Information Extraction from Invoices

By-Adarsh Ghimire Nhujaw Tuladhar

Problem Statement

- Manual invoice processing is time-consuming and error-prone.
- Variations in invoice templates make rule-based methods brittle.
- Need for an automated solution to extract structured data from invoices.

Objectives

- Develop an AI-based information extraction system that can parse invoice images and extract key-value pairs and tabular data.
- Leverage AI models to handle invoices of varying layouts and formats.
- Output structured JSON matching the dataset's defined schema.
- Build a UI for interactive demonstration of invoice parsing.

Dataset

- So for training <u>Data</u> for Information Extraction we used katanaml-org (invoices-donut-data-v1). Source: Hugging Face.
- Each sample includes an invoice image and its structured JSON ground truth.
- Enables supervised fine-tuning for accurate field extraction.
- Total Samples: 501 (Train: 425, Val: 50, Test: 26)

Invoice no: 40378170

Date of issue:

10/15/2012

Seller:

Patel, Thompson and Montgomery 356 Kyle Vista New James, MA 46228

Tax ld: 958-74-3511 IBAN: GB77WRBQ31965128414006

Client:

Jackson, Odonnell and Jackson 267 John Track Suite 841 Jenniferville, PA 98601

Tax Id: 998-87-7723

ITEMS

No.	Description	Qty	им	Net price	Net worth	VAT [%]	Gross worth
1.	Leed's Wine Companion Bottle Corkscrew Opener Gift Box Set	1,00	each	7,50	7,50	10%	8,25

SUMMARY

	VAT [%]	Net worth	VAT	Gross worth
	10%	7,50	0,75	8,25
Tota	ı	\$ 7,50	\$ 0,75	\$ 8,25

{"gt_parse": {"header": {"invoice_no": "40378170", "invoice_date": "10/15/2012", "seller": "Patel, Thompson and
Montgomery 356 Kyle Vista New James, MA 46228", "client": "Jackson, Odonnell and Jackson 267 John Track Suite 841
Jenniferville, PA 98601", "seller_tax_id": "958-74-3511", "client_tax_id": "998-87-7723", "iban":
"GB77WRBQ31965128414006"}, "items": [{"item_desc": "Leed's Wine Companion Bottle Corkscrew Opener Gift Box Set with
Foil Cutter", "item_qty": "1,00", "item_net_price": "7,50", "item_net_worth": "7,50", "item_vat": "10%",
"item_gross_worth": "8,25"}], "summary": {"total_net_worth": "\$7,50", "total_vat": "\$0,75", "total_gross_worth":
"\$8,25"}}}

Model

We chose Qwen 2.5 VL because it is a cutting-edge Multimodal Large Language Model (MLLM) that processes both images and text.

Ideal for Invoices due to:

- Visual Understanding: Interprets invoice layouts, spatial relationships, and text appearance.
- Language Understanding: Extracts specific entities and interprets textual context.
- **Contextual Reasoning:** Fuses visual and text cues for robust, accurate extraction across variations.
- **Efficient Fine-tuning:** Leverages strong pre-trained knowledge for rapid task adaptation.

Model Architecture

System Architecture

Fine-Tuning Process: Overview & Base Model

- Base Family: Qwen2.5-VL (multimodal vision-language model).
- **Checkpoint Used:** Pre-trained *Qwen/Qwen2.5-VL-3B-Instruct* as foundation.
- ~3B parameters; strong visual understanding while GPU-friendly.
- Accepts image + instruction text.
- Loaded in 4-bit precision for efficiency (load_in_4bit=True).
- Enables training on modest GPUs without severe performance loss.

Fine-Tuning Process: PEFT with LoRA

Challenge: Full fine-tuning large VLMs is compute-heavy.

So, we used **Unsloth FastVisionModel + LoRA (PEFT)** to update only lightweight adapter ranks instead of all weights.

Comprehensive Adaptation: We enabled LoRA for both *vision* and *language* paths:

- finetune_vision_layers
- finetune_language_layers
- finetune_attention_modules
- finetune_mlp_modules

LoRA Config: r=32, $lora_alpha=32$.

Fine-Tuning Process: Hyperparameters

We used:

- Hugging Face TRL SFTTrainer for supervised fine-tuning.
- UnslothVisionDataCollator for multimodal batching.

Key Hyperparameters:

- Epochs: 3
- Learning Rate: 2e-4
- Optimizer: adamw_8bit
- Batch Size: 1 / device (gradient_accumulation=1)
- Max Seq Len: 1024 tokens
- Mixed Precision: bf16 or fp16 fallback

Training Loss

- Observed a rapid initial decrease followed by a steady decline in training loss, indicating the model quickly adapted and continuously refined its understanding of invoice data.
- The curve's eventual flattening demonstrates successful convergence and effective fine-tuning, confirming the model's robust learning of information extraction patterns.

User Interface

Deploy

Invoice Information Extraction

Upload an invoice image to extract structured data in JSON format.

Upload Invoice Image

Browse files

Emilia Edding per me 1 ma, at a, at E.

test_image.png 479.6KB

×

Uploaded Invoice

Invoice no: 62517865

Date of issue: 06/02/2015

Seller:

Trujillo-Hunt 430 Mark Ferry Suite 495 Maxside, DC 65686

Tax Id: 992-71-8540 IBAN: GB73HCPH34959888432899

Client:

Lee and Sons 8552 Karen Islands East Roger, ID 40416

Tax Id: 929-86-0601

Extracted Data

```
Extract Data

* {
        " "header" : {
            "invoice_no" : "62517865"
            "invoice_date" : "06/02/2015"

        "seller" : "Thijjio>Hunt 430 Mark Ferry Suite 495 Maxside, DC 65686"
        "client" : "Lee and Sons 8552 Karen Islands East Roger, ID 40416"
        "seller_tax_id" : "992-71-8540"
        "client_tax_id" : "929-86-0601"
        "iban" : "GB73HCPH34959888432899"
    }

* "items" : [
            "0 : {
                 "item desc" : "Care & Repair of Furniture"
```

Evaluation

We employed a multi-faceted evaluation strategy combining text similarity metrics with structured field accuracy.

ROUGE Scores:

- Used to evaluate overlap and quality of generated text vs. ground truth.
- Achieved:
 - o **ROUGE-1**: 0.9718
 - o **ROUGE-2**: 0.9518
 - o **ROUGE-L:** 0.9706
 - o **ROUGE-Lsum**: 0.9705
- These high ROUGE values indicate strong textual fidelity.

Evaluation [contd..]

Custom Structured Accuracy Metrics:

- Developed a field-level evaluation script to measure exact matches, data type handling, and normalization.
- Provides granular insight into which fields are extracted correctly.

Overall Structured Extraction Accuracy (Test Set – 26 invoices):

- Micro Accuracy: 0.8939 (≈89.39%)
 - Percentage of all individual fields correctly extracted across all test invoices.
- Macro Accuracy: 0.8606 (≈86.06%)
 - Average accuracy per field type, preventing dominant fields from skewing results.
- Prediction Parse Failures: 0
 - The model always produced valid JSON, ensuring reliability in downstream pipelines.

Future Work & Enhancements

- Enhance accuracy for challenging invoices and refine error handling.
- Broaden the dataset to include more diverse invoice types and support additional languages/regions.
- Implement strategies for ongoing model improvement with new data and feedback.

Thank You