Формулы сокращенного умножения:

T Ophry albred	v
Квадрат суммы	
$(a+b)^2 = a^2 + 2ab + b^2$	
Квадрат разности	
$(a - b)^2 = a^2 - 2ab + b^2$	
Разность квадратов	
$a^2 - b^2 = (a + \hat{b})(a - b)$	
Куб суммы	
$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^2$	b
Куб разности	
$(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$	
Сумма кубов	
$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$	
Разность кубов	
$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$	

Арифметическая прогрессия

Последовательность, у которой задан первый член a_1 , а каждый следующий равен предыдущему, сложенному с одним и тем же числом d, называется арифметической прогрессией:

 $a_{n+1} = a_n + d$, где d – разность прогрессии.

$$a_n = a_1 + d(n - 1)$$
 $a_n = a_k + d(n - k)$
 $2a_n = a_{n-1} + a_{n+1}$ $a_n + a_m = a_k + a_b$ ecruming $n + m = k + 1$
 $S_n = \frac{a_1 + a_n}{2} n$ $S_n = \frac{2a_1 + d(n - 1)}{2} n$

Геометрическая прогрессия

Определение: Последовательность, у которой задан первый член $b_1 \neq 0$, а каждый следующий равен предыдущему, умноженному на одно и то же число $q \neq 0$, называется геометрической прогрессией:

 $b_{n}^{2}=b_{n-1}b_{n+1}$ $S_n = \frac{b_1(1 - q^n)}{1 - q}$

$$b_{n+1} = b_n \ q$$
, где q – знаменатель прогрессии. $b_n = b_1 \ q^{n-1}$ $b_n = b_k \ q^{n-k}$ $b_n^2 = b_{n-1} \ b_{n+1}$ $b_n b_m = b_k \ b_h$ $b_m = b_h$ b_m

Определение

 $a^n = a \cdot a \cdot a ... \cdot a$, если n – натуральное число а – основание степени, п - показатель степени

$$a^{0} = 1$$
 $a^{1} = a$ $a^{\frac{n}{m}} = \sqrt[m]{a^{n}}$ $a^{-n} = \frac{1}{a^{n}}$

Формулы

$$a^n \cdot a^m = a^{n+m}$$

$$a^n \cdot b^n = (a \cdot b)^n$$

$$\frac{a^n}{a^m} = a^{n-m}$$

$$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$$

Арифметический квадратный корень

Определение

<u>Определение</u>
<u>Арифметическим квадратным корнем</u> из неотрицательного числа $a - (\sqrt{a})1$. $a | f(x) | = k \quad (k > 0) \Rightarrow f(x) = \pm k$ называется <u>неотрицательное</u> число, квадрат которого равен a.

$$(\sqrt{a})^2 = a$$
 $\sqrt{a^2} = |a|$ $\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$ $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

<u>Корнем k-ой степени</u> из a (k - нечетное) называется число, k-ая степень

которого равна
$$a$$
. $\left(\sqrt[k]{a}\right)^k = a^{-\frac{k}{\sqrt{a}}} = a^{-\frac{k}{\sqrt{a}}} \cdot b = \sqrt[k]{a} \cdot \sqrt[k]{b}$ $\sqrt[k]{\frac{a}{b}} = \sqrt[k]{a}$

$$\left(\sqrt[k]{a}\right)^m = \sqrt[k]{a^m} \sqrt[k]{a} = a^{\frac{1}{k}}$$

$ax^2 + bx + c = 0$ Квадратное уравнение:

D > 0

Дискриминант:
$$D = b^2 - 4ac$$

Если D < 0 то D = 0 уравнение

не имеет корней $x \in \mathcal{O}$ имеет один корень x_1 имеет два корня

 $\begin{aligned}
x_1 \cdot x_2 &= q \\
x_1 + x_2 &= -b/a
\end{aligned}$ $x_1 \cdot x_2 = c/a$

<u>Логарифм</u>

Определение

Логарифмом числа по b основанию a называется такое число,

обозначаемое $\log_a b$, что $a^{\log_a b} = b$.

a - основание логарифма $(a>0,\ a\neq l),$ b - логарифмическое число (b>0)

