verilen şema 1. Normal Formda (atomik değerler)

• OKUL (Ö.No, Ö.Ad, Ö.Soyad, Ders No, Ders Adı, Vize, Final, H.No, H.Ad, H.Soyad)

2. NF'ye geçerken kısmi bağımlılıklar ortadan kaldırılır

- NOTLAR(Ö.No, Ders No, Vize, Final)
- ÖĞRENCİLER(<u>Ö.No</u>, Ö.Ad, Ö.Soyad)
- DERSLER(<u>Ders No</u>, Ders_Adı, H.No, H.Ad, H.Soyad)

3. NF'ye geçerken geçişli bağımlılıklar ortadan kaldırılır

- NOTLAR(Ö.No, Ders No, Vize, Final)
- ÖĞRENCİLER(Ö.No, Ö.Ad, Ö.Soyad)
- DERSLER(Ders No, Ders_Adı, H.No)
- HOCALAR(<u>H.No</u>, H.Ad, H.Soyad)

Örnek 2

UrunNo	UrunAd	ParcaNo	ParcaAd	Miktar	UreticiNo	UreticiAd	UreticiSehir	UreticiTel
10026201	Pavilion DV2620ET	1	Intel Core 2 Duo T5450	1	100	НР	Seattle	123456789
10026201	Pavilion DV2620ET	2	Kingston 512MB DDR2	1	100	НР	Seattle	123456789
10026201	Pavilion DV2620ET	3	Samsung 160GB HDD	1	100	HP	Seattle	123456789
10026201	Pavilion DV2620ET	4	Nvidia GeForce 8400M	1	100	НР	Seattle	123456789
10026501	Pavilion DV2650ET	1	Intel Core 2 Duo T7500	1	100	НР	Seattle	123456789
10026501	Pavilion DV2650ET	2	Kingston 1024MB DDR2	2	100	НР	Seattle	123456789
10026501	Pavilion DV2650ET	3	Samsung 160GB HDD	1	100	НР	Seattle	123456789
10026501	Pavilion DV2650ET	4	Nvidia GeForce 8400M	1	100	НР	Seattle	123456789
10220012	Satellite A200- 1N2	1	Intel Core 2 Duo T5250	1	102	Toshiba	Tokyo	335678912
10220012	Satellite A200- 1N2	2	Samsung 1024MB DDR2	2	102	Toshiba	Tokyo	335678912
10220012	Satellite A200- 1N2	3	Maxtor 120GB HDD	1	102	Toshiba	Tokyo	335678912
10220012	Satellite A200- 1N2	4	Intel GMA X3100	1	102	Toshiba	Tokyo	335678912

Verilen şema 1. Normal Formda (atomik değerler)

Urun_Parca (<u>UrunNo</u>, UrunAd, <u>ParcaNo</u>, ParcaAd, Miktar, UreticiNo, UreticiAd, UreticiSehir, UreticiTel)

1NF → 2NF (kısmi bağımlılıklar giderilir)

- Urun_Parca (UrunNo, ParcaNo, ParcaAd, Miktar)
- Urunler (<u>UrunNo</u>, UrunAd, UreticiNo, UreticiAd, UreticiSehir, UreticiTel)

2NF → 3NF (geçişli bağımlılıklar giderilir)

- Urun_Parca (<u>UrunNo</u>, <u>ParcaNo</u>, ParcaAd, Miktar)
- Urunler (<u>UrunNo</u>, UrunAd, UreticiNo)
- Ureticiler (<u>UreticiNo</u>, UreticiAd, UreticiSehir, UreticiTel)

