# Z3: An Efficient SMT Solver MSR Cambridge 2007

Leonardo de Moura and Nikolaj Bjørner {leonardo, nbjorner}@microsoft.com.

Microsoft Research

#### Introduction

- ▶ Z3 is a new SMT solver developed at Microsoft Research.
- It is still under development.
- Version 0.1 is the first external release.
- New external releases are coming soon.
- It replaced Simplify as the default prover for Spec#/Boogie.
- It won 4 divisions in SMT-COMP'07.

## Satisfiability Modulo Theories (SMT)

- SMT is the problem of determining satisfiability of formulas modulo background theories.
- Examples of background theories:
  - linear arithmetic:  $x + y \le 10$
  - bit-vectors: x&(x-1)
  - uninterpreted functions: g(f(x)) = x
  - arrays:  $read(write(a, i, v), j) \neq v$
- Example of formula:

$$x + 2 = y, f(read(write(a, x, 3), y - 2)) \neq f(y - x + 1)$$

#### **Applications**

- Extended Static Checking.
  - Microsoft Spec# and ESP, ESC/Java
- Predicate Abstraction.
  - Microsoft SLAM/SDV (device driver verification).
- **b** Bounded Model Checking (BMC) & k-induction.
- Test-case generation.
  - Microsoft MUTT.
- Symbolic Simulation.
- Planning & Scheduling.
- Equivalence checking.

#### Supported Features

- Linear real and integer arithmetic.
- Fixed-size bit-vectors.
- Uninterpreted Functions.
- Extensional Arrays.
- Quantifiers.
- Model generation.
- Coming soon:
  - Improved support for non linear arithmetic.
  - Improved SAT solver.
  - Improved support for quantifiers.
  - Sets & Transitive Closure.

#### **Architecture**

- A modern DPLL-based SAT solver.
- A core theory solver that handles equalities and uninterpreted functions.
- Satellite solvers (for arithmetic, arrays, etc).
- ▶ An E-matching abstract machine (for quantifiers).
- Very modular: new theories can be added without modifying the core.

#### Z3: new features

- Model based theory combination.
- ▶ E-matching abstract machine.
- "Don't care" propagation.
- Create/Delete clauses/atoms/terms during backtracking search.

#### Theory combination

- ▶ Theory Combination Problem.
  - $T = T_1 \cup T_2$
  - ▶ Is *T* consistent?
  - Given decision procedures for  $T_1$  and  $T_2$ , how to decide T?
- Nelson-Oppen Approach:
  - Disjoint theories.
  - Each theory propagate (disjunction) of implied equalities.
  - For convex theories only implied equalities need to be propagated.

#### Combining theories in practice

- Propagate all implied equalities.
  - Deterministic Nelson-Oppen.
  - Complete only for convex theories.
  - It may be expensive for some theories.
- Delayed Theory Combination.
  - Nondeterministic Nelson-Oppen.
  - Create set of interface equalities (x = y) between shared variables.
  - Use SAT solver to guess the partition.
  - Disadvantage: the number of additional equality literals is quadratic in the number of shared variables.

#### Model based theory combination

- Common to these methods is that they are pessimistic about which equalities are propagated.
- Model-based Theory Combination
  - Optimistic approach.
  - $lackbox{ Use a candidate model } M_i$  for one of the theories  $\mathcal{T}_i$  and propagate all equalities implied by the candidate model, hedging that other theories will agree.

if 
$$M_i \models \mathcal{T}_i \cup \Gamma_i \cup \{u=v\}$$
 then propagate  $u=v$  .

