These are notes for Buntine & Jakulin paper: Discrete Component Analysis [?]

Gamma-Poisson (GP) model [?]:

$$\mathbb{E}_{w \sim p(w|l,\theta)} \left[w_j \right] = \sum_{k=1}^K \theta_{jk} l_k$$

• w_j word count of jth word in a document

$$w_j \sim \text{Po}(w_j; (\theta \mathbf{l})_j) = \frac{(\theta \mathbf{l})_j^{w_j} \exp(-(\theta \mathbf{l})_j)}{w_h!}$$

• l_k component scores (vector I) that indicate ammount of the component in the document

$$l_k \sim \text{Gamma}(l_k; \alpha_k, \beta_k) = \frac{l_k^{\alpha_k - 1} \beta_k^{\alpha_k} \exp(-\beta_k l_k)}{\Gamma(\alpha_k)}$$

• θ component loading matrix of size $J \times K$. θ_{jk} controles partition of te kth component in the jth word

The log-likelihood of this model:

$$\log p(\mathbf{w}, l | \theta, \text{GP, K}) = \sum_{k=1}^{K} \left\{ \alpha_k \log(\beta_k) + (\alpha_k - 1) \log l_k - \beta_k l_k - \log \Gamma(\alpha_k) + \sum_{j=1}^{J} [w_j \log(\theta \mathbf{l})_j - (\theta \mathbf{l})_j - \log w_j!] \right\}$$

$$= \sum_{k=1}^{K} \log \text{likelihood of } l_k + \sum_{j=1}^{J} \log \text{likelihood of } w_j \text{ given } \mathbf{l}$$

Section 6: Components assignment for words.

Introducing a discrete latent vector \mathbf{c} whose total count is $\sum_j w_j$. The count c_k gives the count of words in the document appearing in the kth component. It is derived from a latent matrix \mathbf{V} of size $J \times K$ (entries v_{jk}).

$$\sum_{j=1}^{J} v_{jk} = c_k$$

$$\sum_{k=1}^{K} v_{jk} = w_j$$

The distribution underlying the GP model now becomes

$$\begin{aligned} &l_k \sim \operatorname{Gamma}(l_k; \alpha_k, \beta_k) \\ &c_k \sim \operatorname{Po}(c_k; l_k) \\ &v_{j,k} \sim \operatorname{Multinom}(v_{jk}; \theta_{jk}, c_k) = c_k! \prod_j \frac{\theta_{jk}^{v_{jk}}}{v_{jk}!} \end{aligned}$$

Proof:

We have $p(c_k|l_k) = \text{Po}(c_k; l_k)$ and $p(v_{jk}|c_k) = \text{Binom}(v_{jk}; \theta_{jk}, c_k) = \binom{c_k}{v_{jk}} \theta_{jk}^{v_{jk}} (1 - \theta_{jk})^{c_k - v_{jk}}$ (probability of having v_{jk} counts in c_k counts). Then:

$$\begin{split} p(v_{jk}|l_k) &= \sum_{c_k} p(v_{jk}|c_k) p(c_k|l_k) \\ &= \sum_{c_k=v_{jk}}^{\infty} \frac{c_k!}{v_{jk}!(c_k-v_{jk})!} \theta_{jk}^{v_{jk}} (1-\theta_{jk})^{c_k-v_{jk}} \times \frac{l_k^{c_k} \exp(-l_k)}{c_k!} \\ &= \frac{\exp(-l_k) \theta_{jk}^{v_{jk}}}{v_{jk}!} \sum_{c_k=v_{jk}}^{\infty} \frac{l_k^{c_k} (1-\theta_{jk})^{c_k-v_{jk}}}{(c_k-v_{jk})!} \qquad |\alpha_{jk} = c_k - v_{jk}| \\ &= \frac{\exp(-l_k) (\theta_{jk} l_k)^{v_{jk}}}{v_{jk}!} \sum_{\alpha_{jk}=0}^{\infty} \frac{(l_k-\theta_{jk} l_k)^{\alpha_{jk}}}{(\alpha_{jk})!} \\ &= \frac{\exp(-l_k) (\theta_{jk} l_k)^{v_{jk}}}{v_{jk}!} \exp(l_k-\theta_{jk} l_k) \\ &= \frac{(\theta_{jk} l_k)^{v_{jk}} \exp(-\theta_{jk} l_k)}{v_{jk}!} \end{split}$$

and so $p(v_{jk}|l_k) \sim \text{Po}(v_{jk};\theta_{jk}l_k)$.

