

데이터분석방법론2

삼차원 분할표

통계·데이터고학과 이기째 교수

- Ⅱ 제 3장. 삼차원 분할표
 - 1 개요
 - 2 부분연관성
 - 3 코크란-맨틀-핸첼 방법

自自州Ω 및 목표

이번 강의는 3차원 분할표에 대한 분석 방법에 대해서 학습하겠습니다. 부분연관성의 개념, 코크란 - 맨틀 - 핸첼 검정, 브레슬로 - 데이 검정 방법에 대해서 공부하겠습니다.

- 삼차원 분할표의 부분연관성 개념을 설명할 수 있다.
- 2 동질연관성의 개념을 설명할 수 있다.
- 3 코크란-맨틀-핸첼 검정, 브레슬로-데이 검정을 적용할 수 있다.

- 1 개요
- 2 부분연관성
- 3 코크란-맨틀-핸첼 방법

01 제 3장. 삼차원 분할표 개요

1. 교락변수(Confounding Variable)의 통제 필요성

- 흡연자와 함께 사는 비흡연자에게 간접 흡연이 미치는 영향을 분석하고자 하는 경우
- 간접흡연과 폐암 발생간의 연관성을 횡단면 연구(Cross-sectional Study)를 통해서 파악하고자 함

1. 교락변수(Confounding Variable)의 통제 필요성

• 연구 참여자의 나이, 사회·경제적 지위 등은 배우자의 흡연 여부와 연구 참여자의 폐암 발생여부에도 영향을 미칠 수 있음

배우자가 비흡연자인 사람들이 상대적으로 젊다면 나이 변수를 통제하지 않을 경우 폐암 발생률의 단순한 비교는 의미가 없음

- 교락변수(Confounding Variable) Z의 효과를 통제하면서 범주형 변수 X와 Y의 연관성을 분석
- 고정된 Z의 수준에 대하여 X와 Y의 연관성을 살펴봄→ 3차원 분할표 분석
- 여러 교락변수를 동시에 통제할 수 있는 모형과 일반적인 방법에 대한 학습(교재 4장부터의 내용)

이2 제 3장. 삼차원 분할표

☑ 예제 : FL 사형선고 판결 사례

피해자의	피고의	사형선고		"M"OLHI으	
인종	인종	예	아니오	│ "예"의 비율	
백인	백인	53	414	11.3%	
~ 건	흑인	11	37	22.9%	
흥이	백인	0	16	0.0%	
흑인	흑인	4	139	2.8%	
 ネ게	백인	53	430	11.0%	
총계 	흑인	15	176	7.9%	

Y = 사형선고 여부(반응변수)

X = 피고의 인종(설명변수)

Z = 피해자의 인종(통제변수)

■ "Z = 피해자의 인종"을 통제하는 경우

① 피해자 = 백인

② 피해자 =	흑인
---------	----

πιπ	사형선고		
피고	예	아니오	
백인	53	414	
흑인	11	37	

шэ	사형선고		
피고	예	아니오	
백인	0	16	
흑인	4	139	

- X-Y 주변분할표 (Marginal Table)
 - -모든 부분분할표를 결합해서 얻은 이차원 분할표
 - 주변분할표는 변수 Z를 통제하지 않고 통합하여 작성함

πl⊃		사형선고	
피고	예	아니오	"예" 비율
백인	53	430	11.0%
흑인	15	176	7.9%

■ FL 사형선고판결 사례분석

피해자의	피고의			 "예"의 비율
인종	인종			세 - 기 의 프
нног	백인	53	414	11.3%
백인	흑인	11 37		22.9%
<u> </u>	백인	0	16	0.0%
흑인	흑인	4	139	2.8%
ネ게	백인	53	430	11.0%
총계	흑인	15	176	7.9%

Y = 사형선고 여부(반응변수)

X = 피고의 인종(설명변수)

Z = 피해자의 인종(통제변수)

