### Titre de mon TIPE

F. Serier, MP1-MPi, 2023-2024 23 janvier 2023

## Motivations pour le choix du sujet (50 mots)

Bla bla bla

## Ancrage du sujet au thème de l'année (50 mots)

Bla bla bli

### Positionnement thématique

Physique théorique, Astrophysique, Informatique

#### Mots-clefs

```
Mots-clefs - Gravitation - Relativité - Mercure - Périhélie - Avance
Keywords - Gravitation - Relativity - Mercury - Perihelion - Advance
```

### Bibliographie commentée (650 mots maximum)

Le problème de l'avance du périhélie de Mercure s'est rapidement posé après que Newton ait posé la loi de la gravitation universelle en  $1/r^2$ . En fait, les observations s'accordaient tellement bien à ses prédictions théoriques (de plus en plus étoffées à mesure du temps) qu'elle ne pouvait être fausse. Mais les observations, de plus en plus précises elles aussi, montrèrent que la trajectoire de Mercure n'était pas une ellipse fermée comme le prédisait la mécanique classique mais une trajectoire, elliptique en première approximation, dont la direction du périhélie (point de passage au plus proche du Soleil) tournait au cours du temps.

Cette avance s'élevait à 574 secondes d'arc par siècle mais la théorie newtonienne (s'aidant des perturbations induites par les autres planètes sur la trajectoire de Mercure) ne permettait d'en expliquer « que » 531 secondes par siècle. Restent donc les « fameuses » 43 secondes d'arc par siècle d'avance que seule la théorie de la relativité générale pu correctement prédire [1].

Fort de son succès de la découverte de Neptune via les perturbations de l'orbite d'Uranus [2], l'astronome Urbain Le Verrier proposa en 1859 [3, 4] l'existence d'une planète d'orbite intramercurielle (qu'il prénomma « Vulcain ») dont les perturbations gravitationnelles seraient à même d'expliquer les 43 secondes manquantes. Malheureusement, malgré de nombreuses observations, cette planète ne pu jamais être mise en évidence.

Les tentatives précédentes n'ayant pas porté leurs fruits, on chercha donc à développer d'autres explications ou théories pouvant rendre compte de cette avance de 43 secondes. C'est ainsi que Paul Gerber [5] postula que l'influx gravitationnel n'était pas instantané comme l'affirmait Newton, mais se propageait à une vitesse finie, celle de la lumière dans le vide, tout comme les ondes électromagnétiques. En développant les implications de sa théorie, il arriva à la même formule théorique qu'Einstein obtiendra quelques années plus tard avec la relativité générale. Malheureusement pour lui, ses travaux ne furent pas reconnus et il s'avéra par la suite qu'il avait obtenu la bonne formule par hasard après plusieurs erreurs de raisonnement.

La théorie de la relativité restreinte [6] proposée par Einstein [7] induit elle aussi une précession du périhélie, mais de seulement 6 secondes d'angle par siècle, insuffisante pour expliquer l'ensemble des observations. Ce n'est qu'avec la théorie de la relativité générale [1] que les 43 secondes d'angle manquantes sont expliquées [8, 9].

### Problématique retenue (50 mots)

Dans tous les ouvrages de vulgarisation traitant d'un peu de relativité, on cite l'explication du phénomène de précession de Mercure parmi les principaux arguments en faveur de la relativité au début du siècle avec, notamment, la déflexion des rayons lumineux au voisinage d'une forte masse qui fut vérifiée lors de l'éclipse de soleil de 1919 ou le phénomène de décalage spectral vers le rouge. Il m'a semblé intéressant de voir dans quelle mesure la relativité explique les 43 secondes d'arc d'avance par siècle que ne pouvait prévoir Newton.

# Objectifs du TIPE (100 mots maximum)

- 1. Modélisation : après quelques rappels théoriques, je montrerai que les principes de la relativité restreinte, d'une part, et de la relativité générale, d'autre part, mènent à des équations qui induisent naturellement une avance du périhélie.
- 2. Simulation numérique : La résolution des équations précédentes numériquement permet de traiter de l'influence de divers paramètres et notamment expliquer pourquoi ce n'est que pour Mercure que cet effet est effectivement mesurable.
- 3. Observations : Au vu des faibles valeurs effectivement observées, j'essaierai de montrer à quelle précision doivent s'effectuer les observations pour être capable de mesurer cet effet et prouver que celui-ci ne peut pas être expliqué par de simples incertitudes de mesure.

### Références

- [1] Albert Einstein: Die grundlage der allgemeinen relativitätstheorie. Annalen der Physik, 354(7):769–822, 1916.
- [2] Urbain J LE VERRIER: Recherches sur les mouvements d'uranus par uj le verrier (beschluß.). Astronomische Nachrichten, 25:85, 1846.
- [3] Urbain J LE VERRIER: Theorie du mouvement de mercure. In Annales de l'Observatoire de Paris, volume 5, page 1, 1859.
- [4] WIKIPÉDIA: Précession du périhélie. Wikipédia, Novembre 2016. https://fr.wikipedia.org/wiki/Mercure\_(plan%C3%A8te)#Pr.C3. A9cession\_du\_p.C3.A9rih.C3.A9lie.
- [5] Paul GERBER: Die räumliche und zeitliche ausbreitung der gravitation. Zeitschrift f. Mathematik und Physik, 43:93-104, 1898. http://bourabai.kz/articles/gerber/gerber-1902.pdf.
- [6] MINUTEPHYSICS: Einstein and the special theory of relativity. Vidéo Youtube, Mars 2012. https://www.youtube.com/watch?v=ajhFNcUTJI0.
- [7] Albert EINSTEIN: Über einen die erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt. *Annalen der Physik*, 322(6):132–148, 1905.
- [8] Lndwik Silberstein: The motion of the perihelion of mercury deduced from the classical theory of relativity. *Monthly Notices of the Royal Astronomical Society*, 77:503–510, 1917.

[9] Marie-Antoinette TONNELAT et Jacques E ROMAIN : Les vérifications expérimentales de la relativité générale. *Physics Today*, 18:49, 1965.