МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Нижегородский государственный университет им. Н.И. Лобачевского

СБОРНИК ЗАДАЧ ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ

ЧАСТЬ 1

Практикум

Рекомендовано методической комиссией института информационных технологий, математики и механики для студентов ННГУ, обучающихся по направлениям подготовки 02.03.02 «Фундаментальная информатика и информационные технологии», 01.03.02 «Прикладная математика и информатика», 09.03.04 «Программная инженерия»

Нижний Новгород 2019 С-23 СБОРНИК ЗАДАЧ ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ. В 2-х ч. Часть 1. Авторы: Алексеев В.Е., Захарова Д.В., Мокеев Д.Б., Смирнова Т.Г.: Практикум. – Нижний Новгород: Нижегородский госуниверситет, 2019. – 56 с.

Рецензент: д.ф.-м.н., профессор М.А. Иорданский

В настоящем пособии содержится краткий теоретический материал и предлагаются задачи по основным разделам первой части курса «Дискретная математика»: теории множеств, бинарным отношениям, комбинаторике, теории графов. Представлены также варианты заданий для контрольных работ.

Сборник задач предназначен для студентов ННГУ, обучающихся по направлениям подготовки 02.03.02 «Фундаментальная информатика и информационные технологии», 01.03.02 «Прикладная математика и информатика», 09.03.04 «Программная инженерия».

Ответственный за выпуск: заместитель председателя методической комиссии института ИТММ ННГУ к.х.н. **Г.В. Кузенкова**

УДК 519.95 ББК 518

© Нижегородский государственный университет им. Н.И. Лобачевского, 2019

Содержание

1. Множества	4
2. Бинарные отношения	
3. Комбинаторика	
4. Теория графов	
5. Задачи для контрольных работ	33
Ответы	49
Список литературы	55

1. Множества

 $\{a_1,a_2,\dots,a_n\}$ – множество, состоящее из n элементов a_1,a_2,\dots,a_n .

 ${x: P(x)}$ – множество, состоящее из элементов, обладающих свойством P.

 $x \in A$ – элемент x *принадлежит* множеству A.

 $x \notin A$ – элемент x не принадлежит множеству A.

 \emptyset – *пустое множество* (не содержащее ни одного элемента).

U - универсальное множество (универс), множество всех элементов, которыемогут рассматриваться в данном контексте.

 $A \subseteq B$ — множество A является подмножеством множества B (A включено в B, $A \ codeржится \ B$), это означает, что каждый элемент множества A является элементом множества В.

|A|число элементов Α конечном множестве называется мошностью множества.

 $2^{A} = \{X: X \subseteq A\}$ – множество всех подмножеств (булеан) множества A.

 $A \cup B = \{x : x \in A \text{ или } x \in B\} - oбъединение множеств A и B.$

 $A \cap B = \{x : x \in A \ \text{и} \ x \in B\}$ – пересечение множеств A и B.

 $A - B = \{x : x \in A \text{ и } x \notin B\} - paзносmb$ множеств A и B.

 $\bar{A} = U - A - \partial o n o л h e h u e$ множества A .

 $A \otimes B = (A - B) \cup (B - A) -$ симметрическая разность множеств A и B.

Свойства операций над множествами

1.1.
$$A \cup \emptyset = A$$
; $A \cap \emptyset = \emptyset$; $A \cup U = U$; $A \cap U = A$

1.1.
$$A \cup \emptyset = A$$
; $A \cap \emptyset = \emptyset$; $A \cup U = U$; $A \cap U = A$.
2.1. $A \cup A = A$; $A \cap A = A$. $A \cup \bar{A} = U$; $A \cap \bar{A} = \emptyset$.

3.1.
$$\overline{A} = A$$
.

4.1. *Коммутативные законы*:

$$A \cup B = B \cup A;$$
 $A \cap B = B \cap A.$

5.1. *Ассоциативные законы*:

$$A \cup (B \cup C) = (A \cup B) \cup C;$$
 $A \cap (B \cap C) = (A \cap B) \cap C.$

6.1. Дистрибутивные законы:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C);$$
 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$

7.1. Законы де Моргана:

$$\overline{A \cup B} = \overline{A} \cap \overline{B}; \qquad \overline{A \cap B} = \overline{A} \cup \overline{B}.$$

8.1.
$$A - B = A \cap \bar{B}$$
.

Благодаря ассоциативным законам, можно писать формулы $A_1 \cup A_2 \cup ... \cup A_n$, $A_1 \cap A_2 \cap ... \cap A_n$ без скобок. Используется сокращенная запись:

$$A_1 \cup A_2 \cup ... \cup A_n = \bigcup_{i=1}^n A_i, A_1 \cap A_2 \cap ... \cap A_n = \bigcap_{i=1}^n A_i.$$

Знак пересечения \cap иногда опускают, т.е. пишут *AB* вместо *A* \cap *B*.

Операцию пересечения считаем более сильной, чем другие. Это означает, что при отсутствии скобок она выполняется первой. С учетом этого, например, дистрибутивные законы можно записать так:

$$A(B \cup C) = AB \cup AC$$
, $A \cup BC = (A \cup B)(A \cup C)$.

Венна – способ Диаграмма графического представления взаимоотношений между множествами и операций над ними. На классической диаграмме Венна множества изображаются кругами или овалами, а универс – прямоугольником, охватывающим эти изображения. На рисунке 1 слева показана диаграмма Венна для трех множеств, выделено множество $(A \cup B)$ – С. В случае четырех множеств удобнее использовать прямоугольную диаграмму Венна. Пример показан на рисунке 1 справа, где выделено множество $AB \cup \bar{C}D$.

	(<u> </u>	Ó	7	
1					В
A					\bar{B}
$ar{A}$					В
Α					\bar{B}
	D	\overline{D}	D	\overline{D}	

Рис 1. Диаграммы Венна

 $A \times B = \{(x,y): x \in A, y \in B\}$ —прямое (декартово) произведение множеств A и B (множество всех упорядоченных пар, в которых первый элемент принадлежит A, второй -B).

 $A \times A = A^2 - \partial$ екартов квадрат множества A.

Задачи

- 1.1. Какие из следующих утверждений верны?
- - 1) $b \subseteq \{a, b\}$; 2) $b \in \{a, b\}$; 3) $\{b\} \subseteq \{a, b\}$; 4) $\{b\} \in \{a, b\}$; 5) $b \subseteq \{a, \{b\}\}$; 6) $b \in \{a, \{b\}\}$; 7) $\{b\} \subseteq \{a, \{b\}\}$; 8) $\{b\} \in \{a, \{b\}\}$;

- 9) $\emptyset \in \{\emptyset\}$; 10) $\emptyset \subseteq \{\emptyset\}$; 11) $\emptyset \in \emptyset$; 12) $\emptyset \subseteq \emptyset$.
- Определите мощность каждого из следующих множеств:

 - 1) $\{1,2,3,\{1,2,3\}\};$ 2) $\{1,\{1\},2,\{1,\{2,3\}\},\emptyset\};$
- $3) \varnothing$:

4) {Ø};

5) {Ø,{Ø}};

- 6) {{Ø,{Ø}}}.
- Элемент a принадлежит множествам A и B, но не принадлежит множеству 1.3. С. Какие из следующих множеств содержат этот элемент?
 - 1) B C;
- 2) C B;
- 3) $A (B \cup C)$; 4) $(A \cup B) \otimes C$;

- 5) $B \otimes C$;
- 6) $A \otimes B$;
- 7) $(A \cap B) \otimes C$; 8) $B \cap (A C)$.

- **1.4.** Дан универс $U = \{1,2,3,4,5,6,7,8\}$ и его подмножества: $A = \{x: 2 < x \le 6\}$, $B = \{x: x \text{ четно}\}$, $C = \{x: x \ge 4\}$, $D = \{1,2,4\}$. Найдите множества $A \cup B$, $CD, B \otimes C, \bar{A}(\bar{BD}), (A B) \cup (C D), \bar{A} \cup \bar{B} \cup \bar{C}, 2^A \cap 2^B, 2^D 2^B$.
- **1.5.** Дан универс $U = \{1,2,3,4,5,6,7,8\}$ и его подмножества: $A = \{x: x \text{ четно}\}$, $B = \{x: x \text{ кратно } 4\}$, $C = \{x: x \text{ простое}\}$ (1 не является простым числом), $D = \{1,3,5\}$. Найдите множества $A \cup B$, CD, $A \otimes B$, $A(B \cup C \cup D)$, $C \otimes D$, $(A B) \cup (C D)$, $\overline{A} \cup \overline{B}$, $(C A) \otimes D$, $(C B) \otimes D$,
- **1.6.** Известно, что |B| = 16, $|B \cap C| = 9$, $|A \cap B \cap C| = 5$. Найдите множества $|B A \cap C|$, $|(A \cup (B \otimes C)) \cap B|$.
- **1.7.** Пусть M_2 , M_3 , M_5 обозначают подмножества универса \mathbb{N} (множество всех натуральных чисел), состоящие соответственно из всех чисел, кратных 2, 3, 5. С помощью операций над множествами выразить через них множества всех чисел:
 - 1) делящихся на 6;
 - 2) взаимно простых с 30;
 - 3) делящихся на 10, но не делящихся на 3.

Запишите с помощью теоретико-множественной символики следующие утверждения:

- 4) 45 делится на 15;
- 5) 42 делится на 6, но не делится на 10;
- 6) каждое число из множества {8, 9, 10} делится хотя бы на одно из чисел 2, 3, 5, но не делится на 6.
- **1.8.** Выясните, обладают ли операции разности и симметрической разности множеств свойствами коммутативности и ассоциативности.
- **1.9.** С помощью диаграмм Венна выясните, какие из следующих равенств справедливы для любых множеств A, B, C.
 - 1) $A (B \cup C) = (A B) \cup (A C);$
 - 2) $A (B \cap C) = (A B) \cap (A C);$
 - 3) $A(B \otimes C) = AB \otimes AC$;
 - 4) $A \cup (B \otimes C) = (A \cup B) \otimes (A \cup C);$
 - 5) A(B-C) = AB AC;
 - 6) $A \cup (B C) = (A \cup B) (A \cup C);$
 - 7) $A \otimes BC = (A \otimes B)(A \otimes C)$.
- 1.10. С помощью эквивалентных преобразований докажите тождества:
 - 1) $A \cup AB = A$;
 - $2) \quad A(A \cup B) = A;$
 - 3) $A \cup \bar{A}B = A \cup B$;
 - 4) A (A B) = AB;

- 5) A AB = A B;
- 6) $A \cup (B A) = A \cup B$;
- 7) $(A-B)-C=(A-C)-(B-C)=A-(B\cup C);$
- 8) $A B = A \otimes AB$;
- 9) $A \cup B = (A \otimes B) \cup AB$;
- 10) $A (B \cup C) = (A B)(A C)$;
- 11) $(A \cup B) C = (A C) \cup (B C)$;
- 12) $A BC = (A B) \cup (A C) = ABC \otimes A$.
- **1.11.** Выразите:
 - операцию ∪ через операции ⊗ и ∩; 1)
 - 2) операцию U через операции ⊗ и U;
 - каждую из операций \cap , \cup через операции \otimes и . 3)
- **1.12.** В универсе \mathbb{N} определены множества $A_k = \{1, 2, ..., k\}, \ k = 1, 2, ...$ Докажите, что при любом n выполняются равенства:

$$1) \bigcap_{k=1}^{n} \overline{A_k} = \overline{A_n};$$

1)
$$\bigcap_{k=1}^{n} \overline{A_k} = \overline{A_n};$$
 3) $\bigcup_{k=1}^{n} (A_{k+1} - A_k) = A_{n+1} - A_1;$
2) $\bigcup_{k=1}^{n} \overline{A_k} = \overline{A_1};$ 4) $\bigcap_{k=1}^{n} (A_{n+1} - A_k) = A_{n+1} - A_n.$

$$2) \bigcup_{k=1}^{n} \overline{A_k} = \overline{A_1};$$

4)
$$\bigcap_{k=1} (A_{n+1} - A_k) = A_{n+1} - A_n.$$

- **1.13.** Найдите $|2^{A\otimes B}-2^B|$, если известно, что |A-B|=5, |B|=6, |AB| = 4.
- **1.14.** Какие из следующих равенств верны для любых множеств A и B?
 - 1) $2^A \cap 2^B = 2^{A \cap B}$:
 - 2) $2^A \cup 2^B = 2^{A \cup B}$.

 - 2) $2^{A} 2^{B} = 2^{A-B};$ 4) $2^{A} 2^{B} = 2^{A} 2^{A \cap B};$ 5) $2^{A} \otimes 2^{B} = 2^{A \otimes B}.$
- 1.15. Для каждого равенства из левого столбца укажите равносильное ему соотношение из правого.
 - $A B = \emptyset$ 1)

a) A = B

 $A \cap B = A$

b) $A = \bar{B}$

3) $A \cap B = \emptyset$

c) $A \subseteq B$

4) $A \cup B = U$

d) $A \subseteq \bar{B}$

5) $A \cup B = B$

e) $\bar{A} \subseteq B$

- 6) $A \otimes B = \emptyset$
- 7) $A \otimes B = U$

1.16. С помощью диаграмм Венна выясните, равносильны ли следующие системы условий:

1)
$$\begin{cases} X \subseteq Z \subseteq \overline{W}, \\ Y \subseteq W, \\ X \cup Y = Z \cup W \end{cases}$$
 и
$$\begin{cases} X = Z, \\ Y = W. \end{cases}$$

2)
$$\begin{cases} C \otimes D \subseteq A, \\ B \cup D \subseteq A \cup C, \\ A - D \subseteq C - B \end{cases} \quad \begin{cases} \overline{A} \subseteq CD, \\ B - C \subseteq \overline{A}, \\ A \subseteq C \cup D. \end{cases}$$

3)
$$\begin{cases} A \subseteq C \otimes B, \\ C \subseteq B \otimes D, \\ AC \subseteq B - D \end{cases}$$

$$\text{H} \begin{cases} B \subseteq \overline{CD}, \\ C - D \subseteq B, \\ AC \subseteq D, \\ A - B \subseteq BC. \end{cases}$$

1.17. Решите уравнение (предполагая, что множества A и B заданы, найдите условия, которым должно удовлетворять множество X, чтобы выполнялось данное равенство).

1)
$$AX = B$$
;

3)
$$A \otimes X = B$$
:

5)
$$A \cup X = BX$$
;

7)
$$A - X = X - B$$
;

9)
$$AX = (X \cup B) - A$$
:

$$2) \quad A \cup X = B;$$

$$4) \quad A - X = B;$$

6)
$$A \otimes X = BX$$
;

1)
$$AX - B$$
,
2) $A \cup X = B$,
3) $A \otimes X = B$;
4) $A - X = B$;
5) $A \cup X = BX$;
6) $A \otimes X = BX$;
7) $A - X = X - B$;
8) $(A \cup X) \cup B = X \cup B$;
9) $AX = (X \cup B) - A$;
10) $\overline{AX} = (X - B) \cup A$.

10)
$$\overline{AX} = (X - B) \cup A$$
.

1.18. Даны множества $A = \{1,2,3,4,5\}, B = \{a,b,c\}, C = \{4,5,6\}, D = \{b,c,d\}.$ Найдите $|(A \times B) - (C \times D)|$.

1.19. Выясните, какие из следующих равенств справедливы для любых множеств A, B, C, D.

1)
$$(A \cup B) \times C = (A \times C) \cup (B \times C);$$

2)
$$(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D);$$

3)
$$(A \cup B) \times (C \cup D) = (A \times C) \cup (B \times D)$$
;

4)
$$(A - B) \times C = (A \times C) - (B \times C)$$
.

