A Deep Learning Approach for Network Intrusion Detection System

A Deep Learning Approach for Network Intrusion Detection System

Presented By:

Dr. Ahmad Y. Javaid

Co-authors:

Quamar Niyaz

Dr. Weiqing Sun

Dr. Mansoor Alam

- Introduction
 - Self-taught Learning (STL)
 - NSL-KDD
- Implementation of NIDS
- Results
- Conclusion

- Introduction
 - Self-taught Learning (STL)
 - NSL-KDD
- Implementation of NIDS
- Results
- Conclusion

Introduction

- NIDS can be categorized as:
 - Signature based NIDS (SNIDS)
 - Attacks signatures are pre-installed
 - Anomaly detection based NIDS (ADNIDS)
 - Deviation from normal traffic pattern is attack
 - Most common among research community

Introduction

- Challenges arise for developing an efficient ADNIDS
 - Proper feature selection
 - Organization's reluctance to report any intrusion
 - To maintain privacy of various users
- Deep Learning can help to overcome the challenges of developing an efficient NIDS

- Introduction
 - Self-taught Learning (STL)
 - NSL-KDD
- Implementation of NIDS
- Results
- Conclusion

Self-taught Learning (STL)

- A deep learning approach consists of two stages for classification
 - Feature representation learnt from large unlabeled data, i.e., Unsupervised Feature Learning (UFL)
 - Learnt representation is applied on labeled data
- Sparse auto-encoder used for UFL

Figure 1: Two stages of Self-taught Learning (STL)

- Introduction
 - Self-taught Learning (STL)
 - NSL-KDD
- Implementation of NIDS
- Results
- Conclusion

NSL-KDD Dataset

- An improved version of KDD Cup 99 intrusion dataset
 - Eliminated redundant records in KDD Cup 99
- Dataset records consist of 41 features labeled with normal or a particular attack traffic
 - Includes basic features, traffic features accumulated in a window interval, and content features

NSL-KDD Dataset

- Out of 41 features:
 - 3 nominal, 4 binary, and 34 continuous
- Training and test data contains 23 and 38 traffic classes including normal and attack traffic
 - Attacks grouped into 4 categories: DoS, Probing,
 U2R, and R2L

- Introduction
 - Self-taught Learning (STL)
 - NSL-KDD
- Implementation of NIDS
- Results
- Conclusion

NIDS Implementation

- Implemented using MATLAB/Octave
- Pre-processed the dataset before applying STL
 - 1-to-N encoding to convert nominal attributes to discrete attributes
 - Max-min normalization of the attributes
- Evaluated for both the training and test data

(c) Classification using Self-taught Learning

Figure 2: Steps involved in NIDS Implementation

- Introduction
 - Self-taught Learning (STL)
 - NSL-KDD
- Implementation of NIDS
- Results
- Conclusion

Accuracy Metrics

- Accuracy %age of correctly classified records
- Precision P = TP/(TP + FP) *100%
- **Recall** R = TP/(TP + FN)*100%
- F-measure F = 2 * P * R / (P + R) * 100%

Performance Evaluation

- Implemented the NIDS for 3-types
 - Normal and Anomaly (2-class)
 - Normal and four attack categories (5-class)
 - Normal and 22 attacks (23-class)
 - For training data only
- Precision, Recall, and F-measures evaluated for 2-class and 5-class

Evaluation based on Training data

- Accuracy evaluated for 2, 5, and 23-classes
- STL achieved >98% accuracy for all types

- Precision, recall, and f-measure evaluated for 2-class
- STL achieved f-measure value ~99%

Evaluation based on Test data

- STL achieved accuracy of ~88% for 2-class
- Better than various previous methods

- STL achieved ~90% f-measure value
- SMR achieved only ~77%

- Introduction
- Overview
 - Self-taught Learning (STL)
 - NSL-KDD
- Implementation of NIDS
- Results
- Conclusion

Conclusion

- STL based NIDS showcased good performance compared to other methods on NSL-KDD dataset
- Future work
 - Performance enhancement using other DL methods
 - To be implemented for real-time network operation

Thanks!

e-m@il: ahmad.javaid@utoledo.edu

