Fiche d'exercices nº 1

Rappels et compléments d'algèbre linéaire

Exercice 1.

Soit $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$. Calculer A^2 et vérifier que $A^2 = A + 2I_3$, où I_3 est la matrice identité 3×3 .

En déduire que A est inversible et calculer son inverse.

Exercice 2. *

Soit $n \in \mathbb{N}^*$. Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est dite nilpotente si il existe $p \in \mathbb{N}^*$ tel que

$$A^n = 0.$$

- a) Montrer que si A et B sont nilpotentes et que A et B commutent, alors AB et A+B sont nilpotentes.
- b) Montrer que si A est nilpotente, alors $I_n + A$ et $I_n A$ sont inversibles.

Exercice 3. Matrice semblable à une matrice scalaire

Une matrice de la forme λI_n , où I_n est la matrice *Identité* de $\mathcal{M}_n(\mathbb{K})$, est appelé une matrice scalaire. Montrer que la classe de similitude d'une matrice scalaire est réduite à elle-même.

Exercice 4.

Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{K})$ telles que

$$AB - BA = A$$

Calculer $\operatorname{tr}(A^p)$ pour tout $p \in \mathbb{N}$.

Exercice 5. ** Centre de $\mathcal{M}_n(\mathbb{K})$

Déterminer le centre de $\mathcal{M}_n(\mathbb{K})$, c'est-à-dire l'ensemble des matrices de $\mathcal{M}_n(\mathbb{K})$ qui commutent avec toutes les autres. On pourra utiliser la base canonique de $\mathcal{M}_n(\mathbb{K})$.

Exercice 6. **

Soit $(A, B) \in (\mathcal{M}_n(\mathbb{R}))^2$. On suppose qu'il existe un élément P de $\mathrm{GL}_n(\mathbb{C})$ tel que $A = PBP^{-1}$. Montrer alors qu'il existe U dans $\mathrm{GL}_n(\mathbb{R})$ tel que $A = UBU^{-1}$.

Exercice 7.

Soit E un espace vectoriel sur \mathbb{K} et soit (e_1, \ldots, e_q) une famille libre de E. Montrer que si un vecteur x n'est pas combinaison linéaire de (e_1, \ldots, e_q) , alors $(e_1 + x, \ldots, e_q + x)$ est libre.

Exercice 8. *

On considère la famille de polynômes (P_1, P_2, P_3) dans $\mathbb{R}_2[X]$ avec

$$P_1 = 1 + X$$
, $P_2 = X^2 - 3$, $P_3 = X^2 + X + m$, où $m \in \mathbb{R}$

Donner une condition nécessaire et suffisante sur m pour que (P_1, P_2, P_3) soit une base de $\mathbb{R}_2[X]$.

Exercice 9. *

Soit E, F, G trois espaces vectoriels, f et g deux applications linéaires $E \xrightarrow{f} F \xrightarrow{g} G$; montrer que :

$$\ker(g \circ f) = f^{-1}(\ker g \cap \operatorname{Im} f) = f^{-1}(\ker g).$$

Exercice 10.

Soient f et g deux endomorphismes d'un \mathbb{K} -espace vectoriel E. Montrer que $g \circ f = 0$ si, et seulement si, $\mathrm{Im} f \subset \ker g$.

Exercice 11.

Soient f et g deux endomorphismes d'un \mathbb{K} -espace vectoriel E.

- a) Comparer $\ker f \cap \ker g$ et $\ker(f+g)$.
- c) Comparer ker f et ker f^2 .
- b) Comparer Im f + Im g et Im (f + g).
- d) Comparer Im f et $\text{Im } f^2$.

Exercice 12. *

Soient E un espace vectoriel et $\varphi \in \mathcal{L}(E)$. On suppose que $\ker(\varphi) \cap \operatorname{Im}(\varphi) = \{0\}$. Montrer que, si $x \notin \ker(\varphi)$ alors, pour tout $n \in \mathbb{N}$, $\varphi^n(x) \neq 0$.

Exercice 13.

Soit E un espace vectoriel de dimension finie et soient deux endomorphismes f et g tels que

$$f^2 + f \circ g = Id_E$$

Montrer que f et g commutent.

Exercice 14. *

Soit $(f,g) \in \mathcal{L}(E,F)^2$ avec E un espace vectoriel de dimension finie. Montrer que $\operatorname{rg}(f+g) \leqslant \operatorname{rg}(f) + \operatorname{rg}(g)$ puis $|\operatorname{rg}(f) - \operatorname{rg}(g)| \leqslant \operatorname{rg}(f-g)$.

Exercice 15. *

Soit $f \in \mathcal{L}(E)$ avec E un espace vectoriel de dimension finie. Montrer que les assertions suivantes sont équivalentes :

(i) $E = \ker(f) + \operatorname{Im}(f)$

(iii) $\ker(f) = \ker(f^2)$

(ii) $\ker(f) \cap \operatorname{Im}(f) = \{0\}$

(iv) $\operatorname{Im}(f) = \operatorname{Im}(f^2)$

Quelle(s) implication(s) perd-on si on ne suppose plus que E est dimension finie?

Exercice 16.

