TD 11 : Résidus et théorème de Rouché

Théorème de Rouché

Exercice 1.

- a) Montrer que la fonction $f(z) = z^5 + 5z^3 + z 2$ a trois de ses zéros dans le disque D(0,1), et tous ses zéros dans le disque D(0,3).
- b) Soit $P \in \mathbb{C}[X]$ tel que $P(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0$. Montrer qu'il existe c dans le cercle unité tel que $|P(c)| \ge 1$.

Solution de l'exercice 1. (a) Pour la première assertion appliquer le Théorème de Rouché sur le C(0,1), avec f et $g(z)=5z^3$. Pour la deuxième assertion appliquer le Théorème de Rouché sur le C(0,3), avec f et $h(z)=z^5$. (b) Raisonner par contradiction, en appliquant le Théorème de Rouché sur le C(0,1), avec $f(z)=a_{n-1}z^{n-1}+\cdots+a_0$ et $g(z)=-z^n$. Alors |f(z)-g(z)|=|P(z)|<1=|g(z)|, et donc le polynôme f de degré n-1 a n racines dans $D(0,1)\Rightarrow$ contradiction.

Exercice 2.

- a) Calculer $\min_{|z|=1} |ze^{-z}|$.
- b) En utilisant le Théorème de Rouché et (a), montrer que, pour tout $w \in D(0, 1/e)$, il existe une et une seule solution z de l'équation $ze^{-z} = w$ dans le disque D(0, 1). On la note h(w).
- c) Pour $w \in D(0, 1/e)$ calculer l'intégrale

$$\frac{1}{2i\pi} \int_{\partial D(0,1)} \frac{z(1-z)e^{-z}}{ze^{-z} - w} \, dz \, .$$

d) En déduire que pour $w \in D(0, 1/e)$,

$$h(w) = \sum_{n=1}^{\infty} \frac{n^{n-1}}{n!} w^n.$$

Solution de l'exercice 2. Voir la Figure 1.

Intégrales et résidus

Exercice 3. Calculer

$$\int_{-\infty}^{+\infty} \frac{x(x+1)}{(x^2+1)^2} \, dx \, .$$

Solution de l'exercice 3. Procedure générale de l'ex
o6.5.2 du poly. Ici le seul résidu de $\frac{P}{Q}(z)=\frac{z(z+1)}{(z^2+1)^2}$ dans le demi plan $\{Im(z)>0\}$ est
 i. Il s'agit d'un pôle d'ordre 2, donc
 $Res(\frac{P}{Q},i)=\frac{1}{1!}\left[(z-i)^2\frac{P(z)}{Q(z)}\right]'(i)=-\frac{i}{4}.$ L'intégrale vaut donc $2i\pi\left(-\frac{i}{4}\right)=\frac{\pi}{2}.$

Exercice 4. Soit a > 0. En appliquant la formule des résidus sur le bord d'un demi disque bien choisi, de rayon tendant vers l'infini, calculer :

$$\int_{-\infty}^{\infty} \frac{e^{iax}}{1+x^2} \, dx \, .$$

Que faire pour a < 0?

(les probabilistes viennent de calculer la fonction caractéristique d'une loi de Cauchy)

Solution de l'exercice 4. Si R>1, on considère le chemin $C_R=[-R,R]\cup(\partial D(0,R)\cap\{Im(z)>0\})$ parcouru dans le sens direct. La fonction f qui a z associe $\frac{e^{iaz}}{1+z^2}$ est méromorphe, des pôles simple i et -i. En utilisant le Lemme 6.4.9, on a

$$\mathrm{R\acute{e}s}(f,i) = \frac{e^{-a}}{2i} \qquad \text{ et } \qquad \mathrm{R\acute{e}s}(f,-i) = \frac{-e^a}{2i} \,.$$

Le formule des résidus donne alors que

$$\int_{C_R} f(z) \, dz = \frac{e^{-a}}{2i} \times 1 + \frac{-e^a}{2i}$$

car i est le seul pôle inclus dans le contour et donc

$$\begin{split} \int_{-\infty}^{\infty} \frac{e^{iax}}{1+x^2} \, dx &= \lim_{R \to +\infty} \int_{-R}^{R} \frac{e^{iax}}{1+x^2} \, dx \\ &= \lim_{R \to +\infty} \left(\int_{C_R} f(z) \, dz - \int_{\partial D(0,R) \cap \{Im(z) > 0\}} f(z) \, dz \right) \\ &= \frac{e^{-a}}{2i} - \lim_{R \to +\infty} \int_{\partial D(0,R) \cap \{Im(z) > 0\}} f(z) \, dz \, . \end{split}$$

Pour $z \in \partial D(0,R) \cap \{Im(z) > 0\}$, on a

$$|f(z)| \le \frac{e^{-aIm(z)}}{R^2 - 1} \le \frac{1}{R^2 - 1}$$

la dernière inégalité étant vraie car a>0. Donc, en utilisant le Lemme 3.2.7, la dernière intégrale peut être majorée par

$$\left| \int_{\partial D(0,R) \cap \{Im(z) > 0\}} f(z) \, dz \right| \leq \pi R \times ||f||_{|z| = R, Im(z) > 0}$$

$$\leq \frac{\pi R}{R^2 - 1} = o_{R \to \infty}(1).$$

D'où,

$$\int_{-\infty}^{\infty} \frac{e^{iax}}{1+x^2} dx = \frac{e^{-a}}{2i}.$$

Pour a < 0 on intègre sur le demi-disque situé sous l'axe réel (on pourra alors majorer |f(z)| de la même façon), et on obtient $\frac{e^a}{2i}$ pour la valeur de l'intégrale (cette fois-ci -i est le seul pôle dans le contour).

