Devoir facultatif n° 11

— Matrices nilpotentes —

Soit E un \mathbb{R} -ev. de dimension n > 0, rapporté à une base $\mathscr{B} = (e_1, \dots, e_n)$. Pour $A \in \mathscr{M}_n(\mathbb{R})$, on notera φ_A l'endomorphisme de E dont la matrice dans \mathscr{B} est A.

Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est dite *nilpotente* s'il existe un entier $p \in \mathbb{N}$ tel que $A^p = 0$. Dans ce cas *l'indice* de A est le plus petit entier p tel que $A^p = 0$.

Dans ce cas
$$l$$
 indice de A est le plus petit entier p tel que $A^p = 0$.

$$\begin{cases}
\mathcal{N} &= \{A \in \mathcal{M}_n(\mathbb{R}) \text{ nilpotentes}\}, \\
\mathcal{T} &= \{A \in \mathcal{M}_n(\mathbb{R}) \text{ triangulaires supérieures}\}, \\
\mathcal{U} &= \{A \in \mathcal{M}_n(\mathbb{R}) \text{ tq } A - I \in \mathcal{N}\}, \quad \text{où } I \text{ désigne la matrice identité d'ordre } n, . \\
E_k &= \text{Vect}(e_1, \dots, e_k), \qquad (1 \leqslant k \leqslant n), \\
E_0 &= \{0\}
\end{cases}$$

- 1) a) Montrer qu'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ appartient à \mathcal{T} si et seulement si pour tout entier $k \in \{1, \ldots, n\}$, E_k est stable par φ_A .
 - b) Montrer que \mathscr{T} est un sous-ev et un sous-anneau de $\mathscr{M}_n(R)$.
 - c) Soit $A \in \mathcal{F}$. Montrer que $A \in \mathscr{GL}_n(\mathbb{R})$ si et seulement si pour tout entier $k \in \{1, \ldots, n\}, \varphi_A(E_k) = E_k$.
 - **d)** On note $A = (a_{ij})$. Montrer que la condition précédente équivaut à : $\forall i, a_{ii} \neq 0$.
 - e) Montrer que si $A \in \mathcal{T} \cap \mathcal{GL}_n(\mathbb{R})$, alors $A^{-1} \in \mathcal{T}$.
- 2) Soit $A = (a_{ij}) \in \mathcal{T}$ dont les coefficients diagonaux a_{ii} sont tous nuls.
 - a) Montrer que A est nilpotente d'indice inférieur ou égal à n.
 - **b)** Montrer que l'indice de A est exactement n si et seulement si les coefficients $a_{i,i+1}$, pour $1 \le i \le n-1$, sont tous non nuls.
- 3) Soit $A \in \mathcal{N}$.
 - a) Soit $P \in \mathscr{GL}_n(\mathbb{R})$. Montrer que PAP^{-1} est nilpotente de même indice que A.
 - **b)** En étudiant Im φ_A , montrer qu'il existe une base (u_1, \ldots, u_n) de E dans laquelle la matrice de φ_A a sa dernière ligne nulle.

- c) Par récurrence sur n, montrer alors qu'il existe une base (v_1, \ldots, v_n) de E dans laquelle la matrice de φ_A est triangulaire supérieure à diagonale nulle.
- d) Que peut-on en déduire pour l'indice de A?
- e) Pour n = 2, trouver une matrice nilpotente non triangulaire.
- 4) Soient $A, B \in \mathcal{N}$ telles que AB = BA.
 - a) Montrer que $A + B \in \mathcal{N}$.
 - **b)** Pour $\lambda \in \mathbb{R}$, que vaut $(A + \lambda B)^n$?
 - c) Montrer que si p et q sont deux entiers naturels tels que $p + q \ge n$, alors $A^p B^q = 0$.
- 5) Pour $A \in \mathcal{N}$, on pose $\exp(A) = I + A + \frac{1}{2!}A^2 + \dots + \frac{1}{(n-1)!}A^{n-1}$.
 - a) Montrer que $\exp(A) \in \mathcal{U}$.
 - **b)** Soient $A, B \in \mathcal{N}$ telles que AB = BA. Montrer que $\exp(A + B) = \exp(A) \times \exp(B)$.
 - c) En déduire que $\exp(A)$ est inversible.
- **6)** On suppose ici que $n \ge 2$, et on considère les polynômes :

$$\begin{cases} P = 1 + X + \frac{X^2}{2!} + \dots + \frac{X^{n-1}}{(n-1)!} \\ Q = X - \frac{X^2}{2} + \dots + \frac{(-1)^n X^{n-1}}{(n-1)} \end{cases}$$

On rappelle que l'on appelle valuation d'un polynôme Π l'entier $v \in \mathbb{N}$ tel que $X^v | \Pi$ et $X^{v+1} \nmid \Pi$.

- a) Montrer que la valuation de P(Q(X)) (1 + X) est supérieure ou égale à n (on pourra utiliser des développements limités).
- **b)** Soit $A \in \mathcal{U}$ telle que A = I + N avec $N \in \mathcal{N}$. Montrer que P(Q(N)) = A.
- c) En s'inspirant des calculs précédents, simplifier Q(P(N)-I) pour $N\in\mathcal{N}$.
- 7) a) Prouver que l'application exp est une bijection de $\mathcal N$ sur $\mathcal U$.
 - **b)** Montrer que pour tout entier $k \in \mathbb{N}^*$, l'application $A \mapsto A^k$ est une bijection de \mathscr{U} sur \mathscr{U} .

— FIN —