§ 3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

3.1. Основные понятия

Нормальной линейной неоднородной системой дифференциальных уравнений с постоянными коэффициентами порядка п называется система вида

$$\frac{dx_k}{dt} = \sum_{j=1}^n a_{kj} x_j + f_k(t), \ k = \overline{1, n} , \qquad (3.1)$$

где $a_{ki} = \text{const}$.

Система

$$\frac{dx_k}{dt} = \sum_{j=1}^{n} a_{kj} x_j , k = \overline{1, n} , \qquad (3.1')$$

называется однородной.

Вводя в рассмотрение вектор-функции
$$\vec{x} = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \dots \\ x_n(t) \end{pmatrix}$$
 ,

$$\vec{f} = \begin{pmatrix} f_1(t) \\ f_1(t) \\ \dots \\ f_1(t) \end{pmatrix}$$
 и матрицу $A = (a_{kj})$, уравнения (3.1) можно

представить в векторной форме

$$\frac{d\vec{x}}{dt} = A\vec{x} + \vec{f} \,, \tag{3.2}$$

а система (3.1') в векторной форме примет вид

$$\frac{d\vec{x}}{dt} = A\vec{x}. \tag{3.2'}$$

Теорема 1.1. Общее решение линейной неоднородной системы уравнения (3.1) представляет собой сумму общего решения соответствующего однородного уравнения (3.1') и любого частного решения неоднородного уравнения (3.1):

$$\vec{x}(t) = \vec{x}_o(t) + \vec{x}_u(t).$$
 (3.3)

3.2. Общее решение однородной системы

Фундаментальной системой решений однородной системы дифференциальных уравнений (3.2') называется совокупность п линейно независимых решений

$$\vec{x}_{1} = \begin{pmatrix} x_{11}(t) \\ x_{21}(t) \\ \dots \\ x_{n1}(t) \end{pmatrix}, \quad \vec{x}_{2} = \begin{pmatrix} x_{12}(t) \\ x_{22}(t) \\ \dots \\ x_{n2}(t) \end{pmatrix}, \dots, \quad \vec{x}_{n} = \begin{pmatrix} x_{1n}(t) \\ x_{2n}(t) \\ \dots \\ x_{nn}(t) \end{pmatrix}$$
(3.4)

этой системы.

Теорема 2.1. Однородная линейная система дифференциальных уравнение (3.2') имеет фундаментальную систему реше-

Теорема 2.2. Общее решение однородной системы уравнений (3.2') представляет собой произвольную линейную комбинацию частных решений, входящих в фундаментальную систему решений,

$$\vec{x}(t) = C_1 \vec{x_1}(t) + C_2 \vec{x_2}(t) + ... + C_n \vec{x_n}(t),$$
 (3.5) где $C_1, C_2, ..., C_n$ – произвольные постоянные.

3.3. Метод Эйлера

(Метод сведения решения системы к задаче отыскания собственных значений и собственных векторов матрицы системы).

Для собственного значения λ матрицы A, отвечающий ему собственный вектор \vec{h} определяется условием

$$A\vec{h} = \lambda \vec{h} , \ \vec{h} \neq 0. \tag{3.6}$$

Лемма 3.1. Если \vec{h} - собственный вектор матрицы A, отвечающий собственному значению λ , то система (3.2') имеет решение $\vec{x}(t) = \vec{h} e^{\lambda t}$.

Теорема 3.1. Если λ_i , $i=\overline{1,n}$ — попарно различные собственные значения матрицы A, а \vec{h}_i , $i=\overline{1,n}$ — соответствующие им собственные векторы, то $\vec{x}_i(t)=\vec{h}_ie^{\lambda_i t}$, $i=\overline{1,n}$ — образуют Φ CP.

Чтобы найти решения (3.2'):

1) Вычислим собственные значения матрицы A, решив xa-рактеристическое уравнение

$$\det(A - \lambda E) = 0. \tag{3.7}$$

Обозначим $\lambda_1, \lambda_2, ..., \lambda_n$ корни (3.7), вообще говоря, комплексные.

2.1) Корни характеристического уравнения (3.7) действительные, простые. Тогда существует базис из собственных векторов матрицы $A: A\vec{h}_m = \lambda_m\vec{h}_m$, $\vec{h}_m \neq 0$, $m = \overline{1,n}$.

