Natural Language Processing with Disaster Tweets

Max Tjen and Jerry Xiao

Background

- Twitter has become a go-to platform for real-time public messages
- 6,000 tweets per second
 - ⇒ 500 million tweets per day
- Agencies are interested in monitoring Twitter
 - News agencies
 - Disaster relief agencies
 - Sentiment analysis: political figures, stocks, crypto, etc...

The Problem

- Dataset of over 7,000 tweets
- Each one may or may not be related to natural disaster
- Classify each tweet: is it discussing a natural disaster or not?

On plus side LOOK AT THE SKY LAST NIGHT IT WAS ABLAZE

Significance

Twitter is a huge trove of information

 Monitoring Tweets could be be a way to gather information about important news events in real-time

The Data

- Train data (7614 rows, labeled) for building model
- Test data (3264 rows, unlabeled) for predicting and submitting to kaggle

Given Variables:

```
id - a unique identifier for each tweet

text - the text of the tweet

location - the location the tweet was sent from (may be blank)

keyword - a particular keyword from the tweet (may be blank)
```

target - in train.csv only, this denotes whether a tweet is about a real disaster (1) or not (0)

The Data

	id	keyword	location	text	target
0	1	NaN	NaN	Our Deeds are the Reason of this #earthquake M	1
1	4	NaN	NaN	Forest fire near La Ronge Sask. Canada	1
2	5	NaN	NaN	All residents asked to 'shelter in place' are	1
3	6	NaN	NaN	13,000 people receive #wildfires evacuation or	1
4	7	NaN	NaN	Just got sent this photo from Ruby #Alaska as	1

7608	10869	NaN	NaN	Two giant cranes holding a bridge collapse int	1
7609	10870	NaN	NaN	@aria_ahrary @TheTawniest The out of control w	1
7610	10871	NaN	NaN	M1.94 [01:04 UTC]?5km S of Volcano Hawaii. htt	1
7611	10872	NaN	NaN	Police investigating after an e-bike collided	1
7612	10873	NaN	NaN	The Latest: More Homes Razed by Northern Calif	1

7613 rows × 5 columns

Relevant Works

Hong Kong Protests: Using Natural Language Processing for Fake News Detection on Twitter:

- Dataset of tweets that are real/fake news regarding Hong Kong protests
- Feature extraction
 - Features are purely linguistic
- Tested Naive Bayes, SVMs, Decision Trees for predicting veracity of news
 - o For all but random trees, top 10 correlated features are chosen and normalized
- 10 most significant features: tweet length, number of punctuation marks, number of periods, average number of characters per sentence, number of adverbs, number of "to", number of verbs, number of entities(nouns), tweet entropy, TTR

Results from Hong Kong paper

Algorithm	Class	Precision	Recall	F1 Score
Naive Bayes	Fake	90.1%	85.4%	87.6%
	Real	89.7%	92.8%	91.2%
	Average	89.9%	89.1%	89.4%
SVM	Fake	96.0%	84.0%	89.6%
	Real	89.4%	97.5%	93.3%
	Average	92.7%	90.8%	91.4%
C4.5	Fake	94.7%	84.7%	89.3%
	Real	89.8%	96.6%	93.0%
	Average	92.3%	90.6%	91.2%
Random Forest	Fake	97.5%	84.3%	90.3%
	Real	89.7%	98.4%	93.8%
	Average	93.6%	91.3%	92.1%

Relevant Works

Conclusions from Hong Kong paper:

Results indicate that tweets spreading fake news and real news differ notably in linguistic features.

