Lista 5 - Laços

Submissão: Crie um programa para cada questão abaixo, ou seja um executável como mostrado em aula, depois compacte eles em um arquivo .zip(só aceitarei essa forma de compactação) e submeta ao sigaa.

Exemplo:

0. Crie um programa que define 4 funções representando as operações básicas da aritmética: add, sub, mul e div. Cada função tem 2 parâmetros inteiros. O programa deve pedir ao usuário o tipo de operação (1 p/ adição, 2 p/ subtração, 3 p/ multiplicação e 4 p/ divisão inteira) e os valores dos argumentos. Imprimirá ao final o resultado da operação.

Entrada	Saída
1	5
2	
3	
2	-1
2	
3	
3	6
2	
3	
4	0
2	
3	

Exemplo do código fonte:

```
def add(num1, num2):
    return num1 + num2
def sub(num1, num2):
    return num1 - num2
def mul(num1, num2):
    return num1 * num2
def div(num1, num2):
    return num1//num2
```

```
if __name__ == "__main__":
    oper = int(input())
    num1 = int(input())
    num2 = int(input())
    resultado = 0

if(oper == 1):
        resultado = add(num1, num2)
    elif(oper == 2):
        resultado = sub(num1, num2)
    elif(oper == 3):
        resultado = mul(num1, num2)
    else:
        resultado = div(num1, num2)
```

O aluno 000000 criou o código fonte acima no arquivo 000000_q0.py. Nas próximas questões ele fez algo semelhante: 000000_q1.py, 000000_q2.py, 000000_q3.py, 000000_q4.py e 000000_q5.py. Após, as questões serem respondidas ele compactou usando .zip. Não é .rar, .7zip ou etc. É .zip. Por quê tem que ser .zip? Porque o .rar, usado por alguns, não funciona em qualquer sistema operacional.

1. (0,05) Faça um programa que lê um número inteiro n e imprime n linhas com o formato seguinte (exemplo n = 6).

Entrada	Saída
6	+ * * * *
	* + * * *
	* * + * * *
	* * * + * *
	* * * * + *
	* * * * +

2. (0,1) O ISBN é um código de 10 dígitos que identifica únicamente um livro. O dígito mais a direita é de verificação e pode ser determinado a partir dos outro 9 dígitos, seguindo a condição que d₁ + 2d₂ + 3d₃ + ... + 10d₁₀ deve ser múltiplo de 11, d_i é o i-ésimo digito da direita para a esquerda. O dígito de soma de verificação pode ser qualquer valor entre 0 e 10, quando for 10 a convenção é imprimir como o caractere X.

Exemplo: a soma de verificação de 020131452 é 5, porque 5 é o único valor entre 0 e 10 que faz a soma 10*0 + 9*2 + 8*0 + 7*1 + 6*3 + 5*1 + 4*4 + 3*5 + 2*2 + 1*x ser multipla de 11.

Componha um programa que lê 9 dígitos inteiros, compute o checksum e imprima o número ISBN.

Entrada	Saída
020131452	0201314525
111111111	1111111111
658720731	6587207316

3. (0,1) Um passeio aleatório de duas dimensões simula o movimento de uma partícula em um plano cartesiano bidimensional. Em cada passo, o caminhante move-se aleatóriamento para norte, sul, leste ou oeste com probabilidades iguais e independentes dos movimentos anteriores (lembre-se de random.randint()). Crie um programa que receba como argumento um inteiro n e estime quantos movimentos serão feitos para alcançar o limite de um quadrado de lado 2n e centrado no ponto (0,0).

Por exemplo, os movimentos podem ser feitos para qualquer ponto do plano até que se atinja uma das bordas do quadrado de lado 2n, onde n no exemplo é 5.

Por se basear em um comportamento aleatório, não há uma única saída correta para uma entrada. Como exemplo de entrada e saída podemos ter o seguinte.

Entrada	Saída
5	(0,1)
	(0,2)
	(1,2)
	(2,2)
	(2,3)
	(3,3)
	(4,3)
	(5,3)

Ou seja, imprima a cada movimento o ponto no plano que foi alcançado até que se chegue a um dos limites.