Векторы

(нужно добавить типовые задания из 5_1)

Вектор — направленный отрезок

Коллинеарные векторы — ненулевые векторы, лежащие на одной прямой или на параллельных прямых

Нулевой вейстор коллинеарен любой вектору \vec{c}

Кодиленеариые венторы, от с имеющие одинаковые направления, называют сонаправленными

Коллинеарные векторы, имеющие противоположные направления, называют противоположно направленными

Равные

векторы

$$\vec{a} = \vec{b}$$

- $1.\vec{a} \uparrow \uparrow \vec{b}$
- $2. |\vec{a}| = |\vec{b}|$

Противоположные векторы

$$\vec{a} = -\vec{b}$$

- $1.\vec{a} \uparrow \downarrow \vec{b}$
- $2. |\vec{a}| = |\vec{b}|$

векторы, длины которых равны противоположно направленные векторы, длины которых равны

$ABCDA_1B_1C_1D_1$ —куб

Равные векторы:

Противоположные векторы:

$ABCDA_1B_1C_1D_1$ —куб

Равные векторы:

$$\overrightarrow{A_1D_1} = \overrightarrow{AD}$$

$$\overrightarrow{A_1B_1} = -\overrightarrow{CD}$$

Противоположные векторы:

$$\overrightarrow{A_1D_1} = -\overrightarrow{CB}$$

От любой точки M плоскости можно отложить вектор, равный данному вектору \vec{a} , и притом только один.

От любой точки M пространства можно отложить вектор, равный данному вектору \vec{a} , и притом только один.

Вектор \vec{a} отложен ρ т точки M.

Сложение и вычитание векторов

Правило треугольника

1.
$$\overrightarrow{AB} = \overrightarrow{a}$$

2.
$$\overrightarrow{BC} = \overrightarrow{b}$$

3.
$$\overrightarrow{AC} = \overrightarrow{a} + \overrightarrow{b}$$

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

$$\overrightarrow{KL} + \overrightarrow{LM} = \overrightarrow{KM}$$

$$\overrightarrow{XY} + \overrightarrow{YZ} = \overrightarrow{XZ}$$

$$\overrightarrow{RS} + \overrightarrow{ST} = \overrightarrow{RT}$$

Правило треугольника

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$

Правило параллелограмма

Законы сложения векторов

переместительный

сочетательный

Разность векторов

 \vec{a}

$$\vec{a} - \vec{b} = \vec{c}$$

$$\vec{c} + \vec{b}$$

Разностью векторов \vec{a} и \vec{b} называют такой вектор \vec{c} , сумма которого с вектором \vec{b} равна вектору \vec{a} .

 \vec{a} \vec{a} \vec{b} \vec{a} \vec{b} \vec{b} \vec{c} \vec{c}

Сумма нескольких векторов

B Правило многоуголь \overrightarrow{H} ика 2. $\overrightarrow{BC} = \overrightarrow{b}$

 \vec{a}

2.
$$\overrightarrow{BC} = \overrightarrow{b}$$

3.
$$\overrightarrow{CD} = \overrightarrow{c}$$

4.
$$\overrightarrow{AD} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$$

Умножение вектора на число

Определение. Произведением ненулевого вектора \vec{a} на число k называется такой вектор \vec{b} , длина которого равна $|k| \cdot |\vec{a}|$.

$$\mathbf{k} \cdot \overrightarrow{\mathbf{a}} = \overrightarrow{\mathbf{b}}$$

$$\vec{a} \uparrow \uparrow \vec{b}$$
, если $k \geq 0$

 $\vec{a} \uparrow \downarrow \vec{b}$, если k < 0

$$1. \overrightarrow{a} \cdot 0 = \overrightarrow{0}$$

 $2. \vec{a}$ и $k \cdot \vec{a}$ —коллинеарны

Следствия

$$|\vec{a}\vec{p}$$
0

 $k \cdot \overrightarrow{a}$

Свойства произведения вектора на число

1.
$$(kl)\vec{a} = k(l\vec{a})$$
 сочетательный закон

2.
$$(k+l)\vec{a} = k\vec{a} + l\vec{a}$$
 1-ый распределительный закон

3.
$$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$$
 2-ой распределительный закон

