BIOS 660/BIOS 672 (3 Credits): Probability and Statistical Inference I

Jianwen Cai

https://sakai.unc.edu/portal/site/bios660-bios672-3-credits
Notes 7

Transformations of Random Variables	2
Functions of Random Variables	. 3
Simple example	
Probability mapping	. 5
Discrete RVs	
Continuous RVs	. 7
Continuous RVs	
Examples	9
Linear Transformation	10
Normal Distribution	11
Square root of an exponential RV	12
Probability Integral Transform	13
Probability Integral Transform (cont.)	14
Inverse Probability Integral Transform	15
Inverse Probability Integral Transform (cont.)	16
Example: Cauchy Distribution	
	18
One-to-many	19
Quadratic transformation	20
Example	
General Result-Theorem C-B 2.1.8	22
Example: A wrapped distribution	23

Functions of Random Variables

(C-B Chap 2.1 & Gut I.2)

If X is a rv with sample space $\mathcal{X} \subset \mathbb{R}$ and cdf $F_X(x)$ then any function of X, say Y = g(X) is also a random variable. The new random variable Y has a new sample space $\mathcal{Y} = g(\mathcal{X}) \subset \mathbb{R}$. The objective is to find the cdf $F_Y(y)$ of Y.

Example: Suppose X is an exponential random variable with parameter 1, i.e. $F_X(x) = 1 - e^{-x}$, $f_X(x) = e^{-x}$. What is the distribution of $Y = X/\lambda$?

$$F_Y(y) = P(Y \le y) = P(X/\lambda \le y) = P(X \le \lambda y)$$
$$= F_X(\lambda y) = 1 - e^{-\lambda y}$$

Y is distributed $\exp(\lambda)$ with density $f_Y(y) = \lambda e^{-\lambda y}$.

BIOS 660/BIOS 672 (3 Credits)

Notes 7 - 3 / 23

Simple example

Example: Change units – Fahrenheit to Celsius

$$C = \frac{5}{9}(F - 32)$$

Ranges:

$$20^{\circ}C < C < 30^{\circ}C \iff 68^{\circ}F < F < 86^{\circ}F$$
$$(\mathcal{Y}, \mathcal{B}, F_Y) \leftarrow g(\cdot) \leftarrow (\mathcal{X}, \mathcal{B}, F_X)$$

BIOS 660/BIOS 672 (3 Credits)

Notes 7 - 4 / 23

Probability mapping

For any Borel set *A*:

$$\begin{split} P(Y \in A) &= P(g(X) \in A) \\ &= P(\{x \in \mathcal{X} : g(x) \in A\}) \\ &= P(X \in g^{-1}(A)). \end{split}$$

where we have defined

$$g^{-1}(A) = \{x \in \mathcal{X} : g(x) \in A\}$$

Notice that $g^{-1}(A)$ is well defined even if $g(\cdot)$ is not bijective (one-to-one).

Example: Let $g(x) = x^2$.

Then

$$g^{-1}([-1,1]) = [-1,1]$$

But

$$g(g^{-1}([-1,1])) = [0,1]$$

BIOS 660/BIOS 672 (3 Credits)

Notes 7 - 5 / 23

Discrete RVs

Suppose that X is a discrete random variable with probability mass function p(x) = P(X = x). Then, the *pmf* of a 1-1 transformation Y = g(X) is given by

$$P(Y = y) = P(g(X) = y) = P(\{x : g(x) = y\}) = \sum_{x:g(x) = y} p(x)$$

In practice, one never sees many general results about transformations of discrete random variables because the results are so simple!

BIOS 660/BIOS 672 (3 Credits)

Notes 7 - 6 / 23

Continuous RVs

Consider the transformation Y = q(X) where q(x) is strictly increasing (consequently a one-to-one transformation), and suppose q is differentiable. This means that we can also define the *inverse* function, $g^{-1}(y)$.

$$F_Y(y) = P\{Y \le y\} = P\{g(X) \le y\}$$

= $P\{X \le g^{-1}(y)\} = F_X(g^{-1}(y)).$

The *pdf* of Y is thus,

$$f_Y(y) = \frac{d}{dy} F_Y(y) = F_X'[g^{-1}(y)] \frac{dg^{-1}(y)}{dy} = f_X(g^{-1}(y)) \frac{dx}{dy}$$

since

$$x=g^{-1}(y), \ \ \text{so that} \ \frac{dx}{dy}=\frac{dg^{-1}(y)}{dy}$$

BIOS 660/BIOS 672 (3 Credits)

Continuous RVs

Suppose Y = g(x) is still one-to-one, but decreasing instead of increasing.

$$F_Y(y) = P\{g(X) \le y\} = P\{X > g^{-1}(y)\} = 1 - F_X(g^{-1}(y))$$

and

$$f_Y(y) = -F_X'(g^{-1}(y)) \frac{dg^{-1}(y)}{dy} = -f_X(g^{-1}(y)) \frac{dx}{dy}$$
$$= f_X(g^{-1}(y)) \left| \frac{dx}{dy} \right|$$

