$$\chi_{b2}(1P)$$

$$I^G(J^{PC}) = 0^+(2^{++})$$

J needs confirmation.

Observed in radiative decay of the $\Upsilon(2S)$, therefore C=+. Branching ratio requires E1 transition, M1 is strongly disfavored, therefore P=+. J=2 from SKWARNICKI 87.

$\chi_{b2}(1P)$ MASS

VALUE (MeV) DOCUMENT ID

9912.21 \pm 0.26 \pm 0.31 OUR EVALUATION From average γ energy below, using $\Upsilon(2S)$ mass = 10023.26 ± 0.31 MeV

$m_{\chi_{b2}(1P)} - m_{\chi_{b1}(1P)}$

VALUE (MeV)	DOCUMENT I	ID TECN	COMMENT			
19.10±0.25 OUR AVERAGE	Error includes sca	le factor of 1.1.				
$19.81\!\pm\!0.65\!\pm\!0.20$	$^{ m 1}$ AAIJ		$pp \rightarrow \gamma \mu^+ \mu^- X$			
19.01 ± 0.24	LEES	14M BABR	$\Upsilon(2S) \rightarrow \gamma \gamma \mu^{+} \mu^{-}$			
1 From the $\chi_{bj}(1P) ightarrow ~ \varUpsilon(1S) \gamma$ transition.						

γ ENERGY IN \varUpsilon (25) DECAY

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
110.44±0.29 OUR AVERAGE	Error includes scale	factor	of 1.1.	
$110.58 \pm 0.08 \pm 0.30$	ARTUSO	05	CLEO	$\Upsilon(2S) \rightarrow \gamma X$
$110.8 \pm 0.3 \pm 0.6$	EDWARDS	99	CLE2	$\Upsilon(2S) \rightarrow \gamma \chi(1P)$
107.0 ± 1.1 ± 1.3	WALK	86	CBAL	$\Upsilon(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$
$110.6 \pm 0.3 \pm 0.9$	ALBRECHT	85E	ARG	$\Upsilon(2S) ightarrow {\sf conv.} \gamma {\sf X}$
$110.4 \pm 0.8 \pm 2.2$	NERNST	85	CBAL	$\Upsilon(2S) ightarrow \gamma X$
$109.5 \pm 0.7 \pm 1.0$	HAAS	84	CLEO	$\Upsilon(2S) ightarrow {\sf conv.} \gamma {\sf X}$
$108.2 \pm 0.3 \pm 2.0$	KLOPFEN	83		$\Upsilon(2S) ightarrow \gamma X$
108.8 ±4.0	PAUSS	83	CUSB	$\Upsilon(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$

$\chi_{b2}(1P)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
	$\gamma \ \Upsilon(1S)$	(18.8 ± 1.1) %	
	$D^0 X$	< 7.9 %	90%
Γ ₃	$\pi^+\pi^-$ K $^+$ K $^ \pi^0$	(8 ± 5) $ imes 10^-$	·5
Γ_4	$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 1.0 × 10 ⁻	90%
Γ_5	$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	$(5.3\pm2.4)\times10^{-1}$	4
Γ_6	$2\pi^{+}2\pi^{-}2\pi^{0}$	$(3.5\pm1.4)\times10^{-1}$	4
	$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	$(1.1\pm0.4)\times10^{-1}$	4
Γ ₈	$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	$(2.1\pm0.9)\times10^{-1}$	4
Γ ₉	$2\pi^{+}2\pi^{-}$ K^{+} K^{-} $2\pi^{0}$	$(3.9\pm1.8)\times10^{-1}$	4

Page 1

Created: 5/30/2017 17:21

HTTP://PDG.LBL.GOV

Γ_{10}	$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	< 5	$\times 10^{-4}$	90%
	$3\pi^{+}3\pi^{-}$	(7.0±3	$(3.1) \times 10^{-5}$	
	$3\pi^{+}3\pi^{-}2\pi^{0}$	$(1.0\pm0$	$(0.4) \times 10^{-3}$	
	$3\pi^{+}3\pi^{-}K^{+}K^{-}$	< 8	$\times10^{-5}$	90%
Γ_{14}	$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	(3.6 ± 1)	$1.5) \times 10^{-4}$	
	$4\pi^{+}4\pi^{-}$	(8 ±4	∤) × 10 ^{−5}	
Γ_{16}	$4\pi^{+}4\pi^{-}2\pi^{0}$	$(1.8\pm0$	$(0.7) \times 10^{-3}$	
Γ_{17}	$J/\psiJ/\psi$	< 4	$\times 10^{-5}$	90%
Γ_{18}	$J/\psi\psi(2S)$	< 5	$\times 10^{-5}$	90%
Γ ₁₉	$\psi(2S)\psi(2S)$	< 1.6	$\times 10^{-5}$	90%

