Unitary Time Changes of Stationary Processes Yield Oscillatory Processes and a Functional Framework Toward a Hilbert— Pólya Construction

BY STEPHEN CROWLEY

September 16, 2025

Abstract

A unitary time-change operator U_{θ} is constructed for absolutely continuous, strictly increasing time reparametrizations θ , acting on functions that are square-integrable over σ -compact sets. Applying U_{θ} to the Cramér spectral representation of a stationary process yields an oscillatory process in the sense of Priestley with oscillatory function $\varphi_t(\lambda) = \sqrt{\dot{\theta}(t)} \ e^{i\lambda\theta(t)}$ and evolutionary spectrum $dF_t(\lambda) = \dot{\theta}(t) \ dF(\lambda)$. It is proved that sample paths of any non-degenerate second-order stationary process almost surely lie in $L^2_{\sigma\text{-comp}}(\mathbb{R})$, making the operator applicable to typical realizations. A zero-localization measure μ (dt) = $\delta(Z(t)) |Z'(t)| \ dt$ induces a Hilbert space $L^2(\mu)$ on the zero set of an oscillatory process Z, and the multiplication operator (Lf)(t) = tf(t) has pure point, simple spectrum equal to the zero set of Z. This produces a concrete operator scaffold consistent with a Hilbert–Pólya-type viewpoint.

Table of contents

1	Function Spaces and Unitary Time Change	2
	1.1 σ -compact sets and local L^2	
2	Oscillatory Processes (Priestley)	5
3	Stationary Processes and Time Change	7
	3.1 Stationary processes	8
	3.3 Covariance operator conjugation	10
4	Sample Paths Live in $L^2_{\sigma ext{-}\mathrm{comp}}$	11

5	Zero Localization and Hilbert–Polya Scaffold	13
	5.1 Zero localization measure	
6	Appendix: Regularity and Simple Zeros	17
T	ODO: add zero counting function and expected zero counting function!!!!!	

1 Function Spaces and Unitary Time Change

1.1 σ -compact sets and local L^2

Definition 1. [σ -compact sets] A subset $U \subseteq \mathbb{R}$ is σ -compact if

$$U = \bigcup_{n=1}^{\infty} K_n \tag{1}$$

with each K_n compact.

Definition 2. [Square-integrability on σ -compact sets] Define

$$L^2_{\sigma\text{-}comp}(\mathbb{R}) := \left\{ f \colon \mathbb{R} \to \mathbb{C} \colon \int_U |f(t)|^2 \ d \ t < \infty \ for \ every \ \sigma\text{-}compact \ U \subseteq \mathbb{R} \right\} \tag{2}$$

Remark 3. Every bounded measurable set in \mathbb{R} is σ -compact; hence $L^2_{\sigma\text{-comp}}(\mathbb{R})$ contains functions that are square-integrable on every bounded interval, including functions with polynomial growth at infinity.

1.2 Unitary time-change operator

Definition 4. [Unitary time-change] Let $\theta: \mathbb{R} \to \mathbb{R}$ be absolutely continuous, strictly increasing, and bijective, with $\dot{\theta}(t) > 0$ almost everywhere and $\dot{\theta}(t) = 0$ only on sets of Lebesgue measure zero. The function θ maps σ -compact sets to σ -compact sets. Define, for f measurable,

$$(U_{\theta} f)(t) = \sqrt{\dot{\theta}(t)} f(\theta(t)) \tag{3}$$

Proposition 5. [Inverse map] The inverse map is given by

$$(U_{\theta}^{-1}g)(s) = \frac{g(\theta^{-1}(s))}{\sqrt{\dot{\theta}(\theta^{-1}(s))}}$$
(4)

which is well-defined almost everywhere on every σ -compact set.

Proof. Since $\dot{\theta}(t) = 0$ only on sets of measure zero, and θ^{-1} maps sets of measure zero to sets of measure zero (as absolutely continuous bijective functions preserve measurezero sets), the denominator $\sqrt{\dot{\theta}(\theta^{-1}(s))}$ is positive almost everywhere. The expression is therefore well-defined almost everywhere on every σ -compact set, which suffices for defining an element of $L^2_{\sigma\text{-comp}}(\mathbb{R})$.

Theorem 6. [Local unitarity on σ -compact sets] For every σ -compact set $C \subseteq \mathbb{R}$ and $f \in L^2_{\sigma\text{-}comp}(\mathbb{R})$,

$$\int_{C} |(U_{\theta} f)(t)|^{2} dt = \int_{\theta(C)} |f(s)|^{2} ds$$
 (5)

Moreover, U_{θ}^{-1} is the inverse of U_{θ} on $L_{\sigma\text{-}comp}^2(\mathbb{R})$.

