Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/CN04/001403

International filing date: 02 December 2004 (02.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: CN

Number: 200310113035.8

Filing date: 25 December 2003 (25.12.2003)

Date of receipt at the International Bureau: 05 April 2005 (05.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

证 明

本证明之附件是向本局提交的下列专利申请副本

申 请 日: 2003.12.25

申 请 号: 2003101130358

申请类别: 发明

发明创造名称: 大地电磁波电阻率测量方法及其仪器

申 请 人: 周仁安 郭自任

发明人或设计人: 郭自任、周仁安

中华人民共和国 国家知识产权局局长

2005 年 2 月 18 日

权 利 要 求 书

1、大地电磁波电阻率测量方法, 其步骤是:

第一步,建立线性坐标观察系统,预置初始采集参数:

进入一个勘探区,首先建立线性坐标观察系统,在这个系统中频率 (F) 与深度 (H) 的关系表示为:

F = a + bK'/H (1)

式中: a一为表层系数,是一个较小的值,在第一步工作中可忽略

b-为区域性地层电阻率随深度的增长系数,其值设定为 0.01

H-为深度(单位米)

K´一为电磁波在地层中传播定义的探测深度值。

在上式中 H、 H1、 H2 、S 单位为米, F 单位为赫兹(HZ)

(1)式可以进一步表示为

F=a+B/H

B定义为深度系数,在第一步中,B=bK´

测量时,分别输入设计要求的起始测量深度值(H1)、终止测量深度值(H2)、采样间隔值(S),将由关系式确定的 F 参数预置到电阻率测量仪器各参数界面,使仪器正常运行。

第二步, 进行深度系数 B 的标定:

进入采集后,首先应当在探区或相邻地区,选择一口己知钻井。利用第一步基本关系式确定的参数,在选择的已知钻井旁探测,测取一条电磁波电阻率曲线,用这条曲线与已知钻井的测井电阻率曲线进行对比,如此反复,直到找到一条相关性最好的曲线为止,按下列步骤进行 B 参数标定:

将测得的随深度变化的电阻率曲线,截取一段与已知钻井中的电测电阻率曲线或者具有电性特征的其他地层分层资料进行比较,求得采样间隔 S□(单位米),该 S□ 用下式表示:

 $S \square = (Hp2-Hp1)/(L2-L1)$ (2)

式中: Hp1-为已钻探井的第1个测井曲线特征点的深度,单位米

Hp2-为已钻探井的第2个测井曲线特征点的深度,单位米

L1-为新测探的与第1个测井特征点相似特征的电磁波电阻率曲线的采集点号数

L2一为新测探的与第 2 个测井特征点相似特征的电磁波电阻率曲线的采集点号数 B=S'/S (3)

B 为实际确定的深度系数,在以后的工作中用 B 取代(1)式中的 bK 值进行频率深度关系变换;在没有深度标定并的新区,可以利用以前的与这个区块类似的其他区域的深度系数,对基本关系式进行标定后进行测量。

第三步, 进行表层深度系数 Ha 的校正:

利用经过第二步参数校正的曲线与己知钻井电测井电阻率曲线进行全测量段比较,各特征深度点之间存在的系统误差值用下式表示:

Ha=Hd-HC (4)

Hd--为已知钻井电测井曲线特征点深度

Hc--为探测电磁波电阻率曲线同一特征点深度

式中 Ha、 Hd 、 Hc 单位为米;

利用 Ha 对探测电磁波电阻率曲线测量深度进行表层深度校正;

第四步,其他采集参数的选择:

- (1) 采集开始/结束深度根据设计要求确定:
- (2) 采样间隔:
- a、进行区域地层对比,追踪大地层电性界面使用:如 5m 、10m、20m。
- b、进行矿层(油层、煤层、金属矿层)、裂缝带追踪与探测 0.2m 、0.5m、1m。
- c、采样点数的设置 结束深度 ≦1000m 取 8 点,或者 结束深度 ≦2000m 取 16 点,或者 结束深度 ≦4000m 取 32 点,或者 结束深度 ≦8000m 取 64 点
- d、采样周期数对应值为: 128 64 32 16
- (3)、通道增益设置:在保证目的层段信号采集基础上,选择较低增益可以抑制交流工业电源干扰;
- (4)、低通滤波器设置:在工业电源干扰较强地区及浅层测量时使用自动跟踪滤波,在 工业电源干扰弱地区及深层测量时可以不使用自动跟踪滤波;