Soit $u \in \mathcal{L}(E)$ avec E un espace vectoriel de dimension finie n. On suppose que $u^3 = 0$. Montrer que $rg(u) + rg(u^2) \leq n$.

Exercice 17. *

Soit E un \mathbb{K} -espace vectoriel de dimension finie. Montrer qu'il existe $f \in \mathcal{L}(E)$ tel que $\operatorname{Im}(f) = \ker(f)$ si et seulement si $\dim(E)$ est pair.

Exercice 18. *

Soit $n \in \mathbb{N}^*$ et $\Delta : \mathbb{K}_{n+1}[X] \to \mathbb{K}_n[X]$ l'application définie par

$$\Delta(P) = P(X+1) - P(X)$$

- a) Montrer que Δ est bien définie et que Δ est une application linéaire.
- b) Déterminer le noyau de Δ .
- c) En déduire que cette application est surjective.

Exercice 19. *

Soient $p, q \in \mathcal{L}(E)$. Montrer l'équivalence entre les assertions :

- (i) $p \circ q = p$ et $q \circ p = q$;
- (ii) p et q sont des projecteurs de même noyau.

Exercice 20. **

Soient E un \mathbb{K} -espace vectoriel et p,q deux projecteurs de E qui commutent. Montrer que $p \circ q$ est un projecteur de E. En déterminer noyau et image.

Exercice 21. Centre de $\mathcal{L}(E)$

Soit E un K-espace vectoriel et soit $u \in \mathcal{L}(E)$ telle que pour tout $v \in \mathcal{L}(E)$, $u \circ v = v \circ u$.

- a) Montrer que pour tout $x \in E$, (x, u(x)) est une famille liée.
- b) En déduire que u est une homothétie.

Exercice 22.

Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle que $\operatorname{tr}(A) \neq 0$ et soit ϕ définie sur $\mathcal{M}_n(\mathbb{K})$ par :

$$\forall M \in \mathcal{M}_n(\mathbb{K}), \quad \phi(M) = \operatorname{tr}(A)M - \operatorname{tr}(M)A$$

- a) Montrer que ϕ est un endomorphisme de $\mathcal{M}_n(\mathbb{K})$.
- b) Déterminer le noyau puis l'image de Φ .

Exercice 23.

Pour chacune des deux matrices suivantes, déterminer une base du noyau et de l'image:

$$A = \begin{pmatrix} 2 & 7 & 1 \\ -1 & 2 & 0 \\ 3 & 5 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 & 3 & 1 \\ -1 & 2 & -1 & -3 \\ -3 & 5 & 2 & -3 \end{pmatrix}$$

Exercice 24.

Soient $A = \begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix}$ et f l'application de $M_2(\mathbb{R})$ dans lui-même $M \mapsto AM$. Montrer que f est linéaire. Déterminer sa matrice dans la base canonique de $M_2(\mathbb{R})$.

Exercice 25. *

Soit E un \mathbb{K} -espace vectoriel de dimension 3 et $f \in \mathcal{L}(E)$ tel que $f^2 \neq 0$ et $f^3 = 0$. Montrer qu'il existe une base de E dans laquelle la matrice de f est $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

Exercice 26.

On note, pour $0 \le k \le 3$, $P_k = (X+1)^k$. On note \mathcal{B} la base canonique de $\mathbb{R}_3[X]$ et $\mathcal{B}' = (P_0, P_1, P_2, P_3)$.

- a) Justifier que que \mathcal{B} est une base de $\mathbb{R}_3[X]$.
- b) Déterminer la matrice de passage de \mathcal{B} à \mathcal{B}' , ainsi que celle de \mathcal{B}' à \mathcal{B} .

Exercice 27. matrice à diagonale strictement dominante

Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{C})$ telle que :

$$\forall i \in [1, n], \quad \sum_{\substack{j=1\\j \neq i}}^{n} |a_{i,j}| < |a_{i,i}|$$

Montrer que A est inversible en raisonnant par l'absurde.

Indication: En utilisant $X \in \mathcal{M}_{n,1}(\mathbb{C})$, $X \neq 0$, tel que AX = 0, et i_0 tel que $|x_{i_0}| = \max_{1 \leq i \leq n} |x_i|$, aboutir à une contradiction

Exercice 28.

Soit φ une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$. Montrer qu'il existe $A \in \mathcal{M}_n(\mathbb{R})$ telle que :

$$\forall M \in \mathcal{M}_n(\mathbb{R}), \ \varphi(M) = \operatorname{tr}(A^{\top}M)$$

Exercice 29. *

Soit E un \mathbb{K} espace vectoriel, H un hyperplan de E et D une droite de E. Montrer que D et H sont supplémentaires si et seulement si $D \not\subset H$.

Exercice 30. *

Calculer en établissant une relation de récurrence les déterminants :

$$A_{n} = \begin{vmatrix} 0 & 1 & \cdots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \cdots & 1 & 0 \end{vmatrix}_{[n]} \qquad B_{n} = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & (0) \\ \vdots & (0) & \ddots \\ 1 & & & 1 \end{vmatrix}_{[n]} \qquad D_{n} = \begin{vmatrix} 2 & 1 & \cdots & 1 \\ 1 & 3 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \cdots & 1 & n+1 \end{vmatrix}_{[n]}$$

Pour D_n , on exprimera le résultat à l'aide des termes de la suite (H_n) avec $H_n = \sum_{k=1}^n \frac{1}{k}$

Exercice 31.

