Lecture 8: Molecular clouds

Paul van der Werf

Course Contents

- 1. Introduction and ecology of the interstellar medium
- 2. Physical conditions and radiative processes
- 3. The atomic interstellar medium
- 4. Ionization and recombination
- 5. HII regions
- 6. Collisional excitation and nebular diagnostics
- 7. Molecules and their spectra
- Molecular clouds
- 9. Thermal balance
- 10. Interstellar dust
- 11. Molecular clouds and molecular lines
- 12. Shocks, supernova remnants and the 3-phase ISM

Today's Lecture

Molecules and their excitation

- 1. The H₂ problem
- 2. Molecules as probes
- 3. Molecular clouds

Corresponding textbook material: Draine Ch. 5 & 31

Rotational transtions for linear molecules

Start with heteronuclear molecules (CO, CS, HD, SiO, HCN, HCO+,...)

The charge distribution is now asymmetric, and the asymmetry is measured by the permanent electric dipole moment μ [Debye].

The Einstein A coefficient for electric dipole transitions (rotating dipole with electric dipole moment μ) can be calculated:

$$A_{J,J-1} = \frac{128\pi^3}{3\hbar} \left(\frac{B_v}{hc}\right)^3 \mu^2 \frac{J^4}{J + \frac{1}{2}}$$
 with the selection rule $\Delta J = \pm 1$

so approximately: $A_{J,J-1} \propto J^3$ and the other A's are zero.

e.g., for CO:
$$A_{J,J-1} = 1.07 \cdot 10^{-7} \frac{J^4}{J + \frac{1}{2}}$$
 s⁻¹, so slow transitions (nuclear inertia)

How about homonuclear molecules?

Homonuclear molecules (principally H₂) have no permanent dipole moment and hence no electric dipole transitions.

Now the strongest transitions are the (much weaker) electric quadrupole transitions with the selection rule $\Delta J = \pm 2$

This results in 2 separate rotational ladders:

- ortho-H₂ (J odd)
- para-H₂ (*J* even)

Quantum physics also requires (see Draine Sect 5.1.6):

- for para- H_2 : nuclear spins antiparallel ($J_{\text{nuc}} = 0$, $g_{\text{nuc}} = 1$)
- for ortho- H_2 : nuclear spins parallel $(J_{\text{nuc}} = 1, g_{\text{nuc}} = 3)$.

So abundance ratio ortho/para H_2 is expected to be 3.

The H₂ problem

The lowest H_2 transition is the J=2-0 transition at $\lambda=28~\mu m$ (from the J=2 level which is 511 K above the ground state).

Hence:

- probes only warm H₂ (several 100K)
- can only be observed from space
- very weak line (quadrupole transition)

 H_2 emission is very hard to observe directly and is not a tracer of bulk molecular gas.

In contrast: CO J = 1-0: $\lambda = 2.6$ mm (accessible from the ground), J=1 level is 5.5 K above ground state: promising probe of cold molecular gas.

Rotational line spectra: CO vs H₂

First detection of H_2 28 μ m line in the ISM

Fig. 3. ISO-SWS spectrum of the H_2 S(0) line (28.21 μ m) in the central regions of NGC 6946, with symbols as in Fig. 1.

Fig. 1. ISO-SWS spectrum of the H_2 S(1) line (17.03 μ m) in the central regions of NGC 6946. The dotted line represents the RSRF of the instrument (see text). The vertical line is the expected wavelength for a heliocentric radial velocity of 48 km s⁻¹.

