Supplementary Information for the Paper "Network Robustness Prediction: Influence of Training Data Distributions"

Yang Lou, Chengpei Wu, Junli Li, Lin Wang, and Guanrong Chen

Table S1: The average number of nodes (\bar{N}) and standard deviation (σ) for each of the seven distributions.

Distribution	Uniform	Gaussian	Extra	Bimodal	Trimodal	Decrease	Increase
$N \pm \sigma$	496.05±229.30	499.67±176.77	506.83 ± 206.65	498.31±216.19	501.69±171.46	423.60±212.69	579.69±215.92

Figure S1: Histograms for different node distributions: (a) Uniform, (b) Gaussian, (c) Extra, (d) Bi-modal, (e) Trimodal, (f) Decrease, and (g) Increase. The total number of samples is 9000 for (c) Extra, and 7200 for other distributions.

Table S2: Comparison of the average prediction error with standard deviation, using the seven different distributions of training data. The simulated scenario is using LFR-CNN to predict the connectivity robustness.

LFR-CNN	Uniform	Gaussian	Extra	Bimodal	Trimodal	Decrease	Increase
BA	0.047 ± 0.003	0.05 ± 0.003	0.042 ± 0.003	0.06 ± 0.004	0.081 ± 0.004	0.05 ± 0.004	0.041 ± 0.003
BA	(3)	(4.5)	(2)	(6)	(7)	(4.5)	(1)
EH	0.031 ± 0.002	0.024 ± 0.001	0.028 ± 0.002	0.108 ± 0.003	0.127±0.004	0.069 ± 0.001	0.093 ± 0.004
ЕП	(3)	(1)	(2)	(6)	(7)	(4)	(5)
ER	0.028 ± 0.001	0.028 ± 0.002	0.027 ± 0.001	0.09 ± 0.003	0.104 ± 0.004	0.064 ± 0.002	0.067 ± 0.003
EK	(2.5)	(2.5)	(1)	(6)	(7)	(4)	(5)
QS	0.034 ± 0.002	0.028 ± 0.002	0.032 ± 0.002	0.105 ± 0.003	0.128 ± 0.005	0.071 ± 0.002	0.089 ± 0.004
Qs	(3)	(1)	(2)	(6)	(7)	(4)	(5)
RH	0.024 ± 0.001	0.028 ± 0.002	0.025 ± 0.001	0.076 ± 0.002	0.091 ± 0.003	0.055 ± 0.003	0.051 ± 0.003
КП	(1)	(3)	(2)	(6)	(7)	(5)	(4)
RT	0.034 ± 0.003	0.038 ± 0.002	0.032 ± 0.002	0.068 ± 0.003	0.088 ± 0.004	0.052 ± 0.004	0.046 ± 0.003
KI	(2)	(3)	(1)	(6)	(7)	(5)	(4)
SF	0.028 ± 0.002	0.035 ± 0.002	0.029 ± 0.002	0.032 ± 0.002	0.034 ± 0.002	0.031 ± 0.002	0.027 ± 0.002
31	(2)	(7)	(3)	(5)	(6)	(4)	(1)
SWNW	0.026 ± 0.001	0.027 ± 0.002	0.026 ± 0.001	0.08 ± 0.003	0.099 ± 0.004	0.057 ± 0.003	0.056 ± 0.003
SWNW	(1.5)	(3)	(1.5)	(6)	(7)	(5)	(4)
SWWS	0.025 ± 0.001	0.027 ± 0.002	0.025 ± 0.001	0.079 ± 0.003	0.098 ± 0.003	0.056 ± 0.003	0.055 ± 0.003
SWWS	(1.5)	(3)	(1.5)	(6)	(7)	(5)	(4)
Overall	0.031 ± 0.002	0.032 ± 0.002	0.03 ± 0.002	0.077 ± 0.003	0.095 ± 0.004	0.056 ± 0.003	0.059 ± 0.003
Overall	(2.2)	(3.1)	(1.8)	(5.9)	(6.9)	(4.5)	(3.7)

Table S3: Comparison of the average prediction error with standard deviation, using the seven different distributions of training data. The simulated scenario is using PATCHY-SAN to predict the connectivity robustness.

PATCHY-SAN	Uniform	Gaussian	Extra	Bimodal	Trimodal	Decrease	Increase
BA	0.063 ± 0.005	0.065 ± 0.005	0.059 ± 0.004	0.064 ± 0.005	0.066 ± 0.005	0.065 ± 0.005	0.066 ± 0.005
DA	(2)	(4.5)	(1)	(3)	(6.5)	(4.5)	(6.5)
EH	0.043 ± 0.002	0.042 ± 0.002	0.046 ± 0.002	0.046 ± 0.002	0.056 ± 0.002	0.043 ± 0.002	0.048 ± 0.002
En	(2.5)	(1)	(4.5)	(4.5)	(7)	(2.5)	(6)
ER	0.038 ± 0.002	0.039 ± 0.002	0.04 ± 0.002	0.039 ± 0.002	0.05 ± 0.003	0.038 ± 0.002	0.042±0.002
EK	(1.5)	(3.5)	(5)	(3.5)	(7)	(1.5)	(6)
QS	0.043±0.002	0.041 ± 0.002	0.048 ± 0.002	0.047 ± 0.003	0.057 ± 0.003	0.044 ± 0.003	0.044 ± 0.002
Ų3	(2)	(1)	(6)	(5)	(7)	(3.5)	(3.5)
RH	0.037 ± 0.002	0.041 ± 0.002	0.041 ± 0.002	0.04 ± 0.002	0.051 ± 0.003	0.039 ± 0.002	0.045 ± 0.002
KII	(1)	(4.5)	(4.5)	(3)	(7)	(2)	(6)
RT	0.05 ± 0.004	0.052 ± 0.004	0.053 ± 0.004	0.054 ± 0.003	0.061 ± 0.005	0.053 ± 0.004	0.055±0.004
KI	(1)	(2)	(3.5)	(5)	(7)	(3.5)	(6)
SF	0.043 ± 0.003	0.046 ± 0.003	0.042 ± 0.003	0.045 ± 0.003	0.049 ± 0.003	0.045 ± 0.003	0.045±0.003
SI.	(2)	(6)	(1)	(4)	(7)	(4)	(4)
SWNW	0.04 ± 0.002	0.037 ± 0.002	0.043 ± 0.002	0.042 ± 0.002	0.05 ± 0.003	0.041 ± 0.002	0.04 ± 0.002
SWINW	(2.5)	(1)	(6)	(5)	(7)	(4)	(2.5)
SWWS	0.037 ± 0.002	0.036 ± 0.002	0.042 ± 0.002	0.039 ± 0.002	0.049 ± 0.003	0.038 ± 0.002	0.039±0.001
3 11 11 3	(2)	(1)	(6)	(4.5)	(7)	(3)	(4.5)
Overall	0.044 ± 0.003	0.044 ± 0.003	0.046 ± 0.003	0.046 ± 0.003	0.054 ± 0.003	0.045 ± 0.003	0.047±0.003
Overall	(1.8)	(2.7)	(4.2)	(4.2)	(6.9)	(3.2)	(5)

Figure S2: Prediction error ξ obtained by LFR-CNN against the change of the network size N, where $N \in [500, 1500]$ follows uniform, Gaussian, or extra distribution. The input size of CNN is W = 1000. Network robustness is measured by the connectivity robustness under targeted attacks.

Figure S3: Prediction error ξ obtained by PATCHY-SAN against the change of the network size N, where $N \in [500, 1500]$ follows uniform, Gaussian, or extra distribution. The input size of CNN is W = 1000. Network robustness is measured by the connectivity robustness under targeted attacks.

Figure S4: Prediction error ξ obtained by LFR-CNN against the change of the network size N, where $N \in [500, 1500]$ follows uniform, Gaussian, or extra distribution. The input size of CNN is W = 1000. Network robustness is measured by controllability robustness under random attacks.

Figure S5: Prediction error ξ obtained by PATCHY-SAN against the change of the network size N, where $N \in [500, 1500]$ follows uniform, Gaussian, or extra distribution. The input size of CNN is W = 1000. Network robustness is measured by controllability robustness under random attacks.

Table S4: Prediction ranks of LFR-CNN using uniform (U), Gaussian (G), and extra (E) distributed training data set. The input size of CNN is W = 500, with the measure of connectivity robustness under degree-based node-removal attacks.

