Spark Practice

- 1. Overview
- 2. Spark Applications
- Resilient Distributed Datasets
- 4. Datasets
- 5. Architecture
- 6. Operations
- 7. Tools
- 8. Conclusion

1. Overview

- Apache software, from UC Berkeley
 - Compatible with Hadoop (HDFS)
- Extension of MapReduce for two classes of analytics applications
 - Iterative processing (machine learning, graphs)
 - Interactive data mining (R, Excel, Python)
- Major performance improvement (up to 100*)
 - In-memory processing
 - Optimization of the task graph
- Major usability improvement
 - APIs for Java, Python, R and Scala (functional extension of Java)
 - Interactive use from a Scala interpreter
- Major adoption from industry
 - Databricks: a successful startup from UC Berkeley
 - Will replace MapReduce

What is Spark?

- Unified computing engine and set of libraries for parallel data processing on computer cluster
 - Unified platform for writing big data applications
 - Computing engine:
 - Spark's focus on computation
 - Loading data from storage systems and performing computations on it
 - Using Spark with a wide variety of persistent storage systems
 - Libraries: unified API for common data analysis tasks
 - SQL and structured data (Spark SQL)
 - Machine learning (Mlib)
 - Stream processing (Spark Streaming and the newer Structured Streaming)
 - Graph analytics (GraphX)

Spark Model

- Concept : Resilient Distributed Dataset (RDD)
 - A collection of objects distributed in a cluster
 - Built from parallel transformations (map, filter, etc.)
 - Can be maitained in memory for efficient processing
 - Preserves the nice properties of MapReduce
 - Fault-tolerance, data locality, scalability
- An RDD comes with its provenance information
 - How it has been produced from other RDDs
 - Useful to rebuild an RDD that has been lost after a crash
- The user can control
 - Data persistence (disk or RAM)
 - Data partitioning (hashing, range, [<k, v>])
- Operators: transformations and actions

Spark Toolset (1)

Spark Toolset (2)

- Widely used programming languages (Python, Java, Scala, and R)
- Structured streaming: high-level API for stream processing
 - Allows to rapidly and quickly extract value out of streaming systems with virtually no code change
 - Easy to conceptualize
- Advanced analytics
 - Techniques aimed at solving the core problem of deriving insights
 - Making predictions or recommendations based on data
- Ecosystem
 - Packages and tools created by the community
 - Spark-packages.org

Spark Toolset (3)

- Libraries
 - Unified API for data analysis
 - Provides more and more types of functionality
 - Hundreds of open source external libraries
- Structured APIs for manipulating all sorts of data such as
 - Unstructured log files
 - Semi-structured CSV files
 - Highly structured Parquet files
- Low-level APIs
 - Manipulating distributed data (RDDs)
 - Distributing and manipulating distributed shared variables
 - Broadcast variables
 - Accumulators

2. Spark Application (1)

- Set of Spark jobs defined by one Spark context in the driver program
- Two components
 - Driver process: runs the main() function, sits on a node in the cluster
 - Maintains information about the Spark application
 - Responds to a user's program or input
 - Analyzes, distributes, and schedules work across the executors
 - Executor: carrying out the work that the driver assigns them
 - Executes code assigned by the driver
 - Reports the state of computation on that executor back to the driver node

Spark Application (2)

 SparkSession is a driver process that enables to control Spark Application

```
In Scala:
res0: org.apache.spark.sql.SparkSession =
org.apache.spark.sql.SparkSession@...

In Python:
<pyspark.sql.session.SparkSession at 0x7efda4c1ccd0>
```

 The SparkSession instance is the way Spark executes user-defined manipulations across the cluster

Spark Application (3)

 SparkContext object is the driver program that communicates with the appropriate cluster manager to run the tasks.

```
# in Python
from pyspark.sql import Row
schema = df.schema
newRows = [
Row("New Country", "Other Country", 5L),
Row("New Country 2", "Other Country 3", 1L)
parallelizedRows = spark.sparkContext.parallelize(newRows)
newDF = spark.createDataFrame(parallelizedRows, schema)
# in Python
df.union(newDF)\
.where("count = 1")\
.where(col("ORIGIN COUNTRY NAME") != "United States")\
.show()
Giving the output of:
|DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|count|
 United States | Croatia
```

