## TTT4120 Digital Signal Processing Suggested Solutions for Problem Set 8

## Problem 1 (3 points)

- (a) The filter H(z) is a first order all-pole filter. The output of the filter is therefore an AR[1] process.
- (b) The first order predictor is defined as

$$\hat{x}(n) = -a_1 x(n-1)$$

The prediction coefficient  $-a_1$  can be found by minimizing the prediction error power  $\sigma_f^2 = E[f^2(n)]$ , where  $f(n) = x(n) - \hat{x}(n)$  is the prediction error. We have that

$$\sigma_f^2 = E[(x(n) - \hat{x}(n))^2] = E[(x(n) + a_1x(n-1))^2]$$

The optimal value for  $a_1$  can be found by minimizing the prediction error power, i.e.

$$\frac{\partial \sigma_f^2}{\partial a_1} = 0.$$

Thus, we get

$$E[2(x(n) + a_1x(n-1))x(n-1)] = 0$$

$$\gamma_{xx}(1) + a_1 \gamma_{xx}(0) = 0 \Rightarrow a_1 = -\frac{\gamma_{xx}(1)}{\gamma_{xx}(0)}$$

In the previous problem set the autocorrelation function of the signal x(n) was found to be

$$\gamma_{xx}(m) = \left(-\frac{1}{2}\right)^{|m|}.$$

Thus, we get

$$a_1 = \frac{1}{2}.$$

By repeating the procedure for the second order predictor, we get

$$a_1 = \frac{1}{2}$$
 and  $a_2 = 0$ .

This means that we can not obtain further reduction of the prediction error by using a higher order peredictor.

The above results could be expected, since x(n) is an AR[1] process. The optimal predictor is thus the first order predictor with prediction coefficient equal to the filter coefficient.

## Problem 2

- (a) This is a MA(1)-process, as only the current and the former value of the input signal are used in forming the output signal.
- (b) We have

$$x(n)x(n-l) = \Big(w(n) - 0.5w(n-1)\Big)\Big(w(n-l) - 0.5w(n-l-1)\Big)$$
  
=  $w(n)w(n-l) - 0.5w(n)w(n-l-1) - 0.5w(n-1)w(n-l)$   
+  $0.25w(n-1)w(n-l-1)$ .

Taking the expectation of this leads to

$$\gamma_{xx}(l) = \gamma_{ww}(l) - 0.5\gamma_{ww}(l+1) - 0.5\gamma_{ww}(l-1) + 0.25\gamma_{ww}(l)$$

$$= 1.25\gamma_{ww}(l) - 0.5\left(\gamma_{ww}(l+1) + \gamma_{ww}(l-1)\right)$$

$$= 1.25\sigma_w^2\delta(l) - 0.5\sigma_w^2\left(\delta(l+1) + \delta(l-1)\right)$$

$$= \begin{cases} 1.25 & l = 0, \\ -0.5 & l = \pm 1, \\ 0 & \text{otherwise.} \end{cases}$$

The expression for the power density spectrum  $\Gamma_{xx}(f)$  can be found as follows.

$$\Gamma_{xx}(f) = \sum_{l=-1}^{1} \gamma_{xx}(l)e^{-j\omega l}$$

$$= -\frac{1}{2}e^{j\omega} + 1.25 - \frac{1}{2}e^{-j\omega}$$

$$= 1.25 - \cos(2\pi f)$$

(c) The optimal predictor of order p is given by:

$$\hat{x}(n) = -\sum_{k=1}^{p} a_k x(n-k)$$

To obtain simple matrix equations that we can solve using Matlab, we use the version of the Yule-Walker that does not contain  $\sigma_f^2$ , i.e.

$$\gamma_{xx}(0)a_1 = -\gamma_{xx}(-1)$$

$$\begin{bmatrix} \gamma_{xx}(0) & \gamma_{xx}(1) \\ \gamma_{xx}(-1) & \gamma_{xx}(0) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} -\gamma_{xx}(-1) \\ -\gamma_{xx}(-2) \end{bmatrix}$$

$$\begin{bmatrix} \gamma_{xx}(0) & \gamma_{xx}(1) & \gamma_{xx}(2) \\ \gamma_{xx}(-1) & \gamma_{xx}(0) & \gamma_{xx}(1) \\ \gamma_{xx}(-2) & \gamma_{xx}(-1) & \gamma_{xx}(0) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} -\gamma_{xx}(-1) \\ -\gamma_{xx}(-2) \\ -\gamma_{xx}(-3) \end{bmatrix}$$

for order one, two, and three respectively. Then we calculate  $\sigma_f^2$  as

$$\sigma_f^2 = \sum_{k=0}^p a_k \gamma_{xx}(k).$$

The following Matlab code can be used to find the coefficients, and  $\sigma_f^2$  for each AR order.

```
gamma_xx = [1.25 -.5 0 0];

R1 = [1.25];
R2 = [1.25 -.5; -.5 1.25];
R3 = [1.25 -.5 0; -.5 1.25 -.5; 0 -.5 1.25];

a_1 = R1^(-1)*-gamma_xx(2)'
sigma_f1 = sum([1 a_1'].*gamma_xx(1:2))
a_2 = R2^(-1)*-gamma_xx(2:3)'
sigma_f2 = sum([1 a_2'].*gamma_xx(1:3))
a_3 = R3^(-1)*-gamma_xx(2:4)'
sigma_f3 = sum([1 a_3'].*gamma_xx(1:4))
```

Approximated values are given in the table below.

| AR order $p$ | Coefficients                         | $\sigma_f^2$ |
|--------------|--------------------------------------|--------------|
| 1            | $a_1 = 0.40$                         | 1.05         |
| 2            | $a_1 = 0.48, a_2 = 0.19$             | 1.01         |
| 3            | $a_1 = 0.49, a_2 = 0.24, a_3 = 0.09$ | 1.00         |

We can see that the mean square error decreases as we increase the model order. This means that the AR model is a better approximation of the MA[1] process.

(d) The power density spectrum estimate obtained by using an AR[p] model is given by

$$\hat{\Gamma}_{ff}(f) = \Gamma_{ff}(f)|H(f)|^2$$

$$= \sigma_f^2 \left| \frac{1}{A(f)} \right|^2$$

$$= \frac{\sigma_f^2}{\left| 1 + \sum_{k=1}^p a_k e^{-j2\pi fk} \right|^2}$$

Figure 1 shows the power density spectrum estimates based on AR models of different order compared to the power density spectrum of the MA[1] process. It can be seen that the estimates become closer to the correct value as the model order increases. Thus, the AR[3] model is the best approximation of these three.



Figure 1: Power density spectrum estimates

## Problem 3

- Firstly, the vowel sample files are loaded with wavread.
- Then each vowel is modelled as an AR[10] process. The AR coefficients can be found with lpc.
- To transform a vowel  $v_i$  into another vowel  $v_j$  we need the prediction error signal from  $v_i$ . For that use *filter* and the AR coefficients of that vowel. This is the first part of Figure 2:



Figure 2: Vowel transformation system

- Generate the new vowel  $v_j$  by filtering the prediction error using the inverse prediction-error filter (with the coefficients that you found for  $v_j$ ). This is the second part of Figure 2.
- The output signal can be played using *sound*.