Evaluation

Evaluation

- How predictive is the model we learned?
- Error on the training data is *not* a good indicator of performance on future data
- Simple solution that can be used if lots of (labeled) data is available:
 - ☐ Split data into training and test set
- However: (labeled) data is usually limited
 - ☐ More sophisticated techniques need to be used

Training and testing

- Natural performance measure for classification problems: *error* rate
 - ☐ Success: instance's class is predicted correctly
 - ☐ *Error*: instance's class is predicted incorrectly
 - ☐ *Error rate*: proportion of errors made over the whole set of instances
- * Resubstitution error: error rate obtained from training data
 - ☐ Resubstitution error is (hopelessly) optimistic!
- * *Test set*: independent instances that have played no part in formation of classifier
 - Assumption: both training data and test data are representative samples of the underlying problem

Making the most of the data

- ❖ Once evaluation is complete, *all the data* can be used to build the final classifier
- Generally, the larger the training data the better the classifier
- * The larger the test data the more accurate the error estimate
- * *Holdout procedure*: method of splitting original data into training and test set
 - □ Dilemma: ideally both training set *and* test set should be large!

Predicting performance

- Assume the estimated error rate is 25%. How close is this to the true error rate?
 - Depends on the amount of test data
- Prediction is just like tossing a (biased!) coin
 - "Head" is a "success", "tail" is an "error"
- ❖ In statistics, a succession of independent events like this is called a *Bernoulli process*
 - ☐ Statistical theory provides us with **confidence intervals** for the true underlying proportion

Confidence intervals

We would like to state propositions such as:

The true success rate lies within a certain interval with a certain confidence

- Example: 750 successes in N=1000 trials
 □ Estimated success rate: 75%
 □ How close is this to the true success rate p?
 Answer: with 80% confidence p∈[73.2,76.7]
 Another example: 75 successes in N=100 trials
 □ Estimated success rate: 75%
 □ With 80% confidence p∈[69.1,80.1]
 i.e. the probability that p∈[69.1,80.1] is 0.8.
- \diamond Bigger the *N* more confident we are, i.e. the surrounding interval is smaller.
 - \square Above: for N=100 we were less confident than for N=1000.

Mean and Variance of S/N

- \clubsuit Let S_N be the random variable for the success rate in N trials.
- \diamond Let the true probability of success be p.
- \bullet Then the true probability of error is q=1-p.
- \clubsuit What's the mean of S_1 i.e. N=1?

$$1*p + 0*q = p$$

***** What's the variance?

$$(1-p)^{2}p + (0-p)^{2}q$$

= $q^{2}p+p^{2}q$
= $pq(p+q)$
= pq

- \bullet In general for S_N :
 - \Box the mean continues to be p, however
 - \Box the variance is: pq/N.

- \diamond We approximate p with the success rate in N trials, i.e. S/N.
 - \square We denote the approximation by p'
- \clubsuit By the Central Limit Theorem, when N is big, the probability distribution of S_N is approximated by a normal distribution with
 - \square mean p and
 - \Box variance pq/N.

* c% confidence interval $[-z \le X \le z]$ for random variable with 0 mean is given by:

$$Pr[-z \le X \le z] = c$$

With a symmetric distribution:

$$Pr[-z \le X \le z] = 1 - 2 \times Pr[x \ge z]$$

Confidence limits for the normal distribution with 0 mean and a variance of 1:

$\Pr[X \ge z]$	Z
0.1%	3.09
0.5%	2.58
1%	2.33
5%	1.65
10%	1.28
20%	0.84
40%	0.25

Thus: $Pr[-1.65 \le X \le 1.65] = 90\%$

To use this we have to transform our random variable S_N to have mean=0 and variance=1:

$$\Pr\left[-1.65 \le \frac{S_N - p'}{\sqrt{\frac{p'q'}{N}}} \le 1.65\right] = 90\%$$

Let N=100, and 70 successes

$$p' = .7$$
 $q' = .3$
 $sqrt(.7*.3/100) = .046$

Two equations to solve:

$$(S_N - 0.7) / .046 = -1.65$$

 $S_N = .7 - 1.65 * .046 = .624$
 $(S_N - 0.7) / .046 = 1.65$
 $S_N = .7 + 1.65 * .046 = .776$

$\Pr[X \ge Z]$	Z
0.1%	3.09
0.5%	2.58
1%	2.33
5%	1.65
10%	1.28
20%	0.84
40%	0.25

Thus, we say:

With a 90% confidence we have

$$0.624 \le S_N \le 0.776$$

p, the true success rate of the classifier, being the mean of S_N , will also be

$$0.624 \le p \le 0.776$$

Summary

- Suppose I want to be C% confident in my estimation.
 - □ Looking at a table we find z such that: $\Pr[-z \le X \le z] \approx C\%$
 - \square E.g. for C=90, we got z=1.65
- Solving equations we get: $\frac{S}{N} = p' \pm z \cdot \sqrt{\frac{p'q'}{N}}$
- * We say: With confidence C%, we have

$$p \in \left[p' - z \cdot \sqrt{\frac{p'q'}{N}}, p' + z \cdot \sqrt{\frac{p'q'}{N}} \right]$$

Cross-validation

- \clubsuit First step: split data into k subsets of equal size
- ❖ Second step: use each subset in turn for testing, the remainder for training
- **❖** Called *k-fold cross-validation*
- Often the subsets are stratified before the cross-validation is performed
- The error estimates are averaged to yield an overall error estimate
- Standard method for evaluation: stratified 10-fold crossvalidation

Leave-One-Out cross-validation

- Leave-One-Out:a particular form of cross-validation:
 - ☐ Set number of folds to number of training instances
 - \square i.e., for *n* training instances, build classifier *n* times
- Makes best use of the data
- Involves no random subsampling
- But, computationally expensive

Leave-One-Out-CV and stratification

- Disadvantage of Leave-One-Out-CV: stratification is not possible
 - ☐ It *guarantees* a non-stratified sample because there is only one instance in the test set!
- Extreme example: completely random dataset split equally into two classes
 - Best classifier predicts majority class
 - □ 50% accuracy on fresh data
 - ☐ Leave-One-Out-CV estimate is 100% error!