Módulo 2: Método simplex

Departamento MACC Matemáticas Aplicadas y Ciencias de la Computación Universidad del Rosario

Primer Semestre de 2021

Agenda

Método de las dos fases

Ciclaje

Agenda

Método de las dos fases

Ciclaje

Inicialización del método simplex

- Método de las dos fases
- Fase I: encontrar solución básica factible
- Fase II: encontrar solución óptima
- Variables artificiales $Ax + x_a = b$, $x \ge 0$, $x_a \ge 0$
- Variables básicas iniciales Fase I: x_a
- Base inicial Fase I: I_m

Método de las dos fases

• Problema original en formato estándar:

min.
$$c'x$$

s.a. $Ax = b$
 $x \ge 0$

• Fase I:

min.
$$1'x_a$$

s.a. $Ax + x_a = b$
 $x, x_a \ge 0$

• Problema original:

min.
$$5x_1 - x_2$$

s.a. $-x_1 + 2x_2 \ge 2$
 $x_1 + x_2 \le 6$
 $x_1, x_2 \ge 0$

• Problema original en formato estándar:

min.
$$5x_1 - x_2$$

s.a. $-x_1 + 2x_2 - x_3 = 2$
 $x_1 + x_2 + x_4 = 6$
 $x_1, x_2, x_3, x_4 \ge 0$

Fase I:

min.
$$x_5 + x_6$$

s.a. $-x_1 + 2x_2 - x_3 + x_5 = 2$
 $x_1 + x_2 + x_4 + x_6 = 6$
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

• Base inicial: $I_B = \{5, 6\}$

Método de las dos fases

Si al terminar la Fase I . . .

- ... $x_a \neq 0 \Rightarrow \text{Prob. original no tiene solución factible}$
- ... $x_a = 0$ y variables artificiales fuera de la base \Rightarrow Comenzar Fase II con solución básica factible final de Fase I
- ... $x_a = 0$ y variables artificiales en la base \Rightarrow Sacar variables artificiales de la base y reemplazarlas por variables estructurales

Fase I:

min.
$$x_5 + x_6$$

s.a. $-x_1 + 2x_2 - x_3 + x_5 = 2$
 $x_1 + x_2 + x_4 + x_6 = 6$
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

•
$$I_B = \{5, 6\}, I_N = \{1, 2, 3, 4\}, x_B = \begin{bmatrix} 2 \\ 6 \end{bmatrix}, z_0 = 8$$

- $\bar{c}_N = \begin{bmatrix} 0 & -3 & 1 & -1 \end{bmatrix}$, x_2 entra a la base
- $y_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\epsilon = \min\{\frac{2}{2}, \frac{6}{1}\} = 1$, x_5 sale de la base

Iteración 2:

•
$$I_B = \{2, 6\}, I_N = \{1, 3, 4, 5\}, x_B = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

- $\bar{c}_N = \frac{1}{2} \begin{bmatrix} -3 & -1 & -2 & 3 \end{bmatrix}$, x_1 entra a la base
- $y_1=rac{1}{2}igl[-1\quad 3igr]$, $\epsilon=\min\{rac{5}{3/2}\}=rac{10}{3}$, x_6 sale de la base

Iteración 3:

•
$$I_B = \{1, 2\}, I_N = \{3, 4, 5, 6\}, x_B = \frac{1}{3} \begin{bmatrix} 10 \\ 8 \end{bmatrix}$$

- $\bar{c}_{\mathcal{N}} = \begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}$, solución óptima
- ullet Variables artificiales fuera de la base: iniciar fase II con $I_B=\{1,2\}$

Problema original:

min.
$$5x_1 - x_2$$

s.a. $-x_1 + 2x_2 \le 2$
 $-x_1 + x_2 \ge 3$
 $x_1, x_2 \ge 0$

• Problema original en formato estándar:

min.
$$5x_1 - x_2$$

s.a. $-x_1 + 2x_2 + x_3 = 2$
 $-x_1 + x_2 - x_4 = 3$
 $x_1, x_2, x_3, x_4 \ge 0$

Fase I:

min.
$$x_5$$

s.a. $-x_1 + 2x_2 + x_3 = 2$
 $-x_1 + x_2 - x_4 + x_5 = 3$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

• Base inicial: $I_B = \{3, 5\}$

Iteración 1:

•
$$I_B = \{3, 5\}, B = I, x_B = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, x = \begin{bmatrix} 0 \\ 0 \\ 2 \\ 0 \\ 3 \end{bmatrix}$$

- $ar{c}_{\mathcal{N}}' = egin{bmatrix} 1 & -1 & 1 \end{bmatrix}$, x_2 entra a la base
- $y_2=B^{-1}a_2=\begin{bmatrix}2\\1\end{bmatrix}$, $\epsilon=\min\left\{\frac{2}{2},\frac{3}{1}\right\}=1$
- x₃ sale de la base

Iteración 2:

•
$$I_B = \{2, 5\}, B = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}, B^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}, x_B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, x = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 2 \end{bmatrix}$$

- $\bar{c}'_N = \frac{1}{2} \begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$
- Solución actual es óptima para fase I
- x_5 en la base óptima y $x_5 \neq 0$: problema original no factible

Agenda

Método de las dos fases

② Ciclaje

Ciclaje

- Si todas las soluciones visitadas son no degeneradas, función objetivo mejora en cada iteración
- $\bar{b}_r > 0 \longrightarrow x_k = \frac{\bar{b}_r}{y_{rk}} > 0$
- $z = z_0 + \bar{c}_k x_k \longrightarrow z < z_0$
- En caso de degeneramiento, se puede presentar ciclaje: se repiten bases con el mismo valor de función objetivo
- En caso de degeneramiento, $\bar{c}_N \ge 0$ no es una condición necesaria para optimalidad: $z = z_0 + \bar{c}_k x_k = z_0$
- Reglas de prevención de ciclaje
- Selección de variables que entran y salen de la base ("empates")

Regla de Bland

Selección de variable que entra a la base:

 Entre todas las variables no básicas con costo reducido negativo, escoja la de menor índice

Selección de variable que sale de la base:

• Entre todas las variables básicas candidatas a salir (empatadas en la razón mínima), escoja la de menor índice

Regla lexicográfica

Selección de variable que sale de la base:

- $I_0=\min_{1\leq i\leq m}\left\{rac{ar{b}_i}{y_{ik}}:y_{ik}>0
 ight\}=rac{ar{b}_r}{y_{rk}}$: criterio de la razón mínima
- Entre todas las variables básicas candidatas a salir (empatadas en la razón mínima), escoja la de menor índice
- $I_1 = \min_{i \in I_0} \left\{ \frac{y_{i1}}{y_{ik}} : y_{ik} > 0 \right\} = \frac{\bar{b}_r}{y_{rk}}$. Donde $y_1 = B^{-1}a_c$, con a_c columna de A asociada a la variable.
- Si persiste el empate calcular I_2 , I_3 , ... I_{j-1} , $j \leq m$