VA	ln(x)	
Studio di fu	x	
-intervalli di dominio -f(x)=f(-x)?	sin(x)	
-f(?)=0, f(0)=?, intervalli		cos(x)
-limiti agli estremi degli ii -derivata ¹ f'(x) (max, mir	n, monotonia)	tan(x)
- derivata ² f"(x) (convess - disegno del grafico	SO	
(a+b)²	a²+b²+2ab (Tartaglia)	$\sum_{i=1}^{n} c = n \cdot i$
(a-b) ²	a²+b²-2ab	<i>i</i> =1
X ⁻ⁿ	1/xn	Propi n
Xm/n	$\sqrt[n]{x^m}$	$\sum_{i=1}^{n} (a_i + b)$
$ax^2 + bx + c = 0$		
$\min(ax^2 + bx + c)$	-b/(2a) (con a>0)	Proprietà distributiva
$max(ax^2 + bx + c)$	-b/(2a) (con a<0)	"a" indipendent
a≥b	-a ≤ -b	"a" indipendent
a·x ≥ b	a>0 ⇒ x ≥ b/a	$\sum_{i=1}^{\infty} (\sum_{j=1}^{\infty} a_i b_j)^{-1}$
	a<0 ⇒ x ≤ b/a	181
x/a ≥ b	a>0 ⇒ x ≥ b·a	IN
·	a<0 ⇒ x ≤ b·a	$\int [f(x)+g(x)] d_x$
f(x) CONDIZIO	NI DI ESISTENZA	∫[c·f(x)] d _x
1/x	x≠0	$\int [a \cdot f(x) + b \cdot g(x)] dx$
log _n (x)	x>0	$\int [f'(g(x)) \cdot g'(x)] d_x$
log _x (a)	x>0 e x≠1	$\int f'(x) d_x$
$x^{1/2a} = \sqrt[2a]{x}$ (rad.pari)	x≥0	Ja d _x
arcsin(x)	-1≤x≤1	∫(1/x) d _x
arccos(x)	-1≤x≤1	$\int [f'(x)/f(x)] d_x$
f(x)g(x)	f(x)>0	Jxn dx
SEI	RIF	∫sin(x) d _x
OLI	n	∫cos(x) d _x
Gauss (1+2++n)	$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$	∫e× d _x ∫a× d _x
serie di Taylor	$\sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x$	
PROPRIETÀ	DEI LIMITI	
lim c · f(x)	c · lim f(x)	
$\lim (f(x) + g(x))$	$\lim f(x) + \lim g(x)$	
$\lim (f(x) \cdot g(x))$	lim f(x) · lim g(x)	
lim (f(x) / g(x))	lim f(x) / lim g(x)	
lim f(g(x))	g(lim f(x))	
f(x) DERIV	ATE f'(x)	
c·f(x)	c·f'(x)	
f(x)+g(x)	f'(x)+g'(x)	
f(x)·g(x)	$f'(x)\cdot g(x)+f(x)\cdot g'(x)$	
$\frac{f(x)}{g(x)}$	$\frac{f'(x)\cdot g(x)-f(x)\cdot g'(x)}{(g'(x))^2}$	
f(g(x))	f'(g(x))·g'(x)	
C	0	
x^r (con $r \in \mathbb{R}$)	r ⋅ X (r −1)	
1/x=x ⁻¹	-x ⁻² =-1/x ²	
ax	a×·In(a)	
-	e ^x	
e ^x		
log _a (x)	1/(x·ln(a))	

ln(x)	1/x	
x	x /x	
sin(x)	cos(x)	
cos(x)	-sin(x)	
tan(x)	1/cos²(x)	
SOMMA	ATORIE	
n		
$\sum_{i=1}^{n} c = n \cdot c$	con c costante	
	esociativa	
Proprietà a	n n	
$\sum_{i=1}^{n} \left(a_i + b_i \right) =$	$\sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$	
n	n	
Proprietà distributiva $\sum_{i=1}^{n} a_i$	$c \cdot f(i) = c \cdot \sum_{i=1}^{n} f(i)$	
