

两篇论文· SCIENCE AND TECHNOLOGY

《An empirical study of the effectiveness of IR-based bug localization for large-scale industrial projects》	2022	ESE	G R A D U A
《Inferring Bug Signatures to Detect Real Bugs》	2022	TSE	T 1 0 V D E F E V

N S E

Whether the existing IRBL techniques are generalizable to industrial projects still needs to be studied.

Industrial Issues

Software Product Line

Mixture of Multiple Natural Languages

Quality of bug reports

Noisy Bug Report 1

Summary: Code optimization for UDAP.

Description: Optimize the code for BRA and status inquiry in

VAM module by reducing cyclomatic complexity.

Noisy Bug Report 2

Summary: fix lint warnings

Description: Several warnings still exist when inspecting the

P300 library, needing to be fixed.

Two noisy bug reports in Huawei projects

RQ1: How effective are IRBL techniques for industrial projects?

RQ2: How do industrial issues affect the effectiveness of IRBL techniques on industrial projects?

RQ3: Can these issues be overcome?

Table 1 The studied IRBL techniques

Technique	Venue	Year
BugLocator (Zhou et al. 2012)	Intl. Conf. on Software Engineering	2012
BLUiR (Saha et al. 2013)	Intl. Conf. on Automated Software Engineering	2013
AmaLgam (Wang and Lo 2014)	Intl. Conf. on Program Comprehension	2014
BRTracer (Wong et al. 2014)	Intl. Conf. on Software Maintenance and Evolution	2014
LearningToRank (Ye et al. 2014)	Symp. on the Foundations of Software Engineering	2014
Locus (Wen et al. 2016)	Intl. Conf. on Automated Software Engineering	2016

RQ1: How effective are IRBL techniques for industrial projects?

Table 5 The performance on open-source Java projects

Projects	IRBL tech.	Top@1	Top@5	Top@10	MAP	MRR							
ZXing	BugLocator	0.2000	0.6500	0.7500	0.3306	0.3837							
	BLUiR	0.5000	0.6500	0.8000	0.4996	0.5903	Α	D. I.	0.27/2	0.5140	0.6520	0.2200	
	AmaLgam	0.5500	0.6500	0.7500	0.5234	0.6143	AspectJ	BugLocator	0.2762 0.2657	0.5140 0.4895	0.6538 0.5979	0.2299	
	BRTracer	0.3000	0.5500	0.7500	0.3937	0.4219		BLUiR AmaLgam	0.2627	0.4893	0.6224	0.2215 0.2194	
	LearnToRank	0.2277	0.5025	0.6683	0.2331	0.3646		BRTracer	0.3392	0.5140	0.7098	0.2194	
	Locus	0.4500	0.7000	0.8000	0.4609	0.5551		LearnToRank	0.2422	0.5026	0.6536	0.2327	
SWT	BugLocator	0.3571	0.6939	0.7959	0.4458	0.5016		Locus	0.2553	0.4680	0.5319	0.2412	
	BLUiR	0.5408	0.7551	0.8367	0.5684	0.6480	JDT	BugLocator	0.2021	0.3830	0.4681	0.2011	
	AmaLgam	0.5306	0.7449	0.8367	0.5613	0.6341		BLUiR	0.2660	0.4787	0.5745	0.2643	
	BRTracer	0.4694	0.7857	0.8776	0.5257	0.5967		AmaLgam	0.2766	0.5000	0.5745	0.2567	
	LearnToRank	0.4592	0.7449	0.8367	0.5214	0.5988		BRTracer	0.2766	0.4681	0.5745	0.2900	
	Locus	0.5000	0.7857	0.8571	0.5463	0.6213		LearnToRank	0.2021	0.3723	0.4894	0.2008	
PDE	BugLocator	0.3729	0.6440	0.6780	0.3955	0.4961		Locus	0.2766	0.5426	0.5851	0.3202	
FDE	_						Aggregate	BugLocator	0.2856	0.5424	0.6535	0.2844	
	BLUiR	0.3390	0.5085	0.5932	0.3607	0.4377		BLUiR	0.3303	0.5421	0.6426	0.3146	
	AmaLgam	0.3390	0.5593	0.6101	0.3669	0.4458		AmaLgam	0.3303	0.5619	0.6552	0.3125	
	BRTracer	0.4407	0.7119	0.8146	0.4248	0.5473		BRTracer	0.3610	0.6142	0.7292	0.3279	
	LearnToRank	0.2078	0.5260	0.5974	0.2551	0.3533		LearnToRank	0.2693	0.5257	0.6526	0.2805	
	Locus	0.4000	0.6667	0.7500	0.4321	0.5274		Locus	0.3244	0.5660	0.6310	0.3365	

