1	2	3	4	Calificación

APELLIDO	v	NOMPDE:
АРЕЛЛИО	Y	NOMBREE

No. de libreta:

CARRERA:

Turno:

Mañana A-K □

Mañana L-Z \square

Noche A-K \square

Noche L-Z \square

Álgebra I

Primer Cuatrimestre 2022 - Primer parcial - 17/05/2022

1. [2.5 ptos] Sea $X = \{n \in \mathbb{N} : n \leq 50\}$. En $\mathcal{P}(X)$ se define la relación \mathcal{R} de la forma:

 $A \mathcal{R} B \iff A \triangle B$ no contiene números múltiplos de 3.

- (a) [0.5 ptos] Decidir si \mathcal{R} es antisimétrica.
- (b) [0.5 ptos] Decidir si \mathcal{R} es transitiva.
- (c) [1.5 ptos] ¿Cuántos conjuntos A que tengan exactamente 14 elementos cumplen que $A \mathcal{R} C$, con $C = \{n \in \mathbb{N} : n \leq 25\}$?
- **2**. [2.5 ptos] Probar que para todo $n \in \mathbb{N}$,

$$\prod_{i=1}^{n} \frac{i!}{i+n} \ge \frac{1}{10}.$$

3. [2.5 ptos] Sean $a, b \in \mathbb{Z}$ con $b \equiv 2 \pmod{5}$. Hallar los posibles valores de

$$(a^4 - b^2 + 15 : a^2 - b)$$

y dar un ejemplo para cada caso.

- 4. [2.5 ptos] Hallar todos los números naturales n que satisfacen simultáneamente que
 - 55 divide a n,
 - 50 no divide a n^2 ,
 - $(n^3:63)=9$,
 - $n \le 2000$.
 - n tiene exactamente 16 divisores positivos.

1	2	3	4	Calificación

APELLIDO Y NOMBRE:

No. de libreta:

CARRERA:

Turno:

Mañana A-K □

Mañana L-Z \square

Noche A-K \square

Noche L-Z □

Álgebra I

Primer Cuatrimestre 2022 - Primer recuperatorio del primer parcial - 12/07/2022

1. [2.5 ptos] Sean $A = \{1, 2, 3, ..., 10\}$, $B = \{1, 2, 3, ..., 30\}$ y \mathcal{F} el conjunto formado por las funciones inyectivas de A en B, es decir, $\mathcal{F} = \{g : A \to B \mid g \text{ es inyectiva}\}$. Se define en \mathcal{F} la relación de equivalencia \mathcal{R} dada por

$$g \mathcal{R} h \iff \#\{n \in A \mid g(n) \le 8\} = \#\{n \in A \mid h(n) \le 8\}.$$

- (a) [0.5 ptos] Hallar la cantidad de clases de equivalencia determinadas por \mathcal{R} .
- (b) [2 ptos] Hallar el cardinal de la clase de equivalencia de la función g(n) = 2n.
- **2**. [2.5 ptos] Demostrar que para todo $n \ge 2$ vale que

$$\sum_{i=1}^{n} \frac{1}{i^2} < 2 - \frac{1}{n}.$$

3. [2.5 ptos] Calcular el resto de dividir

$$\sum_{k=4}^{134} (k! + k^3)$$

por 7.

4. [2.5 ptos] Sean $a, b \in \mathbb{Z}$ tales que (a : b) = 7 y $b \equiv 1$ (3). Hallar los posibles valores de $(63a - b^2 : 42)$ y dar un ejemplo para cada caso.

1	2	3	4	Calificación

APELLIDO Y NOMBRE:

No. de libreta:

CARRERA:

Turno:

Mañana A-K □

Mañana L-Z \square

Noche A-K \square

Noche L-Z \square

Álgebra I

Primer Cuatrimestre 2022 - Segundo recuperatorio del primer parcial - 19/07/2022

1. [2.5 ptos] Sea \mathcal{R} la relación en $\mathcal{P}(\mathbb{N})$ definida por

$$A \mathcal{R} B \iff (A \cup B) \cap \{1, 2, 3\} \subseteq (A \cap B) \cap \{1, 2, 3\}.$$

Determinar si \mathcal{R} es reflexiva, simétrica, antisimétrica y/o transitiva.

2. [2.5 ptos] Sea $(a_n)_{n\in\mathbb{N}_0}$ la sucesión definida recursivamente por:

$$\begin{cases} a_1 = 5, \\ a_2 = 6, \\ a_{n+2} = 5a_{n+1} + 8^n a_n \quad \forall n \ge 1. \end{cases}$$

Probar que $a_n \equiv 2^n + 3^n (7) \quad \forall n \ge 1.$

- 3. [2.5 ptos] Determinar cuántas funciones $f:\{1,2,3,\ldots,10\} \to \{1,2,3,\ldots,20\}$ cumplen simultáneamente que:
 - f no es inyectiva,
 - 3 | f(1),
 - f(1) + 3f(5) = 15.
- 4. [2.5 ptos] Probar que para todo $n \in \mathbb{N}$,

$$(n! + 1: (n+1)! + 1) = 1.$$

Complete esta hoja con sus datos y entréguela con el resto del examen.

Justifique todas sus respuestas.