Semi-supervised learning via Deep Denoising Autoencoders

Autoencoders in TensorFlow

Angelo Porrello, Davide Abati

December 11, 2018

University of Modena and Reggio Emilia

Agenda

Autoencoders

Semi-supervised learning

Semi-supervised learning on MNIST

Autoencoders

Autoencoders

An **autoencoder** is a feed-forward neural network that is trained to attempt to copy its input to its output. The network may be viewed as consisting of two parts: an encoder function h = f(x) and a decoder that produces a reconstruction r = g(h).

The learning process plans to minimize $\mathcal{L}(g(f(x)))$ where \mathcal{L} is a loss function penalizing g(f(x)) for being dissimilar from x, e.g. the Mean Square Error (MSE).

$$\mathcal{L}(g(f(x))) = \|x - g(f(x))\|_2 \tag{1}$$

Autoencoders

The **aim** is to induce in h useful properties and the most salient features of the training data. For instance, **lower dimensional representations** attempt to compress as much information about x in a smaller representation.

Denoising Autoencoders (DAE)

In order to avoid learning the identity function, autoencoders are restricted in ways that allow them to copy only **approximately**. To capture more robust features in the hidden layer, a denoising autoencoder is trained to reconstruct the input x from a **corrupted** version \tilde{x} of it.

Denoising Autoencoders (DAE)

The corrupted input \tilde{x} can be obtained applying on x some form of noise e.g additive white gaussian noise or dropout. Then, the DAE must undo this corruption rather than simply copying their input.

$$\mathcal{L}(g(f(x))) = \|x - g(f(\tilde{x}))\|_2 \quad \tilde{x} \sim \mathcal{N}(x, \sigma^2 I)$$
 (2)

Semi-supervised learning

Semi-supervised learning

Problem: Deeper models lead to more parameters, which implicates the requirement for a high number of training data in order to avoid overfitting.

Semi-supervised learning regards a class of machine learning techniques combining both labeled and unlabeled data.

Goal: taking advantage of a large amount of **unlabeled data** to learn a suitable representation, and then exploit it for training a new classifier, the latter leveraging just few labeled data.

Semi-supervised learning with Autoencoders

Class-wise Clean vs Noisy MNIST images

 Given the MNIST training set, discard the labels and train a denoising autoencoder on it. As a starting point, provide a DAE with just dense layers, batch normalization and the non-linearity you prefer.

Once it has been trained, extract bottleneck activations for both training and test set.

2. To emulate a setting with few labeled samples, pick a small subset of the original and fully-labeled training set (e.g. comprising just 200 randomly drawn samples among the 60000 available).

- Train a simple classifier (e.g. K-NN) from both the grayscale features and the hidden activations.
- Compare the test set classification accuracies arising from the two strategies.

Useful Functions

To this purpose, you may find useful the following functions:

- tf.cond
- tf.random_normal
- tf.layers.batch_normalization
- tf.layers.dense

Please refer to the docs to know the exact API.

Optionally

- Replace the dense layers with 2D-convolutions.
- Compare the results w.r.t. a **naive** autoencoder (where the input has not been corrupted).
- Compare the results w.r.t. a **sparse** autoencoder.
- Conduct experiments on a more challenging dataset (e.g. CIFAR-10).

Good Luck!