(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001年1月4日 (04.01.2001)

PCT

(10) 国際公開番号

(51) 国際特許分類7:

WO 01/00923 A1

豊益町吉田1番地 王子製紙株式会社 富岡工場内 Tokushima (JP). 前田広景 (MAEDA, Hiroaki) [JP/JP];

〒605-0995 京都府京都市東山区一橋野本町11番地の

(75) 発明者/出願人(米国についてのみ): 天野研一郎 (YANO, Kenichiro) [JP/JP]; 〒774-0002 徳島県阿南市

D21C 3/02, 3/06

(21) 国際出願番号:

PCT/JP00/04117

(22) 国際出願日:

2000年6月22日(22.06.2000)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願平11/180422 特願2000/45333

1999年6月25日(25.06.1999) JP 2000年2月23日(23.02.2000) ЛР (74) 代理人: 弁理士 中西得二(NAKANISHI, Tokuji); 〒 540-0026 大阪府大阪市中央区内本町2丁目1番19号内 本町松屋ビル10-360号 Osaka (JP).

(81) 指定国(国内): BR, CA, FI, ID, NO, SE, US.

1 三洋化成工業株式会社内 Kyoto (JP).

(71) 出願人(米国を除く全ての指定国について): 王子製紙 株式会社 (OJI PAPER CO., LTD.) [JP/JP]; 〒104-0061 東京都中央区銀座四丁目7番5号 Tokyo (JP). 三洋化 成工業株式会社 (SANYO CHEMICAL INDUSTRIES, LTD.) [JP/JP]; 〒605-0995 京都府京都市東山区一橋野 本町11番地の1 Kyoto (JP).

添付公開書類:

国際調査報告書

(72) 発明者; および

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: DIGESTION ASSISTANT FOR LIGNOCELLULOSES AND PROCESS FOR THE PRODUCTION OF PULPS

(54) 発明の名称: リグノセルロース物質の蒸解助剤およびパルプ製造方法

 $R^{1}-O-[(C_{2}H_{4}O)_{m}/(A^{1}O)_{n}]-H$

(1)

(57) Abstract: A digestion assistant for lignocelluloses, containing one or more members selected from among nonionic surfactants represented by general formula (1): wherein R1 is branched C4-C24 alkyl, m is such integers of 1 or above as to give an average of 4 to 20; A1 is C3-C4 alkylene; and n is such integers of 0 or above as to give an average of 0 to 15, with the proviso that when the average of n is 1 to 5, the moiety in square brackets takes a random or block bonding mode.

(57) 要約:

リグノセルロース物質の蒸解助剤は、下記一般式(1)で示される化合物の1 種または2種以上の化合物からなるノニオン性界面活性剤(A)を含有する。

 $R^{1}-O-[(C_{2}H_{4}O)_{m}/(A^{1}O)_{n}]-H$

ただし、R¹は炭素数4~24の分岐アルキル基;mは平均が4~20となる 1以上の整数; A¹は炭素数3または4のアルキレン基; n は平均が0~15と なる0または1以上の整数を示す。nの平均が1~15の場合、[]内の結合 形式はランダム状および/またはブロック状である。

リグノセルロース物質の蒸解助剤およびパルプ製造方法

技術分野

本発明は、リグノセルロース物質のアルカリ蒸解または亜硫酸塩蒸解用の蒸解助剤およびパルプ製造方法に関する。

背景技術

木材や非木材(草本類等)のリグノセルロース物質のアルカリ蒸解または亜硫酸塩蒸解によって、パルプを製造するに際し、原木原単位やエネルギー原単位を低下させて、良質な製品を経済的に生産するために、少量のヒドロキシアントラセン誘導体を添加して、蒸解を行う方法が広く知られている(特開昭53-74101号公報等)。また、キノン系蒸解助剤の効率をさらに高めるために、水溶性ジヒドロキシアントラセン化合物と浸透促進剤を添加して、蒸解するパルプの製造方法が知られている(特公平1-20276号公報)。さらに、蒸解工程用の脱樹脂剤としてアルキルポリオキシアルキレンエーテルカルボン酸塩を蒸解工程に使用することが知られている(特公昭53-28522号公報)。

従来のキノン系蒸解助剤を使用する方法では、キノンのパルプへの浸透を高めることが課題であった。例えば、特公平1-20276号公報に示すような浸透剤を添加しても、蒸解収率(蒸解後のパルプの収率。以下、同じ)、蒸解速度およびパルプ品質の向上には不十分であった。また、特開昭53-28522号公報に示されているような界面活性剤の蒸解工程での使用は、脱樹脂には効果があるものの、蒸解収率の向上、蒸解速度の向上およびパルプ品質の向上に十分な効果が得られていなかった。

本発明者等は、リグノセルロース物質の蒸解工程において、蒸解収率、蒸解速度およびパルプ品質の向上図る目的で、鋭意研究を重ねた結果、特定の化合物を蒸解助剤として使用することにより、蒸解後のパルプ収率の向上、蒸解後のカッ

パー価の低下、蒸解速度の向上、蒸解時の蒸気エネルギーの低減、蒸解液の硫化度の低減および蒸解液の活性アルカリの低減ができ、さらに、比引裂強度、裂断長および比破裂強度を向上できて、パルプ品質の向上ができることを見出した。

発明の開示

本発明は、リグノセルロース物質の蒸解助剤およびパルプ製造方法に関し、本発明の第1番目のリグノセルロース物質の蒸解助剤は、下記一般式(1)で示される化合物の1種または2種以上の化合物からなるノニオン性界面活性剤(A)を含有する。

ただし、 R^1 は下記一般式(2)で示される炭素数 $4 \sim 2$ 4 の分岐アルキル基;mは平均が $4 \sim 2$ 0 となる 1 以上の整数; A^1 は炭素数 3 または 4 のアルキレン基;nは平均が $0 \sim 1$ 5 となる 0 または 1 以上の整数を示す。n が $1 \sim 1$ 5 の場合、[] 内の付加形式はランダム状および/またはブロック状である。

ただし、 R^2 , R^3 は炭素数 $1 \sim 2$ 1 の直鎖または分岐のアルキル基; R^4 は炭素数 $1 \sim 2$ 1 のアルキレン基を示す。

また、本発明の第2番目のリグノセルロース物質の蒸解助剤は、脂肪族アルコールにアルキレンオキサイドを付加して得られるノニオン性界面活性剤(B)を含有し、ノニオン性界面活性剤(B)が、下記一般式(3)で表される化合物の1種または2種以上の混合物からなると共に、ノニオン性界面活性剤(B)の重量平均分子量(Mw)と数平均分子量(Mn)の比が下記関係式(4)を満たしている。

$$- 般式 R5 - O - [(C2H4O)p/(A2O)q] - H$$
 (3)

ただし、 R^5 は炭素数 $4 \sim 2$ 4 の直鎖、分岐または環状の脂肪族 1 価炭化水素基; p は $4 \sim 2$ 0 の付加モル数; A^2 は炭素数 3 または 4 のアルキレン基; q は 0 または $1 \sim 1$ 5 の付加モル数を示す。 q が $1 \sim 1$ 5 の場合、 [] 内の結合形

式はランダム状および/またはブロック状である。

関係式

 $Mw/Mn \le -0$. 183 $\times K^{-0.930} \times LnX + 1$. 327 $\times K^{-0.065}$ (4)

ただし、LnXはXの自然対数;Xは脂肪族アルコール1モル当たりのアルキレンオキサイドの平均付加モル数;Kは一般式(3)のR5の炭素数を示す。

さらに、本発明の第3番目のリグノセルロース物質の蒸解助剤は、下記一般式 (5)表されるアニオン性界面活性剤 (C)または/および下記一般式 (6)で表される化合物の1種または2種以上の化合物からなるアニオン性界面活性剤 (D)を含有する。

O

$$\parallel$$

一般式 $\{R^6 - O - (A^3 O)_r -\}_k P (-OM^2)_{3-k}$ (6)

ただし、 R^0 は炭素数 $4 \sim 2$ 4 の直鎖、分岐または環状の脂肪族 1 価炭化水素基; A^3 は炭素数 3 または 4 のアルキレン基; r は平均が $0 \sim 1$ 5 となる 0 または 1 以上の整数; k は 1 または 2 の整数; M^1 , M^2 は一価の陽イオンを示す。

また、本発明の第4番目のリグノセルロース物質の蒸解助剤は、a. ノニオン性界面活性剤(A)または/およびノニオン性界面活性剤(B)と、b. アニオン性界面活性剤(C)、アニオン性界面活性剤(D)およびアニオン性界面活性剤(E)の内から選ばれる1種以上のアニオン性界面活性剤を100/0.1~100/30の重量比率で配合した組成物を含有する。

ただし、界面活性剤(A)~(D)は上記と同様のものであり、アニオン性界面活性剤(E)は下記一般式(7)で表される化合物の1種または2種以上の化合物である。

ただし、 R^{7} は炭素数 $4 \sim 2$ 4 の直鎖または分岐のアルキル基、アルケニル基またはモノもしくはジヒドロキシアルキル基; R^{8} は炭素数 $1 \sim 6$ のアルキレン基; A^{4} は炭素数 3 または 4 のアルキレン基; S^{4} は平均が 1 0 1 5 となる 1 または 1 以上の整数; M^{8} は一価の陽イオンを示す。

さらに、本発明のパルプの製造方法は、リグノセルロース物質を、蒸解助剤の存在下で、アルカリ蒸解または亜硫酸塩蒸解して、パルプを製造する方法において、蒸解助剤として、本発明の上記蒸解助剤、または、これと、キノン系蒸解助剤および/またはポリサルファイドを使用するものである。

尚、本発明の上記蒸解助剤の添加後、添加中および/または添加前に、リグノセルロース物質を加熱することもある。

本発明の蒸解助剤は、リグノセルロース物質のアルカリ蒸解または亜硫酸塩蒸 解に使用することにより、以下のような特徴を有する。

- (1) 蒸解速度、蒸解収率およびパルプ強度を向上させることが出来る。
- (2) キノン系蒸解助剤による蒸解促進効果をさらに高めることが出来る。
- (3) 操業効率やメンテナンスに悪影響を及ぼす蒸解装置内のスケールの付着を抑制することが出来る。

以上のような効果を奏することから、本発明の蒸解助剤は、パルプ製造において重要な原木原単位やエネルギー原単位を低下させて、良質な製品を経済的に生産でき、極めて実用的に使用できる。さらに、本発明の蒸解助剤の使用により、泡立ちを抑制するための装置や消泡剤の添加を不要とでき、上記従来の課題を極めて有効かつ経済的に解決できる。

図面の簡単な説明

第1図は、Kが4の場合の関係式(4)または(a)等を満たす範囲を示すグラフである。第2図は、Kが12の場合の関係式(4)または(a)等を満たす範囲を示すグラフである。第3図は、Kが24の場合の関係式(4)または(a)等を満たす範囲を示すグラフである。

発明を実施するための最良の形態

本発明を実施するための形態の第1例を説明すると、本例での蒸解助剤は、下記一般式(1)で示される化合物の1種または2種以上の化合物からなるノニオン性界面活性剤(A)を含有する。

上記 R^1 は、下記一般式(2)で示される分岐アルキル基であり、その炭素数は、通常、 $4\sim2.4$ 、好ましくは $6\sim2.0$ 、特に好ましくは $8\sim1.4$ である。炭素数が4未満であるか、2.4を越えると、界面活性が低下して、十分な浸透効果が得られない。尚、 R^1 が、上記のように、分岐アルキル基であれば、浸透効果の面で好ましい。

