Bubble Sort x Insertion Sort

Modifique os algoritmos de ordenação bolha e inserção para contar quantas comparações são feitas durante a ordenação. Teste a sua modificação e conte quantas comparações são feitas para vetores de tamanho 10, 50, 100, 500, 1000, 5000, 10000, 50000 e 100000 números gerados aleatoriamente. Gere um gráfico tamanho do vetor x número de comparações. Qual dos dois algoritmos de ordenação é mais eficiente? Qual tem melhor desempenho quando o vetor está ordenado?

Ordenação por Bubble Sort:

Bubble Sort	
Tamanho do vetor	Comparações
10	15
50	601
100	2.459
1000	253.308
5000	6.154.146
10000	24.754.966
50000	622.130.165
100000	2.498.220.682

Gráfico Tamanho x Comparações:

Ordenação por Insertion Sort:

Insertion Sort	
Tamanho do vetor	Comparações
10	22
50	549
100	2.459
1000	259.221
5000	6.331.983
10000	24.835.423
50000	625.719.157
100000	2.502.264.510

Gráfico:

Conclusão:

Ambos os métodos de ordenação possuem uma eficiência bem parecida, boa para casos de vetores pequenos, mas ruim para vetores de grandes tamanhos.

No melhor caso possuem complexidade O(n), médio $O(n^2)$ e no pior caso $O(n^2)$.