第五步,资料的处理:

对野外采集资料经过质量验收之后,进行资料的处理:将采集记录文件调入解释处理程序中,输入起始深度和经过校正的采样间隔,进行适当数值处理,调节纵横向比例,获得采集点最终处理成果图。

- 2、根据权利要求 1 所述的方法,其特征是选择已知钻井的条件是:(1)地层有代表性;(2)有电阻率测井资料或钻井取芯等资料;(3)地层倾角≤15 度;(4)地面无强工业电网等干扰。
- 3、大地电磁波电阻率测量仪器,其特征是包括接收电场强度信号的电场传感器(1),接收磁场强度信号的磁场传感器(2),两个分别与电场传感器(1)和磁场传感器(2)的输出端连接的前置放大与滤波器(3)、与前置放大与滤波器(3)的输出端连接的数据采集系统(4)和采集控制、数据存储及处理系统(5)。
- 4、根据权利要求 3 所述的测量仪器,其特征是所述两个前置放大与滤波器 (3) 的输出端分别连接到数据采集系统的两个输入端 (CH1 CH2),数据采集系统 (4) 的并行端口与采集控制、数据存储及处理系统 (5) 的打印机端口连接,或者数据采集系统 (4) 的并行端口与采集控制、数据存储及处理系统 (5) 的并行端口连接。
- 5、根据权利要求 3 或 4 所述的测量仪器,其特征是所述电场传感器(1)包括一对铜电极或者铅电极,或者不极化电极;磁场传感器采用多匝环形感应线圈,或者具有磁通负反馈的多匝环形感应线圈。
- 6、根据权利要求 5 所述的测量仪器,其特征是所述前置放大与滤波系统包括放大器、多级陷波器、低通滤波器及输出级。
- 7、根据权利要求 6 所述的测量仪器, 其特征是所述数据采集系统用通用的高速数据采集器。
- 8、根据权利要求7所述的测深仪器,其特征是所述采集控制、数据存储与处理系统是高性能笔记本电脑。
- 9、根据权利要求 3-8 中任意一项所述的测量仪器,其特征是在所述采集控制、数据存储与处理系统中收录有深度(H)与传播频率(F)之间的基本关系式,电磁波电阻率(p)与深度(H)的关系,深度系数 B 以及参数选择所覆盖的各项界面参数。

书

大地电磁波电阻率测量方法及其仪器

技术领域

本发明涉及一种地球物理勘探的方法和仪器,具体地说,涉及一种直接将频率转变为深度的大地电磁波电阻率测量方法及其仪器。

背景技术

传统的大地电磁测深法始于上世纪五十年代,距今已有五十多年历史。它是基于电磁感 应原理,用于研究地球电性的一种地球物理方法。在研究地球电性的多种电法和电磁法中, 大地电磁测深法具有探测深度大,不受高阻层屏蔽,分辨能力较强,等值范围较窄,工作成 本低廉和野外装备较轻便等特点。在很大程度上,这是由于大地电磁测深法利用频带非常宽 阔的、能量巨大的天然交变电磁作场源的结果。大地电磁测深法建立在电磁波波动方程的基 础上,它的标量阻抗理论的假设前提是平面电磁波垂直入射到地球表面,地层为水平层状介 质。当地层为水平非均匀构造及存在各向异性时,地层阻抗随时间及测量方向而变化,这时 采用大地电磁测深张量阻抗理论。根据大地电磁测深基本理论,苏、美、法、德、加等国家 研制了各种大地电磁测深仪器,我国也研制了大地电磁测深仪器。根据大地测深理论,提出 了对野外观测资料的解释方法。其中定量解释主要根据视电阻率曲线反演地下的电性分层。 大地电磁测深实测曲线的电子计算机自动反演,通常根据给定的初始参数 (Hi pi) 计算出 理论曲线,然后与一条实测曲线进行对比,按最小方差原理不断修改参数,找出一条与实测 曲线拟合最好的理论曲线,这条理论曲线所对应的参数就是反演的解。后来又提出了一维连 续模型的大地电磁测深反演方法。把地球介质的电阻率视为各向同性随深度连续变化的函数。 它仍然是从初始模型出发,计算理论曲线,与实测曲线对比,修改初始模型,逐次逼近实测 曲线、最后获得经过唯一性评价的电阻率随深度连续变化的曲线。大地电磁测深法应用于地 壳上地幔研究,普查勘探沉积盆地和含油气构造,寻找和勘探热田,进行地震预报和寻找金 属矿产, 地下水源等方面。