позволяют выполнять преобразования в выражениях, содержащих суммы, разности векторов и произведения векторов на числа, так же, как и в числовых выражениях

a)
$$2(\vec{m} + \vec{n}) - 3(4\vec{m} - \vec{n}) + \vec{m} =$$

= $2\vec{m} + 2\vec{n} - 12\vec{m} + 3\vec{n} + \vec{m} = 5\vec{n} - 9\vec{m}$

6)
$$\vec{m} - 3(\vec{n} - 2\vec{m} + \vec{p}) + 5(\vec{p} - 4\vec{m}) =$$

= $\vec{m} - 3\vec{n} + 6\vec{m} - 3\vec{p} + 5\vec{p} - 20\vec{m} =$
= $-13\vec{m} - 3\vec{n} + 2\vec{p}$

Компланарные векторы

Векторы называются компланарными, если при откладывании их от одной и той же точки они будут лежать в одной плоскости

Векторы называются компланарными, если имеются равные им векторы, лежащие в одной плоскости

Любые **2** вектора являются **компланарными**

3 вектора являются компланарными, если среди них есть пара коллинеарных векторов

Теорема. (признак компланарности трёх векторов)

Если вектор \vec{c} можно разложить по векторам \vec{a} и \vec{b} : $\vec{c} = x\vec{a} + y\vec{b}$, то векторы \vec{a} , \vec{b} и \vec{c} компланарны.

Теорема. (свойство трёх компланарных векторов)

Если векторы \vec{a} , \vec{b} и \vec{c} компланарны $(\vec{a} \parallel \vec{b})$, то вектор \vec{c} можно разложить по векторам \vec{a} и \vec{b} : $\vec{c} = x\vec{a} + y\vec{b}$.

Доказательство. $x\vec{a}$ \vec{a} B \vec{yb}

Правило параллелепипеда

Правило параллелепипеда

Правило параллелепипеда

$$\vec{a} + \vec{b} + \vec{c} = \overrightarrow{OD}$$

 \vec{a}

 $\overrightarrow{\boldsymbol{c}}$

Разложение вектора по двум неколлинеарным векторам

Вектор \vec{p} разложен по неколлинеарным векторам \vec{a} и \vec{b} . x,y- коэффициентыразложения.

$$\vec{p} = x\vec{a} + y\vec{b}$$

Теорема

На плоскости любой вектор можно разложить по двум данным неколлинеарным векторам, причём коэффициенты разложения определяются единственным образом

Прямоугольная система координат в пространстве

Рене Декарт

Французский философ, математик, механик, физик и физиолог

Создатель **аналитической геометрии** и современной алгебраической символики

1596 - 1650

Декартова прямоугольная система координат на плоскости $M(x_1; y_1)$ y_1 1 χ ось абсцисс начало координат ось ординат

Декартова прямоугольная система координат в пространстве

Декартова прямоугольная система координат в пространстве *ОХҮХ*

Координатные оси:

Ox — ось абсцисс Oy — ось орлинат Oz

Декартова прямоугольная система координат в пространстве *ОХҮZ*

Координатные оси:

0x — ось абсцисс

Оу -ось ординат

Oz — ось аппликат

Координатные плоскости:

Oxy

Oyz

0xz

Декартова прямоугольная система координат в пространстве *ОХҮZ*

Декартова прямоугольная система координат в пространстве *ОХҮZ*

Координаты вектора

$$|\vec{\imath}| = 1, |\vec{\jmath}| = 1$$
 единичные векторы

 \vec{i} , \vec{j} —координатные векторы

$$\vec{p} = x\vec{i} + y\vec{j}$$

 \pmb{x}, \pmb{y} –координатывектора $\overrightarrow{\pmb{p}}$

$$\overrightarrow{p} \{x; y\}$$

Теорема

Любой вектор можно разложить по трём некомпланарным векторам, причём коэффициенты разложения определяются единствен $\vec{l}, \vec{l}, \vec{k}$ —координатные векторы

