Reference Sheet for CO142.1 Discrete Mathematics I

Autumn 2016

Proofs in Discrete Mathematics

- 1. Use Venn diagrams, directed graphs, or another visual representation to gain an intuition of what needs to be shown.
- 2. Use definitions to create a logical statement.
- 3. Use logical arguments to prove the statement.
 - (a) In general, equivalences from CO140 should be sufficient.
 - (b) If something is false, try to find a simple counterexample.
 - (c) If under a for-all quantifier, consider an arbitrary object.
 - (d) For an if-then statement, assume the antecedent and prove the consequent.
 - (e) For an equality or if-and-only-if, ensure your argument is bidirectional.
- 4. Use definitions to return to set notation.

1 Sets

A set is a collection of definite and separate objects.

Russel's Paradox The collection $R \triangleq \{X \text{ is a set} | X \notin X\}$ is not a set. Can be proven by contradiction when considering a set R (consider the cases $R \in R$ and $R \notin R$).

Comparing Sets

- 1. Subset: $A \subseteq B \triangleq \forall x \in A (x \in B)$.
- 2. Equality: $A = B \triangleq A \subseteq B \land B \subseteq A$.

If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Basic Operators

- 1. Union: $A \cup B \triangleq \{x | x \in A \lor x \in B\}$.
- 2. Intersection: $A \cap B \triangleq \{x | x \in A \land x \in B\}$.
- 3. Difference: $A \setminus B \triangleq \{x | x \in A \land x \notin B\}$.
- 4. Symmetric Difference: $A \triangle B \triangleq (A \backslash B) \cup (B \backslash A)$.

 $A, B \text{ are } disjoint \triangleq A \cap B = \emptyset.$

To make any union $A \cup B$ disjoint, consider $A \cup (B \setminus A)$.

Properties of Basic Operators

- $1. \ Idempotence$
 - (a) $A \cup A = A$
 - (b) $A \cap A = A$
- $2. \ \ Commutativity$
 - (a) $A \cup B = B \cup A$
 - (b) $A \cap B = B \cap A$
 - (c) $A \triangle B = B \triangle A$
- 3. Associativity
 - (a) $A \cup (B \cup C) = (A \cup B) \cup C$
 - (b) $A \cap (B \cap C) = (A \cap B) \cap C$
- 4. Empty Set
 - (a) $A \cup \emptyset = A$

- (b) $A \cap \emptyset = \emptyset$
- (c) $A \triangle A = \emptyset$
- $5. \ Distributivity$
 - (a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - (b) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $6. \ Absorption$
 - (a) $A \cup (A \cap B) = A$
 - (b) $A \cap (A \cup B) = A$

Cardinality

- 1. Cardinality: |A| is defined as the number of distinct elements contained in A.
- 2. Principle of Inclusion-Exclusion (for two sets): $|A \cup B| = |A| + |B| |A \cap B|$.

Power Set

- 1. Power set: $\mathcal{P}A \triangleq \{X | X \subseteq A\}$.
- 2. For a finite set A with |A| = n, $|\mathcal{P}A| = 2^n$.

Products For arbitrary sets A and B:

- 1. Ordered pair of elements of A and B is written as $\langle a, b \rangle$.
- 2. Cartesian product: $A \times B \triangleq \{ \langle a, b \rangle | a \in A \land b \in B \}.$
- 3. For a finite sets A and B, $|A \times B| = |A| \times |B|$.
- 4. *n*-ary product: $A_1 \times A_2 \times \cdots \times A_n \triangleq \{\langle a_1, a_2, \dots, a_n \rangle | \forall 1 \leq i \leq n \ (a_i \in A_i) \}.$

Partitions A partition of S is a family A_1, A_2, \ldots, A_n of subsets S such that:

- 1. A_i is not empty: $\forall 1 \leq i \leq n \ (A_i \neq \emptyset)$.
- 2. The A_i cover $S: S = \bigcup_{i=1}^n A_i$.
- 3. The A_i are pairwise disjoint: $\forall 1 \leq i, j \leq n \ (i \neq j \implies A_i \cap A_j = \emptyset)$ (or the contrapositive).

Pigeonhole Principle If a set of n distinct objects is partitioned into k subsets, where 0 < k < n, then at least one subset must contain at least two elements.

2 Relations

- 1. A relation R satisfies $R \subseteq A \times B$. It has type $A \times B$.
- 2. A binary relation on A has type A^2 .

Relations can be represented as:

- 1. A subset of a product set.
- 2. A diagram with arrows between elements in two sets.
- 3. A directed graph, for a binary relation.
- 4. A matrix: for $R \subseteq A \times B$, rows are based on A and columns on B.
- 5. Special representations, e.g. area on the plane for binary relations on R.

