Чемпионат Воздушно-инженерной школы «Cansat»

АТМОСФЕРНЫЙ ЗОНД

Пояснительная записка

Разработчик: команда «NEON BLADE»

Содержание

1	Введение	3
2	Назначение и область применения атмосферного зонда	4
2.1	Назначение атмосферного зонда	4
2.2	Область применения атмосферного зонда	8
3	Технические характеристики атмосферного зонда	9
4	Состав систем атмосферного зонда	10
4.1	Система измерений	10
4.2	Система электропитания	10
4.3	Система поиска	11
4.4	Система спасения	11
4.5	Система управления	11
4.6	Система хранения и передачи данных	12
4.7	Система видеонаблюдения	12
Си	стема видеонаблюдения ДА включает в себя:	12
5	Облик и компоновка атмосферного зонда	13
6	Программа полета	21
7	Расчеты	23
7.1	Расчет параметров системы фиксации момента отделения ДА	23
7.2	Расчёт параметров окружающей среды ветрогенератора	25
7.3	Расчёт радиолиний	26
8	Бюджет массово-инерционных и центровочных характерист	
	посферного зонда	
8.1	1	
	Моменты инерции и положение центра масс аппарата	
9	Энергетический бюджет атмосферного зонда	
10	План-график работ над проектом	39

1 Введение

В настоящем документе приведены описание атмосферного зонда, его основные технические характеристики и компоновка, а также бюджет расчета массово-инерционных характеристик, энергетических характеристик и ориентации аппарата.

В рамках чемпионата воздушно-инженерной школы «Cansat» в работе над проектом принимает участие команда «NEON BLADE» в составе трёх человек и куратора.

ФИО	Роль в команде
Ожигов Тимофей	Программирование
Кириллович	
(Капитан команды)	
Воронов Даниил	Компоновка и сборка изделия
Александрович	
Черноглазов Даниил	Разработка, монтаж печатных плат, пайка
Антонович	
Кетов	Консультации, организация работ
Вячеслав Александрович	
(Куратор команды)	

2 Назначение и область применения атмосферного зонда

2.1 Назначение атмосферного зонда

Атмосферный зонд с платформой стабилизации видеокамеры предназначен для выполнения основных задач Высшей лиги, определенных организаторами Чемпионата, и дополнительных, поставленных командойразработчиком.

В основные задачи аппарата входит:

- Измерение температуры, давления, трёх компонентов ускорения и трёх компонентов индукции магнитного поля на протяжении всего полёта;
- Создание системы спасения;
- Обеспечение бесконтактной фиксации момента отделения аппарата от носителя;
- Приём телеметрии на собственную наземную станцию.

Дополнительные задачи атмосферного зонда:

- Создание электрогенератора;
- Обеспечение вертикальной ориентации до раскрытия парашюта;
- Отложенное срабатывание системы спасения;
- Создание системы отделения ДА;
- Фотосъёмка с бортов МА и ДА во время спуска;
- Построение 3D-модели местности;
- Сбор данных с датчиков GPS MA и ДА;
- Сохранение телеметрии MA и ДА на SD карты;
- Обеспечение радиосвязи между МА и ДА;
- Анализ телеметрии аппарата на приемном пункте в режиме реального времени во время полета;
- Разработка системы поиска.

Создание электрогенератора

Электрогенератор предназначен для получения дополнительной электроэнергии, которую он получает из воздушных потоков в ходе свободного падения аппарата после отделения от ракеты-носителя и во время спуска на парашюте. Энергия, которую мы получаем, отправляется на штатные аккумуляторы аппарата. Также на аппарате стоит датчик тока, с помощью которого мы измеряем количество электроэнергии, полученное от электрогенератора за весь полет.

Обеспечение вертикальной ориентации до раскрытия парашюта

Вертикальная ориентация аппарата до раскрытия парашюта обеспечивается раскрываемыми лепестками, которые размещены в верней части зонда. В раскрытом положении лепестки смещают центр давления к верху аппарата, а также направляют воздушные потоки к винтам электрогенератора. Крайние положения лепестков определяется при помощи кнопок-концевиков.

