পরিশিউ

সপ্তম শ্রেণির গণিত পাঠ্যবইরের প্রথম, নবম ও দশম অধ্যায়ের সাথে সম্পর্কিত কিছু অতিরিপ্ত বিষয়বস্তু সংযুক্তি হিসেবে যুক্ত করা হয়েছে। কারণ ২০২৫ সালে সপ্তম শ্রেণিতে অধ্যয়নরত শিক্ষার্থীরা পূর্বতন শ্রেণিতে (ষষ্ঠ শ্রেণি) 'জাতীয় শিক্ষাক্রম ২০২২' অনুযায়ী অধ্যয়ন করেছে। 'জাতীয় শিক্ষাক্রম ২০২২' অনুযায়ী ষষ্ঠ শ্রেণির গণিত পাঠ্যপুস্তকে উক্ত বিষয়বস্তু অন্তর্ভুক্ত ছিল না। তাই শিখনের ধারাবাহিকতা ও কার্যকর শিখনের জন্য উক্ত বিষয়বস্তু সংযুক্ত করা হয়েছে।

উল্লেখ্য যে, সপ্তম শ্রেণির গণিত বিষয়েরে শিখনফল অনুযায়ী ধারাবাহিক ও সামস্টিক মূল্যায়ন অনুষ্ঠিত হবে।

প্রথম অধ্যায় এর সংযুক্তি

বৰ্গ ও বৰ্গমূল

আমরা আগের শ্রেণিতে জেনেছি, যে চতুর্ভুজের চারটি বাহু সমান এবং প্রতিটি কোণ সমকোণ তাকে বর্গ বলা হয় (চিত্র-১.১.১)। আর বর্গের বাহর দৈর্ঘ্য a একক হলে বর্গক্ষেত্রের ক্ষেত্রফল a^2 বা $(a \times a)$ বর্গ একক হবে। বিপরীতভাবে বলা যায়, বর্গক্ষেত্রের ক্ষেত্রফল a^2 বা $(a \times a)$ হলে এর প্রতিটি বাহুর দৈর্ঘ্য a একক হবে।

চিত্র ১.১.১: বর্গ

চিত্র ১.১.২: বর্গাকারে মার্বেল সাজানো

উপরের চিত্র ১.১.২ থেকে দেখা যাচ্ছে, সমান দূরতে প্রতিটি সারিতে ৩টি করে এবং ৩টি সারিতে মার্বেল সাজানো হয়েছে। তাই মোট মার্বেলের সংখ্যা (৩ × ৩) = ৩^২ = ৯টি। এখানে প্রতিটি সারিতে মার্বেলের সংখ্যা ৩টি এবং সারির সংখ্যাও ৩টি। তাই মার্বেল সাজানোর চিত্রটি বর্গাকার হয়েছে। সুতরাং ৩ এর বর্গ ৯ এবং ৯ এর বর্গমূল ৩।

উপরের আলোচনা থেকে বলা যায়, কোনো সংখ্যাকে সেই সংখ্যা দ্বারা গুণ করলে যে গুণফল পাওয়া যায় তা ঐ সংখ্যার বর্গ এবং সংখ্যাটি হলো ঐ গুণফলের বর্গমূল। যেমন: $(2 \times 2) = 2^2 = 8$, এখানে ২ এর বর্গ হলো ৪ এবং ৪ এর বর্গমূল হলো ২।

১.২ পূৰ্ণবৰ্গ সংখ্যা

আমরা আগের শ্রেণিতে জেনেছি, স্বাভাবিক সংখ্যা, শূন্য ও ঋণাত্মক সংখ্যা একত্রে মিলে পূর্ণসংখ্যা হয়। তাই নিচের সারণিতে কিছু পূর্ণসংখ্যা দেওয়া আছে, তাদের বর্গ নির্ণয় করো।

পূর্ণসংখ্যা	পূর্ণসংখ্যার বর্গ	পূর্ণসংখ্যা	পূর্ণসংখ্যার বর্গ
۵	$2 \times 2 = 2_{3} = 2$	-5	$(-2) \times (-2) = (-2)^2 = 2$
٤	$2 \times 2 = 2^2 = 8$	_২	$(-2) \times (-2) = (-2)^2 = 8$
9	೨ × ೨ = ೨ ^২ = ৯	_0	$(-\circ)\times(-\circ)=(-\circ)^{\flat}=\delta$
8	$8 \times 8 = 8^{4} = 56$	8	$(-8) \times (-8) = (-8)^{2} = 56$
æ	$\alpha \times \alpha = \alpha^2 = 2\alpha$	-a	$(-@) \times (-@) = (-@)^2 = 2@$
৬	৬ × ৬ = ৬ ^২ = ৩৬	_ &	(-4) × (-4) = (-4) ² = 34
٩	9 × 9 = 9 ² = 85	-9	(-9) × (-9) = (-9) ^{\$} = 8\$
	vice:	***	TOTAL CONTRACTOR OF THE PARTY O
a	$a \times a = a^2$	-а	$(-a) \times (-a) = (-a)^2 = a^2$

