The University of Texas at Austin

Mechanical Engineering Department

MODELING OF PHYSICAL SYSTEMS

J.J. Beaman Assigned 2/24/2022 ME 383Q.4

Spring 2022

Assignment 3

Due 3/3/2022

Read Chapter 4 and Chapter sections 5.1 and 5.2

- 1) Shown below is a cart containing a load of scrap. You have been hired to design a damper to stop this cart in 10 seconds if the initial velocity of the cart is .5 m/s and the cart has a mass of 1,000 kg.
 - (a) Calculate the necessary damping coefficient b.
 - (b) How long does the damper stroke have to be?
 - (c) How much heat is generated?

2) Shown below is a portion of a positioning mechanism in a machine. The parameters in the model have the values $K_s = 1 \text{ N/A}$, k = 100 N/m, m = 1 kg, b = 10 N-sec/m.

- (a) Develop a bond graph model for this system.
- (b) Obtain state equations for your model.
- (c) Obtain a 2^{nd} order differential equation x.
- (d) Is the system over damped or under damped?
- (e) For a step input in current, i = 1 A, find the maximum value of the position x.
- (f) At what time after the step does the maximum occur?
- (g) What is the steady state position of x?
- (h) It is desired that the maximum value of x never exceed the steady state value. Find the smallest value of b to achieve this result.

3) Shown below is a portion of a system and bond graph model for scavenging energy from waves and the tide.

The bond graph elements have the constitutive relations:

 $P_o(t)$

 $v = R_{load}i$

 $P_R = R_{pipe} Q_{pipe}$

 $Q_{pipe} = \Gamma/I$ $Q_L = P_L/R_L$

 $\tilde{V} = p/m$

 $F_K = Kx$

 $P_{elect} = Bli/A$

Obtain a set of state equations for this bond graph model.