Aim: Find the outliers from the given dataset using trimming and capping method

```
In [1]:
```

```
import pandas as pd
import numpy as np
```

In [2]:

```
df = pd.read_csv('placement - placement.csv')
df.head()
```

Out[2]:

	cgpa	placement_exam_marks	placed
0	7.19	26	1
1	7.46	38	1
2	7.54	40	1
3	6.42	8	1
4	7.23	17	0

In [3]:

```
import seaborn as sns
#from matplotlib import pyplot as plt
import matplotlib.pyplot as plt
```

In [4]:

```
plt.figure(figsize=(10,5))
plt.subplot(1,2,1)
sns.distplot(df['cgpa'])

plt.subplot(1,2,2)
sns.distplot(df['placement_exam_marks'],color='blue')
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[4]:

<AxesSubplot:xlabel='placement_exam_marks', ylabel='Density'>

In [5]:

```
df['placement_exam_marks'].describe()
```

Out[5]:

```
count
         1000.000000
           32.225000
mean
           19.130822
std
            0.000000
min
           17,000000
25%
           28.000000
50%
           44.000000
75%
          100.000000
max
```

Name: placement_exam_marks, dtype: float64

In [6]:

```
sns.boxplot(df['placement_exam_marks'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[6]:

<AxesSubplot:xlabel='placement_exam_marks'>

In [7]:

```
# finding boundaries values
print("Highest Boundary value of cgpa ",df['cgpa'].mean() + 3*df['cgpa'].std())
print("Lowest Boundary value of cgpa ",df['cgpa'].mean() - 3*df['cgpa'].std())
```

Highest Boundary value of cgpa 8.808933625397177 Lowest Boundary value of cgpa 5.113546374602842

In [8]:

```
# finding outliers
df[(df['cgpa']>8.80)|(df['cgpa']<5.11)]</pre>
```

Out[8]:

	cgpa	placement_exam_marks	placed
485	4.92	44	1
995	8.87	44	1
996	9.12	65	1
997	4.89	34	0
999	4.90	10	1

Trimming:

In [9]:

df.shape

Out[9]:

(1000, 3)

```
1/24/23, 1:11 PM
                                                     Practical _6A _Outlier _Detection And _Treatment - Jupyter Notebook
  In [10]:
  new_df = df[(df['cgpa']<8.80)&(df['cgpa']>5.11)]
  new_df
  Out[10]:
       cgpa placement_exam_marks placed
    0
       7.19
                              26
    1 7.46
                              38
    2 7.54
                              40
                               8
        6.42
    4
       7.23
                              17
                                      0
   991
       7.04
   992
       6.26
                              12
                                      0
       6.73
                              21
   993
        6.48
                              63
                                      0
                              46
   998
       8.62
  995 rows × 3 columns
  In [11]:
  new_df.shape
  Out[11]:
  (995, 3)
  Z-score
  zi = xi-x_mean/S.D
  In [12]:
  df['cgpa_zscore']= (df['cgpa']-df['cgpa'].mean())/df['cgpa'].std()
  Out[12]:
       cgpa placement_exam_marks placed cgpa_zscore
    0
       7.19
                                            0.371425
    1 7.46
                              38
                                            0.809810
    2 7.54
                              40
                                      1
                                           0.939701
    3
        6.42
                               8
                                           -0.878782
    4
       7.23
                              17
                                      0
                                           0.436371
   995
       8.87
                                            3.099150
       9.12
                              65
                                           3.505062
   996
                                      0
   997
       4.89
                              34
                                           -3.362960
        8.62
                              46
                                      1
                                           2.693239
                                           -3.346724
                              10
   999
       4.90
  1000 rows × 4 columns
  In [13]:
  df['cgpa_zscore']
  Out[13]:
  0
         0.371425
         0.809810
  1
         0.939701
  2
  3
        -0.878782
         0.436371
         3.099150
  995
  996
         3.505062
  997
        -3.362960
  998
         2.693239
```

