CIVENG 3C03 Assignment 1

Raeed Hassan hassam41

September 30, 2022

Question 1

Using the graphic method of solution, find the optimal solution for the following LP model: Minimize:

$$Z = 2200 - 7X_1 - 2X_2$$

Subject to:

$$X_1 \le 100$$
$$3X_1 + 5X_2 \le 900$$
$$4X_1 + 2X_2 \le 600$$
$$X_1, X_2 \ge 0$$

The graphical solution to this problem is found in Figure 1. The optimal value for Z is approximately 184.857, when $X_1 = 85.714$ and $X_2 = 128.571$.

Figure 1: Question 1: Graphical Solution

Question 2

The operating cost per week is $5400 - 15X_1 - 20X_2 - 10X_3$, and the chemical cost per week is $3.47X_1 + 4.235X_2 + 2.725X_3$, therefore the total cost per week is the operating cost per week plus the chemical cost per week.

LP Model

Total cost (\$/per week) =
$$5400 - (15 - 2.5 \cdot 0.98 - 2 \cdot 0.51)X_1 - (20 - 2.5 \cdot 0.98 - 3.5 \cdot 0.51)X_2 - (10 - 2 \cdot 0.98 - 1.5 \cdot 0.51)X_3$$

Total cost (\$/per week) = $5400 - 11.53X_1 - 15.765X_2 - 7.275X_3$

Minimize:
$$Z = 5400 - 11.53X_1 - 15.765X_2 - 7.275X_3$$
 (Objective Function)

Subject to:

$$6X_1 + 8X_2 + 4X_3 \le 1000$$
 (Total hour constraint)
2.5 $X_1 + 2.5X_2 + 2X_3 \le 380$ (C₁ constraint)

$$2X_1 + 3.5X_2 + 1.5X_3 \le 400 \text{ (C}_2 \text{ constraint)}$$

 $X_1 \le 50$ (Available X_1 constraint)

$$X_1, X_2, X_3 \ge 0$$

The canonical form of the model is expressed as follows:

Minimize:

$$Z = 5400 - 11.53X_1 - 15.765X_2 - 7.275X_3$$

Subject to:

$$6X_1 + 8X_2 + 4X_3 + S_1 = 1000$$

$$2.5X_1 + 2.5X_2 + 2X_3 + S_2 = 380$$

$$2X_1 + 3.5X_2 + 1.5X_3 + S_3 = 400$$

$$X_1 + S_4 = 50$$

$$X_1, X_2, X_3, S_1, S_2, S_3, S_4 \ge 0$$

- 1. The Simplex Tableau for this problem can be seen in Table 1. The solution was found in three iterations of the Simplex method. The optimal weekly production of the three paint types is $[X_1 = 50, X_2 = 75, X_3 = 25]$. The corresponding production cost of the optimal production policy is $Z = 5400 (11.53 \cdot 50) (15.765 \cdot 75) (7.275 \cdot 25) = 3459.25$.
- 2. Since $S_1, S_3, S_4 = 0$, the binding constraints are:

$$6X_1 + 8X_2 + 4X_3 \le 1000$$
$$2X_1 + 3.5X_2 + 1.5X_3 \le 400$$
$$X_1 \le 50$$

The non-binding constraint is:

$$2.5X_1 + 2.5X_2 + 2X_3 \le 380$$

Table 1: Question 2: Simplex Tableau

C_{i}	Baisc Variables	C_{j}	-11.53	-15.77	-7.28	0	0	0	0	b_i/a_{ij}
		b_{i}	X_1	X_2	X_3	S_1	S_2	S_3	S_4	
0	S_1	1000	6	8	4	1	0	0	0	125
0	S_2	380	2.5	2.5	2	0	1	0	0	152
0	S_3	400	2	3.5	1.5	0	0	1	0	114.29
0	S_4	50.00	1	0	0	0	0	0	1	∞
		ΔZ_{j}	-11.53	-15.77	-7.28					
0	S_1	85.71	1.43	0.00	0.57	1.00	0.00	-2.29	0.00	60
0	S_2	94.29	1.07	0.00	0.93	0.00	1.00	-0.71	0.00	88
-15.765	X_2	114.29	0.57	1.00	0.43	0.00	0.00	0.29	0.00	200
0	S_4	50.00	1.00	0.00	0.00	0.00	0.00	0.00	1.00	50
		ΔZ_{j}	-2.52		-0.52			4.50		
0	S_1	14.29	0	0	0.57	1	0	-2.29	-1.43	25
0	S_2	40.71	0	0	0.93	0	1	-0.71	-1.07	43.85
-15.765	X_2	85.71	0	1	0.43	0	0	0.29	-0.57	200
-11.53	X_1	50	1	0	0	0	0	0	1	∞
		ΔZ_{j}			-0.52			4.5	2.52	
-7.275	X_3	25	0	0	1	1.75	0	-4	-2.5	
0	S_2	17.5	0	0	0	-1.63	1	3	1.25	
-15.765	X_2	75	0	1	0	-0.75	0	2	0.5	
-11.53	X_1	50	1	0	0	0	0	0	1	
		ΔZ_{j}				0.91			1.23	

Question 3

1. From the Simplex Tableau provided, we can determine that the canonical form for the Linear Programming problem is:

Minimize:

$$C = 250 - 3X_1 - 8X_2$$

Subject to:

$$4X_1 + X_2 + S_1 = 40$$

$$3X_1 + 5X_2 + S_2 = 75$$

$$X_2 + S_3 = 13$$

$$X_1, X_2, S_1, S_2, S_3 \ge 0$$

This means the LP model used to represent the LP problem is:

Minimize:

$$C = 250 - 3X_1 - 8X_2$$

Subject to:

$$4X_1 + X_2 \le 40$$
$$3X_1 + 5X_2 \le 75$$
$$X_2 \le 13$$
$$X_1, X_2 \ge 0$$

- 2. The optimal production policy for the $[X_1 = 3.33, X_2 = 13]$. The corresponding cost of the optimal production policy is C = 250 (3*3.33) (13*8) = 136.
- 3. Since $S_2, S_3 = 0$, the binding constraints are:

$$3X_1 + 5X_2 \le 75$$
$$X_2 \le 13$$