Árboles

EEDD - GRANDO ENING, INFORMATICA - UCO

Contenidos

- Concepto de Árbol B.
- Operaciones de Inserción y borrado.

EEDD - GRANDO EN ING. INFORMATICA - UCO

- Motivación.
 - Los árboles multicamino reducen la altura del árbol aumentando el su grado.
- Necesitamos estrategias para asegurar que el árbol se mantiene equilibrado tras las inserciones y eliminaciones de claves.

- · Definición.
 - Es un árbol de búsqueda multicamino de grado D que mantiene además el invariante:

"Todo nodo tiene al menos |(D-1)/2| claves (excepto la raíz que puede tener menos)."

- EED Todos los nodos hoja están en el mismo nivel. ATICA UCO
 - {5,13,20,16,27,12,23,25,29,32} y grado 5.

- Inserción en árbol B: caso 0.
 - El árbol está vacío. Se crea el nodo raíz con la clave.
- EEDD Tiene menos de (D-1)/21 claves, pero es el nodo co raíz.

- Inserción en árbol B: caso 1.
 - Aplicar algoritmo de búsqueda MTree para localizar el nodo hoja que le corresponde.
- Este nodo no está lleno. Se insertar en orden.

- Inserción en árbol B: caso 2 (overflow) (paso 1).
 - Al insertar, la hoja se satura: (tendremos D claves).
 - Dividirlo en tres partes:
- mediana -> insertar en el nodo padre (si no tiene, primero crear un nodo nuevo que será la nueva raíz).
 - |(D-1)/2| claves menores -> nueva hoja izquierda de la mediana.
 - |(D-1)/2| claves mayores -> nueva hoja derecha de la mediana.

- Inserción en árbol B: caso 2 (overflow) (paso 2).
 - Comprobar en el padre si este se ha saturado también tras insertar la mediana.
 - Repetir el proceso de división e inserción de la mediana en el padre (si es necesario) en el camino hasta la raíz.

- Inserción en árbol B: caso 2 (overflow) (paso 2).
 - Comprobar en el padre si este se ha saturado también tras insertar la mediana.

 Repetir el proceso de división e inserción de la mediana en el padre (si es necesario) en el camino hasta la ra

• Inserción: {5,13,20,16,27,12,23,25,29,32}

EEDD - GRANDO EN ING. INFORMATICA - UCO

GRADO 5

• Inserción: {5,13,20,16,27,12,23,25,29,32}

1: Insert 5, 13, 20, 16

EEDD - GRANDO EN ING. INFORMATICA - UCO

GRADO 5

• Inserción: {5,13,20,16,27,12,23,25,29,32}

1: Insert 5, 13, 20, 16

EEDD - GRANDO EN ING. INFORMATICA - UCO

• Inserción: {5,13,20,16,27,12,23,25,29,32}

• Inserción: {5,13,20,16,27,12,23,25,29,32}

- Borrado en árbol B: Caso 0.
 - Sólo hay un nodo hoja (raíz) y una clave.
 - Solución: borrar el nodo y árbol queda vacío.

- Borrado en árbol B: Caso 1.
 - El cursor está en un nodo hoja con más de |(D-1)/2| claves.
 - Solución: borrar la clave.

EEDD - GRANDO EN ING. INFORMATICA - UCO

- Borrado en árbol B: Caso 2 (underflow).
 - En cursor está en un nodo hoja con |(D-1)/2| claves.
 - Hay un hermano mayor (menor) con más de |(D-1)/2|.
- Solución: El hermano mayor (menor) aporta la menor (mayor)
 Clave que subirá al nodo padre como clave separadora y la anterior clave separadora del padre se insertará en orden en el nodo hoja para impedir quede en situación de underflow.

- Borrado en árbol B: Caso 3 (consolidación).
 - Caso 2 pero no hay hermano con más de |(D-1)/2|.
 - Solución: coger clave separadora del padre y fusionar con hermano mayor (menor).
 - Si el padre en underflow repetir (iterativamente hasta la raíz) la gestión del estado de underflow.

- Borrado en árbol B: Caso 3 (consolidación).
 - Situación especial es cuando el padre es el nodo raíz y solo tiene una clave (recuerda la raíz no tiene porque tener al menos |(n-1)/2| claves.
- En este caso el árbol reducirá un nivel de altura.

- Borrado en árbol B: Caso 4.
 - Tras aplicar el alg. de búsqueda, el cursor está en un nodo interno.
- Solución: Intercambiar con clave sucesora
 EEDD(predecesora) en orden que estará en una hoja. Borrar Coclave intercambiada en la hoja (casos 1, 2 o 3).

Resumiendo.

Ventajas:

- El árbol crece en anchura al insertar.
- Sólo crece en altura cuando se afecta la raíz.
 El árbol crece de forma equilibrada a costa de que los nodos no estén llenos.

- Inconvenientes:

- Puede haber muchos nodos no llenos.
- El procesamiento secuencial en orden de clave requerirá de muchos accesos al disco.

Referencias

- Lecturas recomendadas:
 - Cap. 13 de "Estructuras de Datos", A. Carmona y otros. U. de Córdoba. 1999.

EEDD - Wikipedia: DO EN ING. INFORMATICA - UCO https://en.wikipedia.org/wiki/B-tree