1.20. Дано множество $A = \{1,2,3,4,5,6,7,8\}$ и для каждого $i \in A$ множества $B_i =$ и $C_i = A \times \{i\}$. Выразите через них с помощью операций объединения и пересечения следующие множества:

1)
$$\{1,2,3\}^2$$
;

- 2) $\{1,2,3,4,5\} \times \{1,2,3,4,5,6,7\};$
- 3) $\{(i,i): i \in A\};$
- 4) $\{(i,j): 1 \le i \le j \le 8\}.$

1.21. Докажите тождества:

1)
$$\bigcup_{i=1}^{n} (A_i - B) = \left(\bigcup_{i=1}^{n} A_i\right) - B;$$

2)
$$\bigcap_{i=1}^{n} (A \cup B_i) = A \cup \bigcap_{i=1}^{n} B_i;$$

3)
$$\left(\bigcup_{i=1}^{n} A_i\right) - \bigcap_{i=1}^{n} A_i = \bigcup_{i=1}^{n} \bigcup_{i=1}^{n} (A_i - A_i);$$

4)
$$\left(\bigcup_{i=1}^{n} A_i\right) - \bigcap_{i=1}^{n} A_i = \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} (A_i \otimes A_j);$$

5)
$$\left(\bigcup_{i=1}^{n} A_i\right) - \bigcap_{i=1}^{n} A_i = \bigcup_{i=1}^{n-1} (A_i - A_{i+1}) \cup (A_n - A_1).$$

2. Бинарные отношения

Бинарным отношением на множестве A называется любое подмножество множества A^2 . Далее вместо «бинарное отношение» пишем просто «отношение». Если R — отношение на множестве A и $(x,y) \in R$, то говорят, что элемент x находится в отношении R с элементом y, это часто записывают так: xRy.

Отношение R на конечном множестве A можно задать таблицей. Строки и столбцы таблицы соответствуют элементам множества A, на пересечении строки, соответствующей элементу x, и столбца, соответствующего элементу y, ставится 1, если xRy, и 0 в противном случае.

 Γ раф отношения — графическое представление отношения на конечном множестве. Элементы множества изображаются кружками или иными значками и, если xRy, то рисуется стрелка от x к y.

$$R^{-1} = \{(x, y): (y, x) \in R\}$$
 – отношение, *обратное* к R .

Отношение R на множестве A называется

- 1) рефлексивным, если для любого $x \in A$ справедливо xRx;
- 2) симметричным, если из xRy следует yRx;
- 3) антисимметричным, если из xRy и yRx следует x = y;
- 4) m ранзитивным, если из xRy и yRz следует xRz.

Рефлексивное, симметричное и транзитивное отношение называется *отношением эквивалентности* (или просто *эквивалентностью*). Множество, на котором задано отношение эквивалентности, разбивается на *классы эквивалентности* – два элемента находятся в отношении эквивалентности тогда и только тогда, когда они принадлежат одному классу.

Рефлексивное, антисимметричное и транзитивное отношение называется отношением порядка (или просто порядком). Если R — отношение порядка и xRy, $x \neq y$, то говорят, что x предшествует y или y меньше y. Если при этом не существует такого элемента z, что zRz и zRy, то z непосредственно предшествует y. Граф отношения непосредственного предшествования называют диаграммой z хассе отношения порядка. Порядок z на множестве z называют линейным, если для любых z, z0 и меет место z1 или z2.

Отношением *между множествами* A и B называется любое $R \subseteq A \times B$. Такое отношение называется функциональным, если для каждого $x \in A$ существует единственный $y \in B$ такой, что xRy. Говорят, что y есть функция от x и пишут y = f(x). Функция f отображает множество A в множество B, это записывается так: $f: A \to B$. Функция называется

- 1) инъективной (инъекцией), если из $x_1 \neq x_2$ следует, что $f(x_1) \neq f(x_2)$;
- 2) сюрьективной (сюрьекцией), если для каждого $y \in B$ существует такой $x \in A$, что f(x) = y;

3) биективной (биекцией, взаимно однозначным отображением), если она инъективна и сюръективна.

Задачи

2.1. Определите, какими из свойств (1) - (4) обладают следующие отношения на множестве $\{1,2,3,4,5\}$:

$$R_1$$
: $aR_1b \leftrightarrow |a-b| = 1$;

$$R_2$$
: $aR_2b \leftrightarrow 0 < a - b < 3$;

$$R_3$$
: $aR_3b \leftrightarrow a+b$ – чётное число;

$$R_4$$
: $aR_4b \leftrightarrow a \ge b^2$;

$$R_5$$
: $aR_5b \leftrightarrow \text{HOД}(a,b) = 1$.

Постройте таблицы и графы этих отношений.

2.2. Выясните, какие из следующих утверждений верны.

1) Всякое отношение на множестве либо симметрично, либо антисимметрично;

2) Никакое отношение не может быть одновременно симметричным и антисимметричным;

3) Для любого отношения R отношения $R \cup R^{-1}$ и $R \cap R^{-1}$ симметричны;

4) Для любого отношения R отношение $R - (R \cap R^{-1})$ антисимметрично;

5) Если R_1 и R_2 отношения эквивалентности, то $R_1 \cap R_2$ тоже отношение эквивалентности;

6) Если R_1 и R_2 отношения эквивалентности, то $R_1 \cup R_2$ тоже отношение эквивалентности.

2.3. Постройте графы отношений, представленных таблицами. Какие из них являются отношениями эквивалентности?

1)		a	b	С
	a	1	1	0
	b	1	1	1
	С	0	1	1

2)		a	b	С
	a	1	0	1
	b	0	1	0
	c	1	0	0

3)		а	b	С
	a	1	0	0
	b	0	1	1
	c	0	1	1

4)		a	b	С
	a	1	1	0
	b	0	1	0
	c	0	1	1

5)		a	b	c	d
	a	1	1	0	1
	b	0	1	0	1
	С	1	0	1	0
	d	0	0	1	1

6)		а	b	c	d
	a	1	1	0	1
	b	0	1	0	0
	С	1	1	1	1
	d	0	0	0	1

	a	b	c	d
a	1	0	0	1
b	0	1	1	0
c	0	1	1	0
d	1	0	0	1

8)		a	b	С	d
	a	1	0	0	0
	b	0	1	0	0
	С	0	0	1	0
	d	0	0	0	1

7)

2.4. Выясните, какие из следующих отношений на множестве {0,1,...,9} являются отношениями эквивалентности. Найдите классы эквивалентности.

$$R_1: aR_1b \leftrightarrow a \equiv b \pmod{3};$$
 $R_4: aR_4b \leftrightarrow |2^a - 2^b| < 16;$ $R_2: aR_2b \leftrightarrow a^2 \equiv b^2 \pmod{10};$ $R_5: aR_5b \leftrightarrow |2^a - 2^b| \leq 16.$ $R_6: aR_5b \leftrightarrow |2^a - 2^b| \leq 16.$

2.5. Определите, какие из следующих отношений на \mathbb{Z}^2 (\mathbb{Z} – множество всех целых чисел) являются отношениями эквивалентности: Найдите классы эквивалентности.

```
R_1: (x_1, y_1)R_1(x_2, y_2) \leftrightarrow x_1 = x_2;
R_2: (x_1, y_1)R_2(x_2, y_2) \leftrightarrow x_1 = x_2 или y_1 = y_2;
R_3: (x_1, y_1)R_3(x_2, y_2) \leftrightarrow x_1 + y_1 = x_2 + y_2;
R_4: (x_1, y_1)R_4(x_2, y_2) \leftrightarrow x_1 + y_2 = y_1 + x_2;
R_5: (x_1, y_1)R_5(x_2, y_2) \leftrightarrow x_1 < x_2 или x_1 = x_2, y_1 \le y_2;
R_6: (x_1, y_1)R_6(x_2, y_2) \leftrightarrow \max\{x_1, y_1\} = \max\{x_2, y_2\}.
```

- **2.6.** Сколько различных отношений эквивалентности можно определить на множестве из n элементов при n = 1, 2, 3, 4?
- 2.7. Какие из таблиц в задаче 2.3 представляют отношения порядка?
- **2.8.** Какие из следующих отношений на **Z** являются отношениями порядка?

$$R_1: xR_1y \leftrightarrow x \leq y;$$

 $R_2: xR_2y \leftrightarrow x \geq y;$
 $R_3: xR_3y \leftrightarrow x < y;$
 $R_4: xR_4y \leftrightarrow x^2 \leq y^2;$
 $R_5: xR_5y \leftrightarrow x = y;$
 $R_6: xR_6y \leftrightarrow x$ делится на $y;$
 $R_7: xR_7y \leftrightarrow x^3 \leq y^3.$

- **2.9.** Постройте диаграмму Хассе для следующих отношений. Найдите все минимальные, максимальные, наименьшие и наибольшие элементы.
 - 1) Отношение делимости на множестве {2,3,4,6,8,9,12,18, 24, 36};
 - 2) Отношение делимости на множестве {1,2,4,5,10,12,15,30,60};
 - 3) $R: aRb \leftrightarrow a = b$ или $a \le b 2$ на множестве {1,2, ...,8}.
- **2.10.** На множестве \mathbb{Z}^2 определено отношение

$$R: (x_1, y_1) = (x_2, y_2) \leftrightarrow x_1 \le x_2, y_1 \le y_2.$$

Докажите, что это отношение порядка. Найдите все минимальные и максимальные относительно R элементы в множествах:

$$A_1 = \{(x, y) : x \le 3, y \le 4\};$$

 $A_2 = \{(x, y) : 2 \le x + y \le 4\};$
 $A_3 = \{(x, y) : x^2 + y^2 \le 4\}.$

- **2.11.** Дан универс U. Выясните, какие из следующих отношений на 2^U являются отношениями эквивалентности или порядка.
- 1) R_1 : $AR_1B \leftrightarrow A \cap B = \emptyset$; 2) R_2 : $AR_2B \leftrightarrow A B = \emptyset$; 3) R_3 : $AR_3B \leftrightarrow A B = B A$; 4) R_4 : $AR_4B \leftrightarrow |A| = |B|$;
- 5) R_5 : $AR_5B \leftrightarrow |A| \leq |B|$.
- 2.12. Сколько различных отношений порядка можно определить на множестве из трех элементов? Сколько среди них линейных?
- **2.13.** Выясните, какие из отношений между множествами A и B, заданных графически на рисунке 2, являются функциональными. Какие из функциональных инъективны или сюръективны?

Рис. 2. Отношения к задаче 2.13

- следующих функций $f: \mathbb{Z} \to \mathbb{Z}$ инъективны, **2.14.** Выясните какие ИЗ сюръективны или биективны:
 - 1) $f(x) = x^2$;
 - 2) $f(x) = x^3$;
 - 3) f(x) = x 3;
 - 4) $f(x) = \left| \frac{x}{2} \right|$;
 - 5) $f(x) = \begin{cases} x + 1, & \text{если } x \text{ четно,} \\ x 1, & \text{если } x \text{ нечетно.} \end{cases}$

3. Комбинаторика

Все рассматриваемые множества предполагаются конечными.

Правило равенства: если между множествами A и B существует взаимно однозначное соответствие (биекция), то |A| = |B|.

Правило суммы: $|A \cup B| = |A| + |B|$, если A и B — непересекающиеся множества.

Правило произведения: для любых множеств A и B имеет место равенство $|A \times B| = |A| \cdot |B|$. В более общем виде: если элемент a можно выбрать k способами, и после этого, независимо от того, какой элемент a был выбран, элемент b можно выбрать n способами, то упорядоченную пару (a, b) можно выбрать $k \cdot n$ способами.

Перестановка элементов множества A – это расположение их в некотором порядке, т.е. последовательность $(x_1x_2,...,x_n)$, состоящая из элементов множества A, в которой каждый из них встречается точно один раз. Число перестановок n элементов равно $n! = 1 \cdot 2 \cdot 3 \cdot ... \cdot n$.

Pазмещение из n по k — последовательность, состоящая из k различных элементов множества мощности n. Число размещений из n по k равно $P(n,k)=\frac{n!}{(n-k)!}$.

Сочетание из n по k — подмножество мощности k множества мощности n. Число сочетаний из n по k равно $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

Бином Ньютона: тождество

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Сочетание с повторениями из n по k — мультимножество из k элементов, выбранных из множества мощности n. Число сочетаний с повторениями из n по k равно $\binom{n+k-1}{k}$.

Pазбиение множества A - семейство его попарно непересекающихся подмножеств (частей разбиения), объединение которых равно A. Если порядок частей важен, говорят об упорядоченных разбиениях, в противном случае — о неупорядоченных.

Число упорядоченных разбиений множества мощности n на k частей равно k^n .

Число упорядоченных разбиений с заданными размерами частей n_1,n_2,\dots,n_k равно $\binom{n}{n_1,n_2,\dots,n_k}=\frac{n!}{n_1!n_2!\dots n_k!}.$

Число неупорядоченных разбиений множества из n элементов (число частей любое) равно числу Белла B_n .

Формула включений и исключений для множеств A_1, A_2, \dots, A_n :

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{k=1}^{n} (-1)^{k-1} S_k,$$

где S_k – сумма мощностей всевозможных пересечений множеств A_i , взятых по k штук:

$$S_k = \sum_{\{i_1,\dots,i_k\}\subseteq\{1,\dots,n\}} |A_{i_1}\cap\dots\cap A_{i_k}|.$$

Задачи

- Имеется n_1 книг одного автора, n_2 второго, n_3 третьего. Каким числом 3.1. способов можно выбрать:
 - 1) одну книгу?
 - 2) две книги разных авторов?
 - 3) три книги разных авторов?
- **3.2.** Каким числом способов можно заполнить анкету, содержащую п вопросов, если на каждый вопрос можно ответить:
 - «да» или «нет»;
 - «да», «нет», «не знаю»?
- 3.3. Сколько имеется палиндромов (слов, читающихся одинаково слева направо и справа налево) длины 7 в алфавите из 20 букв?
- 3.4. Сколько матриц с m строками и n столбцами можно составить из элементов 0 и 1?
- **3.5.** Сколько бинарных отношений можно задать на множестве из п элементов? Сколько среди нихрефлексивных? Сколько симметричных? Сколько антисимметричных?
- **3.6.** Дано множество U из n элементов и в нем подмножество A из kэлементов. Определите число подмножеств $B \subseteq U$, удовлетворяющих условию:

- 1) $B \subseteq A$; 2) $B \supseteq A$; 3) $A \cap B = \emptyset$; 4) $A \cap B \neq \emptyset$; 5) $|A \cap B| = 1$; 6) $|A \cap B| \ge 2$.
- **3.7.** Дано множество U из n элементов и в нем подмножество A из kэлементов и B из l элементов, причем $|A \cup B| = m$. Найдите число подмножеств $X \subseteq U$, удовлетворяющих условию:
 - 1) $X \supseteq A, X \supseteq B$; 2) $X \subseteq A, X \subseteq B$; 3) $A \cap B \subseteq X \subseteq A$; 4) $X \subseteq A \otimes B$.
- Сколько натуральных делителей у числа 64? 81? 72? 600? 2310? 3.8.