Отложенное срабатывание системы спасения

Изначально парашют находится в отдельном отсеке, закрытым цилиндрической крышкой. По достижению 350 метров происходит закрытие стабилизирующих лепестков, открытие крышки отсека и выпуск парашюта. Открытие и закрытие отсека парашюта определяется фоторезистором.

Создание системы отделения ДА

Все дочерние аппараты закреплены на резьбовом валу двигателя. Когда МА запускает двигатель, ДА перемещаются вдоль направляющих стержней по валу используя передачу винт-гайка и по очереди выходят из аппарата. Вместе с ДА по валу перемещается оптический модуль. Выдвижение оптического модуля необходимо для того, чтобы направляющие стержни не попали в обзор видеокамеры. Перед приземление на высоте 20 метров оптический модуль убирается В исходное положение ДЛЯ защиты оборудования от удара о землю при посадке. Крайние положения оптического модуля определяются кнопками-концевиками.

Фотосъёмка с бортов МА и ДА во время спуска

Фотосъемка осуществляется благодаря модулям ESP32-CAM, стоящих на каждом аппарате. После отделения ДА и выдвижения оптического модуля МА начинается фотосъемка со всех зондов, на основе которой позже будет создаваться 3-D модель местности. Фотографии записываются на индивидуальную SD-карту.

Построение 3D-модели местности

3-D модель местности будет создаваться из фотографий, сделанных с каждого аппарата во время спуска, при помощи программы WIDAR или COLMAP.

Сбор данных с датчиков GPS MA и ДА

По результатам полета данные GPS позволят оценить точность траектории, построенной по данным БИНС. Также координаты GPS позволят упростить поиск аппарата после приземления.

Сохранение телеметрии MA и ДА на SD карту

Сохранение телеметрии осуществляется за счет записи данных телеметрии на microSD карту, подключенную к бортовому микроконтроллеру.

Обеспечение радиосвязи между МА и ДА

Обеспечение радиосвязи между аппаратами осуществляется при помощи радио модулей на борту каждого из них. Материнский аппарат «опрашивает» по очереди дочерние и ждет подтверждение с телеметрией. Если МА не дожидается ответа, то делает повторный запрос до 3 раз, после чего переходит к следующему ДА. После сбора телеметрии со всех дочерних аппаратов МА отправляет общую телеметрию на наземную приемную станцию. Схема взаимодействия аппаратов приведена на рисунке 2.1.

Рисунок 2.1 – схема взаимодействия аппаратов

Анализ телеметрии аппарата на приемном пункте в режиме реального времени во время полета

Анализ телеметрии аппаратов на приемном пункте в режиме реального времени осуществляется программой-парсером. Все разобранные пакеты будут выводиться на экран компьютера в виде графиков и текста, подключенного к наземной приемной станции.

Разработка системы поиска

Поиск аппаратов осуществляется при помощи пищалки и радио-маяков, установленных на борту каждого аппарата. Радио-маяк создается на основе радио-модуля, работающего в определенном режиме. Во время поиска наземный радио-модуль с подключенной узконаправленной антенной отправляет сигналы на канале маяка. При получении сигнала, маяк начинает отправлять свои координаты GPS. Также узконаправленная антенна по уровню ослабления сигнала позволяет определить направление и относительную дальность маяка.

2.2 Область применения атмосферного зонда

Запуск атмосферного зонда предполагается на высоту от 1 до 1,5 км с полигона, находящемся во Владимирской области, оборудованного для пусков атмосферных зондов. Расположение полигона приведено на рисунке 2.2.

Рисунок 2.2 – Карта полигона «Каменево»

Выведение аппарата должно обеспечиваться модельной ракетой. Для этого на атмосферный зонд накладываются следующие ограничения:

- Масса аппарата с системой спасения до 1000 г;
- Габариты аппарата:
 - 1) Диаметр не более 84 мм;
 - 2) Высота не более 220 мм.