ただし、 R^2 , R^3 は炭素数 $1 \sim 2$ 1 の直鎖または分岐のアルキル基、 R^4 は炭素数 $1 \sim 2$ 1 のアルキレン基を示す。 R^2 、 R^3 の具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、1 イソブチル、1 のがくなるへキシル、1 ののがイマーからなるへキシル、1 ののが、1 ののがイマーからなるへキシル、1 ののが、1 のの

一般式(2)で示されるアルキル基の具体例としては、イソブチル、イソペンチル、イソヘキシル、イソヘプチル、イソオクチル、2-エチルヘキシル、イソノニル、イソデシル、プロピレンのトリマーから合成される分岐ノニル、イソウンデシル、イソドデシル、プロピレンのテトラマーから合成される分岐ドデシル、イソトリデシル、イソテトラデシル、イソペンタデシル、イソヘキサデシル、イソヘプタデシル、イソオクタデシル、イソエイコシル、オキソ法によって合成

される炭素数 4~2 4の分岐アルキル基等が挙げられる。好ましいものは、2~エチルヘキシル、イソノニル、イソデシル、プロピレンのトリマーから合成される分岐ノニル、イソウンデシル、イソドデシル、プロピレンのテトラマーから合成される分岐ドデシル、イソトリデシル基である。特に好ましいものは、2~エチルヘキシル、イソノニル、イソデシルである。

一般式(1)のmは、通常、平均が $4 \sim 2$ 0 となる 1 以上の整数、好ましくは平均が $5 \sim 1$ 8 となる 1 以上の整数、特に好ましくは平均が $6 \sim 1$ 6 となる 1 以上の整数である。 mの平均が 4 未満であると、浸透効果が低下する。 また、 mの平均が 2 0 を越えると、浸透効果が低下すると共に、泡立ちを抑制することが困難となる。

一般式(1)のA¹は、炭素数3または4のアルキレン基である。アルキレン 基の炭素数が3未満であると、泡立ちを抑制する作用が少なくなり、洗浄機にお ける黒液の濾水性の向上が望めなくなる。アルキレン基の炭素数が4を越えると 、浸透性が低下すると共に、蒸解助剤のパルプへの吸着量が多くなり、パルプ表 面物性が変化する。

また、一般式(1)の A^1O は、炭素数 $3\sim 4$ のアルキレンオキサイドの付加により形成されるオキシアルキレン基である。上記アルキレンオキサイドとしては、プロピレンオキサイド(以下、POと略す)、1, 2-または 2, 3-ブチレンオキサイド(以下、BOと略す)、テトラヒドロフラン(以下、THFと略す)等および 2 種類以上の炭素数 $3\sim 4$ のアルキレンオキサイドの併用が挙げられ、好ましくは、POである。

一般式 (1) の n は、通常、平均が $0 \sim 1$ 5 となる 0 または 1 以上の整数、好ましくは平均が $0 \sim 1$ 0 となる 0 または 1 以上の整数、特に好ましくは $0 \sim 7$ となる 0 または 1 以上の整数である。 n の平均が 1 5 を越えると、浸透効果が低下すると共に、蒸解助剤のパルプへの吸着量も多くなり、パルプ表面物性が変化する。

一般式(1)の[]内は、mモルのエチレンオキサイド(以下、EOと略す)、または、これとnモルの炭素数 $3\sim 4$ のアルキレンオキサイドの(共)付加

により形成されるポリオキシアルキレン基であり、nの平均が $1\sim15$ の場合の付加形式は、ランダム状および/またはブロック状、または、これらの混在したものとされる。なお、付加順序を問わない。

ノニオン性界面活性剤(A)の具体例としては、 R^1-OH で示されるアルコールに、EO、PO、BOを下記の(a)~(c)に示す順序で付加したものが挙げられる。なお、(EO)はEO残基、(PO)はPO残基、(BO)はBO残基を、それぞれ、示し、()の横の添字は付加モル数を示し、//はランダム状に付加していることを示し、-はブロック状に付加していることを示し、<>内は各化合物のmおよびnと、 α ~ λ との関係を示している。

- (a) (EO) $_{\alpha}-$ (BO) $_{\beta}-$ (EO) $_{\gamma}-$ (PO) $_{\delta}-$ < m= $\{\alpha+\gamma\}$, n= $\{\beta+\delta\}$ >
- (b) (BO) $_{\varepsilon}$ (EO) $_{\varepsilon}$ // (PO) $_{\eta}$ < m = ζ , n = $\{\varepsilon + \eta\}$ >
- (c) $(EO)_{\theta} (PO)_{\iota} (EO)_{\kappa} (PO)_{\lambda} (EO)_{\mu} < m = \{\theta + \kappa + \mu\}_{\iota}, n = \{\iota + \lambda\}_{\iota} >$

一般式(1)に示される化合物のうちで、好ましいものは、 R^1-OH で示されるアルコールに、EOを付加したもの、または、EOとPOを共付加したものである。

次に、本発明を実施するための形態の第2例を説明すると、本例での蒸解助剤は、脂肪族アルコールにアルキレンオキサイドを付加して得られるノニオン性界面活性剤(B)を含有し、ノニオン性界面活性剤(B)が、下記一般式(3)で表される化合物の1種または2種以上の混合物からなると共に、ノニオン性界面活性剤(B)の重量平均分子量(Mw)と数平均分子量(Mn)の比が下記関係式(4)を満たす点にある。

なお、重量平均分子量(Mw)は、 N_i 個の分子量 M_i の分子(i=1, 2, ・・・)からなる多分散系において、 $Mw=\Sigma$ ($N_i\times M_i^2$) ÷ Σ ($N_i\times M_i$) で表される。ただし、 Σ は合計を表す(以下、同じ)。また、数平均分子量(Mn

)は、 N_i 個の分子量 M_i の分子(i=1, 2, ・・・)からなる多分散系において、 $M_n = \Sigma$ ($N_i \times M_i$) ÷ ΣN_i で表される。

また、 R^{5} は直鎖、分岐または環状の脂肪族 1 価炭化水素基であり、その炭素数は、通常、 $4\sim2$ 4、好ましくは $6\sim2$ 0、特に好ましくは $8\sim1$ 4 である。炭素数が 4 未満であるか、 2 4 を越えると、十分な浸透効果が得られないため、蒸解助剤として好ましくない。

R⁵の具体例としては、n-ブチル、n-ペンチル、n-ヘキシル、n-オク チル、n-ノニル、n-デシル、n-ドデシル、n-トリデシル、n-テトラデ シル、n-ヘキサデシル、n-オクタデシル、n-ノナデシル基等の直鎖アルキ ル基;一般式(2)のアルキル基の具体例に示した分岐アルキル基;シクロヘキ シル、エチルシクロヘキシル、プロピルシクロヘキシル、オクチルシクロヘキシ ル、ノニルシクロヘキシル、アダマンチル基等の環状のアルキル基;アリル、ブ テニル、ヘキセニル、オクテニル、ドデセニル、トリデセニル、ペンタデセニル 、オレイル、ガドレイル、リノレイル基等の直鎖のアルケニル基若しくはアルカ ジエニル基;2-メチル-2-プロペニル、2,3-ジメチル-1,3-ブタジ エニル、2-エチル-1-ヘキセニル、2-エチル-3-ヘキセニル、2,6-ジメチルー 7 ーオクテニル、2, 5, 8 ートリメチルー3, 7 ーノナジエニル、 2, 15-ジメチル-9, 10-ヘキサデカジエニル基等の分岐のアルケニル基 若しくはアルカジエニル基;4-メチル-1-シクロペンテニル、6-エチル- 3-シクロヘキサジエニル、3,5-ジエチル-1-シクロペンテニル、3 (1-メチルブチル)-1-シクロヘキセニル、1-(2-プロペニル)-シ クロヘキセニル基等の環状のアルケニル基が挙げられる。これらの内、好ましい ものは、炭素数6~20の直鎖または分岐のアルキル基またはアルケニル基であ り、特に好ましいものは、n-オクチル、n-ノニル、n-デシル、イソオクチ ル、2-エチルヘキシル、イソノニル、イソデシルである。

一般式 (3) の p は、通常、 $4 \sim 20$ 、好ましくは $5 \sim 18$ 、特に好ましくは $6 \sim 16$ の整数である。 p が 4 未満であると、浸透効果が低下する。 また、 p が 20 を越えると、浸透効果が低下すると共に、泡立ちが多くなる。

一般式(3)のA²は、炭素数3または4のアルキレン基である。アルキレン基の炭素数が3未満であると、泡立ちを抑制する作用が少なくなり、洗浄機における黒液の濾水性の向上が望めなくなる。一方、アルキレン基の炭素数が4を越えると、浸透性が低下すると共に、蒸解助剤のパルプへの吸着量が多くなり、パルプ表面物性が変化する。A²Oの具体例としては、一般式(1)のA¹Oに示したものが挙げられ、好ましくは、PO残基である。

一般式(3)のqは、通常、0または $1\sim15$ 、好ましくは0または $1\sim10$ 、特に好ましくは0または $1\sim7$ の整数である。qが15を越えたものは、浸透効果が低下するため、蒸解助剤として好ましくない。

一般式 (3) の [] は、p モルの E O、または、これとq モルの炭素数 3 ~ 4 のアルキレンオキサイドの(共)付加により形成されるポリオキシアルキレン基を示す。 [] 内の付加形式、具体例は、一般式(1)で説明したものと同様である。なお、上記の場合における、m および n と、 α ~ λ との関係式において、m は p に、n は q に置き換えられる。

また、本発明のノニオン性界面活性剤(B)は下記の関係式(4)を満たしている。

関係式

 $Mw/Mn \le -0$. 183 $\times K^{-0.930} \times LnX + 1$. 327 $\times K^{-0.065}$ (4)

重量平均分子量(Mw)と数平均分子量(Mn)の比Mw/Mnは、分子量分布の程度を表す。Mw/Mnは1以上の数となり、特にMw/Mn=1のときには、単分散(単一分子量の化合物のみから構成されること)を意味する。

MwおよびMnの測定は、テトラヒドロフランを展開溶媒として、ゲルパーミエーションクロマトグラフ (GPC) 法によって実施した。

 $LnXはXの自然対数、Xは脂肪族アルコール1モル当たりのアルキレンオキサイド(EOを含む)の平均付加モル数、Kは一般式(3)の<math>R^5$ の炭素数を、それぞれ、示す。

ノニオン性界面活性剤(B)のMw/Mnが関係式(4)を満たすと、良好な 浸透効果が得られると共に、泡立ちの制御も容易となる。特に、関係式(4)の

右辺で求まる値から左辺(Mw/Mn)の値を差し引いた値が、0.02以上を満たすものが好ましい。なお、<math>Mw/Mnが小さいことは、分子量分布幅が狭く、浸透効果を示す主成分の割合が増えることを意味する。さらに、Mw/Mnが下記関係式(a)を満たすものが好ましい。

関係式

Mw/Mn≤-0. 183×K^{-0.930}×LnX+1. 31×K^{-0.065} (a) なお、LnX、X、Kは関係式(4)と同じものを示す。

Mw/Mnが上式(4)を満たすノニオン性界面活性剤(B)の製造法としては、[1]公知の一般的触媒(リチウム、ナトリウム、カリウム、セシウム等のアルカリ金属の水酸化物、炭酸化物あるいはアミン化合物等の塩基性触媒)にくらべて、分子量分布を狭くできる触媒を使用し、脂肪族アルコールにアルキレンオキサイドを付加する方法、[2]公知の一般的触媒を用いて、脂肪族アルコールにアルキレンオキサイドを1~3モル付加し、未反応アルコールを除去した後に、公知の一般的触媒を用いて、アルキレンオキサイドを付加する方法、[3]上記の[1]の方法でアルキレンオキサイドを付加した後、公知の一般的な触媒を用いて、さらに、アルキレンオキサイドを付加する方法等が挙げられる。好ましくは、[1]または[3]の製造方法である。

