第三章 蛋白质

- 一. 蛋白质概述 ▼
- 二. 氨基酸 (重点) ✓ ✓
- 三. 多肽 (重点)
- 四. 蛋白质的结构 (重点)
- 五. 蛋白质结构与功能 (重点)
- 六. 蛋白质的性质 (重点)
- 七. 蛋白质的分离纯化与鉴定(重点)

上次课要点回顾

• 氨基酸结构

L-\alpha-amino acid

- 20种基本氨基酸
- •15种中性氨基酸
- 2种酸性氨基酸
- 3种碱性氨基酸

必需氨基酸

非基本氨基酸

- 氨基酸的一般性质
 - --- 手性 (旋光活性)
 - -- 紫外吸收 (特征吸收)
 - --- 两性离子 (既是酸又是减)
 - --- 等电点 (定义、计算、特性)
 - --- α-氨基酸中羧基、氨基的酸碱性与普通有机 羧酸、胺的差异

课后思考题堂上答

两个学生作答(1~3个*):

- 1. α-氨基酸中氨基的碱性比普通的有机胺中氨基的碱性强 还是弱? 为什么?
- 2. 试比较 α -氨基酸、 β -氨基酸和 γ -氨基酸的等电点高低, 并解释原因。

6. Chemical Reactions

- · 自学 (参看教材p52-57)
 - (1) α-氨基参与的反应
 - (2) α-羧基参与的反应
 - (3) α-氨基和羧基共同参与的反应

- 要求了解
 - 1. 各反应的原理及其用途
 - 2. 生物体系中的有关反应过程

6. Chemical Reactions

(4) 侧链基团的化学性质(教材p57-62)

- a. Sulfhydryl (-SH, 巯基)
 - --- 弱酸性 (pK_a = 10.28)
 - --- 亲核性
 - --- 络合性
 - --- 还原性

亲核性

$$H_3$$
 \mathring{N} —CH—COO⁻ + ICH₂COO⁻ $\xrightarrow{\overline{g}\overline{g}\overline{g}\overline{g}\overline{g}\overline{g}}$ H_3 \mathring{N} —CH—COO⁻ $\overset{\overline{C}}{C}$ $\overset{\overline{C}}{C}$

络合性

$$H_3\dot{N}-CH-COO^- + CI-Hg-COO^- - COO^- - H_3\dot{N}-CH-COO^- - COO^- - CI^- - CH_2 - COO^- - CO$$

还原性 (Cys分析测定)

半胱氨酸

HOOC
$$O_2N - \left\langle \begin{array}{c} \\ \\ \\ \\ \end{array} \right\rangle - S - S - \left\langle \begin{array}{c} \\ \\ \\ \\ \end{array} \right\rangle - NO_2$$

$$COOH$$

Ellman试剂: 二硫硝基苯甲酸

半胱氨酸—硝基苯甲酸二硫化物

间巯基邻硝基苯甲酸

特征吸收: 412nm

(4) 侧链基团的化学性质(教材p57-62)

- b. Imidazole group (咪唑基)
 - --- 酸碱性 (重要特性)
 - --- 亲核性 (重要特性)
 - -- 烷基化、磷酸化

Acid-base properties of imidazole group

亲核性

烷基化

➡ 酶失活

磷酸化

→ 酶活化

$$NH_3^+$$
 NH_3^+ NH_3^+

(4) 侧链基团的化学性质(教材p57-62)

c. Methyl thioether group (-SCH3, 甲硫醚基)

--- 亲核性

(4) 侧链基团的化学性质(教材p57-62)

d. hydroxyl group (-OH, 羟基)

- -- Ser and Thr
- -- form hydrogen bond with other groups.
- -- 亲核性
 - -- form ester with acids, such as phosphate in casein (酪蛋白).
 - -- acylating reagent (酰基化剂) as inactivator (失活剂) of enzyme.

