- 6 Babines idiotytes EIKÓVAS KAI ANTÍGIPO GYS EIKÓVAS.

 1 EGTW $f = X \rightarrow Y$. Tote 16 X DOW TO DIO DO DA.
 - i) AV $A_1 \subseteq A_2 \subseteq X$, tota $f(A_1) \subseteq f(A_2)$
 - ũ) Aν A1, A2 ⊆ X, τότε f(A1 VA2) = f(A1) U f(A2)
- iii) AV A1, A2 $\subseteq X$, TOTE $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$
 - [0 Equality proper variations: $\pi.\chi$. $f = IR \rightarrow IR$ me $f(x) = x^2$, $\forall x \in IR$.

 Av $A_1 = [-1,0]$ kai $A_2 = [0,1]$. The $f \circ g = f(f \circ g) = f(A_1 \cap A_2)$ kai $f(A_1) \cap f(A_2) = [0,1]$. Av $\eta \in F(A_1) \cap f(A_2) = f(A_1) \cap f(A_2) = f(A_1) \cap f(A_2)$.
 - $\text{iv}) \ \, \text{Av} \ \, \mathcal{B}_1 \subseteq \mathcal{B}_2 \subseteq Y \, , \ \, \text{Tots} \quad f^{-1}(\mathcal{B}_1) \subseteq f^{-1}(\mathcal{B}_2) \, . \, \, \text{Enters} \, \, \left\{ \begin{array}{l} f^{-1}(Y) = X \\ f^{-1}(\phi) = \phi \end{array} \right. \, .$

 - NI) AV BEY, TOTE f-1 (YIB) = XI f-1(B)
 - NII) AV A \(X , TOTE A \(\int f(A) \).
- [0 Experiences proper vol error grégois. $n_{-}\chi_{-}$ f_{-} $R_{-} \to R_{-}$ $R_{-} \to R_{$
- [0 EpxAziopoś proper va ervai prycios · $\Omega \cdot \chi \cdot f = [o_1 + \infty) \rightarrow iR$ pre $f(\chi) = \sqrt{\chi}$, $4\chi \in IR$, kdi B = [-1,1] · $T_0 \cdot \tau \in f(f^{-1}(B)) = [o_11]$ · $E\chi_{oope} = f(f^{-1}(B)) = B$, dry f ervai enc ·]

- - H f Kadrita y dviletpolly Europhyey Ths f.
- o Op: Av $X \neq \emptyset$, opiJoume the toutoting swaping ent tou X ws $Id_{X} = X \rightarrow X$ HE Karora $Id_{X}(x) = x$, $\forall x \in X$
- \rightarrow 01 $f^{-1} \circ f = X \rightarrow X$ Kall $f \circ f^{-1} : f(X) \rightarrow f(X)$ opisoval
- > f-1 of = Idx Kai fof-1 = Idf(X).
- « Λράζεις ευχρτήσεων και Siàtαξη: 'Εσιω A≠Ø, f=A→IR και g=A→IR
- i) OpíJoupe $f+g=A \rightarrow iR$ pe (f+g)(x)=f(x)+g(x), $\forall x \in A$.
- ii) Av tEIR, opijoupe tf = A -> IR pre (tf)(x) = tf(x), +xEA.
- iii) Opijovue f.g: $A \rightarrow IR$ $\mu \in (f,g)(x) = f(x),g(x)$, $\forall x \in A$.
- iv) Av $g(x) \neq 0$, $\forall x \in A$, opiJoupe $\frac{f}{g}: A \rightarrow IR$ HE $\frac{f(x)}{g(x)}$, $\forall x \in A$.
- of Népré oti fég au fixiégixi, txEA
- De Movotovia: Esta A ⊆ IR μη κενό και f= A→ IR Λέμε ότι
- η Η f σωξουδα (σντ. γνηδίως σώξουδα) σν ΥχιγΕΑ με χ < γ ξχουμε f(χ)
 (σντ. f(χ) < f(γ)

- ii) H f Q+ (vou6d (avr. pry6(ws q+ vou6d) av +x14€ A me x<4 €x00 me f(x) ≥ f(y).

