Chapter 5 Fonctions circulaires

5.1 Fonctions trigonométriques

Exercice 5.1

Déterminer le domaine de définition des fonctions d'une variable réelle ci-dessous.

1.
$$f(x) = \cos(x^2 + 4)$$
.

3.
$$f(x) = \tan 3x$$
.

2.
$$f(x) = \sin \frac{1}{x(x-1)}$$
.

5.2 Formulaire de Trigonométrie

Exercice 5.2

Cours Soit a et b deux nombres réels. Rappeler (sans démonstration) les expressions de $\cos(a+b)$ et de $\cos(a-b)$ en fonction de $\cos a$, $\cos b$, $\sin a$, $\sin b$.

1. En déduire une expression du produit $\cos a \cos b$ en fonction de $\cos(a+b)$ et de $\cos(a-b)$.

2. En déduire que, pour tous nombres réels p et q, on a

$$\cos p + \cos q = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right).$$

Exercice 5.3

Calculer $\sin \alpha$ et $\cos \alpha$ sachant que $\tan \alpha = \frac{4}{5}$ et que α un angle du troisième quadrant.

Exercice 5.4

Soit α un angle du premier quadrant.

Calculer $\sin(2\alpha)$, $\cos(2\alpha)$ et $\tan(2\alpha)$ sachant que $\cos\alpha = \frac{12}{13}$.

Équations trigonométriques **5.3**

Exercice 5.5

Résoudre dans \mathbb{R} puis dans $[0, 2\pi]$ les équations suivantes :

1.
$$\sin x = 0$$
,

4.
$$\cos x = 1$$
.

2.
$$\sin x = 1$$
,

4.
$$\cos x = 1$$
,
5. $\cos x = -1$,
6. $\cos x = 0$,

$$\mathbf{8}$$
 tan $\mathbf{r} = 1$

3.
$$\sin x = -1$$
,

6.
$$\cos x = 0$$

Exercice 5.6

Résoudre dans \mathbb{R} puis dans $[0, 2\pi]$ les équations suivantes :

1.
$$\sin x = \frac{1}{2}$$
,

3.
$$\tan x = -1$$

5.
$$\cos x = \frac{\sqrt{3}}{2}$$
,

2.
$$\sin x = -\frac{1}{\sqrt{2}}$$
,

4.
$$\tan x = \frac{1}{\sqrt{3}}$$
,

5.
$$\cos x = \frac{\sqrt{3}}{2}$$
,
6. $\cos x = -\frac{1}{\sqrt{2}}$.

Exercice 5.7

Résoudre l'équation

$$\sin 2x = \cos \frac{x}{2} \tag{1}$$

et représenter sur le cercle trigonométrique les images des solutions.

Exercice 5.8

Résoudre dans ℝ:

$$2\sin^4 x - 5\sin^2 x + 2 = 0. (1)$$

Exercice 5.9

Résoudre l'inéquation

$$\frac{1 - 2\sin^2 x}{1 + 2\cos x} \ge 0. \tag{1}$$

d'inconnue $x \in [0, 2\pi]$.

Exercice 5.10

Soit les deux équations

$$\cos x + \sqrt{3}\sin x = m\sqrt{2}$$

et

 $\cos a \cos x + \sin a \sin x = m \cos b$.

- 1. Déterminer a et b pour qu'elles soient équivalentes.
- 2. En déduire pour quelles valeurs de $m \in \mathbb{R}$ la première de ces équations possède des solutions.
- **3.** La résoudre pour m = 1.

Exercice 5.11

Soient $\omega, t \in \mathbb{R}$. Mettre l'expression $y = 2\cos^2\left(\omega t + \frac{\pi}{3}\right) + \sin^2\left(\omega t\right)$ sous la forme $y = A\cos(2\omega t + \varphi) + B$, A, B et φ étant des constantes réelles.

5.4 Étude des fonctions trigonométriques

5.5 Fonctions réciproques des fonctions circulaires

Exercice 5.12

Déterminer le domaine de définition des fonctions d'une variable réelle ci-dessous.

1.
$$f(x) = \arctan(1 - 2x)$$
.

3.
$$f(x) = \arccos \sqrt{x(4-x)}$$
.

$$2. \ f(x) = \arcsin \frac{1}{x}.$$

Exercice 5.13

Donner une expression simple des réels

$$A = \arcsin\left(\sin\frac{2\pi}{3}\right); \qquad B = \tan\left(\arctan\frac{1}{\sqrt{3}}\right);$$

$$C = \arcsin\left(\sin\frac{3\pi}{4}\right); \qquad D = \arccos\left(\cos\frac{89\pi}{3}\right).$$

Exercice 5.14

Calculer $\arctan \frac{1}{2} + \arctan \frac{1}{3}$.

Exercice 5.15

Calculer 2 $\arcsin \frac{3}{5} + \arcsin \frac{7}{25}$.

Exercice 5.16

Le but de cet exercice est de tracer la courbe représentative de la fonction f définie par

$$f(x) = \arcsin(\sin x)$$
.