$\chi_{b2}(1P)$ BRANCHING RATIOS

```
\Gamma(\gamma \Upsilon(1S))/\Gamma_{\text{total}}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   \Gamma_1/\Gamma
                                                                                                                                                                                                                                                                                                                                                                   TECN COMMENT
 0.188 \pm 0.011 OUR AVERAGE
                                                                                                                                                                                                ^{2,3,4} LEES
                                                                                                                                                                                                                                                                                                                                 14M BABR \Upsilon(2S) \rightarrow \gamma \gamma \mu^+ \mu^-
 0.185 \pm 0.008 \pm 0.009
                                                                                                                                                                                                            <sup>4,5</sup> KORNICER
 0.186 \pm 0.011 \pm 0.009
                                                                                                                                                         1770
0.194 ^{\,+\, 0.014}_{\,-\, 0.017} \pm 0.009
                                                                                                                                                                                                                       6 LFFS
                                                                                                                                                                                                                                                                                                                                 11J BABR \Upsilon(2S) \rightarrow X\gamma
                                                                                                                                                                                                                                                                                                                                                                 CBAL \Upsilon(2S) \rightarrow \gamma \gamma \ell^+ \ell^-
                                                                                                                                                                        35 4,7,8 WALK
 0.25 \pm 0.06 \pm 0.01
 0.20 \pm 0.05
              ^2 \, \mathsf{LEES} \,\, \mathsf{14M} \,\, \mathsf{quotes} \,\, \Gamma \big( \chi_{b2}(1P) \,\rightarrow\, \gamma \, \varUpsilon(1S) \big) / \Gamma_{\mathsf{total}} \,\, \times \,\, \Gamma \big( \, \varUpsilon(2S) \,\rightarrow\, \, \gamma \chi_{b2}(1P) \big) / \Gamma_{\mathsf{total}}
                         = (1.32 \pm 0.06)% combining the results from samples of \Upsilon(2S) \rightarrow \gamma \gamma \mu^+ \mu^- with and
                        without converted photons.
               ^{3} \, \mathsf{LEES} \,\, \mathsf{14M} \,\, \mathsf{reports} \,\, \dot{[\Gamma(\chi_{b2}(1P) \,\rightarrow\,\, \gamma \, \varUpsilon(1S)) / \Gamma_{\mathsf{total}}]} \,\, \times \,\, [\mathsf{B}(\,\varUpsilon(2S) \,\rightarrow\,\, \gamma \, \chi_{b2}(1P))] \,\, = \,\, (12) \,\, \mathcal{L}_{\mathsf{total}} \,\, \mathcal{L}_{\mathsf{total
                        (1.32 \pm 0.06) \times 10^{-2} which we divide by our best value B(\Upsilon(2S) \rightarrow \gamma \chi_{b2}(1P)) =
                        (7.15\pm0.35)	imes10^{-2} . Our first error is their experiment's error and our second error is
```

the systematic error from using our best value. ⁴ Assuming B($\Upsilon(1S) \rightarrow \mu^+ \mu^-$) = (2.48 ± 0.05)%.

