DIGITÁLIS TECHNIKA I

Dr. Lovassy Rita Dr. Pődör Bálint

Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet

10. ELŐADÁS

ALÁÍRÁSPÓTLÁS

Neptunban van meghirdetve, és ott is kell jelentkezni:

Időpont

December 15

14 óra

Mindenkinek aki elégtelen (1) zárthelyit írt, azoknak akik nem írtak zh-t, ill. akik házi feladatot pótolnak.

BEJEGYZÉSEK A NEPTUNBA

A Neptunba a következő bejegyzések kerülnek be:

Aláírva

zárthelyi sikeres (legalább 2), házi feladat beadva, a hiányzás a megengedettnél kevesebb

Aláírás megtagadva

1-es vagy hiányzó zárthelyi, házi feladat, hiányzás a megengedettnél kevesebb

Letiltva minden más esetben

Kódok, kódolás:

alapfogalmak

KÓD

Code (m)

- francia szó, eredeti szűkebb értelme a rejtjellel kapcsolatos.

Kód

- információ kifejezésének, közlésének, megjelenítésének egyik formája.

Kód

- információt hordozó szimbólumok,
- szimbólumokból felépített szavak,
- szimbólumok és szavak összekapcsolási szabályai.

Kód

- előírás, mely egyazon információ két ábrázolási formája közötti

kapcsolatot adja meg. A hozzárendelésnek

nem kell feltétlenül egyértelműen

megfordíthatónak lennie.

SZIMBÓLUMKÉSZLET

Azon elemi jelek összessége melyeket a kódolásra felhasználhatunk.

Pl. tízes számrendszer (a mennyiségi információ egyik

- tíz darab számjegy,
- tizedesvessző,
- előjel,
- szóköz.

Pl. bináris kód a digitális technikában:

- csak két szimbólum, 0 és 1.

KÓDSZÓ, KÓDVEKTOR

A szimbólumkészletből alkotott sorozat. Definiálni kell az egyes jelek összekapcsolási, illetve az egyes szavak megkülönböztetésének szabályait.

Kétértékű (bináris) kód: az alkotóelem a bit. A kódszavak különböző hosszúságúak lehetnek.

7

KÓDSZÓ KÉSZLET

Egy rendszerben használt kódszavak összessége.

Pl. egy beszélt nyelvben a használt összes szó. A használt szavak a megengedett, az "értelmetlen" szavak a tiltott kódszavak.

Pl. szokásos BCD kód: 0111 megengedett, 1011 tiltott kódszó (tetrád, illetve pszeudotetrád).

8

SZÓHOSSZÚSÁG

A kódszóban lévő szimbólumok száma.

Fix és változó szóhosszúságú rendszerek.

Pl. az emberek személyi számai vagy adószámai fix szóhosszúságú, szokásos neveik pedig változó szóhosszúságú kódszavak.

9

BINÁRIS ÉS NEM BINÁRIS KÓDOK

Bináris kód – két elemű szimbólumkészlet.

Nem bináris kód – többelemű szimbólumkészlet.

Gyakorlati megvalósíthatóság: kétállapotú elemek előnyös tulajdonságai – bináris kód.

10

KÓDSZAVAK MAXIMÁLIS SZÁMA

Adott kódban a megkülönböztethető kódszavak maximális száma a szóhosszúságtól és a jelkészlet nagyságától függ.

Bináris kód: n – kódszavak hossza, akkor 2ⁿ.

Pl. n = 8, ekkor 256 kódszó lehet. Lehetőségek:

természetes számok 0 - 255 (egyenes kód); előjeles számok -128-től +127-ig (2-es komplemens kód);

11

HAMMING TÁVOLSÁG

Két azonos szóhosszúságú kódszó HAMMING távolságát (D) úgy számítjuk ki, hogy a két kódszó azonos helyén álló elemeit összehasonlítjuk és megszámláljuk, hogy hány helyen áll különböző bit.

