GPIO (GENERAL PURPOSE INPUT/OUTPUT)

1. Présentation

STM32F407 dispose de 9 ports d'entrées/sorties de 16 bits (dénommés GPIOA à GPIOI), partagés avec d'autres périphériques,. A chaque port I/O est associé quatre registres de configuration 32 bits (GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR et GPIOx_PUPDR), deux registres de données 32bits (GPIOx_IDR and GPIOx_ODR), un register de 32bits set/reset (GPIOx_BSRR), un registre 32bits de verrouillage (GPIOx_LCKR) et deux registres 32 bits pour les fonctions secondaire (Alternate function) (GPIOx_AFRH and GPIOx_AFRL).

2. Configuration des broches

Chaque broche du port I/O peut être configurée selon les modes suivants :

- Entrée flottante
- Entrée pull-up (PU)
- Entrée pull-down (PD)
- Analogique
- Sorite drain ouvert (OD) avec résistance pull-up ou pull-down
- Sortie push-pull (PP) avec résistance pull-up ou pull-down
- Alternate Function push-pull avec résistance pull-up ou pull-down
- Alternate Function drain ouvert avec résistance pull-up ou pull-down

La configuration de chaque proche est décrite par le tableau suivant :

MODER(i) [1:0]	OTYPER(i)		EDR(i) :A]	PUPDR(i) [1:0]		Configuration des I/O	
	0	SPEED		0	0	GP output	PP
	0			0	1	GP output	PP + PU
	0			1	0	GP output	PP + PD
01	0			1	1	Res	ervé
01	1	[B:	:A]	0	0	GP output	OD
	1			0	1	GP output	OD + PU
	1			1	0	GP output	OD + PD
	1			1	1	Reservé (GP output OD)	
	0			0	0	AF	PP
	0	SPEED [B:A]		0	1	AF	PP + PU
	0			1	0	AF	PP + PD
10	0			1	1	Reservé	
10	1			0	0	AF	OD
	1			0	1	AF	OD + PU
	1			1	0	AF	OD + PD
	1			1	1	Res	ervé
	X	X	Χ	0	0	input	Floating
00	X	X	Χ	0	1	input	PU
00	X	X	Х	1	0	input	PD
	X	Х	Χ	1	1	Reservé (in	out floating)
	X	Χ	Χ	0	0	Input / output	Analog
11	X	Χ	Χ	0	1		
	X	Χ	Χ	1	0	Res	ervé
	X	X	X	1	1		

GP = general-purpose, PP = push-pull, PU = pull-up, PD = pull-down, OD = open-drain, AF = alternate function

GPIO Registers.pdf

2.1. Multiplexage des proches

Chaque broche I/O peut être reliée à l'une de seize fonctions secondaires (Alternate Function AFO .. AF15) à travers les registres GPIOx AFRL et GPIO AFRH :

For pins 0 to 7, the GPIOx_AFRL[31:0] register selects the dedicated alternate function

For pins 8 to 15, the GPIOx_AFRH[31:0] register selects the dedicated alternate function

pinsSTM32.pdf

3. Caractéristiques Electriques

Table 12. Current characteristics

Symbol	Ratings	Max.	Unit
I _{VDD}	Total current into V _{DD} power lines (source) ⁽¹⁾	240	
I _{VSS}	Total current out of V _{SS} ground lines (sink) ⁽¹⁾	240	
I _{IO}	Output current sunk by any I/O and control pin	25	
	Output current source by any I/Os and control pin	25	mA
(2)	Injected current on five-volt tolerant I/O(3)	-5/+0	
I _{INJ(PIN)} (2)	Injected current on any other pin ⁽⁴⁾	±5	
ΣI _{INJ(PIN)} (4)	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	±25	

Table 48. I/O static characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	FT, TTa and NRST I/O input low	1.7 V ≤V _{DD} ≤3.6 V	-	-	0.3V _{DD} -0.04 ⁽¹⁾	
	level voltage		-	-	0.3V _{DD} ⁽²⁾	
V _{IL}	BOOT0 I/O input low level voltage	1.75 V ≤V _{DD} ≤3.6 V -40 °C≤T _A ≤105 °C	-	-	0.1V _{DD} -+0.1 ⁽¹⁾	
		1.7 V ≤V _{DD} ≤3.6 V 0 °C≤T _A ≤105 °C	-	-	0.1VDD=+0.1V	v
V _{IH}	FT, TTa and NRST I/O input low level voltage	1.7 V ≤V _{DD} ≤3.6 V	0.45V _{DD} +0.3 ⁽¹⁾	-	-	
			0.7V _{DD} ⁽²⁾	-	-	
	BOOT0 I/O input low level	1.75 V ≤V _{DD} ≤3.6 V -40 °C≤T _A ≤105 °C	0.171/ .0.7(1)	-	-	
	voltage	1.7 V ≤V _{DD} ≤3.6 V 0 °C≤T _A ≤105 °C	· 0.17V _{DD} +0.7 ⁽¹⁾	-	-	

