Goal: Compare different out-of-sample extensions for CMDS

CMDS attempts to preserve inter-point distances in a lower dimension

Spectral Solution

Given a squared distance matrix Diele IRn×n (Endidoan distances)

1) Apply a double-centering B=- = CD(2)

where C = I - ee+/n for e = (1, ..., 1)+

aganualnes of B. The rank K SVD is B= UEAEUET = (UEA'LE)(ALEUET) = YTY

For Y = 1 1/2 ULT where

1/2 = diag (\str., ..., \str.) and Uk = [e.1--- lek]

11 yi- yill = dis for ise [n]. Then

do = 11/1 - will = (4, -40) T(4, -40)

= 114,112 - 24, Tyo

constraint Eyi = O. Assume a solution exists, i.c.

=> 2; do2 = 2:114:112 + n114:112 - 22: 4: Tui

= E- 11/112 - n11/5112

2) take the k largest eigenvalues and corresponding

$$\frac{\sum_{i} dii^{2} = n(yi)|^{2} + \sum_{i} |y_{i}||^{2}}{d \cdot \cdot \cdot^{2} = \sum_{i} |y_{i}||^{2} + \sum_{i} |y_{i}||^{2}}$$

$$= n \sum_{i} |y_{i}||^{2} + n \sum_{i} |y_{i}||^{2}$$

$$= 2n \sum_{i} |y_{i}||^{2} + n \sum_{i} |y_{i}||^{2}$$

$$= 2n \sum_{i} |y_{i}||^{2}$$

Similarly,

$$||y_0||^2 = \frac{1}{n}d_{ij}^2 - \frac{1}{2n^2}d_{ij}^2$$

$$\frac{1}{\sqrt{1-\frac{1}{N}}} = \frac{1}{2} \left(\frac{1}{N} di \cdot \frac{1}{N} + \frac{1}{N} di \cdot \frac{1}{N} - \frac{1}{N^2} \right)$$

$$= 9i0$$

Gram matrix
$$G = (g\ddot{u}) \in IR^{n\times n}$$
embalding matrix $Y = [y_1 | \cdots | y_n]^T \in IR^{n\times k}$

Properties of 6:
1)
$$6 = -\frac{1}{2} CD^{(2)}C$$
 for $C = In - eet/n$ $D^{(2)} = (d\ddot{y}^2)$

2) rows and columns of 6 sum to 0 => 6 has an eigenvalue of O

In order for a solution to exist, 6 must be positive definite so we can unite 6=UAUT=(UAYE)(AYZUT)

Thm. If G = - \(\frac{1}{2} \cdot \text{is possitive semiclefinite} and k=r=rank(G), then the CMDS problem has the following exact solution. Y= UALL

= [Va, e, 1-1-1 Var er 1/2mer+1 --- 1 Taxex]

where (li,ci) are the eigenpails of G. Note. In practice, choosing a low dimension k a

priori will loave no exact solution. Hence we use the least k-rank approximation of 6 via Eckert-

GE = UARUT => YE = UAL

Note. The map D(2) -> - = CD(2) C =: G

transforms squared distances into inner products.

datu space

of-sample points *

- doesn't presence the distances between out-

- minimization problem may have local minima

CONS:

- O(n)

Option 16: minimize loss (k points)
Given date X and their projections Y, a new
set of k points x',, xx' is mapped so that
2 5 & (11 vi - vi 11 - d(xi, xi))2
+ 2 & (114:1 ~ 4:112 - d(x:1, x:1))2
is minimized.
Pras:
- also preserves clistances between new points
cons:
- doesn't give a well-defined embalding function
- ()(NK+K ²)
- minimization potentially time-consuming

Option Z: spectral method that preserves the

$$A_{z} = \begin{bmatrix} \Delta_{z} & \alpha_{c} \\ \alpha_{z}^{+} & 0 \end{bmatrix}$$

Def. Let
$$w \in \mathbb{R}^m$$
. $x_1, \dots, x_m \in \mathbb{R}^d$ is w -contered if

$$\mathcal{E}_{i=1}^{m} \ wixi = 0.$$
For w such that $e^{i}w \neq 0$, define

$$T_{w}(A_{v}) = -\frac{1}{z} \left(I - \frac{ew^{+}}{e^{t}w} \right) A_{z} \left(I - \frac{we^{+}}{e^{+}w} \right).$$
Nok the case $w = e$ is standard CMDS.