A kódszókészlet HAMMING távolsága: a kódszó készletelemei közötti legkisebb Hamming távolság.

ADATÁTVITEL

Kódolt információ átvitele: többféle üzemmódban lehet

- soros.
- párhuzamos,
- vegyes.

Soros átvitel: csatornák száma kicsi, adatátvitel ideje nagy. Párhuzamos átvitel: egyidejűleg több csatornán. Vegyes üzemmód: a két átvitelfajta valamilyen kombinációja. Az adó és vevőoldali berendezések bonyolultabbak, és költségesebbek.

NUMERIKUS ÉS ALFANUMERIKUS KÓDOK

Információk két nagy csoportja:

- csak számot tartalmazó, numerikus,
- számokat és betűket tartalmazó, alfanumerikus.

Pl. numerikus kódokra:

- tiszta bináris kód, 1-es és 2-es komplemens kód,
- binárisan kódolt decimális (BCD) számjegy kódok,
- egyéb bináris kódok, pl. Gray kód.

Pl. alfanumerikus kódokra:

- telex kód (5 bites)
- ASCII (American Standard Code for Information Exchange, 8 bites)

21

AZ ÁBRÁZOLANDÓ SZÁM ÉRTÉKÉN ALAPULÓ KÓDOK

- Fő szempont a műveletek minél egyszerűbb elvégzése
 - Bináris aritmetikához igazodó kód kell
- Előjeles számok ábrázolása
 - Ne legyen szükség külön kivonás műveletre
- · Racionális számok ábrázolása
 - Pontosság
 - Nagyságrend

22

DECIMÁLIS SZÁMJEGYEK BINÁRIS KÓDOLÁSA

Információ ábrázolás és feldolgozás: tiszta bináris (és 1-es, valamint 2-es komplemens) kód.

Adat be- és kivitel: tízes számrendszer.

10-es számrendszer egyes számjegyei (a 10 szimbólum, 0, 1, ... 9) kifejezése bináris kóddal:

binárisan kódolt decimális kód

Binary Coded Decimal (BCD)

23

TETRÁD KÓDOK TÍPUSAI ÉS ALGORITMUSAI

Súlyozott (helyi értékes) kódok

- "normál" (természetes) BCD kód, Aiken kód, stb. Súlyozatlan kódok

- Stibitz (3 többletes) kód, Glixon kód és rokon egylépéses kódok, stb.

Tetrád kód: a4a3a2a1 ai = 0,1

Súlyok: s4s3s2s1

Decimális számjegy értéke:

d = a4s4 + a3s3 + a2s3 + a1s1

SÚLYOZOTT TETRÁD KÓDOK

A legfontosabb súlyozott tetrád kódok súlyozásai:

8 4 2 1 5 4 2 1	normál v. természetes BCD kód
2 4 2 1	(Aiken kód)
4 2 2 1	Aiken kód
5 3 1 1	Alkeli kod
	4 1 7 7 7 1 1 1 7 7 7 7
7 4 2 1	1-esek számát minimalizáló kód
7 4 -2 -1	

25

AIKEN KÓD

- 4,2,2,1 v. 2,4,2,1 helyértékek
- Többféle hozzárendelés lehetséges
- Aritmetika: kivonás helyett 9-es komplemens +1

$$d = 4a_4 + 2a_3 + 2a_2 + 1a_0$$

Tetrádok indexei: 0,1,2,3,6,9,12,13,14,15

26

AIKEN-IRODALMI ÁTTEKINTÉS

- -1937-ben H. H. Aiken összefoglalta azokat a mérnöki elveket, melyek alapján felhasználva a lyukkártya-gépeket, az automatikus telefonközpontok jelfogóit és kapcsoló szerkezeteit felépíthető a automatikus számítónén
- -1944. augusztusában bemutatták a Harvard Egyetemen az **A**utomatic **S**equence **C**ontrolled **C**alculatort
- -Működési sebessége: 2 szám összeadása 0.3 s, szorzása 6 s, osztása kb. 15 s
- -72 db huszonháromjegyű szám (+előjel) tárolására vállalkozott -Az adatokat lyukkártyáról, az utasításokat a villanyzongoránál használatoshoz hasonló, 24-csatornás lyukszalagról vitték be.