<i>i</i> =1	<i>i</i> =1	
"a" indipendente da	"j" e "b" indip. da "i"	
$\sum_{i=1}^{n} (\sum_{j=1}^{m} a_i b_j) =$	$\sum_{i=1}^{n} a_i \cdot \sum_{i=1}^{n} b_i$	
i=1 $j=1$	i=1 $j=1$	
INTEG	RALI	
$\int [f(x)+g(x)] d_x$	$\int f(x) + \int g(x)$	
$\int [c \cdot f(x)] d_x$	c·∫f(x)	
$\int [a \cdot f(x) + b \cdot g(x)] d_x$	$a \cdot \int f(x) + b \cdot \int g(x)$	
$\int [f'(g(x))\cdot g'(x)] \ d_x$	f(g(x))	
$\int f'(x) d_x$	f(x)+c	
∫a d _x	a · x + c	
$\int (1/x) d_x$	In(x)+c	
$\int [f'(x)/f(x)] d_x$	In(f(x))+c	
∫xn d _x	x ⁿ⁺¹ /(n+1) + c	
∫sin(x) d _x	-cos(x) + c	
∫cos(x) d _x	sin(x) + 1	
∫e ^x d _x	e ^x + c	
∫a× d _x	a×/ln(x) + c	

COMBINATORIA							
Prodotto cartesiano	$A \times B$	insieme delle coppie ordinate di elementi presi da due insiemi	$ A \times B = A \cdot B $				
Sequenza o lista	A^n	Elenco ordinato di "n" elementi anche ripetuti presi da un insieme, è come un prodotto cartesiano di un insieme per se stesso n volte	$ A^n = A ^n$				
Insieme delle parti	P(A)	Insieme di tutti i possibili sottoinsiemi dell'insieme A	$ P(A) = 2^{ A }$				
Prodotto condizionato	$A \times B_{(n,m)}$	Sottoinsieme del prodotto cartesiano in cui si selezionano n elementi dal primo e sulla base di quelli m elementi del secondo	$\left A \times B_{(n,m)} \right = n \cdot m$				
Fattoriale discendente (disposizione)	$(n)_k$	prodotto di "k" numeri successivi da "n" a disposizioni (lista ordinata di un sottoinsieme di "k" elementi di un un insieme di "n" elementi)	<u>n!</u> k!				
Permutazione	disposizione (lista ordinata) di tutti gli elementi di un insieme tutte le possibili combinazioni di elementi non ripetuti		n!				
Coefficiente binomiale	$\binom{n}{k}$	Numero dei partizionamenti in 2 blocchi di cardinalità "k" e "n-k" di un insieme di "n" elementi	$\frac{n!}{k!(n-k)!} \text{ (se k>n \Rightarrow \binom{n}{k} = 0)}$				
coefficiente trinomiale	$\binom{n}{a\ b\ c}$	Numero delle possibili partizioni di un insieme di "n" elementi in 3 sottoinsiemi di cardinalità "a", "b", "c" con a+b+c=n	$\frac{n!}{a!b!c!}$				
Anagramma		permutazione (lista ordinata) di un elenco di elementi anche ripetuti	(#a1+#a2++#an)! #a1!·#a2!· ·#an!				
