

Appunti di Algoritmi e Strutture Dati

a.a. 2017/2018

 $\begin{array}{c} {\rm Autore:} \\ {\bf Timoty~Granziero} \end{array}$

Repository:

https://github.com/Vashy/ASD-Notes

Indice Indice

Indice

1		ione del $28/02/2018$	4
	1.1	Problem Solving	4
	1.2	Cosa analizzeremo nel corso	ļ
		1.2.1 Approfondimento sul tempo di esecuzione $T(n)$	ļ
	1.3	Problema dell'ordinamento (sorting)	ţ
	1.4	Insertion Sort	(
		1.4.1 Invarianti e correttezza	7
2	Lez	ione del $02/03/2018$	8
	2.1	Modello dei costi	8
	2.2	Complessità di IS	Ć
		2.2.1 Caso migliore	Ć
		2.2.2 Caso peggiore	Ć
		2.2.3 Caso medio	10
	2.3	Divide et Impera	10
	2.4	Merge Sort	10
		2.4.1 Invarianti e correttezza	12
3	Lez	ione del $07/03/2018$	14
	3.1	Approfondimento sull'induzione	14
		3.1.1 Induzione ordinaria	14
			14
	3.2	Complessità di Merge Sort	14
	3.3	Confronto tra IS e MS	16
4	Lez	ione dell' $08/03/2018$	17
	4.1	Notazione asintotica	17
		4.1.1 Limite asintotico superiore	
		4.1.2 Limite asintotico inferiore	20
		4.1.3 Limite asintotico stretto	21
	4.2	Metodo del limite	22
	4.3	Alcune proprietà generali	22
5	Lez	ione del $09/03/2018$	2 3
	5.1	Complessità di un problema	23
	5.2	Esempio: limite inferiore per l'ordinamento basato su scambi .	23
	5.3	Soluzione di ricorrenze	24
		5.3.1 Metodo di sostituzione	25
6	Lez	ione del 14/03/2018	27

. 1.	т 1•	
ndice	Indic	_
HUHUU		•

7	Lezi 7.1	Master Theorem	30 30 31
8	Lezi 8.1	Heapsort	35 35 36 39
9	Lezi 9.1	Quicksort	42 42 43 44
10	10.1 10.2	Quicksort a tre partizioni	46 46 47 47 49
11	11.1	Radix Sort	51 51 51 52 52
12		Chaining	54 54 54 56 57
13		Open Addressing	58 58 59 59
14		, ,	6 3 63

Indice Indice

	- .	1.1.00/04/0040	
15		ione del $26/04/2018$	64
	15.1	Alberi Binari di Ricerca (ABR)	64
		15.1.1 Visita simmetrica	65
		15.1.2 Ricerca	65
		15.1.3 Successore di un nodo	67
		15.1.4 Inserimento	68
		15.1.5 Eliminazione di un nodo	68
16	Lezi	ione del $27-28/04/2018$	70
		Red-Black Trees	70
		16.1.1 Complessità algoritmi RB-Trees	72
		16.1.2 RB-Insert e RB-Delete	72
		10.112 102 112010 0 102 2 01000 1 1 1 1 1 1	. –
17	Lezi	ioni del $03-04/05/2018$	77
	17.1	Arricchimento di Strutture Dati	77
		17.1.1 Statistiche d'ordine	77
		17.1.2 Teorema dell'aumento degli RB-Trees	80
		17.1.3 Interval Trees	80
A	pen	dices	82
Αŗ	pen	dices	82
-	-	dices colta algoritmi	8282
-	-		
-	Rac A.1	colta algoritmi	82
-	Rac A.1	colta algoritmi Insertion Sort	82 82
-	Rac A.1 A.2	colta algoritmi Insertion Sort	82 82 82
-	Rac A.1 A.2	colta algoritmi Insertion Sort	82 82 82 83
-	Rac A.1 A.2	colta algoritmi Insertion Sort	82 82 82 83 83
-	Rac A.1 A.2 A.3	colta algoritmi Insertion Sort	82 82 82 83 83 84
-	Rac A.1 A.2 A.3	colta algoritmi Insertion Sort	82 82 82 83 83 84 84
-	Rac A.1 A.2 A.3	colta algoritmi Insertion Sort	82 82 83 83 84 84 85
-	Rac A.1 A.2 A.3	Insertion Sort Merge Sort Insertion Sort ricorsivo A.3.1 Correttezza di Insertion-Sort(A, j) A.3.2 Correttezza di Insert(A, j) CheckDup A.4.1 Correttezza di DMerge(A,p,q,r) SumKey A.5.1 Correttezza di Sum(A, key)	82 82 83 83 84 84 85 85
-	Rac A.1 A.2 A.3 A.4	colta algoritmi Insertion Sort	82 82 82 83 84 84 85 85
A	Rac A.1 A.2 A.3 A.4 A.5 A.6 A.7	Colta algoritmi Insertion Sort Merge Sort Insertion Sort ricorsivo A.3.1 Correttezza di Insertion-Sort(A, j) A.3.2 Correttezza di Insert(A, j) CheckDup A.4.1 Correttezza di DMerge(A,p,q,r) SumKey A.5.1 Correttezza di Sum(A, key) Heapsort Code con priorità	82 82 83 83 84 84 85 86 88 89
-	A.1 A.2 A.3 A.4 A.5 A.6 A.7 Eser	colta algoritmi Insertion Sort Merge Sort Insertion Sort ricorsivo A.3.1 Correttezza di Insertion-Sort(A, j) A.3.2 Correttezza di Insert(A, j) CheckDup A.4.1 Correttezza di DMerge(A,p,q,r) SumKey A.5.1 Correttezza di Sum(A, key) Heapsort Code con priorità	82 82 83 83 84 84 85 86 88 89
A	A.1 A.2 A.3 A.4 A.5 A.6 A.7 Eser B.1	colta algoritmi Insertion Sort Merge Sort Insertion Sort ricorsivo A.3.1 Correttezza di Insertion-Sort(A, j) A.3.2 Correttezza di Insert(A, j) CheckDup A.4.1 Correttezza di DMerge(A,p,q,r) SumKey A.5.1 Correttezza di Sum(A, key) Heapsort Code con priorità Ricorrenze	82 82 83 83 84 85 85 86 88 89 91
A	A.1 A.2 A.3 A.4 A.5 A.6 A.7 Eser	colta algoritmi Insertion Sort Merge Sort Insertion Sort ricorsivo A.3.1 Correttezza di Insertion-Sort(A, j) A.3.2 Correttezza di Insert(A, j) CheckDup A.4.1 Correttezza di DMerge(A,p,q,r) SumKey A.5.1 Correttezza di Sum(A, key) Heapsort Code con priorità	82 82 83 83 84 84 85 86 88 89

1 Lezione del 28/02/2018

1.1 Problem Solving

- 1. Formalizzazione del problema;
- 2. Sviluppo dell'algoritmo (focus del corso);
- 3. Implementazione in un programma (codice).

Algoritmo Sequenza di passi elementari che risolve il problema.

Input
$$\rightarrow$$
 Algoritmo \rightarrow Output

Dato un problema, ci sono tanti algoritmi per risolverlo.

e.g.¹ Ordinamento dei numeri di una Rubrica. L'idea è quella di trovare tutte le permutazioni di ogni numero.

30 numeri:
$$complessità$$
 30! $\cong 2 \times 10^{32} ns \Rightarrow$ 3^{19} anni (con $ns = \text{nanosecondi}$)

std::vector È un esempio nel C++ delle ragioni per cui si studia questa materia. Nella documentazione della STL, sono riportati i seguenti:

- \circ Random access: complessità O(1);
- \circ Insert: complessità O(1) ammortizzato.

Il random access è l'accesso a un elemento casuale del vector. O(1) implica che l'accesso avviene in tempo costante (pari a 1).

Per insert si intende l'inserimento di un nuovo elemento in coda. Avviene in tempo O(1) ammortizzato: questo perchè ogni N inserimenti, è necessario un resize del vector e una copia di tutti gli elementi nel nuovo vettore (questa procedura è nascosta al programmatore).

¹For the sake of example.

1.2 Cosa analizzeremo nel corso

- Tempo di esecuzione;
- Spazio (memoria);
- o Correttezza;
- o Manutenibilità.

1.2.1 Approfondimento sul tempo di esecuzione T(n)

- o P Problems: complessità polinomiale. L'algoritmo è trattabile
- o *NP Complete*: problemi NP completi. **e.g**: Applicazione sugli algoritmi di sicurezza. Si basano sull'assunzione che per essere risolti debbano essere considerate tutte le soluzioni possibili.
- o NP Problems: problemi con complessità (ad esempio) esponenziale/fattoriale. Assolutamente non trattabili.

Figura 1: Complessità T(n).

1.3 Problema dell'ordinamento (sorting)

Input: sequenza di numeri

 $a_0a_1\ldots a_n;$

Output: permutazione

$$a'_0a'_1\ldots a'_n$$

tale che

$$a_0' \le a_1' \le \dots \le a_n'$$

Vedremo due algoritmi:

- o Insertion Sort;
- o Merge Sort.

1.4 Insertion Sort

Insertion Sort un algoritmo di sorting incrementale. Viene applicato naturalmente ad esempio quando si vogliono ordinare le carte nella propria mano in una partita a scala 40: si prende ogni carta a partire da sinistra, e la si posiziona in ordine crescente.

Astrazione Prendiamo ad esempio il seguente array:

Partiamo dal primo elemento: 5. È già ordinato con se stesso, quindi procediamo con il secondo elemento.

Confronto il numero 2 con l'elemento alla sua sinistra:

 $2 \geq 5$? No, quindi lo inverto con l'elemento alla sua sinistra, come segue

La key analizzata è 8.

 $8 \ge 5$? Sì, quindi è ordinato in modo corretto.

La key analizzata è 4.

- $4 \ge 8$? No, quindi lo sposto a sinistra invertendolo con 8.
- $4 \ge 5$? No, lo sposto a sinistra invertendolo con 5.
- $4 \ge 2$? Sì, quindi è nella posizione corretta.

Key analizzata 7.

 $7 \ge 8$? No, lo sposto a sinistra invertendolo con 8.

 $7 \ge 5$? Sì, è nella posizione corretta.

Ottengo l'array ordinato:

Algorimo Passiamo ora all'implementazione dell'algoritmo, con uno pseudocodice similare a Python¹

Input: A[1, ..., n], A.length.

È noto che:
$$A[i] \le key < A[i+1]$$

Pseudocodice Segue lo pseudocodice dell'Insertion Sort.

```
Insertion-Sort(A)
```

```
 \begin{array}{ll} 1 & n = A. \, length \\ 2 & \textbf{for } j = 2 \, \textbf{to} \, n \, /\!\!/ \, \text{il primo elemento è già ordinato} \\ 3 & key = A[j] \, /\!\!/ \, A[1 \ldots j-1] \, \text{ordinato} \\ 4 & i = j-1 \\ 5 & \textbf{while } i > 0 \, \text{and } A[i] > key \\ 6 & A[i+1] = A[i] \\ 7 & i = i-1 \\ 8 & A[i+1] = key \end{array}
```

Quando il while termina, ci sono due casi:

o i = 0: tutti gli elementi prima di j sono maggiori di key; key va al primo posto (1);

$$\circ$$
 (i > 0) and (A[i] \leq key): A[i+1] = key.

1.4.1 Invarianti e correttezza

for A[1..j-1] è ordinato e contiene gli elementi in (1,j-1) iniziali.

while A[1..i]A[i+2..j] ordinato eA[i+2..j] > key.

In uscita abbiamo:

- \circ j = n+1;
- o A[1..n] ordinato, come da invariante: vale A[1..j-1] ordinato, e j vale n+1.

¹**ATTENZIONE**: verranno usati array con indici che partono da 1.

2 Lezione del 02/03/2018

2.1 Modello dei costi

Assunzione Tutte le istruzioni richiedono un tempo <u>costante</u>. Rivediamo l'algoritmo:

```
Insertion-Sort(A)
   n = A. length
   for j = 2 to n // il primo elemento è già ordinato
2
3
        key = A[j] // A[1..j-1] ordinato
4
        i = j - 1
5
        while i > 0 and A[i] > key
            A[i+1] = A[i]
6
7
            i = i - 1
8
        A[i+1] = key
```

Diamo il nome c_0 alla chiamata del metodo, InsertionSort(A); A ogni riga numerata, diamo il nome $c_1, c_2, ..., c_8$ ¹.

Vediamo il *costo* di ogni istruzione:

$$egin{aligned} oldsymbol{c_0} & o 1 \ oldsymbol{c_1} & o 1 \ oldsymbol{c_2} & o n \ oldsymbol{c_3} & o (n-1) \ oldsymbol{c_4} & o (n-1) \ oldsymbol{c_5} & o \sum_{j=2}^n t_j + 1 \ oldsymbol{c_6}, oldsymbol{c_7} & o \sum_{j=2}^n t_j \ oldsymbol{c_8} & o (n-1) \end{aligned}$$

 $^{^{1}(}c_{1} \text{ corrisponde alla riga 1, } c_{2} \text{ alla riga 2 e così via}).$

2.2 Complessità di IS

$$T^{IS}(n) = c_0 + c_1 + c_2 n + (c_3 + c_4 + c_8)(n-1) + c_5 \sum_{j=2}^{n} (t_j + 1) + (c_6 + c_7) \sum_{j=2}^{n} t_j$$

 t_j dipende, oltre che da n, dall'istanza dell'array che stiamo considerando. È chiaro che questo calcolo non da indicazioni precise sull'effettiva complessità dell'algoritmo.

Andiamo ad analizzare i 3 possibili casi:

- a) Caso migliore (2.2.1)
- b) Caso peggiore (2.2.2)
- c) Caso medio (2.2.3)

2.2.1 Caso migliore

 $\rightarrow A \text{ ordinato} \Rightarrow t_j = 0 \ \forall j$

La **complessità** diventa:

$$T_{min}^{IS}(n) = c_0 + c_1 + c_2 n + (c_3 + c_4 + c_5 + c_8)(n-1) = an + b \approx n$$

Ossia, si comporta come n. Il $caso\ migliore\ {\bf non}$ è interessante, visto che è improbabile si presenti.

2.2.2 Caso peggiore

 $\rightarrow A$ ordinato in senso inverso $\Rightarrow \forall j \ t_j = j-1$

La **complessità** diventa:

$$T_{max}^{IS}(n) = c_0 + c_1 + c_2 n + (c_3 + c_4 + c_8)(n-1) + c_5 \sum_{j=2}^{n} j + (c_6 + c_7) \sum_{j=2}^{n} (j-1)$$

Per valutare il costo di $\sum_{j=2}^{n} j$ e di $\sum_{j=2}^{n} (j-1)$, usiamo la **somma di Gauss**:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \tag{1}$$

Otteniamo:

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$

$$\sum_{j=2}^{n} (j-1) = \sum_{j=1}^{n} n = \frac{(n-1)n}{2}$$

j=2 i=1Per finire, ricalcoliamo $T_{max}^{IS}(n)$

$$T_{max}^{IS}(n) = a'n^2 + b'n + c' \approx n^2$$

2.2.3 Caso medio

Il caso medio è difficile da calcolare, e in una considerevole parte dei casi, coincide con il caso peggiore.

Comunque, l'idea è la seguente:

$$\frac{\sum_{\text{perm. di input}} T^{IS}(p)}{n!} \approx n^2$$
 posso pensare che $t_j \cong \frac{j-1}{2}$

2.3 Divide et Impera

Un algoritmo di sorting divide et impera si può suddividere in 3 fasi:

divide divide il problema dato in sottoproblemi più piccoli;

impera risolve i sottoproblemi:

- o ricorsivamente;
- o la soluzione è nota (e.g. array con un elemento);

combina compone le soluzioni dei sottoproblemi in una soluzione del problema originale.

2.4 Merge Sort

Merge Sort¹ è un esempio di algoritmo divide et impera. Andiamo ad analizzarlo.

¹Si consiglia di dare uno sguardo all'algoritmo anche da altre fonti, poichè presentarlo graficamente in I₄TEX, come è stato visto a lezione, non è facile.

Astrazione Consideriamo il seguente array A.

Lo divido a metà, ottenendo due parti separate.

5	2 4	7	1	2	3	(
---	-----	---	---	---	---	---

Consideriamo il primo, ossia A[1..4] (A originale). Divido anche questo a metà.

