

Data science vs. statistics: two cultures?

lain Carmichael & J. S. Marron

Overview

- Terminology
- The stand taken in the article
- Critiques of statistics
- What is Data Science?
- Principle components of data science
- Going forward
- Conclusion

- Greater statistics = everything related to learning from data
- Lesser statistics = mathematical techniques performed by professors in statistics departments
 - Closer to the view of the general public
- Lack of common ground is often the root for disagreements

The stand taken in the article

Statistics = Lesser statistics

Data Science ≈ Greater statistics

"...providing value to society by broadening the discipline in technical ways"

Critiques of statistics

- is summarized as "too much theory, not enough computation"
- Focused on pre-computer problems
 - e.g. Poor programming skills among undergrades
- Hypothesis testing in Statistics 101

Redemption

- The need for theortical thinking is greater than ever
- R-Project, computational statistics and ggplot
- A way of thinking, scientific method

What is data science?

- Solving vs. understanding
- "[results in] data science should be judged by the extent to which they enable the analyst to learn from data..."

Data science: broader view of statistics

Greater statistics 1-6:

- 1. Data gathering, preparation, and exploration
- 2. Data representation and transformation
- 3. Computing with data
- 4. Data modeling
- 5. Data visualization and presentation
- 6. Science about data science

Reproducibility

- "[a]n article about computational science in a scientific publication is not the scholarship itself, it is merely advertising of the scholarship."
- Literate programming improved our ability to do reproducible science

Do vs. understand

- Engineering is the business of creating a thing that does something
- Focus on predictive results
- Why computation have become more popular in recent years

- Science is the business of understanding how something works
- Focus on interpretability, understanding of model and what the data look like
- XAI

Theoretically vs. Empirically driven

- "Data science is exploratory data analysis gone mad"
- Exploratory data analysis (EDA) vs. confirmatory analysis
- "The End of Theory: The Data Deluge Makes the Scientific Method Obsolete" - end of confirmatory analysis

Problem first vs. hammer looking for a nail

The 80/20 rule

 More emphasize on previously undervalued areas: data visualization, exploratory data analysis, data mining, programming, data storage/processing, computation with large datasets and communication

Going forward

- Statistics research
 - Complex data and representation
 - Robustness to unknown heterogeneity
 - Scalability of robust models
 - Automation and interperability
 - M.L. and data processing
- Communication
 - Reproducibility, readable code, open source
- Education
 - More focus on the hypothesis searching, not testing

Complex data

- Object oriented data analysis (OODA)
 - Connections between OODA and representation learning?
 - Resolving what should be the data objects?
 - Deep neural nets automatically find "good" representations?
 - Multidisciplinary:
 - differential geometry
 - Topology
 - · Optimization, etc..

Robustness

- Big datasets are often made by collaboration
 - Example: cancer research
- The Gaussian standard model insufficient
 - More research into for example Gaussian mixture
- Make robust models more scalable

Automation and interpretability

- Negative consequences
 - "Weapons of Math Destruction"
- Interpretability
 - XAI, LIME,
- Raw data preprocessed using deep NN
 - Another black box before the black box?
 - If google thinks you're dead, the world also does

Communication

- Literate programming
 - Write code for humans to read, not machines
 - R Markdown, Knitr, Jupyter notebook
 - Important when demonstrating programming examples
- Open-source
 - Not inventing the wheel every time
 - Suspects most modern statistics research are not available in open-source software packages

Education

- Is the statistics curriculum up to date?
- More computation
 - Infeasible to know everything
 - Probably a rough set of knowledge every statistician should have
- Pedagogy
 - Focus on real world datasets
 - Exploratory analysis first, inferential thereafter

Conclussion

- It is important to increase diversity
- Is it two different cultures?
 - Given that statistics = Lesser statistics => YES
 - Given that statistics = Greater statistics => NO

Thoughts

- Not enough focus on commercialisation? e.g.
 - INLA
 - Bayesian Optimisation

- What is "providing value to society"?
 - Why should we get paid?
 - What do the tax-payers get back?

