Bayesian Neural Networks

ROY team: Ilya Zharikov,

Roman Isachenko,

Artem Bochkarev

Skolkovo Institute of Science and Technology Deep Learning course

May 25, 2017

Project goal

Goal

Estimate posterior distributions of the model parameters from data

Probabilistic Programming:

- Uncertainty in predictions;
- Uncertainty in representations;
- Regularizations with priors;
- Transfer learning;
- Hierarchical Neural Networks.

Problem

Monte Carlo sampling is very slow for high-dimensional data

Related work

 Salvatier J, Wiecki T. V., Fonnesbeck C. Probabilistic programming in Python using PyMC3. // PeerJ Computer Science. 2016.

- Blundell C. et al. Weight Uncertainty in Neural Network // Proceedings of The 32nd International Conference on Machine Learning. 2015.
- Wucukelbir A. et al. Automatic Differentiation Variational Inference // arXiv preprint arXiv:1603.00788. – 2017.

Problem Statement

Inference problem

Bayes' theorem states:
$$\mathbb{P}(\theta \mid \mathbf{X}) = \frac{\mathbb{P}(\mathbf{X} \mid \theta)\mathbb{P}(\theta)}{\mathbb{P}(\mathbf{X})}$$

Maximum A Posteriori (MAP) estimation

$$\boldsymbol{\theta}^* = \arg\max_{\boldsymbol{\theta}} \left[\ln \mathbb{P}(\boldsymbol{\theta} \,|\, \mathbf{X}) \right] = \arg\max_{\boldsymbol{\theta}} \left[\ln \mathbb{P}(\mathbf{X} \,|\, \boldsymbol{\theta}) + \ln \mathbb{P}(\boldsymbol{\theta}) \right]$$

Monte Carlo approach:

- Metropolis-Hastings sampling;
- Gibbs sampling;
- No-U-Turn Sampling (NUTS).

Variational Inference

Goal

Approximate posterior distribution $p(\theta|\mathbf{X})$ by function $q(\theta)$ from parametric family.

$$\ln p(\mathbf{X}) = \mathsf{KL}(q||p) + \mathsf{ELBO}(q)$$

$$\updownarrow \qquad \qquad \updownarrow$$

$$\int q(\theta) \ln \frac{q(\theta)}{p(\theta|\mathbf{X})} \mathsf{d}\theta \qquad \int q(\theta) \ln \frac{p(\mathbf{X},\theta)}{q(\theta)} \mathsf{d}\theta$$

Minimization of $KL(q||p) \Leftrightarrow Maximization of ELBO(q)$

Automatic Differentiation Variational Inference (ADVI)

- Automatic transformation of constrained variables $\zeta = T(\theta)$; Example: $\theta \in \mathbb{R}_+ \Rightarrow \zeta = T(\theta) = \log \theta$, then $\zeta \in \mathbb{R}$.
- $ullet q(\zeta) = \mathcal{N}(\mu, \Sigma)$, where Σ is diagonal;

$$oldsymbol{\mu}^*, oldsymbol{\Sigma}^* = rg \max_{oldsymbol{\mu}, oldsymbol{\Sigma}} \mathsf{ELBO}(q)$$

- Stochastic optimization;
- Reparametrization trick to apply automatic differentiation;
- Adaptive step-size.

Deep Learning

Neural Networks

Predict values of parameters by fitting complex model on the huge dataset

Bayesian Neural Networks

Predict the parameters of the weights distributions from the dataset

http://bit.ly/2rMQuDq

Experiments

Goals:

- investigate influence of different priors on the predictions
- visualize uncertainties in predictions
- analyze the model behaviour

Datasets:

Course of work

Ě Fixed values Hierarchical modeling Half-Normal Half-Cauchy Inverse-Gamma

Synthetic data

Prior: Cauchy **Hyperprior:** Inverse-Gamma **Accuracy:** 0.735

Prior: Normal Hyperprior: Inverse-Gamma Accuracy: 0.851

Posterior Uncertainty Probability

Hierarchical modelling

Hyperprior: Fixed values

Hyperprior: Inverse-Gamma

Laplace sparsity

MNIST

Conclusions:

- Accuracy score: 97.7%;
- Variance is much higher for misclassified pictures;
- Model is not always confident.

MNIST

Misclassified pictures with zero expected error rate:

True	Prediction	True	Prediction	True	Prediction	
7	0	9	7	5	6	
		~			-	
r				1		
1	-			\circ		
			•			

MNIST

Pictures with the **lowest confidence**:

True	Prediction	True	Prediction	True	Prediction	
4	0	6	8	1	1	
4			6		1	

Conclusion

- Posterior distribution has clear advantages over point estimate for deep learning
- Variational inference allows faster approximation of the posterior
- Hierarchical models better adapt to diverse datasets
- Full bayesian approach is still problematic for very complex models