Abstract Measure Theory

Uncultured Tramp

September 18, 2022

Contents

1	Mea	Measure Algebras		
	1.1	Subjec	t	1
		1.1.1	Definition and Basic Property	1
		1.1.2	Measure Algebras Generated by Measure Spaces	4
		1.1.3	Stone Representation Theorem	5
		1.1.4	Ideals	6
		1.1.5	Measure Properties	8
		1.1.6	Connections with other Boolean Properties	11
		1.1.7	Subspace Measures and Indefinite Integrals	13
		1.1.8	Simple Products	14
		1.1.9	Strictly Localizable Spaces	16
		1.1.10	Subalgebras	17
		1.1.11	Localization	19
		1.1.12	Stone Spaces	20
		1.1.13	Purely Infinite Elements	22
	1.2	Topolo	gy	23
		1.2.1	Subject	23
		1.2.2	Relations with an Order Structure	25
		1.2.3	Classification Theorems	29
		1.2.4	Closed Subalgebras	31
		1.2.5	Metric Space of Finite Elements	33
		1.2.6	Relation with Convergence In Measure	34
	1.3	Catego	ory	34
	1.4	Radon	-Nikodym Parallels	34
2	2 Maharam's Theory			34
3	3 Abstract Ergodic Theory			34
4	4 Measurable Algebras			34

Intro

1 Measure Algebras

1.1 Subject

1.1.1 Definition and Basic Property

$$\begin{split} &\text{MeasureAlgebra} :: ? \sum A : \sigma\text{-DedekindComplete} \cdot A \to \mathbb{R}_+ \\ &(A,\mu) : \text{MeasureAlgebra} \iff \forall a \in A \cdot \mu(a) = 0 \iff a = 0 \& \\ &\& \ \forall a : \text{PairwiseDisjointElements}(\mathbb{N},A) \cdot \mu \left(\bigvee_{n=1}^\infty a_n\right) = \sum_{n=1}^\infty \mu(a_n) \\ &\text{MeasureMonotonicity} :: \forall (A,\mu) : \text{MeasureAlgebra} \cdot \forall a,b \in A \cdot a \leq b \Rightarrow \mu(a) \leq \mu(b) \\ &\text{Proof} = \\ &\text{Write } \mu(b) = \mu(a) + \mu(b \setminus a) \geq \mu(a). \\ &\square \\ &\text{MeasureStrictMonotonicity} :: \forall (A,\mu) : \text{MeasureAlgebra} \cdot \forall a,b \in A \cdot a > b \Rightarrow \mu(a) > \mu(b) \\ &\text{Proof} = \\ &\text{Definition of measure algebra implies that } \mu(b \setminus a) > 0 \cdot \\ &\text{Write } \mu(b) = \mu(a) + \mu(b \setminus a) > \mu(a). \\ &\square \\ &\text{MinkovskyIneq} :: \forall (A,\mu) : \text{MeasureAlgebra} \cdot \forall a,b \in A \cdot \mu(a \vee b) \leq \mu(a) + \mu(b) \\ &\text{Proof} = \\ &\text{Write } \mu(a) + \mu(b) = \mu(a \setminus ab) + \mu(ab) + \mu(b \setminus ab) + \mu(ab) \geq mu(a \setminus ab) + \mu(ab) + \mu(b \setminus ab = \mu(a \vee b) \cdot \square \\ &\square \\ &\text{MonotonicSupremumAsLimit} :: \forall (A,\mu) : \text{MeasureAlgebra} \cdot \forall a : \mathbb{N} \uparrow A \cdot \mu \left(\bigvee_{n=1}^\infty a_n\right) = \lim_{n \to \infty} \mu(a_n) \\ &\text{Proof} = \\ &\text{Construct disjoint sequence } b_n = a_n \setminus \bigvee^{n-1} a_k. \end{aligned}$$

Then by construction $\mu\left(\bigvee_{n=1}^{\infty}a_n\right)=\mu\left(\bigvee_{n=1}^{\infty}b_n\right)=\sum_{n=1}^{\infty}\mu(b_n)=\lim_{n\to\infty}\sum_{k=1}^{n}\mu(b_n)=\lim_{n\to\infty}\mu\left(\bigvee_{k=1}^{n}b_k\right)=\lim_{n\to\infty}\mu(a_n).$

Proof =

Construct increasing sequence $b_n = \bigvee_{k=1}^n a_k$.

Then by construction $\mu\left(\bigvee_{n=1}^{\infty}a_n\right)=\mu\left(\bigvee_{n=1}^{\infty}b_n\right)=\lim_{n\to\infty}\mu(b_n)=\lim_{n\to\infty}\mu\left(\bigvee_{k=1}^{n}a_k\right)\leq\lim_{n\to\infty}\sum_{k=1}^{n}\mu(a_k)=\sum_{n=1}^{\infty}\mu(a_n)$.

MonotonicInfimumAsLimit ::

$$:: \forall (A,\mu) : \texttt{MeasureAlgebra} \ . \ \forall a : \mathbb{N} \downarrow A \ . \ \forall \mathbb{N} : \inf_{n \in \mathbb{N}} \mu(a_n) < \infty \ . \ \mu\left(\bigwedge_{n=1}^{\infty} a_n\right) = \lim_{n \to \infty} \mu(a_n)$$

Proof =

Without loss of generality assume that $\mu(a_1) < \infty$.

Then construct he increasing sequence $b_n = a_1 \setminus a_n$.

Then
$$\mu(a_1) - \mu\left(\bigwedge_{n=1}^{\infty} a_n\right) = \mu\left(a_1 \setminus \bigwedge_{n=1}^{\infty} a_n\right) = \mu\left(\bigvee_{n=1}^{\infty} a_1 \setminus a_n\right) = \mu\left(\bigvee_{n=1}^{\infty} b_n\right) = \lim_{n \to \infty} \mu(b_n) = \lim_{n \to$$

 $= \lim_{n \to \infty} \mu\left(a_1 \setminus a_n\right) = \lim_{n \to \infty} \mu(a_1) - \mu(a_n) = \mu(a_1) - \lim_{n \to \infty} \mu(a_n)$

So basic algebraic manipulations $\mu\left(\bigwedge_{n=1}^{\infty} a_n\right) = \lim_{n \to \infty} \mu(a_n)$.

SupremumExistance ::

 $:: \forall (A,\mu) : \texttt{MeasureAlgebra} \; . \; \forall C : \texttt{UpwardsDirected}(A) \; . \; \forall \aleph : \sup_{c \in C} \mu(c) < \infty \; . \; \exists a \in A : a = \sup C = \max(C) = 0$

Proof =

- 1 Assume $\gamma = \sup_{c \in C} \mu(c)$.
- 2 Then there exists a sequence of $a: \mathbb{N} \to C$ such that $\mu(a_n) \geq \gamma 2^{-n}$.
- 3 As C is upwards closed, it is possible to find $c: \mathbb{N} \to C$ such that $c_{n+1} \geq a_n \vee c_n$.
- 4 Then c is monotonic-nondecreasing and so it has $\mu\left(\bigvee_{n=1}^{\infty}c_{n}\right)=\lim_{n\to\infty}\mu(c_{n})=\gamma$.
- 4.1 Note that $\gamma \ge \mu(c_n) \ge \gamma 2^{-n}$.
- $5 \text{ let } d = \bigvee_{n=1}^{\infty} c_n.$
- $6 \ d \ge f$ for everty $f \in C$.
- 6.1 Assume this is false.
- 6.2 Then $f \setminus d \neq 0$ and so $\alpha = \mu(f \setminus d) > 0$.
- 6.3 Then there exists n such that $\gamma \mu(c_n) < \alpha$.
- 6.4 As C is upwards derected there is $g \in C$ such that $g \geq f \vee c_n$.
- 6.5 But $\mu(g) \ge \mu(f \lor c_n) = \mu(c_n) + \mu(f \setminus c_n) \ge \mu(c_n) + \mu(f \setminus d) > \gamma$ which is impossible.
- 7 If there is another f with the property (6), then $d = \bigvee_{n=1}^{\infty} c_n \leq f$ as $c_n \leq f$ for each $n \in \mathbb{N}$.

UpperContinuity ::

 $:: \forall (A,\mu) : \texttt{MeasureAlgebra} \; . \; \forall C : \texttt{UpwardsDirected}(A) \; . \; \forall \aleph : \exists a \in A : a = \sup C \; . \; \sup_{c \in C} \mu(c) = \mu \left(\sup C\right)$

Proof =

Case $\sup_{c \in C} \mu(c) = \infty$ is trivial.

Finite case follows from the construction in the previous theorem.

DisjointUpperContinuity ::

 $:: \forall (A, \mu) : \texttt{MeasureAlgebra} . \forall C : \texttt{PairwiseDisjointElements}(A) . \forall \aleph : \exists a \in A : a = \sup C$.

$$. \mu \left(\sup C \right) = \sum_{c \in C} \mu(c)$$

Proof =

Construct a new set $D = \left\{ \bigvee_{n=1}^{\infty} c_k \middle| c : \mathbb{N} \to C \right\}$.

Then D is upwards directed and $\sup C = \sup D$.

But this is evedent that $\mu\left(\sup D\right) = \sup_{d \in D} \mu(d) = \sup_{c: \mathbb{N} \to C} \mu\left(\bigvee_{n=1} c_n\right) = \sup_{n \in \mathbb{N}, c: \{1, \dots, n\} \to C} \sum_{k=1}^n \mu(c_k) = \sum_{c \in C} \mu(c).$

InfimumExistance ::

 $:: \forall (A,\mu) : \texttt{MeasureAlgebra} \; . \; \forall C : \texttt{DownwaedDirected}(A) \; . \; \forall \aleph : \inf_{c \in C} \mu(c) < \infty \; . \; \exists a \in A : a = \inf C \in A : A = \bigcap C : A =$

Proof =

- 1 There exists some $a \in C$ such that $\mu(a) < \infty$.
- 2 Construct another set $D = a \setminus C$.
- 3 Then D is upwards directed and $\sup_{d \in D} \mu(d) \le \mu(a) < \infty$.
- 4 So there is $d = \sup d$.
- 5 Define $f = a \setminus d$.
- $6 f \le c \text{ for any } c \in C \text{ as } a \setminus f \ge a \setminus c.$
- 7 if some g has property (6) then $a \setminus g \ge d$ and so $g \le f$.

LowerContinuity ::

 $:: \forall (A, \mu) : \texttt{MeasureAlgebra} . \forall C : \texttt{DownwardsDirected}(A) . \forall \aleph : \exists a \in A : a = \inf C$.

$$\forall \exists : \inf_{c \in C} \mu(c) < \infty : \inf_{c \in C} \mu(c) = \mu (\inf C)$$

Proof =

Use the construction in the previous theorem.

1.1.2 Measure Algebras Generated by Measure Spaces

 $measureAlgebra :: MEAS \rightarrow MeasureAlgebra$

$$\texttt{measureAlgebra}\left(X,\Sigma,\mu\right) = \left(A_{\mu},\bar{\mu}\right) := \left(\frac{\Sigma}{\Sigma \cap \mathcal{N}_{\mu}},[E] \mapsto \mu(E)\right)$$

This is obviously well defined as [E] = [F] iff $\mu(E \triangle F) = 0$.

canonomical Projection $:: \forall (X, \Sigma, \mu) \in \mathsf{MEAS} . \sigma\text{-BOOL}(\Sigma, A_{\mu})$ canonical Projection $(E) = \pi_{\mu}(E) := [E]$

- 1 The algebraic properites are obvious as $\Sigma \cap \mathcal{N}_{\mu}$ is an ideal.
- 2 In order to prove sigma-continuity assume $E: \mathbb{N} \to \Sigma$.
- 2.1 Let $Z: \mathbb{N} \to \Sigma \cap \mathcal{N}_{\mu}$.

2.2 Then
$$F_Z = \bigvee_{n=1}^{\infty} (E_n \triangle Z_n) = \left(\bigvee_{n=1}^{\infty} E_n\right) \triangle \left(\bigvee_{n=1}^{\infty} Z_n\right).$$

2.3 Note that
$$\mu\left(\bigvee_{n=1}^{\infty} Z_n\right) \leq \sum_{n=1}^{\infty} \mu(Z_n) = 0.$$

2.4 So
$$\bigvee_{n=1}^{\infty} Z_n \in \Sigma \cap \mathcal{N}_{\mu}$$
 as $\mu \geq 0$.

2.5 Thus
$$[F_Z] = \left[\bigcap_{n=1}^{\infty} E_n\right]$$
 for any selection of Z .

2.6 This means that
$$\pi_{\mu}\left(\bigcap_{n=1}^{\infty} E_n\right) = \bigvee_{n=1}^{\infty} \pi_{\mu}(E_n)$$
.

 $\begin{tabular}{ll} {\tt MeasureAlgebraMonotonicity} &:: \forall (X,\Sigma,\mu) \in {\tt MEAS} \ . \ \forall T \subset_{\sigma} \Sigma \ . \ \pi_{\mu}(T) \subset_{\sigma} A_{\mu} \\ {\tt Proof} &= \\ \end{tabular}$

- 1 Clearly $B = \pi_{\mu}(T) \subset A_{\mu}$.
- 2 Also as T is $\sigma\text{-algebra}$ and $\pi-\mu$ is a $\sigma\text{-continuous}$ homomorphism B is again.

 ${\tt MeasureAlgebraInverseMonotonicity} \, :: \, \forall (X, \Sigma, \mu) \in {\tt MEAS} \, . \, \forall B \subset_{\sigma} A_{\mu} \, . \, \pi_{\mu}^{-1}(B) \subset_{\sigma} \Sigma_{\mu} \cup {\tt MEAS} \, . \, \forall B \in {\tt MEAS}$

Proof =

- 1 Clearly $T = \pi_{\mu}^{-1}(B) \subset \Sigma$.
- 2 Assume F is a set constructed by applying σ -algebra operations to setes $E_1, E_2, \ldots \in T$.
- 3 Then $\pi_{\mu}(F)$ can be constructed by applying same operations to $\pi(E_1), \pi(E_2), \ldots$
- 4 This implies that $\pi_{\mu}(F) \in B$ and reciprorary $F \in T$.
- 5 Thus T is a σ -algebra.

1.1.3 Stone Representation Theorem

- 1 By Loomis-Sikorski representation there exists a set X with a sigma-algebra Σ and sigma-ideal I such that $\frac{\Sigma}{I}\cong_{\mathsf{BOOL}} A$.
- 2 Then there is a canonical projetion $\pi_I \in \mathsf{BOOL}(\Sigma, A)$.
- 3 Define $\nu = \pi_I \mu$.
- 4ν is measure on Σ .
- 4.1 $\nu(\emptyset) = \mu(0) = 0$.
- 4.2 Assume E is a disjoint sequence in Σ .
- 4.3 Then $\pi_I(E_n)\pi_I(E_m) = \pi_i(E_n \cap E_m) = \pi_i(\emptyset) = 0$, so $\pi_I(E)$ is disjoint in A.

4.4 Thus,
$$\nu\left(\bigcup_{n=1}^{\infty} E_n\right) = \pi_I \mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \mu\left(\bigvee_{n=1}^{\infty} \pi_I(E_n)\right) = \sum_{n=1}^{\infty} \pi_I \mu(E_n) = \sum_{n=1}^{\infty} \nu(E_n)$$
.

5 Also by consytuction $\mathcal{N}_{\nu} \cap \Sigma = I$, so $(A, \mu) = (A_{\nu}, \bar{\nu})$.

 $spaceOfStone :: MeasureAlgebra \rightarrow MEAS$

 ${\tt SpaceOfStone}\,(A,\mu) = (Z_A,\dot{\Sigma}_\mu,\dot{\mu}) := {\tt StoneRepresentationTheorem}(A,\mu)$

1.1.4 Ideals

Proof =

This is obvious.

measureQuotient ::

$$:: \forall (A,\mu) : \texttt{MeasureAlgebra} . \ \forall I : \texttt{Ideal}(A) . \ \forall [a] \in \frac{A}{I} . \ \exists \gamma \in \overset{\infty}{\mathbb{R}}_{++} \ . \ \gamma = \min \{ \mu(b) | b \in A, \pi_I(b) = [a] \}$$

Proof =

- 1 $\gamma = \inf\{\mu(b)|b \in A, \pi_I(b) = [a]\}$ exists as a set is bounded by below by 0.
- 2 If $\gamma = \infty$ then the result is obvious.
- 3 Otherwise there is a decreasing sequence $b: \mathbb{N} \to A$ such that $\pi_I(b_n) = [a]$ for any n and $\lim_{n \to \infty} \mu(b_n) = \gamma$.

4 Then
$$c = \bigwedge_{n=1}^{\infty} b_n$$
 is such that $\mu(c) = \gamma$ and $\pi_I(c) = a$.

4.1 Clearly
$$\pi_I \left(\bigwedge_{n=1}^{\infty} b_n \right) = \bigwedge_{n=1}^{\infty} \pi_I(b_n) = \bigwedge_{n=1}^{\infty} [a] = [a].$$

5 So the infimum is atteined.

measureQuotient ::
$$\prod(A,\mu)$$
 : MeasureAlgebra . $\prod I$: Ideal (A) . $\frac{A}{I} \to \mathbb{R}_{++}$ measureQuotient $(a) = \mu_I(a)$:= $\min\{\mu(b)|b \in A, \pi_I(b) = a\}$

$$\mbox{finiteElementsIdeal} :: \prod (A,\mu) : \mbox{MeasureAlgebra} \; . \; \mbox{Ideal}(A) \\ \mbox{finiteElementsIdeal} \; () = A^f := \{a \in A | \mu(a) < \infty\} \\$$

 ${\tt MeasureIdealQuotient} \ :: \ \forall (A,\mu) : {\tt MeasureAlgebra} \ . \ \forall I : {\tt Ideal}(A) \ . \ {\tt MeasureAlgebra} \left(\frac{A}{I},\mu_I\right)$

Proof =

- 1 Clearly $\mu_I(0) = 0$.
- 2 Assume that $[a] \neq 0$.
- 2.1 Then there exists $b \in A$ such that $\pi_I(a) = [a]$ and $\mu(b) = \mu_I[a]$.
- 2.2 As $[a] \neq 0$, then $b \neq 0$, and henceforth $\mu(b) \neq 0$.
- 2.3 Thus, $\mu_I[a] \neq 0$.
- 3 Assume $[a]: \mathbb{N} \to \frac{A}{I}$ is disjoint.
- 3.1 It is possible to select representatives b_n for each $[a_n]$ such that $\mu(b_n) = \mu_I[a_n]$.
- 3.2 Then $b_n b_m \in I$ if $n \neq m$.
- 3.3 Construct a new sequence $c_n = b_n + \sum_{k=1}^{n-1} b_n b_k$ is a disjoint representative sequence for $[a_n]$.
- 3.3.1 In fact c = b.

- $3.4 \bigvee_{n=1}^{\infty} c_n$ is the minimal representative of $\bigvee_{n=1}^{\infty} [a_n]$.
- 3.4.1 Assume d is a representative for $\bigvee_{n=1}^{\infty} a_n$.
- 3.4.2 If $\mu(d) < \mu\left(\bigvee_{n=1}^{\infty} c_n\right)$ then we may construct $c_n \wedge d$ which is smaller then c.
- 3.4.3 But this is a contradiction.
- 3.5 So $\mu_I \left(\bigvee_{n=1}^{\infty} [a_n] \right) = \mu \left(\bigvee_{n=1}^{\infty} c_n \right) = \sum_{n=1}^{\infty} \mu(c_n) = \sum_{n=1}^{\infty} \mu_I[a_n].$

1.1.5 Measure Properties

```
ProbabilityAlgebra ::?MeasureAlgebra
(A,\pi): ProbabilityAlgebra \iff \pi(e)=1
FiniteMeasureAlgebra ::?MeasureAlgebra
(A,\mu): FiniteMeasureAlgebra \iff \mu(e) < \infty
\sigma-FiniteMeasureAlgebra ::?MeasureAlgebra
(A,\mu): \sigma\text{-FiniteMeasureAlgebra} \iff \exists a: \mathbb{N} \to A \;.\; \forall n \in \mathbb{N} \;.\; \mu(a_n) < \infty \;\&\; \bigvee^\infty a_n = e
SemifiniteMeasureAlgebra ::?MeasureAlgebra
(A,\mu): SemifiniteMeasureAlgebra \iff \forall a \in A . \mu(a) = \infty \Rightarrow \exists b \in A . b < a \& 0 < \mu(b) < \infty
LocalizableMeasureAlgebra := OrderDedekindComplete & SemifiniteMeasureAlgebra : Type;
ProbabilityConstruction :: \forall (X, \Sigma, \mu) \in \mathsf{MEAS}. Probability(X, \Sigma, \mu) \iff \mathsf{ProbabilityAlgebra}(A_{\mu}, \bar{\mu})
Proof =
 This is obvious.
FiniteConstruction :: \forall (X, \Sigma, \mu) \in \mathsf{MEAS}. Finite(X, \Sigma, \mu) \iff \mathsf{FiniteMeasureAlgebra}(A_{\mu}, \bar{\mu})
Proof =
 This is obvious.
SigmaFiniteConstruction :: \forall (X, \Sigma, \mu) \in \mathsf{MEAS} . \sigma-Finite(X, \Sigma, \mu) \iff \sigma-FiniteMeasureAlgebra(A_{\mu}, \bar{\mu})
Proof =
 This is obvious.
SemifiniteConstruction ::
   :: \forall (X, \Sigma, \mu) \in \mathsf{MEAS}. Semifinite(X, \Sigma, \mu) \iff \mathsf{SemifiniteMeasureAlgebra}(A_{\mu}, \bar{\mu})
Proof =
This is obvious.
LocalizableConstruction ::
   :: \forall (X, \Sigma, \mu) \in \mathsf{MEAS}. Localizable(X, \Sigma, \mu) \iff \mathsf{LocalizableMeasureAlgebra}(A_{\mu}, \bar{\mu})
Proof =
 This is obvious.
```

```
AtomInConstruction ::
          :: \forall (X, \Sigma, \mu) \in \mathsf{MEAS} : \forall E \in \Sigma : E \in \mathrm{Atom}(X, \Sigma, \mu) \iff [E] \in \mathrm{Atom}(A_{\mu}, \bar{\mu})
Proof =
  This is obvious.
  AtomlessConstruction ::
         :: \forall (X, \Sigma, \mu) \in \mathsf{MEAS} : \forall E \in \Sigma : E \in \mathsf{Atomless}(X, \Sigma, \mu) \iff [E] \in \mathsf{Atomless}(A_{\mu}, \bar{\mu})
Proof =
  This is obvious.
  PurelyAtomicConstruction ::
          :: \forall (X, \Sigma, \mu) \in \mathsf{MEAS} : \forall E \in \Sigma : E \in \mathsf{PurelyAtomic}(X, \Sigma, \mu) \iff [E] \in \mathsf{PurelyAtomic}(A_{\mu}, \bar{\mu})
Proof =
  This is obvious.
  П
FinitenessPropertiesIerarchy ::
         :: \forall (A, \mu) : \texttt{MeasureAlgebra} . \texttt{PobabilityAlgebra}(A, \mu) \Rightarrow \texttt{FiniteMeasureAlgebra}(A, \mu) \Rightarrow
          \Rightarrow \sigma-FiniteMeasureAlgebra(A, \mu) \Rightarrow LocalizableMeasureAlgebra(A, \mu) \Rightarrow Semifinite(A, \mu)
Proof =
1 Most implications here are obvious expect the one deriving Localizability from \sigma-finiteness.
2 So assume that (A, \mu) is \sigma-finite.
2.1 Then the corresponding Stone space (ZA, \Sigma_{\mu}, \bar{\mu}) is \sigma-finite.
2.2 But then (\mathsf{Z}A, \Sigma_{\mu}, \bar{\mu}) is localizable.
2.3 So (A, \mu) is also localizable.
  MeasureAlgebraOfCompletion :: \forall (X, \Sigma, \mu) \in \mathsf{MEAS} : A_{\mu} \cong_{\mathsf{BOOL}} A_{\hat{\mu}}
Proof =
This is basically follows from definitions.
  MeasureAlgebraOfLocallyDeterminedCompletion ::
         :: \forall (X, \Sigma, \mu) \in \mathsf{MEAS} \ . \ \exists A_{\mu} \xrightarrow{\phi} A_{\bar{\mu}} : \mathsf{BOOL} \ . \ \forall a \in A_{\bar{\mu}} \ . \ \hat{\bar{\mu}}(a) < \infty \Rightarrow \exists b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) = a \ \& b \in A_{\mu} \ . \ \phi(b) 
         & \forall b \in A_{\mu} : \hat{\mu}(b) < \infty \Rightarrow \hat{\bar{\mu}}(\phi(b)) = \hat{\mu}(b)
Proof =
 . . .
  {\tt localDeterminationMorphism} \, :: \, \prod(X, \Sigma, \mu) \in {\sf MEAS} \, . \, {\sf BOOL}(A_{\mu}, A_{\bar{\mu}})
{	t localDetermination Morphism} \, () = \phi_{\mu} := {	t Measure Algebra Of Locally Determined Completion}
```

```
localDeterminationMorhismInjectivity ::
   :: \forall (X, \Sigma, \mu) \in \mathsf{MEAS}. Semifinite(X, \Sigma, \mu) \iff \mathsf{Injective}(A_{\mu}, A_{\bar{\mu}}, \phi_{\mu})
Proof =
. . .
localDeterminationMorhismBijectivity ::
   :: \forall (X, \Sigma, \mu) \in \mathsf{MEAS}. Localizable(X, \Sigma, \mu) \iff \mathsf{Bijective}(A_{\mu}, A_{\bar{\mu}}, \phi_{\mu})
Proof =
. . .
SemifinitenessCriterion :: \forall (A, \mu) : MeasureAlgebra .
   . SemifiniteMeasureAlgebra(A, \mu) \iff \exists P : \texttt{PartitionOfUnity}(A) . \forall p \in P . \mu(p) < \infty
 1 (\Rightarrow) assume first that (A, \mu) is semifinite.
 1.1 Then A^f is order dense in A.
 1.2 By order density theorem there is a desired partition of unity.
 2 \iff D Let P be the partition of unity.
 2.1 Assume a \in A is such that \mu(a) = \infty.
 2.2 Then there exists p \in P such that pa \neq 0.
 2.3 Note that this means that \mu(pa) > 0.
2.4 Also it is clear that \mu(pa) \leq \mu(p) < \infty.
SemifiniteneSupElementExpression ::
   :: \forall (A,\mu): \texttt{SemifiniteMeasureAlgebra}(A,\mu) \; . \; \forall a \in A \; . \; a = \bigvee \{b \in A: b \leq a, \mu(b) < \infty \}
Proof =
This follows from the previous theorem.
SemifiniteneSupMeasureComputation ::
   :: \forall (A,\mu): \texttt{SemifiniteMeasureAlgebra}(A,\mu) \; . \; \forall a \in A \; . \; \mu(a) = \bigvee \{\mu(b) \in A: b \leq a, \mu(b) < \infty \}
Proof =
This follows from the previous theorem.
```

1.1.6 Connections with other Boolean Properties

SemifiniteIsWeaklyDistributive ::

 $:: \forall (A, \mu) : \mathtt{SemifiniteMeasureAlgebra}(A, \mu) . (\sigma, \infty) - \mathtt{WeaklyDistributive}(A, \mu)$

Proof =

1 Assume $X: \mathbb{N} \to 2^A$ is a sequence of downwards selected sets with $\inf X_n = 0$ for every $n \in \mathbb{N}$.

- 2 Let $C = \{a \in A : \forall n \in \mathbb{N} : \exists x \in X_n : a \ge x\}.$
- 3 Assume $d \in A$ is such that $d \neq 0$.
- 4 Then there is an element $d' \leq d$ such that $0 < \mu(d') < 0$.
- $5 \inf_{x \in X} d'x = 0 \text{ for each } n \in N.$
- 6 Select a sequence $x: \prod_{n=1}^{\infty} X_n$ suc that $\mu(d'x_n) \leq 2^{-n-2}\mu(d')$.
- 7 Define $c = \sup_{n=1} a_n \in C$.
- 8 Then $\mu(d'c) \leq \sum_{n=0}^{\infty} \mu(cx_n) < \mu(d')$.
- 9 This means that $d \not\leq c$.
- 10 And as d was arbitrary inf C = 0.

SemifiniteIffCCC :: $\forall (A, \mu)$: SemifiniteMeasureAlgebra (A, μ) .

 $. \sigma$ -FiniteMeasureAlgebra $(A, \mu) \iff \mathtt{WithCountableChainCondition}(A)$

Proof =

- $1 \iff assume that A has ccc.$
- 1.1 Then there is a partition of unitity P in A consisting of finite elements as A is semifinite.
- 1.2 But as A has $\operatorname{ccc} P$ must be atmost countable.
- 1.3 This proves that A is σ -finite.
- $2 \implies$ assume that (A, μ) is σ -finite.
- 2.1 Then there exists a countable partition of unity P of A with finite elements.
- 2.2 If A is not ccc, then there exists an uncountable refinement Q of A with finite elements.
- 2.3 Then by pigionhole principle there exists $p \in P$ such that set $Q' = \{q \in Q : q \subset p\}$ such that Q' is uncountable.
- 2.4 as for $\mu(q) > 0$ for any $q \in Q'$ by pigionhole principle there exists some $n \in \mathbb{Z}$ such that there are an infinite number of $q \in Q'$ with $\mu(q) \in [2^{-n-1}, 2^{-n}]$.
- 2.5 So $\mu(p) \ge \sum_{q \in Q'} \mu(q) = \infty$, but this is a contradiction.

${\tt SemifiniteIffProbabilityRenormalizationExists} :: \\$

Proof =

- 1 Corresponding Stone space is σ -finite.
- 2 So there exists a proper renormalization of $\bar{\mu}$ to a probability π with the same sets of measure zero.
- 3 Then the measure algebra of $(\mathsf{Z} A, \pi)$ is a probability algebra and $A_\pi \cong_{\mathsf{BOOL}} A$.

1.1.7 Subspace Measures and Indefinite Integrals

MeasurableEnvelopePrincipleIdealIsomorphism ::

 $:: \forall (X, \Sigma, \mu) \in \mathsf{MEAS} \ . \ \forall Y \subset X \ . \ \forall E : \mathtt{MeasurableEnvelope}(X, \Sigma, \mu, Y) \ . \ (A_{\mu|Y}, \widehat{\mu|Y}) \cong_{\mathsf{MA}} \left(([E]), \widehat{\mu}_{|([E])} \right)$

Proof =

This result is technically convoluted but actually is pretty intuituve.

PrincipleIdealIsomorphism ::

$$:: \forall (X, \Sigma, \mu) \in \mathsf{MEAS} \ . \ \forall E \in \Sigma \ . \ (A_{\mu|E}, \widehat{\mu|E}) \cong_{\mathsf{MA}} \left(([E]), \widehat{\mu}_{|([E])} \right)$$

Proof =

A straightforward application of a previous theorem.

ThickEquivalence ::

$$:: \forall (X, \Sigma, \mu) \in \mathsf{MEAS} \ . \ \forall Y : \mathtt{Thick}(X, \Sigma, \mu) \ . \ (A_{\mu|E}, \widehat{\mu|E}) \cong_{\mathsf{MA}} (X, \widehat{\mu})$$

Proof =

A straightforward application of a previous theorem.

IndefiniteIntegralPrincipleIdealIsomorphism ::

$$:: \forall (X, \Sigma, \mu) \in \mathsf{MEAS} . \forall f \in \mathsf{I}_+(X, \Sigma, \mu) . \exists E \in \Sigma . A_{f d\mu} \cong_{\mathsf{BOOL}} ([E])$$

Proof =

We may assume that supp f has a measurable envelope E.

Then the result is obvious as $\mathcal{N}_{\mu} \subset \mathcal{N}_{f d\mu}$.

1.1.8 Simple Products

 $\texttt{simpleProduct} :: \prod_{I \in \mathsf{SET}} (I \to \mathtt{MeasureAlgebra}) \to \mathtt{MeasureAlgebra}$

 $\mathtt{simpleProduct}\left(A,\mu\right) = \prod_{i \in I}\left(A_i,\mu_i\right) := \left(\prod_{i \in I}A_i,\sum_{i \in I}\mu_i\right)$

Obviously $\sum_{i \in I} \mu_i(0) = \sum_{i \in I} 0 = 0.$

Also assume $a: \mathbb{N} \to \prod_{i \in I} A_i$ is disjoint.

Then $\sum_{i \in I} \mu_i \left(\bigvee_{n=1}^{\infty} a_n \right) = \sum_{i \in I} \sum_{n=1}^{\infty} \mu_i(a_{n,i}) = \sum_{n=1}^{\infty} \sum_{i \in I} \mu_i(a_{n,i}) = \sum_{n=1}^{\infty} \sum_{i \in I} \mu_i(a_n).$

PrincipleIdealsInMeasureAlgebras ::

 $:: \forall I \in \mathsf{SET} : \forall (A, \mu) : I \to \mathtt{MeasureAlgebra} : (A_i, \mu_i) \cong_{\mathsf{MA}} \left((e_i), \left(\sum_{i \in I} \mu_i \right)_{|(e_i)} \right)$

Proof =

This is pretty ovious.

SimpleProductCoproductCorrespondance ::

 $:: \forall I \in \mathsf{SET} \ . \ \forall (X, \Sigma, \mu) : I \to \mathsf{MEAS} \ . \ \prod_{i \in I} (A_{\mu_i}, \hat{\mu}_i) \cong \mathtt{measureAlgebra} \coprod_{i \in I} (X_i, \Sigma_i, \mu_i)$

Proof =

Obvious by Stone Theory.

SimpleProductOfSemifinite ::

 $:: \forall I \in \mathsf{SET} : \forall (A,\mu): I o \mathsf{SemifiniteMeasureAlgebra} \ . \ \mathsf{SemifiniteMeasureAlgebra} \left(\prod_{i \in I} (A,\mu) \right)$

Proof =

Assume a has infinite measure in (A, μ) .

Then there exists $i \in I$ such that $a_i \neq 0$.

As (A_i, μ_i) is semifinite there is $b \leq a_i$ such that $0 < \mu_i(b) < \infty$.

Then $be_i \leq a$ and $0 < \sum_{j \in I} \mu_j(be_i) = \mu_i(b) < \infty$.

SimpleProductOfLocalizable ::

 $:: \forall I \in \mathsf{SET} : \forall (A,\mu): I \to \mathsf{LocalizableMeasureAlgebra} \ . \ \mathsf{LocalizableMeasureAlgebra} \left(\prod_{i \in I} (A,\mu) \right)$

Proof =

Let J be a set and $a: J \to \prod_{i \in I} (A_i, \mu_i)$.

Then
$$\sup_{i \in J} a_j = (\sup_{i \in J} a_{j,i})_{i \in I}$$
.

PoUProductRepresentation ::

$$:: \forall (A,\mu) : \texttt{MeasureAlgebra} \ . \ \forall (e_n)_{n=1}^{\infty} : \texttt{PartitionOfUnity}(A) \ . \ (A,\mu) \cong_{\mathsf{MA}} \prod_{n=1}^{\infty} \Big((e_n), \mu_{|(e_m)} \Big)$$

Proof =

This is pretty obvious.

PoUProductRepresentation ::

 $:: \forall (A, \mu) : \texttt{LocalizableMeasureAlgebra} . \exists I \in \mathsf{SET} . \exists (B, \nu) : I \to \mathsf{FiniteMeasureAlgebra} .$

$$.\;(A,\mu)\cong_{\mathsf{MA}}\prod_{i\in I}(B_i,\nu_i)$$

Proof =

It is possible to select a partition of unity P of A consisting of finite elements.

Then by previous theorem $(A, \mu) \cong \prod_{p \in P} (p), \mu_{|(p)}$.

And each $(p), \mu_{|(p)}$ are obviously finite.

LocalizableMeasureAlgebrasHasLocallyDeterminedRepresentations ::

 $:: \forall (A,\mu) : \texttt{LocalizableMeasureAlgebra} \ . \ \exists (X,\Sigma,\nu) : \texttt{LocallyDetermined} \ . \ (A,\mu) \cong_{\mathsf{MA}} (A_{\nu},\hat{\nu})$

Proof =

Represent
$$(A, \mu) \cong_{\mathsf{MA}} \prod_{i \in I} (B_i, \nu_i).$$

Then Stone's spaces $Z B_i$ correspond to finite measure spaces.

And Stone's space of product correspond to a disjoint union of $Z B_i$.

But such spaces are trivially locally determined.

1.1.9 Strictly Localizable Spaces

```
\begin{split} & \texttt{StrictlyLocalizableSpacePoU} :: \\ & :: \forall (X, \Sigma, \mu) : \texttt{StrictlyLocalizable} . \ \forall P : \texttt{PartitionOfUnity}(A_{\mu}) \ . \\ & . \ \exists E : P \to \Sigma \ . \ \forall p \in P \ . \ [E_p] = p \ \& \ \texttt{Decomposition}(X, \Sigma, \mu, \operatorname{Im} E) \end{split} & \texttt{Proof} = \\ & \dots \\ & \square \end{split}
```

1.1.10 Subalgebras

```
SubalgebaMeasureAlgebra :: \forall (A, \mu) : MeasureAlgebra . \forall B \subset_{\sigma} A . MeasureAlgebra(B, \mu_{|B})
Proof =
This is obvious.
SubalgebaFinifteMeasureAlgebra ::
   :: \forall (A, \mu) : \texttt{FiniteMeasureAlgebra} : \forall B \subset_{\sigma} A : \texttt{FiniteMeasureAlgebra}(B, \mu_{|B})
Proof =
This is obvious.
SigmaFiniteSubalgebraMeasureAlgebra ::
   :: \forall (A, \mu) : \sigma-FiniteMeasureAlgebra . \forall B \subset_{\sigma} A.
   . SemifiniteMeasureAlgebra(B,\mu_{|B})\Rightarrow\sigma-FiniteMeasureAlgebra(B,\mu_{|B})
Proof =
 1 The set B^f is order-dense in B.
2 But then B^f is also order-dense in A.
 3 Select a finite-measured countable partition of unity P in A.
 4 If B is not \sigma-finite, then there is a subordinate uncountal partition of unity Q.
 5 Then there would exist a uncountable refinement of P subordinate to Q.
 6 Then P must contain an infinite element, but this is imposible!.
 7 So Q must be countable, and so (B, \mu_{|B}) must be countable.
FinifteMeasureAlgebraBySubalgebra ::
   :: \forall (A, \mu) : \texttt{MeasureAlgebra} . \forall B \subset_{\sigma} A . \texttt{FiniteMeasureAlgebra}(B, \mu_{|B}) \Rightarrow \texttt{FiniteMeasureAlgebra}(A, \mu)
Proof =
This is obvious.
\Box
ProbabilityAlgebraBySubalgebra ::
   :: \forall (A, \mu) : \texttt{MeasureAlgebra} . \forall B \subset_{\sigma} A.
   . ProbabilityAlgebra(B, \mu_{|B}) \Rightarrow ProbabilityAlgebra(A, \mu)
Proof =
This is obvious.
```

```
\label{eq:sigmaFiniteAlgebraBySubalgebra} \begin{array}{l} \text{SigmaFiniteAlgebraBySubalgebra} :: \\ :: \forall (A,\mu) : \texttt{MeasureAlgebra} . \ \forall B \subset_{\sigma} A \ . \\ . \ \sigma\text{-Finite}(B,\mu_{|B}) \Rightarrow \sigma\text{-Finite}(A,\mu) \\ \text{Proof} = \\ \text{This is obvious.} \\ \square \\ \end{array}
```

1.1.11 Localization

MeasureAlgebraCompletion ::

 $:: \forall (A,\mu): \mathtt{SemifiniteMeasureAlgebra} \ . \ \exists ! \hat{\mu}: \tau(A) \to \stackrel{\infty}{\mathbb{R}}_{++} \ .$

. $\hat{\mu}_{|A} = \mu \ \& \ \texttt{LocalizableMeasureAlgebra}(\tau(A), \hat{\mu})$

Proof =

1 Define $\hat{\mu}(t) = \sup{\{\mu(a) | a \in A, a \le t\}}$.

2 As A is order dense in $\tau(A)$, it holds that $\hat{\mu}(a) = 0 \iff a = 0$ for any $a \in \tau(A)$.

3 If
$$t: \mathbb{N} \to \tau(A)$$
 is disjoint then $\hat{\mu}\left(\bigvee_{n=1}^{\infty} t_n\right) = \sum_{n=1}^{\infty} \hat{\mu}(t_n)$.

- 3.1 Write $S = \{a \in A : \exists c : \mathbb{N} \to A : a = \lim_{n \to \infty} c_n \& c \le t\}.$
- 3.2 Then there is $s = \sup S \in \tau(A)$.

3.3 We write
$$\hat{\mu}(s) = \sup_{c \le t} \mu\left(\bigvee_{n=1}^{\infty} c_n\right) = \sup_{c \le t} \sum_{n=1}^{\infty} \mu(c_n) = \sum_{n=1}^{\infty} \sup_{c \le t_n} \mu(c) = \sum_{n=1}^{\infty} \hat{\mu}(t_n)$$
.

4 Obviously $(\tau(A), \hat{\mu})$ is semifinite and order-complete, and hence Localizable. \Box

 $\mbox{localization} :: \mbox{SemifiniteMeasureAlgebra} \rightarrow \mbox{LocalizableMeasureAlgebra} \\ \mbox{localization} (A, \mu) = \Big(\tau(A), \tau(\mu)\Big) := \mbox{MeasureAlgebraCompletion} \\$

LocalizationFiniteEmbedding ::

 $:: \forall (A, \mu) : \mathtt{SemifiniteMeasureAlgebra} \ . \ \iota_{ au}(A^f) = au^f(A)$

Proof =

- 1 Assume $t \in \tau(A)$ such that $\hat{\mu}(t) < \infty$.
- 2 Note, $\hat{\mu}(t) = \sup_{a \le t} \mu(a)$.
- 3 So we may select an increasing $a: \mathbb{N} \to A$ such that $\lim_{n \to \infty} \mu(a_n) = \hat{\mu}(t)$.
- 4 Then $b = \bigvee_{n=1}^{\infty} a_n \in A$ and $\hat{\mu}(b) = \mu(b) = \hat{\mu}(t)$.
- 5 So $\mu(t \setminus b) = 0$, and so $t = b \in A$ as clearly b < t.

П

1.1.12 Stone Spaces

```
LocallalizableMeasureAlgebraHasStrictlyLocalizableStoneSpace ::
   :: \forall (A, \mu) : \texttt{LocalizableMeasureAlgebra}. StrictlyLocalizable(Z A, \Sigma_{\mu}, \bar{\mu})
Proof =
 1 We already proved that \bar{\mu} is locally determined.
 2 As (A, \mu) is semifinite there is a partition of unity P consisting of finite elements.
 3 Use Stone representation S_A(P) to construct a corresponding set in Z A.
 4 Assume E \in \Sigma_{\mu} such that \bar{\mu}(E) > 0.
 5 By definition of Stone's Space there is a clopen set F \in \mathsf{Z}\ A such that E \triangle F is meager.
 6 And there is a Stone representation a \in A such that F = S_A(a).
 7 Then \mu(a) = \nu(S_A(a)) = \nu(E) > 0.
 8 So, there exists p \in P such that ap \neq 0.
9 Ths means that \nu(E \cap S_A(p)) > 0.
 10 As E was arbitrary this means that S_A(P) provides a strict localization for \bar{\mu}.
MeagerSetsAreNowhereDense ::
   :: \forall (A, \mu) : \mathtt{SemifiniteMeasureAlgebra} : \forall M \in \mathbf{MGR}(\mathsf{Z}\ A) : \mathtt{NowhereDense}(\mathsf{Z}\ A, M)
Proof =
1 As it was shown A is (\sigma, \infty)-WeaklyDistributive boolean algebra.
2 And this is a property of (\sigma, \infty)-WeaklyDistributive boolean algebra.
StoneSpaceMeasurableExpression ::
   \forall (A, \mu) : SemifiniteMeasureAlgebra . \forall E \in \Sigma_{\mu}.
   . \exists U : \mathtt{Clopen}(\mathsf{Z}\ A) . \exists F : \mathtt{NowhereDense}(\mathsf{Z}\ A) . E = U \cap F
Proof =
1 This is clear from the previous theorem.
StoneSpaceMeasureComputation ::
   :: \forall (A,\mu) : \mathtt{SemifiniteMeasureAlgebra} \ . \ \forall E \in \Sigma_{\mu} \ .
   . \ \bar{\mu}(E) = \sup \left\{ \mu(U) \middle| U : \mathtt{Clopen}(\mathsf{Z}\ A), U \subset E \right\}
 1 This is clear from the previous theorem.
StoneSpaceCLDIsStrictlyLocalizable ::
   :: \forall (A,\mu) : \mathtt{SemifiniteMeasureAlgebra} . \mathtt{StrictlyLocalizable}(\mathsf{Z}\ A, \bar{\Sigma}_{\mu}, \bar{\bar{\mu}})
Proof =
. . .
```

```
{\tt StoneSpaceCLDZeroSets} ::
```

$$:: \forall (A,\mu) : \texttt{SemifiniteMeasureAlgebra} . \mathcal{N}_{\bar{\mu}} = \mathcal{N}_{\bar{\mu}}$$

 Proof =

...

FiniteStoneSpaceMeasureComputation ::

$$:: \forall (A,\mu): \texttt{FiniteMeasureAlgebra} \ . \ \forall E \in \Sigma_{\mu} \ .$$

$$. \ \bar{\mu}(E) = \inf \Big\{ \mu(U) \Big| U: \texttt{Clopen}(\mathsf{Z}\ A), E \subset U \Big\}$$

Proof =

1 This is clear from the previous theorem.

1.1.13 Purely Infinite Elements

purelyInfiniteElements :: $\prod (A,\mu)$: MeasureAlgebra . σ -Ideal(A) purelyInfiniteElements $()=I_{\infty}(\mu:=\{a\in A: \forall b\in A : b\leq a \ \& \ \mu(b)<\infty\Rightarrow b=0\}$

$$\begin{split} & \texttt{semifiniteMeasure} \, :: \, \prod(A,\mu) : \texttt{MeasureAlgebra} \, . \, \frac{A}{I_\infty(\mu)} \to_{\mathbb{R}_+}^\infty \\ & \texttt{semifiniteMeasure} \, ([a]) = \mu_{\mathrm{sf}} := \sup\{\mu(b)|b \in A : b \leq a \, \& \, \mu(b) < \infty\} \\ & \text{If } [a] = [b], \, \text{then } a \bigtriangleup b \in I_\infty(\mu). \\ & \text{So } \mu_{\mathrm{sf}} \, \text{is well-defined.} \end{split}$$

SemifiniteMeasureIsMeasure ::

 $:: orall (A,\mu): exttt{MeasureAlgebra} \ . \ exttt{SemifiniteMeasureAlgebra} \left(rac{A}{I}, \mu_{ ext{sf}}
ight)$

Proof =

- 1 If $\mu_{\rm sf}[a] = 0$, then clearly $a \in I_{\infty}$.
- 2 Assume $[a]: \mathbb{N} \to A$ is disjoint.
- 2.1 Then $a_n a_m \in I_{\infty}$ if $n \neq m$.

2.2 Select increasing
$$b: \mathbb{N} \to A^f$$
 such that $b_n \leq \bigvee_{k=1}^{\infty} a_k$ and $\lim_{n \to \infty} \mu(b_n) = \mu_{\mathrm{sf}} \left[\bigvee_{k=1}^{\infty} a_k \right] = \mu_{\mathrm{sf}} \bigvee_{k=1}^{\infty} [a_k]$.

2.3 By (2.1) we mat assert that ab_n is disjoint and then $\bigvee_{k=1}^{\infty} a_k b_n = b_n$ for any $n \in \mathbb{N}$.

2.4 So
$$\mu(b) = \sum_{k=1}^{\infty} \mu(a_k b_n)$$
.

2.5 By taking limits and using monotonic convergence theorem

$$\sum_{k=1}^{\infty} \mu_{\rm sf}[a_k] = \sum_{k=1}^{\infty} \lim_{n \to \infty} \mu(a_k b_n) = \lim_{n \to \infty} \mu(b_n) = \mu_{\rm sf} \bigvee_{k=1}^{\infty} [a_k].$$

- 3 Clearly $\mu_{\rm sf}[a] < \mu(a)$.
- 3.1 If $\mu_{\rm sf}[a] = \infty$, then $a \notin I_{\infty}$.
- 3.2 So it is possible to select $b \in A$ such that $b \le a$ and $0 < \mu(b) \le a$.
- 3.3 $0 < \mu_{\rm sf}[b] \le \mu(b) < \infty$.
- 3.4 This proves that $\left(\frac{A}{I}, \mu_{\rm sf}\right)$ is semifinite.

1.2 Topology

1.2.1 Subject

```
measureAlgebraAsTopologicalSpace :: MeasureAlgebra → TOP
measureAlgebraAsTopologicalSpace ((A, \mu)) = (A, \mu) :=
   := \left(A, \mathcal{W}(A^f \times A^f, \mathbb{R}, \Lambda a \in A^f : \Lambda b \in A^f : \Lambda c \in A : \mu(ac + ab)\right)\right)
measureAlgebraAsUniformlSpace :: MeasureAlgebra <math>\rightarrow UNI
measureAlgebraAsUniformSpace ((A, \mu)) = (A, \mu) :=
   := \left( A, \mathcal{I}(A^f \times A^f, \mathbb{R}, \Lambda a \in A^f \cdot \Lambda b \in A^f \cdot \Lambda c \in A \cdot \mu(ac \triangle ab) \right) \right)
\texttt{metricOfFrechetNikodym} :: \prod (A, \mu) : \texttt{MeasureAlgebra} \cdot \texttt{Metric}(A^f)
\texttt{metricOfFrechetNikodym}\,() = \rho_{\mu} := \Lambda a, b \in A^f \;.\; \mu(a \mathrel{\triangle} b)
BooleanOperationsAreUniformlyContinuous ::
    :: \forall (A, \mu) : \texttt{MeasureAlgebra} . (*), (\setminus), (\vee), (\wedge) \in \mathsf{UNI}(A \times A, A)
Proof =
 1 Let o stay for any binary operation above.
 2 Select c, d \in A.
3 Then \mu(a(c \circ d) + b) \le \mu(a(c \lor d) + b) \le \mu(ac + d) + \mu(ad + b).
 4 So \mu is bounded by the sum of uniform functions and is uniformly continuous.
FiniteElementsAreDense ::
    \forall (A, \mu) : MeasureAlgebra . Dense(A, A^f)
Proof =
 1 Select c \in A.
2 Then c has a base of neighborhoods of form U = \{u \in A : \mu(au + ac) \leq r\} with a \in A^f, r \in \mathbb{R}_{++}.
 3 But then ac \in U and ac \in A^f.
FiniteMeasureAlgebraHasUniformlyContinuousMeasure ::
   \forall (A, \mu) : \mathtt{FiniteMeasureAlgebra} : \mu \in \mathsf{UNI}(A, \mathbb{R}_{++})
 This is pretty obvious as \mu = \rho_{\mu}(0, a).
```

```
FiniteMeasureAlgebraHasUniformlyContinuousMeasure :: \forall (A,\mu): \texttt{FiniteMeasureAlgebra} \ . \ \mu \in \mathsf{UNI}(A,\mathbb{R}_{++}) Proof = This is pretty obvious as \mu = \rho_{\mu}(0,a).
```

SemifinitMeasureAlgebraHasLowerSemicontinuousMeasure ::

$$\forall (A,\mu): \texttt{SemifiniteMeasureAlgebra} \ . \ \mu \in \texttt{LowerSemicontinuous}(A,\overset{\infty}{\mathbb{R}}_{++}) \\ \texttt{Proof} \ = \ .$$

- 1 Assume $a \in A$ and $\alpha \in \mathbb{R}_+$ such that $\mu(a) > \alpha$.
- 2 As A is semifinite there exists $b \leq a$ such that $\infty > \mu(b) > \alpha$.
- 3 Assume $c \in A$ is such that $\mu(b+cb) < \mu(b) \alpha$.
- 4 Then $\mu(c) \ge \mu(cb) = \mu(b) \mu(b(a \setminus c)) = \mu(b) \mu(b + cb) > \alpha$. \square

 ${\tt Measure Algebra Has Uniformly Continuous Finitised Measure} ::$

$$\forall (A,\mu): \texttt{MeasureAlgebra} \ . \ \forall a \in A^f \ . \ (\Lambda c \in A \ . \ \mu(ac)) \in \mathsf{UNI}(A,\mathbb{R}_{++})$$

$$\mathsf{Proof} \ =$$

This is simmilar to the case of finite measure space.

 $\mbox{finiteElementMetric} :: \prod A : \mbox{MeasureAlgebra} : A^f \to \mbox{Semimetric}(A)$ $\mbox{finiteElementMetric} (a) = \rho_a := \Lambda x, y \in A : \mu(ax + ay)$

MeasurAlgebraProductTopology ::

$$:: \forall I \in \mathsf{SET} \ . \ \forall (A,\mu): I \to \mathtt{MeasureAlgebra} \ . \ \prod_{i \in I} (A,\mu) =_{\mathsf{TOP}} \left(\prod_{i \in I} A_i, \sum_{i \in I} \mu_i\right)$$

Proof =

. . .

1.2.2 Relations with an Order Structure

```
upwardDirectedFilter ::
   \cdots \prod (A, \mu): MeasureAlgebra . NonEmpty & UpwardsDirected(A) \rightarrow CauchyFilerbase(A)
\texttt{upwardDirectedFilter}\left(D\right) = \mathcal{F}(\uparrow D) := \left\{ \left\{ c \in D : d \leq c \right\} \middle| d \in D \right\}
1 Write F_d = \{c \in D : d \le c\}.
2 \mathcal{F}(\uparrow D) is a filter.
2.1 As D is non empty, \mathcal{F}(\uparrow D) is also non-empty.
2.2 d \in F_d, so F_d \neq \emptyset and henceforth \emptyset \notin \mathcal{F}(\uparrow D).
2.3 Assume F_d, F_f \in \mathcal{F}(\uparrow D).
2.3.1 Then there is an element g \in D such that g \geq f \vee d.
2.3.2 Note, that F_g \subset F_d \cap F_f and F_g \in \mathcal{F}(\uparrow D).
3 \mathcal{F}(\uparrow D) is Cauchy.
3.1 Assume U is some measure connector for (A, \mu).
3.2 then there is an element a \in A^f and r \in \mathbb{R}_{++} such that \{(f,g) \in A \times A : \mu(af + ag) < r\} \subset U.
3.3 The set \{\mu(ad)|d\in D\} is bounded by \mu(a), so supremum is attained.
3.4 So there is f \in D, so \mu(ad) < \mu(af) + r/2 for any d \in D.
3.5 Assume g, h \in F_f.
3.5 Then \mu(ag + ah) \le \mu(ag \setminus af) + \mu(ah \setminus af) = (\mu(ag) - \mu(af)) + (\mu(ah) - \mu(af)) < r.
3.6 Thus, (g,h) \in U and F_f \times F_f \subset U.
UpwardsDirectedSup ::
   :: \forall (A, \mu) : \mathtt{SemifiniteMeasureAlgebra} . \forall D : \mathtt{UpwardsDirected}(A) \to \mathtt{CauchyFilerbase}(A) . \forall a \in A.
   a = \sup D \Rightarrow a = \lim \mathcal{F}(\uparrow D)
Proof =
1 Assume a = \sup D.
2 Assume U is an uniformity fo (A, \mu).
3 then there is an element c \in A^f and r \in \mathbb{R}_{++} such that \{g \in A \times A : \mu(ca + cg) < r\} \subset U(a).
4 Consider set M = \{\mu(cd) | d \in D\}.
5 Then sup M = \mu(ca).
6 So there is d \in D such that \mu(ca + cd) < r.
7 But d \leq f \leq a for any f \in F_d.
8 Thus \mu(cf + cd) < r and F_d \subset U(a).
9 Thus, da = \lim \mathcal{F}(\uparrow D).
```

```
UpwardsDirectedLimit ::
    \forall (A, \mu) : \texttt{SemifiniteMeasureAlgebra} . \forall D : \texttt{NonEmpty} \& \texttt{UpwardsDirected}(A) . \forall a \in A.
    a = \sup D \Rightarrow a \in \operatorname{cl} D
Proof =
. . .
UpwardsDirectedFilterLimit ::
    \forall (A, \mu) : \texttt{SemifiniteMeasureAlgebra} . \forall D : \texttt{NonEmpty} \& \texttt{UpwardsDirected}(A) . \forall a \in A.
    a = \lim \mathcal{F}(\uparrow D) \iff a = \sup D
Proof =
 1 (\Rightarrow) \quad a = \lim \mathcal{F}(\uparrow D).
 1.1 Then for any connector U of (A, \mu) There is some F \in \mathcal{F}(\uparrow F) such that F \subset U(a).
 1.2 Assume d \in D.
 1.3 Assume d \not\leq a.
 1.4 Then there is f \in A such that f \leq d \setminus a and 0 < \mu(f) < \infty.
 1.5 Thus \mu(fh + fa) \ge \mu(f) for every h \in F_s.
 1.6 But G \cap F_d \neq \emptyset for any G \in \mathcal{F}(\uparrow D) so this contradicts (1.1).
lowerDirectedFilter ::
    \cdots \prod (A, \mu): MeasureAlgebra . NonEmpty & LowerDirected(A) \rightarrow CauchyFilerbase(A)
\texttt{loweDirectedFilter}\left(D\right) = \mathcal{F}(\uparrow D) := \left\{ \left\{ c \in D : d \geq c \right\} \middle| d \in D \right\}
LowerDirectedInf ::
    \forall (A, \mu) : \texttt{SemifiniteMeasureAlgebra} : \forall D : \texttt{NonEmpty} \& \texttt{LowerDirected}(A) : \forall a \in A.
    a = \inf D \Rightarrow a = \lim \mathcal{F}(\uparrow D)
Proof =
By duality.
UpwardsDirectedLimit ::
    \forall (A, \mu) : \mathtt{SemifiniteMeasureAlgebra} . \forall D : \mathtt{NonEmpty} \ \& \ \mathtt{LowerDirected}(A) . \forall a \in A .
    a = \inf D \Rightarrow a \in \operatorname{cl} D
Proof =
 By duality.
UpwardsDirectedFilterLimit ::
    :: \forall (A, \mu) : \mathtt{SemifiniteMeasureAlgebra} . \forall D : \mathtt{NonEmpty} \& \mathtt{LowerDirected}(A) . \forall a \in A.
    a = \lim \mathcal{F}(\uparrow D) \iff a = \inf D
Proof =
 By duality.
```

```
{\tt ClosedSetsAreOrderClosed} :: \forall (A, \mu) : {\tt MeasureAlgebra} . \forall F : {\tt Closed}(A) . {\tt OrderContinuous}(A, F)
Follows from previous theorems in this chapter.
{\tt DenseSetsAreOrderDense} \ :: \ \forall (A,\mu) : {\tt MeasureAlgebra} \ . \ \forall F : {\tt Dense}(A) \ . \ {\tt OrderDense}(A,F)
Proof =
Follows from previous theorems in this chapter.
{\tt ClosedRays} \, :: \, \forall (A,\mu) : {\tt SemifiniteMeasureAlgebra} \, . \, \forall a \in A \, . \, {\tt Closed} \Big( A, \{c \in A : c \leq a\} \, \& \, \{c \in A : c \geq a\} \Big)
Proof =
 1 Let F = \{c \in A : c \le a\}.
 2 Assume d \in F^{\complement}.
 3 Then d \setminus a \neq 0.
4 As A is semifinite there is an g \in A^f such that g \leq d \setminus a and 0 < \mu(g).
5 \rho_g(d, f) \ge \mu(g) fo any f \in F^{\complement}.
6 And this means that F^{\complement} and F is closed.
Proof =
 This is obvious now.
 \textbf{InfimumConvergence} :: \forall A : \texttt{MeasureAlgebra} . \ \forall a : \mathbb{N} \downarrow A . \ \forall s \in A . \ s = \inf_{n=1} a_n \Rightarrow s = \lim_{n=1} a_n 
Proof =
 This is obvious now.
SummableIncrements :: \prod A : \texttt{MeasureAlgebra} : ?(\mathbb{N} \to A)
a: \mathtt{SummableIncrements} \iff \forall n \in \mathbb{N} \ . \ \sum_{n=1}^{\infty} \mu(a_n + a_{n+1}) < \infty
```

SummableIncrementsLimSupLimInfEq ::

 $:: \forall A : \texttt{MeasureAlgebra} . \ \forall a : \texttt{SummableIncrements}(A) \ . \ \inf_{n=1} \sup_{m=n} a_n = \sup_{n=1} \inf_{m=n} a_n$

Proof =

1 Let
$$\alpha_n = \mu(a_n + a_{n+1}), \beta_n = \sum_{m=n}^{\infty} \alpha_n$$
.

2 As a has summable increments this means $\beta \downarrow 0$.

3 Let
$$b_n = \sup_{m \ge n} a_m + a_{m+1} = \bigvee_{m=n}^{\infty} a_m + a_{m+1}$$
.

4 Then
$$\mu(b_n) \le \sum_{m=n}^{\infty} \mu(c_m + c_{m+1}) = \beta_n$$
.

5 Assume $m \leq n$.

6 And also
$$a_m + a_n \le \sup_{m \le k \le n} a_k + a_{k+1} \le b_n$$
.

7 So
$$a_n \setminus b_n \le a_m \le a_n \vee b_n$$
.

8 Thus
$$a_n \setminus b_n \le \inf_{k \ge m} a_k \le \sup_{k \ge m} a_k \le a_n \vee b_n$$
.

9 By taking limits in m one gets $a_n \setminus b_n \leq \inf_{m=1} \sup_{k=n} a_k \leq \sup_{m=1} \inf_{k=m} a_k \leq a_n \vee b_n$.

$$10 a_n + \inf_{m=1} \sup_{k=m} a_k \le b_n.$$

$$11 \ a_n + \sup_{m=1} \inf_{k=m} a_k \le b_n.$$

12 From (10) and (11)
$$\inf_{m=1} \sup_{k=m} a_k \setminus \sup_{m=1} \inf_{k=m} a_k \leq b_n$$
.

13 But
$$\lim_{n\to\infty} b_n = 0$$
.

14 So
$$\inf_{m=1} \sup_{k=m} a_k = \sup_{m=1} \inf_{k=m} a_k$$
.

SummableIncrementsLim ::

 $:: \forall A : \texttt{MeasureAlgebra} . \forall a : \texttt{SummableIncrements}(A) . \forall x \in A .$

$$x = \lim_{n \to \infty} a_n \Rightarrow \inf_{n=1} \sup_{m=n} a_n = x = \sup_{n=1} \inf_{m=n} a_n$$

Proof =

This follows from the previous proof.

1.2.3 Classification Theorems

 ${\tt SemifiniteIffHausdorff} \ :: \ \forall (A,\mu) : {\tt MeasureAlgebra} \ . \ {\tt SemifiniteMeasureAlgebra}(A,\mu) \ \Longleftrightarrow \ {\tt T2}(A)$

Proof =

- $1 \implies$ assume that (A, μ) is semifinite.
- 1.1 Take $x, y \in A$ such that $x \neq y$.
- 1.2 Then $x + y \neq 0$ so there is $a \in A^f$ such that $\mu(a) > 0$ and a < x + y.
- 1.3 So $\rho_a(x,y) = \mu(a) > 0$.
- 1.4 And cells of form $\mathbb{B}_{\rho_a}(x,\mu(a)/2)$ and $\mathbb{B}_{\rho_a}(y,\mu(a)/2)$ produce the separation.
- $2 \iff$ assume that A is Hausdorff in the topology of (A, μ) .
- 2.1 Assume $x \in A$ such that $\mu(x) = \infty$.
- 2.2 Then $x \neq 0$.
- 2.3 Assume $a \in A^f$.
- 2.4 If xa = 0 then $\rho_a(x, 0) = 0$.
- 2.5 So, as A is Hausdorff there must some $a \in A^f$ such that $xa \neq 0$.
- 2.6 But this means that (A, μ) is semifinite.

SigmaFiniteIffMetrizable ::

 $:: \forall (A, \mu) : \texttt{MeasureAlgebra} . \sigma - \texttt{FiniteMeasureAlgebra}(A, \mu) \iff \texttt{Metrizable}(A)$

Proof =

- $1 (\Rightarrow)$ assume that (A, μ) is σ -finite.
- 1.1 Then there is a countable partition of unity a with finite elements.

1.2 define
$$\sigma: A^2 \to \mathbb{R}_{++}$$
 as $\sigma(x,y) = \sum_{n=1}^{\infty} 2^{-n} \frac{\rho_{a_n}(x,y)}{\mu(a_n)}$.

- 1.3 Then σ is a metic for A.
- 1.4 So the topology of (A, μ) is metrizable.
- $2 \iff$ assume that (A, μ) is metrizable.
- 2.1 Let σ be an metrizing metric.
- 2.2 Then there exists a system of elements $k : \mathbb{N} \to \mathbb{N}, a : \prod_{n=1}^{\infty} \{1, \dots, k_n\} \to A^f$ and $\delta : \mathbb{N} \to \mathbb{R}_{++}$

such that $\rho_{a_{n,i}}(b,e)$ for any $1 \leq i \leq k_n$ imply that $\sigma(b,e) < 2^{-n}$ for any $b \in A$.

2.3 Then
$$e = \bigvee_{n=1}^{\infty} \bigvee_{i=1}^{k_n} a_{n,i}$$
.

2.4 So (A, μ) is σ -finite.

LocalizableIffComplete ::

 $:: \forall (A, \mu) : \texttt{MeasureAlgebra} . \texttt{LocalizableMeasureAlgebra}(A, \mu) \iff \texttt{T2 \& Complete}(A)$

Proof =

- $1 \implies Assume (A, \mu)$ is localizable measure algebra.
- 1.2 Then A is Hausdorff as (A, μ) is semifinite.
- 1.3 Assume \mathcal{F} is a Cauchy filter in A.
- 1.4 Take $a \in A^f$.
- 1.5 Then there is $d_a \leq a$ and a cauchy sequence c_a subordinate to \mathcal{F} such that $\lim_{n \to \infty} \rho_a(d_a, c_{a,n}) = 0$.
- 1.5.1 select a sequence $F_a: \mathbb{N} \to \mathcal{F}$ such that $\rho_a(x,y) \leq 2^{-n}$ for $x,y \in F_{a,n}$ and $n \in \mathbb{N}$.
- 1.5.2 Then select a sequence $c_{a,n} \in \bigcap_{k=1}^{n} F_{a,k}$.
- 1.5.3 Then $\rho(c_{a,n}, c_{a,n+1}) \leq 2^{-n}$.
- 1.5.4 Construct $d_a = \liminf ac_a$.
- 1.5.5 Then $\lim_{n \to \infty} \rho_a(d_a, c_{an}) = \lim_{n \to \infty} \mu(d_a + ac_a) = 0.$
- 1.6 Assume $a, b \in A^f$ are such that $a \leq b$.
- 1.7 Then $d_a = ad_b$.
- $1.7.1 F_{n,a} \cap F_{n,b} \neq \emptyset.$
- 1.7.2 So select $f \in F_{n,a} \cap F_{n,b}$.
- 1.7.3 Then $\rho_a(d_a, d_b) \leq \rho_a(d_a, c_{a,n}) + \rho_a(c_{a,n}, f) + \rho_a(f, c_{b,n}) + \rho_a(c_{b,n}, d_b) \leq \rho_a(d_a, c_{a,n}) + 2^{-n} + 2^{-n} + \rho_a(c_{b,n}, d_b) \to 0 \text{ as } n \to \infty.$
- 1.8 Let $f = \bigvee_{a \in A^f} d_a$.
- 1.9 Then $\lim \mathcal{F} = f$.
- 1.9.1 $ad_a = af$ for any $a \in A^f$.
- 1.9.2 and there is a \mathcal{F} subordinate Cauchy sequence c_a such that $\rho_a(f,c_a)=\rho_a(d_a,c_a)\to 0$.
- 1.9.3 Then there is $n \in \mathbb{N}$ such that $\rho_a(d_a, c_{a,n}) + 2^{-n} < \varepsilon$.
- 1.9.4 Take any $g \in F_{a,n}$.
- 1.9.5 But $\rho_a(f,g) \le \rho_a(f,c_{a,n}) + \rho_{c_{a,n}} \le \rho_a(d_a,c_{a,n}) + 2^{-n} < \varepsilon$.
- 1.9.6 This $F_{a,n} \subset \mathbb{B}_{\rho_a}(f,\varepsilon)$.
- $2 \iff$ now Assume that A is Hausdorff and complete.
- 2.1 As A is Hausdorff (A, μ) must be semifinite.
- 2.2 As A is complete (A, μ) is order complete and hence localizable.
- 2.2.1 Think about order filters $\mathcal{F}(\uparrow D)$ and $\mathcal{F}(\downarrow D)$.

1.2.4 Closed Subalgebras

ClosedSubalgebraTHM ::

 $\forall (A, \mu) : \texttt{LocalizableMeasureAlgebra} : \forall B \subset_{\mathsf{RING}} A : \texttt{Closed}(A, B) \iff \texttt{OrderClosed}(A, B)$

Proof =

- $1 (\Rightarrow)$ follows from the general theory.
- $2 \iff Assume now that B is order-closed.$
- 2.1 Assume $g \in cl_A B$.
- 2.2 Assume $a \in A^f$ and $n \in \mathbb{N}$.
- 2.3 Then there exists a sequence $c_a: \mathbb{N} \to B$ such that $\rho_a(c_{a,n}, g) < 2^{-n}$.

$$2.4 \text{ Note, } \sum_{n=1}^{\infty} \mu(ac_{a,n} + ac_{a,n+1}) \leq \sum_{n=1}^{\infty} \mu(ac_{a,n} + ag) + \mu(ag + ac_{a,n+1}) < \sum_{n=1}^{\infty} 2^{-n} + 2^{-n-1} = \frac{3}{2} .$$

- 2.5 So, sequence ac_a has summable increments .
- 2.6 Define $d_a = \liminf c_a$.
- 2.7 As ac_a has finite increments $\lim_{n\to\infty} \rho_a(c_{a,n},d_n) = 0$.
- 2.8 Furthermore, $\rho_a(d_a, g) = 0$, so $ag = d_a$.
- 2.9 As B is order-closed $d_a \in B$ for each $a \in A^f$.
- 2.10 Set $d'_a = \inf\{d_b : b \in A^f, a \le b\} \in B$.

$$2.11 \ d'_a a = \bigwedge_{a \le b} d_b a = \bigwedge_{a \le b} d_b b a = \bigwedge_{a \le b} g b a = g a.$$

- 2.12 Let $D = \{d'_a | a \in A\}.$
- 2.13 Clearly D is upwards directed as $d'_a \vee d'_b = d'_{a \wedge b}.$
- 2.14 Then sup $D = \{ad'_a | a \in A\} = \{ag | a \in A\} = g$ as (A, μ) is semifinite.
- 2.15 so $g \in B$ as B is order-closed.
- 2.16 Thus B is closed.

SubalgebraClosure :: $\forall (A, \mu)$: LocalizableMeasureAlgebra . $\forall B \subset_{\mathsf{RING}} A$. $\overline{B} = \tau(B)$

Proof =

- 1 Note that \overline{B} is a subgroup of A.
- 2 Also it must be order-closed as \overline{B} is closed.
- 3 Also $\tau(B)$ is an order-closed subalgebra, and hence a closed subalgebra.
- 4 So both objects can be realized as intersections of closed subalgebras containing B, and hence they are equal.

ClosedMeasureSubalgebra :: $\prod (A,\mu)$: MeasureAlgebra . Subalgebra(A)

 $B: {\tt ClosedMeasureSubalgebra} \iff B\subset_{\sf MA} A \iff {\tt Closed}(A,B)$

OrderClosedExtension ::

 $:: \forall (A,\mu): \texttt{LocalizableMeasureAlgebra} \ . \ \forall B \subset_{\mathsf{MA}} A \ . \ \forall a \in A \ . \ \langle B \cup \{a\} \rangle_{\mathsf{BOOL}} \subset_{\mathsf{MA}} A$ $\mathsf{Proof} \ =$

This follows from order-closed subalgebra extension theorem for boolean algebras.

1.2.5 Metric Space of Finite Elements

```
BooleanOperationsAreUniformlyContinuous ::
   :: \forall (A, \mu) : \texttt{MeasureAlgebra} . (*), (\backslash), (\vee), (\wedge) \in \mathsf{UNI}(A^f \times A^f, A^f)
Proof =
This is obvious.
MeasureIs1Lip ::
   \forall (A, \mu) : \texttt{MeasureAlgebra} . \mu_{|A^f} \in \operatorname{1-Lip}(A^f)
Proof =
This is obvious.
FiniteElementsAreComplete ::
   :: \forall (A,\mu) : \texttt{MeasureAlgebra} . \, \texttt{Complete}(A^f)
Proof =
1 Assume a is a cauchy sequence in A^f.
2 without loss of generality we may assume that a has summable differences.
2.1 Just select a subsequence.
3 Define x = \liminf a \in A.
4 Then \lim_{n\to\infty} a_n = x.
5 So, there is some n \in \mathbb{N} such that \mu(x \setminus a_n) < \infty.
6 Thus \mu(x) < \infty and x \in A^f.
```

- 1.2.6 Relation with Convergence In Measure
- 1.3 Category
- 1.4 Radon-Nikodym Parallels
- 2 Maharam's Theory
- 3 Abstract Ergodic Theory
- 4 Measurable Algebras

Sources:

1. D. H. Fremlin — Measure Theory (32,33,34) 2016