$$\vec{p} = x\vec{i} + y\vec{j} + z\vec{k}$$

 $\{x; y; z\}$ координаты вектора \vec{p}

Пользуясь разложениями векторов по координатным векторам, записать их координаты

$$\vec{a} = 3\vec{i} + 2\vec{j} - 5\vec{k}$$

$$\vec{a}$$
 {3; 2; -5}

$$\vec{b} = -5\vec{\imath} + 3\vec{\jmath} - \vec{k}$$

$$\vec{b}$$
 {-5; 3; -1}

$$\vec{c} = \vec{\iota} - \vec{\jmath}$$

$$\vec{c}$$
 {1; -1; 0}

$$\vec{d} = \vec{j} + \vec{k}$$

$$\vec{d}$$
 {0; 1; 1}

$$\vec{m} = -\vec{\imath} + \vec{k}$$

$$\vec{m} \{-1; 0; 1\}$$

$$\vec{n} = 7\vec{k}$$

$$\vec{n}$$
 {0; 0; 7}

Пользуясь координатами векторов, запишем их разложения по координатным

$$\vec{a} = 5\vec{i} - \vec{j} + 2\vec{k}$$

$$\vec{b} \{-3; -1; 0\}$$
 $\vec{b} = -3\vec{i} - \vec{j}$

$$\vec{b} = -3\vec{\imath} - \vec{\jmath}$$

$$\vec{c}$$
 {0; 1; 0}

$$\vec{c} = \vec{j}$$

$$\vec{d}$$
 {0; 0; 0}

$$\vec{d} = \vec{0}$$

Координаты вектора

 $\vec{a} \{x_1; y_1; z_1\} \vec{b} \{x_2; y_2; z_2\}$

$$\vec{a} + \vec{b} \{x_1 + x_2; y_1 + y_2; z_1 + z_2\}$$

 $\vec{a} \{x_1; y_1; z_1\} \vec{b} \{x_2; y_2; z_2\}$

$$\vec{a} - \vec{b} \{x_1 - x_2; y_1 - y_2; z_1 - z_2\}$$

 $\vec{a} \{x_1; y_1; z_1\}k$

 $\vec{ka} \{kx_1; ky_1; kz_1\}$

Позволяют определять координаты любого вектора, представленного в виде алгебраической суммы данных векторов с известными

координатами

Связь между координатами векторов и координатами точек

ОМ радиус-векторточки*М*

$$M(x; y)$$

$$\downarrow \downarrow$$
 $\overrightarrow{OM} \{x; y\}$

Координаты точки Иравны соответствующим координатам её радиус-вектора.

$$\overrightarrow{OA} \{x_1; y_1; z_1\}$$

$$\overrightarrow{OB} \{x_2; y_2; z_2\}$$

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

$$\overrightarrow{AB} \{x_2 - x_1; y_2 - y_1; z_2 - z_1\}$$

Каждая координата вектора равна разности соответствующих координат его конца и начала

Простейшие задачи в координатах

1. Определение координат середины отрезка

$$\overrightarrow{OC} = \frac{1}{2} \left(\overrightarrow{OA} + \overrightarrow{OB} \right)$$

 \overrightarrow{OA} —радиус-вектор точки A

 \overrightarrow{OB} —радиус-вектор точки B

 $\overrightarrow{OA} \{x_1; y_1; z_1\}$

 $\overrightarrow{OB} \{x_2; y_2; z_2\}$

 $\overrightarrow{OA} + \overrightarrow{OB} \{x_1 + x_2; y_1 + y_2; z_1 + z_2\}$

 $\frac{1}{2}(\overrightarrow{OA} + \overrightarrow{OB}) \left\{ \frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}; \frac{z_1 + z_2}{2} \right\}$

 $\overrightarrow{OC} \left\{ \frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}; \frac{z_1 + z_2}{2} \right\}$

Каждая координата середины отрезка равна полусумме соответствующих координат его концов

2. Вычисление длины вектора по его координатам

Длина вектора $\hat{a}\{x;y;z\}$ равна корню квадратному из суммы квадратов его координат.

