Lecture 2.2

计算器词法分析

徐辉 xuh@fudan.edu.cn

大纲

- 一、问题定义
- 二、正则表达式和词法声明
- 三、正则解析程序构造

基本概念

• 标签(Token): 由标签类型和属性组成的二元组;

• 词素(Lexeme):符合某标签模式的字符串实例。

• 模式(Pattern):字符串模式描述,一般用正则表达式

标签	模式	词素举例
BINOP	+,-,*,/	+
NUM	任意数据常量	3.1415926

问题定义

- 词法声明(lexical specification)定义了:
 - 什么是对词法分析器(lexer)有效的输入(valid inputs),
 - 及其关联标签类型(token types)。

大纲

- 一、问题定义
- 二、正则表达式和词法声明
- 三、正则解析程序构造

HOW TO REGEX

正则表达式(Regular Expression)

- 字母表Σ上的字符串集合, 其字符元素的表述方式包括:
 - o a: 含义为 $\{x | x = a\}$
 - o [a-z]: 含义为 $\{x | x = a \text{ or ... or } x = z\}$
 - [a zA Z]: 含义为 $\{x | x = a \text{ or ... or } x = z \text{ or ... or } x = Z\}$

 - o a : 含义为 $\{x|x!=a \text{ and } x \in \Sigma\}$
 - o a?: 含义为 $\{x | x = a \text{ or } x = \epsilon\}$
 - .: 通配符{x | x ∈ Σ}

正则表达式(Regular Expression)

- 字符元素间以及正则表达式之间的组合方法包括:
 - 。 选择(union): R|S , 含义为 $\{x|x \in R \text{ or } x \in S\}$
 - 。 连接(concatenation): RS,含义为 $\{xy | x \in R \text{ and } x \in S\}$
 - \circ 闭包(closure): R^* ,含义为 $\bigcup_{i=0}^{\infty}R^i$,科林(Kleene)闭包
 - \triangleright 正闭包: R^+ ,含义为 $\bigcup_{i=1}^{\infty} R^i$
 - ▶ 更多Quantification方式: {min, max}, 如
 - ▶ a{1,10}, 表示任意1-10个a组成的字符串。
 - ▶ a{10},表示10个a的组成的字符串。

基本运算法则

- 优先级顺序:
 - 闭包(*)优先级最高
 - 。 连接符其次
 - 选择符(|) 最低

运算法则:

- 。 选择符满足交换律(commutative): r|s = s|r,
- 。 选择符满足结合律(associative): r|(s|t) = (r|s)|t|
- 连接符满足结合律(associative): r(st) = (rs)t
- 连接符满足分配律(distributive): r(s|t) = rs|rt
- 闭包满足幂等率(idempotent): $r^* = r^{**}$

使用正则表达式声明词法

```
UINT := [0-9]^+
```

UREAL := $[0-9]^+(.[0-9]^+|\epsilon)$

利用中间变量简化词法声明

DIGIT := [0-9]

UINT := DIGIT+

UREAL := DIGIT+(.DIGIT+ $|\epsilon$)

练习

- 定义无符号数的正则表达式:
 - 支持浮点数和整数,如0.1、123
 - 支持科学计数法表示,如123e2、2.1e-3
 - 不支持指数浮点数,如2.1e-3.1

正则集

- 假设 $\Sigma = \{a, b\}$,则
 - o a|b表示的语言为: {a,b} (称为正则集)
 - (a|b)(a|b)表示的语言为: {aa,ab,bb,ba}
 - o a^* 表示的语言为: $\{\epsilon, a, aa, aaa, ...\}$
 - $(a|b)^*$ 表示的语言为: $\{\epsilon,a,b,aa,ab,ba,...\}$
 - $a|a^*b$ 表示的语言为: {a,aab,aaab,...}

正则语言及其等价性

- 正则表达式是一种(表达能力有限的)语言描述方法
- 可用正则表达式描述的语言称为正则语言
- 如果两个正则表达式的正则集相等,则这两个正则表达 式等价,如:
 - \circ a|b=b|a
 - $(a|b)^* = (a^*|b^*)^*$

