PROBLEM STATEMENT

The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant. The attribute to be predicted is the class of iris plant. The classes are as follows: 1. Iris Setosa, 2. Iris Versicolour, 3. Iris Virginica

There are 4 features:

1. sepalLength: sepal length in cm

2. sepalWidth: sepal width in cm 3. petalLength: petal length in cm

4. petalWidth: petal width in cm

There are 3 classes representing class label of iris flower {1,2,3}

1. Iris Setosa 2. Iris Versicolour

3. Iris Virginica

IMPORTING DATA

In [1]: **import** pandas **as** pd import numpy as np

import matplotlib.pyplot as plt import seaborn as sns

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix

In [2]: iris_df=pd.read_csv(r'C:\Users\psc\Documents\Iris.csv')

SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm

Species

Iris-versicolor

Iris-virginica

In [3]: iris_df.head()

EXPLORING THE DATASET

Out[3]:

	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
	2	4.7	3.2	1.3	0.2	Iris-setosa
	3	4.6	3.1	1.5	0.2	Iris-setosa
	4	5.0	3.6	1.4	0.2	Iris-setosa

Out[4]: (150, 5)

etosa In [4]: iris_df.shape

4.0

2.5

2.0

Species

Out[5]: <AxesSubplot: xlabel='SepalLengthCm', ylabel='SepalWidthCm'> 4.5

Species Iris-setosa

sns.scatterplot(x='SepalLengthCm' , y='SepalWidthCm', data=iris_df ,hue='Species')

SepalWidthCm 3.5 2.5 2.0 5.0 5.5 6.5 7.0 7.5 4.5 6.0 8.0 SepalLengthCm In [6]: sns.scatterplot(y='PetalWidthCm', x='PetalLengthCm', data=iris_df ,hue='Species') Out[6]: <AxesSubplot: xlabel='PetalLengthCm', ylabel='PetalWidthCm'>

Iris-setosa Iris-versicolor Iris-virginica

PetalWidthCm 1.0 0.5 0.0 2 3 4 6 PetalLengthCm Let's show the Violin plot In [7]: plt.figure(figsize=(10,10))

plt.subplot(2,2,2) sns.violinplot(x='Species', y='SepalWidthCm', data=iris_df, color='green')

plt.subplot(2,2,1)

plt.subplot(2,2,3) sns.violinplot(x='Species', y='PetalLengthCm', data=iris_df, color='blue') plt.subplot(2,2,4)sns.violinplot(x='Species', y='PetalWidthCm', data=iris_df, color='maroon') Out[7]: <AxesSubplot: xlabel='Species', ylabel='PetalWidthCm'> 4.5 8

sns.violinplot(x='Species', y='SepalLengthCm', data=iris_df, color='orange')

4.5 4.0 SepalWidthCm 3.5 2.5 2.0 Species Iris-setosa Iris-versicolor 6 Iris-virginica PetalLengthCm 2.5 2.0 PetalWidthCm 1.0 0.5 0.0 8 8 0 5 SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm TRAINING THE MODEL In [9]: x=iris_df.iloc[:,:-1]
y=iris_df.iloc[:,-1]

Fitting K-NN to the Training set

In [12]: kneighbor_classifier=KNeighborsClassifier(n_neighbors=5)

kneighbor_classifier.fit(x_train,y_train) Out[12]: ▼ KNeighborsClassifier

- 16

In [10]: x_train, x_test, y_train, y_test=train_test_split(x, y, test_size=0.2, random_state=4)

In [14]: acr=accuracy_score(y_pred,y_test) Out[14]: 0.966666666666667

EVALUATING THE MODEL

In [17]: cm=confusion_matrix(y_test,y_pred)

KNeighborsClassifier()

In [13]: y_pred= kneighbor_classifier.predict(x_test)

sns.heatmap(cm) Out[17]: <AxesSubplot: >

0 -				- 14
				- 12
				- 10
٦ -				- 8
				- 6
				- 4
2				- 2
	0	1	2	L 0