Inactivation of Enzyme

(4) 侧链基团的化学性质 (教材p57-62)

e. guanidino group (胍基)

e. guanidino group (胍基)

应用: 氨基酸顺序分析

(4) 侧链基团的化学性质(教材p57-62)

f. Aromatic group (芳基, -Ar)

与重氮盐发生颜色反应

应用: Pauly显色反应

7. Preparation of amino acids

1. 蛋白质水解法

protein

6 N HCI

mixture of amino acids

seperation

pure amino acids

- 2. 微生物发酵法
- 3. 人工合成法

8. Chemical Synthesis

(1) 经典化学合成法及拆分 (自学, 教材p62~64)

- a. 还原氨化法
- b. α-卤代酸的氨化
- c. Gabriel-丙二酸酯合成法
- d. Strecker合成法

8. Chemical Synthesis

- (2) 氨基酸的不对称合成(自学,了解原理,教材p64~65)
 - a. 应用不对称前体(asymmetric precursor) 合成法的原理
 - b. 应用不对称催化剂(asymmetric catalyst) 合成法的原理

9. Separation and analysis

20

9. Separation and analysis

(1) 纸色谱 (Paper chromatography)

--- 固定相: 滤纸吸附的水

--- 流动相: 水饱和的有机溶剂

--- 分离原理:不同氨基酸在水和有机溶剂中的溶解度不同。

--- 鉴定: 茚三酮显色,与氨基酸标样对照。

--- 二维层析: 分离效果更佳。

维 纸 层 斱

9. Separation and analysis

- (2) 电泳 (Electrophoresis)
 - --- <u>分离原理</u>:不同氨基酸在一定pH值下,所带的净电荷不同, 在电场中移动情况不同。
 - --- 载体: 凝胶薄层或滤纸片。
 - --- 纸电泳示意图 (下一页)

纸电泳 (Paper electrophoresis)

pH < pl, 样品带正电荷,样品点向阴极移动

pH > pl, 样品带负电荷, 样品点向阳极移动

pH = pl, 样品不带电荷, 样品点不移动

 $\Delta P = pI - pH$

ΔP为正, 带正电荷, 越正, 带正电荷越多 ΔP为负, 带负电荷, 越负, 带负电荷越多

9. Separation and analysis

- (3) 离子交换色谱(lon-exchange chromatography)
- --- <u>分离原理</u>:不同氨基酸在一定pH值下,所带的净电荷不同, 在离子交换柱中移动情况不同
- --- 固定相: 可与待分离样品进行离子交换的树脂
- --- 交换方式: 阳离子和阴离子
- --- 磺酸型阳离子交换树脂最为常用
- --- 广泛应用

Cation exchange resins commonly used

Strongly acidic, polystyrene resin (Dowex–50)

强酸型聚苯乙烯树脂

Weakly acidic, carboxymethyl (CM) cellulose

弱酸型羧甲基纤维素

Weakly acidic, chelating, polystyrene resin (Chelex–100)

弱酸型螯合型聚苯乙烯树脂

Anion exchange resins commonly used

Strongly basic, polystyrene resin (Dowex-1)

强碱型聚苯乙烯树脂

Weakly basic, diethylaminoethyl (DEAE) cellulose

弱碱型二乙胺基乙基纤维素

磺酸型阳离子交换树脂分离氨基酸

例题1

磺酸型阳离子交换树脂分离氨基酸

一氨基酸混和液,含有Lys, Ala和Glu三种氨基酸,如何用 <u>阳离子交换树脂</u>进行分离?通过合理分析指出氨基酸从树脂 上洗脱出来的先后顺序。

	Lys	Ala	Glu
pl	9.7	6.0	3.2

例题1

磺酸型阳离子交换树脂分离氨基酸

- (1) 氨基酸样品液调为酸性 (pH 2~3) 后,上样, 进行pH梯度洗脱。
- (2) 原理:某一pH下,各氨基酸所带正电荷多少不同, 被吸附的强弱程度不同。如:pH = 3时,

 $\Delta P_{Lys} = +6.7$, $\Delta P_{Ala} = +3.0$, $\Delta P_{Glu} = +0.2$

吸附强弱: Lys > Ala > Glu

洗脱先后: Glu > Ala > Lys

一般洗脱规律:酸性aa > 中性aa > 碱性aa

极性相同时,分子量小的aa>分子量大的aa

Automated amino acid analyzer (氨基酸自动分析仪)

思考题

上图是阳离子交换树脂下对20种基本氨基酸的实际测定图谱。 你发现了什么?如何解释?