Possible Caveats/Flaws:

Many tweets were translated from Chinese to english

No features related to user/network characteristics

Models tested aren't very modern (could try NN's)

OUR METHOD

We follow the same methods as the Hong Kong paper with some modifications:

- Clean the Tweets
- Extract linguistic features
- Gather sentiment from tweets
- RandomForest to classify based on our features

Data Cleaning

```
MISSING:

id 0
keyword 61
location 2533
text 0
target 0
dtype: int64
```

DUPLICATE:

0

Not disaster: 57.03402075397347% Is disaster: 42.96597924602653%

Data Cleaning

- Non printable characters were removed (emojis, symbols)
- Character references were removed (&)

For Textblob and Vader sentiment

- All letters to lowercase
- All but alphanumeric stripped out

```
text \
      Our Deeds are the Reason of this #earthquake M...
0
                 Forest fire near La Ronge Sask. Canada
1
      All residents asked to 'shelter in place' are ...
3
      13,000 people receive #wildfires evacuation or...
      Just got sent this photo from Ruby #Alaska as ...
4
. . .
                                                      . . .
      Two giant cranes holding a bridge collapse int...
7608
      @aria ahrary @TheTawniest The out of control w...
7609
7610
      M1.94 [01:04 UTC]?5km S of Volcano Hawaii. htt...
7611
      Police investigating after an e-bike collided ...
      The Latest: More Homes Razed by Northern Calif...
7612
                                           cleanedTweets
      our deeds are the reason of this earthquake ma...
0
                  forest fire near la ronge sask canada
1
      all residents asked to shelter in place are be...
3
      13000 people receive wildfires evacuation orde...
4
      just got sent this photo from ruby alaska as s...
. . .
                                                      . . .
7608
      two giant cranes holding a bridge collapse int...
7609
      aria ahrary thetawniest the out of control wil...
7610
      m194 0104 utc5km s of volcano hawaii httptcozd...
7611
      police investigating after an ebike collided w...
7612
      the latest more homes razed by northern califo...
```

Feature Engineering

- 36 Predictive Features
- Categories
 - Boolean
 - Overall Tweet Characteristics
 - Types of Word (grammar)
 - Sentiment
 - TTR and Entropy

```
charsToCheck = {'!', '@', '#', '?', '.', ',', 'http'}
vowels = {'a', 'e', 'i', 'o', 'u', 'A', 'E', 'I', 'O', 'U'}
nouns = {'NN', 'NNS', 'NNP', 'NNPS'}
verbs = {'VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ'}
adj = {'JJ', 'JJR', 'JJS'}
adv = {'RR', 'RBR', 'RBS'}
hasLocation = []
hasKeyword = []
tweetNumberOfChars = []
specialCharacters = []
numberOfWords = []
avgCharsPerWord = []
numNumericTweet = []
numLettersTweet = []
numUpperTweet = []
numVowelsTweet = []
numConsonantsTweet = []
numNouns = []
numVerbs = []
numPrep = []
numAdj = []
numAdv = []
numProperNoun = []
```

Feature Engineering: Boolean

Feature Engineering: Overall Tweet

- Bulk of features
 - Number of characters
 - Number of words
 - Number of special characters
 - **!**@,#?.
 - Average characters per word
 - Number or numeric and letters in tweet
 - Number of consonants and vowels
 - Number of special characters per sentence

```
for char in word:
    if char.isnumeric():
        numNumeric += 1
    if char.isalpha():
        numLetters += 1
        if char.isupper():
            numUpper += 1
        if char in vowels:
            numVowels += 1
    else:
        numConsonants += 1
```

```
# number of specific special characters in tweet
specialChars = []
for specialChar in charsToCheck:
    numSpecialChar = text.count(specialChar)
    specialChars.append(numSpecialChar)
```

Feature Engineering: Grammar

- NLTK package
 - Natural language toolkit
- Pass array of words into function
- Function tags each word
- Add counts for each type

```
ans = nltk.pos tag(words)
for pair in ans:
    wordType = pair[1]
    if (wordType == 'NNP') or (wordType == 'NNPS'):
        properNounNum += 1
    elif wordType in nouns:
        nounNum += 1
    elif wordType in verbs:
        verbNum += 1
    elif wordType == 'IN':
        prepNum += 1
    elif wordType in adj:
        adjNum += 1
    elif wordType in adv:
        advNum += 1
```

Feature Engineering: Sentiment

- Representation of emotion in text
- Textblob
 - Built on NI TK
 - Sees if a word is positive, negative, or neutral and then calculates average of text
- Vader
 - Rule based (grammar and syntax conventions)
 - o Dictionary of words that maps words to emotional intensity
 - Optimized for social media data tuned for small amounts of text