Десятичный логарифм: $\lg b = \log_{10} b$

Натуральный логарифм: $\ln b = \log_e b$ где e = 2,71828Формулы

$$\log_a (b - c) = \log_a b + \log_a c$$

$$\log_a (\frac{b}{c}) = \log_a b - \log_a c$$

$$\log_a b - \log_a b = n \cdot \log_a b$$

 $\log_{a^m} b = \frac{1}{m} \log_a b \quad \log_a b = \frac{\log_c b}{\log_c a} \qquad \log_a b = \frac{1}{\log_b a}$ $a^{\log_a b} = b \quad a^{\log_c b} = b^{\log_c a}$

Сложение

Деление с остатком:

 $\frac{a}{b} + \frac{c}{d} = \frac{a \cdot d + c \cdot b}{b \cdot d}$ Формула $b \cdot \overline{d} - \overline{b \cdot d}$ Вычитание деления с остатком: $\frac{a}{b} - \frac{c}{d} = \frac{a \cdot d - c \cdot b}{b \cdot d}$ где n — делимое, m делитель, k - частное, r остаток: $0 \le r < m$ Умножение $\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$ Пример: Любое число можно Леление представить в виде: $\frac{a}{b} : \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{a \cdot d}{b \cdot c}$ n = 2k + r, где $r = \{0; 1\}$ или n = 4k + r, где $r = \{0; 1;$

$m\frac{a}{b} = \frac{m \cdot b + a}{b}^{2; 3}$ <u>Делимость натуральных чисел:</u>

Пусть n: m = k, где n, m, k – натуральные числа.

Тогда $m - \underline{n}$ числа n, а $n - \underline{n}$ числу m. Число n называется простым, если его делителями являются

только единица и само число n. Множество простых чисел: {2; 3; 5; 7; 11; 13; ...; 41; 43; 47 и m.д.} называются <u>взаимно простыми</u>, если у них нет общихделителей, кроме единицы.

Десятичные числа:

Стандартный вид: $317,3=3,173\cdot 10^2$; $0,00003173=3,173\cdot 10^5$ Форма записи: $3173=3\cdot 1000+1\cdot 100+7\cdot 10+3$

Модуль

Формулы $|x| \ge 0$

Составная дробь

 $|x-y| \ge |x| - |y|$

$$|x| = \begin{bmatrix} x, ecnu & x \ge 0 \\ -x, ecnu & x < 0 \end{bmatrix}$$

Определение

 $\begin{vmatrix} -x & | = |x| \\ |x \cdot y| = |x| \cdot |y| \\ |x| \ge x \\ |x \cdot y| = |x| \cdot |y| \\ |x + y| \le |x| + |y| \end{vmatrix}$

Определения:

Неравенства

Неравенством называется выражение вида:

$$a < b$$
 $(a \le b)$, $a > b$ $(a \ge b)$

$$a \le b \Leftrightarrow \begin{bmatrix} a < b \\ a = b \end{bmatrix}$$

Основные свойства:

 $a < b \Leftrightarrow b > a$

 $a < b \ u \ b < c \Leftrightarrow a < c$

 $a < b \Leftrightarrow a + c < b + c$

 $a < b \ u \ c > 0 \Leftrightarrow ac < bc$ $a < b u c < d \Leftrightarrow a + c < b + d$

 $a < b u c < 0 \Leftrightarrow ac > bc$

Модуль: уравнения и неравенства

 $b) \left| f(x) \right| = 0 \Rightarrow f(x) = 0$ c) $|f(x)| = -k \ (k > 0) \Rightarrow x \in \emptyset$

2. $|f(x)| = f(x) \Leftrightarrow f(x) \ge 0$

 $|f(x)| = -f(x) \Leftrightarrow f(x) \le 0$

3. $|f(x)| + af^2(x) = k \Rightarrow |f(x)| + a|f(x)|^2 = k \quad \text{Замена}: y = |f(x)| \Rightarrow y + ay^2 = k$ 4. $|f(x)| = |g(x)| \Rightarrow f^2(x) = g^2(x) \Rightarrow (f(x) - g(x)) \cdot (f(x) + g(x)) = 0$

5. $|f(x)| < k \implies f^2(x) < k^2 \implies (f(x) - k) \cdot (f(x) + k) < 0$

$\frac{1}{\text{Периодическая дробь}} = \frac{1}{3.1737373...} = \frac{3173-31}{990} \xrightarrow{\text{Правило:}} ab, cde(fg) = \frac{abcdefg - abcde}{00000}$

Признаки делимости чисел:

Проценты

Определение: Процентом называется сотая часть от числа.

