Welcome to the Machine Prequisites

Yinbo Wang

School of Statistics, RUC

May 9, 2025

Prequisites

Learning by doing

Math

- Linear Algebra
- Matrix Calculus
- Probability Theory
- Mathematical Statistics

Coding

- Python
- Numpy
- PyTorch

0-0 NumPy ('numpy')

Numerical Python

What is it?

- Fundamental package for scientific computing in Python.
- Provides a high-performance multidimensional array object and tools for working with these arrays.

Core Object: 'ndarray'

- Fast, memory-efficient multidimensional array for homogeneous data.
- Dimensions:
 - 1D: Vector
 - 2D: Matrix
 - 3D+: Tensor

0-1 NumPy: Key Features & Why Use It

Key Features

- **Vectorized Operations**: Element-wise ops on arrays without Python loops (much faster).
- **Broadcasting**: Operations on arrays of different shapes.
- Rich Functionality: Math functions, linear algebra, random numbers.
- Interoperability: Base for Pandas, SciPy, Scikit-learn, PyTorch.

Why Use It?

- **Performance**: Significantly faster than pure Python.
- **Convenience**: Concise syntax for numerical operations.
- Foundation: Bedrock of scientific Python.

0-2 NumPy: Simple Example

Basic Operations

```
import numpy as np
# Create a NumPy array from a Python list
a = np.array([1, 2, 3, 4, 5])
b = np.array([6, 7, 8, 9, 10])
 Element-wise addition (vectorized)
c = a + b
print(f"a: {a}")
print(f"b: {b}")
print(f"a + b: {c}")
# Scalar multiplication
d = a * 2
print(f"a * 2: {d}")
# Create a 2D array (matrix)
matrix = np.array([[1, 2, 3], [4, 5, 6]])
print(f"Matrix:\n{matrix}")
print(f"Matrix shape: {matrix.shape}")
```

0-3 PyTorch ('torch')

Machine Learning Framework

What is it?

- Open-source machine learning framework (Meta AI).
- Known for flexibility, ease of use, Python integration.
- Widely used for deep learning research and production.

Core Object: 'Tensor'

- Multi-dimensional arrays, similar to NumPy's 'ndarray'.
- Key Difference: Can be moved to GPUs for parallel computation.
- Basis of Automatic Differentiation (Autograd).

0-4 PyTorch: Key Features

- GPU Acceleration: Seamlessly run computations on GPUs.
- Automatic Differentiation ('torch.autograd'):
 - Automatically computes gradients.
 - Backbone of training neural networks via backpropagation.
 - Builds a "computational graph" dynamically.
- Neural Network Module ('torch.nn'): Pre-defined layers, loss functions.
- Optimization Algorithms ('torch.optim'): SGD, Adam, etc.
- Utilities: Data loading, distributed training.
- Dynamic Computational Graphs: Graph built "on the fly", easier debugging, flexible architectures.

0-5 PyTorch: Why Use It for ML/DL?

Advantages

- Python-first: Natural for Python developers.
- Flexibility & Control: Balance of high-level abstractions and low-level control.
- Strong Research Community: Rapid adoption of new ideas.
- Ease of Debugging: Dynamic graphs aid inspection.

0-6 PyTorch: Simple Example

Basic Operations

```
import torch
a = torch.tensor([1, 2, 3, 4, 5], dtype=torch.float32)
b = torch.tensor([6, 7, 8, 9, 10], dtype=torch.float32)
# Element-wise addition
c = a + b
print(f"a + b: {c}")
# Scalar multiplication
d = a * 2
print(f"a * 2: {d}")
# Create a 2D tensor (matrix)
matrix = torch.tensor([[1, 2, 3], [4, 5, 6]], dtype=torch.float32)
print(f"Matrix:\n{matrix}")
print(f"Matrix shape: {matrix.shape}")
# Automatic differentiation example
x = torch.tensor(2.0, requires_grad=True)
y = x**2 + 3*x + 1
v.backward() # Computes gradients dv/dx
print(f"x: {x}")
print(f''y = x^2 + 3x + 1: \{y\}'')
print(f''dv/dx \text{ at } x=2: \{x.grad\}''\} # Expected: 2*x + 3 = 2*2 + 3 = 7
```

0-7 NumPy vs. PyTorch Tensors

- PyTorch tensors can be easily converted to NumPy arrays and vice-versa.
- tensor.numpy(): PyTorch Tensor \rightarrow NumPy array.
- torch.from_numpy(ndarray): NumPy array → PyTorch Tensor.