虽然大地电磁测深法已经得到较广泛应用。但是由于它的勘探精度不高,其分层厚度往 往是以百米计,甚致数千米,很少见到数十米的情况。因此它在矿藏勘探中难于发挥作用。

此外其勘探效率有待进一步提高。

发明内容

本发明的目的是克服上述缺陷,提供一种探测深度大,不受高阻层屏蔽,高精度、高效率的大地电磁波电阻率测量方法加强仪器。

本发明所述的大地电磁波电阻率测量方法, 其步骤是:

第一步,建立线性坐标观察系统,预置初始采集参数:

进入一个勘探区,首先建立线性坐标观察系统,在这个系统中频率与深度的关系表示为:

 $F= a+bK^/H$

(1)

式中:F一频率

a-为表层系数,是一个较小的值,在第一步工作中可忽略

b-为区域性地层电阻率随深度的增长系数,其值设定为 0.01

H-为深度(单位米)

K´一为电磁波在地层中传播定义的探测深度值。

在上式中 H、 H1、 H2 、S单位为米, F单位为赫兹(HZ)

(1)式可以进一步表示为:

F=a+B/H

B 定义为深度系数,在第一步中,B=bK ´

测量时,分别输入设计要求的起始测量深度值、终止测量深度值、采样间隔值,将由关系式确定的频率参数预置到电阻率测量仪器各参数界面,使仪器正常运行。

第二步,进行深度系数的标定:

进入采集后,首先应当在探区或相邻地区,选择一口己知钻井。利用第一步基本关系式确定的参数,在选择的已知钻井旁探测,测取一条电磁波电阻率曲线,用这条曲线与已知钻井的测井电阻率曲线进行对比,如此反复,直到找到一条相关性最好的曲线为止,按下列步骤进行深度系数参数标定:

将测得的随深度变化的电阻率曲线,截取一段与已知钻井中的电测电阻率曲线或者具有电性特征的其他地层分层资料进行比较,求得采样间隔 S□(单位米),该 S□ 用下式表示:

 $S \square = (Hp2-Hp1)/(L2-L1)$ (2)

式中: Hp1-为已钻探井的第1个测井曲线特征点的深度,单位米;

Hp2-为已钻探井的第2个测井曲线特征点的深度,单位米;

L1-为新测探的与第1个测井特征点相似特征的电磁波电阻率曲线的采集点号数;

L2一为新测探的与第 2 个测井特征点相似特征的电磁波电阻率曲线的采集点号数:

B=S'/S (3)

B 为实际确定的深度系数,在以后的工作中用 B 取代(1)式中的 bK 值进行频率深度关系变换;在没有深度标定井的新区,可以利用以前的与这个区块类似的其他区域的深度系数,对基本关系式进行标定后进行测量。

第三步, 进行表层深度系数 Ha 的校正:

利用经过第二步参数校正的曲线与己知钻井电测井电阻率曲线进行全测量段比较,各特征深度点之间存在的系统误差值用下式表示:

Ha=Hd-HC (4)

Hd--为已知钻井电测井曲线特征点深度

Hc--为探测电磁波电阻率曲线同一特征点深度

式中 Ha、 Hd 、 Hc 单位为米。

利用 Ha 对探测电磁波电阻率曲线测量深度进行表层深度校正:

第四步,其他采集参数的选择:

- (1) 采集开始/结束深度根据设计要求确定:
- (2) 采样间隔:
- a、进行区域地层对比,追踪大地层电性界面使用: 如 5m 、10m、20m。
- b、进行矿层、裂缝带追踪与探测 0.2m 、0.5m、1m:
- c、采样点数的设置 结束深度≤1000m取8点,或者

结束深度≦2000m 取 16 点,或者

结束深度≦4000m 取 32 点, 或者

结束深度≦8000m 取 64 点

- d、采样周期数对应值为: 128 64 32 16
- (3)、通道增益设置:在保证目的层段信号采集基础上,选择较低增益可以抑制交流工业电源干扰;
 - (4)、低通滤波器设置:在工业电源干扰较强地区及浅层测量时使用自动跟踪滤波,在

