Métodos de aprendizaje no supervisado

Sistemas de Inteligencia Artificial ITBA 2022 - 1C

Integrantes:

- Serpe, Octavio (60076)
- Quesada, Francisco (60524)
- Arca, Gonzalo (60303)

Introducción

Introducción

Dado dos problemas:

Aplicar métodos de aprendizaje no supervisado para agrupar y/o reducir dimensionalidad en datos

3

Problema 1

Estandarizar los valores de entrada

$$\tilde{X}_i = \frac{X_i - \bar{X}_i}{\sigma_i}$$

Problema 1.a: Redes de Kohonen

Asociar países que posean las mismas características geopolíticas, económicas y sociales.

Actualización de parámetros R, η :

$$R(t) = R_0 \cdot e^{\frac{-t}{epochs} \cdot ln(R_0)}$$

$$\eta(t) = \frac{\eta_0}{t}$$

Clasificación de países

- k = 3
- $\eta_0 = 0.9$ $R_0 = 3$
- épocas = 4900

- k = 3• $\eta_0 = 0.9$ $R_0 = 3$
- épocas = 4900

- k = 3• $\eta_0 = 0.9$ $R_0 = 3$
- épocas = 4900

- \bullet k = 3
- $\eta_0 = 0.9$ $R_0 = 3$
- épocas = 4900

- k = 3• $\eta_0 = 0.9$ $R_0 = 3$
- épocas = 4900

Matriz U

- k = 3
- $\eta_0 = 0.9$
- $R_0 = 3$
- épocas = 4900

Variando la cantidad de épocas

- k = 3
- $\eta_0 = 0.9$ $R_0 = 3$
- épocas = 2100

Variando la cantidad de épocas

- k = 3• $\eta_0 = 0.9$ $R_0 = 3$
- épocas = 700

Variando el tamaño de la matriz

- k = 5
- $\eta_0 = 0.9$ $R_0 = 5$
- épocas = 4900

- \bullet k=5
- $\eta_0 = 0.9$ $R_0 = 5$
- épocas = 4900

-1.0

-2.5

- k = 5• $\eta_0 = 0.9$ $R_0 = 5$
- épocas = 4900

- k = 5
- $\bullet \quad \eta_0 = 0.9$
- \bullet $R_o = 5$
- épocas = 4900

- k = 5• $\eta_0 = 0.9$ $R_0 = 5$
- épocas = 4900

Matriz U

- \bullet k = 5
- $\bullet \quad \eta_0 = 0.9$
- \bullet $R_0 = 5$
- épocas = 4900

Problema 1.b: Regla de Oja

Calcular la primera componente principal para este conjunto de datos utilizando la regla de Oja

Cargas aproximadas para PC1

- $\eta = 10^{-4}$ épocas = 1200

Cargas aproximadas para PC1

- $\bullet \quad \eta = 10^{-4}$
- épocas = 1200
- 20 ejecuciones

	Librería	Aproximación Oja (promedio)
Area	0.1248739	0.127 ± 0.007
GDP	-0.50050586	-0.498 ± 0.009
Inflation	0.40651815	0.41 ± 0.02
Life expectancy	-0.48287333	-0.49 ± 0.01
Military	0.18811162	0.18 ± 0.03
Pop. growth	-0.47570355	-0.474 ± 0.005
Unemployment	0.27165582	0.26 ± 0.02

Error mínimo	rror mínimo Error máximo Error promedio		
0.0003	0.1968	0.0104	24

Primera componente principal

- $\eta = 10^{-4}$ épocas = 1200

Primera componente principal

- $\eta = 10^{-4}$ épocas = 5000
- error = 0.0066

Biplot

- $\eta = 10^{-4}$ épocas = 1200

Error y ángulo variando η

Escala logarítmica

• épocas = 1200

Error y ángulo variando η

Escala lineal

• épocas = 1200

Error y ángulo variando η

Aumentando las épocas x20 + Escala logarítmica

• épocas = 24000

Problema 2: Redes de Hopfield

Asociar patrones de letras con perturbaciones con la letra correcta, mediante representaciones matriciales de 5x5.