- If not, use backtracking to fix the model.
- It is cheaper to enumerate equalities that are implied in a particular model than of all models.

$$x = f(y - 1), f(x) \neq f(y), 0 \le x \le 1, 0 \le y \le 1$$

**Purifying** 

$$x = f(z), f(x) \neq f(y), 0 \leq x \leq 1, 0 \leq y \leq 1, z = y - 1$$

| ${\mathcal T}_{\mathcal E}$ |               |                                         | ${\mathcal T}_{\mathcal A}$ |                        |
|-----------------------------|---------------|-----------------------------------------|-----------------------------|------------------------|
| Literals                    | Eq. Classes   | Model                                   | Literals                    | Model                  |
| x = f(z)                    | $\{x, f(z)\}$ | $x^{\mathcal{E}} = *_1$                 | $0 \le x \le 1$             | $x^{\mathcal{A}} = 0$  |
| $f(x) \neq f(y)$            | y             | $y^{\mathcal{E}} = *_2$                 | $0 \le y \le 1$             | $y^{\mathcal{A}} = 0$  |
|                             | $\{z\}$       | $z^{\mathcal{E}} = *_3$                 | z = y - 1                   | $z^{\mathcal{A}} = -1$ |
|                             | f(x)          | $f^{\mathcal{E}} = \{ *_1 \mapsto *_4,$ |                             |                        |
|                             | $\{f(y)\}$    | $*_2 \mapsto *_5,$                      |                             |                        |
|                             |               | $\textit{else} \mapsto *_1,$            |                             |                        |

Assume x = y

| ${\mathcal T}_{\mathcal E}$ |                               |                                         | ${\mathcal T}_{\mathcal A}$ |                        |
|-----------------------------|-------------------------------|-----------------------------------------|-----------------------------|------------------------|
| Literals                    | Eq. Classes                   | Model                                   | Literals                    | Model                  |
| x = f(z)                    | $\left\{ x, y, f(z) \right\}$ | $x^{\mathcal{E}} = *_1$                 | $0 \le x \le 1$             | $x^{\mathcal{A}} = 0$  |
| $f(x) \neq f(y)$            | $ \{z\} $                     | $y^{\mathcal{E}} = *_1$                 | $0 \le y \le 1$             | $y^{\mathcal{A}} = 0$  |
| x = y                       | $\{f(x), f(y)\}$              | $z^{\mathcal{E}} = *_2$                 | z = y - 1                   | $z^{\mathcal{A}} = -1$ |
|                             |                               | $f^{\mathcal{E}} = \{ *_1 \mapsto *_3,$ | x = y                       |                        |
|                             |                               | $\textit{else} \mapsto *_1\}$           |                             |                        |

Unsatisfiable

| ${\mathcal T}_{\mathcal E}$ |               |                                         | ${\mathcal T}_{\mathcal A}$ |                        |
|-----------------------------|---------------|-----------------------------------------|-----------------------------|------------------------|
| Literals                    | Eq. Classes   | Model                                   | Literals                    | Model                  |
| x = f(z)                    | $\{x, f(z)\}$ | $x^{\mathcal{E}} = *_1$                 | $0 \le x \le 1$             | $x^{\mathcal{A}} = 0$  |
| $f(x) \neq f(y)$            | $\{y\}$       | $y^{\mathcal{E}} = *_2$                 | $0 \le y \le 1$             | $y^{\mathcal{A}} = 0$  |
| $x \neq y$                  | $\{z\}$       | $z^{\mathcal{E}} = *_3$                 | z = y - 1                   | $z^{\mathcal{A}} = -1$ |
|                             | f(x)          | $f^{\mathcal{E}} = \{ *_1 \mapsto *_4,$ | $x \neq y$                  |                        |
|                             | $\{f(y)\}$    | $*_2 \mapsto *_5,$                      |                             |                        |
|                             |               | $\textit{else} \mapsto *_1\}$           |                             |                        |

Backtrack, and assert  $x \neq y$ .

 $\mathcal{T}_{\mathcal{A}}$  model need to be fixed.