- 피해자의 인종이 「백인」인 경우
 - : 흑인에 대한 사형선고 비율이 11.6% 높음
- 피해자의 인종이 「흑인」인 경우
 - : 흑인에 대한 사형선고 비율이 2.8% 높음
- 피해자의 인종을 무시한 주변표에서는 반대로 백인의 사형선고 비율이 흑인에 비해 3.1% 높음
 - → 부분분할표와 주변분할표는 반대 양상의 연관성을 보여줌

- ☑ 피해자 인종의 통제 여부에 따른 두 변수 연관성 차이 발생 이유
 - ① 피해자와 피고 인종 간의 연관성이 매우 강함

백인은 흑인을 살해하기보다 같은 백인을 살해할 오즈가 87.0[=(467 X 143)/(48 X 16)]로 대단히 큼

πι⊐	피해자		
피고	백인	흑인	
백인	467	16	
흑인	48	143	

② 피고의 인종에 관계없이 백인이 피해자인 경우는 흑인 피해자의 경우에 비해 사형판결 비율이 더 높음

결과적으로 백인은 백인을 살해하는 경향이 높고, 백인을 살해한 경우 사형판결 가능성 또한 높기 때문에 주변분할표에서 백인 피고의 사형선고 비율이 더 높음

πI≂UフL	사형 여부		
피해자	예	아니오	
백인	64	451	
흑인	4	155	

- 심프슨의 역설 (Simpson's Paradox)
 - ■조건부연관성과 주변연관성이 서로 다른 방향으로 나타나는 현상을 말하며, 이것은 범주형 변수뿐만 아니라 양적 변수에서도 발생함
 - 교락변수 Z를 무시하고,
 주변분할표를 이용하여 분석할 경우에는
 잘못된 분석 결과를 얻을 수 있다는 점에 유의해야 함

2. 조건부 오즈비와 주변 오즈비

☑ 조건부 오즈비

$$Z$$
= 백인 : $\theta_{XY(1)}$ = $\frac{53 \times 37}{414 \times 11}$ = 0.43

$$Z = 흑인: \theta_{XY(2)} = 0.00$$

(각 cell에 0.5를 더한 후 계산한 오즈비는 0.94임)

피해자의 인종(Z)을 통제할 때 사형선고를 받을 오즈는 흑인 피고에 비해서 백인 피고의 경우가 낮음

2. 조건부 오즈비와 주변 오즈비

☑ 주변분할표에 대한 오즈비

■ 부분분할표를 결합하여 XY 주변분할표를 작성

шэ	사형선고		
피고	여	아니오	0
백인	53	430	
흑인	15	176	

$$\theta_{XY} = \frac{53 \times 176}{15 \times 430} = 1.45$$

피해자의 인종(Z)를 무시하면 사형선고를 받을 오즈는 백인 피고의 경우가 더 높음

→ 심프슨의 역설 발생

- 정의: Z가 주어졌을 때 X와 Y가 조건부 독립 (Conditionally Independent)
- 2 x 2 x K 분할표에서 X와 Y의 조건부 독립

$$\Leftrightarrow \ \theta_{XY(1)} = \ \cdots \ = \theta_{XY(K)} = 1.0$$

☑ 사례 : 병원별 처리방법에 따른 반응

щоі	처리	반응		
병원		성공	실패	
1	А	18	12	
1	В	12	8	
2	A	2	8	
	В	8	32	
총계	А	20	20	
	В	20	40	

①
$$\theta_{XY(1)} = \frac{18 \times 8}{12 \times 12} = 1.0$$
 ② $\theta_{XY(2)} = \frac{8 \times 8}{2 \times 32} = 1.0$

"각 병원에서 반응과 처리는 조건부독립이다."

☑ 사례 : 병원별 처리방법에 따른 반응

"반응과 처리는 주변독립이 아니다."

Note

- 조건부독립이 성립한다고 주변부독립이 성립하는 것은 아니다.
- 주변부 독립이 성립한다고 조건부 독립이 성립하는 것도 아니다.

