IE630: Simulation Modelling & Analysis Output Analysis

Saurabh Jain
Assistant Professor
Department of Industrial Engineering and Operations Research
IIT Bombay

Quick Recap

......

Introduction

- We have a simulator that generates data. What should we do with it? First Possibility:
- Run the simulation with typical input settings.
- If the results look good → Recommend the system or suggest improvements.
- If the results look bad → Ask the system designers to make changes and try again.
- Many research papers stop at this step.

Second Possibility:

- A single simulation run doesn't tell us much.
- Just like in gambling, where the house usually wins, one lucky or unlucky run doesn't prove anything.
- We need many runs to understand real patterns and trends.

Introduction

Output Analysis –

Analysis of the data generated by simulation

- Why?
 - Performance of the system
 - Compare the performance of multiple systems
- Objective of Statistical Analysis
 - Estimation of confidence interval
 - Number of observations required to achieve the desired confidence

BOMBAY

Introduction

Issues

- Autocorrelation
- Initial Conditions
- Computation costs to collect necessary amount of data
- Lack of Expertise

BOMBAY

Types of the Simulations

Types of the Simulations

Terminating Simulation

- Interested in modeling a specific interval of a system (i.e., specific starting and stopping conditions)
- Examples: restaurant, service shops, etc.
- At the beginning of simulation, empty and idle => this is part of system characteristics
- Warm up period (from beginning till it reaches a steady state, also called transient state) is part of the system characteristic
- Two ways to put stopping conditions Replication time: the office closes every 5 O'clock Counters of entities that arrive at the system or depart from the system (e.g., I am interested in the store with the first 100 customers)

Types of the Simulations

- Non-Terminating Simulation
 - Quantities to be estimated are defined in the long run
 - Stable system => e.g., queue is not built up continuously, in other words, resources are not busy all the time
 - The initial conditions (empty and idle state) should not be part of simulation results
 - Method to determine a warm up period will be covered later "Replicate" element: "warm up period" section
 - Peak time (11~1 O'clock) in Mcdonalds, results of queueing systems => it should not start from the empty and idle state
- Why differentiate these two systems?

Nature of Output Data

- Key Point: Model output consists of random variables due to input randomness.
- M/G/1 Queueing Example:
 - Poisson arrival rate: 0.1 per time unit
 - Service time follows $N(\mu = 9.5, \sigma^2 = 1.75^2)$
 - Long-run queue length, L_Q(t)
 - Simulation setup:
 - Run for 5000 time units
 - Divide into 5 equal intervals
 - Y_i: Average number of customers in queue per interval

$$L_{Q} = \frac{\lambda^{2}}{\mu(\mu - \lambda)} = \frac{\rho^{2}}{1 - \rho}$$

Nature of Output Data

- Batching Average Queue Length for 3 Replications
- Data Table: Batching intervals vs. queue length across replications
- Key Insights:
 - Variability within single replications
 - Variability across different replications
 - Averages across replications can be treated as (
 - Within-replication averages are not (

- Covariance: measure of dependency
 - Cov (X, Y) = E [(X E(X)) (Y E(Y))] = E (XY) E(X)E(Y)
 - Cov (X, X) = () = Var ()
 - Cov (X, Y) > 0 : positively correlated
 - Cov (X, Y) < 0 : negatively correlated
 - Cov (X, Y) = 0 : uncorrelated (= independent)
- Correlation: normalized value (-1 < correlation < 1)

- Mean or expected value of a RV: µ or E(X)
- E(cX) = c*E(X)
- E(X+Y) = E(X) + E(Y)
- Variance of RV: σ² or Var
 (X)
- $\sigma^2 = E(X^2) \mu^2$
- Var(cX) = (
- Var(X + Y) = ()