Interoperability

```
numpy_arr = np.array([10, 20, 30])
pytorch_tensor = torch.from_numpy(numpy_arr)
print(f"From NumPy to PyTorch: {pytorch_tensor}")

new_numpy_arr = pytorch_tensor.numpy()
print(f"From PyTorch to NumPy: {new_numpy_arr}")

# If a tensor is on GPU, you need to move it to CPU first
# if torch.cuda.is_available():
# gpu_tensor = torch.tensor([1,2,3], device="cuda")
# # cpu_tensor = gpu_tensor.cpu() # Move to CPU
# numpy_arr_from_gpu = cpu_tensor.numpy()
```

1-0 Linear Algebra

Overview

Linear algebra is the branch of mathematics concerning vector spaces and linear mappings between them. In ML, it's fundamental for **representing data**, **defining transformations**, **and solving systems of equations**.

Why it's important for ML/DL?

- Data Representation: Datasets as matrices, multimedia as tensors.
- Model Parameters: Weights and biases as matrices/vectors.
- Transformations: Core operations in NNs (matrix multiplications).
- Dimensionality Reduction: E.g., PCA.
- Optimization: Solving linear systems.

1-1 Scalars, Vectors, Matrices, Tensors

- **Scalar**: A single number (e.g., 5, 3.14).
- **Vector**: An ordered array of numbers.
 - In ML: Represents a single data point or feature vector.
- Matrix: A 2D array of numbers.
 - In ML: Represents a dataset or model parameters (NN layer weights).
- Tensor: Generalization to N dimensions.
 - 0D: Scalar, 1D: Vector, 2D: Matrix.
 - 3D: RGB image (height, width, channels).
 - 4D: Batch of RGB images (batch, height, width, channels).

NumPy/PyTorch Implementation

Both libraries provide powerful tools for these:

- NumPy: np.array(), .shape, .ndim
- PyTorch: torch.tensor(), .shape, .ndim, dtype

1-2 Dot Product (Inner Product)

- For vectors \mathbf{a}, \mathbf{b} of length n: $\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i$. Result is a scalar.
- Geometric: $\mathbf{a} \cdot \mathbf{b} = ||\mathbf{a}|| \cdot ||\mathbf{b}|| \cos(\theta)$.
 - Measures similarity/alignment. Orthogonal if $\mathbf{a} \cdot \mathbf{b} = 0$.

- NumPy: np.dot(a,b), a @ b, np.sum(a*b)
- PyTorch: torch.dot(a,b), torch.matmul(a,b), a @ b

1-3: Matrix Multiplication

- A $(m \times n)$, B $(n \times p) \implies C = AB$ is $m \times p$.
- $C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$ (dot product of *i*-th row of **A** and *j*-th col of **B**).
- Order matters: $AB \neq BA$ generally.
- Fundamental in NNs: output = activation(weights @ inputs + bias).

- NumPy: np.matmul(A,B), A @ B
- PyTorch: torch.matmul(A,B), A @ B, torch.mm(A,B) (for 2D only)

1-4 Transpose

- A^T: Flips matrix over main diagonal. Rows become columns.
- If **A** is $m \times n$, \mathbf{A}^T is $n \times m$. $(A^T)_{ij} = A_{ji}$.
- Property: $(\mathbf{AB})^T = \mathbf{B}^T \mathbf{A}^T$.

- NumPy: A.T, np.transpose(A)
- PyTorch: A.T, torch.transpose(A, 0, 1)

1-5 Inverse & Pseudo-inverse

- Inverse (A^{-1}) : For square A, if it exists.
 - $AA^{-1} = A^{-1}A = I$ (identity).
 - Only exists if **A** is non-singular (determinant \neq 0).
 - Solves $\mathbf{A}\mathbf{x} = \mathbf{b} \implies \mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$.
- Pseudo-inverse (A⁺): Generalization for non-square or singular matrices.
 - Finds "best fit" (least squares) solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$.
 - Used in Linear Regression (Normal Eq. $\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$).

