Caratterizzazione di un rivelatore gamma 4π per lo studio della reazione $14N(p,\gamma)15O$ Relatori: Francesca Cavanna, Ranjan Sariyal

Paolo Pusterla

Università degli Studi di Torino

Novembre 2024

Outline

- Introduzione
- Obiettivi della tesi
- 3 Calibrazione in energia
- 4 Efficienza
- Simulazioni
- 6 Conclusione
- Efficienza

Table of Contents

- Introduzione
- Obiettivi della tesi
- Calibrazione in energia
- 4 Efficienza
- Simulazioni
- 6 Conclusione
- 7 Efficienza

• Costruire il modello standard solare (SSM) richiede conoscenze sulla composizione chimica del Sole

Short Title

- Costruire il modello standard solare (SSM) richiede conoscenze sulla composizione chimica del Sole
- Analisi spettroscopiche costruiscono due modelli in contraddizione tra loro: LZ (fotosfera 3D) e HZ (fotosfera 1D)

- Costruire il modello standard solare (SSM) richiede conoscenze sulla composizione chimica del Sole
- Analisi spettroscopiche costruiscono due modelli in contraddizione tra loro: LZ (fotosfera 3D) e HZ (fotosfera 1D)
- Per capire se la composizione sia uniforme in funzione della profondità, si studia il flusso di neutrini del CNO, combinato con le sezioni d'urto di alcune reazioni (14 N(p, γ) 15 O)

- Costruire il modello standard solare (SSM) richiede conoscenze sulla composizione chimica del Sole
- Analisi spettroscopiche costruiscono due modelli in contraddizione tra loro: LZ (fotosfera 3D) e HZ (fotosfera 1D)
- Per capire se la composizione sia uniforme in funzione della profondità, si studia il flusso di neutrini del CNO, combinato con le sezioni d'urto di alcune reazioni (14 N(p, γ) 15 O)
- Energie solari molto basse (15-50 keV), si studia nel range 50-370 keV

Il ciclo CNO

CNO CYCLE 13C (p,γ) 14N (p,α) 17O (p,γ) 18F p^+ (p,γ) 15O (p,γ) 19F (p,γ) 12C (p,α) 15N (p,γ) 16O (p,α) 19F

Figure: Ciclo Carbonio-Azoto-Ossigeno

Sfide sperimentali della misura diretta

• La sezione d'urto di una reazione nucleare è una grandezza utilizzata per descrivere la probabilità che la reazione avvenga.

Sfide sperimentali della misura diretta

- La sezione d'urto di una reazione nucleare è una grandezza utilizzata per descrivere la probabilità che la reazione avvenga.
- La si può calcolare sperimentalmente come:

$$\sigma = \frac{N_{reaz}/\Delta t}{N_{proj}/\Delta t \times N_{bers}/A \times \varepsilon}$$
 (1)

Sfide sperimentali della misura diretta

- La sezione d'urto di una reazione nucleare è una grandezza utilizzata per descrivere la probabilità che la reazione avvenga.
- La si può calcolare sperimentalmente come:

$$\sigma = \frac{N_{reaz}/\Delta t}{N_{proj}/\Delta t \times N_{bers}/A \times \varepsilon}$$
 (1)

• Con una $\sigma \approx 10^{-12}$ barn si ha un reaction rate $(N_{reaz}/\Delta t)$ che vale appena $1\div 10$ conteggi al giorno

Astrofisica nucleare sotterranea

• Nelle stelle, le reazioni di fusione avvengono ad energie molto inferiori rispetto alla barriera coulombiana

Astrofisica nucleare sotterranea

- Nelle stelle, le reazioni di fusione avvengono ad energie molto inferiori rispetto alla barriera coulombiana
- Sezioni d'urto molto piccole implicano segnale atteso molto minore rispetto al rumore di fondo in superficie

Short Title

Astrofisica nucleare sotterranea

- Nelle stelle, le reazioni di fusione avvengono ad energie molto inferiori rispetto alla barriera coulombiana
- Sezioni d'urto molto piccole implicano segnale atteso molto minore rispetto al rumore di fondo in superficie

LUNA 400 kV

Figure: L'acceleratore LUNA a 400 kV.