3 Технические характеристики атмосферного зонда

Атмосферный зонд, имеет следующие технические характеристики: Масса атмосферного зонда 615 г Масса материнского аппарата 390 г Macca аппарата 75 г дочернего – Шины питания материнского аппарата нестабилизированная шина (6.0 ... 8.4) B стабилизированные шины 5.0 B 3.3 B – Шины питания дочернего аппарата нестабилизированная шина (6.0 ... 8.4) B стабилизированные шины 5.0 B 3.3 B 1600×1200 Размерность матрицы видеокамеры Угол обзора камеры в горизонтальной плоскости 66° в вертикальной плоскости 50° Способ хранения видеоданных microSD карта Способ резервирования данных телеметрии microSD карта Частота передачи телеметрических данных 2.4 ГГц

4 Состав систем атмосферного зонда

Системы нашего аппарата делятся на: систему измерений, систему электропитания, систему поиска, систему спасения, систему управления, систему хранения и передачи данных и систему видеонаблюдения.

4.1 Система измерений

iii enerena nenzepenini	
Выполняет задачу сбора информации об окружающей среде.	
В состав системы измерения МА входят:	
Датчик давления и влажности BME280	1 шт.
– Модуль GPS NEO-6M	1 шт.
– Магнитометр LIS3MDL	1 шт.
– Акселерометр и гироскоп LISM6DSL	1 шт.
– Фоторезистор VT91N1	1 шт.
В состав системы измерения ДА входят:	
Датчик давления и влажности BME280	1 шт.
– Модуль GPS NEO-7M	1 шт.
– Магнитометр LIS3MDL	1 шт.
– Акселерометр и гироскоп LISM6DSL	1 шт.
4.2 Система электропитания	
Система предназначена для питания зонда электроэнергией.	
В состав системы электропитания МА входят:	
– Аккумуляторная батарея LI-ion 18350	2 шт.
Датчик тока и напряжения	1 шт.
DC-DC преобразователь mp1584	2 шт.
В состав системы электропитания ДА входят:	
– Аккумуляторная батарея LI-pol LP402030	2 шт.
DC-DC преобразователь mp1584	2 шт.

4.3 Система поиска	
Система выполняет задачи поиска аппарата.	
В состав системы поиска МА входят:	
Пищалка	1 шт.
– Радио модуль NRF24L01	1 шт.
– Усилитель XQ-02A	1 шт.
В состав системы поиска ДА входят:	
– Пищалка	1 шт.
– Радио модуль NRF24LO1	1 шт.
4.4 Система спасения	
Система спасения предназначена для защиты аппарата от пов	реждений.
В систему спасения МА входят:	
– Парашют	1 шт.
В систему спасения ДА входят:	
– Парашют	1 шт.
4.5 Система управления	
Система управления нужна для выполнения алгоритмов, зал неё, сбора, обработки информации, формирования телеметрически выдачи управляющих воздействий.	
В систему управления МА входят:	
– Микроконтроллер STM32F401	1 шт.
– Мотор-редуктор	4 шт.
Кнопка	10 шт.
В систему управления ДА входят:	

– Микроконтроллер STM32F401

1 шт.

4.6 Система хранения и передачи данных	
В систему хранения и передачи МА:	
– SD-карта	3 шт.
– Радио-модуль NRF24L01	1 шт.
Усилитель XQ-02A	1 шт.
В систему хранения и передачи ДА:	
– SD-карта	3 шт.
– Радио-модуль NRF24L01	1 шт.
4.7 Система видеонаблюдения	
Регистрация процессов работы механизмов и проведени местности	іе съёмки
Система видеонаблюдения МА включает в себя:	
- ESP32CAM	1 шт.
- SQ11	1 шт.
Система видеонаблюдения ДА включает в себя:	
- ESP32CAM	1 шт.

