머신러닝의 개요

2019년 5월 26일 일요일 오전 9:45

1-1. 머신러닝의 특성

- 인공지능, 머신러닝, 딥러닝
 - 기계가 학습을 할 수 있도록 하는 연구 분야
 - 인공지능 연구의 한 분야로서 최근들어 딥러닝을 통해서 빠르게 발전

Artificial Intelligence

Any technique which enables computers to mimic human behavior.

Machine Learning

Subset of AI techniques which use statistical methods to enable machines to improve with experiences.

Deep Learning

Subset of ML which make the computation of multi-layer neural networks feasible.

■ 학습 시스템과 머신러닝

- 학습 시스템: 환경과의 상호작용으로부터 획득한 경험적인 데이터를 바탕으로 지식을 자동으로 습득하여 스스로 성능을 향상하는 시스템
- 머신러닝: 인공적인 학습 시스템을 연구하는 과학과 기술. 즉, 경험적인 데이터를 바탕으로 지식을 자동으로 습득하여 스스로 성능을 향상하는 기술
- 데이터를 기반으로 모델을 자동으로 생성하는 기술
- 실세계의 복잡한 데이터로부터 규칙과 패턴을 발견하여 미래를 예측하는 기술
- 입출력 데이터로부터 프로그램(알고리듬)을 자동으로 생성하는 기술

■ 머신러닝의 정의

■ 머신러닝을 보다 형식화하여 정의하면 "환경(Environment, E)과의 상호작용을 통해서 축적되는 경험적인 데이터(Data, D)를 바탕으로 지식 즉 모델(Model, M)을 자동으로 구축하고 스스로 성능(Performance, P)을 향상하는 시스템"이다(Mitchell, 1997).

$$ML: D \xrightarrow{P} M$$

■ 딥러닝

- 많은 수의 신경층을 쌓아 입력된 데이터가 여러 단계의 특징 추출 과정을 거쳐 자동으로 고수준의 추상적인 지식을 추출하는 방식
- 특징 추출과 특징 분류를 특징 학습의 문제로 통합(보다 자동화된 학습 기술)
- 딥러닝을 통해서 신경망에 대한 관심이 다시 늘어남에 다라 머신러닝 연구에 관심을 다시 갖기 시작함

■ 다양한 분야에의 응용

- Google의 GoogLeNet, 백만여 장의 이미지로부터 천 가지 종류의 물체를 분류
- Facebook의 DeepFace, 사람의 얼굴을 인식하는 문제에서 인간 수준의 성능
- Microsoft의 딥러닝을 적용한 음성인식 기술
- Google의 DeepMind, 실제 사람처럼 비디오 게임을 학습하는 기술

1-2. 프로그래밍 방식과의 차이점

■ 일반적인 컴퓨터 프로그램

- 사람이 알고리듬 설계 및 코딩
- 주어진 문제(데이터)에 대한 답 출력

Human Programming

■ 머신러닝 프로그램

- 사람이 코딩
- 기계가 알고리듬을 자동 프로그래밍 (Automatic Programming)
- 데이터에 대한 프로그램을 출력

Automatic Programming (Deep Learning)

- 학습 시스템의 구성요소: 환경 E, 데이터 D, 모델 M, 성능지수 P
 - 환경(E): 학습 시스템이 상호작용하는 대상, 학습할 문제
 - 데이터(D): 환경과 상호작용을 통해 축적된 경험
 - 프로그램이 작성될 때 모든 가능한 입력을 고려하여 그 경우만을 다루는 것과 구별됨
 - 모델(M): 데이터를 모델링하는 학습 시스템의 구조
 - 성능지수(P): 학습 시스템의 성능 평가 지표
 - ■학습 시스템이 목표를 이루기 위하여 최적화 해야 하는 대상

■ 머신러닝이 필요한 문제

- 명시적 문제해결 지식의 부재 (알고리듬 부재)
- 프로그래밍이 어려운 문제 (예: 음성인식)
- 지속적으로 변화하는 문제 (예: 자율이동로봇)

■ 머신러닝 더욱 중요해지는 이유

- 빅데이터의 존재 (학습에 필요)
- 컴퓨팅 성능의 향상 (고난도 학습이 가능)
- 서비스와 직접 연결 (비지니스적 효과)
- 비즈니스 가치 창출 (회사 가치 향상)

