第一章 概論

電子學的發展史

(1) 真空管時期:(第一代電腦)

1946年:以真空管組成第一部電腦。

真空管缺點:可靠度不佳、燈絲易斷,體積大,產生熱量大。

(2) 電晶體時期:(第二代電腦)

電晶體特點:體積小、重量輕、低功率、性能優,可靠性高。

(3) 積體電路時期:(第三代電腦)

積體電路(Integrated Circuit)簡稱 IC:在微小的晶片(Chip)上,製造出電晶體、二極體、電阻等元件。

依積體電路含零件數不同,可分為下列幾個不同時期:

規 格	全 文	邏輯閘數量	電子元件數量	
SSI	Small Scale Integrated Circuit	12個以下	10~100個	
MSI	Medium Scale Integrated Circuit	12~100個	100~1000個	
LSI	Large Scale Integrated Circuit	100~1000個	1000~10000個	
VLSI	Very Large Scale Integrated Circuit	1000個以上	10000 個以上	

積體電路的優點:

- 1、體積與重量大幅度減少。
- 2、低功率消耗。
- 3、溫度穩定佳,可靠性增加。
- 4、可高速工作;
- 5、元件容量大。
- (4) 微電腦時期:(第四代電腦)

由於 VLSI 技術進步,產品大多以微電腦方式控制,所以 VLSI 時期又稱為微電腦時期。

EX:製成積體電路晶片(IC Chips)的材料是。

(85)

(A) 磷 (B) 鋁 (C) 矽 (D) 鎂

◆ :目前絕大部份的 IC 晶片均採用矽(Si)為材料,少部份的 CPU 由於速度上的需求,才使用砷化鎵(GaAs)為材料。

EX:一般而言,邏輯閘數目最少的積體電路為。

(92)

(A) LSI (B) MSI (C) SSI (D) VLSI

◆詳解:不論邏輯閘數目或元件數目,其內含最少的積體電路皆為 SSI(小型積體 電路),而最多的則為 VLSI。

第二章 半導體與二極體

§ 2-1 半導體

● 半導體(Semiconductor)

導電能力介於導體(具有高傳導率)與絕緣體(具有低傳導率)之間。 特性:

- (1) 載子濃度愈高,則電阻係數愈低。
- (2) 載子移動率愈快,則電阻係數愈低。
- (3) 呈負溫度係數,即溫度上升時,電阻係數下降。
- (4) 電壓(Ⅵ) 與電流(/) 的關係呈非線性。

鍺(Ge)和矽(Si)的最外層軌道有四個價電子,皆屬四價元素。 砷化鎵(GaAs)電子移動速度較矽快,用於高頻場合(CPU、高頻無

◆ 本質半導體

線通訊)。

- (1) 不摻入任何雜質半導體,稱本質半導體或純半導體,如純矽或純鍺。
- (2) 在絕對零度(0°K = -273°C)時,如同一絕緣體(不導電)。此時 Si=1.21eV, Ge=0.78eV。
- (3) 室溫(25°C)下,欲使共價鍵破裂所需之能量,Si=1.1eV, Ge=0.72eV。
- (4)電子數與電洞數相等,故呈電中性。

● 雜質半導體

在本質半導體中摻入微量(10⁸:1)的3價或5價雜質,因而產生更多的 電洞或電子,提高半導體的導電能力。

外質半導體型式	掺入雜質 (濃度 10 ⁸ :1)	多數載子	少數載子 電子 (帶負電)	
P型	三價元素 (受體) 如:硼 (B)、銦 (In)、 鋁 (A1)、鎵 (Ga)	電洞(帶正電)		
N型	五價元素 (施體) 如: 銻 (Sb)、砷 (As)、 磷 (P)	電子 (帶負電)	電洞 (帶正電)	

EX:對一處於絕對零度(0°K)之本質半導體,在此本質半導體之兩端加一電 壓;若此本質半導體並未發生崩潰,則在本質半導體內。 (90)

(A) 有電子流, 也有電洞流 (B) 有電子流, 但沒有電洞流 (C) 沒

有電子流,但有電洞流 (D) 沒有電子流,也沒有電洞流

◆詳解:在0°K下,本質半導體如同絕緣體,所以沒有電子流與電洞流流動 EX:在本質半導體中,摻入下何項雜質元素,即可成為 P 型半導體? (91)