	Э	2	2(-)	2	2	2	3(-)	2	1(+)	3	2	2(+)	2	2	3	2	1	2	2(+)	1(+)	1(+)	1(+)	2(+)	2(+)	2(+)	2(+)	2(+)	1(+)	2	2	2(+)	2(+)	1(+)	2	1.88	15	2
SWWS	Ŋ	3(-)	3(-)	3(-)	3	3(-)	2	3(-)	2(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	2(+)	1(+)	1(+)	2(+)	2(+)	2(+)	1(+)	1(+)	1(+)	1(+)	1(+)	2(+)	1(+)	1(+)	1(+)	1(+)	2(+)	_	1.61	25	5
	n	_	-	_	_	_	-	-	3	2	3	3	κ	κ	7	ĸ	ε	n	n	m	т	3	3	n	n	ж	3	ж	3	33	n	n	n	т	2.52		
	Щ	2	2(-)	3(-)	3	2	3(-)	3	2(+)	2	3	2(+)	3	2(+)	3	3	2	2	2(+)	2	2(+)	2(+)	2	2(+)	2	2	2	1	2	2(+)	2(+)	2	2	2	2.21	6	3
SWNW	Ü	3(-)	3(-)	2	-	3(-)	2	1	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	2	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1.27	25	3
	_ D	_	1	-	2	1	_	2	3	3	2	3	7	ε	7	7	Э	ω	С	ε	æ	3	3	ε	e	æ	3	æ	3	3	3	3	3	e	2.52		
	Ш	2(-)	2(-)	2(-)	_	2(-)	2	2(-)	3	3	1	1	-	3	3	3	3	2	-	1(+)	_	1	1(+)	_	1(+)	1(+)	1(+)	1(+)	1(+)	-	1(+)	1(+)	1(+)	1(+)	1.58	=	5
SF	ŋ	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	2	2	3	3	3(-)	-	-	2	2	3	3	3	3	3(-)	2	8	2	2	2	3	3	3	3	3(-)	3(-)	3(-)	2.64	0	12
	_ D	-	1	1	2	1	_	1	1	1	2	2	2	2	7		_	_	2	7	2	2	3	2	æ	3	3	2	2	2	2	2	2	2	1.79		
	Ш	_	1	2(-)	3(-)	2	3	1(+)	1(+)	3(-)	2	2(+)	2(+)	2(+)	2	2(+)	2(+)	2(+)	1(+)	2(+)	2(+)	2(+)	2(+)	2(+)	1(+)	2(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1.67	24	3
RT	Ü	3(-)	3(-)	3	2	3	2	2(+)	2(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	2(+)	1(+)	1(+)	1(+)	1(+)	1(+)	2(+)	1(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	1.67	27	2
	_ n	2	2	1	1	1	_			2	3	3	æ	æ	ε	ε	3	ε		ε	æ	3	3	ε	e				Н	_	3		3		2.67		
	ш	2	2(-)	2(-)	3(-)	3(-)	3(-)	2	2(+)	3(-)	3(-)	2	2(+)	2	3	2(+)	2(+)	2(+)	2(+)	1(+)	2(+)	1(+)	1(+)	2(+)	1(+)	2(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1.82	21	7
RH	U U	3(-)	3(-)	3(-)	2(-)	2(-)	2(-)		1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)		1(+)	1(+)	2(+)	1(+)	2(+)	2(+)	1(+)	2(+)	1(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2	2(+)	2(+)	1.64	25	9
	_ D	_	1	-	1	1		3	3	2	2	3	æ	æ	7	ε	æ	ϵ	ε	ε				ε	ε	æ		3		3		e	e		2.55		
	ы	1(+)	1	_	1(+)	1(+)	2	2	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	1.85	28	0
ÓS	ŋ	3	3(-)	2	2	2	1(+)	1(+)	1(+)	1(+)	1(+)		1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1.21	28	1
	n	2	2	з	3	3	3	3	3	3	3	3	ϵ	ϵ	ϵ	ϵ	æ	3	æ	κ	E	3	3	n	ε	κ	3	æ	3	æ	c	c	c	e	2.94		
	ш	2	2(-)	2	_	2	3(-)	3	2(+)	2	3	2(+)	2(+)	2	2	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2	2(+)	2(+)	2(+)	2.06	21	2
ER	Ŋ	3(-)	3(-)	3	3	3(-)	2	1	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1.33	56	3
	_ D	-	1	1	2	1	-	2	3	3	2	3	ε	ε	ε	ε	3	ε	Э	ε	æ	3	3	ε	æ	æ	3	3	3	3	3	3	3	3	2.61		
	ы	_	2	1(+)	1(+)	1(+)	2	1(+)	2(+)	2	2	2(+)	2(+)	2(+)	3	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	1.88	27	0
EH	Ü	3(-)	3(-)	2	2	3(-)	3(-)	2	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1.33	56	4
	n	2	_	ж	ж	7	_	ж	3	3	3	3	κ	κ	7	κ	κ	Э	n	m	κ	3	3	n	κ	κ	3	κ	3	ε	n	n	n	κ	2.79		
	ш	2	2	3(-)	3(-)	2	3	2	2(+)	2	1	2(+)	2(+)	2	2	1(+)	1(+)	1(+)	1(+)	2(+)	2	1(+)	1(+)	1(+)	2(+)	2(+)	2	2	2	2	_	2	1(+)	1(+)	1.76	15	2
BA	ŋ	3(-)	3(-)	2	-	3	1	1(+)	1(+)	1(+)	2	1(+)	1(+)	1(+)	1	2(+)	2(+)	2(+)	2(+)	1(+)	1(+)	2(+)	2(+)	2(+)	1(+)	1(+)	1(+)	-	1(+)	1(+)	2	_	2	2(+)	1.55	21	2
	n	-	1	1	2	1	7	3	3	3	3	3	ε	ε	ε	ε	æ		n	ϵ	E			n	ε	æ		æ		3	S.	n	n		2.70		
Α.	^7	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	009	625	650	675	700	725	750	775	008	825	850	875	006	Average Rank	(+)mns	(–)mns
1			i			i		i		i .	1		i .																						i	1	

Table S5: Prediction ranks of LFR-CNN using uniform (U), Gaussian (G), and extra (E) distributed training data set. The input size of CNN is W = 500, with the measure of controllability robustness under random node attacks.

	ш	1	1	1	2	1	1	1	1	-	-	2	2	Э	2	æ	2	2	2	2	æ	3	2	æ	æ	2	2	3	2	3	3	3	3	3	2.09	0	0
SWWS	IJ	3	3	2	3	2	3	3	3	2	2	-	1(+)	Т	1(+)	П	_	1(+)	1(+)	1(+)	Т	1(+)	1(+)	T	_	1(+)	1	1	-	-	1	1	1	1	1.48	8	0
	ח	2	2	3	_	ĸ	2	2	2	3	ж	ж	m	2	n	7	ĸ	ĸ	ĸ	ĸ	2	2	ж	2	2	ĸ	3	2	æ	2	2	2	2	2	2.42		
≥	ш	2	1	2	1	1	1	1	1	1	1	3	2	3(-)	2	3(-)	Э	2	ю	ю	3	3	3	3	Э	3	3	3	3	3	3	3	3	3	2.36	0	2
SWNW	ŋ	3(-)	3(-)	1	2	2	3	3	3	3	3	2	1	-	1(+)	1	1(+)	1(+)	1(+)	1(+)	(+)	1	1	(+)	<u>1(+)</u>	1(+)	1	1	-	-	1	-	1	1	1.52	6	7
	þ		2	3	3	ж	2	2	2	2	2	-	ĸ	2	æ	2	2	κ	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2.12		
	Э	1(+)	(+)[1(+)	1(+)	1(+)	1(+)	(+)I	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1.00	33	0
SF	Ü	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2.00	33	0
	Ω	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	Э	Э	3	3	Э	Э	3	3	3	3	3	3	3	3	3	3.00		
	Ш	2(+)	1	2	2	1(+)	1(+)	1(+)	1	2(+)	2	2	7	3	3	2	2	2	2	2	2	3	1	_	8	7	3	2	_	_	2	2	-	1	1.82	5	0
X	ŋ	1(+)	2	1(+)	1	2	2(+)	2	2	1	1(+)	1(+)	1(+)	1	1(+)	1(+)	1(+)	1(+)	1	1(+)	1	1	2	2	1	3	2	3	3	3	3	3	3	3	1.73	11	0
	n	3	3	3	3	ж	3	3	3	3	3	3	ĸ	2	2	æ	ĸ	ĸ	ĸ	ĸ	m	2	3	m	2	_	1	1	2	2	1	_	2	2	2.45		
	ш	-	1	-	-	_	1(+)	1	1	2	2	3	2	3	ж	3(-)	3	3(-)	3(-)	3(-)	3(-)	3	3	3(-)	3(-)	3(-)	3	3	3	2	2	2	2	2	2.27	1	8
Æ	Ŋ	3	3	2	2	3	2	3	3	1	3	1	1(+)	1(+)	1(+)	1	-	-	-	-	1	1	1	1	-	2	2	2	2	3	3	3	3	3	1.88	3	0
	n	2	2	3	3	2	3	7	2	3	1	2	3	2	2	2	2	2	2	2	2	2	2	2	2	-	1	1	1	1	1	1	1	1	1.85		
	Ш	2(+)	2	3	2	2(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	I(+)	2(+)	2(+)	2(+)	2(+)	2(+)	1(+)	2(+)	1(+)	2(+)	2(+)	1(+)	2(+)	2(+)	1.73	30	0
S	Ŋ	1(+)	1(+)	1(+)	1(+)	1(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	1(+)	1(+)	1(+)	1(+)	I(+)	I(+)	1(+)	1(+)	2(+)	1(+)	1(+)	1(+)	1(+)	1(+)	2(+)	1(+)	2(+)	1(+)	1(+)	2(+)	1(+)	1(+)	1.30	33	0
	n	3	3	2	3	ж	3	3	3	3	3	3	ĸ	æ	æ	æ	ĸ	ĸ	ĸ	ĸ	m	3	3	m	ĸ	æ	3	3	æ	ж	3	3	3	3	2.97		
	ш	2	2	2	2	2	2	2(+)	2	1	2(+)	2	2(+)	2	2(+)	2	2(+)	2	3	2	3	3	3	3	3	3(-)	3(-)	3(-)	3	3(-)	3(-)	3(-)	3(-)	3(-)	2.42	5	8
ER	Ŋ	1(+)	1(+)	1(+)	1(+)	1(+)	1	1(+)	1(+)	2	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1.03	31	0
	n	3	3	3	3	3	3	3	3	3	3	3	\mathcal{E}	Э	æ	æ	æ	æ	2	æ	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2.55		
	ш	3(-)	2	1(+)	-	-	1	2	1	2	1	3	3	3(-)	3	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	2.55	1	21
Τ̈́	ŋ	2	3(-)	2	2	3	2	1	3	1	2	1	1	1	1(+)	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1	2	1.85	1	-
	n	1	1	3	3	2	3	ε	2	3	3	2	2	2	2	2	_	_	_	_	_	1	1	_	-		1	1	1	1	1	1	2	1	1.61		
_	ш	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	2(+)	2(+)	2(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1	_	1(+)	1(+)	1(+)	1(+)	1	1.09	30	0
BA	ŋ	2(+)	2	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	1(+)	1(+)	1(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2	2	2(+)	2(+)	2	2(+)	2	3	2	2	2	2(+)	3	1.97	23	0
	n	3	3	3	3	Э	3	3	ж	3	3	3	ε	Э	Э	Э	С	Е	Е	С	m	3	3	κ	E	κ	3	3	7	ж	3	3	3	2	2.94		
V	• • • • • • • • • • • • • • • • • • •	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	009	625	650	675	700	725	750	775	800	825	850	875	006	Average Rank	(+)uns	(–)mns
									Ш													\Box	\Box														

Table S6: Prediction ranks of LFR-CNN using uniform (U), Gaussian (G), and extra (E) distributed training data set. The input size of CNN is W = 1000, with the measure of connectivity robustness under degree-based node-removal attacks.

RH RT SF SWNW SWWS		1 2 3 1	3(-) $1(+)$ 2	3 1(+) 2 3 1	-) 1(+) 2 3 1	1(+) 3 2 1(+)	2 3 1 2		2 1(+) 3	3 1(+) 2(+)	3 2(+) 1(+)	3 2(+) 1(+)	2(+) 1(+)	1(+) 2(+)	2(+) 1(+)	1(+) 2(+)	1(+) 2(+)	1(+) 2(+)	1(+) 2(+)	$1(+) \mid 2(+)$	1(+) 2(+)	1(+) 2(+)	1.71	15 15
RH RT SF SWNW	E U G E U	1 2 3 1 1	3(-) $1(+)$ 2	1(+) 2	1(+)			2					2(+)	1(+)	2(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1.62	15
RH RT SF SWNW	E U G	1 2 3 1	3(-) 1(+)	1(+)	1(+)				2	ж	3	~		_										—
RH RT SF SWNW	E U G	1 2	3(-)	_		1(+)	2	÷				ļ.,	\mathcal{E}	ε	ω	3	3	3	3	3	3	3	2.67	
RH RT SF	EU	1 2		3				3(-)	3	2(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	2(+)	2(+)	2(+)	2(+)	1(+)	2(+)	1.52	17
RH RT SF	Е	1	2		3(-)	3	1	1	1(+)	1(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	1(+)	1(+)	1(+)	1(+)	2(+)	1(+)	1.81	14
RH RT SF		_		2	2	7	3	2	2	3	3	3	3	Э	3	Э	Э	3	3	3	3	3	2.67	
RH RT	n G	-	2	2(+)	1	2(+)	2	3	1(+)	2(+)	2(+)	2	2	1	2	3	2(+)	2	1	1(+)	2	2	1.81	7
RH RT	n	3(-)	3	1(+)	3	1(+)	1(+)	1	2(+)	1(+)	1(+)	1	_	2	_	-	1(+)	1	2	3	3(-)	3(-)	1.71	7
RH RT		2	1	3	2	3	3	2	3	3	3	3	3	3	æ	2	3	3	3	2	-	_	2.48	F
RH	Э	1	1	1	_	2(+)	2(+)	2	3	2	3	3	3	3	3	3	3	3	3(-)	3	3	2	2.38	c
RH	G	2	2	2(+)	3(-)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1	_	-	_	_	_	1(+)	1	1(+)	1(+)	1(+)	1.24	=
RH	U	3	3	3	2	3	3	3	2	3	2	2	2	2	2	2	2	2	2	2	7	3	2.38	
F	Е	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	3	2	1(+)	1(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	1(+)	2(+)	1(+)	1(+)	1(+)	1.48	10
F	G	2(+)	2	2	3	3	2	1(+)	1	2(+)	2(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	2(+)	1(+)	2(+)	2(+)	2(+)	1.67	15
	U	3	3	3	2	2	3	2	3	3	3	æ	æ	ϵ	æ	ϵ	κ	3	3	3	κ	3	2.86	
[E	3	2(+)	2(+)	3	1(+)	2(+)	3(-)	3	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2.14	17
S	G	(+)	1(+)	1(+)	(+)I	2(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	(+)[1.05	2.1
-	U	2	3	3	2	3	3	2	2	3	3	3	c	c	ε	c	cc	3	3	3	cc	3	2.81	H
Į.	E	3(-)	1	1	3	2	2(+)	3(-)	3(-)	3	2	2(+)	2(+)	2	2	2	2	2(+)	2(+)	2(+)	2	2	2.14	9
H H	G		3			1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	(+)I	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1.24	17
-	U	2	2	2	1	3	3		2	2	3	3	3	E	3	E	E		3	3		3	2.62	F
-	Э	2	(+)	2	3	3	3	3(-)	3(-)	3	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2.24	13
H	G	1	2	1(+)	1(+)	(+)1	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)		1(+)	1(+)	1(+)	(+)1	1.05	10
-	U	3	3		2 1				2 1			3 1								3 1		3 1	2.71	
-	E	2	2	3	3	3	3	3	3	3	3(-)	3	3	3	3	3	3(-)	3	3(-)	3	3(-)	3	2.90	_ _
₽ I		_	_				_	_	_		1 3						2 3(2		3
	rh	1 3(-)	1 3(-)	1 .		2	2	2	2 1(+)	2	2	2	2	2	2 1(+)	2	1	2 1(+)	1 .	1 .	1	1 2	1.57	Ĭ.
	U G			L	l	1	1	ĺ	1	l	ı	1	1		1	l	l							1

Table S7: Prediction ranks of LFR-CNN using uniform (U), Gaussian (G), and extra (E) distributed training data set. The input size of CNN is W = 1000, with the measure of controllability robustness under random node attacks.

S	Э	1	-	-	-	1(+)	2	3	3	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	2.48	-	
SWWS	Ü	3(-)	3	2	2	2	1(+)	-	-	_	1(+)	1(+)	_	_	-	2	2	2	2(-)	2	2	2(-)	1.67	3	
	ח	2	2	3	3	3	3	2	2	2	2	7	2	7	2	_	_	_	_	_	_	_	1.86		
	ш	2(-)	2(-)	2(-)	2(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	2.81	0	
SWNW	ŋ	3(-)	3(-)	3(-)	3(-)	2(-)	1	1	2	1	1(+)	1(+)	1(+)	1(+)	1	-	-	_	-	2	2	2	1.62	4	
	'n	_	1	1			2	2	1	2	2	2	2	7	2	2	2	7	2	_	_	_	1.57		
	ш	-	7	7	7	7	2	7	2	1	-	_	_	_	_	_	7	7	7	7	7	_	1.57	0	
SF	Ü	3(-)	3(-)	3(-)	3	3(-)	3	3	3	3	3	3	3	3	3	3	3	1	8	3(-)	3	3(-)	2.90	0	
	b	2	1	1	1	1	1	1	1	2	2	7	2	7	2	2	_	ε	_	_	_	2	1.52		
	ш	-	_	_	1	1	1(+)	1	1		3	3	2	2	_	_	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1.29	7	
RT	Ü	3(-)	3	2	3	2	(+)	2	3	3	2	1	8	3	3	2	2	2	2	2	2	2	2.33	1	
	_ 	2	2	3	2	3	3	3	2	2	1	2	_		2	3	3	3	3	3	3	3	2.38		
	ш	2	1	1	2	1	1	2	1	3	3	c	ж	_	_	_	_	_	_	_	_	_	1.52	0	
RH	IJ	3(-)	3(-)	3(-)	3	3	3	1	3	2	_	_	_	ж	3	2	3	ж	3	3	8	3(-)	2.52	0	
	n		2	2	1	2	2	3	2	1	2	2	2	2	2	3	2	7	2	2	2	2	1.95		
	ш	3	3	3	2	3	3	3(-)	3(-)	3	3	3(-)	3	3	3(-)	3	3	3	8	3(-)	8	3	2.95	0	
S)	Ü	1	_	_	1	1	(+)	1		1(+)		1(+)	(+)I	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1.00	15	
	n	2	2	2	3	2	2	2	2	2	2	2	2	2	2	2	2	2	2	H		2	2.05		
	ш	1	2	_	3	2	2	2	3	3	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3	3	3	3	2.62	0	
ER	IJ	3	3	2	1	(+)	1	1	1	1	(+)	1(+)	-	1	1	1	1	_	_	1	(+)1	1	1.24	4	
	n	2	1	3	2	3	3	3	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2.14		
	ш	_	2	_	_	-	2	2	2	2	2	2	2	2	c	n	2	3	n	2	n	æ	2.10	0	
EH	ŋ	3(-)	3(-)	3	3(-)	3	1	1	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1.48	14	
	n	2	-	2	2	2	3	3	3	3	3	3	3	æ	2	2	3	2	2	ε	2	2	2.43		
	ш	3	ж	ж	3	3	3	7	æ	æ	æ	Э	ε	7	n	n	n	Э	E	n	m	E	2.90	0	
BA	ŋ	2	2	2(-)	2	2	2	3	2	2	2	1	1	1	2	1	1	2	2	1	2	2	1.76	0	
	n	-	_	-	1	1	1	1	1	1	1	7	2	Э	-	2	2	_	_	2	_	-	1.33	L	
Ŋ	^ 7	500	550	009	650	700	750	008	850	006	950	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500	Average Rank	(+)mns	

