מטלת מנחה 13 - לוגיקה למדמ"ח 20466

שאלה 1

סעיף א

 \perp נראה שנוכל להגיע לטבלת האמת של הקשר \neg בעזרת הקשרים \leftarrow ו

α	Δ (α)	$(\alpha \to \bot (\alpha))$	¬α
Т	F	F	F
F	F	Т	Т

כידוע, שפה המכילה את הקשרים $\{\neg, \rightarrow\}$ היא שפה קשרית מלאה (עמוד 151 בספר), לכן גם השפה בעלת שני הקשרים $\{\bot, \rightarrow\}$ היא שפה מלאה.

סעיף ב

נוכיח באינדוקציה על דרגת הפסוקים כי אין פסוק בשפה הנ"ל השקול לפסוק $(\psi \to \theta)$. כזכור, טבלת האמת של פטוקים, טבלת האמת תכיל מספר זוגי של של $\psi \to \psi$ מכילה 3 ערכי T וערך T אחד. נוכיח כי עבור כל שני פסוקים, טבלת האמת תכיל מספר זוגי של ערכי T .

יהיו ψ, θ פסוקים אלמנטריים. מתקיים:

ψ	θ	$M(\psi, \psi, \psi)$	$M(\psi, \psi, \theta)$	$M(\psi, \theta, \theta)$	$M(\theta, \theta, \theta)$
Т	Т	F	F	F	F
Т	F	F	F	Т	Т
F	Т	Т	Т	F	F
F	F	Т	Т	Т	Т

והראינו כי עבור כל אפשרות (עד כדי סדר הפסוקים, שאין לו חשיבות בקשר M), מספר ערכי Fi T בטבלה הוא זוגי.

על כן, נניח כי הטענה עבור כל זוג פסוקים ψ, θ מדרגה m מספר ערכי Fi T על כן, נניח כי הטענה עבור כל זוג פסוקים בסוקים ψ, θ מזורכב מהם מדרגה m+1 הוא זוגי, ונוכיח את הטענה עבור פסוק ψ המורכב מהם מדרגה

שוב, על פי טבלת האמת לעיל והנחת האינדוקציה, מספר המודלים בהם ϕ מקבל T הוא סכום של בדיוק שני מספרים זוגיים בכל אחת מן האפשרויות - ולכן מספר זוגי.

.F טענה דומה ניתן לתת גם לגבי מספר המודלים בהם φ מקבל

הוכחנו באינדוקציה כי אין פסוק בשפה הנ"ל השקול לפסוק $(\psi \to \psi)$, ולכן השפה אינה מלאה.

שאלה 2

סעיף א

אז הוא נובע לוגית מX. אריך להוכיח כי עבור כל קבוצת פסוקים X, אם פסוק ϕ יכיח בD מתוך X אז הוא נובע לוגית מX. יהא ϕ פסוק יכיח בX. נוכיח כי ϕ נובע לוגית מX באינדוקציה על סדרת ההוכחה.

בסיס האינדוקציה: אם φ הוא הפסוק הראשון בסדרת ההוכחה, אז יש שתי אפשרויות:

1. אם φ הוא אקסיומה, אז הוא טאוטולוגיה, ובפרט כל מודל המספק את K יספק גם אותו. נראה כי אקסימות התחשיב שהוגדרו הן טאוטולוגיות בעזרת טבלאות אמת:

ф	ψ	$(\phi \leftrightarrow \phi)$	$(\phi \leftrightarrow \neg \psi)$	$(\neg \varphi \leftrightarrow \psi)$	$((\varphi \leftrightarrow \neg \psi) \rightarrow (\neg \varphi \leftrightarrow \psi))$
Т	Т	Т	F	F	Т
Т	F	Т	Т	Т	Т
F	Т	Т	Т	Т	Т
F	F	Т	F	F	Т