Feature Engineering: Sentiment

cleanedTweets	sentimentText	sentimentVader	target
Our Deeds are the Reason of this #earthquake M	0.000000	0.2732	1
Forest fire near La Ronge Sask. Canada	0.100000	-0.3400	1
All residents asked to 'shelter in place' are	-0.018750	-0.2960	1
13,000 people receive #wildfires evacuation or	0.000000	0.0000	1
Just got sent this photo from Ruby #Alaska as	0.000000	0.0000	1
			•••
Two giant cranes holding a bridge collapse int	0.000000	-0.4939	1
@aria_ahrary @TheTawniest The out of control w	0.150000	-0.5849	1
M1.94 [01:04 UTC]?5km S of Volcano Hawaii. htt	0.000000	0.0000	1
Police investigating after an e-bike collided	-0.260417	-0.7845	1
The Latest: More Homes Razed by Northern Calif	0.500000	0.0000	1

Feature Engineering: TTR and Entropy

TTR (type-token ratio) - total number of unique words divided by total number of words in a document (tweet)

Entropy - sum of all TF-IDF values of words for each tweet

- Term frequency in document inverse document frequency across set of documents
 - The more times a word is used ⇒ it is less important (ex. 'and')
- Measure of word importance

```
tfidfvectorizer = TfidfVectorizer(analyzer='word', stop_words= 'english')
tfidf_wm = tfidfvectorizer.fit_transform(train['cleanedTweets'])

#retrieve the terms found in the corpora
tfidf_tokens = tfidfvectorizer.get_feature_names()

# Get TFIDF representation of tweets
df_tfidfvect = pd.DataFrame(data = tfidf_wm.toarray(),index = list(train.index.values) ,columns = tfidf_tokens)
```

Resulting Features

- hasLocation
- hasKeyword
- tweetNumberOfChars
- numberOfWords
- numEx
- numAt
- numHash
- numQ
- numPeriod
- numComma
- numLinks
- numPunc
- avgCharsPerWord
- numNumericTweet
- numLettersTweet
- numUpperTweet
- numVowelsTweet
- numConsonantsTweet
- numNouns

- numNouns
- numVerbs
- numPrep
- numAdj
- numAdv
- charsPerSentenceTweet
- numSentencesTweet
- numProperNoun
- numTo
- ttr
- entropy
- hashPerSentence
- wordsPerSentence
- atPerSentence
- commasPerSentence
- linksPerSentence
- sentimentText
- sentimentVader

Resulting Features

<u> </u>		hasLocation	hasKeyword	$tweet {\bf Number Of Chars}$	numberOfWords	numEx	numAt	numHash	numQ	numPeriod	numComma	 ttr	entropy
	0	0	0	69	13	0	0	0	1	0	0	 1.000000	2.215113
	1	0	0	38	7	1	0	0	0	0	0	 1.000000	2.406114
	2	0	0	133	22	1	0	0	0	0	0	 0.818182	2.837094
	3	0	0	65	8	0	0	0	1	1	0	 0.875000	2.393269
	4	0	0	88	16	0	0	0	2	0	0	 0.937500	3.081889
					***	***		•••				 ***	
7	608	0	0	83	11	1	0	0	0	0	1	 0.909091	2.634344
7	609	0	0	125	20	2	0	0	0	0	0	 0.800000	2.933941
7	610	0	0	65	8	3	0	.1	0	0	1	 0.500000	1.410888
7	611	0	0	137	19	2	0	0	0	0	0	 0.947368	3.220383
7	612	0	0	94	13	1	0	0	0	0	1	 0.846154	2.814050

