$$\operatorname{proy}_{H} \mathbf{v} = \langle \mathbf{v}, \mathbf{u}_{1} \rangle \mathbf{u}_{1} + \langle \mathbf{v}, \mathbf{u}_{2} \rangle \mathbf{u}_{2} + \dots + \langle \mathbf{v}, \mathbf{u}_{k} \rangle \mathbf{u}_{k}$$
 (6.3.6)

Las demostraciones de los siguientes teoremas son idénticas a sus contrapartes en \mathbb{R}^n demostrados en la sección 6.1.

Teorema 6.3.3

Sea H un subespacio de espacio de dimensión finita con producto interno V. Suponga que H tiene dos bases ortonormales $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ y $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k\}$. Sea $\mathbf{v} \in V$. Entonces

$$\langle \mathbf{v}, \mathbf{u}_1 \rangle \mathbf{u}_1 + \langle \mathbf{v}, \mathbf{u}_2 \rangle \mathbf{u}_2 + \cdots + \langle \mathbf{v}, \mathbf{u}_k \rangle \mathbf{u}_k = \langle \mathbf{v}, \mathbf{w}_1 \rangle \mathbf{w}_1 + \langle \mathbf{v}, \mathbf{w}_2 \rangle \mathbf{w}_2 + \cdots + \langle \mathbf{v}, \mathbf{w}_k \rangle \mathbf{w}_k$$

D

Definición 6.3.5

Complemento ortogonal

Sea H un subespacio del espacio con producto interno V. Entonces el **complemento ortogonal** de H, denotado por H^{\perp} , está dado por

$$H^{\perp} = \{ \mathbf{x} \in V : (\mathbf{x}, \mathbf{h}) = 0 \text{ para toda } \mathbf{h} \in H \}$$
 (6.3.7)

Teorema 6.3.4

Si H es un subespacio del espacio con producto interno V, entonces

- i) H^{\perp} es un subespacio de V.
- **ii)** $H \cap H^{\perp} = \{0\}.$
- iii) dim $H^{\perp} = n \dim H$ si dim $V = n < \infty$.

Teorema 6.3.5 Teorema de proyección

Sea H un subespacio de dimensión finita del espacio con producto interno V y suponga que $\mathbf{v} \in V$. Entonces existe un par único de vectores \mathbf{h} y \mathbf{p} tales que $\mathbf{h} \in H$, $\mathbf{p} \in H^{\perp}$, y

$$\mathbf{v} = \mathbf{h} + \mathbf{p} \tag{6.3.8}$$

donde $\mathbf{h} = \operatorname{proy}_H \mathbf{v}$.

Si V tiene dimensión finita, entonces $\mathbf{p} = \text{proy}_{H^{\perp}} \mathbf{v}$.

Observación. Si se estudia la prueba del teorema 6.1.7, se verá que (6.3.8) se cumple incluso si V tiene dimensión infinita. La única diferencia es que si la dimensión de V es infinita, entonces H^{\perp} tiene dimensión infinita (porque H es de dimensión finita); por consiguiente, proy $_{H^{\perp}}$ v no está definida.