FSF3581: Homework 3

Problem 1

Given the following Ito's SDE of a risk neutral stock

$$dS_t = rS_t dt + \sigma S_t dW_t$$
$$S(0) = S_0$$

with the following solution,

$$S_T = exp((r - \frac{\sigma^2}{2})T + \sigma W_T)S_0$$

Part 1a

Simulate the price of a European option call,

$$f(0,S_0) = e^{-rT} \mathbb{E} [max(S_T - K, 0)|S_0]$$

using a Monte Carlo method where $S_0 = K = 35, r = 0.04, \sigma = 0.2, T = \frac{1}{2}$. Use a successively larger sample and estimate the accuracy of your results by appealing to the the Central Limit Theorem and computing a sample variance.

Answer: We run a Monte Carlo simulation with a fixed step length of $\Delta t = \frac{1}{2^7} = \frac{1}{128}$ and 5 different sample sizes of $N \in [10^3, 10^4, 10^5, 10^6, 10^7]$, from t = 0 to t = 0.5 = T. For each case (of sample size) we noted the sample variance and estimation error (as a deviation from the analytic solution). The results are given in the table below. (*Note:* Monte Carlo's sample variance is calculated as the variance of the difference between the F-E approximation and analytical solution at every time step.)

N	$\hat{\sigma}_S^2 (10^{-7})$	$\hat{\sigma}_f^2 (10^{-7})$	$\mathbb{E}[\epsilon_S] \ (10^{-4})$	$\mathbb{E}[\epsilon_f] \ (10^{-4})$	$(f_T - f_N) (10^{-3})$
1,000	2.2329	4.3847	-8.647	1.614	-1.521
10,000	0.2889	0.3428	1.410	0.769	-0.644
100,000	0.0425	0.0383	-0.098	-0.041	0.139
1,000,000	0.0041	0.0034	-0.252	-0.147	0.029
10,000,000	0.0032	0.0006	-0.320	-0.211	0.030

Cook.

Accordingly to the Central Limit Theorem, Monte Carlo's sample variance scaled down proportionally with the increase in sample size, for both stock price (S_t) and option price (f_t) (2nd and 3rd columns, respectively, in table). A similar observation can be made about the deviation between the the analytical solution and the F-E approximation of option price at the call time (t = T) (last column in the table). MATLAB code for this simulation is given in Appendix.

Figur 1: Δ (y-axis) as a function of $\log(\Delta s)$ (x-axis)

Part 1b

Compute the corresponding sensitivity parameter ("delta"),

$$\Delta \equiv \frac{\partial f(0,s)}{\partial s}$$

using a finite difference approximation,

$$\Delta \approx \frac{f(0,s+\Delta s) - f(0,s)}{\Delta s}$$

and determine a good choice of Δs . Estimate also accuracy of the results.

Answer: We looked at two points to the left and right of $S_0 = 35$, thus $\mathcal{N} = [(S_0 - \Delta s), S_0, (S_0 + \Delta s)]$ at various distances $\Delta s \in [10^{-2}, 10^{-1.75}, ..., 10^{0.75}, 10^1]$; in other words, we systematically searched at 13 different distances from 0.01 to 10 around S_0 , computed $f(0,s + \Delta s)$ at each of the points on the left and right of S_0 and calculated the mean Δ , to see how it would change as a function of Δs . The results of this iterative search are plotted against the log(int) in Figure 1.

From the figure, we can see that starting from $\Delta s \approx 10^{-0.25} = 0.56$, the change in f(0,s) per unit change of s stabilizes to $\Delta \approx 0.1$. Thus, this is arguably a good choice for a cut-off value, namely $\Delta s \geq 0.56$. MATLAB code for this simulation is given in Appendix.

