		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 113,2187 (2012)	15-Sep-2012

 $Q(\beta^{-})=1950\ 10;\ S(n)=7286\ 7;\ S(p)=12411\ 9;\ Q(\alpha)=-5601\ 5$ 2012Wa38

Note: Current evaluation has used the following Q record 1951 9 7286 7 12410 9 -5601 4 2011AuZZ.

 $Q(\beta^-)$,S(n),S(p), $Q(\alpha)$: from 2011AuZZ; values are 1946 9, 7294 6, 12411 9, -5600 14, respectively, from 2003Au03.

For isotope shift data, see 1990Bu12.

For shell-model calculations see, e.g., 1973Wa36, 1978Ba70, 2002St06, 2003Hw01, 2009Rz01.

⁹²Sr Levels

Cross Reference (XREF) Flags

			A B C	92 Rb β ⁻ decay D 208 Pb(18 O,Fxnγ) 93 Rb β ⁻ n decay E 159 Tb(36 S,fxng) 94 Zr(6 Li, 8 B) F 248 Cm SF decay					
E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	XREF	Comments					
0.0&	0+	2.611 h <i>17</i>	ABCDEF	${}^{\prime\prime}$ β $^{-}$ =100 ${}^{\prime}$ Δ< $^{\prime\prime}$ 2 $^{\prime}$ 8Sr, 92 Sr)=0.512; uncertainty is 0.005 (statistical only), 0.021 (systematic included) (1990Bu12). For discussion of differential changes in ${}^{\prime}$ Δ< $^{\prime\prime}$ 2 $^{\prime}$ 2, see 1996Li25. J $^{\pi}$: see comment on 815 level. T _{1/2} : unweighted average of 2.594 h $^{\prime}$ 6 (2008Le19) and 2.627 h $^{\prime}$ 9 (2003NiZY) (the weighted average is 2.604 h $^{\prime}$ 15), the two highest precision measurements available. Other GeLi data: 2.71 h $^{\prime}$ 1 (1971Pa31). Other NaI scin data: 2.71 h $^{\prime}$ 2 (1960Fr05), 2.84 h $^{\prime}$ 22, 2.73 h $^{\prime}$ 10, 2.79 h $^{\prime}$ 19, 2.77 h $^{\prime}$ 17, 2.74 h $^{\prime}$ 18, 2.45 h $^{\prime}$ 7, 2.57 h $^{\prime}$ 7 (1956He77). The weighted average of all data is 2.667 h $^{\prime}$ 16; this rises to 2.669 h $^{\prime}$ 15 if the statistical outlier datum (2.45 h $^{\prime}$ 7) is excluded. However, these averages may not be reliable since these data are discrepant. ${}^{\prime}$ 2 $^{\prime}$ 2(charge)=4.295 fm $^{\prime}$ 6 (2004An14).					
814.98 ^{&} 3	2+	8 ps 3	ABCDEF	J^{π} : from 1273 γ -815 $\gamma(\theta)$ and 1712 γ -815 $\gamma(\theta)$ which indicate 0-2-0 ⁺ cascades; E2 γ to 0 ⁺ .					
1384.79 9	2+	5.1 ps 24	ABC	J^{π} : 704γ-1385γ(θ) establishes J(2088 level)=0, J(1385 level)=2; E2 γ to 0 ⁺ level.					
1673.3 & 4	$(4)^{+}$		DEF	J^{π} : E2, ΔJ =2 858 γ to 2 ⁺ 815; energy is close to that for 4 ⁺ level in ⁹⁰ Sr (2000Fo13).					
1778.33 <i>12</i> 2053.9 <i>6</i>	2 ⁽⁺⁾ (2 ⁺)	≤5.0 ps	AB A	J^{π} : 964γ-815γ(θ) allows J=2, not 1,3,4; 1778γ to 0 ⁺ . J^{π} : 1239γ-815γ(θ) allows J=2; datum ≈2σ from J=1,3,4 ellipses. (E2+M1) γ to 2 ⁺ .					
2088.39 17	0(+)		A	J^{π} : 704γ-1385γ(θ) establishes J(2088 level)=0, J(1385 level)=2; Q γ to 2 ⁺ level.					
2140.82 <i>14</i> 2185.0 <i>4</i>	1 ⁺ (3 ⁻)	7.1 ps 25	A DEF	J^{π} : 756 γ - $\gamma(\theta)$ allows J=1, not 2,3,4; E2+M1 γ to 2 ⁺ . J^{π} : analogous to 3 ⁻ states in ⁸⁸ Sr and ⁹⁰ Sr at 2734 and 2207, respectively; D 1371 γ to 2 ⁺ 815.					
2527.18 <i>18</i> 2765.7 <i>5</i>	0 ⁺ (5 ⁻)	6 ps 4	A DEF	J^{π} : 1712 γ -815 $\gamma(\theta)$ establishes J(2527 level)=0, J(815 level)=2; E2 γ to 2 ⁺ . J^{π} : energy systematics of lower-N Sr isotopes suggest a 5 ⁻ level in this vicinity (2000Fo13); D 1092 γ to (4) ⁺ 1673.					
2783.6 <i>4</i> 2820.89 <i>18</i>	2 ⁽⁺⁾ ,(1)		A A	J^{π} : $\gamma\gamma(\theta)$ rules out J=4, favors J=2, but also permits 1,3; strong γ to 0 ⁺ g.s.					
2849.6 <i>6</i> 2924.8 <i>7</i>	,(-)		A E	If $J=2$, $\gamma\gamma(\theta)$ implies $\delta(2007\gamma)<-0.53$, favoring $\pi=+$.					