⁵ KORNICER 11 reports $[\Gamma(\chi_{b2}(1P) \to \gamma \Upsilon(1S))/\Gamma_{\text{total}}] \times [B(\Upsilon(2S) \to \gamma \chi_{b2}(1P))] = (1.33 \pm 0.04 \pm 0.07) \times 10^{-2}$ which we divide by our best value $B(\Upsilon(2S) \to \gamma \chi_{b2}(1P)) = (7.15 \pm 0.35) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁶ LEES 11J reports $[\Gamma(\chi_{b2}(1P) \rightarrow \gamma \Upsilon(1S))/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow \gamma \chi_{b2}(1P))] = (13.9 \pm 0.5^{+0.9}_{-1.1}) \times 10^{-3}$ which we divide by our best value $B(\Upsilon(2S) \rightarrow \gamma \chi_{b2}(1P)) = (7.15 \pm 0.35) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 7 WALK 86 quotes B($\varUpsilon(2S) \rightarrow ~ \gamma \chi_{b2}(1P)) \times$ B($\chi_{b2}(1P) \rightarrow ~ \gamma ~ \Upsilon(1S)) \times$ B($\Upsilon(1S) \rightarrow ~ \ell^+ \ell^-) = (4.4 \pm 0.9 \pm 0.5)$ %.

⁸ WALK 86 reports $[\Gamma(\chi_{b2}(1P) \to \gamma \Upsilon(1S))/\Gamma_{total}] \times [B(\Upsilon(2S) \to \gamma \chi_{b2}(1P))] = (17.7 \pm 3.6 \pm 2.0) \times 10^{-3}$ which we divide by our best value $B(\Upsilon(2S) \to \gamma \chi_{b2}(1P)) = (7.15 \pm 0.35) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

Created: 5/30/2017 17:21

 $\Gamma(D^0X)/\Gamma_{\text{total}}$ VALUE CL% OBSIGN POOL NOT ID OBSIGN POOL

¹⁰ The authors also present their result as $(5.4 \pm 1.9 \pm 0.5) \times 10^{-2}$.

$\Gamma(\pi^+\pi^-K^+K^-\pi^0)/\Gamma_{\rm total}$

 Γ_3/Γ

VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT

0.84 ± 0.50 ± 0.04

8

11 ASNER 08A CLEO $\Upsilon(2S) \rightarrow \gamma \pi^+ \pi^- K^+ K^- \pi^0$ 11 ASNER 08A reports $[\Gamma(\chi_{b2}(1P) \rightarrow \pi^+ \pi^- K^+ K^- \pi^0)/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow \gamma \chi_{b2}(1P))] = (6 \pm 3 \pm 2) \times 10^{-6}$ which we divide by our best value $B(\Upsilon(2S) \rightarrow \gamma \chi_{b2}(1P)) = (7.15 \pm 0.35) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(2\pi^+\pi^-K^-K_S^0)/\Gamma_{\text{total}}$

 Γ_4/Γ

VALUE (units 10^{-4}) CL% DOCUMENT ID TECN COMMENT

12 ASNER 08A CLEO $\Upsilon(2S) \rightarrow \gamma 2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$

 12 ASNER 08A reports $[\Gamma(\chi_{b2}(1P) \rightarrow 2\pi^+\pi^-K^-K^0_S)/\Gamma_{\rm total}] \times [{\rm B}(\Upsilon(2S) \rightarrow \chi_{b2}(1P))] < 7 \times 10^{-6}$ which we divide by our best value ${\rm B}(\Upsilon(2S) \rightarrow \chi_{b2}(1P)) = 7.15 \times 10^{-2}$.

$\Gamma(2\pi^+\pi^-K^-K_S^02\pi^0)/\Gamma_{\text{total}}$

 Γ_5/I

VALUE (units 10^{-4})EVTSDOCUMENT IDTECNCOMMENT**5.3±2.4±0.3**11 13 ASNER08ACLEO $^{\gamma}(2S) \rightarrow \gamma 2\pi^{+}\pi^{-}K^{-}2\pi^{0}$

¹³ ASNER 08A reports $[\Gamma(\chi_{b2}(1P) \rightarrow 2\pi^+\pi^-K^-K^0_S 2\pi^0)/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow \gamma\chi_{b2}(1P))] = (38 \pm 14 \pm 10) \times 10^{-6}$ which we divide by our best value $B(\Upsilon(2S) \rightarrow \gamma\chi_{b2}(1P)) = (7.15 \pm 0.35) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(2\pi^+2\pi^-2\pi^0)/\Gamma_{\text{total}}$

