

$$I^{G}(J^{PC}) = ?^{?}(1^{+})$$

OMITTED FROM SUMMARY TABLE

Quantum numbers are quark model predictions.

$h_b(2P)$ MASS

VALUE (MeV)EVTSDOCUMENT IDTECNCOMMENT10259.8 \pm 0.5 \pm 1.190kMIZUK12BELL $e^+e^- \rightarrow \pi^+\pi^-$ hadrons

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

 $10259.8 \pm 0.6 ^{+1.4}_{-1.0}$ 83.9k 1 ADACHI 12 BELL $10.86~e^{+}e^{-} \rightarrow ~\pi^{+}\pi^{-}$ MM

¹Superseded by MIZUK 12.

$h_b(2P)$ DECAY MODES

Mode	Fraction (Γ_i/Γ)	
Γ_1 hadrons Γ_2 $\eta_b(1S)\gamma$ Γ_3 $\eta_b(2S)\gamma$	not seen $(22\pm \ 5)\ \% \ (48\pm 13)\ \%$	

$h_b(2P)$ BRANCHING RATIOS

h_b(2P) REFERENCES

 ADACHI
 12
 PRL 108 032001
 I. Adachi et al.
 (BELLE Collab.)

 MIZUK
 12
 PRL 109 232002
 R. Mizuk et al.
 (BELLE Collab.)

Created: 5/30/2017 17:22