### جمع مصفوفتین - Somme de deux matrices

```
Algorithme SommeMat
    Const n = 20
              m = 30
              A,B,C: tableau [1..n,1..m] d'entiers
    Var
              i,j: entier
Début
    pour i ← 1 à n faire
         pour j ← 1 à m faire
              Lire(A[i,j])
         Finpour
    Finpour
    pour i \leftarrow 1 à n faire
         pour j ← 1 à m faire
              Lire(B[i,j])
         Finpour
    Finpour
    pour i ← 1 à n faire
         pour j \leftarrow 1 à m faire
              C[i,j] \leftarrow A[i,j] + B[i,j]
         Finpour
    Finpour
    pour i ← 1 à n faire
         pour j \leftarrow 1 à m faire
              écrire(C[i,j])
         Finpour
    Finpour
Fin
```

## جداء مصفوفتین - Produit de deux matrices

# Algorithme **ProdMat** Const n = 20r = 10m = 17A: tableau [1..n,1..r] d'entiers Var B: tableau [1..r,1..m] d'entiers C: tableau [1..n,1..m] d'entiers i,j,k,S: entier Début pour i ← 1 à n faire pour $j \leftarrow 1$ à r faire Lire(A[i,j]) Finpour Finpour pour i ← 1 à r faire pour j ← 1 à m faire Lire(B[i,j]) Finpour Finpour pour i ← 1 à n faire pour j ← 1 à m faire $S \leftarrow 0$ pour $k \leftarrow 1$ à r faire $S \leftarrow S + A[i,k] * B[k,j]$ FinPour $C[i,j] \leftarrow S$ Finpour Finpour pour i ← 1 à n faire pour j ← 1 à m faire écrire(C[i,j]) Finpour Finpour

Fin

### Matrice transposée

# \* النتيجة في مصفوفة أخرى \*

| 6 | 1  | 4 | 9 | 0  | <b>*</b> | 6 | 2  | 6 | 1 | 8 |
|---|----|---|---|----|----------|---|----|---|---|---|
| 2 | 16 | 3 | 7 | 10 |          | 1 | 16 | 8 | 9 | 2 |
| 6 | 8  | 9 | 0 | 1  |          | 4 | 3  | 9 | 0 | 3 |
| 1 | 9  | 0 | 7 | 3  |          | 9 | 7  | 0 | 7 | 4 |
| 8 | 2  | 3 | 4 | 5  |          | 0 | 10 | 1 | 3 | 5 |

#### Algorithme TransMat

Const N=20

Var A,TR: tableau [1..N,1..N] d'entiers

i,j: entier

#### Début

```
pour i \leftarrow 1 à N faire
pour j \leftarrow 1 à N faire
Lire(A[i,j])
Finpour
```

Finpour

pour i  $\leftarrow$  1 à N faire pour j  $\leftarrow$  1 à N faire  $TR[i,j] \leftarrow A[j,i]$ Finpour

Finpour

pour i  $\leftarrow$  1 à N faire pour j  $\leftarrow$  1 à N faire écrire(TR[i,j])

Finpour

Finpour

Fin.

# Matrice transposée



```
6 1 4 9 0

2 16 3 7 10

6 8 9 0 1

1 9 0 7 3

8 2 3 4 5
```

```
* النتيجة في نفس المصفوفة *
              * استعمال المثلث العلوى *
Algorithme TransMat
     Const N=20
              A: tableau [1..N,1..N] d'entiers
     Var
              i,j,X: entier
Début
    pour i ← 1 à N faire
         pour j ← 1 à N faire
              Lire(A[i,j])
         Finpour
    Finpour
    pour i ← 1 à N-1 faire
         pour j \leftarrow i+1 à N faire
              X \leftarrow A[i,j]
              A[i,j] \leftarrow A[j,i]
              A[j,i] \leftarrow X
         Finpour
    Finpour
    pour i ← 1 à N faire
         pour j ← 1 à N faire
              écrire(A[i,j])
         Finpour
    Finpour
Fin.
```

```
* استعمال المثلث السفلى *
Algorithme TransMat
    Const N=20
    Var
              A: tableau [1..N,1..N] d'entiers
              i,j,X: entier
Début
    pour i ← 1 à N faire
         pour j ← 1 à N faire
              Lire(A[i,j])
         Finpour
    Finpour
    pour i ← 2 à N faire
         pour j ← 1 à i-1 faire
              X \leftarrow A[i,j]
              A[i,j] \leftarrow A[j,i]
              A[j,i] \leftarrow X
         Finpour
    Finpour
    pour i ← 1 à N faire
         pour j ← 1 à N faire
              écrire(A[i,j])
         Finpour
    Finpour
```

Fin.

\* النتيجة في نفس المصفوفة \*