ebbw

Solve Eliashberg equations for finite bandwidths

—— Eliashberg theory -

The linearized local Eliashberg equations for the density of states $N(\varepsilon) = N(0) \Theta(E - |\varepsilon|)$ are

$$\widetilde{\omega}_{n} = \omega_{n} + 2T \sum_{m}^{|\omega_{m}| < \omega_{N}} \arctan\left[\frac{E}{\widetilde{\omega}_{m}}\right] \lambda_{n-m}, \qquad \frac{\lambda}{\lambda_{n}} = 1 + \left[\frac{v_{n}}{\omega_{E}}\right]^{2},$$
where
$$\phi_{n} = 2T \sum_{m}^{|\omega_{m}| < \omega_{N}} \arctan\left[\frac{E}{\widetilde{\omega}_{m}}\right] \frac{\phi_{m}}{\widetilde{\omega}_{m}} (\lambda_{n-m} - \mu_{N}^{*}), \qquad \frac{1}{\mu_{N}^{*}} = \frac{1}{\mu} + \frac{2}{\pi} \int_{0}^{\frac{E}{\omega_{N}}} \frac{\mathrm{d}x}{x} \arctan(x).$$

 $\omega_n = (2n+1)\pi T \ [\widetilde{\omega}_n]$ and $v_n = 2n\pi T$ are [renormalized] fermionic and bosonic Matsubara frequencies and ϕ_n is proportional to the order parameter at the critical point $(T, \lambda, \mu, \omega_E, E)$.

— Parameters -

T T K temperature

1 λ 1 electron-phonon coupling

u μ 1 Coulomb repulsion

w ω_{E} eV Einstein phonon frequency

E E eV half the electronic bandwidth

W ω_N ω_E cutoff frequency

Functions -

def critical(variable='T', epsilon=1e-3, **parameters)

solves the Eliashberg equations varying the parameter indicated by variable, which may be T, λ , μ , ω_E or E, leaving the others fixed. Its given value is used as initial guess, which must not vanish, its critical value is returned. epsilon is the self-consistency threshold.

def Tc(1, u, w, E, A=1.20, B=1.04, C=0.62, **ignore)

returns the critical temperature according to McMillan's formula,

$$T_{\rm c} = \frac{\omega_{\rm E}}{A} \exp\left[\frac{-B(1+\lambda)}{\lambda - C\lambda\mu^* - \mu^*}\right] \quad \text{with} \quad \frac{1}{\mu^*} = \frac{1}{\mu} + \log\left[\frac{E}{\omega_{\rm E}}\right].$$

def Eliashberg(T, 1, u, w, E, W, rescale=True, **ignore)

returns the maximum eigenvalue of the kernel of the equation for ϕ_n , which is less than, equal to or greater than unity in the normal, critical or superconducting state, respectively. If rescale is False, μ is used in place of μ_N^* .

def residue(x)

returns $1/\mu_N^* - 1/\mu$ as a function of E/ω_N .

def eigenvalue(matrix)

returns the maximum eigenvalue of the given matrix.