BOMBAY

- $X_{1,}$ X_{2} , ..., X_{n} ~ iid samples. from population with mean μ and variance σ^{2}
- Sample mean is centered about population mean but the spread (variance) reduces as sample size increases

$$E[\bar{X}] = E\left[\frac{\sum_{i=1}^{n} X_i}{n}\right] = \frac{1}{n} \sum_{i=1}^{n} E[X_i] = \frac{1}{n} (n\mu) = \mu$$

$$extsf{Var}[ar{X}] = rac{\sigma^2}{n}$$

- Let X_1 , X_2 , ..., X_n be a sequence of IID random variables each with mean μ and variance σ^2 . Then for large n, the distribution of $(X_1 + X_2 + ... + X_n)$ is approximately Normal with mean $n\mu$ and variance $n\sigma^2$
- That is, the sum of the random variables:

$$(X_1 + X_2 ... + X_n) \sim \text{Normal}(n\mu, n\sigma^2)$$

Or

$$\left(\frac{X_1 + X_2 \dots + X_n}{n}\right) = \bar{X} \sim \text{Normal}(\mu, \frac{\sigma^2}{n})$$

 O_{I}

$$\left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}\right) \sim \text{Normal}(0, 1) \sim Standard Normal}$$

Suppose X_1 , X_2 , ..., X_n be IID sample from Normal population having mean μ and variance σ^2

then, \bar{X} and S^2 are independent random variables,

distribution of sample mean, \bar{X} is (

distribution of $(n-1)S^2/\sigma^2$ is (

) with (

and

Suppose X_1 , X_2 , ..., X_n be IID sample from Normal population with mean μ (σ^2 unknown)

then,

$$\left(\frac{\bar{X} - \mu}{S/\sqrt{n}}\right) \sim t_{n-1}$$

where, t_{n-1} : t-distribution with n-1 degrees of freedom

- Interval within which we have certain level of confidence that true mean (μ) falls.
- CI bounds the error between sample mean and true population mean
- $100(1 \alpha)\%$ CI
- To understand confidence intervals fully, distinguish between measures of error and measures of risk:
 - Confidence interval
 - Prediction interval

• Confidence Interval (CI):

• Prediction Interval (PI):

Terminating Simulations

Terminating Simulations

Data collection:

- Time-persistent statistics
- Tally statistics

Multiple output data :

- Sample mean and variance calculations
- **Given n samples**, X_i (i=1,2,....,n)
 - Sample Mean
 - Sample Variance

Confidence intervals:

- Point estimates vs. interval estimates
- Calculation example for 95% confidence interval

Terminating Simulations: Confidence Intervals

Point Estimates

• Single value of estimates, e.g. \bar{X} and S² little information on how accurate it estimates the true value of the unknown parameter

Interval Estimates

- Interval estimates using \bar{X} and S^2 give a better idea
- Method to determine this is called confidence interval estimation
- Confidence interval Range within which we can have a certain level of confidence that the true mean falls

Terminating Simulations: Confidence Intervals

- Half Width: Distance from \bar{X} to either endpoint
- Obtain the 95% CI for expected time to produce 2000 parts. The data for 10 replications is shown below:

$$T_1 = 32.62$$
, $T_2 = 32.57$, $T_3 = 33.51$, $T_4 = 33.29$, $T_5 = 32.10$, $T_6 = 34.24$, $T_7 = 32.70$, $T_8 = 33.49$, $T_9 = 33.36$, $T_{10} = 34.61$

- What is the df?
- Would the result have been different 1000 instead of 2000?
- How many data points (T_i) belong to CI? Is that to do something with 95%?

Terminating Simulations: Confidence Intervals

 Confidence Interval: Not the interval where 95% of the average measures from replication will fall. This is in fact called (

 Interpretation: Consider lot sets of 10 replications, about 95% of these intervals will cover µ

() will shrink a point as n increases, but () won't since it needs to allow for a variation in future replications.

Terminating Simulations: Replications

- This is a function of how () you want to estimate the performance of interest
- Given the current half width (h₀) with n₀, what is n to achieve the accuracy, h?

$$h = t_{n-1,1-\frac{\alpha}{2}} s/\sqrt{n} = n =$$

- Problems:
 - Degree of freedom
 - S is function of n₀ and n samples

Terminating Simulations: Replications

Approximation 1

Approximation 2

Terminating Simulations: Replications

• In the first simulation of replication of $20 \Rightarrow \bar{X} = 11.3$, $S^2 = 3.81$, when $n_0 = 20$, half width $(h_0) = 1.78$

Goal: h = 0.5, what is the required replication number?

$$\alpha = 0.05$$

• The () approximation is always wider since it uses t-value rather than z-value.

