

TMSCA MIDDLE SCHOOL MATHEMATICS

TEST #1©
OCTOBER 26, 2013

GENERAL DIRECTIONS

- 1. About this test:
 - A. You will be given 40 minutes to take this test.
 - B. There are 50 problems on this test.
- 2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators **MAY NOT** be used on this test.
- 8. All problems answered correctly are worth **FIVE** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

2013-2014 TMSCA Middle School Mathematics Test #1

1. 678 + 985 = A. 1,653	B. 1,663	C. 1,753	D. 1,453	E. 1,853	
2. 1,021 – 956 = A. 56	B. 67	C. 76	D. 65	E. 75	
3. 12.4×1.02 = A. 12.648	B. 13.446	C. 13.468	D. 12.868	E. 14.88	
4. $16\frac{1}{2} \div 5\frac{1}{2} = $					
A. 2.5	B. 3	C. 3.5	D. 4	E. 3.75	
5. 99 = (A. LXXXXIX	(Roman numeral) B. XCXI	C. XCIX	D. XLIX	E. IXIX	
6. Evaluate $ab \div bc$, A. -8	if $a = -2$, $b = 3$, $c = 4$ a B. 0.125	nd $d = -12$. C. 2	D. 2.125	E16	
7. How many distinct A. 4	t prime factors does the B. 3	e number 424 have? C. 2	D. 5	E. 6	
8. Stephen bought 6 i A. \$15.50	movie tickets for \$75.0 B. \$12.50	-	price per ticket? D. \$10.75	E. \$13.25	
9 is a v A. Scientific notation	way to write all real num B. Function notation	mbers in the form $a \cdot 10$ C. Exponential notation		d b is an integer E. Case identity	
10. A rectangle has a length of 8 cm and a width of 6 cm. If each side of the rectangle is doubled, what is the perimeter of the new rectangle?					
A. 28 cm	•	C. 192 cm	D. 56 cm	E. 84 cm	
11. How many lines of A. 0	of symmetry does an is B. 1	osceles right triangle h	nave? D. 3	E. 4	
12. If $\angle A = 43^{\circ}$, what is the measure of the complement of $\angle A$?					
A. 137°	B. 147°	C. 47°	D. 57°	E. 117°	
13. Solve for <i>n</i> : $3n - 8 = -26$					
A. $n = -11.\overline{3}$	B. 11.3	C. $0.\overline{6}$	D6	E. 6	
14. If $f(x) = 3x + 4$, then find $f(-6)$.					
A. 1	B22	C14	D. 7	E7	
15. $5x + 4$ is an example of a binomial.					
A. quadratic	B. cubic	C. tetric	D. pentic	E. linear	

16. If $\pi = 3$, find the measure of the circumference of the circle below.

- A. 243 cm
- B. 243 cm²
- C. 54 cm
- D. 27 cm
- $E. 63 cm^2$

- 17. $\frac{3}{16} =$ _____ (decimal)
- A. 0.1875
- B. 0.1825
- C. 0.185
- D. 0.1675
- E. 0.1625

- 18. What is 45% of 90?
- A. 37.5
- B. 38.5
- C. 39.5
- D. 40.5
- E. 41.5

- 19. Evaluate |ab| c, if a = -5, b = 7 and c = -9.
- A. 26
- B. 35
- C. 44
- D. -7

- E. -26
- 20. Find the area of a triangle that has a base of 14 inches and a height of 23 inches.
- A. 322 in²
- B. 161 in²
- C. 80.5 in^2
- D. 322 in^2
- E. 37 in^2
- 21. Which figure will be in the 44th position of the pattern $\mathfrak{I}, \pi, \blacktriangle, \circlearrowleft, \circlearrowleft, \mathfrak{I}, \pi, \blacktriangle, \circlearrowleft, \circlearrowleft, \mathfrak{I}, \pi, \blacktriangle, \circlearrowleft, \circlearrowleft$. A \mathfrak{I} B. π C. \blacktriangle D. \circlearrowleft E. \odot
- 22. Find the length of the hypotenuse of the triangle below, to the nearest integral value.
 - 15 cm

- A. $\sqrt{274}$ cm
- B. 16.5
- C. 16.6
- D. 17
- E. 17.1

- 23. Find the least common multiple of the numbers 12 and 54.
- A. 168
- B. 112
- C. 108
- D. 6

- E. 12
- 24. What is the value of the upper quartile from the box-and-whisker plot below?

- A. 42
- B. 44
- C. 48
- D. 56
- E. 60

- 25. 76 mm + 1 m = ____ cm
- A. 1,007.6
- B. 17.6
- C. 176
- D. 10,076
- E. 107.6

- $26.\ 102_5 = \underline{\hspace{1cm}}_{10}$
- A. 127
- B. 27
- C. 7

- D. 11
- E. 35

27. Which equation below is written in slope-intercept form?

A.
$$3x - 5y = 1$$

B.
$$y - 3 = 2(x + 1)$$
 C. $y + 3 = 3x$

C.
$$y + 3 = 3x$$

D.
$$y = x - 1$$

E.
$$x = \frac{1}{2}y + 3$$

28. $\{A, B, C, D, E\} \cup \{C, D, E, F, G\} \cap \{A, B, D, E, H, I, J, K\}$ contains a set with _____ elements.

29. Each letter of the word MATHMANIA is written on a tile and placed inside of a bag. What is the probability you reach into the bag and choose a vowel? (Answers given in the form of a ratio.)

