Face Recognition III

COMP 388-002/488-002 Biometrics

Daniel Moreira Fall 2025

Today we will...

Get to know Face description and matching.

Today's Attendance

Please fill out the form

forms.gle/WvKhQG6ShaPcae3Y8

Face Recognition

Face Recognition

Feature Extraction

Focus

2D-appearance-based methods.

Types

Handcrafted features from Computer Vision.

Data-driven learned features from Machine Learning.

Feature Extraction

Focus

2D-appearance-based methods.

Types

Handcrafted features from Computer Vision.

Data-driven learned features from Machine Learning.

Face recognition using histograms of oriented gradients.

Pattern recognition letters, 2011.

Source: Domingo Mery

Handcrafted

An expert designs what and how facial regions should be used.

Feature Extraction

Handcrafted Features

Examples

Based on Gabor filters, interest points (e.g., SIFT¹, SURF², HOG³), or texture descriptors (e.g., LBP⁴).

Geng and Jiang.

SIFT features for face recognition.

ICCSIT, 2009.

^{1 -} Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.

^{2 -} Bay et al. SURF: Speeded up robust features. ECCV, 2006.

^{3 -} Dalal and Triggs. Histograms of oriented gradients for human detection. CVPR 2005.

^{4 -} Ojala et al. Performance evaluation of texture measures(...). ICPR, 1994.

Local Binary Patterns

Selected Solution

Local Binary Patterns to describe face texture.

Next slides provided by Dr. Domingo Mery. (http://domingomery.ing.puc.cl)

- LBP descriptors are calculated in image sub-regions (cells)
- Number and size of cells cannot be arbitrary (note space-scale considerations)

Cell coding

Mapping

Histogram calculation

Normalization

Concatenation

Cell coding

Mapping

Histogram calculation

Normalization

Concatenation

Cell coding

Mapping

Histogram calculation

Normalization

Concatenation

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

Cell coding

Mapping

Histogram calculation

Normalization

Concatenation

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

Cell coding

Mapping

Histogram calculation

Normalization

Concatenation

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

4	6	9
9	6)	4
9	6	2

<	

16

Cell coding

Mapping

Histogram calculation

Normalization

Concatenation

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

4	6	9
9	6)	4
9	6	2

0: < 1: ≥

0	

17

Cell coding

Mapping

Histogram calculation

Normalization

Concatenation

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

4	6	9
9	6	4
9	6	2

0: < 1: ≥

0	<u>></u>	

Cell coding

Mapping

Histogram calculation

Normalization

Concatenation

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

4	6	9
9	6	4
9	6	2

0: < 1: ≥

0	1	

19

Cell coding

Mapping

Histogram calculation

Normalization

Concatenation

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

4	6	9
9	6	4
9	6	2

0: < 1: ≥

0	1	1

Cell coding

Mapping

Histogram calculation

Normalization

Concatenation

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

0	1	1
		0

Cell coding

Mapping

Histogram calculation

Normalization

Concatenation

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

4	6	9
9	6	4
9	6	2

0: < 1: ≥

0	1	1
		0
		0

Concatenation

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

4	6	9
9	6	4
9	6	2

0: < 1: ≥

0	1	1
		0
	1	0

Cell coding

Mapping

Histogram calculation

Normalization

Concatenation

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

4	6	9
9	6	4
9	6	2

0: < 1: ≥

0	1	1
		0
1	1	0

24

Cell coding

Mapping

Histogram calculation

Normalization

Concatenation

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

0: < 1: ≥

0	1	1
1		0
1	1	0

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

4	6	9
9	6	4
9	6	2

0: < 1: ≥

0	1	1
1		0
1	1	0
	1	0111

	1	2	4
X	128	(+)	8
	64	32	16

$$= 0 + 2 + 4 + 0 + 0 + 32 + 64 + 128 = 230$$

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

4	6	9
9	6	4
9	6	2

0: < 1: ≥

0	1	1
1		0
1	1	0

	1	2	4
X	128	(+)	8
	64	32	16

$$= 0 + 2 + 4 + 0 + 0 + 32 + 64 + 128 = 230$$

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

230		

4	6	9
9	6	4
9	6	2

$$= 0 + 2 + 4 + 0 + 0 + 32 + 64 + 128 = 230$$

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

230	?		

6	9	6
6	4	9
6	2	2

0: < 1: ≥

1 2 4 x 128 + 8 64 32 16

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

230	207		

6	9	6
6	4	9
6	2	2

30

$$= 1 + 2 + 4 + 8 + 64 + 128 = 207$$

Cell coding

Mapping

Histogram calculation

Normalization

Concatenation

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

230	207	?	

