Towards the scalable inversion of structured matrices with standard admissibility conditions

Jack Poulson Yingzhou Li Lexing Ying

Department of Mathematics Stanford University

KAUST Seminar Thuwal, Saudi Arabia October 28, 2014

- Why do Green's functions from certain second-order elliptic equations have numerically low-rank long-range interactions? (Nested applications of Poincaré and Caccioppoli inequalities)
- Why is general dense H-matrix factorization not effectively parallelizable? (Long critical path)
- Why is Newton-Schulz inversion tempting? (Each iteration is H-matrix composition, which can be fast and parallel)
- 4. Why is a good initial guess for Newton-Schulz needed? (Otherwise, interior iterates will not be cheaply approximable)
- 5. What is a reasonable initial guess that can be computed scalably? (An inverse of a weakly-admissible \mathcal{H}^2 -matrix)
- Some results on scalable H-matrix composition and a discussion of future work

- Why do Green's functions from certain second-order elliptic equations have numerically low-rank long-range interactions? (Nested applications of Poincaré and Caccioppoli inequalities)
- 2. Why is general dense \mathcal{H} -matrix factorization not effectively parallelizable? (Long critical path)
- Why is Newton-Schulz inversion tempting? (Each iteration is H-matrix composition, which can be fast and parallel)
- 4. Why is a good initial guess for Newton-Schulz needed? (Otherwise, interior iterates will not be cheaply approximable)
- 5. What is a reasonable initial guess that can be computed scalably? (An inverse of a weakly-admissible \mathcal{H}^2 -matrix)
- Some results on scalable H-matrix composition and a discussion of future work

- Why do Green's functions from certain second-order elliptic equations have numerically low-rank long-range interactions? (Nested applications of Poincaré and Caccioppoli inequalities)
- 2. Why is general dense \mathcal{H} -matrix factorization not effectively parallelizable? (Long critical path)
- 3. Why is Newton-Schulz inversion tempting? (Each iteration is *H-matrix composition, which can be fast and parallel*)
- 4. Why is a good initial guess for Newton-Schulz needed? (Otherwise, interior iterates will not be cheaply approximable)
- 5. What is a reasonable initial guess that can be computed scalably? (An inverse of a weakly-admissible \mathcal{H}^2 -matrix)
- Some results on scalable H-matrix composition and a discussion of future work

- Why do Green's functions from certain second-order elliptic equations have numerically low-rank long-range interactions? (Nested applications of Poincaré and Caccioppoli inequalities)
- 2. Why is general dense \mathcal{H} -matrix factorization not effectively parallelizable? (Long critical path)
- 3. Why is Newton-Schulz inversion tempting? (Each iteration is *H-matrix composition, which can be fast and parallel*)
- Why is a good initial guess for Newton-Schulz needed? (Otherwise, interior iterates will not be cheaply approximable)
- 5. What is a reasonable initial guess that can be computed scalably? (An inverse of a weakly-admissible \mathcal{H}^2 -matrix)
- Some results on scalable H-matrix composition and a discussion of future work

- Why do Green's functions from certain second-order elliptic equations have numerically low-rank long-range interactions? (Nested applications of Poincaré and Caccioppoli inequalities)
- 2. Why is general dense \mathcal{H} -matrix factorization not effectively parallelizable? (Long critical path)
- 3. Why is Newton-Schulz inversion tempting? (Each iteration is *H-matrix composition, which can be fast and parallel*)
- Why is a good initial guess for Newton-Schulz needed? (Otherwise, interior iterates will not be cheaply approximable)
- 5. What is a reasonable initial guess that can be computed scalably? (An inverse of a weakly-admissible \mathcal{H}^2 -matrix)
- Some results on scalable H-matrix composition and a discussion of future work

- Why do Green's functions from certain second-order elliptic equations have numerically low-rank long-range interactions? (Nested applications of Poincaré and Caccioppoli inequalities)
- 2. Why is general dense \mathcal{H} -matrix factorization not effectively parallelizable? (Long critical path)
- 3. Why is Newton-Schulz inversion tempting? (Each iteration is *H-matrix composition, which can be fast and parallel*)
- Why is a good initial guess for Newton-Schulz needed? (Otherwise, interior iterates will not be cheaply approximable)
- 5. What is a reasonable initial guess that can be computed scalably? (An inverse of a weakly-admissible \mathcal{H}^2 -matrix)
- Some results on scalable H-matrix composition and a discussion of future work

