Question 1:

Determine whether each of the following scalar-valued functions of n-vectors is linear. If it is a linear function, give its inner product representation, ie., an n-vector \boldsymbol{a} for which $f(\boldsymbol{x}) = \boldsymbol{a}^T \boldsymbol{x}$ for all \boldsymbol{x} . If it is not linear, give specific $\boldsymbol{x}, \boldsymbol{y}, \alpha$ and β such that

$$f(\alpha \boldsymbol{x} + \beta \boldsymbol{y}) \neq \alpha f(\boldsymbol{x}) + \beta f(\boldsymbol{y}).$$

- (a) The spread of values of the vector, defined as $f(\mathbf{x}) = max_k x_k min_k x_k$.
- (b) The difference of the last element and the first, $f(\mathbf{x}) = x_n x_1$.

Answer:

(a) Take $\mathbf{x} = (1, 2, 3)$ and $\alpha = 1, \beta = 1$ for example:

$$f(\mathbf{x}) = 3 - 1 = 2$$

$$f(-\mathbf{x}) = -1 + 3 = 2$$

$$f(\mathbf{0}) = 0 - 0 = 0$$

$$f(\mathbf{x} + (-\mathbf{x})) = f(\mathbf{0}) = 0$$

$$f(\mathbf{x}) + f(-\mathbf{x}) = 2 + 2 = 4$$

$$f(\mathbf{x} + (-\mathbf{x})) \neq f(\mathbf{x}) + f(-\mathbf{x})$$

In conclusion, $f(\mathbf{x}) = max_k x_k - min_k x_k$ is not a linear function.

(b) We know:

$$f(\alpha \mathbf{x}) = \alpha x_n - \alpha x_1 = \alpha f(\mathbf{x})$$

$$\alpha \mathbf{x} + \beta \mathbf{y} = (\alpha x_1 + \beta y_1, \cdots, \alpha x_n + \beta y_n)$$

$$f(\mathbf{x}) = x_n - x_1$$

$$f(\mathbf{y}) = y_n - y_1$$

$$f(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha x_n + \beta y_n - (\alpha x_1 + \beta y_1)$$

$$\alpha f(\mathbf{x}) + \beta f(\mathbf{y}) = \alpha (x_n - x_1) + \beta (y_n - y_1)$$

$$= \alpha x_n + \beta y_n - (\alpha x_1 + \beta y_1)$$

$$f(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha f(\mathbf{x}) + \beta f(\mathbf{y}).$$

Let's denote e_i as the vector in \mathbb{R}^n where the i-th entry is equal to 1, and all other entries are equal to 0.

$$f(\boldsymbol{x}) = \boldsymbol{a}^T \boldsymbol{x} = (\boldsymbol{e}_n - \boldsymbol{e}_1)^T \boldsymbol{x}$$

In conclusion, $f(\mathbf{x}) = x_n - x_1$ is a linear function.

Question 2:

Consider the regression model $y = \mathbf{x}^T \mathbf{a} + b$, where y is the predicted response, \mathbf{x} is an 8-vector of features, \mathbf{a} is an 8-vector of coefficients, and b is the offest term. Determine with reasoning whether each of the following statements is true or false.

- (a) If $a_3 > 0$ and $x_3 > 0$, then $y \ge 0$
- (b) If $a_2 = 0$ then the prediction y does not depend on the second feature x_2 .
- (c) If $a_6 = -0.8$, then increasing x_6 (keeping all other x is the same) will decrease y.

Answer:

(a) False.

From the condition, we can deduce that $a_3x_3 > 0$. but we can not deduce $\sum_{i=1, i \neq 3}^8 a_i x_i > 0$ and b > 0. Thus, we can not ensure $y = \sum_{i=1, i \neq 3}^8 a_i x_i + b + a_3 b_3 > 0$.

(b) True.

From the condition, we can deduce that $y = \sum_{i=1, i\neq 2}^{8} a_i x_i + b$, which implies that y does not depend on the second feature x_2

(c) True.

Assume $x_6' = x_6 + d$, d > 0, we know $y' = \sum_{i=0}^8 a_i x_i + d = y + d$. y' - y = d > 0 We can conclude that increasing x_6 will decrease y.