- NumPy: numpy.linalg.inv(), numpy.linalg.pinv()
- PyTorch: torch.linalg.inv(), torch.linalg.pinv()

1-6 Determinant

- Scalar value from a square matrix.
- Geometrically: Signed area (2D) or volume (3D) of parallelogram/parallelepiped formed by column/row vectors.
- If determinant is 0, matrix is singular (no inverse, transformation collapses space).

- NumPy: numpy.linalg.det()
- PyTorch: torch.linalg.det()

1-7 Eigenvalues & Eigenvectors

- For square **A**, eigenvector **v** and eigenvalue λ : **Av** = λ **v**.
- Vector \mathbf{v} 's direction is unchanged by \mathbf{A} , only scaled by λ .
- Eigenvectors: Principal axes of transformation by A.
- Eigenvalues: Scaling factor along these axes.
- Crucial for PCA, matrix powers, stability analysis.

- NumPy: numpy.linalg.eig()
- PyTorch: torch.linalg.eig() (complex), torch.linalg.eigh() (real symmetric)

1-8: Singular Value Decomposition (SVD)

- Factorization of any $m \times n$ matrix **A** into $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$.
 - **U**: $m \times m$ orthogonal (left singular vectors).
 - Σ : $m \times n$ diagonal (singular values $\sigma_i \geq 0$).
 - V^T : $n \times n$ orthogonal (rows are right singular vectors).
- ullet Singular values pprox "strengths" of principal components.
- Applications: PCA, dimensionality reduction, matrix approximation, pseudo-inverse computation.
- Reconstructing A from U, S, Vh is common: U @ Sigma_matrix @ Vh.

- NumPy: numpy.linalg.svd()
- PyTorch: torch.linalg.svd()

2-0 Matrix Calculus

Overview

Extends calculus concepts (derivatives, gradients) to functions involving matrices and vectors. Essential for optimizing ML models.

Why it's important for ML/DL?

- Optimization: Most ML models are trained by minimizing a loss function. Gradient Descent requires computing gradients of loss w.r.t. model parameters (matrices/vectors).
- Backpropagation: Algorithm for training NNs, an application of chain rule from matrix calculus.

2-1 Gradient

- For a scalar-valued function $f(\mathbf{x})$ of a vector $\mathbf{x} = [x_1, \dots, x_n]^T$.
- Gradient $\nabla_{\mathbf{x}} f(\mathbf{x})$ is a vector of partial derivatives:

$$abla_{\mathbf{x}} f(\mathbf{x}) = egin{bmatrix} rac{\partial f}{\partial x_1} \ dots \ rac{\partial f}{\partial x_n} \end{bmatrix}$$

• Points in direction of steepest ascent. $-\nabla_{\mathbf{x}} f(\mathbf{x})$ points in direction of steepest descent.

2-2 Jacobian

- For a vector-valued function $f(x) : \mathbb{R}^n \to \mathbb{R}^m$.
- Jacobian matrix **J** is an $m \times n$ matrix of all first-order partial derivatives: $J_{ij} = \frac{\partial f_i}{\partial x_i}$.

$$\mathbf{J} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix} = \begin{bmatrix} (\nabla_{\mathbf{x}} f_1(\mathbf{x}))^T \\ \vdots \\ (\nabla_{\mathbf{x}} f_m(\mathbf{x}))^T \end{bmatrix}$$

• If m = 1 (scalar function), Jacobian is transpose of gradient vector.

2-3 Hessian

- For a scalar-valued function f(x) of a vector x.
- Hessian matrix **H** is an $n \times n$ matrix of second-order partial derivatives: $H_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$.

$$\mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

 Describes local curvature of the function. Used in second-order optimization (e.g., Newton's method).