Outline

Low-rank approximations

Why \mathcal{H} -matrix factorization is problematic

The promise of Newton-Schulz inversion

The need for a good initial guess

Parallel weakly-admissible \mathcal{H}^2 inversion

Some distributed \mathcal{H} -matrix composition results

Future work

Piecewise constant approximation bound via Poincaré

[Bebendorf/Hackbusch-2002]

For convex $D \subset \mathbb{R}^d$, use Poincaré over convex covering $\{D_i\}_{i=0}^{\ell^d}$:

$$||u - \bar{u}||_{L^2(D_i)} \le \frac{\operatorname{diam}(D_i)}{\pi} ||\nabla u||_{L^2(D_i)}, \ u \in H^1(D).$$

Piecewise constant approximation bound via Poincaré

[Bebendorf/Hackbusch-2002]

For convex $D \subset \mathbb{R}^d$, use Poincaré over convex covering $\{D_i\}_{i=0}^{\ell^d}$:

$$\|u - \bar{u}\|_{L^2(D)} \leq \frac{2^{1/d} \operatorname{diam}(D)}{\pi \ell} \|\nabla u\|_{L^2(D)}, \ \ u \in H^1(D).$$

Bounding the gradient via Caccioppoli

[Bebendorf/Hackbusch-2002]

Let $u\in H_1(D)$, $D\subset\Omega$, be $C_0^\infty(D)$ -weakly L-harmonic with respect to $Lv=-\sum_{i,j=1}^d\partial_j(c_{ij}\partial_iv)$, where $C=C(x)=(c_{ij})_{ij}$, $c_{ij}\in L^\infty(\Omega)$, is symmetric with condition number bound κ_C . Then, for $K\subset D$,

$$\|\nabla u\|_{L^2(K)} \leq \frac{4\sqrt{\kappa_C}}{\operatorname{dist}(K,\partial D)} \|u\|_{L^2(D)}.$$

Combined with the previous result, we can bound the piecewise constant approximation of u in K with respect to $||u||_{L^2(D)}$.

Bounding the gradient via Caccioppoli

[Bebendorf/Hackbusch-2002]

Let $u \in H_1(D)$, $D \subset \Omega$, be $C_0^{\infty}(D)$ -weakly L-harmonic with respect to $Lv = -\sum_{i,j=1}^d \partial_j (c_{ij}\partial_i v)$, where $C = C(x) = (c_{ij})_{ij}$, $c_{ij} \in L^{\infty}(\Omega)$, is symmetric with condition number bound κ_C . Then, for $K \subset D$,

$$\|\nabla u\|_{L^2(K)} \leq \frac{4\sqrt{\kappa_C}}{\operatorname{dist}(K,\partial D)} \|u\|_{L^2(D)}.$$

Combined with the previous result, we can bound the piecewise constant approximation of u in K with respect to $||u||_{L^2(D)}$.

Exponential convergence via nested Caccioppoli

[Bebendorf/Hackbusch-2002]

Poincaré combined with Caccioppoli of K w.r.t. D yields the ℓ^d -dim. approx:

$$\|u - \bar{u}\|_{L^2(K)} \leq \frac{\gamma \operatorname{diam}(K)}{\operatorname{dist}(K, \partial D)\ell} \|u\|_{L^2(D)}, \quad \gamma \equiv \frac{2^{2+1/d} \sqrt{\kappa_C}}{\pi},$$

where $u \in H^1(D)$ is weakly L-harmonic. But consider repeated application of inequality over decreasing expansions of K...