The last step follows because $\frac{dx}{dy}$ is negative. Therefore, regardless of whether Y=g(x) is increasing or decreasing, so long as it is monotonic,

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dx}{dy} \right|$$

BIOS 660/BIOS 672 (3 Credits)

Notes 7 - 8 / 23

Examples 9 / 23

Linear Transformation

Given X with pdf $f_X(x)$, let

$$Y = a + bX, \qquad \frac{dy}{dx} = b$$

Then

$$f_Y(y) = f_X[g^{-1}(y)] \left| \frac{dx}{dy} \right| = f_X\left(\frac{y-a}{b}\right) \frac{1}{|b|}$$

This transformation is often used when X has mean 0 and standard deviation 1. The linear transformation above creates a rv Y with a distribution that has the same shape as that of X but has mean a and standard deviation b.

Conversely, if Y has mean a and standard deviation b, then X=(Y-a)/b has mean 0 and standard deviation 1. This is called sometimes the "Studentized" transform.

BIOS 660/BIOS 672 (3 Credits)

Notes 7 - 10 / 23

Normal Distribution

Let $X \sim N(0, 1)$:

$$f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, \quad -\infty < x < \infty$$

The transformation

$$Y = \mu + \sigma X, \qquad X = \frac{Y - \mu}{\sigma}$$

yields

$$f_Y(y) = f_X\left(\frac{y-\mu}{\sigma}\right)\frac{1}{\sigma} = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(y-\mu)^2}{2\sigma^2}}$$

More generally, a distribution is a member of the class of *location-scale distributions* if the distribution of a linear transformation of a random variable with that distribution has the same distribution, but with different parameters.

BIOS 660/BIOS 672 (3 Credits)

Notes 7 - 11 / 23

Square root of an exponential RV

We have already seen that a constant times an exponential random variable leads to another exponential random variable. Suppose $X \sim \exp(\lambda)$, so that

$$f_X(x) = \lambda e^{-\lambda x} \ 1(x \ge 0)$$

and consider the distribution of $Y = \sqrt{X}$.

The transformation

$$y = g(x) = \sqrt{x}, \qquad x \ge 0$$

is one-to-one and has an inverse $x=y^2$ with dx/dy=2y. Thus

$$f_Y(y) = f_X(y^2)2y = 2\lambda y e^{-\lambda y^2}, \quad y \ge 0$$

This distribution is a particular form of the Rayleigh distribution and is a special case of the χ , Rice and Weibull distributions.

BIOS 660/BIOS 672 (3 Credits)

Notes 7 - 12 / 23

Probability Integral Transform

Let $X \sim F_X(x)$. Define the transformation

$$Y = F_X(X) \in [0, 1], \qquad X = F_X^{-1}(Y)$$

Here

$$\frac{dy}{dx} = F_X'(x) = f_X(x)$$

$$f_Y(y) = f_X[F_X^{-1}(y)] \frac{1}{f_X[F_X^{-1}(y)]} = 1$$

i.e. Y is uniform over [0,1].

Another way to see it is through the distribution function:

$$F_Y(y) = P(Y \le y) = P(F_X(X) \le y)$$

= $P(X \le F_X^{-1}(y)) = F_X(F_X^{-1}(y)) = y$

BIOS 660/BIOS 672 (3 Credits)

Notes 7 - 13 / 23

Probability Integral Transform (cont.)

The probability integral transform is useful in statistics for checking goodness of fit of a distribution to a set of data.

Example:

$$X \sim \exp(\lambda) \Rightarrow Y = 1 - \exp(-\lambda X) \sim U[0, 1]$$

If one has data X_1, \ldots, X_n , one could compute the transformed data $Y_i = 1 - \exp(-\lambda X_i)$, $i = 1, \ldots, n$, and check whether the Y_i 's appear uniformly distributed over the interval [0, 1].

BIOS 660/BIOS 672 (3 Credits)

Notes 7 - 14 / 23

Inverse Probability Integral Transform

We can also start from the uniform distribution and do the inverse procedure.

Suppose $X \sim U[0,1]$, so that $f_X(x) = 1$ and $F_X(x) = x$ for $x \in [0,1]$. Let

$$Y = F^{-1}(X), \qquad X = F(Y)$$

where $F(\cdot)$ is a non-decreasing absolutely continuous function $F:\mathbb{R}\to [0,1],$ $F(y)=\int_{-\infty}^y f(x)\,dx.$ Then

$$\frac{dx}{dy} = F'(y) = f(y) \implies f_Y(y) = f(y)$$

i.e. Y has the *pdf* corresponding to F.

Another way to see it is through the distribution function:

$$F_Y(y) = P(Y \le y) = P(F^{-1}(X) \le y)$$

= $P(X \le F(y)) = F(y)$

BIOS 660/BIOS 672 (3 Credits)

Notes 7 - 15 / 23

Inverse Probability Integral Transform (cont.)

The Inverse Probability Integral Transform is used extensively in simulation of random variables.

