

Análisis de señales Laboratorio 05: Correlación de señales en Matlab

Escuela de Ciencias exactas e Ingeniería Código: SA2020I_LAB05

	Profesor: Marco Teran
Name:	Deadline: 4 de junio de 2020

Abstract

Durante el desarrollo del presente laboratorio se pondrán a prueba los conceptos de convolución y correlación utilizando el paquete de desarrollo matemático MATLAB. Se entenderá de forma practica los conceptos de convolución. Mediante un ejemplo de aplicación se estudiará la correlación como una herramienta versátil a la hora de diferenciar y sincronizar señales.

1 Desarrollo de la práctica de laboratorio

- 1. (10 points) Responda brevemente en la sección de Marco Teórico de su plantilla de laboratorio las siguientes preguntas:
 - (a) Definir qué es la correlación y sus principales propiedades.
 - (b) ¿Cómo se realiza la correlación cruzada y la autocorrelación, tanto para vectores como para matrices de imágenes?
 - (c) ¿Cual es la diferencia/relación existente (operacional) entre la convolución y la correlación?
 - (d) Defina Circular Buffering (utilice como guía el capitulo 28 del libro The Scientist and Engineer's Guide to Digital Signal Processing de Steven W. Smith [1], descargar).
 - (e) Defina la secuencia de código Barker, sus características y propiedades. Implementación del código Barker en señales de RADAR (utilice como guía la sección 7.4.2 del capitulo 7 del libro Radar Systems Analysis and Design Using MATLAB de Bassem R. Mahafza [2], descargar libro). Determinar el proceso de obtención y el significado de la función de ambigüedad de una señal digital binaria de radar.
 - (f) Investigue acerca de la generación de señales aleatorias y las características estocásticas del ruido blanco gaussiano aditivo (AWGN, *ing.* Aditive White Gaussian Noise) y su generación en Matlab para una relación señal ruido (SNR, *ing.* Signal to noise ratio) predeterminada.
 - (g) ¿Que es la desconvolución y como se implementa en Matlab?
- 2. (15 points) Compile y comente todas las lineas del siguiente código de Matlab. ¿Cual es la función del código 1? ¿Qué es mlag?:

Código 1 – Suma de convolución en Matlab

```
1 close all; clear all; clc;
2 N=128;
3 W=pi/16;
4 nn=0:N-1;
5 s= sin (W*nn);
6 w= 0.5*randn(1,N);
7 x=s+w;
8 subplot (321), plot (nn,w)
```

```
[ phi_w, mlag] = xcorr (w,w);
subplot (322), plot (mlag, phi_w)
subplot (323), plot (nn,x, nn,s,'k')

[ phi_x, mlag] = xcorr (x,x);
subplot (324), plot (mlag, phi_x)
[ phi_x_coef, mlag] = xcorr (x,x,'coef');
subplot (325), plot (mlag, phi_x_coef)
[ phi_x_biased, mlag] = xcorr (x,x,'biased');
hold on, plot (mlag, phi_x_biased, 'r:')
[ phi_x_unbiased, mlag] = xcorr (x,x,'unbiased');
subplot (326), plot (mlag, phi_x_unbiased), axis ([mlag([1 end]) -1 1])
```

1.1 Problema de investigación: Problema Radar (15 points)

Se entiende por **RADAR** (*ing.* RAdio Detection And Ranging) un sistema electrónico de radiodetección y radiolocalización, esto quiere decir que es un sistema que utiliza señales electromagnéticas (ondas de radio) para la detección y localización de objetos. La información básica que proporciona un radar primario es: rango o distancia, acimut o ángulo. El principio básico del funcionamiento de un radar es la técnica de impulsos para determinar la distancia y la dirección en que se encuentra un objeto (*ranging*). En un radar un pulso electromagnético es emitido or un transmisor, el cual a su vez de forma pasiva es reflejado por un objeto denominado blanco. La onda reflejada, denomina **eco**, volverá al receptor radar, aunque muy debilitada. Luego esta señal es tratada y procesada para la posterior extracción de la información radar. El trabajo del radar consiste en determinar el tiempo que el pulso se demora en en realizar la trayectoria de ida y regreso del pulso.

