

Detecção de Intrusões na Internet das Coisas (IoT): Um Ambiente de Experimentação para Obtenção de Dados Reais sobre Protocolos Emergentes

Isadora F. Spohr¹, Douglas R. Fideles², Silvio E. Quincozes^{2,3} Juliano F. Kazienko¹, Vagner E. Quincozes⁴

UFSM¹, UFU², UNIPAMPA³, UFF⁴

Agenda

- Introdução
- Trabalhos Relacionados
- Desenvolvimento
- Considerações Finais
- Trabalhos futuros

Introdução

- Protocolos emergentes para Internet das Coisas (IoT)
 - Comunicação em ambientes com recursos limitados.
 - XRCE-DDS e Zenoh.

Introdução

- Análises de segurança
 - Há uma lacuna na literatura.
 - Falta de datasets que utilizem XRCE-DDS ou Zenoh.

Introdução

- Análises de segurança
 - Há uma lacuna na literatura.
 - Falta de datasets que utilizem XRCE-DDS ou Zenoh.
- **Objetivo**
 - Este trabalho busca gerar datasets para protocolos emergentes.
 - Obtenção de dados que permitam estudos em detecção de intrusões.

Trabalhos Relacionados

Referência	Dataset	XRCE-DDS	Zenoh	Detecção de intrusão
Dehnavi et al. 2021	Não	Sim Since 2022	Não	Não
Liang et al. 2023	Não	Não	Sim	Não
López Escobar et al. 2024	Não	Não	Sim	Não
Este trabalho	Sim	Sim	Versões futuras	Versões futuras

Desenvolvimento

- Construção de um dataset detalhado sobre o desempenho do XRCE-DDS e do Zenoh.
 - Dataset parcial utilizando XRCE-DDS.
 - Diferentes cenários de comunicação.
 - Taxa de atualização controlada vs. maior volume de tráfego.

Cenário de Experimentação

- Microcontroladores para envio de dados:
 - NodeMCU V3
 - o STM32F103C8T6
 - o DOIT ESP32
- Dispositivos agentes:
 - o Raspberry Pi 4
 - o Banana Pi M2 Zero
 - Notebook Windows
- Wireshark e CICFlowMeter

Cenário de Experimentação

Considerações Finais

- O dataset está disponível em <u>https://github.com/drsbg/XRCEDDSDatasetSBseg2024</u>
- Obtenção de um dataset baseado em um ambiente de experimentação com o XRCE-DDS.
- Permite o desenvolvimento de estudos sobre a segurança do protocolo.

Trabalhos futuros

- Expansão do cenário de testes.
- Utilização do dataset para desenvolver ferramentas contra interações maliciosas.
- Modelagem de ataques.

Agradecimentos

Obrigada!

ifspohr@inf.ufsm.br x1douglas1x@gmail.com silvioquincozes@unipampa.edu.br kazienko@redes.ufsm.br vequincozes@midiacom.uff.br

Referências

- Dehnavi, S., Goswami, D., Koedam, M., Nelson, A., and Goossens, K. (2021). Modeling, implementation, and analysis of XRCE-DDS applications in distributed multiprocessor real-time embedded systems. In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 1148–1151. IEEE.
- Liang, W.-Y., Yuan, Y., and Lin, H.-J. (2023). A performance study on the throughput and latency of Zenoh, MQTT, Kafka, and DDS. arXiv preprint arXiv:2303.09419.
- López Escobar, J. J., Díaz-Redondo, R. P., and Gil-Castiñeira, F. (2024). Unleashing the power of decentralized serverless IoT dataflow architecture for the Cloud-to-Edge Continuum: a performance comparison. Annals of Telecommunications, 79(3):135-148.

Anexos

Característica	NodeMCU V3	STM32F103C8T6	DOIT ESP32
Arquitetura	32 bits	32 bits	32 bits
Clock	80MHz	72MHz	80 à 240 MHz
WiFi	Sim	Não	Sim
Bluetooth	Não	Não	Sim
RAM	160KB	20KB	512KB
FLASH	16MB	256KB	4MB
GPIOs	17	36	36
Interface	SPI/I2C/UART/I2S/SDIO	SPI/I2C/UART	SPI/I2C/UART/I2S/CAN/SDIO/IR/PWM

