STAT 2040: Principles of Statistics

Keys to Success

- Come to class ready to think and be engaged
- Come to lab ready to think and be engaged
- Do the homework and give it an honest effort
- Read the textbook or watch videos if confused
- Stay on top of the material

Introduction to Data

SECTION 1.1

- Data
- Cases and variables
- Categorical and quantitative variables
- · Using data to answer a question

Why Statistics?

- Statistics is all about DATA
 - Collecting DATA
 - Describing DATA summarizing, visualizing
 - Analyzing DATA
- Data are everywhere!
- You will have to make decisions based on data, or evaluate decisions someone else has made based on data
- (This is *particularly* true in the health sciences!)

Data

- Data are a set of measurements taken on a set of individual units
- Usually data is stored and presented in a dataset, comprised of variables measured on cases

Cases and Variables

We obtain information about *cases* or *units*.

A *variable* is any characteristic that is recorded for each case.

 Generally each case makes up a row in a dataset, and each variable makes up a column

National Health and Nutrition Examination Survey

sex [‡]	age ‡	pregnant [‡]	ethnicity [‡]	smoker [‡]	diabetic [‡]	height [‡]	weight [‡]	waist [‡]	wci [‡]	bmi
female	2	no	Non-Hispanic Black	no	0	0.916	12.50	0.457	0.07886587	14.897
male	77	no	Non-Hispanic White	no	0	1.740	75.40	0.980	0.08711699	24.904
female	10	no	Non-Hispanic White	no	0	1.366	32.90	0.647	0.08171766	17.631
male	1	no	Non-Hispanic Black	no	0	NA	13.30	NA	NA	
male	49	no	Non-Hispanic White	yes	0	1.783	92.50	0.999	0.07908555	29.096
female	19	no	Other/Multi	no	0	1.620	59.20	0.816	0.08030419	22.557
female	59	no	Non-Hispanic Black	no	0	1.629	78.00	0.907	0.07461253	29.393
male	13	no	Non-Hispanic White	no	0	1.620	40.70	0.641	0.08098245	15.508
female	11	no	Non-Hispanic Black	no	0	1.569	45.50	0.646	0.07377525	18.482
male	43	no	Non-Hispanic Black	no	0	1.901	111.80	1.080	0.07948423	30.936
male	15	no	Non-Hispanic White	no	0	1.719	65.00	0.765	0.07432172	21.996
male	37	no	Non-Hispanic White	no	0	1.800	99.20	1.128	0.08590697	30.617
male	70	no	Mexican American	no	1	1.577	63.60	NA	NA	25.573
male	81	no	Non-Hispanic White	yes	0	1.662	75.50	1.003	0.08574237	27.332
female	38	no	Non-Hispanic White	yes	0	1.749	81.60	0.867	0.07343174	26.675
female	85	no	Non-Hispanic Black	no	0	1.442	41.50	0.744	0.08420643	19.958
	-				_	0.000	** **		0.07040306	14.533

Countries of the World

	Land					Birth		
Country	Area	Population	Rural	Health	Internet	Rate	Expectancy	HIV
Afghanistan	652230	29021099	76	3.7	1.7	46.5	43.9	
Albania	27400	3143291	53.3	8.2	23.9	14.6	76.6	
Algeria	2381740	34373426	34.8	10.6	10.2	20.8	72.4	0.1
American								
Samoa	200	66107	7.7					
Andorra	470	83810	11.1	21.3	70.5	10.4		
Angola	1246700	18020668	43.3	6.8	3.1	42.9	47	2
Antigua and								
Barbuda	440	86634	69.5	11	75			
Argentina	2736690	39882980	8	13.7	28.1	17.3	75.3	0.5

Diet Coke and Calcium

Drink	Calcium Excreted
Diet cola	50
Diet cola	62
Diet cola	48
Diet cola	55
Diet cola	58
Diet cola	61
Diet cola	58
Diet cola	56
Water	48
Water	46
Water	54
Water	45
Water	53
Water	46
Water	53
Water	48

NAME	CN	MP A	TT Y	DS	CMP%		YDS/	A	TD	INT	RAT	
Trace McSorley	22	24 38	37 3	614	57.9		9.34		29	8	156.9	9
Tommy Stevens	2	3	3	6	66.7		12.00)	0	0	167.	5
Totals	22	26 39	91 3	650	57.8		9.34		29	8	156.	6
RUSHING STATISTIC	s											
NAME			CAR	YD	S	A	vg		LONG		TD	
Saquon Barkley			272	149	96	5	5.5		81 (TD)		18	
Trace McSorley			146	365	5	2	2.5		26		7	
Tommy Stevens			21	198	3	9	.4		45		2	
Miles Sanders			25	184	ļ	7	.4		57		1	
Andre Robinson			29	141		4	.9		19 (TD)		5	
Mark Allen			29	115	5	4	.0		17		1	
Chris Godwin			1	13		1	3.0		13		0	
Irvine Paye			1	7		7	.0		7		0	
Totals			540	240	06	4	.5		81		34	
RECEIVING STATIST	ics											
NAME			REC		YDS		AVG		LONG		т	,
Chris Godwin			59		982		16.6		72 (TD)		11	L
Mike Gesicki			48		679		14.1		53		5	
DaeSean Hamilton			34		506		14.9		54		1	
DeAndre Thompkins			27		440		16.3		70 (TD)		1	
Saquon Barkley			28		402		14.4		44 (TD)		4	
Saeed Blacknall			15		347		23.1		70 (TD)		3	
Irvin Charles			2		106		53.0		80 (TD)		1	
Juwan Johnson			2		70		35.0		43		0	
Andre Robinson			2		42		21.0		40 (TD)		1	
Miles Sanders			2		24		12.0		21 (TD)		1	
Mark Allen			4		24		6.0		27 (TD)		1	
Brandon Polk			2		18		9.0		14		0	
Irvine Paye			1		10		10.0		10		0	
Totals			226		3650		16.2		80		29)
KICKING STATISTIC	s											
Name XPM	XPA)	XP% FG	M FGA	FG%	1-19	20-	29 3	30-39	40-49	50+	LNG	PTS
Name APM	AFA /	AP 70 PG	IFI FUA	1 149/0	1-19	20-	29 .	10-39	40-43	30 T	LING	P1