 Γ_6/Γ

VALUE (units 10^{-4})EVTSDOCUMENT IDTECNCOMMENT3.5 \pm 1.4 \pm 0.21914 ASNER08ACLEO $\Upsilon(2S) \rightarrow \gamma 2\pi^+ 2\pi^- 2\pi^0$

 14 ASNER 08A reports $[\Gamma(\chi_{b2}(1P)\to 2\pi^+2\pi^-2\pi^0)/\Gamma_{\rm total}]\times [{\rm B}(\varUpsilon(2S)\to \gamma\chi_{b2}(1P))]=(25\pm 8\pm 6)\times 10^{-6}$ which we divide by our best value ${\rm B}(\varUpsilon(2S)\to \gamma\chi_{b2}(1P))=(7.15\pm 0.35)\times 10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(2\pi^+2\pi^-K^+K^-)/\Gamma_{\text{total}}$

 $\Gamma_7/$

Created: 5/30/2017 17:21

$\Gamma(2\pi^+2\pi^-K^+K^-\pi^0)/\Gamma_{\text{total}}$

 Γ_{8}/Γ

VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT 1

2.1±0.9±0.1 13 16 ASNER 08A CLEO 7 (2S) → 7 2π⁺ 2π⁻ K⁺ K⁻ π⁰ 16 ASNER 08A reports $[\Gamma(\chi_{b2}(1P) \rightarrow 2\pi^{+} 2\pi^{-} K^{+} K^{-} \pi^{0})/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow \Upsilon\chi_{b2}(1P))] = (15 \pm 5 \pm 4) \times 10^{-6}$ which we divide by our best value $B(\Upsilon(2S) \rightarrow \Upsilon\chi_{b2}(1P)) = (7.15 \pm 0.35) \times 10^{-2}$. Our first error is their experiment's error and our

second error is the systematic error from using our best value.

$\Gamma(2\pi^+2\pi^-K^+K^-2\pi^0)/\Gamma_{\text{total}}$

 Γ_{9}/Γ

$\Gamma(3\pi^+2\pi^-K^-K_S^0\pi^0)/\Gamma_{\text{total}}$

 Γ_{10}/Γ

 $\gamma \chi_{b2}(1P)$)] $< 36 \times 10^{-6}$ which we divide by our best value B($\gamma(2S) \rightarrow \gamma \chi_{b2}(1P)$) = 7.15 $\times 10^{-2}$.

$\Gamma(3\pi^+3\pi^-)/\Gamma_{\text{total}}$

 Γ_{11}/Γ

¹⁹ ASNER 08A reports $[\Gamma(\chi_{b2}(1P) \to 3\pi^+ 3\pi^-)/\Gamma_{total}] \times [B(\Upsilon(2S) \to \gamma\chi_{b2}(1P))] = (5 \pm 2 \pm 1) \times 10^{-6}$ which we divide by our best value $B(\Upsilon(2S) \to \gamma\chi_{b2}(1P)) = (7.15 \pm 0.35) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(3\pi^+3\pi^-2\pi^0)/\Gamma_{\text{total}}$

 Γ_{12}/Γ

VALUE (units 10^{-4})EVTSDOCUMENT IDTECNCOMMENT10.2±3.6±0.53420 ASNER08ACLEO $\Upsilon(2S) \rightarrow \gamma 3\pi^{+} 3\pi^{-} 2\pi^{0}$

²⁰ ASNER 08A reports $[\Gamma(\chi_{b2}(1P) \to 3\pi^+ 3\pi^- 2\pi^0)/\Gamma_{\text{total}}] \times [B(\Upsilon(2S) \to \gamma \chi_{b2}(1P))]$ = $(73 \pm 16 \pm 20) \times 10^{-6}$ which we divide by our best value $B(\Upsilon(2S) \to \gamma \chi_{b2}(1P))$ = $(7.15 \pm 0.35) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(3\pi^+3\pi^-K^+K^-)/\Gamma_{\text{total}}$

Г13/Г

Created: 5/30/2017 17:21

$\Gamma(3\pi^+3\pi^-K^+K^-\pi^0)/\Gamma_{\text{total}}$

 Γ_{14}/Γ

VALUE (units 10^{-4})EVTSDOCUMENT IDTECNCOMMENT3.6±1.5±0.214 22 ASNER08ACLEO $^{7}(2S) \rightarrow \gamma 3\pi^{+} 3\pi^{-} K^{+} K^{-} \pi^{0}$