三、多肽

1. Structures

有关概念

肽键 (peptide bond), 肽 (peptides), 二肽 (dipeptides),
 多肽 (polypeptides),
 氨基酸残基 (amino acid residues)

- 氨基酸顺序 --- 多肽链中氨基酸残基排列的顺序
- 氨基端或N-端 --- 多肽链中有游离α-氨基的一端
- 羧基端或C-端 --- 多肽链中有游离α-羧基的一端
- 肽链方向: N-端(左) —— C-端(右)
- Are Ser-Gly-Tyr-Ala-Leu and Leu-Ala-Tyr-Gly-Ser same peptides?

2. Peptide bond

三、多肽

2. Peptide bond

- 特点:
 - 1) N上的孤对电子与C=O具有明显的共轭作用,C-N键具有部分 双键性质,不能自由旋转。

2. Peptide bond

■ 特点:

- 2) 组成肽键的原子处于同一平面,一般为反式。
- 3) 两个相邻的肽键通过共同的 α -碳 ($C\alpha$) 相连, $C\alpha$ -N, $C\alpha$ -C 可以自由旋转。

The structure of a tetrapeptide

三、多肽

3. Acid-Base Properties

$$H_3$$
 $\stackrel{\mathsf{N}}{\mathsf{N}}$
 $\stackrel{\mathsf{R}_1}{\mathsf{C}}$
 $\stackrel{\mathsf{H}}{\mathsf{C}}$
 $\stackrel{\mathsf{$

- 可看成是一个"大氨基酸"。
- 水溶液中也以两性离子形式存在,有滴定曲线,也有等电点。
- 也可通过离子交换层析或电泳进行分离纯化。

例题2

请计算四肽Ala-Glu-Gly-Lys在pH = 1和 pH = 6.5 时所带电荷的多少并判断在电场中的移动情况。

	р <i>К</i> ₁	р <i>К</i> ₂	р <i>К</i> _R
Lys	2.18	8.95	10.53
Gly	2.34	9.60	
Ala	2.34	9.69	
Glu	2.19	9.67	4.25

带正电荷, 向阴极移动。

不带电荷,不移动。

多肽pl的计算

COO-

2⊝

$$pl = \frac{4.25 + 9.69}{2} = 6.97$$

COO

10

三、多肽

4. Hydrolysis

- 可被酸、碱、酶水解。
- 根据水解程度不同,分为:
 - -- 完全水解: 得各种氨基酸的混合物。
 - -- 部分水解: 通常得到多肽片段。
- 酸或碱能将多肽完全水解, 酶水解一般是部分水解。

(1) 酸水解

- 6N HCI 或4M H₂SO₄在105-110℃条件下进行水解,反应时间 约20小时。
- 优点: 不易引起水解产物的消旋化。
- 缺点: Trp 被沸酸完全破坏;
- · Ser或Thr有一小部分被分解; —— 🏈
- · Asn和GIn侧链的酰胺基被水解成羧基。

(2) 碱水解

- 5 N NaOH煮沸10-20小时。
- 缺点:由于水解过程中许多氨基酸都受到不同程度的破坏, 产率不高。
- 缺点: 部分的水解产物发生消旋化。 —— 🧷
- · 优点: Trp 在水解中不受破坏。

碱性条件下氨基酸的消旋化

45

(3) 酶水解

- 目前用于蛋白质肽链断裂的蛋白水解酶(proteolytic enzyme) 或称蛋白酶(proteinase)有十多种(以后介绍)。
- 优点:不会破坏氨基酸,也不会发生消旋化。
- 水解的产物为较小的肽段。

结构、性质、方法、原理

二. 氨基酸

-- 氨基酸侧链基团的性质

-- 分离与分析

$$\begin{array}{c} & & & \\ & & & \\ &$$

三. 多<u>肽</u> 概念、结构、性质、方法

- 1. 结构和基本概念
- 2. 肽键及其特点
- 3. 酸碱性与pl计算
- 4. 肽链的水解方法及优缺点

课后复习要点

- 掌握重要概念: 肽键、肽链、氨基酸顺序、氨基酸残基等。
- 掌握多肽链带电情况的判断及等电点的计算。
- 熟悉氨基酸分离方法与原理。
- 熟悉多肽的水解方法及优缺点。
- 了解氨基酸的制备及合成方法。
- 教材相关习题。

预 习

- 三、多肽
 - --- 多肽的化学合成
- 四、蛋白质的结构
 - --- 蛋白质结构层次的划分
 - --- 蛋白质的一级结构