Вектор-функции $\overrightarrow{x_m} = \overrightarrow{h_m} e^{\lambda_m t}$, $m = \overline{1, n}$ являются решениями (3.2').

По теореме 2.2 общее решение векторного уравнения (3.2') есть их произвольная линейная комбинация (C_m — постоянные)

$$\vec{x} = \sum_{m=1}^{n} C_m \vec{h}_m e^{\lambda_m t} . \tag{3.8}$$

2.2) Корни характеристического уравнения (3.7) невещественные, простые.

Лемма 3.2. Если среди корней характеристического уравнения (3.7) есть невещественный корень $\lambda = \alpha + i\beta$, то комплексно сопряженное ему число $\overline{\lambda} = \alpha - i\beta$ также будет корнем этого уравнения. Этой комплексной паре корней соответствуют два линейно независимых частных решения векторного уравнения (3.2') $\overrightarrow{x}(t) = \overrightarrow{h} \, e^{\lambda t}$ и $\overrightarrow{x}(t) = \overrightarrow{h} \, e^{\overline{\lambda} t}$..

Поскольку ставится задача отыскания действительных решений системы дифференциальных уравнений, то в качестве решений, соответствующих такой паре комплексных сопряженных собственных значений матрицы A, выбирают линей-

ные комбинации решений \vec{x} и \vec{x} , а именно, $\overset{\rightarrow}{x_1}(t) = \overset{\rightarrow}{\vec{x}(t)} + \overset{\rightarrow}{\vec{x}(t)}$

и
$$\overrightarrow{x_2}(t) = \frac{\overrightarrow{x}(t) - \overrightarrow{\overline{x}}(t)}{2i}$$
, или $\overrightarrow{x_1}(t) = \operatorname{Re} \overrightarrow{x}(t)$ и $\overrightarrow{x_2}(t) = \operatorname{Im} \overrightarrow{x}(t)$.

Таким образом, если $\alpha \pm i\beta$ – простые корни характеристического уравнения (3.7), то компонента общего решения систе-

мы, соответствующая этой паре комплексных корней, записывается в виде

$$\overrightarrow{x} = C_1 x_1(t) + C_2 x_2(t) = C_1 \operatorname{Re} \left(\overrightarrow{h} e^{\lambda t} \right) + C_2 \operatorname{Im} \left(\overrightarrow{h} e^{\lambda t} \right), (3.9)$$

где C_1 , C_2 — произвольные постоянные, $\stackrel{\rightarrow}{h}$ — собственный вектор, отвечающий собственному значению $\lambda = \alpha + i\beta$.

2.3) Корни характеристического уравнения действительные кратные.

Напомним, что корень уравнения λ^* (3.7) называется *корнем кратности k*, если полином

$$a_0\lambda^n+a_1\lambda^{n-1}+...+a_{n-1}\lambda+a_n=Det\big(A-\lambda E\big)$$
 делится на
$$\big(\lambda-\lambda^*\big)^{\!\!k}\ ,$$
 но не делится на
$$\big(\lambda-\lambda^*\big)^{\!\!k+1}\ .$$

В этом случае матрица A может не иметь n линейно независимых собственных векторов. Тогда для построения общего решения (3.2') используется следующее понятие.

 \mathcal{K} ордановой цепочкой матрицы A, соответствующей собственному значению λ , называется система векторов $\vec{h}_1, \vec{h}_2,..., \vec{h}_p$ такая, что

$$A\vec{h}_{1} = \lambda \vec{h}_{1}, \qquad \vec{h}_{1} \neq \vec{0},$$

$$A\vec{h}_{2} = \lambda \vec{h}_{2} + \vec{h}_{1},$$

$$A\vec{h}_{3} = \lambda \vec{h}_{3} + \vec{h}_{2},$$

$$\vdots$$

$$A\vec{h}_{n} = \lambda \vec{h}_{n} + \vec{h}_{n-1}.$$
(3.10)

Вектор \vec{h}_1 — собственный, а \vec{h}_2 , \vec{h}_3 , ..., \vec{h}_p — присоединенные векторы.