Question 3:

In linear regression models, we consider two data points (\boldsymbol{x}_1, y_1) and (\boldsymbol{x}_2, y_2) with $\boldsymbol{x}_1, \boldsymbol{x}_2 \in \mathbb{R}^2$ and $y_1, y_2 \in \mathbb{R}$. For simplicity, we set the bias term b = 0. Let $\boldsymbol{X} \in \mathbb{R}^{2 \times 2}$ have rows \boldsymbol{x}_1^T and \boldsymbol{x}_2^T , and let $\boldsymbol{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \in \mathbb{R}^2$. Assume the columns of \boldsymbol{X} , denoted by $\boldsymbol{x}^{(1)}$ and $\boldsymbol{x}^{(2)}$, are linearly dependent such that $\boldsymbol{x}^{(1)} = 2\boldsymbol{x}^{(2)}$.

(a) Consider the least squares estimation:

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^2} \|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_2^2 \tag{1}$$

What problem does the linear dependency among the columns of X cause when estimating β using least squares?

(b) Now consider the ridge regression, which incorporates a regularization term:

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^2} \|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_2^2, \tag{2}$$

where $\lambda > 0$ is a regularization parameter. Derive the solution $\hat{\beta}$ of (2). What is the ratio between $\hat{\beta}_1$ adn $\hat{\beta}_2$?

(c) Discuss how varying the value of λ affects the solution and its ability to mitigate issues arising from linear dependency of columns of X.

Answer

(a) According to Linear Algebra, it's obvious that X does not have full column rank. This leads to the solution of $X\beta - y$ (i.e. $\beta full filth is equation$) is non-unique.

Non-Invertibility: For the least squares solution $\beta = (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y}$ to be well-defined,

 X^TX must be invertible. However, with linearly dependent columns, X^TX is singular.

Infinite Solutions: The least squares approach cannot uniquely identify β vector since there exists infinitely many solutions.

This will make class of affine functions is too large to search f.

(b) We know it should satisfy:

$$\nabla_{\boldsymbol{\beta}}(\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_{2}^{2} + \lambda \|\boldsymbol{\beta}\|_{2}^{2}) = 2\boldsymbol{X}^{T}(\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}) + 2\lambda\boldsymbol{\beta} = 0$$
$$(\boldsymbol{X}^{T}\boldsymbol{X} + \lambda \boldsymbol{I})\boldsymbol{\beta} = \boldsymbol{X}^{T}\boldsymbol{y}$$

Provided $\lambda > 0, \mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}$ is invertible,

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

Given $\boldsymbol{x}^{(1)} = 2\boldsymbol{x}^{(2)}$, the matrix $\boldsymbol{X}^T\boldsymbol{X}$ has the form, where $a = \|\boldsymbol{x}^{(2)}\|_{2}^{2}$.

$$m{X}^T m{X} = egin{bmatrix} 4a & 2a \ 2a & a \end{bmatrix} \ m{X}^T m{X} + \lambda m{I} = egin{bmatrix} 4a + \lambda & 2a \ 2a & a + \lambda \end{bmatrix}$$

We know (give α as a constant):

$$(\mathbf{X}^{T}\mathbf{X} + \lambda \mathbf{I})^{-1} = \alpha \begin{bmatrix} a + \lambda & -2a \\ -2a & 4a + \lambda \end{bmatrix}$$
Assume $(\mathbf{X}^{T}\mathbf{X} + \lambda \mathbf{I})^{-1} = \begin{bmatrix} a, & b \\ c, & d \end{bmatrix}, \ X^{T} = \begin{bmatrix} 2x_{1} & 2x_{2} \\ x_{1} & x_{2} \end{bmatrix}$

$$(\mathbf{X}^{T}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{T} = \begin{bmatrix} 2ax_{1} + bx_{1} & 2ax_{2} + bx_{2} \\ 2cx_{1} + dx_{1} & 2cx_{2} + dx_{2} \end{bmatrix}$$

$$(\mathbf{X}^{T}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{T}\mathbf{y} = \begin{bmatrix} 2ax_{1} + bx_{1} & 2ax_{2} + bx_{2} \\ 2cx_{1} + dx_{1} & 2cx_{2} + dx_{2} \end{bmatrix} \mathbf{y} = \begin{bmatrix} (2ax_{1} + bx_{1})y_{1} + (2ax_{2} + bx_{2})y_{2} \\ (2cx_{1} + dx_{1})y_{1} + (2cx_{2} + dx_{2})y_{2} \end{bmatrix}$$

we know that $\frac{2a+b}{2c+d} = \frac{2a+2\lambda-2a}{-4a+4a+\lambda} = \frac{2\lambda}{\lambda} = 2$ It is obvious that $\hat{\beta}_1/\hat{\beta}_2 = 2$.

