Teorema 8.4.2

Sea A una matriz simétrica real de $n \times n$. Si λ_1 y λ_2 son valores característicos diferentes con vectores característicos reales correspondientes \mathbf{v}_1 y \mathbf{v}_2 , entonces \mathbf{v}_1 y \mathbf{v}_2 son ortogonales.

Demostración

Calculando el producto interno

$$\langle A\mathbf{v}_1 \cdot \mathbf{v}_2 \rangle = \langle \lambda_1 \mathbf{v}_1, \mathbf{v}_2 \rangle = \lambda_1 \langle \mathbf{v}_1 \cdot \mathbf{v}_2 \rangle \tag{8.4.7}$$

por otro lado,

$$\langle A\mathbf{v}_1, \mathbf{v}_2 \rangle = \langle \mathbf{v}_1, A^{\mathsf{T}} \mathbf{v}_2 \rangle = \langle \mathbf{v}_1, A\mathbf{v}_2 \rangle = \langle \mathbf{v}_1, \lambda_2 \mathbf{v}_2 \rangle = \lambda_2 \langle \mathbf{v}_1, \mathbf{v}_2 \rangle$$
 (8.4.8)

Combinando (8.4.7) y (8.4.8) se tiene $\lambda_1 \langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \lambda_2 \langle \mathbf{v}_1, \mathbf{v}_2 \rangle$, y como $\lambda_1 \neq \lambda_2$, se concluye que $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = 0$. Esto es lo que se quería demostrar.

Ahora es posible establecer el resultado más importante de esta sección. Su demostración, que es dificil (y opcional) está dada al final.

Teorema 8.4.3

Sea A una matriz simétrica real de $n \times n$; entonces, A tiene n vectores característicos reales ortonormales.

Observación. De este teorema se deriva que la multiplicidad geométrica de cada valor característico de *A* es igual a su multiplicidad algebraica.

El teorema 8.4.3 señala que si A es simétrica, entonces \mathbb{R}^n tiene una base $B = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ que consiste en vectores característicos ortonormales de A. Sea Q la matriz cuyas columnas son \mathbf{u}_1 , $\mathbf{u}_2, \dots, \mathbf{u}_n$. Entonces, por el teorema 6.1.3, Q es una matriz ortogonal. Esto lleva a la siguiente definición.

D

Definición 8.4.1

Matriz diagonalizable ortogonalmente

Se dice que una matriz A de $n \times n$ es **diagonalizable ortogonalmente** si existe una matriz ortogonal Q tal que

$$Q^{\mathsf{T}}AQ = D \tag{8.4.9}$$

donde $D = \text{diag } (\lambda_1, \lambda_2, \dots, \lambda_n)$ y $\lambda_1, \lambda_2, \dots, \lambda_n$ son los valores característicos de A.

Nota. Recuerde que Q es ortogonal si $Q^{\top} = Q^{-1}$; por lo tanto, (8.4.9) puede escribirse como $Q^{-1}AQ = D$.