Exponential convergence via nested Caccioppoli

[Bebendorf/Hackbusch-2002]

Let $r_j = (1 - j/i) \operatorname{dist}(K, \partial D)$ and $K_j = \{x \in D : \operatorname{dist}(x, K) \le r_j\}$. Setting $\rho \equiv \operatorname{dist}(K, \partial D)/\operatorname{diam}(K)$, $u_0 \equiv u$, and $u_{j+1} \equiv u_j|_{K_{j+1}} - \bar{u}_j$, then we have the $(j+1)\ell^d$ -dim. approx. error:

$$\|u_{j+1}\|_{L^{2}(\mathcal{K}_{j+1})} \leq \frac{i\gamma(1+2\rho)}{\rho\ell} \|u_{j}\|_{L^{2}(\mathcal{K}_{j})} \leq \left(\frac{i\gamma(1+2\rho)}{\rho\ell}\right)^{j} \|u\|_{L^{2}(\mathcal{K}_{0})}$$

Approximating the Green's function

[Bebendorf/Hackbusch-2002]

Let $K_1, K_2 \subset \Omega$ such that $dist(K_1, K_2) \geq \rho \operatorname{diam}(K_2) > 0$. Then, for any $\epsilon \in (0, 1)$, there is an approximation

$$G_k(x,y) = \sum_{i=1}^k u_i(x)v_i(y)$$
 with $k = O(\log(\frac{1}{\epsilon})^{d+1})$, and

$$\|G(x,\cdot)-G_k(x,\cdot)\|_{L^2(K_2)} \le \epsilon \|G(x,\cdot)\|_{L^2(\hat{K_2})}, \text{ for all } x \in K_1,$$

where $\hat{\mathcal{K}}_2 \equiv \{y \in \Omega : \operatorname{dist}(y, \mathcal{K}_2) \leq \frac{\rho}{2} \operatorname{diam}(\mathcal{K}_2)\}.$

Outline

Low-rank approximations

Why \mathcal{H} -matrix factorization is problematic

The promise of Newton-Schulz inversion

The need for a good initial guess

Parallel weakly-admissible \mathcal{H}^2 inversion

Some distributed \mathcal{H} -matrix composition results

Future work

Factoring (dense) \mathcal{H} -matrices

Four-level 2D \mathcal{H} -matrix with standard admissibility: $\min(\operatorname{diam}(K_1), \operatorname{diam}(K_2)) \leq \rho \operatorname{dist}(K_1, K_2)$

- ► Critical path generally $\Omega(N)$; (approximate) factorization requires $O(N \lg^2 N)$ work, so $O(\lg^2 N)$ parallel speedup...
- Multifrontal techniques boil sparse factorization down to dense interface problems [Grasedyck et al.-2009,Xia et al.-2009]

Outline

Low-rank approximations

Why \mathcal{H} -matrix factorization is problematic

The promise of Newton-Schulz inversion

The need for a good initial guess

Parallel weakly-admissible \mathcal{H}^2 inversion

Some distributed \mathcal{H} -matrix composition results

Future work

Applying Newton's method to

$$f(X) = X^{-1} - A$$

yields the iteration

$$X_{k+1} := (2I - X_k A)X_k$$

Suggested for parallel \mathcal{H} -matrix inversion by [Kriemann-2004] as alternative to \mathcal{H} -matrix factorization.

Ideally $O(\lg(\kappa(A)))$ approximate \mathcal{H} -matrix compositions are required, each involving $O(N\lg^2 N)$ operations

Applying Newton's method to

$$f(X) = X^{-1} - A$$

yields the iteration

$$X_{k+1} := (2I - X_k A)X_k$$

Suggested for parallel \mathcal{H} -matrix inversion by [Kriemann-2004] as alternative to \mathcal{H} -matrix factorization.

Ideally $O(\lg(\kappa(A)))$ approximate \mathcal{H} -matrix compositions are required, each involving $O(N\lg^2 N)$ operations

Applying Newton's method to

$$f(X) = X^{-1} - A$$

yields the iteration

$$X_{k+1} := (2I - X_k A)X_k$$

Suggested for parallel \mathcal{H} -matrix inversion by [Kriemann-2004] as alternative to \mathcal{H} -matrix factorization.

Ideally $O(\lg(\kappa(A)))$ approximate \mathcal{H} -matrix compositions are required, each involving $O(N\lg^2 N)$ operations

Applying Newton's method to

$$f(X) = X^{-1} - A$$

yields the iteration

$$X_{k+1} := (2I - X_k A)X_k$$

Suggested for parallel \mathcal{H} -matrix inversion by [Kriemann-2004] as alternative to \mathcal{H} -matrix factorization.

