Exercises from $Matrix\ Groups\ for\ Undergraduates$ by Kristopher Tapp

Tyler Jensen | tyjensen222@gmail.com

December 26, 2024

Contents

1	Matrices	1
2	All matrix groups are real matrix groups 2.1 Exercises	3
3	The orthogonal groups 3.1 Exercises	5
4	The topology of matrix groups 4.1 Exercises	7
5	Lie algebras 5.1 Exercises	9
6	Matrix exponentiation 6.1 Exercises	11 11
7	Matrix groups are manifolds 7.1 Exercises	13 13
8	The Lie bracket 8.1 Exercises	15 15
9	Maximal tori 9.1 Exercises	17 17
10	Homogeneous manifolds 10.1 Exercises	19
	Roots 11.1 Exercises	21 21

iv CONTENTS

Matrices

Exercise 1.1. Describe a natural 1-to-1 correspondence between elements of SO(3) and elements of

$$T^1S^2 = \{(p, v) \in \mathbb{R}^3 \times \mathbb{R}^3 : |p| = |v| = 1 \text{ and } p \perp q\}$$

Solution. Using the globe analogy from Question 1.2, fix a point r to be the north pole, and a point e that lies on the equator induced by the choice of r, and assert this as the arbitrary 'identity'.

Next, given some $A \in SO(3)$, identify an element in T^1S^2 via $A \mapsto (Ar, Av)$, as in first where A maps the north pole r, and then how A rotates the globe about the axis induced by r and its antipodal point.

All matrix groups are real matrix groups

2.1 Exercises

Exercise 2.1. Another exercise goes here.

Solution. Placeholder for your solution.

The orthogonal groups

3.1 Exercises

Exercise 3.1. Another exercise goes here.

Solution. Placeholder for your solution.

The topology of matrix groups

4.1 Exercises

Exercise 4.1. Another exercise goes here.

Solution. Placeholder for your solution.

Lie algebras

5.1 Exercises

Exercise 5.1. Another exercise goes here.

Solution. Placeholder for your solution.

Matrix exponentiation

6.1 Exercises

Exercise 6.1. Another exercise goes here.

Solution. Placeholder for your solution.

Matrix groups are manifolds

7.1 Exercises

Exercise 7.1. Another exercise goes here.

Solution. Placeholder for your solution.

The Lie bracket

8.1 Exercises

Exercise 8.1. Another exercise goes here.

Solution. Placeholder for your solution.

Maximal tori

9.1 Exercises

Exercise 9.1. Another exercise goes here.

Solution. Placeholder for your solution.

Homogeneous manifolds

10.1 Exercises

Exercise 10.1. Another exercise goes here.

Solution. Placeholder for your solution.

Roots

11.1 Exercises

Exercise 11.1. Another exercise goes here.

Solution. Placeholder for your solution.