2-4 Chain Rule (for vectors/matrices)

- Scalar case: If y = f(u) and $u = g(\mathbf{x})$, then $\frac{\partial y}{\partial x_i} = \frac{df}{du} \frac{\partial g}{\partial x_i}$.
- Vector case: If $\mathbf{z} = f(\mathbf{y})$ and $\mathbf{y} = g(\mathbf{x})$, then the Jacobian of \mathbf{z} w.r.t. \mathbf{x} is:

$$J_x(z)=J_y(z)J_x(y)$$

• Fundamental principle behind backpropagation in neural networks.

2-5 PyTorch Implementation (Autograd)

Core Idea: 'autograd'

PyTorch's 'autograd' package automatically computes gradients.

- Tensors can track operations if requires_grad=True.
- A computation graph is built dynamically.
- loss.backward() computes gradients of 'loss' w.r.t. all parameters with requires_grad=True.
- Gradients are stored in the .grad attribute of tensors.

Scalar Output Example (Conceptual)

```
x = torch.tensor([1.,2.,3.])
w = torch.tensor([0.1,0.2,0.3], requires_grad=True)

y = (w @ x)**2  # Forward pass, builds graph
y.backward()  # Backward pass, computes dy/dw

print(w.grad)  # Access gradient dy/dw
```

2-5 PyTorch Implementation (Autograd)

- For full Jacobians/Hessians: torch.autograd.functional.jacobian, torch.autograd.functional.hessian.
- 'backward()' computes gradients essential for optimization via gradient descent.

Vector Output Example (Conceptual)

```
x = torch.tensor([1.,2.,3.])
w = torch.tensor([0.1,0.2,0.3], requires_grad=True)

# For Jacobian
# Define the function whose Jacobian is sought
def compute_model_output(weights_arg):
# 'x' is captured from the outer scope where it's defined.
# 'weights_arg' will be the 'w' tensor when 'jacobian' is called.
return torch.stack([weights_arg @ x, (weights_arg**2).sum()])

jacobian = torch.autograd.functional.jacobian(compute_model_output, w)
print(jacobian) # Access Jacobian
```

3-0 Probability Theory

Quantifying Uncertainty and Randomness

Concept

The mathematical framework for **quantifying uncertainty and randomness**. In its modern, axiomatic formulation, probability is a type of measure.

Why it's important for ML/DL?

- Modeling Uncertainty: Data is noisy, processes are stochastic.
- Generative Models: Learn probability distributions (GANs, VAEs).
- Loss Functions: Derived from probabilistic principles (e.g., cross-entropy).
- Bayesian Methods: Probabilistic approach to inference.

3-1 Probability Space (Ω, \mathcal{F}, P)

Models a random process with three components:

- Sample Space (Ω) : Set of all possible outcomes.
 - Coin flip: $\Omega = \{H, T\}$. Dice roll: $\Omega = \{1, 2, 3, 4, 5, 6\}$.
- Event Space (\mathcal{F} or Sigma-Algebra): Collection of subsets of Ω (events) to which we assign probabilities. Must satisfy:

 - ② If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$ (closed under complement)
 - **1** If $A_1, A_2, \dots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$ (closed under countable unions)
- **Probability Measure** (*P*): Function $P : \mathcal{F} \to [0,1]$ satisfying Kolmogorov Axioms:
 - **1** Non-negativity: $P(A) \ge 0$ for any event A.
 - 2 Normalization: $P(\Omega) = 1$.
 - **3** Countable Additivity: For disjoint events A_i , $P(\bigcup A_i) = \sum P(A_i)$.

3-2 Random Variables (RV)

- **Intuition**: Assigns a numerical value to each outcome in Ω .
- Formal Definition: A function $X:\Omega\to\mathbb{R}$ such that for every Borel set $B\subset\mathbb{R}$ (any "reasonable" subset), its pre-image $X^{-1}(B)=\{\omega\in\Omega:X(\omega)\in B\}$ is an event in \mathcal{F} .
 - This is **measurability**. Ensures we can ask $P(X \in B)$.
 - Sufficient to check for $B = (-\infty, x]$, i.e., $\{\omega : X(\omega) \le x\} \in \mathcal{F}$. This allows defining CDF.
- Types:
 - Discrete RV: Takes finite or countably infinite distinct values.
 - Continuous RV: Can take any value in a continuous interval.

