SBML Model Report

Model name: "Chen2006 - Nitric Oxide Release from Endothelial Cells"

May 17, 2018

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Catherine Lloyd¹ and Matthew Grant Roberts² at February 20th 2018 at 6:04 p.m. and last time modified at February 21st 2018 at 1:46 p.m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	15
events	0	constraints	0
reactions	17	function definitions	2
global parameters	21	unit definitions	2
rules	0	initial assignments	0

Model Notes

Chen2006 - Nitric Oxide Release from Endothelial Cells

This model is described in the article: Theoretical analysis of biochemical pathways of nitric oxide release from vascular endothelial cells. Chen K, Popel AS. Free Radic. Biol. Med. 2006 Aug; 41(4): 668-680

¹University of Auckland, c.lloyd@auckland.ac.nz

²EMBL-EBI, mroberts@ebi.ac.uk

Abstract:

Vascular endothelium expressing endothelial nitric oxide synthase (eNOS) produces nitric oxide (NO), which has a number of important physiological functions in the microvasculature. The rate of NO production by the endothelium is a critical determinant of NO distribution in the vascular wall. We have analyzed the biochemical pathways of NO synthesis and formulated a model to estimate NO production by the microvascular endothelium under physiological conditions. The model quantifies the NO produced by eNOS based on the kinetics of NO synthesis and the availability of eNOS and its intracellular substrates. The predicted NO production from microvessels was in the range of 0.005-0.1 microM/s. This range of predicted values is in agreement with some experimental values but is much lower than other rates previously measured or estimated from experimental data with the help of mathematical modeling. Paradoxical discrepancies between the model predictions and previously reported results based on experimental measurements of NO concentration in the vicinity of the arteriolar wall suggest that NO can also be released through eNOS-independent mechanisms, such as catalysis by neuronal NOS (nNOS). We also used our model to test the sensitivity of NO production to substrate availability, eNOS concentration, and potential rate-limiting factors. The results indicated that the predicted low level of NO production can be attributed primarily to a low expression of eNOS in the microvascular endothelial cells.

This model is hosted on BioModels Database and identified by: BIOMD0000000676.

To cite BioModels Database, please use: Chelliah V et al. BioModels: ten-year anniversary. Nucl. Acids Res. 2015, 43(Database issue):D542-8.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of five unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit volume

Name volume

Definition ml

2.2 Unit substance

Name substance

Definition µmol

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
Endothelium	Endothelium		3	1	litre	Ø	

3.1 Compartment Endothelium

This is a three dimensional compartment with a constant size of one ml.

Name Endothelium

4 Species

This model contains 15 species. The boundary condition of two of these species is set to true so that these species' amount cannot be changed by any reaction. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Arg	Arg	Endothelium	$\mu \text{mol} \cdot \text{ml}^{-1}$		\overline{Z}
Fe3enos	Fe3+(enos)	Endothelium	$\mu mol \cdot ml^{-1}$		
Fe3Arg	Fe3+_Arg	Endothelium	$\mu mol \cdot ml^{-1}$	\Box	
Fe2	Fe2+	Endothelium	$\mu mol \cdot ml^{-1}$	\Box	
Fe2Arg	Fe2+_Arg	Endothelium	$\mu mol \cdot ml^{-1}$	\Box	
Fe3NO	Fe3+_NO	Endothelium	$\mu mol \cdot ml^{-1}$	\Box	
NO	NO	Endothelium	$\mu mol \cdot ml^{-1}$	\Box	
Fe2NO	Fe2+_NO	Endothelium	$\mu mol \cdot ml^{-1}$	\Box	
Fe3NOHA	Fe3+_NOHA	Endothelium	$\mu mol \cdot ml^{-1}$	\Box	
NOHA	NOHA	Endothelium	$\mu mol \cdot ml^{-1}$	\Box	
Fe2NOHA	Fe2+_NOHA	Endothelium	$\mu mol \cdot ml^{-1}$	\Box	
02	O2	Endothelium	$\mu mol \cdot ml^{-1}$		\square
Fe302Arg	Fe3+_O2Arg	Endothelium	$\mu mol \cdot ml^{-1}$		
Fe3_O2_NOHA	Fe3+_O2NOHA	Endothelium	$\mu mol \cdot ml^{-1}$	\Box	
Citrulline	Citrulline	Endothelium	$\mu \text{mol} \cdot \text{ml}^{-1}$		\Box

