Paul Gustafson

Texas A&M University - Math 447

Instructor: Dr. Johnson

HW 8

J20.1 Suppose f is Lipschitz with constant M. Suppose $h_k \to 0$ with $h_k \neq 0$ for all k, and $\frac{f(x+h_k)-f(x)}{h_k} \to \alpha$. Then since $\left|\frac{f(x+h_k)-f(x)}{h_k}\right| \leq M$ for all k, we have $|\alpha| \leq M$.

Conversely, suppose $Df(x) \subset [-M, M]$ for all x. Define g by g(x) = f(x) + Mx. Then $Dg(x) \subset [0, 2M]$ for all x, so by (10), g is increasing. Hence, if x < y, then $f(x) + Mx \le f(y) + My$. This implies $-M(y - x) \le (f(y) - f(x))$.

Let h(x) := -f(x) + Mx. Then for all x, $Dh(x) = -Df(x) + M \subset [0, 2M]$. Hence, by (10), h is increasing. Thus, for x < y, $-f(x) + Mx \le -f(y) + My$, so $(f(y) - f(x)) \le M(y - x)$.

Thus, for all x < y, $|f(y) - f(x)| \le M|y - x|$. By swapping y with x, this also holds for x > y.

7 Suppose $D \subset \mathbb{R}$ and $f: D \to \mathbb{R}$ is differentiable, hence continuous. Let $f_k(x) = (f(x+1/k) - f(x))k$. Then each f_k is Borel measurable and $f_k \to f'$, so f is Borel measurable.

If f is differentiable a.e., then by the above case, it is Borel measurable on $\mathbb{R} \setminus N$ for some null set N. Thus, it is Lebesgue measurable on \mathbb{R} .

10 As noted in class, it suffices to prove this in the case that there exists $\epsilon_0 > 0$ such that, for all x, $Df(x) \subset [\epsilon_0, \infty]$. Indeed, in the general case, define $f_n(x) := f + (1/n)x$. Assuming the special case, each f_n is increasing, so f is increasing since $f_n \to f$.

To prove the special case, suppose f is not increasing. Then there exists $x < y_0$ such that $f(x) < f(y_0)$. Let $B = \{t : t > x \text{ and } f(t) < f(x)\}$ and $y = \inf B$.

Case f(y) < f(x). There exists a sequence $y_k \to y$ from the left with $y_k > x$ for all k. Since $f(y_k) \ge f(x)$ for all k, $\frac{f(y) - f(y_k)}{y - y_k} \le \frac{f(y) - f(x)}{y - y_k} \to -\infty$ as $k \to \infty$, a contradiction.

Case $f(y) \ge f(x)$. Note that in this case y must be a limit point of B. Pick a sequence $(y_k) \subset B$ with $y_k \to y$. Then $q_k := \frac{f(y_k) - f(y)}{y_k - y} \le \frac{f(x) - f(x)}{y_k - y} = 0$. Pick any subsequence of q_k with a limit in the extended reals to get a contradiction. 11 Following the hint, let (U_n) be a decreasing sequence of open sets with each $U_n \supset E$ and $m(U_n) < 2^{-n}$. Let $f_n(x) = m((-\infty, x) \cap U_n)$, and $f = \sum_n f_n$.

Each f_n is Lipschitz of constant 1 (proved on the exam) and increasing. Moreover, $f_n \leq m(U_n) < 2^{-n}$, so $\sum_n f_n$ converges uniformly. Thus, f is continuous and increasing.

Note that if $x \in E$, then U_n contains a neighborhood of x. Hence, if $x_k \to x$, then for all large k, $\frac{f_n(x_k) - f_n(x)}{x_k - x} = \frac{x_k - x}{x_k - x} = 1$. Thus, each f_n is differentiable at x with derivative 1.

Hence, if $x \in E$ and $x_k \to x$, then for every N > 0, $\frac{f(x_k) - f(x)}{x_k - x} = \sum_n \frac{f_n(x_k) - f_n(x)}{x_k - x} \ge \sum_{n=1}^N \frac{f_n(x_k) - f_n(x)}{x_k - x} \to N$ as $k \to \infty$. Hence, $Df(x) = \{\infty\}$.