MA 126-103 — Summer 2017 — Dr. Clontz

Name:	Exercise T	Type (Cost):
I#: In-Class		s (1AP)
Date: 2017 June 27		
Standard: This student is able to		Mark:
C07: WashShell. Use the washer or cylindrical shell method to express a volume of revolution as a definite inte-		Trickini.
gral. $3/4$ * reat	tempt due on:	

Find a definite integral equal to the volume of the solid obtained by rotating the triangle with vertices (1,4),(1,2),(3,2) around the x-axis.

MA 126-103 — Summer 2017 — Dr. Clontz

Name:	Exercise Ty	pe (Cost):
J#:	In-Class	(1AP)
Date: 2017 June 27		
Standard: This student is able to C08: Work. Express the work done in a system as nite integral.		Mark:
2/4	* reattempt due on:	

Hooke's Law states that the force required to stretch or compress a spring x units from its natural length requires F(x) = kx units of force for some constant k (depending on the spring). Suppose a spring satisfies k = 7 and is naturally length 10. Find a definite integral equal to the work required to compress this spring from length 8 to length 5. (Do not solve your integral.)

MA 126-103 — Summer 2017 — Dr. Clontz

Name:	Exercise T	Type (Cost):
J#:	In-Class	s (1AP)
Date: 2017 June 27		
Standard: This student is able to		Mark:
S07: WorkDiff. Use the work differential to express the		
work done in pumping a tank of liquid as a definite integral.		
$2/3$ \star reat	tempt due on:	

Assume salt water weighs $10kN/m^3$. Find an expression in terms of y for the work differential dW required to pump a cross-section of water at height y from a cubical tank with side length 5 meters laying flat on the ground to its top. Then give a definite integral equal to the work required to pump this tank if it filled 4 meters deep with salt water.