Problem 2

Given a (simplified) stochastic volatility model as follow,

$$dS_t = rS_t dt + e^{Y_t} S_t dW_t (1)$$

$$dY_t = (-\alpha(2+Y_t) + 0.4\sqrt{\alpha}\sqrt{1-\rho^2})dt + 0.4\sqrt{\alpha}d\hat{Z}_t$$
 (2)

$$\hat{Z}_t = \rho W_t + \sqrt{1 - \rho^2} Z_t \tag{3}$$

where W and Z are independent Wiener processes, $\alpha > 0$, and $\rho = -0.3$

Part 2a

Derive the analytical solution of Y_t from (2) above, and calculate $\mathbb{E}[Y_t]$ and $Var[Y_t]$ exactly and their limit as $t \to \infty$.

Answer: First, we re-arrange dY_t as follow (substituting $\rho = -0.3$),

$$dY_t = \left(-2\alpha + 0.4\sqrt{0.91\alpha} - \alpha Y_t\right)dt + 0.4\sqrt{\alpha}d\hat{Z}_t$$
$$= (a + bY_t)dt + cd\hat{Z}_t$$

where,

$$a = -2\alpha + 0.4\sqrt{0.91\alpha}$$
$$b = -\alpha$$
$$c = 0.4\sqrt{\alpha}$$

Re-arranging dY_t further to,

$$dY_t = -b\left(-\frac{a}{b} - Y_t\right)dt + cd\hat{Z}_t$$

we can infer,

- Steady-state (asymptotic) mean of Y_t is $\theta = -\frac{a}{b} = -2 + 0.4\sqrt{\frac{0.91}{\alpha}}$
- Time constant of decay in Y_t is $-b = \alpha$ (thus, decay term is $e^{-\alpha t}$)
- Coefficient of stochastic (Wiener) component in Y_t is $c = 0.4\sqrt{\alpha}$

Then, we can derive the solution of Y_t using the following steps:

(i) Mean-centered process: $M_t = Y_t - \theta$,

$$dM_t = dY_t = -b(-M_t)dt + cd\hat{Z}_t$$
$$= bM_t dt + cd\hat{Z}_t$$

(ii) Transient-free process: $N_t = e^{-bt} M_t$,

$$dN_t = -be^{-bt}M_tdt + e^{-bt}dM_t$$
$$= -be^{-bt}M_tdt + e^{-bt}(bM_tdt + cd\hat{Z}_t)$$
$$= ce^{-bt}d\hat{Z}_t$$

(iii) Ito's integral of both sides of (ii),

$$\int_{s}^{t} dN_{u} = \int_{s}^{t} ce^{-bu} d\hat{Z}_{u}$$

$$N_{t} - N_{s} = \int_{s}^{t} ce^{-bu} d\hat{Z}_{u}$$

$$N_{t} = N_{s} + \int_{s}^{t} ce^{-bu} d\hat{Z}_{u}$$

(iv) Returning back to decaying process,

$$e^{-bt}M_t = e^{-bs}M_s + \int_s^t ce^{-bu}d\hat{Z}_u$$
$$M_t = e^{b(t-s)}M_s + \int_s^t ce^{b(t-u)}d\hat{Z}_u$$

(v) Returning back the steady-state mean,

$$Y_t - \theta = e^{b(t-s)}(Y_s - \theta) + \int_s^t ce^{b(t-u)} d\hat{Z}_u$$
$$Y_t = \theta + e^{b(t-s)}(Y_s - \theta) + \int_s^t ce^{b(t-u)} d\hat{Z}_u$$

(vi) Finally, obtaining the differential stochastic term from (3),

$$d\hat{Z}_t = d\left(-0.3W_t + \sqrt{0.91}Z_t\right) = -0.3dW_t + \sqrt{0.91}dZ_t$$

We obtain the final form of the solution,

$$Y_t = -2 + 0.4\sqrt{\frac{0.91}{\alpha}} + e^{-\alpha(t-s)}\left(Y_s + 2 - 0.4\sqrt{\frac{0.91}{\alpha}}\right) + 0.4\sqrt{\alpha}\int_s^t e^{-\alpha(t-u)}(-0.3dW_u + \sqrt{0.91}dZ_u)$$

