## ΘΕΩΡΗΜΑΤΑ ΤΟΥ ΠΡΟΤΑΣΙΑΚΟΥ ΛΟΓΙΣΜΟΥ

# ΠΡΟΤΑΣΙΑΚΟΣ ΛΟΓΙΣΜΟΣ www.psounis.gr



# Θεώρημα (Απαγωγής):

Av  $T \cup \{\varphi\} \vdash \psi$  tote  $T \vdash \varphi \rightarrow \psi$ 

### Ευθεία χρήση:

Aν γνωρίζουμε (π.χ. από την εκφώνηση) ότι:  $T \cup \{\phi\}$   $\vdash \psi$ Τότε από το θεώρημα απαγωγής «έπεται» (ή «προκύπτει άμεσα») ότι ισχύει:  $T \vdash φ \rightarrow ψ$ Αντίστροφη χρήση:

Για να δείξουμε ότι:  $T \vdash φ → ψ$ Από το θεώρημα Απαγωγής αρκεί να δείξουμε ότι:  $T \cup \{\varphi\} \vdash \psi$ 

### Θεώρημα (Αντιθετοαναστροφής): $T \cup \{oldsymbol{arphi}\} \vdash eg oldsymbol{\psi}$ αν και μόνο αν $T \cup \{oldsymbol{\psi}\} \vdash eg oldsymbol{arphi}$

#### Θεώρημα (Εις Άτοπο Απαγωγής): Aν $T \cup \{ \phi \}$ είναι αντιφατικό τότε $T \vdash \neg \phi$

## Ευθεία χρήση:

Αν γνωρίζουμε (π.χ. από την εκφώνηση) ότι:  $T \cup \{\varphi\}$  είναι αντιφατικό Τότε από το θεώρημα απαγωγής σε άτοπο «έπεται» (ή

«προκύπτει άμεσα») ότι ισχύει:  $T \vdash \neg φ$ Αντίστροφη χρήση:

Για να δείξουμε ότι:  $T \vdash \neg \varphi$ Από το θεώρημα απαγωγής σε άτοπο αρκεί να δείξουμε ότι:  $T ∪ {φ}$  είναι αντιφατικό.

## Αντιφατικό Σύνολο Τύπων:

Ένα σύνολο τύπων Τ καλείται αντιφατικό αν υπάρχει ένας τύπος ψ τέτοιος ώστε να ισχύει: 

Συνεπές σύνολο τύπων:

Σύνολο τύπων που δεν είναι αντιφατικό

ΑΣΚΗΣΗ: Να αποδείξετε ότι:

 $\vdash ((\psi \rightarrow \neg \psi) \rightarrow \neg \chi) \rightarrow (\chi \rightarrow \neg (\psi \rightarrow \neg \psi))$ Απάντηση:

Από το θεώρημα Απαγωγής αρκεί να δείξω:

 $(\psi \rightarrow \neg \psi) \rightarrow \neg \chi \vdash \chi \rightarrow \neg (\psi \rightarrow \neg \psi)$ Από το θεώρημα Απανωγής αρκεί να δείξω:

 $\{(\psi \rightarrow \neg \psi) \rightarrow \neg \chi, \chi\} \vdash \neg(\psi \rightarrow \neg \psi)$ 

Από το θεώρημα Αντιθετοαναστροφής αρκεί να δείξω:  $\{(\psi \rightarrow \neg \psi) \rightarrow \neg \chi, \psi \rightarrow \neg \psi\} \vdash \neg \chi$ 

που έχει τυπική απόδειξη:  $\psi \rightarrow \neg \psi \ Υπόθεση$ 

(Ψ → ¬Ψ) → ¬χ Υπόθεση $\neg \chi$  MP1,2

ΑΣΚΗΣΗ: Να αποδείξετε ότι:

Απάντηση:

 $\{\chi \rightarrow \neg \psi, \phi\} \vdash \chi \rightarrow \neg (\phi \rightarrow \psi)$ 

Από το θεώρημα απαγωγής αρκεί να δείξουμε ότι:  $\{\chi \rightarrow \neg \psi, \phi, \chi\} \mid \neg (\phi \rightarrow \psi)$ Από το θ.απαγωγής σε άτοπο αρκεί να δείξουμε ότι το σύνολο τύπων:

T={ $\chi \rightarrow \neg \psi$ ,  $\varphi$ ,  $\chi$ ,  $\varphi \rightarrow \psi$ } είναι αντιφατικό.