Note

주변분할표만을 이용해서 분석하면 처리 A가 처리 B에 비해서 성공률이 높다는 잘못된 결론을 내릴 수 있다.

- ☑ 동질적 연관성의 정의
 - K개의 2×2 부분분할표에서 오즈비 $\theta_{XY(k)}$ 에 대해 $\theta_{XY(1)} = \theta_{XY(2)} = \cdots = \theta_{XY(K)}$ 이 성립할 때 「 $2 \times 2 \times K$ 분할표에서 X-Y동질적 연관성이 있다.」고 함
 - K 조건부독립은 X와 Y의 조건부오즈비가 특별히 1.0인 경우임
 - *IxJxK 분할표의 경우 Z의 각 수준에서 X와 Y 각각의 임의의 두 수준에 의해 결정되는 조건부 오즈비가 동일할 때 동질적 X-Y조건부 연관성이 있다고 말함

03

제 3장. 삼차원 분할표

코크란-맨틀-

핸첼 방법

1. 중국 도시별 흡연과 폐암자료(8개도시대상)

-11	후여	폐암		0.7.11		\/\	
	도시	흡연	예	아니오	오즈비	µ _{11k}	Var(n _{11k})
	ואווו	흡연자	126	100	2.20	112.0	16.0
u	베이징	비흡연자	35	61	2.20	113.0	16.9
	Λ - Γ∪Ι	흡연자	908	688	2 14	772.2	170.2
· ·	상하이	비흡연자	497	807	2.14	773.2	179.3
	거 OF	흡연자	913	747	2.10	799.3	149.3
	선 양	비흡연자	336	598	2.18		
	וו או	흡연자	235	172	2 05	203.5	31.1
ì	난 징	비흡연자	58	121	2.85		
-	=L HI	흡연자	402	308	2 22	255.0	57.1
	하 빈	비흡연자	121	215	2.32	355.0	
	ad ad O	흡연자	182	156	1 50	160.0	20.2
č	정조우	비흡연자	72	98	1.59	169.0	28.3
	LUIOI	흡연자	60	99	2.27	E2.0	0.0
	타이윈	비흡연자	11	43	2.37	53.0	9.0
	ı L - 5 L	흡연자	104	89	3.00	06.5	11.0
	난 창	비흡연자	21	36	2.00	96.5	11.0

1. 중국 도시별 흡연과 폐암자료(8개도시대상)

- ■2 x 2 x K 분할표의 K개의 조건부 오즈비에 대한 조건부 독립성 검정과 동질적 연관성 검정을 살펴보고자 함
- K개의 부분분할표로부터 계산된 표본오즈비를 결합하여 부분연관성에 대한 하나의 요약된 측도를 구하고자 함
- *X: 흡연여부(설명변수)
 - Y: 폐암 발병 여부(반응 변수)
 - Z:도시(통제변수)

- 2 x 2 x K 분할표에서 Z가 주어졌을 때 X와 Y가 조건부 독립이라는 귀무가설을 검정하고자 함
- "X와 Y가 조건부 독립성" \Leftrightarrow "X와 Y간의 조건부 오즈비 $\theta_{XY(k)}$ 가 모든 부분분할표에서 1이 됨"
- 표본추출모형
 - : 각 칸 도수에 대해 ① 독립 포아송분포,
 - ② 전체 표본크기가 고정된 다항분포,
 - ③ 각 부분분할표가 정해진 표본크기를 갖고 서로 독립인 다항분포,
 - ④ 각 부분분할표가 행의 합이 고정되어 있고 서로 독립인 이항분포 등으로 간주할 수 있음

☑ K번째 부분분할표

흡연		I	하게	
		म	아니오	합계
- Iz	흡연자	n_{11k}	n_{12k}	n _{1+k}
k 비흡연자		n_{21k}	n_{22k}	n _{2+k}
	합계	n _{+1k}	n _{+2k}	n _{++k}

- 행합계 $\{n_{1+k}, n_{2+k}\}$, 열합계 $\{n_{+1k}, n_{+2k}\}$ 가 주어지면 n_{11k} 는 다른 모든 칸 도수를 결정함
- • n_{11k} 는 초기하 분포를 따름

- 귀무가설(X와 Y가 조건부 독립성) 하에서

$$\mu_{11k} = E(n_{11k}) = \frac{n_{1+k}n_{+1k}}{n_{++k}}$$

$$Var(n_{11k}) = \frac{n_{1+k}n_{2+k}n_{+1k}n_{+2k}}{n_{++k}^2(n_{++k}-1)}$$

- k번째 부분분할표에서 오즈비 $\theta_{XY(k)}$ 가 1.0보다 크면 $(n_{11k}-\mu_{11k})>0$ 이 기대됨
 - $\rightarrow \sum_{k} (n_{11k} \mu_{11k})$ 값이 클수록 귀무가설이 옳지 않다는 증거

☑ 검정통계량

•
$$C\!M\!H\!\!=\!rac{[\sum\limits_{k}(n_{11k}-\mu_{11k})]^2}{\sum\limits_{k}V\!ar(n_{11k})}$$
: 코크란-맨틀-핸첼 통계량

- 표본크기가 클 때 $CMH \sim \chi^2(1)$
- 각 부분분할표의 연관성이 유사하게 나타날 때 CMH방법 은 각 각 부분분할표에 대한 개별적인 검정보다 우수함
- 단순하게 모든 부분분할표를 합하여 2 x 2 분할표를 만들어 검정하는 것은 부적절한 방법일 수 있음 (심프슨의 역설 참고)

☑ 사례

- ■흡연과 폐암에 관해 중국의 8개 도시에서 행해진 사례-대조연구
- ■각 도시별로 폐암환자와 그렇지 않은 환자를 대응시켜 과거의 흡연 여부를 조사한 것
- 흡연과 폐암간의 조건부 독립성, 즉, 각 도시의 오즈비가 1.0이라는 가설을 검정하고자 함

■ SAS프로그램

```
DATA cmh;
INPUT center smoke cancer count @@;
CARDS;
1 1 1 1 1 2 6 1 1 2 1 0 0 1 2 1 3 5 1 2 2 6 1
2 1 1 908 2 1 2 688 2 2 1 497 2 2 2 807
          3 1 2 747 3 2 1 336 3 2 2 598
                          58
5 1 1 402 5 1 2 308 5 2 1 121
6 1 1 182 6 1 2 156 6 2 1
      60 7 1 2 99
8 1 1 104 8 1 2 89 8 2 1 21
run;
PROC FREQ;
  WEIGHT count;
  TABLES center*smoke*cancer / cmh;
Run;
```

■ SAS 분석결과

Cochran-Mantel-Haenszel 통계량(테이블 스코어에 기반한)						
통계량	대립가설	자유도	값	확률		
1	영(0)이 아닌 상관계수	1	280.1375	<.0001		
2	행 평균 스코어 차이	1	280.1375	<.0001		
3	일반 연관성	1	280.1375	<.0001		

- 조건부 독립성의 가설을 매우 뚜렷하게 기각함
- 도시별 자료를 결합하여 얻은 매우 큰 표본크기 n=8,419인 경우 매우 유의한 결과를 얻게 됨

☐ 메타분석 (Meta Analysis)

- 여러 연구 결과로부터 얻은 정보를 결합하여 분석하는 통계분석
- 제시한 사례는 각각의 분할표에서 보여주는 것보다 더 강한 연관성의 증거를 보여줌

4. 공통오즈베의 추정

- ☑ 공통오즈비 추정의 필요성
 - 단순히 연관성에 대한 가설을 검정하는 것보다연관성의 강도를 추정하면 더 많은 정보를 얻을 수 있음
 - ■모든 부분분할표에서 연관성이 유사하게 나타나면 K개 오즈비들의 공통값을 추정할 수 있음

4. 공통오즈비의 추정

- ☑ 맨틀 핸첼 공통오즈비의 추정값
 - 맨틀-핸첼 공통오즈비의 추정값이란?
 - $: 2 \times 2 \times K 분할표에서 \theta_{XY(1)} = \cdots = \theta_{XY(K)}$ 일 때

$$\widehat{\boldsymbol{\theta}_{MN}} = \frac{\displaystyle\sum_{K} (n_{11K} n_{22K} / n_{++K})}{\displaystyle\sum_{K} (n_{12K} n_{21K} / n_{++K})}$$

• $\log \widehat{\theta}_{MN}$ 의 표준오차는 복잡함 (SAS FREQ 절차문 이용)

4. 공통오즈비의 추정

■ SAS 분석결과

상대 리스크의 추정값(행1/행2)							
통계량	방법	값	95% 신뢰한계				
오즈비	Mantel-Haenszel	2.1745	1.9840	2.3832			
	로짓	2.1734	1.9829	2.3823			
상대 리스크(칼럼 1)	Mantel-Haenszel	1.5192	1.4417	1.6008			
	로짓	1.5132	1.4362	1.5942			
상대 리스크(칼럼 2)	Mantel-Haenszel	0.6999	0.6721	0.7290			
	로짓	0.7011	0.6734	0.7300			

4. 공통오즈비의 추정

- $\log \theta_{MN}$, 공통오즈비 θ 에 대한 95% 신뢰구간(1.98, 2.38)
 - → 흡연자가 폐암에 걸릴 오즈는 비흡연자의 약 2배임
- 부분분할표에서 오즈비가 크게 다른 경우가 아니라면 $\widehat{\theta_{MN}}$ 는 K개 조건부 연관성을 요약하는 효과적인 방법임

■ 귀무가설

• 변수 Z의 모든 수준에서 X-Y 오즈비는 동일함 $\Leftrightarrow H_0 = \theta_{XY(1)} = \theta_{XY(2)} = \cdots = \theta_{XY(K)}$

- $lacksymbol{\square}$ $\left\{\widehat{\mu_{11k}},\widehat{\mu_{12k}},\widehat{\mu_{21k}},\widehat{\mu_{22k}}\right\}$ k번째 부분분할표에서의 추정 기대도수
 - 관측된 자료와 동일한 행 및 열의 주변합 분포를 갖고, 공통오즈비 $\widehat{\theta_{MN}}$ 를 갖는다는 조건에서 추정된 기대도수임

- $oldsymbol{ iny}$ Breslow-Day 통계량 $= \operatorname{Breslow-Day} \ \, \mbox{$\ \ \, $$} = \sum_{i,j,k} \frac{(n_{ijk} \widehat{\mu_{ijk}})^2}{\widehat{\mu_{ijk}}}$
 - n_{ijk} 가 μ_{ijk} 에 가까울수록, 이 통계량 값은 작아지고, H_0 를 반증하는 증거가 약해짐
 - ■근사적으로 df=K-1인 카이제곱분포를 따름
 - SAS FREQ문을 통해서 계산

■ SAS 분석결과

오즈비의 동질성에 대한 Breslow-Day 검정				
카이제곱	5.1997			
자유도	7			
Pr > ChiSq	0.6356			

- 부분분할표의 오즈비가 동일한지를 검정하는 브레슬로 - 데이검정 결과
- P-값이 0.6356이므로 오즈비는 동일하다고 볼 수 있음

- R을 이용한 CMH 검정
 - R에서 CMH 검정을 하기 위해서는

mantelhaen.test 이용:

Cochran-Mantel-Haenszel Chi-Squared Test

for Count Data

■ R을 이용한 CMH 검정

- Breslow-Day 검정
 - → use BreslowDayTest() from the DescTools package.

Requires a 2 x 2 x k table as its main argument.

〈참고〉 xtabs(): To create 2 x 2 x k tables from a data-set

6. Summary

☑ 요약

수고하셨습니다.