Wydział Mechaniczny Energetyki i Lotnictwa Politechnika Warszawska

Podstawy Drgań i Aeroelastyczności

Praca domowa

Autor: Patryk Wrona

Prowadzący: dr inż. Franciszek Dul

Spis treści

1.	Wstęp
	1.1. Ogólny opis zadania
2.	Energia kinetyczna układu
	2.1. Belka 2.1.1. Element nr 1 - "b" 2.1.2. Element nr 2 - "c" 2.1.3. Element nr 3 - "a" 2.2. Tarcza 2.3. Wyniki
3.	Energia potencjalna układu
	3.1. Sprężyna liniowa nr 1 3.2. Sprężyna liniowa nr 2 3.3. Sprężyna skrętna 3.4. Wyniki
4.	Równania ruchu
	4.1. Pochodne energii kinetycznej
5.	Częstości drgań własnych układu
	5.1. Równania ruchu jako równanie macierzowe15.2. Wielomian charakterystyczny związany z zadaniem15.3. Wyznaczenie częstości drgań własnych15.4. Sprawdzenie poprawności rozwiązania1
6.	Postacie drgań własnych układu
	6.1. Określenie postaci drgań własnych

1. Wstęp

1.1. Ogólny opis zadania

Przedmiotem projektu jest wyznaczenie równań ruchu oraz częstości i postaci drgań własnych zadanego układu. Układ jest złożony z jednorodnej belki, tarczy, dwóch sprężyn liniowych oraz sprężyny skrętnej.

1.2. Szkic zadania

Poniżej przedstawiam szkic zadania z parametrami:

Rys. 1.1. Schemat układu płaskiego

Wszystkie parametry z zadania obliczone zostały wykorzystując numer indeksu: *****, liczbę liter imienia: Patryk = $\bf 6$ oraz nazwiska: Wrona = $\bf 5$.

1. Wstep 3

Masa belki:

m = 6 [kg]

Masa tarczy:

M = 5 [kg]

Długości elementów belki:

a = 0.7 [m]

b = 1.4 [m]

c = 1.2 [m]

Promień tarczy:

$$r = 1 [m]$$

Współczynniki sztywności sprężyn liniowych:

$$k_1 = 500 * (1 + 0.2 * 6) = \mathbf{1100} \left[\frac{N}{m} \right]$$

$$k_2 = 1000 * (1 + 0.2 * 3) =$$
1600 $[\frac{N}{m}]$

Współczynnik sztywności spreżyny skrętnej:

$$k_3 = 100 * (1 + 0.5 * 2) = \mathbf{200} \left[\frac{N}{m}\right]$$

1.3. Sposób rozwiązywania

W celu wyznaczenia równań ruchu oraz czestości i postaci drgań własnych układu posłuże się równaniami Lagrange'a II rodzaju, aby następnie rozwiązując powstałe dzięki nim równanie macierzowe, móc wyznaczyć szukane wartości.

1.3.1. Równania Lagrange'a

Równania Lagrange'a II rodzaju są równaniami mechaniki analitycznej służącymi do wyprowadzania równań ruchu układów fizycznych. Zakładają one istnienie n stopni swobody w układzie. J-ty stopień swobody jest powiązany z j-tą współrzędną ugogólnioną oraz wygląda następująco:

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_j} - \frac{\partial T}{\partial q_j} + \frac{\partial V}{\partial q_j} = Q_j, \quad j = 1, ..., n$$

gdzie:

liczba stopni swobody układu,

współrzędne uogólnione,

 \dot{q}_j $T(q_j, \dot{q}_j)$ $V(q_j)$ prędkości uogólnione,

energia kinetyczna układu,

energia potencjalna układu,

siły niepotencjalne działające na układ.

1.3.2. Wybór współrzędnych uogólnionych

Wybieram 2 współrzedne uogólnione α oraz β . Upraszczam w drugim przypadku charakter wpływu skręcenia sprężyny skrętnej na położenie tarczy - powoduje on tylko przesunięcie się punktu zaczepienia sprężyny liniowej. Dalej przedstawiam szkic z uogólnionymi współrzędnymi.

