20. Que condicao os conjuntos A e B devem satisfazer para que A - B = B - A? E para que A \cup B = A \cap B?

Para ambas as perguntas a resposta é A=B:

Suponha que A=B.Então $A\cap B=A$ e $A\cup B=A$. Assim, substituindo A por $A\cap B$ em $A\cup B=A$, temos $A\cup B=A\cap B$.

Além disso, temos que $A - B = A - (A \cap B)$. Assim, substituindo A por $A \cap B$ e B por A, temos que $A - B = A - (A \cap B) <=> A - A = A - A <=> <math>\emptyset = \emptyset$, uma tautologia.

31. Diga que propriedades, dentre reflexividade, simetria e transitividade, tem a relação: $\{(x, y) \in \mathbb{N} \mid x \in \text{divisível por } y\}$.

A relação pode ser interpretada como $\{(x, y) \in \mathbb{N} \mid x=n^*y, n \in \mathbb{N}\}$. Assim temos que :

A relação é reflexiva, pois seja x ∈ N, temos x=n*x, com n=1.

A relação não é simétrica, pois dando um contra exemplo, 15 é divisível por 5, mas 5 não é divisível por 15.

A relação é transitiva, pois seja $x,y,z \in N$, se x=n*y e y=m*z com $n,m \in N$,então x=n*(m*z) <=> x=(n*m)*z, com $n*m \in N$.

33. Diga que propriedades, dentre reflexividade, simetria e transitividade, tem a relação: $\{(x, y) \in \mathbb{R} \mid x - y \text{ é um inteiro}\}$.

A relação é reflexiva, pois para $x \in N$, temos x-x=0, $0 \in N$

A relação não é simétrica, pois dando um contra exemplo, 15-5=10, $10 \in \mathbb{N}$, mas 5-15=-10, $-10 \notin \mathbb{N}$.

A relação é transitiva, pois seja x,y,z \in N, se x-y=n e y-z=m, com n,m \in N ,então x-y=n <=> x-(m+z)=n <=> x-z=m+n, com n+m \in N.

Arquivo Fonte: https://github.com/reicavera/LFA