Ideally $O(\lg(\kappa(A)))$ approximate \mathcal{H} -matrix compositions are required, each involving $O(N\lg^2 N)$ operations

Outline

Low-rank approximations

Why $\mathcal{H}\text{-matrix}$ factorization is problematic

The promise of Newton-Schulz inversion

The need for a good initial guess

Parallel weakly-admissible \mathcal{H}^2 inversion

Some distributed \mathcal{H} -matrix composition results

Future work

For large classes of equations (see, e.g., [Hackbusch/Bebendorf-2003]), A and A^{-1} are known to be representable as \mathcal{H} -matrices with low ranks.

But what about the intermediate iterates?

$$X_{k+1} := (2I - X_k A)X_k$$

Approximate matrix iterations studied in [Hackbusch/Khoromskij/Tyrtyshnikov-2007]

Their conclusion: Intermediate iterates typically **NOT** representable, but with a sufficiently good initial guess, \mathcal{H} -matrix Newton-Schulz converges.

For large classes of equations (see, e.g., [Hackbusch/Bebendorf-2003]), A and A^{-1} are known to be representable as \mathcal{H} -matrices with low ranks.

But what about the intermediate iterates?

$$X_{k+1} := (2I - X_k A)X_k$$

Approximate matrix iterations studied in [Hackbusch/Khoromskij/Tyrtyshnikov-2007]

Their conclusion: Intermediate iterates typically **NOT** representable, but with a sufficiently good initial guess, \mathcal{H} -matrix Newton-Schulz converges.

For large classes of equations (see, e.g., [Hackbusch/Bebendorf-2003]), A and A^{-1} are known to be representable as \mathcal{H} -matrices with low ranks.

But what about the intermediate iterates?

$$X_{k+1} := (2I - X_k A)X_k$$

Approximate matrix iterations studied in [Hackbusch/Khoromskij/Tyrtyshnikov-2007]

Their conclusion: Intermediate iterates typically **NOT** representable, but with a sufficiently good initial guess, \mathcal{H} -matrix Newton-Schulz converges.

For large classes of equations (see, e.g., [Hackbusch/Bebendorf-2003]), A and A^{-1} are known to be representable as \mathcal{H} -matrices with low ranks.

But what about the intermediate iterates?

$$X_{k+1} := (2I - X_k A)X_k$$

Approximate matrix iterations studied in [Hackbusch/Khoromskij/Tyrtyshnikov-2007]

Their conclusion: Intermediate iterates typically **NOT** representable, but with a sufficiently good initial guess, \mathcal{H} -matrix Newton-Schulz converges.

For large classes of equations (see, e.g., [Hackbusch/Bebendorf-2003]), A and A^{-1} are known to be representable as \mathcal{H} -matrices with low ranks.

But what about the intermediate iterates?

$$X_{k+1} := (2I - X_k A)X_k$$

Approximate matrix iterations studied in [Hackbusch/Khoromskij/Tyrtyshnikov-2007]

Their conclusion: Intermediate iterates typically **NOT** representable, but with a sufficiently good initial guess, \mathcal{H} -matrix Newton-Schulz converges.

Outline

Low-rank approximations

Why \mathcal{H} -matrix factorization is problematic

The promise of Newton-Schulz inversion

The need for a good initial guess

Parallel weakly-admissible \mathcal{H}^{2} inversion $% \mathcal{H}^{2}$

Some distributed \mathcal{H} -matrix composition results

Future work

Parallel weakly-admissible \mathcal{H}^2 -matrix factorization

Weakly-admissible \mathcal{H}^2 -matrices can be scalably factored in parallel (see, e.g., [Wang et al.-2012]) via ULV decompositions [Chandrasekaran/Gu/Pals-2006].

Weak admiss. and shared bases are crucial for the parallelization! Is the rank needed for initializing a convergent Newton-Schulz sufficiently lower than required for accurate direct inversion?

Outline

Low-rank approximations

Why \mathcal{H} -matrix factorization is problematic

The promise of Newton-Schulz inversion

The need for a good initial guess

Parallel weakly-admissible \mathcal{H}^2 inversion

Some distributed \mathcal{H} -matrix composition results

Future work

Bulk synchronous \mathcal{H} -matrix composition

Can vastly generalize three-stage \mathcal{H} -matrix/vector multiplication scheme of [Kriemann-2004] to handle composition.¹

Main idea: Aggressively combine phases of all \mathcal{H} -matrix application suboperations, resulting in O(1) communication/computation phases.

¹Cf. [Izadi-2012]

Bulk synchronous \mathcal{H} -matrix composition

Can vastly generalize three-stage \mathcal{H} -matrix/vector multiplication scheme of [Kriemann-2004] to handle composition.¹

Main idea: Aggressively combine phases of all \mathcal{H} -matrix application suboperations, resulting in O(1) communication/computation phases.

¹Cf. [Izadi-2012]

2D standard admissibility

2D standard admissibility (Process 0/8)

2D standard admissibility (Process 1/8)

2D standard admissibility (Process 2/8)

2D standard admissibility (Process 3/8)

2D standard admissibility (Process 4/8)

2D standard admissibility (Process 5/8)

2D standard admissibility (Process 6/8)

2D standard admissibility (Process 7/8)

Ghosted 2D standard admissibility (Process 0/8)

Ghosted 2D standard admissibility (Process 1/8)

Ghosted 2D standard admissibility (Process 2/8)

Ghosted 2D standard admissibility (Process 3/8)

Ghosted 2D standard admissibility (Process 4/8)

Ghosted 2D standard admissibility (Process 5/8)

Ghosted 2D standard admissibility (Process 6/8)

Ghosted 2D standard admissibility (Process 7/8)

Communication phases for low-rank accumulation

Cost analysis

	Method	γ	α	β
Full -	Householder QR	$O(r^2 \frac{N}{p} \lg^3 N)$	$O(r \lg^2 p)$	$O(r^2\lg^4p + r^2\frac{N}{p})$
	TSQR	$O(r^3 \lg^5 p + r^2 \frac{N}{p} \lg^3 N)$	O(lg p)	$O(r^2\lg^4p + r^2\frac{N}{p})$
	CholeskyQR (SVD)	$O(r^3\lg^4p + r^2\frac{N}{p}\lg^3N)$	O(lg p)	$O(r^2\lg^4p + r^2\frac{N}{p})$
k levels	Householder QR	$O(kr^2 \frac{N}{\rho} \lg^2 N)$	$O(r \lg^2 p)$	$O(kr^2\lg^3p + r^2\frac{N}{p})$
	TSQR	$O(k^2r^3\lg^3p + kr^2\frac{N}{p}\lg^2N)$	$O(\frac{\lg^2 p}{k})$	$O(kr^2\lg^3p + r^2\frac{N}{p})$
	CholeskyQR (SVD)	$O(kr^2\lg^3p + kr^2\frac{N}{p}\lg^2N)$	$O(\frac{\lg^2 p}{k})$	$O(kr^2\lg^3p + r^2\frac{N}{p})$
Single level	Householder QR	$O(r^2 \frac{N}{\rho} \lg^2 N)$	$O(r \lg^2 p)$	$O(r^2 \lg^3 p + r^2 \frac{N}{p})$
	TSQR	$O(r^3 \lg^3 p + r^2 \frac{N}{p} \lg^2 N)$	$O(\lg^2 p)$	$O(r^2 \lg^3 p + r^2 \frac{N}{p})$
	CholeskyQR (SVD)	$O(r^2\lg^3p + r^2\frac{N}{\rho}\lg^2N)$	$O(\lg^2 p)$	$O(r^2\lg^3p + r^2\frac{N}{p})$

2D composition with weak admissibility (r = 8)

2D composition with standard admissibility (r = 8)

3D composition with weak admissibility (r = 8)

3D composition with edge admissibility (r = 8)

Outline

Low-rank approximations

Why \mathcal{H} -matrix factorization is problematic

The promise of Newton-Schulz inversion

The need for a good initial guess

Parallel weakly-admissible \mathcal{H}^2 inversion

Some distributed \mathcal{H} -matrix composition results

Future work

- ► Efficient parallel conversion of a weakly-admissible H² ULV factorization to H-matrix form [Lin/Lu/Ying-2009,Martinsson-2011]
- ▶ Probing for the minimum viable \mathcal{H}^2 rank
- Large-scale dense inversion tests
- Extend the above to structured multifrontal method with standard admissibility
- ▶ Improving data locality for *H*-matrix application
- Support for more general topologies
- ► Hierarchical Interpolative Factorizations [Ho/Ying-2013,cf. Gillman et al.] instead of HSS ULV?