Равенства (3.10) можно записать также в виде

$$(A - \lambda E)\vec{h}_1 = \vec{0}, \qquad \vec{h}_1 \neq \vec{0},$$

$$(A - \lambda E)\vec{h}_k = \vec{h}_{k-1}, \ k = \overline{2, p}.$$
(3.11)

Теорема 3.2. Каждой жордановой цепочке $\vec{h}_1, \vec{h}_2, ..., \vec{h}_p$ соответствует p линейно независимых решений $\vec{x}_1, \vec{x}_2, ..., \vec{x}_p$ векторного уравнения (3.2'):

$$\vec{x}_{1} = e^{\lambda t} \vec{h}_{1},$$

$$\vec{x}_{2} = e^{\lambda t} \left(\frac{t}{1!} \vec{h}_{1} + \vec{h}_{2} \right),$$

$$\vec{x}_{3} = e^{\lambda t} \left(\frac{t^{2}}{2!} \vec{h}_{1} + \frac{t}{1!} \vec{h}_{2} + \vec{h}_{3} \right),$$

$$\dots$$

$$\vec{x}_{p} = e^{\lambda t} \left(\frac{t^{p-1}}{(p-1)!} \vec{h}_{1} + \frac{t^{p-2}}{(p-2)!} \vec{h}_{2} + \dots + \frac{t}{1!} \vec{h}_{p-1} + \vec{h}_{p} \right).$$
(3.12)

3 а м е ч а н и е. Приведем правило запоминания формул (3.12). Собственному вектору \vec{h}_1 соответствует решение $\vec{x}_1 = e^{\lambda t} \vec{h}_1$. Если везде отбросить $e^{\lambda t}$, то каждая строка правой части (3.12) получается интегрированием по t предыдущей строки, причем постоянную интегрирования надо взять равной следующему по порядку вектору серии.

Для кратного собственного значения λ может существовать несколько жордановых цепочек, содержащих линейно независимые собственные векторы матрицы A. Суммарная длина этих цепочек равна кратности λ как корня характеристического уравнения. Компонента общего решения системы, соответ-

ствующая действительному собственному значению λ кратности p, имеет вид

$$\vec{x}(t) = \sum_{r} e^{\lambda t} \sum_{l=1}^{k_r} C_l^{(r)} \vec{x}_l^{(r)}(t),$$

где
$$C_1^{(r)},\,C_2^{(r)},\,...,\,C_{k_r}^{(r)}$$
 – произвольные постоянные, $\sum_r k_r = p$.

Известно, что для любой квадратной матрицы A существует базис, составленный из ее жордановых цепочек, поэтому произвольная линейная комбинация решений вида (3.12) дает общее решение векторного уравнения (3.2').

3.4. Общее решение неоднородной системы

Решение неоднородной системы (3.2) можно найти *мето- дом вариации постоянных*, если известно общее решение однородной системы (3.2') с той же матрицей $A = (a_{kj})$. Для этого в формуле общего решения (3.5) однородной системы надо заменить произвольные постоянные C_m , $m = \overline{1,n}$, на неизвестные функции $C_m(t)$:

$$\vec{x}(t) = \sum_{m=1}^{n} C_m(t) \vec{x}_m(t)$$
. (3.13)

Полученные выражения для
$$\frac{d\vec{x}(t)}{dt} = \sum_{m=1}^{n} \frac{dC_m(t)}{dt} \vec{x}_m(t) +$$

$$+\sum_{m=1}^{n} C_{m}(t) \frac{d\vec{x}_{m}(t)}{dt}$$
 подставляем в неоднородную систему (3.12).

Т.к.
$$\sum_{m=1}^{n} C_m(t) \frac{d\vec{x}_m(t)}{dt} = \sum_{m=1}^{n} C_m(t) A \vec{x}_m(t)$$
, то получаем систему для

определения $\frac{dC_m(t)}{dt}$, $m = \overline{1, n}$:

$$\sum_{m=1}^{n} \frac{dC_{m}(t)}{dt} \vec{x}_{m}(t) = \vec{f} . \tag{3.14}$$

Неизвестные функции $C_m(t)$, $m=\overline{1,n}$, находим, проинтегрировав полученные при решении системы (3.14) функции $\frac{dC_m(t)}{dt},\ m=\overline{1,n}\,.$

Заметим, что если при нахождении функций $C_m(t)$ записывать всю совокупность первообразных, т.е. сохранять в записи выражений для $C_m(t)$ возникающие при интегрировании произвольные постоянные, то (3.13) будет общим решением неоднородной системы. Частное решение неоднородной системы (3.2) получим, полагая возникающие при интегрировании произвольные постоянные равными конкретному значению, например, равными нулю.

