TA: Breadan Gramp Differential Equation Typesi Linear, Homogeneous, Autonomous A) $\frac{d^3y}{dt^3} + y\frac{dy}{dt} + t^2y = \cos(t)$ Non-linear because of Y. It term Non-homogeneous because of cosct) B) dy 1 - 12+1 · y = sin(+), Linear, Non-homogeneous due to sin(+), Non-autonomy since includes + terms F) ty 5 + t2 y 4 + t3 y 3 + t4 y " + ty = 0 Linear, Homogenous $\frac{d^{2}x}{dx^{2}} = \frac{x^{2} + u}{x^{2} + u}, \frac{d^{2}x}{dx^{2}} = \frac{x^{2} + u}{x^{2} + u}, \frac{d^{2}x}{dx^{2}} = \frac{x^{2} + u}{x^{2} + u}$ Linear, Non-homogenous due to x2+4 term Antonomous: When the + variable only appears as a derived variable. 6) yy = -+, Non-linear D) $\frac{d^2n}{dx^2}$ + x e = e × Non-linear due to e x $(24) \quad x' = +x - y^2 + \sin(24)$ y'= +'2 + x + y - x y

$$\frac{3B}{dt} = \cos(3t), \quad y = \int \cos(3t) dt$$

$$V(H) = \frac{\sin(3+1)}{3} + C$$

3D)
$$y' - \frac{1}{+}y = 0$$
, $y(1) = (1+) \text{ TVP}, y(0) = 5$

Not solvable, no value satisfies
$$5(0) = \gamma$$

 $5A)$ $(++1)$ $\gamma' + 3\gamma = 0$, $\gamma' + \frac{3}{(++1)}$ $\gamma' = 0$

$$y' + a(t)y = 0$$
, $a(t) = \frac{3}{t+1}$, $A(t) = 3\ln(t+1)$

$$y(+) = C \cdot e^{-A(+)} = C \cdot e^{-3ln(++1)}$$

5ii B)
$$+\ln(+)y'+y=2\ln(+)$$
, Non-homogeneous

$$y' + \frac{1}{+\ln(t)}y = \frac{2}{+}, a(t) = \frac{1}{+\ln(t)}, f(t) = \frac{2}{+}$$

$$A(t) = \int \frac{1}{t \ln(t)} dt, \quad n = \ln(t) \qquad n = \ln(t)$$

$$= |n|n| = |n||n(+)|$$

$$e^{A(+)}(y'+a(+)y)=e^{A(+)}f(+)$$

$$\frac{d}{d+} \left(\begin{array}{c} A(+) \\ e \end{array} \right) = e^{A(+)} f(+)$$

$$y = \frac{1}{\ln(t)} \cdot \int \ln(t) \cdot \frac{2}{t} dt$$
, $n-sub$

$$u = ln(t)$$
, $du = \frac{1}{t}$ $\int 2 u du$

$$= \frac{1}{\ln(+)} \left(\ln(+)^{2} + C \right) = \ln(+) + \frac{C}{\ln(+)}$$