CONTENTS

Contents		VI	Undecidability · · · · · · · · · · · · · · · · · · ·	
		1.	Church-Turing Thesis	
I Sets, Relations, and Languages · · · · · · · ·	2	2.	Decidable Problem · · · · · · · · · · · · · · · · · · ·	
1. 框架 · · · · · · · · · · · · · · · · · ·	2	3.	Countable	
1.1 Automata Theory · · · · · · · · · · · · · · · · · · ·	2	4.	Halting Problem · · · · · · · · · · · · · · · · · · ·	
1.2 Computability Theory · · · · · · · · · · · · · · · · · · ·	2	5.	recursively enumerable · · · · · · · · · · · · · · · · · · ·	3
1.3 Complexity Theory · · · · · · · · · · · · · · · · · · ·	2	6.	Closure property · · · · · · · · · · · · · · · · · · ·	
2. Problem Definition · · · · · · · · · · · · · · · · · · ·	2	7.	Enumerator · · · · · · · · · · · · · · · · · · ·)
2.1 Optimization problem · · · · · · · · · · · · · · · · · · ·	2	\mathbf{VII}	Numerical Functions 20)
2.2 Search problem · · · · · · · · · · · · · · · · · · ·	2	1.	Basic Functions · · · · · · · · · · · · · · · · · · ·	0
2.3 Decision problem · · · · · · · · · · · · · · · · · · ·	2	2.	Operation • • • • • • • • • • • • • • • • • • •	0
2.4 Counting problem · · · · · · · · · · · · · · · · · · ·	2	3.	primitive recursive function · · · · · · · · · · · 21	1
3. 抽象问题为数学形式语言	2	4.	Extend Basic Functions · · · · · · · · · · · · · · · · · · ·	2
4. Language Definition · · · · · · · · · · · · · · · · · · ·	2	VIII	Grammar(unrestricted grammar) · · · · · 23	3
II Finite Automata	3	IX	Computational Complexity · · · · · · · · 24	1
1. Definition · · · · · · · · · · · · · · · · · · ·	3	1.	SAT(satisfiability) Problem · · · · · · · · · · 25	5
2. Regular Operations · · · · · · · · · · · · · · · · · · ·	3	2.	NP · · · · · · · · 25	5
3. Non-determinism · · · · · · · · · · · · · · · · · · ·	3	3 7 1	NID 14 D 11	•
III Regular Expression · · · · · · · · · · · · · · · · · · ·	5		NP-complete Problem · · · · · · · · · · · · · · · · · · ·	
The Regular Expression	J		polynomial-time reductions · · · · · · · · · · · · · · · · · · ·	
IV Context-free Language · · · · · · · · · · · · · · · · · · ·	7	2.	space · · · · · · · · · · · · · · · · · · ·	
1. Definition · · · · · · · · · · · · · · · · · · ·	7	3.	space······ 20	J
2. Chomsky nrom form (CNF) · · · · · · · · · · · · · · · · · · ·	8			
3. Pushdown Automata(PDA) · · · · · · · · · · ·	8			
4. CFL properties · · · · · · · · · · · · · · · · · · ·	9			
V Turing Machine				
1. Definition • • • • • • • • • • • • • • • • • • •				
1.1 Recognize Language · · · · · · · · · · · · · · · · · · ·				
2. Compute Function · · · · · · · · · · · · · · · · · · ·				
3. Extensions of Turing machines · · · · · · · · · · · · · · · · · · ·				
3.1 Multiple tape TM · · · · · · · · · · · · · · · · · ·				
3.2 Two-way Infinite Tape				
3.3 Multiple Heads 3.4 Two-Dimensional Tape				
4. Non-deterministic TM · · · · · · · · · · · · · · · · · ·	13			

I Sets, Relations, and Languages

1. 框架

划分问题的难度.

1.1 Automata Theory

讨论问题前需要有清晰的数学定义. Definition of problems and computing models.

finite automata -> pushdown automata -> Turing machines

有个 Church-Turing Thesis, 断言 Turing machines 是最终极的模型.

1.2 Computability Theory

可计算性问题.

1.3 Complexity Theory

证明 hardness, 需要证明问题属于某个 complexity class (复杂类).

2. Problem Definition

2.1 Optimization problem

e.g. Given G:(V,E,w), what is the minimum spanning tree.

2.2 Search problem

e.g. Given G and an integer k, find a spanning tree whose weight is at most k or tells such a tree not exist.

2.3 Decision problem

e.g. Given G and k, is there a spanning tree with weight at most k.

2.4 Counting problem

e.g. Given G and k, what is # (the number of) spanning tree with weight at mots k?

Decision problem 最简单, 因为能解决任意其他三个问题, 就能解决 decision problem. 所有课程着眼于 decision problem, 接下来问题都是 decision problem.

3. 抽象问题为数学形式语言

Decision 结果为 yes-instance or no-instance.

For computer 上述问题等价为: Given a string w, is $w \in$

$$\{ \text{encode } (G, k) : (G, k) \text{ is a yes-instance} \}$$

问题由集合唯一决定, 称集合为 a language.

4. Language Definition

Definition I.1 (Alphabet). A alphabet (字符集) is a **finite** set of symbols.

e.g.
$$\Sigma = \{0, 1\}, \Sigma = \{\}$$
 (空集).

Definition I.2 (String). A string is a **finite** sequence of symbols from some alphabet.

e.g.
$$\Sigma = \{1, 2, 3\}, 1, 3, 23, 333$$

Length |w| = # symbols in w.

Empty string e with |e| = 0. (特殊定义)

 Σ^i = the set of all string of length i over Σ .

e.g.
$$\Sigma = \{0, 1\}, \Sigma^o = \{e\},\$$

$$\Sigma^* = \bigcup_{i \ge 0} \Sigma^i$$
$$\Sigma^+ = \bigcup_{i \ge 1} \Sigma^i$$

Definition I.3 (Concatenation). Given $u = a_1 \cdots a_n$, $v = b_1 \cdots b_m$, $w = uv = a_1 \cdots a_n b_1 \cdots b_m$

Definition I.4 (exponentiation(幂)). $w^i = \underbrace{w \dots w}_{i \text{ times}}$

Definition I.5 (reversal). $w = a_1 \dots a_n$, $w^R = a_n \dots a_1$.

Definition I.6 (Language). A language over Σ is a subset $L \subseteq \Sigma^*$.

e.g. $\Sigma = \{0,1\}$, language is ϕ , Σ^* , $\{0^n1^n : n \geq 0\}$. decision problem 与 language ——对应. decision problem ⇔ language.

Proof. decision problem \Rightarrow { encoding of yes-instance }. Given a string w, is $w \in L \Leftarrow$ language Q.E.D.

II Finite Automata

有限状态机. state diagram

Figure II.1: example state diagram

initial state is unique, Finial state may be several.

1. Definition

Definition II.1. A finite automata $M = (K, \Sigma, \delta, s, F)$.

- Σ : input alphabet
- K: a finite set of states
- $s \in K$: initial state
- $F \subseteq K$: the set of finial states
- δ : transition function

$$\delta: K \times \Sigma \to K$$

K current state, Σ symbol, K next state.

之前的 symbol 对之后的结果不会有影响.

Definition II.2 (configuration). A configuration is any element of $K \times \Sigma^*$ (current state 与 unread input 作用)

Definition II.3 (yields in one step). $(q, w) \vdash_M (q', w')$ if w = aw' for some $a \in \Sigma$ and $\delta(q, a) = q'$.

每走一步, 所携带的输入会减少.

Definition II.4 (yields). $(q, w) \vdash_M^* (q', w')$ if $(q, w) \vdash_M (q', w')$ or $(q, w) \vdash_M \cdots \vdash_M (q', w')$

Definition II.5. M accepts $w \in \Sigma^*$ if $(s, w) \vdash_M^* (q, e)$ for some $q \in F$

Definition II.6.

$$L(M) = \{ w \in \Sigma^* : M \ accepts \ w \}$$

M accepts L(M).

M accepts L iif

$$\begin{cases} w \in L & M \text{ accepts } w \\ w \notin L & M \text{ doesn't accept } w \end{cases}$$

Definition II.7. A language is regular if it's accept by some finite automata.

e.g.

 $\{w \in \{0,1\}^* : w \text{ contains } 101 \text{ as a substring}\}$

is regular? yes.

2. Regular Operations

Definition II.8 (Regular Operations).

- Union $A \cup B = \{w : w \in A \text{ or } w \in B\}$
- Concatenation $A \cdot B = \{ab : a \in A \text{ and } b \in B\}$
- $Star\ A^* = \{w_1 w_2 \cdots w_k : w_i \in A \ and \ k \ge 0\}$

regular language 在这些操作下是封闭的.

Theorem II.9. If A and B are regular, so is $A \cup B$.

Proof. $\exists M_A = (K_A, \Sigma_A, \delta_A, s_A, F_A)$ accepts $A, \exists M_B = (K_B, \Sigma_B, \delta_B, s_B, F_B)$ accepts B.

For $M_U = (K_U, \Sigma_U, \delta_U, s_U, F_U)$,

- $\Sigma_U = \Sigma_A \cup \Sigma_B$
- $K_{IJ} = K_A \times K_B$
- $s_{IJ} = (s_A, s_B)$
- $F_U = \{(q_A, q_B) \in K_A \times K_B : q_A \in F_A \text{ or } q_B \in F_B\}$
- δ_U : $\forall q_A \in K_A, q_B \in K_B, a \in \Sigma_U, \delta_U((q_A, q_B), a) = (\delta_A(q_A, a), \delta_B(q_B, a))$

Q.E.D.

3. Non-determinism

deterministic finite automata (DFA) 给 (s, w), 输出唯一. Non-deterministic finite automata (NFA)

- 1) several choise for next state
- 2) e-transition

NFA 是 Δ , 对应的是关系.

$$\Delta = \{(q_0, a, q_1), (q_1, e, q_2), \dots\}$$

Definition II.10. A NFA is a 5-tuple $(K, \Sigma, \Delta, s, F)$. transition relation $\Delta \subseteq K \times \Sigma \cup \{e\} \times K$.

NFA's configuration and step is same as DFA. NFA 路径有很多条, 存在一条读完的路就算接受.