| ${\mathcal T}_{\mathcal E}$ |               |                                         | ${\mathcal T}_{\mathcal A}$ |                       |
|-----------------------------|---------------|-----------------------------------------|-----------------------------|-----------------------|
| Literals                    | Eq. Classes   | Model                                   | Literals                    | Model                 |
| x = f(z)                    | $\{x, f(z)\}$ | $x^{\mathcal{E}} = *_1$                 | $0 \le x \le 1$             |                       |
| $f(x) \neq f(y)$            | $\{y\}$       | $y^{\mathcal{E}} = *_2$                 | $0 \le y \le 1$             | $y^{\mathcal{A}} = 1$ |
| $x \neq y$                  | $\{z\}$       | $z^{\mathcal{E}} = *_3$                 | z = y - 1                   | $z^{\mathcal{A}} = 0$ |
|                             | $\{f(x)\}$    | $f^{\mathcal{E}} = \{ *_1 \mapsto *_4,$ | $x \neq y$                  |                       |
|                             | $\{f(y)\}$    | $*_2 \mapsto *_5,$                      |                             |                       |
|                             |               | $\textit{else} \mapsto *_1\}$           |                             |                       |

Assume x = z

|                  | ${\mathcal T}_{\mathcal A}$ |                                         |                 |                       |
|------------------|-----------------------------|-----------------------------------------|-----------------|-----------------------|
| Literals         | Eq. Classes                 | Model                                   | Literals        | Model                 |
| x = f(z)         | $\{x, z, f(x), f(z)\}$      | $x^{\mathcal{E}} = *_1$                 | $0 \le x \le 1$ | $x^{\mathcal{A}} = 0$ |
| $f(x) \neq f(y)$ | $  \{y\}$                   | $y^{\mathcal{E}} = *_2$                 | $0 \le y \le 1$ | $y^{\mathcal{A}} = 1$ |
| $x \neq y$       | f(y)                        | $z^{\mathcal{E}} = *_1$                 | z = y - 1       | $z^{\mathcal{A}} = 0$ |
| x = z            |                             | $f^{\mathcal{E}} = \{ *_1 \mapsto *_1,$ | $x \neq y$      |                       |
|                  |                             | $\textit{else} \mapsto *_3,$            | x = z           |                       |

Satisfiable

# Experimental Results

|                 | #    | MathSAT       | MathSAT-dtc    | Yices          | Z3     |
|-----------------|------|---------------|----------------|----------------|--------|
| EufLaArithmetic | 52   | 1851.50 (11)  | 785.87 (1)     | 10.45          | 17.34  |
| Hash            | 199  | 520.90        | 19.39          | 11.48          | 6.54   |
| Wisa            | 256  | 886.36 (1)    | 6916.18        | 4.37           | 2.78   |
| RandomCoupled   | 400  | 517.05        | 518.15         | 9516.11 (51)   | 56.16  |
| RandomDecoupled | 500  | 11989.60 (1)  | 97.07          | 19362.40 (51)  | 41.95  |
| Simple          | 98   | 1366.33       | 7053.98 (29)   | 2328.63 (53)   | 1.00   |
| Ackermann       | 99   | 228.49 (82)   | 344.00 (82)    | 2.99           | 1.72   |
| Total           | 1604 | 17360.23 (95) | 15734.64 (112) | 31236.43 (155) | 127.49 |

#### Quantifiers

- Since first-order logic is undecidable, satisfiability is not solvable for arbitrary quantified formulas.
- Some theories, e.g., datatypes, linear arithmetic over integers, arithmetic over reals, support quantifier elimination.
- Existential quantifiers can be skolemized, but the problem of instantiating universal quantifiers for detecting unsatisfiability remains.

#### Heuristic Quantifier Instantiation

- Semantically,  $\forall x_1, \dots, x_n.F$  is equivalent to the infinite conjunction  $\bigwedge_{\beta} \beta(F)$ .
- Solvers use heuristics to select from this infinite conjunction those instances that are "relevant".
- The key idea is to treat an instance  $\beta(F)$  as relevant whenever it contains enough terms that are represented in the solver state.
- Non ground terms p from F are selected as patterns.
- ► E-matching (matching modulo equalities) is used to find instances of the patterns.
- **Example:** f(a,b) matches the pattern f(g(x),x) if a=g(b).

#### E-matching

- ▶ E-matching is NP-hard.
- The number of matches can be exponential.
- ▶ It is not refutationally complete.
- In practice:
  - Indexing techniques for fast retrieval.
  - Incremental E-matching.