Spark Application Architecture

Spark Language

- Spark code uses several programming languages
 - Scala (Spark's default language)
 - Java
 - Python (supports nearly all construts that Scala supports)
 - SQL (supports a subset of the ANSI SQL 2003 standard)
 - R Spark uses Spark core (SparkR) and R community-driven package (sparklyr)
- Spark has some core concepts in every language
 - Translating concepts into Spark code
 - Runs Spark code on a cluster of machines

Relationship between SparkSession and Spark's Language API

3. Resilient Distributed Datasets

- Resilient Distributed Dataset (RDD)
 - In memory (possibly cached)
 - Read-only collection of objects
 - Partitioned across machines of a cluster
 - Lineage: allows partitions to be rebuilt when failure

RDD API

- Set of partitions (splits)
 - In memory (possibly cached)
- List of dependencies
- Function to compute a partition
- Preferred locations
- Partitioner

RDD Construction

```
    From a file (e.g., in HDFS)
        val rdd = sc.textFile("hdfs://...")
    By parallelizing a collection
        val data = Range(0, 100)
        val rdd = sc.parallelize(data)
    By transforming another RDD
        val rdd2 = rdd1.filter(...)
```

Operations

- Transformations
 - RDD(s) _ RDD
 - Lazily applied
 - Only computed if result is returned
 - Chain of transformations recomputed each time
 - Except if persisted with cache()
- Actions
 - RDD _ value

Transformations: simple, no shuffle

Transformation	Types
map(f: T => U)	RDD[T] = RDD[U]
filter(f: $T => boolean$)	RDD[T] = RDD[T]
flatMap(f: T => Seq[U])	RDD[T] = RDD[U]
mapPartitions(f: Seq[T] => Seq[U])	RDD[T] = RDD[U]
mapPartitionsWithIndex(f: (int, Seq[T]) => Seq[U])	RDD[T] = RDD[U]
sample()	RDD[T] = RDD[T]
sortBy(f: T => K)	RDD[T] = RDD[T]
keyBy(f: T = K)	RDD[T] = RDD[(K,T)]

Transformations: simple, no shuffle

shuffle

Transformation	Types
mapValues(f: $V => U$)	RDD[(K,V)] = RDD[(K,U)]
flatMapValues(f: V => Seq[U])	RDD[(K,V)] = RDD[(K,U)]
sampleByKey()	RDD[(K,V)] = RDD[(K,V)]

Transformations: key-value, shuffle

Transformations: key-value, shuffle

Transformation	Types
groupByKey()	RDD[(K,V)] = RDD[(K, Seq[V])]
reduceByKey(f: $(V,V) => V$)	RDD[(K,V)] = RDD[(K,V)]
aggregateByKey(zero: U) (f: (U,V) => U, g: (U,U) -> U)	RDD[(K,V)] = RDD[(K,V)]
combineByKey(f: $V => C$, g: $(C, V) => C$, h: $(c, C) => C$)	RDD[(K,V)] = RDD[(K,C)]
foldByKey(zero: V)(f: (V, V) => V)	RDD[(K,V)] = RDD[(K,V)]
groupByKey()	RDD[(K,V)] = RDD[(K, Seq[V])]
partitionBy(part: K => int)	RDD[(K,V)] = RDD[(K,V)]
reduceByKey(f: $(V, V) => V)$	RDD[(K,V)] = RDD[(K,V)]
keys()	RDD[(K,V)] = RDD[K]
values()	RDD[(K,V)] = RDD[V]

Transformations: join & grouping

Transformation	Types
join(RDD[(K, W])	(RDD[(K,V)], RDD[(K,W)]) = RDD[(K,(V,W))]
leftOuterJoin(RDD[(K, W])	(RDD[(K,V)], RDD[(K,W)]) = RDD[(K,(V,W))]
rightOuterJoin(RDD[(K, W])	(RDD[(K,V)], RDD[(K,W)]) = RDD[(K,(V,W))]
fullOuterJoin(RDD[(K, W])	(RDD[(K,V)], RDD[(K,W)]) = RDD[(K,(V,W))]
cogroup(RDD[(K, W])	$(RDD[(K,V)], RDD[(K,W)]) \sqsubseteq RDD[(K,(Seq[V],Seq[W]))]$
subtractByKey(RDD[(K, W])	(RDD[(K,V)], RDD[(K,W)]) = RDD[(K,V)]

