MOWNIT

Laboratorium 7 – układy równań liniowych – metody iteracyjne

Jakub Karbowski 2 czerwca 2022

Cel ćwiczenia

Metodą Jacobiego rozwiązać układ równań Ax = b:

$$\begin{cases} a_{i,i} = 8 \\ a_{i,j} = \frac{1}{|i-j|+3} & i \neq j \end{cases}$$

1

Kryteria stopu

- 1. termcrit_change = $\max(\mathbf{x}^{(i+1)} \mathbf{x}^{(i)}) < \epsilon$
- 2. termcrit_resid = $\max(\mathbf{A}\mathbf{x}^{(i)} \mathbf{b}) < \epsilon$

Jako norma liczona jest wartość maksymalnego elementu wektora.

Promień spektralny

Za pomocą funkcji opnorm z biblioteki LinearAlgebra policzono promień spektralny macierzy iteracji.

Tabela 1: Promień spektralny

n	Promień spektralny
100	0.63131
200	0.792746
300	0.889834
400	0.959 529
500	1.013 95
600	1.0586
700	1.096 46
800	1.129 33
900	1.158 38
1000	1.1844

Promień spektralny

Rysunek 1: Promień spektralny

Promień spektralny

Od n=500 promień spektralny macierzy iteracji jest większy od 1. Oznacza to, że od takiego n metoda nie będzie zbieżna.

Wykonywane eksperymenty

Dla wszystkich kombinacji:

- 1. $n = 100, 200, \dots, 1000$,
- 2. kryterium stopu = termcrit_change, termcrit_resid,
- 3. $\epsilon = 10^{-5}, 10^{-6}, 10^{-7},$

wykonywano następujący eksperyment:

- 1. wygenerowanie macierzy A dla danego n,
- 2. wylosowanie wektora \mathbf{x} jako permutację $\{0,1\}$,
- 3. obliczenie b = Ax,
- 4. rozwiązanie układu metodą Jacobiego,
- 5. pomiar czasu, liczby iteracji i błędu.

Liczba iteracji została ograniczona do 300 w przypadku braku zbieżności metody.

Jako wektor początkowy losowano różne wektory ze współrzędnymi z przedziału [-100, 100].

Błąd

Rysunek 2: Błąd vs *n* (do 400)

Błąd

Rysunek 3: Błąd vs *n* (do 500)

Błąd

- 1. Kryterium termcrit_resid daje mniejszy błąd od termcrit_change.
- 2. Dla kryterium termcrit_change błąd rośnie wraz z *n*. Dla termcrit_resid błąd nie zależy od *n*.
- 3. Od n=500 następuje nagły wzrost błędu, zgodnie z analizą promienia spektralnego.

Liczba iteracji

Rysunek 4: Liczba iteracji vs *n*

Liczba iteracji

- 1. Zgodnie z analizą błędu, termcrit_resid potrzebuje więcej iteracji niż termcrit_change.
- 2. Od n=500 liczba iteracji osiąga górny limit (300), przez brak zbieżności metody.

Czas

Rysunek 5: Czas vs *n* (do 400

Czas

Rysunek 6: Czas vs n

Czas

- 1. Do n=400 czas rośnie pod wpływem wzrostu wielkości macierzy oraz większej liczbie iteracji.
- 2. Od n = 500 czas rośnie tylko ze względu na rozmiar macierzy.

Wnioski

- 1. Metoda Jacobiego jest bardzo szybka i pozwala na obliczanie dużych układów.
- Należy zagwarantować, że promień spektralny będzie mniejszy od 1. Inaczej metoda nie sprawdza się, co potwierdzają wszystkie eksperymenty.