 (avr. f(x) > f(y)).
- λίι) Η f μονότονη (αντ γνηδίως μονότονη) αν είναι αύξουδα ή θθίνουδα.
 (αντ γνηδίως αύξουδα ή γνηδίως φθίνουδα).
- * PPA = PO = PPA = PPA
- Op: 'Equip $f = IR \rightarrow IR$. H f redéter deprid (dur. nepitrý) av $\forall x \in IR$ $\hat{\xi}$ Xoupe f(-x) = f(x) (dur. f(-x) = -f(x)).

 $N_{-}X_{-}$ $f=IR \rightarrow IR$ ME $f(X)=X^{2}$ deptid, $g=IR \rightarrow IR$ ME $g(X)=X^{3}$ reporting

• Op = $^{1}E_{67W}$ f = IR \rightarrow IR . H f radiation neproducy (me neprodox), as unapper a EIRHE $d \neq 0$, T . W . f(X+d) = f(X) , \forall $X \in IR$

$$N_{-X_{\circ}}$$
 $f(x) = \sin x$ $2\pi - n\epsilon \rho \omega J \kappa \gamma$
 $g(x) = x - L \times J$ $1 - n\epsilon \rho \omega J \kappa \gamma$
 $\alpha \kappa \dot{\epsilon} \rho \dot{\epsilon} \iota o \mu \dot{\epsilon} \rho o S$

6 Napatigpy6y: Av y féxeu népio so $x(\pm 0)$ toté (Kai to 2x népio sos trus f) $\pm x \in \mathbb{Z}$ με $x \pm 0$ το $x \cdot x$ είναι περίο sos trus f.

§ 2 Napa Frighta Gwapty GEWV

- 1) AKOLOUÐÍZS f: N -> IR
 - 2) Πολοωνημικές δυναρτήσεις. Πολοώνυμο καλείται κάθε συάρτηση $P=IR \rightarrow IR$ με τύπο της μοριής $P(x) = dn x^n + dn-1 x^{n-1} + \dots + d_1 x + d_6$ όπου $n \in IN U do g$ και $do_1 \dots + dn \in IR$ με $dn \neq 0$. Το n καλείται
 βαθμός του πολοωνύμου P. Κάθε $x \in IR$ τω. P(x) = 0 καλείται
 ρίζα του P Γενα πολοώνυμο P βαθμού P εχεί το πολί P ρίζες.
- 3) Py tés ouvapréses. Mix $f: X \to iR$ καλώται ρητή αν είναι της μορθής $f(x) = \frac{P(x)}{Q(x)}$ ôπου P και Q πολυώνυμα και $X = \int_{Q(x)} X \in iR = Q(x) \neq 0$ f(x)
- 4) Míx $f = X \to IR$ κα Δείται α Δχεβρική αν f(X) = X ικανοποιεί την εξίωμη $f(X) + F_1(X) f(X) + F_2(X) (f(X))^2 + \cdots + F_K(X) (f(X))^K = 0$, όπου $f_{01} \cdot \cdot \cdot \cdot P_K$ πο Λοωνυμικές · f(X) = VX, f(X) = VX, f(X) = VX, f(X) = 0, f(X) = 0. Κά f(X) = 0. Γίχη είναι αλχεβρική $f(X) = \frac{P(X)}{Q(X)} \Rightarrow -P(X) + Q(X) f(X) = 0$.
- 5) TPIXWYDHETPIKES GUNDPTGGES

Sin (sinus) > nµítovo, cos (cosinus) > covnµítovo, tan (tangent) > schantopévy cot (corangent) > covechantopévy

$$tan x = \frac{\sin x}{\cos x}$$
, $\forall x \notin \int \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$

