How to compute the fusion product of MV cycles in type A

Roger Bai, Anne Dranowski

October 2020

1 Players

 $G = \mathbf{GL}_m$.

- The ordinary affine Grassmannian Gr
- The Beilinson–Drinfeld Grassmannian $\mathcal{G}r_n^{\mathrm{BD}} \to C$
- Partitions $\mu_i \leq \lambda_i$ of N_i (i = 1, 2) and $\mu = \sum \mu_i \leq \lambda = \sum \lambda_i$ of $N = \sum N_i$
- The slices Gr_{μ} and W_{μ_1,μ_2} to the orbits Gr^{λ} and $(\mathcal{G}r_2^{BD})^{\lambda_1,\lambda_2}$
- The nilpotent and semi-nilpotent cones \mathcal{N} and \mathcal{N}_s (of matrices with eigenvalues 0 and 0 or $s \neq 0$)
- The slices \mathbb{T}_{μ} and \mathbb{T}_{μ_1,μ_2} to the orbits \mathbb{O}_{λ} and $\mathbb{O}_{\lambda_1,\lambda_2}$

New (?) definitions among these are as follows. The [family of] slices [with s-fibre?]

$$W_{\mu_1,\mu_2} = G_1[t^{-1},(t-s)^{-1}]L_{\mu_1,\mu_2}$$

where $L_{\mu_1,\mu_2} \in \mathcal{G}r_2^{\mathrm{BD}}$ is a $\mathbb{C}[t]$ -lattice in $\mathbb{C}(t)^m$ that specializes to a $\mathbb{C}[\![t]\!]$ -lattice in $\mathbb{C}(\!(t)\!)^m$ away from t=0 and away from t=s; i.e.

$$L_{\mu_1,\mu_2} \otimes \mathbb{C}[(t-s)^{-1}] = L_{\mu_1,\mu_2} \otimes \mathbb{C}[\![t]\!] = L_{\mu_2} \text{ and}$$

$$L_{\mu_1,\mu_2} \otimes \mathbb{C}[t^{-1}] = L_{\mu_1,\mu_2} \otimes \mathbb{C}[\![t-s]\!] = L_{\mu_1}$$
(2)

where L_{μ_i} denotes the point $t^{\mu_i}G(\mathcal{O}) \in Gr$.

The family of semi-infinite orbits Anne: Maybe doesn't make sense before specialization?

$$S_{\mu_1,\mu_2} = N_-(\mathcal{K})L_{\mu_1,\mu_2}. \tag{3}$$

(1)

The orbit of $\mathbb{C}[t]$ -lattices in $\mathbb{C}(t)^m$ whose elements specialize again to $\mathbb{C}[\![t]\!]$ -lattices in $\mathbb{C}(\!(t)\!)^m$ away from t=0 and away from t=s as follows

$$(\mathcal{G}r_2^{\mathrm{BD}})^{\lambda_1,\lambda_2} = \{ L \in \mathcal{G}r_2^{\mathrm{BD}} : L \otimes \mathbb{C}[t^{-1}] \in \mathrm{Gr}^{\lambda_2} \text{ and}$$

$$L \otimes \mathbb{C}[(s-t)^{-1}] \in \mathrm{Gr}^{\lambda_1} \}.$$

$$(4)$$

Anne: These defining conditions are again just telling us that in the fibre over the fixed point $(0,s) \in C^{(2)}$ this set is pairs of lattices; note that we invert the indeterminates t and (t-s) after specializing (0,s). Could we give a more explicit characterization like $t^{N_1}(t-s)^{N_2}L_0 \subseteq L \subseteq t^{-N_1}(t-s)^{-N_2}$?