5 Облик и компоновка атмосферного зонда

Атмосферный зонд состоит из:

- материнского аппарата (МА);
- трех дочерних аппаратов (ДА).

Система координат атмосферного зонда (СК_A) располагается на пересечении главной продольной оси зонда и плоскости установки в ракету-носитель. Ось $Z_{\rm A}$ направлена вверх вдоль продольной оси зонда. Ось $X_{\rm A}$ направлена в сторону интерфейсной плате. Ось $Y_{\rm A}$ дополняет систему координат до правосторонней. Система координат дочернего аппарата (СК_Д) располагается в основании дочернего модуля. Направление осей СК_Д совпадает с СК_А. Система координат материнского аппарата (СК_М) располагается на стыке дочернего и материнского аппаратов. Направление осей СК_М совпадает с СК_А. Общий вид атмосферного зонда и положение систем координат приведены на рисунке 5.1

Материнский аппарат включает в себя четыре модуля:

- нижний модуль;
- средний модуль;
- верхний модуль;
- оптический модуль.

Обший вид материнского аппарата показан на рисунке 5.2.

Нижний модуль материнского аппарата содержит в себе основную часть электроники, размещённую на трёх печатных плат. Одна из плат называется «Интерфейсной». Она необходима ДЛЯ прошивки, микроконтроллера, заряда аккумуляторов и управления двигателями в ручном режиме. Также в модуле расположены три двигателя. Двигатель расположенный в центре модуля отвечает за выпуск дочерних плат и выдвижения и задвижения оптического модуля. Крайние два двигателя необходимы для поднятия и опускания крышки парашютного отсека, которая защищает парашют от преждевременного выпуска и повреждений. Компоновка нижнего модуля представлена на рисунке 5.3.

В среднем модуле расположены парашют, аккумуляторные батареи, антенна GPS и видеокамера, которая фиксирует весь процесс полёта. Компоновка среднего модуля представлена на рисунке 5.4.

Верхний модуль содержит в себе ветрогенератор, подпружиненные лепестки юбки, двигатель и бобину. При раскрытии юбки двигатель

поворачивает бобину, тем самым ослабевая натяжение нитей, прикреплённых к концам лепестков юбки. Также из среднего модуля в верхний проложены и закреплены стропы парашюта. Компоновка верхнего модуля приведена на рисунке 5.5.

Оптический модуль — это подвижный модуль внутри материнского аппарата, содержащий в себе камеру, разъем FFC, подключённый шлейфом к плате материнского аппарата, и две кнопки-концевики, благодаря которым определяется его крайне положения. Компоновка оптического модуля представлена на рисунке 5.6.

Дочерние аппараты располагаются в нижней части атмосферного зонда. Облик одного ДА определяется цилиндрическим корпусом с отверстием в центре модуля и трём направляющим пазам по краям. В центральном отверстии располагается гайка, которая крепит ДА на резьбовом валу МА. Направлявшие пазы предотвращают вращение ДА в процессе их отделения. Обший вид дочернего аппарата показан на рисунке 5.7. Комоновка дочернего аппарата приведена на рисунке 5.8.

Рисунок 5.1 – Общий вид атмосферного зонда

Рисунок 5.2 – Общий вид материнского аппарата

Рисунок 5.3 – Компоновка нижнего модуля

Рисунок 5.4 – компоновка среднего модуля

Рисунок 5.5 – Компоновка верхнего модуля

Рисунок 5.6 – Компоновка оптического модуля.

Рисунок 5.7 – Общий вид дочернего модуля

Рисунок 5.8 – Компоновка ДА

6 Программа полета

Программу полета аппарата можно разделить на логические этапы по выполняемым действиям.

ЭТАП 0. Настройка аппаратуры

На данном этапе происходит запуск всех компонентов, инициализация датчиков и проверка их работоспособности. После успешной инициализации переходим к следующему этапу. В ином случае происходит мигание лампочкой.

