

## Kapitel 13: Netzsicherheit -Schicht 3: Network Layer - IPSec





#### Inhalt

- Schwächen des Internet-Protokolls (IP)
- IPSec: Sicherheitserweiterung des IP-Protokolls
  - □ Authentication Header (AH)
  - Encapsulating Security Payload (ESP)
  - Anwendungsbeispiele
- Schlüsselverteilung mit IKEv2 (Internet Key Exchange)
  - □ Aufbau einer IKE SA
  - Authentisierung der Partner
  - □ Aufbau der IPSec SA
  - Erzeugung von Schlüsselmaterial



#### IP: Gefahren und Schwächen

#### Vertraulichkeit:

- Mithören relativ einfach möglich
- Man-in-the-middle-Angriffe
- Verkehrsfluss-Analyse

#### ■ Integrität:

- Veränderung der Daten
- Session Hijacking
- Replay-Angriffe

#### ■ Authentisierung:

- □ IP Spoofing
- Lösung: IPSec (Sicherheitserweiterungen für IP)
  - □ Fester Bestandteil von IPv6
  - Als Erweiterungs-Header auch für IPv4 einsetzbar
  - Motivation: Erspart den Aufwand für entsprechende Gegenmaßnahmen in jeder einzelnen Anwendung (d.h. auf höheren Schichten)

#### IPSec Überblick

#### ■ IP Authentication Header (AH)

- Integrität des verbindungslosen Verkehrs
- Authentisierung des Datenursprungs (genauer: des IP-Headers)
- Optional: Anti-Replay-Dienst

#### IP Encapsulating Security Payload (ESP)

- □ Vertraulichkeit (eingeschränkt auch für den Verkehrsfluss)
- □ Integrität
- Authentisierung (der sog. Security Association)
- □ Anti-Replay Dienst

#### ■ Jeweils zwei verschiedene Betriebsmodi:

- □ Transport Mode
- □ Tunnel Mode



## IPSec: Transport Mode / Tunnel Mode

■ In beiden Modi können AH und/oder ESP eingesetzt werden

#### **Transport Mode**





#### Einschub: "herkömmlicher" IPv4-Header



#### Version

Version of IP Protocol. 4 and 6 are valid. This diagram represents version 4 structure only.

#### Header Length

Number of 32-bit words in TCP header, minimum value of 5. Multiply by 4 to get byte count.

#### Protocol

IP Protocol ID. Including (but not limited to):

- 1 ICMP 17 UDP 57 SKIP 2 IGMP 47 GRE 88 EIGRP 6 TCP 50 ESP 89 OSPF 9 IGRP 51 AH 115 L2TP
  - Total Length

Total length of IP datagram, or IP fragment if fragmented. Measured in Bytes.

#### Fragment Offset

Fragment offset from start of IP datagram. Measured in 8 byte (2 words, 64 bits) increments. If IP datagram is fragmented, fragment size (Total Length) must be a multiple of 8 bytes.

#### Header Checksum

Checksum of entire IP header

#### х D М

x 0x80 reserved (evil bit) D 0x40 Do Not Fragment M 0x20 More Fragments follow

IP Flags

#### RFC 791

Please refer to RFC 791 for the complete Internet Protocol (IP) Specification.

Bildquelle: nmap.org



#### Einschub: "herkömmlicher" TCP-Header





# ECN (Explicit Congestion Notification). See RFC 3168 for full details, valid states below. Packet State DSB ECN bit Syn 0 0 0 1 1

| Packet State      | DSB | ECN bits |
|-------------------|-----|----------|
| Syn               | 0.0 | 11       |
| Syn-Ack           | 0.0 | 0 1      |
| Ack               | 0 1 | 0.0      |
| No Congestion     | 0 1 | 0.0      |
| No Congestion     | 10  | 0.0      |
| Congestion        | 11  | 0.0      |
| Receiver Response | 1.1 | 0 1      |
| Sender Response   | 1.1 | 1.1      |

- 0 End of Options List
- 1 No Operation (NOP, Pad)
- 2 Maximum segment size
- 3 Window Scale
- 4 Selective ACK ok
- 8 Timestamp

#### Checksum

Checksum of entire TCP segment and pseudo header (parts of IP header) Number of 32-bit words in TCP header, minimum value of 5. Multiply by 4 to get byte count.