Soit $F = \{x \mapsto e^x P(x), P \in \mathbb{R}_n[X]\}.$

- a) Montrer que F est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R}, \mathbb{R})$.
- b) Montrer que l'application $f \mapsto f'$ réalise un endomorphisme de F, et calculer son déterminant.

Exercice 32. **

Soit une matrice $A = (a_{i,j})_{1 \le i,j \le n}$ telle que pour tout $i,j \in [1,n]$, $a_{i,j} = \pm 1$. Montrer que $\det(A)$ est un entier multiple de 2^{n-1} .

Exercice 33. **

Pour $n \ge 2$, soit $A \in \mathcal{M}_n(\mathbb{K})$ vérifiant pour tout $X \in \mathcal{M}_n(\mathbb{K})$:

$$\det(A + X) = \det(A) + \det(X).$$

Montrer que det(A) = 0, puis que A = 0.

Exercice 34.

Soient F et G des sous-espaces vectoriels de E. Montrer :

$$F \cap G = F + G \Leftrightarrow F = G$$

Exercice 35.

Soit E un \mathbb{K} -espace vectoriel et L, M, N trois sous-espaces vectoriels de E. A-t-on $L \cap (M+N) = L \cap M + L \cap N$?

Exercice 36.

Déterminer les dimensions de $\mathcal{S}_n(\mathbb{K})$ et de $\mathcal{A}_n(\mathbb{K})$, sous-espaces de $\mathcal{M}_n(\mathbb{K})$ des matrices symétriques et antisymétrique, respectivement. Montrer que ces deux sous-espaces sont supplémentaires.

Exercice 37. *

Soit $E = \mathbb{R}_n[X]$ l'espace vectoriel des polynômes de degré $\leq n$.

Pour tout $a \in \mathbb{R}$, on définit

$$E_a = \{ P \in E / (X - a) | P \}.$$

Montrer que si $a \neq b$, il existe un couple de réels (c,d) tels que 1 = c(X-a) + d(X-b). En déduire que $E = E_a + E_b$. La somme est-elle directe?

Exercice 38. *

Soient E_1, \ldots, E_n et F_1, \ldots, F_n des sous-espaces d'un espace vectoriel E tels que $E_i \subset F_i$ pour tout i et

$$\bigoplus_{k=1}^{n} E_k = \bigoplus_{k=1}^{n} F_k$$

Montrer que $E_i = F_i$ pour tout i.

Exercice 39. **

Soient F, G, F', G' des sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E vérifiant

$$F \oplus G = F' \oplus G' = E \text{ et } F' \subset G$$

Montrer

$$F \oplus F' \oplus (G \cap G') = E$$

Exercice 40. **

Dans l'espace $E = \mathcal{C}([-1,1],\mathbb{R})$, on considère :

- F_1 le sous-espace des fonctions constantes
- F_2 le sous-espace des fonctions s'annulant sur [-1,0]
- F_3 le sous-espaces des fonctions s'annulant sur [0,1].

Montrer que $E = F_1 \oplus F_2 \oplus F_3$.

Exercice 41. **

Soit $n \in \mathbb{N}$ et $E = \mathbb{R}_n[X]$. Pour tout $i \in [0, n]$, on note

$$F_i = \{ P \in E \mid \forall j \in [0, n] \setminus \{i\}, \ P(j) = 0 \}$$

Montrer que les F_i sont des sous-espaces vectoriels et que $E = \bigoplus_{i=0}^n F_i$.

Exercice 42.

Soit
$$A \in \mathcal{M}_n(\mathbb{K})$$
. et $B = \begin{pmatrix} (0) & A \\ I_n & (0) \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{K})$

- a) Montrer que A est inversible si et seulement si B est inversible.
- **b)** Calculer B^p pour tout $p \in \mathbb{N}$.

Exercice 43.

Soit

$$A = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Calculer A^n pour tout $n \in \mathbb{Z}$.

Exercice 44.

Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ vérifiant AB = BA. Exprimer simplement M^k pour $k \in \mathbb{N}^*$ avec

$$M = \begin{pmatrix} A & B \\ (0) & A \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R})$$

Exercice 45. *

Soient $A, B, C, D \in \mathcal{M}_n(\mathbb{K})$ et M la matrice par blocs

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

a) Décrire par des opérations élémentaires par blocs les résultats des calculs TM et MT pour

$$T = \begin{pmatrix} I_n & P \\ (0) & I_n \end{pmatrix}, \text{ avec } P \in GL_n(\mathbb{K})$$

- b) Par quelle matrice, et de quel côté, faut-il multiplier M pour échanger les deux blocs de colonnes?
- c) Même question avec les blocs de lignes.

Exercice 46. *

Soient $A, B, C, D \in \mathcal{M}_n(\mathbb{K})$ et

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{K})$$

On suppose que les matrices A, D et M sont inversibles. Exprimer M^{-1}

Exercice 47. **

Soit M une matrice carré de taille n à coefficients dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Montrer que si $\mathrm{tr}(M) = 0$, il existe deux matrices $A, B \in \mathcal{M}_n(\mathbb{K})$ telles que M = AB - BA.