7613 rows × 37 columns

Resulting Features

		Maskeyword -
sentimentVader	0.232405	tweethumperory days
numComma	0.195455	numper 100 - 0.6
numConsonantsTweet	0.190908	avgCharsPersyord
tweetNumberOfChars	0.184401	numburaere West
commasPerSentence	0.183376	numConsonaristivest
numLettersTweet	0.182460	charsPerSentence Weet 0.0
numNouns	0.175625	hameroper World
numNumericTweet	0.172301	whase Bersenrence
numEx	0.156265	commesses 55 1 5 1 5 5 5 6 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6
numSentencesTweet	0.156265	sentiment laget
numPrep	0.155628	55-67-48-56-54-69-94-94-94-94-94-94-94-94-94-94-94-94-94
numVowelsTweet	0.151178	
avgCharsPerWord	0.137535	
entropy	0.129417	
wordsPerSentence	0.117802	
		3 5 5 0

hasLocation -

RandomForest Classifier

How it works:

- Many individual decision trees: each makes prediction as a vote
 - Each tree gets a random subset of data with replacement, and random subset of features
 - More diversification, lower correlation across trees

Tally: Six 1s and Three 0s

Prediction: 1

RandomForest Classifier: Default Model

80-20 train-test split

First trained on default RandomForestClassifier():

```
- n_{estimators} = 100 100 trees
```

- max_depth = none no max depth of trees
- max_features = sqrt for each split, consider sqrt(num_features)

RandomForest Classifier: Default Model

train accuracy: 0.9975369458128078 test accuracy: 0.7340774786605384

Classification Report

		precision	recall	f1-score	support
	0.0	0.73	0.86	0.79	875
	1.0	0.75	0.57	0.64	648
accui	racy			0.73	1523
macro	avg	0.74	0.71	0.72	1523
weighted	avg	0.74	0.73	0.73	1523

Confusion Matrix

Out[51]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x1fa21440250>

RandomForest Classifier: Optimization

Hyperparameter Optimization:

- Create a grid: n_estimators 200-2000

max_depth 100-500, none

max_features none, sqrt

- Randomly search grid and test parameters (tested 50 candidates)
- result: n_estimators: 200

Max_depth: none

max_features sqrt

Results: Optimized Model

train accuracy: 0.9975369458128078 test accuracy: 0.7399868680236376

Classification Report

	precision	recall	f1-score	support
0.0	0.73	0.86	0.79	875
1.0	0.75	0.58	0.65	648
accuracy			0.74	1523
macro avg	0.74	0.72	0.72	1523
weighted avg	0.74	0.74	0.73	1523

Confusion Matrix

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x1fa2568d670>

Results: Optimized Model

Results: Kaggle Competition Entry

submission.csv

Complete - 4d ago

0.72142

Analysis

Our accuracy is much lower than the Hong Kong paper with similar methods:

- Different implementation of entropy
- Our data is generally less formal
 - In Hong Kong paper, all tweets were trying to look like real news
 - Our data contains a lot of normal tweets from normal users
- Different data collection
 - Ours: pool of tweets chosen because of potential keyword
 - Theirs: had to separately procure fake news data and real news data: does not come from the same pool

Conclusion:

There is a difference in linguistic features between tweets regarding natural disaster and tweets not regarding natural disaster. The most significant features were:

Feature	MDI
sentimentVader	0.088286
avgCharsPerWord	0.075707
entropy	0.058457
numUpperTweet	0.049401
numConsonantsTweet	0.046705

Conclusion: Future Work

- More in-depth data cleaning
 - Twitter data generally requires more cleaning due to very relaxed grammar
 - Lots of acronyms, purposely misspelled words (yes vs. yesssss)
- Method to validate location values
- BERT (Bidirectional Encoder Representations from Transformers)
- SVM (support vector machine)

References

Di Pietro, Mauro. "Text Analysis & Feature Engineering with NLP." *Medium*, Towards Data

Science, 15 Mar. 2022,

https://towardsdatascience.com/text-analysis-feature-engineering-with-nlp-502d6ea9225d.

Zervopoulos, Alexandros, et al. "Hong Kong Protests: Using Natural Language Processing for Fake News Detection on Twitter." *IFIP Advances in Information and Communication Technology*, 29 May 2020, pp. 408–419., https://doi.org/10.1007/978-3-030-49186-4_34.