Université de Jijel

Avril 2020

Département de Mathématiques

Master 1: Probabilités et statistique

Série de TD n°4

Exercice 1:

Soient $(\Omega, \mathcal{A}, \mathbb{P}, (\mathcal{F}_t)_{t\geq 0})$ un espace probabilisé filtré, et $(B_t)_{t\geq 0}$ un \mathcal{F}_t -mouvement brownien défini sur cet espace.

a) Soit

$$Y_t = tB_{t.}$$

- 1)- Peut-on appliquer la formule d'intégration par parties pour calculer dY_t ?
- 2)- Calculer $\mathbb{E}(Y_t)$ et $\mathbb{E}(Y_t.Y_s)$.
- b) Soit $X_t = 2.1_{[0,1]} + 3.1_{[1,3]} 5.1_{[3,4]}$.
- Calculer $\int_0^4 X(t)dB(t)$.
- c) On considère les deux processus stochastiques

$$X_t = \int_0^t (2t - u) \, dB(u, \omega) \text{ et } Y_t = \int_0^t (3t - 4u) \, dB(u, \omega)$$

 $X_t = \int_0^t \left(2t-u\right) dB\left(u,\omega\right) \text{ et } Y_t = \int_0^t \left(3t-4u\right) dB\left(u,\omega\right).$ - Montrer que ces deux processus sont gaussiens de moyenne 0 et de fonction de covariance $3s^2t - \frac{2}{3}s^2$ pour $s \le t$.

Exerçice 2:

Soit $(\Omega, \mathcal{A}, \mathbb{P}, (\mathcal{F}_t)_{t>0})$ un espace probabilisé filtré, sur lequel est défini le processus stochastique $(X_t)_{t>0}$ comme suit:

$$X_t = \int_0^t \sin s dB \left(s, \omega \right).$$

- $X_t = \int_0^t \sin s dB\left(s,\omega\right).$ 1) Montrer que: pour tout $t \geq 0$,
la variable aléatoire X_t est définie.
- 2) Montrer que $(X_t)_{t>0}$ est un processus stochastique gaussien, puis calculer son espérance et sa covariance.
 - 3) Calculer $\mathbb{E}(X_t \mid \mathcal{F}_s)$.
 - 4) Montrer que $X_t = \sin t \cdot B(t, \omega) \int_0^t \cos s B(s, \omega) ds$.

On considère les deux processus stochastiques:

$$X_t = \int_0^t e^s dB(s,\omega), Y_t = e^{-t}X_t.$$

- $X_{t} = \int_{0}^{t} e^{s} dB\left(s,\omega\right), Y_{t} = e^{-t} X_{t}.$ 1) Spécifier la loi de X_{t} et celle de Y_{t} , puis déterminer $\mathbb{E}\left(X_{t}\right), Var\left(X_{t}\right), \mathbb{E}\left(Y_{t}\right)$ et $Var(Y_t)$.
- 2) Montrer que $(Y_t)_{t>0}$ converge en loi vers une v.a. Y_{∞} lorsque $t\to\infty$ et spécifier sa loi.
 - 4) Exprimer dY_t en fonction de Y_t et de dB.

Exercice 4:

1- Les intégrales suivantes sont-elles définies? $\int_0^1 B(t)dB(t), \ \int_0^1 \exp(B(t))dB(t), \ \int_0^1 \exp(B(t)^2)dB(t).$ 2- Soit $(X_t)_{t\geq 0}$ un processus stochastique simple, défini pour tout $t\geq 0$ par

$$X_{t} = \zeta_{0}(\omega) .1_{\left[0, \frac{1}{2}\right]} + \zeta_{1}(\omega) .1_{\left[\frac{1}{2}, 1\right]}.$$

- Calculer $\int_0^1 X(t) dB(t)$.
- 3- Montrer qu si $(X_t)_{t>0}$ est un proc.stoc. simple adapté, alors $\int_0^1 X(t)dB(t)$ est continu.

- 4- Ecrire les processus suivants comme processus d'Ito en précisant leur drift et le coefficient de diffusion:

 - $X_t = B_t^2$. $X_t = B_t^3 3tB_t$. $X_t = \exp(\frac{t}{2})\sin(B_t)$.
- 5- Montrer que $X_t = \sin(B_t) + \frac{1}{2} \int_0^t \sin(B_t) ds$, $t \ge 0$ est une martingale, puis calculer sa moyenne et sa variance.
 - 6- Soit $X_t = tX_1(t)X_2(t)$ avec

$$dX_1(t) = f(t)dt + \sigma_1(t)dB_t$$

$$dX_2(t) = \sigma_2(t)dB_t$$

- Calculer dX_t

Exercice 5:

Soit σ un processus adapté continu de $L^2(\Omega \times \mathbb{R}^2)$ et

$$X_t = \int_0^t \sigma_s dB_s - \frac{1}{2} \int_0^t \sigma_s^2 ds.$$

- On pose $Y_t = \exp(X_t)$ et $Z_t = Y_t^{-1}$. -1 Expliciter la dynamique de Y_t , c'est-à- dire expliciter dY_t .
- -2 Montrer que Y_t est une martingale locale, donner une condition sur σ pour que ce soit une martingale.
 - -3 Calculer $\mathbb{E}(Y_t)$ dans ce cas.expliciter les calculs quand $\sigma = 1$.
 - -4 Calculer dZ_t .