3 Sortieren

3 Sortieren in Linearzeit

- 3.1 Quicksort
- 3.2 Eigenschaften von Sortieralgorithmen
- 3.3 Untere Schranke für die Laufzeit vergleichsbasierter Sortieralgorithmen
- 3.4 Sortieren in Linearzeit

initialer Aufruf: QUICKSORT(a, 0, n-1)

```
QUICKSORT(int[] a, int \ell, int r)

1 if (\ell < r) {
2 int q = \text{PARTITION}(a, \ell, r);
3 QUICKSORT(a, \ell, q - 1);
4 QUICKSORT(a, q + 1, r);
5 }
```

initialer Aufruf: QUICKSORT(a, 0, n-1)

```
QUICKSORT(int[] a, int \ell, int r)

1 if (\ell < r) {
2 int q = Partition(a, \ell, r);
3 QUICKSORT(a, \ell, q — 1);
4 QUICKSORT(a, q + 1, r);
5 }
```

PARTITION permutiert a, sodass gilt:

- 1. $a[i] \leq a[q]$ für alle $i \in \{\ell, \ldots, q-1\}$,
- 2. $a[i] \ge a[q]$ für alle $i \in \{q+1, ..., r\}$.

initialer Aufruf: QUICKSORT(a, 0, n - 1)

```
QUICKSORT(int[] a, int \ell, int r)

1 if (\ell < r) {
2 int q = Partition(a, \ell, r);
3 QUICKSORT(a, \ell, q - 1);
4 QUICKSORT(a, q + 1, r);
5 }
```

PARTITION permutiert a, sodass gilt:

```
1. a[i] \leq a[q] für alle i \in \{\ell, \ldots, q-1\},
```

```
2. a[i] \ge a[q] für alle i \in \{q + 1, ..., r\}.
```

```
Partition(int[] a, int \ell, int r)
      int x = a[r];
      int i = \ell - 1;
     for (i = \ell; i < r; j++) {
          if (a[j] <= x) {
               i++:
               vertausche a[i] und a[i]:
      vertausche a[i + 1] und a[r];
10
      return i + 1;
```

```
PARTITION(int[] a, int \ell, int r)
      int x = a[r];
      int i = \ell - 1:
      for (j = \ell; j < r; j++) {
           if (a[j] <= x) {
 5
                i++;
                vertausche a[i] und a[j];
6
8
      vertausche a[i + 1] und a[r];
9
10
      return i + 1:
```

```
18937545
```

```
PARTITION(int[] a, int \ell, int r)
      int x = a[r];
      int i = \ell - 1;
     for (j = \ell; j < r; j++) {
           if (a[j] <= x) {
 5
                i++;
                vertausche a[i] und a[j];
6
8
      vertausche a[i + 1] und a[r];
9
10
      return i + 1:
```

```
PARTITION(int[] a, int \ell, int r)
      int x = a[r];
      int i = \ell - 1:
      for (j = \ell; j < r; j++) {
           if (a[j] <= x) {
 5
                i++;
                vertausche a[i] und a[j];
6
8
      vertausche a[i + 1] und a[r];
9
10
      return i + 1:
```

```
  \begin{array}{c}
    x = 5 \\
    \ell & r \\
    \hline
    1 | 8 | 9 | 3 | 7 | 5 | 4 | 5
  \end{array}
```

```
PARTITION(int[] a, int \ell, int r)
      int x = a[r];
      int i = \ell - 1:
      for (j = \ell; j < r; j++) {
           if (a[j] <= x) {
 4
 5
                i++:
                vertausche a[i] und a[j];
6
8
      vertausche a[i + 1] und a[r];
9
10
      return i + 1:
```

```
PARTITION(int[] a, int \ell, int r)
      int x = a[r];
      int i = \ell - 1:
      for (j = \ell; j < r; j++) {
           if (a[j] <= x) {
 5
                i++:
6
                vertausche a[i] und a[j];
8
      vertausche a[i + 1] und a[r];
9
10
      return i + 1:
```

```
PARTITION(int[] a, int \ell, int r)
      int x = a[r];
      int i = \ell - 1:
 3
      for (j = \ell; j < r; j++) {
           if (a[j] <= x) {
 5
                i++;
6
                vertausche a[i] und a[j];
8
      vertausche a[i + 1] und a[r];
9
10
      return i + 1:
```

```
x = 5
\ell
ij
1|8|9|3|7|5|4|5
```

```
PARTITION(int[] a, int \ell, int r)
      int x = a[r];
      int i = \ell - 1:
      for (j = \ell; j < r; j++) {
           if (a[j] <= x) {
 5
                i++;
                vertausche a[i] und a[j];
6
8
      vertausche a[i + 1] und a[r];
9
10
      return i + 1:
```

```
PARTITION(int[] a, int \ell, int r)
      int x = a[r];
      int i = \ell - 1:
      for (j = \ell; j < r; j++) {
           if (a[j] <= x) {
 4
 5
                i++:
                vertausche a[i] und a[j];
6
8
      vertausche a[i + 1] und a[r];
9
10
      return i + 1:
```

```
  \begin{array}{c}
    x = 5 \\
    \ell \\
    i \\
    \hline
    1 | 8 | 9 | 3 | 7 | 5 | 4 | 5
  \end{array}
```

```
PARTITION(int[] a, int \ell, int r)
       int x = a[r];
       int i = \ell - 1:
      for (j = \ell; j < r; j++) {
if (a[j] <= x) {
 5
                  i++;
                  vertausche a[i] und a[j];
 6
 8
 9
       vertausche a[i + 1] und a[r];
10
       return i + 1:
```



```
PARTITION(int[] a, int \ell, int r)
      int x = a[r];
      int i = \ell - 1:
      for (j = \ell; j < r; j++) {
           if (a[j] <= x) {
 4
 5
                i++;
                vertausche a[i] und a[j];
6
8
9
      vertausche a[i + 1] und a[r];
10
      return i + 1:
```



```
PARTITION(int[] a, int \ell, int r)
      int x = a[r];
      int i = \ell - 1:
      for (j = \ell; j < r; j++) {
           if (a[j] <= x) {
 5
                i++;
                vertausche a[i] und a[j];
6
8
9
      vertausche a[i + 1] und a[r];
10
      return i + 1:
```

```
PARTITION(int[] a, int \ell, int r)
      int x = a[r];
      int i = \ell - 1:
      for (j = \ell; j < r; j++) {
           if (a[j] <= x) {
 4
 5
                i++;
                vertausche a[i] und a[j];
6
8
9
      vertausche a[i + 1] und a[r];
10
      return i + 1:
```



```
PARTITION(int[] a, int \ell, int r)
      int x = a[r];
      int i = \ell - 1:
      for (j = \ell; j < r; j++) {
           if (a[j] <= x) {
 5
                i++:
6
                vertausche a[i] und a[j];
8
      vertausche a[i + 1] und a[r];
9
10
      return i + 1:
```

```
PARTITION(int[] a, int \ell, int r)
      int x = a[r];
      int i = \ell - 1:
 3
      for (j = \ell; j < r; j++) {
           if (a[j] <= x) {
 5
                i++;
6
                vertausche a[i] und a[j];
8
9
      vertausche a[i + 1] und a[r];
10
      return i + 1:
```

```
PARTITION(int[] a, int \ell, int r)
      int x = a[r];
      int i = \ell - 1:
      for (j = \ell; j < r; j++) {
           if (a[j] <= x) {
 5
                i++;
                vertausche a[i] und a[j];
6
8
9
      vertausche a[i + 1] und a[r];
10
      return i + 1:
```

```
PARTITION(int[] a, int \ell, int r)
      int x = a[r];
      int i = \ell - 1:
      for (j = \ell; j < r; j++) {
           if (a[j] <= x) {
 4
 5
                i++;
                vertausche a[i] und a[j];
6
8
9
      vertausche a[i + 1] und a[r];
10
      return i + 1:
```

```
PARTITION(int[] a, int \ell, int r)
      int x = a[r];
      int i = \ell - 1:
      for (j = \ell; j < r; j++) {
           if (a[j] <= x) {
 5
                i++;
                vertausche a[i] und a[j];
6
8
9
      vertausche a[i + 1] und a[r];
10
      return i + 1:
```

```
PARTITION(int[] a, int \ell, int r)
      int x = a[r];
      int i = \ell - 1:
      for (j = \ell; j < r; j++) {
           if (a[j] <= x) {
 4
 5
                i++;
                vertausche a[i] und a[j];
6
8
9
      vertausche a[i + 1] und a[r];
10
      return i + 1:
```

```
PARTITION(int[] a, int \ell, int r)
      int x = a[r];
      int i = \ell - 1:
      for (j = \ell; j < r; j++) {
           if (a[j] <= x) {
 5
                i++:
6
                vertausche a[i] und a[j];
8
      vertausche a[i + 1] und a[r];
9
10
      return i + 1:
```

```
PARTITION(int[] a, int \ell, int r)
      int x = a[r];
      int i = \ell - 1:
      for (j = \ell; j < r; j++) {
           if (a[j] <= x) {
 5
                i++;
6
                vertausche a[i] und a[j];
8
9
      vertausche a[i + 1] und a[r];
10
      return i + 1:
```

```
PARTITION(int[] a, int \ell, int r)
       int x = a[r];
       int i = \ell - 1:
      for (j = \ell; j < r; j++) {
if (a[j] <= x) {
 5
                  i++;
                  vertausche a[i] und a[j];
 6
 8
 9
       vertausche a[i + 1] und a[r];
10
       return i + 1:
```

```
PARTITION(int[] a, int \ell, int r)
      int x = a[r];
      int i = \ell - 1:
      for (j = \ell; j < r; j++) {
           if (a[j] <= x) {
 4
 5
                i++;
                vertausche a[i] und a[j];
6
8
9
      vertausche a[i + 1] und a[r];
10
      return i + 1:
```

```
PARTITION(int[] a, int \ell, int r)
      int x = a[r];
      int i = \ell - 1:
      for (j = \ell; j < r; j++) {
           if (a[j] <= x) {
 5
                i++:
6
                vertausche a[i] und a[j];
8
      vertausche a[i + 1] und a[r];
9
10
      return i + 1:
```



```
PARTITION(int[] a, int \ell, int r)
      int x = a[r];
      int i = \ell - 1:
      for (j = \ell; j < r; j++) {
           if (a[j] <= x) {
 5
                i++;
6
                vertausche a[i] und a[j];
8
9
      vertausche a[i + 1] und a[r];
10
      return i + 1:
```



```
PARTITION(int[] a, int \ell, int r)
       int x = a[r];
       int i = \ell - 1:
      for (j = \ell; j < r; j++) {
if (a[j] <= x) {
 5
                  i++;
                  vertausche a[i] und a[j];
 6
 8
 9
       vertausche a[i + 1] und a[r];
10
       return i + 1:
```

```
PARTITION(int[] a, int \ell, int r)
      int x = a[r];
      int i = \ell - 1:
      for (j = \ell; j < r; j++) {
           if (a[j] <= x) {
 5
                i++;
                vertausche a[i] und a[j];
6
8
      vertausche a[i + 1] und a[r];
9
10
      return i + 1:
```

```
PARTITION(int[] a, int \ell, int r)
      int x = a[r];
      int i = \ell - 1:
 3
      for (j = \ell; j < r; j++) {
           if (a[j] <= x) {
 5
                i++;
                vertausche a[i] und a[j];
6
8
9
      vertausche a[i + 1] und a[r];
      return i + 1;
10
```