1. Wstęp

Rys. 1.2. Schemat współrzędnych uogólnionych

Powyższy wybór współrzędnych uogólnionych daje nam 2 stopnie swobody układu, co sprowadza się do 2 równań Lagrange'a opisujących równania ruchu układu.

1.3.3. Założenia projektowe

W projekcie przyjęto poniższe uproszczenia:

- ⇒ pominięte ciężary belki i tarczy.
- \Rightarrow linearyzacja geometryczna wydłużenia sprężyn liniowych.
- \Rightarrow brak sił niepotencjalnych takich jak tłumienie działających na układ .

2. Energia kinetyczna układu

W tej części wyznaczam energię kinetyczną układu złożonego z belki i tarczy w zależności od współrzędnych i prędkości uogólnionych α , β oraz $\dot{\alpha}$, $\dot{\beta}$. Energia kinetyczna układu jest sumą energii kinetycznej belki i tarczy.

2.1. Belka

Energia belki może być obliczona element po elemencie. Oznaczenia "a", "b" i "c" odnoszą się do części belki o odpowiednich długościach. Energia kinetyczna belki jest sumą poszczególnych energii kinetycznych:

$$T_{belka} = T_b + T_c + T_a$$

2.1.1. Element nr 1 - "b"

Energia kinetyczna tego elementu to energia kinetyczna ruchu obrotowego:

$$T_b = \frac{1}{2} * I_{Ob} * \omega_b^2$$

$$T_b = \frac{1}{2} * (\frac{1}{3} * m_b * b^2) * \dot{\alpha}(t)^2$$

$$T_b = \frac{1}{2} * (\frac{1}{3} * [\frac{b * m}{a + b + c}] * \dot{\alpha}(t)^2$$

$$T_b = \frac{1}{6} * \frac{b^3 m}{a + b + c} * \dot{\alpha}(t)^2$$

2.1.2. Element nr 2 - "c"

Energia kinetyczna tego elementu to energia kinetyczna ruchu obrotowego:

$$T_c = \frac{1}{2} * I_{Oc} * \omega_c^2$$

$$T_c = \frac{1}{2} * (\frac{1}{3} * m_c * c^2) * \dot{\alpha}(t)^2$$

$$T_c = \frac{1}{2} * (\frac{1}{3} * [\frac{c * m}{a + b + c}] * c^2) * \dot{\alpha}(t)^2$$

$$T_c = \frac{1}{6} * \frac{c^3 m}{a + b + c} * \dot{\alpha}(t)^2$$

2.1.3. Element nr 3 - "a"

W celu obliczenia energii kinetycznej tej części belki zastosuję Twierdzenie Königa:

$$T_a = \frac{1}{2} * I_{sr-masy} * \omega_a^2 + \frac{1}{2} * m_a * v_{sr-masy}^2$$

Wartość $v_{sr-masy}^2$ jest tutaj prostą zależnością pomiędzy stałą odległością r_0 od osi obrotu oraz kątem obrotu α .

$$\begin{split} v_{sr-masy}^2 &= \dot{\alpha}(t)^2 * r_0^2 \\ v_{sr-masy}^2 &= \dot{\alpha}(t)^2 * (\frac{a^2}{4} + c^2) \end{split}$$

Zatem znając moment bezwładności belki względem swojej osi obrotu można podstawić ją do wzoru na energię kinetyczną:

$$T_a = \frac{1}{2} * (\frac{1}{12} * m_a * a^2) * \dot{\alpha}(t)^2 + \frac{1}{2} * m_a * \dot{\alpha}(t)^2 * (\frac{a^2}{4} + c^2)$$

$$T_a = m_a * \dot{\alpha}(t)^2 * (\frac{a^2}{24} + \frac{a^2}{8} + \frac{c^2}{2})$$

$$T_a = \frac{m}{a+b+c} * \dot{\alpha}(t)^2 * (\frac{a^3}{6} + \frac{a*c^2}{2})$$

