PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number:	WO 00/04152
C12N 15/12, C07K 14/47, G01N 33/50, 33/74	A2	(43) International Publication Date: 2	7 January 2000 (27.01.00)
(21) International Application Number: PCT/US (22) International Filing Date: 16 July 1999 ((30) Priority Data: 60/093,239 17 July 1998 (17.07.98) 60/100,243 14 September 1998 (14.09.9) (71) Applicant: UNIVERSITY OF ROCHESTER [US/US of Technology Transfer, 518 Hylan Building, Roch 14627–0140 (US). (72) Inventor: CHANG, Chawnshang; University of Roche Elmwood Avenue, P.O. Box 626, Rochester, N (US). (74) Agent: SEAY, Nicholas, J.; Quarles & Brady LLP, 2113, Madison, WI 53701–2113 (US).	16.07,9 08) 1 S]; Offi ester, N	BY, CA, CH, CN, CU, CZ, DE, GH, GM, HR, HU, ID, IL, IN, KZ, LC, LK, LR, LS, LT, LU, MW, MX, NO, NZ, PL, PT, RO, SL, TJ, IM, TR, TT, UA, UG, US, IT, IM, KE, LS, MW Eurasian patent (AM, AZ, BY, K European patent (AT, BE, CH, GB, GR, IE, IT, LU, MC, NL, FBJ, CF, CG, CI, CM, GA, GN, TD, TG). Published Without international search repupon receipt of that report.	DK, EE, ES, FI, GB, GE, IS, JP, KE, KG, KP, KR, LV, MD, MG, MK, MN, RU, SD, SE, SG, SI, SK, JZ, VN, YU, ZW, ARIPO, SD, SL, SZ, UG, ZW), G, KZ, MD, RU, TJ, TM), CY, DE, DK, ÉS, FI, FR, CY, DE, DK, ES, FI, FR, GW, ML, MR, NE, SN,

(54) Title: ANDROGEN RECEPTOR COACTIVATORS

(57) Abstract

Disclosed are androgen receptor-associated proteins, designated ARA24, ARA54, ARA55, and Rb, that have been demonstrated to interact with the androgen receptor to alter levels of androgen receptor-mediated transcriptional activation. Certain of these proteins interact with the androgen receptor in an androgen-dependent manner, whereas certain proteins may induce transcriptional activation in the presence of other ligands, such as E2 or HF. Also disclosed is a method of detecting androgenic or antiandrogenic activity using these proteins in a mammalian two-hybrid transient transfection assay.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States pany to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Al.	Albania	ES	Spain ,	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	l.T	Lithuania	SK '	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΛU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΛZ	Azerhaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
ВG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	freland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	15	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	••••	Zimonowe
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
Cυ	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denniark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

ANDROGEN RECEPTOR COACTIVATORS

CROSS-REFERENCE TO RELATED APPLICATIONS Not applicable.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not applicable.

BACKGROUND OF THE INVENTION

Androgens constitute a class of hormones that control the development and proper function of mammalian male 10 reproductive systems, including the prostate and epididymis. Androgens also affect the physiology of many non-reproductive systems, including muscle, skin, pituitary, lymphocytes, hair growth, and brain. Androgens exert their effect by altering the level of gene expression 15 of specific genes in a process that is mediated by binding of androgen to an androgen receptor. The androgen receptor, which is a member of the steroid receptor super family, plays an important role in male sexual differentiation and in prostate cell proliferation. 20 Binding of androgen by the androgen receptor allows the androgen receptor to interact with androgen responsive element (AREs), DNA sequences found on genes whose expression is regulated by androgen.

Androgen-mediated regulation of gene expression is a complicated process that may involve multiple co-activators (Adler et al., Proc. National Acad. Sci. USA 89:6319-6325, 1992). A fundamental question in the field of steroid hormone biology is how specific androgen-activated transcription can be achieved in vivo when several different receptors recognize the same DNA sequence. For example, the androgen receptor (AR), the glucocorticoid receptor (GR), and the progesterone receptor (PR) all

recognize the same sequence but activate different' transcription activities. Some have speculated that accessory factors may selectively interact with the androgen receptor to determine the specificity of gene activation by the androgen receptor.

Prostate cancer is the most common malignant neoplasm in aging males in the United States. Standard treatment includes the surgical or chemical castration of the patient in combination with the administration of anti-androgens t 10 such as 17 β estradiol (E2) or hydroxyflutamide (HF). However, most prostate cancers treated with androgen ablation and anti-androgens progress from an androgendependant to an androgen-independent state, causing a high incidence of relapse within 18 months (Crawford, Br. J. 15 Urclogy 70: suppl. 1, 1992). The mechanisms by which prostate cancer cells become resistant to hormonal therapy remain unclear. One hypothesis that has been advanced is that over the course of treatment, a mutation in the AR occurs which alters the receptor's sensitivity to other 20 steroid hormones or anti-androgens, such as E2 and HF, thereby causing the progression from androgen-dependent to androgen-independent prostrate cancer. This hypothesis is supported by transient transfection assays in which it has been shown that anti-androgens may have an agonistic 25 activity that stimulates mutant AR (mAR)-mediated

Recently, A1B1 was identified as estrogen receptor coactivator that is expressed at higher levels in ovarian cancer cell lines and breast cancer cells than in noncancerous cells (Anzick, et al. Science 277:965-968, 1997). This result suggests that steroid hormone receptor cofactors may play an important role in the progression of certain diseases, such as hormone responsive tumors.

transcription.

The identification, isolation, and characterization of 35 genes that encode factors involved in the regulation of gene expression by androgen receptors will facilitate the development of screening assays to evaluate the potential

efficacy of drugs in the treatment of prostate cancers.

BRIEF SUMMARY OF THE INVENTION,

The present invention includes an isolated polynucleotide that encodes a co-activator for human androgen receptor, the polynucleotide comprising a sequence that encodes a polypeptide selected from the group consisting of an ARA54 polypeptide, an ARA55 polypeptide, an ARA24 polypeptide, and an Rb polypeptide.

Another aspect of the present invention is a genetic construct comprising a promoter functional in a prokaryotic or eukaryotic cell operably connected to a polynucleotide that encodes a polypeptide selected from the group consisting of an ARA54 polypeptide, an ARA55 polypeptide, an ARA24 polypeptide and an Rb polypeptide.

\$

The present invention provides a method for screening candidate pharmaceutical molecules for the ability to promote or inhibit the interaction of ARs and AREs to modulate androgenic activity comprising the steps of:

- (a) providing a genetic construct comprising a 20 promoter functional in a eukaryotic cell operably connected to a polynucleotide comprising a sequence that encodes a polypeptide selected from the group consisting of an ARA54 polypeptide, an ARA55 polypeptide, an ARA24 polypeptide, and a retinoblastoma polypeptide;
- 25 (b) cotransforming a suitable eukaryotic cell with the construct of step a, and a construct comprising at least a portion of an expressible androgen receptor sequence;
- (c) culturing the cells in the presence of a 30 candidate pharmaceutical molecule; and
 - (d) assaying the transcriptional activity induced by the androgen receptor.

It is an object of the present invention to a provide a genetic construct capable of expressing a factor involved in co-activation of the human androgen receptor.

It is an object of the present invention to provide a

method for evaluating the ability of candidate pharmaceutical molecules to modulate the effect of androgen receptor coactivators on gene expression.

Other objects, features; and advantages of the present invention will become apparent (upon reading the specification and claims.

DETAILED DESCRIPTION OF THE INVENTION

Transactivation of genes by the androgen receptor is a complicated system that involves many different

- 10 coactivators. It is not currently known just how many factors are involved in androgen receptor-mediated regulation of gene expression. The identification and/or characterization of four androgen receptor coactivators is reported herein. Inclusion of one or more of these
- 15 coactivators in an assay for androgenic and antiandrogenic activity is expected to increase the sensitivity of the assay. Information about these coactivators is valuable in the design of pharmaceutical agents intended to enhance or interfere with normal coactivator function. A preliminary 20 assessment of the efficacy of a potential therapeutic agent
- assessment of the efficacy of a potential therapeutic agent can be made by evaluating the effect of the agent on the ability of the coactivator to enhance transactivation by the androgen receptor.

One aspect of the present invention is an isolated polynucleotide that encodes a co-activator for human androgen receptor, the polynucleotide comprising a sequence that encodes a polypeptide selected from the group consisting of an ARA54 polypeptide, an ARA55 polypeptide, an ARA24 polypeptide and an Rb polypeptide.

Another aspect of the present invention is a genetic construct comprising a promoter functional in a prokaryotic or eukaryotic cell operably connected to a polynucleotide that encodes a polypeptide selected from the group consisting of an ARA54 polypeptide, an ARA55 polypeptide, an ARA24 polypeptide and an Rb polypeptide.

The manufacture and an RD polypeptide.

The present invention includes a method for screening

candidate pharmaceutical molecules for the ability to promote or inhibit the ARs and AREs to result in modulation of androgenic effect comprising the steps of:

- (a) providing a genetic construct comprising a

 5 promoter functional in a eukaryotic cell operably connected to a polynucleotide comprising a sequence that encodes a polypeptide selected from the group consisting of an ARA54 polypeptide, an ARA55 polypeptide, an ARA24 polypeptide, and a retinoblastoma polypeptide;
- (b) cotransforming a suitable eukaryotic cell with the construct of step a, and a construct comprising at least a portion of an expressible androgen receptor sequence;
- (c) culturing the cells in the presence of a 15 candidate pharmaceutical molecule; and
 - (d) assaying the transcriptional activity induced by the androgen receptor gene.

The human androgen receptor is comprised of a ligand binding domain (LBD), a DNA binding domain (DBD), a hinge domain containing nuclear localization signals, and a transactivation domain in the hyper-variable N-terminus. Truncation or deletion of the LBD results in constitutive transactivation by the N-terminal domain.

In certain cases, progression of prostate cancer from androgen dependent- to androgen independent-stage may be caused by a mutation in the LBD that alters the ligand specificity of the mAR (Taplan et al., New Engl. J. Med. 332:1393-1398 (1995); Gaddipati et al., Cancer Res. 54:2861-2864 (1994)). We examined whether differential steroid specificity of wild type (wt) AR and mAR involves the use of different androgen receptor-associated (ARA) proteins or coactivators by these receptors.

As described in the examples, a yeast two-hybrid system with mART887S as bait was used to screen the human prostate cDNA library. The sequences of two clones encoding a putative coactivators (designated ARA54 and ARA55) are shown in SEQ ID NO:1 and SEQ ID NO:3,

respectively. The putative amino acid sequences of ARA54 and ARA55 are shown in SEQ ID NO:2 and SEQ ID NO:4, respectively. Also provided are the DNA and amino acid sequences of ARA24 (SEQ ID NO:5 and SEQ ID NO:6, sequences of ARA24 (SEQ ID NO:7 and SEQ ID NO:8, respectively) and Rb (SEQ ID NO:7 and SEQ ID NO:8, respectively). These coactivators were further characterized as detailed below. It is expected that some minor variations from SEQ ID NOs:1-8 associated with nucleotide, additions, deletions, and mutations, whether naturally occurring or introduced in vitro, will not affect coactivation by the expression product, or polypeptide.

Briefly, ARA54 is a 54 kDa protein that interacts with AR in an androgen-dependent manner. Coexpression of ARA54 and AR in a mammalian two-hybrid system demonstrated that reporter gene activity was enhanced in an androgen-dependent manner. ARA54 functions as a coactivator relatively specific for AR-mediated transcription. However, ARA54 may also function as a general coactivator of the transcriptional activity for other steroid receptors through their cognate ligands and response elements. ARA54 was found to enhance the transcriptional activity of AR and PR up to 6 fold and 3-5 fold, respectively. In contrast, ARA54 has only marginal effects (less than 2 fold) on glucocorticoid receptor (GR) and estrogen receptor (ER) in DU145 cells.

Coexpression of ARA54 with known AR coactivators SRC-1 or ARA70 revealed that each of these coactivators may contribute individually to achieve maximal AR-mediated transcriptional activity. Moreover, when ARA54 was expressed simultaneously with SRC-1 or ARA70, the increase in AR-mediated transactivation was additive but not synergistic relative to that observed in the presence of each coactivator alone.

The C-terminal domain of ARA54 (a.a. 361-471 of SEQ ID 35 NO:1) serves as a dominant negative inhibitor of AR-mediated gene expression of target genes. Coexpression of exogenous full-length ARA54 can reduce this squelching

effect in a dose-dependent manner.

ARA54 enhanced transactivation of wtAR in the presence of DHT (10^{-10} to 10^{-8} M) by about 3-5 fold. However, transactivation of wtAR was enhanced only marginally with 5 E2 $(10^{-9}-10^{-7} \text{ M})$ or HF $(10^{-7}-10^{-5} \text{ M})$ as the ligand. The ability of ARA54 to enhance transactivation by two mutant receptors (mARt877a and mARe708k) that exhibit differential sensitivities to E2 and HF (Yeh et al., Proc. Natl. Acad. Sci. USA, in press (1998)) was also examined. The mutant 10 mARt877a, which is found in many prostate tumors (23), was activated by E2 $(10^{-9}-10^{-7} \text{ M})$ and HF $(10^{-7}-10^{-5} \text{ M})$, and ARA54 could further enhance E2- or HF-mediated AR transactivation. In contrast, the mutant mARe708k, first identified in a yeast genetic screening (Wang, C. Ph.D. 15 Thesis of University of Wisconsin-Madison (1997)), exhibited ligand specificity and response to ARE54 comparable to that of wtAR.

It is expected that any polypeptide having substantial homology to ARA54 that still actuates the same biological 20 effect can function as "an ARA54 polypeptide." With the sequence information disclosed herein, one skilled in the art can obtain any ARA54 polypeptide using standard molecular biological techniques. An ARA54 polypeptide is a polypeptide that is capable of enhancing transactivation 25 of AR in an androgen-dependent manner, enhancing E2 or HF transactivation by the mutant receptor mARt877a, and reducing inhibition of AR-mediated gene expression caused by overexpression of the C-terminal domain of ARA54 (a.a. 361-471 of SEQ ID NO:1). The sequence information 30 presented in this application can be used to identify, clone or sequence allelic variations in the ARA54 genes as well as the counterpart genes from other mammalian species. it is also contemplate that truncations of the native coding region can be made to express smaller polypeptides 35 that will retain the same biological activity.

The polynucleotide sequence of ARA55 (SEQ ID NO:3) exhibits high homology to the C-terminus of mouse hic5

(hydrogen peroxide inducible clone) (Pugh, B., Curr. Opin. Cell Biol. 8:303-311 (1996)), and like hic5, ARA55 expression is induced by TGFb. Cotransfection assays of transcriptional activation, which are described in detail below, revealed that ARA55 is able to bind to both wtAR and mART887s in a ligand-dependent manner to enhance AR transcriptional activities. ARA55 enhanced transcriptional activation by wtAR in the presence of 10°M DHT or T, but not 10°M E2 or HF. In contrast, ARA55 can enhance transcriptional activation by mART887S in the presence of DHT, testosterone (T), E2, or HF. ARA55 did not enhance transcriptional activation of mARe708k in the presence of E2, but can enhance transcription in the presence of DHT or T.

The C-terminal domain of ARA55 (amino acids 251-444 of SEQ ID NO:3) is sufficient for binding to ARs, but does not enhance transcriptional activation by ARs.

The invention is not limited to the particular ARA55 polypeptide disclosed in SEQ ID NO:4. It is expected that any ARA55 polypeptide could be used in the practice of the present invention. By "an ARA55 polypeptide" it meant a polypeptide that is capable of enhancing transactivation of wtAR, the mutant receptor mARt877a, in the presence of DHT, E2, or HF or intact receptor mARe708k in the presence of DHT or T. Such polypeptides include allelic variants and the corresponding genes from other mammalian species as well as truncations.

The AR N-terminal domain comprises a polymorphic polyglutamine (Q) stretch and a polymorphic poly-glycine (G)

30 stretch that account for variability in the length of human AR cDNA observed. The length of the poly-Q region (normally 11-33 residues in length) is inversely correlated with the risk of prostate cancer, and directly correlated with the SBMA, or Kennedy's disease (La Spada et al.,

35 Nature (London) 352:77-79 (1991)). The incidence of higher grade, distant metastatic, and fatal prostate cancer is higher in men having shorter AR poly-Q stretches.

As described in the examples, experiments undertaken to identify potential coactivators that interact with the AR poly-Q region led to the isolation of a clone encoding a coactivator, designated ARA24, that interacts with the poly-Q region. The sequences of the ARA24 clone and its putative translation product is shown in SEQ ID NO:5 and SEQ ID NO:6:

The ARA24 clone has an ORF that is identical to the published ORF for human Ran, an abundant, ras-like small GTPase (Beddow et al. Proc. Natl. Acad. Sci. USA 92:3328-3332, 1995). Overexpression of ARA24 in the presence of DHT does enhance transcriptional activation by AR over that observed in cells transfected with AR alone. Moreover, expression of antisense ARA24 (ARA24as) does reduce DHT-induced transcriptional activation.

An ARA24 polypeptide is one that interacts with the poly-Q region of an AR. An ARA24 polypeptide is further characterized by its ability to increase transactivation when overexpressed in eukaryotic cells having some endogenous ARA24, but expression of an ARA24 antisense RNA reduces AR receptor transactivation.