3.4. Схемы решения.

Ответ = общее решение однородного + частное решение неоднородного уравнения с постоянными коэффициентами

Так же, как и в случае с одним уравнением, проиллюстрируем подробной схемой пошаговую процедуру отыскания общего решения системы однородных дифференциальных уравнений с постоянными коэффициентами. Напомним, что общее решение линейной однородной системы — это произвольная линейная комбинация элементов фундаментальной системы решений (ФСР).

Для решения однородной системы

Процедуру отыскания частного решения неоднородной системы можно проилллюстрировать схемой:

<u>Для отыскания частного решения неоднородной системы</u>

3.5. Литература.

- 1. *Ипатова В.М., Пыркова О.А., Седов В.Н.*. Дифференциальные уравнения. Методы решений: Учебное пособие. 2-е изд., испр. и доп. М.: МФТИ, 2012. (§2)
- 2. Романко В.К. Курс дифференциальных уравнений и вариационного исчисления. М.: Лаборатория базовых знаний, 2000. (Гл. 3 \S 1, 2, 3).
- 3. *Сборник* задач по дифференциальным уравнениям и вариационному исчислению /Под ред. В.К. Романко. М.: Лаборатория базовых знаний, 2002. (Гл. 3 §11).
- 4. Φ едорюк M.B. Обыкновенные дифференциальные уравнения. 2-е изд. M.: Наука, 1985. (Гл. 3 §7).
- 5. *Филиппов А.Ф.* Введение в теорию дифференциальных уравнений. М.: КомКнига, 2007. (Гл. 3 §14).
- 6. Φ илиппов $A.\Phi$. Сборник задач по дифференциальным уравнениям. М.: Наука, 1979, 1985, 1992. (§14)

3.6. Примеры решения задач, предлагавшихся на экзаменационных контрольных работах в МФТИ

Воспользуемся схемой стр. 10 при решении некоторых систем уравнений, дававшихся на письменных экзаменах по дифференциальным уравнениям в МФТИ.

Пример 3.1. Найти все действительные решения системы

$$\begin{cases} \dot{x} = 5x - y - 4z \\ \dot{y} = -12x + 5y + 12z, (\lambda_1 = -1, \lambda_{2,3} = 1). \\ \dot{z} = 10x - 3y - 9z \end{cases}$$

① Система однородная.

Матрица системы
$$A = \begin{pmatrix} 5 & -1 & -4 \\ -12 & 5 & 12 \\ 10 & -3 & -9 \end{pmatrix}$$
.

1. Не все корни характеристического уравнения различны: либо а) существует базис из собственных векторов матрицы A системы, либо б) строим жорданову цепочку для матрицы A системы. (В данном случае, поскольку λ - двукратный корень, такая цепочка будет всего лишь одна.)

$$\lambda_1 = -1, (A - \lambda_1 E)\vec{h}_1 = \vec{0}$$

Для краткости записи используются следующие обозначения: выражение $\alpha(n)+\beta(m)$ над стрелочкой означает, что перешли к эквивалентной системе алгебраических уравнений, n-я строка матрицы которой представляет собой линейную комби-

нацию n-й и m-й строк с коэффициентами α и β соответственно.

$$A - \lambda_1 E = \begin{pmatrix} 6 & -1 & -4 \\ -12 & 6 & 12 \\ 10 & -3 & -8 \end{pmatrix} \xrightarrow{\frac{1}{6}(2)} \begin{pmatrix} 6 & -1 & -4 \\ -2 & 1 & 2 \\ 4 & -2 & -4 \end{pmatrix}$$

$$\xrightarrow{(1)+2(2)} \begin{pmatrix} 2 & 1 & 0 \\ -2 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{(2)+(1)} \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\frac{1}{2}(2)} \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad \text{дает} \quad \vec{h}_1 = \begin{pmatrix} \frac{1}{2} \\ -1 \\ 1 \end{pmatrix} \text{ или}$$

$$\vec{h}_1 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} \text{ и } \vec{x}_1 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} e^{-t}$$

$$\lambda_{2,3} = 1$$
, $(A - \lambda_2 E)\vec{h}_2 = \vec{0}$.