RQ1: How effective are IRBL techniques for industrial projects?

Table 6 The of product in	e performance on indu	strial projects (b	efore eliminatii	ng noisy bug repo	orts and withou	t utilization							
or product in							OLT	BugLocator	0.2393	0.4456	0.5482	0.2454	0.3413
Projects	IRBL tech.	Top@1	Top@5	Top@10	MAP	MRR		BLUiR	0.2272	0.4267	0.5292	0.2375	0.3284
NTA	BugLocator	0.3158	0.6667	0.8070	0.4403	0.4623	IAS	AmaLgam BRTracer	0.2303 0.2226	0.4382 0.4416	0.5402 0.5467	0.2412 0.2351	0.3345 0.3307
NIA	1. 							LearnToRank	0.1946	0.4020	0.5074	0.2172	0.2979
	BLUiR	0.3158	0.6140	0.7895	0.4368	0.4571		Locus	0.1822	0.3465	0.4421	0.2007	0.2673
	AmaLgam	0.3158	0.6140	0.8070	0.4372	0.4574		BugLocator	0.1889	0.3496	0.4243	0.2309	0.2712
Le	BRTracer	0.2982	0.6667	0.7895	0.4356	0.4525		BLUiR	0.1870	0.3731	0.4563	0.2342	0.2776
	LearnToRank	0.3509	0.7018	0.8421	0.4628	0.5137		AmaLgam	0.2007	0.4008	0.4765	0.2515	0.2955
	Locus	0.3509	0.6316	0.8246	0.4606	0.4838		BRTracer	0.1875	0.3590	0.4431	0.2339	0.2742
ESP	BugLocator	0.3781	0.6670	0.7668	0.4485	0.5049	BSP	LearnToRank	0.1701	0.3346	0.4008	0.2137	0.2495
	BLUiR	0.4031	0.6612	0.7735	0.4628	0.5203		Locus	0.1734	0.3228	0.4051	0.2143	0.2492
	AmaLgam	0.4021	0.6747	0.7908	0.4704	0.5251		BugLocator	0.2253	0.4642	0.5648	0.2220	0.3367
	BRTracer	0.3724	0.6651	0.7543	0.4429	0.4990		BLUiR	0.2218	0.4437	0.5512	0.2202	0.3289
	LearnToRank	0.3426	0.7140	0.8013	0.4589	0.5086		AmaLgam	0.2287	0.4727	0.5563	0.2377	0.3396
								BRTracer	0.2116	0.4505	0.5580	0.2180	0.3259
	Locus	0.5518	0.7083	0.7793	0.5927	0.6294		LearnToRank	0.1621	0.4437	0.5410	0.2068	0.2856
DSLAM	BugLocator	0.2197	0.4005	0.4926	0.2224	0.3088		Locus	0.2406	0.4454	0.5307	0.2641	0.3402
	BLUiR	0.2088	0.3934	0.4625	0.2109	0.3002	ONT	BugLocator	0.1960	0.4045	0.4884	0.2421	0.2954
	AmaLgam	0.2153	0.4099	0.4816	0.2196	0.3116		BLUiR	0.1926	0.3979	0.4893	0.2379	0.2921
	BRTracer	0.2175	0.4230	0.5156	0.2263	0.3181		AmaLgam	0.1935	0.4042	0.4952	0.2386	0.2930
	LearnToRank	0.1589	0.3551	0.4373	0.1843	0.2551		BRTracer	0.1945	0.4020	0.4930	0.2384	0.2932
								LearnToRank	0.1712	0.3703	0.4716	0.2247	0.2707
	Locus	0.1452	0.3145	0.3995	0.1702	0.2318		Locus	0.1811	0.3647	0.4557	0.2286	0.2722

RQ1: How effective are IRBL techniques for industrial projects?

