المستوى: الثالث القسسم: رياضيات و إحصاء المادة: أسس الرياضيات الزمسن: ساعة

المملكة العربية السعودية وزارة التعليم العالي جامعة القصيم كلية العلوم ببريدة

امتحان أعمال السنة 1 للفصل الدراسي الأول للعام الجامعي 1443 هـ [20 درجة]

المعوّال الأول: بإستخدام البرهان بالتناقض اثبتي أن $\sqrt{3}$ عدد غير كسري $n \geq 4$ لكل $n! > 2^n$ لكل $n! > 2^n$ لكل $n! > 2^n$ المعوّال الثّالث: أثبتي بإستخدام جدول الصواب أن العبارة التقريرية التالية مصدوقة

 $(p \land q) \rightarrow (p \rightarrow q)$

السوال الرابع: اثبتي بدون استخدام جدول الصواب ان = اشخ = $- (-p \land (q \rightarrow p)) \equiv p \lor q$

انتهت الأسئلة أطيب الأمنيات بالنجاح والتوفيق

السوال الأول: بإستخدام البر هان بالتناقض اثبتي أن 37 عدد غير كسري

مثال ۲: باستخدام البرهان بالتناقض اثبتي ان $\sqrt{3}$ عدد غير كسري.

باستخدام البر هان بالتناقض نفرض ان $\sqrt{3}$ عدد كسري.

(تعریف العدد الکسري)
$$\Rightarrow \sqrt{3} = \frac{a}{b}$$
, $a, b \in Z$, $b \neq 0$, $\gcd(a, b) = 1$

(بتربیع الطرفین)
$$\Rightarrow \left(\sqrt{3}\right)^2 = \left(\frac{a}{b}\right)^2$$

$$\implies 3 = \frac{a^2}{b^2}$$

$$\Rightarrow a^2 = 3b^2 \tag{1}$$

$$($$
من تعریف القاسم $)$ \Rightarrow $3|a^2$

$$\Rightarrow 3|a$$
 (*)

$$\implies a = 3k, \ k \in Z \tag{2}$$

$$((1)$$
 في (۱) في (1) في (1)

$$\implies 9k^2 = 3b^2$$

$$\implies 3k^2 = b^2$$

$$\implies 3|b^2$$

$n \geq 4$ لكل $n! > 2^n$ المية الرياضي الثبتي ان $n! > 2^n$ لكل الثاني: بإستخدام الإستقراء الرياضي

 $n! > n^2$

 $orall n \geq 4$.

n=4 الخطوة الأساسية: نثبت صحة التقرير عند

الأيسر = 4! = 4(3)(2)(1) = 24

الأيمن $4^2 = 16$

بما ان الطرف الأيمن < الطرف الايسر

n=4 انتقریر صائب عند

 $\forall k \geq 4, n = k$ فرضية الاستقراء: نفرض صحة التقرير عند

 $k! > k^2$

 $\forall k \geq 4$

 $\forall (k+1) \geq 4$ ، n=k+1 عند التقرير عند تثبت صحة التقرير عند

 $(k+1)! = (k+1)k! > (k+1)k^2 > (k+1)(k+1) = (k+1)^2$

 $n \geq 4$ أذن التقرير صائب عند n = k + 1. وبالتالى التقرير صائب في حالة

المعوّال الثالث: أثبتي بإستخدام جدول الصواب أن العبارة التقريرية التالية مصدوقة $(p \land q) \to (p \to q)$

р	q	P^q	p 🔷 q	(P^q) → (p →q)
Т	Т	Т	Т	Т
Т	F	F	F	Т
F	Т	F	Т	Т
F	F	F	Т	Т

مثال ۱: بدون استخدام جدول الصواب اثبتي العبارة التقريرية التالية $\neg igl(\neg p \land (q ightarrow p) igr) \equiv p \lor q$

الطرف الأيسر
$$=\neg(\neg p \land (q \rightarrow p))$$
 $=\neg(\neg p \land (q \rightarrow p))$ $\equiv\neg(\neg p \land (\neg q \lor p))$ $\equiv\neg(\neg p \land \neg q) \lor (\neg p \land p))$ $\equiv\neg((\neg p \land \neg q) \lor (\neg p \land p))$ $\equiv\neg((\neg p \land \neg q) \lor F)$ $\equiv\neg((\neg p \land \neg q) \lor F)$ $\equiv\neg(\neg p \land \neg q)$ $\equiv\neg(\neg p \land \neg q)$ $\equiv\neg(\neg p \land \neg q)$ $\equiv\neg(\neg p) \lor \neg(\neg q)$ الطرف الأيمن $\Rightarrow p \lor q$ $\equiv ($ قانون دغي النفي)

رابط المحاضرة التجريبية

https://youtu.be/WcMjodbGlxg?si=J5QHLcUQ535uPNp7

م / منور العامري

شروحات المقرر (۱۵۰ ريال شامل للميد والفاينل + حلول النماذج السابقة وشرحها للميد والفاينل)

خدمات طلابية متكاملة - تصاميم - بحوث - عروض تقديميه إنضم الآن عبر حساباتي على مواقع التواصل الاجتماعي موقعنا:

https://monawweralameri.github.io/Math_Academy/

قناتي تليجرام

https://t.me/+G26LNiXDZMZkNDg0

حساب الواتساب

https://wa.me/967711848728

حسابي تليجرام

https://t.me/Monwwer