Exercice 48.

Soit
$$A \in \mathcal{M}_n(\mathbb{K})$$
, $B \in \mathcal{M}_p(\mathbb{K})$ et $M = \begin{pmatrix} A & 0_{n,p} \\ 0_{p,n} & B \end{pmatrix} \in \mathcal{M}_{n+p}(\mathbb{K})$.
Montrer que $\operatorname{rg}(M) = \operatorname{rg}(A) + \operatorname{rg}(B)$

Exercice 49. *

Soient $A \in \mathcal{M}_n(\mathbb{K}), B \in \mathrm{GL}_p(\mathbb{K}), C \in \mathcal{M}_{n,p}(\mathbb{K})$ et

$$M = \begin{pmatrix} A & C \\ 0_{p,n} & B \end{pmatrix} \in \mathcal{M}_{n+p}(\mathbb{K})$$

Montrer que rg(M) = p si et seulement si A est la matrice nulle.

Exercice 50. *

Soient $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$

- a) Donner le rang de la matrice $M = \begin{pmatrix} A & A \\ A & B \end{pmatrix}$
- b) Calculer M^{-1} en fonction de A et B quand c'est possible.

Exercice 51.

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et $u \in \mathcal{L}(E)$. Montrer que $\mathrm{Ker}(u) = \mathrm{Im}(u)$ si, et seulement si, il existe une base de E dans laquelle u a pour matrice $\begin{pmatrix} (0) & A \\ (0) & (0) \end{pmatrix}$, où A est une matrice inversible d'ordre n/2.

Exercice 52. *

a) Soit $(A, B) \in \mathcal{M}_n(\mathbb{R})$. Montrer que

$$\det \begin{pmatrix} A & B \\ -B & A \end{pmatrix} \geqslant 0$$

b) Soient $(A, B) \in \mathcal{M}_n(\mathbb{R})$ telles que AB = BA. Montrer que

$$\det(A^2 + B^2) \geqslant 0$$

- c) Trouver un contre-exemple à b) si A et B ne commutent pas.
- d) Soient $A, B, C, D \in \mathcal{M}_n(\mathbb{R})$ telles que AC = CA et A inversible. Montrer que

$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(AD - CB)$$

Exercice 53.

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ et soit $M = \begin{pmatrix} A & B \\ B & A \end{pmatrix}$. En utilisant des combinaisons de lignes ou de colonnes, montrer que :

$$\det(M) = \det(A+B)\det(A-B)$$

Exercice 54.

Soit
$$m \in \mathbb{R}$$
 et $A_m \in M_3(\mathbb{R})$ la matrice $\begin{pmatrix} m & 1 & 1 \\ 1 & m & 1 \\ 1 & 1 & m \end{pmatrix}$.

- a) Déterminer suivant les valeurs de m le rang de A_m et déterminer A_m^{-1} lorsque c'est possible.
- b) Lorsque A_m n'est pas inversible, déterminer le noyau et l'image de A_m .
- c) En déduire le spectre de A_m et déterminer les sous-espaces propres associés. A_m est-elle diagonalisable?

Exercice 55.

Soient f et g deux endomorphismes d'un espace vectoriel E de dimension n sur \mathbb{K} . On suppose que f et g ont chacun n valeurs propres distinctes dans \mathbb{K} . Montrer que les deux assertions suivantes sont équivalentes :

- (i) tout vecteur propre de f est vecteur propre de g (et *vice versa*).
- (ii) $f \circ g = g \circ f$ (f et g commutent)

(en particulier, dans ces conditions, f et g sont codiagonalisables, c'est-à-dire diagonalisables dans une même base.)

Exercice 56. valeurs propres de l'opérateur de dérivation

Soit $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{K})$ l'espace vectoriel des fonctions indéfiniment dérivables de R dans R. On définit sur E l'opérateur de dérivation $D: f \mapsto f'$. Justifier que D est un endomorphisme de E et déterminer ses éléments propres.

Exercice 57. * valeurs propres d'un opérateur d'intégration

Soit $E = \{ f \in \mathcal{C}^1(\mathbb{R}, \mathbb{K}) \mid f'(0) = 0 \}$. On définit l'application T sur E par :

$$T(f): x \mapsto \int_0^x \frac{f(t)}{t} dt.$$

Montrer que T est un endomorphisme de E et déterminer ses éléments propres.

Exercice 58. *

Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{K})$ telles que

$$AB - BA = \alpha A$$
.

avec $\alpha \in \mathbb{K}$ non nul. Le but de cet exercice est de montrer que A est nilpotente.

On note E l'espace vectoriel $\mathcal{M}_n(\mathbb{R})$ et on considère l'application :

$$\psi \ : \ \begin{array}{ccc} E & \longrightarrow & E \\ X & \longmapsto & XB-BX \end{array}$$

- a) Montrer que ψ est un endomorphisme de E vérifiant $\psi(A^k) = \alpha k A^k$, pour tout $k \in \mathbb{N}$.
- b) On raisonne par l'absurde, et on suppose que pour tout $k \in \mathbb{N}$, $A^k \neq 0$. Que peut-on en déduire sur l'ensemble des valeurs propres de ψ ? Conclure.