3-3 Cumulative Distribution Function (CDF)

- For any RV X, its CDF $F_X(x) = P(X \le x)$.
- Properties:
 - 1 Non-decreasing: $a < b \implies F_X(a) \le F_X(b)$.
 - 2 Limits: $\lim_{x\to -\infty} F_X(x) = 0$, $\lim_{x\to +\infty} F_X(x) = 1$.
 - 3 Right-continuous: $\lim_{h\to 0^+} F_X(x+h) = F_X(x)$.
- $P(a < X \le b) = F_X(b) F_X(a)$.

3-4 Probability Mass Function (PMF) (Discrete RVs)

- For a discrete RV X taking values in $S = \{x_1, x_2, \dots\}$.
- PMF $p_X(x) = P(X = x)$.
- Properties:
- Examples: Bernoulli(p), Binomial(n, p), Poisson(λ).

3-5 Probability Density Function (PDF) (Continuous RVs)

- For a continuous RV X, its PDF $f_X(x)$ is such that $F_X(x) = \int_{-\infty}^x f_X(t) dt$.
- $f_X(x) = \frac{dF_X(x)}{dx}$ where $F_X(x)$ is differentiable.
- Important: $f_X(x)$ is NOT P(X = x). For continuous RVs, P(X = x) = 0.
- $P(a < X \le b) = \int_a^b f_X(x) dx$.
- Properties:
 - $f_X(x) \ge 0$. (PDF values can be > 1).

3-6 Expected Value, Variance, Covariance

- Expected Value (Mean E[X] or μ_X):
 - Discrete: $E[g(X)] = \sum_{x \in S} g(x) p_X(x)$.
 - Continuous: $E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$.
- Variance (Var(X) or σ_X^2):
 - $Var(X) = E[(X E[X])^2] = E[X^2] (E[X])^2$.
 - Standard Deviation: $\sigma_X = \sqrt{Var(X)}$.
- Covariance (Cov(X, Y)): (Requires joint distribution)
 - Cov(X, Y) = E[(X E[X])(Y E[Y])] = E[XY] E[X]E[Y].
- Correlation (ρ_{XY}) : $\frac{Cov(X,Y)}{\sigma_X\sigma_Y}$.
- PyTorch distributions often have .mean, .variance properties.

3-7 Joint, Marginal, Conditional Distributions

- Joint Distribution: Describes simultaneous behavior of multiple RVs.
 - $F_{X,Y}(x,y) = P(X \le x, Y \le y)$ (Joint CDF).
 - $p_{X,Y}(x,y) = P(X = x, Y = y)$ (Joint PMF).
 - $f_{X,Y}(x,y)$ (Joint PDF).
- Marginal Distribution: Distribution of a subset of RVs, "averaging out" others.
 - $\bullet \ p_X(x) = \sum_{y} p_{X,Y}(x,y).$
 - $f_X(x) = \int f_{X,Y}(x,y)dy$.
- Conditional Distribution: Distribution of one RV given specific values for others.
 - $p_{Y|X}(y|x) = P(Y = y|X = x) = \frac{p_{X,Y}(x,y)}{p_X(x)}$. (Similar for PDF).
- Chain Rule: p(x,y) = p(y|x)p(x). Generalizes to many variables, key for graphical models.

3-8 Independence and Conditional Independence

• Independence of RVs (X ⊥ Y):

- Joint distribution factors: $p_{X,Y}(x,y) = p_X(x)p_Y(y)$ (or $f_{X,Y}(x,y) = f_X(x)f_Y(y)$).
- Knowing one gives no info about the other: $p_{Y|X}(y|x) = p_Y(y)$.
- If independent, Cov(X, Y) = 0. (Converse not always true unless jointly Normal).

• Conditional Independence $(X \perp Y|Z)$:

- $p_{X,Y|Z}(x,y|z) = p_{X|Z}(x|z)p_{Y|Z}(y|z)$.
- $p_{X|Y,Z}(x|y,z) = p_{X|Z}(x|z)$ (Given Z, Y gives no extra info about X).
- Cornerstone of probabilistic graphical models (e.g., Naive Bayes assumes features are conditionally independent given class).