(c) As λ increasing, the matrix $\boldsymbol{X}^T\boldsymbol{X} + \lambda \boldsymbol{I}$ becomes increasingly well-conditioned adn easier to invert. By adding $\lambda \boldsymbol{I}$, ridge regression reduces the influence of the linear dependency in \boldsymbol{X} . The regularization term $\lambda \|\boldsymbol{\beta}\|_2^2$ effectively penalizes large values in $\boldsymbol{\beta}$, which helps in controlling variance and provides a unique solution despite \boldsymbol{X} being rank-deficient. As $\lambda \to 0$, the ridge solution approaches the least squares solution, potentially reintroducing instability due to multicollinearity. As $\lambda \to \infty$, the solution $\hat{\boldsymbol{\beta}}$ shrinks toward zero, prioritizing stability but at the cost of increasing bias. Thesefore, choosing an appropriate λ balances stability and accuracy.

Question 4:

Let $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^N$ be given with $\boldsymbol{x}_i \in \mathbb{R}^n$ and $y_i \in \mathbb{R}$. Consider the soft-SVM:

$$\min_{\boldsymbol{a} \in \mathbb{R}^n, b \in \mathbb{R}} \sum_{i=1}^N h(y_i(\langle \boldsymbol{a}, \boldsymbol{x}_i \rangle + b) - 1) + \lambda \|\boldsymbol{a}\|_2^2,$$

where $\lambda \in \mathbb{R}$ is a regularization parameter and $h(t) = \max\{0, -t\}$ is the hinge loss function. Prove that solving the above soft-SVM is equivalent to solving the following problem:

$$\min_{\boldsymbol{a} \in R^n, b \in \mathbb{R}, \boldsymbol{\xi} \in \mathbb{R}^N} \sum_{i=1}^N \xi_i + \lambda \|\boldsymbol{a}\|_2^2,$$
s.t. $y_i(\langle \boldsymbol{a}, \boldsymbol{x}_i \rangle + b) \ge 1 - \xi_i$ and $\xi_i \ge 0, i = 1, 2, \dots, N$

Answer

Since $\forall a \in H$, we can decompose it as:

$$oldsymbol{a} = oldsymbol{a}_s + \sum_{i=1}^N c_i oldsymbol{x}_i, ext{ where } c = \begin{bmatrix} c_1 \\ \vdots \\ c_N \end{bmatrix} \in \mathbb{R}^N$$
 and $oldsymbol{a}_s$ satisfies $\langle oldsymbol{a}_s, oldsymbol{x}_i \rangle = 0, i = 1, \cdots, N$

Then the objective function in (K-SVM) is:

$$\begin{split} &\sum_{i=1}^{N} h(y_i(\langle \boldsymbol{a}, \boldsymbol{x}_i \rangle + b) - 1) + \lambda \|\boldsymbol{a}\|_2^2 \\ &= \sum_{i=1}^{N} h(y_i(\langle \boldsymbol{a}_s + \sum_{j=1}^{N} c_j \boldsymbol{x}_j, \boldsymbol{x}_i \rangle + b) - 1) + \lambda \|\boldsymbol{a}\|_2^2 \\ &= \sum_{i=1}^{N} h(y_i(\sum_{j=1}^{N} c_j \langle \boldsymbol{x}_j, \boldsymbol{x}_i \rangle + b) - 1) + \lambda \|\boldsymbol{a}\|_2^2 \end{split}$$

Define $\xi_i = 1 - y_i(\sum_{j=1}^N c_j \langle \boldsymbol{x}_j, \boldsymbol{x}_i \rangle + b) = \max\{0, 1 - y_i \langle \boldsymbol{a}, \boldsymbol{x}_i \rangle + b\}$ s.t. we have to ensure:

$$\xi_i \ge 1 - y_i(\langle \boldsymbol{a}, \boldsymbol{x}_i \rangle + b)$$

 $\xi_i \ge 0$

We know the problem becomes:

$$\min_{oldsymbol{a} \in R^n, b \in \mathbb{R}, oldsymbol{\xi} \in \mathbb{R}^N} \sum_{i=1}^N \xi_i + \lambda \|oldsymbol{a}\|_2^2$$

So we can conclude that solving the above soft-SVM is equivalent to solving the following problem:

$$\min_{\boldsymbol{a} \in R^n, b \in \mathbb{R}, \boldsymbol{\xi} \in \mathbb{R}^N} \sum_{i=1}^N \xi_i + \lambda \|\boldsymbol{a}\|_2^2,$$
s.t. $y_i(\langle \boldsymbol{a}, \boldsymbol{x}_i \rangle + b) \ge 1 - \xi_i$ and $\xi_i \ge 0, i = 1, 2, \dots, N$