- (A) 磷 (B) 硼 (C) 砷 (D) 銻
- ◆詳解:(1)本質半導體(4 價)+3 價雜質元素(硼、銦、鎵、鋁)共有 7 個價電子,少一個電子(可視為多一個電洞),故稱為 P 型半導體。
 - (2)本質半導體(4價)+5價雜質元素(磷、砷、銻)共有9個價電子,多一個電子,故稱為N型半導體

● 質量作用定律

熱平衡下,正負載子濃度的乘積為定值,與摻雜的施體及受體雜質的份 量無關。

即 $N \cdot P = Ni^2$

其中 N: 自由電子濃度

P: 電洞濃度 Ni: 本質濃度

EX: 純矽半導體本質濃度 N_r =1.5×10¹⁰ 原子/cm³, 其密度為 5×10²² 原子/cm³, 若每 10⁸ 個矽原子加入一個硼原子,則將成為何種類型半導體,又電子濃度為多少?

- ◆ 詳解:(1)純矽半導體加入三價雜質(硼原子),每加入一個硼原子,即 會多出一個帶正電的電洞
 - ∴電洞濃度 *P* = 5×10²²× 10⁸ =5×10¹⁴(電洞/cm³)
 - (2)依質量作用定律 $n \times p = n_i^2$

電子濃度
$$n = \frac{n_i^2}{p} = \frac{(1.5 \times 10^{10})^2}{5 \times 10^{14}} = 4.5 \times 10^5$$
 (電子/cm³)

由於 P>> n (電洞濃度遠大於電子濃度), 故為 P型半導體

§ 2-2 二極體的特性

● 空乏區(depletion region)

當 P型半導體與 N型半導體結合時,接面附近的區域僅有不可自由移動的正負離子,有如絕緣體。此一區域稱為空乏區(depletion region)。

- 障壁電壓(barrier potential)
 - (1) 空乏區形成後,接合面 N 側帶正電,P 側帶負電,此電位差即稱為 障壁電壓 (barrier potential)。
 - (2) PN 二極體的障壁電壓(切入電壓), Ge=0.2V ~ 0.3V , Si=0.6V ~ 0.7V。

● 順向偏壓(forward bias)

- (1) 當外加電源的正極性接在 P 側,負極性接在 N 側,則稱為順向偏壓 (forward bias)。
- (2) 加順向偏壓時,空乏區寬度減少。
- (3) 當外加順向電壓大於障壁電壓時,將產生順向電流,則順向電阻 R_f 很小。

● 逆向偏壓(reverse bias)

- (1) 外加電源的負極性接在 P 側,正極性接 N 側,稱逆向偏壓 (reverse bias)。
- (2) 加逆向偏壓時,空乏區寬度變大,障壁電壓增高。
- (3) 仍有少數載子流動,稱逆向飽和電流 Ico 或漏電流。

● PN 二極體(D,diode)的結構與符號

(a)結構

(b)符號

理想模式:只工作於順向導通(ON)與逆向截止(OFF)兩種狀態。

- (a)順向導通狀態
- (b)逆向截止狀態
- (c)特性曲線
- 定電壓模式:二極體順向偏壓時,只有順向電壓降 Va(矽二極體 Va=0.6V ~0.7V, 鍺二極體 Vơ=0.2V~0.3V), 而逆向偏壓時, 則如同理想模式

- (a)順向導電狀態 (b)逆向截止狀態
- (c)特性曲線
- 含順向電壓與內阻的模式:二極體順向偏壓時,除了順向電壓降 Vd外, 尚含有順向電阻 Rf; 而逆向偏壓時,則如同理想模式 ($Rr=\infty$)。

- (a)順向導電狀態
- (b)逆向截止狀態

- (c)特性曲線
- 實際模式:為真實二極體的情況,電流特性曲線為非線性的指數公式

- 二極體的串、並聯應用
 - (1) 二極體的串聯:提高最大的逆向耐壓

原始電路

改良電路

(2) 二極體的並聯:提高最大的順向電流

EX:圖

之二極體在流通 1mA 電流時,兩端的電壓差

為
$$0.7V$$
,若 η =1 且 V_T = 25mV,則 V_D =? (92)

ln2	ln3	ln4	ln5	ln6	ln7	1n8	ln9	ln10	ln 11
0.693	1.099	1.386	1.609	1.792	1.946	2.079	2.197	2.303	2.398
ln12	ln13	ln 14	ln15	ln 16	ln 17	ln 18	ln19	ln20	
2.485	2.565	2.639	2.708	2.773	2.833	2.890	2.944	2.996	

