Kurven im \mathbb{R}^n

- **Definition 2.1.1.** Sei $I \subset \mathbb{R}$ ein Intervall. Eine parametrisierte Kurve ist eine unendlich oft differenzierbare Abbildung $c: I \to \mathbb{R}^n$. Eine parametrisierte Kurve heißt regulär, falls ihr Geschwindigkeitsvektor nirgends verschwindet, $\dot{c}(t) \neq 0$ für alle $t \in I$.
- **Definition 2.1.7.** Sei $c: I \to \mathbb{R}^n$ eine parametrisierte Kurve. Eine Parameter transformation von c ist eine bijektive Abbildung $\varphi: J \to I$, wobei $J \subset \mathbb{R}$ ein weiteres Intervall ist, so dass sowohl φ als auch $\varphi^{-1}: I \to J$ unendlich oft differenzierbar sind. Die parametrisierte Kurve $\tilde{c} = c \circ \varphi: J \to \mathbb{R}^n$ heißt Umparametrisierung von c.
- **Definition 2.1.8.** Eine Parametertransformation φ heißt orientierungserhaltend, falls $\dot{\varphi}(t) > 0$ für alle t und orientierungsumkehrend, falls $\dot{\varphi}(t) < 0$ für alle t.
- **Definition 2.1.9.** Eine *Kurve* ist eine Äquivalenzklasse von regulären parametrisierten Kurven, wobei diese als äquivalent angesehen werden, wenn sie Umparametrisierungen voneinander sind.
- **Definition 2.1.10.** Eine *orientierte Kurve* ist eine Äquivalenzklasse von parametrisierten Kurven, wobei diese als äquivalent angesehen werden, wenn sie durch *orientierungserhaltende* Parametertransformationen auseinander hervorgehen.
- **Definition 2.1.11.** Eine nach Bogenlänge parametrisierte Kurve ist eine reguläre parametrisierte Kurve $c: I \to \mathbb{R}^n$ mit $\|\dot{c}(t)\| = 1$ für alle $t \in I$.
- **Definition 2.1.15.** Sei $c:[a,b]\to\mathbb{R}^n$ eine parametrisierte Kurve. Dann heißt

$$L[c] := \int_{a}^{b} \|\dot{c}(t)\| dt$$

 $L\ddot{a}nge \text{ von } c.$

Definition 2.1.17. Ein *Polygon* im \mathbb{R}^n ist ein Tupel $P = (a_0, \dots, a_k)$ von Vektoren $a_i \in \mathbb{R}^n$, so dass $a_{i+1} \neq a_i$ für alle $i = 0, \dots, k-1$.

- **Definition 2.1.19.** Eine parametrisierte Kurve $c: \mathbb{R} \to \mathbb{R}^n$ heißt periodisch mit Periode L, falls für alle $t \in \mathbb{R}$ gilt c(t+L) = c(t), L > 0, und es kein 0 < L' < L gibt, so dass c(t+L') = c(t) für alle $t \in \mathbb{R}$. Eine Kurve heißt geschlossen, falls sie eine periodische reguläre Parametrisierung besitzt.
- **Definition 2.1.20.** Eine geschlossene Kurve heißt einfach geschlossen, falls sie eine periodische reguläre Parametrisierung c mit Periode L hat, so dass $c|_{[0,L)}$ injektiv ist.

- **Proposition 2.1.13.** Zu jeder regulären parametrisierten Kurve c gibt es eine orientierungserhaltende Parametertransformation φ , so dass die Umparametrisierung $c \circ \varphi$ nach Bogenlänge parametrisiert ist.
- **Lemma 2.1.14.** Sind $c_1:I_1\to\mathbb{R}^n$ und $c_2:I_2\to\mathbb{R}^n$ Parametrisierungen nach der Bogenlänge derselben Kurve, so ist die zugehörige Parametertransformation $\varphi:I_1\to I_2$ mit $c_1=c_2\circ\varphi$ von der Form

$$\varphi(t) = t + t_0$$

für ein $t_0 \in \mathbb{R}$, falls c_1 und c_2 gleich orientiert sind. Falls c_1 und c_2 entgegengesetzt orientiert sind, ist sie von der Form

$$\varphi(t) = -t + t_0.$$

- **Lemma 2.1.16.** Die Länge parametrisierter Kurven ändert sich nicht bei Umparametrisieren.
- **Proposition 2.1.18.** (Längenapproximation durch Polygone). Sei $c:[a,b] \to \mathbb{R}^n$ eine parametrisierte Kurve. Dann gibt es für jedes (noch so kleine) $\epsilon > 0$ ein $\delta > 0$, so dass für jede Unterteilung $a = t_0 < t_1 < \ldots < t_k = b$ des Definitionsintervalls mit Feinheit kleiner als δ (d.h. $t_{i+1} t_i < \delta$ für alle i) gilt:

$$|L[c] - L[P]| < \epsilon,$$

wobei $P = (c(t_0), c(t_1), \dots, c(t_k)).$