উপরের সারণি থেকে দেখা যাচ্ছে, কিছু কিছু স্বাভাবিক সংখ্যা যেমন: ১, ৪, ৯, ১৬, ২৫, ৩৬, ৪৯, ... ইত্যাদি এদের বৈশিষ্ট্য এমন যে, এ সংখ্যাগুলোকে অন্যকোনো পূর্ণসংখ্যার বর্গ হিসেবে প্রকাশ করা যায়। তাই এদেরকে পূর্ণবর্গ সংখ্যা বলা হয়। সারণি থেকে স্পষ্টত দেখা যাচ্ছে যে, সকল পূর্ণসংখ্যার বর্গ একটি স্বাভাবিক সংখ্যা। আর এই স্বাভাবিক পূর্ণবর্গ সংখ্যাগুলোর বর্গমূল একটি পূর্ণসংখ্যা। যেমন: ৯ একটি পূর্ণবর্গ সংখ্যা এবং এটা একটি স্বাভাবিক সংখ্যা। কিন্তু এর বর্গমূল হলো ৩ ও _৩, যা একটি পূর্ণসংখ্যা।

উপরের আলোচনা থেকে বলা যায়, কোনো একটি স্বাভাবিক সংখ্যা m কে যদি অন্য একটি পূর্ণসংখ্যা n এর বর্গ (n^2) আকারে প্রকাশ করা যায়, তাহলে m কে n এর বর্গ সংখ্যা বলা হয় এবং n কে m এর বর্গমূল বলা হয়।

পূর্ণবর্গ সংখ্যার বৈশিষ্ট্য

নিচের সারণিতে ১ থেকে ২০ পর্যন্ত সংখ্যার বর্গ সংখ্যা দেওয়া হয়েছে। খালি ঘরগুলো পূরণ কর।

সংখ্যা	পূর্ণসংখ্যার বর্গ	সংখ্যা	পূৰ্ণসংখ্যার ৰৰ্গ
۵	$2 \times 2 = 2_{\beta} = 2$	22	22 × 22 = 22 ₅ = 252
2	$2 \times 2 = 2^2 = 8$	25	25 × 25 = 25 ₅ =
9	೨ × ೨ = ೨ [⋄] = ১	20	১৩ ×১৩ = ১৩ ^২ = ১৬৯
8	8 × 8 = 8 ^{\$} =	28	28 × 28 = 28 ₅ = 299
œ	$\alpha \times \alpha = \alpha^2 = 2\alpha$	5@	$5\mathscr{C} \times 5\mathscr{C} = 5\mathscr{C}^3 =$

ফর্মা নং-২৩, গণিত-৭ম শ্রেণি

હ	৬ × ৬ = ৬ ^২ = ৩৬	১৬	$2P \times 2P = 2P_{\phi} = 6$
٩	9 x 9 = 9 ³ =	59	59 × 59 = 59 ⁵ = 555
ъ	b × b = b ³ = 98	24	2₽ × 2₽ = 2₽ ₅ = 058
2	2 × 2 = 2 = 22	79	29 × 29 = 29 = 262
50	20 × 20 = 20 ² =	20	₹0 × ₹0 = ₹0 [₹] =

উপরের সারণিভুক্ত পূর্ণবর্গ সংখ্যাগুলো থেকে দেখা যাচ্ছে যে, পূর্ণবর্গ সংখ্যাগুলোর একক স্থানীয় অঞ্চ ০, ১, ৪, ৫, ৬ ও ৯। কিন্তু কোনো পূর্ণবর্গ সংখ্যার একক স্থানীয় অঞ্চ ২, ৩, ৭ ও ৮ নেই।

কাজ:

- ১। কোনো সংখ্যার একক স্থানীয় অঞ্চ ০, ১, ৪, ৫, ৬ ও ৯ হলেই কি সংখ্যাটি পূর্ণবর্গ সংখ্যা হবে?
- ২। নিচের সংখ্যাগুলোর কোনগুলো পূর্ণবর্গ সংখ্যা নির্ণয় কর। ২০৬২, ১০৫৭, ২৩৪৫৩, ৩৩৩৩৩, ২৫০০, ৫২৯, ৩০০, ১০৬৮
- ৩। পাঁচটি সংখ্যা লিখ, যার একক স্থানীয় অজ্ঞ দেখেই তা পূর্ণবর্গ সংখ্যা নয় সিদ্ধান্ত নেওয়া যায়।

