UCB - CS189 Introduction to Machine Learning Fall 2015

Lecture 4: Learning as Risk Minimization

Isabelle Guyon
ChaLearn

Come to my office hours...

Wed 2:30-4:30 Soda 329

Last time

Kernel "Trick"

•
$$f(\mathbf{x}) = \sum_{\underline{k}} \underline{\alpha}_{\underline{k}} k(\underline{\mathbf{x}}^{\underline{k}}, \mathbf{x})$$

NON PARAMETRIC

• $k(\mathbf{x}^k, \mathbf{x}) = \Phi(\mathbf{x}^k) \bullet \Phi(\mathbf{x})$

Dual forms

• $f(x) = w \bullet \Phi(x)$

PARAMETRIC

• $\mathbf{w} = \sum_{k} \underline{\alpha}_{k} \Phi(\mathbf{x}^{k})$

Come to my office hours... Wed 2:30-4:30 Soda 329

Today

How to Train?

- Define a risk functional R[f(x,w)]
- Find a method to optimize it, typically "gradient descent"

$$\mathbf{w}_{j} \leftarrow \mathbf{w}_{j} - \eta \ \partial \mathbf{R} / \partial \mathbf{w}_{j}$$

or any optimization method (mathematical programming, simulated annealing, genetic algorithms, etc.)

Machine Learning

(reminder)

Learning machines include:

- Linear discriminant
- Kernel methods
- Neural networks

Learning is tuning:

- Parameters (weights \mathbf{w} or α , threshold b)
- Hyperparameters (basis functions, kernels, number of units)

Conventions

Math prerequisites

- Derivative and variation
- Slope and derivative
- Derivative chain rule
- Gradient
- Taylor series
- Hessian

What is a Risk Functional?

 A function of the parameters w of your learning machine f(x, w), assessing how much it is expected to fail on a given task.

Examples of risk functionals

Also called "objective functions" or "cost functions"

- Classification:
 - Error rate:

$$(1/N) \sum_{k=1:N} \mathbf{1}(sgn(f(\mathbf{x}^k)) \neq \mathbf{y}^k)$$

$$0/1 loss$$

Regression:

— Mean square error: (1/N)
$$\sum_{k=1:N}$$
 (f(x^k) - y^k) square loss

Examples of risk functionals

Also called "objective functions" or "cost functions"

- Classification:
 - Error rate:

$$(1/N) \sum_{k=1:N} \mathbf{1}(sgn(f(\mathbf{x}^k)) \neq \mathbf{y}^k)$$

$$0/1 loss$$

Regression:

— Mean square error: (1/N)
$$\sum_{k=1:N}$$
 (f(x^k) - y^k)² square loss

How to Train?

- Define a risk functional R[f(x,w)]
- Find a method to optimize it, typically "gradient descent"

$$\mathbf{w}_{i} \leftarrow \mathbf{w}_{i} - \eta \ \partial \mathbf{R} / \partial \mathbf{w}_{i}$$
$$\mathbf{w} \leftarrow \mathbf{w} - \eta \ \nabla_{\mathbf{w}} \mathbf{R}$$

or any optimization method (mathematical programming, simulated annealing, genetic algorithms, etc.)

Gradient descent falls into local minima...

 η is the learning rate of gradient step.

... finding the global optimum can be hard ...

... except if the risk functional is convex!

Learning rate η

 $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} R$

η **too small:** many steps needed to converge.

 η too large: zigzags.

η **optimal** to second order:

 $\mathbf{w} \leftarrow \mathbf{w} - \mathbf{H}^{-1} \nabla_{\mathbf{w}} \mathbf{R}$ Newton's method

 $H = [\partial^2 R / \partial w_i \partial w_j]$ Hessian

Stochastic gradient

Possible recipe (Bottou, 2010):

- Shuffle examples randomly
- Fix the learning rate (~t⁻a 0.5≤a≤1; Xu, 2010, Bach, 2015; experiment on data subset)
- Average of w(t) to smooth the result (Polyak, Juditsky, 1992)
- One pass only for "big data"

The risk is the sum of "losses"

$$R[f] = (1/N) \sum_{k=1:N} L(f(x^k), y^k)$$

• L(
$$f(x)$$
, y) = $\mathbf{1}(sgn(f(x))\neq y) = \mathbf{1}(yf(x)<0)$ zero-one loss

Losses are conveniently expressed as a function of the "functional margin" z = y f(x)

• L(
$$f(x)$$
, y) = 1(z<0)

• L(f(x), y) = $(z - 1)^2$

zero-one loss square loss

The risk is the sum of "losses"

$$R[f] = (1/N) \sum_{k=1:N} L(f(\mathbf{x}^k), y^k)$$

- L(f(x), y) = $\mathbf{1}(sgn(f(x))\neq y) = \mathbf{1}(yf(x)<0)$ zero-one loss
- L(f(x), y) = (f(x) y)² = (yf(x) 1)² square loss with y=±1