Now sum of two independent Poisson distributed variables $Z = X_1 + X_2$ $(X_i \sim Po(x; \lambda_i))$ is Poisson distributed:

$$p(Z) = \sum_{x_1=0}^{z} p(X_1)p(Z - X_1)$$

$$= \sum_{x_1=0}^{z} \frac{\lambda_1^{x_1} e^{-\lambda_1}}{x_1!} \frac{\lambda_2^{z-x_1} e^{-\lambda_2}}{(z - x_1)!}$$

$$= \frac{e^{-(\lambda_1 + \lambda_2)}}{z!} \sum_{x_1=0}^{z} \frac{z!}{x_1!(z - x_1)!} \lambda_1^{x_1} \lambda_2^{z-x_1}$$

$$= \frac{(\lambda_1 + \lambda_2)^z e^{-(\lambda_1 + \lambda_2)}}{z!}$$

for more by induction.

So $w_j = \sum_{k=1}^K v_{jk}$ is Poisson distributed:

$$w_j \sim \text{Po}(w_j; \sum_{k=1}^K \theta_{jk} l_k)$$

The joint distribution for v_{jk} (each is Poisson):

$$\begin{split} p(v_{1,k}, v_{2,k}...v_{J,k} | l_k, \theta_{jk}) &= \prod_{j=1}^J \frac{(\theta_{jk} l_k)^{v_{jk}} \exp(-\theta_{jk} l_k)}{v_{jk}!} \\ &= e^{-l_k \sum_j \theta_{jk}} l_k^{\sum_j v_{jk}} \prod_j \frac{\theta^{v_{jk}}}{v_{jk}!} \qquad |\sum_j \theta_{jk} = 1, \sum_j v_{jk} = c_k \\ &= \frac{l_k^{c_k} e^{-l_k}}{c_k!} c_k! \prod_j \frac{\theta^{v_{jk}}}{v_{jk}!} \\ &= \text{Po}(c_k; l_k) \times \text{Multinom}(v_{jk}; \theta_{jk}, c_k) \end{split}$$

The likelihood of GaP model with latent matrix V is then

$$p(V, l|\alpha, \beta, \theta, K) = \prod_{k} p(l_k | \alpha_k, \beta_k) \prod_{jk} p(v_{1k}, v_{2k} ... v_{J,k} | l_k, \theta_{jk})$$

$$= \prod_{k} \text{Gamma}(l_k; \alpha_k, \beta_k) \prod_{jk} \text{Po}(c_k; l_k) \times \text{Multinom}(v_{jk}; \theta_{jk}, c_k)$$

explicitly:

$$p(V, l|\alpha, \beta, \theta, K) = \prod_{k} \frac{\beta_k^{\alpha_k} l_k^{c_k + \alpha_k - 1} \exp(-(\beta_k + 1)l_k)}{\Gamma(\alpha_k)} \prod_{j_k} \frac{\theta_{jk}^{v_{j_k}}}{v_{j_k}!}$$
(1)

and

$$\log p(V, l|\alpha, \beta, \theta, K) = \sum_{k} \left\{ (c_k + \alpha_k - 1) \log l_k - (\beta_k + 1) l_k + \alpha_k \log \beta_k - \log \Gamma(\alpha_k) + \sum_{j} \left[v_{jk} \log \theta_{jk} - \log v_{jk}! \right] \right\}$$
(2)

 w_j is derived from V so it is not represented... The term $l_k^{(c_k+\alpha_k-1)}=l_k^{(\sum_j v_{jk}+\alpha_k-1)}$ links together l_k and V and prevents simple evaluation of $\mathcal{Q}(\theta,\theta^{\mathrm{old}})=\mathbb{E}_{p(V,l|\theta^{\mathrm{old}})}\left[\log p(V,l|\theta,\ldots)\right]$ in EM algorithm as because of the term $\mathbb{E}_{p(V,l|\theta^{\mathrm{old}})}\left[v_{jk}\right]$