Table 49. Output voltage characteristics⁽¹⁾

The state of the s					
Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽²⁾	Output low level voltage	CMOS port	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage	I _{IO} = +8 mA 2.7 V < V _{DD} < 3.6 V	V _{DD} =0.4	-	V
V _{OL} (2)	Output low level voltage	TTL port	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage	I _{IO} =+ 8mA 2.7 V < V _{DD} < 3.6 V	2.4	-	V
V _{OL} ⁽²⁾⁽⁴⁾		I _{IO} = +20 mA	-	1.3	v
V _{OH} ⁽³⁾⁽⁴⁾		2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	*
V _{OL} ⁽²⁾⁽⁴⁾		I _{IO} = +6 mA	•	0.4	v
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage	2 V < V _{DD} < 2.7 V	V _{DD} -0.4	-	*

4. Librairie CMSIS: Cortex Microcontroller Software Interface Standard

Les fabricants des composants mettent à la disposition des développeurs une librairie « CMSIS software Pack ». La librairie « STM32 HAL Drivers », offre un

ensemble riche d'API pour interagir facilement avec les couches supérieures de l'application.

Type des variables CMSIS

Type C Standard ANSI	Type MISRA C	
Signed char	int8_t	
Signed short	int16_t	
Signed int	int32_t	
Signedint64	int64_t	
Unsigned char	uint8_t	
Unsigned short	uint16_t	
Unsigned int	uint32_t	
Unsignedint64	uint64_t	

Norme MISRA: Motor Industry Software Reliability Association

QUALIFICATEUR IO CMSIS

Qualificateur IO MISRA C	Type ANSI C	Description
#defineI	Volatile const	Read only
#defineO	Volatile	Write only
#defineIO	Volatile	Read and write

5. Manipulation des données en langage C (MapMemory.pdf)

5.1. Accès aux registres

L'adresse de base des périphériques : PERIPH_BASE = 0x40000000

GPIOA est situé au début de l'espace des périphériques, d'où :

```
#define GPIOA BASE (PERIPH BASE + 0x0000)
```

Les registres des ports d'entrées-sorties sont définis dans une structure :

On peut définir pour accéder aux éléments de la structure

```
GPIO_TypeDef *GPIOA;

GPIOA = (GPIO_TypeDef *) GPIOA_BASE

Pour accéder aux registres:

(*GPIOA).ODR = *0x2FD0;
```

GPIOA -> ODR = *0x2FD0 ;

Ou mieux

Cette solution est gourmande en mémoire, on doit réserver une case mémoire pour chaque PORT.

$GPIOA_BASE = 0x40020000$	MODDER
	OTYPER
	OSPEEDR
	PUPDR
	IDR
	ODR
	BSRR
	LCKR
	AFRH
	AFRL
GPIOA	0x4000000

On peut exploiter l'adresse directement sans passer par un pointeur :

```
((GPIO TypeDef *) GPIOA BASE)->ODR = 0x45ED ;
```

Il vaut mieux réduire l'écriture on définissant une équivalence :

```
#define GPIOA ((GPIO_TypeDef *) GPIOA_BASE)

Ce qui nous permet d'écrire :

GPIOA->ODR = *0x2FD0 ;
```

EXEMPLE 1:

- 1. Configurer les broches PD12, PD13, PD14 et PD15 en sortie.
- 2. Clignoter les 4 LEDs ensemble.

Initialisation:

```
RCC->AHB1ENR |= (1<<3);
GPIOD->MODER |= 0x55000000;
GPIOD->MODER &= 0x55FFFFFF;
GPIOD->OTYPER &= 0x0FFF;
GPIOD->OSPEEDR &=0x00FFFFFF;
```

Code:

Masquage

```
GPIOD->ODR &=0x0FFF;
HAL_Delay(500);
GPIOD->ODR |=0xF000;
HAL_Delay(500);
Bit SET/RESET
    GPIOD->BSRR = (uint32_t)(0xF<<12);
HAL_Delay(500);
GPIOD->BSRR = (uint32_t)(0xF<<28);
HAL_Delay(500);</pre>
```

5.2. Utilisation de la librairie CMSIS

Le fichier entête STM32F4xx.h comporte la définition des tous les registres des périphériques ainsi que la définition de toutes les constantes.

