Generating code with the Curry-Howard correspondence Type inhabitation at compile time

Sergei Winitzki

SF Types, Theorems, and Programming Languages

February 12, 2018

Types and propositional logic

The Curry-Howard correspondence

The code val x: T = ... shows that we can compute a value of type T as part of our program expression

- Let's denote this *proposition* by $\mathcal{CH}(T)$ "Code \mathcal{H} as a value of type \mathbf{T} "
- Correspondence between types and propositions, for a given program:

Туре	Proposition	Short notation
Т	$\mathcal{CH}(T)$	T
(A, B)	CH(A) and $CH(B)$	$A \wedge B$; $A \times B$
Either[A, B]	CH(A) or $CH(B)$	$A \lor B$; $A + B$
$A \Rightarrow B$	CH(A) implies $CH(B)$	$A \Rightarrow B$
Unit	True	1
Nothing	False	0

- Type parameter [T] in a function type means $\forall T$
- Example: def dupl[A]: $A \Rightarrow (A, A)$. The type of this function corresponds to the (valid) theorem $\forall A : A \Rightarrow A \land A$

The CH correspondence: proposition→type / proof→code

Any valid theorem can be implemented in code

Proposition	Code
$\forall A: A \Rightarrow A$	def identity[A](x: A): A = x
$\forall A: A \Rightarrow 1$	<pre>def toUnit[A](x: A): Unit = ()</pre>
$\forall A \forall B : A \Rightarrow A + B$	<pre>def inLeft[A,B](x:A): Either[A,B] = Left(x)</pre>
$\forall A \forall B : A \times B \Rightarrow A$	def first[A,B](p: (A,B)): A = p1
$\forall A \forall B : A \Rightarrow (B \Rightarrow A)$	$\texttt{def const[A,B](x: A): B} \Rightarrow \texttt{A = (y:B)} \Rightarrow \texttt{x}$

- Non-theorems cannot be implemented in code
 - Examples of non-theorems:

$$\forall A: 1 \Rightarrow A: \quad \forall A \forall B: A+B \Rightarrow A:$$

$$\forall A \forall B : A \Rightarrow A \times B; \quad \forall A \forall B : (A \Rightarrow B) \Rightarrow A$$

- Given a type's formula, can we implement it in code?
 - ► Example: $\forall A \forall B : ((((A \Rightarrow B) \Rightarrow A) \Rightarrow A) \Rightarrow B) \Rightarrow B$
- Constructive (intuitionistic) propositional logic has a decision algorithm
- The curryhoward library implements the IPL prover in a Scala macro

Worked examples I

How to implement functions given their type?

We write code "guided by the types"

1 Implement map for the Reader monad,

$$\mathsf{map}: (E \Rightarrow A) \Rightarrow (A \Rightarrow B) \Rightarrow (E \Rightarrow B)$$

- ② Show that one cannot implement $(E \Rightarrow A) \Rightarrow (E \Rightarrow F) \Rightarrow (F \Rightarrow A)$
- 3 Implement map[A,B]: Option[A] \Rightarrow (A \Rightarrow B) \Rightarrow Option[B]

Often, there is only one useful implementation

The curryhoward library tries to generate that implementation automatically

Using the curryhoward library

Two main use cases:

Define a method and provide an automatic implementation

```
def map[E, A, B](readerA: E \Rightarrow A, f: A \Rightarrow B): E \Rightarrow B = implement
```

Automatically build an expression from previously computed values

```
val f: String \Rightarrow Boolean \Rightarrow Int = {\dots\}
case class Result(x: Int, name: String)
val result = ofType[Result]("abc", f, true)
```

Features:

- Compile-time code generation via Scala macros
- Supports functions, tuples, sealed trait / case classes / case objects
- Constant types (Int, String, etc.) are treated as type parameters
- If several implementations are available, chooses "intelligently"

Worked examples II

Demo time

- **1** Implement map: Option[A] \Rightarrow (A \Rightarrow B) \Rightarrow Option[B] that satisfies the identity law: map(opt)(x \Rightarrow x) = opt
- 2 Show that one cannot implement $(E \Rightarrow A) \Rightarrow (E \Rightarrow F) \Rightarrow (F \Rightarrow A)$
- 3 Implement the distributive law

$$(A+B) \times C \Leftrightarrow A \times C + B \times C$$

In Scala: (Either[A, B], C) \Leftrightarrow Either[(A, C), (B, C)]