Then, the mean of Y_t is,

$$\mathbb{E}[Y_t] = \theta + e^{-\alpha(t-s)} (Y_s - \theta) + 0.4\sqrt{\alpha} \mathbb{E}\left[\int_s^t e^{-\alpha(t-u)} (-0.3dW_u + \sqrt{0.91}dZ_u)\right]$$

$$= \theta + e^{-\alpha(t-s)} (Y_s - \theta)$$

$$= -2 + 0.4\sqrt{\frac{0.91}{\alpha}} + e^{-\alpha(t-s)} \left(Y_s + 2 - 0.4\sqrt{\frac{0.91}{\alpha}}\right)$$

and the asymptotic $(t \to \infty)$ mean is,

$$\mathbb{E}[Y_t]_{t\to\infty} = -2 + 0.4\sqrt{\frac{0.91}{\alpha}} = -\frac{a}{b}$$

as inferred above.

The variance of Y_t is,

$$\mathbb{E}\left[\left(Y_{t} - \mathbb{E}[Y_{t}]\right)^{2}\right] = 0.16\alpha e^{-2\alpha t} \mathbb{E}\left[\left(\int_{s}^{t} e^{\alpha u}(-0.3dW_{u} + \sqrt{0.91}dZ_{u})\right)\left(\int_{s}^{t} e^{\alpha v}(-0.3dW_{v} + \sqrt{0.91}dZ_{v})\right)\right] \\
= 0.16\alpha e^{-2\alpha t} \mathbb{E}\left[\int_{s}^{t} e^{2\alpha u}\left(0.09dW_{u}^{2} + 0.91dZ_{u}^{2}\right)\right]^{1} \\
= 0.16\alpha e^{-2\alpha t} \int_{s}^{t} e^{2\alpha u}\left(0.09 \underbrace{\mathbb{E}[dW_{u}^{2}]}_{=du} + 0.91 \underbrace{\mathbb{E}[dZ_{u}^{2}]}_{=du}\right) \\
= 0.16\alpha e^{-2\alpha t} \int_{s}^{t} e^{2\alpha u}du = 0.16\alpha e^{-2\alpha t}\left(\frac{1}{2\alpha}\right)\left(e^{2\alpha t} - e^{2\alpha s}\right) \\
= 0.08\left(1 - e^{-2\alpha(t-s)}\right)$$

and the asymptotic $(t \to \infty)$ variance is,

R

$$\mathbb{E}\left[(Y_t - \mathbb{E}[Y_t])^2 \right]_{t \to \infty} = 0.08 = \frac{c^2}{2|b|}$$

Part 2b

Given the model equation below for stability analysis,

$$dX_t = -\alpha X_t dt + \sqrt{\alpha} dW_t \tag{4}$$

where W is a Wiener process, solve the following:

- (i) Compute expected value and variance of X_t and their corresponding limits at $t \to \infty$.
- (ii) Compute expected value and variance of Forward Euler approximation to X_t and their corresponding limits at $t \to \infty$.
- (iii) Compute expected value and variance of Backward Euler approximation to X_t and their corresponding limits at $t \to \infty$.
- (iv) Interpret the results obtained in (i-iii).

Answer:

(i) Using the same approach as in Part 2a, first we introduce a substitute transient-free variable/process: $Z_t = e^{\alpha t} X_t$. Then,

$$dZ_t = \alpha e^{\alpha t} X_t dt + e^{\alpha t} dX_t$$

= $\alpha e^{\alpha t} X_t dt + e^{\alpha t} (-\alpha X_t dt + \sqrt{\alpha} dW_t)$
= $\sqrt{\alpha} e^{\alpha t} dW_t$

Next, integrating both sides of above:

$$\int_{s}^{t} dZ_{u} = \sqrt{\alpha} \int_{s}^{t} e^{\alpha u} dW_{u}$$
$$Z_{t} = Z_{s} + \sqrt{\alpha} \int_{s}^{t} e^{\alpha u} dW_{u}$$

¹All cross-terms vanishes due to independence of W and Z.

Returning back the transient component:

$$e^{\alpha t} X_t = e^{\alpha s} X_s + \sqrt{\alpha} \int_s^t e^{\alpha u} dW_u$$
$$X_t = e^{-\alpha(t-s)} X_s + \sqrt{\alpha} \int_s^t e^{-\alpha(t-u)} dW_u$$

Hence, the mean of X_t ,

$$\mathbb{E}[X_t] = e^{-\alpha(t-s)} X_s + \sqrt{\alpha} e^{-\alpha t} \underbrace{\mathbb{E}\left[\int_s^t e^{\alpha u} dW_u\right]}_{=0}$$

$$= e^{-\alpha(t-s)} X_s$$

and it's asymptotic $(t \to \infty)$ mean is,

$$\mathbb{E}\left[X_t\right]_{t\to\infty}=0$$

The variance of X_t is,

$$\mathbb{E}\left[\left(X_{t} - \mathbb{E}[X_{t}]\right)^{2}\right] = \mathbb{E}\left[\left(\sqrt{\alpha}e^{-\alpha t}\int_{s}^{t}e^{\alpha u}dW_{u}\right)\left(\sqrt{\alpha}e^{-\alpha t}\int_{s}^{t}e^{\alpha v}dW_{v}\right)\right]$$

$$= \alpha e^{-2\alpha t}\mathbb{E}\left[\int_{s}^{t}e^{2\alpha u}dW_{u}^{2}\right] = \alpha e^{-2\alpha t}\int_{s}^{t}e^{2\alpha u}\underbrace{\mathbb{E}[dW_{u}^{2}]}_{=du}$$

$$= \alpha e^{-2\alpha t}\int_{s}^{t}e^{2\alpha u}du = \alpha e^{-2\alpha t}\left(\frac{1}{2\alpha}\right)\left(e^{2\alpha t} - e^{2\alpha s}\right)$$

$$= \frac{1}{2}\left(1 - e^{-2\alpha(t-s)}\right)$$

and it's asymptotic $(t \to \infty)$ variance is,

R

$$\mathbb{E}\left[\left(X_t - \mathbb{E}[X_t]\right)^2\right]_{t \to \infty} = \frac{1}{2}$$

(ii) Forward Euler (F-E) approximation² to (4) is,

$$X_{n+1} - X_n = -\alpha X_n \Delta t_n + \sqrt{\alpha} \Delta W_n$$

Thus,

$$X_{n+1} = X_n - \alpha X_n \Delta t_n + \sqrt{\alpha} \Delta W_n$$

= $(1 - \alpha \Delta t_n) X_n + \sqrt{\alpha} \Delta W_n$

and for "integrating" from n_0 to N, we have

$$X_N = (1 - \alpha \Delta t_n)^{(N-n_0)} X_{n_0} + \sum_{k=n_0}^{N-1} (1 - \alpha \Delta t_n)^{(N-k-1)} \sqrt{\alpha} \Delta W_k$$

The mean of this F-E approximation is,

$$\mathbb{E}[X_N] = (1 - \alpha \Delta t_n)^{(N-n_0)} X_{n_0} + \mathbb{E}\left[\sum_{k=n_0}^{N-1} (1 - \alpha \Delta t_n)^{(N-k-1)} \sqrt{\alpha \Delta W_k}\right]$$

$$= (1 - \alpha \Delta t_n)^{(N-n_0)} X_{n_0}$$

²We assume a constant Δt which depends only on the size of partitions n; thus $\Delta t_k = \Delta t_n \ \forall k$

which is stable (and finite) only for $|1 - \alpha \Delta t| < 1$. And in which case the asymptotic $(N \to \infty)$ mean is,