$$A - \lambda_2 E = \begin{pmatrix} 4 & -1 & -4 \\ -12 & 4 & 12 \\ 10 & -3 & -10 \end{pmatrix} \xrightarrow{\frac{1}{4}(2)} \begin{pmatrix} 4 & -1 & -4 \\ -3 & 1 & 3 \\ 10 & -3 & -10 \end{pmatrix}$$

$$\xrightarrow{\stackrel{(1)+(2)}{(3)+3(2)}} \begin{pmatrix} 1 & 0 & -1 \\ -3 & 1 & 3 \\ 1 & 0 & -1 \end{pmatrix} \xrightarrow{\stackrel{(2)+3(1)}{(3)-(1)}} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \text{дает}$$

$$\vec{h}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \text{ M} \quad \vec{x}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} e^t \, .$$

Поскольку для корня характеристического уравнения λ_2 кратности 2 максимальное число линейно независимых собственных векторов равно 1< 2, то строим для этого корня жорданову цепочку.

$$\begin{split} &(A-\lambda_2 E)\vec{h}_3 = \vec{h}_2 \quad \begin{pmatrix} 4 & -1 & -4 & 1 \\ -12 & 4 & 12 & 0 \\ 10 & -3 & 10 & 1 \end{pmatrix} \xrightarrow{\frac{1}{4}(2)} \quad \begin{pmatrix} 4 & -1 & -4 & 1 \\ -3 & 1 & 3 & 0 \\ 10 & -3 & 10 & 1 \end{pmatrix} \\ &\xrightarrow{\stackrel{(1)+(2)}{(3)+3(2)}} \quad \begin{pmatrix} 1 & 0 & -1 & 1 \\ -3 & 1 & 3 & 0 \\ 1 & 0 & -1 & 1 \end{pmatrix} \xrightarrow{\stackrel{(2)+3(1)}{(3)-(1)}} \quad \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \text{дает} \\ &\vec{h}_3 = \alpha \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} \text{или (при } \alpha = 0) \quad \vec{h}_3 = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}. \end{split}$$

2. Общее решение

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = C_1 e^{-t} \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} + e^t \left\{ C_2 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + C_3 \begin{bmatrix} t \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} \right\}.$$
 1

Пример 3.2.

Найти все действительные решения системы

$$\begin{cases} \dot{x} = 7x + y + 2z \\ \dot{y} = 2x + 3y + z \\ \dot{z} = -8x - 2y - z \end{cases}, (\lambda_{1,2,3} = 3).$$

② Система однородная.

Матрица системы
$$A = \begin{pmatrix} 7 & 1 & 2 \\ 2 & 3 & 1 \\ -8 & -2 & -1 \end{pmatrix}$$
.

1. Отметим, что все корни характеристического уравнения равны.

$$(A - \lambda E)\vec{h}_1 = \vec{0}$$

$$A - \lambda E = \begin{pmatrix} 4 & 1 & 2 \\ 2 & 0 & 1 \\ -8 & -2 & -4 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \text{ дает } \vec{h}_1 = \begin{pmatrix} -\frac{1}{2} \\ 0 \\ 1 \end{pmatrix}$$

или
$$\vec{h}_1 = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$$
. Поскольку для корня λ кратности 3 макси-

мальное число линейно независимых собственных векторов равно 1 < 3, то строим для этого корня жорданову цепочку.

$$(A - \lambda E)\vec{h}_2 = \vec{h}_1.$$

$$\begin{pmatrix} 4 & 1 & 2 & 1 \\ 2 & 0 & 1 & 0 \\ -8 & -2 & -4 & -2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & \frac{1}{2} & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \text{дает}$$

$$\vec{h}_2 = \alpha \begin{pmatrix} -\frac{1}{2} \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
 или (при $\alpha = 0$) $\vec{h}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.

$$(A - \lambda E)\vec{h}_3 = \vec{h}_2$$
.

$$\begin{pmatrix} 4 & 1 & 2 & 0 \\ 2 & 0 & 1 & 1 \\ -8 & -2 & -4 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \text{дает}$$

$$\vec{h}_2 = etaegin{pmatrix} -rac{1}{2} \\ 0 \\ 1 \end{pmatrix} + egin{pmatrix} rac{1}{2} \\ -2 \\ 0 \end{pmatrix}$$
 или (при $eta=1$) $\vec{h}_3 = egin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$.

