Introduction à l'Apprentissage Automatique

Cécile Capponi, Sébastien Delecraz, Rémi Eyraud (avec l'aide inestimable de l'équipe QARMA du LIS)

https://pageperso.lis-lab.fr/~remi.eyraud/WP/?page_id=190

L3 Informatique 2018-2019

Plan de cette intervention

- 1. L'apprentissage, qu'est-ce que c'est?
- 2. Protocole et mesure de qualité
- 3. Un exemple d'algorithme d'apprentissage
- 4. Déroulement de l'UE et évaluation

Qu'est-ce que l'apprentissage automatique

Apprentissage Automatique & Intelligence Artificielle & Science des Données

- 2019: ces mots sont pratiquement synonymes
- Apprentissage machine :
 - Le moteur de la Science des Données
 - La partie aux succès récents et retentissants de l'IA

Schéma global

Apprentissage Automatique

- But : extraire automatiquement des données la connaissance permettant de prendre des bonnes décisions à l'avenir (sur d'autres / de nouvelles données)
- Moyen : inférer un modèle (mathématique...) qui capture les régularités (statistiques...) observables dans les données d'apprentissage : principe de Généralisation

Un exemple introductif

Alors que vous venez juste d'atterrir au Groland pour la première fois, vous apercevez un mouton noir. Quelles conclusions en tirer?

Un exemple introductif

Alors que vous venez juste d'atterrir au Groland pour la première fois, vous apercevez un mouton noir. Quelles conclusions en tirer?

- Il y a un et un seul mouton noir au Groland (apprentissage par coeur, sous-généralisation)
- Certains moutons sont noirs au Groland
- Tous les moutons du Groland sont noirs (sur-généralisation)

Un apprentissage particulier : La classification supervisée

Classification : Le but est d'apprendre une fonction qui associe une classe à une description de donnée.

Supervisée : pour chaque donnée d'apprentissage on connaît sa classe.

On connaît donc le nombre (fini) de classes et leur sémantique à l'avance.

Données d'apprentissage :

Nouvelle donnée & Classification :

Quelle classse? Cercle ou croix?

Nouvelle donnée & Classification :

Nouvelle donnée & Classification :

Et pour cette donnée ? Quelle classse ? Cercle ou croix ?

Sous-, Sur-, Correcte Généralisation

Erreur empirique et Généralisation

Erreur empirique : erreur sur l'échantillon d'apprentissage S

Erreur en généralisation : Erreur sur toutes les données (inconnue)

Classification supervisée : De vrais exemples

But : écarter automatiquement les SPAMs et autres messages non sollicités.

Données : des messages dont on sait s'ils sont des SPAMs ou non. Objectif : construire un classifieur, capable d'attribuer une de ces deux classes à un nouveau message.

But : reconnaissance de chiffres manuscrits.

Données: des chiffres écrits sur une rétine de 16x16 pixels, associés à une classe parmi {0, 1, ..., 9}

Objectif: attribuer la bonne classe (pattern recognition).

Modélisation de la classification supervisée

- Attributs(=variables=colonnes=features): un ensemble $\mathbf{X} = X_1 \times X_2 ... \times X_d$ où chaque X_i est le domaine d'un attribut A_i symbolique ou numérique.
 - \circ Ex.: A₁= age, X₁= [0; 122], A₂= fumeur, X₂= {oui, non}
- Classes(=cible=target=label=etiquettes):
 Un ensemble fini de classes Y.
 - Ex.: Y = {patient_à_risque, patient_sans_risque}
- Une variable aléatoire Z=(X,Y) à valeurs dans X x Y.
 - Ex: le risque cardiaque est lié à l'âge et au fait de fumer

Modélisation de la classification supervisée

 Les exemples/données sont des couples (x,y) de X x Y tirés selon la distribution jointe :

$$P(Z=(\mathbf{x},y)) = P(X=\mathbf{x})P(Y=y|X=\mathbf{x}).$$

• Un échantillon $S = \{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_n, \mathbf{y}_n)\}$ est un ensemble fini d'exemples i.i.d. selon P.

Modélisation de la classification supervisée

Exemple d'échantillon d'apprentissage

Classifieur

Classifieur: f: X → Y
 Y Ex.: f1(x) = Si fumeur='oui' et age > 59
 alors 'risque' sinon 'pas risque'

Fonction de perte (loss function):

• $L(y_i, f(\mathbf{x}_i))$ égale à 0 si $y_i = f(\mathbf{x}_i)$ et à 1 sinon.

```
Ex.: L('risque', f1((35, 'oui'))) = 1et L('risque', f1((65, 'oui')) = 0
```

Modélisation de la classification supervisée (fin)

- Classifieur : f : X →YY
- Fonction de perte (loss function):
 L(y_i, f(x_i)) égale à 0 si y_i = f(x_i) et à 1 sinon
- La fonction risque (ou d'erreur) : espérance mathématique de la fonction de perte :

$$\mathbf{R(f)} = \int L(y,f(\mathbf{x}))dP(x,y) = \int_{y\neq f(\mathbf{x})} dP(\mathbf{x},y) = \mathbf{P(y\neq f(x))}$$

Le problème général de la classification supervisée s'écrit :
 Etant donné un échantillon S={(x₁,y₁), ..., (x_n,y_n)} trouver un classifieur
 f dont le risque R(f) est le plus petit possible

Ce qu'il ne faut jamais oublier

- Le problème peut être non déterministe
 (= plusieurs classes y peuvent correspondre au même vecteur
 - Les données peuvent être bruitées
 - (= pas le bon y attribué à un x et/ou les différentes valeurs
- composant x ne sont pas bonnes)
 - L'espace de description n'est pas suffisant pour décrire la complexité du problème auquel on s'attaque
 - (= chaque **x** ne comporte pas suffisamment d'information pour permettre de trouver le y)

Un exemple d'algorithme d'apprentissage :

Le classifieur naïf de Bayes

Règle de Bayes et optimalité

• Si on cherche à classer x, quel est le meilleur y à lui attribuer ?

Réponse : celui qui maximise $P(y \mid x)$! C'est-à-dire le y le plus probable quand on connaît x.

Mathématiquement: $f_{Bayes}(x) = argmax_y P(y \mid x)$

 C'est ce que l'on appelle la règle de Bayes et on peut prouver que c'est le meilleur classifieur possible (= celui dont le taux d'erreur en généralisation est le plus faible possible)

Tristesse immense & espoir infini

- La règle de Bayes n'est pas calculable à partir d'un ensemble de données.
- Le but de tout algorithme d'apprentissage est donc d'inférer un classifieur (presque) aussi bon que celui de la règle de Bayes.
- Bonne nouvelle : il existe des dizaines de (très) bons algorithmes pour faire ça! Et il en reste très certainement de nouveaux à trouver.

Le classifieur naïf de Bayes

- La règle de Bayes peut se réécrire (à l'aide de la formule de Bayes)
 - $argmax_{y}P(y|\mathbf{x})=argmax_{y}\frac{P(\mathbf{x}|y)P(y)}{P(\mathbf{x})}=argmax_{y}P(\mathbf{x}|y)P(y)$
 - P(y) peut être estimé en calculant les fréquences de chaque classe dans l'échantillon d'apprentissage
 - Plus difficile pour $P(\mathbf{x}|\mathbf{y})$ (vraisemblance) : si $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_d)$ alors il nous faut connaître $P(\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_d\}|\mathbf{y})$ ce qui n'est pas possible, en particulier si ces valeurs ne sont pas indépendantes.

