Alcuni esercizi svolti di Algebra Relazionale

Esercizio 1

Considerando la seguente base di dati:

Fornitori (CodiceFornitore, Nome, Indirizzo, Città)

Prodotti (CodiceProdotto, Nome, Marca, Modello)

Catalogo (CodiceFornitore, CodiceProdotto, Costo)

formulare in Algebra Relazionale una interrogazione per ciascuno dei seguenti punti:

- Trovare Nome, Marca e Modello dei prodotti acquistabili con meno di 2000 €.
- Trovare i nomi dei fornitori che distribuiscono prodotti IBM (IBM è la marca di un prodotto).
- Trovare i codici di tutti i prodotti che sono forniti da almeno due fornitori.
- Trovare i nomi dei fornitori che distribuiscono tutti i prodotti presenti nel catalogo.

Fornitori

Nome	CodiceFornitore	Indirizzo	Città
Ladroni	001	Via Ostense	Roma
Risparmietti	002	Viale Marconi	Roma
Teloporto	010	Via Roma	Milano

Prodotti

CodiceProdotto	Nome	Marca	Modello
0001	Notebook	IBM	390 x
0002	Desktop	IBM	510
0003	Desktop	ACER	730

Le Relazioni (2/2) Catalogo CodiceFornitore CodiceProdotto Costo 001 0002 € 3.200 001 0003 € 2.200 002 0001 € 1.900 002 0002 € 2.500 002 0003 € 1.800 010 0001 € 2.200 010 0003 € 2.000

Soluzione Esercizio 1.1 (1/3)

1. Trovare Nome, Marca e Modello dei prodotti acquistabili con meno di 2000 €.

Passo 1: (Prodotti ⋈ Catalogo)

CodiceProdotto	Nome	Marca	Modello	CodiceFornitore	Costo
0001	Notebook	IBM	390 x	002	€ 1.900
0001	Notebook	IBM	390 x	010	€ 2.200
0002	Desktop	IBM	510	002	€ 2.500
0002	Desktop	IBM	510	001	€ 3.200
0003	Desktop	ACER	730	001	€ 2.200
0003	Desktop	ACER	730	010	€ 2.000
0003	Desktop	ACER	730	002	€ 1.800

Soluzione Esercizio 1.1 (2/3)

 Trovare Nome, Marca e Modello dei prodotti acquistabili con meno di 2000 €.

Passo 2: $(\sigma_{Costo} < 2000 (Prodotti \bowtie Catalogo))$

CodiceProdotto	Nome	Marca	Modello	CodiceFornitore	Costo
0001	Notebook	IBM	390 x	002	€ 1.900
0003	Desktop	ACER	730	002	€ 1.800

1. Trovare Nome, Marca e Modello dei prodotti acquistabili con meno di 2000 €.

Passo 3:

 $\pi_{\text{Nome, Marca, Modello}}$

(σ_{Costo} < 2000 (Prodotti \bowtie Catalogo))

Nome	Marca	Modello
Notebook	ІВМ	390 x
Desktop	ACER	730

Soluzione Esercizio 1.2 (1/4)

2. Trovare i nomi dei fornitori che distribuiscono prodotti IBM (IBM è la marca di un prodotto).

Passo 1: (Fornitori ⋈ Catalogo)

Nome	Indirizzo	Città	CodiceFornitore	CodiceProdotto	Costo
Ladroni	Via Ostense	Roma	001	0003	€ 2.200
Ladroni	Via Ostense	Roma	001	0002	€ 3.200
Risparmietti	Viale Marconi	Roma	002	0001	€ 1.900
Risparmietti	Viale Marconi	Roma	002	0002	€ 2.500
Risparmietti	Viale Marconi	Roma	002	0003	€ 1.800
Teloporto	Via Roma	Milano	010	0001	€ 2.200
Teloporto	Via Roma	Milano	010	0003	€ 2.000

Soluzione Esercizio 1.2 (2/4)

2. Trovare i nomi dei fornitori che distribuiscono prodotti IBM (IBM è la marca di un prodotto).

Passo 2: ((Fornitori ⋈ Catalogo)

\bowtie ($\pi_{\texttt{CodiceProdotto},\texttt{Marca}}$ (Prodotti)))