Proof. Let $f \in L^2_{\sigma\text{-comp}}(\mathbb{R})$ and let U be any σ -compact set. The local L^2 -norm of $U_{\theta} f$ over C is:

$$\int_{C} |(U_{\theta} f)(t)|^{2} dt = \int_{C} \left| \sqrt{\dot{\theta}(t)} f(\theta(t)) \right|^{2} dt$$

$$= \int_{C} \dot{\theta}(t) |f(\theta(t))|^{2} dt \tag{6}$$

Since θ is absolutely continuous and strictly increasing, applying the change of variables $s = \theta(t)$ gives

$$ds = \dot{\theta}(t)dt \tag{7}$$

almost everywhere. Since θ maps σ -compact sets to σ -compact sets, as t ranges over C, $s = \theta(t)$ ranges over $\theta(C)$, which is σ -compact. Therefore:

$$\int_{C} \dot{\theta}(t) |f(\theta(t))|^{2} dt = \int_{\theta(C)} |f(s)|^{2} ds$$
 (8)

To verify that U_{θ}^{-1} is indeed the inverse, we compute explicitly. For any $f \in L^2_{\sigma\text{-}\mathrm{comp}}(\mathbb{R})$:

$$(U_{\theta}^{-1}U_{\theta}f)(s) = \left(U_{\theta}^{-1}\sqrt{\dot{\theta}(s)}f(\theta(s))\right)(s)$$

$$= \frac{\sqrt{\dot{\theta}(\theta^{-1}(s))}}{\sqrt{\dot{\theta}(\theta^{-1}(s))}}f(\theta(\theta^{-1}(s)))$$

$$= f(s)$$

$$(9)$$

since $\theta(\theta^{-1}(s)) = s$. Similarly, for any $g \in L^2_{\sigma\text{-comp}}(\mathbb{R})$:

$$(U_{\theta}U_{\theta}^{-1}g)(t) = \sqrt{\dot{\theta}(t)} (U_{\theta}^{-1}g)(\theta(t))$$

$$= \frac{\sqrt{\dot{\theta}(t)}}{\sqrt{\dot{\theta}(\theta^{-1}(\theta(t)))}} g(\theta^{-1}(\theta(t)))$$

$$= \frac{\sqrt{\dot{\theta}(t)}}{\sqrt{\dot{\theta}(t)}} g(t)$$

$$= g(t)$$

$$(10)$$

since $\theta^{-1}(\theta(t)) = t$. Therefore

$$U_{\theta} U_{\theta}^{-1} = U_{\theta}^{-1} U_{\theta} = I \tag{11}$$

on
$$L^2_{\sigma\text{-comp}}(\mathbb{R})$$
.

Theorem 7. [Unitarity on $L^2(\mathbb{R})$] $U_\theta: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ is unitary:

$$\int_{\mathbb{R}} |(U_{\theta} f)(t)|^2 dt = \int_{\mathbb{R}} |f(s)|^2 ds$$
 (12)

and U_{θ}^{-1} is its inverse.

Proof. For $f \in L^2(\mathbb{R})$, we have:

$$\int_{\mathbb{R}} |(U_{\theta} f)(t)|^2 dt = \int_{\mathbb{R}} \dot{\theta}(t) |f(\theta(t))|^2 dt$$
(13)

By the change of variables

$$s = \theta(t) \tag{14}$$

with

$$ds = \dot{\theta}(t) dt \tag{15}$$

, and since $\theta: \mathbb{R} \to \mathbb{R}$ is bijective:

$$\int_{\mathbb{R}} \dot{\theta}(t) |f(\theta(t))|^2 dt = \int_{\mathbb{R}} |f(s)|^2 ds$$
 (16)

The inverse relationship follows from the same computation as in Theorem 6, applied globally. \Box

2 Oscillatory Processes (Priestley)

Definition 8. [Oscillatory process] Let F be a finite nonnegative Borel measure on \mathbb{R} . For each $t \in \mathbb{R}$, let $A_t \in L^2(F)$ be the gain function and

$$\varphi_t(\lambda) = A_t(\lambda) e^{i\lambda t} \tag{17}$$

be the corresponding oscillatory function then an oscillatory process is a stochastic process which can be represented as

$$Z(t) = \int_{\mathbb{R}} \varphi_t(\lambda) d\Phi(\lambda)$$

$$= \int_{\mathbb{R}} A_t(\lambda) e^{i\lambda t} d\Phi(\lambda)$$
(18)

where Φ is a complex orthogonal random measure with spectral measure F, that is,

$$\mathbb{E}\left[\Phi\left(d\,\lambda\right)\,\overline{\Phi\left(d\,\mu\right)}\right] = \delta\left(\lambda - \mu\right)\,d\,F(\lambda)\tag{19}$$

and corresponding covariance kernel

$$R_{Z}(t,s) = \mathbb{E}[Z(t)\overline{Z(s)}]$$

$$= \int_{\mathbb{R}} A_{t}(\lambda) \overline{A_{s}(\lambda)} e^{i\lambda(t-s)} dF(\lambda)$$

$$= \int_{\mathbb{R}} \phi_{t}(\lambda) \overline{\phi_{s}(\lambda)} dF(\lambda)$$
(20)

Remark 9. [Real-valuedness] Z is real-valued if and only if

$$A_t(-\lambda) = \overline{A_t(\lambda)} \tag{21}$$

for F-a.e. λ , equivalently

$$\varphi_t\left(-\lambda\right) = \overline{\varphi_t(\lambda)} \tag{22}$$

for F-a.e. λ . TODO: this needs to be recast as a theorem

Theorem 10. [Existence] If F is finite and $(A_t)_{t\in\mathbb{R}}$ is measurable in t with

$$\int_{\mathbb{R}} |A_t(\lambda)|^2 dF(\lambda) < \infty \forall t \in \mathbb{R}$$
(23)

then there exists a complex orthogonal random measure Φ with spectral measure F such that

$$Z(t) = \int_{\mathbb{R}} A_t(\lambda) e^{i\lambda t} \Phi(d\lambda)$$
 (24)

is well-defined in $L^2(\Omega)$ and has covariance R_Z as in (20) above.

Proof. We construct the stochastic integral using the standard extension procedure. First, define the integral for simple functions of the form

$$g(\lambda) = \sum_{j=1}^{n} c_j 1_{E_j}(\lambda)$$
 (25)

where $\{E_j\}$ are disjoint Borel sets with $F(E_j) < \infty$ and $c_j \in \mathbb{C}$:

$$\int_{\mathbb{R}} g(\lambda) \, \Phi(d\lambda) := \sum_{j=1}^{n} c_j \, \Phi(E_j)$$
(26)

For such simple functions, the isometry property holds:

$$\mathbb{E}\left[\left|\int_{\mathbb{R}} g(\lambda) \Phi(d\lambda)\right|^{2}\right] = \mathbb{E}\left[\left|\sum_{j=1}^{n} c_{j} \Phi(E_{j})\right|^{2}\right]$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{n} c_{j} \bar{c_{k}} \mathbb{E}\left[\Phi(E_{j}) \overline{\Phi(E_{k})}\right]$$

$$= \sum_{j=1}^{n} |c_{j}|^{2} F(E_{j})$$

$$= \int_{\mathbb{R}} |g(\lambda)|^{2} dF(\lambda)$$

$$(27)$$

Since simple functions are dense in $L^2(F)$, we extend by continuity to all $g \in L^2(F)$. For each t, since

$$\varphi_t(\lambda) = A_t(\lambda) e^{i\lambda t} \tag{28}$$

and $A_t \in L^2(F)$, we have $\varphi_t \in L^2(F)$. Therefore

$$Z(t) = \int_{\mathbb{R}} \varphi_t(\lambda) \, \Phi(d\lambda) \tag{29}$$

is well-defined in $L^2(\Omega)$. The covariance is computed as:

$$R_{Z}(t,s) = \mathbb{E}[Z(t)\overline{Z(s)}]$$

$$= \mathbb{E}\left[\int_{\mathbb{R}} \varphi_{t}(\lambda) \Phi(d\lambda) \int_{\mathbb{R}} \overline{\varphi_{s}(\mu)} \overline{\Phi(d\mu)}\right]$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} \varphi_{t}(\lambda) \overline{\varphi_{s}(\mu)} \mathbb{E}\left[\Phi(d\lambda)\overline{\Phi(d\mu)}\right]$$

$$= \int_{\mathbb{R}} \varphi_{t}(\lambda) \overline{\varphi_{s}(\lambda)} dF(\lambda)$$

$$= \int_{\mathbb{R}} A_{t}(\lambda) \overline{A_{s}(\lambda)} e^{i\lambda(t-s)} dF(\lambda)$$
(30)