The [family " $\mathcal{N} \otimes \mathbb{C}[s]$? $\mathcal{N} \times \mathbb{C}$?" of] semi-nilpotent cone[s fibred over $C = \mathbb{A}^1$ with s-fibre]

$$\mathcal{N}_s = \{ A \in \text{Mat}(N) : \text{eigenvalues of } A \text{ are } 0 \text{ or } s \}.$$
 (5)

The [family of] slice[s \mathbb{T}_{μ_1,μ_2} fibred over $C = \mathbb{A}^1$ with s-fibre]

$$\mathbb{T}^s_{\mu_1,\mu_2} = \{B + C_s : B \text{ is a } \mu \times \mu \text{ block matrix of zeros}$$
except possibly in the last $\min(\mu_i, \mu_j)$ columns of the last row of each $\mu_i \times \mu_j$ block and C_s is the block diagonal matrix of companion matrices of $t^{\mu_{1,k}}(t-s)^{\mu_{2,k}}\}$.

The uppertriangular subfamily $\mathbb{T}_{\mu_1,\mu_2}^+$ with s-fibre

$$\mathbb{T}_{\mu_1,\mu_2}^{+,s} = \{ B + C_s \in \mathbb{T}_{\mu_1,\mu_2} : B \in \mathfrak{n} \}$$
 (7)

where $\mathfrak{n} \subset \operatorname{Mat}(N)$ is the unipotent subalgebra of uppertriangular matrices.

Anne: or—as Joel pointed out, may be ok with: The slice \mathbb{T}_{μ} as defined in MVy, no change, and the family of slices

$$\mathbb{T}_{\mu_1,\mu_2}^{+,s} = \mathbb{T}_{\mu} \cap \mathfrak{n} + C_{\mu_1,\mu_2}^s$$

where

 C_s is the block diagonal matrix of companion matrices of $t^{\mu_{1,k}}(t-s)^{\mu_{2,k}}$ (8)

The [family of] orbit[s $\mathbb{O}_{\lambda_1,\lambda_2}$ fibred over $C=\mathbb{A}^1$ with s-fibre]

$$\mathbb{O}_{\lambda_1,\lambda_2}^s = \{ A \in \mathcal{N}_s : A \text{ is conjugate to } J_{\lambda_1} \oplus (sI_{N_2} + J_{\lambda_2}) \}$$
 (9)

where J_{λ_i} is the Jordan normal form of block type λ_i and I_{N_2} is the identity matrix in $\mathrm{Mat}(N_2)$.

- 2 Exposition
- 3 Rising Action
- 4 Climax
- 5 Falling Action

Theorem 1. Let $\lambda_i \geq \mu_i$ be dominant (i = 1, 2), $\mu = \mu_1 + \mu_2$, and $\lambda = \lambda_1 + \lambda_2$. There is an isomorphism

$$\overline{\mathbb{O}_{\lambda_1,\lambda_2}} \cap \mathbb{T}_{\mu_1,\mu_2} \to \overline{(\mathcal{G}r_2^{BD})^{\lambda_1,\lambda_2}} \cap \mathcal{W}_{\mu_1,\mu_2}$$
 (10)

got by taking a $\mu \times \mu$ block matrix A in the s-fibre $\overline{\mathbb{O}_{\lambda_1,\lambda_2}^s} \cap \mathbb{T}_{\mu_1,\mu_2}^s$ on the left to the representative of the s-fibre on the right defined by

$$g = t^{\mu_1} (t - s)^{\mu_2} + a(t)$$

$$a_{ij}(t) = -\sum_{k=1}^{\mu_i} A_{ji}^k t^{k-1}$$
(11)

where A_{ji}^k is the kth entry from the left of the last row of the $\mu_j \times \mu_i$ block of A. Let's call this the MVyBD isomorphism.

Proof. The proof is fibre by fibre, so fix $s \neq 0$. Anne: Emphasize in the intro later (because this always confuses me) that by the s-fibre we really mean the (0, s)-fibre; i.e. its the BD Grassmannian over the second symmetric power of $C = \mathbb{A}^1$; better just replace s-fibre by (0, s)-fibre everywhere it occurs.