5 Parameters

This model contains 21 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1		0.100		\checkmark
${\tt k1_prime}$	k1_prime		0.100		$\overline{\mathbf{Z}}$
k4	k4		1.890		
$\mathtt{k4_prime}$	k4_prime		11.400		
S	S		0.000		
k2	k2		0.910		
k14	k14		53.900		
k13	k13		0.033		
k8	k8		0.100		
$k8_prime$	k8_prime		0.100		
k3	k3		0.910		$\overline{\mathbf{Z}}$
k9	k9		11.400		$\overline{\mathbf{Z}}$
$k9_prime$	k9_prime		1.890		
k5	k5		2.580		
${\tt k5_prime}$	k5_prime		98.000		$\overline{\mathbf{Z}}$
k6	k6		12.600		
k7	k7		0.910		
k10	k10		3.330		$\overline{\mathbf{Z}}$
${\tt k10_prime}$	k10_prime		89.900		$\overline{\mathbf{Z}}$
k11	k11		29.400		$\overline{\mathbf{Z}}$
k12	k12		0.910		$\overline{\checkmark}$

6 Function definitions

This is an overview of two function definitions.

6.1 Function definition Constant_flux_irreversible

Name Constant flux (irreversible)

Argument v

Mathematical Expression

v (1)

6.2 Function definition function_for_modified_reactions

Name function for modified reactions

Arguments k, modifier, substrate

Mathematical Expression

k · modifier · substrate

(2)

7 Reactions

This model contains 17 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

		Tuble 3. Overvie	W of all feactions	
$N_{\bar{0}}$	Id	Name	Reaction Equation	SBO
1	Fe3Arg- _synthesis	Fe3+_Arg synthesis	$Arg + Fe3_enos \Longrightarrow Fe3_Arg$	
2	Fe2_Arg- _synthesis- _dissociation	Fe2+_Arg synthesis/dissociation	$Arg + Fe2 \Longrightarrow Fe2_Arg$	
3	Arginine- _synthesis	Arginine synthesis	$\emptyset \longrightarrow \operatorname{Arg}$	
4	$Fe2_formation$	Fe2+ formation	$Fe3_enos \longrightarrow Fe2$	
5	Fe3_and_NO- _formation	Fe3+ and NO formation	$Fe3_NO \longrightarrow Fe3_enos + NO$	
6	$Fe3_formation$	Fe3+ formation	$Fe2_NO \xrightarrow{O2} Fe3_enos$	
7	Fe3NOHAformationdegradation	Fe3+_NOHA formation/degradation	$Fe3_NOHA \Longrightarrow Fe3_enos + NOHA$	
8	Fe2_Arg- _formation	Fe2+_Arg formation	$Fe3_Arg \longrightarrow Fe2_Arg$	
9	Fe2_NOHA- _formation	Fe2+_NOHA formation	$Fe2_NOHA \Longrightarrow Fe2 + NOHA$	