binomiali, e		calcolo ricorsivo dei coefficienti binomiali, e rappresentazione equivalente nel triangolo di Tartaglia $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\binom{n}{m} = \binom{n-1}{m-1} + \binom{n-1}{m}$				
Numeri di fibonacci	F(n)	$F(0)=1, F(1)=2 \text{ e } F(n)=F(n-1)+F(n-2) \\ F(n)=\binom{n+1}{0}+\binom{n}{1}+\binom{n-1}{2}+\ldots+\binom{1}{n}$ numero di sequenze binarie di lunghezza "n" in cui non ci sono due 1 consecutivi	$F(n) = \sum_{k=0}^{n} {n-k+1 \choose k}$				
		Calcolo della cardinalità dell'unione di due insiemi	A∪B = A + B - A∩B				
Principio di inclusione esclusione		cardinalità dell'unione di insiemi $\left A_1 \cup A_2 \cup A_3 \cup A_n\right = \sup_{\emptyset \neq \emptyset} \left A_1 \cup A_2 \cup A_3 \cup A_n\right = \sup_{\emptyset \neq \emptyset} \left A_1 \cup A_2 \cup A_3 \cup A_n\right = \sup_{\emptyset \neq \emptyset} \left A_1 \cup A_2 \cup A_3 \cup A_n\right = \sup_{\emptyset \neq \emptyset} \left A_1 \cup A_2 \cup A_3 \cup A_n\right = \sup_{\emptyset \neq \emptyset} \left A_1 \cup A_2 \cup A_3 \cup A_n\right = \sup_{\emptyset \neq \emptyset} \left A_1 \cup A_2 \cup A_3 \cup A_n\right = \sup_{\emptyset \neq \emptyset} \left A_1 \cup A_2 \cup A_3 \cup A_n\right = \sup_{\emptyset \neq \emptyset} \left A_1 \cup A_2 \cup A_3 \cup A_n \cup$	$\sum_{I \subseteq \{1,2,\dots,n\}} (-1)^{ I +1} \left \bigcap_{i \subseteq I} A_i \right $				
			$\sum_{I \subseteq \{1, 2, 3,, n\}} (-1)^{ I } \left \bigcap_{i \subseteq I} A_i a \right $				
Scombussolamento Permutazione in cui nessun elei proprio posto		Permutazione in cui nessun elemento rimane al proprio posto scambio di coppie, rimescolamento di elementi in modo che nessun elemento rimanga al proprio posto	$\sum_{i=0}^{n-2} (-1)^{(n-i)} (n)_i$				
Numero di Bel	Bn	numero di partizioni di un insieme di n elementi	$Bn = \sum_{h=0}^{n-1} {n-1 \choose h} B_{(n-h)}$				
Triangolo di Bell	$B_{(n,m)}$	Serve per calcolare facilmente i numeri di bell, perché $Bn = B_{(0,n)} = B_{(n-1,n-1)}$ Con c e r indici in base zero di colonna e riga del triangolo di bell Per calcolare il Bell si fa il numero in alto a sinistra + quello a sinistra (per la colonna a sinistra si riporta direttamente l'ultimo numero)	$B_{(n,m)} = B_{(n-1,m)} + B_{(n-1,m-1)}$ $con B_{(0,0)} = 1 e$ $B_{(0,m)} = B_{(m-1,m-1)}$				
Numero di Stirling	$S_{n,k}$	Numero di partizioni possibili in k sottoinsiemi di un insieme di n elementi $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$S_{n,k} = k \cdot S_{n-1,k} + S_{n-1,k-1}$ $con S_{n,n} = S_{1,n} = 1$				

Per calcolare il Stirling si fa il numero in alto * il numero della colonna + il numero a sinistra

STATISTICA								
Media campionaria	\overline{X}	valore medio di un elenco di n car	atteri X _i			$\overline{X} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$		
Linearità della media		La media di due caratteri legati da un'equazione di primo grado è legata stessa equazione			dalla	dalla $y = a \cdot x + b \Rightarrow \overline{y} = a \cdot \overline{x} + b$		
Media ponderata	$\overline{X_w}$	Media di valori con peso (importar	$\overline{x_w} = \frac{x_1 \cdot w_1 + x_2 \cdot w_2 + \dots + x_n \cdot w_n}{w_1 + w_2 + \dots + w_n}$					
Varianza	σ_x^2	Importante indice di dispersione, r	Importante indice di dispersione, rappresenta il grado di "sparpagliament					
Deviazione standard	σ_x	Radice quadrata della varianza	Radice quadrata della varianza					
Covarianza campiona	aria $\sigma_{x,y}$	Indica il grado di dipendenza recip	oroca di due ca	ratteri		$\sigma_{x,y} = \overline{x \cdot y} - \overline{x} \cdot \overline{y}$		
Indice di correlazione			Indica il grado di dipendenza reciproca di due caratteri, ed è indipendente dall'unità di misura scelta					
Retta ai minimi quad	rati	Retta che rappresenta al meglio l di due dati campionari	'andamento de	lla correlazione lineare	$y = \frac{\overline{x \cdot y} - \overline{x} \cdot \overline{y}}{(\overline{x^2} - \overline{x}^2)} \cdot x + \overline{y} - a\overline{x}$			
Media geometrica		percentuale di incremento med successivi. Attenzione se anche s						
Media armonica		velocità media dati i tempi di perce	orrenza di uno	stesso tratto		$1/\left(\overline{1/x}\right)$		
		PRO	DBABILITÀ			· · · · · · · · · · · · · · · · · · ·		
Probabilità totale		Calcolo della probabilità di un e intersezione con gli altri eventi che p			P(B)	= $P(B A_1)\cdot P(A_1) + P(B A_2)\cdot P(A_2) + \dots + P(B A_n)\cdot P(A_n)$		
Probabilità unite	P(AUB)	Probabilità che avvenga almeno uno	di due eventi		1	B) = P(A)+P(B)-P(A∩B) (inclescl.)		
