EXACT FORMULATION OF ISING MODEL TRANSITIONS BETWEEN SIX MAGNETIC PHASES

by GOKTUG ISLAMOGLU

goktugislamoglu@gmail.com

GOKTUG ISLAMOGLU from Istanbul, Turkey

CIVIL ENGINEER / OHS EXPERT

B.Sc Istanbul Technical University

M.Sc Karadeniz Technical University

CONDENSED MATTER & TRAFFIC RESEARCHER (SELF-TAUGHT)
INFORMS 2018 Session Chair
ITS SUMMIT 2019 Presentation
NECSI ICCS 2020 Presentation

Model: ADama Cellular Automaton¹

Built upon: PyCX 0.3 Realtime Visualization Template

PyCX 0.3 Realtime Visualization Template: Written by Chun Wong

Revised by Hiroki Sayama

Requires PyCX simulator to run

PyCX available from: https://sourceforge.net/projects/pycx/

Model: ADama Checkerboard

Hypothetical optimal car formation in a 3x3 grid - «zipper merge»

INFORMS 2018

Conventional Cellular Automaton Update

CELL NEXT UPDATE DETERMINED BY NEIGHBOR STATES	

A cellular automaton is a search function around a cell. The update rule is based on the neighborhood.

A well known attractive-repulsive force function is the Lennard-Jones potential. We will explore if uniaxial attractive-repulsive forces can be simulated with cellular automata.

Why Uniaxial Attraction-Repulsion?

A tailing car is attracted to a frontal car's position, but is forced to leave a trailing distance, a repulsion.

We suggest that this attractionrepulsion is a dipole in the driving direction, and in the normal direction, there is a non-dipole attraction between the vehicles which manifests as lane merging.

1st Rule: Inverse Cell Update

To achieve driving dipole, we have reversed the update of a cell. Cell's state dictates its neighborhood.

```
elif c[x, y] == 1:
    array1.append(c[x, y])
    for z in range(-1, 2):
        # block generation from randomly distributed points

    #neighbor updating from cell(x,y)
    m = number_of_upper_neighbors(x, y)
    if m == 1:
        nc[x, (y + 1) % L] = 1
```

Moore vs Von Neumann Neighborhoods

MOORE		VON NEUMANN	

2nd Rule: Moore to Von Neumann Shift

This shift is required to simulate renormalization by decimation. We will verify this hypothesis later on.

```
#neighbor updating from cell(x,y)
m = number_of_upper_neighbors(x, y)
if m == 1:
    nc[x, (y + 1) % L] = 1

n = number_of_lower_neighbors(x, y)
if n == 1:
    nc[x, (y - 1) % L] = 1

l = number_of_left_neighbors(x, y)
if l == 1 and (m > 1 or n > 1):
    nc[x, (y - 1) % L] = 1
```

3rd Rule: Neighborhood Configuration

1	1	1	
0	TUNING THE NUMBER OF NEIGHBORS WITH STATE 1	0	
1	1	1	

Based on cell's value, neighborhood states are tuned within range. Ideal neigborhood will turn out to be 6.

```
g = number_of_Moore_neighbors(x, y) #CA tuning
if c[x, y] == 0:
    nc[x, y] = 0 if g <= 6 else 1
    array0.append(c[x, y])

h = number_of_Neumann_neighbors(x, y) #CA tuning
if h >= 1:
    nc[x, y] = 1 if g <= 6 else 0</pre>
```

Neighbor Tuning for Ising Criticality

Tuning for 4 and 5 neighbors has Inverse Ising critical temperature as the highest state 1 cell count.

For 6 neighbors however, there is another maximum susceptibility, corresponding to ferromagnetism.

