Package 'rBiopaxParser'

July 26, 2012

Title Parses BioPax level 2 files and represents them in R
Version 0.11
Date 2012-07-23
Author Frank Kramer
Maintainer Frank Kramer < dev@frankkramer.de>
Description Parses BioPax level 2 files and represents them in R.
License GPL (>= 2)
Imports XML, graph
Suggests Rgraphviz, RCurl
URL https://github.com/frankkramer/rBiopaxParser
BuildVignettes false
Collate 'biopax2Classes.R' 'downloadBiopaxData.R' 'helperFunctions.R' 'modifyBiopax.R' 'parseBiopax.R' 'rBiopaxParser-package.R' 'selectBiopax.R' 'visualizeBiopax.R' 'writeBiopax.R'
R topics documented:
rBiopaxParser-package addBiopaxInstance addBiopaxInstances addhash addInteraction addns addPathway addPathway addPathwayComponents addPropertiesToBiopaxInstance

2

	_
checkValidity	
CLASS_INHERITANCE	
CLASS_PROPERTIES	
diffGraphs	
downloadBiopaxData	
generateNewUniqueID	11
getBiopaxInstancesByID	12
getBiopaxInstancesByName	12
getBiopaxInstancesByType	
getBiopaxInstancesList	
getClassProperties	
getInstanceClass	
getInstanceProperties	
getNeighborhood	
getPathway	
· · · · · · · · · · · · · · · · · · ·	
getPathwayComponentList	
getPathwayComponents	
getPathwayList	
getPathways	
getReferencedIDs	
getReferencedInstances	
getSubClasses	21
getSuperClasses	21
hasProperty	22
internal_checkArguments	22
internal_generateXMLfromBiopax	
internal_getBiopaxModelAsDataFrame	
internal_NrOfXMLNodes	
internal_propertyListToDF	
internal_XMLInstance2DF	
intersectGraphs	
•	
isOfClass	
isOfNamespace	
layoutRegulatoryGraph	
listBiopaxNodes	
pathway2AdjacancyMatrix	30
pathway2RegulatoryGraph	
plotRegulatoryGraph	32
readBiopax	
splitComplex	33
striphash	34
stripns	34
summary_biopax	
transitiveClosure	
transitiveReduction	
unfactorize	
uniteGraphs	
writeBiopax	38

addBiopaxInstance 3

```
rBiopaxParser-package
```

Parses BioPax level 2 files and represents them in R

Description

Parses BioPax level 2 files and represents them in R

Details

rBiopaxParser is a ...

Package: rBiopaxParser
Type: Package
Version: 0.09
Date: 2012-07-02
License: GPL (>= 2)

Author(s)

Frank Kramer < dev@frankkramer.de>

Examples

```
## Not run: readBiopax(file="biopaxmodel.owl)"
```

addBiopaxInstance This function adds a new instance an existing biopax model.

Description

This function adds a new instance an existing biopax model. "properties" is a named list of vectors, with the vector name as the name of the property and every entry of the vector a property value. Please note: case sensitivity! In Biopax Level 2 all properties are written in all capital letters.

Usage

```
addBiopaxInstance(biopax, instancetype, instanceid,
  properties = list(NAME = c()))
```

Arguments

biopax A biopax model
instancetype string. Class name
instanceid string. ID of the instance
properties named list of properties.

4 addhash

Value

Returns the supplied biopax model with the new instance added.

Author(s)

Frank Kramer

addBiopaxInstances This function adds new instances to an existing biopax model.

Description

This function adds new instances (supplied as a compatible data.frame) to an existing biopax model.

Usage

```
addBiopaxInstances(biopax, newInstancesDF)
```

Arguments

```
biopax
              A biopax model
newInstancesDF
```

data.frame. Compatible with internal Biopax Level 2 implementation.

Value

Returns the supplied biopax model with the new instances added.

Author(s)

Frank Kramer

addhash

Adds a hash in front of a string

Description

Adds a hash in front of a string

Usage

```
addhash(x)
```

Arguments Х

A string to be preceded by a hash

addInteraction 5

Value

The supplied string with a hash "#" pasted in front of it.