Задача. Вычислить длину вектора \overrightarrow{AB} .

a)
$$A(-1; 0; 2), B(1; -2; 3);$$

6)
$$A(-35; -17; 20)$$
, $B(-34; -5; 8)$.

$$\vec{a} \{x; y; z\}$$
$$|\vec{a}| = \sqrt{x^2 + y^2 + z^2}$$

Perion; 2), B(1; -2; 3)

$$\overrightarrow{AB}$$
 {2; -2; 1}

$$AB \{1-\sqrt{(2^21)};(-2)^20;3^2-2\}$$

$$|\overrightarrow{AB}| = \sqrt{4+4+1}$$

$$|\overrightarrow{AB}| = \sqrt{9}$$

$$|\overrightarrow{AB}| = 3$$

б)
$$A(-35; -17; 20), B(-34; -5; 8)$$

$$\overrightarrow{AB}$$
 {-34 - (-35); -5 - (-17); 8 - 20}

$$\overrightarrow{AB}$$
 {1; 12; -12}

$$|\overrightarrow{AB}| = \sqrt{1^2 + 12^2 + (-12)^2}$$

$$\left| \overrightarrow{AB} \right| = \sqrt{1 + 144 + 144}$$

$$|\overrightarrow{AB}| = \sqrt{289}$$

$$|\overrightarrow{AB}| = 17$$

3. Определение расстояния между двумя точками

Скалярное произведение векторов

Скалярное произведение двух векторов — произведение их длин на косинус угла между ними

Скалярное произведение векторов в координатах

$$\vec{a} \{x_1; y_1\}$$

$$\vec{b} \{x_2; y_2\}$$

$$\vec{a} \cdot \vec{b} = x_1 \cdot x_2 + y_1 \cdot y_2$$

Скалярное произведение векторов в координатах

$$\vec{a} \{x_1; y_1; z_1\}$$

$$\vec{b} \{x_2; y_2; z_2\}$$

$$\vec{a} \cdot \vec{b} = x_1 \cdot x_2 + y_1 \cdot y_2 + z_1 \cdot z_2$$

$$\vec{a}$$
 {1; -1; 2}

$$\vec{b}$$
 {-1; 1; 1}

$$\vec{c}$$
 {5; 6; 2}

$$\vec{a} \cdot \vec{c} = 1 \cdot 5 + (-1) \cdot 6 + 2 \cdot 2 = 5 - 6 + 4 = 3$$

$$\vec{a} \cdot \vec{b} = 1 \cdot (-1) + (-1) \cdot 1 + 2 \cdot 1 = -1 - 1 + 2 = 0$$

$$\vec{b} \cdot \vec{c}$$

$$\vec{a} \cdot \vec{a}$$

$$\sqrt{ec{b}}$$
 — —

$$\overline{1+4}\big)^2 = \left(\sqrt{6}\right)^2 = 6$$

 $\sqrt{3}$

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \alpha$$

$$\vec{a} \cdot \vec{b} = x_1 \cdot x_2 + y_1 \cdot y_2 + z_1 \cdot z_2$$

$$\cos \alpha = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$

$$\cos \alpha = \frac{x_1 \cdot x_2 + y_1 \cdot y_2 + z_1 \cdot z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2}}$$

Косинус угла α между ненулевыми векторами $\vec{a}\{x_1;y_1;z_1\}$ и $\vec{b}\{x_2;y_2;z_2\}$ выражается

формулой:
$$\cos \alpha = \frac{x_1 \cdot x_2 + y_1 \cdot y_2 + z_1 \cdot z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2}}.$$

Свойства скалярного произведения векторов

$$1. \ \overrightarrow{a}^2 \ge 0; \overrightarrow{a}^2 \ne 0,$$
 если $\overrightarrow{a} \ne \overrightarrow{0}$

2.
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$
 (переместительный закон)

3.
$$(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$$
 (распределительный закон)

4.
$$(k\vec{a}) \cdot \vec{b} = k(\vec{a} \cdot \vec{b})$$
 (сочетательный закон)

Полярные координаты

Пусть на плоскости задана координатная прямая с выделенной точкой *О* и единичным отрезком *ОЕ*. Эта прямая в данном случае будет называться полярной осью. Точка *О* называется полюсом.