Prob. congiunte	P(A∩B)	probabilità che avvengano contempo	oraneamente d	ue eventi	$P(A \cap B) = P(A) + P(B) - P(A \cup B)$ $= P(B A) \cdot P(A) \text{ (Bayes)}$ $= P(A B) \cdot P(B) \text{ (Bayes)}$			
Prob. condizionale	P(B A)	Probabilità che avvenga l'evento B s	apendo che è	accade l'evento A	$P(B A) = P(A \cap B)/P(A)$ $= P(A B) \cdot P(B)/P(A) \text{ (Bayes)}$			
Formula di Bayes		Relazione fra le probabilità condizior	nali e le probab	ilità di due eventi	$P(B A) = P(A B) \cdot P(B)/P(A)$			
Probabilità condizion	ale di eventi IND	· .	<u>'</u>		$P(B A) \cdot P(A) = P(A B) \cdot P(B)$ $P(B A) = P(B)$			
Probabilità congiunta	ı di eventi INDIP	ENDENTI			$P(A \cap B) = P(A) \cdot P(B)$			
Verifica se due event	i NON SONO IN	IDIPENDENTI			P(B A	$P(B A)\neq P(B)$ oppure $P(A\cap B)\neq P(A)\cdot P(B)$		
		ri di tutte le densità multidimensionali alcolare la densità marginale e varian				$(k) = \sum_{k2,k3kn} d_X(k, k2, k3kn)$		
densità marginale	Caso di densità	congiunta bidimensionale		$d_X(h) = \sum_k d_{X,k}$	$\gamma(h,k)$	$d_Y(k) = \sum_h d_{X,Y}(h,k)$		
densità di trasformazioni di due variabili $Z = \phi(X,Y)$			$Z = \phi(X, Y)$	$d_Z(k) = \sum_{s, t: \phi(s,t)=k} d_{X, Y}(s, t)$				
Teorema sul valore a	tteso di una tras	formazione di 2 variabili aleatorie (an	che non indipe	ndenti)	$E[Z] = \sum_{(h,k)} \left(\varphi(h, k) \cdot d_{h,k}(h, k) \right)$			
, , ,				$\cdot X$) = $n^2 \cdot Var(X)$ $Var(X)$		$\frac{(h,k)}{Var(X_1) + Var(X_2) + 2 \cdot Cov(X_1, X_2)}$		
Valera ettesa della se			vi –[i] vai(II	· · · · · · · · · · · · · · · · · · ·				
, , ,					+ X_n] = $E[X_1] + E[X_2] + + E[X_n]$			
					$\pm X_n) = Var(X_1) + Var(X_2) + + Var(X_n)$			
				$\cdot X_n$] = E[X ₁] \cdot E[X ₂] \cdot \cdot E[X _n]				
Somma di variabili di Poisson indipendenti minimo di due variabili Z = min(X, Y)				$Z\sim P(\lambda 1 + \lambda 2) = X\sim P(\lambda 1) + Y\sim P(\lambda 2)$				
massimo di due variabili $Z = max(X, Y)$				$F_z = 1 - \left[(1 - F_X(k)) \cdot (1 - F_Y(k)) \right]$ $F_z = F_X(k) \cdot F_Y(k)$				
teorema del limite centrale per variabili	Sn~N(n·μ,n·σ²)	dato un numero sufficientemente grande (n≥20) di variabili <u>indipendenti</u> con identica densità e valore atteso\media, è possibile approssimare la			$X_1+X_2++X_n=Sn\sim N(n\cdot \mu, n\cdot \sigma^2)$ $con \sigma^2=Var(X) e \mu=E[X]$			
continue		loro somma ad una variabile normale Si considerano i valori come uniforme su un min(Sn corretto) = min						
del limite e variabili discrete intervallo ±0.5 del suo valore Disuguaglianza di Chebyshev)		P(Sn corretto≥t) = P(S	⊓≤K-U.5)	$P(Sn corretto \le t) = P(Sn \le k+0.5)$ $P(X-E[X] > \epsilon) \le Var(X)/\epsilon^2$				
	· · · · · · · · · · · · · · · · · · ·							