Exercice 1.

Soit $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$. Calculer A^2 et vérifier que $A^2 = A + 2I_3$, où I_3 est la matrice identité 3×3 .

En déduire que A est inversible et calculer son inverse.

Exercice 2. *

Soit $n \in \mathbb{N}^*$. Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est dite nilpotente si il existe $p \in \mathbb{N}^*$ tel que

$$A^n = 0.$$

- a) Montrer que si A et B sont nilpotentes et que A et B commutent, alors AB et A+B sont nilpotentes.
- b) Montrer que si A est nilpotente, alors $I_n + A$ et $I_n A$ sont inversibles.

Exercice 3. Matrice semblable à une matrice scalaire

Une matrice de la forme λI_n , où I_n est la matrice *Identité* de $\mathcal{M}_n(\mathbb{K})$, est appelé une matrice scalaire. Montrer que la classe de similitude d'une matrice scalaire est réduite à elle-même.

Exercice 4.

Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{K})$ telles que

$$AB - BA = A$$

Calculer $tr(A^p)$ pour tout $p \in \mathbb{N}$.

Exercice 5. ** Centre de $\mathcal{M}_n(\mathbb{K})$

Déterminer le centre de $\mathcal{M}_n(\mathbb{K})$, c'est-à-dire l'ensemble des matrices de $\mathcal{M}_n(\mathbb{K})$ qui commutent avec toutes les autres. On pourra utiliser la base canonique de $\mathcal{M}_n(\mathbb{K})$.

Exercice 6. **

Soit $(A, B) \in (\mathcal{M}_n(\mathbb{R}))^2$. On suppose qu'il existe un élément P de $\mathrm{GL}_n(\mathbb{C})$ tel que $A = PBP^{-1}$. Montrer alors qu'il existe U dans $\mathrm{GL}_n(\mathbb{R})$ tel que $A = UBU^{-1}$.

Exercice 7.

Soit E un espace vectoriel sur \mathbb{K} et soit (e_1, \ldots, e_q) une famille libre de E. Montrer que si un vecteur x n'est pas combinaison linéaire de (e_1, \ldots, e_q) , alors $(e_1 + x, \ldots, e_q + x)$ est libre.

Exercice 8. *

On considère la famille de polynômes (P_1, P_2, P_3) dans $\mathbb{R}_2[X]$ avec

$$P_1 = 1 + X$$
, $P_2 = X^2 - 3$, $P_3 = X^2 + X + m$, où $m \in \mathbb{R}$

Donner une condition nécessaire et suffisante sur m pour que (P_1, P_2, P_3) soit une base de $\mathbb{R}_2[X]$.

Exercice 9. *

Soit E, F, G trois espaces vectoriels, f et g deux applications linéaires $E \xrightarrow{f} F \xrightarrow{g} G$; montrer que :

$$\ker(g \circ f) = f^{-1}(\ker g \cap \operatorname{Im} f) = f^{-1}(\ker g).$$

Exercice 10.

Soient f et g deux endomorphismes d'un \mathbb{K} -espace vectoriel E.

Montrer que $g \circ f = 0$ si, et seulement si, $\text{Im} f \subset \ker g$.

Exercice 11.

Soient f et g deux endomorphismes d'un \mathbb{K} -espace vectoriel E.

- a) Comparer $\ker f \cap \ker g$ et $\ker (f+g)$.
- **b)** Comparer Im f + Im g et Im (f + g).
- d) Comparer $\operatorname{Im} f$ et $\operatorname{Im} f^2$.

Exercice 12. *

Soient E un espace vectoriel et $\varphi \in \mathcal{L}(E)$. On suppose que $\ker(\varphi) \cap \operatorname{Im}(\varphi) = \{0\}$. Montrer que, si $x \notin \ker(\varphi)$ alors, pour tout $n \in \mathbb{N}$, $\varphi^n(x) \neq 0$.

Exercice 13.

Soit E un espace vectoriel de dimension finie et soient deux endomorphismes f et q tels que

$$f^2 + f \circ g = Id_E$$

Montrer que f et g commutent.

Exercice 14. *

Soit $(f,g) \in \mathcal{L}(E,F)^2$ avec E un espace vectoriel de dimension finie.

Montrer que $\operatorname{rg}(f+g) \leq \operatorname{rg}(f) + \operatorname{rg}(g)$ puis $|\operatorname{rg}(f) - \operatorname{rg}(g)| \leq \operatorname{rg}(f-g)$.

Exercice 15. *

Soit $f \in \mathcal{L}(E)$ avec E un espace vectoriel de dimension finie. Montrer que les assertions suivantes sont équivalentes :

(i)
$$E = \ker(f) + \operatorname{Im}(f)$$

(iii)
$$\ker(f) = \ker(f^2)$$

(ii)
$$\ker(f) \cap \operatorname{Im}(f) = \{0\}$$

(iv)
$$\operatorname{Im}(f) = \operatorname{Im}(f^2)$$

Quelle(s) implication(s) perd-on si on ne suppose plus que E est dimension finie?

Exercice 16.

Soit $u \in \mathcal{L}(E)$ avec E un espace vectoriel de dimension finie n. On suppose que $u^3 = 0$. Montrer que $rq(u) + rq(u^2) \leq n$.

