Grading

	Implementation	Report	Final Grade	Remark
Lab 1	7.5%	7.5%	15%	
Lab 2- Display Ckt	7.5%	7.5%	15%	
Lab 3- 4 Bit Adder	7.5%	7.5%	15%	
Lab 4 -4 Bit Substractor	7.5%	7.5%	15%	
Lab 5 – 4 Bit Multiplier	7.5%	7.5%	15%	
Test 1			15%	
Final Project & Presentation			10%	
Total			100%	

Lab 5 B: A 4 Bit Multiplier

- ➤i. Modify the 8 bit register with reset pin.
- ≻ii. 4 Bit Multiplier
 - Design a 4 Bit Multiplier using the add and shift algorithm.

Modify the 8 bit Register with Reset Pin

- In Lab 5 A, we connect PRN and CLRN pin to Vcc.
- ➤ Add the Reset input to your 8 bit register and connect the Reset input to all the CLRN pin of DFF.

Multiplication in Binary

• Z = X*Y where X = 0101, Y = 1010.

```
0101 multiplicand
x1010 multiplier

0000 ← Multiply/And 0101 with 0. LSB of multiplier
0101 ← Multiply/And 0101 with 1. Second bit of multiplier
0000 ← Multiply/And 0101 with 0. Third bit of multiplier
0101 ← Multiply/And 0101 with 1.

0110010
```

Add and Shift Algorithm

- For multiplication of two 4 bit binary the result is represented in 8 bit.
- Z = X*Y. (X is the multiplicand and Y is the multiplier).
- X and Y are 4 bit each and Z is 8 bit.

Block Diagram for A 4 bit Multiplier

4 Bit Multiplier

Top Level Ckt for 4 Bit Multiplier and

Question to be answered in Report...

• Q1. Give a clear explanation on the purpose of a 3 bit up counter in Lab 5? (10 points).

Simulation and Downloading

- Simulation result for a 4 bit multiplier.
- Download the top level 4 bit multiplier to DE2 board.

Final Calculator Project

- Final Project counts 10% of the final grade.
- Project Goals:
 - A fully functional calculator on DE2 board that allows addition, subtraction and multiplication upon user selection. (30 Points)
 - Display the calculation result using 7 segments display and also using LEDS (15 points)
 - -15 to +30 for Addition and Subtraction
 - 0 to 99 for multiplication.
 - Presentation (5 Points).