Experiments

April 14, 2010

Power Analysis

- What sample size do I need in order to detect a certain departure from a null hypothesis?
- Power = 1 Pr(Type II error)
- Inherently hypothetical.

The Model

- There are $n_1 + n_2$ subjects, with n_1 assigned to treatment, the rest to controls.
- We assume an infinite population model, from which we are sampling randomly:
 - Model the treatment data as observed values of n_1 IID random variables Y_1, \ldots, Y_{n_1} .
 - Model the control data as observed values of n_2 IID random variables X_1, \ldots, X_{n_2} .
- Assume different population means μ_1 and μ_2 with a common variance σ^2 .

The Hypothesis Test

- The null hypothesis is $\mu_1 = \mu_2$
- Test: two-sided 5% test of the null against the alternative $\mu_1 \neq \mu_2$
- Given $\mu_1 = \mu_2 + k\sigma$ where k > 0 and the effect $k\sigma$ of interest.
- Where does σ come from?
 - Previous studies?
 - Theory?
- Assume n_1 and n_2 are large enough that the central limit theorem kicks in, and $\hat{\sigma} = \sigma$, where $\hat{\sigma}^2$ is the usual pooled estimator of variance.
- Let $f = \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$.
- The test statistic is $z = (\bar{Y} \bar{X})/s$, where $s = \hat{\sigma}f = \sigma f$

Power

- Under the alternative hypothesis, z is asymptotically distributed as $N(k^*, 1)$, where $k^* = k/f$.
- If Z is N(0,1), asymptoic power is then

$$P(Z > 1.96 - k^*) + P(Z < -1.96 - k^*)$$

, where 1.96 is for the standard two sided 95% confidence intervals.

• The typical benchmark used is power of 80% which corresponds to a $k^* = 2.85$.

An example: Bhavani (2009)

- Context: Local elections in Mumbai, where some consituencies were randomly assigned be part of a political quota system for women. Seats that are reserved change from election to election.
- The question: After reservations are withdrawn, what is the effect of the reservation on the likelihood of electing a woman politician?
- There are 37 constituencies in treatment and 81 in control.
- What is the power of this experiment?

Block What You Can; Randomize What You Can't

- When designing experiments it can—in most cases—be quite advantageous prior to randomization, to group like with like in strata called "blocks".
- A block should contain units whose potential outcomes are as similar as possibe. In other words, you want to minimize the variation that's not attributable to treatment.
- Randomization occurs within these strata and as a consequence, the grouped structure of the randomization must be taken into consideration in the analysis.
- Generally, one wants to decrease within-block heterogeneity (for efficiency) and increase across-block heterogeneity (for generalizability).
- In most situations, blocking will increase power. The better the covariates you use in the blocking stage, the greater the power.

ATE and Variance with Matched Pairs

Suppose that there exists 2n units and n matched-pairs are formed based on the observed treatment characteristics. An indicator variable, Z_j , is randomized by the experimentor with equal probability $Pr(Z_j) = \frac{1}{2}$ and determines which unit receives the treatment within the jth matched pair, where $j = 1, 2, \ldots, n$. T_{ij} is the treatment indicator variable.

- The estimand: $\tau_m = \frac{1}{2n} \sum_{i=1}^n \sum_{j=1}^2 (Y_{ij}(1) Y_{ij}(0))$
- The estimator is: $\hat{\tau}_m = \frac{1}{n} \sum_{j=1}^n \sum_{i=1}^2 (T_{ij} Y_{ij} (1 T_{ij}) Y_{ij})$

Variance Gains

- The variance estimator is $\sigma_m = \frac{1}{n(n-1)} \sum_{j=1}^n \{ (T_{ij} Y_{ij} (1 T_{ij}) Y_{ij}) \hat{\tau}_m \}^2$
- If you analyze the experiment as if it were completely randomized, your variance will be wrong!
- The difference between the variance of the ATE estimator under the completely randomized design $(\hat{\tau}_c)$ and the matched pair estimator is:

$$Var(\hat{\tau}_c) - Var(\hat{\tau}_m) = \frac{2}{n}cov(Y_{ij}(1), Y_{i'j}(0))$$

More on blocking

- Typically, the best covariate to block on is the previous outcome.
- If one wants to block on many covariates, just adapt a matching algorithm and try to acheive the best balance possible.
- Often one wants to block on geography, but be careful about SUTVA violations.
- What if the number of units varies from block to block? Then
 weight each block by the number of units before summing for
 treatment effect and variance calculations.