 Il rivelatore è in germanato di bismuto (Bi₄Ge₃O₁₂, detto BGO), coprente il 95% dell'angolo solido totale attorno al bersaglio.

 Il rivelatore è in germanato di bismuto (Bi₄Ge₃O₁₂, detto BGO), coprente il 95% dell'angolo solido totale attorno al bersaglio.

- Il rivelatore è in germanato di bismuto (Bi₄Ge₃O₁₂, detto BGO), coprente il 95% dell'angolo solido totale attorno al bersaglio.
- Il bersaglio solido è in TiN

- Il rivelatore è in germanato di bismuto (Bi₄Ge₃O₁₂, detto BGO), coprente il 95% dell'angolo solido totale attorno al bersaglio.
- Il bersaglio solido è in TiN

Table of Contents

- Introduzione
- Obiettivi della tesi
- Calibrazione in energia
- 4 Efficienza
- 5 Simulazioni
- 6 Conclusione
- 7 Efficienza

Obiettivi della tesi

• L'obiettivo della tesi, incentrato sull'analisi dei dati, è quello di calibrare in energia e caratterizzare in efficienza lo scintillatore 4π utilizzato per la rivelazione di raggi γ nella riproduzione della reazione 14 N(p, γ) 15 O.

Obiettivi della tesi

- L'obiettivo della tesi, incentrato sull'analisi dei dati, è quello di calibrare in energia e caratterizzare in efficienza lo scintillatore 4π utilizzato per la rivelazione di raggi γ nella riproduzione della reazione $^{14}{\rm N}({\rm p},\gamma)^{15}{\rm O}$.
- Nell'esperimento si proietta un intenso fascio di protoni su bersagli solidi di TiN (nitruro di titanio).

Obiettivi della tesi

- L'obiettivo della tesi, incentrato sull'analisi dei dati, è quello di calibrare in energia e caratterizzare in efficienza lo scintillatore 4π utilizzato per la rivelazione di raggi γ nella riproduzione della reazione $^{14}N(p,\gamma)^{15}O.$
- Nell'esperimento si proietta un intenso fascio di protoni su bersagli solidi di TiN (nitruro di titanio).
- L'analisi dei dati viene confrontata con delle simulazioni in GEANT4.

Table of Contents

- Introduzione
- 2 Obiettivi della tesi
- 3 Calibrazione in energia
- 4 Efficienza
- Simulazioni
- 6 Conclusione
- 7 Efficienza

Calibrazione in energia

ullet Viene effettuata con due sorgenti radioattive, $^{137}\mathrm{Cs}$ e $^{60}\mathrm{Co}$

Calibrazione in energia

• Viene effettuata con due sorgenti radioattive, ¹³⁷Cs e ⁶⁰Co

Calibrazione in energia

• Viene effettuata con due sorgenti radioattive, ¹³⁷Cs e ⁶⁰Co

Energy calibration: a + b*CHN

Canale	Conversione [keV/CHN]
CHN1	1.1863 ± 0.0009
CHN2	1.1659 ± 0.0013
CHN3	1.3550 ± 0.0019
CHN4	1.2676 ± 0.0006
CHN5	1.2574 ± 0.0010
CHN6	1.1388 ± 0.0014

Table of Contents

- Introduzione
- Obiettivi della tesi
- Calibrazione in energia
- 4 Efficienza
- 5 Simulazioni
- 6 Conclusione
- 7 Efficienza

Efficienza

• L'efficienza è un fattore fondamentale per ricavare la sezione d'urto.

Efficienza

- L'efficienza è un fattore fondamentale per ricavare la sezione d'urto.
- Si può stimare dalla formula:

$$\varepsilon = \frac{N_{cont.}}{A(t*)\Delta t} \tag{2}$$

Efficienza

- L'efficienza è un fattore fondamentale per ricavare la sezione d'urto.
- Si può stimare dalla formula:

$$\varepsilon = \frac{N_{cont.}}{A(t*)\Delta t} \tag{2}$$

16 / 47

• L'attività è calcolata al momento della misurazione.

Efficienza

- L'efficienza è un fattore fondamentale per ricavare la sezione d'urto.
- Si può stimare dalla formula:

$$\varepsilon = \frac{N_{cont.}}{A(t*)\Delta t} \tag{2}$$

• L'attività è calcolata al momento della misurazione.

Efficienza

- L'efficienza è un fattore fondamentale per ricavare la sezione d'urto.
- Si può stimare dalla formula:

$$\varepsilon = \frac{N_{cont.}}{A(t*)\Delta t} \tag{2}$$

• L'attività è calcolata al momento della misurazione.

Tempo morto

 Il tempo vivo è ricavato dal TTree delle coincidenze, ossia dove lo spicchio del BGO registra i fotoni del pulser nello spettro dei canali

17 / 47

Table of Contents

- Introduzione
- Obiettivi della tesi
- Calibrazione in energia
- 4 Efficienza
- Simulazioni
- 6 Conclusione
- 7 Efficienza

Risoluzione energetica

Energy spectrum - channel 4

Risoluzione energetica

Energy spectrum - channel 4

• Ai punti delle risoluzioni si fitta la funzione:

$$f(E) = a + \frac{b}{\sqrt{E}}$$

Risoluzione energetica

 Ai punti delle risoluzioni si fitta la funzione:

$$f(E) = a + \frac{b}{\sqrt{E}}$$

Simulazioni

P. Pusterla (UniTo)

Table of Contents

- Introduzione
- Obiettivi della tesi
- Calibrazione in energia
- 4 Efficienza
- 5 Simulazioni
- 6 Conclusione
- 7 Efficienza

Conclusione

• Durante la tesi ci è occupato della calibrazione di uno strumento per lo studio della reazione 14 N(p, γ) 15 O

Conclusione

- Durante la tesi ci è occupato della calibrazione di uno strumento per lo studio della reazione $^{14}N(p, \gamma)^{15}O$
- Il rivelatore utilizzato è stato calibrato in energia e ne si è calcolata l'efficienza

Conclusione

- Durante la tesi ci è occupato della calibrazione di uno strumento per lo studio della reazione 14 N(p, γ) 15 O
- Il rivelatore utilizzato è stato calibrato in energia e ne si è calcolata l'efficienza
- Si sono analizzate le simulazioni Monte Carlo, per poi confrontarle coi dati sperimentali

Fine

Grazie per l'attenzione.

Backup

Slide di backup

L'esperimento

• L'esperimento LUNA (Laboratory for Underground Nuclear Astrophysics) ricrea i processi nucleari che sono avvenuti durante la nucleosintesi primordiale e che avvengono tutt'ora nelle stelle.

L'esperimento

- L'esperimento LUNA (Laboratory for Underground Nuclear Astrophysics) ricrea i processi nucleari che sono avvenuti durante la nucleosintesi primordiale e che avvengono tutt'ora nelle stelle.
- Essendo processi molto rari, un laboratorio sulla superficie terrestre non è adatto per le misure sperimentali di questi, poiché i raggi cosmici maschererebbero il segnale debole atteso.

• I neutrini solari giocano un ruolo fondamentale nella determinazione della composizione del Sole.

- I neutrini solari giocano un ruolo fondamentale nella determinazione della composizione del Sole.
- Sono prodotti nel ciclo CNO del Sole.

- I neutrini solari giocano un ruolo fondamentale nella determinazione della composizione del Sole.
- Sono prodotti nel ciclo CNO del Sole.
- In particolare, la sezione d'urto della reazione 14 N(p, $\gamma)^{15}$ O è la fonte di errore principale sulle stime del flusso di neutrini, in quanto la più breve dell'intero ciclo.

- I neutrini solari giocano un ruolo fondamentale nella determinazione della composizione del Sole.
- Sono prodotti nel ciclo CNO del Sole.
- In particolare, la sezione d'urto della reazione 14 N(p, γ) 15 O è la fonte di errore principale sulle stime del flusso di neutrini, in quanto la più breve dell'intero ciclo.
- A energie solari (15-50 keV) la sezione d'urto è troppo piccola per essere misurata direttamente.

- I neutrini solari giocano un ruolo fondamentale nella determinazione della composizione del Sole.
- Sono prodotti nel ciclo CNO del Sole.
- In particolare, la sezione d'urto della reazione $^{14}N(p, \gamma)^{15}O$ è la fonte di errore principale sulle stime del flusso di neutrini, in quanto la più breve dell'intero ciclo.
- A energie solari (15-50 keV) la sezione d'urto è troppo piccola per essere misurata direttamente.
- La tesi ha come obiettivo contribuire alla determinazione della sezione d'urto ad energie 50-370 keV.

Proposta dell'esperimento

• A energie solari (15-50 keV) la sezione d'urto è troppo piccola per essere misurata direttamente.

Proposta dell'esperimento

- A energie solari (15-50 keV) la sezione d'urto è troppo piccola per essere misurata direttamente.
- Le stime odierne sono quindi estrapolazioni da energie più alte.

Proposta dell'esperimento

- A energie solari (15-50 keV) la sezione d'urto è troppo piccola per essere misurata direttamente.
- Le stime odierne sono quindi estrapolazioni da energie più alte.
- Il progetto ha come obiettivo determinare la sezione d'urto ad energie 50-370 keV.

Reaction rate

ullet II $reaction\ rate\ (N_{reaz}/\Delta t)$ vale quindi appena $1\div 10$ conteggi al giorno

Reaction rate

- Il reaction rate $(N_{reaz}/\Delta t)$ vale quindi appena $1 \div 10$ conteggi al giorno
- Basta pochissimo rumore per nascondere i segnali che rivelano le reazioni

Short Title 28 / 47

Reaction rate

- Il reaction rate $(N_{reaz}/\Delta t)$ vale quindi appena $1 \div 10$ conteggi al giorno
- Basta pochissimo rumore per nascondere i segnali che rivelano le reazioni
- La soluzione è cercare di minimizzare il rumore di fondo

Short Title 28 / 47

Località

 I Laboratori Nazionali del Gran Sasso, situati nella frazione di Assergi, sono schermati dai 1400 m di roccia del Monte Aquila.

tenere immagine Liechtenstein

Radiazione LNGS/superficie

Muoni 10^{-6} Neutroni 10^{-3}

Località

- I Laboratori Nazionali del Gran Sasso, situati nella frazione di Assergi, sono schermati dai 1400 m di roccia del Monte Aquila.
- Ciò fa sì che il fondo di raggi cosmici sia fortemente soppresso

tenere immagine Liechtenstein Svizzera Croazia Erzegovina Firenze

Radiazione LNGS/superficie

Muoni 10-6 Neutroni 10-3

Località

- I Laboratori Nazionali del Gran Sasso, situati nella frazione di Assergi, sono schermati dai 1400 m di roccia del Monte Aquila.
- Ciò fa sì che il fondo di raggi cosmici sia fortemente soppresso
- Qui è collocato l'acceleratore LUNA2 a 400 kV, che permette di concentrare fasci ionici molto intensi e stabili.

tenere immagine

Radiazione LNGS/superficie

Muoni 10-6 Neutroni 10-3

Il rivelatore 4π

- Si tratta di un rivelatore in germanato di bismuto (Bi₄Ge₃O₁₂, detto BGO), coprente il 95% dell'angolo solido totale attorno al bersaglio.
- Si tratta di uno scintillatore, ossia uno strumento che quando eccitato da radiazione ionizzante, ne assorbe l'energia depositata e la riemette sotto forma di fotoni

Figure: Rappresentazione 3D del rivelatore BGO.

Il rivelatore 4π

 Il cristallo, a simmetria cilindrica, è otticamente separato in 6 spicchi uguali.

Figure: Rappresentazione schematica del rivelatore BGO. In alto una sezione sagittale, in basso una sezione trasversale.

Efficienza

 L'efficienza di uno scintillatore è il rapporto tra il numero di conteggi prodotti da esso e il numero di conteggi prodotti dalla sorgente:

$$\varepsilon = \frac{N_{\gamma}}{N_{int}} \tag{3}$$

- Si tratta pertanto di quanti fotoni lo strumento "vede" rispetto al totale
- Invertendo l'equazione possiamo ricavare N_{int} , per poi trovare la sezione d'urto

Tempo vivo/morto

- Ogni strumento è elettronicamente vincolato a processare il segnale in ingresso
- Questo può richiedere fino a ns
- Un fotone in arrivo durante questo intervallo di tempo non può essere quindi rilevato
- Alla fine della misura verrano osservati meno fotoni di quelli effettivamente giunti allo strumento, perché quest'ultimo è attivo solo per una parte di tempo rispetto al totale della misura.
- L'intervallo in cui lo strumento è attivo e pronto a ricevere nuovi segnali è il *tempo vivo*.

Risultati del fit

Canale	Conversione [keV/CHN]
CHN1	1.1863 ± 0.0009
CHN2	1.1659 ± 0.0013
CHN3	1.3550 ± 0.0019
CHN4	1.2676 ± 0.0006
CHN5	1.2574 ± 0.0010
CHN6	1.1388 ± 0.0014

Caratterizzazione in energia

 La caratterizzazione in energia è effettuata utilizzando due sorgenti radioattive: ⁶⁰Co e ¹³⁷Cs.

⁶⁰Co

• II 60 Co decade tramite decadimento β^- (99.75%) in 60 Ni ed emette due raggi gamma di energie 1.17 MeV e 1.33 MeV.

Figure: Schema di decadimento del ¹³⁷Cs.

P. Pusterla (UniTo) Short Title 36 / 47

⁶⁰Co

- II 60 Co decade tramite decadimento β^- (99.75%) in 60 Ni ed emette due raggi gamma di energie 1.17 MeV e 1.33 MeV.
- Ha il vantaggio di emettere raggi gamma ad alta intensità con un'emivita relativamente lunga di 5.27 anni.

Figure: Schema di decadimento del ¹³⁷Cs.

P. Pusterla (UniTo) Short Title 36 / 47

⁶⁰Co

- II 60 Co decade tramite decadimento β^- (99.75%) in 60 Ni ed emette due raggi gamma di energie 1.17 MeV e 1.33 MeV.
- Ha il vantaggio di emettere raggi gamma ad alta intensità con un'emivita relativamente lunga di 5.27 anni.
- Trova applicazione nella radioterapia del cancro.

Figure: Schema di decadimento del ¹³⁷Cs.

¹³⁷Cs

• II 137 Cs decade sempre tramite decadimento β^- .

Figure: Schema di decadimento del ¹³⁷Cs.

P. Pusterla (UniTo) Short Title

¹³⁷Cs

- II 137 Cs decade sempre tramite decadimento β^- .
- Il 94.6% dei decadimenti hanno come prodotto uno stato metastabile del ¹³⁷Ba.

Figure: Schema di decadimento del ¹³⁷Cs.

¹³⁷Cs

- II 137 Cs decade sempre tramite decadimento β^- .
- Il 94.6% dei decadimenti hanno come prodotto uno stato metastabile del ¹³⁷Ba.
- Questo stato eccitato emette l'85% delle volte raggi gamma di 661.7 keV decadendo nello stato fondamentale del ¹³⁷Ba (tutti i raggi gamma provenienti dal ¹³⁷Cs sono prodotti così).

Figure: Schema di decadimento del ¹³⁷Cs.

ROOT

- L'analisi dati dell'esperimento è compiuta in ROOT
- Il vantaggio di utilizzarlo è una discreta ottimizzazione per quanto riguarda l'analisi di grandi moli di dati grazie al formato file .root
- Si utilizza principalmente in ambito di fisica delle particelle

P. Pusterla (UniTo) Short Title 38 / 47

Struttura dei dati

- I dati ricavati sono contenuti in file .root
- Ogni file .root contiene 8 istogrammi, con indici da 0 a 7, di conteggi
- L'istogramma 0 contiene il pulser, utilizzato per calcolare il tempo vivo dello scintillatore
- Gli istogrammi da 1 a 6 sono i singoli spicchi del BGO
- L'istogramma 7 è la corrente del fascio incidente sul BGO

