TEA-013 Matemática Aplicada II

Prof. Nelson Luís Dias (Lemma/Dep Eng Ambiental, Centro Politécnico) nldias@ufpr.br

Ensalamento e Horário 2as 4as 6as sala PM-02 07:30--09:10

Objetivos Didáticos

A Disciplina TEA013 tem por objetivo aprofundar o domínio pelo aluno de modelos matemáticos analíticos e numéricos aplicáveis à Engenharia Ambiental. A disciplina incluirá aplicações de: álgebra linear, espaços vetoriais normados, séries de Fourier e transformadas de Fourier, assim como diversas técnicas numéricas e analíticas de solução de equações diferenciais parciais. Essas técnicas são ilustradas com problemas em Mecânica dos Fluidos, Hidrologia, Meteorologia, Química Ambiental e Ecologia, enfatizando-se a capacidade de formular e de resolver alguns problemas típicos (dispersão,reações químicas, dinâmica de populações, etc.) de importância em Engenharia Ambiental.

Unidades Didáticas

1	Transformada de Laplace		
2	Solução numérica de equações diferenciais parciais		
3	Análise linear, sistemas lineares em Engenharia		
4	Séries e Transformadas de Fourier.		
5	Teoria de Distribuições. Funções de Green e Identidades de Green em Engenharia: Hidrógrafa Unitária Instanânea, Problemas de Dispersão de Poluentes.		
6	Teoria de Sturm-Liouville e algumas funções especiais adicionais (Legendre, Laguerre, Hermite). Importância da teoria no método de separação de variáveis para equações diferenciais parciais.		
7	Equações Diferenciais Parciais: problemas lineares e não-lineares em escoamentos na atmosfera, nos oceanos, em rios e no solo, e problemas de dispersão de poluentes. Classificação e o método das características. Solução por separação de variáveis, transformadas integrais e transformada de Boltzmann.		

Programa

Aula	Data	Conteúdo	Progresso
1	2ª 17/10/2022	Definição, Cálculo e Propriedades	Definição, Cálculo e Propriedades
2	4ª 19/10/2022	Convolução, Truques, Inversão	
3	6ª 21/10/2022	Diferenças finitas: método explícito para a equação de advecção. Fracasso do método. Explicação: instabilidade numérica.	
4	2ª 24/10/2022	Análise de estabilidade de von Neumann. Método de Lax. Número de Courant, condição de Courant. Difusão Numérica. Esquemas numéricos para advecção: Upwind.	
5	4ª 26/10/2022	Difusão pura. Esquema implícito. Condição de estabilidade. Esquema implícito: programação matricial e slicing com Numpy.	
6	6ª 28/10/2022	Esquema implícito: programação matricial e slicing com Numpy. Difusão pura. Crank-Nicholson. A equação de difusão-advecção.	
7	sáb 29/10/2022	P1A 07:30 PM-2	P1A
8	2ª 31/10/2022	A delta de Dirac. Cálculo com Distribuições.	
	4ª 02/11/2022	Feriado (Finados)	
9	6ª 04/11/2022	P1B (Maurício Gobbi)	P1B (Maurício Gobbi)
10	2ª 07/11/2022	Distribuições: resultados adicionais e aplicações. (Maurício Gobbi) Seção 12.2	
11	4ª 09/11/2022	Espaços normados: produto interno.	
12	6ª 11/11/2022	Semana Acadêmica de Engenharia Ambiental	
	2ª 14/11/2022	Livre	
13	4ª 16/11/2022	Espaços normados: desigualdade de Schwarz e aplicações (Michael Mannich) 14.1, 14.2	
14	6ª 18/11/2022	Espaços normados: espaços vetoriais de dimensão infinita. Séries de Fourier: Conceitos gerais e cálculo dos termos complexos. (Michael Mannich) 14.3, 14.4	
	2ª 21/11/2022	SIEPE	
	4ª 23/11/2022	SIEPE	
	6ª 25/11/2022	SIEPE	
15	2ª 28/11/2022	Séries de Fourier: série real e complexa. Funções pares e ímpares. (N)	
16	4ª 30/11/2022	Exemplos com séries de Fourier.(N)	
17	6ª 02/12/2022	Desigualdade de Bessel e Igualdade de Parseval. 14.7	
18	sáb 03/12/2022	P2A 07:30 PM-2	P2A
19	2ª 05/12/2022	Mínimos quadrados. Transformada de Fourier e Teorema da Inversão(N) 14.8, 15.1	
20	4ª 07/12/2022	Transformada de Fourier: Cálculo de transformadas.	
21	6ª 09/12/2022	Transformada de Fourier da derivada e aplicação à solução de EDO's e EDP's. Propriedades da Transformada de Fourier: derivada, teorema da convolução. Inversa.	
22	sáb 10/12/2022	P2B 07:30 PM-2	P2B
23	2ª 12/12/2022	Operador Adjunto. Operador auto-adjunto. Matriz adjunta. Operadores diferenciais.	
24	4ª 14/12/2022	Funções de Green.	
25	6ª 16/12/2022	Teoria de Sturm-Liouville	
26	sáb 17/12/2022	07:30 PM-2 Teoria de Sturm-Liouville: aplicações	
27	2ª 19/12/2022	Equações diferenciais parciais: aplicações em Engenharia. Método das características.	

28	4ª 21/12/2022	Método das características.	
29	6ª 23/12/2022	Método das características: aplicações. Classificação de EDPs.	
		Recesso acadêmico: 26 de dezembro a 14 de janeiro	
30	2ª 16/01/2023	O método de separação de variáveis: a equação da difusão.	
31	4ª 18/01/2023	O método de separação de variáveis. A equação de Boussinesq não-linear e sua solução.	
32	6ª 20/01/2023	P3A	P3A
33	2ª 23/01/2023	Difusão em coordenadas cilíndricas: uso de funções de Bessel.	
34	4ª 25/01/2023	Equação de Laplace: solução por separação de variáveis.	
35	6ª 27/01/2023	P3B	P3B
36	2ª 30/01/2023	Equação de Laplace: aplicações.	
37	4ª 01/02/2023	Equação da onda: solução por separação de variáveis.	
38	6ª 03/02/2023	Método das características: solução de d'Alembert para a equação da onda. Difusão em coordenadas cilíndricas: uso de funções de Bessel.	
39	2ª 06/02/2023	Equação de Laplace: solução por separação de variáveis.	
40	4ª 08/02/2023	Equação da onda: solução por separação de variáveis. Método das características: solução de d'Alembert para a equação da onda.	
41	6ª 10/02/2023	P4A	P4A
42	2ª 13/02/2023	Revisão da Matéria	
43	4ª 15/02/2023	P4B	P4B
	6ª 17/02/2023	Livre (6a feira de Carnaval)	
44	2ª 27/02/2023	F1A	F1A
	4ª 01/03/2023		
45	6ª 03/03/2023	F2A	F2A
	1 1		

Avaliação

A disciplina é semestral. A avaliação da disciplina é contínua: haverá 8 exames parciais (P1A, P1B, P2A, P2B, P3A, P3B, P4A, P4B), seguidos de dois exames finais final FA e FB. Para efeito de cálculo de médias e aprovação, será considerada a maior nota entre as versões A e B de cada prova. Os alunos poderão solicitar revisão de prova durante 3 dias úteis após a promulgação da nota. Após esse prazo, não será concedida nenhuma revisão. As soluções são disponibilizadas eletronicamente em https://www.nldias.github.io, juntamente com as notas.

A média parcial, P, será P = (P1+P2+P3+P4). O resultado parcial é: Alunos com P < 40 estão reprovados. Alunos com P \geq 70 estão aprovados. Para os alunos aprovados nesta fase, a sua média final é M = P. Alunos com $40 \leq P < 70$ farão o exame final F . Calcula-se a média final M = (P + F)/2. Alunos que obtiverem M \geq 50 estão aprovados. Alunos com M < 50 estão reprovados. Todas as contas são feitas com 2 algarismos significativos com arredondamento para cima.

Textos para estudo

O texto adotado para este curso é https://nldias.github.io/pdf/matappa-2ed.pdf Um bom material adicional para métodos numéricos é Versteeg e Malalasekera [2007]. O livro de Michael Greenberg [Greenberg, 1998] permanece sendo, provavelmente, um dos melhores textos de matemática aplicada existentes, e é recomendado como material adicional. Além disso, nele você encontrará uma grande quantidade de exercícios adicionais que complementam os exercícios

resolvidos e propostos no livro texto.

Estudo individual

Reserve pelo menos 6 horas semanais para o estudo em casa desta disciplina. Leia a teoria no livro, evitando pular direto para exemplos e exercícios. Digite e rode os exemplos computacionais; faça os trabalhos computacionais individualmente, e não deixe para a última hora. Entenda a teoria, principalmente as deduções. Essa é a única maneira de estudar e entender matemática. Evite estudar apenas pelo caderno. Procure depois fazer o maior número possível de problemas, mas cuidado: evite fazer problemas apenas sobre uma parte da matéria. Planeje cuidadosamente seu tempo de estudo para que você consiga fazer exercícios sobre toda a matéria.

Referências

Butkov, E. (1988). Física matemática. Guanabara Koogan, Rio de Janeiro.

Dias, N. L. (2017). Uma introdução aos métodos matemáticos para Engenharia. Edição do Autor, Curitiba, PR: https://nldias.github.io/pdf/matappa-2ed.pdf .

Greenberg, M. D. (1998). Advanced engineering mathematics. Prentice Hall, Upper Saddle River, New Jersey 07458, 2a edição.

Versteeg, H. K. e Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics. Pearson Prentice-Hall.