TD 2. Logique, raisonnements, calculs algébriques.

Exercice 1. 1) Dans chaque cas, préciser si la proposition est vraie ou fausse, et donner sa négation.

- a) $\forall x \in \mathbb{R}, x \in [1, +\infty[\Longrightarrow x^2 > x]$
- d) $\forall x \in \mathbb{R}, (x^2 < 0 \Longrightarrow x < 0).$
- b) $\forall (x,y) \in \mathbb{R}^2, \ x = y \iff x^2 = y^2$
- e) $\exists x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ xy > 0$.

c) $\forall x \in \mathbb{R}_{+}^* \cap \mathbb{R}_{-}^*, x = 0.$

- f) $\exists x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ xy \ge 0.$
- 2) Donner la négation des phrases suivantes :
 - a) S'il pleut alors je prends mon parapluie.
 - b) Chaque été, il pleut au moins un jour en Bretagne.
 - c) Un été, il a plu tous les jours en Bretagne.

Exercice 2. Traduire formellement les propositions suivantes, et dire si elles sont vraies ou fausses :

- a) Pour être multiple de 6, il est nécessaire d'être multiple de 3.
- b) Pour être multiple de 6, il est suffisant d'être multiple de 3.
- c) Pour que $x + 2 \ge 3$, il faut que x soit positif ou nul.
- d) Pour que $x + 2 \ge 3$, il suffit que $x \ge 2$.
- e) Aucun entier n'est supérieur à tous les autres.
- f) Tout réel possède une racine carrée dans \mathbb{R} .
- g) Certains réels sont strictement supérieurs à leur carré.
- h) Tous les réels ne sont pas des quotients d'entiers.

Exercice 3. Écrire en langage formel les propositions suivantes (où f est une fonction de \mathbb{R} dans \mathbb{R}):

- a) f n'est pas la fonction nulle
- c) f est décroissante
- e) f présente un minimum

- b) f ne s'annule pas sur \mathbb{R}
- d) f n'est pas croissante
- f) f n'est pas majorée

Exercice 4. Soit E un ensemble non vide, et f fonction définie sur un intervalle I à valeurs dans \mathbb{R} . Exprimer en français la signification des assertions suivantes :

- a) $\exists C \in \mathbb{R}, \ \forall x \in I, \ f(x) = C$
- c) $\forall x \in E, \exists y \in E, x \neq y$
- b) $\forall x \in I, f(x) = 0 \Longrightarrow x = 0$
- d) $\forall x \in E, \ \forall y \in E, \ \forall z \in E, \ (x = y \text{ ou } y = z \text{ ou } z = x)$

Exercice 5. Soient A et B des réels. Montrer :

$$(\forall \varepsilon > 0, \ A \le B + \varepsilon) \Longrightarrow A \le B.$$

Exercice 6. Soit I et J des intervalles, et $f: I \to J$ une fonction bijective. Montrer que si f est strictement croissante, alors f^{-1} est également strictement croissante.

Exercice 7. Le but de l'exercice est de déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que :

$$(*): \forall (x,y) \in \mathbb{R}^2, f(x)f(y) - f(xy) = x + y.$$

- a) Soit f une fonction vérifiant (*). Montrer que f(0) = 1. En déduire f(x) pour tout $x \in \mathbb{R}$.
- b) Conclure.

Exercice 8. Montrer que pour tout $n \in \mathbb{N}^*$, $2^{n-1} \leq n!$

Exercice 9. On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=0, u_1=1$ et, pour tout $n\in\mathbb{N}$:

$$u_{n+2} = \frac{u_{n+1} + u_n}{2} + 1.$$

Montrer que cette suite est strictement croissante.

Exercice 10. On définit la suite $(u_n)_{n\in\mathbb{N}^*}$ par $u_1\in]0,1]$ et, pour tout $n\in\mathbb{N}^*$: $u_{n+1}=\frac{\displaystyle\sum_{k=1}^n(u_k)^k}{n^n}$. Montrer que pour tout $n\in\mathbb{N}^*$, $u_n\in]0,1]$.