#### RFC 793

Please refer to RFC 793 for the complete Transmission Control Protocol (TCP) Bildquelle: nmap.org Specification.

S 0x02 Syn

F 0x01 Fin



## Authentication Header (AH) - Überblick



- □ Integrität durch MAC
- Authentisierung durch gemeinsamen Schlüssel
- Anti-Replay durch gesicherte Sequenznummer

#### ■ AH im Tunnel Mode

| IP-Header neu | AH Header | IP Header alt | Daten |
|---------------|-----------|---------------|-------|
|               |           |               |       |



#### AH Header im Detail

Bit 15 AH Next Reserved Header Length Security Parameter Index (SPI) Sequence Number Integrity Check Value (ICV) (variable Länge)



## AH Transport Mode - Details

IPSec in AH Transport Mode





#### **AH Tunnel Mode - Details**

IPSec in AH Tunnel Mode Original IPv4 Datagram New IPv4 Datagram New IP ver | hlen TOS ver hlen TOS pkt len + AH + IP pkt len ID flgs frag offset ID flgs frag offset proto=TCP header cksum proto=AH header cksum src IP address src IP address dst IP address dst IP address next=IP AH len Reserved TCP header (proto = 6) SPI (Security Parameters Index) Sequence Number Authentication Data (usually MD5 or SHA-1 hash) TCP payload hlen TOS pkt len ID frag offset proto=TCP header cksum Protected by src IP address AH Auth Data dst IP address TCP header (proto = 6) TCP payload

© Helmut Reiser, LRZ, WS 19/20

Bildquelle: Steve Friedl / unixwiz.net



## Encapsulating Security Payload (ESP) - Überblick



| IP Header neu | ESP Header | IP Header alt | Daten | ESP Trailer | Auth. Data |
|---------------|------------|---------------|-------|-------------|------------|
|---------------|------------|---------------|-------|-------------|------------|

Schutz vor Traffic-Analysen durch verschlüsselten IP-Header "alt"



#### **ESP Header im Detail**

Bit <u>0</u> 7 15 23 31

Security Parameter Index (SPI)

Sequence Number

Payload Data (variable); protected

Padding (0 - 255 bytes)

Pad Length

Next Header

Integrity Check Value (ICV)



#### **ESP Transport Mode - Details**

IPSec in ESP Transport Mode





#### **ESP Tunnel Mode - Details**

IPSec in ESP Tunnel Mode





### **IPSec Replay Protection**

- Empfänger verwaltet Window für empfangene Pakete
  - Ursprünglich als Mechanismus, um Überfluten des Empfängers zu vermeiden
  - □ nicht größer als 32 Bit
- Grundprinzip:

#### Sliding Window empfangener Pakete



Replay



## IPSec Anwendungsszenarien

- AH und ESP können kombiniert verwendet werden
- Auch Tunnel und Transport Mode können kombiniert werden
- Mögliche Einsatzszenarien
  - □ Kopplung von verschiedenen Unternehmensstandorten Verbindung von Security Gateway (SGW) zu Security Gateway



□ Telearbeitsplätze; Remote Access ("Road Warrior") Endsystem zu SGW



End-to-End





#### Szenario Standortvernetzung



#### Mögliche Anforderungen:

- Authentisierung SGW-to-SGW oder End-to-End
- Integritätssicherung SGW-to-SGW oder End-to-End
- □ Schutz gegen Replay-Angriffe
- □ Vertraulichkeit auch im (jeweils) internen Netz
- □ SGW realisiert auch Firewall-Funktionen
- Verwendung privater IP-Adressen in den Standorten
- Verschattung interner Netzstrukturen



