CS 341 Automata Theory STUDENT NAME - EID

Homework 13

Due: Tuesday, April 17

This assignment covers Sections 21.1 - 21.3

1) In Appendix E.3, we describe a straightforward use of reduction that solves a grid coloring problem by reducing it to a graph problem. Given the grid G shown here:

a) Show the graph that corresponds to G.

Solution.

$$\begin{split} G' &= \{V, E\} \\ V &= \{A, B, C, D, 1, 2, 3, 4\} \\ E &= \{(A, 3), (A, 4), (B, 1), (B, 3), (B, 4), (C, 4), (D, 2)\} \end{split}$$

b) Use the graph algorithm we describe to find a coloring of G.

Solution. Start with B and color each edge alternately.

$$Red = \{(B, 1), (B, 4)\}$$

 $Blue = \{(B, 3)\}$

Now do vertex 3:

$$Red = \{(B, 1), (B, 4), (A, 3)\}$$

 $Blue = \{(B, 3)\}$

Now vertex A:

$$Red = \{(B, 1), (B, 4), (A, 3)\}$$

 $Blue = \{(B, 3), (A, 4)\}$

Now vertex 4: (it has one of each already, so pick arbitrarily.)

$$Red = \{(B, 1), (B, 4), (A, 3)\}\$$

 $Blue = \{(B, 3), (A, 4), (C, 4)\}\$

And now the last edge:

$$Red = \{(B,1), (B,4), (A,3), (D,2)\}$$

$$Blue = \{(B,3), (A,4), (C,4)\}$$

2) In this problem, we consider the relationship	p between H and a very simple language $\{a\}$.
a) Show that $\{a\}$ is mapping reducible to .	H.
<u> </u>	which halts and accepts if the square to the right of the read roblem of recognizing $\{a\}$ is now equivalent to the problem of \Box
b) Is it possible to reduce H to $\{a\}$? Prove	your answer.
Answer. No.	
	guage, and is thus decidable. So if there were a way to reduce lowever we know that H is not decidable, so such a reduction \Box
3) Show that H_{ALL} is not in D by reduction in	from H .
	that a Turing Machine $Oracle$ that decided H_{ALL} existed. onstructs a description of a new machine $M\#$ that does the
1. Erases its input tape.	
2. Writes w onto the tape.	
3. Passes control to M .	
Now when $M(w)$ halts $Oracle(R(\langle M, w \rangle))$ rejects.	accepts and when $M(w)$ does not halt $Oracle(R(\langle M,w \rangle))$
4) For each of the following languages L , state any input of the form $\langle M \rangle$ is a description	e whether or not it is in D . Prove your answer. Assume that of a Turing machine.
${\rm a)}\ \{\langle M\rangle\ :\ {\rm ab}\in L(M)\}.$	
Answer. No.	
<i>Proof.</i> Define $R(\langle M, w \rangle)$, a mapping rec	luction from H to this language as follows:
 Construct the description \langle M# \rangle of a second of the second of	new Turing machine $M\#$ that, on input x , operates as follows:

	If there were a machine to decide this language, call it $Oracle$ then $C = Oracle(R(\langle M, w \rangle))$ would decide H . If $\langle M, w \rangle \in H$: M halts on w , so $M\#$ accepts everything. In particular, it accepts ab . $Oracle(\langle M\# \rangle)$ accepts. If $\langle M, w \rangle \not\in H$: M halts on w , so $M\#$ does not halt on any input. In particular, it does not halt on
	ab. $Oracle(\langle M\# \rangle)$ rejects.
b)	$\{\langle M,w\rangle: \text{TM }M, \text{ on input }w, \text{ begins by moving right one square onto }w. \text{ Then it never moves off }w\}.$
	Answer. No. \Box
	Proof.
c)	$\{\langle M \rangle : \text{ there exists a string } w \text{ such that } w < \langle M \rangle \text{ and that } M \text{ accepts } w\}.$
	Answer. No.
	<i>Proof.</i> Let R be a mapping reduction from H to this language as follows: $R(\langle M,w\rangle)=$
	 Construct the description \langle \{\rangle M#\} \text{ of a new Turine machine } M#(x) \text{ that, on input } x, \text{ operates as follows:} 1.1 Erase the tape. 1.2 Write w to the tape. 1.3 Run M on w 1.4 Accept. Return \langle M#\rangle.
	Assume by way of contradiction that there exists a machine to decide this language, call it $Oracle$. If $\langle M, w \rangle \in H$: then $M\#$ will accept on all input, including ϵ . So there exists at least one string with length less than $\langle M \rangle$ on which $M\#$ accepts. $Oracle$ accepts. If $\langle M, w \rangle \not\in H$: then $M\#$ will not halt, and thus not accept, on all input. So there does not exists at least one string with length less than $\langle M \rangle$ on which $M\#$ accepts. $Oracle$ rejects. Therefore $Oracle(R(\langle M, w \rangle))$ decides H . However we know that no such machine exists, so $Oracle$ must not exist.
m	Appendix J.2, we proved Theorem J.1, which tells us that the safety of even a very simple security odel is undecidable, by reduction from H_{ϵ} . Show an alternative proof that reduces $A = \{\langle M, w \rangle : M \text{ a Turing machine and } w \in L(M)\}$ to the language Safety.
P^{η}	roof.