Nome	Indirizzo	Città	CodiceFornitore	Costo	CodiceProdotto	Marca
Ladroni	Via Ostense	Roma	001	€ 2.200	0003	ACER
Risparmietti	Viale Marconi	Roma	002	€ 1.900	0001	IBM
Risparmietti	Viale Marconi	Roma	002	€ 2.500	0002	IBM
Teloporto	Via Roma	Milano	010	€ 2.200	0001	IBM
Ladroni	Via Ostense	Roma	001	€ 3.200	0002	IBM
Teloporto	Via Roma	Milano	010	€ 2.000	0003	ACER
Risparmietti	Viale Marconi	Roma	002	€ 1.800	0003	ACER

Soluzione Esercizio 1.2 (3/4)

2. Trovare i nomi dei fornitori che distribuiscono prodotti IBM (IBM è la marca di un prodotto).

Passo 3:

$$\sigma_{\mathtt{Marca} = \mathtt{`IBM'}}$$
 ((Fornitori \bowtie Catalogo)
$$\bowtie (\pi_{\mathtt{CodiceProdotto},\mathtt{Marca}}(\mathtt{Prodotti}))$$

Nome	Indirizzo	Città	CodiceFornitore	Costo	CodiceProdotto	Marca
Risparmietti	Viale Marconi	Roma	002	€ 1.900	0001	IBM
Teloporto	Via Roma	Milano	010	€ 2.200	0001	IBM
Risparmietti	Viale Marconi	Roma	002	€ 2.500	0002	IBM
Ladroni	Via Ostense	Roma	001	€ 3.200	0002	IBM

Soluzione Esercizio 1.2 (4/4) 2. Trovare i nomi dei fornitori che distribuiscono prodotti IBM (IBM è la marca di un prodotto). Passo 4: \[\pi_{\text{Nome}} \] (\[\sigma_{\text{marca} = `IBM'} \) ((Fornitori \times Catalogo) \[\times \) (\pi_{\text{CodiceProdotto}, \text{Marca}} \) (Prodotti)) \[\text{Nome} \] Ladroni Risparmietti Teloporto

Soluzione Esercizio 1.3 (2/5)

3. Trovare i codici di tutti i prodotti che sono forniti da almeno due fornitori.

Passo 1:
$$\pi_{CF, CodiceProdotto}$$
 ($(\rho_{CF\leftarrow CodiceFornitore}(Catalogo))$)

CF	CodiceProdotto
001	0002
001	0003
002	0001
002	0002
002	0003
010	0001
010	0003

Soluzione Esercizio 1.3 (3/5)

€ 1.900 002

CF CodiceProdotto Costo CodiceFornitore

3. Trovare i codici di tutti i prodotti che sono forniti da almeno due fornitori.

```
€ 2.200 002
                         010 0001
Passo 2:
                         002 0001
                                               € 1.900 010
                        010 0001
                                               € 2.200 010
                                               £ 2500 ...002
Catalogo ⋈
    \pi_{\text{CF,CodiceProdotto}} (
         \frac{(\rho_{CF} \leftarrow \text{CodiceFornitore}}{|002|0003}
                                         (Catalogo)))
                                               € 1.800 001
                         001 0003
                                               € 2.200 010
                         010 0003
                                               € 2.000 010
                         002 0003
                                               € 1.800 010
                                               € 2.200 002
                         001 0003
                                               € 2.000 002
                         010
                             0003
                                               € 1.800 002
                         002 0003
```

Soluzione Esercizio 1.3 (4/5)

3. Trovare i codici di tutti i prodotti che sono forniti da almeno due fornitori.

```
Passo 3: \sigma_{\text{CodiceFornitore}} > c_{\text{F}} (
\text{Catalogo} \bowtie \pi_{\text{CF,CodiceProdotto}} (
(\rho_{\text{CF}\leftarrow\text{CodiceFornitore}} (\text{Catalogo}))))
```

CF	CodiceProdotto	Costo	CodiceFornitore
001	0002	€ 3.200	002
002	0001	€ 1.900	010
001	0003	€ 2.200	010
002	0003	€ 1.800	010
001	0003	€ 2.200	002

Soluzione Esercizio 1.3 (5/5)

3. Trovare i codici di tutti i prodotti che sono forniti da almeno due fornitori.

Passo 4:

```
\pi_{\text{CodiceProdotto}} (
```

```
\begin{array}{c} \sigma_{\text{CodiceFornitore}} > \text{CF} & (\\ \text{Catalogo} \bowtie \pi_{\text{CF},\text{CodiceProdotto}} & (\\ & (\rho_{\text{CF}\leftarrow\text{CodiceFornitore}} & (\text{Catalogo}))))) \end{pmatrix}
```