Basic Operators For $R, S \subseteq A \times B$:

- 1. Union: $R \cup S \triangleq \{\langle a, b \rangle \in A \times B | \langle a, b \rangle \in R \vee \langle a, b \rangle \in S\}$.
- 2. Intersection: $R \cap S \triangleq \{\langle a, b \rangle \in A \times B | \langle a, b \rangle \in R \land \langle a, b \rangle \in S\}.$
- 3. Complement: $\overline{R} \triangleq \{\langle a, b \rangle \in A \times B | \langle a, b \rangle \notin R\}.$
- 4. Inverse: $R^{-1} \triangleq \{\langle b, a \rangle \in A \times B | a R b\}$.

Identity $id_A = \{\langle x, y \rangle \in A^2 | x = y\}.$

Composition For $R \subseteq A \times B, S \subseteq B \times C$:

 $R \circ S \triangleq \{ \langle a, c \rangle \in A \times C | \exists b \in B (a R b \land b R c) \}.$

Equivalence Relations The binary relation R on A is an equivalence relation when R is reflexive, symmetric, and transitive.

- 1. R is reflexive $\triangleq \forall x \in A (x R x)$.
- 2. $R \text{ is } symmetric \triangleq \forall x, y \in A (x R y \implies y R x).$
- 3. R is transitive $\triangleq \forall x, z \in A (\exists y \in A (x R y \land y R z) \implies x R z)$.

For a binary relation R on A, this is equivalent to:

- 1. R is reflexive \iff id_A $\subseteq R$.
- 2. R is $symmetric \iff R = R^{-1}$.
- 3. R is transitive $\iff R \circ R \subseteq R$.

Equivalence Classes

- 1. For an equivalence relation R on A, for any $a \in A$, the equivalence class of a with respect to R is $[a]_R \triangleq \{x \in A | a \sim_R x\}$.
- 2. For an equivalence relation R on A, the set $\{[a]_R | a \in A\}$ forms a partition of A.

Transitive Closure Transitive closure: $a R^+ b = \exists n \geq 1 (a R^n b)$, i.e. $R^+ = \bigcup_{i \geq 1} R^i$. Contains at 'paths' in A through R. This is the smallest transitive relation containing R.

3 Functions

- 1. A function f from a set A to a set B, $f: A \to B$ is a relation $f \subseteq A \times B$ such that every element of A is related to one element in B.
- 2. A is the domain of f.
- 3. B is the co-domain of f.
- 4. Consider f(a) = b: a is the *pre-image* of b under f and b is the *image* of a under f. Every element of the domain has a single image but elements of the co-domain can have any number of pre-images.
- 5. An *n*-ary function is written $f(a_1, a_2, \ldots, a_n)$.
- 6. B^A denotes the set of all functions from A to B.
- 7. If |A| = m and |B| = n, then $|B^A| = n^m$ or $(n+1)^m$ including partial functions.

Formal Definition of a Function \dagger f is a function if it satisfies:

- 1. $f(a) = b_1 \wedge f(a) = b_2 \implies b_1 = b_2$.
- 2. $\forall a \in A \exists b \in B (f(a) = b)$.

Equality $f = g \triangleq \forall x \in A (f(x) = g(x)).$

Image Set

- 1. For $X \subseteq A$, $f[X] \triangleq \{f(a) \in B | a \in X\}$.
- 2. The *image set* of f is defined as $f[A] \subseteq B$.

Characteristic Functions

- 1. For sets $A, B \subseteq A$, the characteristic function of $B \subseteq A$ is the function $\chi_B : A \to \{0,1\}$ is defined as $\chi_B(a) \begin{cases} 1 & (a \in B) \\ 0 & (a \in A \setminus B) \end{cases}$.
- 2. For a relation $R \subseteq A_1 \times A_2 \times \cdots \times A_n$, the characteristic function of R is the function $\chi_R : A_1 \times A_2 \times \cdots \times A_n \to \{0,1\}$ is defined as $\chi_B\left(a_1,a_2,\ldots,a_n\right) \begin{cases} 1 & (\langle a_1,a_2,\ldots,a_n\rangle \in R) \\ 0 & (\langle a_1,a_2,\ldots,a_n\rangle \notin R) \end{cases}$.

Partial Functions A partial function need not satisfy clause 2 of \dagger (and so assigns each element in the domain to at most one element in the range). Functions that satisfy clause 2 are total functions.

Properties of Functions For a function $f: A \to B$:

- 1. f is surjective (onto) $\triangleq \forall b \in B \exists a \in A (f(a) = b)$ (every element of B is in the image of f).
- 2. f is injective (one-to-one) $\triangleq \forall a_1, a_2 \in A (f(a_1) = f(a_2) \Longrightarrow a_1 = a_2)$ (for each $b \in B$ there exists at most one $a \in A$ with f(a) = b).
- 3. f is $bijective \triangleq f$ is both one-to-one and onto.

Considering the cardinality of the sets A and B:

- 1. If f is onto, then $|A| \ge |B|$.
- 2. If f is one-to-one, then $|A| \leq |B|$.
- 3. If f is a bijection, then |A| = |B|.