27

15,5 m hosszú és 2,5 m magas gép tömege 35.000 kg volt, 800 ezer alkatrészből és 800 km hosszúságú vezetékből állt.

(Technikatörténet 1760-1960)

STIBITZ - IRODALMI ÁTTEKINTÉS

- A Bell Telefon Laboratórium munkatársa jelfogókból egy olyan gépet tervezett, amely automatikusan átalakította a komplex számokkal történő számítások logikai műveleteit.
- 1946. júliusában, a másikat 1947. február univerzális gép építése
- 9 A normál tizes helyett "biquinary" kódot használt (mint a japán szoroban). Ebben minden számot 7 jelfogó tárolt. Ebből öt a 0...4 közötti jegyeket, kettő a 0 és az 5 jegyeket képviselte. Mivel minden számot két jelfogó ábrázolt, lehetővé tette a hibaellenőrzést.

Másik sajátosság, hogy minden számot lebegőpontosan áhrázolt

Sebessége: összeadás 300 ms, szorzás 1 s, osztás 2.2 s, négyzetgyökvonás 4.3 s.

In- de X	binaris kombina ció	Súlyozott kódok (a hozzárendel decimális számjegyek)			nem sülyözött köd
		NBCD	4,2,2,1	8,4,(-2),(-1))	3 többleter
0	0000	0	0	0	
1	0001	1	1		
2	0010	2	2		
3	0011	3	3		0
4	0100	4	-	4	1
5	0101	5		3	2
6	0110	6	4	2	3
7	0111	7	-	1	4
			Az öni	komplementálás t	úkrôző vonala
8	1000	8	-	8	5
9	1001	9	5	7	6
10	1010			6	7
11	1011	-	•	5	8
12	1100		6		9
13	1101	-	7		
14	1110	-	8		
15	1111		9	9	*

Önkomplemens kódok, pl.:

4221

8 4 -2 -1

Excess-3

3-TÖBBLETES (EXCESS-3, STIBITZ) KÓD

Előfeszített súlyozott kód

$$d = 8a_4 + 4a_3 + 2a_2 + 1a_0 - 3$$

- A 3-mal nagyobb szám BCD kódja
- Önkomplemens kód
- Aritmetika: az ötödik biten jelzi az átvitelt, viszont az eredményt korrigálni kell

Tetrádok indexei: 3,4,5,6,7,8,9,10,11,12,

33

EGYLÉPÉSES KÓDOK, GRAY-KÓD

A Gray-kód olyan kód, amivel a kvantált mintát digitálisan kifejezve, a szomszédos kvantálási szinteket képviselő kódszavak egymástól csak egy bitjükben különböznek. A Gray-kódot minimális változású kód.

A Gray-kód speciális esete az ún. egylépéses kódoknak. A Gray-kód 2n számú n-bites bites kódszavak olyan sorrendben, hogy bármelyik két szomszédos kódszó csak egyetlen bitben különbözik. Ez áll az első és utolsó kódszóra is (ciklikusság).

Alkalmazás: méréstechnika, lineáris vagy szöghelyzet érzékelése és kódolása (pozíció-kódolás).

A műszeriparban és az automatizálásban a legelterjedtebb egylépéses kód ("reflected binary": tükrözött bináris) kód

MÁS EGYLÉPÉSES KÓDOK

Sok más, hasonló tulajdonságú (egylépéses) kód ismeretes.