3-9 Limit Theorems: LLN and CLT

Sum/average of many i.i.d. RVs tends towards Normal distribution.

Law of Large Numbers (LLN)

- Let X_1, \ldots, X_n be i.i.d. with mean μ . Sample mean $\bar{X}_n = \frac{1}{n} \sum X_i$.
- Weak LLN: $\lim_{n\to\infty} P(|\bar{X}_n \mu| < \epsilon) = 1$. (Convergence in probability).
- Strong LLN: $P(\lim_{n\to\infty} \bar{X}_n = \mu) = 1$. (Almost sure convergence).
- Importance: Justifies Monte Carlo, param estimation, empirical risk.

Central Limit Theorem (CLT)

- Let X_i be i.i.d. with mean μ , variance σ^2 .
- Standardized sum/mean: $Z_n = \frac{\sum X_i n\mu}{\sigma\sqrt{n}} = \frac{\bar{X}_n \mu}{\sigma/\sqrt{n}} \xrightarrow{d} N(0, 1)$.
- So, $\bar{X}_n \approx N(\mu, \sigma^2/n)$ for large n.
- Importance: Foundation for CIs, explains ubiquity of Normal dist.

3-10 Concentration Inequalities

Non-asymptotic bounds on deviation from expectation.

• Markov's Inequality: For non-negative RV X, a > 0:

$$\mathbb{P}(X \ge a) \le \frac{\mathbb{E}[X]}{a}$$

- General but often loose. X must be non-negative.
- **Chebyshev's Inequality**: For RV X with mean μ , variance σ^2 , k > 0:

$$\mathbb{P}(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

• Stronger than Markov, uses variance. Applies to any distribution with finite mean/var.

3-10 Concentration Inequalities

Non-asymptotic bounds on deviation from expectation.

• Extended Markov's Inequality:

• If φ is a nondecreasing nonnegative function, X is a (not necessarily nonnegative) random variable, and $\varphi(a) > 0$, then

$$\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}[\varphi(X)]}{\varphi(a)}.$$

• Corollary (Higher Moments): For any RV X, integer $n \ge 1$, and a > 0:

$$\mathbb{P}(|X| \ge a) \le \frac{\mathbb{E}[|X|^n]}{a^n}.$$

(This follows by applying the extended form to the RV |X| with $\varphi(x) = x^n$ for $x \ge 0$).

3-10 Concentration Inequalities

Further bounds and extensions.

• **Hoeffding's Inequality**: For sum S_n of n independent bounded RVs $X_i \in [a_i, b_i]$:

$$\mathbb{P}(S_n - \mathbb{E}[S_n] \ge t) \le \exp\left(-\frac{2t^2}{\sum (b_i - a_i)^2}\right)$$

For i.i.d. Bernoulli(p) variables, $\bar{X}_n = \hat{p}$: $\mathbb{P}(|\hat{p} - p| \ge \epsilon) \le 2 \exp(-2n\epsilon^2)$.

- Tighter for bounded RVs, exponential decay. Crucial for generalization bounds in ML.
- Others: Chernoff, Bernstein, McDiarmid (more specialized/tighter).

Mathematical Statistics

Learning from Data in the Presence of Uncertainty

Core Idea

Using data to infer properties of an unknown underlying probability distribution or model.

Probability Theory:

- ullet Model o Data
- Known model, predict outcomes.
- Deductive.
- "If coin is fair, *P*(7*H* in 10)?"

Statistics:

- ullet Data o Model
- Unknown model, infer from data.
- Inductive.
- "Given 7H in 10, is coin fair?"

Why it's important for ML/DL?

 Parameter Estimation, Model Building/Selection, Model Evaluation, Uncertainty Quantification, Understanding Generalization.

4-1 Statistical Inference: The Goal

Deduce properties of an underlying probability distribution from data.

- **Point Estimation**: Single "best" value for an unknown parameter (e.g., mean μ).
- **Interval Estimation**: Range of plausible values (e.g., confidence interval for μ).
- **Hypothesis Testing**: Decide between competing claims (e.g., is $\mu = 0$ vs $\mu \neq 0$?).
- **Prediction**: Predict future observations.