分子量分布を狭くすることができる触媒としては、焼成した酸化マグネシウム 含有化合物 (特開平1-164437号公報)、焼成したハイドロタルク石 (特開平2-71841公報)、過塩素酸塩類 (米国特許4,112,231号)、過ハロゲン酸 (塩)、硫酸 (塩)、硝酸 (塩)および二価若しくは三価の金属アルコラートから選ばれる触媒等が挙げられる。この内、好ましくは、過塩素酸塩類および過ハロゲン酸 (塩)であり、さらに好ましくは、過塩素酸の、マグネシウム塩、亜鉛塩および/またはアルミニウム塩である。

第1図~第3図は関係式(4)または(a)を満たす範囲を示すもので、図中の斜線領域は関係式(4)を満たす範囲、網線領域は関係式(a)を満たす範囲を示している。なお、各図の横軸は関係式(4)または(a)のX、縦軸はMw/Mnを、それぞれ、表している。また、第1図は関係式(4)または(a)の

Kが4の場合、第2図はKが12の場合、第3図はKが24の場合を、それぞれ、示している。さらに、公知の一般的触媒(水酸化カリウム)を用いて、EOを付加したときの結果を、上記各図の細い曲線で示している。

本発明のノニオン性界面活性剤(A)またはノニオン性界面活性剤(B)のH LBは、好ましくは $6\sim1$ 8、特に好ましくは 10~16.5である。HLBが $6\sim1$ 8であると、より高い浸透効果が得られる。

ここで、HLBとは、有機性と無機性を示す数値(小田、寺村著「界面活性剤の合成と其応用」501頁、槇書店)を合計することにより計算されるHLB(Hydrophile-Lipophile Balance)である。

本発明を実施するための形態の第3例を説明すると、本例での蒸解助剤は、下記一般式(5)表されるアニオン性界面活性剤(C)または/および下記一般式(6)で表される化合物の1種または2種以上の化合物からなるアニオン性界面活性剤(D)を含有する点にある。

$$O$$

 \parallel
 $-$ 般式 $\{R^6-O-(A^3O),-\}_kP(-OM^2)_{3-k}$ (6)

上記R⁶は直鎖、分岐または環状の脂肪族 1 価炭化水素基であり、その炭素数は、通常、 $4\sim2$ 4、好ましくは $6\sim2$ 0、特に好ましくは $8\sim1$ 4 である。炭素数が 4 未満であるか、または、2 4 を越えると、浸透力が低下するため、蒸解助剤として好ましくない。R⁶の具体例としては、一般式(3)のR⁶の具体例と同様のものが挙げられ、好ましくは、炭素数 $6\sim2$ 0 の直鎖または分岐のアルキル基である。特に好ましくは炭素数 $8\sim1$ 4 の直鎖または分岐のアルキル基である。

一般式(6)のA³は、炭素数2~4のアルキレン基を表す。炭素数が2未満では、浸透性の向上が望めず、また、炭素数が4を越えると、蒸解助剤のパルプへの吸着量が増加するため、パルプ表面物性が変化する。A³の具体例としては、エチレン基、プロピレン基、1,2-または2,3-ブチレン基、テトラメチレン基およびこれらの2種以上を併用したもの等が挙げられる。これらの内、好

ましくはエチレン基またはプロピレン基である。

一般式(6)のrは、通常、平均が $0\sim15$ となる0または1以上の整数、好ましくは平均 $0\sim10$ となる0または1以上の整数、特に好ましくは平均が $0\sim7$ となる0または1以上の整数である。rの平均が15を越えると、浸透効果が低下するため、蒸解助剤として好ましくない。

アニオン性界面活性剤(D)としては、一般式(6)のkが1のモノホスフェート、kが2のジホスフェートおよびこれらの混合物が使用できる。好ましくはモノホスフェートおよびこれを主体とする(55重量%以上含有する)混合物である。モノーおよび/またはジーホスフェートの他に、kが3のトリホスフェートが少割合(5重量%以下)副生していてもよい。さらに、モノー、ジーおよび/またはトリーホスフェートが2分子以上縮合してできる縮合物を副生していてもよい。

一般式(5)のM'および一般式(6)のM'は一価の陽イオンを表す。M'お よびM²が二価以上の陽イオンであると、不溶化しやすくなり、浸透力が低下し て、パルプ収率の向上が望めない。また、蒸解助剤のパルプへの吸着が起こりや すくなり、パルプの表面物性を変化させる。上記陽イオンとしては、例えば、水 素イオン、ナトリウム、カリウムおよびリチウム等のアルカリ金属イオン;アン モニウムイオン、有機アンモニウムイオンが挙げられる。この内、有機アンモニ ウムイオンとしては、炭素数4~26の第4級アンモニウムイオン、例えば、テ トラメチルアンモニウムイオン、ヘキシルトリメチルアンモニウムイオン、オク チルトリメチルアンモニウムイオン、2-エチルヘキシルトリメチルアンモニウ ムイオン、ジデシルジメチルアンモニウムイオン、トリオクチルメチルアンモニ ウムイオン、ジラウリルジメチルアンモニウムイオン等:炭素数1~25の1級 、2級または3級アルキルアミンに水素イオンが結合して得られる陽イオン、例 えば、メチルアミン(モノ、ジまたはトリアミン。以下、同じ)、エチルアミン 、プロピルアミン、ラウリルアミン、ステアリルアミン、ラウリルジメチルアミ ンおよびシクロヘキシルアミン、トリオクチルアミン、ジラウリルモノメチルア ミン等のアミンに水素イオンが結合した陽イオン;炭素数2~24のアルカノー

ルアミンに水素イオンが結合して得られる陽イオン、例えば、エタノールアミン (モノ、ジまたはトリアミン。以下、同じ)、プロパノールアミン、ブタノールアミンおよびオクタノールアミン等のアルカノールアミンに水素イオンが結合して得られる陽イオンが挙げられる。これらの内、特に好ましいものは、アルカリ 金属ではナトリウム、有機アンモニウムイオンでは、2-エチルヘキシルトリメチルアンモニウムイオン、トリエタノールアミンの陽イオンである。

一般式(6)において、k=1 の場合、 M^2 は同種または異種の陽イオンを示す。

次に、本発明を実施するための形態の第 4 例を説明すると、本例での蒸解助剤は、a. ノニオン性界面活性剤(A)または/およびノニオン性界面活性剤(B)と、b. アニオン性界面活性剤(C)、アニオン性界面活性剤(D)およびアニオン性界面活性剤(E)から選ばれる 1 種以上のアニオン性界面活性剤を併用(配合)している。

ただし、界面活性剤(A)~(D)は上記と同様のものであり、アニオン性界面活性剤(E)は下記一般式(7)で表される化合物の1種または2種以上の化合物である。

一般式
$$R^7 - O - (A^4 O)_s - R^8 C O O M^3$$
 (7)

上記R⁷は直鎖または分岐のアルキル基、アルケニル基またはモノもしくはジヒドロキシアルキル基であり、その炭素数は、通常、 $4\sim2.4$ 、好ましくは $6\sim2.0$ 、特に好ましくは $8\sim1.4$ である。炭素数が4未満であるか、または、2.4を越えると、十分な浸透効果が得られず、蒸解助剤として好ましくない。R⁷としては、モノヒドロキシヘキシル基、モノヒドロキシオクチル基、モノヒドロキシデシル基、モノヒドロキシドデシル基、ガヒドロキシドデシル基等の炭素鎖の末端または中間にヒドロキシル基の結合した、直鎖または分岐のモノもしくはジヒドロキシアルキル基の他、一般式(3)のR⁵の具体例に示した直鎖または分岐のアルキル基およびアルケニル基が挙げられる。好ましくは、炭素数 $6\sim2.0$ の直鎖または分岐の、アルキル基もしくはモノヒドロキシアルキル基であり、特

に好ましくは、炭素数 8 \sim 1 4 のアルキル基またはモノヒドロキシアルキル基である。

一般式 (7) の A^4 は炭素数 $2 \sim 4$ の P ルキレン基を表す。炭素数が 2 未満では、浸透性の向上が望めず、また、炭素数が 4 を越えると、蒸解助剤のパルプへの吸着量が増加するため、パルプの表面物性が変化する。 A^4 の具体例としては、エチレン基、プロピレン基、 1 、 2 - または 2 、 3 - ブチレン基、テトラメチレン基およびこれら 2 種以上を併用したもの等が挙げられる。これらの内、好ましいのはエチレン基およびプロピレン基である。

一般式 (7) の s は、通常、平均が $0 \sim 1$ 5 となる 0 または 1 以上の整数、好ましくは平均が $0 \sim 1$ 0 となる 0 または 1 以上の整数、特に好ましくは平均が $0 \sim 7$ となる 0 または 1 以上の整数である。 s の平均が 1 5 を越えると、浸透効果が低下するため、蒸解助剤として好ましくない。

一般式 (7) の R^8 は直鎖または分岐のアルキレン基で、その炭素数は通常 $1 \sim 6$ 、好ましくは $1 \sim 4$ 、さらに好ましくは 1 または 2 である。炭素数が 1 未満であると、化学的に不安定であり、炭素数が 6 を超えると、製造が容易でなくなる。 尚、 R^8 が存在しないと、アニオン性界面活性剤 (E) は不安定である。

 R^* の具体例としては、メチレン、エチレン、1, 3-プロピレン、メチルエチレン、エチルメチレン、1, 4-ブチレン、1-メチルー1, 3-プロピレン、1, 2-ジメチルエチレン、1, 1-ジメチルエチレン、1-エチルエチレン、n-プロピルメチレン、1, 3-ジメチルー1, 3-ペンチレン、2-メチルー1, 4-ブチレン、1, 3-ジメチルー1, 3-プロピレン、1, 1, 2-トリメチルエチレン、1, 1-メチル-2-エチルエチレン、1, 6-ヘキシレン、1-メチルー1, 1-2-ペンチレン、1-2, 1-2-ボチルー1, 1-1-ボチレン

一般式 (7) のM³は一価の陽イオンを表す。陽イオンとしては、一般式 (5) のM¹と同様のものが挙げられ、これらの内、特に好ましいものは、アルカリ 金属イオンでは、ナトリウムイオン、有機アンモニウムイオンでは、2-エチル ヘキシルトリメチルアンモニウムイオン、n-オクチルトリメチルアンモニウム

イオン、トリエタノールアミンの陽イオンである。

ノニオン性界面活性剤(A)または/およびノニオン性界面活性剤(B)と、アニオン性界面活性剤(C)~(E)から選ばれる1 種以上のアニオン性界面活性剤の重量比率は、 $100/0.1\sim100/30$ 、好ましくは100/0.3 ~100/20、さらに好ましくは $100/0.5\sim100/10$ である。重量比率が $100/0.1\sim100/30$ の範囲で、特に浸透効果が高くなる。

ところで、界面活性剤(A)~(E)は、それぞれ、単独で用いても、良好な効果が得られるが、これらを上記のように併用(配合)することによって、単独使用時よりも泡立ちの増加をほとんど伴わず、高温下でも大きな浸透効果を発揮できる。上記単独使用、又は、併用の内、好ましくは、a. ノニオン性界面活性剤(B)単独、b. ノニオン性界面活性剤(A)と、アニオン性界面活性剤(C)もしくはアニオン性界面活性剤(E)の組み合わせ、c. ノニオン性界面活性剤(B)と、アニオン性界面活性剤(C)もしくはアニオン性界面活性剤(E)の組み合わせである。この内、特に好ましくは上記cである。