Divido nuovamente a metà, ottenendo:

$$\boxed{5}$$

5e 2 sono due blocchi già ordinati. Scelgo il minore tra i due e lo metto in prima posizione, mentre l'altro in seconda posizione, ottenendo un blocco composto da 2e $5.\,$

Riprendo con il blocco composto da 4 e 7. Lo divido in due blocchi da un elemento. Faccio lo stesso procedimento fatto per 2 e 5: metto in prima posizione 4 e in seconda posizione 7. La situazione è la seguente:

So che i blocchi ottenuti contengono elementi ordinati. Con questa assunzione, posso ragionare nel seguente modo: considero il primo elemento dei due blocchi (2 e 4 in questo caso) e metto in prima posizione il minore tra i due. Ora considero il successivo elemento del blocco che è stato scelto e lo stesso elemento dell'altro blocco, e inserisco nell'array l'elemento minore. Continuo fino ad ottenere un blocco ordinato.

Faccio lo stesso procedimento con la parte di array originale A[5..8], ottenendo

2 4	5	7	1	2	3	6
-----	---	---	---	---	---	---

A questo punto, i blocchi da 4 contengono elementi tra loro ordinati. Faccio lo stesso ragionamento usato per comporli, per ottenere l'array originale ordinato. Considero¹:

¹Questo procedimento è stato applicato anche ai passaggi precedenti; qui è spiegato più rigorosamente.

```
○ L[1..4] = A[1..4]: indice i = 1 per scorrerlo;
○ R[1..4] = A[5..8]: indice j = 1 per scorrerlo;
Valuto L[i] e R[j].
○ Se L[i] ≤ R[j], inserisco L[i] e incremento i.
○ Altrimenti, inserisco R[j] e incremento j.
○ Itero finchè entrambi gli indici non sono out of bounds.
```

Pseudocodice Segue lo pseudocodice del Merge Sort.

```
Merge-Sort(A, p, r)
1
   if p < r
        q = \left| \frac{p+r}{2} \right|  # arrotondato per difetto
2
3
        MERGE-SORT(A, p, q) // ordina A[p..q]
4
        MERGE-SORT(A, q + 1, r) // ordina A[q+1..r]
5
        Merge(A, p, q, r) // "Merge" dei due sotto-array
Merge(A, p, q, r)
   n1 = q - p + 1 // gli indici partono da 1
   n2 = r - q
    // L sotto-array sx, R sotto-array dx
    for i = 1 to n1
 3
         L[i] = A[p+i-1]
 4
    for j = 1 to n2
 5
 6
         R[j] = A[q+j]
 7
    L[n1 + 1] = R[n2 + 1] = \infty
8
   i = j = 1
9
    for k = p to r
         if L[i] \leq R[j]
10
              A[k] = L[i]
11
12
              i = i + 1
13
         else /\!\!/ L[i] > R[j]
14
               A[k] = R[j]
15
              j = j + 1
```

2.4.1 Invarianti e correttezza

 $L \in \mathbf{R}$ contengono rispettivamente $A[p..q] \in A[q+1..r]$. L'indice k scorre A. Il sotto-array A[p..k-1] è ordinato, e contiene L[1..i-1] e R[1..j-1].

$$A[p\mathinner{.\,.} k-1] \leq L[i\mathinner{.\,.} n1], R[j\mathinner{.\,.} n2] \\ \Downarrow \\ A[p\mathinner{.\,.} k-1] = A[p\mathinner{.\,.} r+1-1] \implies A[p\mathinner{.\,.} r] \text{ ordinato}$$

Dimostrazione per induzione su r-p

- \Rightarrow Se r-p==0 (oppure -1)abbiamo al più un elemento \implies array già ordinato.
- \Rightarrow Se r p > 0, vale

$$\#\text{elem}(A[p..q]), \#\text{elem}(A[q+1..r]) < \#\text{elem}(A[p..r])$$

Per ipotesi induttiva:

- · Merge-sort(A,p,q) ordina A[p..q];
- · Merge-sort(A,q+1,r) ordina A[q+1..r]; Per correttezza di Merge(), dopo la sua chiamata ottengo A[p..r] ordinato.

3 Lezione del 07/03/2018

3.1 Approfondimento sull'induzione

3.1.1 Induzione ordinaria

Proprietà P(n), e.g. P(n) = "Se n è pari, n+1 è dispari" oppure "tutti i grafi con n nodi . . . ".

Per dimostrare che P(n) vale per ogni n

- \circ P(0): caso base;
- \circ assumo vera $P(n) \to \text{dimostro } P(n+1)$, allora P(n) è vera per ogni n.

3.1.2 Induzione completa

- \circ [P(0)] (non necessaria, è un'istanza del passo successivo);
- o dimostro $P(m) \ \forall m < n \rightarrow \text{vale } P(n) \ \forall n.$

3.2 Complessità di Merge Sort

n = #elementi da ordinare¹

Merge(A,p,q,r)

inizializzazione: a'n + b';

ciclo: a'n + b';

Sommandoli, ottengo una complessità all'incirca di:

$$T^{merge}(n) = an + b$$

Nel dettaglio:

$$T^{MS}(n) = \begin{cases} c_0 & \text{se } n \le 1\\ T^{MS}(n_1) + T^{MS}(n_2) + T^{merge}(n) & \text{altrimenti} \end{cases}$$

 \Downarrow

 $^{^1\}mathrm{II}$ simbolo # verrà usato per indicare la cardinalità di un insieme.

 c_0

 c_0

$$T^{MS}(n) = \begin{cases} c_0 & \text{se } n \leq 1 \\ T^{MS}(n_1) + T^{MS}(n_2) + an + b & \text{altrimenti} \end{cases}$$
con
$$n_1 = \lfloor \frac{n}{2} \rfloor$$

$$n_2 = \lceil \frac{n}{2} \rceil$$

$$T^{MS}(n) = \begin{cases} c_0 & \text{se } n \leq 1 \\ T^{MS}(\lfloor \frac{n}{2} \rfloor) + T^{MS}(\lceil \frac{n}{2} \rceil) + an + b & \text{altrimenti} \end{cases}$$

$$T^{MS}(n)$$

$$an + b$$

$$T^{MS}(n_1) & T^{MS}(n_2)$$

$$an_1 + b & an_2 + b$$

$$T^{MS}(n_{11}) & T^{MS}(n_{12}) & T^{MS}(n_{21}) & T^{MS}(n_{22})$$

$$an_{11} + b & an_{12} + b & an_{21} + b & an_{22} + b \end{cases}$$

$$\dots$$

Otteniamo c_0 ripetuto n volte all'ultimo livello dell'albero. L'altezza dell'albero è circa $\log_2 n$. Vediamo nel dettaglio la complessità nelle varie iterazioni.

 $c_0 \qquad \dots \qquad \dots \qquad c_0$

$$i = 0$$
 $an + b$
 $i = 1$ $a(n_1 + n_2) + 2b \approx an + 2b$
 $i = 2$ $a(n_{11} + n_{12} + n_{21} + n_{22}) + 4b \approx an + 4b$
...
 $i = h$ $c_0 n$

Poniamo $n=2^h$. Abbiamo

$$T^{MS}(n) = \sum_{i=0}^{h-1} (an + 2^{i}b) + c_{0}n$$

$$= anh + b \sum_{i=0}^{h-1} 2^{i} \qquad (h = \log_{2} n)$$

$$= an \log_{2} n + b2^{h} - b + c_{0}n \qquad (2^{h} = n)$$

$$= an \log_{2} n + (b + c_{0})n - b$$

$$T^{MS}(n) = an \log_{2} n + b''n + c'' \approx n \log_{2} n$$

3.3 Confronto tra IS e MS

$$T^{IS}(n) = a'n^2 + b'n + c'$$

 $T^{MS}(n) = a''n \log_2 n + b''n + c''$

Posso calcolare il limite del rapporto:

$$\lim_{n\rightarrow +\infty} \frac{T^{MS}(n)}{T^{IS}(n)} = \lim_{n\rightarrow +\infty} \frac{a'' n \log_2 n + b'' n + c''}{a' n^2 + b' n + c'} = 0$$

Per definizione

$$\forall \varepsilon > 0 \; \exists n_0 : \forall n \geq n_0 \quad \frac{T^{MS}(n)}{T^{IS}(n)} < \varepsilon$$

$$\downarrow \downarrow$$

$$T^{MS}(n) < \varepsilon T^{IS}(n) = \frac{T^{IS}}{m} \quad \text{(Ponendo, ad esempio, } \varepsilon = \frac{1}{m}\text{)}$$

Detto a parole, c'è un certo n oltre il quale, ad esempio, Merge Sort su un Commodore 64 esegue più velocemente di un Insertion Sort su una macchina moderna. Possiamo vedere una comparazione tra i due algoritmi nella seguente tabella.

n	$T^{IS}(n) = n^2$	$T^{MS}(n) = n \log n$
10	0.1ns	0.033 ns
1000	1ms	$10\mu s$
10^{6}	17 minuti	20ms
10^{9}	70 anni	30s

4 Lezione dell'08/03/2018

4.1 Notazione asintotica

Il **tempo di esecuzione** è difficile da calcolare, come visto nella sezione 2.2. Il modo in cui è stato calcolato è pieno di dettagli "inutili".

Rivediamo le complessità di Insertion Sort e Merge Sort:

$$T^{IS} = an^2 + bn + c$$

$$T^{MS} = an \log_2 n + bn + c$$

A noi interessa calcolare T(n) per n "grande". Non consideriamo le costanti moltiplicative, che sono non fondamentali. Ecco una lista di possibili complessità ordinate in senso decrescente (le prime due categorie appartengono alla classe degli NP problems, ossia non trattabili):

- \circ 3^n
- \circ 2^n
- $\circ n^k$
- \circ n^2
- $\circ n \log n$
- $\circ n$
- $\circ \log n$
- 0 1

Prendiamo in esame due funzioni: f(n), g(n):

$$f, g: \mathbb{R}^+ \to \mathbb{R}^+$$

- $\circ f(n)$ è la funzione in esame della complessità del nostro problema P;
- o g(n) è la funzione che, moltiplicata per un'opportuna costante c_i , dopo un certo n, fa da limite superiore o inferiore per ogni punto di f(n).

4.1.1 Limite asintotico superiore

Data g(n), indichiamo con O(g(n)) il limite asintotico superiore, definito come segue:

$$O(g(n)) = \{ f(n) \mid \exists c > 0 \quad \exists n_0 (\in \mathbb{N}) \mid \forall n \ge n_0 \Rightarrow (0 \le) f(n) \le c \cdot g(n) \}$$

Figura 2: Rappresentazione del limite asintotico superiore per f(n)

Esempi

o
$$f_1(n) = 2n^2 + 5n + 3 = O(g(n^2))$$
? Sì. Deve valere $f_1(n) < cn^2$ $\exists c > 0, \ n \ge n_0$

Ipotizziamo c=3

$$2n^2 + 5n + 3 \le 3n^2$$
$$n^2 - 5n - 3 \ge 0$$

$$\frac{5 \pm \sqrt{2 \cdot 5 + 12}}{2} = \frac{5 \pm \sqrt{37}}{2} \cong 5.54$$

(Non considero la soluzione negativa, poiché siamo in \mathbb{R}^+)

Prendo c=3 e $n_0=6$. Vale dunque:

$$f_1(n) \le cn^2 \quad \forall n \ge n_0$$

o
$$f_1(n) = O(g(n^3))$$
 ? Sì.

$$c = 3$$

$$n_0 = 6 \quad \forall n \ge n_0$$

$$f_1(n) \le cn^2 \le cn^3$$

$$f_2(n) = 2 + \sin(n) = O(1)$$
? Sì.

$$-1 \le \sin(n) \le 1$$

$$1 \le f_2(n) \le 3$$

Vale la seguente

$$\exists c > 0 \quad \exists n_0 : n \ge n_0 \Rightarrow f_2(n) \le c \cdot 1$$

ok per $c = 3, \ n_0 = 0$

4.1.2 Limite asintotico inferiore

Data g(n), indichiamo con $\Omega(g(n))$ il limite asintotico inferiore, definito come segue:

$$\Omega(g(n)) = \{ f(n) \mid \exists c > 0 \quad \exists n_0 (\in \mathbb{N}) \mid \forall n \ge n_0 \Rightarrow c \cdot g(n) \le f(n) \}$$

Figura 3: Rappresentazione del limite asintotico inferiore per f(n)

Esempi

o
$$f_1(n) = 2n^2 + 5n + 3 = \Omega(g(n^2))$$
? Sì. Deve valere:

$$\exists c>0 \quad \exists n_0: \forall n\geq n_0 \Rightarrow cn^2 \leq 2n+5n+3$$
 Basta porre $c=1, \, n_0=0.$

o
$$f_2(n) = 2 + \sin(n) = \Omega(1)$$
? Sì.
$$1 \le f_2(n) \le 3 \quad c = 1, \ n_0 = 0$$

4.1.3 Limite asintotico stretto

Data g(n), indichiamo con $\Theta(g(n))$ il limite asintotico stretto, definito come segue:

$$\Theta(g(n)) = \{ f(n) \mid \exists c_1, c_2 > 0 \quad \exists n_0 (\in \mathbb{N}) \mid \forall n \ge n_0 \\ \Rightarrow c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \}$$

Figura 4: Rappresentazione del limite asintotico stretto per f(n)

Esempi

$$f_{1}(n) = 2n^{2} + 5n + 3 = \Theta(n^{2}) \qquad f_{1}(n) \neq \Theta(n^{3})$$

$$c_{1} = 1 \quad c_{2} = 3 \quad n_{0} = 6 \qquad f_{1}(n) = O(n^{3})$$

$$f_{2}(n) = 2 + \sin(n) = \Theta(1) \qquad f_{1}(n) \neq \Omega(n^{3})$$

$$c_{1} = 1 \quad c_{2} = 3 \quad n_{0} = 0 \qquad \qquad \downarrow$$

$$\frac{f_{1}(n)}{n_{3}} \rightarrow 0$$

4.2 Metodo del limite

- $f(n), g(n) > 0 \quad \forall n$ Se $\lim_{n \to +\infty} \frac{f(n)}{g(n)}$ esiste, allora:
 - 1. Se $\lim_{n\to+\infty} \frac{f(n)}{g(n)} = k > 0$ allora $f(n) = \Theta(g(n))$.

Infatti
$$\forall \varepsilon > 0 \ \exists n_0 : \forall n \ge n_0 \Rightarrow \left| \frac{f(n)}{g(n)} - k \right| \le \varepsilon$$

$$\Rightarrow -\varepsilon \le \frac{f(n)}{g(n)} - k \le \varepsilon$$

$$k - \varepsilon \le \frac{f(n)}{g(n)} \le k + \varepsilon$$
$$(k - \varepsilon)g(n) \le f(n) \le (k + \varepsilon)g(n) \quad \text{per } 0 < \varepsilon < k$$

- 2. Se $\lim_{n\to+\infty} \frac{f(n)}{g(n)} = 0$ allora f(n) = O(g(n)) e $f(n) \neq \Omega(g(n))$.
- 3. Se $\lim_{n\to+\infty} \frac{f(n)}{g(n)} = \infty$ allora $f(n) = \Omega(g(n))$ e $f(n) \neq O(g(n))$.

4.3 Alcune proprietà generali

$$\circ f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0 = \Theta(n^k)$$

$$\circ \ h \neq k \quad \Theta(n^h) \neq \Theta(n^k)$$

$$\circ \ a \neq b \quad \Theta(a^k) \neq \Theta(b^n)$$

$$\circ \ h \neq k \quad \Theta(a^{n+h}) = \Theta(a^{n+k})$$

$$\circ \ a \neq b \quad \Theta(\log_a n) = \Theta(\log_b n)$$

In generale

$$O(1) \subseteq O(\log n) \subseteq O(n) \subseteq O(n \log n) \subseteq O(n^2) \subseteq \dots$$

Rivediamo Insertion Sort con le notazioni asintotiche:

$$T^{IS}(n) = O(n^2)$$
 $T^{IS}_{max}(n) = \Theta(n^2)$

Vale anche la proprietà seguente:

$$2n^k + \Theta(n^{k-1}) = O(n^k)(\subseteq \Theta(n^k))$$
$$= \Theta(n^k) \quad \forall k > 0$$

5 Lezione del 09/03/2018

5.1 Complessità di un problema

Dato un problema¹ P ci sono (possono esserci) algoritmi che risolvono P. La **complessità** di P è la complessità dell'algoritmo di complessità più bassa che lo risolve.

