

3

Efficient Sorting -

The Power of Divide & Conquer

13 October 2023

Sebastian Wild

Learning Outcomes

- **1.** Know principles and implementation of *mergesort* and *quicksort*.
- **2.** Know properties and *performance characteristics* of mergesort and quicksort.
- **3.** Know the comparison model and understand the corresponding *lower bound*.
- **4.** Understand *counting sort* and how it circumvents the comparison lower bound.
- **5.** Know ways how to exploit *presorted* inputs.

Unit 3: Efficient Sorting

Outline

3 Efficient Sorting

- 3.1 Mergesort
- 3.2 Quicksort
- 3.3 Comparison-Based Lower Bound
- 3.4 Integer Sorting
- 3.5 Adaptive Sorting
- 3.6 Python's list sort
- 3.7 Order Statistics
- 3.8 Further D&C Algorithms

Why study sorting?

- fundamental problem of computer science that is still not solved
- building brick of many more advanced algorithms
 - for preprocessing
 - as subroutine
- playground of manageable complexity to practice algorithmic techniques

Here:

- "classic" fast sorting method
- exploit partially sorted inputs
- parallel sorting

Part I

The Basics

Rules of the game

- ► Given:
 - ► array A[0..n) = A[0..n 1] of *n* objects
 - ▶ a total order relation \leq among A[0], ..., A[n-1] (a comparison function)

 Python: elements support <= operator (_le__())

 Java: Comparable class (x.compareTo(y) <= 0)
- ▶ **Goal:** rearrange (i. e., permute) elements within A, so that A is *sorted*, i. e., $A[0] \le A[1] \le \cdots \le A[n-1]$
- ► for now: A stored in main memory (internal sorting) single processor (sequential sorting)

Clicker Question

3.1 Mergesort

Clicker Question

How does mergesort work?

- **B** Recurse on left / right half, then combine sorted halves.
- C Grow sorted part on left, repeatedly add next element to sorted range.
- D Repeatedly choose 2 elements and swap them if they are out of order.
- **E** Don't know.

→ sli.do/comp526

Clicker Question

How does mergesort work?

- % ا
- B Recurse on left / right half, then combine sorted halves. 🗸
- C Grow sorted part on left, repeatedly add next element to sorted range.
- D Repeatedly choose 2 elements and swap them if they are out of order.
- E Don't know.

→ sli.do/comp526

run1

run1

run1

run1

run1

Clicker Question

What is the worst-case running time of mergesort?

9

 $\mathbf{A} \quad \Theta(1)$

 $\Theta(\log n)$

 \mathbf{D} $\Theta(\sqrt{n})$

 $\Theta(n)$

 $\Theta(n \log \log n)$

G $\Theta(n \log n)$

 $\begin{array}{|c|c|} \hline \mathbf{H} & \Theta(n\log^2 n) \\ \hline \mathbf{I} & \Theta(n^{1+\epsilon}) \end{array}$

 $\Theta(n^2)$

 \mathbf{K} $\Theta(n^3)$

 $\Theta(2^n)$

→ sli.do/comp526

Clicker Question

→ sli.do/comp526

Mergesort

```
procedure mergesort(A[l..r))

n := r - l

if n \le 1 return

m := l + \lfloor \frac{n}{2} \rfloor

mergesort(A[l..m))

merge(A[l..m), A[m..r), buf)

s copy buf to A[l..r)
```

- ▶ recursive procedure
- merging needs
 - temporary storage buf for result (of same size as merged runs)
 - to read and write each element twice (once for merging, once for copying back)

Mergesort

- procedure mergesort(A[l..r))
- n := r 1
- if n < 1 return
- $m := l + |\frac{n}{2}|$
- mergesort(A[1..m))
- mergesort(A[m..r))
- merge(A[1..m), A[m..r), buf)

 $C(n) = 2n \lg(n) = \Theta(n \log n)$

copy buf to A[1..r)

- recursive procedure
- merging needs
 - temporary storage *buf* for result (of same size as merged runs)
 - to read and write each element twice (once for merging, once for copying back)

Analysis: count "element visits" (read and/or write)

$$C(n) = \begin{cases} 0 & n \le 1 \\ C(\lfloor n/2 \rfloor) + C(\lceil n/2 \rceil) + 2n & n \ge 2 \end{cases}$$

#cmps between 2 and n

(arbitrary $n: C(n) \le C(\text{next larger power of 2}) \le 4n \lg(n) + 2n = \Theta(n \log n)$)

Simplification $n = 2^k$ same for best and worst case!

$$C(2^{k}) = \begin{cases} 0 & k \le 0 \\ 2 \cdot \underline{C(2^{k-1})} + \underline{2 \cdot 2^{k}} & k \ge 1 \end{cases} = \underline{2 \cdot 2^{k}} + \underline{2^{2} \cdot 2^{k-1}} + 2^{3} \cdot 2^{k-2} + \dots + 2^{k} \cdot 2^{1} = 2k \cdot 2^{k}$$

Mergesort

- procedure mergesort(A[l..r))
- n := r 1
- if n < 1 return
- $m := l + |\frac{n}{2}|$
- mergesort(A[1..m))
- mergesort(A[m..r))
- merge(A[1..m), A[m..r), buf)

 $C(n) = 2n \lg(n) = \Theta(n \log n)$

copy buf to A[1..r)

- recursive procedure
- merging needs
 - temporary storage *buf* for result (of same size as merged runs)

(arbitrary $n: C(n) \le C(\text{next larger power of 2}) \le 4n \lg(n) + 2n = \Theta(n \log n)$)

to read and write each element twice (once for merging, once for copying back)

Analysis: count "element visits" (read and/or write)

$$C(n) = \begin{cases} 0 & n \le 1 \\ C(\lfloor n/2 \rfloor) + C(\lceil n/2 \rceil) + 2n & n \ge 2 \end{cases}$$

$$C(n) = \frac{2n \lg(n) + (2 - \lg(n)) - 2^{1 - \lfloor \lg(n) \rfloor}}{2n + 2^{1 - \lfloor \lg(n) \rfloor}} \frac{2n}{2n}$$

$$\lim_{n \to \infty} constant was to see the post and was to$$

Simplification $n = 2^k$ same for best and worst case!

$$\begin{cases} \text{precisely(!) solvable } \textit{without} \text{ assumption } n = 2^k : \\ C(n) = 2n \lg(n) + (2 - \{\lg(n)\} - 2^{1 - \{\lg(n)\}}) \underline{2n} \\ \text{with } \{x\} := x - \lfloor x \rfloor \end{cases}$$

$$C(2^{k}) = \begin{cases} 0 & k \le 0 \\ 2 \cdot C(2^{k-1}) + 2 \cdot 2^{k} & k \ge 1 \end{cases} = 2 \cdot 2^{k} + 2^{2} \cdot 2^{k-1} + 2^{3} \cdot 2^{k-2} + \dots + 2^{k} \cdot 2^{1} = 2k \cdot 2^{k}$$

Mergesort – Discussion

- optimal time complexity of $\Theta(n \log n)$ in the worst case
- stable sorting method i. e., retains relative order of equal-key items
- memory access is sequential (scans over arrays)
- \bigcap requires $\Theta(n)$ extra space

there are in-place merging methods, but they are substantially more complicated and not (widely) used

3.2 Quicksort

Clicker Question

How does quicksort work?

- **B** recurse on left / right half, then combine sorted halves.
- c grow sorted part on left, repeatedly add next element to sorted range.
- **D** repeatedly choose 2 elements and swap them if they are out of order.
- **E** Don't know.

→ sli.do/comp526

Clicker Question

How does quicksort work?

- B recurse on left / right half, then combine sorted halves
- C grow sorted part on left, repeatedly add next element to sorted range.
- D repeatedly choose 2 elements and swap them if they are out of order.
- E Don't know.

→ sli.do/comp526

Partitioning around a pivot

Partitioning – Detailed code

Beware: details easy to get wrong; use this code!

(if you ever have to)

```
_{1} procedure partition(A, b)
      // input: array A[0..n), position of pivot b \in [0..n)
      swap(A[0], A[b])
      i := 0, \quad i := n
      while true do
           do i := i + 1 while i < n and A[i] < A[0]
          do j := j - 1 while j \ge 1 and A[j] > A[0]
          if i \ge j then break (goto 11)
          else swap(A[i], A[i])
      end while
10
      swap(A[0], A[i])
11
      return j
```

Loop invariant (5–10): $A p \leq p ? \geq p$

Ouicksort

- $_{1}$ **procedure** quicksort(A[l..r))
- if $r \ell \le 1$ then return
- $b := \operatorname{choosePivot}(A[l..r))$
- j := partition(A[l..r), b)
- quicksort(A[l..j))
- quicksort(A[j+1..r))

- recursive procedure
- choice of pivot can be
 - ▶ fixed position → dangerous!
 - random
 - ▶ more sophisticated, e.g., median of 3

Clicker Question

What is the worst-case running time of quicksort?

പ

 \bullet $\Theta(1)$

 $\Theta(1)$

 $lackbox{\bf B} \ \Theta(\log n)$

 \mathbf{C} $\Theta(\log\log n)$

 \mathbf{D} $\Theta(\sqrt{n})$

 $\Theta(n)$

 $\Theta(n \log \log n)$

 $\Theta(n\log n)$

 $\mathbf{H} \quad \Theta(n \log^2 n)$

 \mathbf{K} $\Theta(n^3)$

 $\Theta(2^n)$

→ sli.do/comp526

Clicker Question

→ sli.do/comp526

Quicksort

Binary Search Tree (BST)

7 4 2 9 1 3 8 5 6

Quicksort

Quicksort

Binary Search Tree (BST)

4 2 9 1 3 8 5 6

Quicksort

- ► recursion tree of quicksort = binary search tree from successive insertion
- comparisons in quicksort = comparisons to built BST
- ► comparisons in quicksort ≈ comparisons to search each element in BST

