INTRODUCTION TO SYSTEMS ENGINEERING

Be attentive to all aspect of lifecycle design

Systems The Integration, **Functional** The **Stakeholders Systems** verification and **systems Design** analysis Design and their systems of systems engineering concepts and and system reviews life cycle requirements systems engineering design validation process

Various application domains → business information system. Health devices, defense, financial ,manufacturing, ect...

A Concept of
Operations (CONOPS)
is a user-oriented
document →
describes systems
characteristics for a
proposed system from
a user's perspective.

A CONOPS → user organization, mission, and objectives → to communicate overall quantitative and qualitative system characteristics to stakeholders

- ➤ The identification of a need or market opportunity will trigger the life cycle of the system, which will end with its retirement (if the system is not consumed with its use).
- ➤ In between that identification of a need or opportunity and the eventual phasing out of the system, the life cycle is comprised by a series of phases.

Crisp vs Fuzzy boundaries

➤ Generally speaking, what has not been produced cannot be used; what has not been designed cannot be produced; what has not been specified cannot be designed

➤ Nevertheless, there might be some overlap between boundaries of life-cycle phases (like detailed designed of certain subsystems done after production of part of the system has began).

Fuzzy boundaries

- ➤ For example, the pressure hull of a submarine is constructed before the detailed design of some subsystems is completed.
- If commencement of production had to wait till design was fully complete, the design and development effort would take much longer, further complicating market and functional obsolescence problems.

Analogy

Analogy. Similarity in some respects between things that are otherwise dissimilar.

Analogy: the relay race

Phases are carried out sequentially, like in a relay race, in which each team member starts running after receiving the baton.

Analogy: the rugby team

Designs in a system are carried out in parallel, like in a rugby team, in which all team members run simultaneously and in a coordinated manner!

The phases of the system life-cycle are conducted sequentlially, like in a relay race, but the design of the system and its associated processes of production, use, support and phase out are carried out in parallel, like in a rugby team.

Concurrent engineering

- What has not been produced cannot be used; what has not been designed cannot be produced; what has not been specified cannot be designed
- ➤ Concurrent engineering (another discipline, in essence equal to systems engineering) is defined as the concurrent or simultaneous design of a system and its associated manufacturing, utilization, maintenance and phase-out processes.
- ➤ Whether we call it systems engineering, concurrent engineering, or simply GOOD ENGINEERING, the important thing is to maintain the global view!

Systems Analysts role in a project