工业电源干扰弱地区及深层测量时可以不使用自动跟踪滤波:

第五步,资料的处理:

对野外采集资料经过质量验收之后,进行资料的处理:将采集记录文件调入解释处理程序中,输入起始深度和经过校正的采样间隔,进行适当数值处理,调节纵横向比例,获得采集点最终处理成果图。

其中,选择己知钻井的条件是:(1)地层有代表性;(2)有电阻率测井资料或钻井取芯等资料;(3)地层倾角≤15度;(4)地面无强工业电网等干扰。

本发明所述的大地电磁波电阻率测量仪器,包括接收电场强度信号的电场传感器,接收 磁场强度信号的磁场传感器,两个分别与电场传感器和磁场传感器的输出端连接的前置放大 与滤波器、与前置放大与滤波器的输出端连接的数据采集系统和采集控制、数据存储及处理系统。

所述两个前置放大与滤波器的输出端分别连接到数据采集系统的两个输入端,数据采集系统的并行端口与采集控制、数据存储及处理系统的打印机端口连接,或者数据采集系统的并行端口与采集控制、数据存储及处理系统的并行端口连接。

所述电场传感器包括一对铜电极或者铅电极,或者不极化电极;磁场传感器采用多匝环 形感应线圈,或者具有磁通负反馈的多匝环形感应线圈。

所述前置放大与滤波系统包括放大器、多级陷波器、低通滤波器及输出级。

所述数据采集系统用通用的高速数据采集器。

所述采集控制、数据存储与处理系统是高性能笔记本电脑。

在所述采集控制、数据存储与处理系统中收录有深度与传播频率之间的基本关系式,电磁波电阻率与深度的关系,深度系数以及参数选择所覆盖的各项界面参数。

本发明所述的方法与现有大地电磁测量法相比,探测深度相同时,分层精度大大提高。使得大地电磁测深由只能进行区域普查进入勘探阶段,甚至可以少打一部分钻井,大大提高勘探整体效益;测取同样的深度,对仪器灵敏度要求低得多。有利于仪器的制造;测量时间缩短,效率极大提高,外界干扰、仪器漂移、电极极化等影响减少;解释变得简单,在一维解释中,当深度确定以后,只需要读取深度点上的电场强度和磁场强度便可容易的获得视电阻率。可以方便地实现实时处理解释。由于不进行钻井便可以测得一条随深度变化的电阻率曲线,大大拓宽了利用地面地球物理勘探解决地质问题的能力。例如,油田水淹层监测,寻

找裂缝带的分布,层间对比,煤层、金属矿层的追踪等等。大地电磁波电阻率测量方法和仪器成为一种运用于各个勘探阶段的有效方法和手段。从而提高总体勘探效益,同时为深部勘探提供一种有效手段。此外本发明也可以运用到有源的电磁测深中。

本发明所述的大地电磁波电阻率测量仪器经过大量实测资料的验证,达到下列指标:

深度误差: 有井标定的地区, 其误差不大于 5%;

分层精度: 高电阻率地层≥ 1 米

低电阻率地层≥ 0.5 米

探测深度 40-8000m

300-8000m(在地面电磁干扰严重地区)

探测时间:每个测量点次,(测量深度≤ 4000m)工作时间□ 1h:

仪器器重量: 20kg±,对施工场地要求简单。

附图说明

- 图 1 是大地电磁波电阻率测量仪器示意图:
- 图 2 是前置放大滤波器原理框图;
- 图 3 数据解释处理界面图。

具体实施方式

本发明所述的大地电磁波电阻率测量方法和仪器技术思路,是利用实际数据直接标定频率与深度的关系。改变传统利用理论公式求取地层深度厚度的方法,使地层电阻率成为唯一的变量,只要获得每个采集深度点上的电场强度、磁场强度,便可以得到随深度连续变化的电阻率曲线。

电磁波传播理论指出,场强在地层中传播呈指数规律变化,或者说电场的振幅随地层深度呈指数规律衰减,传统电磁波方法,利用趋肤深度估计仪器的探测深度。本发明所指的探测深度取决于仪器的灵敏度和入射场源的强度。入射场源强度一定时,仪器灵敏度越高探测深度越深。例如定义振幅衰减到 1/e³ 时(5%)为仪器的探测深度,则探测深度 K′值是三倍趋肤深度 K 值。这个探测深度是现在的仪器灵敏度能够达到的。在一定的条件下,地层深度与电磁波的传播频率呈线性关系。

