Introduction to cryptography

2B. Intermezzo: authenticated encryption

Gilles VAN ASSCHE Olivier MARKOWITCH

INFO-F-405 Université Libre de Bruxelles 2020-2021

© 2019-2020 Gilles Van Assche and Olivier Markowitch. All rights reserved.

What is authenticated encryption (AE)?

Definition

- \blacksquare M = (A, P) message with associated data and plaintext
- \blacksquare $M_c = (A, C)$ cryptogram with associated data and ciphertext
- **wrapping**: M to M_c
- unwrapping: M_c to M (symmetric cryptography: same key used for both operations)
- Authentication aspects
 - unwrapping includes verification of M_c
 ⇒ if not valid, it returns an error ⊥
 - wrap operation adds redundancy: |C| > |P| \Leftrightarrow often coded as tag at the end C = C'|T

What is authenticated encryption (AE)?

- Definition
 - \blacksquare M = (A, P) message with associated data and plaintext
 - \blacksquare $M_c = (A, C)$ cryptogram with associated data and ciphertext
 - **wrapping**: M to M_c
 - unwrapping: M_c to M (symmetric cryptography: same key used for both operations)
- Authentication aspects
 - \blacksquare unwrapping includes **verification** of M_c
 - \Rightarrow if not valid, it returns an error \bot
 - wrap operation adds redundancy: |C| > |P|
 - \Leftrightarrow often coded as tag at the end $C = C' \| T$

Why is there expansion?

Limitation of AE: traffic analysis

- Traffic analysis:
 - length of messages
 - number of messages
- Solution
 - creating dummy messages
 - random-length padding of plaintext
 - to be done on higher layer
 - \Rightarrow AE scheme security should be independent from this layer

Limitation of AE: traffic analysis

- Traffic analysis:
 - length of messages
 - number of messages
- Solution
 - creating dummy messages
 - random-length padding of plaintext
 - to be done on higher layer
 - \Rightarrow AE scheme security should be independent from this layer

Limitation of AE: need for message uniqueness

■ Concrete AE proposals are deterministic

$$M = M' \Leftrightarrow M_c = M'_c$$

- information leakage
- concern of replay attacks at unwrapping end
- Solution is to use a **nonce** (=<u>n</u>umber used only <u>once</u>)
 - impose that A is unique for the given key K
 - often presented as a separate field: (A, N)
 - \blacksquare wrapping engine shall ensure (K, N) is unique
 - wrapping becomes stateful
 - a simple message counter suffices
 - \Rightarrow From now on we always include a nonce Λ

Limitation of AE: need for message uniqueness

Concrete AE proposals are deterministic

$$M = M' \Leftrightarrow M_c = M'_c$$

- information leakage
- concern of replay attacks at unwrapping end
- Solution is to use a **nonce** (=<u>n</u>umber used only <u>once</u>)
 - impose that A is unique for the given key K
 - often presented as a separate field: (A, N)
 - \blacksquare wrapping engine shall ensure (K, N) is unique
 - wrapping becomes stateful
 - a simple message counter suffices
 - \Rightarrow From now on we always include a nonce N

Picture by Alan Bruce

Cryptogram authenticates full sequence so far

- Additional protection against:
 - insertion,
 - omission,
 - re-ordering of messages within a session
- Nonce per session
 - in case of unique session key: no nonce!
- Alternative view:
 - splits a long cryptogram in shorter ones
 - intermediate tags

Cryptogram authenticates full sequence so far

- Additional protection against:
 - insertion,
 - omission,
 - re-ordering of messages within a session
- Nonce per session
 - in case of unique session key: no nonce!
- Alternative view:
 - splits a long cryptogram in shorter ones
 - intermediate tags

Cryptogram authenticates full sequence so far

- Additional protection against:
 - insertion,
 - omission,
 - re-ordering of messages within a session
- Nonce per session
 - in case of unique session key: no nonce!
- Alternative view:
 - splits a long cryptogram in shorter ones
 - intermediate tags

Cryptogram authenticates full sequence so far

- Additional protection against:
 - insertion,
 - omission,
 - re-ordering of messages within a session
- Nonce per session
 - in case of unique session key: no nonce!
- Alternative view:
 - splits a long cryptogram in shorter ones
 - intermediate tags