Action	Types
count()	RDD[T] _ Long
reduce(f: (T, T) => T)	RDD[T] _ T
treeReduce(f: $(T, T) => T$)	RDD[T] _ T
aggregate(zero: U) (f: $(U,T) => U$, g: $(U,U) => U$)	RDD[T] _ U
treeAggregate(zero: U) (f: $(U,T) => U$, g: $(U,U) => U$)	
first()	RDD[T] _ T
take()	RDD[T] _ Array[T]
takeSample()	RDD[T] _ Array[T]
max()	RDD[T] _ T

collect(): Gathers the entries from all partitions into the driver

Action	Types
countByKey()	RDD[(K,V)] _ Map[K, Long]
collectAsMap()	$RDD[(K,V)] \sqsubseteq Map[K, V]$
lookup(K)	$RDD[(K,V)] \subseteq Seq[K, V]$

Example: wordcount

```
val textFile = spark.textFile("hdfs://input/path")

val words = textFile.flatMap(line => line.split("\\s+"))
val oneCounts = words.map(word => (word, 1))
val counts = oneCounts.reduceByKey(_ + _)

val counts.saveAsTextFile("hdfs://output/path")
```

Example: wordcount

Example: wordcount

4. Datasets

- Foundational type of the structured APIs
- A strictly Java Virtual Machine language feature that works only with Scala and Java
- When to use Datasets?
 - When the operation(s) you would like to perform cannot be expressed using dataframe manipulation
 - When you want or need type-safety
 - The cost of performance

Creating Datasets

```
In Java: Encoders

import org.apache.spark.sql.Encoders;
public class Flight implements Serializable{
   String DEST_COUNTRY_NAME;
   String ORIGIN_COUNTRY_NAME;
   Long DEST_COUNTRY_NAME;
}
Dataset<Flight> flights = spark.read
   .parquet("/data/flight-data/parquet/2010-summary.parquet/")
   .as(Encoders.bean(Flight.class));
```

Creating Datasets

```
In Scala: Case Classes

case class Flight(DEST_COUNTRY_NAME: String,
   ORIGIN_COUNTRY_NAME: String, count: BigInt)
val flightsDF = spark.read
   .parquet("/data/flight-data/parquet/2010-summary.parquet/")
val flights = flightsDF.as[Flight]
```

Creating Datasets

- To create Datasets in Scala, you define a Scala case class. A case class is a regular class
- That has the following characteristics:
 - Immutable
 - Decomposable through pattern matching
 - Allows for comparison based on structure instead of reference
 - Easy to use and manipulate

Operations

- Actions
 - Collect
 - Take
 - Count
- Transformations
 - Filtering
 - Mapping
 - Mapping example

```
val destinations = flights.map(f =>
f.DEST_COUNTRY_NAME)
```

- Joins
- Grouping and Aggregations

5. Executor Architecture

Executor with PySpark

Deployment

- Roles
 - Coordinator

 Driver (SparkContext)
 - Executor
- Deployment
 - Local
 - One executor (driver inside)
 - Distributed
 - Driver + several executors
- Cluster manager maintains a cluster of machines that runs Spark applications
 - Standalone
 - YARN
 - Mesos

Spark YARN (yarn-client)

Spark YARN (yarn-cluster)

6. Operations

Stage 0 textFile flatMap map

DAG

DAG

Stage 0 textFile fatMap map

Stages

Stage 0 textFile flatMap map

DAG

Shuffle

- Represents a physical repartitioning of the data, for instance
 - Sorting a DataFrame
 - Joins
 - Aggregations
 - Grouping data that was loaded from a file by key
- Separates stages in the DAG
- May be triggered by
 - Repartitions
 - *ByKey and *By operations
 - Join
- It takes into account RDD partitioning
 - Narrow dependencies
 - Wide dependencies

Shuffle

- Sorting is only performed if required in reduce task
- Hash Shuffle
 - Each map creates one file per reducer
 - Records are appended to each file
- Sort shuffle (default from 1.4)
 - One file per map task
 - File ordered by reducer id and indexed
- Tungsten shuffle
 - Operates directly on serialize data
 - To be used only under certain conditions

Hash Shuffle

- Each map creates one file for each reducer
 - Files = M * R
- Each record is written directly to target file
- Optimization File consolidation
 - A pool of output files created by executor
 - Each map tasks requests R files
- Pros / Cons
 - ++ fast / no sort, no memory overhead, no hash table
 - -- # partitions _ a lot of files, random IO

