# Wildfire Modeling and Data Analysis

**STAT 683** 

Instructor: Dr. Sutanoy Dasgupta

Project Guides: Dr. Jian Tao, Rebekah Zehnder (TFS), Don Hannenann (TFS)

Ishank Gupta | Ridham Patoliya

## **Objectives**



Classification model to predict fire class based on initial weather parameters



Time Series Analysis of fire impact & fire frequency



Optimization Model to estimate locations of new fire-stations based on fire response time

## Data

| Data                                                                                                                                                                                                        | # Data points           | Important High-level Features                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------|
| Fire incidents (1992-2015)  (https://www.fs.usda.gov/rds/archive/products/RDS-2013-0009.4/_metadata_RDS-2013-0009.4.html)                                                                                   | 1.4 Million             | Location, Area, Cause, Duration, Discovery Date & Time, Contained Date & Time |
| Weather Data (1985-2015) (https://mesonet.agron.iastate.edu/request/download.phtml?network=TX_ASOS)                                                                                                         | 2.8<br>Million (yearly) | Hourly Data - Temperature, Windspeed,<br>Humidity                             |
| Fire Stations Operations Data (Current) (Received from TFS)                                                                                                                                                 | 1,840                   | Location, Resources (Personals - Volunteers & Paid)                           |
| Fire Weather Data (2022) (https://data-nifc.opendata.arcgis.com/datasets/nifc::public-view-interagency-remote-automatic-weather-stations-raws/explore?location=0.0000000%2C0.000000%2C1.90&show Table=true) | 4,500                   | Temperature, Windspeed, Humidity etc, (Testing Purpose –for IWDA)             |

## Estimation of weather parameters at fire locations

- 1. Inverse DistanceWeighted Interpolation(IWDA)
- 2. Baycentric Coordinate System Method
- 3. Kriging

$$w(s_i) = \frac{1}{d(s_0, s_i)^{\mathsf{h}} \mathsf{p}}$$

$$\hat{Z}(S_0) = \frac{\sum_{i=1}^{N} w(s_i) * Z(s_i)}{\sum_{i=1}^{N} w(s_i)}$$

IWDA weights and interpolation Formula





## Why Classification?

- Role of randomness
- Application:
  - It is advisable for fire departments to deploy resources according to class of the fire and not as per the exact predicted value of fire impact.
- Ordinality of classes:
  - Classification gives us flexibility in merging two or more adjacent ordinal classes which gives more conservative approach to predict a disaster.
- Previous research:
  - A lot of research on wildfire prediction is based on classification.

## Data Prep and Feature Engineering

#### <u>Data</u>

- Month of fire
- Temperature at Ignition Time
- Humidity at Ignition Time
- Wind speed at Ignition Time
- Dew point temperature at Ignition
   Time

Target Variable = "FIRE SIZE CLASS"

#### **Feature Engineering**

- Dropped irrelevant columns/rows
- Label-Encoding & One-Hot-Encoding
- Normalization
- Binning of numeric variable

#### Imbalance Dataset Problem and Handling Techniques



- SMOTE
- Radom over sampling
- Random under sampling
- Class weights

#### **Model Selection**



**Accuracy Paradox!!!** 

#### Random Forest – Option 1



#### Blending (Voting) – Option 2 (Final Model)



#### Accuracy of more conservative classification (Example)



#### Confusion Matrix – Random Forest & Adjusted accuracy

| AdaBoostClassifier Confusion Matrix |      |      |      |                      |      |      |      |
|-------------------------------------|------|------|------|----------------------|------|------|------|
| 0                                   | 1371 | 1461 | 458  | 347                  | 591  | 565  | 508  |
| 1                                   | 6016 | 8371 | 3113 | 1652                 | 2764 | 3111 | 2169 |
| 2                                   | 1278 | 2145 | 910  | 455                  | 964  | 1056 | 734  |
| True Class                          | 164  | 255  | 123  | 70                   | 188  | 183  | 146  |
| 4                                   | 63   | 103  | 32   | 22                   | 74   | 100  | 103  |
| 5                                   | 23   | 44   | 18   | 22                   | 38   | 47   | 49   |
| 6                                   | 0    | 6    | 0    | 3                    | 8    | 18   | 32   |
|                                     | 0    | ~    | 2    | က<br>Predicted Class | 4    | 2    | 9    |

|   | Random Forest<br>Tuned Without<br>Conservative<br>Approach | Random Forest<br>Tuned With<br>Conservative<br>Approach |
|---|------------------------------------------------------------|---------------------------------------------------------|
| 4 | 13.62                                                      | 60.79                                                   |
| 3 | 49.86                                                      | 55.81                                                   |
|   | 6.59                                                       | 11.43                                                   |
| ) | 6.01                                                       | 17.03                                                   |
| Ξ | 10.11                                                      | 28.05                                                   |
| = | 20.32                                                      | 53.65                                                   |
| Ĝ | 59.701                                                     | 59.701                                                  |