Example: Most random number generators generate random numbers uniformly in the interval [0,1]. Suppose we want to generate random numbers from an exponential distribution with parameter λ .

Let $X \sim U[0,1]$. We want Y with distribution function $F(y) = 1 - \exp(-\lambda y)$. Then we need the transformation

$$Y = F^{-1}(X) = \frac{-1}{\lambda} \log(1 - X)$$

The recipe is

- 1. Generate random numbers X_i uniformly over [0,1].
- 2. Compute $Y_i = -\log(1 X_i)/\lambda$.

BIOS 660/BIOS 672 (3 Credits)

Notes 7 - 16 / 23

Example: Cauchy Distribution

Let θ be distributed uniformly between $(-\pi/2, \pi/2)$:

$$f(\theta) = \frac{1}{\pi}, \qquad -\pi/2 < \theta < \pi/2$$

Consider $Y = \tan \theta$.

$$\frac{dy}{d\theta} = \sec^2 \theta = 1 + \tan^2 \theta = 1 + y^2$$

$$f_Y(y) = \frac{1}{\pi} \left| \frac{d\theta}{dy} \right| = \frac{1}{\pi} \frac{1}{(1+y^2)} - \infty < y < \infty$$

The distribution with this density is known as the Cauchy distribution.

BIOS 660/BIOS 672 (3 Credits)

Notes 7 - 17 / 23

One-to-many

What if the transformation is not 1-1? The trick is to start with the cdf of the transformed random variable.

Example: Let Y = |X|, and assume X is continuous.

$$F_Y(y) = P\{Y \le y\} = P\{-y \le X \le y\} = F_X(y) - F_X(-y)$$

$$f_Y(y) = F_X'(y) - F_X'(-y)(-1) = f_X(y) + f_X(-y)$$

Suppose

$$X \sim N(0,1), \qquad f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

Then

$$f_Y(y) = \frac{2}{\sqrt{2\pi}} e^{-y^2/2}, \qquad 0 < y < \infty$$

BIOS 660/BIOS 672 (3 Credits)

Notes 7 - 19 / 23

Quadratic transformation

Let

$$Y = X^2, \qquad \frac{dy}{dx} = 2x, \qquad \left| \frac{dy}{dx} \right| = 2\sqrt{y}$$

Then

$$F_Y(y) = P\{Y \le y\} = P\{X^2 \le y\} = P\{-\sqrt{y} < X \le \sqrt{y}\}$$

= $F_X(\sqrt{y}) - F_X(-\sqrt{y})$

$$f_Y(y) = F_X'(\sqrt{y}) \left(\frac{1}{2}y^{-\frac{1}{2}}\right) - F_X'(-\sqrt{y}) \left(-\frac{1}{2}y^{-\frac{1}{2}}\right)$$
$$= \frac{1}{2\sqrt{y}} [f_X(\sqrt{y}) + f_X(-\sqrt{y})], \quad y > 0$$

BIOS 660/BIOS 672 (3 Credits)

Notes 7 - 20 / 23

Example

Suppose $X \sim N(0,1)$, $Y = X^2$:

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} - \infty < x < \infty$$

$$f_Y(y) = \frac{1}{2\sqrt{y}} \left[\frac{2}{\sqrt{2\pi}} e^{-\frac{1}{2}y} \right]$$

$$= \frac{(y/2)^{-\frac{1}{2}} e^{-\frac{y}{2}}}{2\sqrt{\pi}}, \quad y > 0$$

This is the density of a χ^2 distribution with 1 degree of freedom.

Result: If $X \sim N(0,1)$, then $X^2 \sim \chi^2(1)$.

BIOS 660/BIOS 672 (3 Credits)

Notes 7 - 21 / 23

General Result-Theorem C-B 2.1.8

Suppose Y=g(X) is not 1-1, but there are disjoint sets $A_1,...A_k$ that span the domain (sample space) of X such that $g(.)=g_j(.)$ is continuous and 1-1 on each A_j . This means that the inverse, $x=g_j^{-1}(y)$ exists on each A_j . Then

$$f_Y(y) = \sum_{j=1}^k f(g_j^{-1}(y)) \left| \frac{dg_j^{-1}(y)}{dy} \right|$$

BIOS 660/BIOS 672 (3 Credits)

Notes 7 - 22 / 23

Example: A wrapped distribution

Suppose $X \in \mathbb{R}$ with density $f_X(x)$ represents a random angle of rotation (in radians) from the x-axis on the unit circumference. The observed angle is

$$\Theta = X \mod 2\pi, \qquad \Theta \in [0, 2\pi)$$

because it is impossible to tell if the rotation involved more than one full turn. In this case

$$f_{\Theta}(\theta) = \sum_{j=-\infty}^{\infty} f(\theta + 2\pi j), \qquad 0 \le \theta < 2\pi$$

If $X \sim N(0, \sigma^2)$, then

$$f_{\Theta}(\theta) = \sum_{j=-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(\theta + 2\pi j)^2}{2\sigma^2}\right)$$

BIOS 660/BIOS 672 (3 Credits)

Notes 7 - 23 / 23