Author(s)

Frank Kramer

addInteraction

This function adds a new interaction to the biopax model.

Description

This function adds a new interaction of class control to the biopax model. This is a convenience function to add controls, internall the function addBiopaxInstance is called with properties CONTROL_TYPE, CONTROLLER and CONTROLLED set.

Usage

```
addInteraction(biopax, class = "control",
   CONTROL_TYPE = c("ACTIVATION", "INHIBITION"),
   CONTROLLER = "", CONTROLLED = c(), ID = NULL)
```

Arguments

biopax	A biopax model	
class	string. Class of the interaction to add. Suggests "control" or its sibilings "catal ysis" or "modulation".	
CONTROL_TYPE	character vector. IDs of the pathway components. This must be IDs of instances of type interaction/pathway/pathway/step (or their subclasses).	
CONTROLLER	string. Organism property of the pathway. optional.	
CONTROLLED	string. An optional comment	
ID	string. ID for the pathway. If NULL a new ID is generated with prefix "pathway".	

Value

Returns the biopax model with the added pathway.

Author(s)

fkramer

6 addPathway

addns

Add a namespace tag to the supplied classname string

Description

This function takes the input classname, checks if it already has a namespace, and if not pastes the namespace tag with a dividing ":" in front of it.

Usage

```
addns(classname, namespace = "bp")
```

Arguments

classname A string containing a classname
namespace A string containing a namespace

Value

If the classname is not preceded by a namespace yet, the supplied namespace is pasted in front of it and returned.

Author(s)

Frank Kramer

addPathway

This function adds a new pathway to the biopax model.

Description

This function adds a new pathway + its PATHWAY-COMPONENTS (references to interaction/pathways/pathwaySteps)

Usage

```
addPathway(biopax, NAME, PATHWAY_COMPONENTS = c(),
ID = NULL, ORGANISM = NULL, COMMENT = NULL)
```

Arguments

biopax Model

NAME string. Name of the pathway

PATHWAY COMPONENTS

character vector. IDs of the pathway components. This must be IDs of instances

of type interaction/pathway/pathwayStep (or their subclasses).

ID string. ID for the pathway. If NULL a new ID is generated with prefix "path-

way".

ORGANISM string. Organism property of the pathway. optional.

COMMENT string. An optional comment

Value

Returns the biopax model with the added pathway.

Author(s)

fkramer

addPathwayComponents

This function adds pathway components to an existing pathway

Description

This function adds pathway components to an existing pathway. Property PATHWAY-COMPONENTS are references to IDs of interaction/pathways/pathwaySteps (or subclasses of those)

Usage

```
addPathwayComponents(biopax, ID,
    PATHWAY_COMPONENTS = c())
```

Arguments

biopax A biopax model

ID string. ID for the pathway

PATHWAY_COMPONENTS

character vector. IDs of the pathway components. This must be IDs of instances

of type interaction/pathway/pathwayStep (or their subclasses).

Value

Returns the biopax model with the pathway components added to the pathway

Author(s)

fkramer

8 check Validity

```
addPropertiesToBiopaxInstance
```

This function adds new properties to an existing biopax instance.

Description

This function adds new properties to an existing biopax instance.

Usage

```
addPropertiesToBiopaxInstance(biopax, instanceid,
    properties)
```

Arguments

biopax A biopax model

instanceid string. ID of the instance properties named list of properties.

Value

Returns the supplied biopax model with new properties added to this instance.

Author(s)

Frank Kramer

checkValidity

This function checks the supplied biopax model for validity.

Description

This function checks the supplied biopax model for validity, concerning classes, properties, etc. Not yet implemented. Called internally by writeBiopax.

Usage

```
checkValidity(biopax)
```

Arguments

biopax Model

Value

logical. Returns TRUE is the biopax model is valid Biopax Level 2, or FALSE otherwise.

Author(s)

Frank Kramer

CLASS_INHERITANCE Class inheritance relationships in Biopax Level 2.

Description

A data.frame listing all direct superclasses for every Biopax Level 2 class. The variables are as follows:

Format

A data frame with 46 rows and 2 columns

Details

- class. Name of the class
- superclass. Name of the superclass

CLASS_PROPERTIES Class properties in Biopax Level 2.