本発明の蒸解助剤を適用するリグノセルロース物質としては、木材(針葉樹、 広葉樹)または非木材(草本類)およびこれら由来のパルプが挙げられる。非木 材の具体例としては、ケナフ、バガスまたはバンブーフ等がある。

本発明におけるアルカリ蒸解方法としては、クラフト法、ソーダ法、炭酸ソーダ法、ポリサルファイド法等による蒸解方法が挙げられる。また、蒸解設備は連続式またはバッチ式のいずれでもよい。さらに、蒸解システムとして、従来の連続蒸解式以外に、修正クラフト蒸解(MCC)、アイソサーマル蒸解(ITC)またはローソリッド(Lo-solid)蒸解の方式にも適用できる。

このうち、もっとも多用されるクラフト法による蒸解条件の一例を次に示す。即ち、活性アルカリ(活性アルカリとはNaOHと Na_2S の合計)の添加率は $12\sim23$ 重量%(対絶乾チップ Na_2O 換算)、全蒸解時間は $90\sim500$ 分、蒸解温度は $120\sim175$ \mathbb{C} 、チップと蒸解液の液比は $1/2\sim1/6$ である。また、蒸解に用いる白液(蒸解に使用するアルカリ溶液)の濃度は $80\sim15$ 0g/L、硫化度は $20\sim35$ 重量%である。

本発明における亜硫酸塩蒸解方法としては、アルカリ性亜硫酸塩法、中性亜硫酸塩法、重亜硫酸塩法等による蒸解方法が挙げられる。

界面活性剤 $(A) \sim (E)$ の添加量は、絶乾相当のリグノセルロース物質に対して、通常、 $0.001\sim2$ 重量%、好ましくは $0.0015\sim1.0$ 重量、特に好ましくは $0.002\sim0.5$ 重量%である。添加量が $0.001\sim2$ 重量%であると、経済的でありながら、蒸解収率、蒸解速度を向上できる。

リグノセルロース物質を、蒸解助剤の存在下で、アルカリ蒸解または亜硫酸塩蒸解して、パルプを製造する方法において、蒸解助剤として、本発明の蒸解助剤を単独で使用してもよいし、キノン系蒸解助剤および/またはポリサルファイドと、本発明の蒸解助剤を併用してもよい。キノン系蒸解助剤および/またはポリサルファイドと、本発明の蒸解助剤を併用した場合の方が、蒸解後カッパー価、蒸解収率およびパルプ強度において、より優れた効果が得られる。

キノン系蒸解助剤および/またはポリサルファイドを、本発明の蒸解助剤と併用する場合、キノン系蒸解助剤、ポリサルファイド、アルカリ性蒸解液(白液)、および亜硫酸塩を各々単独で添加してもよいし、これらの任意の2つ以上の組み合わせを同時に添加してもよい。

キノン系蒸解助剤としては、通常、環状ケト化合物に属する化合物を使用し、 具体的には、ベンゾキノン、ナフトキノン、アントラキノン、アントロン、フェ ナントレンキノンおよび前記キノン系化合物の核置換体、例えばそのアルキル、 アルコキシ、アミノ、ニトロ、ヒドロキシもしくはハロゲンもしくはカルボキシ 誘導体、スルホン酸塩、またはカルボン酸塩が適している。

また、キノン系蒸解助剤として、上記キノン系化合物の還元型であるヒドロキノン系化合物を使用することもあり、具体的には、アントラヒドロキノン、アルキルアントラヒドロキノン、アルコキシアントラヒドロキノン、アミノアントラヒドロキノン、ハロアントラヒドロキノン、ヒドロキシアントラヒドロキノンおよびカルボキシアントラヒドロキノンならびに上記アントラヒドロキノン化合物の互変異性体、上記任意の複数の化合物の混合物から適宜選ばれる。

上記化合物の互変異性体としては、10-ヒドロキシーアントロン、1-およ

び2-アルキル-10-ヒドロキシーアントロン、1-および2-アミノ-10-ヒドロキシーアントロン、1-および2-ヒドロキシー10-ヒドロキシーアントロン、上記任意の複数のアントロン化合物の混合物が挙げられる。

さらに、キノン系蒸解助剤として使用する環状ケト化合物としては、ディールズーアルダー法によるアントロキノン合成法の中間体として得られ且つ安定な化合物である9, 10 – ジケトヒドロアントラセン系化合物および9, 10 – ジオキシヒドロアントラセン系化合物からなる群から選ばれた一種以上の化合物を使用できる。

上記9,10-ジケトヒドロアントラセン系化合物としては、例えば、1,4 ージヒドロー9,10ージケトアントラセン、1,2,3,4ーテトラヒドロー 9, 10-ジケトアントラセン、1, 4, 4a, 9a-テトラヒドロ-9, 10 -ジケトアントラセン、2-エチルー1, 4, 4a, 9a-テトラヒドロー9,10-ジケトアントラセン、2, 3-ジメチル-1, 4, 4a, 9a-テトラヒドロー 9, 10 - ジケトアントラセン、 1, 3 - ジメチルー 1, 4, 4 a, 9 a ーテトラヒドロー9, 10 ージケトアントラセン、1 ーメチルー1, 2, 3, 4-テトラヒドロ-9, 10-ジケトアントラセン、1, 2, 3, 4, 5, 8-A キサヒドロー9, 10-ジケトアントラセン、1, 4, 4a, 5, 8, 8a, 9 a, 10a-オクタヒドロ-9, 10-ジケトアントラセン、2, 3, 6, 7-テトラメチルー1, 4, 4 a, 5, 8, 8 a, 9 a, 1 0 a - オクタヒドロー 9 ,10-ジケトアントラセン、1,2,3,4,5,6,7,8-オクタヒドロ -9,10-ジケトアントラセン、ならびに2,6-および2,7-ジエチルー 1, 4, 4a, 5, 8, 8a, 9a, 10a-xpアントラセンの混合物等が使用される。この内、好ましくは、ナフトキノンおよ びベンゾキノンの非置換、または、低級アルキル置換のディールズーアルダー付 加物から選ばれる化合物であり、効果、経済性の面からは、1,4-ジヒドロ-9, 10-ジケトアントラセン、1, 4, 4a, 9a-テトラヒドロ-9, 10 - ジケトアントラセンおよび 1, 4, 4 a, 5, 8, 8 a, 9 a, 1 0 a - オク

タヒドロー9, 10-ジケトアントラセンが適している。

また、上記 9, 10-iジオキシヒドロアントラセン系化合物としては、1, 4-ジヒドロ-9, 10-iジオキシアントラセン、1, 4, 5, 8-fトラヒドロ-9, 10-iジオキシアントラセン、1, 4, 5, 8, 8, 8, 10, 10-ジオキシアントラセン等が使用されるが、1, 10-ジオキシアントラセンのナトリウム、カリウム塩も使用可能である。

キノン系蒸解助剤の添加量は、絶乾相当のリグノセルロース物質に対して、通常、 $0.05\sim3$ 重量%、好ましくは $0.01\sim1$ 重量%である。添加量が $0.05\sim3$ 重量%であると、経済的でありながら、蒸解収率、パルプ強度を向上でき、カッパー価を低下できる。

ポリサルファイドとしては、リグノセルロース物質の蒸解液を酸化して得られるもの、苛性ソーダに単体イオウを添加したもの等が挙げられる。ポリサルファイトの添加量は、単体イオウ換算で、絶乾相当のリグノセルロース物質に対して、通常、 $0.1\sim2$ 重量%、好ましくは $0.5\sim1.5$ 重量%である。添加量が $0.1\sim2$ 重量%であると、経済的でありながら、蒸解収率、パルプ強度を向上でき、カッパー価を低下できる。

キノン系蒸解助剤および/またはポリサルファイドと、界面活性剤(A)~(E)を併用する場合の重量(配合)比率は、通常、 $1/400\sim5000/1$ 、好ましくは $1/100\sim1667/1$ 、特に好ましくは $1/50\sim1250/1$ である。重量(配合)比率が $1/400\sim5000/1$ であると、蒸解収率、パルプ強度を向上でき、カッパー価を低下できる。

界面活性剤(A)~(E)のいずれかを、蒸解前に、あらかじめ、リグノセルロース物質に添加して、使用するパルプの製造方法において、本発明の蒸解助剤を添加する場合には、蒸解助剤そのものをリグノセルロース物質に添加する方法、もしくは蒸解助剤の水溶液をリグノセルロース物質に添加する方法のいずれを用いてもよい。上記の内、本発明の蒸解助剤を、1~50重量%水溶液として添加することが、リグノセルロース物質の水分増加を来すことなく、リグノセルロース物質の隅々までまんべんなく蒸解助剤を添加させることができるので、特に

好ましい。

また、本発明の蒸解助剤のリグノセルロース物質への添加方法は、リグノセルロース物質に蒸解助剤を噴霧する方法または塗布する方法、および蒸解助剤にリグノセルロース物質を浸漬する方法等があるが、設備的な簡便さの観点から、リグノセルロース物質に噴霧する方法が好ましい。

本発明の蒸解助剤のリグノセルロース物質への添加の時期は、蒸解する前であれば、いずれのタイミング (例えば、直前)でもよい。このようにすれば、蒸解開始時点で、蒸解液がリグノセルロース物質に浸透しているからである。なお、蒸解工程までの間に、水等によって、添加した蒸解助剤が洗い流される可能性のある場合は、それを回避する処置を講じるのが好ましい。回避策の一例として、蒸解助剤を添加したリグノセルロース物質を屋内やストックタンクに貯蔵する方法等が挙げられる。

界面活性剤(A)~(E)をリグノセルロース物質に添加する際(添加後、添加中および/または添加前(尚、これは、添加後、添加中、添加前の何れか、または、上記の3つの時期の任意の2つ以上の時期を意味している。以下、同様。))には、リグノセルロース物質を加熱するのが好ましい。加熱によって、アルカリ性蒸解液(白液)、亜硫酸塩、キノン系蒸解助剤、ポリサルファイドを、リグノセルロース物質の内部まで浸透させることができる。

リグノセルロース物質の加熱の時期は蒸解前で、界面活性剤(A)~(E)の添加前、添加中および/または添加後のいずれであってもよいが、添加した界面活性剤(A)~(E)と加熱したリグノセルロース物質との接触時間が0.5分以上確保できることが好ましい。

加熱手段としては、スチームをリグノセルロース物質に直接接触させて加熱する方法、赤外線加熱機によってリグノセルロース物質を加熱する方法、または、リグノセルロース物質を入れた容器の外部から熱媒にて加熱する方法等がある。上記1番目の方法で、リグノセルロース物質をスチーミングベッセルに投入し、スチームを直接接触させて、加熱する方法が一般的である。加熱温度としては、好ましくは $50\sim180$ %、特に好ましくは $80\sim160$ %である。180 %を

超えない方が、リグノセルロース物質の蒸解後の強度を低下させにくいという点で好ましい。加熱時間は通常 0. 5分~30分であり、好ましくは 1分~10分である。

本発明の蒸解助剤をリグノセルロース物質に添加する際に、リグノセルロース物質を加熱した後、キノン系蒸解助剤および/またはポリサルファイドを添加するのがより好ましい。本発明の蒸解助剤をリグノセルロース物質に添加して、50~180 \mathbb{C} に加熱した後、キノン系蒸解助剤および/またはポリサルファイドを添加することが特に好ましい。

