2-11 Heapsort

Hengfeng Wei

hfwei@nju.edu.cn

June 11, 2018

ALGORITHM 245

TREESORT 3 [M1] ROBERT W. FLOYD (Reed. 22 June 1964 and 17 Aug. 1964) Computer Associates, Inc., Wakefield, Mass.

procedure TREESORY 3 (M, n);

procedure 1855SOM? 3 (M, n); value n; array M; integer nujer revision of TREESORT comment TREESORT 8 in nujer revision of TREESORT [R. W. Flay), Alg. 115, Comm. ACM δ (Aug. 1963), 444] expended by BEAPSORT [J. W. J. Williams, Alg. 225, Comm. ACM T (Int. 1964), 347] from which h differ in being as in gline sort. It is shorter and probably faster, requiring fower comparisone and only one division. It sorts the array Milrel, requiring no more than $2 \times (27p-2) \times (p-1)$, or approximately $2 \times n \times (\log(n)-1)$ comparisons and half as many exchanges in the west case to sort n=2/p-1 item. The algorithm is most easily followed if M is thought of so a tree, with M(p+2) the father of M(p) for 1 ;

Show that the worst-case running time of MAX-HEAPIFY on an n-element heap is $\Omega(\log n)$.

这道题为什么问的是 Ω , 而不问 O 或 Θ ?

Inputs ${\mathcal I}$ of size n

	О	Ω	Θ
Best-case			
Worst-case			
Average-case			

Inputs ${\mathcal I}$ of size n

	О	Ω	Θ
Best-case			$O = \Omega$
Worst-case			$O = \Omega$
Average-case			$O = \Omega$

Inputs $\ensuremath{\mathcal{I}}$ of size n

	О	Ω	Θ
Best-case	by example	"weakness" of ${\cal A}$	$O = \Omega$
Worst-case			$O = \Omega$
Average-case			$O = \Omega$

Inputs $\ensuremath{\mathcal{I}}$ of size n

	О	Ω	Θ
Best-case	by example	"weakness" of ${\cal A}$	$O = \Omega$
Worst-case	"power" of ${\cal A}$	by example	$O = \Omega$
Average-case			$O = \Omega$

Inputs ${\mathcal I}$ of size n

	О	Ω	Θ
Best-case	by example	"weakness" of ${\cal A}$	$O = \Omega$
Worst-case	"power" of ${\cal A}$	by example	$O = \Omega$
Average-case	<u> </u>	≥	$O = \Omega$

Show that the worst-case running time of MAX-HEAPIFY on an n-element heap is $\Omega(\log n)$.

Show that the worst-case running time of MAX-HEAPIFY on an n-element heap is $\Omega(\log n)$.

By Example.

Show that the worst-case running time of MAX-HEAPIFY on an n-element heap is $\Omega(\log n)$.

By Example.

Show that the worst-case running time of HEAPSORT is $\Omega(n \log n)$.

Show that the worst-case running time of HEAPSORT is $\Omega(n \log n)$.

By Example.

Show that the worst-case running time of HEAPSORT is $\Omega(n \log n)$.

By Example.

Non-proof.

$$\underbrace{\Theta(n)}_{\text{EXTRACT-MAX}} \times \underbrace{\Omega(\log n)}_{\text{MAX-HEAPIFY}} = \Omega(n \log n)$$

Worst-case of Heapsort (TC 6.4-4) Show that the worst-case running time of Heapsort is $\Omega(n \log n)$.

HARD.

HARD.

$$T(12) = 3 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 1 + 1 + 0 + 0 + 0 = 17$$

(Ex. 23, Section 5.2.3, TAOCP Vol 3)

(Ex. 23, Section 5.2.3, TAOCP Vol 3)

(Ex. 23, Section 5.2.3, TAOCP Vol 3)

$$\sum_{r=1}^{n-1} \lfloor \log r \rfloor$$

(Ex. 23, Section 5.2.3, TAOCP Vol 3)

$$\sum_{n=1}^{n-1} \lfloor \log r \rfloor = n \lfloor \log n \rfloor - 2^{\lfloor \log n \rfloor + 1} + 2$$

(Ex. 23, Section 5.2.3, TAOCP Vol 3)

$$\sum_{r=1}^{n-1} \lfloor \log r \rfloor = n \lfloor \log n \rfloor - 2^{\lfloor \log n \rfloor + 1} + 2 = \Omega n \log n$$

Show that the worst-case running time of HEAPSORT is $O(n \log n)$.

