Homework 4 solutions: Morley sequences and the order property

Advanced Model Theory

Due March 24, 2022

1. Find a set A and a relation $R \subseteq A \times A$ such that

$$\exists^{\infty} x \in A \ \exists^{\infty} y \in A : (x, y) \in R$$
$$\neg \exists^{\infty} y \in A \ \exists^{\infty} x \in A : (x, y) \in R.$$

Proof. Let $A = \mathbb{N}$ and let R(x, y) be the relation $x \leq y$. For any $x \in \mathbb{N}$, there are infinitely many $y \in \mathbb{N}$ such that $x \leq y$. In particular, for infinitely many $x \in \mathbb{N}$, there are infinitely many $y \in \mathbb{N}$ such that $x \leq y$.

On the other hand, for any y there are not infinitely many x such that $x \leq y$. So it is not the case that there are infinitely many y such that there are infinitely many x such that $x \leq y$.

2. Consider the structure $(\mathbb{R}, +, -, \cdot, 0, 1, \leq)$. Let $\varphi(x, y)$ be the formula $y - 1 \leq x \land x \leq y + 1$. Show that $\varphi(x, y)$ has the order property (in a monster model $\mathbb{M} \succeq \mathbb{R}$).

Solution. Let ..., b_{-2} , b_{-1} , b_0 , b_1 , b_2 , ... be a strictly increasing sequence of real numbers in the interval [0, 1]. For example, it could be the sequence

$$\dots$$
, 0.80001, 0.8001, 0.801, 0.81, 0.9, 0.99, 0.999, \dots

Let $a_i = b_{i+1} + 1$. Then $a_i \in [1, 2]$ for each i, and so $b_j - 1 \le 0 \le 1 \le a_i$ holds for any $i, j \in \mathbb{Z}$. Therefore,

$$\varphi(a_i, b_j) \iff a_i \le b_j + 1$$

for any $i, j \in \mathbb{Z}$. Then

$$\varphi(a_i, b_i) \iff a_i \le b_i + 1 \iff b_{i+1} + 1 \le b_i + 1 \iff i + 1 \le j \iff i < j,$$

because the sequence is strictly increasing. So we have a witness of the order property.

3. Let \mathbb{M} be a monster model of DLO. Let $\tau \in S_1(\mathbb{M})$ be the type at $+\infty$ as in last week's homework. Consider the Morley product $\tau \otimes \tau \in S_2(\mathbb{M})$. Show that $(\tau \otimes \tau)(x,y)$ is the unique completion of $\tau(x) \cup \tau(y) \cup \{x < y\}$.

Solution. First we prove the following claim: if $M \models \text{DLO}$ and $\tau_M(x) \in S_1(M)$ is the type at infinity, then $\Sigma_M(x,y) := \tau_M(x) \cup \tau_M(y) \cup \{x < y\}$ generates a unique 2-type over M. To see this, take two realizations (a,b) and (a',b') of Σ_M in a further elementary extension $N \succeq M$. Then M < a < b and M < a' < b'. Let $f: M \cup \{a,b\} \rightarrow M \cup \{a',b'\}$ be the map

$$f(x) = \begin{cases} x & \text{if } x \in M \\ a' & \text{if } x = a \\ b' & \text{if } x = b. \end{cases}$$

Then f is a local isomorphism, a strictly order-preserving map. By quantifier elimination in DLO, f is a partial elementary map. Therefore $(a,b) \equiv_M (a',b')$. So any two realizations of $\Sigma_M(x,y)$ have the same complete type over M, and $\Sigma_M(x,y)$ generates a complete type.

This proves the claim. Applying this to the monster model, we see that $\tau(x) \cup \tau(y) \cup \{x < y\}$ generates a complete 2-type over M. Let's call that type q(x,y). Note that q(x,y) is generated by the formulas

$$\{x > a : a \in \mathbb{M}\} \cup \{y > a : a \in \mathbb{M}\} \cup \{x < y\}.$$
 (*)

It remains to show that $\tau \otimes \tau = q$. It suffices to show that $(\tau \otimes \tau)(x,y)$ implies the generating formulas (*). Suppose $a \in \mathbb{M}$. If $(b,c) \models (\tau \otimes \tau) \upharpoonright \{a\}$, then $b \models \tau \upharpoonright \{a\}$ and $c \models \tau \upharpoonright \{a,b\}$, which means a < b < c. Therefore the formula a < x < y must be in $(\tau \otimes \tau)(x,y)$. As this holds for any a, we get that $(\tau \otimes \tau)(x,y)$ contains all the formulas in (*), and therefore $\tau \otimes \tau$ must be q.

(There are probably other ways to do this problem.)

4. Let \mathbb{M} be a monster model of a complete theory T. Suppose \mathbb{M} is an expansion of a linear order. (This means that there is a binary relation symbol \leq in the language, and (\mathbb{M}, \leq) is a linear order.) Let $p \in S_1(\mathbb{M})$ be a global A-invariant 1-type. Suppose that p commutes with itself. Show that p is a constant/realized type, meaning that $p = \operatorname{tp}(c/\mathbb{M})$ for some $c \in \mathbb{M}$.

Solution. Take $(b,c) \models (p \otimes p) \upharpoonright A$. Then

$$b \models p \upharpoonright A \text{ and } c \models p \upharpoonright Ab.$$

The fact that p commutes with itself means that this condition is symmetric in b and c, and so

$$c \models p \upharpoonright A \text{ and } b \models p \upharpoonright Ac,$$

or equivalently, $(c, b) \models (p \otimes p) \upharpoonright A$. (Or here is a more direct argument. The fact that p commutes with p means that $(p \otimes p)(x, y) = (p \otimes p)(y, x)$. So if $(b, c) \models p \otimes p$, that is, $\mathbb{M} \models (p \otimes p)(b, c)$, then $\mathbb{M} \models (p \otimes p)(c, b)$, that is, $(c, b) \models p \otimes p$.)

The fact that $(b,c) \models (p \otimes p) \upharpoonright A$ means that $(p \otimes p) \upharpoonright A$ is $\operatorname{tp}(b,c/A)$, because $(p \otimes p) \upharpoonright A$ is a complete type over A. So

$$\operatorname{tp}(b, c/A) = (p \otimes p) \upharpoonright A.$$

As (c, b) also realizes this type,

$$\operatorname{tp}(c, b/A) = (p \otimes p) \upharpoonright A.$$

Therefore $\operatorname{tp}(b, c/A) = \operatorname{tp}(c, b/A)$. Now use the order to see

$$b < c \iff c < b$$
.

This is impossible unless b = c.

Because of how we chose (b, c), we have $c \models p \upharpoonright Ab$, which means $p \upharpoonright Ab = \operatorname{tp}(c/Ab)$. The type $\operatorname{tp}(c/Ab)$ contains the formula x = b, because c = b. Therefore the larger type $p \supseteq (p \upharpoonright Ab)$ also contains the formula x = b. Then p must be $\operatorname{tp}(b/M)$.