(Valentijn, Van der Werf, De Graauw & De Jong 1996)

Today's Lecture

Molecules and their excitation

- 1. The H₂ problem
- Molecules as probes
- 3. Molecular clouds

Critical densities for rotational lines

$$n_{\text{crit}} = \frac{A_{J,J-1}}{k_{J,J-1}}$$

Recall
$$n_{\text{crit}} = \frac{A_{J,J-1}}{k_{J,J-1}}$$
 and $A_{J,J-1} = \frac{128\pi^3}{3\hbar} \left(\frac{B_v}{hc}\right)^3 \mu^2 \frac{J^4}{J + \frac{1}{2}}$

Since approximately $A_{J,J-1}$ αJ^3 , and $k_{J,J-1}$ is a slow function of J, we find that approximately $n_{\rm crit} \propto J^3$. We also had approximately $E(J) \propto J^2$ for the level energy.

$$n_{
m crit} \propto J^3$$

Implications:

- to excite high-J lines efficiently, we need both high T and high n.
- since high-J line fluxes depend on both T and n, they do not form a clean temperature or density probe.
- using multiple lines, the degeneracy can be broken (in principle)

Tracing densities with molecular lines

Recall
$$n_{\text{crit}} = \frac{A_{J,J-1}}{k_{J,J-1}}$$
 and $A_{J,J-1} = \frac{128\pi^3}{3\hbar} \left(\frac{B_v}{hc}\right)^3 \mu^2 \frac{J^4}{J + \frac{1}{2}}$

So: molecules with large μ will have large $n_{\rm crit}$ molecules with low μ will have low $n_{\rm crit}$.

E.g., CO J=1-0: $n_{crit} \sim \text{few } 100 \text{ cm}^{-3}$

but HCN J=1-0: $n_{crit} \sim \text{few } 10^5 \text{ cm}^{-3}$

Generally:

- low CO lines (J=1-0, 2-1) are have low critical densities and good probes of bulk cold molecular gas
- lines of heavier molecules (HCN, CS, HCO⁺) probe denser molecular gas
- high lines of any molecule probe warm, dense gas

Properties of some important molecules

MOLECULE	$egin{array}{c} { m LOWEST} \\ { m ROTATIONAL} \\ { m LINE} & [\mu { m m}] \end{array}$	ROTATIONAL DIPOLE MOMENT [Debye]	$egin{array}{c} ext{VIBRATIONAL} \ ext{TRANSITIONS} \ [\mu m] \end{array}$
${ m H_2}$	28.1	0	2.3
HD	112.1	5.8×10^{-4}	2.6
ОН	119	1.7	2.7
NH	302		3.0
CH	149,562	1.46	3.5
HCl	479	1.11	3.3
CO	2600	0.112	4.8
CS	6110	2	7.8
HCN	3440	3	3.0, 4.9, 14
HCO ⁺	3360	3.3	
NH_3	524	1.5	2.9, 6.1, 10.5
H_2O	538,269	1.85	2.7, 6.3
HDO	590	1.84	3.0, 3.7, 7.1
$\mathrm{H_2D^+}$	806		
$\mathrm{H_{3}O^{+}}$	$760 \rightarrow 830$	≈1	
O_2	5350	0	
SiO	6910	3.1	8.1