No	Id	Name	Reaction Equation	SBO
10	Fe302_Argformationwith_0xygenactivation	Fe3+_O2-Arg formation with Oxygen activation	$Fe2_Arg \xrightarrow{O2} Fe3_O2_Arg$	
11	Fe302_Arg- _degradation	Fe3+_O2-Arg degradation	$Fe3_O2_Arg \longrightarrow Fe2_Arg$	
12	Fe3NOHA- _synthesis	Fe3+_NOHA synthesis	$Fe3_O2_Arg \longrightarrow Fe3_NOHA$	
13	Fe2_NOHA- _synthesis	Fe2+_NOHA synthesis	$Fe3_NOHA \longrightarrow Fe2_NOHA$	
14	Fe3_02_NOHAsynthesiswith_0xygenactivation	Fe3+_O2NOHA synthesis with Oxygen activation	$Fe2_NOHA \xrightarrow{O2} Fe3_O2_NOHA$	
15	Fe3NO_and- _Citrulline- _synthesis	Fe3+_NO and Citrulline synthesis	$Fe3_O2_NOHA \longrightarrow Fe3_NO + Citrulline$	
16	Fe2NO- _synthesis	Fe2+_NO synthesis	$Fe3_NO \longrightarrow Fe2_NO$	
17	Fe302NOHA- _degradation	Fe3+_O2NOHA degradation	$Fe3_O2_NOHA \longrightarrow Fe2_NOHA$	

7.1 Reaction Fe3__Arg_synthesis

This is a reversible reaction of two reactants forming one product.

Name Fe3+_Arg synthesis

Reaction equation

$$Arg + Fe3_enos \Longrightarrow Fe3_Arg$$
 (3)

Reactants

Table 6: Properties of each reactant.

Id	Name	SBO
Arg Fe3enos	Arg Fe3+(enos)	

Product

Table 7: Properties of each product.

Id	Name	SBO
Fe3Arg	Fe3+_Arg	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol}\left(\text{Endothelium}\right) \cdot \left(\text{k1} \cdot [\text{Arg}] \cdot [\text{Fe3_enos}] - \text{k1_prime} \cdot [\text{Fe3_Arg}]\right)$$
 (4)

7.2 Reaction Fe2_Arg_synthesis_dissociation

This is a reversible reaction of two reactants forming one product.

Name Fe2+_Arg synthesis/dissociation

Reaction equation

$$Arg + Fe2 \Longrightarrow Fe2_Arg \tag{5}$$

Reactants

Table 8: Properties of each reactant.

Id	Name	SBO
Arg	Arg	
Fe2	Fe2+	

Product

Table 9: Properties of each product.

Id	Name	SBO
Fe2Arg	Fe2+_Arg	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol}\left(\text{Endothelium}\right) \cdot \left(\text{k4} \cdot [\text{Arg}] \cdot [\text{Fe2}] - \text{k4_prime} \cdot [\text{Fe2}_\text{Arg}]\right)$$
 (6)

7.3 Reaction Arginine_synthesis

This is an irreversible reaction of no reactant forming one product.

Name Arginine synthesis

Reaction equation

$$\emptyset \longrightarrow Arg$$
 (7)

Product

Table 10: Properties of each product.

Id	Name	SBO
Arg	Arg	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol}\left(\text{Endothelium}\right) \cdot \text{Constant_flux_irreversible}\left(S\right)$$
 (8)

$$Constant_flux_irreversible(v) = v$$
 (9)

$$Constant_flux_irreversible(v) = v$$
 (10)

7.4 Reaction Fe2_formation

This is an irreversible reaction of one reactant forming one product.

Name Fe2+ formation

Reaction equation

$$Fe3_enos \longrightarrow Fe2$$
 (11)

Reactant

Table 11: Properties of each reactant.

Id	Name	SBO
Fe3enos	Fe3+(enos)	

Product

Table 12: Properties of each product.

Id	Name	SBO
Fe2	Fe2+	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{vol} \left(\text{Endothelium} \right) \cdot \text{k2} \cdot \left[\text{Fe3_enos} \right]$$
 (12)

7.5 Reaction Fe3_and_NO_formation

This is an irreversible reaction of one reactant forming two products.

Name Fe3+ and NO formation

Reaction equation

$$Fe3_NO \longrightarrow Fe3_enos + NO$$
 (13)

Reactant

Table 13: Properties of each reactant.

