Sample problems for marken 1. Suppose 6 is a group in which every element other than the ; rentry has order 2. Show G'is abelian. 2. Does wery infinite group have infuntely many district subgroups? Prove your ansvier (Engestron: Pons, der the case Separately that there is in element of infinte order and that every element has funte order 3. Let Q* le C-5 vy with multiplication as an sparator. Is this is morphic to 1R-3. 4 with multiplication as operation? Why or why not? 4 show that IF H is a subgroup of roder in In a group G of order 24, then His novnel in G. 5. Does prob 4 work if G 1s of order 3n, H
of order n. Prove or que a cottenter example b. Suppose Hand Kare normal in a group F

with $H \cap K = \{e\}$.

(a) Snow that hk=kH if hetl, keK. (b) Snow that the subgroup of G generated by H and K together 15 150 morphus to HOK (= \{(h, h): h\text{+}1, k\text{+}1 \text{ with Speakon $(h_1, h_1) \times (h_1, h_2) = (h, h_1, h, h_2)$ 7. Suppose f.G. - G. is a honomorphism, From: her F (= 6 g + 6, : F(g) = e + (n)) is a normal subgroup of G. 8. In the situation of problem 7, is the image of Fisomorphic G,/herF? Prox your 9- Find G, (x) and Q2(x) such that $1 = Q_1(x) (x-1)^3 + Q_2(x) (x-2)^3$ 10. Explain why there exists = Jolynomial of pos. P(x) such that P(A)=0, pot au nan matrix with R coefficients. 11. Suppose P(x) is an irreducible polynamid over B. Prove: deg P < 2.

12. Tind dec, 40, Such that [P(i+tx) < 1P(i)] for all sufficiently small to where $P(x) = x^3 + 5x^2 + 7$ 13. If $\lambda \in \mathbb{C}$, A an NXN \mathbb{C} -valued matrix. I an eigenvalue of A, then by definition the generalized eigenspace of h is G(A)= {v: (A-11) h = 0 for some h>0}. Prove: If 11, 1/2 are two eigenealnes of A write $\lambda_1 \neq \lambda_2$ then $G_{\lambda_1}(A) \cap G_{\lambda_2}(A) = \{\hat{o}\}$ 14. Explain why the torthogonal group SO(u) has dimension N(n-1)/2, $U \ge 2$ (SO(n) = set of uxn R-valued matrices with let = 1) 15. Proce. the number of conjugates of a subgroup HCG = MolH) i inf (where No(14) = the normalyer of H on G = 7 ge 6: 5" Hgf = H).

18. Prove NG(H) is a subgroup of G.
17. Illustrate port 15 for subgroups of 53.
determining which ones are normal
and which not noting.
18. Explan why Iwithout using the theorem
about subgroups of Index?) that
An is normal on In Where
An = group of then permutations
(éven" means sgn = +1).
19. Is every permutation in 5, a product
of n-1 "trans positions" (interchanges)?
(ha all x = 2). Prove your arriver,
20. Discuss Why each pérmutapor in Son
is a product of desjoint 'cyclos'.
21. When is son (12 in) (reversing order promption)