MTH101: Lecture 12

Dr. Tai-Jun Chen, Dr. Xinyao Yang

Xi'an Jiaotong-Liverpool University, Suzhou

October 19, 2017

Singularities

Definition

We say the function f(z) is **Singular** or has a **Singularity** at $z = z_0$, if the function f is not analytic (or not defined) in z_0 , but in any neighborhood of z_0 there exist points at which f is analytic.

Definition

The point z_0 is called **Isolated Singularity**, if for some $\delta > 0$ the function f is analytic in $\{z \in \mathbb{C} : 0 < |z - z_0| < \delta\}$.

The function

$$f(z)=\frac{1}{z(3-z)},$$

is Analytic in $\mathbb{C} \setminus \{z_1 = 0, z_2 = 3\}$. The points z_1 and z_2 are **Isolated Singularities.**

The function

$$f(z) = \operatorname{Ln} z,$$

is Analytic in $\mathbb{C} \setminus \{z \in \mathbb{C} : y = 0, x \leq 0\}$. There are no(!) **Isolated Singularities**.

Definition

If z_0 is an **Isolated Singularity** for f, then by Laurents theorem we have that the function f(z) can be represented by a **Laurent Series**

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n},$$

in the Annulus

$$\{z \in \mathbb{C}: \quad 0 < |z - z_0| < \delta\}.$$

Classification of isolated singularities

Let $z_0 \in \mathbb{C}$ be an **Isolated Singularity** of f(z) and consider the Laurent Series of f(z):

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$
(Principal Part)

in the Annulus in which converges:

$$\{z \in \mathbb{C} : 0 < |z - z_0| < R\}.$$

Csae 1

If the **Principal Part** of the Laurent Series of f(z) has finitely many terms:

$$\frac{b_1}{z-z_0} + \frac{b_2}{(z-z_0)^2} + \dots + \frac{b_m}{(z-z_0)^m}$$
, with $b_m \neq 0$

that is $b_n = 0$ for k > m, then the **Isolated Singularity** z_0 is called a **Pole of Order m**.

In particular, if m = 1, then z_0 is called a **Simple Pole**.

Case 2

If the **Principal Part** of the Laurent Series of f (z) has infinitely many terms:

$$\sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n},$$

that is, if there exist infinitely many indexes n such that the term $b_n \neq 0$, then z_0 is called **Essential Singularity**.

Case 3

If the **Principal Part** of the Laurent Series of f(z) has no terms, that is if

$$b_n = 0$$
, for all $n \ge 1$,

then z_0 is called a **Removable Singularity**. By defining

$$f(z_0):=a_0,$$

we make f to be analytic in the open Disk:

$$\{z \in \mathbb{C} : |z - z_0| < \delta\}.$$

Study the singularity z = 2 of the function:

$$f(z)=\frac{1}{z(z-2)^2}.$$

Solution

The function f(z) has two **Isolated Singularities** $z_1 = 0$ and $z_2 = 2$, then it admits a Laurent Series with center $z_0 = 2$ in the Annulus:

$$0 < |z - 2| < 2$$
.

We need to write the Laurent Series and study its **Principal Part**. We use the Geometric Series and write f as a function of z-2 for $z \neq 0, 2$:

$$f(z) = \frac{1}{z(z-2)^2} = \frac{1}{(z-2)^2} \frac{1}{z-2+2} = \frac{1}{(z-2)^2} \frac{1}{2} \left(\frac{1}{1+\frac{z-2}{2}}\right)$$
$$= \frac{1}{2} \frac{1}{(z-2)^2} \left[\frac{1}{1-(-\frac{z-2}{2})}\right] = \frac{1}{2} \frac{1}{(z-2)^2} \sum_{n=0}^{\infty} \left(-\frac{z-2}{2}\right)^n$$
$$= \frac{1}{2} \frac{1}{(z-2)^2} \sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} (z-2)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} (z-2)^{n-2}.$$

Then

$$f(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} (z-2)^{n-2},$$

and the series converges for $|-\frac{z-2}{2}| < 1$ and $z \neq 0$, that is in the Annulus 0 < |z-2| < 2.

The **Principal Part** of the Laurent series is:

$$\frac{1}{2}(z-2)^{-2}-\frac{1}{4}(z-2)^{-1}.$$

The **Principal part** has finitely many terms (only two terms), in fact the coefficients satisfy

$$b_1 = -\frac{1}{4}$$
, $b_2 = \frac{1}{2}$, ..., $b_n = 0$ for all $n \ge 3$.

then z_0 is a **Pole of order 2** (since the biggest n such that $b_n \neq 0$ is n = 2).