Table S8: Prediction ranks of PATCHY-SAN using uniform (U), Gaussian (G), and extra (E) distributed training data set. The input size of CNN is W = 500, with the measure of connectivity robustness under degree-based node-removal attacks.

	Щ	_	1	1	1	1	-	1(+)	1(+)	1	1	1	2	2	2	2	1	1(+)	1(+)	1(+)	1(+)	1(+)	1	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2	2(+)	2(+)	2(+)	1.45	17	C
SWWS	G	3(-)	3(-)	3(-)	3(-)	3(-)	3	3	3	3(-)	3(-)	3	3	3	_	1	2	2	2	2	2	2	2	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	2.00	11	7
			2	_		_				2	2	2			3	3	3	3	c	n	3	3	m	c	3	3	3	3	m	m	æ	æ	æ	κ	2.55		F
	Э	_	1(+)	1	_	1	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1	1	1(+)	2(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	2(+)	2(+)	1(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	1.33	27	_
SWNW	G	<u>(-)</u>	3(-)	(-)	<u>(-)</u>	(-)8	3	3	2	3(-)	3	2	2	2		1(+)												1(+)	1(+)			1(+)	1(+)		1.94	18	9
S			2			2	2	2		2	2	3	3	3	3	3	3 5	3	3	3	3	3	3	3	3	3 2	3	3	3	3	3	3	3		2.73		
	Э	2	3(-)	2	_	1	1(+)	-	1(+)	2(+)	2(+)	2	1(+)	-	1(+)	1(+)	1(+)	1(+)	1(+)	T	1	2	ī	_	3	1	2	2	2	2	2	2(-)	2	2(-)	1.55	10	c
SF	G	3	2(-)	3(-)	3(-)	3(-)	3	3	2	1(+)	1(+)	1(+)	2	2	2	2	2	2	3	3	3	3	3	3	2	2	3	3(-)	3	3	3(-)	3(-)	3(-)	3(-)	2.52	3	6
	n	_	_	1	2	2	2	2	3	3	3	3	3	3	3	3	3	3	7	7	2	_	7	2	_	3	_	1	_	_				_	1.94		H
	E	2	2	2	-	1	_	1	2	1	1	1	1	1(+)	1(+)	1	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1	1(+)	1	1	1	1	2	_	1.15	13	C
RT	G	3(-)	3	3	3	3	3	3(-)	3	3	3(-)	3	3	2(+)	2	2	2(+)	2(+)	2(+)	2(+)	2(+)	2	2	2	3	2	2	3	3	3	3	3	3	8	2.61	9	3
	n	-	_	_	2	2	2	2	_	2	2	2	2	Э	æ	ж	3	ж	m	m	ж	ж	m	n	2	3	3	7	7	7	7	7	_	2	2.24		
	Э	1(+)	1(+)	1	_	1	1(+)	2(+)	1(+)	-	1(+)	2	3	2	_	1	1	2	2	2	2	2	2	_	2	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	1.64	15	0
RH	G	3	2	2	3	3	2	1(+)	2(+)	3	3	3	1	1	2	3	3	3(-)	3(-)	3(-)	3	3	1	2	1	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1.97	=	3
	n	2	æ	3	2	2	ж	3	3	2	2	1	2	3	3	2	2	1	_	_	1	1	ĸ	æ	3	3	3	3	κ	κ	κ	æ	æ	ε	2.39		
	H	_	_	2	2	1	1(+)	1	1	2	3(-)	3(-)	3(-)	3(-)	3	3	3(-)	3	3	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3	3(-)	3(-)	2.55	_	19
SÒ	G	3(-)	3(-)	3(-)	3(-)	3(-)	2	3	3	3(-)	2(-)	2	1	1	-	1(+)	1	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1.58	18	7
		2		_	-	2	ε	2	2	-	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	7	7	7	7	2	1.88		
	E	-	1(+)	2	2	1	1(+)	2(+)	1(+)	2	3	3(-)	3	3(-)	3(-)	3(-)	3(-)	2	2	2	2	1	3	3	3	3	3	2	3	3	3	3	2	2(+)	2.30	5	S
ER	G	3(-)	2	3	1	2	2	1(+)	2(+)	1	1	2	1	2	1	2	2	3	3	3	3	3	-	1	1	1(+)	1	1(+)	1	1(+)	1(+)	-	1(+)	1(+)	1.67	∞	-
	n	2	κ	_	κ	3	κ	3	3	3	2	-	7	_	7	1	1	1	_	_	-	2	7	7	2	2	2	3	7	7	7	7	κ	κ	2.03		
	Ε		1	1	1	1	1(+)	1(+)	1(+)	1(+)	2	2	2	3	3	3	2	2	2	3	2	2	3	2	3	3	3	3	3	2	3	3	3	3	2.15	4	0
EH	G	3(-)	3(-)	3(-)	3(-)	3(-)	2	2	2(+)	2	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1.42	25	S
	n	2	2	2	2	2	ж	3	3	3	3	3	3	2	2	2	3	3	κ	7	3	3	7	ε	2	2	2	2	7	κ	7	7	7	2	2.42		
	Ξ	2	2	2	_	2	1	1	1	2	1	1	1	2	1	1	3	1	1(+)	2	1(+)	1	1	1	_	1	1	2	1	2	2	1	1	_	1.36	2	0
BA	G	3(-)	3(-)	3	3	3	3	3	3	3	3	3	2	3	2	3	2	2	2	1(+)	2	2	3	3	2	3	3	3	3	3	3(-)	3	3	3	2.70	_	3
	n	_	-	1	2	1	2	2	2	-	2	2	3	1	3	2	1	3	3	3	3	3	2	2	3	2	2	1	2	1	-	2	2	2	1.94	\mid	H
N	* *	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	200	525	550	575	009	625	650	675	200	725	750	775	800	825	850	875	006	Average Rank	(+)mns	(-)mns

Table S9: Prediction ranks of PATCHY-SAN using uniform (U), Gaussian (G), and extra (E) distributed training data set. The input size of CNN is W = 500, with the measure of controllability robustness under random node attacks.