Lemma 3.1

In Zeile 3 der Methode PARTITION gelten für das aktuelle *j* und das aktuelle *i* stets die folgenden Aussagen.

- 1. Für alle $k \in \{\ell, \dots, i\}$ gilt $a[k] \leq x$.
- 2. Für alle $k \in \{i + 1, ..., j 1\}$ gilt a[k] > x.
- 3. Es gilt a[r] = x.

						r
8	9	3	7	5	4	5
á						
8	9	3	7	5	4	5
	á					
8	9	3	7	5	4	5
		j				
8	9	3	7	5	4	5
i			j			
3	9	8	7	5	4	5
i				j		
3	9	8	7	5	4	5
	i				j	
3	5	8	7	9	4	5
		i				j
3	5	4	7	9	8	5
	8 8 3 1 3	$ \begin{array}{c c} j \\ 8 9 \\ j \\ 8 9 \\ \hline 8 9 \\ i \\ 3 9 \\ i \\ 3 9 \end{array} $	j 893 y 893 893 i 398 i 398	$\begin{array}{c} j \\ 8 \mid 9 \mid 3 \mid 7 \\ j \\ 8 \mid 9 \mid 3 \mid 7 \\ \vdots \\ 3 \mid 9 \mid 8 \mid 7 \\ \vdots \\ 3 \mid 9 \mid 8 \mid 7 \\ \vdots \\ 3 \mid 5 \mid 8 \mid 7 \\ \vdots \\ 3 \mid 5 \mid 8 \mid 7 \\ \vdots \\ 3 \mid 5 \mid 8 \mid 7 \\ \vdots \\ 1 \end{array}$	$\begin{array}{c} j \\ 8 \mid 9 \mid 3 \mid 7 \mid 5 \\ \hline j \\ 8 \mid 9 \mid 3 \mid 7 \mid 5 \\ \hline 8 \mid 9 \mid 3 \mid 7 \mid 5 \\ i \\ j \\ 3 \mid 9 \mid 8 \mid 7 \mid 5 \\ i \\ 3 \mid 9 \mid 8 \mid 7 \mid 5 \\ i \\ 3 \mid 5 \mid 8 \mid 7 \mid 9 \\ i \\ \end{array}$	8 9 3 7 5 4 8 9 3 7 5 4 8 9 3 7 5 4 8 9 3 7 5 4 9 8 7 5 4 3 9 8 7 5 4 3 5 8 7 9 4 3 5 4 7 9 8

Lemma 3.1

In Zeile 3 der Methode Partition gelten für das aktuelle j und das aktuelle i stets die folgenden Aussagen.

- 1. Für alle $k \in \{\ell, \dots, i\}$ gilt $a[k] \le x$.
- 2. Für alle $k \in \{i+1,\ldots,j-1\}$ gilt a[k] > x.
- 3. Es gilt a[r] = x.

Lemma 3.1

In Zeile 3 der Methode Partition gelten für das aktuelle j und das aktuelle i stets die folgenden Aussagen.