#### Protokollkombinationen

- AH Tunnel Mode am Security Gateway
  - Integritätssicherung
  - Authentisierung SGW to SGW
  - Private Adressen im internen Netz
- ESP Tunnel Mode am Security Gateway
  - Vertraulichkeit (auch der privaten Adressen)
- AH Transport am Endsystem / ESP Transport am SGW
  - Integritätssicherung
  - Authentisierung End to End
  - Vertraulichkeit ab SGW
  - Private Adressen nicht möglich
  - Nur theoretische Kombination; praktisch schwer realisierbar (Empfänger SGW nicht adressierbar)

| IP Header ESP Header | AH Header | Daten | ESP Trailer |
|----------------------|-----------|-------|-------------|
|----------------------|-----------|-------|-------------|



## Protokollkombinationen (2)

- ESP Transport am Endsystem, AH Transport am SGW
  - Vertraulichkeit End to End
  - Authentisierung SGW to SGW
  - Private Adressen nicht möglich
  - SGW kann nicht mehr filtern (wegen Verschlüsselung)
  - □ Theoretisches Beispiel, in der Praxis schwer realisierbar, SGW nicht adressiert (transparentes SGW)

| IP Header | AH Header | ESP Header | Daten | ESP Trailer |
|-----------|-----------|------------|-------|-------------|
|           |           |            |       | A .         |

- AH Transport am Endsystem / ESP Tunnel am SGW
  - Integritätssicherung
  - Authentisierung End to End
  - Vertraulichkeit ab SGW
  - Private Adressen möglich

| IP Header ESP | IP Header 1 | AH Header | Daten | ESP Trailer |
|---------------|-------------|-----------|-------|-------------|
|---------------|-------------|-----------|-------|-------------|



## IPSec Security Association (SA)

#### Inhalt einer SA

- □ IPSec Protokoll Modus (Tunnel oder Transport)
- Parameter (Algorithmen, Schlüssel, Zertifikat, Initialisierungsvektor,...)
- Lebensdauer der SA
- □ Sequenznummernzähler mit –overflow
- □ Anti-Replay-Window
- **u** .....

#### Identifikation einer SA per Kombination aus:

- □ Security Parameter Index (SPI); 32-Bit Zahl
- □ Ziel-Adresse
- □ Verwendetes Protokoll (AH, ESP)
- D.h. in jede Kommunikationsrichtung wird eine eigene SA vereinbart
- Jeder IPSec-Teilnehmer hat eine lokale Security Policy Database (SPD) mit SAs



#### Inhalt

- Schwächen des Internet-Protokolls (IP)
- IPSec: Sicherheitserweiterung des IP-Protokolls
  - □ Authentication Header (AH)
  - Encapsulation Security Payload (ESP)
  - Anwendungsbeispiele
- Schlüsselverteilung mit IKEv2 (Internet Key Exchange)
  - □ Aufbau einer IKE SA
  - Authentisierung der Partner
  - Aufbau der IPSec SA
  - Erzeugung von Schlüsselmaterial



## Grundlage: Diffie-Hellman Schlüsselaustausch

- Ermöglicht den sicheren Austausch eines Schlüssels über einen unsicheren Kanal:
- Primzahl p und eine primitive Wurzel g (mod p) dürfen öffentlich bekannt gemacht werden (oft als Diffie-Hellman Group bezeichnet)
- Alice wählt ein x aus [1..p-2]
- Bob wählt ein y aus [1..p-2]
- Alice schickt A = g<sup>x</sup> mod p an Bob
- Bob schickt  $B = g^y \mod p$  an Alice
- Beide verwenden den folgenden Schlüssel:

$$Key = A^y = (g^x)^y = g^{xy} = (g^y)^x = B^x \pmod{p}$$



#### Einschub: Diffie-Hellman Beispiel

- Achtung: Üblicherweise Zahlen mit mehreren hundert Stellen!
- Alice und Bob einigen sich auf p=13 und g=2
- Alice wählt zufällig x=5, Bob wählt zufällig y=7
- Alice berechnet A = 2<sup>5</sup> mod 13 = 6, schickt dies an Bob
- Bob berechnet B =  $2^7$  mod 13 = 11, schickt dies an Alice
- Alice berechnet 11<sup>5</sup> mod 13 = 7
- Bob berechnet 6<sup>7</sup> mod 13 = 7
- Beide erhalten also das Ergebnis 7
- Angreifer kann die Zahlen 13, 2, 6 und 11 mithören, den Wert 7 aber nicht berechnen, da g<sup>xy</sup> aufwendig zu berechnen ist, selbst wenn g, g<sup>x</sup> und g<sup>y</sup> bekannt sind. (Eng verwandt mit dem Diskreten-Logarithmus-Problem)



#### IPSec Schlüsselaustausch über IKEv2

#### Protokollprimitive

- 1. IKE\_INIT
  - Aufbau einer bidirektionalen IKE SA
- 2. IKE\_AUTH
  - Authentisierung der Partner
  - Aufbau der ersten (und oft einzigen) bidirektionalen IPSec SA
- 3. IKE\_CHILD\_SA
  - Aushandeln weiterer IPSec SAs
  - Re-Keying einer bestehenden SA
- □ Ein durch IKE\_AUTH etablierter Kanal kann für mehrere IKE\_CHILD\_SA Exchanges verwendet werden

#### Ziele:

- Erzeugung des für IPSec benötigten Schlüsselmaterials
- □ Authentisierung der Gegenseite schon in IKE (nicht erst in IPSec)



#### IKEv2: IKE\_INIT



IKE-SA ausgehandelt, Schlüssel erzeugt, vertraulicher Kanal möglich; KEINE Authentisierung

- IKE-SA-Vorschlag: enthält die vom Initiator unterstützen Algorithmen
- Ni, Nr Zufallszahlen
- Diffie-Hellman Verfahren zur Berechnung von SKEYSEED
- Ableitung aus SKEYSEED (für jede Richtung separat)
  - □ SK a: Authentisierungsschlüssel
  - □ SK\_e: Schlüssel für Kryptoverfahren
- CertReq: Anforderung von Zertifikat(en); Optional



#### IKEv2: IKE\_AUTH

| Alice     | verschlüsselt und integritätsgesichert |     |                 |            |        |         |    |         |      | Bob         |
|-----------|----------------------------------------|-----|-----------------|------------|--------|---------|----|---------|------|-------------|
| Initiator | Head                                   | der | IDi (Ini        | tiator)    | [Cert] | [CertRe | q] |         |      | Responder   |
|           |                                        |     |                 |            |        |         |    | (Respon | der) |             |
|           | AUT                                    | Н   | IPSec<br>Vorsch | SA-<br>lag | TSi    | TSr     |    |         |      |             |
|           |                                        |     |                 | 15         |        | FO (1   |    |         |      | <del></del> |
|           |                                        |     | ader            | IDr        |        | [Cert]  | A  | UTH     | 1    |             |
|           |                                        | IPS | ec SA           | TSi        |        | TSr     |    |         |      |             |
| 4         | 0 0                                    |     | DO 04           | 101        |        |         |    |         |      |             |

A und B authentisiert; IPSec-SA und Schlüsselmaterial vorhanden

- Initiator und Responder können mehrere IDs haben; IDi und IDr bestimmen die jeweils gewählte ID
- Authentisierung über Public Key in AUTH
- Zertifikat und entsprechende Kette in Cert (Optional)
- TSx enthält Informationen aus lokaler Security Policy Database



