Podsumowanie wykładu BD

Plan wykładu

- Modelowanie koncepcyjne diagramy ER
- Relacyjny model danych relacja, krotka, atrybut, ograniczenia integralnościowe
- Elementy języka SQL i T-SQL
- Model fizyczny danych, indeksy, B+-drzewa
- Optymalizacja zapytań i strojenie bazy danych
- Przetwarzanie transakcyjne własności ACID, poziomy izolacji, algorytm 2PL
- Odtwarzanie po awarii UNDO/REDO
- Bezpieczeństwo baz danych

Baza danych ma za zadanie:

Składować

- Model konceptualny ERD
- Model relacyjny: relacje, krotki, atrybuty
- Ograniczenia integralnościowe: klucz podstawowy, obcy, typu CHECK
- Normalizacja schematu
- Język DDL create, alter, drop
- Organizacja fizyczna bazy danych

Przetwarzać

- Podstawy języka SQL AR, RRK, RRD
- Język DML select, insert, update, delete
- T-SQL procedury, funkcje, triggery

Udostępniać

- Optymalizacja zapytań!
 - Indeksy
 - Statystyki
- □ Transakcje **ACID**
- Operacje konfliktowe
- Poziomy izolacji, anomalie
- Blokady, uszeregowalność, 2PL, blokady intencjonalne

Chronić

- Reakcja na awarie: UNDO/REDO
- Uwierzytelnianie, uprawnienia, role

ERD -> model relacyjny

- Sklep internetowy:
 - Klient
 - Sprzedawca
 - Koszyk
 - Produkt
 - Kategorie produktu (hierarchia)
- Testy
 - Użytkownicy
 - Pytania
 - Wielokrotnego wyboru
 - Jednokrotnego wyboru
 - Odpowiedzi

Normalizacja

- Po co się normalizuje?
 - jakie anomalie wiążą się z nieznormalizowanym schematem?

Normalizacja

- Po co się normalizuje?
 - jakie anomalie wiążą się z nieznormalizowanym schematem?
- Który schemat jest znormalizowany?

VER. 1		
imie	nazwisko	miasto
alan	nowicki	poznań
zuza	galicka	poznań
tomek	byczkowski	kraków
karol	baranski	poznań
jola	lojalna	kraków

VER. 2		
imie	nazwisko	miasto
alan	nowicki	1
zuza tomek	galicka byczkowski	1 2
karol jola	baranski lojalna	1 2
JOIA	TOJATNA	2
id	miasto	
1	poznań	
2	kraków	

Normalizacja c.d.

- Zależności funkcyjne
- Znormalizuj schemat relacji:

$$U = (A, B, C, D, E)$$

F = (AB \rightarrow C, A \rightarrow DE, B \rightarrow D, A \rightarrow B, E \rightarrow C)

$$U = (A, B, C, D)$$
$$F = (AB \rightarrow C, B \rightarrow C, A \rightarrow CD)$$

- wyznacz klucz podstawowy
- czy schemat jest w 2PN? 3PN?
- sprowadź do 2PN a następnie do 3PN twierdzenie o rozkładalności

Znormalizuj schemat relacji:

$$U = (A, B, C, D, E)$$

$$F = (AB \rightarrow C, A \rightarrow DE, B \rightarrow D, A \rightarrow B, E \rightarrow C)$$

- Krok 1 znajdź klucz
 - Sprawdzam A+ = {A, D, E, B, C} jest kluczem
- Jaka to postać normalna?
 - 2PN tak, bo klucz jednoatrybutowy (nie ma części)
 - 3PN nie, bo $B \rightarrow D$, $E \rightarrow C$
- Normalizuję do 3PN
 - Wybierz zależność, która psuje 3PN: B→D
 - Według niej podziel na dwa schematy:

- U1 = {B,D}, F1 = { $B \rightarrow D$ }, jest 3PN
- U2 = {B,A,C,E}, F2 = {AB \rightarrow C, A \rightarrow BE, E \rightarrow C } nie jest 3PN bo klucz: A, i istnieje zależność przejściowa E \rightarrow C
 - U21 = $\{E,C\}$, $F21=\{E\rightarrow C\}$ jest 3PN
 - U22 = $\{E, A, B\}$ F22= $\{A \rightarrow BE\}$ jest 3PN
- A więc schemat w 3PN: U1, U21, U22

Znormalizuj schemat relacji:

$$U = (A, B, C, D)$$
$$F = (AB \rightarrow C, B \rightarrow C, A \rightarrow CD)$$

- Krok 1 znajdź klucz
 - A+={A,C,D}
 - B+={B,C}
 - AB+={A,B,C,D} klucz
- Jaka to postać normalna?
 - 2PN nie, bo atrybuty niekluczowe zależą od części klucza, np. C zależy od B, D zależy od A
 - 3PN nie, bo nie jest w 2PN

- Sprowadź do 2PN
 - Wybierz zależność, która psuje 2PN i według niej podziel, np.:
 A→CD
 - U1 = $\{A,C,D\}$, F1= $\{A \rightarrow CD\}$ jest 2PN, 3PN
 - U2 = {A,B}, F2 = \emptyset , wieckluczem jest AB, jest 2PN, 3PN
- Uwaga, powyższe rozwiązania wykorzystywały twierdzenie o rozkładalności (omawiane na wykładzie i ćwiczeniach)
- Można zadanie wykonać też metodą syntezy ale do tego potrzebujemy bazy minimalnej – c.d. następne slajdy

- Rozwiązanie powyższych zadań metodą syntezy:
- Znormalizuj schemat relacji:

```
U = (A, B, C, D, E)
F = (AB\rightarrowC, A\rightarrowDE, B\rightarrowD, A\rightarrowB, E\rightarrowC)
```

- Krok 1 znajdź bazę minimalną (poza programem)
 - Baza minimalna: F_min = { A → BE; B → D; E → C }
- Sprawdź postać normalną:
 - Klucz: A
 - 2PN tak, bo klucz jednoatrybutowy (nie ma części)
 - 3PN nie, bo $B \rightarrow D$, $E \rightarrow C$
- Sprowadź do 3PN:
 - Każda zależność generuje relację:
 - U1={A,B,E}, U2={B,D}, U3={E,C}

Znormalizuj schemat relacji:

$$U = (A, B, C, D)$$
$$F = (AB \rightarrow C, B \rightarrow C, A \rightarrow CD)$$

- Krok 1 znajdź bazę minimalną;
 - $F_{min} = \{A \rightarrow CD; B \rightarrow C\}$
- Jaka postać normalna?
 - Klucz: AB
 - 2PN nie, bo A \rightarrow CD; B \rightarrow C
 - 3PN nie, bo nie jest 2PN
- Znormalizuj do 3PN
 - Uwaga algorytm syntezy nie umożliwia normalizacji tylko do 2PN

- Schemat w 3PN:
- Każda zależność generuje relację:
 - U1={A,C,D}, U2={B,C}
- Jeśli żadna z relacji nie zawiera pierwotnego klucza (tutaj: AB) to dodaj dodatkową relację z tym kluczem:
 - U3 = {A,B}

SQL

- Jakie jest typowe wykorzystanie
 - Procedur operacje CRUD (tworzenie, zapis, modyfikacja, usuwanie danych; realizacja funkcjonalności); również – realizacja reguł biznesowych; raportowanie; redukcja przesyłanych danych
 - Funkcji odczyt danych, wyznaczanie wartości wyliczanych;
 - Wyzwalaczy realizacja złożonych ograniczeń na bazie; realizacja operacji kaskadowych;
 - Widoków upraszczanie korzystania z bazy, zapewnienie bezpieczeństwa poprzez ukrycie struktury bazy, nadawanie uprawnień

Optymalizacja

- Optymalizacja:
 - Regułowa
 - Kosztowa
- Statystyki
 - Co zawierają?
- Plan wykonania zapytania
- Jakie struktury mogą być wykorzystane w procesie optymalizacji zapytań?

Indeksy

- Struktura fizyczna bazy danych
- Cel stosowania indeksów
- Ogólna budowa indeksu
- Rodzaje indeksów
- Budowa B+drzewa, wstawianie do B+drzewa
 - Wstaw do B+drzewa p=3 wartości: 7, 8, 9, 6, 5, 10
 - Wynik:

Indeksy c.d.

 Jaki powinien być rząd indeksu o strukturze B+drzewa, jeżeli rozmiar bloku wynosi 2kB, pole klucza ma długość 16B a pole wskaźnika ma długość 8B

Rozwiązanie:

- p rząd indeksu
- Tzn. w węźle zmieści się (p-1) kluczy i p wskaźników
- Chcemy żeby węzeł maksymalnie wypełnił blok
- Zatem: (p-1)*16B + p*8B <= 2048 B</p>
- Z tego: p = 86

Indeksy c.d.

- Jaka jest maksymalna liczba odwołań do pamięci zewnętrznej, jeżeli dla pliku liczącego 14 000 rekordów korzystamy z indeksu w postaci B+drzewa rzędu 11?
- Rozwiązanie: przeszukując drzewo musimy ściągnąć po jednym bloku z każdego jego poziomu plus 1 blok z danymi; musimy zatem wyliczyć wysokość drzewa
- Wysokość drzewa rządu p indeksującego n rekordów to log_pn
- Zatem liczba odwołań to log₁₁14000+1

Transakcje

- Pojęcie transakcji
- Własność ACID
- Poziomy izolacji, anomalie

Transakcje c.d.

Czy ta historia przetwarzania jest uszeregowalna?

- Szukamy i zaznaczamy operacje konfliktowe, czyli takie, które pochodzą z dwóch niezatwierdzonych transakcji, z czego jedna jest operacją zapisu, na tych samych danych
- Sprawdzamy, że jest cykl, więc historia nie jest uszeregowalna

Transakcje c.d.

- H: r1[x] w1[x] r2[y] w3[y] r2[x] r3[x] c1 c2 c3
- Jak H zostanie zrealizowana przez algorytm 2PL na poszczególnych poziomach izolacji?
- Poziom O nie ma blokady do odczytu
 - H: r1[x] w1[x] r2[y] w3[y] r2[x] r3[x] c1 c2 c3
- Poziom 1 blokada do odczytu od razu zdejmowana
 - H: r1[x] w1[x] r2[y] w3[y] c1 r2[x] r3[x] c2 c3
- Poziom 2 i 3 blokada do odczytu trzymana do końca
 - H: r1[x] w1[x] r2[y] c1 r2[x] c2 w3[y] r3[x] c3

UNDO/REDO

- Jak zostanie zrealizowany algorytm UNDO/REDO dla poniższej historii przetwarzania 2 transakcji, jeśli w buforze danych mieści się tylko jeden rekord
- Wartości początkowe:

```
a = 20
```

$$b=50$$

H: r1[a] w1[a=a*2] r2[b] w2[b=b-20] c2 awaria!

UNDO/REDO

Faza UNDO

Wycofane są zmiany wprowadzone przez niezatwierdzone transakcje

Lista zatwierdzonych: T2

Wycofana zmiana wprowadzona przez T1:

a = 20

operacja	plik logu	
r1[a]	S1	
w1[a=a*2]	(W,1,a,20,40)	
r2[b]	S2	
w2[b=b-20]	(W,2,b,50,30)	
c2	C2 (zapis bufora na dysk)	

Faza REDO

Wprowadzane są ponownie zmiany wprowadzone przez zatwierdzone transakcje

Zatwierdzona: T2

Przywracamy b:

b = 30

Po fazie UNDO/REDO w bazie są wartości: a = 20, b = 30

Bezpieczeństwo

- Konta, role, uprawnienia
- Nadawanie uprawnień
- Rola procedur i perspektyw