Cálculo 1

Lista de Aplicações – Semana 08

Temas abordados: Taxas relacionadas; Extremos de funções

Seções do livro: 3.10, 4.1

- 1) Suponha que um barco seja puxado para o cais por uma corda presa à sua proa, situada 6 m abaixo do apoio da corda no cais, conforme a figura abaixo. Suponha ainda que a corda seja puxada com uma velocidade de 2 m/s. Nesse caso, o comprimento c(t) da corda entre a proa e o apoio, a distância d(t) do barco ao cais e o ângulo $\theta(t)$ entre a corda e a vertical são funções do tempo t. Denote por τ o instante em que $c(\tau) = 10$ m.
 - (a) Calcule o valor de $d(\tau)$.
 - (b) Calcule a derivada $d'(\tau)$.
 - (c) Calcule o valor de $tg(\theta(\tau))$.
 - (d) Usando os itens anteriores e a regra da cadeia, calcule o valor de $\theta'(\tau)$.

- 2) Considere um reservatório, na forma de um hemisfério de raio R=10 m, com água até uma altura h, conforme ilustra a figura abaixo. Nesse caso, o volume de água é dado por $V(h)=(\pi/3)(3\,R\,h^2-h^3)$. Suponha que o reservatório esteja sendo abastecido com uma vazão de $16\,\pi$ m³/min. Portanto a altura h e o raio r da superfície da água são funções do tempo. Observe que a forma esférica do reservatório estabelece uma relação entre as funções h=h(t) e r=r(t).
 - (a) Usando a regra da cadeia aplicada a V(h(t)), determine o valor de $h'(\tau)$ no instante τ em que $h(\tau) = 4$.
 - (b) Obtenha a relação entre as funções h(t) e r(t) menciona acima.
 - (c) Usado os itens anteriores, determine o valor de $r'(\tau)$ no instante τ em que $h(\tau)=4$.

- 3) Suponha que, na construção de uma barraca com vista frontal na forma de um triângulo isósceles de altura h, as laterais devem ser feitas a partir de uma lona com 6 m de comprimento e 3 m de largura, conforme ilustra a figura.
 - (a) Determine o comprimento b da base do triângulo em função da altura h.
 - (b) Use o item anterior para expressar o volume V(h) da barraca em função de h.
 - (c) Determine h de forma que o volume V(h) seja máximo, justificando a sua resposta.

- 4) Um filtro na forma de um cone circular reto tem altura igual a 10 cm e raio da base igual a 5 cm. Suponha que uma certa quantidade de água seja colocada nesse filtro e que ela escoe para um recipiente na forma de um cilindro circular reto de mesmo raio e altura que o filtro, conforme ilustra a figura abaixo. Indique por x a altura da água no filtro e por y a altura da água no recipiente.
 - (a) Sendo r o raio da superfície da água no filtro, use semelhança de triângulos para determinar r em função de x.
 - (b) Sabendo que o volume de um cone circular reto de raio r e altura x é igual a $(1/3)\pi r^2 x$, determine o volume $V_1(x)$ da água no filtro como função de x.

- (c) Determine o volume $V_2(y)$ de água no recipiente cilíndrico.
- (d) Considerando que x = x(t) e y = y(t), em que t > 0 denota o tempo, determine y' no instante $\tau > 0$ tal que $x(\tau) = 5$ e $x'(\tau) = -0, 5$.
- 5) Suponha que uma viga retangular, de largura x e altura y, deva ser cortada de um cilindro de seção circular de raio a, como ilustra a figura abaixo. A resistência R dessa viga é diretamente proporcional ao produto de sua largura x pelo quadrado de sua altura y. Indique por K a constante de proporcionalidade e observe que a altura y = y(x) pode ser obtida a partir da largura x, e portanto a resistência R = R(x) pode ser expressa apenas em função da largura da viga x, onde x varia de 0 até o diâmetro 2a do cilindro circular.
 - (a) Obtenha a expressão de y = y(x) em termos de x.
 - (b) Obtenha a expressão da resistência R=R(x) como função de x.
 - (c) Calcule os pontos críticos de R(x) no domínio (0,2a).
 - (d) Calcule o valor máximo da resistência que pode ser obtido entre as vigas cortadas do cilindro.

Gabarito

- 1. (a) $d(\tau) = 8$
 - (b) $d'(\tau) = -20/8$
 - (c) $tg(\theta(\tau)) = 8/6$
 - (d) $\theta'(\tau) = -12/80$
- 2. (a) $h'(\tau) = 1/4$
 - (b) $100 = r(t)^2 + (10 h(t))^2$
 - (c) $r'(\tau) = 3/16$
- 3. (a) $b = 2\sqrt{9 h^2}$
 - (b) $V(h) = 3h\sqrt{9 h^2}$
 - (c) $h = 3/\sqrt{2} \text{ m}$
- 4. (a) r = x/2
 - (b) $V_1(x) = (\pi/12)x^3$
 - (c) $V_2(y) = 25\pi y$
 - (d) $y'(\tau) = 1/8$
- 5. (a) $y(x) = \sqrt{4a^2 x^2}$
 - (b) $R(x) = K(4a^2x x^3)$
 - (c) $x = 2a/\sqrt{3}$
 - (d) $16a^3\sqrt{3} \cdot (K/9)$