Study the singularity of the function

$$f(z)=\sin\frac{1}{z}.$$

Solution

The function f(z) has only one **Isolated Singularity** for $z_0 = 0$, then it admits a Laurent Series in the Annulus:

$$0<|z|<+\infty.$$

We need to write the Laurent Series and study its **Principal Part**. We use the Series of sin(z) with center $z_0 = 0$:

$$\sin \mathbf{z} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \mathbf{z}^{2n+1}, \quad \text{for all } \mathbf{z} \in \mathbb{C},$$

then, for $z \neq 0$, we use the previous series and replace z by $\frac{1}{z}$:

$$\sin\frac{1}{z} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \left(\frac{1}{z}\right)^{2n+1}, \quad \text{for all } z \neq 0.$$

Then

$$\sin\frac{1}{z} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \frac{1}{z^{2n+1}}, \quad \text{for all } z \neq 0.$$

We observe that all the powers of the series are negative, this means that the **Principal Part** of the Laurent Series is

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \frac{1}{z^{2n+1}}.$$

It has infinitely many terms, then $z_0 = 0$ is an **Essential Singularity**.

Study the singularity of the function

$$f(z)=\frac{\sin z}{z}.$$

Solution

The function f(z) has only one **Isolated Singularity** for $z_0 = 0$, then it admits a Laurent Series in the Annulus:

$$0<|z|<+\infty$$
.

We need to write the Laurent Series and study its **Principal Part**. We use the Series of sin(z) with center $z_0 = 0$:

$$f(z) = \frac{1}{z} \sin z = \frac{1}{z} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n}, \quad \text{for all } z \neq 0$$

We observe that there are no negative powers in the series, then the **Principal Part** has no terms.

This means that $z_0 = 0$ is a **Removable Singularity**.

Moreover f(z) can be extended to a function g(z) which is analytic in the Set

$$|z| < \infty$$
, that is in \mathbb{C} .

In details

$$g(z) := \begin{cases} \frac{\sin z}{z}, & \text{if } z \neq 0, \\ a_0 = 1, & \text{if } z = 0. \end{cases}$$

where a_0 is the coefficient with n=0 of the Power Series. We observe that the above power Series is the Taylor Series of the function g(z).

Zeros of analytic functions

Definition

Let f(z) be an analytic function in the open disk $|z - z_0| < R$. We say that z_0 is a Zero of Order n if

$$f(z_0) = f'(z_0) = ... = f^{(n-1)}(z_0) = 0$$
, and $f^{(n)}(z_0) \neq 0$.

Remark

If z_0 is a **Zero of Order n** for f(z) then its Taylor Series is given by

$$f(z) = \sum_{k=n}^{\infty} a_k (z - z_0)^k = \sum_{k=n}^{\infty} \frac{f^{(k)}(z_0)}{k!} (z - z_0)^k,$$

where $a_n \neq 0$.

The function $f(z) = (z-2)^3$ has a zero of order 3 at $z_0 = 2$. We have:

$$f'(z) = 3(z-2)^2$$
, $f''(z) = 6(z-2)$, $f'''(z) = 6$,

from which

$$f(2) = f'(2) = f''(2) = 0, \quad f'''(2) = 6 \neq 0.$$

Theorem

If g(z) is Analytic at z_0 and has a **Zero of order n** at z_0 and if the function h(z) is Analytic at z_0 and $h(z_0) \neq 0$ then the function

$$f(z)=\frac{h(z)}{g(z)},$$

has a Pole of Order n at z_0 .

The function $f(z) = \frac{z}{(z-1)^3}$ has an isolated singularity at $z_0 = 1$. It can be written in the following way:

$$f(z) = \frac{h(z)}{g(z)}$$
, with $h(z) = z$, $g(z) = (z - 1)^3$.

The functions h(z) and g(z) are Analytic at z_0 . Moreover, $h(z_0) = 1 \neq 0$ and g(z) has a **Zero of order 3** at $z_0 = 1$ since

$$g(1) = g'(1) = g''(1) = 0, \quad g'''(1) \neq 0.$$

Then from the previous theorem f(z) has a **Pole of Order 3** at $z_0 = 1$.

Bibliography

1 Kreyszig, E. Advanced Engineering Mathematics. Wiley, 10th Edition.