Exercice 17. *

Soit E un K-espace vectoriel de dimension finie. Montrer qu'il existe $f \in \mathcal{L}(E)$ tel que $\mathrm{Im}(f) = \ker(f)$ si et seulement si $\dim(E)$ est pair.

Exercice 18. *

Soit $n \in \mathbb{N}^*$ et $\Delta : \mathbb{K}_{n+1}[X] \to \mathbb{K}_n[X]$ l'application définie par

$$\Delta(P) = P(X+1) - P(X)$$

- a) Montrer que Δ est bien définie et que Δ est une application linéaire.
- b) Déterminer le noyau de Δ .
- c) En déduire que cette application est surjective.

Exercice 19. *

Soient $p, q \in \mathcal{L}(E)$. Montrer l'équivalence entre les assertions :

- (i) $p \circ q = p$ et $q \circ p = q$;
- (ii) p et q sont des projecteurs de même noyau.

Exercice 20. **

Soient E un \mathbb{K} -espace vectoriel et p,q deux projecteurs de E qui commutent. Montrer que $p \circ q$ est un projecteur de E. En déterminer noyau et image.

Exercice 21. Centre de $\mathcal{L}(E)$

Soit E un K-espace vectoriel et soit $u \in \mathcal{L}(E)$ telle que pour tout $v \in \mathcal{L}(E)$, $u \circ v = v \circ u$.

- a) Montrer que pour tout $x \in E$, (x, u(x)) est une famille liée.
- b) En déduire que u est une homothétie.

Exercice 22.

Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle que $\operatorname{tr}(A) \neq 0$ et soit ϕ définie sur $\mathcal{M}_n(\mathbb{K})$ par :

$$\forall M \in \mathcal{M}_n(\mathbb{K}), \quad \phi(M) = \operatorname{tr}(A)M - \operatorname{tr}(M)A$$

- a) Montrer que ϕ est un endomorphisme de $\mathcal{M}_n(\mathbb{K})$.
- b) Déterminer le noyau puis l'image de Φ .

Exercice 23.

Pour chacune des deux matrices suivantes, déterminer une base du noyau et de l'image:

$$A = \begin{pmatrix} 2 & 7 & 1 \\ -1 & 2 & 0 \\ 3 & 5 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 & 3 & 1 \\ -1 & 2 & -1 & -3 \\ -3 & 5 & 2 & -3 \end{pmatrix}$$

Exercice 24.

Soient $A = \begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix}$ et f l'application de $M_2(\mathbb{R})$ dans lui-même $M \mapsto AM$. Montrer que f est linéaire. Déterminer sa matrice dans la base canonique de $M_2(\mathbb{R})$.

Exercice 25. *

Soit E un \mathbb{K} -espace vectoriel de dimension 3 et $f \in \mathcal{L}(E)$ tel que $f^2 \neq 0$ et $f^3 = 0$. Montrer qu'il existe une base de E dans laquelle la matrice de f est $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

Exercice 26.

On note, pour $0 \le k \le 3$, $P_k = (X+1)^k$. On note \mathcal{B} la base canonique de $\mathbb{R}_3[X]$ et $\mathcal{B}' = (P_0, P_1, P_2, P_3)$.

- a) Justifier que que \mathcal{B} est une base de $\mathbb{R}_3[X]$.
- b) Déterminer la matrice de passage de \mathcal{B} à \mathcal{B}' , ainsi que celle de \mathcal{B}' à \mathcal{B} .

Exercice 27. matrice à diagonale strictement dominante

Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{C})$ telle que :

$$\forall i \in [1, n], \quad \sum_{\substack{j=1\\j \neq i}}^{n} |a_{i,j}| < |a_{i,i}|$$

Montrer que A est inversible en raisonnant par l'absurde.

Indication: En utilisant $X \in \mathcal{M}_{n,1}(\mathbb{C})$, $X \neq 0$, tel que AX = 0, et i_0 tel que $|x_{i_0}| = \max_{1 \leq i \leq n} |x_i|$, aboutir à une contradiction

Exercice 28.

Soit φ une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$. Montrer qu'il existe $A \in \mathcal{M}_n(\mathbb{R})$ telle que :

$$\forall M \in \mathcal{M}_n(\mathbb{R}), \ \varphi(M) = \operatorname{tr}(A^{\top}M)$$

Exercice 29. *

Soit E un \mathbb{K} espace vectoriel, H un hyperplan de E et D une droite de E. Montrer que D et H sont supplémentaires si et seulement si $D \not\subset H$.

Exercice 30. *

Calculer en établissant une relation de récurrence les déterminants :

$$A_{n} = \begin{vmatrix} 0 & 1 & \cdots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \cdots & 1 & 0 \end{vmatrix}_{[n]} \qquad B_{n} = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & (0) \\ \vdots & (0) & \ddots \\ 1 & & & 1 \end{vmatrix}_{[n]} \qquad D_{n} = \begin{vmatrix} 2 & 1 & \cdots & 1 \\ 1 & 3 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \cdots & 1 & n+1 \end{vmatrix}_{[n]}$$

Pour D_n , on exprimera le résultat à l'aide des termes de la suite (H_n) avec $H_n = \sum_{k=1}^n \frac{1}{k}$

Exercice 31.

