Estudo de Emissão e Atenuação de Raios-X

AUTORES

Bruno Castrucci Rehder

N°USP: 10801767 - brunorehder@usp.br

Icaro Vaz Freire N°USP: 11224779 - ivfreire@usp.br

Matheus Manera Furtado N°USP: 12733622 - matheusmaneraf@usp.br

Vinícius Ferreira El-Helou N°USP: 12557470 - vfhelou@usp.br

Instituto de Física, Universidade de São Paulo - SP

Resumo

Este artigo científico apresenta um estudo experimental da emissão e atenuação de raios-X em cristais de cloreto de sódio (NaCl) e brometo de potássio (KBr). Para isso, foram realizadas medidas de espectroscopia de raios-X em amostras dos dois cristais, utilizando um difratômetro. Parte do experimento foi medir o espectro de emissão de um tubo de molibdênio, onde foi possível observar as curvas características das energias deste metal pela difração e fazer uma estimativa experimental para a constante universal de Planck. A outra parte foi medir o efeito que filtros metálicos de zircônio, molibdênio e alumínio têm sobre a intensidade do feixe de fótons. Neste último foi apreciável a diminuição da intensidade do feixe observada. Com os dados coletados e com a análise realizada, o experimento cumpriu com os seus objetivos.

I. Introdução

Para esse atual experimento, tivemos como objetivo estudar e nos familiarizar com equipamentos de emissão de raios-X, e com outros fenômenos associados, como espectros produzidos pela interação dessa radiação eletromagnética com a matéria e a difração dos raios-X em cristais. Por fim, devemos também conseguir determinar o espectro de emissão de raios-X característicos do tubo de molibdênio e determinar a constante de Planck a partir do fenômeno de radiação de freamento, ou Bremsstrahlung.

II. FUNDAMENTOS TEÓRICOS

Antes de tudo, é necessário entender o funcionamento dos raios-X e do equipamento utilizado em si. Raios-X são ondas eletromagnéticas de frequência além do ultravioleta, com comprimentos de onda da ordem de grandeza de entre $10^{-8} \, m$ a $10^{-11} \, m$, são um tipo de radiação de alta energia, com capacidade de penetrar organismos vivos e tecidos de menor densidade.

O equipamento utilizado se trata de um tubo de raios-X catódico, como o ilustrado abaixo.

Figura 1.1: Esquema ilustrativo de um tubo de raios-X, onde elétrons são emitidos termicamente do cátodo e acelerados em direção ao ânodo devido a uma diferença de potencial, de modo que raios-X são emitidos quando os elétrons são freados ao atingi-lo.

O tubo funciona do seguinte modo: O cátodo é aquecido pela passagem da corrente elétrica no filamento e libera elétrons com alta velocidade nesse processo. Esses elétrons então são fortemente atraídos pelo ânodo, e nessa atração, eles se colidem. Com essa colisão, os elétrons do ânodo são expulsos de suas órbitas, e então elétrons de camadas mais energéticas realizam saltos de

suas camadas para esses espaços de vacância e liberam energia, no caso, os Raios-X, este é o processo que estará acontecendo no atual experimento.

Figura 1.2: Esquema ilustrativo de um salto eletrônico com a liberação de energia.

A difração de raios-X, fenômeno também abordado nesse experimento. Pelo fato das estruturas cristalinas serem altamente organizadas e geométricas e os átomos de um cristal apresentarem um espaçamento uniforme, o feixe de raios-X incidir no cristal sofrerá um padrão de interferência.

Logo, quando os raios-X são difratados, eles formariam franjas de difração, e a partir disso, prever os ângulos onde seriam encontrados os picos de intensidade máxima de difração.

III. DESCRIÇÃO EXPERIMENTAL

Para esse experimento foram usados os seguintes equipamentos: um gerador de Raios-X de alta tensão (~20 - 30 kV); um contador Geiger-Muller sensível à intensidade de um feixe de fótons acoplado a um motor de passo que permite mudar o ângulo de medida; dois cristais sólidos de cloreto de sódio (NaCl) e brometo de potássio (KBr); e filtros de Raios-X de Zr, Mo e Al.

O equipamento emissor de raios-X permite variar os parâmetros da coleta de dados. Pode-se configurar: a tensão de aceleração do elétrons U; a corrente elétrica total I; os ângulos mínimo e máximo, β_{min} e β_{max} ; o passo angular $\Delta\beta$; e o tempo de aquisição dos fótons Δt .

Antes de realizar as medidas, é preciso calibrar o equipamento ao cristal utilizado na medida, pois o não alinhamento inicial pode causar erros sistemáticos nas medidas dos ângulos.

As medidas do espalhamento de raios-X foram feitas para cada um dos cristais fornecidos (NaCl e KBr).

Picos de emissão

O primeiro conjunto de dados, para cada cristal, foi medido com os seguintes parâmetros:

$$- U = 35kV$$

-
$$I = 1,0 mA$$

$$- \beta_{min} = 2,5^{\circ}$$

$$- \beta_{max}^{min} = 30,0^{\circ}$$

-
$$\Delta\beta = 0.1^{\circ}$$

-
$$\Delta t = 1s$$
.

Para este conjunto, vamos determinar a posição dos picos de emissão correspondentes do molibdênio.

Constante de Planck

Para o segundo conjunto de dados, foram coletados dados para 5 valores de tensão de aceleração dos elétrons *II*:

$$U = \{35, 30, 26, 22, 18\} kV$$

Para cada tensão, foram configurados os seguintes parâmetros:

$$- I = 1,0 mA$$

$$- \beta_{min} = 2,5^{\circ}$$

-
$$\beta_{max} = 12,0^{\circ}$$

-
$$\Delta\beta = 0, 1^{\circ}$$

-
$$\Delta t = 3s$$

Para os cinco conjuntos de dados de cada cristal, estimamos o comprimento de onda mínimo λ_{min} para o qual há emissão de raios-X. A partir do $\lambda_{min'}$ podemos estimar o valor da constante de Planck h.

$$h = 4.136 \cdot 10^{-15} \, eVs$$

Absortância

O terceiro conjunto de dados foi tomado para estimar a absorção de raios-X pelos filtros metálicos fornecidos. Os parâmetros de medida foram:

$$- U = 35kV$$

$$I = 1, 0 mA$$

$$\beta_{min} = 2,5^{\circ}$$

$$- \beta_{max}^{min} = 12,0^{\circ}$$

$$-\Delta\beta=0,1^{\circ}$$

$$-\Delta t = 10s$$

Foram feitas quatro medidas: sem filtro e com os filtros de Zr, Mo e Al respectivamente.

IV. DISCUSSÃO E RESULTADOS

Os dados foram coletados para cada cristal (NaCl e KBr).

Cloreto de sódio (NaCl)

O parâmetro de rede do cristal de cloreto de sódio é conhecido *a priori*:

$$a_{NaCl} = 0,564 nm^1$$

Picos de emissão

Para os primeiros dados , o espectro de emissão medido pode ser visto na *Figura 4.1.1*, com a indicação dos picos característicos do molibdênio.

Figura 4.1.1: Intensidade do feixe de raios-X pelo ângulo β da medida para o cristal de NaCl com respectivos picos de emissão indicados.

Qualitativamente, o espectro da *Figura 4.1.1* é semelhante ao esperado. Há o fundo de emissão da fonte de raios-X e os picos característicos do filtro de Molibdênio próximo aos valores esperados.

Pela Lei de Bragg, temos:

$$n\lambda = a_{NaCl} \cdot sen(\beta)$$
 (3.1.1)

Para os casos de n = 1, 2 e 3, podemos reescrever a (3.1.1) como:

$$\lambda = \frac{5.64 \cdot 10^{-10}}{n} \cdot sen(\beta)$$
 (3.1.2)

Substituindo com os respectivos valores de β dos máximos e n, podemos encontrar os valores de λ e, por consequência, os valores das energias características.

Tabela 4.1.1: Valores dos ângulos, comprimentos de onda e energias correspondentes a cada pico.

