Bioinformatics Wrap-Up

Dr. Garrett Dancik

What is bioinformatics

• Bioinformatics:

- Biology + information
- the study and
 utilization of
 methods for storing,
 retrieving and
 analyzing biological
 data
- Falls under the category of Big Data

- How much information:
 - Human genome: 3 billion nucleotides
 - ~20,000 genes
 - many more when considering "junk DNA" and alternative splicing
 - >10 million sites of DNA variation
 - Countless possible interactions between DNA, RNA, and proteins

What is this?

```
#include <iostream>
using namespace std;
int main
{
cout << "hello world\n";
return 0;
}</pre>
```

- Computer code is a set of instructions that tells a computer how to process data and output results
- The genetic code is also a set of instructions, that tells a cell how to produce a molecule (such as a protein)
 - Information flows from DNA → RNA → protein
 - This information determines the structure/function of RNA and protein

Central Dogma of Molecular Biology

- The function of a protein can be predicted from its DNA or protein sequence
- Just like C++ is a language for computers, genetics is the language of life (DNA is the alphabet)
 - This is fundamental concept in bioinformatics

Bioinformatics example

- Let's look briefly at the gene BRCA1 (breast cancer type 1 susceptibility protein)
 - http://www.ncbi.nlm.nih.gov
 - Search Nucleotide for BRCA1
 - Click on the Genomic reference sequence
- Hopefully this now makes sense!

Why do we need bioinformatics?

- To identify genetic mechanisms of diseases and other inherited (or acquired) conditions
 - Nature via nurture
- For personalized treatment of disease

Why do we need bioinformatics?

BLAST lab

Bioinformatics Analysis of the Complete Genome Sequence of the Mango Tree Pathogen *Pseudomonas syringae* pv. syringae UMAF0158 Reveals Traits Relevant to Virulence and Epiphytic Lifestyle

Pedro Manuel Martínez-García . Pablo Rodríguez-Palenzuela . Eva Arrebola, Víctor J. Carrión, José Antonio Gutiérrez-Barranquero, Alejandro Pérez-García, Cayo Ramos, Francisco M. Cazorla, Antonio de Vicente . □

Published: August 27, 2015 • http://dx.doi.org/10.1371/journal.pone.0136101

Python lab

Genome Res. 2014 Jul; 24(7): 1180–1192. doi: 10.1101/gr.171934.113 PMCID: PMC4079973

A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples

Samia N. Naccache, ^{1,2} Scot Federman, ^{1,2} Narayanan Veeraraghavan, ^{1,2} Matei Zaharia, ³ Deanna Lee, ^{1,2} Erik Samayoa, ^{1,2} Jerome Bouquet, ^{1,2} Alexander L. Greninger, ⁴ Ka-Cheung Luk, ⁵ Barryett Enge, ⁶ Debra A. Wadford, ⁶ Sharon L. Messenger, ⁶ Gillian L. Genrich, ¹ Kristen Pellegrino, ⁷ Gilda Grard, ⁸ Eric Leroy, ⁸ Bradley S. Schneider, ⁹ Joseph N. Fair, ⁹ Miguel A. Martínez, ¹⁰ Pavel Isa, ¹⁰ John A. Crump, ^{11,12,13} Joseph L. DeRisi, ⁴ Taylor Sittler, ¹ John Hackett, Jr., ⁵ Steve Miller, ^{1,2} and Charles Y. Chiu^{1,2,14,15}

Author information ▶ Article notes ▶ Copyright and License information ▶

www.nature.com/cdd

Group project

Regulation of developmental rate and germ cell proliferation in *Caenorhabditis elegans* by the p53 gene network

WB Derry*,1,2,3, R Bierings1, M van Iersel1, T Satkunendran2,3, V Reinke4 and JH Rothman*,1

genes. In an effort to identify putative direct targets of CEP-1, we analyzed CEP-1-activated genes for p53 consensus DNA-binding sites. ²³ Vertebrate p53 binds two copies of the palindromic DNA consensus sequence RRRCWWGYYY, and CEP-1 binds an oligonucleotide containing the human p53 consensus motif *in vivo* and *in vitro*. ^{14,15} We searched the *C. elegans* genome for pairs of p53 consensus binding sites and found that ~25% of CEP-1-activated genes contain potential p53-binding sites in their promoters and introns (Table S2). These sites were

The genomic landscape of bladder cancer

The Cancer Genome Atlas Research Network Nature 507, 315-322 (2014) doi:10.1038/nature12965

Additional Databases and Tools

- The Cancer Genome Atlas
 - http://cancergenome.nih.gov
 - Comprehensive genomic characterization of tumors
- Genomics of Drug Sensitivity in Cancer
 - http://www.cancerrxgene.org
 - Screen > 1000 cell lines with drug
 - Genomic characterization of cell lines
- And many more (current research)
 - http://bioinformatics.oxfordjournals.org
 - http://www.biomedcentral.com/bmcbioinformatics