SUGGESTED EXERCISES: MATRIX ANALYSIS

JEAN-LUC BOUCHOT

1. Review of Linear Algebra

Homework 1. Show that $tr(A^*A) = 0 \Leftrightarrow A = 0$.

Homework 2. True or false (and justify) the following sets are multiplicative groups

- $G_1 = \{ A \in \mathbb{R}^{n \times n} : \det(A) \neq 0 \}.$
- $G_2 = \{A \in \mathbb{R}^{n \times n} : |\det(A)| = 1\}.$ $G_3 = \{A \in \mathbb{R}^{n \times n} : \det(A) \neq 0 \text{ and } a_{i,j} \in \mathbb{N}\}.$ $G_4 = \{A \in \mathbb{R}^{n \times n} : \det(A) \neq 0 \text{ and } a_{i,j} \in \mathbb{Z}\}.$

Homework 3. Given $A \in \mathbb{K}^{m \times n}$, prove or disprove the following statements (remember that A^* is the adjoint of A, i.e. its conjugate transpose – this is equivalent to the transpose of a matrix in case $\mathbb{K} = \mathbb{R}$).

- (1) $rk(A^*) = rk(A)$.
- (2) $\dim(ker(A)) = \dim(ker(A^*)).$
- (3) $ker(A) = ker(A^*A)$.
- (4) $\dim(ker(A)) = \dim(ker(A^*A)).$
- (5) $rk(A) = rk(A^*A)$.

Homework 4. Prove that $AB = 0 \Leftrightarrow R(B) \subset ker(A)$.

Homework 5. (1) Let A and B be two square matrices. Assume that A is invertible. Show that $p_{AB}(x) =$ $p_{BA}(x)$.

- (2) Assume both A and B are singular. Show that $p_{AB}(x) = p_{BA}(x)$.
- (3) What happens in case $A \in \mathbb{K}^{m \times n}$ and $B \in \mathbb{K}^{n \times m}$.

Homework 6. Let $A \in \mathbb{K}^{n \times n}$ and let p denotes any polynomial. Show that if (λ, \mathbf{x}) is an eigenpair of A then $(p(\lambda), \mathbf{x})$ is an eigenpair of p(A). Use this to prove the theorem of Cayley-Hamilton in case of diagonalizable matrices: $p_A(A) = 0$. (You may also prove the theorem in a more general form, i.e. not necessarily when A is diagonalizable. In this case, you can use the fact that matrices over $\mathbb C$ which are diagonalizable form a dense subset of $\mathbb{C}^{n\times n}$ and then use this to conclude about matrices with entries in \mathbb{R} .)

(1) Let $A, B \in \mathbb{K}^{n \times n}$. Show that $AB = I \Leftrightarrow BA = I$.

(2) Show that this is no longer true in case $A \in \mathbb{K}^{m \times n}$ and $B \in \mathbb{K}^{n \times m}$.

Homework 8. Diagonalize (if possible) the following matrices and factor their characteristic polynomials in \mathbb{R} and \mathbb{C} .

$$(1) \ A = \begin{bmatrix} 6 & -1 \\ 2 & 3 \end{bmatrix}.$$

$$(2) \ A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 1 \\ -1 & 0 & 1 \end{bmatrix}.$$

$$(3) \ A = \begin{bmatrix} 2 & 4 & 6 \\ 0 & 2 & 2 \\ 0 & 0 & 4 \end{bmatrix}.$$

$$(4) \ A = \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix}.$$

Date: December 9, 2018.

Homework 9 (Beginning of Exercises for Week 2). Assume A and B are two non-singular matrices. Prove that

$$adj(AB) = adj(B).adj(A).$$

Homework 10. Let $A \in \mathbb{R}^{n \times n}$, for $n \geq 2$. Prove that

$$adj(adj(A)) = (\det(A))^{n-2} A.$$

Homework 11. Let S be a subset of a vector space V.