Limite superiore per complessità di P Se A è un algoritmo per P con complessità f(n), allora P è O(f(n)).

Vediamo un paio di esempi:

- Insertion Sort algoritmo di ordinamento $O(n^2)$;
- \circ Merge Sort algoritmo di ordinamento $O(n \log n)$.

Limite inferiore per complessità di P Se ogni algoritmo che risolve P ha complessità $\Omega(f(n))$ allora P è $\Omega(f(n))$

$$\implies$$
 se P è $O(f(n))$ e $\Omega(f(n)) \implies$ P è $\Theta(f(n))$

5.2 Esempio: limite inferiore per l'ordinamento basato su scambi

Def (inversione) Dato A[1..n], una *inversione* è una coppia (i, j) con $i, j \in [1, n]$ con i < j e A[i] > A[j].

Operazione disponibile: $A[k] \leftrightarrow A[k+1]$ (scambio tra gli elementi in posizione $k \in k+1$).

$$\#inv(A)=$$
numero di inversioni di A
$$= \left| \ \{(i,j) \mid 1 \leq i \leq j \leq n \land A[i] > A[j] \} \ \right|$$

- 1. A è ordinato sse #inv(A) = 0;
- 2. A è ordinato in senso inverso sse

$$\sum_{j=2}^{n} j - 1 = \sum_{j=1}^{n-1} j = \frac{n(n-1)}{2}$$

Ossia, #inv(A) è massimizzato.

 $^{^{1}}$ Relazione/funzione INPUT \rightarrow OUTPUT

Vediamo cosa succede alle coppie (i, j) e a #inv(A) nel caso avvenga uno scambio $A[k] \leftrightarrow A[k+1]$.

- o $i, j \neq k$ e $i, j \neq k+1 \implies (i, j)$ è inversione prima sse è inversione dopo;
- $\circ i = k, j = k+1$

$$\implies \begin{cases} A[k] < A[k+1] & +1 \text{ inversione} \\ A[k] = A[k+1] & \#inv(A) \text{ non cambia} \\ A[k] > A[k+1] & -1 \text{ inversione} \end{cases}$$

- o i = k oppure i = k + 1, $j > k + 1 \implies (k, j)$ è inversione prima sse (k + 1, j) è inversione dopo;
- o j = k oppure j = k + 1, i < k, analogo al caso precedente.

Per concludere, possiamo dire che l'operazione $A[k] \leftrightarrow A[k+1]$ riduce #inv(A) al massimo di 1.

$$\implies$$
 qualunque algoritmo di ordinamento è $\Omega\left(\frac{n(n-1)}{2}\right) = \Omega(n^2)$

Insertion Sort è "quasi" basato su scambi \Rightarrow è $O(n^2) \Rightarrow$ è $\Theta(n^2)$

5.3 Soluzione di ricorrenze

Abbiamo visto per Merge Sort la complessità nel modo seguente:

MERGE-SORT(A, p, r)

- 1 if p < r
- $2 q = \lfloor \frac{(p+r)}{2} \rfloor$
- 3 MERGE-SORT(A, p, q)
- 4 Merge-Sort(A, q + 1, r)
- 5 Merge(A, p, q, r) // complessità an + b

$$T^{MS}(n) = \begin{cases} c_0 & \text{se } n \le 1\\ T^{MS}(\lfloor \frac{n}{2} \rfloor) + T^{MS}(\lceil \frac{n}{2} \rceil) + an + b & \text{se } n > 1 \end{cases}$$

È stato tuttavia un approccio non molto preciso. Ci sono due metodi per risolvere precisamente i problemi di ricorrenza:

- Metodo di sostituzione (5.3.1);
- Master Theorem (7.1).

5.3.1 Metodo di sostituzione

Dato una ricorrenza, si può provare a "indovinare" la soluzione, oppure si può sviluppare l'albero delle ricorrenze:

- o radice: chiamata di cui vogliamo la complessità;
- o per ogni nodo:
 - \rightarrow costo della parte non ricorsiva;
 - \rightarrow un figlio per ogni chiamata.

Esempio

$$T(n) = \begin{cases} 4 & \text{se } n = 1\\ 2T(\frac{n}{2}) + 6n & \text{se } n > 1 \end{cases}$$

In generale, si può benissimo trascurare il caso base per poter ottenere espressioni meno verbose, in questo caso otterremmo:

$$T(n) = 2T(\frac{n}{2}) + 6n$$

Per questa volta, facciamo il procedimento per intero. Proviamo a "indovinare" la soluzione¹. Assomiglia a Merge Sort, quindi ipotizziamo abbia una complessità con un andamento simile

$$T(n) = an \log n + bn + c$$

Facciamo la prova induttiva.

$$(n=1) \quad T(1) = 4$$

$$= a \cdot 1 \cdot \log 1 + b \cdot 1 + c \qquad (\log 1 = 0)$$

$$= b + c \qquad \text{ok se } b + c = 4$$

$$(n > 1) \quad T(n) = 2T\left(\frac{n}{2}\right) + 6n$$

¹In classe, è stato visto anche un esempio con un albero. Ho scelto di ometterlo per la poca praticità nel rappresentarlo in I⁴TFX.

Per ipotesi induttiva

$$T\left(\frac{n}{2}\right) = a\frac{n}{2} \cdot \log \frac{n}{2} + b\frac{n}{2} + c$$

Calcolo ora T(n)

$$T(n) = an \log_2 \frac{n}{2} + bn + 2c + 6n =$$

$$= an \log_2 n - an \log_2 2 + bn + 6n + 2c = (\log_2 2 = 1)$$

$$= an \log_2 n + n(b + 6 - a) + 2c =$$

$$= an \log_2 n + bn + c$$

$$\downarrow \downarrow$$

$$b+6-a=b\Rightarrow a=6$$

$$2c=c\Rightarrow c=0$$

$$b+c=4\Rightarrow b=4$$

$$T(n)=an\log n+bn+c$$

$$=6n\log n+4n$$

6 Lezione del 14/03/2018

Esercizio (importante)

$$T(n) = 2T\left(\frac{n}{2}\right) + 6n$$
$$= 2T\left(\frac{n}{2}\right) + \Theta(n) = \Theta(n\log n)$$
vale $\exists c > 0 \ \exists n_0 : \forall n \ge n_0 \Rightarrow \Theta(n) \le cn$

Voglio dimostrare che

1.
$$T(n) = O(n \log n)$$

2.
$$T(n) = \Omega(n \log n)$$

1.
$$T(n) = O(n \log n)$$

significa che
$$\exists d > 0 \ \exists n_1 \in \mathbb{N} \mid T(n) \leq dn \log n \quad \forall n \geq n_1$$

Dimostro per induzione $T(n) \leq dn \log n \quad \forall n \geq n_1$.

Ometto il caso base, poiché non è molto interessante (mi basterebbe aumentare ulteriormente d per avere un valore accettabile).

$$T(n) \leq 2T\left(\frac{n}{2}\right) + cn$$
 ip. induttiva $T\left(\frac{n}{2}\right) = d\frac{n}{2}\log\frac{n}{2}$
$$\leq 2 \cdot \frac{n}{2}d\log\frac{n}{2} + cn$$

$$= dn\log n - dn\log 2 + cn$$

$$= dn\log n - n(d\log 2 - c) \leq dn\log n$$

$$\Rightarrow -n(d\log 2 - c) \leq 0$$

$$n(d\log 2 - c) \geq 0$$

$$d\log 2 - c \geq 0$$

$$d \geq \frac{c}{\log 2}$$

2. $T(n) = \Omega(n \log n)$ è analoga.

$$\exists \delta > 0 : \forall n > n_0 \Rightarrow T(n) \geq \delta n \log n$$

Ho l'ipotesi induttiva $T(\frac{n}{2}) \geq \delta \frac{n}{2} \log \frac{n}{2}$

$$T(n) \ge 2\delta \frac{n}{2} \log \frac{n}{2} + cn =$$

$$= \delta n \log n - \delta n \log 2 + cn =$$

$$= \delta n \log n + n(c - \delta \log 2) \ge \delta n \log n$$
Deve valere $c - \delta \log 2 \ge 0$

$$\Rightarrow 0 < \delta \le \frac{c}{\log 2}$$

Esercizio $T(n) = T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + \Theta(n) \quad (\Theta(n) \le c \cdot n)$ Ipotizzo un andamento simile a Merge Sort: $\Theta(n \log n)$. Dimostro:

1.
$$T(n) = O(n \log n)$$

2.
$$T(n) = \Omega(n \log n)$$

1.
$$T(n) = \Omega(n \log n)$$

$$\exists d > 0 : \forall n > n_0 \Rightarrow T(n) \le dn \log n$$

Ometto il caso base. L'ipotesi induttiva è la seguente:

$$T(n) \le d\frac{n}{3}\log\frac{n}{3} + d\frac{2n}{3}\log\frac{2n}{3} + cn$$

Procedo con i calcoli ...

$$T(n) \leq T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + cn$$

$$\leq d\frac{n}{3}\log\frac{n}{3} + \frac{2n}{3}\log\frac{2n}{3} =$$

$$= \frac{dn}{3}\left(\log n - \log 3\right) + d\frac{2n}{3}\left(\log n - \log\frac{2}{3}\right) + cn =$$

$$= dn\log n - \frac{dn}{3}\left(\log 3 - 2\log\frac{2}{3}\right) + cn =$$

$$= dn\log n - \frac{dn}{3}\left(\log 3 - \log\frac{4}{9}\right) + cn =$$

$$= dn\log n - n\left(\frac{d}{3}\log \frac{27}{4} - c\right) \leq dn\log n$$

$$\frac{d}{3}\log\frac{27}{4} - c \geq 0$$

$$\Rightarrow d \geq \frac{3c}{\log\frac{27}{4}} \qquad (\log\frac{27}{4} > 1 \text{ poiché } arg > 1)$$

2. $T(n) = \Omega(n \log n)$ è analoga

$$\exists \delta > 0 : \forall n > n_0 \Rightarrow T(n) > \delta n \log n$$

L'ipotesi induttiva è la seguente:

$$T(n) \ge \delta \frac{n}{3} \log \frac{n}{3} + \delta \frac{2n}{3} \log \frac{2n}{3} + cn$$

Calcoli ...

$$T(n) \ge T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + cn$$

$$\ge \delta \frac{n}{3} \log \frac{n}{3} + \frac{2n}{3} \log \frac{2n}{3} =$$

$$= \delta \frac{n}{3} \left(\log n - \log 3\right) + \delta \frac{2n}{3} \left(\log n - \log \frac{2}{3}\right) + cn =$$

$$= \delta n \log n + \frac{\delta n}{3} \left(-\log 3 + 2\log \frac{2}{3}\right) + cn =$$

$$= \delta n \log n + \frac{\delta n}{3} \left(-\log 3 + \log \frac{4}{9}\right) + cn =$$

$$= \delta n \log n + n\left(-\frac{\delta}{3}\log \frac{27}{4} + c\right) \ge \delta n \log n$$

$$-\frac{\delta}{3}\log \frac{27}{4} + c \ge 0$$

$$\Rightarrow 0 < \delta \le \frac{3c}{\log \frac{27}{4}}$$

7 Lezione del 15/03/2018

7.1 Master Theorem

Dato un problema con size n, vogliamo dividerlo in a sottoproblemi con size $\frac{n}{b}$. Otteniamo la seguente ricorrenza (ricordiamo che il caso base è omesso per semplicità):

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n)$$

con $a \ge 1, \ b > 1$, allora possiamo confrontare

- $\circ f(n);$
- o $n^{\log_b a}$

Tre possibili casi:

1. Se $f(n) = O(n^{\log_b a - \varepsilon})$ per qualche $\varepsilon > 0$, allora

$$T(n) = \Theta(n^{\log_b a})$$

2. Se $f(n) = \Theta(n^{\log_b a})$ allora

$$T(n) = \Theta(n^{\log_b a} \cdot \log n)$$

3. Se $f(n) = \Omega(n^{\log_b a + \varepsilon})$ per qualche $\varepsilon > 0,$ e vale la regolarità

$$\exists 0 < k < 1 \text{ tale che } a \cdot f(\frac{n}{b}) \le k \cdot f(n)$$

allora

$$T(n) = \Theta(f(n))$$

Breve "dimostrazione" sul perchè $n^{\log_b a}$

$$T(n) = f(n) + af\left(\frac{n}{b}\right) + a^2 f\left(\frac{n}{b^2}\right) + \dots + a^{\log_b n} f\left(\frac{n}{b^{\log_b n}}\right) + c \cdot a^{\log_b n}$$

$$a^{\log_b n} = \left(b^{\log_b a}\right)^{\log_b n} = \left(b^{\log_b n}\right)^{\log_b a} = n^{\log_b a}$$
Nota bene: $af\left(\frac{n}{b}\right) \le k \cdot f(n) \text{ con } k < 1$

Vediamo ora i casi in cui sarà possibile finire, e le conclusioni legate ad essi.

A)
$$\lim_{n \to \infty} \frac{f(n)}{n^{\log_b a}} = l(>0) \neq \infty$$

$$Caso \ 2 \Rightarrow T(n) = \Theta(n^{\log_b a} \cdot \log n)$$

B)
$$\lim_{n \to \infty} \frac{f(n)}{n^{\log_b a}} = 0$$

Potrei essere nel Caso $1 \Rightarrow$ se $\lim_{n \to \infty} \frac{f(n)}{n^{\log_b a - \varepsilon}} = l \neq \infty \ (\varepsilon > 0)$ $\Rightarrow T(n) = \Theta(n^{\log_b a})$

C)
$$\lim_{n\to\infty}\frac{f(n)}{n^{\log_b a}}=\infty\quad \&\ \exists \varepsilon>0: \lim_{n\to\infty}\frac{f(n)}{n^{\log_b a+\varepsilon}}=l\neq 0$$

$$\&\ Regolarit\grave{a}\Rightarrow Caso\ 3:\quad T(n)=\Theta(f(n))$$

7.1.1 Esercizi (Master Theorem)

• $T^{MS} = 2T(\frac{n}{2}) + a'n + b'$ Abbiamo (rispetto alla forma $T(n) = a \cdot T(\frac{n}{b}) + f(n)$)

$$a = 2, b = 2$$

 $f(n) = a'n + b'$ $n^{\log_2 2} = n$

È chiaro che le due funzioni hanno lo stesso andamento (di ordine $\Theta(n)$):

$$a'n + b' = \Theta(n)$$

$$Caso \ 2 \Rightarrow T(n) = \Theta\left(n^{\log_2 2} \log n\right) = \Theta(n \log n)$$

• $T(n) = 5T(\frac{n}{2}) + 2n^2 + n \log n$ Abbiamo (rispetto alla forma $T(n) = a \cdot T(\frac{n}{b}) + f(n)$)

$$a = 5, b = 2$$

$$f(n) = n^2 + n \log n \qquad n^{\log_2 5} \quad (\log_2 5 > 2)$$

$$0 < \varepsilon < \log_2 5 - 2 \Rightarrow \lim_{n \to \infty} \frac{2n^2 + n \log n}{n^{\log_2 5 - \varepsilon}} = 0 \Rightarrow f(n) = O(n^{\log_2 5})$$

$$Caso \ 1 \Rightarrow T(n) = \Theta(n^{\log_2 5})$$

- $T(n) = 5T(\frac{n}{2}) + n^3$ per esercizio.
- $T(n) = 5T(\frac{n}{2}) + n^3 \log n$

Abbiamo

$$a = 5, b = 2$$

$$f(n) = n^3 \log n \qquad n^{\log_2 5} \quad (\log_2 5 < 3)$$

$$0 < \varepsilon < 3 - \log_2 5 \Rightarrow \lim_{n \to \infty} \frac{n^3 \log n}{n^{\log_2 5 + \varepsilon}} = \infty$$

Possibile caso 3. Regolarità?

$$af\left(\frac{n}{b}\right) \leq kf(n) \quad \text{per } 0 < k < 1 \text{ opportuno}$$

$$5\left(\frac{n}{2}\right)^3 \log \frac{n}{2} = \frac{5}{8}n^3 \log \frac{n}{2} \leq \frac{5}{8}n^3 \log n \leq kn^3 \log n \quad \text{per } 0 < k \leq \frac{5}{8} < 1$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$Caso \ \beta \colon T(n) = \Theta\left(f(n)\right) = \Theta(n^3 \log n)$$

