4. Bayesian Estimation

4.1 Variance of a Gaussian Random Variable

Consider a scalar Gaussian random variable $x|\theta \sim \mathcal{N}(\mu, \sigma^2 = \theta^{-1})$ with known mean μ and unknown inverse of the variance θ . Prior knowledge on θ is given by prior PDF $f_{\theta}(\theta)$. In contrast to Maximum-Likelihood estimation, Bayesian estimation considers prior statistical knowledge on the parameter θ to be estimated.

a) What are advantages of modeling the unknown parameter θ as a random variable? Are there potential disadvantages as well?

A prior PDF $f_{\theta}(\theta)$ is called a conjugate prior with respect to $f_{x|\theta}(x|\theta)$ if the posterior PDF $f_{\theta|x}(\theta|x)$ has the same structure as the prior PDF $f_{\theta}(\theta)$. For conjugate priors, the posterior PDF can be obtained in closed form. If θ parametrizes the inverse of the variance, the conjugate prior with respect to a Gaussian likelihood is given by the Gamma distribution.

In the following, we assume the prior PDF $\theta \sim \Gamma(\alpha, \beta)$ with $\alpha, \beta > 0$. In addition, we assume an estimation of θ based on N conditionally i.i.d. statistics $x_1, \ldots, x_N | \theta$ with the conditional joint PDF $f_{x_1, \ldots, x_N | \theta}(x_1, \ldots, x_N | \theta) = \prod_{i=1}^N f_{x_i | \theta}(x_i | \theta)$.

- b) State Bayes' rule for the posterior PDF $f_{\theta|x_1,...,x_N}(\theta|x_1,...,x_N)$.
- c) Determine the posterior PDF $f_{\theta|x_1,...,x_N}(\theta|x_1,...,x_N)$.

Hint: The PDF $f_b(b)$ of a Gamma distribution $b \sim \Gamma(\alpha, \beta)$ is given as

$$f_b(b; \alpha, \beta) = \beta^{\alpha} \frac{1}{\Gamma(\alpha)} b^{\alpha - 1} e^{-\beta b}$$
 for $b \ge 0$ and $\alpha, \beta > 0$.

d) Determine the Bayes estimator $\hat{\theta}_{CM} = E[\theta|x_1, \dots, x_N]$. Compare the result to the Maximum-Likelihood estimator $\hat{\sigma}_{ML}^2$ for the variance σ^2 of a Gaussian distribution with known mean μ as derived in problem 2.1f). Discuss the behavior of the estimated variance/precision for N approaching zero or infinity.

Hint: For $b \sim \Gamma(\alpha, \beta)$, it follows that $E[b] = \alpha/\beta$.

4.2 Mean of a Gaussian Random Variable

Consider an estimator for the expected value of the random variable x given $\boldsymbol{\theta}$ with $x|\boldsymbol{\theta} \sim \mathcal{N}(\boldsymbol{\theta}, C_{x|\boldsymbol{\theta}})$. The parameter to be estimated is therefore $E[x|\boldsymbol{\theta}] = \boldsymbol{\theta}$. The statistical knowledge on $\boldsymbol{\theta}$ is given by the prior distribution $\boldsymbol{\theta} \sim \mathcal{N}(\boldsymbol{m}_{\boldsymbol{\theta}}, \boldsymbol{C}_{\boldsymbol{\theta}})$. We assume N i.i.d. statistics x_1, \ldots, x_N with the conditional joint PDF $f_{x_1,\ldots,x_N|\boldsymbol{\theta}}(x_1,\ldots,x_N|\boldsymbol{\theta}) = \prod_{i=1}^N f_{x_i|\boldsymbol{\theta}}(x_i|\boldsymbol{\theta})$.

- a) State Bayes' rule for the posterior PDF $f_{\theta|x_1,...,x_N}(\theta|x_1,...,x_N)$.
- b) Determine the posterior PDF $f_{\theta|x_1,...,x_N}(\theta|x_1,...,x_N)$.

Hint: Compare the result to the structure of a Gaussian PDF.

c) Determine the Bayes estimator $\hat{\theta}_{CM} = E[\theta | x_1, ..., x_N]$ using the result from b).

Hint:
$$(A^{-1} + B^{-1})^{-1} = A(A + B)^{-1}B = B(A + B)^{-1}A$$
.

d) Determine the Bayes estimator $\hat{\theta}_{CM} = E[\theta|x_1, \dots, x_N]$ using your result for the posterior PDF $f_{\theta|x_1,\dots,x_N}(\theta|x_1,\dots,x_N)$ for scalar random variables. Give an interpretation on how the prior knowledge on θ is combined with the empirical information obtained from the observations x_1,\dots,x_N .

4.3 Gaussian Transmission Model

Consider the transmission model given as

$$x = H\theta + n$$

where $x \in \mathbb{R}^M$ is the receive symbol, $H \in \mathbb{R}^{M \times L}$ is the known channel matrix, $\theta \in \mathbb{R}^L$ is the random transmit symbol, and $n \in \mathbb{R}^M$ is additive Gaussian noise with $n \sim \mathcal{N}(0, C_n)$.

Fig. 4.1: Illustration of the linear transmission model with the channel matrix H, the transmitted signal and parameter of interest θ , and the additive Gaussian noise n.

The covariance matrix C_n of the noise is assumed to be known. Prior knowledge on the random transmit symbol θ is given by the prior PDF $f_{\theta}(\theta)$. It is assumed that $f_{\theta}(\theta)$ is Gaussian, i.e., $\theta \sim \mathcal{N}(\mu_{\theta}, C_{\theta})$. The random variables θ and n are assumed to be independent.

a) Determine the posterior PDF $f_{\theta|x}(\theta|x)$.

Hint: If two random variables $a \sim \mathcal{N}(\mu_a, C_a)$ and $b \sim \mathcal{N}(\mu_b, C_b)$ are jointly Gaussian with expected value $\mu_{[a^T \ b^T]^T} = [\mu_a^T \ \mu_a^T]^T$ and covariance matrix

$$C = \left[\begin{array}{cc} C_a & C_{ab} \\ C_{ba} & C_b \end{array} \right],$$

the conditional PDF $f_{b|a}(b|a)$ of **b** given **a** is again Gaussian with the conditional mean

$$E_{\boldsymbol{b}|\boldsymbol{a}}[\boldsymbol{b}|\boldsymbol{a}] = E[\boldsymbol{b}] + C_{\boldsymbol{b}\boldsymbol{a}}C_{\boldsymbol{a}}^{-1}(\boldsymbol{a} - E[\boldsymbol{a}])$$

and the conditional covariance matrix

$$C_{b|a} = C_b - C_{ba}C_a^{-1}C_{ab}.$$

- b) Determine the Bayes estimator $\hat{\theta}_{CM} = E[\theta|x]$.
- c) Let $y = H\theta$ be the random mean of x with realization $y = H\theta$. Show that the Bayes estimator $\hat{y}_{\text{CM}} = \text{E}[y|x]$ of the mean y is given as $\hat{y}_{\text{CM}} = H\hat{\theta}_{\text{CM}}$.