2.2. Tarcza

Przy obliczaniu energii kinetycznej tarczy również zastosuję Twierdzenie Königa:

$$T_T = \frac{1}{2} * I_{sr-masy} * \omega_T^2 + \frac{1}{2} * M * v_{sr-masy}^2$$

Wartość $v_{sr-masy}^2$ jest również prostą zależnością pomiędzy stałą odległością r_{OT} od osi obrotu oraz kątem obrotu α .

$$v_{sr-masy}^2 = \dot{\alpha}(t)^2 * r_{OT}^2$$

$$v_{sr-masy}^2 = \dot{\alpha}(t)^2 * (a^2 + 2ar + r^2 + c^2)$$

Zatem znając moment bezwładności tarczy względem jej osi obrotu można podstawić ją do wzoru na energię kinetyczną:

$$T_T = \frac{1}{2} * (\frac{1}{2} * M * r^2) * \dot{\beta}(t)^2 + \frac{1}{2} * M * \dot{\alpha}(t)^2 * (a^2 + 2ar + r^2 + c^2)$$
$$T_T = \frac{1}{4} * M * r^2 * \dot{\beta}(t)^2 + \frac{1}{2} * M * \dot{\alpha}(t)^2 * (a^2 + 2ar + r^2 + c^2)$$

2.3. Wyniki

Po zsumowaniu energii kinetycznych belki T_{belka} oraz tarczy T_T otrzymujemy energię kinetyczną całego układu w chwili t:

$$T(\dot{\alpha}(t), \dot{\beta}(t)) = \dot{\alpha}(t)^{2} \left[\frac{m}{a+b+c} \left(\frac{a^{3}}{6} + \frac{ac^{2}}{2} + \frac{b^{3}}{6} + \frac{c^{3}}{6} \right) + \frac{1}{2} M(a^{2} + 2ar + r^{2} + c^{2}) \right] + \dot{\beta}(t)^{2} \left[\frac{1}{4} Mr^{2} \right]$$

3. Energia potencjalna układu

W tej części wyznaczam energię potencjalną układu. Składa się na nią energia potencjalna 2 sprężyn liniowych oraz sprężyny skrętnej. Energia potencjalna będzie zależeć tylko od współrzędnych uogólnionych α oraz β .

$$V(\alpha, \beta) = V_1 + V_2 + V_3$$

3.1. Sprężyna liniowa nr 1

Energia potencjalna wyraża się wzorem:

$$V_1 = \frac{1}{2}k_1\Delta_1^2$$

Można zastosować linearyzaję w celu przybliżenia wydłużenia Δ_1 jak na rysunku:

Rys. 3.1. Linearyzacja pierwszej sprężyny liniowej

Wówczas:

$$\Delta_1 \cong (a+r) * sin(\alpha) + r * sin(\beta)$$
$$\Delta_1 \cong (a+r) * \alpha + r * \beta$$

Energia potencjalna jest zatem równa:

$$V_1 = \frac{1}{2}k_1 * [(a+r)^2\alpha^2 + r^2\beta^2 + 2(ar+r^2)\alpha\beta]$$

3.2. Sprężyna liniowa nr 2

Energia potencjalna wyraża się wzorem:

$$V_2 = \frac{1}{2}k_2\Delta_2^2$$

Można zastosować linearyzaję w celu przybliżenia kąta Δ_2 tak jak na rysunku:

Rys. 3.2. Linearyzacja drugiej sprężyny liniowej

Wówczas:

$$\Delta_2 \cong b * sin(\alpha)$$
$$\Delta_2 \cong b * \alpha$$

Energia potencjalna jest zatem równa:

$$V_2 = \frac{1}{2}k_2b^2\alpha(t)^2$$

3.3. Sprężyna skrętna

Energia potencjalna wyraża się wzorem:

$$V_3 = \frac{1}{2}k_3\delta_3^2$$

 $\delta_3 = \beta$ - α , zatem:

$$V_3 = \frac{1}{2}k_3(\beta - \alpha)^2$$

$$V_3 = \frac{1}{2}k_3(\beta^2 + \alpha^2 - 2\alpha\beta)$$

3.4. Wyniki

Po zsumowaniu wszystkich energii potencjalnych uzyskano energię potencjalną całego układu w chwili t:

$$V(\alpha(t), \beta(t)) = \alpha(t)^{2} * \left[\frac{1}{2}k_{1}(a+r)^{2} + \frac{1}{2}k_{2}b^{2} + \frac{1}{2}k_{3}\right] + \beta(t)^{2} * \left[\frac{1}{2}k_{1} + \frac{1}{2}k_{3}\right] + \alpha(t)\beta(t) * \left[k_{1}(ar+r^{2}) - k_{3}\right]$$

4. Równania ruchu

W celu wyznaczenia równań ruchu, wyznaczono odpowiednie pochodne energii kinetycznej i potencjalnej występującej w poniższym równaniu Lagrange'a przy założeniach projektowych:

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_i} - \frac{\partial T}{\partial q_i} + \frac{\partial V}{\partial q_i} = 0, \quad j = 1, ..., n$$

4.1. Pochodne energii kinetycznej

4.1.1. Pochodne po uogólnionych współrzędnych

Energia kinetyczna nie zależy od współrzędnych uogólnionych α oraz β :

$$\frac{\partial T}{\partial \alpha} = 0$$
$$\frac{\partial T}{\partial \beta} = 0$$

4.1.2. Pochodne po uogólnionych prędkościach

Wyznaczam pochodne energii kinetycznej po uogólnionych prędkościach $\dot{\alpha}$ oraz $\dot{\beta}$:

$$\frac{\partial T}{\partial \dot{\alpha}} = \dot{\alpha}(t) * \left[\frac{m}{a+b+c} \left(\frac{a^3}{3} + \frac{b^3}{3} + \frac{c^3}{3} + ac^2 \right) + M((a+r)^2 + c^2) \right]$$
$$\frac{\partial T}{\partial \dot{\beta}} = \dot{\beta} * \left[\frac{1}{2} M r^2 \right]$$

4.1.3. Pochodne po czasie pochodnych po uogólnionych prędkościach

Wyznaczam w prosty sposób pochodne po czasie wcześniejszych pochodnych:

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{\alpha}} = \ddot{\alpha}(t) * \left[\frac{m}{a+b+c} \left(\frac{a^3}{3} + \frac{b^3}{3} + \frac{c^3}{3} + ac^2\right) + M((a+r)^2 + c^2)\right]$$
$$\frac{d}{dt}\frac{\partial T}{\partial \dot{\beta}} = \ddot{\beta} * \left[\frac{1}{2}Mr^2\right]$$

4.2. Pochodne energii potencjalnej

Wyznaczam pochodne energii potencjalnej układu po współrzędnych uogólnionych α oraz β :

$$\frac{\partial V}{\partial \alpha} = \alpha * [k_1(a+r)^2 + k2b^2 + k3] + \beta * [k_1(ar+r^2) - k_3]$$
$$\frac{\partial V}{\partial \beta} = \alpha * [k_1(ar+r^2) - k_3] + \beta * [k_1 + k_3]$$

4. Równania ruchu

4.3. Wyznaczanie równań ruchu

Ponieważ w moim układzie są 2 stopnie swobody odpowiadające współrzędnym uogólnionym odpowiednio α oraz β , podstawiam wszystkie wyznaczone pochodne do 2 równań Lagrange'a:

$$\ddot{\alpha}(t)*[\frac{m}{a+b+c}(\frac{a^3+b^3+c^3}{3}+ac^2)+M((a+r)^2+c^2)]+\alpha(t)*[k_1(a+r)^2+k_2b^2+k_3]+\beta(t)*[k_1(ar+r^2)-k_3]=0$$

$$\ddot{\beta}(t)*[\frac{1}{2}Mr^2]+\alpha(t)*[k_1(a+r)-k_3]+\beta(t)*[k_1+k_3]=0$$

Powyższe 2 równania są równaniami ruchu dla układu z zadania.