Implement point, map and flatMap for the Reader and State monads

See test code

Proof search I: Gentzen's calculus LJ (1935)

 A "complete and sound calculus" is a set of axioms and derivation rules that will yield all (and only!) valid theorems of the logic

$$(X \text{ is atomic}) \frac{}{\Gamma, X \vdash X} Id \qquad \frac{}{\Gamma \vdash \top} \top$$

$$\frac{\Gamma, A \Rightarrow B \vdash A \quad \Gamma, B \vdash C}{\Gamma, A \Rightarrow B \vdash C} L \Rightarrow \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} R \Rightarrow$$

$$\frac{\Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma, A \lor B \vdash C} L + \qquad \frac{\Gamma \vdash A_i}{\Gamma \vdash A_1 \lor A_2} R +_i$$

$$\frac{\Gamma, A_i \vdash C}{\Gamma, A_1 \land A_2 \vdash C} L \times_i \qquad \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} R \times$$

- Sequents are nodes in the proof search tree
- Use these rules "bottom-up" to perform a proof search
- Example: $\emptyset \vdash ((R \Rightarrow R) \Rightarrow Q) \Rightarrow Q$

Proof search example I

Root sequent $S_0: \emptyset \vdash ((R \Rightarrow R) \Rightarrow Q) \Rightarrow Q$

- S_0 with rule $R \Rightarrow$ yields $S_1 : (R \Rightarrow R) \Rightarrow Q \vdash Q$
- S_1 with rule $L \Rightarrow$ yields $S_2 : (R \Rightarrow R) \Rightarrow Q \vdash R \Rightarrow R$ and $S_3 : Q \vdash Q$
- Sequent S_3 follows from the Id axiom; it remains to prove S_2
- S_2 with rule $L \Rightarrow$ yields $S_4 : (R \Rightarrow R) \Rightarrow Q \vdash R \Rightarrow R$ and $S_5 : Q \vdash R \Rightarrow R$
 - We are stuck here because $S_4 = S_2$ (we are in a loop)
 - We can prove S_5 , but that will not help
 - ▶ So we backtrack (erase S_4 , S_5) and apply another rule to S_2
- S_2 with rule $R \Rightarrow$ yields $S_6 : (R \Rightarrow R) \Rightarrow Q; R \vdash R$
- Sequent S_6 follows from the Id axiom

Therefore we have proved S_0 . Q.E.D.

Proof search II: From deduction rules to code

- ullet Proofs are the λ -calculus terms arising from deduction rules
- Proof of a sequent $A, B, C \vdash G \Leftrightarrow \operatorname{code/expression} g(a, b, c) : G$
- Each rule has a *proof transformer* function: $PT_{R\Rightarrow}$, PT_{L+} , etc.
- Example: to prove S_0 , start from S_6 backwards:

$$S_{6}: (R \Rightarrow R) \Rightarrow Q; R \vdash R \quad (axiom Id) \quad t_{6}(rrq, r) : R = r$$

$$S_{2}: (R \Rightarrow R) \Rightarrow Q \vdash (R \Rightarrow R) \quad \mathsf{PT}_{R \Rightarrow}(t_{6}) \quad t_{2}(rrq) : (R \Rightarrow R) = (r \Rightarrow t_{6}(rrq, r))$$

$$S_{3}: Q \vdash Q \quad (axiom Id) \quad t_{3}(q) : Q = q$$

$$S_{1}: (R \Rightarrow R) \Rightarrow Q \vdash Q \quad \mathsf{PT}_{L \Rightarrow}(t_{2}, t_{3}) \quad t_{1}(rrq) : Q = t_{3}(rrq(t_{2}(rrq)))$$

$$S_{0}: \emptyset \vdash ((R \Rightarrow R) \Rightarrow Q) \Rightarrow Q \quad \mathsf{PT}_{R \Rightarrow}(t_{1}) \quad t_{0} = (rrq \Rightarrow t_{1}(rrq))$$

Simplified final code (proof term) having the required type:

$$t_0: ((R \Rightarrow R) \Rightarrow Q) \Rightarrow Q = (rrq \Rightarrow rrq(r \Rightarrow r))$$