Exercice 11. Soit $n \in \mathbb{N}^*$.

a) Simplifier:
$$A = (n+2)! - 2(n!)$$
; $B = \frac{n!}{(n+1)!} - \frac{(n-1)!}{n!}$; $C = \frac{n!}{(n+4)!}$.

b) Écrire à l'aide de factorielles :
$$A = 2n(2n-2)(2n-4)\dots 4\times 2$$
; $B = \prod_{k=0}^{n}(2k+1)$

Exercice 12. 1) Calculer les sommes suivantes (avec x, q réels, et $1 \le p \le n$):

$$A = \sum_{k=0}^{n} x^{2k+1} \; \; ; \; \; B = \sum_{k=p}^{n} q^{k} \; \; ; \; \; C = \sum_{j=p}^{n} (2j+1) \; \; ; \; \; D = \sum_{k=1}^{n} \ln \left(1 + \frac{1}{k}\right) \; \; ; \; \; E = \sum_{k=1}^{n} k(k!)$$

2) Montrer qu'il existe des réels a et b que l'on déterminera tels que : $\forall k \in \mathbb{N}^*$, $\frac{1}{k(k+1)} = \frac{a}{k} + \frac{b}{k+1}$. En déduire $F = \sum_{k=1}^{n} \frac{1}{k(k+1)}$.

Exercice 13. a) Développer $(k+1)^3 - k^3$ pour tout entier k. Retrouver $\sum_{k=1}^n k^2$ sous forme factorisée pour tout $n \in \mathbb{N}^*$.

b) Faire un raisonnement similaire pour prouver que pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^n k^3 = \left(\frac{n(n+1)}{2}\right)^2$.

Exercice 14. Soit $n \in \mathbb{N}^*$. Calculer les sommes suivantes :

$$A = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{3^{i} 4^{j}}{5^{i+j}} \; ; \; B = \sum_{1 \le i \le j \le n} \frac{i}{j+1} \; ; \; C = \sum_{k=1}^{n} \left(\sum_{j=k}^{n} \frac{1}{j}\right); \; D = \sum_{i=1}^{n} \sum_{j=1}^{n} (i+j)$$

Exercice 15. Soit $n \in \mathbb{N}$, $n \ge 2$. Calculer : $\prod_{k=2}^{n} \left(1 - \frac{1}{k}\right)$ et $\prod_{k=2}^{n} \left(1 - \frac{1}{k^2}\right)$. (Indication : télescopage...)

Exercice 16. Soit $x \in \mathbb{R}^+$. Montrer sans récurrence que pour tout $n \in \mathbb{N}$, $(1+x)^n \ge 1 + nx$

Exercice 17. Soit $n \in \mathbb{N}^*$

a) Calculer
$$\sum_{p=0}^{n} \binom{n}{p}$$
 et $\sum_{p=0}^{n} (-1)^p \binom{n}{p}$.

b) On pose
$$S_p = \sum_{\substack{k \text{ entier tel que} \\ 0 \le 2k \le n}} \binom{n}{2k} \text{ et } S_i = \sum_{\substack{k \text{ entier tel que} \\ 0 \le 2k+1 \le n}} \binom{n}{2k+1}.$$

Calculer $S_p + S_i$ et $S_p - S_i$, en déduire la valeur de ces sommes.

Exercice 18. Soit $n \in \mathbb{N}^*$.

1) Démontrer que pour tout
$$p \in \{1, \dots, n\}$$
, $p\binom{n}{p} = n\binom{n-1}{p-1}$. En déduire $\sum_{p=1}^{n} p\binom{n}{p}$.

2) On note $f: x \mapsto (1+x)^n$. Retrouver le résultat de la question 1 à l'aide de la fonction f (on calculera f'(x) de deux façons différentes).