Knowledge Graph Embeddings

Apprendimento Automatico

A.A. 2024-2025

Docente: Nicola Fanizzi

Speaker: Ivan Diliso

Dipartimento di Informatica Università Degli Studi di Bari Aldo Moro

Chi sono?

Ivan Diliso

Dottorando in Informatica e Matematica del gruppo di ricerca **ARA** (Apprendimento e Ragionamento Automatico).

Di cosa mi occupo?

Knowledge Graph Embedding, Neuro-Symbolic AI, Ontologies and Ontology Injection

Indice dei contenuti

- 1. Cosa è un Knowledge Graph
- 2. **Machine Learning** su Knowledge Graphs
- 3. Strategie di **Valutazione** e Metriche
- 4. Argomenti Avanzati
 - Calibrazione
 - Ragionamento Neuro-Simbolico
 - Spazi di rappresentazione oltre l'euclideo

Definizioni Fondamentali

Un Knowledge Graph è una rappresentazione strutturata di conoscenza tramite nodi (entità) e archi (relazioni) per collegare e integrare informazioni.

Definizioni

Fondamentali

Sui dati, possiamo fare due tipi di assunzioni fondamentali:

- Closed World
 Assumption (CWA):
 Assenza di un fatto,
 significa che è falso
- Open World Assumption (OWA): Assenza di un fatto, significa solo che non è conosciuto

 ${\mathcal E}:$ set of entities of ${\mathcal G}$

 ${\mathcal R}:$ set of relations of ${\mathcal G}$

In-depth overview of Knowledge G [Hogan et al. 2020]

Apprendimento Automatico 2024/2025 5/42

Definizioni Fondamentali

Questo tipo di dati si presenta sottoforma di **triple**, nella forma < s, p, o>, ad esempio, potremmo avere:

Quando parlerò di **soggeto** della tripla, mi sto riferendo alla entità in testa alla tripla (eg. Mario), con **oggetto** mi riferisco invece alla entità in coda alla tripla (eg. Luigi)

Machine Learning su Knowledge Graphs

Problemi risolvibili:

- Link Prediction
- Triple Classification
- Graph Classification
- Community Detection
- Anomaly Detection
- Entity Matching
- ...

Apprendimento Automatico 2024/2025 7/42

Metodi Tradizionali (Shallow)

Nell'ambito dello "Statistical Relational Learning" diversi approcci tradizionali sono stati sviluppati:

- Logic Programming
- Inductive Logic Programming (ILP)
- Rule Mining: AMIE
- **Graphical Models** Conditional Random Fields, Modelli Relazionali Probabilistico, Reti di Markov, Reti di dipendenza, etc etc

Limitazioni

Scalabilità, debole potere di modellazione, approcci non differenziabili

Metodi Tradizionali (Deep)

- Le CNN lavorano naturalmente su "griglie", quali immagini
- Le RNN lavorano su sequenze, quali testo

Abbiamo la necessità di gestire la **complessità** dei grafi:

- Assenza di spatial locality
- Assenza di un ordinamento dei nodi fisso
- Naturalmente multimodali, concetti, testi, numeri, date, immagini

Apprendimento su Grafi come Encoder - Decoder

• Nei modelli che vedremo, il decoder prenderà la forma di una lookup table

Apprendere le Rappresentazioni di Nodi e Relazioni

Metodologie basate sull'apprendimento automatico di **rappresentazioni vettoriali** di nodi e relazioni. Proiettiamo la conoscenza **simbolica** su uno spazio vettoriale continuo.

Da nodi e relazioni...

Apprendimento Automatico 2024/2025

12/42

a rappresentazioni vettoriali!

13/42

Modelli in Letteratura

(Some) KGE models in recent published literature:

In letteratura troviamo varie tipologie di modelli, che si possono categorizzare sulla base della tipologia di apprendimento, **translational**, **factorization**, **neural**, etc etc

Anatomia di un modello di KGE

- ullet Funzione di **score** delle triple f(t)
- Funzione di loss $\mathcal L$
- Algoritmo di ottimizzazione
- Strategia di generazione dei negativi

Funzione di score delle triple

La funzione f assegna uno score ad una tripla < s, p, o >. La strategia di scoring varia in base alla metodologia scelta ad esempio:

Traslation Based

TransE

$$f_{TransE}(\langle s,p,o
angle) = -\|(e_h-r_p)-e_t\|$$

RotatE

$$f_{RotatE}(\langle s,p,o
angle) = -\|e_s\circ r_p - e_o\|_n$$

Traslation - Esempio grafico

Factorization Based

RESCAL

$$f_{RESCAL}(\langle s, p, o
angle) = e_s^ op W_r e_o$$

Convolution Based

ConvE

$$f_{ConvE}(\langle s, p, o \rangle) = f(vec(f([\overline{e_s}; \overline{r_p}] * \omega))\mathbf{W})e_o$$

con f funzione non lineare, st operatore di convoluzione e \overline{x} un reshape 2D del vettore.

