Report #1

TEL: (337) 394-1078

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

0.1° 88' TVD

	NOLIA (OIL & C	GAS		TERS	ON	_	Block HINGTON	١	Engineer Start E		24 hr fto	2,552 ft			32 ft	t
Well Name and No.	GSTED	OT OL 2	2Н	Rig Name an	^{d No.}		State TF	EXAS		Spud Date 06/2	2/21	Current	O ft/hr	Ac	Run (Casi	na
Report for				Report for			Field / OCS-G #			Fluid Type		Circulat	ting Rate	Cir	culating Pre		9
Bobby G	win / G	reg Jo	hnson	То	ol Pus	her	GIDDI	NGS AC	;	WE	BM		596 gpm	1	2,13	5 ps	si
	MUD	PROPER	RTY SPECIF	CATIONS	5		MUD VO	LUME (BB	L)	PUM	P #1		PUMP #2	ı	RISER B	oos	TER
Weight	PV	YP	GELS	рН	API fl	% Solids	In Pits	600) bbl	Liner Size	5.25	Liner	Size 5.	25 L	ner Size	5	.25
8.4-9.6	0-10	0-10	<5 <10	8.4-9	<25	2-10	In Hole	547	bbl '	Stroke	12	Stro	oke 1	2	Stroke		12
	I	l		6/23/21			Active	628	B bbl	bbl/stk	0.0763	bbl/	/stk 0.0	763	bbl/stk	0.0	0763
Time Sample	Taken			3:00			Storage)		stk/min	95	stk/	min 9)1	stk/min	ç	95
Sample Locati	on			pit			Tot. on Lo	cation 114	7 bbl	gal/min	304	gal/	min 29	92	gal/min	3	804
Flowline Temp	erature °F	F		110 °F				PHHP = 743	3	CI	RCULATIO	ON DA	TA	n	= 0.263	K = 4	94.461
Depth (ft)				2,732'			Bi	t Depth = 8	8 '		Washout =	: 5%		Pump Et	ficiency	= 959	%
Mud Weight (p	ppg)			9.1			Drill String	Volume	to Bit	8.5 bbl	Strokes	To Bit	111	Tir	ne To Bit	1	min
Funnel Vis (se	c/qt)		@ 90 °F	33			Disp.	Bottoms U	p Vol.	19.5 bbl	BottomsU	p Stks	256	Bottoms	Up Time	1	min
600 rpm				6			1.4 bbl	Riser Anr	n. Vol.	19.5 bbl	Riser S	trokes	256	Riser C	irc. Time	1	min
300 rpm				5				DRILLING	G ASS	SEMBLY DA	TA		s	OLIDS (CONTRO	DL	
200 rpm				4			Tubulars	OD (in.)	ID	(in.) Ler	ngth 7	ор	Unit	5	Screens	Н	ours
100 rpm				3			Casing	10.750	9.	950 8	8'	0'	Shaker	1	140	2	4.0
6 rpm				2								38'	Shaker	2	140	2	4.0
3 rpm				1							:	38'	Shaker	3	200	2	4.0
Plastic Viscos	ity (cp)		@ 120 °F	1							;	38'	Desand	ler		1	8.0
Yield Point (lb.	/100 ft²)		T0 = 0	4				CASIN	IG & I	HOLE DATA			Desilte	er		1	8.0
Gel Strength (lb/100 ft²)	10	sec/10 min	1/2			Casing	OD (in.)	ID	(in.) De	pth 7	ор	Centrifuç	ge 1		1	8.0
Gel Strength (lb/100 ft ²)		30 min	2			Riser	20	18	.542 10	08'		VOLUN	IE ACC	OUNTIN	G (bb	ols)
API Filtrate / C	Cake Thick	kness					Surface				1	08'	Prev. T	otal on	_ocation		0.0
HTHP Filtrate	/ Cake Th	nickness	@ 0 °F				Int. Csg.				1	08'	Transfe	erred In(-	+)/Out(-)		
Retort Solids (Content			5.7%			Washout 1							Oil A	dded (+)		0.0
Retort Oil Con	tent						Washout 2						I	Barite A	dded (+)		0.0
Retort Water (Content			94.3%			Oper	n Hole Size	14	.175 2,7	7 32'		Other Pr	oduct U	sage (+)		3.8
Sand Content				1%			ANI	NULAR GE	ОМЕ	TRY & RHE	OLOGY		\	Water A	dded (+)	2	991.2
M.B.T. (Methy	lene Blue	Capacity	y) (ppb)				annulai	r me	eas.	velocity	flow E	CD	Le	ft on Cu	ttings (-)	-	498.1
рН				8.4			section	de	pth	ft/min	reg lb	/gal	Sand	l Trap Di	scharge	-1	350.0
Alkalinity, Muc	l Pm						18.542x10).75 8	8'	96.7	lam 9	.14					
Alkalinities, Fil	trate Pf/M	lf											Est. T	otal on	_ocation	1	146.8
Chlorides (mg.	/L)			300									Est. Los	ses/Gair	ns (-)/(+)		0.0
Calcium (ppm))			40									BIT	HYDRA	ULICS E	ATA	
Excess Lime (lb/bbl)												Bit H.S.I.	Bit ∆F	Nozz	zles (3	32nds)
Average Spec	ific Gravit	y of Solid	ls	2.60	2.60	2.60							0.52	215 p	si 16	16	16
Percent Low 0	Gravity So	lids		5.6%									Bit Impact	Nozzl Veloci		16	16
Percent Drill S	Solids			5.6%									Force	(ft/sec	-		$oxed{oxed}$
PPA Spurt / To	otal (ml) @	0	@ 0 °F				BIT D	ATA	Ma	anuf./Type	U616	55	456 lbs	162			
Estimated Tot	al LCM in	System	ppb				Size	Depth In	Н	ours Foo	tage RO	P ft/hr	Motor/M	WD C	alc. Circ	. Pre	ssure
Sample Taker	в Ву			B. Guidry			13 1/2	108 ft	8	3.0 2,5	52 ft 3°	19.0	1,902 բ	osi	2,13	5 psi	i
Remarks/Reco							Ria Activity:										

OBM RECEIVED: 1146bbls

OBM ON SURFACE--- 1146 bbls (Storage)

Rig Activity:

Skid Rig over to BORGSTEDT OL 2H well. Nipple up. M/U BHA and RIH with same. Drilled out cement from casing and shoe. Drilled to section TD of 2,732' while pumping 20 bbl SAAP/Drilling Detergent sweeps on every connection. Additions of SAAP and Drilling Detergent were made to the active system while aggressively diluting with H20 and dumping sand traps every 100'. At TD pumped a 25 bbl sweep followed by a second 25 bbl sweep once sweep 1 cleared the bit. Circulate well clean and POOH for casing run. L/D BHA and M/U casing running equipment. M/U shoe and shoe track. RIH with 10.75" Casing at report time.

Е	ng. 1:	A	dolfo	Roma	an	En	g. 2:	Bart	Guidry	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Р	none:	9	56-82	1-999	94	Ph	one:	337-2	50-3841	Phone:	432-686-7361	Phone:	-			
W 1	P 1	Y 1	g 1	G 1	р 1	A 1	S 1	C 0	carefully	and may be		o elects, however,	, no representation	nas been prepared on is made as to the	\$4,268.00	\$4,268.00
												INCLUDI	NG 3RD PAR	TY CHARGES	\$4,268.00	\$4,268.00

Date 06/23/21	Operator MAG I	NOLIA OIL	& GAS	Well Name a	SSTEDT O	L 2H	Rig Name an		Report No. Repo	ort #1
	DAILY	USAGE 8	COST						CUMUI	LATIVE
	T		Previous	Ι	Closing	Daily			Cum	
ltem	Unit	Unit Cost	Inventory	Received	Inventory	Usage	Daily Cost		Usage	Cum Cos
SAPP (50)	50# sk	\$44.56		262	212	50	\$2,228.00		50	\$2,228.0
PHPA LIQUID (pail)	5 gal	\$41.36		16	16					
EVO-LUBE	gal	\$14.00								
NEW GEL (PREMIUM)	100# sk	\$19.75								
CACL2 (50)	50# sk	\$14.32								
LIME (50)	50# sk	\$5.00								
OPTI - G	50# sk	\$30.59								
BENTONE 38 (50)	50# sk	\$163.94								
BENTONE 910 (50)	50# sk	\$59.40								
BENTONE 990 (50)	50# sk	\$83.59								
OPTI - MUL	gal	\$10.75								
OPTI - WET	gal	\$8.34								
NEW PHALT	50# sk	\$38.72								
OIL SORB (25)	25# sk	\$4.75		47	47					
								-		
NEW CARB (M)	50# sk	\$5.25						F		
CYBERSEAL	25# sk	\$21.47		<u> </u>						
MAGMAFIBER F (25)	25# sk	\$28.05		<u> </u>						
MAGMAFIBER R (30)	30# sk	\$28.05								
VARISEAL	50# sk	\$26.50								
FIBER PLUG	30# sk	\$30.37								
NUT PLUG M (50)	50# sk	\$12.04								
								F		
								F		
								F		
			-			·				
NEW MATE /C. CV. D. D		***		_	=:			L		
NEW WATE (SACK BARITE)	100# sk	\$11.50		78	78					
BARITE BULK (100)	100# sk	\$7.00		801	801					
								-		
								F		
OPTI DRILL (OBM)	bbl	\$65.00		1146	1146			-		
DISCOUNTED OBM	اعاط	¢10.00								
PIOCOCIAI ED ODIN	bbl	\$10.00						-		
								-		
								F		
								F		
ENGINEERING (24 HR)	each	\$990.00				2	\$1,980.00	-	2	\$1,980.0
ENGINEERING (DIEM)	bbl	\$30.00				2	\$60.00		2	\$60.0
ENGINEERING (MILES)	each	\$1.00						F		
-						_				
								L		
TRUCKING ()	each	\$1.98								
			1	i						
TRUCKING (min)	each	\$650.00						<u> </u>		
TRUCKING (min) PALLETS (ea)	each	\$12.00								
TRUCKING (cwt) TRUCKING (min) PALLETS (ea) SHRINK WRAP (ea)										

THIRD PARTY COST SHEET

Date	Operator			Well Name a	nd No.		Rig Name an	d No.	Report No.	
06/23/21	MAGN	NOLIA OIL	& GAS	BOR	GSTEDT O	L 2H	28	35	Repo	ort #1
	DAILY	USAGE 8	k COST							LATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
			_							
	Cum	ulative Tota	al AES & 3rd	d Party \$4,2	268.00					

110 Old Market St.

St Martinville, LA 70582

TEL: (337) 394-1078

Operator MAGN	NOLIA (OIL & G	AS	Contractor PA1	TERSO	ON	County / Paris	h / Block HINGTO	N		er Start Date	1	nr ftg.			Drilled D	epth 2,73	2 ft
Well Name and No.		T OL 2	Н	Rig Name ar	285		State T	EXAS		Spud Da	ate 06/22/2		rent ROP		,	Activity Ce	men	t Csg.
Report for		,		Report for		•	Field / OSC-G		_	Fluid Ty	-	Circ	culating Rate			Circulati	ng Pres	ssure
Jessie Co					ol Pus	ner		INGS A			WBM		596 g)			
144	l	1	TY SPECII			0, 0, 11,		DLUME (B	BL)		PUMP #1		PUMI					DOSTER
Weight	PV	YP	GELS	pH	API fl	% Solids			4 1 1 1	Liner			ner Size		25	Liner		5.25
8.4-9.6	0-10	0-10	<5 <10	8.4-9	<25	2-10	In Hole		1 bbl	Stro			Stroke		2	Stro		12
Time Comple		UD PROP	EKIIES	2.00		45,00	Active			bbl/			obl/stk	0.0		bbl/s		0.0763
Time Sample Sample Locati				3:00		15:00	Storag		1 hhl	stk/r			stk/min	9 29		stk/r		
Flowline Temp				pit 110 °F		NO MUD	Tot. on Lo		1 bbl V=1	gal/r YP:		,	gal/min			gal/r		K = 494.
	Derature	<u> </u>		2,732'			iviuu vvi. :	= 9.1 P	V=1	TP:		hout = 5%	-					
Depth (ft)								Volume	- 4- Dia		1				Pump			95%
Mud Weight (p			@ 90 °F	9.1			Drill String Disp.					trokes To				Γime T		
Funnel Vis (se	ec/qt)		@ 90 F					Bottoms U				tomsUp St			Botton	·		
300 rpm				6 5				TotalCi			LY DATA	otalCirc.St	KS		OLIDS	Circ.		
	0 rpm						Tubulara	OD (in.)		(in.)	Length	Тор		Unit	OLIDS	Scre		Hours
•	00 rpm						Tubulais	OD (III.)	טו	(111.)	Lengui	тор		aker	. 1	14		12.0
•	6 rpm													iakei iaker		14		12.0
	6 rpm 3 rpm													ıaker ıaker		20		12.0
Plastic Viscos	ity (op)		@ 120 °F	1										sand		20	U	12.0
Yield Point (lb.	,		T0 =	4				CASII	NG &	HOLE	DΔTΔ		_	esilte				
Gel Strength (10 s	ec / 10 min	1/2			Casing			(in.)	Depth	Тор	_	trifug				
Gel Strength ('	30 min	2			Riser	OD (III.)		()	Бория	·op				COUN	ITING	(bbls)
API Filtrate / C								10 3/4	9 7	700	2,715'				otal or			1146.
HTHP Filtrate							Int. Csg.		0		_,				rred Ir			251.
Retort Solids (5.7%			Washout 1									Adde	. ,	
Retort Oil Con							Washout 2							E	Barite .		. ,	
Retort Water (94.3%				n Hole Size	9 14.	.175	2,732'		Othe		oduct		` ,	
Sand Content				1%				NULAR G			RHEOL	OGY			Nater .	Ŭ	` '	
M.B.T. (Methy	rlene Blue	Capacity) (ppb)					_			-14.				ft on C		` ,	
pH		. ,	, ,	8.4			annula sectio	1 (16	epth	velo ft/m			F	Pit / B	Boat Cl	leanin	g (-)	-1146.
Alkalinity, Muc	d Pm											1						
Alkalinities, Fil	Itrate Pf/N	Лf											E	st. T	otal or	n Loca	ation	251.
Chlorides (mg.	/L)			300									Est.	Loss	ses/Ga	ains (-)/(+)	0.
Calcium (ppm))			40										BIT	HYDR.	AULI	CS D	ATA
Excess Lime ((lb/bbl)												Bit H.	.S.I.	Bit A	ΔΡ	Nozzl	es (32nds
Average Spec	ific Gravi	ty of Solid	s	2.60	2.60	2.60							#DIV	//0!	#DI\	//0!		
Percent Low G	Gravity Sc	olids		5.6%									Bit Im	pact	Noz			
Percent Drill S	Solids			5.6%									For		Velo	,		
PPA Spurt / To	otal (ml)	@					BIT I	DATA	Ма	nuf./Ty	/pe	U6165	#DIV	//0!				
Estimated Total	al LCM in	System					Size	Depth In	Нс	ours	Footage	ROP ft/	hr Mot	or/M\	WD	Calc.	Circ.	Pressure
Sample Taker	n By			B. Guidry		A. Roman	13 1/2	108 ft	8	3.0	2,552 ft	319.0	1,9	02 p	osi		#DI\	//0!
Afternoon Rema	arks/Reco	mmendatio	ons:			•	Afternoon F	Rig Activity:		· · ·			•					

251bbls of 9ppg OBM left inside casing.

Cement: 40bbls spacer 8.3# / 296bbls Lead 11.6# /

78bbls Tail 14.4ppg / Displace with 251bbls 9ppg OBM.

Over the past 12 hours Patterson 285 has successfully ran the 10.75" surface casing to bottom setting the shoe at 2,715'MD. Circulated one and a half casing volumes. Skid over to the BORGSTEDT OL 3-H. Cemented offline observing good returns during the entire cement job. Observed cement back to surface and diverted the same to the open top tanks to be disposed of (120bbls). Flush through any lines and prepare to drill out on 3H. Active pits flushed out, transfer WBM to storage tanks for disposal of same. Fresh water in active system (SAPP/Soap).

TEL: (337) 394-1078

Previous Cost \$4,268.00

110 Old Market St. St Martinville, LA 70582

0.0° 0' TVD

Operator				Contractor			County / Parish /	Block		Engineer	Start Date	:	24 hr ft	g.		Depth		
	enerve	st		PAT	TERSO	ON	Ka	arnea	3	C	6/23/21			0 ft		:	2,73	2 ft
Well Name and No.				Rig Name an			State	-V A C		Spud Dat			Current			Activity		D DDT
Report for	GSTEDT	OL 2	H	Report for	285		Field / OSC-G #	EXAS	<u> </u>	Fluid Typ)6/22/21 •		Circula	0 ft/hr		Circulatin		ER RPT.
Jessie Co	llinson/J	lim Ha	rrison	То	ol Pusi	her	GIDDI	NGS	AC		WBM			596 gpm	1		ps	si
	MUD P	ROPER	TY SPECII	FICATION	s		MUD VO	LUME	(BBL)		PUMP #1			PUMP #2		RISE	R BC	OSTER
Weight	PV	YP	GELS	рН	API fl	% Solids	In Pits		0 bbl	Liner	Size 5	.25	Liner	Size 5.	25	Liner	Size	5.25
8.4-9.6	0-10	0-10	<5 <10	8.4-9	<25	2-10	In Hole		251 bbl	Strol	ке	12	Stro	oke 1	2	Strok	ке	12
	MUI	PROP	ERTIES	<u>I</u>			Active		0 bbl	bbl/s	stk 0.0	0763	bbl	/stk 0.0	763	bbl/s	stk	0.0763
Time Sample	Taken			3:00	0:00	15:00	Storage		<u>0 bbl</u>	stk/n	nin	95	stk/	min 9	1	stk/m	nin	0
Sample Location	ion			pit	0	NO MUD	Tot. on Loc	cation	251 bbl	gal/n	nin 3	804	gal/	min 29	92	gal/n	nin	0
Flowline Temp	perature °F			110 °F	0 °F	0°F	Mud Wt. =	9.1	PV=1	YP=	=4 C	IRCUL	ATIO	N DATA		n = 0.	263	K = 494.5
Depth (ft)				2,732'	0'	0'	Е	Bit Dep	th = '		Wasl	nout =	5%	ı	Pump	Efficie	ncy =	95%
Mud Weight (p	opg)			9.1	0.0	0.0	Drill String	Vo	olume to B	it 0.0 b	obl S	trokes T	o Bit	0		Time T	o Bit	0 min
Funnel Vis (se	ec/qt)		@ 90 °F	33	0	0	Disp.	Botto	ms Up Vo	ol. 0.0 b	obl Bott	tomsUp	Stks	0	Botto	msUp 1	Time	0 min
600 rpm				6	0	0	0.0 bbl	To	talCirc.Vo	ol. 0.0 k	obl T	otalCirc	.Stks	0	Tota	I Circ. 7	Γime	0 min
300 rpm				5	0	0		DRIL	LING AS	SEMBL	Y DATA			S	OLID	S CON	TROI	
200 rpm				4	0	0	Tubulars	OD ((in.) I	D (in.)	Length	То	p	Unit		Scree	ens	Hours
100 rpm				3	0	0	0	0.0	00	0.000	0'	0	,	Shaker	1	0		0.0
6 rpm				2	0	0	0	0.0	00	0.000	0'	0	,	Shaker	2	0		0.0
3 rpm				1	0	0	0	0.0	00	0.000	0'	0	,	Shaker	3	0		0.0
Plastic Viscosi	ity (cp)		@ 120 °F	1	0	0	0	0.0	00	0.000	0'	0	,	Desand	ler	0		0.0
Yield Point (lb/			T0 = 0	4	0	0		C	ASING 8	HOLE	ATA			Desilte	er	0		0.0
Gel Strength (I		10 s	ec / 10 min	1/2			Casing			D (in.)	Depth	То	p q	Centrifug	ie 1	0		0.0
Gel Strength (I			30 min	2	0	0	Riser			0.000	0'			VOLUM	IE AC	COUN	TING	(bbls)
API Filtrate / C		ess	@ 0 °F				Surface	10 3	3/4	9.750	2,715'	0	,	Prev. T				1146.8
HTHP Filtrate	/ Cake Thic	kness	@ 0 °F				Int. Csg.	0	1	0.000	0'	0	,	Transfe	rred I	n(+)/O	ut(-)	251.0
Retort Solids C	Content			0.1	0.0	0.0	Washout 1	0	1	0.000	0'	0	,		Oil	Added	l (+)	0.0
Retort Oil Con	tent			0.0	0.0	0.0	Washout 2	0	1	0.000	0'	0	,	1	Barite	Added	l (+)	0.0
Retort Water C	Content			0.9	0.0	0.0	Open	Hole	Size	0.000	2,732'			Other Pr	oduct	Usage	+)	0.0
Sand Content				0.0	0.0	0.0	ANI	NULAF	R GEOM	ETRY &	RHEOLO	GY		١	Nater	Added	l (+)	0.0
M.B.T. (Methyl	lene Blue C	apacity)	(ppb)				annular			velo	city flow	EC	,D	Le	ft on (Cutting	s (-)	0.0
рН				8	0	0	section		depth	ft/m				Pit /	Boat	Cleanin	g (-)	-1147.1
Alkalinity, Mud	l Pm			0	0	0	0		0'	0.0) 0	0.0	00				0	0.0
Alkalinities, Fil	trate Pf/Mf						0		0'	0.0	0	0.0	00	Est. T	otal o	n Loca	ition	250.7
Chlorides (mg/	/L)			300.00	0.00	0.00	0		0'	0.0	0	0.0	00	Est. Los	ses/G	ains (-)	- /(+)	0.0
Calcium (ppm))			40	0	0	0		0'	0.0	0	0.0	00	BIT	HYDF	RAULIC	CS DA	ATA
Excess Lime (I	lb/bbl)			0.00	0.00	0.00	0		0'	0.0	0	0.0	00	Bit H.S.I.	Bit	ΔΡ	Nozzle	es (32nds)
Average Speci	ific Gravity	of Solids	S	2.60	2.60	2.60	0		0'	0.0	0	0.0	00	#DIV/0!	#DI	V/0!	0	0 0
Percent Low G	Gravity Solid	ls		0.1	0.0	0.0	0		0'	0.0	0	0.0	00	Bit Impact	Noz		0	0 0
Percent Drill S	Solids			0.1	0.0	0.0	0		0'	0.0	0	0.0	00	Force	Velo	,	0	0 0
PPA Spurt / To	otal (ml) @		@ 0 °F				0		N	/lanuf./Ty	ре	0		#DIV/0!	(,	0	0 0
Estimated Total	al LCM in S	ystem	@ 0 °F	0.0	0.0	0.0	Size	Dept	h In I	Hours	Footage	ROP	ft/hr	Motor/M\	WD	Calc.	Circ.	Pressure
Sample Taken	n By			B. Guidry	0	A. Roman	0	0 1	ft	0.0	0 ft	0.	0	psi			#DIV	/0!
Remarks/Reco	mmendation	ns:					Rig Activity:											
251bbls left ins	side Surfac	e Casino	g.															
0																		
0							Report made	e to tra	ınsfer in a	all invento	ory from th	ne 2-H t	to the	3-H. For Ir	nterme	ediate s	sectio	n drilling.
0							No Cost.											
0																		
	dolfo Romar		•	rt Guidry	WH 1:			VH 2:	WH	#2	Rig Pho	one:		Daily Total		Cur	nulativ	re Cost
Eng. 1: Ad		. PI	hone: 337-	-250-3841	Phone:	432-686	-7361 P	hone:			0							
Phone: 95	56-821-9994			Any opin	ion and or	recommend	ation, expresse	d orally	or written	herein, has	been prepa	ared		\$0.00		¢	4 269	3.00
Ü	g G 1 1	р A 1 1	S C 1 0		and may be	used if the	ation, expresse user so elects, ormation, and the	howeve	er, no repre	esentation i	s made as t			\$0.00		\$	4,268	3.00

Date 06/24/21	Operator MAG	NOLIA OIL	. & GAS	Well Name a	nd No. GSTEDT O	L 2H	Rig Name an	d No. 35	Report No.	ort #2
		DAILY	USAGE 8	& COST						LATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily	Daily Cost		Cum	Cum Cos
SAPP (50)	50# sk	\$44.56	212	-212	inventory	Usage			Usage 50	\$2,228.0
PHPA LIQUID (pail)	5 gal	\$41.36							- 00	ΨΣ,ΣΣΟ.Ο
EVO-LUBE	gal	\$14.00								
NEW GEL (PREMIUM)	100# sk	\$19.75								
24.01.0 (50)	50" 1	21100								
CACL2 (50)	50# sk	\$14.32								
LIME (50) OPTI - G	50# sk 50# sk	\$5.00 \$30.59								
BENTONE 38 (50)	50# sk	\$163.94								
BENTONE 910 (50)	50# sk	\$59.40								
BENTONE 990 (50)	50# sk	\$83.59								
OPTI - MUL	gal	\$10.75								
OPTI - WET	gal	\$8.34								
NEW PHALT	50# sk	\$38.72								
OIL SORB (25)	25# sk	\$4.75	47	-47						
			_							
NEW CARB (M)	50# sk	\$5.25								
CYBERSEAL	25# sk	\$21.47					1			
MAGMAFIBER F (25)	25# sk	\$28.05								
MAGMAFIBER R (30)	30# sk	\$28.05								
VARISEAL	50# sk	\$26.50								
FIBER PLUG	30# sk 50# sk	\$30.37								
NUT PLUG M (50)	50# SK	\$12.04								
NEW WATE (SACK BARITE)	100# sk	\$11.50	78	-78						
BARITE BULK (100)	100# sk	\$7.00	801	-801						
OPTI DRILL (OBM)	bbl	\$65.00	1146	-933	213					
DISCOUNTED OBM	bbl	\$10.00								
							1			
							1			
							+			
							+			
							1			
							+			
							1			
ENGINEERING (24 HR)	each	\$990.00					1		2	\$1,980.0
ENGINEERING (DIEM)	bbl	\$30.00					1		2	\$60.0
ENGINEERING (MILES)	each	\$1.00					1			
, -/										
TRUCKING (cwt)	each	\$1.98								
TRUCKING (min)	each	\$650.00								
PALLETS (ea)	each	\$12.00								
								i	1	i
SHRINK WRAP (ea)	each	\$12.00								

THIRD PARY COST SHEET

Date 06/24/21	Operator MAG	NOLIA OIL		Well Name a	nd No.	L 2H	Rig Name ar	id No. 85	Report No.	ort #2
			USAGE 8							LATIVE
Item	Unit	Unit Cost	Previous	Received	Closing	Daily	Daily Cost		Cum	Cum Cost
nem	Offic	OTHIC COST	Inventory	received	Inventory	Usage	Daily Cost		Usage	Cum Cost
		_		_						
									L	

Report #3

TEL: (337) 394-1078

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

11.1° 2,979' TVD

_	NOLIA (OIL &	GAS		TTERSO	ON	_	HINGTON			23/21					00 1	ft
Well Name and No	RGSTED	OT OL	2H	Rig Name ar	nd No. 285		State TI	EXAS		Spud Date 06/	22/21	Currer	t ROP		tivity FIT/DF	RILL	ING
Report for				Report for			Field / OCS-G #			Fluid Type			ating Rate		culating P		
Jessie Co	ollinson	/Jim I	Harrison	To	ol Pusi	ner	GIDDI	INGS AC		О	BM		878 gpm	1	4,56	3 p)Si
	MUD	PROPE	RTY SPECII	ICATION	S	ı	MUD VO	LUME (BB	L)	PU	MP #1		PUMP #2	I	RISER I	300	STER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	550	bbl	Liner Size	e 5.2	5 Line	r Size 5.	25 L	iner Size		5.25
8.5-10	5-20	5-12	>300	±270K	<10 <20	<10	In Hole	205	bbl	Stroke	12	Str	oke 1	2	Stroke		12
				7/1/21		7/1/21	Active	755	bbl	bbl/stk	0.07	63 bb	/stk 0.0	763	bbl/stk	0	.0763
Time Sample	Taken			1:00		14:00	Storage	e <u>2207</u>	7 bbl	stk/min	13	7 stk	min 1	37	stk/min		0
Sample Locat				suction		suction		cation 2962		gal/min	43	gal	/min 4		gal/min		0
Flowline Temp	perature °F	F 						PHHP = 233				ATION DA			= 0.646		
Depth (ft)				2,732'		2,732'	Bit	Depth = 3,0				ut = 2%		Pump Et			
Mud Weight (9.6		9.1	Drill String Disp.	Volume				kes To Bit			me To Bi		2 min
Funnel Vis (se	ec/qt)		@ 100 °F	56		51		Bottoms Up				nsUp Stks	2,074		SUp Time		3 min
600 rpm				36		29	36.0 bbl			755.2 bb	_	alCirc.Stks	1		Circ. Time		6 min
300 rpm				23		18		DRILLING						OLIDS			
200 rpm				18		14	Tubulars	, ,		. ,	ength	Top	Unit		Screens	۲	Hours
100 rpm				14		9	Drill Pipe				435'	0'	Shakei		140		
6 rpm				7		5	DP / AGI.				1,996'	435'	Shaker		140		
3 rpm			@ 450.0E	6		4	Hevi Wt				271'	2,431'	Shaker		140		
Plastic Viscos			@ 150 °F	13		11	Dir. BHA				298'	2,702'	Desand				
Yield Point (lb			T0 = 5	7/11		7 6/9	Casina			(in)		Тор	Desilte				
Gel Strength (· · ·		0 sec/10 min	16			1	OD (in.)	טו	(in.) [Depth	тор	Centrifuç		OLINITIA	C /b	
Gel Strength (30 min @ 250 °F	5.8		6.0	Riser	10 3/4	0 (990 2	2,715'	0'		IE ACC		•	2970.
HTHP Filtrate	•	•	@ 250 F	2.0		2.0	Surface	10 3/4	0.3	990 2	2,7 10	0'		otal on			2970.
HTHP Cake T Retort Solids		(32nas)		10.6%		8%						U	Transie	erred In(-	,		0.0
Corrected Sol				7.9%		5.2%	-							Oli Ai Barite Ai	dded (+		0.0
Retort Oil Cor	. ,			62.4%		62%	Oper	n Hole Size	10	.073 3	3,000'		Other Pi		•		0.0
Retort Water				27%		30%	-	NULAR GE				v		Water A	0 (0.0
O/W Ratio	Content			70:30		67:33	711	TIOLAN GE						ft on Cu			0.0
Whole Mud C	hlorides (n	ma/L)		66,000		71,000	annula section			velocity ft/min	flow	ECD lb/gal		at on ou	ttirigo (,	0
Water Phase	•			277,096		270,666											
Whole Mud Al				2.4		2.0	8.99x5	i 43	35'	385.6	turb	10.13	Est. 7	otal on	Location	1	2970.2
Excess Lime (3.1 ppb		2.6 ppb	8.99x5	5 2,4	31'	385.6	turb	10.13	Est. Los	ses/Gair	ns (-)/(+		-7.9
Electrical Stat	•)		462 v		388 v	8.99x5	2,7	02'	385.6	turb	10.13		HYDRA			Α
Average Spec			ds	3.21		3.08	8.99x7.7	75 2,7	15'	1036.9	turb	10.19	Bit H.S.I.	Bit ∆F	> Noz	zles ((32nds
Percent Low (4%		3%	10.073x7			519.9	turb	10.30	2.05	307 p		14	
ppb Low Grav				33 ppb		25 ppb	+						Bit Impact	Nozzl	e 14	14	
Percent Barite	-			3.9%		2.2%	1						Force	Veloci (ft/sec	ty	16	
ppb Barite				56 ppb		31 ppb	BIT D	ATA	Ма	nuf./Type	SI	PL613	825 lbs	189			+
Estimated Tot	tal LCM in	System	ppb				Size	Depth In	Но	ours Fo	ootage	ROP ft/hr	Motor/M	WD C	Calc. Cir	c. Pr	essure
Sample Taker	n By			E. Sanchez	0	A. Roman	9 7/8	2,715 ft					250 p	si	2,19)1 p:	si
Remarks/Reco	ommendation	ons:					Rig Activity:	<u> </u>	<u>l</u>		I		I	ı			
251bbls le	eft inside S	Surface	Casing.														
OBM Tran			3														
CDM Hall	.5.51 111.							nade to tra drilling. No			entory fr	om the 3	-H to the 2	P-H. For	Interm	edia	te
0	dolfo Roma		Eng. 2: Edga Phone: 956-		WH 1: Phone:			WH 2:	WH #:	2	Rig Phon	e:	Daily Total		Cumula	ative	Cost
W P Y 1 1 1	E C 1 1	g (Э Н О	Any opin	nion and or and may b	recommend e used if the	ation, expressed user so elects, this is a recomn	d orally or writ , however, no	repres				\$0.00		\$4,2	68.0	0
		- '		validity	or uns miorr	nauon, and 1		nendation only		PARTY C	HARGES		\$0.00		\$43	68.0	

INCLUDING 3RD PARTY CHARGES

\$0.00

\$4,268.00

Date 07/01/21	Operator	NOLIA OIL		Well Name a	ind No. GSTEDT O	. ວ⊔	Rig Name an	nd No. 85	Report No.	ort #3
07/01/21	l .	USAGE 8		ВОК	GSTEDT O	L ZN		55		LATIVE
Item	Unit	Unit Cost	Previous	Received	Closing	Daily	Daily Cost		Cum	Cum Cost
SAPP (50)	50# sk	\$44.56	Inventory	Roscivou	Inventory	Usage	Duny Goot		Usage	\$2,228.00
PHPA LIQUID (pail)	50# sk	\$41.36			16				50	\$2,220.00
(pan)	o gai	ψιιισσ								
							1			
							1			
CACL2 (50)	50# sk	\$14.32			280					
LIME (50)	50# sk	\$5.00			262					
OPTI - G BENTONE 38 (50)	50# sk 50# sk	\$30.59 \$163.94			180 32					
BENTONE 910 (50)	50# sk	\$59.40			70					
BENTONE 990 (50)	50# sk	\$83.59			65					
OPTI - MUL	gal	\$10.75			440					
OPTI - WET	gal	\$8.34			440					
NEW PHALT	50# sk	\$38.72			180					
OIL SORB (25)	25# sk	\$4.75	76		76		1			
			1					-	-	
								1		
								1		
NEW CARB (M)	50# sk	\$5.25			220]		
MAGMAFIBER F (25)	25# sk	\$28.05			268					
NEW PLUG M	50# sk	\$10.51	80		80					
							1			
							1			
NEW WATE (SACK BARITE)	100# sk	\$11.50	78		78					
BARITE BULK (100)	100# sk	\$7.00			1001					
OPTI DRILL (OBM)	bbl	\$65.00	2970		2970					
DISCOUNTED OBM	bbl	\$10.00								
								}	<u> </u>	
								-		
<u> </u>										
									 	
ENGINEERING (24 HR)	each	\$990.00		<u> </u>				-	2	\$1,980.00
ENGINEERING (DIEM)	bbl	\$30.00						1	2	
ENGINEERING (MILES)	each	\$1.00]		
	-]		
							1	ĺ	1	<u> </u>
									-	
		A								
TRUCKING (cwt)	each	\$1.98	1							
TRUCKING (cwt) TRUCKING (min)	each	\$650.00								
TRUCKING (cwt) TRUCKING (min) PALLETS (ea)										
TRUCKING (cwt) TRUCKING (min)	each each	\$650.00 \$12.00				ive Total				68.00

