Université Paris 9 - Dauphine MD4 S1

Processus Aléatoires Discret

Examen du 14-12-2004

Aucun document permis.

1. Soit $\Omega = [0, 1]$, \mathcal{F} la tribu borelienne de Ω , \mathbb{P} la mesure de Lebesgue sur \mathcal{F} . Soit K un entier positif. Pour tout $n \in \mathbb{N}$, soit \mathcal{F}_n la tribu engendrée par la partition $\{(jK^{-n}, (j+1)K^{-n}], j=0,\ldots,K^n-1\}$

$$\mathcal{F}_n = \sigma \left\{ (jK^{-n}, (j+1)K^{-n}], \ j = 0, \dots, K^n - 1 \right\}$$

Soit α un nombre réel positif. On pose, pour tout $n \geq 0$

$$X_n(\omega) = \begin{cases} \alpha^n & \text{si } 0 \le \omega \le K^{-n}, \\ 0 & \text{autrement.} \end{cases}$$

- (a) Montrer que $\{\mathcal{F}_n\}_n$ est une filtration croissante.
- (b) Calculer $\mathbb{E}(X_{n+1}|\mathcal{F}_n)$.
- (c) Pour quelle valeur de α on a que X_n est une martingale par rapport a cette filtration?
- (d) Pour quelles valeurs de α on a que X_n est une sous-martingale?
- (e) Calculer la limite presque sure de X_n pour $n \to \infty$.
- 2. Supposons que il y ait deux technologies (notées 1 et 2) en compétition. Un agent est caractérisé par son 'type' $0 \le \delta \le 1$ qui représente sa préference à priori pour la technologie 1. Ainsi $\delta = 1$ si il a une préference absolute pour 1, $\delta = 1/2$ si il est indifférent.

Soit X^i la part de marché de la technologie i (i=1,2), c'est à dire $X^i=N^i/(N^1+N^2)$, où N^i est le nombre des agents sur le marché qu'ont adopté la technologie i. Soient $\delta^1=\delta$ et $\delta^2=1-\delta$. L'utilité de l'agent pour la technologie i est une fonction $U^i(\delta^i,X^i)$ croissante en δ^i et en X^i .

On suppose qu'à chaque instant discret n un agent arrive sur le marché et adopte la technologie qui maximise son utilité. Soit X_n^1 la part de marché de la technologie 1 au temps n. Supposons que au debut il n'y a que deux agents, un adoptant la technologie 1 et l'autre la technologie 2, donc on pose $X_0 = 1/2$. Ainsi à l'instant n + 1 la technologie 1 est adoptée si

$$U^{1}(\delta_{n+1}, X_{n}^{1}) > U^{2}(1 - \delta_{n+1}, X_{n}^{2})$$

où $\{\delta_n\}$ sont des variables aléatoires indépendantes et identicament distribuées à valeurs dans [0,1].

- (a) Montrer que $N_n^1 = X_n^1(n+2)$ est une chaîne de Markov sur \mathbb{N} et calculer sa matrice de transition $P_n(x,y)$.
- (b) Supposons maintenant que les variables δ_n sont i.i.d. de loi uniforme sur [0,1] et $U^i(\delta^i,X^i) = \delta^i X^i$.
 - i. Montrer que $\{X_n\}_n$ est une martingale.
 - ii. En applicant un théorème du cours, montrer que X_n converge presque surement (pour $n \to \infty$) à une variable aleatoire X à valeurs dans [0, 1].

- iii. Calculer la loi de X_n , et en deduire la loi de X.
- (c) Supposons maintenant que les variables δ_n soient i.i.d. avec $\mathbb{P}(\delta=1)=\mathbb{P}(\delta=0)=1/2$ et $U^i(\delta^i,X^i)=\delta^iX^i$. Montrer que $N_n^1=1+\sum_n\delta_n$. Calculer la limite presque sure de X_n pour $n\to\infty$.
- (d) Supposons maintenant que les variables δ_n soient i.i.d. avec distribution $F(x) = \mathbb{P}(\delta \leq x)$, $x \in [0,1]$, et $U^i(\delta^i, X^i) = \delta^i X^i$. Supposons que F(0) = 0 et que F soit une fonction convexe de x. Montrer que $F(x) \leq x$ et que X_n est une sous-martingale.
- 3. (a) Soit M_n une martingale par rapport à une filtration $\{\mathcal{F}_n\}_n$, telle que $\mathbb{E}(M_n^2) < +\infty$. Soit

$$A_n = \sum_{i=1}^{n} \mathbb{E} ([M_i - M_{i-1}]^2 | \mathcal{F}_{i-1})$$

Montrer que $M_n^2 - A_n$ est une \mathcal{F}_n -martingale.

- (b) Soit X_n une chaîne de Markov sur un espace M fini, avec matrice de transition P. Soit $f: M \to \mathbb{R}$.
 - i. Montrer que

$$M_n = f(X_n) - f(X_0) + \sum_{k=0}^{n-1} \left[f(X_k) - (Pf)(X_k) \right]$$

est une martingale par rapport à la filtration $\{\mathcal{F}_n = \sigma(X_0, X_1, \dots, X_n)\}_{n \geq 0}$.

ii. Montrer que

$$M_n^2 - \sum_{k=0}^{n-1} \left[(P(f^2))(X_k) - ((Pf)(X_k))^2 \right]$$

est une \mathcal{F}_n -martingale.