Support Vector Machine: Mathematical Development K-Fold Cross Validation

Sanchayan Bhunia (4849650)

University of Genova 4849650@studenti.unige.it

June 21, 2020

Instructors: Dr. Nicoletta Noceti and Prof. Lorenzo Rosasco

Overview of the project

- Mathematical modelling of the problem.
 - The problem setup.
 - Choice of loss function.
 - Choice of Cost function.
 - Mathematical Modeling of SVM.
 - Algorithm design.
- Implementing the Model in python in Jupyter Notebook.
- K-Fold Cross Validation algorithm implementation for SVM and KNN in Jupyter Notebook.
- Comparison between KNN and SVM on the same data.

The Problem Set-up

Let say that we have an input space X which is a vector space could be a function, $\in \mathbb{R}^d$.

And an output space Y which is a structured object $y \in \{+1, -1\}$.

 $\exists f_*: X \to Y$ But that's unknown.

Our job is to estimate f_* given (X, Y).

In order to do that we will choose a function f from our function space $\mathcal F$ The Loss Function :

Define a point-wise loss function ℓ which will calculate loss on every point for choosing f instead of f_* .

$$\ell(y, f(x)): Y \times \mathbb{R} \to (0, \infty]$$
 (1)

Input Output Probability Distribution

$$P(x,y) \approx P_X P(y|x)$$
 (2)

Where, P_X is the Marginal Probability irrespective of X which is a way to express uncertainty in our way of sampling the data or the data-set is incomplete.

P(y|x) is the conditional probability of the output given we choose x as input. Which essentially says that every input might not return the same output every single time, rather can output values from P(y|x) distribution.

Classification:

$$P(y|x) = \{P(+1|x), P(-1|x)\}\tag{3}$$

Noise in the classification $\Delta\delta$ refers to the situations when we have confusion in labeling the class.

$$\Delta \delta = \{ x \in X, \left| P(1|x) - \frac{1}{2} \right| \le \delta \} \tag{4}$$

Cost Function

Empirical risk L(f) is the *expectation* value of all the point-wise losses ℓ we made by choosing the *target function*, f instead of f_* .

$$L(f) = \mathbb{E}_{(x_i, y_i) \sim P} \ell(y_i, f(x_i))$$
 (5)

Our target function f is the function for which the **Cost** is minimum.

$$f_{P,\ell} = \underset{f:X \to \mathbb{R}}{\operatorname{argmin}} \mathbb{E}_{(x,y) \sim P} \ell(y, f(x))$$

$$= \underset{f:X \to \mathbb{R}}{\operatorname{argmin}} \mathbb{E}_{X \sim P_X} \mathbb{E}_{X \sim P(y|x)} \ell(y, f(x))$$
(6)

- So, by choosing the loss function ℓ we are essentially constraining ourselves to look for a function inside our *hypothesis* space $\mathcal{H} \subset \mathcal{F} = \{f | f : X \to \mathbb{R}\}$
- But the probability distribution function P(y|x) is **unknown** so, we can never know what the target function f is.

5 / 17

The Learning Algorithm

- The job of the Learning Algorithm is to estimate a function, \hat{f} that approximate the target function f with the i.i.d. samples from $S_n = (x_i, y_i) \sim p^n$.
- The fact that we can never know the target function f does not matter a lot if the estimated function \hat{f} can predict the y for the future values of x.
- We define Excess Risk = $L(\hat{f}) \min_{f \in \mathcal{H}} L(f)$
- As \hat{f} is derived from the sample, for different samples *Excess Risk* is going to be a different random number and we want to see the distribution, $P(Excess\ Risk > \epsilon)$.
- For Infinite amount of data, $\lim_{n\to\infty} P(L(\hat{f}) \min_{f\in\mathcal{H}} L(f) > \epsilon) = 0$.
- ullet For finite amount of data, $\lim_{n o \infty} P(L(\hat{f}) \min_{f \in \mathcal{H}} L(f) > \epsilon) \leq \delta$

6 / 17

Hinge Loss and Target Function

- Our target function, $f_{P,\ell} = \underset{f:X \to \mathbb{R}}{\operatorname{argmin}} \mathbb{E}_{(x,y) \sim P} \ell(y,f(x)) = P(1|x) P(-1|x) \text{ in classification.}$
- We choose Hinge Loss function $|1 yf(x)|_+$
- The f_P we get is the Bays Rule (Lin02).