Androgen receptor mutations do not account for all cases of androgen-independent tumors, because some androgen-independent tumors retain wild-type AR. A

25 significant percentage of androgen-insensitive tumors have been correlated with reduced expression of retinoblastoma protein (Rb) (Bookstein, et al., Science 247:712-715, (1990)), expression a truncated Rb protein (Bookstein, et al. Proc. Natl. Acad. Sci. USA 87:7762-7766 (1990)), or a

30 missing Rb allele (Brooks, et al. Prostate 26:35-39, (1995)). The prostate cancer cell line DU145 has an abnormal short mRNA transcript of Rb exon 21 (Sarkar, et al. Prostate 21:145-152(1992)) and transfecton of the wild-type Rb gene into DU145 cells was shown to repress the

35 malignant phenotype (Bookstein, et al. Proc. Natl. Acad. Sci. USA 87:7762-7766 (1990)).

Rb functions in the control of cell proliferation and

differentiation (Weinberg, R.A., Cell 81:323-330 (1995); Kranenburg et al., FEBS Lett. 367:103-106 (1995)). Intesting cells, hypophophorylated Rb prevents inappropriate entry of cells into the cell division cycle.

- Phosphorylation of Rb by cyclin/dependent kinases relieves
 Rb-mediated growth suppression, and allows for cell (
 proliferation(Dowdy et al., Cell 73:499-511 (1993); Chen et al., Cell 58:1193-1198 (1989)). Conversely,
 dephosphorylation of Rb during G1 progression induces
- 10 growth arrest or cell differentiation(Chen et al. (1989);
 Mihara et al., Science 246:1300-1303 (1989)). In dividing cells, Rb is dephosphorylated during mitotic exit and G1 entry(Ludlow et al., Mol. Cell. Biol. 13:367-372 (1993)).
 This dephosphorylation activates Rb for the ensuing G1
- 15 phase of the cell cycle, during which Rb exerts it growth suppressive effects.

We investigated the role of Rb in AR transactivation as detailed in the examples. We found that Rb can induce transcriptional activity of wtAR or mARs877t in the 20 presence of DHT, E2, or HF, and mARe708k in the presence of

- DHT. We also discovered that Rb and ARA70 transciptional activity act synergistically to enhance transciptional activity of ARs. The sequence of the cloned Rb gene and the deduced amino acid sequence of the ORF are shown in SEQ
- 25 ID NO:7 and SEQ ID NO:8, respectively. An Rb polypeptide is a polypeptide that is substantially homologous to SEQ ID NO:8, that interacts with the N-terminal domain of AR, and which acts synergistically with ARA70 in enhancing transactivation by AR.
- In the examples, various eukaryotic cell types, including yeast, prostate cells having mutant AR and cells lacking AR, were used to evaluate the ability of the putative androgen coactivators to enhance transactivation by AR. It is expected that in the method of the present
- invention, any eukaryotic cell could be employed in an assay for AR activity. This feature allows the investigator flexibility in designing assays.

As described below, cells were transfected using a calcium phosphate technique. It is expected that the method of the present invention could be practiced using any transfection means including, for example, electroporation or particle bombardment.

Changes in the level of transactivation by AR can be assessed by any means, including measuring changes in the level of mRNA for a gene under the control of AR, or by quantitating the amount of a particular protein expressed using an antibody specific for a protein, the expression of which is under the control of AR. Most conveniently, transactivation by AR can be assessed by means of a reporter gene.

As used herein, a reporter gene is a gene under the control of an androgen receptor, the gene encoding a protein susceptible to quantitation by a colormetric or fluorescent assay. In the examples below, a chloramphenical acetyltransferase or a luciferase gene were used as reporter genes. The gene may either be resident in a chromosome of the host cell, or may be introduced into the host cell by cotransfection with the coactivator gene.

The following nonlimiting examples are intended to be purely illustrative.

EXAMPLES

25 Plasmid construction

A human prostate library in pACT2 yeast expression vector (a gift from Dr. S. Elledge) consists of the GAL4 activation domain (GAL4AD, a.a. 768-881) fused with human prostate cDNA.

pSG5 wtAR was constructed as described previously (Yeh and Chang, Proc. Natl. Acad. Sci USA 93:5517-5521, 1996).

pGAL0-AR (wild-type) was obtained from D. Chen (University of Massachusetts). pGAL0 contains the GAL4 DNA binding domain (DBD).

For construction of pAS2-wtAR or -mAR, the C-terminal fragments (aa 595-918) from wtAR, mARt877s (Dr. S.P. Balk,

Beth Israel Hospital, Boston, MA), or mARe708k (H. Shim, Hyogo Medical College, Japan) were inserted in pAS2 yeast expression vector (Clontech). Another AR mutant (mARv888m), derived from androgen insensitive syndrome patient, was constructed as previously described (Mowszowicz, et al. Endocrine 1:203-209, 1993).

pGAL4-VP16 was used to construct a fusion of ARA70. pGAL4-VP16 contains the GAL4 DBD linked to the acidic activation domain of VP16.

pCMX-Gal-N-RB and pCMX-VP16-AR were constructed by inserting fragments Rb (aa 370-928) and AR (aa 590-918) into pCMX-gal-N and pCMX-VP16, respectively. The sequence of construction junction was verified by sequencing.

pYX-ARA24/Ran was constructed by placing the ARA24

gene under the control of the gal-1 promoter of yeast expression plasmid pYX243 (Ingenus). A cDNA fragment encoding the AR poly-Q stretch and its flanking regions (AR a.a. 11-208) was ligated to a PAS2 yeast expression plasmid for use as bait in the two hybrid assay. AR cDNAs of

different poly-Q lengths that span the same AR poly-Q region as our bait plasmid were constructed in pAS2 in the same way, for yeast two-hybrid liquid culture β -gal assay. These AR bait plasmids with poly-Q lengths of 1, 25, 49 were all transformed into yeast Y190, and found to not be

autonomously active. pCMV-antisense ARA24/Ran (ARA24as) expression plasmid was constructed by inserting a 334-bp Bgl II fragment of ARA24/Ran, which spans 5'-untranslated region and the translation start codon of ARA24/Ran (nucleotides 1-334 of SEQ ID NO:5), into pCMV vector in the

antisense orientation. The MMTV-CAT and MMTV-Luc reporter genes were used for AR transactivation assay. pSG5-AR and pSV-βgal are under the regulation of SV40 promoter and β-globulin gene intron-1 enhancer. p6R-ARQ1, p6R-ARQ25, p6R-ARQ49 were kindly provided by Dr. Roger L. Meisfield

35 (Chamberlain, et al. <u>Nucleic Acids Res.</u> 22:3181-3186, 1994)
pSG5-GAL4DBD-ARA24 was generated by inserting the
coding sequence of Gal4DBD-ARA24 hybrid protein into pSG5

vector. pVP16-ARN-Q1, pVP16-ARN-Q25, pVP16-ARN-Q25, pVP16ARN-Q35, pVP16-ARN-Q49 were generated by inserting each
poly-Q AR N-terminal domain (a.a. 34-555) into pVP16 vector
(Clontech) to be expressed as a VP16AD hybrid protein.
5 GALOAR plasmid, which contains GAL4DBD fused to E region of
human AR, was a gift from Dr. D. Chen. The pSG5-CAT
reporter plasmid (Clontech) contains five GAL4 binding
sites upstream of the Elb TATA box, linked to the CAT gene.

pSG5-AR and pSG5-ARA70 were constructed as previously

10 described (Yeh and Chang, Proc. Natl. Acad. Sci

USA 93:5517-5521, 1996). Two mutants of the AR gene

(mAR877 derived from prostate cancer, codon 877 mutation

Thr to Ala; and mAR708 derived from partial androgen

insensitive syndrome (PIAS), codon 708 mutation Glu to

15 Lys), were provided by S. Balk (Beth Israel Hospital,

Boston) and H. Shima (Hyogo Medical College, Japan),

respectively.

Clones used in the two-hybrid system to evaluate the role of Rb in AR transactivation were made by ligating an Rb fragment (aa 371-928) to the DBD of GAL4. Similarly, near full-length (aa 36-918) AR (nAR) and AR-LBD (aa 590-918) fragments ligated to transcriptional activator VP16.

Screening of prostate cDNA library by a yeast two-hybrid system for ARAs associated with the ligand binding domain

To identify ARA coactivators interact with the LBD, a pACT2-prostate cDNA library was cotransformed into Y190 yeast cells with a plasmid of pAS2mAR(mART877S) which contains GAL4DBD(aa 1-147) fused with the C-terminal domain of this mAR. Transformants were selected for growth on SD plates with 3-aminotriazole (25mM) and DHT (100nM) lacking histidine, leucine and tryptophan (-3SD plates). Colonies were also filter-assayed for β-galactosidase activity. Plasmid DNA from positive cDNA clones were found to interact with mtARt877s but not GAL4TR4 was isolated from yeast, amplified in E. coli, and the inserts confirmed by DNA sequencing.

To identify, clones that interact with the poly-Q region of the N-terminal domain, the AR poly-Q stretch (aa 11-208) was inserted into the pAS2 yeast expression plasmid and cotransformed into Y190 yeast cells with a human brain cDNA library fused to the Gal4 activation domain. Transformants were selected for growth on SD plates lacking histidine, leucine and tryptophan and supplemented with 3-aminotriazole (40 mM).

Amplification and characterization of ARA clones

Full length DNA sequences comprising two coactivators, designated ARA54 (SEQ ID NO:1) and ARA55 (SEQ ID NO:3), that were found to interact with mARt877s were isolated by 5'RACE PCR using Marathon cDNA Amplification Kit (Clontech) according to the manufacturer's protocol.

The missing 5' coding region of the ARA54 gene was isolated from H1299 cells using the gene-specific antisense primer shown in SEQ ID NO:9 and following PCR reaction conditions: 94°C for 1 min, 5 cycles of 94°C for 5 sec-72°C for 3 min, 5 cycles of 94°C for 5 sec-70°C for 3 min, then 20 25 cycles of 94°C for 5 sec-68°C for 3 min. The PCR product was subcloned into pT7-Blue vector (Novagen) and sequenced.

ARA55 was amplified by PCR from the HeLa cell line using an ARA55-specific antisense primer (SEQ ID NO:10) and the PCR reaction conditions described for isolation of ARA54.

Using the 5'RACE-PCR method, we were able to isolate a 1721 bp DNA fragment (SEQ ID NO:1) from the H1299 cell line with an open reading frame that encodes a novel protein 474 amino acids in length (SEQ ID NO:2). The in-vitro translation product is a polypeptide with an apparent molecular mass of 54±2 kDA, consistent with the calculated molecular weight (53.8 kDa). The middle portion of ARA54 (a.a. 220-265 of SEQ ID NO:2) contains a cysteine-rich region that may form a zinc finger motif called the RING finger, defined as CX₂CX₉₋₂₇CXHX₂CX₂CX₆₋₁₇CX₂C (SEQ ID NO: 11),

a domain conserved among several human transcriptional factor or proto-oncogeny proteins, including BRCA1, RING1, PML and MEL-18 (Miki et al., Science 266:66-71 (1994); Borden et al., EMBO J. 14:1532-1541 (1995); Lovering et al., Proc. Natl. Acad. Sci. USA 90:2112-2116 (1993); Blake et al., Oncogene 6: 653-657 (1991); Ishida et al, Gene 129:249-255 (1993)). In addition, ARA54 also contains a second cysteine-rich motif which has a B box like structure located at 43 amino acids downstream from the RING finger motif. However, ARA54 differs from members of the RING finger-B-box family in that it lacks a predicted coiled-coil domain immediately C-terminal to the B box domain, which is highly conserved in the RING finger-B-box family. Therefore, ARA54 may represent a new subgroup of this family.

The full-length human ARA55 has an open reading frame that encodes a 444 as polypeptide (SEQ ID NO:4) with a predicted molecular weight of 55 kD that ARA55 shares 91% homology with mouse hic5. Human ARA55 has four LIM motifs 20 in the C-terminal region. An LIM motif is a cysteine-rich zinc-binding motif with consensus sequence: CX₂CX₁₆.

23HX₂CX₂CX₂CX₁₆₋₂₁CX₂(C,H,D) (SEQ ID NO:12) (Sadler, et al., J. Cell Biol. 119:1573-1587(1992)). Although the function of the LIM motif has not been fully defined, some data suggest that it may play a role in protein-protein interaction(Schmeichel & Beckerle, Cell 79:211-219, 1994). Among all identified SR associated proteins, only ARA55 and thyroid hormone interacting protein 6 (Trip 6) (Lee, et al. Mol. Endocrinol. 9:243-254 (1995)) have LIM motifs.

A clone that showed strong interaction with the poly-Q bait was identified and subsequently subjected to sequence analysis. This clone contains 1566 bp insert (SEQ ID NO:5) with an open reading frame encoding a 216 aa polypeptide (SEQ ID NO:6) with a calculated molecular weight of 24 kDa.

35 GenBank sequence comparison showed that this clone has the same open reading frame sequence as Ran/TC4, an abundant ras-like small GTPase involved in nucleocytoplasmic

transport that is found in a wide variety of cell types , (Beddow et al., Proc. Natl. Acad. Sci. U.S.A: 92:3328-3332, 1995). Accordingly, the factor was designated ARA24/Ran. The cDNA sequence of the ARA24 clone (SEQ ID NO:5) (GenBank, accession number AF052578) is longer than that of the published ORF for human Ran, in that it includes 24 and 891 bp of 5'- and 3'-untranslated regions, respectively.

Northern Blotting

The total RNA (25µg) was fractionated on a 1%

formaldehyde-MOPS agarose gel, transferred onto a Hybond-N
nylon membrane (Amersham) and prehybridized. A probe
corresponding to the 900 bp C-terminus of ARA55 or an
ARA54-specific sequence was ¹²P-labeled in vitro using
Random Primed DNA Labeling Kit (Boehringer-Mannheim)

according to the manufacture's protocol and hybridized overnight. After washing, the blot was exposed and quantified by Molecular Dynamics PhosphorImager. β -actin was used to monitor the amount of total RNA in each lane.

Northern blot analysis indicated the presence of a 2 20 kb ARA55 transcript in Hela and prostate PC3 cells. The transcript was not detected in other tested cell lines, including HepG2, H1299, MCF7, CHO, PC12, P19, and DU145 cells. The ARA54 transcript was found in H1299 cells, as well as in prostate cancer cell lines PC3 and LNCaP.

25 Co-immunoprecipitation of AR and ARAs

Lysates from in-vitro translated full-length of AR and ARA54 were incubated with or without 10-8 M DHT in the modified RIPA buffer (50mM Tris-HCL pH 7.4, 150mM NaCl, 5mM EDTA, 0.1% NP40, 1mM PMSF, aprotinin, leupeptin, pepstatin, 30 0.25% Na-deoxycholate, 0.25% gelatin) and rocked at 4°C for 2 hr. The mixture was incubated with rabbit anti-His•tag polyclonal antibodies for another 2 hr and protein A/G PLUS -Agarose (Santa Cruz) were added and incubated at 4°C for additional 2 hr. The conjugated beads were washed 4 times with RIPA buffer, boiled in SDS sample buffer and analyzed

by 8% SDS/PAGE and visualized by STORM 840 (Molecular Dynamics).

ARA54 and AR were found in a complex when immunoprecipitated in the presence of 10.8 M DHT, but not in the absence of DHT. This result suggests that ARA54 interacts with AR in an androgen-dependent manner.

Interaction between recombinant full length human AR and ARA24/Ran proteins further examined by coimmunoprecipitation, followed by SDS-PAGE and western
blotting. Results of the co-immunoprecipitation assay indicate that ARA24/Ran interacts directly with AR. The phosphorylation state of bound guanine nucleotide to the small GTPases does not affect this interaction.

AR pull-down assay using GST-Rb

Full-length Rb fused to glutathione-S-transferase (ST-Rb₁₋₉₂₈) was expressed and purified from E. coli. strain Bl21pLys as described recently (Zarkowska & Mittnacht, J. Biol. Chem. 272:12738-12746, 1997). Approximately 2 μg of His-tag column purified baculovirus AR was mixed with GST-loaded glutathione-Sepharose beads in 1 ml of NET-N (20 mM Tris-HCL(pH 8.0, 100 mM NaCl, 1 mM EDTA, 0.5%(v/v) Noniodet P-40) and incubated with gentle rocking for 3 hr at 4°C.

Following low-speed centrifugation to pellet the beads, the clarified supernatant was mixed with GST-Rb-loaded glutathione-Sepharose beads in the presence or absence of 10 mM DHT and incubated for an additional 3 hr with gentle rocking at 4°C. The pelleted beads were washed 5 times with NET-N, mixed with SDS-sample buffer, boiled, and the proteins separated by electrophoresis on a 7.5% polyacrylamide gel. A Western blot of the gel was incubated with anti-AR polyclonal antibody NH27 and developed with alkaline phosphatase-conjugated secondary antibodies.

AR was coprecipitated with GST-Rb, but not GST alone, indicating that AR and Rb are associated in a complex together.

Transfection Studies

Human prostate cancer DU145 or PC3 cells, or human lung carcinoma cells NCI H1299 were grown in Dulbecco's, minimal essential medium (DMEM) containing penicillin (25U/ml), streptomycin (25μg/ml), and 5% fetal calf serum (FCS). One hour before transfection, the medium was changed to DMEM with 5% charcoal-stripped FCS. Phenol redfree and serum-free media were used on the experiments employing E2 or TGFβ, respectively. A β-galactosidase expression plasmid, pCMV-β-gal, was used as an internal control for transfection efficiency.

Cells were transfected using the calcium phosphate technique (Yeh, et al. Molec. Endocrinol. 8:77-88, 1994). The medium was changed 24 hr posttransfection and the cells treated with either steroid hormones or hydroxyflutamide, and cultured for an additional 24 hr. Cells were harvested and assayed for CAT activity after the cell lysates were normalized by using β -galactosidase as an internal control. Chloramphenicol acetyltransferase (CAT) activity was visualized by PhosphorImager (Molecular Dynamics) and quantitated by ImageQuant software (Molecular Dynamics).

