## CENTRO DE ENSEÑANZA TÉCNICA Y SUPERIOR



Escuela de Ingeniería en Ciencias Computacionales

Ingeniería en Ciencias Computacionales

Materia: Aprendizaje De Máquina

Presenta:

Pablo Díaz 030343

Kevin Huerta 30502

Gerardo Hernández 29902

Diego Garibay 30046

Profesor: Ulises Orozco Rosas

Practica #6: Selección de modelo lineal y regularización

Tijuana, B.C., 25 de noviembre de 2020

# Aprendizaje de Máquina Práctica 06

Pablo Díaz - 30343 | Kevin Huerta - 30502 | Diego Zuazo - 30046 | Gerardo Hernandez - 29902

Abstract—Comprender y utilizar las funciones básicas en el lenguaje de programación R y Python para realizar distintos tipos de métodos para ajustar modelos lineales en específico son: Subset Selection, Shrinkage y Dimension Reduction

## I. INTRODUCCIÓN

Este reporte tiene como objetivo explicar las metodologías utilizadas para realizar los ejercicios de la practica numero 6, con el uso de dos lenguajes de programación: Python y R. El objetivo de esta practica es hacer uso de los distintos tipos de métodos para ajustar modelos lineales haciendo enfasis en: Subset Selection , Shrinkage y Dimension Reduction. La practica se estructura de la siguiente manera: primero se explica los fundamentos requeridos para la practica , después la metodología , después se muestran los resultados. Finalmente se presentan nuestras conclusiones sobre los temas y la practica.

#### II. FUNDAMENTOS

Los fundamentos teóricos de la implementación elaborada en esta practica aborda principalmente otros métodos de ajustes lineales aparte de los que ya hemos visto el mas notable siendo el método de least squares. Y por qué podríamos querer utilizar otro procedimiento de ajuste en lugar del least squares? Como se vera, los procedimientos de ajuste alternativos pueden producir una mejor precisión de predicción e interpretabilidad del modelo los métodos en cuestión son los siguentes: Subset Selection , Shrinkage y Dimension Reduction. Por la naturaleza de R, estos son mas sencillos de implementar en dicho lenguaje.

## A. Subset Selection

Este método involucra identificar un subconjunto de P predictores que se creen que están relacionados con la respuesta. Para posteriormente ajustar el modelos usando los mínimos cuadrados.

## B. Shrinkage

Este método involucra ajustar el modelo involucrando todos los P predictores disponibles. Las estaciones de los coeficientes convergen hacia cero relativamente sobre los mínimos cuadrados.

#### C. Dimension Reduction

Este método involucra proyectar los P predictores en M dimensiones. Donde  $M \leq P$ . Esto es logrando calculando M diferentes combinaciones lineales o proyecciones de las variables. Donde dichas M proyecciones son usadas para predecir el ajusta del modelo de regresión lineal por mínimos cuadrados.

## III. METODOLOGÍA

La metodología del equipo fue la misma que en veces anteriores, nos dividimos en dos grupos para la implementación del código, un grupo de R y un grupo de Python. Al igual que en practicas pasadas, los equipos se alternaron de lenguaje para practicar. Algunas funciones no existían en python y era muy complicada hacerlas, así que decidimos recurrir a buscar en internet funciones que nos ayudarán a completar el trabajo. Esto lo hicimos debido a que no habían librerías que nos ayudarán y si lo hacíamos todo desde 0, el grado de complejidad iba a aumentar demasiado. Considerando que es un trabajo en equipo, al igual que en las practicas pasadas, tuvimos que trabajar en equipo para encontrar el enfoque adecuada para algunas actividades. De forma mas puntual, la metodología fue la siguiente:

## A. Ejercicio número 1

Para el primer ejercicio se aplico el método de "best subset selection" al conjunto de datos Hitters. Se desea predecir el salario de un jugador de béisbol en base a varias estadísticas referente con su desempeño en el año anterior.

## B. Ejercicio número 2

Para el ejercicio 2 se uso la funcion de regsubsets() para realizar forward stepwise o backward stepwise selection, usando como parametro method="forward" o method="backward"

#### C. Ejercicio número 3

Para el último ejercicio usaremos Principal components regression que en R se traduce como rcp() y también usaremos Partial least squares regression. Para este ejercicio usaremos cross-validation para el remuestreo de las observaciones.