#### Confusion Matrix – Blended (Voting) Model & Adjusted accuracy

| VotingClassifier Confusion Matrix |      |       |      |                      |      |      |      |
|-----------------------------------|------|-------|------|----------------------|------|------|------|
| 0                                 | 1062 | 1981  | 327  | 418                  | 294  | 535  | 671  |
| 1                                 | 4459 | 10941 | 2335 | 1974                 | 1599 | 2619 | 3166 |
| 2                                 | 940  | 2840  | 750  | 594                  | 605  | 818  | 1128 |
| True Class                        | 84   | 300   | 81   | 98                   | 129  | 143  | 245  |
| 4                                 | 38   | 126   | 28   | 50                   | 62   | 83   | 137  |
| 5                                 | 17   | 40    | 10   | 21                   | 34   | 45   | 79   |
| 6                                 | 4    | 9     | 3    | 6                    | 4    | 5    | 36   |
|                                   | 0    | _     | 2    | က<br>Predicted Class | 4    | 2    | 9    |

|   | Voting Without<br>Conservative<br>Classification | Voting With<br>Conservative<br>Approach |
|---|--------------------------------------------------|-----------------------------------------|
| Α | 20.08                                            | 57.55                                   |
| В | 40.383                                           | 49.075                                  |
| C | 9.77                                             | 17.51                                   |
| D | 9.07                                             | 21.01                                   |
| Ε | 11.83                                            | 27.67                                   |
| F | 18.29                                            | 50.4                                    |
| G | 53.73                                            | 53.73                                   |
|   |                                                  |                                         |



#### le6 1.75 1.50 1.25 Fire size 1.00 0.75 0.50 0.25 0.00 200 150 250 300 **Enumerated Months** 3500 3000 Fire frequency 12000 12000 500 50 100 150 200 250 300 **Enumerated Months**

#### Time-series

- Aggregation:
  - Monthly fire size impact of historical fires
  - Monthly frequency of fires
- Modelling (Methods Explored):
  - ARIMA autoregressive integrated moving average
  - SARIMA Seasonal Autoregressive Integrated Moving Average,
  - Exponential Smoothening

#### Time Series Decomposition – Frequency of fire



## <u>Time Series Decomposition – Fire Size</u>



#### Methodology

- 1. Tested if Both Data are stationary or not through AD-Fuller Test.
- 2. For Fire-Size It was stationary as per AD-Fuller Test, but for frequency data we needed to perform 1 level Differencing.
- 3. Grid search was performed to calculate best parameters of p,d,q



## Fire Size ARIMA



## Fire Frequency ARIMA





#### Optimization Problem Approach



- 1. From Voronoi Diagram Intention was to explore how spread out the Fire-stations locations are and estimate areas it needs to cover.
- 2. From the image can see how thinly spread on west side of Texas, also most of the fire stations are concentrated in east side because its most fire prone zone.

#### Optimization

Discretize Texas into grids of 5 km x 5 km Identify fires which could not be responded within 8 mins

Assign grid\_id to each fire

Calculate
number of grids
that can respond
to the fires
within a specific
distance

Run optimization model



$$T = (0.65 + (Distance \, km) \times K) \times 60$$

T = travel time in minutes

K = defined constant based on the average speed of a given apparatus over a 5-mile course

#### Optimization Model

#### **Objective Function**

$$MAX Z = \sum_{\substack{t \text{ belonging to Set } N}} X_t * F_t$$

#### Constraints:

$$\sum_{i \text{ belongs to coverage}_i} X_i \leq 1$$

$$\sum_{i} X_{i} \leq P$$

Modification of Set Coverage Problem

**N**: Number of Grids in which Missing fire is Present

<u>Coverage:</u> Set of those grids which if have fire stations will be able to respond to Grid "I" within the specified response time

<u>**P**:</u> Upper limit on Number of Fire stations to be Built

<u>F:</u> Aggregated fire size (Sum) of all the grids that will become accessible if fire station is built at Grid I.

**Note:** Here, Xi represents binary decision variable which is 1 if fire-station is built at grid I and 0 otherwise.

#### Optimization Results



#### Future Prospects

- Connect the optimization model with google API, to find possible fire locations in real-time.
- Explore better methods for interpolating weather data
- Understand forest sampling Procedures and merging it with Fire and Weather Data
- Explore Bayesian Network (ADG) for classification
- ML Model for estimated duration of fire using already created features like mapping with closest station, resources available etc.
- As it is highly imbalanced classification problem can maybe convert to Anomaly Detection with anomaly behaviour as large fires of type "F" and "G"
- Streamlit app/Tableau/Live app for easy accesibility.

#### Limitations/Challenges

- Challenges in FIA
- High Class Imbalance
- Huge Dataset with huge computational effort in data wrangling as well as Model Training
- Understanding Actual Physics behind Fire spread

#### Learning/Tools Used

- Software's Python, Jupyter Notebook, Google Collab, SQL, Tableau
- Python Libraries Pandas, Numpy, Scikit-Learn, Plotly, Matplotlib, Geopandas, Folium, Bokeh, Vaex, Dask, Pycaret, Shapely, StatsModels, BaseMap, Descartes, etc.
- ML Algorithms :
  - Clustering K-means, DBSCAN
  - Regression
  - Classification Random Forest, Decision Trees, Logistic Regression, KNN, Gradient Boosting, SVM
- Additional Techniques:
  - Boosting, Bagging, Imbalance Methods(SMOTE, Class\_weight, Random Under & Over sampling), Ensambles - Voting