P. Pusterla (UniTo) Short Title 39 / 47

Picco somma

- Può accadere che lo strumento riveli due fotoni emessi dallo stesso evento contemporaneamente
- In tal caso, viene registrato come un unico fotone, ma con energia pari alla somma delle energie dei fotoni

P. Pusterla (UniTo) Short Title 40 / 47

Residui

 I residui sono la differenza tra i valori in energia noti e quelli assunti dalla retta

P. Pusterla (UniTo) Short Title 41 / 4

Residui

- I residui sono la differenza tra i valori in energia noti e quelli assunti dalla retta
- Sono una rappresentazione della bontà della calibrazione

Residui

- I residui sono la differenza tra i valori in energia noti e quelli assunti dalla retta
- Sono una rappresentazione della bontà della calibrazione
- In generale una calibrazione è buona se i residui non superano la decina di keV

41 / 47

 Per il calcolo dell'efficienza è necessario trovare il numero di conteggi nei picchi gaussiani. Si possono applicare due metodi diversi per trovarlo:

P. Pusterla (UniTo) Short Title 42 / 47

• Per il calcolo dell'efficienza è necessario trovare il numero di conteggi nei picchi gaussiani. Si possono applicare due metodi diversi per trovarlo:

Trapezio

- Metodo geometrico
- Consiste nell'isolare la regione del picco e rimuoverne il fondo trapezoidale
- Adatto solo per il cesio: i due picchi del cobalto non sono sufficientemente risolti dallo strumento

Short Title 42 / 47

 Per il calcolo dell'efficienza è necessario trovare il numero di conteggi nei picchi gaussiani. Si possono applicare due metodi diversi per trovarlo:

Trapezio

- Metodo geometrico
- Consiste nell'isolare la regione del picco e rimuoverne il fondo trapezoidale
- Adatto solo per il cesio: i due picchi del cobalto non sono sufficientemente risolti dallo strumento

Parametrico

- Metodo che sfrutta i parametri del fit
- Il coefficiente di normalizzazione del picco gaussiano è il numero di conteggi nel picco
- Adatto per cesio e cobalto

P. Pusterla (UniTo) Short Title 42 / 47

Table of Contents

- Introduzione
- Obiettivi della tesi
- Calibrazione in energia
- 4 Efficienza
- 5 Simulazioni
- 6 Conclusione
- Efficienza

Efficienza

• L'efficienza è un fattore fondamentale per ricavare la sezione d'urto

P. Pusterla (UniTo) Short Title 44 / 47

Efficienza

- L'efficienza è un fattore fondamentale per ricavare la sezione d'urto
- Si può stimare dalla formula:

$$\varepsilon = \frac{N_{cont.}}{A(t*)\Delta t} \tag{4}$$

P. Pusterla (UniTo) Short Title

Efficienza

- L'efficienza è un fattore fondamentale per ricavare la sezione d'urto
- Si può stimare dalla formula:

$$\varepsilon = \frac{N_{cont.}}{A(t*)\Delta t} \tag{4}$$

• L'attività è calcolata al momento della misurazione.

P. Pusterla (UniTo) Short Title 44 / 47

P. Pusterla (UniTo) Short Title

Calcolo della calibrazione

- La calibrazione viene effettuata sul file run1775_coinc.root, con entrambe le sorgenti.
- Calibrare uno scintillatore significa trovare il fattore di conversione da canali a energia.
- Per ogni spicchio del BGO si esegue un fit per trovare il valore dei picchi caratteristici e del picco somma in canali.

P. Pusterla (UniTo) Short Title 46 / 47

Risoluzione energetica

- Le simulazioni contengono picchi di energia ideali, a cui non è stata applicata la risoluzione dello strumento
- Questa si può trovare eseguendo fit gaussiani sugli istogrammi in energia, anziché canali
- La risoluzione è il rapporto tra la deviazione standard del picco e la corrispondente energia nota
- Le risoluzioni si mettono su un grafico contro le corrispettive energie note, fittandovi una funzione:

$$f(E) = a + \frac{b}{\sqrt{E}}$$

Short Title 47 / 47