界面活性剤(A)~(E)は、公知の方法で、下記のようにして、製造できる。例えば、ノニオン性界面活性剤(A)の場合には、脂肪族アルコールに公知の触媒下で、アルキレンオキサイドを80~200で付加反応させることにより、製造できる。

また、ノニオン界面活性剤(B)の場合には、上記のように、[1]分子量分布を狭くできる触媒を使用して、脂肪族アルコールにアルキレンオキサイドを付加する方法、[2]公知の一般的触媒を用いて、脂肪族アルコールにアルキレンオキサイドを1~3モル付加し、未反応アルコールを除去した後に、公知の一般的触媒を用いて、アルキレンオキサイドを付加する方法等により製造できる。

さらに、アニオン界面活性剤(C)の場合には、パラフィンに SO_2 を反応させて製造する方法(具体的には、オキシスルホネーション法やオキシクロリネーション法)によって、スルホン酸化合物を製造した後、これを、アルカリ金属水酸化物(水酸化ナトリウム、水酸化カリウム等)、アンモニアおよび有機アミンから選ばれる1種以上の化合物で所定量中和することにより、得ることができる。また、 M^1 が第4級アンモニウムイオンであるアニオン性界面活性剤(C)の場合には、上記の中和後に、トリエチルメチルアンモニウムメチルカーボネートのメタノール溶液等の第4級アンモニウム炭酸塩メタノール溶液で、さらに、塩交換し、次に、メタノールを留去する事により、得ることができる。

また、アニオン性界面活性剤(D)の場合には、脂肪族アルコールにリン酸化合物(無水リン酸、ポリゾン酸、オキシ塩化リン等)を反応させて、リン酸エス

テル化合物を製造した後、これを、アニオン性界面活性剤(C)の場合と同様の 化合物で所定量中和(塩交換)することにより、得ることができる。

さらに、アニオン性界面活性剤(E)の場合には、ノニオン性界面活性剤(A)、ノニオン性界面活性剤(B)またはこれらの前駆体(脂肪族アルコールもしくはそのアルキレンオキサイド低モル付加物等)にモノクロルアルキルカルボン酸(モノクロル酢酸等)を反応させて、カルボン酸化合物を製造した後、これを、アニオン性界面活性剤(C)の場合と同様の化合物で所定量中和(塩交換)することにより得ることができる。また、R⁷がモノもしくはジヒドロキシアルキル基である場合のアニオン性界面活性剤(E)は、アルケニルモノオールのアルキレンオキサイド付加物にモノクロルアルキルカルボン酸(モノクロル酢酸等)を反応させて、カルボン酸化合物を製造し、次いで、ジボランを反応させて、ヒドロキシホウ素化させた後、アルカリ下(NaOH等)で過酸化水素水を反応させることにより、得ることができる。

界面活性剤(A)~(E)の単独、または、これらを併用(配合)したものの具体例を以下に示す。ただし、下記の式中において、(EO)はEO残基、(PO)はPO残基、(BO)は1,2-BO残基、(THF)はTHF残基を、それぞれ、示し、()の右横の添字は平均付加モル数(いくつかの単一分子の混合物のモル平均から計算できる数値)を示し、//はランダム状に付加していることを示し、-はブロック状に付加していることを示す(以下、同じ)。また、 { } 内の(Mw/Mn)は実測値から算出した値、(Mw/Mn)。。... は関係式(4)の右辺の値、HLBは有機性と無機性を示す数値から計算した値を、それぞれ、示す。

[界面活性剤(A)の具体例]

A1:イソデシル-O-(PO)₁-(EO)₁₀-H {(Mw/Mn) = 1. 213、 (Mw/Mn)_{cal.} = 1. 091、HLB; 14. 5} 未反応アルコール 3. 1重量%

A 2: イソドデシル-O-[(EO)₁₀//(PO)₁//(BO)_{0.5}]-H

 $A4:2-x+y+y+0-(PO)_1-(EO)_8-(PO)_1-H$ $A5: 4y \forall f \psi - O - (PO)_{1} - [(EO)_{12} / / (PO)_{1}] - H$ A 6: イソデシル-O-[(EO)₁₈ //(PO)₃] - (PO)₇-H $A7: 47744 - O - (EO)_{7} - (PO)_{1} - H$ $A8: 4y_{7} + 5x_{4} + 4y_{5} + 5x_{4} + 4y_{5} + 5y_{5} + 4y_{5} + 4y_{5}$ $A 9 : 4 \vee x + 4 \vee x + 4 \vee y + 4 \vee y$ $A 1 0 : 2 - x + y + y - 0 - [(E 0)_{10} / / (P 0)_{1}] - H$ $\{ (Mw/Mn) = 1. 201,$ $(Mw/Mn)_{cal} = 1.096, HLB; 14.5$ 未反応アルコール3. 7重量% A 1 3 : 2 - エチルヘキシル-O-(EO) 12-H $A 1 4 : 2, 4 - \emptyset \times \emptyset + \mathbb{Z} + \mathbb{Z}$ $A 1 8 : 7 \times 7 \times 7 = 0 - (EO)_{10} - (PO)_{10} - H$ 「界面活性剤(B)の具体例] $B1: n-t/f - O-[(EO)_1 / (PO)_1] - H$ $\{ (Mw/Mn) = 1. 056,$ $(Mw/Mn)_{cal} = 1.096, HLB; 14.3$ 未反応アルコール 0.5重量% $B2:2-x+u^+>u^-O-[(EO)_10//(PO)_1]-H$ $\{ (Mw/Mn) = 1. 053,$ $(Mw/Mn)_{cal} = 1.096, HLB; 14.5$ 未反応アルコール 0. 4 重量%

 $B3: n-t/f - O-[(EO)_{10}//(PO)_{2}] - H$

```
\{ (Mw/Mn) = 1. 043,
      (Mw/Mn)_{cal} = 1.093
B4: n-トリデカー2ーエニルーOー(EO)<sub>15</sub>ー(PO)<sub>7</sub>ーH
     \{ (Mw/Mn) = 1. 037,
      (Mw/Mn)_{cal} = 1.071
B5: 47\% - 0 - (PO)_{3} - (EO)_{18} - (PO)_{4} - H
     \{ (Mw/Mn) = 1. 039 \}
      (Mw/Mn)_{cal} = 1, 073
B6:n-オクタデカ-2-エニル-O-(EO)_{15}-H
     \{ (Mw/Mn) = 1. 041,
      (Mw/Mn)_{cal} = 1.066, HLB; 12.8
     未反応アルコール 0. 7重量%
B7:4-エチルシクロヘキシル-O-(EO)_{12}-H
     \{ (Mw/Mn) = 1. 039,
      (Mw/Mn)_{cal} = 1.093, HLB; 15.9
     未反応アルコール 0. 6 重量%
B8: n- \Delta + シル - O - (EO)_8 - H
     \{ (Mw/Mn) = 1, 041,
      (Mw/Mn)_{cal} = 1. 109
B9:4-エチルシクロヘキシル-O-(EO)_{16}-H
     \{ (Mw/Mn) = 1. 036,
      (Mw/Mn)_{cal} = 1.086
B 1 0 : 2 - x + y + y + y + y + (E 0)_{10} - H
     \{ (Mw/Mn) = 1. 038,
      (Mw/Mn)_{cal} = 1.098
         (Mw/Mn = 1. 0 3 8)
```

◎B1~B10の製造方法

脂肪族アルコール1モルに対して、過塩素酸アルミニウム・9水塩を0.000

3 モル添加し、単独もしくはブロック付加物の場合は、EOまたはPOを2.5 モル、ランダム付加物の場合は、各化学式中に示したEOとPOのモル比で混合したものを合計 2.5 モル、100 ℃にて付加反応を実施し、中間体を得た。さらに、この中間体に、最終生成物の0.07 重量%に相当する水酸化ナトリウムを添加し、110 ℃にて、EOもしくはPOを単独、ブロックまたはランダムにて追加付加した。

「界面活性剤(C)の具体例]

- C1:n-テトラデシル-SO₃Na
- C2:n-デセニル-SO3H・N(C2H5OH)3
- C3:イソテトラデシル-SO3Na
- C4:イソヘキシル-SO3H・N(C2H5OH)3
- C5: イソエイコシル-SO3H・NH2C12H25

[界面活性剤(D)の具体例]

- D1:n-オクチル-O-PO₃H・N(CH₃)₃C₈H₁₇ {モノアルキルホスフェート含有率:84.5%}
- D2:イソオクチル-O-PO₃H・N (CH₃)₃C₈H₁₇ {モノアルキルホスフェート含有率:85.3%}
- D3:イソドデシル-O-PO₃(Na)₂ {モノアルキルホスフェート含有率:84.2%}

[界面活性剤 (E) の具体例]

- E1:イソドデシル-O-(EO)3-CH2COONa
- E 2 : 2 エチルヘキシル-O-C₃H₆COOK
- E3:2-ヒドロキシドデシル-O-CH2COONa
- E4:2-エチルヘキシル-O-CH₂COO・N (CH) 3C8H17
- E5:nードデシル-O-(EO)3-CH2COONa

「界面活性剤(A)~(E)を併用(配合)したものの具体例]

- BE2:B1とE3を100/20の重量比で併用したもの。

AE3: A1とE3を100/10の重量比で併用したもの。

AD4:A1とD1を100/0.1の重量比で併用したもの。

AC5:A10とC1を100/0.3の重量比で併用したもの。

BC6:B2とC1を100/0.5の重量比で併用したもの。

[実施例]

 $X 1 : n - \pi / 2 + \nu - O - [(EO)_{10} / /(PO)_{1}] - H$ $\{(Mw/Mn) = 1. 204,$ $(Mw/Mn)_{cal.} = 1. 096, HLB; 14. 3\}$

未反応アルコール 0. 9重量%

 $X 2 : 2, 4, 6 - \text{hyrfn-r} - \text{r} - \text{r} - \text{o-} (EO)_{20} - \text{H}$ { (Mw/Mn) = 1.024, $(Mw/Mn)_{cal.} = 1.047$, HLB; 12.4}

未反応アルコール 0. 3重量%

 $(Mw/Mn)_{cal} = 1.099, HLB; 15.1$

未反応アルコール 0. 6 重量%

 $\{ (Mw/Mn) = 1. 022,$

 $(Mw/Mn)_{cal} = 1.054, HLB; 10.2$

未反応アルコール 0.3 重量%

X5:n-プロピル-SO₃Na

X6:X1とX5を100/10の比率で併用したもの。

X7:n-オクチルフェニル-O-(EO) 10-H

◎ X 1 の製造方法

最終生成物重量の0.07重量%相当する水酸化ナトリウムを、n-オクチルアルコールに添加し、EOとPOを10/1のモル比で混合したものを110 Cにて付加した。

◎ X 2 、 X 4 の製造方法

以下の実施例1~71および比較例1~62で実施した蒸解後(試験用)パルプの調整法、蒸解後カッパー価、蒸解収率、比引裂強度、裂断長、比破裂強度、泡立ち(泡高)の測定方法、蒸解蒸気量およびスケール付着量の測定法を下記に示す。

<蒸解後(試験用)パルプの調製法>

蒸解が終了したパルプを布袋に入れて、水道水にて充分に洗浄した後、フラットスクリーン(熊谷理機工業製)にて未蒸解繊維を除去し、次に、ヌッチェにて吸引ろ過して、シート状にしたものを蒸解後パルプとした。さらに、JIS Р 8210」記載のPFIミルにより、「JIS P 8121」記載のカナダ標準濾水度で、450mLに調製した後、「JIS P 8209」記載の方法で、手抄シート(これを紙質試験用パルプとした)を作成し、紙質試験に供した