ЭТАП 1. На земле

На данном этапе аппарат ждет нажатия кнопки. После нажатия кнопки аппарат ждет 10 с, берет значение об освещенности и переходит к следующему этапу.

ЭТАП 2. В ракете

На данном этапе аппарат измеряет освещенность и проверяет ее на изменение. Изменение освещенности соответствует моменту выхода из ракеты. После зарегистрированного изменения переходит к следующему этапу.

ЭТАП 3. Неориентируемое свободное падение

На данном этапе через 2 с аппарат раскрывает стабилизирующую юбку. После раскрытия юбки происходит переход на следующий этап.

ЭТАП 4. Ориентируемое падение

На данном этапе аппарат проверяет данные о высоте. После достижения отметки в 350 м происходит переход на следующий этап.

ЭТАП 5. Спуск на парашюте

На данном этапе происходит закрытие юбки, открытие парашюта. После получения подтверждение о завершении действия происходит открытие юбки, закрытие парашютного отсека. Потом осуществляется переход в следующий этап.

ЭТАП 6. Отделение

На данном этапе происходит отделение ДА от МА и одновременно выдвижение оптического модуля МА. После срабатывание концевика происходит переход в следующий этап.

ЭТАП 7. Общении МА и ДА

На данном этапе происходит обмен данными, сохранение телеметрии и съемка. По достижении высоты 20 м происходит переход в следующее состояние.

ЭТАП 8. Подъем оптического модуля

На данном этапе производится подъем оптического модуля МА и закрытие юбки. После срабатывания концевика происходит переход в следующее состояние.

ЭТАП 9. Включение системы поиска

На данном этапе происходит включение пищалки и радиомаяков на каждом аппарате.

7 Расчеты

7.1 Расчет параметров системы фиксации момента отделения ДА

Схема фиксации момента отделения ДА представлена на рисунке 7.1.

Рисунок 7.1 – Схема фиксации момента отделения ДА

 ${
m R}_{
m d}$ - сопротивление ДА

k - коэффициент отношения Rm к Rd

 $R_m(k) := k R_d$ - сопротивление МА

 $V_{cc} \coloneqq 3.3 V$ - напряжение питания

 $V_0(k) := V_{cc} \cdot \frac{\frac{R_d}{3}}{R_m(k) + \frac{R_d}{3}}$ - измеряемое МК напряжение до отделения ДА

 $V_1(k) := V_{cc} \cdot \dfrac{\dfrac{R_d}{2}}{R_m(k) + \dfrac{R_d}{2}}$ - измеряемое напряжение после отделения превого ДА

$$\mathrm{V}_2(\mathtt{k}) := \mathrm{V}_{cc} {\cdot} \frac{\mathtt{R}_d}{\mathtt{R}_m(\mathtt{k}) + \mathtt{R}_d}$$

- измеряемое напряжение после отделения второго ДА

 $v_3 \coloneqq v_{cc}$

- измеряемое напряжение после отделения третьего ДА

Результаты:

$$K = 0.39$$

$$R_{m}(K) = 3.9 \, k\Omega$$
 $V_{0}(K) = 1.521 \, V$

$$V_0(K) = 1.521 V$$

$$R_d = 10 \, k\Omega$$

$$V_1(K) = 1.854 V$$

$$V_2(K) = 2.374 V$$

7.2 Расчёт параметров окружающей среды ветрогенератора

На рисунке 7.2 представлена схема сил, действующих на атмосферный зонд, в установившемся режиме полёта.