Mammalian Two-Hybrid Assay

The mammalian two-hybrid system employed was essentially the protocol of Clontech (California), with the following modifications. In order to obtain better expression, the GAL4DBD (a.a. 1-147) was fused to pSG5 under the control of an SV40 promoter, and named pGAL0. The hinge and LBD of wtAR were then inserted into pGAL0. Similarly, the VP16 activation domain was fused to pCMX under the control of a CMV promoter, and designated pCMX-VP16 (provided by Dr. R.M. Evan).

The DHT-dependent interaction between AR and ARA54 was confirmed in prostate DU145 cells using two-hybrid system with CAT reporter gene assay. Transient transfection of either ARA54 or wtAR alone showed negligible transcriptional activity. However, coexpression of AR with

ARA54 in the presence of 10^{-8} M DHT significantly induced CAT activity. .

ARA54 functions as a coactivator relatively specific for AR-mediated transcription. ARA54 induces the 5 transcriptional activity of AR and PR by up to 6 fold and 3-5 fold, respectively. In contrast, ARA54 showed only marginal effects (less than 2 fold) on GR and ER in DU145 cells. These data suggest that ARA54 is less specific to AR as relative to ARA70, which shows higher specificity to AR. However, we can not rule out the possibility that ARA54 might be more general to other steroid receptors in other cell types under different conditions.

Coexpression of ARA54 with SRC-1 or ARA70 was found to enhance AR transcriptional activity additively rather than synergistically. These results indicate that these cofactors may contribute individually to the proper or maximal AR-mediated transcriptional activity.

Since the C-terminal region of ARA54 (a.a. 361-471 of SEQ ID NO:2) isolated from prostate cDNA library has shown to be sufficient to interact with AR in yeast two-hybrid assays, we further investigated whether it could squelch the effect of ARA54 on AR-activated transcription in H1299 cells, which contain endogenous ARA54. The C-terminal region of ARA54 inhibits AR-mediated transcription by up to 70%; coexpression of exogenous full-length ARA54 reverses this squelching effect in a dose-dependent manner. These results demonstrate that the C-terminal domain of ARA54 can serve as a dominant negative inhibitor, and that ARA54 is required for the proper or maximal AR transactivation in human H1299 cells.

Examination of the effect of ARA54 on the transcriptional activities of wtAR and mtARs in the presence of DHT, E2 and HF revealed differential ligand specificity. Translational activation of wtAR occurred in the presence of DHT (10⁻¹⁰ to 10⁻⁸ M); coexpression of ARA54 enhanced transactivation by another 3-5 fold. However, wtAR responded only marginally to E2 (10⁻⁹-10⁻⁷ M) or HF

(10⁻⁷-10⁻⁵ M) in the presence or absence of ARA54. As expected, the positive control, ATA70, is able to enhance the AR transcriptional activity in the presence of 10⁻⁷ - 10⁻⁵ HF, that matches well with previous reports (Yeh, PNAS, Miyamoto, PNAS).

The AR mutants Art877a, which is found in many 'prostate tumors (23), and Are708k, found in a yeast genetic . screening (24) and a patient with partial androgen insensitivity, exhibited differential specificity for 10 lignands. In the absence of ARA54, Art877a responded to E2 $(10^{-9}-10^{-7}\ \mathrm{M})$ and HF $(10^{-7}-10^{-5}\ \mathrm{M})$, and ARA54 could further enhance E2- or HF-mediated AR transactivation. results suggested that mtARs might also require cofactors for the proper or maximal DHT-, E2-, or HF-mediated AR 15 transcriptional activity. The DHT response of mARe708k was only a slightly less sensitive than that of wtAR or mARt877s, whereas E2 and HF exhibited no agonistic activity toward ARe708k. Together, these results imply that the change of residue 708 on AR might be critical for the 20 interaction of the antiandrogen-ARe708k-ARA54 complex, and that both AR structure and coactivators may play a role in determining ligand specificity.

CAT activity in DU145 cells cotransfected with a plasmid encoding the hormone binding domain of wtAR fused to the GAL4 DBD(GAL0AR) and a plasmid encoding full-length ARA55 fused to the activation domain of VP16(VP16-ARA55) was significantly induced by the cotransfection of VP16-ARA55 and GAL0AR in the presence of 10 nM DHT, but not induced by E2 or HF. Combination of GAL0 empty vector and VP16-ARA55 did not show any CAT activity. Combination of GAL0AR and VP16 vector showed negligible CAT activity. These results indicate that ARA55 interacts with AR in an androgen-dependent manner.

Transient transfection assays were conducted to

35 investigate the role of ARA55 in the transactivation
activity of AR. DU145 cells were cotransfected with MMTVCAT reporter, increasing amounts of ARA55 and wtAR under

eukaryotic promoter control. Ligand-free AR has minimal MMTV-CAT reporter activity in the presence or absence of . ARA55. ARA55 alone also has only minimal reporter activity Addition of 10 nM DHT resulted in 4.3 fold increase of AR 5 transcriptional activity and ARA55 further increased this induction by 5.3 fold (from 4.3 fold to 22.8 fold) in a dose-dependent manner. The induced activity reached a plateau at the ratio of AR:ARA55 to 1:4.5. Similar results were obtained using PC3 cells with DU145 cells, or using a 10 CAT reporter gene under the control of a 2.8 kb promoter region of a PSA gene. The C-terminus of ARA55(ARA55₂₅₁₋₄₄₄) (a.a. 251-444 of SEQ ID NO:4) did not enhance CAT activity. *Cotransfection of PC3 cells, which contain endogenous ARA55, with ARA55₂₅₁₋₄₄₄, AR and MMTV-CAT reporter in the 15 presence of 10 nM DHT demonstrated dramatically reduced AR transcriptional activity relative to cells transfected with AR and MMTV-CAT alone. These results demonstrate that ARA55 is required for the proper or maximal AR transcriptional activity in PC3 cells, and that the C-20 terminus of ARA55 can serve as a dominant negative inhibitor.

The effect of ARA55 on mARt877s and mARe708k in the presence of DHT and its antagonists, E2, and HF. mARt877s receptor is found in LNCaP cells and/or advanced 25 prostate cancers and has a point mutation at codon 877 (Thr to Ser) (Gaddipati et al., Cancer Res. 54:2861-2864 (1994); Veldscholte et al., Biochem. Biophys. Commun. 173:534-540 (1990)). The mARe708k receptor, has a point mutation at codon 708 (Glu to Lys), was isolated by a yeast genetic 30 screening and exhibits reduced sensitivity to HF and E2 relative to wtAR(Wang, C., PhD thesis of University of Wisconsin -Madison (1997)). The transcriptional activities of wtAR, mARt877s, and mARe708k are induced by DHT (10^{-11} to) 10^{-8} M). ARA55 enhanced the transactivation of all three 35 receptors by 4-8 fold. In the presence of E2 or HF, wtAR responded marginally only at higher concentrations ($10^{-7}\ \mathrm{M}$ for E2 and 10^{-5} M for HF). Cotransfection of wtAR with

ARA55 at a 1:4.5 ratio, however, increases AR transcriptional activity at 10-8-10-7 M for E2 or 10-6 to 10-5 M for HF. Compared to wtAR, the LNCaP mAR responded much better to E2 and HF and ARA55 significantly enhanced its transcriptional activity. ARA55 may be peeded for the proper or maximal DHT-, E2-, or HF-mediated AR transcriptional activity.

The effect of ARA55 on transcriptional activation by GR, PR, and ER was tested in DU145 cells. ARA55 is

10 relatively specific to AR, although it may also enhance GR and PR to a lesser degree, and has only a marginal effect on ER. ARA70 shows much higher specificity to AR than ARA55, relative to the other tested steroid receptors. Although ARA55 enhances AR-mediated transcription to a greater degree than GR-, PR-, or ER-mediated transcription, it appears to be less specific than ARA70.

Because the amino acid sequence of ARA55 has very high homology to mouse hic5, and early studies hic5 suggested this mouse gene expression can be induced by the negative 20 TGFβ(Shibanuma et al., J. Biol. Chem. 269:26767-26774 (1994)), we were interested to see whether ARA55 could serve as a bridge between $TGF\beta$ and AR steroid hormone system. Northern blot analysis indicated that $TGF\beta$ treatment (5 ng/ml) could induce ARA55 mRNA by 2-fold in 25 PC3 cells. In the same cells, TGF β treatment increased AR transcriptional activity by 70%. This induction is weak relative to the affect achieved upon transfection of PC3 cells with exogenous ARA55 (70% vs. 4 fold). This may be related to the differences in the ratios of AR and ARA55. 30 The best ratio of AR:ARA55 for maximal AR transcriptional activity is 1:4.5. Whether other mechanisms may also be involve in this $TGF\beta$ -induced AR transcriptional activity will be an interesting question to investigate. unexpected discovery that $TGF\beta$ may increase AR35 transcriptional activity via induction of ARA55 in prostate

may represent the first evidence to link a negative regulatory protein function in a positive manner, by

inducing the transcriptional activity of AR, the major promoter for the prostate tumor growth.

The ability of ARA55 to induce transcriptional activity of both wtAR and mARt877s in the presence of DHT, 5 E2, and HF suggests an important role for ARA55 in the progression of prostate cancer and the development of resistance to hormonal therapy. Evaluation of molecules that interfere with the function of ARA55 may aid in the identification of potential chemotherapeutic 10 pharmaceuticals.

Human small lung carcinoma H1299 cell line, which has no endogenous AR protein, were transfected with AR and ARA24/Ran. Because ARA24/Ran is one of the most abundant and ubiquitously expressed proteins in various cells, both 15 sense and antisense ARA24/Ran mammalian expression plasmids were tested. Overexpression of sense ARA24/Ran did not significantly enhance the AR transactivation, a result that is not surprising, in view of the abundance of endogenous ARA24/RAN. However, expression of antisense ARA24/Ran 20 (ARA24as) markedly decreased DHT-induced CAT activity in a dose dependent manner. Furthermore, increasing the DHT concentration from 0.1 nM to 10 nM DHT resulted in strong induction of AR transactivation and decreased the inhibitory effect of ARA24as effect, indicating that 25 increased DHT concentration can antagonize the negative effect of ARA24as.

The affinity between ARA24/Ran and AR is inversely related to the length of AR poly-Q stretch. AR transactivation decreases with increasing AR poly-Q length.

30 Reciprocal two-hybrid assays with exchanged fusion partners, Gal4DBD-ARA24/Ran and VP16AD-ARNs (a.a. 34-555 with poly-Q lengths of 1, 25, 35, 49 residues) were conducted using mammalian CHO cells. These results consistently show that the affinity between ARA24/Ran and AR poly-Q region is inversely correlated with AR poly-Q length in both yeast and mammalian CHO cells.

The regulation of AR transactivation by ARA24/Ran

correlates with their affinity. These results suggest that ARA24/Ran could achieve differential transactivation of AR, with ARs having different polyto length could existing in a single cell or cell system. ARA24as was again used in the 5 ARE-Luc transfection assays to address the role of AR poly-Q length in the regulation of AR by ARA24/Ran. ARs of poly Q lengths 1, 25, and 49 residues, and increasing (amounts (1, 2, and 4(μ g) of ARA24as expression vectors were c to-transfected with equal amounts of reporter plasmid 10 (pMMTV-Luc) in CHO cells. Although the basal reporter activity is slightly affected by increasing amounts; of antisense ARA24/Ran, ARA24as showed a more significant decrease of AR transactivation. As AR poly-Q length increased, the ARA24as effect on AR transactivation 15 decreased. These results suggest that the affinity of ARA24/Ran for AR and the effect of decreasing ARA24/Ran on AR transactivation faded over the expansion of AR poly-Q length.

Coexpression of Rb and AR expression plasmids in DU145 20 cells using the mammalian two-hybrid system resulted in a 3 fold increase in CAT activity by cotransfection of near full length AR (nAR, amino acids 36-918) and Rb. cotransfected with nAR and PR-LBD or Rb and ARA70 did not show increased CAT activity. Surprisingly, addition of 10 25 nM DHT made very little difference in the interaction between Rb and nAR. The inability of Rb to interact with AR-LBD suggest that interaction site of AR is located in Nterminal domain (aa 36 to 590). Together, our data suggest the interaction between Rb and AR is unique in the 30 following ways: first, the interaction is androgenindependent and binding is specific but relatively weak as compared to other AR associated protein, such as ARA70 (3 fold vs. 12 fold induced CAT activity in mammalian twohybrid assay, data not shown). Second, unlike most 35 identified steroid receptor associated proteins that bind to C-terminal domain of steroid receptor, Rb binds to Nterminal domain of AR. Third, no interaction occurred

between Rb and ARA70, two AR associated proteins in DU145 cells.

DU145 cells containing mutated Rb (Singh et al., Nature 374: 562-565 (1995)) were cultured with charcoal-5 stripped FCS in the presence or absence of 1 nM,DHT. No AR transcriptional activity was observed in DU145 cells transiently transfected with wild type AR and Rb at the ratio of 1:3 in the absence of DHT. When However, AR transcriptional activity could be induced 5-fold when wild 10 type AR was expressed in the presence of 1 nM DHT. Cotransfection of Rb with AR can further enhance the AR transcriptional activity from 5-fold to 21-fold in the presence of 1 nM DHT. As a control, cotransfection of ARA70, the first identified AR coactivator, can further 15 enhance in DU145 cells transcriptional activity from 5-fold to 36-fold. In DU145 cells transfected with Rb, ARA70, and AR, the induction of AR transcriptional activity was synergistically increased from 5-fold to 64-fold. Upon transfection of wild type AR without Rb or ARA70, only 20 marginal induction (less than 2-fold) was detected in the presence of 10 nM E2 or 1 μM HF. In contrast, cotransfection of the wild type AR with Rb or ARA70 can enhance the AR transcriptional activity to 12-fold (E2) or 3-4 fold (HF), and cotransfection of Rb and ARA_{70} with AR25 can further enhance the AR transcriptional activity to 36fold (E2 or 12-fold (HF). We then extended these findings to two different AR mutants: mARt877s from a prostate cancer patient and mARe708k from a partial-androgeninsensitive patient. Similar inductions were obtained when 30 wild type AR was replaced by mARt877s. In contrast, while similar induction was also detected in the presence of 1 nM DHT when we replace wild type AR with mARe708k, there was almost no induction by cotransfection of meAR708k with Rb and/or ARA70 in the presence of 10 nM E2 or 1 μM HF. These 35 results indicated that Rb and ARA70 can synergistically induce the transcriptional activity of wild type AR and mAR877 in the presence of 1 nM DHT, 10 nM E2 or 1 μM HF.

However, Rb and ARA70 synergistically induce the transcriptional activity of mAR708 only in the presence of 1 nM DHT, but not 10 nM E2 or 1 µM HF. The fact that Rb and ARA70 can induce transcriptional activity of both wild type AR and mutated AR that occur in many prostate tumors may also argue strongly the importance of Rb and ARA70 in normal prostate as well as prostate tumor. Also, the differential induction of DHT vs. E2/HF may suggest the position of 708 in AR may play vital role for the recognition of androgen vs anti-androgens to AR.

We also examined the effect of Rb and ARA70 on the transcriptional activity of other steroid receptors through their cognate DNA response elements [MMTV-CAT for AR, glucocorticoid receptor (GR), and progesterone receptor

- 15 (PR); ERE-CAT for estrogen receptor (ER)]. Although Rb and ARA70 can synergistically induce AR transcriptional activity up to 64-fold, Rb and ARA70 can only have marginal induction on the transcriptional activity of GR, PR, and ER in DU145 cells. These results suggest that Rb and ARA70
- are more specific coactivators for AR in prostate DU145 cells. However, it cannot be ruled out that possibly the assay conditions in prostate DU145 cells are particularly favorable for Rb and ARA70 to function as coactivators for AR only, and Rb and ARA70 may function as stronger
- 25 coactivators for ER, PR, and GR in other cells or conditions. Failure of Rb to induce transactivation by mutant AR888, which is unable to bind androgen, suggests that while interaction between Rb and AR is androgen-independent, the AR-Rb (and AR-ARA70) complexes require a ligand for the transactivation activity.

The activity of Rb in cell cycle control is related essentially to its ability to bind to several proteins, thus modulating their activity. To date, many cellular proteins have been reported which bind to Rb (Weinberg, R.A., Cell 81:323-330 (1995)). These include a number of transcription factors, a putative regulator of ras, a nuclear structural protein, a protein phosphatase, and

several protein kinases. Whether all of these proteins actually complex, and are regulated by Rb, in cells remains to be seen.

Much attention has been given to the functional 5 interaction between Rb and transcription factors. To date, several of these factors have been shown to form complexes with Rb in cells. Such complex formation and subsequent function studies have revealed that the modulating activity of Rb can take the form of repression of transcription as 10 with E2F (Weintraub et al., Nature 375:812-815 (1995)), or activation as with NF-IL5 (Chen et al., Proc. Natl. Acad. Sci. USA 93:465-469 (1996)) and the hBrm/BRG1 complex (Singh et al., (1995)). Here, we show that Rb can bind to AR and induce the AR transcriptional activity. To our 15 knowledge, this is the first demonstration of a negative growth regulatory protein functioning in a positive manner, by initiating transcription via a signal transduction mechanism involving binding to a nuclear receptor. When place in the context of regulating the cell cycle and 20 differentiation, these data suggest a previously undescribed function for Rb which underscores the importance of this protein in regulating transcription by direct binding to transcription factor, but this protein can also regulate transcription by stimulating at least one 25 type of signal transduction mechanism.

A relationship between Rb expression and response to endocrine therapy of human breast tumor has been suggested (Anderson et al., J. Pathology 180:65-70 (1996)). Other studies indicate that Rb gene alterations can occur in all grades and stages of prostate cancer, in localized as well as metastatic disease (Brooks et al., Prostate 26:35-39 (1995)). How Rb function may be linked to androgendependent status in prostate tumor progression remains unclear. One possible explanation is that Rb alteration may be a necessary event in prostate carcinogenesis for a subset of prostatic neoplasms, which may be also true for the AR expression in prostate tumors.

