Differentiation.md 1/19/2023

Differentiation

For any equation in the form y=f(x) where f(x) is in the form mx^k , the gradient function, $\frac{dy}{dx}f(x)$ also known as f'(x) is given by the formula mkx^{k-1} .

A proof from first principles

gradient of the chord formed between ${\bf P}$ and ${\bf Q}$ is $\frac{f(x+h)-f(x)}{h}$.

As $h \to 0$, this gradient more closely approximates teh gradient of the line formed by f(x) at the point **P**. Therefore, the gradient function f'(x) is equal to:

$$f'(x) = \lim_{x o 0} rac{f(x+h) - f(x)}{h}$$