

Núcleo Dinâmico com Coordenada Vertical Sigma & Hibrida (Sigma-Pressão)

Paulo Yoshio Kubota Cachoeira Paulista , 17 de abril de 2020 INPE - SP

As Vantagens da Coordenada Vertical Hibrida Sigma-Pressão em relação a Sigma Pura

Perfil vertical das superfícies das coordenadas versus pressão em 34.58N para as coordenadas verticais (a) sigma e (b) híbridas em T254L64

Modificação na equação da Tendência Momentum Zonal

Advecção Vertical

 $\dot{\sigma} \Leftrightarrow \dot{\eta}$

Velocidade Vertical são diferentes

$\begin{aligned} & \text{Sigma} \\ & \sigma = \frac{P}{P_s} \\ & \dot{\sigma} = \frac{d\sigma}{dt} \end{aligned} \qquad \begin{aligned} & \frac{\partial U}{\partial t} + \frac{1}{a\cos^2\varphi} (U\frac{\partial U}{\partial\lambda} + V\cos\varphi\frac{\partial U}{\partial\varphi}) \cdot (\dot{\sigma}\frac{\partial U}{\partial\sigma} - VV + \frac{1}{a}(\frac{\partial\Phi}{\partial\lambda} + RT\frac{\partial\ln ps}{\partial\lambda}) = F_u \\ & (3) \end{aligned} \\ & Hibrida \\ & \eta = A + BP_s \\ & \dot{\eta} = \frac{d\eta}{dt} \end{aligned} \qquad \begin{aligned} & \frac{\partial U}{\partial t} + \frac{1}{a\cos^2\theta} (U\frac{\partial U}{\partial\lambda} + V\cos\theta\frac{\partial U}{\partial\theta} + \dot{\eta}\frac{\partial U}{\partial\eta}) fV + \frac{1}{a}(\frac{\partial\Phi}{\partial\lambda} + R_dT_v\frac{\partial\ln p}{\partial\lambda}) = F_u \end{aligned} \qquad (1) \end{aligned}$

Modificação na equação da Tendência Momentum Meridional

Advecção Vertical

 $\dot{\sigma} \Leftrightarrow \dot{\eta}$

Velocidade Vertical são diferentes

$\sigma = \frac{P}{P_S}$ $\dot{\sigma} = \frac{d\sigma}{dt}$ Hibrida $\eta = A + BP_S$ $\dot{\eta} = \frac{d\eta}{dt}$ $\frac{\partial V}{\partial t} + \frac{1}{a\cos^2\varphi}(U\frac{\partial V}{\partial \lambda} + V\cos\varphi\frac{\partial V}{\partial \varphi}) + \frac{\partial V}{\partial \sigma} + \int U + \frac{\cos\varphi}{a}(\frac{\partial \Phi}{\partial \varphi} + RT\frac{\partial \ln ps}{\partial \varphi}) + \frac{\sin\varphi}{a\cos^2\varphi}(U^2 + V^2) = F_v (4)$ $\frac{\partial V}{\partial t} + \frac{1}{a\cos^2\theta}(U\frac{\partial V}{\partial \lambda} + V\cos\theta\frac{\partial V}{\partial \theta}) + \int U + \frac{\cos\theta}{a}(\frac{\partial \Phi}{\partial \theta} + R_dT_v\frac{\partial \ln p}{\partial \theta}) + \frac{\sin\theta}{a\cos^2\theta}(U^2 + V^2) = F_v (2)$

Modificação na equação da Tendência Temperatura

Advecção Vertical

 $\dot{\sigma} \Leftrightarrow \dot{\eta}$

Velocidade Vertical são diferentes

Tendência de In(ps)

Conservação de energia

(5)

$$\sigma = \frac{P}{P_{S}}$$

$$\dot{\sigma} = \frac{d\sigma}{dt}$$

Hibrida

$$\eta = A + BP_S$$

$$\dot{\eta} = \frac{d\eta}{dt}$$

$$\frac{\partial T}{\partial t} + \frac{1}{a\cos^2\theta} \left(U\frac{\partial T}{\partial \lambda} + V\cos\theta\frac{\partial T}{\partial \theta}\right) - \left(\dot{\eta}\frac{\partial T}{\partial \eta}\right) - \left(1 + \frac{\partial T}{\partial \eta}\right) = 0$$

 $\frac{\partial T}{\partial t} + \frac{1}{a\cos^2\varphi} (U\frac{\partial T}{\partial\lambda} + V\cos\varphi\frac{\partial T}{\partial\varphi}) + \dot{\sigma}\frac{\partial T}{\partial\sigma} - \theta\dot{\sigma}\frac{\partial\Pi}{\partial\sigma} = \left(T(\frac{\partial}{\partial t} + \vec{V}.\nabla)\ln p\right)$

$$-\left(\dot{\eta}\frac{\partial T}{\partial \eta}\right) - \left(\frac{\kappa T_v \omega}{(1 + (\delta - 1)q)p}\right) = F_T \qquad (3)$$

Modificação na equação da Tendência de umidade e (traçadores)

