Question 39.2023

Anupama Kulshreshtha EE22BTECH11009

Let X_1, X_2, \ldots, X_n be a random sample of size n from a population having probability density function

$$f(x;\mu) = \begin{cases} e^{-(x-\mu)}, & \text{if } \mu \le x < \infty \\ 0, & \text{otherwise,} \end{cases}$$
 (1)

where $\mu \in \mathbb{R}$ is an unknown parameter. If \hat{M} is the maximum likelihood estimator of the median of X_1 , then which one of the following statements is true?

A)
$$P(\hat{M} \le 2) = 1 - e^{-n(1 - \log_e 2)}$$
 if $\mu = 1$

B)
$$P(\hat{M} \le 1) = 1 - e^{-n \log_e 2}$$
 if $\mu = 1$

C)
$$P(\hat{M} \le 3) = 1 - e^{-n(1 - \log_e 2)}$$
 if $\mu = 1$

D)
$$P(\hat{M} \le 4) = 1 - e^{-n(2\log_e 2 - 1)}$$
 if $\mu = 1$

Solution: For continuous random variable X, median M is such that,

$$P(X \le M) = 0.5 \tag{2}$$

The pdf of X is given by,

$$f(x;\mu) = \begin{cases} e^{-(x-\mu)}, & \text{if } \mu \le x < \infty \\ 0, & \text{otherwise,} \end{cases}$$
 (3)

Hence, cdf is given by

$$F(x;\mu) = \int_{\mu}^{x} e^{-(t-\mu)} dt \tag{4}$$

$$= e^{\mu} [-e^{-x} + e^{-\mu}] \tag{5}$$

$$=1 - e^{-(x-\mu)} \tag{6}$$

Now,

$$F(x;\mu) = 0.5\tag{7}$$

$$\implies 1 - e^{-(M-\mu)} = 0.5$$
 (8)

$$\implies M = \mu + \ln(2) \tag{9}$$

The MLE \hat{M} of the median in a random sample is the middle value of the ordered sample. Since $M = \mu + \ln(2)$, the MLE of the median is $\hat{M} = \hat{\mu} + \ln(2)$, where $\hat{\mu}$ is the MLE of μ . Now, to calculate $P(\hat{M} \leq y)$,

$$P(\hat{\mu} + \ln(2) \le y) = P(\hat{\mu} \le y - \ln(2))$$
 (10)

CDF of $\hat{\mu}$ is same as CDF of μ , as MLE is biased estimator, so,

$$F(\hat{\mu}) = F(\mu) \tag{11}$$

$$\implies P(\hat{M} \le y) = 1 - e^{-n(y-M)} \tag{12}$$

When y = 2 and $\mu = 1$,

$$P(\hat{M} \le 2) = 1 - e^{-n(1 - \log_e 2)} \tag{13}$$

Therefore, option (A) is correct.