Chaînes de Markov-Partie3

Réalisé par Dr. A. Redjil Département de mathématiques, UBMA, Annaba

May 25, 2020

Abstract

E-mail: a.redjil@univ-annaba.dz

1 Chaînes de Markov

- 1.1 Notions de base-Suite
- 1.1.1 Introduction
- 1.1.2 Dynamique markovienne
- 1.1.3 Distributions marginales

1.1.4 Propriété de Markov forte

Introduction

On considère une chaîne de Markov $(X_n)_{n\geq 0}$ avec la distribution initiale π_0 et les matrices de transition $(P_n)_{n\geq 0}$, le processus aléatoire $(X_{n+k})_{n\geq 0}$. est une chaîne de Markov caractérisée par la distribution initiale π_k et les matrices de transition $(P_{n+k})_{n\geq 0}$.

La proporiété précèdente peut être généralisée aux temps d'arrêt par le théorème suivant:

Théorème Soit $X=(X_n)_{n\geq 0}$ une chaîne de Markov et τ un temps d'arrêt à valeurs dans l'ensemble \mathbb{N} , pour toute partie A de E et $n\geq 1$:

$$E[X_{\tau+n} \in A \mid F_{\tau+n-1}^X] = E[X_{\tau+n} \in A \mid X_{\tau+n-1}]$$

Preuve

Soit $A \subset E, B \in F_{\tau+n-1}^X$ et $n \ge 1$:

$$E(P[X_{\tau+n} \in A \mid X_{\tau+n-1}] 1_B) = E(E[1_A(X_{\tau+n}) \mid X_{\tau+n-1}] 1_B)$$

$$= E\left(\sum_{k \ge 0} \left([1_A(X_{k+n}) \mid X_{k+n-1}] 1_{B \cap \{\tau=k\}} \right) \right)$$

$$= E\left(\sum_{k \ge 0} \left(\left[1_A(X_{k+n}) \mid F_{k+n-1}^X \right] 1_{B \cap \{\tau=k\}} \right) \right)$$

Rappelons que:

$$E[1_A(X_{\tau+n}) \mid X_{\tau+n-1}] = P[X_{\tau+n} \in A \mid X_{\tau+n-1}],$$

et d'autre part:

$$\sum_{k>0}\left(\left[1_{A}\left(X_{k+n}\right)\mid X_{k+n-1}\right]1_{B\cap\left\{\tau=k\right\}}\right)=\sum_{k>0}\left(\left[1_{A}\left(X_{k+n}\right)\mid F_{k+n-1}^{X}\right]1_{B\cap\left\{\tau=k\right\}}\right),$$

car le processus $(X_n)_{n\geq 0}$ est une chaîne de Markov.

Comme τ est un temps d'arrêt, on a:

$$B \cap \{\tau = k\} = B \cap \{\tau + n - 1 = k + n - 1\} \in F_{k+n-1}^X,$$

et par suite:

$$E\left(P\left[X_{\tau+n} \in A \mid X_{\tau+n-1}\right] 1_{B}\right) = E\left(\sum_{k \geq 0} E\left(\left[1_{A}\left(X_{k+n}\right) 1_{B \cap \{\tau=k\}} \mid F_{k+n-1}^{X}\right]\right)\right)$$

En basant sur le théorème de la convergence monotone et les projections itérées des espérances conditionnelles, on conclut que:

$$E\left(P\left[X_{\tau+n}\in A\mid X_{\tau+n-1}\right]1_{B}\right)=E\left(1_{A}\left(X_{\tau+n}\right)1_{B}\right).$$

Etant donné B est arbitraire, avec:

$$B \in F_{\tau+n-1}^X,$$

alors, on obtient le résultat demandé d'après la définition de l'éspérance conditonnelle. $\hfill \blacksquare$