Computação Distribuída

Odorico Machado Mendizabal

Universidade Federal de Santa Catarina – UFSC Departamento de Informática e Estatística – INE

Revisão sobre Sistemas Operacionais

Revisão de Conceitos do Sistema Operacional

- Interface entre Aplicações e *Hardware* em um sistema de computação
 - Sistemas Operacionais para desktop, servidores, dispositivos móveis, sistemas embarcados em geral
- Gerência de recursos locais
 - Compartilhamento de recursos de forma eficiente, organizada e segura
- Evitar retrabalho e redundância de código
 - Bibliotecas, ligação dinâmica, etc.

Revisão de Conceitos do Sistema Operacional

Módulos de serviços especializados para o gerenciamento de recursos:

- Gerenciamento eficiente dos recursos (memória, CPU, ...):
 - políticas de escalonamento
 - paginação/segmentação
 - memória virtual
- Organização do espaço de armazenamento físico através da implementação de um sistema de arquivos

Revisão de Conceitos do Sistema Operacional

Estrutura dos Sistemas Operacionais

- Sistema Monolítico
- Sistema de camadas
- Micronúcleo
- Cliente-servidor
- Máquinas Virtuais

Sistema Monolítico

- Ainda é o mais comum na construção de SOs
 - ex. Unix, Linux
- O SO inteiro é executado como um único programa no modo núcleo
- SO é escrito como uma coleção de rotinas ligadas a um grande programa executável único
- Cada rotina tem uma interface bem definida e é livre para chamar qualquer outra
- Difícil de gerenciar a execução das rotinas

Sistema Monolítico

Modelo simples de estruturação de um sistema monolítico

Sistema Monolítico – Estrutura do Unix

Sistema de Camadas

- Hierarquia de camadas
 - cada camada construída sobre a camada inferior
 - A comunicação é feita somente entre camadas adjacentes
- Primeiro foi o THE (Technische Hogeschool Eindhoven) – Implementado por Dijkstra

Camada	Função
5	O operador
4	Programas do usuário
3	Gerenciamento de entrada/saída
2	Comunicação operador-processo
1	Gerenciamento da memória e do tambor magnético
0	Alocação de processador e multiprogramação

Estrutura do sistema operacional THE

Sistema de Camadas

- Outro exemplo MULTICS
 - Anéis concêntricos sendo os anéis interiores com maior prioridade

Sistema de Micronúcleo

- Comuns em aplicações de tempo-real
- Ex. L4, Symbiam, Minix3 (proposto por Tanenbaum): www.minix3.org

Sistema de Micronúcleo

CURIOSIDADE:

- Monolítico vs. Micronúcleo

- Debate entre Linus Torvalds e Andrew Tanenbaum, em 1992.
 - https://www.oreilly.com/openbook/opensources/book/appa.html
- Tanenbaum projetou o Minix3 (micronúcleo)
- Linus Torvalds propos o Linux (monolítico)

Tanenbaum argumentava que SOs micronúcleos eram superiores aos monolíticos, por isso o Linux seria obsoleto.

Sistema Cliente – Servidor

- Semelhante à estrutura micronúcleo
- Executa em um ambiente distribuído
 - O sistema operacional executa em várias máquinas
 - Comunicação por troca de mensagens através de uma rede de interconexão

Exemplos de SO distribuídos: Plan 9 (Bell Labs), Inferno, Amoeba (Tanenbaum)

Módulos Carregáveis

- Atualização de serviços é frequentemente necessária
 - Desafio: como integrar ao SO um novo serviço (ex. acesso à um novo dispositivo de E/S sem atualizar o SO)?
- Uso de módulos carregáveis
 - Abordagem é semelhante à de micronúcleos

Máquinas Virtuais

- Software de emulação de uma máquina abstrata
 - Oferece aos programas a ilusão de que eles controlam uma máquina
 - Uma máquina física pode hospedar internamente diferentes ambientes virtuais, cada um simulando uma máquina com configurações distintas de CPU, memória, E/S, etc.
 - Fornece uma visão do hardware personalizado (exatamente como o usuário quer)
- Dois tipos de Máquinas virtuais
 - VM para processos: permitem a execução de um programa sobre a máquina virtual (e.x.: JVM, .Net Framework – CLR);
 - VM para sistemas: permitem a execução de um SO completo e suas aplicações (e.x. VMWare, Virtualbox, Xen, KVM, etc.)

Máquinas Virtuais – Máquina Virtual Java (JVM)

Máquinas Virtuais

- VM/370 (IBM System 370, 1972)
- Divisão entre Multiprogramação e Abstração de Hardware

Estrutura do VM/370 com o CMS (Conversational Monitor System)

Chamadas ao sistema aqui Desvio (trap) aqui

Máquinas Virtuais

- Máquinas virtuais (VMware, Xen, KVM, etc.)
- Sistemas operacionais são virtualizados e executam como hóspedes em uma máquina hospedeira

Máquinas Virtuais – Vantagens

- Simplicidade de programação
 - Cada processo "pensa" que ele tem acesso à toda memória / Tempo de CPU
 - Cada processo pensa que ele detém todos os dispositivos
 - Diferentes dispositivos aparentam ter o mesmo alto nível de interface
- Isolamento de falhas
 - Processos n\u00e3o podem impactar outros processos diretamente
 - Bugs não podem afetar a máquina como um todo
- Proteção e portabilidade
 - Interface (ex. Java) é segura e estável em diversas plataformas

Considerações Finais

- Sistemas Operacionais / Sistemas Distribuídos
 - Visam gerenciamento de recursos eficiente
 - Visam facilitar o uso e programação de aplicações
 - Devem prover segurança, disponibilidade, desempenho, etc.
 - Grande variedade de arquiteturas de SW e decisões de projeto possíveis
- Sistemas distribuídos também fazem uso de:
 - Mecanismos de sincronização entre tarefas (processos e threads)
 - Virtualização
 - Políticas de segurança

Referências

Parte destes slides são baseadas em material de aula dos livros:

- OLIVEIRA, Rômulo Silva de; CARISSIMI, Alexandre da Silva.; TOSCANI, Simão Sirineo. Sistemas operacionais. 4. ed. Porto Alegre: Bookman, 2010. xii, 374p. (Livros didáticos, n.11) ISBN 9788577805211
- SILBERSCHATZ, Abraham.; GAGME, Greg; GALVIN, Peter B. Sistemas operacionais com Java. Rio de Janeiro: Elsevier, 2008. 673 p. ISBN 9788535224061
- TANENBAUM, Andrew S. Sistemas operacionais modernos. 3. ed. Rio de Janeiro (RJ): Prentice-Hall do Brasil, 2010. xiii, 653p. ISBN 9788576052371