CodiceProdotto 0001 0002 0003

Soluzione Esercizio 1.4 (1/6)

4. Trovare i nomi dei fornitori che distribuiscono tutti i prodotti presenti nel catalogo.

Osservazioni:

- Per risolvere l'esercizio è necessaria una sorta di quantificatore universale.
- L'algebra relazionale non possiede tale costrutto.
- La soluzione si ottiene sottraendo alla relazione Fornitori, una relazione che contiene i Fornitori ai quali manca almeno un prodotto.
- Indicheremo per brevità di esposizione:

CodiceFornitore con CF CodiceProdotto con CP

Soluzione Esercizio 1.4 (3/6)

 Trovare i nomi dei fornitori che distribuiscono tutti i prodotti presenti nel catalogo.

Passo 2:

Sottraggo alla relazione ottenuta nel passo 1 i CF e i CP contenuti nella relazione Catalogo.

(
$$(\pi_{\text{CF}}(\text{Fornitori}) \bowtie \pi_{\text{CP}}(\text{Catalogo}))$$

- $\pi_{\text{CF,CP}}(\text{Catalogo})$)

ottengo una relazione contenente i CF dei Fornitori associati ai CP dei prodotti che non hanno in catalogo quindi i CF dei Fornitori a cui manca almeno un prodotto di quelli in catalogo.

Soluzione Esercizio 1.4 (5/6)

4. Trovare i nomi dei fornitori che distribuiscono tutti i prodotti presenti nel catalogo.

Passo 3:

```
\pi_{\mathrm{CF}} (  (\pi_{\mathrm{CF}}(\mathrm{Fornitori}) \bowtie \pi_{\mathrm{CP}}(\mathrm{Catalogo})) - \pi_{\mathrm{CF,CP}}(\mathrm{Catalogo}) )
```

001 010

Chiamiamo questa interrogazione con R.

R corrisponde ai CF dei Fornitori ai quali manca almeno un prodotto di quelli in catalogo.

Soluzione Esercizio 1.4 (6/6)

 Trovare i nomi dei fornitori che distribuiscono tutti i prodotti presenti nel catalogo.

Passo 4:

```
( \pi_{CF}(Fornitori) - \mathbb{R} )
```

CF di Fornitori che distribuiscono tutti i prodotti presenti nel Catalogo

Passo 5:

Devo ricavare il Nome dei Fornitori

 π_{Nome} ((π_{CF} (Fornitori) - R) \bowtie Fornitore)

Nome

Risparmietti

Foderica como Basi di Davi

Si assuma il seguente schema di data base per la gestione di una biblioteca:

LIBRO(codice_libro, autore, titolo)
LETTORE(codice_lettore, nome, cognome)
PRESTITO(codice_lettore, codice_libro, data_prestito)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

- a) Titoli dei libri presi a prestito il giorno 12/5/99;
- b) Autori dei libri presi a prestito dai signori Paolo Rossi;
- c) Codici dei lettori che hanno preso a prestito libri scritti da Gibson oppure da Sterling.

Esempi di query: Esercizio 1

Si assuma il seguente schema di data base per la gestione di una biblioteca:

LIBRO(codice_libro, autore, titolo)
LETTORE(codice_lettore, nome, cognome)
PRESTITO(codice_lettore, codice_libro, data_prestito)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

- a) Titoli dei libri presi a prestito il giorno 12/5/99;
- b) Autori dei libri presi a prestito dai signori Paolo Rossi;
- c) Codici dei lettori che hanno preso a prestito libri scritti da Gibson oppure da Sterling.
- a) $\pi_{titolo} \sigma_{data_prestito=12/5/99} PRESTITO \ LIBRO$
- b) $\pi_{\text{autore}} \ \sigma_{\text{nome='Paolo'}} \ _{\text{and cognome='Rossi'}} \text{LETTORE} \ \square \ PRESTITO \ \square \ _{\text{LIBRO}}$

Si assuma il seguente schema di data base per la gestione di dati riguardanti il noleggio di cd:

CD(codice_cd, autore, titolo)
CLIENTE(codice_cliente, nome, cognome)
NOLEGGIO(codice_cliente, codice_cd, data_noleggio)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

- a) Autore e titolo dei cd noleggiati dai signori Paolo Rossi in data 20/5/99;
- b) Nome e cognome dei clienti che hanno noleggiato cd dei **REM** in data 12/10/98;
- c) Titolo dei cd che sono stati noleggiati dal cliente avente codice 123A oppure dal cliente avente codice 236B.

