ALGEBRA 1, Lista 4

Konwersatorium 26.10.2020, Ćwiczenia 27.10.2020 i 18.11.2020.

Niech G będzie grupą, $g \in G$, $k \in \mathbb{N}_{>0}$ oraz $n \in \mathbb{N}_{>1}$.

- 0S. Materiał teoretyczny: Warstwy lewostronne i warstwy prawostronne podgrupy H grupy G. Własności warstw. Indeks podgrupy H w grupie G. Twierdzenie Lagrange'a oraz wnioski z niego. Małe twierdzenie Fermata. Twierdzenie Wilsona.
- 1S. Wyznaczyć wszystkie możliwe:
 - (a) rzędy elementów $g \in \mathbb{Z}_{20}$;
 - (b) rzędy elementów $g \in S_5$;
 - (c) rzędy elementów $g \in D_6$.
- 2S. Załóżmy, że $\operatorname{ord}(g) = 10$. Wyznaczyć $\operatorname{ord}(g^2), \operatorname{ord}(g^5), \operatorname{ord}(g^3)$.
- 3S. Opisać zbiór warstw lewostronnych i prawostronnych (przez wypisanie wszystkich jego elementów) G/H i $H\backslash G$, dla:
 - (a) $G = \mathbb{Z}_{12}, H = \{0, 6\};$
 - (b) $G = S_3$, $H = \{id, (1, 2, 3), (1, 3, 2)\}$;
 - (c) $G = \mathbb{Z}, H = 5\mathbb{Z}.$
- 4K. Załóżmy, że $\operatorname{ord}(g) = n$ i niech $r = r_n(k)$.
 - (a) Udowodnić, że $g^k = g^r$.
 - (b) Udowodnić, że ord $(g^k)=l$, gdzie l jest najmniejszą liczbą $\geqslant 1$ taką, że n|kl.
 - (c) Udowodnić, że $\operatorname{ord}(g^k) = n$ wtedy i tylko wtedy, gdy k i n są względnie pierwsze.
 - 5. Wyznaczyć wszystkie możliwe rzędy elementów $g \in D_n$.
 - 6. Niech

$$\mathbb{Z}_n^* := \{ k \in \mathbb{Z}_n \mid \text{NWD}(k, n) = 1 \}.$$

Udowodnić, że:

- (a) mnożenie modulo n (oznaczane $\cdot_n)$ jest działaniem na $\mathbb{Z}_n^*;$
- (b) $(\mathbb{Z}_n^*, \cdot_n)$ jest grupą (łączność \cdot_n była omówiona na wykładzie).
- 7. Opisać zbiór warstw lewostronnych i prawostronnych (przez wypisanie wszystkich jego elementów) G/H i $H\backslash G$, dla:
 - (a) $G = D_4$, $H = \{ id, O_{\pi/2}, O_{\pi}, O_{3\pi/2} \};$
 - (b) $G = D_4$, $H = \{id, S\}$, gdzie S jest dowolną symetrią osiową;
 - (c) $G = S_n$, $H = A_n$, gdzie A_n to zbiór permutacji parzystych w S_n (udowodnić, że A_n jest podgrupą $S_n!$).
- 8. Załóżmy, że G jest generowana przez zbiór $\{g,h\}\subseteq G$ taki, że $\operatorname{ord}(g)=5,\ \operatorname{ord}(h)=4$ oraz $gh=hg^2.$
 - (a) Niech $K = \langle g \rangle$ oraz $H = \langle h \rangle$. Udowodnić, że $K \cap H = \{e\}$.
 - (b) Udowodnić, że każdy element grupy G jest postaci $g^i h^j$ dla pewnych $0 \le i < 5$ oraz $0 \le j < 4$ oraz udowodnić, że to przedstawienie jest jednoznaczne. Ile elementów ma grupa G?
 - (c) Napisać wzór na iloczyn elementów grupy G zapisanych w postaci $g^i h^j$ jak w podpunkcie (b) powyżej.

Można ten podpunkt ominąć, jeśli brakuje czasu na ćwiczeniach.

9. Obliczyć następujące reszty z dzielenia:

$$r_{13}\left(125^{342}\right), \ r_{29}\left(321^{485}\right), \ r_{31}\left(321^{485}\right).$$