BODY FAT PREDICTION ANALYSIS

INTRODUCTION

DATASET OVERVIEW

Density

Density determined from underwater weighing

02

Age (years)

03

Weight (lbs)

Height (inches)

05

circumference (cm)

Neck, Chest, Biceps etc....

06

BodyFat (%)

Our Target, Percent body fat from Siri's (1956) equation

VISUALIZATIONS

- Histogram of Body Fat
- Scatter plot of Weight vs. Height
- Heatmap of feature correlations

VISUALIZATION - BODYFAT DISTRIBUTION

VISUALIZATION - WEIGHT IN FUNCTION OF HEIGHT

VISUALIZATION - BODYFAT IN FUNCTION OF AGE

VISUALIZATION - FREQUENCIES OF WEIGHT CLASSIFICATION BASED ON BMI

Dataset before data processing

	Density	BodyFat	Age	Weight	Height	Neck	Chest	Abdomen	Hip	Thigh	Knee	Ankle	Biceps	Forearm	Wrist
0	1.0708	12.3	23	154.25	67.75	36.2	93.1	85.2	94.5	59.0	37.3	21.9	32.0	27.4	17.1
1	1.0853	6.1	22	173.25	72.25	38.5	93.6	83.0	98.7	58.7	37.3	23.4	30.5	28.9	18.2
2	1.0414	25.3	22	154.00	66.25	34.0	95.8	87.9	99.2	59.6	38.9	24.0	28.8	25.2	16.6
3	1.0751	10.4	26	184.75	72.25	37.4	101.8	86.4	101.2	60.1	37.3	22.8	32.4	29.4	18.2
4	1.0340	28.7	24	184.25	71.25	34.4	97.3	100.0	101.9	63.2	42.2	24.0	32.2	27.7	17.7

Data Cleaning and Preprocessing

- Handling missing values and outliers
- Weight (lbs) to (kg) & Height (inches) to (cm)

- New column: BMI (Body mass index) = Weight/((Height/100)**2)
 - BMI is an inexpensive and easy screening method for weight category underweight, healthy weight, overweight, and obesity.

Normalization of Age column

TACKLING MULTICOLLINEARITY BY REMOVING HIGHLY CORRELATED FEATURES

Body Fat = (495/Density) - 450.

Dropping columns that are too highly correlated such as 'Weight' and 'Hip'

- 0.75

- 0.50

- 0.25

- 0.00

-0.25

- -0.50

-0.75

Final dataset for prediction

	BodyFat	Age	Neck	Chest	Abdomen	Thigh	Knee	Ankle	Biceps	Forearm	Wrist	Bmi
0	12.3	4.795832	36.2	93.1	85.2	59.0	37.3	21.9	32.0	27.4	17.1	23.626779
1	6.1	4.690416	38.5	93.6	83.0	58.7	37.3	23.4	30.5	28.9	18.2	23.334338
2	25.3	4.690416	34.0	95.8	87.9	59.6	38.9	24.0	28.8	25.2	16.6	24.668737
3	10.4	5.099020	37.4	101.8	86.4	60.1	37.3	22.8	32.4	29.4	18.2	24.883227
4	28.7	4.898979	34.4	97.3	100.0	63.2	42.2	24.0	32.2	27.7	17.7	25.517358

Linear Regression Model

Mean Squared Error: 21.435076609

r2 score: 0.539209674395323

r2 score: 0.539209674395323 Mean Absolute Error: 3.431108117

rmse: 4.629803085380634

RandomForestRegressor Model

Mean Squared Error: 16.52770

r2 score: 0.6447035544180055

Mean Absolute Error: 3.35861

rmse: 4.065428011510278

CatBoostRegressor Model

Mean Squared Error: 15.37122 r2 score: 0.6695645264682537 Mean Absolute Error: 3.259968 25 rmse: 3.9206148088456745

Shapley values

Beeswarm plot

Dependance plots

Clustering

FOR WATCHING THIS PRESENTATION Q&A