.K אם ϕ הוא פסוק מ א הוא בפרט נובע לוגית מ

כעת, נניח כי כל הפסוקים שקדמו ל ϕ בסדרת ההוכחה נובעים לוגית מK, ונוכיח כי ϕ נובע לוגית מK. גם כאן נתייחס לשלושה מקרים:

- (אז הראינו כי הוא נובע לוגית מ ϕ .1
 - .K הוא פסוק מK, ובפרט נובע לוגית מ Φ .2
- ויש אותנו היות ויש ער זה מחייב אותנו היות ויש ($\phi \to \phi$) אוני פסוקים שני פסוקים θ שני פסוקים שני פסוקים θ שני פסוקים שני פסוקים שני פסוקים ללי היסק יחיד והוא שני פסוקים פסוקים שני פסוקים שנים

 Φ ואינו מספק את K במקרה זה, נניח בשלילה כי יש מודל M המספק את

 ψ היות ש ψ קודם ל ϕ בסדרת ההוכחה שלו, על פי הנחת האינדוקציה M מספק את

לכן, במודל זה, $M(\psi \to \varphi) = F$ על פי ההגדרה, זאת בסתירה להנחת האינדוקציה לפיה $M(\psi \to \varphi) = F$ לוגית מא!

סעיף ב

יהא φ פסוק יכיח בD. נוכיח באינדוקציה כי האפשרויות לקשר הראשי ב φ הן \leftrightarrow או \leftrightarrow , ואם הקשר הראשי ב φ הוא φ הוא φ φ הוא φ φ אז הקשר הראשי ב φ יהיה φ או φ

בסיס האינדוקציה: אם φ אקסיומה, הקשר הראשי שלו יהיה \leftarrow או \leftrightarrow . הקשר הראשי של האקסיומה השנייה הוא \leftarrow , ואכן הקשר הראשי של אגף ימין שלו הוא \leftrightarrow .

כעת נניח כי כל הפסוקים שקדמו ל φ בסדרת ההוכחה מקיימים את הנחת האינדוקציה. אם φ אקסיומה - גם הוא מקיים את התנאי, ואחרת, φ פסוק שהוסק מכלל ההיסק MP, כלומר קדמו לו בסדרת ההוכחה שלו פסוק כלשהו ψ ופסוק נוסף θ שהוא $(\psi \to \varphi)$. היות ו θ מקיים את הנחת האינדוקציה, נסיק כי הקשר הראשי ב φ הוא \leftrightarrow או \leftarrow ובזאת תמה הוכחתנו.

זאת ועוד - התחשיב אינו שלם. למשל, הפסוק $(\varphi \lor \neg \varphi)$ הוא טאוטולוגיה, אך לא יכיח בD כי הקשר הראשי שלו אינו \leftarrow או \leftrightarrow .

סעיף ג

1. נראה בעזרת טבלת אמת כי הפסוק אינו טאוטולוגיה:

P_{1}	P_2	$(P_1 \leftrightarrow P_2)$	$(P_2 \to \neg P_1)$	$(P_1 \to (P_2 \to \neg P_1))$	$((P_1 \leftrightarrow P_2) \leftrightarrow (P_1 \rightarrow (P_2 \rightarrow \neg P_1)))$
Т	Т	Т	F	F	F
Т	F	F	Т	Т	F
F	Т	F	Т	Т	F
F	F	Т	Т	Т	Т

.D אינו יכיח ϕ אינו אוטולוגיה, והתחשיב נאות, ϕ אינו יכיח ב

- . → או יכיח מהצורה לשר הפסוק מכיל קשר Λ , ולכן לא יכיח בD. פסוקים יכיחים בD. פסוקים יכיחים לא יכיח בח.
 - 3. הפסוק יכיח בD. סדרת ההוכחה:

$$\begin{array}{lll} & & & & & \\ & & & & \\ & \varphi = & \neg P_1 & \text{ אקסיומה 1 Vertical P} & & & \\ & & & & & \\ & \varphi = & \neg P_1, \ \psi = P_1 & \text{ אקסיומה 2 Vertical P} & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & &$$