3. Общее решение

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = C_1 e^{3t} \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} + C_2 e^{3t} \begin{bmatrix} 1 \\ t \\ 0 \\ -2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 0 \end{bmatrix} +$$

$$+ C_3 e^{3t} \begin{bmatrix} t^2 \\ 2 \\ -2 \end{bmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 0 \\ -2 \end{bmatrix} + \begin{pmatrix} 0 \\ -2 \\ 1 \end{bmatrix} .$$

Пример 3.3. Найти все действительные решения системы

$$\begin{cases} \dot{x} = 4x + 3y \\ \dot{y} = 4y - 3z \\ \dot{z} = -x + 3y + 5z \end{cases}, (\lambda_1 = 5, \lambda_{2,3} = 4 \pm 3i).$$

③ Система однородная.

Матрица системы
$$A = \begin{pmatrix} 4 & 3 & 0 \\ 0 & 4 & -3 \\ -1 & 3 & 5 \end{pmatrix}$$
.

1. Все корни характеристического уравнения различны, следовательно, существует базис из собственных векторов матрицы A системы.

$$\lambda_1 = 5, \ (A - \lambda_1 E)\vec{h}_1 = \vec{0}.$$

$$A - \lambda_1 E = \begin{pmatrix} -1 & 3 & 0 \\ 0 & -1 & -3 \\ -1 & 3 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 9 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{pmatrix},$$
 дает $\vec{h}_1 = \begin{pmatrix} -9 \\ -3 \\ 1 \end{pmatrix}$.

$$\lambda_2 = 4 + 3i$$
, $(A - \lambda_2 E)\vec{h}_2 = \vec{0}$.

$$A - \lambda_2 E = egin{pmatrix} -3i & 3 & 0 \\ 0 & -3i & -3 \\ -1 & 3 & 1-3i \end{pmatrix} & \longrightarrow & egin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & i \\ 0 & 0 & 0 \end{pmatrix},$$
 дает

$$\vec{h}_2 = \begin{pmatrix} 1 \\ i \\ 1 \end{pmatrix}.$$

В нашем случае
$$\vec{x}_{\lambda_2} = \vec{h}_2 e^{(4+3i)t} = \begin{pmatrix} 1 \\ i \\ 1 \end{pmatrix} e^{(4+3i)t} = e^{4t} \begin{pmatrix} 1 \\ i \\ 1 \end{pmatrix} e^{3it} = e^{4t} \begin{pmatrix} 1 \\ i \\ 1 \end{pmatrix} (\cos 3t + i \sin 3t) = e^{4t} \begin{pmatrix} \cos 3t \\ -\sin 3t \\ \cos 3t \end{pmatrix} + i \begin{pmatrix} \sin 3t \\ \cos 3t \\ \sin 3t \end{pmatrix}$$
.

Вектор-функции $\vec{x}_2=\mathrm{Re}\ \vec{x}_{\lambda_2}$ и $\vec{x}_3=\mathrm{Im}\ \vec{x}_{\lambda_2}$ – действительные решения системы.

2. Общее решение

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = C_1 e^{5t} \begin{pmatrix} 9 \\ 3 \\ -1 \end{pmatrix} + e^{4t} \begin{bmatrix} \cos 3t \\ -\sin 3t \\ \cos 3t \end{bmatrix} + C_3 \begin{pmatrix} \sin 3t \\ \cos 3t \\ \sin 3t \end{bmatrix}.$$

Пример 3.4. Найти все действительные решения системы

$$\begin{cases} \dot{x} = x + y + \frac{e^{2t}}{\cos t} \\ \dot{y} = -2x + 3y \end{cases}.$$

Ф Система неоднородная.

Следовательно, нам потребуется найти хотя бы одно её частное решение. Удобно воспользоваться схемой решения, приведенной на стр. 11.

Матрица системы
$$A = \begin{pmatrix} 1 & 1 \\ -2 & 3 \end{pmatrix}$$
. Правая часть $\vec{f} = \begin{pmatrix} e^{2t} / \cos t \\ 0 \end{pmatrix}$.

1. Найдем сначала решение однородной системы. Решаем характеристическое уравнение $\det(A - \lambda E) = 0$.

$$\begin{vmatrix} 1-\lambda & 1 \\ -2 & 3-\lambda \end{vmatrix} = (1-\lambda)(3-\lambda)+2 = \lambda^2-4\lambda+5 = 0$$
, отку-да $\lambda_{1,2} = 2 \pm i$.

2. Все корни характеристического уравнения различны, поэтому существует базис из собственных векторов матрицы A системы.

