ARBEITSBLATT: Namen, Formeln und Dissoziation von Salzen

Salze sind aus Ionen aufgebaute Stoffe (Ionensubstanzen), die als <u>Anionen immer Säurerestionen</u> und als <u>Kationen meist Metallionen</u> besitzen. (Zur Zeit kennst Du unter den Salzen nur die Chloride, Bromide und Iodide.) Allgemein leitet sich ein Salz immer von einer Säure ab.

Fülle die folgenden Tabellen aus! Die grau unterlegten Zeilen geben jeweils Beispiele vor.

Name der Säure	Name der Salze	Beispiel
Schwefelsäure	Sulfate	Natriumsulfat
Salpetersäure		
	Chloride	
Bromwasserstoffsäure		
		Natriumphosphat

Die Regeln für das Aufstellen der Formeln eines Salzes entsprechen den Regeln für das Aufstellen von Formeln aller lonensubstanzen.

Name	Kation	Anion	Ladung Kation	Ladung Anion	Verhältn. d.lonen	Formel
Calciumchlorid	Ca ²⁺	Cl	+2	-1	1:2	CaCl ₂
Natriumcarbonat	Na⁺	CO ₃ ²⁻	+1	-2	2:1	Na ₂ CO ₃
Kaliumphosphat	K⁺	PO ₄ ³⁻				
					Amarika da Salata da Kanada	Li _S O ₃
Calciumnitrat	Ca ²⁺	NO ₃	+2	-1	1:2	Ca(NO ₃) ₂
Aluminiumnitrat						1
						FeCl ₃
Bariumsulfat						
	Al ³⁺	SO ₄ ²⁻				
						Ca ₃ (PO ₄) ₂
Kaliumnitrat						
Kupfer(II)-carbonat	Cu ²⁺					
Eisen(III)-nitrat						
Strontiumnitrat						

Es gibt leicht- und schwerlösliche Salze (siehe Löslichkeitstabelle). Beim Lösen eines Salzes in Wasser zerfällt das lonengitter (bei schwerlöslichen Salzen nur teilweise) in freibewegliche Ionen; d.h. das Salz dissoziiert. Somit können für Salze Dissoziationsgleichungen formuliert werden.

Name	Formel	Dissoziationsgleichung
Calciumsulfit	CaSO ₃	$CaSO_3 \Rightarrow Ca^{2+} + SO_3^{2-}$
Bariumnitrat	Ba(NO ₃) ₂	$CaSO_3 \Rightarrow Ca^{2+} + SO_3^{2-}$ $Ba(NO_3)_2 \Rightarrow Ba^{2+} + 2NO_3^{-}$
	CaBr ₂	
Natriumcarbonat		
Kaliumphosphat		
Aluminiumphosphat		
Eisen(II)-nitrat		
Bariumsulfit		
Bariumphosphat		
Magnesiumnitrat		
Rubidiumsulfat		