Définition des PORTS

```
#define APB1PERIPH_BASE

#define GPIOA_BASE
#define GPIOB_BASE
#define GPIOC_BASE
#define GPIOC_BASE
#define GPIOD_BASE
#define GPIOD_BASE
#define GPIOD_BASE
#define GPIOD_BASE
#define GPIOE_BASE
#define
```

```
(AHB1PERIPH BASE + 0x1800)
#define GPIOG BASE
                               (AHB1PERIPH BASE + 0x1C00)
#define GPIOH BASE
                               (AHB1PERIPH BASE + 0x2000)
#define GPIOI BASE
                             ((GPIO TypeDef *) GPIOA BASE)
#define GPIOA
                             ((GPIO_TypeDef *) GPIOB_BASE)
#define GPIOB
                             ((GPIO_TypeDef *) GPIOC BASE)
#define GPIOC
#define GPIOD
                             ((GPIO_TypeDef *) GPIOD_BASE)
                             ((GPIO_TypeDef *) GPIOE_BASE)
#define GPIOE
                             ((GPIO_TypeDef *) GPIOF_BASE)
#define GPIOF
                             ((GPIO_TypeDef *) GPIOG_BASE)
#define GPIOG
                             ((GPIO_TypeDef *) GPIOH BASE)
#define GPIOH
#define GPIOI
                             ((GPIO TypeDef *) GPIOI BASE)
```

CONFIGURATION DES BROCHES

Une broche peut se trouver d'un l'un des modes :

Structure de configuration d'une broche (fichier STM32F4xx_hal_gpio.h)

```
typedef struct
{
  uint32_t Pin;
  uint32_t Mode;
  uint32_t Pull;
  uint32_t Speed
  uint32_t Alternate;
}GPIO_InitTypeDef;
```

DEFINITION DU MODE

#define	GPIO MODE INPUT	0x0000000U
#define	GPIO MODE OUTPUT PP	0x0000001U
#define	GPIO_MODE_OUTPUT_OD	0x0000011U
#define	GPIO_MODE_AF_PP	0x0000002U
#define	GPIO_MODE_AF_OD	0x0000012U
#define	GPIO_MODE_ANALOG	0x0000003U
#define	GPIO_MODE_IT_RISING	0x10110000U
#define	GPIO_MODE_IT_FALLING	0x10210000U
#define	GPIO_MODE_IT_RISING_FALLING	0x10310000U

```
#define GPIO MODE EVT RISING
                                                       0x10120000U
#define GPIO MODE EVT FALLING
                                                        0x10220000U
#define GPIO MODE EVT RISING FALLING
                                                        0x10320000U
DEFINITION DE LA VITESSE
#define GPIO_SPEED_FREQ_LOW 0x00000000U
#define GPIO_SPEED_FREQ_MEDIUM 0x00000001U
#define GPIO_SPEED_FREQ_HIGH 0x00000002U
#define GPIO_SPEED_FREQ_VERY_HIGH 0x00000003U
DEFINITION DES RESISTANCES DE TIRAGE
#define GPIO NOPULL
                                0x0000000U
#define GPIO PULLUP
                                0x00000001U
#define GPIO PULLDOWN
                                0x00000002U
ENUMERATION BIT SET / RESER
 typedef enum
  GPIO PIN RESET = 0,
  GPIO PIN SET
}GPIO PinState;
DEFINITION DES BROCHES IO
#define GPIO PIN 0
                                         ((uint16_t)0x0001)
#define GPIO_PIN_1
                                         ((uint16_t)0x0002)
#define GPIO_PIN_2
                                        ((uint16_t)0x0004)
#define GPIO_PIN_3
                                         ((uint16_t)0x0008)
#define GPIO_PIN_4
                                         ((uint16_t)0x0010)
#define GPIO PIN 15
                                        ((uint16 t)0x8000)
#define GPIO PIN All
                                        ((uint16^-t)0xFFFF)
ALTERNATE PINS
```

Fichier « stm32f4xx hal gpio ex.h »

FONCTIONS DE MANIPULATION DES IO

Reprenons l'exemple des LEDs connectées aux broches PD12, PD13, PD14 et PD15

1. Validation de l'horloge du GPIOD:

```
appel à la fonction : __HAL_RCC_GPIOD_CLK_ENABLE();
```

2. Déclaration d'une structure de type : GPIO_InitTypeDef

3. Initialisation des champs de la structure :

```
GPIO_InitStruct.Pin = GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
```

4. Affectation des éléments de la structure aux registres de configurations du GPIOD

```
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
```

Exemple: HAL GPIO WritePin(GPIOB, GPIO PIN 5, GPIO PIN SET);

5.3. Généralisation

Pour faciliter l'utilisation de la librairie CMSIS, la procédure précédente s'applique à tous les périphériques : Timer, ADC, DAC, USART, SPI...

1. Les registres d'un périphérique donné sont définis dans une structure de type :

```
PPP TypeDef (PPP: non du périphérique, exemple gpio TypeDef)
```

2. Les bits de configuration du périphérique sont définis dans une structure de type :
PPP_InitTypeDef (exemple : GPIO_InitTypeDef)