Le classifieur naïf de Bayes (2)

- Le problème (pour d =2) : $P(\{x_1, x_2\}|y) = P(\{x_1\}|y) \ P(\{x_2\}|y, \ x_1) \ \text{ et } \ P(\{x_1, x_2\}|y) = P(\{x_2\}|y) \ P(\{x_1\}|y, \ x_2)$
- En général, ni P({x₂}|y, x₁) ni P({x₁}|y, x₂) ne sont pas (raisonnablement) estimables à partir d'un ensemble de données
- Classifieur naïf de Bayes : hypothèse (forte) d'indépendance des attributs :
 - $P({x_2}|y, x_1) = P({x_2}|y,)$ et $P({x_1}|y, x_2) = P({x_1}|y)$
 - En d'autre termes : les attributs sont indépendants deux à deux

Le classifieur naïf de Bayes (3)

- Si on met les étapes toutes ensembles, le classifieur naïf de Bayes est
- $argmax_{y}P(y|\mathbf{x})=argmax_{y}P(\mathbf{x}|y)P(y)\approx argmax_{y}P(y)\prod_{i=1}^{n}P(x_{i}|y)$
 - P(y) est estimable à partir des données
 - $P(x_i | y)$ l'est aussi facilement :
 - Si x_i prend des valeurs discrètes, il suffit de calculer les fréquences des valeurs pour chaque classes
 - Si x_i prend des valeurs continues, on suppose que ces valeurs correspondent à une gaussienne et on évalue la moyenne et la variance à l'aide des données d'apprentissage.

Classifieur naïf de Bayes : Exemple

 $P(\varnothing| \bullet A 3) = > P(\bullet A 3 | \varnothing) P(\varnothing) = P(\bullet| \varnothing) P(A| \varnothing) P(3| \varnothing) P(\varnothing) = 0.006$

Classifieur naïf de Bayes en

from sklearn.model_selection import train_test_split

```
# Ceci est un commentaire – importation de la fonction load_iris de la
librairie scikit-learn :
from sklearn.datasets import load_iris #
récupération des données Iris donnees =
load_iris()
# Stockage de la matrice de description des données :
X = donnees.data
# Stockage des classes de chaque donnée :
y = donnees.target
# importation de la fonction découpant les données en test et train :
```

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20)

Génération aléatoire des échantillons (X_train, y_train) et (X_test, y_test) :

Classifieur naïf de Bayes en

```
# importation de la librairie pour le classifieur naive Bayes :
from sklearn.naive_bayes import GaussianNB # Création
d'une instance de ce classifieur : classifieur = GaussianNB()
# Apprentissage sur les données d'entrainement :
classifieur.fit(X_train, y_train)
# Utilisation du classifieur appris sur les données de test :
y predits = classifieur.predict(X test)
# Calcul du taux de réussite :
from sklearn.metrics import accuracy_score
print("Taux de réussite : ", accuracy_score(y_test,y_predits))
```

Validation d'un apprentissage Mesures de qualité

L'apprentissage en pratique

- On dispose d'un échantillon d'apprentissage S qu'on suppose i.i.d.
- On recherche une fonction *h* de classification dont le risque est le plus faible possible.
- Il existe toujours une fonction f_{min} de risque minimal... inaccessible!

Validation empirique d'un apprentissage

- Plusieurs méthodes permettent de valider (ou d'infirmer) la qualité d'un processus d'apprentissage.
- Une des approches consiste à n'utiliser qu'une partie des données pour apprendre et à se servir des autres données pour tester le résultat.
- Différentes mesures permettent alors de comparer des processus (taux d'erreur, F-score, etc.)

Validation croisée (cross-validation)

- La cross-validation est une généralisation de la méthode précédente.
- Elle consiste à diviser les données en *c* folders, à en enlever un pour l'apprentissage puis à l'utiliser pour la
- phase de test.
- Le processus est ensuite réitéré sur chaque folder

L'erreur moyenne tend alors vers l'erreur en généralisation (estimateur nen-biaisé).

DONNEES

Mesure de qualité : classification binaire supervisée

Matrice de confusion

	Classé +	Classé -
Exemple +	V_p	F _n
Exemple -	Fp	V_n

• Taux d'erreur = 1 - taux de réussite (accuracy) $\frac{F_p + F_n}{F_n + F_n + V_n + V_n}$

$$\frac{F_p + F_n}{F_p + F_n + V_p + V_n}$$

 L'erreur (ou taux d'erreur) ne fait pas de distinction entre les erreurs : pas toujours une bonne mesure de qualité d'un apprentissage