	ш	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	8	3	3	Е	3	3	3	3	3	3	3(-)	3	3	2.88	0	1
SWWS	C	3(-)	3(-)	3	3	2	1	1	_	_	_	2	1	1	-	1	1	1	1	1	1	-	_	_	_	_	1	1	1		_	_		1	1.30	0	2
	h			_	1		2	2	2	2	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1.82		
H	田	2	2	2	1	_	-	-	-	-		2	2	1	1	_	1	1	1	2	2	2	7	ε	3	ε	3	3	2	æ	3	ε	3		1.94	0	0
SWNW	C	3(-)	3(-)	3	3	3	2	2	3	2	-	3	3	3	3	3	2	3	2	1	1	_	-	_	_	_	1	1(+)	1	_	1(+)	1(+)	1(+)	1	1.88	4	2
S	<u> </u>	_	_	_	2	2	3	3	2	Э	3		1	2	2	2	3	2	3	3	3	ε	ε	7	7	7	2	2	3	7	7	7	7	2	2.18		
	ш	1	_	_	1	_	1	1	_	_	1	2	1	1	1	1	1	1	1	2	1	1	2	3	2	3	2	2	1	1	1(+)	_		2	1.33	1	0
SF	C	2	3	3	3	3	3	3	3	3	2	1	3	3	3	3(-)	3	3	3	3	3	3	ж	2	3	2	3	3(-)	3(-)	3	3	3(-)	3	3(-)	2.82	0	5
	n	3	2	2	2	2	2	2	2	2	3							2	2	1	7	2	_	_	_	_	1		2			2		H	1.85		
	ш	2(-)	2(-)	2(-)	2	2	2	2	_	_	_	1	2	1	2	2	2	1	1	1(+)	1(+)	_	_	_	_	_	1	1	1	_	2	_	_	1	1.36	2	3
RT	G	_	_	3(-)	3(-)	3(-)	3	1	3	2	2	2	1	2	1	1	1(+)	2	2	2	2	2	2	2	2	2	2	2	2	2	_	2	2	2	2.03	1	S
	h	_	_	_		_	_	3	2	3	3	3	3	3	3	3		3	3	3	3	3	æ	æ	3	æ	3	3	3	æ	3	8	3	3	2.61		
	ш	2	2	2	2	2	2	3	Э	3	3	з	2	2	2	2	2	2	1	1	2	_	_	_	_	_	1	1	1	_	_	_	_	H	1.70	0	0
RH	ŋ	3(-)	3(-)	3(-)	3	3(-)	3	2	2	2	2	1	1	1	1	1	1	1	2	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	1.94	0	4
	<u> </u>	_	_	-	1	_	-	-	-	-	1	2	3	3	3	3	3	3	3	3	3	3	ε	ε	æ	ε	3	3	3	ε	3	ε	3	3	2.36		
	Э	2	2	_	1	1(+)	-	1(+)	1(+)	1(+)	2(+)	2(+)	2(+)	2(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	I(+)	I(+)	(+)	I(+)	1(+)	1(+)	1(+)	1(+)	1(+)	(+)	1(+)	1(+)	1.18	28	0
Sò	Ü	1(+)	1(+)	3	3	2	3	2	2(+)	2	1(+)	1(+)	1(+)	1(+)	2(+)	2(+)	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1.91	6	0
	<u> </u>	3	n	2	2	Э	2	3			Э						3	3	3	3	3	æ	ϵ	ε	ε	ε	3	3	3	ε	æ	ε	3	3	2.91		
	ш	2	2	_	7	_	-	-	_	-	2	2	2	2	2	2	2	1	2	2	7	2	_	_	_	_	1	1	1	_	_	_	_	1	1.42	0	0
ER	ŋ	3(-)	3(-)	3	3	3	2	2	2	2	1	1	1	1	1	1	1	2	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	1.82	0	2
	ח	-	_	2	1	2	3	3	ж	ж	ж	ж	3	3	3	3	3	3	3	3	3	ж	κ	κ	С	κ	3	3	3	κ	ж	т	ж	3	2.76		
	Э	1	_	1	1	I(+)	1(+)	1(+)	I(+)	I(+)	I(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	I(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1.00	59	0
EH	Ð	3(-)	3(-)	3	2	2	2	3	3	2	3(-)	3(-)	3(-)	3(-)	3	3	2	2	2	2	2	2	2	2	2	2	2(+)	2(+)	2	2	2	2	2	2	2.33	2	9
	n	2	2	2	3	Э	3	2	2	3	2	2	2	2	2	2	3	3	3	3	3	Э	ϵ	ϵ	ε	ϵ	3	3	3	ε	ε	ε	æ	3	2.67		
	Э	2	2(-)	2	2(-)	2(-)	2	3	3	3	2	2	2	2	3	2	2	2	2	2(+)	2	_	2(+)	T	_	T	1	1	1	1	1	_	1	1	1.76	2	3
BA	Ð	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	2(-)	2	1	1	1	1	1	1	1	1	1(+)	1	1(+)	1	2	1(+)	2	2	2	2	2	2	3	3	2	3	3	1.91	3	7
	n	_	_	_	1	_	_	_	_	2	æ	n	3	3	2	3	3	3	3	3	3	ĸ	m	m	m	m	3	3	3	2	2	m	7	2	2.33		
N	<u>,</u>	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	200	525	550	575	009	625	650	675	700	725	750	775	800	825	850	875	006	Average Rank	(+)uns	(–)mns

Table S10: Prediction ranks of PATCHY-SAN using uniform (U), Gaussian (G), and extra (E) distributed training data set. The input size of CNN is W = 1000, with the measure of connectivity robustness under degree-based node-removal attacks.

	ш	2	1	1	1	2	1	2	2	3	2	1(+)	1(+)	1(+)	1(+)	1(+)	1	2	1	2	3	3	1.62	5	0
SWWS	Ü	3(-)	3	2	2	1	3	3	3(-)	2	3	3	3	2	2	2	2	-	3	3(-)	2	2	2.38	0	3
	Þ	1	2	3	3	3	2	1	1	1	1	7	7	3	3	æ	ε	ε	7	_	_	_	2.00		
	ш	2	_	2	3	3	3	2	2	3	2	1(+)	1(+)	1(+)	1(+)	ī	ī	ī	2	2	2	2	1.81	4	0
SWNW	Ü	3(-)	3	1(+)	-	1	2	3	3(-)	2	3	3	3	2	3	3	2	2	3	3	3	Е	2.48	-	2
	b	_	2	κ	2	2	_	1	1	-	_	2	2	3	2	2	m	m	_	_	_	_	1.71		
	ы	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	2(+)	2	3	3	2	3	3(-)	3	3(-)	3	3(-)	3(-)	3(-)	3(-)	3(-)	2.29	7	7
SF	ŋ	3(-)	3(-)	3	3	2(+)	2(+)	1(+)	1(+)	2	_	Ţ	2	2	1	2	2	2(-)	2	2	2(-)	_	1.90	4	4
	b	7	7	7	7	3	3	3	3	1	7	æ	1	1	7	_	_	_	_	_	_	7	1.81		
	ш	2	1(+)	1	1	2	1(+)	1	2	1	1(+)	1(+)	1(+)	1(+)	2(+)	1(+)	1(+)	1(+)	1	1	1	_	1.19	10	0
RT	Ü	3(-)	3	2	2	1	2	2	1(+)	2	2(+)	2(+)	2(+)	2(+)	1(+)	2(+)	2(+)	3	2	3	3	3(-)	2.14	∞	2
	b	_	2	3	3	3	3	3	3	3	3	æ	æ	3	3	E	E	7	E	7	7	2	2.67		
	ш	2(-)	2(-)	-	1	2	3	3	2	3	2	1	1	2	2	1(+)	1(+)	-	1(+)	-	_	_	1.62	3	2
KH	U	3(-)	3(-)	3(-)	3(-)	3	2	1(+)	1(+)	_	1(+)	Э	2	1(+)	1	Э	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	2.33	4	10
	þ	1	1	2	2	1	1	2	3	2	3	7	3	3	3	7	7	7	7	7	7	2	2.05		
	ш	-	2	2	Э	2	2	2	2	2	2	2	_	1	1	_	_	_	_	_	_	_	1.52	0	0
SÒ	Ü	3	1(+)	1(+)	1(+)	1	1(+)	1(+)	1(+)	-	1(+)	-	2	2	2	2	2	2	3	3	3	3	1.76	7	0
	þ	2	Э	Э	2	3	3	3	3	Э	Э	c	c	3	3	c	c	c	2	2	2	2	2.71		
	ш	2(-)	-	-	2(+)	2(+)	2	2	2	2	2	1	1	1(+)	2	2	2	1	1	1	_	1	1.52	3	-
ER	Ü	3(-)	3(-)	2	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	2	2	2	1(+)	1(+)	1(+)	2	3	3	3(-)	3(-)	1.81	10	4
	þ	_	7	Э	Э	3	3	3	3	3	Э	ε	ε	3	3	ϵ	ϵ	ϵ	7	7	7	2	2.67		
	ш	2	1	2	3	3(-)	3	3	3	3	3	2	1(+)	1(+)	2	2	2	2	2	2(+)	2	2	2.19	3	_
EH	Ü	3(-)	3	1(+)	-	1	1(+)	1	1	1(+)	1(+)	-	2	2	1(+)	1(+)	_	1(+)	_	1(+)	1(+)	1(+)	1.29	10	_
	b	-	2	3	2	2	2	2	2	2	2	æ	æ	3	3	ε	ε	ε	ε	E	ε	E	2.52		
	ш	2(-)	2	2	2	3	3	3	3	3(-)	3	3(-)	3(-)	3	3	Э	Э	2	I(+)	1	1(+)	1(+)	2.38	3	4
BA	Ü	3(-)	3(-)	3(-)	3(-)	2	2	2(-)	2	1	1	2	2(-)	1	2	1	1	1	2	2	2	2	1.90	0	9
	b	_						1	1	2	2	_	_	2	1	2	2	m	m	m	3	c	1.71		
Z	>	500	550	009	650	700	750	800	850	006	950	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500	Average Rank	(+)uns	(–)mns

Table S11: Prediction ranks of PATCHY-SAN using uniform (U), Gaussian (G), and extra (E) distributed training data set. The input size of CNN is W = 1000, with the measure of controllability robustness under random node attacks.