1-3. 산업적 응용사례 - 자율주행 자동차

- 1992년, 신경망 구조를 이용한 자동차 자동 운전
- 2005년, 사막 환경 무인 자동차 대회에서 성공적으로 운전을 수행 Stanford 대학 Al Lab의 Stanley가 우승함 (Sebastian Thrun 교수팀)
- 2007년, 도시 환경 무인 자동차 대회에서 성공적으로 운전을 수행
- 2010년, 구글이 무인자동차를 발표 (Larry Page & Sebastian Thrun)

ALVINN (CMU, 1992)

- ALVINN (Autonomous Land Vehicle In a Neural Networks)
 - 카네기멜론 대학교와 메르세데스 벤츠가 합작으로 수행
 - 100km 이상의 속도로 고속도를 장기 주행하는 것에 성공
 - 전면 카메라로 수집한 전면 영상이 입력
 - 운전대와 가속 페달 및 브레이크 페달을 조정하는 것이 출력

DARPA Grand Challenge (2005)

- 스탠포드 팀이 DARPA Grand Challenge 에서 우승
- 무인 자동차가 사막을 131 마일을 질주하는 데에 성공
- Racing Video: http://youtu.be/M2AcMnfzpNg
- Stanford Racing Team: http://cs.stanford.edu/group/roadrunner//old/index.html

DARPA Urban Challenge (2007)

- CMU와 GM이 우승하여 200만불을 차지
- 6시간 내에 96 km 도시 구간을 완주하는 것이 목표
- 도로 주행 계획, 상황 인식, 주행 환경 모델링의 기술이 필요
- http://youtu.be/P0NTV2mbJhA

Google의 자율주행 자동차 (2010)

- 인공지능 기술을 사용하여 스스로 판단할 수 있는 무인 자동차를 발표 (문제가 발생하면 운전석 탑승자에게 자동으로 경고)
 - 인공지능 / 컴퓨터 비전 / GPS / 구글 맵 / 다양한 센서 등을 사용
- Test Driving: http://youtu.be/X0I5DHOETFE
- Ted by Sebastian Thrun: http://youtu.be/r T-X4N7hVQ

산업적 응용 사례

- 머신러닝의 다양한 활용 분야
 - •데이터마이닝, 정보검색, 텍스트마이닝, 웹마이닝, 빅데이터
 - 비즈니스 분석, 전자상거래, 신용카드 도용 검출
 - 자연어처리 음성인식, 기계번역, 챗봇
 - 컴퓨터비전, 물체인식, 물체추적, 네비게이션
 - 로보틱스, 휴머노이드 로봇, 모바일 로봇, 자율주행 자동차
 - 컴퓨터그래픽스, 데이터기반 애니메이션. 컴퓨터 게임
 - 로보어드바이저, 의약학, 바이오인포매틱스, 금융공학

1-4. 역사와 최근 발전 동향

■ 지난 70여년 동안의 머신러닝 연구: 잠재기 (1940-1980), 태동기 (1980-199 5), 성장기 (1995-2010), 도약기 (2010-현재)

잠재기(1940-1980)

1943: McClloch & Pitts neuron

1949: Hebbian learning (Hebb)

1958: Perceptron (Rosenblatt)

1959: Checkers' player (Samuel)

1960: Delta rule (Widrow & Hoff)

1961: Lernmatrix (Steinbuch)

1965: Learning machines (Nilsson)

1967: Outstar learning (Grossberg)

1969: Perceptron book (Minsky & Papert) 1972: Associative memory neural nets (Kohonen)

1973: Pattern classification and scene analysis (Duda & Hart)

1975: Symbolic concept learning (Winston)

1977: Associative memory nets (Anderson)

1977: Actor-critic model (Witten)

역사와 최근 발전 동향: 태동기(1980-1995)

태동기(1980-1995)

- 1981: Parallel models of associative memory (Hinton & Anderson)
- 1982: Self-organizing maps (Kohonen)
- 1982: Hopfield networks (Hopfield)
- 1983: Boltzmann machines (Hinton & Sejnowski)
- 1983: Machine learning workshop and book (Carbonell & Mitchell, Eds.)
- 1983: Actor-critic model (Barto, Sutton, Anderson)
- 1984: PAC computational learning theory (Valiant)
- 1985: Adaptive resonance theory (Carpenter & Grossberg)
- 1985: Uncertainty in AI (UAI)
- 1985: AI and Statistics (AISTATS)
- 1986: Parallel distributed processing PDP (Rumelhart & McClleland)
- 1986: Backpropagation algorithm (Rumelhart, Hinton, & Williams)
- 1986: Machine learning (Journal)
- 1986: Decision trees (Quinlan)
- 1987: Neural network conferences (ICNN, INNS, NIPS)
- 1988: Bayesian networks (Lauritzen & Spiegelhalter, Pearl)
- 1989: Q-learning (Watkins)
- 1992: TD-Gammon (Tesauro)
- 1992: Support vector machines (Boser, Guyon, & Vapnik)
- 1994: Learning Bayesian networks (Hackerman)

