Семинар по функциональному анализу. 315 группа, 23.03.20 (7-ой день карантина)

"Слабая и *-слабая сходимость"

Перед решением задач по этой теме рекомендуется самостоятельно прочитать раздел 17.5 (стр. 176 – 178) из книги В.А. Треногина "Функциональный анализ".

Определение 1. Пусть X – линейное нормированное пространство. Последовательность $\{x_n\}_{n=1}^{\infty}$, $x_n \in X$ слабо сходится κ $x \in X$, если для любого линейного непрерывного функционала $f \in X^*$ $f(x_n) \to f(x)$ при $n \to \infty$.

Определение 2. Пусть X – линейное нормированное пространство. Последовательность $\{f_n\}_{n=1}^{\infty}$, $f_n \in X^*$ *-слабо сходится κ $f \in X^*$, если для любого $x \in X$ $f_n(x) \to f(x)$ при $n \to \infty$.

Чем отличается *-слабая сходимость от слабой сходимости в пространстве X^* ?

Теорема 1. Если последовательность x_n сходится κ x сильно при $n \to \infty$, то $x_n \to x$ слабо при $n \to \infty$.

Теорема 2. Если последовательность x_n сходится слабо, то она ограничена.

Доказательство следует из принципа равномерной ограниченности (теоремы Банаха-Штейнгауза).

Теорема 3. Пусть X, Y — банаховы пространства, $A: X \to Y$ — линейный непрерывный оператор. Тогда если $x_n \to x$ слабо $(x_n \in X)$, то $Ax_n \to Ax$ слабо.

Теорема 4. Пусть X – конечномерное нормированное пространство. Тогда если $x_n \to x$ слабо, то $x_n \to x$ сильно.

Задача 1. Пусть X – банахово пространство. Доказать, что если последовательность $f_n \in X^*$ *-слабо сходится, то она равномерно ограничена по норме.

Решение: Следствие из теоремы Банаха-Штейнгауза.

Задача 2. Пусть X – банахово пространство, $x_n, x \in X$, $f_n, f \in X^*$. Доказать, что из каждого из двух условий

- $x_n \to x$ слабо, $f_n \to f$ сильно;
- $x_n \to x$ сильно, $f_n \to f *$ -слабо

следует сходимость $f_n(x_n) \to f(x)$. Привести пример недостаточности условия

• $x_n \to x$ слабо, $f_n \to f$ *-слабо.

Решение:

1) Пусть $x_n \to x$ слабо, $f_n \to f$. Тогда

$$|f_n(x_n) - f(x)| = |(f_n(x_n) - f(x_n)) + (f(x_n) - f(x))| \le ||f_n - f|| \cdot ||x_n|| + |f(x_n) - f(x)|.$$

Слабо сходящаяся последовательность ограничена, а значит $||x_n|| \le C$.

$$f_n \to f \Rightarrow ||f_n - f|| \to 0$$
 при $n \to \infty$.

$$x_n \to x$$
 слабо $\Rightarrow |f(x_n) - f(x)| \to 0$.

Объединяя полученные соотношения, получаем, что $|f_n(x_n)-f(x)|\to 0$, то есть $f_n(x_n)\to f(x)$.

2)Пусть $x_n \to x$, $f_n \to f$ слабо. Тогда

$$|f_n(x_n) - f(x)| = |(f_n(x_n) - f_n(x)) + (f_n(x) - f(x))| \le ||f_n|| \cdot ||x_n - x|| + |f_n(x) - f(x)|.$$

*-слабо сходящаяся последовательность ограничена, а значит $||f_n|| \le C$.

$$x_n \to x \Rightarrow ||x_n - x|| \to 0$$
 при $n \to \infty$.

$$f_n \to f$$
 *-слабо $\Rightarrow |f_n(x) - f(x)| \to 0$.

Объединяя полученные соотношения, получаем, что $|f_n(x_n)-f(x)|\to 0$, то есть $f_n(x_n)\to f(x)$.

3) Пример: $X=l_2, x_n=f_n=e_n$ (базис). Для любого $g\in l_2^*$ функционал g соответствует вектору $g=(g_1,g_2,...,g_n,...)\in l_2$. Тогда $g(x_n)=g_n\to 0$, в силу сходимости ряда $\sum_{k=1}^{+\infty}g_n^2$. Аналогично $\forall y\in l_2$ $f_n(y)=y_n\to 0$. Следовательно, последовательность $\{x_n\}$ сходится слабо, а $\{f_n\}$ – *-слабо к нулю. При этом $f_n(x_n)\equiv 1$, а значит последовательность $\{f_n(x_n)\}$ не сходится к f(x)=0.

Задача 3. В пространстве C[a,b] доказать, что всякая слабо сходящаяся последовательность сходится поточечно. Привести пример слабо, но не сильно сходящейся последовательности.

Решение: Для доказательства первого утверждения достаточно рассмотреть функционалы вида $f_{\tau}(x) = x(\tau)$.

Пример (для C[0,1]): пусть

$$x_n(t) = \left\{ \begin{array}{ll} \left(t - \frac{1}{2^n}\right) 2^{n+1} &, & t \in \left[\frac{1}{2^n}, \frac{1}{2^n} + \frac{1}{2^{n+1}}\right] \\ 1 + \left(\frac{1}{2^n} + \frac{1}{2^{n+1}} - t\right) 2^{n+1} &, & t \in \left[\frac{1}{2^n} + \frac{1}{2^{n+1}}, \frac{1}{2^{n-1}}\right] \\ 0 &, & \text{иначе} \end{array} \right.$$

Тогда $x_n \in C[0,1], ||x_n|| = 1$, а потому x_n не сходится к 0. В то же время $x_n \to 0$ слабо, т.к.

$$|f(x_n)| = \left| \int_0^1 x_n(t) df(t) \right| \le \operatorname{Var}_{[2^{-n}, 2^{-n+1}]} f(t) \to 0.$$

Задача 4. Доказать, что C[a,b] – не слабо полное пространство.

Решение: В C[0,1] рассмотрим последовательность функций $f_n(x) = x^n$. Отсутствие слабого предела следует из того, что сходимость – поточечная, а поточечно указанная последовательность сходится не к функции из C[0,1]. Фундаментальность необходимо показать непосредственно, по определению.

Домашнее задание: № 13.8, 13.9, 13.10.