Giuseppe De Giacomo, Antonio Di Stasio, Giuseppe Perelli, Shufang Zhu

Sapienza Università di Roma {degiacomo,distasio,perelli.zhu}@diag.uniroma1.it

ERC Advanced Grant WhiteMech:

White-box Self Programming Mechanisms

Synthesis under Environment Specifications

 Automatically synthesize an agent strategy with respect to a priori knowledge of how the environment works ¹.

Figure: Reactive System

¹Pnueli and Rosner, "On the Synthesis of a Reactive Module", 1989

LTL_f Synthesis under LTL Specifications²

Given:

- ullet Environment variables ${\mathcal X}$, Agent variables ${\mathcal Y}$
- ullet Agent task $arphi_{task}^a$ in LTL_f, Environment specification $arphi^e$ in LTL

Obtain:

Agent strategy $\sigma_{ag}:(2^{\mathcal{X}})^+\to 2^{\mathcal{Y}}$, a function from past history of environment behaviors to agent actions

$$\forall \sigma_{\mathit{env}} \ \rhd \varphi^{\mathit{e}}, \mathit{play}(\sigma_{\mathit{ag}}, \sigma_{\mathit{env}})^{\mathit{k}} \models \varphi^{\mathit{a}}_{\mathit{task}} \ \mathsf{for some} \ \mathit{k} \in \mathbb{N}$$

 φ^a_{task} describes the desired goal/task when the environment behaviors satisfy the specification φ^e .

²Aminof et al., "Planning and Synthesis Under Assumptions", 2018

Challenges and Successes

- Environment specification φ^e in LTL
 - Büchi determinization, intractable in practice
- ullet Restrictions on the form of the specification φ^e LTL
 - \bullet Safe LTL, co-Safe LTL³, φ^e still contributes to game arena construction
 - Simple Fairness (*infinitely-often*) and Stability (*eventually-always*), $GR(1)^{45}$, restricted expressiveness

³Camacho, Bienvenu, and McIlraith, "Finite LTL Synthesis with Environment Assumptions and Quality Measures", 2018

 $^{^4}$ Zhu et al., "LTL $_f$ Synthesis with Fairness and Stability Assumptions", 2020

 $^{^{5}}$ Giacomo et al., "Finite-Trace and Generalized-Reactivity Specifications in Temporal Synthesis", 2021

- ullet NO restrictions on environment specification $arphi^e$
- A fundamental requirement on agent strategies
 - Obligatorily conduct the stop action in her strategies
 - Stop action: the agent cannot do anything anymore

Impacts of Mandatory Stop Action

 Agent cannot wait till the environment spontaneously brings favorable conditions

Example - Shared kitchen

```
arphi_{task}^{\it a}= "dish cleaned" arphi^{\it e}= "eventually somebody else will do the dishes"
```

 $\sigma_{\text{ag}} = \text{``waiting until somebody does the dishes''}$ is not a winning strategy

This is because when the dishes are done, and the agent can stop, would **not** be controlled by the agent

- \bullet Simpler synthesis algorithms, sidestep Büchi determinization from φ^e
- Every LTL formula formed by a safety part and a liveness part⁶

$$\varphi^{\rm e} = \varphi^{\rm e}_{\rm safe} \wedge \varphi^{\rm e}_{\rm live}$$

- Safety "bad" things never happen
- Liveness "good" things eventually happen

⁶Alpern and Schneider, "Recognizing Safety and Liveness", 1987

$$\varphi^{\rm e} = \varphi^{\rm e}_{\rm safe} \wedge \varphi^{\rm e}_{\rm live}$$

- Safety "bad" things never happen
 - The environment has to maintain the safety for every finite prefix
 - No matter when stop is performed
 - \bullet Agent can exploit $\varphi^{\rm e}_{\it safe}$ to achieve $\varphi^{\it a}_{\it task}$

$$\varphi^{\rm e} = \varphi^{\rm e}_{\rm safe} \wedge \varphi^{\rm e}_{\rm live}$$

- Safety "bad" things never happen
- Liveness "good" things eventually happen
 - Maintain safety, and satisfy liveness in the future
 - $\varphi_{\mathit{live}}^{\mathit{e}}$ can be satisfied after stop is performed
 - \bullet Agent cannot exploit $\varphi^{\rm e}_{\it live}$ to achieve $\varphi^{\rm a}_{\it task}$

Theorem

Let $\mathcal{P} = \langle \mathcal{X}, \mathcal{Y}, \varphi^e, \varphi^a_{task} \rangle$ be the synthesis problem with mandatory stop actions and σ_{ag} an agent strategy.

 σ_{ag} realizes \mathcal{P} iff σ_{ag} realizes $\hat{\mathcal{P}} = \langle \mathcal{X}, \mathcal{Y}, \varphi_{\mathsf{safe}}^{\mathsf{e}}, \varphi_{\mathsf{task}}^{\mathsf{a}} \rangle$.

Synthesis Technique

Given:

• Synthesis problem $\mathcal{P} = \langle \mathcal{X}, \mathcal{Y}, \varphi^e, \varphi^a_{task} \rangle$, agent task φ^a_{task} in LTL_f, environment specification φ^e in LTL

Solution:

- $\textbf{0} \ \ \text{Abstract} \ \ \varphi_{\textit{safe}}^{\textit{e}} \ \ \text{such that} \ \ \hat{\mathcal{P}} = \langle \mathcal{X}, \mathcal{Y}, \varphi_{\textit{safe}}^{\textit{e}}, \varphi_{\textit{task}}^{\textit{a}} \rangle$
- Solve P

Synthesis Technique

Key step: Abstract $\varphi_{\textit{safe}}^{\textit{e}}$ such that $\hat{\mathcal{P}} = \langle \mathcal{X}, \mathcal{Y}, \varphi_{\textit{safe}}^{\textit{e}}, \varphi_{\textit{task}}^{\textit{a}} \rangle$

- **1** Build NBA \mathcal{N}^e of φ^e
- ② Build NBA \mathcal{N}_s^e of $\varphi_{\mathit{safe}}^e$ by marking all states of \mathcal{N}^e accepting
- **3** Build DA \mathcal{D}_s^e of φ_{safe}^e by subset construction

Synthesis Technique

We now have:

- Synthesis problem $\hat{P} = \langle \mathcal{X}, \mathcal{Y}, \mathcal{D}_s^e, \varphi_{task}^a \rangle$, $\mathcal{L}(\varphi_{safe}^e) = \mathcal{L}(\mathcal{D}_s^e)$
- **1** Restrict the environment to considering $\sigma_{env} \rhd \varphi_{safe}^{e}$
- **2** Build the DA of φ_{task}^{a}
- Oombine the two DAs and solve the reachability game over the resulting automaton