- **1.** Justifier que f est définie sur \mathbb{R} .
- 2. Montrer que f est 2π -périodique et impaire. Justifier que l'on peut alors restreindre l'étude de f à $[0, \pi]$.
- 3. Soit $x \in [0, \pi/2]$, que vaut f(x)?
- **4.** Soit $x \in [\pi/2, \pi]$, que vaut f(x)?
- 5. Tracer la courbe représentative de la fonction f.
- **6.** $\stackrel{\text{(ii)}}{\simeq}$ Résoudre les équations f(x) = 0, $f(x) = \frac{\pi}{3}$ et $f(x) = \pi$.
- 7. $\stackrel{\text{\tiny 133}}{\circlearrowleft}$ Pour $k \in \mathbb{Z}$, on pose $I_k = \left[-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right]$. Simplifier l'expression de f(x) lorsque $x \in I_k$.

Exercice 5.17

Tracer la courbe représentative de la fonction f définie par

$$f(x) = \arccos(\cos x)$$
.

S'inspirer de l'exercice.

Exercice 5.18

Tracer la courbe représentative de la fonction f définie par

$$f(x) = \arctan(\tan x)$$
.

S'inspirer de l'exercice ??.

Exercice 5.19 (*)

Montrer

$$\forall x \in [-1, 1], \arcsin(x) + \arccos(x) = \frac{\pi}{2}.$$

- 1. En calculant le sinus d'un angle bien choisi.
- 2. En étudiant la fonction définie par le premier membre.

Exercice 5.20 (**)

Montrer

$$\forall x \in \mathbb{R}^*, \arctan(x) + \arctan\left(\frac{1}{x}\right) = \begin{cases} \frac{\pi}{2} & \text{si } x > 0\\ -\frac{\pi}{2} & \text{si } x < 0. \end{cases}$$

Exercice 5.21

On considère la fonction

$$f: x \mapsto \arcsin\left(\frac{x}{\sqrt{x^2+1}}\right).$$

- 1. (a) Déterminer l'ensemble de définition \mathcal{D} de la fonction f.
 - (b) Montrer que f est dérivable sur \mathcal{D} et calculer sa dérivée.
 - (c) En déduire une expression simple de f.

- 2. Pour $\varphi \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, on pose $x = \tan \varphi$, on a donc $\varphi = \arctan x$. Calculer $f(x) = f(\tan \varphi)$ et retrouver le résultat de la question 1.c.
- **3.** Construire le graphe de f.

Exercice 5.22

On se propose d'étudier f, la fonction d'une variable réelle définie par

$$f(x) = \arcsin\left(3x - 4x^3\right).$$

Dans tout cet exercice, on pourra poser $\varphi(x) = 3x - 4x^3$.

- **1.** Justifier que le domaine de définition de f est E = [-1, 1].
- **2.** Dans cette question, on cherche a donner une expression simple de $\arcsin(\sin u)$.
 - (a) Montrer que si $u \in \left[-\frac{3}{2}\pi, -\frac{\pi}{2}\right]$, alors $\arcsin(\sin(u)) = -\pi u$.
 - (b) Calculer $\arcsin(\sin(u))$ pour $u \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
 - (c) Calculer $\arcsin(\sin(u))$ pour $u \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$.
- **3.** Montrer que pour $\theta \in \mathbb{R}$, on a $\sin(3\theta) = 3\sin\theta 4\sin^3(\theta)$.
- **4.** Soit $x \in E$. On pose $\theta = \arcsin x$. En dégageant les cas pertinents pour x, exprimer $f(x) = f(\sin \theta)$ en fonction de $\arcsin(x)$.
- **5.** Tracer le graphe de f.
- **6.** Déterminer sur quel ensemble f est dérivable. Calculer sa dérivée et confronter votre résultat à celui de la question **4.**.

Exercice 5.23 Formule de Machin

- 1. Préciser les parties de \mathbb{R} sur lesquelles :
 - (a) $\arctan(\tan(x)) = x$;
 - (b) tan(arctan(x)) = x.
- 2. Calculer successivement,

$$\tan\left(2\arctan\left(\frac{1}{5}\right)\right), \qquad \tan\left(4\arctan\left(\frac{1}{5}\right)\right), \qquad \text{et} \qquad \tan\left(4\arctan\left(\frac{1}{5}\right)-\frac{\pi}{4}\right).$$

On obtiendra des nombres rationnels que l'on simplifiera.

3. En déduire la formule de Machin

ıe

$$\frac{\pi}{4} = 4\arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right).$$

Sachant que $\arctan(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$, cette formule permit à John Machin (1680-1752) de déterminer en 1706 les 100 premières décimales de π .

Exercice 5.24

Étudier complètement la fonction définie par

$$f(x) = \arctan \frac{x}{x+1}.$$

Déterminer son domaine de définition, étudier sa continuité, rechercher ses asymptotes, calculer sa dérivée première, dresser le tableau de ses variations et esquisser son graphe.

Exercice 5.25 (***)

Soit $\theta \in]0, \pi[$. On étudie la fonction f de la variable réelle x déterminée par

$$f(x) = \arcsin\left(\frac{2\sin\theta(x - \cos\theta)}{x^2 - 2x\cos\theta + 1}\right).$$

- **1.** Justifier que f est définie et continue sur \mathbb{R} .
- 2. Vérifier que f est dérivable en tout point de \mathbb{R} excepté en deux points x_1 et x_2 que l'on précisera. Simplifier l'expression de f'(x) pour $x \notin \{x_1, x_2\}$.
- 3. Justifier que la représentation de f présente un centre de symétrie.
- **4.** En admettant que les pentes des demi-tangentes à la courbe représentative ed f en x_1 et x_2 sont déterminées par les limites de f' à droite et à gauche de ces points, donner l'allure de la courbe représentative de f.