Tema 3

Exerciţiul 1

Fie X o variabilă aleatoare repartizată geometric de parametru $p(X \sim Geom(p))$. Arătați că

a) pentru i, j > 0 avem

$$\mathbb{P}(X > i + j \mid X > i) = \mathbb{P}(X > j)$$

b) avem

$$\mathbb{E}\left[\frac{1}{X}\right] = -\frac{p}{1-p}\log(p)$$

c) pentru $r \geq 2$ avem

$$\mathbb{E}[X(X-1)\cdots(X-r+1)] = \frac{r!p^r}{(1-p)^r}$$

Exercițiul 2

Fie X o variabilă aleatoare cu valori in \mathbb{N} , așa incat $p_n = \mathbb{P}(X = n) > 0$ pentru toți $n \in \mathbb{N}$.

- a) Arătați că pentru $\lambda > 0$ următoarele afirmații sunt echivalente:
 - i) X este o variabilă Poisson de parametru λ
 - ii) Pentru toți $n \ge 1$ avem $\frac{p_n}{p_{n-1}} = \frac{\lambda}{n}$
- b) Dacă $X \sim \mathcal{P}(\lambda)$ determinați
 - i) Valoarea k pentru care $\mathbb{P}(X = k)$ este maximă.
 - ii) Valoarea lui λ care maximizează $\mathbb{P}(X=k)$, pentru k fixat.

Exercițiul 3

Un administrator de reprezentanță de mașini comandă uzinei Dacia N mașini, numărul aleator X de mașini pe care il poate vinde reprezentanța sa intr-un an fiind un număr intreg intre 0 și $n \geq N$, toate avand aceeași probabilitate. Mașinile vandute de administrator ii aduc acestuia un beneficiu de a unități monetare pe mașină iar mașinile nevandute ii aduc o pierdere de b unități. Calculați valoarea medie a caștigului G reprezentanței de mașini și deduceți care este comanda optimă.

Exercițiul 4

Fie X variabila aleatoare (v.a.) care reprezintă cifra obținută in urma aruncării unui zar (echilibrat) cu şase fețe. Determinați legea de probabilitate a v.a. Y = X(7-X) apoi calculați $\mathbb{E}[Y]$ și $\mathbb{V}[Y]$. Notăm cu Y_1, \ldots, Y_n valorile observate după n lansări independente. Determinați legea de probabilitate a v.a. M_n egală cu valoarea cea mai mare a acestora.

Grupele: 241, 242, 243, 244 Pagina 1

Exerciţiul 5

Un proces Bernoulli de parametru p este un şir de variabile aleatoare independente $(X_n)_{n\geq 1}$ cu $X_n\in\{0,1\}$ şi $\mathbb{P}(X_n=1)=p$.

- a) Arătați că v.a. $S_n = X_1 + X_2 + \cdots + X_n$ este repartizată $\mathcal{B}(n,p)$ și calculați media și varianța acesteia.
- b) Fie L cel mai mare număr natural pentru care $X_1 = X_2 = \cdots = X_L$ și M cel mai mare număr natural așa incat $X_{L+1} = X_{L+2} = \cdots = X_{L+M}$. Găsiți distribuțiile v.a. L și M.
- c) Arătați că $\mathbb{E}[L] \geq \mathbb{E}[M], \, \mathbb{V}[L] \geq \mathbb{V}[M] \geq 2$ și calculați Cov[L,M].
- d) Calculați $\lim_{k\to\infty}\mathbb{P}(M=n\,|\,L=k).$

Grupele: 241, 242, 243, 244 Pagina 2