

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková
	organizace, Praskova 399/8, Opava, 746 01
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129
Název projektu	SŠPU Opava – učebna IT
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (20
	vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	MEC IIIb
Popis sady vzdělávacích materiálů:	Mechanika III – hydrodynamika a termomechanika, 3. ročník.
Sada číslo:	G-21
Pořadové číslo vzdělávacího materiálu:	12
Označení vzdělávacího materiálu:	VY_32_INOVACE_G-21-12
(pro záznam v třídní knize)	
Název vzdělávacího materiálu:	Vnitřní energie
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Iva Procházková

Vnitřní energie

Abychom mohli 1. zákon termodynamiky matematicky zapsat, musíme zavést název pro energii plynu, jehož změna se dá rovnicí popsat. Energii plynu závislou na termodynamickém stavu nazýváme vnitřní energií a používáme značku U J.

Vnitřní energie není tíhová $(g\cdot H)$, tlaková $\left(\frac{p}{\rho}\right)$ ani kinetická $\left(\frac{w^2}{2}\right)$. Závisí jen a pouze na

Dodáme–li určitému množství plynu teplo z okolí (Q > 0) a současně odebereme absolutní práci

1/5

Vnitřní energie: $U_2 - U_1 = Q - W$

W (W < 0), změní se energie plynu.

Pro 1 kg plynu označujeme stavové veličiny malými písmeny.

termodynamickém stavu plynu, který je určen tlakem a teplotou.

Vnitřní energie pro 1 kg plynu: $u = \frac{U}{m} \left[\frac{J}{kg} \right]$

První zákon termodynamiky pro 1 kg plynu:

 $\Delta u = u_2 - u_1 = q - w$

Množství tepla:
$$q = \frac{Q}{m} \left[\frac{J}{kg} \right]$$

Práce:
$$w = \frac{W}{m} \left[\frac{J}{kg} \right]$$

1. zákon termodynamiky pro m [kg] plynu:

$$U_2 - U_1 = Q - W$$

Pro 1 kg plynu:
$$\Delta u = u_2 - u_1 = q - w$$
 $\left[\frac{J}{kg} \right]$

Vnitřní energie je stavovou veličinou závisející na termodynamickém stavu. U ideálního plynu závisí jen na jeho teplotě.

$$\Delta u = u_2 - u_1 = c_v \cdot (T_2 - T_1) = c_v \cdot (t_2 - t_1)$$

V technických výpočtech nepotřebujeme znát absolutní hodnotu vnitřní energie, počítáme vždy s přírůstky vnitřní energie.

$$\Delta U = U_2 - U_1$$

Př.: Jaký měrný objem v a hustotu ρ má oxid uhličitý CO_2 při tlaku p=0.15 MPa a teplotě t=257 °C = 530 K, měrná plynová konstanta $r=189\,\mathrm{J/kg}\cdot\mathrm{K}$.

Základní zákon ideálního plynu:

$$p \cdot v = r \cdot T$$

$$v = \frac{r \cdot T}{p} = \frac{189 \cdot 530}{150000} = 0,668 \frac{m^3}{kg}$$

$$\rho = \frac{1}{v} = \frac{1}{0,668} = 1,497 \frac{kg}{m^3}$$

Př.: Dvě tlakové nádoby jsou spojeny trubicí s uzavřeným kohoutem. V první nádobě objemu $V_1 = 50$ l je plyn o tlaku $p_1 = 15$ MPa. Ve druhé nádobě o objemu $V_2 = 7$ l je tlak $p_2 = 1$ MPa. Jaký tlak se ustálí v obou nádobách při nezměněné teplotě T, jestliže otevřeme spojovací kohout?

p.V = r.m.T

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Technická práce

Tvar prvního zákona termodynamiky ($U_2-U_1=Q-W$) není výhodný pro termodynamické výpočty technických zařízení. Zde používáme 2. tvar prvního zákona termodynamiky, který můžeme odvodit tak, že k levé i pravé straně rovnice připočteme výraz

$$\begin{split} p_2 \cdot V_2 - p_1 \cdot V_1 \\ U_2 + V_2 \cdot p_2 - U_1 - V_1 \cdot p_1 &= Q - W + p_2 \cdot V_2 - p_1 \cdot V_1 \\ U_2 + p_2 \cdot V_2 - (U_1 + p_1 \cdot V_1) &= Q - (W - p_2 \cdot V_2 + p_1 \cdot V_1) \end{split}$$

Přičemž výraz $W + p_1 \cdot V_1 - p_2 \cdot V_2 = W_t = \text{technická práce W}_{\text{t}}$

Technická práce W_t je v p - V diagramu vyjádřena plochou pod křivkou změny stavu směrem na osu tlaku.

Výraz $p \cdot V$ vyjadřuje tlakovou energii $m \ [kg]$ plynu.

Součet vnitřní energie U a tlakové energie $p \cdot V$ nazýváme **entalpie**, kterou označujeme I.

Potom 2. tvar prvního zákona termodynamiky zní:

$$I_2 - I_1 = Q - W_t$$

Pro 1 kg platí: $\Delta i = i_2 - i_1 = q - w_t$

Entalpie i podobně jako vnitřní energie ideálního plynu u závisí pouze na teplotě plynu.

$$i = C_P . T$$

Vztah mezi vnitřní energií a entalpií je:

$$\frac{i}{u} = \frac{c_p \cdot \Delta T}{c_v \cdot \Delta T} = \frac{c_p}{c_v} = \kappa$$

 $(\kappa - [kapa]$ Poissonova konstanta nebo-li adiabatický exponent).

Entropie (S, s)

Entropii označujeme S a její změnu můžeme vyjádřit jednoduše jen v těch výjimečných případech, kdy se u sdílení tepla teplota nemění. Např. při izotermické kompresi nebo expanzi a při změnách skupenství. Změna entropie je v těchto případech dána podílem tepla a absolutní teploty.

$$\Delta S = S_2 - S_1 = \frac{Q}{T}$$

Entropie nám umožňuje znázornit množství tepla dodaného nebo odvedeného při určité změně stavu. V $\mathbf{p} - \mathbf{V}$ diagramu plocha pod křivkou vyjadřuje práci, v entropickém diagramu $\mathbf{T} - \mathbf{S}$ plocha vyjadřuje množství sdíleného tepla.

Přivedené teplo + Q je v **T – S** diagramu znázorněno plochou, kterou objíždíme ve směru chodu hodinových ručiček.

Vnitřní energie \mathbf{u} , entalpie \mathbf{i} a entropie \mathbf{s} jsou tzv. odvozené stavové veličiny, které se nedají měřit. Pracujeme s jejich přírůstky Δu , Δs , Δi .

- + W práce získaná, odebraná $\Delta u = q w$;
- W práce spotřebovaná, přivedená $\Delta u = q + w$;
- + Q teplo přivedené;
- Q teplo odvedené.

Seznam použité literatury:

- MRŇÁK L. DRDLA A.: MECHANIKA Pružnost a pevnost pro střední průmyslové školy strojnické.
 Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA II Kinematika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA III Dynamika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA IV Mechanika tekutin a termomechanika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- TUREK, I., SKALA, O., HALUŠKA J.: MECHANIKA Sbírkα úloh. Praha: SNTL, 1982.
- LEINVEBER, J. VÁVRA, P.: Strojnické tabulky. 5. doplněné vydání. Praha: Albra, 2011. ISBN 80-7361-033-7.