Figure: $\ell = max(0, 1 - yf(x))$

Linear Model with Hinge Loss and ERM

We constrain our hypothesis space to be linear.

i.e.
$$\mathcal{H} \cong \mathbb{R}^d$$
 and $f(x) = \mathbf{w}^\mathsf{T} \mathbf{x}$ and $X = \mathbb{R}^d$
 $f \Longleftrightarrow w$ and $\langle f, \overline{f} \rangle = \langle w^\mathsf{T}, \overline{w} \rangle$

- We choose our loss function as $Hinge\ Loss\ \ell = max(0, 1 yw^{T}x)$
- If we choose L(f) to be the Empirical Risk with square norm penalty or Ridge Penalty, $\lambda ||w||^2$,

$$L^{\lambda}(w) = \min_{w \in \mathbb{R}^{d}} \frac{1}{n} \sum_{n=1}^{\infty} |1 - yw^{\mathsf{T}}x|_{+} + \lambda ||w||^{2}$$

Empirical Risk Minimizer

- In order to get the target function we have to minimize the Empirical Risk Function $L^{\lambda}(w)$.
- Existence of a minimum:
 - $\frac{1}{n}\sum_{n=1}^{\infty}|1-yw^{\mathsf{T}}x|_{+}$ is Convex in w and $\lambda\|w\|^{2}$ is a parabola.
 - $L^{\lambda}(w)$ is Coercive in w for sure if $\lambda \geq 0$. i.e. $\lim_{W \to \infty} L^{\lambda}(w) \to \infty$
 - Minimum exist.
 - The uniqueness requires $L^{\lambda}(w)$ to be *strongly* convex.
 - If $\lambda > 0$ then $\exists \hat{w}^{\lambda}$ which minimizes $L^{\lambda}(w)$ and **unique**.
- In order to compute the minimum we have to take gradient of $L^{\lambda}(w)$ and set it to 0.

Gradient Decent and SVM

To minimize the Cost function $L^{\lambda}(w)$ we use iterative update.

$$w_{t+1} \leftarrow w_t - \gamma \Delta_w L^{\lambda}(w)$$

where γ is the learning rate and

$$L^{\lambda}(w) = \min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{n=1}^{\infty} |1 - yw^{\mathsf{T}} x|_{+} + \lambda ||w||^{2}$$

But the Hinge Loss Function is not differenciable as at $yw^{T}x = 1$, The left-hand derivative \neq right-hand derivative.

Other than that point the function is continuous and differenciable so, we can compute the set subdifferencials at $yw^{\mathsf{T}}x=1$ and check if 0 is included in the set.

Sub-gradient for hinge loss

We will take Left Derivative on $\ell = max(0, 1 - yf(x))$

$$\frac{\partial \ell}{\partial w} = -y_i x_i \quad When \ yw^{\mathsf{T}} x \le 1
= 0 \quad Otherwise$$
(7)

Sub-gradient descent algorithm for SVM

$$\frac{\partial L^{\lambda}(w)}{\partial w} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{\partial \ell}{\partial w} \right)_{left} + 2\lambda w \tag{8}$$

So the iterative update becomes: for t = 0, ..., T initialize w_0

$$W_{t+1} \leftarrow w_t - \gamma_t \left(2\lambda w - \frac{1}{n} \sum_{i=1}^n y_i x_i \right)$$
 if $y w^{\mathsf{T}} x < 1$ $\leftarrow w_t - \gamma_t \lambda w_t$ Otherwise

Unlike the Gradient descent, a descent is not immediately guaranteed on every iteration that is why a variable step size γ_t is required.

Decision Boundary and Support Vectors

- For a centered data $\hat{w}^{\mathsf{T}}x$ is the decision boundary.
- $oldsymbol{\lambda}$ is the regularization parameter which has been chosen by performing cross validation on the data.
- λ serves as a degree of importance that is given to miss-classifications. As λ grows larger, less wrongly classified examples are allowed thus narrower margin between support vectors.
- $\lambda \to \infty$, allow no miss-classification(hard-margin).
- $\lambda \to 0$, more mis-classifications are allowed (soft-margin).

Training and Validation Error in SVM

Figure: 3-fold Cross Validation and SVM for Best λ

- We generate synthetic data set of 2 dimensions and size 200 for training and validation of SVM mode.
- The first graph shows the training and testing error for increasing order of magnitude of λ starting from 10^{-3} till 10^{7} using svmTrainTestAnalysis().

Cross Validation and best λ

Figure: 3-fold Cross Validation and SVM for Best λ

- Then we will run 3-Fold Cross validation on more specific range [1,100] of λ to get best value of λ . Which takes around 972 sec.
- The Best value of the regularization parameter, $\lambda = 40$ for which the minimum validation error is 0.03333.
- ullet The second graph shows the decision boundary and support vectors for best λ .
- Some points on the decision boundary explains consistent error even with very large values of λ .

Comparison Between KNN and SVM

Figure: Error Comparison KNN vs SVM

- We perform KNN on the same data set with 10-fold cross validation and found the best value of k = 15.
- For best value of k the error on the validation set is 0.03333, same as SVM but it took a fraction of the time taken by SVM.
- From this comparison we can conclude that for low dimensional data of this type, KNN out-performs SVM.

References I

[Lin02] Yi Lin, Support Vector Machines and the Bayes Rule in Classification, Data Mining and Knowledge Discovery **6** (2002), no. 3, 259–275 (en).