Powierzchnie Riemanna

Weronika Jakimowicz

Zima 2025/26

Spis treści

22.10.2025																	1
ZZ.1U.ZUZD	 	 			 	_		_			_		_	_	_		

22.10.2025

Przykłady

1. Jak wygląda zbiór zer wielomianu $y^2 - x \le \mathbb{C}P^2$? Najpierw musimy ten wielomian ujednorodnić.

$$\Sigma = \{ [x : y : z] : y^2 - xz = 0 \}$$

Wstawiając w kolejno x, y i z wartość 1 dostajemy powierzchnie w \mathbb{C}^2 (spełnione są założenia twierdzenia o funkcji uwikłanej).

2. Zera wielomianu $y^2-p(x)$, gdzie $p(x)\in\mathbb{C}[x]$ i $d=\deg(p)>3$. Wersja ujednorodniona to

$$y^{2-d} - \sum_{k=0}^{d} a_k x^k z^{d-k}$$
.

 $y^2-p(x)=0$ zadaje w \mathbb{C}^2 powierzchnię, o ile p ma jednorodne pierwiastki. Punkty w $\mathbb{C}P^2$ dla których z=0 to $-a_dx^d=0$. Jest w $\Sigma\subseteq\mathbb{C}P^2$ jeden taki punkt: [0:1:0].

W mapie y = 1 mamy zera wielomianu

$$q(x, z) = z^{d-2} - \sum a_k x^k z^{d-k} = 0$$

punktowi [0:1:0] w tej mapie odpowiada punkt (0,0). Ale $q_{\mathbf{X}}(0,0)=q_{\mathbf{Z}}(0,0)=0$. Dziś będziemy w tym przypadku konstruować nieosobliwą powierzchnię Riemanna.

Niech $p(x, y) \in \mathbb{C}[x, y]$ będzie nierozkładalny (i różny od ax + b).

$$p(x, y) = a_0(x)y^n + a_1(x)y^{n-1} + ... + a_n(x),$$

gdzie $a_i(x) \in \mathbb{C}[x]$.

Zbiór $S_1=\{x\in\mathbb{C}: (\exists\ y\in\mathbb{C})\ p(x,y)=0=p_y(x,y)\}$ jest skończony. Podobnie $S_0=\{x\in\mathbb{C}:\ a_0(x)=0\}$. Czyli $S=S_0\cup S_1\cup \{\infty\}$ jest skończonym podzbiorem $\overline{\mathbb{C}}$.

$$\operatorname{\textit{pr}}_1:\mathbb{C}^2\to\mathbb{C}$$

$$Reg := Z(p) \cap pr_1^{-1}(\overline{\mathbb{C}} - S)$$

będzie obrazek

Fakt 0.1

 $\Pi = \mathit{pr}_1|_{\mathit{Reg}} : \mathit{Reg} o \overline{\mathbb{C}} - \mathsf{S} \, \mathsf{jest} \, \mathit{n}\text{-krotnym} \, \mathsf{nakryciem}.$

Definicja 0.2

tutaj można nakrycia definiować

Przykłady

- 1. $\mathbb{R}^1 \to S^1$
- 2. $S^1 \rightarrow S^1$
- 3. $\mathbb{C} \to \mathbb{C}/\mathbb{Z}[i]$
- 4. $\exp: \mathbb{C} \to \mathbb{C} \{0\}$
- 5. $B(0, r^{1/k}) \{0\} \rightarrow B(0, r) \{0\} \text{ przez } z \mapsto z^k$

Przykład

antyprzykład: $\pi: O_{\mathbb C} \to \mathbb C$ jest lokalnym homeomorfizmem $\pi^{-1}(B(0,\varepsilon))$ ma składową spójną

$$\{(\frac{1}{\underline{\mathbf{Z}}})_{\mathbf{W}} \; : \; \mathbf{W} \in \mathbf{B}(0,\varepsilon) - \{0\}\} = \mathbf{U}$$

 $\pi|_{U}LU \to B(0,\varepsilon)$ nie jest homeomorfizmem rysunek?

Fakt 0.3

 $\Pi: Reg \to \overline{\mathbb{C}} - S$ est *n*-krotnym nakryciem

Dowód

Niech $x_0 \in \overline{\mathbb{C}} - S$ i produkujemy otoczenie żeby się zgadzało.

$$\pi^{-1}(\mathbf{x}_0) = \{ (\mathbf{x}_0, \mathbf{y}) : p(\mathbf{x}_0, \mathbf{y}) = 0 \},$$

gdzie $p(x_0, y)$ jest wielomianem zmiennej y stopnia n o pojedynczych pierwiastkach $y_1, ..., y_n \in \mathbb{C}$, więc $|\pi^{-1}(x_0)| = n$.

Wokół każdego (x_0, y_i) zbiór Reg jest wykresem funkcji

oj coś tutaj skipnęłam z D hehe jest w zdjęciu

Niech $x_1 \in D$. Wtedy rozwiązaniami równania $p(x_1, y) = 0$ są $y_1(x_1), y_2(x_1), ..., y_n(x_1)$ są parami różne i jest ich dokładnie n, czyli stopień $p(x_1, y)$ - więc to są wszystkie rozwiązania. Stąd $\pi^{-1}(x_1) \subseteq \bigcup \widetilde{D}_i$.

Niech $s \in S$. Rozważmy $B(s, \varepsilon)$ - koło wokół s - rozłączne z $S - \{s\}$. Niech $B^*(s) = B(s, \varepsilon) - \{s\}$ (małe koło wokół s nakłóte w s). Wtedy $\pi : \pi^{-1}(B*(s)) \to B*(s)$ jest nakryciem (być może niespójnym).

Niech $B_{j}*(s)$ będzie składową spójną tego przeciwobrazu. diagram boże jak mi sie dzisiaj nie chce pisac

Lemat 0.4: nakryciowy

Istnieje homeomorfizm $f_{s,j}$ zamykający diagram Ten $f_{s,j}$ jest biholomorfizmem, bo π , $z\mapsto z^k$ są lokalnymi boholomorfizmami

o jesuuu obrazeeeeeeeek

Dla każdego $B_j*(s)$ dokładamy punkcik $\hat{s_j}$. $f_{s,j}$ rozszerzamy deklarując $f_{s,j}(\hat{s_j})$ i dostajemy mapę $B_j*(s)\cup\{\hat{s_j}\}=:B_j(s)\to B(0,\varepsilon^{1/k})$.

W ten sposób zbudowaliśmy tzw. powierzchnię Riemanna $\Sigma(p) \supseteq Reg$ funkcji algebracznej określonej przez p.

Twierdzenie 0.5

- 1. $\Sigma(p)$ jest zwarta
- 2. odwzorowanie $Reeg \ni (x, y) \mapsto y$ określa meromorficzną funkcję na $\Sigma(p)$
- 3. Reg jest spójny
- 4. Niech $Z_{proj}(p)$ projektywne uzwarcenie, czyli zbiór zer ujednorodnionego p Wtedy włożenie $Reg \hookrightarrow Z_{proj}(p)$ rozszerza się do holomorficznej surjekcji $\Sigma(p) \to Z_{proj}(p)$.

Tutaj przykład i obrazek

Dowód

1. Pokryjemy $\Sigma(p)$ skończoną liczbą domkniętych dysków. Wokół każdego $s \in S$ wybieramy mały domknięty dysk D_s , którego przeciwobraz w $\Sigma(p)$ to skończona suma domkniętych dysków $D_i(s)$ - domknięte otoczenie \hat{s}_i .

Niech $V = \overline{\mathbb{C}} - \bigcup_{s \in S} D(s)$, wtedy \overline{V} jest zwartym podzbiorem $\overline{\mathbb{C}} - S$. Dla każdego $x \in \overline{V}$ wybieramy dysk $D(x) \subseteq \overline{\mathbb{C}} - S$ prawidłowo nakryty

kolejne zdjęcie

