Lecture 4 DIP 27/08/2021

Manipulating pixels in spatial domain

Point-Point [Fev Class]

62 power-law, first normalise 0-1 and then do beanshorm laber scale it back.

Histogram & Contract:

Oblavined from images histogram

To make it more soloush, we can tray to avoid extreme % (top, bothers 32000 can be somed than contrast can be calculated so)

Contrast Stockhings

$$fac(a) = a_{min} + (a - a_{low}) \left[\frac{a_{max} - a_{min}}{a_{high} - a_{low}} \right]$$

where Original Ronge : [alow a high]

New intensity range: [amon amon]

Samples

Not something there's a single extrane pixel than stretching may not hoppen properly

Modified F	Pobust Vession of	Contract Stock	chings	
Slow Jon	A high S	high âloeu =	. min filt(i)>	M.N. 510W }
Slock		appigh =	-max{ il H(i) < M.1	v. (i-shigh)y
th	ched	Samin + Co-a	Alow amaz-amin arigh-apow	, a < \are \are \are \are \are \are \are \are
Histogram Eq	valisation	, comox		
💙	-> Boght [May	y woods better t	te teastno) non	vektúng]
Iesue c	with conbook	stry:		
PDF		⇒> CD	F 1/	
	lse CDF	of histog	ram os 1	720nshorm

nigh

s, & are two wondom variables

S=T(8)

Les Single robot function & monotonically increasing $P_s(s) = P_8(s) \cdot \frac{\partial 8}{\partial s} - (1) \quad 0 < T(8) < 1 \Rightarrow 0 < 8 < 1$

We want T() to be able to made unto uniform distribution.

$$\left(\frac{1}{2-1}\right)ds = P_{\delta}(\delta) \cdot \delta\delta$$
 Sum up all freq. of intensities till δ
 $S = (2-1) \int_{\delta} P_{\delta}(\omega)d\omega$ \Rightarrow for each value of S , we get uniform output

If you transform histogram by its CDF, we get histogram equalised ression.

$$F_{X}(x) = \int_{-\infty}^{\infty} f(t) dt \longrightarrow CDF \qquad (3)$$

$$f(x) = \frac{\delta}{\delta x} \left[f(x) \right)$$

Using both
$$P_3(\hat{s}) = 1$$

Example:

