Χ

bhandarishivay2001@gmail.com >

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Deep Learning - IIT Ropar (course)

Course outline How does an **NPTEL** online course work? () Week 0 () Week 1 () Week 2 () Week 3 () week 4 () Week 5 () Week 6 () Week 7 () Week 8 () Week 9 () week 10 ()

Week 3: Assignment 3

The due date for submitting this assignment has passed.

Due on 2022-08-17, 23:59 IST.

Assignment submitted on 2022-08-17, 20:04 IST

1) A	ssume you are developing	g a model to p	redict the pro	obability as a	ın output. Pic	k out the 1 p	ooint
approp	riate Activation function.						

- linear
- sigmoid
- tanh
- Relu

Yes, the answer is correct.

Score: 1

Accepted Answers:

sigmoid

2) The pre-activation at layer i can be best described as the

1 point

weighted sum of all the inputs at layer i

sum of all the the inputs at layer i

weighted sum of all the inputs at layer i+1

sum of all the inputs at layer i+1

weighted sum of all the inputs at layer i-1

https://onlinecourses.nptel.ac.in/noc22 cs124/unit?unit=46&assessment=185

Week 11 ()						
	sum of all the inputs at layer $i-1$ No, the answer is incorrect.					
Week 12 ()	Score: 0					
Download Videos ()	Accepted Answers: weighted sum of all the inputs at layer $i-1$	Loutout				
Books ()	3) Consider a Machine Learning model that is applied to a specific set of inputs. Actual output being y_i = [10, 5, 7, 8, 6] and the predicted output being \hat{y}_i = [9, 6, 5, 7, 5], Compute Mean Squared error loss.					
Text Transcripts ()	1.60					
Live Sessions	Yes, the answer is correct. Score: 1 Accepted Answers: (Type: Numeric) 1.6					
Problem	(Type: Numeric) 1.0	1 noint				
Solving		1 point				
Session ()	4) Consider a Classification problem with k classes. The output being a probability distribution, which of the following is the best output function?	1 point				
	Linear					
	Sigmoid					
	○ tanh					
	softmax					
	Yes, the answer is correct. Score: 1					
	Accepted Answers: softmax					
	5) Given the output $y_j=O(a_l)_j$ and $a_l=[2.5,3.6,4.2,5]$. If 'O' is the softmax function, compute the value of $\hat{y}=[\hat{y}_1,\hat{y}_2,\hat{y}_3,\hat{y}_4]$?	1 point				
	© [0.046, 0.139, 0.253, 0.562]					
	O [0.046, 0.253, 0.562, 0.139]					
	[0.253, 0.046, 0.139, 0.562]					
	O[0.562, 0.046, 0.139, 0.253]					
	Yes, the answer is correct. Score: 1					
	Accepted Answers: [0.046, 0.139, 0.253, 0.562]					
	6) The information content is high for an event when the probability of the event is	1 point				
	high					
	• low					
	O 1					
	maximum					

Deep Learning - IIT Ropar - - Unit 5 - Week 3 Yes, the answer is correct. Score: 1 Accepted Answers: low 7) Assume you have four inputs to a Feed Forward neural network, the first hidden layer 1 point also has four neurons, and there are three output classes, what is the dimension of the weight matrix, W_1 between the input layer and the first hidden layer, given that there is only one hidden $\widetilde{\mathbb{R}}^{4 imes 4}$ $\widetilde{\mathbb{R}}^{3 imes 4}$ Yes, the answer is correct. Score: 1 Accepted Answers: $\mathbb{R}^{4 imes 4}$ 8) In a Feed Forward Neural Network, if the outputs take real values then which of the 1 point following output activation function and error function do you prefer? Linear, cross entropy Softmax, cross entropy Linear, Squared error Softmax, Squared error Yes, the answer is correct. Score: 1 Accepted Answers: Linear, Squared error 9) The activation layer at any layer i is given by 1 point $\widetilde{h_i}(x) = b_i + W_i h_{i-1}(x)$ $h_i(x) = g(a_i(x))$ $\widetilde{h_i}(x) = O(aL)$ $h_i(x) = a_i + W_i h_{i-1}(x)$

Yes, the answer is correct. Score: 1 Accepted Answers: $h_i(x) = g(a_i(x))$

10) Identify the loss function for a classification problem to choose one out of K Classes. 1 point

Squared error

Absolute error

$$egin{align*} egin{align*} igotimes igoti$$

$$\operatornamewithlimits{Maximize}_{ heta} \mathcal{L}(heta) = -\log(\hat{y_l})$$

Yes, the answer is correct.

Score: 1

Accepted Answers:

$$ext{Minimize} \mathcal{L}(heta) = -\log(\hat{y_l})$$