The Pigeonhole Principle Applied to Functions For $f:A\to B$ and $X\subseteq A, |f[X]|\leq |X|$.

Cantor-Bernstein Theorem ‡ If there exists functions $f: A \to B$ and $g: B \to A$, both injective or both surjective, then there exists a bijection $h: A \to B$.

Operations on Functions For functions $f: A \to B$ and $g: B \to C$.

- 1. Composition: $g \circ f(a) = g(f(a))$, i.e. $g \circ f(a) = c \triangleq \exists b \in B(f(a) = b \land g(b) = c)$. Note that composition is associative. If f and g are bijections, then so is $g \circ f$.
- 2. *Identity*: The function $id_A: A \to A$ is defined as $id_A(a) = a$.
- 3. Inverse: The function $f': B \to A$ is an inverse of f whenever: $\forall a \in A (f' \circ f (a) = a)$ and $\forall b \in B (f \circ f' (b) = b)$, i.e. $f' \circ f = id_A$ and $f \circ f' = id_B$. For f to have an inverse, f must be a bijection, and the inverse is unique.

Cardinality of Sets

- 1. $A \sim B \triangleq \exists f: A \to B \ (f \text{ is a bijection}).$ The relation \sim is an equivalence relation.
- 2. Hence if there exist functions $f:A\to B$ and $g:B\to A$, both injective or both surjective, then $A\sim B$ (by \ddagger).
- 3. We say A and B have the same cardinality, whenever $A \sim B$.

Cantor's Theorem For any set A, $A \not\sim \mathcal{P}A$. To prove, assume a bijection $f:A\to\mathcal{P}A$ exists. Consider $B=\{a\in A|a\notin f(a)\}$. Since f is a bijection, there exists some $b\in A$ such that f(b)=B. Then consider individually the cases $b\in B$ and $b\notin B$ to generate a contradiction.

4 Infinity

Countability A set A is countable if A is finite or $A \sim \mathbb{N}$. This is equivalent to:

- 1. B is countable and $A \subseteq B$.
- 2. There exists a surjection $f: \mathbb{N} \to A$.

Uncountability Cantor's diagonal argument produces an object that does not exist in any list. Hence any list is incomplete and so the set is uncountable.

5 Orderings

For a binary relation R on A:

- 1. R is a pre-order: R is reflexive and transitive.
- 2. R is anti-symmetric: $\forall x, y \in A (x R y \land y R x \implies x = y)$.
- 3. R is a partial order relation: R is reflexive, transitive and anti-symmetric. Usually denoted by \leq_A .
- 4. R is irreflexive: $\forall a \in A (\neg (a R a))$.
- 5. R is a strict partial order relation: R is irreflexive and transitive. Usually denoted by $<_A$.
- 6. R is a total (linear) order: R is a partial order that also satisfies $\forall a, b \in A (a R b \lor b R a)$.

Ordering of Products

- 1. Product order: $\langle a_1, b_1 \rangle \leq_P \langle a_2, b_2 \rangle \triangleq a_1 \leq_A a_2 \wedge b_1 \leq_B b_2$
- 2. Lexicographic order: First compare a_i s, then b_i s.

Hasse Diagrams Definitions:

- 1. If R is a partial order on set A and a R b for $a \neq b$, a is a predecessor of b and b is a successor of a.
- 2. If a is a predecessor of b and there exists no $c \neq a, b$ with a R c and c R b then a is the *immediate predecessor* of b.

Hasse diagrams:

- 1. Record only immediate predecessors.
- 2. Direction of lines omitted, lines are directed 'up the page'.

Properties of Partial Orders For the partial order \leq_A and $a \in A$:

- 1. $a \text{ is minimal} \triangleq \forall b \in A (b \le a \implies b = a).$
- 2. a is least $\triangleq \forall b \in A (a < b)$.
- 3. $a \text{ is maximal} \triangleq \forall b \in A (a \leq b \implies a = b).$

4. a is greatest $\triangleq \forall b \in A (b \leq a)$.

Note that:

- 1. Any least / greatest element is a minimal / maximal element respectively.
- 2. Any least / greatest element is unique.
- 3. If A is finite and non-empty, then \leq_A must have a minimal, maximal element.
- 4. If \leq_A is a total order, where A is finite and non-empty, then it has a least, greatest element.

Well-Founded Partial Orders

- 1. A partial order is well-founded if it has no infinite decreasing chain of elements, i.e. for every infinite sequence a_1, a_2, a_3, \ldots of elements in A with $a_1 \geq a_2 \geq a_3 \geq \ldots$, there exists $m \in \mathbb{N}$ such that $m \geq 1$ and $a_n = a_m$ for every $n \geq m$.
- 2. If two partial orders \leq_A and \leq_B are well-founded, then the lexicographical order \leq_L on $A \times B$ is also well-founded.