Appello di ${f MATEMATICA}$ DISCRETA

Informatica (corso A)

 $11\ {\rm novembre}\ 2019$

Nome e cognome	Nome	e cognor	ne			
----------------	------	----------	----	--	--	--

1. Utilizzando l'algoritmo delle divisioni successive, determinare

$$d = M.C.D.(315, 1025).$$

Trovare, inoltre, due numeri interi x_0, y_0 tali che $d=315x_0+1025y_0$. Calcolare, infine, m=m.c.m.(315,1025).

2. È assegnato il grafo \mathcal{G} avente la seguente rappresentazione:

- (a) Stabilire se ${\mathcal G}$ ammette un cammino o un circuito Euleriano
- (b) verificare che ${\mathcal G}$ è planare, tracciandone una rappresentazione planare, e verificare la formula di Eulero
- (c) stabilire se \mathcal{G} è bipartito e in caso affermativo determinare i due partiti di \mathcal{G} .

3. (esercizio riservato agli studenti che portano il programma degli anni accademici 2017-18 e 2018-19)

È assegnato il numero complesso:

$$z = \frac{1}{i - 1} + \frac{i + 1}{2 - i}.$$

Determinare:

- (a) la forma algebrica di z, specificado la parte reale e la parte immaginaria
- (b) il complesso coniugato di \boldsymbol{z}
- (c) il modulo di z.

4. Sull'insieme $\mathbb R$ dei numeri reali è assegnata la legge di composizione: $*:\mathbb R\times\mathbb R\to\mathbb R$ tale che

$$\forall x, y \in \mathbb{R}, \quad x * y = \frac{1}{2} x y.$$

Verificare che $(\mathbb{R},+,*)$ è un campo, dove + è l'usuale somma su $\mathbb{R}.$

TA T	
$N \cap m \cap A$	cognome
Nome C	COgnome

- 5. È assegnato il gruppo abeliano ($\mathbb{Z}_8,+$).
 - (a) Determinare tutti i generatori di $(\mathbb{Z}_8,+)$
 - (b) scrivere gli elementi del sottogruppo ciclico di $(\mathbb{Z}_8,+)$ generato da $[2]_8.$

6. (esercizio riservato agli studenti che portano il programma di un a.a. precedente al 2017-18)

È assegnato il reticolo (\mathcal{R}, \leq) , dove $\mathcal{R} = \{a, b, c, d, e, f, g, h\}$ e " \leq " è descritta dal seguente diagramma di Hasse:

- (a) Determinare gli eventuali complementi di tutti gli elementi di ${\mathcal R}$
- (b) stabilire se \mathcal{R} è distributivo
- (c) stabilire se \mathcal{R} è di Boole.

Verificare che l'insieme

$$S = \{A \in GL(n, \mathbb{R}) : det(A) = 1\}$$

è un sottogruppo del gruppo $(GL(n,\mathbb{R}),\cdot)$ delle matrici quadrate di ordine n invertibili.