Project_Health Care

December 3, 2022

```
[1]: import warnings
     warnings.filterwarnings('ignore')
[2]: import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
     %matplotlib inline
     from scipy.stats import chi2_contingency
     from sklearn.preprocessing import StandardScaler
     from sklearn.model_selection import train_test_split
     from sklearn.linear_model import LogisticRegression
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.metrics import
     →accuracy_score,confusion_matrix,classification_report
     from sklearn.model_selection import GridSearchCV
     import numpy as np
[3]: data = pd.read_excel('1645792390_cep1_dataset.xlsx')
     data.head()
[3]:
                      trestbps
                                       fbs
                                                                       oldpeak
        age
                                 chol
                                            restecg
                                                      thalach
                                                               exang
                                                                                slope
             sex
                  ср
         63
               1
                            145
                                  233
                                         1
                                                   0
                                                          150
                                                                    0
                                                                           2.3
                                                                                    0
                   3
                                                                           3.5
     1
         37
                   2
                                  250
                                         0
                                                   1
                                                          187
                                                                    0
                                                                                    0
               1
                            130
     2
                                                                           1.4
                                                                                    2
         41
               0
                   1
                            130
                                  204
                                         0
                                                   0
                                                          172
                                                                    0
                                                                                    2
     3
         56
               1
                   1
                            120
                                  236
                                         0
                                                   1
                                                          178
                                                                    0
                                                                           0.8
         57
                            120
                                  354
                                         0
                                                   1
                                                          163
                                                                           0.6
                                                                                    2
                                                                    1
                  target
            thal
     0
         0
               1
                        1
     1
         0
               2
                        1
     2
               2
         0
                        1
     3
               2
         0
                        1
               2
```

1 1. Preliminary analysis:

[7]: 1

- a. Perform preliminary data inspection and report the findings on the structure of the data, missing values, duplicates, etc.
- b. Based on these findings, remove duplicates (if any) and treat missing values using an appropriate strategy

```
[4]: print('Shape of the data:',data.shape)
    Shape of the data: (303, 14)
[5]: data.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 303 entries, 0 to 302
    Data columns (total 14 columns):
                    Non-Null Count
         Column
                                    Dtype
     0
                                     int64
         age
                    303 non-null
     1
                    303 non-null
                                     int64
         sex
     2
                    303 non-null
                                     int64
         ср
     3
         trestbps
                    303 non-null
                                     int64
     4
         chol
                    303 non-null
                                     int64
     5
         fbs
                    303 non-null
                                     int64
     6
                                     int64
         restecg
                    303 non-null
     7
         thalach
                    303 non-null
                                     int64
     8
                    303 non-null
                                     int64
         exang
         oldpeak
                    303 non-null
                                     float64
         slope
                                     int64
     10
                    303 non-null
                                     int64
     11
         ca
                    303 non-null
     12
         thal
                    303 non-null
                                     int64
                    303 non-null
                                     int64
         target
    dtypes: float64(1), int64(13)
    memory usage: 33.3 KB
[6]: # Find out missing values
     data.isna().sum().any()
[6]: False
[7]: # Find out duplicates
     data.duplicated().sum()
```

```
[8]: data = data[data.duplicated() == False]
print('Shape of the dataset after removing duplicates :',data.shape)
```

Shape of the dataset after removing duplicates: (302, 14)

2 2. Prepare a report about the data explaining the distribution of the disease and the related factors using the steps listed below:

- a. Get a preliminary statistical summary of the data and explore the measures of central tendencies and spread of the data
- b. Identify the data variables which are categorical and describe and explore these variables using the appropriate tools, such as count plot
- c. Study the occurrence of CVD across the Age category
- d. Study the composition of all patients with respect to the Sex category
- e. Study if one can detect heart attacks based on anomalies in the resting blood pressure (trestbps) of a patient
- f. Describe the relationship between cholesterol levels and a target variable
- g. State what relationship exists between peak exercising and the occurrence of a heart attack
- h. Check if thalassemia is a major cause of CVD
- i. List how the other factors determine the occurrence of CVD
- j. Use a pair plot to understand the relationship between all the given variables

