Московский физико-технический институт

Лабораторная работа 3.4.2

Закон Кюри-Вейсса

выполнила студентка группы Б01-007 Миндиярова Рената

1 Введение

Цель работы : Изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

В работе используются: катушка с образцом из гадолиния, термостат, частотомер, цифровой вольтметр, LC-автогенератор, термопара медь-константан.

Для ферромагнетиков справедлив закон Кюри-Вейсса:

$$\chi \sim \frac{1}{T - \Theta_p} \tag{1}$$

где Θ_p – температура, близкая к температуре Кюри.

Данный закон хорошо работает в диапазоне температур: $T\gg\Theta_p$. Для температур, близких к температуре Кюри вводят две величины:

Собственно саму температуру Кюри (ферромагнитную) – Θ , и Парамагнитную температуру Кюри – Θ_p .

В таком случае график зависимости величины, обратной магнитной восприимчивости образца изображен на рисунке (??).

Закон Кюри-Вейсса можно считать справедливым, если выполняется соотношение:

Рис. 1: График зависимости $\frac{1}{\gamma}(T)$

$$\frac{1}{\chi} \sim \frac{1}{\tau^2 - \tau_0^2} \sim (T - \Theta_p) \tag{2}$$

2 Параметры установки

Рис. 2: Схема установки. 1 - Катушка индуктивности с образцом из гадолиния, 2 - сосуд с трансформаторным маслом, 3 - вода, нагреваемая термостатом, 4 - ртутный термометр, 5 - блок термостата, 6 - термопара

3 Ход выполнения работы

Запишем данные с установки: Запишем данные установки: k=24 град/мВ, $\tau_0=6,9092$ мкс. Так как нам нужно, чтобы разница была не более половины градуса, то мы вычисляем максимальное напряжение, при котором допустимо измерение:

$$U = \frac{T}{k} = \frac{0.5}{24} \approx 0.02 \tag{3}$$

Таблица 1: Таблица значений

T, ° C	ΔU , мВ	$T, {}^{\circ}C$	τ , MKC	$\frac{1}{\tau^2 - \tau_0^2}, mcs^{-2}$
14,04	-0,018	13,608	7,949	0,0647
16,1	-0,016	15,716	7,883	0,0694
18,1	-0,017	17,692	7,776	0,0785
20,09	-0,018	19,658	7,606	0,0988
22,07	-0,02	21,59	7,415	0,138
24,07	-0,018	23,638	7,23	0,2204
26,08	-0,018	25,648	7,15	0,2953
28,07	-0,018	27,638	7,108	0,3588
30,06	-0,019	29,604	7,081	0,416
32,07	-0,016	31,686	7,061	0,4715
34,07	-0,019	33,614	7,048	0,5161
36,05	-0,016	35,666	7,037	0,561
38,05	-0,018	37,618	7,029	0,5988
40,04	-0,018	39,608	7,023	0,6307

Таблица 3: Расчет апроксимированной прямой y = ax + b

	Коэффициенты	Погрешности
b	-0,409	0.041
a	0.027	0.001

Теперь снимем показания вольтметра и частометра при температуре термостата равной $14\,^{\circ}C$, и проведем такой опыт при 14 разных температурах, повышая после каждого измерения температуру термостата на два градуса. При этом температуру образца будем считать по следующей формуле:

$$T_o = T + \Delta U \cdot k \tag{4}$$

Результаты занесем в таблицу 1.

Таблица 2: Погрешности

Nº	σ_T	$\sigma_{\tau^2-\tau_0^2}$, 2	$\sigma_{\frac{1}{\tau^2-\tau_0^2}}, ^{-2}$
1.	0.10	0.159	0.001
2.	0.10	0.157	0.001
3.	0.10	0.155	0.001
4.	0.10	0.151	0.002
5.	0.10	0.147	0.004
6.	0.10	0.144	0.013
7.	0.10	0.142	0.027
8.	0.10	0.142	0.048
9.	0.10	0.141	0.074
10.	0.10	0.141	0.113
11.	0.10	0.14	0.13
12.	0.10	0.14	0.152
13.	0.10	0.14	0.185
14.	0.10	0.14	0.211

Посчитаем погрешности:

$$\sigma_{T_o} = \sqrt{\sigma_T^2 + \sigma_{dUk}^2}$$

$$\sigma_{\tau^2 - \tau_0^2} = \frac{d(\tau^2 - \tau_0^2)}{d\tau} \sigma_{\tau} = 2\tau \sigma_{\tau} \qquad (5)$$

$$\sigma_{\frac{1}{\tau^2 - \tau_0^2}} = \frac{\frac{1}{\tau^2 - \tau_0^2}}{d\tau} \sigma_{\tau} = \frac{2\tau}{(\tau^2 - \tau_0^2)^2} \sigma_{\tau} \tag{6}$$

По результатам вычисления погрешностей составим таблицу 2.

На основе таблицы 1 построим графики зависимости величин $\tau^2-\tau_0^2$ и $\frac{1}{\tau^2-\tau_0^2}$ от температуры образца.

На графике рис. 3 проведем прямую через последние 9 точек и аппроксимируем ее к оси абсцисс. Результаты занесем в таблицу 3. Коэффициенты прямой

и погрешности посчитаем по МНК По результатам таблицы 3 получаем прямую

$$\frac{1}{\tau^2 - \tau_0^2} = 0,027 \cdot T_o - 0,409 \tag{7}$$

При 0 по оси ординат парамагнитная температура Кюри $\Theta_p = \frac{0,409}{0,027} \approx 15,15~^{\circ}C.$ Погрешность полученной величины

Рис. 3: Зависимость $\frac{1}{\tau^2-\tau_0^2}$ от температуры образца

$$\sigma_{\Theta_p} = \Theta_p \sqrt{\frac{\sigma_a^2}{a} + \frac{\sigma_b^2}{b}} = 1,62^{\circ}C \tag{8}$$

4 Вывод

По результатам проделанной работы мы высчитали парамагнитную точку Кюри для гадолиния:

$$\Theta_p = (15, 15 \pm 1, 62) \, {}^{\circ}C$$

Полученный результат достаточно хорошо согласуется с табличными данными, где точка Кюри гадолиния $\Theta=16^{\circ}C.$