#### IV. RESULTADOS

Los resultados se encuentras plasmados de la misma forma que en practicas pasadas. Lo que se hace es que. en el caso de R, los resultados se muestran tal y como lo especifica la practica del libro. Ahora bien, en el caso de Python, estos se encuentran en un formato distinto a los presentados en R, pero abordan el mismo problema de la manera mas cercana que permite Python, teniendo en cuenta sus limitaciones al realizar problemas que R realiza con facilidad.

## A. Ejercicios en R:

Actividad 1- Los resultados obtenidos para la Actividad 1 fueron

'AlBat' - 'Hts' - 'HmRun' - 'Runs' - 'R8n' - 'Walks' - 'Years' - 'CAlBat' - 'CHits' - 'CHmRun' - 'CRuns' - 'CR8n' - 'CAlBat' - 'League' - 'Division' - 'PutOuts' - 'Assists' - 'Errors' - 'Salary' - NewLeague

|                  | AtBat       | Hits        | HmRun       | Runs        | RBI         | Walks       | Years       | CAtBat      | CHits       | CHmRun      | CRuns       | CRBI        | <b>CWalks</b> | League      | Division    | <b>PutOuts</b> | Assists     | Errors      | Salary      | NewLeague   |
|------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|-------------|-------------|----------------|-------------|-------------|-------------|-------------|
|                  | <int></int>   | <fct></fct> | <fct></fct> | <int></int>    | <int></int> | <int></int> | <dbl></dbl> | <fct></fct> |
| -Andy Allanson   | 293         | 66          | 1           | 30          | 29          | 14          | 1           | 293         | 66          | 1           | 30          | 29          | 14            | A           | E           | 446            | 33          | 20          | NA.         | A           |
| -Alan Ashby      | 315         | 81          | 7           | 24          | 38          | 39          | 14          | 3449        | 835         | 69          | 321         | 414         | 375           | N           | W           | 632            | 43          | 10          | 475.0       | N           |
| -Alvin Davis     | 479         | 130         | 18          | 66          | 72          | 76          | 3           | 1624        | 457         | 63          | 224         | 266         | 263           | A           | W           | 880            | 82          | 14          | 480.0       | A           |
| -Andre Dawson    | 496         | 141         | 20          | 65          | 78          | 37          | 11          | 5628        | 1575        | 225         | 828         | 838         | 354           | N           | E           | 200            | 11          | 3           | 500.0       | N           |
| Andres Galarraga | 321         | 87          | 10          | 39          | 42          | 30          | 2           | 396         | 101         | 12          | 48          | 46          | 33            | N           | E           | 805            | 40          | 4           | 91.5        | N           |
| -Alfredo Griffin | 594         | 169         | 4           | 74          | 51          | 35          | 11          | 4408        | 1133        | 19          | 501         | 336         | 194           | A           | W           | 282            | 421         | 25          | 750.0       | A           |
| -Al Newman       | 185         | 37          | 1           | 23          | 8           | 21          | 2           | 214         | 42          | 1           | 30          | 9           | 24            | N           | E           | 76             | 127         | 7           | 70.0        | A           |
| Argenis Salazar  | 298         | 73          | 0           | 24          | 24          | 7           | 3           | 509         | 108         | 0           | 41          | 37          | 12            | A           | W           | 121            | 283         | 9           | 100.0       | A           |
| Andres Thomas    | 323         | 81          | 6           | 26          | 32          | 8           | 2           | 341         | 86          | 6           | 32          | 34          | 8             | N           | W           | 143            | 290         | 19          | 75.0        | N           |
| Andre Thornton   | 401         | 92          | 17          | 40          | cc          | cs.         | 13          | 5205        | 1332        | 252         | 704         | 800         | 220           |             | C           | 0              | 0           | 0           | 1100 D      |             |

263 · 20 0



'which' · 'rsq' · 'rss' · 'adjr2' · 'cp' · 'bic' · 'outmat' · 'obj'







