a) 10 pt

The stem and leaf plots will vary based on the width used for the stem. As long as valid plots are made that is fine with me. I used R to create these (and the students should do them 'by hand') so my plots have a lot more than necessary.

Ohm: 20

1 I	2: represe	nts	1.2,	leaf	unit:	0.1
·	Quarter		Hal			
3	110	19*	۲			
(8)	33332222	19				
4	544	19				
1	6	19	77		2	
	1	19	19		3	
	1	20	011		6	
	Ĺ	20	223		(3)	
	Ĺ	20	1445		6	
	i	20	6		3	
	i	20.	•		2	
	i	21*				
	·		·			
			HI:	24.4	4	
n:	15		15			

Ohm: 75

1		repres	sents	1.2, Half		unit:	0.1
	~			LO:	68.6		
			70*				
-	L	9	70.				
		1	71*				
2	2	8	71.	7	2	2	
-	7	43310	72*	1		3	
((5) 9	97655	72.	8	4	4	
2	2	42	73*	2	į	5	
		1	73.	89	•	7	
		1	74*	102	(2	2)	
		1	74.	68	(6	
			75*	10	4	4	
			75.				
		1	76*	12	,	3	

| 76. |57 2 | 77* | n: 15 15

Ohm: 100

1	2: repre	esent	s 1.2,	leaf	unit:	0.1
Q	uarter		Half			
5	98861	94				
(3)	841	95	5	1		
7	00	96	68	3		
5	743	97	229	6		
2	53	98	57	(2)		
		99	2	7		
		100	100	6		
	İ	101	İ			
	İ	102	000	4		
	ĺ	103	10	1		
	·		·			
n:	15		15			

Ohm: 150

1 2	: represents 1.	2, leaf ur	nit: 0.1
	Quarter	Half	
		LO: 1	45 146
3	0001 1	47* 10	
J		47.	3
(11)	00000000000 1		4
	1	48.	
1	0 1	49* 0000	8
	1	49.	
	1	50* 00	7
		 шт. 1	.51 152 153
		154 1	
n:	15	15	-00
Ohm: 20	0		

1	2: repres	sents	12, leaf Half	unit:	1
	~				
		19	1		
1	3	19	2	1	
5	5554	19	5	2	
(6)	666666	19	677	5	
4	99981	19	19	6	

21 01	
20 1	

These plots show us that the quarter Watt resistors have a distribution that seems to have a lower average than the ½ Watt resistors. The ¼ watt resistors also seem to have less spread than the ½ watt resistors.

b) 10 pt Following are the numeric summaries necessary to build the boxplots

	1/2.20	1/4.20	1/2.75	1/4.75	1/2.100	1/4.100	1/2.150	1/4.150	1/2.200	1/4.200
lower.whisker	19.7	19	71.7	71.8	95.5	94.1	145	148	192	193
q1	20.025	19.2	72.9	72.15	97.2	94.825	148.25	148	197	195
median	20.2	19.3	74	72.5	98.7	95.8	149	148	202	196
q3	20.475	19.375	74.95	72.85	101.5	97.375	151.75	148	209.25	197.5
upper.whisker	20.8	19.6	76.7	73.4	103	98.5	155	148	214	199
outliers	24.4	Numeric, 0	68.6	70.9	Numeric, 0	Numeric, 0	Numeric, 0	147x3,149	257	Numeric, 0

"Numeric,0" in the outliers row just means there aren't any outliers

Ohms: 20

Ohms: 75

Ohms: 100

Ohms: 150

Ohms: 200

c) 10 pts

For the most part the plots look like a straight line could go through them fairly well except for the upper 'outlier' point. So it appears like we would underestimate the number of 'Large' values we would see in the data.

d) 10 pts

```
Label
                mean
                          StdDev
1
   1/2W100
            99.10667
                      2.3260840
2
  1/2W150 149.80000
                       2.8334734
            20.48667
3
    1/2W20
                      1.1262242
   1/2W200 206.00000 15.5333742
4
5
            73.87333
   1/2W75
                      2.0765585
6
  1/4W100
            96.04667
                       1.4371930
7
   1/4W150 147.86667
                      0.5163978
8
            19.27333
                       0.1579632
    1/4W20
   1/4W200 196.20000
                       1.8205180
10 1/4W75 72.43333
                       0.6067085
```

These do appear to agree with the statement that the 1/4Watt resistors tend to have smaller averages and small spreads

e) 5 pts It doesn't specify whether to break make 5 lines (one for each ohm) or 2 lines (one for each Watt) so I'll present both...