Полярными координатами точки A на плоскости с заданной полярной осью называется пара (r, φ) , где r - расстояние от точки A до точки O, φ - угол между полярной осью и вектором ρ , отсчитываемый в направлении против часовой стрелки, если ρ > 0 и по часовой стрелке, если φ < 0.

При этом первая координата r называется полярным радиусом, а вторая ϕ - полярным углом. Полярный угол можно задавать в градусах или радианах.

Полярные координаты

Если на плоскости задана декартова система координат, то обычно за полюс принимается начало координат и за полярную ось — ось Ox. В этом случае каждой точке плоскости с декартовыми координатами (x, y) можно сопоставить полярные координаты (r, ϕ) . При этом декартовы координаты выражаются через полярные по формулам:

$$\begin{cases} x = r \cos \varphi, \\ y = r \sin \varphi. \end{cases}$$

Наоборот, полярные координаты выражаются через декартовы по формулам:

$$r = \sqrt{x^2 + y^2},$$
 $\cos \varphi = \frac{x}{\sqrt{x^2 + y^2}}, \sin \varphi = \frac{y}{\sqrt{x^2 + y^2}}.$

Для следующих точек с заданными полярными координатами найдите их декартовы координаты: a) $(1, \frac{\pi}{3})$; б) $(2, -\frac{\pi}{4})$.

Ответ: a)
$$(\frac{1}{2}, \frac{\sqrt{3}}{2});$$

6)
$$(\sqrt{2}, -\sqrt{2})$$
.

Для следующих точек с заданными декартовыми координатами найдите их полярные координаты: а) ($\sqrt{2}$, $\sqrt{2}$); б) (-10, 0); в) (1, - $\sqrt{3}$; г) (- $\sqrt{3}$).

Ответ: a)
$$(2, \frac{\pi}{4})$$
; б) $(10, \pi)$; в) $(2, -\frac{\pi}{3})$; г) $(2, \frac{5\pi}{6})$.

Окружность

Окружность радиуса R с центром в точке O задается уравнением r = R.

Действительно, окружность является геометрическим местом точек, удаленных от точки O на расстояние R. Все такие точки удовлетворяют равенству r = R. При этом, если угол увеличивается, то соответствующая точка на окружности движется в направлении против часовой стрелки, описывая круги. Если же угол уменьшается, то соответствующая точка описывает круги в направлении по часовой стрелке.

Нарисуйте геометрическое место точек на плоскости, полярные координаты которых удовлетворяют неравенствам: а) $30^{\circ} < \phi < 60^{\circ}$; б) 1 < r < 2; B) $30^{\circ} < \phi < 60^{\circ}$, 1 < r < 2.

Ответ: а)

Спираль Архимеда

Спираль Архимеда - кривая, задаваемая уравнением r = a_{ϕ} , где a - некоторое фиксированное число, угол $_{\phi}$ задается в радианах.

Геометрическим свойством, характеризующим спираль Архимеда, является постоянство расстояний между соседними витками, каждое из них равно $2\pi a$. Действительно, если угол увеличивается на 2π , т.е. точка делает один, то радиус увеличивается на $2\pi a$, что и составляет расстояние между соседними витками.

На клетчатой бумаге постройте спираль Архимеда, заданную уравнением $r = \frac{\varphi}{2\pi}$.

Нарисуйте спираль Архимеда, заданную уравнением $r = a \varphi$, a < 0.

Ответ:

Человек идет с постоянной скоростью вдоль радиуса вращающейся карусели. Какой будет его траектория относительно земли?

Ответ: Спираль Архимеда.