Si assuma il seguente schema di data base per la gestione di dati riguardanti il noleggio di cd:

CD(codice_cd, autore, titolo)

CLIENTE(codice_cliente, nome, cognome)

NOLEGGIO(codice_cliente, codice_cd, data_noleggio)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

- a) Autore e titolo dei cd noleggiati dai signori Paolo Rossi in data 20/5/99;
- b) Nome e cognome dei clienti che hanno noleggiato c
d dei REM in data 12/10/98;
- c) Titolo dei cd che sono stati noleggiati dal cliente avente codice 123A oppure dal cliente avente codice 236B.
- a) $\pi_{autore,\ titolo}$ ($\sigma_{nome=^{+}Paolo^{+}\ and\ cognome=^{+}Rossi^{+}}$ CLIENTE $\sigma_{data=20/5/99}$ NOLEGGIO CD)
- b) $\pi_{\text{nome. cognome}}$ ($\sigma_{\text{autore}=\text{'REM'}}$ CD $\bowtie \sigma_{\text{data}=12/10/98}$ NOLEGGIO \bowtie CLIENTE)
- c) $\pi_{titolo}(CD) \sigma_{codice_cliente=`123A' \text{ or codice_cliente=}`236B'}, NOLEGGIO)$

Si assuma il seguente schema di data base per la gestione di dati riguardanti i mondiali di calcio:

MONDIALE(anno, luogo, nazione_vincitrice)
ALLENATORE(cognome, nome, nazione_allenata, anno)
PARTITA(anno, nazione_A, nazione_B, punteggio)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

- Nazioni che hanno vinto il mondiale in casa ed anno in cui ciò è avvenuto:
- Anno e luogo dei mondiali vinti dalle nazioni allenate da Paolo Rossi:
- Nazioni contro cui ha giocato la nazione vincitrice del mondiale 98 durante lo stesso.

Esempi di query: Esercizio 3

Si assuma il seguente schema di data base per la gestione di dati riguardanti i mondiali di calcio:

MONDIALE(anno, luogo, nazione_vincitrice)
ALLENATORE(cognome, nome, nazione_allenata, anno)
PARTITA(anno, nazione_A, nazione_B, punteggio)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

Nazioni che hanno vinto il mondiale in casa ed anno in cui ciò è avvenuto:

· Anno e luogo dei mondiali vinti dalle nazioni allenate da Paolo Rossi:

$$\pi_{anno,\,luogo}(\,\sigma_{nome='Paolo';nd\,\,cognome='Rossi'},\rho_{anno_all\,\,\leftarrow\,\,anno}\,\,ALLENATORE)$$

Nazioni contro cui ha giocato la nazione vincitrice del mondiale 98 durante lo stesso.

 $\pi_{\text{nazione_B}}(\sigma_{\text{anno=1998}}\rho_{\text{anno_vinc}\leftarrow \text{anno}} \text{ MONDIALE} \underset{\text{nazione_vincitrice=nazione_A and anno_vinc=anno}}{\text{PARTITA}}) \\ \cup \\ \pi_{\text{nazione_A}}(\sigma_{\text{anno=1998}}\rho_{\text{anno_vinc}\leftarrow \text{anno}} \text{ MONDIALE} \underset{\text{nazione_vincitrice=nazione_B and anno_vinc=anno}}{\text{PARTITA}})$

Si assuma il seguente schema di data base per la raccolta di prenotazioni di posti su treni:

VIAGGIATORE(codice_v, nome, cognome)

TRENO(codice_t, provenienza, destinazione)

PRENOTAZIONE(codice_v, codice_t, data)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

- a) Nome e cognome dei viaggiatori che in data 10/11/97 hanno prenotato posti su treni da Milano per Roma;
- b) Elenco delle date in cui viaggiatori dal cognome Rossi hanno effettuato prenotazioni;
- c) Provenienza e destinazione dei treni su cui è stata effettuata almeno una prenotazione.

Esempi di query: Esercizio 4

Si assuma il seguente schema di data base per la raccolta di prenotazioni di posti su treni:

VIAGGIATORE(codice_v, nome, cognome)

TRENO(codice_t, provenienza, destinazione)

PRENOTAZIONE(codice_v, codice_t, data)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

- a) Nome e cognome dei viaggiatori che in data 10/11/97 hanno prenotato posti su treni da Milano per Roma;
- b) Elenco delle date in cui viaggiatori dal cognome Rossi hanno effettuato prenotazioni;
- c) Provenienza e destinazione dei treni su cui è stata effettuata almeno una prenotazione.
- a) $\pi_{\text{nome,cognome}}$ ($\sigma_{\text{provenienza='Milano'}}$ and destinazione='Roma', TRENO

 \bowtie $\sigma_{\text{data}=10/11/97}$ PRENOTAZIONE \bowtie VIAGGIATORE)

- b) $\pi_{data}(\sigma_{cognome=`Rossi}\cdot VIAGGIATORE
 MPRENOTAZIONE)$
- c) $\pi_{provenienza, destinazione}$ (PRENOTAZIONE \nearrow TRENO)

Si assuma il seguente schema di data base per la gestione di un video-noleggio:

CLIENTE(codice_c, nome, cognome)
FILM(codice_f, titolo, anno, genere)
NOLEGGIO(codice_c, codice_f, data)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

- a) Nome e cognome dei clienti che hanno noleggiato film di fantascienza;
- b) Titolo dei film gialli noleggiati da Paolo Rossi;
- c) Cognome dei clienti che in data 17/3/99 hanno noleggiato film di fantascienza o film girati nel 1965.

Si assuma il seguente schema di data base per la gestione di un video-noleggio:

CLIENTE(codice_c, nome, cognome) FILM(codice_f, titolo, anno, genere) NOLEGGIO(codice_c, codice_f, data)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

- a) Nome e cognome dei clienti che hanno noleggiato film di fantascienza;
- b) Titolo dei film gialli noleggiati da Paolo Rossi;
- c) Cognome dei clienti che in data 17/3/99 hanno noleggiato film di fantascienza o film girati nel 1965.
- a) $\pi_{\text{nome, cognome}}$ ($\sigma_{\text{genere}^-\text{fantascienza}}$ ·FILM NOLEGGIO CLIENTE)
- $b) \; \pi_{titolo}(\sigma_{nome=`Paolo`\; and \; `Cognome=`Rossi'} \; CLIENTE \bigcirc NOLEGGIO \bigcirc \sigma_{genere=`giallo} \; FILM)$
- c) $\pi_{cognome}$ (CLIENTE) $\sigma_{data=17/3/99}$ NOLEGGIO $\sigma_{genere^+fantascienza^+}$ or anno=1965 FILM)

Si assuma il seguente schema di data base per la prenotazione di aule per esami:

ESAME(codice_esame, materia, professore)
AULA(codice_aula, nome, edificio, capienza)
PRENOTAZIONE(codice_aula, codice_esame, data)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

- a) Edificio e nome delle aule prenotate per gli esami di fisica il giorno 12/5/99;
- b) Nome e capienza delle aule prenotate per esami tenuti dal Prof. Rossi;
- c) Edificio e nome delle aule con capienza di almeno 120 posti le quali non hanno prenotazioni in data 9/11/99

Si assuma il seguente schema di data base per la prenotazione di aule per esami:

ESAME(codice_esame, materia, professore)
AULA(codice_aula, nome, edificio, capienza)
PRENOTAZIONE(codice_aula, codice_esame, data)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

- a) Edificio e nome delle aule prenotate per gli esami di fisica il giorno 12/5/99;
- b) Nome e capienza delle aule prenotate per esami tenuti dal Prof. Rossi;
- c) Edificio e nome delle aule con capienza di almeno 120 posti le quali non hanno prenotazioni in data 9/11/99
- a) $\pi_{\text{nome, edificio}}$ ($\sigma_{\text{materia}=\text{`fisica'}}$, ESAME $\sigma_{\text{data}=12/5/99}$ PRENOTAZIONE σ_{AULA}
- b) $\pi_{\text{nome,capienza}}(\sigma_{\text{professore}^-\text{Rossi}^+}\text{ESAME} \begin{tabular}{|c|c|c|c|} \hline AULA) \\ \hline \end{tabular}$
- c) $\pi_{edificio,\;nome}$ ($\sigma_{capienza>=120}$ AULA) $\pi_{edificio,\;nome}$ ($\sigma_{data=12/5/99}$ PRENOTAZIONE

 \bowtie $\sigma_{capienza>=120}$ AULA)