Unveiling LLaMA 4: Meta's Next-Gen Large Language Model

This presentation explores the architectural advancements and key features of Meta's LLaMA 4, focusing on its innovative Mixture-of-Experts (MoE) design and multimodal capabilities.

Llama 4: Leading Multimodal Intelligence

Newest model suite offering unrivaled speed and efficiency

Llama 4 Behemoth

288B active parameter, 16 experts2T total parameters

The most intelligent teacher model for distillation

Llama 4 Maverick

17B active parameters, 128 experts 400B total parameters

Native multimodal with 1M context length

Llama 4 Scout

17B active parameters, 16 experts109B total parameters

Industry leading **10M** context length Optimized inference

LLaMA 4: An Overview

LLaMA 4 is Meta's latest large language model, designed for enhanced performance and efficiency across a broader range of applications. It builds upon the successes of LLaMA 2 and LLaMA 3, introducing significant architectural innovations.

Evolutionary Leaps: LLaMA 4 vs. Predecessors

Expanded Vocabulary

LLaMA 4 features a significantly larger vocabulary size (202048), improving its ability to handle diverse linguistic nuances and rare tokens more effectively.

Vast Training Data and Larger context Length

Trained on a considerably larger and more diverse dataset than LLaMA 2/3, and siginificantally large context Window(i.e 10M for LLama 4 scout and 1M for Maverick)

3

Mixture Of Experts

LLaMA 4 uses a Mixture of Experts (MoE) architecture where only a few experts are activated per token, making it computationally efficient while expanding model capacity. Each expert specializes in different types of data, improving task-specific performance and generalization.

MultiModal Approcah

LLaMA 4 follows a **multimodal approach**, allowing it to process and understand both **text and images** within a unified architecture. It integrates vision encoders alongside language models

Mixture of Experts (MoE): The Core Innovation

What is MoE?

MoE is a neural network architecture where different "expert" subnetworks specialize in processing different types of inputs or tasks. Instead of one large model, it uses several smaller, specialized ones.

Intuitive Explanation

Imagine a team of specialists. When a complex problem arises, a "router" directs it to the most relevant expert(s) instead of having one generalist try to solve everything. This allows for highly efficient and specialized processing.

MOE - Routing Layer

- Input: Each token comes from the attention block as a vector (e.g., 5120-dim).
- Goal: Decide which experts should process each token (not all experts process all tokens).
- How?

The router is a small **linear layer** that transforms each token into a **score for each expert**.

- If there are 16 experts, each token gets **16 scores** (one per expert).
 - Tokens = Batch_size*Seq_len

(i.e 1×10)

- L(Tokens, Experts)=(X(Tokens, Model_Dim))*(W(Model_Dim,Experts))
- This means: "How suitable is expert is for this token?"

Top-k selection:

For each token, the router picks the top k experts (usually k=1 or
 based on the highest scores.

• Score masking:

- All other experts are ignored by masking their scores (setting them to -inf).
- Then a **sigmoid** function is applied to convert the top-k scores into soft weights in range (0, 1).
 - Score(Tokens, Experts) = Sigmoid(masked(L(Tokens, Experts)))

• Routing Weights:

• These weights represent how much each selected expert should influence this token.

Broadcasting:

 Each token is sent to all experts for uniform processing, but only the selected experts receive non-zero inputs (others are zeroed out using the weights).

Expert In MOE

Each expert is a **Gated Feedforward Network** (a modified MLP), and it works in the following way:

- **Input:** A token that has been routed (selected) for this expert a single 5120-dimensional vector.
- Goal: Transform this token's representation using a feedforward neural network (FFN), specialized per expert.

1. Upscale the token:

- The expert **linearly projects** the token from hidden_size (e.g. 5120) up to **twice the intermediate size**, i.e. $2 \times 8192 = 16384$ (Using weight matrix w1).
- This output is then **split into two equal parts**:
 - One part becomes the gate
 - The other part becomes the value

2. Apply nonlinearity:

- The **gate part** goes through a nonlinearity (typically **SiLU**).
- This controls what parts of the value to keep or suppress.
- It's like saying: "How strongly should each part of the up-projected vector be expressed?"

3. Element-wise gating:

- Multiply the SiLU-activated gate with the value part → produces the gated output.
- This allows the model to control **information flow dynamically**.

4. Downscale back:

- Finally, the gated output is **linearly projected down** to the original model dimension (5120)(using weight matrix w2).
- This completes the expert transformation.

Expert Walk Through

Output for MOE

```
Initialized Llama4TextMoe:
  Num experts
                    : 16
  Experts per token: 1
  Hidden dim
                    : 5120
[TextBlock] Input shape: torch.Size([1, 10, 5120])
[TextBlock] After LayerNorm: torch.Size([1, 10, 5120])
[Llama4TextMoe] Input shape: torch.Size([1, 10, 5120])
[Step 1] Flattened tokens for routing: torch.Size([10, 5120])
[Step 2] Router logits shape: torch.Size([10, 16])
[Step 3] Top-k values shape: torch.Size([10, 1])
[Step 3] Top-k indices shape: torch.Size([10, 1])
Example top-2 experts for first token: [11]
[Step 4] Router score matrix (after sigmoid): torch.Size([16, 10])
[Step 5] Repeat indices shape: torch.Size([16, 10])
[Step 6] Expert inputs shape (before masking): torch.Size([160, 5120])
[Step 7] Expert inputs shape (after masking): torch.Size([160, 5120])
[Step 8] Expert outputs shape: torch.Size([160, 5120])
[Step 9] Shared MLP output shape: torch.Size([10, 5120])
[Step 10] Output after combining expert + shared: torch.Size([10, 5120])
[TextBlock] After MoE output shape: torch.Size([1, 10, 5120])
[TextBlock] Output shape (with residual): torch.Size([1, 10, 5120])
```

Vision Transformer(ViT)

Benefits of MoE in LLaMA 4

Compute Efficiency

Only a fraction of the model's parameters are active per token, drastically reducing computational cost during inference.

Specialization

Experts can learn to specialize in different aspects of the data, leading to higher quality representations and outputs.

Scalability

Enables training and deploying models with trillions of parameters while keeping inference costs manageable.