Taller 2 - Programación Dinámica

David Gutierrez Alarcon, Julian Andres Carrillo Chiquisa, David Alejandro Castillo Chiquiza

24 de septiembre de 2021

Resumen

En este documento se presenta el análisis de los dos problemas planteados y sus soluciones mediante el uso de el método de Dividir y Vencer

Análisis y Diseño del Problema

Análisis

Diseño

Algoritmos

Evidente recursivo

Pseudocódigo

```
Algorithm 1 Promedio inocente
```

```
1: procedure EVIDENTERECURSIVO(X, Y, Z, A, Q)
       if A == Q then
          s \leftarrow True
 3:
          return A
 4:
       end if
 5:
       if s == False then
 6:
 7:
          if (longitud(X) == 0) \land (longitud(Y) == 0) then
             {\bf return}\ A
 9:
          end if
          if (logitud(X) > 0) \lor (longitud(Y) > 0) then
10:
             if longitud(X) > 0 then
11:
12:
                 if X[0] == Z[0] then
                    Evidente Recursivo(X[1:],Y,Z[1:],A+X[0],Q) \\
13:
                 end if
14:
             end if
15:
             if longitud(Y) > 0 then
16:
17:
                 if Y[0] == Z[0] then
                    EvidenteRecursivo(X,Y[1:],Z[1:],Z+Y[0],Q) \\
18:
                 end if
19:
             end if
          end if
21:
       end if
22:
       return A
24: end procedure
```

Complejidad

Invariante

Notas de Implementación

Memorizado

Pseudocódigo

Complejidad

Invariante

Notas de Implementación

Bottom-up

Pseudocódigo

Complejidad

Invariante

Notas de Implementación

Comparación