Рисунок 7.2

$$M := 615gm$$

$$\rho := 1.225 \frac{kg}{m^3}$$

$$S_c := \frac{(84 \text{mm})^2 \pi}{4} = 55.418 \cdot \text{cm}^2$$

$$S_u := 940 \text{mm}^2$$

$$C_c := 0.82$$

$$C_{11} := 0.2$$

$$F := M \cdot g = 6.031 \text{ N}$$

$$F_{c}(v) := S_{c} \cdot C_{c} \cdot \frac{\rho \cdot v^{2}}{2}$$

$$F_{\mathbf{u}}(\mathbf{v}) := S_{\mathbf{u}} \cdot C_{\mathbf{u}} \cdot \frac{\rho \cdot \mathbf{v}^2}{2}$$

- Масса зонда
- Плотность воздуха
- Площадь Миделя цилиндра зонда
- Площадь Миделя сегмета юбки
- Коэффициент азродинамического сопротивления ципиндра
- Коэффициент азродинамического сопротивления сегмента юбки
- Сила тяжести
- Сила аэродинамического сопротивления ципиндра
- Сила аэродинамического сопротивления сегмента юбки

Уравнение сил для установившегося режима полета зонда:

$$\mathbf{M} \cdot \mathbf{g} = \mathbf{S_c} \cdot \mathbf{C_c} \cdot \frac{\rho \cdot \mathbf{v}^2}{2} + 6 \cdot \left(\mathbf{S_u} \cdot \mathbf{C_u} \cdot \frac{\rho \cdot \mathbf{v}^2}{2} \right)$$

$$v := \frac{\sqrt{2} \cdot \sqrt{M \cdot \rho \cdot g \cdot \left(C_c \cdot S_c + 6 \cdot C_u \cdot S_u\right)}}{2 \cdot \left(\frac{C_c \cdot S_c \cdot \rho}{2} + 3 \cdot C_u \cdot S_u \cdot \rho\right)} = 41.665 \, \frac{m}{s} \, - \text{Скорость падения/ветра}$$

$$S := \frac{\pi (60 \text{mm})^2}{4} = 28.274 \cdot \text{cm}^2$$

- Площадь омета ния винта

$$N_{\Pi} := \frac{\rho \cdot S \cdot v^3}{2} = 125.256 \text{ W}$$

- Мощность воздушного потока на винте

$$\eta := 25\%$$

- КПД ветрогене ратора

$$N := N_{\pi} \cdot \eta = 31.314 \,\mathrm{W}$$

- Мощность ветрогенератора

$$U_{ab} := 8.4V$$

- Напряжение на шине

$$I_{gen} := \frac{N}{U_{ab}} = 3.728 \cdot A$$

- Максимальный ток ветрогене ратора

7.3 Расчёт радиолиний

Радиомодуль	Усилитель радиосигнала		Антенна	МА Земля	Антенна	Радиомодуль
Drm	Т	Lprd	Gprd	ΣL	Gprm Lprm	Dvh

 $D_{rm} := 20$ dbm - выходная мощность радиомодуля

db - мощность усилителя T := 11

db - потери в СВЧ-тракте от выхода усилителя мощности до входа $L_{prd} := -2$

антенны

 $G_{prd} := 0$ dbi - коэффициент усиления передающей антенны

 ΣL db - величина суммарных потерь

 $G_{prm} := 8$ dbi - коэффицент усиление принимающей антенны

db - потери в СВЧ-тракте от выхода усилителя мощности до входа $L_{prm} := -2$

dbm - входная мощность в радиоприемник D_{vh}

dbm - чувствительность радиоприемника $D_{min} := -83$

d := 2.5 kmмаксимальное расстояние между приемниками

f := 2.4GHzчастота радио

 $c = 2.998 \times 10^8 \frac{m}{c}$ скорость света

 $\lambda := \frac{c}{\epsilon} = 12.491 \, \mathrm{cm}$ длинна волны

 $\Sigma L := -20 \log \left(4\pi \cdot \frac{d}{\lambda} \right) = -108.011$

 $D_{\text{vh}} := D_{\text{rm}} + T + L_{\text{prd}} + G_{\text{prd}} + \Sigma L + G_{\text{prm}} + L_{\text{prm}} = -73.011$

Энергетический потенциал:

 $\Delta D := D_{vh} - D_{min} = 9.989$

8 Бюджет массово-инерционных и центровочных характеристик атмосферного зонда

8.1 Масса аппарата

В таблице 8.1-8.3 приведены массы аппарата, его модулей и, входящих в них, компонентов.