Основные типы задач на проценты: <u>Сколько процентов составляет</u> число A от числа B? $\Rightarrow x = \frac{A}{R} \cdot 100\%$

Сложные проценты.
Число А увеличилось на 20%, а затем полученное число уменьшили на 35%.

 $A_1 = (100\% + 20\%)A = 120\%A = 1,2A$ $A_2 = (100\% - 25\%)A_1 = 75\%A_1 = 0,75A_1 = 0,75A_2 = 0,9A = 0,9A_1 = 0,75A_2 = 0,9A_3 = 0,9A_4 = 0,9A_4 = 0,9A_5 = 0$ 90%A

 $A_I - A = 90\%A - 100\%A = -10\%A$

 \Rightarrow Ответ: уменьшилось на 10%. <u>Изменение величины</u>. Как изменится время, если скорость движения увеличится на 25%?

 $\frac{s}{v} \Rightarrow t_1 = \frac{s}{v_1} = \frac{s}{1,25v} = \frac{1}{1,25} \frac{s}{v} = 0.8 \frac{s}{v} = 80\%t$

 $t = \frac{S}{v} \implies t_1 = \frac{S}{v_1} = \frac{S}{1,25v} = \frac{1}{1,25} = \frac{S}{v} = 0.8 = 80\%t$ уменьшится на 20%

Среднее арифметическое, геометрическое Среднее арифметическое: $a_1 + a_2 + a_3 + ... + a_n$

Среднее геометрическое: $\sqrt[k]{a_1 \cdot a_2 \cdot \dots \cdot a_k}$ Уравнение движения

Пусть S(t) - уравнение движения материальной точки, где S — путь, t — время движения.

	Признак	Пример
Ha 2	Числа, оканчивающиеся нулём или четной цифрой	6
Ha 4	Числа, у которых две последние цифры нули или выражают число, делящееся на 4.	1
На 8	Числа, у которых три последние цифры нули или выражают число, делящееся на 8.	10
На 3	Числа, сумма цифр которых делится на 3.	57061 2
На 9	Числа, сумма цифр которых делится на 9.	35945 1
На 5	Числа, оканчивающиеся нулём или цифрой 5.	5
На 25	Числа, у которых две последние цифры нули или выражают число, делящееся на 25.	7
Ha 10	Числа, оканчивающиеся нулём.	0

Тогда: v(t) = S'(t); a(t) = v'(t),

где \mathcal{V} – скорость, \mathcal{A} - ускорение.

Определенный интеграл

 $\int f(x)dx = F(b) - F(a)$

Первообразная элементарных функций

	HCDL	оооразнал	JULE	MICH	Ittpiidia	фуниции				
$N_{\underline{0}}$	f(x)	F(x)		№	f(x)	F(x)				
1	k	kx+C		6	$\frac{1}{\cos^2 x}$	tgx + C				
2	χ^n	$\frac{x^{n+1}}{n+1} + C$								
_	л	n+1			1	-ctgx + C				
3	$\frac{1}{x}$	$\ln x + C$		7	$\frac{1}{\sin^2 x}$	- <i>cigx</i> + C				
4	sin x	$-\cos x + C$		8	e^{x}	$e^x + C$				
5	cos	$X \sin x + C$		9	a^{x}	$\frac{a^x}{\ln a} + C$				
ш	Правида вышисловия поррообразной функци									

Правила вычисления первообразной функции Определение: Функция F(x) называется

первообразной для функции f(x), если F'(x) = f(x)

-		
L	Функция	Первообразная
Ī	$k \cdot f(x)$	$k \cdot F(x)$
	$f_1(x) + f_2(x)$	$F_1(x) + F_2(x)$
	f(ax+b)	$\frac{1}{a}F(ax+b)$

Правила вычисления производной функции

(C)'=0 $\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$ $(C \cdot u)' = C \cdot u'$

(u+v)'=u'+v'

Сложная функция:

 $(u \cdot v)' = u' \cdot v + u \cdot v'$ $y = f(\varphi(x)) \implies y' = f_{\varphi} \cdot \varphi_{x}$

<u>Производные элементарных функций</u>

Произво дная Произво дная nx^{n-1} e^{x} x^n e^{x} 6 1 cosx a^x 7 $a^x \ln a$ cosa $-\sin x$ 1 1 $\ln x$ 8 tgx $\cos^2 x$ \boldsymbol{x} ctgx \log_a $\sin^2 x$ $x \cdot \ln a$

Равносильные уравнения:

Исходное Равносильное уравнение уравнение (система)

f(x) = g(x)f(x) + C = g(x) + C

 $\int f(x) = 0$ $f(x) \cdot g(x) = 0$ g(x) = 0

 $\int f(x) = 0$ $g(x) \neq 0$

 $\int f(x) = 0$ $f^2(x) + g^2(x) = 0$ g(x) = 0

Числовые множества:

Натуральные числа	$N = \{1; 2; 3; 4;\}$
Целые числа	$Z = N \cup \{0; -1; -2; -3;\}$
Рациональные числа	$Q = Z \cup \left\{ \frac{1}{2}; -\frac{1}{2}; \frac{1}{3}; -\frac{1}{3}; \dots \right\}$
Действительные числа	$R = Q \cup \left\{ \sqrt{2}; \sqrt{3}; u \text{ m.o.}; \pi = 3,14; . \right\}$

Тригонометрия

Основные триг. формулы

$$\sin^2 \alpha + \cos^2 \alpha = 1 \implies \sin^2 \alpha = 1 - \cos^2 \alpha$$
$$\cos^2 \alpha = 1 - \sin^2 \alpha$$

$$tg\alpha = \frac{\sin \alpha}{\cos \alpha} \quad ctg\alpha = \frac{\cos \alpha}{\sin \alpha} \qquad \Rightarrow \quad tg\alpha \cdot ctg\alpha = 1$$
$$1 + tg^{2}\alpha = \frac{1}{\cos^{2}\alpha} \qquad 1 + ctg^{2}\alpha = \frac{1}{\sin^{2}\alpha}$$

Формулы суммы функций

$$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2\cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$$

$$tg\alpha + tg\beta = \frac{\sin(\alpha + \beta)}{\cos\alpha\cos\beta}$$

$$tg\alpha - tg\beta = \frac{\sin(\alpha - \beta)}{\cos\alpha\cos\beta}$$

Формулы суммы аргументов:

$$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$$

$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$tg(\alpha+\beta) = \frac{tg\alpha + tg\beta}{1 - tg\alpha tg\beta} \qquad tg(\alpha-\beta) = \frac{tg\alpha - tg\beta}{1 + tg\alpha tg\beta}$$

Формулы произведения функций

$$\sin \alpha \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\cos \alpha \cos \beta = \frac{1}{2} (\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

$$\sin \alpha \cos \beta = \frac{1}{2} (\sin (\alpha - \beta) + \sin (\alpha + \beta))$$

$$\sin^2\frac{\alpha}{2} = \frac{\frac{\mathbf{Формулы}\ \text{половинного аргумента}}{2}}{2} \quad \cos^2\frac{\alpha}{2} = \frac{1+\cos\alpha}{2}\ tg\,\frac{\alpha}{2} = \frac{\sin\alpha}{1+\cos\alpha} = \frac{1-\cos\alpha}{\sin\alpha}$$

Формулы двойного аргумента

$\sin 2\alpha = 2\sin \alpha \cos \alpha$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$

$$tg2\alpha = \frac{2tg\alpha}{1 - tg^2\alpha}$$

Формула дополнительного угла

$$a \sin \alpha + b \cos \alpha = \sqrt{a^2 + b^2} \sin(\alpha + \varphi)$$
 $\Gamma \coprod$

$$\sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}$$

$$\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}$$

Определение тригонометрических функций

Универсальная подстановка

$$\sin 2\alpha = \frac{2tg\alpha}{1 + tg^2\alpha} \qquad \cos 2\alpha = \frac{1 - tg^2\alpha}{1 + tg^2\alpha}$$

