I Blood Group System

Number of antigens 1

High prevalence I

Terminology

ISBT symbol (number) I (27)

Obsolete names 207; Ii collection

History The I antigen was placed in a system in 2002,

when mutations of the *I* gene encoding the glycosyltransferase responsible for converting i-active straight oligosaccharide chains to I-active

branched chains were identified.

Expression

Soluble form Human milk, saliva, amniotic fluid, urine, ovarian

cyst fluid (small amounts in serum/plasma)

Other blood cells Lymphocytes, monocytes, granulocytes, platelets

Tissues Wide tissue distribution

Gene

Chromosome 6p24.2

Name I(GCNT2, IGnT)

Organization 3 exons spread over approximately 100 kbp of

gDNA; three forms of exon 1 are differentially spliced to give one of three transcripts: IGnTA,

IGnTB or IGnTC^{1,2,3}

Product 6-β-N-acetylglucosaminyltransferase (β6GlcNAc-

transferase, β 6GlcNAc-T); the branching enzyme for I antigen expression on RBCs is encoded by *IGnTC*; expression of I antigen on lens epithelium is

encoded by IGnTB

Database accession numbers

GenBank NM_145655.3; AF458026 (mRNA)

Entrez Gene ID 2651

Molecular bases of weak I antigen

Homozygosity or compound heterozygosity for weakened expression of *GCNT2* alleles leads to the I+^W phenotype. The reference allele, *GCNT2*01* (Accession number NM_145655.3) encodes I (I1). Nucleotide differences from this allele, and amino acids affected, are given.

Allele encodes	Allele name	Exon	Nucleotide	Amino acid	Ethnicity (prevalence)
I+W	GCNT2*01W.01	1C	243T>A	Asn81Lys	Caucasians, Taiwanese (Rare)
I+W	GCNT2*01W.02	1C	505G>A	Ala169Thr	Caucasians (Rare)
I+W	GCNT2*01W.03	1C	683G>A	Arg228Gln	Caucasians (Rare)

Molecular bases of silencing of GCNT2

Homozygosity or compound heterozygosity for silent *GCNT2* alleles leads to the I– (adult i) phenotype. Differences from *GCNT2*01* reference allele (accession number NM 145655.3) are given.

Allele name	Exon	Nucleotide	Amino acid	Ethnicity (prevalence)
GCNT2*01N.01	3	1049G>A	Gly350Glu	Japanese, Taiwanese (Rare)
GCNT2*01N.02	3	1154G>A	Arg385His	Japanese, Taiwanese (Rare)
GCNT2*01N.04	1C 2	816G>C; 1006G>A	Glu272Asp; Gly336Arg	(Rare)
GCNT2*01N.05	2	984G>A	Trp328Stop	Arabs (Rare)
GCNT2*01N.06	1B, 1C, 2, 3	del exons 1B, 1C, 2, 3	No protein	Taiwanese (Rare) Pakistani (Rare)
GCNT2*01N.07	1C	651delA	Val244Stop	Japanese (Rare)
GCNT2*01N.08	2	935G>A	Gly312Asp	Persian Jews (Rare)

Amino acid sequence for IGnTC β 6GlcNAc-transferase^{1,2,3}

MNFWRYCFFA	FTLLSVVIFV	RFYSSQLSPP	KSYEKLNSSS	ERYFRKTACN	50
HALEKMPVFL	WENILPSPLR	SVPCKDYLTQ	NHYITSPLSE	EEAAFPLAYV	100
MVIHKDFDTF	ERLFRAIYMP	QNVYCVHVDE	KAPAEYKESV	RQLLSCFQNA	150
FIASKTESVV	YAGISRLQAD	LNCLKDLVAS	EVPWKYVINT	CGQDFPLKTN	200
REIVQHLKGF	KGKNITPGVL	PPDHAIKRTK	YVHQEHTDKG	GFFVKNTNIL	250
KTSPPHQLTI	YFGTAYVALT	REFVDFVLRD	QRAIDLLQWS	KDTYSPDEHF	300
WVTLNRVSGV	PGSMPNASWT	GNLRAIKWSD	MEDRHGGCHG	HYVHGICIYG	350
NGDLKWLVNS	PSLFANKFEL	NTYPLTVECL	ELRHRERTLN	QSETAIQPSW	400
YF					402

Carrier molecule

The *GCNT*2 gene product adds β 6GlcNAc to i-active, linear oligosaccharide chains of repeating *N*-acetyllactosamine units on glycolipids and glycoproteins on RBCs, and to glycoproteins in plasma (see figure in Section III). Present on proteins with polylactosamine-containing N-glycans (band 3, glucose transporter, etc.)⁴.