<蒸解後カッパー価の測定法>

蒸解後パルプのカッパー価を「JIS P 8211」記載の方法により、測定した。

<蒸解収率の測定法>

蒸解前の絶乾重量と蒸解後パルプの絶乾重量を測定し、後者を前者で除した数 を重量%で表記して、蒸解収率とした。

< 比引裂強度の測定法>

紙質試験用パルプを使用し、「JIS P 8116」記載の方法で、比引裂 強度を測定した。

<裂断長の測定法>

紙質試験用パルプを使用し、「JIS P 8113」記載の方法で、裂断長を測定した。

<比破裂強度の測定法>

紙質試験用パルプを使用し、「JIS P 8112」記載の方法で、比破裂 強度を測定した。

<泡立ち(泡高)の測定方法>

蒸解黒液からパルプを除去した黒液10mLを、100mLの共栓付きメスシリンダーに入れて、栓をし、80 $\mathbb C$ に温調した後、鉛直方向に30cmの振幅で1 秒間に2 往復の速さで20 回振とうし、振とう前の黒液上面から振とう後の泡上面までの高さを、泡立ち(泡高)として、測定した。

<蒸解蒸気量の測定法>

蒸解用オートクレーブの加熱用熱媒として使用した蒸気量を積算式流量計で測 定した。

<スケール付着量の測定法>

蒸解を終了したオートクレーブの内部を 5 回水洗し、順風乾燥機により、 1 0 5 ℃で 2 時間乾燥した。その後、オートクレーブ内に 5 %塩酸 1 9 5 m L を入れて、 2 4 時間浸漬し、その塩酸を 3 0 0 m L ナスフラスコに移し、ロータリーエバポレーターにより、 7 0 0 m m H g で且つ 9 5 $\mathbb C$ の状態で、 1 0 m L 1 まで濃縮させた後、重量既知の磁製るつぼに移して、ガスバーナー加熱により、蒸発乾固させた。乾固後の重量を測定し、空のるつぼの重量を差し引いて、スケールの付着量とした。

<実施例1~17、比較例1~12>

広葉樹チップ 3 0 gを 2 0 0 m L オートクレーブに詰め、これに、試薬N a 0 H およびN a $_2$ S から調製した活性アルカリ 1 5 %で且つ硫化度 3 0 %のクラフト蒸解液を液比 4 で加えた後、本発明の蒸解助剤(A 1 , B 2 , B 6 , B 7 , C 1 , C 2 , D 1 , A C 1 , B E 2 および A E 3)、比較の蒸解助剤(X $1 \sim 6$)または/および 1 , 4 - ジヒドロ- 9 , 1 0 - ジヒドロキシアントラセンを、下記の表 1 に示した添加量で添加して、1 6 0 \mathbb{C} で 2 時間蒸解を行った。評価結果を表 1 に示す。

表 1

試験	蒸解助剤		キノン添加量	蒸解後カッパー価	蒸解収率	比引裂 強度	裂断長	比破裂 強度	泡立ち	スケール	
Νο	助剤の 化合物	添加量 *	**	ガラハー1 四	 	独及	k m	強皮 	mm	付着量 m g	
実施的	実施例										
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7	A 1 A 1 A 1 A 1 B 2 B 6 B 7 C 1 C 2 D 1 A C 1 A C 1 B E 2 A E 3	0. 01 0. 001 1. 00 1. 00 0. 01 0. 01 0. 01 1. 00 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01	0 0 0.05 0 0.05 0 0 0 0 0 0 0.05	19. 9 20. 2 19. 2 19. 4 18. 0 19. 7 19. 8 19. 5 19. 9 19. 8 19. 9 19. 9 19. 2 18. 7 18. 0 19. 2 19. 3	47. 3 46. 9 48. 8 47. 4 49. 3 47. 5 47. 3 47. 7 47. 1 47. 3 47. 3 47. 7 47. 9 49. 1 47. 6 47. 7	108 104 119 108 118 109 108 110 106 108 107 108 109 111 119 107 109	5. 6 5. 3 6. 5 6. 6 5. 7 5. 8 6. 6 5. 7 5. 6 5. 6 5. 5 5. 6 5. 6 5. 6 5. 6 5. 6	4. 4 4. 2 5. 2 4. 6 5. 3 4. 4 4. 3 4. 4 4. 3 4. 4 4. 3 4. 4 4. 3 4. 4 5. 3 4. 4	26 25 26 28 28 26 25 26 47 26 28 26 28 26 28 26 26	0. 10 0. 17 0. 21 0. 12 0. 20 0. 11 0. 12 0. 11 0. 07 0. 12 0. 11 0. 10 0. 06 0. 19 0. 11 0. 12	
比較的	比較例										
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2	X 1 X 1 X 1 X 2 X 3 X 4 X 5 E 5 X 6 プランク	0. 01 0. 01 1. 00 1. 00 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01	0 0.05 0 0.05 0 0 0 0 0	21. 7 20. 2 21. 4 20. 1 21. 8 21. 7 21. 8 21. 7 21. 8 21. 8 21. 3 20. 3	46. 3 47. 6 46. 7 47. 7 46. 4 46. 3 46. 4 46. 3 46. 4 46. 0 47. 5	104 114 105 115 104 105 105 104 105 105 103 112	5. 3 6. 2 5. 3 6. 4 5. 3 5. 4 5. 3 5. 3 5. 2 6. 1	3. 7 4. 2 3. 6 4. 3 3. 7 3. 7 3. 8 3. 7 3. 7 3. 7 3. 5 4. 2	26 25 28 28 26 25 26 27 26 27 26 25 25 25	1. 30 2. 73 1. 02 2. 21 1. 24 1. 35 1. 27 1. 25 1. 19 1. 32 1. 95 3. 32	

^{*} チップ絶乾重量に対する重量% **チップ絶乾重量に対する重量%(1,4-ジヒドロ-9,10-ジヒドロキシアントラセン使用)

<実施例18~34、比較例13~24>

針葉樹チップ30gを200mLオートクレーブに詰め、これに、絶乾チップあたりNaOH19%に相当するソーダ蒸解液を液比5で加えた後、本発明の蒸解助剤(A1,B2,B6,B7,C1,C2,D1,AC1,BE2およびAE3)、比較の蒸解助剤(X1~6)または/および9,10-ジヒドロキシアントラセンを、下記の表2に示した添加量で添加して、165で2時間蒸解を行った。評価結果を表2に示す。

					表 2							
試験	蒸角	驿助剤	キノン	蒸解後 カッパー価	蒸解 収率 %	比引裂 強度	裂断長	比破裂 強度	泡立ち	スケール		
No	助剤の 化合物	添加量 *	添加量 **				k m		mm	付 着量 mg		
実施的	実施例											
1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 1 3 2 3 3	A 1 A 1 A 1 A 1 B 2 B 6 B 7 C 1 C 2 D 1 A C 1 A C 1 B E 2	0. 01 0. 001 1. 00 1. 00 0. 01 0. 01 0. 01 1. 00 0. 01 0. 01 0. 01 0. 01	0 0.05 0.05 0 0 0 0 0 0 0	37. 4 37. 6 35. 7 37. 0 35. 1 37. 4 37. 4 37. 4 37. 4 37. 4 37. 0 36. 7 35. 1	48. 2 48. 1 50. 1 48. 6 50. 1 48. 4 48. 2 48. 5 48. 6 48. 2 48. 1 48. 7 49. 3 50. 6 48. 6	174 173 177 174 178 174 175 176 174 174 174 175 178 179 176	7. 7 7. 6 9. 2 7. 6 9. 3 7. 8 7. 9 7. 7 7. 7 7. 7 7. 7 8. 3 9. 1 7. 7	7. 0 7. 0 7. 5 7. 1 7. 5 7. 2 7. 2 7. 3 7. 1 7. 3 7. 2 7. 2 7. 2 7. 2 7. 2 7. 2	35 34 35 37 37 35 35 34 55 34 34 34 37 34	0. 15 0. 17 0. 26 0. 09 0. 21 0. 14 0. 13 0. 08 0. 14 0. 15 0. 14 0. 14 0. 09 0. 19 0. 15		
3 4 A E 3 0.01 0 37.0 48.7 176 7.7 7.2 34 0.14 比較例												
1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4	X 1 X 1 X 1 X 1 X 2 X 3 X 4 X 5 E 5 X 6 ブランク	0. 01 0. 01 1. 00 1. 00 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01	0 0. 05 0 0. 05 0 0 0 0 0 0	38. 3 36. 6 38. 2 36. 3 38. 3 38. 4 38. 3 38. 4 38. 5 38. 6 36. 5	47. 3 48. 5 47. 4 48. 6 47. 3 47. 4 47. 4 47. 4 47. 1 48. 4	172 176 172 176 172 172 172 173 172 172 172 172 176	7. 5 8. 4 7. 6 8. 4 7. 5 7. 6 7. 6 7. 5 7. 6 7. 5 7. 4	6. 9 7. 2 6. 9 7. 2 7. 0 6. 9 6. 9 6. 9 6. 5 7. 1	35 34 37 37 34 34 35 35 35 35 33	1. 75 3. 10 1. 61 2. 97 1. 72 1. 77 1. 74 1. 75 1. 73 1. 74 2. 54 3. 92		

^{*} チップ絶乾重量に対する重量% **チップ絶乾重量に対する重量% (9, 10-ジヒドロキシアントラセン使用)

<実施例35~51、比較例25~36>

亜麻20gを200mLのオートクレーブに詰め、これに、Na $_2$ SO $_3$ 17%、NaOH3.5%を含む蒸解液を加えた後、本発明の蒸解助剤(A1,B2,B6,B7,C1,C2,D1,AC1,BE2およびAE3)、比較の蒸解助剤(X1 \sim 6)または/および9,10-アントキノンを、下記の表3に示す添加量で添加して、170 \sim 04.5時間蒸解を行った。評価結果を表3に示す。

表 3

試験	蒸解助剤		キノン添加量	蒸解後 カッパー価	蒸解収率	比引裂	裂断長	泡立ち	スケール	
No	助剤の 化合物	添加量 *	**	77/\- 1	1X 	強度	k m	mm	付着量 mg	
実施例										
3 5 3 6 3 7 3 8 3 9 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 5 0 5 1	A 1 A 1 A 1 A 1 B 2 B 6 B 7 C 1 C 2 D 1 A C 1 A C 1 A E 3	0. 01 0. 001 1. 00 1. 00 0. 01 0. 01 1. 00 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01	0 0.05 0.05 0 0 0 0 0 0 0 0 0.05	10. 4 10. 6 8. 1 9. 6 8. 1 10. 2 10. 3 10. 0 9. 6 10. 3 10. 3 10. 4 9. 9 9. 5 8. 1 10. 0 9. 9	57. 6 57. 4 59. 7 58. 3 59. 8 57. 9 57. 8 58. 2 58. 5 57. 7 57. 7 57. 8 58. 1 58. 6 59. 8 58. 2 58. 2	171 170 187 173 186 172 171 175 180 172 171 171 176 180 187 176	7. 6 7. 6 8. 9 8. 0 8. 8 7. 8 7. 8 7. 8 7. 8 7. 8 7. 8 7. 8	20 19 19 22 22 20 19 20 32 19 20 20 19 22 20	0. 12 0. 14 0. 21 0. 07 0. 18 0. 11 0. 12 0. 06 0. 13 0. 12 0. 13	
比較的	比較例									
2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 4 3 5 3 6	X 1 X 1 X 1 X 2 X 3 X 4 X 5 E 5 X 6 プランク	0. 01 0. 01 1. 00 1. 00 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01	0 0. 05 0 0. 05 0 0 0 0 0 0	11. 2 8. 7 11. 0 8. 6 11. 1 11. 2 11. 2 11. 2 11. 2 11. 1 11. 5 8. 8	57. 0 58. 3 57. 2 58. 4 57. 0 57. 0 57. 0 57. 0 57. 0 57. 0 57. 0 58. 2	168 174 168 175 166 167 166 167 166 165 165	7. 2 8. 5 7. 1 8. 6 7. 2 7. 1 7. 2 7. 1 7. 1 6. 8 8. 4	19 20 22 22 19 19 20 19 21 20 18	1. 41 2. 67 1. 16 2. 43 1. 37 1. 45 1. 44 1. 47 1. 45 1. 46 1. 85 3. 13	