Le "Pacman"

Exercice 5.

a) Montrer que pour tout $\alpha \in]0,1[$ (réel), la fonction

$$g_{\alpha}(z) = \frac{1}{z^{\alpha}(1+z)}$$

définit une fonction méromorphe sur

$$\mathbb{C}\setminus\{z\in\mathbb{C}: \mathrm{Im}(z)=0 \text{ et } \mathrm{R}\acute{\mathrm{e}}(z)\geq 0\}$$

(on pensera à bien définir la fonction puissance)

- b) Quel(s) sont le(s) pôle(s) de g_{α} ? Calculer les résidus associés.
- c) Soient ϵ, R vérifiant $0 < \epsilon < 1 < R$, notons $K_{\epsilon,R}$ le compact délimité par le demicercle $C_{\epsilon} = \{|z| = \epsilon, \text{R}\acute{e}(z) \leq 0\}$, les deux segments $I_{\epsilon,R}^+ = [i\epsilon, i\epsilon + \sqrt{R^2 \epsilon^2}], I_{\epsilon,R}^- = [-i\epsilon, -i\epsilon + \sqrt{R^2 \epsilon^2}] \text{ et l'arc de cercle } \Gamma_{\epsilon,R} = \{Re^{i\theta}; \theta \in [-\pi,\pi] , |\theta| \geq \theta_{\epsilon,R}\}$ où $\theta_{\epsilon,R} = \arctan\left(\epsilon/\sqrt{R^2 \epsilon^2}\right)$. Tracer ce contour. Que vaut $\int_{\partial K_{\epsilon,R}} g_{\alpha}(z)dz$?
- d) Que vaut $\lim_{\epsilon \to 0} \int_{C_{\epsilon}} g_{\alpha}(z) dz$? Que vaut, à R fixé, $\lim_{\epsilon \to 0} \int_{\Gamma_{\epsilon,R}} g_{\alpha}(z) dz$?
- e) Donner les limites à t fixé, lorsque ϵ tend vers 0 de $(t+i\epsilon)^{\alpha}$ et de $(t-i\epsilon)^{\alpha}$ (on fera attention à l'argument) En déduire, à l'aide du théorème de convergence dominée, que pour tout R>1

$$\lim_{\epsilon \to 0} \int_{I_{\epsilon,R}^+} g_{\alpha}(z) dz = \int_0^R \frac{dt}{t^{\alpha} (1+t)}$$

$$\lim_{\epsilon \to 0} \int_{I_{\epsilon,R}^-} g_{\alpha}(z) dz = e^{-2i\pi\alpha} \int_0^R \frac{dt}{t^{\alpha} (1+t)}$$

f) Conclure que

$$\int_0^\infty \frac{dt}{t^\alpha(1+t)} = \frac{\pi}{\sin(\pi\alpha)}$$

Exercise 3. 1) On a $\min_{|z|=1} |ze^{-z}| = \min_{|z|=1} e^{-z} = 1/e$. Si $w \in D(0, 1/e)$, on a : $|z| = 1 \implies |ze^{-z} - (ze^{-z} - w)| = |w| < |ze^{-z}|.$

Compte tenu du théorème de Rouché, la fonction $z \mapsto ze^{-z} - w$ a le même nombre de zéros dans le disque D(0,1) que la fonction $z \mapsto ze^{-z}$, donc un seul zéro, simple.

 Soit w ∈ D(0, 1/e). D'après ce qui précède, la fonction z → z(1-z)e^{-z}/(ze^{-z}-w) est holomorphe au voisinage du disque fermé $\overline{D}(0,1)$, sauf au point z=h(w) où elle a au plus un pôle simple. Son résidu en ce point est

$$z(1-z)e^{-z}/((1-z)e^{-z}) = z = h(w).$$

1

Compte tenu du théorème des résidus, on obtient :

$$|w| < 1/e,$$
 $h(w) = \frac{1}{2i\pi} \int_{\partial D(0,1)} \frac{z(1-z)e^{-z}}{ze^{-z} - w} dz.$

3. Pour $w \in D(0, 1/e)$ fixé, on a $|w|/|ze^{-z}| \le e|w| < 1$ pour tout $z \in \partial D(0, 1)$. On a donc, avec convergence normale sur $\partial D(0, 1)$:

$$|z| = 1, \qquad \frac{z(1-z)\mathrm{e}^{-z}}{z\mathrm{e}^{-z} - w} = (1-z)\left(1 - \frac{w}{z\mathrm{e}^{-z}}\right)^{-1} = (1-z)\sum_{n=0}^{+\infty} \frac{w^n}{z^n\mathrm{e}^{-nz}}.$$

En intégrant terme à terme, on obtient $h(w) = \sum_{n=1}^{+\infty} a_n w^n$ avec

$$a_n = \frac{1}{2i\pi} \int_{\partial D(0,1)} (1-z) z^{-n} \mathrm{e}^{nz} \, dz = \mathrm{r\acute{e}s} \, ((1-z) \mathrm{e}^{nz} z^{-n}, 0).$$

Donc a_n $(n \ge 1)$ est le coefficient de z^{n-1} dans le développement de $\mathrm{e}^{nz} - z\mathrm{e}^{nz}$, soit $a_n = n^{n-1}/(n-1)! - n^{n-2}/(n-2)! = n^{n-2}/(n-1)! = n^{n-1}/n!$. Finalement $h(w) = \sum_{n=1}^{+\infty} n^{n-1} w^n/n!$. On vérifie avec le test de d'Alembert que le rayon de convergence de cette série entière est $1/\mathrm{e}$.

FIGURE 1 – Solution de l'exercice.