- 1. Für alle $k \in \{\ell, \dots, i\}$ gilt $a[k] \leq x$.
- 2. Für alle $k \in \{i+1,\ldots,j-1\}$ gilt a[k] > x.
- 3. Es gilt a[r] = x.

Beweis:

Induktionsanfang: $i = \ell - 1, j = \ell$

Lemma 3.1

In Zeile 3 der Methode Partition gelten für das aktuelle j und das aktuelle i stets die folgenden Aussagen.

- 1. Für alle $k \in \{\ell, \ldots, i\}$ gilt $a[k] \le x$.
- 2. Für alle $k \in \{i + 1, ..., j 1\}$ gilt a[k] > x.
- 3. Es gilt a[r] = x.

Beweis:

Induktionsanfang: $i = \ell - 1$, $j = \ell$

- 1. Für alle $k \in \{\ell, \dots, \ell 1\}$ gilt $a[k] \le x$.
- 2. Für alle $k \in \{\ell, \dots, \ell-1\}$ gilt a[k] > x.
- 3. Es gilt a[r] = x.

```
PARTITION(int[] a, int \ell, int r)
      int x = a[r]:
      int i = \ell - 1:
 3
      for (j = \ell; j < r; j++) {
           if (a[i] <= x) {
 4
 5
                i++;
 6
                vertausche a[i] und a[i]:
8
      vertausche a[i + 1] und a[r];
9
10
       return i + 1:
```

Induktionsschritt: Zu Beginn von Zeile 3:

- 1. Für alle $k \in \{\ell, \dots, i\}$ gilt $a[k] \leq x$.
- 2. Für alle $k \in \{i+1,\ldots,j-1\}$ gilt a[k] > x.
- 3. Es gilt a[r] = x.

```
PARTITION(int[] a, int \ell, int r)
      int x = a[r]:
      int i = \ell - 1:
 3
      for (j = \ell; j < r; j++) {
           if (a[i] <= x) {
 4
 5
                i++;
 6
                vertausche a[i] und a[i]:
8
9
      vertausche a[i + 1] und a[r];
10
       return i + 1:
```

```
Induktionsschritt: Zu Beginn von Zeile 3:
```

- 1. Für alle $k \in \{\ell, \dots, i\}$ gilt $a[k] \leq x$.
- 2. Für alle $k \in \{i+1,\ldots,j-1\}$ gilt a[k]>x.
- 3. Es gilt a[r] = x.
- 1. Fall: a[j] > x.

```
Partition(int[] a, int \ell, int r)
      int x = a[r]:
      int i = \ell - 1:
 3
      for (j = \ell; j < r; j++) {
           if (a[i] <= x) {
 4
 5
                 i++:
 6
                vertausche a[i] und a[i]:
8
9
       vertausche a[i + 1] und a[r];
10
       return i + 1:
```

Induktionsschritt: Zu Beginn von Zeile 3:

- 1. Für alle $k \in \{\ell, \dots, i\}$ gilt $a[k] \le x$.
- 2. Für alle $k \in \{i + 1, ..., j 1\}$ gilt a[k] > x.
- 3. Es gilt a[r] = x.
- 1. Fall: a[j] > x.

a und i werden nicht verändert.

j wird um eins vergrößert.


```
PARTITION(int[] a, int \ell, int r)
      int x = a[r]:
      int i = \ell - 1:
 3
      for (j = \ell; j < r; j++) {
           if (a[i] <= x) {
 4
 5
                i++;
 6
                vertausche a[i] und a[i]:
8
      vertausche a[i + 1] und a[r];
9
10
       return i + 1:
```

Induktionsschritt: Zu Beginn von Zeile 3:

- 1. Für alle $k \in \{\ell, \dots, i\}$ gilt $a[k] \leq x$.
- 2. Für alle $k \in \{i+1,\ldots,j-1\}$ gilt a[k]>x.
- 3. Es gilt a[r] = x.

```
PARTITION(int[] a, int \ell, int r)
      int x = a[r]:
      int i = \ell - 1:
 3
      for (j = \ell; j < r; j++) {
           if (a[i] <= x) {
 4
 5
                i++;
 6
                vertausche a[i] und a[i]:
8
9
      vertausche a[i + 1] und a[r];
10
       return i + 1:
```

Induktionsschritt: Zu Beginn von Zeile 3:

- 1. Für alle $k \in \{\ell, \dots, i\}$ gilt $a[k] \le x$.
- 2. Für alle $k \in \{i+1,\ldots,j-1\}$ gilt a[k] > x.
- 3. Es gilt a[r] = x.
- 2. Fall: $a[j] \le x$.

```
Partition(int[] a, int \ell, int r)
      int x = a[r]:
       int i = \ell - 1:
 3
      for (j = \ell; j < r; j++) {
           if (a[i] <= x) {
 4
 5
                 i++:
 6
                vertausche a[i] und a[i]:
8
9
       vertausche a[i + 1] und a[r];
10
       return i + 1:
```

Induktionsschritt: Zu Beginn von Zeile 3:

- 1. Für alle $k \in \{\ell, \dots, i\}$ gilt $a[k] \leq x$.
- 2. Für alle $k \in \{i + 1, ..., j 1\}$ gilt a[k] > x.
- 3. Es gilt a[r] = x.
- 2. Fall: $a[j] \le x$.

a[i] und a[j] werden vertauscht.

i und j werden um eins vergrößert.

Am Ende gilt j = r.

Dafür besagt Lemma 3.1:

- 1. Für alle $k \in \{\ell, \dots, i\}$ gilt $a[k] \leq x$.
- 2. Für alle $k \in \{i+1, \ldots, r-1\}$ gilt a[k] > x.
- 3. Es gilt a[r] = x.

$$\frac{i}{[1|3|5|4|7|9|8|5}$$

Am Ende gilt j = r.

Dafür besagt Lemma 3.1:

- 1. Für alle $k \in \{\ell, \dots, i\}$ gilt $a[k] \leq x$.
- 2. Für alle $k \in \{i + 1, ..., r 1\}$ gilt a[k] > x.
- 3. Es gilt a[r] = x.

In Zeile 9 werden dann a[i + 1] und a[r] vertauscht.

Am Ende gilt j = r.

Dafür besagt Lemma 3.1:

- 1. Für alle $k \in \{\ell, \dots, i\}$ gilt $a[k] \le x$.
- 2. Für alle $k \in \{i + 1, ..., r 1\}$ gilt a[k] > x.
- 3. Es gilt a[r] = x.

In Zeile 9 werden dann a[i + 1] und a[r] vertauscht.

Am Ende gilt j = r.

Dafür besagt Lemma 3.1:

- 1. Für alle $k \in \{\ell, \dots, i\}$ gilt $a[k] \leq x$.
- 2. Für alle $k \in \{i + 1, ..., r 1\}$ gilt a[k] > x.
- 3. Es gilt a[r] = x.

In Zeile 9 werden dann a[i + 1] und a[r] vertauscht.

⇒ Partition arbeitet korrekt.

Wie groß ist die Laufzeit von QUICKSORT?

Stets das größte Element wird Pivot.

Wie groß ist die Laufzeit von QUICKSORT?

Stets das größte Element wird Pivot.

Wie groß ist die Laufzeit von QUICKSORT?

Stets das größte Element wird Pivot.

$$T(n) = egin{cases} \Theta(1) & ext{falls } n = 0, \ T(n-1) + cn & ext{falls } n > 0. \end{cases}$$

Wie groß ist die Laufzeit von QUICKSORT?