^{*} チップ絶乾重量に対する重量% **チップ絶乾重量に対する重量%(9,10-アントラキノン使用)

<実施例52~59、比較例37~44>

針葉樹チップ30gを200mLオートクレーブに詰め、これに、試薬NaOHおよびNa $_2$ Sから調製した活性アルカリ15%で且つ硫化度30%のクラフト蒸解液を液比5で加えた後、本発明の蒸解助剤(A1, AC1)、比較の蒸解助剤(X1)、1, 4-ジヒドロ-9, 10-ジヒドロキシアントラセンまたは/および粉末イオウを苛性ソーダ溶液に溶解して調製したポリサルファイドを、下記の表4に示す添加量で添加して、160%で2時間蒸解を行った。評価結果を表4に示す。

表 4

試験	蒸角	平助剤	キノン添加量	ポリサルファ 小添加	蒸解後カッパー価	蒸解	比引裂	裂断長	泡立ち	スケール
No	助剤の 化合物	添加量 *	**	量 ***	<i>Д7</i> 77—1Ш	収率 %	強度	k m	mm	付 着量 mg
実施例	列						<u> </u>			
5 2 5 3 5 4 5 5 5 7 5 8 5 9 比較 ⁸	A 1 A 1 A 1 A C 1 A C 1 A C 1	0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01	0 0. 05 0. 05 0 0. 05 0. 05	0 0.5 0.5 0 0 0.5 0.5	33. 3 31. 4 31. 1 32. 8 32. 8 30. 7 30. 5 32. 2	49. 1 51. 0 52. 1 50. 8 49. 6 51. 5 52. 8 51. 3	176 180 183 179 178 183 185 185	7. 9 9. 3 9. 5 9. 2 8, 1 9. 5 9. 8 9. 4	35 36 35 35 35 35 34 35	0. 16 0. 27 0. 27 0. 15 0. 14 0. 26 0. 27 0. 14
3 7 3 8 3 9 4 0 4 1 4 2 4 3 4 4	X 1 X 1 X 1 X 1 T520 T520 T520 T520	0. 01 0. 01 0. 01 0. 01 0 0 0	0 0. 05 0. 05 0 0 0. 05 0. 05	0 0 0.5 0.5 0 0 0.5	34. 4 32. 7 32. 3 33. 9 34. 5 32. 8 32. 4 34. 0	48. 1 49. 4 50. 2 49. 2 48. 1 49. 3 50. 1 49. 0	174 177 179 178 174 177 179 177	7. 6 8. 6 8. 8 7. 6 8. 6 8. 7 8. 6	35 36 35 34 35 35 35	1. 72 3. 13 3. 15 1. 71 2. 56 3. 82 3. 91 2. 61

^{*} チップ絶乾重量に対する重量%

< 実施例 6 0 ~ 6 7、比較例 4 5 ~ 5 8 >

広葉樹チップ30gを200mLオートクレーブに詰め、これに、試薬NaOHおよび Na_2S から調製したクラフト蒸解液を液比4で加えた後、本発明の蒸解助剤(A1)、比較の蒸解助剤(X1)、1,4-ジヒドロ-9,10-ジヒドロキシアントラセンまたは/および粉末イオウを苛性ソーダ溶液に溶解して調製したポリサルファイドを、下記の表5に示す添加量で添加して、160℃で2時間蒸解を行った。評価結果を表5に示す。

ただし、本実施例及び比較例(比較例52を除く。)においては、それらのカッパー価が、比較例52のカッパー価22.3(蒸解条件;蒸解助剤無添加、活

^{**}チップ絶乾重量に対する重量%(1,4-ジヒドロ-9,10-ジヒドロキシアントラセン使用)

^{***}チップ絶乾重量に対する重量%(元素イオウとして)

性アルカリ: 15%、硫化度: 30%、蒸解温度: 160%、蒸解時間: 2時間で蒸解したときの蒸解後のカッパー価)と同じになるように、試験の蒸解条件(活性アルカリ、硫化度、蒸解温度、蒸解時間)を調整した。これらの蒸解条件を表5に示す。

表5

試験 無解的利 本/1 対外の 活性化物 高格的組織 無解的利 以本 通貨 上級 別の 上級 別の 上級 別の 財務 上級 別の 財務 上級 別の 日本 財務 上級 別の 日本			· · · · ·			
	蒸解蒸気 血甲	* * * * * * * * * * * * * * * * * * *		100 100 100 75 75 75 84 86		100 100 90 94 100 100 100 100 96 96
(中央の	次-10 任称聯	m s				
	泡立ち	шш		222888888888888888888888888888888888888		83388333388338
A C C C C C C C C C	光破裂	X X		I		
A	裂断長	kт		1		
大大学 10 12 14 17 15 15 15 15 15 15 15	北 <u>引黎</u>	N N		105 105 105 107 105 105		104 105 104 104 104 105 107 108
	蒸解	₹ ₩%		1		
一次 一次 一次 一次 一次 一次 一次 一次	蒸解時間	(時間)				1
(た合物 ※本	蒸解温度	(D)		160 160 160 160 135 138		160 160 160 153 153 160 160 160 157
新解助剤 キノン 料が77 助剤の 添加量 **	硫化度	%				l i
対象 (大学) (大学) (大学) (大学) (大学) (大学) (大学) (大学)	活性700月	%		15. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		
(大字句) (4747	* * * *		000000000000000000000000000000000000000		000000000000000000000000000000000000000
A D D D D D D D D D	サインが	国 17 * *		0.00 0.00 0.00 0.00 0.00 0.00 0.00		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mag	加	然加量 *				00.00.00.000000000000000000000000000000
試 2 乗 60000000 土 444445555555555555555555555555	蒸解				<u>ئ</u>	XXXXXXXだだだだだだ
	就験		実施	F .	比較	

-9, 10-ジヒドロキシアントラセン使用)

本発明の蒸解助剤 (A1) または比較の蒸解助剤 (X1) を添加後、加熱 (スチーミング) した場合:

針葉樹チップ30gを200mLオートクレーブに詰め、これに、試薬NaOHおよびNa₂Sから調製した活性アルカリ15%で且つ硫化度30%のクラフト蒸解液を液比5で加え、本発明の蒸解助剤(A1)または比較の蒸解助剤(X1)を添加した後、100%で5分間スチーミングを実施した。この後、1,4ージヒドロー9,10ージヒドロキシアントラセンまたは/および粉末イオウを苛性ソーダ溶液に溶解して調製したポリサルファイドを、下記表6に示す添加量で添加して、160%で2時間蒸解を行った。評価結果を表6に示す。

表4の結果と比較すると、本発明の蒸解助剤は、添加後に加熱する方が、さら に効果が大となることが判る。

表 6

試験	蒸解則	力剤	スチーミン	キノン	ポリサルファ	蒸解後	蒸解	比引裂	裂断長	泡立ち	スケール
No	助剤の 化合物	添加量 *	分	添加量 **	量	カッパー価	収率 %	強度	k m		付着量 mg
実施的	ЯJ				L	L	<u> </u>			L	i
6 8	A 1	0. 01	5	0	0	32. 6	49. 9	179	8. 1	35	0. 09
6 9	A 1	0. 01	5	0. 05	0	30. 7	51. 9	183	9. 6	36	0. 19
7 0	A 1	0. 01	5	0. 05	0.5	30. 3	53. 2	185	9. 7	35	0. 19
7 1	A 1	0. 01	5	0	0. 5	32. 1	51. 8	182	9. 4	35	0. 09
比較例	āj						1	<u></u>			
5 9	X 1	0. 01	5	0	0	34. 3	48. 2	174	7, 7	35	1. 72
60	X 1	0. 01	5	0. 05	0	32. 5	49. 5	177	8. 6	35	3. 12
6 1	X 1	0. 01	5	0. 05	0. 5	32. 4	50. 3	179	8. 9	36	3. 14
6 2	X 1	0. 01	5	0	0. 5	3 3. 9	49. 3	179	8. 6	35	1. 70

^{*} チップ絶乾重量に対する重量%

産業上の利用可能性

以上のように、本発明にかかるリグノセルロース物質の蒸解助剤は、リグノセルロース物質のアルカリ蒸解または亜硫酸塩蒸解用の蒸解助剤として有用である。また、本発明のパルプ製造方法は、リグノセルロース物質を、蒸解助剤の存在下で、アルカリ蒸解または亜硫酸塩蒸解して、パルプを製造する方法として有用である。

^{**} チップ絶乾重量に対する重量%(1,4-ジヒドロ-9,10-ジヒドロキシアントラセン使用)

^{***}チップ絶乾重量に対する重量%(元素イオウとして)

請求の範囲

1. 下記一般式(1)で示される化合物の1種または2種以上の化合物からなる ノニオン性界面活性剤(A)を含有するリグノセルロース物質の蒸解助剤。

ただし、 R^1 は下記一般式(2)で示される炭素数 $4 \sim 2$ 4 の分岐アルキル基;mは平均が $4 \sim 2$ 0 となる 1 以上の整数; A^1 は炭素数 3 または 4 のアルキレン基;nは平均が $0 \sim 1$ 5 となる 0 または 1 以上の整数を示す。n の平均が $1 \sim 1$ 5 の場合、[] 内の結合形式はランダム状および/またはブロック状である。

ただし、 R^2 , R^3 は炭素数 $1\sim 2$ 1 の直鎖または分岐のアルキル基; R^4 は 炭素数 $1\sim 2$ 1 のアルキレン基を示す。

2. 脂肪族アルコールにアルキレンオキサイドを付加して得られるノニオン性界 面活性剤(B)を含有し、

ノニオン性界面活性剤(B)が、下記一般式(3)で表される化合物の1種または2種以上の混合物からなると共に、

ノニオン性界面活性剤(B)の重量平均分子量(Mw)と数平均分子量(Mn)の比が下記関係式(4)を満たすリグノセルロース物質の蒸解助剤。

ただし、 R^5 は炭素数 $4\sim 2$ 4 の直鎖、分岐または環状の脂肪族 1 価炭化水素基; p は $4\sim 2$ 0 の付加モル数; A^2 は炭素数 3 または 4 のアルキレン基; q は 0 または $1\sim 1$ 5 の付加モル数を示す。 q が $1\sim 1$ 5 の場合、 [] 内の結合形式はランダム状および/またはブロック状である。

関係式

 $Mw/Mn \le -0$. 183× $K^{-0.930}$ ×LnX+1. 327× $K^{-0.065}$ (4) ただし、LnXはXの自然対数;Xは脂肪族アルコール1モル当たりのアル

キレンオキサイドの平均付加モル数; Kは一般式(3)のR⁵の炭素数を示す。

- 3. ノニオン性界面活性剤(A)またはノニオン性界面活性剤(B)のHLBが $6 \sim 18$ である請求項1または2記載のリグノセルロース物質の蒸解助剤。
- 4. 下記一般式(5)で表されるアニオン性界面活性剤(C)または/および下記一般式(6)で表される化合物の1種または2種以上の化合物からなるアニオン性界面活性剤(D)を含有するリグノセルロース物質の蒸解助剤。

