Wahrnehmung künstlich erzeugter Schallfelder

Hagen Wierstorf¹, Sascha Spors², Alexander Raake¹

¹ Assessment of IP-based Applications, Technische Universität Berlin ² Institut für Nachrichtentechnik, Universität Rostock

Fragestellung

Erzeugung künstlicher Schallfelder mittels vielkanaligen Lautsprecheraufbauten

- Unterschied zu realen Schallfeldern
- Hörversuche
- Modellierung

Wesentliche Aspekte: Klangfarbe und Räumliche Wahrnehmung

Kontinuierlicher Lautsprecher

56 Lautsprecher

$$f = 1000 \, \text{Hz}$$

56 Lautsprecher, Ambisonics

56 Lautsprecher, Wellenfeldsynthese

28 Lautsprecher, Wellenfeldsynthese

28 Lautsprecher, Ambisonics, räumliche Bandbegrenzung

$$f = 1000 \,\text{Hz} M = 14$$

Lokalisations Experiment

Methode

Ziel: Lokalisation einer synthetisierten Quelle im gesamten Zuhörerbereich messen.

- "Schaue in die Richtung aus der der Schall kommt"
- Laserpointer und Headtracker zur Erfassung
- 16 verschiedene Zuhörerpositionen
- verschiedene weiße Rauschpulse, 700 ms mit 300 ms Pause
- 12 Versuchspersonen

Dynamische Binauralsynthese

Lokalisations Experiment

Aufbau

Wellenfeldsynthese

?

Gehörmodell

Erweiterung des Modells nach Dietz et al. 2011

Raatgever (1980) Park (2007)

http://amtoolbox.sourceforge.net/

Wellenfeldsynthese

Wellenfeldsynthese

Wellenfeldsynthese

Mehrere Quellen

Experiment

11 Versuchspersonen, 5 Wiederholungen

Mehrere Quellen

Modellierung

11 Kopforientierungen, 5 Wiederholungen

Zusammenfassung

Messung und Vorhersage der Lokalisation für Schallfeldsynthese

- gesamter Zuhörerbereich
- gute Ergebnisse mittels Wellenfeldsynthese
- Ambisonics problematisch außerhalb des Zentrums
- Ambisonics im Zentrum weniger Klangverfärbung
- Modellierung der Lokalisation möglich
- interessante Stimuli für Modellierung, da widersprechende Cues

Anwendung des Modells

Danke

http://twoears.eu
http://spatialaudio.net

http://gnuplotting.org

Klangverfärbung