Legge dei grandi numeri				$\lim_{n\to\infty} P(\overline{X_n} - \mu > \xi) = 0$				
relazione fra densità e ripartizione La derivata della funzione di ripartizione è la densità Densità di una trasformazione di Data Y che è una trasformazione di X, la derivata della funzion				F _X '=				
Densità di una trasformazione di variabile continua Data Y che è una trasformazione di X, la derivata della funzione di ripartizione di X sulla trasformazione inversa di t è la densità di Y				$Y=\phi(X)\Rightarrow d_Y(t)=F'_X(\phi^{-1}(t))$ con ϕ^{-1} trasformazione inversa				

VARIABILI ALEATORIE DISCRETE (* se gode di mancanza di memoria)							
Uniforme	X~U(A)	probabilità uniforme su tutti i possibili valori di un insieme di valori A di cardinalità "n"		qualsiasi estrazione di un numero da un elenco		$\begin{aligned} d_X(k) = & P(X = k) \\ & E[X] \\ & F_x(k) = & P(X \le k) \\ & \sigma_x^2 = & Var(X) \end{aligned}$	$\frac{1/ A =1/n}{X} = (a_1 + a_2 + + a_n)/ A $
Bernoulli	X~B(1,p)	probabilità di aver successo su un singolo tentativo di probabilità "p". O valgono 1 (vittoria) o valgono 0 (sconfitta). Si può invertire la logica di vittoria e sconfitta cambiando "p" con "1-p"		Tutti i casi in cui ci sono solo due possibili risultati, lancio di una moneta (p=½), probabilità di avere un certo numero con un dado (p=⅓), di estrarre un certo elemento			$p \text{ se k=1, (1-p) se k=0}$ p $p \cdot (1-p)$
Binomiale	X~B(n,p)	numero di successi in una serie di "n" tentativi di Bernoulli equiprobabili di probabilità "p"		lanci successivi di dadi o monete, estrazioni con rimpiazzo		$\begin{aligned} \frac{d_X(k) = & P(X = k)}{E[X]} \\ F_x(k) = & P(X \leq k) \\ \sigma_x^2 = & Var(X) \end{aligned}$	$\binom{n}{k} \cdot p^k \cdot (1-p)^{(n-k)}$ $n \cdot p$ $n \cdot p \cdot (1-p)$
Ipergeometrica	X~H(n;b,r)	probabilità di estrarre un certo numero "k" di elementi di tipo "b" in una serie di "n" estrazioni senza rimpiazzo da un'urna contenente "b" elementi di tipo "b" e "r" elementi di tipo diverso da "b"		Estrazioni senza rimpiazzo da urna con palline di 2 o più colori		$\begin{aligned} d_X(k) &= P(X = k) \\ &= E[X] \\ F_x(k) &= P(X \leq k) \\ \sigma_x^2 &= Var(X) \end{aligned}$	$\binom{b}{k} \cdot \binom{r}{n-k} / \binom{b+r}{n}$ $(n \cdot b) / (b+r)$
Geometrica modificata	X~Ğ(p)	rimo tentativo di successo in uno schema di luccesso insuccesso a prove indipendenti di probabilità "n"		prima testa in una serie di lanci, primo 6 in una serie di lanci di dadi, prima pallina rossa in una serie di estrazioni con rimpiazzo			$p \cdot (1-p)^{(k-1)}$ $1/p$ $1 - (1-p)^{k}$ $(1-p)/p^{2}$
