VERSUCH NUMMER

TITEL

Marius Hötting Marius.Hoetting@udo.edu

Hubertus Kaiser Hubertus.Kaiser@udo.edu

Durchführung: DATUM

Abgabe: DATUM

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1 Theorie

2 Fehlerrechnung

Dieses Kapitel listet kurz und bündig die benötigten und aus den Methoden der Statistik bekannten Formeln für die Fehlerrechnung auf. Die Schätzung der Standardabweichung ist

$$\Delta X = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2} \ . \tag{1}$$

Der Mittelwert ist

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \tag{2}$$

Der Fehler des Mittelwertes ist

$$\Delta \overline{X} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (X_i - \overline{X})^2} . \tag{3}$$

Für fehlerbehaftete Größen, die auch in folgenden Formeln verwendet werden, muss die Fehlerfortpflanzung nach Gauß berücksichtigt werden.

$$\Delta f = \sqrt{\sum_{i=1}^{n} \left(\frac{\partial f}{\partial X_i}\right)^2 \cdot (\Delta X_i)^2} \tag{4}$$

Bei der linearen Regressionsrechnung sind die Parameter m und b der Ausgleichsgerade y=mx+b wie folgt gegeben:

$$m = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\overline{x^2} - \overline{x}^2} \qquad b = \overline{y} - m\overline{x} . \tag{5}$$

Dabei sind x_i und y_i linear abhängige Messgrößen. Der Fehler dieser Parameter wiederum errechnet sich aus

$$\sigma_m^2 = \frac{\sigma^2}{n(\overline{x^2} - \overline{x}^2)} \qquad \qquad \sigma_b^2 = \frac{\sigma^2 \overline{x^2}}{n(\overline{x^2} - \overline{x}^2)} \ . \tag{6}$$

Relative Abweichungen einer Messgröße x gegenüber Literaturwerten $x_{\rm Lit}$ werden nach der Vorschrift

$$R_x = \frac{x - x_{\text{Lit}}}{x_{\text{Lit}}} \tag{7}$$

berechnet.

3 Versuchsaufbau

4 Durchführung

5 Auswertung

5.1 Justage der Aperratur

Zurerst werden die Parameter an dem NMR-Spektrometer so eingestellt, dass das Signal des freien Induktionszerfall möglichst groß ist. Dafür wird als Probe Wasser mit Kupfersulfat verwendet. Es ergeben sich folgende Paramter:

$$f = 2169380 \,\mathrm{Hz}$$
 (8)

$$p = 3^{\circ} \tag{9}$$

$$A_{\text{puls}} = 4.50 \,\mu\text{s} \tag{10}$$

$$B_{\rm puls} = 10.44 \,\mu \text{s}$$
 (11)

$$\tau = 10 \,\mu\text{s} \tag{12}$$

$$P = 500 \,\mu\text{s} \tag{13}$$

5.2 Bestimmung der longitudinalen Relaxationszeit T_1

Zur Bestimmung der Relaxationszeit T_1 wird eine Probe mit destillierten Wasser verwendet und die Justage der Versuchsapperatur wird für diese Probe angepasst. Die Messung von T_1 wird wie im Kapitel 4 beschrieben durchgeführt, es ergeben sich folgende Messerwerte für $\tau[ms]$ und $U(\tau)[mV]$

Tabelle 1: Messwerte der Spannung in Abhängigkeit der Zeit

10 755 20 745.5 30 720 40 705 50 695 60 680 70 670 80 662.5 90 655.5 100 647.5 150 610 200 582.5 250 550 750 290 1000 185 1250 85 1500 -250 1750 -295 2000 -375 3000 -520 4000 -730 5000 -772.5	$\tau [\mathrm{ms}]$	$\ \ U(\tau)[\mathrm{mV}]$
30 720 40 705 50 695 60 680 70 670 80 662.5 90 655.5 100 647.5 150 610 200 582.5 250 550 750 290 1000 185 1250 85 1500 -250 1750 -295 2000 -375 3000 -520 4000 -730	10	755
40 705 50 695 60 680 70 670 80 662.5 90 655.5 100 647.5 150 610 200 582.5 250 550 750 290 1000 185 1250 85 1500 -250 1750 -295 2000 -375 3000 -520 4000 -730	20	745.5
50 695 60 680 70 670 80 662.5 90 655.5 100 647.5 150 610 200 582.5 250 550 750 290 1000 185 1250 85 1500 -250 1750 -295 2000 -375 3000 -520 4000 -730	30	720
60 680 70 670 80 662.5 90 655.5 100 647.5 150 610 200 582.5 250 550 750 290 1000 185 1250 85 1500 -250 1750 -295 2000 -375 3000 -520 4000 -730	40	705
70 670 80 662.5 90 655.5 100 647.5 150 610 200 582.5 250 550 750 290 1000 185 1250 85 1500 -250 1750 -295 2000 -375 3000 -520 4000 -730	50	695
80 662.5 90 655.5 100 647.5 150 610 200 582.5 250 550 750 290 1000 185 1250 85 1500 -250 1750 -295 2000 -375 3000 -520 4000 -730	60	680
90 655.5 100 647.5 150 610 200 582.5 250 550 750 290 1000 185 1250 85 1500 -250 1750 -295 2000 -375 3000 -520 4000 -730	70	670
100 647.5 150 610 200 582.5 250 550 750 290 1000 185 1250 85 1500 -250 1750 -295 2000 -375 3000 -520 4000 -730	80	662.5
150 610 200 582.5 250 550 750 290 1000 185 1250 85 1500 -250 1750 -295 2000 -375 3000 -520 4000 -730	90	655.5
200 582.5 250 550 750 290 1000 185 1250 85 1500 -250 1750 -295 2000 -375 3000 -520 4000 -730	100	647.5
250 550 750 290 1000 185 1250 85 1500 -250 1750 -295 2000 -375 3000 -520 4000 -730	150	610
750 290 1000 185 1250 85 1500 -250 1750 -295 2000 -375 3000 -520 4000 -730	200	582.5
1000 185 1250 85 1500 -250 1750 -295 2000 -375 3000 -520 4000 -730	250	550
1250 85 1500 -250 1750 -295 2000 -375 3000 -520 4000 -730	750	290
1500 -250 1750 -295 2000 -375 3000 -520 4000 -730	1000	185
1750 -295 2000 -375 3000 -520 4000 -730	1250	85
2000 -375 3000 -520 4000 -730	1500	-250
3000 -520 4000 -730	1750	-295
4000 -730	2000	-375
	3000	-520
5000 -772.5	4000	-730
	5000	-772.5

