Linguaggi

9: Deduzione semantica

Claudio Sacerdoti Coen

<sacerdot@cs.unibo.it>

Universitá di Bologna

15/11/2019

Outline

Deduzione semantica

Ancora sui connettivi

Conclusione lezione precedente:

- La scelta dell'insieme dei connettivi è parzialmente arbitraria
- L'insieme scelto è ridondante (per la logica classica)
- I connettivi $\{\land, \lor, \neg, \top, \bot\}$ hanno un ruolo importante.
- L'implicazione materiale non cattura la causalità

Domande:

- Cosa cattura veramente l'implicazione materiale?
- Perchè includere anche l'implicazione materiale?

Teorema di deduzione semantica & affini

Vedremo una serie di lemmi (teoremi) tecnici che chiarificano il rapporto fra alcuni connettivi $(\Rightarrow, \iff, \neg, \top, \bot)$ e le nozioni di conseguenza ed equivalenza logica.

Anticipiamo le principali conclusioni:

- L'implicazione materiale internalizza nella sintassi la nozione di conseguenza logica
- La doppia implicazione internalizza nella sintassi la nozione di equivalenza logica
- La negazione permette di passare dalle tautologie alle contraddizioni
- II ⊥, assieme al ⊩, permette di esprimere la soddisfacibilità
- II ⊤, assieme all'≡, permette di esprimere l'essere una tautologia

Teorema di deduzione semantica

```
Teorema (di deduzione semantica): per ogni formula F \in G si ha \Gamma \Vdash F \Rightarrow G sse \Gamma, F \Vdash G.
```

Dimostrazione:

Parte ⇒:

Per ipotesi $\Gamma \Vdash F \Rightarrow G$.

Ovvero in ogni mondo v tale che $v \Vdash \Gamma$ si ha

$$\llbracket F \Rightarrow G \rrbracket^v = \max\{1 - \llbracket F \rrbracket^v, \llbracket G \rrbracket^v\} = 1$$

ovvero
$$[\![F]\!]^v = 0$$
 oppure $[\![G]\!]^v = 1$.

Dobbiamo dimostrare che in ogni mondo v tale che $v \Vdash \Gamma$, F si ha $\llbracket G \rrbracket^v = 1$.

Sia v un mondo generico ma fissato.

Per ipotesi si ha $v \Vdash F$ ovvero $\llbracket F \rrbracket^v = 1$.

Quindi necessariamente $[\![G]\!]^v = 1$.

Teorema di deduzione semantica

```
Teorema (di deduzione semantica): per ogni formula F \in G si ha \Gamma \Vdash F \Rightarrow G sse \Gamma, F \Vdash G.
```

Dimostrazione:

Parte ←:
Per ipotesi Γ, F ⊩ G.

Ovvero in ogni mondo v tale che $v \Vdash \Gamma, F$ si ha $\llbracket G \rrbracket^v = 1$. Dobbiamo dimostrare che in ogni mondo v tale che $v \Vdash \Gamma$

si ha $[\![F \Rightarrow G]\!]^v = \max\{1 - [\![F]\!]^v, [\![G]\!]^v\} = 1.$

Sia *v* un mondo generico ma fissato.

Per ipotesi si ha $v \Vdash \Gamma$.

Se $\llbracket F \rrbracket^v = 1$, allora $v \Vdash \Gamma$, F e quindi necessariamente $\llbracket G \rrbracket^v = 1$ e $\llbracket F \Rightarrow G \rrbracket^v = 1$.

Altrimenti, se $\llbracket F \rrbracket^v = 0$, allora $\llbracket F \Rightarrow G \rrbracket^v = 1$.

Teorema di deduzione semantica

Teorema (di deduzione semantica, caso n-ario): per tutte le formule F_1, \ldots, F_n, G si ha

$$F_1, \ldots, F_n \Vdash G \text{ sse } \Vdash F_1 \Rightarrow \ldots \Rightarrow F_n \Rightarrow G$$

Dimostrazione: procediamo per induzione su *n*.

Caso base: $\Vdash G$ sse $\Vdash G$ ovvio.

Passo induttivo (caso n): sia $\Gamma = F_1, \dots, F_{n+1}$.

Ipotesi induttiva: $\forall G, F_1, \dots, F_n \Vdash G$ sse $\Vdash F_1 \Rightarrow \dots \Rightarrow F_n \Rightarrow G$

Si applica il teorema di deduzione semantica appena dimostrato per concludere

$$F_1, \ldots, F_n, F_{n+1} \Vdash G \operatorname{sse} F_1, \ldots, F_n \Vdash F_{n+1} \Rightarrow G$$

Il teorema segue dall'ipotesi induttiva

$$F_1, \ldots, F_n \Vdash F_{n+1} \Rightarrow G \text{ sse } \Vdash F_1 \Rightarrow \ldots \Rightarrow F_n \Rightarrow F_{n+1} \Rightarrow G$$

Altri teoremi

Nota: il teorema di deduzione semantica è importantissimo perchè se le ipotesi sono in numero finito ci dice che il concetto di conseguenza logica è riducibile a quello di tautologia e viceversa.

```
Teorema: \Vdash F sse F \equiv \top Dimostrazione: ovvia.
```

Teorema: $\vdash F$ see $\neg F$ è insoddisfacibile

Dimostrazione:

⊩ F sse per ogni mondo v si ha $\llbracket F \rrbracket^v = 1$ sse per ogni mondo v non è vero che $\llbracket F \rrbracket^v = 0$ sse per ogni mondo v non è vero che $\llbracket \neg F \rrbracket^v = 1$ sse non esiste un mondo v tale che $\llbracket \neg F \rrbracket^v = 1$ sse $\neg F$ è insoddisfacibile.

Altri teoremi

Teorema: $\Gamma \Vdash F$ sse $\Gamma, \neg F$ è insoddisfacibile Dimostrazione: $F_1, \ldots, F_n \Vdash F$ sse $\Vdash F_1 \Rightarrow \ldots \Rightarrow F_n \Rightarrow F$ sse $\neg (F_1 \Rightarrow \ldots \Rightarrow F_n \Rightarrow F)$ è insoddisfacibile sse $F_1 \land \ldots \land F_n \land \neg F$ è insoddisfacibile sse $F_1, \ldots, F_n, \neg F$ è insoddisfacibile

Altri teoremi

Teorema: Γ è insoddisfacibile sse $\Gamma \Vdash \bot$

Dimostrazione: $\Gamma \Vdash \bot$ sse in ogni mondo ν tale che $\nu \Vdash \Gamma$ si ha $[\![\bot]\!]^{\nu} = 1$ il che non accade mai.

Quindi non esiste nessun mondo v tale che $v \Vdash \Gamma$ ovvero Γ è insoddisfacibile.

Corollario: Γè soddisfacibile sse Γ⊮ ⊥

Teorema: $\neg F \equiv F \Rightarrow \bot$

Dimostrazione: equivalenza delle definizioni.