Angewandte mathematische Statistik

3. Aufgabenblatt

1. Aufgabe (t-Test)

Der t-Test (sowohl im Ein- wie auch im Zwei-Stichprobenfall) ist sensitiv gegenüber der Stichprobengröße n. Salopp gesagt gilt: Mit einer Stichprobe, die nur groß genug ist, bekommt man jeden noch so kleinen Effekt signifikant. Illustrieren Sie dies, indem Sie Daten einer Normalverteilung simulieren, jeweils die T-Statistik und den p-Wert ausrechnen und n variieren.

2. Aufgabe (Konidenzintervalle)

Simulieren Sie wiederholt normalverteilte Daten X_1, \ldots, X_n und bestimmen Sie jeweils den Mittelwert sowie das zugehörige Konfidenzintervall zum Signifikanzniveau $1 - \alpha$. Zeigen Sie empirisch, dass α den Anteil der Intervalle angibt, die "falsch liegen".

3. Aufgabe (Hypothesentests)

Es seien $X_1,\ldots,X_n\sim\mathcal{N}(\mu,\sigma^2)$ mit unbekannten μ und σ^2 . Implementieren Sie den zweiseitigen Hypothesentest bzgl. $H_0=\{\mu=0\}$ als function(X, alpha=0.05, mu=mu0, verbose=FALSE), d.h. berechnen Sie die Teststatistik sowie den Ablehnungsbereich und das $(1-\alpha)$ -Konfidenzintervall für den wahren Mittelwert μ . Simulieren Sie den Test K mal und untersuchen Sie, wie oft Fehler 1. sowie 2. Art (etwa in Abhängigkeit von n, α oder $\mu-\mu_0$) auftreten.

4. Aufgabe (Das Wetter)

Wir kehren zurück zu unseren Wetter-Daten. Testen Sie, ob es im Jahre 2008 in Basel durchschnittlich wärmer war als im Jahre 2016. Überprüfen Sie auch die Normalverteilungsannahme und entscheiden Sie sich, welchen Test sie durchführen möchten.