																_	_	_	_	_	_	_		_	_
S	ш	2	2	Э	3(-)	2	2(-)	2(-)	2(-)	2(-)	3(-)	ж	ε	ε	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	2.67	0	14
SWWS	ŋ	3(-)	3	_	2	3(-)	3(-)	3(-)	3(-)	ε	2	_	_	_	2	2	2	2	2	2	2(-)	2(-)	2.14	0	7
	n	1	1	2	1	1	1	1	1	1	_	2	2	2	-	-	-	-	-	-	1	1	1.19		
	ш	2(-)	3(-)	3(-)	3(-)	2(-)	2	2(-)	2	2	2	2	2	2	2	2	2	2	2	3	3	3	2.29	0	9
SWNW	Ŋ	3(-)	2	2	2	3(-)	3(-)	3(-)	3(-)	3	3	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1.81	11	5
	n	1	1	1	1	-	-	-	_	_	_	E	Э	Э	3	3	3	3	3	2	2	2	1.90		
	E	2	1	2	2	1	1	2	2	3	1(+)	1	2	1	1	3	1	2	1	1	1	1	1.52	1	0
SF	Ŋ	3(-)	3(-)	3	3	3	2	-	1(+)	-	2(+)	2	1(+)	2	3	_	3	3	3	3	3	3	2.33	3	2
	n	1	7	1	-	2	3	3	3	2	æ	ε	Э	Э	2	2	2	-	2	2	2	2	2.14		
	П	1	1	2	7	2	2	2	2	2	7	2	2	2	2	3	3	2	3	3	2	2	2.10	0	0
RT	G	3(-)	3	1	-	1	-	1(+)	1(+)	1(+)	1(+)	1(+)	-	-	-	2	2	3	2	2	3	3	1.67	5	1
	ח	2	2	m	κ	n	n	ε	n	n	m	m	m	m	n	-	-	-	-	-	-	-	2.24		
	ы	2	2	2(-)	2	2	2	1	3	2	2	3	3	3	3	3	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	2.52	0	7
RH	Ŋ	3(-)	3(-)	3(-)	3	3(-)	3	2	-	-	1	1	-	-	_	_	2	2	2	2	2	2	1.90	0	4
	n	1	1	1	_	1	-	3	2	æ	С	2	2	2	2	2	_	_	_	_	_	_	1.57		
	ы	2(+)	1(+)	1(+)	1(+)	2(+)	2(+)	1(+)	1(+)	1(+)	2	2	2	2	2	2	2	2	2	2	2(-)	3	1.76	6	1
SÒ	G	1(+)	2(+)	2(+)	2(+)	1(+)	1(+)	2(+)	2(+)	2(+)	_	3(-)	3(-)	3	3	3(-)	3(-)	3	3	3(-)	3(-)	2	2.29	6	9
	n	ε	κ	κ	κ	n	n	3	n	n	κ	_	_	_	_	_	_	_	_	_	_	_	1.95		
	Э	2	1	1	2	-	-	2	2	2	2	3	3	3(-)	3	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	2.33	0	8
ER	G	3(-)	2	2	1	3	2	1	1	-	1	1	-	2	_	2	2	2	2	2	2(-)	2	1.71	0	2
	n	1	ĸ	ĸ	α	2	ĸ	3	n	n	ĸ	2	2	_	2	_	_	_	_	_	_	_	1.95		
	Щ	3(-)	3(-)	3(-)	3	2	_	-	1(+)	1(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2(+)	2.00	14	3
EH	Ŋ	2(-)	T	1(+)	2	3(-)	3	2	2	2(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1(+)	1.43	14	2
	n	1	7	7	1	_	2	8	С	С	æ	E	С	т	e	e	e	e	e	e	e	e	2.57		
	ы	1	1(+)	1(+)	I(+)	1(+)	1(+)	1(+)	1(+)	1(+)	_	2	2	1	2	2	3	2	2	2	2	2	1.52	8	0
BA	ŋ	3(-)	3	3	2	2	2	2(+)	2	2	2	1	1	2	-	-	-	3	3	3	3	3	2.14	1	-
	n	2	2	2	3	Э	Э	Э	Е	ε	æ	Э	ε	ε	3	3	2	_	_	_	-	-	2.33	İ	
N	۸,	200	550	009	029	700	750	800	850	006	950	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500	Average Rank	(+)mns	(–)mns

Table S12: Summary of Tables S1-S8: The numbers of significance test results, where '(-)' indicates the number of comparisons that using uniform training data obtains significantly lower errors than using other distributions (uniform training data are better); 'sum(+)' indicates the numbers of comparisons that using Gaussian or extra training data obtains significantly lower errors than using uniform data (non-uniform training data are better). Table IV of the paper is a summary of this table.

BA EH ER QS RH RT SF SW SW BA EH ER Q 2 4 3 1 6 2 12 3 5 2 0 2 2 0 2 2 0 2 2 0								Ŋ	Gaussian								ш	Extra				
$W = 500 = \begin{array}{ccccccccccccccccccccccccccccccccccc$	Measure	Input Size			BA	EH	ER	SÒ		RT								RH F	RT S	SF S	S MS	SW WS
$W = 500 \qquad W = 500 \qquad W = 500 \qquad W = 1000 \qquad W = 100000 \qquad W = 100000 \qquad W = 1000000 \qquad W = 10000000000000000000000000000000000$			I FD CNN	1	2	4	3	1		2	12	3	5	2	0	2	0	7	3	5	3	2
$W = 1000 \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$		147 - 500	LIN-CIVIN	(+)	21	56	56	28		27	0	25	25	15	27			21 2	24	-	6	15
$W = 1000 \bar{location} W = $		000 - 44	DATCHY CAN	1	3	S	1	7	3	3	6	9	7	0	0	S	19	0	0	3	0	0
$W = 1000 \bar{loop} W = 10000 \bar{loop} W = 10000 \bar{loop} W = 100000 \bar{loop} W = 1000000 \bar{loop} W = 10000000000000000000000000000000000$	Connectivity robustness		NIES-IIIOIEI	(+	-	25	∞	18	11	9	3	18	11	2	4	S	1	15	13	10 2	27	17
$W = 1000 \qquad PATCHY-SAN \qquad (+) \qquad 3 \qquad 19 \qquad 17 \qquad 21 \qquad 15 \qquad 11 \qquad 7 \qquad 14 \qquad 15 \qquad 0 \qquad 13 \qquad 6 \qquad 1 \qquad 4 \qquad 0 \qquad 10 \qquad 2 \qquad 4 \qquad 2 \qquad 3 \qquad 4 \qquad 1	under TAR		I ED CNN	1	2	0	0	0	0	1	3	2	0	4	2	Э	1	0	1	0		_
$W = 500 = \text{PATCHY-SAN} \begin{array}{c ccccccccccccccccccccccccccccccccccc$		W = 1000	TI.W-CIAIN	(+	3	19	17	21	15	11	7	14	15	0	13	9	17	_	2		17	15
$W = 500 = \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0001 - 44	DATCHV CAN	I	9	_	4	0	10	2	4	2	3	4	_	_	0		0		0	0
$W = 500 = \begin{array}{c ccccccccccccccccccccccccccccccccccc$			NECTION I	+	0	10	10	7	4	∞	4	_	0	3	3	3	0	3	01	7	4	5
$W = 500 \qquad PATCHY-SAN \qquad (+) 23 1 31 33 3 11 33 9 8 30 1 5 1 5 5 5 2 2 3 0 0 0 0 0 0 0 0 0$			I FD CNN	1	0	_	0	0	0	0	0	2	0	0	21		0	∞			2	0
$W = 1000 \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$		W - 500	TI.IV-VIAIN	(+	23	_	31	33	3	11	33	6	∞	30	_		30	_	5	33 (0	0
$W = 1000 \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$		000 - 44	DATCHV CAN	1	7	9	2	0	4	5	S	2	2	3	0		0	0	3	0	0	1
W = 1000 PATCHY-SAN (-) 1 3 0 0 4 1 6 5 3 0 0 8 8 0 0 8 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Controllability robustness		ויייייייייייייייייייייייייייייייייייייי	(+	3	2	0	6	0	1	0	4	0	2	29		28	0	2	-		0
PATCHY-SAN (+) 1 1 2 2 6 4 1 2 5 7 0 3 8 PATCHY-SAN (+) 1 1 4 0 9 0 5 3 11 0 8 14 0	under RND		I FD CNN	1	1	3	0	0	4	1	9	2	3	0	0	8	2	0	0	0 21	1	13
PATCHY-SAN (-) 1 2 2 6 4 1 2 5 7 0 3 8 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		W = 1000	TI IV-VIAIN	(+)	0	14	4	15	0	1	0	4	Э	0	0	0	0	0	7	0	0	_
(+) 1 14 0 9 0 5 3 11 0 8 14 0			DATCHY-SAN	(-)	1	2	2	9	4	1	2	2	7	0	3	8	1	1	0	0	9	14
			THE CHILL STATE	(+)	1	14	0	6	0	2	3	11	0	8	14	0	6	0	0	1 (0

Table S13: Detailed ranks of the comparison of W=500 and W=1000 input sizes in terms of the number of superiors. Here, a 'L' means the W=1000 predictor outperforms the W=1000 predictor; while a ' \approx ' means no significant difference between the W=500 and W=1000 predictors.