THIRD PARTY COST SHEET

Date	Operator			Well Name a	nd No.		Rig Name an	d No.	Report No.	
07/01/21	MAGI	NOLIA OIL	& GAS	BOR	GSTEDT O	L 2H	28	3 5	Repo	ort #3
	DAILY	USAGE 8	& COST						сими	LATIVE
ltem	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
DIESEL TRANSFER F/3H	gal	\$2.38	14972		14972					
	Cum	ulative Tota	al AES & 3rd	d Party \$4,2	268.00					

110 Old Market St.

St Martinville, LA 70582

TEL: (337) 394-1078

11.1° 2,979' TVD

Operator MAGN(OLIA OIL	& G	ΔS	Contractor	TERSO	N	County / Parish	n / Block HINGTO	N		er Start Date 06/23/21		nr ftg.		Drilled	3,000	n ft	
Well Name and No.		- 4 0/		Rig Name ar			State		-	Spud Da			rent ROP		Activity		<i>-</i> 11	
BORG	STEDT	OL 2H	1		285			EXAS		(06/22/21				FIT	r/DRII	LLII	NG
Report for Jessie Colli	incon/li	m ∐a	rricon	Report for	ol Pusl	or	Field / OSC-G	# INGS A0	^	Fluid Ty	obM	Circ	ulating Rate 878 g	am.		ting Press 1,563		
Jessie Com			Y SPECII			iei					PUMP #1		PUMP		1	+,303 ER BC		
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	DLUME (B	b L)) bbl	Liner			ner Size	5.25	<u> </u>	Size		25
8.5-10	5-20	5-12	>300	±270K	<10 <20	<10	In Hole		5 bbl	Stro			Stroke	12	Str		1:	
0.5-10			>300 ERTIES	±2/UK	<10 <20	<10												
Time Comple To		PROP	EKIIES	1:00		14:00	Active		5 bbl	bbl/s				0.0763		/stk	0.07	703
Time Sample Ta				1:00		14:00	Storage		7 bbl	stk/r			tk/min	137		min		
Sample Location				suction		suction	Tot. on Loc			gal/r			al/min	439	ــــــــــــــــــــــــــــــــــــــ	min	, ,	
Flowline Tempe	rature 'F			0.700		0.700	Mud Wt. =		=13	YP=			ION DAT).646 H		
Depth (ft)	\			2,732'		2,732'	BIL L	Depth = 3,0		47.0		nout = 2%				ency =		
Mud Weight (pp			@ 100 °E	9.6		9.1	Drill String Disp.	Volume				rokes To I				To Bit	2 n	
Funnel Vis (sec/	(qt)		@ 100 °F	56		51		Bottoms U				omsUp St			omsUp		8 n	
600 rpm				36		29	36.0 bbl	TotalCii				otalCirc.St	ks 9,89		al Circ.		36 ı	mın
300 rpm				23		18	Tubulana	DRILLIN				T	 			NTROL		
200 rpm				18		14	Tubulars	` ,		(in.)	Length	Тор		Init		eens	Ho	urs
100 rpm	6 rpm					9	Drill Pipe	5.000		276	435'	4051		ker 1		40		
•	6 rpm 3 rpm					5	DP / AGI.	5.000		276	1,996'	435'		ker 2		40		
•	·					4	Hevi Wt	5.000		500	271'	2,431		ker 3	14	40		
Plastic Viscosity	,		@ 150 °F	13		11	Dir. BHA	7.750		750	298'	2,702	_	ander				
Yield Point (lb/1			T0 = 5	10		7	0 :	CASIN				T	_	silter				
Gel Strength (lb.		10 Se	20 min	7/11		6/9	_	OD (in.)	יטו	(in.)	Depth	Тор		ifuge 1	CCOLL	NTING	/hhl	
Gel Strength (lb/			30 min	16		11	Riser	40 0/4	0.0	200	0.745			UME A			•	
HTHP Filtrate (c			@ 250 °F	5.8		6.0	Surface	10 3/4	8.8	990	2,715'			/. Total			29	970.
HTHP Cake Thi	•	inds)		2.0		2.0							Tran	sferred	()	()		
Retort Solids Co				10.6%		8%									il Adde	` ,		
Corrected Solids				7.9%		5.2%	0		40	070	0.0001		011		e Adde	` ,		
Retort Oil Conte				62.4%		62%	'	Hole Size			3,000'	201	Othe	Produc		, ()		
Retort Water Co	ontent			27%		30%	ANI	NULAR GE	OWE	IRY	RHEOLO	JGY			r Adde	` ,		
O/W Ratio				70:30		67:33	annula sectior	(16	pth	velo ft/m	-	ECD lb/gal		Left on	Cuttin	gs (-)		
Whole Mud Chlo				66,000		71,000		·				, ga.						
Water Phase Sa				277,096		270,666	0.00.5	- 4.	0.51	005		10.10					00	. 70
Whole Mud Alka		n		2.4		2.0	8.99x5		35'	385				t. Total		_	29	970.
Excess Lime (lb.				3.1 ppb		2.6 ppb	8.99x5	•	131'	385				osses/0				-7.
Electrical Stabili				462 v		388 v	8.99x5		702'	385				BIT HYD				
Average Specific			3	3.21		3.08	8.99x7.7	•	715'	103			Bit H.S		t ∆P	Nozzle	<u> </u>	
Percent Low Gra		S		4% 33 ppb		3%	10.073x7	.75 3,0	000'	519	9.9 turb	10.30	2.05		7 psi	14	14	14
	b Low Gravity Solids					25 ppb							Bit Imp	act Ve	zzle ocity	14	14	14
Percent Barite						2.2%						201.07.		(ft/	sec)	16	16	16
ppb Barite				56 ppb		31 ppb	BIT C			nuf./Ty		SPL613	825 lk		89 To .	<u> </u>		
Estimated Total		/stem					Size	Depth In	Ho	urs	Footage	ROP ft/		r/MWD	Calc	. Circ.		sure
Sample Taken E	Зу			E. Sanchez		A. Roman	9 7/8	2,715 ft	Ī				250) psi	1	2,191	psi	_

Over the past 12 hours: Completed repairs and maintenance to rig equipment. Over the past 12 hours: Completed repairs and maintenance to rig equipment. Pick up and Make up New BHA, test same on surface. TIH tag float equipment and set circulation. Drilling float and shoe track plus 10' of new formation. Perform FIT (11.6EMW / 350psi), successful test. Start drilling on intermediate section. Pump Rate 900gal/min / 800-1050ROP, overwhelming shakers, massive amount of cuttings and excessive flow due to Jet lines running on flow line, cause to loos mud over the shakers. Recover some with vacc truck and pump over shakers. OUTSOURCE FLUID SOLUTIONS LLC.

11.1°

4,137' TVD

MAGI Well Name and No.	NOLIA	OIL &	GAS	PAT Rig Name ar	TERSO	ON	WASH State	IINGTO	N	Engineer: O Spud Date	6/23		24 hr ftg Current	1,465 ft		Drilled D	_{ери} 4,180	ft
BOR	GSTEE	T OL	2H		285		TI	EXAS		0	6/22	/21	;	366 ft/h	r	ı	Drilli	
Report for Jessie Co	llinson	/Jim H	Harrison	Report for	ol Pusi	her	Field / OCS-G #	NGS A	:	Fluid Type	OBI	л		_{ing Rate} 683 gpn	,		ng Press ,305	
			RTY SPECII	<u> </u>				LUME (BI		-	PUMP			PUMP #2			R BO	•
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits		6 bbl	Liner S	Size	5.25	Liner	Size 5.	25	Liner	Size	5.25
8.5-10	5-20	5-12	>300	±270K	<10 <20	<10	In Hole	31	4 bbl	Strok	ке	12	Stro	oke 1	2	Strol	ке	12
				7/2/21		7/1/21	Active	88	0 bbl	bbl/s	stk	0.0763	bbl/	stk 0.0	763	bbl/s	stk	0.076
Γime Sample	Taken			1:00		14:00	Storage	· <u>196</u>	88 bbl	stk/n	nin	104	stk/	min 1	09	stk/n	nin	0
Sample Locat	ion			suction		suction		cation 284	ldd 8t	gal/n	nin	333	gal/	min 3	49	gal/n	nin	0
lowline Temp	erature °	=		140 °F				PHHP = 131	16		CIR	CULATIO	N DA	TA		n = 0.	678 ×	= 148.6
Depth (ft)				4,180'		2,732'	Bit I	Depth = 4,	180 '		W	ashout =	2%		Pump	Efficie	ncy =	95%
Mud Weight (opg)			9.0		9.1	Deill Oteine	Volume	to Bit	68.0	bbl	Strokes	To Bit	891		Time T	o Bit	4 mir
unnel Vis (se	ec/qt)		@ 100 °F	48		51	Drill String Disp.	Bottoms l	Jp Vol.	245.9	bbl	BottomsU	Stks	3,222	Botto	msUp 1	Γime	15 mi
600 rpm				32		29	43.7 bbl	TotalCi	rc.Vol.	879.8	bbl	TotalCir	c.Stks	11,530	Tota	I Circ. 7	Γime	54 mi
300 rpm				20		18		DRILLING						S		CON		
200 rpm				16		14	Tubulars	OD (in.)	ID	(in.)	Leng	gth T	ор	Unit		Scree	ens	Hours
00 rpm				10		9	Drill Pipe	5.000		276	1,61		D'	Shakeı	1	140	0	
6 rpm				7		5	DP / AGI.	5.000	4.	276	1,99	1,6' 1,6	615'	Shakei	2	140	0	
3 rpm				6		4	Hevi Wt	5.000	2.	500	27	1' 3,6	611'	Shakei	3	140	0	
Plastic Viscos	ity (cp)		@ 150 °F	12		11	Dir. BHA	7.750	2.	750	298		382'	Desand	der			
rield Point (lb.			T0 = 5	8		7		CASIN	IG & F	IOLE D	ATA			Desilte	er			
Gel Strength (10) sec/10 min	6/11		6/9	Casing	OD (in.)		(in.)	Dep	th T	ор	Centrifu	ge 1			4.0
Gel Strength (30 min	12		11	Riser	- ()		,				VOLUM		COUN	ITING	
HTHP Filtrate		iin)	@ 250 °F	5.8		6.0	Surface	10 3/4	8.	990	2,71	5')'	Prev. T				2970
HTHP Cake 1		-)	2.0		2.0							0'	Transfe				
Retort Solids		(0=1100)	<u>'</u>	8%		8%										Added		37
Corrected So				5.1%		5.2%								E		Added		c
Retort Oil Cor				62%		62%	Open	Hole Size	10	.073	4,18	10'		Other Pro				4
Retort Water				30%		30%	-	IULAR GI		TRY &	RHEC	LOGY				Added		
D/W Ratio				67:33		67:33	annulai			volos	sia.	ilou F	CD			uttings		-144
Whole Mud C	hlorides (ı	ng/L)		72,000		71,000	annulai sectior		eas. epth	veloc ft/m	-		gal	Non-Rec				-19
Nater Phase	Salinity (p	pm)		273,435		270,666		<u> </u>				I						
Whole Mud A	kalinity, P	om		2.2		2.0	8.99x5	1,	615'	299	.7	turb 9.	70	Est. T	otal or	n Loca	tion	2847
Excess Lime	(lb/bbl)			2.9 ppb		2.6 ppb	8.99x5	2,	715'	299	.7	turb 9.	93	Est. Loss	es/Ga	ains (-)	/(+)	C
Electrical Stat	oility (volts)		345 v		388 v	10.073x	:5 3,	611'	218	.8	lam 10	.12	BIT	HYDR	AULIC	S DA	TA
Average Spec	ific Gravi	ty of So	lids	2.87		3.08	10.073x	5 3,	882'	218	.8	lam 10	.43	Bit H.S.I.	Bit	ΔΡ	Nozzle	s (32nd
Percent Low (Gravity Sc	lids		3.6%		3%	10.073x7	.75 4,	180'	404	.1	turb 10	.78	0.90	174	psi	14	14 1
opb Low Grav	ity Solids			29 ppb		25 ppb								Bit	Noz		14	14 1
Percent Barite	9			1.5%		2.2%								Impact Force	Velo (ft/s		16	16 1
pb Barite				22 ppb		31 ppb	віт р	ATA	Ма	anuf./Ty	ре	SPL6	13	467 lbs	14	17		
Estimated Tot	al LCM in	System	n ppb				Size	Depth In	Н	ours	Foota	age ROF	ft/hr	Motor/M	WD	Calc.	Circ. F	ressu
Sample Taker	п Ву			E. Sanchez	0	A. Roman	9 7/8	2,715 ft	4	1.0	1,32	1 ft 33	0.3	250 p	si		1,533	psi
	nsfer in:	2,970	bbl 9.3ppg Storage: 1,	968 bbl	@ 9.3 pp	g	R/U and cement OBM. I 2,727' t report ti	d N/U BO and 10' o Performe o 3,039' p ime. Plai	P. TIII of nev d FIT perfor	I to cas v forma test to m rig re	sing s ation t 11.6 epairs	hoe, tag o 2,737' ppg EM\ . Contin	ged o and VT(35 ue dri	If from BC ement @ circulated 57 psi). R Illing from . Average	2,54 d B/U esum 3,03	0'. Di with 9 ed dri 9' to 4	rilled of 9.1 pp illing f 1,180's	out g rom at
	dolfo Roma 56-821-999		Eng. 2: Edga Phone: 956-	693-3035	WH 1: Phone:	MIDLA 432-686	-7361 P	WH 2:	WH #			Phone:		Daily Total		Cu	mulative	e Cost
W P Y 1 1 1	E C 1 1	g G 1 1		carefu	ly and may b	e used if the	ation, expressed user so elects, this is a recomm	however, no	repres				\$	12,127.8	9	\$1	6,395	5.89

INCLUDING 3RD PARTY CHARGES

\$15,631.25

\$19,899.25

Date 07/02/21	Operator MAGN	NOLIA OIL	& GAS	Well Name a	and No. GSTEDT O		Rig Name an		Report No.	ort #4
	DAILY	USAGE 8	& COST						CUMUI	LATIVE
ltem	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost	l	Cum Usage	Cum Cost
SAPP (50)	50# sk	\$44.56							50	\$2,228.00
PHPA LIQUID (pail)	5 gal	\$41.36	16		16					
								ļ		
								ļ		
								ļ		
CACL2 (50)	50# sk	\$14.32	280		280					
LIME (50)	50# sk	\$5.00	262		212	50	\$250.00	ļ	50	\$250.00
OPTI - G	50# sk	\$30.59			180		Ψ200.00	ļ		Ψ200.00
BENTONE 38 (50)	50# sk	\$163.94	32		32			ļ		
BENTONE 910 (50)	50# sk	\$59.40			64	6	\$356.40	ļ	6	\$356.40
BENTONE 990 (50)	50# sk	\$83.59			59	6	\$501.54	ļ	6	\$501.54
OPTI - MUL	gal	\$10.75			385	55	\$591.25		55	\$591.25
OPTI - WET	gal	\$8.34	440		385	55	\$458.70	ļ	55	\$458.70
NEW PHALT	50# sk	\$38.72	180		180			ļ		
OIL SORB (25)	25# sk	\$4.75	76		76					
								ļ		
								ļ		
								ļ		
NEW CARB (M)	50# sk	\$5.25			220			ļ		
MAGMAFIBER F (25)	25# sk	\$28.05			268			ļ		
NEW PLUG M	50# sk	\$10.51	80		80			ļ		
								ļ		
								ļ		
								ļ		
								ļ		
								ļ		
								ļ		
NEW WATE (SACK BARITE)	100# sk	\$11.50	78		78					
BARITE BULK (100)	100# sk	\$7.00	1001		1001			ļ		
								ļ		
OPTI DRILL (OBM)	bbl	\$65.00	2970		2848	122	\$7,930.00		122	\$7,930.00
` '		,,,,,,,	13.0				. ,			. ,
DISCOUNTED OBM	bbl	\$10.00								
		-		-						

		Daily Su	b-Total \$1	2,127.89	Cumulat	ive Total \$1	16,395.89
SHRINK WRAP (ea)	each	\$12.00					
PALLETS (ea)	each	\$12.00	•				
TRUCKING (min)	each	\$650.00					
TRUCKING (cwt)	each	\$1.98					
ENGINEERING (MILES)	each	\$1.00					
ENGINEERING (DIEM)	bbl	\$30.00				2	\$60.00
ENGINEERING (24 HR)	each	\$990.00				2	* ,

4	\$3,960.00
4	\$120.00
\$16,3	95.89

THIRD PARTY COST SHEET

Date	Operator			Well Name a	and No.		Rig Name an	d No.	Report No.	
07/02/21	MAG	NOLIA OIL	& GAS	BOR	GSTEDT O	L 2H	28	35	Repo	ort #4
	DAILY	USAGE 8	COST						CUMUI	LATIVE
ltem	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
PRO V PLUS	25# sk	\$60.00		320	320					
PRO X	25# sk	\$70.00		320	320					
PRO SWEEP AID	25# sk	\$46.00		320	320					
SB SUPER CEAL	25# sk	\$80.00		320	320					
	<u> </u>	40.00					*			
DIESEL TRANSFER F/3H	gal	\$2.38	14972		13500	1472	\$3,503.36		1472	\$3,503.36
	1									
							1			
	1									
	-									
	1									
	-									
	1									
	1									
	1									
	1									
	1									
	1									
1	1	I							L	

Daily Sub-Total \$3,503.36													
Cumulative Total AES & 3rd Party \$19,899.25													

FLUID VOLUME ACCOUNTING

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name: MAGNOLIA OIL & GAS

Rig Name: 285
Well Name: BOR

BORGSTEDT OL 2H

		WEEK 1 WEEK 2														WEEK 3					
	Date	7/1/21	7/2/21	7/3/21	7/4/21	7/5/21	7/6/21	7/7/21	7/8/21	7/9/21	7/10/21	7/11/21	7/12/21	7/13/21	7/14/21	7/15/21	7/16/21	7/17/21	7/18/21	7/19/21	7/20/21
		Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue
	Bit Size	9 7/8																			
Grand	Starting Depth	2,715	4,180																		
Totals	Ending Depth	4,180																			
1,465	Footage Drilled	1,465	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
139	New Hole Vol.	139		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Starting System Volume	2,970	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848
	Chemical Additions	4																			
	Base Fluid Added	38																			
	Barite Increase	-																			
-	Weighted Mud Added	-																			
-	Slurry Added	-																			
-	Water Added	-																			
-	Added for Washout																				
42	Total Additions	42	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-	-
-	Surface Losses																				
-	Formation Loss																				
144	Mud Loss to Cuttings	144																			
20	Unrecoverable Volume	20																			
-	Centrifuge Losses																				
164	Total Losses	164	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	Mud Transferred Out																				
2,848	Ending System Volume	2,848	0.040																		
		2,040	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848
-	Mud Recovered	2,040	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848	2,848
-		2,040	2,848				2,848	2,848	2,848	2,848	-	•		2,848	2,848	2,848	2,848	·	·		2,848
-		2,040	2,848		2,848 comments		2,848	2,848	2,848	2,848	-	2,848 omment		2,848	2,848	2,848	2,848	·	2,848 omments		2,848
-	Mud Recovered			С		s:	2,848	2,848	7/8/21	2,848	-	•		2,848	2,848	7/15/21	2,848	·	·		2,848
2,970	Mud Recovered	7/1/21	Transfer 2	C 970 bbl froi	m Borgsted	s: It OL 3-H	2,848			2,848	-	•		2,848			2,848	·	·		2,848
	Mud Recovered	7/1/21	Transfer 2	C 970 bbl froi	m Borgsted	s: It OL 3-H			7/8/21	2,848	-	•		2,848		7/15/21	2,848	·	·		2,848
	Mud Recovered	7/1/21	Transfer 2	C 970 bbl froi	m Borgsted	s: It OL 3-H		ning over	7/8/21	2,848	-	•		2,848		7/15/21	2,848	·	·		2,848
	Mud Recovered	7/1/21 7/2/21 7/3/21	Transfer 2	C 970 bbl froi	m Borgsted	s: It OL 3-H		ning over	7/8/21 7/9/21 7/10/21	2,848	-	•		2,848		7/15/21 7/16/21 7/17/21	2,848	·	·		2,848
	Mud Recovered	7/1/21 7/2/21 7/3/21	Transfer 2	C 970 bbl froi	m Borgsted	s: It OL 3-H		ning over	7/8/21 7/9/21 7/10/21	2,848	-	•		2,848		7/15/21 7/16/21 7/17/21 7/18/21	2,848	·	·		2,848

OUTSOURCE FLUID SOLUTIONS LLC.

	Date	7/21/21
		Wed
	Bit Size	
Grand	Starting Depth	
Totals	Ending Depth	
1,465	Footage Drilled	-
139	New Hole Vol.	_
	Starting System Volume	2,848
4	Chemical Additions	
38	Base Fluid Added	
-	Barite Increase	
-	Weighted Mud Added	
-	Slurry Added	
-	Water Added	
-	Added for Washout	
42	Total Additions	-
-	Surface Losses	
-	Formation Loss	
144	Mud Loss to Cuttings	
20	Unrecoverable Volume	
-	Centrifuge Losses	
404	Total Lanca	1
164	Total Losses	-
-	Mud Transferred Out	
2,848	Ending System Volume	2,848
_,0.0		,,,,,,
-	Mud Recovered	

2,970

110 Old Market St.

St Martinville, LA 70582

TEL: (337) 394-1078

11.1° 6,931' TVD

Operator				Contractor			County / Parisl			_	Start Date	24 hr	ftg.		Drilled D			
MAGN Well Name and No	NOLIA (OIL 8	& GAS	PA Rig Name a	TTERSO	ON	WAS State	HINGTO	N	O Spud Dat	6/23/21 •	Curre	nt ROP		Activity	7,027	ft	
	GSTED	то	L 2H		285			EXAS		-	6/22/21				-	RILL	ING	j
Report for	llingen	/ 1:	Llevrices	Report for	al Dual		Field / OSC-G		^	Fluid Type		Circul	ating Rate		Circulatir	-		
Jessie Co			Harrison		ol Push	ier		INGS A			OBM		683 gpm	1		974	•	
Weight	PV		PERTY SPEC	CaCl2	GELS	HTHP	In Pits	DLUME (B	BL) 6 bbl	Liner S	PUMP #1	25 Line		25	Liner	R BO	5.2	
8.5-10	5-20		12 >300	±275K	<10 <20	<10	In Hole		6 bbl	Strok				2	Strok		12	
0.5-10			ROPERTIES	±2/3K	< 10 < 20	<10	Active		2 bbl	bbl/st				763	bbl/s		0.07	
Time Sample		OD F	KOPEKTIES	1:00		14:00	Storage		8 bbl	stk/m				09	stk/m		0.07	03
Sample Locat				suction		suction	J	cation 311		gal/m				49	gal/m			
Flowline Temp		°F		140 °F		160 °F	Mud Wt. =		/=12	YP=		RCULATION			n = 0.		ζ = 14	<u></u>
Depth (ft)		·		4,180'		7,027'		Depth = 7,				out = 2%			Efficie			
Mud Weight (nna)			9.0		9.3				118.5		okes To Bi		· ·	Time To		7 m	
Funnel Vis (se			@ 100 °F			43	Drill String Disp.	Bottoms L				omsUp Stks	,		nsUp T		28 m	
600 rpm				32		35	62.3 bbl		•	1141.9		talCirc.Stks			Circ. T		70 m	
300 rpm				20		23		DRILLIN					1	OLIDS	CON			
200 rpm				16		18	Tubulars	OD (in.)	ID	(in.)	Length	Тор	Unit		Scree	ens	Hou	ırs
100 rpm				10		13	Drill Pipe	5.000	4.2	276	4,462'	·	Shaker	1	140)		
6 rpm				7		8	DP / AGI.	5.000	4.2	276	1,996'	4,462'	Shaker	2	140)		
3 rpm				6		6	Hevi Wt	5.000	2.5	500	271'	6,458'	Shaker	3	140)		
Plastic Viscos	sity (cp)		@ 150 °F	12		12	Dir. BHA	7.750	2.7	750	298'	6,729'	Desand	ler				
Yield Point (lb	/100 ft²)		T0 = 5	8		11		CASI	NG & I	HOLE D	DATA		Desilte	er				
Gel Strength ((lb/100 ft²))	10 sec / 10 mir	6/11		7/12	Casing	OD (in.)	ID	(in.)	Depth	Тор	Centrifuç	ge 1				
Gel Strength ((lb/100 ft2	2)	30 mir	12		16	Riser						VOLUM	IE AC	COUN	TING	(bbls	s)
HTHP Filtrate	(cm/30 m	nin)	@ 250 °F	5.8		6.0	Surface	10 3/4	8.9	990	2,715'		Prev. T	otal or	n Loca	tion	284	47.8
HTHP Cake T	hickness	(32nc	ds)	2.0		2.0							Transfe	rred Ir	n(+)/Oı	ut(-)		
Retort Solids	Content			8%		9%								Oil	Added	(+)		
Corrected Sol	ids (vol%)		5.1%		6.2%								Barite	Added	(+)		
Retort Oil Cor	ntent			62%		63%	Open	Hole Size	10.	073	7,027'		Other Pr	oduct	Usage	(+)		
Retort Water	Content			30%		28%	AN	NULAR G	EOME	TRY &	RHEOLO	GY	'	Nater	Added	(+)		
O/W Ratio				67:33		69:31	annula	ır de	epth	veloc	ity flow	ECD	Le	ft on C	utting	s (-)		
Whole Mud C	hlorides (mg/L))	72,000		70,000	section	n ue	pui	ft/mi	n reg	lb/gal	Non-Rec	overal	ole Vol	. (-)		
Water Phase	Salinity (p	opm)		273,435		281,620												
Whole Mud A	lkalinity, F	om		2.2		3.0	8.99x	5 2,	715'	299.	7 turb	9.32	Est. T	otal or	n Loca	tion _	284	47.8
Excess Lime	(lb/bbl)			2.9 ppb		3.9 ppb	10.073	x5 4,	462'	218.	8 lam	9.26	Est. Los	ses/Ga	ains (-)	/(+)	26	62.0
Electrical Stat	oility (volts	s)		345 v		385 v	10.073	κ5 6,	458'	218.	8 lam	9.23	BIT	HYDR	AULIC	S DA	TA	
Average Spec	cific Gravi	ty of S	Solids	2.87		3.18	10.073	x5 6,	729'	218.	8 lam	9.23	Bit H.S.I.	Bit .	ΔΡΙ	Nozzle	s (32r	nds)
Percent Low (Gravity Sc	olids		3.6%		3.3%	10.073x7	7.75 7,0	027'	404.	1 turb	9.26	0.90	174	psi	14	14	14
ppb Low Grav	vity Solids	i		29 ppb		27 ppb							Bit Impact	Noz Velo		14	14	14
Percent Barite	9			1.5%		2.9%			1				Force	(ft/s	-	16	16	16
ppb Barite				22 ppb		42 ppb	BIT [DATA	Ма	nuf./Typ	oe S	PL613	467 lbs	14	7			
Estimated Tot	tal LCM in	n Syst	em				Size	Depth In	Но	ours	Footage	ROP ft/hi	Motor/M	WD	Calc.	Circ. I	Press	sure
Sample Taker	n By			E. Sanchez		A. Roman	9 7/8	2,715 ft	4	.0	1,321 ft	330.3	250 p	si	1	,854	psi	
Afternoon Rem	arks/Reco	mmen	ndations:				Afternoon R	ig Activity:										

Over the past 12 hours: Continue drilling ahead with 2 mud pumps. One mud Over the past 12 hours: Continue drilling ahead with 2 mud pumps. One mud pump down for repairs. Maintain Pump Rate 684gal/min / 300-500ROP. Start preventive sweeps (LCM: MagmaFiber/NewCarb/NewPhalt) Pumping 10bbls every 300' or as requested. Upon Sweeps returns, increase in cuttings and solids, causing shakers to be blinded and Mud running over. Recover 50% with vacc truck and pump back over the shakers. Additions of Diesel for dilution and Centrifuge application for solids removal maintained while drilling. At this time: continue working on mud Pump, drilling ahead.

Report #5

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

11.1°

8,965' TVD

TEL: (337) 394-1078

	NOLIA (OIL & C	BAS		TERSO	ON		Block IINGTO	N		6/23/2	1		I,920 ft			epth 9,100	0 ft
	GSTE	OT OL 2	ΣΗ	Rig Name an	285			EXAS			6/22/2	1		23 ft/hr				ING
Report for Jessie Co	Mineon	/ lim H	arrison	Report for	ol Push	oor	Field / OCS-G #	NGS AG	,	Fluid Type	OBM		Circulatin	^{ig Rate} 72 gpm		Circulatin		sure psi
Jessie Ct			TY SPECIF			ICI		LUME (BI			PUMP #	1		PUMP #2	-			OSTER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits		5 bbl	Liner S		5.25	Liner S		25	Liner S		5.25
8.5-10	5-20	5-12	>300	±275K	<10 <20	<10	In Hole		7 bbl	Strok		12	Strok		2	Strok		12
	0 -0	•	1000	7/3/21	110 120	7/2/21	Active	129	92 bbl	bbl/s		.0763	bbl/st			bbl/s	tk	0.0763
Time Sample	Taken			1:00		14:00	Storage	143	32 bbl	stk/m	nin	136	stk/m	in 13	36	stk/m	in	0
Sample Locat				suction		suction	Tot. on Loc			gal/m	nin	436	gal/m	in 43	36	gal/m	in	0
Flowline Tem	perature °	F		162 °F		160 °F	F	PHHP = 25	48		CIRCI	JLATIO	N DAT	Α		n = 0.6	808 H	< = 242.063
Depth (ft)				9,100'		7,027'	Bit [Depth = 9,	100 '		Was	shout =	2%	F	Pump	Efficier	ncy =	95%
Mud Weight (opg)			9.5		9.3	Drill String	Volume	e to Bit	155.4	bbl	Strokes T	o Bit	2,036	7	Time To	Bit	7 min
Funnel Vis (se	ec/qt)		@ 100 °F	46		43	Disp.	Bottoms U	Jp Vol.	611.3	bbl Bo	ottomsUp	Stks	8,011	Bottor	nsUp T	ime	29 min
600 rpm				32		35	75.8 bbl	TotalCi	rc.Vol.	1291.7	bbl '	TotalCirc	.Stks	16,927	Total	Circ. T	ime	62 min
300 rpm				21		23		DRILLIN	G ASS	EMBLY	Y DATA			S	OLIDS	CON.	TROI	L
200 rpm				18		18	Tubulars	OD (in.)	ID	(in.)	Length	ı To	р	Unit		Scree	ns	Hours
100 rpm				12		13	Drill Pipe	5.000	4.:	276	6,535'	0	,	Shaker	1	140)	
6 rpm				7		8	DP / AGI.	5.000	4.	276	1,996'	6,5	35'	Shaker	2	140)	
3 rpm				6		6	Hevi Wt	5.000	2.	500	271'	8,5	31'	Shaker	3	140)	
Plastic Viscos	ity (cp)		@ 150 °F	11		12	Dir. BHA	7.750	2.	750	298'	8,8	02'	Desand	ler			
Yield Point (lb	/100 ft²)		T0 = 5	10		11		CASI	NG & H	HOLE D	ATA			Desilte	er			
Gel Strength	[lb/100 ft²)	10	sec/10 min	6/9		7/12	Casing	OD (in.)	ID	(in.)	Depth	To	р	Centrifug	ge 1			8.0
Gel Strength	(lb/100 ft ²))	30 min	14		16	Riser							VOLUM	IE AC	COUN.	TING	(bbls)
HTHP Filtrate	(cm/30 m	nin)	@ 250 °F	6.2		6.0	Surface	10 3/4	8.	990	2,715'	0	'	Prev. T	otal or	n Locat	tion	2847.8
HTHP Cake T	hickness	(32nds)		2.0		2.0						0	,	Transfe	rred In	n(+)/Ou	ıt(-)	
Retort Solids	Content			11%		9%									Oil	Added	(+)	210.7
Corrected Sol	ids (vol%))		8.1%		6.2%								E	Barite A	Added	(+)	0.0
Retort Oil Cor	ntent			61%		63%	Open	Hole Size	10.	.073	9,100'			Other Pro	oduct	Usage	(+)	9.1
Retort Water	Content			28%		28%	ANN	IULAR GI	EOME.	TRY & I	RHEOL	OGY		V	Vater <i>i</i>	Added	(+)	
O/W Ratio				69:31		69:31	annular	· m	eas.	veloc	ity flo	w EC	D	Lef	ft on C	uttings	s (-)	-242.4
Whole Mud C	hlorides (r	mg/L)		71,000		70,000	section	de	epth	ft/mi	in re	g lb/g	gal	Non-Rec	overat	ole Vol.	. (-)	-101.5
Water Phase	Salinity (p	pm)		284,499		281,620												
Whole Mud A	lkalinity, P	om		2.7		3.0	8.99x5	2,	715'	382.	.8 tui	b 10.	18	Est. T	otal or	n Locat	tion_	2723.7
Excess Lime	(lb/bbl)			3.5 ppb		3.9 ppb	10.073x	5 6,	535'	279.	4 tui	b 10.	80	Est. Loss	ses/Ga	ains (-)	/(+)	0.0
Electrical Stat	oility (volts	s)		378 v		385 v	10.073x	5 8,	531'	279.	4 tui	b 10.	17	BIT	HYDR	AULIC	S DA	ATA
Average Spec	ific Gravit	ty of Solid	ls	2.91		3.18	10.073x	5 8,	802'	279.	4 tui	b 10.	34 E	Bit H.S.I.	Bit A	ΔP	Nozzle	es (32nds)
Percent Low 0	Gravity Sc	olids		5.5%		3.3%	10.073x7.	.75 9,	100'	516.	.1 tui	b 10.	54	1.99	299	psi	14	14 14
ppb Low Grav	ity Solids			45 ppb		27 ppb							В	Bit Impact	Noz Velo		14	14 14
Percent Barite)			2.6%		2.9%								Force	(ft/s		16	16 16
ppb Barite				37 ppb		42 ppb	BIT D	ATA	Ма	ınuf./Typ		SPL61		805 lbs	18			
Estimated Tot	al LCM in	System	ppb				Size	Depth In	Н	ours	Footag	ROP	ft/hr	Motor/M\	WD			Pressure
Sample Taker	n By			E. Sanchez	0	A. Roman	9 7/8	2,715 ft	2:	2.0	4,920 f	t 223	3.6	250 ps	si	3	,142	psi
Remarks/Reco	mmendatio	ons:					Rig Activity:											

OBM Transfer in: 2,970 bbl 9.3ppg

Surface OBM Active and Storage: 1,957 bbl @ 9.3 ppg

Continue to drill from 4,180' to 6,124'. Perform rig repair on mud pump. Resume drilling from 6,124' to 9,100'. Running centrifuge as needed to mantain mud weight/ LGS. Pumping 12 ppb LCM sweeps as needed. Gradually increasing mud weight from 9.1ppg to 9.4ppg. Building 14 degree tangent by T.D. Continue to maintain 9.4 ppg MWT. Average ROP 223 ft/hr, SPP: 5,009psi, GPM: 872 gpm