Description

A data.frame listing all direct properties for every Biopax Level 2 class. Together with CLASS_INHERITANCE this allows to list all properties, including the inherited ones, of every class.

Format

A data frame with 106 rows and 4 columns

Details

The variables are as follows:

- class. Name of the class
- property. Name of the superclass
- property_type.Type of the property, value or reference
- cardinality. Maximum allowed cardinality of a property. Many properties may only be singular.

downloadBiopaxData

diffGraphs	This function returns the different nodes and edges between graph1 and graph2.
------------	--

Description

This function returns the different nodes and edges between graph1 and graph2. Layout options of graph1 are kept. Coloring currently not implemented.

Usage

```
diffGraphs(graph1, graph2, colorNodes = TRUE,
  colors = c("#B3E2CD", "#FDCDAC"))
```

Arguments

graph1	graphNEL
graph2	graphNEL
colorNodes	logical
colors	character vector of colors. If colorNodes==TRUE these colors are used for graph1 and graph2 respectivley.

Value

Return the diff between the graphs.

Author(s)

Frank Kramer

downloadBiopaxData This function downloads Biopax data from online databases

Description

This function has an internal list of download links for some online databases. It will retrieve the selected model from the selected database using RCurl. The downloaded file is (if needed) unzipped and ready to be used as input for rBiopaxParser::readBiopax.

Usage

```
downloadBiopaxData(database = "NCI",
  model = c("pid", "biocarta", "reactome"),
  outputfile = "", version = "biopax2")
```

Arguments

database string. Select which database you want to download from. Currently only NCI

links have been stored.

model string. Select which model/file you want to download. Currently NCI versions

of the Pathway Interaction Database, Biocarta and Reactome are linked.

version string. Select which Biopax Version you want to download.

outputfile string. The file name to save the downloaded data in. If left empty the URL file

name will be used. The unzipped file name can be different from this. Check

the screen output of gunzip.

Value

none. Check output for the name of the unzipped biopax .owl file.

Author(s)

fkramer

generateNewUniqueID

This function generates a new unique id for a biopax model

Description

This function generates a new unique id for a biopax model. Pass it an startin g point like "pathway" or "protein" to get a niceer looking id.

Usage

```
generateNewUniqueID(biopax, id = "")
```

Arguments

biopax A biopax model

id string. This is used as a prefix for the id.

Value

Returns an unused unique ID.

Author(s)

fkramer

getBiopaxInstancesByID

Returns all instances with a certain ID.

Description

Returns all instances with a certain ID.

Usage

```
getBiopaxInstancesByID(biopax, id)
```

Arguments

biopax A biopax model

id string. ID of the instance

Value

Returns a data.frame containing all instances with the supplied ID.

Author(s)

Frank Kramer

getBiopaxInstancesByName

Returns all instances with a certain name.

Description

Returns all instances with a certain name.

Usage

```
getBiopaxInstancesByName(biopax, name)
```

Arguments

biopax A biopax model

name string. Name of the instance

Value

Returns a data.frame containing all instances with the supplied name.

Author(s)

Frank Kramer

```
getBiopaxInstancesByType
```

Returns all instances of a certain class.

Description

Returns all instances of a certain class.

Usage

```
getBiopaxInstancesByType(biopax, type)
```

Arguments

biopax A biopax model

type string. Class of the instance

Value

Returns a data.frame containing all instances of the supplied class.

Author(s)

Frank Kramer

```
getBiopaxInstancesList
```

Returns all list of all instances of a certain class, or all instances.

Description

Returns a character vector of IDs of all instances of a certain class, or all instances if type=="all".

Usage

```
getBiopaxInstancesList(biopax, type = "all")
```

Arguments

biopax Model

type string. Class of the instances

14 getInstanceClass

Value

Returns a character vector containing all instances of the supplied class.

Author(s)

Frank Kramer

getClassProperties This function returns the properties of the supplied biopax class.

Description

This function returns the superclasses of the supplied biopax class. It always considers inhertance. Every class inhertis the properties of its super classes.

Usage

```
getClassProperties(classname)
```

Arguments

classname A string containing a class name

Value

Returns character vector containing the superclasses of the supplied class

Author(s)

Frank Kramer

getInstanceClass

This function returns the class name of the instance.

Description

This function returns the class name of the instance.

Usage

```
getInstanceClass(biopax, instanceid)
```

Arguments

biopax Model

instanceid string

getInstanceProperties 15

Value

Returns the class name of the biopax instance.

Author(s)

fkramer

```
getInstanceProperties
```

This function returns all properties of the specified type for an instance.

Description

This function returns all properties of the specified type for an instance.

Usage

```
getInstanceProperties(biopax, instanceid,
   property = "NAME")
```

Arguments

biopax A biopax model

instanceid string

property string. Attention: All properties in Biopax Level 2 are all upper case.

Value

Returns a character vector with all properties of the selected type for this instance.

Author(s)

fkramer

16 getPathway

getNeighborhood

This function returns the neighborhood of a physicalEntity

Description

This function searches the supplied biopax for interactions that are connected to the molecule or within 'depth' number of steps from it.

Usage

```
getNeighborhood(biopax, instanceid, depth = 1,
  onlyInPathways = c())
```

Arguments

biopax A biopax model

 $\verb|instance| id string. ID of a physical Entity (dna, rna, protein, complex, small Molecule)|$

depth integer. Search depth, this specifies how far out from the specified molecule the

neighborhood should be streched.

onlyInPathways

character vector of pathway IDs. Search only in these pathways for neighbors.

Value

Returns ids of interactions within 'depth' number of steps of the specified physicalEntity

Author(s)

fkramer

getPathway

This function returns a data.frame containing the pathway.

Description

This function returns a data.frame containing the pathway instance pointed at by id.

Usage

```
getPathway(biopax, id)
```

Arguments

biopax Model

id string. ID of the pathway instance

Value

Returns a data.frame containing the pathway instance.

Author(s)

Frank Kramer

```
getPathwayComponentList
```

This function lists all pathway components of a given pathway.

Description

This function returns a (unique) vector of pathway component IDs of the supplied pathway.

Usage

```
getPathwayComponentList(biopax, id)
```

Arguments

biopax A biopax model
id string. A pathway ID

Value

Returns a character vector with IDs

Author(s)

Frank Kramer

```
getPathwayComponents
```

This function returns a data.frame containing all pathway components.

Description

This function returns a data.frame containing all instances referenced in a pathways PATHWAY-COMPONENTS property.

Usage

```
getPathwayComponents(biopax, id)
```

18 getPathwayList

Arguments

biopax Model

id string. Pathway ID

Value

Returns a data.frame containing all pathway components.

Author(s)

Frank Kramer

getPathwayList

This function returns a list of all pathway ids.

Description

This function returns a vector of all pathway ids.

Usage

getPathwayList(biopax)

Arguments

 $\label{eq:biopax} biopax \ \ \, A \ biopax \ model$

Value

Returns a character vector containing the names of all pathways.

Author(s)

getPathways 19

getPathways

This function returns a data frame containing all pathways.

Description

This function returns a data.frame containing the all pathway instances.

Usage

```
getPathways(biopax)
```

Arguments

biopax

A biopax model

Value

Returns a data.frame containing all pathway instances.

Author(s)

Frank Kramer

getReferencedIDs

This function returns a vector of ids of all referenced instances of the supplied instance.

Description

This function takes an id and a biopax model as input. The id of every instance that is referenced is returned. If recursive == TRUE this function recurses through all referenced IDs of the referenced instances and so on. "onlyFollowProperties" limits the recursivness to only certain properties, for example follow only complexes or physicalEntities. (not yet implemented)

Usage

```
getReferencedIDs(biopax, id, recursive = TRUE,
    onlyFollowProperties = c())
```

Arguments

biopax Model

id string. ID of the instance

recursive logical onlyFollowProperties

character vector

Value

Returns a character vector of IDs referenced by the supplied id in the supplied biopax model.

Author(s)

Frank Kramer

```
getReferencedInstances
```

This function returns a data.frame containing all referenced instances of the supplied instance.

Description

This function takes an id and a biopax model as input. A data frame containing all instances referenced by the supplied instance is returned. If recursive == TRUE this function recurses through all referenced IDs of the referenced instances and so on. "onlyFollowProperties" limits the recursivness to only certain properties, for example follow only complexes or physicalEntities. (not yet implemented)

Usage

```
getReferencedInstances(biopax, id, recursive = TRUE,
  onlyFollowProperties = c())
```

Arguments

biopax A biopax model
id string
recursive logical
onlyFollowProperties
character vector

Value

Returns a data.frame containing all referenced instances.

Author(s)

getSubClasses 21

getSubClasses

This function returns the subclasses of the supplied biopax class.

Description

This function returns the subclasses of the supplied biopax class.

Usage

```
getSubClasses(classname)
```

Arguments

classname

A string containing a class name

Value

Returns character vector containing the subclasses of the supplied class

Author(s)

Frank Kramer

getSuperClasses

This function returns the superclasses of the supplied biopax class.

Description

This function returns the superclasses of the supplied biopax class.

Usage

```
getSuperClasses(classname)
```

Arguments

classname

A string containing a class name

Value

Returns character vector containing the superclasses of the supplied class

Author(s)

hasProperty

Checks if instances in the biopax data.frame have a given property

Description

Checks if instances in the biopax data.frame have a given property

Usage

```
hasProperty(df, property)
```

Arguments

df A data.frame with biopax instances

property A string containing the name of the property to check for

Value

Returns TRUE for every row in the data.frame with contains the supplied property

Author(s)

Frank Kramer

```
internal_checkArguments
```

This function checks the supplied arguments if they abid to the given restrictions

Description

This function checks the supplied arguments if they abid to the given restrictions

Usage

```
internal_checkArguments(args = c(),
  allowedValues = list(), allowNULL = FALSE,
  allowNA = FALSE, allowEmptyString = TRUE,
  allowInf = TRUE)
```

Arguments

args The vector of arguments to check

allowedValues

A named list of values the argument of a this name is allowed to have

allowNULL or not allowNA Logical, allow NA or not

allowEmptyString

Logical, allow empty strings or not

allowinf Logical, allow values of +/- infinity or not

Value

Returns 1 if all checks completed successfully, returns error message otherwise.

Author(s)

Frank Kramer #

internal_generateXMLfromBiopax

This function generates the xmlTree from the supplied biopax model.

Description

This function is used internally by writeBiopax. It can also be called directly with a fitting dataframe in list(df=data.frame()), but this will probably break things.

Usage

```
internal_generateXMLfromBiopax(biopax,
   namespaces = namespaces)
```

Arguments

biopax Model

namespaces A list of namespaces to use for the generated XML/RDF file

Value

Returns the xmlTree generated from the supplied biopax model.

Author(s)

internal_getBiopaxModelAsDataFrame

This internal function parses the Biopax XML of the supplied biopax model and returns it in the data.frame format.

Description

This internal function parses the Biopax XML of the supplied biopax model and returns it in the data.frame format.

Usage

```
internal_getBiopaxModelAsDataFrame(biopax,
   verbose = TRUE)
```

Arguments

biopax A biopax model

verbose logical

Value

Returns the parsed biopax model in the internal data.frame format.

Author(s)

Frank Kramer #

```
internal_NrOfXMLNodes
```

This function in an internal function to count the Number of nodes and child nodes of an XMLNode.

Description

This function in an internal function to count the Number of nodes and child nodes of an XMLNode.

Usage

```
internal_NrOfXMLNodes (myXMLNode)
```

Arguments

Value

This function returns the number of Nodes and child Nodes an XMLNode has.

Author(s)

Frank Kramer #

```
internal_propertyListToDF
```

Internal function to build a data.frame from the list of properties for a new instance

Description

Internal function to build a data.frame from the list of properties for a new instance

Usage

```
internal_propertyListToDF(instancetype, instanceid,
   properties, namespace_rdf = "rdf")
```

Arguments

Value

Returns a data.frame with the new properties for the given instance

Author(s)

26 intersectGraphs

```
internal_XMLInstance2DF
```

This function in an internal function that parses a Biopax Level 2 XMLNode.

Description

This function in an internal function that parses a Biopax Level 2 XMLNode.

Usage

```
internal_XMLInstance2DF (myXMLNode, namespace_rdf)
```

Arguments

```
myXMLNode
namespace_rdf
```

String specifying the namespace to use for rdf:resource and rdf:datatype

Value

Returns the matrix generated by parsing the XMLNode

Author(s)

Frank Kramer #

intersectGraphs

This function returns a graph computed by the insection of supplied graph1 and graph2.

Description

This function returns a graph computed by the insection of supplied graph1 and graph2. Layout and weights of graph1 are kept.

Usage

```
intersectGraphs(graph1, graph2)
```

Arguments

graph1 graphNEL graphNEL

isOfClass 27

Value

Returns the intersection of graph1 and graph2.

Author(s)

Frank Kramer

isOfClass

Checks if instances in the biopax data.frame are of the given class

Description

This function checks if instances in the supplied biopax data.frame are of a given class. If considerInheritance is set to TRUE it also checks if instances are of a given class or any of its inherited classes.

Usage

```
isOfClass(df, class, considerInheritance = FALSE)
```

Arguments

df A data.frame with biopax instances

class A string containing the class name to check for

considerInheritance

Logical value indicating wether to consider inheritance or not

Value

Returns TRUE for every row in the data.frame which is of the supplied class

Author(s)

isOfNamespace

Check if a classname is preceded by a certain namespace tag like in "namespace:classname"

Description

This function checks if the supplied input string starts with a supplied namespace tag

Usage

```
isOfNamespace(classname, namespace = "bp")
```

Arguments

classname A string containing the classname to check namespace A string giving the namespace to check for

Value

This function returns TRUE if the supplied classname string is preceded with the supplied namespace string, and FALSE if not.

Author(s)

Frank Kramer

layoutRegulatoryGraph

This function generates a (more or less) beautiful layout for a regulatory graph.

Description

This function generates a (more or less) beautiful layout for a regulatory graph. Call this after you generated a graph with pathway2RegulatoryGraph. Since beauty is always in the eye of the beholder consider this a starting point for making your graphs even nicer. Rgraphviz with dot layout is used. Edges are green/red with normal/tee arrowheads for activations/inhibitions. If you want to specifically paint subgraphs in different colors use lists of vectors with node names for parameter subgraphs and vector of color names for subgraphs.color for your choice of color. The output can be further tweaked by setting layout options using nodeRenderInfo(mygraph) <- list() ... See the Rgraphviz and Graphviz documentations.

listBiopaxNodes 29

Usage

```
layoutRegulatoryGraph(mygraph, label = "",
  node.height = 2, node.width = 2, node.fontsize = 20,
  node.labelfontsize = 20, node.fixedsize = FALSE,
  edge.weights = c("green", "black", "red"),
  edge.arrowheads = c("normal", "tee"),
  subgraphs = list(),
  subgraphs.colors = c("#B3E2CD", "#FDCDAC", "#F4CAE4", "#E6F5C9", "#FFF2AE"))
```

Arguments

```
graphNEL
mygraph
label
                 Label of the graph
node.height Height of the nodes
                 Width of the nodes
node.width
node.fontsize
                 Sets the fontsize of nodes.
node.labelfontsize
                 Set labelfontsize of nodes
node.fixedsize
                 logical. If font size is fixed or variable in regards to the nodes.
edge.weights vector. which colors to use for weighted edges
edge.arrowheads
                 vector. which arrowheads to use for weighted edges
subgraphs
                 A list of character vectors with node names defining the sub graphs.
subgraphs.colors
                 vector. which colors to use for subgraphs
```

Value

Returns the supplied graph in a layouted form with several parameters set for regulatory graph plotting.

Author(s)

Frank Kramer

listBiopaxNodes This function returns a summary statistic for the biopax model.

