

Союз Советских
Социалистических
Республик

Государственный комитет
Совета Министров СССР
по делам изобретений
и открытий

О П И САНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(11) 447401

(61) Зависимое от авт. свидетельства -

(22) Заявано 28.02.73(21) I888I57/23-4

(51) М. Кл.

с присоединением заявки -

(32) Приоритет -

Опубликовано 25.10.74 Бюллетень № 39

С 0% 103/16

Дата опубликования описания 15.12.74

(53) УДК 547.298.1
(088.8)

(72) Авторы
изобретения

М.С.Машевская, П.А.Петинин, В.С.Залесов, Э.Г.Караваева

(71) Заявитель Пермский государственный фармацевтический институт

(54) СПОСОБ ПОЛУЧЕНИЯ АМИДОВ ГЛИКОЛЕВЫХ КИСЛОТ

1

Изобретение относится к технологии получения амидов карбоновых кислот, а именно к способу получения амидов гликолевых кислот, которые могут найти применение как биологически активные соединения.

Известен способ получения амидов гликолевых кислот пиролизом их аммонийных солей. Выход целевого продукта составляет 30-40%.

Цель изобретения - упрощение технологического процесса и увеличение целевого продукта.

Сущность предложенного способа получения амидов гликолевых кислот общей формулы I

где R - арил или алкил, состоит в том, что амид миндальной кислоты окисляют хромовым ангидридом в уксусной кислоте при 60-70°C, по-

2

лученный при этом амид бензоилмуравьиной кислоты обрабатывают арил- или алкилмагнийгалогенидом с последующим выделением целевого продукта известным приемом. В результате упрощается технология получения и повышается выход целевого продукта до 80-85%, а также расширяется число соединений данного класса.

Пример 1. Амид дифенилгликолевой (бензиловой) кислоты (I), где R = C₆H₅

Раствор 0,05 моль амида, бензоилмуравьиной кислоты в 30 мл абсолютного эфира прибавляют к 15 моль бромистого фенилмагния, реакционную смесь нагревают в течение 1 часа, разлагают 10%-ным раствором соляной кислоты, эфирный слой отделяют, обрабатывают водяным паром, остаток кристаллизуют из подходящего растворителя (спирт, бензол, петролейный эфир).

Выход 77%, т.п. 152-153°C (по

литературным данным т.пл. 154°C).

Пример 2. Амид метилфенилгликолевой кислоты (I),

где R = CH₃

Реакцию проводят аналогично примеру 1, выход 78%, т.пл. 99–100°C (петролейный эфир).

Найдено, %: N 8,20; 8,15

Вычислено, %: N 8,48.

ИК-спектр 3617, 3533 см⁻¹ (ОН-свободный и вовлеченный во внутримолекулярную водородную связь); 3480, 3413 см⁻¹ – полоса амидной и свободной NH₂ группы.

Соединения, представленные в таблице, получают аналогично.

ПРЕДМЕТ ИЗОБРЕТЕНИЯ
Способ получения амидов гликолевых кислот общей формулы

5

10

15

20

где R – арил или алкил, отличающийся тем, что, с целью упрощения технологического процесса и увеличения выхода целевого продукта, амид миндальной кислоты окисляют хромовым ангидридом в уксуснокислой среде при 60–70°C и полученный при этом амид бензоилмуравьиной кислоты обрабатывают арил- или алкилмагнийгалогенидом с последующим выделением целевого продукта известным приемом.

Составитель Г. Мигачев

Редактор Загребельная Техред Н. Сенина Корректоры: М. Рогова

Заказ 671 Изд. № 701 Тираж 506 Подписано

ЦНИИПП Государственного комитета Совета Министров СССР
по делам изобретений и открытий
Москва, 113035, Раушская наб., 4

Предприятие «Патент», Москва, Г-59, Бережковская наб., 24

447401

*

1

ИК=спектры, см⁻¹

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

НЕЗАМЕЩЕННЫЕ АМИДЫ ГЛЮКОЛЕВЫХ КИСЛОТ $C_6H_5CH(OH) - CONH_2$

R	Выход, %	Температура плавления, °C	Найдено, %	Брутто-			Вычислено N, %	AH=спекции, см ⁻¹
				Формула				
C_6H_5	77	152-153	—	—	—	—	—	3612, 3524, 3480, 3400
CH_3	78	99-100	8,20-8,25	$C_9H_{11}NO_2$	8,48	—	3617, 3533, 3480, 3413	
C_2H_5	76	89-91	8,07-7,98	$C_{10}H_{13}NO_2$	7,82	—	3617, 3533, 3480, 3417	
C_3H_7	86	96-97	7,23-7,01	$C_{11}H_{15}NO_2$	7,25	—	3617, 3533, 3480, 3413	
$C_3H_7=NO$	80	105-106	7,00-7,05	$C_{11}H_{15}NO_2$	7,25	—	3617, 3533, 3480, 3417	
$C_4H_9=H$	82	83-84	6,51-6,48	$C_{12}H_{17}NO_2$	6,76	—	3617, 3533, 3480, 3413	

447401