All publications cited in this application are incorporated by reference.

The present invention is not limited to the exemplified embodiment, but is intended to encompass all such modifications and variations as come within the stope of the following claims.

CLAIMS

WE CLAIM:

- 1. An isolated polynucleotide comprising a sequence selected from the group consisting of SEQ ID NO:1 and SEQ 5 ID NO:3.
- 2. A genetic construct comprising a promoter capable of causing expression of a protein coding region in a cell, the promoter operably connected to a protein coding region encoding the expression of a polypeptide from coding region of of ARA54 or ARA55.
 - 3. The genetic construct of claim 2 wherein the polypeptide encoded by the protein coding sequence comprises a sequence selected from the group consisting of SEQ ID NO:2 and SEQ ID NO:4.
- 15 4. A eukaryotic host cell comprising the genetic construct of claim 2.
 - 5. A method for testing the androgenic or antiandrogenic effect of a chemical compound comprising the steps of:
- 20 (a) transfecting a host cell with at least one genetic construct capable of producing in the host cell a polypeptide selected from the group consisting of ARA54, ARA55, ARA24, and Rb, the host cell also producing human androgen receptor protein;
- 25 (b) exposing the cell to the chemical compound; and
 - (c) measuring the level of transcriptional activity caused by the androgen receptor.

6. The method of claim 5 wherein the host cell is a prostate cell.

- 7. The method of claim 5, wherein the cell is a eukaryotic cell that lacks native endogenous androgen 5 receptor, the cell having also an introduced genetic construct producing androgen receptor protein.
- 8. The method of claim 5, wherein the genetic construct comprises a DNA sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, and SEQ ID NO:7.
- 9. The method of claim 5, wherein the cell is transfected with a genetic construct comprising a reporter gene expressible in the cell, the expression of said reporter gene being susceptible to detection and quantitation.
 - 10. The method of claim 9, wherein the reporter gene is selected from the group consisting of a chloramphenical acetyltransferase gene and a luciferase gene.

11. A method for testing the androgenic or antiandrogenic effect of a chemical compound comprising the steps of:

- (a) transfecting a host cell with at least one
 5 genetic construct capable of producing in the host cell
 human androgen receptor protein and a polypeptide selected
 from the group consisting of ARA54, ARA55, ARA24, and Rb;
 - (b) exposing the cell to the chemical compound; and
- (c) measuring the interaction between AR and an AR.
 - 12. A method as claimed in claim 11 wherein the coactivator is selected from the group consisting of ARA54, ARA55, ARA24 and Rb.

SEQUENCE LISTING

```
<110> Chang, Chawnshang
 <120> Androgen Receptor Coactivators
 <130> 920920.90011
<140>
 <141>
 <150> US 60/100,243
 <151> 1998-09-14<sup>1</sup>
 <160> 12
 <170> PatentIn Ver. 2.0
<210> 1
<211> 1721
<212> DNA
<213> Homo sapien
<220>
<221> CDS
<222> (40)..(1464)
<220>
<221> misc_feature
<222> (1120)..(1452)
<223> Coding sequence and polypeptide region for the
      C-terminal domain.
<220>
<221> misc_feature
<222> (697)..(834)
<223> Coding sequence and polypeptide region which may
      form a cystein-rich RING finger motif.
<220>
<221> misc_feature
<222> (964)..(1089)
<223> Coding sequence and polypeptide region for a
      cystein-rich B box like structure.
```

-400	. •					i-			•		•			٠.	-	
<400	> ,1						-t-c-	aaaa	T CC	rt a	ta t	cg to	a da	aa ga	a t	54
ggtc	tctg	gt c	CCC	CECE	c cg	ayca	بددد	3,433	,,,,,			er Se				e
				•				.27			1	<u> </u>			5	
	s.,					-			•		-		4,		٠ (
			•	٦.					•	7		•				
	.5								ŧ						£	100
cga	gaa	gct	cag	gag	gat 4	gaa	ttg	ctg (3cc	ctg	gca	agt	acc	tac q	gat	102
Arg	Glu	Ala	Gln	Glu	Asp :	Glu	Leu'	Leu .	Ala	Leu	Ala	Ser	iie '	Tyr .	Asp	8
		- ;		10					15		į.,			20	•	- *
1						.					**	4				
gga	gat	qaa	ttt	aga	aaa	gca	gag	tct	gtc	caa	ggt,	gga	gaa	acc	aģg	150
Glv	Asp	Glu	Phe	Arq	Lys	Ala	Glu	Ser	Ϋal	Gln	Gly	Gly 🕆	Glu	Thr	Arg	
 ,		;	25	_	-			30				-	35			*
-		,		-	r'					٠.	_	. :			ν.	,
		++~	~a+	t t c	cca	caq	aat.	ttc	aaq	ata	ttt.	gtg	agc	ggc	aat	198
TIO	mi	Lou	300	Leu	Pro	Gln	Asn	Phe	Lvs	Ile	Phe	Val	Ser	Gly	Asn	
TTE.	ıyı		ASP	Leu	7-10		45					50				
		40					• •								, ji	
								~~~		~~~	tac	200	att	tac	tet	246
tca	aat	gag	tgt	CEC	cag	aac	ayı	990	Dha	Clu	T1	acc	TIA	Cve	Dhe	
Ser	Asn	Glu	Cys	Leu	Gln		Ser	GIÀ	Pne	GIU	TYL	Thr	116	Cys	1110	
	55					60					65					
																204
ctg	cct	cca	ctt	gtg	ctg	aac	ttt	gaa	ctg	cca	cca	gat	tat	cca -	tee	294
Leu	Pro	Pro	Leu	Val	Leu	Asn	Phe	Glu	Leu	Pro	Pro	Asp	Tyr	Pro	ser	
70					75					80					85	
					-											
tot	tee	cca	cct	tca	ttc	aca	ctt	agt	ggc	aaa	tgg	ctg	tca	cca	act	342
Sar	Ser	Pro	Pro	Ser	Phe	Thr	Leu	Ser	Gly	Lys	Trp	Leu	Ser	Pro	Thr	
561				90					95	• -		_		100		
				a= -	+ ~ ~	220	cac	tta	gac	aac	cta	tgg _	qaa	gaa	cac	390
cag	cta -	ECC	gcc	CLA.	cyc	Tara	uic	T.OII	Aen	Asn	Leu	Trp	Glu	Glu	His	
Gln	. Leu	Ser			Cys	гåа	nis	110	Aup	11011			115			
			105				•	110								
														~==	dad.	438
cgt	ggc	agc	gtg	gtc	ctg	ttt	gcc	- Egg	atg	caa		ctt	Tur	Glu	Glu	
Arg	, Gly	Ser	· Val	Val	Leu	Phe	Ala	Trp	Met	GIn	Pne	Leu	гуѕ	GIU	GIU	
		120	)				125					130				
																406
acc	cta	gca	tac	: ttg	aat	att	gtc	tct	cct	: ttt	gag	ctc	aag	, att	ggt	486
Thi	Lev	Āla	Tyr	Leu	Asn	Ile	. Val	Ser	Pro	Phe	e Glu	ı Leu	Lys	; Ile	GLY	
	135		•			140					145	5				
+		, 222		a atr	cac	acra	ago	aca	gat	caa	a gct	tet	cac	aac	aca	534
60.	- C1-	7 7 7 7 7	tare	יבינ י	Gle	Arc	Arc	Thr	Ala	a Gli	n Ala	a Ser	Pro	Asr	Thr	
		тъ	י האי	- v cr.1	159		,	,		160	0				165	
15	U				13:	,					-					
									. +~	ר מים	t at:	а стас	ca:	a gad	g gaa	582
ga	g cta	a gai	ים ב	e aa	a gga	gci	. gct	- 44	, 60	~ ye	n Va	a gad	) Gl	n Gli	. Glu	ı
Gl	u Le	ı Ası	p Ph			Y Ala	a Ala	a GT	, se:	r wei	P va	l Ası	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	180		-
				17	D				17	5					-	

		•																
a:	tt g le V	rtg 'al	gat Asp	ga G1 18	g ag u Ar 5	jagi gA:	cag lav	tg c		at g sp V	tg g al Ģ	aa t lu S	ca ci er Le	eu S	ca a er A	at sn ₍	ctg Leu	630
at	·. 	,	~~~					7		ť	•	ę	•			·	ť	
			200		ι	,	- , .	20	5		.a G	rii Gi	ag at lņ Il 21	e Ly .o	/s C	/S	Phe	678
ŗ	2	15				•	22	Ò		.c cy	s Pr	re Cy 2'2	_	u Ļry	s Le	u (	Gly	726 ≰
23	٥.	<	, x L	. 7		′23	5		<u>- 7</u>		24	0	g ta l Ty:	г су	s Ly	s <i>I</i>	11a 245	1774
				•	250	, ,			C G1,	25:	e Ar	g _i Asj	t ggd p Gly	/ Gl:	n Va. 26	1 G 0	ln	822
				265				- <b>-</b>	270	)	o se	r Vaj	g gcd	275	Pro	o G	ly	870
		2	ВО				. 010	285	GIL	Let	ı Pne	≥ Ala	cgt Arg 290	Туг	Asp	A	rg	918
	29	5					300	, ASD	neu	. Mec	Ата	Asp 305		Val	Туг	C	ys	966
310				•	-2-	315	200	210	val	wec	320	Glu	cct Pro	Gly	Cys	T1	ır 25	1014
atg Met	Gl ^y	at Il	e C	2 - ;	tcc Ser 330	agc Ser	tgc Cys	aat Asn	ttt Phe	gcc Ala 335	ttc Phe	tgt Cys	act Thr	ttg Leu	tgc Cys 340	Ar	.a ia	1062
		Ī	3	45	1		<b>5</b> C1		350	гÀг	Vai	Thr	gca Ala	Glu 355	Lys	Le	u	1110
atg Met	gac Asp	tt. Le	ac uA 0	ga : rg :	aat Asn	gaa Glu	tac Tyr	ctg Leu 365	caa Gln	gcg Ala	gat Asp	gag Glu	gct Ala 370	aat Asn	aaa Lys	ag Ar	a g	1158
ctt Leu	ttg Leu 375	gai	t di P Gi	aa a ln 1	agg	tat Tyr	ggt Gly 380	aag Lys	aga Arg	gtg Val	att Ile	cag Gln 385	aag Lys	gca Ala	ctg Leu	ga Gl	a u	1206

											•					
										aac Asn 400	Ser					1254
tgt Cys	tgt Cys	gga Gly	act Thr	ccc Pro 410	ata Ile	gag Glu	aaa Lys	tta Leu	gac Asp 415	gga Gly	tgt Cys	aac Asn	aag Lys	atg Met 420	aca Thr	1302
2					<b>?</b>	:	-			•	*	3			4	
tgt Cys	act Thr	ggc	tgt Cys	Met	caa Gln	tat	Phe	tgt Cys 430	tgg Trp	att	tgc Cys	Met	ggt Gly 435	Ser	Leu	1350
	;				į							; •		,		
tet	aga	gca	aac	cct	tac	aaa	cat	ttc	aat	gac Asp	cct	ggt	tca	cca	tgt	1398
Ser	Arg	440	Asn	Pro	iyr		445	PILE	ASII	Asp	F10	450			<b>C</b> , 2	
ttť	aac	cgg	ctg	ttt	tat	gct	gtg	gat	gtt	gac	gac	gat	att	tgg	gaa	1446
Phe	Asn 455		Leu	Phe	Tyr	Ala 460	Val	Asp	Val	Asp	Asp 465	Asp	Ile	Trp	Glu	
	Glu	gta Val				tta	acta	ctg	ctca	agat	at t	taac	tact	g		1494
cto	aaga	tat	ggaa	gtgg	at t	gttt	ttcc	c ta	atct	tccg	tca	agta	cac	aaag	taact	t 1554
_																a 1614
ggt	ttat	att	ttca	tgtg	gt a	ctac	tgaa	g aa	ggtg	catt	gat	acat	ttt	taaa	tgtaa	ig 1674
ttg	gagaa	aaa	ttta	taag	rcc a	aagg	ttca	ıg aa	aatt	aaac	tac	agaə				1721
	LO> 2															
	L1> 4 L2> F														,	
		iomo	sapi	ien									_			
<4	00> 2	2				- 63.			. (1)		. Gl.	, I.A.	ı Kai	1 Ala	a Leu	
	t Sea	r Sei	Gli		ATS	i GII	1 Ali	a GII	1		الم ف	ı ne	ı ne	1	a Leu 5	
Al	a Se	r Ile	2 Ty:		o Gly	y Ası	o Gli	u Pho 2		g Ly:	s Ala	a Gl	3 Se:		l Gln	
G1	y Gl	y Gl: 3.		r Ar	g Ile	е Ту	r Le		p Le	u Pr	o Gl	n As 4		e Ly	s Ile	
Ph		l Se O	r Gl	y As	n Se	r As		u Cy	s Le	u Gl		n Se O	r Gl	y Ph	e Glu	ı

Tyr Thr Ile Cys Phe Leu Pro Pro Leu Val Leu Asn Phe Glu Leu Pro 65 kt 70 75 3 Pro Asp Tyr Pro Ser Ser Ser Pro Pro Ser Phe Thr Leu Ser Gly Lys **8**5 90 Trp Leu Ser Pro Thr Gln Leu Ser Ala Leu Cys Lys His Leu Asp Asn 100 105 1910 Leu Trp Glu Glu His Arg Gly Ser Val Val Leu Phe Ala Trp Met Gln 120 Phe Leu Lys Glu Glu Thr Leu Ala Tyr Leu Asn Ile Val Ser Pro Phe 135 140 Glu Leu Lys Ile Gly Ser Gln Lys Lys Val Gln Arg Arg Thr Ala Gln . 150 155 · Ala Ser Pro Asn Thr Glu Leu Asp Phe Gly Gly Ala Ala Gly Ser Asp 165 Val Asp Gln Glu Glu Ile Val Asp Glu Arg Ala Val Gln Asp Val Glu Ser Leu Ser Asn Leu Ile Gln Glu Ile Leu Asp Phe Asp Gln Ala Gln 195 200 Gln Ile Lys Cys Phe Asn Ser Lys Leu Phe Leu Cys Ser Ile Cys Phe Cys Glu Lys Leu Gly Ser Glu Cys Met Tyr Phe Leu Glu Cys Arg His 225 230 235 Val Tyr Cys Lys Ala Cys Leu Lys Asp Tyr Phe Glu Ile Gln Ile Arg 250

Asp Gly Gln Val Gln Cys Leu Asn Cys Pro Glu Pro Lys Cys Pro Ser.

Val Ala Thr Pro Gly Gln Val Lys Glu Leu Val Glu Ala Glu Leu Phe 275 280 285

Ala Arg Tyr Asp Arg Leu Leu Gln Ser Ser Leu Asp Leu Met Ala 290 295 300

Asp Val Val Tyr Cys Pro Arg Pro Cys Cys Gln Leu Pro Val Met Gln 305

Glu Pro Gly Cys Thr Met Gly Ile Cys Ser Ser Cys Asn Phe Ala Phe 325 330 335

PCT/US99/16122 WO 00/04152 *

Cys Thr Leu Cys Arg Leu Thr Tyr His Gly Val Ser Pro Cys Lys Val 345 350 Thr Ala Glu Lys Leu Met Asp Leu Arg Asn Glu Tyr Leu Gln Ala Asp 360 365 Glu Ala Asn Lys Arg Leu Leu Asp Gln Arg Tyr Gly Lys Arg Val; Ile 370 375 380 ( Gln Lys Ala Leu Glu Glu Met Glu Ser Lys Glu Trp Leu Glu Lys Asn 395 400 385 390 Ser Lys Ser Cys Pro Cys Cys Gly Thr Pro Ile Glu Lys Leu Asp Gly 410 415 **405** Cys Asn Lys Met Thr. Cys Thr Gly Cys Met Gln Tyr Phe Cys Trp Ile **425** 420 Cys Met Gly Ser Leu Ser Arg Ala Asn Pro Tyr Lys His Phe Asn Asp 440 Pro Gly Ser Pro Cys Phe Asn Arg Leu Phe Tyr Ala Val Asp Val Asp 460 Asp Asp Ile Trp Glu Asp Glu Val Glu Asp <210> 3 <211> 1335 <212> DNA <213> Homo sapien <220> <221> CDS <222> (1)..(1335) <220>

<221> misc_feature

<222> (750)..(1332)

<223> Coding sequence and polypeptide region for the C-terminal binding domain

<220>

<221> misc_feature

<222> (631)..(783)

