TRƯỜNG ĐẠI HỌC

SƯ PHẠM KỸ THUẬT TP. HỒ CHÍ MINH

HCMC University of Technology and Education

PURSUIT GAME

GVHD: TS. Phan Thị Huyền Trang

Học kỳ: 2

Năm học: 2024 - 2025

Môn học: Trí tuệ nhân tạo

Mã lớp học: ARIN330585_05

Nhóm: 16

Thành phố Hồ Chí Minh, ngày tháng 05 năm 2025

NHÓM SINH VIÊN THỰC HIỆN

Triệu Phúc Hiếu 23110217

Đặng Xuân Huyền
23110232

Đào Minh Nhưt 23110282

Phát biểu bài toán ! Mục đích, yêu cầu -Phạm vi và đối tượng

Nội dung báo cáo

Phần 2. Nội dung

Chương 1. Cơ sở lý lý luận Chương 2. Phân tích, thiết kế giải pháp Chương 3. Thực nghiệm,

đánh giá

Phần 3. Phần kết luận

-- Tóm tắt kết quả

Đề xuất

Demo 🗓

Trình bày kết quả 🗄 Thảo luân

Tài liệu tham khảo

- Nguồn tài liệu Danh sách tài liệu

1. Phát biểu bài toán

Mô phỏng Môi trường

Đo lường Hiệu suất

Thực thi Thuật toán

Trực quan hóa Kết quả

Phân tích Hiệu suất

2. Mục đích, yêu cầu cần thực hiện

Hiển thị Biểu đồ

Trình bày dữ liệu hiệu suất trực quan.

Lưu Kết quả

Lưu dữ liệu hiệu suất vào file.

Đánh giá Hiệu suất

Đo lường và so sánh hiệu suất thuật toán.

Tạo một trò chơi mê cung tương tác.

Thiết kế Giao diện

Xây dựng giao diện thân thiện với người dùng.

2. Mục đích, yêu cầu cần thực hiện

Xây dựng Môi trường

Môi trường mê cung được xây dựng với các yếu tố khác nhau để tăng độ phức tạp.

Triển khai Thuật toán

Các thuật toán tìm kiếmđược triển khai để giải quyết các thử thách mê cung.

Mức độ Khó

Mức độ khó khác nhau được thiết lập để kiểm tra khả năng của thuật toán.

Tích hợp Đa phương tiện

Các yếu tố đa phương tiện được tích hợp để tăng tính hấp dẫn trực quan và thính giác.

Phân tích Hiệu suất

Dữ liệu hiệu suất được thu thập và hiển thị để so sánh hiệu quả của thuật toán.

3. Đối tượng và phạm vi nghiên cứu

Đối tượng nghiên cứu

Các thuật toán trong trí tuệ nhân tạo

Phạm vi nghiên cứu

Triển khai và so sánh các thuật toán tìm kiếm bằng ngôn ngữ Python

CHƯƠNG 1. CƠ SỞ LÝ LUẬN

Plotly/Pandas

Công cụ để trực quan hóa dữ liệu

Python

Ngôn ngữ lập trình chính cho phát triển Al

VS Code/PyCharm

Môi trường phát triển tích hợp

heapq/deque

Cấu trúc dữ liệu cho thuật toán tìm kiếm

deque

Pygame

Thư viện để tạo giao diện đồ họa

OpenCV

Thư viện để xử lý video

CHƯƠNG 1. CƠ SỞ LÝ LUẬN

Q-Learning

Tìm đường đi dựa trên phần thưởng và chính sách hành động

Forward-Checking

Giảm không gian tìm kiếm bằng cách kiểm tra trước

AND-OR Tree

Hỗ trợ các bước di chuyển linh hoạt trong tìm kiếm

BFS

Đảm bảo đường đi ngắn nhất trong lưới không trọng số

A*

Tối ưu hóa đường đi bằng cách kết hợp chi phí thực tế và ước lượng

Beam Search

Giảm bộ nhớ nhưng có thể không đảm bảo đường đi tối ưu

CHƯƠNG 1. CƠ SỞ LÝ LUẬN

Sử dụng Pygame để Vẽ

Sử dụng Pygame để tạo các yếu tố đồ họa

Đo lường Thời gian Chạy

Sử dụng time.perf_counter() để đo lường thời gian chạy

Sử dụng Plotly để Tạo Biểu đồ

Sử dụng Plotly để tạo biểu đồ so sánh

Đếm Trạng thái Khám phá

Đếm số trạng thái khám phá trong mỗi thuật toán

CHƯƠNG 2. PHÂN TÍCH, THIẾT KẾ GIẢI PHÁP

CHƯƠNG 2. PHÂN TÍCH, THIẾT KẾ GIẢI PHÁP

Searching with no observation

Không gian Trạng thái

Mô hình Môi trường

Sự hiểu biết về cách môi trường hoạt động

Thông tin Quan sát

Mức độ thông tin có sẵn về môi trường

Tập hợp tất cả các trạng thái có thể có trong bài toán tìm kiếm

Trạng thái Ban đầu

Điểm bắt đầu cho quá trình tìm kiếm

Trạng thái Mục tiêu

Trạng thái mong muốn mà thuật toán tìm kiếm hướng đến

Hàm Kiểm tra Mục tiêu

Kiểm tra xem trạng thái hiện tại có phải là trạng thái mục tiêu không

Toán tử Chuyển trạng thái

Các hành động di chuyển giữa các trạng thái

CHƯƠNG 3. THỰC NGHIỆM, ĐÁNH GIÁ, PHÂN TÍCH KẾT QUẢ

Mức độ khó

Ba mức độ khó: dễ, trung bình, khó.

Kích thước lưới

Lưới trò chơi có kích thước 20x20 ô.

Kích thước ô

Mỗi ô trong lưới có kích thước 30 pixel.

Tốc độ khung hình

60 FPS cho giao diện, 30 FPS cho video.

Chiều rộng tìm kiếm Beam

Tìm kiếm Beam sử dụng chiều rộng là 10.

Tham số Q-Learning

Tối đa 100 tập, tối đa 100 bước, epsilon giảm dần.

PHẦN KẾT LUẬN

Định hướng phát triển

Tối ưu hóa Q-Learning · - Thêm bản đồ động - Hỗ trợ đa nền tảng - - Cải thiện giao diện - '

DEMO