Свойства тригонометрических функций

			erpir reciting the	_					
	Свойства								
Функ ция	Область определения	Множес тво значени й	Четность- нечетность	Период					
cosx	$x \in (-\infty, \infty)$	[-1;1]	cos(-x) = cosx	2π					
sinx	$x \in (-\infty, \infty)$	[-1;1]	sin(-x) = -sinx	2π					
tgx	$x\neq\frac{\pi}{2}+\pi n,n\in Z$	$(-\infty; \infty)$	tg(-x) = -tgx	π					
ctgx	$x \neq \pi n, n \in \mathcal{I}$	$Z(-\infty;\infty)$	ctg(-x) = -ctgx	π					

Тригонометрические уравнения

Косинус:

$$\cos x = 0 \Rightarrow x = \frac{\pi}{2} + \pi n \cos x = 1 \Rightarrow x = 2\pi n$$

$$\cos x = -1 \Rightarrow x = \pi + 2\pi n$$

$$\cos x = a \Rightarrow x = \pm \arccos a + 2\pi n, n \in \mathbb{Z}$$

Уравнения с синусом

Частные формулы:

$$\sin x = 0 \Rightarrow x = \pi n \sin x = 1 \Rightarrow x = \frac{\pi}{2} + 2\pi n$$

$$\sin x = -1 \Rightarrow x = -\frac{\pi}{2} + 2\pi n$$

Общая формула:

$$\sin x = a \Rightarrow x = (-1)^n \arcsin a + \pi n, n \in \mathbb{Z}$$

$$tgx = a \Rightarrow ctgx = a \Rightarrow$$

$$tgx = a \Rightarrow ctg$$

 $x = arctga + \pi n, n \in \mathbb{Z}$ $x = arctga + \pi n$

$$tga+\pi n, n \in Z$$
 $x=arcctga+\pi n, n \in Z$
Формулы обратных триг функций

$$\arcsin x + \arccos x = \frac{\pi}{2}$$
 $\operatorname{arctg} x + \operatorname{arcctg} x = \frac{\pi}{2}$

Если $x > 0$, то
arctg(-x) = -arctgx
$arcctg(-x) = \pi - arcctgx$

Обратные триг функции

CONTINUE I DITT OF THE CONTINUE OF THE CONTINU								
	Свойства							
Функция	Область	Множество						
	определения	значений						
arccosx	[-1;1]	$[0; \pi]$						
arcsinx	[-1;1]	[-π/2; π/2]						

arctgx	$(-\infty;\infty)$	(-π/2; π/2)
arcctgx	$(-\infty;\infty)$	(0; π)

Геометрия

Теорема косинусов, синусов

Теорема косинусов: $c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos \gamma$

Площадь треугольника

 $S = \sqrt{p(p-a)(p-b)(p-c)}$

$$S = \frac{1}{2} a \cdot b \cdot \sin \gamma$$

$$S = \frac{abc}{4R}$$

Средняя линия

Средняя линия - отрезок, соединяющий середины двух сторон треугольника.

Средняя линия параллельна третьей стороне и равна третьен \mathbf{c}_{-} её половине: $n_{\scriptscriptstyle b} = \frac{1}{2}b$

Средняя линия отсекает подобный треугольник, площадь которого равна одной четверти от исходного

Равносторонний треугольник треугольник, у которого все стороны равны.

- * Все углы равны 60° .
- Каждая из высот является одновременно биссектрисой и медианой.
- Центры описанной и вписанной окружностей совпадают.
- Радиусы окружностей: $r=\frac{a\sqrt{3}}{6}$; $R=\frac{a\sqrt{3}}{3}$

$$S = \frac{a^2 \sqrt{3}}{4}$$

Равнобедренный треугольник

треугольник, у которого две стороны равны.