<223> Coding sequence and polypeptide region for a cystein rich LIM motif

<:	220>	. t							*								ž
ج.ِ>	221>	misc	_fea	iture			'AN'	•	,					i	,		
<2	222>	(808	1), (	(996)	₹				. ·		,	į					
<2	223>	.Codi	ng s	eque	nce	and	v for	nent	ido			or a	i		<u>-</u> '	•	
*		cyst	ein	rich	LIM	mot	if	pepe	Trác	regi	on I	or a	:		Ċ	_	•
٠ ١	•	•				{_{1}}				•	•				,	. `	-
£2	20>					` /							•		•		
<2	21>	misc	fea	ture		( )						12	•				
√ <2	22>	(985	) (	1137	)	٠.						Α,					
<2	23>	Ćođi	ng s	eque	nce :	and i	00115	. (	. ـ د ـ :	- (	_						:
ì.		cyst	ein	rich	LTM	mot:	i t	pept.	ide :	regi	on (f	or a	•				,
4	4				[	,					,	` <b>\$</b>					į
· <2	20>			1	₹ .		~ (				· •						, ,
<2	21>	misc	_fea	ture	f'		Ļ			•		1	4				
<2	22>	(116	2)	(1314	(J)		•		·:				Ť	,			
<2	23>; (	Codi	ng se	equer	ice a	and r	2012								13	٠,٠	
		cyst	ein :	rich	LIM	moti	f.	epc.	.ue i	regio	on ic	or a		X			
				,					1						<b>\</b>		
<4	00> :	3		•													
ato	g cca	a agg	j tca	a qqq	r act	ccc									acc	٠,	
Met	Pro	Arg	Ser	Gly	Ala	Pro	Lve	Glu	720	. CCL	ges	gag	cct	cto	acc Thr		48
1	Ĺ			5				GIU	10	PIC	ALE	GIU	Pro				
														15			
cct	ccc	cca	tec	: tat	ggc	cac	cao		207	~~~					tet		
Pro	Pro	Pro	Ser	Tyr	Glv	His	Gln	Pro	The	999	Cag	tet	999	gag	tct Ser		96
			20	, -	2			25	****	Gry	GIN	Ser			Ser		
													30				
tca	gga	gco	tcg	ववव	gac	aaσ	gac	cac	cta	+					aag		
Ser	Gly	Ala	Ser	Gly	Asp	Lvs	Asp	Hie	Len	Tre	ago	acg Thr	gta	tgc	aag		144
		35		•	•	-2-	40			- y -	ser		val	Cys	Lys		
												45					
cct	cgg	tcc	cca	aag	cct	σca	acc	cca	acc	~~~					tct		
Pro	Arg	Ser	Pro	Lys	Pro	Ala	Ala	Pro	Ala	Ala	Dro	cca Pro	Db-	tcc	tet	÷	192
	50			•		55				ALG	60	PIO	Pne	ser	Ser		
tcc	agc	ggt	gtc	ttg	ggt	acc	aaa	ctc	tat	gag	cta	gat	~~~				
	Ser	Gly	Val	Leu	Gly	Thr	Gly	Leu	Cvs	Glu	Len	gat Asp	cgg	teg	CEE		240
65					70				-,-	75	nea	wah	Arg	Leu			
										_					80		
cag	gaa	ctt	aat	gcc	act	cag	ttc	aac	atc	aca	gat	gaa	25.5				
Gln	Glu	Leu	Asn	Ala	Thr	Gln	Phe	Asn	Ile	Thr	Acn	gaa Glu	TIL	acg	CCE		288
				85					90		Asp	GIU	TTE		Ser		
														95			
cag	ttc	cca	tct	agc	aag	gta	gct	tca	gga	asa	can	aag	~				
Gln	Phe	Pro	Ser	Ser	Lys	Val	Ala	Ser	Glv	G] 11	Cla	aag Lys	gag	gac	cag	:	336
			100		-			105	1		<b>4111</b>	пĀр		Asp	GIN		
													110				
tct	gaa	gat	aag	aaa	aga	ccc	agc	ctc	cct	taa	age	ccg	+ < +				
Ser	Glu	Asp	Lys	Lys	Arg	Pro	Ser	Leu	Pro	Ser	Ser	Pro	Ser	Dro	990	-	84
		115					120		-			125	261	FIO	gry		

				•				•				•						
	ctc Leu	cca Pro 130	aag Lys	gct Ala	tct Ser	Ala	acc Thr 135	Ser	gcc Ala	act Thr.	Leu	gag Glu 140	ctg Leu	gat Asp	aga Arg	ctg Leu	432	
	atg Met 145	gcc Al _į a	tca Ser	ctc Leu	cct Pro	gac Asp 150	ttc Phe	cgc Arg	gtt Val	caa Gln	aac Asn 155	cat His	ctt Leu ,	cca Pro	gcc Ala [*]	tct Ser 160	480	3
	gly aaa_	cca Pro	act Thr	cag Gln	cca Pro 165	ccg	gtg Val	gtg Val	agc Ser	tcc Ser 170	aca Thr	aat 'Asn	gag Glu	Gly	tcc Ser 175	cca Pro	528 (	
1	Ser	Pro	Pro	Glu 180	Pro		Ala G	Lys	Gly 185	Ser	Leu	Asp	Thr	Met 190	Leu	Gly	576	<b>4</b>
	ctg Leu	ctg Leu	cag Gln 195	tcc Ser	gac Asp	ctc Leu	agc Ser	cgc Arg 200	cgg Arg	ggt Gly	gtt Val	ccc Pro	acc Thr 205	cag Gln	gcc Ala	aaa Lys	624	ï
	ggc Gly	ctc Leu 210	tgt Cys	ggc	tcc Ser	tgc Cys	aat Asn 215	aaa Lys	cct Pro	att Ile	gct Ala	999 Gly 220	caa Gln	gtg Val	gtg Val	acg Thr	672	
	gct Ala 225	ctg Leu	ggc	cgc Arg	gcc	tgg Trp 230	cac	ccc Pro	gag Glu	cac His	ttc Phe 235	gtt Val	tgc Cys	gga Gly	ggc Gly	tgt Cys 240	720	
	tcc Ser	acc Thr	gcc	: ctg . Leu	gga Gly 245	ggc Gly	agc Ser	agc Ser	ttc Phe	ttc Phe 250	gag Glu	aag Lys	gat Asp	gga Gly	gcc Ala 255	ccc Pro	768	
	ttc Phe	Cys	e ccc	gag Glu 260	Cys	tac Tyr	ttt Phe	gag Glu	cgc Arg 265	Phe	tcg Ser	cca Pro	aga Arg	tgt Cys 270	ggc Gly	ttc Phe	816	ŧ
	tgc	aac Asr	cag Gli 27	n Pro	c ato	cga Arg	cac His	aag Lys 280	Met	gtg Val	acc	gcc Ala	ttg Leu 285	GIY	act	cac His	864	
	tgg Trp	7 cac His	s Pro	a gag o Gli	g cat	t tto s Phe	tgo Cys 29	s Cys	gto val	agt Ser	tgc Cys	300 300 300	/ Glu	g ccc 1 Pro	tto Phe	gga Gly	912	2
	gat Ası 30!	Glı	n Gl	t tt y Ph	c ca e Hi	c gaq s Gli 310	u Ar	c gag	g gg¢ u Gly	cgc Arg	pro	э Ту:	c tgo	c cgo s Arg	cgg Arg	g gac g Asp 320	960	)
	tt: Ph	c ct	g ca u Gl	g ct n Le	g tt u Ph 32	e Al	c cc a Pr	g cg	c tg g Cy	c cas s Gl: 33	n Gl	c tg y Cy	c caq s Gl:	g ggo n Gly	c cc y Pro 33	c atc o Ile 5	10	80

े } ड	•			34	0		* <b>^*</b> ;	a ie	u se. ∖34:	ę Le	u Le	u Tr	p Hi	s Pr 35	o As O	c tgt p Cys	
ş	. {	;	35	5	,	,	J , 2111	36 ( عرب	) )	o Pue	e Se	r Gly	y Gl; 36	y Se:	r Ph	t ttc e Phe	
	*1	370		,	****	, , ,	375	i Cys	. GIL	l Asr	1 His	380	= His	Ala	A Arg	a cgc	1152
	385	;		7	1	390	cys )	· · ·	, ren	Pro	7 395	. Thr	·Gl ₃	Arc	Cys	gtg Val 400	1200
				1	405	, ,,,,	, FIIC	: nis	;PIO	410	His	Phe	: Ala	Cys	Th: 415		1248
	-			420			шуз	GTÀ	425	Pne	GIn	Glu	. Arg	Ala 430	Gly	aag Lys	1296
I	Pro	tac Tyr	tgc Cys 435	cag Gln	ccc Pro	tgc Cys	ttc Phe	ctg Leu 440	aag Lys	ctc Leu	ttc Phe	ggc	tga 445				1335
<	211	)> 4 .> 44 :> PF :> Ho	T	sapi	≅n												
<	400	> 4														•	•
М	et 1	Pro			J		Pro			10					15		
				20			His		25					30			
S	er (	Gly	Ala 35	Ser	Gly	Asp	Lys	Asp 40	His	Leu	Tyr	Ser	Thr 45	Val	Cys	Lys	
P	ro i	Arg 50	Ser	Pro	Lys	Pro	Ala 55	Ala	Pro	Ala	Ala	Pro 60	Pro	Phe	Ser	Ser	
Se	er 8	Ser (	Gly	Val	Leu	Gly 70	Thr	Gly	Leu	Cys	Glu 75	Leu	Asp	Arg	Leu	Leu 80	,
G]	ln (	3lu 1	Leu	Asn	Ala 85	Thr	Gln	Phe	Asn	Ile 90	Thr	Asp	Glu	Ile	Met 95	Ser	

Gln Phe Pro Ser Ser Lys Val Ala Ser Gly Glu Gln Lys Glu Asp Gln
100 105 110

- Ser Glu Asp Lys Lys Arg Pro Ser Leu Pro Ser Ser Pro Ser Pro Gly
  115 120 125
- Leu Pro Lys Ala Ser Ala Thr Ser Ala Thr Leu Glu Leu Asp Arg Leu 130 135 140
- Met Ala Ser Leu Pro Asp Phe Arg Val Gln Asn His Leu Pro Ala Ser 145 150 155
- Gly Pro Thr Gln Pro Pro Val Val Ser Ser Thr Asn Glu Gly Ser Pro

  165 170 175
- Ser Pro Pro Glu Pro Thr Ala Lys Gly Ser Leu Asp Thr Met Leu Gly
  180 185 190
- Leu Leu Gln Ser Asp Leu Ser Arg Arg Gly Val Pro Thr Gln Ala Lys
  195 200 205
- Gly Leu Cys Gly Ser Cys Asn Lys Pro Ile Ala Gly Gln Val Val Thr 210 215 220
- Ala Leu Gly Arg Ala Trp His Pro Glu His Phe Val Cys Gly Gly Cys 225 230 235 240
- Ser Thr Ala Leu Gly Gly Ser Ser Phe Phe Glu Lys Asp Gly Ala Pro 245 250 255
- Phe Cys Pro Glu Cys Tyr Phe Glu Arg Phe Ser Pro Arg Cys Gly Phe 260 265 270
- Cys Asn Gln Pro Ile Arg His Lys Met Val Thr Ala Leu Gly Thr His
  275 280 285
- Trp His Pro Glu His Phe Cys Cys Val Ser Cys Gly Glu Pro Phe Gly 290 295 300
- Asp Glu Gly Phe His Glu Arg Glu Gly Arg Pro Tyr Cys Arg Arg Asp 305 310 315
- Phe Leu Gln Leu Phe Ala Pro Arg Cys Gln Gly Cys Gln Gly Pro Ile
- Leu Asp Asn Tyr Ile Ser Ala Leu Ser Leu Leu Trp His Pro Asp Cys 340 345 350
- Phe Val Cys Arg Glu Cys Phe Ala Pro Phe Ser Gly Gly Ser Phe Phe 355 360 365

Glu His Glu Gly Arg Pro Leu Cys Glu Asn His Phe His Ala Arg Arg 370≰ 375 380 Gly Ser Leu Cys Pro Thr Cys Gly Leu Pro Val Thr Gly Arg Cys Val ₹390 · 395 400 Ser Alas Leu Gly Arg Arg Phe His Pro Asp His Phe Ala Cys Thr Phe 410 Cys Leu Arg Pro Leu Thr Lys Gly Ser Phe Gln Glu Arg Ala Gly Lys Pro Tyr Cys Gln Pro Cys Phe Leu Lys Leu Phe Gly 440 435 <210> 5 <211> 1566 <212> DNA <213> Homo sapien <220> <221> CDS <222> (25)..(675) <220> <221> 3'UTR <222> (676)..(1566) <220> <221> 5'UTR <222> (1)..(24) ggcgcttctg gaaggaacgc cgcg atg gct gcg cag gga gag ccc cag gtc Met Ala Ala Gln Gly Glu Pro Gln Val cag ttc aaa ctt gta ttg gtt ggt ggt ggt act gga aaa acg acc Gln Phe Lys Leu Val Leu Val Gly Asp Gly Gly Thr Gly Lys Thr Thr 20 ttc gtg aaa cgt cat ttg act ggt gaa ttt gag aag aag tat gta gcc Phe Val Lys Arg His Leu Thr Gly Glu Phe Glu Lys Lys Tyr Val Ala acc ttg ggt gtt gag gtt cat ccc cta gtg ttc cac acc aac aga gga Thr Leu Gly Val Glu Val His Pro Leu Val Phe His Thr Asn Arg Gly 45

							•										•		
	cct Pro	att Ile	aag Lys 60	ttc Phe	aat Asn	gta Val	tgg Trp	gac Asp 65	Thr	gcc	ggc Gly	cag Gln	gag Glu 70	aaa Lys	Phe	ggt Gly	₋ , 2∙	43	
	gga Gly	- ;- ctĝ. Leu 75	Arg.	gat Asp	ggc Gly	tat Tyr	tat Tyr 80	atc Ile	caa Glņ	gcc Ala	cag Gln	tgt Cys 85	gcc Ala	atc Ile	ata Ile	atg Met	. 2	91 ·	-
,**	ttt Phe 90	gat Asp	gta Val	aca Thr	tcg Ser	aga Arg 95	gtt Val	act Thr	tac Tyr	aag Lys	aat: Asn 100	gtg Val	cct Pro	aac Asn	tgg Trp	cat His 105		39	
	aga Arg	gat Asp	/ ctg Leu	gta Val	cga Arg 110	gtg Val	tgt Cys	gaa Glu	aac Asn	atc Ile 115	cdc Pro	att Ile	gtg Val	Leu	tgt Cys 120	ggc	3		
	aac Asn	aaa Lys	gtg Val	gat Asp 125	att IIe	aag Lys	gac Asp	agg Arg	aaa Lys 130	gtg Val	aag Lys	gcg Ala	aaa Lys	tcc Ser 135	Ile	gtc Val	4	35	
	ttc Phe	cac His	cga Arg 140	aag Lys	aag Lys	aat Asn	ctt Leu	cag Gln 145	tac Tyr	tac Tyr	gac Asp	att	Ser 150	gcc Ala	aaa Lys	agt Ser	4	183	
	aac Asn	tac Tyr 155	Asn	ttt Phe	gaa Glu	aag Lys	Pro	ttc Phe	ctc Leu	tgg Trp	ctt Leu	gct Ala 165	Arg	aag Lys	ctc Leu	att Ile		531	
	gga Gly 170	Asp	cct Pro	aac Asn	ttg Leu	gaa Glu 175	Phe	gtt Val	gcc	atg Met	cct Pro 180	Ala	cto Leu	gcc Ala	cca Pro	cca Pro 185		579	
	gaa Glu	gtt Val	gtc Val	atg Met	gac Asp	Pro	gct Ala	ttg Leu	gca Ala	gca Ala 195	Gln	tat Tyr	gag Glu	cac His	gad S Asp 200	tta Leu		627	
	gag Glu	gtt Val	get L Ala	cag Glr 205	Thi	act Thr	get Ala	cto Lev	210	Ası	gag Glu	gat 1 Asp	gat Ası	gad Asy 21	p Le	g tga u	i.	675	
	gaa	ıtgaa	agct	ggag	gecea	agc g	gtcag	gaagt	c t	agtt	ttata	a gg	cage	tgtc	ctg	tgatg	jtc	735	
																cttta			
	tgt	.ggg:	atgc	tgaa	agga	gat q	gagt	gggc1	tt c	ggag	tgaa	t gt	ggca	gttt	aaa	aaata	aac	855	
	tt	catt	gttt	gga	cctg	cat :	attt	agct	gt t	tgga	cgca	g tt	gatt	cctt	. gag	tttc	ata	915	
	ta	taag	actg	ctg	cagt	cac	atca	caat	at t	cagt	ggtg	a aa	tctt	gttt	gtt	actg	tca	975	
	tt	ccca	ttcc	ttt	tctt	tag	aatc	agaa	ta a	agtt	gtat	t to	aaat	atct	aag	caag	tga	1035	;

<210> 6

<211> 216

<212> PRT

<213> Homo sapien

<400> 6

Met Ala Ala Gln Gly Glu Pro Gln Val Gln Phe Lys Leu Val Leu Val 1 5 10 15 Gly Asp Gly Gly Thr Gly Lys Thr Thr Phe Val Lys Arg His Leu Thr

Gly Glu Phe Glu Lys Lys Tyr Val Ala Thr Leu Gly Val Glu Val His 35 40 45

Pro Leu Val Phe His Thr Asn Arg Gly Pro Ile Lys Phe Asn Val Trp 50 55 60

Asp Thr Ala Gly Gln Glu Lys Phe Gly Gly Leu Arg Asp Gly Tyr Tyr
65 70 75 80

Ile Gln Ala Gln Cys Ala Ile Ile Met Phe Asp Val Thr Ser Arg Val

Thr Tyr Lys Asn Val Pro Asn Trp His Arg Asp Leu Val Arg Val Cys
100 105 110

Glu Asn Ile Pro Ile Val Leu Cys Gly Asn Lys Val Asp Ile Lys Asp 115 120 125

Arg Lys Val Lys Ala Lys Ser Ile Val Phe His Arg Lys Lys Asn Leu 130 140

145 150 155	ys Pro 160
Phe Leu Trp Leu Ala Arg Lys Leu Ile Gly Asp Pro Asn Leu Gl 165 170 17	iu Phe 75
Val Ala Met Pro Ala Leu Ala Pro Pro Glu Val Val Met Asp Pro 180 185 190	ro Ala
Leu Ala Ala Gln Tyr Glu His Asp Leu Glu Val Ala Gln Thr Ti 195 200 205	hr Ala
Leu Pro Asp Glu Asp Asp Leu 210 215	
<210> 7	
<212> DNA (	•
<220> <221> CDS <222> (138) (2924)	
<400> 7 tccggttttt ctcaggggac gttgaaatta tttttgtaac gggagtcggg ag	gaggacggg 60
gegtgeeceg egtgegegeg egtegteete eeeggegete etecacaget eg	getggetee 120
•	
cgccgcggaa aggcgtc atg ccg ccc aaa acc ccc cga aaa acg gc Met Pro Pro Lys Thr Pro Arg Lys Thr Al 1 5	cc gcc 170 la Ala 10
Met Pro Pro Lys Thr Pro Arg Lys Thr Al	ceg cec 218
Met Pro Pro Lys Thr Pro Arg Lys Thr Alla Ala Ala Ala Ala Ala Glu Pro Pro Arg Lys Thr Ala	ccg ccc 218 Pro Pro
Met Pro Pro Lys Thr Pro Arg Lys Thr Alla Ala Ala Ala Ala Ala Ala Ala Ala Al	ccg ccc 218 Pro Pro ctg cct 266 Leu Pro act gca 314