- **3.9.** Сколько натуральных делителей имеет число $p_1^{k_1} \cdot p_2^{k_2} \cdot ... \cdot p_s^{k_s}$, где $p_1, ..., p_s$ различные простые числа, $k_1, ..., k_s$ целые неотрицательные?
- **3.10.** Сколько слов длины n в алфавите из q букв, в которых любые две соседние буквы различны?
- **3.11.** Каким числом способов можно на шахматной доске разместить две фигуры, не атакующие друг друга, если эти фигуры:
 - 1) белая и черная ладьи?
 - 2) белый и черный короли?
 - 3) белый и черный слоны?
- **3.12.** Сколькими способами можно расставить восемь ладей на обычной шахматной доске так, чтобы они не угрожали друг другу, т.е. чтобы никакие две из них не стояли на одной вертикали или горизонтали?
- **3.13.** Сколько отношений линейного порядка можно определить на множестве из n элементов?
- **3.14.** Сколько имеется перестановок из элементов 1, 2, ..., n, в которых:
 - 1) 1 стоит раньше 2?
 - 2) 1 и 2 стоят рядом, причем 1 раньше 2?
 - 3) 1 и 2 не стоят рядом?
 - 4) между 1 и 2 расположены три других элемента?
- 3.15. Сколько имеется пятизначных десятичных чисел, у которых:
 - 1) все цифры различны?
 - 2) есть одинаковые цифры?
 - 3) все цифры различны, причем последняя не 0?
 - 4) все цифры различны, причем первая не 9, а последняя не 0?
 - 5) две первых цифры различны, а две последних -одинаковы?
 - 6) сумма цифр четна?
- **3.16.** Сколько матриц с n столбцами и m попарно различными строками можно составить из элементов 0 и 1?
- **3.17.** Каким числом способов можно разместить n различных предметов по k различным ящикам, если:
 - 1) в каждый ящик может быть помещено любое число предметов (в том числе ни одного)?
 - 2) в каждый ящик укладывается не более одного предмета?
- **3.18.** Сколько существует отображений множества A в множество B, если |A| = n, |B| = m? Сколько среди них инъективных? Сколько биективных?

- **3.19.** Найдите число отношений порядка на множестве $\{a, b, c, d\}$, имеющих наибольший и наименьший элементы.
- **3.20.** Сколько имеется вариантов выбора трех призеров среди 10 участников конкурса:
 - 1) с указанием занимаемых ими мест?
 - 2) без указания мест?
- **3.21.** Имеется n_1 книг одного автора, n_2 второго, n_3 третьего. Каким числом способов можно выбрать:
 - 1) две книги одного автора?
 - 2) одну книгу первого автора, две второго и три третьего?
- **3.22.** На плоскости расположены n точек, никакие три из которых не лежат на одной прямой. Сколько существует треугольников с вершинами в данных точках?
- **3.23.** На одной из двух параллельных прямых зафиксировано n точек, а на другой m точек. Сколько имеется:
 - 1) треугольников с вершинами в данных точках?;
 - 2) четырехугольников с вершинами в данных точках?
- **3.24.** Дано множество U из n элементов и в нем подмножество A из k элементов. Определите число подмножеств $B \subseteq U$, удовлетворяющих условию:
 - 1) $|B \cap A| = 2$; 2) |B A| = 3, |A B| = 4 3) $|A \otimes B| = 1$.
- **3.25.** Дано множество A и в нем подмножества B и C, причем |A BC| = 8, |B| = 5, |C B| = 1, |BC| = 3. Сколько имеется таких подмножеств $X \subseteq A$, что $|X (B \cup C)| = 2$, |X(B C)| = 2?
- **3.26.** Дано множество A и в нем подмножества B и C, причем |B| = 5, |C| = 3, $|B \cup C| = 7$, |A B| = 7. Сколько имеется таких подмножеств $X \subseteq A$, что $X \cap (C B) \neq \emptyset$, $|X \cap B| \ge 4$, $|X (B \cup C)| = 2$?
- **3.27.** Дано множество U мощности 6. Каким числом способов можно выбрать в нем три подмножества A, B, C, удовлетворяющие условиям:
 - 1) $|A \cap B| = 3$, $|A \cup C| = 5$?
 - 2) |A B| = 2; $|A \cup B| = 4$?
 - 3) $|(A B) \cup C| = 4$; $|B \cap C| = 3$?
 - 4) $|A \cap B| = |A \cap C| = |B \cap C| = 3$?
 - 5) $|A \cap B| = 1$, $|A \cap C| = 2$, $|B \cap C| = 3$?

- **3.28.** Сколько имеется слов длины 5 в алфавите $\{a, b, c, d, e, f\}$, в которых:
 - 1) буква а встречается ровно 2 раза?
 - 2) буква a встречается не менее 3 раз?
 - 3) буква a встречается один раз, а буква b дважды?
 - 4) буква a входит 2 раза, а остальные буквы различны?
- **3.29.** Имеется колода из 4n карт четырех мастей, по n карт каждой масти, занумерованных числами 1, 2, ..., n. Найдите число способов выбрать пять карт так, чтобы среди них оказались:
 - 1) пять карт одной масти с последовательными номерами;
 - 2) четыре карты с одинаковыми номерами;
 - 3) три карты с одним номером и две карты с другим;
 - 4) пять карт одной масти;
 - 5) пять карт с последовательными номерами;
 - 6) три карты с одинаковыми номерами и две с разными, отличными отномера первых трех;
 - 7) две карты с одинаковыми, остальные с разными номерами, отличными от номера первых двух.
- **3.30.** Каким числом способов из 10 человек можно выбрать три комиссии, если в первой и во второй комиссиях должно быть по 3 человека, а в третьей 5 человек, и ни один из членов первой комиссии не должен входить во вторую и третью?
- **3.31.** Каким числом способов можно расположить n нулей и k единиц в последовательность так, чтобы никакие две единицы не стояли рядом?
- **3.32.** Каким числом способов можно рассадить n мужчин и m женщин вдоль одной стороны прямоугольного стола так, чтобы никакие две женщины не сидели рядом?
- **3.33.** Шахматная ладья начинает движение в клетке a1, перемещаясь каждым ходом на одну клетку вправо или вверх. Каким числом способов она может достичь: 1) клетки b8? 2) клетки c8? 3) клетки d8? 4) клетки h5?
- **3.34.** Траекторией назовем ломаную линию на плоскости, состоящую из отрезков, параллельных координатным осям, причем длины отрезков целые числа. Найдите число кратчайших траекторий, начинающихся в точке (0,0), а оканчивающихся:
 - 1) в точке (m, n);
 - 2) на прямой x + y = n.
- **3.35.** Сколько существует монотонно возрастающих функций $f: \{1, 2, ..., n\} \rightarrow \{1, 2, ..., m\}$?

- **3.36.** Сколько матриц с n столбцами и m попарно различными строками, расположенными в лексикографическом порядке, можно составить из элементов 0 и 1?
- 3.37. Сколько существует девятизначных десятичных чисел, сумма цифр которых равна 4?
- 3.38. Сколько диагоналей у выпуклого -угольника? Найдите число точек пересечения этих диагоналей (не считая вершин), если известно, что в каждой из этих точек пересекаются только две диагонали?
- **3.39.** В множестве U из n элементов найдите число упорядоченных пар подмножеств (A, B), удовлетворяющих условиям:
 - 1) $A \subseteq B$;

- 2) $A \cap B = \emptyset$;
- $3) |A \cap B| = k;$
 - 4) $|A \cup B| = m, |A \cap B| = k;$
- 5) |A B| = |B A| = k; 6) $|A \otimes B| = 1$.
- 3.40. Каким числом способов можно составить букет из 9 цветов трех видов, если все цветы одного вида одинаковы и имеется неограниченный запас цветов каждого вида?
- 3.41. Сколько имеется пятизначных десятичных чисел, у которых цифры идут слева направо:
 - 1) в возрастающем порядке?
 - 2) в убывающем порядке?
 - 3) в неубывающем порядке?
- 3.42. Сколько существует монотонно неубывающих функций $f: \{1,2,\ldots,n\} \to \{1,2,\ldots,m\}$?
- **3.43.** Для данного $n \in \mathbb{N}$ определите число решений уравнения

 $x_1 + x_2 + \cdots + x_k = n$, в которых все x_i :

- 1) натуральные числа;
- 2) неотрицательные целые числа.
- **3.44.** Сколько матриц с n столбцами и m строками, расположенными в лексикографическом порядке, можно составить из элементов 0 и 1?
- **3.45.** Каким числом способов можно распределить n одинаковых монет между k лицами так, что каждый получает:
 - 1) любое количество монет от 0 до n?
 - 2) не более одной монеты?
 - 3) не менее одной монеты?
- 3.46. Сколько различных слов можно составить, переставляя буквы в слове "барабан"?

- **3.47.** Каким числом способов можно разместить 7 студентов в трех комнатах общежития, если:
 - 1) в одной комнате имеется одно, в другой два, в третьей четыре свободных места?
 - 2) в одной комнате имеется одно, в другой три, в третьей четыре свободных места?
- **3.48.** Чему равен коэффициент при x^2y^5 в разложении $(1 + x + y)^9$?
- **3.49.** Каким числом способов можно разделить 10 юношей на две баскетбольные команды по 5 человек в каждой?
- 3.50. Найдите число неупорядоченных разбиений:
 - 1) множества из 10 элементов на 5 пар;
 - 2) множества из 3n элементов на n троек.
- **3.51.** Каким числом способов можно kn различных предметов разложить по n одинаковым ящикам так, чтобы в каждом ящике оказалось ровно k предметов?
- **3.52.** Найдите число отношений эквивалентности на множестве из 5 элементов, имеющих ровно 3 класса эквивалентности.
- 3.53. Сколькими способами можно переставить буквы слова:
 - 1) «периметр», чтобы каждая буква «е» шла непосредственно после «р»?
 - 2) «поговорка», чтобы согласные шли в алфавитном порядке?
 - 3) «профессор», чтобы не менялся порядок гласных букв?
 - 4) «корректор», чтобы три буквы «р» не шли подряд?
- **3.54.** Ответом какой из следующих задач является число Белла B_n ? Найдите ответы и для остальных вариантов. Требуется найти число способов распределить n монет по n коробкам, если:
 - 1) все монеты разные, все коробки разные, в каждую коробку можно поместить любое число монет;
 - 2) все монеты разные, все коробки разные, в каждую коробку можно поместить одну монету;
 - 3) все монеты разные, все коробки одинаковы, в каждую коробку можно поместить любое число монет;
 - 4) все монеты разные, все коробки одинаковы, в каждую коробку можно поместить одну монету;
 - 5) все монеты одинаковые, все коробки разные, в каждую коробку можно поместить любое число монет;
 - 6) все монеты одинаковые, все коробки разные, в каждую коробку можно поместить одну монету.

- **3.55.** Среди сотрудников фирмы семнадцать человек знают английский язык, десять немецкий, семеро французский. Три человека знают английский и французский, два немецкий и французский, четверо английский и немецкий.
 - 1) Сколько человек работает в фирме, если каждый знает хотя бы один иностранный язык, а два человека знают все три языка?
 - 2) Сколько сотрудников, не знающих ни одного иностранного языка, если в фирме работает тридцать человек и никто из них не знает всех трех языков?
- **3.56.** На контрольной работе группе студентов были предложены три задачи. Первую решили 15 человек, вторую 17, третью 8. Первую и вторую решили 12 человек, первую и третью 6, вторую и третью 5.
 - 1) Сколько человек в группе, если все три задачи решили четверо, а двое не решили ни одной?
 - 2) Сколько человек не решили ни одной задачи, если в группе 24 студента, а все задачи решили трое?
 - 3) Три задачи решили пятеро. Сколько человек решили только первую задачу? Только первую и вторую? Верно ли утверждение: каждый, кто решил вторую и третью задачи, решил и первую?
- **3.57.** В лаборатории исследовали качество 16 сортов хлеба по трем критериям. Выяснилось, что первому удовлетворяют 12 сортов, второму 9, третьему 10. По первому и второму показателям удовлетворительными оказались 7 сортов, по первому и третьему 9, по второму и третьему 6.
 - 1) Всем трем критериям удовлетворяют 5 сортов. Сколько сортов «провалились» по всем показателям?
 - 2) Один сорт не удовлетворяет ни одному критерию. Сколько сортов удовлетворяет всем трем?
- 3.58. Сколько имеется натуральных чисел, не превосходящих 1000, которые:
 - делятся на 3 или на 5?
 - 2) не делятся ни на одно из чисел 2, 3, 5?
- **3.59.** Имеется колода из 4n карт четырех мастей, по n карт каждой масти, занумерованных числами 1,2,...,n. Найдите число способов выбрать k карт так, чтобы среди них были карты каждой масти, если:
 - 1) k = 4; 2) k = 5; 3) k = 6; 4) k = 10.
- **3.60.** На конкурс студенческих работ поступило 5n заявок, по n от каждого из пяти вузов. Требуется отобрать k заявок с условием, чтобы были представлены все вузы. Сколько имеется вариантов выбора?
- **3.61.** Сколько существует сюръективных отображений множества мощности n в множество мошности k?

- **3.62.** Найдите решение рекуррентного уравнения при данных начальных значениях.
 - 1) $x_n = 3x_{n-1} 2$,

a)
$$x_0 = 3$$
; 6) $x_0 = 1$; B) $x_0 = -3$;

- 2) $x_n = 2x_{n-1} + 15x_{n-2}$, $x_0 = 3$, $x_1 = 7$;
- 3) $x_n = 3x_{n-1} + 4x_{n-2}$, $x_0 = 0$, $x_1 = 1$;
- 4) $x_n = 6x_{n-1} 9x_{n-2}$, $x_0 = 2$, $x_1 = 3$.
- 3.63. Докажите тождества:

1)
$$\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$$
;

$$2) \binom{n}{k} = \frac{n-k+1}{k} \binom{n}{k-1};$$

3)
$$\binom{n}{k} = \frac{n}{n-k} \binom{n-1}{k}$$
;

4)
$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$
;

5)
$$\binom{n}{k} = \frac{n-1}{k-1} \binom{n-1}{k-1} - \frac{1}{k-1} \binom{n-1}{k}$$
;

6)
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-2}{k-1} + \dots + \binom{k-1}{k-1} = \sum_{i=0}^{n-k} \binom{k-1+i}{k-1};$$

7)
$$\sum_{k=0}^{n} k \binom{n}{k} = n2^{n-1}$$
;

8)
$$\sum_{k=0}^{n} (-1)^k k \binom{n}{k} = 0.$$

4. Теория графов

 $\Gamma pa\phi$ — математический объект, состоящий из вершин и ребер. Вершинами могут быть любые элементы, а каждое ребро — это пара вершин. Если V — множество вершин графа G, а E — множество его ребер, то пишут G = (V, E). Если ребра — неупорядоченные пары вершин, граф называется неориентированным, если упорядоченные — ориентированным. Если ребро (a,b) принадлежит графу, то говорят, что вершины a и b смежны. Ребро вида (a,a) называется петлей. Неориентированный граф без петель называется обыкновенным. Во всех задачах этого раздела, где термин "граф" употребляется без уточнения, имеются в виду обыкновенные графы.

Стандартное множество вершин: $V_n = \{1, 2, ..., n\}$.

Теорема. Число обыкновенных графов с множеством вершин V_n равно $2^{\frac{n(n-1)}{2}}$.

Матрица смежности — для графа с множеством вершин V_n матрица $A = (a_{ij})$ с n строками и n столбцами, в которой $a_{ij} = 1$, если вершины i и j смежны, и $a_{ij} = 0$, если они несмежны.

Списки смежности – массив списков, в каждом из которых перечисляются все вершины, смежные с некоторой вершиной графа.

C мелень вершины a — количество смежных с ней вершин, обозначается через deg(a). Ha for степеней графа — упорядоченная по неубыванию последовательность степеней вершин.