•
$$T(n) = 27T(\frac{n}{3}) + n^3 \log n$$

$$f(n) = n^3 \log n \qquad n^{\log_3 27} \quad (\log_3 27 = 3)$$

$$\lim_{n \to \infty} \frac{n^3 \log n}{n^{3+\varepsilon}} = +\infty \quad \forall \varepsilon > 0, \text{ non possiamo dimostrare } 3$$

$$\Rightarrow \text{Non siamo in } nessun \text{ caso del Master Theorem.}$$

Anche valutando la regolarità, ricadiamo in un assurdo. Dobbiamo dimostrare che $af\left(\frac{n}{b}\right) < kf(n)$ per qualche k>0

$$27\left(\frac{n}{3}\right)^3\log\frac{n}{3} = n^3(\log n - \log 3) \not\ll kn^3\log n \text{ per nessun } k > 0$$

Infatti
$$\frac{(\log n - \log 3)n^3}{n^3\log n} \to 1$$

(Posso usare il Metodo di Sostituzione)

$$T(n) = 27T\left(\frac{n}{3}\right) + n^3 \log n$$

Costruiamo l'albero delle ricorrenze:

· radice: costo $n^3 \log n$;

- · ogni nodo ha 27 figli.
 - \diamond i 27 figli del primo livello hanno costo $(\frac{n}{3})^3\log\frac{n}{3};$
 - \diamond i 27² figli del secondo livello hanno costo $(\frac{n}{9})^3\log\frac{n}{9};$
 - ...
 - \diamond le 27^n foglie terminali hanno costo O(1).

$$T(n) = \sum_{j=0}^{\log_3 n} n^3 \log \frac{n}{3^j} = n^3 \sum_{j=0}^{\log_3 n} (\log n - j \log 3) + cn =$$

$$= n^3 (\log n)^2 - n^3 \log 3 \sum_{j=0}^{\log_3 n} j + cn \qquad \left(\sum_{j=0}^{\log_3 n} j \cong (\log_3 n)^2\right)$$

$$T(n) = 27T\left(\frac{n}{3}\right) + n^3 \log n$$

$$T(n) = \Theta(n^3 (\log n)^2) \qquad \text{ipotesi ricavata}$$

Devo dimostrare che valgano le seguenti condizioni:

1.
$$T(n) = O(n^3(\log n)^2)$$

2.
$$T(n) = \Omega(n^3(\log n)^2)$$

1.
$$T(n) = O(n^3(\log n)^2)$$

 $T(n) \le c \cdot n^3(n^3(\log n)^2)$ $c > 0$
 $T(n) = 27T(\frac{n}{3}) + n^3 \log n$
(ipotesi induttiva $T(\frac{n}{3}) \le c \cdot (\frac{n}{3})^3 (\log \frac{n}{3})^2$)
 $\le 27c(\frac{n}{3})^3 (\log \frac{n}{3})^2 + n^3 \log n =$
 $= \frac{27cn^3}{27} (\log n - \log 3)^2 + n^3 \log n =$
 $= cn^3 ((\log n)^2 - 2\log 3\log n + (\log 3)^2) + n^3 \log n =$
 $= cn^3 (\log n)^2 - n^3 (\log n(2c\log 3 - 1) - c(\log 3)^2)$
 $\le cn^3 (\log n)^2$

Per un n abbastanza grande, vale la disuguaglianza con un opportuno valore di c:

$$c > \frac{1}{2\log 3}$$

2.
$$T(n) = \Omega(n^3(\log n)^2)$$

$$\exists d > 0 : T(n) \ge dn^3(\log n)^2$$

$$\ge 27\left(\frac{n}{3}\right)^3 \left(\log \frac{n}{3}\right)^2 + n^3 \log n$$

$$= \dots = dn^3(\log n)^2 - n^3 \left(\log n(2d\log 3 - 1) - d(\log 3)^2\right)$$

$$\ge dn^3(\log n)^2$$

Per un n abbastanza grande, vale la disuguaglianza con un opportuno valore di d:

$$2d \log 3 - 1 < 0$$
 ok per $0 < d < \frac{1}{2 \log 3}$

8 Lezione del 21/03/2018

Ordinamento Finora abbiamo visto due algoritmi di ordinamento, in cui avevamo le seguenti premesse:

IN: $a_1 \ldots a_n$;

OUT: permutazione $a'_1 \dots a'_n$ ordinata.

In particolare, abbiamo concluso che:

- Insertion Sort: $O(n^2)$, basato su scambi;
- o Merge Sort: $\Theta(n \log n)$, ma con un costo in termini di memoria.

Memoria

o Insertion Sort:

 $input + 1 \text{ variabile} \Rightarrow \text{spazio } costante \Theta(1) \text{ (detto "in loco")}$

o Merge Sort: spazio con costo lineare.

$$S_{MS}(n) = \max \left\{ S\left(\left\lfloor \frac{n}{2} \right\rfloor\right), \ S\left(\left\lceil \frac{n}{2} \right\rceil\right), \ \Theta(n) \right\}$$
$$= \Theta(n)$$

8.1 Heapsort

L'Heapsort¹ è un algoritmo di ordinamento basato su una struttura chiamata heap, che prende le caratteristiche positive di Insertion Sort e Merge Sort:

- \circ in "loco" (spazio $\Theta(1)$);
- \circ complessità $\Theta(n \log n)$.

Cos'è un heap? Un heap è una struttura dati basata sugli alberi che soddisfa la "proprietà di heap": se A è un genitore di B, allora la chiave di A è ordinata rispetto alla chiave di B conformemente alla relazione d'ordine applicata all'intero heap.

Seguono alcune definizioni.

¹Anche qui, si consiglia di dare un occhio ad altre fonti. In classe, sono stati viste molte rappresentazioni grafiche degli heap, e, come già detto, in I⁴TEX non è per me facile rappresentarli.

Altezza: è la distanza dalla radice alla foglia più distante;

Albero completo: è un albero di altezza h con $\sum_{i=0}^{h} 2^i - 1$ nodi;

Albero quasi completo: è un albero completo a tutti i livelli eccetto l'ultimo, in cui possono mancare delle foglie.

Gli heap verranno rappresentati in array monodimensionali, nel modo descritto di seguito:

$$\forall i > 0$$

- A[i] è il nodo genitore;
- ∘ A[2i] è il figlio sx del nodo A[i];
- \circ A[2i+1] è il figlio dx.

Inoltre, ogni array A sarà dinamico, e avrà:

- o A.length potenziale spazio, capacità massima dell'array;
- A.heapsize celle effettive dell'array.

Vediamo alcune funzioni di utilità che verranno usate.

Left(i)

 $/\!\!/$ restituisce il figlio sx del nodo i

1 return 2*i

RIGHT(i)

 $/\!\!/$ restituisce il figlio dx del nodo i

1 **return** 2 * i + 1

Parent(i)

 $/\!\!/$ restituisce il genitore del nodo i

1 return |i/2|

8.1.1 Max Heap

Max Heap è uno heap che soddisfa la seguente proprietà:

$$\forall \text{ nodo } A[i],$$

$$A[i] \geq \text{ discendenti}$$

$$\downarrow \downarrow$$

$$A[i] \geq A[Left(i)], \ A[Right(i)]$$

Osservazioni

- Uno heap con un solo elemento è un Max Heap.
- Dati due Max Heap T_1 e T_2 e un nodo N, possiamo "combinarli" in uno heap con N come radice, T_1 come left e T_2 come right.

Ecco ora una procedura che, dato un nodo i, trasforma in un Max Heap il sotto-albero eradicato in esso (con radice i).

```
MaxHeapify(A, i)
    l = \text{Left}(i)
 2
    r = RIGHT(i)
    if (l \le A. heapsize) and (A[l] > A[i])
 4
          max = l
 5
    else
 6
          max = i
 7
    if (r \leq A. heapsize) and (A[r] > A[max])
 8
          max = r
    if (max \neq i)
9
10
          A[i] \leftrightarrow A[max]
11
          MaxHeapify(A, max)
```

Correttezza di MaxHeapify

- \circ Caso base: $max = i, A[i] \ge A[l], A[r];$
- Induzione: $max \neq i$, distinguo 2 casi:

```
 max = l, \ A[l] \ge A[i], A[r]; 
 max = r, \ A[r] \ge A[i], A[l].
```

Costo? L'algoritmo ha un costo di O(h), con h altezza del sotto-albero radicato in i, con

```
O(h) \cong O(\log n) (omessa la dimostrazione)
```

Ora vogliamo scrivere una procedura che costruisce un $Max\ Heap$ da un array qualunque.

Quali sono i nodi foglia?

• Se
$$i \ge \lfloor \frac{n}{2} \rfloor + 1$$

$$2i = 2\left(\frac{n}{2} + 1\right) \ge n + 2 - 1 = n + 1$$
 $\Rightarrow i$ foglia

$$\circ$$
 Se $i \leq \lfloor \frac{n}{2} \rfloor$

$$2i = 2\lfloor \frac{n}{2} \rfloor \le n$$

 $\Rightarrow i \text{ non foglia}$

BuildMaxHeap(A)

- 1 A.heapsize = A.length
- 2 for i = |A.length/2| down to 1
- 3 MaxHeapify(A, i)

L'algoritmo esegue $\frac{n}{2}$ volte MaxHeapify (che ha costo $O(\log n)$), ottenendo un costo totale di $O(n \log n)$, tuttavia questa stima è molto pessimistica.

Definiamo:

- o h_T altezza del cammino più lungo dello heap;
- o $h_T 1$ di conseguenza è l'altezza dell'albero meno l'ultimo livello, che è generalmente incompleto.

$$n = \left(2^{(h_T - 1) + 1} - 1\right) + 1$$
$$= 2^{h_T}$$
$$h_T \le \log n$$
$$n > 2^{h_T}$$

$$T(n) = \sum_{h=1}^{\lfloor \log n \rfloor} 2^{h_T - h} \cdot O(h)$$

$$(2^{h_T - h} = \# \text{ chiamate a MaxHeapify al livello } h)$$

$$= \sum_{h=1}^{\lfloor \log n \rfloor} \frac{2^{h_T}}{2^h} O(h) \qquad (2^{h_T} = n)$$

$$= O\Big(\Big(\sum_{h=1}^{\lfloor \log n \rfloor} \frac{h}{2^h}\Big)n\Big) = O(n) \qquad \Big(\sum_{h=1}^{\lfloor \log n \rfloor} \frac{h}{2^h} \le \sum_{h=1}^{\infty} \frac{h}{2^h} = \frac{\frac{1}{2}}{(1 - \frac{1}{2})^2} = 2\Big)$$

Passiamo ora all'algoritmo di ordinamento Heapsort. La radice di un *Max Heap* contiene il valore massimo. Quindi, la prima operazione, e quella su cui si basa Heapsort, consiste nel mettere la radice in ultima posizione.

```
Es. A: 9\ 8\ 7\ 5\ 7\ 4\ 0\ 4\ 3\ 6\ 1\ 2 è un max heap. \Rightarrow 8\ 7\ 5\ 7\ 4\ 0\ 4\ 3\ 6\ 1\ 2\ 9 ignoro l'ultimo elemento, chiamo MaxHeapify sulla radice e itero.
```

Poi chiama MaxHeapify sul resto dell'array per renderlo un *Max Heap*, e itera il procedimento sul nuovo array.

```
HEAPSORT(A)

1 BUILDMAXHEAP(A) // O(n)

2 for i = A.length down to 2

3 A[1] \leftrightarrow A[i]

4 A.heapsize = A.heapsize - 1

5 MAXHEAPIFY(A, 1) // O(\log n)
```

Costo? Il costo complessivo è di $O(n \log n)$.

8.2 Code con priorità

S insieme dinamico di oggetti.

x è l'indice, x.key è il corrispondente valore relativo a quell'indice. Voglio poter eseguire le seguenti operazioni:

```
Insert(S, x)
Max(S)
ExtractMax(S)
IncreaseKey(S, x, Δ)
ChangeKey(S, x, Δ)
Delete(S, x)
```

Idea Uso un Max Heap (A).

```
Max(A)
1 if A.heapsize = 0
2 error
3 else return A[1]
```

La procedura Max(A) ha complessità costante $\Theta(1)$.

ExtractMax(A)

- 1 max = A[1]
- $2 \quad A[1] = A[A.heapsize]$
- $3 \quad A. heapsize = A. heapsize 1$
- 4 MaxHeapify(A, 1) // ripristina le proprietà di MaxHeap
- 5 return max

La procedura ExtractMax(A) ha la stessa complessità di MaxHeapify: $O(\log n)$.

Per Insert, le cose diventano più delicate. L'idea è quella di inserire in coda ad A: in questo modo, l'unico elemento che potrebbe compromettere la proprietà di $Max\ Heap$ è la cella di indice i (nel nostro caso, l'ultima). Deve valere la proprietà:

Per ogni
$$j \neq i$$

 $A[j] \leq \text{antenati}$

Non possiamo dire nulla su i. Va ristabilita la proprietà di $Max\ Heap$: per fare ciò usiamo la procedura MaxHeapifyUp.

MaxHeapifyUp(A, i)

- 1 if (i > 1) and (A[i] > A[PARENT(i)])
- 2 $A[i] \leftrightarrow A[PARENT(i)]$
- 3 MaxHeapifyUp(A, Parent(i))

Correttezza di MaxHeapifyUp

Casi base

(i = 1) ok, non faccio nulla;

 $(A[i] \leq A[Parent(i)])$ ok, la proprietà di Max Heap è mantenuta.

Induzione

(A[i] > A[Parent(i)]) scambio le due celle. I discendenti (sottoalberi) della nuova cella A[i] mantengono la proprietà di Max Heap. Costo? $O(\log i)$, nel caso peggiore $O(\log n)$.

Ecco ora lo pseudocodice della funzione Insert.

Insert(A, x)

- $1 \quad A. heap size = A. heap size + 1$
- $2 \quad A[A.heapsize] = x$
- 3 MAXHEAPIFYUP(A, A. heapsize)

Insert ha costo $O(\log n)$, lo stesso di MaxHeapifyUp.

IncreaseKey (A, i, δ)

Precondizione:
$$\delta \geq 0$$

- $1 \quad A[i] = A[i] + \delta$
- 2 MaxHeapifyUp(A, i)

IncreaseKey ha costo $O(\log n)$.

ChangeKey (A, i, δ)

- $1 \quad A[i] = A[i] + \delta$
- 2 if $\delta > 0$
- 3 MAXHEAPIFYUP(A, i)
- 4 else // $\delta \leq 0$
- 5 MAXHEAPIFY(A, i)

Change Key è come Increase Key, ma può utilizzare valori di δ qualsiasi, ed è corretto per la seguente proprietà:

Se per ogni $j \neq i$ $A[j] \geq$ discendenti \Rightarrow dopo MaxHeapify ho un MaxHeap

DELETEKEY(A, i)

- 1 old = A[i]
- $2 \quad A[i] = A[A.heapsize]$
- $3 \quad A. heapsize = A. heapsize 1$
- 4 **if** $old \leq A[i]$
- 5 MAXHEAPIFYUP(A, i)
- 6 else
- 7 MAXHEAPIFY(A, i)

DeleteKey ha costo $O(\log n)$.

9 Lezione del 23/03/2018

9.1 Quicksort

Il Quicksort è probabilmente l'algoritmo di ordinamento più utilizzato e nella pratica efficiente, nonostante abbia un caso pessimo di $O(n^2)$.

- \circ Caso pessimo $O(n^2)$;
- \circ Caso medio e migliore $O(n \log n)$;
- o costanti basse.

Si basa sul paradigma del divide et impera:

- \circ Divide
 - \rightarrow Secglie un *pivot* x in A[p, r];
 - \rightarrow partiziona in A[p, q-1] $\leq x$ e A[q+1, r] $\geq x$;
- o Impera

Ricorre su A[p, q-1] e A[q+1, r];

 \circ Combina

(Non fa nulla).

Pseudocodice Segue lo pseudocodice del Quicksort.

```
Quicksort(A, p, r)
   if p < r
2
         q = PARTITION(A, p, r)
3
         QUICKSORT(A, p, q)
4
         Quicksort(A, q + 1, r)
Partition(A, p, r)
   x = A[r]  pivot A[r]
2 \quad i = p - 1
   /\!\!/ A[p, i] \leq x
    // A[i+1, j-1] > x
   for j = p to r - 1
         if A[j] \leq x
4
              i = i + 1
5
6
              A[i] \leftrightarrow A[j]
7
   A[i+1] \leftrightarrow A[r]
   return i+1
```

9.1.1 Correttezza di Quicksort(A, p, r)

Caso base array già ordinato, 0 o 1 elemento.