	٠ .		٠.	8(	)	. sei	. sei	c va. .: į	L. ASI 89	0 Gly 5	y Val	l Leu	ı Gl	y G13	Ť.	,
•	*	- <del></del> 2	y. - 9!	5 Lyc	, 610	, nec	, ir	100 /	/ Ile	e Cys	; ille	Phe	109	⊇ Ala	gca Ala	458
•	,	110	)	. 314	. Mec	. Jei	115	Tnr	. Phe	Thr	∵Glu	Leu 120	Glr	Lys (	aac Asn	, 506 {
ata Ile	gaa Glu 125	ato Ille	agt Ser	gtc Val	cat His	aaa Lys 130	Pne	, ttt Phe	aac Asn	tta Leu	cta Leu 135	Lyş	gaa GIu	att Ile	gat Asp	554
Thr 140		acc Thr	aaa Lys	gtt Val	gat Aşp 145	aat Asn	gct Ala	atg Met	tca Ser	aga Arg 150	ctg Leu	ttg Leu	aag Lys	aag	tat Tyr 155	602
gat Asp	gta Val	ttg Leu	ttt Phe	gca Ala 160	ctc Leu	ttc Phe	agc Ser	aaa Lys	ttg Leu 165	gaa Glu	agg Arg	aca Thr	tgt Cys	gaa Glu 170	ctt Leu	650
ata Ile	tat Tyr	ttg Leu	aca Thr 175	caa Gln	ccc Pro	agc Ser	agt Ser	tcg Ser 180	ata Ile	tct Ser	act Thr	gaa Glu	ata Ile 185	aat Asn	tct Ser	698
gca Ala	ttg Leu	gtg Val 190	cta Leu	aaa Lys	gtt Val	tct Ser	tgg Trp 195	atc Ile	aca Thr	ttt Phe	tta Leu	tța Leu 200	gct Ala	aaa Lys	Gly aaa	746
gaa Glu	gta Val 205	tta Leu	caa Gln	atg Met	gaa Glu	gat Asp 210	gat Asp	ctg Leu	gtg Val	att Ile	tca Ser 215	ttt Phe	cag Gln	tta Leu	atg Met	794
cta Leu 220	tgt Cys	gtc Val	ctt Leu	gac Asp	tat Tyr 225	ttt Phe	att Ile	aaa Lys	ctc Leu	tca Ser 230	cct Pro	ccc Pro	atg Met	ttg Leu	ctc Leu 235	842
aaa Lys	gaa Glu	cca Pro	tat Tyr	aaa Lys 240	aca Thr	gct Ala	gtt Val	ata Ile	ccc Pro 245	att Ile	aat Asn	ggt Gly	tca Ser	cct Pro 250	cga Arg	890
aca Thr	Pro	agg Arg	cga Arg 255	ggt Gly	cag Gln	aac Asn	Arg	agt Ser 260	gca Ala	cgg Arg	ata Ile	Ala	aaa Lys 265	caa Gln	cta Leu	938
gaa Glu	aat Asn	gat Asp 270	aca Thr	aga Arg	att Ile	TTE	gaa Glu 275	gtt Val	ctc Leu	tgt Cys	aaa Lys	gaa Glu 280	cat His	gaa Glu	tgt Cys	986

aat at a gat gag gtg aaa aat gtt tat ttc aaa aat ttt at at cct the stand of th	1082 1130 1178 1178
atg aat tot oft gga ctt gta aca tot aat gga ctt cca gag gtt ga met Asn Ser Leu Gly Leu Val Thr Ser Asn Gly Leu Pro Glu Val Gl 310 310 31  aat oft tot aaa cga tac gaa gaa att tat oft aaa aaa aaa gat oft Asn Leu Ser Lys Arg Tyr Glu Glu Ile Tyr Leu Lys Asn Lys Asp Leu 320 325 330  gat gca aga tta titi tig gat cat gat aaa act oft cag act gat Asp Ala Arg Leu Phe Leu Asp His Asp Lys Thr Leu Gln Thr Asp Ser Asn Leu Asp Ser Phe Glu Thr Gln Arg Thr Pro Arg Lys Ser Asn Leu Asp 355 360  gaa gag gtg aat gta att cot coa cac act coa gtt agg act gt at Glu Glu Val Asn Val Ile Pro Pro His Thr Pro Val Arg Thr Val Me 365 370  aac act atc caa caa tta atg atg att tta aat toa gea agt gat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot con cot con cot cot con cot	1082 1130 1148 1178 1226
atg aat tot oft gga ctt gta aca tot aat gga ctt cca gag gtt ga met Asn Ser Leu Gly Leu Val Thr Ser Asn Gly Leu Pro Glu Val Gl 310 310 31  aat oft tot aaa cga tac gaa gaa att tat oft aaa aaa aaa gat oft Asn Leu Ser Lys Arg Tyr Glu Glu Ile Tyr Leu Lys Asn Lys Asp Leu 320 325 330  gat gca aga tta titi tig gat cat gat aaa act oft cag act gat Asp Ala Arg Leu Phe Leu Asp His Asp Lys Thr Leu Gln Thr Asp Ser Asn Leu Asp Ser Phe Glu Thr Gln Arg Thr Pro Arg Lys Ser Asn Leu Asp 355 360  gaa gag gtg aat gta att cot coa cac act coa gtt agg act gt at Glu Glu Val Asn Val Ile Pro Pro His Thr Pro Val Arg Thr Val Me 365 370  aac act atc caa caa tta atg atg att tta aat toa gea agt gat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot toa gaa aat ctg att too tat tit aac aac tgc aca gtg aat cot cot con cot con cot cot con cot	1082 1130 1148 1178 1226
Met Asn Ser Leu Gly Leu Val Thr Ser Asn Gly Leu Pro Glu Val Gl 300 305 310 310 31  aat ctt tct aaa cga tac gaa gaa att tat ctt aaa aat aaa gat ct Asn Leu Ser Lys Arg Tyr Glu Glu Ile Tyr Leu Lys Asn Lys Asp Le 320 325 330  gat gca aga tta ttt ttg gat cat gat aaa act ctt cag act gat tc Asp Ala Arg Leu Phe Leu Asp His Asp Lys Thr Leu Gln Thr Asp Se 335 340 345  ata gac agt ttt gaa aca cag aga aca cca cga aaa agt aac ctt ga Ile Asp Ser Phe Glu Thr Gln Arg Thr Pro Arg Lys Ser Asn Leu As 350 355 360  gaa gag gtg aat gta att cct cca cac act cca gtt agg act gtt at Glu Glu Val Asn Val Ile Pro Pro His Thr Pro Val Arg Thr Val Me 365 370 375  aac act atc caa caa tta atg atg att tta aat tca gca agt gat ca Asn Thr Ile Gln Gln Leu Met Met Ile Leu Asn Ser Ala Ser Asp G 380 385 390  cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat ca Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn P	1130 1 1178 1 1226
Met Asn Ser Leu Gly Leu Val Thr Ser Asn Gly Leu Pro Glu Val Gl 300 305 310 310 31  aat ctt tct aaa cga tac gaa gaa att tat ctt aaa aat aaa gat ct Asn Leu Ser Lys Arg Tyr Glu Glu Ile Tyr Leu Lys Asn Lys Asp Le 320 325 330  gat gca aga tta ttt ttg gat cat gat aaa act ctt cag act gat tc Asp Ala Arg Leu Phe Leu Asp His Asp Lys Thr Leu Gln Thr Asp Se 335 340 345  ata gac agt ttt gaa aca cag aga aca cca cga aaa agt aac ctt ga Ile Asp Ser Phe Glu Thr Gln Arg Thr Pro Arg Lys Ser Asn Leu As 350 355 360  gaa gag gtg aat gta att cct cca cac act cca gtt agg act gtt at Glu Glu Val Asn Val Ile Pro Pro His Thr Pro Val Arg Thr Val Me 365 370 375  aac act atc caa caa tta atg atg att tta aat tca gca agt gat ca Asn Thr Ile Gln Gln Leu Met Met Ile Leu Asn Ser Ala Ser Asp G 380 385 390  cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat ca Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn P	1130 1 1178 1 1226
Met Asn Ser Leu Gly Leu Val Thr Ser Asn Gly Leu Pro Glu Val Gl 300 305 310 310 31  aat ctt tct aaa cga tac gaa gaa att tat ctt aaa aat aaa gat ct Asn Leu Ser Lys Arg Tyr Glu Glu Ile Tyr Leu Lys Asn Lys Asp Le 320 325 330  gat gca aga tta ttt ttg gat cat gat aaa act ctt cag act gat tc Asp Ala Arg Leu Phe Leu Asp His Asp Lys Thr Leu Gln Thr Asp Se 335 340 345  ata gac agt ttt gaa aca cag aga aca cca cga aaa agt aac ctt ga Ile Asp Ser Phe Glu Thr Gln Arg Thr Pro Arg Lys Ser Asn Leu As 350 355 360  gaa gag gtg aat gta att cct cca cac act cca gtt agg act gtt at Glu Glu Val Asn Val Ile Pro Pro His Thr Pro Val Arg Thr Val Me 365 370 375  aac act atc caa caa tta atg atg att tta aat tca gca agt gat ca Asn Thr Ile Gln Gln Leu Met Met Ile Leu Asn Ser Ala Ser Asp G 380 385 390  cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat ca Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn P	1130 1 1178 1 1226
aat ctt tct aaa cga tac gaa gaa att tat ctt aaa aat aaa gat ct Asn Leu Ser Lys Arg Tyr Glu Glu Ile Tyr Leu Lys Asn Lys Asp Leu 320 325 330  gat gca aga tta ttr ttg gat cat gat aaa act ctt cag act gat tc Asp Ala Arg Leu Phe Leu Asp His Asp Lys Thr Leu Gln Thr Asp Se 335 345  ata gac agt ttt gaa aca cag aga aca cca cga aaa agt aac ctt gat Ile Asp Ser Phe Glu Thr Gln Arg Thr Pro Arg Lys Ser Asn Leu As 350 360  gaa gag gtg aat gta att cct cca cac act cca gtt agg act gtt at Glu Glu Val Asn Val Ile Pro Pro His Thr Pro Val Arg Thr Val Me 365 370 375  aac act atc caa caa tta atg atg att tta aat tca gca agt gat cac Asn Thr Ile Gln Gln Leu Met Met Ile Leu Asn Ser Ala Ser Asp G 380 385 390  cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat cac cct cac gaa aac cac gtg aca gtg aat cac cct cac gaa aca cac gtg aca gtg acc cct cac cac acc ccac acc ccac acc ac	1130 1 1178 1 1226
aat ctt tct aaa cga tac gaa gaa att tat ctt aaa aat aaa gat ct Asn Leu Ser Lys Arg Tyr Glu Glu Ile Tyr Leu Lys Asn Lys Asp Leu 320 325 330  gat gca aga tta ttt ttg gat cat gat aaa act ctt cag act gat to Asp Ala Arg Leu Phe Leu Asp His Asp Lys Thr Leu Gln Thr Asp Ser 335 340 345  ata gac agt ttt gaa aca cag aga aca cca cga aaa agt aac ctt ga Ile Asp Ser Phe Glu Thr Gln Arg Thr Pro Arg Lys Ser Asn Leu As 350 355 360  gaa gag gtg aat gta att cct cca cac act cca gtt agg act gtt at Glu Glu Val Asn Val Ile Pro Pro His Thr Pro Val Arg Thr Val Me 365 370 375  aac act atc caa caa tta atg atg att tta aat tca gca agt gat ca Asn Thr Ile Gln Gln Leu Met Met Ile Leu Asn Ser Ala Ser Asp Glaso 385 390 310  cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat cap cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat cap cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat cap cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat cap cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat cap cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat cap cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat cap cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat cap cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat cct atc cac cct cac cct cac cct cct	1130 1 1178 1 1226 p
Asn Leu Ser Lys Arg Tyr Glu Glu Ile Tyr Leu Lys Asn Lys Asp Leu 320 330  gat gca aga tta ttt ttg gat cat gat aaa act ctt cag act gat tc Asp Ala Arg Leu Phe Leu Asp His Asp Lys Thr Leu Gln Thr Asp Se 335  ata gac agt ttt gaa aca cag aga aca cca cga aaa agt aac ctt ga Ile Asp Ser Phe Glu Thr Gln Arg Thr Pro Arg Lys Ser Asn Leu As 350  gaa gag gtg aat gta att cct cca cac act cca gtt agg act gtt at Glu Glu Val Asn Val Ile Pro Pro His Thr Pro Val Arg Thr Val Me 365  aac act atc caa caa tta atg atg att tta aat tca gca agt gat ca Asn Thr Ile Gln Gln Leu Met Met Ile Leu Asn Ser Ala Ser Asp Glason 385  cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat ca Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn Cys Thr Cys Thr Cys Thr Cys Thr Cy	i 1178 : 1226 : 1274
Asn Leu Ser Lys Arg Tyr Glu Glu Ile Tyr Leu Lys Asn Lys Asp Leu 320 330  gat gca aga tta ttt ttg gat cat gat aaa act ctt cag act gat tc Asp Ala Arg Leu Phe Leu Asp His Asp Lys Thr Leu Gln Thr Asp Se 335  ata gac agt ttt gaa aca cag aga aca cca cga aaa agt aac ctt ga Ile Asp Ser Phe Glu Thr Gln Arg Thr Pro Arg Lys Ser Asn Leu As 350  gaa gag gtg aat gta att cct cca cac act cca gtt agg act gtt at Glu Glu Val Asn Val Ile Pro Pro His Thr Pro Val Arg Thr Val Me 365  aac act atc caa caa tta atg atg att tta aat tca gca agt gat ca Asn Thr Ile Gln Gln Leu Met Met Ile Leu Asn Ser Ala Ser Asp Glason 385  cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat ca Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn Cys Thr Cys Thr Cys Thr Cys Thr Cy	i 1178 : 1226 : 1274
gat gca aga tta ttt ttg gat cat gat aaa act ctt cag act gat tca Asp Ala Arg Leu Phe Leu Asp His Asp Lys Thr Leu Gln Thr Asp Se 335  ata gac agt ttt gaa aca cag aga aca cca cga aaa agt aac ctt ga Ile Asp Ser Phe Glu Thr Gln Arg Thr Pro Arg Lys Ser Asn Leu As 350  gaa gag gtg aat gta att cct cca cac act cca gtt agg act gtt at Glu Glu Val Asn Val Ile Pro Pro His Thr Pro Val Arg Thr Val Me 365  aac act atc caa caa tta atg atg att tta aat tca gca agt gat ca Asn Thr Ile Gln Gln Leu Met Met Ile Leu Asn Ser Ala Ser Asp Gl 380  cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat ca Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Cys Thr Val Asn Pro Asn Cys Thr Val Asn Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Cys Thr Val Asn Pro Asn Cys Thr Val Asn Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Cys Thr Val Asn Pro Asn Cys Thr Va	1178 1178 1226 p
gat gca aga tta ttt ttg gat cat gat aaa act ctt cag act gat to Asp Ala Arg Leu Phe Leu Asp His Asp Lys Thr Leu Gln Thr Asp Se 335 340 345  ata gac agt ttt gaa aca cag aga aca cca cga aaa agt aac ctt ga Ile Asp Ser Phe Glu Thr Gln Arg Thr Pro Arg Lys Ser Asn Leu As 350 355 360  gaa gag gtg aat gta att cct cca cac act cca gtt agg act gtt at Glu Glu Val Asn Val Ile Pro Pro His Thr Pro Val Arg Thr Val Me 365 370 375  aac act atc caa caa tta atg atg att tta aat tca gca agt gat ca Asn Thr Ile Gln Gln Leu Met Met Ile Leu Asn Ser Ala Ser Asp Gl 380 385 390 3:  cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat ca Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn Pro Asp Cys Thr Val Asn Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn Pro Asp Cys Thr Val Asn Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn Pro Asp Cys Thr Val	g 1274
Asp Ala Arg Leu Phe Leu Asp His Asp Lys Thr Leu Gln Thr Asp Se 335  ata gac agt ttt gaa aca cag aga aca cca cga aaa agt aac ctt ga Ile Asp Ser Phe Glu Thr Gln Arg Thr Pro Arg Lys Ser Asn Leu As 350  gaa gag gtg aat gta att cct cca cac act cca gtt agg act gtt at Glu Glu Val Asn Val Ile Pro Pro His Thr Pro Val Arg Thr Val Me 365  aac act atc caa caa tta atg atg att tta aat tca gca agt gat ca Asn Thr Ile Gln Gln Leu Met Met Ile Leu Asn Ser Ala Ser Asp G. 380  cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat ca Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn P.	g 1274
Asp Ala Arg Leu Phe Leu Asp His Asp Lys Thr Leu Gln Thr Asp Se 335  ata gac agt ttt gaa aca cag aga aca cca cga aaa agt aac ctt ga Ile Asp Ser Phe Glu Thr Gln Arg Thr Pro Arg Lys Ser Asn Leu As 350  gaa gag gtg aat gta att cct cca cac act cca gtt agg act gtt at Glu Glu Val Asn Val Ile Pro Pro His Thr Pro Val Arg Thr Val Me 365  aac act atc caa caa tta atg atg att tta aat tca gca agt gat ca Asn Thr Ile Gln Gln Leu Met Met Ile Leu Asn Ser Ala Ser Asp G. 380  cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat ca Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn P.	g 1274
ata gac agt ttt gaa aca cag aga aca cca cga aaa agt aac ctt ga Ile Asp Ser Phe Glu Thr Gln Arg Thr Pro Arg Lys Ser Asn Leu As 350  gaa gag gtg aat gta att cct cca cac act cca gtt agg act gtt at Glu Glu Val Asn Val Ile Pro Pro His Thr Pro Val Arg Thr Val Me 365  aac act atc caa caa tta atg atg att tta aat tca gca agt gat ca Asn Thr Ile Gln Gln Leu Met Met Ile Leu Asn Ser Ala Ser Asp G 380  cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat ca Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn P	g 1274
ata gac agt ttt gaa aca cag aga aca cca cga aaa agt aac ctt ga Ile Asp Ser Phe Glu Thr Gln Arg Thr Pro Arg Lys Ser Asn Leu As 350  gaa gag gtg aat gta att cct cca cac act cca gtt agg act gtt at Glu Glu Val Asn Val Ile Pro Pro His Thr Pro Val Arg Thr Val Me 365  aac act atc caa caa tta atg atg att tta aat tca gca agt gat ca Asn Thr Ile Gln Gln Leu Met Met Ile Leu Asn Ser Ala Ser Asp G 380  385  390  cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat ca Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn P	g 1274
Ile Asp Ser Phe Glu Thr Gln Arg Thr Pro Arg Lys Ser Asn Leu As 350  gaa gag gtg aat gta att cct cca cac act cca gtt agg act gtt at Glu Glu Val Asn Val Ile Pro Pro His Thr Pro Val Arg Thr Val Me 365  aac act atc caa caa tta atg atg att tta aat tca gca agt gat ca Asn Thr Ile Gln Gln Leu Met Met Ile Leu Asn Ser Ala Ser Asp G. 380  cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat ca Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn Page 150	g 1274
Ile Asp Ser Phe Glu Thr Gln Arg Thr Pro Arg Lys Ser Asn Leu As 350  gaa gag gtg aat gta att cct cca cac act cca gtt agg act gtt at Glu Glu Val Asn Val Ile Pro Pro His Thr Pro Val Arg Thr Val Me 365  aac act atc caa caa tta atg atg att tta aat tca gca agt gat ca Asn Thr Ile Gln Gln Leu Met Met Ile Leu Asn Ser Ala Ser Asp G. 380  cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat ca Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn Page 150	g 1274
Ile Asp Ser Phe Glu Thr Gln Arg Thr Pro Arg Lys Ser Asn Leu As 350  gaa gag gtg aat gta att cct cca cac act cca gtt agg act gtt at Glu Glu Val Asn Val Ile Pro Pro His Thr Pro Val Arg Thr Val Me 365  aac act atc caa caa tta atg atg att tta aat tca gca agt gat ca Asn Thr Ile Gln Gln Leu Met Met Ile Leu Asn Ser Ala Ser Asp G. 380  cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat ca Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn Page 150	g 1274
gaa gag gtg aat gta att cct cca cac act cca gtt agg act gtt at Glu Glu Val Asn Val Ile Pro Pro His Thr Pro Val Arg Thr Val Me 365  aac act atc caa caa tta atg atg att tta aat tca gca agt gat ca Asn Thr Ile Gln Gln Leu Met Met Ile Leu Asn Ser Ala Ser Asp G. 380  act tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat ce Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn Page 100 100 100 100 100 100 100 100 100 10	g 1274
gaa gag gtg aat gta att cct cca cac act cca gtt agg act gtt at Glu Glu Val Asn Val Ile Pro Pro His Thr Pro Val Arg Thr Val Me 365 370 375  aac act atc caa caa tta atg atg att tta aat tca gca agt gat ca Asn Thr Ile Gln Gln Leu Met Met Ile Leu Asn Ser Ala Ser Asp G. 380 385 390 3.5  cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat ca Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn Pro Cys Thr Val Asn P	g 1274 t
Glu Glu Val Asn Val Ile Pro Pro His Thr Pro Val Arg Thr Val Me 365 370 375  aac act atc caa caa tta atg atg att tta aat tca gca agt gat ca Asn Thr Ile Gln Gln Leu Met Met Ile Leu Asn Ser Ala Ser Asp G. 380 385 390 3.5  cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat ca Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn P	g 1274 t
Glu Glu Val Asn Val Ile Pro Pro His Thr Pro Val Arg Thr Val Me 365 370 375  aac act atc caa caa tta atg atg att tta aat tca gca agt gat ca Asn Thr Ile Gln Gln Leu Met Met Ile Leu Asn Ser Ala Ser Asp G. 380 385 390 3.5  cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat ca Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn P	t
aac act atc caa caa tta atg atg att tta aat tca gca agt gat ca Asn Thr Ile Gln Gln Leu Met Met Ile Leu Asn Ser Ala Ser Asp G 380 385 390 3: cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat c Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn P	
aac act atc caa caa tta atg atg att tta aat tca gca agt gat ca Asn Thr Ile Gln Gln Leu Met Met Ile Leu Asn Ser Ala Ser Asp G: 380 385 390 3: cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat ca Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn P	
Asn Thr Ile Gln Gln Leu Met Met Ile Leu Asn Ser Ala Ser Asp G.  380  385  390  31  Cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat c Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn P	
Asn Thr Ile Gln Gln Leu Met Met Ile Leu Asn Ser Ala Ser Asp G.  380  385  390  31  Cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat c Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn P	a 1322
cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat c Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn P	n
cct tca gaa aat ctg att tcc tat ttt aac aac tgc aca gtg aat c Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn P	5
Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn P	_
Pro Ser Glu Asn Leu Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn P	a 1370
	O
400 405 410	
aaa gaa agt ata ctg aaa aga gtg aag gat ata gga tac atc ttt a	.a " 1418
Lys Glu Ser Ile Leu Lys Arg Val Lys Asp Ile Gly Tyr Ile Phe L	'S
415 420 425	
gag aaa ttt gct aaa gct gtg gga cag ggt tgt gtc gaa att gga t	ca 1466
Glu Lys Phe Ala Lys Ala Val Gly Gln Gly Cys Val Glu Ile Gly S	er
430 435 440	
cag ega tae aaa ett gga gtt ege ttg tat tae ega gta atg gaa t	cc 1514
Gln Arg Tyr Lys Leu Gly Val Arg Leu Tyr Tyr Arg Val Met Glu S	er
155	
445 450 433	
A second to the second to the tree att cas sat tit age a	3 5 6 3
atg ctt aaa tca gaa gaa gaa cga tta tcc att caa aat ttt agc a	aa 1562
Met Leu Lys Ser Glu Glu Glu Arg Leu Ser Ile Gln Asn Phe Ser	
460 465 470	ys
	ys 75
off ofg aat gad aad att tit dat atg tot tia tig gog tgo got	ys 75 ett 1610
	ys 75 ett 1610