3 Stationary Processes and Time Change

3.1 Stationary processes

Definition 11. [Cramér representation] A zero-mean stationary process X with spectral measure F admits the sample path representation

$$X(t) = \int_{\mathbb{R}} e^{i\lambda t} \Phi(d\lambda)$$
 (31)

which has covariance

$$R_X(t-s) = \int_{\mathbb{R}} e^{i\lambda(t-s)} dF(\lambda)$$
 (32)

3.2 Stationary \rightarrow oscillatory via U_{θ}

Theorem 12. [Time change yields oscillatory process] Let X be zero-mean stationary as in Definition 11. For θ as in Definition 4, define

$$Z(t) = (U_{\theta} X)(t)$$

$$= \sqrt{\dot{\theta}(t)} X(\theta(t))$$
(33)

Then Z is oscillatory with oscillatory function

$$\varphi_t(\lambda) = \sqrt{\dot{\theta}(t)} \ e^{i\lambda\theta(t)} \tag{34}$$

, gain function

$$A_t(\lambda) = \sqrt{\dot{\theta}(t)} e^{i\lambda(\theta(t) - t)}$$
(35)

, and covariance

$$R_Z(t,s) = \int_{\mathbb{R}} \sqrt{\dot{\theta}(t) \,\dot{\theta}(s)} \, e^{i\lambda(\theta(t) - \theta(s))} \, dF(\lambda) \tag{36}$$

Proof. Applying the unitary time change operator to the spectral representation of X(t):

$$Z(t) = (U_{\theta} X)(t)$$

$$= \sqrt{\dot{\theta}(t)} X(\theta(t))$$

$$= \sqrt{\dot{\theta}(t)} \int_{\mathbb{R}} e^{i\lambda\theta(t)} d\Phi(\lambda)$$

$$= \int_{\mathbb{R}} \sqrt{\dot{\theta}(t)} e^{i\lambda\theta(t)} d\Phi(\lambda)$$

$$= \int_{\mathbb{R}} \varphi_{t}(\lambda) d\Phi(\lambda)$$
(37)

where

$$\varphi_t(\lambda) = \sqrt{\dot{\theta}(t)} e^{i\lambda\theta(t)} \tag{38}$$

To verify this constitutes an oscillatory representation according to Definition 8, we must write $\varphi_t(\lambda)$ in the form $A_t(\lambda) e^{i\lambda t}$:

$$\varphi_{t}(\lambda) = \sqrt{\dot{\theta}(t)} e^{i\lambda\theta(t)}
= \sqrt{\dot{\theta}(t)} e^{i\lambda(\theta(t)-t)} e^{i\lambda t}
= A_{t}(\lambda) e^{i\lambda t}$$
(39)

where

$$A_t(\lambda) = \sqrt{\dot{\theta}(t)} e^{i\lambda(\theta(t) - t)}$$
(40)

Since $\dot{\theta}(t) \ge 0$ almost everywhere and $\dot{\theta}(t) = 0$ only on sets of measure zero, $A_t(\lambda)$ is well-defined almost everywhere. Moreover, $A_t \in L^2(F)$ for each t since:

$$\int_{\mathbb{R}} |A_{t}(\lambda)|^{2} dF(\lambda) = \int_{\mathbb{R}} \left| \sqrt{\dot{\theta}(t)} e^{i\lambda(\theta(t)-t)} \right|^{2} dF(\lambda)
= \int_{\mathbb{R}} \dot{\theta}(t) |e^{i\lambda(\theta(t)-t)}|^{2} dF(\lambda)
= \dot{\theta}(t) \int_{\mathbb{R}} dF(\lambda)
= \dot{\theta}(t) F(\mathbb{R}) < \infty$$
(41)

where we used $|e^{i\alpha}| = 1$ for all real α . The covariance is computed as:

$$R_{Z}(t,s) = \mathbb{E}[Z(t)\overline{Z(s)}]$$

$$= \mathbb{E}\left[\sqrt{\dot{\theta}(t)} X(\theta(t))\sqrt{\dot{\theta}(s)} \overline{X(\theta(s))}\right]$$

$$= \sqrt{\dot{\theta}(t) \dot{\theta}(s)} \mathbb{E}[X(\theta(t)) \overline{X(\theta(s))}]$$

$$= \sqrt{\dot{\theta}(t) \dot{\theta}(s)} R_{X}(\theta(t) - \theta(s))$$

$$= \sqrt{\dot{\theta}(t) \dot{\theta}(s)} \int_{\mathbb{R}} e^{i\lambda(\theta(t) - \theta(s))} dF(\lambda)$$

$$(42)$$

Corollary 13. [Evolutionary spectrum] The evolutionary spectrum is

$$dF_t(\lambda) = |A_t(\lambda)|^2 dF(\lambda)$$

= $\dot{\theta}(t) dF(\lambda)$ (43)

Proof. By definition of the evolutionary spectrum and using the gain function from Theorem 12:

$$dF_{t}(\lambda) = |A_{t}(\lambda)|^{2} dF(\lambda)$$

$$= \left| \sqrt{\dot{\theta}(t)} e^{i\lambda(\theta(t)-t)} \right|^{2} dF(\lambda)$$

$$= \dot{\theta}(t) |e^{i\lambda(\theta(t)-t)}|^{2} dF(\lambda)$$

$$= \dot{\theta}(t) dF(\lambda)$$
(44)

since

$$|e^{i\alpha}| = 1 \forall a \in \mathbb{R} \tag{45} \quad \Box$$

3.3 Covariance operator conjugation

Proposition 14. [Operator conjugation] Let

$$(T_K f)(t) := \int_{\mathbb{R}} K(|t - s|) \ f(s) \ ds \tag{46}$$

with stationary kernel

$$K(h) = \int_{\mathbb{R}} e^{i\lambda h} dF(\lambda) \tag{47}$$

Define the transformed kernel

$$K_{\theta}(s,t) := \sqrt{\dot{\theta}(t)\,\dot{\theta}(s)} \ K(|\theta(t) - \theta(s)|) \tag{48}$$

and corresponding integral covariance operator

$$(T_{K_{\theta}}f)(t) := \int_{\mathbb{R}} K_{\theta}(s,t) f(s) ds$$

$$(49)$$

Then

$$T_{K_{\theta}} = U_{\theta} \ T_K \ U_{\theta}^{-1} \tag{50}$$

on $L^2_{\sigma\text{-}comp}(\mathbb{R})$.

Proof. For any $g \in L^2_{\sigma\text{-comp}}(\mathbb{R})$, we transform the integral operator from coordinates (r, w) to coordinates (t, s) by applying both coordinate transformations

$$r = \theta(t) \tag{51}$$

and

$$w = \theta(s) \tag{52}$$

by simultaneously substitution with Jacobians

$$dr = \dot{\theta}(t) dt \tag{53}$$

and

$$d w = \dot{\theta}(s) \ d s \tag{54}$$

The operator T_K in (r, w) coordinates is:

$$(T_K f)(r) = \int_{\mathbb{R}} K(|r - w|) f(w) dw$$
 (55)

Under the simultaneous transformation $r = \theta(t)$ and $w = \theta(s)$:

$$((U_{\theta}T_{K}U_{\theta}^{-1})g)(t) = \sqrt{\dot{\theta}(t)\dot{\theta}(s)} \int_{\mathbb{R}} K(|\theta(t) - \theta(s)|) (U_{\theta}^{-1}g)(\theta(s)) \frac{\dot{\theta}(s)}{\sqrt{\dot{\theta}(s)}} ds$$

$$= \sqrt{\dot{\theta}(t)\dot{\theta}(s)} \int_{\mathbb{R}} K(|\theta(t) - \theta(s)|) \frac{g(s)}{\sqrt{\dot{\theta}(s)}} \sqrt{\dot{\theta}(s)} ds$$

$$= \sqrt{\dot{\theta}(t)\dot{\theta}(s)} \int_{\mathbb{R}} K(|\theta(t) - \theta(s)|) g(s) ds$$

$$= \int_{\mathbb{R}} \sqrt{\dot{\theta}(t)\dot{\theta}(s)} K(|\theta(t) - \theta(s)|) g(s) ds$$

$$= \int_{\mathbb{R}} K_{\theta}(t, s) g(s) ds$$

$$= (T_{K_{\theta}}g)(t)$$

$$(56)$$

where

$$K_{\theta}(t,s) = \sqrt{\dot{\theta}(t)\,\dot{\theta}(s)}\,K(|\theta(t) - \theta(s)|) \tag{57}$$

Therefore

$$T_{K_{\theta}} = U_{\theta} T_K U_{\theta}^{-1} \tag{58} \quad \Box$$

4 Sample Paths Live in $L^2_{\sigma ext{-comp}}$

Theorem 15. [Sample paths in $L^2_{\sigma\text{-}comp}(\mathbb{R})$] Let $\{X(t)\}_{t\in\mathbb{R}}$ be a second-order stationary process with

$$\sigma^2 := \mathbb{E}[X(t)^2] < \infty \tag{59}$$

then, almost surely, every sample path $t \mapsto X(\omega, t)$ belongs to $L^2_{\sigma\text{-}comp}(\mathbb{R})$.

Proof. Fix any bounded interval [a, b] and consider the random variable

$$Y_{[a,b]} := \int_{a}^{b} X(t)^{2} dt \tag{60}$$

By stationarity and Fubini's theorem:

$$\mathbb{E}[Y_{[a,b]}] = \mathbb{E}\left[\int_{a}^{b} X(t)^{2} dt\right] = \int_{a}^{b} \mathbb{E}[X(t)^{2}] dt$$

$$= \int_{a}^{b} \sigma^{2} dt$$

$$= \sigma^{2} (b-a) < \infty$$
(61)

By Markov's inequality, for any M > 0:

$$P\left(Y_{[a,b]} > M\right) \le \frac{\mathbb{E}[Y_{[a,b]}]}{M} = \frac{\sigma^2 \left(b - a\right)}{M} \tag{62}$$

Taking $M \to \infty$, we conclude

$$P\left(Y_{[a,b]} < \infty\right) = 1\tag{63}$$

, i.e., almost surely the sample path is square-integrable on [a,b]. Since $\mathbb R$ is the countable union of bounded intervals:

$$\mathbb{R} = \bigcup_{n=1}^{\infty} \left[-n, n \right] \tag{64}$$

by countable subadditivity of probability:

$$P\left(\bigcap_{n=1}^{\infty} \left\{ \int_{-n}^{n} X(t)^2 dt < \infty \right\} \right) = 1 \tag{65}$$

Now let U be any σ -compact set. Then

$$U = \bigcup_{m=1}^{\infty} K_m \tag{66}$$

where each K_m is compact. Each compact set K_m is bounded, so

$$K_m \subseteq [-N_m, N_m] \tag{67}$$

for some N_m . Therefore:

$$\int_{U} X(t)^{2} dt = \int_{\bigcup_{m=1}^{\infty} K_{m}} X(t)^{2} dt
\leq \sum_{m=1}^{\infty} \int_{K_{m}} X(t)^{2} dt
\leq \sum_{m=1}^{\infty} \int_{-N_{m}}^{N_{m}} X(t)^{2} dt$$
(68)

Since each integral

$$\int_{-N_m}^{N_m} X(t)^2 dt < \infty \tag{69}$$

almost surely, and the sum of countably many finite terms is finite, we have

$$\int_{U} X(t)^{2} dt < \infty \tag{70}$$

almost surely. This holds for every σ -compact set U, so almost surely every sample path lies in $L^2_{\sigma\text{-comp}}(\mathbb{R})$.

5 Zero Localization and Hilbert–Pólya Scaffold

5.1 Zero localization measure

Definition 16. [Zero localization measure] Let Z be real-valued with $Z \in C^1(\mathbb{R})$ having only simple zeros

$$Z(t_0) = 0 \Rightarrow \dot{Z}(t_0) \neq 0 \tag{71}$$

Define, for Borel $B \subset \mathbb{R}$,

$$\mu(B) := \int_{\mathbb{R}} 1_B(t) \, \delta(Z(t)) \, |\dot{Z}(t)| \, dt \tag{72}$$

Theorem 17. [Atomicity on the zero set] For every $\phi \in C_c^{\infty}(\mathbb{R})$,

$$\int_{\mathbb{R}} \phi(t) \, \delta(Z(t)) \, |\dot{Z}(t)| \, dt = \sum_{t_0: Z(t_0) = 0} \phi(t_0)$$
 (73)

hence

$$\mu(t) = \sum_{t_0: Z(t_0) = 0} \delta_{t_0}(t) \tag{74}$$

Proof. Since all zeros of Z are simple and $Z \in C^1(\mathbb{R})$, by the inverse function theorem each zero t_0 is isolated. Near each zero t_0 , Z is locally monotonic, so we can apply the one-dimensional change of variables formula for the Dirac delta.

Specifically, near t_0 where $Z(t_0) = 0$ and $\dot{Z}(t_0) \neq 0$, we have locally

$$Z(t) = (t - t_0)\dot{Z}(t_0) + O((t - t_0)^2)$$
(75)

The distributional identity for the Dirac delta under smooth changes of variables gives:

$$\delta(Z(t)) = \sum_{t_0: Z(t_0) = 0} \frac{\delta(t - t_0)}{|\dot{Z}(t_0)|}$$
(76)

Therefore:

$$\int_{\mathbb{R}} \phi(t) \, \delta(Z(t)) \, |\dot{Z}(t)| \, dt = \int_{-\infty}^{\infty} \phi(t) \, |\dot{Z}(t)| \sum_{t_0: Z(t_0) = 0} \frac{\delta(t - t_0)}{|\dot{Z}(t_0)|} \, dt$$

$$= \sum_{t_0: Z(t_0) = 0} \int_{\mathbb{R}} \phi(t) \frac{|\dot{Z}(t)| \, \delta(t - t_0)}{|\dot{Z}(t_0)|} \, dt$$

$$= \sum_{t_0: Z(t_0) = 0} \frac{|\dot{Z}(t_0)|}{|\dot{Z}(t_0)|} \phi(t_0)$$

$$= \sum_{t_0: Z(t_0) = 0} \phi(t_0)$$
(77)

This shows that μ is the discrete measure

$$\mu = \sum_{t_0: Z(t_0) = 0} \delta_{t_0} \tag{78}$$

assigning unit mass to each zero.

5.2 Hilbert space on zeros and multiplication operator

Definition 18. [Hilbert space on the zero set] Let $\mathcal{H} = L^2(\mu)$ with inner product

$$\langle f, g \rangle = \int f(t) \overline{g(t)} \,\mu \,(d \,t)$$
 (79)

Proposition 19. [Atomic structure] Let

$$\mu = \sum_{t_0: Z(t_0) = 0} \delta_{t_0} \tag{80}$$

then

$$\mathcal{H} \cong \left\{ f : \{ t_0 : Z(t_0) = 0 \} \to \mathbb{C} : \sum_{t_0 : Z(t_0) = 0} |f(t_0)|^2 < \infty \right\} \cong \ell^2$$
(81)

with orthonormal basis $\{e_{t_0}\}_{t_0:Z(t_0)=0}$ where

$$e_{t_0}(t_1) = \delta_{t_0 t_1} \tag{82}$$

Proof. By the atomic form of μ , for any $f \in L^2(\mu)$:

$$||f||_{\mathcal{H}}^2 = \int |f(t)|^2 \ \mu (dt) \tag{83}$$

$$= \int |f(t)|^2 \sum_{t_0: Z(t_0)=0} \delta_{t_0}(dt)$$
 (84)

$$= \sum_{t_0: Z(t_0)=0} |f(t_0)|^2 \tag{85}$$

This shows the isomorphism with ℓ^2 . The functions e_{t_0} defined by

$$e_{t_0}(t_1) = \delta_{t_0 t_1} \tag{86}$$

satisfy:

$$\langle e_{t_0}, e_{t_1} \rangle = \int e_{t_0}(t) \overline{e_{t_1}(t)} \, \mu (dt) = \sum_{t: Z(t) = 0} \delta_{t_0 t} \, \delta_{t_1 t} = \delta_{t_0 t_1}$$
 (87)

so they form an orthonormal set. Any $f \in \mathcal{H}$ can be written as

$$f = \sum_{t_0: Z(t_0) = 0} f(t_0) e_{t_0}$$
(88)

proving they form a basis.

Definition 20. [Multiplication operator] Define $L: \mathcal{D}(L) \subset \mathcal{H} \to \mathcal{H}$ by

$$(Lf)(t) = tf(t) \tag{89}$$

on $supp(\mu)$ with domain

$$\mathcal{D}(L) := \left\{ f \in \mathcal{H} : \int |t| f(t)|^2 \ \mu(dt) < \infty \right\}$$
(90)

Theorem 21. [Self-adjointness and spectrum] L is self-adjoint on \mathcal{H} and has pure point, simple spectrum

$$\sigma(L) = \{ t \in \mathbb{R} \colon Z(t) = 0 \} \tag{91}$$

with eigenvalues $\lambda = t_0$ and eigenvectors e_{t_0} .

Proof. First, we verify self-adjointness. For $f, g \in \mathcal{D}(L)$:

$$\langle Lf, g \rangle = \int (Lf)(t)\overline{g(t)} \,\mu \,(dt)$$

$$= \int t \,f(t)\overline{g(t)} \,\mu \,(dt)$$

$$= \int f(t)\overline{t} \,\overline{g(t)} \,\mu \,(dt)$$

$$= \int f(t)\overline{(Lg)(t)} \,\mu \,(dt)$$

$$= \langle f, Lg \rangle$$

$$(92)$$

Thus L is symmetric and acts as

$$(Lf)(t_0) = t_0 f(t_0) \tag{93}$$

for each t_0 in the atomic representation where

$$Z(t_0) = 0 (94)$$

This is unitarily equivalent to the diagonal operator on ℓ^2 with diagonal entries

$$\{t_0: Z(t_0) = 0\} \tag{95}$$

Such diagonal operators are self-adjoint. For the spectrum calculation: We have

$$L e_{t_0} = t_0 e_{t_0} \forall \{ t_0 : Z(t_0) = 0 \}$$
(96)

so each t_0 is an eigenvalue of L with eigenvector e_{t_0} and since $\{e_{t_0}\}$ forms an orthonormal basis, L has pure point spectrum. To show there are no other spectral points, suppose

$$\lambda \notin \{t_0: Z(t_0) = 0\} \tag{97}$$

Then for any $f \in \mathcal{D}(L)$, $((L - \lambda I) f)(t)$ has components

$$((L - \lambda I) f)(t_0) = (t_0 - \lambda) f(t_0)$$
(98)

Since $t_0 - \lambda \neq 0$ the equation

$$(L - \lambda I) f = g \tag{99}$$

has a unique solution $\forall g \in \mathcal{H}$ which is made apparent by setting

$$f(t_0) = \frac{g(t_0)}{t_0 - \lambda} \tag{100}$$

which shows that $L - \lambda I$ is invertible, hence $\lambda \notin \sigma(L)$. Therefore

$$\sigma(L) = \{t_0: Z(t_0) = 0\} \tag{101}$$

and the eigenvalues are simple.

Remark 22. [Operator scaffold] The construction

stationary
$$X \xrightarrow{U_{\theta}}$$
 oscillatory $Z \xrightarrow{\mu = \delta(Z)|\dot{Z}|dt} L^{2}(\mu) \xrightarrow{L:t} (L, \sigma(L))$ (102)

produces a concrete self-adjoint operator whose spectrum equals the zero set of Z, determined by the choice of time-change θ and spectral measure F. This provides an explicit realization consistent with Hilbert–Pólya approaches to encoding arithmetic information in operator spectra.

6 Appendix: Regularity and Simple Zeros

Definition 23. [Regularity and simplicity] Assume $Z \in C^1(\mathbb{R})$ and every zero is simple: $Z(t_0) = 0 \Rightarrow \dot{Z}(t_0) \neq 0$.

Lemma 24. [Local finiteness and delta decomposition] Under Definition 23, zeros are locally finite and

$$\delta(Z(t)) = \sum_{t_0: Z(t_0) = 0} \frac{\delta(t - t_0)}{|\dot{Z}(t_0)|}$$
(103)

whence

$$\mu = \sum_{t_0: Z(t_0) = 0} \delta_{t_0} \tag{104}$$

Proof. Since $Z \in C^1(\mathbb{R})$ and $\dot{Z}(t_0) \neq 0$ at each zero t_0 , the inverse function theorem implies that Z is locally invertible near each zero. Specifically, there exists a neighborhood U_{t_0} of t_0 such that $Z|_{U_{t_0}}$ is strictly monotonic and invertible.

This implies zeros are isolated: if $Z(t_0) = 0$ and $\dot{Z}(t_0) \neq 0$, then there exists $\epsilon > 0$ such that $Z(t) \neq 0$ for $0 < |t - t_0| < \epsilon$. Therefore zeros are locally finite (finitely many in any bounded interval).

For the distributional identity, consider the one-dimensional change of variables formula for the Dirac delta. If $g: I \to \mathbb{R}$ is C^1 on interval I with $\dot{g}(x) \neq 0$ for all $x \in I$, then

$$\delta(g(x)) = \sum_{x_0: q(x_0) = 0} \frac{\delta(x - x_0)}{|\dot{g}(x_0)|}$$
(105)

Applying this locally around each zero t_0 of Z, and since zeros are isolated, we can patch together the local results to obtain the global identity:

$$\delta(Z(t)) = \sum_{t_0: Z(t_0) = 0} \frac{\delta(t - t_0)}{|\dot{Z}(t_0)|}$$
(106)

Consequently:

$$\mu(dt) = \delta(Z(t))|\dot{Z}(t)| dt$$

$$= \sum_{t_0: Z(t_0)=0} \frac{|\dot{Z}(t)|}{|\dot{Z}(t_0)|} \delta(t - t_0) dt$$

$$= \sum_{t_0: Z(t_0)=0} \delta_{t_0}(dt)$$
(107)

where the last equality uses the fact that

$$\frac{|\dot{Z}(t_0)|}{|\dot{Z}(t_0)|} = 1\tag{108}$$

when evaluating at $t = t_0$.