Question 5:

Let V be a Hilbert space. Let S_1 and S_2 be two hyperplanes in V defined by

$$S_1 = \{ \boldsymbol{x} \in V | \langle \boldsymbol{a}_1, \boldsymbol{x} \rangle = b_1 \}, S_2 = \{ \boldsymbol{x} \in V | \langle \boldsymbol{a}_2, \boldsymbol{x} \rangle = b_2 \}.$$

Assume $S_1 \cap S_2$ is non-empty. Let $\boldsymbol{y} \in V$ be given. We consider the projection of \boldsymbol{y} onto $S_1 \cap S_2$, i.e., the solution of

$$\min_{\boldsymbol{x} \in S_1 \cap S_2} \|\boldsymbol{x} - \boldsymbol{y}\|. \tag{3}$$

- (a) Prove that $S_1 \cap S_2$ is a plane, i.e., if $\boldsymbol{x}, \boldsymbol{z} \in S_1 \cap S_2$, then $(1+t)\boldsymbol{z} t\boldsymbol{x} \in S_1 \cap S_2$ for any $t \in \mathbb{R}$.
 - (b) Prove that z is a solution of (3) if and only if $z \in S_1 \cap S_2$ and

$$\langle \boldsymbol{z} - \boldsymbol{y}, \boldsymbol{z} - \boldsymbol{x} \rangle = 0, \forall \boldsymbol{x} \in S_1 \cap S_2$$
 (4)

- (c) Find and explicit solution of (3).
- (d) Prove the solution found in part (c) is unique.

Answer

(a)

$$\langle \boldsymbol{a}, (1+t)\boldsymbol{z} - t\boldsymbol{x} \rangle$$

= $(1+t)\langle \boldsymbol{a}, \boldsymbol{z} \rangle - t\langle \boldsymbol{a}, \boldsymbol{x} \rangle$
= $(1+t)b - tb$
- b

There \boldsymbol{a} can be $\boldsymbol{a}_1, \boldsymbol{a}_2$ (correspondingly b should be b_1, b_2).

We can conclude that $(1+t)z - tx \in S_1 \cap S_2$ for any $t \in \mathbb{R}$

(b) From(a) we know:

$$z + t(x - z) \in S_1 \cap S_2$$

since z is the $min_{x \in S_1 \cap S_2} ||x - y||$

$$\|z - y\|^2 \le \|z + t(x - z) - y\|^2$$

= $\|(z - y) + t(x - z)\|^2$
= $\|z - y\|^2 + t^2 \|x - z\|^2 + 2t\langle z - y, x - z\rangle$

Proof: If z is a solution. then: Obviously, $z \in S_1 \cap S_2$,

$$2t\langle \boldsymbol{z} - \boldsymbol{y}, \boldsymbol{x} - \boldsymbol{z} \rangle \ge -t^2 \|\boldsymbol{x} - \boldsymbol{z}\|^2$$

$$\langle \boldsymbol{z} - \boldsymbol{y}, \boldsymbol{x} - \boldsymbol{z} \rangle \ge -\frac{t}{2} \|\boldsymbol{x} - \boldsymbol{z}\|^2, \text{ if } t > 0$$

$$\langle \boldsymbol{z} - \boldsymbol{y}, \boldsymbol{x} - \boldsymbol{z} \rangle \ge 0, \text{ let } t \to 0_+$$

$$\langle \boldsymbol{z} - \boldsymbol{y}, \boldsymbol{x} - \boldsymbol{z} \rangle \le -\frac{t}{2} \|\boldsymbol{x} - \boldsymbol{z}\|^2, \text{ if } t < 0$$

$$\langle \boldsymbol{z} - \boldsymbol{y}, \boldsymbol{x} - \boldsymbol{z} \rangle \le 0, \text{ let } t \to 0_-$$

$$\langle \boldsymbol{z} - \boldsymbol{y}, \boldsymbol{x} - \boldsymbol{z} \rangle = 0 \text{ together}$$