²² ASNER 08A reports $[\Gamma(\chi_{b2}(1P) \rightarrow 3\pi^+ 3\pi^- K^+ K^- \pi^0)/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow \chi_{b2}(1P))] = (26 \pm 8 \pm 7) \times 10^{-6}$ which we divide by our best value $B(\Upsilon(2S) \rightarrow \chi_{b2}(1P)) = (7.15 \pm 0.35) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(4\pi^+4\pi^-)/\Gamma_{\rm total}$

 Γ_{15}/Γ

VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
0.84±0.40±0.04	7	²³ ASNER	08A	CLEO	$ \gamma(2S) \rightarrow \gamma 4\pi^+ 4\pi^- $

²³ ASNER 08A reports $[\Gamma(\chi_{b2}(1P) \rightarrow 4\pi^+ 4\pi^-)/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow \gamma \chi_{b2}(1P))]$ = $(6 \pm 2 \pm 2) \times 10^{-6}$ which we divide by our best value $B(\Upsilon(2S) \rightarrow \gamma \chi_{b2}(1P)) = (7.15 \pm 0.35) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(4\pi^+4\pi^-2\pi^0)/\Gamma_{\text{total}}$

 Γ_{16}/Γ

<i>VALUE</i> (units 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT
18±7±1	29	²⁴ ASNER	08A	CLEO	$\Upsilon(2S) \rightarrow \gamma 4\pi^+ 4\pi^- 2\pi^0$
24 ASNER 084 repo	rts [Γ(_V ,	$_{2}(1P) \rightarrow 4\pi^{+}4\pi^{-}$	$-2\pi^{0}$	/г1	$\times [B(\Upsilon(2S) \rightarrow \gamma \gamma_{12}(1P))]$

²⁴ ASNER 08A reports $[\Gamma(\chi_{b2}(1P) \to 4\pi^+ 4\pi^- 2\pi^0)/\Gamma_{total}] \times [B(\Upsilon(2S) \to \gamma\chi_{b2}(1P))]$ = $(132 \pm 31 \pm 40) \times 10^{-6}$ which we divide by our best value $B(\Upsilon(2S) \to \gamma\chi_{b2}(1P))$ = $(7.15 \pm 0.35) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(J/\psi J/\psi)/\Gamma_{\text{total}}$

 Γ_{17}/Γ

VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT
<5	90	²⁵ SHEN	12	BELL	$\Upsilon(2S) \rightarrow \gamma \psi X$

 $^{25}\,\mathrm{SHEN}$ 12 reports $<4.5\times10^{-5}$ from a measurement of $[\Gamma\big(\chi_{b2}(1P)\to\ J/\psi\ J/\psi\big)/\Gamma_{\mathrm{total}}]\times[\mathrm{B}(\varUpsilon(2S)\to\gamma\chi_{b2}(1P))]$ assuming $\mathrm{B}(\varUpsilon(2S)\to\gamma\chi_{b2}(1P))=(7.15\pm0.35)\times10^{-2}.$

$\Gamma(J/\psi\psi(2S))/\Gamma_{\text{total}}$

 Γ_{18}/Γ

<i>VALUE</i> (units 10 ⁻⁵)	CL%	DOCUMENT ID		TECN	COMMENT
<5	90	²⁶ SHEN	12	BELL	$\Upsilon(2S) \rightarrow \gamma \psi X$

 26 SHEN 12 reports < 4.9 \times 10^{-5} from a measurement of $[\Gamma(\chi_{b2}(1P)\rightarrow J/\psi\psi(2S))/\Gamma_{\rm total}]\times [{\rm B}(\Upsilon(2S)\rightarrow \gamma\chi_{b2}(1P))]$ assuming ${\rm B}(\Upsilon(2S)\rightarrow \gamma\chi_{b2}(1P))=(7.15\pm0.35)\times10^{-2}$.