Adopted Levels, Gammas (continued)

⁹²Sr Levels (continued)

E(level) [†]	Jπ#	XREF	Comments
3014.6 6		EF	J^{π} : 1341 γ to (4) ⁺ 1673 so J=(2 to 6). J^{π} =(4 ⁺) proposed in (³⁶ S,Fxn γ) but (5,6 ⁺) in ²⁴⁸ Cm SF decay. Possible dominant configuration: π (1p _{3/2} ⁻¹ 1p _{1/2}) ₂ ν (1d _{5/2} ⁴) ₂) (2002St06) if J=4.
3128.8 7	(6 ⁺)	EF	J^{π} : 1455 γ to (4) ⁺ 1673; (5,6 ⁺) from ²⁴⁸ Cm SF decay; possible configuration: π (1p ⁻¹ _{3/2} 1p _{1/2}) ₂ ν (1d ⁴ _{5/2}) ₄) (2002St06).
3362.4 5	(5^{-})	EF	J^{π} : 1177 γ to (3 ⁻) 2185, 1689 γ to (4) ⁺ 1673; 597 γ to (5 ⁻) 2766 in ²⁴⁸ Cm SF decay.
3558.5 7	$(6^-,7^-)^{\textcircled{0}}$	DEF	XREF: D(4579).
3786.0 7	$(6^-,7^-)^{\textcircled{@}}$	DEF	
4021.4 9	$(6^-,7^-)^{\textcircled{0}}$	EF	
4637.8 5	1	Α	J^{π} : log $ft \approx 6.6$ from 0^{-92} Rb; γ to 2^{+} and 0^{+} .
4928.5 9	$(8^-,9^-)^{\textcircled{0}}$	EF	Configuration involves ($\nu g_{7/2}$) \otimes ($\nu h_{11/2}$) (2009Rz01).
5053.8 4	1	Α	J^{π} : log $ft \approx 6.5$ from 0^{-92} Rb; γ to 2^{+} .
5056.7 10		E	
5727.2 10		E	- 02
5738.4 9	1	Α	J^{π} : log $ft \approx 6.1$ from 0^{-92} Rb; γ to 2^{+} and 0^{+} .
5893.6 7	1(-)	A	J^{π} : log $ft \approx 6.0$ from 0^{-92} Rb; γ to 2^{+} .
5901.1 <i>10</i>	1 ⁽⁻⁾	Α	J^{π} : log ft ≈6.0 from 0 ⁻⁹² Rb; $γ$ to 0 ⁺ and 2 ⁺ .
6003.5 7	1-	Α	J^{π} : log $ft \approx 5.7$ from 0^{-92} Rb; γ to 0^{+} and 2^{+} .
6030.0 8	1-	Α	J^{π} : log $ft \approx 5.8$ from 0^{-92} Rb; γ to 0^{+} and 2^{+} .
6116.1 <i>10</i>	1-	A	J^{π} : log ft ≈5.8 from 0 ⁻⁹² Rb; γ to 0 ⁺ and 2 ⁺ .
6527.7? 12		E	
6949.1? <i>7</i>	$0^{-},1^{-}$	A	
7363.0 8	1-	A	J^{π} : log ft ≈4.0 from 0 ⁻⁹² Rb; $γ$ to 2 ⁽⁺⁾ and 0 ⁺ .

[†] From least-squares fit to E γ , allowing 1 keV uncertainty in E γ data (3 lines) for which the authors do not state the uncertainty.

 $\gamma(^{92}Sr)$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.	δ^{\ddagger}	Comments
814.98	2+	814.98 3	100	0.0	0+	E2		B(E2)(W.u.)=8 3 Other E γ : 814.4 in ²⁰⁸ Pb(¹⁸ O,Fxn γ). Mult.: Q Δ J=2 from $\gamma\gamma(\theta)$ in ²⁴⁸ Cm SF decay; not M2 from RUL.
1384.79	2+	569.8 <i>1</i>	100 6	814.98	2+	(M1+E2)	+0.21 2	B(M1)(W.u.)=0.014 7; B(E2)(W.u.)=1.9 10 Mult.: D+Q from $\gamma\gamma(\theta)$; adopted $\Delta\pi$ =no.
		1384.6 <i>3</i>	65 12	0.0	0+	E2		B(E2)(W.u.)=0.35 18 Mult.: Q to 0^+ in $\gamma\gamma(\theta)$; not M2 from RUL.
1673.3	(4) ⁺	858.4 [@] 5	100	814.98	2+	E2		Mult.: Q from DCO ratio in 159 Tb(36 S,Fxn γ); partial $T_{1/2}$ <5 ns because seen in prompt coin in 248 Cm SF decay, so not M2 from RUL.
1778.33	2 ⁽⁺⁾	393.5 1	83 4	1384.79	2+	(M1)		B(M1)(W.u.) \geq 0.029 Mult.: D from $\gamma\gamma(\theta)$ in β^- decay; $\Delta\pi$ =(no) from level scheme.

[‡] From $\beta \gamma \gamma(t)$ in Rb β^- decay, except as noted.

[#] Values given without comment are tentative values from 159 Tb(36 S,Fxn γ), consistent with DCO measurements but suggested primarily by analogy with 90 Sr which exhibits a very similar level sequence.

[®] From ²⁴⁸Cm SF decay, assuming that M2 transitions are unlikely if $E\gamma$ <1200, and that such a reaction predominantly populates yrast states in the secondary fission fragments so J is expected to rise with increasing level energy.

[&]amp; Band(A): π =+ sequence. Based on 0⁺ g.s. Principal configuration: ν 1d⁴_{5/2} (2002St06).

Adopted Levels, Gammas (continued)

γ (92Sr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.	δ^{\ddagger}	Comments
1778.33	2 ⁽⁺⁾	963.5 2	100 9	814.98	2+	(E2+M1)	+1.7 +13-15	B(E2)(W.u.) \geq 1.2 Mult.: Q(+D) with significant Q component (from $\gamma\gamma(\theta)$).
2053.9	(2+)	1778.3 <i>10</i> 1238.9 <i>6</i>	24 <i>13</i> 100	0.0 814.98	0 ⁺ 2 ⁺	(E2+M1)		Mult.: $Q(+D)$ from $\gamma\gamma(\theta)$ with large Q component.
2088.39	0(+)	703.6 3	47 10	1384.79	2+	(E2)		δ : <-3.3 or >+11.8. Mult.: Q from $\gamma\gamma(\theta)$; J=0 to
		1273.4 2	100 13	814.98	2+	(E2)		J^{π} =2 ⁺ transition. Mult.: Q from $\gamma\gamma(\theta)$; J=0 to J^{π} =2 ⁺ transition.
2140.82	1+	756.0 2	81 7	1384.79	2+	M1(+E2)	-0.09 3	B(M1)(W.u.)=0.0032 12; B(E2)(W.u.)=0.05 4 Mult.: D(+Q) from $\gamma\gamma(\theta)$; adopted $\Delta\pi$ =no.
		1325.8 2	100 12	814.98	2+	E2+M1	-0.27 5	B(M1)(W.u.)=0.0007 3; B(E2)(W.u.)=0.030 16 Mult.: D+Q from $\gamma\gamma(\theta)$; not E1+M2 from RUL.
2185.0	(3^{-})	512.2 [#]		1673.3	$(4)^{+}$			
		1370.0 [@] 5		814.98	2+	D		Other Ey: 1371.1 in ²⁰⁸ Pb(¹⁸ O,Fxny).
								Mult.: D $\Delta J=1$ from $\gamma \gamma(\theta)$ in ²⁴⁸ Cm SF decay.
2527.18	0+	386.1 <i>3</i>	5.8 10	2140.82	1+	(M1)		B(M1)(W.u.)=0.0035 25 Mult., δ : pure D from $\gamma\gamma(\theta)$ in β^- decay: $\Delta\pi$ =no from level scheme.
		1712.3 2	100 8	814.98	2+	E2		B(E2)(W.u.)=0.25 17 Mult., δ : pure Q from $\gamma\gamma(\theta)$; not M2 from RUL.
2765.7	(5 ⁻)	580.7 [@] 5	58.0 [@] 17	2185.0	(3-)			WIZ HOM RCE.
2,00	(0)	1092.3 [@] 5	100.0 [@] 22	1673.3	$(4)^{+}$	D		Mult.: from DCO ratio in ¹⁵⁹ Tb(³⁶ S,Fxny).
2783.6		1399.0 <i>6</i> 1968.6 <i>6</i>	76 24 100 29	1384.79 814.98				10(З,ғхиу).
2820.89	2 ⁽⁺⁾ ,(1)	2006.5 5	12 3	814.98				Mult=Q(+D), δ <-0.53 if J(2821 level)=2; from β ⁻ decay.
2849.6		2820.6 2 1071.4 1464.7 6	100 7 33 100 <i>33</i>	0.0 1778.33 1384.79				ievei)=2, iioiii p decay.
2924.8		1251.4 [@] 5	100	1673.3	$(4)^{+}$			
3014.6		1341.2 [@] 5	100	1673.3	(4) ⁺			E_{γ} : for contaminated line; E_{γ} =1342.3 in ²⁴⁸ Cm SF decay.
3128.8	(6^+)	1455.4 [@] 5	100	1673.3	$(4)^{+}$,
3362.4	(5^{-})	597.2		2765.7	(5^{-})			E_{γ} : from ²⁴⁸ Cm SF decay.
		1177.4 [@] 5	100 [@] 3	2185.0	(3^{-})			
		1689.0 [@] 5	36.4 [@] 21	1673.3	(4)+			
3558.5	(6-,7-)	792.8 [@] 5	100	2765.7	(5 ⁻)			E_{γ} : for contaminated line; 792.8 from ²⁴⁸ Cm SF decay also. γ is placed differently in ²⁰⁸ Pb(¹⁸ O,Fxn γ) (feeding a 3786 level), implying a 4579 level

Adopted Levels, Gammas (continued)