#### IKEv2: TSx

- Falls IP-Paket verarbeitet wird, für das "protect" in der SPD gesetzt ist:
  - □ Paket muss verschlüsselt werden
  - Mögliches Problem: Es existiert keine SA
  - SPD-Verwaltung ist keine Aufgabe von IKE
  - □ Aber IKE dient zur Aushandlung von SAs
  - Informationen aus lokaler SPD können über TSx weitergegeben werden
  - Damit Wahrung der Konsistenz
- Bsp.: Bob ist Gateway für privates Subnetz
  - □ Alice will Verkehr ins Subnetz 10.11.12.\* tunneln
  - □ TSi enthält Adress-Range: 10.11.12.0 10.11.12.255
  - □ Bob kann Adress-Range in TSr einschränken



#### IKEv2: Zusammenfassung



A und B authentisiert; IPSec-SA und Schlüsselmaterial vorhanden



#### IKEv2: CREATE\_CHILD\_SA

#### Alice Initiator



Bob Responder

Header SA Nr [Diffie-Hellman gy] [TSi, TSr]

A und B authentisiert; IPSec-SA und Schlüsselmaterial vorhanden

- Optional, da SA bereits mit IKE\_AUTH ausgehandelt wird
- N enthält existierende SA, für die neues Schlüsselmaterial berechnet werden soll
- Optionaler Diffie-Hellman Key Exchange für Forward Security
- Nx sind von Initiator / Responder gewählte Zufallszahlen



### IKEv2: Schlüsselgenerierung

#### ■ IKE-SA legt fest:

- Verschlüsselungsalgorithmus
- Integritätssicherungsalgorithmus
- □ Diffie-Hellman Group (p und g)
- Zufallszahlenfunktion (Pseudo-random function, prf)
- prf wird zur Schlüsselerzeugung verwendet;
- Abhängig von der benötigten Schlüssellänge wird prf iteriert

```
□ prf+(K,S)
□ prf+ = T1 | T2 | T3 | T4 | ... mit

K = Key
S = Seed
```

```
\Box T1 = prf( K, S | 0x01 )
```

$$\Box$$
 T2 = prf( K, S | 0x02 )

**.....** 

 $\Box$  Tn = prf( K, S | 0x n )

#### IKEv2: IKE-Schlüsselmaterial

#### ■ IKE-SA Schlüsselmaterial:

- □ SK<sub>d</sub> verwendet zur Ableitung neuer Schlüssel für CHILD\_SA
- SK<sub>ai</sub> Schlüssel für Integritätssicherung des Initiators
- □ SK<sub>ar</sub> Schlüssel für Integritätssicherung des Responders
- □ SKei und SKer Schlüssel für Verschlüsselung
- SK<sub>pi</sub> und SK<sub>pr</sub> Erzeugung der AUTH Payload
- SKEYSEED = prf ( Ni | Nr ,  $g^{xy}$ )
- IKE-SA Schlüsselmaterial: {SK<sub>d</sub> | SK<sub>ai</sub> | SK<sub>ar</sub> | SK<sub>ei</sub> | SK<sub>er</sub> | SK<sub>pi</sub> | SK<sub>pr</sub>} = prf+ (SKEYSEED, Ni | Nr | SPI<sub>i</sub> | SPI<sub>r</sub>)
- CHILD\_SA Schlüsselmaterial:
  - □ KEYMAT = prf+ (SK<sub>d</sub>, Ni | Nr) bzw.
  - $\square$  KEYMAT = prf+ (SK<sub>d</sub>, g<sup>xy</sup> | Ni | Nr )



### IKEv2: Authentisierung

- mehrere Alternativen:
- Durch digitale Signatur eines vordefinierten Datenblocks
  - Verifikation durch Empfänger
  - Zertifikat (und evtl. entsprechende Kette) erforderlich
  - Optionale Anforderung und Übertragung: CertReq und Cert
  - Zertifikat kann auch schon bekannt sein
- Durch HMAC des Datenblocks
- Durch Verwendung des Extensible Authentication Protocol (EAP, vgl. Kap. 9)