Stets das größte Element wird Pivot.

$$T(n) = egin{cases} \Theta(1) & ext{falls } n = 0, \ T(n-1) + cn & ext{falls } n > 0. \end{cases}$$

$$\Rightarrow T(n) = \Theta(n^2).$$

Dies ist der Worst Case.

Wie groß ist die Laufzeit von QUICKSORT?

Stets das größte Element wird Pivot.

$$T(n) = egin{cases} \Theta(1) & ext{falls } n = 0, \\ T(n-1) + cn & ext{falls } n > 0. \end{cases}$$

$$\Rightarrow T(n) = \Theta(n^2).$$

Dies ist der Worst Case.

Stets der Median wird Pivot.

Wie groß ist die Laufzeit von QUICKSORT?

Stets das größte Element wird Pivot.

$$T(n) = egin{cases} \Theta(1) & ext{falls } n = 0, \ T(n-1) + cn & ext{falls } n > 0. \end{cases}$$

$$\Rightarrow T(n) = \Theta(n^2).$$

Dies ist der Worst Case.

Stets der Median wird Pivot.

Wie groß ist die Laufzeit von QUICKSORT?

Stets das größte Element wird Pivot.

$$T(n) = egin{cases} \Theta(1) & ext{falls } n = 0, \ T(n-1) + cn & ext{falls } n > 0. \end{cases}$$

$$\Rightarrow T(n) = \Theta(n^2).$$

Dies ist der Worst Case.

Stets der Median wird Pivot.

Mit Variante von Theorem 2.2 folgt $T(n) = \Theta(n \log n)$. Dies ist der Best Case.

RANDOMQUICKSORT: Wähle stets ein uniform zufälliges Element als Pivotelement.

RANDOMQUICKSORT: Wähle stets ein uniform zufälliges Element als Pivotelement.

Kann einfach erreicht werden, indem zu Beginn von PARTITION a[r] mit a[k] für ein uniform zufälliges $k \in \{\ell, \dots, r\}$ vertauscht wird.

RANDOMQUICKSORT: Wähle stets ein uniform zufälliges Element als Pivotelement.

Kann einfach erreicht werden, indem zu Beginn von Partition a[r] mit a[k] für ein uniform zufälliges $k \in \{\ell, \dots, r\}$ vertauscht wird.

Für eine feste Eingabe ist die Laufzeit von RANDOMQUICKSORT nicht fest, sondern eine **Zufallsvariable**.

RANDOMQUICKSORT: Wähle stets ein uniform zufälliges Element als Pivotelement.

Kann einfach erreicht werden, indem zu Beginn von PARTITION a[r] mit a[k] für ein uniform zufälliges $k \in \{\ell, \dots, r\}$ vertauscht wird.

Für eine feste Eingabe ist die Laufzeit von RANDOMQUICKSORT nicht fest, sondern eine **Zufallsvariable**.

Uns interessiert die erwartete Laufzeit.

Exkurs: Wahrscheinlichkeitsrechnung

Für ein Ereignis A bezeichnen wir mit **Pr** [A] die Wahrscheinlichkeit, dass es eintritt.

Exkurs: Wahrscheinlichkeitsrechnung

Für ein Ereignis A bezeichnen wir mit **Pr** [A] die Wahrscheinlichkeit, dass es eintritt.

Interpretation: Wenn das Zufallsexperiment sehr oft wiederholt wird, dann ist Pr[A] die relative Häufigkeit von A.

Exkurs: Wahrscheinlichkeitsrechnung

Für ein Ereignis A bezeichnen wir mit Pr[A] die Wahrscheinlichkeit, dass es eintritt.

Interpretation: Wenn das Zufallsexperiment sehr oft wiederholt wird, dann ist Pr[A] die relative Häufigkeit von A.

Beispiele:

• Bezeichne X die Augenzahl beim Wurf eines fairen Würfels. Es gilt $\Pr[X = i] = 1/6$ für jedes $i \in \{1, 2, 3, 4, 5, 6\}$.

Exkurs: Wahrscheinlichkeitsrechnung

Für ein Ereignis A bezeichnen wir mit Pr [A] die Wahrscheinlichkeit, dass es eintritt.

Interpretation: Wenn das Zufallsexperiment sehr oft wiederholt wird, dann ist Pr[A] die relative Häufigkeit von A.

Beispiele:

- Bezeichne X die Augenzahl beim Wurf eines fairen Würfels. Es gilt $\Pr[X = i] = 1/6$ für jedes $i \in \{1, 2, 3, 4, 5, 6\}$.
- Wird Index k des Pivotelementes uniform zufällig aus der Menge $\{\ell, \ldots, r\}$ gewählt, so gilt $\Pr[k = i] = 1/(r \ell + 1)$ für alle $i \in \{\ell, \ldots, r\}$.

Exkurs: Wahrscheinlichkeitsrechnung

Der Erwartungswert $\mathbf{E}[X]$ einer Zufallsvariable X ist der Wert, den die Zufallsvariable im Durchschnitt annimmt, wenn man das Zufallsexperiment unendlich oft wiederholt.

Exkurs: Wahrscheinlichkeitsrechnung

Der Erwartungswert $\mathbf{E}[X]$ einer Zufallsvariable X ist der Wert, den die Zufallsvariable im Durchschnitt annimmt, wenn man das Zufallsexperiment unendlich oft wiederholt.

Formal: $\mathbf{E}[X]$ ist Summe über alle möglichen Werte von X, wobei jeder Wert mit der Wahrscheinlichkeit gewichtet ist, mit der er auftritt.

Exkurs: Wahrscheinlichkeitsrechnung

Der Erwartungswert $\mathbf{E}[X]$ einer Zufallsvariable X ist der Wert, den die Zufallsvariable im Durchschnitt annimmt, wenn man das Zufallsexperiment unendlich oft wiederholt.

Formal: $\mathbf{E}[X]$ ist Summe über alle möglichen Werte von X, wobei jeder Wert mit der Wahrscheinlichkeit gewichtet ist, mit der er auftritt.

Für eine Zufallsvariable X, die nur Werte aus $\mathbb Z$ annimmt, gilt dementsprechend

$$\mathbf{E}[X] = \sum_{i=-\infty}^{\infty} i \cdot \Pr[X=i].$$

Exkurs: Wahrscheinlichkeitsrechnung

Der Erwartungswert $\mathbf{E}[X]$ einer Zufallsvariable X ist der Wert, den die Zufallsvariable im Durchschnitt annimmt, wenn man das Zufallsexperiment unendlich oft wiederholt.

Formal: $\mathbf{E}[X]$ ist Summe über alle möglichen Werte von X, wobei jeder Wert mit der Wahrscheinlichkeit gewichtet ist, mit der er auftritt.

Für eine Zufallsvariable X, die nur Werte aus $\mathbb Z$ annimmt, gilt dementsprechend

$$\mathbf{E}[X] = \sum_{i=-\infty}^{\infty} i \cdot \mathbf{Pr}[X=i].$$

Nimmt X nur Werte aus \mathbb{N}_0 an, so gilt außerdem

$$\mathbf{E}[X] = \sum_{i=1}^{\infty} \mathbf{Pr}[X \ge i].$$

Beispiele für Erwartungswerte

 Sei X die Zufallsvariable, die den Ausgang eines fairen Würfelwurfs beschreibt.

