南京邮电大学 2013/2014 学年第一学期

《线性代数与解析几何》期末试卷(A)

院(系)_			班级			学号			姓名		
题号	_	=	三	四	五	六	七	八	九	总	分
得分											
得分 一 .填空题 (每小题 4 分,共 20 分)											
	1. 设有四阶矩阵 $A = (\alpha, \gamma_2, \gamma_3, \gamma_4)$, $B = (\beta, \gamma_2, \gamma_3, \gamma_4)$,其中 $\alpha, \beta, \gamma_2, \gamma_3, \gamma_4$										
均为四维列向量,且已知行列式 $ A =4$, $ B =1$,则 $ A+B =$											
2. 设 A 是 4×3 矩阵,且 $r(A) = 2$,而 $B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{pmatrix}$,则 $r(AB) = \underline{\qquad}$											
3.空间四点 $A(1,1,1)$, $B(2,3,4)$, $C(1,2,k)$, $D(-1,4,9)$ 共面的充要条件是 $k=\underline{3}$.											
4. 空间曲线 $\begin{cases} x^2 + y^2 + z^2 = 5 \\ x^2 + y^2 = 4z \end{cases}$ 在 xOy 面上的投影曲线方程为											
5. 若三阶方阵 A 使得 $A-I$, $A-2I$, $A+3I$ 都不可逆,则 $\left A+I\right =$											
二 .选择题 (每小题 4 分,20 分)											
1. 设 <i>A</i> ,	B为n	介矩阵,	则必有	Ī						()
$(A) A+B = A + B $ (B) $AB = BA$ (C) $(A+B)^{-1} = A^{-1} + B^{-1}$ (D) $ AB = BA $											
2. 设 A, B 为 n 阶矩阵,且 $(AB)^2 = I$, I 为单位矩阵,下列命题错误的是 ()											
(A)	$(BA)^2$	=I	(<i>B</i>)	$A^{-1} = I$	3	(C) $r($	(A) = r(<i>B</i>)	(D)	$A^{-1} = I$	BAB
3. 已知 eta_1,eta_2 是非齐次线性方程组 $Ax=b$ 的两个不同的解, $lpha_1,lpha_2$ 是对应的齐次线											
性方程组的基础解系, k_1, k_2 为任意常数,则方程组 $Ax = b$ 的通解为 ()											

(A)
$$k_1\alpha_1 + k_2(\alpha_1 + \alpha_2) + \frac{\beta_1 - \beta_2}{2}$$
 (B) $k_1\alpha_1 + k_2(\alpha_1 - \alpha_2) + \frac{\beta_1 + \beta_2}{2}$

(B)
$$k_1\alpha_1 + k_2(\alpha_1 - \alpha_2) + \frac{\beta_1 + \beta_2}{2}$$

(C)
$$k_1\alpha_1 + k_2(\beta_1 + \beta_2) + \frac{\beta_1 - \beta_2}{2}$$
 (D) $k_1\alpha_1 + k_2(\beta_1 - \beta_2) + \frac{\beta_1 + \beta_2}{2}$

(D)
$$k_1 \alpha_1 + k_2 (\beta_1 - \beta_2) + \frac{\beta_1 + \beta_2}{2}$$

4. 设矩阵
$$A = \begin{pmatrix} 2 & -1 & 4 \\ 0 & a & 7 \\ 0 & 0 & 3 \end{pmatrix}$$
与 $\Lambda = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & b \end{pmatrix}$ 相似,则 a , b 满足 ())

(A)
$$a = -1, b = 3$$
 (B) $a = 1, b = -3$ (C) $a = 1, b = 3$ (D) $a = -1, b = -3$

5. 若二次型
$$f(x_1, x_2, x_3) = 2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + tx_2x_3$$
 正定,则 t 的取值范围是(

$$(A) - \sqrt{2} < t < 0 \quad (B) - 2 < t < 2 \qquad (C) - \sqrt{2} < t < \sqrt{2} \qquad (D) - \frac{\sqrt{2}}{2} < t < \frac{\sqrt{2}}{2}$$

得 分

三、(本题 10 分)设
$$XA = 2X + B$$
, 其中 $A = \begin{pmatrix} 3 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 0 & 1 \\ 3 & 2 & -1 \end{pmatrix}$,

求X.

四、(本题 10 分) 求向量组
$$\alpha_1 = (1,1,-1,-1)^T$$
, $\alpha_2 = (0,1,0,-1)^T$,

$$\alpha_3 = (3, 2, -1, -4)^T$$
, $\alpha_4 = (4, 5, -2, -7)^T$ 的秩和它的一个极大线性无关

组,并用该极大线性无关组表示其余向量.

得 分

五、(本题 10 分)

求通过点 P(2,0,-1) 且又通过直线 $\frac{x+1}{2} = \frac{y}{-1} = \frac{z-2}{3}$ 的平面方程.

得 分

六、(本题 12 分) λ 取何值时,线性方程组 $\begin{cases} \lambda x_1 + x_2 + x_3 = \lambda - 3 \\ x_1 + \lambda x_2 + x_3 = -2 \end{cases}$ 有唯一解, $\begin{cases} x_1 + x_2 + x_3 = \lambda - 3 \\ x_1 + \lambda x_2 + x_3 = -2 \end{cases}$

无解或有无穷多解? 当方程组有无穷多解时求其通解.

得 分

七、(本题 12 分)

求一个正交变换x = Qy,将二次型 $f(x_1, x_2, x_3) = 2x_1^2 + 3x_2^2 + 3x_3^2 + 4x_2x_3$

化成标准形,并指出 $f(x_1,x_2,x_3)=4$ 表示的曲面名称.

得 分

八、(本题6分)

设 n 阶实对称矩阵 A 的特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_n$, α 是 A 的对应于特征值 λ_1 的单位特征向量,矩阵 $B=A-\lambda_1\alpha\alpha^T$,证明: B 的特征值为 $0, \lambda_2, \cdots, \lambda_n$.