Course No.	Course Name	L-T-P Credits	Year of Introduction
CS361	SOFT COMPUTING	3-0-0-3	2015

Course Objectives

To introduce the concepts in Soft Computing such as Artificial Neural Networks, Fuzzy logic-based systems, genetic algorithm-based systems and their hybrids.

Syllabus

Introduction to Soft Computing, Artificial Neural Networks, Fuzzy Logic and Fuzzy systems, Genetic Algorithms, hybrid systems.

Expected Outcome

Student is able to

- 1. Learn about soft computing techniques and their applications.
- 2. Analyze various neural network architectures.
- 3. Define the fuzzy systems.
- 4. Understand the genetic algorithm concepts and their applications.
- 5. Identify and select a suitable Soft Computing technology to solve the problem; construct a solution and implement a Soft Computing solution.

Text Books

- 1. S. N. Sivanandam and S. N.Deepa, Principles of soft computing Wiley India.
- 2. Timothy J. Ross, Fuzzy Logic with engineering applications Wiley India.

References

- 1. N. K. Sinha and M. M. Gupta, Soft Computing & Intelligent Systems: Theory & Applications-Academic Press / Elsevier. 2009.
- 2. Simon Haykin, Neural Network- A Comprehensive Foundation- Prentice Hall International, Inc.
- 3. R. Eberhart and Y. Shi, Computational Intelligence: Concepts to Implementation, Morgan Kaufman/Elsevier, 2007.
- 4. Ross T.J., Fuzzy Logic with Engineering Applications- McGraw Hill.
- 5. Driankov D., Hellendoorn H. and Reinfrank M., An Introduction to Fuzzy Control-Narosa Pub.
- 6. Bart Kosko, Neural Network and Fuzzy Systems- Prentice Hall, Inc., Englewood Cliffs
- 7. Goldberg D.E., Genetic Algorithms in Search, Optimization, and Machine Learning-

Ad	ldison Wesley.		
	Course Plan		
Module	Contents	Hours	Sem. Exam Marks %
I	Introduction to Soft Computing		
	Artificial neural networks - biological neurons, Basic models		
	of artificial neural networks - Connections, Learning,	08	15%
	Activation Functions, McCulloch and Pitts Neuron, Hebb		İ
	network.		
	Perceptron networks - Learning rule - Training and testing		15%
II	algorithm, Adaptive Linear Neuron, Back propagation	08	
	Network - Architecture, Training algorithm		
	FIRST INTERNAL EXAM		-
III	Fuzzy logic - fuzzy sets - properties - operations on fuzzy	07	15%
	sets, fuzzy relations - operations on fuzzy relations	07	
IV	Fuzzy membership functions, fuzzification, Methods of		15%
	membership value assignments - intuition - inference -	07	
	rank ordering, Lambda -cuts for fuzzy sets, Defuzzification	07	
	methods		
	SECOND INTERNAL EXAM		
V	Truth values and Tables in Fuzzy Logic, Fuzzy propositions,		
	Formation of fuzzy rules - Decomposition of rules -		20%
	Aggregation of rules, Fuzzy Inference Systems - Mamdani	08	
	and Sugeno types, Neuro-fuzzy hybrid systems -		
	racteristics - classification		
VI	Introduction to genetic algorithm, operators in genetic		20%
	algorithm - coding - selection - cross over - mutation,	08	
	Stopping condition for genetic algorithm flow, Genetic-		
	neuro hybrid systems, Genetic-Fuzzy rule based system		
	END SEMESTER EXAMINATION	•	•

Question Paper Pattern

1. There will be *five* parts in the question paper - A, B, C, D, E

2. Part A

- a. Total marks: 12
- b. <u>Four</u>questions each having <u>3</u> marks, uniformly covering modules I and II; All<u>four</u> questions have to be answered.

3. Part B

- a. Total marks: 18
- b. <u>Three</u> questions each having $\underline{9}$ marks, uniformly covering modules I and II; T<u>wo</u> questions have to be answered. Each question can have a maximum of three subparts

4. Part C

- a. Total marks: 12
- b. *Four* questions each having <u>3</u> marks, uniformly covering modules III and IV;All*four* questions have to be answered.

5. Part D

- a. Total marks: 18
- b. <u>Three</u>questions each having <u>9</u> marks, uniformly covering modules III and IV; <u>Two</u> questions have to be answered. Each question can have a maximum of three subparts

6. Part E

- a. Total Marks: 40
- b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
- c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical/design questions.