Aufgabe 1

384 zufällig ausgewählte Personen wurden nach ihrem Unfall in einer bestimmten Angelegenheit befragt. Zur statistischen Auswertung wurden die Urteile jeweils in eine von 6 Kategorien eingeordnet und in folgender Tabelle dargestellt:

Testen Sie mit einem geeigneten Testverfahren zum Niveau $\alpha=0.05$, ob in der Grundgesamtheit alle sechs Kategorien gleich wahrscheinlich sind.

Lösung 1 Chi-Quadrat-Anpassungstest

Der Chi-Quadrat-Anpassungstest vergleicht die beobachteten Häufigkeiten O_i in den Klassen mit den erwarteten Häufigkeiten E_i unter der Annahme, dass die Zahlen gleichverteilt sind.

Bei einer Gleichverteilung der Urteile über die d=6 Kategorien, erwarten wir, dass jede Klasse etwa $E_i=\frac{n}{d}=\frac{384}{6}=64$ Urteile enthält.

Damit die Ergebnisse dieses Tests zuverlässig sind, muss für mindestens 80% der $i \in \{1, ..., d\}$ gelten, dass $E_i \ge 5$ ist und für alle i, dass $E_i \ge 1$ ist. Da $E_i = 64$ sind beide Bedingungen für alle i erfüllt.

Die Chi-Quadrat-Teststatistik *D* wird wie folgt berechnet:

$$D = \sum_{i=1}^{d} \frac{(O_i - E_i)^2}{E_i}$$

$$= \sum_{i=1}^{6} \frac{(O_i - 64)^2}{64}$$

$$= \frac{1}{64} \left(6^2 + 3^2 + 8^2 + 3^2 + 7^2 + 5^2\right)$$

$$= 3$$

Diesen Wert vergleichen wir mit dem 0,95-Quantil der Chi-Quadrat-Verteilung für d-1=5 Freiheitsgrade.

Da $D=3<11,07=\chi^2_{5;\ 0,95}$ gibt es keine ausreichenden Beweise, um die Nullhypothese abzulehnen.

Aufgabe 2

Von einer Zufallsvariablen X wird vermutet, dass sie die nebenstehende Dichte f besitzt mit f(x) = 0 für $x \neq [0;3]$.

Ausgabe: 09.01.2024

Abgabe: 15.01.2024

- a) Bestimmen Sie die Konstante *a* so, dass *f* eine Dichte ist.
- b) Testen Sie die Vermutung mit folgender Stichprobe zum Niveau $\alpha = 0.05$:

Klasse	abs. Häufigkeit
[0;1]	15
(1;2]	29
(2;3]	6

Lösung 2 Chi-Quadrat-Anpassungstest

Damit die Funktion f eine Dichtefunktion sein kann, muss $\int_{-\infty}^{\infty} f(x) dx = 1$ sein, da die Gesamtwahrscheinlichkeit für alle möglichen Ergebnisse einer Zufallsvariablen immer 1 ist. Dies ist der Fall für a = 0.5.

Bei einer Stichprobe vom Umfang n=50 würde man unter Annahme der Dichte erwarten, dass Klasse A_1 im Intervall [0;1] und Klasse A_3 im Intervall (2;3] jeweils $E_{1.3}=12,5$ Elemente, sowie Klasse A_2 im Intervall (1;2] $E_2=25$ Elemente enthält.

Da $E_i \ge 5 \ \forall \ i \in \{1,2,3\}$ sind die Bedingungen für die Anwendung des Chi-Quadrat-Tests erfüllt.

Wir berechnen die Chi-Quadrat-Teststatistik *D*:

$$D = \sum_{i=1}^{d} \frac{(O_i - E_i)^2}{E_i}$$

$$= \frac{(15 - 12.5)^2}{12.5} + \frac{(29 - 25)^2}{25} + \frac{(6 - 12.5)^2}{12.5}$$

$$= 4.52$$

Diesen Wert vergleichen wir mit dem 0,95-Quantil der Chi-Quadrat-Verteilung für d-1=2 Freiheitsgrade $\chi^2_{2;\ 0,95}=5,991.$

Ausgabe: 09.01.2024

Abgabe: 15.01.2024

Ausgabe: 09.01.2024 Abgabe: 15.01.2024

Da $D=4,52<5,991=\chi^2_{2;\ 0,95}$ können wir die Nullhypothese nicht ablehnen. Die Vermutung, dass die Zufallsvariable X die Dichte f besitzt, lässt sich also anhand der Daten nicht auf dem 5%-Signifikanzniveau widerlegen.

Aufgabe 3

Bei der Bestimmung des Geburtsgewichts von 100 Mädchen ergaben sich folgende gerundeten Werte:

Gewicht in kg	2,7	2,8	2,9	3,0	3,1	3,2	3,3	3,4	3,5	3,6
Anzahl der Mädchen	6	8	11	13	14	11	13	8	9	7

Testen Sie zum Niveau $\alpha = 0.05$ die Hypothese das Geburtsgewicht folgt einer

a) Gleichverteilung in [2,65; 3,65] mit der Klasseneinteilung

b) Normalverteilung mit der Klasseneinteilung

$$(-\infty; 2,8], (2,8; 3,0], (3,0; 3,2], (3,2; 3,4]$$
 und $(3,4; \infty)$.

Lösung 3a

Bei einer Gleichverteilung der n = 100 Datenpunkte im Intervall [2,65; 3,65] ist die erwartete Häufigkeit E_i der Klasse A_i gleich dem Produkt aus n und der Klassenbreite.

Klasse	Intervall	beobachtete Häuf.	erwartete Häuf.
A_i		O_i	$ E_i $
$\overline{A_1}$	[2,65; 3,0]	38	35
A_2	(3,0; 3,3]	38	30
A_3	[2,65; 3,0] (3,0; 3,3] (3,3; 3,65]	24	35

Da für $i \in \{1,2,3\}$ die erwartete Häufigkeit $E_i > 5$ ist, ist der Chi-Quadrat-Anpassungstest für die Untersuchung geeignet.

Wir berechnen die Chi-Quadrat-Teststatistik *D*:

$$D = \sum_{i=1}^{d} \frac{(O_i - E_i)^2}{E_i}$$

$$= \frac{(38 - 35)^2}{35} + \frac{(38 - 30)^2}{30} + \frac{(24 - 35)^2}{35}$$

$$= \frac{614}{105}$$

$$= 5.8476190$$

Da $D \approx 5,848 < 5,991 = \chi^2_{2,0,95}$ ist, gibt es keine ausreichende Evidenz, um die Nullhypothese einer Gleichverteilung abzulehnen. Das bedeutet, dass die Daten nicht signifikant von einer Gleichverteilung in [2,65; 3,65] abweichen.

Lösung 3b

Für den Vergleich mit einer Normalverteilung der Datenpunkte werden zunächst der Erwartungswert \overline{X} und die empirische Varianz s^2 der Stichprobe benötigt.

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{10} h_i \cdot A_i$$

$$= \frac{1}{100} (6 \cdot 2.7 + 8 \cdot 2.8 + 11 \cdot 2.9 + 13 \cdot 3.0 + 14 \cdot 3.1 + 11 \cdot 3.2 + 13 \cdot 3.3 + 8 \cdot 3.4 + 9 \cdot 3.5 + 7 \cdot 3.6)$$

$$= 3.149$$

$$s^2 = \frac{1}{n-1} \cdot \left(\sum_{i=1}^n (X_i^2) - n \cdot \overline{X}^2 \right)$$

$$= \frac{1}{99} \cdot (998.17 - 991.6201)$$

$$\approx 0.0661606$$

Für $X = \{\text{Geburtsgewicht}\} \sim \mathcal{N}(3,149; 0,0661606)$ werden folgende Häufigkeiten erwartet.

Klasse	Intervall	beob. Häuf.	erw. Häuf.
A_i		O_i	E_i
A_1	$(-\infty; 2,8]$	14	8,7417
A_2	(2,8; 3,0]	24	19,3784
A_3	(3,0; 3,2]	25	29,7384
A_4	(3,2; 3,4]	21	25,6840
A_5	(3,4; ∞)	16	16,4574

Wobei allgemein für das Intervall $A_i = (a; b]$ die erwartete Häufigkeit wie folgt berechnet werden kann:

$$E_i = n \cdot \int_a^b \frac{1}{s \cdot \sqrt{2\pi}} \cdot \exp\left(-\frac{(x - \overline{X})^2}{2 \cdot s^2}\right) dx$$

ist.

Ausgabe: 09.01.2024

Abgabe: 15.01.2024

Ausgabe: 09.01.2024 Abgabe: 15.01.2024

Wir berechnen die Chi-Quadrat-Teststatistik *D*:

$$D = \sum_{i=1}^{d} \frac{(O_i - E_i)^2}{E_i}$$

$$\approx 5,88708$$

Die Anzahl der Freiheitsgrade ist d-1 – Anzahl der zu schätzenden Parameter. Da wir hier den empirischen Erwartungswert und die empirische Varianz als Schätzer verwenden, ist die Anzahl der Freiheitsgrade 2 und wir betrachten das 95%-Quantil der χ^2 -Verteilung für 2 Freiheitsgrade.

Da $D=5,887<5,991=\chi^2_{2,0,95}$ gibt es keinen ausreichenden Grund, die Nullhypothese zu verwerfen. Das bedeutet es gibt keine signifikanten Beweise dafür, dass das Geburtsgewicht der Mädchen nicht normalverteilt ist.