5. Częstości drgań własnych układu

5.1. Równania ruchu jako równanie macierzowe

Zapiszę wyznaczone wcześniej równania ruchu jako różniczkowe równanie macierzowe o następującej postaci:

$$M\ddot{q} + Kq = 0$$

gdzie:

 \ddot{q} wektor przyspieszeń uogólnionych $\ddot{\alpha}$, $\ddot{\beta}$,

q wektor współrzędnych uogólnionych α , β ,

M macierz współrzynników przy prędkościach uogólnionych,

K macierz współrzynników przy współrzędnych u
ogólnionych.

$$\ddot{q} = \left[\begin{array}{c} \ddot{\alpha}(t) \\ \ddot{\beta}(t) \end{array} \right]$$

$$q = \left[\begin{array}{c} \alpha(t) \\ \beta(t) \end{array} \right]$$

$$M = \begin{bmatrix} \frac{m}{a+b+c} \left(\frac{a^3+b^3+c^3}{3} + ac^2 \right) + M((a+r)^2 + c^2) & 0\\ 0 & \frac{1}{2}Mr^2 \end{bmatrix}$$

$$K = \begin{bmatrix} k_1(a+r)^2 + k_2b^2 + k_3 & k_1(ar+r^2) - k_3 \\ k_1(ar+r^2) - k_3 & k_1 + k_3 \end{bmatrix}$$

Zakładam postać harmoniczną rozwiązania równań ruchu:

$$\mathbf{q}(\mathbf{t}) = \mathbf{\hat{q}} * \mathbf{e}^{\mathbf{i}\omega\mathbf{t}} = \begin{bmatrix} \hat{\alpha} \\ \hat{\beta} \end{bmatrix} * \mathbf{e}^{\mathbf{i}\omega\mathbf{t}}$$

Czyni ona zadość jednorodnemu równaniu drgań harmonicznych po dzieleniu przez $e^{i\omega t}$:

$$(-\omega^2 \mathbf{M} + \mathbf{K})\mathbf{\hat{q}} = \mathbf{0}$$

Rozwiązanie $\hat{q}=0$ spełnia owe równanie - jest to położenie układu w punkcie równowagi. Aby istniało niezerowe rozwiązanie, czyli de facto prawostronny wektor własny odpowiadający wartości własnej $\lambda=0$, macierz $(-\omega^2 M+K)$ musi być macierzą osobliwą, czyli taką, której wyznacznik jest równy 0.

Poniższe równanie jest wielomianem charakterystycznym macierzy $(-\omega^2 M + K)$:

$$\mathbf{w}(\omega) = \mathbf{det}(-\omega^2 \mathbf{M} + \mathbf{K}) = \mathbf{0}$$

5.2. Wielomian charakterystyczny związany z zadaniem

Szukamy wielomianu zależnego od częstości drgań własnych ω spełniającego poniższe równanie:

$$det(\left[\begin{array}{cc} -\omega^2 M_{11} + K_{11} & K_{12} \\ K21 & -\omega^2 M_{22} + K_{22} \end{array}\right]) = 0$$

W tej części podstawiłem dane z zadania w celu obliczenia elementów macierzy M oraz K

$$M = \begin{bmatrix} \frac{6}{0.7 + 1.4 + 1.2} * (\frac{(0.7)^3 + (1.4)^3 + (1.2)^3}{3} + 0.7 * (1.2)^2) + 5 * ((0.7 + 1)^2 + 1.2^2) & 0\\ 0 & \frac{1}{2} * 5 * 1^2 \end{bmatrix}$$

$$K = \begin{bmatrix} 1100 * (0.7 + 1)^2 + 1600 * (1.4)^2 + 200 & 1100 * (0.7 * 1 + 1^2) - 200\\ 1100 * (0.7 * 1 + 1^2) - 200 & 1100 + 200 \end{bmatrix}$$