$$\mathbb{E}\left[X_N\right]_{N\to\infty}=0$$

The variance of this F-E approximation is

$$\mathbb{E}\left[\left(X_{N} - \mathbb{E}[X_{N}]\right)^{2}\right] = \mathbb{E}\left[\left(\sum_{k=n_{0}}^{N-1} (1 - \alpha \Delta t_{n})^{(N-k-1)} \sqrt{\alpha} \Delta W_{k}\right) \left(\sum_{l=n_{0}}^{N-1} (1 - \alpha \Delta t_{n})^{(N-l-1)} \sqrt{\alpha} \Delta W_{l}\right)\right]$$

$$= \mathbb{E}\left[\sum_{k=l} (1 - \alpha \Delta t_{n})^{2(N-k-1)} \alpha \Delta W_{k}^{2}\right] + \mathbb{E}\left[\sum_{k

$$= \sum_{k=l} (1 - \alpha \Delta t_{n})^{2(N-k-1)} \alpha \mathbb{E}\left[\Delta W_{k}^{2}\right]$$

$$= \alpha \Delta t_{n} \sum_{k=n_{0}}^{N-1} (1 - \alpha \Delta t_{n})^{2(N-k-1)}$$$$

again, which is finite only if $|1 - \alpha \Delta t| < 1$, and in which case the asymptotic $(N \to \infty)$ variance is,

$$\mathbb{E}\left[(X_N - \mathbb{E}[X_N])^2\right]_{N \to \infty} = \alpha \Delta t_n \sum_{k=0}^{\infty} (1 - \alpha \Delta t_n)^{2k}$$

is an infinite series with a ratio $r = (1 - \alpha \Delta t_n)^2$. And thus,

$$\mathbb{E}\left[(X_N - \mathbb{E}[X_N])^2 \right]_{N \to \infty} = \alpha \Delta t_n \left(\frac{1}{(1 - (1 - \alpha \Delta t_n)^2)} \right)$$

$$= \frac{\alpha \Delta t_n}{\alpha \Delta t_n (2 - \alpha \Delta t_n)}$$

$$= \frac{1}{(2 - \alpha \Delta t_n)}$$

The asymptotic variance is finite for $0 \le \alpha \Delta t_n < 2$ (α must be positive for the approximation to have a finite mean; see above).

(iii) Backward Euler (B-E) approximation³ to (4) is,

$$X_{n+1} - X_n = -\alpha X_{n+1} \Delta t_n + \sqrt{\alpha} \Delta W_n$$

Thus,

$$X_{n+1} + \alpha X_{n+1} \Delta t_n = X_n + \sqrt{\alpha} \Delta W_n$$

$$(1 + \alpha \Delta t_n) X_{n+1} = X_n + \sqrt{\alpha} \Delta W_n$$

$$X_{n+1} = \frac{1}{(1 + \alpha \Delta t_n)} X_n + \frac{\sqrt{\alpha}}{(1 + \alpha \Delta t_n)} \Delta W_n$$

and for "integrating" from n_0 to N, we have

$$X_N = \left(\frac{1}{1 + \alpha \Delta t_n}\right)^{(N - n_0)} X_{n_0} + \sum_{k = n_0}^{N - 1} \left(\frac{1}{1 + \alpha \Delta t_n}\right)^{(N - k)} \sqrt{\alpha \Delta W_k}$$

³Again, we assume a constant Δt ; $\Delta t_k = \Delta t_n \ \forall k$

The mean of this B-E approximation is,

$$\mathbb{E}\left[X_{N}\right] = \left(\frac{1}{1+\alpha\Delta t_{n}}\right)^{(N-n_{0})} X_{n_{0}} + \mathbb{E}\left[\sum_{k=n_{0}}^{N-1} \left(\frac{1}{1+\alpha\Delta t_{n}}\right)^{(N-k)} \sqrt{\alpha\Delta W_{k}}\right]$$

$$= \left(\frac{1}{1+\alpha\Delta t_{n}}\right)^{(N-n_{0})} X_{n_{0}}$$

which is unconditionally stable (i.e. $\forall \Delta t_n$). The asymptotic $(N \to \infty)$ mean is,