Description

This function returns a summary statistic for the biopax model. It checks if the summary has already been generated with summary.biopax and generates it if necessary. Have a look at the biopax\$summary entry for more statistics. This function can take a while with really big Biopax files like NCIs Pathway Interaction Database or Reactome.

Usage

```
listBiopaxNodes(biopax)
```

Arguments

biopax A biopax model

Value

This function returns a summary statistic for the biopax model.

Author(s)

Frank Kramer

```
pathway2AdjacancyMatrix
```

This function generates an adjacency matrix from the activations/inhibitions of a pathway in a biopax model.

Description

This function internally first calls pathway2RegulatoryGraph, then converts the regulatory graph to an adjacency matrix. See pathway2RegulatoryGraph for more details.

Usage

```
pathway2AdjacancyMatrix(biopax, pwid,
  expandSubpathways = TRUE, splitComplexMolecules = TRUE,
  verbose = TRUE)
```

Arguments

biopax Model

pwid string
expandSubpathways

logical. If TRUE subpathways are expanded into this graph, otherwise only this

very pathway is used.

splitComplexMolecules

logical. If TRUE every complex is split up into its components. This leads to splitting a single node with name of the complex into several nodes with names

of the components, these components all have identical edges.

verbose logical

Value

Returns the adjacency matrix representing the regulatory graph of the supplied pathway.

Author(s)

Frank Kramer

```
pathway2RegulatoryGraph
```

This function generates the regulatory graph from the activations/inhibitions of a pathway in a biopax model.

Description

This functions builds a graph from the pathway components of the supplied pathway. Only instances of class 'control' are considered, this leads a functinal graph with all edges either representing activations or inhibitions. No transports, no translocation, etc. If desired complexes can be split up into several nodes, this can sometimes lead to a more complex and cluttered graph. There can not be multiple edges between 2 nodes. Whenever duplicated edges are generated (especially by splitting up complexes) a warning is thrown.

Usage

```
pathway2RegulatoryGraph(biopax, pwid,
  expandSubpathways = TRUE, splitComplexMolecules = TRUE,
  verbose = TRUE)
```

Arguments

biopax A biopax model

pwid string
expandSubpathways

logical. If TRUE subpathways are expanded into this graph, otherwise only this very pathway is used.

splitComplexMolecules

logical. If TRUE every complex is split up into its components. This leads to splitting a single node with name of the complex into several nodes with names of the components, these components all have identical edges.

verbose logical

Value

Returns the representing the regulatory graph of the supplied pathway in a node-edge-list graph.

Author(s)

32 readBiopax

```
plotRegulatoryGraph
```

This function layouts a regulatory graph and plots it using Rgraphviz.

Description

This function takes a regulatory graph as generated by pathway2regulatoryGraph and plots it using standard layout options of layoutRegulatoryGraph. This function is a wrapper for layoutRegulatoryGraph with standard parameters. Subgraphs can be painted with different colors. This can be done by passing parameter subgraph a list of character vectors with node names.

Usage

```
plotRegulatoryGraph(mygraph, subgraphs = list())
```

Arguments

mygraph graphNEL, regulatory graph

subgraphs list of character vectors with node names

Value

none

Author(s)

Frank Kramer

readBiopax

This function reads in a Biopax .owl file

Description

This function reads in a Biopax .owl file and generates the internal data.frame format used in this package. This function can take a while with really big Biopax files like NCIs Pathway Interaction Database or Reactome. In almost every case this is your starting point. Returns a biopax model, which is a list with named elements:

biopaxxml The XML which was read in from file.

summary The generated summary statistic.

df The data.frame representing the biopax in R

ns_rdf RDF Namespace

ns_owl OWL Namespace

ns_bp Biopax Namespace

file File name

splitComplex 33

Usage

```
readBiopax(file, verbose = TRUE, generateSummary = TRUE,
  generateDF = TRUE)
```

Arguments

file string. File name

verbose logical. Output messages about how parsing is going and so on.

generateSummary

logical. Generates and attaches the summary for the Biopax file to biopax\$summary

generateDF logical. If this is set to FALSE no data.frame is generated, only the file is read

in to biopax\$biopaxxml

Value

A biopax model

Author(s)

Frank Kramer

splitComplex

This functions splits up a complex into its components.

