Mouvement RR 3D ★★

C2-08

C2-09

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H\overrightarrow{j_1} + R\overrightarrow{i_1}$ et $\overrightarrow{BC} = L\overrightarrow{i_2}$. On a H = 20 mm, $r = 5 \,\mathrm{mm}$, $L = 10 \,\mathrm{mm}$. De plus :

- ► G_1 désigne le centre d'inertie de 1 tel que $\overrightarrow{AG_1} = \overrightarrow{Hj_1}$, on note m_1 la masse de 1 et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathfrak{B}_1}$;

 ► $G_2 = C$ désigne le centre d'inertie de 2, on note m_2 la masse de 2 et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathfrak{B}_2}$.

On donne : $\overrightarrow{V(C,2/0)} = -R\dot{\theta}\overrightarrow{k_1} + L\left(-\dot{\theta}\cos\varphi\overrightarrow{k_1} + \dot{\varphi}\overrightarrow{j_2}\right)$.

On fait l'hypothèse que $\dot{\theta}$ et $\dot{\phi}$ sont des constantes et on a

$$\overrightarrow{\Gamma(C,2/0)} = L\dot{\varphi}\left(\dot{\theta}\sin\varphi\overrightarrow{k_1} - \dot{\varphi}\overrightarrow{i_2}\right) - \dot{\theta}\left(R\dot{\theta}\overrightarrow{i_1} + L\cos\varphi\dot{\theta}\overrightarrow{i_1} - L\dot{\varphi}\sin\varphi\overrightarrow{k_1}\right).$$

Question 1 Exprimer le torseur dynamique $\{\mathfrak{D}(2/0)\}$ en B.

Question 2 Déterminer $\delta(A, 1 + 2/0) \cdot \overrightarrow{j_0}$

Corrigé voir .