Implementation of Parareal algorithm

Group 25

Gursimran Singh Saluja Abdullah Mujahid Basanagouda Somanakatti

Dr. Karlheinz Lehner Chair of Computing in Engineering

Computational Engineering Ruhr Universität Bochum

Parallelization in PDE solvers

Methods

- Spatial domain decomposition
- ▶ Time domain decomposition

Figure: Spatial Domain Decompostion Illustration [1]

Parallelization in time - Motivation

$$\frac{\partial y(t)}{\partial t} + Ay(t) = 0, \ t \in [T_0, T_N]$$
$$y(T_0) = y_0$$

Run-time Consideration

- c: Time for computing one time step in numerical integration
- T = M c, total time for full simulation, M : Number of fine steps
- For c = 0.04s, M = 1000,000, $T = 40,000s \approx 11.1 hrs$

Parallelization in time - Idea

Idea

- Split the time domain into a set of subdomains
- Solve the IVP on a coarse grid to get an approx. sol at $T_1, T_2, \dots, T_{N-1}, T_N$
- This can be used as initial value for the IVP on each sub-domain
- Initial value is only serves as guess (coarse sol)
- Iteratively better solution with better initial guess for initial value in each iteration

Parareal Algorithm

Convention

- \triangleright δt_c : coarse grid time step
- \triangleright δt_f : fine grid time step
- \triangleright \mathcal{G} : coarse grid integrator
- \triangleright \mathcal{F} : fine grid integrator
- $\triangleright Y_0, Y_1, \dots Y_N$: numerical solution
- $ightharpoonup Yf_n^k$, Yc_n^k : Fine and Coarse Integrator solutions

Construction

$$Y_n^k = \mathcal{F}(Yc_{n-1}^{k-1}) + \mathcal{G}(Y_{n-1}^k) - \mathcal{G}(Y_{n-1}^{k-1})$$

where

- k: iteration
- ▶ n : grid index

Parareal Algorithm

Algorithm 1 Parareal Algorithm

```
1: Iteration 0: Y_0^0 = y_0, given initial value
 2: for n = 1 to N do
 3: Y_n^0 = \mathcal{G}(Y_{n-1}^0)
 4: end
 5: for k = 1 to N do
       parallel for n = 1 to N do
          Yf_n^{k-1} = \mathcal{F}(Yc_n^{k-1})
 7:
       end
 8:
 9:
     for n = 1 to N do
         Yc_n^k = \mathcal{G}(Y_n^{k-1})
10:
11:
       end
12: Y_n^k = Yc_n^k + Yf_n^{k-1} - Yc_n^{k-1}
    if |Y^k - Y^{k-1}| < \epsilon then
13:
14.
          break
       end if
15:
16: end
```

Test problem

Problem 1

$$\frac{dy}{dt} = A(t) y(t)$$
$$y(0) = y_0, \quad t \in [0, 10]$$

where A = -0.2, $y_0 = 100$

Problem 2

$$\frac{dy}{dt} = \sin(t) y(t) + t$$
$$y(0) = 1, \quad t \in [0, 14]$$

Numerical Method

Classical Runge-Kutta scheme of 2nd order is used for 1D ODE.

$$k_1 = f(t_n, y_n)$$
 $k_2 = f(t_n + \frac{h}{2}, y_n + \frac{h}{2}k_1)$
 $k = \frac{k_1 + k_2}{2}$
 $y_{n+1} = y_n + h k$

OpenMP implementation

```
@ parareal.cpp > ...
      #include <stdio.h>
     #include <omp.h>
     #include <math.h>
     // global variables
     int main()
 6
 7
          // coarse grid integrator
 8
          // ...
 9
          while (err > tol and iter < max iter)
10
          #pragma omp parallel num threads(NUM THREADS) shared(t, y) private(i)
11
12
13
              #pragma omp for schedule(dynamic, chunk)
14
                  for (int i = 0; i < n sub; i++)
15
16
                      //fine integrator
17
                      //...
18
19
20
              // predictor: coarse integrator
21
              // corrector
22
              // error check
23
24
          return 0:
25
26
```

Simulation: Problem 1

Simulation: Problem 2

Speedup

CPU	Cores	Multithreading	Num of threads	time serial	time parallel
i5 9500	6 cores	6 way	100	201.222	117.047
i5 8250u	4 cores	8 way	100	201.380	117.070
i3 5010u	2 cores	4 way	100	201.251	117.054

Speedup
1.72
1.72
1.72

Domain decomposition based $\mathcal{H}\text{-LU}$ preconditioning, Volume 112, Numerische Mathematik, May 2009.