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

230	207	25	

9	6	4
4	9	9
2	2	9

Cell coding

Mapping

Histogram calculation

Normalization

Concatenation

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

230	207	25	168	

Cell coding

Mapping

Histogram calculation

Normalization

Concatenation

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

	230	207	25	168	
	243				

Cell coding

Mapping

Histogram calculation

Normalization

Concatenation

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

230	207	25	168	
243	255			

Cell coding

Mapping

Histogram calculation

Normalization

Concatenation

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

230	207	25	168	
243	255	255		

Division into N cells

Cell coding

Mapping

Histogram calculation

Normalization

Concatenation

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

230	207	25	168	
243	255	255	119	

Note on neighborhood definition

- Original algorithm uses 3x3 pixel neighborhood
- Further extensions (Ojala, 2002) introduced arbitrary neighborhood with interpolation

Image source: http://what-when-how.com/face-recognition/local-representation-of-facial-features-face-image-modeling-and-representation-face-recognition-part-1/

Uniform pattern: contains at most two bitwise transitions (U) from 0 to 1

(or vice versa) when the bit pattern is traversed circularly

Uniform patterns

$$U = 0$$

Uniform patterns account for almost 90% of all patterns.

Cell coding

Mapping

Histogram calculation

Normalization

Concatenation

Uniform patterns

2 + 56 = 58 patterns

8x7 = 56patterns {2, 3, ... 57}

Non-uniform patterns

256 -58 = 198 patterns

{58}

Result of cell code mapping

Division into N cells

Cell coding

Mapping

Histogram calculation

Normalization

Concatenation

- Each cell is represented as 59-digit LBP descriptor
- Similar textures have similar histograms.

- Normalization of histograms makes LBP descriptors size-invariant
- Concatenation of all cell histograms provides the image LPB descriptor

In the training set there are k classes.

For each class we have *n* training images.

In this example there are 40 classes with 9 images in each class.

Each image in partitioned into 16 cells.

In each cell we extract LBP features.

A face is described using a feature of $16 \times 59 = 944$ elements

49

Face Recognition

Face Recognition

LBP for face recognition (Feature Matching)

LBP for face recognition (Feature Matching)

Face Recognition

Face Recognition

LBP for face recognition (Decision)

Focus

2D-appearance-based methods.

Types

Handcrafted features from Computer Vision.

Data-driven learned features from Machine Learning.

Focus

2D-appearance-based methods.

Types

Handcrafted features from Computer Vision.

Data-driven learned features from Machine Learning.

Deep Convolutional Neural Networks

Deep Convolutional Neural Networks

From pixels to classification decision.

Hierarchy of feature extractors.

Each layer extracts features from previous layer.

Face Recognition

Deep Convolutional Neural Networks

Convolutional Layers

E.g., layers 1 and 2. Feature extractors are convolutional operations which are performed on the output of the previous layer.

Deep Convolutional Neural Networks

Convolutional Layers

E.g., layers 1 and 2. Feature extractors are convolutional operations which are performed on the output of the previous layer.

Source:https://developer.apple.com/library/archive/documentation/Performance/Conceptual/vlmage/ConvolutionOperations.html

Deep Convolutional Neural Networks

Fully Connected Layer

E.g., layer 3.

It performs the classification, presenting one score output for each class (identity, in the case of Biometrics).

Deep Convolutional Neural Networks

How deep can they be? "Deep" refers to the number of layers.

E.g., VGG16 Simonyan and Zisserman Very Deep Convolutional Networks for Large-Scale Image Recognition

Deep Learning

Training

Labeled examples (e.g., faces and expected IDs) are used to teach the network to classify them correctly.

Deep Learning

Training

Back-propagation is used to fix the weights of the convolutions within the network.

Deep Learning

Present various examples of each class and perform forward-, back-propagation.

How good can it be?

E.g., DeepFace (Facebook)

Taigman et al.

DeepFace: Closing the Gap to Human-Level Performance in Face Verification CVPR, 2014

Deep Learning

What are the cons here?
How to enroll a new person?

Fixed number of classes (i.e., persons).

Need for large training dataset (thousands of sample per class).

What's Next?

Improving Deep Learning

ArcFace

Additive Angular Margin Loss for Deep Face Recognition
Deng et al., CVPR 2019.
https://bit.ly/3qsQmch

Fill out your Today-I-missed Statement Please visit sakai.luc.edu/x/BCJs8K.