Wyniki obliczeń:

$$M = \begin{bmatrix} 26.401 & 0 \\ 0 & 2.5 \end{bmatrix}$$
$$K = \begin{bmatrix} 6515 & 1670 \\ 1670 & 1300 \end{bmatrix}$$

Wówczas:

$$det(\begin{bmatrix} -\omega^2 M_{11} + K_{11} & K_{12} \\ K_{21} & -\omega^2 M_{22} + K_{22} \end{bmatrix}) = det(\begin{bmatrix} -\omega^2 * 26.401 + 6515 & 1670 \\ 1670 & -\omega^2 * 2.5 + 1300 \end{bmatrix}) = 0$$

Szukamy dodatnich pierwiastków rzeczywistych wielomianu stopnia 4 względem ω :

$$w(\omega) = (-\omega^2 * 26.401 + 6515) * (-\omega^2 * 2.5 + 1300) - 1670^2 = \omega^4 * 66.0025 + \omega^2 * (-50608.8) + 5680600$$

5.3. Wyznaczenie częstości drgań własnych

Pierwiastki wielomianu char. względem ω^2 to: $\omega_1^2=136.57~\frac{rad^2}{s^2},~\omega_2^2=630.2\frac{rad^2}{s^2}.$ Częstości drgań własnych układu są nieujemnymi pierwiastkami wielomianu charakterystycznego. Szukane częstości drgań własnych wynoszą: $\omega_1=11.686~\frac{rad}{s},~\omega_2=25.104\frac{rad}{s}.$

5.4. Sprawdzenie poprawności rozwiązania

Wyznacznik macierzy $(-\omega^2 M + K)$ dla ω_1 oraz ω_2 musi być w przybliżeniu równy 0. Sam wyznacznik jest wielomianem, a owe wartości jego pierwiastkami, więc nie może być inaczej. Sprawdzenie dla $\omega_1 = 11.686 \, \frac{rad}{s}$:

$$det(\begin{bmatrix} -11.686^2 * 26.401 + 6515 & 1670 \\ 1670 & -11.686^2 * 2.5 + 1300 \end{bmatrix}) = -3.308 * 10^{-10},$$

oraz dla $\omega_1 = 25.104 \frac{rad}{s}$:

$$det(\begin{bmatrix} -25.104^2 * 26.401 + 6515 & 1670 \\ 1670 & -25.104^2 * 2.5 + 1300 \end{bmatrix}) = 3.453 * 10^{-9}$$

Zatem owe wyznaczniki są w przybliżeniu równe 0; niedokładności wynikają z błędów numerycznych. Nasze rozwiązania są częstościami drgań własnych układu o równaniach ruchu sprowadzalnych do równania macierzowego $\mathbf{M}\ddot{q} + \mathbf{K}\mathbf{q} = \mathbf{0}$.

6. Postacie drgań własnych układu

W celu wyznaczenia postaci drgań wyznaczymy wektory własne macierzy $(-\omega_1^2 M + K)$ oraz $(-\omega_2^2 M + K)$ odpowiadające wartości własnej $\lambda = 0$. Takich wektorów jest nieskończenie wiele, więc założę dla pierwszego przypadku pierwszą jego współrzędną $\hat{\beta} = -1$ oraz dla drugiego przypadku $\hat{\alpha} = 1$.

6.1. Określenie postaci drgań własnych

Dla $\omega_1=11.686~\frac{rad}{s}$ oraz $\omega_2=25.104~\frac{rad}{s}$ wyznaczam wektory własne, czyli postacie drgań, będące możliwymi realizacjami wychyleń układu od położenia równowagi.