Thm. For any
$$\omega \notin e^{\perp}$$
, the mxm dissimilarity matrix

At is an EDM with embedding dimension $p \iff$ there

exists a ω -contered spanning set $\mathcal{E}_{V_1},..., \mathcal{E}_{V_n}$ which

exists a
$$\omega$$
-centered spanning set $\xi y_1, \dots, y_m \hat{s}$ for which $T_{\omega}(Az) = (y_i^+ y_i^-).$

- approximate out-of-sample solution is easily

- approximates inner products rather than distances

- could derive classed form

Let $e = (1, ..., 1)^+ \in \mathbb{R}^n$ and $f = (e^+, i)^\top \in \mathbb{R}^{n+1}$.

Applying CMDS to Az approximates the fallible inner products $T_{\overline{e}}(Az)$, i.e. with respect to the

Since the out-of-sample problem requires us to maintain the original set of inner products, we instead set $\omega = (c+0)^+$ and approximate the

with x, ... , xn e Rd fixed. This results in the

controid of all n+1 objects.

 $B = T_{w}(A_{z}) = \begin{cases} T_{c}(\Delta_{z}) & b \\ b^{+} & \beta \end{cases}$

fallible inner products

Pros:

Cons:

computable

Rig Idea: We want to compute the inner
products for the new points with respect to the
centraid of the projections of the original
date. The projections of the new points are chosen
to approximate this extended Gram matrix.
Questions:
- Does approximate inner products lead to (x)
approximate disturces?
- When appreximating B, hav much does fixing
z, , xn raise the minimum?
- x, xn best approximates Te(Az) but
the best approximation of Tw(Az) could
be a completely different set of points.

not quite CMDS of Az because

B represents inner products with respect to centroid of original data, not ALL data

(*) 11x-y112 = (x,x)+(y,y)-2(x,y)

Option 3: Eigenmap Extension (Bengio) Consider a Hilbert space Hp of functions with (f,g) = Sf(x)g(x)p(x) dec for density p. Associate with kernel k a linear operator Kp in Hp: (KpF)(x)= { K(x,y)f(y)p(y) dy

In practice, we use an "empirical" Hilbert space

Prop. Let R be a Kernel (not necessarily positive semidefinite) that gives rise to a symmetric matrix $\widetilde{M}ij = \widetilde{K}(x_i, x_i)$ upon a dataset $D = \{x_1, \dots, x_n\}$. Let $(\lambda k, \nu_k)$ be the eigenpairs of \widetilde{M} and $(\lambda k', f_k)$ the eigenpairs of Kp. Let ex(x) = yx(x) The denote the embedding associated with a new point x. Then a) 211 = 1 21 b) fr(x) = Vn & Vri R (x,x)

c) fetai) = Vnve;

a) $y_k(x) = \frac{f_k(x)}{\sqrt{n}} = \frac{1}{\lambda x} \sum_{i=1}^{n} y_{ki} \widetilde{K}(x, x_i)$ where does

e) Yx(xi) = Yik, ex(xi) = cik

Note. Eigenvectors/Eigenfunctions assumed to have unit

norm and eigenvectors in non-increasing order.

For MDS, a normalized kernel can be	
defived by	
$\widetilde{\mathcal{E}}(a,b) = -\frac{1}{2} \left(\frac{d^2(a,b)}{d^2(a,b)} - \widetilde{\mathcal{E}}_{x} \left[\frac{d^2(a,x')}{d^2(a,x')} \right]$	
$\mathbb{E}(\alpha, \beta) = \mathbb{E}(\alpha(\alpha, \beta) - \mathbb{E}(\alpha(\beta, \beta)) - \mathbb{E}(\alpha(\beta, \beta))$	
F 5-12/2 21)7	
+ Exx[d2(x,x')].	
This is a continuous version of the double-centering	
formula.	
Big Idea.	