- ► Efficient parallel conversion of a weakly-admissible H² ULV factorization to H-matrix form [Lin/Lu/Ying-2009,Martinsson-2011]
- ▶ Probing for the minimum viable \mathcal{H}^2 rank
- Large-scale dense inversion tests
- Extend the above to structured multifrontal method with standard admissibility
- Improving data locality for H-matrix application
- Support for more general topologies
- ► Hierarchical Interpolative Factorizations [Ho/Ying-2013,cf. Gillman et al.] instead of HSS ULV?

- ► Efficient parallel conversion of a weakly-admissible H² ULV factorization to H-matrix form [Lin/Lu/Ying-2009,Martinsson-2011]
- ▶ Probing for the minimum viable \mathcal{H}^2 rank
- Large-scale dense inversion tests
- Extend the above to structured multifrontal method with standard admissibility
- ► Improving data locality for H-matrix application
- Support for more general topologies
- ► Hierarchical Interpolative Factorizations [Ho/Ying-2013,cf. Gillman et al.] instead of HSS ULV?

- ► Efficient parallel conversion of a weakly-admissible H² ULV factorization to H-matrix form [Lin/Lu/Ying-2009,Martinsson-2011]
- ▶ Probing for the minimum viable \mathcal{H}^2 rank
- Large-scale dense inversion tests
- Extend the above to structured multifrontal method with standard admissibility
- ► Improving data locality for H-matrix application
- Support for more general topologies
- ► Hierarchical Interpolative Factorizations [Ho/Ying-2013,cf. Gillman et al.] instead of HSS ULV?

- ► Efficient parallel conversion of a weakly-admissible H² ULV factorization to H-matrix form [Lin/Lu/Ying-2009,Martinsson-2011]
- ▶ Probing for the minimum viable \mathcal{H}^2 rank
- Large-scale dense inversion tests
- Extend the above to structured multifrontal method with standard admissibility
- ► Improving data locality for H-matrix application
- Support for more general topologies
- ► Hierarchical Interpolative Factorizations [Ho/Ying-2013,cf. Gillman et al.] instead of HSS ULV?

- ► Efficient parallel conversion of a weakly-admissible H² ULV factorization to H-matrix form [Lin/Lu/Ying-2009,Martinsson-2011]
- ▶ Probing for the minimum viable \mathcal{H}^2 rank
- Large-scale dense inversion tests
- Extend the above to structured multifrontal method with standard admissibility
- ► Improving data locality for H-matrix application
- Support for more general topologies
- ► Hierarchical Interpolative Factorizations [Ho/Ying-2013,cf. Gillman et al.] instead of HSS ULV?

- ► Efficient parallel conversion of a weakly-admissible H² ULV factorization to H-matrix form [Lin/Lu/Ying-2009,Martinsson-2011]
- Probing for the minimum viable H² rank
- Large-scale dense inversion tests
- Extend the above to structured multifrontal method with standard admissibility
- ► Improving data locality for H-matrix application
- Support for more general topologies
- ► Hierarchical Interpolative Factorizations [Ho/Ying-2013,cf. Gillman et al.] instead of HSS ULV?

Acknowledgments and Availability

Computational resources

My host

David Keyes and the ECRC

Availability

Prototype implementations available at bitbucket.org/poulson/dmhm

Questions?

Memory usage

Update Method	Sequential Memory	Parallel Memory	
Full	$O(rN \lg^2 N)$	$O(r^2\lg^3p + r^2\tfrac{N}{\rho}\lg^3N)$	
k levels	O(krNlg N)	$O(k^2r^2\lg p + k^2r^2\frac{N}{p}\lg N)$	
Single level	O(rNlg N)	$O(r^2 \lg p + r^2 \frac{N}{p} \lg N)$	