Please amend the above-identified patent application, without prejudice, as follows:

IN THE CLAIMS:

Amend claims 1-5 by replacement as follows:

- 1. (amended) Alkaline developable, photosensitive composition comprising
- (A) at least one alkaline soluble binder resin, prepolymer or monomer component;
- (B) at least one compound of formula I or II

$$Q-R_1$$
 N
 Ar_1
 $C-H$ (I)
 M_1
 $C-H$
 M_1
 $C-H$
 M_1
 M_2
 M_3
 M_4
 M_4

 R_1 is C_4 - C_9 cycloalkanoyl, C_3 - C_{12} alkenoyl; C_1 - C_{20} alkanoyl which is unsubstituted or substituted by one or more halogen, CN or phenyl; or R_1 is benzoyl which is unsubstituted or substituted by one or more C_1 - C_6 alkyl, halogen, CN, OR_3 , SR_4 or NR_5R_6 ; or R_1 is C_2 - C_{12} alkoxycarbonyl or benzyloxycarbonyl; or phenoxycarbonyl which is unsubstituted or substituted by one or more C_1 - C_6 alkyl or halogen;

Ar₁ is C_6 - C_{20} aryl which is substituted 1 to 12 times by halogen, C_1 - C_{20} alkyl, benzyl, C_1 - C_{20} alkanoyl 7 or C_3 - C_8 cycloalkyl; or said C_6 - C_{20} aryl is substituted by phenyl or benzoyl each of which optionally is substituted by one or more OR_3 , SR_4 or NR_5R_6 ; or said C_6 - C_{20} aryl is substituted by C_2 - C_{12} alkoxycarbonyl optionally interrupted by one or more -O- and/or optionally substituted by one or more hydroxyl groups; or said C_6 - C_{20} aryl is substituted by phenoxycarbonyl, OR_3 , SR_4 , SOR_4 , SO_2R_4 or NR_5R_6 , wherein the substituents OR_3 , SR_4 or NR_5R_6 optionally form 5- or 6-membered rings *via* the radicals R_3 , R_4 , R_5 and/or R_6 with further substituents on the aryl ring of the C_6 - C_{20} aryl group; or,

provided that R_1 is acetyl, or Ar_1 is C_3 - C_9 heteroaryl, which is unsubstituted or substituted 1 to 7 times by halogen, C_1 - C_{20} alkyl, benzyl, C_1 - C_{20} alkanoyl, or C_3 - C_8 cycloalkyl; or said C_3 - C_9 heteroaryl is substituted by phenyl or benzoyl, each of which optionally is substituted by one or more OR_3 , SR_4 or NR_5R_6 ; or said C_3 - C_9 heteroaryl is substituted by C_2 - C_{12} alkoxycarbonyl optionally interrupted by one or more -O- and/or optionally substituted by one or more hydroxyl

-2-

groups; or said C_3 - C_9 heteroaryl is substituted by phenoxycarbonyl, OR_3 , SR_4 , SO_2R_4 or NR_5R_6 ;

x is 2 or 3;

$$M_1$$
 when x is 2, is

 M_2
 M_3
 M_3
 M_3
 M_3
 M_3
 M_4
 M_2
 M_3
 M_3
 M_3
 M_3
 M_3
 M_4
 M_4
 M_4
 M_5
 M_5

halogen, C_1 - C_{12} alkyl, C_3 - C_8 cycloalkyl, benzyl; phenyl which is unsubstituted or substituted by one or more OR_3 , SR_4 or NR_5R_6 ; benzoyl which is unsubstituted or substituted by one or more OR_3 , SR_4 or NR_5R_6 ; C_1 - C_{12} alkanoyl; C_2 - C_{12} alkoxycarbonyl optionally interrupted by one or more -O- and/or optionally substituted by one or more OH, phenoxycarbonyl, OR_3 , SR_4 , SOR_4 , SO_2R_4 or NR_5R_6 ;

or
$$M_1$$
, when x is 3, is or M_4 , each of which optionally is

substituted 1 to 12 times by halogen, C_1 - C_{12} alkyl, C_3 - C_8 cycloalkyl; phenyl which is unsubstituted or substituted by one or more OR_3 , SR_4 or NR_5R_6 ; benzyl, benzoyl, C_1 - C_{12} alkanoyl; C_2 - C_{12} alkoxycarbonyl optionally interrupted by one or more -O- and/or optionally

substituted by one or more hydroxyl groups, phenoxycarbonyl, OR₃, SR₄, SOR₄, SO₂R₄ or NR₅R₅;