62

Tyler Davis

62

100

22

24

91.7

1/1

6/6

12/14

3/3

0/0

40

128

Data Applicable to You

- Think of a potential dataset (it doesn't have to actually exist) that you would be interested in analyzing
 - What are the cases?
 - What are the variables?
 - What interesting questions could it help you answer?

Counties with the highest kidney cancer death rates

Source: Gelman et. al. <u>Bayesian Data Anaylsis</u>, CRC Press, 2004.

Counties with the lowest kidney cancer death rates

Source: Gelman et. al. <u>Bayesian Data Anaylsis</u>, CRC Press, 2004.

If the values in the kidney cancer dataset are rates of kidney cancer deaths, then what are the cases?

- (a) The people living in the US
- (b) The counties of the US

If the values in the kidney cancer dataset are yes/no, then what are the cases?

- (a) The people living in the US
- (b) The counties of the US

Categorical versus Quantitative

 Variables are classified as either categorical or quantitative:

- A categorical variable divides the cases into groups
- A quantitative variable measures a numerical quantity for each case

Categorical

Quantitative

sex [‡]	age ‡	pregnant [‡]	ethnicity [‡]	smoker [‡]	diabetic [‡]	height [‡]	weight [‡]	waist [‡]	wci [‡]	bmi
female	2	no	Non-Hispanic Black	no	0	0.916	12.50	0.457	0.07886587	14.897
male	77	no	Non-Hispanic White	no	0	1.740	75.40	0.980	0.08711699	24.904
female	10	no	Non-Hispanic White	no	0	1.366	32.90	0.647	0.08171766	17.631
male	1	no	Non-Hispanic Black	no	0	NA	13.30	NA	NA	
male	49	no	Non-Hispanic White	yes	0	1.783	92.50	0.999	0.07908555	29.096
female	19	no	Other/Multi	no	0	1.620	59.20	0.816	0.08030419	22.557
female	59	no	Non-Hispanic Black	no	0	1.629	78.00	0.907	0.07461253	29.393
male	13	no	Non-Hispanic White	no	0	1.620	40.70	0.641	0.08098245	15.508
female	11	no	Non-Hispanic Black	no	0	1.569	45.50	0.646	0.07377525	18.482
male	43	no	Non-Hispanic Black	no	0	1.901	111.80	1.080	0.07948423	30.936
male	15	no	Non-Hispanic White	no	0	1.719	65.00	0.765	0.07432172	21.996
male	37	no	Non-Hispanic White	no	0	1.800	99.20	1.128	0.08590697	30.617
male	70	no	Mexican American	no	1	1.577	63.60	NA	NA	25.573
male	81	no	Non-Hispanic White	yes	0	1.662	75.50	1.003	0.08574237	27.332
female	38	no	Non-Hispanic White	yes	0	1.749	81.60	0.867	0.07343174	26.675
female	85	no	Non-Hispanic Black	no	0	1.442	41.50	0.744	0.08420643	19.958
	-				_	0.000			0.07040306	14.500

If the cases in the kidney cancer dataset are counties, then the measured variable is...

- (a) Categorical
- (b) Quantitative

If the cases in the kidney cancer dataset are people, then the measured variable is...

- (a) Categorical
- (b) Quantitative

Explanatory and Response

If we are using one variable to help us understand or predict values of another variable, we call the former the *explanatory* variable and the latter the *response* variable

Examples:

- Does meditation help reduce stress?
- Does sugar consumption increase hyperactivity?

Variables

For each of the following situations:

- O What are the variables?
- O Is each variable categorical or quantitative?
- Identify the explanatory and response variables.
- 1. Are children with higher exposure to pesticides more likely to develop ADHD?
- 2. Does exercise make you smarter?
- 3. Can dogs detect cancer?
- 4. Do males find females more attractive if they wear red? (We'll explore all of these questions during the course!)

Summary

- Data are everywhere, and pertain to a wide variety of topics
- A dataset is usually comprised of variables measured on cases
- Variables are either categorical or quantitative
- Data can be used to provide information about essentially anything we are interested in and want to collect data on!