Definition II.11. M accepts w if $(s, w) \vdash_M^* (q, e)$ for some $q \in F$

Definition II.12.

$$L(M) = \{ w \in \Sigma^* : M \ accepts \ w \}$$

M accepts L(M).

NFA 类似于 Parallel, 分支就是分裂进程. Magic: Always make the right guess.

e.g. $L = \{w \in \{a, b\}^* : \text{the second symbol from the end of } w \text{ is } b\}$

Theorem II.13.

$$\forall$$
 DFA $M \Rightarrow \exists$ NFA M' s.t. $L(M) = L(M')$
 \forall NFA $M \Rightarrow \exists$ DFA M' s.t. $L(M) = L(M')$

第一条显然. Idea: 构造 DFA, 可以模拟 NFA 分支计算. 第二条:

Proof.

$$\forall$$
 NFA $M = (K, \Sigma, \Delta, s, F),$
 \exists DFA $M' = (K', \Sigma', \delta', s', F')$

- $\Sigma' = \Sigma$
- $K' = 2^K = \{Q : Q \subseteq K\}$
- $F' = \{Q \subseteq K : Q \cap F \neq \emptyset\}$
- s' = E(s),

 $\forall q \in K, E(q) = \{ p \in K : (q, e) \vdash_{M}^{*} (p, e) \}$

• $\forall Q \subseteq K, a \in \Sigma^*,$

$$\delta'(Q, a) = \bigcup_{q \in Q} \bigcup_{p:(q, a, p) \in \Delta} E(p)$$

Q.E.D.

E(q) 相当于在 q 零步之内 (不耗费输入的字符) 能到达的结点.

Theorem II.14. DFA M' accepts $w \iff NFA M$ accepts w

Claim II.14.1. $\forall p,q \in K \text{ and } w \in \Sigma^*, (p,w) \vdash_M^* (q,e) \iff (E(p),w) \vdash_{M'}^* (Q,e) \text{ for some } Q \ni q$

Proof. by induction on |w|. Q.E.D.

Proof. NFA M accepts

 $\iff (s,w)\vdash_M^* (q,e) \text{ with } q\in F.$

 $\iff (E(s), w) \vdash_{M'}^* (Q, e) \text{ with } Q \ni q(Q \in F')$

 \iff DFA M' accepts w. Q.E.D.

e.g.

NFA:

DFA:

{q₁} 与 Ø 可省略.

Definition II.15. A language is regular if it's accept by some non-deterministic finite automata.

Theorem II.16. If A and B are regular, so is $A \cdot B$

Proof. $\exists M_A = (K_A, \Sigma_A, \Delta_A, s_A, F_A)$ accepts $A, \exists M_B = (K_B, \Sigma_B, \Delta_B, s_B, F_B)$ accepts B.

For $M^{\circ} = (K^{\circ}, \Sigma^{\circ}, \Delta^{\circ}, s^{\circ}, F^{\circ}),$

- $\Sigma^{\circ} = \Sigma_A \cup \Sigma_B$
- $K^{\circ} = K_A \cup K_B$
- $s^{\circ} = s_A$
- $F^{\circ} = F_B$
- $\Delta^{\circ} = \Delta_A \cup \Delta_B \cup \{(q, e, s_B) : q \in F_A\}$

Q.E.D.

Theorem II.17. If A is regular, so is A^*

Figure II.2: A^*

正则对 ∪, ∩, ⁻, ∘, *, - 都封闭.

III Regular Expression

e.g.
$$R = (a \cup b^*a), L(R) = (\{a\} \cup \{b\})^* \circ \{a\}.$$

Definition III.1 (Regular Expression). *Atomic:*

- ϕ : $L(\phi) = \phi$
- $a \in \Sigma$: $L(a) = \{a\}$

 $Composite \ \cup, \circ, *.$

- $R_1 \cup R_2$: $L(R_1 \cup R_2) = L(R_1) \cup L(R_2)$
- R_1R_2 : $L(R_1R_2) = L(R_1) \circ L(R_2)$
- R^* : $L(R^*) = (L(R))^*$

Precedence: $*>\circ>\cup$.

e.g.

- $a^*b \cup b^*a = ((a^*)b) \cup ((b^*)a)$
- $\{e\} = \phi^*$
- $\{w \in \{a \cup b\}^* : w \text{ starts with } a \text{ and end with } b\} = a(a \cup b)^*b$
- $\{w \in \{a \cup b\}^* : w \text{ has at least two occurrence of } a\} = (a \cup b)^* a (a \cup b)^* a (a \cup b)^*$

Theorem III.2. A language B is regular iff there is some regular exp R with L(R) = B.

Idea: Regular Expression \iff NFA (L(R) = L(M)). $R \Longrightarrow M$ 直接转换. $R \longleftarrow M$ 需要一个算法:

- 1) simplify M so that
 - a. no arc enters the initial state. (创建一个新的 initial state)
 - b. only one finial state and no atc leaves it. (新建 finial state)
- 2) eliminate states: 仅处理长度为 2 以内的情景, 递归处理更长的情景.

Proof. $R \Longleftarrow M$

NFA
$$M = (K, \Sigma, \delta, s, F)$$
.

1)
$$K = \{q_1, \dots, q_n\}, s = q_{n-1}, F = \{q_n\}.$$

2)
$$\forall q \& a, (p, a, q_{n-1}) \notin \Delta$$

3)
$$\forall q \& a, (q_n, a, p) \notin \Delta$$

$$R \text{ s.t. } L(R) = L(M).$$

Subproblem: for $i, j \in [1, n]$, for $k \in [1, n]$, define R_{ij}^k ,

$$L(R_{ij}^k) = \{ w \in \Sigma^* : w \text{ drives } M \text{ for } q_i \text{ to } q_j$$
 with no intermediate state having index $> k \}$

Goal: $R_{(n-1)n}^{n-2}$ Base case: $(k=0), a_i = (q_i, a, q_i) \in \Delta$ for $i, j \in [1, n]$ do if i = j then $R_{ij}^0 = \phi^* \cup a_1 \cup a_2 \cup \cdots \cup a_m$ end if if $i \neq j$ then $R_{ij}^0 = a_1 \cup a_2 \cup \cdots \cup a_m$ end if end for Recurrence: $R_{ij}^k = R_{ij}^{k-1} \cup R_{1k}^{k-1} \left(R_{kk}^{k-1}\right)^* R_{kj}^{k-1}$

Q.E.D.

Theorem III.3 (Pumping theorem). Let L be a regular language. There exists an integer $p \ge 1$ (pumping length), such

that $w \in L$ with $|w| \ge p$ can be divided into 3 parts w = xyz, satisfying:

1)
$$\forall i \geq 0, xy^i z \in L$$

2)
$$|y| > 0$$

3)
$$|xy| \leq p$$

Proof. If L is finite,

$$p = \max_{w \in L} |w| + 1$$

Assume L is infinite, \exists DFA M accepting $L,\,p:=\#$ state of M.

Let w be any string in L with $|w| \ge p$, $w = a_1 \dots a_n$, $\exists 0 \le i < j \le p, q_i = q_j$ and

$$x := a_1 \dots a_i$$
$$y := a_{i+1} \dots a_j$$
$$z := a_{j+1} \dots a_n$$

1)
$$\forall k \geq 0, xy^k z \in L$$

2)
$$|y| = j - i > 0$$

3)
$$|xy| = j \le p$$

Q.E.D.

e.g.
$$L = \{0^n 1^n : n \ge 0\}$$
 is not regular.

Proof. Assume it is regular. Let p be the pumping length given by the pumping theorem. $\forall w \in L$ with $|w| \geq p$,

$$w = 0^p 1^p$$

w can be written w = xyz s.t.

1)
$$\forall i \geq 0, xy^i z \in L$$

2)
$$|y| > 0$$

$$|xy| \le p$$

$$\Rightarrow y = 0^k \text{ for some } k \ge 1$$
$$\Rightarrow xy^0z = 0^{p-k}1^p \notin L$$
$$\Rightarrow (1)$$

(1) Q.E.D.

e.ø.

 $L = \{w \in \{0,1\}^* : w \text{ has equal number of 0's and 1's} \}$ is not regular.

Assume regular $\Rightarrow L \cap 0^*1^* = \{0^n1^n : n \geq 0\}$ is regular. contradictory.

IV Context-free Language

Context-free Grammar

e.g.

• start symbol: S

• rule: $S \to aSb$, $S \to A$, $A \to c$, $A \to e$

- non-terminal: S, A

- terminal: a, b, c

1. Definition

Definition IV.1. A content-free grammar $G = (V, \Sigma, S, R)$,

• V a finite set of symbols

 $\bullet \ \Sigma \subseteq V \colon \ the \ set \ of \ terminals$

 $V - \Sigma$: the set of non-terminals

• $S \in V - \Sigma$: start symbol

• $R \subseteq (V - \Sigma) \times V^*$: a **finite** set of rules

Definition IV.2 (derive in one step). $\forall x, y, u \in V^*, \ \forall A \in V - \Sigma$,

$$xAy \Rightarrow_G xuy \ if \ (A, u) \in R$$

Definition IV.3 (a derivation from w to u). $\forall w, u \in V^*$,

$$w \Rightarrow_G^* u \text{ if } w = u \text{ or } w \Rightarrow_G \dots \Rightarrow_G u$$

Definition IV.4. G generates $w \in \Sigma^*$ if $S \Rightarrow_G^* w$.

$$L(G) = \{ w \in \Sigma^* : G \text{ generates } w \}$$

G generates L(G), called content-free language

e.g. Show that $\{w \in \{a,b\}^* : w = w^R\}$ (回文串) is content-free.

 $S \rightarrow e|a|b|aSa|bSb$.

need to proof:

- if $w \in L(G)$, $w = w^R$. (归纳 w 替换的次数)
- if $w = w^R$, $w \in L(G)$. (归纳 |w|)

e.g. have $S \to SS$, $S \to (S)$, $S \to e$, generates ()().

- $S \Rightarrow SS \Rightarrow (S)S \Rightarrow ()S \Rightarrow ()(S) \Rightarrow ()()$ (leftmost derivation)
- $S \Rightarrow SS \Rightarrow S(S) \Rightarrow S() \Rightarrow (S)() \Rightarrow ()()(\text{rightmost derivation})$

parse tree is same.