2.0.1 a. Get a preliminary statistical summary of the data and explore the measures of central tendencies and spread of the data

```
[9]:
    data.mean()
[9]: age
                   54.420530
     sex
                    0.682119
                    0.963576
     ср
     trestbps
                  131.602649
                  246.500000
     chol
     fbs
                    0.149007
     restecg
                    0.526490
     thalach
                  149.569536
     exang
                    0.327815
     oldpeak
                    1.043046
     slope
                    1.397351
                    0.718543
     ca
                    2.314570
     thal
                    0.543046
     target
     dtype: float64
```

```
[10]: data.median()
[10]: age
                     55.5
      sex
                       1.0
                       1.0
      ср
      trestbps
                    130.0
      chol
                    240.5
      fbs
                       0.0
                       1.0
      restecg
      thalach
                    152.5
                       0.0
      exang
      oldpeak
                       0.8
                       1.0
      slope
      ca
                       0.0
      thal
                       2.0
      target
                       1.0
      dtype: float64
[11]: data.mode()
                                                                                  oldpeak \
[11]:
           age
                 sex
                        ср
                            trestbps
                                        chol
                                               fbs
                                                     restecg
                                                               thalach
                                                                         exang
      0
          58.0
                 1.0
                      0.0
                                120.0
                                         197
                                               0.0
                                                          1.0
                                                                  162.0
                                                                            0.0
                                                                                       0.0
      1
           {\tt NaN}
                 NaN
                       NaN
                                               NaN
                                                                            NaN
                                                                                       NaN
                                  NaN
                                         204
                                                         NaN
                                                                    NaN
                                                                            NaN
                                                                                      NaN
           {\tt NaN}
                 {\tt NaN}
                      {\tt NaN}
                                  NaN
                                         234
                                               NaN
                                                         NaN
                                                                    NaN
          slope
                        thal
                               target
                   ca
      0
            2.0
                  0.0
                         2.0
                                  1.0
      1
            {\tt NaN}
                         NaN
                                  NaN
                  NaN
      2
                                  NaN
            NaN
                  NaN
                         NaN
```

2.0.2 b. Identify the data variables which are categorical and describe and explore these variables using the appropriate tools, such as count plot

data.desc	cribe().	T						
2]:	count	mean	std	min	25%	50%	75%	max
age	302.0	54.420530	9.047970	29.0	48.00	55.5	61.00	77.0
sex	302.0	0.682119	0.466426	0.0	0.00	1.0	1.00	1.0
ср	302.0	0.963576	1.032044	0.0	0.00	1.0	2.00	3.0
trestbps	302.0	131.602649	17.563394	94.0	120.00	130.0	140.00	200.0
chol	302.0	246.500000	51.753489	126.0	211.00	240.5	274.75	564.0
fbs	302.0	0.149007	0.356686	0.0	0.00	0.0	0.00	1.0
restecg	302.0	0.526490	0.526027	0.0	0.00	1.0	1.00	2.0
thalach	302.0	149.569536	22.903527	71.0	133.25	152.5	166.00	202.0
exang	302.0	0.327815	0.470196	0.0	0.00	0.0	1.00	1.0
oldpeak	302.0	1.043046	1.161452	0.0	0.00	0.8	1.60	6.2
slope	302.0	1.397351	0.616274	0.0	1.00	1.0	2.00	2.0

```
302.0
                   0.718543
                               1.006748
                                           0.0
                                                  0.00
                                                           0.0
                                                                  1.00
                                                                          4.0
ca
thal
          302.0
                   2.314570
                               0.613026
                                           0.0
                                                  2.00
                                                           2.0
                                                                  3.00
                                                                          3.0
                                                  0.00
          302.0
                   0.543046
                               0.498970
                                           0.0
                                                           1.0
                                                                  1.00
                                                                          1.0
target
```

```
[13]: cols = data[['sex','cp','fbs','restecg','exang','slope','ca','thal','target']]

n=len(cols.columns)
fig,ax = plt.subplots(1,n, figsize=(20,5))
for i in range(n):
    plt.sca(ax[i])
    col = cols.columns[i]
    sns.countplot(cols[col].values)
    plt.xlabel(col)
    plt.tight_layout()
plt.show()
```


2.1 c. Study the occurrence of CVD across the Age category

```
bins = [20,40,60,80]
agegroup = ['Adult','Middle Age','Senior Citizen']
data['agegrp'] = pd.cut(data['age'],bins=bins,labels=agegroup,right=False)
data
```

[14]:		200	COY	cn	trestbps	chol	fha	rostoca	thalach	ovana	oldpeak '	(
[14].		age	sex	ср	crescobs	CHOI	102	resteck	UllaTaCii	examg	orupeak	١
	0	63	1	3	145	233	1	0	150	0	2.3	
	1	37	1	2	130	250	0	1	187	0	3.5	
	2	41	0	1	130	204	0	0	172	0	1.4	
	3	56	1	1	120	236	0	1	178	0	0.8	
	4	57	0	0	120	354	0	1	163	1	0.6	
							•••		•••			
	298	57	0	0	140	241	0	1	123	1	0.2	
	299	45	1	3	110	264	0	1	132	0	1.2	
	300	68	1	0	144	193	1	1	141	0	3.4	
	301	57	1	0	130	131	0	1	115	1	1.2	
	302	57	0	1	130	236	0	0	174	0	0.0	