Sort Shuffle

- Similar to MapReduce shuffle
 - One file per map task
 - File ordered by reducer id and indexed
 - If not enough memory

 spill to disk
 - BUT results are not merged in reduce side
- Special implementation of hash table
 - Allows combine in place
- Merging is only done when request from reducerPros / Cons
 - ++ less # of files, less # of random IO
 - -- sorting slower than hashing, SSDs favor hash-based

Tungsten Shuffle

- Operates directly on serialized binary data
 - Direct spilling
 - May merge spills by direct concatenation
- Uses special cache-efficient sorter
- To be used only when
 - No aggregation
 - Codec supports relocation of serialized values
 - Less than 16777216 partitions
 - Record < 128MB

7. Tools

SparkSQL

- Provides the ability to run SQL on top of Spark
- ASpark module for structured data processing
- Defines an interface for a semi-structured data type called Dataframes and a typed version (Datasets)
 - APIs as well support for basic SQL queries
- The Spark SQL library enables
 - Relational processing both within Spark programs and on external data sources using a programmer-friendly API
 - High performance using established DBMS techniques
 - Support of new data sources, including semi structured data and external databases
 - Enables extension with advanced analytics algorithms such as graph processing and machine learning

SparkSQL Example

Create a DataFrame, manipulate it with SQL, and then manipulate it again as a DataFrame

```
# in Python
# spark is an existing SparkSession
    spark.sql("CREATE TABLE IF NOT EXISTS src (key INT, value
STRING) USING hive")
    spark.sql("LOAD DATA LOCAL INPATH
'examples/src/main/resources/kv1.txt' INTO TABLE src")
 # Queries are expressed in HiveQL
    spark.sql("SELECT * FROM src").show()
    # |key| value|
    # +---+
    # |238|val 238|
   # | 86| val_86|
    # |311|val_311|
```

Dataframes

- Structured API which represents a table of data with rows and columns
- Distributed collection of data organized into named columns
- DF Creation
 - From existing RDD
 - Schema inference
 - Schema specification
 - Data sources
 - Parquet files, JSON, (csv)
 - Hive, JDBC
- DF Manipulation
 - DF Operations
 - SQL queries programmatically

Dataframes

- Dataframe represents
 - Immutable, lazily evaluated plans
- Specify what operations to apply to data residing at a location to generate some output
- Immutable
 - Spark core data structure cannot changed after there are created
- Lazy evaluation
 - Spark will wait until the last moment to execute the graph of computation instructions

Dataframe operations

- Transformations: ways of specifying different series of data manipulation.
 - Build up logic transformation plan
 - Narrow dependencies (each input partition will contribute to only one output partition)
 - Wide dependencies (input partitions contributing to many output partitions)
- Action: instructs Spark to compute a result from a series of transformations (e.g. Count)
 - Actions to view data in the console
 - Actions to collect data to native objects in the respective language
 - Actions to write to output data sources

Narrow transformations 1 to 1

Wide transformations 1 to N

Dataframe Example

Schema inference

```
case class LogEntry(
 timestamp: Long,
 host: String,
 facility: Int,
 severity: Int,
 app: String,
 message: String)
val logMessages = sc.textFile("hdfs://input/path")
val logEntries = logMessages.flatMap(Syslog.parseLine)
val logEntriesDF = logEntries.toDF()
```

Dataframe Example

Schema inference

```
logEntriesDF.printSchema()
root
|-- timestamp: long (nullable = false)
|-- host: string (nullable = true)
|-- facility: integer (nullable = false)
|-- severity: integer (nullable = false)
|-- app: string (nullable = true)
|-- message: string (nullable = true)
```

Dataframe Example

Querying with DF API

```
val res = logEntriesDF.filter("severity < 3")</pre>
            .groupBy("app")
            .count()
            .filter("count > 5")
            .sort($"count".desc)
res.show(5)
+----+
   app|count|
+----+
    kernel| 1942|
|lustre-target| 514|
  OMPI-ERROR | 331|
     ioadm| 297|
     crmd| 18|
+----+
```

Dataframe Example

Querying with SQL

```
logEntriesDF.registerTempTable("logEntries")
val res = sqlContext.sql(
 "select app, count(*) as count from logEntries where severity < 3 " +
 "group by app having count > 5 " +
 "order by count desc"
res.show(5)
+----+
    app|count|
+----+
    kernel| 1942|
|lustre-target| 514|
  OMPI-ERROR | 331|
     ioadm| 297|
     crmd| 18|
  ----+
```