Induzione Abbiamo, dopo Partition

$$\leq A[q] \mid A[q] \mid \geq A[q]$$

Quicksort(A, p, q)
$$\leq$$
 A[q], ord | A[q] | > A[q] Quicksort(A, q+1, r) \leq A[q], ord | A[q] | > A[q], ord

Esempio Dato l'array A, scelgo come pivot x l'ultimo elemento.

i punta alla cella 0 (ossia nessuna cella)

j punta alla cella 1: 9

 $9 > 2? \text{ Si} \Rightarrow j++$

 $6 > 2? \text{ Si} \Rightarrow j++$

0 > 2? No \Rightarrow i++, A[i] \leftrightarrow A[j], j++

i punta alla cella 1: 0

j punta alla cella 4: 8

8 > 2? Sì \Rightarrow j++

4 > 2? Sì \Rightarrow j++

Scambio A[i+1] con x, ottenendo

I primi due (i + 1) elementi sono ordinati:

$$0 \mid 2$$

Chiamo ricorsivamente Quicksort con q = i + 1.

i punta alla cella 0 (ossia nessuna cella)

j punta alla cella 1: 9

9 > 6? Sì \Rightarrow j++

8 > 6? Sì \Rightarrow j++

4 > 6? No \Rightarrow i++, A[i] \leftrightarrow A[j], j++

4 8 9 6 pivot: 2

i punta alla cella 1: 4

j punta alla cella 4: 6, quindi ho finito.

Scambio A[i+1] con x, ottenendo

4 6 9 8

I primi due (i + 1) elementi sono ordinati:

4 6

Chiamo ricorsivamente Quicksort con q = i + 1.

9 8 pivot: 8

i punta alla cella 0 (ossia nessuna cella)

j punta alla cella 1: 9

9 > 8? Sì \Rightarrow j++

Ho finito, scambio A[i+1] con x, ottenendo

8 9

Guardando l'array completo ottengo il risultato atteso:

9.1.2 Complessità di Quicksort

Partition costa $\Theta(n)$

$$T^{QS} = \Theta(n) + T^{QS}(q - p) + T^{QS}(n - (q - p) - 1)$$
$$q - p < n$$

Caso peggiore

$$T^{QS} = \Theta(n) + T^{QS}(n-1) = \Theta(n^2) \qquad (\Theta(n) = cn)$$

$$T(n)$$

$$cn$$

$$cn - 1$$

$$cn - 2$$

$$\dots$$

$$d$$

$$\sum_{j=1}^{n-1} c(n-j) + d = \sum_{k=1}^{n} ck + d =$$

$$= c \sum_{k=1}^{n} k + d \qquad \left(\frac{c(n+1)n}{2} + d = \Theta(n^2)\right)$$

$$T(n) = \Theta(n^2) \Rightarrow \begin{cases} = O(n^2) \\ = \Omega(n^2) \end{cases}$$

 $\bullet \ T(n) = O(n^2)$

$$T(n) = O(n^2) \Rightarrow T(n) \le cn^2 \qquad \forall n \ge n_0, \ c > 0$$

$$= T(n-1) + \Theta(n) \le dn$$

$$\le c(n-1) + dn$$

$$= cn^2 - 2cn + c + dn \le cn^2$$

$$2cn - dn - c \ge 0$$

$$n(2c - d) - c \ge 0 \qquad \text{ok, } c > \frac{d}{2}$$

$$T(n) = O(n^2)$$

• $T(n) = \Omega(n^2)$ analogo.

Caso migliore

$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n) = \Theta(n\log n)$$

Caso medio Qualunque partizionamento proporzionale da complessità $\Theta(n \log n)$, come ad esempio

$$T(n) = T\left(\frac{n}{10}\right) + T\left(\frac{9n}{10}\right) + \Theta(n) = \Theta(n\log n)$$

Solo il caso in cui una delle due partizioni è costante, si ricade nel caso pessimo. Per ovviare al problema, si può utilizzare una versione di Partition che rende impossibile il partizionamento costante.

RANDOMIZED PARTITION (A, p, r)

- 1 q = RANDOM(p, r)
- $2 \quad A[q] \leftrightarrow A[r]$
- 3 **return** Partition(A, p, r)

10 Lezione del 28/03

10.1 Quicksort a tre partizioni

Quicksort con RandomizedPartition funziona bene ed evita, quasi in ogni circostanza, di imbattersi nel caso pessimo, ad eccezione di un caso particolare: se in *input* viene dato un array con tutti gli elementi uguali, si ottiene il temuto caso pessimo $O(n^2)$.

Per ovviare al problema, è sufficiente partizionare Quicksort in tre partizioni invece di due. Dato un pivot x, partizioniamo A nel seguente modo:

$$|\langle x | = x | > x$$

Durante l'algoritmo, la disposizione sarà questa:

$$| \langle x | = x | \rangle x$$

(La cella vuota è la regione ancora da esplorare).

```
Tripartition(A, p, r)
 1 \quad x = A[r]
 2
   i = p - 1
 3
    k = p
    j = r
    while k < j
 6
          if A[k] < x
 7
                i = i + 1
                A[i] \leftrightarrow A[k]
 8
 9
                k = k + 1
10
          else if A[k] > x
                j = j - 1
11
                A[j] \Leftrightarrow A[k]
12
13
          else
                k = k + 1
14
     /\!\!/ k = j
     A[j] \Leftrightarrow A[r]
15
    return (i+1,j) // restituisce una coppia di valori
Quicksort(A, p, r)
   if p < r
2
         q1, q2 = \text{Tripartition}(A, p, r)
3
         Quicksort(A, p, q1 - 1)
4
         Quicksort(A, q2 + 1, r)
```

10.2 Limite inferiore

Input: $a_1 \dots a_n$

<code>Output:</code> permutazione $a_1' \dots a_n'$ tale che

$$a_1' \le a_2' \le \dots \le a_n'$$

Confronti e assegnamenti Osservazioni:

- → Se "conto" solo alcune operazioni il limite inferiore vale in generale. Consideriamo solo l'operatore di confronto;
- \rightarrow Elementi tutti distinti $(a_i \neq a_j \text{ se } i \neq j)$, l'operatore di confronto == restituisce sempre FALSE.

10.2.1 Albero di Decisioni

È una rappresentazione "astratta" delle possibili esecuzioni di un algoritmo di ordinamento su un input di dimensione fissata A[1...n].

 \rightarrow nodi interni:

$$i: j \Rightarrow \text{confronta } A[i] \leq A[j]$$

→ foglie (ogni foglia è una possibile permutazione)

Rivediamo una versione di Insertion Sort basato su scambi.

Insertion-Sort(A)

```
 \begin{array}{ll} 1 & n = A. \, length \\ 2 & \textbf{for} \,\, j = 2 \,\, \textbf{to} \,\, n \,\, \# \,\, \text{il primo elemento} \,\, \grave{\text{e}} \,\, \text{gi\`{a}} \,\, \text{ordinato} \\ 3 & i = j-1 \\ 4 & \textbf{while} \,\, i > 1 \,\, \text{and} \,\, A[i] > A[i+1] \\ 5 & A[i] \leftrightarrow A[i+1] \\ 6 & i = i-1 \end{array}
```

Ecco un esempio di Albero delle Decisioni per l'array $A[a_1,a_2,a_3]$ con

$$a_1 = 1, \ a_2 = 2, \ a_3 = 3$$

Figura 5: Albero delle decisioni per l'array A[1,2,3]

Osservazione

Altezza dell'albero di decisione = limite inferiore per caso pessimo

per IS
$$n^2$$

per MS $n \log n$

In generale, le foglie contengono <u>tutte</u> le permutazioni.

$$\#foglie \ge n!$$
 $(\#foglie \le 2^h)$

$$\begin{split} h &\geq \log_2 n! \\ &\geq \log_2 \left(n(n-1)(n-2) \dots \frac{n}{2} \right) \\ &\geq \log_2 \left(\frac{n}{2} \left(\frac{n}{2} - 1 \right) \left(\frac{n}{2} - 2 \right) \dots \frac{n}{2} \right) = \\ &= \log_2 \left(\frac{n}{2} \right)^{(\frac{n}{2})} = \frac{n}{2} \left(\log_2 n - \log_2 2 \right) = \frac{n}{2} (\log_2 n - 1) = \Theta(n \log n) \end{split}$$

10.3 Ordinamento in tempo lineare

Esistono degli algoritmi di ordinamento che, in certe condizioni e per certi input, permettono di ordinare in tempo lineare $\Omega(n)$

10.3.1 Counting Sort

```
Assumo
```

```
- interi;
```

$$-\inf[0,k]$$

Input:
$$A[1..n]$$
 con $A[j] \in [0,k] \forall j$;

Output: B[1..n] permutazione ordinata di A;

Supporto: C[0..k].

CountingSort(A, B, k)

1
$$C[0..k] \leftarrow 0$$

2 **for** $j = 1$ **to** $A.length$
 $\# C[x] = \#elem$ in A con valore x
3 $C[A[j]] = C[A[j]] + 1$
4 **for** $i = 1$ **to** k
 $\# C[x] = \#elem$ in A con valore $\leq x$
5 $C[i] = C[i-1] + C[i]$
6 **for** $j = A.length$ **to** 1
 $B[C[A[j]]] = A[j]$

C[A[j]] = C[A[j]] - 1

Costo?

8

$$C[0,k] \leftarrow 0 \qquad \qquad \Theta(k)$$
 for j=1...
$$\Theta(n)$$
 for i=1...
$$\Theta(k)$$
 for j=A.length...
$$\Theta(n)$$

Somma $\Theta(n+k)$ con $k = \Theta(1) \Rightarrow \Theta(n)$

Problema di memoria Il problema di Counting Sort è la memoria. Infatti, al crescere di k, la memoria richiesta per allocare $\tt C$ cresce esponenzialmente.

Dimensione k	Memoria occupata da C[]
1 Byte = 8 bit	2^8 Bytes = 256 Bytes
2 Bytes = 16 bit	2^{16} Byte · 2Bytes = 256Megabytes
8 Bytes = 64 bit	2^{64} Byte · 8Bytes = 512Terabytes

11 Lezione del 29/03/2018

11.1 Radix Sort

Il Radix Sort è un algoritmo di ordinamento in tempo lineare O(n), come Counting Sort, che risolve i problemi di memoria di quest'ultimo.

L'idea è quella di ordinare cifra per cifra, dalla cifra meno significativa alla più significativa con un algoritmo $stabile^1$.

(iniziale)	(terza cifra)	(seconda cifra)	(prima cifra)
329	720	720	329
457	355	329	355
657	436	436	436
839	457	839	457
436	657	355	657
720	329	457	720
355	839	657	839

Input: A[1..n] con A[i] di d cifre e base b, A[i] = $a_d a_{d-1} \dots a_1$.

RadixSort(A, d)

- 1 for j = 1 to d
- ordina A rispetto alla cifra $j \# A^{j}[i] = a_{j}a_{j-1} \dots a_{1}$ con CountingSort $\# A^{j-1}$ ordinato

11.1.1 Correttezza di RadixSort(A, d)

Inizializzazione ok;

Mantenimento Se A^{j-1} è ordinato e ordino rispetto alla j-esima cifra con un algoritmo stabile, allora A^j è ordinato.

$$i < i' \Rightarrow A^j[i] \le A^j[i']$$

Siano
$$A^{j}[i] = a_{j}a_{j-1} \dots a_{1}$$

 $A^{j}[i'] = a'_{j}a'_{j-1} \dots a_{1}$

Posso distinguere due casi:

¹Un algoritmo di ordinamento stabile è un algoritmo che ordina e non scambia mai due chiavi se non è necessario (e.g. due celle con la stessa chiave).

1.

$$a_j \neq a'_j \Rightarrow a_j < a'_j$$

 $\Rightarrow A^j[i] < A^j[i']$

2.

$$a_{j} = a'_{j} \Rightarrow A^{j}[i] \leq A^{j}[i'] \quad \text{(stabilità)}$$

$$\Rightarrow A^{j}[i] = a_{j}A^{j}[i] \leq$$

$$\leq A^{j}[i'] = a'_{j}A^{j-1}[i']$$

Costo?

$$d$$
 volte CountingSort $\Theta(n+b) \Rightarrow \Theta(d(n+b)) = \Theta(n)$
con $d = \Theta(1)$, base $b = \Theta(n)$

11.2 Strutture dati elementari

- o Tabelle hash
- o Alberi di ricerca

Entrambe le strutture dati sono *insiemi dinamici*: per un dato x, abbiamo:

- $\circ x.key;$
- $\circ Insert(x);$
- $\circ Delete(x);$
- \circ Search(x).

11.2.1 Tabelle Hash

$$U$$
 universo delle chiavi
$$U = \{0, 1, \dots, |U| - 1\}$$
 $T[0 \dots |U| - 1]$ tabella hash

$$T[k]$$
 contiene
$$\begin{cases} \text{elemento } x \text{ con } x.key = k & \text{se c'è} \\ \bot & \text{altrimenti} \end{cases}$$

$$1 \quad T[x.key] = x \# \Theta(1)$$

Delete(T, x)

1
$$T[x.key] = nil \# \Theta(1)$$

SEARCH(k)

1 return $T[k] /\!\!/ \Theta(1)$

Problema e.g. consideriamo che la *key* sia di 8 caratteri (e 8 bit per rappresentare un carattere). Risulta molto costosa in termini di memoria la tabella hash.

$$2^8 \dots 2^8$$
$$(2^8)^8 = 2^{64} \cong 10^{19}$$

Idea

$$U = \{0, 1, \dots, |U| - 1\}$$
$$T[0 \dots m - 1] \qquad m << |U|$$

La "traduzione" per ottenere x.key da x cosa comporta?

$$h: U \to \{0, 1, \dots, m-1\}$$
 funzione di hashing $n = \#elem$ memorizzati nella tabella T

Se n > m, esisteranno $x_1, x_2 : h(x_1.key) = h(x_2.key)$.

Abbiamo due soluzioni:

- 1. Chaining (12.1);
- 2. Open Addressing (13.1).

12 Lezione del 04/04/2018

12.1 Chaining

Il *Chaining* propone come soluzione quella di mettere sulla tabella liste dinamiche di elementi, invece che singoli elementi, in modo che in caso si incorra in una cella già occupata dopo un *hashing*, l'elemento venga inserito in coda (o in testa) alla lista.

Idea T[i] = lista elementi x tali che <math>h(x.key) = i

INSERT(T, x)

1 Inserisci x nella lista T[h(x.key)] # O(1)

Delete(T, x)

1 Delete x from T[h(x.key)] // O(1)

SEARCH(T, k)

1 Cerco in T[h(k)] un elemento x con chiave $k \not\parallel O(n)$

Search ha una complessità di O(n), e questo è inaccettabile.

n=#elementi inseriti m=dimensione di T $\alpha=\frac{n}{m}\quad\text{fattore di carico}$ α può essere <, = oppure > di 1

12.1.1 Hashing uniforme semplice

Ogni elemento di input è "mandato" da h con la stessa probabilità $\left(\frac{1}{m}\right)$ in una delle m celle.

Caso medio $\Theta(1+\alpha)$, 1 è l'accesso alla tabella.

Consideriamo $n_1, n_2, \ldots, n_{m-1}$ la lunghezza delle m liste. La lunghezza attesa di una lista è:

$$E[n_j] = \sum_{i=1}^n \frac{1}{m} \cdot 1 = \frac{n}{m} = \alpha$$

Ricerca di una chiave La chiave può essere:

- o Assente. Search(k), k non c'è.
 - · Calcolo h(k) \rightarrow ($\Theta(1)$);
 - · Accedo a T[h(k)] = j \rightarrow ($\Theta(1)$);
 - · Scorro n_j elementi $(n_j = \alpha) \to (\Theta(\alpha))$.