												INCLUDIN	NG 3RD PAR	TY CHARGES	\$34,336.07	\$61,613.32
١	N P 1 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be	ecommendation, exp used if the user so ation, and this is a re	elects, however,	no representatio	as been prepared in is made as to the	\$13,463.59	\$29,859.48
	Phone	: 9	956-82	21-999	94	Pl	hone:	956	693-3035	Phone:	432-686-7361	Phone:	-			
	Eng. 1	: /	Adolfo	Roma	an	Er	ng. 2:	Edga	ar Sanchez	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost

Date 07/03/21	Operator MAG I	NOLIA OIL	& GAS	Well Name a	ING NO. GSTEDT OI	L 2H	Rig Name and No. 285	Report No.	ort #5
	DAILY	USAGE 8	COST					CUMU	LATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost	Cum Usage	Cum Cos
SAPP (50)	50# sk	\$44.56	_		inventory	Usage		50	\$2,228.00
PHPA LIQUID (pail)	5 gal	\$41.36			16				
CACL2 (50)	50# sk	\$14.32	280		230	50	\$716.00	50	\$716.0
LIME (50)	50# sk	\$5.00			200	12		62	
OPTI - G	50# sk	\$30.59	180		160	20	\$611.80	20	\$611.8
BENTONE 38 (50)	50# sk	\$163.94	32		32				
BENTONE 910 (50)	50# sk	\$59.40			58	6		12	
BENTONE 990 (50)	50# sk	\$83.59			53	6		12	
OPTI - MUL OPTI - WET	gal gal	\$10.75 \$8.34	385 385		330 385	55	\$591.25	110 55	-
NEW PHALT	50# sk	\$38.72	180		175	5	\$193.60	5	
OIL SORB (25)	25# sk	\$4.75			76		ψ100.00		Ψ100.0
NEW CARB (M)	50# sk	\$5.25			210	10		10	
MAGMAFIBER F (25)	25# sk	\$28.05			258	10	\$280.50	10	\$280.5
NEW PLUG M	50# sk	\$10.51	80		80				
NEW WATE (SACK BARITE)	100# sk	\$11.50	78		78				
BARITE BULK (100)	100# sk	\$7.00	1001		1001				
ODTI DDILL (ODA)		#0F ==	00.15		077	,-:	#0.000.00		Φ4 F 22 -
OPTI DRILL (OBM)	bbl	\$65.00	2848		2724	124	\$8,060.00	246	\$15,990.0
DISCOUNTED OBM	bbl	\$10.00				-			
ENGINEERING (24 HR)	each	\$990.00				2		6	
	bbl	\$30.00				2	\$60.00	6	\$180.0
ENGINEERING (DIEM)	each	\$1.00							
ENGINEERING (DIEM)	eacii								
ENGINEERING (DIEM)	eacii								
ENGINEERING (DIEM) ENGINEERING (MILES) TRUCKING (cwt)	each	\$1.98							
ENGINEERING (DIEM) ENGINEERING (MILES)		\$1.98 \$650.00							
ENGINEERING (DIEM) ENGINEERING (MILES) TRUCKING (cwt)	each								

THIRD PARTY COST SHEET

Date	Operator			Well Name a	nd No.		Rig Name an	d No.	Report No.	
07/03/21	MAGI	NOLIA OIL	& GAS	BOR	GSTEDT O	L 2H	28	35	Repo	ort #5
	DAILY	USAGE 8	& COST						СПМП	LATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
PRO V PLUS	25# sk	\$60.00	320		320					
PRO X	25# sk	\$70.00	320		320					
PRO SWEEP AID	25# sk	\$46.00	320		320					
SB SUPER CEAL	25# sk	\$80.00	320		320					
										<u> </u>
DIESEL TRANSFER F/3H	gal	\$2.38	10400		4704	5696	\$13,556.48		10268	\$24,437.84
DIESEL RECEIVED 7/1/21	gal	\$2.36					\$7,316.00			\$7,316.00
DIESEL RECEIVED 7/2/21	gal	\$2.38		7200	7200					
										-
								1		
					Daily Su	ıb-Total \$2	0,872.48		\$31,7	53.84
	<u> </u>							1		
	Cum	ulative Tota	I AES & 3rd	Party \$61,	613.32					
	<u> </u>									

FLUID VOLUME ACCOUNTING

MAGNOLIA OIL & GAS Operator:

Rig Name: 285 Well Name

BORGSTEDT OL 2H

					WEEK 1							WEEK 2							WEEK 3			
	Date	7/2/21	7/3/21	7/4/21	7/5/21	7/6/21	7/7/21	7/8/21	7/9/21	7/10/21	7/11/21	7/12/21	7/13/21	7/14/21	7/15/21	7/16/21	7/17/21	7/18/21		7/20/21	7/21/21	7/22/21
	Date	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu
	Bit Size	9 7/8	9 7/8	Oun	WOII	Tuc	WCa	IIIu		Out	Oun	WOII	Tuc	*****	ma	• • • •	Out	Oun	WOII	ruc	WCa	iiiu
Grand	Starting Depth	2,715	4,180	9,100																		
Totals	Ending Depth	4,180	9,100	0,100																		
		1																				
	Footage Drilled	1,465	4,920	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
605	New Hole Vol.	139	466	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Starting System Volume	2,970	2,848	2,724	2,724	2,724	2,724	2,724	2,724	2,724	2,724	2,724	2,724	2,724	2,724	2,724	2,724	2,724	2,724	2,724	2,724	2,724
	Chemical Additions	4																				
	Base Fluid Added	38	211																			
-	Barite Increase	-																				
	Weighted Mud Added	-																				
-	Slurry Added	-																				
-	Water Added	-																				
-	Added for Washout																					
261	Total Additions	42	220	-	-	-	-		-	-	-	-	-	-	-	-		-	-	-	-	-
-	Surface Losses																					
-	Formation Loss																					
	Mud Loss to Cuttings	144	242																			
122	Unrecoverable Volume	20	102																			
-	Centrifuge Losses																					
508	Total Losses	164	344	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	Mud Transferred Out																					
2,724	Ending System Volume	2,848	2,724	2,724	2,724	2,724	2,724	2,724	2,724	2,724	2,724	2,724	2,724	2,724	2,724	2,724	2,724	2,724	2,724	2,724	2,724	2,724
_																						
	Mud Recovered																					
	Mud Recovered																					
	Mud Recovered				comment						С	omment	s:					С	omment	s:		
	Mud Recovered		Transfer 29	70 bbl fro	m Borgsted	It OL 3-H			7/0/04		С	omment	s:			7/4.0/04		C	omment	s:		
	Mud Recovered	7/2/21	Lost 144 b	70 bbl fro	m Borgsted	It OL 3-H	ol loses run	ning over	7/9/21		С	omment	s:			7/16/21		C	omment	s:		
	Mud Recovered	7/2/21		70 bbl fro	m Borgsted	It OL 3-H	ol loses run	ning over	7/9/21		С	omment	s:			7/16/21		C	omment	s:		
0.070	Mud Recovered	7/2/21	Lost 144 bl shakers	970 bbl fro ol of mud o	m Borgsted cutting reter	It OL 3-H ntion /19 bb					c	omment	s:					C	omment	s:		
2,970	Mud Recovered	7/2/21	Lost 144 bl shakers	970 bbl fro ol of mud o	m Borgsted	It OL 3-H ntion /19 bb			7/9/21 7/10/21		C	omment	s:			7/16/21 7/17/21		C	omment	s:		
2,970	Mud Recovered	7/2/21	Lost 144 bishakers	970 bbl fro ol of mud o	m Borgsted cutting reter	It OL 3-H ntion /19 bb					С	omment	s:					C	omment	s:		
2,970	Mud Recovered	7/2/21	Lost 144 bishakers	970 bbl fro ol of mud o	m Borgsted cutting reter	It OL 3-H ntion /19 bb					C	omment	s:					C	omment	s:		
2,970	Mud Recovered	7/2/21	Lost 144 bishakers	970 bbl fro ol of mud o	m Borgsted cutting reter	It OL 3-H ntion /19 bb			7/10/21		C	omment	s:			7/17/21		C	omment	s:		
2,970	Mud Recovered	7/2/21 7/3/21 7/4/21	Lost 144 bishakers	970 bbl fro ol of mud o	m Borgsted cutting reter	It OL 3-H ntion /19 bb			7/10/21		C	omment	s:			7/17/21		C	omment	s:		
2,970	Mud Recovered	7/2/21	Lost 144 bishakers	970 bbl fro ol of mud o	m Borgsted cutting reter	It OL 3-H ntion /19 bb			7/10/21		C	omment	s:			7/17/21		C	omment	s:		
2,970	Mud Recovered	7/2/21 7/3/21 7/4/21 7/5/21	Lost 144 bishakers	970 bbl fro ol of mud o	m Borgsted cutting reter	It OL 3-H ntion /19 bb		/over	7/10/21 7/11/21 7/12/21		C	omment	s:			7/17/21 7/18/21 7/19/21		C	omment	S:		
2,970	Mud Recovered	7/2/21 7/3/21 7/4/21	Lost 144 bishakers	970 bbl fro ol of mud o	m Borgsted cutting reter	It OL 3-H ntion /19 bb		/over	7/10/21		C	omment	s:			7/17/21		C	omment	s:		
2,970	Mud Recovered	7/2/21 7/3/21 7/4/21 7/5/21	Lost 144 bishakers	970 bbl fro ol of mud o	m Borgsted cutting reter	It OL 3-H ntion /19 bb		/over	7/10/21 7/11/21 7/12/21 7/13/21		C	omment	s:			7/17/21 7/18/21 7/19/21 7/20/21		C	omment	S:		
2,970	Mud Recovered	7/2/21 7/3/21 7/4/21 7/5/21	Lost 144 bishakers	970 bbl fro ol of mud o	m Borgsted cutting reter	It OL 3-H ntion /19 bb		/over	7/10/21 7/11/21 7/12/21		C	omment	s:			7/17/21 7/18/21 7/19/21		C	omment	s:		
2,970	Mud Recovered	7/2/21 7/3/21 7/4/21 7/5/21	Lost 144 bishakers	970 bbl fro ol of mud o	m Borgsted cutting reter	It OL 3-H ntion /19 bb		/over	7/10/21 7/11/21 7/12/21 7/13/21		C	omment	s:			7/17/21 7/18/21 7/19/21 7/20/21		C	omment	s:		

OUTSOURCE FLUID SOLUTIONS LLC.

110 Old Market St.

St Martinville, LA 70582

TEL: (337) 394-1078

1.7° 9,626' TVD

Operator MAGNOLIA OIL & GAS Well Name and No.	Contractor PA	TTERSO	ON	County / Parisi WAS	h / Block	ON	Engineer Sta 06/	art Date	24 hr f	tg.		Drilled Depti	706	ft
BORGSTEDT OL 2H	Nig Name a	285			EXAS		·	22/21	Currer	il KOP	,	-	illin	ng
Report for	Report for	- I DI		Field / OSC-G			Fluid Type	D14		ating Rate		Circulating F		
Jessie Collinson/Jim Harriso MUD PROPERTY SPE		ool Push	ner		INGS A			BM MP #1		686 gpm	1	3,37		
Weight PV YP E.S	CaCl2	GELS	HTHP	In Pits	DLUME (25 bbl	Liner Size		5 Lino		25	Liner Siz		5.25
8.5-10 5-20 5-12 >30		<10 <20	<10	In Hole		23 bbl 22 bbl	Stroke	12			2	Stroke	5	12
MUD PROPERTIE		110 120	<u> </u>	Active		347 bbl	bbl/stk	0.07			763	bbl/stk	(0.0763
Time Sample Taken	1:00		13:00	Storag		32 bbl	stk/min	10		/min 1(stk/min	•	
Sample Location	suction		suction	Tot. on Lo			gal/min	33			49	gal/min		
Flowline Temperature °F	162 °F		165 °F	Mud Wt. =		V=11	YP=10		CULATIC			n = 0.60	8 K	= 242.1
Depth (ft)	9,100'		9,691'	Bit I	Depth = 9	9,706 '		Washo	ut = 2%	ı	Pump I	Efficienc	y = 9	95%
Mud Weight (ppg)	9.5		9.4	Drill String	Volun	ne to Bit	166.1 bb	ol Stro	kes To Bit	2,177	Т	ime To E	it '	10 min
Funnel Vis (sec/qt) @ 130	°F 46		41	Disp.	Bottoms	Up Vol.	656.4 bb	ol Bottoi	nsUp Stks	8,601	Botton	nsUp Tim	e 4	40 min
600 rpm	32		33	79.8 bbl	Total	Circ.Vol.	1347.5 bl	ol Tota	alCirc.Stks	17,658	Total	Circ. Tim	е 8	33 min
300 rpm	21		21		DRILLI	NG AS	SEMBLY	DATA		S	OLIDS	CONTR	OL	
200 rpm	18		16	Tubulars	OD (in.) ID	(in.) Le	ength	Тор	Unit		Screens	3	Hours
100 rpm	12		11	Drill Pipe	5.000	4.2	276 7	,141'		Shaker	1	140		
6 rpm	7		6	DP / AGI.	5.000	4.2	276 1	,996'	7,141'	Shaker	2	140		
3 rpm	6		4	Hevi Wt	5.000	2.5	500 2	271'	9,137'	Shaker	3	140		
Plastic Viscosity (cp) @ 150	°F 11		12	Dir. BHA	7.750	2.7	750 2	298'	9,408'	Desand	ler			
Yield Point (lb/100 ft²) T0 =	5 10		9		CAS	ING &	HOLE DA	TA		Desilte	er			
Gel Strength (lb/100 ft²) 10 sec / 10 r	in 6/9		6/11	Casing	OD (in.) ID	(in.) D	epth	Тор	Centrifug	je 1			
Gel Strength (lb/100 ft2) 30 r	in 14		14	Riser						VOLUM	IE AC	COUNTI	NG (bbls)
HTHP Filtrate (cm/30 min) @ 250	°F 6.2		6.0	Surface	10 3/4	8.9	990 2	,715'		Prev. T	otal or	n Locatio	n	2723.7
HTHP Cake Thickness (32nds)	2.0		2.0							Transfe	rred Ir	n(+)/Out(-)	
Retort Solids Content	11%		10%								Oil	Added (+	-)	
Corrected Solids (vol%)	8.1%		7.2%								Barite .	Added (+	-)	
Retort Oil Content	61%		63%	Oper	n Hole Siz	ze 10.	073 9	,706'		Other Pr	oduct	Usage (+	-)	
Retort Water Content	28%		27%	AN	NULAR (GEOME	TRY & RI	HEOLO	GY	١	Nater .	Added (+	-)	
O/W Ratio	69:31		70:30	annula	1 (depth	velocity	flow	ECD	Let	ft on C	uttings (-)	
Whole Mud Chlorides (mg/L)	71,000		70,000	section	n		ft/min	reg	lb/gal	Non-Rec	overat	ole Vol. (-)	
Water Phase Salinity (ppm)	284,499		289,036											
Whole Mud Alkalinity, Pom	2.7		1.7	8.99x	5 2	2,715'	301.2	turb	9.83	Est. T	otal or	n Locatio	n	2723.7
Excess Lime (lb/bbl)	3.5 ppb		2.2 ppb	10.073	x5 7	7,141'	219.8	lam	9.75	Est. Loss	ses/Ga	ains (-)/(+	-)	55.8
Electrical Stability (volts)	378 v		435 v	10.073	x5 9	9,137'	219.8	lam	9.73	BIT	HYDR.	AULICS		
Average Specific Gravity of Solids	2.91		3.12	10.073	x5 9	9,408'	219.8	lam	9.73	Bit H.S.I.	Bit 2		zzles	(32nds)
Percent Low Gravity Solids	5.5%		4%	10.073x7	7.75 9	9,706'	406.0	turb	9.76	0.97	185		1	4 14
ppb Low Gravity Solids	45 ppb		33 ppb							Bit Impact	Noz: Velo		1	4 14
Percent Barite	2.6%		3.2%							Force	(ft/se	ec) 16	1	6 16
ppb Barite	37 ppb		45 ppb	BIT [DATA	Ма	nuf./Type		PL613	498 lbs	14	8		
Estimated Total LCM in System				Size	Depth I	n Ho			ROP ft/hr			Calc. Ci		
Sample Taken By	E. Sanchez		A. Roman	9 7/8	2,715 f	t 22	2.0 4,	920 ft	223.6	250 ps	si	2,2	25 p	osi

Afternoon Remarks/Recommendations:

Afternoon Rig Activity:

Over the past 12 hours: Continue drilling ahead on Intermediate section, build 14deg angle and maintain to TD. Increase density to 9.4ppg and maintain up to TD. Once Clean up Cycle circulation starts, will increase to 9.5ppg prior to POOH and Run Casing. Keep LCM sweeps Pumping 10bbls every 300' or as requested. ROP reduced while sliding last 400', set Additions of Diesel at 7sec/qt. for dilution and Centrifuge application for solids removal, change out Shakers screens. At this time: Continue drilling ahead sliding to TD.

Report #6

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

1.7°

9,748' TVD

TEL: (337) 394-1078

_	NOLIA (OIL & G	BAS		TTERSO	ON		Block HINGT(ON	_	6/23/	21		28 ft			328 ft	
Well Name and No.	GSTE	T OL 2	2H	Rig Name ar	285		State TE	EXAS		Spud Date	•)6/22/		Current ROP	ft/hr	A	Activity Dr	illing	
Report for Jessie Co	llingen	/ lim Li		Report for	ol Pusi		Field / OCS-G #	NGS A	C	Fluid Type	OBN		Circulating R			Circulating F		.:
Jessie Co			TY SPECIF			ier					PUMP			gpm MP #2		4,04	l1 ps	
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	MUD VO	`	60 bbl	Liner S		5.25	Liner Size			Liner Siz		.25
8.5-10	5-20	5-12	>300	±280K	<10 <20	<10	In Hole		82 bbl	Strok		12	Stroke		2	Stroke		12
0.5-10	3-20	3-12	>300	7/4/21	< 10 < 20	7/3/21	Active		142 bbl	bbl/s		0.0763	bbl/stk		763	bbl/stk		763
Time Sample	Takan			1:00		13:00	Storage		152 bbl	stk/m		137	stk/min		37	stk/min		0
Sample Locati				suction		suction	Tot. on Loc			gal/m		439	gal/min		39	gal/min		0
Flowline Temp				165 °F		165 °F		PHHP = 2		gaiiii		CULATIO				n = 0.60		
Depth (ft)	Derature			9,910'		9,691'		Depth = 9		1		ashout =				Efficienc		
Mud Weight (r	ona)			9.5		9.4	-	-, -	,	168.3		Strokes T		,205		ime To B		min
	,		@ 130 °F	45		41	Drill String Disp.	Bottoms						.348				min
Funnel Vis (se	ec/qt)		@ 130 F				90 6 hhl		•			BottomsUp				nsUp Tim		
600 rpm				32		33	80.6 bbl			1441.7		TotalCirc	Stks 18	3,892		Circ. Tim		min
300 rpm				21		21	T. I I	DRILLII								CONTR		
200 rpm				17		16	Tubulars	- (•	(in.)	Leng		•	Unit		Screens	5 H(ours
100 rpm				11		11	Drill Pipe	5.000		.276	7,26			Shaker		140		
6 rpm				6		6	DP / AGI.			.276	1,99			Shaker		140		
3 rpm				5		4	Hevi Wt			500	271	,		Shaker		140		
Plastic Viscos			@ 150 °F	11		12	Dir. BHA			.750	298	9,5		Desand				
Yield Point (lb.			T0 = 4	10		9				HOLE D				Desilte				
Gel Strength (sec/10 min	6/10		6/11	Casing	OD (in.) ID	(in.)	Dept	h To	р С	entrifug	ge 1			
Gel Strength (lb/100 ft ²)	1	30 min	14		14	Riser							OLUM	IE ACC	COUNTI	NG (bl	ols)
HTHP Filtrate	(cm/30 m	in)	@ 250 °F	6.0		6.0	Surface	10 3/4	9.	.950	2,71			Prev. T	otal on	Locatio	n 2	723.7
HTHP Cake T	hickness	(32nds)		2.0		2.0						0	' Т	ransfe	rred In	(+)/Out(•)	
Retort Solids (Content			10.4%		10%									Oil A	Added (+	·)	112.0
Corrected Soli	ids (vol%)			7.6%		7.2%								E	Barite A	Added (+	·)	0.0
Retort Oil Con	itent			63.1%		63%	Open	Hole Siz	ze 10	.073	9,82	3'	Ot	her Pr	oduct L	Jsage (+	•)	0.0
Retort Water (Content			26.5%		27%	ANN	NULAR G	EOME	TRY &	RHEO	LOGY		V	Vater A	Added (+	·)	
O/W Ratio				70:30		70:30	annulai		neas.	veloc	,	ow EC		Lef	ft on Cu	uttings (•)	-86.1
Whole Mud Cl	hlorides (r	mg/L)		69,000		70,000	section	1 (depth	ft/m	in r	eg lb/g	lal No	n-Rec	overab	le Vol. (-)	155.9
Water Phase	Salinity (p	pm)		289,921		289,036												
Whole Mud Al	kalinity, P	om		1.5		1.7	9.95x5	2	2,715'	290	.8 t	urb 9.7	6	Est. T	otal on	Locatio	n 2	593.7
Excess Lime (lb/bbl)			2 ppb		2.2 ppb	10.073x	5 7	7,263'	281	.5 t	urb 9.7	'6 Es	st. Loss	ses/Ga	ins (-)/(+)	0.0
Electrical Stab	ility (volts)		396 v		435 v	10.073x	5 9	9,259'	281	.5 t	urb 9.7	78	BIT	HYDRA	AULICS	DATA	
Average Spec	ific Gravit	y of Solid	s	3.12		3.12	10.073x	5 9	9,530'	281	.5 t	urb 9.8	Bit Bit	H.S.I.	Bit ∆	ΔP No	zzles (3	2nds)
Percent Low C	Gravity So	lids		4.2%		4%	10.073x7.	.75 9	9,828'	519	.9 t	urb 9.8	37 2	2.03	303	psi 14	14	14
ppb Low Grav	ity Solids			35 ppb		33 ppb								mpact	Nozz Veloc		14	14
Percent Barite	•			3.3%		3.2%							F	orce	(ft/se	-	16	16
ppb Barite				48 ppb		45 ppb	BIT D	ATA	Ma	anuf./Ty	ре	SPL61	81	7 lbs	189	9		
Estimated Tot	al LCM in	System	ppb				Size	Depth I	n H	ours	Foota	ge ROP	ft/hr M	otor/M\	WD	Calc. Ci	c. Pre	ssure
Sample Taker	п Ву			E. Sanchez	0	A. Roman	9 7/8	2,715 f	t 2	1.0	728	ft 34	.7	250 p	si	3,2	62 psi	i
Remarks/Reco	mmendatio	ons:					Rig Activity:											

OBM Transfer in: 2,970 bbl 9.3ppg

Surface OBM Active and Storage: 1,957 bbl @ 9.3 ppg

Drill from 9,100' to 9,626' began sliding/building 14 degree tangent. Continue to drill to 9,828' at report time. Gradually increased MWT to 9.5ppg. Plan ahead is to drill to section T.D.(9,910') pumped two 30 bbl LCM sweeps and circulated around the system. Average ROP 25 ft/hr, SPP: 4,841psi, GPM: 878 gpm

											INCLUDIN	IG 3RD PAR	TY CHARGES	\$22,477.52	\$84,090.84
W P	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be	ecommendation, exp used if the user so e ation, and this is a re	elects, however, i	no representatio		\$11,282.00	\$41,141.48
Phone	e: !	956-82	21-999	94	Ph	none:	956-	693-3035	Phone:	432-686-7361	Phone:	-			
Eng. 1	l: /	Adolfo	Roma	an	Er	ng. 2:	Edga	r Sanchez	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost

Date 07/04/21	Operator MAGI	NOLIA OIL	& GAS	Well Name a	ING INO. GSTEDT O	L 2H	Rig Name and No. 285	Report No.	ort #6
	DAILY	USAGE 8	& COST					CUMU	LATIVE
Item	Unit	Unit Cost	Previous	Received	Closing	Daily	Daily Cost	Cum	Cum Cos
SAPP (50)	50# sk	\$44.56	Inventory		Inventory	Usage		Usage 50	
PHPA LIQUID (pail)	5 gal	\$41.36	16		16				V 2,22010
CACL2 (50)	50# sk	\$14.32	230		230			50	
LIME (50) OPTI - G	50# sk	\$5.00	200		200			62	
BENTONE 38 (50)	50# sk 50# sk	\$30.59 \$163.94	160 32		160 32			20	\$611.8
BENTONE 910 (50)	50# sk	\$59.40	58		58			12	\$712.8
BENTONE 990 (50)	50# sk	\$83.59	53		53			12	
OPTI - MUL	gal	\$10.75	330		330				\$1,182.5
OPTI - WET NEW PHALT	gal 50# sk	\$8.34 \$38.72	385 175		385 175			55	
OIL SORB (25)	25# sk	\$4.75	76		76			-	Ţ.,
NEW CARB (M)	50# sk	\$5.25	210		210			10	\$52.5
MAGMAFIBER F (25)	25# sk	\$28.05	258		258			10	\$280.5
NEW PLUG M	50# sk	\$10.51	80		80				
NEW WATE (SACK BARITE)	100# sk	\$11.50	78	400	78				
BARITE BULK (100)	100# sk	\$7.00	1001	400	1401		 		
							 		
							 		
OPTI DRILL (OBM)	bbl	\$65.00	2724		2594	130	\$8,450.00	376	\$24,440.0
DIOCOLINITED COM		A 45.55							
DISCOUNTED OBM	bbl	\$10.00							
						_			
ENGINEEDING (047.5)		0000					04.000.00		Φ ¬
ENGINEERING (24 HR) ENGINEERING (DIEM)	each bbl	\$990.00 \$30.00				2		8	\$7,920.0 \$240.0
ENGINEERING (MILES)	each	\$30.00					ψου.υυ	- 8	φ240.0
						_			
		1			Ī				
					1			J	
TRUCKING (cwt) TRUCKING (min)	each	\$1.98 \$650.00				400	\$792.00	400	\$792.0
TRUCKING (min)	each each	\$1.98 \$650.00 \$12.00				400	\$792.00	400	\$792.0
TRUCKING (cwt) TRUCKING (min) PALLETS (ea) SHRINK WRAP (ea)	each	\$650.00				400	\$792.00	400	\$792.0

THIRD PARTY COST SHEET

Date	Operator			Well Name a	ind No.		Rig Name an	d No.	Report No.	
07/04/21	MAGI	NOLIA OIL	& GAS	BOR	GSTEDT O	L 2H	28	3 5	Repo	ort #6
	DAILY	USAGE 8	& COST						СПМП	_ATIVE
ltem	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
PRO V PLUS	25# sk	\$60.00	320		320					
PRO X	25# sk	\$70.00	320		320					
PRO SWEEP AID	25# sk	\$46.00	320		320					
SB SUPER CEAL	25# sk	\$80.00	320		320					
DIESEL TRANSFER F/3H	gal	\$2.38	4704			4704	\$11,195.52		14972	\$35,633.36
DIESEL RECEIVED 7/1/21	gal	\$2.36								\$7,316.00
DIESEL RECEIVED 7/2/21	gal	\$2.38			7200					
								i		
					Daily Su	ıb-Total \$1	1,195.52		\$42,9	49.36
					·			•		
	Cum	ulative Tota	al AES & 3rd	Party \$84	,090.84					

FLUID VOLUME ACCOUNTING

Operator: Rig Name: Well Name

MAGNOLIA OIL & GAS

285

BORGSTEDT OL 2H

					WEEK 1							WEEK 2							WEEK 3			
	Date	7/2/21	7/3/21	7/4/21	7/5/21	7/6/21	7/7/21	7/8/21	7/9/21	7/10/21	7/11/21	7/12/21	7/13/21	7/14/21	7/15/21	7/16/21	7/17/21	7/18/21		7/20/21	7/21/21	7/22/21
		Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu
	Bit Size	9 7/8	9 7/8	9 7/8																		
Grand	Starting Depth	2,715	4,180	9,100	9,828																	
	Ending Depth	4,180	9,100	9,828																		
	Footage Drilled	1,465	4,920	728	-	-	-	_	-	-	_		_		_	_	_	_	_		-	-
	New Hole Vol.	139	466	69	-		-	_		_			_	-	-		_		-		-	-
		•																				
	Starting System Volume Chemical Additions	2,970	2,848	2,724	2,594	2,594	2,594	2,594	2,594	2,594	2,594	2,594	2,594	2,594	2,594	2,594	2,594	2,594	2,594	2,594	2,594	2,594
	Base Fluid Added	38	211	112			-															
	Barite Increase	- 30	211	112																		
	Weighted Mud Added	-																				
	Slurry Added	1																				
		-																				
	Water Added Added for Washout	-																				
	Total Additions	42	220	112	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Surface Losses																					
	Formation Loss																					
	Mud Loss to Cuttings	144	242	85																		
	Unrecoverable Volume	20	102	157																		
-	Centrifuge Losses																					
750	Total Losses	164	344	242	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	Mud Transferred Out																					
2,594	Ending System Volume	2,848	2,724	2,594	2,594	2,594	2,594	2,594	2,594	2,594	2,594	2,594	2,594	2,594	2,594	2,594	2,594	2,594	2,594	2,594	2,594	2,594
-	Mud Recovered																					
			•		omment	•	•	•		•		omment					•		omment			•
												omment	s.						Omment	s.		
		7/2/21			m Borgsted cutting reter		ol loses run	ning over	7/9/21							7/16/21						
	1																					
2,970		7/3/21	Lost 242 b shakers	obl cutting	retention, Lo	ost 102 bb	l centrifuge	/over	7/10/21							7/17/21						
	•								7/11/21							7/18/21						
		7/5/21							7/12/21							7/19/21						
		7/6/21							7/13/21							7/20/21						
	7/7/21								7/14/21							7/21/21						
	7/8/21															7/22/21						

OUTSOURCE FLUID SOLUTIONS LLC.

110 Old Market St.

St Martinville, LA 70582

TEL: (337) 394-1078

MAGNOLIA OIL & GAS PATTERSON WASHINGTON 06/23/21 9,906 ft Current ROP **BORGSTEDT OL 2H TEXAS** 06/22/21 Lay Down BHA 285 Report for ield / OSC-G # Fluid Type irculating Rate Jessie Collinson/Jim Harrison **Tool Pusher GIDDINGS AC OBM MUD PROPERTY SPECIFICATIONS** MUD VOLUME (BBL) PUMP #1 PUMP #2 RISER BOOSTER P\/ E.S. CaCl2 **GELS** In Pits 560 bbl 5.25 Liner Size 5.25 Weight ΥP HTHP Liner Size 5.25 Liner Size 8.5-10 5-20 5-12 >300 ±280K <10 <20 <10 In Hole 970 bbl Stroke 12 Stroke 12 Stroke 12 **MUD PROPERTIES** 560 bbl 0.0763 0.0763 0.0763 bbl/stk bbl/stk bbl/stk Active 1:00 13:00 Time Sample Taken 1152 bbl Storage stk/min stk/min stk/min Tot on Location 2682 bbl Sample Location suction suction gal/min gal/min gal/min Flowline Temperature °F 165 °F 165 °F Mud Wt. = 9.5PV=11 YP=10 **CIRCULATION DATA** n = 0.608 K = 242.1Depth (ft) 9.910' 9.906 Washout = 2% Pump Efficiency = 95% Mud Weight (ppg) 9.5 9.5 Volume to Bit Strokes To Bit Time To Bit Drill String @ 130 °F 45 43 Funnel Vis (sec/qt) Bottoms Up Vol. BottomsUp Stks BottomsUp Time 600 rpm 32 31 TotalCirc.Vol. 560.0 bbl TotalCirc.Stks Total Circ. Time DRILLING ASSEMBLY DATA SOLIDS CONTROL 300 rpm 21 20 17 200 rpm 16 Tubulars OD (in.) ID (in.) Length Top Unit Screens Hours 100 rpm 11 11 Drill Pipe 5.000 4.276 Shaker 1 140 5.000 6 6 DP / AGI. 4.276 Shaker 2 140 6 rpm 5 5 5.000 2.500 Shaker 3 140 3 rpm Hevi Wt @ 150 °F 11 11 Dir. BHA 7.750 2.750 Desander Plastic Viscosity (cp) Desilter Yield Point (lb/100 ft²) 10 9 **CASING & HOLE DATA** T0 = 6/10 6/10 OD (in.) Centrifuge 1 Gel Strength (lb/100 ft2) 10 sec / 10 min Casing ID (in.) Depth Top **VOLUME ACCOUNTING (bbls)** 30 min 14 14 Gel Strength (lb/100 ft2) Riser HTHP Filtrate (cm/30 min) @ 250 °F 6.0 6.0 Surface 10 3/4 9.950 2,715 Prev. Total on Location 2593.7 2.0 2.0 HTHP Cake Thickness (32nds) Transferred In(+)/Out(-) Retort Solids Content 10.4% 11% Oil Added (+) 7.6% 8.2% Corrected Solids (vol%) Barite Added (+) 63.1% Retort Oil Content 62% 10.073 9,906' Other Product Usage (+) Open Hole Size 26.5% 27% **ANNULAR GEOMETRY & RHEOLOGY** Retort Water Content Water Added (+) O/W Ratio 70:30 70:30 Left on Cuttings (-) ECD annular elocity depth section ft/min lb/gal reg Whole Mud Chlorides (mg/L) 69.000 70.000 Non-Recoverable Vol. (-) Water Phase Salinity (ppm) 289.921 289.036 1.5 2.0 2593.7 Whole Mud Alkalinity, Pom Est. Total on Location Excess Lime (lb/bbl) 2 ppb 2.6 ppb Est. Losses/Gains (-)/(+) 88.2 396 v 445 v **BIT HYDRAULICS DATA** Electrical Stability (volts) 3.12 2.93 Bit H.S.I. Nozzles (32nds) Average Specific Gravity of Solids Bit ΛP Percent Low Gravity Solids 4.2% 5.5% 14 14 14 ppb Low Gravity Solids 35 ppb 45 ppb Nozzle 14 14 14 Bit Impact Velocitv Force Percent Barite 3.3% 2.7% 16 16 (ft/sec) 16 ppb Barite **BIT DATA** SPL613 48 ppb 39 ppb Manuf./Type Estimated Total LCM in System Size Depth In Hours ROP ft/hi Motor/MWD Calc. Circ. Pressure Footage A. Roman 728 ft Sample Taken By E. Sanchez 9 7/8 2,715 ft 21.0 34.7 250 psi 250 psi Afternoon Remarks/Recommendations: Afternoon Rig Activity: Over the past 12 hours: Drilled to TD on Intermediate section 9906'MD / 9650'TVD / 15deg Incl. Pump 2 sweeps and circulate hole clean while Increasing density to 9.5ppg. POOH and lay down BHA. Make preparations to rig up Casing running tools and start 7 5/8" Casing run. Maintain Additions of Diesel at 7sec/qt. while drilling and circulating. At this time: Continue POOH laying down Agitators and BHA.