	β (°)	λ (Å)	$E_f(keV)$
n = 1	6,4	0,629	19,7
n = 1	7,3	0,717	17,3
m - 2	13,0	0,634	19,6
n = 2	14,6	0,711	17,4
m - 2	19,6	0,631	19,7
n = 3	22,2	0,710	17,5

Os valores de κ_{α} e κ_{β} esperados são respectivamente $\kappa_{\alpha}=19,6083~keV$ e $\kappa_{\beta}=17,4793~keV$.²

Comparando com os valores de κ_{α} e κ_{β} do Mo, já conhecidos consultando tabela com os valores, vemos que os resultados encontrados e calculados são bem próximos dos valores esperados.

Considerando mais casas decimais, os valores de κ_{α} e κ_{β} encontrados tem um desvio de 0,95% e 0,65% respectivamente.

Considerando os comprimentos de onda encontrados e os respectivos n e θ , podemos reescrever a (3.1.1) isolando o θ , tendo:

$$\beta = arcsin(\frac{n \cdot \lambda}{5.64 \cdot 10^{-10}})$$
 (3.1.3)

Os ângulos calculados paran=2 e para n=3 esperados depois de realizados os cálculos apresentam valores próximos. Para n=2, apresentou desvios de 0,85% e 0,88% para os ângulos, e para n=3 apresentou desvios de 0,25% e de 0,99% para os ângulos.

Portanto, os valores encontrados para os picos de emissão característicos do molibdênio possuem < 1% de dispersão do valor esperado. Porém, para estimar a compatibilidade dos valores obtidos, a incerteza dos picos deve ser estimada.

Para fazer uma estimativa mais próxima da verdadeira da incerteza dos picos, podemos fazer ajustes gaussianos da forma:

$$y(x) = H + A \cdot exp \left[\frac{-(x-\mu)^2}{2\sigma^2} \right]$$

onde, H é um parâmetro de correção linear que compensa a emissão de fundo, A é a amplitude da intensidade emissão, μ é o valor da energia do pico e σ é a largura da curva gaussiana.

Aplicando os ajustes gaussianos aos picos do cloreto de sódio, obtemos o gráfico da *Figura 3.1.2*.

Figura 4.1.2: Gráfico da intensidade do feixe de raios-X pelo ângulo β de medição para o cristal de NaCl com respectivos picos de emissão indicados.

As médias μ e os desvios σ das gaussiana da figura acima estão na *Tabela 4.1.2*.

Tabela 4.1.2: *Valores dos parâmetros dos ajustes gaussianos aplicados aos picos de emissão característicos para* n = 1.

	μ (eV)	σ (eV)
κ_{α}	19.679,21	521,28
κ_{eta}	17.457,65	345,23

Ambos os valores esperados para as energias dos picos estão dentro do intervalo de incerteza, portanto as medidas são compatíveis.

Constante de Planck

Os dados coletados para as diferentes tensões de aceleração dos elétrons estão presentes na *Figura 4.1.3*.

Figura 4.1.3: Intensidade do feixe de raios-X pelo ângulo β da medida para o cristal de NaCl com respectivos picos de emissão indicados.

No gráfico da figura acima, notamos que a intensidade do feixe é proporcional à tensão de aceleração dos elétrons

no emissor. Determinamos o λ_{min} e sua incerteza para cada tensão. A incerteza é obtida pela propagação de erros na equação para energia a partir do ângulo β.

Tabela 4.1.3: *Valores de comprimento de onda mínimo para o espectro de cada tensão de aceleração dos elétrons.*

ie enun tenene ne neeterngne nee eterrone.				
U(kV)	λ _{min} (Å)	σ_{λ} (Å)		
35,0	0,354	0,005		
30,0	0,413	0,005		
26,0	0,482	0,005		
22,0	0,570	0,005		
18,0	0,697	0,005		

Os dados da tabela 4.1.3 estão apresentados no gráfico da *Figura 4.1.4*. O ajuste aplicado aos dados é da forma:

$$\lambda_{min}(U) = \frac{a}{U} + b$$
 onde $a = \frac{hc}{e}$

Relação entre o λ_{min} pela tensão de aceleração U.

Figura 4.1.4: λ_{min} em função da tensão de aceleração U dos elétrons, para o NaCl, com ajuste.

Os parâmetros do ajuste estão apresentados na *Tabela* 4.1.4.