Definition IV.5 (parse tree).

• internal node: non-terminal

- leaves: terminal or e, e must be the only child of its parent
 - $edge: A \rightarrow a_1, \dots, a_n$

• the yield of parse tree: e.g. a_1, a_n

e.g.

- $E \to E + E$,
- $E \to E \times E$,
- $E \rightarrow a$

ambiguous

but

- $E \rightarrow E + T$,
- $E \to T$,
- $T \to T \times F$,
- $T \to F$,
- $F \to (E)$,
- $F \rightarrow a$

no ambiguous

Fact: $\{a^ib^jc^k: i=j \text{ or } j=k\}$ inherently language (任意生成此的 language 都有歧义)

2. Chomsky nrom form (CNF)

Definition IV.6. A CFG is in Chomsky nrom form (CNF) if every rule is of one of the following forms:

- 1) $S \rightarrow e$
- 2) $A \rightarrow BC$, $B, C \in V \Sigma \{S\}$
- 3) $A \to a, a \in \Sigma$

Observation: Suppose that G is a CFG in CNF. If G generates a string of length $n \geq 1$, # length if derivation is 2n-1.

Theorem IV.7. Every CFG has an equivalent CFG in CNF

sketch of proof: 不满足的几种情况

- 1) S appears on the right side of a rule solution: create new start symbol S_0 , let $S_0 \to S$
- 2) $A \to e$ for $A \neq S$ solution: e.g. $A \to e$, $B \to ACA$, delete $A \to e$, add $B \to AC$, $B \to CA$, $B \to C$. 所有类似的规则作类似的处理.
- 3) $A \to B$, for some $B \in V \Sigma$ solution: If $A \neq S$, the same as $A \to e$. If A = S: e.g. $S \to B$, $B \to AC$, $B \to CD$, delete all, add $S \to AC$, $S \to CD$
- 4) $A \to u_1, \ldots, u_k, k \geq 3, u_i \in V$ solution: delete it, add $A \to u_1 V_2, V_2 \to u_2, \ldots, u_k$ and so on.
- 5) $A \to u_1 u_2$, at least one $u_i \in \Sigma$ solution: e.g. $A \to bC$, delete it, add $A \to BC$, $B \to b$

3. Pushdown Automata(PDA)

 $PDA \iff CFG. PDA = NFA + stack$ have input tape, state control, stack

Definition IV.8 (Pushdown Automata). A PDA is a 6-tuple $P = (K, \Gamma, \Sigma, \Delta, s, F)$

- Γ: stack alphabet
- Δ : transition relation: a **finite** subset of

$$(K \times (\Sigma \cup \{e\}) \times \Gamma^*) \times (K \times \Gamma^*)$$

- 1st K: current state
- $-\Sigma \cup \{e\}$: current symbol that is read
- 1st Γ^* : pop string at the top of stack
- 2nd K: next state
- $2nd \Gamma^*$: push a string onto the stack

e.g. ((p,a,123),(q,45)), 在状态 p 时, 若读到 a, 且 stack 顶有 123, 将 123 pop, 然后压入 45, 状态 $p\to q$. ((p,a,e),(q,B)), 这个 stack 一直满足条件, 顶一定有 e.

Definition IV.9. A configuration of P is a member of $K \times \Sigma^* \times \Gamma^*$

- current state
- unread input
- stack control

Definition IV.10. $(p, x, \alpha) \vdash_P (q, y, \beta) \text{ if } \exists ((p, a, r), (q, \eta)) \in \Delta \text{ s.t.}$

$$x = ay$$

 $\alpha = r\tau \text{ and } \beta = \eta \tau$

for some $\tau \in \Gamma^*$

Definition IV.11. $(p, x, \alpha) \vdash_P^* (q, y, \beta)$ if $(p, x, \alpha) = (q, y, \beta)$ or $(p, x, \alpha) \vdash_P \cdots \vdash_P (q, y, \beta)$

Definition IV.12. P accepts $w \in \Sigma^*$ if

$$(s, w, e) \vdash_P^* (q, e, e)$$

for some $q \in \Gamma$

- 1) finial state
- 2) consume all the input
- 3) empty stack

Definition IV.13. $L(P) = \{w \in \Sigma^* : P \ accepts \ w\}.$ P $accepts \ L(P)$

e.g. $\{w \in \{0,1\}^*: \# \text{ 0's} = \# \text{ 1's in } w\}$ 设计 PDA, accepts it.

- $K = \{s\}$
- $F = \{s\}$
- $\Sigma = \{0, 1\}$
- $\Gamma = \{0, 1\}$

$$\Delta = \{((s, 0, 1), (s, e))$$
$$((s, 0, e), (s, 0))$$
$$((s, 1, 0), (s, e))$$
$$((s, 1, e), (s, 1))\}$$

PDA 是非确定的, 也有猜的能力.

$$\begin{array}{c} \mathrm{CFG} \iff \mathrm{PDA} \\ \mathrm{CFG} \to \mathrm{PDA} \\ \mathrm{Idea:} \end{array}$$

- 1) in stack, non-deterministic generates a string from ${\cal S}$
- 2) compute it to the input
- 3) accepts if they match

Figure IV.1: Idea of CFG \rightarrow PDA. e.g. $S \rightarrow aSb|e$, aabb

Proof. CFG \to PDA $G = (V, \Sigma, S, R) \to M = (K, \Sigma, \Gamma, \Delta, s, F) \iff L(M) = L(G)$

- $\Gamma = V$
- $K = \{s, f\}$
- $F = \{f\}$

•

$$\Delta = \{ ((s, e, e), (f, S)),$$

$$((f, e, A), (f, u)) \text{ for each } (A, u) \in R,$$

$$((f, a, a), (f, e)) \text{ for each } a \in \Sigma \}$$

Q.E.D.

 $PDA \rightarrow simple PDA \rightarrow CFG$

Definition IV.14. A PDA $M=(K,\Sigma,\Gamma,\Delta,s,F)$ is simple if

- 1) |F| = 1
- 2) for each transition $((p, a, \alpha), (q, \beta)) \in \Delta$ either $\alpha = e$ and $|\beta| = 1$ or $|\alpha| = 1$ and $\beta = e$

 $PDA \rightarrow simple PDA$

- 1) If |F| > 1, create a new state f', for each $q \in F$, add a new transition $((q, e, e), (f', e)), F := \{f'\}.$
- 2) only four cases, as $((p, a, \alpha), (q, \beta))$
 - a. $|\alpha| \ge 1$ and $|\beta| \ge 1$

create a new state r, replace the transition with

$$((p, a, \alpha), (r, e))$$
$$((r, e, e), (q, \beta))$$

b. $|\alpha| > 1$ and $\beta = e$ $\alpha = c_1, c_2, \dots, c_k$, create new state r_1, \dots, r_{k-1} .
replace the transition with

$$((p, a, c_1), (r_1, e))$$

$$((r_1, e, c_2), (r_2, e))$$

$$\vdots$$

$$((r_{k-1}, e, c_k), (q, e))$$

- c. $\alpha = e$ and $|\beta| > 1$ same as 2
- d. $\alpha = e$ and $\beta = e$ create a new state r, pick a b from Γ ,

$$((p, a, e), (r, b))$$

 $((r, e, b), (q, e))$

simple PDA \to CFG a simple PDA $P=(K,\Sigma,\Gamma,\Delta,s,F)\to G=(V,\Sigma,S,R)$

• non-terminal: $\{A_{pq} : \text{ for } p, q \in K\}$ Goal:

$$A_{pq} \to w \in \Sigma^*$$

$$\iff w \in \{w \in \Sigma^* : (p, u, e) \vdash_p^* (q, e, e)\}$$

- $S = A_{sf}, F = \{f\} \text{(simple)}$
- R =
 - 1) $\forall p \in K, A_{pp} \to e$
 - 2) $\forall p, q \in K$, $A_{pq} \to A_{pr} A_{rq} \ \forall r \in K$ $A_{pq} \to a A_{p'q'} b$ $A_{pq} \to a A_{p'q'} b$

 $\forall ((p, a, e), (p', \alpha)) \in \Delta \text{ and } ((q', b, \alpha), (q, e)) \in \Delta \text{ for some } \alpha \in \Gamma$

proof idea:

- \Rightarrow by induction on length of derivation from A_{pq} to w
 - \Leftarrow by induction on # steps of computation.

 $PDA \rightarrow define CFG$

Theorem IV.15. Every regular language is content-free.

4. CFL properties

CFG closure properties: $\cup, \circ, *$ is closure, \cap, \bar{A} isn't closure.

$$G_A = (V_A, \Sigma_A, S_A, R_A), G_B = (V_B, \Sigma_B, S_B, R_B)$$

• $G_{A \cup B} \colon S \to S_A | S_B$

• $G_{A \circ B} \colon S \to S_A S_B$

• $G_{A^*}: S \to e|SS_A$

are content-free.

• $A \cap B = \{a^n b^n c^n : n \ge 0\}$ not content-free.

• $A \cap B = \bar{A} \cup \bar{B}$ not content-free.

so CFL is not closed under \cap or A

Theorem IV.16 (Pumping theorem for CFL). Let L be a content-free language. There exists an integer p > 0 such that any $w \in L$ with $|w| \ge p$ can be divided into w = uvxyzsatisfying:

1) $uv^i xy^i z \in L$ for any $i \geq 0$

2)
$$|v| + |y| > 0$$

3) $|vxy| \leq p$

e.g. $\{a^nb^n : n \ge 0\}, p = 2, u = x = z = e, v = a, y = b$

Figure IV.2: Idea's parse tree

non-terminal $|V - \Sigma|$ finite. Q exists twice in a long enough path, draw Q subtree.

- $S \Rightarrow^* uQz$
- $Q \Rightarrow^* vQy$
- $Q \Rightarrow^* x$

 $S \Rightarrow^* uv^i xy^i z \in L, \forall i > 0.$

Proof. L is content-free $\Rightarrow \exists G = (V, \Sigma, S, R)$ with L(G) = L. Let $b = \max\{|u| : (A, u) \in R\}$, fanout $\leq b$

Fact: If a tree with famout $\leq b$ has n leaves, its height(# edges on the longest descending path) $\geq \log_h n$.