- 1.Углы, при основании треугольника, равны 2.Высота, проведенная из вершины, является
- биссектрисой и медиан

Прямоугольный треугольник

- Теорема Пифагора: $c^2 = a^2 + b^2$ Площадь: $S = \frac{1}{2}a \cdot b$

$$\cos \alpha = \frac{a}{c}$$
; $\sin \alpha = \frac{b}{c}$; $tg\alpha = \frac{b}{c}$

- Тригонометрические соотношения: $\cos\alpha = \frac{a}{c}; \quad \sin\alpha = \frac{b}{c}; \quad lg\alpha = \frac{b}{a}$ Центр описанной окружности лежит на середине
- Радиусы окружностей: $r = \frac{a+b-c}{2}$; $R = \frac{c}{2}$

Высота, опущенная на гипотенузу:
$$h = \sqrt{a_C \cdot b_C} = \frac{a \cdot b}{c} \, ; \, \left(\frac{a}{b}\right)^2 = \frac{a_C}{b_C}$$

Катеты: $a = \sqrt{a_c \cdot c}$; $b = \sqrt{b_c \cdot c}$

Основные соотношения в треугольнике

- Неравенство треугольника:
 - a + b > c; a + c > b; b + c > a
 - Сумма углов: $\alpha + \beta + \gamma = 180^{\circ}$
- Против большей стороны лежит больший угол, и обратно, $|AM| \cdot |MB| = |CM| \cdot |MD|$ против большего угла лежит большая сторона.
- Против равных сторон лежат равные углы, и обратно,

Биссектриса – огрезок, выходящий из вершины треугольника и делящий угол пополам.

- Биссектриса делит противолежащую сторону на части, пропорциональные прилежащим сторонам: a_b : $a_c = b$: c
- Биссектриса делит площадь треугольника, пропорционально прилежащим сторонам.
- $w = \sqrt{b \cdot c a_b \cdot a_c}$

Вписанная окружность

- Центр окружности, вписанной в треугольник, лежит на пересечении биссектрис треугольника.
- Если окружность вписана в произвольный четырехугольник, тогда попарные суммы противолежащих сторон равны между собой:

Описанная окружность

- Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к его трем сторонам.
- Центр окружности, описанной около прямоугольного треугольника, лежит на середине гипотенузы.
- Около трапеции можно описать окружность только тогда, когда трапеция равнобочная.
- Если окружность описана около произвольного четырехугольника, тогда попарные суммы противолежащих углов равны между собой:

$$\alpha + \beta = \phi + \gamma$$

Длина окружности, площадь

Длина окружности: $l=\pi \cdot d=2\pi \cdot R$

$S = \pi \cdot R^2$ Площадь круга:

Хорда – отрезок, соединяющий две точки окружности.

- Диаметр, делящий хорду пополам, перпендикулярен
- В окружности равные хорды равноудалены от центра окружности.
- Отрезки пересекающихся хорд связаны равенством:

Шаровой сектор $V = \frac{2}{3}\pi R^2 H S_{\tilde{O}OK} = \pi R \sqrt{2RH - H^2}$

 $V = \frac{1}{3}\pi^2 H(3R - H)$

Центральный, вписанный угол

Сектор

Сектор – часть круга, ограниченная двумя его радиусами. Длина дуги сектора:

 $l = \frac{\pi R \alpha}{l}$

 $S = \frac{\pi R^2 \alpha}{360^\circ}$

Касательная, секущая

Касательная – прямая, имеющая с окружностью одну общую точку.

Секущая – прямая, имеющая с окружностью две общие

- $(AB)\bot(OB)$ $(AC)\bot(OC)$
- |AB| = |AC|
- $|AM| \cdot |AN| = |AP| \cdot |AK| = |AB|^2$

$V = S_{OCH} \cdot H$

прямая призма

Цилиндр

 $S_{\delta o \kappa} = 2 \pi R H$ $V = \pi R^2 H$

Медиана

Медиана – отрезок, соединяющий вершину

треугольника с серединой противоположной стороны. Медианы треугольника точкой их пересечения

делятся в отношении 2:1 (считая от вершины

Медиана делит треугольник на два треугольника с равными площадями.

$$m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$$
 $a = \frac{2}{3}\sqrt{2(m_b^2 + m_c^2) - m_a^2}$

Правильная пирамида

Все боковые рёбра равны между

Правильная пирамида пирамида, у которой в основании правильный многоугольник, а вершина с проецируется в центр основания.

собой и все боковые грани - равные равнобедренные треугольники.