Id	Name	SBO
Fe3NO	Fe3+_NO	

Products

Table 14: Properties of each product.

Id	Name	SBO
Fe3enos	Fe3+(enos) NO	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{vol} \left(\text{Endothelium} \right) \cdot \text{k14} \cdot \left[\text{Fe3_NO} \right]$$
 (14)

7.6 Reaction Fe3_formation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Fe3+ formation

Reaction equation

$$Fe2_NO \xrightarrow{O2} Fe3_enos$$
 (15)

Reactant

Table 15: Properties of each reactant.

Id	Name	SBO
Fe2NO	Fe2+_NO	

Modifier

Table 16: Properties of each modifier.

Id	Name	SBO
02	O2	

Product

Table 17: Properties of each product.

Id	Name	SBO
Fe3enos	Fe3+(enos)	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = vol(Endothelium) \cdot function_for_modified_reactions(k13,[O2],[Fe2_NO])$$
 (16)

function_for_modified_reactions (k, modifier, substrate) =
$$k \cdot modifier \cdot substrate$$
 (17)

function_for_modified_reactions (k, modifier, substrate) =
$$k \cdot modifier \cdot substrate$$
 (18)

7.7 Reaction Fe3_NOHA_formation_degradation

This is a reversible reaction of one reactant forming two products.

Name Fe3+_NOHA formation/degradation

Reaction equation

$$Fe3_NOHA \rightleftharpoons Fe3_enos + NOHA$$
 (19)

Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
Fe3NOHA	Fe3+_NOHA	

Products

Table 19: Properties of each product.

Name	SBO
Fe3+(enos)	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{vol}\left(\text{Endothelium}\right) \cdot \left(\text{k8} \cdot \left[\text{Fe3_NOHA}\right] - \text{k8_prime} \cdot \left[\text{Fe3_enos}\right] \cdot \left[\text{NOHA}\right]\right)$$
 (20)

7.8 Reaction Fe2_Arg_formation

This is an irreversible reaction of one reactant forming one product.

Name Fe2+_Arg formation

Reaction equation

$$Fe3_Arg \longrightarrow Fe2_Arg$$
 (21)

Reactant

Table 20: Properties of each reactant.

Id	Name	SBO
Fe3Arg	Fe3+_Arg	

Product

Table 21: Properties of each product.

Id	Name	SBO
Fe2Arg	Fe2+_Arg	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \text{vol} \left(\text{Endothelium} \right) \cdot \text{k3} \cdot \left[\text{Fe3}_{--} \text{Arg} \right]$$
 (22)

7.9 Reaction Fe2_NOHA_formation

This is a reversible reaction of one reactant forming two products.

Name Fe2+_NOHA formation

Reaction equation

$$Fe2_NOHA \Longrightarrow Fe2 + NOHA$$
 (23)

Reactant

Table 22: Properties of each reactant.

Id	Name	SBO
Fe2NOHA	Fe2+_NOHA	

Products

Table 23: Properties of each product.

Id	Name	SBO
Fe2	Fe2+	
NOHA	NOHA	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = \text{vol}\left(\text{Endothelium}\right) \cdot \left(\text{k9} \cdot \left[\text{Fe2_NOHA}\right] - \text{k9_prime} \cdot \left[\text{Fe2}\right] \cdot \left[\text{NOHA}\right]\right)$$
 (24)

7.10 Reaction Fe3__02_Arg_formation_with_Oxygen_activation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Fe3+_O2-Arg formation with Oxygen activation

Reaction equation

$$Fe2_Arg \xrightarrow{O2} Fe3_O2_Arg \tag{25}$$

Reactant

Table 24: Properties of each reactant.

Id	Name	SBO
Fe2Arg	Fe2+_Arg	

Modifier

Table 25: Properties of each modifier.

Id	Name	SBO
02	O2	

Product

Table 26: Properties of each product.