A range of copy numbers per RBC has been reported⁴.

Function

Not known.

Disease association

A decreased expression of I antigen and concomitant increased expression of the reciprocal i antigen are associated with leukemia, Tk polyagglutination, thalassemia, sickle cell disease, HEMPAS, Diamond Blackfan anemia, myeloblastic erythropoiesis, sideroblastic erythropoiesis, and any condition that results in stress hematopoiesis. Congenital cataracts are associated with a lack or marked reduction of I antigen on RBCs and lens². Caucasians without cataracts have a markedly reduced β 6GlcNAc-transferase activity¹. Asians with cataracts have no β 6GlcNAc-transferase activity^{2,3}. Anti-I is associated with cold hemagglutinin disease (CHAD) and pneumonia due to *Mycoplasma pneumoniae*.

Phenotypes associated with I antigen and the reciprocal i antigen

RBCs	Antiger	Antigen expression		
	1	i		
Adult	Strong	Weak	Common	
Cord	Weak	Strong	All	
i Adult	Trace	Strong	Rare	

Comments

I antigens occur at the branching points of A-, B-, and H-active oligosaccharide chains.

Branching is under developmental control regulated by phosphorylation of key residues in the C/EBP α transcription factor, which acts on the *GCNT2* promoter. Once the gene is activated, the level of the I antigen expression on RBCs of the newborn child begins to increase⁵.

References

- ¹ Yu, L.-C., et al., 2001. Molecular basis of the adult i phenotype and the gene responsible for the expression of the human blood group I antigen. Blood 98, 3840–3845.
- ² Yu, L.C., et al., 2003. The molecular genetics of the human I locus and molecular background explaining the partial association of the adult i phenotype with congenital cataracts. Blood 101, 2081–2087.

- 3 Inaba, N., et al., 2003. A novel I-branching β -1,6-N-acetylglucosaminyltransferase involved in human blood group I antigen expression. Blood 101, 2870–2876.
- ⁴ Cooling, L., 2010. Polyactosamines, there's more than meets the "Ii:" a review of the I system. Immunohematology 26, 133–155.
- ⁵ Yu, L.C., Lin, M., 2011. Molecular genetics of the blood group I system and the regulation of I antigen expression during erythropoiesis and granulopoiesis. Curr Opin Hematol 18, 421–426.

I Antigen

Terminology

ISBT symbol (number) I1 (027001 or 27.1)

Obsolete names 900026; 207001; Individual

History Reported in 1956; named I to emphasize the high

degree of the "Individuality" of blood samples failing to react with a potent cold agglutinin. Placed in a collection with i antigen in 1990, and made a one-antigen system in 2002 when the gene encoding

the branching transferase was cloned.

Occurrence

Adults >99%

Reciprocal antigen

i [See Ii Collection (207)].

Expression

Cord RBCs Weaker than on adult RBCs; frequently appear to be

I-negative

Altered Weakened on RBCs produced under hematopoietic

stress, and on South East Asian ovalocytes (see also

Disease association).

Molecular basis associated with I antigen

See System pages for molecular bases associated with I-negative (adult i) phenotype.

Effect of enzymes and chemicals on I antigen on intact RBCs

Ficin/Papain Resistant (markedly enhanced)
Trypsin Resistant (markedly enhanced)
α-Chymotrypsin Resistant (markedly enhanced)

Sialidase Resistant (enhanced)

DTT 200 mM Resistant

Acid Resistant

In vitro characteristics of anti-I

Immunoglobulin class IgM (rarely IgG)
Optimal technique RT or 4°C

Complement binding Yes; some hemolytic

Clinical significance of anti-I

Transfusion reaction No (may need to infuse through an approved

blood warmer). Increased destruction of I+ RBCs transfused to people with the adult i phenotype and

alloanti-I

HDFN No

Autoanti-I

Most people have cold-reactive autoanti-I in their plasma.

A common specificity in CHAD and pregnancy.

Comments

So-called compound antigens have been described: IA, IB, IAB, IH, IP1, ILe^{bH} .

Alloanti-I is rare because the I– (adult i) phenotype is rare.