Introduction to Graphs

Prof. Dr. H. H. Takada

Quantitative Research – Itaú Asset Management Institute of Mathematics and Statistics – University of São Paulo

Graphs

Definition

A graph consists of nodes (vertices) and undirected or directed links (edges) between nodes.

Path

A path from X_i to X_j is a sequence of connected nodes starting at X_i and ending at X_j .

Directed Graphs

All the edges are directed:

DAG

Directed Acyclic Graph: Graph in which by following the direction of the arrows a node will never be visited more than once.

Parents and Children:

 X_i is a parent of X_j if there is a link from X_i to X_j . X_i is a child of X_j if there is a link from X_i to X_i .

Ancestors and Descendants:

The ancestors of a node X_i are the nodes with a directed path ending at X_i . The descendants of X_i are the nodes with a directed path beginning at X_i .

Undirected Graph

All the edges are undirected:

Clique

A clique is a fully connected subset of nodes. (X_1,X_2,X_4) forms a (non-maximal) clique. A non-maximal clique is called clique.

Maximal Clique

Clique which is not a subset of a larger clique. (X_1,X_2,X_3,X_4) and (X_2,X_3,X_5) are both maximal cliques.

Connectivity

Connected graph

There is a path between every pair of vertices:

Connected components

In a non-connected graph, the connected components are the connected-subgraphs:

 (X_1, X_2, X_4) and (X_3, X_5) are the two connected components.

Connectedness

Singly-connected

There is only one path from any node \boldsymbol{a} to another other node \boldsymbol{b}

Multiply-connected

A graph is multiply-connected if it is not singly-connected:

Numerically Encoding Graphs

Edge List

An edge list L is the set of vertex-vertex pairs in the graph. a)

$$L = \left\{ \left(1,2\right), \left(2,1\right), \left(1,3\right), \left(3,1\right), \left(2,3\right), \left(3,2\right), \left(2,4\right), \left(4,2\right), \left(3,4\right), \left(4,3\right) \right\}$$

b)

$$L = \{(1,2), (1,3), (2,3), (2,4), (3,4)\}$$

Numerically Encoding Graphs

Adjacency Matrix

An adjacency matrix ${\bf A}$ is such that $A_{i,j}=1$ if there is an edge from node i to j, and $A_{i,j}=0$ otherwise.

$$\mathbf{A} = \left(\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{array}\right).$$

b)

$$\mathbf{A} = \left(\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right).$$

If the nodes are labeled in ancestral order and the graph is directed, the adjacency matrix is called triangular adjacency matrix.

Numerically Encoding Graphs

Clique Matrix

a)

A clique matrix ${\bf C}$ contains all maximal cliques, each maximal clique described in one column of the matrix.

$$\mathbf{C} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Cliquo Matrix

A cliquo matrix \mathbf{C}_n contains all the n-dimensional maximal cliques, each n-dimensional maximal clique described in one column of the matrix. a)

$$\mathbf{C}_2 = \left(\begin{array}{ccccc} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{array}\right).$$

In particular, a 2-dimensional cliquo matrix matrix is called incidence matrix.