Advecção Vertical

 $\dot{\sigma} \Leftrightarrow \dot{\eta}$

Velocidade Vertical são diferentes

Sigma
$$\sigma = \frac{P}{P_s} \qquad \frac{\partial q}{\partial t} + \frac{1}{a\cos^2\varphi} (U\frac{\partial q}{\partial\lambda} + V\cos\varphi\frac{\partial q}{\partial\varphi}) + \dot{\sigma}\frac{\partial q}{\partial\sigma} = F_q \qquad (6)$$

$$\dot{\sigma} = \frac{d\sigma}{dt}$$

$$Hibrida$$

$$\eta = A + BP_s$$

$$\dot{\eta} = \frac{d\eta}{dt}$$

$$\frac{\partial q}{\partial t} + \frac{1}{a\cos^2\theta} (U\frac{\partial q}{\partial\lambda} + V\cos\theta\frac{\partial q}{\partial\theta}) + \dot{\eta}\frac{\partial q}{\partial\eta} = F_q$$

Modificação na equação da Equação hidrostática

$$\frac{dP}{dz} = -\rho g \iff \frac{dgz}{dP} = -\frac{1}{\rho} \iff \frac{d\emptyset}{dP} = -\frac{1}{\rho}$$

termo= $1/\rho$

Lei dos gases ideais $P = \rho RT$ P

$$\sigma = \frac{P}{P_s}$$

$$\dot{\sigma} = \frac{d\sigma}{P_s}$$

$$\frac{\partial \phi}{\partial \sigma} + \underbrace{\frac{RT}{\sigma}} = 0$$

Hibrida

$$\eta = A + BP_{s}$$

$$\dot{\eta} = \frac{d\eta}{dt}$$

$$\frac{\partial \phi}{\partial \eta} + \underbrace{\frac{R_d T_v}{p} \frac{\partial p}{\partial \eta}} = 0$$

Modificação na equação da Tendência de pressão

Integral da Advecção Pressão, Divergência

Sigma	
$\sigma = \frac{P}{P_s}$ $\dot{\sigma} = \frac{d\sigma}{dt}$	$\frac{\partial \ln ps}{\partial t} + \int_0^1 (\vec{V} \cdot \nabla \ln ps) d\sigma + \int_0^1 D \ d\sigma = 0$
$Hibrida$ $\eta = A + BP_{s}$ $\dot{\eta} = \frac{d\eta}{dt}$	$\frac{\partial \ln p_s}{\partial t} + \frac{1}{p_s} \int_0^1 \nabla \cdot (\mathbf{v}_H \frac{\partial p}{\partial \eta}) \ d\eta = 0$

Modificação na equação da Velocidade Vertical

Sigma

$$\sigma = \frac{P}{P_s}$$

$$\dot{\sigma} = \frac{d\sigma}{dt}$$

$$\sigma \frac{\partial ps}{\partial t} + \int_0^{\sigma} \nabla . (ps\vec{V}) d\sigma = -ps\dot{\sigma}$$

Hibrida

$$\eta = A + BP_{s}$$

$$\dot{\eta} = \frac{d\eta}{dt}$$

$$\dot{\eta} \frac{\partial p}{\partial \eta} + \frac{\partial p}{\partial t} + \int_0^{\eta} \nabla \cdot (\mathbf{v}_H \frac{\partial p}{\partial \eta}) \ d\eta = 0$$

$$\omega = -\int_0^{\eta} \nabla \cdot (\mathbf{v}_H \frac{\partial p}{\partial \eta}) \ d\eta + \mathbf{v}_H \cdot \nabla p$$

O status dos resultados dessa coordenada no modelo

bam	Modulo Globais					
	Pré-	modelo	Pós-			
	processamento		processamento			
Sigma	0	0	•			
Hibrida	•	0	0			

- Completamente implementado e testado
- Ompletamente implementado e não testado
- Não implementado e não testado

O status dos resultados dessa coordenada no modelo

bam	Módulos de Parametrizações físicas							
	Radiação	Superfície	PBL	Gwdd	Depp C	Shall C	Microp	Cloud
Sigma	0	0	0	0	0	0	0	0
Hibrida	0	0	0	0	0	0	0	0

- Completamente implementado e testado
- Ompletamente implementado e não testado
- Não implementado e não testado

O status dos resultados dessa coordenada no modelo

bam	Module da Dinâmica					
	Difusão	Difusão	Física	Traç.	Traç.	Aero.
	espectral	Malha	Unif.	Ozone	CO ₂	
Sigma	0	0	0	0	0	9 9
Hibrida	0	0	0	0		9 9

- Completamente implementado e testado
- Ompletamente implementado e não testado
- Mão implementado e não testado

O Status do Trabalho Atual

Trabalho Atual

- Ajustar as parametrizações físicas
- Ajustar a difusão horizontal espectral
- 🌖 💮 Ajustar a difusão horizontal na Malha
- Módulo de Aerossol não implementado e não testado (jayant)

Exemplo de validação de precipitação TQ0062L64 Ajuste na convecção profunda

Trabalho Futuro

Perspectiva de Trabalhos futuros

- Acoplamento com o modelo BAM-Hibrido com o modelo oceânico MOM6 (Paulo Nobre)
- Elaboração de um paper focado na previsão curto prazo (Silvio, Wanderson et al.)
- Elaboração de um paper focado na previsão subsazonal e sazonal (Caio, Dayana, Bruno et al.)