Turma:	Nota:

MA 327 Álgebra Linear

Segundo Semestre de 2006

Primeira Prova

Nome:	RA:
-------	-----

$Quest\~oes$	Pontos
Questão 1	
Questão 2	
Questão 3	
Questão 4	
T o t a l	

Questão 1. (2.5 Pontos)

Considere o espaço vetorial real \mathbb{R}^2 e os seguinte subespaços

$$U = \{ (x,y) \in \mathbb{R}^2 / y = 3x \}$$
 e $W = \{ (x,y) \in \mathbb{R}^2 / y = -2x \}$.

Verifique se o seguinte subconjunto

$$U \cup W = \{ (x,y) \in \mathbb{R}^2 / (x,y) \in U \text{ ou } (x,y) \in W \}$$

é um subespaço vetorial de IR^2 .

Questão 2. (2.5 Pontos)

Sejam V um espaço vetorial sobre o corpo \mathbb{F} e u, v, w elementos distintos de V. Prove que o conjunto $\{u, v, w\}$ é linearmente independente em V se, e somente se, o conjunto $\{u + v, u + w, v + w\}$ é linearmente independente em V.

Questão 3. (2.5 Pontos)

Considere o espaço vetorial real $M_2(\mathbb{R})$ e os seguintes subespaços

$$U = \left\{ \begin{bmatrix} a & b \\ c & a \end{bmatrix} \quad ; \quad a, b, c \in \mathbb{R} \right\} \qquad e \qquad W = \left\{ \begin{bmatrix} 0 & a \\ -a & b \end{bmatrix} \quad ; \quad a, b \in \mathbb{R} \right\}.$$

(a) Determine uma base para cada um dos seguintes subespaços:

$$U$$
, W , $U \cap W$ e $U + W$.

(b) $IM_2(IR) = U \oplus W$? Justifique sua resposta.

Questão 4. (2.5 Pontos)

Considere o espaço vetorial real \mathbb{R}^2 . A matriz de mudança da base ordenada $\gamma = \{u_1, u_2\}$, onde $u_1 = (1,1)$ e $u_2 = (-2,2)$, para a base ordenada $\alpha = \{v_1, v_2\}$ é dada por:

$$[I]_{\alpha}^{\gamma} = \begin{bmatrix} 1 & 0 \\ 4 & -2 \end{bmatrix}.$$

- (a) Determine a base ordenada α .
- (b) Determine o elemento $u \in \mathbb{R}^2$ tal que $[u]_{\alpha} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Questão 1. (2.5 Pontos)

Vamos verificar se o elemento neutro da adição $0_{\mathbb{R}^2}$ pertence ao subconjunto $U \cup W$ e se o subconjunto $U \cup W$ é fechado com relação à operação de adição de elementos e com relação à operação de multiplicação por escalar.

Como U e W são subespaços vetoriais de \mathbb{R}^2 , temos que $0_{\mathbb{R}^2}$ pertence tanto a U quanto a W. Logo, $0_{\mathbb{R}^2} \in U \cup W$. Note que, $U \cap W = \{0_{\mathbb{R}^2}\}$.

Considere um elemento $v \in U \cup W$, isto é, $v \in U$ ou $v \in W$. Assim, para qualquer $\lambda \in \mathbb{R}$ temos que $\lambda v \in U \cup W$, pois $\lambda v \in U$ ou $\lambda v \in W$.

Finalmente, tomando os elementos $v_1, v_2 \in U \cup W$, temos três possibilidades.

A primeira, consideramos que $v_1, v_2 \in U$. Como U é um subespaço vetorial de \mathbb{R}^2 , temos que $v_1 + v_2 \in U$. Logo, $v_1 + v_2 \in U \cup W$.

A segunda, consideramos que $v_1, v_2 \in W$. Como W é um subespaço vetorial de \mathbb{R}^2 , temos que $v_1 + v_2 \in W$. Logo, $v_1 + v_2 \in U \cup W$.

A terceira, consideramos que $v_1 \in U$ e $v_2 \in W$. Assim, temos que

$$v_1 = (x_1, 3x_1)$$
 e $v_2 = (x_2, -2x_2)$.

Logo, $v_1 + v_2 = (x_1 + x_2, 3x_1 - 2x_2)$. Portanto, temos que

$$v_1 + v_2 \notin U$$
 e $v_1 + v_2 \notin W$.

Desse modo, $v_1 + v_2 \notin U \cup W$. Assim, mostramos que $U \cup W$ não é um subespaço vetorial de \mathbb{R}^2 , pois o subconjunto $U \cup W$ não é fechado com relação à operação de adição de elementos.

Questão 2. (2.5 Pontos)

Inicialmente vamos provar que

$$\{u, v, w\}$$
 LI \Longrightarrow $\{u+v, u+w, v+w\}$ LI.

Tomando a combinação linear nula

$$a(u + v) + b(u + w) + c(v + w) = 0_V$$

obtemos

$$(a + b)u + (a + c)v + (b + c)w = 0_V.$$

Utilizando a hipótese que o conjunto $\{u,v,w\}$ é linearmente independente, obtemos o seguinte sistema linear homogêneo

$$\begin{cases} a + b = 0 \\ a + c = 0 \\ b + c = 0 \end{cases}$$

que possui somente a solução trivial a=b=c=0. Portanto, provamos que o conjunto $\{u+v,\,u+w,\,v+w\}$ é linearmente independente.

