Лабораторная работа №1 по курсу "Интеллектуальный анализ данных"

выполнил Сорокин Никита, М8О-403Б-20

1.1 Наивный байесовский классификатор. Номинальный случай

Имеем пространство признаков и ответов $X=\{(x_1,\dots,x_n):x_i$ — значения i -ого признака $\},y=\{y_i:y_i\in C\}$

Теорема Байеса:

$$P(y=c|x) = \frac{P(x|y=c)P(y=c)}{P(x)}$$

Сделаем допущение о том, что условные вероятности независимы, то есть:

$$P(x|y=c) = \prod_{i=1}^n P(x_i|y=c)$$

Воспользуемся этим для создания простейшего классификатора: будем принимать решение по значению вероятностей величины P(y=c|x):

$$c^* = argmax_{c \in C}P(y = c|x) = argmax_{c \in C}\left[P(y = c)\prod_{i=1}^n P(x_i|y = c)
ight]$$

Рассмотрим датасет погоды для игры в гольф:

```
In [1]: import numpy as np
import pandas as pd
```

```
In [2]: df = pd.read_csv('csv_result-weather.csv')
df
```

ut[2]:		id	outlook	temperature	humidity	windy	play
	0	1	sunny	hot	high	False	no
	1	2	sunny	hot	high	True	no
	2	3	overcast	hot	high	False	yes
	3	4	rainy	mild	high	False	yes
	4	5	rainy	cool	normal	False	yes
	5	6	rainy	cool	normal	True	no
	6	7	overcast	cool	normal	True	yes
	7	8	sunny	mild	high	False	no
	8	9	sunny	cool	normal	False	yes
	9	10	rainy	mild	normal	False	yes
	10	11	sunny	mild	normal	True	yes
	11	12	overcast	mild	high	True	yes
	12	13	overcast	hot	normal	False	yes
	13	14	rainy	mild	high	True	no

Спрогнозируем подходит ли следующая погода для игры в гольф по представленным данным

```
In [3]: new_weather = {
        'id': [15],
        'outlook': 'rainy',
        'temperature': 'hot',
        'humidity': 'normal',
        'windy': True
}
new_weather_df = pd.DataFrame(data=new_weather)
new_weather_df
```

```
Out[3]: id outlook temperature humidity windy

0 15 rainy hot normal True
```

Out[4]: 0.07407407407407407

```
In [5]: prob_no = (
             df[(df['outlook'] == 'rainy') & (df['play'] == 'no')].count()[0] / df[df['play']
           * df[(df['temperature'] == 'hot') & (df['play'] == 'no')].count()[0] / df[df['pla
           * df[(df['outlook'] == 'rainy') & (df['play'] == 'no')].count()[0] / df[df['play']
           * df[(df['outlook'] == 'rainy') & (df['play'] == 'no')].count()[0] / df[df['play'
           * df[(df['play'] == 'no')].count()[0]
         prob_no
 Out[5]: 0.128
         То есть для такой погоды классификатор считает, что идти на гольф не стоит, поскольку
         P(y = \text{'yes'} \mid x) < P(y = \text{'no'} \mid x)
         Далее, построим классификатор с помощью библиотеки sklearn:
 In [6]: from sklearn.naive_bayes import CategoricalNB
         from sklearn.preprocessing import OrdinalEncoder, LabelEncoder
 In [7]: enc_ordinal = OrdinalEncoder()
         X_train = df.drop(['id', 'play'], axis=1)
         X_train = enc_ordinal.fit_transform(X_train)
         X_train[0]
 Out[7]: array([2., 1., 0., 0.])
 In [8]: enc_label = LabelEncoder()
         y_train = df['play'].values
         y_train = enc_label.fit_transform(y_train)
 In [9]: clf = CategoricalNB(alpha=1)
         clf.fit(X_train, y_train)
 Out[9]:
                CategoricalNB
         CategoricalNB(alpha=1)
In [10]: new_weather_df = new_weather_df.drop(['id'], axis=1)
          new weather enc = enc ordinal.transform(new weather df)
In [11]: clf.predict_proba(new_weather_enc)
Out[11]: array([[0.39811362, 0.60188638]])
In [12]: clf.get_params()
```

sklearn получает такой же результат

1.2 Наивный байесовский классификатор. Непрерывный случай

На самом деле баесовская классификация - это метод максимального правдоподобия. Таким образом при переходе к непрерывному признаковому пространству функция вероятности представляет собой не произведение вероятностей а произведение **плотностей**.