$\Gamma(\psi(2S)\psi(2S))/\Gamma_{\text{total}}$

 Γ_{19}/Γ

Created: 5/30/2017 17:21

VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT
<1.6	90	27 SHEN	12	BELL	$\Upsilon(2S) \rightarrow \gamma \psi X$

²⁷ SHEN 12 reports < 1.6 \times 10⁻⁵ from a measurement of $[\Gamma(\chi_{b2}(1P) \rightarrow \psi(2S)\psi(2S))/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow \gamma\chi_{b2}(1P))]$ assuming $B(\Upsilon(2S) \rightarrow \gamma\chi_{b2}(1P)) = (7.15 \pm 0.35) \times 10^{-2}$.

$\chi_{h2}(1P)$ Cross-Particle Branching Ratios

$$\Gamma(\chi_{b2}(1P) \to \gamma \Upsilon(1S))/\Gamma_{total} \times \Gamma(\Upsilon(2S) \to \gamma \chi_{b2}(1P))/\Gamma_{total}$$

$$\Gamma_{1}/\Gamma \times \Gamma_{48}^{\Upsilon(2S)}/\Gamma^{\Upsilon(2S)}$$

VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
13.9±0.5 ^{+0.9}	8k	LEES	11J	BABR	$\Upsilon(2S) \rightarrow X\gamma$

$B(\chi_{b2}(1P) \rightarrow \gamma \Upsilon(1S)) \times B(\Upsilon(2S) \rightarrow \gamma \chi_{b2}(1P)) \times B(\Upsilon(1S) \rightarrow \ell^+\ell^-)$ VALUE (units 10⁻⁴) FVTS DOCUMENT ID TECH COMMENT

VALUE (units 10 +)	EVIS	DOCUMENT ID		TECN	COMMENT	
3.38 ± 0.16 OUR AVER	AGE					
$3.63^{+0.36}_{-0.34}^{+0.18}_{-0.19}$	28	⁸ LEES	14 M	BABR	$\Upsilon(2S) \rightarrow \gamma \gamma \mu^+ \mu^-$	
$3.29\!\pm\!0.09\!\pm\!0.16$	1770	KORNICER			$e^+e^- \rightarrow \gamma\gamma\ell^+\ell^-$	
$4.4 \pm 0.9 \pm 0.5$	35	WALK	86	CBAL	$\Upsilon(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$	
²⁸ From a sample of $\Upsilon(2S) o \gamma \gamma \mu^+ \mu^-$ with converted photons.						

$\begin{array}{l} [\mathsf{B}(\chi_{b2}(1P) \to \gamma \, \varUpsilon(1S)) \times \mathsf{B}(\, \varUpsilon(2S) \to \gamma \chi_{b2}(1P))] \, / \, [\mathsf{B}(\chi_{b1}(1P) \to \gamma \, \varUpsilon(1S)) \times \mathsf{B}(\, \varUpsilon(2S) \to \gamma \chi_{b1}(1P))] \end{array}$

' ' ''	,	/ / U = \ //1			
VALUE (%)		DOCUMENT ID		TECN	COMMENT
55.6±1.6		²⁹ LEES	14M	BABR	$\Upsilon(2S) \rightarrow \gamma \gamma \mu^{+} \mu^{-}$
20		1			

²⁹ From a sample of $\Upsilon(2S) \rightarrow \gamma \gamma \mu^+ \mu^-$ events without converted photons.

$\mathsf{B}(\chi_{b2}(1P)\to~\gamma~\varUpsilon(1S))\times \mathsf{B}(~\varUpsilon(3S)\to~\gamma\chi_{b2}(1P))\times \mathsf{B}(~\varUpsilon(1S)\to~\ell^+\ell^-)$

VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT
3.8 ±0.5 OUR AVERAGE					
$4.68^{igoplus 0.99}_{-0.92}\!\pm\!0.37$		³⁰ LEES	14M	BABR	$\Upsilon(3S) \rightarrow \gamma \gamma \mu^+ \mu^-$
$3.56\!\pm\!0.40\!\pm\!0.41$	126	KORNICER	11	CLEO	$e^+e^- \rightarrow \gamma\gamma\ell^+\ell^-$
³⁰ From a sample of $\Upsilon(3S) \to \gamma \gamma \mu^+ \mu^-$ with converted photons.					

$\chi_{b2}(1P)$ REFERENCES

Created: 5/30/2017 17:21