Projects	IRBL tech.	Top@1	Top@5	Top@10	MAP	MRR
ANP	BugLocator	0.1774	0.4229	0.5111	0.2147	0.2900
	BLUiR	0.1806	0.4222	0.5056	0.2141	0.2906
	AmaLgam	0.1788	0.4240	0.5074	0.2151	0.2896
	BRTracer	0.1785	0.4309	0.5281	0.2171	0.2934
	LearnToRank	0.1567	0.4465	0.5303	0.2177	0.2893
	Locus	0.1748	0.3544	0.4603	0.2056	0.2658
UTS	BugLocator	0.1734	0.3822	0.4687	0.2006	0.2735
	BLUiR	0.1721	0.3756	0.4590	0.1964	0.2700
	AmaLgam	0.1721	0.3738	0.4590	0.1974	0.2709
	BRTracer	0.1734	0.3791	0.4704	0.2000	0.2731
	LearnToRank	0.1249	0.3517	0.4373	0.1706	0.2276
	Locus	0.1377	0.2992	0.3839	0.1640	0.2192
WDM	BugLocator	0.1873	0.4508	0.5603	0.2126	0.3105
	BLUiR	0.1873	0.4296	0.5324	0.2027	0.3017
	AmaLgam	0.1888	0.4330	0.5360	0.2059	0.3048
	BRTracer	0.1835	0.4395	0.5461	0.2043	0.3042
	LearnToRank	0.1855	0.4200	0.5378	0.2119	0.2982
	Locus	0.1724	0.4060	0.5191	0.2025	0.2837
Aggregate	BugLocator	0.2110	0.4314	0.5263	0.2370	0.3162
	BLUiR	0.2077	0.4219	0.5156	0.2321	0.3110
	AmaLgam	0.2105	0.4311	0.5240	0.2369	0.3161
	BRTracer	0.2051	0.4307	0.5287	0.2328	0.3129
	LearnToRank	0.1802	0.4071	0.5039	0.2208	0.2887
	Locus	0.1893	0.3703	0.4656	0.2196	0.2798

Finding 1. The state-of-the-art IRBL techniques tend to have an excellent performance when applied to small-scale projects. However, the performance degrades on large-scale projects. Considering the large-scale projects only, IRBL techniques yield lower performance on industrial projects. Finding 2. The performance is stable across industrial large-scale projects, and the differences in performance among IRBL techniques is non-obvious.

RQ2: How do industrial issues affect the effectiveness of IRBL techniques on industrial projects?

Lexical similarity feature

$$FinalScore = (1 - \alpha) \times N(Score_L) + \alpha \times N(Score_C)$$

The lexical similarity between bug reports and source code files has been regarded as the crucial feature in IRBL techniques.

Collaborative filtering feature

For a specific bug report, the collaborative filtering score of a source code file is calculated based on the textual similarities of their relevant historical bug reports and the number of files that are modified to fix each bug report.

RQ2: How do industrial issues affect the effectiveness of IRBL techniques on industrial projects?

Fig. 4 Impact of varying α in BugLocator (α represents the weight of collaborative filtering feature)

RQ2: How do industrial issues affect the effectiveness of IRBL techniques on industrial projects?

