CS273A Midterm Exam

Introduction to Machine Learning: Fall 2023

Monday November 6th, 2023

Your name:	Row/Seat Number:
Your ID #(e.g., 123456789)	UCINetID (e.g.ucinetid@uci.edu)

- Please put your name and ID on every page.
- Total time is 80 minutes. READ THE EXAM FIRST and organize your time; don't spend too long on any one problem.
- Please write clearly and show all your work.
- If you need clarification on a problem, please raise your hand and wait for the instructor or TA to come over.
- You may use **one** sheet containing handwritten notes for reference, and a (basic) calculator.
- Turn in your notes and any scratch paper with your exam.

Problems

1	Cross-Validation, (15 points.)	3
2	True/False, (10 points.)	5
3	Support Vector Machines, (12 points.)	7
4	Naïve Bayes Classifiers, (12 points.)	9
5	Separability, (16 points.)	11
6	Gradient Descent, (10 points.)	13

Total, (75 points.)

 $This \ page \ is \ intentionally \ blank, \ use \ as \ you \ wish.$

Problem 1 Cross-Validation, (15 points.)

For a regression problem to predict real-valued y given a single real-valued feature x_1 , we observe training data (pictured at right):

x_1	y
1.0	1.0
3.0	3.0
5.0	4.0

- (1) Compute the **leave-one-out** cross-validation MSE of a 1-nearest neighbor predictor. (In case of ties, prefer to use the data listed earlier in the table.) (3 points.)
- (2) Compute the **leave-one-out** cross-validation MSE of a 2-nearest neighbor predictor. (In case of ties, prefer to use the data listed earlier in the table.) (3 points.)
- (3) Compute the **leave-one-out** cross-validation MSE of a constant predictor, $f(x) = \theta_0$. (3 points.)
- (4) Compute the **leave-one-out** cross-validation MSE of a linear predictor, $f(x) = \theta_1 x_1 + \theta_0$. (3 points.)
- (5) If choosing among these models, which would you select (based on cross-validation)? (3 points.)

Name:	ID#:	

Problem 2 True/False, (10 points.)

Here, assume that we have m data points $y^{(i)}$, $x^{(i)}$, i = 1...m, each with n features, $x^{(i)} = [x_1^{(i)} \ldots x_n^{(i)}]$. For each of the scenarios below, circle one of "true" or "false" to indicate whether you agree with the statement.

True or false: Using "batch" gradient descent (all m data per step) is less prone to getting stuck in local optima than stochastic gradient descent.

True or false: Optimizing a linear classifier using the hinge loss and L_2 regularization will always converge to a global optimum of the loss.

True or **false**: Increasing the number of features available to a perceptron model will increase its bias.

True or **false**: The perceptron algorithm is always guaranteed to converge.

True or **false**: With sufficiently many data, an SVM with polynomial kernel $K(x, x') = (1 + x \cdot x'^T)^2$ can approximate any decision function.

True or **false**: The SVM optimization problem is an example of a linear program (a linear objective with linear constraints).

True or **false**: Using a soft-margin SVM in place of a hard-margin SVM will typically reduce the training error.

True or false: A 1-nearest neighbor model is an example of a learner with no inductive bias.

True or **false**: Feature selection (electing to ignore certain features of the data in our model) can be used to reduce model variance.

True or **false**: Given sufficiently many layers, a neural network with one hidden node per layer can approximate any function.

Problem 3 Support Vector Machines, (12 points.)

For a classification problem to predict binary y given two real-valued features x_1, x_2 , we observe training data (pictured at right):

x_1	x_2	y
0.0	0.0	-1
-0.5	0.0	-1
-1.0	0.0	-1
1.0	-1.0	1
1.0	1.0	1
2.5	0.0	1

Our linear classifier takes the form,

$$f(x; w_1, w_2, b) = sign(w_1x_1 + w_2x_2 + b).$$

- (1) Consider the optimal linear SVM classifier for the data, i.e., the one that separates the data and has the largest margin. **Sketch** its decision boundary in the above figure, and **list** the support vectors here. (2 points.)
- (2) Derive the parameter values w_1, w_2, b of this f(x) using these support vectors. (4 points.)

