Numerical Optimization, 2020 Fall Homework 3

Due on 14:59 OCT 10, 2020 请尽量使用提供的 tex 模板, 单纯形法的表格可手绘拍照加入文档.

1 单纯形法

以下均考虑非退化线性规划问题即可。

(i) 考虑一线性规划问题的规范型如下:

记进基变量的下标为 q, 转轴前分量 j 对应的 reduced cost 为 r_j , 转轴后对应的 reduced cost 为 r_j' 。 试证明 reduced cost 的更新公式为 $r_j'=r_j-\frac{y_{pj}}{y_{pq}}r_q$ (参考 Lecture 3 中 17 页)。 [20pts]

(ii) 单纯形表中右下角的-f 对应当前基本可行解的目标函数值的相反数。试证明, 经过一次转轴后更新的-f 对应更新后基本可行解对应的目标函数值的相反数 (参考 Lecture 3 中 20 页)。 [20pts]

Simplex Method in Tableau Format

单纯形表(tableau): BFS对应规范形的表格+

既约费用系数和BFS目标值的相反数

x_1	1	• • •	x_p	• • • •	x_m	x_{m+1}	x_{m+2}	• • •	x_q	• • •	x_n	$B^{-1}b$
1	1	• • • •	0	• • • •	0	$y_{1,m+1}$	$y_{1,m+2}$	• • • •	y_{1q}	• • • •	y_{1n}	\bar{b}_1
		100				:	:		:		:	:
(0	• • •	1	• • •	0	$y_{p,m+1}$	$y_{p,m+2}$	• • •	y_{pq}	• • •	y_{pn}	$ar{b}_p$
				1.		:	:		:		:	:
_ (0	• • •	0	• • •	1	$y_{m,m+1}$	$y_{m,m+2}$	• • •	y_{mq}	• • •	y_{mn}	\bar{b}_m
Т (0	• • •	0	• • •	0	r_{m+1}	r_{m+2}	• • •	$r_{m{q}}$	• • •	r_n	- f
单纯形表可以提供计算需要的所有信息!												why

2 修正单纯形法

2.1 证明题

试证明 Lecture 4 中 20 页 λ 的更新公式为: $\hat{\lambda}^T = \lambda^T + \frac{r_q}{y_{pq}} \boldsymbol{u}_p$ 。 [20pts]

2.2 计算题

试用两阶段法求解如下线性规划问题 (详见 Lecture 4 第 13 页), 给出各个步骤的单纯形表。 [40pts]

$$\begin{array}{ll} \text{minimize} & x_1-x_2\\ \text{subject to} & -x_1+2x_2+x_3=2\\ & -4x_1+4x_2-x_3=4\\ & -5x_1+6x_2=6\\ & x_1-x_3=0\\ & x_1,\ x_2,\ x_3\geq 0 \end{array}$$