一般式
$$\{R^6 - O - (A^3 O)_r -\}_k P (-O M^2)_{3-k}$$
 (6)

ただし、 R^6 は炭素数 $4\sim 2$ 4 の直鎖、分岐または環状の脂肪族 1 価炭化水素基; A^3 は炭素数 3 または 4 のアルキレン基;r は平均が $0\sim 1$ 5 となる 0 または 1 以上の整数;k は 1 または 2 の整数; M^1 , M^2 は一価の陽イオンを示す。

- 5. a. ノニオン性界面活性剤 (A) または/およびノニオン性界面活性剤 (B) と、
 - b. アニオン性界面活性剤(C)、アニオン性界面活性剤(D)およびアニオン性界面活性剤(E)の内から選ばれる1種以上のアニオン性界面活性剤

を $100/0.1\sim100/30$ の重量比率で併用した組成物を含有するリグノセルロース物質の蒸解助剤。

ただし、ノニオン性界面活性剤(A)は下記一般式(1)で表される化合物の1種または2種以上の化合物からなる。ノニオン性界面活性剤(B)は、脂肪族アルコールにアルキレンオキサイドを付加して得られるものであって、下記一般式(3)で表される化合物の1種または2種以上の混合物からなると共に、重量平均分子量(Mw)と数平均分子量(Mn)の比が下記関係式(4)を満たすものである。アニオン界面活性剤(C)は下記一般式(5)で表される化合物の1種または2種以上の化合物であり、アニオン性界面活性剤(D)

は下記一般式(6)で表される化合物の1種または2種以上の化合物であり、 アニオン性界面活性剤(E)は下記一般式(7)で表される化合物の1種また は2種以上の化合物である。

$$- 般式 R^{1} - O - [(C_{2}H_{4}O)_{m}/(A_{1}O)_{n}] - H$$
 (1)

一般式
$$\{R^6 - O - (A^3 O)_r -\}_k P (-OM^2)_{3-k}$$
 (6)

$$- 般式 R7 - O - (A4O)s - R8COOM3$$
 (7)

ただし、 R^1 は下記一般式(2)で示される炭素数 $4 \sim 2$ 4 の分岐アルキル基; R^5 , R^6 は炭素数 $4 \sim 2$ 4 の直鎖、分岐または環状の脂肪族 1 価炭化水素基; R^7 は炭素数 $4 \sim 2$ 4 の直鎖または分岐のアルキル基、アルケニル基またはモノもしくはジヒドロキシアルキル基; R^6 は炭素数 $1 \sim 6$ のアルキレン基;mは平均が $4 \sim 2$ 0 となる 1 以上の整数;p は $4 \sim 2$ 0 の数; A^1 、 A^2 、 A^3 、 A^4 は炭素数 3 または 4 のアルキレン基;n, r, s は平均が $0 \sim 1$ 5 となる 0 または 1 以上の整数;q は 0 または $1 \sim 1$ 5 の付加モル数;k は 1 または 2 の整数; M^1 、 M^2 、 M^3 は一価の陽イオンを示す。n,q が $1 \sim 1$ 5 の場合、「]内の付加形式はランダム状および/またはブロック状である。

ただし、 R^2 , R^3 は炭素数 $1\sim 2$ 1 の直鎖または分岐のアルキル基; R^4 は 炭素数 $1\sim 2$ 1 のアルキレン基を示す。

関係式

 $Mw/Mn \le -0.183 \times K^{-0.930} \times LnX + 1.327 \times K^{-0.065}$ (4) ただし、 $LnXはXの自然対数;Xは脂肪族アルコール1モル当たりのアルキレンオキサイドの平均付加モル数;Kは一般式(3)の<math>R^5$ の炭素数を示す

6. キノン系蒸解助剤および/またはポリサルファイドと併用される請求項1~

5のいずれかに記載のリグノセルロース物質の蒸解助剤。

7. リグノセルロース物質を、蒸解助剤の存在下で、アルカリ蒸解または亜硫酸 塩蒸解して、パルプを製造する方法において、

蒸解助剤として、請求項1~6のいずれかに記載の蒸解助剤(a)を使用するパルプ製造方法。

8. リグノセルロース物質を、蒸解助剤の存在下で、アルカリ蒸解または亜硫酸 塩蒸解して、パルプを製造する方法において、

蒸解助剤として、キノン系蒸解助剤および/またはポリサルファイドと、請求項1~5のいずれかに記載の蒸解助剤(a)を併用するパルプ製造方法。

- 9. 蒸解助剤(a)を、キノン系蒸解助剤および/またはポリサルファイドを添加する前に、あらかじめリグノセルロース物質に添加しておいて、蒸解を行う請求項8記載のパルプ製造方法。
- 10. 蒸解助剤(a)の添加後、添加中および/または添加前に、リグノセルロース物質を加熱する請求項9記載のパルプ製造方法。

			•
			•
	-		

1/2

第 1 図

(K=4)

第 2 図

(K=12)

			,
		·	
			•
		·	

第 3 図

	·		
			•

1

International application No.

PCT/JP00/04117

	FICATION OF SUBJECT MATTER		
Int.	Cl ⁷ D21C3/02, 3/06		
According to	International Patent Classification (IPC) or to both nat	ional classification and IPC	
	SEARCHED		
Minimum do	cumentation searched (classification system followed b	y classification symbols)	
Int.	Cl ⁷ D21C3/00-3/28 —		
Documentati	on searched other than minimum documentation to the	extent that such documents are included	in the fields searched
Electronic da	ata base consulted during the international search (name	of data base and where practicable sea	rch terms used)
WPI/		or data base and, where practicable, sea	ton tornis asoa)
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.
,	TD 01062 A (DAVED AC)		1-10
A	EP, 21263, A (BAYER AG), 07 January, 1981 (07.01.81),		1-10
]	Full text	-45	
	& BR, 8003940, A & DE, 29255 & NO, 8001730, A & JP, 56-47	045, A 792. A	
	& FI, 8002000, A & ZA, 80037	765, A	
	& EP, 21263, B & DE, 30603 & CA, 1142714, A	363, G	
A	JP, 54-100332, A (Nippon Steel	Chem. Co., Ltd.),	1-10
	08 August, 1979 (08.08.79), Full text		
	(Family: none)		
A	CA, 2214299, A (CHEMSTONE INC),		1-10
	28 February, 1999 (28.02.99),	•	
	Full text		
ŀ	(Family: none)		
A	DE, 3905311, A (BAYER AG),	!	1-10
	23 August, 1990 (23.08.90),		
	er documents are listed in the continuation of Box C.	See patent family annex.	
	I categories of cited documents: ent defining the general state of the art which is not	"T" later document published after the inte priority date and not in conflict with the	
conside	ered to be of particular relevance document but published on or after the international filing	understand the principle or theory und "X" document of particular relevance; the	
date		considered novel or cannot be considered	red to involve an inventive
cited to	ent which may throw doubts on priority claim(s) or which is o establish the publication date of another citation or other	step when the document is taken alone "Y" document of particular relevance; the	claimed invention cannot be
"O" docum	l reason (as specified) ent referring to an oral disclosure, use, exhibition or other	considered to involve an inventive ste combined with one or more other such	documents, such
means		combination being obvious to a person document member of the same patent	
than th	ne priority date claimed		
	actual completion of the international search September, 2000 (14.09.00)	Date of mailing of the international sear 03 October, 2000 (03	
			•
Name and r	mailing address of the ISA/	Authorized officer	
	anese Patent Office	_	
Facsimile N	۸o.	Telephone No.	

PCT/JP00/04117

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	Full text (Family: none)	
A	JP, 57-112485, A (Honshu Paper Co., Ltd.), 13 July, 1982 (13.07.82), Full text (Family: none)	1-10
A	JP, 52-118003, A (Sanyo Chemical Industries, Ltd.), 04 October, 1977 (04.10.77), Full text (Family: none)	1-10

国際調査報告

国際出願番号 PCT/JP00/04117

A. 発明	月の風する分野の分類(国際特許分類 (IPC))		
Ir	nt. Cl' D21C3/02, 3/06		
D 超Z			
	まで11つにガザ oた最小限資料(国際特許分類(IPC))		
Mud Terr C. 1.3	CALL PARTY (EDITIVITY)		
Iı	nt. C1' D21C3/00-3/28		
最小限資料	科以外の資料で調査を行った分野に含まれるもの		
国際調査	で使用した電子データベース(データベースの名称、	調査に使用した用語)	
 .	D 1 /1		
W	PI/L		
C. 関i	車すると認められる文献		
引用文献		, , , , , , , , , , , , , , , , , , ,	関連する
カテゴリー	ー* 引用文献名 及び一部の箇所が関連すると	きは、その関連する箇所の表示	請求の範囲の番号
A	EP, 21263, A (BAYER	AG), 7, 1月, 1981	1-10
	(07.01.81) 全文参照		
Ì	&BR, 8003940, A &DI	E. 2925545. A	
	&NO, 8001730, A &J		
	&FI, 8002000, A &Z		
	&EP, 21263, B &DE,		
	&CA, 1142714, A	000000, 0	
	(CA, 1142/14, A		
C#9	の続きにも文献が列挙されている。	□ パテントファミリーに関する別	ダル会服
x C欄	の就さにも文献が99年で40CVで。		私でも思。
* 引用	文献のカテゴリー	の日の後に公表された文献	
	に関連のある文献ではなく、一般的技術水準を示す	「T」国際出願日又は優先日後に公表	
t		出願と矛盾するものではなく、多	発明の原理又は理論
	際出願日前の出願または特許であるが、国際出願日 後に公表されたもの	の理解のために引用するもの「X」特に関連のある文献であって、	4蛇立静の五で双田
1	先権主張に疑義を提起する文献又は他の文献の発行	の新規性又は進歩性がないと考え	
	若しくは他の特別な理由を確立するために引用する	「Y」特に関連のある文献であって、	
	献(理由を付す)	上の文献との、当業者にとって	
	頭による開示、使用、展示等に言及する文献	よって進歩性がないと考えられる	3もの
P 国	際出願日前で、かつ優先権の主張の基礎となる出願	「&」同一パテントファミリー文献	
同際調本	を完了した日	国際調査報告の発送日	0.00
	14. 09. 00	U3.1	0.00
		 	
国際調査	機関の名称及びあて先	特許庁審査官(権限のある職員)	4S 9158
	日本国特許庁(ISA/JP)	澤村 茂実 印	
	郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	 電話番号 03-3581-1101	内線 3474
	- パンハマレ :	THEOLET OU STORE TIVE	13/DK J4/4 1

国際調査報告

国際出願番号 PCT/JP00/04117

C (続き) .	関連すると認められる文献	
引用文献の		関連する請求の範囲の番号
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	時のイベン車区内で入田・り
A	JP, 54-100332, A (新日本製鐵化学工業株式会社), 8.8月.1979 (08.08.79) 全文参照 (ファミリーなし)	1-10
A	CA, 2214299、A (CHEMSTONE INC), 28.02月.1999 (28.02.99) 全文参照 (ファミリーなし)	1-10
A	DE, 3905311, A (BAYER AG), 23.8月.1 990 (23.08.90) 全文参照 (ファミリーなし)	1-10
A	JP, 57-112485, A (本州製紙株式会社), 13.7月.1982(13.07.82)全文参照(ファミリーなし)	1-10
A	JP, 52-118003, A (三洋化成工業株式会社), 4.1 0月.1977(04.10.77)全文参照(ファミリーなし)	1-10