Beispiele für Erwartungswerte

• Sei X die Zufallsvariable, die den Ausgang eines fairen Würfelwurfs beschreibt. Dann gilt $\Pr[X = i] = 1/6$ für jedes $i \in \{1, ..., 6\}$ und $\Pr[X = i] = 0$ für jedes $i \notin \{1, ..., 6\}$.

Beispiele für Erwartungswerte

Sei X die Zufallsvariable, die den Ausgang eines fairen Würfelwurfs
beschreibt. Dann gilt Pr[X = i] = 1/6 für jedes i ∈ {1,...,6} und Pr[X = i] = 0 für
jedes i ∉ {1,...,6}. Damit gilt für den Erwartungswert von X

$$\mathbf{E}[X] = \sum_{i=1}^{\infty} i \cdot \Pr[X = i] = \sum_{i=1}^{6} i \cdot \Pr[X = i] = \sum_{i=1}^{6} \frac{i}{6} = 3,5.$$

Beispiele für Erwartungswerte

• Sei X die Zufallsvariable, die den Ausgang eines fairen Würfelwurfs beschreibt. Dann gilt $\Pr[X=i]=1/6$ für jedes $i\in\{1,\ldots,6\}$ und $\Pr[X=i]=0$ für jedes $i\notin\{1,\ldots,6\}$. Damit gilt für den Erwartungswert von X

$$\mathbf{E}[X] = \sum_{i=1}^{\infty} i \cdot \Pr[X = i] = \sum_{i=1}^{6} i \cdot \Pr[X = i] = \sum_{i=1}^{6} \frac{i}{6} = 3.5.$$

Beispiele für Erwartungswerte

Sei X die Zufallsvariable, die den Ausgang eines fairen Würfelwurfs
beschreibt. Dann gilt Pr[X = i] = 1/6 für jedes i ∈ {1,...,6} und Pr[X = i] = 0 für
jedes i ∉ {1,...,6}. Damit gilt für den Erwartungswert von X

$$\mathbf{E}[X] = \sum_{i=1}^{\infty} i \cdot \Pr[X = i] = \sum_{i=1}^{6} i \cdot \Pr[X = i] = \sum_{i=1}^{6} \frac{i}{6} = 3,5.$$

 Bezeichne nun X die Zufallsvariable, die angibt, wie oft man einen fairen Würfel werfen muss, bis er das erste Mal eine Sechs zeigt.

Es gilt $\Pr[X \ge 1] = 1$,

Beispiele für Erwartungswerte

Sei X die Zufallsvariable, die den Ausgang eines fairen Würfelwurfs
beschreibt. Dann gilt Pr[X = i] = 1/6 für jedes i ∈ {1,...,6} und Pr[X = i] = 0 für
jedes i ∉ {1,...,6}. Damit gilt für den Erwartungswert von X

$$\mathbf{E}[X] = \sum_{i=1}^{\infty} i \cdot \Pr[X = i] = \sum_{i=1}^{6} i \cdot \Pr[X = i] = \sum_{i=1}^{6} \frac{i}{6} = 3,5.$$

Es gilt
$$Pr[X \ge 1] = 1$$
, $Pr[X \ge 2] = 5/6$,

Beispiele für Erwartungswerte

Sei X die Zufallsvariable, die den Ausgang eines fairen Würfelwurfs
beschreibt. Dann gilt Pr[X = i] = 1/6 für jedes i ∈ {1,...,6} und Pr[X = i] = 0 für
jedes i ∉ {1,...,6}. Damit gilt für den Erwartungswert von X

$$\mathbf{E}[X] = \sum_{i=1}^{\infty} i \cdot \Pr[X = i] = \sum_{i=1}^{6} i \cdot \Pr[X = i] = \sum_{i=1}^{6} \frac{i}{6} = 3,5.$$

Es gilt
$$\Pr[X \ge 1] = 1$$
, $\Pr[X \ge 2] = 5/6$, $\Pr[X \ge 3] = (5/6)^2$

Beispiele für Erwartungswerte

Sei X die Zufallsvariable, die den Ausgang eines fairen Würfelwurfs
beschreibt. Dann gilt Pr[X = i] = 1/6 für jedes i ∈ {1,...,6} und Pr[X = i] = 0 für
jedes i ∉ {1,...,6}. Damit gilt für den Erwartungswert von X

$$\mathbf{E}[X] = \sum_{i=1}^{\infty} i \cdot \Pr[X = i] = \sum_{i=1}^{6} i \cdot \Pr[X = i] = \sum_{i=1}^{6} \frac{i}{6} = 3,5.$$

Es gilt
$$\Pr[X \ge 1] = 1$$
, $\Pr[X \ge 2] = 5/6$, $\Pr[X \ge 3] = (5/6)^2$ und $\Pr[X \ge i] = (5/6)^{i-1}$ für jedes $i \in \mathbb{N}$.

Beispiele für Erwartungswerte

Sei X die Zufallsvariable, die den Ausgang eines fairen Würfelwurfs
beschreibt. Dann gilt Pr [X = i] = 1/6 für jedes i ∈ {1,...,6} und Pr [X = i] = 0 für
jedes i ∉ {1,...,6}. Damit gilt für den Erwartungswert von X

$$\mathbf{E}[X] = \sum_{i=1}^{\infty} i \cdot \Pr[X = i] = \sum_{i=1}^{6} i \cdot \Pr[X = i] = \sum_{i=1}^{6} \frac{i}{6} = 3,5.$$

 Bezeichne nun X die Zufallsvariable, die angibt, wie oft man einen fairen Würfel werfen muss, bis er das erste Mal eine Sechs zeigt.

Es gilt $\Pr[X \ge 1] = 1$, $\Pr[X \ge 2] = 5/6$, $\Pr[X \ge 3] = (5/6)^2$ und $\Pr[X \ge i] = (5/6)^{i-1}$ für jedes $i \in \mathbb{N}$.

Damit ergibt sich

$$\mathbf{E}[X] = \sum_{i=1}^{\infty} \Pr[X \ge i] = \sum_{i=1}^{\infty} (5/6)^{i-1} = \frac{1}{1 - 5/6} = 6.$$

Beispiele für Erwartungswerte

• Eine Zufallsvariable X, die nur die Werte 0 und 1 mit positiver Wahrscheinlichkeit annimmt, nennen wir 0-1-Zufallsvariable. Für ihren Erwartungswert gilt

$$E[X] = \sum_{i=1}^{\infty} i \cdot Pr[X = i] = 1 \cdot Pr[X = 1] = Pr[X = 1].$$

Beispiele für Erwartungswerte

• Eine Zufallsvariable X, die nur die Werte 0 und 1 mit positiver Wahrscheinlichkeit annimmt, nennen wir 0-1-Zufallsvariable. Für ihren Erwartungswert gilt

$$E[X] = \sum_{i=1}^{\infty} i \cdot Pr[X = i] = 1 \cdot Pr[X = 1] = Pr[X = 1].$$

Linearität des Erwartungswertes: Für zwei beliebige Zufallsvariablen X und Y gilt stets $\mathbf{E}[X+Y]=\mathbf{E}[X]+\mathbf{E}[Y]$. Dies ist sogar dann der Fall, wenn die Zufallsvariablen voneinander abhängen.