এবার সারণি থেকে একক স্থানে ১ রয়েছে এমন বর্গসংখ্যা নিই।

	400 Barriel H. H. Barriel
বর্গসংখ্যা	সংখ্যা
۵	۵
47	৯
757	22
৩৬১	79

একইভাবে

বৰ্গসংখ্যা	সংখ্যা
۵	9
88	٩
১৬৯	১৩

এবং

বর্গসংখ্যা	সংখ্যা
১৬	8
৩৬	6
১৯৬	78
২৫৬	১৬

উপরের আলোচনা থেকে নিচের সিদ্ধান্ত নেওয়া যায়-

- ১। যে সেব সংখ্যার সর্ব ডানদিকের অজ্ঞ অর্ধাৎ একক স্থানীয় অজ্ঞ যদি ২ বা ৩ বা ৭ বা ৮ হয়, তাহলে সেই সংখ্যাটি পূর্ণবর্গ সংখ্যা নয়।
- ২। যে সব সংখ্যার সর্ব ডানদিকের অঞ্চ অর্থাৎ একক স্থানীয় অঞ্চ যদি ০ বা ১ বা ৪ বা ৫ বা ৬ বা ৯ হয়,

পরিশিষ্ট 598

তাহলে সেই সংখ্যাটি পূর্ণবর্গ সংখ্যা হতে পারে। যেমন: ১, ৮১, ৬৪, ২৫, ৩৬, ৪৯, ... ইত্যাদি। আবার নাও হতে পারে। যেমন: ১১, ৮৬, ৯০, ৩৫, ৭৪, ১৯৯, ... ইত্যাদি।

- ৩। যে সব সংখ্যার ডানদিক থেকে বিজোড় সংখ্যক শূন্য থাকে, সেই সংখ্যাটি পূর্ণবর্গ সংখ্যা হতে পারে না। যেমন: ৯০, ৩০০০, ৪০০০০০, ... ইত্যাদি।
- ৪। যে সব সংখ্যার ডানদিক থেকে জোড় সংখ্যক শূন্য থাকে, সেই সংখ্যাটি পূর্ণবর্গ সংখ্যা হতে পারে। যেমন: ১০০, ৪০০, ২৫০০, ... ইত্যাদি। আবার নাও হতে পারে। যেমন: ১৩০০, ৩০০, ৫০০, ... ইত্যাদি।

কাজ:

১। সারণি থেকে পূর্ণবর্গ সংখ্যার একক স্থানীয় অঞ্চে ৪ রয়েছে, এরূপ সংখ্যার জন্য নিয়ম তৈরি কর।

২। নিচের সংখ্যাগুলোর মধ্যে থেকে পূর্ণবর্গ সংখ্যাটির একক স্থানীয় অঞ্চটি কত হবে? ১২৭৩, ১৪২৬, ১৩৬৪৫, ৯৮৭৬৪৭৪, ৯৯৫৮০

উদাহরণ ৬। ৯৭২ এর সাথে কোন ক্ষুদ্রতম সংখ্যা গুণ করলে গুণফল একটি পূর্ণবর্গ সংখ্যা হবে? সমাধান: প্রথমেই ৯৭২ সংখ্যাটির মৌলিক উৎপাদক বিশ্লেষণ করি।

মৌলিক উৎপাদক বিশ্লেষণ করে পাই, ৯৭২ = (২ × ২) × (৩ × ৩) × (৩ × ৩) × ৩ এখন ৯৭২ এর মৌলিক উৎপাদক বিশ্লেষণ থেকে দেখা যাচ্ছে, ২ উৎপাদকটি দুইবার আর ৩ উৎপাদকটি পীচবার আছে অর্থাৎ ৩ উৎপাদকটি বিজোড় সংখ্যক আছে। আমরা জানি, পূর্ণবর্গ সংখ্যার মৌলিক উৎপাদকগুলো জোড়ায় জোড়ায় থাকে। তাই ৩ উৎপাদকটির জোড়া করতে হবে। এ জন্য ৯৭২ কে ৩ দ্বারা গুণ করলে গুণফলটি একটি পূর্ণবর্গ সংখ্যা হবে। সুতরাং নির্লেয় ক্ষুদ্রতম সংখ্যা = ৩