Proof: If $z \in S_1 \cap S_2$, and $\langle \boldsymbol{z} - \boldsymbol{y}, \boldsymbol{x} - \boldsymbol{z} \rangle = 0, \forall \boldsymbol{x} \in S_1 \cap S_2$

$$||\mathbf{x} - \mathbf{y}||^2 = ||(\mathbf{x} - \mathbf{z}) + (\mathbf{z} - \mathbf{y})||^2$$

$$= ||\mathbf{x} - \mathbf{z}||^2 + ||\mathbf{z} - \mathbf{y}||^2 + 2\langle \mathbf{x} - \mathbf{z}, \mathbf{z} - \mathbf{y}\rangle$$

$$= ||\mathbf{x} - \mathbf{z}||^2 + ||\mathbf{z} - \mathbf{y}||^2$$

$$\geq ||\mathbf{z} - \mathbf{y}||^2$$
so, $\mathbf{z} = \underset{\mathbf{x} \in S_1 \cap S_2}{\operatorname{argmin}} ||\mathbf{x} - \mathbf{y}||$

(c) Denote $\boldsymbol{w}_1 = \frac{1}{\|\boldsymbol{a}_1\|} \boldsymbol{a}_1$, and $\boldsymbol{w}_2 = \frac{1}{\|\boldsymbol{w}_2'\|} \boldsymbol{w}_2'$, where $\boldsymbol{w}_2' = \boldsymbol{a}_2 - \frac{\langle \boldsymbol{a}_2, \boldsymbol{a}_1 \rangle}{\langle \boldsymbol{a}_1, \boldsymbol{a}_1 \rangle} \boldsymbol{a}_1$

$$oldsymbol{z} = oldsymbol{y} - \sum_{i=1}^2 \langle oldsymbol{y}, oldsymbol{w}_i
angle oldsymbol{w}_i$$

$$egin{aligned} \langle m{a}_1, m{w}_1
angle &= \frac{\langle m{a}_1, m{a}_1
angle}{\|m{a}_1\|} \ \langle m{a}_1, m{w}_2
angle &= 0 \ \langle m{a}_1, m{z}
angle &= 0 \end{aligned}$$
 we can prove according to above equation

Similarly, we can prove this is true, about $\langle \boldsymbol{a}_2, \boldsymbol{z} \rangle = 0$. And, we can verify that.

$$\langle \boldsymbol{z} - \boldsymbol{y}, \boldsymbol{x} - \boldsymbol{z} \rangle = \sum_{i=1}^{2} \langle \boldsymbol{y}, \boldsymbol{w}_i \rangle \langle \boldsymbol{w}_i, \boldsymbol{x} - \boldsymbol{z} \rangle = 0$$

In conclusion, $w_1 = \frac{1}{\|a_1\|} a_1$, and $w_2 = \frac{1}{\|w_2'\|} w_2'$, where $w_2' = a_2 - \frac{\langle a_2, a_1 \rangle}{\langle a_1, a_1 \rangle} a_1$

$$oldsymbol{z} = oldsymbol{y} - \sum_{i=1}^2 \langle oldsymbol{y}, oldsymbol{w}_i
angle oldsymbol{w}_i$$

is a solution of (3)

(d) We know that: $\langle \boldsymbol{z} - \boldsymbol{y}, \boldsymbol{z} - \boldsymbol{x} \rangle = 0, \forall \boldsymbol{x} \in S_1 \cap S_2$ Proof: Suppose we have 2 solutions $\boldsymbol{z}_1, \boldsymbol{z}_2, and \boldsymbol{z}_1, \boldsymbol{z}_2 \in S_1 \cap S_2$

$$\langle \boldsymbol{z}_1 - \boldsymbol{y}, \boldsymbol{z}_2 - \boldsymbol{z}_1 \rangle = 0$$

$$\langle \boldsymbol{z}_2 - \boldsymbol{y}, \boldsymbol{z}_1 - \boldsymbol{z}_2 \rangle = 0$$

$$\langle \boldsymbol{z}_1 - \boldsymbol{y}, \boldsymbol{z}_2 - \boldsymbol{z}_1 \rangle + \langle \boldsymbol{z}_2 - \boldsymbol{y}, \boldsymbol{z}_1 - \boldsymbol{z}_2 \rangle = 0$$

$$\langle \boldsymbol{z}_1 - \boldsymbol{y} + \boldsymbol{y} - \boldsymbol{z}_2, \boldsymbol{z}_2 - \boldsymbol{z}_1 \rangle = 0$$

$$\langle \boldsymbol{z}_1 - \boldsymbol{z}_2, \boldsymbol{z}_2 - \boldsymbol{z}_1 \rangle = 0$$

$$-\|\boldsymbol{z}_1 - \boldsymbol{z}_2\|^2 = 0 \implies \boldsymbol{z}_1 = \boldsymbol{z}_2$$