◆詳解:二極體的特性曲線方程式為 / $_D$ =/ $_S$ ($e^{\frac{V_D}{\eta V_T}}$ -1)≒/ $_S$ · $e^{\frac{V_D}{\eta V_T}}$

(1)由題目(
$$I_D$$
=1mA, V_D =0.7V, η =1, V_T =25mV)

(2)由題目的電路圖可知─兩並聯二極體的總電流為 20mA,所以流

過單一個二極體的電流
$$I_D = \frac{20}{2} = 10 \text{(mA)}$$
,故得 $10 \text{mA} = I_S \cdot e^{\frac{V_D}{25 \text{mV}}} \dots (2)$

(3)
$$\frac{1 \text{mA}}{(2) \text{ t}} = \frac{\frac{1 \text{mA}}{10 \text{mA}}}{\frac{I_s \cdot e^{\frac{0.7 \text{V}}{25 \text{mV}}}}{I_s \cdot e^{\frac{V_D}{25 \text{mV}}}}}$$

$$\frac{1}{10} = e^{\frac{0.7}{25\text{m}} - \frac{V_D}{25\text{m}}}$$

10⁻¹= $e^{\frac{0.7-V_{o}}{25m}}$ 兩邊分別取 In,得

-1 In10=
$$\frac{0.7 - V_D}{25m}$$
 查表得 In10=2.303

得 V_D=0.7+2.303×25×10-3=0.757575(V)

EX:在圖 $\stackrel{\downarrow}{=}$ 所示之理想二極體電路中,若 $R=1k\Omega$,則流經此電

阻 的 電 流 為 何 ?

(92)

- ◆詳解:(1)當只有 1V 的電壓時, D₁ ON, 所以 V_R=1V
 - (2)當有 1V 與 3V 的電壓時, D_2 ON, D_1 OFF,所以 V_R =3V
 - (3)同理,當有 1V、3V 與 5V 的電壓時, D₃ ON, D₁、D₂皆 OFF,

所以 V_R=5V

故
$$I_R = \frac{V_R}{R} = \frac{5}{1k} = 5 \text{ (mA)}$$

EX: 圖

之迴路中, D₁、D₂ 為矽二極體, 則 ½=? (89)

◆詳解:(1)由於 D₁、D₂ 皆順向導通,且為矽二極體,所以其等效電路如下

(2)
$$I_T = \frac{20 - 0.7 \times 2}{5.6 \text{k}} = 3.32 \text{(mA)}$$

(3)
$$I_1 = \frac{0.7}{3.3 \text{k}} = 0.21 \text{(mA)}$$

$$(4) I_2 = I_T - I_1 = 3.11 (mA)$$

EX:如圖 $\overline{}$, D_1 與 D_2 為理想二極體,為了使輸出電壓

V_o的值隨輸入 V_i之增大而變大,需選擇 V_i之(下限,上限)為? (89)

◆詳解:(1)若 V_i=0 時,D₁ OFF,D₂ ON,V_A=(5-1)× 1k / 1k + 1k +1=3(V)

故 $V_i \ge 3V$,才能使 D_i ON, V_o 值將隨 V_i 增大而變大,此為其下限電壓

(2)若 $V_A>5V$, D_2 OFF, V_O 將為定值(5V),故 V_i 之上限電壓為

$$(V_{r}-1) \times \frac{1k}{1k+1k} + 1 = V_{A} = 5(V)$$

 $(V_{r}-1) \times \frac{1}{2} = 4$,故 $V_{i} = 9(V)$

🗣 二極體的編號

(92)

- (1)1N4001~1N4007:整流二極體
- (2)1N4148:偏壓與溫度補償二極體
- (3)1N60:檢波二極體

§ 2-3 二極體的功用

- 🗣 二極體依功能和作用的不同,可分下列幾種:
 - (1) 檢波二極體:適用於高頻檢波電路。
 - (2) 整流二極體:適用於低頻整流電路。
 - (3) 偏壓二極體:適用於音響電路。
 - (4) 開關二極體:適用於控制電路。
 - (5) 保護、溫度補償與防止雜訊。
- 🦫 二極體具有單向導電的特性,主要作為檢波、整流和截波之用,但不能作 放大器。

