

**A PROTECTION SWITCH IN A SINGLE TWO-FIBER OPTICAL
CHANNEL SHARED PROTECTION RING**

Ins A17

5

CROSS-REFERENCE TO RELATED APPLICATIONS

This is a continuation of U.S. Patent Application Serial No. 09/799,374, filed on March 5, 2001 which is a continuation of U.S. Provisional Patent Application Serial No. 60/187,656, filed on March 7, 2000, the content of which is relied upon and incorporated herein by reference in its entirety, and the benefit of priority under 35 U.S.C. §119(e) is hereby claimed.

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates generally to single two-fiber optical channel shared protection rings, and particularly to protection switching in single two-fiber optical channel shared protection rings.

Technical Background

Optical protection ring topologies are currently being deployed by network providers because of their cost savings, survivability, and ability to self-heal. Ring topologies typically include a plurality of client access nodes that are interconnected by at least two optical fibers to form a ring. Traffic is transmitted from node to node around the ring. Wavelength Add/Drop multiplexers (WADMs) are employed at each node to allow clients to gain access to the ring. Client transmitters are coupled to the add portion of the WADM to insert client traffic onto the ring, whereas client receivers are coupled to the drop portion of the WADM to receive ring traffic.

Optical protection rings can survive and self-heal from ring fault conditions by providing duplicate and geographically diverse paths for all of the client traffic propagating on the ring. In a two-fiber ring, this is accomplished by providing two fibers that carry traffic in opposite directions. In addition, each fiber reserves approximately half of its bandwidth for protection purposes. Thus, if a cable is cut between two nodes, or a wavelength channel transmitter becomes disabled at a particular node, or if there is a switch fabric failure, the ring will detect the fault condition, and route traffic around the damaged network component using the reserved protection bandwidth until a repair can be effected.

The protection switching used to implement the self-healing features of the ring is resident in each node. However, conventional protection switches have several shortcomings. First, most protection switches are not versatile enough to provide protection for both multi-channel failures and single channel failures. Second, most protection switches 5 employ large switching fabrics. Thus, if the switching fabric itself experiences a failure, a single point failure severely impacting the operation of the entire ring may result. Thus, what is needed is a protection switch that includes small modular switching fabrics to substantially reduce the possibility of single-point failures. Further, a protection switch is needed that will provide protection for both multi-channel failures and single channel failures.

10

SUMMARY OF THE INVENTION

The present invention includes a protection switch having a plurality of small modular switching fabrics that substantially reduce the possibility of single-point failures. Each modular switch fabric can be easily replaced without affecting other operational portions of the protection switch. The protection switch of the present invention provides protection for 15 both multi-channel failures and single channel failures.

One aspect of the present invention is a protection switch in a node of a two-fiber optical channel shared protection ring. The node includes a plurality of primary clients and a plurality of pre-emptible clients. Each fiber in the two-fiber optical channel shared protection 20 ring propagates at least one working wavelength channel dedicated to primary client traffic and at least one protection wavelength channel which may accommodate extra client traffic. The protection switch includes an optical signal monitor coupled to the two-fiber optical channel shared protection ring. The optical signal monitor is operative to detect multi-wavelength channel failures and single wavelength channel failures in the two-fiber 25 optical channel shared protection ring. An electrical switching circuit is coupled to the optical signal monitor. The electrical switching circuit includes a plurality of modular switching fabrics. Each modular switching fabric of the plurality of modular switching fabrics includes a ring switch mode that is responsive to the multi-wavelength channel failures, and a span switch mode that is responsive to the single wavelength channel failures.

30 In another aspect, the present invention includes a modular switching fabric for use in a protection switch resident in a node of a two-fiber optical channel shared protection ring.

Each node includes a plurality of primary clients and a plurality of pre-emptible clients. Each fiber of the two fibers propagates at least one working wavelength channel dedicated to primary client traffic and at least one protection wavelength channel which may accommodate extra client traffic. The protection switch includes a first 3 x 1 switch coupled to a first primary client receiver. A first 2 x 1 switch is coupled to a first extra client receiver. A second 3 x 1 switch is coupled to a second primary client receiver. A second 2 x 1 switch is coupled to a second extra client receiver. A controller is coupled to the first 3 x 1 switch, the second 3 x 1 switch, the first 2 x 1 switch, and the second 2 x 1 switch. The controller is operative to actuate the switches in order to receive the primary client's receive signal from a protection wavelength propagating on the first fiber instead of a working wavelength channel propagating on the second fiber, and pre-empt extra client traffic, in response to a multi-wavelength channel failure.