Der erwartete Verlauf der Spannung wird durch die Formel:

$$U(\tau) = U_0 \cdot (1 - 2 \cdot e^{\tau/T_1}) \tag{14}$$

gegeben.

Es wird eine Funktionsanpassung durchgeführt um das T_1 zu bestimmen. Der Verlauf der Messdaten mit entsprechendem Fit sind in Abbildung ?? dargestellt.

Abbildung 1: Messwerte und Darstellung der Fitgergebnisse zur Berechnung derlongitudinal Komponente $T_{\rm 1}$

Dabei ergeben sich der folgende Wert für T_1 :

$$T_1 = 2.1 \pm 0.2 \,\mathrm{s}$$

5.3 Bestimmung der transversalen Relaxationszeit T_2

Die Ermittelung von T_2 erfolgt mittels Meiboom-Gill Methode, welche in Kapitel 1 erläutert wird. Es werden die Längen der Pulse A und B vertauscht. Es werden 100 B- Pulse erzeugt und die Messwerte der Maxima für die geradezahligen B-Pulse, welche in der Tabelle 2 angegeben sind, gespeichert.

Zur Bestimmung von T_2 wird eine Funktionsanpassung an die Messwerte für den Spannungsverlauf angefertigt. Es wird ein exponentieller Abfall für die Spannung erwartet, welcher durch die Formel:

$$U(\tau) = U_0 e^{-\tau/T_2} + U_{\rm offset} \tag{15} \label{eq:15}$$

Tabelle 2: Messwerte der Spannung in Abhängigkeit der Zeit

$ au[\mathrm{ms}]$	$U(\tau)[V]$
0.0005	-0.619633
0.0405	-0.559332
0.0805	-0.547271
0.1205	-0.49099
0.1605	-0.49903
0.2005	-0.458829
0.2405	-0.47893
0.2805	-0.47491
0.3205	-0.458829
0.3605	-0.442749
0.4005	-0.446769
0.4405	-0.414608
0.4805	-0.430688
0.5205	-0.402548
0.5205 0.5605	-0.398528
0.6005	-0.426668
0.6405	-0.370387
0.6805	-0.370387
0.7205	-0.358327
0.7205 0.7605	-0.370387
0.8005	-0.358327
0.8405	-0.350286
0.8805	-0.350286
0.9205	-0.326166
0.9205 0.9605	-0.320100
1.0005	-0.313120
1.0405	-0.330186
1.0405 1.0805	-0.306065
1.1205	-0.294005
1.1205 1.1605	-0.294005
1.1005 1.2005	-0.295025 -0.285965
1.2405	-0.265864
1.2405 1.2805	-0.269884
1.3205	-0.261844
1.3205 1.3605	-0.261844
1.4005	-0.253804
1.4405 1.4405	-0.235663
1.4405 1.4805	-0.225003
1.4805 1.5205	-0.245704
1.5205 1.5605	-0.223003
1.6005	-0.233704
1.6405	-0.233704
1.6805	-0.221643
1.7205	-0.225663
1.7605	-0.201543
1.8005	-0.209583
1.8405	-0.181442
1.8805	-0.185462
1.9205	-0.193503
1.9605	90.189482

beschrieben wird. Der Fit, vlg. Abbildung??, liefert folgende Werte für die Fitparameter

$$\begin{split} U_0 &= (-0.5 \pm 0.03)\,\mathrm{V} \\ T_2 &= (1.4 \pm 0.2)\,\mathrm{s} \\ U_{\mathrm{offset}} &= (0.06 \pm 0.03)\,\mathrm{V} \end{split}$$