练习

- 分析下列正则表达式是否等价?
 - $a^*(a|b)^*a$
 - $((\epsilon|a)b^*)^*$
 - $b^*(abb^*)^*(a|\epsilon)$

非正则语言

- 不能用正则表达式或有穷自动机表示的语言。
- $L = \{a^n b^n, n > 0\}$ 是不是正则语言?
 - 证明:
 - 假设DFA可识别该语言,其包含p个状态;
 - 假设某词素为 $a^q b^q$, q > p。
 - 识别该词素需要经过某状态 s_i 至少两次,分别对应第j和第k个 a_j
 - 该DFA可同时接受 $a^q b^q$ 和 $a^{q+k-j} b^q$,推出矛盾。
- 结论:正则语言不能计数

正则语言的泵引理(Pumping Lemma)

- 词素数量有限的语言一定是正则语言。
- 词素数量无穷多的语言是否为正则语言?
- 某语言L(r)是正则语言的必要条件:
 - 任意长度超过p(泵长)的句子都可以被分解为xyz的形式
 - 其中x和z可为空,
 - 子句y被重复任意次(如xyyz)后得到的句子仍属于该语言。

正则表达式能否识别四则运算?

- 表达能力受限
- 不能处理括号匹配问题: (*)*
 - $\{1\times(2+3), (1+2)\times3\}, ...\}$
 - 如('('|num)((+|-|×|÷)('('|num|')'))*
 - 可导致单词流被错误接收:
 - $(1 \times (2 + 3))$
 - $(1 \times (2 + (3))$

大纲

- 一、问题定义
- 二、正则表达式和词法声明
- 三、正则解析程序构造(regex processor)

有穷自动机(Finite State Automaton)

- 识别无符号浮点数的FSA:
 - 字符集: $\Sigma = \{0,1,2,3,4,5,6,7,8,9,.\}$
 - 状态集: $S = \{s_0, s_1, s_2, s_3\}$
 - 初始状态: $S_0 = S_0$
 - 接受状态: $S_{acc} = \{s_1, s_3\}$

• 状态转移关系:
$$\Delta = \begin{cases} S_0 \xrightarrow{[0-9]} & [0-9] & . \\ S_0 \xrightarrow{\longrightarrow} S_1, S_1 \xrightarrow{\longrightarrow} S_1, S_1 \xrightarrow{\longrightarrow} S_2 \\ & [0-9] & [0-9] \\ S_2 \xrightarrow{\longrightarrow} S_3, S_3 \xrightarrow{\longrightarrow} S_3 \end{cases}$$

FSA接受字符串的条件

- 假设 $\sum_{i=1}^{\infty}$ 是所有由属于 $\sum_{i=1}^{\infty}$ 的元素组成的有限长度序列的集合(包含空字符串 ϵ),如1.23,
- FSA接受字符串 $w = x_1 x_2 \dots x_k \in \Sigma^*$ 的充要条件是:
 - 存在序列 $s_{t_0}s_{t_1}...s_{t_n} \in S$,其中 s_{t_0} 是初始状态, $s_{t_n} \in S_{acc}$
 - 并且 $\forall s_{t_{i-1}}, x_i, s_{t_i}, (s_{t_{i-1}}, x_i, s_{t_i}) \in \Delta$
 - 即 $\delta(\ldots\delta(\delta(s_{t_0},x_1),x_2)\ldots,x_n)\in S_{acc}$
- FSA拒绝字符串的充要条件是:
 - 在某一状态(S_{t_i} \notin S_{acc})无匹配的状态转移规则
 - 转移至拒绝状态 s_{rej}

如何将正则表达式转换为FA?

• 如何构造正则表达式 $[0-9]^+((.[0-9]^+)|\epsilon)$ 对应的FA?