4th Rule: Coupled Cellular Automata

$$\rho(t+1) = (1-p)\varphi(\rho(t))$$

p(1-p): Logistic map

1/8: Moore Neighborhood Average

$$p(1-p) = \frac{1}{8}$$

$$p^2 - p + \frac{1}{8} = 0$$

$$p = \frac{1}{2} \pm \frac{1}{2\sqrt{2}}$$

Left Top: Stochastic coupling mechanism evolution equation.²

```
if g / 8 > (1 - p) * p: # coupling function
    nc[(x + 1) % L, y] = 1
elif g / 8 < (1 - p) * p:
    nc[(x - 1) % L, y] = 1
else:
    nc[x, y] = 1</pre>
```

Coupling Function - Magnetizing Automaton

CRITICAL ATTRACTOR AND ISING PHASE TRANSITION

2D Ising square lattice model's critical inverse temperature is the **paramagnetic response**. Upper coupling is slightly striped, which is weak ferromagnetism (**ferrimagnetism**). Lower coupling is vortex shaped, which is **antiferromagnetic** behavior.

Evolution of Coupled CAs

p(1-p): Logistic map; 1/8: Moore average

$$p(1-p) = \frac{1}{8}$$

$$p^2 - p + \frac{1}{8} = 0$$

$$p = \frac{1}{2} \pm \frac{1}{2\sqrt{2}}$$

CLOCKWISE: Neighbor update without coupling; Coupling without update; $\frac{1}{2} - \frac{1}{2\sqrt{2}}$ coupling, $\frac{1}{2} + \frac{1}{2\sqrt{2}}$ coupling

RIGHT TOP: Cell count of coupled states and uncoupled states.

RIGHT BOTTOM: Uncoupled states.

COUPLED AND UNCOUPLED CELL COUNT RESPONSE

Trigonometric Expression of Coupling

$$\cos^2(\pi/8) = \frac{1}{2} + \frac{1}{2\sqrt{2}}$$

$$\sin^2(\pi/8) = \frac{1}{2} - \frac{1}{2\sqrt{2}}$$

$$\cos^2(\pi/8) - \sin^2(\pi/8) = \frac{1}{\sqrt{2}} = 2\sin(\pi/8)\cos(\pi/8)$$

General Expression:

$$a \sin^2 x - b \cos^2 x = \sin x \cos x$$

Differential Expression of Coupling

Differential Expression:

$$a \sin^2 x - b \cos^2 x = \sin x \cos x$$

$$\frac{\partial a(b,x)}{\partial b} = \cot^2 x \; ; \; \frac{\partial b(a,x)}{\partial a} = \tan^2 x$$

$$v = \cos x$$

$$u = \sin x$$

$$\frac{\sin x(-\sin x)}{\cos x(\cos x)}$$

$$-tan^2x$$

5th Rule: 1st Transformation

 $a \sin^2 x - b \cos^2 x = \sin x \cos x$ when above equation is solved:

$$b \cot^2 x + \cot x - a = 0$$

when the transformations are applied:

count0 = cell with state 0 count
count1 = cell with state 1 count
j = neighbor count, i = total grid

$$\sin x = 8count1$$

$$\cos x = \frac{count0}{count1}$$

$$-\Delta \frac{j}{i} \times \frac{i^2 \times count0^2}{64 \times count1^4} - \frac{i \times count0}{8 \times count1^2} + \left(\frac{\Delta count0}{\Delta count1}\right)_1 - \left(\frac{\Delta count0}{\Delta count1}\right)_2$$

Cotangent Graph Output of CA

Coupled and uncoupled values are arms of the cotangent graph.

Cotangent & Response Graph Intersection

Ferrimagnetic-Ferromagnetic Transition

Lennard-Jones potential (first-order phase transition – top, bold) Ferromagnetic phase (second-order phase transition)

Antiferromagnetic phase (first-order phase transition - bottom)

$$p = \frac{1}{2} + \frac{1}{2\sqrt{2}} \approx 0.8535; 0.8536$$

$$p = \frac{1}{2} - \frac{1}{2\sqrt{2}} \approx 0.1466; 0.1465$$

Magnetic Susceptibility v. Temperature

The transition from antiferromagnetic to ferromagnetic phase is very similar to molar magnetic susceptibility to temperature response.

Second-Order Phase Transition

Inverse critical temperature and inverse magnetic susceptibility

SECOND-ORDER PHASE TRANSITION

Symmetry axes of the Magnetic Phases

There are two symmetry axes that correspond to different phases³.