We primarily focus on point estimation for ML model training.

4-2 Samples, Statistics, Estimators

- Random Sample: X_1, \ldots, X_n i.i.d. from $f(x|\theta)$ or $p(x|\theta)$.
 - Observed data x_1, \ldots, x_n are realizations.
- **Statistic**: Function $T(X_1, ..., X_n)$ of sample, not depending on unknown θ .
 - E.g., sample mean \bar{X} , sample variance S^2 .
- **Estimator** $\hat{\theta}$: Statistic used to estimate θ . It's an RV.
- **Estimate**: Specific value $\hat{\theta}(x_1, \dots, x_n)$ from data.

Desirable Properties of Estimators

- Unbiasedness: $E[\hat{\theta}] = \theta$. (Bias: $E[\hat{\theta}] \theta$).
- Efficiency: Smaller variance among unbiased estimators.
- Consistency: $\hat{\theta}_n \xrightarrow{P} \theta$ as $n \to \infty$.
- **Sufficiency**: Captures all info about θ from sample.

4-3 Point Estimation: Maximum Likelihood Estimation (MLE)

Find parameter value that makes observed data most probable.

• **Likelihood Function** $L(\theta|\mathbf{x})$: Joint PMF/PDF of sample, viewed as function of θ for fixed data \mathbf{x} .

$$L(\theta|\mathbf{x}) = \prod_{i=1}^{n} f(x_i|\theta)$$
 (or $p(x_i|\theta)$)

- $L(\theta|\mathbf{x})$ is NOT a probability dist. for θ .
- MLE Principle: $\hat{\theta}_{MLE} = \arg \max_{\theta} L(\theta|\mathbf{x})$.
- Log-Likelihood $\ell(\theta|\mathbf{x})$: $\log L(\theta|\mathbf{x}) = \sum_{i=1}^{n} \log f(x_i|\theta)$.
 - Easier to work with (products to sums, numerical stability).
 - $\hat{\theta}_{MLE} = \arg\max_{\theta} \ell(\theta|\mathbf{x}).$
- **Finding MLE**: Differentiate $\ell(\theta|\mathbf{x})$ w.r.t θ , set to 0, solve. (Or numerical opt.)

4-4 MLE Examples

Example 1: Bernoulli parameter p

Data $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$. $k = \sum x_i$. $\ell(p|\mathbf{x}) = k \log p + (n-k) \log(1-p)$. $\implies \hat{p}_{MLE} = k/n = \bar{x}$ (sample proportion).

Example 2: Mean μ of Normal $N(\mu, \sigma^2)$ (σ^2 known)

$$\ell(\mu|\mathbf{x},\sigma^2) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum(x_i - \mu)^2$$
. $\implies \hat{\mu}_{MLE} = \frac{1}{n}\sum x_i = \bar{x}$ (sample mean).

4-5 MLE Properties

Properties of MLEs (under regularity conditions)

Consistent, Asymptotically Normal, Asymptotically Efficient, Invariance.

• May be biased for finite samples (e.g., $\hat{\sigma}_{MLE}^2$ for Normal).

MLE in Machine Learning

Many loss functions are Negative Log-Likelihoods (NLL). Minimizing NLL \equiv MLE.

- Cross-Entropy Loss (LogReg/Classification) = MLE.

4-6 Bayesian Inference & Maximum A Posteriori (MAP)

Incorporating Prior Beliefs

Frequentist (MLE):

- θ is fixed, unknown.
- Data is random.

Bayesian (MAP):

- θ is a random variable with a distribution.
- Data is observed, fixed.