本发明所述方法的步骤是:

第一步,建立线性坐标观察系统,预置初始采集参数:

进入一个勘探区,考虑到地层电阻率随深度的变化趋势,建立一个线性坐标观察系统, 在这个系统中频率 (F) 与深度 (H) 的关系表示为:

F= a+bK'/H (1)

式中: a-为表层系数,是一个较小的值,在第一步工作中可忽略

b一为区域性地层电阻率随深度的增长系数,其值设定为 0.01

H-为深度,第一步测量时分别输入设计要求的起始测量深度值(H1)、终止测量深度值(H2)、采样间隔值(S)

K´ 一为电磁波在地层中传播定义的*探测深度值*。

在上式中 H、 H1、 H2 、S单位为米, F单位为赫兹(HZ); (1)式可以进一步表示为;

F=a+B/H

B 定义为深度系数,在第一步中,B=bk′

测量前,将由关系式确定的 F 参数预置到大地电磁波电阻率测量仪器各参数界面,分别输入设计要求的起始测量深度值(H1)、终止测量深度值(H2)、采样间隔值(S),使仪器正常运行。

第二步, 进行深度系数 B 的标定

为了使深度标定更加准确,需要进行深度系数 B 的标定。进入采集后,首先应当在探区或相邻地区,选择一口己知钻井。该己知钻井的条件应当符合以下条件: 1、地层有代表性; 2、有电阻率测井资料或钻井取芯等资料; 3、地层倾角≤15 度; 4、地面无强工业电网等干扰。

利用第一步基本关系式确定的参数,在选择的已知钻井旁,测取一条电磁波电阻率曲线,用这条曲线与已知钻井的测井电阻率曲线进行对比,两条曲线是否在各特征点上是相似的。如果他们的相关性不好,按一定角度旋转电场传感器和磁场传感器的方向,重新进行采集,直到找到一条相关性最好的曲线为止。此时所测曲线纵坐标是电磁波电阻率、电场强度、磁场强度,横坐标是采集点序号。按下列步骤进行 B 参数标定:

将测得的随深度变化的电阻率曲线,截取一段与已知钻井中的电测电阻率曲线或者具有电性特征的其他地层分层资料进行比较,求得采样间隔 S□(单位米),该 S□ 用下式表示:

 $S\Box = (Hp2-Hp1)/(L2-L1)$ (2)

式中: Hp1-为已钻探井的第1个测井曲线特征点的深度(单位米)

Hp2-为已钻探井的第2个测井曲线特征点的深度(单位米)

L1一为新测探的与第1个测井特征点相似特征的电磁波电阻率曲线的采集点号数

L2一为新测探的与第 2 个测井特征点相似特征的电磁波电阻率曲线的采集点号数 深度系数:

B=S'/S (3)

B 为实际确定的深度系数,在以后的工作中用 B 取代(1)中的 bK 值进行频深关系变换。 在没有深度标定井的新区,可以利用以前的与这个区块类似的其他区域的深度系数,对基本 关系式进行标定后进行测量,也能获得较为满意的效果。仪器预置了一套经过实践检验的深 度系数参数供使用。

第三步,进行表层深度系数 Ha 的校正:利用经过第二步参数校正的电磁波电阻率曲线与己知钻井电测井电阻率曲线进行全测量段比较,各特征深度点之间往往存在一个系统误差,求取该误差值 Ha:

Ha=Hd-HC (4)

Hd一为已知钻井电测井曲线特征点深度

Hc一为探测电磁波电阻率曲线同一特征点深度

式中 Ha、Hd、Hc 单位为米。

利用表层深度系数 Ha 对探测电磁波电阻率曲线测量深度进行表层深度校正;

第四步,其他采集参数的选择:

- 1、采集开始/结束深度根据设计要求确定:
- 2、采样间隔:
- (1) 进行区域地层对比,追踪大地层电性界面使用:如 5m 、10m、20m。
- (2) 进行矿层(油层、煤层、金属矿层)、裂缝带追踪与探测 0.2m 、0.5m、1m。
- (3) 采样点数的设置 结束深度≤1000m 取 8 点;

