ИПР 1 МатМод

ИМИТАЦИЯ ДИСКРЕТНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН С ЗАДАННЫМ ЗАКОНОМ РАСПРЕДЕЛЕНИЯ

Функция распределения G(y) дискретной случайной величины представляет собой ступенчатую функцию; вероятность $P\{Y=y_i\}=p_i$ (i=1,...,n) равна величине скачка функции распределения G(y) в точке y_i . Таким образом, участок оси ординат от 0 до 1 можно разбить на n непересекающихся отрезков:

$$\Delta_1 = (0, p_1); \ \Delta_2 = (p_1, p_1 + p_2); \dots$$

$$\Delta_1$$
=(0, p₁); Δ_2 =(p₁, p₁+p₂); ...
 Δ_i =(p₁+ ...+p_{i-1}, p₁+ ...+p_i); ... Δ_n =(($\sum_{i=1}^{n-1} p_i$,1).

При таком разбиении длина і-го отрезка Δ_i равна p_i (i=1, ..., n). Способ получения дискретной случайной величины Ү.

- 1. Разбить интервал (0,1) на непересекающиеся участки Δ_i (i=1, ..., n)длиной $p_1, p_2, ..., p_n$.
- значение случайной величины X, распределенной 2. Получить равномерно на интервале (0, 1).
- 3. Определить, какому из интервалов Δ_i принадлежит значение случайной величины x. Если $x \in \Delta_i$, то случайная величина $Y = y_i$.

ИМИТАЦИЯ СИСТЕМ СЛУЧАЙНЫХ ВЕЛИЧИН

Дискретный двумерный вектор CDCB задается двумерным законом распределения, т.е.

а) матрицей вероятностей $\|P_{ij}\|, i=\overline{1,n}, j=\overline{1,m}$, где P_{ij} – вероятность совместного появления і-ого и і-ого значений соответственной первой и второй компоненты, причем:

$$\sum_{i=1}^{n} \sum_{j=1}^{m} P_{ij} = 1.$$

б) двумя векторами возможных значений первой и второй компоненты $\{A_i\}, \{B_i\}, i = \overline{1, n}, j = \overline{1, m}.$

Получение значений двумерной дискретной системы случайных величин может осуществляться по следующему алгоритму.

Вычисляют суммы
$$q_i = \sum_{j=1}^m P_{ij}$$
 , $l_k = \sum_{i=1}^k q_i$, $k = \overline{1,n}$.

Если X - равномерно распределенное случайное число из интервала (0,1)такое, что $l_{k-1} < x \le l_k$, то считают, что x_I компонента двумерной дискретной случайной величины получила k-ое значение.

Выбирают k-ую строку $\|P_{ij}\|$, вычисляют $r_S = \sum_{i=1}^{3} P_{kj}$.

Если вновь полученное с помощью датчика случайных чисел X такое, что вторая компонента получила S-е значение.

Замечание: В алгоритме используется правило "розыгрыша по жребию", однако надо иметь в виду, что $r_s \neq 1$.

Правило получения значений $y_1, ..., y_n$, системы случайной величины $(Y_1, ..., Y_n)$ сводится к следующему:

- 1. «Разыгрывается» значение x_1 случайной величины X_1 , распределенное равномерно в интервале (0,1) и по функции распределения $G_1(y_1)$ получаем y_1 значение случайной величины Y_1 : $y_1 = G_1^{-1}(x_1)$, где $G_1^{-1}(x_1)$ функция, обратная $G_1(y_1)$.
- 2. «Разыгрывается» значение x_2 случайной величины X_2 , распределенное равномерно в интервале (0,1) и по функции распределения $G_{2/1}(y_2/y_1)$ получаем y_2 значение случайной величины Y_2 : $y_2 = G_{2/1}^{-1}(x_2 \ / \ y_1)$, где $G_{2/1}^{-1}(x_2/y_1)$ функция, обратная $G_{2/1}(y_2/y_1)$. В качестве аргумента y_1 функции распределения $G_{2/1}(y_2/y_1)$ берется то значение y_1 , которое было получено в пункте 1.
- 3. «Разыгрывается» значение x_3 случайной величины X_3 , распределенное равномерно в интервале (0,1) и по функции распределения $G_{3/1,2}(y_3/y_1,y_2)$ получаем y_3 значение случайной величины Y_3 : В качестве аргументов y_1 , y_2 функции распределения $G_{3/1,2}(y_3/y_1,y_2)$ берутся значения y_1 и y_2 , которые были получены в пункте 1 и 2. И так далее.

ЗАДАНИЕ

Написать программу, реализующую метод формирования двумерной случайной величины.

Выполнить статистическое исследование полученной величины (построение эмпирической матрицы распределения, гистограммы составляющих вектора, вычисление точечных, интервальных оценок, коэффициент корреляции)

Проверить гипотезы о соответствии полученных оценок характеристик случайной величины требуемым.