

HyperGCN: A New Method for Training Graph Convolutional Networks on Hypergraphs

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, Partha Talukdar Indian Institute of Science, Bangalore naganand@iisc.ac.in

 3.2 ± 2.0

Citeseer

Hypergraph Motivation

Networks have relationships beyond pairwise

co-citation

chemical reaction

Modelled flexibly by hypergraphs

Hypergraph Semi-Supervised Learning

$\mathcal{H} = (V, E, X)$

V: set of vertices

E: set of edges

X: matrix of vertex features

<u>Problem</u> Label the unlabelled vertices in Ugiven labelled vertices in V-U of hypergraph ${\cal H}$

<u>Challenges</u>

 $E \subseteq 2^V$ Arbitrary size

 $|V - U| \ll |U|$ Low supervision

Noisy edges

 $|\{y_v : v \in e\}| > 1, e \in E$

<u>Approaches</u>

 Explicit regularisation [Zhou et al., Hein et al.]

 $\mathcal{L} = \mathcal{L}_S + \lambda \cdot Q(\mathcal{H}, f)$

hyperedges encode similarity

Implicit regularisation [Feng et al.]

 $f_{Neural}(\mathcal{H},X) = ?$

need not encode similarity

HyperGCN

<u>Idea</u>

If the maximally disparate vertices of a hyperedge are close then so are all vertices of the hyperedge

: vertex signals e.g., embeddings

HyperGCN for Combinatorial Optimisation

Hyperedges need not encode similarity e.g., Densest k-Subhypergraph problem

$$W \subseteq V, |W| = k, \text{ maximise } |e \in E : e \subseteq W|$$

<u>Train</u>: Synthetic hypergraphs with optimal solutions, <u>Test</u>: Real-world hypergraphs

Results

Simple baseline: HyperGraph Neural Net

Cora Dataset HGNN 32.41 ± 1.8 37.40 ± 1.6 HyperGCN 32.37 ± 1.7 37.35 ± 1.6 FastHyperGCN 32.42 ± 1.8 37.42 ± 1.7

Avg. size

comparable on small hyperedges

test error (lower is better)

 3.0 ± 1.1

test error (lower is better)

Avg. size	8.5 ± 8.8	4.3 ± 5.7
Dataset	DBLP	Pubmed
HGNN	45.27 ± 2.48	29.41 ± 1.5
HyperGCN	41.64 ± 2.6	$\textbf{25.56} \pm \textbf{1.6}$
FastHyperGCN	41.79 ± 2.8	29.48 ± 1.6

training time (lower is better)

Dataset	DBLP	Pubmed
HGNN	0.115s	0.019s
FastHyperGCN	0.035s	0.016s

more accurate, faster on large noisy hyperedges

density for k = 0.75*|V| (higher is better)

	Dataset	DBLP	Pubmed	Cora	Citeseer
	HGNN	6274	7865	437	969
•	HyperGCN	7720	7928	504	971
	FastHyperGCN	7342	7893	452	969

training time (lower is better)

Type	Training Time	Density	
HGNN	170s	337	
FastHyperGCN	143s	352	

Contributions Summary

- Bridge deep learning, spectral hypergraph theory
- Approximate hyperedge by a linear no. edges
- Show gains on large, noisy hyperedges

Future Work

- Unsupervised learning
- Label correlation
- Hypergraph pooling

Acknowledgement

