

Object detection

Based on work from Ivan Laptev
Improving object detection with boosted histograms (IVC 2009)

Xavier Lladó, Robert Martí

Contents

- 1. Definition of Object detection
- 2. Object Detection Scheme
- 3. Detection Procedure
- 4. Evaluation and Conclusion

Contents

1. Definition of Object detection

- 1. Goal
- 2. Applications
- 3. Problems/Challenges
- 4. Qualities of a good detection
- 2. Object Detection Scheme
- 3. Detection Procedure
- 4. Evaluation and conclusion

1.1 Goal of Object Detection?

The goal of Object detection is to determine the existence of object in a scene.

1.2 Object Detection Applications

Security / Surveillance

Pedestrians Detection

Abandoned Object Det.

Stealing Object Det.

1.2 Object Detection Applications

Entertainment

Game controller

1.3 Problems and Challenges of object Detection

1.3 Problems and Challenges of object Detection

View point / Scale Variations

1.3 Problems and Challenges of object Detection

1.3 Problems and Challenges of object Detection

Deformation Pose Variation

1.4 Qualities of a good detection

- Robust to above mentioned variations
 - Occlusion
 - Light
 - Viewpoint / Scale
 - Pose / Deformation

Contents

- 1. Definition of Object detection
- 2. Object Detection Scheme
 - 1. General Case
 - 2. Boosted Histograms
 - 1. HOG
 - 2. Adaboost
- 3. Detection Procedure
- 4. Evaluation and conclusion

2. Object detection scheme

2.1 General Case

Object is Detected or not

2. Object detection scheme

2.2 Object Detection with Boosted Histograms

Object is Detected or not

2. Object detection scheme

2.2.1Definition

- Contrast stretching
 - Gamma transform
 - Log Transform
 - Histogram Equalization

2.2.1Definition

- Smoothing
- Eliminates noise edges
- Makes edges smother
- Removes fine detail

2.2.1Definition

2.2.1Definition

2.2.1Definition

2.2.1Definition

Features:

Histogram of Oriented Gradients(HOG) [6]

[6] N. Dalal and B. Triggs, "Histograms of Oriented Gradients for Human Detection" CVPR 2005

2.2.2 How to use HOG

Feature Extraction

Using exhaustive set o regions

Combining Different Spatial Grids

For each Region:

4 Image Features: 1x1, 1x2, 2x1 and 2x2 of length m, 2m, 2m and 4m

Most Discriminative Regions

Feature density

Spatial Grid

- HOG [6] dense representation
 - overlapping local contrast normalization for improved accuracy
- SIFT[3] sparse representation due to keypoint localization
 - 4x4 with 8 bins = 128 element feature vector

- [3] D. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints", IJCV 2004
- [6] N. Dalal and B. Triggs, "Histograms of Oriented Gradients for Human Detection" CVPR 2005

2.2.2 Adaboost

2.2.2.1 Definition

- Weak Classifier
- Combination to Boost

Toy Example: Final Classifier

$$H(z) = \operatorname{sgn}(\sum_{t=1}^{T} \alpha_t h_t(z))$$

$$= \operatorname{sign}(0.42)$$

$$= + 0.65$$

$$= + 0.65$$

$$= + 0.65$$

$$= + 0.7$$

2.2.2 Adaboost

Contents

- 1. Definition of Object detection
- 2. Object Detection Scheme
- 3. Detection Procedure
- 4. Evaluation and conclusion

Extract Hog from Scanning Windows

Apply the classifier

Detected

Not Detected

Window Scanning (Sliding Window)

Window Scanning (Sliding Window)

Spatial clustering of multiple detections

Contents

- 1. Definition of Object detection
- 2. Object Detection Scheme
- 3. Detection Procedure
- 4. Evaluation and conclusion
 - 1. Combined HOG
 - 2. Comparison

4. Evaluation and conclusion

HOG <=> SIFT

- Robustness to
 - Lighting variation
 - Rotation variation
 - Object position variation
- VOC2006
 - Two 1st place and three 2nd place

4. Evaluation and conclusion

OBJECT DETECTION

- Basic approaches to object detection
- Improving object detection with boosted histograms
 - HOG features
 - WFLD
 - AdaBoost
 - Sliding window detection

Object detection

Based on work from Ivan Laptev
Improving object detection with boosted histograms (IVC 2009)

Xavier Lladó, Robert Martí

