MÉTODOS DE BUSCA

INE5430 - Inteligência Artificial

Lukas Derner Grüdtner

Departamento de Informática e Estatística - INE Universidade Federal de Santa Catarina - UFSC Florianópolis - Santa Catarina - Brasil lukas.grudtner@grad.ufsc.br

22 DE MAIO DE 2019

1 GUIA DE UTILIZAÇÃO

1.1 GERANDO MINAS

Para gerar minas de tamanho qualquer, basta digitar o seguinte comando:

\$ make generate <nome do arquivo> <tamanho da mina>

Exemplo:

\$ make generate test 20

Uma mina de tamanho 20 irá ser gerada e armazenada no diretório input/generated.

Não existe a necessidade da pré-geração de minas. Qualquer mina devidamente estruturada deverá ser lida pelo programa.

1.2 COMPILANDO

Para iniciar o processo de compilação, basta digitar o seguinte comando:

\$ make

1.3 EXECUTANDO

Para executar o programa, basta digitar o seguinte comando:

\$ make run

1.4 ARQUIVOS DE ENTRADA

Na inicialização do programa, será necessário informar o caminho do arquivo de entrada. A seguir temos um exemplo de entrada:

input/generated/test1.mine

Observe que o caminho é relativo à raiz do projeto.

Existem cinco arquivos contendo minas para teste no diretório **input/generated**, os quais foram utilizados nos experimentos e que serão analisados mais adiante.

Logo após, será necessário informar os parâmetros que serão utilizados nos métodos de busca, sendo eles:

Tabela 1: Parâmetros dos métodos de busca

BUSCA	Parâmetro
DFS limitada DFS iterativa	nível máximo de profundidade número máximo de iterações
A* com heurística	-
DFS iterativa com heurística	número máximo de iterações

2 RESULTADOS

A seguir mostramos os dados obtidos em alguns experimentos. Todos os quatro métodos de busca foram testados utilizado minas de tamanho igual a 4, 5, 6, 7 e 8.

Tabela 2: Mina de tamanho 4

	Pontuação	TEMPO DE EXECUÇÃO	ESTADOS EXAMINADOS
DFS limitada	41	0.9 ms	21
DFS iterativa	43	1.4 ms	62
A* com heurística	45	3.5 ms	39
DFS iterativa com heurística	42	2.0 ms	71

Tabela 3: Mina de tamanho 5

	Pontuação	Tempo de Execução	ESTADOS EXAMINADOS
DFS limitada	309	6.7 ms	135
DFS iterativa	744	0.5 ms	28
A* com heurística	841	0.8 ms	15
DFS iterativa com heurística	744	0.3 ms	28

Tabela 4: Mina de tamanho 6

	Pontuação	TEMPO DE EXECUÇÃO	ESTADOS EXAMINADOS
DFS limitada	1568	8.21 ms	366
DFS iterativa	3268	13.6 ms	1372
A* com heurística	3594	03.55 s	87643
DFS iterativa com heurística	3605	58.4 ms	3929

Tabela 5: Mina de tamanho 7

	Pontuação	TEMPO DE EXECUÇÃO	ESTADOS EXAMINADOS
DFS limitada	19208	11.23 ms	21
DFS iterativa	93196	5.265 ms	62
A* com heurística	91821	117.9 ms	39
DFS iterativa com heurística	92560	9.147 ms	71

Tabela 6: Mina de tamanho 8

	Pontuação	TEMPO DE EXECUÇÃO	ESTADOS EXAMINADOS
DFS limitada	289562	22.24 ms	726
DFS iterativa	994476	26.76 ms	2217
A* com heurística	986924	54.384 s	1080294
DFS iterativa com heurística	988112	417.1 ms	13944

A função score foi definida da seguinte maneira:

$$score = gold*(battery+1) + (size_{problem}^2/n_{actions}) + (size_{problem}^2/n_{explored states})$$

2.1 DISCUSSÃO

Como podemos observar pelos dados acima, o método de busca em profundidade limitada é sempre mais rápido e examina menos estados do que os outros métodos, porém obtém pontuação menor por pegar caminhos que, apesar de chegar ao destino, fazem um percurso maior do que o esperado.

O método de busca em profundidade iterativa é um pouco mais lento que o anterior, além de examinar mais estados, mas a pontuação obtida faz compensar seu maior esforço, apresentando caminhos menores até o objetivo.

O método A* é conhecido por retornar uma solução ótima. Como ele examina muito mais estados que os outros métodos, ele tende a ter um desempenho pior. Porém, a solução ótima muitas vezes compensa.

Por fim, o método de busca em profundidade iterativa com heurística é, em geral, melhor do que a sua versão sem o uso de heurística, porém acaba se tornando mais lento e examinando mais estados. Isto depende muito da eficácia da heurística utilizada em relação ao problema.