LECTURE 2

Sources of Electromagnetic Radiation

- γ -rays following β ⁻ decay, annihilation, γ rays following nuclear reactions, bremsstrahlung, characteristic x-rays, synchrotron

Beta decay

- Includes β^-, β^+ (positron) and electron capture (competes with β^+)
- γ 's are emitted after particulate radiation, where daughter nucleus is left in an excited state
- γ 's are quasi-mono energetic and have a defined energy equal to the difference between the excited and stable states
- General transition reactions

$$\beta^{-}: n \to p^{+} + e^{-}$$
$$\beta^{+}: p \to n + e^{+}$$
$$ec: p + e^{-} \to n$$

Annihilation

- after a β^+ decay, the β^+ particle will only travel a short distance (small MFP)
- when low on T the β^+ will find an electron and the two will combine to form two γ 's with E=511 keV each
- thus there is a threshold on β^+ emission of 1.02 MeV (to allow for both photons)

y following nuclear reaction

- i.e. ${}_{2}^{4}\alpha + {}_{4}^{9}Be \rightarrow {}_{6}^{12}C^{*} + {}_{0}^{1}n$
- the de-excitation of ${}_{6}^{12}C^{*}$ will be in the form of a γ
- also found after the absorption of thermal neutrons

Bremstrahlung (braking)

- produced when fast electron interact with matter
- fraction of energy converted to brems is proportional to the energy of the electron
- a monoenergetic group of electron produce a spectrum of γ 's
- found in x-ray tubes, β particles, electrons in accelerators, cosmic rays

Characteristic x-rays

- classified by the shell with a vacancy being filled in spectroscopic notation
- i.e. K_{α} is the energy emitted from a vacancy filled in the K shell from an electron in the L shell

 K_{β} would be an electron from the m shell

 L_{α} is a vacancy filled in the L shell from an electron in the M shell, etc.

- X_{α} will have less energy than X_{β} (higher shell, more E)
- Fluorescent yield is the fraction of all cases in which the excited atom emits a characteristic γ in its de-excitation

Excitation by Radioactive Decay:

- E.C. : the nucleus captures an electron (generally a K shell) leaving a K shell vacancy
- I.C.: the nucleus emits energy which ejects an electron, leaving a vacancy
- Table 1.4 lists some low energy x-ray sources

Excitation by External radiation:

- an external radiation strikes a target creating ionized atoms (sources; x-rays, electron, α^{2+})
- target will determine energies of characteristic radiation, low Z- soft, high Z-harder
- In all cases the energy of the sources must exceed the energy of the γ 's you are trying to produce.

<u>X-ray fluorescence</u>: where x-ray gammas interact with the target (generally through photoelectric absorption) and emit a characteristic x-ray of the target

- α^{2+} particles are a convenient way to excite a target and keep the spectrum relatively free of brems contamination, since they tend to not decay through electron modes and have little γ contributions of their own, see table 1.5 for the branching ratios of two common sources 210 Po & 244 Cm.

Synchrotron

- energetic electron are bent into circular orbits, where the change in momentum (direction changes) causes the beam to lose some energy during each cycle.
- Allows for highly mono- chromatic beams, with monochromators, with a wide energy range \sim eV- 10^4 eV

Neutron Sources

Spontaneous Fission

- most common is 252 Cf producing ~ 3.8 neutrons on average and 9.7 γ 's
- the spectrum of neutrons is governed by

$$\frac{dN}{dE} = E^{1/2}e^{-E/T}$$
, with T = 1.3 MeV

Radioisotope (α,n) sources

- (α,n) refers to the incident particle & resultant particle in this case $\alpha^{2+} + X \rightarrow Y + \frac{1}{0}n$
- ${}_{2}^{4}\alpha + {}_{4}^{9}Be \rightarrow {}_{6}^{12}C + {}_{0}^{1}n$, this reaction produces a maximum neutron yield (irradiating Be with α), Q value = +5.71 MeV
- All the α emitters of practical interest are actinide elements and a stable metal of the actinide can be formed by MBe₁₃, where M is the actinide element
- this metallurgical combo allows the α 's to interact with the Be nucleus without intermediate energy loses
- Issue with losses are seen in Fig 1.11 where it is shown higher energy α 's are required to get more neutrons
- Table 1.6 shows the characteristics of several MBe₁₃ sources
- ²³⁹ Pu/Be is the most widely used but ²⁴¹ Am/Be is an alternative
- when used for calibration, caution must be taken to account for impurities which may have shorter $T_{1/2}$, and α emitting daughters; this may lead to an increase in the n yield

Photoneutron Sources

- Photoneutron emitters are sources that emit neutrons after absorbing γ 's
- ${}_{4}^{9}Be + h\nu \rightarrow {}_{4}^{8}Be + {}_{0}^{1}n, \quad Q = -1.66 \text{ MeV}$ ${}_{1}^{2}H + h\nu \rightarrow {}_{1}^{1}H + {}_{0}^{1}n, \quad Q = -2.226 \text{ MeV}$
- Having (-Q) means $hv \ge Q$ to allow the reaction
- For γ 's with more than this minimum, the energy of the neutron can be calculated

from
$$E_n(\theta) \cong \frac{M(E_{\gamma} + Q)}{m + M} + \frac{E_{\gamma} [2mM(m + M)(E_{\gamma} + Q)]^{1/2}}{(m + M)^2} \cos \theta$$

Where

 θ is the angle between the γ and n E_{γ} is the γ energy M is the mass of the recoil nucleus x c^2 m is the mass of the neutron x c^2

Reactions from Accelerated Charged Particles

$$D - D_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{3}He + {}_{0}^{1}n$$
 Q = 3.26 MeV

$$D - T:_{1}^{2} H +_{1}^{3} H \rightarrow_{2}^{4} H e +_{0}^{1} n$$
 Q = 17.6 MeV

Aside: This is one of the only ways to get (³He) which is important for cooling applications.

There are a number of the other charged particle reactions with (-Q's), but these require an accelerator to allow the reaction.