Теорема (о рукопожатиях). Для любого графа G = (V, E) выполняется равенство $\sum_{x \in V} \deg(x) = 2m$, где m— число ребер.

 Π одграф графа G=(V,E) – такой граф G'=(V',E'), что $V'\subseteq V,E'\subseteq E$.

Дополнительный граф к графу G = (V, E) – граф $\bar{G} = (V, E')$, у которого $(a, b) \in E'$ тогда и только тогда, когда $(a, b) \notin E$.

Специальные графы:

 $O_n = (V_n, \emptyset)$ – пустой граф.

 K_n – nолный zра ϕ с множеством вершин V_n , в котором любые две вершины смежны.

 $P_n = (V_n, \{(1,2), (2,3), \dots, (n-1,n)\}) - nymb.$

 \mathcal{C}_n – $\mathit{цик}$ л, получается добавлением к графу P_n ребра (1, n).

 $K_{p,q}$ – *полный двудольный граф*: множество вершин состоит из двух частей V_1 и V_2 , причем $|V_1|=p$, $|V_2|=q$, и две вершины смежны тогда и только тогда, когда они принадлежат разным частям.

 $Q_k - k$ -мерный куб: вершинами его являются все двоичные наборы длины k и две вершины смежны тогда и только тогда, когда соответствующие наборы отличаются ровно в одной позиции.

Графы $G_1 = (V_1, E_1)$ и $G_2 = (V_2, E_2)$ изоморфны, если существует биекция $f \colon V_1 \to V_2$, такая, что $(a,b) \in E_1$ тогда и только тогда, когда $(f(a),f(b)) \in E_2$. Отображение f называется изоморфизмом графа G_1 на граф G_2 . Если графы G_1 и G_2 изоморфны, то пишут $G_1 \cong G_2$. Отношение изоморфизма графов есть отношение эквивалентности, классы эквивалентности называют абстрактными или непомеченными графами.

Путь в графе — последовательность вершин $a_1, a_2, ..., a_k$, в которой каждая пара соседних вершин (a_i, a_{i+1}) является ребром графа, причем все эти ребра различны. Число этих ребер k-1 называется длиной пути. Путь соединяет вершины a_1 и a_k .

Простой путь – путь, в котором все вершины различны.

Cвязный cраф — такой граф, в котором для любых двух вершин имеется соединяющий их путь.

Компонента связности графа — связный подграф, не содержащийся в большем связном подграфе.

Эйлеров цикл – цикл, проходящий через все ребра графа.

Теорема. Эйлеров цикл в связном графе существует тогда и только тогда, когда степени всех вершин графа четны.

Расстояние между вершинами связного графа — длина кратчайшего пути, соединяющего эти вершины.

Эксцентриситет вершины – расстояние от этой вершины до наиболее удаленной от нее.

Диаметр графа – максимальный эксцентриситет вершин.

Радиус графа – минимальный эксцентриситет вершин.

Центральная вершина – вершина, эксцентриситет которой равен радиусу графа.

Центр графа – множество всех центральных вершин.

 \mathcal{L} ерево — связный граф, не имеющий циклов. \mathcal{L} ес — граф, не имеющий циклов. \mathcal{L} ист в дереве — вершина степени 1.

 $Kod\ \Pi pioфepa$ — экономный способ задания дерева T с множеством вершин V_n . Представляет собой набор $p(T)=(b_1,\ldots,b_{n-2})$, получаемый с помощью следующей процедуры. В дереве находится наименьший лист a и смежная с ним вершина b. Вершина a удаляется из дерева, а b добавляется к коду. Эти действия повторяются n-2 раз.

Восстановить дерево по коду p(T) можно следующим образом. Положим $V = \{1, 2, ..., n\}$. Находим наименьший элемент $a \in V$, не входящий в p(T). В дерево включается ребро (a, b), где b — первый элемент в p(T). Из множества V удаляется элемент a, а из p(T) — первый элемент. Повторяем эти действия n-2 раз. Два оставшихся после этого элемента множества V образуют еще одно ребро дерева.

Корневое дерево – дерево с выделенной вершиной, которая называется корнем дерева.

 \mathcal{L} вудольный граф — граф, множество вершин которого можно разбить на две части (доли) так, чтобы каждое ребро соединяло вершины из разных частей.

Теорема Кёнига. Граф является двудольным тогда и только тогда, когда он не содержит циклов нечетной длины.

 Π лоский граф — граф, вершинами которого являются точки плоскости, а ребрам соответствуют непрерывные линии, соединяющие смежные вершины, причем эти линии пересекаются только в концевых точках, т. е. в вершинах.

Планарный граф – граф, изоморфный плоскому.

Гранью плоского графа называется максимальное по включению множество точек плоскости, каждая пара которых может быть соединена простой кривой, не пересекающей ребра графа.

Теорема (формула Эйлера). Число граней плоского графа с n вершинами, m ребрами и k компонентами связности равно m-n+k+1.

Следствие 1. В планарном графе c $n \ge 3$ вершинами число ребер не превосходит 3n-6.

Следствие 2. В планарном графе c $n \ge 3$ вершинами, не содержащем треугольников, число ребер не превосходит 2n-4.

Подразбиение ребра (a,b)состоит в удалении этого ребра из графа и добавлении новой вершины c и ребер (a,c), (b,c). Граф H называется *подразбиением* графа G, если G можно преобразовать в H подразбиениями ребер.

Теорема (критерий планарности Понтрягина-Куратовского). Граф планарен тогда и только тогда, когда он не содержит подграфов, являющихся подразбиениями графов K_5 или $K_{3,3}$.

Стивание ребра (a,b) состоит в удалении вершин a, b и добавлении новой вершины, которая соединяется ребром с каждой вершиной, с которой была смежна хотя бы одна из вершин a, b. Граф G называется стиваемым κ графу H, если H получается из G в результате последовательности стягиваний ребер.

Теорема (критерий планарности Вагнера). Граф планарен тогда и только тогда, когда он не содержит подграфов, стягиваемых к графам K_5 или $K_{3,3}$.

Задачи

- **4.1.** Найдите число графов с множеством вершин V_n , в которых допускаются ребра следующих типов:
 - 1) неориентированные и петли;
 - 2) ориентированные и петли;
 - 3) ориентированные, но не петли.
- **4.2.** Найдите число ориентированных графов с множеством вершин V_n , в которых нет петель и каждая пара различных вершин соединена:
 - 1) не более чем одним ребром;
 - 2) точно одним ребром.
- **4.3.** Найдите число обыкновенных графов с множеством вершин V_n , имеющих:
 - 1) точно одно ребро;
 - точно *m* ребер.
- **4.4.** Найдите число ребер в каждом из графов K_n , $K_{p,q}$, Q_k .
- **4.5.** Вершины графа соответствуют граням трехмерного куба. Две вершины смежны, если соответствующие грани имеют общее ребро. Нарисуйте этот граф, постройте для него матрицу смежности.
- **4.6.** Вершинами графа являются целые числа от 2 до 10. Вершины a и b смежны, если наибольший общий делитель чисел a и b больше 1. Нарисуйте этот граф, напишите для него списки смежности.
- **4.7.** Вершинами графа являются всевозможные подмножества множества $\{a,b,c\}$. Вершины A и B смежны, если $|A \cup B| = 3$. Нарисуйте этот граф, постройте его матрицу смежности.
- **4.8.** Граф перестановок порядка k строится следующим образом. Его вершины соответствуют всевозможным перестановкам элементов 1,2,...,k. Две вершины смежны тогда и только тогда, когда соответствующие им перестановки различаются одной транспозицией. Сколько ребер в этом графе? Нарисуйте граф перестановок порядка 3. Постройте его матрицу смежности.
- **4.9.** Выясните, существуют ли графы с набором степеней: 1) (0,2,2,3,3); 2) (2,2,2,3,3); 3) (2,2,3,3,3); 4) (0,1,2,3,4).

- **4.10.** Найдите число графов, у которых каждая вершина имеет степень 1, а число вершин равно: 1) 4; 2) 6; 3) n.
- **4.11.** При каких n существуют графы с n вершинами, каждая из которых имеет степень: 1) 3? 2) 4?
- **4.12.** Вершина степени 0 называется *изолированной*. Определите число графов с n вершинами, в которых:
 - 1) данные k вершин являются изолированными;
 - 2) нет изолированных вершин (примените метод включения и исключения).
- **4.13.** Распределите графы, изображенные на рисунке 3, по классам эквивалентности относительно изоморфизма.

Рис. 3. Графы к задаче 4.13

- 4.14. Перечислите все абстрактные графы:
 - 1) с 4 вершинами;
 - 2) с 6 вершинами и 3 ребрами;
 - 3) с 6 вершинами и 13 ребрами;
 - 4) с набором степеней (1,2,2,2,2,3).

4.15. Распределите графы, изображенные на рисунке 4, по классам эквивалентности относительно изоморфизма.

Рис. 4. Графы к задаче 4.15

4.16. Какие из графов на рисунке 5 изоморфны друг другу?

Рис. 5. Графы к задаче 4.16

4.17. Распределите графы, изображенные на рисунке 6, по классам эквивалентности относительно изоморфизма.

Рис. 6. Графы к задаче 4.17

- **4.18.** Распределите графы, изображенные на рисунке 7, по классам эквивалентности относительно изоморфизма.
- **4.19.** Граф G называется самодополнительным, если $G \cong \overline{G}$. Найдите все самодополнительные графы с числом вершин, не превосходящим 6.
- **4.20.** Перечислите все абстрактные ориентированные графы без петель с тремя вершинами и тремя ребрами.

Рис. 7. Графы к задаче 4.18

- **4.21.** Сколько у графа K_8 имеется подграфов, изоморфных графу: 1) C_4 ? 2) P_4 ? 3) $K_{1,3}$?
- **4.22.** Сколько у графа $K_{3,7}$ имеется подграфов, изоморфных графу: 1) C_4 ? 2) P_4 ? 3) $K_{1,3}$?
- **4.23.** Найдите число простых путей длины 4 в графе: 1) K_7 ; 2) $K_{3,5}$.
- **4.24.** Найдите число простых путей длины k в графе Q_k , соединяющих вершины (0,0,...,0) и (1,1,...,1).
- **4.25.** Найдите радиус и диаметр каждого из графов P_n , C_n , Q_k , $K_{p,q}$.
- 4.26. Найдите радиус, диаметр, центр графа, заданного матрицей смежности:

4.27. Найдите радиус, диаметр, центр графа, заданного списками смежности:

1)	1: 2,3,4,5,6	2)	1: 2,6,7,8	3)	1: 2,4,5,7
	2: 1,3,4,5		2: 1,4,6,7		2: 1,3,4,5
	3: 1,2,4,5,7		3: 4,5		3: 2,6,7,8
	4: 1,2,3,5,6,7		4: 2,3,5,6		4: 1,2,5
	5: 1,2,3,4		5: 3,4		5: 1,2,4,6
	6: 1,4,7		6: 1,2,4,7		6: 3,5,7,8
	7: 3,4,6		7: 1,2,6,8		7: 1,3,6,8
			8: 1,7		8: 3,6,7

- **4.28.** Постройте граф с 5 вершинами, центр которого состоит из: 1) одной вершины; 2) двух вершин; 3) трех вершин; 4) четырех вершин; 5) пяти вершин.
- **4.29.** Какое наименьшее число ребер может быть в связном графе с n вершинами?
- **4.30.** Могут ли графы G и \overline{G} оба быть несвязными?
- **4.31.** Найдите все такие графы с не более чем 4 вершинами, что сам граф и дополнительный к нему оба связны.
- **4.32.** Какое наибольшее число ребер может быть в несвязном графе с n вершинами?
- **4.33.** В каких графах из задач 4.5, 4.6, 4.7, 4.27:
 - 1) есть эйлеров цикл?
 - 2) нет эйлерова цикла, но есть эйлеров путь?
- **4.34.** При каких p и q в графе $K_{p,q}$ есть эйлеров цикл? Эйлеров путь? При каких n в графе Q_n есть эйлеров цикл?
- **4.35.** Какое наименьшее количество ребер нужно добавить к графу $\overline{K_{2,4}}$, чтобы получился граф, имеющий эйлеров цикл?
- **4.36.** Перечислите все непомеченные деревья с числом вершин, не превышающим 6.
- **4.37.** Перечислите все непомеченные деревья с 7 вершинами, имеющие диаметр 3.
- **4.38.** Найдите два неизоморфных дерева с одинаковыми наборами степеней вершин.
- **4.39.** Сколько ребер в лесе с n вершинами и k компонентами связности?

- **4.40.** Сколько ребер в связном графе с n вершинами, если в нем имеется единственный цикл?
- **4.41.** В дереве с n вершинами степень каждой вершины равна 1 или k. Сколько листьев в таком дереве?
- **4.42.** В дереве имеется 40 вершин степени 4, все остальные вершины листья. Сколько листьев в этом дереве?
- **4.43.** Чему равно число корневых деревьев с множеством вершин V_n ?
- 4.44. Постройте код Прюфера для деревьев, изображенных на рисунке 8.

Рис. 8. Деревья к задаче 4.44

- **4.45.** Восстановите дерево по заданному коду Прюфера p(T):
 - 1) p(T) = (4, 1, 6, 2, 2, 2, 7);
 - 2) p(T) = (4, 2, 3, 4, 2, 3, 1, 1).
- 4.46. Какие из графов, изображенных на рисунке 6, двудольные?
- 4.47. Какие графы из задачи 4.26 двудольные?
- **4.48.** В двудольном графе одна доля состоит из четырех вершин, из них одна имеет степень 2 и три степень 3, а другая доля из пяти вершин, среди которых есть две вершины степени 1, вершина степени 2 и вершина степени 4. Какова степень оставшейся вершины?
- **4.49.** Каково наибольшее число ребер в двудольном графе с n вершинами?
- **4.50.** Сколько существует помеченных двудольных графов, у которых в одной доле пять вершин, а в другой три, причем из этих трех вершин две имеют степень 4, а одна степень 3?
- 4.51. Какие из графов, изображенных на рисунке 9, планарны?

Рис. 9. Графы к задаче 4.51

- **4.52.** Из графа K_6 удаляются 5 ребер, образующих цикл. Планарен ли полученный граф?
- **4.53.** Какое наименьшее количество ребер нужно удалить из графа K_6 , чтобы получить планарный граф?
- 4.54. Выясните, существует ли планарный граф, у которого:
 - 1) 7 вершин и 16 ребер;
 - 2) 8 вершин и 17 ребер.
- **4.55.** Какое наибольшее число граней может быть у плоского графа с 6 вершинами?

