Measuring polygonal niceness

Sharmila Duppala¹, David Kraemer¹

¹AMS 545: Computational Geometry Stony Brook University

May 1, 2018

Preliminaries

- $\lambda(A)$ is the area of a set $A \subseteq \mathbb{R}^2$.
- Let $P \subseteq \mathbb{R}^2$ denote a simple bounded closed polygon.
- ∂P is the boundary of P.
- $|\partial P|$ is the perimeter of P.
- [x, y] is the closed line segment bounded by $x, y \in \mathbb{R}^2$.

Definition (α -fatness)

The α -fatness score is given by

$$\alpha(P) = \inf \{ \frac{\lambda(B(x,\rho) \cap P)}{\lambda(B(x,\rho))} : \rho > 0 \}$$

where $x \in P$, and $B(x, \rho)$ is a ball centered at x not containing P.

- The "minimizing" ball might contain P.
- Find the smallest such proportion. This is $\alpha(P)$.
- It's much easier when the ball is a square!

• Let R be a rectangle with length ℓ and height h. (WLOG, $\ell \geq h$.) Then

$$\alpha(R)=\frac{h}{4\ell}.$$

• Let C be a circle with radius r. Then

$$\alpha(C) = \frac{\pi r^2}{16r^2} = \frac{\pi}{16} < \frac{1}{4}.$$

Definition (Chord-arc)

The **chord-arc score** is given by

$$s_p(P) = \inf\{\max(|\partial P'|, |\partial P''|) : x, y \in \partial P\},\$$

where the chord [x, y] partitions $P = P' \cup P''$.

- This is a "minimax" definition. We want the least bad resulting split.
- The polygon perimeter is computed by summing the "lengths" of each boundary edge.
- Here p indicates a norm. Ideally p=2, but for computation purposes we choose p=1 or $p=\infty$.

• Let R be a rectangle with length ℓ and height h. (WLOG, $\ell \geq h$.) Then

$$s_p(R) = 2h + \ell$$

• This holds for many *p*.

Stray observations

- The α fatness score seems to penalize oblong polygons and reward "squarely compact" polygons.
- The chord-arc score seems to penalize local nonconvexity.
- Remember that we want a large α score but a small chord-arc score.

Implementation

- The measurements were implemented in C++ using CGAL with exact arithmetic kernel.
- We used a δ -boundary discretizing scheme: the length of $[x_k, x_{k+1}]$ is at most $\delta > 0$ for consecutive boundary vertices.
- Generating useful test polygons was tricky.
- We ran our measurements on
 - Special internally generated nice polygons,
 - Randomly generated "typical" polygons (courtesy of Professor Mitchell),
 - (Simplified) US state boundaries.

Randomly generated polygons

 α fatness rank: 6 Arc L_{∞} rank: 5

 α fatness: 0.1160 Arc L_{∞} : 0.4460

 α fatness rank: 3 Arc L_{∞} rank: 4

 α fatness: 0.1394 Arc L_{∞} : 0.4334

 α fatness rank: 5 Arc L_{∞} rank: 2

 α fatness: 0.1260 Arc L_{∞} : 0.3977

 α fatness: 0.1424 Arc L_{∞} : 0.2334

 α fatness rank: 4 Arc L_{∞} rank: 6

 α fatness: 0.1278 Arc L_{∞} : 0.5619

 α fatness rank: 1 Arc L_{∞} rank: 3

 α fatness: 0.1492 Arc L_{∞} : 0.4119

Randomly generated polygons

Arc L_1 rank: 6 Arc L_∞ rank: 5

Arc L_1 : 0.7061 Arc L_{∞} : 0.4460

Arc L_1 rank: 3 Arc L_∞ rank: 2

Arc L₁: 0.4774 Arc L_∞: 0.3977

Arc L_1 rank: 5 Arc L_∞ rank: 6

Arc L_1 : 0.6193 Arc L_{∞} : 0.5619

Arc L_1 : 0.4092 Arc L_∞ : 0.4119

Arc L_1 rank: 4 Arc L_{∞} rank: 4

Arc L₁: 0.5583 Arc L_∞: 0.4334

Arc L_1 rank: 1 Arc L_∞ rank: 1

Arc L₁: 0.2614 Arc L∞: 0.2334