It is possible to integrate out l (not sure about discrete values...?):

$$p(V|\alpha, \beta, \theta, K) = \int_0^\infty p(V, l|\alpha, \beta, \theta, K) dl$$
$$= \prod_{jk} \frac{\theta_{jk}^{v_{jk}}}{v_{jk}!} \prod_k \frac{\beta_k}{\Gamma(\alpha_k)} \int_0^\infty \left[l_k^{c_k + \alpha_k - 1} \exp(-(\beta_k + 1) l_k) \right] dl_k$$

and

$$\int_0^\infty \left[l_k^{c_k + \alpha_k - 1} \exp(-(\beta_k + 1)l_k) \right] dl_k = \int_0^\infty l_k^{z - 1} \exp(-(\beta_k + 1)l_k) dl_k \quad |c_k + \alpha_k = z|$$

$$= \frac{1}{(\beta_k + 1)^z} \int_0^\infty t^{z - 1} \exp(-t) dt |(\beta_k + 1)l_k| = t$$

$$= \frac{1}{(\beta_k + 1)^z} \Gamma(z)$$

so

$$p(V|\alpha, \beta, \theta, K) = \prod_{k} \frac{\beta_k}{(\beta_k + 1)^{c_k + \alpha_k}} \frac{\Gamma(c_k + \alpha_k)}{\Gamma(\alpha_k)} \prod_{jk} \frac{\theta_{jk}^{v_{jk}}}{v_{jk}!}$$

Section 7.1 Variational Approximation

Factirised approximative posterior distribution for latent variables:

$$p(l, V|w, \alpha, \beta, \theta, K) \approx q(l, V) = q_l(l)q_V(V)$$

Optimal solution [3]

$$\log q_l^*(l) = \mathbb{E}_{V \sim q_V} \left[\log p(V, l, w | \theta, \alpha, \beta) \right] + \text{const}$$
(3)

$$\log q_V^*(V) = \mathbb{E}_{l \sim q_l} \left[\log p(V, l, w | \theta, \alpha, \beta) \right] + \text{const}$$
(4)

The lower bound is given by [3]

$$\mathcal{L}(q, \theta) = \sum_{z} p(Z|X, \theta^{\text{old}}) \log p(X, Z|\theta) + \text{const} = \mathcal{Q}(\theta, \theta^{\text{old}}) + \text{const}$$

(const is an entropy term independent on q, θ). So

$$\log p(w|\theta, \alpha, \beta, K) \ge \mathbb{E}_{l, V \sim q(l, V)} \left[\log p(l, V, w|\theta, \alpha, \beta, K)\right] + \text{const}$$
(5)

The functional form of the complete likelihood suggests

$$q_l(l) = \prod_k \text{Gamma}(l_l; \alpha_k, \beta_k) = \prod_k \frac{l_k^{a_k - 1} b_k^{a_k} \exp(-b_k l_k)}{\Gamma(a_k)}$$

$$(6)$$

$$q_V(V) = \prod_{jk} \text{Mutlinom}(v_{jk}; n_{jk}, w_j) = \prod_{jk} \frac{w_j!}{v_{jk}!} n_{jk}^{v_{jk}}$$
(7)

with $\sum_{k} n_{jk} = 1$.