slope	ca	thal	target	agegrp
0	0	1	1	Senior Citizen
0	0	2	1	Adult
2	0	2	1	Middle Age
2	0	2	1	Middle Age
2	0	2	1	Middle Age
			•••	•••
1	0	3	0	Middle Age
1	0	3	0	Middle Age
1	2	3	0	Senior Citizen
1	1	3	0	Middle Age
1	1	2	0	Middle Age
	0 0 2 2 2 	0 0 0 0 2 0 2 0 2 0 1 0 1 0 1 2	0 0 1 0 0 2 2 0 2 2 0 2 2 0 2 1 0 3 1 0 3 1 2 3 1 1 3	0 0 1 1 1 0 0 0 2 1 1 2 0 2 1 1 2 0 2 1 1 1 0 3 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1

[302 rows x 15 columns]

```
[15]: plt.figure(figsize=(10,5))
sns.barplot(x='agegrp',y='target',data=data,hue='sex')
plt.show()
```


2.1.1 d. Study the composition of all patients with respect to the Sex category

```
[16]: data['sex'].value_counts()
```

[16]: 1 206 0 96

Name: sex, dtype: int64

```
[17]: data.groupby(by='sex').mean()
[17]:
                                  trestbps
                                                                    restecg \
                                                   chol
                                                              fbs
                 age
                            ср
      sex
      0
           55.677083
                                133.083333
                                            261.302083
                                                         0.125000
                                                                   0.572917
                      1.041667
                                            239.601942
           53.834951
                      0.927184
                                130.912621
                                                         0.160194
                                                                   0.504854
      1
             thalach
                         exang
                                 oldpeak
                                             slope
                                                                   thal
                                                                           target
                                                           ca
      sex
                                0.876042
                                          1.427083
                                                    0.552083
                                                              2.125000
      0
           151.12500
                      0.229167
                                                                         0.750000
      1
           148.84466 0.373786
                                1.120874
                                          1.383495 0.796117 2.402913 0.446602
[18]: pd.crosstab(data['sex'],data['target']).plot(kind='bar',figsize=(10,5))
      plt.title('Heart Disease Freq for sex')
      plt.xlabel('Sex')
      plt.xticks(rotation=0)
      plt.ylabel('Frequency')
      plt.legend(['Dont have Disease', 'Have Disease'])
      plt.show()
```


2.1.2 e. Study if one can detect heart attacks based on anomalies in the resting blood pressure (trestbps) of a patient

```
[19]: data['trestbps'].unique()
```


2.1.3 f. Describe the relationship between cholesterol levels and a target variable

```
[21]: sns.jointplot(x='chol',y='target',data=data,height=6,kind='reg')
```

[21]: <seaborn.axisgrid.JointGrid at 0x202a61b7430>


```
[22]: sns.jointplot(x='chol',y='age',data=data,height=6,kind='reg')
```

[22]: <seaborn.axisgrid.JointGrid at 0x202a7332e80>

$2.1.4\,$ g. State what relationship exists between peak exercising and the occurrence of a heart attack

```
[23]: plt.figure(figsize=(10,5))
sns.barplot(data['slope'],data['target'])
```

[23]: <AxesSubplot:xlabel='slope', ylabel='target'>

2.1.5~ h. Check if tha lassemia is a major cause of $\ensuremath{\mathrm{CVD}}$

[24]: sns.barplot(data['thal'],data['target'])

[24]: <AxesSubplot:xlabel='thal', ylabel='target'>

2.1.6 i. List how the other factors determine the occurrence of CVD

```
[25]: plt.figure(figsize=(10,8))
    sns.heatmap(data.corr(),annot=True,cmap='coolwarm',fmt='.2f')
    plt.tight_layout()
    plt.show()
```



```
[26]: cols = data[['trestbps','chol','thalach','oldpeak','ca']]

n_samples = len(cols.columns)
plt.figure(figsize=(15,5))
for i in range(n_samples):
    col = cols.columns[i]
    plt.subplot(1,n_samples,1 + i)
    sns.distplot(cols[col].values)
    plt.xlabel(col)
    plt.tight_layout()
plt.show()
```



```
[27]: cols = data[['trestbps','chol','thalach','oldpeak','ca','target']]

plt.figure(figsize=(15,5))
for i in range(n_samples):
    col = cols.columns[i]
    plt.subplot(1,n_samples,1 + i)
    sns.violinplot(x='target',y=cols[col].values,data=cols)
    plt.xlabel(col)
    plt.tight_layout()
plt.show()
```


2.1.7 j. Use a pair plot to understand the relationship between all the given variables

```
[28]: sns.pairplot(data)
```