999

-3.346724

Name: cgpa_zscore, Length: 1000, dtype: float64

In [14]:

```
df[df['cgpa_zscore']>3]
Out[14]:
      cgpa placement_exam_marks placed cgpa_zscore
995
     8.87
                                              3.099150
 996
     9.12
                               65
                                              3.505062
In [15]:
df[df['cgpa_zscore']<-3]</pre>
Out[15]:
      cgpa placement_exam_marks placed cgpa_zscore
485
     4.92
                                             -3.314251
      4.89
                               34
                                       0
                                             -3.362960
     4.90
                               10
                                             -3.346724
 999
In [16]:
new_dff = df[(df['cgpa_zscore']<3) | (df['cgpa_zscore']>-3)]
new_dff
Out[16]:
      cgpa placement_exam_marks placed cgpa_zscore
     7.19
                                              0.371425
  1
     7.46
                               38
                                              0.809810
                               40
                                              0.939701
  2
     7.54
  3
      6.42
                               8
                                             -0.878782
                               17
                                             0.436371
  4
     7.23
                                       0
 995
      8.87
                               44
                                              3.099150
 996
      9.12
                               65
                                       1
                                             3.505062
      4.89
                                       0
                                             -3.362960
 997
 998
      8.62
                               46
                                             2.693239
                               10
                                             -3.346724
 999
     4.90
1000 rows × 4 columns
In [17]:
new_dff.shape
Out[17]:
(1000, 4)
Capping
In [18]:
upper_limit=df['cgpa'].mean() +3 *df['cgpa'].std()
lower_limit=df['cgpa'].mean() -3 *df['cgpa'].std()
lower_limit
Out[18]:
5.113546374602842
In [19]:
df['cgpa_cap'] = np.where(
```

df['cgpa']>upper_limit,
upper_limit,

df['cgpa']<lower_limit,
 lower_limit,df['cgpa']</pre>

np.where(

)

```
In [20]:
```

df.describe()

Out[20]:

	cgpa	placement_exam_marks	placed	cgpa_zscore	cgpa_cap
count	1000.000000	1000.000000	1000.000000	1.000000e+03	1000.000000
mean	6.961240	32.225000	0.489000	-1.600275e-14	6.961499
std	0.615898	19.130822	0.500129	1.000000e+00	0.612688
min	4.890000	0.000000	0.000000	-3.362960e+00	5.113546
25%	6.550000	17.000000	0.000000	-6.677081e-01	6.550000
50%	6.960000	28.000000	0.000000	-2.013321e-03	6.960000
75%	7.370000	44.000000	1.000000	6.636815e-01	7.370000
max	9.120000	100.000000	1.000000	3.505062e+00	8.808934

In [21]:

```
df['placement_exam_marks'].skew()
```

Out[21]:

0.8356419499466834

In [22]:

```
df['cgpa'].skew()
```

Out[22]:

-0.014529938929314918

In [23]:

```
sns.boxplot(df['placement_exam_marks'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[23]:

<AxesSubplot:xlabel='placement_exam_marks'>

In [24]:

```
percentile25=df['placement_exam_marks'].quantile(0.25)
percentile75=df['placement_exam_marks'].quantile(0.75)
```

In [25]:

percentile75

Out[25]:

44.0

In [26]:

percentile25

Out[26]:

17.0

