21 Symmetric and alternating groups

Recall. The symmetric group on n letters is the group

$$S_n = \text{Perm}(\{1,\ldots,n\})$$

21.1 Theorem (Cayley). If G is a group of order n then G is isomorphic to a subgroup of S_n .

Proof. Let S be the set of all elements of G. Consider the action of G on S

$$G \times S \to S$$
, $a \cdot b := ab$

This action defines a homomorphism $\varrho \colon G \to \operatorname{Perm}(S)$. Check: this homomorphism is 1-1. It follows that G is isomorphic to a subgroup of $\operatorname{Perm}(S)$. Finally, since |S| = n we have $\operatorname{Perm}(S) \cong S_n$.

21.2 Notation. Denote

$$[n] := \{1, \dots, n\}$$

If $\sigma \in S_n$, $\sigma \colon [n] \to [n]$ then we write

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \dots & \sigma(n) \end{pmatrix}$$

21.3 Definition. A permutation $\sigma \in S_n$ is a cycle of length r (or r-cycle) if there are distinct integers $i_1, \ldots, i_r \in [n]$ such that

$$\sigma(i_1) = i_2, \ \sigma(i_2) = i_3, \ \dots, \ \sigma(i_r) = i_1$$

and $\sigma(j) = j$ for $j \neq i_1, \dots, i_r$.

A cycle of length 2 is called a transposition.

Note. The only cycle of length 1 is the identity element in S_n .

21.4 Notation. If σ is a cycle as above then we write

$$\sigma = (i_1 \ i_2 \ \dots \ i_r)$$

21.5 Example. In S_5 we have

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 2 & 5 & 3 \end{pmatrix} = (2 \ 4 \ 5 \ 3)$$

Note: $(2\ 4\ 5\ 3) = (4\ 5\ 3\ 2) = (5\ 3\ 2\ 4) = (3\ 2\ 4\ 5)$.

21.6 Definition. Permutations $\sigma, \tau \in S_n$ are *disjoint* if

$$\{i \in [n] \mid \sigma(i) \neq i\} \cap \{j \in [n] \mid \tau(j) \neq j\} = \emptyset$$

21.7 Proposition. If σ, τ are disjoint permutations then $\sigma \tau = \tau \sigma$.

Proof. Exercise. □

- **21.8 Proposition.** Every non-identity permutation $\sigma \in S_n$ is a product of disjoint cycles of length ≥ 2 . Moreover, this decomposition into cycles is unique up to the order of factors.
- **21.9 Example.** Let $\sigma \in S_9$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 7 & 1 & 3 & 2 & 6 & 5 & 9 & 8 \end{pmatrix}$$

Then $\sigma = (1 \ 4 \ 3)(2 \ 7 \ 5)(8 \ 9)$.

Proof of proposition 21.8. Consider the action of \mathbb{Z} on the set [n] given by

$$k \cdot i = \sigma^k(i)$$

for $k \in \mathbb{Z}$, $i \in [n]$. Notice that

$$Orb(i) = \{ \sigma^k(i) \mid k \in \mathbb{Z} \}$$

Define $\sigma_i \colon [n] \to [n]$

$$\sigma_i(j) = \begin{cases} \sigma(j) & \text{if } j \in \text{Orb}(i) \\ j & \text{otherwise} \end{cases}$$

Notice that σ_i is a bijection since $\sigma(\operatorname{Orb}(i)) = \operatorname{Orb}(i)$. Thus $\sigma_i \in S_n$. Check:

- 1) σ_i is a cycle of length $|\operatorname{Orb}(i)|$.
- 2) if $\operatorname{Orb}(i_1), \ldots, \operatorname{Orb}(i_r)$ are all distinct orbits of [n] containing more than one element then $\sigma_{i_1}, \ldots, \sigma_{i_r}$ are non-trivial, disjoint cycles and

$$\sigma = \sigma_{i_1} \cdot \ldots \cdot \sigma_{i_r}$$

Uniqueness of decomposition - easy.

21.10 Proposition. Every permutation $\sigma \in S_n$ is a product of (not necessarily disjoint) transpositions.

Proof. By Proposition 21.8 it is enough to show that every cycle is a product of transpositions. We have:

$$(i_1 \ i_2 \ i_3 \ \dots \ i_r) = (i_1 \ i_r)(i_1 \ i_{r-1}) \cdot \dots \cdot (i_1 \ i_3)(i_1 \ i_2)$$

Note. For $\sigma \in S_n$ we have a bijection

$$\sigma \times \sigma \colon [n] \times [n] \to [n] \times [n]$$

given by $\sigma \times \sigma(i,j) = (\sigma(i),\sigma(j))$. Define

$$S_{\sigma} := \{(i,j) \in [n] \times [n] \mid i > j \text{ and } \sigma(i) < \sigma(j)\}$$

- **21.11 Definition.** A permutation $\sigma \in S_n$ is *even* (resp. *odd*) if the number of elements of S_{σ} is even (resp. odd).
- **21.12 Theorem.** 1) The map $\operatorname{sgn}: S_n \to \mathbb{Z}/2\mathbb{Z}$ defined by

$$\operatorname{sgn}(\sigma) = \begin{cases} 0 & \text{if } \sigma \text{ is even} \\ 1 & \text{if } \sigma \text{ is odd} \end{cases}$$

is a homomorphism.

2) If σ is a transposition then $sgn(\sigma) = 1$, so this homomorphism is non-trivial.

Proof. 1) Let $\sigma, \tau \in S_n$. Denote $s_{\sigma} = |S_{\sigma}|$. We want to show

$$s_{\tau\sigma} \equiv s_{\tau} + s_{\sigma} \pmod{2}$$

Let $[n]^+ := \{(i,j) \in [n] \times [n] \mid i > j\}$. Define subsets $P_\sigma, R_\sigma, P_\tau, R_\tau \subseteq [n]^+$ as follows:

$$\begin{split} P_{\sigma} := & \{(i,j) \mid \sigma^{-1}(i) > \sigma^{-1}(j)\} \\ R_{\sigma} := & \{(i,j) \mid \sigma^{-1}(i) < \sigma^{-1}(j)\} \\ P_{\tau} := & \{(i,j) \mid \tau(i) > \tau(j)\} \\ R_{\tau} := & \{(i,j) \mid \tau(i) < \tau(j)\} \end{split}$$

Notice that $s_{\sigma} = |R_{\sigma}|$ and $s_{\tau} = |R_{\tau}|$. Notice also that $(i, j) \in S_{\tau\sigma}$ iff either $(\tau(i), \tau(j)) \in P_{\sigma} \cap R_{\tau}$ or $(\tau(j), \tau(i)) \in R_{\sigma} \cap P_{\tau}$. This gives

$$s_{\tau\sigma} = |P_{\sigma} \cap R_{\tau}| + |R_{\sigma} \cap P_{\tau}|$$

On the other hand we have:

$$s_{\sigma} = |R_{\sigma}| = |R_{\sigma} \cap P_{\tau}| + |R_{\sigma} \cap R_{\tau}|$$

$$s_{\tau} = |R_{\tau}| = |P_{\sigma} \cap R_{\tau}| + |R_{\sigma} \cap R_{\tau}|$$

Therefore

$$s_{\sigma} + s_{\tau} = |R_{\sigma} \cap P_{\tau}| + |P_{\sigma} \cap R_{\tau}| + 2|R_{\sigma} \cap R_{\tau}| = s_{\tau\sigma} + 2|R_{\sigma} \cap R_{\tau}|$$
 and so $s_{\tau} + s_{\sigma} \equiv s_{\tau\sigma} \pmod{2}$.

2) Exercise.

21.13 Definition/Proposition. The set

$$A_n = \{ \sigma \in S_n \mid \sigma \text{ is even} \}$$

is a normal subgroup of S_n . It is called the *alternating group on* n *letters*.

Proof. It is enough to notice that $A_n = Ker(sgn)$.

Note. We have

$$S_n/A_n \cong \mathbb{Z}/2\mathbb{Z}$$

Since $|S_n| = n!$ thus $|A_n| = \frac{n!}{2}$.

21.14 Proposition. If $\sigma \in S_n$ then σ is even (resp. odd) iff σ is a product of an even (resp. odd) number of transpositions.

Proof. If $\sigma = \tau_1...\tau_m$ where $\tau_1,...,\tau_m$ are transpositions then

$$\operatorname{sgn}(\sigma) = \operatorname{sgn}(\tau_1 \dots \tau_m) = \sum_{i=1}^m \operatorname{sgn}(\tau_i) = \sum_{i=1}^m 1$$

Thus $sgn(\sigma) = 0$ iff m is even and $sgn(\sigma) = 1$ iff m is odd.

Note. If follows that if a permutation $\sigma \in S_n$ is a product of an even number of transpositions then it cannot be written as a product of an odd number of transpositions (and vice versa).

21.15 Corollary. A permutation $\sigma \in S_n$ is even iff

$$\sigma = \sigma_1 \sigma_2 \dots \sigma_r$$

where σ_i is a cycle of length m_i and $\sum_{i=1}^r (m_r+1)$ is even.

Proof. It is enough to notice that by the proof of Proposition 21.10 a cycle of length m is a product of m+1 transpositions.

Note. The usual notation for the sign of a permutation is

$$\operatorname{sgn}(\sigma) = \begin{cases} 1 & \text{if } \sigma \text{ is even} \\ -1 & \text{if } \sigma \text{ is odd} \end{cases}$$

where $\{-1,1\}\cong \mathbb{Z}/2\mathbb{Z}$ is the multiplicative group of units in $\mathbb{Z}.$

22 Simplicity of alternating groups

22.1 Theorem. The alternating group A_n is simple for $n \geq 5$.

22.2 Lemma. For $n \geq 3$ every element of A_n is a product of 3-cycles.

Proof. It is enough to show that if $n \geq 3$ and τ , σ are transpositions in S_n then $\tau \sigma$ is a product of 3-cycles.

Case 1) τ , σ are disjoint transpositions: $\tau=(i\ j)$, $\sigma=(k\ l)$ for distinct elements $i,j,k,l\in[n]$. Then we have

$$\tau \sigma = (i \ j \ k)(j \ k \ l)$$

Case 2) τ , σ are not disjoined: $\tau=(i\ j)$, $\sigma=(j\ k)$. Then

$$\tau\sigma = (i\ j\ k)$$

22.3 Lemma. If $n \geq 5$ and σ , σ' are 3-cycles in S_n then

$$\sigma' = \tau \sigma \tau^{-1}$$

for some $\tau \in A_n$

Proof. Check: if $(i_1 \ i_2 \ \dots \ i_r)$ is a cycle in S_n then for any $\omega \in S_n$ we have

$$\omega(i_1 \ i_2 \ \dots \ i_r)\omega^{-1} = (\omega(i_1) \ \omega(i_2) \ \dots \omega(i_r))$$

If $\sigma=(i_1\ i_2\ i_3),\ \sigma'=(j_1\ j_2\ j_3)$ then take $\omega\in S_n$ such that $\omega(i_k)=j_k$ for k=1,2,3. We have

$$\sigma' = \omega \sigma \omega^{-1}$$

If $\omega \in A_n$ we can then take $\tau := \omega$.

Assume then that $\omega \not\in A_n$. Since $n \geq 5$ there are $r, s \in [n]$ such that $(r \ s)$ and $\sigma = (i_1 \ i_2 \ i_3)$ are disjoint cycles. Take $\tau = \omega(r \ s)$. Then $\tau \in A_n$. Moreover, since $(r \ s)$ commutes with σ we have

$$\tau \sigma \tau^{-1} = \omega(r \ s) \sigma(r \ s)^{-1} \omega^{-1} = \omega \sigma \omega^{-1} = \sigma'$$

22.4 Corollary. If $n \ge 5$ and H is a normal subgroup of A_n such that H contains some 3-cycle then $H = A_n$.

Proof. By Lemma 22.3 H contains all 3-cycles, and so by Lemma 22.2 it contains all elements of A_n .

Proof of Theorem 22.1. Let $n \geq 5$, $H \triangleleft A_n$ and $H \neq \{(1)\}$. We need to show that $H = A_n$. By Corollary 22.4 it will suffice to show that H contains some 3-cycle.

Let $(1) \neq \sigma$ be an element of H with the maximal number of fixed points in [n]. We will show that σ is 3-cycle. Take the decomposition of σ into dosjoint cycles:

$$\sigma = \sigma_1 \sigma_2 \cdot \ldots \cdot \sigma_m$$

Case 1) $\sigma_1, \ldots, \sigma_m$ are transpositions.

Since $\sigma \in A_n$ we must then have $m \geq 2$. Say, $\sigma_1 = (i \ j)$, $\sigma_2 = (k \ l)$. Take $s \neq i, j, k, l$ and let $\tau = (k \ l \ s) \in A_n$. Since H is normal in A_n we have

$$\tau\sigma\tau^{-1}\sigma^{-1}\in H$$

Check:

1)
$$\tau \sigma \tau^{-1} \sigma^{-1} \neq (1)$$
 since $\tau \sigma \tau^{-1} \sigma^{-1}(k) \neq k$

- 2) $\tau\sigma\tau^{-1}\sigma^{-1}$ fixes every element of [n] fixed by σ
- 3) $\tau \sigma \tau^{-1} \sigma^{-1}$ fixes i, j.

Thus $\tau\sigma\tau^{-1}\sigma^{-1}$ has more fixed points than σ which is impossible by the definition of σ .

Case 2) σ_r is a cycle of length ≥ 3 for some $1 \leq r \leq m$.

We can assume r=1: $\sigma_1=(i\ j\ k\dots)$. If $\sigma=\sigma_1$ and σ_1 is a 3-cycle we are done.

Otherwise σ must move at least two more elements, say p,q. In such case take $\tau=(k\ p\ q).$ We have

$$\tau \sigma \tau^{-1} \sigma^{-1} \in H$$

Check:

- 1) $\tau \sigma \tau^{-1} \sigma^{-1} \neq (1)$ since $\tau \sigma \tau^{-1} \sigma^{-1}(k) \neq k$
- 2) $\tau \sigma \tau^{-1} \sigma^{-1}$ fixes every element of [n] fixed by σ
- 3) $\tau \sigma \tau^{-1} \sigma^{-1}$ fixes j.

Thus $\tau\sigma\tau^{-1}\sigma^{-1}$ has more fixed points than σ which is again impossible by the definition of σ .

As a consequence σ must be a 3-cycle.

22.5. Classification of simple finite groups.

- 1) cyclic groups $\mathbb{Z}/p\mathbb{Z}$, p prime
- 2) alternating groups A_n , $n \geq 5$
- 3) finite simple groups of Lie type, e.g. projective special linear groups

$$PSL_n(\mathbb{F}) := SL_n(\mathbb{F})/Z(SL_n(\mathbb{F}))$$

 $\mathbb F$ -finite field, $n\geq 2$ (and n>2 if $\mathbb F=\mathbb F_2$ or $\mathbb F=\mathbb F_3).$

4) 26 sporadic groups (the smallest: Mathieu group M_{11} , $|M_{11}|=7920$, the biggest: the Monster M, $|M|\approx 8\cdot 10^{53}$).

23 Solvable groups

Recall. Every finite group G has a composition series:

$$\{e\} = G_0 \subseteq \ldots \subseteq G_k = G$$

where $G_{i-1} \triangleleft G_i$ and G_i/G_{i-1} is a simple group.

23.1 Definition. A group G is *solvable* if it has a composition series

$$\{e\} = G_0 \subseteq \ldots \subseteq G_k = G$$

such that for every i the group G_i/G_{i-1} is a simple abelian group (i.e. $G_i/G_{i-1}\cong \mathbb{Z}/p_i\mathbb{Z}$ for some prime p_i).

23.2 Example.

- 1) Every finite abelian group is solvable.
- 2) For $n \geq 5$ the symmetric group S_n has a composition series

$$\{(1)\}\subseteq A_n\subseteq S_n$$

and so S_n is not solvable.

23.3 Proposition. A finite group G is solvable iff it has a normal series

$$\{e\} = H_0 \subseteq \ldots \subseteq H_l = G$$

such that H_j/H_{j-1} is an abelian group for all j.

Proof. Exercise. □

Recall.

1) If G is a group the [G,G] is the commutator subgroup of G

$$[G,G] = \langle \{aba^{-1}b^{-1} \mid a,b \in G\} \rangle$$

- 2) [G,G] is the smallest normal subgroup of G such that G/[G,G] is abelian: if G/H for some $H \lhd G$ then $[G,G] \subseteq H$.
- **23.4 Definition.** For a group G the *derived series of* G is the normal series

$$\cdots \subset G^{(2)} \subset G^{(1)} \subset G^{(0)} = G$$

where $G^{i+1} = [G^{(i)}, G^{(i)}]$ for $i \geq 1$. The group $G^{(i)}$ is called the *i-th derived group of* G.

23.5 Theorem. A group G is solvable iff $G^{(n)} = \{e\}$ for some $n \ge 0$.

Proof. Exercise. □

23.6 Theorem.

- 1) Every subgroup of a solvable group is solvable.
- 2) Ever quotient group of a solvable group is solvable.
- 3) If $H \triangleleft G$, and both H and G/H are solvable groups then G is also solvable.

Proof.

- 1) If $H \subseteq G$ then $H^{(i)} \subseteq G^{(i)}$. Thus if $G^{(n)} = \{e\}$ then $H^{(n)} = \{e\}$.
- 2) For $H \triangleleft G$ take the canonical epimorphism $f \colon G \to G/H$. We have

$$f(G^{(i)}) = (G/H)^{(i)}$$

Therefore if $G^{(n)} = \{e\}$ then $(G/H)^{(n)} = \{e\}$.

3) Assume that $H \triangleleft G$, and that $H^{(m)}$, $(G/H)^{(n)}$ are trivial groups. Consider the canonical epimorphism $f \colon G \to G/H$. We have

$$f(G^{(n)}) = (G/H)^{(n)} = \{e\}$$

Therefore $G^{(n)} \subseteq \operatorname{Ker}(f) = H$. As a consequence we obtain

$$G^{(n+m)} = (G^{(n)})^{(m)} \subseteq H^{(m)} = \{e\}$$

23.7 Theorem (Feit-Thompson). Every finite group of odd order is solvable.

Proof. See:

W. Feit, J.G. Thompson, *Solvability of groups of odd order*, Pacific Journal of Mathematics 13(3) (1963), 775-1029.

23.8 Corollary. There are no non-abelian finite simple groups of odd order.

Proof. Let $G \neq \{e\}$ be a simple group of odd order. By Theorem 23.7 G is solvable so $[G,G] \neq G$. Since $[G,G] \lhd G$, by simplicity of G we must have $[G,G]=\{e\}$, and so G is an abelian group. \Box