- **⇒** Last Lecture
 - ⇒Pendulums and Kinetic Energy of rotation
- ⇒ Today
 - ⇒Energy and Momentum of rotation
- Important Concepts
 - ⇒Equations for angular motion are mostly identical to those for linear motion with the names of the variables changed.
 - •Kinetic energy of rotation adds a new term to the same energy equation, it does not add a new equation.
 - Momentum of rotation gives an additional equation

8.01L IAP 2006

1/18/2006

Important Reminders

- Contact your tutor about session scheduling
- Mastering Physics due today at 10pm.
- ⇒ Pset due this Friday at 11am.

8.01L IAP 2006

1/10/2006

Torque Checklist

- Make a careful drawing showing where forces act
 - Clearly indicate what axis you are using
 - Clearly indicate whether CW or CCW is positive
- ⇒ For each force:
 - \supset If force acts at axis or points to or away from axis, τ =0
 - Draw (imaginary) line from axis to point force acts. If distance and angle are clear from the geometry τ=Frsin(θ)
 - Draw (imaginary) line parallel to the force. If distance from axis measured perpendicular to this line (lever arm) is clear, then the torque is the force times this distance
- Don't forget CW versus CCW, is the torque + or -

8.01L IAP 2006

1/18/2006

Kinetic Energy with Rotation

- ⇒Adds a new term not a new equation!
- igcolon Rotation around any fixed pivot: $KE = \frac{1}{2}I_{pivot}\omega^2$
- ⇒ Moving and rotating: $KE = \frac{1}{2}I_{CM}\omega^2 + \frac{1}{2}M_{Tot}v_{CM}^2$

8.01L IAP 2006

1/18/200

Everything you need to know for **Linear & Rotational Dynamics**

$$\Sigma \vec{F} = M\vec{a}$$

$$\Sigma \vec{\tau} = I \vec{\alpha}$$

This is true for any fixed axis and for an axis through the center of mass, even if the object moves or accelerates.

⇒ Rolling *without* slipping: $v = R\omega$ $a = R\alpha$ $f \neq \mu N$

⇒Friction does NOT do work!

⇒ Rolling *with* slipping: $v \neq R\omega$ $a \neq R\alpha$ $f = \mu N$

>Friction does work, usually negative.

Rarely solvable without using force and torque equations!

8.01L IAP 2006

Kinematics Variables

Position x

⇒ Angle θ

Velocity v

- Angular velocity ω
- Acceleration a
- Angular acceleration α

Force F

⇒ Torque τ

Mass M

Moment of Inertia I

Momentum p

Angular Momentum

$$\omega = \frac{d\theta}{dt} \qquad \alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}$$

8.01L IAP 2006

Kinematics Variables

Position x

 \Rightarrow Angle θ

Velocity v

- Angular velocity ω
- Acceleration a
- Angular acceleration α

⇒ Force F

Torque τ

⇒ Mass M

Moment of Inertia I

Momentum p

Angular Momentum L

$$\omega = \frac{d\theta}{dt} \quad \alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}$$

8.01L IAP 2006

Angular Momentum

- Conserved when external torques are zero or when you look over a very short period of time.
 - True for any fixed axis and for the center of mass
- ightharpoonup Formula we will use is simple: $\vec{L} = I\vec{\omega}$
 - ⇒Vector nature (CW or CCW) is still important
- \Rightarrow Point particle: $\vec{L} = \vec{r} \times \vec{p}$
- Conservation of angular momentum is a separate equation from conservation of linear momentum
- ⇒ Angular impulse: $\vec{\tau} = \frac{d\vec{L}}{dt}$ $\Delta \vec{L} = \int \vec{\tau} dt$