Nel complesso, ho $\Theta(1+\alpha)$

- o Presente. Search(k), k presente.
 - \cdot h(k) e T[h(k)]

Se $x_1, x_2, \dots x_n$ sono gli elementi inseriti

Costo della ricerca di x_i :

$$1 + \#elem \quad x_j : j > 1, \ h(x_i.key) = h(x_j.key)$$

$$= 1 + \sum_{j=i+1}^{n} (prob \ h(x_i.key) = h(x_j.key))$$

$$= 1 + \sum_{j=i+1}^{n} \frac{1}{m} = 1 + \frac{n-i}{m}$$

$$\begin{split} &\frac{1}{n}\sum_{i=1}^{n}\left(1+\frac{n-i}{m}\right)\\ &=\frac{1}{n}\left(n+\sum_{i=1}^{n}\frac{n-i}{m}\right)=\frac{1}{n}\left(n+\frac{1}{m}\sum_{z=0}^{n-1}z\right)\\ &=1+\frac{1}{m\cdot n}\cdot\frac{n(n-1)}{2}=1+\frac{n}{2m}-\frac{1}{2m}\cdot\left(\frac{n}{n}\right)\\ &\qquad \qquad \left(\frac{n}{m}=\alpha\right)\\ &=1+\frac{\alpha}{2}-\frac{\alpha}{2n}=\Theta(1+\alpha) \end{split}$$

Se $n \leq c \cdot m$ per qualche costante positiva callora

$$\alpha \le c \Rightarrow \Theta(1)$$

12.1.2 Funzioni Hash

Una funzione hash deve soddisfare la proprietà di hashing uniforme, ossia

"Ogni chiave ha la stesso probabilità $\frac{1}{m}$ di essere mandata in una qualsiasi delle m celle, indipendentemente dalle chiavi inserite precedentemente."

Consideriamo:

- o $x \in [0,1)$ ($0 \le x < 1$), x chiave, estratta in modo indipendente dalla distribuzione uniforme (non realistica).
- \circ Allora h(x) = |mx| soddisfa la proprietà di hashing uniforme.

L'ipotesi di hash uniforme semplice dipende dalle probabilità con cui vengono estratti gli elementi da inserire; probabilità che in genere non sono note. Le funzioni hash che descriveremo assumono che le chiavi siano degli interi non negativi.

Metodo della divisione

$$U = \{0, 1, \dots, |\cup| - 1\}$$
$$h(k) = k \mod n$$

 $om=2^p$ caso pessimo:

o $m = 2^p - 1$ caso non buono. 2^p cifre base.

La soluzione migliore è quella di scegliere chiavi lontane dalle potenze di 2, meglio ancora se numeri primi.

Metodo della moltiplicazione

$$k \in U$$

$$0 < A < 1 \text{ fissato}$$

$$h(k) = m(kA \mod 1) \qquad \text{Miglior } A : \frac{\sqrt{5} - 1}{2}$$

$$m = 2^p \quad w = \# \text{bit parola}$$

$$A = \frac{q}{2^w} \quad 0 < q < 2$$

$$m(kA \mod 1)$$

$$= m\left(k\frac{q}{2^w} \mod 1\right) \qquad (\textit{shift di } w \text{ bit, prendo la parte decimale}$$

$$ka \mod 1 \text{ e la moltiplico per } m = 2^p)$$

12.1.3 Hashing Universale

Per avere una distribuzione più uniforme delle chiavi nelle liste e non dipendente dall'input, possiamo usare la *randomizzazione*.

Insieme H di funzioni di hash. Scelgo randomicamente da H. Sotto certe ipotesi ottengo per Search:

$$\Theta(1+\alpha)$$

Def (Hashing universale) $\forall k_1, k_2 \in U \ k_1 \neq k_2$

$$|\{h \in H : h(k_1) = h(k_2)\}| \le \frac{|H|}{m}$$

 $\frac{|\{h \in H : h(k_1) = h(k_2)\}|}{|H|} \le \frac{1}{m}$

Con il *chaining*, H è universale per ogni $k \in U$, j = h(k)

Costo medio
$$\Theta(1+\alpha)$$
 $\begin{cases} k \text{ non è in } T \to E[n_j] \leq \alpha \\ k \text{ è in } T \to E[n_j] \leq 1+\alpha \end{cases}$

13 Lezione del 05/04/2018

13.1 Open Addressing

h(k,i): k è la chiave, i è il tentativo.

Provo con h(k, 0): se capito in una cella occupata, provo con h(k, 1), poi h(k, 2) e così via, fino a che non trovo una cella libera.

Per esplorare tutta la tabella:

$$h(k,0), h(k,1), \ldots, h(k,m-1)$$

che è una permutazione di

$$0, 1, \ldots, m-1$$

```
Insert(T, x)
   i = 0
1
2
   repeat
3
        j = h(x.key, i)
        if (T[j] = NIL) or (T[j] = DELETED) // posizione libera
4
5
             T[j] = x
6
             return j
7
        i = i + 1
8
   until i = m
9
   error
SEARCH(T, k)
1
   i = 0
2
   repeat
3
        j = h(k, i)
4
        if T[j].key = k
5
             return j
6
        i = i + 1
   until (i = m) or (T[i] = NIL)
   return NOT FOUND
Delete(T, j)
1 T[j] = \text{DELETED}
```

L'*Open Addressing* risulta una soluzione inefficiente in caso avvengano molte cancellazioni.

13.1.1 Hashing uniforme

Per ogni elemento di input, tutte (m!) le sequenze di ispezione sono equiprobabili.

13.1.2 Funzioni di Hash

1. Ispezione lineare. Sia h'(k) funzione di hash "ordinaria". Se ricado in una cella occupata, mi sposto su quella immediatamente successiva.

$$h(k,i) = (h'(k) + i) \mod m$$

Caratteristiche:

- è semplice;
- \circ poche permutazioni (m dipende solo da h'(k));
- o causa addensamenti di celle occupate (addensamento primario).
- 2. Ispezione quadratica. Fisso h'(k).

$$h(k,i) = h'(k) + c_1 i + c_2 i^2$$
 $c_2 \neq 0$

Inserimento di k

$$\begin{array}{l} j = h'(k) \\ i = 0 \\ \textbf{while} \; (i < m) \; \textbf{and} \; (T[j] \neq \texttt{NIL/DELETED}) \\ i = i+1 \\ j = (j+1) \; \bmod n \end{array}$$

$$(i = 0)$$
 $j = h'(k)$
 $(i = 1)$ $j = (h'(k) + 1)/modm$

(i = l)

$$j = \left(h'(k) + \sum_{i=1}^{l} i\right) \mod m$$

$$= \left(h'(k) + \frac{l(l+1)}{2}\right) \mod m$$

$$= \left(h'(k) + \frac{1}{2}l + \frac{1}{2}l^2\right) \mod m$$

$$m = 2^p \text{ permutazione}$$

3. **Doppio Hash**. Fisso $h_1(k)$, $h_2(k)$

$$h(k,i) = (h_1(k) + i \cdot h_2(k)) \mod m$$

Osservazioni:

- o I salti sono di dimensione $h_2(k)$ all'incrementare di i;
- \circ Ci sono m^2 sequenze di ispezione;
- $\circ h_2(k)$ e m primi tra loro (MCD = 1);
- $\circ i, i < m \quad h(k, i) = h(k, i') \Rightarrow i = i' \quad (iniettività)$

$$h(k, _): \{0, _, m-1\} \to \{0, _, m-1\}$$

 $iniettiva \Rightarrow biiettiva$

$$h(k,i) = h(k,i')$$

$$(h_1(k) + ih_2(k)) \mod m = (h_1(k) + i'h_2(k)) \mod m$$

$$((i - i')h_2(k)) \mod m = (ih_2(k) - i'h_2(k)) \mod m = 0$$

$$(i - i') \mod m = 0$$

$$i \ge i' \quad i - i' < m$$

$$\Rightarrow i - i' = 0$$

$$\Rightarrow i = i'$$

Scelgo $m = 2^p$, $h_2(k) = 1 + 2h_2'(k)$, $h_2'(k)$ qualunque. es. $h_2(k) = 1 + k \mod m' \mod m' < m$

 $\textbf{Costo?} \quad \textbf{Il costo della Search con } hashing \ uniforme \ \text{si pu\'o riassumere come segue}.$

$$0 \le \alpha = \frac{n}{m} \le 1$$

Ricerca di una chiave non presente

- (a) $\frac{1}{1-\alpha}$ se $\alpha < 1$
- (b) m se $\alpha = 1$

Probabilità di ispezionare la i-esima cella

Valore atteso per #celle ispezionate

$$1 + \alpha + \alpha^2 + \dots + \alpha^{i-1} + \dots + \alpha^{m-1}$$

(a)
$$\alpha < 1 \Rightarrow \frac{1-\alpha^m}{1-\alpha} \le \frac{1}{1-\alpha}$$

(b) m

Ricerca di una chiave presente

(a)
$$\frac{1}{\alpha} \log \left(\frac{1}{1-\alpha} \right) \quad \alpha < 1$$

(b)
$$1 + \log m \quad \alpha = 1$$

Finora, ho inserito $x_0, x_1, \ldots, x_i, \ldots, x_n$.

costo Search chiave x_i presente = costo Search chiave x_i assente

in
$$x_0, ..., x_{i-1}$$
 $\frac{1}{1 - \alpha_i}, \ \alpha_i = \frac{i}{m}$

Numero medio:

$$\frac{1}{n} \sum_{i=0}^{n-1} \frac{1}{1 - \alpha_i} = \frac{1}{n} \sum_{i=0}^{n-1} \frac{m}{m - i} = \frac{m}{n} \sum_{i=0}^{n-1} \frac{1}{m - i} \qquad \left(\frac{m}{n} = \frac{1}{\alpha}\right)$$
$$= \frac{1}{\alpha} \sum_{i=m-n+1}^{m} \frac{1}{i} \qquad (m - i \to m - n + 1)$$

 \circ Se $\alpha < 1$

$$\leq \frac{1}{\alpha} \int_{n-m}^{m} \frac{1}{x} dx$$

$$= \frac{1}{\alpha} (\log m - \log(m-n)) = \frac{1}{\alpha} \left(\log \frac{m}{m-n}\right)$$

$$= \frac{1}{\alpha} \log \frac{1}{\frac{m-n}{m}}$$

$$= \frac{1}{\alpha} \log \left(\frac{1}{1 - \left(\frac{n}{m}\right)}\right) = \frac{1}{\alpha} \log \left(\frac{1}{1 - \alpha}\right)$$

 \circ Se $\alpha = 1$

$$\sum_{l=1}^{m} \frac{1}{l} = 1 + \sum_{l=2}^{m} \frac{1}{l} \le \int_{1}^{m} \frac{1}{x} dx$$
$$= 1 + (\log m - \log 1) = 1 + \log m$$

Confrontiamo le complessità dei due casi.

α	$\frac{l}{1-\alpha}$	$\frac{1}{\alpha}\log\left(\frac{1}{1-\alpha}\right)$
$\alpha = 0.3$	1.43	1.19
$\alpha = 0.5$	2.00	1.39
$\alpha = 0.7$	3.33	1.72
$\alpha = 0.9$	10	2.56
$\alpha = 0.99$	100	4.65

14 Lezione del 06/04/2018

14.1 Max Heap con coda dinamica

Implementiamo un Max Heap, solo che è implementato con una coda dinamica invece che con un normale array.

Ogni nodo x ha 3 campi dato:

```
o x.left;
o x.right;
o x.p.

H è lo heap (NIL se vuoto):
o H.root;
o H.size.
```

Abbiamo MaxHeapify e MaxHeapifyUp invariate.

```
INSERT(H, node)
    if H.size = 0
 2
         node.p = NIL
 3
         H.root = node
 4
         H.size = 1
 5
    else
 6
         x = root
 7
         H.size = H.size + 1
 8
         p = \text{BITVECTOR}(H.size) // p \text{ letto come vettore di bit}
 9
         k = \#bit di p più significativo a 1
10
         for i = k - 1 down to 1
11
              if p[i] = 0
12
                    x = x. left
13
               else
14
                    x = x.right
         if p[0] = 0
15
16
               x.left = node
17
         else
18
               x.right = node
19
    node.left = node.right = NIL
20
    MaxHeapifyUp(H, node)
```

Raccolta esercizi della lezione: B.2.

15 Lezione del 26/04/2018

15.1 Alberi Binari di Ricerca (ABR)

Definizione induttiva

- $\circ \varnothing$ è un albero;

Ogni nodo x ha i seguenti campi:

- $\circ x.p$
- $\circ x.key$
- $\circ x.left$
- $\circ x.right$

Proprietà $\forall r$

- \rightarrow Per ogni nodo y in T_1 $y.key \leq x.key$;
- \rightarrow Per ogni nodo y in T_2 $y.key \ge x.key$.

Esempio Ecco un albero binario di ricerca d'esempio:

15.1.1 Visita simmetrica

La visita simmetrica (ordine infisso) visita i nodi in ordine crescente.

In-Order(x)

- 1 if $x \neq NIL$
- 2 IN-Order (x. left)
- 3 Print(x) $/\!\!/\Theta(1)$
- 4 IN-Order (x. right)

Costo?

$$T(n) = \begin{cases} c & n = 0\\ T(k) + T(n - k - 1) + d & n > 0, \ k < n \end{cases}$$

Stima di complessità: T(n) = (c+d)n + c.

Vediamo la dimostrazione (per induzione).

$$(n = 0) T(n) = c = (c + d) \cdot 0 + c$$

 $(n \to n+1)$ T(n) = T(k) + T(n-k) + d. Non basta l'induzione ordinaria, usiamo l'induzione completa.

(n > 0) Proprietà vera per n' < n

$$T(n) = T(k) + T(n - k - 1) + d$$

$$con T(k) = (c + d)k + c e T(n - k - 1) = (c + d)(c - k - 1) + c$$

$$= (c + d)(\cancel{k} + n - \cancel{k} - 1) + 2c + d$$

$$= n(c + d) - c - d + 2c + d$$

$$= n(c + d) + c - \cancel{\ell} + \cancel{\ell}$$

$$\cong \Theta(n)$$

15.1.2 Ricerca

Ricerca di una chiave k in un albero radicato nel nodo x.

- \circ Se $x \grave{e}$ NIL \Rightarrow restituisce NIL;
- \circ Altrimenti se $x.key = k \Rightarrow$ restituisce x;
- Altrimenti, ricorre sul prossimo nodo.

```
\begin{array}{lll} \operatorname{SEARCH}(x,k) \\ 1 & \text{if } (x = \operatorname{NIL}) \text{ or } (x.key = k) \\ 2 & \text{return } x \\ 3 & \text{else if } k < x.key \\ 4 & \text{return } \operatorname{SEARCH}(x.left,k) \\ 5 & \text{else} \\ 6 & \text{return } \operatorname{SEARCH}(x.right,k) \end{array}
```

Costo? Nel caso peggiore, il costo è l'altezza dell'albero h(O(h)).

Vediamo una versione iterativa di Search.

```
SEARCH-IT(x, k)

1 while (x \neq \text{NIL}) or (x. key \neq k)

2 if k < x. key

3 x = x. left

4 else

5 x = x. right

6 return x
```

Procedura che restituisce il *minimo* di un albero:

```
\begin{array}{ll} 1 & x = T.root \\ 2 & \textbf{if } x = \text{NIL} \\ 3 & \textbf{return NIL} \\ 4 & \textbf{else} \\ 5 & \textbf{while } x.left \neq nil \\ 6 & x = x.left \end{array}
```

Min(T)

7

return x

Procedura che restituisce il massimo di un albero.

```
\begin{aligned} \text{Max}(T) \\ 1 \quad x &= T.root \\ 2 \quad \text{if } x &= \text{NIL} \\ 3 \quad & \text{return NIL} \\ 4 \quad & \text{else} \\ 5 \quad & \text{while } x.right \neq nil \\ 6 \quad & x &= x.right \\ 7 \quad & \text{return } x \end{aligned}
```

Costo? O(h)

15.1.3 Successore di un nodo

Si intende il nodo elencato dopo un nodo x passato come parametro in una visita simmetrica.

Se le chiavi fossero tutte distinte, allora il successore di x è il minimo tra i "nodi più grandi di x".

