1. 62-12-04		
1.6	Take 2	3- 7
	(JuEN) (JuEN) (3m +5n de	
Proof: Take the returned	Gren (Fren) (3m +5non)	Proof :
only successfy until		Asme a is even.
you arrive at a number	74	en n2 is even and equals
>12	2. 7	40 N
		NTOB SON (me of
Take Manal	froot: Let the five consecutive	two even numbers).
3m + 5n	Neget be n, n+1, n+2, 1+3,	
3×1 + 5×1 =8	and att.	
		Assumer n is odd.
Take m=2 n=1	n +(n+1)+ (n+2) + (n+3) +(n+4)	n t is odd
3×2 + 5×1 = 11	=5n +10	There n't n is even
	=5n+10 =5(n+2)	(sum of two odd numbers is
Take m=1, n=2	clearly 5 (A+2) is divisible	
7ake m=1, n=2 3×1 +5×2 = 13		(02+n) +1 is odd.
	This proves the completes	
Take man = 2	the proof.	queefore, n2+ n+1 is odd
3×2 + 5×2 = 16		for any steps.
		This completes the proof
Clearly, there is no a		

Proof: By induction. for n=1 4n+1= 4×1+1=5 which is odd. Assume the theorem holds for n, ther for n+1 4(1+1) + 1 = 41+4+1 =4175 and 4 (nH) +3 = 4, +4+3 = 4~+7 both of which are odd. This proves the theorem by induction.

6. Suppase p. 9 is a pair Proof: 5- By the DN 310m Theorem, of primes, where pris if n 13 divisible by 3 then n = 3 x + D. We strong that it is impossible to extend If n is not divisible by 3 P19 to be a prime then n = 3k + 1 ar n= 3k+2 no triple. Let A = p.q +1. Therefore, if n = 3k+1 Then either A 13 prime n+2 = 3k+1+2or else there is a pring n+2= 3K+3 which r such that r/A. If follows that there is no grant other than 3,5,0 is divisible by 3 to give a prime triple Hn=3k+2 1+4 = 3x+2+4 174 = 31C+6 =3(K+2) which is divisible by 3. This completes the proof.

7. Proof 8- Proof : By the definition of a limit, By induction we can find an N such that when n = 112 N 3 /9 0-L/2 E 2'= 2"-2 2 = 2-2 Then, 2 = 4-2 2 = 2. 10,-L/2 E/M Assume this holds for n then for not M/9, -L/6 M. E 2+22+23+...+2"+2"+1 = (2"+1 -2) +2"+1 (by induction) | Man - ML / L E = 2"+1-2+2"+1 The Whith by the definition = 21+21+-2 I a limit shows that { Man} tends to limit MZ. = 2.21+1-2 = 21+11-2 This is the ideatity at not. This completes the proof.

froof ! 10. Let An = (-1 , +1) 2. Proof: For any n DEA For any x >0, we Can find an or such that 1/m Lx
and then

x & (my m) On the other hand, if at then there is an m such that 1/m < fx/, and for Hence 1 An = P that m, x & Am, 50 x € 1 A Hence No An = 505