Redes de Hopfield Dataset de letras y ortogonalidad

10 patrones con mayor y menor ortogonalidad junto al producto interno promedio.

Patrones de letras con mayor ortogonalidad			
Patrones de letras	Producto interno promedio		
F - U - V - Z	1.33		
J - K - U - V	1.33		
K - N - S - V	1.33		
L - R - T - X	1.33		
A - K - S - Y	1.67		
B - K - N - V	1.67		
E - K - N - V	1.67		
F - I - U - X	1.67		
F - J - U - V	1.67		

Patrones de letras con menor ortogonalidad			
Patrones de letras	Producto interno promedio		
A - B - F - P	23		
A - C - F - P	23		
A - D - F - P	23		
A - E - F - P	23		
A - F - G - P	23		
A - F - H - P	23		
A - F - I - P	23		
A - F - J - P	23		
A-F-K-P	23		

Redes de Hopfield Patrones de letras con ortogonalidad elevada

Almacenando los patrones de letras: L - R - T - X, y prediciendo los mismos con una probabilidad para agregar **perturbaciones de 0.15**

Patrón de la letra L

Iteration: 0 2

Patrón de la letra R

Patrón de la letra T

Patrón de la letra X

Redes de Hopfield

Patrones de letras con ortogonalidad elevada: Gráfico energía

Redes de Hopfield Patrones de letras con ortogonalidad elevada: Tabla valores de energía

Patrón de letra	Iteración 0	Iteración 1	Iteración 2	Iteración 3
L	-5.28	-10.72	-10.72	-
Т	-2.72	-10.72	-10.72	-
R	-8.8	-10.56	-10.56	-
X	-5.28	-9.76	-10.56	-10.56

Redes de Hopfield Patrones de letras con ortogonalidad baja

Almacenando los patrones de letras: A - F - I - P, y prediciendo los mismos con una probabilidad para agregar **perturbaciones de 0.15**

Patrón de la letra A

Patrón de la letra F

Patrón de la letra I

Patrón de la letra P

Redes de Hopfield Patrones de letras con ortogonalidad baja: Gráfico energía

Redes de Hopfield Patrones de letras con ortogonalidad baja: Tabla valores de energía

Patrón de letra	Iteración 0	Iteración 1	Iteración 2	Iteración 3
Α	-10.4	-13.92	-14.24	-14.24
F	-18.08	-22.08	-22.08	-
I	-9.76	-12.16	-12.16	-
Р	-11.36	-22.08	-22.08	-

Redes de Hopfield Prediciendo un patrón ruidoso con patrones con ortogonalidad elevada y baja

Probabilidad para agregar perturbaciones de 0.5

Patrón de la letra T con ortogonalidad elevada (L - R - T - X)

Patrón de la letra I con ortogonalidad baja (A - F - I - P)

Patrón de la letra T con ortogonalidad elevada (L - R - T - X)

Patrón de la letra I con ortogonalidad baja (A - F - I - P)

Conclusiones

Conclusiones

- Estandarizar los datos ayuda a clasificar y ordenar correctamente con las redes de Kohonen y Oja.
- En Kohonen, un k elevado dispersa más los datos, pero genera una mayor cantidad de neuronas muertas.
- En Kohonen, la cantidad de épocas influye en la clasificación de los datos.
- Para obtener buenas aproximaciones de PC1 con Regla de Oja se necesita un número elevado de épocas y una tasa de aprendizaje pequeña
- Regla de Oja es numéricamente estable

Conclusiones

- A menor tasa de aprendizaje, significativamente mayor tiempo de convergencia para Regla de Oja
- En redes de Hopfield es necesario tener un conjunto de entrenamiento lo más ortogonal posible.
- Entre los estados espúreos en Hopfield se encuentran los opuestos de los estados almacenados.
- Los mínimos locales de Hopfield poseen a su estado opuesto como mínimo simultáneamente.

Gracias por su atención