Ιδιότητες τριχωνομετρικών ωνωρτή δεων

- i) $\forall x \in \mathbb{R}$, $|\sin x| \le 1$, $|\cos x| \le 1$, $\sin^2 x + \cos^2 x = 1$, $\sin \left(\frac{\pi}{2} x\right) = \cos x$ kas $\cos \left(\frac{\pi}{2} x\right) = \sin x$
- ii) DI SIN = IR \rightarrow [-1,1] KAI $\omega s = IR \rightarrow [-1,1]$ neprofixes me edayiety Peting neprofo to 2π . H ωs april KAI η SIM TREPITTY: $\omega s (-x) = \omega s x$ KAI $\sin (-x) = -\sin x$, $\forall x \in IR$.
- 1) $\cos(A-B) = \cos A \cos B + \sin A \sin B$, $\cos(A+B) = \cos A \cos B \sin A \sin B$ $\sin(A+B) = \sin A \cos B + \cos A \sin B$, $\sin(A-B) = \sin A \cos B - \cos A \sin B$
- ii) $los(2d) = los^2d sin^2\beta = 2 los^2d 1 = 1 2 sin^2d$ sin(2d) = 2 sin d los d
- iii) $\sin \alpha + \sin \beta = 2 \sin \left(\frac{d+\beta}{2}\right) \cos \left(\frac{d-\beta}{2}\right)$ $\sin d - \sin \beta = 2 \sin \left(\frac{d-\beta}{2}\right) \cos \left(\frac{d+\beta}{2}\right)$ $\cos d + \cos \beta = 2 \cos \left(\frac{d+\beta}{2}\right) \cos \left(\frac{d-\beta}{2}\right)$ $\cos d - \cos \beta = 2 \sin \left(\frac{d+\beta}{2}\right) \sin \left(\frac{\beta-d}{2}\right)$

6) EXPETIMES GUNDPTYGENS

LEGIW d>0. OPIJOUME $f: \mathbb{R} \to \mathbb{R}$ ME $f(x) = x^{x}$. H f Radélian Exbering me Bágn to d.

$$\frac{15io\tau\eta\tau\epsilon\varsigma}{\alpha^{X+y}} = \alpha^{X} \cdot \alpha^{y} , (\alpha^{X})^{y} = \alpha^{X,y} , \alpha^{-X} = (\frac{1}{\alpha})^{x} , (\alpha^{B})^{x} = \alpha^{X} \cdot \beta^{x}$$

ii) Av
$$d=1$$
, tots η $f[x]=a^{x}=1$ $6\pi d \xi p \eta$

Av $d>1$, tots η $f[x]=a^{x}$ $\gamma v \eta \epsilon i \omega \zeta$ $a \omega \zeta \circ u \epsilon a$

Av $0 \angle d \angle 1$, tots η $f[x]=a^{x}$ $\gamma v \eta \epsilon i \omega \zeta$ $a \omega \zeta \circ u \epsilon a$

Av $0 \angle d \angle 1$, tots η $f[x]=a^{x}$ $\gamma v \eta \epsilon i \omega \zeta$ $a \omega \zeta \circ u \epsilon a$.

· Παρατήρηση: Έστω απο η μπορούμε να ορίσουμε τον αχως εξής:

ii) AV
$$x=0$$
, $\theta \in \text{TOUME}$ $d^{\theta} = 1$

iv) Av
$$x = \frac{n}{n}$$
 yid Kánolov $n \in \mathbb{N}$, $\theta \in \text{Tov} \neq \mathbb{R}$ $\alpha^{1/n} = n \sqrt{\alpha}$

VI) AV X & (R Kd1 (9n) n 200 do Notal product de temén $\mu = q_n \xrightarrow{n \to \infty} x$, $\theta \in \text{TOU } \mu \in \mathcal{Z}^{\times} = \lim_{n \to \infty} \mathcal{Z}^{n}$

AZK (Boloines 1510 tytes EINÓVAS KAI AVTIGIPO GIS EINÓVAS)

1EGTW $f: X \rightarrow Y$.