In yet another aspect, the present invention includes a two-fiber optical channel shared protection ring for bi-directional communications between a plurality of nodes. Each node includes a plurality of primary clients and a plurality of pre-emptible clients. Each fiber of the two fibers propagates at least one working wavelength channel dedicated to primary client traffic and at least one protection wavelength channel which may accommodate extra client traffic. The protection switch includes a first 3 x 1 switch having inputs coupled to a first primary client transmitter, a first extra client transmitter, and a second primary client transmitter. A first 2 x 1 switch has an input coupled to the first extra client transmitter and an output connected to the first 3 x 1 switch. A second 3 x 1 switch has inputs coupled to a first primary client transmitter, a second extra client transmitter, and a second primary client transmitter. A second 2 x 1 switch has an input coupled to the second extra client transmitter and an output connected to the second 3 x 1 switch. A controller is coupled to the first 3 x 1 switch, the second 3 x 1 switch, the first 2 x 1 switch, and the second 2 x 1 switch. The controller is operative to actuate the switches in order to switch a primary client's transmission signal from a working wavelength propagating on a first fiber of the two fibers to a protection wavelength propagating on a second fiber of the two fibers in response to a multi-wavelength channel failure.

In yet another aspect, the present invention includes a method for switching bi-directional traffic between a plurality of nodes in a two-fiber optical channel shared

protection ring. Each node includes a plurality of primary clients and a plurality of pre-emptible clients. Each fiber of the two fibers propagates at least one working wavelength channel dedicated to primary client traffic and at least one protection wavelength channel which may accommodate extra client traffic. The method includes providing a protection
5 switch in each node of the plurality of nodes. Each protection switch is coupled to the two fibers, the plurality of primary clients, and the plurality of pre-emptible clients. The protection switch includes a plurality of modular switching fabrics. A fault condition is detected in the two-fiber optical channel shared protection ring. At least one of the modular switching fabrics is actuated in response to the step of detecting, whereby a primary client's transmission signal is switched from a working wavelength propagating on a first fiber of the
10 two fibers to a protection wavelength propagating on a second fiber of the two fibers. The primary client's receive signal is switched from a working wavelength propagating on the second fiber to a protection wavelength propagating on the first fiber. Extra client traffic is pre-empted.

15 Additional features and advantages of the invention will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described herein, including the detailed description which follows, the claims, as well as the appended drawings.

It is to be understood that both the foregoing general description and the following
20 detailed description are merely exemplary of the invention, and are intended to provide an overview or framework for understanding the nature and character of the invention as it is claimed. The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate various embodiments of the invention, and together with the description serve to
25 explain the principles and operation of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram of a two-fiber optical channel shared protection ring including a protection switch according to the present invention;

30 Figure 2A is a diagrammatic depiction of the two-fiber protection ring under normal operating conditions;

Figure 2B is a diagrammatic depiction of a modular switch fabric included in the protection switch shown in Figure 2A;

Figure 3A is an example of the two-fiber protection ring operating under a multi-channel fault condition;

5 Figure 3B is an operational example of the modular switch fabric responding to the multi-channel fault condition shown in Figure 3A;

Figure 4A is an example of the two-fiber protection ring operating under a single-channel fault condition;

10 Figure 4B is an operational example of the modular switch fabric responding to the single-channel fault condition shown in Figure 4A;

Figure 5 is a diagrammatic depiction of the modular switching fabric in accordance with an embodiment of the present invention;

15 Figure 6 is a detail view of an optoelectric converter in accordance with an embodiment of the present invention;

Figure 7 is a detail view of an electrooptic converter in accordance with an embodiment of the present invention;

20 Figure 8 is an example of a 3 x 1 switch in accordance with an embodiment of the present invention;

Figure 9 is an example of a 2 x 1 switch in accordance with an embodiment of the

25 present invention; and

Figure 10 is a block diagram of the wavelength add/drop multiplexers in accordance with an embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

25 Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. An exemplary embodiment of the protection switch of the present invention is shown in Figure 1, and is designated generally throughout by reference numeral
30 10.

