

Estudiante: Maria Ballesteros

Ejercicio 1

q. Determine la función Z:

- para 4 inputs (a,b,c,d) se obtiene una tabla de 2 = La combinaciones.

11		,	3 1 1	1	
	q	Ь	c	d	こえ
0	0	0.	0	0	1
1	0	0	0	1	1
2	0	0	1	o	1
3	0	0	1	1	1
4	G	1	0	0	0
5	O	1	0	1	0
6	0	1	, 4 1	100	7.1 ×
8	0	1	1	1	1
8	4)	<i>y</i> 0	0	0	0
9	1	0	0	1	4
10	_ 1	0	1.04) O	1
11	_ 1	0	1	1	1
11	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	0.
£5	1	1	1	1	1

(1))			,
, leg , l	a	ь	Q	
o de	0	0	Do	
Ŭ 1	0	1	Da	
O X2	1	0	Oq	
TO IS	1	1	03	
(1, 1)	16	,)	1 (

- 1. Para 0,1,2 y 3, según la tabla de verdad del nox el resultado sera Do. La eunción de Do es: la b) + d
 2. Para 4,5,6 y 7, el nox arrojará D1. y
- 3. Para 8,9,10 y 11, los Mux arrojan De, g
- 4. Para 12, 13, 14 y 15, D3 sería: d+ (a+b)

- Perinimos los mapas de Karnaugh :

Z = q b + ac + bc +ad

b. Implemente con un multiplexor de 8 canales : āb + āc + bc + ad - utilizando aib y c como entradas (23 = 8) y a la porte abtactbe

	G	Ь	c	F	- ab+ac+bc = F
0	0	0	0	1	→ 1 + (o.d) = 1
1	0	0	1	1	- 1+ (0.d)=1
2	0	1	0	0	- 0+ (0.d)=0/
3	0	1	1	1	- 1 + (o·d = 1
4	1	0	0	0	+ 0 + (1.0) = 0
5	1	0	1	1	- 1 + (1 · d) = 1
G	1	1	0	0	- 0 + (1.d) = d
7	1	1	4	0	+ 0 + (1.d=d

C. Implemente z con un multiplexor de 4 canales: - utilizando a y b como entradas (2º=41 y sólo al término ab de la revoción para la tabla de verded, obtenemos:

	q	Ь	F	→ ab= c
0	0	0	4	- 1 + (1 · c) + (1 · c) + (0 d) = 1 + c + c + 0 = 1
1,	0	1	1.0,1	7 0+(1c)+(oc)+(od)=0+c+0+0=c
2	1	0	0	+ 0 + (0c) + (1c) + (1d) = 0+0 + c+d = c+d
3	1		0	

2. Dado el siguiente tren de pulsos a las entradas de un circuito, construir un circuito con multiplexores de 2:1 con entrada de habilitación en alto que represente dicha salida.

1																,		
	Α	В	S	γ		A	1	1	(1			1	[1	1	
	0	o	0	Ô	0			1					i				1	
	o	0	1	0	4		1	,	(1			-		
	0	L	0	0	2	8			1	1				1.				
	0	4	4	1	5	\	1			-		-!		1				
	1	0	0	X	4	S					-		1	. 1		1		
	1	0	1	0	5	\		-					+	1		_	_	
	1	1	Ġ	1	G	y		1										
1	1	1	4	X	7		5	10	15	20	25	30	35	40	45	50	55	+ (mg)

- Entradas del Mux 2:1 AyB.
- selector = s.
- e = Fuente vcc.

- para el selector en O(2=0),
Do debe ser 1 ; es decir, y
debe ser igual a o, según
lo descrito en la siguiente tabla:

,	A	B	Y	3
	0	0	0	Do= AB
γ	0	1	0	
	1	0	0	
	1	1	1	

- para el selector en 1(s=1), D1 debe ser 1 según lo descrito en la siguiente tabla:

Α	B	У		
0	0	0	D1 =	ĀB
0	1	1		
1	0	0		
1	1	0		

Estudiante: María Ballesteros

Cedula: 31.000.745

Ejercicio 2