Report #7

TEL: (337) 394-1078

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

9.8° 5,045' TVD

906 ft			78 ft	24 hr ft	1	rt Date /23/21		TON		County / Parish /	ON	TERSO		AS	MAGNOLIA OIL & GAS I Name and No.					
•	Running	•	16 ft/hr	Current	21	22/21		6	EXAS			d No. 285	Rig Name ar	н	OT OL 2	GSTE				
psi	Circulating Pre		ating Rate 0 gpm	Circula		ВМ	Fluid Type	S AC		Field / OCS-G #	ner	ol Pusi	Report for	arrison	/.lim Ha	llinson	Report for Jessie Co			
•	RISER B		PUMP #2			MP #1				MUD VO				TY SPECIF			063316 00			
	Liner Size	5.25		Liner	5.25		Liner Size	603 bbl		In Pits	HTHP	GELS	CaCl2	E.S.	YP	PV	Weight			
12	Stroke	12			12		Stroke	897 bbl		In Hole	<10	<10 <20	±280K	>300	5-12	5-20	8.5-10			
	bbl/stk	0763			0.0763		bbl/stk	1026 bbl		Active	7/4/21		7/5/21							
0	stk/min	0	/min	stk/	0		stk/min	1000 bbl	Э	Storage	13:00		1:00			Taken	Time Sample			
0	gal/min	0	/min	gal/	0		gal/min	2500 bbl	cation	Tot. on Lo	suction		suction			on	Sample Location			
8 K = 242	n = 0.608		ATA	ON DA	ULATIO	CIRCU		P = 0	PHH		165 °F				F	erature °	Flowline Temp			
y = 95%	Efficiency	Pump		2%	shout =	Wash		= 5,100 '	Depth	Bit [9,906'		9,906'				Depth (ft)			
3it	Time To Bit			To Bit	Strokes	ol S	234.2 bb	olume to Bit	Vo	Drill String	9.5		9.5			pg)	Mud Weight (p			
ne	msUp Time	Botto		p Stks	ottomsUp	ol Bot	188.9 bb	ms Up Vol.	Botto	Disp.	43		50	@ 130 °F		c/qt)	Funnel Vis (se			
ne	I Circ. Time	Tota		c.Stks	TotalCire	bl T	1026.1 bl	talCirc.Vol.	To	73.1 bbl	31		32				600 rpm			
ROL	S CONTRO	SOLID	s			DATA	SEMBLY D	LING ASS	DRIL		20		21				300 rpm			
s Hou	Screens	t	Unit	ор	n T	ength	(in.) L	(in.) ID	OD	Tubulars	16		17				200 rpm			
	140	er 1	Shake	0'	' (5,100'	875 5	75 6.	7.8	Casing	11		11				100 rpm			
	140	er 2	Shake	100'	5,1						6		6				6 rpm			
	140	er 3	Shake	100'	5,1						5		5				3 rpm			
		der	Desan	100'	5,1						11		11	@ 150 °F		ty (cp)	Plastic Viscosi			
		ter	Desilt			ГА	HOLE DAT	ASING & H	С		9		10	T0 = 4		100 ft²)	Yield Point (lb/			
		ge 1	Centrifu	ор	Т	Depth	(in.)	(in.) ID	OD	Casing	6/10		6/10	sec/10 min	10	lb/100 ft²)	Gel Strength (I			
NG (bbl	COUNTIN	ME AC	VOLUN							Riser	14		14	30 min)	lb/100 ft ²)	Gel Strength (I			
n 259	n Location	Total o	Prev. 1	0'	' (2,715'	950 2	3/4 9.	10	Surface	6.0		6.0	@ 250 °F	in)	(cm/30 m	HTHP Filtrate			
-)	n(+)/Out(-)	erred I	Transfe	0'	(2.0		2.0		(32nds)	hickness	HTHP Cake TI			
+) 3	Added (+)	Oil									11%		11%			Content	Retort Solids C			
+) 1	Added (+)	Barite									8.2%		8.2%)	ds (vol%)	Corrected Solid			
+)	Usage (+)	roduct	Other Pi		1	9,906'	.073 9	Size 10	n Hole	Open	62%		62%			tent	Retort Oil Con			
+)	Added (+)	Water	,		OGY	IEOLO	TRY & RH	R GEOME	NULA	ANI	27%		27%			Content	Retort Water C			
-) -1	Cuttings (-)	eft on C	Le	CD		flow	velocity	meas.	r	annula	70:30		70:30				O/W Ratio			
-) -13	ble Vol. (-)	covera	Non-Red	/gal	g lb/	reg	ft/min	depth	ı	section	70,000		69,000		mg/L)	nlorides (r	Whole Mud Ch			
											289,036		286,088		pm)	Salinity (p	Water Phase S			
on 249	n Location	Total o	Est. 7	.50	m 9.	lam	0.0	2,715'	75	9.95x7.8	2.0		1.9		om	kalinity, P	Whole Mud All			
+)	ains (-)/(+)	sses/G	Est. Los	.50	m 9.	lam	0.0	5,100'	875	10.073x7.	2.6 ppb		2.5 ppb			lb/bbl)	Excess Lime (I			
DATA	RAULICS	HYDF	ВІТ								445 v		398 v		s)	ility (volts	Electrical Stab			
zzles (32r	ΔP Nozz	Bit	Bit H.S.I.								2.93		2.94	S	y of Solid	ific Gravit	Average Speci			
4 14	osi 14	ŗ	0.00								5.5%		5.4%		olids	Gravity So	Percent Low G			
4 14		t Noz	Bit Impact								45 ppb		44 ppb			ity Solids	ppb Low Gravi			
6 16	sec) 16		Force					1			2.7%		2.8%				Percent Barite			
)	(0 lbs	13	SPL61	;	nuf./Type	Ma	ATA	BIT D	39 ppb		40 ppb				ppb Barite			
rc. Press	Calc. Circ	IWD	Motor/M	P ft/hr	e ROF	ootage	ours Fo	th In Ho	Dep	Size				ppb	System	al LCM in	Estimated Tota			
		osi	250 p	5.6	15	78 ft	5.0	15 ft 5	2,71	9 7/8	A. Roman	0	E. Sanchez			Ву	Sample Taken			
16	zzle 1 ocity 1	t Noz Veld (ft/s	Bit Impact Force 0 lbs Motor/M	13 P ft/hr	e ROF	ootage	ours Fo	th In Ho	Dept	Size	45 ppb 2.7% 39 ppb	0	44 ppb 2.8% 40 ppb	ppb	System	al LCM in	ppb Low Gravi Percent Barite ppb Barite Estimated Tota			

Rig Activity:

OBM Transfer in: 2,970 bbl 9.3ppg

Surface OBM Active and Storage: 1,957 bbl @ 9.3 ppg

Drilled from 9,828' to section T.D. 9,906'. Pumped two 30 bbl LCM sweeps and circulated around the system. Checked for flow, no flow pumped slug and POOH to surface. L/D BHA and cleaned rig floor. R/U and Held S/M with casing crew. Began running 7.625" casing to 5,100' at report time. Plan ahead is to finish running casing to bottom 9,906' and begin cement operations.

L	<u>'</u>	ļ	'	<u>'</u>	'	<u>'</u>		'		validity of	this informa	ation, and this is a re			TY CHARGES	\$13,497.00	\$97,587.84
Ī	W	P 1	Y	E	C	g	G	Н	0	carefully	and may be		elects, however,	no representatio	as been prepared on is made as to the	\$10,426.80	\$51,568.28
	Phor	ne:	9	56-82	1-999	94	Pl	none:	956-	693-3035	Phone:	432-686-7361	Phone:	-			1
	Eng.	. 1:	A	dolfo	Roma	an	Er	ng. 2:	Edga	r Sanchez	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost

Date 07/05/21	Operator MAGI	NOLIA OIL	& GAS	Well Name a	ind No. GSTEDT O	L 2H	Rig Name and No. 285	Report No.	ort #7
	DAILY	USAGE 8	COST					СПМП	LATIVE
ltem	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost	Cum Usage	Cum Cos
SAPP (50)	50# sk	\$44.56	_		inventory	Coago		50	\$2,228.00
PHPA LIQUID (pail)	5 gal	\$41.36			16				
CACL2 (50)	50# sk	\$14.32			230			50	
LIME (50) OPTI - G	50# sk	\$5.00			150	50	\$250.00	112	
BENTONE 38 (50)	50# sk 50# sk	\$30.59 \$163.94	160 32		160 32			20	\$611.8
BENTONE 910 (50)	50# sk	\$59.40			58			12	\$712.8
BENTONE 990 (50)	50# sk	\$83.59			53			12	
OPTI - MUL	gal	\$10.75			330				\$1,182.5
OPTI - WET NEW PHALT	gal 50# sk	\$8.34 \$38.72	385 175		385 175			55	
OIL SORB (25)	25# sk	\$4.75			76				ψ100.0
NEW CARB (M)	50# sk	\$5.25	210		210			10	\$52.5
MAGMAFIBER F (25)	25# sk	\$28.05			242	16	\$448.80	26	
NEW PLUG M	50# sk	\$10.51	80		80				
NEW WATE (SACK BARITE)	100# sk	\$11.50	78		40	38		38	
BARITE BULK (100)	100# sk	\$7.00	1401		1238	163	\$1,141.00	163	\$1,141.0
OPTI DRILL (OBM)	bbl	\$65.00	2594		2500	94	\$6,110.00	470	\$30,550.0
OF IT DIVILE (ODIVI)	ומט	ψου.00	2094		2500	94	ψυ, ι ιυ.υυ	470	ψου,σου.0
DISCOUNTED OBM	bbl	\$10.00							
	I	\$990.00				2	\$1,980.00	10	\$9,900.0
ENGINEERING (24 HR)	each					2	\$60.00	10	
	each bbl	\$30.00							
ENGINEERING (DIEM)									
ENGINEERING (DIEM)	bbl	\$30.00							
ENGINEERING (DIEM)	bbl	\$30.00							
ENGINEERING (DIEM) ENGINEERING (MILES)	bbl each	\$30.00 \$1.00							
ENGINEERING (24 HR) ENGINEERING (DIEM) ENGINEERING (MILES) TRUCKING (cwt) TRUCKING (min)	bbl each	\$30.00 \$1.00 \$1.98						400	
ENGINEERING (DIEM) ENGINEERING (MILES) FRUCKING (cwt) FRUCKING (min)	bbl each	\$30.00 \$1.00							
ENGINEERING (DIEM) ENGINEERING (MILES)	each	\$30.00 \$1.00 \$1.98 \$650.00							

THIRD PARTY COST SHEET

Date	Operator			Well Name a	nd No.		Rig Name an	d No.	Report No.	
07/05/21	MAG	NOLIA OIL	& GAS	BOR	GSTEDT O	L 2H	28	35	Repo	ort #7
	DAILY	USAGE 8	& COST						СПМП	_ATIVE
ltem	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
PRO V PLUS	25# sk	\$60.00	320		320					
PRO X	25# sk	\$70.00	320		320					
PRO SWEEP AID	25# sk	\$46.00	320		320					
SB SUPER CEAL	25# sk	\$80.00	320		320					
DIESEL TRANSFER F/3H	gal	\$2.38							14972	\$35,633.36
DIESEL RECEIVED 7/1/21	gal	\$2.36							3100	\$7,316.00
DIESEL RECEIVED 7/2/21	gal	\$2.38	7200		5910	1290	\$3,070.20		1290	\$3,070.20
DIESEL RECEIVED 7/4/21	gal	\$2.38		7200	7200					
					Daily S	ub-Total \$3	3,070.20		\$46,0	19.56
	2:	ulativo Tari	LIAES S 200	I Darte Por	597.94					
	Cum	uiative I Ota	al AES & 3rd	rarty \$97,	J81.84					

FLUID VOLUME ACCOUNTING

MAGNOLIA OIL & GAS

Rig Name: 285
Well Name: BOR

Operator:

BORGSTEDT OL 2H

					WEEK 1							WEEK 2							WEEK 3			
	Date	7/2/21	7/3/21	7/4/21	7/5/21	7/6/21	7/7/21	7/8/21	7/9/21	7/10/21	7/11/21	7/12/21	7/13/21	7/14/21	7/15/21	7/16/21	7/17/21	7/18/21		7/20/21	7/21/21	7/22/21
		Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu
	Bit Size	9 7/8	9 7/8	9 7/8	9 7/8																	
Grand	Starting Depth	2,715	4,180	9,100	9,828	9,906																
Totals	Ending Depth	4,180	9,100	9,828	9,906	-,																
	Footage Drilled	1,465	4,920	728	78	-	_	_	_	_	_	-	_	_	_	_	_	_		_	-	_
	New Hole Vol.	139	466	69	78	-	-	_	-					-					-		-	-
002	Starting System Volume	2,970	2,848	2,724	2,594	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500
47	Chemical Additions			2,724	-	2,300	2,300	2,300	2,300	2,300	2,300	2,300	2,300	2,300	2,300	2,300	2,300	2,300	2,300	2,300	2,300	2,300
	Base Fluid Added	38	9 211	112	31																	
	Barite Increase	-	211	112	14																	
- 14	Weighted Mud Added				17																	
-	Slurry Added	_																				
_	Water Added	_																				
_	Added for Washout																					
422		42	220	112	48	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	Surface Losses																					
_	Formation Loss																					
		144	242	85	12																	
	Unrecoverable Volume	20	102	157	130																	
-	Centrifuge Losses																					
000	T-(-11	404	044	242	440																	
892	Total Losses	164	344	242	142	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	Mud Transferred Out																					
								L														
2,500	Ending System Volume	2,848	2,724	2,594	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500
2,500		2,848	2,724	2,594	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500
	Ending System Volume Mud Recovered	2,848	2,724				2,500	2,500	2,500	2,500				2,500	2,500	2,500	2,500				2,500	2,500
				С	omments	s:	2,500	2,500	2,500	2,500		2,500 omment		2,500	2,500	2,500	2,500		2,500 omment		2,500	2,500
			Transfer 29	C 970 bbl fro	comments m Borgsted	s: t OL 3-H				2,500				2,500			2,500				2,500	2,500
		7/2/21	Transfer 29 Lost 144 b	C 970 bbl fro	comments m Borgsted	s: t OL 3-H			2,500 7/9/21	2,500				2,500		2,500 7/16/21	2,500				2,500	2,500
		7/2/21	Transfer 29	C 970 bbl fro	comments m Borgsted	s: t OL 3-H				2,500				2,500			2,500				2,500	2,500
	Mud Recovered	7/2/21	Transfer 29 Lost 144 bi shakers	C 970 bbl froi bl of mud c	comments m Borgsted cutting reter	s: it OL 3-H ition /19 bb	ol loses runi	ning over	7/9/21	2,500				2,500		7/16/21	2,500				2,500	2,500
	Mud Recovered	7/2/21	Transfer 29 Lost 144 bi shakers	C 970 bbl froi bl of mud c	comments m Borgsted	s: it OL 3-H ition /19 bb	ol loses runi	ning over		2,500				2,500			2,500				2,500	2,500
	Mud Recovered	7/2/21	Transfer 29 Lost 144 bl shakers	C 970 bbl froi bl of mud c	comments m Borgsted cutting reter	s: it OL 3-H ition /19 bb	ol loses runi	ning over	7/9/21	2,500				2,500		7/16/21	2,500				2,500	2,500
	Mud Recovered	7/2/21	Transfer 29 Lost 144 bl shakers	C 970 bbl froi bl of mud c	comments m Borgsted cutting reter	s: it OL 3-H ition /19 bb	ol loses runi	ning over	7/9/21	2,500				2,500		7/16/21	2,500				2,500	2,500
	Mud Recovered	7/2/21	Transfer 29 Lost 144 bl shakers	C 970 bbl froi bl of mud c	comments m Borgsted cutting reter	s: it OL 3-H ition /19 bb	ol loses runi	ning over	7/9/21	2,500				2,500		7/16/21	2,500				2,500	2,500
	Mud Recovered	7/2/21	Transfer 29 Lost 144 bl shakers	C 970 bbl froi bl of mud c	comments m Borgsted cutting reter	s: it OL 3-H ition /19 bb	ol loses runi	ning over	7/9/21	2,500				2,500		7/16/21	2,500				2,500	2,500
	Mud Recovered	7/2/21 7/3/21 7/4/21	Transfer 29 Lost 144 bl shakers	C 970 bbl froi bl of mud c	comments m Borgsted cutting reter	s: it OL 3-H ition /19 bb	ol loses runi	ning over	7/9/21 7/10/21 7/11/21	2,500				2,500		7/16/21 7/17/21 7/18/21	2,500				2,500	2,500
	Mud Recovered	7/2/21	Transfer 29 Lost 144 bl shakers	C 970 bbl froi bl of mud c	comments m Borgsted cutting reter	s: it OL 3-H ition /19 bb	ol loses runi	ning over	7/9/21	2,500				2,500		7/16/21	2,500				2,500	2,500
	Mud Recovered	7/2/21 7/3/21 7/4/21	Transfer 29 Lost 144 bl shakers	C 970 bbl froi bl of mud c	comments m Borgsted cutting reter	s: it OL 3-H ition /19 bb	ol loses runi	ning over	7/9/21 7/10/21 7/11/21	2,500				2,500		7/16/21 7/17/21 7/18/21	2,500				2,500	2,500
	Mud Recovered	7/2/21 7/3/21 7/4/21 7/5/21	Transfer 29 Lost 144 bl shakers	C 970 bbl froi bl of mud c	comments m Borgsted cutting reter	s: it OL 3-H ition /19 bb	ol loses runi	ning over	7/9/21 7/10/21 7/11/21 7/12/21	2,500				2,500		7/16/21 7/17/21 7/18/21 7/19/21	2,500				2,500	2,500
	Mud Recovered	7/2/21 7/3/21 7/4/21	Transfer 29 Lost 144 bl shakers	C 970 bbl froi bl of mud c	comments m Borgsted cutting reter	s: it OL 3-H ition /19 bb	ol loses runi	ning over	7/9/21 7/10/21 7/11/21	2,500				2,500		7/16/21 7/17/21 7/18/21	2,500				2,500	2,500
	Mud Recovered	7/2/21 7/3/21 7/4/21 7/5/21	Transfer 29 Lost 144 bl shakers	C 970 bbl froi bl of mud c	comments m Borgsted cutting reter	s: it OL 3-H ition /19 bb	ol loses runi	ning over	7/9/21 7/10/21 7/11/21 7/12/21	2,500				2,500		7/16/21 7/17/21 7/18/21 7/19/21	2,500				2,500	2,500
	Mud Recovered	7/2/21 7/3/21 7/4/21 7/5/21	Transfer 29 Lost 144 bl shakers	C 970 bbl froi bl of mud c	comments m Borgsted cutting reter	s: it OL 3-H ition /19 bb	ol loses runi	ning over	7/9/21 7/10/21 7/11/21 7/12/21	2,500				2,500		7/16/21 7/17/21 7/18/21 7/19/21	2,500				2,500	2,500
	Mud Recovered	7/2/21 7/3/21 7/4/21 7/5/21	Transfer 29 Lost 144 bl shakers	C 970 bbl froi bl of mud c	comments m Borgsted cutting reter	s: it OL 3-H ition /19 bb	ol loses runi	ning over	7/9/21 7/10/21 7/11/21 7/12/21 7/13/21	2,500				2,500		7/16/21 7/17/21 7/18/21 7/19/21	2,500				2,500	2,500
	Mud Recovered	7/2/21 7/3/21 7/4/21 7/5/21 7/6/21	Transfer 29 Lost 144 bl shakers	C 970 bbl froi bl of mud c	comments m Borgsted cutting reter	s: it OL 3-H ition /19 bb	ol loses runi	ning over	7/9/21 7/10/21 7/11/21 7/12/21 7/13/21 7/14/21	2,500				2,500		7/16/21 7/17/21 7/18/21 7/19/21 7/20/21	2,500				2,500	2,500
	Mud Recovered	7/2/21 7/3/21 7/4/21 7/5/21	Transfer 29 Lost 144 bl shakers	C 970 bbl froi bl of mud c	comments m Borgsted cutting reter	s: it OL 3-H ition /19 bb	ol loses runi	ning over	7/9/21 7/10/21 7/11/21 7/12/21 7/13/21	2,500				2,500		7/16/21 7/17/21 7/18/21 7/19/21	2,500				2,500	2,500

OUTSOURCE FLUID SOLUTIONS LLC.

110 Old Market St.

St Martinville, LA 70582

TEL: (337) 394-1078

MAGNOLIA OIL & GAS PATTERSON WASHINGTON 06/23/21 9.906 ft Current ROP **BORGSTEDT OL 2H TEXAS** 06/22/21 Cement/Nipple DN 285 Report for ield / OSC-G # Fluid Type irculating Rate Jessie Collinson/Jim Harrison **Tool Pusher GIDDINGS AC OBM MUD PROPERTY SPECIFICATIONS** MUD VOLUME (BBL) PUMP #1 PUMP #2 RISER BOOSTER P\/ E.S. CaCl2 **GELS** In Pits 584 bbl 5.25 5.25 Weight ΥP HTHP Liner Size 5.25 Liner Size Liner Size In Hole 8.5-10 5-20 5-12 >300 ±280K <10 <20 <10 455 bbl Stroke 12 Stroke 12 Stroke 12 **MUD PROPERTIES** 584 bbl 0.0763 0.0763 0.0763 bbl/stk bbl/stk bbl/stk Active 1:00 Time Sample Taken 13:00 1000 bbl Storage stk/min stk/min stk/min Tot on Location 2039 bbl Sample Location suction suction gal/min gal/min gal/min Mud Wt. = 9.5Flowline Temperature °F PV=11 YP=10 **CIRCULATION DATA** n = 0.608 K = 242.1Depth (ft) 9.906 9.906 Washout = 2% Pump Efficiency = 95% Mud Weight (ppg) 9.5 9.4 Volume to Bit Strokes To Bit Time To Bit Drill String @ 130 °F 48 Funnel Vis (sec/qt) 50 Bottoms Up Vol. BottomsUp Stks BottomsUp Time 600 rpm 32 33 TotalCirc.Vol. 584.0 bbl TotalCirc.Stks Total Circ. Time DRILLING ASSEMBLY DATA SOLIDS CONTROL 300 rpm 21 21 200 rpm 17 16 Tubulars OD (in.) ID (in.) Top Unit Screens Hours Length 100 rpm 11 12 Shaker 1 140 6 6 Shaker 2 140 6 rpm 5 5 Shaker 3 3 rpm 140 @ 150 °F 11 12 Desander Plastic Viscosity (cp) Desilter Yield Point (lb/100 ft²) 10 9 **CASING & HOLE DATA** T0 = 6/10 6/11 OD (in.) Centrifuge 1 Gel Strength (lb/100 ft2) 10 sec / 10 min Casing ID (in.) Depth Top **VOLUME ACCOUNTING (bbls)** 30 min 14 14 Gel Strength (lb/100 ft2) Riser HTHP Filtrate (cm/30 min) @ 250 °F 6.0 6.0 Surface 10 3/4 2.715' 2500.0 Prev. Total on Location 2.0 2.0 7 5/8 6.875 9,895' HTHP Cake Thickness (32nds) Int. Csq. Transferred In(+)/Out(-) Retort Solids Content 11% 10% Oil Added (+) 8.2% 7.3% Corrected Solids (vol%) Barite Added (+) 63% Retort Oil Content 62% 10.073 9,906' Open Hole Size Other Product Usage (+) 27% 27% **ANNULAR GEOMETRY & RHEOLOGY** Retort Water Content Water Added (+) O/W Ratio 70:30 70:30 Left on Cuttings (-) ECD annular elocity depth section ft/min reg lb/gal Whole Mud Chlorides (mg/L) 69.000 68,000 Non-Recoverable Vol. (-) Water Phase Salinity (ppm) 286.088 283,115 1.9 1.5 2500.0 Whole Mud Alkalinity, Pom Est. Total on Location Excess Lime (lb/bbl) 2.5 ppb 2 ppb Est. Losses/Gains (-)/(+) -460.6 485 v **BIT HYDRAULICS DATA** Electrical Stability (volts) 398 v 2.94 3.06 Bit H.S.I. Nozzles (32nds) Average Specific Gravity of Solids Bit ΛP Percent Low Gravity Solids 5.4% 4.3% 14 14 14 ppb Low Gravity Solids 44 ppb 36 ppb Nozzle 14 14 14 Bit Impact Velocitv Force 2.8% 2.9% 16 16 Percent Barite (ft/sec) 16 ppb Barite **BIT DATA** SPL613 40 ppb 42 ppb Manuf./Type Estimated Total LCM in System Size Depth In ROP ft/hi Motor/MWD Calc. Circ. Pressure Hours Footage Sample Taken By E. Sanchez A. Roman 9 7/8 2,715 ft 5.0 78 ft 15.6 250 psi 250 psi Afternoon Remarks/Recommendations: Afternoon Rig Activity: Over the past 12 hours: Run 7 5/8" Casing to bottom with no problems. Set (40bbl Spacer 10.5# / 304bbl Lead 11.8# / 78bbl Tail 16.2#) circulation rate at 330gal/min and circulated 1.5 casing capacity. Switch operations to Cement. Rig up Cementing tools and pump cement, Displace same with 450bbl of 9# from storage. Full returns while cementing, Discharge 10-15bbls of OBM Spacer interface + 40bbl spacer. No cement noted at the shakers. Cement job completed, flush lines and BOP's with Fresh water /soap/sugar, prepare to secure well after testing casing. At this time: Securing

well, decrease MW in active system to 9# for next well (Disel and Centrifuge).

Report #9

TEL: (337) 394-1078

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

0.0° 0' TVD

Operator MAGNOLIA OIL & GAS			PATTERSON			County / Parish / Block WASHINGTON			Engineer Start Date 24 h 06/23/21			0 ft		Drilled Depth 9,906 ft			
Well Name and No. BORGSTEDT OL 2H				Rig Name and No.			State						Current ROP		Activity		
					285		TEXAS			06/22/21			0 ft/hr		P/U BHA		
Report for Bobby Gwin/ Greg Johnson			Report for Tool Pusher			Field / OCS-G # GIDDINGS AC			Fluid Type Circu OBM			ating Rate 0 gpm	Cir	Circulating Pressure			
Ворру С			TY SPECIF			ici		LUME (BB		<u> </u>	PUMP #1		PUMP #2		RISE	•	OSTER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	600	<u> </u>	Liner S		.75 Line			iner S		
8.5-10	5-20	5-12	>300	±280K	<10 <20	<10	In Hole			Strok					Stroke		
0.5-10	3-20	J-12	>300	8/7/21	×10 ×20	<10	Active	600		bbl/s					bbl/st		0.0000
Time Sample	Taken			0:05			Storage			stk/m					stk/mi		0
Sample Locati				suction			-	cation 2594		gal/m					gal/mi		0
Flowline Temp		=		04011011				PHHP = 0		9		LATION D					(= 183.52
Depth (ft)				9,906'			E	Bit Depth =	,			nout = 2%	1	Pump Ef			
Mud Weight (p	opa)			9.1				Volume		0.0 b		trokes To B			ne To		
Funnel Vis (se	,		@ 130 °F	46			Drill String Disp.	Bottoms Up				omsUp Stk		Bottoms			
600 rpm				33			0.0 bbl	TotalCire				otalCirc.Stk					
300 rpm				21				DRILLING							al Circ. Time OS CONTROL		
200 rpm				16			Tubulars	OD (in.)	ID	(in.)	Length	Тор	Unit		Scree		Hours
100 rpm				11			Drill Pipe			.826	0'	0'	Shaker	1 A	PI 20	0's	
6 rpm				5			DP / AGI.		2.	562		0'	Shaker	2 A	PI 20	0's	
3 rpm				4			Drill Pipe	4.500	3.	826		0'	Shaker	· 3 A	PI 20	0's	
Plastic Viscosi	ity (cp)		@ 150 °F	12			Dir. BHA	5.145	2.	506		0'	Cuttings [Oryer A	PI 14	0's	
Yield Point (lb/			T0 = 3	9				CASIN	G & F	HOLE D	ATA		1	•			
Gel Strength (lb/100 ft²)	10	sec/10 min	5/8			Casing	OD (in.)	ID	(in.)	Depth	Тор	Centrifuç	ge 1			
Gel Strength (lb/100 ft ²)		30 min	12			Riser						VOLUM	IE ACC	ראטכ	ING	(bbls)
HTHP Filtrate	•		@ 250 °F	8.0			Surface	10 3/4			2,715'	0'	Prev. T	otal on l	Locat	ion	449.
HTHP Cake T	hickness ((32nds)		2.0			Int. Csg.	7 5/8	6.	830	9,893'	0'	Transfe	erred In(+	+)/Ou	t(-)	2116.
Retort Solids (Content			9%										Oil Ad	dded	(+)	7.
Corrected Soli	ids (vol%)			6.2%										Barite Ad	dded	(+)	0.
Retort Oil Con	itent			62%			Oper	n Hole Size	6.	885	9,906'		Other Pr	oduct Us	sage	(+)	11.
Retort Water (Content			29%			ANI	NULAR GE	OME	TRY &	RHEOLO	GY	,	Water Ad	dded	(+)	9.
O/W Ratio				68:32			annulai	r me	as.	veloc	city flow	ECD	Le	ft on Cut	ttings	(-)	0.
Whole Mud Ch	hlorides (n	ng/L)		70,000			section			ft/m	, ,	1					
Water Phase	Salinity (p	pm)		274,575								1.					
Whole Mud Al	kalinity, P	om		2.5									Est. T	otal on l	Locat	ion	2593.
Excess Lime (lb/bbl)			3.3 ppb									Est. Los	ses/Gair	ns (-)/	(+)	0.
Electrical Stab	oility (volts))		415 v									ВІТ	HYDRA	ULIC	S DA	TA
Average Spec	ific Gravity	y of Solids	3	2.77									Bit H.S.I.	Bit ∆F	P N	lozzle	s (32nds
Percent Low G	Gravity Sol	lids		4.7%									0.00	psi	•	18	18 18
ppb Low Grav	ity Solids			38 ppb									Bit Impact	Nozzle Velocit		18	18 18
Percent Barite)			1.5%									Force	(ft/sec	-		
ppb Barite				21 ppb			BIT D	ATA	Ma	anuf./Ty	ре		0 lbs	0			
Estimated Total	al LCM in	System	ppb				Size	Depth In	Н	ours	Footage	ROP ft/h	Motor/M	WD C	Calc. (Circ.	Pressure
Sample Taker	п Ву			E. Sanchez	0	R. Bowlin	6 3/4	9,906 ft									
Remarks/Reco	mmendation	ons:					Rig Activity:										
Skid Vol. 2	2116bbl						report tin 9.1ppg w	ne. Dresse	ed sh addit	naker#: ions. F	2 with AF Pre-Treat	PI 200's. (active sys	ut drill line. Cut back M' stem while	WT fron	n 9.6	ppg	to
Phone: 22	obert Bowl 28-990-105 E C	55 PI	ng. 2: Edgar hone: 956-6	693-3035	WH 1: Phone: nion and or	432-686		hone:	WH#		Rig Pho		Daily Total \$7,483.11				re Cost
W P Y 1 1 1	E C 1 1	g G 1 1	H O 1 1	carefully	and may b	e used if the	user so elects, this is a recomm	however, no	repres /.	sentation	is made as	to the	\$7,403.11				20.33

INCLUDING 3RD PARTY CHARGES

\$7,947.11

\$112,130.43

Date 08/07/21		perator MAGNOLIA OIL & GAS			ind No. GSTEDT O I		Rig Name and N 285		Report #9		
	DAILY	USAGE & COST		•				CUMU	LATIVE		
H	Heli	U-1 01	Previous	D iv d	Closing	Daily	Daile Cart	Cum			
Item	Unit	Unit Cost	Inventory	Received	Inventory	Usage	Daily Cost	Usage	Cum Cos		
SAPP (50)	50# sk	\$44.56						50	\$2,228.0		
PHPA LIQUID (pail) CAUSTIC SODA (50)	5 gal 50# sk	\$41.36 \$27.76		46 32							
CAUSTIC SODA (50)	50# SK	\$27.70		32	32						
CACL2 (50)	50# sk	\$14.32		404	336	68	\$973.76	118	\$1,689.7		
LIME (50)	50# sk	\$5.00		325		50	\$250.00	162			
OPTI - G	50# sk	\$30.59		185		20	\$611.80	40			
BENTONE 38 (50)	50# sk	\$163.94		55	50	5	\$819.70	5			
BENTONE 910 (50) BENTONE 990 (50)	50# sk	\$59.40 \$83.59		105	95	10	\$835.90	12			
OPTI - MUL	gal	\$10.75		495		55	\$591.25	165			
OPTI - WET	gal	\$8.34		440		55	\$458.70	110			
NEW PHALT	50# sk	\$38.72		115				5	\$193.6		
OIL SORB (25)	25# sk	\$4.75		92	92						
								<u> </u>			
								-			
NEW CARB (M)	50# sk	\$5.25		133	133			10	\$52.5		
MAGMAFIBER F (25)	25# sk	\$28.05		144	144			26	\$729.3		
NEW PLUG M	50# sk	\$10.51		70	70						
NEW WATE (CACK DADITE)	100# sk	\$11.50		100	120			20	\$437.0		
NEW WATE (SACK BARITE) BARITE BULK (100)	100# sk	\$7.00		120 1270				163	\$1,141.0		
Driver Dock (100)	100# 51	ψ1.00		1270	1270			100	ψ1,111.0		
ODTI DDILL (ODM)	L I. I	005.00	450	0440	0500			505	¢24 775 ^		
OPTI DRILL (OBM)	bbl	\$65.00	450	2116	2566			535	\$34,775.0		
								<u> </u>			
								 			
						-					
ENGINEERING (24 HR)	each	\$990.00				2			\$11,880.0		
ENGINEERING (DIEM)	bbl	\$30.00				2	\$60.00	12	\$360.0		
ENGINEERING (MILES)	each	\$1.00									
TRUCKING (cwt)	each	\$1.98						400	\$792.0		
TRUCKING (min)	each	\$650.00				1	\$650.00	1	\$650.0		
PALLETS (ea)	each	\$12.00				11	\$132.00	11	\$132.0		
SHRINK WRAP (ea)	each	\$12.00				10	\$120.00	10	\$120.0		
		-			_			•			

Date	Operator			Well Name a	ind No.		Rig Name ar	id No.	Report No.	
08/07/21	MAG	NOLIA OIL	& GAS	BOR	GSTEDT O	L 2H	2	85	Repo	ort #9
	DAILY	USAGE 8	& COST						сими	LATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
PRO V PLUS	25# sk	\$60.00		320	320					
PRO X	25# sk	\$70.00		320	320					
PRO SWEEP AID	25# sk	\$46.00		240	240					
SB SUPER CEAL	25# sk	\$80.00		253	253					
Clements WBM	bbl	\$45.36		149	149					
DIESEL TRANSFER F/3H	gal	\$2.38							14972	\$35,633.36
DIESEL RECEIVED 7/1/21	gal	\$2.36								\$7,316.00
DIESEL RECEIVED 7/2/21	gal	\$2.38							2286	
DIESEL RECEIVED 7/4/21	gal	\$2.38								,
Skid Vol. 8_6_21	gal	\$2.32		7200	7000	200	\$464.00		200	\$464.00
OBM_D 8_6_21	gal	\$2.28		7199	7199					
				 						
	+			<u> </u>			1			
	1									
				1						
	•				Daily 9	Sub-Total \$	3464.00		\$48.8	54.04
									+10,0	
					1					
	Cumi	ulative Tota	I AES & 3rd	Party \$112	,130.43					
						ı				

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name:

MAGNOLIA OIL & GAS

Well Name:

285

BORGSTEDT OL 2H

					WEEK 1							WEEK 2							WEEK 3			
	Date	7/2/21	7/3/21	7/4/21	7/5/21	7/6/21	7/7/21	7/8/21	7/9/21	7/10/21	7/11/21	7/12/21	7/13/21	7/14/21	7/15/21	7/16/21	7/17/21	7/18/21	7/19/21	7/20/21	7/21/21	7/22/21
		Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu
	Bit Size	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8																
Grand	Starting Depth	2,715	4,180	9,100	9,828	9,906	9,906															
	Ending Depth	4,180	9,100	9,828	9,906	9,906	-,															
	Footage Drilled	1,465	4,920	728	78	-	-	_	_	_				_	_	-	_	_	_	-	_	_
•					7	-		-	- -	-			<u> </u>	-	-	H :-	-	-	-	-	-	-
	New Hole Vol.	139	466	69				_					_					_	_			
	Starting System Volume	2,970	2,848	2,724	2,594	2,500	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449
	Chemical Additions	4	9	440	4	- 04																
	Base Fluid Added	38	211	112	31	24																
	Barite Increase				14																	
	Weighted Mud Added	-				-		-	-													
	Slurry Added Water Added	-				-																
		<u> </u>				-		-	-													
	Added for Washout																					
	Total Additions	42	220	112	48	24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Surface Losses					50																
	Formation Loss					24																
	Mud Loss to Cuttings	144	242	85	12	-																
	Unrecoverable Volume	20	102	157	130	-																
15	Centrifuge Losses					15																
981	Total Losses	164	344	242	142	89	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,985	Mud Transferred Out					1,985																
2,594	Fu din u Cretom Valores							ı														
2,007	Ending System Volume	2,848	2,724	2,594	2,500	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449
_,00.	Mud Recovered	2,848	2,724	2,594	2,500	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449
_,00.		2,848	2,724	,	,		449	449	449	449				449	449	449	449				449	449
_,~~.				С	omment	s:	449	449	449	449		449 omment		449	449	449	449		449 omment		449	449
_,~~ .		7/2/21	Transfer 2 Lost 144 b shakers	C 970 bbl froi	comments m Borgsted	s: t OL 3-H			7/9/21	449				449	449	7/16/21	449				449	449
_,00.		7/2/21	Transfer 2 Lost 144 b shakers	C 970 bbl froi bl of mud c	comments m Borgsted	s: t OL 3-H ntion /19 bb	I loses run	ning over		449				449			449				449	449
-		7/2/21	Transfer 2 Lost 144 b shakers	C 970 bbl froi bl of mud c	omments m Borgsted cutting reter	s: t OL 3-H ntion /19 bb	I loses run	ning over	7/9/21	449				449		7/16/21	449				449	449
-		7/2/21	Transfer 2 Lost 144 b shakers	C 970 bbl froi bl of mud c	omments m Borgsted cutting reter	s: t OL 3-H ntion /19 bb	I loses run	ning over	7/9/21	449				449		7/16/21	449				449	449
-		7/2/21 7/3/21 7/4/21 7/5/21	Transfer 2 Lost 144 b shakers	C 970 bbl from bbl of mud d bbl cutting r pobl cutting r eport, to BC losse. Cel	omments m Borgsted cutting reter retention, Le	s: t OL 3-H tition /19 bb ost 102 bbl	eflect cemreduce MV	ning over	7/9/21 7/10/21 7/11/21	449				449		7/16/21 7/17/21 7/18/21	449				449	449
-		7/2/21 7/3/21 7/4/21 7/5/21	Transfer 2 Lost 144 b shakers Lost 242 b shakers	C 970 bbl from bbl of mud d bbl cutting r pobl cutting r eport, to BC losse. Cel	omments m Borgsted cutting reter retention, Le	s: t OL 3-H tition /19 bb ost 102 bbl	eflect cemreduce MV	ning over	7/9/21 7/10/21 7/11/21 7/12/21	449				449		7/16/21 7/17/21 7/18/21 7/19/21	449				449	449

Report 9 pm

TEL: (337) 394-1078

33.9° 10,119' TVD

Operator MAGN Well Name and No	NOLIA (OIL & G	AS	Contractor PAT Rig Name ar	TTERSO	ON	County / Parish WASI		TON	_	r Start Date		ftg. 331 ft		Drilled Drille	Depth 10,23	37 ft	t
	GSTED	T OL 2	Н	Rig Name ar	285			EXAS	3		ne 06/22/21		127 ft/hr			Build	Sec	tion
Report for	! / . 0			Report for	-1.01		Field / OSC-G			Fluid Ty		Circu	ating Rate			ing Pres		
Bobby G					ol Push	ner	GIDD				OBM PUMP #1		357 gpm			5,693 ER BO		
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	MUD VC		639 bbl	Liner		75 Line		75	Liner		JU3	
8.5-10	5-20	5-12	>300	±280K	<10 <20	<10	In Hole		406 bbl	Strol				2	Stro			
0.5-10		JD PROF		IZOUR	110 \20	~10	Active		1045 bbl	bbl/s				625	bbl/			
Time Sample				0:05		14:30	Storage		1545 bbl	stk/n				88	stk/r			
Sample Locati				suction		suction	Tot. on Loc			gal/n				78	gal/ı			
Flowline Temp		 F				149 °F	Mud Wt. =		PV=12	YP=		RCULATION				.652	K = 1	183.5
Depth (ft)	<u>'</u>			9,906'		10,180'	Bit C	Depth =	= 10,237 '			out = 2%		Pump	Efficie	ency =	95%	6
Mud Weight (p	ppg)			9.1		9.0	Drill String	Vol	lume to Bit	144.3	bbl Str	okes To B	t 2,311		Time T	o Bit	17	min
Funnel Vis (se	ec/qt)		@ 130 °F	46		45	Disp.	Bottor	ms Up Vol.	261.8	bbl Botto	omsUp Stk	4,191	Botto	msUp '	Time	31	min
600 rpm				33		33	58.0 bbl	Tot	alCirc.Vol.	1045.2	2 bbl To	talCirc.Stk	16,732	Tota	Circ.	Time	123	min
300 rpm				21		21		DRIL	LING AS	SEMBL	Y DATA		s	OLID	S CON	NTRO	L	
200 rpm				16		16	Tubulars	OD (in.) ID	(in.)	Length	Тор	Unit		Scre	ens	Но	urs
100 rpm				11		9	Drill Pipe	4.50	00 3.8	826	4,299'		Shaker	1	API 2	200's	12	2.0
6 rpm				5		5	DP / AGI.	5.37	70 2.	562	21'	4,299'	Shaker	2	API 2	200's	12	2.0
3 rpm				4		4	Drill Pipe	4.50	00 3.8	826	5,786'	4,320'	Shaker	. 3	API 2	200's	12	2.0
Plastic Viscos	sity (cp)		@ 150 °F	12		12	Dir. BHA	5.14	45 2.	506	131'	10,106'	Cuttings [Oryer	API 1	40's	12	2.0
Yield Point (lb.	/100 ft²)		T0 = 3	9		9		CA	ASING &	HOLE	DATA							
Gel Strength ((lb/100 ft²)	10 s	ec / 10 min	5/8		6/8	Casing	OD (in.) ID	(in.)	Depth	Тор	Centrifuç	ge 1			0.	.5
Gel Strength ((lb/100 ft2)	30 min	12		11	Riser						VOLUM	IE AC	COU	NTING	(bbl	ls)
HTHP Filtrate	(cm/30 m	in)	@ 250 °F	8.0		6.0	Surface	10 3	3/4		2,715'		Prev. T	otal o	n Loca	ation	25	593.9
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/	/8 6.8	830	9,893'		Transfe	erred l	n(+)/O	out(-)		
Retort Solids (Content			9%		8%								Oil	Adde	d (+)		
Corrected Soli	ids (vol%)			6.2%		5%								Barite	Adde	d (+)		
Retort Oil Con	ntent			62%		62.5%	Open	Hole S	Size 6.8	885	10,237'		Other Pr	oduct	Usag	e (+)		
Retort Water (Content			29%		29.5%	ANI	NULAF	R GEOME	TRY 8	RHEOLO	GY	\	Water	Adde	d (+)		
O/W Ratio				68:32		68:32	annula		depth	velo	-	ECD	Le	ft on C	Cutting	gs (-)		-15.2
Whole Mud Cl	hlorides (mg/L)		70,000		75,000	section	n		ft/m	in reg	lb/gal	_					
Water Phase	Salinity (p	pm)		274,575		285,033												
Whole Mud Al	lkalinity, F	om		2.5		1.8	6.83x4.	.5	4,299'	331	.3 turb	9.97	Est. T	otal o	n Loca	ation -	25	578.7
Excess Lime ((lb/bbl)			3.3 ppb		2.3 ppb	6.83x5.3	37	4,320'	491	.0 turb	10.09	Est. Los	ses/G	ains (-	-)/(+)		11.5
Electrical Stab	oility (volts	5)		415 v		445 v	6.83x4.		9,893'	331	.3 turb	10.07	BIT	HYDR	-			
Average Spec			s	2.77		2.86	6.885x4		10,106'	322		10.19	Bit H.S.I.	Bit		Nozzl		2nds)
Percent Low 0		lids		4.7%		3.5%	6.885x5.	145	10,237'	417	.8 turb	10.32	0.28	48		18	18	18
ppb Low Grav				38 ppb		29 ppb							Bit Impact Force	Noz Velc		18	18	18
Percent Barite	Э			1.5%		1.4%			1				_	(ft/s	´ -			
ppb Barite				21 ppb		21 ppb		DATA		ınuf./Ty			129 lbs	7				
Estimated Tot		System					Size	Depth		ours	Footage	ROP ft/h				Circ.		
Sample Taker Afternoon Rema	n By			E. Sanchez		R. Bowlin	6 3/4	9,900	6 ft 5	5.5	331 ft	60.2	1,900	osi		3,099	psi	

Mw @ 9.0ppg

MWD Temp: 216 Degrees

Diesel @ 2BPH Drill H2O at 1.78BPH to replace evaporation

Afternoon Rig Activity:

Finished TIH to the top of the float at 9,804'MD, drilled shoe track plus 10' of new formation. Performed a FIT to 13.0ppg EMW at 2,040PSI with a 9.0ppg active density. At the time of the afternoon report drilling ahead at 10,237'MD. No viscous sweeps until build section has been landed. Active system was pretreated to account for the wash H2O from the intermediate section cement job. Necessary chemical additions will be made to maintain the drilling fluid within the recommended parameters.

Report #10 TEL: (337) 394-1078

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

87.7° 10,342' TVD

Operator MAGI	NOLIA (OIL & G	BAS	Contractor PA	TERSO	ON .	County / Parish /	Block	N	Engineer Sta	art Date	24 hr f	itg. 331 ft		Drilled	Depth	40 ft	t
Well Name and No.				Rig Name ar			State			Spud Date		Currer	nt ROP		Activity			
BOR Report for	GSTE	T OL 2	2H	Report for	285		TE Field / OCS-G #	EXAS		06 Fluid Type	3/22/21	Circul	127 ft/h	r	_	Build		tion
Bobby G	win/ G	reg Jol	nson		ol Pusi	ner		NGS AC	;		ОВМ	Oilcui	357 gpı	n		3,693		si .
			TY SPECIF	ICATION	 S		MUD VO	LUME (BB	3L)	Pl	UMP #1		PUMP #			ER B	•	
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	578	B bbl	Liner Siz	ze 4.	75 Line	r Size 4	1.75	Liner	Size		
8.5-10	5-20	5-12	>300	±280K	<10 <20	<10	In Hole	443	3 bbl	Stroke	1	2 Str	oke	12	Stro	oke		
		l .	1	8/7/21		8/7/21	Active	102	1 bbl	bbl/stk	0.0	625 bb	l/stk 0.	0625	bbl	/stk	0.0	000
Time Sample	Taken			0:05		14:30	Storage	154	5 bbl	stk/mir	ո 6	8 stk	/min	68	stk/	min	(0
Sample Locati	on			suction		suction	Tot. on Loc	cation 256	6 bbl	gal/mir	n 17	78 gal	/min	178	gal/	min	(0
Flowline Temp	erature °F	<u> </u>		154 °F		149 °F		PHHP = 769	9		CIRCUL	ATION DA	ATA		n = ().652	K = 24	44.698
Depth (ft)				11,140'		10,180'	Bit D	Depth = 11,	140 '		Wash	out = 2%		Pump	Effici	ency :	= 95%	6
Mud Weight (p	pg)			9.1		9.0	Drill String	Volume	to Bit	157.2 b	bl Sti	rokes To Bit	2,516		Time	To Bit	19	min
Funnel Vis (se	c/qt)		@ 130 °F	46		45	Disp.	Bottoms U	Jp Vol.	285.6 b	bl Botto	omsUp Stks	4,573	Botto	msUp	Time	34	min
600 rpm				44		33	62.9 bbl	TotalCir	rc.Vol.	1020.8 k	obl To	talCirc.Stks	16,342	Tota	al Circ.	Time	120	min
300 rpm				28		21		DRILLING	G ASS	SEMBLY	DATA			SOLID	s co	NTRO	L	
200 rpm				20		16	Tubulars	OD (in.)	ID	(in.)	Length	Тор	Uni	t	Scre	eens	Но	urs
100 rpm				15		9	Drill Pipe	4.500	3.	826	5,202'	0'	Shake	er 1	API :	200's	12	2.0
6 rpm				8		5	DP / AGI.	5.370	2.	562	21'	5,202'	Shake	er 2	API :	200's	12	2.0
3 rpm				7		4	Drill Pipe	4.500	3.	826	5,786'	5,223'	Shake	er 3	API :	200's	12	2.0
Plastic Viscosi	ity (cp)		@ 150 °F	16		12	Dir. BHA	5.145	2.	506	131'	11,009'	Cuttings	Dryer	API	140's	12	2.0
Yield Point (lb/	/100 ft²)		T0 = 6	12		9		CASIN	NG & H	HOLE DA	ιΤΑ							
Gel Strength (lb/100 ft²)	10	sec/10 min	9/11		6/8	Casing	OD (in.)	ID	(in.)	Depth	Тор	Centrifu	ıge 1			0.	.5
Gel Strength (l	lb/100 ft ²)		30 min	13		11	Riser						VOLU	ME AC	COU	NTING	G (bb	ls)
HTHP Filtrate	(cm/30 m	in)	@ 250 °F	6.4		6.0	Surface	10 3/4			2,715'	0'	Prev.	Total o	on Loc	ation	25	593.9
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.	830	9,893'	0'	Trans	ferred	In(+)/0	Out(-)		
Retort Solids (Content			9%		8%								Oi	l Adde	ed (+)		41.8
Corrected Soli	ds (vol%)			6%		5%								Barite	Adde	ed (+)		0.0
Retort Oil Con	tent			62%		62.5%	Oper	Hole Size	6.	885	11,140'		Other F	Produc	t Usag	je (+)		5.3
Retort Water 0	Content			29%		29.5%	ANI	NULAR GE	OME	TRY & R	HEOLOG	Υ		Wate	r Adde	ed (+)		30.0
O/W Ratio				68:32		68:32	annulai	r me	eas.	velocit	y flow	ECD	L	eft on	Cuttin	gs (-)		-15.2
Whole Mud Ch	nlorides (n	ng/L)		74,000		75,000	section		epth	ft/min		lb/gal	Non-Re	covera	able V	ol. (-)		-35.0
Water Phase S	Salinity (p	pm)		285,782		285,033		'		•	•			Eva	a. See	page		-54.9
Whole Mud Al	kalinity, P	om		2.8		1.8	6.83x4.	5 5,2	202'	331.3	turb	10.02	Est.	Total o	on Loc	ation	25	565.8
Excess Lime (lb/bbl)			3.6 ppb		2.3 ppb	6.83x5.3	5,2	223'	491.0	turb	10.15	Est. Lo	sses/G	ains (-)/(+)		0.0
Electrical Stab	ility (volts)		435 v		445 v	6.83x4.	5 9,8	893'	331.3	turb	10.15	ВІТ	HYD	RAUL	ICS D	ATA	
Average Spec	ific Gravit	y of Solids	5	2.76		2.86	6.885x4	.5 11,	,009'	322.1	turb	10.29	Bit H.S.I	. Bit	ΔΡ	Nozz	les (32	2nds)
Percent Low G	Gravity So	lids		4.6%		3.5%	6.885x5.1	45 11,	,140'	417.8	turb	10.43	0.28	48	psi	18	18	18
ppb Low Gravi	ity Solids			38 ppb		29 ppb							Bit Impac	+ 1	zzle	18	18	18
Percent Barite				1.4%		1.4%							Force	vei	ocity sec)			
ppb Barite				20 ppb		21 ppb	BIT D	ATA	Ma	anuf./Type	Э		129 lbs	7	77			
Estimated Total	al LCM in	System	ppb				Size	Depth In	Н	ours F	ootage	ROP ft/hr	Motor/N	/IWD	Calc	. Circ	Pres	sure
Sample Taken	Ву			E. Sanchez	0	R. Bowlin	6 3/4	9,906 ft	1	6.5	331 ft	20.1	1,900	psi		3,284	1 psi	
Remarks/Reco	mmendati	ons:					Rig Activity:											

Skid Vol. 2116bbl

Frac Tank Vol: 1,545 bbl

M/U 6.75" bit and P/U BHA. TIH to bottom and tag cement @ 9,804'. Drill out cement and 10' of new formation. Performed a FIT test @ 9,916' to 13.0ppg EMW at 2,040 psi with a 9.0ppg active density. Build curve from 9,906' to 10,820' (BOC). Continue to drill ahead to 11,140' at report time. Average ROP:103 ft/hr, RPM: 45 rpm, TORQ: 12 DIFF/450, GPM 357 gpm.

MWD/BHT: 235 degrees

	ng. 1: Phone:		obert 28-99				•	•	r Sanchez 593-3035	WH 1: Phone:		WH 2: Phone:	WH #2 -	Rig Phone:	Daily Total	Cumulative Cost
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be	ecommendation, exp used if the user so ation, and this is a r	elects, however	, no representati	nas been prepared on is made as to the	\$4,842.75	\$68,119.14
									•			INCLUDI	ING 3RD PAR	TY CHARGES	\$8,786.75	\$120,917.18

Date 08/08/21	Operator MAGI	NOLIA OIL		Well Name a	GSTEDT O		Rig Name ar	35	eport No. Repo	rt #10
	DAILY	USAGE 8	& COST				•			LATIVE
ltem	Unit	Unit Cost	Previous	Received	Closing	Daily	Daily Cost	_	Cum	Cum Cos
			Inventory	Received	Inventory	Usage	Daily Cost	_	Usage	
SAPP (50) PHPA LIQUID (pail)	50# sk 5 gal	\$44.56 \$41.36			46			_	50	\$2,228.00
CAUSTIC SODA (50)	50# sk	\$27.76			32			-		
		V =	-							
								-		
CACL2 (50) LIME (50)	50# sk 50# sk	\$14.32 \$5.00	336 275		336 225	50	\$250.00	_	118 212	
OPTI - G	50# sk	\$30.59	165		155	10	·		50	
BENTONE 38 (50)	50# sk	\$163.94	50		45	5	-		10	-
BENTONE 910 (50)	50# sk	\$59.40							12	
BENTONE 990 (50)	50# sk	\$83.59	95		85	10	\$835.90		32	\$2,674.8
OPTI - MUL	gal	\$10.75	440		385	55	\$591.25		220	\$2,365.0
OPTI - WET	gal	\$8.34	385		385				110	
NEW PHALT	50# sk	\$38.72	115		115				5	\$193.6
OIL SORB (25)	25# sk	\$4.75	92		92			<u> </u>		<u> </u>
								 		
NEW CARB (M)	50# sk	\$5.25			133			<u> </u>	10	
MAGMAFIBER F (25) NEW PLUG M	25# sk	\$28.05	144 70		144 70			<u> </u>	26	\$729.3
NEW PLUG M	50# sk	\$10.51	70		70			_		
								-		
								-		
								<u> </u>		
										
NEW WATE (SACK BARITE)	100# sk	\$11.50			120			-	38	
BARITE BULK (100)	100# sk	\$7.00	1270		1270			-	163	\$1,141.0
										
								-		
								_		
								<u> </u>		-
OPTI DRILL (OBM)	bbl	\$65.00	2566		2566				535	\$34,775.0
								<u> </u>		
								 		-
								<u> </u>		
								<u> </u>		<u> </u>
ENGINEERING (24 HR)	each	\$990.00					\$1,980.00			\$13,860.0
ENGINEERING (DIEM)	bbl	\$30.00				2	\$60.00	L	14	\$420.0
ENGINEERING (MILES)	each	\$1.00						 		
								<u> </u>		
TRUCKING (cwt)	each	\$1.98							400	\$792.0
TRUCKING (min)	each	\$650.00							1	
PALLETS (ea)	each	\$12.00							11	\$132.0
		_					_	· -		_
SHRINK WRAP (ea)	each	\$12.00						_	10	\$120.0

Date	Operator			Well Name a	and No.		Rig Name ar	d No.	Report No.	
08/08/21	MAG	NOLIA OIL	& GAS	BOR	GSTEDT O	L 2H	2	35	Repo	rt #10
	DAILY	USAGE 8	& COST						СПМП	LATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
PRO V PLUS	25# sk	\$60.00	320		320					
PRO X	25# sk	\$70.00	320		320					
PRO SWEEP AID	25# sk	\$46.00	240		240					
SB SUPER CEAL	25# sk	\$80.00	253		253					
Clamanta WDM	hh!	\$45.00	1.10		1.10					
Clements WBM	bbl	\$45.36	149		149					
DIESEL TRANSFER F/3H	gal	\$2.38							14972	\$35,633.36
DIESEL RECEIVED 7/1/21	gal	\$2.36								\$7,316.00
DIESEL RECEIVED 7/2/21	gal	\$2.38							2286	
DIESEL RECEIVED 7/4/21	gal	\$2.38								
Skid Vol. 8_6_21	gal	\$2.32	7000		5300	1700	\$3,944.00		1900	\$4,408.00
OBM_D 8_6_21	gal	\$2.28	7199		7199					
					Daily S	ub-Total \$3	3,944.00		\$52,7	98.04
	į . 					i		•		
	Cumu	ılative Total	I AES & 3rd	Party \$120	,917.18					
						1				

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name:

MAGNOLIA OIL & GAS

Well Name:

BORGSTEDT OL 2H

285

					WEEK 1				Ι			WEEK 2				ı			WEEK 3			
	Date	7/2/21	7/3/21	7/4/21	7/5/21	7/6/21	7/7/21	7/8/21	7/9/21	7/10/21	7/11/21	7/12/21	7/13/21	7/14/21	7/15/21	7/16/21	7/17/21	7/18/21	7/19/21	7/20/21	7/21/21	7/22/21
	- Date	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu
	Bit Size	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	···ou	····u		- Out	- Cun		140		ma		Jul	- Ouii			1100	ma
Grand	Starting Depth	2,715	4,180	9,100	9,828	9,906	9,906															
					·		3,300															
Totals	Ending Depth	4,180	9,100	9,828	9,906	9,906																
	Footage Drilled	1,465	4,920	728	78	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
736	New Hole Vol.	139	466	69	7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Starting System Volume	2,970	2,848	2,724	2,594	2,500	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449
	Chemical Additions	4	9		4	-																
	Base Fluid Added	38	211	112	31	24																
	Barite Increase	-			14	-																
2,116	Weighted Mud Added	-				-																
-	Slurry Added	-				-																
39	Water Added	-				-																
-	Added for Washout					-																
=,00:	Total Additions	42	220	112	48	24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
80	Surface Losses					50																
49	Formation Loss					24																
498	Mud Loss to Cuttings	144	242	85	12	-																
	Unrecoverable Volume	20	102	157	130	-																
15	Centrifuge Losses					15																
1,086	Total Losses	164	344	242	142	89	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,985	Mud Transferred Out					1,985																
2,566	Ending System Volume	2,848	2,724	2,594	2,500	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449
-	Mud Recovered																					
<u> </u>				C	omments	s <i>:</i>					C	omment	s:					С	omment	s:		
	1	7/2/21		970 bbl fror bbl of mud c			l loses runr	ning over	7/9/21							7/16/21						
3,101		7/3/21	Lost 242 I shakers	bbl cutting r	etention, Lo	ost 102 bbl	centrifuge/	over	7/10/21							7/17/21						
		7/4/21							7/11/21							7/18/21						
		7/5/21							7/12/21							7/19/21						
		7/6/21	casing run	eport, to BC losse. Cer 985bbl to B	ntrifuge app	lication to	reduce MW	to 9#.	7/13/21							7/20/21						
		7/7/21							7/14/21							7/21/21						
		7/8/21							7/15/21							7/22/21						

PATTERSON

110 Old Market St. St Martinville, LA 70582

MAGNOLIA OIL & GAS

TEL: (337) 394-1078 84.5° 10,463' TVD 2,171 ft **WASHINGTON** 06/23/21 13,311 ft

IVIACI	10LIA O	il a c	70	'^'	ILINOC	/1 4	1170			00	<i>JI </i>		2,17110			10,5		
Well Name and No	GSTED	T OL 2	н	Rig Name ar	nd No. 285		State T	EXAS		Spud Date	5/22/21	Curre	nt ROP 378 ft/hi	,	Activity Dril	lina	Prod.	
Report for		. 02 2		Report for			Field / OSC-G			Fluid Type		Circul	ating Rate		Circulat			\dashv
Bobby G	win/ Gr	eg Joh	nson	To	ol Push	ner	GIDD	INGS A	2		OBM		399 gpm	1	4	,883	psi	
	MUD P	ROPER	TY SPECII	FICATION	IS		MUD VC	LUME (BI	BL)	P	UMP #1		PUMP #2		RISI	ER B	OOSTER	.]
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	563	3 bbl	Liner Si	ze 4.	75 Line	er Size 4.	75	Liner	Size		
8.5-10	5-20	5-12	>300	±280K	<10 <20	<10	In Hole	525	5 bbl	Stroke	· 1	2 Sti	roke 1	2	Stro	ke		
	MU	ID PROP	ERTIES	-			Active	108	8 bbl	bbl/stk	¢ 0.00	625 bb	l/stk 0.0	625	bbl/	stk		
Time Sample	Taken			0:05		13:37	Storage	e <u>154</u>	<u>5 bbl</u>	stk/mir	n 7	6 stk	/min 7	76	stk/r	min		
Sample Locat	tion			suction		suction	Tot. on Loc	cation 263	3 bbl	gal/mii	n 19	99 ga	I/min 1	99	gal/ı	min		
Flowline Temp	perature °F	•		154 °F		174 °F	Mud Wt. =	= 9.1 PV	=16	YP=12	2 CIF	RCULATIO	ON DATA	•	n = 0	.652	K = 244.	7
Depth (ft)				11,140'		13,144'	Bit D	epth = 13,	311 '		Wash	out =		Pump	Efficie	ency =	= 95%	
Mud Weight (ppg)			9.1		9.1	Drill String	Volume	to Bit	188.1 b	obl Str	okes To Bi	t 3,011		Time T	o Bit	20 min	
Funnel Vis (se	ec/qt)		@ 130 °F	46		50	Disp.	Bottoms U	p Vol.	336.8 b	bbl Botto	msUp Stks	5,391	Botto	msUp	Time	35 min	
600 rpm				44		47	74.8 bbl	TotalCir	c.Vol.	1087.8 l	bbl To	talCirc.Stks	17,415	Tota	l Circ.	Time	115 mir	1
300 rpm				28		30		DRILLING	G ASS	SEMBLY	/ DATA		S	OLID	S CON	NTRO	L	
200 rpm				20		21	Tubulars	OD (in.)	ID	(in.) l	Length	Тор	Unit		Scre	ens	Hours	
100 rpm				15		17	Drill Pipe	4.500	3.8	326	7,373'		Shaker	r 1	API 2	200's	12.0	
6 rpm				8		9	DP / AGI.	5.370	2.5	562	21'	7,373'	Shaker	r 2	API 2	200's	12.0	
3 rpm				7		8	Drill Pipe	4.500	3.8	326	5,786'	7,394'	Shaker	r 3	API 2	200's	12.0	
Plastic Viscos	sity (cp)		@ 150 °F	16		17	Dir. BHA	5.145	2.5	506	131'	13,180'	Cuttings [Oryer	API 1	40's	12.0	
Yield Point (lb	/100 ft²)		T0 = 6	12		13		CASIN	IG & I	HOLE D	ATA							
Gel Strength	(lb/100 ft²)	10 s	ec / 10 min	9/11		8/13	Casing	OD (in.)	ID	(in.)	Depth	Тор	Centrifuç	ge 1			1.0	
Gel Strength	(lb/100 ft2)		30 min	13		16	Riser						VOLUN	ME AC	COUN	NTING	(bbls)	
HTHP Filtrate	(cm/30 mi	n)	@ 250 °F	6.4		6.8	Surface	10 3/4			2,715'		Prev. T	otal o	n Loca	ation	2565.	8
HTHP Cake T	hickness (32nds)		2.0		2.0	Int. Csg.	7 5/8	6.8	330	9,893'		Transfe	erred I	n(+)/C	ut(-)		
Retort Solids	Content			9%		8.8%								Oil	Adde	d (+)	47.	6
Corrected Sol	lids (vol%)			6%		5.8%								Barite	Adde	d (+)		
Retort Oil Cor	ntent			62%		61.7%	Open	Hole Size	6.7	750 1	13,311'		Other Pr	oduct	Usag	e (+)		
Retort Water	Content			29%		29.5%	ANI	NULAR GE	ОМЕ	TRY & F	RHEOLO	GY	,	Water	Adde	d (+)	53.	3
O/W Ratio				68:32		68:32	annula	ır de	pth	velocit	ty flow	ECD	Le	ft on C	Cutting	js (-)	-96.	1
Whole Mud C	hlorides (m	ng/L)		74,000		75,000	section	1 40	рит	ft/min	reg	lb/gal	Non-Rec	overa	ble Vo	ol. (-)		
Water Phase	Salinity (pp	om)		285,782		285,033								Eva	. Seep	oage		
Whole Mud A	lkalinity, Po	om		2.8		2.6	6.83x4.	.5 7,3	373'	370.2	turb	10.37	Est. T	otal o	n Loca	ation	2570.	7
Excess Lime	(lb/bbl)			3.6 ppb		3.4 ppb	6.83x5.3	37 7,3	394'	548.7	turb	10.68	Est. Los	ses/G	ains (-	·)/(+)	62.	2
Electrical Stat	bility (volts))		435 v		427 v	6.83x4.	.5 9,8	393'	370.2	2 turb	10.82	ВІТ	HYDR	RAULI	CS D	ATA	
Average Spec	cific Gravity	of Solid	s	2.76		2.79	6.75x4.	.5 13,	180'	386.1	turb	11.36	Bit H.S.I.	Bit	ΔΡ	Nozzl	es (32nds	;)
Percent Low (Gravity Sol	ids		4.6%		4.3%	6.75x5.1	45 13,	311'	512.0) turb	11.69	0.39	60	psi	18	18 18	;
ppb Low Grav	vity Solids			38 ppb		36 ppb							Bit Impact	Noz Velc	zzle	18	18 18	;
Percent Barite	9			1.4%		1.4%							Force	(ft/s	,			
ppb Barite				20 ppb		21 ppb	BIT D	DATA	Ма	nuf./Type	е		161 lbs	8	6			
Estimated Tot	tal LCM in	System					Size	Depth In	Но	ours F	ootage	ROP ft/hr	Motor/M	WD	Calc.	Circ.	Pressur	э
Sample Taker	n By			E. Sanchez		R. Bowlin	6 3/4	9,906 ft	27	7.0	3,405 ft	126.1	2,925	psi		4,941	psi	

Afternoon Remarks/Recommendations:

Mw @ 9.1ppg

MWD Temp: 255 Degrees

Diesel @ 4.38BPH Drill H2O at 2.38BPH to replace evaporation

Afternoon Rig Activity:

Continued drilling ahead from 11,140' MD to 13,311'MD at the time of the pm report. Pumping viscous sweeps every 300' drilled down. Diesel/ Drill H2O additions to maintain active density at 9.1ppg. Utilizing frac volumes for makeup vol. Minimal chemical additions will and have been made to maintain the drilling fluid within the recommended parameters. ROP Averages: Rotating 199'hr/Sliding 97'hr

Torque: 16-18K Max SICP @ 95PSI 50PSI averages.