- (1) What can be said about $\dim(\text{span}(S))$?
- (2) Let $V = C^{\infty}(\mathbb{R}, \mathbb{R})$ the set of infinitely differentiable functions. Is V finite or infinite dimensional?

Homework 12. Consider the following three basis of $V = \mathbb{R}_2[x]$:

- $S = (x \mapsto 1, x \mapsto x, x \mapsto x^2),$
- $T = (x \mapsto 1, x \mapsto 1 + x, x \mapsto 1 + x^2),$
- $U = (x \mapsto x^2 + 1, x \mapsto 1 + x, x \mapsto x + x^2),$

Consider the following mapping:

$$M: \begin{array}{ccc} \mathbb{R}_2[x] & \to & \mathbb{R}_2[x] \\ p & \mapsto & p' + Xp' \end{array}$$

- (1) Show that M is a linear transformation.
- (2) Compute its matrix representations when looking at is using all the different basis (i.e. U for both input and output spaces, T for both input and output spaces, and then U).
- (3) Show that all these matrices are similar to each other. What is the P matrix appearing in the equivalence
- (4) Compute now the matrix of this linear transformation when the input and output basis are not the same. (i.e. 6 matrices in total). Show that for all of these matrices, there exists a pair of non-singular matrices P and Q such that $A = QBP^{-1}$ (where A is one of those matrices and B is another one). What do P and Q correspond to?

Homework 13. Let
$$A = \begin{pmatrix} 0 & a & b \\ a & 0 & c \\ b & c & 0 \end{pmatrix}$$
 for some $a,b,c \in \mathbb{R}$. Fow which values of a,b,c is A invertible?

Homework 14. Let $(x_i)_{i=1}^n$ be n numbers in \mathbb{R} . Let A be the matrix such that $a_{i,j} = x_i^{j-1}$. Show that A is invertible $\Leftrightarrow x_i \neq x_j$ for $i \neq j$.

Homework 15. Let $A \in \mathbb{R}^{n \times n}$. Assume that for all $1 \leq i \leq n$, $\sum_{j=1}^{n} a_{i,j} = 1$. Prove that $\lambda = 1$ is an eigenvalue and give one of its eigenvectors.

Homework 16. Let
$$t \in \mathbb{R}$$
 and let $A = \begin{bmatrix} 1 & t & t & \cdots & t \\ t & 1 & t & \cdots & t \\ t & \vdots & \ddots & \cdots & t \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ t & t & t & \cdots & 1 \end{bmatrix} \in \mathbb{R}^{n \times n}$. Find the determinant, eigenvalues,

eigenvectors of the matrix A and diagonalize it.

Homework 17. Let $A \in \mathbb{K}^{n \times n}$ and assume A is diagonalizable.

- (1) Compute, using a power series, exp(A). Verify, by analyzing the continuity of the partial sums, that this operation is well-defined!
- (2) Does it hold that $\exp(A+B) = \exp(A) \exp(B)$. If yes, prove it, if no, give an example and a condition for the formula to be true.
- (3) Assume moreover $A^3 = 0$. What is $\exp(A)$?
- (4) What is $\exp(A^T)$?
- (5) Assume (λ, \mathbf{x}) is an eigenpair of A. What can be said about the eigenvalues and / or eigenvectors of $\exp(A)$?

Homework 18. Let \mathbf{x} and \mathbf{y} be two vectors in \mathbb{K}^n .

(1) What is $rk(\mathbf{x}\mathbf{y}^*)$?

(2) Let
$$A = \begin{bmatrix} 0 & \mathbf{x} \\ \mathbf{y}^* & a \end{bmatrix}$$
, where $a \in \mathbb{K}$. Compute the characteristic polynomial of A . Show that $rk(A) \leq 2$.

Homework 19. Let $A, B, S \in \mathbb{K}^{n \times n}$ with S non-singular. Show that AB = BA if and only if $S^{-1}AS$ commutes with $S^{-1}BS$.