Theorem 3.2

Die erwartete Laufzeit von RANDOMQUICKSORT beträgt auf jeder Eingabe mit n Zahlen $O(n \log n)$.

Theorem 3.2

Die erwartete Laufzeit von RANDOMQUICKSORT beträgt auf jeder Eingabe mit n Zahlen $O(n \log n)$.

Beweis:

```
QUICKSORT(int[] a, int \ell, int r)
     if (\ell < r) {
          int q = PARTITION(a, \ell, r);
          QUICKSORT(a, \ell, q - 1):
          QUICKSORT(a,q+1,r);
5
```

```
PARTITION(int[] a, int \ell, int r)
     int x = a[r];
 2 int i = \ell - 1:
3 for (j = \ell; j < r; j++) {
          if (a[i] <= x) {
 5
               i++:
 6
               vertausche a[i] und a[j];
 8
      vertausche a[i+1] und a[r];
10
      return i + 1:
```

Theorem 3.2

Die erwartete Laufzeit von RANDOMQUICKSORT beträgt auf jeder Eingabe mit n Zahlen $O(n \log n)$.

Beweis:

```
QUICKSORT(int[] a, int \ell, int r)

1 if (\ell < r) {
2 int q = Partition(a, \ell, r);
3 QUICKSORT(a, \ell, q - 1);
4 QUICKSORT(a, q + 1, r);
5 }
```

Es genügt, die Zahl der wesentlichen Vergleiche (Zeile 4 von PARTITION) zu beschränken.

```
Partition(int[] a, int \ell, int r)
     int x = a[r];
2 int i = \ell - 1:
3 for (j = \ell; j < r; j++) {
          if (a[i] <= x) {
               i++:
6
               vertausche a[i] und a[j];
     vertausche a[i+1] und a[r];
10
     return i + 1:
```

• **Eingabe:** *a*[0 . . . *n* − 1]

- **Eingabe:** *a*[0 . . . *n* − 1]
- Ausgabe: (y_1, \ldots, y_n) , d. h. y_i ist die i-t größte Zahl der Eingabe a.

- **Eingabe:** *a*[0 . . . *n* − 1]
- Ausgabe: (y_1, \ldots, y_n) , d. h. y_i ist die i-t größte Zahl der Eingabe a.
- Für jedes Paar $i, j \in \{1, ..., n\}$ mit i < j definieren wir eine Zufallsvariable

$$X_{ij} = \begin{cases} 1 & \text{falls } y_i \text{ und } y_j \text{ verglichen werden,} \\ 0 & \text{sonst.} \end{cases}$$

- **Eingabe:** *a*[0 . . . *n* − 1]
- Ausgabe: (y_1, \ldots, y_n) , d. h. y_i ist die i-t größte Zahl der Eingabe a.
- Für jedes Paar $i, j \in \{1, ..., n\}$ mit i < j definieren wir eine Zufallsvariable

$$X_{ij} = \begin{cases} 1 & \text{falls } y_i \text{ und } y_j \text{ verglichen werden,} \\ 0 & \text{sonst.} \end{cases}$$

Sei X die Anzahl wesentlicher Vergleiche. Dann gilt

$$X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij},$$

denn derselbe Vergleich kann nicht mehrfach auftreten.

· Es gilt

$$\mathbf{E}[X] = \mathbf{E}\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{E}[X_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{Pr}[X_{ij} = 1].$$

Es gilt

$$\mathbf{E}[X] = \mathbf{E}\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{E}[X_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{Pr}[X_{ij} = 1].$$

Betrachte Sequenz von Pivotelementen bei Ausführung von RANDOMQUICKSORT.
 Sei x erstes Pivotelement aus der Menge {y_i, y_{i+1}, ..., y_j}.

Es gilt

$$\mathbf{E}[X] = \mathbf{E}\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{E}[X_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{Pr}[X_{ij} = 1].$$

Betrachte Sequenz von Pivotelementen bei Ausführung von RANDOMQUICKSORT.
 Sei x erstes Pivotelement aus der Menge {y_i, y_{i+1}, ..., y_j}.

$$X_{ij} = 1 \iff x = y_i \text{ oder } x = y_j$$

Es gilt

$$\mathbf{E}[X] = \mathbf{E}\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{E}[X_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{Pr}[X_{ij} = 1].$$

Betrachte Sequenz von Pivotelementen bei Ausführung von RANDOMQUICKSORT.
 Sei x erstes Pivotelement aus der Menge {y_i, y_{i+1}, ..., y_j}.

$$X_{ij} = 1 \iff x = y_i \text{ oder } x = y_j$$

• Sei $x \neq y_i$ und $x \neq y_j$.

Es gilt

$$\mathbf{E}[X] = \mathbf{E}\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{E}[X_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{Pr}[X_{ij} = 1].$$

Betrachte Sequenz von Pivotelementen bei Ausführung von RANDOMQUICKSORT.
 Sei x erstes Pivotelement aus der Menge {y_i, y_{i+1}, ..., y_j}.

$$X_{ij} = 1 \iff x = y_i \text{ oder } x = y_j$$

• Sei $x \neq y_i$ und $x \neq y_j$. Dann gilt $y_i < x < y_j$.

Es gilt

$$\mathbf{E}[X] = \mathbf{E}\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{E}[X_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{Pr}[X_{ij} = 1].$$

Betrachte Sequenz von Pivotelementen bei Ausführung von RANDOMQUICKSORT.
 Sei x erstes Pivotelement aus der Menge {y_i, y_{i+1}, ..., y_j}.

$$X_{ij} = 1 \iff x = y_i \text{ oder } x = y_j$$

- Sei x ≠ y_i und x ≠ y_j.
 Dann gilt y_i < x < y_j.
 - \Rightarrow y_i landet im linken Teilproblem. y_j landet im rechten Teilproblem.

Es gilt

$$\mathbf{E}[X] = \mathbf{E}\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{E}[X_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{Pr}[X_{ij} = 1].$$

Betrachte Sequenz von Pivotelementen bei Ausführung von RANDOMQUICKSORT.
 Sei x erstes Pivotelement aus der Menge {y_i, y_{i+1},...,y_j}.

$$X_{ij} = 1 \iff x = y_i \text{ oder } x = y_j$$

- Sei $x \neq y_i$ und $x \neq y_j$.

 Dann gilt $y_i < x < y_j$. $\Rightarrow y_i$ landet im linken Teilproblem. y_j landet im rechten Teilproblem.
- Sei $x = y_i$ oder $x = y_j$.

Es gilt

$$\mathbf{E}[X] = \mathbf{E}\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{E}[X_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{Pr}[X_{ij} = 1].$$

Betrachte Sequenz von Pivotelementen bei Ausführung von RANDOMQUICKSORT.
 Sei x erstes Pivotelement aus der Menge {y_i, y_{i+1},...,y_j}.

$$X_{ij} = 1 \iff x = y_i \text{ oder } x = y_j$$

- Sei x ≠ y_i und x ≠ y_j.
 Dann gilt y_i < x < y_j.
 ⇒ y_i landet im linken Teilproblem. y_i landet im rechten Teilproblem.
- Sei x = y_i oder x = y_j.
 y_i und y_j sind beide im aktuellen Teilproblem enthalten.

