$\begin{array}{l} \textbf{L-Mateur} \\ \textbf{Classe:} \textbf{1S}_{9+10} \end{array}$

Devoir de contrôle: $n^{\circ}1$ Durée : 45mn

Prof: Talbi Rachid Le 24/10/2017

$\boxed{ \textbf{EXERCICE 0}}_{(5pts)}$

- 1. (a) Effectuer la décomposition en facteurs premiers des entiers 84 et 196.
 - (b) Calculer $p \gcd(196, 84)$.
 - (c) En déduire *ppcm*(196, 84)
 - (a) Calculer $S = 2 + \frac{25}{84} \frac{27}{196}$
 - (b) Ecrire S sous forme irréductible.
- 2. Le nombre S est-il un décimal ? Justifier la réponse.
- 3. Les entiers 12345 et 678 sont-ils premiers entre eux? Utiliser l'algorithme d'Euclide.

EXERCICE
$$(5pts)$$

- 1. Les entiers 441 et 293 sont-ils premiers ? Justifier la réponse.
- 2. Sachant que $12079233 = 75968 \times 159 + 321$
 - (a) Déterminer le reste de la division euclidienne de 12079233 par 75968, puis par 159.
 - (b) En déduire les multiples de 159 inférieurs à 12079233.
 - (a) Vérifier que le nombre N = 752 257 est divisible par 99.
 - (b) Montrer que le nombre $\overline{abc} \overline{cba}$ est divisible par 99, avec a > c > 0 et a, b, c sont des chiffres.
 - (a) Montrer que $\frac{4n-1}{n-1} = 4 + \frac{3}{n-1}$, pour tout $n \in \mathbb{N}$ et $n \neq 1$
 - (b) Déterminer les entiers naturels n tels que $\frac{4n-1}{n-1}$ soit un entier naturel.

EXERCICE $\mathfrak{3}$ (5pts)

On considère la figure ci-contre.

- # ABD est un triangle isocèle en A tel que $\widehat{ABD}=75^\circ$
- * ζ est un cercle de centre O et de diamètre [BM] .

- 1. Quelle est la nature du triangle BMD ? Justifier la réponse.
 - (a) Calculer \widehat{BAD}
 - (b) Citer un angle inscrit qui intercepte le même arc que l'angle \widehat{BMD} .
 - (c) Calculer \widehat{BMD} et \widehat{BOD}
- 2. On donne $BD = 5,6\ cm$ et $BM = 11,2\ cm$. Calculer DM, arrondie au dixième près.

EXERCICE 4 (5pts)

On donne la figure suivante, ABC un triangle tel que $\widehat{BAC} = 50^{\circ}$, $\widehat{ABC} = 65^{\circ}$, (MP) || (BC) et (MN) || (AC)

- 1. Quelle est la nature du triangle ABC ?
- 2. Expliquer pourquoi $\widehat{AMP}=65^\circ$
- 3. Quelle est la nature du triangle APM?
- 4. Calculer \widehat{MPC}