$$\mathbb{E}\left[X_N\right]_{N\to\infty}=0$$

The variance of this B-E approximation is,

$$\mathbb{E}\left[\left(X_{N} - \mathbb{E}[X_{N}]\right)^{2}\right] = \mathbb{E}\left[\left(\sum_{k=n_{0}}^{N-1} \left(\frac{1}{1+\alpha\Delta t_{n}}\right)^{(N-k)} \sqrt{\alpha}\Delta W_{k}\right) \left(\sum_{l=n_{0}}^{N-1} \left(\frac{1}{1+\alpha\Delta t_{n}}\right)^{(N-l)} \sqrt{\alpha}\Delta W_{l}\right)\right]$$

$$= \mathbb{E}\left[\sum_{k=l} \left(\frac{1}{1+\alpha\Delta t_{n}}\right)^{2(N-k)} \alpha\Delta W_{k}^{2}\right] + \mathbb{E}\left[\sum_{k

$$= \sum_{k=l} \left(\frac{1}{1+\alpha\Delta t_{n}}\right)^{2(N-k)} \alpha\mathbb{E}\left[\Delta W_{k}^{2}\right]$$

$$= \alpha\Delta t_{n} \sum_{l=1}^{N-1} \left(\frac{1}{1+\alpha\Delta t_{n}}\right)^{2(N-k)}$$$$

which is unconditionally finite (i.e. $\forall \Delta t_n$). The asymptotic $(N \to \infty)$ variance is,

$$\mathbb{E}\left[(X_N - \mathbb{E}[X_N])^2 \right]_{N \to \infty} = \alpha \Delta t_n \sum_{k=1}^{\infty} \left(\frac{1}{1 + \alpha \Delta t_n} \right)^{2k} \quad \mathbb{Z}$$

is an infinite series with a ratio $r = (1 + \alpha \Delta t_n)^{-2}$ and $a = \frac{\alpha \Delta t_n}{1 + \alpha \Delta t_n}$. And thus,

$$\mathbb{E}\left[(X_N - \mathbb{E}[X_N])^2\right]_{N \to \infty} \stackrel{?}{=} \frac{\frac{1}{1 + \alpha \Delta t_n}}{1 - \left(\frac{1}{1 + \alpha \Delta t_n}\right)^2} \alpha \Delta t_n$$

$$= \frac{1 + \alpha \Delta t_n}{\alpha \Delta t_n (2 + \alpha \Delta t_n)} \alpha \Delta t_n$$

$$= \frac{1 + \alpha \Delta t_n}{2 + \alpha \Delta t_n}$$

The asymptotic variance is unconditionally finite and it converges to the analytical variance as $\Delta t_n \to 0$.

(iv) The table below compare (i-iii) in terms of mean and variance both in a finite sample and asymptotic cases.

	Analytical	Forward Euler	Backward Euler		
$\mathbb{E}[X_t]$	$e^{-\alpha(t-s)}X_s$	$(1 - \alpha \Delta t_n)^{(N-n_0)} X_{n_0}$	$\left(\frac{1}{1+\alpha\Delta t_n}\right)^{(N-n_0)} X_{n_0}$		
$\mathbb{E}[X_t]_{t\to\infty}$	0	0	0		
$Var[X_t]$	$\frac{1}{2}\left(1 - e^{-2\alpha(t-s)}\right)$	$ \alpha \Delta t_n \sum_{k=n_0}^{N-1} (1 - \alpha \Delta t_n)^{2(N-k-1)} $	$\alpha \Delta t_n \sum_{k=n_0}^{N-1} \left(\frac{1}{1+\alpha \Delta t_n}\right)^{2(N-k)}$		
$Var[X_t]_{t\to\infty}$	$\frac{1}{2}$	$\frac{1}{(2-\alpha\Delta t_n)}$	$\frac{1+lpha\Delta t_n}{2+lpha\Delta t_n}$		

A number of points can be concluded from the table:

- 1. Both F-E and B-E converge towards the analytical mean asymptotically (as the number of samples grows to infinity)
- 2. Both F-E and B-E also converge towards the analytical variance asymptotically (as the step length is decreased to infinitesimally small)
- 3. F-E is only conditionally stable for $|1 \alpha \Delta t_n| < 1$, while B-E is unconditionally stable $\forall \Delta t_n$
- 4. F-E only has a finite variance for $0 \le \alpha \Delta t_n < 2$, while B-E always has a finite variance
- 5. Points 3 and 4 for F-E are equivalent, and thus defining the step sizes allowable for F-E, namely: $0 \le \Delta t_n < \frac{2}{\alpha}$, where $\alpha > 0$. The efficiency of F-E method thus is dependent on the time constant of the decay term.
- 6. For B-E, $Var[X_N]_{N\to\infty} \xrightarrow{\Delta t\to\infty} 1$; that is, the asymptotic variance is upper-bounded to twice that of the analytical case even if we take extremely large steps. In contrast, for F-E, $Var[X_N]_{N\to\infty} \xrightarrow{\Delta t\to \frac{2}{\alpha}} \infty$; that is, the asymptotic variance will grow very large for step lengths close to $\frac{2}{\alpha}$ and is unbounded from above.

In summary, both F-E and B-E approximations are *consistent* estimators of the stochastic process X_t , but B-E approximation is by far a more *efficient* and robust (stable) estimator.

Parts 2c, d

Use the following F-E approximations,

$$S_{n+1} - S_n = rS_n \Delta t + e^{Y_n} S_n \Delta W_n \tag{5}$$

$$Y_{n+1} - Y_n = \left(-\alpha(2+Y_n) + 0.4\sqrt{\alpha}\sqrt{1-\rho^2}\right)\Delta t + 0.4\sqrt{\alpha}\Delta\hat{Z}_n \tag{6}$$

$$\hat{Z}_n = \rho W_n + \sqrt{1 - \rho^2} Z_n \tag{7}$$

to compute the option value,

$$e^{-rT} \mathbb{E}[max(S(T) - K, 0)]$$

where
$$\alpha = 100$$
, $r = 0.04$, $T = \frac{3}{4}$, $Y_0 = -1$, and $S_0 = K = 100$.

Answer: First of all, we run a simulation to understand the dynamics of Y(t) as well as the numerical behavior of its F-E approximation. Using a fixed step length of $\Delta t = \frac{1}{2^{10}} = \frac{1}{1024}$

and a sample size of $N=10^6$, we obtained the result shown in Figure 2.

As predicted by hand-derived results in Part 2a, with $\Delta t \to 0$ (here, $\Delta t \approx 10^{-3}$), with $\alpha = 100$, both the mean ($\hat{\theta} = -1.9620$) and variance ($\hat{Var}[Y_t]_{t\to\infty} = 0.0826$) of the approximation are very close to the asymptotic mean, $\theta = -1.9618$, and the asymptotic variance, $Var[Y_t]_{t\to\infty} = 0.08$, respectively.

Now that we are sure that our MATLAB code produced numerical behavior of Y_t as predicted by the hand-derived results, we run the simulation to compute the option price with the given stochastic volatility model using the F-E approximations in (5)-(7) above.

First, we observed that with $\alpha=100$, the F-E approximation will have a severe restriction on the allowable step lengths, namely $\Delta t < \frac{2}{\alpha} = \frac{2}{100} = 0.02$ (see point 5 in Part 2b(iv) above). Thus, we started the simulation with a step length smaller than this value, and systematically decreased it by halving it in each iteration for 4 times; thus we used $\Delta t \in [\frac{1}{64}, \frac{1}{128}, \frac{1}{256}, \frac{1}{512}]$. We also varied the sample sizes by increasing it by ten-fold in each iteration, also for 4 times, starting from 1000; thus, we used $N \in [10^3, 10^4, 10^5, 10^6]$. Furthermore, we calculated the ratio of sample size to sample variance, $\frac{N}{\sigma^2}$, needed to obtain a specific level of accuracy (approximation error), $|\epsilon_N|$, with a confidence level of 0.99 (or false positive rate