Es gilt

$$\mathbf{E}[X] = \mathbf{E}\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{E}[X_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{Pr}[X_{ij} = 1].$$

Betrachte Sequenz von Pivotelementen bei Ausführung von RANDOMQUICKSORT.
 Sei x erstes Pivotelement aus der Menge {y_i, y_{i+1}, ..., y_j}.

$$X_{ij} = 1 \iff x = y_i \text{ oder } x = y_j$$

- Sei x ≠ y_i und x ≠ y_j.
 Dann gilt y_i < x < y_j.
 ⇒ y_i landet im linken Teilproblem. y_i landet im rechten Teilproblem.
- Sei x = y_i oder x = y_i.
 y_i und y_j sind beide im aktuellen Teilproblem enthalten.
 ⇒ y_i und y_j werden verglichen.

$$\Rightarrow \Pr[X_{ij} = 1] = \Pr[x = y_i \text{ oder } x = y_j] = \frac{2}{j - i + 1}$$

$$\Rightarrow \Pr[X_{ij} = 1] = \Pr[x = y_i \text{ oder } x = y_j] = \frac{2}{j - i + 1}$$

$$E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} Pr[X_{ij} = 1]$$

$$\Rightarrow \Pr[X_{ij} = 1] = \Pr[x = y_i \text{ oder } x = y_j] = \frac{2}{j - i + 1}$$

$$\mathbf{E}[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{Pr}[X_{ij} = 1] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$\Rightarrow \Pr[X_{ij} = 1] = \Pr[x = y_i \text{ oder } x = y_j] = \frac{2}{j - i + 1}$$

$$\mathbf{E}[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{Pr}[X_{ij} = 1] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$
$$= \sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k}$$

$$\Rightarrow \Pr[X_{ij} = 1] = \Pr[x = y_i \text{ oder } x = y_j] = \frac{2}{j - i + 1}$$

$$\mathbf{E}[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{Pr}[X_{ij} = 1] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$
$$= \sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k} = \sum_{k=2}^{n} \sum_{i=1}^{n+1-k} \frac{2}{k}$$

$$\Rightarrow \Pr[X_{ij} = 1] = \Pr[x = y_i \text{ oder } x = y_j] = \frac{2}{j - i + 1}$$

$$\mathbf{E}[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{Pr}[X_{ij} = 1] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$
$$= \sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k} = \sum_{k=2}^{n} \sum_{i=1}^{n+1-k} \frac{2}{k} = \sum_{k=2}^{n} \frac{2(n+1-k)}{k}$$

$$\Rightarrow \Pr[X_{ij} = 1] = \Pr[x = y_i \text{ oder } x = y_j] = \frac{2}{j - i + 1}$$

$$\mathbf{E}[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{Pr}[X_{ij} = 1] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k} = \sum_{k=2}^{n} \sum_{i=1}^{n+1-k} \frac{2}{k} = \sum_{k=2}^{n} \frac{2(n+1-k)}{k}$$

$$= (n+1) \left(\sum_{k=2}^{n} \frac{2}{k}\right) - 2(n-1)$$

$$\Rightarrow$$
 $\Pr[X_{ij} = 1] = \Pr[x = y_i \text{ oder } x = y_j] = \frac{2}{j - i + 1}$

Es gilt:

$$\mathbf{E}[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{Pr}[X_{ij} = 1] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k} = \sum_{k=2}^{n} \sum_{i=1}^{n+1-k} \frac{2}{k} = \sum_{k=2}^{n} \frac{2(n+1-k)}{k}$$

$$= (n+1) \left(\sum_{k=2}^{n} \frac{2}{k}\right) - 2(n-1)$$

$$= (2n+2)(H_n - 1) - 2(n-1),$$

wobei $H_n = \sum_{i=1}^n \frac{1}{i}$ die *n*-te harmonische Zahl bezeichnet.

Es gilt $H_n \leq \ln n + 1$

$$\mathbf{E}[X] = (2n+2)(H_n-1)-2(n-1)$$

$$\mathbf{E}[X] = (2n+2)(H_n-1) - 2(n-1)$$

$$\leq 2n \ln n + 2 \ln n - 2n + 2$$

$$\mathbf{E}[X] = (2n+2)(H_n - 1) - 2(n-1)$$

$$\leq 2n \ln n + 2 \ln n - 2n + 2$$

$$= 2n \ln n - \Theta(n)$$

$$\mathbf{E}[X] = (2n+2)(H_n - 1) - 2(n-1)$$

$$\leq 2n \ln n + 2 \ln n - 2n + 2$$

$$= 2n \ln n - \Theta(n)$$

$$= O(n \log n).$$

Definition

Ein Sortieralgorithmus heißt stabil, wenn die relative Ordnung gleicher Elemente beim Sortieren erhalten bleibt.

Definition

Ein Sortieralgorithmus heißt **stabil**, wenn die relative Ordnung gleicher Elemente beim Sortieren erhalten bleibt.

Unsere Implementierungen von INSERTIONSORT und MERGESORT sind stabil. Unsere Implementierung von QUICKSORT hingegen ist nicht.

Definition

Ein Sortieralgorithmus heißt stabil, wenn die relative Ordnung gleicher Elemente beim Sortieren erhalten bleibt.

Unsere Implementierungen von INSERTIONSORT und MERGESORT sind stabil. Unsere Implementierung von QUICKSORT hingegen ist nicht.

Definition

Ein Sortieralgorithmus arbeitet in situ (in-place), wenn er zusätzlich zur Eingabe a nur konstant viel Speicherplatz benötigt.

Definition

Ein Sortieralgorithmus heißt stabil, wenn die relative Ordnung gleicher Elemente beim Sortieren erhalten bleibt.

Unsere Implementierungen von INSERTIONSORT und MERGESORT sind stabil. Unsere Implementierung von QUICKSORT hingegen ist nicht.

Definition

Ein Sortieralgorithmus arbeitet in situ (in-place), wenn er zusätzlich zur Eingabe *a* nur konstant viel Speicherplatz benötigt.

INSERTIONSORT arbeitet in situ. MERGESORT hingegen benötigt zusätzlichen Speicher der Größe $\Theta(n)$ für die Felder *left* und *right* in der Methode MERGE.

3.2 Eigenschaften von Sortieralgorithmen

Definition

Ein Sortieralgorithmus heißt stabil, wenn die relative Ordnung gleicher Elemente beim Sortieren erhalten bleibt.

Unsere Implementierungen von INSERTIONSORT und MERGESORT sind stabil. Unsere Implementierung von QUICKSORT hingegen ist nicht.

Definition

Ein Sortieralgorithmus arbeitet in situ (in-place), wenn er zusätzlich zur Eingabe a nur konstant viel Speicherplatz benötigt.

INSERTIONSORT arbeitet in situ. MERGESORT hingegen benötigt zusätzlichen Speicher der Größe $\Theta(n)$ für die Felder *left* und *right* in der Methode MERGE.

QUICKSORT benötigt Speicherplatz für den Rekursionsstack.

Definition

Ein Sortieralgorithmus heißt vergleichsbasiert, wenn er nur durch die Vergleiche zweier Objekte aus der Eingabe Informationen über die Eingabe gewinnt.

Definition

Ein Sortieralgorithmus heißt vergleichsbasiert, wenn er nur durch die Vergleiche zweier Objekte aus der Eingabe Informationen über die Eingabe gewinnt.