- (3) What is the training error rate of a linear SVM on these data? (3 points.)
- (4) What is the the leave-one-out cross validation error rate for a linear SVM trained on these data? (3 points.)

Nama.	
Name:	

ID#:

Problem 4 Naïve Bayes Classifiers, (12 points.)

Consider the table of measured data given at right. We will use the two observed features x_1 , x_2 to predict the class y. Feature x_1 can take on one of three values, $x_1 \in \{a,b,c\}$; feature x_2 is binary, $x_2 \in \{0,1\}$. In the case of a tie, we will prefer to predict class y=0.

(1) Write down the probabilities learned by a naïve Bayes classifier: (4 points.)

p(y=0): $p(y=0)$	= 1):
------------------	-------

$$p(x_1 = a | y = 0):$$
 $p(x_1 = a | y = 1):$

$$p(x_1 = b | y = 0)$$
: $p(x_1 = b | y = 1)$:

$$p(x_1 = c | y = 0):$$
 $p(x_1 = c | y = 1):$

$$p(x_2 = 0 | y = 0)$$
: $p(x_2 = 0 | y = 1)$:

$$p(x_2 = 1 | y = 0):$$
 $p(x_2 = 1 | y = 1):$

x_1	x_2	y
b	0	0
c	1	0
a	0	0
a	1	0
c	0	1
c	1	1
c	1	1
a	0	1
c	0	1

1

1

(2) Using your naïve Bayes model, compute the probability $p(y=1 | x_1=c, x_2=0)$: (4 points.)

(3) Using your naïve Bayes model, compute the probability $p(y = 1 | x_1 = b, x_2 = 1)$: (4 points.)

Name:

ID#:

Problem 5 Separability, (16 points.)

Consider each of the following pictured data sets. Select **all** sets of features that could be used by a perceptron (linear classifier) to separate the data. (Note: check each feature list carefully; they may differ by subproblem.)

- \square [1, x_1]
- \Box $[1, x_2]$
- $\Box [1, x_1, x_2, (x_1)^2]$
- $\Box [1, x_1, x_2, (x_2)^2]$
- $\square [1, x_1, x_2, (x_1)^2, (x_2)^2, (x_1x_2)]$

- \square [1, x_1]
- \Box [1, x_2]
- $\Box [1, x_1, x_2, (x_1)^2]$
- $\Box [1, x_1, x_2, (x_2)^2]$
- $\Box [1, x_1, x_2, (x_1)^2, (x_2)^2, (x_1x_2)]$

Now consider the following sets of feature vectors, with no target labels. Select **all** the sets of features that could be used by a perceptron (linear classifier) to **shatter** the data, i.e., correctly separate any setting of the target values $y^{(i)}$:

- \Box $[1, x_1]$
- \square $[1, x_2]$
- $\Box [1, x_1, x_2]$
- $\Box [1, x_1, (x_1)^2]$
- $\Box [1, x_2, (x_2)^2]$

- \square $[1, x_1]$
- \Box [1, x_2]
- $\square \ [1, x_1, x_2]$
- $\Box [1, x_1, (x_1)^2]$
- $\Box [1, x_2, (x_2)^2]$

Name:	ID#:	

Problem 6 Gradient Descent, (10 points.)

Suppose that we have training data $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$, where $x^{(i)}$ is a scalar feature and $y^{(i)} \in \{-1, +1\}$, and we wish to train a linear classifier, $\hat{y} = \text{sign}[a + bx]$, with two parameters a, b. In order to train the model, we use stochastic gradient descent on the *exponential loss* surrogate, whose loss for data point i is given by:

$$J^{(i)}(X,Y) = \exp \left[-y^{(i)}(a+bx^{(i)}) \right].$$

(1) Write down the gradient of the single-data surrogate loss $J^{(i)}$ (4 points.):

(2) Give one advantage of stochastic gradient descent over batch gradient (2 points.):

(3) Give pseudocode for a stochastic gradient descent function theta = train(X,Y), including all necessary elements for it to work. (4 points.)

Name: ID#:	Name:		ID#:	
------------	-------	--	------	--

Name:	ID#:	