10 6













```
2) Actividad 2- Los resultados obtenidos para la Activi-
                                        dad 2 fueron
                                                     6.6.1
                                                   20 · 100
142199.150722761
                                                  224669.906736192
```

#### 326.08278854596



#### 143673.618543046



## 139856.643451371



## WORDS 15-43311559103 ABut 0.0715574460765 Htts 0.0591594407159 Http://doi.org/10.0591594407159 Http://doi.org/10.0591594452 ABut 0.0591594457 ABut 0.0591594454 ABut 0.0591594

## 3) Actividad 3- Los resultados obtenidos para la Actividad 3 fueron los siguientes:

Warning message in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): "collapsing to unique 'x' values"



Data: X dimension: 263 19 Y dimension: 263 1 Fit method: svdpc Number of components considered: 19

VALIDATION: RMSEP

VALIDATION: RMSEP

Cross-validated using 10 random segments.

(Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps

CV 452 351.9 353.2 355.0 352.8 348.4 343.6

7 comps 8 comps 9 comps 10 comps 11 comps 12 comps 13 comps

CV 345.5 347.7 349.6 351.4 352.1 353.5 358.2

adjcV 344.7 346.7 348.5 350.1 350.1 350.7 352.0 366.5

14 comps 15 comps 16 comps 17 comps 18 comps 19 comps

L4 comps 15 comps 16 comps 17 comps 18 comps 19 comps

CV 349.7 340.4 339 9 3416 339 2 339 6 339.9 338.2 341.6 339.7 349.7 349.4 339.2 339.6 347.7 adjCV 348.0

TRAINING: % variance explained 4 comps 5 comps 6 comps 7 comps 8 com 79.03 84.29 88.63 92.26 94. 43.22 44.90 46.48 46.69 46. 12 comps 5 13 comps 7 comps 8 comps 12 comps 9 45.08 12 comps 13 comps 14 comps 15 comps 8 98.65 99.15 99.47 99.75 1 comps 2 comps 3 comps 38.31 60.16 70.84 40.63 41.58 42.17 9 comps 10 comps 11 comps comps 94.96 46.75 Salary Salary 48.10 50.40 Salary





# 140751.276313081

Data: X dimension: 263 19
Y dimension: 263 1

Fit method: svdpc

Number of components considered: 7

TRAINING: % variance explained
1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps X 38.31 60.16 70.84 79.03 84.29 88.63 92.26

y 40.63 41.58 42.17 43.22 44.90 46.48 46.69

Data: X dimension: 131 19 Y dimension: 131 1 Fit method: kernelpls Number of components considered: 19 VALIDATION: RMSEP

(Cross-validated using 10 random segments.

(Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps (1 comps) 2 comps 3 comps 4 comps 5 comps 6 comps 12 comps 12 comps 12 comps 12 comps 12 comps 12 comps 13 comps 14 comps 12 comps 12 comps 13 comps 13 comps 13 comps 13 comps 13 comps 13 comps 14 comps 13 comps 14 comps 15 comps 14 comps 15 comps 14 comps 15 comps 340.1 336.6 13 comps 356.4 351.1 14 comps 15 comps 16 comps 17 comps 348.4 349.1 350.0 344.2 18 comps 19 comps adjCV 344.2 345.0 345.9 TRAINING: % variance explained 4 comps 5 comps 6 comps 7 75.07 78.58 81.12 53.03 54.07 54.77 7 comps 88.21 55.05 8 comps 90.71 55.66 1 comps 2 comps 3 comps 39.13 48.80 60.09 Salary 46.36 50.72 52.23 9 comps 10 comps 11 comps 93.17 96.05 97.08 55.95 56.12 56.47 16 comps 17 comps 18 comps 99.61 99.70 99.95 58.17 58.49 58.56 53.03 54.07 54.77 52
12 comps 13 comps 14 comps 97.61 97.97 98.70 56.68 57.37 57.76
19 comps 100.00 X Salary



# 145367.722827519

Data: X dimension: 263 19 Y dimension: 263 1 Fit method: kernelpls

Number of components considered: 2 TRAINING: % variance explained

1 comps 2 comps X 38.08 51.03 Salary 43.05 46.40

## B. Ejercicios en Python:

4) Actividad 1- Los resultados obtenidos para la Actividad 1 fueron los siguientes:



(263, 20)

```
Best 1 features: ['CRBI']
Best 2 features: ['Hits', 'CRBI']
Best 3 features: ['Division[T,W]', 'Hits', 'CRBI', 'PutOuts']
Best 4 features: ['Division[T,W]', 'AtBat', 'Hits', 'CRBI', 'PutOuts']
Best 5 features: ['Division[T,W]', 'AtBat', 'Hits', 'CRBI', 'PutOuts']
Best 6 features: ['Division[T,W]', 'AtBat', 'Hits', 'Walks', 'CRBI', 'PutOuts']
Best 7 features: ['Division[T,W]', 'AtBat', 'Hits', 'Walks', 'CHits', 'CHmium', 'PutOuts']
Best 8 features: ['Division[T,W]', 'AtBat', 'Hits', 'Walks', 'CHits', 'CHmium', 'PutOuts']
Best 8 features: ['Division[T,W]', 'AtBat', 'Hits', 'Walks', 'CHits', 'CHmium', 'PutOuts']

Best 8 features: ['Division[T,W]', 'AtBat', 'Hits', 'Walks', 'CHits', 'CHmium', 'PutOuts']

Best 9 features: ['Division[T,W]', 'AtBat', 'Hits', 'Walks', 'CHits', 'CHmium', 'PutOuts']

Best 8 features: ['Division[T,W]', 'AtBat', 'Hits', 'Walks', 'CHits', 'CHmium', 'PutOuts']

Best 9 features: ['Division[T,W]', 'AtBat', 'Hits', 'Walks', 'CHits', 'CHmium', 'PutOuts']

Best 1 features: ['Division[T,W]', 'AtBat', 'Hits', 'Walks', 'CHits', 'Walks', 'Chmium', 'PutOuts']

Best 1 features: ['Division[T,W]', 'AtBat', 'Walks', 'Walks', 'Walks', 'Walks', 'Chits', 'Walks', 'Chits', 'Walks', 'Chits', 'Walks', 'PutOuts']

Best 1 features: ['Division[T,W]', 'Walks', 'Wal
```

```
New St. Community of Federal F
```

```
# of x_j
      1.988162e+07
1
2
      1.469190e+07
3
      1.247908e+07
4
      1.182492e+07
5
      1.148818e+07
6
      1.094343e+07
7
      1.082744e+07
8
      1.081981e+07
9
      1.079096e+07
10
      1.076345e+07
11
      1.058229e+07
12
      1.048883e+07
13
      1.043509e+07
14
      1.035223e+07
15
      1.029475e+07
      1.021250e+07
16
17
      1.019581e+07
      1.021123e+07
18
19
      1.029496e+07
dtype: float64
```



<class 'pandas.core.frame.DataFrame'>
Int64Index: 263 entries, 1 to 321
Data columns (total 6 columns):

| #  | Column      | Non-Null Count | Dtype |
|----|-------------|----------------|-------|
|    |             |                |       |
| 0  | League_A    | 263 non-null   | uint8 |
| 1  | League_N    | 263 non-null   | uint8 |
| 2  | Division_E  | 263 non-null   | uint8 |
| 3  | Division_W  | 263 non-null   | uint8 |
| 4  | NewLeague_A | 263 non-null   | uint8 |
| 5  | NewLeague_N | 263 non-null   | uint8 |
| 4+ | to(c)       |                |       |

dtypes: uint8(6)
memory usage: 3.6 KB

<class 'pandas.core.frame.DataFrame'>
Int64Index: 263 entries, 1 to 321
Data columns (total 19 columns):