Id	Name	SBO
Fe302Arg	Fe3+_O2Arg	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \text{vol}\left(\text{Endothelium}\right) \cdot \text{function_for_modified_reactions}\left(\text{k5}, [\text{O2}], [\text{Fe2_Arg}]\right)$$
 (26)

$$function_for_modified_reactions (k, modifier, substrate) = k \cdot modifier \cdot substrate \qquad (27)$$

$$function_for_modified_reactions (k, modifier, substrate) = k \cdot modifier \cdot substrate$$
 (28)

7.11 Reaction Fe3_02_Arg_degradation

This is an irreversible reaction of one reactant forming one product.

Name Fe3+_O2-Arg degradation

Reaction equation

$$Fe3_O2_Arg \longrightarrow Fe2_Arg \tag{29}$$

Reactant

Table 27: Properties of each reactant.

Id	Name	SBO
Fe302Arg	Fe3+_O2Arg	

Product

Table 28: Properties of each product.

Id	Name	SBO
Fe2Arg	Fe2+_Arg	

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = \text{vol}\left(\text{Endothelium}\right) \cdot \text{k5_prime} \cdot \left[\text{Fe3_O2_Arg}\right]$$
 (30)

7.12 Reaction Fe3__NOHA_synthesis

This is an irreversible reaction of one reactant forming one product.

Name Fe3+_NOHA synthesis

Reaction equation

$$Fe3_O2_Arg \longrightarrow Fe3_NOHA \tag{31}$$

Reactant

Table 29: Properties of each reactant.

Id	Name	SBO
Fe302Arg	Fe3+_O2Arg	

Product

Table 30: Properties of each product.

	I	
Id	Name	SBO
Fe3_NOHA	Fe3+_NOHA	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \text{vol} \left(\text{Endothelium} \right) \cdot \text{k6} \cdot \left[\text{Fe3}_\text{O2}_\text{Arg} \right]$$
 (32)

7.13 Reaction Fe2_NOHA_synthesis

This is an irreversible reaction of one reactant forming one product.

Name Fe2+_NOHA synthesis

Reaction equation

$$Fe3_NOHA \longrightarrow Fe2_NOHA$$
 (33)

Reactant

Table 31: Properties of each reactant.

Id	Name	SBO
Fe3_NOHA	Fe3+_NOHA	

Product

Table 32: Properties of each product.

Id	Name	SBO
Fe2_NOHA	Fe2+_NOHA	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{vol}(\text{Endothelium}) \cdot \text{k7} \cdot [\text{Fe3_NOHA}]$$
 (34)

7.14 Reaction Fe3_02_NOHA_synthesis_with_Oxygen_activation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Fe3+_O2-_NOHA synthesis with Oxygen activation

Reaction equation

$$Fe2_NOHA \xrightarrow{O2} Fe3_O2_NOHA$$
 (35)

Reactant

Table 33: Properties of each reactant.

Id	Name	SBO
Fe2_NOHA	Fe2+_NOHA	

Modifier

Table 34: Properties of each modifier.

Id	Name	SBO
02	O2	

Product

Table 35: Properties of each product.

Id	Name	SBO
Fe3O2NOHA	Fe3+_O2NOHA	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = \text{vol}\left(\text{Endothelium}\right) \cdot \text{function_for_modified_reactions}\left(\text{k10}, [\text{O2}], [\text{Fe2_NOHA}]\right)$$
 (36)

function_for_modified_reactions (k, modifier, substrate) =
$$k \cdot modifier \cdot substrate$$
 (37)

function_for_modified_reactions (k, modifier, substrate) = $k \cdot modifier \cdot substrate$ (38)

7.15 Reaction Fe3_NO_and_Citrulline_synthesis

This is an irreversible reaction of one reactant forming two products.

Name Fe3+_NO and Citrulline synthesis

Reaction equation

$$Fe3_O2_NOHA \longrightarrow Fe3_NO + Citrulline$$
 (39)

Reactant

Table 36: Properties of each reactant.