Report #11 TEL: (337) 394-1078

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

84.5° 10,553' TVD

Operator MAGI	NOLIA (OIL & C	GAS	Contractor PA1	TERSO	ON	County / Parish /	Block IINGTO	N	Engineer Sta	art Date /23/21	24 hr f	tg. 2,171 ft		Drilled (Depth 14,25	4 ft	t
Well Name and No.	GSTEE	T OL 2	2H	Rig Name an	285		State TE	EXAS		Spud Date 06	/22/21	Currer	378 ft/h		Activity Dril	lling	Pro	d.
Report for	Swin/ C	**** 6	hnoon	Report for	ol Pusi		Field / OCS-G #	NGS AC	,	Fluid Type	VBM		ating Rate			ing Press		
Bobby G			RTY SPECIF			ier		LUME (BE			JMP #1		399 gpn			2, 605 ER BO	•	
Weight	PV	YP	GELS	pH	API fl	% Solids	In Pits		5 bbl	Liner Siz		75 Line		.75	Liner		,001	
8.4-9.6	0-10	0-10	<5 <10	8-9	<25	2-10	In Hole		bbl	Stroke				12	Stro			
0.4 0.0	0.0	0.10	10 1.0	8/9/21	120	8/8/21	Active		5 bbl	bbl/stk				0625	bbl/		0.00	000
Time Sample	Taken			0:05		15:00	Storage		81 bbl	stk/min				76	stk/ı		0.00	
Sample Locati				pit		NO MUD	-	cation 179		gal/min				99	gal/i		0	
Flowline Temp		=		,				PHHP = 60				ATION DA				.585 k		
Depth (ft)				14,254')epth = 14,				out = 0%		Pump				
Mud Weight (p	(pgc			8.4						201.5 b	1	rokes To Bit	3,225	·		Γο Bit		
Funnel Vis (se			@ 90 °F	29			Drill String Disp.	Bottoms U	Jp Vol.	-201.1 b	bl Botto	omsUp Stks	-3,219	Bottor	msUp	Time	-21	min
600 rpm	.,			3			79.9 bbl	TotalCi	rc.Vol.	365.4 b	bl To	talCirc.Stks	5,849	Total	l Circ.	Time	38 r	min
300 rpm				2				DRILLIN	G ASS	SEMBLY	DATA			SOLIDS	S COI	NTROL	_	
200 rpm				1			Tubulars	OD (in.)	ID	(in.)	Length	Тор	Unit	:	Scre	ens	Hou	urs
100 rpm				1			Drill Pipe	4.500	3.	826	8,316'	0'	Shake	r 1	API 2	200's	12	2.0
6 rpm				1			DP / AGI.	5.370	2.	562	21'	8,316'	Shake	r 2	API 2	200's	12	2.0
3 rpm				1			Drill Pipe	4.500	3.	826	5,786'	8,337'	Shake	r 3	API 2	200's	12	2.0
Plastic Viscosi	ity (cp)		@ 120 °F	1			Dir. BHA	5.145	2.	506	131'	14,123'	Cuttings	Dryer	API 1	140's	12	2.0
Yield Point (lb/	/100 ft²)		T0 = 1	1				CASIN	NG & H	HOLE DA	TA							
Gel Strength (lb/100 ft²)	10	sec/10 min	1/1			Casing	OD (in.)	ID	(in.)	Depth	Тор	Centrifu	ge 1			1.	.0
Gel Strength (lb/100 ft ²)		30 min	1			Riser						VOLU	ME AC	COU	NTING	(bbl	ls)
API Filtrate / C	ake Thick	ness		25/3			Surface	10 3/4			2,715'	0'	Prev.	Total or	n Loc	ation	25	565.8
HTHP Filtrate	/ Cake Th	ickness	@ 0 °F				Int. Csg.	7 5/8	2.	890	9,893'	0'	Transf	erred Ir	n(+)/C	Out(-)		
Retort Solids (Content			0.4%										Oil	Adde	d (+)	1	132.2
Retort Oil Con	tent													Barite	Adde	d (+)		20.9
Retort Water (Content			99.6%			Oper	Hole Size	0.	000	14,254'		Other P	roduct	Usag	e (+)		7.9
Sand Content				1%			ANI	NULAR GE	EOME.	TRY & RI	HEOLOG	¥Υ		Water	Adde	d (+)	5	586.0
M.B.T. (Methy	lene Blue	Capacity) (ppb)				annular	· me	eas.	velocity	y flow	ECD	Le	eft on C	Cutting	gs (-)		0.0
рН				8.0			section	de	epth	ft/min	reg	lb/gal	(DBM Lo	ost to	Hole	-9	930.5
Alkalinity, Mud	l Pm												Water I	Pump [Down	Hole	-5	586.0
Alkalinities, Fil	trate Pf/M	f					2.89x4.	5 8,	316'	-821.5		8.40	Est.	Total or	n Loc	ation _	17	796.3
Chlorides (mg/	/L)			1200			2.89x5.3	7 8,	337'	-477.1		8.40	Est. Los	sses/Ga	ains (-)/(+)		0.0
Calcium (ppm))			80			2.89x4.	5 9,8	893'	-821.5		8.40	ВІТ	HYDR	AULI	CS DA	ATA	
Excess Lime (lb/bbl)						0x4.5	14,	,123'	-482.7		8.40	Bit H.S.I.	Bit A	ΔΡ	Nozzle	es (32	2nds)
Average Spec	ific Gravity	y of Solid	S	2.60	2.60	2.60	0x5.145	5 14,	,254'	-369.2		8.40		55	psi	18	18	18
Percent Low G	Gravity Sol	ids		0.3%									Bit Impact	Noz Velo		18	18	18
Percent Drill S	olids			0.3%									Force	(ft/s	•			
PPA Spurt / To	otal (ml) @	0	@ 0 °F				BIT D	ATA	Ма	anuf./Type)	I	149 lbs	86	6			
Estimated Total	al LCM in	System	ppb				Size	Depth In	Но	ours F	ootage	ROP ft/hr	Motor/M	IWD	Calc	. Circ.	Pres	sure
Sample Taken	Ву			E.Sanchez		R. Bowlin		9,906 ft	4	9.0	3,405 ft	69.5	2,925	psi		3,519	psi	
Remarks/Reco	mmendation	ons:					Rig Activity:											
							i .											,

Skid Vol. 2116bbl

Frac Tank Vol: 1,545 bbl

Continue to drill from 11,140' to 14,242'. Lost total returns. Filled up and isolate the following tanks: Tank 6 fresh water, Tank 5 with 9.1ppg OBM (sweeps), Tank 4 with OBM Kill Mud. Pumped 50 bbl of 13.5 ppg Mud Cap on the back side. Resume drilling ahead with fresh water. Transfer rest of OBM to frac tanks. Total estimated OBM down hole loses 930 bbl. Reset total stroke count to monitor total bbl pumped down hole. Weighing up Kill Mud to 15 ppg at report time. Plan ahead is to continue drilling head pumping OBM sweeps as needed.

Е	ng. 1:	R	obert	Bow	lin	Er	ng. 2:	Edga	r Sanchez	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Р	hone:	2	28-99	0-10	55	Ph	none:	956-	693-3035	Phone:	432-686-7361	Phone:	-			
W 1	P 1	Y 1	g 1	G 1	р 1	A 1	S 0	C 0	carefully	and may be	ecommendation, exp used if the user so ation, and this is a r	elects, however	, no representation	nas been prepared on is made as to the	\$53,901.40	\$122,020.54
												INCLUD	NG 3RD PAR	TY CHARGES	\$66.651.12	\$187.568.30

Date 08/09/21	Operator MAGI	NOLIA OIL		Well Name a	GSTEDT O	L 2H	Rig Name and		ort #11
	DAILY	USAGE 8	& COST					CUMU	ILATIVE
Item	Unit	Unit Cost	Previous	Received	Closing	Daily	Daily Cost	Cum	Cum Cos
SAPP (50)	50# sk	\$44.56	Inventory		Inventory	Usage		Usage 50	
PHPA LIQUID (pail)	5 gal	\$41.36			46			30	\$2,220.00
CAUSTIC SODA (50)	50# sk	\$27.76	32		32				
CACL2 (50)	50# sk	\$14.32	336		336			118	
LIME (50) OPTI - G	50# sk	\$5.00 \$30.59	225		150 125	75 30		287	
BENTONE 38 (50)	50# sk 50# sk	\$163.94	155 45		45	30	\$917.70	10	
BENTONE 910 (50)	50# sk	\$59.40			40			12	
BENTONE 990 (50)	50# sk	\$83.59	85		85			32	
OPTI - MUL	gal	\$10.75	385		385			220	\$2,365.00
OPTI - WET	gal	\$8.34	385		330	55	\$458.70	169	
NEW PHALT	50# sk	\$38.72	115		115				\$193.6
OIL SORB (25)	25# sk	\$4.75	92		92				1
NEW CARB (M)	50# sk	\$5.25	133		133			10	<u> </u>
MAGMAFIBER F (25)	25# sk	\$28.05	144		144			20	\$729.3
NEW PLUG M	50# sk	\$10.51	70		70				
NEW WATE (SACK BARITE)	100# sk	\$11.50	120		120			38	3 \$437.00
BARITE BULK (100)	100# sk	\$7.00		400	1370	300	\$2,100.00	463	
Briting Bolit (100)	100% GK	ψ1.00	1270	100	1070		Ψ2,100.00	100	φο,Σ11.0
									1
OPTI DRILL (OBM)	bbl	\$65.00	2566		1796	770	\$50,050.00	1305	\$84,825.0
									1
									1
									1
									1
									1
									1
ENGINEERING (24 HR)	each	\$990.00						14	\$13,860.0
ENGINEERING (DIEM)	bbl	\$30.00						14	+
ENGINEERING (MILES)	each	\$1.00							
									1
TRUCKING (4)		A.						2	070-
TRUCKING (cwt)	each	\$1.98 \$650.00						400	
TRUCKING (min) PALLETS (ea)	each each	\$650.00 \$12.00						1	
SHRINK WRAP (ea)	each	\$12.00						10	
								. ''	5.5.
	oue		•		•				

Date	Operator			Well Name a	and No.		Rig Name an	d No.	Report No.	
08/09/21	MAGI	NOLIA OIL	& GAS	BOR	GSTEDT O	L 2H	28	35	Repo	rt #11
	DAILY	USAGE 8	& COST						СПМП	LATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
PRO V PLUS	25# sk	\$60.00	320		320					
PRO X	25# sk	\$70.00	320		320					
PRO SWEEP AID	25# sk	\$46.00	240		240					
SB SUPER CEAL	25# sk	\$80.00	253		253					
Clements WBM	bbl	\$45.36	149		149					
DIESEL TRANSFER F/3H	gal	\$2.38								\$35,633.36
DIESEL RECEIVED 7/1/21 DIESEL RECEIVED 7/2/21	gal	\$2.36 \$2.38							2286	\$7,316.00 \$5,440.68
DIESEL RECEIVED 7/2/21 DIESEL RECEIVED 7/4/21	gal gal	\$2.38 \$2.38							2286	და,44U.68
Skid Vol. 8_6_21	gal	\$2.38				5300	\$12,296.00		7200	\$16,704.00
OBM_D 8_6_21	gal	\$2.28			7000				199	
	gui	ΨΣ.ΣΟ	7100		7 000	100	Ψ100.72		100	Ψ100.12
	+									
	+									
	+									
	+									
	1									
	1									
	1									
	1									
	1									
		<u> </u>		<u> </u>	Daily St	ıb-Total \$1	2,749.72		\$65,5	47.76
						•				
	Cumi	ulative Total	AES & 3rd	Party \$187	7,568.30					
	·									

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name:

MAGNOLIA OIL & GAS

Well Name:

BORGSTEDT OL 2H

285

					WEEK 1				1			WEEK 2				Ι			WEEK 3			
	Date	7/2/21	7/3/21	7/4/21	7/5/21	7/6/21	7/7/21	7/8/21	7/9/21	7/10/21	7/11/21	7/12/21	7/13/21	7/14/21	7/15/21	7/16/21	7/17/21	7/18/21	7/19/21	7/20/21	7/21/21	7/22/21
		Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu
	Bit Size	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8																
Grand	Starting Depth	2,715	4,180	9,100	9,828	9,906	9,906															
Totals	Ending Depth	4,180	9,100	9,828	9,906	9,906																
	Footage Drilled	1,465	4,920	728	78	-	-	_		_	_	-	_	_	-	-	-	_		-	_	-
	New Hole Vol.	139	466	69	7	-		_	<u> </u>	-			_	_	-			_	<u> </u>			-
0/4	Starting System Volume	2,970	2,848	2,724	2,594	2,500	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449
40	Chemical Additions	2,970	2,046	2,124	2,394	2,300	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449
	Base Fluid Added	38	211	112	31	24																
	Barite Increase	-	211	112	14	-																
	Weighted Mud Added	-			17	-																
-	Slurry Added					_																
	Water Added	_				-																
-	Added for Washout					-																
3,414	Total Additions	42	220	112	48	24		-		-	-	_	-	_	_			-			-	-
	Surface Losses	72			70	50							[[-			1
1,566		24																				
		144	242	85	12	-																
	Unrecoverable Volume	20	102	157	130	-																
	Centrifuge Losses		102	107	100	15																1
			1	<u> </u>				l I				1	l I	<u> </u>				1	1		1	1
2,603	Total Losses	164	344	242	142	89	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,985	Mud Transferred Out					1,985																
1,796	Ending System Volume	2,848	2,724	2,594	2,500	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449
-	Mud Recovered																					
				С	omment	s:					С	omment	s:					С	omment	s:		
			Transfer 2	970 bbl fror	m Borasted	lt OL 3-H																
		7/2/21		obl of mud c			l loses run	ning over	7/9/21							7/16/21						
3,101		7/3/21	Lost 242 shakers	bbl cutting r	etention, L	ost 102 bbl	centrifuge	over/	7/10/21							7/17/21						
	I	7/4/21							7/11/21							7/18/21						
		7/5/21							7/12/21							7/19/21						
		7/6/21	casing run	eport, to BC losse. Cer 985bbl to B	ntrifuge app	olication to	reduce MV	/ to 9#.	7/13/21							7/20/21						
		7/7/21							7/14/21							7/21/21						

110 Old Market St. St Martinville, LA 70582

87.6°

10,528' TVD

TEL: (337) 394-1078

Operator MAGN Well Name and No		OIL & G	AS		TERSO	ON		h / Block HINGTO	N		6/23/21	24 hi	ftg. 1,039 ft			Depth 15,29	93 ft	<u> </u>
		T OL 2I	4	Rig Name ar	285		State T	EXAS		Spud Date	6/22/21	Curre	197 ft/hr		Activity Dril	ling	Pro	d.
Report for Bobby G	win/ G	rea loh	neon	Report for	ol Pusi	ner	Field / OSC-G	# INGS AC	•	Fluid Type	WBM	Circu	lating Rate 373 gpm		Circulat	ing Pre		
Ворру С		PROPERT				ICI		DLUME (BE			UMP #1		PUMP #2	•		ER B	-	
Weight	PV	YP	GELS	рН	API fl	% Solids	In Pits		bbl	Liner Siz		75 Lin		75	Liner			
8.4-9.6	0-10	0-10	<5 <10	7-8	<25	2-10	In Hole		bbl	Stroke				2	Stro			
		UD PROP					Active		bbl	bbl/stk				625	bbl/			
Time Sample				0:05		12:50	Storage		0 bbl	stk/mir				'1	stk/ı			
Sample Locat				pit		Suction	J	cation 1930		gal/mir				86	gal/ı			
Flowline Temp		 F					Mud Wt. =		/=1	YP=1			ON DATA		n = 0		K = 2	26.6
Depth (ft)				14,254'		15,293'	Bit D	Depth = 15,			Wash		<u> </u>	Pump				
Mud Weight ((pac			8.4		8.5				216.2 b		okes To B		· I	Time T			
Funnel Vis (se			@ 90 °F	29		29	Drill String Disp.	Bottoms U				msUp Stk		Bottor				
600 rpm				3		5	85.6 bbl	· '	•	359.7 b		talCirc.Stk			Circ.			
300 rpm				2		4		DRILLING						OLIDS				
200 rpm				1		3	Tubulars	OD (in.)			Length	Тор	Unit		Scre			urs
100 rpm				1		2	Drill Pipe	4.500		` ,	9,355'	-1	Shaker		API 2			
6 rpm				1		1	DP / AGI.	5.370		562	21'	9,355'	Shaker		API 2			
3 rpm				1		1	Drill Pipe	4.500			5,786'	9,376'	Shaker		API 2			
Plastic Viscos	ity (cp)		@ 120 °F	1		1	Dir. BHA			506	131'	15,162'	Cuttings [
Yield Point (lb	,		T0 = 1	1		3		CASIN	IG & I	HOLE D	ATA			,				
Gel Strength (10 s	ec / 10 min	1/1		1/2	Casing	OD (in.)	ID	(in.)	Depth	Тор	Centrifug	ge 1				
Gel Strength (30 min	1		3	Riser	, ,				·	VOLUM	IE AC	COU	NTING	(bbl	ls)
API Filtrate / 0	Cake Thic	kness		25/3			Surface	10 3/4		:	2,715'		Prev. T	otal o	n Loca	ation	17	796.4
HTHP Filtrate	/ Cake TI	nickness					Int. Csg.	7 5/8	2.8	390	9,893'		Transfe	erred Ir	n(+)/C	ut(-)	1	189.0
Retort Solids	Content			0.4%		1.1%								Oil	Adde	d (+)		19.0
Retort Oil Con	itent					0.5%								Barite	Adde	d (+)		27.8
Retort Water (Content			99.6%		98.4%	Open	Hole Size		1	15,293'		Other Pr	oduct	Usag	e (+)		0.2
Sand Content				1%		0%	AN	NULAR GE	ОМЕ	TRY & F	RHEOLO	GY	١ ,	Nater	Adde	d (+)	57	747.8
M.B.T. (Methy	lene Blue	Capacity	(ppb)				annula	nr.		velocit	y flow	ECD	Le	ft on C	utting	js (-)		
рН				8.0		7.8	section	1 (16)	pth	ft/min		lb/gal	0	BM Lo	st to	Hole	-1	123.0
Alkalinity, Mud	d Pm							+		ļ			Water P	ump [Down	Hole	-57	727.5
Alkalinities, Fi	Itrate Pf/N	Лf					2.89x4	.5 9,3	355'	-767.4	1	8.40	Est. T	otal o	n Loca	ation	19	929.7
Chlorides (mg	/L)			1200		3300	2.89x5.	37 9,3	376'	-445.7	7	8.40	Est. Loss	ses/Ga	ains (-	·)/(+)		0.0
Calcium (ppm)			80		120	2.89x4	.5 9,8	93'	-767.4	1	8.40	BIT	HYDR	AULI	CS D	ATA	
Excess Lime ((lb/bbl)						0x4.5	15,	162'	-450.9	9	8.40	Bit H.S.I.	Bit	ΔΡ	Nozz	es (32	2nds)
Average Spec	verage Specific Gravity of Solids			2.60	2.60	2.60	0x5.14	5 15,2	293'	-344.9	9	8.40	#DIV/0!	48	psi	18	18	18
Percent Low 0	Percent Low Gravity Solids			0.3%		0.9%							Bit Impact	Noz		18	18	18
Percent Drill S	Percent Drill Solids			0.3%		0.9%							Force	Velo (ft/s	,			
PPA Spurt / T	PPA Spurt / Total (ml) @						BIT [DATA	Ма	nuf./Type	e		130 lbs	80	0			
Estimated Tot	al LCM in	System					Size	Depth In	Но	urs F	ootage	ROP ft/h	r Motor/M	WD	Calc.	Circ.	Pres	sure
Sample Taker	n By			E.Sanchez		R. Bowlin		9,906 ft	58	3.5 5	5,387 ft	92.1	5,200 p	osi		5,758	s psi	
Afternoon Rem	fternoon Remarks/Recommendations:					1	Afternoon R	Rig Activity:	<u> </u>		Į							

Mw @ 8.334ppg

MWD Temp: 158 Degrees

Rec: 692bbls of produced H2O

Rec: 189bbls 16.0ppg Kill Mud

Continued drilling ahead on lateral section from 14,254'MD to 15,293'MD under Continued drilling ahead on lateral section from 14,254'MD to 15,293'MD under a 16.5ppg geo pressure cap, with fresh drill H2O/ Produced H2O as the primary circulating median. Pumping OBM sweeps every other stand drill down at 5bbl increments to provide cuttings transport to the area of loss along with a degree of lubricity. Pumped 382bbls of produced H2O at report time. Pumped 63bbls @ 16.5ppg to control SICP. Making additions of PHPA for encapsulation. ROP Averages: Rotating 99'hr/Sliding 45'hr, Torque: 21-24K Zero SICP.

Report #12 TEL: (337) 394-1078

110 Old Market St. St Martinville, LA 70582

g 1 G p

Phone: 956-693-3035

S C 0

OUTSOURCE FLUID SOLUTIONS LLC.

87.6°

10,571' TVD

Operator MAGN	NOLIA C	OIL & G	SAS	Contractor PA1	TERS	ON	County / Parish / WASh	HINGTON	1	Engineer Sta	/23/21	24 hr f	2,079 ft		Drilled I	16,33	3 ft	
Well Name and No.				Rig Name ar	nd No.		State			Spud Date		Currer	nt ROP		Activity	•		
	GSTED	T OL 2	2H	December 1	285		TI Field / OCS-G #	EXAS			/22/21	OiI	103 ft/hr	•		ling ing Press		d.
Report for Bobby G	Swin/ Gr	ea Jol	nnson	Report for	ol Pus	her		INGS AC		Fluid Type	VBM		ating Rate 378 gpm	,		,803		i
			RTY SPECIF	ICATION	s		MUD VO	LUME (BB	L)	PL	JMP #1		PUMP #2			ER BC	-	
Weight	PV	YP	GELS	рН	API fl	% Solids	In Pits	238	bbl	Liner Siz	e 4.	75 Line	r Size 4.	75	Liner	Size		
8.4-9.6	0-10	0-10	<5 <10	7-8	<25	2-10	In Hole	0 t	bl	Stroke	1	2 Str	oke 1	2	Stro	ke		
				8/10/21		8/9/21	Active	238	bbl	bbl/stk	0.00	625 bb	l/stk 0.0	625	bbl/	stk	0.00	000
Time Sample	Taken			0:05		12:50	Storage	e <u>1765</u>	5 bbl	stk/min	7	1 stk	:/min 7	'3	stk/i	min	0)
Sample Location	on			pit		Suction	Tot. on Lo	cation 2003	3 bbl	gal/min	18	36 gal	l/min 1	92	gal/ı	min	0)
Flowline Temp	erature °F						ı	PHHP = 127	9		CIRCUL	ATION DA	ATA		n = 0	.322 F	(= 27	3.977
Depth (ft)				16,333'		15,293'	Bit 0	Depth = 16,3	333 '		Wash	out = 0%		Pump	Efficie	ency =	95%	
Mud Weight (p	ppg)			8.4		8.5	Drill String	Volume	to Bit	231.0 bl	bl Str	okes To Bit	t 3,698		Time 7	Го Bit	26 r	nin
Funnel Vis (se	ec/qt)		@ 90 °F	29		29	Disp.	Bottoms Up	o Vol.	-231.1 b	bl Botto	msUp Stks	-3,700	Botto	msUp	Time	-26 ו	min
600 rpm				5		5	91.2 bbl	TotalCire	c.Vol.	237.9 bl	bl To	talCirc.Stks	3,809	Tota	I Circ.	Time	26 r	nin
300 rpm				4		4		DRILLING	ASS	SEMBLY	DATA		s	OLID	s cor	NTROL	-	
200 rpm				3		3	Tubulars	OD (in.)	ID	(in.)	Length	Тор	Unit		Scre	ens	Hou	ırs
100 rpm				2		2	Drill Pipe	4.500	3.	826 1	10,395'	0'	Shaker	1	API 2	200's		
6 rpm				1		1	DP / AGI.	5.370	2.	562	21'	10,395'	Shaker	2	API 2	200's		
3 rpm				1		1	Drill Pipe	4.500	3.	826	5,786'	10,416'	Shaker	. 3	API 2	200's		
Plastic Viscosi	ity (cp)		@ 120 °F	1		1	Dir. BHA	5.145	2.	506	131'	16,202'	Cuttings [Oryer	API 1	40's		
Yield Point (lb/	/100 ft²)		T0 = 1	3		3		CASIN	G & I	HOLE DA	TA							
Gel Strength (I	lb/100 ft²)	10	sec/10 min	1/2		1/2	Casing	OD (in.)	ID	(in.)	Depth	Тор	Centrifuç	je 1				
Gel Strength (I	lb/100 ft ²)		30 min	3		3	Riser						VOLUM	IE AC	COU	NTING	(bbl	s)
API Filtrate / C	Cake Thickr	ness					Surface	10 3/4			2,715'	0'	Prev. T	otal o	n Loc	ation	17	96.4
HTHP Filtrate	/ Cake Thi	ckness	@ 0 °F				Int. Csg.	7 5/8	3.	080	9,893'	0'	Transfe	erred I	n(+)/C	Out(-)	3	14.0
Retort Solids C	Content			0.3%		1.1%								Oil	Adde	d (+)		39.8
Retort Oil Con	tent			0.5%		0.5%								Barite	Adde	d (+)		27.2
Retort Water 0	Content			99.2%		98.4%	Oper	n Hole Size	0.	000 1	16,333'		Other Pr	oduct	Usag	e (+)		0.6
Sand Content				0%		0%	AN	NULAR GE	OME	TRY & RI	HEOLOG	Υ	\	Water	Adde	d (+)	107	23.0
M.B.T. (Methyl	lene Blue (Capacity)) (ppb)				annula			velocity	/ flow	ECD	Le	ft on (Cutting	gs (-)		0.0
рН				7.8		7.8	section	ı de _l	oth	ft/min	reg	lb/gal	O	BM L	ost to	Hole	-2	03.0
Alkalinity, Mud	l Pm												Water F	ump [Down	Hole	-106	95.0
Alkalinities, Fil	trate Pf/Mf						3.08x4.	5 9,8	93'	-860.3		8.40	Est. T	otal o	n Loc	ation _	20	0.80
Chlorides (mg/	/L)			3500		3300	0x4.5	10,3	395'	-457.3		8.40	Est. Los	ses/G	ains (-)/(+)		0.0
Calcium (ppm))			120		120	0x5.37	10,4	116'	-321.1		8.40	BIT	HYDR	RAULI	CS DA	ΤA	
Excess Lime (lb/bbl)						0x4.5	16,2	202'	-457.3		8.40	Bit H.S.I.	Bit	ΔΡ	Nozzle	s (32	nds)
Average Speci	ific Gravity	of Solids	S	2.60	2.60	2.60	0x5.14	5 16,3	333'	-349.8		8.40		50	psi	18	18	18
Percent Low G	Fravity Solid	ds		0.2%		0.9%							Bit Impact	Noz Velc	zzle ocity	18	18	18
Percent Drill S	Solids			0.2%		0.9%							Force	(ft/s	sec)			
PPA Spurt / To	otal (ml) @		@ 0 °F				BIT D	ATA	Ma	anuf./Type	•		134 lbs	8	1			
Estimated Total		System	ppb				Size	Depth In			ootage	ROP ft/hr			Calc	Circ.		sure
Sample Taken	в Ву			E.Sanchez		R. Bowlin		9,906 ft	7	0.0	6,427 ft	91.8	5,200	osi		5,805	psi	
Remarks/Reco	mmendatio	ns:					Rig Activity:											
Skid Vol. 2	2116bbl																	
Frac Tank	Vol: 1,545	5 bbl					drilling fl provide of PHPA for SICP: 0.	e to drill fro uid. Pump cuttings tra or encapsu vater pump	oing : nspo latio	5 bbl of 6 ort to the a	OBM sw area of l ge ROP:	reeps eve loss along 103 ft/hr	ery other sta g with a de g, GPM: 377	and o gree o	or as r of lub n, TOI	neede ricity. RQ: 2	d to Add 1-24	ling k,
Ü	obert Bowlir 28-990-1058		ng. 2: Edgal		WH 1:		AND \		WH#		Rig Phor		Daily Total	, ui		ımulativ		

Any opinion and or recommendation, expressed orally or written herein, has been prepared carefully and may be used if the user so elects, however, no representation is made as to the validity of this information, and this is a recommendation only.

INCLUDING 3RD PARTY CHARGES

\$14,962.98

\$18,706.74

\$136,983.52

\$206,275.04

Date 08/10/21	Operator MAG I	NOLIA OIL		Well Name a BOR	ind No. GSTEDT O l	L 2H	Rig Name an 28		oort #12
	L.	USAGE 8	l l						ULATIVE
ltem	Unit	Unit Cost	Previous	Received	Closing	Daily	Daily Cost	Cum	Cum Cost
			Inventory	Received	Inventory	Usage	Daily Cost	Usage	
SAPP (50)	50# sk	\$44.56			44		#000.00		50 \$2,228.00
PHPA LIQUID (pail) CAUSTIC SODA (50)	5 gal	\$41.36 \$27.76			41 32	5	\$206.80		5 \$206.80
CAUSTIC SODA (50)	50# sk	\$27.76	32		32				
CACL2 (50)	50# sk	\$14.32	336		336			1	18 \$1,689.76
LIME (50)	50# sk	\$5.00			150				37 \$1,435.00
OPTI - G	50# sk	\$30.59	125		125				30 \$2,447.20
BENTONE 38 (50)	50# sk	\$163.94	45		45				10 \$1,639.40
BENTONE 910 (50)	50# sk	\$59.40							12 \$712.80
BENTONE 990 (50)	50# sk	\$83.59	85		85				32 \$2,674.88
OPTI - MUL	gal	\$10.75	385		385				20 \$2,365.00
OPTI - WET	gal	\$8.34	330		300	30	\$250.20	1:	95 \$1,626.30
NEW PHALT	50# sk	\$38.72	115		115				5 \$193.60
OIL SORB (25)	25# sk	\$4.75	92		92				
NEW CARB (M)	50# sk	\$5.25	133		133				10 \$52.50
MAGMAFIBER F (25)	25# sk	\$28.05	144		144				26 \$729.30
NEW PLUG M	50# sk	\$10.51	70		70				
NEW WATE (SACK BARITE)	100# sk	\$11.50	120		120				38 \$437.00
BARITE BULK (100)	100# sk	\$7.00	1370	401	1380	391	\$2,737.00	8	54 \$5,978.00
OPTI DRILL (OBM)	bbl	\$65.00	1796	344	2003	137	\$8,905.00	14	42 \$93,730.00
ENGINEERING (24 HR)	each	\$990.00				2	\$1,980.00		16 \$15,840.00
ENGINEERING (DIEM)	bbl	\$30.00				2			16 \$480.00
ENGINEERING (MILES)	each	\$1.00					\$55.50		\$.00.00
		\$15.00				2	\$30.00		2 \$30.00
	each				J	404	¢702.00	^	11 \$4 505 00
TRUCKING (cwt)	each	\$1.98				401	\$793.98	8	1 \$650.00
TRUCKING (cwt) TRUCKING (min)	each each	\$1.98 \$650.00				401	\$793.98		1 \$650.00
Scale Ticket TRUCKING (cwt) TRUCKING (min) PALLETS (ea) SHRINK WRAP (ea)	each	\$1.98				401	\$793.98		

Date	Operator			Well Name a	ınd No.		Rig Name an	id No.	Report No.	
08/10/21	MAGI	NOLIA OIL	& GAS	BOR	GSTEDT O	L 2H	28	85	Repo	rt #12
	DAILY	USAGE 8	& COST						CUMUI	_ATIVE
ltem	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
PRO V PLUS	25# sk	\$60.00	320		320					
PRO X	25# sk	\$70.00	320		320					
PRO SWEEP AID	25# sk	\$46.00	240		240					
SB SUPER CEAL	25# sk	\$80.00	253		253					
Clements WBM	bbl	\$45.36	149		149					
DIESEL TRANSFER F/3H	gal	\$2.38								\$35,633.36
DIESEL RECEIVED 7/1/21	gal	\$2.36								\$7,316.00
DIESEL RECEIVED 7/2/21 DIESEL RECEIVED 7/4/21	gal gal	\$2.38 \$2.38							2286	\$5,440.68
Skid Vol. 8_6_21	gal	\$2.38							7200	\$16,704.00
OBM_D 8_6_21	gal	\$2.28			5358	1642	\$3,743.76		1841	
OBM-D 8_9_21	gal	\$2.27		7200			4 0,1 1011 0			V 1,101110
					Daily S	ub-Total \$3	3,743.76		\$69,2	91.52
	1				<u> </u>	1		•		
	Cumi	ulative Total	I AES & 3rd	Party \$206	5,275.04					
						•				

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name:

MAGNOLIA OIL & GAS 285

Well Name:

BORGSTEDT OL 2H

					WEEK 1				Ι			WEEK 2				ı —			WEEK 3			
	Date	7/2/21	7/3/21	7/4/21	7/5/21	7/6/21	7/7/21	7/8/21	7/9/21	7/10/21	7/11/21	7/12/21	7/13/21	7/14/21	7/15/21	7/16/21	7/17/21	7/18/21	7/19/21	7/20/21	7/21/21	7/22/21
	Date	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu
	Bit Size	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	WCu	mu		Out	Oun	141011	1 40	WCu	IIIu		Out	Oun	WOII	Tuc	WCu	IIIu
Grand	Starting Depth	2,715	4,180	9,100	9,828	9,906	9,906															
				· ·			3,300															
Totals	Ending Depth	4,180	9,100	9,828	9,906	9,906																
	Footage Drilled	1,465	4,920	728	78	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
966	New Hole Vol.	139	466	69	7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Starting System Volume	2,970	2,848	2,724	2,594	2,500	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449
	Chemical Additions	4	9		4	-																
	Base Fluid Added	38	211	112	31	24																
	Barite Increase	-			14	-																
2,460	Weighted Mud Added	-				-																
-	Slurry Added	-				-																
11,348	Water Added	-				-																
-	Added for Washout					-																
14,547	Total Additions	42	220	112	48	24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Surface Losses					50																
12,464	Formation Loss					24																
498	Mud Loss to Cuttings	144	242	85	12	-																
444	Unrecoverable Volume	20	102	157	130	-																
15	Centrifuge Losses																					
13,501	Total Losses	164 344 242 142 89											-	-	-	-	-	-	-	-	-	-
1,985	Mud Transferred Out					1,985																
2,031	Ending System Volume	2,848	2,724	2,594	2,500	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449
-	Mud Recovered																					
				C	omments	s <i>:</i>					С	omment	s:					С	omment	s:		
				970 bbl fror	n Borgsted	t OL 3-H																
		7/2/21	Lost 144 b shakers	obl of mud c	utting reter	ntion /19 bb	l loses runr	ning over	7/9/21							7/16/21						
3,445		7/3/21		bbl cutting r	etention, Lo	ost 102 bbl	centrifuge/	over 'over	7/10/21							7/17/21						
0,110		,,0,2	shakers						7,10,21							,,,,,,,,,						
		7/4/21							7/11/21							7/18/21						
		7/5/21							7/12/21							7/19/21						
		7/6/21	casing run	eport, to BC losse. Cer 985bbl to B	ntrifuge app	olication to	reduce MW	/ to 9#.	7/13/21							7/20/21						
		7/7/21							7/14/21							7/21/21						
		7/8/21							7/15/21							7/22/21						

110 Old Market St. St Martinville, LA 70582

86.8°

10,652' TVD

Operator MAGN		OIL & G	۸6	Contractor	TERSO)NI	County / Parisl	h / Block HINGTO	. NI	Engineer S	Start Date	24 hr	ftg. 1,056 ft		Drilled De	pth 7,48	O ff
Well Name and No.	IOLIA	JIL & G	43	Rig Name ar		JIN	State	HINGIO	'IN	Spud Date		Curre	nt ROP		Activity	7,40	911
BOR	GSTED	T OL 2	1	Ü	285		Т	EXAS		-	3/22/21				•	тос	Н
Report for				Report for			Field / OSC-G		_	Fluid Type		Circul	ating Rate		Circulating	-	
Bobby G					ol Pusl	ner		INGS A			NBM		373 gpm	1			psi
		PROPERT		FICATION		T		DLUME (B	BL)		JMP #1		PUMP #2		RISE	R BO	OSTER
Weight	PV	YP	GELS	рН	API fl	% Solids	In Pits	282	2 bbl	Liner Siz			r Size 4.	75	Liner S	ize	
8.4-9.6	0-10	0-10	<5 <10	7-8	<25	2-10	In Hole	e -5	bbl	Stroke	1:	2 St	roke 1	2	Strok	е	
	М	UD PROP	ERTIES			ı	Active	277	7 bbl	bbl/stk	0.06	625 bb	l/stk 0.0	625	bbl/st	k	
Time Sample	Taken			0:05		12:00	Storag	e <u>176</u>	5 bbl	stk/mir	n 7	1 stk	:/min 7	'1	stk/m	in	
Sample Locati	on			pit		Suction	Tot. on Loc	cation 204	2 bbl	gal/mir	n 18	36 ga	I/min 18	86	gal/m	in	
Flowline Temp	erature °	F					Mud Wt. =	= 8.4 P\	V=1	YP=3	CIF	RCULATIO	ON DATA		n = 0.3	322 k	ζ = 274.0
Depth (ft)				16,333'		17,302'	Bit D	Depth = 17	,261 '		Wash	out =	I	Pump	Efficier	ncy =	95%
Mud Weight (p	opg)			8.4		8.4	Drill String	Volume	to Bit	244.2 b	bl Str	okes To Bi	t 3,910	٦	Time To	Bit	28 min
Funnel Vis (se	c/qt)		@ 90 °F	29		27	Disp.	Bottoms U	Jp Vol.	-249.3 b	bbl Botto	msUp Stks	-3,992	Bottor	nsUp Ti	ime	-28 min
600 rpm				5		3	96.3 bbl	TotalCi	rc.Vol.	277.1 b	bl Tot	alCirc.Stks	4,436	Total	Circ. Ti	ime	31 min
300 rpm				4		2		DRILLIN	G ASS	SEMBLY	DATA		s	OLIDS	CONT	ΓROL	
200 rpm				3		1	Tubulars	OD (in.)	ID	(in.) L	_ength	Тор	Unit		Scree	ns	Hours
100 rpm				2		1	Drill Pipe	4.500	3.8	326 1	1,323'		Shaker	1	API 20	0's	
6 rpm				1		1	DP / AGI.	5.370	2.5	562	21'	11,323'	Shaker	2	API 20	0's	
3 rpm				1		1	Drill Pipe	4.500	3.8	326	5,786'	11,344'	Shaker	. 3	API 20	0's	
Plastic Viscosi	ity (cp)		@ 120 °F	1		1	Dir. BHA	5.145	2.5	506	131'	17,130'	Cuttings [Oryer	API 14	0's	
Yield Point (lb/	/100 ft²)		T0 = 1	3		1		CASI	NG & I	HOLE D	ATA						
Gel Strength (lb/100 ft ²)	10 se	ec / 10 min	1/2		1/2	Casing	OD (in.)	ID	(in.)	Depth	Тор	Centrifuç	ge 1			
Gel Strength (lb/100 ft2)	30 min	3		1	Riser						VOLUM	IE AC	COUNT	ΓING	(bbls)
API Filtrate / C	ake Thic	kness					Surface	10 3/4		:	2,715'		Prev. T	otal or	n Locat	ion	2002.9
HTHP Filtrate	/ Cake TI	nickness					Int. Csg.	7 5/8	3.0	080	9,893'		Transfe	erred Ir	n(+)/Ou	it(-)	
Retort Solids (Content			0.3%		0.3%								Oil	Added	(+)	71.5
Retort Oil Con	tent			0.5%		0.5%							l	Barite	Added	(+)	
Retort Water 0	Content			99.2%		99.2%	Open	Hole Size	:	1	7,489'		Other Pr	oduct	Usage	(+)	0.7
Sand Content				0%		0%	AN	NULAR GI	EOME	TRY & F	RHEOLO	GY	,	Water	Added	(+)	5145.0
M.B.T. (Methy	lene Blue	Capacity)	(ppb)				annula	ar .		velocit	y flow	ECD	Le	ft on C	uttings	(-)	
рН				7.8		7.6	section	(16	epth	ft/min	-	lb/gal	0	BM Lo	st to H	ole	-33.0
Alkalinity, Mud	l Pm							<u> </u>					Water P	ump [own H	ole	-5145.0
Alkalinities, Fil	trate Pf/N	Λf					3.08x4	.5 9,8	893'	-848.3	3	8.40	Est. T	otal or	n Locat	ion	2042.1
Chlorides (mg/	/L)			3500		3300	0x4.5	11,	323'	-450.9)	8.40	Est. Los	ses/Ga	ains (-)/		0.0
Calcium (ppm))			120		120	0x5.37	7 11,	344'	-316.6	5	8.40	BIT	HYDR	AULIC	S DA	TA
Excess Lime (lb/bbl)						0x4.5	17,	130'	-450.9)	8.40	Bit H.S.I.	Bit .	ΔP	lozzle	s (32nds)
Average Spec	ific Gravi	ty of Solids	3	2.60	2.60	2.60	0x5.14	5 17,	261'	-344.9)	8.40	#DIV/0!	48	psi	18	18 18
Percent Low G	Percent Low Gravity Solids			0.2%		0.2%							Bit Impact	Noz		18	18 18
Percent Drill S	Percent Drill Solids			0.2%		0.2%							Force	Velo (ft/s	-		
PPA Spurt / To	PPA Spurt / Total (ml) @						BIT D	DATA	Ма	nuf./Type	9		130 lbs	80			
Estimated Total	Estimated Total LCM in System						Size	Depth In	Но	urs F	ootage	ROP ft/hr	Motor/M	WD	Calc. (Circ. I	Pressure
Sample Taken	ample Taken By					R. Bowlin		9,906 ft	80	0.0 7	,583 ft	94.8	4,200	psi	4	,819	psi
Afternoon Rema	ternoon Remarks/Recommendations:					1	Afternoon R	Rig Activity:					1				

 $\mbox{Mw} \ @ \mbox{8.4ppg}$ Pumped 5,178bbls downhole by pm report time.