Uniform				nne	cti	vit	y r		ıstı			SC			ntr	olla		lity	ro	bu			
	Ė	BA	EH	ER	SÒ	RH	RT	SF	SWNW	SWWS	$\operatorname{sum}(T)$	Snm(S)	BA	EH	ER	ÓS	RH	RT	SF	SWNW	SWWS	$\operatorname{snm}(T)$	(S) mils
	200	Γ	T	T	22	S	Γ	S	22	22	4	7	T	22	T	22	22	22	Γ	Γ	22	4	Si
	550	T	T	T	22	22	22	22	22	22	3	22	T	22	T	22	22	≀≀	T	22	22	3	2
	009	T	T	T	22	T	22	S	22	22	4	_	T	22	22	22	22	22	T	22	22	2	2
LFR	059	T	Γ	T	22	22	T	22	22	T	5	22	T	S	22	22	22	22	T	22	22	2	_
LFR-CNN	700	T	T	X.	S	T	T	22	22	22	4	_	T	S	X.	X.	\mathcal{S}	X.	Γ	X.	22	2	C
	750	T	T	X.	\mathcal{S}	T	X.	T	22	22	4	_	T	S	X.	T	X.	X.	T	X.	S	3	C
	800	T	T	X.	22	T	X.	T	22	22	4	22	T	22	X.	T	X.	X.	T	X.	22	3	26
	850	T	X.	XI.	11	XI	T	X.	22	22	2	X)	T	S	XI.	T	N	T	T	N	X.	4	_
	006	T	T	X.	22	XI.	T	T	S	22	4	1	T	22	X.	X.	T	T	T	S	22	4	-
		L		L			L	L	I	1	34	9			L	L	L	L	L	<u> </u>	1	27	7
		BA	EH	ER	SÒ	RH	RT	SF	SWNW	SWWS	snm(T)	snm(S)	BA	EH	ER	Sò	RH	RT	SF	SWNW	SWWS	snm(T)	(S) mus
	200	T	X.	T	XI.	XI.	T	S	T	T	2	_	S	T	T	Ø	\mathcal{S}	S	X.	T	S	3	v
	550	T	T	T	22	22	T	S	T	T	9	_	S	T	T	S	S	X.	X.	22	S	2	4
	009	T	T	X.	X.	X.	T	S	T	T	2	1	22	T	T	S	\mathcal{S}	X.	≀≀	X.	S	2	۲
PATC]	650	T	T	T	22	22	T	22	T	T	9	22	22	T	T	S	X.	X.	≀≀	≀≀	22	2	_
PATCHY-SAN	700	T	T	XI.	T	T	T	22	T	T	7	22	22	T	T	S_{i}	XI.	X.	T	22	22	3	_
-	750	T	T	XI.	T	T	T	22	T	T	7	22	T	T	T	S	X.	X.	X.	X.	S	3	c
	800	T	T	T	T	T	22	T	T	T	∞	22	T	T	T	α	T	T	T	S	S	9	2
	850	T	T	T	T	T	T	T	T	T	6	22	Т	T	T	W.	W.	T	T	S	S	2	c
	006	T	22	T	T	T	T	T	T	T	∞	22	T	T	T	XI.	T	T	T	S	S	9	c
											61	Э										32	22

Table S14: Detailed significance comparisons of LFR-CNN and PATCHY-SAN on predicting the robustness of unseen data with unseen network sizes (UNS), where the training data follow uniform distribution.

PATCHY-SAN: Connectivity robustness under TAR	RT SF SW SW WS			(+) (+) (+) (-)	(+) (+) (+) (-)	(+) (+) (+) ≈		RT SF SW SW WS									(+) (+) ≈ (-)	(+) (+) ≈ (-)	(+) (+) (-) (-)	(+) (+) (-) (-)	(+) (+) (-) (-)	(+) (+) (-) (-)	(+) (+) (-) (-)	
vity rob	RH R	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	RH R	<u>-</u>	<u>-</u>	<u>-</u>)	-) (-)	<u>-</u>)	<u> </u>	<u>-</u>	<u>-</u>	<u>-</u>	<u> </u>	<u> </u>	<u> </u>	<u>-</u>	<u>-</u>)	<u>-</u>)	
onnecti	QS R	<u> </u>	<u> </u>	2		≈	≈	QS R	<u> </u>	<u> </u>	(<u> </u>) (-)	(<u>)</u>		(<u>)</u>	<u> </u>	≈	≈	≈	(+)	≈	(+)	2 ≈	
SAN: C	ER (<u> </u>	<u> </u>	(±)	(±	22	(+	ER (<u> </u>	<u> </u>) ()) (-)) ()) (1)	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1) (1)	<u> </u>	<u> </u>	<u> </u>	
rchy.	EH]	1	1	÷	÷	(+	(±)	EH	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	1	22	÷	÷	22	22	22	(+)	
PA	BA	1	<u> </u>	1	1	1	1	BA	<u></u>	<u></u>	<u> </u>	(-)	<u> </u>	<u> </u>	<u> </u>	1	1	1	1	1	<u> </u>	<u> </u>	<u> </u>	
		50	75	925	950	975	0001		100	150	200	250	300	350	400	450	1550	0091	1650	1700	1750	0081	1850	
	SW WS	<u></u>	<u> </u>	÷	(±)	+	+	SW WS	<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	+	+	+	÷	(+	(+	(+)	
~	SW NW	1	<u> </u>	÷	÷	(±)	(±)	SW NW	1	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	1	+	+	+	(+	(±)	(+)	(+)	
er TAR	SF	1	<u> </u>	22	22	1	1	SF	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	(+	(+	(+	22	<u> </u>	<u> </u>	<u> </u>	
pun ssa	RT	1	<u> </u>	1	1	1	1	RT	<u> </u>	<u> </u>	<u> </u>	(-)	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	1	1	1	<u> </u>	<u> </u>	<u> </u>	
robustn	RH	1	<u> </u>	÷	ŧ	÷	÷	RH	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	Ī	Ī	Ī	1	<u> </u>	<u> </u>	<u> </u>	
ctivity 1	SÒ	1	1	÷	÷	÷	÷	Sò	<u></u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	1	22	22	22	22	22	22	22	
Conne	ER	1	1	÷	ŧ	±	±	ER	<u> </u>	<u></u>	1	<u> </u>	<u> </u>	1	1	1	(+	+	÷	Ŧ	22	22	÷	
LFR-CNN: Connectivity robustness under	EH	1	1	(±	(±)	(+	(+	EH	1	<u></u>	<u></u>	(-)	<u> </u>	1	1	1	+	+	+	+	(+	(+	(+)	
TH.	BA	1	1	1	1	1	1	BA	1	1	1	<u> </u>	1	1	1	1	1	1	1	1	1	1	<u> </u>	
	×	50	75	925	950	975	1000	y.	100	150	200	250	300	350	400	450	1550	1600	1650	1700	1750	1800	1850	
ш	Network Size	N / W	1,e / 1,		/N / N	ive / W		Network Size		<u> </u>	<u> </u>	N - M	1,6 / 1,1						<u> </u>	<u> </u>	/N / N	1ve / vv		
Uniform	CNN Input Size			11/ - 500	000 = 44												$\frac{1}{1000}$	0001 - 44						

Table S15: Detailed significance comparisons of LFR-CNN and PATCHY-SAN on predicting the robustness of unseen data with unseen network sizes (UNS), where the training data follow Gaussian distribution.