|                             | Non Null Count        | Dtura |  |  |  |  |  |
|-----------------------------|-----------------------|-------|--|--|--|--|--|
| # Column                    | Non-Null Count        | Dtype |  |  |  |  |  |
|                             |                       |       |  |  |  |  |  |
| 0 AtBat                     | 263 non-null          |       |  |  |  |  |  |
| 1 Hits                      | 263 non-null          | int64 |  |  |  |  |  |
| 2 HmRun                     | 263 non-null          | int64 |  |  |  |  |  |
| 3 Runs                      | 263 non-null          | int64 |  |  |  |  |  |
| 4 RBI                       | 263 non-null          | int64 |  |  |  |  |  |
| 5 Walks                     | 263 non-null          | int64 |  |  |  |  |  |
| 6 Years                     | 263 non-null          | int64 |  |  |  |  |  |
| 7 CAtBat                    | 263 non-null          | int64 |  |  |  |  |  |
| 8 CHits                     | 263 non-null          | int64 |  |  |  |  |  |
| 9 CHmRun                    | 263 non-null          | int64 |  |  |  |  |  |
| 10 CRuns                    | 263 non-null          | int64 |  |  |  |  |  |
| 11 CRBI                     | 263 non-null          | int64 |  |  |  |  |  |
| 12 CWalks                   | 263 non-null          | int64 |  |  |  |  |  |
| 13 PutOuts                  | 263 non-null          | int64 |  |  |  |  |  |
| 14 Assists                  | 263 non-null          | int64 |  |  |  |  |  |
| 15 Errors                   | 263 non-null          | int64 |  |  |  |  |  |
| <pre>16 League_N</pre>      | 263 non-null          | uint8 |  |  |  |  |  |
| 17 Division_                | _W 263 non-null       | uint8 |  |  |  |  |  |
| 18 NewLeague                | e_N 263 non-null      | uint8 |  |  |  |  |  |
| dtypes: int64(16), uint8(3) |                       |       |  |  |  |  |  |
| memory usage:               | memory usage: 35.7 KB |       |  |  |  |  |  |

- 5) Actividad 2- Los resultados obtenidos para la Actividad 2 fueron los siguientes:
- 6) Actividad 1- Los resultados obtenidos para la Actividad 2 fueron los siguientes:

| Ridge regres | sion coefficients: |
|--------------|--------------------|
| AtBat        | 0.098658           |
| Hits         | 0.446094           |
| HmRun        | 1.412107           |
| Runs         | 0.660773           |
| RBI          | 0.843403           |
| Walks        | 1.008473           |
| Years        | 2.779882           |
| CAtBat       | 0.008244           |
| CHits        | 0.034149           |
| CHmRun       | 0.268634           |
| CRuns        | 0.070407           |
| CRBI         | 0.070060           |
| CWalks       | 0.082795           |
| League       | 0.104747           |
| Division     | -0.003739          |
| PutOuts      | 0.268363           |
| Assists      | 4.241051           |
| Errors       | -30.768885         |
| NewLeague    | 4.123474           |
| dtype: float | 64                 |

MSE = 106216.52238005561

| • |              |                     |
|---|--------------|---------------------|
|   | Ridge regres | ssion coefficients: |
|   | AtBat        | 1.317464e-10        |
|   | Hits         | 4.647486e-10        |
|   | HmRun        | 2.079865e-09        |
|   | Runs         | 7.726175e-10        |
|   | RBI          | 9.390640e-10        |
|   | Walks        | 9.769219e-10        |
|   | Years        | 3.961442e-09        |
|   | CAtBat       | 1.060533e-11        |
|   | CHits        | 3.993605e-11        |
|   | CHmRun       | 2.959428e-10        |
|   | CRuns        | 8.245247e-11        |
|   | CRBI         | 7.795451e-11        |
|   | CWalks       | 9.894387e-11        |
|   | League       | 7.268991e-11        |
|   | Division     | -2.615885e-12       |
|   | PutOuts      | 2.084514e-10        |
|   | Assists      | -2.501281e-09       |
|   | Errors       | -1.549951e-08       |
|   | NewLeague    | -2.023196e-09       |
|   | dtype: float | t64                 |
|   |              |                     |

