A Differentially Private Linear-Time fPTAS for the Minimum Enclosing Ball Problem

Bar Mahpud and Or Sheffet {mahpudb, or.sheffet}@biu.ac.il

Neural Information Processing Systems Foundation, November 2022

1-Cluster Problem

Minimum Enclosing Ball (MEB) Problem

Given a set P of n points in \mathbb{R}^d , the MEB problem is to find a ball with minimum radius that covers all points in P.

The resulting ball center and its radius are denoted by $c_{opt}(P)$ and $r_{opt}(P)$, respectively.

Differential Privacy

(ϵ, δ) -differential privacy [DR14]

A randomized algorithm $\mathcal{A}:\mathcal{U}^n\to\mathcal{O}$ is (ϵ,δ) -differentially private if for all $\mathcal{S}\subseteq\mathcal{O}$ and for all $D,D'\in\mathcal{U}^n$ such that $||D-D'||_1\leq 1$:

$$\Pr[\mathcal{A}(D) \in \mathcal{S}] \le e^{\epsilon} \Pr[\mathcal{A}(D') \in \mathcal{S}] + \delta$$

where the probability space is over the coin flips of the algorithm \mathcal{A} . If $\delta=0$, we say that \mathcal{A} is ϵ -differentially private.

Differentially Private MEB:

- Locating a small cluster privately [NSV16]
- Clustering algorithms for the centralized and local models [NS18]
- Differentially private clustering: Tight approximation ratios [GKM20]

Our Work

Our result:

- ullet (1 + γ) DP-MEB approximation
- ullet Running time $\tilde{O}(n/\gamma^2)$ fPTAS
- $\tilde{O}(\sqrt{d}/\gamma\epsilon)$ Points uncovered

Main Algorithm(θ^0, r)

Gets θ^0 , r where $\|\theta^0 - \theta_{opt}\| \le 10r_{opt}$ and $r_{opt} \le r \le 4r_{opt}$ (from [NS18]) Outputs θ s.t. $\|\theta - \theta_{opt}\| \le \gamma r_{opt}$

Analysis

Main ALG(θ^0 , r):

- Repeat:
 - ullet Compute the mean μ of the points uncovered by the current $B(heta^t,r)$
 - Update in a Perceptron-like style: $\theta^{t+1} \leftarrow \theta^t \frac{\gamma^2}{2} (\mu \theta^t)$
- Until $\tilde{O}(1/\gamma^2)$ repetitions

Making a $\tilde{O}(1/\gamma^2)$ -size step towards this μ must push us significantly in the $\theta^t-\theta_{opt}$ direction.

$$\|\theta^{t+1} - \theta_{opt}\|^2 \le (1 - \frac{\gamma^2}{2}) \|\theta^t - \theta_{opt}\|^2 + \frac{\gamma^4}{4} r_{opt}^2$$

Thus $O(\frac{1}{\gamma^2}\log(1/\gamma^2))$ steps exceed $\|\theta^{t+1}-\theta_{opt}\| \leq \gamma r_{opt}$

Intuition

Any uncovered point has large projection on the "right" direction $\theta_{opt} - \theta^t$.

6/8

Summary

- An iterative simple DP-algorithm
- Linear-time approximation scheme
- Empirically applicable

https://arxiv.org/abs/2206.03319

Questions?

- Cynthia Dwork and Aaron Roth.
 - The algorithmic foundations of differential privacy. *Found. Trends Theor. Comput. Sci.*, 9(3–4):211–407, August 2014.
- Badih Ghazi, Ravi Kumar, and Pasin Manurangsi.

 Differentially private clustering: Tight approximation ratios. In *NeurIPS*, 2020.
 - Kobbi Nissim and Uri Stemmer. Clustering algorithms for the centralized and local models. *ArXiv*, abs/1707.04766, 2018.
 - Kobbi Nissim, Uri Stemmer, and Salil Vadhan. Locating a small cluster privately.

Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, Jun 2016.

8/8