Figure: Catenoid around p = 1/2

Figure: Pseudosphere around p = $ln(1+\sqrt{2})/2$

SECOND-ORDER PHASE TRANSITION

Ferrimagnetic-Ferromagnetic Transition

The transition point is when the lower bound intersection of cotangent graph and count 1 graph is added upon the $\frac{1}{2}$ symmetry.

$$p_{ff} = \frac{1}{2} + \frac{\ln(1+\sqrt{2})}{2} - \tan^2(\frac{\pi}{8})$$

Maximum Count1: Evasion Curve

Figure Left. Wind-blown plane problem, longest flight distance under constant wind.

Longest distance is $\approx 1.6478 \ for \ \alpha = 1$.

Figure Right. Evasion curve, adapted from the wind-blown plane problem for longest distance away from the inverse Curie temperature.

Highest magnetic susceptibility =
$$\chi_{MAX} = -\frac{1}{2} + \frac{\ln(1+\sqrt{2})}{2} + \frac{\sqrt{2}}{2}$$

$$\chi_{\text{MAX}} = \frac{\ln(1+\sqrt{2})}{2} + \frac{\sqrt{2}-1}{2} = \frac{\ln(1+\sqrt{2})}{2} + \frac{\tan^{\pi}/8}{2}$$

Transition Point - Maximum Count1

$$\frac{1}{2} + \frac{\ln(1+\sqrt{2})}{2} - \tan^2(\frac{\pi}{8}) - \frac{\ln(1+\sqrt{2})}{2} - \frac{\tan^{\pi}/8}{2}$$

which is simplified to:

$$-\frac{1}{2}\left(2\cot^2\left(\frac{3\pi}{8}\right)+\cot\frac{3\pi}{8}-1\right)$$

This is the cotangent equation we have derived before:

$$b \cot^2 x + \cot x - a = 0$$

Its root is $x = \tan^{-1}(1/2) \approx 0.46365$

Renormalization Recursion

 $0.46365 \approx 0.4656665$

Recursion equation: $\cos(2\tan^{-1}0.4656665)$ When ran sequentially, the recursion returns H, H_c and H^* magnetic fields.

This affirms our hypothesis.

2nd Transformation

$$count1 = \cos y$$
$$count0 = \sin y$$

When applied to:

$$-\Delta \frac{j}{i} \times \frac{i^2 \times count0^2}{64 \times count1^4} - \frac{i \times count0}{8 \times count1^2} + \left(\frac{\Delta count0}{\Delta count1}\right)_1 - \left(\frac{\Delta count0}{\Delta count1}\right)_2$$

simplifies to:

$$\frac{1}{\cos^2 y} \left(\frac{1}{8} \tan y \sec y - 1 \right) = 0$$

Deriving Cotangent Outputs of CA

$$> \frac{1}{8} tan \ y \ sec \ y - 1 \approx 0.5050$$
 is the $p = \frac{1}{2} \pm \frac{1}{2\sqrt{2}}$ output.

$$> \frac{1}{\cos^2 y} \left(\frac{1}{8} \tan y \sec y - 1 \right) \approx 2.269 \approx \frac{2}{\ln(1+\sqrt{2})}$$
 is the $\left(p = \frac{1}{2} - \frac{1}{2\sqrt{2}} \right)_-$ output.

▶1 is the
$$\left(p = \frac{1}{2} + \frac{1}{2\sqrt{2}}\right)_{+}$$
 output (demagnetization).

Susceptibility - Curie Law

$$\chi = \frac{c}{T+\theta} = \frac{1}{4+2\sqrt{2}}$$
 for ferrimagnetism and antiferromagnetism

$$\chi = \frac{c}{T_C} = \frac{\ln(1+\sqrt{2})}{2}$$
 for paramagnetism

$$\chi = \frac{c}{T_f} = \frac{\ln(1+\sqrt{2})}{2} + \frac{\tan(\frac{\pi}{8})}{2}$$
 for global maximum of ferromagnetism

THANK YOU FOR LISTENING!

goktugislamoglu@gmail.com

https://github.com/goktu/ADama/blob/master/cellularautomata.py