역사와 최근 발전 동향: 성장기(1995-2010)

성장기(1995-2010)

- 1995: Statistical learning theory (Vapnik)
- 1995: Helmholtz machines (Dayan, Hinton, Neal & Zemel)
- 1995: Neural networks for pattern recognition (Bishop)
- 1997: Machine learning textbook (Mitchell)
- 1998: Neural networks (Haykin)
- 1998: Reinforcement learning (Sutton & Barto)
- 1999: Learning in graphical models (Jordan)
- 1999: Kernel machines (Schoelkopf & Smola)
- 2001: Journal of machine learning research (JMLR)
- 2003: Boosting algorithms (Freund & Shapire)
- 2003: Information theory, inference, and learning algorithms (MacKay)
- 2005: DARPA grand challenge (Thrun)
- 2005: Probabilistic robotics (Thrun, Burgard, & Fox)
- 2006: Deep neural networks (Hinton)
- 2006: Pattern recognition and machine learning (Bishop)
- 2008: Neural networks and learning machines (Haykin)
- 2009: Probabilistic graphical models (Koller & Friedman)

역사와 최근 발전 동향: 도약기(2010-현재)

도약기(2010-현재)

- 2010: Google car (Thrun)
- 2011: Watson AI (IBM)
- 2011: Siri personal assistant (Apple)
- 2012: AlexNet wins ImageNet competition
- 2013: Google acquires DNNresearch
- 2013: ICLR deep learning conference
- 2013: Allen Institute for Artificial Intelligence (AI2)
- 2013: EU Human Brain Project (HBP)
- 2013: Google acquires 8 robotics companies
- 2013: SoftBank Pepper robots
- 2013: Facebook AI Research (LeCun)
- 2014: Baidu Deep Learning Institute (Ng)
- 2014: Amazon Echo & Alexa
- 2015: DARPA Robotics Challenge
- 2015: Toyota invests \$5B in AI
- 2015: Google TensorFlow
- 2015: OpenAI (Musk et al.)
- 2016: AlphaGo (Google DeepMind)
- 2016: Apple AI Lab
- 2016: Google Home & Assistant

튜링머신 - 생각하는 기계 (1950)

■ 앨런 튜링은 사람이 인간과 같은 지능적 행동을 보일 수 있을 지 시험하는 튜링 테스트를 제안

HUMAN

- Turing Alan M. "Computing machinery and intelligence." Mind, 1950.
- http://youtu.be/1uDa7jklztw

퍼셉트론 (1958)

■ Rosenblatt은 신경망 모델의 일종인 퍼셉트론과 그 학습 알고리즘을 제시

역사와 최근 발전 동향: 초기 역사

- 1959년 Samuel의 논문 "Some Studies in Machine Learning Using the Game of Checkers" 에서 "머신러닝" 용어 등장
 - 게임보드 패턴기반 특징들의 가중치 곱의 합으로 평가함수를 정의하고 변경하여 게임을 학습
- 1958년, Rosenblatt은 신경망 모델의 일종인 퍼셉트론과 그 학습 알고리즘을 제시
 - 인공 신경망 모델에 기반을 제공한 자연신경망에 대한 연구는 1940년에 시작
- 1983년과 1986년에 두권의 책이 머신러닝 연구의 기반 마련
 - Machine Learning: An Artificial Intelligence Approach의 Volume I과 II
- 1984년 머신러닝과 계산이론의 접목, 이론적인 틀을 갖추기 시작
 - Valiant는 Communications of the ACM에 "A Theory of the Learnable"이란 제목의 계산 학습이론(Computational Learning Theory) 논문을 발표
- 1986년 신경망 기반의 연결론적 머신러닝 연구 시작
 - Rumelhart & McClleland의 Parallel Distributed Processing 모델에 관한 연구
- 1986년 기계학습 분야 최초의 학술지 Machine Learning 저널 창간

역사와 발전 동향

1995 2005 2010 2015 1980 1985 1990 2000 CNN Algorithm: DT PGM MLP SVM 딥러닝 모델 Model: 신경망 모델 확률통계적 모델

Data: MNIST PASCAL ImageNet

IT: PC의 보급 웹, 데이터마이닝 스마트폰 자율주행차 정보검색, 전자상거래

IBM Watson이 Jeopardy! 쇼에서 우승 (2011)