In accordance with the invention, the present invention for a protection switch

includes an electrical switching circuit coupled to an optical signal monitor. The electrical switching circuit includes a plurality of modular switching fabrics that respond to fault condition alarms provided by the optical signal monitor. Each modular switching fabric is versatile in that it includes a ring switch mode that is responsive to the multi-wavelength channel failures, and a span switch mode that is responsive to the single wavelength channel failures. Because the switching fabric of the electrical switching circuit is comprised of the plurality of small modular switching fabrics, the possibility of incurring a single-point switching failure in the switching fabric is virtually eliminated.

As embodied herein, and depicted in Figure 1, a block diagram of two-fiber optical channel shared protection ring 100 including protection switch 10 according to the present invention is disclosed. Shared protection ring 100 may include any number of nodes, but there is shown by way of example, node A, node B, node C, and node D interconnected by fiber 1 and fiber 2. Fiber 1 propagates working wavelengths 81, 83, ... 8M, and protection wavelengths 82, 84 ... 8N in a counter-clockwise direction. Fiber 2 propagates working wavelengths 82, 84, ... 8N, and protection wavelengths 81, 83 ... 8M in a clockwise direction. Node A, for example includes primary client and pre-emptible extra client transceivers 12. Client transceivers 12 are coupled to protection switch 10. Protection switch 10 is coupled to fiber 1 via WADM 14, and fiber 2 via WADM 16. Thus, wavelength channels are transmitted by protection switch 10 and added to fiber traffic flow by the WADM's add functionality. Wavelength channels are removed from the fiber traffic flow and transmitted to protection switch 10 using the WADM's drop functionality. Primary traffic is carried around the ring using the working wavelength channels. Extra traffic may be carried around the ring using the protection wavelength channels. However, when a fault condition is detected, extra traffic is pre-empted by protection switch 10 and the protection wavelengths are used to carry primary traffic until the fault condition has been remedied.

As embodied herein and depicted in Figure 2A, a block diagram of two-fiber protection ring 100 operating under normal conditions is disclosed. In this example, protection switch 10 in Node A is configured such that primary client 1 transmits to primary client 2 using wavelength channel 8k which is propagating in a counter-clock wise direction in fiber 2. Primary client 1 receives information from primary client 2 using wavelength channel 8j which is propagating in a clock wise direction in fiber 1. Extra client 1 transmits

to extra client 2 using protection wavelength channel 8j which is propagating in a counter-clock wise direction in fiber 2. Extra client 1 receives information from extra client 2 using protection wavelength channel 8k which is propagating in a clock wise direction in fiber 1. Primary client 3 and Extra client 3 communicate with Primary client 4 and Extra

5 client 4, respectively, in a similar manner.

As embodied herein and depicted in Figure 2B, a detailed diagram of protection switch 10 as depicted in Figure 2A is disclosed. For clarity of illustration, WADM 14 is depicted functionally as drop multiplexer 140 and add multiplexer 142. Similarly, WADM 16 is depicted functionally as drop multiplexer 160 and add multiplexer 162. As shown in

10 Figure 2B, protection switch 10 includes a drop portion and an add portion. The drop portion includes optoelectric converters 20 which are coupled to drop multiplexers 140 and 162. Optoelectric converters 20 are coupled to switch fabric 30. Switch fabric 30 is coupled to electrooptical converters 40. Electrooptical converters 40 transmit data to primary client 1, primary client 3, extra client 1, and extra client 3 using 1310nm short reach optics. The add portion of protection switch 10 includes optoelectric converters 70 which receive data from

15 primary client 1, primary client 3, extra client 1, and extra client 3 using 1310nm short reach optics. Optoelectric converters 70 are coupled to switch fabric 60. Switch fabric 60 is coupled to electrooptical converters 50. Electrooptical converters 50 are coupled to add multiplexers 142 and 160. Protection switch 10 operates as follows under normal operating

20 conditions.

Optoelectric converter 22 converts working wavelength channel 8j, which was dropped by drop multiplexer 140, into a data signal. The data signal is then provided to 3 x 1 switch 32. 3 x 1 switch 32 also receives inputs from optoelectric converter 24 and optoelectric converter 26. In the normal operational switch state, 3 x 1 switch 32 selects data

25 from optoelectric converter 22, and provides the data to electrooptic converter 42. The data is subsequently transmitted to primary client receiver 1.

Optoelectric converter 24 converts protection wavelength channel 8k, which was also dropped by drop multiplexer 140, into another data signal. This data signal is provided to 2 x 1 switch 34. Electrooptic converter 44 receives the data signal and transmits it to the extra

30 client receiver 1.