Και ακολουθούν οι τυπικές αποδείξεις: ΤΗ ψ και ΤΗ --ψ

#### Θεώρημα (Εγκυρότητας): Αν $T \vdash \varphi$ τότε $T \vDash \varphi$

(ευθεία χρήση) Αν γνωρίζουμε (π.χ. από την εκφώνηση) ότι  $T \vdash \varphi$ . Τότε από το θεώρημα εγκυρότητας «έπεται» ότι ισχύει:  $T \vDash \varphi$ 

(αντίστροφη χρήση) Για να δείξουμε ότι:  $T \models \varphi$ . Από το θεώρημα εγκυρότητας αρκεί να δείξουμε ότι:  $T \vdash \varphi$ 

## Θεώρημα (Πληρότητας): Αν $T \vDash \varphi$ τότε $T \vdash \varphi$

(ευθεία χρήση) Αν γνωρίζουμε (π.χ. από την εκφώνηση) ότι  $T \vDash \varphi$ .

Τότε από το θεώρημα πληρότητας «έπεται» ότι ισχύει:  $T \vdash \varphi$ 

(αντίστροφη χρήση) Για να δείξουμε ότι:  $T \vdash \varphi$ . Από το θεώρημα πληρότητας αρκεί να δείξουμε ότι:  $T \models \varphi$ 

#### ΑΠΟΔΕΙΞΕΙΣ ΤΥΠΙΚΩΝ ΘΕΩΡΗΜΑΤΩΝ



#### Απόδειξη 1 (χωρίς Θεωρήματα Προτασιακού Λογισμού)

Η τυπική απόδειξη είναι:

- 1.  $\phi \rightarrow ((\phi \rightarrow \phi) \rightarrow \phi)$  ΣA στο AΣ1 όπου  $\phi:\phi, \psi:\phi \rightarrow \phi$
- 2.  $(\phi \rightarrow ((\phi \rightarrow \phi) \rightarrow \phi)) \rightarrow ((\phi \rightarrow (\phi \rightarrow \phi)) \rightarrow (\phi \rightarrow \phi))$   $\Sigma A$   $\sigma \tau o$   $\Delta \Sigma 2$   $\delta \tau o \omega$   $\phi : \phi$ ,  $\psi : \phi \rightarrow \phi$ ,  $\chi : \phi$
- 3.  $(\phi \rightarrow (\phi \rightarrow \phi)) \rightarrow (\phi \rightarrow \phi)$  MP1,2
- 4.  $\phi \rightarrow (\phi \rightarrow \phi)$  ΣΑ στο ΑΣ1 όπου  $\phi$ :  $\psi$ ,  $\psi$ : $\phi$
- 5.  $\phi \rightarrow \phi$  MP3,4

#### Απόδειξη 2 (με Θεωρήματα Προτασιακού Λογισμού)

Από το θεώρημα απαγωγής αρκεί να δείξω:

$$\varphi \vdash \varphi$$

που έχει τυπική απόδειξη:

1. φ Υπόθεση

#### $\vdash \phi \to \neg \neg \phi$

Από το θεώρημα Απαγωγής αρκεί να δείξω:

$$\varphi \vdash \neg \neg \varphi$$

Από το θεώρημα Αντιθετοαναστροφής αρκεί να δείξω:

$$\neg \varphi \vdash \neg \varphi$$

που έχει τυπική απόδειξη:

1. ¬φ Υπόθεση

### $\textbf{F} \lnot \lnot \phi \rightarrow \phi$

Από το θεώρημα Απαγωγής αρκεί να δείξω:

$$\neg \neg \varphi \vdash \varphi$$

που έχει τυπική απόδειξη:

- 1. ¬¬φ Υπόθεση
- 2.  $\neg\neg\phi\rightarrow(\neg\phi\rightarrow\neg\neg\phi)$  ΣA στο AΣ1 όπου  $\phi:\neg\neg\phi,\psi:\neg\phi$
- 3.  $\neg \phi \rightarrow \neg \neg \phi$  MP1,2
- 4.  $(\neg \phi \rightarrow \neg \neg \phi) \rightarrow ((\neg \phi \rightarrow \neg \phi) \rightarrow \phi)$  ΣA στο AΣ3 όπου  $\phi$ :  $\neg \phi$ ,  $\psi$ :  $\phi$
- 5.  $(\neg \phi \rightarrow \neg \phi) \rightarrow \phi \text{ MP3,4}$
- 6.  $\neg \phi \rightarrow \neg \phi$  ΣΑ στο Τυπικό Θεώρημα  $\vdash \phi \rightarrow \phi$  όπου  $\phi$ :  $\neg \phi$
- 7. φ MP6,5

Και παραθέτουμε την τυπική απόδειξη του τυπικού θεωρήματος  $\vdash \phi \rightarrow \phi$