Εργασία 1

Παράλληλα και Διανεμημένα Συστήματα.

Υλοποίηση ενός Vantage point Tree στην C και παραλληλοποίηση του με την χρήση Pthreads, Cilk και OpenMP.

Κυριάκος Μαραντίδης

email: kyrmarkos@ece.auth.gr

AEM:9095

Μιχάλης Καρατζάς ΑΕΜ:9137

email:<u>mikalaki@ece.auth.gr</u>

mikalaki@it.auth.gr

Gitlab link για το πρότζεκτ:

https://gitlab.com/mikalaki/parallels-and-distributed-systems-exercise-1/

Dropbox link(το αρχείο που πέρασε από τον έλεγχο ορθότητας):

https://www.dropbox.com/s/katd2mx59bblfcs/code.tar.gz?dl=0

1. Σύντομη Περιγραφή της υλοποίησης μας.

- <u>Sequential:</u> Στην Ακολουθιακή έκδοση της C, ακολουθήσαμε σε μεγάλο βαθμό της υλοποίηση που μας δόθηκε στο matlab. Χρησιμοποιήσαμε τις αρχές του δομημένου προγραμματισμού και σπάσαμε το πρόγραμμα μας σε επιμέρους συναρτήσεις.
- Pthreads: Στην υλοποίηση με Pthreads ακολουθήσαμε τις αρχές που διέπουν την ακολουθιακή μας υλοποίηση ωστόσο παραλληλίσαμε τον υπολογισμό των αποστάσεων και το "χτίσιμο" των επιμέρους υπό-δέντρων. Ακολουθήσαμε την μέθοδο peer threads, καθώς το καλόν thread καλεί threads ώστε να δουλέψουν, ωστόσο εκτελεί και αυτό μέρος της δουλειάς. Για τις αποστάσεις καθε thread γεμίζει τον πινακα των αποστάσεων εναλάξ. Για την περίπτωση των υπο-δέντρων, δίνουμε σε ένα thread τα δεδομένα, προκειμένου να υπολογίζει τις παράμέτρους του εξωτερικού υποδέντρου και να το χτίσει και το καλών thread (main thread) υπολογίζει τις παραμέτρους και χτίζει το εσωτερικό υποδεντρο. Για να κάνουμε το πρόγραμμα μας πιο γρήγορο ορίζουμε τιμή κατωφλιού (threshold) για τον αριθμό των σημείων τόσο για τις αποστάσεις όσο και για τα υποδέντρα, κάτω από την οποία καλείται η ακολουθιακή έκδοση του κώδικα.
- <u>OpenMp:</u> Για την υλοποίηση με openMp βάλαμε κατάλληλα annotations στον κώδικα της sequential έκδοσης μας, προκείμενου να παραλληλιστεί η for λούπα των ευκλείδειων αποστάσεων και στην συνέχεια για να παραλληλίσουμε την διαδικασία χτισίματος των υποδέντρων καλείται το χτίσιμο των επιμέρους υποδέντρων απο δύο διαφορετικά thread.
- <u>Cilk</u>: Για την υλοποίηση με openMp βάλαμε κατάλληλα annotations στον κώδικα της sequential έκδοσης μας ,cilk_for , για την "λούπα" των ευκλείδειων αποστάσεων και για την "λούπα" της απόκτησης δεδομένων των υποδέντρων (αν και αυτό αποτελεί αρκετά ριψοκίνδυνη τεχνική,καθώς μοιράζονται και χρησιμοποιούνται από τις επαναλήψεις κοινές μεταβλητές, ωστόσο ακόμα και με αυτήν την τεχνική η cilk έκδοση μας, παρόλο που επιταχύνθηκε σε μεγάλο βαθμό , πέρασε τον validator tester και επαληθεύτηκε και με δικά μας τεστ σε μικρά datasets) και cilk spawn για τον παραλληλισμό της αναδρομικής κλήσης του χτισίματος των υποδέντρων .
- Για περισσότερες λεπτομέρειες σχετικά με τον κώδικα μπορείτε να δείτε τα σχόλια που εμπεριέχονται μέσα σε αυτόν.

