

Page references correspond to locations of Extra Examples icons in the textbook.

p.801, icon at Example 3

#1. Suppose the vertices of K_5 are numbered 1, 2, 3, 4, 5 (in clockwise order) and each edge is assigned a weight equal to the sum of the labels on the endpoints of the edge, as in the following figure. Find a spanning tree of minimum weight for this graph.

Solution:

Using either Kruskal's Algorithm or Prim's Algorithm, the edges $\{1,2\}$, $\{1,3\}$, $\{1,4\}$, and $\{1,5\}$ make up the spanning tree of minimum weight. Its weight is 18.

p.801, icon at Example 3

#2. Suppose the vertices of K_n are numbered 1, 2, ..., n (in clockwise order) and each edge is assigned a weight equal to the sum of the labels on the endpoints of the edge. Find a spanning tree of minimum weight for this graph and find the weight of this spanning tree.

Solution:

The spanning tree of minimum cost has edges $\{1,2\},\{1,3\},\ldots,\{1,n\}$. Using either Kruskal's Algorithm or Prim's Algorithm, the first edges added are $\{1,2\}$ and $\{1,3\}$. At the next stage, edges $\{2,3\}$ and $\{1,4\}$ have the smallest weight, but adding edge $\{2,3\}$ would create a circuit. Therefore edges $\{1,2\},\{1,3\},$ and $\{1,4\}$ are inserted into the spanning tree. In general, if edges $\{1,2\},\{1,3\},\ldots,\{1,k\}$ have been selected, the next edge inserted must be $\{1,k+1\}$ (of weight k+2). (Any other edge $\{i,j\}$ with weight $\leq k+2$ would have $1 < i \leq k$ and $1 < j \leq k$ and would create a circuit when combined with $\{1,i\}$ and $\{1,j\}$.) Thus, the spanning tree of minimum weight consists of $\{1,2\},\{1,3\},\ldots,\{1,n\}$. Its total weight is

$$(1+2) + (1+3) + \dots + (1+n) = (n-2) + \frac{n(n+1)}{2} = \frac{(n+4)(n-1)}{2}.$$