 M_2 is a direct bond, -O-, -S-, -SS-, -NR₃-, -(CO)-, C_1 - C_{12} alkylene, cyclohexylene, phenylene, naphthylene, -(CO)O-(C_2 - C_{12} alkylene)-O(CO)-, -(CO)O-(C_1 - C_1 - C_2 - C_1 -alkylene)-(CO)-; or M_2 is C_4 - C_{12} alkylene or C_4 - C_{12} alkylenedioxy-, each of which is optionally interrupted by 1 to 5 -O-, -S- and/or -NR₃-;

 M_3 is a direct bond, $-CH_2$ -, -O-, -S-, -SS-, $-NR_3$ - or -(CO)-;

$$M_4$$
 is N , N or N

 R_3 is hydrogen or C_1 - C_{20} alkyl; or R_3 is C_2 - C_{12} alkyl which is substituted by -OH, -SH, -CN, C_3 - C_6 alkenoxy, -OCH₂CH₂CN, -OCH₂CH₂(CO)O(C_1 - C_4 alkyl), -O(CO)- C_1 - C_4 alkyl, -O(CO)-phenyl, -(CO)OH, -(CO)O(C_1 - C_4 alkyl), -N(C_1 - C_4 alkyl)₂, -N(CH₂CH₂OH)₂, -N[CH₂CH₂O-(CO)- C_1 - C_4 alkyl]₂ or morpholinyl; or R_3 is C_2 - C_{12} alkyl which is interrupted by one or more -O-; or R_3 is -(CH₂CH₂O)_n, H, -(CH₂CH₂O)_n(CO)- C_1 - C_8 alkyl, C_1 - C_8 alkanoyl, C_3 - C_{12} alkenyl, C_3 - C_6 alkenoyl, C_3 - C_8 cycloalkyl; or R_3 is benzoyl which is unsubstituted or substituted by one or more C_1 - C_6 alkyl, halogen, -OH or C_1 - C_4 alkoxy; or R_3 is phenyl or naphthyl each of which is unsubstituted or substituted by halogen, -OH, C_1 - C_1 2alkyl, C_1 - C_1 2alkoxy, phenyl- C_1 - C_3 -alkoxy, phenoxy, C_1 - C_1 2alkylsulfanyl, phenylsulfanyl, -N(C_1 - C_{12} alkyl)₂, diphenylamino or -(CO) R_7 ; or R_3 is phenyl- C_1 - C_3 alkyl, or Si(C_1 - C_6 alkyl)₄(phenyl)₃,;

r is 0, 1, 2 or 3;

n is 1 to 20;

 R_4 is hydrogen, C_1-C_{20} alkyl, C_3-C_{12} alkenyl, C_3-C_8 cycloalkyl, phenyl- C_1-C_3 alkyl; C_2-C_8 alkyl which is substituted by -OH, -SH, -CN, C_3-C_6 alkenoxy, -OCH₂CH₂CN, -OCH₂CH₂(CO)O(C_1-C_4 alkyl), -O(CO)- C_1-C_4 alkyl, -O(CO)-phenyl, -(CO)OH or -(CO)O(C_1-C_4 alkyl); or R_4 is C_2-C_{12} alkyl which is interrupted by one or more -O- or -S-; or R_4 is -(CH₂CH₂O)_{n+1}H, -(CH₂CH₂O)_n(CO)- C_1-C_8 alkyl, C_2-C_8 alkanoyl, C_3-C_{12} alkenyl, C_3-C_6 alkenoyl; or R_4 is phenyl or naphthyl each of which is unsubstituted or substituted by halogen, C_1-C_{12} alkoxy or -(CO) R_7 ;

 \mathbf{R}_s and \mathbf{R}_s independently of each other are hydrogen, C_1 - C_{20} alkyl, C_2 - C_4 hydroxyalkyl, C_2 - C_{10} alkoxyalkyl, C_3 - C_5 alkenyl, C_3 - C_6 cycloalkyl, phenyl- C_1 - C_3 alkyl, C_1 - C_4 alkanoyl, C_3 - C_{12} alkenoyl,

benzoyl; or are phenyl or naphthyl each of which is unsubstituted or substituted by C_1-C_{12} alkyl or C_1-C_{12} alkoxy; or R_s and R_s together are C_2-C_s alkylene optionally interrupted by -O- or -NR₃- and/or optionally substituted by hydroxyl, C_1-C_s alkoxy, C_2-C_s alkanoyloxy or benzoyloxy;

R₇ is hydrogen, C_1 - C_{20} alkyl; or is C_2 - C_8 alkyl which is substituted by halogen, phenyl, -OH, -SH, -CN, C_3 - C_6 alkenoxy, -OCH₂CH₂CN, -OCH₂CH₂(CO)O(C_1 - C_4 alkyl), -O(CO)- C_1 - C_4 alkyl, -O(CO)-phenyl, -(CO)OH or -(CO)O(C_1 - C_4 alkyl); or R₇ is C_2 - C_{12} alkyl which is interrupted by one or more -O-; or R₇ is -(CH₂CH₂O)_{n+1}H, -(CH₂CH₂O)_n(CO)- C_1 - C_8 alkyl, C_3 - C_{12} alkenyl, C_3 - C_8 cycloalkyl; phenyl optionally substituted by one or more halogen, -OH, C_1 - C_{12} alkyl, C_1 - C_{12} alkylsulfanyl, phenylsulfanyl, -N(C_1 - C_{12} alkyl)₂, or diphenylamino; and

(C) a photopolymerizable compound.