2. Γραφήματα, πίνακες και σχολιασμός των χρόνων εκτέλεσης:

Το μεγαλύτερο μέρος της υλοποίησης πραγματοποιήθηκε σε ένα λάπτοπ με επεξεργαστή i5-2410m(2 πυρήνες 4 threads) με 4gb ram και 5gb swap και λειτουργικό ubuntu linux 18.10. Το configuration και οι δοκιμές κατά την διαδικασία υλοποίησης έγιναν σε αυτόν τον υπολογιστή. Παρόλα αυτά για η συλλογή δεδομένων για την απόδοση του προγράμματος έγιναν σε Desktop με

επεξεργαστή AMD Ryzen 7 2700X(8 πυρήνες 16 threads) με 16 gb ram και 2 gb swap και λειτουργικό ubuntu linux 19.04 με μικρές αλλαγές στα #define attributes των αρχείων παράλληλου κώδικα (π.χ.#define MAX_N_OF_ACTIVE_THREADS 4 \rightarrow 16 στο vptree_pthreads.c). Παρακάτω βλέπουμε τα ανάλογα γραφήματα (τα δεδομένα αφορούν το Desktop που αναφέρθηκε):

1. 3D γράφημα του χρόνου εκτέλεσης συναρτήσει του πλήθους των σημείων(* 10^4) και των διαστάσεων για κάθε υλοποίηση:

ο παραπάνω γράφημα βλέπουμε ότι για μικρό πλήθος σημείων και μικρές διαστάσεις δεν έχουμε ιδιαίτερο όφελος από τον παραλληλισμό ,ωστόσο καθώς ο αριθμός των σημείων και των διαστάσεων αυξάνεται , έχουμε αυξανόμενο όφελος. Μας προβλημάτισε λίγο η υλοποίηση του openMP σε αυτό το γράφημα ωστόσο βλέπουμε ότι πάλι για μεγάλα σύνολα έχουμε σαφές προβάδισμα από το sequential, επίσης για τεστ που έγιναν στο λάπτοπ είδαμε ότι αξιοποιεί μονό <200% του cpu δηλαδή τα 2 από τα 4 thread , ενώ στο Desktop είδαμε ότι αξιοποιεί μαξιμουμ 3-4 threads. Ιδιαίτερο ενδιαφέρον παρουσιάζει και η υλοποίηση σε cilk καθώς είναι πολύ γρηγορότερη από κάθε άλλη για μεγάλα σύνολα ,αλλά είναι αρκετά γρήγορη ακόμα και για μικρά σύνολα (σε αυτά συνέβαλε η τεχνική που αναφέρθηκε παραπάνω στην ενότητα 1).

2. Γραφήματα χρόνου εκτέλεσης ,δεδομένων διαστάσεων.

Στ

3. Πίνακες με μετρήσεις για σταθερό αριθμό σημείων.

Sequential for Given Number Of Points			Pthreads for Given Number of points			Openmp for given Number Of Points		
Dimensions	Execution Time N=35000	Execution Time N=19000	Dimensions	Execution Time N=35000	Execution Time N=19000	Dimensions	Execution Time N=35000	Execution Time N=19000
100	0,094359	0,048587	100	0,042469	0,022801	100	0,075234	0,038995
90	0,085427	0,045379	90	0,040647	0,021107	90	0,072289	0,041245
80	0,078445	0,041157	80	0,036113	0,018697	80	0,064934	0,036219
70	0,072105	0,037473	70	0,03046	0,018423	70	0,062961	0,032906
60	0,064169	0,032934	60	0,026835	0,0152	60	0,053814	0,033274
50	0,055943	0,028497	50	0,026262	0,013035	50	0,050849	0,027018
45	0,052246	0,026767	45	0,020327	0,012885	45	0,051097	0,027983
35	0,039464	0,021626	35	0,018621	0,010068	35	0,04375	0,025317
30	0,041176	0,021183	30	0,019702	0,011354	30	0,043328	0,024844
25	0,032756	0,016892	25	0,013872	0,008476	25	0,042676	0,023251
20	0,028538	0,015137	20	0,013295	0,008853	20	0,036359	0,020333
15	0,025525	0,013251	15	0,012751	0,006507	15	0,043812	0,023147
10	0,023073	0,011778	10	0,014466	0,007637	10	0,030997	0,018832
5	0,018039	0,009089	5	0,011485	0,006965	5	0,030065	0,019971
2	0,020607	0,00934	2	0,012184	0,006962	2	0,037129	0,018435

U-T			0,012104		0,000302					
Cilk for Given Number of Points										
Dimensions		Execution Time N=35000		Execution Time N=19000						
100		0,003843		0,002325						
90		0,	003175	0,002029						
80		0,	002985	0,001725						
70		0,	002766	0,001626						
60		0,002815			0,001424					
50		0,002313		0,001382						
45		0,002173		0,001298						
35		0,001631		0,001157						
30		0,001618		0,001092						
25		0,001249		0,000956						
20		0,001348		0,000796						
15		0,001302		0,000885						
10		0,001021		0,000701						
5		0,000992		0,000722						
2		0,000936		0,000684		7				

CILK