Таблица 8.1 – Массовые характеристики МА

Наименование	Количество	Масса, г
Нижний моду	/ль	
Конструкция	1	35
Двигатель отделения ДА	1	12
Двигатель открытия парашютного отсека	2	18
Интерфейсная плата	1	4
Нижняя плата	1	16
Верхняя плата	1	30
Резерв	1	5
	120	
Средний моду	уль	
Конструкция	1	38
Камера	1	10
Антенна GPS	1	10
Аккумуляторная батарея	2	46
Парашют	1	15
Резерв	1	11
		130
Верхний моду	уль	
Конструкция	1	76

Наименование	Количество	Масса, г
Двигатель сегментов юбки	1	9
Генератор	1	26
Резерв	1	9
	120	
Оптический мод	уль	
Конструкция	1	5
Плата оптического модуля	1	13
Резерв	1	2
		20
Материнский аппарат		390

Таблица 8.2 – Массовые характеристики ДА

Наименование	Количество	Масса, г
Конструкция	1	18
Плата ДА	1	31
Аккумуляторная батарея	2	16
Парашют	1	5
Резерв	1	5
Дочерний аппарат	75	

Таблица 8.3 – Массовые характеристики атмосферного зонда

Наименование	Количество	Масса, г
Материнский аппарат	1	390
Дочерний аппарат	3	225
Атмосферный зонд		615

8.2 Моменты инерции и положение центра масс аппарата

Положение центра масс дано в базовой системе координат аппарата.

Моменты инерции приведены относительно системы координат, связанной с центром масс аппарата, направление осей которой совпадает с осями базовой системой координат.

Моменты инерции и положение центра масс атмосферного зонда:

- положение центра масс:

- моменты инерции осевые:

– моменты инерции центробежные:

9 Энергетический бюджет атмосферного зонда

В данном разделе приведены результаты энергетического расчёта, которые определяют возможное время работы систем от выбранных источников тока для каждой цепи.

Для материнского аппарата выбраны две последовательно подключённые литий-ионные аккумуляторные батареи 18350 общей ёмкостью 1400 мАч. Для дочерних аппаратов выбраны две последовательно подключённые литий-полимерные аккумуляторные батареи LP402030 общей ёмкостью 200 мАч.

Исходные данные для расчёта приведены в таблицах 9.1-9.2. Результаты расчётов приведены на рисунках 9.1-9.4.

