Logistic Regression

- Algorithm implemented in Octave
- —— Simple data were applied with the algorithm
- Same data were analyzed in R
- Same data were analyzed in Python

Algorithm

Hypothesis $h_{\theta}(x) = g(\theta^T x)$

 $g(z) = \frac{1}{1+e^{-z}}$ Sigmoid function

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

cost function

$$\operatorname{Cost}(\underline{h_{\theta}(x)}, y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left[-y^{(i)} \log(h_{\theta}(x^{(i)})) - (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

Repeat {

$$\theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta)$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{1}{2} \sum_{i=1}^{\infty} \left(\sum_{k=1}^{\infty} \left(\sum_{k=1}^{\infty$$

Advanced optimization

Optimization algorithms:

- Gradient descent
- Conjugate gradient
- **BFGS**
- L-BFGS

Advantages:

- No need to manually pick α
- Often faster than gradient descent.

Disadvantages:

More complex

Implemented in Octave

m logistic regression.m

Data Analyzed in R

File Name:

logistic_regression.R

Usage:

/usr/bin/Rscript logistic_regression.R training.txt testing.txt prediction.txt

prediction.txt

Core Functions{Packages} Used:

build model glm{stats} # make prediction on testing data predict(stats)

Data Analyzed in Python

File Name:

logistic_regression.py

Usage:

python logistic_regression.py training.txt testing.txt prediction.txt

Core Functions Modules Used:

build model

LogisticRegression().fit(){sklearn} # make prediction on testing data LinearRegression().predict proba(){sklearn}