Complessità e Proprietà dei KGE

Modelli si differenziano
nel tipo di **spazio**utilizzato (vedremo più
avanti), funzione di
scoring, complessita nello
spazio e nel tempo e tipo
di **proprietà che**possono modellare

Method	Publisher	Math Space	Time Complexity	Space Complexity
SE [15]	AAAI 2011	Euclidean	$\mathcal{O}(d^2)$	$\mathcal{O}(N_e d + N_r d^2)$
RESCAL [130]	ICML 2011	Euclidean	$\mathcal{O}(d^2)$	$\mathcal{O}(N_e d + N_r d^2)$
TransE [14]	NeurIPS 2013	Euclidean	O(d)	$\mathcal{O}(N_e d + N_r d)$
TransH [190]	AAAI 2014	Euclidean	O(d)	$\mathcal{O}(N_e d + N_r d)$
TransR [109]	AAAI 2015	Euclidean	O(dk)	$\mathcal{O}(N_e d + N_r dk)$
TransD [75]	ACL-IJCNLP 2015	Euclidean	$O(\max(d,k))$	$\mathcal{O}(N_e d + N_r k)$
DistMult [209]	ICLR 2015	Euclidean	O(d)	$\mathcal{O}(N_e d + N_r d)$
ComplEx [168]	ICML 2016	Euclidean	O(d)	$\mathcal{O}(N_e d + N_r d)$
TranSparse [76]	AAAI 2016	Euclidean	O(dk)	$\mathcal{O}(N_e d + (1 - \theta) N_r dk)$
HolE [129]	AAAI 2016	Euclidean	$\mathcal{O}(d \log d)$	$\mathcal{O}(N_e d + N_r d)$
ANALOGY [110]	ICML 2017	Euclidean	O(d)	$\mathcal{O}(N_e d + N_r d)$
ConvE [33]	AAAI 2018	Euclidean	O(d)	$\mathcal{O}(N_e d + N_r d)$
RotE [24]	ACL 2020	Euclidean	O(d)	$\mathcal{O}(N_e d + 2N_r d)$
Rot2L [179]	ACL Findings 2021	Euclidean	O(d)	$\mathcal{O}(N_e d + 2(N_r + 5)d)$
It $\hat{o}\mathrm{E}_{\mathbb{R}}$ [124]	ACL Findings 2023	Euclidean	O(d)	$\mathcal{O}(N_e d + N_r k)$
RotH [24]	ACL 2020	Hyperbolic	O(d)	$\mathcal{O}(N_e d + 3(N_r + 1)d)$
It $\hat{o}\mathrm{E}_{\mathbb{P}}$ [124]	ACL Findings 2023	Hyperbolic	O(d)	$\mathcal{O}(N_e d + N_r k)$
ManifoldE $_{\mathbb{S}}$ [198]	IJCAI 2016	Spherical	O(d)	$\mathcal{O}(N_e d + N_r d)$
It \hat{o} E $_{\mathbb{S}}$ [124]	ACL Findings 2023	Spherical	O(d)	$\mathcal{O}(N_e d + N_r k)$
UltraE [204]	KDD 2022	Ultrahyperbolic	O(d)	$O(N_e d + N_r d)$

Complessità e Proprietà dei KGE

- Simmetria <Alice, marriedTo, Bob>
- Asimmetria <Alice, childOf, Jack>
- Inversione <Alice, childOf, Jack> , <Jack, fatherOf, Alice>
- Composizione <Alice, childOf, Jack>, <Jack, siblingOf, Mary>,
 <Alice, nieceOf, Mary>

Model	Symmetry	Antisymmetry	Inversion	Composition
SE	Х	×	×	X
TransE	X	✓	✓	✓
TransX	✓	✓	X	X
DistMult	✓	X	X	X
ComplEx	✓	✓	✓	X
RotatE	✓	✓	✓	✓

Funzione di loss \mathcal{L}

Varie funzioni di loss provenienti dagli ambiti del machine learning e information retrieval (basate su ranking)