Critical densities

Species	transition	$ u_{ul}$	E_u	A_{ul}	n_{cr}
		[GHz]	[K]	$[s^{-1}]$	$\left[\mathrm{cm}^{-3}\right]$
CO	1 - 0	115.3	5.5	7.2×10^{-8}	1.1×10^{3}
	2-1	230.8	16.6	6.9×10^{-7}	6.7×10^{3}
	3-2	346.0	33.2	$2.5 imes 10^{-6}$	2.1×10^4
	4-3	461.5	55.4	$6.1 imes 10^{-6}$	4.4×10^4
	5-4	576.9	83.0	$1.2 imes 10^{-5}$	7.8×10^4
	6 - 5	691.2	116.3	2.1×10^{-5}	1.3×10^{5}
	7 - 6	806.5	155.0	$3.4 imes 10^{-5}$	2.0×10^{5}
CS	1 - 0	49.0	2.4	1.8×10^{-6}	4.6×10^4
	2 - 1	98.0	7.1	1.7×10^{-5}	3.0×10^5
	3 - 2	147.0	14	6.6×10^{-5}	1.3×10^{6}
	5 - 4	244.9	35	3.1×10^{-4}	8.8×10^{6}
	7 - 6	342.9	66	1.0×10^{-3}	2.8×10^{7}
	10 - 9	489.8	129	$2.6 imes 10^{-3}$	1.2×10^{8}
HCO ⁺	1 - 0	89.2	4.3	3.0×10^{-5}	$1.7 imes 10^5$
	3-2	267.6	26	1.0×10^{-3}	4.2×10^{6}
	4-3	356.7	43	$2.5 imes 10^{-3}$	9.7×10^{6}
HCN	1 - 0	88.6	4.3	$2.4 imes 10^{-5}$	2.6×10^{6}
	3-2	265.9	26	8.4×10^{-4}	7.8×10^{7}
	4-3	354.5	43	2.1×10^{-3}	1.5×10^{8}
H_2CO	$2_{12}-1_{11}$	140.8	6.8	5.4×10^{-5}	1.1×10^{6}
	$3_{13} - 2_{12}$	211.2	17	$2.3 imes 10^{-4}$	5.6×10^{6}
	$4_{14} - 3_{13}$	281.5	30	6.0×10^{-4}	9.7×10^{6}
	$5_{15} - 4_{14}$	351.8	47	1.2×10^{-3}	2.6×10^{7}
NH_3	(1,1) inversion	23.7	1.1	1.7×10^{-7}	1.8×10^{3}
	(2,2) inversion	23.7	42	$2.3 imes 10^{-7}$	2.1×10^3
H_2	2-0	$1.06\mathrm{E}4^a$	510	2.9×10^{-11}	10
	3-1	$1.76\mathrm{E}4^{b}$	1015	4.8×10^{-10}	300

Molecular lines as probes

(credit: Reinhard Genzel)

Today's Lecture

Molecules and their excitation

- 1. The H₂ problem
- 2. Molecules as probes
- Molecular clouds

Tracing molecular gas

We have already concluded:

- By far the most important constituent (by mass) of molecular clouds is H₂, but we cannot determine H₂ mass directly.
- But CO (the 2nd most abundant molecule) is a promising tracer of molecular gas, with an easily accessible line: CO J = 1 - 0 at $\lambda = 2.6$ mm ($n_{crit} = 1.1 \cdot 10^{-3}$ cm⁻³, $E_u/k = 5.5$ K)

Remaining question: are CO and H₂ co-spatial?

→ look at their formation and destruction mechanisms.

All-sky CO emission

(Planck Satelite)

H₂ photodissociation

Direct photodissociation from the ground state:

$$H_2 + hv \rightarrow H + H$$

This is a transition to the repulsive $b^3 \Sigma_u^+$ state (red arrow): forbidden

H₂ photodissociation

H₂ photodissociation is a 2-step process:

- Absorption in Lyman or Werner bands gives electronically excited molecule (black upwards arrows)
- Cascading down, there is a 13% of ending up in the repulsive b³∑u⁺ state → dissociation (red arrows).
 Remaining 87% falls back to ground state emitting IR photons: vibrational fluorescence.

H₂ UV absorption lines

FUSE spectrum towards a bright UV source, showing H2 absorption lines (Shull et al., 2000)

- blue tick marks: H₂ Werner band
- red tick marks: H₂ Lyman band

H₂ rovibrational energy levels

H₂ 1-0 S(1) (meaning v=1-0, J=3-1):

 λ =2.12 μ m

Photodissociation regions (PDRs)

Orion Nebula

(Goicoechea *et* al., 2016)

The Orion Bar PDR

(Goicoechea et al., 2016)

H₂ vibrational fluorescence delineates the dissociation front

H₂ photodissociation rate

We can write the dissociation rate as

$$\frac{dn_{\rm H_2}}{dt} = -\zeta_{\rm diss} n_{\rm H_2}$$

where ζ_{diss} depends on the radiation field but nothing else (why not on n or T?)

Given a radiation field, ζ_{diss} can be calculated (summing over the UV absorption lines in the Lyman and Werner bands).

In the standard ISRF: $\zeta_{\rm diss} \approx 4 \cdot 10^{-11} \, \rm s^{-1}$

NB: the fact that photodissociation is a line process makes it very different from photoionization (which is a continuum process).

H₂ formation in the gas phase

$$H + H \rightarrow H_2 + hv$$
 (4.5 eV)

extremely slow reaction, since H₂ cannot radiate away the 4.5 eV

Alternative: use electrons as catalyst:

H + e⁻
$$\rightarrow$$
 H⁻ + hv (0.77 eV)
H⁻ + H \rightarrow H₂ + e ⁻

This is how the first H₂ molecule formed!

Reaction rates for these processes can be calculated and are low.

Required H₂ formation rate

We can write the H₂ formation rate as

$$\frac{dn_{\rm H_2}}{dt} = Rn_{\rm H}^2$$

where R is some constant (expected to depend on T).

What value of *R* is required by the data?

Equilibrium: $\zeta_{diss} n_{\rm H_2} = R n_{\rm H}^2$

Since we know ζ_{diss} , and we can measure n_H and n_{H_2} in some regions (from UV absorption line spectra), we can determine R.

Result: $R \sim 3 \cdot 10^{-17} \text{ cm}^3 \text{ s}^{-1}$

This is about 10⁸× what can be produced gas-phase reactions!

H₂ formation on dust grains

H₂ formation on dust grains

The rate of H₂ formation on dust grains can be calculated, with

the result
$$R_{\rm gr} \approx 3 \cdot 10^{-17} \left(\frac{T}{70~\rm K}\right)^{\frac{1}{2}}$$
, very close to what we need.

Now we can make a (failing) attempt to work out the equilibrium H_2 abundance: $\frac{n_{\rm H_2}}{n_{\rm H}} = \frac{R_{\rm gr} n_{\rm H}}{\zeta_{\rm disc}} \approx 2.3 \cdot 10^{-5} \frac{n_{\rm H}}{30~{\rm cm}^{-3}}$

So we (incorrectly) conclude: mostly atomic, unless $n_{\rm H} > 10^6 \, \rm cm^{-3}$

But this is not what is observed: molecular gas can have densities down to $100 \text{ cm}^{-3} \rightarrow \text{what did we do wrong?}$

Self-shielding

H₂ photodissociation is a line absorption process and if the lines get optically thick, they will shield the deeper layers from dissociating photons: self-shielding

When does this happen? We can calculate that $\tau_{H_2 \text{ Lyman/Werner bands}} > 1 \text{ if } N(H_2) > 10^{17} \text{ cm}^{-2}$, which is a very small value.

So only a very thin layer gets photodissociated. Molecular clouds are molecular because of self-shielding.

CO formation and destruction

CO formation: gas-phase reactions

CO destruction: UV absorption line process with self-shielding,

like H₂

But: since in a given cloud layer $N(CO) << N(H_2)$, $\tau_{UV \text{ lines } CO} << \tau_{UV \text{ lines } H_2}$, so the self-shielding layer needs to be thicker for CO.

Therefore a molecular cloud has an outer layer where CO is photodissociated (while H₂ is molecular), resulting in free gasphase O and C⁺. The outer layer of a molecular cloud is essentially a PDR.

Photodissociation rates in the ISRF

T = 15 K $n_{\text{H}} = 500 \text{ cm}^{-3}$

cloud edge

Molecular cloud in the ISRF

T = 15 K $n_{H} = 500 \text{ cm}^{-3}$

cloud edge

Are CO and H₂ co-spatial?

In the Milky Way, the outer layers of molecular clouds where there is H_2 but no CO ("CO-dark gas"), contain only a small fraction of the H_2 mass (~10%, sometimes estimated up to 30%).

However, in low-metallicity galaxies a much higher column density is needed for CO self-shielding.

Conclusion: CO is a good tracer of H_2 in galaxies of \sim solar metallicity, but fails totally for low metallicity galaxies.

Effect of metallicity on CO/H₂

Next lecture

Thermal balance

- 1. What sets the temperature of the ISM?
- 2. Temperatures of HII regions
- 3. The origin of the 2-phase ISM
- 4. Temperatures of molecular clouds