武汉大学 2017-2018 学年第二学期期末考试高等数学 B2

- 1、(8分) 设($\vec{a} \times \vec{b}$)· $\vec{c} = 4$,试求[($\vec{a} + \vec{b}$)×($\vec{b} + \vec{c}$)]·($\vec{a} + \vec{c}$).
- 2、(8分)设z = z(x,y)是由方程 $x^2 2z = f(y^2 2z)$ 所确定的隐函数,其中f可微,求证 $y\frac{\partial z}{\partial x} + x\frac{\partial z}{\partial y} = xy$.
- 3、(8分) 设 $D = \{(x, y) | |x| + |y| \le 1\}$, 计算二重积分 $\iint_D y^2 dx dy$.
- 4. (8分) 已知椭圆 $L: \frac{x^2}{4} + \frac{y^2}{9} = 1$ 周长为b,求 $\oint_L (4xy + 9x^2 + 4y^2) ds$.
- 5、(8分) 判断两直线 L_1 : $\frac{x+1}{1} = \frac{y}{1} = \frac{z-1}{2}$ 和 L_2 : $\frac{x}{1} = \frac{y+1}{3} = \frac{z-2}{4}$ 是否在同一平面内,并求两直线的的夹角。
- 6、(10 分) 已知 $\frac{(x+ay)dx+ydy}{(x+y)^2}$ 为某函数的全微分,求该函数并确定 a 的值.
- 7、(10 分) 在椭球面 $2x^2 + y^2 + z^2 = 1$ 上求一点,使函数 $f(x, y, z) = x^2 + y^2 + \tan z^2$ 在该点沿曲线 $x = t^2$, y = 1 2t , $z = t^3 3t$ 在点 (1, -1, -2) 处的切线方向的方向导数最大。
- 8、(10 分) 求曲面积分 $I = \iint_S yz dz dx + 2 dx dy$,其中 S 是球面 $x^2 + y^2 + z^2 = 9$ 的外侧在 $z \ge 0$ 的部分。
- 9、(8分)设 f(u)连续,区域 Ω 由 $0 \le z \le 1$, $x^2 + y^2 \le t^2$ 围成,

$$f(t) = \iiint_{\Omega} [z^2 + f(\sqrt{x^2 + y^2})] dV$$
, $\Re \lim_{t \to 0+} \frac{f(t)}{t^2}$.

- 10、(8 分) 已知 $b_n = \int_0^1 x \sin n\pi x dx$, $(n = 1, 2, 3, \cdots)$, 试判别级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} b_n}{n+1}$ 敛散性并求其和。
- 11、(8分) 求幂级数 $\sum_{n=1}^{\infty} \frac{n}{3^n + (-2)^n} x^n$ 的收敛区间与收敛域。
- 12、(6 分)设a,b为任意常数,f(x)在x=0的邻域内具有二阶连续导数,且 $\lim_{x\to 0}\frac{f(x)}{x}=0,\ f''(x)\geq m>0$,试讨论级数:

$$af(\frac{1}{\sqrt{1}}) - bf(\frac{1}{\sqrt{2}}) + af(\frac{1}{\sqrt{3}}) - bf(\frac{1}{\sqrt{4}}) + \dots + af(\frac{1}{\sqrt{2n-1}}) - bf(\frac{1}{\sqrt{2n}}) + \dots$$
 的敛散性。

由 (1) 知 $\lim_{n\to\infty} \sigma_{2n}$ 存在, $\lim_{n\to\infty} S_{2n}$ 不存在,级数发散。