HW2 Math 4540

Anthony Jones

January 2022

1 Exercises

1. Suppose $f,g:[0,1]\to [0,1]$ are two continuous functions with f(0)=g(1)=0 and g(0)=f(1)=1. Show that the graphs $\Gamma(f)$ and $\Gamma(g)$ of the two functions intersect in $(0,1)\times [0,1]$.

Consider the function h(x) = f(x) - g(x). Note that h is continuous on the closed interval [0,1], as both f and g are continuous there. Consider that h(0) = f(0) - g(0) = -1 and h(1) = f(1) - g(0) = 1; then by the Intermediate Value Theorem, since h is continuous on (0,1), there exists some value $c \in (0,1)$ such that h(c) = 0, as h(0) < 0 < h(1). Hence $f(c) = g(c) \in [0,1]$ for some $c \in (0,1)$, and thus $(c,f(c)) = (c,g(c)) \in (\Gamma(f) \cap \Gamma(g)) \cap ((0,1) \times [0,1])$.

2. Show by example that the set theoretical inverse f^{-1} of a continuous map $f: X \to Y$ that is 1-to-1 and onto does not need to be continuous if X is not compact. Hint: Consider a map from [0,1) onto the (unit) circle.

Suppose $f:[0,1)\to S^1$ is any continuous map that is 1-to-1 and onto from the interval [0,1) to the unit circle $S^1 \subset \mathbb{R}^2$, such as the mapping $f(t) = (\cos(2\pi t), \sin(2\pi t))$. We first show that S^1 is compact. This can be easily seen, since the continuous function $g: R \to S^1$ given by $q(t) = (\cos(t), \sin(t))$ produces the image S^1 from the closed interval $[0, 2\pi]$. Since the interval $[0, 2\pi]$ is compact, this means its image $g([0,2\pi]) := S^1$ must also be compact, as g is a continuous function. Next we note that the half-open interval [0,1) is not compact, since it does not contain the limit point x=1. Consider now the inverse f^{-1} of f, defined above. Then this is some bijection from the unit circle to the half-open interval [0,1). Observe, however, that f^{-1} cannot be continuous: if f^{-1} were some continuous mapping, then this would mean that $f^{-1}(S^1) := [0,1)$ would have to be compact, as S^1 is a compact set, and hence so is its image on f^{-1} . Therefore a contradiction is reached, and thus there do exist continuous maps $f: X \to Y$ that are 1-to-1 and onto that do not have inverses which are continuous whenever X is not compact.

- 3. Let f be a real valued function on (a, b], then
 - (a) if f is continuous on (a,b] and $\lim_{x\to a^+} f(x)$ exists, then f is uniformly continuous on (a,b]. Let g be a real valued function that extends f for the endpoint $a\in [a,b]$, given by $g(a)=\lim_{x\to a^+} f(x)$ and g(x)=f(x) whenever $x\neq a$. Because f is continuous on (a,b], it follows that g is continuous there as well; now reconsider the same point $a\in [a,b]$ as before. Note that this point is a limit point, since it's contained in the closure of (a,b]. Then it's easy to see that g(x) is also continuous when x=a, since $\lim_{x\to a} g(x)=g(a)$ exists. Therefore g is continuous on all of [a,b], and since [a,b] is compact, is thus uniformly continuous. This means that for any chosen $\epsilon>0$, there exists some $\delta>0$ such that $|g(x)-g(y)|<\epsilon$ whenever $|x-y|<\delta$ for all $x,y\in [a,b]$. Notably, for $x,y\in (a,b]$ this also means $|g(x)-g(y)|=|f(x)-f(y)|<\epsilon$ whenever $|x-y|<\delta$; and hence f is uniformly continuous as well.
 - (b) if f is uniformly continuous on (a,b], then $\lim_{x\to a^+} f(x)$ exists. Suppose f is uniformly continuous on (a,b]. Then for any chosen $\epsilon>0$, there exists some $\delta>0$ such that $|f(x)-f(y)|<\epsilon$ whenever $|x-y|<\delta$ for all $x,y\in(a,b]$. Suppose (x_n) is any (ultimately decreasing) sequence that is contained in (a,b] such that $x_i\neq a$ for all $i\leq n$, and for which (x_n) approaches a from the right; then there exists some integer $N\in Z$ such that whenever n,m>N, $|x_n-x_m|<\delta$, for δ defined above. As f is uniformly continuous, this also implies that $f(x_n)-f(x_m)<\epsilon$ for any chosen $\epsilon>0$; thus the sequence (x_n) converges as it tends to a from the right. Because (x_n) was arbitrary and therefore approaches a every possible way, this implies $\lim_{x\to a^+} f(x)$ exists.
- 4. Show that the equation $x^3 3x + b = 0$ has at most one root in the interval [0, 1].

Suppose there existed two roots in the interval [0,1] for the equation $x^3 - 3x + b = 0$. Then the function $f: [0,1] \to R$ given by the equation above would have two values $x_1, x_2 \in [0,1]$ such that $f(x_1) = f(x_2) = 0$. Note that f is differentiable and therefore continuous on [0,1]. Then by Rolle's theorem, there must exist some $c \in (x_1, x_2)$ such that f'(c) = 0. Observe however that $f'(x) = 3x^2 - 3$, and hence f'(c) = 0 is only valid for $c = \pm 1$. This is a contradiction however, as $c \in (x_1, x_2) \subset [0, 1]$, and hence 0 < c < 1; thus there can only be at most one root for the equation in the interval [0, 1].

- 5. Suppose f is differentiable on an interval I.
 - (a) Prove that f' is bounded if and only if there exists a constant M such that $|f(x) f(y)| \le M|x y|$ for all $x, y \in I$.

We first prove the forward direction. Let's assume there exists some constant M such that $|f(x) - f(y)| \le M|x - y|$ for all $x, y \in I$. Then

$$\frac{|f(x) - f(y)|}{|x - y|} \le M,$$

and thus

$$f'(y) = \lim_{x \to y} \frac{|f(x) - f(y)|}{|x - y|} \le \lim_{x \to y} M = M$$

whenever $x \neq y$. Since $x, y \in I$ and f is differentiable on all of I, it follows that f' is bounded by M as

$$f'(y) \leq M$$
.

Now consider the other direction. Assume that f' is bounded; then for all $z \in I$, $|f'(z)| \leq M$ for some constant M > 0. Recall that, by the Mean Value Theorem, there exists at least one point $z \in (x,y)$ such that |f(x) - f(y)| = |f'(z)||x - y| for each $x, y \in I$. Since $|f'(z)| \leq M$ for all such $z \in I$, it follows that the same constant M exists where $|f(x) - f(y)| \leq M|x - y|$ for any $x, y \in I$.

(b) Prove that $|\sin(x) - \sin(y)| \le M|x - y|$ for all $x, y \in R$.

Recall that $f(t) = \sin(t)$ is differentiable on R, and that its derivative $f'(t) = \cos(t)$ is bounded since each value $|a| \le 1$ where $a = \cos(t)$ for $t \in R$; then, because of exercise (a), it follows that $|f(x) - f(y)| = |\sin(x) - \sin(y)| \le M|x - y|$ for all $x, y \in R$.

(c) $|\sqrt{x} - \sqrt{y}| \le \frac{1}{2\sqrt{a}}|x - y|$ for all $x, y \in [a, \infty)$ whenever a > 0.

Similiarly, recall that $f(t)=\sqrt{t}$ is differentiable on R, and that its derivative is $f'(t)=\frac{1}{2\sqrt{t}}$. Consider $z\in[a,\infty)$, where a>0; then, since $z\geq a$,

$$f'(z) = \frac{1}{2\sqrt{z}} \le \frac{1}{2\sqrt{a}} = f'(a).$$

Thus f' is bounded by $M=f'(a)=\frac{1}{2\sqrt{a}}$ whenever $z\in[a,\infty),$ and hence by exercise (a), it follows that $|f(x)-f(y)|=|\sqrt{x}-\sqrt{y}|\leq \frac{1}{2\sqrt{a}}|x-y|$ for $x,y\in[a,\infty)$ whenever a>0.