Table 7 The performance of BugLocator for non-SPL projects and SPL projects

Projects	Top@1	Top@5	Top@10	MAP	MRR						
Non-SPL projec	Non-SPL projects										
DSLAM	0.2197	0.4005	0.4926	0.2224	0.3088						
OLT	0.2393	0.4456	0.5482	0.2454	0.3413						
BSP	0.2253	0.4642	0.5648	0.2220	0.3367						
UTS	0.1734	0.3822	0.4687	0.2006	0.2735						
Aggregate	0.2214	0.4256	0.5230	0.2308	0.3213						
SPL projects											
IAS	0.1889	0.3496	0.4243	0.2309	0.2712						
ONT	0.1960	0.4045	0.4884	0.2421	0.2954						
ANP	0.1774	0.4229	0.5111	0.2147	0.2900						
WDM	0.1873	0.4508	0.5603	0.2126	0.3105						
Aggregate	0.1876	0.4156	0.5080	0.2237	0.2955						

RQ3: Can these issues be overcome?

Table 8 Comparison between performance results for BugLocator including and excluding noisy bug reports

Projects	Noisy bugs in	ncluded	Noisy bugs excluded		
	MAP	MRR	MAP	MRR	
NTA	0.4403	0.4623	∨ 0.4328	√ 0.4617	
ESP	0.4485	0.5049	7 0.4930**	7 0.5462**	
DSLAM	0.2224	0.3088	7 0.2594**	≠ 0.3283*	
OLT	0.2454	0.3413	7 0.2699**	≠ 0.3534**	
IAS	0.2309	0.2712	7 0.2496	≠ 0.2830	
BSP	0.2220	0.3367	∨ 0.2212	√ 0.3317	
ONT	0.2421	0.2954	7 0.2591*	7 0.3111*	
ANP	0.2147	0.2900	7 0.2291*	≠ 0.3040*	
UTS	0.2006	0.2735	7 0.2037	≠ 0.2746	
WDM	0.2126	0.3105	7 0.2144	≠ 0.3178	
Aggregate	0.2370	0.3162	→ 0.2515***	≠ 0.3272**	

^{*:} p-value < 0.05, **: p-value < 0.01, \nearrow : increased, \searrow : decreased

Inferring Bug Signatures to Detect Real Bugs

2022 TSE

Bug Signature

A bug signature is *a set of program elements that explain the cause or the effect of a bug*, and a bug signature can be easily translated to bug patterns of existing static tools.

Hungarian algorithm

Hungarian algorithm is a classical algorithm that solves the assignment problem.

匈牙利算法是一种在多项式时间内求解任务分配问题的组合优化算法。

Inferring Bug Signatures to Detect Real Bugs

2022 TSE

Motivation Example

```
1 protected ... getWriteDirectory(long writeSize) {
   directory = getDirectories().getWriteableLocation(...);
   if (directory == null)
     throw new RuntimeException ("Insufficient disk space to
           write " + writeSize + " bytes");
   return directory;
                      (a) The buggy code
                                                                invokevirtual Lorg/apache/Cassandra/io/util/DiskAwareRunnable, getDirectories()
1 protected ... getWriteDirectory(long writeSize) {
                                                                  invokevirtual Lorg/apache/cassandra/db/Directories, getWriteableLocation(...)
                                                                           invokespecial Ljava/lang/RuntimeException, <init>(...)
   directory = getDirectories().getWriteableLocatic
   if (directory == null)
                                                                               (a) The inferred bug signature
      throw new FSWriteError(new IOException("Insuf
            disk space to write " + writeSize + " by
                                                          1 public ... getWriteDirectory(...) {
   return directory;
                                                              d = getDirectories().getWriteableLocation(...);
                       (b) The fixed code
                                                              if (d == null)
                                                                 throw new RuntimeException (...);
Fig. 1. CASSANDRA-11448.
                                                              return d;
```

(b) The buggy code in DirObjectFactoryHelper.java

Fig. 2. Our reported bug.

7 }

Inferring Bug Signatures to Detect Real Bugs

2022 TSE

node: method invocation

edge: a control or data dependency between two nodes

Fig. 3. The overview of DEPA.

- 2022 - THANK YOU

THNAK YOU