Dla $\omega_1 = 11.686 \frac{rad}{s}$ jest to równanie macierzowe:

$$\begin{bmatrix} 2909.421 & 1670 \\ 1670 & 958.576 \end{bmatrix} * \begin{bmatrix} \hat{\alpha} \\ \hat{\beta} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

możemy zapisać je jako układ równań:

$$\begin{cases} 2909.421\hat{\alpha} + 1670\hat{\beta} = 0\\ 1670\hat{\alpha} + 958.576\hat{\beta} = 0 \end{cases}$$

Przyjmijmy wychylenie $\hat{\beta} = -1$

$$\begin{cases} \hat{\alpha} = \frac{1670*1}{2909.421} = 0.574\\ \hat{\alpha} = \frac{958.576*1}{1670} = 0.574 \end{cases}$$

Wyznaczone postacie drgań:

$$\left[\begin{array}{c} \hat{\alpha} \\ \hat{\beta} \end{array}\right] = \left[\begin{array}{c} 0.574 \\ -1 \end{array}\right]$$

Wówczas takie postacie drgań dla częstości własnej $\omega_1=11.686~\frac{rad}{s}$ oznaczają, że przy jednostkowym wychyleniu układu o kąt $\hat{\beta}$ następuje 0.574 razy mniejsze wychylenie układu o kąt $\hat{\alpha}$ w przeciwną stronę.

Natomiast dla $\omega_2=25.104~\frac{rad}{s}$ równanie macierzowe wygląda następująco:

$$\begin{bmatrix} -10123 & 1670 \\ 1670 & -275.503 \end{bmatrix} * \begin{bmatrix} \hat{\alpha} \\ \hat{\beta} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

wynika z niego następujący układ równań:

$$\begin{cases} (-10123)\hat{\alpha} + 1670\hat{\beta} = 0\\ 1670\hat{\alpha} + (-275.503)\hat{\beta} = 0 \end{cases}$$

Przyjmijmy wychylenie $\hat{\alpha} = 1$

$$\begin{cases} \hat{\beta} = \frac{-10123*(-1)}{1670} = 6.0616\\ \hat{\beta} = \frac{1670*(-1)}{-275.503} = 6.0616 \end{cases}$$

Wyznaczone postacie drgań:

$$\left[\begin{array}{c} \hat{\alpha} \\ \hat{\beta} \end{array}\right] = \left[\begin{array}{c} 1 \\ 6.06 \end{array}\right]$$

Natomiast takie postacie drgań dla częstości własnej $\omega_2=25.104~\frac{rad}{s}$ oznaczają, że przy jednostkowym wychyleniu układu o kąt $\hat{\alpha}$ następuje w przybliżeniu 6 razy większe wychylenie układu o kąt $\hat{\beta}$ w tę samą stronę.

6.2. Szkice przykładowych odchyleń układu od stanu równowagi - wyniki

Przedstawiam wynikowe szkice drgań własnych układu dla obydwu uzyskanych wcześniej częstości drgań własnych.

6.2.1. Pierwsze postacie drgań własnych układu

Dla pierwszej postaci drgań $\omega_1 = 11.686 \frac{rad}{s}$:

$$\left[\begin{array}{c} \hat{\alpha} \\ \hat{\beta} \end{array}\right] = \left[\begin{array}{c} 0.574 \\ -1 \end{array}\right]$$

Rys. 6.1. Pierwsza z przykładowych postaci drgań własnych układu

6.2.2. Drugie postacie drgań własnych układu

Dla drugiej postaci drgań, ω_2 = 25.104 $\frac{rad}{s}$:

$$\left[\begin{array}{c} \hat{\alpha} \\ \hat{\beta} \end{array}\right] = \left[\begin{array}{c} 1 \\ 6.06 \end{array}\right]$$

Rys. 6.2. Druga z przykładowych postaci drgań własnych układu