5. Задачи для контрольных работ

Задача 1. Задано универсальное множество $U = \{1, 2, 3, 4, 5, 6, 7\}$ и в нем подмножества $A = \{x | x \le 4\}, B = \{2,4,5,6\}, C = \{1,3,5,6\}, D = \{1,2,6,7\}.$ Найдите множества:

- 1) $A \otimes B \bar{C}D$; $C\bar{A} \times (D-B)$; $2^{AC} 2^{\bar{D}}$.
- 2) $C \otimes AB$; $(CB \cup \bar{A}) \times D\bar{C}$; $2^{\bar{A}D} \cup 2^{BC}$.
- 3) $C \otimes A\overline{B}D$; $AC \times A(B-D)$; $2^{CD} \cap 2^{BD}$.
- 4) $B \otimes D$; $(CD A) \times AB$; $2^{CD} 2^{\overline{B}}$.
- 5) $A\overline{D} \otimes B$; $C\overline{B} \times (BC \cup \overline{A})$; $2^{BC} \cap 2^{C\overline{D}}$.
- 6) $D \otimes AC$; $(AB \cup \overline{C}) \times C\overline{B}$; $2^{\overline{A}} \cap 2^{BC}$.
- 7) $CB\overline{D} \otimes A$; $BC \times B(C \cup D)$; $2^{BC} \cap 2^{\overline{A}D}$.
- 8) $(B \cup C) \otimes \bar{C}D$; $(A \bar{C}) \times AB$; $2^{AB} 2^{\bar{C}}$.
- 9) $B \otimes (A-D)C$; $B\bar{A} \times (D-C)$; $2^{AD} 2^{\bar{C}}$.
- 10) $\bar{A}D \otimes BC$; $CD \times (A B)$; $2^{AB} \cup 2^{D\bar{C}}$.
- 11) $A \otimes \overline{B}D$; $BD \times C(B \cup D)$; $2^{B\overline{D}} \cap 2^{\overline{A}}$.
- 12) $CD \otimes \overline{A}$; $(A B) \times B\overline{C}$; $2^{AB} 2^{\overline{D}}$.
- 13) $\bar{A}C \otimes D$; $D\bar{C} \times (AC \cup \bar{B})$; $2^{CD} \cap 2^{BD}$.
- 14) $\bar{A} \otimes BD$; $(BC \cup \bar{A}) \times D\bar{C}$; $2^{\bar{D}} \cap 2^{AC}$.
- 15) $C\overline{D} \otimes A$; $CD \times A(B-D)$; $2^{B\overline{D}} \cup 2^{A\overline{C}}$.
- 16) $(A \cup C) \otimes \overline{B}D$; $BD \times A\overline{C}$; $2^{AB} 2^{\overline{C}}$.
- 17) $A\overline{B} \otimes AD$; $\overline{D}(B \cup A) \times \overline{C}$; $2^{BC} \cap 2^{C\overline{D}}$.
- 18) $(A \cup D) \otimes AC$; $(B D) \times \overline{C}$; $2^{A\overline{C}} \cup 2^{D\overline{C}}$.
- 19) $(\overline{D} \cup B\overline{A}) \otimes AC$; $A(\overline{C} \cup D) \times \overline{B}\overline{D}$; $2^{\overline{B}} 2^{AC}$.
- 20) $(\bar{B}D \cup A) \otimes BC$; $(D (A \cup C)) \times BC$; $2^{A\bar{D}} \cup 2^{A\bar{B}C}$.
- 21) $\bar{C} \otimes A\bar{B}$; $(CB \cup \bar{A}) \times D\bar{C}$; $2^{D\bar{A}} \cup 2^{\bar{B}\bar{C}}$.
- 22) $A \otimes D$; $(CB \cup \bar{A}) \times AB$; $2^{BD} 2^{\bar{A}}$.
- 23) $B \otimes AC$; $\overline{A}B \times C\overline{B}$; $2^{\overline{A}\overline{D}} \cap 2^{BC}$.
- 24) $(A \cup C) \otimes B\overline{D}$; $(A\overline{C}) \times AB$; $2^{\overline{A}B} 2^{\overline{C}}$.
- 25) $BC \otimes \bar{A}D$; $(\bar{A} \bar{C}) \times A\bar{B}$; $2^{AB} \otimes 2^{\bar{C}}$.
- 26) $\bar{A} \otimes BC$; $CD\bar{A} \times BD$; $2^{AB} 2^{\bar{C}\bar{D}}$.
- 27) $\overline{D}B\overline{C}\otimes AC$; $\overline{A}(\overline{C}\cup D)\times \overline{A}\overline{B}$; $2^{\overline{B}}\otimes 2^{AC}$.
- 28) $\bar{A} \otimes BD$; $(\bar{B}\bar{C} \cup \bar{A}) \times B\bar{D}$; $2^{A\bar{B}} \otimes 2^{DC}$.
- 29) $(A \otimes C) \otimes \overline{B}D$; $\overline{D}B \times A\overline{C}$; $2^{AB} 2^{\overline{D}\overline{C}}$.
- 30) $A\overline{D} \otimes \overline{B}C$; $\overline{B}A \times (\overline{B}\overline{C} \cup \overline{A}D)$; $2^{A\overline{C}} 2^{B\overline{D}}$.

Задача 2. Преобразуйте данную формулу в эквивалентную ей, содержащую только операции объединения, пересечения и дополнения и не содержащую скобок.

1)
$$(B - (C - A)) \otimes \bar{C}$$
.

3)
$$(AB-C)\otimes (A-(A-B)).$$

5)
$$(A-(B-C))\otimes BC$$
.

7)
$$(B - AC) \otimes \bar{C}$$
.

9)
$$\bar{A} \otimes (C - (A - B))$$
.

11)
$$(A-C)\otimes (B-AC)$$
.

13)
$$((B-A) \otimes (A \cup B)C) - AC$$
.

15)
$$(BC - A) \otimes (B - C) \otimes \bar{C}$$
.

17)
$$\overline{ABC} \otimes (A - B) \otimes B$$
.

19)
$$(C\bar{A} - B) \otimes (C - B) \otimes (B - C)$$
.

21)
$$\overline{ABC} \otimes (B-C) \otimes C$$
.

23)
$$(AC - B) \otimes (C - B) \otimes AB$$
.

25)
$$(A \otimes (A - C)) \otimes ABC$$
.

27)
$$(AB - C) \otimes (A - B) \otimes \overline{B}$$
.

29)
$$C(A \cup B) \otimes (B - A)$$
.

2)
$$(A - BC) \otimes (B - C)$$
.

4)
$$\bar{A} \otimes (C - AB)$$
.

6)
$$ABC \otimes (A \otimes (A - B))$$
.

8)
$$(\bar{A}C - B) \otimes (C - B) \otimes (B - C)$$
.

10)
$$(A - BC) - (AB \otimes AC)$$
.

12)
$$AC \otimes (B - (A - C))$$
.

14)
$$(A - BC) \otimes \bar{B}$$
.

16)
$$((AB \cup BC) \otimes \bar{A}C) - AB$$
.

18)
$$(AB \otimes AC) - (C - B)$$
.

20)
$$(A - (B - C)) \otimes \bar{B}$$
.

22)
$$(AC \otimes BC) - (A - B)$$
.

24)
$$ABC \otimes ((B-C) \otimes B)$$
.

26)
$$C\overline{(B-A)} \otimes (\overline{A}-B)$$
.

28)
$$((A-C)-B) \otimes \overline{(B \cup C) \otimes AB}$$
.

30)
$$(AB \otimes AC) - (A - C)$$
.

Задача 3. Решите уравнение.

1)
$$(A \otimes B) \otimes X = AB$$
.

3)
$$A \otimes BX = \bar{X}$$
.

5)
$$A\bar{X} \otimes B = A - B$$
.

7)
$$A \cup X = B \cup A\overline{X}$$
.

9)
$$(A \otimes X) \otimes \overline{X} = AB$$
.

11)
$$(A - X) \cup B = B \otimes X$$
.

13)
$$BX = A \otimes (B \cup X)$$
.

15)
$$X - A = B \cup (\bar{X} - A)$$
.

17)
$$A \otimes B\overline{X} = A \cup X$$
.

19)
$$(A \otimes B) \otimes X = A \cup B$$
.

21)
$$(AB - X) \otimes \overline{A}\overline{B} = (\overline{A} \cup \overline{B}) - X.$$

23)
$$\bar{B} \otimes AX = A \cup B$$
.

25)
$$BX \otimes \bar{A} = BX - A$$
.

27)
$$BX \otimes A = A - X$$
.

29)
$$A \cup BX = A \otimes \bar{X}$$
.

2)
$$(\bar{A}\bar{B} - X) \otimes AB = (A \cup B)\bar{X}$$
.

4)
$$(A \cup BX) \otimes B = U$$
.

6)
$$\bar{A} \otimes BX = A \cup B$$
.

8)
$$BX - \bar{A} = BX \otimes A$$
.

10)
$$\bar{B} \cup \bar{X} = (X - B) \cup A$$
.

12)
$$AX \otimes B = B - X$$
.

$$14) \quad A - X = BX - A.$$

16)
$$\overline{AX} = (X - A) \cup B$$
.

18)
$$B \cup AX = B \otimes \bar{X}$$
.

20)
$$(A \cup \overline{X}) \otimes B = A - B$$
.

22)
$$(\bar{B} \cup \bar{A}X) \otimes \bar{A} = U$$
.

24)
$$ABX = AX \otimes B$$
.

26)
$$\bar{A} \cup \bar{X} = (X - A) \cup B$$
.

28)
$$\overline{BX} = (X - B) \cup A$$
.

30)
$$(B \cup \bar{X}) \otimes A = B\bar{A}$$
.

Задача 4. Выясните, равносильны ли системы условий.

ии 4. Выясните, равносильны ли системы условий.
$$\begin{cases} A \cup B \subseteq C; \\ C \cup B \subseteq A \cup D; \\ C \cup A \subseteq D \cup B; \\ AC \subseteq B; \end{cases} \Leftrightarrow \begin{cases} A = B; \\ B \subseteq C \subseteq B \cup D. \end{cases}$$

$$\begin{cases} \overline{W} \subseteq Z; \\ Y \subseteq \overline{ZW}; \\ X = Y \cup Z; \\ XW = YZW; \end{cases} \Leftrightarrow \begin{cases} \overline{A} = B; \\ A = C; \\ \overline{D} \subseteq B. \end{cases}$$

$$\begin{cases} AD = B C D; \\ C \subseteq \overline{D}; \\ CD \subseteq \overline{B}; \\ A = B \cup C; \end{cases} \Leftrightarrow \begin{cases} \overline{A} = B; \\ B \subseteq A \subseteq B \cup C. \end{cases}$$

$$\begin{cases} A = B : \\ A = C; \\ \overline{D} \subseteq B. \end{cases} \end{cases} \Leftrightarrow \begin{cases} A = C; \\ \overline{D} \subseteq B. \end{cases}$$

$$\begin{cases} AD = B C D; \\ XW = YZW; \\ X = Y \cup Z; \\ \overline{Z} \subseteq W; \end{cases} \Leftrightarrow \begin{cases} \overline{A} = \overline{B}; \\ \overline{A} = \overline{C}; \\ D = \emptyset. \end{cases}$$

$$\begin{cases} AD = B C D; \\ AC = D; \\ C \subseteq A \cup B; \\ B \subseteq \overline{D}; \end{cases} \Leftrightarrow \begin{cases} A = C; \\ A \subseteq \overline{B}; \\ C \subseteq \overline{D}. \end{cases}$$

$$\begin{cases} AD = B C D; \\ A \cup B = C \cup D; \\ B \subseteq D; \end{cases} \Leftrightarrow \begin{cases} A = C; \\ A \subseteq \overline{B}; \\ C \subseteq \overline{D}. \end{cases}$$

$$\begin{cases} X = Z = Y \cup Z; \\ Y = ZW; \\ \overline{W} \subseteq Z. \end{cases} \end{cases}$$

$$\begin{cases} A = B; \\ \overline{A} = \overline{C}; \\ D = \emptyset. \end{cases} \end{cases}$$

$$\begin{cases} A = C; \\ A \subseteq \overline{B}; \\ C \subseteq \overline{D}. \end{cases} \end{cases}$$

$$\begin{cases} X = Z = Y \cup Z; \\ \overline{W} \subseteq Z. \end{cases} \end{cases} \Leftrightarrow \begin{cases} X = Z = Y \cup Z; \\ \overline{W} \subseteq Z. \end{cases} \end{cases}$$

$$\begin{cases} X = Z = Y \cup Z; \\ \overline{W} \subseteq Z. \end{cases} \end{cases} \end{cases}$$

$$\begin{cases} X = Z = Y \cup Z; \\ \overline{W} \subseteq Z. \end{cases} \end{cases} \end{cases}$$

$$\begin{cases} X = Z = Y \cup Z; \\ \overline{W} \subseteq Z. \end{cases} \end{cases} \end{cases} \Rightarrow \begin{cases} X = Z = Y \cup Z; \\ \overline{W} \subseteq Z. \end{cases} \end{cases}$$

$$\begin{cases} X = Z = Y \cup Z; \\ \overline{W} \subseteq Z. \end{cases} \end{cases} \end{cases} \end{cases}$$

$$\begin{cases} X = Z = Y \cup Z; \\ \overline{W} \subseteq Z. \end{cases} \end{cases} \end{cases} \Rightarrow \begin{cases} X = Z = Y \cup Z; \\ \overline{W} \subseteq Z. \end{cases} \end{cases} \end{cases}$$

2)
$$\begin{cases} W \subseteq Z; \\ Y \subseteq \overline{ZW}; \\ X = Y \cup Z; \\ YW - YZW \end{cases} \Leftrightarrow \begin{cases} Y \subseteq X; \\ X = Z = \overline{W}. \end{cases}$$

3)
$$\begin{cases} \overline{A} \cup \overline{B} = D; \\ AC = D; \\ C \subseteq A \cup B; \end{cases} \Leftrightarrow \begin{cases} \overline{A} = B; \\ A = C; \\ \overline{D} \subseteq B. \end{cases}$$

4)
$$\begin{cases} C \subseteq \overline{D}; \\ CD \subseteq \overline{B}; \end{cases} \Leftrightarrow \begin{cases} C \subseteq A \subseteq \overline{D}; \\ B \subseteq A \subseteq B \cup C. \end{cases}$$

5)
$$\begin{cases} \overline{Y} \subseteq \overline{ZW}; \\ XW = YZW; \\ X = Y \cup Z; \\ \overline{Z} \subset W; \end{cases} \Leftrightarrow \begin{cases} X = Z = Y \cup Z; \\ Y = ZW; \\ \overline{W} \subseteq Z. \end{cases}$$

6)
$$\begin{cases} A \cup B = D; \\ AC = D; \\ C \subseteq A \cup B; \\ B \subset \overline{D}; \end{cases} \Leftrightarrow \begin{cases} A = \overline{B}; \\ \overline{A} = \overline{C}; \\ D = \emptyset. \end{cases}$$

7)
$$\begin{cases} AD = BCD; \\ A \cup B = C \cup D; \\ B \subseteq D; \end{cases} \Leftrightarrow \begin{cases} A = C; \\ A \subseteq \overline{B}; \\ C \subseteq \overline{D}. \end{cases}$$

8)
$$\begin{cases} Y = \overline{ZW}; \\ XW = YZW; \\ X = Y \cup Z; \\ \overline{W} \subset Z \end{cases} \Leftrightarrow \begin{cases} X = Y; \\ X = Z; \\ W = \emptyset. \end{cases}$$

