

MSP432P401R, MSP432P401M

SLAS826A - MARCH 2015-REVISED MARCH 2015

MSP432P401x Mixed-Signal Microcontrollers

1 Device Overview

1.1 Features

- Core
 - ARM[®] 32-Bit Cortex[®]-M4F CPU With Floating Point Unit and Memory Protection Unit
 - Frequency up to 48 MHz
 - Performance Benchmark:
 - 1.196 DMIPS/MHz (Dhrystone 2.1)
 - 3.41 CoreMark/MHz
 - Energy Benchmark:
 - 167.4 ULPBench® Score
- Memories
 - Up to 256KB of Flash Main Memory (Simultaneous Read and Execute During Program or Erase)
 - 16KB of Flash Information Memory
 - Up to 64KB of SRAM (Including 8KB of Backup Memory)
 - 32KB of ROM With MSPWare Driver Libraries
- · Code Security Features
 - JTAG and SWD Lock
 - IP Protection (Up to Four Secure Flash Zones, Each With Configurable Start Address and Size)
- · Operating Characteristics
 - Wide Supply Voltage Range: 1.62 V to 3.7 V
 - Temperature Range (Ambient): –40°C to 85°C
- Ultra-Low-Power Operating Modes
 - Active: 90 µA/MHz
 - Low-Frequency Active: 90 μA (at 128 kHz)
 - LPM3 (With RTC): 850 nA
 - LPM3.5 (With RTC): 800 nA
 - LPM4.5: 25 nA
- Flexible Clocking Features
 - Programmable Internal DCO (up to 48 MHz)
 - 32.768-kHz Low-Frequency Crystal Support (LFXT)
 - High-Frequency Crystal Support (HFXT) up to 48 MHz
 - Low-Frequency Trimmed Internal Reference Oscillator (REFO)
 - Very Low-Power Low-Frequency Internal Oscillator (VLO)
 - Module Oscillator (MODOSC)
 - System Oscillator (SYSOSC)
- · Enhanced System Options

- Programmable Supervision and Monitoring of Supply Voltage
- Multiple-Class Resets for Better Control of Application and Debug
- Eight-Channel DMA
- Real-Time Clock (RTC) With Calendar and Alarm Functions
- · Timing and Control
 - Up to Four 16-Bit Timers, Each With up to Five Capture, Compare, PWM Capability
 - Two 32-Bit Timers, Each With Interrupt Generation Capability
- Serial Communication
 - Up to Four eUSCI_A Modules
 - UART With Automatic Baud-Rate Detection
 - IrDA Encode and Decode
 - SPI (up to 16 Mbps)
 - Up to Four eUSCI B Modules
 - I²C (With Multiple-Slave Addressing)
 - SPI (up to 16 Mbps)
- Flexible I/O Features
 - Ultra-Low-Leakage I/Os (±20 nA Maximum)
 - Up to Four High-Drive I/Os (20-mA Capability)
 - All I/Os With Capacitive Touch Capability
 - Up to 48 I/Os With Interrupt and Wake-up Capability
 - Up to 24 I/Os With Port Mapping Capability
 - Eight I/Os With Glitch Filtering Capability
- Advanced Low-Power Analog Features
 - 14-Bit, 1-MSPS SAR ADC
 - Internal Voltage Reference With 10-ppm/°C Typical Stability
 - Two Analog Comparators
- Encryption and Data Integrity Accelerators
 - 128-, 192-, or 256-Bit AES Encryption and Decryption Accelerator
 - 32-Bit Hardware CRC Engine
- JTAG and Debug Support
 - Support for 4-Pin JTAG and 2-Pin SWD Debug Interfaces
 - Support for Serial Wire Trace
 - Support for Power Debug and Profiling of Applications

1.2 Applications

- · Industrial and Automation
 - Home Automation
 - Smoke Detectors
 - Barcode Scanners
- Metering
 - Electric Meters
 - Flow Meters

- · Health and Fitness
 - Watches
 - Activity Monitors
 - Fitness Accessories
 - Blood Glucose Meters
- Consumer Electronics
 - Mobile Devices
 - Sensor Hubs

1.3 Description

The MSP432P401x device family is TI's latest addition to its portfolio of efficient ultra-low-power mixed-signal MCUs. The MSP432P401x family features the ARM Cortex-M4 processor in a wide configuration of device options including a rich set of analog, timing, and communication peripherals, thereby catering to a large number of application scenarios where both efficient data processing and enhanced low-power operation are paramount.

Overall, the MSP432P401x is an ideal combination of the TI MSP430™ low-power DNA, advance mixed-signal features, and the processing capabilities of the ARM 32-bit Cortex-M4 RISC engine. The devices ship with bundled driver libraries and are compatible with standardized components of the ARM ecosystem.

Device Information⁽¹⁾

PART NUMBER	PACKAGE (PIN)	BODY SIZE (2)
MSP432P401RIPZ MSP432P401MIPZ	LQFP (100)	14 mm × 14 mm
MSP432P401RIZXH MSP432P401MIZXH	NFBGA (80)	5 mm × 5 mm
MSP432P401RIRGC MSP432P401MIRGC	VQFN (64)	9 mm × 9 mm

⁽¹⁾ For the most current part, package, and ordering information for all available devices, see the *Package Option Addendum* in Section 9, or see the TI website at www.ti.com.

⁽²⁾ The sizes shown here are approximations. For the package dimensions with tolerances, see the Mechanical Data in Section 9.

1.4 Functional Block Diagram

Figure 1-1 shows the functional block diagram of the MSP432P401x devices.

Figure 1-1. MSP432P401x Functional Block Diagram

The CPU and all the peripherals in the device interact with each other through a common AHB matrix. In some cases, there are bridges between the AHB ports and the peripherals. These bridges are transparent to the application from a memory map perspective and hence not shown in the block diagram.

Table of Contents

1	Devi	ce Overview	. <u>1</u>		6.2	Memory Map	61
	1.1	Features	. <u>1</u>		6.3	Memories on the MSP432P401x	66
	1.2	Applications	. 2		6.4	DMA	75
	1.3	Description	. 2		6.5	Memory Map Access Details	76
	1.4	Functional Block Diagram	. <u>3</u>		6.6	Interrupts	78
2	Revi	sion History	. <u>4</u>		6.7	System Control	82
3	Devi	ce Comparison	. <u>5</u>		6.8	Peripherals	87
4	Term	ninal Configuration and Functions	. <u>6</u>		6.9	Code Development and Debug	98
	4.1	Pin Diagrams	. <u>6</u>		6.10	Input/Output Schematics	100
	4.2	Signal Descriptions	<u>10</u>		6.11	Device Descriptors (TLV)	139
5	Spec	cifications	<u>15</u>	7	Appl	ications, Implementation, and Layout	<u>141</u>
	5.1	Absolute Maximum Ratings	<u>15</u>		7.1	Device Connection and Layout Fundamentals	<u>141</u>
	5.2	ESD Ratings	<u>15</u>		7.2	Peripheral and Interface-Specific Design	
	5.3	Recommended Operating Conditions	<u>15</u>			Information	
	5.4	Recommended External Components	16	8	Devi	ce and Documentation Support	
	5.5	Operating Mode V _{CC} Ranges	16		8.1	Device Support	<u>144</u>
	5.6	Operating Mode CPU Frequency Ranges			8.2	Documentation Support	146
	5.7	Operating Mode Peripheral Frequency Ranges			8.3	Trademarks	<u>147</u>
	5.8	Operating Mode Execution Frequency vs Flash			8.4	Electrostatic Discharge Caution	<u>147</u>
		Wait-State Requirements	<u>18</u>		8.5	Export Control Notice	147
	5.9	Current Consumption	<u>19</u>		8.6	Glossary	147
	5.10	Timing and Switching Characteristics	23	9	Mecl	hanical, Packaging, and Orderable	
6	Deta	iled Description	<u>60</u>			mation	148
	6.1	Processor and Execution Features	60		9.1	Packaging Information	<u>148</u>

2 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from March 19, 2015 to March 30, 2015

Page