School of Mathematics, Thapar Institute of Engineering & Technology, Patiala

- **1.** Find l_{∞} and l_2 norms of the vectors.
 - (a) $x = (3, -4, 0, \frac{3}{2})^t$.
 - (b) $x = (\sin k, \cos k, 2^k)^t$ for a fixed positive integer k.
- **2.** The following linear system Ax = b has x as the actual solution and \bar{x} as an approximate solution. Compute $||x \bar{x}||_{\infty}$ and $||A\bar{x} b||_{\infty}$. Also compute $||A||_{\infty}$.

$$x_1 + 2x_2 + 3x_3 = 1$$

$$2x_1 + 3x_2 + 4x_3 = -1$$

$$3x_1 + 4x_2 + 6x_3 = 2,$$

$$x = (0, -7, 5)^t$$

$$\bar{x} = (-0.2, -7.5, 5.4)^t.$$

3. Find the first two iterations of Jacobi and Gauss-Seidel using $x^{(0)} = 0$.

$$4.63x_1 - 1.21x_2 + 3.22x_3 = 2.22$$
$$-3.07x_1 + 5.48x_2 + 2.11x_3 = -3.17$$
$$1.26x_1 + 3.11x_2 + 4.57x_3 = 5.11.$$

4. The linear system

$$x_1 - x_3 = 0.2$$

$$-\frac{1}{2}x_1 + x_2 - \frac{1}{4}x_3 = -1.425$$

$$x_1 - \frac{1}{2}x_2 + x_3 = 2$$

has the solution $(0.9, -0.8, 0.7)^T$.

- (a) Is the coefficient matrix strictly diagonally dominant?
- (b) Compute the spectral radius of the Gauss-Seidel iteration matrix.
- (c) Perform four iterations of the Gauss-Seidel iterative method to approximate the solution.
- (d) What happens in part (c) when the first equation in the system is changed to $x_1 2x_3 = 0.2$?
- 5. Check whether you can apply the Jacobi and Gauss-Seidel iterative techniques to solve the following linear system.

$$2x_1 + 3x_2 + x_3 = -1$$

 $3x_1 + 2x_2 + 2x_3 = 1$
 $x_1 + 2x_2 + 2x_3 = 1$.

6. Find the first two iterations of the SOR method with $\omega = 1.1$ for the following linear system, using $x^{(0)} = 0$.

$$4x_1 + x_2 - x_3 = 5$$
$$-x_1 + 3x_2 + x_3 = -4$$
$$2x_1 + 2x_2 + 5x_3 = 1.$$

7. Compute the condition numbers of the following matrices relative to $\|.\|_{\infty}$.

(a)
$$\begin{bmatrix} 3.9 & 1.6 \\ 6.8 & 2.9 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 0.04 & 0.01 & -0.01 \\ 0.2 & 0.5 & -0.2 \\ 1 & 2 & 4 \end{bmatrix}.$$

8. The linear system Ax = b given by

$$\begin{bmatrix} 1 & 2 \\ 1.0001 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 3.0001 \end{bmatrix}$$

has solution $(1,1)^t$. Use seven-digit rounding arithmetic to find the solution of the perturbed system

$$\begin{bmatrix} 1 & 2 \\ 1.000011 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3.00001 \\ 3.00003 \end{bmatrix}$$

Is matrix A ill-conditioned? What does this say about the linear system?

9. Determine the largest eigenvalue and the corresponding eigenvector of the following matrix correct to three decimals using the power method with $x^{(0)} = (-1, 2, 1)^t$ using the power method.

$$\begin{bmatrix} 1 & -1 & 0 \\ -2 & 4 & -2 \\ 0 & -1 & 2 \end{bmatrix}.$$

10. Use the inverse power method to approximate the most dominant eigenvalue of the matrix until a tolerance of 10^{-2} is achieved with $x^{(0)} = (1, -1, 2)^t$.

$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}.$$

11. Find the eigenvalue of matrix nearest to 3

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

using inverse power method.