

Assembly Cycle

Assembly

Introduction to engine manufacturing
Manufacturing cycle
Engine Assembly process
Piston - Connecting Rod sub-assembly
Operation sheet
Examples of manual and automatic processes

Introduction to engine manufacturing

Manufacturing Cycle

Bill of Material

- Structured list of parts and materials and relative quantity needed for each component
- Drawings (dimensions and tolerances)

BoP

Bill of Process

- Sequenced process phases:
 - machines
 - equipments
 - tools

Quality req's

Standards & Norms

- Control & Test
- Cleanliness
- Traceability
- Handling

mfg cycle

description of sequence of
(automatic / manual) technological
operations, including tools and
equipments and cycle time, aimed
at production of specific component

Engine assembly

What

Where

Piston and conrod Bill of Material (BoM)

#	Components	Quantity
А	PISTON	1
В	CONROD	1
С	CONROD CAP	1
D	CONROD BEARING	2
Е	SCREW	2
F	PISTON PIN	1
G	SNAP RING	2

Conrod loading and datamatrix reading

Process description:

- 1. Conrod select (type and classes weight)
- 2. Conrod load onto the pallet
- 3. Check the correct orientation
- 4. Data matrix reading to control the correct type and classes

Equipment:

- 1. Feeding system
- 2. Gripper unit to handle the conrod
- 3. Camera system
- 4. LVDT system (Linear Variable Displacement Transducer)
- 5. Data matrix reader

Quality requirements:

- 1. Surfaces No-Touch policy
- 2. Traceability data

- 1. Gloves
- 2. Safety shoes

Untightening conrod caps screws and marking

Process description:

- 1. Conrod and conrod caps marking
- 2. Untightening conrod caps screws

Equipment:

- 1. Nutrunner or manual wrench
- 2. Socket
- 3. Marking system
- 4. Camera system

Quality requirements:

- 1. Surfaces No-Touch policy
- 2. Marking specification

Safety recommendation:

- 1. Gloves
- 2. Safety shoes

STELLANTIS is the sole owner of this document. It cannot be copied or given to third parties without permission

Conrod caps remove

Process description:

- 1. Conrod caps remove from the conrod
- 2. Conrod caps seated properly on the pallet seats

Equipment:

- 1. Gripper unit to handle the conrod caps
- 2. Vacuum system

Quality requirements:

- 1. Surfaces No-Touch policy
- 2. Cleanliness policy components

- 1. Gloves
- 2. Safety shoes

Conrod and conrod caps bearing assembly

Process description:

- 1. Half bearing selection
- 2. Half bearing assemble on the conrod and conrod caps
- 3. Conrod and conrod caps seated properly on the pallet seats

Equipment:

- 1. Feeding system
- 2. Gripper unit to handle the bearing

Quality requirements:

- 1. Surfaces No-Touch policy
- 2. Cleanliness policy components

- 1. Gloves
- 2. Safety shoes

Conrod positioning for piston assembly

Process description:

- 1. Pick the conrod from the pallet seats
- 2. 180° turnover conrod and 90° rotate conrod
- 3. Conrod properly seated on the pallet

Equipment:

1. Gripper unit to handle the conrod

Quality requirements:

1. Surfaces No-Touch policy

- 1. Gloves
- 2. Safety shoes

Piston placed on the conrod

Process description:

- 1. Piston selection
- 2. Piston pick and place on the conrod seated on the pallet

Equipment:

- 1. Piston feeding system
- 2. Gripper unit to handle piston
- 3. Data matrix reader
- 4. Camera system

Quality requirements:

1. Surfaces No-Touch policy

- 1. Gloves
- 2. Safety shoes

Piston pin assembly

Process description:

- 1. Piston pin feeding
- 2. Piston and conrod alignment
- 3. Oiling piston pin diameter
- 4. Piston pin insertion

Equipment:

- 1. Feeding system
- 2. Gripper unit to handle piston pin
- 3. Fixture to align conrod piston pin diameter
- 4. Oiling system
- 5. Insertion unit

Quality requirements:

- 1. Surfaces No-Touch policy
- 2. Press and stroke monitoring

- 1. Gloves
- 2. Safety shoes

C-clip piston pin assembly

Process description:

- 1. Piston pin C-clip feeding
- 2. C-clip assembly properly into the piston groove

Equipment:

- 1. Feeding system
- 2. Insertion c-clip unit

Quality requirements:

- 1. Surfaces No-Touch policy
- 2. Press and stroke monitoring

- 1. Gloves
- 2. Safety shoes
- 3. Safety glasses

C-clip properly assembled check

Process description:

1. C-clip assembly properly into the piston groove

Equipment:

- 1. Slide unit
- 2. Camera system (2D or 3D)
- 3. LVDT system (Linear Variable Displacement Transducer)

Quality requirements:

1. Surfaces No-Touch policy

- 1. Gloves
- 2. Safety shoes

Operation Sheet

aiding

PICTURES

STELLANTIS is the sole owner of this document. It cannot be copied or given to third parties without permission

Wrap-up

- The Assembly process is carried out through a series of operations of insertion, coupling, screwing, and so on, to compose the parts; operations which are largely reversible (while welding, press-fitting and others are not reversible)
- Cycle time = Available time / Gross number of units to be produced
 - Available time (i.e. meal break not included): 21 hours/day = 1260 min/day
 - Gross number of units (good + lost units): 2400 + 120 (5% losses) = 2520 units/day
 - Cycle time: 1260/2520 = 0,5 min = 30 sec
- Level of automation (manual vs auto solution) is affected by internal and external factors, such as:
 - Capacity requested
 - Part complexity
 - Manpower labor costs
 - Investments

Examples of manual and automatic processes

Manual assembly process

Automatic assembly process