Losses are conveniently expressed as a function of the "functional margin" z = y f(x)

• L(
$$f(x)$$
, y) = 1(z<0)

• L(f(x), y) = $(z - 1)^2$

zero-one loss

square loss

The risk is the sum of "losses"

$$R[f] = (1/N) \sum_{k=1:N} L(f(\mathbf{x}^k), y^k)$$

- L(f(x), y) = $\mathbf{1}(sgn(f(x))\neq y) = \mathbf{1}(yf(x)<0)$ zero-one loss
- L(f(x), y) = (f(x) y)² = (yf(x) 1)² square loss with y=±1

Losses are conveniently expressed as a function of the "funtional margin" z = y f(x)

- L(f(x), y) = 1(z<0)
- L(f(x), y) = $(z-1)^2$

zero-one loss

square loss

"Functional margin" z = y f(x)

Loss Functions

The risk is the average of the loss.

Dual learning machines

PARAMETRIC

$f(x) = w \bullet \Phi(x)$

$$\mathbf{w} = \sum_{k} \alpha_{k} \, \Phi(\mathbf{x}^{k})$$

Hebb's rule

$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{y}_k \, \Phi(\mathbf{x}^k)$$

(Hebb 1949)

Perceptron algorithm

$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{y}_k \, \Phi(\mathbf{x}^k)$$
 if $\mathbf{y}_k f(\mathbf{x}^k) < 0$ (Rosenblatt 1958)

Minover (optimum margin)

$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{y}_k \, \Phi(\mathbf{x}^k)$$
 for min $\mathbf{y}^k \mathbf{f}(\mathbf{x}^k)$ (Krauth-Mézard 1987)

NON PARAMETRIC

$$f(\mathbf{x}) = \sum_{k} \alpha_{k} k(\mathbf{x}^{k}, \mathbf{x})$$

$$k(\mathbf{x}^k, \mathbf{x}) = \Phi(\mathbf{x}^k).\Phi(\mathbf{x})$$

Dual Hebb's rule

$$\alpha_k \leftarrow \alpha_k + \gamma_k$$

Potential Function algorithm

$$\alpha_k \leftarrow \alpha_k + y_k$$
 if $y_k f(\mathbf{x}^k) < 0$ (Aizerman et al 1964)

Dual minover

$$\alpha_k \leftarrow \alpha_k + y^k$$
 for min $y_k f(\mathbf{x}^k)$ (ancestor of SVM)

Dual learning machines

PARAMETRIC

$f(\mathbf{x}) = \mathbf{w} \cdot \Phi(\mathbf{x})$ $\mathbf{w} = \sum_{k} \alpha_{k} \Phi(\mathbf{x}^{k})$

Perceptron algorithm

$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{y}_k \, \Phi(\mathbf{x}^k) \quad \text{if } \mathbf{y}_k f(\mathbf{x}^k) < 0$$
 (Rosenblatt 1958)

Minover (optimum margin)

$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{y}_k \, \Phi(\mathbf{x}^k)$$
 for min $\mathbf{y}^k \mathbf{f}(\mathbf{x}^k)$ (Krauth-Mézard 1987)

LMS regression

$$\mathbf{w} \leftarrow \mathbf{w} + \eta \left(\mathbf{y}_{k} - f(\mathbf{x}_{k}) \right) \Phi(\mathbf{x}^{k})$$

NON PARAMETRIC

$$f(\mathbf{x}) = \sum_{k} \alpha_{k} k(\mathbf{x}^{k}, \mathbf{x})$$

$$k(\mathbf{x}^k, \mathbf{x}) = \Phi(\mathbf{x}^k).\Phi(\mathbf{x})$$

Potential Function algorithm

$$\alpha_k \leftarrow \alpha_k + y_k \quad \text{if } y_k f(\mathbf{x}^k) < 0$$
 (Aizerman et al 1964)

Dual minover

$$\alpha_k \leftarrow \alpha_k + y^k$$
 for min $y_k f(\mathbf{x}^k)$
(ancestor of SVM 1992,
similar to kernel Adatron, 1998,
and SMO, 1999)

Dual LMS

$$\alpha_i \leftarrow \alpha_i + \eta (y_i - f(\mathbf{x}^k))$$

Exercise: Gradient Descent

- Linear discriminant $f(\mathbf{x}) = \Sigma_i w_i x_i$
- Functional margin z = y f(x), y=±1
- Compute $\partial z/\partial w_i$
- Derive the learning rules $\Delta w_i = -\eta \partial L/\partial w_i$ corresponding to the following loss functions:

Example: the Perceptron algorithm

Rosenblatt, 1957

•
$$f(\mathbf{x}) = \sum_{i} w_{i} x_{i}$$

•
$$z = y f(x) = \sum_i w_i y x_i$$

•
$$\partial z/\partial w_i = y x_i$$

•
$$L_{perceptron} = max(0, -z)$$

•
$$\Delta w_i = -\eta \partial L/\partial w_i$$

= $-\eta \partial L/\partial z \cdot \partial z/\partial w_i$

$$\Delta w_i = \begin{cases} \eta \ y \ x_i, & \text{if } z < 0 \text{ (misclassified example)} \\ 0 & \text{otherwise} \end{cases}$$

Like Hebb's rule but for misclassified examples only.