Geometrica*	X~G(p)	numeri di tentativi prima del primo succe uno schema di successo insuccesso a indipendenti di probabilità "p"	nema di successo insuccesso a prove testa in una serie di lanci di		$\begin{aligned} d_X(k) &= \text{P(X=k)} \\ &= \text{E[X]} \\ F_x(k) &= \text{P(X\le k)} \\ \sigma_x^2 &= \text{Var(X)} \end{aligned}$	$p \cdot (1-p)^{k}$ $1/p - 1$ $(1-p)^{k}$ $\frac{n \cdot b^{2} \cdot r}{(b+r)^{2} \cdot (b+r-1)}$	
Poisson	X~P(λ)	Legge degli eventi rari, rappresenta la probabilità che avvenga un certo numero "k" di eventi in uno schema di successo insuccesso di "n" tentativi di probabilità mp", con λ =n·p (quindi p= λ \n). Lambda è il numero medio di successi nel numero di eventi considerato			$d_X(k) = P(X=k)$ $E[X]$ $F_x(k) = P(X \le k)$ $\sigma_x^2 = Var(X)$	$\frac{\lambda^k}{k!} e^{-\lambda}$	
		VARIABILI ALEATORIE CONTINU	JE <mark>(*</mark>	* se gode di n	<mark>nancanza di n</mark>	nemoria)	
Uniforme	X~U([a,b])	Evento con probabilità di avvenire costante in un certo intervallo finito tempo di attesa de arrivando alla ferma momento casuale		esa dell'autobus fermata in un	$d_X(t) = P(X=t) 1/(b-a) \text{se } a \le t \le b$ $E[X] \qquad (b+a)/2$		
Esponenziale*	X~Exp(a) o X~Esp(a)	che accade una volta ogni ogni "m" tempo in evento		empo di attesa di un singolo evento che accade in media ogni 'm" tempo		$\begin{array}{c c} d_X(t) = \text{P(X=t)} & \text{a·e-at se t>0, 0 se t\leq0} \\ \hline E[X] & 1/\text{a=m} \\ \hline F_X(t) = \text{P(X\leq t)} & 1-\text{e-at} \\ \hline \sigma_X^2 = \text{Var(X)} & 1/\text{a}^2 \\ \end{array}$	
Normale standard	ζ ₀ ~N(0,1)	E' una variabile astratta che descrive la famosa campana di Gauss. Sostanzialmente usata solo per calcolare la normale usando i Valori tabellati per la normale standard $\frac{d_{\zeta}(s) = P(\zeta_0 = s)}{E[\zeta_0]} = F_{\zeta_0}(s) = P(\zeta_0 \le s) = P(\zeta_0 \le$		$(e^{-s^2/2})/\sqrt{2 \cdot \pi}$ 0 0≤s≤4 ⇒ tabella, s≥4⇒1, s≤0 ⇒ 1-P(ζ_0 ≤-s)			
Normale	ζ~N(μ,σ²)	E' una trasformazione della normale standard tale che $\zeta=\mu+\sigma\zeta_0$, dove μ è il valore medio della misura è σ è la radice della varianza		Si usa valori di misurazione di un carattere in una popolazione (altezza, peso, larghezza ecc ecc) o per approssimare una serie >50 eventi equiprobabili		$d_{\zeta}(s) = P(\zeta=s)$ $E[\zeta]$ $F_{\zeta}(s) = P(\zeta \le s)$ $\sigma_{\zeta}^{2} = Var(\zeta)$	μ P(ζο≤(s-μ)/σ) σ²
Teorema central X ₁ +X ₂ ++X _n (co		$\begin{split} X_1 + X_2 + + X_n &\simeq Sn(X) \sim N(n \cdot \mu, n \cdot \sigma^2) \\ &\simeq Sn(X) \sim N(n \cdot E[X_i], n \cdot Var(X_i)) \\ &(con \frac{\sigma^2 = Var(X_i)}{\sigma^2} e \frac{\mu = E[X_i]}{\sigma^2} e \frac{n^2}{\sigma^2} \end{split}$			numero elevato indipendenti tutte ità	$\begin{aligned} d_{Sn}(s) = & P(S_N = s) \\ & & E[S_N] \\ F_{S_N}(s) = & P(S_N \leq s) \\ & & \sigma_{S_N}^2 = & Var(S_N) \end{aligned}$	$n \cdot E[X_i] = n \cdot \mu$