Optoelectric converter 26 converts protection wavelength channel 8j, which was

dropped by drop multiplexer 162, into a third data signal. This data signal is provided to 2 x 1 switch 36. Electrooptic converter 46 receives the data signal and transmits it to the extra client receiver 3.

Optoelectric converter 28 converts working wavelength channel 8k, which was also

5 dropped by drop multiplexer 162, into a fourth data signal. The data signal is then provided to 3 x 1 switch 38. 3 x 1 switch 32 also receives inputs from optoelectric converter 24 and optoelectric converter 26. In the normal operational switch state, 3 x 1 switch 38 selects data from optoelectric converter 28, and provides the data to electrooptic converter 48. The data is subsequently transmitted to primary client receiver 3. The add portion of protection switch

10 10 operates as follows.

Optoelectric converter 72 converts 1310nm light into a working data signal. The working data signal is then provided to electrooptic converter 58, 3 x 1 switch 62, and 3 x 1 switch 64. Electrooptic converter 58 transmits the working data to add multiplexer 142 on working wavelength channel 8j. 3 x 1 switch 62 also receives inputs from optoelectric converter 78 and 2 x 1 switch 68. In the normal operational switch state, 3 x 1 switch 62 selects data from 2 x 1 switch 68, and provides the data to electrooptic converter 56. This data originated from extra transmitter 3. Thus, the data is transmitted to add multiplexer 142 on protection wavelength channel 8k.

Optoelectric converter 78 converts 1310nm light into a second working data signal.

20 The second working data signal is then provided to electrooptic converter 52, 3 x 1 switch 62, and 3 x 1 switch 64. Electrooptic converter 52 transmits the working data to add multiplexer 160 on working wavelength channel 8k. 3 x 1 switch 64 also receives inputs from optoelectric converter 72 and 2 x 1 switch 66. In the normal operational switch state, 3 x 1 switch 64 selects data from 2 x 1 switch 66, and provides the data to electrooptic converter
25 54. This data originated from extra transmitter 1. Thus, the data is transmitted to add multiplexer 160 on protection wavelength channel 8j.

Examples:

The invention will be further clarified by the following examples which are intended

30 to be exemplary of the invention.

Example 1:

As embodied herein and depicted in Figure 3A, an example of the two-fiber protection ring operating under a multi-channel fault condition is disclosed. The multi-channel fault condition depicted in Figure 3A is a cable cut. Both fiber 1 and fiber 2
5 are severed between Node C and Node D. To compensate, protection switch 10 pre-empts extra client 1 and extra client 3. Primary client 1 transmits to primary client 2 over channel 8k on fiber 2. Primary client 2 transmits to primary client 1 over channel 8j on fiber 1. Primary client 3 transmits to primary client 4 over protection channel 8j on fiber 2. Primary client 4 transmits to primary client 3 over protection channel 8k on fiber 1.

Figure 3B is an operational example of the modular switch fabric responding to the multi-channel fault condition shown in Figure 3A. In the drop portion of protection switch 10, 2 x 1 switch 34 and 2 x 1 switch 36 are both actuated to an off-state to thereby pre-empt extra receiver 1 and extra receiver 3, respectively. In addition, 3 x 1 switch 38 is actuated to select data from optoelectric converter 24. Thus, working data that is carried by protection wavelength channel 8k on fiber 1, is routed to primary receiver 3. In the add portion of protection switch 10, 2 x 1 switch 66 and 2 x 1 switch 68 are both actuated to an off-state to thereby pre-empt extra transmitter 1 and extra transmitter 3, respectively. Further, 3 x 1 switch 64 is actuated to select data from optoelectric converter 72. Thus, working data provided by primary transmitter 3 is carried by protection wavelength channel 8j on fiber 2.

20

Example 2:

As embodied herein and depicted Figure 4A, an example of the two-fiber protection ring operating under a single-channel fault condition is disclosed. The single-channel fault depicted in Figure 4A is an inoperative wavelength channel 8k on fiber 2 between Node C
25 and Node D. This may occur for any number of reasons, including for example, a faulty optical transmitter. To compensate, protection switch 10 only pre-empts extra client 3. Primary client 3 transmits to primary client 4 over protection channel 8k on fiber 1. Primary client 4 transmits to primary client 3 over protection channel 8j on fiber 2.