B.o. Itil AV A1, $A_2 \subseteq X$ to $T_0 : T_0 : f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$ KAI AV η f $\in IVAI$ 1-1 $\to T_0 : f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$ VI) AV $B \subseteq Y$, $\to T_0 : f^{-1}(Y \mid B) = X \setminus f^{-1}(B)$ NII) AV $A \subseteq X$, $\to T_0 : f : f^{-1}(f(A))$ KAI AV η f $\in IVAI$ 1-1 $\to T_0 : f : f(f^{-1}(B)) \subseteq B$ KAI AV η f $\in IVAI$ $\in IV$, $\to T_0 : f : f(f^{-1}(B)) = B$

Number: xii) Avy \in $f[A_1 \cap A_2]$, $\tau_0 \tau_1 \in \exists x \in A_1 \cap A_2 = \tau_1 \omega$. f[x] = y. April $y \in f[A_1 \cap f[A_2]]$.

Av $\tau_0 \psi_0 = \tau_1 \in A_1 = f[X_1] = f[X_2] = y$. $f[X_1] = f[X_1] = f[X_2] = f[X_1] = f[X_1] = f[X_2] = f[X_1] = f[$

Ti) $ES' = \varphi_{16}\mu_{00}v$ $x \in f^{-1}|Y \setminus B| \Leftrightarrow f(x) \in Y \setminus B \Leftrightarrow f(x) \notin B$ $\Leftrightarrow x \in X \setminus f^{-1}(B)$.

TOTE $f(x) \in f(A)$. $f(A) \in f(A) \in f(A)$ kan apollaring at $x \in A$, tote $f(x) \in f(A)$. I Ap $x \in A \subseteq f^{-1}(f(A))$. At the f(A) = f(A) and $f(A) \in f(A)$ is an independent of $f(A) \in f(A)$ in $f(A) \in f(A)$ is a full $f(A) \in f(A)$ in $f(A) \in f(A)$ in $f(A) \in f(A)$ in $f(A) \in f(A)$ is a full $f(A) \in f(A)$ in $f(A) \in f(A)$ in $f(A) \in f(A)$ in $f(A) \in f(A)$ is a full $f(A) \in f(A)$ in $f(A) \in f(A)$ in $f(A) \in f(A)$ in $f(A) \in f(A)$ is a full $f(A) \in f(A)$ in $f(A) \in f(A)$ in $f(A) \in f(A)$ in $f(A) \in f(A)$ is a full $f(A) \in f(A)$ in $f(A) \in f(A)$ in $f(A) \in f(A)$ in $f(A) \in f(A)$ is a full $f(A) \in f(A)$ in $f(A) \in f(A)$ in $f(A) \in f(A)$ in $f(A) \in f(A)$ in $f(A) \in f(A)$ is a full $f(A) \in f(A)$ in $f(A) \in f(A)$ in

 $Viji) \quad E_3' \quad \text{opiGueo'} \quad y \in f(f^{-1}|B)) \iff \exists x \in f^{-1}|B) \quad \forall w \in f(X) = y$ $Kai \quad \qquad X \in f^{-1}|B) \iff f(X) \in B$

AZK: 'EGTW fig=[0,1] -> [0,1] ME f(x) = 1-x KXI 9/t) = 4t (1-t) - (x) Nd Bpeite Tig foy kan gof. (B) Nd SEIZETE OTI OPIJETAI y f-1 addá Jev opijetai y g-2

×P× η f=[0,1] → IR είναι 1-1 και αντι 6τρέψιμη.