Dataframe Example

Programmatically specifying a schema

```
val schema = StructType(Seq(
  StructField("logCount", LongType),
  StructField("facilityCount", ArrayType(LongType)),
  StructField("severityCount", ArrayType(LongType)),
  StructField("appCount", MapType(StringType, LongType))
))
val windowsRow = windows.map(w => Row(w.stats.logCount,
                       w.stats.facilityCount,
                       w.stats.severityCount,
                       w.stats.appCount))
val windowsDF = sqlContext.createDataFrame(windowsRow, schema)
windowsDF.printSchema()
```

Dataframe Example

Programmatically specifying a schema

Dataframe Optimization

Catalyst optimizer

Spark SQL Optimization

SELECT name
FROM (SELECT id)
name
FROM People) p
WHERE p.id = 1

Spark SQL Optimization

- Find filters on top projections
- 2. Check that the filter can be evaluated without the result of the project
- 3. If so, switch the operators

Dataframe Optimization

- Catalyst optimizer [SIGMOD 2015]
 - Supports rule-based and cost-based optimizations
 - Users can extend optimizer
 - Data source specific rules
 - e.g., push filtering/aggregation into external storage
- Spark performs standard optimization
 - Constant folding
 - Predicate pushdown
 - Projection pruning
 - Null propagation
 - Boolean expression simplification
 - etc.

Dataframe Optimization

Physical Planning

Spark Streaming

- Library that is working on top of Spark, that enables processing of live data streams
- Stream processing API
 - Data divided into mini-batches
- DStream _ Sequence of RDDs
- Sources: HDFS, Kafka, Flume, Kinesis
- Supported languages
 - Scala
 - Java
 - And Python

Micro Batch Data Processing

Decomposition of a stream in a series of very small jobs (*mini-batches*)

- Decomposition in batches of X seconds (ex. X=0,5)
- Each batch is treated as an RDD
- The results of RDD operations are returned as batches

SparkMLlib/ ML

- Enables development of machine learning applications
 - Classification and regression (linear models, decision trees)
 - Collaborative filtering (ALS)
 - Clustering (k-means, Gaussian mixture, LDA)
 - Dimensionality reduction (SVD, PCA)
 - etc
- Two packages
 - MLlib: on top of RDDs
 - ML: on top of DataFrames
- Supporting languages
 - Scala
 - Java
 - Python
 - And R

ML API

- Based on DataFrames
- ML workflows can be specified as pipelines
 - Pipelines can be trained with combination of parameters
- Pipeline elements
 - Transformer
 - Estimator
 - Evaluator

8. Conclusion on Spark

- Rich APIs to make data analytics fast
- Up to 100x speedups in real applications
- Framework for large-scale parallel processing
- Multiple integrated components

Sources

Documents

- Apache Spark. http://spark.apache.org/
- Big Data Processing with Apache Spark. Miguel Liroz Gistau
- Parallel Programming with Spark. Matei Zaharia
- Spark/Python Practice. Boyan Kolev and Esther Pacitti

Books

- Principles of Distributed Database Systems 3rd Edition,
 Springer. Tamer Özsu and Patrick Valduriez
- Spark The Definitive Guide: big data processing made simple 1st Edition, O'Reilly Media. Bill Chambers and Matei Zharia
- High Performance Spark 1st Edition, High Performance Spark 1st Edition. Holden Karau and Rachel Warren
 - Apache Spark 2 for Beginners, Coderprog. Rajanarayanana Thottuvaikkatumana

Spark Practice

- Download and run Spark's Python shell
- 2. Basic exercise
- 3. Advanced exercise

shell

- Download Spark binaries from https://spark.apache.org/downloads.html
 - Choose some « pre-built for Apache Hadoop » package type
 - Or directly from the Apache mirror
- Extract the archive, enter into the extracteddirectory and start Spark's Python shell by running the ./bin/pyspark executable
- Note that the number of workers can be passed with the -- master argument of pyspark
 - E.g. This command initiates a Spark cluster with 2 workers: ./bin/pyspark --master local [2]

2. Basic Exercise

- Word count
- Evaluating the benefit of parallelism
- Filtering the result

3. Advanced Exercise

- First goal: get user-keyword pairs
- Count the occurrence of each pair
- Map by keywords
- Final goal: keep only the winner
- Raising the scale
- Filter by particular keywords