Перпендикулярность, коллинеарность

Перпендикулярные вектора:

$$\vec{a} \perp \vec{b} \iff \vec{a} \cdot \vec{b} = 0$$

Коллинеарные вектора:

$$\vec{a} \mid |\vec{b} \Leftrightarrow \frac{x_a}{x_b} = \frac{y_a}{y_b} = \frac{z_a}{z_b} = \lambda$$
$$\vec{a} \mid |\vec{b} \Leftrightarrow \vec{a} = \lambda b$$

Длина вектора:

$$|\vec{a}| = \sqrt{x_a^2 + y_a^2 + z_a^2}$$

Умножение вектора на число:

 $\lambda \vec{a} = (\lambda x_a; \lambda y_a; \lambda z_a)$

Свойства прямых и плоскостей

(SO) — перпендикуляр к плоскости (ABCD). O — проекция точки S. |SO| – расстояние от точки S до плоскости (ABCD).

α – двугранный угол между плоскостями (SAB) и (ABCD). Теорема о трёх перпендикулярах: $(AB)\bot(SM) \Leftrightarrow (AB)\bot(OM)$

1	$1 \qquad 1 \qquad (AD) \pm (BM) \Leftrightarrow (AD) \pm (BM)$															
	Значения								Значения							
Функция	0	00	$\frac{\pi}{6}$	30°	<u>π</u> 4	45°	<u>π</u> 3	60°	<u>π</u> 2	90°						
cosx		1	$\frac{\sqrt{3}}{2}$		$\frac{\sqrt{2}}{2}$		$\frac{1}{2}$		0							
sinx		0	$\frac{1}{2}$		$\frac{\sqrt{2}}{2}$		$\frac{\sqrt{3}}{2}$			1						
tgx		0	*	$\frac{\sqrt{3}}{3}$		1	$\sqrt{3}$									
ctgx				$\sqrt{3}$	1			$\frac{\sqrt{3}}{3}$		0						

Выпуклый четырёхугольник

Произвольный выпуклый четырёхугольник:

Сумма всех углов равна 360° .

Площадь: $S = \frac{1}{2} d_1 \cdot d_2 \cdot \sin \varphi$

Правильный многоугольник
Правильным многоугольником называется многоугольник, у которого все стороны и углы равны между собой.
✓ Около всякого правильного многоугольника можно описать

окружность и в него вписать окружность, причём центры этих окружностей совпадают.

Сторона правильного *n*–угольника: $a_n = 2R \sin \frac{180^0}{}$

Площадь правильного
$$n$$
—угольника:
$$S_n = \frac{1}{2} P_n r; \quad S_n = \frac{1}{2} R^2 \cdot n \cdot \sin \frac{360^0}{n}$$

Произвольный выпуклый многоугольник

Произвольный выпуклый многоугольник:

Сумма всех углов равна $\pi(n-2)$ или $180^{\circ}(n-2)$

Число диагоналей: $\frac{1}{2}n\cdot(n-3)$

Трапеция: А

Четырёхугольник, у которого две стороны параллельны, а другие не параллельны, называется трапецией.

Средняя линия трапеции параллельна основаниям и

равна: $n = \frac{a+b}{2} \frac{\Pi \text{лощадь:}}{S} S = \frac{a+b}{2} h = nh$

Квадрат:

Прямоугольник, у которого все стороны равны, называется

Диагональ квадрата $d=a\sqrt{2}$ Площадь:

$$S=a^2=\frac{1}{2}d^2$$

Ромб:

Параллелограмм, все стороны которого равны называется ромбом.

Диагональ ромба является его осью симметрии. Диагонали взаимно перпендикулярны. Диагонали являются биссектрисами углов.

Площадь: $S = \frac{1}{2} d_1 \cdot d_2$ Параллелограмм

Параллелограмм:

Четырёхугольник, у которого противоположные стороны попарно параллельные называется параллелограммом.

Середина диагонали является центром симметрии.

Противоположные стороны и углы равны.

Каждая диагональ делит параллелограмм на два равных треугольника.

Диагонали делятся точкой пересечения пополам:

 $d_1^2 + d_2^2 = 2(a^2 + b^2)$

$$S = a \cdot h_a = a \cdot b \cdot \sin \alpha = \frac{1}{2} d_1 \cdot d_2 \cdot \sin \varphi$$

Прямоугольный параллелепипед

V = abc $d^2 = a^2 + b^2 + c^2$

