CS6811 – Project Work

Zeroth Review

UAV-based post-disaster scene understanding using a hybrid single-multistage ensemble network with GAN-aided semantic segmentation

Team Number: 17 (Batch 1)

Project Guide: Dr. R. Gunasekaran

Team Members:

Abhishek Manoharan Nishanthini S Vamsi Raju M 2019503502 2019503537 2019503568

<u>Domains:</u> Unmanned Aerial Vehicles, Computer Vision, Scene Understanding

Problem Statement:

Post-disaster scene understanding frameworks are becoming increasingly crucial in search and rescue operations and damage assessment initiatives. The use of Unmanned Aerial Vehicles (UAVs) provides an efficient method to complete the task of scene understanding. However, complex environments present in post-disaster scenarios make it difficult for UAVs to detect humans or objects accurately. Moreover, inefficient object detection mechanisms lead to low accuracy and a long time for object detection tasks. Hence, to mitigate these issues, we propose a UAV-based scene understanding scheme involving a GAN-aided semantic segmentation mechanism. This approach classifies objects present in the visual scope of the UAV using a 3D reconstruction from thermal images of the scene and pixel-level prediction. Furthermore, an ensemble network consisting of a combination of single-stage and multi-stage detectors is to be used to improve the performance of the detection model. This will help to reduce false positives and improve the overall accuracy of the system.

Objectives:

- ❖ To develop an efficient post-disaster scene understanding framework using UAVs for search and rescue operations.
- ❖ To implement a hybrid single-stage and multi-stage ensemble network comprising of the CenterNet and Cascade R-CNN mechanisms to combine the benefits of both, thereby decreasing the high false negative rate of

- multi-stage mechanisms and improving the performance of single-stage detectors.
- ❖ To devise a 3D scene-reconstruction mechanism using thermal images obtained from a swarm of UAVs to map and extract useful information from the scene.
- ❖ To deploy a Generative Adversarial Network (GAN)-aided semantic segmentation framework to improve the detection of small and dense objects in post-disaster conditions. A GAN denoiser results in images having lower occlusion and optimal brightness, thereby highlighting the important features of the object. Semantic segmentation on these images leads to a pixel-level prediction of various entities or objects in the image.

Literature Survey:

Authors	Title	Proposed Work	Limitations
Jiong Dong,	UAV-Based	This paper proposes a new	Older and inferior
Kaoru Ota,	Real-Time	thermal image dataset	detection models
and Mianxiong	Survivor	consisting of 6447 thermal	have been used for
Dong	Detection	images designed for survivor	survivor detection,
	System in	detection using UAVs in	thereby resulting in
	Post-Disaster	post-disaster scenarios. The	models with high
	Search and	paper also describes optimal	mean average
	Rescue	values to prune survivor	precision (mAP) loss
	Operations	detection models in order to	and low accuracy.
		reduce the complexity of the	
		models and applies	
		knowledge distillation	
		techniques to fine-tune	
		them and improve accuracy.	
		The performance of several	
		survivor detection models	
		based on YOLOv3 and	
		YOLOv3-MobileNetV1 were	
		compared with and without	
		pruning and fine-tuning.	
Hang Ren,	Swarm UAV	This paper implements a 3D	A considerable
Zhichao Sun ,	SAR for 3-D	imaging mechanism for 2D	amount of data has
Jianyu Yang ,	Imaging	images obtained from a	to be transmitted
Yuping Xiao,		swarm of UAVs. The	from the UAV swarm,
Hongyang An,		proposed work involves the	as images obtained

Zhongyu Li , and Junjie Wu		3D imaging of a scene by the usage of 2D images obtained from several UAVs present in the UAV Swarm at different perspectives with a few points of overlap. The point	from each node in the swarm are used to produce the 3D rendering. Multiple UAVs also need to exchange
		cloud obtained is then triangulated, and Bundle Adjustment is used to create the 3D rendering of the image.	information in order to efficiently collect data of the scenario.
T. C. Bybee and S. E. Budge	Method for 3-D Scene Reconstruction Using Fused LiDAR and Imagery From a Texel Camera	In order to create greater fidelity terrain models, this study describes a bundle adjustment technique for aerial texel images that enables relatively low-accuracy navigation systems to be employed with inexpensive LiDAR and camera data.	Outliers present in the point cloud are not identified and mitigated, thereby leading to lower accuracy.
Albaba, Berat Mert, and Sedat Ozer	SyNet: An ensemble network for object detection in UAV images	With the goal of lowering the high false negative rate of multi-stage detectors and improving the quality of the single-stage detector proposals, the authors of this research propose an ensemble network called SyNet that combines a multi-stage method with a single-stage one.	According to the investigation, detecting objects in drone images is more challenging than detecting them in images that were taken from the ground, even with the most advanced object detection algorithms. Hence, the accuracy of the model trained on UAV images is still low compared to models trained on ground images.

A.	Vehicle	The article provides a review	Videos captured in
Bouguettaya,	Detection	of vehicle detection from	the UAVs are sent to
H. Zarzour, A.	From UAV	UAV imagery using deep	on-ground
Kechida and A.	Imagery With	learning techniques. It	workstations or to
M. Taberkit,	Deep Learning	begins by outlining the	the cloud for
		various deep learning	processing rather
		architectures, including	than being
		generative adversarial	implemented on the
		networks, autoencoders,	UAV itself, thereby
		recurrent neural networks,	leading to the
		and convolutional neural	absence of a
		networks, and their	lightweight system
		contributions to the	for vehicle detection.
		challenge of improving	
		vehicle detection.	
		The paper then focuses on	
		examining various vehicle	
		detection techniques and	
		presents different	
		benchmark datasets and	
		problems that have been	
		discovered, along with	
		possible remedies.	
M.	RescueNet: A	This paper introduces a high-	RescueNet contains a
Rahnemoonfar,	High-	resolution post-disaster UAV	small number of
Maryam,	Resolution	dataset named RescueNet,	classes. As a result,
Tashnim	Post Disaster	which contains	smaller objects like
Chowdhury,	UAV Dataset	comprehensive pixel-level	"vehicles" and
and Robin	for Semantic	annotation of 11 classes for	"pools" make it
Murphy	Segmentation	semantic segmentation to	difficult to get a good
		assess damage after a	segmentation
		natural disaster. The dataset collection and annotation	compared to larger
			objects like buildings and roads. Besides
		process are discussed, along with the challenges it poses.	that, since UAV
		Four state-of-art semantic	images include only
		segmentation methods have	the top view of a
		been evaluated on	scene, it is difficult to
		RescueNet, and the results	assess the actual
		are discussed.	damage since the
<u> </u>	<u> </u>	are discussed.	darriage since the

T. Chowdhury and M. Rahnemoonfar	Attention- Based Semantic Segmentation on UAV Dataset for Natural Disaster Damage Assessment	This paper proposes and evaluates a novel self-attention segmentation model named ReDNet on a new high-resolution UAV natural disaster dataset named HRUD. The challenges of semantic segmentation on the HRUD dataset are discussed, along with the excellent performance of the proposed model.	horizontal view also brings information regarding all sides of a building. HRUD is a very challenging dataset due to its variablesized classes along with similar textures among different classes. Debris, textures of debris, sand, and building with total destruction damage make a great impact on the segmentation performance of the evaluated network models.
Li, Tianjiao, Jun Liu, Wei Zhang,	Uav-human: A large	This paper proposes a UAV- Human dataset for human	The UAV-Human dataset poses a
Yun Ni,	benchmark for	action, pose, and behaviour	limitation for
Wenqian Wang, and	human behavior	understanding. The proposed UAV-Human	attribute recognition because the dataset
Zhiheng Li	understanding	contains 67,428 multi-modal	is captured over a
Zimieng Li	with	video sequences and 119	relatively long period
	unmanned	subjects for action	of time. As a result,
	aerial vehicles	recognition, 22,476 frames	the subjects have
		for pose estimation, 41,290 frames and 1,144 identities	been diversified with different dressing
		for person re-identification,	types and large
		and 22,263 frames for	variations of
		attribute recognition which	viewpoints caused by
		encourages the exploration and deployment of various	multiple UAV altitudes.
		data-intensive learning	aitituues.
		models for UAV-based	
		human behaviour	
		understanding.	

References:

- 1. J. Dong, K. Ota and M. Dong, "UAV-Based Real-Time Survivor Detection System in Post-Disaster Search and Rescue Operations," in *IEEE Journal on Miniaturization for Air and Space Systems*, vol. 2, no. 4, pp. 209-219, 2021
- 2. H. Ren et al., "Swarm UAV SAR for 3-D Imaging: System Analysis and Sensing Matrix Design," in IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-16, 2022
- **3.** T. C. Bybee and S. E. Budge, "Method for 3-D Scene Reconstruction Using Fused LiDAR and Imagery From a Texel Camera," in IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 11, pp. 8879-8889, Nov. 2019
- **4.** Albaba, Berat Mert, and Sedat Ozer, "SyNet: An ensemble network for object detection in UAV images," in 25th IEEE International Conference on Pattern Recognition (ICPR), pp. 10227-10234, 2021
- **5.** A. Bouguettaya, H. Zarzour, A. Kechida and A. M. Taberkit, "Vehicle Detection From UAV Imagery With Deep Learning: A Review," in *IEEE Transactions on Neural Networks and Learning Systems*, vol. 33, no. 11, pp. 6047-6067, Nov. 2022
- 6. Rahnemoonfar, Maryam, Tashnim Chowdhury, and Robin Murphy. "RescueNet: A High Resolution Post Disaster UAV Dataset for Semantic Segmentation." *UMBC Student Collection*, 2021
- 7. T. Chowdhury and M. Rahnemoonfar, "Attention Based Semantic Segmentation on UAV Dataset for Natural Disaster Damage Assessment," 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, pp. 2325-2328, 2021
- 8. Li, Tianjiao, Jun Liu, Wei Zhang, Yun Ni, Wenqian Wang, and Zhiheng Li. "Uav-human: A large benchmark for human behavior understanding with unmanned aerial vehicles." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16266-16275, 2021