Example: the Perceptron algorithm

Rosenblatt, 1957

•
$$f(\mathbf{x}) = \sum_{i} w_{i} \Phi_{i}(\mathbf{x})$$

•
$$z = y f(x) = \sum_i w_i y \Phi_i(x)$$

•
$$\partial z/\partial w_i = y \Phi_i(x)$$

•
$$L_{perceptron} = max(0, -z)$$

•
$$\Delta w_i = -\eta \partial L/\partial w_i$$

= $-\eta \partial L/\partial z \cdot \partial z/\partial w_i$

$$\Delta w_i = \begin{cases} \eta \ y \Phi_i(x), & \text{if } z < 0 \text{ (misclassified example)} \\ 0 & \text{otherwise} \end{cases}$$

Like Hebb's rule but for misclassified examples only.

Dual algorithm: Potential function learning algorithm

Aizerman, Braverman, Rozonoer, 1964

- Perceptron: $\Delta w_i = \eta y x_i$, if z<0, 0 otherwise
- For example x^k:

$$\Delta \mathbf{w} = \eta \mathbf{y}^{\mathbf{k}} \mathbf{x}^{\mathbf{k}}$$
, if z<0, 0 otherwise

•
$$\mathbf{w} = \sum_{k} \alpha_{k} \mathbf{x}^{k}$$
, $\Delta \mathbf{w} = \Delta \alpha_{k} \mathbf{x}^{k}$

$$\Delta \alpha_k = \eta y^k$$

Note: the $\Delta\alpha$ is different when $\partial L/\partial\alpha$ is computed directly.

Linearly separable?

Large margin

Large margin Perceptron

- $L_{perceptron} = max(0, -z)$
- $L_{hinge} = max(0, 1 z)$

$$\Delta w_i = \begin{cases} \eta & y \ x_i, \ \text{if } z < 1 \ (\text{misclassified or within margin}) \\ 0 & \text{otherwise} \end{cases}$$

Optimum margin

Optimum margin Perceptron

(Minover, Krauth-Mézard 1987)

•
$$L_{perceptron} = max(0, -z)$$

•
$$L_{hinge} = max(0, 1 - z)$$

$$\Delta w_i = \begin{cases} \eta & y \ x_i, \ only \ for \ min(z) \\ 0 & otherwise \end{cases} z=y \ f(\mathbf{x})$$

w must be normalized to give the scale!

Optimum margin Perceptron

(Minover, Krauth-Mézard 1987)

•
$$L_{perceptron} = max(0, -z)$$

•
$$L_{svc} = max(0, 1 - z)$$

$$\Delta w_i = \begin{cases} \eta & \text{y } x_i, \text{ for min(z)} \\ 0 & \text{otherwise} \end{cases}$$

$$\Delta \alpha_{k} = \begin{cases} \eta \ y^{k}, \text{ for min(z)} \\ 0 \text{ otherwise} \end{cases}$$

Linear optimum margin classifier

$$f(x) = \sum_{i} w_{i} x_{i} + b$$

Vapnik, 1962

Kernel "Trick"

•
$$f(\mathbf{x}) = \sum_{k} \alpha_{k} k(\mathbf{x}^{k}, \mathbf{x})$$

•
$$k(\mathbf{x}^k, \mathbf{x}) = \Phi(\mathbf{x}^k) \bullet \Phi(\mathbf{x})$$

$$\Delta\alpha_k = \eta y^k$$
, for min(z),
0 otherwise

Dual forms

•
$$f(x) = w \cdot \Phi(x)$$

•
$$\mathbf{w} = \sum_{k} \alpha_{k} \Phi(\mathbf{x}^{k})$$

$$\Delta w = \eta y \Phi(x)$$
, for min(z),
0 otherwise

Non-linear optimum margin classifier

35

Fit / Robustness Tradeoff

Fit / Robustness Tradeoff

Summary

- The **risk** is a function to evaluate LM performance.
- The risk can be optimized with training examples using gradient descent.
- Stochastic gradient mean updates are performed one example at a time.
- Perceptron update rules are the same Hebb's rule: $\Delta w = \eta y \Phi(x)$, and $\Delta \alpha_k = \eta y^k$, with some conditions on the functional margin z = y f(x):

```
    z < 0 (regular perceptron)</li>
    z < 1 (large margin Perceptron)</li>
    min (z) (optimum margin Perceptron)
```

Come to my office hours... Wed 2:30-4:30 Soda 329

Next time

For Ockham to Vapnik

- Shave off unnecessary parameters.
- Forget the unnecessary memories.
- Minimize complexity.
- Minimize ||w||.