В нашем случае
$$\vec{x}_{\lambda_1} = \vec{h}_1 e^{\lambda_1 t} = \begin{pmatrix} 1 \\ 1+i \end{pmatrix} e^{(2+i)t} = e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ i \end{pmatrix} e^{it}$$

$$= = e^{2t} \left(\begin{pmatrix} \cos t \\ \cos t - \sin t \end{pmatrix} + i \begin{pmatrix} \sin t \\ \cos t + \sin t \end{pmatrix} \right).$$

Вектор функции $\vec{x}_1=\mathrm{Re}\ \vec{x}_{\lambda_1}$ и $\vec{x}_2=\mathrm{Im}\ \vec{x}_{\lambda_1}$ – действительные решения системы.

3. Общее решение однородной системы

$$\begin{pmatrix} x \\ y \end{pmatrix} = C_1 e^{2t} \begin{pmatrix} \cos t \\ \cos t - \sin t \end{pmatrix} + C_2 e^{2t} \begin{pmatrix} \sin t \\ \cos t + \sin t \end{pmatrix}.$$

4. Решение неоднородной системы ищем методом вариации постоянных, полагая $C_1 = C_1(t)$ и $C_2 = C_2(t)$.

Подставляя

$$\dot{x} = C_1'(t)e^{2t}\cos t + C_1(t)(e^{2t}\cos t)' + C_2'(t)e^{2t}\sin t + C_2(t)(e^{2t}\sin t)'$$

И

$$\dot{y} = C_1'(t)e^{2t}(\cos t - \sin t) + C_1(t)(e^{2t}(\cos t - \sin t))' + C_2'(t)e^{2t}(\cos t + \sin t) + C_2(t)(e^{2t}(\cos t + \sin t))'$$

в неоднородную исходную систему, получим для определения $C_1^{'}$ и $C_2^{'}$ систему

$$\begin{cases} C_{1}'(t)e^{2t}\cos t + C_{2}'(t)e^{2t}\sin t &= \frac{e^{2t}}{\cos t}, \\ C_{1}'(t)e^{2t}(\cos t - \sin t) + C_{2}'(t)e^{2t}(\cos t + \sin t) &= 0. \end{cases}$$

Сокращаем оба уравнения на e^{2t} , и умножаем первое уравнение на $\cos t$:

$$\begin{cases} C_{1}'(t)\cos^{2}t + C_{2}'(t)\sin t \cos t &= 1, \\ C_{1}'(t)(\cos t - \sin t) + C_{2}'(t)(\cos t + \sin t) &= 0. \end{cases}$$

К первому уравнению, умноженному на 2, прибавляем второе, умноженное на $(\cos t + \sin t)$:

$$\begin{cases} C_1'(t)\cos^2 t + C_2'(t)\sin t \cos t &= 1, \\ C_1'(t)(\cos^2 t - \sin^2 t) + C_2'(t)(\cos t + \sin t)^2 &= 0. \end{cases}$$

Ко второму уравнению прибавляем первое, умноженное на 2:

$$\begin{cases} C_{1}'(t) - C_{2}'(t) = 2, \\ C_{1}'(t)(\cos t - \sin t) + C_{2}'(t)(\cos t + \sin t) = 0. \end{cases}$$

Полученный из первого уравнения результат $C_1^{'}=C_2^{'}+2$ подставляем во второе уравнение $2\left(C_2^{'}+1\right)\cos t=2\sin t$, отку-

да
$$C_2(t) = \int \left(-1 + \frac{\sin t}{\cos t}\right) dt + c_2 = -t - \int \frac{d\cos t}{\cos t} dt + c_2 = -t - \ln\left|\cos t\right| + c_2$$
, аналогично находим

$$C_1(t) = \int \left(1 + \frac{\sin t}{\cos t}\right) dt + c_1 = t - \ln|\cos t| + c_1.$$

Общее решение неоднородной системы

$$\begin{pmatrix} x \\ y \end{pmatrix} = \left(t - \ln\left|\cos t\right| + c_1 \right) \begin{pmatrix} \cos t \\ \cos t - \sin t \end{pmatrix} e^{2t} +$$

$$\left(-t - \ln\left|\cos t\right| + c_2 \right) \begin{pmatrix} \sin t \\ \cos t + \sin t \end{pmatrix} e^{2t} .$$