- Statistical issues with simulation output (still terminating simulation)
- Three statistical assumptions must be met regarding the sample of observations used to construct the CIs:
 - Observations must be () so that no correlation exists between consecutive observations
 - Observations are ()throughout the entire duration of the process (i.e. they are time invariant)
 - Observations are (

- Format of the simulation output data?
- What is a replication? And why its important
- Run n replications with m observations each
 - What does this mean?
 - Do I need random numbers? If yes, How many?
 - Replication 1: Run simulation with random numbers $u_{11},\,u_{12}\,\dots$ and get $y_{11},\,y_{12}\,\dots\,y_{1m}$ as output
 - Replication 2: Run simulation with () and get () as output
 - •
 - Replication n: Run simulation with () and get () as output

Say, we run simulation model for R replications with m observations each.

```
• Replication 1: y_{11}, y_{12}, ... y_{1k}, ... y_{1m}
```

- Replication 2: **y**₂₁, **y**₂₂, ... **y**_{2k}, ... **y**_{2m}
- •
- Replication R: y_{n1}, y_{n2}, ... y_{nk}, ... y_{nm}
- Let, y_{ij} be time in system observations for j^{th} entity in i^{th} replication (Tally Statistic)
- Can we use n x m data to construct CI?

• Within each replication, the observations are _____.

• Within each replication, the observations are _____.

 Within each replication, are the observations Normally distributed?

Replication (i)	Within run	Average, $\overline{y_i}$		
1	y ₁₁ , y ₁₂ , y ₁₃ ,	,	y_{lm-1}, y_{lm}	$\overline{y_1}$
2	y ₂₁ , y ₂₂ , y ₂₃ ,	,	y_{2m-1}, y_{2m}	$\overline{y_2}$
3	y ₃₁ , y ₃₂ , y ₃₃ ,	,	y_{3m-1}, y_{3m}	$\frac{\overline{y_3}}{\overline{y_4}}$
4	y ₄₁ , y ₄₂ , y ₄₃ ,	,	y _{4m-1} , y _{4m}	У4
n	y _{n1} , y _{n2} , y _{n3} ,	,	y_{nm-1}, y_{nm}	$\overline{\mathcal{Y}_n}$

• Point and interval estimate will be...

Terminating Simulations: Example 1

• Given the following simulation results, what is the 95% CI & PI of the true mean of the time spent in the system (μ)?

Note: $t_{0.975}$ is 2.78 when v = 4, and $t_{0.975}$ is 2.06 when v = 24.

	j: index of occurrence within a replication						
i: index of replicati on	$y_{11} = 2$	$y_{12} = 1$	$y_{13} = 3$	$y_{14} = 5$	$y_{15} = 2$		
	$y_{21} = 5$	$y_{22} = 3$	$y_{23} = 2$	$y_{24} = 1$	$y_{25} = 5$		
	$y_{31} = 3$	$y_{32} = 5$	$y_{33} = 4$	$y_{34} = 2$	$y_{35} = 2$		
	$y_{41} = 4$	$y_{42} = 7$	$y_{43} = 6$	$y_{44} = 3$	$y_{45} = 2$		
	$y_{51} = 5$	$y_{52} = 10$	$y_{53} = 2$	$y_{54} = 6$	$y_{55} = 2$		

Terminating Simulations: Example 2

• For the given time in system observations, compute the 95% CI and PI

	1	2	3	4	5
1	2.3	1.5	3.3	5.9	2.6
2	5.6	3.6	2.1	1.3	5.8
3	3.3	5.5	4.4	2.2	2
4	4.8	7.4	6.2	3.6	2.4
5	5.5	10	2.6	6.8	2.4

Terminating Simulations: Example 3

• For the given average utilization of server across replications, compute the 95% CI & PI:

0.808, 0.875, 0.708, 0.842, 0.956