9)
$$\begin{cases} \overline{A} \cup \overline{B} = D; \\ AC = D; \\ C \subseteq A \cup B; \\ B \subseteq \overline{D}; \end{cases} \Leftrightarrow \begin{cases} A = \overline{B}; \\ A \subseteq D. \end{cases}$$
10)
$$\begin{cases} X Z = Y W; \\ XW \cup YZ = \overline{YW}; \\ X \subseteq W; \end{cases} \Leftrightarrow \begin{cases} X = W; \\ Y = Z. \end{cases}$$
11)
$$\begin{cases} B \cup C \subseteq A; \\ A \cup B \subseteq C \cup D; \\ A \cup C \subseteq D \cup B; \\ AC \subseteq B; \end{cases} \Leftrightarrow \begin{cases} \overline{X} \subseteq Z; \\ Y \subseteq \overline{XZ}; \\ W = Y \cup Z; \\ XW = XYZ; \end{cases} \Leftrightarrow \begin{cases} \overline{B} = D; \\ C \subseteq B \cup D; \\ A \subseteq B. \end{cases}$$
13)
$$\begin{cases} ACD = BD; \\ C \subseteq \overline{D}; \\ A \subseteq \overline{C} \cup \overline{D}; \\ A \cup C \subseteq B; \end{cases} \Leftrightarrow \begin{cases} C \subseteq B \subseteq \overline{D}; \\ A \subseteq B \subseteq A \cup C. \end{cases}$$
14)
$$\begin{cases} ACD = BD; \\ C \subseteq \overline{D}; \\ A \subseteq C \cup \overline{D}; \\ A \subseteq C \cup \overline{D}; \end{cases} \Leftrightarrow \begin{cases} X = Z = Z \cup W; \\ Y \subseteq W; \\ Y \subseteq Z. \end{cases}$$
15)
$$\begin{cases} X = Z = Z \cup W; \\ Y \subseteq Z \subseteq Y; \\ \overline{A} \cup \overline{C} = D; \\ \overline{A} \subseteq \overline{D}; \end{cases} \Leftrightarrow \begin{cases} \overline{A} = \overline{C}; \\ \overline{A} = \overline{B}; \\ D = \emptyset. \end{cases}$$

17)
$$\begin{cases}
A\overline{C} = B\overline{C}\overline{D}; \\
A \cup B = \overline{C} \cup \overline{D}; \\
B \subseteq \overline{C};
\end{cases} \Leftrightarrow \begin{cases}
\overline{X} = \overline{Z} \cup \overline{W}; \\
\overline{X}ZW = \overline{Y}W; \\
\overline{Y} = \overline{X} \cup Z; \\
\overline{W} \subseteq Z;
\end{cases} \Leftrightarrow \begin{cases}
\overline{A} = \overline{B}; \\
A = D; \\
AD = C; \\
D \subseteq A \cup B; \\
B \subseteq \overline{C};
\end{cases} \Leftrightarrow \begin{cases}
X = Y; \\
\overline{Y} = Z; \\
W = \emptyset.
\end{cases}$$
20)
$$\begin{cases}
XZ = Y W; \\
XY \cup ZW = \overline{Y}W; \\
Z \subseteq W;
\end{cases} \Leftrightarrow \begin{cases}
\overline{W} \subseteq X; \\
Y \subseteq \overline{X}\overline{W}; \\
Z = Y \cup X; \\
ZW = YXW;
\end{cases} \Leftrightarrow \begin{cases}
Y \subseteq Z; \\
X = Z = \overline{W}.
\end{cases}$$
21)
$$\begin{cases}
C D = B A D; \\
AD \subseteq \overline{B}; \\
C = B \cup A; \\
A = DC; \\
C \subseteq D \cup B; \\
B \subseteq \overline{A};
\end{cases} \Leftrightarrow \begin{cases}
D = \overline{B}; \\
\overline{D} = \overline{C}; \\
A = \emptyset.
\end{cases}$$

3ada4a 5. Дано отношение R на множестве A. Определите, является ли оно симметричным, антисимметричным, транзитивным, отношением эквивалентности, отношением порядка. Для отношения эквивалентности найдите классы эквивалентности, для отношения порядка — минимальные и максимальные элементы.

```
1) xRy \Leftrightarrow |x-y|(x-3)(y-8) \ge 0;
    a) A = \{0,1,2,9,10\};
    6) A = \{3,4,5,6,7\}.
2) xRy \Leftrightarrow -2 \leq \frac{x}{y} \leq 2;
    a) A = \{-31, -7, 1, 3, 15\};
    6) A = \{-8, -6, -3, 2, 5\}.
3) xRy \Leftrightarrow x|2y (x делит 2y);
     a) A = \{2,5,6,8,9,15\};
     6) A = \{3,4,5,9,12,18\}.
     xRy \Leftrightarrow (x-y)(x^2+y^2) \equiv 0 \pmod{5};
     a) A = \{0,1,2,5,6,7\};
     б) A = \{0,1,2,3,4,5\}.
5) xRy \Leftrightarrow |x-y|(x-4)(y-9) \ge 0;
     a) A = \{0,1,2,3,10,11\};
     б) A = \{5,6,7,8,9\}.
6) xRy \Leftrightarrow x|3y (x делит 3y);
     a) A = \{4,6,7,8,9\};
     б) A = \{1,2,4,5,7,8,9\}.
7)
     xRy \Leftrightarrow (x-3)(y-3) \ge 0;
     a) A = \{0,1,3,5,7,9\};
     6) A = \{0,1,2,5,6\}.
     xRy \iff x|y^2 (x делит y^2);
8)
     a) A = \{2,3,4,7,9\};
     6) A = \{1,2,3,6,8\}.
        xRy \Leftrightarrow x|2y (x делит 2y);
9)
     a) A = \{2,3,5,8,9,12\};
     б) A = \{1,8,12,15,18\}.
        xRy \Leftrightarrow |x-y|(x-2)(y-6) \leq 0;
10)
     a) A = \{6,7,8,9,10\};
     б) A = \{2,3,4,5,6\}.
11) xRy \Leftrightarrow 1 \leq \frac{y}{2} \leq 4
     a) A = \{-6, -3, 3, 8, 11\};
     б) A = \{-4, -3, 1, 2, 5\}.
      xRy \Leftrightarrow (x-4)(y-4) \ge 0;
12)
     a) A = \{1,2,3,4,5,6,7\};
     б) A = \{1,3,5,7,9,11\}.
```

- 13) $xRy \Leftrightarrow 3x \geq 2y$;
 - a) $A = \{0,1,2,4,7\};$
 - 6) $A = \{8,9,10,11,12\}.$
- 14) $xRy \Leftrightarrow |x-y|(x-8)(y-3) \ge 0$;
 - a) $A = \{3,4,5,6,7,8\};$
 - б) $A = \{0,1,2,9,10,11\}.$
- 15) $xRy \Leftrightarrow x|y^2 (x$ делит y^2);
 - a) $A = \{2,3,5,6,14,42\};$
 - б) $A = \{3,4,8,9,16\}.$
- 16) $xRy \Leftrightarrow (3x-2y)(3y-2x) \ge 0$;
 - a) $A = \{0,1,4,5,6\};$
 - 6) $A = \{2,3,4,5,6\}.$
- 17) $xRy \Leftrightarrow (x-y)(x-4)(y-4) \ge 0$;
 - a) $A = \{1,2,3,4,5,6\};$
 - б) $A = \{1,3,5,7,9\}.$
- 18) $xRy \Leftrightarrow x|2y (x$ делит 2y);
 - a) $A = \{4,5,6,7,12,21\};$
 - б) $A = \{3,4,5,9,12,15,36\}.$
- 19) $xRy \Leftrightarrow (x-5)(y-5) \ge 0;$
 - a) $A = \{3,4,5,6,7,8\};$
 - $6) A = \{1,2,3,6,7,8\}.$
- 20) $xRy \Leftrightarrow 5x \geq 3y$;
 - a) $A = \{6,7,8,9,10\};$
 - $6) A = \{0,1,2,4,7\}.$
- 21) $xRy \Leftrightarrow |x-y|(x-9)(y-4) \ge 0;$
 - a) $A = \{0,1,2,3,10,11\};$
 - 6) $A = \{4,5,6,7,8,9\}.$
- 22) $xRy \Leftrightarrow \frac{2}{3} \leq \frac{x}{y} \leq 3;$
 - a) $A = \{-3, -2, 4, 5, 6, 19\};$
 - 6) $A = \{1,4,7,12,37,60\}.$
- 23) $xRy \Leftrightarrow x|3y$ (x делит 3y);
 - a) $A = \{2,3,4,5,8,10\};$
 - $6) A = \{1,2,4,5,6,7\}.$
- $24) xRy \Leftrightarrow (x-6)(y-6) \ge 0;$
 - a) $A = \{1,2,3,8,9,10\};$
 - $6) A = \{4,5,6,7,8\}.$
- $25) xRy \Leftrightarrow (x-y)(x-5)(y-5) \ge 0;$
 - a) $A = \{0,2,4,6,8\};$
 - 6) $A = \{1,3,5,7,9\}.$
- 26) $xRy \Leftrightarrow x|y^2 (x делит y^2);$
 - a) $A = \{1,2,3,6,8\}.$
 - $\mathsf{6)}\ A = \{3,4,8,9,11,16\}.$

```
27) xRy \Leftrightarrow (2x-y)(2y-x) \geq 0;

a) A = \{0,3,4,5,6\};

b) A = \{0,1,2,3,4\}.

28) xRy \Leftrightarrow x|3y (x делит 3y);

a) A = \{6,7,8,9,10\};

b) A = \{2,3,5,7,10,14\}.

29) xRy \Leftrightarrow (x-y)(x-4)(y-4) \leq 0;

a) A = \{0,2,4,6,8\};

b) A = \{1,3,5,7,9\}.

30) xRy \Leftrightarrow -1 \leq \frac{x}{y} \leq 1;

a) A = \{-8,-4,-1,2,3,5\};
```

б) $A = \{-4, -3, 1, 2, 4\}.$

Задача 6. Дано множество U из n элементов. Каким числом способов в нем можно выбрать три подмножества A, B, C так, чтобы выполнялись заданные условия.

```
n = 7, |A - B| = 1, |B - (A \cup C)| = 4;
1)
       n = 9, |(A \cap B) \cup C| = 2, |A - (B \cup C)| = 5;
2)
       n = 8, |A \cup B| = 6, |A - (B \cup C)| = 5;
3)
      n = 7, |A \cup B \cup C| = 5, |A - B| = 4;
4)
5)
       n = 6, |A - B| = 3, |B \cap (A \cup C)| = 2;
      n = 7, |A \cap (B \cup C)| = 2, |(B \cup C) - A| = 1;
6)
7)
       n = 9, |(A \cap B) \cup C| = 8, |A \cap (B \cup C)| = 1;
       n = 7, |A \cup B| = 2, |C \cap (A \cup B)| = 1;
8)
       n = 9, |A - (B \cup C)| = 6, |C \cap (A \cup B)| = 2;
9)
      n = 8, |(A \cap B) \cup C| = 6, |C - (A \cup B)| = 4;
10)
       n = 8, |A - B| = 2, |A \cap B \cap C| = 4;
11)
      n = 7, |(A-B) \cup C| = 1, |B-(A \cup C)| = 3;
12)
      n=7, |A \cup B|=5, |A \cap B \cap C|=3;
13)
      n = 8, |A - B| = 6, |(B \cap C) - A| = 1;
14)
     n = 5, |(A \cap B) \cup C| = 3, |C - (A \cap B)| = 1;
15)
      n = 6, |A \cup B| = 4, |(A \cup B) - C| = 1;
16)
      n = 8, |A - (B \cup C)| = 5, |(B \cup C) - A| = 1;
17)
      n = 7, |(A \cap B) \cup C| = 4, |C - (A \cap B)| = 1;
18)
       n = 9, |A-B|=3, |(B \cap C)-A|=5;
19)
      n = 6, |A-B|=3, |B-(A \cap C)|=2;
20)
     n = 7, |(A - B) \cup C| = 6, |C \cap (A \cup B)| = 3;
21)
22) n=8, |A-(B\cup C)|=5, |B-(A\cap C)|=2;
23) n = 7, |(A-B) \cup C| = 6, |A-(B \cup C)| = 3;
```

```
24) n = 9, |A \cap B| = 4, |A - (B \cup C)| = 4;
```

25)
$$n = 7$$
, $|A \cap B| = 5$, $|(A \cup C) - B| = 1$;

26)
$$n=6$$
, $|(A-B)\cup C|=4$, $|(A\cup C)-B|=2$;

27)
$$n = 8$$
, $|A \cap B \cap C| = 4$, $|(A \cup B) - C| = 1$;

28)
$$n = 8$$
, $|A \cap B| = 5$, $|C - (A \cup B)| = 2$;

29)
$$n=8$$
, $|(A-B)\cup C|=7$, $|C-B|=6$;

30)
$$n = 7$$
, $|A \cap B \cap C| = 3$, $|A - (B \cap C)| = 2$?

Задача 7. Рассматриваются слова в алфавите $\{a_1, a_2, ..., a_q\}$ Через n_i обозначается число вхождений буквы a_i в слово. Требуется подсчитать число слов длины n, удовлетворяющих данным условиям.

1)
$$q = 3, \quad n = 9, \quad n_1 \ge 6;$$

2)
$$q = 4$$
, $n = 7$, $n_1 = 2n_2$;

3)
$$q = 4$$
, $n = 7$, $n_1 + n_2 < n_3 + n_4$;

4)
$$q = 5$$
, $n = 8$, $n_1 = n_2 + n_3 + n_4$;

5)
$$q = 3$$
, $n = 9$, $n_1 = 2$, $n_2 < n_3$;

6)
$$q = 5$$
, $n = 7$, $n_1 + n_2 = 3$, $n_3 \ge 2$;

7)
$$q = 3$$
, $n = 7$, $n_1 = n_2$;

8)
$$q = 3$$
, $n = 10$, $n_1 = n_2 + n_3$;

9)
$$q = 3$$
, $n = 7$, $n_1 + n_2 < n_3$;

10)
$$q = 4$$
, $n = 6$, $n_1 + n_2 = n_3$;

11)
$$q = 4$$
, $n = 5$, $n_1 < n_2$;

12)
$$q = 3$$
, $n = 8$, $n_1 + n_2 \ge 6$;

13)
$$q = 3$$
, $n = 8$, $2 < n_1 < 6$;

14)
$$q = 3$$
, $n = 6$, $n_1 \le n_2 \le n_3$;

15)
$$q = 4$$
, $n = 7$, $n_1 \le 2$, $n_2 + n_3 = 4$;

16)
$$q = 5$$
, $n = 8$, $n_1 = 4$, $n_2 \le 3$;

17)
$$q = 4$$
, $n = 6$, $n_1 \ge n_2 + n_3 + n_4$;

18)
$$q = 4$$
, $n = 8$, $n_1 + n_2 = 3$, $n_3 \ge 2$;

19)
$$q = 4$$
, $n = 9$, $n_1 > n_2 > 2$;

20)
$$q = 5$$
, $n = 6$, $n_1 = n_2$;

21)
$$q = 5$$
, $n = 6$, $n_1 + n_2 = n_3 + n_4$;

22)
$$q = 4$$
, $n = 8$, $n_1 = 2$, $n_2 \ge 3$;

23)
$$q = 5$$
, $n = 7$, $n_1 \le 2$, $n_2 + n_3 + n_4 = 3$;

24)
$$q = 4$$
, $n = 8$, $n_1 + n_2 \le 4$, $n_3 = 1$;

25)
$$q = 5$$
, $n = 7$, $n_1 = n_2 = n_3$;

- 29) q = 4, n = 8, $2n_1 + n_2 = 6$;
- 30) q = 3, n = 9, $n_1 \ge n_2 + n_3$.