[28]: <seaborn.axisgrid.PairGrid at 0x202a5d78160>

3 3. Build a baseline model to predict the risk of a heart attack using a logistic regression and random forest and explore the results while using correlation analysis and logistic regression (leveraging standard error and p-values from statsmodels) for feature selection

```
[29]: data = data.drop('agegrp',axis=1)

[30]: x = data.drop('target',axis=1)
    y = data['target']
```

```
[31]: \# Scale the data in 0-1.
      scaler = StandardScaler()
      data_scale = pd.DataFrame(scaler.fit_transform(x))
      data_scale.columns = x.columns
[32]: xtrain,xtest,ytrain,ytest = train_test_split(data_scale,y,test_size=0.
       \rightarrow2,random_state=41)
      (xtrain.shape, xtest.shape, ytrain.shape, ytest.shape)
[32]: ((241, 13), (61, 13), (241,), (61,))
     3.1 Logistic Regression
[33]: | lr_model = LogisticRegression()
      lr_model.fit(xtrain,ytrain)
[33]: LogisticRegression()
[34]: def evalution(test, pred):
          print('Accuracy Score :',accuracy_score(test,pred))
          print('\nConfusion Maxtrix :\n',confusion_matrix(test,pred))
          print('\n Classification Report :\n',classification_report(test,pred))
[35]: preds =lr_model.predict(xtest)
      evalution(ytest,preds)
     Accuracy Score: 0.7868852459016393
     Confusion Maxtrix:
      [[31 8]
      [ 5 17]]
      Classification Report :
                    precision
                                  recall f1-score
                                                      support
                0
                         0.86
                                   0.79
                                             0.83
                                                          39
                1
                         0.68
                                   0.77
                                             0.72
                                                          22
                                             0.79
                                                          61
         accuracy
                                             0.78
                         0.77
                                   0.78
                                                          61
        macro avg
     weighted avg
                         0.80
                                   0.79
                                             0.79
                                                          61
```

3.2 Random Forest Classifier

```
[36]: rfc_model = RandomForestClassifier(n_estimators=100, criterion='gini')
      rfc_model.fit(xtrain,ytrain)
[36]: RandomForestClassifier()
[37]: rfc_pred = rfc_model.predict(xtest)
      evalution(ytest,rfc_pred)
     Accuracy Score : 0.819672131147541
     Confusion Maxtrix :
      [[32 7]
      [ 4 18]]
      Classification Report :
                    precision
                                  recall f1-score
                                                      support
                0
                         0.89
                                   0.82
                                             0.85
                                                          39
                1
                         0.72
                                   0.82
                                             0.77
                                                          22
                                             0.82
                                                          61
         accuracy
        macro avg
                         0.80
                                   0.82
                                             0.81
                                                          61
                                             0.82
     weighted avg
                         0.83
                                   0.82
                                                          61
[38]: param_grid = {
          'n_estimators': [100, 150, 200, 250],
          'max_features': ['auto', 'sqrt', 'log2'],
          \max_{\text{depth}'} : [4,5,6,7,8,9],
          'criterion' :['gini', 'entropy']
      }
      rfc_model = RandomForestClassifier()
      CV_rfc = GridSearchCV(estimator=rfc_model, param_grid=param_grid, cv= 5)
      CV_rfc.fit(xtrain, ytrain)
[38]: GridSearchCV(cv=5, estimator=RandomForestClassifier(),
                   param_grid={'criterion': ['gini', 'entropy'],
                                'max_depth': [4, 5, 6, 7, 8, 9],
                                'max_features': ['auto', 'sqrt', 'log2'],
                                'n_estimators': [100, 150, 200, 250]})
[39]: CV_rfc.best_params_
[39]: {'criterion': 'entropy',
       'max_depth': 5,
```

```
'max_features': 'log2',
       'n_estimators': 100}
[40]: rfc_model_tune =
       →RandomForestClassifier(n_estimators=500, criterion='entropy', max_depth=4, max_features='sqrt'
      rfc_model_tune.fit(xtrain,ytrain)
[40]: RandomForestClassifier(criterion='entropy', max_depth=4, n_estimators=500)
[41]: rfc_pred_tune = rfc_model_tune.predict(xtest)
      evalution(ytest,rfc_pred_tune)
     Accuracy Score : 0.8360655737704918
     Confusion Maxtrix:
      [[32 7]
      [ 3 19]]
      Classification Report :
                    precision
                                                     support
                                 recall f1-score
                0
                        0.91
                                  0.82
                                            0.86
                                                         39
                        0.73
                                  0.86
                                                         22
                1
                                            0.79
                                            0.84
                                                         61
         accuracy
        macro avg
                        0.82
                                  0.84
                                            0.83
                                                         61
     weighted avg
                        0.85
                                  0.84
                                            0.84
                                                         61
[42]: csq1=chi2_contingency(pd.crosstab(data['thalach'], data['target']))
     print("P-value: ",csq1[1])
     P-value: 0.07918631828372703
```

[]: