

Distribution modeling

So far we've mentioned a few canonical distributions: Normal, Poisson, binomial, beta, gamma, ...

- Is there any commonality to these?
- What do we do in situations where these models are not appropriate?

Maximum entropy: a broad framework for distribution modeling.

Modeling the geographical distribution of a species

Example: the yellow-throated vireo.

Taken by: Mdf / CC BY-SA

1611 sightings

- Estimate the distribution of this species of bird
- Desired resolution: 386×286 grid (= 110,396 pixels)

Environmental features

- Want a distribution over S = {locations}
- Represent each pixel $x \in S$ by environmental features $T(x) = (T_1(x), \dots, T_k(x))$

Features:

- Annual precipitation, number of wet days
- Average daily temperature, temperature range
- Elevation, aspect, slope

Annual average temperature

Use data to estimate $\mathbb{E} T_i(x)$ for $1 \le i \le k$.

The maximum entropy approach

- 1 Suppose we had no sightings at all. The most reasonable model, in the absence of any information, might just be the uniform distribution over *S*.
- 2 But we have some sightings, yielding estimates $\mathbb{E} T_i(x) = b_i$, $1 \le i \le k$. Pick a distribution p over S that respects these constraints, i.e., for all i,

$$\sum_{x \in S} p(x) T_i(x) = b_i,$$

but is otherwise as random as possible.

B: Entropy

Entropy

The **entropy** of distribution p over finite set S is

$$H(p) = \sum_{x \in S} p(x) \log \frac{1}{p(x)}.$$

- Fair coin.
 - Specify S and p.
 - What is H(p)?
- Coin with bias 3/4.
- Coin with bias 0.99.

Entropy: more examples

• Two fair coins.

• Uniform distribution over *k* outcomes.

Justifying entropy: Appealing properties

- (1) Expansibility. If X has distribution (p_1, \ldots, p_n) and Y has distribution $(p_1, \ldots, p_n, 0)$ then H(X) = H(Y).
- (2) Symmetry. Distribution (p, 1-p) has the same entropy as (1-p, p).
- (3) Additivity. If X, Y are independent then H(X, Y) = H(X) + H(Y).
- (4) Subadditivity. $H(X, Y) \leq H(X) + H(Y)$.
- (5) Normalization. A fair coin has entropy 1.
- (6) "Small for small probability". The entropy of a coin of bias p goes to 0 as $p \downarrow 0$.

Aczel-Forte-Ng (1975): Entropy is the only measure that satisfies these 6 properties.

Additivity

If X, Y are independent then H(X, Y) = H(X) + H(Y).

Subadditivity

$$H(X, Y) \leq H(X) + H(Y)$$
.

Relation to KL divergence

• Canonical distance function between probability distributions: KL divergence.

$$K(p,q) = \sum_{x \in S} p(x) \log \frac{p(x)}{q(x)}.$$

• Can show that $K(p,q) \ge 0$, with equality iff p = q.

Lemma. If p is a distribution on S and u is uniform on S then $H(p) = \log |S| - K(p, u)$.

C: Distribution modeling by convex programming

Back to maximum entropy distribution modeling

- **Domain**: finite set S, e.g. geographical locations
- **Features** $T: S \to \mathbb{R}^k$, e.g. environmental features
- Observed constraints: $\mathbb{E} T_i(x) = b_i$, for i = 1, ..., k

Find the distribution p on S that has maximum entropy subject to the constraints.

$$\max \sum_{x \in S} p_x \ln rac{1}{p_x}$$

$$\sum_{x \in S} p_x T_i(x) = b_i, \quad 1 \le i \le k$$

$$p_x \ge 0, \quad x \in S$$

$$\sum_{x \in S} p_x = 1$$

This is a convex optimization problem!

A slight generalization

Suppose we have a prior distribution π on S (e.g. distribution of a broader class of birds).

$$egin{aligned} \min K(p,\pi) \ \sum_{x \in S} p_x T_i(x) &= b_i, \quad 1 \leq i \leq k \ p_x &\geq 0, \quad x \in S \ \sum_{x \in S} p_x &= 1 \end{aligned}$$

- Why is this a generalization?
- Why not $K(\pi, p)$?

Information projection

Think of this page as the probability simplex $\Delta=\{p\in\mathbb{R}^{|S|}:p_{x}\geq0,\sum_{x}p_{x}=1\}$

- Find the point $p \in L$ that is closest to π in KL divergence.
- We say p is the *I*-projection of π onto affine subspace L.

