

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL – PUCRS FACULDADE DE ENGENHARIA

PROJETOS DE SISTEMAS DE CONTROLE

LABORATÓRIO 3

Matheus Zanini Storck

TURMA - 480

Porto Alegre, 26 de Abril de 2017.

1. DESCRIÇÃO DA TAREFA

O objetivo deste laboratório é projetar um compensador de atraso de fase atráves de análise gráfica dos diagramas de Bode, de forma a atender os requisitos do projeto sem alterar a função de transferência original (Planta).

A função de transferência original que será utilizada é dada por:

$$G(s) = \frac{(s+1.1)(s+3)}{s(s+0.3)(s+0.7)(s+0.5)}$$
(1)

Os requisitos do projeto são:

- Máximo sobressinal de 25%
- Erro em regime permanente a rampa $\leq 8 \times 10^{-4}$

2. RESULTADOS E ANÁLISE

Utilizando o software Matlab, o projeto iniciou-se através da modelagem da função de transferência (1), utilizando a função *tf* da seguinte forma:

$$s = tf('s');$$

$$G = ((s+1.1)*(s+3))/(s*(s=0.3)*(s+0.7)*(s+0.5))$$

Com a função de transferência definida, foi gerado o primeiro diagrama de bode do projeto e assim foi possivel verificar os valores de ω_{0dB} , ω_{180} , margem de fase, a margem de ganho do sistema G(s) e o Kv atual:

O ganho Kv foi localizado ao traçar uma reta com -20db de inclinação paralela ao inicio do gráfico de magnitude do Bode. O ponto na curva de magnitude onde a reta cruzou o 0dB equivale ao Kv, e no caso acima, Kv = 25.6.

 ω_{0dB} equivale a frequência em que o gráfico da magnitude cruza 0dB, ou seja, $\omega_{0dB}=1.52~rad/s$ e ω_{180} equivale a frequência em que o gráfico da fase cruza 180° , ou seja, $\omega_{180}=0.372~rad/s$.

A margem de fase equivale a -45°, pois é o resultado de subtrairmos o valor da fase em 0db (-225) de 180°, e a margem de ganho é de -32dB pois é o resultado de subtrairmos o valor da magnitude em 180° (32dB) de 0dB.

De forma a cumprir o segundo requisito do projeto (Erro a rampa), calculamos o *Kkv* necessário da seguinte forma:

$$e_v = \frac{1}{Kv}$$
$$Kv = \frac{1}{e_v}$$

Assumindo $e_v = 0.0008$, temos:

$$Kv^* = \frac{1}{0.0008}$$

 $Kv^* = 1250$

Portanto:

$$Kkv = \frac{Kv^*}{Kv}$$

$$Kkv = \frac{1250}{25.6}$$

$$Kkv = 48.82$$

A partir do valor de Kkv calculado, foi gerado um novo diagrama de Bode, agora sobrepondo Kkv * G(s) à G(s) original:

O ganho Kkv agora equivale a 1250, pois ao traçar a reta com -20db de inclinação paralela ao inicio do gráfico de magnitude do Bode de Kkv * G(s), o ponto

na curva de magnitude onde a reta cruzou o 0dB equivale a 1250. Concluimos que o segundo requisito foi alcançado somente adicionando um ganho ao sistema original.

 ω_{0dB} equivale agora a 7.28 rad/s e ω_{180} permanece o mesmo pois o ganho não afeta a fase, ou seja, $\omega_{180}=0.372~rad/s$.

A margem de fase equivale agora a -19°, e a margem de ganho a -65.9dB, portanto, o sistema permanece instável visto que a fase cruza 180° (Margem de fase negativa).

Através do gráfico que relaciona Sobressinal x Margem de Fase x Fator de amortecimento (ξ), podemos encontrar a partir do Maximo sobressinal desejado M_p^* os valores de fator de amortecimento e Margem de fase desejado:

Com $M_p^* = 25\%$, temos então um $\xi^* = 0.4$ e uma magem de fase desejada $\Phi_M^* = 43^\circ$, desta forma, podemos então projetar o nosso compensador de atraso e verificar se é possivel atender o primeiro requisito do projeto.