- \circ Se x ha un figlio destro, il *successore* è MIN(x);
- $\circ\;$ Altrimenti, il successore è l'antenato più vicino di cui x è nel sottoalbero sinistro.

```
Successor(x)
   if x. right \neq NIL
2
        return Min(x.right)
3
   else
4
        y = x.p
5
        while (y \neq NIL) and (x = y. right)
6
             x = y
7
             y = y.p
8
        return y
```

Costo? O(h)

15.1.4 Inserimento

```
Insert(T, z)
    x = T.root
    y = \text{NIL}
2
3
    while x \neq NIL
4
         y = x
5
         if z.key < x.key
6
              x = x.left
 7
         else
 8
              x = x.right
9
    z.p = y
10
    if y = NIL
11
         T.root = z
12
    else
13
         if z. key < y. key
14
               y.left = z
15
         else
               y.right = z
16
17
    return z
```

Costo? O(h)

15.1.5 Eliminazione di un nodo

Distingueremo 2 casi nell'algoritmo:

- (1) z ha al più un figlio;
- (2) z ha due figli.

Per fare ciò, usiamo una funzione ausiliaria Transplant, con costo O(1).

```
Transplant(T, u, v)
   if u.p = NIL
1
2
         T.root = v
3
   else
         if u = u.p.left
4
              u.p.left = v
5
6
         else
7
              u.p.right = v
8
   if v \neq \text{NIL}
9
        v.p = u.p
```

```
Delete(T, z)
    if z.left = NIL
         Transplant(T, z, z. right)
 2
 3
    else if z.right = NIL
4
         Transplant(T, z, z, left)
5
    else
6
         y = Min(z.right)
 7
         if y.p \neq z
8
              Transplant(T, y, y. right)
9
              y.right = z.right
10
              y.right.p = y
11
              y.left = z.left
12
              y.left.p = y
13
              Transplant(T, z, y)
14
         else
15
              y.left = z.left
16
              y.left.p = y
17
              Transplant(T, z, y)
```

 $\grave{\mathbf{E}}$ possibile scrivere \mathtt{Delete} in modo più compatto.

```
Delete(T, z)
    if z.left = NIL
2
         Transplant(T, z, z. right)
 3
    else if z.right = NIL
         Transplant(T, z, z. left)
4
 5
    else
6
         y = MIN(z. right)
 7
         if y.p \neq z
8
              Transplant(T, y, y. right)
              y.right = z.right
9
10
              y.right.p = y
11
         y.left = z.left
12
         y.left.p = y
13
         Transplant(T, z, y)
```

16 Lezione del 27-28/04/2018

16.1 Red-Black Trees

I Red- $Black\ Trees$ sono ABR i cui nodi hanno un campo $colore\ x.col$, che può essere:

- R per il rosso;
- \circ **B** per il nero.

Accorgimento NIL sarà in realtà un nodo, T.nil, con T.nil.col = B.

Caratteristiche RB-tree è in realtà un ABR tale che:

- (1) Ogni nodo x ha $x.col \in \{R, B\}$;
- (2) La radice root ha root.col = B;
- (3) Le foglie (T.nil) sono B;
- (4) Se $x \in R$, i figli sono B;
- (5) Per ogni nodo x, ogni cammino da x a una qualsiasi delle foglie ha lo stesso numero di nodi B (calcolato con bh(x)).

Figura 6: Esempio di un RB-tree.

È possibile notare che:

- In caso non ci fossero nodi rossi, avremo un albero perfettamente bilanciato;
- \circ In ogni cammino, il # di nodi ${\bf B}$ è almeno la metà del # dei nodi ${\bf R}$

Osservazione Se T è un RB-tree con n nodi interni $(\neq NIL)$ e h altezza, allora vale

$$h \le 2\log(n+1)$$

Dimostrazione Consideriamo

$$n_x \ge 2^{bh(x)} - 1$$

La dimostrazione è per induzione su h_x (altezza del sotto-albero radicato in x).

$$(h_x = 1)$$
 Allora ho solo $T.nil \Rightarrow n_x = 0 = 2^0 - 1$ $(2^0 \text{ con } 0 = bh(x))$

 $(h_x > 1)$ Consideriamo x radice. x ha due figli, x_1 e x_2 .

Sicuramente vale $h_1, h_2 < h$. Per ipotesi induttiva, valgono:

$$n_{x_1} \ge 2^{bh(x_1)} - 1$$

$$n_{x_2} \ge 2^{bh(x_2)} - 1$$

$$n_x = n_{x_1} + n_{x_2} + 1$$

$$\geq 2^{bh(x_1)} + 2^{bh(x_2)} - 1$$

$$\geq 2 \cdot 2^{bh(x)-1} - 1 = 2^{bh(x)} - 1$$
(valgono $bh(x_1) \geq bh(x) - 1$, $bh(x_2) \geq bh(x) - 1$)

Complessivamente

$$n = n_{root} \ge 2^{bh(root)} - 1$$

Essendo $bh(root) \ge \frac{h}{2}$, posso ottenere

$$\begin{split} n_{root} &\geq 2^{bh(root)} - 1 \\ & 2^{\frac{h}{2}} - 1 \\ &\Rightarrow 2^{\frac{h}{2}} \leq n + 1 \\ & \frac{h}{2} \leq \log_2(n+1) \Rightarrow h \leq 2\log_2(n+1) \end{split}$$

16.1.1 Complessità algoritmi RB-Trees

Search, Succ, Min, Pred, Max hanno un costo di $O(h) = O(\log n)$

16.1.2 RB-Insert e RB-Delete

A differenza di quelle citate precedentemente, che risultano semplici sia come complessità asintotica che come implementazione, Bisogna porre particolare attenzione a queste due procedure: RB-Insert e RB-Delete.

Per ovviare a ciò, posso utilizzare le *rotazioni*. Consideriamo il seguente albero, in cui x e y sono nodi normali, mentre α , β e γ sono sotto-alberi (il colore dei nodi non ha importanza ai fini della procedura che andremo a vedere)¹:

Applichiamo la procedura Left(T,x), ottenendo:

 $^{^1\}mathrm{Di}$ conseguenza, applicandola a un RB-tree,gli assiomi di validità potrebbero venire violati.

Osservazione La visita simmetrica è identica per i due alberi:

$$\alpha \to x \to \beta \to y \to \gamma$$

Left(T, x)

- 1 x.right = y.left
- $2 \quad x. right. p = x$
- $3 \quad y. \, left = x$
- $4 \quad x.p = y$
- 5 Transplant(T, x, y)

RB-Insert(T, z) Voglio inserire z nell'albero T. L'idea è quella di porre $z.col = \text{RED poichè meno insidioso}^1$.

- \circ Se violo (2) $\Rightarrow z.col = BLACK$;
- \circ Se violo (4):
 - · Risolvo localmente;
 - · Sposto verso l'alto il problema.

Abbiamo due $macrocasi.\ z.p$ è figlio sinistro, oppure destro. Noi analizzeremo solo il primo: $\mathbf{z.p}$ figlio sinistro.

 $^{^1\}mathrm{Andando}$ a modificare il numero di nodi neri, cambia l'altezza nera, e la cosa è difficile da sistemare.

Abbiamo due possibilità per y^1 :

1. y.col = RED. Ci è sufficiente invertire il colore di z.p.p con quello dei figli.

In questo modo, risolviamo localmente e rimandiamo il problema in alto.

- 2. y.col = BLACK. Possiamo distinguere due sottocasi.
 - (2.1) z figlio destro.

Voglio finire nel caso (2.2). Applico Left(T,z.p), ottenendo:

 $^{^1\}mathrm{I}$ nodi con testo in rosso sono RED, quelli in grassetto sono BLACK, e quelli normali possono essere sia rossi che neri.

(2.2) z figlio sinistro.

Scambio i colori di x.p.p con z.p, ottenendo:

Applico Right(T,z.p.p) 1 :

RB-Insert(T, z)

- 1 Insert(T, z)
- $2 \quad z. col = \text{Red}$
- 3 RB-InsertFix(T, z)

¹Analoga di Left.

```
RB-FIXUP(T, z)
    while z. p. col = RED
 2
         if z.p = z.p.p.left // Macrocaso z.p figlio sinistro
 3
              y = z. p. p. right
 4
              if y. col = RED // Caso 1
 5
                   z. p. p. col = RED
 6
                   z.p.col = BLACK
 7
                   y.col = BLACK
 8
                   z = z.p.p
              else // Caso 2
9
                   if z = z.p.right // Caso (2.1)
10
11
                        Left(T, z, p)
12
                        z = z.left
                   // Caso (2.2)
13
                   z.p.col = BLACK
14
                   z. p. p. col = RED
15
                   RIGHT(T, z. p. p)
16
         else ... // Macrocaso z.p figlio destro
17
    T.root.col = BLACK
```

Costo

 $\frac{h}{2} \cong \frac{\log n}{2} \approx \log n$ iterazioni senza rotazioni + MAX 2 rotazioni.

 $\mathbf{RB\text{-}Delete}(\mathbf{T}, \mathbf{z})$ La Delete è ancora più problematica¹. Se z è rosso, non ho nessun problema, poichè l'altezza nera non viene toccata. Altrimenti, i problemi possono essere diversi (radice rossa, due nodi rossi adiacenti, altezza nera inconsistente, ecc...).

 $^{^1\}mathrm{Ho}$ deciso di ometterla per non saper come rappresentarla in modo adeguato. Darò solo una breve osservazione

17 Lezioni del 03-04/05/2018

17.1 Arricchimento di Strutture Dati

Vedremo due esempi, uno per gli RB-trees, e un altro per gli ABR.

- Statistiche d'ordine (17.1.1)
- o Interval Trees (17.1.3)

17.1.1 Statistiche d'ordine

Struttura che parte da un RB-tree. Aggiungo:

- o Select(T,i) \equiv nodo x che occuperebbe la posizione i nei nodi ordinati per chiave (in una *visita simmetrica*);
- o Rank(T,x) \equiv posizione i (in una $visita\ simmetrica$) che occupa il nodo x.

Per implementare queste due procedure, ho bisogno di un nuovo campo dati. Aggiungo il campo

 $x.size = \#nodi radicati nel sottoalbero T_x$

Valgono

$$T.nil.size = 0$$

 $x.size = x.left.size + x.right.size + 1$

Esempio In ogni nodo, tra le parentesi è riportato la size di quel nodo. Ricordiamo che i nodi nil (T.nil) hanno size = 0.

Vediamo un'implementazione non efficiente della procedura Size.

```
\begin{aligned} &\operatorname{SIZE}(x) \\ 1 & \text{ if } x = T. \, nil \\ 2 & x. \, size = 0 \\ 3 & \text{ else} \\ 4 & l = \operatorname{SIZE}(x. \, left) \\ 5 & r = \operatorname{SIZE}(x. \, right) \\ 6 & x. \, size = l + r + 1 \\ 7 & \text{ return } x. \, size \end{aligned}
```

Costo Il costo è O(n), che come preannunciato, non è efficiente. Questo perchè le procedure Insert/Delete di un RB-tree sono nel peggiore dei casi O(h).

Questa procedura, Select, restituisce il nodo di posizione i in T_x .

Costo di Select $O(h) = O(\log n)$

Rank restituisce la posizione i che occupa il nodo x.

```
Rank(x)

1 r = x. left. size + 1

2 y = x

3 while y.p \neq T. nil // idea: r contiene la posizione di x in T_y

4 if y.p. right = y

5 r = r + y.p. left. size + 1

6 y = y.p

7 return r
```

Costo di Rank $O(h) = O(\log n)$

Vediamo ora la variante di RB-Insert

```
RB-Insert(T, z)
    // (1) versione aggiornata di Insert
    z.size = 1
 2
   x = T.root
 3
    y = T.nil
4
    while x \neq T. nil
         x.size = x.size + 1
6
         y = x
 7
         if z.key < x.key
8
             x = x.left
9
         else
10
             x = x.right
11
    z.p = y
12
   if y = NIL
         T.root = z
13
14
    else
15
         if z.key < y.key
              y.left = z
16
17
         else
18
              y.right = z
    // (2) RB-FixUp
   z.col = RED
19
20 RB-FIXUP(T, z)
```

E la versione aggiornata di Left

```
Left(T, x)

1 x.right = y.left

2 x.right.p = x

3 y.left = x

4 x.p = y

5 Transplant(T, x, y)

6 y.size = x.size

7 x.size = x.left.size + x.right.size + 1
```

17.1.2 Teorema dell'aumento degli RB-Trees

Def. Sia x.field un campo che si calcola in O(1) usando x, x.left, x.right (x.field = F(x, x.left, x.right)). Allora è possibile modificare RB-Insert e RB-Delete in modo che mantengano aggiornato il campo x.field con complessità asintotica $O(\log n)$.

17.1.3 Interval Trees

Gli Interval Trees sono alberi binari di ricerca con un campo x.int, che a sua volta presenta due campi:

- o int.low, che è anche la chiave;
- \circ int.high.

E anche di un campo $x.max = \max$ estremo di intervallo per i nodi in T_x , ossia

$$x.max = max \begin{cases} x.left.max \\ x.right.max \\ x.int.high \end{cases}$$

L'idea è quella in cui ogni nodo rappresenti un intervallo.

Vogliamo implementare le seguenti procedure:

- Insert(T,x)
- Delete(T,x)
- \circ ISearch(T,i) con i = [low, high]:
 - $\cdot x$ tale che $x.int \cap i \neq \emptyset$;
 - · T.nil se un tale x non c'è.

Rotazioni Prendiamo il seguente albero di esempio.

Applico Left(T,x), ottenendo

Sistemo i massimi. Left costa ancora O(1)

- $\circ y.max = x.max$
- $\circ x.max = max\{x.int.high, x.left.max, x.right.max\}$

Vediamo ISearch.

ISEARCH(x, i)

- 1 if (x = T. nil) or $(x. int \cap i \neq \emptyset)$
- 2 return x
- 3 else if (x.left) and $(x.left.max \ge i.low)$
- 4 return ISEARCH(x. left, i)
- 5 else
- 6 return ISEARCH(x. right, i)

Correttezza

- \circ Else if. Consideriamo in x.left un intervallo i'. Abbiamo 2 possibilità.
 - (1) $i \cap i' \neq \emptyset$
 - (2) $i \cap i' = \emptyset$, ovvero vale i.high < i'.low. Questo varrà per ogni nodo dei sotto-alberi, quindi è inutile ispezionare gli antenati di quel sotto-albero.
- \circ Else. $\forall i'$ in $x.left \Rightarrow i' \cap i \neq \emptyset$.

Costo $O(h) = O(\log n)$

Esercizio Vai a B.3

Appendices

A Raccolta algoritmi

A.1 Insertion Sort

Per approfondire, vedi la sezione 1.4

```
Insertion-Sort(A)
   n = A. length
1
   for j = 2 to n // il primo elemento è già ordinato
3
        key = A[j] \; /\!\!/ \; A[1\mathinner{.\,.} j-1]ordinato
4
        i = j - 1
5
         while i > 0 and A[i] > key
6
              A[i+1] = A[i]
7
              i = i - 1
8
         A[i+1] = key
```

A.2 Merge Sort

Vedi la sezione 2.4

```
MERGE-SORT(A, p, r)

1 if p < r

2 q = \lfloor \frac{p+r}{2} \rfloor // arrotondato per difetto

3 MERGE-SORT(A, p, q) // ordina A[p..q]

4 MERGE-SORT(A, q + 1, r) // ordina A[q+1..r]

5 MERGE(A, p, q, r) // "Merge" dei due sotto-array
```

```
Merge(A, p, q, r)
    n1 = q - p + 1 // gli indici partono da 1
    n2 = r - q
    /\!\!/ \, \mathbf{L}sotto-array sx<br/>,\mathbf{R}sotto-array dx
    for i = 1 to n1
          L[i] = A[p+i-1]
 4
 5
    for j = 1 to n2
          R[j] = A[q+j]
 6
 7
    L[n1 + 1] = R[n2 + 1] = \infty
8
    i = j = 1
    for k = p to r
9
10
          if L[i] \leq R[j]
11
               A[k] = L[i]
               i = i + 1
12
          else /\!\!/ L[i] > R[j]
13
14
               A[k] = R[j]
15
               j = j + 1
```

A.3 Insertion Sort ricorsivo

```
Insertion-Sort(A, j)

1 if j > 1

2 Insertion-Sort(A, j - 1) // ordina A[1..j-1]

3 Insert(A, j) // inserisce A[j] in mode ordinate in A

Insert(A, j) // Precondizione: A[1..j-1] è ordinate

1 if (j > 1) and (A[j] < A[j - 1])

2 A[j] \leftrightarrow A[j - 1] // scambia le celle j e j-1

// se le celle sono state scambiate, ordina
// il nuovo sottoarray A[1..j-1]

3 Insert(A, j - 1)
```

A.3.1 Correttezza di Insertion-Sort(A, j)

Procediamo per induzione:

```
(j \le 1) Caso base. Array già ordinato, non faccio nulla \Rightarrow ok;
```

(j > 1) Per ipotesi induttiva, la chiamata Insertion-Sort(A, j-1) ordina A[1..j-1]. Assumendo la correttezza di Insert(A, j-1), esso "inserisce" A[j] \Rightarrow produce A[1..j] ordinato.

