

INTRODUCCIÓN A LA TEORÍA DE GRAFOS GD SESIÓN 3.

Antonio Hervás Jorge. 2017

OBJETIVOS

• Vamos a ver como se relacionan los vértices de un grafo DIRIGIDO

Aparecen nuevos conceptos, nuevas maneras de caracterizar un grafo dirigido y nuevas maneras de representarlo..

• Conceptos fundamentales: Tipos de Conexión y tipos de componentes conexas en un grafo DIRIGIDO

Grafos NO dirigidos

CAMINOS Y CONEXIÓN

Definición 1.1 (cadena, camino y ciclo) Sea G = (V, A) un grafo no dirigido, sea $V = \{v_1, v_2, \dots, v_n\}$ su conjunto de vértices y $A = \{a_1, a_2, \dots, a_e\}$ su conjunto de aristas. Llamaremos cadena del vértice v_1 al vértice v_k , a una sucesión de vértices y aristas:

$$P = v_1, a_1, v_2, a_2, \dots, v_k, a_k, v_{k+1}$$
(1)

de manera que $\forall j, 1 \leq j \leq k, a_j = (v_j, v_{j+1})$. Es decir cada arista a_i tiene como vértices extremos los mismos que tiene en el camino.

CONEXIÓN EN GRAFOS NO DIRIGIDOS

Definición 1.2 (Conexión) Supongamos G=(V,E) un grafo no dirigido y $u,v \in V$. Diremos que los vértices u y v están **conectados** si y solamente si existe algún (u-v)-camino en el grafo.

Propiedades de la relación de conexión:

- Un vértice esta conectado consigo mismo por un camino de longitud cero.
- Si existe un camino de u a v, también existe un camino de v a u.
- Si existe un camino de u a v y otro de v a w, entonces los vértices u y w están también conectados.

$$[u] = \{ v \in V \mid \exists un \ u - v \ camino \ en \ G \}$$

CONEXIÓN EN GRAFOS NO DIRIGIDOS

Definición 1.3 (Componente conexa) Llamaremos componente conexa de un grafo no dirigido G = (V, A), al subgrafo generado por cada una de las clases de equivalencia definidas por la relación de conexión sobre el conjunto de vértices V, es decir el grafo cuyos vértices son los de $[u] \subseteq V$, y las aristas las del grafo G incidentes con los vértices de [u]

Propiedades de las componentes conexas:

- No tienen vértices comunes
- No tienen aristas comunes
- No hay aristas entre componentes conexas distintas de un grafo.

Definición 1.4 (Grafo conexo) Un grafo diremos que es conexo si todos sus vértices estan conectados entre sí.

CONEXIÓN EN GRAFOS NO DIRIGIDOS

GRAFOS DIRIGIDOS: CAMINO DIRIGIDO

Definición 36 Sea G=(V,E) un grafo dirigido, sea $V=\{v_1,v_2,\ldots,v_n\}$ su conjunto de vértices y $E=\{a_1,a_2,\ldots,a_e\}$ su conjunto de aristas. Llamaremos semicamino dirigido del vértice v_1 al vértice v_k , a una sucesión de vértices y aristas:

$$P = v_1, a_1, v_2, a_2, \dots, v_k, a_k, v_{k+1}$$
(3)

de manera que $\forall j, 1 \leq j \leq k, a_j = \langle v_j, v_{j+1} \rangle \text{ o } a_j = \langle v_{j+1}, v_j \rangle.$ Diremos que (3) es un camino dirigido $si \forall j, 1 \leq j \leq k, a_j = \langle v_j, v_{j+1} \rangle.$

GRAFOS DIRIGIDOS: CAMINO DIRIGIDO

Definición 36 Sea G=(V,E) un grafo dirigido, sea $V=\{v_1,v_2,\ldots,v_n\}$ su conjunto de vértices y $E=\{a_1,a_2,\ldots,a_e\}$ su conjunto de aristas. Llamaremos semicamino dirigido del vértice v_1 al vértice v_k , a una sucesión de vértices y aristas:

$$P = v_1, a_1, v_2, a_2, \dots, v_k, a_k, v_{k+1}$$
(3)

de manera que $\forall j, 1 \leq j \leq k, a_j = \langle v_j, v_{j+1} \rangle \ o \ a_j = \langle v_{j+1}, v_j \rangle.$

Diremos que (3) es un camino dirigido $si \forall j, 1 \leq j \leq k, a_j = \langle v_j, v_{j+1} \rangle$.

Llamaremos semiciclo dirigido, a un semicamino cuyos vértices inicial y final coinciden.

Llamaremos ciclo dirigido, a un camino dirigido cuyos vértices inicial y final coinciden.

SEMI-CICLO DIRIGIDO

SEMI CICLO DIRIGIDO

CICLOS DIRIGIDOS

CONEXIÓN EN GRAFOS DIRIGIDOS: CONEXIÓN FUERTE

Definición 40 Sea G=(V,E) un grafo dirigido. Dos vértices u y v estan fuertemente conectados si y sólo si $\exists u-v$ y v-u camino dirigido \sqsubseteq

Definición 41 Sea G=(V,E) un grafo dirigido. G es fuertemente conexo si y sólo si:

 $\forall u, v \in V, \exists u - v \ y \ v - u \ caminos \ dirigidos$

CONEXIÓN EN GRAFOS DIRIGIDOS: CONEXIÓN UNILATERAL

Definición 42 Sea G=(V,E) un grafo dirigido. Dos vértices u y v estan unilateralmente conectados si y sólo si $\exists u-v$ o v-u camino dirigido

Definición 43 Sea G=(V,E) un grafo dirigido. G es unilateralmente conexo si y sólo si:

 $\forall u,v \in V, \exists u-v \ o \ v-u \ camino \ dirigido.$

CONEXIÓN EN GRAFOS DIRIGIDOS: CONEXIÓN DÉBIL

Definición 44 Sea G=(V,E) un grafo dirigido. Dos vértices u y v están débilmente conectados si y sólo si $\exists u-v$ semicamino dirigido

Definición 45 Sea G=(V,E) un grafo dirigido. G es débilmente conexo si y sólo si:

 $\forall u,v \in V, \exists \langle u,v \rangle semicamino dirigido$

CONEXIÓN EN GRAFOS DIRIGIDOS

CONEXIÓN EN GRAFOS DIRIGIDOS: CONEXIÓN FUERTE

Definición 46 Sea G un grafo dirigido y $G_1 \subseteq G$ de forma que G_1 es fuertemente conexo. G_1 es una componente fuertemente (unilateralmente, débilmente) conexa de G si y sólo si:

$$\forall G_2 \subseteq G \ y \ G_2 \ fuertemente \ (unilateralmente, \ d\'ebilmente) \ conexo \ / \ G_2 \supseteq G_1 \\ \Rightarrow G_1 \equiv G_2$$

Es decir, no hay ningún otro subgrafo fuertemente (unilateralmente, débilmente) conexo de G que contenga a G_1 .

CONEXIÓN EN GRAFOS DIRIGIDOS

CONEXIÓN EN GRAFOS DIRIGIDOS: CONEXIÓN FUERTE

Teorema 9 Si G es dirigido y fuertemente conexo con $|V| \ge 2$, entonces el número de aristas ha de ser mayor o igual que |V|.

Teorema 11 Sea V un conjunto de vértices, entonces existe un grafo dirigido y fuertemente conexo cuyo número de aristas es igual a | V |.

REPRESENTACIÓN DE GRAFOS DIRIGIDOS: MATRICES Y LISTADOS

MATRIZ DE ACCESIBILIDAD

Sea G = (V, A) un grafo. Diremos que v_j es accesible desde v_i , si existe un camino (dirigido o no dirigido) desde v_i hasta v_j .

Definiremos la matriz de Accesibilidad de un grafo de n vértices y la representaremos por $R = [r(i,j)]_{n \times n}$ como

$$r(i,j) = \begin{cases} 1, & \text{si } v_j \text{ es accesible desde } v_i \\ 0, & \text{en otro caso.} \end{cases}$$

REPRESENTACIÓN DE GRAFOS DIRIGIDOS: MATRICES Y LISTADOS

MATRIZ DE ACCESIBILIDAD

Definiremos la matriz de Accesibilidad de un grafo de n vértices y la representaremos por $R = [r(i,j)]_{n \times n}$ como

$$r(i,j) = \begin{cases} 1, & \text{si } v_j \text{ es accesible desde } v_i \\ 0, & \text{en otro caso.} \end{cases}$$

Si llamamos $R(v_i)$ a los vértices alcanzables desde v_i , podemos obtenerlos mediante el uso de la función Γ .

$$R(v_i)$$
=Alcanzables $desde(v_i) = \{v_i\} \cup \Gamma(v_i) \cup \ldots \cup \Gamma^n(v_i)$

Métodos de búsqueda en Grafos

MÉTODOS DE BÚSQUEDA EN GRAFOS

Algoritmo 2.1 (BFS) $procedimiento \ BFS(v)$ /* se aplica sobre un grafo G de n vértices */ $global\ G, n, ALCANZADO(1:n);$ $cola\ COLA;$ $x \leftarrow v$; $ALCANZADO(v) \leftarrow 1;$ inicializar la cola a vacío; buclepara todos los vértices w adyacentes desde x hacer $si\ ALCANZADO(w) = 0$ entonces $ALCANZADO(w) \leftarrow 1$ añadir w a COLA si COLA está vacia entonces return borrar el vértice x de COLA fin del bucle

MÉTODOS DE BÚSQUEDA EN GRAFOS

Algoritmo 2.2 (DFS) procedimiento DFS(v)/* se aplica sobre un grafo G de n vértices */ $global\ G, n, ALCANZADO(1:n);$ $integer\ v,w;$ $ALCANZADO(v) \leftarrow 1;$ para todos los vértices w(no alcanzados) adyacentes desde x hacer $call\ DFS(w)$ fin del para fin DFS