DFA和NFA

- 确定型有穷自动机(Deterministic FSA)
 - 对于FSA的任意一个状态和输入字符,最多只有一条状态转移边
- 非确定型有穷自动机(Nondeterministic FSA)
 - 对于FSA的任意一个状态和输入字符,可能存在多条状态转移边

Thompson构造法: McNaughton-Yamada-Thompson

- 将正则表达式递归展开为子表达式(只有一个符号)
 - 语法解析树
- 构造子表达式的FA
- 根据关系对子表达式的FA进行合并
 - 选择: S|T
 - 连接: ST
 - 闭包: *S**

如何使用一个FA表示多个正则表达式?

• 使用 ϵ 转移将多个正则表达式的FA合并为一个NFA

EXP

LPAR

ϵ 闭包(closure)

• 状态 s_i 的 ϵ 闭包指的是 s_i 的 ϵ -transition的状态 集合

 ϵ

 ϵ

[0-9]

•
$$Cl^{\epsilon}(s_i) = \bigcup \{s_j : (s_i, \epsilon) \to^* (s_j, \epsilon)\}$$

•
$$Cl^{\epsilon}(s_0) = \{s_0, s_1, s_{15}, s_{17}, s_{19}, s_{21}, s_{23}, s_{25}, s_{27}\}$$

- 状态集S的 ϵ 闭包指的是S中所有状态的 ϵ -transition的状态集合
 - $Cl^{\epsilon}(S) = \bigcup_{q \in S} \{q' : (q, \epsilon) \rightarrow^* (q', \epsilon)\}$

a-transition

• 状态集S接受字符a后状态集的 ϵ 闭包

•
$$\delta(S, a) = Cl^{\epsilon}(\bigcup_{q \in S} \{q': (q, a) \to q'\})$$

•
$$\delta(\{s_0, s_1, s_{15}, s_{17}, s_{19}, s_{21}, s_{23}, s_{25}, s_{27}\}, 0)$$

 ϵ

[0-9]

 ϵ

=
$$\{s_2, s_3, s_5, s_6, s_{12}, s_{13}, s_{14}\}$$

NFA转换为DFA: 子集构造法 Powerset Construction

- 给定一个字符集 Σ 上的NFA $(N, \Delta, n_0, N_{acc})$,它对应的可接受同一语言的DFA $(D, \Delta', d_0, D_{acc})$ 定义如下:
 - D中的所有状态 d_i 都是N的一个子集, $D \subseteq 2^N$
 - $d_0 = Cl^{\epsilon}(n_0) / d_i$ 都为 ϵ 闭包
 - $\Delta' = \{d_i \times c \times d_j\}, \forall n_j \in d_j, \exists n_i \in d_i \& c \in \Sigma, \text{ s.t. } (n_i, c, n_j) \in \Delta\}$
 - $D_{acc} = \{d_i \subseteq D : d_i \cap N_{acc} \neq \emptyset\}$

```
d0 = eclosure(n0);
D = d0; //保存得到的状态
worklist ={d0}; //待检验的状态
While (worklist!=null) do:
    worklist.remove(d);
    for each c in alphabets do:
        t = eclosure(d,c)
        if D.find(t) = null then:
            worklist.add(t);
        D.add(t);
```