Bayes' Theorem for Parameters

Posterior
$$P(\theta|\mathbf{x}) = \frac{\text{Likelihood } P(\mathbf{x}|\theta) \times \text{Prior } P(\theta)}{\text{Evidence } P(\mathbf{x})}$$

- **Prior** $P(\theta)$: Beliefs about θ before data.
- **Posterior** $P(\theta|\mathbf{x})$: Updated beliefs about θ after data.
- MAP Estimation: Point estimate maximizing posterior.

$$\begin{split} \hat{\theta}_{MAP} &= \arg\max_{\theta} P(\theta|\mathbf{x}) = \arg\max_{\theta} [P(\mathbf{x}|\theta)P(\theta)] \\ &= \arg\max_{\theta} [\ell(\theta|\mathbf{x}) + \log P(\theta)] \end{split}$$

4-7 MAP, MLE, and Regularization

- MAP vs MLE:
 - If prior $P(\theta)$ is uniform (flat), $\log P(\theta)$ is constant $\implies \hat{\theta}_{MAP} = \hat{\theta}_{MLE}$.
 - As data $n \to \infty$, likelihood dominates prior $\implies \hat{\theta}_{MAP} \to \hat{\theta}_{MLE}$.
- MAP and Regularization in ML:
 - Minimizing (NLL + Regularizer) \equiv MAP estimation.
 - L2 Regularization (Ridge/Weight Decay):

$$NLL(\mathbf{w}|\mathbf{x}) + \lambda ||\mathbf{w}||_2^2$$

Equivalent to MAP with Gaussian prior $N(0, \sigma_p^2)$ on weights **w**. $(\lambda \propto 1/\sigma_p^2)$

L1 Regularization (Lasso):

$$\mathsf{NLL}(\mathbf{w}|\mathbf{x}) + \lambda ||\mathbf{w}||_1$$

Equivalent to MAP with Laplacian prior on weights \mathbf{w} . Promotes sparsity.

Conceptual PyTorch MAP: Add log_prior term to loss: loss =
 -(log_likelihood + log_prior).

4-8 Hypothesis Testing & Confidence Intervals (Briefly)

- **Hypothesis Testing**: Formal procedure to decide between two competing statements (H_0 : null, H_A : alternative) about a population based on sample data.
 - Calculate test statistic → p-value.
 - **p-value**: $P(\text{observed data or more extreme } | H_0 \text{ is true}).$
 - If p-value j significance level α (e.g., 0.05), reject H_0 .
 - ML: Model comparison, feature significance.
- Confidence Intervals (CI): Range of values likely to contain true parameter value with certain confidence (e.g., 95% CI).
 - If repeated sampling, 95% of CIs would contain true parameter.
 - Measures uncertainty around point estimate.
- Crucial for rigorous model evaluation, A/B testing, scientific reporting in ML.

4-9 Bias-Variance Tradeoff (Statistical Perspective)

Decomposing Expected Prediction Error

Assume $Y = f_{true}(\mathbf{X}) + \epsilon$, with $E[\epsilon] = 0$, $Var(\epsilon) = \sigma_{\epsilon}^2$. Our learned model is $\hat{f}(\mathbf{X})$. Expected Prediction Error (EPE) at \mathbf{x}_0 for squared error loss:

$$EPE(\mathbf{x}_0) = \underbrace{(E_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(\mathbf{x}_0)] - f_{true}(\mathbf{x}_0))^2}_{\text{Bias}^2(\hat{f}(\mathbf{x}_0))} + \underbrace{E_{\mathcal{D}}[(\hat{f}_{\mathcal{D}}(\mathbf{x}_0) - E_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(\mathbf{x}_0)])^2]}_{\text{Variance}(\hat{f}(\mathbf{x}_0))} + \sigma_{\epsilon}^2$$

The final term is the Irreducible Error σ_{ϵ}^2 .

- **Bias**: Systematic error. Average difference between model's prediction and true function. (Underfitting: high bias).
- Variance: Model's sensitivity to specific training data. Variability of predictions if retrained on different datasets. (Overfitting: high variance).
- Irreducible Error: Noise inherent in data. Cannot be reduced.

4-9 Bias-Variance Tradeoff (Statistical Perspective)

The Tradeoff

- Increasing model complexity $\implies \downarrow$ Bias, \uparrow Variance.
- Decreasing model complexity $\implies \uparrow$ Bias, \downarrow Variance.
- Goal: Find balance to minimize total error. (Cross-validation, regularization, ensembles).

Questions?

Thank You!