Homework 20. Let A and B be two diagonalizable matrices. Show that AB = BA if and only if A and B are simultaneously diagonalizable (i.e. via the same basis).

Homework 21. Let $A \in \mathbb{R}^{n \times n}$ and $t \in \mathbb{R}$. Show that $p_{A+tI}(\lambda) = p_A(\lambda - t)$. How do the eigenvalues of A + tI relate to those of A?

Homework 22. Let $A \in \mathbb{K}^{n \times n}$.

- (1) Let $\lambda \in \sigma(A)$ with multiplicity (geometric AND algebraic) 1. Show that $rk(A \lambda I) = n 1$.
- (2) Conversely, if $rk(A \lambda I) = n 1$, is λ an eigenvalue of A? If yes, does it necessarily have (which?) multiplicity 1?

Homework 23. Let $A \in \mathbb{K}^{n \times n}$. Show that its characteristic polynomial reads

$$p_A(\lambda) = -\lambda^3 + tr(A)\lambda^2 - tr(adj(A))t + \det(A).$$

Homework 24. Prove the inequality between the ℓ_1 , ℓ_2 and ℓ_{∞} norms.

Homework 25. Let $V = \{f : [0,1] \to \mathbb{R}\}$. Show that the following defines an inner product:

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx.$$

Homework 26. Is the following matrix diagonalizable?

$$A = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{array} \right].$$

Compute its eigenvalues and eigenvectors.

Let a_i represent the i^{th} column of A. If the columns of A are linearly independent, use Gram-Schmidt to transform the matrix A into an orthonormal basis. If they are not, reduce the set of columns to a linear independent set, then extend it to a basis of \mathbb{R}^3 and then orthonormalize it.

Homework 27. Let $\mathbf{x} = (1, 2, 3, 0)^T$, $\mathbf{y} = (1, 2, 0, 0)^T$, and $\mathbf{z} = (1, 0, 0, 1)^T$ be three vectors in \mathbb{R}^4 . Expand this family of vector into a basis and orthonormalize it.

Homework 28. Let $x_0, \dots x_n$ be n+1 distinct points in \mathbb{R} and consider $V = \mathbb{R}_n[x]$ the set of polynomials of degree up to n.

Show that, given $p, q \in V$,

$$\langle p, q \rangle = \sum_{i=0}^{n} p(x_i) q(x_i)$$

defines an inner product.

Homework 29. Perform Gram Schmidt on the following family of vectors: $\mathbf{u} = [6, 3, 2]^T$, $\mathbf{v} = [6, 6, 1]^T$, $\mathbf{w} = [1, 1, 1]^T$.

2. The Jordan canonical form

Homework 30. Let A and B be two given $n \times n$ matrices. Assume that A and B are simultaneously to triangular matrices (i.e. there exists a single invertible matrix S such that $S^{-1}AS$ and $S^{-1}BS$ are upper triangular). Show that all the eigenvalues of AB - BA must be 0.

Homework 31. Let $A \in \mathbb{K}^{n \times n}$. Assume that there exists a $k \geq 1$ such that $A^k = 0$. Show that all the eigenvalues must be 0.

Homework 32. Let $A \in \mathbb{K}^{m \times n}$ be the block matrix defined as

$$A = \left[\begin{array}{cc} A_{1,1} & A_{1,2} \\ 0 & A_{2,2} \end{array} \right],$$

where $A_{1,1} \in \mathbb{K}^{n \times n}$ and $A_{2,2} \in \mathbb{K}^{m \times m}$. Show that there A is nilpotent if and only if $A_{1,1}$ and $A_{2,2}$ are nilpotent.

Hint: you may want to prove that the eigenvalues of a nilpotent matrix must be 0. It follows from this that (up to a change of basis), $Ae_k \in \text{span}(e_1, \dots, e_{k-1})$. Conclude from this where $A^j e_k$ may lie (where e_k is the kth basis vector)

School of Mathematics and Statistics, Beijing Institute of Technology $E\text{-}mail\ address:}$ jbouchot@bit.edu.cn