- 1. The map is well defined. In particular, it defines $\mathbb{C}[t]$ -lattices in $\mathbb{C}(t)^m$. Moreover, these lattices break down to give pairs of lattices upon inverting t or t-s that have the right properties. [Copy Roger's proof]
- 2. The inverse map is got by taking the matrix of multiplication by t on the quotient $\mathbb{C}[t]^m/L$ just as in the ordinary MVy isomorphism—the only difference being $\mathbb{C}[t]$ is replaced by $\mathbb{C}[t]$.
 - (a) The matrix of t will have the right block type with respect to the basis

$$\{[e_i], [te_i], \dots, [t^{\mu_i - 1}e_i] : 1 \le i \le m\}$$
 (12)

of $\mathbb{C}[t]^m/t^{\mu_1}(t-s)^{\mu_2}\mathbb{C}[t]^m$. We can show this if we can show that $\mathbb{C}[t]$ -lattices satisfying Equation 2 have a basis of the form

$$v_i = t^{\mu_{1,i}} (t-s)^{\mu_{2,i}} + \sum_{j>i} p_{ij}(t)e_j$$
(13)

with deg $p_{ij}(t) < \mu_i = \mu_{1,i} + \mu_{2,i}$ ($1 \le i \le m$). Anne: I don't know why this should be true. We might have to just define fibres of W_{μ_1,μ_2} in this way?

(b) $t|_{\mathbb{C}[t]^m/L}$ will have two eigenvalues, 0 and s, and its generalized 0-eigenspace will have block type $\leq \lambda_1$ while its generalized s-eigenspace will have block type $\leq \lambda_2$. This should follow from the defining fact that lattices satisfying Equation 4 equivalently satisfy

$$t|_{\mathbb{C}[\![t]\!]^m/L_1}$$
 has Jordan type $\leq \lambda_1$
 $t|_{\mathbb{C}[\![t]\!]^m/L_2}$ has Jordan type $\leq \lambda_2$ (14)

where recall $L_i = L \otimes \mathbb{C}[(t-p_i)^{-1}]$ and $p_1 = s$ while $p_2 = 0$. Anne: Somehow, restricting to an eigenspace is like inverting/forgetting the action of t by any other generalized eigenvalue? Basic linear algebra? Joel? Corollary 1. The MVyBD isomorphism restricts to an isomorphism of subfamilies

$$\overline{\mathbb{O}_{\lambda_1,\lambda_2}} \cap \mathbb{T}^+_{\mu_1,\mu_2} \to \overline{(\mathcal{G}r_2^{BD})^{\lambda_1,\lambda_2}} \cap S_{\mu_1,\mu_2}. \tag{15}$$

Define $S^s_{\mu_1,\mu_2} = N_-((t^{-1}))t^{\mu_1}(t-s)^{\mu_2}$. Anne: is it a fibre of S_{μ_1,μ_2} defined above?

We could also make the following claim.

Theorem 2 (Theorem 1 version 2). Let λ_1, λ_2 and μ be dominant, such that $\lambda = \lambda_1 + \lambda_2 \ge \mu$. Then there is an isomorphism

$$\overline{\mathbb{O}_{\lambda_1,\lambda_2}} \cap \mathbb{T}_{\mu} \to \overline{\mathcal{G}_{r_2}^{BD^{\lambda_2,\lambda_2}}} \cap \mathcal{W}_{\mu}$$
 (16)

defined by the same map as in Theorem 1. Note $W_{\mu} = Gr_{\mu}$.

Lemma 1 (KWWY14). Let μ be dominant. Then

$$N_{-}((t^{-1}))L_{\mu} = N_{1}[[t^{-1}]]L_{\mu}$$
(17)

Anne: where I am not sure about the double brackets.

Lemma 2. Let μ_1, μ_2 be dominant and let $s \in \mathbb{A}^1 - \{0\}$. Then

$$S_{\mu_1,\mu_2}^s \subset \operatorname{Gr}_{\mu} \tag{18}$$

where $\mu = \mu_1 + \mu_2$.

Proof. Copy Roger's proof.

6 Denouement

As an application we can compute fusion of stable MV cycles of type α_i for any $i \in I$. What about more general weights? Having kpf > 1.

Proposition 1. Given two MV cycles Z_{τ} and Z_{σ} of type...

$$Z_{\tau} * Z_{\sigma} \tag{19}$$

is found by???