Id	Name	SBO
Fe302NOHA	Fe3+_O2NOHA	

Products

Table 37: Properties of each product.

Id	Name	SBO
Fe3NO	Fe3+_NO	
Citrulline	Citrulline	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = \text{vol} \left(\text{Endothelium} \right) \cdot \text{k11} \cdot \left[\text{Fe3}_\text{O2}_\text{NOHA} \right]$$
 (40)

7.16 Reaction Fe2__NO_synthesis

This is an irreversible reaction of one reactant forming one product.

Name Fe2+_NO synthesis

Reaction equation

$$Fe3_NO \longrightarrow Fe2_NO$$
 (41)

Reactant

Table 38: Properties of each reactant.

Id	Name	SBO
Fe3_NO	Fe3+_NO	

Product

Table 39: Properties of each product.

Id	Name	SBO
Fe2NO	Fe2+_NO	

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = \text{vol} \left(\text{Endothelium} \right) \cdot \text{k12} \cdot \left[\text{Fe3_NO} \right]$$
 (42)

7.17 Reaction Fe3__02__NOHA_degradation

This is an irreversible reaction of one reactant forming one product.

Name Fe3+_O2-_NOHA degradation

Reaction equation

$$Fe3_O2_NOHA \longrightarrow Fe2_NOHA$$
 (43)

Reactant

Table 40: Properties of each reactant.

Id	Name	SBO
Fe3O2NOHA	Fe3+_O2NOHA	

Product

Table 41: Properties of each product.

Id	Name	SBO
Fe2NOHA	Fe2+_NOHA	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = \text{vol}\left(\text{Endothelium}\right) \cdot \text{k10_prime} \cdot \left[\text{Fe3_O2_NOHA}\right]$$
 (44)

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

8.1 Species Arg

Name Arg

Initial concentration 100 µmol·ml⁻¹

This species takes part in three reactions (as a reactant in Fe3_Arg_synthesis, Fe2_Arg_synthesis_dissociation and as a product in Arginine_synthesis), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Arg} = 0\tag{45}$$

8.2 Species Fe3_enos

Name Fe3+(enos)

Initial concentration $0.015 \, \mu \text{mol} \cdot \text{ml}^{-1}$

This species takes part in five reactions (as a reactant in Fe3_Arg_synthesis, Fe2_formation and as a product in Fe3_and_NO_formation, Fe3_formation, Fe3_NOHA_formation_degradation).

$$\frac{d}{dt} \text{Fe3_enos} = |v_5| + |v_6| + |v_7| - |v_1| - |v_4|$$
(46)

8.3 Species Fe3__Arg

Name Fe3+_Arg

Initial concentration $0 \, \mu mol \cdot ml^{-1}$

This species takes part in two reactions (as a reactant in Fe2_Arg_formation and as a product in Fe3_Arg_synthesis).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Fe3}_{-}\mathrm{Arg} = |v_1| - |v_8| \tag{47}$$

8.4 Species Fe2

Name Fe2+

Initial concentration $0 \mu mol \cdot ml^{-1}$

This species takes part in three reactions (as a reactant in Fe2_Arg_synthesis_dissociation and as a product in Fe2_formation, Fe2_NOHA_formation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Fe2} = |v_4| + |v_9| - |v_2| \tag{48}$$

8.5 Species Fe2_Arg

Name Fe2+_Arg

Initial concentration $0 \, \mu mol \cdot ml^{-1}$

This species takes part in four reactions (as a reactant in Fe3__02_Arg_formation_with_0xygen_activation and as a product in Fe2_Arg_synthesis_dissociation, Fe2_Arg_formation, Fe3__02_Arg_degradation).

$$\frac{d}{dt} \text{Fe2_Arg} = |v_2| + |v_8| + |v_{11}| - |v_{10}| \tag{49}$$

8.6 Species Fe3__NO

Name Fe3+_NO

Initial concentration $0 \mu mol \cdot ml^{-1}$

This species takes part in three reactions (as a reactant in Fe3_and_NO_formation, Fe2_NO_synthesis and as a product in Fe3_NO_and_Citrulline_synthesis).

$$\frac{d}{dt} \text{Fe3}_\text{NO} = |v_{15}| - |v_{5}| - |v_{16}| \tag{50}$$

8.7 Species NO

Name NO

Initial concentration $0 \mu mol \cdot ml^{-1}$

This species takes part in one reaction (as a product in Fe3_and_NO_formation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NO} = v_5 \tag{51}$$

8.8 Species Fe2_NO

Name Fe2+_NO

Initial concentration $0 \mu mol \cdot ml^{-1}$

This species takes part in two reactions (as a reactant in Fe3__formation and as a product in Fe2__N0_synthesis).

$$\frac{d}{dt} \text{Fe2}_{-NO} = |v_{16}| - |v_{6}| \tag{52}$$

8.9 Species Fe3__NOHA

Name Fe3+_NOHA

Initial concentration $0 \mu mol \cdot ml^{-1}$

This species takes part in three reactions (as a reactant in Fe3_NOHA_formation_degradation, Fe2_NOHA_synthesis and as a product in Fe3_NOHA_synthesis).

$$\frac{d}{dt} \text{Fe3_NOHA} = |v_{12}| - |v_{7}| - |v_{13}| \tag{53}$$

8.10 Species NOHA

Name NOHA

Initial concentration $0 \, \mu mol \cdot ml^{-1}$

This species takes part in two reactions (as a product in Fe3_NOHA_formation_degradation, Fe2_NOHA_formation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NOHA} = |v_7| + |v_9| \tag{54}$$

8.11 Species Fe2__NOHA

Name Fe2+_NOHA

Initial concentration $0 \, \mu mol \cdot ml^{-1}$

This species takes part in four reactions (as a reactant in Fe2_NOHA_formation, Fe3_O2-_NOHA_synthesis_with_Oxygen_activation and as a product in Fe2_NOHA_synthesis, Fe3_O2_NOHA_degradation).

$$\frac{d}{dt} \text{Fe2}_\text{NOHA} = |v_{13}| + |v_{17}| - |v_{9}| - |v_{14}|$$
(55)

8.12 Species 02

Name O2

Initial concentration 150 µmol·ml⁻¹

This species takes part in three reactions (as a modifier in Fe3__formation, Fe3__02_Arg__formation_with_0xygen_activation, Fe3__02__NOHA_synthesis_with_0xygen_activation), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}O2 = 0\tag{56}$$

8.13 Species Fe3__02__Arg

Name Fe3+_O2-_Arg

Initial concentration $0 \ \mu mol \cdot ml^{-1}$

This species takes part in three reactions (as a reactant in Fe3_02_Arg_degradation, Fe3_NOHA_synthesis and as a product in Fe3_02_Arg_formation_with_0xygen_activation).

$$\frac{d}{dt} \text{Fe3}_\text{O2}_\text{Arg} = |v_{10}| - |v_{11}| - |v_{12}|$$
 (57)

8.14 Species Fe3__02__NOHA

Name Fe3+_O2-_NOHA

Initial concentration $0 \, \mu mol \cdot ml^{-1}$

This species takes part in three reactions (as a reactant in Fe3_NO_and_Citrulline_synthesis, Fe3_O2_NOHA_degradation and as a product in Fe3_O2_NOHA_synthesis_with_Oxygen_activation).

$$\frac{d}{dt} \text{Fe3}_\text{O2}_\text{NOHA} = |v_{14}| - |v_{15}| - |v_{17}|$$
(58)

8.15 Species Citrulline

Name Citrulline

Initial concentration $0 \ \mu mol \cdot ml^{-1}$

This species takes part in one reaction (as a product in Fe3_NO_and_Citrulline_synthesis).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Citrulline} = v_{15} \tag{59}$$

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany