수학으로부터 인류를 자유롭게 하라

Free Humankind from Mathematics

Basic Algebra

Chap.3 Mathematical Logic

3.1 Propositions

Expansion of Knowledge

참으로 알고있는 것으로부터 논리적인 과정을 통해 새로운 참을 이끌어내는 과정

3.1 Propositions

Boolean Values

True: 1(참)

False: 0(거짓)

3.1 Propositions

Propositions

True, False로 판단할 수 있는 문장

ex.1) p_1 :모든 사람은 죽는다. \longrightarrow True(1)

ex.2) p_2 :일주일은 10일로 이루어져있다. \longrightarrow False(0)

ex.3) p_3 :4는 2의 배수이다. \longrightarrow True(1)

ex.4) p_4 :6은 prime number이다. \longrightarrow False(0)

참일 수도, 거짓일 수도 있는 경우 확률의 개념이 도입된다.

3.1 Propositions

Axioms

참으로 증명없이 받아들이는 proposition

Vector Space Definition

The set V is called a **vector space over** \mathcal{F} when the vector addition and scalar multiplication operations satisfy the following properties.

- (A1) $x+y \in V$ for all $x, y \in V$. This is called the *closure property* for vector addition.
- (A2) (x + y) + z = x + (y + z) for every $x, y, z \in \mathcal{V}$.
- (A3) x + y = y + x for every $x, y \in \mathcal{V}$.
- (A4) There is an element $0 \in \mathcal{V}$ such that x + 0 = x for every $x \in \mathcal{V}$.
- (A5) For each $x \in \mathcal{V}$, there is an element $(-x) \in \mathcal{V}$ such that x + (-x) = 0.
- (M1) $\alpha \mathbf{x} \in \mathcal{V}$ for all $\alpha \in \mathcal{F}$ and $\mathbf{x} \in \mathcal{V}$. This is the *closure* property for scalar multiplication.
- (M2) $(\alpha\beta)\mathbf{x} = \alpha(\beta\mathbf{x})$ for all $\alpha, \beta \in \mathcal{F}$ and every $\mathbf{x} \in \mathcal{V}$.
- (M3) $\alpha(x + y) = \alpha x + \alpha y$ for every $\alpha \in \mathcal{F}$ and all $x, y \in \mathcal{V}$.
- (M4) $(\alpha + \beta)\mathbf{x} = \alpha\mathbf{x} + \beta\mathbf{x}$ for all $\alpha, \beta \in \mathcal{F}$ and every $\mathbf{x} \in \mathcal{V}$.
- (M5) 1x = x for every $x \in \mathcal{V}$.

[1]

Axiomatic Definition of Vector Space

$$0 \leq P(A_i)$$

$$P(S) = 1$$

$$P(A_1 \cup A_2 \cup \ldots \cup A_n)$$

$$= P(A_1) + P(A_2) + \ldots + P(A_n)$$
 if $A_i, A_j, i \neq j$ 가 서로 mutually exclusive event일때

Axiomatic Definition of Probability

3.1 Propositions

Mathematical Proof

3.1 Propositions

Conditions

변수에 따라 True, False가 달라지는 식

항상 True이거나 False이면 각각 true proposition, false proposition으로 생각한다.

*많은 경우에 위의 모든 경우를 condition으로 취급하기도 한다.

ex.1)
$$x^2 = 4$$
 — True, if $x = 2$ or $x = -2$ — False, if otherwise

ex.2)
$$x^2 > 4$$
 — True, if $x \ge 2$ or $x \le -2$ — False, if $-2 \le x \le 2$

3.1 Propositions

Truth Sets

어떤 condition을 만족하는 원소들의 집합

ex.1)
$$U = \{x \mid 1 \le (x \in \mathbb{N}) \le 20\}$$

$$p: x는 12의 약수 \longrightarrow A = \{x \mid p\} = \{1, 2, 3, 4, 6, 12\}$$

$$q: x는 4의 배수 \longrightarrow B = \{x \mid q\} = \{4, 8, 12, 16, 20\}$$

ex.2)
$$U = \mathbb{R}$$

 $p: (x+1)(x-2) = 0 \longrightarrow A = \{x \mid p\} = \{-1, 2\}$

condition이 정해지면 truth set이 생김

3.1 Propositions

Truth Sets

condition을 통해 집합이 만들어진다.

집합 A는 조건 p의 truth set / 집합 B는 조건 q의 truth set

3.2 Logical Operations

Unary/Binary Operations

Logical Operations

Chap.3 Mathematical Logic 3.2 Logical Operations

Unary/Binary Operations

Unary Operations

- Logical Negation(¬)

Binary Operations

- Logical Conjunction(∧)
- Logical Disjunction(\(\vee \))
- Logical Exclusive Disjunction(⊕)
- Logical Implication(→)
- NAND, NOR, XNOR

$$\bigcirc A = Y$$

$$A \odot B = Y$$

3.2 Logical Operations

Truth Tables

input condition(s)이 true/false인지에 따라 output condition의 true/false를 정리한 표

truth table for unary operation

A	Y
0	0/1
1	0/1

truth table for binary operation

A	В	Y
0	0	0/1
0	1	0/1
1	0	0/1
1	1	0/1

3.2 Logical Operations

Truth Tables

logic.ly

3.2 Logical Operations

Logical Negation(¬)

input condition의 참과 거짓을 바꾸는 연산

$$\neg A = Y$$

A	Y
0	1
1	0

- ex.1) ¬(a는 prime number이다.) = (a는 prime number가 아니다.)
- ex.2) ¬(a와 b는 서로 independent하다.) = (a와 b는 서로 dependent하다.)

3.2 Logical Operations

Logical Negation(¬)

input condition의 참과 거짓을 바꾸는 연산

3.2 Logical Operations

Logical Conjunction(\(\)

두 input condition A, B가 모두 참일 때만 output condition이 참인 연산

$$A \wedge B = Y$$

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

- ex.1) (a는 3의 배수이다.) \land (a는 4의 배수이다.) = (a는 3의 배수이고, 4의 배수이다.)
- ex.2) (입력된 이미지에 강아지가 있다.) ^ (입력된 이미지에 고양이가 있다.) = (입력된 이미지에 강아지와 고양이가 모두 있다.)

3.2 Logical Operations

Logical Conjunction(\(\)

두 input condition A, B가 모두 참일 때만 output condition이 참인 연산

$$A \wedge B = Y$$

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

3.2 Logical Operations

Logical Disjunction(\(\cdot \)

두 input condition A, B 중 하나라도 참이면 output condition이 참인 연산

$$A \vee B = Y$$

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

- ex.1) (a는 3의 배수이다.) V (a는 4의 배수이다.) = (a는 3의 배수이거나, 4의 배수이다.)
- ex.2) (입력된 이미지에 강아지가 있다.) V (입력된 이미지에 고양이가 있다.) = (입력된 이미지에 강아지가 있거나 고양이가 있다.)

3.2 Logical Operations

Logical Disjunction(\(\cdot \)

두 input condition A, B 중 하나라도 참이면 output condition이 참인 연산

$$A \vee B = Y$$

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

3.2 Logical Operations

Logical Exclusive Disjunction(\oplus)

두 input condition A, B 중 하나만 참일때, output condition이 참인 연산

$$A \oplus B = Y$$

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

⊕는 입력이 서로 같은지, 다른지를 판별하는 연산으로도 사용된다.

3.2 Logical Operations

Logical Exclusive Disjunction(\oplus)

두 input condition A, B 중 하나만 참일때, output condition이 참인 연산

$$A \oplus B = Y$$

٨	D	Y
Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

3.2 Logical Operations

Other Digital Logic Gates

NAND Operations

3.2 Logical Operations

Other Digital Logic Gates

NOR Operations

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

Chap.3 Mathematical Logic

3.3 Logical Implications

Logical Implications

조건 A가 만족될 때, B가 만족됨을 추론하는 연산 If A, then B

Innocent Until Proven Guilty

Chap.3 Mathematical Logic

3.3 Logical Implications

Logical Implications

Truth Table of Logical Implication

1	P
$\boldsymbol{\Lambda}$	D

A	В	Y
0	0	1
0	1	1
1	0	0
1	1	1

Chap.3 Mathematical Logic 3.3 Logical Implications

Logical Implications

```
ex.1)
A: (수학 시험에서 100점을 맞는다.)
B: (용돈을 받는다.)

ex.2)
A: (구름이 낀 날씨)
B: (비가 온다.)
```

Chap.3 Mathematical Logic 3.3 Logical Implications

Converse, Inverse, Contrapositive

$$A \longrightarrow B$$

Converse
$$B \longrightarrow A$$

Inverse
$$\neg A \longrightarrow \neg B$$

Contrapositive
$$\neg B \longrightarrow \neg A$$

3.3 Logical Implications

Sufficiency and Necessity

condition p,q와 이 조건들에 대한 각각의 truth set P,Q일때, $p\longrightarrow q$ 가 참이기 위해선 $P\subseteq Q$ 여야 한다.

Р	Q	Y
0	0	1
0	1	1
1	0	0
1	1	1

p: True, q: False인 경우가 없는 상황

3.3 Logical Implications

Sufficiency and Necessity

참으로 알고있는 것으로부터 논리적인 과정을 통해 새로운 참을 이끌어내는 과정

3.3 Logical Implications

Sufficiency and Necessity

Sufficiency

p는 q이기 위한 충분조건이다. q가 참이기 위해 p가 참임을 보여주면 충분하다. p is sufficient for q q가 참이기 위해 'p가 참임'만으로 충분하다.

Necessity

q는 p이기 위한 필요조건이다. p가 참이기 위해 q가 참임이 필요하다. q is necessary for p p가 참이기 위해 'q가 참임'이 필요하다.

3.3 Logical Implications

Sufficiency and Necessity

iff Condition

if and only if

두 조건 p, q가 서로 같은 truth set을 만들 때, 두 조건은 **같은 조건**이다.

ex.1)
$$p: x^2 = 4 \iff q: x = \pm 2$$

3.4 All and Existent

For All ∀

 $\forall x, p$ x가 될 수 있는 모든 경우에 대해 조건 p가 만족된다.

- ex.1) ∀강아지는 동물이다.
- ex.2) $\forall x$, $0 \cdot x = 0$
- ex.3) $\forall x \text{ except x=0}, \ x \cdot \frac{1}{x} = 1$

There Exists ∃

 $\exists x, q$ 어떤(최소한 하나 이상의) x의 값이 조건 q를 만족시킨다.

ex.1)
$$\exists x, x + 3 = 0$$

ex.2)
$$\exists x$$
, $\frac{1}{x}$ cannot be defined

ex.3)
$$\exists x, x^2 = 1$$

ex.4)
$$\exists x \in \mathbb{R}, \ x^2 = -5$$

Chap.3 Mathematical Logic 3.4 All and Existent

Identities and Inverses

Additive Identities and Inverses

$$\forall x, \exists a, x + a = x \longrightarrow a = 0$$

 $\forall x, \exists a, x + a = 0 \longrightarrow a = -x$

Multiplicative Identities and Inverses

$$\forall x \text{ except } x=0, \exists a, \ x \cdot a = x \longrightarrow a = 1$$

 $\forall x \text{ except } x=0, \exists a, \ x \cdot a = 1 \longrightarrow a = x^{-1}$

3.5 Logical Computations

Basic Computations

(1)
$$\neg (A \land B)$$

A	$\mid B \mid$	$A \wedge B$	$\neg (A \land B)$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

(2)
$$(\neg A) \lor (\neg B)$$

A	B	$\neg A$	$\neg B$	$(\neg A) \lor (\neg B)$
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

(3) $A \longrightarrow B$, $\neg A \longrightarrow \neg B$, $\neg B \longrightarrow \neg A$

A	B	$\neg A$	$\neg B$	$A \longrightarrow B$	$\neg A \longrightarrow \neg B$	$\neg A \longrightarrow \neg B$
0	0	1	1	1	1	1
0	1	1	0	1	0	1
1	0	0	1	0	1	0
1	1	0	0	1	1	1

$$(4) \left[(A \land B) \longrightarrow B \right] \longrightarrow (A \lor B)$$

$$= C = D = B$$

A	$\mid B \mid$	$A \wedge B$	$C \rightarrow B$	$A \vee B$	$D \to E$
0	0	0	1	0	0
0	1	0	1	1	1
1	0	0	1	1	1
1	1	1	1	1	1

3.5 Logical Computations

Logical Equivalence

truth set A, B의 연산으로 X, Y가 나오고, 모든 경우에 대해 X, Y의 True, False가 같을 때, 두 X, Y는 logical equivalent하다. **ex.1** $(A \longrightarrow B) \longleftrightarrow (\neg B \longrightarrow \neg A)$

A	$\mid B \mid$	$A \rightarrow B$	$\neg A$	$\neg B$	$\neg B \rightarrow \neg A$
0	0	1	1	1	1
0	1	1	1	0	1
1	0	0	0	1	0
1	1	1	0	0	1

ex.2
$$(A \oplus B) \longleftrightarrow [(A \land (\neg B)) \lor ((\neg A) \land B)]$$

= $C = L$

A	$\mid B \mid$	$A \oplus B$	$\neg A$	$ \neg B $	$A \wedge (\neg B)$	$(\neg A) \wedge B$	$C \lor D$
0	0	0	1	1	0	0	0
0	1	1	1	0	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	0	0	0	0

3.5 Logical Computations

De Morgan's Law

$$\neg (A \land B) \longleftrightarrow (\neg A) \lor (\neg B)$$

A	B	$A \wedge B$	$\neg (A \land B)$	$\neg A$	$\neg B$	$(\neg A) \lor (\neg B)$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

$$\neg (A \lor B) \longleftrightarrow (\neg A) \land (\neg B)$$

A	$\mid B \mid$	$A \vee B$	$\neg (A \lor B)$	$\neg A$	$\neg B$	$(\neg A) \wedge (\neg B)$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

3.5 Logical Computations

Other Equivalences

$$(1) \neg (\neg A) \longleftrightarrow A$$

$$(2) A \wedge A \longleftrightarrow A$$

$$(3) A \lor A \longleftrightarrow A$$

Commutativity

$$(4) A \wedge B \longleftrightarrow B \wedge A$$

(5)
$$A \vee B \longleftrightarrow B \vee A$$

Associativity

(6)
$$(A \wedge B) \wedge C \longleftrightarrow A \wedge (B \wedge C)$$

(7)
$$(A \lor B) \lor C \longleftrightarrow A \lor (B \lor C)$$

Distributivity

(8)
$$A \wedge (B \vee C) \longleftrightarrow (A \wedge B) \vee (A \wedge C)$$

(9)
$$A \lor (B \land C) \longleftrightarrow (A \lor B) \land (A \lor C)$$

3.5 Logical Computations

Tautologies and Contradictions

Tautologies

항상 결과가 참이 되는 연산

ex.1)
$$A \lor (\neg A)$$

A	$ \neg A $	$A \lor (\neg A)$
0	1	1
1	0	1

ex.1)
$$A \lor (\neg A)$$
 ex.2) $\left[(A \to B) \land (B \to C) \right] \longrightarrow (A \to C)$
$$= P = Q = R = S$$

A	B	C	$A \rightarrow B$	$B \rightarrow C$	$P \wedge Q$	$A \rightarrow C$	$R \rightarrow S$
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	0	0	1	1
0	1	1	1	1	1	1	1
1	0	0	0	1	0	0	1
1	0	1	0	1	0	1	1
1	1	0	1	0	0	0	1
1	1	1	1	1	1	1	1

3.5 Logical Computations

Tautologies and Contradictions

Contradictions

항상 결과가 거짓이 되는 연산

ex.1)
$$A \wedge (\neg A)$$

A	$\neg A$	$A \wedge (\neg A)$
0	1	0
1	0	0

ex.1)
$$A \wedge (\neg A)$$
 ex.2) $(A \vee B) \wedge [(\neg A) \wedge (\neg B)]$

= P					$-\mathcal{Q}$		
	A	B	$A \lor B$	$\neg A$	$\neg B$	$(\neg A) \wedge (\neg B)$	$P \wedge Q$
	0	0	0	1	1	1	0
	0	0	1	1	0	0	0
	0	1	1	0	1	0	0
	0	1	1	0	0	0	0

References

[1] Meyer, Carl D. Matrix analysis and applied linear algebra. Vol. 71. Siam, 2000.

C L O S I N G

Basic Algebra

Chap.3 Mathematical Logic