Figure 4B is an operational example of the modular switch fabric responding to the
30 single-channel fault condition shown in Figure 4A. In the drop portion of protection switch 10, 2 x 1 switch 36 is actuated to an off-state to thereby pre-empt extra receiver 3. 3 x 1

switch 38 is actuated to select data from optoelectric converter 26. Thus, working data that is carried by protection wavelength channel 8j on fiber 2, is routed to primary receiver 3. In the add portion of protection switch 10, 2 x 1 switch 68 is actuated to an off-state to thereby pre-empt extra transmitter 3. 3 x 1 switch 62 is actuated to select data from optoelectric 5 converter 72. The working data is changed to an optical signal by electrooptic converter 56 transmitted to add multiplexer 142 on channel 8k. Thus, protection wavelength channel 8k carries working data from primary client 3 on fiber 1.

As embodied herein and depicted in Figure 5, a diagrammatic depiction of the modular switching fabric in accordance with an embodiment of the present invention is disclosed. It will be apparent to those of ordinary skill in the pertinent art that the modular switch fabric may be of any suitable type depending on cost and other design considerations, but there is shown by way of example an application specific integrated chip (ASIC) 150 that includes drop switch fabric 30, controller 80, and add fabric 60. In this embodiment, optoelectric converter module is disposed between drop multiplexer 140 and 162, and 10 modular switch fabric 150. Electrooptic converter module 50 is disposed between add multiplexers 142 and 160, and modular switch fabric 150. Optoelectric converter module 70 is disposed between the client transmitters and modular switch fabric 150. Electrooptic 15 converter module 40 is disposed between the client receivers and modular switch fabric 150. Modular switch fabric 150 is programmed to accommodate two working wavelength channels and two protection wavelength channels. Thus, scalability and modularity are provided by adding an ASIC for each set of two working wavelength channels and two protection wavelength channels supported on the protection ring.

Figure 6 is a detail view of optoelectric converter 22 according to an embodiment of the present invention. It will be apparent to those of ordinary skill in the pertinent art that 20 optoelectric converters 22, 24, 26, and 28 may be of any suitable type as long as they conform to ITU standards. The 1550nm signal from WADM 14 is converted into an electrical signal current by photodiode 220. Photodiode 220 may be either a PIN diode or an avalanche photodiode. Photodiode 220 is connected to amplifier 222. In one embodiment, 25 amplifier 222 is implemented by providing a transimpedance amplifier in series with a limiting amplifier. The transimpedance amplifier converts the signal current provided by 30 diode 220 into a voltage signal. A transimpedance amplifier typically provides an output

signal having a range of several millivolts. The limiting amplifier provides an output signal having an output voltage that is compatible with downstream components. A clock and data recovery circuit (CDR) 224 is connected to amplifier 222. CDR 224 performs timing and amplitude-level decisions on the incoming data. CDR 224 also must comply with ITU

5 standards related to jitter and other signal characteristics. The recovered data is written into receive buffer 226. Receive buffer 226 is connected to 3 x 1 switch 32. 3 x 1 switch 32 is connected to an output buffer 228. The data stored in buffer 228 is converted into a 1310 optical signal by electrooptic converter 42. CDR 224 is also coupled to controller 80. In this embodiment, CDR 224 includes a power monitor which is provided to controller 80. If the incoming signal falls below a certain level, a single-channel fault condition is detected. Controller 80 is coupled to the CDRs in all of the optoelectric converters. Thus, if a fault condition is detected in a plurality of converters, controller 80 will interpret this as a multi-channel fault condition and respond accordingly. One of ordinary skill in the art will recognize that other types of ring monitoring may be employed. Optoelectric converters 72, 10 74, 76, and 78 may be of similar design, adapted to 1310nm portion of the spectrum.

15

Figure 7 is a detail view of electrooptic converter 52 in accordance with the present invention. Electrooptic converters 52, 54, 56, and 58 may be of any suitable type as long as they conform to ITU standards. Converter 52 includes latch buffer 524 which is coupled to optoelectric converter 78(not shown) to thereby receive data from primary client 1. Latch 20 524 provides a serial stream of data to laser driver 522, when enabled by controller 80. Laser driver 522 provides laser diode 520 with a DC bias current and a modulation current for signal transmission. The DC bias current is used to set a DC operating point, which is dependent on the type of laser diode used in converter 52. Feedback (not shown) may be used to adjust the DC operating point to compensate for laser drift due to the effects of aging 25 and temperature.