Description

This function looks up the supplied Complex ID and returns the names of all its components.

Usage

```
splitComplex(biopax, complexid, recursive = TRUE)
```

Arguments

biopax A biopax model

complexid string ID of an complex

recursive logical

Value

Returns a character vector with the names of all subcomponents.

Author(s)

34 stripns

striphash

Strips a hash in front of a string

Description

Strips a hash in front of a string

Usage

```
striphash(x)
```

Arguments

Х

A string to be stripped off a preceeding hash

Value

The supplied string with a hash "#" stripped off front.

Author(s)

Frank Kramer

stripns

Strips a namespace tag off a supplied classname string

Description

Strips a namespace tag off a supplied classname string

Usage

```
stripns(classname)
```

Arguments

classname

A string containing a classname preceded by a namespace tag

Value

The classname with the namespace tag stripped off it.

Author(s)

summary_biopax 35

summary_biopax

This function generates a summary statistics for the biopax model.

Description

This function generates a summary statistics for the biopax model. This function can take a while with really big Biopax files like NCIs Pathway Interaction Database or Reactome. This function is called internally by readBiopax if generateSummary == TRUE, so just check biopax\$summary if it has already been generated.

Usage

```
summary_biopax(object, verbose = TRUE)
```

Arguments

object A biopax model

verbose logical

Value

Returns the summary for the supplied biopax model.

Author(s)

Frank Kramer

transitiveClosure This function generates the transitive closure of the supplied graph.

Description

This function generates the transitive closure of the supplied graph. In short: if A->B->C then an edge A->C is added. Edge weights are conserved if possible (in a hopefully smart way).

Usage

```
transitiveClosure(mygraph)
```

Arguments

```
mygraph graphNEL
```

Value

Returns the transitive closure of the supplied graph.

36 unfactorize

Author(s)

Frank Kramer

transitiveReduction

This function generates the transitive reduction of the supplied graph.

Description

This function generates the transitive reduction of the supplied graph. In short: if A->B->C AND A->C then edge A->C is removed. Edge weights are conserved if possible (in a hopefully smart way).

Usage

transitiveReduction(mygraph)

Arguments

mygraph

graphNEL

Value

Returns the transitive reduction of the supplied graph.

Author(s)

Frank Kramer

unfactorize

Replace factors/levels in a data.frame and use plain strings instead

Description

This function takes a data.frame as argument and returns it with strings instead of factors.

Usage

```
unfactorize(df)
```

Arguments

df

any data.frame with factor levels in at least one column

uniteGraphs 37

Value

The data.frame is returned using strings instead of factors.

Author(s)

Frank Kramer

uniteGraphs

This function unites two graphs.

Description

This function unites the two supplied graphs. Layout parameters from graph1 are used. If colorNodes==TRUE the returned graph has different colors for overlapping nodes and nodes individual for each graph.

Usage

```
uniteGraphs(graph1, graph2, colorNodes = TRUE,
colors = c("#B3E2CD", "#FDCDAC", "#F4CAE4"))
```

Arguments

graph1 graphNEL
graph2 graphNEL
colorNodes logical

colors colors character vector of colors. If colorNodes==TRUE these colors are used

for graph1 and graph2 respectivley.

Value

Return a graph generated by uniting the two supplied graphs

Author(s)

38 writeBiopax

writeBiopax This function v	rites out a biopax model.
-----------------------------	---------------------------

Description

This function writes out a biopax model, as generated by readBiopax, to either a file or returns the xmlTree if file is omitted.

Usage

```
writeBiopax(biopax, file = "", verbose = TRUE,
  overwrite = FALSE,
  namespaces = list(rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#", bp =
```

Arguments

biopax A biopax model as generated by readBiopax

file A string giving a file name.

verbose logical

overwrite logical, if TRUE an already existing file will be overwritten, otherwise an error

is thrown

namespaces A list of namespaces to use for the generated XML/RDF file

Value

Returns the xmlTree object generated from the biopax model. If a filename is supplied the XML is written to this file.

Author(s)