Tabela 4.1.4: *Valores dos parâmetros para o ajuste dos dados de tensão de aceleração e comprimento de onda mínimo.*

Parâmetros	Valor	Incerteza 0,1 kV · Å		
а	12,7 kV · Å			
b	-9,95 mÅ	2,94 mÅ		
Análise de χ ²				
NGL χ ²		χ^2_{red}		
3	0,28	0,093		

O intervalo de confiança de 95% do teste de χ^2 para 3 graus de liberdade é entre 0, 21 e 9, 3. Portanto, o ajuste está dentro do intervalo de confiança.

A partir do parâmetro *a* podemos calcular o valor da constante de Planck e sua incerteza.

$$h = 4,250(24) \cdot 10^{-15} eVs$$

Absorbância

Os dados obtidos da intensidade do feixe de raios-X para os casos sem filtro e com filtro de Zr, Mo e Al, estão apresentados na *Figura 4.1.5*.

Figura 4.1.5: *Intensidade do feixe em função da energia dos fótons de raios-X para cada caso: sem filtro e com filtros de Zr, Mo e Al.*

Figura 4.1.6: Espectro de absorbância para cada filtro: Zr, Mo e Al com seus respectivos decaimentos exponenciais e bordas de absorção.

Os valores para as bordas de absorção estão apresentados na *Tabela 4.1.5*.

Tabela 4.1.5: *Valores esperados e medidos para a borda de absorção da camada K dos filtros com o cristal de NaCl.*

Filtro	Energia esperada (<i>keV</i>)	Energia medida (keV)	Incerteza (keV)	<i>t</i> -value
Zr	18,0	18,04	0,13	-0,4
Mo	20,2	20,35	0,20	-1,0
Al	1,6	13,90	0,08	-154,3

As incertezas dos dados das bordas foram obtidas pela propagação do erro de β para energia.

Dos dados para as bordas, vemos que os valores obtidos para o filtro de Zr e Mo são compatíveis com o esperado, pois o teste-t está dentro do intervalo de confiança de 95% para um grau de liberdade, |t| < 6, 13^3 . Os dados para o filtro de Al são inconclusivos, pois não é possível estimar o valor da borda de absorção a partir dos dados apresentados na *Figura 4.1.6*.

Usando os dados de energia e intensidade na borda de absorção dos dados do Zr e Mo, é possível estimar a espessura dos filtros absorvedores.

$$\chi = \frac{ln(A)}{\mu}$$

onde, A é a absortância e μ o coeficiente de atenuação para a energia da borda.

Tabela 4.1.5: Espessuras dos filtros, em μm, encontradas a partir da absortância da borda de absorcão.

Filtro	Espessura (μm)	Incerteza (μm)	
Zr	10,526	0,087	
Мо	24,97	0,11	

Brometo de potássio (KBr)

O parâmetro de rede do cristal de brometo de potássio é:

$$a_{KBr} = 0,659 nm^{1}$$

Picos de emissão

O primeiro conjunto de dados para o cristal de brometo de potássio está apresentado na *Figura 4.2.1* junto com os respectivos picos de emissão característicos do molibdênio.

Figura 4.2.1: Espectro de emissão de raios-X em função do ângulo da medida para o KBR e com respectivos picos de emissão indicados.

Analisando qualitativamente o espectro de emissão para o KBr, podemos notar a emissão de fundo do emissor de raios-X e os picos característicos do molibdênio. Portanto, está como esperado.

Os valores dos ângulos β , comprimentos de onda λ e energia E_f dos picos, para cada n estão apresentados na *Tabela 4.2.1*.

Tabela 4.2.1: Valores dos ângulos em que se encontram os picos, os comprimentos de onda correspondentes e as energias calculadas para cada n.

	β (°)	λ (Å)	E_f (keV)
n = 1	5,5	0,632	19,6
n-1	6,2	0,712	17,4
m - 2	11,1	0,634	19,5
n = 2	12,5	0,713	17,4
2	16,5	0,624	19,9
n = 3	19,0	0,715	17,3

Analogamente ao NaCl, para uma melhor estimativa dos picos de emissão e suas incertezas, aplicamos um ajuste gaussiano aos picos.