MWD Temp: 194 Degrees

Rec: 995bbls of produced H2O/ Pumped 1,622bbls

Pumped 33bbls OBM and 71.5bbls of Diesel

Cont drilling ahead from 16,333'MD to 17,489'MD whereas we experienced a mud motor failure. At 16,840'MD began maintaining 2% oil in the suction with additions of diesel to aid in lubricity. While drilling pumped 9.2ppg OBM sweeps in 5-10bbl increments every other stand and 5bbls every 20 minutes on troublesome slides. Utilized produced H2O pumping a +/- 70/30 blend of fresh drill H2O and produced H2O. Trickled in PHPA at 1 can every 3hrs for encapsulation. At the time of the pm rpt W&R out of the hole at 17,261'MD.

OUTSOURCE FLUID SOLUTIONS LLC.

1.3° 8,873' TVD

MAGNOLIA OIL & GAS PATTERSON WASHINGTON 06/23/21 1,056 ft 17,489 ft Well Name and No Name and No. ROF **BORGSTEDT OL 2H** 285 **TEXAS** 06/22/21 0 ft/hr TOOH Field / OCS-G # luid Type rculating Rate Circulating Pressure **Tool Pusher GIDDINGS AC** 373 gpm **Bobby Gwin/ Greg Johnson WBM** 4.842 psi MUD PROPERTY SPECIFICATIONS PUMP #1 PUMP #2 RISER BOOSTER MUD VOLUME (BBL) Weight **GELS** API fl % Solids In Pits 231 bbl Liner Size 4.75 Liner Size 4.75 Liner Size рΗ 8.4-9.6 0-10 0-10 <5 <10 7-8 <25 2-10 In Hole 0 bbl Stroke 12 Stroke 12 Stroke 8/11/21 8/10/21 226 bbl 0.0625 0.0625 0.0000 bbl/stk bbl/stk bbl/stk 0:05 12:00 71 71 stk/min 0 Time Sample Taken Storage 1665 bbl stk/min stk/min gal/min gal/min gal/min Sample Location pit Suction Tot. on Location 1896 bbl 186 186 0 n = 0.322 K = 273.977 Flowline Temperature °F PHHP = 1052 **CIRCULATION DATA** Depth (ft) 17.489 17.302 Bit Depth = 8,953 ' Washout = 0% Pump Efficiency = 95% Mud Weight (ppg) 8 4 8 4 Volume to Bit 126 1 bbl Strokes To Bit 2.018 Time To Bit 14 min Drill String Disp. Bottoms Up Vol. -131.1 bbl @ 90 °F 27 Funnel Vis (sec/qt) 29 BottomsUp Stks -2.098BottomsUp Time -15 min 5 3 600 rpm 51.0 bbl TotalCirc Vol. 226.0 bbl TotalCirc Stks 3.618 Total Circ Time 25 min 4 **DRILLING ASSEMBLY DATA** SOLIDS CONTROL 300 rpm 2 3 1 OD (in.) ID (in.) Screens Hours 200 rpm **Tubulars** Length Top Unit 2 1 API 200's Drill Pipe 3.826 3,015 0' Shaker 1 100 rpm 4.500 DP / AGI. 5.370 2.562 21' 3,015' Shaker 2 API 200's 6 rpm 1 1 Drill Pipe 4.500 3.826 5,786' 3,036' Shaker 3 API 200's 3 rpm Dir. BHA 8.822 Cuttings Dryer API 140's Plastic Viscosity (cp) Yield Point (lb/100 ft²) T0 = 3 1 **CASING & HOLE DATA** 1/2 1/2 Casing OD (in.) ID (in.) Gel Strength (lb/100 ft2) 10 sec/10 min Depth Top Centrifuge 1 30 min 3 1 **VOLUME ACCOUNTING (bbls)** Riser Gel Strength (lb/100 ft2) API Filtrate / Cake Thickness Surface 10 3/4 2.715 0' 2002.9 Prev. Total on Location Int. Csg. HTHP Filtrate / Cake Thickness @ 0 °F 7 5/8 2.300 9,893' 0' Transferred In(+)/Out(-) Retort Solids Content 0.3% 0.3% Oil Added (+) 71.5 Retort Oil Content 0.5% 0.5% Barite Added (+) 0.0 Retort Water Content 99.2% 99.2% Open Hole Size 0.000 17.489 Other Product Usage (+) 0.7 **ANNULAR GEOMETRY & RHEOLOGY** 0% 0% 6275.5 Sand Content Water Added (+) M.B.T. (Methylene Blue Capacity) (ppb) Left on Cuttings (-) 0.0 annular meas velocity flow ECD section depth ft/min reg lb/gal 7.8 7.6 **OBM Lost to Hole** -107.0 Ha -6347.8 Water Pump Down Hole Alkalinity, Mud Pm Alkalinities, Filtrate Pf/Mf 2.3x4.5 3,015' -610.4 8.40 Est. Total on Location 1895.8 2.3x5.37 3500 3300 3,036 -387.8 8.40 Est. Losses/Gains (-)/(+) 0.0 Chlorides (mg/L) 120 2.3x4.5 8,822' -610.4 **BIT HYDRAULICS DATA** Calcium (ppm) 120 8.40 2.3x5.145 8.953' -431.1 Bit H.S.I. Excess Lime (lb/bbl) 8.40 Βίτ ΔΡ Nozzles (32nds) 2.60 48 psi Average Specific Gravity of Solids 2.60 2.60 18 18 18 0.2% 0.2% Nozzle 18 18 18 Percent Low Gravity Solids Bit Impact Velocity Force Percent Drill Solids 0.2% 0.2% PPA Spurt / Total (ml) @ @ 0 °F **BIT DATA** Manuf./Type 130 lbs 80 ROP ft/hr Estimated Total LCM in System ppb Size Depth In Hours Footage Motor/MWD Calc. Circ. Pressure R. Bowlin 9.906 ft 80.0 7.583 ft 4.200 psi Sample Taken By E.Sanche: 94.8 4.562 psi Remarks/Recommendations: Rig Activity:

Skid Vol. 2116bbl

Frac Tank Vol: 1,545 bbl

Continue to drill from 16,333' to 16,840' using fresh/production (70/30 ratio) water as the primary drilling fluid. Began adding Diesel to suction @ 2% for additional lubricity. Drilled to 17,489'. Pumping 5-10 bbl of OBM sweeps every other stand then increased to every 20 min. Trouble shoot mud motor, began POOH to 8,953'. Casing pressure build up, pumped 30 bbl of Kill Mud down back side. Resume to POOH/monitor casing pressure, pumping Kill Mud as needed.

Total F/water pumped: 4,653.5 bbl, Production Water: 1,622 bbl, and OBM:107 bbl.

Diesel: 71.5 bbl

Е	ng. 1:	R	lober	Bow	lin	Er	ng. 2:	Edga	r Sanchez	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Р	none:	2	28-99	0-10	55	Pł	none:	956-	693-3035	Phone:	432-686-7361	Phone:	-			
W 1	P 1	Y 1	g 1	G 1	р 1	A 1	S 0	C 0	carefully	and may be	ecommendation, exp used if the user so ation, and this is a r	elects, however	, no representation	as been prepared on is made as to the	\$9,243.16	\$146,226.68
												INCLUDI	NG 3RD PAR	TY CHARGES	\$16,087.72	\$222,362.76

Date 08/11/21	Operator MAGI	NOLIA OIL		Well Name a BOR	na No. GSTEDT OI	L 2H	Rig Name an	85	Report No. Repo	rt #13
		USAGE 8								LATIVE
lka-ma	1		Previous	Dessived	Closing	Daily	Daily Coat	_	Cum	
Item	Unit	Unit Cost	Inventory	Received	Inventory	Usage	Daily Cost		Usage	Cum Cost
SAPP (50)	50# sk	\$44.56					*****		50	
PHPA LIQUID (pail)	5 gal	\$41.36			35	6	\$248.16	-	11	\$454.96
CAUSTIC SODA (50)	50# sk	\$27.76	32		32					
								-		
CACL2 (50)	50# sk	\$14.32	336		336			_	118	\$1,689.76
LIME (50)	50# sk	\$5.00	150		150				287	\$1,435.00
OPTI - G	50# sk	\$30.59	125		125			<u> </u>		\$2,447.20
BENTONE 38 (50)	50# sk	\$163.94	45		45			-		\$1,639.40
BENTONE 910 (50)	50# sk	\$59.40							12	\$712.80
BENTONE 990 (50)	50# sk	\$83.59	85		85				32	
OPTI - MUL	gal	\$10.75	385		385			-	220	
OPTI - WET	gal	\$8.34	300		300			-	195	
NEW PHALT	50# sk	\$38.72	115 92		115 92				5	\$193.60
OIL SORB (25)	25# sk	\$4.75	92		92			-		
NEW CARR /M	E0# alc	¢ E 05	100		400				40	¢=0 =0
NEW CARB (M) MAGMAFIBER F (25)	50# sk 25# sk	\$5.25 \$28.05	133 144		133 144			-	10 26	\$52.50 \$729.30
NEW PLUG M	25# sk 50# sk	\$28.05 \$10.51	70		70			-	∠0	φ1∠9.3U
NEW PLOG IVI	50# SK	\$10.51	70		70			-		
								-		
								_		
NEW WATE (SACK BARITE)	100# sk	\$11.50	120		120				38	\$437.00
BARITE BULK (100)	100# sk	\$7.00	1380		1380				854	
(/	.55% 510	Ţoo	.500		.550				30 1	, 2, 3. 3.00
								-		
								-		
				_						
								-		
OPTI DRILL (OBM)	bbl	\$65.00	2003		1896	107	\$6,955.00		1549	\$100,685.00
								-		
										_
								-		
				_						
ENGINEERING (24 HR)	each	\$990.00				2	\$1,980.00		10	\$17,820.00
ENGINEERING (24 HR) ENGINEERING (DIEM)	bbl	\$30.00				2			18	
ENGINEERING (DIEM) ENGINEERING (MILES)	each	\$30.00					φου.υυ		18	φυ40.00
	each	\$15.00							2	
Scale Ticket	Guon									
TRUCKING (cwt)	each	\$1.98							801	
TRUCKING (cwt) TRUCKING (min)	+	\$650.00							1	\$650.00
Scale Ticket TRUCKING (cwt) TRUCKING (min) PALLETS (ea) SHRINK WRAP (ea)	each	1								

Date	Operator			Well Name a	and No.		Rig Name ar	id No.	Report No.	
08/11/21	MAGI	NOLIA OIL	& GAS	BOR	GSTEDT O	L 2H	2	85	Repo	rt #13
	DAILY	USAGE 8	& COST						СПМП	LATIVE
ltem	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
PRO V PLUS	25# sk	\$60.00	320		320					
PRO X	25# sk	\$70.00	320		320					
PRO SWEEP AID	25# sk	\$46.00	240		240					
SB SUPER CEAL	25# sk	\$80.00	253		253					
Clements WBM	bbl	\$45.36	149		149					
DIESEL TRANSFER F/3H		f0.20							4.4070	Фол соо ос
	gal	\$2.38								\$35,633.36 \$7,316.00
DIESEL RECEIVED 7/1/21 DIESEL RECEIVED 7/2/21	gal	\$2.36 \$2.38							2286	
DIESEL RECEIVED 7/4/21	gal gal	\$2.38			1		1		2286	φυ, 44 0.08
Skid Vol. 8_6_21	gal	\$2.30							7200	\$16,704.00
OBM_D 8_6_21	gal	\$2.28			2356	3002	\$6,844.56			\$10,704.00
OBM-D 8_9_21	gal	\$2.27	7200		7200		ψ0,044.30		4043	ψ11,042.04
OBW D 0_3_21	gai	ΨΖ.Ζ1	7200		7200					
					Daily S	ub-Total \$6	6,844.56		\$76,1	36.08
							-		, .,,	
						1				
	Cum	ulative Tota	I AES & 3rd	Party \$222	2,362.76					
						•				

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name: MAGNOLIA OIL & GAS

Rig Name: 285
Well Name: BOR

BORGSTEDT OL 2H

					WEEK 1				1			WEEK 2							WEEK 3						
	Date	7/2/21	7/3/21	7/4/21		7/6/21	7/7/21	7/8/21	7/9/21	7/10/21	7/11/21	7/12/21	7/13/21	7/14/21	7/45/04	7/46/04	7/17/21	7/18/21	7/19/21	7/20/21	7/21/21	7/22/21			
	Date	Fri	Sat	Sun	7/5/21 Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	7/14/21 Wed	7/15/21 Thu	7/16/21 Fri	Sat	Sun	Mon	Tue	Wed	Thu			
	Bit Size	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	weu	IIIu		Jai	Juli	IVIOII	Tue	weu	IIIu		Jai	Juli	IVIOII	Tue	vveu	IIIu			
	Starting Depth	2,715	4,180	9,100	9,828	9,906	9,906																		
		<u> </u>					9,900																		
	Ending Depth	4,180	9,100	9,828	9,906	9,906																			
	Footage Drilled	1,465	4,920	728	78	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
1,017	New Hole Vol.	139	466	69	7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
	Starting System Volume	2,970	2,848	2,724	2,594	2,500	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449			
42	Chemical Additions	4	9		4	-																			
707	Base Fluid Added	38	211	112	31	24																			
62	Barite Increase	-			14	-																			
2,460	Weighted Mud Added	-				-																			
-	Slurry Added	-				-																			
17,624	Water Added	-				-																			
-	Added for Washout					-																			
20,894	Total Additions	42	220	112	48	24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
80	Surface Losses	Ì				50																			
	Formation Loss					24																			
	Mud Loss to Cuttings	144	242	85	12	-																			
	Unrecoverable Volume	20	102	157	130	-																			
	Centrifuge Losses					15																			
		404	044	040	440			1					1												
10,000	Total Losses	164	344	242	142	89	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
1,985	Mud Transferred Out					1,985																l			
1,896	Ending System Volume	2,848	2,724	2,594	2,500	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449			
-	Mud Recovered																								
				С	omment	s:					С	omment	s:					С	omment	s:					
			Transfer 2	970 bbl fro																					
		7/2/21				ntion /19 bb	l loses runi	ning over	7/9/21							7/16/21									
			1 1 0 10	LLL																					
3,445		7/3/21	shakers	bbi cutting i	retention, L	ost 102 bbl	centrituge	over	7/10/21							7/17/21									
	•	7/4/21							7/11/21							7/18/21									
		., ,,							.,,							.,,									
		7/5/21							7/12/21							7/19/21									
		7/6/21	casing run	losse. Ce	ntrifuge app	H. Losses replication to H.450bbls le	reduce MV	/ to 9#.	7/13/21							7/20/21									
		7/7/21							7/14/21							7/21/21									
		7/8/21							7/15/21							7/22/21									

TEL: (337) 394-1078

110 Old Market St. St Martinville, LA 70582

2.3° 7,345' TVD

Operator				Contractor			County / Parish	h / Block		Engineer Star	rt Date	24 hr f	fta		Drilled	Denth	
	IOLIA (OIL &	GAS		TERSO	ON	-	HINGT	ON	· ·	23/21	241111	ng.			17,48	39 ft
Well Name and No.		J G		Rig Name an			State			Spud Date		Currer	nt ROP		Activity		
BOR	GSTED	T OL	2H		285		Т	EXAS		06/2	22/21					TII	Н
Report for	win/C	.a. la	- h n o o n	Report for	al Dual		Field / OSC-G		۸.	Fluid Type	DM	Circula	ating Rate		Circula	ting Pres	ssure
Bobby G					ol Pusi	ner		INGS			BM	-	DUMB	"	BIO		
		1	RTY SPECI				MUD VC		. ,		/IP #1		PUMP				OOSTER
Weight	PV	YP		pН	API fl	% Solids			855 bbl	Liner Size			r Size	4.75		Size	
8.4-9.6	0-10	0-10		7-8	<25	2-10	In Hole		8 bbl	Stroke	12		oke	12	Stro		
		UD PR	OPERTIES			I	Active		851 bbl	bbl/stk	0.062			0.0625		/stk	
Time Sample				0:05		12:00	Storage		<u>464 bbl</u>	stk/min			/min			min	
Sample Locati				pit		Suction	Tot. on Loc			gal/min		_	/min		<u> </u>	min_	
Flowline Temp	erature °	F					Mud Wt. =		PV=1	YP=3	CIRC	ULATIC	ON DATA	١	n = ().322	K = 274.0
Depth (ft)				17,489'		17,302'	Bit [Depth =	7,424 '		Washou	t =		Pump	o Effici	ency =	= 95%
Mud Weight (p	opg)			8.4		8.4	Drill String	Volu	me to Bit	104.4 bbl	Strok	es To Bit	t		Time '	To Bit	
Funnel Vis (se	ec/qt)		@ 90 °F	29		26	Disp.	Bottoms	Up Vol.	-108.7 bb	Bottom	sUp Stks	;	Botte	omsUp	Time	
600 rpm				5		3	42.5 bbl	Total	Circ.Vol.	350.7 bbl	Total	Circ.Stks	; 	Tot	al Circ.	Time	
300 rpm				4		2		DRILL	NG AS	SEMBLY D	ATA			SOLIE	os co	NTRO	L
200 rpm				3		1	Tubulars	OD (in	.) ID	(in.) Le	ngth	Тор	U	nit	Scre	eens	Hours
100 rpm				2		1	Drill Pipe	4.500	3.	826 7,	075'		Sha	ker 1	API :	200's	
6 rpm				1		1	DP / AGI.	5.312	2.	562	30'	7,075'	Sha	ker 2	API :	200's	
3 rpm				1		1	Drill Pipe	4.500	3.8	826 1	89'	7,104'	Sha	ker 3	API :	200's	
Plastic Viscos	ity (cp)		@ 120 °F	1		1	Dir. BHA	5.000	2.	688 1	31'	7,293'	Cutting	s Dryer	API	140's	
Yield Point (lb.	/100 ft ²)		T0 = 1	3		1		CAS	SING &	HOLE DAT	ГА						
Gel Strength ([lb/100 ft²]) 1	0 sec / 10 min	1/2		1/1	Casing	OD (in	.) ID	(in.) De	epth	Тор	Centr	ifuge 1			
Gel Strength (lb/100 ft2	2)	30 min	3		1	Riser						VOL	UME A	ccou	NTING	(bbls)
API Filtrate / C	Cake Thic	kness					Surface	10 3/4	ļ.	2,	715'		Prev	. Total	on Loc	ation	1895.8
HTHP Filtrate	/ Cake Th	nicknes	ss				Int. Csg.	7 5/8	2.3	300 9,	893'		Tran	sferred	In(+)/0	Out(-)	199.0
Retort Solids (Content			0.3%		0.4%								0	il Adde	ed (+)	
Retort Oil Con	itent			0.5%										Barite	e Adde	ed (+)	
Retort Water (Content			99.2%		99.6%	Open	Hole Si	ze	17	,489'		Other	Produc	t Usag	je (+)	
Sand Content				0%		0%	ANI	NULAR	GEOME	TRY & RH	IEOLOG	Y		Wate	r Adde	ed (+)	402.0
M.B.T. (Methy	lene Blue	Capac	city) (ppb)				annula	ar	ما د د اد	velocity	flow	ECD		Left on	Cuttin	gs (-)	
рН				7.8		7.8	section	n	depth	ft/min	reg	lb/gal		ОВМ І	ost to	Hole	-300.0
Alkalinity, Muc	d Pm							,		•			Wate	r Pump	Down	Hole	-369.5
Alkalinities, Fil	Itrate Pf/N	Лf					2.3x4.	5	7,075'			8.40	Es	t. Total	on Loc	ation	1827.3
Chlorides (mg	/L)			3500		900	2.3x5.3	12	7,104'			8.40	Est. L	.osses/0	Gains (-)/(+)	0.0
Calcium (ppm))			120		40	2.3x4.	5	7,293'			8.40	В	IT HYD	RAUL	ICS D	ATA
Excess Lime ((lb/bbl)						2.3x5	;	7,424'			8.40	Bit H.S	i.l. Bi	t ∆P	Nozzl	es (32nds)
Average Spec	ific Gravi	ty of Sc	olids	2.60	2.60	2.60							#DIV/	0!		18	18 18
Percent Low G	Gravity Sc	olids		0.2%		0.3%							Bit Impa	acti	zzle	18	18 18
Percent Drill S	Solids			0.2%		0.3%							Force	' ve	locity 'sec)		
PPA Spurt / To	otal (ml)	@					BIT D	DATA	Ма	nuf./Type	GTD	64M					
Estimated Total	al LCM in	Syster	m				Size	Depth	In Ho	ours Foo	otage R	OP ft/hr	Motor	/MWD	Calc	. Circ.	Pressure
Sample Taker	n By			E.Sanchez		R. Bowlin		17,489	ft							р	si
Afternoon Rema	arks/Reco	mmend:	ations:			I	Afternoon R	Pia Activit	v.	L			 		<u> </u>		

Afternoon Rig Activity:

Rec 199bbls 16.0ppg Kill Mud 225 additional vol. on order.

No Produced H2O pumped in the past 12 hours.

Finished tripping out of the hole , LD the directional BHA, PU BHA #4. TIH to 4,900'MD whereas observed casing pressure, pumped 68bbls @ 16.5ppg. Receiving 16.0ppg kill mud 199bbls at the time of the pm report. Passing 7,424'MD TIH.

OUTSOURCE FLUID SOLUTIONS LLC.

87.0°

10,681' TVD

GSTED		Rig Name an												-			
BORGSTEDT OL 2H eport for Bobby Gwin/ Greg Johnso				285		State TE	EXAS		Spud Date	6/22/21		105 ft/h		Activity Dril	ling/S	Slid	ing
			Report for			Field / OCS-G #	NOO 46		Fluid Type	14/014	Circula	ating Rate			ng Press		_
				ol Pusi	ner		NGS AC			WBM		378 gpr	-		,600	•	
		T			0/ Colido					UMP #1	75 Line	PUMP #2			ER BO	051	EK
			i i														
0-10	0-10	<5 <10		<25												0.00	200
Falcan																	
			ріт		Suction				gavm								
erature -F	•		47.004		47 200							NIA					
						Bit L	•		252.01			4.004	1				
		@ 00 %				Drill String Disp.											
c/qt)		@ 90 F												•			
						99.1 bbl					otalCirc.Stks	, , , , , , , , , , , , , , , , , , ,					nın
							, ,		` '	Ü						Hou	ırs
										*							
											,						
						,											
						Dir. BHA					17,673'	Cuttings	Dryer	API 1	40's		
100 ft ²)		T0 = 1								ATA							
b/100 ft²)	10				1/1	Casing	OD (in.)	ID	(in.)	Depth	Тор	Centrifu	ige 1				
b/100 ft ²)		30 min	3		1	Riser						VOLU	ME AC	COUN	ITING	(bbl	s)
ake Thick	ness						10 3/4			2,715'	0'	Prev.	Total or	n Loca	ation	18	95.8
/ Cake Thi	ickness	@ 0 °F				Int. Csg.	7 5/8	3.	210	9,893'	0'	Transf	erred Ir	n(+)/O	ut(-)	7	'14.0
Content			0.3%		0.4%								Oil	Adde	(+) b		0.0
tent			0.5%										Barite	Adde	(+) b		33.4
Content			99.2%		99.6%	Open	Hole Size	0.	000	17,804'		Other F	Product	Usage	e (+)		0.2
			0%		0%	ANI	NULAR GE	OME	TRY & R	HEOLO	GY		Water	Adde	(+)	31	92.5
ene Blue	Capacity)	(ppb)								-	ECD	L	eft on C	Cutting	ıs (-)		0.0
			7.8		7.8	section	de	epth	ft/mir	n reg	lb/gal	(OBM Lo	st to	Hole	-5	51.4
Pm												Water	Pump [Down I	Hole	-31	92.6
trate Pf/Mf	f					3.21x4.5	5 9,8	893'	-931.	0	8.40	Est.	Total or	n Loca	ation _	20	92.0
L)			3500		900	0x4.5	17,	,455'	-457.	3	8.40	Est. Lo	sses/Ga	ains (-)/(+)		0.0
			120		40	0x5.312	2 17,	,484'	-328.	2	8.40	BIT	HYDR	AULI	CS DA	TA	
b/bbl)						0x4.5	17,	,673'	-457.	3	8.40	Bit H.S.I.	Bit .	ΔΡ	Nozzle	s (32	inds)
fic Gravity	of Solids	3	2.60	2.60	2.60	0x5	17,	,804'	-370.	4	8.40		50	psi	18	18	18
Gravity Soli	ids		0.2%		0.3%								† I		18	18	18
olids			0.2%		0.3%							Force		-			
otal (ml) @)	@ 0 °F				BIT D	ATA	Ma	anuf./Typ	e G	TD64M	134 lbs	8	1			
al LCM in	System	ppb				Size	Depth In	Н	ours	Footage	ROP ft/hr	Motor/N	MWD	Calc.	Circ.	Press	sure
Ву			E.Sanchez		R. Bowlin		17,489 ft	_				ps	i		645	osi	
mmendatio	ons:		<u>'</u>			Rig Activity:							I.				
	PV 0-10 Taken on perature °F ppg) c/qt) tity (cp) f100 ft²) lb/100 ft²) lb/100 ft²) cake Thick f Cake Th Content tent Content tent lene Blue if Pm trate Pf/Mi fic Gravity Gravity Sol olids olal LCM in signal and signa	PV VP 0-10 0-10 Taken on perature °F DP9) c/qt) fty (cp) f100 ft²) lb/100 ft²) Cake Thickness f Cake Thickness Content tent Content I Pm trate Pf/Mf f(L) lb/bbl) ific Gravity of Solids Gravity Solids cotal (ml) @ al LCM in System	PV YP GELS 0-10 0-10 GELS <5 < 10 Content C	PV 0-10 0-10 c-5 <10 7-8 8/12/21 Taken 0:05 on pit ereture °F	0-10	PV YP GELS pH API fl % Solids 0-10 0-10 <-5 <-10 7-8 <-25 2-10 Suction Pit Suction Pit Suction Pit Pit Suction Pit Pi	PV YP GELS pH API fit % Solids In Pits 0-10 0-10 0-10 < 5 < 10 7-8 < 25 2-10	PV	PV	PV	PV VP SELS	PV	PV	Pro	PV	Pro	Pro

Skid Vol. 2116bbl

Frac Tank Vol: 1,545 bbl

Received 810 bbl OBM

Returned 96 bbl OBM

POOH to BHA, pumping calculated fill. Pumped 84 bbl of 16.5 bbl Kill Mud. P/U BHA and TIH and began pumping Kill mud down back side from 2,800' to 4,900'. Continue TIH to 16,300' and began reaming down to 17,489'. Resume drilling/sliding to 17,804 @ 105 ft/hr. Continue to pump OBM sweeps as needed. Pumping Kill Mud as needed to control casing pressure. Adding PHPA to drill water. Total F/water pumped:3,192.6 bbl, and OBM:551.4 bbl.