§ 2-4 稽納二極體 (Zener Diode)

- ◆ 稽納二極體
 - (1) 又稱崩潰二極體(breakdown diode)或參考二極體(reference diode)
 - (2) 專門工作於**逆向崩潰電壓**,沒有負電阻特性。
 - (3) 功用:具有穩壓的作用,可作電壓調整器(voltage regulator),比較 電壓的參考元件和截波網路(chipping network)。
 - (4) 符號:

稽納二極體特性

當稽納二極體兩端的電壓**小於 V_Z** 時,稽納二極體是**呈現開路**(斷路, I_Z =0) 狀態。

當稽納二極體兩端的電壓大於(或等於) V_Z 時,稽納二極體崩潰導通,其端電壓等於 V_Z ,所以具穩壓作用。

EX:如圖 所示電路,假設稽納(Zener)二極體之 r_Z =20 Ω ,

 I_{ZK} =2mA, V_Z =6.7V,試求稽納二極體能適當工作在崩潰區之最小負載

電 阻 值 R_{L} = ? (90)

◆詳解:(1)稽納二極體(Zener Diode)正常工作的最小崩潰電壓為

$$V_{ZD} = V_Z + r_Z \times I_{ZK} = 6.7 + 20 \times 2 \times 10^{-3} = 6.74(V)$$

當 $V_{RL} \geq V_{ZL} \stackrel{\cdot}{=} V_Z$ =6.7V 時,稽納二極體才能正常工作

所以
$$12 \times \frac{R_L}{R + R_L} \ge V_Z$$

$$12 \times \frac{R_L}{0.5k + R_L} \ge 6.7$$
 得 $R_L \ge 0.63k\Omega$

EX:圖 中 V_{in} =20V、 R_s =1 $k\Omega$,稽納二極體 D_Z 的參數為

 $V_Z = 9.3V$ 、 $I_{ZK} = 1$ mA 及 $I_{ZM} = 6$ mA,若忽略其稽納電阻,且二極體 D_1

之膝點電壓 (knee voltage) 為 0.7V,則可讓稽納二極體 D_2 正常運作

之 最 低 負 載 電 阻 R_L= ? (92)

◆詳解:(1)稽納二極體正常運作(導通)後

$$V_{RL} = V_{D1} + V_Z = 0.7 + 9.3 = 10(V)$$

$$I_{RS} = \frac{V_{in} - V_{RL}}{R_S} = \frac{20 - 10}{1k} = 10 \text{(mA)}$$

(2)由於使稽納二極體正常運作的最小電流 IZK=1mA

所以讓稽納二極體正常運作的最低負載電阻

$$R_{L(\min)} = \frac{V_{RL}}{I_{RL(\max)}} = \frac{10V}{9mA} = 1.11k\Omega$$

§ 2-5 其他二極體

- 發光二極體(Light Emitting Diode)
 - (1) 簡稱 LED
 - (2) 符號:

- (3) 工作於順向偏壓。
- (4) LED 發光度與順向電流 I_f 成正比,一般 LED 之工作電壓約 $1.7V \sim 3.3V$,工作電流約 $10 \sim 15 \text{mA}$ 。
- (5) LED 是使用的材料決定發光的光譜分佈。
- 光電二極體(Photo Diode)
 - (1) 符號:

- (2) 工作於逆向偏壓。
- (3) 當光電二極體在未受光時,具極高之電阻。
- (4) 光電二極體之逆向電流與光照射功率成正比變化。
- (5) 光電二極體的優點: 具有高交換速度。 低消耗功率。

● 變容二極體

(91)

- (1) 工作於逆向偏壓。
- (2) 變容二極體加逆向偏壓時,空乏區的寬度將隨逆向電壓的增加而增加,因此電容量變小,反之,若順向偏壓增加,則空乏區寬度減少,電容量變大。
- (3) 符號及特性曲線:

(a)符號

(b)電容、電壓特性曲線

- 蕭特基二極體(Schottky Diode)
 - (1) 符號:

(2) 工作於順向偏壓。

第三章 電源電路

§ 3-1 概論

- (1) 變壓器:升降交流電壓用。
- (2) 整流電路:將交流電轉變成脈動直流。
- (3) 濾波電路: 濾除整流電路輸出的脈動直流中所含的漣波成份, 使脈動直流變成較穩定的直流。
- (4) 電壓調整電路: 常稱為穩壓電路, 使輸出的電壓趨近於理想的直流電壓
- 如何判斷直流電源供給器性能
 - (1) 電壓調整率(Voltage Regulator):愈小愈理想,理想的 VR %為 0。 $VR \% = \frac{V_{NL} V_{FL}}{V_{FL}} \times 100\%$

其中: V_{NL} (無載電壓)係指 R_L = ∞ 時的輸出電壓。 V_{FL} (滿載電壓)係指 R_L = ∞ 時的輸出電壓。

(2) 漣波因數 (Ripple Factor): 愈小愈理想,理想的 r%為 0。 r% = $V_{r(ms)}$...1000/

 $r\% = \frac{V_{r(\text{rms})}}{V_{o(dc)}} \times 100\%$

其中 $V_{r(rms)}$ 為輸出波形的漣波電壓有效值 $V_{o(dc)}$ 為輸出波形的直流電壓(平均電壓)

EX:一電源供應器,其輸出阻抗為 2Ω ,開路電壓為 30V,滿載時所提供之電

◆詳解:(1)開路電壓即電源供應器的無載電壓 $V_{N\!L}$ =30V;而輸出阻抗即電源 供應器的內阻 R_S =2 Ω

(2)VR%
$$= \frac{V_{NL} - V_{FL}}{V_{FL}} \times 100\% = \frac{V_{NL} - (V_{NL} - I_{FL} \times R_S)}{V_{FL}} \times 100\%$$
$$= \frac{30 - (30 - 2.5 \times 2)}{30 - 2.5 \times 2} \times 100\% = 20\%$$

EX:一電源濾波電路之輸出包含了 20V 的直流成份及 2V_(rms)的漣波成份, 試計算此電路之漣波百分比? (88 年)

◆詳解:漣波百分比即漣波因數,其定義為

$$r\% = \frac{V_{r(\text{ms})}}{V_{o(\text{dc})}} \times 100\% = \frac{2}{20} \times 100\% = 10\%$$

§3-2 整流電路

● 半波整流(濾波)電路

(1)半波整流: 二極體只在某一半週導通(ON), 而另一半週則不導通(OFF)

有效值電壓
$$V_{rms}=rac{1}{2}V_{m}=0.5V_{m}$$
 平均值電壓 $V_{dc}=rac{1}{\pi}V_{m}=0.318V_{m}=0.45V_{rms}$

(2)半波整流濾波

(3) 半波整流電路與半波整流濾波電路的比較

電路型式	$V_{o(dc)}$	PIV	r %	f_o
半波整流	$rac{1}{\pi}V_m$	V_m	121%	f_i
半波整流濾波	V_m	$2V_m$	$\frac{4.8}{R_L \times C}$	f_i

 $V_{o(dc)}$:輸出直流電壓。

PIV: 二極體的峰值逆向電壓。

r%:漣波因數(百分比)。

 f_o :輸出波形(漣波)頻率。

 f_i : 輸入波形頻率。

EX:右圖所示,半波整流電路,求輸出的平

均功率 P_{dc} 約為? (83、84年)

60Hz

 $N_1:N_1=10:1$

$$\therefore V_{o(dc)} = \frac{1}{\pi} V_m = 0.45 V_{\text{rms}} = 0.45 \times 11 = 4.95 (\text{V})$$

$$(3) P_{dc} = \frac{V_0^2}{R_L} = \frac{(4.95)^2}{1 \text{k}} = 24.5 (\text{mW})$$

全波整流(濾波)電路

(1) 全波整流:

a、橋式整流(最常使用的整流電路)

工作原理

正半週: D1、D3 ON, D2、D4 OFF。

負半週:*D*1、*D*3 OFF,*D*2、*D*4 ON。

,

b、中心抽頭式整流

工作原理

正半週:*D*1 ON,*D*2 OFF。

負半週: D1 OFF, D2 ON。

