ΛΥΣΗ

α) Έστω t sec ο χρόνος που μεσολάβησε από τη στιγμή της εκπυρσοκρότησης μέχρι τη στιγμή που την άκουσε ο παρατηρητής M_2 . Τότε ο αντίστοιχος χρόνος για τον M_1 θα είναι t+4 sec. Άρα $(PM_2)=340\cdot t$ και $(PM_1)=340\cdot (t+4)=340\cdot t+1360$. Όστε $(PM_1)-(PM_2)=1360$ m.

β) Γνωρίζουμε ότι όλα τα σημεία P που ικανοποιούν τη σχέση $|(PM_1)-(PM_2)|=$ σταθερή, ανήκουν σε δύο κλάδους υπερβολής με εστίες τα σταθερά σημεία M_1 και M_2 . Άρα η θέση P του αγνοούμενου θα ανήκει σε έναν κλάδο υπερβολής με εστίες τα M_1 και M_2 και προφανώς σε αυτόν που βρίσκεται πιο κοντά στον παρατηρητή M_2 .

γ) Η ζητούμενη εξίσωση είναι της μορφής $\frac{x^2}{\alpha^2} - \frac{y^2}{\beta^2} = 1$. Εδώ είναι $2\alpha = 1360$, οπότε $\alpha = 680$. Η απόσταση (M_1M_2) είναι 2γ , άρα $\gamma = 1378: 2 = 689$. Όμως $\beta^2 = \gamma^2 - \alpha^2 = 689^2 - 680^2 = (689 + 680)(689 - 680) = 1369 \cdot 9 = 37^2 \cdot 3^2 = 111^2$.