Soit $F = \{x \mapsto e^x P(x), P \in \mathbb{R}_n[X]\}$

- a) Montrer que F est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R},\mathbb{R})$.
- b) Montrer que l'application $f \mapsto f'$ réalise un endomorphisme de F, et calculer son déterminant.

Exercice 32. **

Soit une matrice $A = (a_{i,j})_{1 \le i,j \le n}$ telle que pour tout $i,j \in [1,n]$, $a_{i,j} = \pm 1$. Montrer que $\det(A)$ est un entier multiple de 2^{n-1} .

Exercice 33. **

Pour $n \ge 2$, soit $A \in \mathcal{M}_n(\mathbb{K})$ vérifiant pour tout $X \in \mathcal{M}_n(\mathbb{K})$:

$$\det(A + X) = \det(A) + \det(X).$$

Montrer que det(A) = 0, puis que A = 0.

Exercice 34.

Soient F et G des sous-espaces vectoriels de E. Montrer :

$$F \cap G = F + G \Leftrightarrow F = G$$

Exercice 35.

Soit E un \mathbb{K} -espace vectoriel et L, M, N trois sous-espaces vectoriels de E. A-t-on $L \cap (M+N) = L \cap M + L \cap N$?

Exercice 36.

Déterminer les dimensions de $\mathcal{S}_n(\mathbb{K})$ et de $\mathcal{A}_n(\mathbb{K})$, sous-espaces de $\mathcal{M}_n(\mathbb{K})$ des matrices symétriques et antisymétrique, respectivement. Montrer que ces deux sous-espaces sont supplémentaires.

Exercice 37. *

Soit $E = \mathbb{R}_n[X]$ l'espace vectoriel des polynômes de degré $\leq n$.

Pour tout $a \in \mathbb{R}$, on définit

$$E_a = \{ P \in E / (X - a) | P \}.$$

Montrer que si $a \neq b$, il existe un couple de réels (c,d) tels que 1 = c(X-a) + d(X-b). En déduire que $E = E_a + E_b$. La somme est-elle directe?

Exercice 38. *

Soient E_1, \ldots, E_n et F_1, \ldots, F_n des sous-espaces d'un espace vectoriel E tels que $E_i \subset F_i$ pour tout i et

$$\bigoplus_{k=1}^{n} E_k = \bigoplus_{k=1}^{n} F_k$$

Montrer que $E_i = F_i$ pour tout i.

Exercice 39. **

Soient F, G, F', G' des sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E vérifiant

$$F \oplus G = F' \oplus G' = E \text{ et } F' \subset G$$

Montrer

$$F \oplus F' \oplus (G \cap G') = E$$

Exercice 40. **

Dans l'espace $E = \mathcal{C}([-1,1],\mathbb{R})$, on considère :

- F_1 le sous-espace des fonctions constantes
- F_2 le sous-espace des fonctions s'annulant sur [-1,0]
- F_3 le sous-espaces des fonctions s'annulant sur [0,1].

Montrer que $E = F_1 \oplus F_2 \oplus F_3$.

Exercice 41. **

Soit $n \in \mathbb{N}$ et $E = \mathbb{R}_n[X]$. Pour tout $i \in [0, n]$, on note

$$F_i = \{ P \in E \mid \forall j \in [0, n] \setminus \{i\}, \ P(j) = 0 \}$$

Montrer que les F_i sont des sous-espaces vectoriels et que $E = \bigoplus_{i=0}^n F_i$.

Exercice 42.

Soit
$$A \in \mathcal{M}_n(\mathbb{K})$$
. et $B = \begin{pmatrix} (0) & A \\ I_n & (0) \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{K})$

- a) Montrer que A est inversible si et seulement si B est inversible.
- **b)** Calculer B^p pour tout $p \in \mathbb{N}$.

Exercice 43.

Soit

$$A = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Calculer A^n pour tout $n \in \mathbb{Z}$.

Exercice 44.

Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ vérifiant AB = BA. Exprimer simplement M^k pour $k \in \mathbb{N}^*$ avec

$$M = \begin{pmatrix} A & B \\ (0) & A \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R})$$

Exercice 45. *

Soient $A, B, C, D \in \mathcal{M}_n(\mathbb{K})$ et M la matrice par blocs

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

a) Décrire par des opérations élémentaires par blocs les résultats des calculs TM et MT pour

$$T = \begin{pmatrix} I_n & P \\ (0) & I_n \end{pmatrix}, \text{ avec } P \in GL_n(\mathbb{K})$$

- b) Par quelle matrice, et de quel côté, faut-il multiplier M pour échanger les deux blocs de colonnes?
- c) Même question avec les blocs de lignes.

Exercice 46. *

Soient $A, B, C, D \in \mathcal{M}_n(\mathbb{K})$ et

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{K})$$

On suppose que les matrices A, D et M sont inversibles. Exprimer M^{-1}

Exercice 47. **

Soit M une matrice carré de taille n à coefficients dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Montrer que si $\mathrm{tr}(M) = 0$, il existe deux matrices $A, B \in \mathcal{M}_n(\mathbb{K})$ telles que M = AB - BA.