Proof search III: The calculus LJT

Vorobieff-Hudelmaier-Dyckhoff, 1950-1990

- The Gentzen calculus generates a loop if rule $L \Rightarrow$ is applied ≥ 2 times
- The calculus LJT keeps all rules of LJ except rule $L \Rightarrow$
- Replace rule $L \Rightarrow$ by pattern-matching on A in the premise $A \Rightarrow B$:

$$(X \text{ is atomic}) \frac{\Gamma, X, B \vdash D}{\Gamma, X, X \Rightarrow B \vdash D} L \Rightarrow_{1}$$

$$\frac{\Gamma, A \Rightarrow (B \Rightarrow C) \vdash D}{\Gamma, (A \land B) \Rightarrow C \vdash D} L \Rightarrow_{2}$$

$$\frac{\Gamma, A \Rightarrow C, B \Rightarrow C \vdash D}{\Gamma, (A \lor B) \Rightarrow C \vdash D} L \Rightarrow_{3}$$

$$\frac{\Gamma, B \Rightarrow C \vdash A \Rightarrow B}{\Gamma, (A \Rightarrow B) \Rightarrow C \vdash D} L \Rightarrow_{4}$$

• Rule $L \Rightarrow_4$ is based on the key theorem:

$$((A \Rightarrow B) \Rightarrow C) \Rightarrow (A \Rightarrow B) \iff (B \Rightarrow C) \Rightarrow (A \Rightarrow B)$$

Proof search IV: The calculus LJT

"It is obvious that it is obvious" - a mathematician after thinking for a half-hour

• The key theorem for rule $L \Rightarrow_4$ is attributed to Vorobieff (1958):

be extracted from Lemma 7 in [22]. One could also go further and make subproofs sensible.

LEMMA 2.
$$\vdash_{LJ} \Gamma, (C \supset D) \supset B \Rightarrow C \supset D \text{ iff } \vdash_{LJ} \Gamma, D \supset B \Rightarrow C \supset D.$$
 PROOF. Trivial [34].

THEOREM 1. The systems LJ and LJT are equivalent.

PROOF. As noted earlier, it is routine to show that any sequent provable

[R. Dyckhoff, Contraction-Free Sequent Calculi for Intuitionistic Logic, 1992]

• A stepping stone to this theorem:

$$((A \Rightarrow B) \Rightarrow C) \Rightarrow B \Rightarrow C$$

Proof (obviously trivial): $f \Rightarrow b \Rightarrow f (\Rightarrow b)$

Making practical use of the CH correspondence

Implications for actually writing code

What can we do now?

- Given a fully parametric type, decide whether it can be implemented in code ("type is inhabited"); if so, *generate* the code
- Let curryhoward fill in the code when it is "trivial" to do so
- Use symbolic terms to check results

What problems cannot be solved with these tools?

- Automatically generate code satisfying properties (e.g. isomorphism)
 - ▶ The heuristics will help in some cases
 - One of the implementations can be chosen at run time
- Express complicated conditions via types (e.g. "array is sorted")
 - ▶ Need dependent types for that (Coq, Agda, Idris, ...)
- Generate code using type constructors with properties (e.g. map)
 - First-order logic is undecidable

Title, Abstract, Bibliography

Generating code with the Curry-Howard correspondence: Type inhabitation at compile time

I implemented a library for compile-time code generation from Scala type signatures. The library uses (compile-time) reflection, the Curry-Howard correspondence, and a theorem prover for the constructive propositional logic. Using this library, I illustrate how the Curry-Howard correspondence maps types into propositions and proofs into code. I will also explain some details of the algorithm I used for automatic code generation from type signatures. As an illustration of using this library for automatic code generation, I demonstrate working examples such as implementing map and flatMap for the Reader and State monads.

- D. Galmiche, D. Larchey-Wendling Formulae-as-Resources Management for an Intuitionistic Theorem Prover (1998). In 5th Workshop on Logic, Language, Information and Computation, WoLLIC'98, Sao Paulo.
- R. Dyckhoff Contraction-free sequent calculi for intuitionistic logic (1992), The Journal of Symbolic Logic, Vol. 57, No. 3, (Sep., 1992), pp. 795-807.
- R. Dyckhoff Intuitionistic decision procedures since Gentzen (2013), talk slides