≦2000m 取 16 点

≦4000m 取 32 点

≦8000m取 64点

- (4) 采样周期数对应值为: 128 64 32 16
- 3、通道增益设置: 在使用双传感器时,选择通道1(CH1)、通道2(CH2),在使用多传

感器时,选择通道 1-8 (CH1-8);在保证目的层段信号采集基础上,选择较低增益可以抑制 交流工业电源干扰。

4、低通滤波器设置:在工业电源干扰较强地区及浅层测量时使用自动跟踪滤波,在工业 电源干扰弱地区及深层测量时可以不使用自动跟踪滤波。

第五步,资料的处理:

对野外采集资料经过质量验收之后,进行资料的处理:将采集记录文件调入解释处理程序中,输入起始深度和经过校正的采样间隔,进行适当数值处理,调节纵横向比例,便可以获得采集点最终处理成果图。见图 3,其中横坐标为线性坐标,表示深度,深度比例可以根据要求进行调节;纵坐标:在上曲线中表示电磁波电阻率,具有线性和对数两种坐标供选择,比例可以调节,在中曲线中表示电场强度,比例可以调节,在下曲线中表示磁场强度,比例可以调节。

为完成本发明所述的方法,设计了大地电磁波电阻率测量仪器。

参见图 1,本发明所述的大地电磁波电阻率测量仪器由五部分组成:接收电场强度信号的电场传感器 1,接收磁场强度信号的磁场传感器 2,两个前置放大与滤波器 3,数据采集系统 4 和采集控制、数据存储及处理系统 5。

所述电场传感器 1 的输出端连接到前置放大与滤波器 3 的输入端,磁场传感器 2 的输出端连接到另一个前置放大和滤波器 3 的输入端,两个前置放大与滤波器 3 的输出端分别连接到数据采集系统的两个输入端 CH1 CH2,数据采集系统 4 与采集控制及数据存储与处理系统 5 的连接有两种方式:方式 1,数据采集系统 4 的并行端口(PARALLEL PORT)与采集控制及数据存储与处理系统 5 的打印机端口连接:方式 2,数据采集系统 4 的并行端口(PARALLEL PORT)与采集控制和数据存储与处理系统 5 的并行端口连接。数据采集系统的数据传输给采集控制及数据存储与处理系统,同时采集控制及数据存储与处理系统向数据采集系统输送控制、采集指令。

所述电场传感器 1 由一对铜电极或者铅电极组成,或者采用其他不极化电极。磁场传感器一般情况用多匝环形感应线圈,或者使用具有磁通负反馈的多匝环形感应线圈。两个传感器分别接收电场强度信号(Ex)和磁场强度信号(Hy)。

参见图 2, 前置放大与滤波器 3 由放大器、多级陷波器、低通滤波器及输出级组成,对由电场、磁场传感器接收的信号进行放大,并滤掉由工业电源及其谐波造成的干扰,防止混

迭干扰的产生。

所述数据采集系统 4 用通用的高速数据采集器。其主要性能:采样率: 1MHz 并可受程序控制调节,通道数: ≧6, A/D 转换: 12 或 16 位,可调增益: 1—100,波形同步,程控抗混 迭滤波器。数据采集系统在程序控制下,对前置放大滤波器输入的模拟信号数字化,把按频率分组的数字信号输出到采集控制及数据存储与处理系统 5。

所述采集控制、数据存储及处理系统 5 为高性能笔记本电脑,其内存储有根据方法中频率深度基本方程式 F== a+bK/H 的程序,以及预置各项测量参数的程序,其主要任务是对数据采集系统进行程序控制,按照要求完成预定的数据采集任务,并将成果数据纪录在硬盘中。电脑内还存储有数据处理的程序,根据大地电磁测深中的基本关系式:

 $\rho = |Ex/Hy|^2/\omega$ μ ,将采集的电场强度 Ex 和磁场强度 Hy 转换为电磁波电阻率。并可将最终成果打印输出。

仪器控制软件的设计充分体现技术思路,为了采集到不同深度的信息,不断改变采集频率,可以采集到相应深度点上的电场强度、磁场强度。最高可以按 0.2 米的深度等间隔采样;可以从技术指标范围内任意深度点对任意深度段采样;实时显示随深度线性变化的电场强度、磁场强度曲线;利用数据处理软件对采集资料进行现场处理,获得随深度 H 变化的电磁波电阻率曲线 ρ。

说 明 书 附 图

图 1

图 2

I

<u>M</u>3