0.1 Introduksjon

Algebra er kort og godt matematikk der bokstavar representerer tal. Dette gjer at vi lettare kan jobbe med generelle tilfelle. For eksempel er $3 \cdot 2 = 2 \cdot 3$ og $6 \cdot 7 = 7 \cdot 6$, men desse er berre to av dei uendeleg mange eksempla på at multiplikasjon er kommutativ! Ei av hensiktene med algebra er at vi ønsker å gi eitt eksempel som forklarer alle tilfelle, og sidan sifra våre (0-9) er uløseleg knytta til bestemde tal, bruker vi bokstavar for å nå dette målet.

Verdien til tala som er representert ved bokstavar vil ofte variere ut ifrå ein samanheng, og da kallar vi desse bokstavtala for *variablar*. Viss bokstavtala derimot har ein bestemd verdi, kallar vi dei for *konstantar*.

I $Del\ I$ av boka har vi sett på rekning med konkrete tal, likevel er dei fleste reglane vi har utleda generelle; dei gjeld for alle tal. På side 1-4 har vi gjengitt mange av desse reglane på ei meir generell form. Ein fin introduksjon til algebra er å samanlikne reglane du finn her med slik du finn dei¹ i $Del\ I$.

0.1 Addisjon er kommutativ (??)

$$a+b=b+a$$

Eksempel

$$7 + 5 = 5 + 7$$

0.2 Multiplikasjon er kommutativ (??)

$$a \cdot b = b \cdot a$$

Eksempel 1

$$9 \cdot 8 = 8 \cdot 9$$

Eksempel 2

$$8 \cdot a = a \cdot 8$$

¹Reglane sine nummer i *Del I* står i parentes.

Gonging med bokstavuttrykk

Når ein gongar saman bokstavar, er det vanleg å utelate gongeteiknet. Og om ein gongar saman ein bokstav og eit konkret tal, skriv ein det konkrete talet først. Dette betyr for eksempel at

$$a \cdot b = ab$$

og at

$$a \cdot 8 = 8a$$

I tillegg skriv vi også

$$1 \cdot a = a$$

Det er også vanleg å utelate gongeteikn der parentesuttrykk er ein faktor:

$$3 \cdot (a+b) = 3(a+b)$$

0.3 Brøk som omskriving av delestykke (??)

$$a:b=\frac{a}{b}$$

Eksempel

$$a:2=\frac{a}{2}$$

0.4 Brøk gonga med brøk (??)

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

Eksempel 1

$$\frac{2}{11} \cdot \frac{13}{21} = \frac{2 \cdot 13}{11 \cdot 21} = \frac{26}{231}$$

Eksempel 2

$$\frac{3}{b} \cdot \frac{a}{7} = \frac{3a}{7b}$$

0.5 Deling med brøk (??)

$$\frac{a}{b} : \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}$$

Eksempel 1

$$\frac{1}{2} : \frac{5}{7} = \frac{1}{2} \cdot \frac{7}{5}$$

Eksempel 2

$$\frac{a}{13} : \frac{b}{3} = \frac{a}{13} \cdot \frac{3}{b}$$
$$= \frac{3a}{13b}$$

0.6 Gonging med parentes (distributiv lov) (??)

$$(a+b)c = ac + bc$$

Eksempel 1

$$(2+a)b = 2b + ab$$

Eksempel 2

$$a(5b - 3) = 5ab - 3a$$

0.7 Gonging med negative tal I (??)

$$a \cdot (-b) = -(a \cdot b)$$

Eksempel 1

$$3 \cdot (-4) = -(3 \cdot 4)$$
$$= -12$$

3

Eksempel 2

$$(-a) \cdot 7 = -(a \cdot 7)$$
$$= -7a$$

0.8 Gonging med negative tal II (??)

$$(-a) \cdot (-b) = a \cdot b$$

Eksempel 1

$$(-2) \cdot (-8) = 2 \cdot 8$$
$$= 16$$

Eksempel 2

$$(-a)\cdot(-15) = 15a$$

Språkboksen

Viss vi i eit uttrykk har éin variabel isolert på den eine sida av likskapsteiknet, og konstantar og variablar på den andre sida, seier vi at den isolerte variabelen er uttrykt ved dei andre tala. For eksempel, om vi har uttrykket a=2b-4, seir vi at "a er uttrykt ved b". Har vi uttrykket q=9y-x, seier vi at "q er uttrykt ved x og y".

Utvidingar av reglane

Noko av styrken til algebra er at vi kan lage oss kompakte reglar som det er lett å utvide også til andre tilfelle. La oss som eit eksempel finne eit anna uttrykk for

$$(a+b+c)d$$

regel 0.6 fortel oss ikkje direkte korleis vi kan rekne mellom parentesuttrykket og d, men det er ingenting som hindrar oss i å omdøpe a + b til k:

$$a+b=k$$

Da er

$$(a+b+c)d = (k+c)d$$

Av regel 0.6 har vi no at

$$(k+c)d = kd + cd$$

Om vi sett inn att uttrykket for k, får vi

$$kd + cd = (a+b)d + cd$$

Ved å utnytte regel 0.6 enda ein gong kan vi skrive

$$(a+b)d + cd = ad + bc + cd$$

Altså er

$$(a+b+c)d = ad + bc + cd$$

Obs! Dette eksempelet er ikkje meint for å vise korleis ein skal gå fram når ein har uttrykk som ikkje direkte er omfatta av Regel 0.1-0.8, men for å vise kvifor det alltid er nok å skrive reglar med færrast moglege ledd, faktorar og liknande. Oftast vil ein bruke utvidingar av reglane utan eingong å tenke over det, og i alle fall langt ifrå så pertentleg som det vi gjorde her.