Örnek 3

SiparisNo	Tarih	UrunAd	UrunNo	Adet	MusNo	MusAd	MusSoyad
1	23.11.2007	Nokia 6300	57463	1	875	Ali	Korkmaz
1	23.11.2007	Kingston 2 GB USB	73624	2	875	Ali	Korkmaz
2	23.11.2007	Samsung D600	72352	1	932	Selin	Atasoy
3	24.11.2007	Nokia 5070	71224	1	123	Kamil	Sönmez
4	24.11.2007	Philips DVP 5160/12	90876	1	452	Metin	Kaplan
5	25.11.2007	Samsung Digimax S850	98123	1	786	Kemal	Durukan
6	25.11.2007	Sinbo SBS-4414 Baskül	35465	2	932	Selin	Atasoy
7	25.11.2007	Canon Powershot A560	95293	1	875	Ali	Korkmaz
7	25.11.2007	Kingston 2 GB SD	37285	1	875	Ali	Korkmaz
8	26.11.2007	Nokia 6300	57463	1	321	Ece	Çağlayan

Verilen şema 1. Normal Formda (atomik değerler)

• SIPARIS (SiparisNo, Tarih, UrunAd, UrunNo, Adet, MusNo, MusAd, MusSoyad)

1NF → 2NF (kısmi bağımlılıklar giderilir)

- SIPARIS_URUN (<u>SiparisNo</u>, <u>UrunNo</u>, Adet)
- SIPARIS_MUSTERI (<u>SiparisNo</u>, Tarih, MusNo, MusAd, MusSoyad)
- URUN (<u>UrunNo</u>, UrunAd)

2NF → 3NF (geçişli bağımlılıklar giderilir)

- SIPARIS_URUN (<u>SiparisNo</u>, <u>UrunNo</u>, Adet)
- SIPARIS_ MUSTERI (<u>SiparisNo</u>, Tarih, MusNo)
- MUSTERILER (<u>MusNo</u>, MusAd, MusSoyad)
- URUN (<u>UrunNo</u>, UrunAd)

Örnek 4

FilmNo	FilmAdı	Yılı	Yönetmeni	Senaristi	ŞirketID	ŞirketAdı
110912	Pulp Fiction	1994	Quentin Tarantino	Quentin Tarantino	MF	Miramax Films
110912	Pulp Fiction	1994	Quentin Tarantino	Roger Avary	MF	Miramax Films
114369	Se7en	1995	David Fincher	A. Kevin Walker	NL	New Line Cinema
416496	Bandidas	2006	Joachim Rønning	Luc Besson	EC	Europa Corp.
416496	Bandidas	2006	Joachim Rønning	R. Mark Kamen	EC	Europa Corp.
416496	Bandidas	2006	Espen Sandberg	Luc Besson	EC	Europa Corp.
416496	Bandidas	2006	Espen Sandberg	R. Mark Kamen	EC	Europa Corp.
1375666	Inception	2010	Christopher Nolan	Christopher Nolan	WB	Warner Bros Pic.

Verilen şema 1. Normal Formda (atomik değerler). Anahtar alanlar Film_No, Yönetmeni ve Senaristi.

• Filmler (FilmNo, Film_Adı, Yılı, Yönetmeni, Senaristi, ŞirketID, ŞirketAdı)

1NF → 2NF (Yönetmeni ve Senaristi dışındaki tüm nitelikler FilmNo niteliğine kısmi olarak bağımlı)

- FilmYönetmenSenarist (FilmNo, Yönetmeni, Senaristi)
- Filmler (FilmNo, FilmAdı, Yılı, ŞirketID, ŞirketAdı)

2NF → 3NF (ŞirketAdı niteliği ŞirketID niteliğine geçişli olarak bağımlı)

- FilmYönetmenSenarist (FilmNo, Yönetmeni, Senaristi)
- Filmler (FilmNo, FilmAdı, Yılı, ŞirketID)
- Şirketler (ŞirketID, ŞirketAdı)

3NF → 4NF (Çok-değerli bağımlılık var: Yönetmen ve Senaristin aynı tabloda olması gereksiz tekrarlara neden oluyor)

- FilmYönetmen (<u>FilmNo</u>, <u>Yönetmeni</u>)
- FilmSenarist (<u>FilmNo</u>, <u>Senaristi</u>)
- Filmler (FilmNo, FilmAdı, Yılı, ŞirketID)
- Şirketler (ŞirketID, ŞirketAdı)

