第六次课程作业

张浩然 023082910001

2023年11月8日

题目 1. 33. 在欧式空间 \mathbb{R}^n 中求一个超平面 W, 使得向量 $e_1 + e_2$ 在 W 中的最佳近似向量为 e_2 .

解答. n=2 时, $W=e_2$

n>2 时, 要求 e_1 与 W 正交, 因此 W 是一个正交于 e_1 并且包含 e_2 的超平面.

题目 2. 37. 设 α_0 是欧式空间 V 中的单位向量, $\sigma(\alpha) = \alpha - 2(\alpha, \alpha_0)\alpha_0, \alpha \in V$. 证明

- (1). σ 是线性变换;
- (2). σ 是正交变换.

解答. (1). 证明 σ 是线性变换: 要证明 σ 是线性变换, 我们需要证明两个性质: 加法性 $\sigma(\alpha + \beta) = \sigma(\alpha) + \sigma(\beta)$ 和齐次性 $\sigma(c\alpha) = c\sigma(\alpha)$, 对所有 $\alpha, \beta \in V$ 和所有标量 c 成立.

加法性证明:

$$\sigma(\alpha + \beta) = (\alpha + \beta) - 2((\alpha + \beta), \alpha_0)\alpha_0$$

展开并重新排列: $\sigma(\alpha + \beta) = \alpha - 2(\alpha, \alpha_0)\alpha_0 + \beta - 2(\beta, \alpha_0)\alpha_0$

这可以重写为: $\sigma(\alpha + \beta) = \sigma(\alpha) + \sigma(\beta)$

齐次性证明:

$$\sigma(c\alpha) = c\alpha - 2(c\alpha, \alpha_0)\alpha_0$$

因 α_0 是单位向量, 提取 c: $\sigma(c\alpha) = c(\alpha - 2(\alpha, \alpha_0)\alpha_0)$

这可以重写为: $\sigma(c\alpha) = c\sigma(\alpha)$

(2). 证明 σ 是正交变换:

正交变换是指保持向量内积不变的变换, 即 $(\sigma(\alpha)\sigma(\beta)) = (\alpha,\beta)$, 对所有 $\alpha,\beta \in V$.

我们需要证明 σ 保持任意两个向量的内积不变。

由于 α_0 是单位向量, $(\alpha_0, \alpha_0) = 1$.

考虑 $(\sigma(\alpha), \sigma(\beta))$:

$$(\sigma(\alpha), \sigma(\beta)) = ((\alpha - 2(\alpha, \alpha_0)\alpha_0)(\beta - 2(\beta, \alpha_0)\alpha_0))$$

展开内积: $(\sigma(\alpha), \sigma(\beta)) = (\alpha, \beta) - 2(\alpha, \alpha_0)(\alpha_0, \beta) - 2(\beta, \alpha_0)(\alpha, \alpha_0) + 4(\alpha, \alpha_0)(\beta, \alpha_0)$

根据 α_0 的单位性质和内积的分配律, 我们可以简化为: $(\sigma(\alpha)\sigma(\beta)) = (\alpha,\beta)$ 从而证明了 σ 保持向量内积不变, 所以它是一个正交变换。

题目 3. 38. 证明: 欧氏空间 V 的线性变换 σ 是反对称变换 (即 $(\sigma(\alpha), \beta) = -(\alpha, \sigma(\beta))$) $\Leftrightarrow \sigma$ 在 V 的标准正交基下的矩阵是反对称矩阵.

解答. 证明: 设 σ 在 V 的标准正交基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 下的矩阵是 $A = (a_{ij})$. 则 $\sigma(\alpha_i) = \sum_{k=1}^n a_{ki} \alpha_k, 1 \leq i \leq n$.

于是 $(\sigma(\alpha_i), \alpha_j) = \sum_{k=1}^n a_{ki}(\alpha_k, \alpha_j) = a_{ji}, (\alpha_i, \sigma(\alpha_j)) = \sum_{k=1}^n a_{kj}(\alpha_i, \alpha_k) = a_{ij}$. 因此 σ 是反对称变换当且仅当 $a_{ji} = a_{ij}$,即 A 是反对称矩阵。

题目 4. 39. 设 σ 是实平面 \mathbb{R}^2 上的线性变换, 其关于标准基的矩阵为 $P = \begin{pmatrix} c & s \\ s & -c \end{pmatrix},$

其中 $c^2 + s^2 = 1$. 证明 σ 是反射变换, 并计算其对称轴.

解答.

- 1. 证明 σ 是一个反射变换:
 - 对于变换 σ 的任意向量 $\alpha = (x, y)$, 变换后的向量是 $\sigma(\alpha) = (cx + sy, sx cy)$ 。
 - 如果我们取 α 为 (c,s), 则 $\sigma(\alpha) = (c^2 + s^2, sc sc) = (1,0) = \alpha$.
 - 如果我们取 α 为 (-s,c), 则 $\sigma(\alpha) = (-cs-sc,s^2-c^2) = (0,-1) = -\alpha$ 。
 - 这表明 σ 实际上是沿着由 (c,s) 定义的直线的反射。

2. 计算对称轴:

- 对称轴是保持不变的直线,所以它必须与保持不变的向量 (c,s) 平行。
- 对称轴的方程可以写为 y = mx + b,其中斜率 m 是向量 (-s,c) 的 y 分量除以 x 分量,即 $m = \frac{c}{-s}$ 。
- 由于 (c,s) 在变换下保持不变,它也位于对称轴上,因此我们可以用它来找到 b。
- 我们可以设置点 (0,s) 和 (c,0) 在对称轴上,从而得到 b=s 和 b=0。综合这两点,我们得到对称轴的方程为 $y=\frac{c}{-s}x+s$ 。