Then from Eq.(3), (6) and (2) keeping terms dependent on l

$$(a_k - 1)\log l_k - b_k l_k + \text{const} = (c_k + \alpha_k - 1)\log l_k - (\beta_k + 1)l_k + \text{const}$$

and form Eq.(4), (7) and (2) keeping terms dependent on V

$$v_{jk} \log n_{jk} - \log v_{jk}! + \text{const} = v_{jk} \mathbb{E}_l \left[\log l_k \right] + v_{jk} \log \theta_{jk} - \log v_{jk}! + \text{const}$$

so the rewrite rules for the parameters:

$$n_{jk} = \frac{1}{z_{jk}} \theta_{jk} \exp(\mathbb{E}_l [\log l_k])$$
$$a_k = \sum_j n_{jk} w_j + \alpha_k$$
$$b_k = 1 + \beta_k$$

where z_{jk} is the normalisation constat $(\sum_k n_{jk} = 1)$ so $z_{jk} = \sum_k \theta_{jk} \exp(\mathbb{E}_l [\log l_k])$ and $\sum_j n_{jk} w_j = c_k$. $(n_{jk}$ is the proportion of the w_j it kth component). $\mathbb{E}_{l \sim q_l} [\log l_k] = \psi_0(a_k) - \log b_k$ where ψ_0 is digamma function (logarithmic derivation of the gamma function...)

Now recompute model parameter θ by maximizing lower bound Eq.(5) (keeping constraints $\sum_{i} \theta_{jk} = 1$). Keeping only term dependent on θ_{ik} :

$$\mathcal{L}(\theta) = \sum_{j,k} \mathbb{E}_{q_V(V)} [v_{jk}] \log \theta_{jk} + \text{const}$$
$$= \sum_{j,k} n_{jk} w_j \log \theta_{jk} + \text{const}$$

 $(\text{from Eq.}(7) \mathbb{E}_{q_V(V)} [v_{jk}] = w_j n_{jk})$

$$0 = \frac{\partial}{\partial \theta_{mn}} \left[\sum_{j,k} n_{jk} w_j \log \theta_{jk} + \lambda_k (1 - \sum_p \theta_{pk}) \right]$$

we get

$$\theta_{mn} = \frac{n_{mn}w_m}{\lambda_n}$$

and from normalization constraints $\lambda_n = \sum_m n_{mn} w_m$. If we take likelihood function over all documents (i=1:L) each $w_j \to w_{j(i)}$ and $n_{jk} \to n_{jk(i)}$ then we get

$$\theta_{mn} = \frac{\sum_{i} n_{mn(i)} w_{m(i)}}{\lambda_n}$$

Buntine [1] even introduce prior on $\theta_{jk} \sim \text{Dirichlet}(\theta_{jk}; \gamma, J) = C(\gamma_j) \prod_{j=1}^J \theta_{jk}^{\gamma_j - 1}$. This is incorporated into the complete log-likelihood function $p(V, l, w, \theta | \alpha, \beta, K)$ so that lower bound $\mathbb{E}_{l,V \sim q(l,V)}[\log p(l, V, w, \theta | \alpha, \beta, K)]$ and terms dependent on θ :

$$\mathcal{L}(\theta) = \sum_{i,j,k} \mathbb{E}_{q_V(V)} \left[v_{jk(i)} \right] \log \theta_{jk} + (\gamma_j - 1) \log \theta_{jk} + \text{const}$$
$$= \left(\sum_{i,j,k} n_{jk(i)} w_{j(i)} + \gamma_j - 1 \right) \log \theta_{jk} + \text{const}$$

and by maximizing with normalization constraints:

$$\theta_{mn} \propto \sum_{i} n_{mn(i)} w_{m(i)} + \gamma_{j}$$

References

- [1] Buntine, W., & Jakulin, A. (2006). Discrete Componenet Analysis. In C. Saunders, M. Grobelnik, S. Gunn, & J. Shawe-Taylor (Eds.), Subspace, Latent Structure and Feature Selection (pp. 1-33). Springer.
- [2] Canny, J. (2004). GaP: a factor model for discrete data. Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval (p. 122–129). ACM. Retrieved January 25, 2011, from http://portal.acm.org/citation.cfm?id=1009016.
- [3] Bishop, C. M. (2006). Pattern Recognition and Machine Learning. (M. Jordan, J. Kleinberg, & B. Scholkopf, Eds.)Pattern Recognition (p. 738). Springer. doi: 10.1117/1.2819119.