More on Hebbian Learning

Review • Heteroassociative Architecture

Backpropagation

Review – Backpropagation

- Backpropagation is the most well know and widely used neural network system
- It is a multi-layered, feedfoward, perceptron-like structure
- Uses the backpropagation rule (or generalized delta rule) for training

Backpropagation Training

OUTLINE

- Applications
 - -IDS
 - -Eyes

Backpropagation Training

Training Algorithm 1

- Step 0: Initialize the weights to small random values
- Step 1: Feed the training sample through the network and determine the final output
- Step 2: Compute the error for each output unit, for unit k

it is:

Training Algorithm 2

 Step 3: Calculate the weight correction term for each output unit, for unit k it is:

$$\Delta w_{jk} = \alpha \ \ k$$
 Hidden layer signal
$$\Delta w_{jk} = \alpha \ \ k$$
 A small constant

Training Algorithm 3

 Step 4: Propagate the delta terms (errors) back through the weights of the hidden units where the delta input for the jth hidden unit is:

$$\delta_{in_{j}} = \sum_{k=1}^{m}$$

$$\delta_{k} W_{ik}$$

The delta term for the jth hidden unit is:

$$\delta_j = \delta \ \underline{i} n_j f'(z_i n_j)$$

Training Algorithm 4

 Step 5: Calculate the weight correction term for the hidden units:

$$\Delta w_{ij} = \alpha_j \delta_i$$

Step 6: Update the weights:

$$w_{jk}(new) = w_{jk}(old) + \Delta w_{jk}$$

 Step 7: Test for stopping (maximum cylces, small changes, etc)

Options

- There are a number of options in the design of a backprop system
 - Initial weights best to set the initial weights (and all other free parameters) to random numbers inside a small range of values (say – 0.5 to 0.5)
 - Number of cycles tend to be quite large for backprop systems
 - Number of neurons in the hidden layer as few as possible

Example

 The XOR function could not be solved by a single layer perceptron network

The function is:

X	Y	F
0	0	0
0	1	1
1	0	1
1	1	0

XOR Architecture

Initial Weights

Randomly assign small weight values:

Feedfoward – 1st Pass

Backpropagate

Update the Weights – First Pass

Final Result

After about 500 iterations:

ApplicationsIntrusion Detection Systems

- Anomaly Detection The identification of unauthorized system usage by discovering statistical variances from established norm, (e.g., profiles of authorized users). Primarily used for detecting internal intrusions.
- Misuse Detection The detection of external attacks ("hackers", etc.). Traditionally addressed by matching current activities to established attacks patterns.

Sentinel

 GOAL: Initial design and development of a neural network-based misuse detection system which explores the use of this technology in the identification of instances of external attacks on a computer network.

Results

- Tested with data sets containing 6, 12, 18, and 0 "attacks" in each
 180 event data set
- Successfully detected >= 12 "attacks" in test cases
- Failed to "alert" in lower number of "attacks" (per design)

An automatic screening system for Diabetic Retinopathy

Visual Features:

- Nerve: Circular yellow and bright area from which vessels emerge
- Macula: Dark elliptic red area
- Microaneurysms: Small scattered red and dark spots (in the order of 10x10 pixels in our database of images)
- Haemorrhages: Larger red blots
- Cotton spots (exudates): Yellow blots

Example

• Cotton Spots:

Approach

A moving window searches for the matching pattern

Possible Quiz

What can vary in a backpropagation system? What is misuse detection?

What is backpropagated during training?

SUMMARY

- Backpropagation Training
- Applications
 - IDS
 - Eyes