Figura 4.2.2: Picos de emissão do KBr com ajustes gaussianos.

Tabela 4.2.2: *Valores dos parâmetros dos ajustes gaussianos aplicados aos picos de emissão característicos para* n=1.

,	μ (eV)	σ (eV)	
$\kappa_{_{_{lpha}}}$	19.602,13	515,21	
$\kappa_{_{eta}}$	17.461,00	407,00	

Os parâmetros dos ajustes da *Figura 4.2.2* estão presentes na *Tabela 4.2.2*. Os valores esperados de κ_{α} e κ_{β} estão dentro do intervalo de incerteza dos valores calculados, e portanto são compatíveis.

Tabela 4.2.3: Desvios percentuais dos valores esperados para os picos de emissão do molibdênio..

Ordem	Desvio
1	0,11%
2	-0,34%
3	-0,32%
4	-0,54%
5	1,35%
6	-0,82%

Na *Tabela 4.1.3*, estão apresentados os desvios percentuais dos valores de energia dos picos aos valores esperados teoricamente.

Constante de Planck

Os espectros de emissão para as diferentes tensões estão apresentados na *Figura 4.2.3*.

Figura 4.2.3: Espectros de emissão do cristal de KBr para diferentes tensões de aceleração dos elétrons.

Os comprimentos de onda mínimos em que há emissão de raios-X para cada tensão estão apresentados na *Tabela* 4.2.4.

Tabela 4.2.4: *Valores de comprimento de onda mínimo para o espectro de cada tensão de aceleração dos elétrons.*

U (kV)	λ _{min} (Å)	σ_{λ} (Å)
35,0	0,345	0,011
30,0	0,391	0,011
26,0	0,471	0,011
22,0	0,563	0,011
18,0	0,700	0,011

As incertezas dos λ_{min} foram estimadas a partir da propagação de erros do ângulo β .

Os dados da *Tabela 4.2.4* estão presentes no gráfico da *Figura 4.2.4* junto com o respectivo ajuste análogo ao caso do NaCl.

Figura 4.2.4: λ_{min} em função da tensão de aceleração U dos elétrons, para o KBr, com ajuste.

Os parâmetros do ajuste estão indicados na Tabela 4.2.5.

Tabela 4.2.5: *Valores dos parâmetros para o ajuste dos dados de tensão de aceleração e comprimento de onda mínimo.*

Parâmetros	Valor	Incerteza		
а	13,96 <i>kV</i> · Å	0,35 <i>kV</i> · Å		
b	-4,55E-2 Å	1,46E-2 Å		
Análise de χ ²				
NGL	χ ²	χ^2_{red}		
3	1,3	0,42		

O intervalo de confiança de 95% para o teste de χ^2 é entre 0, 21 e 9, 3, portanto, o ajuste está dentro do intervalo.

O valor e incerteza da constante de Planck obtida a partir do ajuste é:

$$h = 4,47(12) \cdot 10^{-15} eVs$$

Absorbância

Os dados tomados do espectro de emissão de raios-X para os casos sem filtro e com filtro de Zr, M e Al estão presentes na *Figura 4.2.5*.

Figura 4.2.5: Intensidade do feixe de raios-X em função da energia dos fótons para cada caso: sem filtro e com filtros de Zr, Mo e Al.

Os espectros de absorbância para os diferentes casos junto com um ajuste para o decaimento exponencial da borda de absorção estão presentes na *Figura 4.2.6*.

Figura 4.2.6: Espectro de absorção para os diferentes filtros metálicos: Zr, Mo e Al com seus respectivos decaimentos exponenciais e bordas de absorção.

Os valores para as bordas de absorção estão apresentados na *Tabela 4.2.5*.

Tabela 4.2.5: Valores esperados e medidos para a borda de absorção da camada K dos filtros com o cristal de KBr.

Filtro	Energia esperada (keV)	Energia medida (keV)	Incerteza (keV)	<i>t</i> -value
Zr	18,0	18,00	0,15	0,0
Mo	20,2	20,37	0,19	-0,9

Al 1,6 16,62 0,13 -115,

Da tabela acima, vemos que os valores obtidos para o filtro de Zr e Mo são compatíveis com o esperado, pois o teste-t está dentro do intervalo de confiança de 95% para um grau de liberdade, |t| < 6,13 ³. Analogamente ao NaCl, os dados para o Al não apresentam borda de absorção clara, e portanto não é possível estimar o seu valor.