Both plots show the $\frac{1}{4}$ Watt resistors having a lower mean than the $\frac{1}{2}$ plot resistors but we also see that the difference between the means gets larger as Ohms increases.

3-11)

a) 10 pts

The problem said "side-by-side boxplots" which typically means we put them all on the same scale. But since we want to analyze shape it makes more sense to give them each their own axis to compare the actual shape of the boxplots. We only have 10 data values for each plot so we would need to see major differences to try to claim there are big differences. The .87x10^6psi distribution looks more skewed than the others.

From the plots on the top row we can see that stress87 seems to be more right skewed than stress99 and stress118. There does appear to be a little variation in the shape of the distributions but with so few data points its hard to put too much faith into an assessment like that. Although it wouldn't be perfect there probably wouldn't be too much of an issue assuming that these had similar shapes (but larger difference centers and scales). Answers will vary – as long as there is an honest attempt to analyze the shapes that should suffice.

3-21

a) 5 pts

The median will be the mean of the 5th and 6th smallest sorted values in this case:

Median = 532.8

The first and third quartiles are actually just the 3rd and 8th observations:

Q1 = 526.8

Q3 = 536.6

For Q(.27) we have $I' = 10^*.27 + .5 = 3.2$ so Q(.27) = .8*x[3] + .2*x[4] where x[3] is the 3^{rd} smallest observation:

$$Q(.27) = .8*526.8 + .2*531.6 = 527.76$$

b) 5 pts

This looks like the data does fall pretty much on a straight line so there I wouldn't have an issue with somebody describing it as bell-shaped.

c) 10 pts

			Std	
Label	N Rows	Mean(Data)	Dev(Data)	Range(Data)
Brinell	10	545.97	35.31773	88.4
Dial	10	532.81	5.53784	16.1
Digital	10	518.01	8.776287	30.4

- d) 5 pts
- e) 5 pts

Using JMP

f) 5 pts

The dial Rockwell produced the most precise results. It has the most compact boxplot. Looking at the summaries from part c suggest that it has the least amount of variation as well.

g) 5 pts

It is not possible to tell which machine produced the most accurate results. To know if the machines are accurate we would need to know what the "true" value was for each measurement. Since we don't have that information we can't assess accuracy.

4-1)

				(x-xbar)*(y-	(x-	
Х	Υ	x - xbar	y - ybar	ybar)	xbar)^2	(y - ybar)^2
0.45	2954	-0.05	188.1111	-9.405555556	0.0025	35385.79012
0.45	2913	-0.05	147.1111	-7.35555556	0.0025	21641.67901
0.45	2923	-0.05	157.1111	-7.85555556	0.0025	24683.90123
0.5	2743	0	-22.8889	0	0	523.9012346
0.5	2779	0	13.11111	0	0	171.9012346
0.5	2739	0	-26.8889	0	0	723.0123457
0.55	2652	0.05	-113.889	-5.694444444	0.0025	12970.67901
0.55	2607	0.05	-158.889	-7.94444444	0.0025	25245.67901
0.55	2583	0.05	-182.889	-9.144444444	0.0025	33448.34568
		1.67E-				
4.5	24893	16	1.82E-12	-47.4	0.015	154794.8889

sum

a) 12 pts

xbar = 4.5/9 = 0.5

ybar = 24893/9 = 2765.89

b1 = -47.4/.015 = -3160

b0 = ybar - xbar*b1 = 4345.89

Our fitted regression line is then:

$$y$$
-hat = 4345.89 $-$ 3160* x

b) 3 pts

$$r = -47.4/sqrt(.015 * 154794.8889) = -.9837$$

The correlation of -.98 tells us that we have a strong negative linear relationship between Water/Cement Ratio and 14-Day Compressive Strength.

