Question 1: Data Preprocessing

1(a): Identify and Resolve Data Quality Issues

Step 1: Understand the Dataset

- The dataset contains attributes like NAME, AGE, HEIGHT, WEIGHT, BLOOD GROUP, and COVID-19 RESULT.
- Before using the data for analysis or modeling, we need to clean it by addressing inconsistencies and errors.

Step 2: Identify Data Quality Issues

1. Inconsistent Data Formats:

- Example: WEIGHT column has entries like 62kg, 1201bs.
- **Problem**: These entries are in different units and formats, making them unusable for calculations.

Solution:

- Convert all weights to a single unit (e.g., kilograms).
- Formula: weight in kg = weight in lbs \times 0.453592.
- Remove text like "kg" or "lbs" and keep only numerical values.

2. Missing or Invalid Values:

- Example: COVID-19 RESULT column has invalid values like 1, 0.
- **Problem**: These do not match valid results ("Positive"/"Negative").
- Solution:
 - Replace invalid values with proper labels.
 - If unsure, mark them as missing (NULL) and handle them later.

3. Outliers in Numerical Data:

- Example: AGE = 350 is unrealistic.
- **Problem**: This value does not align with real-world expectations.
- Solution:
 - Replace such outliers with a realistic value (e.g., the mean or median age of the dataset).

4. Inconsistent Text Formatting:

- Example: Names like RAMA vs. Akbar.
- Problem: Inconsistent capitalization reduces clarity.
- Solution:

Standardize text capitalization (e.g., "Rama", "Akbar").

5. Duplicate or Erroneous Records:

- Example: NAME = Sysusr789 seems system-generated and invalid.
- Problem: Such entries can skew results.
- Solution:
 - Flag such records for review or remove them if confirmed invalid.

1(b): Generative vs. Discriminative Classifiers

What are Generative Classifiers?

- Generative classifiers model the joint probability distribution P(x, y).
- They can:
 - 1. Predict classes.
 - 2. Detect outliers using density estimation.

What are Discriminative Classifiers?

- Discriminative classifiers focus on the **decision boundary** by modeling P(y|x).
- They are efficient for classification but cannot perform density estimation.

Which to Use?

- Recommendation: Use Generative Classifiers (e.g., Naive Bayes).
- Reason: They allow both classification and outlier detection.

Question 2: Ridge Regression and Feature Scaling

2(a): High Bias vs. High Variance

Step 1: Understand the Problem

- Training error and validation error are both high.
- Conclusion: The model is underfitting (high bias).

Step 2: Solve High Bias

- 1. Decrease Regularization (λ):
 - Ridge regression penalizes large coefficients. A high λ overly restricts the model.
 - Lower λ to increase flexibility and reduce bias.
- 2. Add Complexity:
 - Include polynomial or interaction terms to better capture data patterns.
- 3. Use Cross-Validation:
 - Tune λ to find the optimal value.

2(b): Gradient Descent vs. Least Squares

When to Use Gradient Descent?

- Dataset: n = 2,000,000, m = 300,000.
- Reason:
 - Gradient descent is iterative, with a complexity of $O(n \cdot m)$ per iteration.
 - Least squares involves inverting a matrix $(O(m^3))$, which is infeasible for large m.

2(c): Importance of Feature Scaling

Why Scale Features?

- 1. Faster Convergence:
 - Without scaling, gradient updates become unbalanced, slowing optimization.
- 2. Avoid Bias:
 - Features with larger ranges dominate smaller ones.
- 3. Improve Numerical Stability:
 - Prevents overflow/underflow errors.

Techniques:

1. Standardization:

- Formula: $z = \frac{x-\mu}{\sigma}$.
- Ensures mean = 0, standard deviation = 1.

2. Normalization:

- Formula: $x' = \frac{x \min(x)}{\max(x) \min(x)}$.
- Scales values to [0, 1].

Question 3: Logistic Regression Analysis

Evaluate Statements:

- 1. (a): "The model will work perfectly well on unseen data."
 - Answer: False.
 - Reason: Overfitting leads to poor generalization.
- 2. **(b)**: "If $J(\theta_0,\theta_1)=0$, predictions match actual labels for training data."
 - **Answer**: True.
- 3. (c): "For $J(\theta_0, \theta_1) = 0$, θ_0 and θ_1 must be 0."
 - **Answer**: False.
 - Reason: θ values depend on data.
- 4. **(d)**: "Cost function $J(\theta_0,\theta_1)$ cannot be 0."
 - Answer: False.
 - Reason: It can be 0 for perfectly separable data.

Question 4: Fraud Detection Performance Metrics

Contingency Table:

True Class	Predicted Fraud	Predicted Not Fraud
Fraud	60 (TP)	0 (FN)
Not Fraud	120 (FP)	20 (TN)

Key Metrics:

1. Accuracy:

$$Accuracy = \frac{TP + TN}{Total} = 0.4$$

2. Precision:

$$Precision = 0.33$$

3. Recall:

$$Recall = 1.0$$

4. F1-Score:

$$F1 = 0.5$$

Observations:

- High recall ensures no fraud is missed.
- Low precision indicates many false positives.

Question 5: Decision Tree Using ID3 Algorithm

Step-by-Step:

- 1. Calculate Entropy of Target Variable:
 - H(Target) = 1.5 bits.
- 2. Calculate Entropy for Each Feature:
 - Split data by feature values.
 - Compute weighted entropy.
- 3. Calculate Information Gain:

$$IG = H(Target) - H(Feature)$$

• Feature with the highest IG is the root node.

Question 6: Model Performance Justification

Statement:

"Assessing model performance using only training data is detrimental."

Justification:

1. Overfitting:

• Training accuracy does not reflect generalization.

2. Solution:

- Use validation/testing datasets for evaluation.
- Apply cross-validation for better insights.