Show that the worst-case running time of HEAPSORT is $O(n \log n)$.

$$\sum_{r=1}^{n-1} \lfloor \log r \rfloor = n \lfloor \log n \rfloor - 2^{\lfloor \log n \rfloor + 1} + 2 = O(n \log n)$$

Show that the worst-case running time of HEAPSORT is $O(n \log n)$.

$$\sum_{r=1}^{n-1} \lfloor \log r \rfloor = n \lfloor \log n \rfloor - 2^{\lfloor \log n \rfloor + 1} + 2 = O(n \log n)$$

No Examples Needed!

Show that the worst-case running time of HEAPSORT is $O(n \log n)$.

$$\sum_{r=1}^{n-1} \lfloor \log r \rfloor = n \lfloor \log n \rfloor - 2^{\lfloor \log n \rfloor + 1} + 2 = O(n \log n)$$

No Examples Needed!

$$\underbrace{\Theta(n)}_{\text{EXTRACT-MAX}} \times \underbrace{O(\log n)}_{\text{MAX-HEAPIFY}} = O(n \log n)$$

Therefore...

Worst-case of Heapsort (TC 6.4-4)

Show that the worst-case running time of HEAPSORT is $\Theta(n \log n)$.

Therefore...

Worst-case of Heapsort (TC 6.4-4)

Show that the worst-case running time of HEAPSORT is $\Theta(n \log n)$.

	О	Ω	Θ
Worst-case	"power" of ${\cal A}$	by example	$O = \Omega$

Best-case of Heapsort (TC 6.4-5)

Show that when all elements are distinct, the best-case running time of HEAPSORT is $\Omega(n \log n)$.

Best-case of Heapsort (TC 6.4-5)

Show that when all elements are distinct, the best-case running time of HEAPSORT is $\Omega(n \log n)$.

Best-case of Heapsort (TC 6.4-5)

Show that when all elements are distinct, the best-case running time of HEAPSORT is $O(n \log n)$.

Best-case of Heapsort (TC 6.4-5)

Show that when all elements are distinct, the best-case running time of HEAPSORT is $O(n \log n)$.

By Example.

Best-case of Heapsort (TC 6.4-5)

Show that when all elements are distinct, the best-case running time of HEAPSORT is $O(n \log n)$.

By Example.

Therefore...

Best-case of Heapsort (TC 6.4-5)

Show that when all elements are distinct, the best-case running time of HEAPSORT is $\Theta(n \log n)$.

Therefore...

Best-case of Heapsort (TC 6.4-5)

Show that when all elements are distinct, the best-case running time of HEAPSORT is $\Theta(n \log n)$.

	О	Ω	Θ
Best-case	by example	"weakness" of ${\cal A}$	$O = \Omega$

Average-case of $\operatorname{HEAPSORT}$

Assume that all elements are distinct. Show that the average-case running time of HEAPSORT is $\Theta(n \log n)$.

Average-case of $\operatorname{HEAPSORT}$

Assume that all elements are distinct. Show that the average-case running time of HEAPSORT is $\Theta(n \log n)$.

Average-case of HEAPSORT

Assume that all elements are distinct. Show that the average-case running time of HEAPSORT is $\Theta(n \log n)$.

I said simple, not easy.

Average-case of HEAPSORT

Assume that all elements are distinct. Show that the average-case running time of HEAPSORT is $\Theta(n \log n)$.

I said simple, not easy.

By an elegant counting argument.

$$f(n) = \binom{n-1}{m} f(m) f(n-1-m)$$

$$f(n) = \binom{n-1}{m} f(m) f(n-1-m)$$

$$\frac{f(n)}{n!} = \frac{1}{n} \frac{f(m)}{m!} \frac{f(n-1-m)}{(n-1-m)!}$$

$$f(n) = \binom{n-1}{m} f(m) f(n-1-m)$$

$$\frac{f(n)}{n!} = \frac{1}{n} \frac{f(m)}{m!} \frac{f(n-1-m)}{(n-1-m)!}$$

$$f(n) = \frac{n!}{\prod_{1 \le i \le n} s_i}$$

 $s_i \triangleq \text{ size of the subtree rooted at } i$

$$f(13) = \frac{13!}{13 \cdot 7 \cdot 5 \cdot 3 \cdot 3 \cdot 3} = 506880$$

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn