```
#K.Abhiram
```

- # 21BEC7064
- # VITAP MORNING SLOT
- # ASSIGNMENT-3
- # Data Preprocessing on TITANIC dataset.
- # Data Preprocessing.
- # Import the Libraries.
- # Import the dataset
- # Checking for Null Values.
- # Data Visualization.
- # Outlier Detection
- # Splitting Dependent and Independent variables
- # Encoding
- # Feature Scaling.
- # Splitting Data into Train and Test.

Import the Libraries

```
import pandas as pd
.
```

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

Import the Dataset

df = pd.read_csv("/content/drive/MyDrive/DATASETS/Titanic-Dataset.csv")

from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

df.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embark€
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs	female	38.0	1	0	PC 17599	71.2833	C85	

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890

Data columns (total 12 columns):

		, .	
#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

df.describe()

df.corr()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200

<ipython-input-8-2f6f6606aa2c>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future ver df.corr()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
Passengerld	1.000000	-0.005007	-0.035144	0.036847	-0.057527	-0.001652	0.012658
Survived	-0.005007	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257307
Pclass	-0.035144	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549500
Age	0.036847	-0.077221	-0.369226	1.000000	-0.308247	-0.189119	0.096067
SibSp	-0.057527	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159651
Parch	-0.001652	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216225
Fare	0.012658	0.257307	-0.549500	0.096067	0.159651	0.216225	1.000000
4							

df.corr().Survived.sort values(ascending = False)

```
< ipython-input-9-936bc0a2ea37>: 1: Future Warning: The default value of numeric\_only in DataFrame.corr is deprecated. In a future version of the control 
                    df.corr().Survived.sort_values(ascending = False)
```

Survived 1.000000 Fare 0.257307 Parch 0.081629 PassengerId -0.005007 -0.035322 -0.077221 SibSp Age Pclass -0.338481 Name: Survived, dtype: float64

False

False

```
Handling Missing/Null Values
```

df.isnull().any()

PassengerId

```
Survived
     Pclass
                    False
     Name
                    False
     Sex
                    False
     Age
                    True
     SibSp
                    False
     Parch
                    False
     Ticket
                    False
     Fare
                   False
     Cabin
                     True
     Embarked
                    True
     dtype: bool
sum(df.Cabin.isnull())
     687
sum(df.Age.isnull())
    177
df["Age"].fillna(df["Age"].mean(),inplace=True)
sum(df.Embarked.isnull())
df["Embarked"].fillna(df["Embarked"].mode()[0],inplace=True)
```

df.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	13.002015	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	22.000000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	29.699118	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	35.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

Data Visualization

plt.scatter(df["Fare"],df["Survived"])

<matplotlib.collections.PathCollection at 0x799cabdb2950>

sns.heatmap(df.corr(),annot=True)

<ipython-input-18-8df7bcac526d>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future ve sns.heatmap(df.corr(),annot=True)

sns.pairplot(df)

sns.barplot(x=df["Sex"],y=df["Survived"],ci=0)

<ipython-input-20-8ae461271d98>:1: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=('ci', θ)` for the same effect.

sns.barplot(x=df["Embarked"],y=df["Survived"],ci=0)

<ipython-input-21-d5b0276940a6>:1: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=('ci', 0)` for the same effect.

 $sns.barplot(x=df["Embarked"],y=df["Survived"],ci=0) \\ <Axes: xlabel='Embarked', ylabel='Survived'>$

sns.barplot(x=df["Parch"],y=df["Survived"],ci=0)

<ipython-input-22-a1496fefeaf8>:1: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=('ci', θ)` for the same effect.

sns.barplot(x=df["Parch"],y=df["Survived"],ci=0)
<Axes: xlabel='Parch', ylabel='Survived'>

Outlier Detection

sns.boxplot(df)


```
Q1 = df['Age'].quantile(0.25)
Q3 = df['Age'].quantile(0.75)

IQR = Q3 - Q1

threshold = 1.5 * IQR

df = df[(df['Age'] >= Q1 - threshold) & (df['Age'] <= Q3 + threshold)]

sns.boxplot(df.Age)</pre>
```


sns.boxplot(df.SibSp)

p99 = df.SibSp.quantile(0.99)

df = df[df.SibSp < p99]</pre>

sns.boxplot(df.SibSp)

sns.boxplot(df.Parch)

p99 = df.Parch.quantile(0.99)

```
df = df[df.Parch < p99]
```

sns.boxplot(df["Parch"])

sns.boxplot(df["Fare"])


```
Q1 = df['Fare'].quantile(0.25)
Q3 = df['Fare'].quantile(0.75)

IQR = Q3 - Q1

threshold = 1.5 * IQR

df = df[(df['Fare'] >= Q1 - threshold) & (df['Fare'] <= Q3 + threshold)]

sns.boxplot(df.Fare)</pre>
```


Splitting Dependent and Independent Variables

x = df.drop(columns=["Survived","PassengerId","Name","Ticket","Cabin"],axis=1) # Independent variables should be in df or 2d array

x.head()

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	3	male	22.000000	1	0	7.2500	S
2	3	female	26.000000	0	0	7.9250	S
3	1	female	35.000000	1	0	53.1000	S
4	3	male	35.000000	0	0	8.0500	S
5	3	male	29.699118	0	0	8.4583	Q

```
y = pd.Series(df["Survived"])
```

y.head()

0 0

3 :

5 0

Name: Survived, dtype: int64

Encoding

from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()

 $x["Sex"] = le.fit_transform(x["Sex"])$

x.head()

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	3	1	22.000000	1	0	7.2500	S
2	3	0	26.000000	0	0	7.9250	S
3	1	0	35.000000	1	0	53.1000	S
4	3	1	35.000000	0	0	8.0500	S
5	3	1	29.699118	0	0	8.4583	Q

```
print(le.classes_)
```

['female' 'male']

 ${\tt mapping=dict(zip(le.classes_, range(len(le.classes_))))}$

mapping

{'female': 0, 'male': 1}

le1 = LabelEncoder()

 $x["Embarked"] = le1.fit_transform(x["Embarked"])$

x.head()

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	3	1	22.000000	1	0	7.2500	2
2	3	0	26.000000	0	0	7.9250	2
3	1	0	35.000000	1	0	53.1000	2
4	3	1	35.000000	0	0	8.0500	2
5	3	1	29.699118	0	0	8.4583	1

print(le1.classes_)

['C' 'Q' 'S']

mapping1=dict(zip(le1.classes_,range(len(le1.classes_))))

mapping1

{'C': 0, 'Q': 1, 'S': 2}

Feature Scaling

from sklearn.preprocessing import MinMaxScaler
ms = MinMaxScaler()

x_Scaled = pd.DataFrame(ms.fit_transform(x),columns = x.columns)

x_Scaled.head()

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	1.0	1.0	0.372549	0.25	0.0	0.122054	1.0
1	1.0	0.0	0.450980	0.00	0.0	0.133418	1.0
2	0.0	0.0	0.627451	0.25	0.0	0.893939	1.0
3	1.0	1.0	0.627451	0.00	0.0	0.135522	1.0
4	1.0	1.0	0.523512	0.00	0.0	0.142396	0.5

Splitting Training and Testing Data

from sklearn.model_selection import train_test_split

 $x_train, x_test, y_train, y_test = train_test_split(x_Scaled, y, test_size = 0.2, random_state = 0)$

print(x_train.shape,x_test.shape,y_train.shape,y_test.shape)

(562, 7) (141, 7) (562,) (141,)

×