Mathematical Statistics: HW 1

Due Feb 2, 2023

1. Chapter 1, Exercise 5

Let A and B be arbitrary events. Let C be the event that either A occurs or B occurs, but not both. Express C in terms of A and B using any of the basic operations of union, intersection, and complement.

Answer:

Since C means A or B occurs, but not both, we have

$$C = A \cup B - A \cap B = (A \cap B^c) \cup (B \cap A^c)$$

2. Chapter 1, Exercise 11

The first three digits of a university telephone exchange are 452. If all the sequences of the remaining four digits are equally likely, what is the probability that a randomly selected university phone number contains seven distinct digits?

Answer:

Since there are 3 digits already used, for the forth digit, we have 7 different choice, and 6 choice for the next one, and so on. Also, if we don't consider the repetition, we have 10 cases for each digit. Therefore, the result is:

$$\frac{7*6*5*4}{10^4} = 0.084$$

3. Chapter 1, Exercise 46

Urn A has three red balls and two white balls, and urn B has two red balls and five white balls. A fair coin is tossed. If it lands heads up, a ball is drawn from urn A; otherwise, a ball is drawn from urn B.

- a. What is the probability that a red ball is drawn?
- b. If a red ball is drawn, what is the probability that the coin landed heads up?

Answer:

Let A be the event that the coin lands heads up, B be the event that the coin land tails up. R be the event that the red ball is drawn, W be the event that the white ball is drawn.

a.
$$P(A)=P(B)=0.5$$

$$P(R)=P(R|A)P(A)+P(R|B)P(B)=\frac{3/5+2/7}{2}\approx 0.443$$

b.
$$P(A|R)=rac{P(AR)}{P(R)}=rac{P(R|A)P(A)}{P(R|A)P(A)+P(R|B)P(B)}=rac{3/5}{3/5+2/7}pprox 0.677$$

4. Chapter 1, Exercise 54

This problem introduces a simple meteorological model, more complicated versions of which have been proposed in the meteorological literature. Consider a sequence of days and let R_i denote the event that it rains on day i. Suppose that $P(R_i|R_{i-1})=\alpha$ and $P(R_i^c|R_{i-1}^c)=\beta$. Suppose further that only today's weather is relevant to predicting tomorrow's; that is, $P(R_i|R_{i-1}\cap R_{i-2}\cap\cdots\cap R_0)=P(R_i|R_{i}-1)$.

- a. If the probability of rain today is p, what is the probability of rain tomorrow?
- b. What is the probability of rain the day after tomorrow?
- c. What is the probability of rain n days from now? What happens as n approaches infinity?

Answer:

a.

$$P(R_{i+1}) = P(R_{i+1}|R_i)P(R_i) + P(R_{i+1}|R_i^c)P(R_i^c)$$

$$= \alpha p + (1 - \beta)(1 - p)$$

$$= \alpha p + 1 - \beta - p + \beta p$$

$$= 1 - \beta + \alpha p - p + \beta p$$

$$= 1 - \beta + p(\alpha + \beta - 1)$$

$$= 1 - \beta + P(R_i)(\alpha + \beta - 1)$$

b.

$$P(R_{i+2}) = 1 - \beta + P(R_{i+1})(\alpha + \beta - 1)$$

$$= 1 - \beta + (1 - \beta + p(\alpha + \beta - 1))(\alpha + \beta - 1)$$

$$= 1 - \beta + (1 - \beta + \alpha p - p + \beta p)(\alpha + \beta - 1)$$

$$= (\alpha + \beta - 1)^{2}p + (1 - \beta)(\alpha + 1) - (1 - \beta)^{2}$$

c.

$$\begin{split} P(R_{i+n}) &= P(R_{i+n}|R_{i+n-1}) \cdot P(R_{i+n-1}) + P(R_{i+n}|R_{i+n-1}^c) P(R_{i+n-1}^c) \\ &= (\alpha + \beta - 1) \cdot P(R_{i+n-1}) + 1 - \beta \\ &= (\alpha + \beta - 1)^2 \cdot P(R_{i+n-1}) + (1 - \beta)(\alpha + \beta - 1 + 1) \\ &= (\alpha + \beta - 1)^n \cdot p + (1 - \beta) \sum_{k=0}^{n-1} (\alpha + \beta - 1)^k \\ &= (\alpha + \beta - 1)^n \cdot p + (1 - \beta) \cdot \frac{(\alpha + \beta - 1)^n - 1}{\alpha + \beta - 2} \end{split}$$

Since
$$0<\alpha<1,$$
 $0<\beta<1.$ So $|\alpha+\beta-1|<1,$ so $\lim_{n\to\infty}(\alpha+\beta-1)^n=0$ So $\lim_{n\to\infty}P(R_{i+n})=\lim_{n\to\infty}(\beta-1)\cdot\frac{1}{\alpha+\beta-2}=\frac{\beta-1}{\alpha+\beta-2}$

5. Chapter 1, Exercise 71

Show that if A, B, and C are mutually independent, then $A \cap B$ and C are independent and $A \cup B$ and C are independent.

Answer:

If A, B, C mutually independent, we have:

$$P(A \cap B \cap C) = P(A)P(B)P(C)$$

$$P(A \cap B) = P(A)P(B)$$

$$P(C \cap B) = P(C)P(B)$$

$$P(A \cap C) = P(A)P(C)$$

Therefore,
$$P((A \cap B) \cap C) = P(A \cap B \cap C) = P(A)P(B) \cdot P(C) = P(A \cap B)P(C)$$

Thus $A \cap B$ and C are independent

Also,

$$P((A \cup B) \cap C) = P((A \cap C) \cup (B \cap C))$$

$$= P(A \cap C) + P(B \cap C) - P(A \cap B \cap C)$$

$$= P(A)P(C) + P(B)P(C) - P(A)P(B)P(C)$$

$$= (P(A) + P(B) - P(A \cap B))P(C)$$

$$= P(A \cup B)P(C)$$

Thus $A \cup B$ and C are independent

6. Chapter 2, Exercise 3

The following table shows the cumulative distribution function of a discrete random variable. Find the frequency function.

k	F(k)
0	0
1	.1
2	.3
3	.7
4	.8
5	1.0

Answer:

$$p(1) = 0.1 - 0 = 0.1$$

 $P(2) = 0.3 - 0.1 = 0.2$
 $p(3) = 0.7 - 0.3 = 0.4$
 $p(4) = 0.8 - 0.7 = 0.1$
 $p(5) = 1.0 - 0.8 = 0.2$

	k		f(k)
1		0.1	
2		0.2	
3		0.4	
4		0.1	
5		0.2	

7. Chapter 2, Exercise 40

Suppose that *X* has the density function $f(x) = cx^2$ for $0 \le x \le 1$ and f(x) = 0 otherwise.

a. Find *c*.

b. Find the cdf.

c. What is $P(.1 \le X < .5)$?

Answer:

a.

$$\int_0^1 cx^2 = 1 = \frac{cx^3}{3} \Big|_0^1 = \frac{c}{3}$$

Therefore c=3

b.

$$F_X(x) = \int_0^x 3x^2 = x^3igg|_0^x = x^3 \ F_X(x) = egin{cases} 0, & x < 0 \ x^3, & 0 \leq x < 1 \ 1, & x \geq 1 \end{cases}$$

c.

$$P(0.1 \le X < 0.5) = F_X(0.5) - F_X(0.1) = 0.5^3 - 0.1^3 = 0.124$$

8. Chapter 2, Exercise 46

T is an exponential random variable, and P(T < 1) = .05. What is λ ?

Answer:

Let T be an exponential random variable. Therefore, $T \sim Exp(\lambda$.

Thus we have $F_T(t)=1-e^{-\lambda t}$

$$P(T < 1) = F_T(1) = 1 - e^{-\lambda} = 0.05$$

Thus $e^{-\lambda}=0.95$

$$\lambda = -\ln 0.95 \approx 0.051$$

9. Chapter 2, Exercise 62

Show that if *X* has a density function f_X and Y = aX + b, then

$$f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right)$$

Answer:

$$Y = aX + b$$

1. if a < 0

$$F_Y(y)=P(Y\leq y)=P(aX+b\leq y)=P(X\geq rac{y-b}{a})=1-F_X(rac{y-b}{a})$$

Take derivative of both sides:

$$f_Y(y) = -rac{1}{a}f_X(rac{y-b}{a})$$

2. if a > 0

$$F_Y(y) = P(Y \leq y) = P(aX + b \leq y) = P(X \leq rac{y-b}{a}) = F_X(rac{y-b}{a})$$

Take derivative of both sides:

$$f_Y(y) = rac{1}{a} f_X(rac{y-b}{a})$$

Therefore, we have

$$f_Y(y) = rac{1}{|a|} f_X(rac{y-b}{a})$$