 $p = b^{|V-\Sigma|+1}, w \in L$ with $|w| \geq p$. Let T be the parse tree of w, (with smallest # nodes), height of $T \ge \log_b p =$ $|V - \Sigma| + 1$.

• # edges $> |V - \Sigma| + 1$,

- # nodes $\geq |V \Sigma| + 2$,
- # non-terminal on the path $\geq |V \Sigma| + 1$

 $A = \{a^i b^j c^k : i = j\}, B = \{a^i b^j c^k : j = k\} \rightarrow A \text{ and } B \text{ some non-terminal } Q \text{ appears twice on the path, as shwon in$ Figure IV.2.

1) $uv^i xy^i z \in L$ for any $i \ge 0$ 显然

2)
$$|u| + |y| > 0$$

If v = y = e, w = uxz, parse tree smaller than T, but T is the smallest, contradiction.

Figure IV.3: 2)'s parse tree

 $|vxy| \leq p$

Figure IV.4: 3)'s parse tree

The height of subtree $\leq |V - \Sigma| + 1$, so |vxy| = # leaves $< b^{|V-\Sigma|+1} = p.$

If choose Q, # nodes of $QQa \leq 2 + |V - \Sigma|$.

If choose the lowest twice non-terminal, the length \leq $1+|V-\Sigma|$.

Q.E.D.

e.g.
$$\{a^nb^nc^n:n\geq 0\}$$
 is not content-free

Proof. Assume it's content-free. Let p be the pumping length. Pick $a^p b^p c^p \in L$. By pumping theorem, $a^p b^p c^p = uvxyz$, s.t.

- 1) $uv^i xy^i z \in L$ for any $i \ge 0$
- 2) |v| + |y| > 0
- $|vxy| \leq p$

(3) \Rightarrow at least one of a and c doesn't appear in v or $y \Rightarrow uv^0xy^0z \notin L$, contradiction. Q.E.D.

Turing Machine

1. Definition

- $1) \leftarrow, \rightarrow$
- 2) raed and write
- left end symbol ⊳
- blank symbol \sqcup

Definition V.1. A Turing machine is a 5-tuple $M = (K, \Sigma, \delta, s, H)$

- K: a finite set of states
- Σ : tape alphabet (left end symbol and blank symbol)
- $s \in K$: initial state
- $H \subseteq K$: a set of halting state
- δ:

$$\underbrace{(K-H)}_{\textit{current state}} \times \underbrace{\Sigma}_{\textit{symbol read by the head}} \rightarrow \underbrace{K}_{\textit{next state}} \times \underbrace{(\{\leftarrow,\rightarrow\} \cup \underbrace{(\Sigma-\{\triangleright\})})}_{\textit{head action}}$$

s.t.
$$\forall q \in K - H, \ \delta(q, \triangleright) = (p, \rightarrow) \ for \ some \ p \in K$$

Definition V.2 (configuration). A configuration is a member of

$$K \times \triangleright (\Sigma - \{ \triangleright \})^* \times (\{e\} \cup (\Sigma - \{ \triangleright \})^* (\Sigma - \{ \triangleright, \sqcup \}))$$

Definition V.3 (yield one step).

$$(q_1, \triangleright w_1 a_1 u_1) \vdash_M (q_2, \triangleright w_2 a_2 u_2)$$
 if

- 1) writing: $\delta(q_1, a_1) = (q_2, a_2)$, $w_1 = w_2$ and $u_1 = u_2$
- 2) moving left: $\delta(q_1, a) = (q_2, \leftarrow), w_1 = w_2 a_2, and u_2 = a_1 u_1 \ (u_2 = e \text{ if } a_1 = \sqcup, u_1 = e)$
- 3) moving right: $\delta(q_1,a)=(q_2,\rightarrow),\ w_2=w_1a_1,\ and\ u_1=a_2u_2$

Definition V.4 (yields).

$$(q_1, \triangleright w_1 a_1 u_1) \vdash_M^* (q_2, \triangleright w_2 a_2 u_2)$$
 if

- 1) $(q_1, \triangleright w_1 a_1 u_1) \vdash_M (q_2, \triangleright w_2 a_2 u_2)$
- 2) $(q_1, \triangleright w_1\underline{a_1}u_1) \vdash_M \cdots \vdash_M (q_2, \triangleright w_2\underline{a_2}u_2)$
- $(q, \triangleright w\underline{a}u)$ is a halting configuration if $q \in H$.
- initial configuration

Fix Σ

- 1) symbol writing machine M_a , $(a \in \Sigma \{\triangleright\})$. $M_a = (\{s, h\}, \Sigma, \delta, s, \{h\})$
 - $\forall b \in \Sigma \{ \triangleright \}, \ \delta(s, b) = (h, a)$
 - $\delta(s, \triangleright) = \delta(s, \rightarrow)$

2) heading moving machine M_{\rightarrow} , M_{\leftarrow} $M_{\leftarrow} = (\{s,h\}, \Sigma, \delta, s, \{h\})$

•
$$\forall b \in \Sigma - \{\triangleright\}, \ \delta(s, b) = (h, \leftarrow)$$

$$\bullet \quad \delta(s, \triangleright) = \delta(s, \rightarrow)$$

basic machine: $M_a, M_{\leftarrow}, M_{\rightarrow}$, also called a, L, R.

start
$$\longrightarrow M_1 \xrightarrow{0} M_2$$

$$\downarrow 1$$

$$M_3$$

Figure V.1: 组合图灵机

Algorithm V.1 组合图灵机

run M_1 until it halts

if the symbol read by head is 0 then

run M_2 else if the symbol read by head is 1 then

run M_3 else

halt

end if

Figure V.2: Example

Left shifting machine: S_{\leftarrow} . $\forall w \in (\Sigma - \{\triangleright, \sqcup\})^*$,

$$\rhd \sqcup \sqcup w \underline{\sqcup} \to \rhd \sqcup w \underline{\sqcup}$$

$$\operatorname{start} \longrightarrow L_{\square} \longrightarrow R \xrightarrow{a \neq \square} \square LaR \longrightarrow L$$

Figure V.3: Left shifting machine: S_{\leftarrow} .

1.1 Recognize Language

• input alphabet: $\Sigma_0 \subseteq (\Sigma - \{\triangleright, \sqcup\})$

• initial configuration $\{s, \triangleright \sqsubseteq w\}$

Definition V.5. M semidecides L(M), called recursively enumerable (递归可枚举)/recognizable

$$L(M) = \{ w \in \Sigma_0^* : (s, \bowtie \underline{\sqcup} w) \vdash^* (h, \dots) \text{ for some } h \in H \}$$

实际上没法用, 因为不保证可接受时间内停机.

Definition V.6. Let $M = (K, \Sigma_0, \Sigma, \delta, s, \{y, n\})$ be a Turing Machine. We say M decides a language $L \subseteq \Sigma^*$ if

1)
$$\forall w \in L$$

$$(s, \triangleright \underline{\sqcup} w) \vdash^* (y, \dots)$$

M accepts w

2) $\forall w \in \Sigma^* - L$

$$(s, \triangleright \sqcup w) \vdash^* (n, \dots)$$

M rejects w

A language is recursive/decidable if it is decided by some Turing Machine.

Theorem V.7. If L is recursive, L must is recursively enumerable.

Idea: 构造 n 不停机, y 停机.

2. Compute Function

Definition V.8. $\forall w \in \Sigma_0^*$, $if(s,) \vdash^* (h, \triangleright \underline{\sqcup} y)$ for some $h \in H$ and some $y \in \Sigma_0^*$.

Figure V.4: output

y: output of M on w. y = M(w). Let $f: \Sigma_0^* \to \Sigma_0^*$. We say M computes f if

$$\forall w \in \Sigma_0^*, M(w) = f(w)$$

f is called recursive/computable

e.g.
$$\{a^nb^nc^n: n \ge 0\}$$
 is recursive.

Figure V.5: $\{a^n b^n c^n : n \ge 0\}$

Figure V.6: Multiple tape TM

3. Extensions of Turing machines

3.1 Multiple tape TM

$$\delta: (K-H) \times \Sigma^k \to K \times (\Sigma \cup \{\leftarrow, \to\})^k$$

Idea: 以三带为例, 将一条纸带分为三个 tracks, 也可以等价于把纸带拉平, 其 symbol 长度为 3.

3.2 Two-way Infinite Tape

Figure V.7: Two-way Infinite Tape

向两侧无限延申.

可以先使用双带模拟, 然后用标准 TM 模拟双带.

3.3 Multiple Heads

Figure V.8: Multiple Heads

一个纸带但多个读写头.

用下划线标记这 k 个读写头, 先找到 k 个下划线位置, 然后做操作.

3.4 Two-Dimensional Tape

Figure V.9: Two-Dimensional Tape

二维纸带.

将所有格子做编号, 然后拉平.

3.5 Random Access TM

head 可以跳格子.

把跳拆开成单步走即可.

4. Non-deterministic TM

Definition V.9. A non-deterministic Turing Machine is 5tuple $M = (K, \Sigma, \Delta, s, H)$

- K
- Σ
- s
- *H*
- Δ : a finite set of

$$((K-H)\times\Sigma)\times(K\times\Sigma\cup\{\leftarrow,\rightarrow\})$$

可以看作是一颗树.

Also can define configuration and \vdash_M , \vdash_M^* , \vdash_M^N (走 N 步).

Definition V.10. A NTM M with input alphabet Σ_0 , semidecides $L \subseteq \Sigma_0^*$, if $\forall w \in \Sigma_0^*$, $w \in L$ iff $(S, \triangleright \sqcup w) \vdash_M^* (h, \ldots)$ for some h.

Definition V.11. Let $M = (K, \Sigma, \Delta, s, \{y, n\})$ be a NTM with input alphabet Σ_0 . M decides a language $L \in \Sigma_0^*$ if

- 1) there is a constant N (independent of the M), $\forall w \in \Sigma_0^*$, there is no configuration C, satisfy $(s, \triangleright \sqcup w) \vdash_M^N C$. (要求每条分支在 N 步内停止)
- 2) $w \in L$ iff $(s, \triangleright \sqcup w) \vdash_{M}^{*} (y, \dots)$

即 NTM 树高有限,且

- if $w \in L$, some branch accepts w
- if $w \notin L$, every branch rejects w

e.g. Let $C = \{100, 110, 1000, \dots\}$ (所有合数二进制编码集合)

Idea: 猜其两个分解 p,q, if $p \times q = w$ accepts it, else rejects it.

Theorem V.12. Every NTM can be simulated by a DTM.

Proof. (sketch) 以 semidecides 为例.

a NTM semidecides $L \to$ a DTM semidecides L.

3-tape DTM to simulate NTM (using BFS)

- store the input w
- simulate NTM
- enumerate hints 类似程序栈, 使用 bfs

Q.E.D.

VI Undecidability

1. Church-Turing Thesis

Church-Turing Thesis

 $\begin{array}{ccc} \text{Intuition of algorithm} & \text{equals} & \begin{array}{c} \text{Turing machines that} \\ \text{halt on every input} \end{array} \\ \text{decision porblem} & \text{equals} & \text{language} \end{array}$

Intuition of algorithm \iff TM that halt of every input Description of TM

- 1) formal definition: $M = (K, \Sigma, \delta, s, H)$
- 2) Implement-level desc: diagram
- 3) high-level: "pseudo code"

Fact:

- 1) Any finite set can encoded.
- 2) Any finite collection of finite sets can be encoded

Object $O \to "O"$ (用双引号表示 encode)

2. Decidable Problem

 R_1 $A_{DFA} = \{ "D" "w" : D \text{ is a DFA that accepts } w \}.$ $M_{R_1} = \text{on input } "D" "w".$

Algorithm VI.1 M_{R_1}

run D on w.

if D accepts w then

accepts "D" "w"

else

rejects "D" "w"

end if

$$R_2 \ A_{NFA} = \{ "N" \ "w" : N \text{ is a NFA that accepts } w \}$$

$$M_{R_2} = \text{on input } "N" \ "w".$$

Algorithm VI.2 M_{R_2}

N \rightarrow equivalent DFA Drun M_{R_1} on "D" "w" output the result of M_{R_1}

a reduction(归约) from A_{NFA} to A_{DFA} . 将左输入映射为右输入, 保证映射前后答案一致.

 R_3 $A_{REX} = \{ \text{``}R\text{''} \text{ ``}w\text{''} : R \text{ is a regular expression with } w \in L(R) \}$

 M_{R_3} = on input "R" "w".

Algorithm VI.3 M_{R_3}

 ${f R} o$ an equivalent NFA N run M_{R_2} on "N" "w" output the result of M_{R_2}

 R_4 $E_{DFA} = \{ "D" : D \text{ is a DFA and } L(D) = \emptyset \}$ $M_{R_4} = \text{on input "}D"$

Algorithm VI.4 M_{R_4}

if D has no finial state then accepts

else

run DFS on BFS starting with the initial state on the diagram

if \exists path from s to finial then

reject

else

accept

end if

 R_5 $EQ_{DFA} = \{ "D_1" "D_2" : D_1 \text{ and } D_2 \text{ are DFAs with } L(D_1) = L(D_2) \}$

Definition VI.1 (symmetric difference).

$$A \oplus B = \{x \in A \cup B \cap x \notin A \cap B\}$$

$$A = B \iff A \oplus B = \emptyset$$

$$A \oplus B = A \cup B - A \cap B$$

$$= (A \cup B) \cap (\overline{A \cap B})$$

$$= (A \cup B) \cap (\overline{A} \cup \overline{B})$$

 $M_{R_5} = \text{on input "} D_1$ " " D_2 "

Algorithm VI.5 M_{R_5}

construct D_3 with $L(D_3) = L(D_1) \oplus L(D_2)$ run M_{R_4} on " D_3 " output the result of M_{R_4}

 C_1 $A_{CFG} = \{ \text{``}G\text{''}w\text{''}: G \text{ is a CFG that generates }w \}$ $M_{C_1} = \text{on input ``}G\text{'''}w\text{''}$

Algorithm VI.6 M_{C_1}

G o an equivalent CFG G' in CNF. enumerate all the derivations of length 2|w|-1 (the number of derivations $\leq |R|^{2|w|-1}$). if any of them generates w then accepts "G""w" else rejects "G""w" end if

 $C_2 \ A_{PDA} = \{ ``P"``w" : P \text{ is a PDA that accepts } w \}$ $M_{C_2} = \text{on input } ``P"``w"$

Algorithm VI.7 M_{C_2}

 $P \to \text{an equivalent CFG } G$ run M_{C_1} on "G""w" return the result of M_{C_1}

> C_3 $E_{CFG} = \{ G^*: G \text{ is a CFG with } L(G) = \emptyset \}$ $M_{C_3} = \text{on input } G^*$

Algorithm VI.8 M_{C_3}

mark terminals and e

If right is marked, mark left, until it can't be marked. if S is marked then

rejects "G"

else accepts "G"

end if

 C_4 $E_{PDA} = \{ P'': P \text{ is a PDA with } L(P) = \emptyset \}$ $M_{C_4} = \text{on input } P''$

Algorithm VI.9 M_{C_4}

 $P \rightarrow$ an equivalent CFG Grun M_{C_3} on "G""w" return the result of M_{C_3}

Definition VI.2. Let A and B be two languages over Σ_A and Σ_B respectively. A reduction from A to B is a recursive (computable) function $f: \Sigma_A^* \to \Sigma_B^*$, such that $\forall x \in \Sigma_A^*$,

$$x \in A \iff f(x) \in B$$

 $called\ A \le B$

Theorem VI.3. Suppose that \exists a reduction from A to B. If B is recursive, A is recursive. (If A is not recursive, then B is not recursive.)

Proof. B is recursive $\to \exists M_B$ decides B. Let $M_A = \text{on input "}x$ ",

Algorithm VI.10 M_A

compute f(x)run M_B on f(x)return the result of M_B

Q.E.D.

Theorem VI.4. Suppose that we have a reduction f from A to B. If B is recursively enumerable, A is recursively enumerable.

Proof. Since B is recursive enumerable, there is a Turing machine M_B that semidecides B. We can construct M_A = on input "x"

Algorithm VI.11 M_A

compute f(x)run M_B on f(x)

 M_A halts on $x \iff M_B$ halts on $f(x) \iff f(x) \in B$ $\iff x \in A$. So M_A semidecides A. Q.E.D.

Theorem VI.5. If $A \leq B$, then $\overline{A} \leq \overline{B}$

Proof. Let f be a reduction from A to B. By definition, for any $x \in \Sigma^*, x \in A$ iff $f(x) \in B$. In other words, $x \in \overline{A}$ iff $f(x) \in \overline{B}$. So f is also a reduction to \overline{A} to \overline{B} . Q.E.D.

Theorem VI.6. If A and \overline{A} are recursively enumerable, A is recursive.

Proof. $\exists M_1, M_2$ semidecides A, \overline{A} respectively. Target: construct M_3 to decide A $M_3 = \text{on input } x$

Algorithm VI.12 M_3

run M_1 and M_2 on x in parallel if M_1 halts on x then accept xelse if M_2 halts on x then reject xend if

3. Countable

Definition VI.7. Two sets A and B are equinumerous(等势), if \exists bijection $f: A \rightarrow B$.

Lemma VI.8. A is countable if and only if \exists injection $f: A \to \mathcal{N}$

Proof.

 \rightarrow is simple.

 \leftarrow if A is finite, trivially else sort A in increasing order of f(a). Let g(a) = rank of a. g(a) is bijection.

Q.E.D.

Corollary VI.9. Any subset of a countable set is countable.

Proof. A is a countable set.

 $\Rightarrow \exists \text{ injection } f: A \to \mathcal{N}$

 $\Rightarrow \exists \text{ injection } f': A' \to \mathcal{N}, A' \subseteq A$

 $\Rightarrow A'$ is countable. Q.E.D.

Lemma VI.10. Let Σ be an alphabet. Σ^* is countable.

Proof idea: 从短到长排列所有字符串, 并编号, 这是个 bijection.

Corollary VI.11. $\{M: M \text{ is a Turing Machine}\}\$ is countable

Lemma VI.12. Let Σ be some non-empty alphabet. Let \mathcal{L} be the set of all languages over Σ . \mathcal{L} is uncountable.

Proof. Suppose that \mathcal{L} is countable. The languages in \mathcal{L} can be labelled as L_1, L_2, \ldots

Since Σ^* is countable, the strings in Σ^* can be labelled as s_1, s_2, \ldots

Let $D = \{s_i : s_i \notin L_i\}, \forall i, s_i \in D \iff s_i \notin L_i.$

 $\Rightarrow D \neq L_i$

 $\Rightarrow D \notin \mathcal{L}$, contradiction.

Q.E.D.

It's same as Diagonalization.(用来证实数不可数的)

From Corollary VI.11 and Lemma VI.12, \exists language is not recursively enumerable.

4. Halting Problem

 $H = \{ "M""w" : M \text{ is a TM that halts on } w \}$

Q.E.D. **Theorem VI.13.** H is recursively enumerable.

Proof. Let U = on input "M""w"

Algorithm VI.13 U

run M on w

 $U \text{ halts on "}M""w" \iff M \text{ halts on } w \iff "M""w" \in \\ H.\ U \text{ is called universal Turing Machine} \qquad \qquad \text{Q.E.D.}$

Theorem VI.14. H is not recursive.

Proof. $H_d = \{ M'' : M \text{ is a TM that doesn't halt on } M'' \}$

1) If H is recursive, then H_d is recursive. H is recursive $\Rightarrow \exists M_H$ decides H. $M_d = \text{on input "}M$ ".

Algorithm VI.14 M_d

 $\begin{array}{c} \operatorname{run}\, M_H \, \operatorname{on}\, "M""M" \\ & \text{if}\,\, M_H \, \operatorname{accepts}\, "M""M" \, \, \text{then} \\ & \operatorname{rejects}\, "M" \\ & \text{else} \\ & \operatorname{accepts}\, "M" \\ & \text{end} \, \operatorname{if} \end{array}$

- $\Rightarrow M_d$ decides H_d
- $\Rightarrow H_d$ is recursive.
- 2) H_d is not recursively enumerable. Assume H_d is recursively enumerable.
- $\Rightarrow \exists D \text{ semidecides } H_d$

$$D \text{ on input "}M" \left\{ \begin{array}{ll} \text{halt} & \text{if } M \text{ doesn't halt on "}M" \\ & ("M" \in H_d) \\ \\ \text{looping} & \text{if } M \text{ halts on "}M" \\ \\ & ("M" \notin H_d) \end{array} \right.$$

$$D \text{ on input "}D" \left\{ \begin{array}{ll} \text{halt} & \text{if } D \text{ doesn't halt on "}D" \\ & ("D" \in H_d) \\ \\ \text{looping} & \text{if } D \text{ halts on "}D" \\ \\ & ("D" \notin H_d) \end{array} \right.$$

 \Rightarrow contradiction

So H is not recursive. Q.E.D.

e.g.

1) $L_1 = \{ M'' : M \text{ is a TM that halts on } e \}$ is not recursive.

"
$$M$$
"" w " $\in H \iff$ " M^* " $\in L_1$.
 M halts on $w \iff M^*$ halts on e .
 $M^* =$ on input " u "

Algorithm VI.15 M^*

run M on w

 M^* halts on e

 $\iff M^*$ halts on some input

 $\iff M^*$ halts on every input

 $\iff M \text{ halts on } w.$

 $H \leq L_1$

2) $L_2 = \{ M'' : M \text{ is a TM that halts on some input} \}$ is not recursive.

 $H \leq L_2$, same as L_1

3) $L_3 = \{ M'' : M \text{ is a TM that halts on every input} \}$ is not recursive.

 $H \leq L_3$, same as L_1

4) $L_4 = \{ M_1 M_2 : M_1 \text{ and } M_2 \text{ are two TMS with } L(M_1) = L(M_2) \}$ is not recursive.

 $L_3 \le L_4$

"M" \iff " M_1 "" M_2 "

M halts on every input $\iff L(M_1) = L(M_2)$

 $\iff L(M) = \Sigma^*.$

Let $M_1 = M$

 $M_2 = \text{on input "}x$ "

Algorithm VI.16 M_2

halt

$$\Rightarrow L(M_2) = \Sigma^*$$
 $M_{L_3} = \text{on input "}M$ "

Algorithm VI.17 M_{L_3}

construct a TM M^* that halt on every input run M_{L_4} on "M"" M^* " return the result of M_{L_4}

reduction $f("M") = "M""M^*"$ from L_3 to L_4 .

5) $R_{TM} = \{ M^* : M \text{ is a Turing Machine with } L(M)$ being regular $\}$ is not recursively enumerable

target: $H \leq \overline{R_{TM}}$.

Assume $M_{R_{TM}}$ decides R_{TM} , we will use it to construct M_H decides H.

 $M_H = \text{on input "}M$ ""w"

Algorithm VI.18 M_H

construct a TM M' = on input x run $M_{R_{TM}}$ on "M'" return the result of $M_{R_{TM}}$

Algorithm VI.19 M'

 $\operatorname{run} M \text{ on } w$ $\operatorname{run} U \text{ on } x$

$$L(M') = \left\{ \begin{array}{ll} \emptyset & \text{ If } M \text{ doesn't halt on } w \\ L(U) = H & \text{ If } M \text{ halt on } w \end{array} \right.$$

 $\therefore H \leq \overline{R_{TM}}, \therefore \overline{H} \leq R_{TM}$

 \therefore R_{TM} is not respectively enumerable.

6) $CF_{TM} = \{ \text{``}M\text{''} : M \text{ is a TM with } L(M) \text{ being context-free } \}$

 $H \leq \overline{CF_{TM}}$

7) $REC_{TM} = \{ \text{``}M\text{''} : M \text{ is a TM with } L(M) \text{ being recursive } \}$

 $H \leq \overline{REC_{TM}}$

Theorem VI.15 (Rice's Theorem). Let $\mathcal{L}(P)$ be the set with property P. If $\mathcal{L}(P)$ is a non-empty proper subset of all recursive enumerable language,

$$\{ M'' : M \text{ is a } TM \text{ with } L(M) \in \mathcal{L}(P) \}$$

is not recursive.

Proof.

case 1 $\emptyset \notin \mathcal{L}(P)$, called R(P) $H \leq R(P)$ $\exists L \in \mathcal{L}(P) \Rightarrow \exists M_A \text{ semidecides } A.$ $M_H = \text{ on input "}M$ ""w"

Algorithm VI.20 M_H

construct a TM $M^* =$ on input x run M_R on " M^* " return the result of M_R

Algorithm VI.21 M^*

 $\operatorname{run} M \text{ on } w$ $\operatorname{run} M_L \text{ on } x$

$$L(M^*) = \begin{cases} L(M_A) = A & \text{if } M \text{ halts on } w \\ \emptyset & \text{if } M \text{ doesn't halt on } w \end{cases}$$

case $2 \emptyset \in \mathcal{L}(P)$ $H < \overline{\mathcal{L}(P)}$ 5. recursively enumerable

prove recursively enumerable

- by def
- $A \leq$ known recursively enumerable language

e.g. $\{A: ``M": M \text{ is a TM that halts on some input}\}$ is recursively enumerable

Proof. $M_A = \text{on input "}M$ "

Algorithm VI.22 M_A

Require: "M"

for $i=1,2,\ldots$ do

for $s=s_1,\ldots,s_i$ do

run M on s for i steps

if M halts on s within i steps then

halt

end if

end for

Q.E.D.

prove not recursively enumerable

- known non-recursively enumerable $\leq A$
- Theorem VI.6

H is recursively enumerable and is not recursive $\Rightarrow \overline{H}$ is not recursively enumerable.

6. Closure property

Table VI.1: Closure property

	recursive	recursively enumerable	CFL	regular
U	$\sqrt{}$	\checkmark	$\sqrt{}$	$\sqrt{}$
\cap	$\sqrt{}$	\checkmark	×	$\sqrt{}$
-	$\sqrt{}$	×	×	$\sqrt{}$
0	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
*	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$

Proof.

Q.E.D.

• $M_{A \cup B} =$ on input x

Algorithm VI.23 $M_{A \cup B}$

```
run M_A on x

run M_B on x

if at least one of them accepts x then accept

else reject

end if
```

• $M_{A \circ B} = \text{on input } x$

Algorithm VI.24 $M_{A \circ B}$

```
enumerate all possible u and v with x=uv run M_A on u and run M_B on v if both accept then accepts else—reject end if
```

• \bar{H} is not recursively enumerable.

Q.E.D.

7. Enumerator

Definition VI.16. We say a TM M enumerate a language L. If for some state q,

$$L = \{w : (s, \triangleright \sqcup) \vdash_{M}^{*} (q, \triangleright \sqcup w)\}$$

called Turing enumerable.

Theorem VI.17. A language L is Turing enumerable iff it's recursively enumerable.

Proof. If L is finite, trivially. Assume L is infinite.

 $\Rightarrow \exists M \text{ enumerate } L,$ goal: M' semidecides LM' = on input x

Algorithm VI.25 M'

 $\begin{array}{l} \operatorname{run}\, M \ \operatorname{to} \ \operatorname{enumerate}\, L \\ \\ \operatorname{every} \ \operatorname{tiem}\, M \ \operatorname{accepts} \ \operatorname{a} \ \operatorname{string} \ w \\ \\ \operatorname{if} \ w == x \ \operatorname{then} \\ \\ \operatorname{halt} \\ \operatorname{end} \ \operatorname{if} \end{array}$

 $\Leftarrow \exists M \text{ semidecides } L$ goal: M' enumerate LM' = on input x

Algorithm VI.26 M'

```
for i=1,\ldots,2 do

for s=s_1,\ldots,s_i do

run M on s for i steps

if M halts on s within i steps then

accept s

end if

end for
```

Q.E.D.

Definition VI.18. Let M be a TM that enumerates L. We say M lexicographically enumerates L if whenever

$$(q, \triangleright \sqcup w) \vdash_{M}^{+} (q, \triangleright \sqcup w')$$

we have w' is after w in lexicographical order.

Theorem VI.19. L is lexicographically enumerable iff it's recursive.

Proof.

 $\Leftarrow \exists M \text{ decide } L$ M' = on input

Algorithm VI.27 M'

enumerate all string in lexicographical order for each string s do run M on s if M accepts s then accepts end if

 $\Rightarrow \exists M \text{ lexicographically enumerate } L$ goal: M' decides LM' = on input x

Algorithm VI.28 M'

run M to enumerate all strings in L with lexicographical order $\leq x$ every time M accepts a string w if w == x then accept else reject end if

Q.E.D. VII Numerical Functions

$$f: N^k \to N \ k \ge 0$$

Definition VII.1 (Numerical Functions). A TM M computes $f: N^k \to N$ if any $n_1, \ldots, n_k \in N$

$$M(bin(n_1),\ldots,bin(n_k)) = bin(f(n_1,\ldots,n_k))$$

1. Basic Functions

1) zero function

$$zero(n_1,\ldots,n_k)=0$$

for any $n_1, \ldots, n_k \in N$

2) identity function

$$id_{k,j}(n_1,\ldots,n_k)=n_j$$

3) successor function

$$succ(n) = n + 1$$

2. Operation

Definition VII.2 (composition). Let

$$g: N^k \to N$$

$$h_1, \dots, h_k: N^l \to N$$

we have $f: N^l \to N$

$$f(n_1, \ldots, n_l) = g(h_1(n_1, \ldots, n_l), \ldots, h_k(n_1, \ldots, n_l))$$

call f as the composition of g with h_1, \ldots, h_k .

Definition VII.3 (Recursive definition). Let

$$g: N^k \to N$$
$$h: K^{k+2} \to N$$

we have $f: N^{k+1} \to N$

$$\begin{cases} f(n_1, \dots, n_k, 0) = g(n_1, \dots, n_k) \\ \dots \\ f(n_1, \dots, n_k, t+1) = h(n_1, \dots, n_k, t, f(n_1, \dots, n_k, t)) \end{cases}$$
e.g. $n!$

$$\begin{cases} k = 0 \\ g = 1 \\ h(n, f(n)) = (n+1)f(n) \end{cases}$$

3. primitive recursive function

Definition VII.4 (primitive recursive function).

 $basic\ functions + \left\{ \begin{array}{ll} composition \\ recursive\ definition \end{array} \right. = primitive\ recursive\ function$

All primitive recursive functions is computable. e.g.

1)
$$puls2(n) = n + 2$$

2)
$$puls(m, n) = m + n$$

$$\left\{ \begin{array}{ll} plus(m,0) &= id_{1,1}(m) \\ plus(m,n+1) &= plus(m,n)+1 \\ &= succ(id_{3,3}(m,n,plus(m,n))) \end{array} \right.$$

平时写到就行 succ(plus(m, n))

3) $mult(m,n) = m \cdot n$

$$\begin{cases} mult(m,0) &= zero(m) \\ mult(m,n+1) &= mult(m,n) + m \\ &= plus(m,mult(m,n)) \end{cases}$$

4) $exp(m,n) = m^n$

$$\begin{cases} exp(m,0) &= m \\ exp(m,n+1) &= exp(m,n) \cdot m \\ &= mult(m,exp(m,n)) \end{cases}$$

5) constant function: $f(n_1, \ldots, n_k) = c$

$$(succ...(succ(zero(n_1,...,n_k))))$$

c successor functions

6) sign function

$$sgn(n) = \begin{cases} 1 & \text{if } n > 0 \\ 0 & \text{if } n = 0 \end{cases}$$

$$\begin{cases} sgn(0) = 0 \\ sgn(n+1) = 1 \end{cases}$$

7) predecessor function

$$pred(n) = \begin{cases} n-1 & \text{if } n > 0\\ 0 & \text{if } n = 0 \end{cases}$$

$$\begin{cases} pred(0) &= 0\\ pred(n+1) &= id_{2,1}(n, pred(n))\\ &= n \end{cases}$$

8) $m \sim n = \max(m - n, 0)$ non-negative substraction

$$\left\{ \begin{array}{ll} m \sim 0 &= 0 \\ m \sim (n+1) &= (m \sim n) - 1 \\ &= pred(m \sim n) \end{array} \right.$$

Lemma VII.5.

 $primitive \ recursive \ func + \left\{ egin{array}{ll} composition \\ recursive \ def \end{array}
ight. = primitive \ recursive \ func$

Corollary VII.6. if f, g is primitive recursive function, then $f + g, f \cdot g, f \sim g$ are all primitive recursive functions.

Definition VII.7 (predicate function). The function's output is 1 or 0, called predicate function.

Corollary VII.8. *If* predicate p, q is primitive recursive, so is $\neg p, p \land q, p \lor q$

- 1) positive(n) = sgn(n)
- 2) iszero(n)

$$iszero(n) = \begin{cases} 1 & \text{if } n = 0 \\ 0 & \text{if } n > 0 \end{cases}$$
$$= 1 - positive(n)$$

3) geq(m,n)

$$geq(m,n) = \begin{cases} 1 & \text{if } m \ge n \\ 0 & \text{if } m < n \end{cases}$$
$$= iszero(m \sim n)$$

4) eq(m,n)

$$eq(m,n) = \begin{cases} 1 & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}$$
$$= qep(m,n) \cdot qep(n,m)$$

Corollary VII.9. Let

$$f(n_1, \dots, n_k) = \begin{cases} g(n_1, \dots, n_k) & \text{if } p(n_1, \dots, n_k) \\ h(n_1, \dots, n_k) & \text{otherwise} \end{cases}$$

If q, h, p are primitive recursive, so is f.

Proof.
$$f = p \cdot g + (1 \sim p) \cdot h$$
 Q.E.D.

1) $rem(m, n) = m\%n$

$$rem(m, n) = \begin{cases} rem(0, n) &= 0 \\ rem(m+1, n) &= d(m+1, n) \end{cases}$$

$$d(m+1, n) = \begin{cases} 0 & \text{if } m+1 \text{ is divisible by } n \\ rem(m, n) + 1 & \text{otherwise} \end{cases}$$

m+1 is divisible by $n \iff eq(rem(m,n), pred(n))$

2) $\begin{aligned} div(m,n) &= \lfloor m/n \rfloor, \ n \neq 0 \\ \\ div(m,n) &= \left\{ \begin{array}{cc} div(0,n) &= 0 \\ div(m+1,n) &= d(m+1,n) \end{array} \right. \\ \\ d(m+1,n) &= \left\{ \begin{array}{cc} div(m,n)+1 & \text{if } m+1 \text{ is divisible by } n \\ div(m,n) & \text{otherwise} \end{array} \right. \end{aligned}$

3) $digit(m, n, p) = a_{m-1}$ with least digit $n = a_k p^k + \dots + a_{m-1} p^{m-1} + \dots + a_1 p_1 + a_0$ $digit(m, n, p) = div(rem(n, p^m), p^{m-1})$

4)
$$sum_f(m, n) = \sum_{k=0}^n f(m, k)$$
, f is primitive recursive.

$$\begin{cases} sum_f(m,0) &= f(m,0) \\ sum_f(m,n+1) &= sum_f(m,n) + f(m,succ(n)) \end{cases}$$

- 5) $mult_f(m, n) = \prod_{k=0}^n f(m, k)$, f is primitive recursive.
- 6) Let p be a primitive recursive predicate from $N \rightarrow \{0,1\}$

$$g_p(n) = \begin{cases} 1 & \text{if } \exists n' \le n, p(n') = 1 \\ 0 & \text{otherwise} \end{cases}$$
$$= p(0) \lor \cdots \lor p(n)$$
$$= positive(\sum_{n'=0}^{n} p(n'))$$
$$= positive(sum_p(n))$$

$$h_p(n) = \begin{cases} 1 & \text{if } \forall n' \le n, p(n') = 1 \\ 0 & \text{otherwise} \end{cases}$$
$$= positive(\prod_{n'=0}^{n} p(n'))$$
$$= positive(mult_n(n))$$

Definition VII.10.

 $PR = \{ \text{``f''} : f \text{ is a primitive recursive function} \}$ $C = \{ \text{``f''} : f \text{ is computable function} \}$

 $PR \subseteq C$, but $PR \neq C$

Lemma VII.11. PR is decidable.

Lemma VII.12. C is undecidable.

Proof. Assume that C is decidable. So $C' = \{$ unary computable numerical function $\}$ is decidable. So C' is lexicographically Turing enumerable by $g_1, g_2 \dots$

Let M =on input n

Algorithm VII.1 M

enumerable C' to get g_n compute $g_n(n)$ return $g_n(n) + 1$

 $g^*(n) = g_n(n) + 1$ is unary computable function, so $g^* \in C'$.

But
$$g^*(n) = g_n(n) + 1$$
, $decomposed \forall n, g^* \neq g_n$. contradiction. Q.E.D.

4. Extend Basic Functions

Definition VII.13 (minimalization). Let $g: N^k \to N$, we have

$$f(n_1, \dots, n_k) = \begin{cases} m = n_{k+1} & \text{if exists minimum } n_{k+1} \\ & \text{such that } g(n_1, \dots, n_{k+1}) = 1 \\ 0 & \text{otherwise} \end{cases}$$

called a minimalization of g, $\mu m[g(n_1, \ldots, n_k, m) = 1]$

Theorem VII.14. A function g is minimalizable if g is computable and $\forall n_1, \ldots, n_k, \exists m \geq 0, g(n_1, \ldots, n_k, m) \geq 1$

e.g. $\log(m,n) = \lceil \log_{m+2}(n+1) \rceil$ i.e. minimum $p \in N,$ s.t. $(m+2)^p \geq n+1$

$$\log(m, n) = \mu p \left[gep((m+2)^p, n+1) = 1 \right]$$

Theorem VII.15. If $g(n_1, ..., n_{k+1})$ is minimalizable, the $\mu m[g(n_1, ..., n_k, m) = 1]$ is computable.

Theorem VII.16. $L = \{ \text{``g''} : g \text{ is minimalizable } \} \text{ is undecidable } \}$

Definition VII.17 (μ -recursive).

$$\mu\text{-recursive} = basic\ functions + \left\{ \begin{array}{l} composition \\ recursive\ def \\ minimalization\ of \\ minimalizable\ func \end{array} \right.$$

Theorem VII.18. A numerical function is μ -recursive iff it's computable.

Proof. ⇒ trivial

$$\Leftarrow$$
, f , $\exists M$ accepts f . $n \to f(n)$ is
 $(s, \triangleright \sqcup n) \vdash_M (g_1, \triangleright u_1 a_1 v_1) \vdash_M \dots \vdash_M (h, \triangleright \sqcup f(n))$

用 state 标记读写头位置, i.e.

$$\triangleright \sqcup sn \triangleright u_1 a_1 q_1 v_1 \cdots \triangleright h \sqcup h f(n)$$

Let $\Sigma \cup K \to \{0,1,2,\ldots,b-1\}$, the computation can be a **VIII** Grammar(unrestricted grammar) base-b integer.

Therefore, we can

把计算过程分解为四个函数的叠加,每个函数是 μ recursive 的, 总体就是 μ -recursive.

- 1) $h_1(n) = \triangleright \sqcup sb^{\lceil \log_b n + 1 \rceil} + n$ 这里是为了留够 n 的空间.
- 2) $\mu m[iscomp(\triangleright \sqcup sn, m) \land halted(m)]$. iscomp and halted are both primitive recursive
- 3) $\mu m[digit(m, n, b) == \triangleright] = k$, and $rem(n, b^k)$
- 4) $\mu m[digit(m, n, b) == h] = k$, and $rem(n, b^k)$

Q.E.D.

grammar: $uAv \rightarrow w$

Definition VIII.1. A grammar is a 4-tuple $G = (V, \Sigma, S, R)$

- V is a alphebte
- Σ is the set of terminals
- $S \in V \Sigma$: start symbol
- R: a finite set of $(V^*(V_{\Sigma})V^*) \times V^*$

Definition VIII.2 (derive in one step and derive). 类似之 前的.

G generates a string $w \in \Sigma^*$ if $S \vdash_G^* w$

e.g.
$$\{a^n b^n c^n : n \ge 0\}$$

- $S \rightarrow ABCS$
- $BA \rightarrow AB$
- $CA \rightarrow AC$
- $CB \rightarrow BC$
- $S \to T_c, CT_c \to T_c c, BT_c \to BT_b$
- $BT_b \to T_b b, AT_b \to AT_a$
- $AT_a \rightarrow T_a a, T_a \rightarrow e$

Theorem VIII.3. A language is generateed by some grammar iff it's semidecided by some TM

Proof.

 \Rightarrow Given G, construct M to semidecide L(G), i.e. given w, is $S \Rightarrow_G^* w$?

进行枚举, 因为每一步最多只有 | R | 种选择, 若有 w halt.

 \Leftarrow Given M, construct G to generate L(M), i.e. $S \Rightarrow_G^*$ $w \text{ iff } w \in L(M).$

假设图灵机 halting state 唯一, 并且停机时纸带为 空.

$$(S, \triangleright \sqcup w) \vdash_M (q_1, \triangleright u_1 a_1 v_1) \vdash_M \cdots \vdash_M (h, \triangleright \sqcup)$$

于是改造图灵机, 让其用 state 标记读写头, 并且停机时 输出为空.

 $\triangleright \sqcup sw \triangleleft \vdash_M \triangleright u_1 a_1 q_1 v_1 \triangleleft \vdash_M \cdots \vdash_M \triangleright \sqcup h \triangleleft$

S 就进行 M 的回溯, 从最后的 configuration 推到最 初的 configuration.

$$S \Rightarrow^* \triangleright \sqcup h \triangleleft \Rightarrow^* \cdots \Rightarrow^* \triangleright u_1 a_1 q_1 v_1 \triangleleft$$
$$\Rightarrow^* \triangleright \sqcup s w \triangleleft$$
$$\Rightarrow^* w$$

于是增加如下规则:

- $-S \rightarrow \triangleright \sqcup h \triangleleft$
- $\triangleright \sqcup s \rightarrow e$
- $\triangleleft \rightarrow e$
- 剩下的情况只有三种可能: 写或左右移
 - 1) If M has $\delta(q, a) = (p, b)$ for some $a, b \in \Sigma$.
 - $\therefore uaqv \vdash_M ubpv$
 - $\therefore bp \rightarrow aq$
 - 2) If M has $\delta(q, a) = (p, \rightarrow)$
 - $\therefore uaqbv \vdash_M uabpv$
 - $\therefore abp \rightarrow aqb$

for each $b \in \Sigma$.

但有特殊情况, 若 a 之后都是空格, i.e.

- $\therefore uaq \triangleleft \vdash_M ua \sqcup p \triangleleft$
- $\therefore a \sqcup p \triangleleft \rightarrow aq \triangleleft$
- 3) M has $\delta(q, a) = (p, \leftarrow)$ 类似

Q.E.D.

IX Computational Complexity

decidable:

- efficiently solvable (tractable)
- inefficiently solvable (intractable)

resource: time and space

e.g.
$$:A = \{0^k 1^k : k \ge 0\}$$

Definition IX.1. Let M be a deterministic TM that halts on every input.

The running time f M is a function $f: N \to N$, where on any input of length n, M halts within f(n) steps.

Definition IX.2. We say a language L is in DTIME(t(n)) if L is decided by some standard DTM with running time O(t(n))

If Multiple tapes TM is t(n), single tape TM is at most $O(t^2(n))$. 因为多带每走一步,单带需要以一次扫描确定多带的每一个位置并修改,扫一遍的时间是 t(n).

Thesis IX.2.1 (The Cobham-Edmond Thesis). Any "reasonable" and "general" deterministic model of computational is polynomially related.

Definition IX.3. Let P(polynomially decidable) be the set of language that are decided by some DTM with poly(n) time. (robust)

Theorem IX.4. Every context-free language is in P

Proof. If A is context-free, \exists CFG $G = (V, \Sigma, S, R)$ in CNF generates A, given a string of length n, enumerate all derivations of length $\geq n-1$ (total $|R|^{n-1}$)

Dynamic Programing,

- $w = a_1 \dots a_n, S \Rightarrow^* w$?
- subproblem: for $1 \le i \le j \le n$, define

$$T[i,j] = \{ A \in V - \Sigma : A \Rightarrow^* a_i \dots a_j \}$$

- Goal: $T[1, n], S \in T[1, n]$
- Base case: for $1 \le i \le n$,

$$T[i, i] = \{ A \in V - \Sigma : A \to a_i \}$$

• Recurrence: for $1 \le i \le j \le n$

$$T[i,j] = \bigcup_{k=i}^{j-1} \{A \to BC : B \in T[i,k] \land C \in T[k+1,j]\}$$

• n^2 subproblems, each subproblem costs: $n \cdot |R|^3$.

total: $(n^3|R|^3)$, and R is constant Q.E.D.

1. SAT(satisfiability) Problem

Let $X = \{x_1, \dots, x_n\}$ be a set of boolean variable.

- $x_1, \ldots, x_n, \bar{x}_1, \ldots, \bar{x}_n$: literals
- a clause is like $x_1 \vee x_2 \vee \bar{x}_3$
- a boolean formular is like

$$(x_1 \lor x_2 \lor \bar{x}_3) \land (x_2 \lor x_3 \lor \bar{x}_4) \land (x_1 \lor x_3 \lor x_5)$$

• A truth assignment of X is $T: X \to \{0, 1\}$

SAT: given a formular F, is there any assignment T that makes F true/ satisfies F.

We don't know whether $SAT \in P$ or not.

2. NP

Definition IX.5. Let M be a non-deterministic TM such that for any input every branch of M halts within k steps, where k depends only on the input.

The running time of M is a function $f: N \to N$, for any input of length n, every branch of M halts within f(n) steps.

SAT can be decided by NTM poly time.

M =on input F

Algorithm IX.1 M

Require: F

non-deterministically generate an assignment T

if T satisfies F then

accept

else

reject

end if

Definition IX.6. NP is the set of all languages that can be decided by some NTM in poly time.

Definition IX.7. We say that a language A is polynomially verifiable, if there is a polynomially $DTM\ V$ such that for $x \in \Sigma^*$,

- 1) if $x \in A$, $\exists y \text{ with } |y| \leq poly(|x|) \text{ s.t. } V \text{ accepts }$ "x""y" (completeness)
- 2) if $x \notin A$, $\forall y \text{ with } |y| \leq poly(|x|)$, V rejects "x""y" (soundness)

 $called\ y\ certificate$

e.g.

- A = SAT
- x = boolean formular

- y =an truth assignment that satisfies x
- V =on input xand y

Algorithm IX.2 V

evaluate x using y

if x is satisfied by y then

accept

else

reject

end if

Theorem IX.8. A language is polynomially verifiable iff it's NP

Proof. $\Rightarrow \exists$ polynomial-time verifier V

Algorithm IX.3 M (If $x \in A$?)

Require: x

non-deterministically generate a certificate y with $|y| \le poly(|x|)$

run V on "x""y"

if V accepts then

accept

else

reject

end if

 $\Leftarrow \exists \text{ NTM } M \text{ decides } A \text{ in } poly(|x|) \text{ time.}$

construct V, for $x \in A$, certificate y = branch that accepts $x, \, |y| \leq poly(|x|)$

Algorithm IX.4 V

Require: x and y

run M on x under the guidance of y

if M accepts then

accept

else

reject

end if

Q.E.D.

 $P \subseteq NP$

P = NP? i.e. 解决问题的难度与验证问题的难度是否相

等.

widely believe $P \neq NP$

X NP-complete Problem

Definition X.1. A NP-complete problem is in p iff P = NP.

1. polynomial-time reductions

Definition X.2. A reduction f from A to B ($A \le B$). And f can be computed by some DTM within poly(n) time. Called,

$$A \leq_{n} B$$

Theorem X.3. If $A \leq_p B$, and $B \in P$, then $A \in P$

Proof.

$$x \to f(x) \to \text{ decide } f(x) \in B \to$$

Totsl time:

$$poly(|x|) + poly(|f(x)|) = poly(|x|)$$

where $|f(x)| \leq poly(|x|)$

Q.E.D.

e.g. Obviously, $3SAT \leq_p SAT$, f(x) = xBut we also have $SAT \leq_p 3SAT$

Proof. 对每一个 set, 多拆少补.

1)
$$(x_1 \lor x_2) \Rightarrow (x_1 \lor x_2 \lor y) \land (x_1 \lor x_2 \lor \bar{y})$$

2)

$$(x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5)$$

$$\Rightarrow (x_1 \lor x_2 \lor y) \land (\bar{y} \lor x_3 \lor x_4 \lor x_5)$$

$$\Rightarrow (x_1 \lor x_2 \lor y) \land (\bar{y} \lor x_3 \lor y_2) \land (\bar{y}_2 \lor x_4 \lor x_5)$$

Q.E.D.

Definition X.4 (Clique). For G = (V, E), a clique of G is a subgraph G' = (V', E') with $V' \subseteq V$, $E' \subseteq E$ such that G' is a complete graph.

 $Clique = \{ G'''k'' : G \text{ has a clique with at least } k \text{ nodes} \}$

$$3SAT \leq_p Clique$$

Proof. m clause F and 3m nodes G. F is satisfiable $\iff G$ has a clique with at least m nodes. Q.E.D.

Definition X.5 (vertex cover). A vertex cover of G is a subset $V' \subseteq V$ s.t. for each $e \in E$, e has at least one endpoint in V'.

 $VC = \{ G'''k'' : G \text{ has a vertex cover with at most } k \text{ nodes} \}$

$$3SAT \leq_p VC$$

Proof. F is satisfiable \iff G has a VC with at most n+2m nodes. Q.E.D.

Definition X.6. A language L is NP-complete if

- 1) $L \in NP$
- 2) $\forall L' \in NP, L' \leq_p L$

Theorem X.7. If a NP-complete language $L \in P$, NP = P. If a NP-complete language $L \notin P$, $NP \neq P$

2. Cook's Theorem

Theorem X.8 (Cook's Theorem). SAT is NP-complete

Proof. Let A be an arbitrary language in NP,

$$A \leq_p SAT$$

i.e. $x \in A \iff F$ is satisfiable $\exists NTMN$ decides A in n^k times.

$$a_1, \ldots, a_n \in A$$

Q.E.D.

3. space