Abbildung 2: Messwerte und Darstellung der Fitgergebnisse zur Berechnung der transversalen Relaxationszeit ${\cal T}_2$

5.4 Bestimmung des Feldgradienten aus der Halbwertszeit

Der Feldgradient lässt sich mit der Breite des Echopulses durch die Formel

$$\frac{d\gamma Gt_{1/2}}{4} = 2.2$$

bestimmen. Der Probendurchmesser d=4.4mm und das gyromagnetische Verhältnis $\gamma=42.58\,\mathrm{MHzT^{-1}}$ sind bekannt. Die Bestimmung der Halbwertszeit anhand des Echopulses ist in Abbildung ?? abgebildet.

Die Halbwertszeit beträgt $t_{1/2}=11.7\cdot 10^{-5}\,\mathrm{s},$ sodass nun für den Feldgradienten folgt:

$$G = -0.41 \, \mathrm{Tm}^{-1}$$

5.5 Ermittlung der Diffusionskonstante mit dem Spin-Echo Verfahren

Die Bestimmung der Diffusionskonstante erfolgt mit dem Spin-Echo Verfahren, die dafür aufgenommenen Messwerte finden sich in der Tabelle ??, bzw. die graphische Darstellung in Abbildung

Abbildung 3: Bestimmung der Halbwertszeit mit Hilfe des Spannungspulses. Der Abstand zwischen den schwarzen Linen kennzeichnet die Spanne der Halbwertszeit

??. Auf die Messwerte wird ein Fit der Funktion

$$U(\tau) = U_0 e^{-\tau/T_2} e^{-c\tau^3} + U_{\text{offset}}$$

angewendet. Es ergeben sich für die Fitparameter:

$$U_0 = (0.7 \pm 0.2) \text{ V},$$

 $c = (33 \pm 0.033) \cdot 10^5/\text{s}^3.$

Die Diffusionskonstante kann aus dem Fitparameter c berechnet werden:

$$c = \frac{D\gamma^2 G^2}{12} \rightarrow D = \frac{12c}{\gamma^2 G^2} = (1.37 \pm 0.09) \cdot 10^{-9} / \text{s}$$

5.6 Bestimmung der Viskosität und des Molekülradius von Wasser

Zur Messung der Viskosität wird ein Ubbelohde Viskosimeter verwendet, wodurch durch eine einfache Zeitmessung die Viskosität bestimmt werden kann. Die gemessene Zeit die das Wasser braucht um durch die Kapillare zu fließen beträgt $t=931\,\mathrm{s}$, welches sich mit der Formel für dieses Viskosimeter in eine Viskosotät umrechnen lässt:

$$\eta = \alpha \rho(t - \delta).$$

Die Dichte der Flüssigkeit beträgt hier mit $\rho = 0.997 \approx 1 \mathrm{g/cm^3}$, sodass für die die Eichkonstante der Apperatur den wesentlichen Anteil der Viskosität ausmacht. Das δ ist eine Korrekturglied

Tabelle 3: Messwerte der Spannung in Abhängigkeit der Zeit

$\tau[\mathrm{ms}]$	$U(\tau)[\mathrm{mV}]$
5	700
7.5	685
9	660
10	630
12	590
14	540
16	410
18	350
20	278
22	213
23	175
24	138.5
25	130.6
26	98.125
27	81.25
28	72.5
29	58.75
30	51.875
31	45

und beträgt hier $\delta=0.5\,\mathrm{s}$, für die Viskosität folgt, unter der Annahme das die Zeit auf 1s genau bestimmt werden konnte:

$$\eta = (0.949 \pm 1)\,\mathrm{mPa\,s}$$

Mit Hilfe der Viskosität lässt sich der Molekülradius r von Wasser berechnen:

$$r = \frac{kT}{6\pi D\eta} = (16.8 \pm 0.58) \,\mathrm{m}$$

Hierfür wird eine Temperatur von $T=25^{\circ}C$ angenommen.

 ${\bf Abbildung}$ 4: Fit zur Bestimmung der Diffusionskonstante

6 Diskussion

Die transversal und longitudinal Komopnente der Relaxationszeit konnten mit kleinen Fehler bestimmt werden:

$$(T_1 = 2.1 \pm 0.2\,){\rm s} \qquad T_2 = 1.4 \pm 0.2\,){\rm s}$$

Die Messwerte weisen eine gute Übereinstimmung, bis ein einzelne Ausreißer, mit den Fit auf. Der bestimmte Feldgradient G=-0.41 liegt unter dem erwarteten Wert, von $\approx G=-1\,\mathrm{Tm}^{-1}$. Sodass die damit bestimmte Diffusionskonstante große Abweichungen $\approx 53\,\%$ vom Literaturwert $D_{\mathrm{lit}}=2.1\cdot 10^{-9}\,\mathrm{m}^2\mathrm{s}^{-1}[.]$