	ga	g gt	t g	ta at	g go	c ac	a ta	t ag	c, ag	a ag	t ac	a to	t ca	gaa	t c:	t dar	1658
-				45	95	a Th	r Ty	r Se:	r Ar 50	9 36	r Th	r Se	r Gl	n Aş 50	n Le	t gat u Asp	, 1036
v	tc Se	t gg r Gl	ra ac y Ti	ca ga nr As	it tt	g tc u Se	t tto	515	) II	g at p Il	t ct	g aa u As:	t gt n Va 52	l Le	t aa u As	t tta n Leu	1706
,	aa Ly	agc sAl 52	c tt a Ph 5	t ga we As	t tt p Ph	t tac	c aaa c Lys 530	, va.	ato Ile	ga.	a agi u Sei	t tti g Phe 53!	≥ Ile	⊏ aaa ≘ Lys	gc:	a gaa a Glu	1754
,	990 Gl ₃ 540	aa / As:	c tt n Le	g ac	a aga r Arg	gaa giglu 545	. Mec	ata Ile	aaa Lys	a cat	tta Lei 550	ı Gli	a cga a Arg	tgt Cys	gaa Glu	a cat His 555	1802
					560		AIA	пр	Leu	565	Asr	) Ser	Pro	Leu	Phe 570		1850
			-2	575	5	. Lys	Asp	Arg	280	. GIY	Pro	Thr	Asp	His 585	Leu	gaa Glu	1898
			590	)	- 200	No!!	neu	595	ren	Gin	Asn	Asn	His 600	Thr	Ala		1946
	-	605	- 4 -		tct Ser	210	610	Arg	ser	Pro	Lys	Lys 615	Lys	Gly	Ser	Thr	1994
(	620	J			tct Ser	625	ALG	ASII	ATA	GIU	Thr 630	Gln	Ala	Thr	Ser	Ala 635	2042
				*.	aag Lys 640	PLO	ren	Lys	ser	Thr 645	Ser	Leu	Ser	Leu	Phe 650	Tyr	2090
		-		655	cgg Arg	<u> Leu</u>	A.a	TYL	660 Leu	Arg	Leu	Asn	Thr	Leu 665	Cys	Glu	2138
A	gc	ctt Leu	ctg Leu 670	tct Ser	gag Glu	cac His	PIO .	gaa Glu : 675	tta Leu	gaa Glu	cat His	atc Ile	atc Ile 680	tgg Trp	acc Thr	ctt Leu	2186
P		cag Gln 685	cac His	acc Thr	ctg Leu	GIII .	aat i Asn (	gag ' Glu '	tat Tyr	gaa Glu	Leu	atg Met 695	aga Arg	gac Asp	agg Arg	cat His	2234

						tgt Cys			Tyr:					Val		2282
Asn	Ile	Asp	Leu	Lys 720	Phe	äaa Lys (	Ile	Ile	Val 125	Thr	Ala	Tyr	Lys	Asp 730	Leu	2330
Pro	His	Ala ;	Val 735	Gln	Glu	aca Thr	Phe	Lyts 74,0	Arg	Val	Leu	Ile	Lys 745	Glu' (	Glu	2378
Glu	Tyr	Asp 750	Ser	Ile	Ile	·	Phe 755	Tyr ,	Asn	Ser	Val	Phe 760	Met /	Gln	Arg	2426
Leu	Lys 765	Thr	Asn	Ile	Leu	770	Tyr	Ala	Ser	"hr	Arg 775	Prò	Pro	Thr	Leu	2474
tca Ser 780	cca Pro	ata Ile	cct Pro	cac His	att Ile 785	cct Pro	cga Arg	agc Ser	cct Pro	Tyr 790	aag Lys	ttt Phe	cct Pro	agt Ser	tca Ser 795	2522
Pro	Leu	Arg	Ile	Pro 800	Gly	Gly ggg	Asn	Ile	Tyr 805	Ile	Ser	Pro	Leu	Lys 810	Ser	2570
cca Pro	tat Tyr	aaa Lys	att Ile 815	tca Ser	gaa Glu	ggt Gly	ctg Leu	cca Pro 820	aca Thr	cca Pro	aca Thr	aaa Lys	atg Met 825	act Thr	cca Pro	2618
aga Arg	tca Ser	aga Arg 830	atc Ile	tta Leu	gta Val	tca Ser	att Ile 835	ggt Gly	gaa Glu	tca Ser	ttc Phe	999 Gly 840	act Thr	tct Ser	gag Glu	2666
aag Lys	ttc Phe 845	Gln	aaa Lys	ata Ile	aat Asn	cag Gln 850	atg Met	gta Val	tgt Cys	aac Asn	agc Ser 855	gac Asp	cgt Arg	gtg Val	ctc Leu	2714
aaa Lys 860	Arg	agt Ser	gct Ala	gaa Glu	gga Gly 865	Ser	aac Asn	ect Pro	Pro	aaa Lys 870	Pro	ctg Leu	aaa Lys	aaa Lys	cta Leu 875	2762
cgc Arg	ttt Phe	gat Asp	att Ile	gaa Glu 880	Gly	tca Ser	gat Asp	gaa Glu	gca Ala 885	Asp	gga Gly	agt Ser	aaa Lys	cat His 890	ctc Leu	2810
cca	gga Gly	gag Glu	tco Ser 895	Lys	ttt Phe	cag Glr	cag Gln	aaa Lys 900	Leu	gca Ala	gaa Glu	atg Met	act Thr	Ser	act Thr	2858

Arg Thr Arg Met Gln Lys Gln Lys Met Asn Asp Ser Met Asp Thr Ser

aac aag gaa gag aaa tga ggatctcagg accotggtgg acactgtgta
Asn Lys Glu Glu Lys
925

2954

cacctetgga tteattgtet etcacagatg tgaetgtata aettteecag gttetgttta 3014 tggccacatt taatatette agetettttt gtggatataa aatgtgcaga tgcaattgtt 3074 tgggtgatte ctaagccact tgaaatgtta gtcattgtta tttatacaag attgaaaatc 3134 ttgtgtaaat cctgccattt aaaaagttgt agcagattgt ttcctcttcc aaagtaaaat 3194 tgctgtgctt tatggatagt aagaatggcc ctagagtggg agtcctgata acccaggcct 3254 gtctgactac tttgccttct tttgtagcat ataggtgatg tttgctcttg tttttattaa 3314 tttatatgta tatttttta atttaacatg aacaccctta gaaaatgtgt cctatctatc 3374 ttccaaatgc aatttgattg actgcccatt caccaaaatt atcctgaact cttctgcaaa 3434 ctattggaat ctgatatact gtgtgcttgt tttataaaat tttgctttta attaaataaa 3554 agetggaage aaagtataae catatgatae tateataeta etgaaacaga ttteataeet 3614 cagaatgtaa aagaacttac tgattatttt cttcatccaa cttatgtttt taaatgagga 3674 ttattgatag tactcttggt ttttatacca ttcagatcac tgaatttata aagtacccat 3734 ctagtacttg aaaaagtaaa gtgttctgcc agatcttagg tatagaggac cctaacacag 3794 tatatcccaa gtgcactttc taatgtttct gggtcctgaa gaattaagat acaaattaat 3854 tttactccat aaacagactg ttaattatag gagccttaat ttttttttca tagagatttg 3914 totaattgca totcaaaatt attotgccct cottaatttg ggaaggtttg tgttttctct 3974 ggaatggtac atgtetteca tgtatetttt gaactggcaa ttgtetattt atettttatt 4034 tttttaagtc agtatggtct aacactggca tgttcaaagc cacattattt ctagtccaaa 4094 attacaagta atcaagggtc attatgggtt aggcattaat gtttctatct gattttgtgc 4154 aaaagettea aattaaaaca getgeattag aaaaagagge getteteeee teecetacae 4214 ctaaaggtgt atttaaacta tcttgtgtga ttaacttatt tagagatgct gtaacttaaa 4274

