QBS 103 Final Project Part 2

Chichi Illoh

2023-08-08

Final Project Part 2

```
meta_data = read.csv("QBS103_finalProject_metadata.csv")
#head(meta data)
gene_data = read.csv("QBS103_finalProject_geneExpression.csv")
#head(qene_data)
stats_plts <- function(data_frame, gene_names,contin_covariate,categorical_var1,categorical_var2)
  {
  # reading the data
 library(tidyverse)
  for (gene in gene_names){
  # convert into vertical data and extract specific gene from gene_names list
    i.gene <- c(gene)
   hist_labels <- c("Gene Expression Distribution for ", "Gene")</pre>
   hist_xlabels <- c("Gene Expression")</pre>
   hist_title<- eval(bquote(expression(.(hist_labels[1])~italic(.(i.gene[1]))~. (hist_labels[2]))))
   hist_xaxis<-eval(bquote(expression(~italic(.(i.gene[1]))~. (hist_xlabels[1]))))
   scatter_labels <-c("Gene Expression of ", "by Age")</pre>
   scatter_title <- eval(bquote(expression(.(scatter_labels[1])~italic(.(i.gene[1]))~. (scatter_labels</pre>
    i = which(data_frame$X == gene)
   gene_expression = matrix(data_frame[i,2:127])
   head(gene_expression)
    # new data frame created to link variables from both data sets into one
   newData <- data.frame('Subject ID' = seq(1:126), "Gene.Expression" = gene_expression, 'Continuous_Va
   head(newData)
#-----#IGHT HAVE TO REMOVE BELOW-----
   newData <- newData[!(row.names(newData) %in% c("6","86","104","115")),] # filter out data that do
    # Source: https://sparkbyexamples.com/r-programming/drop-dataframe-rows-in-r/?expand_article=1
   newData$Continuous_Var<- as.numeric(newData$Continuous_Var)# Convert age variable to numeric
   newData$Gene.Expression<- as.numeric(newData$Gene.Expression) #convert gene expression variable
```

```
# Histogram for gene expression
   histogram <- ggplot(newData, aes(x=Gene.Expression)) +
   geom histogram(binwidth = 39,color = "darkblue", fill = "lightblue")+
   labs(title = hist_title, x = hist_xaxis , y = "Number of Participants")+
     theme(plot.title = element_text(hjust = 0.5))
   BlankTheme <- theme(# Remove borders and grid lines
       panel.border = element_blank(), panel.grid.major = element_blank(),
       panel.grid.minor = element_blank(),
        # Define my axis
       axis.line = element_line(colour = "black", linewidth = rel(1)),
        # Set plot background to white
       plot.background = element_rect(fill = "white"),
       panel.background = element_blank(),
        legend.key = element_rect(fill = 'white'),
        # Move legend to the top
       legend.position = 'top')
# Scatterplot for gene expression and continuous covariate
   scatterplot<-ggplot(newData, aes(x = Continuous_Var, y = Gene.Expression, color = Categorical_Var1)</pre>
     geom_point(size = 2)+
     labs(title = scatter_title, x = "Age (yrs)", y = " Gene Expression (AU)", color = "Disease Status
     scale_color_manual(values = c("#0066CC", "#CCCCFF")) +
     theme(plot.title = element_text(hjust = 0.5))+
     BlankTheme+
     scale color discrete(labels=c('Has COVID-19', 'No COVID-19'))
   BlankTheme <- theme(# Remove borders and grid lines
           panel.border = element_blank(), panel.grid.major = element_blank(),
           panel.grid.minor = element_blank(),
            # Define my axis
            axis.line = element_line(colour = "black", linewidth = rel(1)),
            # Set plot background to white
           plot.background = element_rect(fill = "white"),
            panel.background = element_blank(),
            legend.key = element_rect(fill = 'white'),
            # Move legend to the top
            legend.position = 'top')
    # Box plot of gene expression separated by sex and disease status
```

```
boxplot<-ggplot(newData, aes(x = Categorical_Var1, y = Gene.Expression, fill = Categorical_Var2))+
     geom_boxplot()+
     labs(title = "Gene Expression of gene grouped by Disease Status \n and categorized by ICU Status"
     BlankTheme+
     theme(plot.title = element_text(hjust = 0.5))+
     scale_x_discrete(labels = c("Has COVID-19", "No COVID-19"))+
     scale_fill_discrete(labels = c("Not in the ICU", "In the ICU"))+
     scale_fill_manual(values = c('#00CC66','#6699CC'))
     plot(histogram)
     plot(scatterplot)
     plot(boxplot)
     print(gene)
}
}
stats_plts(gene_data, gene_names = list("LCN2","CD24","BPI"), meta_data$age, meta_data$disease_status,m
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr 1.1.2
                       v readr
                                  2.1.4
## v forcats 1.0.0
                                   1.5.0
                       v stringr
## v ggplot2 3.4.2 v tibble
                                   3.2.1
## v lubridate 1.9.2
                                  1.3.0
                       v tidyr
## v purrr
             1.0.1
## -- Conflicts -----
                                       ## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
## Scale for fill is already present.
## Adding another scale for fill, which will replace the existing scale.
```


Gene Expression of LCN2 by Age


```
## [1] "LCN2"
```

- ## Scale for colour is already present.
- ## Adding another scale for colour, which will replace the existing scale.
- ## Scale for fill is already present.
- ## Adding another scale for fill, which will replace the existing scale.

Gene Expression of gene grouped by Disease Status and categorized by ICU Status

Gene Expression Distribution for CD24 Gene

Gene Expression of CD24 by Age

[1] "CD24"

- ## Scale for colour is already present.
- ## Adding another scale for colour, which will replace the existing scale.
- ## Scale for fill is already present.
- ## Adding another scale for fill, which will replace the existing scale.

Gene Expression of gene grouped by Disease Status and categorized by ICU Status

Gene Expression Distribution for BPI Gene

Gene Expression of BPI by Age

Gene Expression of gene grouped by Disease Status and categorized by ICU Status

[1] "BPI"