	Γ	LFR-CNN:		ectivity	robustr	Connectivity robustness under	ler TAR	~ 			PA	TCHY	-SAN:	Connec	tivity	PATCHY-SAN: Connectivity robustness under TAR	es unde	r TAR
BA EH ER QS	EH ER	_	ÓS		RH	RT	SF	NW NW	SW WS		BA	ЕН	ER	SÒ	RH	RT	SF	NW NW
(-) (-) (-) (-) (-)	(-)	_	(-)		(-)	(-)	(-)	(-)	(-)	20	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)
75 (-) (-) (-) (-) (-)	(-)	_	(-)		(-)	(-)	(-)	<u> </u>	(-)	75	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)
925 (-) (+) (+) (+) (+)	(+)		(+)		(+)	≀≀	(-)	(+)	(+)	925	(-)	(+)	(+)	(+)	≀≀	(-)	(-)	(+)
(+) (+) (+) (-) 026	+		ŧ		(+)	<u> </u>	<u> </u>	(+)	(+)	950	<u> </u>	(+)	+	(+)	≀≀	<u> </u>	22	(+)
975 (+) (+) (+) (+)	+		÷		(+)	≀≀	<u> </u>	(+)	(+)	975	<u> </u>	(+)	+	(+)	≀≀	<u> </u>	<u> </u>	(+)
1000 (+) (+) (+) (+) (+)	(+)		±		(+)	<u> </u>	<u> </u>	(+)	(+)	1000	<u> </u>	(+)	22	(+)	<u> </u>	<u> </u>	<u> </u>	(+)
BA EH ER QS	EH ER		6S		RH	RT	SF	SW NW	SW WS		BA	EH	ER	SÒ	RH	RT	$\frac{1}{1}$	NW NW
(-) (-) (-) (-) 01	<u> </u>	_	(-)		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	100	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	(-)	(-)
150 (-) (-) (-) (-)	1		1		1	1	1	1	1	150	<u> </u>	<u> </u>	1	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>
200 (-) (-) (-) (-) (-)	(-)	_	(-)		(-)	(-)	(-)	<u> </u>	(-)	200	(-)	(-)	(-)	(-)	(-)	<u> </u>	(-)	(-)
250 (-) (-) (-) (-) (-)	(-)	_	(-)	-	(-)	(-)	(-)	<u> </u>	(-)	250	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)
300 (-) (-) (-) (-)	(-)	_	(-)		(-)	(-)	(-)	(-)	(-)	300	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)
350 (-) (-) (-) (-) (-)	(-)	_	(-)	-	(-)	(-)	(-)	<u> </u>	(-)	350	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)
(-) (-) (-) (-) (-)	(-)	_	(-)		(-)	(-)	(-)	<u> </u>	(-)	400	(-)	(-)	(-)	(-)	(-)	(-)	(-)	<u> </u>
(-) (-) (-) (-)	(-)	_	(-)		(-)	(-)	(-)	<u> </u>	(-)	450	(-)	(-)	(-)	(-)	(-)	(-)	(-)	<u> </u>
1550 (-) (+) (+) (+) (+)	(+)		(+)		(+	<u> </u>	<u> </u>	÷	+	1550	<u> </u>	(+	1	22	<u> </u>	<u> </u>	₩	
1600 (-) (+) (+) (+) (+)	(+)		(+)		(+)	(-)	(-)	(+)	(+)	1600	(-)	(+)	(-)	22	(-)	(-)	₩	(+)
1650 (-) (+) (+) (+) (+)	(+)		(+		(+)	<u> </u>	<u> </u>	(+)	(+)	1650	<u> </u>	(+)	<u> </u>	≀≀	<u> </u>	<u> </u>	<u> </u>	(+)
(+) (+) (+) (-) 0041	+		ŧ		(+	1	1	÷	+	1700	1	+	1	≀≀	1	<u> </u>	≀≀	(+
1750 (-) (+) (+) (+)	+		ŧ	-	+	1	1	(+	+	1750	1	+	1	22	1	<u> </u>	<u> </u>	(+
(+) (+) (+) (+) (+)	+		±	+	22	1	1	÷	(+)	1800	<u> </u>	+	1	23	1	1	<u> </u>	(+
1850 (-) (+) (+) (+)	(+)		÷	-	(+)	<u> </u>	<u> </u>	(+)	(+)	1850	<u> </u>	(+)	<u> </u>	22	<u> </u>	<u> </u>	<u> </u>	(+)
(+) (+) (+) (-) 0061	(+)		÷	П	22	<u> </u>	(-)	(+)	(+)	1900	<u> </u>	(+)	(-)	22	<u> </u>	<u> </u>	(-)	(+)
(+) (+) (+) (+) (+)	(+)		÷	П	(+)	<u> </u>	(-)	(+)	(+)	1950	<u>(</u>	(+)	(-)	22	<u> </u>	<u> </u>	(-)	(+)
2000 (-) (+) (+) (+)	+		ŧ	_	22	1	1	÷	+	2000	<u> </u>	+	1	22	1	1	<u> </u>	(±)

Table S16: Detailed significance comparisons of LFR-CNN and PATCHY-SAN on predicting the robustness of unseen data with unseen network sizes (UNS), where the training data follow Extra distribution.

~	SW WS	1	<u> </u>	(+	+	+	+	SW	MS	1	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	1	(+)	(+)	(+)	+	+	(+)	X.	X.	X.	X.
der TAR	WN WW	1	<u> </u>	(+)	(+)	+	+	SW	NW	1	<u> </u>	<u> </u>	<u> </u>	<u>(</u>	<u>(</u>	<u>(</u>	1	(+)	(+)	(+)	+	(+)	(+)	(+)	(+)	(+)	(+)
ness un	SF	1	1	22	X.	≀≀	(+	r.	Z	1	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	<u> </u>	<u> </u>	<u>(</u>	1	<u> </u>	(-)	<u> </u>	<u> </u>	<u> </u>	<u></u>
robustr	RT	1	1	1	1	1	1	Ę	Ā	1	1	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>	1	1	(-)	<u> </u>	<u> </u>	<u> </u>	1
ctivity	RH	1	<u> </u>	ı	≀≀	1	I	110	Ä	1	1	1	<u> </u>	<u> </u>	1	1	1	<u> </u>	<u> </u>	<u> </u>	1	1	(-)	<u> </u>	<u> </u>	1	<u> </u>
Conne	SÒ	1	1	1	1	1	1	ű	3	1	1	1	1	<u> </u>	<u> </u>	<u> </u>	1	≀≀	(+)	≀≀	÷	Ω.	(+)	(+)	+	22	22
PATCHY-SAN: Connectivity robustness under	ER	1	1	+	+	+	+	6	Ä	1	1	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>	1	<u> </u>	(-)	<u> </u>	<u> </u>	<u> </u>	1
TCHY	ЕН	1	1	22	≀≀	≀≀	≀≀	110	I I	1	1	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	+	+	(+	÷	≀≀	(+)	(+)	(+	(+	22
PA	BA	1	1	1	1	1	1	á	PA	1	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>	1	<u> </u>	(-)	<u> </u>	<u> </u>	<u> </u>	1
		50	75	925	950	975	0001			001	150	200	250	300	350	400	450	1550	1600	0591	700	1750	0081	1850	1900	1950	2000
	SW WS		<u> </u>	(±)	(+)	(+)	(±)	SW	WS		_ (1)	<u> </u>	<u> </u>	(T)		7 (-)	7	(+)	(+)	(+)	(+)	(+)	(+) 1	(+)	(+)	(+)	(+)
				Ē	_						_	_	_				L						_				
TAR	MN NW	1	1	±	±	±	÷	SW	N	1	1	1	1	1	1	1	1	÷	±	(+)	±	±	(+)	÷	÷	÷	÷
under '	SF	1	1	÷	+	1	1	Ç	Z Z	1	1	1	<u> </u>	<u> </u>	<u> </u>	1	1	+	≀≀	<u>-</u>	1	1	(-)	<u> </u>	<u> </u>	<u> </u>	1
stness	RT	1	1	÷	X.	Ŧ	÷	Ę	Υ.	1	1	1	<u></u>	1	1	1	1	1	1	1	1	1	(-)	1	1	1	1
y robus	RH	1	1	÷	÷	÷	ŧ	ī	<u> </u>	1	1	1	1	1	1	1	1	(+	(+	(+	ŧ	÷	(+)	+	+	÷	÷
ectivit	SÒ	1	1	÷	(+	÷	÷	ű	3	1	1	1	1	1	1	1	1	≀≀	(+	(+	≀≀	≀≀	(+)	(+	(+	X.	÷
: Conn	ER	1	1	(+	(+	(+	(+	Ę	Ä,	1	1	1	1	1	1	1	1	(+	(+	(+	÷	(+	(+)	(+)	+	(+	(+
LFR-CNN: Connectivity robustness under TAR	ЕН	<u> </u>	<u> </u>	(+)	(+)	(+)	(+)	110	ij	1	<u> </u>	<u> </u>	<u> </u>	$\widehat{}$	$\widehat{}$	$\widehat{}$	1	(+)	(+)	(+)	(+	(+	(+)	(+)	(+)	(+)	(+)
LFI	BA	1	<u> </u>	1	1	<u> </u>	1	4	БА	1	1	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>	1	<u> </u>	(-)	$\widehat{}$	<u> </u>	<u> </u>	<u> </u>
	y	20	75	925	950	975	1000	J		100	150	200	250	300	350	400	450	1550	1600	1650	1700	1750	1800	1850	1900	1950	2000
ra	Network Size	$M \sim M$			M / N	1,6 / N		Network	Size		<u> </u>		$M \sim M$	1,6 / M						_		M / N	1, e / 1				
Extra	CNN Input Size			11/ - 500	000 - 11													W = 1000	0001 - 44								

Table S17: Details of the real-world datasets. COLLAB is a dataset of scientific collaborations. REDDIT-BINARY consists of graphs corresponding to online discussions on Reddit. REDDIT-MULTI-5K is similar to REDDIT-BINARY, but divided into 5 categories. Only the real-world networks with network size $N \in [100, 900]$ are tested.

Dataset	Number of		Average	Degree		Numb	er of Noc	les per No	etwork	Nun	iber of Edge	es per Netv	work
Dataset	Networks	Min	Max	Mean	Std	Min	Max	Mean	Std	Min	Max	Mean	Std
COLLAB	70	26.7	112.0	62.5	22.6	100.0	419.0	139.3	52.4	3056.0	39436.0	9104.9	6075.6
REDDIT- BINARY	119	4.2	5.5	4.7	0.3	107.0	898.0	418.7	195.8	464.0	4608.0	1983.9	971.4
REDDIT- MULTI-5K	337	4.2	6.1	4.9	0.3	138.0	900.0	543.2	194.0	600.0	4984.0	2684.1	1010.4