Linear Systems: Single Input Single Output View Assignment

1. Write down the differential equation representing relationship between the loop current $y\left(t\right)$ and the input voltage $v\left(t\right)$. Assume a initial loop current of $y\left(0^{-}\right)=y_{0}$.

- (a) Find the response of the system for the input $v\left(\bullet\right), \forall t\geq0$ shown in the figure.
- (b) Show that for a suitable choice ϵ , $y\left(t\right)=0, \ \forall t>\epsilon.$
- (c) Assuming $y(0^-)=0$, what happens to y(t) when, $\epsilon \to 0$ and $v_0 \to \frac{1}{\epsilon}$? Derive the mathematical expression applying this limit. Compare this solution to the input $v(t)=\delta(t)$.
- (d) What will happen when $\epsilon \to 0$ and v_0 is constant?
- 2. Derive the differential equation governing the following two mechanical systems. The input to both these systems is the force f(t), and the position x(t) is the output; assume the initial conditions to $x(0^-)$, $\dot{x}(0^-)$.

Find the expression for the step response of these two systems.

3. Consider a continuous-time LTI system with impulse response, $h\left(t\right)=e^{-2t}1\left(t\right)$. What is the output of this system to the following inputs using the convolution integral? (a) $e^{-2t}1\left(t\right)$; (b) e^{-2t} ; (c) e^{-1t} ; (d) e^{-4t} ; and (e) $\cos\left(\omega t\right)$.

Now, obtain the expression for the output of the system for the above inputs using the system's transfer function $H\left(s\right)$.

4. Find the impulse response and transfer functions of the following composition of subsystems with individual impulse response $h_i(t)$.

5. Consider the second order system, $\ddot{y}(t) + 2\zeta\omega_n\dot{y}(t) + \omega_n^2y(t) = u(t)$. Find the impulse response of this system. Plot the impulse response of the system for $\omega_n = 1$ and the following values of the parameter ζ . (a) $\zeta = \sqrt{2}$; (b) $\zeta = 1$; (c) $\zeta = 0.5$; (d) $\zeta = 0$; (e) $\zeta = -0.5$; and (f) $\zeta = -1.0$; For each of these parameter values show the location of the poles of the corresponding transfer function.