উদাহরণ ৭। ১৫৬৮ এর সাথে কোন ক্ষুদ্রতম সংখ্যা ভাগ করলে গুণফল একটি পূর্ণবর্গ সংখ্যা হবে? সমাধান: প্রথমেই ১৫৬৮ সংখ্যাটির মৌলিক উৎপাদক বিশ্লেষণ করি।

মৌলিক উৎপাদক বিশ্লেষণ করে পাই, ১৫৬৮ = $(2 \times 2) \times (2 \times 2) \times 2 \times (9 \times 9)$ এখন ১৫৬৮ এর মৌলিক উৎপাদক বিশ্লেষণ থেকে দেখা যাচ্ছে, ২ উৎপাদকটি পাঁচবার আর ৭ উৎপাদকটি দুইবার আছে অর্থাৎ ২ উৎপাদকটি বিজোড় সংখ্যক আছে। আমরা জানি, পূর্ণবর্গ সংখ্যার মৌলিক উৎপাদকগুলো জোড়ায় জোড়ায় থাকে। তাই ২ উৎপাদকটির জোড়া করতে হবে। সুতরাং ১৫৬৮ কে ২ দ্বারা পু ভাগ করলে ভাগফলটি একটি পূর্ণবর্গ সংখ্যা হবে।
সূতরাং নির্ণেয় ক্ষুদ্রতম সংখ্যা = ২

নবম অধ্যায় এর সংযুক্তি

আমরা আগের শ্রেণিতে জেনেছি, তিনটি সরলরেখাংশ দ্বারা আবদ্ধ চিত্রকে ত্রিভুজ বলে [চিত্র ১]।

১. চিত্র ১ থেকে দেখা যাচ্ছে, AB, BC ও AC এই তিনটি সরলরেখাংশ দিয়ে একটি ত্রিভুজ ABC গঠিত হয়েছে। তাই AB, BC ও AC এই প্রত্যেকটি রেখাংশই ত্রিভুজ ABC এর বাহু (side)।

যে তিনটি সরলরেখাংশ দিয়ে ত্রিভুজ গঠিত হয় তাদের প্রত্যেকটিকে ঐ ত্রিভুজের বাহ (side) বলা হয়।

২. চিত্রে দেখা যাচ্ছে, AB ও AC বাহ দুইটি পরস্পর A বিন্দুতে; AB ও BC বাহ দুটি পরস্পর B বিন্দুতে এবং AC ও BC বাহদ্বয় পরস্পর C বিন্দুতে ছেদ করেছে। তাই A, B, C এই প্রতিটি বিন্দুকেই ΔABC এর শীর্ষবিন্দু বলা হয়। ইংরেজি বড়ো হাতের অক্ষর ও শীর্ষবিন্দু দিয়ে ত্রিভুজের নামকরণ করা হয়। যেমন: চিত্রের ত্রিভুজের শীর্ষবিন্দুগুলো হলো A, B, C. তাই চিত্রের ত্রিভুজের নামকরণ ΔABC করা হয়েছে।

যেকোনো ত্রিভুজের দুটি বাহ পরস্পর যে বিন্দুতে ছেদ করে সেই বিন্দুকে ঐ ত্রিভুজের শীর্ষবিন্দু (vertex) বলা হয়। ত্রিভুজের শীর্ষবিন্দুর নামানুসারে ত্রিভুজের নামকরণ করা হয়।

৩. চিত্রে দেখা যাছে, A, B ও C শীর্ষবিন্দু তিনটিতে যথাক্রমে ∠BAC, ∠ABC ও ∠ACB উৎপন্ন করেছে। এই প্রত্যেকটি কোণকে ∆ABC এর শীর্ষকোণ (vertical angle) বলা হয়। কখনো কখনো এটিকে শিরঃকোণও বলা হয়। যেহেতু যেকোনো ব্রিভুজের শীর্ষবিন্দু তিনটি তাই প্রত্যেকটি ব্রিভুজের তিনটি শীর্ষবিন্দু উৎপন্ন হয়।

যেকোনো ব্রিভুজের শীর্ষবিন্দুতে যে কোণ উৎপন্ন হয়, তাকে ঐ ব্রিভুজের শীর্ষকোণ বলা হয়। যেহেতু যেকোনো ব্রিভুজের শীর্ষবিন্দু তিনটি তাই প্রত্যেকটি ব্রিভুজের তিনটি শীর্ষকোণ উৎপন্ন হয়। পরিশিষ্ট

৯.১ ত্রিভুজের মধ্যমা

মনে করি, ABC যেকোনো একটি ত্রিভুজ, যার A, B ও C তিনটি শীর্ষবিন্দুতে উৎপন্ন কোণগুলো যথাক্রমে $\angle BAC$, $\angle ABC$ ও $\angle ACB$ এবং বাহু তিনটি হলো AB, BC ও AC।

এখন $\triangle ABC$ এর তিনটি বাহ AB, BC ও AC এর মধ্য বিন্দুগুলো যথাক্রমে D, E ও F নির্ণয় করি [চিত্র ২] এবং প্রতিটি বাহর মধ্য বিন্দু ও তার বিপরীত শীর্ষবিন্দু সংযোগ করি। এতে $\triangle ABC$ এ AD, BE ও CF এই তিনটি সরলরেখাংশ পাওয়া যাচ্ছে। AD, BE ও CF এই তিনটি রেখাংশের প্রত্যেকটিকে $\triangle ABC$ এর মধ্যমা বলা হয়।

যেকোনো ত্রিভুজের যেকোনো শীর্ষবিন্দু থেকে তার বিপরীত বাহুর মধ্যবিন্দুর সংযোগ সরলরেখাংশকে ঐ ত্রিভুজের মধ্যমা বলা হয়।

৯.২ ত্রিভুজের উচ্চতা

মনে করি, ABC যেকোনো একটি গ্রিভুজ, যার A, B ও C তিনটি শীর্ষবিন্দু এবং তার তিনটি বাহ AB, BC ও AC। এখন ΔABC এর তিনটি শীর্ষবিন্দু A, B ও C থেকে তার বিপরীত বাহর উপর বা বর্ষিতাংশের উপর লম্ব আঁকি।

চিত্র ৯.২: ত্রিভুজের উচ্চতা

- ১. চিত্র ৯.২ (1) থেকে দেখা যাচ্ছে যে, ΔABC এর তিনটি শীর্ষবিন্দু A, B, C হতে তাদের বিপরীত বাহ যথাক্রমে BC, AC, AB এর উপর AD, BE, CF লম্ব আঁকা সম্ভব হয়েছে।
- ২. চিত্র ৯.২ (2) থেকে দেখা যাচ্ছে যে, ΔABC এর শীর্ষবিন্দু C হতে এর বিপরীত বাহ AB এর উপর CF লম্ব আঁকা সম্ভব হয়েছে। কিন্তু শীর্ষবিন্দু A ও B হতে তাদের বিপরীত বাহ যথাক্রমে BC, AC এর উপর AD, BE লম্ব আঁকা সম্ভব হয়িন। তবে BC ও AC বাহুর বর্ধিতাংশের উপর AD, BE লম্ব আঁকা সম্ভব হয়েছে।

৩. চিত্র ৯.২ (3) থেকে দেখা যাচ্ছে যে, $\triangle ABC$ এর তিনটি শীর্ষবিন্দু A, B, C হতে তাদের বিপরীত বাহ যথাক্রমে BC, AC ও AB এর উপর AD, BE ও CF লম্ব আঁকা সম্ভব হয়েছে। তবে A ও B থেকে তার বিপরীত বাহ যথাক্রমে BC ও AC এর উপর AC ও BC নিজেরাই লম্ব।

একটি ত্রিভুজের তিনটি শীর্ষবিন্দু থাকে। তাই শীর্ষবিন্দুগুলো থেকে বিপরীত বাহর উপর বা তার বর্ধিতাংশের উপর তিনটি লম্ব আঁকা যায়। এই প্রত্যেকটি লম্বকেই ABC ত্রিভুজের উচ্চতা বলা যায়। তবে যে বাহকে ভূমি বিবেচনা করা হয় সেই বাহর বা বাহর বর্ধিতাংশের উপরের লম্বকেই ঐ ত্রিভুজের উচ্চতা বিবেচনা করা হয়।

যেকোনো ত্রিভুজের ভূমির বিপরীত শীর্ষবিন্দু হতে ভূমির উপর বা ভূমির বর্ষিতাংশের উপর অঞ্চিত লম্বকে ঐ ত্রিভুজের উচ্চতা বলা হয়। আর কোনো ত্রিভুজের যে বিন্দুতে উচ্চতা বা তার বর্ষিতাংশ তিনটি পরস্পারকে ছেদ করে সেই বিন্দুকে লম্ববিন্দু বলা হয়।

৯.৩ ত্রিভুজের অন্তঃস্থ ও বহিঃস্থ কোণ

ধরি, যেকোনো একটি ত্রিভুজ ABC, যার তিনটি বাহ AB, BC ও AC।

উপরের চিত্রের ∆ABC এর ভিতরের দিকে তিনটি শীর্ষবিন্দুতে ∠BAC, ∠ABC ও ∠ACB উৎপন্ন করেছে। এই কোণ তিনটিকে ত্রিভূজের অন্তঃস্থকোণ বলা হয়।

যেকোনো ব্রিভুজের তিনটি শীর্ষবিন্দুতে ব্রিভুজের ভিতরের দিকে যে তিনটি কোণ উৎপন্ন হয় তাদেরকে ব্রিভুজের অন্তঃস্থকোণ বলা হয়।

ত্রিভুজের বহিঃস্থ কোণ

মনে করি, যেকোনো একটি ত্রিভুজ ABC, যার তিনটি বাহ AB, BC ও AC এবং তিনটি কোণ $\angle ABC$, $\angle ACB$ ও $\angle BAC$ । এখন $\triangle ABC$ এর যেকোনো একটি বাহ BC কে D পর্যন্ত বর্ধিত করি। এতে $\triangle ABC$ এর বাইরের দিকে $\angle ACD$ উৎপন্ন হয়েছে। এই কোণকে কী কোণ বলব?

পরিশিষ্ট

 $\triangle ABC$ এর $\angle ABC$, $\angle ACB$ ও $\angle BAC$ কে অন্তঃস্থ কোণ বলা হয়। আর $\angle ACD$ কে বহিঃস্থ কোণ বলা হয়।

যেকোনো ত্রিভুজের যেকোনো বাহকে যেকোনো দিকে বর্ধিত করলে বাইরের দিকে যে কোণ উৎপন্ন হয় তাকে ঐ ত্রিভুজের বহিঃস্থ কোণ বলা হয়।

উপরের চিত্রে দেখা যাচ্ছে, বহিঃস্থ $\angle ACD$ এর সন্নিহিত কোণ হলো $\angle ACB$ । কিন্তু $\angle ABC$ ও $\angle BAC$ কোণ দৃটিকে কী কোণ বলব?

∆ABC এ, ∠ABC ও ∠BAC কোণ দুটিকে বহিঃস্থ ∠ACD এর অন্তঃস্থ বিপরীত কোণ বলা হয়।

যেকোনো ত্রিভুজের বহিঃস্থ কোণের সন্নিহিত কোণ ছাড়া ত্রিভুজের অভ্যন্তরে যে দুটি কোণ থাকে তাদেরকে ঐ বহিঃস্থ কোণের অন্তঃস্থ বিপরীত কোণ বলা হয়।

ত্রিভুজের তিন কোণের সমষ্টি

মনে করি, যেকোনো একটি ব্রিভুজ ABC, যার তিনটি কোণ $\angle ABC$, $\angle ACB$ ও $\angle BAC$ । এখানে $\triangle ABC$ এর তিনটি কোণের সমষ্টি অর্থাৎ ($\angle ABC + \angle ACB + \angle BAC$) নির্ণয় করতে হবে।

অঞ্চন: A বিন্দু দিয়ে BC || PQ আঁকি।

চিত্র থেকে দেখা যাচ্ছে, $BC \parallel PQ$ এবং এদের ছেদক AB। তাই ছেদক বিপরীত পাশে উৎপন্ন $\angle ABC$ ও $\angle PAB$ একান্তর কোণ দুটি সমান। অর্থাৎ $\angle ABC = \angle PAB = x$... (i) আবারো দেখা যাচ্ছে, $BC \parallel PQ$ এবং এদের ছেদক AC। তাই ছেদকের বিপরীত পাশে উৎপন্ন $\angle ACB$ ও $\angle QAC$ একান্তর কোণ দুটি সমান। অর্থাৎ $\angle ACB = \angle QAC = y$... (ii) আবার PQ রেখার A বিন্দুতে AB রেখা ছেদ করায় $\angle BAP$ ও $\angle BAQ$ দুইটি সন্নিহিত কোণ উৎপন্ন করেছে। তাই আমরা লিখতে পারি:

 $\angle BAP + \angle BAQ = 180^\circ$ $\angle BAP + \angle BAC + \angle CAQ = 180^\circ$ [$\angle BAC + \angle CAQ = \angle BAQ$] $\angle ABC + \angle BAC + \angle ACB = 180^\circ$ অর্থাৎ $\triangle ABC$ এর তিনটি অন্তঃস্থ কোণের সমষ্টি 180° বা দুই সমকোণ।

যেকোনো ত্রিভুজের তিনটি অন্তঃস্থ কোণের সমষ্টি 180° এবা দুই সমকোণ। এটা ইউক্লিডের প্রতিজ্ঞা ৩২।

দশম অধ্যায় এর সংযুক্তি

আমাদের চারদিকে বিভিন্ন আকৃতি (shape) ও আকার (size) এর বস্তু দেখতে পাই। তাই এই দুটি জিনিস নিয়ে পরিক্ষার ধারণা থাকা দরকার। তাই নিচের চিত্রগুলো ভালো করে দেখি।

- চিত্র 1 ও 2 এর আকৃতি ভিন্ন ভিন্ন কিন্তু আকার একই। অর্থাৎ ছবি দুটি পরিমাপের দৃষ্টিতে সমান কিন্তু দেখতে আলাদা।
- চিত্র 3 ও 4 এর আকৃতি একই কিন্তু আকার ভিন্ন ভিন্ন। অর্থাৎ ছবি দুটি দেখতে একই রকম কিন্তু পরিমাপের দৃষ্টিতে আলাদা। এই ধরনের জিনিসগুলোকে পরস্পরের সদৃশ বলা হয়।
- চত্র 5 ও 6 এর আকৃতি ও আকার উভয়ই একই। অর্থাৎ ছবি দুটি দেখতে একই রকম এবং পরিমাণগত
 দিক থেকেও সমান। তাই এরা দেখতে হবহ সমান। এই ধরনের জিনিসগুলোকে পরস্পরের সর্বসম বলা
 হয়।

এই অধ্যায়ে আমরা জ্যামিতির দুটি অত্যন্ত গুরুত্পূর্ণ ধারণা- সর্বসমতা ও সদৃশতা নিয়ে আলোচনা করব। তবে আমরা শুধুমাত্র সমতলীয় সর্বসমতা ও সদৃশতা মধ্যেই আলোচনা সীমিত রাখব।

১০.১ সর্বসমতা

নিচের সমতলীয় চিত্রগুলো দেখে তাদের আকার ও আকৃতি নিয়ে আলোচনা করি।

১. পুরোপুরি ঢাকা হচ্ছে, কোনো ছোটো জিনিসকে তারচেয়ে বড় জিনিস দিয়ে ঢেকে দেওয়া। এখানে চিত্র ২-এ দেখা যাছে, ABCD তলের সম্পূর্ণ অংশকে EFGH তল দ্বারা ঢাকা হয়েছে। বিপরীতভাবে বলা যায় EFGH তলের কিছু অংশকে ABCD তল দ্বারা ঢাকা হয়েছে। তাই বলা যায়, এই দুটি চিত্র আকৃতিতে একই হলেও আকারে ভিন্ন ভিন্ন। একারণে ABCD ও EFGH সর্বসম নয়।

ফর্মা নং-২৩, গণিত-৭ম শ্রেণি

২. হবহ ঢাকা বা স্বতোভাবে মিলার যাওয়ার অর্থ হচ্ছে, কোনো একটি জিনিসের প্রতিটি বিন্দুর সাথে অন্য একটি জিনিস মিলে যাওয়া। এখানে চিত্র ১, ৩, ৪ থেকে যথাক্রমে দেখা যাচ্ছে, ABC তলটি DEF দ্বারা, ABCD তলটি EFGH দ্বারা ও ABCDEF তলটি GHIJKL দ্বারা হবহ ঢেকে বা সর্বতোভাবে মিলে গেছে। তাই এই চিত্রগুলোর আকৃতি ও আকার উভয়ই একই। একারণে এগুলো সর্বসম ও সর্বদা সমান।

- ৩. চিত্র ৩ থেকে দেখা যাছে, AB রেখাংশটি GH রেখাংশ দ্বারা হবহ ঢেকে বা সর্বতোভাবে মিলে গেছে তাই AB ও GH পরস্পর সর্বসম। আবার চিত্র ২ থেকে দেখা যাছে, AB রেখাংশটি GH দ্বারা আংশিকভাবে ঢেকে গেছে AB ও GH পরস্পর সর্বসম নয় এবং দৈর্ঘ্যও অসমান। সুতরাং বলা যায়, দুটি রেখাংশের দৈর্ঘ্য সমান হলেই তারা পরস্পর সর্বসম হবে।
- 8. চিত্র ৫ ও ৬ থেকে যথাক্রমে দেখা যাচ্ছে, $\angle ABC = 40^\circ$ ও $\angle DEF = 40^\circ$ তাই $\angle ABC = \angle DEF$ অর্থাৎ কোণ দুটির মান সমান। দুটো কোণের মান সমান হলে তাদের পরস্পরকে হবহ ঢাকা বা র্সবতোভাবে মিলে যায়। একারণে তারা পরস্পর সর্বসম ও সমান। আবার চিত্র ৬ ও ৭ থেকে যথাক্রমে দেখা যাচ্ছে, $\angle DEF = 40^\circ \neq \angle RST = 60^\circ$ অর্থাৎ কোণ দুটির মান অসমান। তাই দুটি কোণের মান অসমান হওয়ায় তারা পরস্পরকে হবহ ঢাকা বা সর্বতোভাবে মিলে যাচ্ছে না। এ কারণে তারা পরস্পর সর্বসম নয় ও তারা পরস্পর অসমান।

উপরের উদাহরণগুলো থেকে বলা যায়, একটি বন্ধুর সাথে অপর একটি বন্ধু দারা হবহ ঢাকা বা সর্বতোভাবে মিলে যায়, তাহলে ঐ বন্ধু দুটিকে পরস্পরের সর্বসম বলা হয়।

যখন একটি বন্ধুর সাথে অপর একটি বন্ধু দারা হবহ ঢাকা বা সর্বতোভাবে মিলে যায়, তখন ঐ বন্ধু দুটিকে পরস্পরের সর্বসম বলা হয়। অন্যভাবে, যখন দুটি বন্ধুর আকৃতি ও আকার উভয়ই একই রকম হয়, তখন সেই বন্ধু দুটিকে সর্বসম বলা হয়।

এখন যদি ABCD ও EFGH পরস্পর সর্বসম হয়, তহলে আমরা ABCD ≅ EFGH এভাবে লিখে প্রকাশ করি। এর অর্থ হলো ABCD ও EFGH পরস্পর সর্বসম।

১০.২ ব্রিভুজের সর্বসমতা

১. পরের পৃষ্ঠার চিত্র ১ থেকে দেখা যাচ্ছে, △ABC ও △DEF পরস্পরের সাথে হবহ বা সর্বতোভাবে মিলে গেছে এবং দুটি ত্রিভুজের আকার ও আকৃতি উভয়ই একই রকমের হয়, তাই ত্রিভুজ দুটিকে সর্বসম বলা হয়। অন্যভাবে বলা যায়, একটি ব্রিভুজ দিয়ে অন্য আরেকটি ব্রিভুজকে যদি হবহ বা সর্বতোভাবে মিলে যায়, তাহলে ব্রিভুজ দুটিকে সর্বসম বলা হয়। এখানে হবহ বা সর্বতোভাবে মিলে যাওয়ার অর্থ হলো কোনো একটি ব্রিভুজের প্রতিটি বিন্দুর সাথে অন্য একটি ব্রিভুজের প্রতিটি বিন্দুর হবহ বা সর্বতোভাবে মিলে যাওয়া বুঝায়। তাই দুটি ব্রিভুজ যদি সর্বসম হয়, তাহলে ঐ ব্রিভুজ দুটির অনুরূপ বাহগুলো ও অনুরূপ কোণগুলো পরস্পর সমান হয়ে যায়।

চিত্র ১: হবহ মিলে গেছে

চিত্র ২: পুরোপুরি ঢাকা

১. উপরের চিত্র ২ থেকে দেখা যাচ্ছে, ΔABC ও ΔDEF পরস্পরের সাথে হবহ বা সর্বতোভাবে মিলে যায়নি এবং দুটি ত্রিভুজের আকৃতি একই হলেও আকার ভিন্ন ভিন্ন ত্রিভুজ দুটি সর্বসম নয়।

দুটি ব্রিভুজের যদি আকার ও আকৃতি উভয়ই একই রকমের হয়, তাহলে ব্রিভুজ দুটিকে সর্বসম বলা হয়। আর যদি দুটি ব্রিভুজ সর্বসম হয়, তাহলে ঐ ব্রিভুজ দুটির অনুরূপ বাহপুলো ও অনুরূপ কোণগুলো পরস্পর সমান হয়ে যায়।

এখন যদি ΔABC ও ΔDEF পরস্পর সর্বসম হয়, তহলে আমরা $\Delta ABC\cong \Delta DEF$ এভাবে লিখে প্রকাশ করি। এর অর্থ হলো ΔABC ও ΔDEF পরস্পর সর্বসম।

এবার ব্রিভুজের সর্বসমতা প্রমাণের জন্য কী তথ্য প্রয়োজন? এ জন্য দলগতভাবে নিচের কাজটি ক্র:

কাজ:

- ২. ব্রিভুজ দুটির তৃতীয় বাহর দৈর্ঘ্য এবং অন্য কোণ দুটি পরিমাপ কর।
- তামাদের পরিমাপগুলো তুলনা কর। এখান থেকে কি কিছু দেখতে পাছ?