The Computational Complexity of 3k-CLIQUE

Craig Alan Feinstein

2712 Willow Glen Drive, Baltimore, Maryland 21209
E-mail: cafeinst@msn.com, BS"D

Abstract: In this note, we show that the fastest deterministic and exact algorithm that solves the 3k-CLIQUE problem must run in $\Omega(n^{2k})$ time in the worst-case scenario on a classical computer, where n is the number of vertices in the graph.

Disclaimer: This article was authored by Craig Alan Feinstein in his private capacity. No official support or endorsement by the U.S. Government is intended or should be inferred.

The 3k-CLIQUE problem is to determine whether or not a clique of size 3k exists in a given undirected graph G, where k is a positive integer that is not part of the input of the problem [4]. In this note, we show that the fastest deterministic and exact algorithm that solves 3k-CLIQUE must run in $\Omega(n^{2k})$ time in the worst-case scenario on a classical computer, where n is the number of vertices in the graph:

Let G be an undirected graph with n vertices. For every k-clique C in G, create a corresponding vertex v(C) in an auxiliary graph G'. And for every two vertices $v(C_1)$ and $v(C_2)$ in G', create an edge connecting them in G' if and only if $C_1 \cup C_2$ forms a 2k-clique in G. Then G' will have $O(n^k)$ vertices and $O(n^{2k})$ edges. Note that the 3-CLIQUE problem on G' is equivalent to the 3k-CLIQUE problem on G [4].

Let $A=(a_{ij})$ be the adjacency matrix of G'. Then G' has no 3-clique if and only if $\sum_k a_{ik} \cdot a_{kj} = 0$ for each i, j such that $a_{ij} = 1$ [2]. Clearly, if an algorithm is able to determine whether it is true that $\sum_k a_{ik} \cdot a_{kj} = 0$ for each i, j such that $a_{ij} = 1$ faster than the fastest algorithm that checks each equation $\sum_k a_{ik} \cdot a_{kj} = 0$ individually for each i, j such that $a_{ij} = 1$ until either an equation is found to be false or it is certain that all such equations are true, then that algorithm must use an oracle.

Hence, because there are adjacency matrices A of G' with $\Theta(n^{2k})$ indices (i,j) such that $a_{ij}=1$ but only a constant number of indices (i,j) such that $\sum_k a_{ik} \cdot a_{kj} \neq 0$, any algorithm that does not use an oracle and determines whether it is true that $\sum_k a_{ik} \cdot a_{kj} = 0$ for each i,j such that $a_{ij}=1$ must take $\Omega(n^{2k})$ time in the worst-case scenario. Then since determining whether it is true that $\sum_k a_{ik} \cdot a_{kj} = 0$ for each i,j such that $a_{ij}=1$ is equivalent to the 3k-CLIQUE problem on G, it must

also take $\Omega(n^{2k})$ time in the worst-case scenario for any deterministic and exact algorithm that does not use an oracle to solve the 3k-CLIQUE problem on G. And this implies that $P \neq NP$ [1].

This lower bound is confirmed by the fact that the fastest known deterministic and exact algorithm that solves 3k-CLIQUE was first published in 1985 and has a running-time of $\Theta(n^{\omega k})$, where $\omega \geq 2$ [1, 3, 4].

References

- [1] F. Eisenbrand and F. Grandoni, "On the complexity of fixed parameter clique and dominating set", *Theoretical Computer Science* 326(1-3): 57-67, 2004.
- [2] A. Itai and M. Rodeh, "Finding a minimum circuit in a graph", SIAM Journal on Computing 7(4): 413-423, 1978.
- [3] J. Nešetřil and S. Poljak, "On the complexity of the subgraph problem", Comment. Math. Univ. Carolin. 26, 415-419, 1985.
- [4] G. J. Woeginger, "Open problems around exact algorithms", Discrete Applied Mathematics 156(3): 397-405, 2008.