Mádicou Exoujus f [[0,1]) = [0,1] . 'Apa f-1 = [0,1] -> [0,1]

X > 1+X UDIVOVER

Tid va npostopisoums Tyv f-2, Acroumstyv =3/6wsy:

Συμηεραίνουμε Δοιηύν ότι $f^{-1}(y) = \frac{1-y}{1+y}$, $\int y dx J y f^{-1} = f$

Enasy $f^{-1} = f$, η spa flug napa eta ey TYS f=[0,1] -> [0,1] Eival GUMMETPINY WS mas the ENDERN y=x

H 6W2197969 9= [0,1] -> IR JEV ETVA, 1-1, 2 Pd JEV ETVOI ONTI 6 TPÉVINY.

AZK: 'EGTW $f = IR \rightarrow IR$ prid GWZPTYGY MZ $f(y) - f(x) \leq (y - x)^2$, $\forall x,y \in IR$. D.o. η f $\in IV$ \in

Núsy = Eva Mássovias ta x kai y , Beiskoujuz newta óti $<math>f(x) - f(y) \le (y - x)^2$, $dpa |f(y) - f(x)| \le (y - x)^2$, $\forall xiy \in \mathbb{R}$.

Έπειτα, θεωρούμε ένα διά στημα [α, β] \subset IR και το διαρούμε δε η ίδα υπο δια στήματα = [χο, χη], [χη, χ2], [χη-1, χη]

 $\mu \varepsilon d = x_0 < x_1 < x_2 < \cdots < x_n = \beta \quad \kappa a_1 \quad x_{i+1} - x_i = \frac{\beta - \alpha}{n}$

ti=0,1,..,n-1. 'Exouple formóv

 $|f(\beta)-f(\alpha)| = |f(x_{n})-f(x_{n-1})+f(x_{n-1})-f(x_{n-2})+\cdots+f(x_{1})-f(x_{0})|$ $\leq |f(x_{n})-f(x_{n-1})|+|f(x_{n-1})-f(x_{n-2})|+\cdots+|f(x_{1})-f(x_{0})|$ $\leq |x_{n}-x_{n-1}|^{2}+|x_{n-1}-x_{n-2}|^{2}+\cdots+|x_{1}-x_{0}|^{2}$ $\leq n \cdot \frac{(\beta-\alpha)^{2}}{\eta^{2}} = \frac{(\beta-\alpha)^{2}}{\eta}$

Kadwig to n fivetal merádo, Exoupe $\frac{(B-a)^2 n \to \infty}{n}$ o, apa 16 Xue f(B) = f(a) yla onologynote audaigeto Jiástyma [a]B], f(AaJy) g(AaJy) g(AaJy)

AZK 15 (Equation sign Fictive for a Varion of Sept 73)

Note : (a)
$$f(0) = f(0+0) = f(0) + f(0) = 2f(0)$$
 $\Rightarrow f(0) = 0$

for $f(0) = f(x+(-x)) = f(x) + f(-x) \Rightarrow f(-x) = -f(x)$

(b) He endputy: Yill $n = 2$ 16 X by other fixing that $f(x_1 + x_2) = f(x_1) + f(x_2)$,

Yhil X2 & IR. 'Enerth unode to specify the distribution of $f(x_1 + \dots + x_m) = f(x_1) + \dots + f(x_m)$, $f(x_1 + \dots + x_m) = f(x_1) + \dots + f(x_m)$, $f(x_1 + \dots + x_m) = f(x_1) + \dots + f(x_m)$, $f(x_1 + \dots + x_m) + f(x_m) = f(x_1 + \dots + x_m) + f(x_m)$

Red. $f(x_1 + \dots + x_m) + f(x_m) = f(x_1) + \dots + f(x_m) + f(x_m)$

(X) Enducinary Exposure $f(x_1) = n f(x_1) = n f(x_1)$, $f(x_1) = \frac{1}{n} f(x_1)$.

(B) 'Estimage Q, $g \neq 0$, $g \neq$

1Apx flg) = q f(1) , +q EQ.

= 1 f(1)