attagggata tttaaggtag cttcagctag cttttaggaa aatcactttg tctaactcag 4334

aattatttt aaaaagaaat ctggtcttgt tagaaaacaa aattttattt tgtgctcatt 4394

taagtttcaa acttactatt ttgacagtta ttttgataac aatgacacta gaaaacttga 4454

ctccatttca tcattgtttc tgcatgaata tcatacaaat cagttagttt ttaggtcaag 4514

ggcttactat ttctgggtct tttgctacta agttcacatt agaattagtg ccagaatttt 4574

aggaacttca gagatcgtgt attgagattt cttaaataat gcttcagata ttattgcttt 4634

attgctttt tgtattggtt aaaactgtac atttaaaatt gctatgttac tatttctac 4694

aattaatagt ttgtctattt taaaataaat tagttgttaa gagtcttaat ggtctgatgt 4754

tgtgttcttt gtattaagta cactaatgtt ctctttctg tctaggagaa gatagataga 4814

aggataactct cctagtatct catcc 4839

<210> 8 <211> 928 <212> PRT

<213> Homo sapien

<400> 8

Met Pro Pro Lys Thr Pro Arg Lys Thr Ala Ala Thr Ala Ala Ala Ala 1 5 10 15

Ala Ala Glu Pro Pro Ala Pro Pro Pro Pro Pro Pro Pro Glu Glu Asp 20 25 30

Pro Glu Gln Asp Ser Gly Pro Glu Asp Leu Pro Leu Val Arg Leu Glu 35 40 45

Phe Glu Glu Thr Glu Glu Pro Asp Phe Thr Ala Leu Cys Gln Lys Leu
50 55 60

Lys Ile Pro Asp His Val Arg Glu Arg Ala Trp Leu Thr Trp Glu Lys 65 70 75 80

Val Ser Ser Val Asp Gly Val Leu Gly Gly Tyr Ile Gln Lys Lys
85 90 95

Glu Leu Trp Gly Ile Cys Ile Phe Ile Ala Ala Val Asp Leu Asp Glu
100 105 110

Met Ser Phe Thr Phe Thr Glu Leu Gln Lys Asn Ile Glu Ile Ser Val 115 120 125

His Lys Phe Phe Asn Leu Leu Lys Glu Ile Asp Thr Ser Thr Lys Val

Asp Asn Ala Met Ser Arg Leu Leu Lys Lys Tyr Asp Val Leu Phe Ala 145 150 155 160

Leu Phe Ser Lys Leu Glu Arg Thr Cys Glu Leu Ile Tyr Leu Thr Gln
165 170 175

Pro Ser Ser Ser Ile Ser Thr Glu Ile Asn Ser Ala Leu Val Leu Lys 180 185 190 (

Val Ser Trp Ile Thr Phe Leu Leu Ala Lys Gly Glu Val Leu Gln Met
195 200 205

Glu Asp Asp Leu Val Ile Ser Phe Gln, Leu Met Leu Cys Val Leu Asp

Tyr Phe Ile Lys Leu Ser Pro Pro Met Leu Leu Lys Glu Pro Tyr Lys 225 230 235 240

Thr Ala Val Ile Pro Ile Asn Gly Ser Pro Arg Thr Pro Arg Gly 245 250 255

Gln Asn Arg Ser Ala Arg Ile Ala Lys Gln Leu Glu Asn Asp Thr Arg 260 265 270

Ile Ile Glu Val Leu Cys Lys Glu His Glu Cys Asn Ile Asp Glu Val 275 280 285

Lys Asn Val Tyr Phe Lys Asn Phe Ile Pro Phe Met Asn Ser Leu Gly 290 295 300

Leu Val Thr Ser Asn Gly Leu Pro Glu Val Glu Asn Leu Ser Lys Arg 305 310 315 320

Tyr Glu Glu Ile Tyr Leu Lys Asn Lys Asp Leu Asp Ala Arg Leu Phe 325 330 335

Leu Asp His Asp Lys Thr Leu Gln Thr Asp Ser Ile Asp Ser Phe Glu 340 345 350

Thr Gln Arg Thr Pro Arg Lys Ser Asn Leu Asp Glu Glu Val Asn Val 355 360 365

Ile Pro Pro His Thr Pro Val Arg Thr Val Met Asn Thr Ile Gln Gln 370 375 380

Leu Met Met Ile Leu Asn Ser Ala Ser Asp Gln Pro Ser Glu Asn Leu 385 390 395 400

Ile Ser Tyr Phe Asn Asn Cys Thr Val Asn Pro Lys Glu Ser Ile Leu 405 410 415

- Lys Arg Val Lys Asp Ile Gly Tyr Ile Phe Lys Glu Lys Phe Ala Lys 420 425 430
- Ala Val Gly Gln Gly Cys Val Glu Ile Gly Ser Gln Arg Tyr Lys Leu 435 440 445
- Gly Val Arg Leu Tyr Tyr Arg Val Met Glu Ser Met Leu Lys Ser Glu 450 455 460
- Glu Glu Arg Leu Ser Ile Gln Asn Phe Ser Lys Leu Leu Asn Asp Asn 465 470 475 480
- Ile Phe His Met Ser Leu Leu Ala Cys Ala Leu Glu Val Val Met Ala 485 490 495
- Thr Tyr Ser Arg Ser Thr Ser Gln Asn Leu Asp Ser Gly Thr Asp Leu
  500 505 510
- Ser Phe Pro Trp Ile Leu Asn Val Leu Asn Leu Lys Ala Phe Asp Phe 515 520 525
- Tyr Lys Val Ile Glu Ser Phe Ile Lys Ala Glu Gly Asn Leu Thr Arg 530 540
- Glu Met Ile Lys His Leu Glu Arg Cys Glu His Arg Ile Met Glu Ser 545 550 550 560
- Leu Ala Trp Leu Ser Asp Ser Pro Leu Phe Asp Leu Ile Lys Gln Ser 565 570 575
- Lys Asp Arg Glu Gly Pro Thr Asp His Leu Glu Ser Ala Cys Pro Leu
  580 585 590
- Asn Leu Pro Leu Gln Asn Asn His Thr Ala Ala Asp Met Tyr Leu Ser 595 600 605
- Pro Val Arg Ser Pro Lys Lys Gly Ser Thr Thr Arg Val Asn Ser 610 615 620
- Thr Ala Asn Ala Glu Thr Gln Ala Thr Ser Ala Phe Gln Thr Gln Lys 625 630 635 640
- Pro Leu Lys Ser Thr Ser Leu Ser Leu Phe Tyr Lys Lys Val Tyr Arg
  645 650 655
- Leu Ala Tyr Leu Arg Leu Asn Thr Leu Cys Glu Arg Leu Leu Ser Glu 660 670

His Pro Glu Leu Glu His Ile Ile Trp Thr Leu Phe Gln His Thr Leu 675 680 685

- Gln Asn Glu Tyr Glu Leu Met Arg Asp Arg His Leu Asp Gln Ile Met 690 700
- Met Cys Ser Met Tyr Gly Ile Cys Lys Val Lys Asn Ile Asp Leu Lys
  710 ( 715 ( 720
- Phe Lys Ile Ile Val Thr Ala Tyr Lys Asp Leu Pro His Ala Val Gln
  725 730 735
- Glu Thr Phe Lys Arg Val Leu Ile Lys Glu Glu Glu Tyr Asp Ser Ile
  740 745 750
- Ile Val Phe Tyr Asn Ser Val Phe Met Gln Arg Leu Lys Thr Asn Ile
  755 760 765
- Leu Gln Tyr Ala Ser Thr Arg Pro Pro Thr Leu Ser Pro Ile Pro His
  770 780
- Ile Pro Arg Ser Pro Tyr Lys Phe Pro Ser Ser Pro Leu Arg Ile Pro 795 790 800
- Gly Gly Asn Ile Tyr Ile Ser Pro Leu Lys Ser Pro Tyr Lys Ile Ser 805 810 815
- Glu Gly Leu Pro Thr Pro Thr Lys Met Thr Pro Arg Ser Arg Ile Leu 820 825 . 830
- Val Ser Ile Gly Glu Ser Phe Gly Thr Ser Glu Lys Phe Gln Lys Ile 835 840 845
- Asn Gln Met Val Cys Asn Ser Asp Arg Val Leu Lys Arg Ser Ala Glu 850 855 860
- Gly Ser Asn Pro Pro Lys Pro Leu Lys Lys Leu Arg Phe Asp Ile Glu 865 870 875 880
- Gly Ser Asp Glu Ala Asp Gly Ser Lys His Leu Pro Gly Glu Ser Lys 885 890 895
- Phe Gln Gln Lys Leu Ala Glu Met Thr Ser Thr Arg Thr Arg Met Gln 900 905 910
- Lys Gln Lys Met Asn Asp Ser Met Asp Thr Ser Asn Lys Glu Glu Lys 915 920 925

30

27 -

```
<210> 9
 <211> 30
  <212> DNA
<213> Artificial Sequence
  <223> Description of Artificial Sequence:
  Oligonucleotide
  <400> 9
  ttctgtagtt taattttctg aacctttggc
  <210 > 10
  <211> 27
<212> DNA
  <213> Artificial Sequence
  <220>
  <223> Description of Artificial Sequence:
      Oligonucleotide
  <400> 10
  tcagccgaag agcttcagga agcaggg
  <210> 11
  <211> 32
  <212> PRT
  <213> Homo sapien
  <220>
  <221> VARIANT
  <222> (2)..(3)
  <220>
   <221> VARIANT
   <222> (6)..(13)
   <220>
   <221> VARIANT
   <222> (15)
   <220>
   <221> VARIANT
   <222> (17)..(18)
   <220>
   <221> VARIANT
```

<222> (20)..(21)

```
<220>
  <221> VARIANT .
  <222> (23) . (28)
 <220> ₹ €
 1<221> VARIANT
 <222> (30)..(31)
 <400> 11
 10
 Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Cys 25 30
 <210> 12.
 <211> 50
 <212> PRT
 <213> Homo sapien
 <220>
<221> VARIANT
<222> (2)..(3)
<220>
<221> VARIANT
<222> (5)..(20)
<220>
<221> VARIANT
<222> (22)..(23)
<220>
<221> VARIANT
<222> (25) .. (26)
<220>
<221> VARIANT
<222> (28)..(29)
<220>
<221> VARIANT
<222> (31) .. (46)
<220>
<221> VARIANT
<222> (48)..(49)
<400> 12
```

Xaa Cys 50



#### WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) Inter	natio	nal P	atent Cl	assifica	ation 7:	
C12	N 1:	5/12,	C07K	14/47	7, <b>G</b> 01l	N 33/50,
33/						·

(11) International Publication Number:

WO 00/04152

A3

(43) International Publication Date:

27 January 2000 (27.01.00)

PCT/US99/16122 (21) International Application Number:

(22) International Filing Date:

16 July 1999 (16.07.99)

(30)"Priority Data: 60/093,239

60/100,243

17 July 1998 (17.07.98) US 14 September 1998 (14.09.98)

(71) Applicant: UNIVERSITY OF ROCHESTER [US/US]; Office of Technology Transfer, 518 Hylan Building, Rochester, NY 14627-0140 (US).

(72) Inventor: CHANG, Chawnshang; University of Rochester, 601 Elmwood Avenue, P.O. Box 626, Rochester, NY 14642 (US).

(74) Agent: SEAY, Nicholas, J.; Quarles & Brady LLP, P.O. Box 2113, Madison, WI 53701-2113 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK. SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM). European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### Published

With international search report.

(88) Date of publication of the international search report: 27 April 2000 (27.04.00)

#### (54) Title: ANDROGEN RECEPTOR COACTIVATORS

#### (57) Abstract

Disclosed are androgen receptor-associated proteins, designated ARA24, ARA54, ARA55, and Rb, that have been demonstrated to interact with the androgen receptor to alter levels of androgen receptor-mediated transcriptional activation. Certain of these proteins interact with the androgen receptor in an androgen-dependent manner, whereas certain proteins may induce transcriptional activation in the presence of other ligands, such as E2 or HF. Also disclosed is a method of detecting androgenic or antiandrogenic activity using these proteins in a mammalian two-hybrid transient transfection assay.

### FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	1.0			
AM	Armenia	FI	Finland	LS	Lesotho	· SI	Slovenia
AT	Austria	FR	France	LT	Lithuania	SK	Slovakia
ΛU	Australia	GA	Gabon	LU	Luxembourg	SN	Senegal
ΛZ	Azerbaijan	GB	United Kingdom	LV	Latvia	SZ	Swaziland
BA	Bosnia and Herzegovina	GE	Georgia	MC	Мопасо	TD	Chad
BB	Barbados	GH	Ghana	MD	Republic of Moldova	TG	Togo
BE	Belgium	GN	Guinea	MG	Madagascar	TJ	Tajikistan
BF	Burkina Faso	GR	Greece	MK	The former Yugoslav	TM	Turkmenistan
BG	Bulgaria	HU	Hungary		Republic of Macedonia	TR	Turkey
BJ	Benin	IE	Ireland	MŁ	Mali	TT	Trinidad and Tobago
BR	Brazil	iL	Israel	MN	Mongolia	UA	Ukraine
BY	Belarus	IS	Iceland	MR	Mauritania	ÜĞ	Uganda
CA	Canada	IT	Italy	MW	Malawi	US	United States of America
CF	Central African Republic	JР	Japan	MX	Mexico	UZ	Uzbekistan
CG	Congo	KE	Kenya	NE	Niger	VN	Viet Nam
CH	Switzerland	KG	Kyrgyzstan	NI.	Netherlands	ΥU	Yugoslavia
CI	Côte d'Ivoire	KP		NO	Norway	zw	Zimbabwe
СМ	Cameroon	141	Democratic People's	NZ	New Zealand		
CN	China	KR	Republic of Korea	PL	Poland		
CU	Cuba	KZ	Republic of Korea Kazakstan	PT	Portugal		
CZ	Czech Republic	LC		RO	Romania		
DE	Germany	Li	Saint Lucia	RU	Russian Federation		
DΚ	Denmark	LK	Liechtenstein	SD .	Sudan		
EE	Estonia	LR LR	Sri Lanka	SE	Sweden		
		LR	Liberia	SG	Singapore		

International Application No Pt., US 99/16122

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/12 C07K14/47 G01N33/74 G01N33/50 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C12N C07K G01N IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. 2,4-7,YEH ET AL.: "Cloning and characterization χ 9-12 of a specific coactivator, ARA70, for the androgen receptor in human prostate cells" PROC. NATL. ACAD. SCI. USA, vol. 93, May 1996 (1996-05), pages 5517-5521, XP002121285 cited in the application page 5519, column 1 -page 5521, column 1; 1,3,7,8 Α figures 1,4,5 -/--Patent family members are listed in annex. Further documents are tisted in the continuation of box C. Χ Special categories of cited documents: "I" later document published after the international filing date or priority date and not in conflict with the application but *A* document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the invention earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone fiting date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search **2** 5. 02.00 5 November 1999 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni. van Klompenburg, W Fax: (+31-70) 340-3016

3

International Application No

C.(Continu	Buon) DOCUMENTS CONSIDERED TO BE RELEVANT	PL , US 9	21 10155	
Category °	Citation of document, with indication, where appropriate, of the relevant passages			
		Y	Relevant to claim No.	
X	MIYAMOTO ET AL.: "Promotion of agonist activity of antiandrogens by the androgen receptor coactivator; ARA70, in human prostate cancer DU145 cells" PROC. NATL. ACAD. SCI. U\$A, vol. 95, June 1998 (1998-06), pages 7379-7384, XP002121286		2,4-7, 9-12	
<	cited in the application page 7382 -page 7384; figures 1.2,5	, , ,	; ;	
	WO 97 44490 A (WISCONSIN ALUMNI RES FOUND) 27 November 1997 (1997-11-27) page 4, line 15 -page 5, line 1; claims 6-13; example 1 page 6, line 17 - line 28	· ·	2.4-6. 9-12	
	HILLIER ET AL.: "WashU-Merck EST Project 1997" EMBL ACC NO: AA448471, 10 June 1997 (1997-06-10), XP002121287 the whole document		1-4	
,x	KANG ET AL.: "Cloning and characterization of human prostate coactivator ARA54, a novel protein that associates with the androgen receptor" THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 274, no. 13, 26 March 1999 (1999-03-26), pages 8570-8576, XP002121288		1-12	
	the whole document			
7				

ational application No.

PCT/US 99/16122

Sox I Observations where	certain claims were found	unsearchable (C	ontinuation of I	item 1 of first sheet)	
_		and of and in alaims	under Article 17/2	)(a) for the following rea	sons:
This International Search Report I	las not been established in resp	Dect of Centain Claims	THOSE WITHOUT IN	· · · · · · · · · · · · · · · · · · ·	•
	. :	٠		:	
Claims Nos.:	ubject matter not required to be	searched by this Aut	hority, namely:	•	Ñ
;				· · · · · · · · · · · · · · · · · · ·	•
36. 	•	4	•		\ !
		•		<b>.</b> .	3
/			· .		ě V
Claims Nos.:	arts of the International Applicat	tion that do not comp	ly with the prescrit	ped requirements to suc	h
an extent that no mean	ngful International Search can b	e carried out, specific	cally.	:	1.
			* .	8.7	
· · · · · · · · · · · · · · · · · · ·		* * * * * * * * * * * * * * * * * * *	:		
¹ ;			1 44	· **	
<del></del> 1			<b>3</b>		
. Claims Nos.: because they are deper	ndent claims and are not drafted	d in accordance with t	he second and thi	rd sentences of Rule 6.4	l(a).
				·	
and Observations when	e unity of invention is lack	ing (Continuation	of item 2 of fir	st sheet)	
lox II Observations wher	s dility of ilivertable 12 indic				
see additional s	heet				
As all required addition	nal search fees were timely paid	by the applicant, this	International Sea	rch Report covers all	
searchable claims.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
'					
2. As all searchable clair	ns could be searched without ef	fort justifying an addi	tional fee, this Autl	hority did not invite payn	nent
of any additional fee.					
ì					
			ti their land	tomational Search Repo	ort .
3. As only some of the re	equired additional search fees w ms for which fees were paid, sp	ere timely paid by the ecifically claims Nos.	e applicant, this ind :	ematorial oculor rep	
<b>3377.2 2,</b>					
		·			
4. X No required additiona	d search fees were timely paid b	ov the applicant. Cons	sequently, this Inte	rnational Search Report	t is
restricted to the inver	ition first mentioned in the claim	s; it is covered by cla	ims Nos.:		
1-12 all par	LIALLY				
•					
Remark on Protest		The additional search	n fees were accom	panied by the applicant	's protest.
nemain of Florest	L				
		No protest accompa	nied the payment of	of additional search fees	

#### FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

1. Claims: 1-12 all partially

An isolated polynucleotide comprising the sequence of SEQ ID NO 1. A genetic construct comprising a promoter operably connected to a region encoding the co-activator ARA54 with SEQ ID NO 2. A host cell comprising said genetic construct. A method for testing the androgenic or antiandrogenic effect of a chemical compound comprising: a) transfecting a host cell, preferably a prostate cell, with said genetic construct, b) exposing the cell to the chemical compound and c) measuring the level of transcriptional activity caused by the androgen receptor, preferably by measuring the expression of a reporter gene. Said method where step c is replaced by measuring the interaction of the androgen receptor with said coactivator.

2. Claims: 1-12 all partially

idem for SEQ ID NO 3 and SEQ ID NO 4

3. Claims: 5-12 all partially

A method for testing the androgenic or antiandrogenic effect of a chemical compound comprising: a) transfecting a host cell, preferably a prostate cell, with a genetic construct encoding the coactivator ARA24, preferably with SEQ ID NO 5, b) exposing the cell to the chemical compound and c) measuring the level of transcriptional activity caused by the androgen receptor, preferably by measuring the expression of a reporter gene. Said method where step c is replaced by measuring the interaction of the androgen receptor with said coactivator.

4. Claims: 5-12 all partially

idem for SEQ ID NO 7

International Application No Pt./US 99/16122

cited in search report . date		
WO 9744490 A 27-11-19	97 US 57891 AU 32233	04-08-1998 09-12-1997

1 . ₹ † ( , , -( .\$ . Ç . ₁ { < _j, }