TABLE OF CONTENTS

1.	ONE-DIMENSIONAL MODEL PROBLEMS		1
	1.1 INTRODUCTION	1	
	1.2 HEAT CONDUCTION	1	
	1.2.1 Governing Equations1		
	1.2.2 Boundary Conditions 6		
	1.2.3 The Addition of Convection10		
	1.2.4 The Addition of Advection11		
	1.3 STRESS ANALYSIS FOR A BAR	13	
	1.3.1 Governing Equations for an Elastic Bar13		
	1.3.2 Solutions to the Static Problem		
	1.3.3 Solutions for Nonsmooth Data21		
	1.3.4 The Embedded Bar24 1.4 STRESS ANALYSIS FOR A BEAM	20	
		26	
	1.4.1 Euler-Bernoulli Theory26 1.4.2 Exact Solutions to the Static Problem32		
	1.4.3 Timoshenko Theory35		
	1.5 PROBLEMS WITH AXIAL AND SPHERICAL SYMMETRY	37	
	1.5.1 Cylindrical and Spherical Coordinates37	٠,	
	1.5.2 Heat Conduction38		
	1.5.3 Stress Analysis39		
	1.6 RELATED TOPICS	40	
	1.6.1 General Form of Differential Equations40	-	
	1.6.2 General Method for Treating Discontinuities41		
	1.6.3 Self Adjointness42		
	1.6.4 Energy Formulation44		
	1.7 CONCLUDING REMARKS	46	
	1.8 EXERCISES	47	
2.	TIME-DEPENDENT PROBLEMS IN ONE DIMENSION		49
	2.1 INTRODUCTION	49	
	2.2 TRANSIENT HEAT CONDUCTION	49	
	2.2.1 Formulation49		
	2.2.2 Analytical Solution50		
	2.2.3 Procedure for Obtaining Series Solutions51		
	2.2.4 Series Solutions55		
	2.3 WAVE MOTION IN A BAR	60	
	2.3.1 Formulation60		
	2.3.2 Wave Solutions60		
	2.3.3 Procedure for Obtaining Series Solutions68		
	2.3.4 An Example of a Series Solution72		
	2.3.5 Approximate Solutions75		
	2.4 TRANSIENT MOTION OF A BEAM	78	
	2.4.1 Formulation		
	2.4.2 Procedure for Obtaining Series Solutions78		
	2.4.3 An Example Solution83 2.5 CONCLUDING REMARKS	07	
	2.5 CONCLUDING REMARKS		

3. L	INEAR ALGEBRA		89
	3.1 INTRODUCTION	89	
	3.2. VECTORS	89	
	3.2.1 Notation89		
	3.2.2 Vector Spaces90		
	3.2.3 Basis for Vector Spaces91		
	3.3 MATRICES	94	
	3.3.1 Notation94		
	3.3.2 Matrix Multiplication95		
	3.3.3 Derivative of a Matrix96		
	3.3.4 Transpose of the Product Matrices96		
	3.3.5 Partitioned Matrices96		
	3.3.6 Outer Product of Matrices98		
	3.3.7 Special Matrices98		
	3.3.8 Applications of Vector Spaces to Matrices98		
	3.4 SQUARE MATRICES1	00	
	3.4.1 Notation		
	3.4.2 The Identity Matrix 100		
	3.4.3 Orthogonal Matrices 101		
	3.4.4 Positive Definite Matrices 104		
	3.4.5 Congruence and Similarity 104		
	3.4.6 Elementary Matrices 104		
	3.4.7 Determinants		
	3.5 GAUSSIAN ELIMINATION1	11	
	3.5.1 The Algebraic Problem 111		
	3.5.2 Cramer's Rule 111		
	3.5.3 LU Decomposition 111		
	3.5.4 Cholesky Decomposition 117		
	3.5.5 QR Decomposition 119		
	3.6 MISCELLANEOUS TOPICS1	21	
	3.6.1 Contravariant and Covariant Bases 121		
	3.6.2 Sherman-Morrison Formula 122		
	3.6.3 Sherman-Morrison-Woodbury Formula 123		
	3.7 CONCLUDING REMARKS1	24	
	2 0 EVEDCICES	0.4	

4.1 INTRODUCTION127
4.2 STANDARD EIGENPROBLEM FOR SYMMETRIC MATRICES127
4.2.1 Basic Definitions 127
4.2.2 Modal Matrices and Spectral Decomposition 131
4.2.3 Eigenvector Basis
4.2.4 Positive Definiteness
4.2.5 Similarity
4.2.6 Power of a Matrix
4.2.7 Orthogonal Projections
4.2.8 The Cayley-Hamilton Theorem
4.2.9 Rayleigh Quotient
4.2.10 Eigenvalue Separation Property 142
4.3 STANDARD EIGENPROBLEM FOR UNSYMMETRIC
MATRICES142
4.3.1 Properties of the Eigensystem
4.3.2 Gerschgorin's Theorem
4.4 GENERAL EIGENPROBLEM146
4.4.1 Basic Relationships for Symmetric Matrices 146
4.4.2 Relationships between General and Standard
Eigenproblems147
4.5 NORMS149
4.5.1 Vector Norms
4.5.2 Matrix Norms
4.5.3 Weighted Norms
4.5.4 Scaled P-Norms
4.6 CONDITION OF LINEAR EQUATIONS152
4.7 DECOMPOSITIONS153
4.7.1 Singular Value Decomposition
4.7.2 Polar Decomposition
4.8 MODAL METHOD FOR SOLVING THE ALGEBRAIC
PROBLEM155
4.8.1 The Complete Modal Method
4.8.2 The Approximate Modal Method
4.9 ITERATIVE METHODS FOR SOLVING THE ALGEBRAIC
PROBLEM158
4.10 ITERATIVE METHODS FOR OBTAINING EIGENPAIRS162
4.10.1 Introductory Comments
4.10.2 Backward or Inverse Iteration
4.10.3 Forward Iteration
4.10.4 Gram-Schmidt Method for Other Eigenpairs 165
4.11 EXAMPLE PROBLEMS166
4.12 CONCLUDING REMARKS173
4.12 CONCLODING REMARKS173

5.	THE FINITE DIFFERENCE METHOD	175
	5.1 INTRODUCTION17	5
	5.2 STABILITY17	8
	5.3 ERROR17	
	5.4 FINITE DIFFERENCE ALGORITHMS FOR ODES WITH	
	CONSTANT COEFFICIENTS18	4
	5.4.1 A First-Order Differential Equation 184	•
	5.4.2 A Second-Order Differential Equation 189	
	5.4.3 A More Complex Model Problem	
	5.5 BOUNDARY CONDITIONS19	2
	5.6 THE ADVECTION-DIFFUSION EQUATION19	-
	5.7 VARIABLE COEFFICIENTS20	
	5.8 NUMERICAL DETERMINATION OF RATE OF CONVERGENCE 20	
	5.9 LAX'S EQUIVALENCE THEOREM20	
	5.10 USE OF A SCALED NORM20	
	5.11 CONCLUDING REMARKS21	
	5.12 EXERCISES21	2
6.	THE SYMMETRIC WEAK FORMULATION AND	
	GALERKIN'S METHOD	213
	6.1 INTRODUCTION21	3
	6.2 SYMMETRIC WEAK FORM21	
	6.3 BOUNDARY CONDITIONS21	
	6.4 GALERKIN APPROXIMATIONS21	
	6.5 DETERMINATION OF GALERKIN APPROXIMATIONS22	
	6.6 BOUNDARY CONDITIONS FOR THE GALERKIN PROCEDURE 22	
	6.6.1 Neumann Boundary Conditions	
	6.6.2 Homogeneous Dirichlet Problem	
	6.6.3 Inhomogeneous Dirichlet Problem 224	
	6.6.4 Mixed Boundary Conditions	
	6.7 NODAL BASIS FUNCTIONS22	8
	6.8 LAGRANGE POLYNOMIALS23	
	6.9 GLOBAL AND LOCAL SUPPORT23	
	6.10 RAYLEIGH-RITZ APPROXIMATIONS23	
	6.11 CONCLUDING REMARKS23	
	6.12 EXERCISES23	
7.	THE FINITE ELEMENT METHOD	237
	7.1 INTRODUCTION23	7
	7.2 A TWO-NODE ELEMENT23	
	7.3 GALERKIN MATRICES FOR THE TWO-NODE ELEMENT24	
	7.4 ELEMENT MATRICES FOR PIECEWISE CONSTANT FORCE	
	AND STIFFNESS24	4
	7.5 CONTRIBUTIONS OF POINT FORCES TO THE GLOBAL	
	FORCE24	6
	7.6 AN ALGORITHM FOR GLOBAL STIFFNESS AND FORCE	
	MATRICES24	7
	7.7 KINEMATIC BOUNDARY CONDITIONS25	2

7.7.1 Deleting Rows and	Columns 252
	l Columns 254
7.7.3 The Penalty Metho	d 255
	PPROXIMATE SOLUTION257
	258
	264
	264
	olete Polynomials 271
7.10.5 Accuracy of the For	
<u> </u>	274
	ANALYSIS274
	NT278
	ESS MATRICES281
	S284
	R THE GENERAL PROBLEM286
	287 289
7.17 EXERCISES	289
. THE INTEGRATION OF A	
	SINGLE-DEGREE-OF-FREEDOM
SYSTEM	291
	291
	OOM SYSTEM291
	AL RULE293
8.4 STABILITY ANALYSIS OF TH	E GENERAL TRAPEZOIDAL
	295
8.5 ERROR AND CONVERGENCE	298
8.6 LAX'S EQUIVALENCE THEO	REM301
8.7 DERIVATION BASED ON LOC	CAL TRUNCATION ERROR302
	304
8.9 CONCLUDING REMARKS	305
8.10 EXERCISES	306
9. TRANSIENT HEAT CONDUCTION	N 307
	307
	307
	ON FOR NODAL BASIS FUNCTIONS
	309
	LEMENTS309
	GALERKIN EQUATIONS311
	ME INTEGRATION314
	IS317
	G MATRIX THEORY320
	323
9.9 CONVERGENCE	323
	324
3.11 EXEKCISES	324

10. TIME INTEGRATION OF A SINGLE-DEGREE-OF-FREEDO SECOND ORDER SYSTEM 32	
10.1 INTRODUCTION327	
10.2 SINGLE-DEGREE-OF-FREEDOM SYSTEM327	
10.3 GENERAL TRAPEZOIDAL RULE329	
10.4 LOCAL TRUNCATION ERROR331	
10.5 STABILITY ANALYSIS, DISSIPATION AND DISPERSION335	
10.5.1 Physically Overdamped System	
10.5.2 Physically Underdamped System	
10.5.2 Physically Undamped System	
10.5.3 Physically Undamped System 340	
10.6 RELATED TOPICS346	
10.6.1 Amplification Matrix 346	
10.6.2 Requirements for an Energy Conserving Algorithm347	
10.6.3 A Multi-Step Algorithm 348	
10.7 NEWMARK INTEGRATOR349	
10.8 CONCLUDING REMARKS352	
10.9 EXERCISES354	
11. TRANSIENT MOTION OF A BAR 35	55
11.1 INTRODUCTION355	
11.2 GOVERNING EQUATIONS355	
11.3 THE GALERKIN FORMULATION FOR NODAL BASIS	
FUNCTIONS357	
11.4 GALERKIN MATRICES USING FINITE ELEMENTS358	
11.5 TIME INTEGRATION OF THE GALERKIN EQUATIONS359	
11.6 STABILITY ANALYSIS FOR SYSTEM OF EQUATIONS368	
11.7 MATRIX APPROACH TO ANALYSE STABILITY372	
11.8 CONCLUDING REMARKS375	
11.9 EXERCISES376	
12. STATIC AND DYNAMIC RESPONSE OF BEAMS 37	7
12.1 INTRODUCTION377	
12.2 WEAK FORM OF THE EULER-BERNOULLI EQUATION377	
12.3 GALERKIN FORMULATION FOR NODAL BASIS FUNCTIONS379	
12.4 DETAILS OF THE FINITE ELEMENT FORMULATION383	
12.4.1 Element Mass Matrices	
12.4.2 Element Stiffness Matrices	
12.4.3 Element Force Vectors	
12.4.4 Boundary Conditions 385	
12.4.5 Assembling the Global Force Vector 386	
12.4.6 Assembling the Global Stiffness Matrix 388	
12.4.7 Dynamic Problems	
12.5 FINITE ELEMENT FORMULATION FOR THE MINDLIN THEORY389	,
12.6 CONCLUDING REMARKS392	
12.7 EXERCISES392	

13.	THE NODAL FORCE OR MIXED METHOD	395
	13.1 INTRODUCTION39	
	13.2 GOVERNING EQUATIONS39	-
	13.3 GALERKIN FORMULATION USING FINITE ELEMENTS39	
	13.4 COMPUTATIONAL ALGORITHM39	
	13.5 CONCLUDING REMARKS39	
	13.6 EXERCISES40	0
14.	OTHER COORDINATE SYSTEMS	401
	14.1 INTRODUCTION40	
	14.2 AXIALLY SYMMETRIC TRANSIENT HEAT CONDUCTION40	1
	14.3 FINITE ELEMENT MATRICES FOR AXIALLY SYMMETRIC	
	HEAT CONDUCTION40	
	14.4 TRANSIENT MOTION IN THE RADIAL DIRECTION40	6
	14.5 CONCLUDING REMARKS41 14.6 EXERCISES41	1
	14.6 EXERCISES41	2
4 E	MULTIPOINT CONSTRAINTS	413
15.	15.1 INTRODUCTION41	
	15.1 INTRODUCTION41. 15.2 EXISTING APPROACHES41.	
	15.2.1 Notation	4
	15.2.2 Direct Elimination	
	15.2.3 Least Squares	
	15.2.4 Penalty Method	
	15.2.5 Lagrange Multipliers	
	15.2.6 Orthogonal Projections 418	
	15.2.7 Sequential Applications of Constraints 419	
	15.3 PROCEDURE SUGGESTED BY THE WEAK FORMULATION-41	9
	15.3.1 A Single Constraint 419	
	15.3.2 Multiple Constraints 423	
	15.3.3 Maintaining Symmetry 424	
	15.3.4 General Algorithm	
	15.4 A SIMPLE EXAMPLE42	6
	15.5 CONCLUDING REMARKS42	
	15.6 EXERCISES42	7
16	ADVANCED CONCEPTS ASSOCIATED WITH HIGHER OR	DED
		429
	16.1 INTRODUCTION42	
	16.1 INTRODUCTION42	9
	THREE-NODE ELEMENT42	9
	16.3 ARBITRARY LOCATION OF SECOND NODE43	
	16.4 IMPLICATIONS ASSOCIATED WITH A MASTER ELEMENT -430	
	16.5 CONCLUDING REMARKS44	
	16.6 EXERCISES44	

APPENDIX	444
A.1 FUNDAMENTAL THEOREM OF CONTINUUM MECHANICS433	
A.2 FUNDAMENTAL LEMMA OF THE CALCULUS OF VARIATIONS433	}
A.3 TAYLOR SERIES434	
A.4 NUMERICAL QUADRATURE434	
A.5 INTEGRATION BY PARTS436	
A.6 ONE-DIMENSIONAL DIVERGENCE THEOREM436	
A.7 GENERALIZED FUNCTIONS438	
A.8 CLASSIFICATION OF FUNCTIONS441	
REFERENCES	443