```
In [27]:
iqr = percentile75 - percentile25
igr
Out[27]:
27.0
In [28]:
upper_limit = percentile75 + 1.5 *iqr
upper_limit
Out[28]:
84.5
In [29]:
lower_limit = percentile25 - 1.5 *iqr
lower_limit
Out[29]:
-23.5
In [30]:
print('upper limit of Height is:' ,upper_limit)
print('lower_limit of Height is:',lower_limit)
upper limit of Height is: 84.5
lower_limit of Height is: -23.5
In [31]:
df[df['placement_exam_marks']> upper_limit]
Out[31]:
      cgpa placement_exam_marks placed cgpa_zscore cgpa_cap
  9
      7.75
                                              1.280667
                                             -0.586526
  40
      6.60
                               86
                                                            6.60
  61
      7.51
                               86
                                       0
                                             0.890992
                                                            7.51
      6.33
                               93
                                       0
                                             -1.024910
                                                            6.33
                               90
                                       0
                                             1.361849
                                                            7.80
 162
     7.80
                                             0.209061
 283
     7.09
                               87
                                       0
                                                            7.09
 290
      8.38
                               87
                                       0
                                             2.303564
                                                            8.38
                                             0.014223
                               87
                                                            6.97
 311
     6.97
                                             -0.521580
                                                            6.64
 324
      6.64
 630
      6.56
                               96
                                             -0.651472
                                                            6.56
 685
      6.05
                               87
                                             -1.479531
                                                            6.05
 730
                               90
                                             -1.333403
                                             0.566263
771
      7.31
                               86
                                                            7.31
      6.99
                               97
                                       0
                                             0.046696
                                                            6.99
 846
 917
      5.95
                              100
                                       0
                                             -1.641896
                                                            5.95
In [32]:
df[df['placement_exam_marks'] < lower_limit]</pre>
```

Trimming

Out[32]:

cgpa placement_exam_marks placed cgpa_zscore cgpa_cap

```
In [35]:
```

```
new_dff= df[df['placement_exam_marks'] < upper_limit]
new_dff</pre>
```

Out[35]:

	cgpa	placement_exam_marks	placed	cgpa_zscore	cgpa_cap
0	7.19	26	1	0.371425	7.190000
1	7.46	38	1	0.809810	7.460000
2	7.54	40	1	0.939701	7.540000
3	6.42	8	1	-0.878782	6.420000
4	7.23	17	0	0.436371	7.230000
995	8.87	44	1	3.099150	8.808934
996	9.12	65	1	3.505062	8.808934
997	4.89	34	0	-3.362960	5.113546
998	8.62	46	1	2.693239	8.620000
999	4.90	10	1	-3.346724	5.113546

985 rows × 5 columns

```
In [39]:
```

```
# Comparing
plt.figure(figsize=(16,8))
plt.subplot(2,2,1)
sns.distplot(df['placement_exam_marks'])
plt.subplot(2,2,2)
sns.boxplot(df['placement_exam_marks'])
plt.subplot(2,2,3)
sns.distplot(new_dff['placement_exam_marks'])
plt.subplot(2,2,4)
sns.boxplot(new_dff['placement_exam_marks'])
plt.show()
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with sim ilar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

 $\verb|C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py: 36: Future \textit{Warning: Pass the following variable as a keywollow of the packages of the following variable as a keywollow of the packages of the package$ rd arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an exp licit keyword will result in an error or misinterpretation.

warnings.warn(C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with sim ilar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning) $\verb|C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py: 36: Future \textit{Warning: Pass the following variable as a keywollow of the packages of the following variable as a keywollow of the packages of the package$ rd arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an exp licit keyword will result in an error or misinterpretation.

warnings.warn(

Capping

In [40]:

```
new_df_cap = df.copy()
new_df_cap['placement_exam_marks'] = np.where(
    new_df_cap['placement_exam_marks'] > upper_limit,
    upper_limit,
    np.where(
        new_df_cap['placement_exam_marks'] < lower_limit,</pre>
        lower_limit,
        new_df_cap['placement_exam_marks']
    )
)
```

```
In [44]:
new_df_cap.shape
Out[44]:
(1000, 5)
```

In [43]:

```
plt.figure(figsize=(16,8))
plt.subplot(2,2,1)
sns.distplot(df['placement_exam_marks'])
plt.subplot(2,2,2)
sns.boxplot(df['placement_exam_marks'])
plt.subplot(2,2,3)
sns.distplot(new_df_cap['placement_exam_marks'])
plt.subplot(2,2,4)
sns.boxplot(new_df_cap['placement_exam_marks'])
plt.show()
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

In []: