Convolutional Learning on SCs

Linear

$$\mathbf{H} := \mathbf{H}(\mathbf{L}_{d}, \mathbf{L}_{u}; \boldsymbol{\alpha}, \boldsymbol{\beta}) = \sum_{k=0}^{K_{d}} \alpha_{k} \mathbf{L}_{d}^{k} + \sum_{k=0}^{K_{u}} \beta_{k} \mathbf{L}_{u}^{k}$$

$\widetilde{h}_{G}(\lambda) \qquad \widetilde{h}_{C}(\lambda) \\ Hodge Lap. smoothing$ $\lambda_{G,1} \quad \lambda_{C,1} \qquad \lambda_{G,i} \qquad \lambda_{G,i} = \lambda_{C,i} \qquad \lambda_{C,N_{C}} \quad \lambda_{G,N_{G}} \quad \lambda$

Non-Linear

Learning for Forex

Table 1: Forex results (nmse|total arbitrage, \downarrow).

Methods	Random Noise	Curl Noise	Interpolation
Input Baseline (ℓ_2 regularization) SNN (Ebli et al., 2020) PSNN (Roddenberry et al., 2021) MPSN (Bodnar et al., 2021b)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 0.552_{\pm 0.027} 122.4_{\pm 5.90} \\ 0.050_{\pm 0.002} 11.12_{\pm 0.537} \\ 0.446_{\pm 0.017} 86.95_{\pm 2.20} \\ 0.000_{\pm 0.000} 0.000_{\pm 0.000} \\ 0.076_{\pm 0.012} 14.92_{\pm 2.49} \end{array}$	$\begin{array}{c} 0.717_{\pm .030} 106.4_{\pm 0.902} \\ 0.534_{\pm 0.043} 9.67_{\pm 0.082} \\ 0.702_{\pm 0.033} 104.74_{\pm 1.04} \\ 0.009_{\pm 0.001} 1.13_{\pm 0.329} \\ 0.117_{\pm 0.063} 23.15_{\pm 11.7} \end{array}$
SCCNN, id SCCNN, tanh	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 0.000_{\pm 0.000} 0.000_{\pm 0.000} \\ 0.000_{\pm 0.000} 0.003_{\pm 0.003} \end{array}$	$0.265_{\pm 0.036} 0.000_{\pm 0.000} \ 0.003_{\pm 0.002} 0.279_{\pm 0.151}$

ZAR