Figure 8 is an example of a 3 x 1 switch in accordance with an embodiment of the present invention. In this example 3 x 1 switch 32 receives data from optoelectric converters 22, 24, and 26. Switch fabric 32 includes AND gates 320, 322, and 324. When controller 80 enables AND gate 320 with a logic one input, data from converter 22 is selected. When 30 controller 80 selects one of the AND gates, the other gates in the 3 x 1 fabric are provided with a logic zero input to thereby disable the gate. The outputs of AND gates 320, 322, and

324 are inputs to OR gate 326. The output of OR gate 326 is the output of the 3 x 1 switch. The embodiment of the 3 x 1 switch depicted in Figure 8 is easily implemented in ASIC 150. However, one of ordinary skill in the art will recognize that the switch fabric, and the 3 x 1 switches comprising the switch fabric, can be implemented using other techniques employing 5 semiconductor gated technology.

Figure 9 is an example of a 2 x 1 switch in accordance with an embodiment of the present invention. 2 x 1 switches 34, 36, 66, and 68 are coupled to the extra clients and operate on an on-off basis. Thus, 2 x 1 switches 34, 36, 66, and 68 are easily implemented using AND gate 340. When controller 80 provides AND gate 340 with a logic one signal, 10 AND gate 340 is enabled and transmits the inputted data. When controller 80 provides AND gate 340 with a logic zero signal, AND gate 340 is turned off, and no data will propagate from the 2 x 1 switch. The embodiment of the 2 x 1 switch depicted in Figure 9 is easily implemented in ASIC 150. Again, one of ordinary skill in the art will recognize that the switch fabric, and the 2 x 1 switches comprising the switch fabric, can be implemented using 15 other techniques employing semiconductor gated technology.

As embodied herein and depicted in Figure 10 a block diagram of a wavelength add/drop multiplexer in accordance with an embodiment of the present invention is disclosed. WADM 14 includes input collimator 300 and output collimator 318. Collimators 302, 306, 310, and 314 are add ports for wavelength channels 8j, 8N, 81, and 8k, respectively. 20 Collimators 304, 308, 312, and 316 are used as drop ports for wavelength channels 8j, 8N, 81, and 8k, respectively. WADM 14 also includes two-position movable wavelength channel selectors 400, 402, 404, and 406. The movable wavelength channel selectors are movable between a total reflection position and an add/drop position. The wavelength channel selectors are fabricated using an optical substrate that transmits all of the wavelengths present 25 in the incident light signal. The total reflection portion is fabricated by depositing a highly reflective material such as gold over a portion of the substrate. The movable wavelength channel selector also has a second portion that includes a material tuned to a particular wavelength channel. Each wavelength channel selector is attached to a mechanical arm which is actuated between the total reflection position and the add/drop position.

30 For example, in the add/drop position wavelength channel selector 400 transmits wavelength 81. Thus, wavelength 81 is dropped from the incident light signal into drop port

312 and add-wavelength 81 is inserted into the light signal via port 310. In the total reflection position, all wavelength channels are reflected including wavelength 81. Thus, wavelength 81 is not dropped and a new add-wavelength 81 is not inserted into the light signal propagating in fiber 1. A similar analysis holds for wavelength channel selectors 402, 5 404, and 406 with respect to wavelengths 8j, wavelength 8k, and wavelength 8N, respectively. One of ordinary skill in the art will recognize that the WADM depicted in Figure 10 does not show other wavelength channels for clarity of illustration.

It will be apparent to those skilled in the art that various modifications and variations can be made to the present invention without departing from the spirit and scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
229
230
231
232
233
234
235
236
237
238
239
239
240
241
242
243
244
245
246
247
248
249
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
988
989
989
990
991
992
993
994
995
995
996
997
997
998
999
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1088
1089
1089
1090
1091
1092
1093
1094
1095
1095
1096
1097
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1188
1189
1189
1190
1191
1192
1193
1194
1195
1195
1196
1197
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1288
1289
1289
1290
1291
1292
1293
1294
1295
1295
1296
1297
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1389
1390
1391
1392
1393
1394
1395
1395
1396
1397
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1489
1489
1490
1491
1492
1493
1494
1495
1495
1496
1497
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1589
1590
1591
1592
1593
1594
1595
1595
1596
1597
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1689
1690
1691
1692
1693
1694
1695
1695
1696
1697
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1789
1790
1791
1792
1793
1794
1795
1795
1796
1797
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849