γ (92Sr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	E_f	J_f^π	Mult.
3786.0	(6-,7-)	771.3 [@] 5	≥24 [@]	3014.6		E_{γ} :
		1020.6 [#]	100 3	2765.7	(5 ⁻)	Oth b
4021.4	(6-,7-)	235.4 [@] 5	59.6 [@] 22	3786.0	(6-,7-)	S I_{γ} : (D) E_{γ} : Mu
4637.8	1	658.9 [@] 5 1816.7 5 2860.3 21 3823.6 16	100 [@] 4 27 6 12 12 16 10	3362.4 2820.89 1778.33 814.98	(5^{-}) $2^{(+)},(1)$ $2^{(+)}$ 2^{+}	iviu
4928.5	(8-,9-)	4637.7 9 1142.5 [@] 5 1799.6 [@] 5	100 <i>13</i> 100 [@] 4 31 [@] 3	0.0 3786.0 3128.8	0 ⁺ (6 ⁻ ,7 ⁻) (6 ⁺)	
5053.8	1	2232.0 5 2913.2 6 3670.8 12 4240.4 16	100 25 92 25 54 25 42 25	2820.89 2140.82 1384.79 814.98	2 ⁽⁺⁾ ,(1) 1 ⁺ 2 ⁺ 2 ⁺	
5056.7		1035.3 [@] 5	100	4021.4	(6-,7-)	
5727.2 5738.4	1	798.7 [@] 5 4922.6 11 5739.4 14	100 100 <i>18</i> 64 <i>24</i>	4928.5 814.98 0.0	(8 ⁻ ,9 ⁻) 2 ⁺ 0 ⁺	
5893.6	1(-)	3110.0 <i>7</i> 4508.2 <i>12</i>	100 <i>30</i> 63 <i>17</i>	2783.6 1384.79	2+	
5901.1	1 ⁽⁻⁾	5086.2 <i>12</i> 5086.2 <i>12</i> 5900.6 <i>14</i>	93 <i>43</i> 100 <i>29</i>	814.98 0.0	2 ⁺ 0 ⁺	
6003.5	1-	5188.1 8 6004.1 <i>15</i>	100 29 100 17 24 8	814.98 0.0	2 ⁺ 0 ⁺	
6030.0	1-	3502.0 <i>16</i> 5215.1 <i>10</i>	33 <i>21</i> 100 <i>36</i>	2527.18 814.98	0 ⁺ 2 ⁺	
6116.1	1-	6030.0 <i>15</i> 5301.7 <i>13</i> 6114.8 <i>15</i>	73 2 <i>1</i> 100 32 100 32	0.0 814.98 0.0	0 ⁺ 2 ⁺ 0 ⁺	
6527.7?		800.5 [@] 5	100	5727.2		
6949.1?	$0^{-},1^{-}$	1895.1 <mark>&</mark> 6	53 16	5053.8	1	
7363.0	1-	4809.3 ^{&} 15 4835.9 11 5584.2 11	100 <i>50</i> 62 <i>16</i> 100 <i>20</i>	2140.82 2527.18 1778.33	1 ⁺ 0 ⁺ 2 ⁽⁺⁾	

 $^{^{\}dagger}$ From $^{92}{\rm Rb}~\beta^-$ decay, except as noted.

hich has not been adopted by the evaluator. for contaminated line. Other Ey: 771.3 in

⁸Cm SF decay.

er Ey: $1020.2\ 5$ in 159 Tb(36 S,Fxn γ), but may e a doublet in that reaction; 1020.8 in 248 Cm

F decay. From 159 Tb(36 S,Fxn γ).

for contaminated line. t.: from DCO ratio in ¹⁵⁹Tb(³⁶S,Fxn γ).

[†] From $\gamma\gamma(\theta)$ in Rb β^- decay.

From 208 Pb(18 O,Fxn γ).

@ From 159 Tb(36 S,Fxn γ).

& Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

From ENSDF

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Band(A): π =+ sequence