Finalmente, vamos provar que

$$\{u+v, u+w, v+w\}$$
 LI \Longrightarrow $\{u, v, w\}$ LI.

Equivalentemente, podemos provar que

$$\{u, v, w\}$$
 LD \Longrightarrow $\{u+v, u+w, v+w\}$ LD.

Tomando a combinação linear nula

$$a(u + v) + b(u + w) + c(v + w) = 0_V$$

obtemos

$$(a + b)u + (a + c)v + (b + c)w = 0_V.$$

Utilizando a hipótese que o conjunto $\{u, v, w\}$ é linearmente dependente, temos que os coeficientes da combinação linear acima não são todos nulos, isto é,

$$(a + b)$$
 , $(a + c)$ e $(b + c)$

não são todos nulos. Assim, existem escalares $a, b, c \in \mathbb{F}$ não todos nulos tais que

$$a(u + v) + b(u + w) + c(v + w) = 0_V.$$

Portanto, mostramos que o conjunto $\{u+v, u+w, v+w\}$ é linearmente dependente.

Assim, provamos que

$$\{u+v, u+w, v+w\}$$
 LI \Longrightarrow $\{u, v, w\}$ LI.

completando a resolução da questão.

Questão 3. (2.5 Pontos)

(a)

Vamos determinar uma base para o subespaço U. Note que, toda matriz $A \in U$ é escrita da seguinte forma:

$$A = a \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \quad \text{para} \quad a, b, c \in \mathbb{R}.$$

Tomando a combinação linear nula

$$a \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

obtemos que a=b=c=0, são os únicos escalares que satisfazem o sistema acima. Assim, mostramos que o conjunto

$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} , \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}$$

é uma base para o subespaço U, pois gera o subespaço U e é linearmente independente. Logo, temos que dim(U) = 3.

Vamos determinar uma base para o subespaço W. Note que, toda matriz $A \in W$ é escrita da seguinte forma:

$$A = a \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
 para $a, b \in \mathbb{R}$.

Tomando a combinação linear nula

$$a \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

obtemos que a=b=0, são os únicos escalares que satisfazem o sistema acima. Assim, mostramos que o conjunto

$$\left\{ \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} , \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

é uma base para o subespaço W, pois gera o subespaço W e é linearmente independente. Logo, temos que dim(U) = 2.

Agora, vamos determinar uma base para o subespaço $U \cap W$. Considere uma matriz $A \in U \cap W$, isto é, $A \in U$ e $A \in W$. Assim, temos que A é escrita como:

$$A = a \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = d \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} + e \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

para $a, b, c, d, e \in \mathbb{R}$.

Desse modo, obtemos o seguinte sistema linear

$$\begin{cases} a = 0 \\ b = d \\ c = -d \\ a = e \end{cases}$$

cuja solução é a=0 , b=d , c=-d e e=0. Portanto, toda matriz $A\in U\cap W$ é escrita como

$$A = d \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
 para $d \in \mathbb{R}$.

Assim, temos que

$$\left\{ \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

é uma base para o subespaço $U \cap W$. Logo, $dim(U \cap W) = 1$.

Finalmente, vamos determinar uma base para o subespaço U + W. Pelos resultados obtidos acima, sabemos que

$$dim(U+W) = dim(U) + dim(W) - dim(U \cap W) = 4,$$

e que o subespaço U+W tem por um sistema de geradores o seguinte conjunto

$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} , \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} , \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} , \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$$

Podemos observar que

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.$$

Portanto, temos que o conjunto

$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} , \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} , \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

é uma base para o subespaço U + W.

(b) Como U + W é um subespaço de $M_2(\mathbb{R})$ e $dim(U + W) = dim(M_2(\mathbb{R}))$, temos que $U + W = M_2(\mathbb{R})$, entretanto, não como soma direta, pois $U \cap W \neq \{0_{M_2(\mathbb{R})}\}$.

Questão 4. (2.5 Pontos)

(a)

Conhecendo a matriz de mudança de base $[I]^{\gamma}_{\alpha}$, temos que

$$\begin{cases} u_1 = v_1 + 4v_2 \\ u_2 = -2v_2 \end{cases}$$

Resolvendo o sistema acima, obtemos

$$\begin{cases} v_1 = u_1 + 2u_2 \\ v_2 = -\frac{1}{2}u_2 \end{cases}$$

Logo, $v_1=(-3,5)$ e $v_2=(1,-1)$, que são os elementos da base ordenada α .

(b)

Conhecendo a matriz de mudança de base $[I]^{\gamma}_{\alpha}$ e o vetor de coordenadas $[u]_{\alpha}$, temos que

$$[u]_{\alpha} = [I]_{\alpha}^{\gamma} [u]_{\gamma}.$$

Chamando $[u]_{\gamma} = \begin{bmatrix} a \\ b \end{bmatrix}$, obtemos o seguinte sistema linear

$$\begin{bmatrix} 1 & 0 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix},$$

cuja única solução é a=b=1. Portanto, temos que

$$u = a u_1 + b u_2 = u_1 + u_2 = (-1, 3).$$

Observe que podemos obter o elemento u a partir do vetor de coordenadas $[u]_{\alpha} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ e da base ordenada α obtida no item (a). Desse modo, temos que

$$u = v_1 + 2v_2 = (-1,3).$$