Pairwise Margin-Based Hinge Loss

$$\mathcal{L}(\Theta) = \sum_{t^+ \in \mathcal{G}} \sum_{t^- \in \mathcal{C}} \max(0, [\gamma + f(t^-; \Theta) - f(t^+; \Theta)])$$

Negative Log-Likelihood / Cross Entropy

$$\mathcal{L}(\Theta) = \sum_{t \in \mathcal{G} \cup \mathcal{C}} \log(1 + \exp(-yf(t;\Theta)))$$

$$y \in \{-1, +1\}$$
 label della tripla t

Apprendimento Automatico 2024/2025 21/42

Ulteriori funzioni di loss

Binary Cross-Entropy

$$\mathcal{L}(\Theta) = -rac{1}{N} \sum_{t \in \mathcal{G} \cup \mathcal{C}}^{N} y \log(\sigma(f(t;\Theta))) + (1-y) \log(1-f(t;\Theta))$$

Self-Adversarial

$$\mathcal{L}(\Theta) = -\log \sigma(\gamma + f(t^+; \Theta)) - \sum_{t \in \mathcal{G}}^N p(t^-; \Theta) \log \sigma(-f(t^-; \Theta) - \gamma)$$

 $p(t^-;\Theta)$ peso del negativo t

Strategia di generazione dei negativi

Prende anche il nome di negative sampling.

Come possiamo generare negativi (fatti falsi)?

Local Closed World Assumption: Un KG è solo localmente completo

Andiamo a corrompere le triple creando dei negativi sintetici:

$$\mathcal{C} = \{\langle \hat{s}, p, o
angle \mid \hat{s} \in \mathcal{E}\} \cup \{\langle s, p, \hat{o}
angle \mid \hat{o} \in \mathcal{E}\}$$

Esempio di negative sampling

```
\mathcal{E} = \{ 	exttt{Mike, Liverpool, AcmeInc, George, LiverpoolFC} \} \mathcal{R} = \{ 	exttt{bornIn, friendWith} \}
```

 $t \in \mathcal{G} = \langle exttt{Mike bornIn Liverpool}
angle$

$$\mathcal{C}_t = \left\{egin{array}{ll} \langle exttt{Mike bornIn AcmeInc}
angle, \ \langle exttt{Mike bornIn LiverpoolFC}
angle, \ \langle exttt{George bornIn Liverpool}
angle, \ \langle exttt{AcmeInc bornIn Liverpool}
angle \end{array}
ight.$$

Altri dettagli supplementari

- Ottimizzazione: Qualsiasi algoritmo che avete già studiato nel corso, SGD, ADAM, etc
- **Inizializzazione**: Il processo deve partire da embedding iniziali, si possono utilizzare funzioni quali la distribzuione **unioforme**, **normale** o **xavier**
- Regolarizzazione: L1,L2, Dropout, Vincoli di Norma

Valutazione e Metriche

Nella link prediction impariamo uno score proporzionale alla probabilità che la tripla sia vera, in altre parole stiamo imparando un task di **ranking** delle triple.

Possiamo prendere "in prestito" le metriche di valutazione dell' **information** retrieval . Non abbiamo una bisogno di una ground truth nella valutazione del test set. Rispondiamo alla domanda:

"Quanto in alto vengono classificate le triple positive rispetto alle triple negative generate artificialmente?"

!? In media, che rank viene assegnato alla tripla vera rispetto ai negativi sintetici?

Mean Rank (MR)

$$MR = rac{1}{|Q|} \sum_{i=1}^{|Q|} rank(\langle s, p, o
angle_i)$$

Mean Reciprocal Rank (MRR)

$$MRR = rac{1}{|Q|} \sum_{i=1}^{|Q|} rac{1}{rank(\langle s, p, o
angle_i)}$$

 $\red{!?}$ Quante volte la tripla vera è stata posizionata almeno nelle prime N posizioni?

Hits@N

$$Hits@N = \sum_{i=1}^{|Q|} 1(rank(\langle s, p, o
angle_i) \leq N)$$

Esempio

S	р	О	score	rank
Mike	bornIn	Leeds	0.78	1
Mike	bornIn	Italy	0.75	2
Mike	bornIn	Germany	0.69	3
George	bornIn	Italy	0.45	4
Mike	bornIn	George	0.23	5

S	р	0	score	rank
Mike	friendWith	George	0.90	1
Mike	friendWith	Jim	0.34	2
Acme	friendWith	George	0.29	3
Mike	friendWith	Italy	0.20	4
France	friendWith	George	0.15	5

$$MR = 1.5$$

$$MRR = .75$$

$$Hits@1 = .5$$

$$MRR = .75 \quad Hits@1 = .5 \qquad Hits@3 = 1.0$$

Argomenti Avanzati:

- 1. Calibrazione
- 2. KGE & Ragionamento Neuro-Simbolico
- 3. **Spazi** di Embedding

Calibrazione degli score

Gli score generati dai modelli KGE sono **non calibrati** (gli score non corrispondono a probabilità o sono affidabili di correttezza).

