Notation: Throughout this note matrices will be denoted by capital letters such as A or B, and vectors by lowercase boldface letters like \mathbf{x} and \mathbf{b} .

Problems

1. Write the following system as a matrix equation of the form $A\mathbf{x} = \mathbf{b}$.

$$6x +5y +2z = 11
5x +4y +2z = 7
-3x -3y -z = 4$$

2. Multiply out the following equations of the form Ab.

(a)
$$\begin{bmatrix} 1 & -1 & 2 & 1 \\ -2 & 3 & -5 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ -6 \\ 1 \\ 0 \end{bmatrix}$$
 (b) $\begin{bmatrix} 2 & -3 \\ 8 & 0 \\ 1 & 3 \\ 9 & -2 \end{bmatrix} \begin{bmatrix} -4 \\ 5 \end{bmatrix}$

- 3. We're going to start with a linear system, solve it and then put the result into parametric form (basically like you've already been doing in webwork).
 - (a) Write down the augmented matrix and solve this system.

$$2x_1 + 4x_2 - 4x_4 = 10$$

 $3x_1 + 6x_2 + x_3 + 3x_4 = 11$
 $x_1 + 2x_2 + x_3 + 7x_4 = 1$

- (b) Turn the REF matrix you got in part (a) back into a system of equations. Set any free variables equal to 's' or 't'. E.g. if x_4 was free, we would set $x_4 = t$, and then replace all x_4 's in the other equations with t's. (Hint at this point you should have 4 equations total).
- (c) Turn your 4 equations into a vector equation of the form:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} \\ \\ \\ \end{bmatrix} + s \begin{bmatrix} \\ \\ \\ \end{bmatrix} + t \begin{bmatrix} \\ \\ \\ \end{bmatrix}$$

- 4. For each of the following formula, either explain why it is true¹, or give an example where it's false. Here A is a matrix, \mathbf{b} , \mathbf{v} are vectors and c is just a number.
 - (a) $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$
 - (b) $A = \mathbf{u} + c\mathbf{v}$ for some \mathbf{u}, \mathbf{v} and c
 - (c) $Ac\mathbf{u} = cA\mathbf{b}$
- 5. For the following, instead of finding the solution set of a linear system, we're looking for a linear system with a given solution set:
 - (a) Construct a 3×3 matrix A such that the vector $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ is a solution of $A\mathbf{x} = \mathbf{0}$ (here $\mathbf{0}$ means the vector of all zeros).
 - (b) Construct a 3×3 matrix A such that vector $\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$ is a solution of $A\mathbf{x} = \mathbf{0}$.

¹Ideally to someone sitting next to you