Usando os dados de energia e intensidade na borda de absorção dos dados do Zr e Mo, é possível estimar a espessura dos filtros absorvedores.

Tabela 4.2.5: Espessuras dos filtros, em μm, encontradas a partir da absortância da borda de absorção...

Filtro	Espessura (μm)	Incerteza (µm)
Zr	10,12	0,14
Мо	20,60	0,20

Análise final

Para a constante de Planck, podemos tirar a média das estimativas feitas para o cristal de NaCl e KBr com sua respectiva propagação de incerteza.

$$h = (4, 36 \pm 0, 12) eVs$$

Fazemos o teste-t desta estimativa com o valor esperado:

$$t = \frac{x_1 - x_2}{\sqrt{\sigma_1^2 + \sigma_2^2}}$$

Obtemos um t-value de t = 1, 8, este valor está dentro do intervalo de 95% de confiança para 6 graus de liberdade, (|t| < 1, 9, foram 3 graus para cada medida)³.

Não há valor esperado para as espessuras dos filtros absorvedores, porém a compatibilidade entre os valores estimados pode ser verificada pelo teste-t com 1 grau de liberdade.

Para a espessura do filtro de Zr, obtemos um teste-t de $t_{Zr}=2,5$ e para o filtro de Mo, $t_{Mo}=19,1$. Os valores para o filtro de Zr são compatíveis dentro de um intervalo de 95% (|t|<6,13)³, porém, o valor do teste-t para as espessuras do filtro de Mo não está neste intervalo e logo não são compatíveis.

V. Conclusão

Os espectros de emissão de raios-X difratados pelos cristais de NaCl e KBr são semelhantes, e as energias características da emissão do molibdênio e os valores das bordas de absorção dos filtros foram compatíveis com o valor esperado.

A constante de Planck estimada a partir dos dados foi de $h=(4,36\pm0,12)~eVs$ (média das medidas para o NaCl e KBr). Como na seção de análise, as medidas foram compatíveis com o valor teórico de referência.

Para os filtros utilizados no experimento, cada um apresenta um efeito diferente sobre os dados. O filtro de zircônio e molibdênio possuem bordas de absorção próximas, pois os dois elementos apresentam números atômicos próximos: 40 para o Zr e 42 para o Mo. Isso explica também a diferença entre estes dois filtros e o filtro de alumínio, o número atômico do Al é 13.

Para o filtro de molibdênio, vemos que o espectro de emissão apresenta o mesmo perfil, porém com intensidades menores, do espectro sem filtro. Isto é devido ao emissor de raios-X já possuir um filtro de Mo acoplado, portanto, o segundo filtro de Mo apenas diminui a intensidade do feixe.

Os dados coletados para o cristal de KBr apresentam um ruído maior se comparado com o cristal de NaCl. Isso se deve a algum artefato no cristal (resíduo de algodão, riscos, imperfeições, impurezas etc).

Por último, os dados para o filtro de alumínio são inconclusivos, pois não há borda de absorção clara no perfil da absortância pela energia. O intervalo de energia analisado no experimento é de 10~keV a 40~keV, e a borda K de absorção do alumínio é 1,56~keV, portanto, esta não pode ser medida a partir dos dados coletados. Porém, deveria ser possível observar os picos relativos a n=2~e~3~segundo~a~lei~de~Bragg.

VI. Referências

[1] eDisciplinas USP, Emissão de raios-X: Aula 1, USP.

https://edisciplinas.usp.br/mod/resource/view.php?id=4580352 Acesso em 19 de abril de 2023.

[2] eDisciplinas USP, X-Ray Data Booklet, USP.

https://edisciplinas.usp.br/pluginfile.php/7473432/mod_resource/content/1/Table_1-2.pdf Acesso em 19 de abril de 2023.

[3] *T-test values table,* San José State University. https://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf Acesso em 19 de abril de 2023.