ES-3 August 2007

1. Consider the three-phase bridge rectifier.

ES-3 page 1 of 2

$$e_a = E \cos \theta_e$$

$$e_b = E \cos \left(\theta_e - \frac{2\pi}{3}\right)$$

$$e_c = E \cos \left(\theta_e + \frac{2\pi}{3}\right)$$

$$\theta_e = \omega_e t$$

- (10) (a) The converter is operating in the steady state in mode 1 (1-2, 1-2-3, 23. ...). At a certain instant of time, only diodes 1 and 2 are on. At what value of θ_e does valve 3 begin to conduct?
- (15) (b) At what value of θ_e does diode 1 shut off after diode 3 turns on? Express answer in terms of l_c , E, ω_e , and I_d .
- (10) (c) Express instantaneous v_d (as a function of θ_e) during the interval in which diodes 1 and 2 are on.
- (15) (d) Express instantaneous v_d (as a function of θ_e) during the interval in which diodes 1, 2, and 3 are on.

The following circuit diagram applies to problems 2-4.

(25) 2. Sketch the line-to-neutral voltage v_{an} for basic six-step operation [the upper (lower) switch of each phase leg is closed (open) for 180° of the switching period and open (closed) for the other 180° - the switching of each phase leg is displaced 120° relative to the other phase legs]. Assume time zero is selected so that v_{an} approximates a cosine function. *Derive* the magnitude of the fundamental component in terms of V_{dc} . Exploit symmetry to minimize effort.

1.
$$f(\theta) = a_0 + \sum_{n=1}^{\infty} a_i \cos(n\theta) + b_i \sin(n\theta); \ a_i = \frac{1}{\pi} \int_0^{2\pi} f(\theta) \cos(n\theta) d\theta, \ b_i = \frac{1}{\pi} \int_0^{2\pi} f(\theta) \sin(n\theta) d\theta$$

(10) 3. Suppose a space vector modulator is used. The achievable voltage vectors (in the stationary reference frame) are depicted below for $V_{dc}=1~\rm V$. What is the maximum peak line-to-neutral voltage that can be achieved for arbitrary V_{dc} without introducing significant low-order harmonic distrortion?.

Achievable voltage vectors with $V_{\rm dc}$ = 1.0 V

(15) 4. Suppose a hysteresis modulation current control strategy is used with balanced sinusodal current reference signals. Sketch the time-domain block diagram using summers, comparators, etc. Label all signals. What is the maximim line-to-neutral voltage (peak value of fundamental component) that the inverter can be expected to supply?