Pl. Glixon-kód, tetrád kódszavak, sorrendjük

0000 (0) \rightarrow 0001 (1) \rightarrow 0011 (2) \rightarrow 0010 (3) \rightarrow 0110 (4) \rightarrow 0111 (5) \rightarrow 0101 (6) \rightarrow 0100 (7) \rightarrow 1100 (8) \rightarrow 1000 (9)

37

KÓDÁTALAKÍTÓ HÁLÓZATOK, KÓDVÁLTÓK, DEKÓDEREK

38

KÓDOLÁS ÉS DEKÓDOLÁS

Bár a a kódolás és dekódolás egymással felcserélhető, a gyakorlatban kódolás ha a szokásosabb, vagy eleve adott ABC a kiindulási alap, és dekódolás a fordított eset. Pl.

10-es számrendszer \Rightarrow 2-es rendszer - kódolás

2-es számrendszer ⇒ 10-es rendszer - dekódolás

39

- A kódolás az a művelet, amikor valamilyen információhalmazt egy rögzített, kölcsönösen megfeleltető, egyértelmű szabályrendszer szerint egy másik információhalmazra leképezünk, pl.: decimális számrendszerbeli számokat kell binárisan megjeleníteni. A dekódolás a kódolás fordított művelete.
- INFORMÁCIÓFORRÁS
- KÓDOLÓ
- CSATORNAILLESZTŐ
- DEKÓDOLÓ
- INFORMÁCIÓ NYELŐCSATORNA

KÓDÁTALAKÍTÓ HÁLÓZATOK, KÓDVÁLTÓK, DEKÓDEREK

A digitális technikában gyakran van szükség különböző kódrendszerek közötti átalakításra, kódváltásra. A kódátalakító hálózatok lényegében több bemeneti és kimeneti ponttal rendelkező kombinációs hálózatok.

Megvalósíthatók egyedi logikai kapukból a kombinációs hálózatok megvalósítása ismert eljárásai szerint.

Sok esetben célszerűbb a memóriaelemeken alapuló megvalósítás.

41

KÓDÁTALAKÍTÓK Kódátalakítókra akkor van szükség, ha az adatforrás és a nyelő kódrendszere nem egyezik meg. Pl.: | Helyzet | Gray | Bináris | Bin

EGYSZERŰ PÉLDA: 3-BITES BIN/GRAY ÁTALAKÍTÁS

Dec	Bin	Gray
0	0 0 0	0 0 0
1	0 0 1	0 0 1
2	0 1 0	0 1 1
3	0 1 1	0 1 0
4 5	1 0 0	1 1 0
5	1 0 1	1 1 1
6	1 1 0	1 0 1
7	1 1 1	1 0 0

Bin/Gray átalakítás:

- Gray első bitje azonos a bináris kód 1. (MSB) bitjével,
- a második bit a bináris szám 1. és 2. bitjének KIZÁRÓ-VAGY
- függvénye,
 a harmadik bit a bináris kód 2.
 és 3. bitjének KIZÁRÓ-VAGY függvénye, - és így tovább.

BINÁRIS/GRAY ÉS GRAY/BINÁRIS KONVERZIÓ ALGORITMUSAI Bináris: b3b2b1b0 Gray: g3g2g1g0 $\textcolor{red}{\textbf{Bin\'{a}ris}} \rightarrow \textbf{Gray}$ $Gray \to {\color{red} \textbf{Bin\'aris}}$ g3 = b3b3 = g3 $b2 = g3 \oplus g2$ g2 = b3 \(\operatorname{b2} \) $b1 = g3 \oplus g2 \oplus g1 = b2 \oplus g1$ $b0 = g3 \oplus g2 \oplus g1 \oplus g0 = stb.$ g1 = b2 ⊕ b1 g0 = b1 ⊕ b0 ${\color{red} \textbf{Bin\'{a}ris}} \ \rightarrow \textbf{Gray};$ gi = bi+1 ⊕ bi Gray → Bináris: bi = bi+1 ⊕ gi

BINÁRIS/GRAY KONVERZIÓ Bináris Gray 45