Quicksort - Worst Case

- ► Problem: BSTs can degenerate
- ightharpoonup Cost to search for k is k-1

$$\longrightarrow$$
 Total cost $\sum_{k=1}^{n} (k-1) = \frac{n(n-1)}{2} \sim \frac{1}{2}n^2$

 \rightarrow quicksort worst-case running time is in $\Theta(n^2)$

terribly slow

But, we can fix this:

Randomized quicksort:

- ► choose a *random pivot* in each step
- » same as randomly shuffling input before sorting

Randomized Quicksort - Analysis

- ightharpoonup C(n) = element visits (as for mergesort)
- \rightarrow quicksort needs $\sim 2 \ln(2) \cdot n \lg n \approx 1.39 n \lg n$ in expectation
- ▶ also: very unlikely to be much worse:
 - e. g., one can prove: $Pr[\cos t > 10n \lg n] = O(n^{-2.5})$ distribution of costs is "concentrated around mean"
- ▶ intuition: have to be *constantly* unlucky with pivot choice

Quicksort – Discussion

 $\Theta(n \log n)$ average case

works *in-place* (no extra space required)

memory access is sequential (scans over arrays)

 \bigcirc $\Theta(n^2)$ worst case (although extremely unlikely)

not a *stable* sorting method

Open problem: Simple algorithm that is fast, stable and in-place.

3.3 Comparison-Based Lower Bound

Lower Bounds

- ▶ **Lower bound:** mathematical proof that *no algorithm* can do better.
 - ▶ very powerful concept: bulletproof impossibility result
 ≈ conservation of energy in physics
 - (unique?) feature of computer science: for many problems, solutions are known that (asymptotically) achieve the lower bound
 - → can speak of "optimal algorithms"

Lower Bounds

- ▶ **Lower bound:** mathematical proof that *no algorithm* can do better.
 - ▶ very powerful concept: bulletproof impossibility result
 ≈ conservation of energy in physics
 - (unique?) feature of computer science: for many problems, solutions are known that (asymptotically) achieve the lower bound
- ▶ To prove a statement about *all algorithms*, we must precisely define what that is!
- ▶ already know one option: the word-RAM model
- ► Here: use a simpler, more restricted model.

The Comparison Model

- ▶ In the *comparison model* data can only be accessed in two ways:
 - comparing two elements
 - ▶ moving elements around (e.g. copying, swapping)
 - ► Cost: number of these operations.

The Comparison Model

- ▶ In the *comparison model* data can only be accessed in two ways:
 - comparing two elements
 - ▶ moving elements around (e.g. copying, swapping)
 - ► Cost: number of these operations.

That's good! /Keeps algorithms general!

- ► This makes very few assumptions on the kind of objects we are sorting.
- Mergesort and Quicksort work in the comparison model.

The Comparison Model

- ► In the *comparison model* data can only be accessed in two ways:
 - ► comparing two elements " < "
 - moving elements around (e.g. copying, swapping)
 - ► Cost: number of these operations.

That's good! /Keeps algorithms general!

- This makes very few assumptions on the kind of objects we are sorting.
- ▶ Mergesort and Quicksort work in the comparison model.

Every comparison-based sorting algorithm corresponds to a *decision tree*.

- ▶ only model comparisons → ignore data movement
- ▶ nodes = comparisons the algorithm does
- ▶ next comparisons can depend on outcomes → different subtrees
- ► child links = outcomes of comparison
- ▶ leaf = unique initial input permutation compatible with comparison outcomes

Comparison Lower Bound

Example: Comparison tree for a sorting method for A[0..2]:

Comparison Lower Bound

Example: Comparison tree for a sorting method for A[0..2]:

- Execution = follow a path in comparison tree.
- height of comparison tree = worst-case # comparisons
- comparison trees are binary trees
- $\rightsquigarrow \ell \text{ leaves } \rightsquigarrow \text{ height } \geq \lceil \lg(\ell) \rceil$
- comparison trees for sorting method must have ≥ n! leaves
- \rightarrow height $\geq \lg(n!) \sim n \lg n$ more precisely: $\lg(n!) = n \lg n - \lg(e)n + O(\log n)$

Comparison Lower Bound

Example: Comparison tree for a sorting method for A[0..2]:

- ► Execution = follow a path in comparison tree.
- → height of comparison tree = worst-case # comparisons
- comparison trees are binary trees
- $\rightsquigarrow \ell \text{ leaves } \rightsquigarrow \text{ height } \geq \lceil \lg(\ell) \rceil$
- ► comparison trees for sorting method must have $\geq n!$ leaves

- ▶ Mergesort achieves $\sim n \lg n$ comparisons \rightsquigarrow asymptotically comparison-optimal!
- ▶ Open (theory) problem: Sorting algorithm with $n \lg n \lg(e)n + o(n)$ comparisons?

Clicker Question

Does the comparison-tree from the previous slide correspond to a worst-case optimal sorting method?

→ sli.do/comp526

Clicker Question

Does the comparison-tree from the previous slide correspond to a worst-case optimal sorting method?

No

→ sli.do/comp526