c) 3 pts

$$R^2 = r^2 = (-.9837)^2 = 0.967628848$$

The fitted line accounts for 96.7% of the raw variability in 14-Day Compressive Strength

d) 5 pts

			Normal
i	р	Residuals	Q
1	0.05555556	-26.8889	-1.59162
2	0.166666667	-24.8889	-0.96361
3	0.27777778	-22.8889	-0.58621
4	0.38888889	-10.8889	-0.28044
5	0.5	-0.88889	0
6	0.611111111	-0.88889	0.280438
7	0.72222222	13.11111	0.586205
8	0.833333333	30.11111	0.963615
9	0.94444444	44.11111	1.591622

The points don't fall perfectly on a straight line but the deviation isn't too bad. It would be reasonable to use a normal distribution to model the residuals.

e) 3 pts

We would just plug in .48 in for x in our regression equation Predicted value = 4345.89 - 3160*0.48 = 2829.088889

So for a Water/Cement Ratio of .48 we would predict a 14-Day Compressive Strength of 2829.1 psi.

f) 8 pts

Using JMP

y = 4345.8889 - 3160*x

r = -0.9837 (obtained from Multivariate Correlations)

 $R^2 = .9676$

Residual plots can be seen below

Bivariate Fit of y By x

— Linear

Linear Fit

y = 4345.8889 - 3160*x

Summary of Fit

RSquare	0.967629
RSquare Adj	0.963004
Root Mean Square Error	26.75521
Mean of Response	2765.889
Observations (or Sum Wgts)	9

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	4345.8889	109.5912	39.66	<.0001*
X	-3160	218.4554	-14.47	<.0001*

Diagnostics Plots

Residual by Predicted Plot

Residual Normal Quantile Plot

Multivariate Correlations

	X	у
Χ	1.0000	-0.9837
у	-0.9837	1.0000

4-3)

a) 3 pts

They used a complete factorial design. An obvious weakness is that they only have a single replicate for each temperature*time combination.

b) 10 pts

Equation	R^2
Y = -515.15 + .356*x1 + .0107*x2	.886
Y = -528.46 + .356*x1 + 3.71*ln(x2)	.888
Y = -42.35 + .031*x1 -93.71*ln(x2) + .065*x1*ln(x2)	.962

Response y Whole Model

Summary of Fit

RSquare 0.88616 RSquare Adj 0.848214 Root Mean Square Error 6.966912 Mean of Response 22.55556 Observations (or Sum Wgts) 9

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-515.1503	84.98199	-6.06	0.0009*
x1	0.3566667	0.056885	6.27	0.0008*
x2	0.01069	0.003932	2.72	0.0347*

Response y Whole Model

Summary of Fit

RSquare 0.888598 RSquare Adj 0.851464 Root Mean Square Error 6.891927 Mean of Response 22.55556 Observations (or Sum Wgts) 9

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-528.4622	84.31093	-6.27	0.0008*
x1	0.3566667	0.056272	6.34	0.0007*
ln(x2)	3.7106558	1.338465	2.77	0.0323*

Response y Whole Model

Summary of Fit

 RSquare
 0.962152

 RSquare Adj
 0.939444

 Root Mean Square Error
 4.400523

 Mean of Response
 22.55556

 Observations (or Sum Wgts)
 9

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-42.35063	164.9735	-0.26	0.8076
x1	0.0310728	0.110457	0.28	0.7897
ln(x2)	-93.71554	31.26572	-3.00	0.0302*
x1*ln(x2)	0.0652553	0.020934	3.12	0.0263*

c) 10 pts

Residuals plots

Looking at the residuals by predicted plots it looks like there is still some trend left that could be modeled. The plot of residual by x1 makes it appear like we could probably do a better job of modeling if we used a transformation of x1 instead of just using x1 linearly.

- d) Extra credit: + 10 pts if they did a decent job
- e) 5 pts

```
Y = -42.35 + .031*x1 - 93.71*ln(x2) + .065*x1*ln(x2) which gives...

Y-hat = -42.35063 + .0310728*1500 -93.71554*log(500) + .0652553*1500*log(500)

= 30.15739
```