Трилистник

Трилистник — кривая, задаваемая уравнением $r = \sin 3_{\phi}$.

Для построения этой кривой сначала заметим, что, поскольку радиус неотрицателен, должно выполняться неравенство sin 3ϕ 0, решая которое находим область допустимых значений углов :

Если угол φ изменяется от нуля до 30°, то радиус *г* изменяется от нуля до единицы. Если угол φ изменяется от 30° до 60°, то радиус изменяется от единицы до нуля. Таким образом, при изменении угла от 0° до 60° точка описывает кривую, похожую на очертания лепестка. Такие же лепестки получаются когда угол изменяется в пределах от 120° до 180° и от 240° до 300°.

Нарисуйте кривую, задаваемую уравнением $r = \sin 4\phi$.

Ответ:

Нарисуйте пятилепестковую розу - кривую, задаваемую уравнением $r = \sin 5\phi$.

Ответ:

Найдите геометрическое место точек, полярные координаты которых удовлетворяют уравнению:

a)
$$r = \frac{1}{\cos \varphi}$$
; 6) $r = \frac{1}{\sin \varphi}$.

Нарисуйте кривую, задаваемую уравнением $r = \cos \varphi$.

Ответ: Окружность.

Нарисуйте кривую, задаваемую уравнением $r = \sin \varphi$.

Ответ: Окружность.

Нарисуйте кривую, задаваемую уравнением $r = 1 - \cos \varphi$.

Ответ: Кардиоида.

Нарисуйте кривую, задаваемую уравнением

$$r = |\sin\frac{\varphi}{2}|$$
.

Ответ:

Нарисуйте кривую, задаваемую уравнением

$$r = \sin \frac{5\varphi}{3}$$
.

Ответ:

Нарисуйте гиперболическую спираль — кривую, задаваемую уравнением $r = a/\phi$.

Нарисуйте спираль Галилея — кривую, задаваемую уравнением $r = a \phi^2$.

Нарисуйте кривую, напоминающую лист клевера и задаваемую уравнением $r = 1 + \cos 3\phi + \sin^2 3\phi$.

Ответ:

	- ()	→ () → () _^-
	$\vec{a} = \{a_x, a_y, a_z\}; \vec{b} = \{b_x, b_y, b_z\}; \vec{c} = \{c_x, c_y, c_z\}; (\vec{a}; \vec{b}) = \varphi$		
O6o-	Скалярное	Векторное	Смешанное
зна- чение	(a;b)=ab-число	$[\vec{a}, \vec{b}] = \vec{a} imes \vec{b}$ – вектор	$(\overline{a}, \overline{b}, \overline{c}) = \overline{a}\overline{b}\overline{c}$ -число
Опр еделен и е	$\vec{a}\vec{b} = \vec{a} \cdot \vec{b} \cos \varphi$	1) $\vec{a} \times \vec{b} \perp \vec{a}$ и $\vec{a} \times \vec{b} \perp \vec{b}$ 2) $ \vec{a} \times \vec{b} = \vec{a} \cdot \vec{b} \sin \varphi$ 3) \vec{a} , \vec{b} и $\vec{a} \times \vec{b}$ – правая тройка	aδc=a×δ·c
	$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$	$\dot{\vec{b}} \times \vec{a} = -\vec{a} \times \vec{b}$	$(a \times b) \cdot c = a \cdot (b \times c)$
	Линейность по всем сомножителям		
Свойства	Критерий ортогональности ненулевых векторов: $\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0$ $\vec{a} \cdot \vec{a} = \vec{a} ^2;$ $\vec{a} \cdot \vec{a} = 0 \Leftrightarrow \vec{a} = \vec{0}$	вектор $\vec{a} \times \vec{b} \perp$ параллелограмму со сторонами \vec{a} , \vec{b} и его модуль $ \vec{a} \times \vec{b} = S$ – площадь этого	параллелепипеда с ребрами а, Би с
В координагах	$\bar{a}b = a_x b_x + a_y b_y + a_z b_z$	$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$	$(\vec{a}, \vec{b}, \vec{c}) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$