Задача 8. Сколькими способами можно переставить буквы слова:

- «здание», чтобы гласные шли в алфавитном порядке; 1)
- 2) «перешеек», чтобы четыре буквы «е» не шли подряд;
- 3) «ежевика», чтобы «и» шла непосредственно после «к»;
- 4) «тарантас», чтобы две буквы «а» не шли подряд;
- 5) «каракули», чтобы никакие две гласные не стояли рядом;
- 6) «группоид», чтобы не менялся порядок гласных букв;
- 7) «перемена», чтобы три буквы «е» не шли подряд;
- 8) «столовая», чтобы никакие две гласные не стояли рядом;
- 9) «фигура», чтобы согласные шли в алфавитном порядке;
- 10) «баобаб», чтобы три буквы «б» не шли подряд;
- 11) «тетрадь», чтобы «ь» шла непосредственно после «р»;
- 12) «колокола», чтобы две буквы «о» не шли подряд;
- 13) «симфония», чтобы никакие две согласные не стояли рядом;
- 14) «симметрия», чтобы не менялся порядок гласных букв;
- 15) «кукуруза», чтобы две буквы «у» не шли подряд;
- 16) «алгебра», чтобы «р» шла непосредственно после «а»;
- 17) «автобус», чтобы гласные шли в алфавитном порядке;
- 18) «карандаш», чтобы две буквы «а» не шли подряд;
- 19) «решение», чтобы «е» шла непосредственно после «н»;
- 20) «множество», чтобы согласные шли в алфавитном порядке;
- 21) «апелляция», чтобы каждая буква «я» шла сразу же после «л»;
- 22) «гиппопотам», чтобы гласные шли в алфавитном порядке;
- 23) «баллада», чтобы две буквы «а» не шли подряд;
- 24) «интеллект», чтобы каждая буква «л» шла сразу же после «е»;
- 25) «идиллия», чтобы три буквы «и» не шли подряд;
- 26) «пассажир», чтобы согласные шли в алфавитном порядке;
- 27) «диаграмма», чтобы каждая буква «м» шла сразу же после «а»;
- 28) «оперетта», чтобы не менялся порядок гласных букв;
- 29) «гипербола», чтобы гласные шли в алфавитном порядке;
- 30) «баррикада», чтобы две буквы «а» не шли подряд?

3adaua 9. На одной из кафедр университета работают S человек, среди которых Тчеловек не знают ни одного иностранного языка. А человек знают английский, N — немецкий, F — французский. AN знают английский и немецкий, AF английский и французский, NF – немецкий и французский, ANF знают все три языка. По заданным в таблице условиям восстановить недостающую информацию.

форто		1			1			1	
	S	A	N	F	AN	AF	NF	ANF	T
1)	17	11	6	5	4	3	2	1	?
2)	16	?	9	7	4	4	5	2	3
3)	17	8	10	?	6	4	4	3	5
4)	20	11	8	5	7	3	4	?	7
5.	?	10	7	4	5	4	3	3	5
6)	17	12	9	7	8	?	5	4	3
7)	21	11	?	6	6	5	3	2	5
8)	26	14	11	5	?	4	3	2	6
9)	19	13	9	5	5	3	3	1	?
10)	17	?	9	6	6	4	4	2	2
11)	16	12	9	?	6	4	3	3	1
12)	17	13	6	4	6	3	2	?	3
13)	?	14	9	7	7	5	3	2	1
14)	18	15	8	6	7	?	4	3	2
15)	20	12	?	8	5	5	3	1	4
16)	23	14	8	7	?	4	4	2	5
17)	23	15	8	9	3	4	5	2	?
18)	?	14	7	8	4	5	4	3	1
19)	20	?	9	6	4	3	2	1	2
20)	25	11	14	10	6	4	?	2	3
21)	27	17	13	?	9	6	5	4	4
22)	30	18	14	9	9	5	4	?	4
23)	26	15	13	11	8	?	5	3	2
24)	28	17	?	10	11	5	7	4	4
25)	30	19	16	12	?	8	7	5	3

26)	35	20	16	15	10	8	9	6	?
27)	?	20	17	13	8	5	4	1	5
28)	39	?	17	13	8	5	6	2	4
29)	37	22	16	?	8	5	4	3	2
30)	33	19	18	11	9	?	7	2	3

Задача 10. Решите рекуррентное уравнение с начальными условиями.

1)
$$x_n = x_{n-1} + 2x_{n-2}, x_0 = 1, x_1 = 1.$$

2)
$$x_n = x_{n-1} + 12x_{n-2}, x_0 = 1, x_1 = 1.$$

3)
$$x_n = 2x_{n-1} + 3x_{n-2}, x_0 = 1, x_1 = 1.$$

4)
$$x_n = 2x_{n-1} + 15x_{n-2}, x_0 = 1, x_1 = 2.$$

5)
$$x_n = 3x_{n-1} - 2x_{n-2}, x_0 = 1, x_1 = 2.$$

6)
$$x_n = x_{n-1} + 6x_{n-2}, x_0 = 1, x_1 = 1.$$

7)
$$x_n = x_{n-1} + 20x_{n-2}, x_0 = 1, x_1 = 1.$$

8)
$$x_n = 2x_{n-1} + 8x_{n-2}, x_0 = 1, x_1 = 1.$$

9)
$$x_n = 2x_{n-1} + 24x_{n-2}, x_0 = 1, x_1 = 2.$$

10)
$$x_n = 3x_{n-1} + 4x_{n-2}, x_0 = 1, x_1 = 2.$$

11)
$$x_n = 3x_{n-1} + 10x_{n-2}, x_0 = 1, x_1 = 2.$$

12)
$$x_n = 4x_{n-1} - 3x_{n-2}, x_0 = 1, x_1 = 3.$$

13)
$$x_n = 4x_{n-1} + 12x_{n-2}, x_0 = 1, x_1 = 3.$$

14)
$$x_n = 5x_{n-1} - 6x_{n-2}, x_0 = 1, x_1 = 3.$$

15)
$$x_n = 5x_{n-1} + 6x_{n-2}, x_0 = 2, x_1 = 2.$$

16)
$$x_n = 3x_{n-1} + 18x_{n-2}, x_0 = 1, x_1 = 2.$$

17)
$$x_n = 4x_{n-1} + 5x_{n-2}, x_0 = 1, x_1 = 3.$$

18)
$$x_n = 4x_{n-1} + 21x_{n-2}, x_0 = 1, x_1 = 3.$$

19)
$$x_n = 5x_{n-1} - 4x_{n-2}, x_0 = 1, x_1 = 3.$$

20)
$$x_n = 5x_{n-1} + 14x_{n-2}, x_0 = 2, x_1 = 2.$$

21)
$$x_n = 6x_{n-1} - 8x_{n-2}, x_0 = 2, x_1 = 2.$$

22)
$$x_n = 6x_{n-1} - 5x_{n-2}, x_0 = 2, x_1 = 4.$$

23)
$$x_n = 6x_{n-1} + 7x_{n-2}, x_0 = 2, x_1 = 2.$$

24)
$$x_n = 6x_{n-1} + 16x_{n-2}, x_0 = 2, x_1 = 2.$$

25)
$$x_n = 7x_{n-1} - 12x_{n-2}, x_0 = 2, x_1 = 3.$$

26)
$$x_n = 7x_{n-1} - 10x_{n-2}, x_0 = 2, x_1 = 3.$$

27)
$$x_n = 7x_{n-1} - 6x_{n-2}, x_0 = 2, x_1 = 3.$$

28)
$$x_n = 7x_{n-1} + 8x_{n-2}, x_0 = 2, x_1 = 3.$$

29)
$$x_n = 8x_{n-1} - 15x_{n-2}, x_0 = 2, x_1 = 3.$$

30)
$$x_n = 8x_{n-1} - 12x_{n-2}, x_0 = 2, x_1 = 3.$$

Задача 11. Граф задан матрицей смежности.

- а) Найдите его диаметр, радиус, центр.
- б) Определите, является ли он планарным.
- в) Определите, является ли он самодополнительным.

$$\begin{array}{c} 1) \begin{pmatrix} 0\,0\,0\,0\,0\,0\,0\,1\\ 0\,0\,0\,0\,0\,1\,1\\ 0\,0\,0\,0\,0\,1\,1\\ 0\,0\,0\,0\,1\,1&1\\ 0\,0\,0\,1\,0\,1&1\\ 0\,0\,0\,1\,0\,1&1\\ 0\,1&1\,1&1\,1\,0&1\\ 1\,0\,1\,1&1&1\,1&0&1\\ 1\,0\,0\,0\,1&1&1&1\\ 0\,0\,0\,1&1&1&1\\ 0\,0\,1&1&1&1&1&0\\ 0\,1&1&1&1&1&0&0\\ 1&1&1&1&0&0&0\\ 1&1&1&1&0&0&0\\ 1&1&1&1&0&0&0\\ 1&1&1&1&0&0&0\\ 1&1&1&1&0&0&0\\ 1&1&1&1&0&0&0\\ 1&1&1&1&0&0&0\\ 1&1&1&0&1&1&0\\ 0&0&0&1&1&1&1\\ 0&0&0&0&1&1&1\\ 0&0&0&0&1&1&1\\ 0&0&0&0&1&1&1\\ 0&0&0&0&1&1&1\\ 0&0&0&0&1&1&1\\ 0&0&0&0&1&1&1\\ 0&0&0&1&1&1&1\\ 0&0&1&1&1&0&1\\ 1&1&0&1&1&0&1\\ 0&0&0&1&1&1&1\\ 0&0&0&1&1&1&1\\ 0&0&0&1&1&1&1\\ 0&0&0&1&1&1&1\\ 0&0&0&0&1&1&1\\ 0&0&0&1&1&1&1\\ 0&1&1&1&0&0&0\\ 0&1&1&1&1&0&0\\ 0&1&1&1&1&0&0\\ 0&1&1&1&1&0&0\\ 0&1&1&1&1&0&0\\ 0&1&1&1&1&0&0\\ 0&1&1&1&1&0&0\\ 0&1&1&1&1&0&0\\ 0&1&1&1&1&1&0\\ 0&1&0&1&0&0&1\\ 0&1&1&1&1&1&0\\ 0&1&0&1&0&0&1\\ 0&1&1&1&1&1&0\\ 0&1&0&1&0&0&1\\ 0&1&1&1&1&1&0\\ 0&0&0&0&1&1\\ 0&0&0&0&0&1\\ 0&0&0&1&1&1&1\\ 0&0&0&0&0&1\\ 0&0&0&1&1&1&1\\ 0&0&0&0&0&1\\ 0&0&0&1&1&1&1\\ 0&0&0&0&0&1\\ 0&0&0&1&1&1&1\\ 0&0&0&0&0&1\\ 0&0&1&1&1&1&1\\ 0&0&0&0&0&1\\ 0&0&1&1&1&1&1\\ 0&0&0&0&0&1\\ 0&0&1&1&1&1&1\\ 0&0&0&0&0&1\\ 0&0&1&1&1&1&1\\ 0&0&0&0&0&1\\ 0&0&1&1&1&1&1\\ 0&0&0&0&0&1\\ 0&0&1&1&1&1&1\\ 0&0&0&0&0&1\\ 0&0&1&1&1&1&1\\ 0&0&0&0&0&1\\ 0&0&1&1&1&1&1\\ 0&0&0&0&0&1\\ 0&0&0&1&1&1&1\\ 0&0&0&0&0&1\\ 0&0&0&0&1&1\\ 0&0&0&0&0&1\\ 0&0&0&0&1&1\\ 0&0&0&0&1&1\\ 0&0&0&0&1&1\\ 0&0&0&0&1&1\\ 0&0&0&0&1&1\\ 0&0&0&0&1&1\\ 0&0&0&0&0&1\\ 0&0&0&0&1&1\\ 0&0&0&0&1&1\\ 0&0&0&0&1&1\\ 0&0&0&0&1&1\\ 0&0&0&0&1&1\\ 0&0&0&0&1&1\\ 0&0&0&0&1$$

13)	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$	$14) \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$	15)	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$
16)	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$	$17) \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$	18)	$\begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$
19)	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$	$20) \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$	21)	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \end{pmatrix}$
22)	$\begin{pmatrix} 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \end{pmatrix}$	$23) \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$	24)	$\begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$

$$25) \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0$$

Ответы

- **1.1**. Верны 2, 3, 8, 9, 10, 12.
- **1.2.** 1) 4; 2) 5; 3) 0; 4)1; 5) 2; 6) 1.
- **1.3.** Содержат 1, 4, 5, 7, 8.
- **1.4.** $A \cup B = \{2,3,4,5,6,8\}, CD = \{4\}, B \otimes C = \{2,5,7\}, \overline{A}(\overline{BD}) = \{2,7\}, (A B) \cup (C D) = \{3,5,6,7,8|, \overline{A} \cup \overline{B} \cup \overline{C} = \{4,6\}, 2^A \cap 2^B = \{\emptyset, \{4\}, \{6\}, \{4,6\}\}, 2^D 2^B = \{1, \{1,2\}, \{1,4\}, \{1,2,4\}\}.$
- **1.5.** $A \cup B = \{2,4,6,8\}, CD = \{3,5\}, A \otimes B = \{2,6\}, A(B \cup C \cup D) = \{2,4,8\}, C \otimes D = \{1,2,7\}, (A B) \cup (C D) = \{2,6,7\}, \overline{A} \cup \overline{B} = \{4,8\}, (C A) \otimes D = \{1,7\}, 2^A \cap 2^B = \{\emptyset, \{4\}, \{8\}, \{4,8\}\}, 2^D 2^C = \{\{1\}, \{1,3\}, \{1,5\}, \{1,3,5\}\}.$
- **1.6.** 11, 12.
- **1.7.** 1) $M_2 \cap M_3$; 2) $\overline{M_2 \cup M_3 \cup M_5}$; 3) $M_2 \cap M_5 M_3$; 4) $45 \in M_3 \cap M_5$; 5) $42 \in M_2 \cap M_3 M_5$; 6) $\{8,9,10\} \subseteq (M_2 \cup M_3 \cup M_5) M_2 \cap M_3$.
- **1.9.** Только 3 и 5.
- **1.11.** 1) $A \cup B = A \otimes B \otimes AB$; 2) $A \cap B = A \otimes B \otimes (A \cup B)$; 3) $A \cap B = A (A \otimes B)$; $A \cup B = A \otimes (B A)$.
- **1.13.** 124.
- **1.14.** 1 и 4.
- **1.15.** 1-c, 2-c, 3-d, 4-e, 5-c, 6-a, 7-b.
- **1.16.** 1) Нет; 2) нет; 3) да.
- **1.17.** 1) $B \subseteq X \subseteq B \cup \bar{A}$ при условии $B \subseteq A$ (если условие не выполняется, то уравнение не имеет решения); 2) $\bar{A}B \subseteq X \subseteq B$ при условии $A \subseteq B$; 3) $X = A \otimes B$; 4) $A\bar{B} \subseteq X \subseteq \bar{B}$ при условии $B \subseteq A$; 5) $A \subseteq X \subseteq B$ при условии $A \subseteq B$; 6) $A \subseteq X \subseteq A \cup B$ при условии $A \subseteq \bar{B}$; 7) $A \subseteq X \subseteq B$ при условии $A \subseteq B$; 8) $\bar{A}B \subseteq X \subseteq U$; 9) $X = \emptyset$ при условии $B \subseteq A$; 10) $X = \bar{A}\bar{B}$ при условии $B \subseteq A$.
- **1.18.** 11.
- **1.19.** 1, 2 и 4.
- **1.20.** 1) $(B_1 \cup B_2 \cup B_3)(C_1 \cup C_2 \cup C_5); 2) (\bigcup_{i=1}^5 B_i)(\bigcup_{j=1}^7 C_j) = \bigcup_{i=1}^5 \bigcup_{j=1}^7 B_i C_j;$ 3) $\bigcup_{i \in A} B_i C_i; 4) \bigcup_{i=1}^8 B_i (\bigcup_{j=1}^i C_j).$
- **2.1.** Рефлексивно только R_3 , симметричны R_1 , R_3 , R_5 , антисимметричны R_2 и R_4 , транзитивны R_3 и R_4 .
- **2.2.** Верны 3, 4, 5, 7.
- **2.3.** 3, 7, 8.
- **2.4.** R_1, R_2, R_4 .
- **2.5.** R_1, R_3, R_4, R_6 .
- **2.6.** 1, 2, 5, 15.