Es necesario tener en cuenta que la precisión, durante el calculo de la posición, es el nivel máximo de error entre la posición del blanco detectada por el sensor y su posición real en el instante de la detección. Y esta directamente proporcional relacionada a la duración del pulso de radar, es decir, entre más corto de duración sea este pulso, mayor sera la precisión en distancia. Si este pulso se hace muy corto, la señal no contará con la suficiente energía y se perderá en el ruido durante la reflexión antes de regresar al receptor radar haciendo imposible detectar y mucho menos localizar el blanco.

Para mantener un equilibrio entre la precisión y la energía del pulso, dentro del pulso se implementa una modulación digital interna PSK (ing. Phase Shift Key) mediante la implementación de una secuencia de código Barker. Con este código interno y la implementación de la correlación, es posible encontrar la información de detección solicitada.

Algoritmo de detección radar

Para el desarrollo se trabajara con una secuencia de código Barker S_L de longitud finita L, utilizando una sucesión de -1's y +1's para la representación de bajos y altos respectivamente. Cada punto a continuación realizarlo para cada una de las secuencias de Barker definidas.

- 1. Generar una secuencia de Barker de longitud L, con los siguiente parámetros (generando señales de acuerdo al laboratorio 01):
 - Sampling frequency, $f_s = 16 MHz$
 - Duración del pulso de radar, $\tau = 0.1 \ ms$
- 2. Determinar la frecuencia de transmisión de cada bit de la secuencia Barker R_{barker} y la duración de cada uno de estos bits. De igual manera encontrar el numero de samples por cada bit de de la secuencia de Barker. Representar gráficamente esta secuencia.
- 3. Realizar la autocorrelación del código Barker y representarla de forma gráfica.
- 4. Realizar la correlación cruzada de la secuencia de Barker asignada S_L con un código binario generado aleatoriamente por Matlab de igual longitud y representar la gráfica resultante.

5. Adicionarle AWGN a la secuencia de código Barker con una relación señal ruido de -10 dB, -3 dB, 0 dB y 3 dB. Realizar las gráficas de cada una de estas secuencias contaminadas con ruido. Y luego realizar la correlación de estas con la señal de código Barker original sin ruido y representar los resultados de forma gráfica.

Describa el procedimiento seguido para la resolución del laboratorio. Incluya imágenes (legibles y con leyenda) de lo desarrollado en el laboratorio.

1.2 Problema de investigación: Correlación de imágenes en Matlab (10 points)

Realice el código de correlación de imágenes que se plantea en el paper Application of normalized cross correlation to image registration. Descargar paper aquí¹. Realice un resumen del articulo y describa el algoritmo implementado. Analice el código presentado y genere sus conclusiones sobre él. ¿Cómo se realiza la correlación en imágenes digitales? Aplique el código a un problema de ingeniería casual y creativo relacionado al procesamiento de imágenes.

References

- [1] Steven W. Smith. *The Scientist and Engineer's Guide to Digital Signal Processing*. California Technical Publishing, San Diego, CA, USA, 1997.
- [2] Bassem R. Mahafza. Radar Systems Analysis and Design Using MATLAB. CRC Press, Inc., Boca Raton, FL, USA, 2000.
- [3] A.V. Oppenheim, A.S. Willsky, and S.H. Nawab. *Signals and Systems*. Prentice-Hall signal processing series. Prentice Hall, 1997.
- [4] John G. Proakis and Dimitris G. Manolakis. *Digital Signal Processing (3rd Ed.): Principles, Algorithms, and Applications*. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.
- [5] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing. Prentice Hall Press, Upper Saddle River, NJ, USA, 3rd edition, 2009.
- [6] B.P. Lathi and R.A. Green. Essentials of Digital Signal Processing. Cambridge University Press, 2014.
- [7] J.W. Leis. Digital Signal Processing Using MATLAB for Students and Researchers. Wiley, 2011.
- [8] Monson H. Hayes. Schaum's Outline of Digital Signal Processing. McGraw-Hill, Inc., New York, NY, USA, 1st edition, 1998.
- [9] L.W. Couch. *Digital and Analog Communication Systems*. Pearson international edition. Pearson/Prentice Hall, 2007.

¹Ayuda de MathWorks