Adicionando 5° a margem de fase desejada, obtemos uma margem de fase $\Phi_M=48^\circ$, o que equivale a uma fase de $-180+48^\circ=-132^\circ$. No bode tal fase corresponde a uma frequência de $\omega_c=0.138~{\rm rad/s}$.

Para que o primeiro requisito seja cumprido, é ncessário adicionar um ganho Kmp de forma a atenunar a magnitude em $\omega_c = 0.138 \, \text{rad/s}$ e tornar esta a nova frequência ω_{0dB} , portanto, sabendo que a magnitude em $0.138 \, rad/s$ equivale a 79.7dB, é calculado:

$$20log_{10}(x) = y : 10^{\frac{y}{20}} = x$$

$$Kmp = 10^{-\frac{79.7}{20}}$$

$$Kmp = 1.035 \times 10^{-4}$$

A partir do valor de Kmp, geramos então um novo gráfico de bode Kmp * Kkv * G(s), sobrepondo os anteriores:

Podemos verificar que o novo valor de ganho, K_{vatual} equivale a $\omega_c = 0.138$ portanto, verificamos que somente alterando o ganho do sistema não é possivel satisfazer ambos os requisitos simultaneamente.

De forma a tentar satisfazer ambos os requisitos, vamos calcular os parâmetros do nosso compensador:

$$\alpha = \frac{K_v^*}{K_{vatual}}$$

$$\alpha = \frac{1250}{0.138}$$

$$\alpha = 9.058 \times 10^3$$

Posisionamos o Zero do compensador uma década abaixo da nova frequência de cruzamento ω_c :

$$Zat = \frac{\omega_c}{10}$$

$$Zat = 0.0138$$

É realizado então o cálculo do polo do compensador de atraso:

$$Pat = \frac{Zat}{\alpha}$$

$$Pat = 1.5235 \times 10^{-6}$$

Finalmente, é calculado o ganho do compensador de atraso, que deve ser 1:

$$Kat = \frac{Pat}{Zat}$$

$$Kat = 1.1040 \times 10^{-4}$$

A equação do compensador é composta da seguinte forma:

$$C(s)_{atraso} = Kat \frac{s + Zat}{s + Pat}$$

O diagrama de bode completo C(s) * Kkv * G(s) é então gerado sobreponto os anteriores, como podemos ver abaixo:

Note que o requisito de erro a rampa está satisfeito, pois a declividade é a mesma do bode Kkv * G(s), porem o requisito de sobressinal não está satisfeito, pois $\omega_{0dB} = 0.145$ e não 0.138.

Para verificar a eficiência do compensador, é gerado o gráfico da resposta a rampa e ao degrau unitário a partir dos scripts fornecidos na descrição do projeto, conforme abaixo:

3. RESPOSTAS DO QUESTIONÁRIO

• Utilizando os gráficos de Resposta ao Degrau unitário e Resposta a Rampa, analise se os requisitos foram atendidos? Se não, explique a possível causa.

- Verificamos através do gráfico da resposta a rampa que o requisito de erro a rampa foi atendido, visto que a curva de resposta do sistema acompanha a rampa. Porém, no gráfico de resposta ao degrau, vimos que o requisito de $M_p^* = 25\%$ não foi atendido, pois a amplitude máxima é 33% maior que a referência. Uma possível causa para não atender o $M_p^* = 25\%$ é a margem pequena de fase, possivelmente aumentando a margem de fase desejada em mais graus seria possível atingir os 25% de M_p^* .
- Qual a resolução mais fácil? Através do método gráfico aqui apresentado ou analiticamente como apresentado na aula teórica?
 - A resolução de modo gráfico é muito mais fácil do que pela forma teórica, porém creio que pode adicionar erros nos valores finais, principalmente se não forem bem localizados os valores no gráfico de Bode.

4. CONCLUSÕES FINAIS

Neste laboratório foi possível projetar um compensador de atraso de fase utilizando o método de análise do gráfico de Bode de G(s), o mesmo atendeu um dos requisitos de projeto (Erro a rampa) mas falhou ao atender o outro requisito ($M_p^* = 25\%$), possívelmente por conta da baixa margem de fase utilizada.