- **2.7.** 4, 6, 8.
- **2.8.** 1, 2, 5, 7.
- **2.9.** 1) минимальные 2, 3, максимальные 36, 24, наименьших и наибольших нет; 2) минимальный и наименьший 1, максимальный и наибольший 60; 3) минимальные 1,2, максимальные 7, 8, наименьших и наибольших нет.
- **2.10.** В A_1 минимальных нет, максимальный (3,4). В A_2 минимальны все, лежащие на прямой x+y=2, максимальны на прямой x+y=4. В A_3 минимальные (-2,0), (-1,-1), (0,-2), максимальные (2,0), (1,1), (0,2).
- **2.11.** Эквивалентности: R_3 и R_4 , порядки: R_2 и R_3 .
- **2.12.** Всего 19, линейных 6.
- 2.13. Функциональные 2, 4, 5, 6, инъективные 5 и 6, сюръективные 4 и 6.
- **2.14.** 2 инъекция; 4 сюръекция; 3 и 5 биекции.
- **3.1.** 1) $n_1 + n_2 + n_3$; 2) $n_1 n_2 + n_1 n_3 + n_2 n_3$; 3) $n_1 n_2 n_3$.
- **3.2.** 1) 2^n ; 2) 3^n .
- **3.3.** 160000.
- **3.4.** 2^{mn} .
- **3.5.** Всего 2^{n^2} , рефлексивных 2^{n^2-n} , симметричных $2^{\frac{n(n+1)}{2}}$, антисимметричных $2^n \cdot 3^{\frac{n(n-1)}{2}}$.
- **3.6.** 1) 2^k ; 2) 2^{n-k} ; 3) 2^{n-k} ; 4) $2^n 2^{n-k}$; 5) $k2^{n-k}$; 6) $2^n 2^{n-k} k2^{n-k}$.
- **3.7.** 1) 2^{n-m} ; 2) 2^{k+l-m} ; 3) 2^{m-l} ; 4) 2^{2m-k-l} .
- **3.8.** 7, 5, 12, 24, 32.
- **3.9.** $(k_1 + 1)(k_2 + 1) \dots (k_s + 1)$.
- **3.10.** $q(q-1)^{n-1}$.
- **3.11.** 1) 3136; 2) 3612; 3) 3472.
- **3.12.** 8!=40320.
- **3.13.** *n*!.
- **3.14.** 1) $\frac{n!}{2}$; 2) (n-1)!; 3) n! 2(n-1)! = (n-1)! (n-2); 4) 2(n-4)(n-2)!.
- **3.15.** 1) $9 \cdot 9 \cdot 8 \cdot 7 \cdot 6 = 27216$; 2) $9 \cdot 10^4 27216 = 62784$; 3) $9 \cdot 8 \cdot 8 \cdot 7 \cdot 6 = 24192$; 4) $8 \cdot 8 \cdot 8 \cdot 7 \cdot 6 = 21504$; 5) $9 \cdot 9 \cdot 10 \cdot 10 = 8100$; 6) $9 \cdot 10 \cdot 10 \cdot 5 = 45000$.
- **3.16.** $P(2^n, m) = 2^n(2^n 1)(2^n 2) \dots (2^n m + 1).$
- **3.17.** 1) k^n ; 2) $P(k,n) = k(k-1) \dots (k-n+1)$.
- **3.18.** Всего m^n , инъекций $m(m-1) \dots (m-n+1)$, биекций (при m=n) n!.
- **3.19.** 36.
- **3.20.** 1) $10 \cdot 9 \cdot 8 = 720$; 2) $\binom{10}{3} = 120$.

3.21. 1)
$$\binom{n_1}{2} + \binom{n_2}{2} + \binom{n_3}{2}$$
; 2) $n_1 \binom{n_2}{2} \binom{n_3}{3}$.

3.22.
$$\binom{n}{3}$$
.

3.23. 1)
$$n {m \choose 2} + m {n \choose 2}$$
; 2) ${n \choose 2} {m \choose 2}$.

3.24. 1)
$$\binom{k}{2} 2^{n-k}$$
; 2) $\binom{k}{3} \binom{n-k}{4}$; 3) n .

3.29. 1)
$$4(n-4)$$
; 2) $4n(n-1)$; 3) $24n(n-1)$; 4) $4\binom{n}{5}$; 5) $1024(n-4)$; 6) $32n(n-1)(n-2)$; 7) $64n(n-1)(n-2)(n-3)$.

3.30.
$$\binom{10}{3}\binom{7}{3}\binom{7}{5} = 88200.$$

3.31.
$$\binom{n+1}{k}$$
.

3.32.
$$\binom{n+1}{m} n! \, m!$$
.

3.33. 1) 8: 2)
$$\binom{9}{2}$$
 = 36; 3) $\binom{10}{3}$ = 120; 4) $\binom{11}{4}$ = 330

3.34. 1)
$$\binom{m+n}{n}$$
; 2)2^m.

3.35.
$$\binom{m}{n}$$
.

3.36.
$$\binom{2^n}{m}$$

3.38. Диагоналей
$$\frac{n(n-3)}{2}$$
, точек пересечения $\binom{n}{4}$.

3.39. 1)
$$3^n$$
; 2) 3^n ; 3) $\binom{n}{k} 3^{n-k}$; 4) $\binom{n}{m} \binom{m}{k} 2^{m-k}$; 5) $\binom{n}{k} \binom{n-k}{k} 2^{n-2k}$; 6) $n2^n$.

3.40.
$$\binom{11}{9} = 55$$
.

3.41. 1)
$$\binom{9}{5}$$
 = 126; 2) $\binom{10}{5}$ = 252; 3) $\binom{13}{5}$ = 1287.

3.42.
$$\binom{m+n-1}{n}$$
.

3.43. 1)
$$\binom{n-1}{k-1}$$
; 2) $\binom{n+k-1}{n}$.

3.44.
$$\binom{2^n + m - 1}{m}$$

3.45. 1)
$$\binom{n+k-1}{n}$$
; 2) $\binom{k}{n}$ 3) $\binom{n-1}{k-1}$

3.46.
$$\binom{7}{3.2.1.1} = 420.$$

3.47. 1)
$$\binom{7}{1,2,4} = 105$$
; 2) $\binom{7}{0,3,4} + \binom{7}{1,2,4} + \binom{7}{1,3,3} = 280$.

3.48.
$$\binom{9}{2,2,5} = 756.$$

3.49.
$$\frac{1}{2} \binom{10}{5} = 126.$$

3.50. 1)
$$\frac{1}{5!} {10 \choose 2,2.2.2.2} = 945$$
; 2) $\frac{(3n)!}{n!6^n}$.

3.51.
$$\frac{(kn)!}{n!(k!)^n}$$
.

3.53. 1a)
$$x_n = 2 \cdot 3^n + 1$$
; 16) $x_n = 1$; 1b) $x_n = -4 \cdot 3^n + 1$; 2) $x_n = 2 \cdot 5^n + (-3)^n$; 3) $\frac{1}{5}4^n - \frac{1}{5}(-1)^n$; 4) $3^n(2-n)$.

3.54. 1)
$$n^n$$
; 2) $n!$; 3) B_n ; 4) 1; 5) $\binom{2n-1}{n}$; 6) 1.

3.59. 1)
$$n^4$$
; 2) $4 \binom{n}{2} n^3$; 3) $4 \binom{n}{3} n^3 + 6 \binom{n}{2}^2 n^2$; 4) $\binom{4n}{10} - 4 \binom{3n}{10} + 6 \binom{2n}{10} - 4 \binom{n}{10}$.

3.60.
$$\binom{5n}{k} - 5\binom{4n}{k} + 10\binom{3n}{k} - 10\binom{2n}{k} + 5\binom{n}{k}$$
.

3.61.
$$\sum_{i=0}^{k} (-1)^{i} {k \choose i} (k-i)^{n}$$
.

3.62. 1)
$$\binom{6}{2,1,1,1,1} = 360$$
; 2) $4\binom{9}{4} = 504$; 3) $\binom{6}{2,2,1,1}\binom{9}{3} = 15120$; 4) $\binom{9}{3,2,2,1,1} - 7\binom{6}{2,2,1,1} = 13860$.

4.1. 1)
$$2^{\frac{n(n+1)}{2}}$$
; 2) 2^{n^2} ; 3) $2^{n(n-1)}$.
4.2. 1) $3^{\frac{n(n-1)}{2}}$; 2) $2^{\frac{n(n-1)}{2}}$.

4.2. 1)
$$3^{\frac{n(n-1)}{2}}$$
; 2) $2^{\frac{n(n-1)}{2}}$.

4.3. 1)
$$\frac{n(n-1)}{2}$$
; 2) $\binom{n}{2}$.

4.4.
$$\frac{n(n-1)}{2}$$
, pq , $k2^{k-1}$.

4.8.
$$k! \frac{k(k-1)}{4}$$
.

4.10. 1) 3; 2) 15; 3) 0, если
$$n$$
 нечетное; $\frac{n!}{\frac{n}{2^2}(\frac{n}{2})!}$, если n четное.

4.11. 1) при четных
$$n \ge 4$$
; 2) при любых $n \ge 5$.

- **4.12.** 1) $2^{\frac{(n-k)(n-k-1)}{2}}$; 2) $\sum_{k=0}^{n} (-1)^k \binom{n}{k} 2^{\frac{(n-k)(n-k-1)}{2}}$.
- **4.13.** {1,2,15,18}, {3,6,8,9,11,14}, {4,13}, {5,7,17}, {10,12,16}.
- **4.14.** 1) 11 графов; 2) 5 графов; 3) 2 графа; 4) 3 графа.
- **4.15.** {1,3,4}, {2,5,6}.
- 4.16. Все четыре графа между собой изоморфны.
- **4.17.** {1,2,4,6,7}, {3,8,9}, {5,10}.
- **4.18.** {1,2}, {3}, {4}, {5,7}, {6}, {8}, {9}, {10}.
- **4.19.** Граф из одной вершины, один граф с 4 вершинами (P_4) , два графа с 5 вершинами.
- **4.20.** 5 графов.
- **4.21.** 1) 210; 2) 840; 3) 280.
- **4.22.** 1) 63; 2) 252; 3) 112.
- **4.23.** 1) 2520; 2) 480.
- **4.24.** *k*!.
- **4.25.** $\operatorname{diam}(P_n) = n-1$, $\operatorname{rad}(P_n) = \left\lfloor \frac{n}{2} \right\rfloor$, $\operatorname{diam}(C_n) = \operatorname{rad}(C_n) = \left\lfloor \frac{n}{2} \right\rfloor$, $\operatorname{diam}(Q_k) = \operatorname{rad}(Q_k) = k$, $\operatorname{diam}(K_{p,q}) = 2$, если p > 1 или q > 1, $\operatorname{rad}(K_{p,q}) = 2$, если p > 1 и q > 1, $\operatorname{rad}(K_{1,q}) = 1$.
- **4.26.** 1) diam = 4, rad = 3, центр = $\{1,2,3,4\}$; 2) diam = 3, rad = 2, центр = $\{2,7\}$; 3) diam = rad = 3, все вершины центральные.
- **4.27.** 1) diam = 2, rad = 1, $\mu = \{4\}$; 2) diam = 4, rad = 2, $\mu = \{2,6\}$; 3) diam = 3, rad = 2, $\mu = \{1,2,3,5,6,7\}$.
- **4.28.** Не существует графа с 4 центральными вершинами, остальные варианты реализуются.
- **4.29.** n-1.
- 4.30. Нет.
- **4.31.** Таких графов два: K_1 и P_4 .
- **4.32.** $\binom{n-1}{2}$.
- **4.33.** 1) В графах из 4.5, 4.7 и 4.27, п. 2; 2) в графах из 4.6 и 4.27, п.3.
- **4.34.** Эйлеров путь в графе $K_{p,q}$ имеется тогда и только тогда, когда оба числа p и q четные. Эйлеров путь есть, если одно из этих чисел нечетно, а другое равно 2. Эйлеров цикл в Q_k есть при четных k.
- **4.35.** 4.
- **4.36.** Для одной, двух и трех вершин по одному дереву, для четырех 2, для пяти 3, для шести 6.
- **4.37.** 2 дерева.
- **4.39.** n k.
- **4.40.** *n*.
- **4.41.** $\frac{nk-2n+2}{k-1}$.
- **4.42.** 82.
- **4.43.** n^{n-1} .

- **4.46.** 1, 2, 4, 6, 7.
- **4.47.** 1 и 3.
- **4.48.** 3.
- **4.49.** $\frac{n^2-1}{4}$, если n нечетное; $\frac{n^2}{4}$, если n четное.
- **4.50.** 750.
- **4.51.** 1, 3, 5, 9, 11.
- **4.52.** Да.
- **4.53.** 3.
- **4.54.** 1) Нет; 2) да.
- **4.55.** 8.

Список литературы

- 1. Алексеев В.Е. Дискретная математика [Электронный ресурс]: учебное пособие. Нижний Новгород, ННГУ, 2017. 139 с. Режим доступа: http://www.unn.ru/books/resources.html, per. номер 1688.17.06.
- 2. Алексеев В.Е, Захарова Д.В. Теория графов. Учебное пособие. Нижний Новгород, ННГУ, 2018. 118 с.
- 3. Алексеев В.Е., Киселева Л.Г., Смирнова Т.Г. Сборник задач по дискретной математике [Электронный ресурс]. Нижний Новгород: ННГУ, 2012. 80 с. Режим доступа: http://www.unn.ru/books/resources.html, per. номер 487.12.08.
- 4. Андерсон Д.А. Дискретная математика и комбинаторика. Пер. с англ. Издательский дом «Вильямс», 2004. 960 с.
- 5. Виленкин Н.Я, Виленкин А.Н., Виленкин П.А. Комбинаторика. М.: ФИМА, МЦНМО, 2010. 400 с.
- 6. Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2009. 416 с. Режим доступа: http://www.studentlibrary.ru/book/ISBN9785922104777.html.
- 7. Жильцова Л.П., Смирнова Т.Г. Основы теории графов и теории кодирования в примерах и задачах [Электронный ресурс]: учебное пособие. Нижний Новгород: ННГУ, 2008. 64 с. Режим доступа: http://www.unn.ru/books/resources.html, per. номер 1437.17.06.
- 8. Редькин Н.П. Дискретная математика. М.: Физматлит, 2009. 264 с. Режим доступа: http://www.studentlibrary.ru/book/ISBN9785922110938.html.
- 9. Яблонский С.В. Введение в дискретную математику.— М.: Наука, 2000. 384 с.

СБОРНИК ЗАДАЧ ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ

ЧАСТЬ 1

Авторы:

Владимир Евгеньевич **Алексеев** Дарья Владимировна **Захарова** Дмитрий Борисович **Мокеев** и др.

Практикум

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» 603950, Нижний Новгород, пр. Гагарина, 23.

Подписано в печать . Формат 60×84 1/16. Бумага офсетная. Печать офсетная. Гарнитура Таймс.

Усл. печ. л. Уч.-изд. л. Заказ № Тираж 300 экз.

Отпечатано в типографии Нижегородского госуниверситета им. Н.И. Лобачевского. 603600, г. Нижний Новгород, ул. Большая Покровская, 37.