2. Photosensitive composition according to claim 1, wherein compound (A) is an oligomeric or polymeric compound.

3. Photosensitive composition according to claim 2, wherein the photopolymerizable compound (C) is a liquid.

4. (amended) Photosensitive composition according to claim 1, wherein component (B) is a compound of formula I or II, wherein

 R_1 is C_2 - C_6 alkanoyl or C_2 - C_5 alkoxycarbonyl; or R_1 is benzoyl which is unsubstituted or substituted by one or more C_1 - C_6 alkyl or halogen;

Ar, is phenyl or naphthyl,

each of these radicals is substituted 1 to 5 times by halogen, C_1 - C_{20} alkyl, benzyl or C_1 - C_{20} alkanoyl; or said phenyl or naphthyl is substituted by phenyl or benzoyl, each of which optionally is substituted by one or more OR_3 , SR_4 or NR_5R_6 ; or said phenyl or naphthyl is substituted by C_2 - C_{12} alkoxycarbonyl optionally interrupted by one or more -O- and/or optionally substituted by one or more OH; or said phenyl or naphthyl is substituted by OR_3 , SR_4 or NR_5R_6 , wherein the substituents OR_3 , SR_4 or NR_5R_6 optionally form 5- or 6-membered rings *via* the radicals R_3 , R_4 , R_5 and/or R_6 with further substituents on the phenyl or naphthyl ring or with one of the carbon atoms of the phenyl or naphthyl ring;

02.

or, provided that R_1 is acetyl, Ar_1 is furyl, pyrrolyl, thienyl, benzofuranyl, indolyl, benzothiophenyl or pyrridyl, wherein each of these radicals is unsubstituted or substituted 1 to 4 times by halogen, C_1 - C_{20} alkyl, benzyl, C_3 - C_8 cycloalkyl, phenyl, C_1 - C_{20} alkanoyl, benzoyl, C_2 - C_{12} alkoxycarbonyl, phenoxycarbonyl, OR_3 , SR_4 , SOR_4 , SO_2R_4 or NR_5R_6 ; x is 2;

$$M_1$$
 is a group , M_2 , M_3 , or

 C_1 - C_{12} alkyl, benzyl, OR_3 , SR_4 or NR_5R_6 ; or by phenyl which is unsubstituted or substituted by one or more OR_3 , SR_4 or NR_5R_6 ; or by benzoyl which is unsubstituted or substituted by one or more OR_3 , SR_4 or NR_5R_6 ; or by C_1 - C_{12} alkanoyl; or by C_2 - C_{12} alkoxycarbonyl optionally interrupted by one or more -O- and/or optionally substituted by one or more hydroxyl groups;

 M_2 is a direct bond, -O-, -S-, -SS-, -NR₃-, -(CO)-, C_1 - C_{12} alkylene, phenylene, -(CO)O-(C_2 - C_{12} alkylene)-O(CO)-, -(CO)O-(CH₂CH₂O)_n-(CO)- or -(CO)-(C_2 - C_{12} -alkylene)-(CO)-; or M_2 is C_4 - C_{12} alkylene or C_4 - C_{12} alkylenedioxy-, each of which is optionally interrupted by 1 to 5 -O-, -S- and/or -NR₃-;

M₃ is a direct bond, -CH₂-, -O-, -S-, -NR₃- or -(CO)-;

R₃ is hydrogen or C₁-C₂₀alkyl; or R₃ is C₂-C₁₂alkyl which is substituted by -OH, -SH, -O(CO)-C₁-C₄alkyl, -O(CO)-phenyl, -(CO)O(C₁-C₄alkyl), -N(C₁-C₄alkyl)₂, -N(CH₂CH₂OH)₂, -N[CH₂CH₂O-(CO)-C₁-C₄alkyl]₂ or morpholinyl; or R₃ is C₂-C₁₂alkyl which is interrupted by one or more -O-; or R₃ is -(CH₂CH₂O)_{n+1}H, -(CH₂CH₂O)_n(CO)-C₁-C₈alkyl, phenyl-C₁-C₃alkyl, C₂-C₈alkanoyl, C₃-C₁₂alkenyl or C₃-C₆alkenoyl; or R₃ is benzoyl which is unsubstituted or substituted by one or more C₁-C₆alkyl, halogen or C₁-C₄alkoxy; or R₃ is phenyl or naphthyl each of which is unsubstituted or substituted by halogen, C₁-C₁₂alkyl, C₁-C₁₂alkoxy, phenyl-C₁-C₃-alkoxy, phenoxy, C₁-C₁₂alkylsulfanyl, phenylsulfanyl, -N(C₁-C₁₂alkyl)₂, diphenylamino or -(CO)R₇; n is 1 to 20:

 R_4 is hydrogen, C_1 - C_{20} alkyl, C_3 - C_{12} alkenyl, phenyl- C_1 - C_3 alkyl; C_2 - C_8 alkyl which is substituted by -OH, -SH, -O(CO)- C_1 - C_4 alkyl, -O(CO)-phenyl or -(CO)O(C_1 - C_4 alkyl); or R_4 is C_2 - C_{12} alkyl which is interrupted by one or more -O- or -S-; or R_4 is -(CH₂CH₂O)_{n+1}H, -(CH₂CH₂O)_n(CO)- C_1 - C_8 alkyl, C_2 - C_8 alkanoyl, C_3 - C_{12} alkenyl, C_3 - C_6 alkenoyl; or R_4 is phenyl or naphthyl each of which is unsubstituted or substituted by halogen, C_1 - C_{12} alkyl, C_3 - C_{12} alkoxy or -(CO) R_7 ;

 R_s and R_a independently of each other are hydrogen, C_1 - C_{20} alkyl, C_2 - C_4 hydroxyalkyl, C_2 - C_{10} alkoxyalkyl, phenyl- C_1 - C_3 alkyl, C_1 - C_4 alkanoyl, C_3 - C_{12} alkenoyl, benzoyl; or are phenyl or naphthyl each of which is unsubstituted or substituted by C_1 - C_{12} alkyl or C_1 - C_{12} alkoxy; or R_s and R_s together are C_2 - C_6 alkylene optionally interrupted by -O- or -NR $_3$ - and/or optionally substituted by hydroxyl, C_1 - C_4 alkoxy, C_2 - C_4 alkanoyloxy or benzoyloxy; and

R₇ is hydrogen, C_1-C_{20} alkyl; or is C_2-C_8 alkyl which is substituted by halogen, phenyl, -OH, -SH, C_3-C_6 alkenoxy, -O(CO)- C_1-C_4 alkyl, -O(CO)-phenyl or -(CO)O(C_1-C_4 alkyl); or R₇ is C_2-C_{12} alkyl which is interrupted by one or more -O-; or R₇ is -(CH₂CH₂O)_{n+1}H₇ -(CH₂CH₂O)_n(CO)-C₁-C₈alkyl or C_3-C_{12} alkenyl; or is phenyl optionally substituted by one or more halogen, C_1-C_{12} alkyl, C_1-C_{12} alkoxy, phenoxy, C_1-C_{12} alkylsulfanyl, phenylsulfanyl, -N(C_1-C_{12} alkyl)₂, or diphenylamino.

5. (amended) Photosensitive composition according to claim 1, wherein component (B) is a compound of formula I or II, wherein

R, is C,-C,alkanoyl;

 Ar_1 is phenyl or naphthyl, each of which is substituted by halogen, C_1 - C_8 alkyl, NR_5R_6 or OR_3 , wherein the substituents OR_3 , optionally form 5- or 6-membered rings *via* the radicals R_3 with further substituents on the phenyl or naphthyl ring; or, provided that R_1 is acetyl, Ar_1 is 2-furyl, 2-pyrrolyl, 2-thienyl, 3-indolyl;

M, is (**)

x is 2;

 R_3 is C_1-C_{20} alkyl; or R_3 is C_2-C_{12} alkyl which is substituted by OH, $-O(CO)-C_1-C_4$ alkyl, $-N(C_1-C_4$ alkyl)₂, $-N(CH_2CH_2OH)_2$, $-N(CH_2CH_2O-(CO)-C_1-C_4$ alkyl or morpholinyl; or R_3 is C_2-C_{12} alkyl which is interrupted by one or more -O-; or R_3 is $-(CH_2CH_2O)_{n+1}H$ or $-(CH_2CH_2O)_n(CO)-C_1-C_4$ alkyl;

22

n is 1 to 3; and

 \mathbf{R}_{s} and \mathbf{R}_{6} are \mathbf{C}_{1} - \mathbf{C}_{4} alkyl.

9. (amended) Photosensitive composition according to claim 8, comprising 100 parts by weight of component (A), 0.015 to 120 parts by weight of component (B), 5 to 500 parts by weight of component (C) and 0.015 to 120 parts by weight of component (D).