Exercice 48.

Soit
$$A \in \mathcal{M}_n(\mathbb{K})$$
, $B \in \mathcal{M}_p(\mathbb{K})$ et $M = \begin{pmatrix} A & 0_{n,p} \\ 0_{p,n} & B \end{pmatrix} \in \mathcal{M}_{n+p}(\mathbb{K})$.
Montrer que $\operatorname{rg}(M) = \operatorname{rg}(A) + \operatorname{rg}(B)$

Exercice 49. *

Soient $A \in \mathcal{M}_n(\mathbb{K}), B \in \mathrm{GL}_p(\mathbb{K}), C \in \mathcal{M}_{n,p}(\mathbb{K})$ et

$$M = \begin{pmatrix} A & C \\ 0_{p,n} & B \end{pmatrix} \in \mathcal{M}_{n+p}(\mathbb{K})$$

Montrer que rg(M) = p si et seulement si A est la matrice nulle.

Exercice 50. *

Soient $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$

- a) Donner le rang de la matrice $M = \begin{pmatrix} A & A \\ A & B \end{pmatrix}$
- b) Calculer M^{-1} en fonction de A et B quand c'est possible.

Exercice 51.

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et $u \in \mathcal{L}(E)$. Montrer que $\operatorname{Ker}(u) = \operatorname{Im}(u)$ si, et seulement si, il existe une base de E dans laquelle u a pour matrice $\begin{pmatrix} (0) & A \\ (0) & (0) \end{pmatrix}$, où A est une matrice inversible d'ordre n/2.

Exercice 52. *

a) Soit $(A, B) \in \mathcal{M}_n(\mathbb{R})$. Montrer que

$$\det\begin{pmatrix} A & B \\ -B & A \end{pmatrix} \geqslant 0$$

b) Soient $(A, B) \in \mathcal{M}_n(\mathbb{R})$ telles que AB = BA. Montrer que

$$\det(A^2 + B^2) \geqslant 0$$

- c) Trouver un contre-exemple à b) si A et B ne commutent pas.
- d) Soient $A, B, C, D \in \mathcal{M}_n(\mathbb{R})$ telles que AC = CA et A inversible. Montrer que

$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(AD - CB)$$

Exercice 53.

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ et soit $M = \begin{pmatrix} A & B \\ B & A \end{pmatrix}$. En utilisant des combinaisons de lignes ou de colonnes, montrer que :

$$\det(M) = \det(A+B)\det(A-B)$$

Exercice 54.

Soit
$$m \in \mathbb{R}$$
 et $A_m \in M_3(\mathbb{R})$ la matrice $\begin{pmatrix} m & 1 & 1 \\ 1 & m & 1 \\ 1 & 1 & m \end{pmatrix}$.

- a) Déterminer suivant les valeurs de m le rang de A_m et déterminer A_m^{-1} lorsque c'est possible.
- b) Lorsque A_m n'est pas inversible, déterminer le noyau et l'image de A_m .
- c) En déduire le spectre de A_m et déterminer les sous-espaces propres associés. A_m est-elle diagonalisable?

Exercice 55.

Soient f et g deux endomorphismes d'un espace vectoriel E de dimension n sur \mathbb{K} . On suppose que f et g ont chacun n valeurs propres distinctes dans \mathbb{K} . Montrer que les deux assertions suivantes sont équivalentes :

- (i) tout vecteur propre de f est vecteur propre de g (et *vice versa*).
- (ii) $f \circ g = g \circ f$ (f et g commutent)

(en particulier, dans ces conditions, f et g sont codiagonalisables, c'est-à-dire diagonalisables dans une même base.)

Exercice 56. valeurs propres de l'opérateur de dérivation

Soit $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{K})$ l'espace vectoriel des fonctions indéfiniment dérivables de R dans R. On définit sur E l'opérateur de dérivation $D: f \mapsto f'$. Justifier que D est un endomorphisme de E et déterminer ses éléments propres.

Exercice 57. * valeurs propres d'un opérateur d'intégration

Soit $E = \{ f \in \mathcal{C}^1(\mathbb{R}, \mathbb{K}) \mid f'(0) = 0 \}$. On définit l'application T sur E par :

$$T(f): x \mapsto \int_0^x \frac{f(t)}{t} dt.$$

Montrer que T est un endomorphisme de E et déterminer ses éléments propres.

Exercice 58. *

Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{K})$ telles que

$$AB - BA = \alpha A$$
.

avec $\alpha \in \mathbb{K}$ non nul. Le but de cet exercice est de montrer que A est nilpotente.

On note E l'espace vectoriel $\mathcal{M}_n(\mathbb{R})$ et on considère l'application :

$$\psi \ : \ \begin{array}{ccc} E & \longrightarrow & E \\ X & \longmapsto & XB-BX \end{array}$$

- a) Montrer que ψ est un endomorphisme de E vérifiant $\psi(A^k) = \alpha k A^k$, pour tout $k \in \mathbb{N}$.
- b) On raisonne par l'absurde, et on suppose que pour tout $k \in \mathbb{N}$, $A^k \neq 0$. Que peut-on en déduire sur l'ensemble des valeurs propres de ψ ? Conclure.