构造过程

结果

DFA 状态	NFA 状态集合	0-9	## ##	+	#	*	/	٨	()
d_0	$\{s_0, s_{15}, s_{17}, \ s_{19}, s_{21}, s_{23}, \ s_{25}, s_{27}\}$	d_1 : $\{s_2, s_3, s_5, s_6, \ s_{12}, s_{13}, s_{14}\}$	-	d_2 : $\{s_{16}\}$	d_3 : $\{s_{18}\}$	d_4 : $\{s_{20}\}$	d_5 : $\{s_{22}\}$	d_6 : $\{s_{24}\}$	d_7 : $\{s_{26}\}$	d_8 : $\{s_{28}\}$
d_1	$\{s_2, s_3, s_5, s_6, s_{12}, s_{13}, s_{14}\}$	d_9 : $\{s_3, s_4, s_5, s_6, s_{12}, s_{13}, s_{14}\}$	d_{10} : $\{s_7\}$	=	=	۵	-	3	÷	-
d_2	$\{s_{16}\}$	(=)	-		=	75 - 6		-	-	-
d_3	$\{s_{18}\}$	(4)	==	-	¥	-	(4)	-		(#)
d_4	$\{s_{20}\}$	4	<u>_</u>	-	=	iu.	(2)	-	12	-
d_5	$\{s_{22}\}$		7			-	=	夏人		-
d_6	$\{s_{24}\}$	(#II)	æ	.=3	=	115	9 4 6	#_		i t i
d_7	$\{s_{26}\}$	(=))	-	÷:	=	:-	: - :	-	-	
d_8	$\{s_{28}\}$	(21)	==	-	<u>=</u>	·	(4)	47		<u> = </u>
d_9	$\{s_3, s_4, s_5, s_6, s_{12}, s_{13}, s_{14}\}$	d_9	d_{10}	-	=	98		-	-	i e i
d_{10}	$\{s_7\}$	d_{11} : $\{s_8, s_9, s_{11}, s_{14}\}$	ä	-	<u>.</u>	-	ఆ		ů.	
d_{11}	$\{s_8, s_9, s_{11}, s_{14}\}$	d_{12} : $\{s_{9}, s_{10}, s_{11}, s_{14}\}$	Ē	3	B	i.e.	-	=	· =	-
d_{12}	${s_9, s_{10}, s_{11}, s_{14}}$	d_{12}	#	-	+). = :	-	-	-	-

转换DFA结果

DFA优化思路: 合并同类项

- 对于两个同类型节点 d_i 和 d_i ,可以合并的条件是:
 - $\forall c \in \Sigma, \delta(d_i, c) = \delta(d_i, c)$

优化结果

DFA优化思路: Hopcroft分割算法

```
将DFA的状态集合D划分为两个子集:接受
状态Dac和普通状态D\Dac。
D = \{D_{ac}, D\backslash D_{ac}\};
S = \{\}
While (S!=D) do:
   S = D;
   D = {};
   foreach s_i \in S do:
      D = D \cup Split(s_i)
Split(s) {
   foreach c in \Sigma
      if c splits s into \{s_1, s_2\}
          return \{s_1, s_2\}
   return s
```

- 两个节点 s_i 和 s_j 不用split的 条件是:
 - $\forall c \in \Sigma, \delta(s_i, c) = \delta(s_i, c)$
- 如果不同的接受状态分别对应 不同词素应如何改进算法?

Hopcroft分割算法应用示例

NFA/DFA复杂度分析

- 对于正则表达式r来说,如果采用Thompson构造法,
 - NFA状态数≤ |2r|, 边数≤ |4r|
 - 解析单个词素x的时间复杂度为 $O(|x| \times |r|)$ 。
- 对应DFA的状态数 $\leq |2^{|2r|}|$ 个,解析单个词素的时间复杂度为O(|x|)。
- 结论:
 - NFA构造较快,但运行效率低;
 - DFA构造耗时,但运行效率高。

练习

- 使用Thompson算法将下列正则表达式转化为NFA;
- 应用子集构造法将UNUM的NFA转化为DFA;
- 化简上一步得到的DFA。

```
DIGIT := [0-9]
```

DIGITS := DIGIT DIGIT*

FRACTION := .DIGITS $|\epsilon|$

EXPONENT := $(e(+|-|\epsilon)DIGITS)|\epsilon$

UNUM := DIGITS FRACTION EXPONENT

IDENFIFIER := $[a-z]([a-z]|[0-9])^*$

总结

- 正则表达式
- 有穷自动机,包括NFA和DFA
- 正则表达式->词法解析器
 - 1) regex->NFA: Thompson构造法
 - 2) NFA->DFA: 子集构造法
 - 3) DFA优化: Hopcroft分割算法