Таблица 9.1 – Энергопотребление оборудования МА

		STM32	BME280	LSM6DSL	LIS3MDL	NRF24L01	NEO-6M	INA219	Усилитель	Двигатель юбки	Двигатель парашюта	Двигатель ДА	Пищалка	SD карта	ESP32CAM
Напряжение, В		3,3	5	3,3	3,3	3,3	5	3,3	5	5	5	5	5	3,3	5
Этапы	Время, с		Ток потребления, мА												
В ракете	1200	30,0	1,4	0,7	0,3	12,3	47,0	0,7	400,0	0,0	0,0	0,0	0,0	250,0	6,0
Полёт в ракете	10	30,0	1,4	0,7	0,3	12,3	47,0	0,7	400,0	0,0	0,0	0,0	0,0	250,0	6,0
Раскрытие юбки	3	30,0	1,4	0,7	0,3	12,3	47,0	0,7	400,0	50,0	0,0	0,0	0,0	250,0	6,0
Стабильный полёт	40	30,0	1,4	0,7	0,3	12,3	47,0	0,7	400,0	0,0	0,0	0,0	0,0	250,0	6,0
Закрытие юбки	3	30,0	1,4	0,7	0,3	12,3	47,0	0,7	400,0	50,0	0,0	0,0	0,0	250,0	6,0
Выпуск парашюта	3	30,0	1,4	0,7	0,3	12,3	47,0	0,7	400,0	0,0	100,0	0,0	0,0	250,0	6,0
Закрытие отсека парашюта	3	30,0	1,4	0,7	0,3	12,3	47,0	0,7	400,0	0,0	100,0	0,0	0,0	250,0	6,0
Раскрытие юбки	3	30,0	1,4	0,7	0,3	12,3	47,0	0,7	400,0	50,0	0,0	0,0	0,0	250,0	6,0
Отделение ДА	4	30,0	1,4	0,7	0,3	12,3	47,0	0,7	400,0	0,0	0,0	50,0	0,0	250,0	6,0
Начало съёмки	47	30,0	1,4	0,7	0,3	12,3	47,0	0,7	400,0	0,0	0,0	0,0	0,0	250,0	310,0
Задвижение камеры	4	30,0	1,4	0,7	0,3	12,3	47,0	0,7	400,0	0,0	0,0	50,0	0,0	250,0	6,0
Работа системы поиска	10800	30,0	1,4	0,7	0,3	12,3	47,0	0,7	400,0	0,0	0,0	0,0	10,0	0,0	6,0
Потребляемая энергия, мВт*ч		300	21	7	3	123	712	7	6060	1	1	1	135	272	109

Таблица 9.2 – Энергопотребление оборудования ДА

		STM32	BME280	LSM6DSL	LIS3MDL	NRF24L01	NEO-6M	Пищалка	SD карта	ESP32CAM
Напряжение, В		3,3	5	3,3	3,3	3,3	5	5	3,3	5
Этапы	Время, с		•		Ток по	треблені	ия, мА	•		
В ракете	1200	30	1,4	0,7	0,3	12	47	0	250	6
Полёт в ракете	10	30	1,4	0,7	0,3	12	47	0	250	6
Раскрытие юбки	3	30	1,4	0,7	0,3	12	47	0	250	6
Стабильный полёт	40	30	1,4	0,7	0,3	12	47	0	250	6
Закрытие юбки	3	30	1,4	0,7	0,3	12	47	0	250	6
Выпуск парашюта	3	30	1,4	0,7	0,3	12	47	0	250	6
Закрытие отсека парашюта	3	30	1,4	0,7	0,3	12	47	0	250	6
Раскрытие юбки	3	30	1,4	0,7	0,3	12	47	0	250	6
Отделение ДА	4	30	1,4	0,7	0,3	12	47	0	250	6
Начало съёмки	47	30	1,4	0,7	0,3	12	47	0	250	310
Задвижение камеры	4	30	1,4	0,7	0,3	12	47	0	250	6
Работа системы поиска	10800	30	1,4	0,7	0,3	12	47	10	0	6
Потребляемая энергия, мВт*ч		300	21	7	3	123	712	27	272	28

Рисунок 9.1 – Энергобаланс МА за весь период работы

Рисунок 9.2 – Энергобаланс МА за полет

Рисунок 9.3 – Энергобаланс ДА за весь период работы

Рисунок 9.4 – Энергобаланс ДА за полет

10 План-график работ над проектом

Наименование работы	d	Февраль				Март				Апрель				Май				Июнь		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Разработка печатных плат МА																				
Разработка интерфейсной печатной платы																				
Разработка печатной платы ДА																				
Монтаж и отладка печатных плат МА																				
Монтаж и отладка интерфейсной печатной платы																				
Монтаж и отладка печатной платы ДА																				
Печать и доработка конструкции МА																				7
Печать и доработка конструкции ДА																				À
Создание ПО МА																				
Создание ПО ДА																				
Создание ПО для ESP32-CAM																				
Создание ПО для наземной станции																				
Создание ПО для маяка																				
Сборка конструкции аппарата																				
Испытания аппарата																				
Подготовка аппарата к пуску																				

Рисунок 10.1 – План-график проекта