Correttezza di Insert(A, j) A.3.2

Anche qui, dimostrazione per induzione:

(j = 1)Caso base. A[1] da inserire nell'array vuoto. Non fa nulla \Rightarrow ok;

(j > 1)Due sottocasi:

- · $A[j] \ge A[j-1]$: non faccio nulla, A[1..j] già ordinato;
- · A[j] < A[j-1]: scambio le chiavi delle due celle. Il nuovo A[j] sarà sicuramente maggiore di qualsiasi altro elemento che lo precede, poiché, per precondizione di Insert, A[1..j-1] era ordinato, e dato che valeva $A[j-1] \ge A[j]$, il nuovo A[j] (che è il precedente A[j-1]) sarà sicuramente l'elemento con il valore più alto. Dopodichè, chiamo Insert(A, j-1) per ordinare la cella A[j-1].

A.4 CheckDup

Algoritmo che verifica la presenza di duplicati in A[p..r] e, solo se non ci sono, ordina l'array.

Se A[p..q] e A[q+1..r] ordinati e privi di duplicati:

- Se A[p..r] non contiene duplicati, ordina e restituisce false;
- o altrimenti, restituisce true.

```
CHECK-DUP(A, p, r)
  if p < r
```

- $q = \lfloor \frac{p+r}{2} \rfloor$ # arrotondato per difetto 2
- 3 return Check-Dup(A, p, q)
- or Check-Dup(A, q + 1, r)4
- 5 or $\mathrm{DMerge}(A, p, q, r)$

```
DMERGE(A, p, q, r)
    n1 = q - p + 1 // gli indici partono da 1
    n2 = r - q
    /\!\!/ L sotto-array sx, R sotto-array dx
    for i = 1 to n1
         L[i] = A[p+i-1]
4
    for j = 1 to n2
         R[j] = A[q+j]
 6
    L[n1+1] = R[n2+1] = \infty
 7
8
   i = j = 1
    while (k \le p) and (L[i] \ne R[j])
9
         if L[i] < R[j]
10
              A[k] = L[i]
11
              i = i + 1
12
         else \ /\!\!/ L[i] > R[j]
13
14
              A[k] = R[j]
15
              j = j + 1
         k = k + 1
16
   return k \leq r
17
```

A.4.1 Correttezza di DMerge(A,p,q,r)

```
∘ A[p..k-1] è ordinato, contiene L[1..i-1]∪R[1..j-1];

∘ A[p..k-1] < L[1..n1], R[1..n2].
```

A.5 SumKey

Dato A[i..n] e key intera, Sum(A, key) restituisce:

```
\circ \ \mathtt{true} \ \mathrm{se} \ \exists i,j \in [1,n] : key = A[i] + A[j];
```

o false altrimenti.

Vediamo una prima versione, non efficiente, dell'algoritmo. Ha complessità $O(n^2)$.

```
SumB(A, key)
   n = A.length
2
   i = j = 1
   while (i \le n) and (A[i] + A[j] \ne key)
3
4
        if j = n
             i = i + 1
5
6
        else
7
             j = j + 1
8
   return i \leq n
```

Ecco ora una versione più efficiente, che però richiede un sorting preventivo, che quindi causa side effect. Si assume un algoritmo di sorting con complessità $O(n \log n)$. Con questa premessa, la ricerca della coppia di valori ha complessità O(n) nel caso peggiore. Nel complesso, vale quindi:

$$O(n\log n + n) = O(n\log n)$$

```
Sum(A, key)
1 \quad n = A. length
   SORT(A) // complessità O(n \log n)
  i = 1, j = n
   while (i \le j) and (A[i] + A[j] \ne key)
4
        if A[i] + A[j] < key
5
6
              i = i + 1
7
        else
             j = j - 1
8
9
   return i \leq j
```

A.5.1 Correttezza di Sum(A, key)

Valgono i seguenti invarianti:

(1)
$$\forall h \in [1, i-1], \ \forall k \in [h, n] \Rightarrow A[h] + A[k] \neq key$$

(2)
$$\forall k \in [j+1, n], \ \forall h \in [1, k] \Rightarrow A[k] + A[h] \neq key$$

Supponiamo di trovarci in A[i] + A[j] < key

- \rightarrow incremento i;
- (1) **non** cambia;
- (2) (vogliamo dimostrare) $\forall k \in [i, n] \quad A[i] + A[k] \neq key$. Distinguiamo 2 casi.

· Siccome vale $A[k] \leq A[j]$, allora

$$A[i] + A[k] \le A[i] + A[j] > key$$

· $k \in [j+1, n]$ quindi

$$A[i] + A[k] \neq key \text{ per } (2)$$

Se esco perché i>j, **non** c'è una soluzione poiché

$$(1) + (2) \Rightarrow \forall h < k \quad A[h] + A[k] \neq key$$

Presetiamo ora una terza soluzione, che però richiede un costo in memoria direttamente proporzionale al valore max (che chiameremo top) dell'array considerato, poiché richiede di allocare un array V di booleani di dimensione dipendente da top, in cui il valore A[i] corrisponde alla cella V[A[i]]. Assumiamo

$$A[i] \ge 0 \quad \forall i \in [i, n], \ key \le top$$

 $V[v] = \texttt{true} \ \text{sse} \ \exists i : A[i] = v$

SumV(A, key)

```
 \begin{array}{ll} 1 & V[0\mathinner{.\,.} key] \leftarrow \text{FALSE} \ \# \ \Theta(key) = O(top) = O(1) \\ 2 & i = 1 \\ 3 & found = \text{FALSE} \\ 4 & \textbf{while} \ (i \leq n) \ \textbf{and} \ not \ found \\ 5 & \textbf{if} \ A[i] \leq key \\ 6 & V[A[i]] = \text{TRUE} \\ 7 & found = V[key - A[i]] \\ 8 & i = i+1 \\ 9 & \textbf{return} \ found \end{array}
```

Complessità:

- \circ O(n) se top costante;
- $\circ O(n \cdot key)$ altrimenti.

A.6 Heapsort

```
Per approfondire, vedi 8.1.
Left(i)
   /\!\!/ restituisce il figlio sx del nodo i
1 return 2*i
Right(i)
   /\!\!/ restituisce il figlio dx del nodo i
1 return 2 * i + 1
Parent(i)
   /\!\!/ restituisce il genitore del nodo i
1 return |i/2|
MaxHeapify(A, i)
 1 l = Left(i)
    r = RIGHT(i)
    if (l \le A. heapsize) and (A[l] > A[i])
 4
         max = l
 5
    else
 6
         max = i
    if (r \leq A. heapsize) and (A[r] > A[max])
 8
         max = r
 9
    if (max \neq i)
         A[i] \leftrightarrow A[max]
10
         MaxHeapify(A, max)
11
BuildMaxHeap(A)
   A.heapsize = A.length
2
   for i = |A.length/2| down to 1
3
        MaxHeapify(A, i)
HEAPSORT(A)
   BuildMaxHeap(A) /\!\!/ O(n)
2
   for i = A. length down to 2
3
        A[1] \leftrightarrow A[i]
4
        A.heapsize = A.heapsize - 1
5
        MaxHeapify(A, 1) \# O(\log n)
```

A.7 Code con priorità

```
(Sezione 8.2)
Max(A)
1
  if A.heapsize = 0
2
        error
3
   else return A[1]
ExtractMax(A)
1 \quad max = A[1]
2 \quad A[1] = A[A.heapsize]
3 \quad A.heapsize = A.heapsize - 1
4 MaxHeapify(A, 1) // ripristina le proprietà di MaxHeap
  return max
MaxHeapifyUp(A, i)
   if (i > 1) and (A[i] > A[PARENT(i)])
2
        A[i] \leftrightarrow A[PARENT(i)]
3
        MaxHeapifyUp(A, Parent(i))
INSERT(A, x)
1 \quad A. heap size = A. heap size + 1
2 \quad A[A.heapsize] = x
3 MaxHeapifyUp(A, A. heapsize)
IncreaseKey(A, i, \delta)
   # Precondizione: \delta \geq 0
1 \quad A[i] = A[i] + \delta
2 MaxHeapifyUp(A, i)
ChangeKey(A, i, \delta)
   A[i] = A[i] + \delta
  if \delta > 0
3
        MaxHeapifyUp(A, i)
4
   else // \delta \leq 0
5
        MaxHeapify(A, i)
```

```
\begin{array}{ll} \text{Deletekey}(A,i) \\ 1 & old = A[i] \\ 2 & A[i] = A[A.heapsize] \\ 3 & A.heapsize = A.heapsize - 1 \\ 4 & \textbf{if} \ old \leq A[i] \\ 5 & \text{MaxHeapifyUp}(A,i) \\ 6 & \textbf{else} \\ 7 & \text{MaxHeapify}(A,i) \end{array}
```

B Esercizi

B.1 Ricorrenze

- T(n) = aT(n-1) + b a, b > 1
 - \cdot radice: costo b;
 - · la radice ha a figli di costo b;
 - ٠ . . .
 - · foglie terminali O(1).

Esplicitando il caso base della ricorrenza otteniamo:

$$T(n) = \begin{cases} c & n = 0\\ aT(n-1) + b & n > 0 \end{cases}$$

$$T(n) = b + ab + a^{2}b + \dots + a^{n-1}b + a^{n}c$$

$$= b\sum_{j=0}^{n-1}a^{j} + a^{n}c \qquad \text{(dimostrare per induzione)}$$

$$(a = 1) T(n) = nb + c = \Theta(n)$$

$$(a < 1) T(n) = \frac{1-a^n}{1-a} \cdot b + a^n c = \Theta(1)$$

$$(\text{valgono } \frac{1-a^n}{1-a} \le \frac{1}{1-a}, \ a^n c < c)$$

$$(a > 1) T(n) = \frac{a^n - 1}{a - 1}b + a^n c = \Theta(a^n)$$

B.2 Esercizi svolti il 06/04/2018

Gap Abbiamo un gap se i < n t.c. A[i+1] - A[i] > 1. Mostrare per induzione che se $A[n] - A[1] \ge n$ allora c'è un gap.

Sol.

- Base
 - $\cdot \ n=1 \Rightarrow A[1]-A[1]=0;$
 - · $n=2 \Rightarrow A[2]-A[1]>1$ allora 1 è un gap.
- o <u>Passo induttivo</u> n>2 Se $A[n]-A[1]\geq n$ abbiamo due casi:

Gap(A, p, r)

// pre:
$$r - p > 1$$

1 if $p = r + 1$

2 return p

3 else

4 $q = \frac{p+r}{2}$

5 if $A[q] - A[p] > q - p + 1$

6 Gap(A, p, r)

7 else

8 Gap(A, q + 1, r)

Valutiamo la complessità con il Master Theorem.

$$T(n) = T\left(\frac{n}{2}\right) + \Theta(1)$$

Abbiamo $a=1,\ b=2.$ Confronto $f(n)=\Theta(1)$ con $n^{\log_2 1}=1.$

Siamo nel secondo caso del Master Theorem, poichè le due funzioni hanno lo stesso andamento $\Rightarrow \Theta(\log^{\log_2 1} \log n) = \Theta(\log n)$

Select Select(A, k), ritorna il k-esimo elemento dell'array A se fosse ordinato.

- **Sol.** Ci sono diverse soluzioni al problema.
- (1) Trasformo A in un MinHeap, ed estraggo il minimo k volte.

```
SELECT(A, k)

1 BUILDMAXHEAP(A) // \Theta(n)

2 for i = 1 to k

3 x = \text{EXTRACTMIN}(A) // k \cdot O(\log n)

4 return x
```

Complessità: $O(n + k \log n)$

(2) Soluzione alternativa.

```
SELECT(A, k)

1 BUILDMAXHEAP(A, k) // \Theta(k)

2 for i = k + 1 to n

3 if A[i] < A[1] // O((n - k) \log k)

4 A[i] \leftrightarrow A[1]

5 MAXHEAPIFY(A, 1, k)

6 return A[1]

Complessità: O(k + (n - k) \log k) \cong O(n \log k)
```

Inversioni Quante *inversioni* ci sono in A? Implementare un algoritmo $Divide\ ed\ Impera\ con\ complessità <math>O(n\log n)$

Def (inversione) Una coppia di indici i, j tali che i < j è un inversione per l'array A se e solo se A[i] > A[j].

Sol. Possiamo distinguere tre casi:

```
 \begin{split} &\circ \ i, j \in [p,q]; \\ &\circ \ i, j \in [q+1,r]; \\ &\circ \ i \in [p,q], j \in [q+1,r]. \end{split}
```

La soluzione che adotteremo conterà le inversioni dei tre casi separatamente, e restituirà la somma dei tre valori ottenuti.

Inv
$$(p, r) = \#$$
 Inv $(p, q) + \#$ Inv $(q + 1, r)$
 $+ |\{(i, j) : i \in [p, q], j \in [q + 1, r], A[i] > A[j]\}|$
Inv (A, p, r)
restituisce #inv e ordina l'array A
1 if $p < r$
2 $q = \frac{p+r}{2}$
3 return Inv $(A, p, q) + \text{Inv}(A, q + 1, r) + \text{MergeInv}(A, p, q, r)$
4 else
5 return 0

- (a) INV non cambia gli elementi in A[p,q] e A[q+1,r];
- (b) Il numero di inversioni "a cavallo" non cambia;
- (c) i, j inversione A[i] > A[j] $\Rightarrow (i', j) \quad i' \in [i, q]$ inversione.

```
MERGEINV(A, p, q, r)
 1 \quad n_1 = q - p + 1
2 \quad n_2 = r - q
3 L[1, n_1] = A[p, q]
4 R[1, n_2] = A[q+1, r]
5 L[n_1+1] = R[n_2+1] = \infty
6 \quad i = j = 1
    inv = 0
8
    for k = p to r
9
         if L[i] \leq R[j]
10
               A[k] = L[i]
               i = i + 1
11
12
         else
13
               A[k] = R[j]
14
               j = j + 1
               inv = inv + n_1 - i + 1
15
16
    return inv
```

B.3 Esercizio del 03/05/2018

ABR con:

```
\circ x.left
\circ x.right
\circ x.succ
\circ xp, non ho il padre.
```

Search, Max e Min restano invariate. Cambiano invece Insert, Succ e c'è bisogno di una procedura Parent.

```
Insert(T, z)
    x = T.root
    y = NIL // parent
3
   pred = NIL
4
    while x \neq NIL
5
         y = x
6
         if z.key < x.key
 7
              x = x.left
8
         else
9
              x = x.right
10
              pred = y
    if y = NIL
11
12
         T.root = z
13
    else if z.key < y.key
14
         y.left = z
15
    else
         y.right = z
16
    if pred \neq NIL
17
18
         z.succ = pred.succ
19
         pred.succ = z
20
    else
21
         z.succ = y
```

Analisi di Insert Scorro con y l'albero. Chi sono z.succ e il genitore di z? Distinguiamo due casi.

a) z figlio destro di y.

$$z.succ = y.succ$$
 $y.succ = z$

b) z figlio sinistro di y.

$$z.succ = y$$
 $y.succ$ invariato

Costo di Insert O(h)

```
Succ(T, z)
```

1 return x.succ

```
PARENT(T, x)
    y = x
 2
    while y.right \neq NIL
 3
         y = y.right
 4
    z = z.succ
 5
   if z = NIL
         w = T.root
 6
    else
 8
         w = z.left
 9
   if w = x
10
         return z
11
    while w.right \neq x
12
         w = w.right
13
    return w
   Costo di Parent O(h).
PRED(T, z)
   if x.left \neq NIL
2
        return Max(x.left)
3
   else
4
        PARENT(T, x)
5
        while (p \neq NIL) and (x = p. left)
6
            x = p
7
            p = PARENT(T, x)
8
        return p
```

Costo di Pred Essendoci un ciclo while che itera fino a h volte, e in questo ciclo viene chiamata una procedura con complessità O(h), abbiamo che Pred ha complessità $O(h^2)$.