Е	ng. 1:	R	obert	Bow	lin	Er	ng. 2:	Edga	Sanchez	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Р	none:	22	28-99	0-10	55	Pł	hone:	956-6	693-3035	Phone:	432-686-7361	Phone:	-			
W 1	P 1	Y 1	g 1	G 1	р 1	A 1	S 0	C 0	carefully	and may be		elects, however	, no representati	nas been prepared on is made as to the	\$39,959.72	\$186,186.40
												INCLUDI	NG 3RD PAR	TY CHARGES	\$39,959.72	\$262,322.48

Date 08/12/21	Operator MAGI	NOLIA OIL		Well Name a	ind No. GSTEDT O l	L 2H	Rig Name an	d No. 35	Report No. Repo	rt #14
	DAILY	USAGE 8	k COST				ı			LATIVE
ltom			Previous	Bassiyad	Closing	Daily	Daily Coat	-	Cum	
Item	Unit	Unit Cost	Inventory	Received	Inventory	Usage	Daily Cost		Usage	Cum Cost
SAPP (50)	50# sk	\$44.56	0.5		00		#00.70		50	
PHPA LIQUID (pail) CAUSTIC SODA (50)	5 gal 50# sk	\$41.36 \$27.76	35 32		33 32	2	\$82.72		13	\$537.68
CAUSTIC SODA (50)	5U# SK	\$27.76	32		32					
0.4.01.0 (50)	F0# -1-	£44.00	200		000			-	440	£4 000 70
CACL2 (50)	50# sk	\$14.32	336		336			-	118	. ,
LIME (50) OPTI - G	50# sk	\$5.00 \$30.59	150 125		150 125			-	287	\$1,435.00 \$2,447.20
BENTONE 38 (50)	50# sk 50# sk	\$163.94	45		45					\$1,639.40
BENTONE 910 (50)	50# sk	\$59.40	40		45				12	\$712.80
BENTONE 990 (50)		\$83.59	85		85			-	32	
OPTI - MUL	50# sk	\$83.59 \$10.75	385		385			-	220	\$2,874.88
OPTI - WET	gal	\$8.34	300		300				195	
NEW PHALT	gal 50# sk	\$38.72	115		115				195	\$1,626.30
OIL SORB (25)	25# sk	\$4.75	92		92				5	\$193.00
OIL SONB (23)	25# SK	φ4.73	92		92					
NEW CARB (M)	50# sk	\$5.25	133		133			-	10	\$52.50
MAGMAFIBER F (25)	25# sk	\$28.05	144		144			-	26	\$729.30
NEW PLUG M	50# sk	\$10.51	70		70					
NEW WATE (SACK BARITE)	100# sk	\$11.50	120	100	120	100	# 0.000.00		38	\$437.00
BARITE BULK (100)	100# sk	\$7.00	1380	400	1300	480	\$3,360.00		1334	\$9,338.00
								-		
								-		
								-		
								-		
								-		
								-		
								-		
								-		
								-		
OPTI DRILL (OBM)	bbl	\$65.00	1896	714	2092	518	\$33,670.00		2067	\$134,355.00
ENGINEERING (24 HR)	each	\$990.00	-				\$1,980.00			\$19,800.00
ENGINEERING (DIEM)	bbl	\$30.00				2	\$60.00		20	\$600.00
ENGINEERING (MILES)	each	\$1.00								
Scale Ticket	each	\$15.00				1	\$15.00		3	\$45.00
TRUCKING (cwt)	each	\$1.98				400	\$792.00		1201	\$2,377.98
TRUCKING (min)	each	\$650.00							1	\$650.00
DALL ETO ()	each	\$12.00					1		11	\$132.00
PALLETS (ea)		1								
SHRINK WRAP (ea)	each	\$12.00							10	\$120.00

Date	Operator			Well Name a	ind No.		Rig Name an	id No.	Report No.	
08/12/21	MAGI	NOLIA OIL	& GAS	BOR	GSTEDT O	L 2H	28	85	Repo	rt #14
	DAILY	USAGE 8	& COST						CUMUL	ATIVE
ltem	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
PRO V PLUS	25# sk	\$60.00	320		320					
PRO X	25# sk	\$70.00	320		320					
PRO SWEEP AID	25# sk	\$46.00	240		240					
SB SUPER CEAL	25# sk	\$80.00	253		253					
Clements WBM	bbl	\$45.36	149		149					
DIESEL TRANSFER F/3H	gal	\$2.38		1						\$35,633.36
DIESEL RECEIVED 7/1/21	gal	\$2.36							-	\$7,316.00
DIESEL RECEIVED 7/2/21	gal	\$2.38		1					2286	\$5,440.68
DIESEL RECEIVED 7/4/21 Skid Vol. 8_6_21	gal	\$2.38 \$2.32							7200	\$16,704.00
OBM_D 8_6_21	gal gal	\$2.32		1	2356					\$16,704.00
OBM-D 8_9_21	gal	\$2.27			7200				4043	\$11,042.04
OBIVI-D 0_9_21	yaı	ΨΖ.Ζ1	7200		7200					
				<u> </u>						
				ļ						
				1						
				-						
				1						
				1						
		1								
			<u> </u>	I			1			
									\$76,1	36.08
	-									
	Cumu	ılative Tota	I AES & 3rd	Party \$262	2,322.48					
						İ				

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name: MAGNOLIA OIL & GAS

Rig Name: 285
Well Name: BOR

BORGSTEDT OL 2H

					WEEK 1							WEEK 2							WEEK 3			
	Date	7/2/21	7/3/21	7/4/21	7/5/21	7/6/21	7/7/21	7/8/21	7/9/21	7/10/21	7/11/21	7/12/21	7/13/21	7/14/21	7/15/21	7/16/21	7/17/21	7/18/21	7/19/21	7/20/21	7/21/21	7/22/21
		Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu
	Bit Size	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8																
Grand	Starting Depth	2,715	4,180	9,100	9,828	9,906	9,906															
Totals	Ending Depth	4,180	9,100	9,828	9,906	9,906																
	Footage Drilled	1,465	4,920	728	78	-	_	_	_	_	_	_	<u> </u>	_	_			_	_	_		_
	New Hole Vol.	139	466	69	7	_		-			_			-							-	<u> </u>
1,031	Starting System Volume	2,970	2,848	2,724	2,594	2,500	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449	-
40				2,724			449	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449
	Chemical Additions Base Fluid Added	38	9 211	440	31	- 04																
		- 38	211	112	14	24																
	Barite Increase	-			14	-																
-	Weighted Mud Added	.																				
- 00.047	Slurry Added	-				-																
20,817	Water Added	-				-																
	Added for Washout					-																
,	Total Additions	42	220	112	48	24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Surface Losses					50																
	Formation Loss					24																
	Mud Loss to Cuttings	144	242	85	12	-																
	Unrecoverable Volume	20	102	157	130	-																
15	Centrifuge Losses					15																
23,728	Total Losses	164	344	242	142	89	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2.081	Mud Transferred Out	d Transferred Out 1,985																				
	Ending System Volume										449	449	449	449	449	449	449	449	449	449	449	449
	Mud Recovered		l		1			1		1	1		1	1	i i			l	l			l
	Mud Recovered																					
				С	omment	s:					C	omment	s:					С	omment	s:		
					m Borgsted																	
		7/2/21	Lost 144 b shakers	obl of mud o	cutting reter	ntion /19 bb	l loses run	ning over	7/9/21							7/16/21						
	7																					
4,159		7/3/21	Lost 242 I shakers	bbl cutting	retention, L	ost 102 bbl	centrifuge	/over	7/10/21							7/17/21						
		7/4/21							7/11/21							7/18/21						
		7/5/21							7/12/21							7/19/21						
		7/6/21			OONE C-1F				7/13/21							7/20/21						
					Boone C-1H																	
		7/7/21							7/14/21							7/21/21						
		7/7/21							7/14/21 7/15/21							7/21/21 7/22/21						

110 Old Market St.

St Martinville, LA 70582

TEL: (337) 394-1078

11.1° 3,630' TVD

Operator				Contractor			County / Parisl	n / Block		Enginee	er Start Date	24 h	r ftg.		Drilled	Depth		
	IOLIA (OIL 8	GAS		TERSO	ON		HINGTO	N		06/23/21		288	ft		18,0	92 f	t
Well Name and No.	GSTED	τ οι	_ 2H	Rig Name ar	285		State T	EXAS		Spud Da	^{ate} 06/22/21		ent ROP		Activit	TO	ЭН	
Report for	win/ Cı	roa l	lohnoon	Report for	al Bual	205	Field / OSC-G		^	Fluid Ty		Circ	ulating Rate		Circula	ating Pre	ssure	
Bobby G					ol Pusi	ner		INGS A			WBM		DUMD	#2	DIG	SED D	000	
\\\ - \ : - 4			ERTY SPECI			0/ 0-1:-1-		DLUME (B			PUMP #1	75	PUMP			SER B	005	IEK
Weight	PV	YI		pH	API fl	% Solids			7 bbl	Liner			er Size	4.75		r Size		
8.4-9.6	0-10	0-1		7-8	<25	2-10	In Hole		bbl	Stro			troke	12		oke		
T: 0 1 :		UD PF	ROPERTIES	0.05		40.00	Active		2 bbl	bbl/				0.0625		l/stk		
Time Sample				0:05		12:00	Storag	<u></u>	64 bbl	stk/r			tk/min			/min		
Sample Locati				pit		Suction	Tot. on Loc		8 DDI V=1	gal/r YP:			al/min			/min	IZ .	274.0
Flowline Temp	erature	<u>г</u>		17,804'		40.000	Mud Wt. =			YP:			ION DATA			0.322 iency :		
Depth (ft)						18,092'	BILI	Depth = 3, Volume		50.0	Wash		···	Pum			= 957	′о
Mud Weight (p			@ 00 °F	8.4		8.4	Drill String Disp.					okes To E				To Bit		
Funnel Vis (se	c/qt)		@ 90 °F	29 5		26 3	22.0 bbl	Bottoms U				omsUp Stl			omsUp			
300 rpm				4		2	22.0 001	TotalCi			LY DATA	talCirc.Stl	(S		al Circ	NTRO		
200 rpm				3		1	Tubulars			(in.)	Length	Тор		Init		eens		ours
•				2		1	Drill Pipe	4.500		826	3,314'	ТОР		ıker 1		200's	110	ruis
100 rpm				1		1	DP / AGI.	5.312		562	30'	3,314'		iker 2		200's		
6 rpm 3 rpm				1		1	Drill Pipe	4.500		302	189'	3,343'		iker 3		200's		
Plastic Viscos	ity (op)		@ 120 °F			1	Dir. BHA	5.000		588	131'	3,532'		gs Dryei				
Yield Point (lb.	,		T0 = 1			1	DII. DI IA				DATA	0,002		go Diyei	ALI	1403		
Gel Strength (\	10 = 1 10 sec / 10 min	1/2		1/1	Casing			(in.)	Depth	Тор	Centr	ifuge 1				
Gel Strength (30 min			1	Riser	02 ()		(1111)	Борин	100		.UME A	CCOU	INTING	i (bb	ls)
API Filtrate / C								10 3/4			2,715'			v. Total				092.0
HTHP Filtrate							Int. Csa.	7 5/8	3.2	210	9,893'			sferred				299.0
Retort Solids (11011110		0.3%		0.4%	iii. oog.	. 6/6	0	0	0,000		l liai		il Add	()	•	
Retort Oil Con				0.5%		0.170									e Adde	,		
Retort Water (99.2%		99.6%	Open	Hole Size	.		18,092'		Othe	r Produc		` ,		
Sand Content				0%		0%				TRY 8	RHEOLO	GY	-		er Adde	. ,		
M.B.T. (Methy	lene Blue	. Capa	city) (ppb)											Left on		` ,		
pH			(44-4)	7.8		7.6	annula sectio	1 (16	epth	velo ft/m	-	ECD lb/gal		ОВМ		• ()		
Alkalinity, Muc	I Pm												Wate	er Pump				
Alkalinities, Fil		Лf					3.21x4	.5 3,	314'			8.40		t. Total			2	391.0
Chlorides (mg				3500		900	3.21x5.3		343'			8.40		_osses/0				172.9
Calcium (ppm)				120		40	3.21x4	.5 3,	532'			8.40		SIT HYD			ATA	
Excess Lime (3.21x		663'			8.40	Bit H.S		it ΔP	1		2nds)
Average Spec		ty of S	olids	2.60	2.60	2.60		,					#DIV/			18	18	18
Percent Low G				0.2%		0.3%							Bit Imp	act I	ozzle	18	18	18
Percent Drill S				0.2%		0.3%							Force	y l ve	locity /sec)			
PPA Spurt / To	otal (ml) (@					BIT D	DATA	Ма	nuf./Ty	ype G	TD64M			,			1
Estimated Total			em				Size	Depth In		ours	Footage	ROP ft/h	nr Moto	r/MWD	Cald	c. Circ.	Pres	ssure
Sample Taker	Ву	-		E.Sanchez		R. Bowlin		17,489 ft	6	5.0	603 ft	100.5				p	si	
-	-					Ī			1						1			

Afternoon Remarks/Recommendations:

Rec. 331bbls 9.0ppg

150bbls 16.0ppg Kill mud on order receiving tonight

Returned 32bbls @ 9.6ppg

Afternoon Rig Activity:

Drilled to TD at 18,092'MD with fresh drill H2O as the primary circulating fluid, circulated back to area of loss, washed and reamed out to 14,000'MD. Strip out from 14,000'MD to 9,700'MD filling with 9.5ppg/1.9bbls per stand. Flow check no flow strip from 9,700'MD to 8,800'MD filling with 17.5ppg/1.9bbls per stand. Strip from 8,800'MD to 5,000'MD filling with 9.5ppg/ 1.9bbls per stand. Strip from 5,000'MD to 3,663' MD filling with 17.5ppg / 1.9bbls per stand at the time of the offerness report. the afternoon report.

OUTSOURCE FLUID SOLUTIONS LLC.

2.1° 1,200' TVD

	NOLIA (OIL &	GAS		TERS	ON	_	Block HINGTON	١		art Date		_	8 ft			18,0	92 ft	
Well Name and No.	RGSTED	T OI	2H	Rig Name ar	285		State	EXAS		Spud Date	5/22/21		urrent ROP	t/hr		Activity		Casi	ina
Report for	COTE	/1 OL	2 111	Report for	203		Field / OCS-G #			Fluid Type	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		rculating Ra			Circulat			···9
Bobby 6	Swin/ G	reg Jo	hnson	То	ol Pus	her	GIDDI	INGS AC	;	V	NBM		0 g	рm			р	si	
	MUD	PROPE	RTY SPECIF	ICATION	S		MUD VO	LUME (BB	L)	Pl	UMP #1		PUN	/IP #2		RIS	ER B	OOST	ER
Weight	PV	YP	GELS	рН	API fl	% Solids	In Pits	272	2 bbl	Liner Siz	ze 4	.75 L	iner Size	4.7	75	Liner	Size		
8.4-9.6	0-10	0-10	<5 <10	7-8	<25	2-10	In Hole	0	bbl	Stroke		12	Stroke	1:	2	Stro	ke		
				8/13/21		8/12/21	Active	265	bbl	bbl/stk	0.0	0625	bbl/stk	0.0	625	bbl/	stk (0.00	000
Time Sample	Taken			0:05		12:00	Storage	184	<u>5 bbl</u>	stk/mir	า		stk/min			stk/i	min	0	
Sample Locati	ion			pit		Suction	Tot. on Lo	cation 211	7 bbl	gal/mir	า	0	gal/min	C)	gal/i	min	0	
Flowline Temp	erature °F	=						PHHP = 0			CIRCU	LATION	DATA		1	n = 0	.585	K = 26	.563
Depth (ft)				18,092'		18,092'	Bit I	Depth = 1,2	200 '		Wasl	nout = 0	%	F	Pump	Efficie	ency =	95%	
Mud Weight (p	opg)			8.4		8.4	Drill String	Volume	to Bit	21.3 bb	ol S	trokes To	Bit		-	Time 7	Го Bit		
Funnel Vis (se	ec/qt)		@ 90 °F	29		26	Disp.	Bottoms U	p Vol.	-28.2 bl	bl Bott	omsUp S	Stks		Bottor	msUp	Time		
600 rpm				3		3	7.8 bbl	TotalCir	c.Vol.	265.1 b	bl T	otalCirc.S	Stks		Total	l Circ.	Time		
300 rpm				2		2		DRILLING	G ASS	SEMBLY	DATA			S	OLIDS	S COI	NTRO	L	
200 rpm				1		1	Tubulars	OD (in.)	ID	(in.)	Length	Тор	,	Unit		Scre	ens	Hou	ırs
100 rpm				1		1	Casing	5.000	4.	276	1,200'	0'	S	Shaker	1	API 2	200's		
6 rpm				1		1						1,200	o' s	Shaker	2	API 2	200's		
3 rpm				1		1	1					1,200	o' s	Shaker	3	API 2	200's		
Plastic Viscos	ity (cp)		@ 120 °F	1		1	1					1,200	0' Cut	tings D	Oryer	API 1	140's		
Yield Point (lb.	/100 ft²)		T0 = 1	1		1		CASIN	IG & I	HOLE DA	TA								
Gel Strength (lb/100 ft²)	1	0 sec/10 min	1/1		1/1	Casing	OD (in.)	ID	(in.)	Depth	Тор	Ce	entrifug	je 1				
Gel Strength (lb/100 ft ²)		30 min	1		1	Riser						V	OLUM	IE AC	COU	NTING	(bbls	s)
API Filtrate / C	Cake Thick	ness					Surface	10 3/4			2,715'	0'	F	Prev. T	otal o	n Loc	ation	209	92.0
HTHP Filtrate	/ Cake Th	ickness	@ 0 °F				Int. Csg.	7 5/8	0.	890	9,893'	0'	Т	ransfe	rred Ir	n(+)/C	Out(-)	44	41.0
Retort Solids (Content			0.4%		0.4%									Oil	Adde	d (+)		0.0
Retort Oil Con	itent			0.3%										E	Barite	Adde	d (+)	2	22.3
Retort Water (Content			99.3%		99.6%	Oper	n Hole Size	0.	000	18,092'		Ot	her Pr	oduct	Usag	e (+)		0.0
Sand Content				0%		0%	ANI	NULAR GE	ОМЕ	TRY & RI	HEOLO	GY		٧	Vater	Adde	d (+)	2140	07.7
M.B.T. (Methy	lene Blue	Capacity	y) (ppb)				annulai	r me	eas.	velocity	y flow	ECD)	Let	ft on C	Cutting	gs (-)		0.0
рН				7.8		7.6	section	de	pth	ft/min	reg	lb/ga	al	0	BM Lo	ost to	Hole	-46	63.3
Alkalinity, Muc	l Pm										•		W	ater P	ump [Down	Hole	-2138	82.8
Alkalinities, Fil	Itrate Pf/M	f					0.89x5	1,2	200'	0.0		8.40		Est. T	otal o	n Loc	ation	21′	16.8
Chlorides (mg	/L)			800		900							Es	st. Loss	ses/Ga	ains (·	-)/(+)		0.0
Calcium (ppm))			80		40								BIT	HYDR	AULI	CS D	ATA	
Excess Lime (lb/bbl)												Bit I	H.S.I.	Bit .	ΔΡ	Nozz	es (321	nds)
Average Spec	ific Gravit	y of Solid	ds	2.60	2.60	2.60									p	si	18	18	18
Percent Low 0	Gravity Sol	ids		0.4%		0.3%							Bit Ir	mpact	Noz		18	18	18
Percent Drill S	Solids			0.4%		0.3%								rce	Velo (ft/s	•			
PPA Spurt / To	otal (ml) @	9	@ 0 °F				BIT D	ATA	Ma	anuf./Type	e G	STD64M	0	lbs	0)			
Estimated Tot	al LCM in	System	ppb				Size	Depth In	Н	ours F	ootage	ROP ff	t/hr Mo	otor/M\	WD	Calc	. Circ.	Press	sure
Sample Taker	п Ву			E.Sanchez		R. Bowlin		17,489 ft	6	5.0	603 ft	100.	5	psi					
				<u> </u>		1		L				1							_

Remarks/Recommendations:

Skid Vol. 2116bbl

Frac Tank Vol: 1,545 bbl

OBM Rec.Last 24 hrs: 473 bbl

OBM Return Last 24 hrs: 32 bbl

Rig Activity:

Drilled to TD at 18,092'MD with fresh drill H2O as the primary circulating fluid. Pumped two 20 bbl OBM sweep and circulated back to loss zone 14,200' (5670 strokes). Washed and reamed out to 14,000'MD. Strip out from 14,000'MD to 9,700'MD filling with 9.5ppg/1.9bbls per stand. Flow check no flow strip from 9,700'MD to 8,800'MD filling with 17.5ppg/1.9bbls per stand. Strip from 8,800'MD to 5,000'MD filling with 9.5ppg/ 1.9bbls per stand. Strip from 5,000'MD to surface filling with 17.5ppg / 1.9bbls per stand. L/D BHA and Cleaned rig floor. R/U and Held S/M with casing crew and began running 5" casing to 1,200' at report time. Plan ahead is to continue running 5' and 5.5" casing to bottom.

Total F/water pumped:21382.8 bbl, and OBM:463.3 bbl.

Er	ng. 1:	R	obert	Bow	lin	Er	ng. 2:	Edga	r Sanchez	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Pł	none:	2	28-99	0-10	55	Ph	none:	956-	693-3035	Phone:	432-686-7361	Phone:	-			
W 1	P 1	Y 1	g 1	G 1	р 1	A 1	S 0	C 0	carefully	and may be	ecommendation, exp used if the user so ation, and this is a re	elects, however,	no representati	nas been prepared on is made as to the	\$33,176.00	\$219,362.40
												INCLUDI	NG 3RD PAR	TY CHARGES	\$33,176.00	\$295,498.48

Date 08/13/21	Operator MAG I	NOLIA OIL		Well Name a BOR	ind No. GSTEDT O I	L 2H	Rig Name ar	85	eport No. Repo	rt #15
	L.	USAGE 8					•		CUMUI	
			Previous		Closing	Daily	L	-	Cum	
Item	Unit	Unit Cost	Inventory	Received	Inventory	Usage	Daily Cost		Usage	Cum Cost
SAPP (50)	50# sk	\$44.56							50	
PHPA LIQUID (pail)	5 gal	\$41.36			33				13	\$537.68
CAUSTIC SODA (50)	50# sk	\$27.76	32		32					
CACL2 (50)	50# sk	\$14.32	336		336				118	\$1,689.76
LIME (50)	50# sk	\$5.00	150		150				287	
OPTI - G	50# sk	\$30.59	125		125					\$2,447.20
BENTONE 38 (50)	50# sk	\$163.94	45		45				10	\$1,639.40
BENTONE 910 (50)	50# sk	\$59.40							12	\$712.80
BENTONE 990 (50)	50# sk	\$83.59	85		85				32	
OPTI - MUL	gal	\$10.75	385		385				220	\$2,365.00
OPTI - WET	gal	\$8.34	300		300				195	\$1,626.30
NEW PHALT	50# sk	\$38.72	115		115				5	\$193.60
OIL SORB (25)	25# sk	\$4.75	92		92			-		
NEW CARB (M)	50# sk	\$5.25	133		133				10	\$52.50
MAGMAFIBER F (25)	25# sk	\$28.05	133		144			 	26	\$729.30
NEW PLUG M	50# sk	\$10.51	70		70			-	20	\$729.30
		V 10101								
								-		
								-		
NEW WATE (SACK BARITE)	100# sk	\$11.50			120				38	
BARITE BULK (100)	100# sk	\$7.00	1300	400	1380	320	\$2,240.00		1654	\$11,578.00
								-		
								-		
								-		
OPTI DRILL (OBM)	bbl	\$65.00	2092	441	2117	416	\$27,040.00		2483	\$161,395.00
ENGINEERING (24 HR)	each	\$990.00				2	\$1,980.00		22	\$21,780.00
ENGINEERING (DIEM)	bbl	\$30.00				2	1		22	
ENGINEERING (MILES)	each	\$1.00					\$1,049.00		1049	
Scale Ticket	each	\$15.00 \$1.98				400		l	1601	
TRUCKING (cwt)	eacn			ii	1	TUU	₩. UZ.UU			,
	each each	1							1	\$650.00
TRUCKING (min)	each	\$650.00							1	-
TRUCKING (cwt) TRUCKING (min) PALLETS (ea) SHRINK WRAP (ea)		1								\$650.00 \$132.00 \$120.00

Date	Operator			Well Name a	ind No.		Rig Name an	d No.	Report No.	
08/13/21	MAGI	NOLIA OIL	& GAS	BOR	GSTEDT O	L 2H	28	B5	Repo	rt #15
	DAILY	USAGE 8	& COST						CUMUI	_ATIVE
ltem	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
PRO V PLUS	25# sk	\$60.00	320		320					
PRO X	25# sk	\$70.00	320		320					
PRO SWEEP AID	25# sk	\$46.00	240		240					
SB SUPER CEAL	25# sk	\$80.00	253		253					
Clements WBM	bbl	\$45.36	149		149					
DIESEL TRANSFER F/3H	gal	\$2.38								\$35,633.36
DIESEL RECEIVED 7/1/21	gal	\$2.36								\$7,316.00
DIESEL RECEIVED 7/2/21	gal	\$2.38							2286	\$5,440.68
DIESEL RECEIVED 7/4/21	gal	\$2.38							7000	#40 7 0 1 0 5
Skid Vol. 8_6_21	gal	\$2.32			0075					\$16,704.00
OBM_D 8_6_21	gal	\$2.28			2356				4843	\$11,042.04
OBM-D 8_9_21	gal	\$2.27			7200					
OBM_D8_12_21	gal	\$2.27		5000	5000					
							1			
							1			
									\$76,1	36.08
								l		
	C	ilativo Toto	I VEC 8 32-7	Party \$295	108 40					
	Cuint	ve IUIA	. ALU & 310	. arty #293	.,0.+0					

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name: MAGNOLIA OIL & GAS

Rig Name: 285
Well Name: BOR

BORGSTEDT OL 2H

					WEEK 1				1			WEEK 2				I			WEEK 3			
	Date	7/2/21	7/3/21	7/4/21	7/5/21	7/6/21	7/7/21	7/8/21	7/9/21	7/10/21	7/11/21	7/12/21	7/13/21	7/14/21	7/15/21	7/16/21	7/17/21	7/18/21	7/19/21	7/20/21	7/21/21	7/22/21
		Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu
	Bit Size	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8												-				
Grand	Starting Depth	2,715	4,180	9,100	9,828	9,906	9,906															
Totals	Ending Depth	4,180	9,100	9,828	9,906	9,906																
	Footage Drilled	1,465	4,920	728	78	-	_	-	_	_	_	_	_	_	_	-	-	_	_	-	_	-
	New Hole Vol.	139	466	69	7	-	_	_		_	_	_	-	_		-		-	_	_	_	_
1,044	Starting System Volume	2,970	2,848	2,724	2,594	2,500	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449
12	Chemical Additions	4	9	2,127	4	-	443	773	443	713	443	443	443	773	773	443	713	443	773	443	713	773
	Base Fluid Added	38	211	112	31	24																
	Barite Increase	-	211	112	14	-																
	Weighted Mud Added	_			17	-																
-	Slurry Added	-				-																
	Water Added					-																
42,224	Added for Washout	_				-																
40.000		40	220	440	40																	
-,	Total Additions	42	220	112	48	24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Surface Losses					50																
	Formation Loss					24																
	Mud Loss to Cuttings	144	242	85	12	-																
	Unrecoverable Volume	20	102	157	130	-																
15	Centrifuge Losses					15																
45,574	Total Losses	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-					
2,113	Mud Transferred Out																					
2,117	Ending System Volume	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449	449					
-	Mud Recovered																					
	i		l .				l.			l .			_	l.	l .					_		
		-			omment						C	omment	s:					C	omment	s:		
	_	Transfer 2970 bbl from Borgstedt OL 3-H 7/2/21 Lost 144 bbl of mud cutting retention /19 bbl loses running shakers														7/16/21						
4,600		7/3/21 Lost 242 bbl cutting retention, Lost 102 bbl centrifuge/ov shakers														7/17/21						
		7/4/21														7/18/21						
		7/5/21							7/12/21							7/19/21						
		7/6/21	casing run	eport, to BC losse. Cer 985bbl to B	ntrifuge app	lication to	reduce MV	/ to 9#.	7/13/21							7/20/21						
								isiriy.														
		7/7/21							7/14/21							7/21/21						

Report #16 TEL: (337) 394-1078

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

0.0° 0' TVD

Operator		Contractor			County / Parish /	Block	Er	Engineer Start Date 24		24 hr ftg.	4 hr ftg.		Drilled Depth				
MAGI	SAS	PAT	TERS	ON	WASHINGTON			06/23/21			0 ft		18,092 ft		92 ft		
Well Name and No.		Rig Name an			State			Spud Date Curre			Current ROP		Activity				
BOR Report for	GSTED	T OL 2	2H	Report for	285		TEXAS Field / OCS-G #			06/22/21 Fluid Type Cir			0 ft/hr Circulating Rate		R/D for mSkid		
=	Bobby Gwin/ Greg Johnson					her	GIDDINGS AC			WBM			0 gpm		Circulating Pressure psi		
-	MUD	PROPER	RTY SPECIF	FICATION	S		MUD VOLUME (BBL)			PUMP #1			PUMP #2		RISER BOOSTER		
Weight	PV	YP	GELS	pН	API fl	% Solids	In Pits	224 b	obl	Liner Size	4.75	Liner S	Size 4.7	75	Liner	Size	4.75
8.4-9.6	0-10	0-10	<5 <10	7-8	<25	2-10	In Hole	0 bb	ol	Stroke	12	Strok	e 1	2	Stro	ke	12
				8/14/21		8/14/21	Active	224 k	obl	bbl/stk	0.0625	bbl/s	tk 0.06	625	bbl/	stk	0.0625
Time Sample Taken				0:05		12:00	Storage	<u>1916</u>	<u>bbl</u>	stk/min	0	stk/m	in ()	stk/r	min	0
Sample Location				NO MUD		pit	Tot. on Lo	cation 2140	bbl	gal/min	0	gal/m	in ()	gal/ı	min	0
Flowline Temp	erature °F	-					PHHP = 0 CIRCULATION DATA n = 0.585 K =							K = 26.563			
Depth (ft)				18,092'		18,092'				,	Vashout =	0%	F	ump	Efficie	ency =	95%
Mud Weight (p	pg)					8.4	Drill String	Volume to	Bit	0.0 bbl	Strokes	To Bit			Time 1	Го Bit	
Funnel Vis (se	c/qt)		@ 90 °F			26	Disp.	Bottoms Up	Vol.	0.0 bbl	BottomsU	o Stks	s Botto		tomsUp Time		
600 rpm						3	0.0 bbl TotalCirc.Vol. 224.0 bbl TotalCirc.Stk							Total Circ. Time			
300 rpm						2	DRILLING ASSEMBLY DATA						SOLIDS CONTROL			L	
200 rpm						1	Tubulars	OD (in.)	ID (ir	n.) Ler	gth T	ор	Unit		Scre	ens	Hours
100 rpm						1				C	' (0'	Shaker	1	API 2	200's	
6 rpm						1					(0'	Shaker	2	API 2	200's	
3 rpm						1						0'	Shaker	3	API 2	200's	
Plastic Viscos	ity (cp)		@ 120 °F			1					(0'	Cuttings D	ryer	API 1	40's	
Yield Point (lb.	/100 ft²)		T0 = 1			1		CASING	& HC	DLE DATA							
Gel Strength (lb/100 ft²)	10	sec/10 min			1/1	Casing	OD (in.)	ID (ir	n.) De	oth T	ор	Centrifug	e 1			
Gel Strength (lb/100 ft ²)		30 min			1	Riser						VOLUM	E AC	COU	NTING	(bbls)
API Filtrate / C	ake Thick	ness					Surface	10 3/4		2,7	15'	0'	Prev. T	otal o	n Loc	ation	2116.8
HTHP Filtrate	/ Cake Th	ickness	@ 0 °F				Int. Csg.	7 5/8		9,8	93'	0'	Transfe	rred I	n(+)/C	Out(-)	57.0
Retort Solids (Content					0.4%	Prod.	5 1/2	4.80	00 8,6	69'	0'		Oil	Adde	d (+)	0.0
Retort Oil Con	tent						Prod.	5	1.73	30 18,0	78' 8,6	669'	E	Barite	Adde	d (+)	40.4
Retort Water (Content					99.6%	Oper	n Hole Size	0.00	00 18,0)92'		Other Pro	oduct	Usag	e (+)	0.0
Sand Content						0%	AN	NULAR GEO	METF	RY & RHE	DLOGY		V	Vater	Adde	d (+)	
M.B.T. (Methy	lene Blue	Capacity)) (ppb)				annula	r mea	s.	velocity		CD	Lef	ft on (Cutting	gs (-)	0.0
рН						7.6	section	n dept	th	ft/min	reg lb/	'gal	0	BM L	ost to	Hole	-74.2
Alkalinity, Muc	l Pm												Water P	ump [Down	Hole	
Alkalinities, Fil	trate Pf/M	f											Est. T	otal o	n Loc	ation _	2139.9
Chlorides (mg	/L)					900							Est. Loss	ses/G	ains (-	-)/(+)	0.0
Calcium (ppm))					40							BIT	HYDR	RAULI	CS D	ATA
Excess Lime (lb/bbl)												Bit H.S.I.	Bit	ΔΡ	Nozzl	es (32nds)
Average Spec	ific Gravity	y of Solids	S	2.60	2.60	2.60											
Percent Low 0	Gravity Sol	ids				0.3%						E	Bit Impact	Noz Velc			
Percent Drill S	olids					0.3%							Force	(ft/s	-		
PPA Spurt / To	otal (ml) @	0	@ 0 °F				BIT D	ATA	Man	uf./Type							
Estimated Tot	al LCM in	System	ppb				Size	Depth In	Hou	irs Foo	age ROF	P ft/hr	Motor/M\	ND	Calc.	. Circ.	Pressure
Sample Taker	Ву			B.Guidry		A. ROMAN											
Remarks/Reco	mmendatio	ons:					Rig Activity:										

Skid Vol. 2,116 bbl

Frac Tank Vol: 1,916 bbl

OBM Rec.Last 24 hrs: 57 bbls OBM 16# Kill Mud

TOTAL OBM 2,140 bbls

Skid to BORGESTETD OL 3H Vol. = 2140 bbls

Rig Activity:

Continue with Casing run, 5" & 5.5". Fill up casing with fresh water, Pump OBM on back side when needed to casing pressure 0psi. Casing run in the hole with no problems. Pumped 1.5 casing capacity and start on cementing operations (2 stage job). Set injection rates with 100 bbls of WBM on backside prior to second stage cement. Perform Cement job with no issues. Casing pressure 0psi. All Chemicals and OBM are transferred to BORGSTEDT OL 3H well.

Е	ng. 1:	Α	dolfo	Roma	an	Er	ng. 2:	Bar	t Guidry	uidry WH 1: MIDLAND WH 2: WH #2		Rig Phone:	Daily Total	Cumulative Cost		
F	hone:	9	56-82	1-999	94	Ph	none:	337-	250-3841	Phone:	432-686-7361	Phone:	-			
W 0	P 2	Y 2	g 1	G 1	р 0	A 1	S 0	C 0	carefully	and may be	ecommendation, exp used if the user so ation, and this is a r	elects, however	, no representation	as been prepared on is made as to the	\$8,890.00	\$228,252.40
												INCLUD	NG 3RD PAR	TY CHARGES	\$15.648.64	\$311.147.12

Date 08/14/21	Operator MAGI	NOLIA OIL	& GAS	Well Name a BOR	ind No. GSTEDT O	L 2H	Rig Name ar	nd No. 85	Report No. Report #16		
	DAILY	USAGE 8								LATIVE	
Item	Unit	Unit Cost	Previous	Received	Closing	Daily	Daily Cost		Cum	Cum Cos	
			Inventory	Received	Inventory	Usage	Daily Cost		Usage		
SAPP (50)	50# sk	\$44.56	200	00					13		
PHPA LIQUID (pail) CAUSTIC SODA (50)	5 gal 50# sk	\$41.36 \$27.76	33 32	-33 -32					13	\$537.68	
CAUSTIC SODA (30)	30# SK	φ21.10	32	-32							
CACL2 (50)	50# sk	\$14.32	336	-336					118		
LIME (50)	50# sk	\$5.00	150	-150					287	. ,	
OPTI - G BENTONE 38 (50)	50# sk 50# sk	\$30.59 \$163.94	125 45	-125 -45					10	<u> </u>	
BENTONE 910 (50)	50# sk	\$59.40	45	-45					12		
BENTONE 990 (50)	50# sk	\$83.59	85	-85					32		
OPTI - MUL	gal	\$10.75	385	-385					220		
OPTI - WET	gal	\$8.34	300	-300					195		
NEW PHALT	50# sk	\$38.72	115	-115					5	\$193.60	
OIL SORB (25)	25# sk	\$4.75	92	-92							
NEW CARB (M)	50# sk	\$5.25	133	-133					10	\$52.50	
MAGMAFIBER F (25)	50# sk 25# sk	\$5.25 \$28.05	133	-133 -144			1	-	26	\$52.50 \$729.30	
NEW PLUG M	50# sk	\$10.51	70	-70					20	\$129.50	
	Gen ex	V.0.0.									
NEW WATE (SACK BARITE)	100# sk	\$11.50	120	-120		500	\$4,000,00		38	\$437.00	
BARITE BULK (100)	100# sk	\$7.00	1380	-800		580	\$4,060.00		2234	\$15,638.00	
OPTI DRILL (OBM)	bbl	\$65.00	2117	-2140	-57	34	\$2,210.00		2517	\$163,605.00	
]			
		0000					M4.022		_	#00 To -	
ENGINEEDING (24.17)						2		4		\$23,760.00 \$720.00	
ENGINEERING (24 HR)	each	\$990.00				2	\$60.00			i 5/20.00	
ENGINEERING (DIEM)	bbl	\$30.00				F00	1		1629		
						580	1		1629		
ENGINEERING (DIEM) ENGINEERING (MILES) Scale Ticket	bbl	\$30.00 \$1.00 \$15.00				580	1		1629	\$1,629.00 \$60.00	
ENGINEERING (DIEM) ENGINEERING (MILES) Scale Ticket TRUCKING (cwt)	each	\$30.00 \$1.00 \$15.00 \$1.98				580	1		1629 4 1601	\$1,629.00 \$60.00 \$3,169.98	
ENGINEERING (DIEM) ENGINEERING (MILES) Scale Ticket TRUCKING (cwt) TRUCKING (min)	each each each each	\$30.00 \$1.00 \$15.00 \$1.98 \$650.00				580	1		1629 4 1601 1	\$1,629.00 \$60.00 \$3,169.98 \$650.00	
ENGINEERING (DIEM) ENGINEERING (MILES) Scale Ticket TRUCKING (cwt)	each	\$30.00 \$1.00 \$15.00 \$1.98				580	1		1629 4 1601	\$1,629.00 \$60.00	

Date	Operator			Well Name a	ınd No.		Rig Name an	id No.	Report No.			
08/14/21	MAGI	NOLIA OIL	& GAS	BOR	GSTEDT C	L 2H	2	85	Report #16			
	DAILY	USAGE 8	k COST	l			l		CUMULA			
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost		
PRO V PLUS	25# sk	\$60.00	320	-320								
PRO X	25# sk	\$70.00										
PRO SWEEP AID	25# sk	\$46.00										
SB SUPER CEAL	25# sk	\$80.00										
Clements WBM	bbl	\$45.36	149			149	\$6,758.64		149	\$6,758.64		
DIESEL TRANSFER F/3H	gal	\$2.38								\$35,633.36		
DIESEL RECEIVED 7/1/21	gal	\$2.36								\$7,316.00		
DIESEL RECEIVED 7/2/21	gal	\$2.38							2286	\$5,440.68		
DIESEL RECEIVED 7/4/21	gal	\$2.38										
Skid Vol. 8_6_21	gal	\$2.32								\$16,704.00		
OBM_D 8_6_21	gal	\$2.28	2356	-2356					4843	\$11,042.04		
OBM-D 8_9_21	gal	\$2.27	7200	-7200								
OBM_D8_12_21	gal	\$2.27	5000	-5000								
					Daily 9	ub-Total \$6	6.758 64		\$22.9	94.72		
					Daily S	-un-i∪idi ≱t	o, r oo.u4		\$ 0∠,8	J-7.1 L		
	Cumi	ılative Total	AES & 3rd	Party \$311	,147.12							
						I						