Тема 8. МЕТОДЫ МАТЕМ-ГО ПРОГР-Я В ЗАДАЧАХ ПРОЕКТИРОВАНИЯ ВТС И ЦНПФС

8.1 ОБЩАЯ ПОСТ-КА И МАТЕМ-КАЯ ФОРМУЛИРОВКА З-ЧИ ЛИНЕЙН. ПРОГР-Я (ЗЛП)

ЛП – это Сущность ЗЛП

Определить $X_{\langle n \rangle}^{onm} = \underset{\{X_{\langle n \rangle}\}}{arg \, max} \sum_{j=1}^{n} c_j x_j$,

 \ldots область $\left\{ X_{\langle n \rangle} \right\} \ldots$ описывается с-мой неравенств

$$\sum_{j=1}^{n} a_{ij} x_{j} \stackrel{>}{<} b_{i} \quad [i=1(1)m],$$

$$\dots \qquad x_{j} \geq 0 \quad [j=1(1)n]$$

Каноническая форма ЗЛП

Дана система из m уравнений (в виде рав-в) с n неизвестными

Как правило m < n

 $\sum_{j=1}^{n} x_{j} a_{ij} = b_{i}, [i = 1(1)m].$ (8.1.1') $x_{j} \ge 0 \quad [j = 1(1)n].$ (8.1.2) или

II.
$$x_j \ge 0 \quad [j = 1(1)n].$$
 (8.1.2)

<u>Задана</u>:

$$Q = c_0 + c_1 x_1 + c_2 x_2 + \dots + c_n x_n = c_0 + \sum_{j=1}^{n} c_j x_j$$
 (8.1.3)

III. ЛФ Q достигает миним-ого значения.

ЗЛП можно в векторно-матричной форме:

 $X_{\langle n \rangle} = \begin{vmatrix} x_1 \\ \vdots \\ x_n \end{vmatrix}$ – вектор переменных; Пусть

$$A_{[m;n]} = egin{bmatrix} a_{11} & a_{12} & ... & a_{1n} \\ ... & ... & ... \\ a_{m1} & a_{m2} & ... & a_{mn} \end{bmatrix}$$
 — матрица коэф-тов системы ограничений;

$$m{B}_{\langle m \rangle} = egin{bmatrix} m{b}_1 \\ \vdots \\ m{b}_m \end{bmatrix}$$
 — вектор свободных членов системы ограничений;

$$C_{\langle n \rangle} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$
 — вектор коэф-тов линейной формы (ЛФ).

Требуется ...
$$X_{\langle n \rangle}^* = X_{\langle n \rangle}^{onm}$$
 $\min Q(X_{\langle n \rangle})$

$$X_{\langle n \rangle}^{onm} = \underset{\{X_{\langle n \rangle}\}}{arg \min} Q(X_{\langle n \rangle}) = \underset{\{X_{\langle n \rangle}\}}{arg \min} (c_0 + C_{\langle n \rangle}^T X_{\langle n \rangle}) \quad (8.1.4)$$

при ограничениях
$$\begin{cases} A_{[m,n]}X_{\langle n\rangle} = B_{\langle m\rangle} & (8.1.5) \\ X_{\langle n\rangle} \ge O_{\langle n\rangle} & (8.1.6) \end{cases}$$

Иногда Рассмотрим.

$$A_{[m;n]} = \left\langle A_{\langle m \rangle}^{(1)}, A_{\langle m \rangle}^{(2)}, ..., A_{\langle m \rangle}^{(n)} \right\rangle$$

Соответ-но
$$A_{\langle m \rangle}^j = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}$$
, $[j=1(1)n]$.

Тогда

$$\sum_{i=1}^{n} \mathbf{x}_{j} \mathbf{A}_{\langle m \rangle}^{(j)} = \mathbf{B}_{\langle m \rangle} \tag{8.1.5'}$$

$$X_{\langle n \rangle} \ge O_{\langle n \rangle}$$
 (8.1.6')

При решениилинейной формы $\mathbf{Q} = \mathbf{c_0} + \mathbf{C}^T \mathbf{X}$.

В общем случае x_j от (8.1.5) и (8.1.6)....

$$\leq$$
, \geq .

Правила приведения к канонической форме ЗЛП:

1. Если $max Q = max[c_0 + C^T X]$, то.....

$$C_{\langle n+1 \rangle}$$
 на (-1) минимум функции Q_1 :
$$Q_1 = -c_0 - C^T X \Rightarrow \underset{\{X\}}{arg\ max} Q = \underset{\{X\}}{arg\ min} Q_1$$

- 2. Если x_{n+1} , x_{n+2} , ..., x_{n+k} . Число k
- $m{Q}$ (или входят с коэффициентами $c_{n+l} = 0$, $m{l} = 1 \, m{1} \, m{k}$).
 - 3. Если не на все x_i
 - A) Каждую переменную x_i, \ldots

Б) способ в замене x_{i} ,.

Проиллюстрируем сказанное на примере.

Пример. Пусть требуется найти *max* ЛФ:

$$Q = x_1 + x_2 - 2x_3 + x_4 \tag{1}$$

при ограничениях $\begin{cases} -2x_1+x_2 & +x_3 & -x_4=4\\ & x_1+x_2-2x_3-3x_4\leq 2\\ & x_1+x_2-3x_3+4x_4\geq 1 \end{cases} \tag{2}$

При этом $x_3 \ge 0$, $x_4 \ge 0$.

Решение

1. Переход к **Q**₁

$$Q_1 = -Q = -x_1 - x_2 + 2x_3 - x_4 \tag{1'}$$

2. Для перехода от нер-тв к рав-твам введём $x_5 \ge 0$, $x_6 \ge 0$. Тогда:

$$\begin{cases}
-2x_1 + x_2 + x_3 - x_4 &= 4 \\
x_1 + x_2 - 2x_3 - 3x_4 + x_5 &= 2 \\
x_1 + x_2 - 3x_3 + 4x_4 - x_6 &= 1 \\
x_3 \ge 0, x_4 \ge 0, x_5 \ge 0, x_6 \ge 0.
\end{cases}$$
(2')

3. Для исключ-я ~-х x_1 и x_2 , выразим их ..

$$x_1 = -1 + \frac{4}{3}x_3 - \frac{5}{3}x_4 + \frac{1}{3}x_6;$$
 $x_2 = 2 + \frac{5}{3}x_3 - \frac{7}{3}x_4 + \frac{2}{3}x_6.$ $x_3 = 7;$ $x_4 \ge 0; \ j = 3,4,5,6.$ Требуется $min \ Q_1 = -1 - x_3 + 3x_4 - x_5 \ \dots$ при ог-

Требуется *min* $Q_1 = -1 - x_3 + 3x_4 - x_5$ при ограничениях (2").

<u>Определение.</u> Вектор $X_{\langle n \rangle} = \langle x_1, x_2, ..., x_n \rangle^T$, удовлетворяющий ограничениям ЗЛП называется *допустимым планом* (допустимым решением).

Определение. Допустимый план $X_{\langle n \rangle}^*$, миним-ющий критер-ую ф-цию (ЛФ) Q, наз-ется *оптимальным*. \blacktriangle

T.o.
$$C^T X^* \leq C^T X$$
.

..... m уравнений, n, где m < n, C_n^m (если система ограничений совместна).

При анализе постановки ЗЛП различают 3 случая:

- 1. Условия з-чи противоречивы, .. X .. AX = B матрицы A, а свободный член (b_i) положителен и, наоборот (следует помнить, что $x_i \ge 0$).
- 2. Система ограничений непротиворечива функция Q не ограничена снизу (сверху), т.е. $(-\infty)$ $(+\infty)$.
 - 3. Условия задачи совместны (непротиворечивы)....