Calcium channel models

February 8, 2018

This note derives stochastic single-channel models of an R-type and T-type calcium channel from the data presented in Magee and Johnston, J Physiol (1995).

1 Data description

The data are single-channel recordings from patches of rat CA1 pyramidal neuron dendrite. They report channel open times, voltage dependencies for activation and inactivation.

Table 1. Dendritic single-channel properties

T... - -4:---4:---

A -4:---4:---

			Activation			Inactivation					
	γ (pS)	Open time (ms)	Range (mV)	V _{1,2} (mV)	k	Range (mV)	V _{1,2} (mV)	k	τ (ms)	Distinctive pharmacology	Likely correlate
Na^+	15 ± 0.3	n.d.	-50 to 0	-3 0	6	-90 to -30	-67	7	1*‡	TTX	TTX-sen Na ⁺
LVA Ca ²⁺	10 ± 0.4	~1*	-55 to -5	-32	7	-100 to -40	-7 0	6.5	~50*	Low [Ni2+]	T-type Ca^{2+}
$HVA_m Ca^{2+}$	17 ± 1	< 0.5	-20 to +30	+3	8	-80 to -15	-39	9.2	~100	Low [Ni ²⁺]	R-type Ca ²⁺
$HVA_m Ca^{2+}$	17 ± 1	~1	-10 to +30	n.d.	n.d.	-80 to -30	n.d.	n.d.	~100	Conotoxin	N-type Ca ²⁺
HVA_1Ca^{2+}	27 ± 3	< 0.5 and > 1	-10 to +30	+9	6	n.d.	n.d.	n.d.	none	Bay K 8644	L-type Ca ²⁺

All channel properties determined at +10 mV unless otherwise specified. Ca^{2+} channel γ was determined in 110 mm BaCl_2 and all other properties in 20mm BaCl_2 . γ , single-channel conductance; n.d., not determined; *determined at -20mV; †majority showed two open states; ‡only fast τ shown; sen, sensitive.

Figure 1.1: Estimates of single channel properties from Magee and Johnston.

2 Channel models

Magee and Johnston fit the following steady-state activation and inactivation functions of voltage V respectively:

$$m_{\infty}(V) = \frac{1}{1 + \exp(\frac{V_{1/2} - V}{k})}$$

and

$$h_{\infty}(V) = \frac{1}{1 + \exp(\frac{V - V_{1/2}}{k})}$$

where m and h are the gating variables, $V_{1/2}$ is the half-maximum voltage and k is the slope factor.

We want to convert this model into a four-state single channel model (m_0h_0, m_1h_0, m_0h_1) and m_1h_1 , i.e. the open state.) The eight transition rates (α for forward, β for backward) between these four states are derived from the activation functions above

$$x_{\infty}(V) = \frac{\alpha(V)}{\alpha(V) + \beta(V)}$$

and the time constants

$$\tau(V) = \frac{1}{\alpha(V) + \beta(V)}$$

For inactivation, we can take the τ_h from the table above, and assume it is independent of voltage. Although this is not usually true, time constants typically remain within a certain order of magnitude across the physiological voltage range, so it will not be a bad approximation. Then

$$\alpha_h(V) = \frac{h_{\infty}(V)}{\tau_h} \tag{2.1}$$

and

$$\beta_h(V) = \frac{1 - h_{\infty}(V)}{\tau_h} \tag{2.2}$$

For activation (m gates), we don't know τ_m but we do know the closing rate when open at a particular voltage V', from the 'open time' in the above table. We can assume this corresponds to $\beta_m(V') = 1/\Delta t_{open}$. We can then infer $\alpha_m(V')$ by rearranging the above:

$$\alpha_m(V') = \beta_m(V') \frac{m_{\infty}(V')}{1 - m_{\infty}(V')}$$

This will let us find α_m and β_m at a particular voltage V'. We can then make the assumption that τ_m is independent of voltage, and compute it as above, $\tau_m = \tau_m(V') = 1/(\alpha_m(V') + \beta(V'))$. With this we can then compute α_m and β_m for any voltage from the two earlier equations 2.1 and 2.2.

References

Magee, J C, and D Johnston. 1995. "Characterization of Single Voltage-Gated Na+ and Ca2+ Channels in Apical Dendrites of Rat CA1 Pyramidal Neurons." The Journal of Physiology 487 (Pt 1) (August): 67–90.