30. What is the value of the product of the median and mode of the set of numbers 11, 23, 23, 42, 7 and 4?

31. Which of the following points is not a solution to the linear inequality graphed below?

$$E.(0, -3)$$

32. What is the maximum number of diagonals that can be drawn from one vertex of a regular hexagon?

A. 9

33. Maira has a box that measures 5 inches high, 8 inches long and 6 inches wide. She plans to fill it half- full with sand for a school project. How many cubic inches of sand will Maria need?

C.
$$120 \text{ in}^3$$

34. Simplify:

$$4n + 6m - 3n - (-8m) - 6m - m + (-3n) - 6n$$

A.
$$7m - 8n$$

B.
$$7m - 10n$$

C.
$$-9m - 8n$$

D.
$$-9m - 10n$$

E.
$$8m - 7n$$

35. What is the range of the following relation? [(4, 5), (-1, 0), (-7, 3)]

36. If $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{4a} = \frac{3}{4}$, then find the value of a.

A. 5

B. 6

D. 2

E. 3

37. The graph of a direct variation equation will always passes through the _

A. quadrant

B. origin

C. apex

D. centroid

E. secant

38. In how many different ways can 6 distinct books be arranged on a shelf?

A. 720

B. 1,440

C. 360

D. 30

E. 1,080

39. The geometric mean of three numbers a, b, and c, can be found by $\sqrt[3]{abc}$. What is the geometric mean of the numbers 4, 8 and 16?

- A. 9.3
- B. 12
- C. 14
- D. 8

E. 10.3

40. What is the equation of the axis of symmetry for the graph of the quadratic equation $y = 2x^2 - 16x + 1$?

- A. x = 8
- B. x = -8
- C. x = 4
- D. x = 16

41. Four consecutive positive integers sum to 198. What is the value of the smallest integer?

- A. 46
- B. 47
- C. 48

E. 49.5

42. Find the slope of the line that passes through the points (9, -4) and (17, 4)?

- A. -1

- C_{1} -1/2
- D. $\frac{1}{2}$

E. 1/4

43. What is the formula to find the area of any regular polygon, if a = apothem, n = side length, p = perimeter, h = height and b = base?

- A. $A = \frac{bh}{2}$

- B. $A = \frac{ap}{2}$ C. $A = s^2$ D. A = ap + bh E. $A = \frac{anp}{bh}$

44. Simplify: $\sqrt{480}$

- A. $4\sqrt{30}$
- B. $48\sqrt{10}$
- C. $2\sqrt{60}$
- D. $10\sqrt{48}$
- E. $6\sqrt{80}$

45. Simplify: $64^{\frac{2}{3}}$

- B. 216
- C. 32
- D. 8

E. 16

46. Factor: $x^2 + 2x - 15$

- A. (x-15)(x+1)
- B. (x-5)(x+3) C. (x+15)(x-1) D. (x-5)(x-3) E. (x+5)(x-3)

47. If $\begin{bmatrix} 3 & -2 \\ a & 6 \end{bmatrix} - \begin{bmatrix} -4 & -7 \\ 3 & 8 \end{bmatrix} = \begin{bmatrix} 7 & 5 \\ -9 & -2 \end{bmatrix}$, then *a* is equal to what value?

A. 12

- C. 6

D. -6

E. 3

48. If $i = \sqrt{-1}$, what is the value of $3i^2$?

A. 3

B. -3

- C. $\sqrt{3}$
- E. 3*i*

49. The solution to the system $\begin{cases} 3x + 4y = 10 \\ x - y = 1 \end{cases}$ has coordinates (a, b). What is the value of b^{3a} ?

A. 1

- C. 32
- D. 128
- E. 4

50. How many regions in a plane are determined by three lines, no two are parallel and no three are concurrent?

A. 7

B. 6

C. 9

D. 8

E. 10

2013-2014 TMSCA Middle School Mathematics Test #1 Answer Key

1. B	18. D	35. B
2. D	19. C	36. E
3. A	20. B	37. B
4. B	21. D	38. A
5. C	22. D	39. D
6. A	23. C	40. C
7. C	24. D	41. C
8. B	25. E	42. B
9. A	26. B	43. B
10. D	27. D	44. A
11. B	28. D	45. E
12. C	29. E	46. E
13. D	30. C	47. D
14. C	31. D	48. B
15. E	32. E	49. A
16. C	33. C	50. A
17. A	34. A	

2013-2014 TMSCA Middle School Mathematics Test #1 Selected Solutions

- 7. The prime factorization of 242 is $2^3 \cdot 53$. Therefore, 424 has 2 distinct prime factors.
- 9. Scientific notation is a way to write all real numbers in the form $a \cdot 10^b$, where $1 \le a < 10$ and b is an integer.

26.
$$102_5 = 1.125 + 0.5 + 2.1 = 27_{10}$$

- 37. The graph of a direct variation equation will always passes through the origin.
- 38. If you have 6 distinct books and you want to find how many different ways they can be arranged on a shelf, you find 6!, because you would have 6 choices for the first postion, followed by 5 choices, then 4 and so on. 6.5.4.3.2.1 = 720 different arrangements.
- 45. There are two methods to simplifying $64^{\frac{2}{3}}$.

Method 1:
$$64^{\frac{2}{3}} = \sqrt[3]{64^2} = \sqrt[3]{4,096} = 16$$

Method 1:
$$64^{\frac{2}{3}} = \sqrt[3]{64^2} = \sqrt[3]{4,096} = 16$$

or

Method 2: $64^{\frac{2}{3}} = \left(\sqrt[3]{64}\right)^2 = 4^2 = 16$

50. To determine the total regions in a plane created by a given number of lines, when no three are concurrent, use the n^{th} triangular number + 1. So, we are given three lines, no two are parallel and no three are concurrent. To find the number of regions, we use the 3^{rd} triangular number + 1. 6 + 1 = 7, as in the picture below.

