Empirical analysis of dirty tracking overhead: COW vs Dirty Bit

drunKbiTs:

Nikhil Molugu

20111415

Tabish Ahmad

21111060

Niraj Kundu

Introduction

Finding amount of memory change is a task crucial for applications like CRIU. The project aims to analyze the overheads due to dirty tracking of two well-known techniques - COW technique and PTE dirty bit technique.

Dirty Bit Method

• We check for dirty bit in all the valid PTEs of the process.

- Steps:
 - Clear dirty bits,
 - Wait some time,
 - scan all valid PTE's dirty bits.

Dirty Bit - Implementation

- Kernel Module Clears dirty bits of PTEs. Checks the process' PTEs which have their dirty bit as set.
- Creates a char device "pgdv".
- Dirty bits can be cleaned or tracked by ioctl system call of our driver.

Results

- Benchmark Program:
 - Allocate some memory,
 - clear dirty bits
 - make changes to the memory,
 - scan dirty bits

Results

Results

Conclusion

- We were able to implement dirty bit tracking method.
- We show the overheads introduced by dirty bit clearing and checking.

Thank You