Пользуемся предположением о том, что

$$p(x=v|c) \sim N(\mu_c,\sigma_c^2), \quad p(x=v|c) = rac{1}{\sqrt{2\pi\sigma_c^2}}e^{-rac{(v-\mu_c)^2}{2\sigma_c^2}}$$

```
In [16]: from sklearn.naive_bayes import GaussianNB
In [17]: df = pd.read_csv('csv_result-weather_numeric.csv')
df
```

```
id outlook temperature humidity windy play
Out[17]:
                                       85
                                                 85
            0
                1
                      sunny
                                                       False
                                                               no
                      sunny
                                       80
                                                 90
                                                        True
                                                               no
                                       83
                                                              yes
             2
                 3 overcast
                                                 86
                                                       False
                                       70
                                                 96
                                                       False
                       rainy
                                                               yes
                                       68
             4
                 5
                       rainy
                                                 80
                                                       False
                                                              yes
                                                 70
                       rainy
                                                        True
                                                               no
             6
                 7 overcast
                                       64
                                                 65
                                                        True
                                                              yes
                                       72
                                                 95
                      sunny
                                                       False
            8
                 9
                      sunny
                                       69
                                                 70
                                                       False
                                                              yes
            9 10
                                       75
                                                 80
                       rainy
                                                       False
                                                               yes
                                       75
                                                 70
           10 11
                      sunny
                                                        True
                                                              yes
           11 12 overcast
                                       72
                                                 90
                                                        True
           12 13 overcast
                                       81
                                                 75
                                                       False
                                                              yes
           13 14
                                       71
                                                 91
                                                        True
                       rainy
                                                               no
```

```
In [18]:
    new_weather = {
        'id': [15],
        'outlook': 'rainy',
        'temperature': 85,
        'humidity': 90,
        'windy': True
    }
    new_weather_df = pd.DataFrame(data=new_weather)
    new_weather_df
```

Out[18]: id outlook temperature humidity windy 0 15 rainy 85 90 True

Подготовка данных:

```
In [19]: X_train_categorical = df[['outlook', 'windy']]
    X_train_categorical = enc_ordinal.fit_transform(X_train_categorical)
    X_train_categorical
```

```
Out[19]: array([[2., 0.],
                 [2., 1.],
                 [0., 0.],
                 [1., 0.],
                 [1., 0.],
                 [1., 1.],
                 [0., 1.],
                 [2., 0.],
                 [2., 0.],
                 [1., 0.],
                 [2., 1.],
                 [0., 1.],
                 [0., 0.],
                 [1., 1.]])
In [20]: X_train_numerical = df[['temperature', 'humidity']]
          X_train_numerical
Out[20]:
              temperature humidity
           0
                       85
                                85
           1
                       80
                                90
           2
                       83
                                86
           3
                       70
                                96
           4
                       68
                                80
           5
                       65
                                70
           6
                       64
                                65
           7
                       72
                                95
           8
                       69
                                70
           9
                       75
                                80
          10
                       75
                                70
          11
                       72
                                90
          12
                       81
                                75
                       71
          13
                                91
In [21]: y_train = df['play'].values
          y_train = enc_label.fit_transform(y_train)
          y_train
Out[21]: array([0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0])
In [22]: new_weather_df
                                               windy
Out[22]:
             id outlook temperature humidity
                                           90
          0 15
                   rainy
                                  85
                                                 True
```

```
In [23]: | new_weather_categorical = new_weather_df[['outlook', 'windy']]
         new_weather_categorical = enc_ordinal.transform(new_weather_categorical)
         new_weather_categorical
Out[23]: array([[1., 1.]])
In [24]: | new_weather_numerical = new_weather_df[['temperature', 'humidity']]
         new_weather_numerical
Out[24]:
            temperature humidity
         0
                    85
                             90
         Модели
In [25]: clf_categorical = CategoricalNB()
         clf_categorical.fit(X_train_categorical, y_train)
Out[25]: ▼ CategoricalNB
         CategoricalNB()
In [26]: clf_numerical = GaussianNB()
         clf_numerical.fit(X_train_numerical, y_train)
Out[26]:
         ▼ GaussianNB
         GaussianNB()
         Предсказания
In [27]: | pred_categorical = clf_categorical.predict_proba(new_weather_categorical)
         pred_categorical
Out[27]: array([[0.4954955, 0.5045045]])
In [28]: pred_numerical = clf_numerical.predict_proba(new_weather_numerical)
         pred_numerical
Out[28]: array([[0.71284406, 0.28715594]])
In [29]: pred = pred_categorical * pred_numerical
         pred
Out[29]: array([[0.35321102, 0.14487147]])
         Таким образом, классификатор предсказывает 'yes', то есть при такой погоде играть
         можно
```

1.2 Применение метода К ближайших соседей (kNN) в

задаче классификации

```
In [30]: from sklearn.datasets import load_iris
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import accuracy_score, classification_report
```

Загружаем датасет из библиотеки sklearn

```
In [31]: data = load_iris()
   data.target
```

Используем pandas для представления датасета в виде удобной таблице:

```
In [32]: df = pd.DataFrame(data=data.data, columns=data.feature_names)
    df['target'] = pd.Series(data.target)
    df.iloc[:, :]
```

Out[32]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	0	5.1	3.5	1.4	0.2	0
	1	4.9	3.0	1.4	0.2	0
	2	4.7	3.2	1.3	0.2	0
	3	4.6	3.1	1.5	0.2	0
	4	5.0	3.6	1.4	0.2	0
	•••					
	145	6.7	3.0	5.2	2.3	2
	146	6.3	2.5	5.0	1.9	2
	147	6.5	3.0	5.2	2.0	2
	148	6.2	3.4	5.4	2.3	2
	149	5.9	3.0	5.1	1.8	2

150 rows × 5 columns

Делим датасет на тренировочную и валидационную выборку:

'Тренируем' knn для тестового датасета:

Предсказание:

Полученные метрики:

In [44]: print(classification_report(y_val, y_pred))

	precision	recall	f1-score	support
0	1.00	1.00	1.00	12
1	0.90	1.00	0.95	19
2	1.00	0.86	0.92	14
accuracy			0.96	45
macro avg	0.97	0.95	0.96	45
weighted avg	0.96	0.96	0.95	45