Ejercicio 1

Una señal $x_{(t)} = 2.COS(2.\pi.130.t) + 4.COS(2.\pi.300.t)$ es multiplicada por un tren de deltas de Dirac de valor uno y frecuencia fs = 530 Hz, la salida del multiplicador se pasa por un filtro pasabajos de 350 Hz de ancho de banda.

- Representar el espectro de amplitudes de la señal de salida del multiplicador entre -3.fs y 3.fs.
- Representar el espectro de amplitudes de la señal de salida del filtro pasabajos y extraer conclusiones.
- c) Repita a) y b) para el caso de una frecuencia de muestreo fs= 600 Hz. Indique si tendría alguna ventaja aumentar la frecuencia de muestreo a 800 Hz.
- d) Representar el espectro de amplitudes hasta 3 KHz para el caso de multiplicar x_(t) por un tren de pulsos rectangulares de amplitud unitaria (unipolar) con ciclo de actividad del 50% y frecuencia 800 Hz. Compare las amplitudes con las obtenidas anteriormente. En caso de encontrar diferencias cómo se compensa o cancela.

a)Espectro de amplitudes de la señal de salida:

b)
Espectro de amplitudes de la señal de salida del filtro pasabajos:

La señal no se puede recuperar debido a que no se cumple con la condición de Nyquist. La señal tiene componentes mayores a $f_s/2$, por lo ranto se superponen los espectros y se produce aliasing.

En este caso, la señal se muestrea correctamente. Para recuperarla se debería utilizar un filtro ideal con frecuencia de corte 300 Hz.

Si se muestreara a $f_s = 800 Hz$ se podría recuperar perfectamente con el filtro de ancho de banda 350 Hz.

d)

Espectro de amplitudes para el tren de pulsos rectangulares de amplitud unitaria con ciclo de actividad del 50 y frecuencia 800Hz:

En este caso, a diferencia de lo sucedido con el muestreo del tren de deltas, la señal muestreada resulta atenuada en sus frecuencias más altas. Se debería ecualizar la señal para mitigar el efecto.