MSE = 172862.23580379886

| AtBat     | 0.055838   |
|-----------|------------|
| Hits      | 0.934879   |
| HmRun     | 0.369048   |
| Runs      | 1.092480   |
| RBI       | 0.878259   |
| Walks     | 1.717770   |
| Years     | 0.783515   |
| CAtBat    | 0.011318   |
| CHits     | 0.061101   |
| CHmRun    | 0.428333   |
| CRuns     | 0.121418   |
| CRBI      | 0.129351   |
| CWalks    | 0.041990   |
| League    | 0.179957   |
| Division  | 0.035737   |
| PutOuts   | -1.597699  |
| Assists   | 24.774519  |
| Errors    | -85.948661 |
| NewLeague | 8.336918   |
|           |            |

dtype: float64

| AtBat        | 0.000000   |
|--------------|------------|
| Hits         | 1.082446   |
| HmRun        | 0.000000   |
| Runs         | 0.000000   |
| RBI          | 0.000000   |
| Walks        | 2.906388   |
| Years        | 0.000000   |
| CAtBat       | 0.000000   |
| CHits        | 0.000000   |
| CHmRun       | 0.219367   |
| CRuns        | 0.000000   |
| CRBI         | 0.513975   |
| CWalks       | 0.000000   |
| League       | 0.368401   |
| Division     | -0.000000  |
| PutOuts      | -0.000000  |
| Assists      | 0.000000   |
| Errors       | -89.064338 |
| NewLeague    | 0.000000   |
| dtype: float | t64        |

| Explair | ned  | Variance   | Ratio  | : |
|---------|------|------------|--------|---|
| 0       |      |            | 38.31  | % |
| 1 6     | 50.1 | L500000000 | 900006 | % |
| 2       |      |            | 70.84  | % |
| 3       |      |            | 79.03  | % |
| 4       |      |            | 84.29  | % |
| 5       | 88   | 630000000  | 00001  | % |
| 6       |      |            | 92.26  | % |
| 7       | 94   | 96000000   | 00001  | % |
| 8       |      |            | 96.28  | % |
| 9       |      |            | 97.25  | % |
| 10      |      |            | 97.97  | % |
| 11      |      |            | 98.64  | % |
| 12      |      |            | 99.14  | % |
| 13      |      |            | 99.46  | % |
| 14      | 99.  | 729999999  | 99999  | % |
| 15      |      |            | 99.88  | % |
| 16      | 99   | .949999999 | 99999  | % |
| 17      | 99.  | 979999999  | 99999  | % |
| 18      |      |            | 99.99  | % |
| dtvpe:  | ob-  | iect       |        |   |

dtype: object

| Sh | Shape (19, 19) |           |           |           |           |           |  |  |  |
|----|----------------|-----------|-----------|-----------|-----------|-----------|--|--|--|
| He | Head:          |           |           |           |           |           |  |  |  |
|    | 0              | 1         | 2         | 3         | 4         | 5         |  |  |  |
| 0  | 0.198290       | -0.383784 | 0.088626  | 0.031967  | 0.028117  | -0.070646 |  |  |  |
| 1  | 0.195861       | -0.377271 | 0.074032  | 0.017982  | -0.004652 | -0.082240 |  |  |  |
| 2  | 0.204369       | -0.237136 | -0.216186 | -0.235831 | 0.077660  | -0.149646 |  |  |  |
| 3  | 0.198337       | -0.377721 | -0.017166 | -0.049942 | -0.038536 | -0.136660 |  |  |  |
| 4  | 0.235174       | -0.314531 | -0.073085 | -0.138985 | 0.024299  | -0.111675 |  |  |  |



7) Actividad 3- Los resultados obtenidos para la Actividad 3 fueron los siguientes:







# 104838.51042760801

## V. CONCLUSIONES

En conclusión, como se a demostrado en las practicas anteriores los temas visto en esta practican resultan ser de gran utilidad. Nos es fascinante la facilidad con la que podemos implementar estos métodos en R , por ejemplo el método de forward o backward stepwise puede ser implementado usando una misma funcion y simplemente cambiando un parámetro. Al realizar las actividades nos ayuda a comprender los temas debido a que los ejercicios de la practica consisten en implementar los métodos. Al entender mas estos temas nos expande otra área de conocimiento respecto a la materia , y amplia nuestras habilidades en ajustar modelos. Finalmente al realizar la practica no solo concebimos estos temas ,sino que también estamos reforzando nuestras habilidades de programar y desarrollar problemas de aprendizaje maquina en R y Python.