## E-matching: example

- $\forall x. f(g(x)) = x$
- ▶ Pattern: f(g(x))
- $\blacktriangleright \text{ Atoms: } a=g(b), b=c, f(a) \neq c$
- lacksquare instantiate f(g(b)) = b

#### Quantifiers in Z3

- Z3 uses a E-matching abstract machine.
  - ▶ Patterns ~> code sequence.
  - Abstract machine executes the code.
- ▶ Z3 uses new algorithms that identify matches on E-graphs incrementally and efficiently.
  - ▶ E-matching code trees.
  - Inverted path index.
- Z3 garbage collects clauses, together with their atoms and terms, that were useless in closing branches.

#### E-matching code trees

- In practice, there are several similar patterns.
- Idea: combine several code sequences in a code tree.
- Factor out redundant work.
- Match several patterns simultaneously.
- Saturation based theorem provers use a different kind of code tree to implement:
  - Forward subsumption.
  - Forward demodulation.

#### Incremental E-matching

- Z3 uses a backtracking search.
- New terms are created during the search.
  - A code tree for each function symbol f.

    Patterns that start with a f-application.
  - Execute code-tree for each new term.
- New equalities are asserted during the search.
  - New equalities → new E-matching instances.
  - Example:

$$f(a,b)$$
 matches  $f(g(x),x)$  after  $a=g(b)$  is asserted.

#### Inverted path index

- It is used to find which patterns may have new instances after an equality is asserted.
- Inverted path index for *pc-pair* (f,g) and patterns f(f(g(x),a),x), h(c,f(g(y),x)), f(f(g(x),b),y), f(f(a,g(x)),g(y)).



#### E-matching limitations

- E-matching needs ground (seed) terms.
  - It fails to prove simple properties when ground (seed) terms are not available.
  - Example:

$$(\forall x. f(x) \le 0) \land (\forall x. f(x) > 0)$$

Matching loops

$$(\forall x. f(x) = g(f(x))) \land (\forall x. g(x) = f(g(x)))$$

- Inefficiency and/or non-termination.
- Some solvers have support for detecting matching loops based on instantiation chain length.

## Experimental Results: SMT-LIB



() Z3 vs. CVC3 1.0



() Z3 vs. Yices 1.0

## Experimental Results: ESC/Java



() Z3 vs. Simplify



() Z3 vs. Zap 2.0

## Experimental Results: Boogie



() Z3 vs. Simplify



() Z3 vs. Zap 2.0

#### SMT-COMP'07: AUFLIA



#### Don't cares

- DPLL(T) based solvers assign a boolean value to potentially all atoms appearing in a goal.
- In practice, several of these atoms are *don't cares*.
- ▶ Z3 ignores don't care atoms for expensive inference rules and theories, such as, quantifier instantiation.

#### Bit-vector theory

- Simple approach:
  - Based on bit-blasting.
  - Partial evaluation.
  - "Don't cares".
- Supports all operations used in software and hardware.
- ▶ They can be used with other theories and quantifiers.
- ▶ Z3 uses an efficient and modular pre-processor.

#### Getting Z3

- Internal
  - Stable builds: http://codebox/z3
  - Fresh builds: \\pexbuild3\\drops\\z3\\latest\\release
- External
  - Official website:

```
http://research.microsoft.com/projects/z3
```

- ▶ SMT-COMP'07: http://www.smtcomp.org
- Managed & Unmanaged APIs.
- SMT-LIB & Simplify input formats.

## Current (and future) users

- Boogie/Spec#
- ▶ SLAM/SDV
- Pex
- Vigilante
- Your project?

#### Future work

- Improved support for quantifiers:
  - Model checking.
  - Superposition calculus + SMT.
  - Decidable fragments.
- Machine learning & dynamic tuning.
- Transitive Closure.
- Improved bit-vector and array theories.
- Better performance.
- More "customers" & applications.

#### Conclusion

- > Z3 is an efficient and modular SMT solver.
- It is going to be used in several projects at Microsoft.
- It can solve 99.7% of the benchmarks in SMT-LIB.
- New releases of Z3 will be available at:

```
http://research.microsoft.com/projects/z3.
```