Spatio-temporal methods in environmental epidemiology

Lecture 23

SPECIAL TOPICS: MEASUREMENT ERROR

Effects and coping techniques

Measurement error

Space- time modelling can mitigate unpredictable, pernicious effects in environmental epidemiology. This lectures reviews error types, effects & modelling

Error types

- missing data
- classical & Berkson
 - **Classical:** x = "true" value measured with error to get X:

$$X = x + \epsilon$$

x, ϵ uncorrelated

 Berkson: e.g. experimentor sets "control" at level X but output is (unmeasured) x satisfying

$$X = X + \epsilon$$

equivalently

$$X = x + \epsilon$$

(assuming symmetry of ϵ 's distribution) - now x and ϵ are **correlated**!!

- non-differential & differential
 - non-differential if conditional on true value x, health outcome Y independent of measured predictor X otherwise differential
- structural & functional
 - structural means x is random, otherwise functional
- misclassification error in a binary response

Error effects

- effects of binary exposure variables, x: reduction in apparent effect if non-differential
- same with linear regression & continuous exposures (classical error model) but not with Berkson
- generally effects vary, hard to predict best: reduce measurement error by good design
- for nonlinear models effects more subtle

Error effects: nonlinear models

Suppose

- $(Y, x, X) \sim \text{normal}$
- $E[Y \mid x, X] = \exp[\beta x]$
- . Thus
 - $E[Y \mid X] = E[\exp[\beta x] \mid X] = \exp[\beta \beta_{xX} X + \beta^2 \sigma_{x \cdot X}/2]$ if Y, X independent given X

Residual variance $\sigma_{x \cdot X}$ = precision of X.

- if 0 fit $Y = \exp bX$ bias-correct $\hat{\beta} = b/\beta_{xX}$ like linear case
- if \neq 0 bias wants to inflate b, imprecision to deflate b

(Large residual variance puts fitted β close to 0.)

Role of spatial prediction

• Basic building blocks: uncorrelated clusters i

Clusters	Data
subjects eg mice	repeated measures eg tumors
hospitals	daily admission counts
Census	auto-correlated
Subdivisions (CSD)	daily death counts
years	spatially correlated
	CSD school absences

- health outcomes (eg deaths) { Y_{it}}, for timepoint t (eg day), & cluster i
- pollution concentration (& covariate) vectors $\{X_{it} = (X_{it1}, \dots, X_{itk})\}$ may be hi-pass filtered to unmask blip effects
- effects model

$$E[Y_{it} \mid X_{it}, \mathbf{a_i}] = m_{it} \exp{(\mathbf{a_i}^T X_{it})}$$

m_{it} a fixed factor accounting for population size, day of week & low frequency seasonal components

Effects significant?

Central issue: Is $a_{kj} = 0$ for pollutant j? for some specific k? All k?

NOTES:

- Effects subtle not significant for specific k
- X_{kt} unmeasured for many k-need spatial prediction!!

Subtle effects

Not apparent: strong association between ozone and admissions in plots of daily $\log O_3$ vs hospital admissions in this census subdivision of Toronto, 1983 (upper left)-1988

Borrowing strength

Small insignificant effects for each cluster i can be significant in the aggregate if pattern consistent.

How to aggregate?

Use random effects model:

$$\mathbf{a}_i = \beta + \mathbf{b}_i, \ \mathbf{b}_i^{vector} \sim N(0, D)$$

• Here \mathbf{b}_i is a random effects vector, the deviations for cluster i from the population levels, β

Ambient monitoring

Not all monitoring sites measure the same pollutants.

- networks set up for different purposes often amalgamated
- some purposes not foreseen & hence no gauges originally attached (eg importance of PM_{2.5} only recently recognized)

Ambient pollution levels are unmonitored over many large urban areas Hence:

ambient levels can be a poor surrogate for exposure

⇒ need for spatial predictive methodology

Using spatial prediction

Assumptions:

- $E[Y_{it} \mid X_{it}, \mathbf{a}_i] = \zeta(\mathbf{a}_i^T X_{it})$
- $Var[Y_{it} \mid X_{it}, \mathbf{a}_i] = \phi \zeta(\mathbf{a}_i^T X_{it})$
 - \bullet ϕ = overdispersion parameter
 - •
- Y_{it_1}, Y_{it_2} $t_1 \neq t_2$ independent conditional on $\mathbf{a}_i, X_{it_1}, X_{it_2}$ a ("working assumption")

GEE approach

Only the spatial predictive distribution's mean and variance are needed in this approach¹!!

- By a similar linearization of the nonlinear mean and variance functions of $\{a_k\}$ additional simplification is gained. Now only their means and variances are needed!
- Assuming $\{Y_{kt}\}$ are (quasi) normal (**GEE approach!!**) enables estimation of the β , $\{b_k\}$ etc.

¹Liang and Zeger [1986]

Covariance approximation²

$$\begin{aligned} \textit{Cov}\left(Y_{\textit{i}t_{1}}, Y_{\textit{i}t_{2}} \mid \mathbf{a_{i}}\right) &\approx & \Lambda_{\textit{i}t_{1}t_{2}}(\mathbf{a}_{\textit{i}}) \text{ where} \\ & \Lambda_{\textit{i}t_{1}t_{2}}(\mathbf{a}_{\textit{i}}) &= & \delta_{\textit{i}t_{1}t_{2}}\phi E\left(Y_{\textit{i}t_{1}} \mid \mathbf{a}_{\textit{i}}\right) \\ & & + \zeta'\left(\mathbf{a}_{\textit{i}}^{T}\mathbf{z}_{\textit{i}t_{1}}\right)\zeta'\left(\mathbf{a}_{\textit{i}}^{T}\mathbf{z}_{\textit{i}t_{2}}\right)\mathbf{a}_{\textit{i}}^{T}\mathbf{G}_{\textit{i}t_{1}t_{2}}\mathbf{a}_{\textit{i}}. \end{aligned}$$

Lindstrom-Bates Approximation

Suppose $\mathbf{a}_i \simeq \mathbf{a}_i^o$ fixed $\equiv \beta_i^o$. Then

$$E(Y_{it}|\mathbf{a}_i) \simeq \zeta(\mathbf{a}_i^{oT} z_{it}) + \hat{Z}_{it}(\mathbf{a}_i - \mathbf{a}_i^{o}) + \cdots \equiv \eta(\mathbf{a}_i)$$

where³

$$\bullet \ \hat{Z}_{it} = \zeta'(\mathbf{a}_i^{oT} z_{it}) z_{it}^T$$

Further with $E(\mathbf{a}_i) = \beta \& Cov(\mathbf{a}_i) = D$,

$$E(Y_{it}) \simeq \mu(\mathbf{a}_i^o) \equiv \zeta(\mathbf{a}_i^{oT} z_{it}) + \hat{Z}_{it}(\beta - \mathbf{a}_i^o)$$

+
$$\frac{1}{2} \zeta''(\mathbf{a}_i^{oT} z_{it}) \left\{ z_{it}^T [D + (\beta - \mathbf{a}_i^o)(\beta - \mathbf{a}_i^o)^T] z_{it} \right\}$$

Similar approximations for conditional & unconditional covariances.

³Lindstrom and Bates [1990]

Random effect estimates

Assume conditional on $\{a_i\}$, $\{Y_i\}$ (vector form) normally distributed. Given $Y_i = y_i$ (observed for all i) & β , log posterior density of the \mathbf{b}_i is

$$\propto -\frac{1}{2}\mathbf{r}_i^T\boldsymbol{\Lambda}_i^{-1}\mathbf{r}_i - \frac{1}{2}\mathbf{b}_i^T\boldsymbol{D}^{-1}\mathbf{b}_i$$

with $(\mathbf{r}_i \equiv \mathbf{y}_i - \eta_i(\beta + \mathbf{b}_i))$. Its mode solves

$$W_i \equiv \hat{Z}_i^T \Lambda_i^{-1} \mathbf{r}_i + D^{-1} \mathbf{b}_i = 0$$

to yield $\hat{\mathbf{b}}_i$. [Λ fixed at previous iteration & η linear]

Computing random effects estimates

To solve the estimating equations iteratively using "Fisher's scoring" algorithm" requires the gradient of W_i w.r.t. \mathbf{b}_i , i.e. $\mathbf{A} = -\hat{Z}_i^T \Lambda_i \hat{Z}_i - D^{-i}$. Getting the next value of \mathbf{b}_i in an iterative solution of the estimating equation involves finding **b**_i* as solution of

$$\mathcal{W}_i + \mathbf{A}[\mathbf{b}_i^* - \mathbf{b}_i] = 0$$

That is

$$\mathbf{b}_{i}^{*} = D\hat{Z}_{i}^{T} \Sigma_{i}^{-1} \hat{\mathbf{r}}_{i}$$

where
$$\hat{\mathbf{r}}_{\mathbf{i}} = y_i - \eta(\beta + \hat{\mathbf{b}}_i) + \hat{Z}_i \hat{\mathbf{b}}_i$$

Estimating β

After estimating the $\{\mathbf{b}_i\}$ for fixed β at stage K, update the latter's estimated by "marginalizing out" the $\{\mathbf{b}_i\}$ & maximizing the marginal posterior. Result: estimating equations solved numerically [analogous to the random effects] The result:

$$\hat{\beta}^* = \hat{\beta} + \left[\sum_i \hat{X}_i^T \Sigma_i^{-1} \hat{X}_i\right]^{-1} \left[\sum_i \hat{X}_i^T \Sigma_i^{-1} \mathbf{r}_i\right]$$

is fixed & used for the $\{\beta_i^o\}$ in stage K+1 to get revised versions of the $\{\mathbf{b}_i\}$ & so on.

Likewise **D** and ϕ may be estimated by the maximizing the quasi log likelihood^a. Robust estimates of the covariance matrix of the coefficient estimates vector can also be found.

^aBurnett et al. [1994]

Summary

- Measurement error comes in a variety of forms. Each type can has its own special impacts
- Those impacts are hard to predict when nonlinear regression models are used in environmental epi
- Spatial prediction needed to reduce those effects
- generalized estimating equations approach simplifies analysis - only means & variances of spatial predictive distribution needed (tho more complicated alternatives OK)

- Richard T Burnett, Robert E Dales, Mark E Raizenne, Daniel Krewski, Peter W Summers, Georgia R Roberts, May Raad-Young, Tom Dann, Jeff Brook, et al. Effects of low ambient levels of ozone and sulfates on the frequency of respiratory admissions to ontario hospitals. *Environmental research*, 65(2):172, 1994.
- Kung-Yee Liang and Scott L Zeger. Longitudinal data analysis using generalized linear models. *Biometrika*, 73(1):13–22, 1986.
- Mary J Lindstrom and Douglas M Bates. Nonlinear mixed effects models for repeated measures data. *Biometrics*, pages 673–687, 1990.
- JAMES V Zidek, HUBERT Wong, ND Le, and RICK Burnett. Causality, measurement error and multicollinearity in epidemiology. *Environmetrics*, 7(4):441–451, 1996.