La calibrazione è un processo di **post-processing** che trasforma gli score in effettive **probabilità**! Ci troviamo davanti a due scenari:

• **CWA**: Abbiamo a disposizione dei negativi esplicitamente taggati

• **OWA**: Non abbiamo dei negativi, dobbiamo pesare le triples

Calibrazione con Negativi Ground Truth CWA

Calibrazione Senza Negativi Ground Truth OWA

Apprendimento Automatico 2024/2025 33/42

Calibrazione Efficacia

Modelli calibrati producono risultati migliori rispetto a modelli non calibrati, producono inoltre predizioni più affidabili e interpretabili

KGE & Ragionamento Neuro-Simbolico

Iniettare conoscenza di background nei modelli tramite "Soft Contraints". Avendo a disposizione una ontologia, possiamo iniettare regole nella loss function:

```
\begin{array}{c} \texttt{hasNeighbor} \equiv \texttt{hasNeighbor}^- \quad \texttt{isMarriedTo} \equiv \texttt{isMarriedTo}^- \\ \texttt{playsFor} \equiv \texttt{isAffiliatedTo}^- \quad \texttt{isConnectedTo} \equiv \texttt{isConnectedTo}^- \end{array}
```

Prendiamo in esempio regole di equivalenza

Loss Regolarizzata:

$$\mathcal{L}_{\mathcal{S}}(\Theta) = \mathcal{L}(\Theta) + \lambda \mathcal{R}_{\mathcal{S}}(\Theta)$$

Regolarizzazzione:

$$\mathcal{R}_{\mathcal{S}}(\Theta) = \sum_{p \equiv q \in \mathcal{A}_1} D[r_p \| r_q] + \sum_{p \equiv q^- \in \mathcal{A}_2} D[r_p \| \Phi(r_q)]$$

- $D[x\|y] = \|x-y\|_2^2$ Misura divergenza
- ullet Trasformazione dipendente dal modello
- \mathcal{A}_1 Insieme assiomi **equivalenza**
- \mathcal{A}_2 Insieme assiomi **inverse**

Apprendimento Automatico 2024/2025 36/42

KGE & Ragionamento Neuro-Simbolico

Andiamo quindi ad unire **rule-based models** e **KGE**, sfruttiamo sia la potenza di generalizzazione e scalabilità dei KGE, con l'interpretabilità dei modelli basati su regole.

Ulteriore metodologie sono i **Neural Theorem Provers** (NTP) che implementano il ragionamento in architetture completamente differenziabili

Spazi e Metodi KGE

Spazi più complessi possono essere utilizzati per:

- Preservare pattern relazionali tra le entità
- Preservare pattern strutturali (gerarchie)
- Modellare **proprietà** desiderate, sfruttando le proprietà matematiche degli spazi

(a) Chain structure.

(b) Ring structure.

(c) Hierarchy structure.

38/42

Spazi e Metodi KGE: Strutture Algebriche

- **Spazi Vettoriali**: Sfruttano somma tra vettori e moltiplicazione per scalaer per proiettare entità e relazioni nello stesso spazio. Preserva le interazioni relazionali.
- Gruppi : Permettono di modellare proprietà come inversione e composizione
- **Anelli**: Utili nella rappresentazione con task orientatin-related, grazie alla sua superfice non orientata

Spazi e Metodi KGE: **Strutture Geometriche**

- **Euclidea**: Efficace rappresentazione di pattern relazionali
- **Iperbolica**: Spazi utili nel modellare strutture gerarchiche.
- **Sferica**: Eccellenti nel modellare strutture ad analle grazei alla loro natura circolare.

Spazi e Metodi KGE: **Strutture Analitiche**

- **Probailità** : Capaci di modellare conoscenza incenerta (fuzzy)
- **Euclideo**: Facilitano l'aquisizione di rappresentazioni dinamiche e continue

Grazie per l'attenzione

Ivan Diliso, Ph.D Student, ARA