- IBM의 Watson이 슈퍼컴퓨터를 이용하여, 역대 재퍼디 챔피언을 제치고 우승을 차지
- 자연어 처리, 정보 검색, 지식 표상 및 추론, 머신 러닝이 사용
- Jeopardy!: http://youtu.be/WFR3IOm_xhE
- 장난감 로봇에 연결된 Watwon: http://youtu.be/1Q2v2rlpjTg

Apple Siri - 개인 스마트폰 비서 (2011)

- 2011년 Apple에서 iPhone을 위한 개인 스마트폰 비서 시스템 Siri를 발표
- 음성 인식을 통하여 사용자와 대화하여 의사소통
- 사용자의 개별 선호도에 적응하며 결과를 개인화하며, 인근 식당의 선호를 학습
- http://youtu.be/8ciagGASro0

ImageNet & AlexNet (2012~)

- ImageNet: 100만 장의 이미지, 1000개의 물체
 - FeiFei 그룹에서 구축 및 공개
- 2012년, Hinton 그룹에서는 ImageNet Challenge (ILSVRC)에서 딥러닝 기반 AlexNet 을 소개, 16.4%의 에러율을 보고함
 - 20% 중반의 에러율을 보이는 기존 컴퓨터 비전 기술을 압도
 - 현재 2%대의 에러율을 보임 (ILSVRC results, 2017)
- ImageNet을 통해 학습된 네트워크들은 다른 데이터의 학습을 위하여 사용됨

최근 산업 동향

- 머신러닝에 대한 기업들의 투자 증가
 - NIPS 학회의 참가자수 급증
 - 글로벌 IT 기업들의 인공지능 연구소 설립 및 스타트업 인수
 - Google의 8개의 로보틱스 회사 인수 및 인공지능 스타트업 투자와 딥러닝 연구자들 채 용, DeepMind를 7000억원에 인수
 - 중국의 바이두, 스탠포드의 Andrew Ng 교수를 영입해 실리콘밸리에 딥러닝 연구소 설
 - Facebook, NIPS-2014 기조 연설에서 Facebook AI Research 인공지능연구소 설립
 - 테슬라, 인공지능회사 OpenAI 설립 공표

머신러닝 논문 수의 증가

AI 산업화: 스피커 타입 스마트 비서

- 홈 서비스를 위한 보급형 스피커 타입 스마트 비서의 등장
- 배송 주문, 음악 추천 등 실생활 응용과 긴밀히 연결
- Amazon Echo, Google Home, SKT NUGU

알파고 - 바둑 세계 챔피언에 승리하다 (2016)

- 2016년 3월, 알파고가 바둑 인간 최강자 이세돌을 4:1로 누르고 우승
- 바둑 기사들의 막대한 바둑 기보를 학습하여 성능을 향상
- 그 뒤에, 두 알파고가 서로 겨루는 방식으로 추가적으로 성능을 향상

AI/ML 최근 발전 동향

■ AlphaGo 이후

- 네이버, Naver Labs를 분사하여 인공지능 연구 사업화
- 삼성전자, 가전 제품과 스마트폰 등에 인공지능 기술 도입한 신제품 개발
- SKT, 음성기반 인공지능 스피커 NUGU 출시
- LG 전자, 가전제품 박람회 CES에서 다양한 형태의 인공지능 로봇 제품
- 많은 서비스 기업들이 고객 상담 서비스를 위해 챗봇 도입
- 산업 전반에서 사물인터넷(IoT)과 빅데이터를 기반으로 하는 제 4차 산업혁명의 물결이 일어나고 있고 머신러닝 기반의 인공지능은 그 동력원 역할을 할 것으로 예측된다.

요약

■ 머신러닝

- 경험(데이터)으로부터 모델을 자동으로 생성하여 스스로 성능을 향상하는 시스템
- 인공지능 연구의 한 분야로서 최근 들어 딥러닝을 통해서 빠르게 발전
- 환경, 데이터, 모델, 성능지수의 네가지 요소를 지님

■ 프로그래밍 vs. 머신러닝

- 기존 프로그래밍은 사람이 알고리듬 설계 및 코딩
- 머신러닝은 기계가 데이터가 주어지면 알고리듬을 자동으로 프로그래밍

■ 70여년의 역사

■ 잠재기(~1980), 태동기(1980-1995), 성장기(1995-2010), 도약기(2010~)

■ 다양한 산업적 응용 분야에 적용

- 정보검색, 자연어 처리, 물체인식, 음성인식, 자율주행 자동차, 로보틱스
- 최근 딥러닝을 통하여 그 응용 분야와 활용 역량이 크게 증가하고 있다