NOT: 4NF anlatırken verdiğimiz ÖĞRENCİ(ÖğrNo, Bölüm, Spor) örneğine benziyor

Örnek 5

KitapNo	KitapAdı	Yazarı	YayıneviAdı	YayıneviYeri	TürID	TürAdı
100	Kar	Orhan Pamuk	İletişim Yayınları	İstanbul	1	Roman
101	Benim Adım Kırmızı	Orhan Pamuk	YK Kültür Sanat	İstanbul	1	Roman
102	Kar Kokusu	Ahmet Ümit	Doğan Kitap	İstanbul	1	Roman
103	Aşk Köpekliktir	Ahmet Ümit	Doğan Kitap	İstanbul	2	Öykü
104	Hırsız Köpek	Muzaffer İzgü	Bilgi Yayınevi	Ankara	2	Öykü
105	Oracle 11g	Teoman Dinçel	KODLAB	İstanbul	4	Bilgisayar
106	Visual Basic 10	Memik Yanık	Seçkin Yayınları	Ankara	4	Bilgisayar
107	Taş Meclisi	Jean C. Grange	Doğan Kitap	İstanbul	1	Roman
108	Anna Karenina	Lev Tolstoy	İletişim Yayınları	İstanbul	3	Klasik
109	İstatistiğe Giriş	Vasfi N. Tekin	Seçkin Yayınları	Ankara	5	Akademik

Verilen şema atomik değerlere sahip olduğu için 1NF'de. Aynı zamanda KitapNo alanı tek başına PK olabildiği için kısmi bağımlılık araştırması yapmaya gerek yok (2NF'de). PK haricindeki alanlar içinde geçişli bağımlılık var (TürlD → TürAdı & YayıneviAdı → YayıneviYeri).

- KİTAPLAR(KitapNo, KitapAdı, Yazarı, YayıneviAdı, TürlD)
- TÜRLER(TürlD, TürAdı)

3NF

• YAYINEVLERİ(<u>YayıneviAdı</u>, YayıneviYeri)

Eğer şemada YazarlD ve YayınevilD alanları bulunsaydı:

- KİTAPLAR(<u>KitapNo</u>, KitapAdı, YazarID, YayıneviID, TürID)
- TÜRLER(TürlD, TürAdı)

3NF

- YAYINEVLERİ(YayıneviID, YayıneviAdı, YayıneviYeri)
- YAZARLAR(YazarID, YazarAdı)

Eğer bir kitabın birden çok yazarı olabilseydi:

- Bu durumda KitapNo tek başına PK olamaz, "KitapNo, YazarID" ikilisi PK olurdu.
- Tablo 2NF'de olmazdı. YazarAdı niteliği YazarID niteliğine kısmi bağımlı olur, YAZARLAR(YazarID, YazarAdı) tablosu 1NF → 2NF geçişte oluşurdu.

Bir kitabın birden çok türü de olabilseydi:

- "KitapNo, YazarID, TürID" üçlüsü PK olurdu.
- TÜRLER(<u>TürID</u>, TürAdı) tablosu da 1NF → 2NF geçişte oluşurdu.
- Çok değerli bağımlılık ta oluşurdu:
 - KİTAPLAR(<u>KitapNo</u>, KitapAdı, YayınevilD)
 - YAZARLAR(<u>YazarID</u>, YazarAdı)
 - TÜRLER(<u>TürlD</u>, TürAdı)
 - YAYINEVLERİ(YayıneviID, YayıneviAdı, YayıneviYeri) → 2NF → 3NF
 - KİTAP_YAZAR(<u>KitapNo</u>, <u>YazarID</u>)
 - KİTAP_TÜR(<u>KitapNo</u>, <u>TürID</u>)

 $3NF \rightarrow 4NF$

 $1NF \rightarrow 2NF$

Kaynaklar

Altan Mesut Ders Notları