INSERTIONSORT, MERGESORT und QUICKSORT sind vergleichsbasierte Sortieralgorithmen.

Definition

Ein Sortieralgorithmus heißt vergleichsbasiert, wenn er nur durch die Vergleiche zweier Objekte aus der Eingabe Informationen über die Eingabe gewinnt.

INSERTIONSORT, MERGESORT und QUICKSORT sind vergleichsbasierte Sortieralgorithmen.

Theorem 3.3

Jeder vergleichsbasierte Sortieralgorithmus benötigt zum Sortieren von Feldern der Länge n im Worst Case $\Omega(n \log n)$ Vergleiche. Damit beträgt insbesondere seine Worst-Case-Laufzeit $\Omega(n \log n)$.

Beweis:

Definition

Sei (ℓ_1,\ldots,ℓ_n) die eindeutige Permutation der Zahlen $1,\ldots,n$, für die $a[\ell_1]<\ldots< a[\ell_n]$ gilt. Wir nennen (ℓ_1,\ldots,ℓ_n) den Ordnungstyp von a.

Ein Sortieralgorithmus darf sich auf zwei Eingaben, die verschiedene Ordnungstypen besitzen, nicht identisch verhalten.

Jeder vergleichsbasierte Algorithmus induziert für ein festes n einen Entscheidungsbaum.

Sei ein beliebiger vergleichsbasierter Sortieralgorithmus gegeben.

Für festes *n* entspricht dieser einem Entscheidungsbaum mit n! Blättern.

Sei ein beliebiger vergleichsbasierter Sortieralgorithmus gegeben.

Für festes *n* entspricht dieser einem Entscheidungsbaum mit n! Blättern.

Es bezeichne h die Höhe des Baumes.

Diese entspricht der Anzahl der Vergleiche im Worst Case.

Sei ein beliebiger vergleichsbasierter Sortieralgorithmus gegeben.

Für festes *n* entspricht dieser einem **Entscheidungsbaum mit n**! **Blättern**.

Es bezeichne h die Höhe des Baumes.

Diese entspricht der Anzahl der Vergleiche im Worst Case.

Da jeder innere Knoten Grad 2 besitzt, besitzt der Baum höchstens 2^h Blätter.

Sei ein beliebiger vergleichsbasierter Sortieralgorithmus gegeben.

Für festes *n* entspricht dieser einem Entscheidungsbaum mit n! Blättern.

Es bezeichne h die Höhe des Baumes.

Diese entspricht der Anzahl der Vergleiche im Worst Case.

Da jeder innere Knoten Grad 2 besitzt, besitzt der Baum höchstens 2^h Blätter.

$$\Rightarrow$$
 2^h \geq n!

Sei ein beliebiger vergleichsbasierter Sortieralgorithmus gegeben.

Für festes *n* entspricht dieser einem Entscheidungsbaum mit n! Blättern.

Es bezeichne h die Höhe des Baumes.

Diese entspricht der Anzahl der Vergleiche im Worst Case.

Da jeder innere Knoten Grad 2 besitzt, besitzt der Baum höchstens 2^h Blätter.

- \Rightarrow 2^h \geq n!
- $\Rightarrow h \geq \log_2(n!)$

Sei ein beliebiger vergleichsbasierter Sortieralgorithmus gegeben.

Für festes *n* entspricht dieser einem Entscheidungsbaum mit n! Blättern.

Es bezeichne h die Höhe des Baumes.

Diese entspricht der Anzahl der Vergleiche im Worst Case.

Da jeder innere Knoten Grad 2 besitzt, besitzt der Baum höchstens 2^h Blätter.

$$\Rightarrow$$
 2^h \geq n!

$$\Rightarrow h \geq \log_2(n!)$$

Das Theorem folgt, da $\log_2(n!) = \Theta(n \log n)$ gilt.

Der folgende Algorithmus MSORT sortiert Felder a[0...n-1], die Elemente aus $\{0,...,M-1\}$ für ein $M \in \mathbb{N}$ enthalten.

Der folgende Algorithmus MSORT sortiert Felder a[0...n-1], die Elemente aus $\{0,...,M-1\}$ für ein $M \in \mathbb{N}$ enthalten.

MSORT(int[] a)

- Initialisiere ein Feld der Länge M, das für jedes $k \in \{0, ..., M-1\}$ eine leere verkettete Liste L[k] enthält.
- 2 **for** (**int** i = 0; i < n; i++)
- Füge a[i] an das Ende der Liste L[a[i]] an.
- Erzeuge ein Feld b[0...n-1] durch das Aneinanderhängen der Listen L[0], L[1], ..., L[M-1].
- 5 **return** *b*;

Der folgende Algorithmus MSORT sortiert Felder a[0...n-1], die Elemente aus $\{0,...,M-1\}$ für ein $M \in \mathbb{N}$ enthalten.

MSORT(int[] a)

- 1 Initialisiere ein Feld der Länge M, das für jedes $k \in \{0, ..., M-1\}$ eine leere verkettete Liste L[k] enthält.
- 2 for (int i = 0; i < n; i++)
- Füge a[i] an das Ende der Liste L[a[i]] an.
- Erzeuge ein Feld b[0...n-1] durch das Aneinanderhängen der Listen L[0], L[1], ..., L[M-1].
- 5 **return** *b*;

Lemma 3.4

Der Algorithmus MSORT sortiert n Zahlen aus der Menge $\{0, \ldots, M-1\}$ in Zeit O(n+M). Ferner ist MSORT ein stabiler Sortieralgorithmus.

Der folgende Algorithmus RADIXSORT sortiert Felder $a[0 \dots n-1]$, deren Einträge Zahlen mit ℓ Ziffern in M-adischer Darstellung sind.

Der folgende Algorithmus RADIXSORT sortiert Felder $a[0 \dots n-1]$, deren Einträge Zahlen mit ℓ Ziffern in M-adischer Darstellung sind.

```
Radixsort(int[] a)
```

- for (int $i = \ell$; i >= 1; i--)
- 2 Sortiere das Feld *a* mit MSORT bezüglich der *i*-ten Ziffer.

936 062 732 271	Msort	271 062 732 712
729 - 712	TVISOICI ►	-802 936
$\frac{256}{427}$		$\frac{256}{427}$
802		729

	$\frac{271}{062}$	802
$7\overline{32}$	$\begin{array}{c} 062 \\ 732 \end{array}$	$712 \\ 427$
	$712 \underset{802}{\text{MSORT}}$	$729 \\ 732$
	$\frac{936}{256}$	$\frac{936}{256}$
427	$\frac{230}{427}$	062

936	271	802	062
062	062	712	256
732	732	427	271
$\frac{271}{200}$ Msort	712 Msort	729 Msort	427
729 *******	·802 *****	►732 ******	- 712
712	936	936	729
256	256	256	732
427	427	062	802
802	729	271	936

936	271	802	062
062	062	712	256
732	732	427	271
$\frac{271}{100}$ Msort	712 Msort	729 MSORT	427
729 ******	802 11155111	·732	-712
712	936	936	729
256	256	256	732
427	427	062	802
802	729	271	936

Theorem 3.5

Der Algorithmus RADIXSORT sortiert n Zahlen mit jeweils ℓ Ziffern in M-adischer Darstellung in Zeit $O(\ell(n+M))$.