Solution by Lagrange multipliers

$$\min_{p \ge 0} \sum_{x} p_x \ln \frac{p_x}{\pi_x}$$

$$\sum_{x \in S} p_x T_i(x) = b_i, \quad 1 \le i \le k$$

$$\sum_{x \in S} p_x = 1$$

Form of solution

The solution has a specific functional form:

$$p(x) = \frac{1}{Z} \exp \left(\sum_{i=1}^{k} \theta_i T_i(x) \right) \pi(x) = \frac{1}{Z} e^{\theta \cdot T(x)} \pi(x)$$

where
$$T(x) = (T_1(x), \dots, T_k(x))$$
 and $\theta = (\theta_1, \dots, \theta_k)$.

Return to example:

$$p(x) \propto \pi(x) \exp(\theta_1 \cdot \operatorname{avgtemp}(x) + \theta_2 \cdot \operatorname{elevation}(x) + \cdots)$$

E.g. $\theta_2=0.81 \implies$ each additional unit of elevation multiplies the probability by $e^{0.81} \approx 2.25$

Yellow-throated vireo

Data: 1611 sightings

Maximum entropy distribution

In generality

Given any:

- Set of outcomes S
- Features $T(x) = (T_1(x), \ldots, T_k(x))$
- Base measure π on S
- Constraints $\mathbb{E} T_i(x) = b_i, 1 \le k$

the *I*-projection of π onto the constraints is of the form

$$p(x) = \frac{1}{Z} e^{\theta \cdot T(x)} \pi(x)$$

where $\theta = (\theta_1, \dots, \theta_k)$.

By varying (S, T, π) , we get Gaussians, Poissons, binomials, Markov random fields... These are all **exponential families**.

D: Exponential families of distributions

Exponential families: basics

Start with:

- Outcome space $S \subset \mathbb{R}^r$.
- Base measure $\pi: \mathbb{R}^r \to \mathbb{R}$.
- Features $T_1, \ldots, T_k : S \to \mathbb{R}$. Write $T(x) = (T_1(x), \ldots, T_k(x)) \in \mathbb{R}^k$.

The **exponential family generated by** (S, π, T) consists of distributions

$$p_{\theta}(x) = \frac{1}{Z_{\theta}} e^{\theta \cdot T(x)} \pi(x), \quad \theta \in \mathbb{R}^k,$$

where **partition function** $Z_{\theta} = \sum_{x \in S} e^{\theta \cdot T(x)} \pi(x)$ or $\int_{S} e^{\theta \cdot T(x)} \pi(x) dx$.

Conventional form: Write $G(\theta) = \ln Z_{\theta}$, the log partition function. Then

$$p_{\theta}(x) = \exp(\theta \cdot T(x) - G(\theta))\pi(x), \quad \theta \in \Theta$$

where $\Theta = \{\theta \in \mathbb{R}^k : G(\theta) < \infty\}$ is the **natural parameter space**.

The Bernoulli (coin flip) distribution

• How to express a coin of bias q in exponential family form?

• What are S, π, T in this case?

Poisson distribution

Recall: Poisson(λ) is a distribution over non-negative integers with $\Pr(k) = e^{-\lambda} \lambda^k / k!$.

• How to express in exponential family form?

• What are S, π, T in this case?

Normal distribution

• How to express $N(\mu, \sigma^2)$ in exponential family form?

• What are S, π, T in this case?

Fitting exponential family distributions

Pick an exponential family $\{p_{\theta}: \theta \in \Theta\}$ with

- Outcome space $S \subset \mathbb{R}^r$.
- Base measure $\pi: \mathbb{R}^r \to \mathbb{R}$.
- Features $T_1, \ldots, T_k : S \to \mathbb{R}$. Write $T(x) = (T_1(x), \ldots, T_k(x)) \in \mathbb{R}^k$.

Given data $x_1, \ldots, x_n \in S$, want to choose a model p_{θ} .

1 Maximum-likelihood coincides with the method of moments. The maximum-likelihood solution is the θ for which

$$\mathbb{E}_{X \sim p_{\theta}}[T(X)] = \frac{1}{n} \sum_{i=1}^{n} T(x_i).$$

Hence T(x) is a **sufficient statistic** for estimating θ .

2 We can find this θ by solving a convex program.