МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №6

по дисциплине «Качество и метрология программного обеспечения»

Тема: «Оценка характеристик надежности программ по структурным схемам надежности»

Студент гр. 8304	Холковский К. В.
Преподаватель	Ефремов М. А.

Цель работы.

Выполнить расчет характеристик надёжности вычислительной системы по структурной схеме надежности, выбранной из таблицы в соответствии с номером студента в списке группы.

Ход работы.

По списку был выбран варианта № 19 (см Таблица 1).

Таблица 1 – Исходные данные.

	N_1				N_2		N_3	
комбинат.	λ_1	λ_2	λ_3	λ_4	комб. соедин.	λ	комб. соедин.	λ
соединения								
C(4)	3.8	2.8	4.0	2.2	(1, 2)	2.8	(2, 2)	4.0

Был построен граф программы, результат работы представлен на рисунке 1.

Рисунок 1 – Граф программы

Структура графа: N_1 — блок, состоящий из 4-х последовательных эл-тов; N_2 — блок, состоящий из двух параллельных ветвей (один элемент на верхней ветви, два на нижней); N_3 — блок, состоящий из двух параллельных ветвей (два элемент на верхней ветви, два на нижней); 2 дополнительные вершины: первая — связь между N_2 и N_3 , вторая — конченая вершина.

Расчетный способ.

Ручной расчет вероятностей для блоков и для целого графа представлен ниже $(t=2,\ \lambda_5=2.8,\lambda_6=4.0)$

• Первый блок:

$$R_{N_1} = e^{-(\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4)t} = e^{-(3.8 + 2.8 + 4.0 + 2.2) *2*10^{-5}} \approx 0.99974403276$$

• Второй блок:

$$R_{N_2} = 1 - (1 - e^{-\lambda_5 t})(1 - e^{-2\lambda_5 t}) = 1 - (1 - e^{-2.8 \times 2 \times 10^{-5}})(1 - e^{-5.6 \times 2 \times 10^{-5}}) \approx 0.99999999372$$

• Третий блок:

Вероятность безотказной работы системы в заданный момент времени: 0.99974400089, среднее время до отказа системы: 5817.6571 часа.

Программный способ.

Был выполнен программный расчет, XML-описание графа представлено вместе с отчетом. Полученная схема представлена на рисунке 2.

Рисунок 2 – Полученная схема

Программные результаты представлены на рисунке 3.

t	R	Т
2.0	0.9997440009059835	5813.421321794891

Рисунок 3 – Программные результаты

Выводы.

В ходе выполнения лабораторной работы был выполнен расчет характеристик надёжности вычислительной системы по структурной схеме надежности, выбранной из таблицы в соответствии с номером студента в списке группы.