of $\alpha = 0.01$) given $\frac{\sqrt{N}}{\sigma} \epsilon_N \sim N(0,1)$, as follows:

$$Prob(a < \frac{\sqrt{N}}{\sigma} \epsilon_N < b) = 0.99$$

$$Prob(a < \frac{\sqrt{N}}{\sigma} \epsilon_N < b) = Prob(-2.56 < \frac{\sqrt{N}}{\sigma} \epsilon_N < 2.56)$$

$$\iff -2.56 < \frac{\sqrt{N}}{\sigma} \epsilon_N < 2.56$$

$$\iff \frac{N}{\sigma^2} > \frac{(2.56)^2}{\epsilon_N^2}$$

Thus, for $|\epsilon_N| = 0.05$, $\frac{N}{\sigma^2} > 2{,}622$, and for $|\epsilon_N| = 0.005$, $\frac{N}{\sigma^2} > 262{,}145$.

Now, for each of the 16 combinations of (step length, sample size), we computed the exact and F-E approximation of stock S_T and option $f_T(0,S_0=100)$ prices at the call time T=0.75, along with $\mathbb{E}[\epsilon_N]$, $\hat{\sigma}^2$, computation time, and the ratio $\frac{N}{\sigma^2}$. The results are presented in table below.

Thus, it can be seen that for a sample size of N=1000, a $\Delta t \geq \frac{1}{256}$ will guarantee an accuracy of $\epsilon_N=0.005$ with a probability of 99%. For all the larger sample sizes that we tried here, $\Delta t \geq \frac{1}{64}$ will do the job. Moreover, for all the simulation parameters that we tried here, an accuracy of $\epsilon_N=0.05$ should be guaranteed with a probability of 99%. Nonetheless, we observed an interesting pattern of increasing deviation of the terminal values at T=0.75 between the 'exact' and F-E approximation. We suspected that this was due to the machine rounding-error introduced by making the step lengths smaller and smaller.

	$\mathbb{E}[S_T]$			$f_T(0,100)$				Run Time		
Δt	Exact	F-E	$\mathbb{E}[\epsilon_N]$	$\hat{\sigma}^2$	Exact	F-E	$\mathbb{E}[\epsilon_N]$	$\hat{\sigma}^2$	$\frac{N}{\sigma^2}$ (10 ³)	(sec)
	N = 1,000									
$\frac{1}{64}$	103.770	103.800	0.012	$2.5*10^{-4}$	6.604	6.784	-0.003	0.022	46.4	0.028
$\frac{1}{128}$	102.836	102.849	0.002	$2.9*10^{-5}$	6.551	6.248	-0.001	0.011	92.6	0.085
$\frac{1}{256}$	103.047	103.047	-0.001	$1.5*10^{-7}$	6.389	6.386	-0.013	0.002	507.6	0.313
$\frac{1}{512}$	103.037	103.037	-0.001	$4.3*10^{-8}$	6.398	6.396	-0.014	0.002	558.2	3.516
	N = 10,000									
$\frac{1}{64}$	103.666	103.696	-0.005	$3.9*10^{-4}$	6.242	6.710	0.157	0.015	674.6	0.041
$\frac{1}{128}$	102.950	102.953	0.008	$4.2*10^{-5}$	6.307	6.451	0.185	0.013	788.4	0.134
$\frac{1}{256}$	102.998	102.998	0.001	$8.5*10^{-8}$	6.431	6.389	0.048	0.002	6,854	0.571
$\frac{1}{512}$	103.053	103.053	0.000	$9.6*10^{-9}$	6.399	6.448	0.062	0.001	16,188	6.552
	N = 100,000									
$\frac{1}{64}$	103.770	103.830	0.016	0.002	6.342	6.979	0.337	0.046	2,173	0.041
$\frac{1}{128}$	102.932	102.942	0.005	$6.0*10^{-6}$	6.301	6.414	0.275	0.006	18,089	0.162
$\frac{1}{256}$	103.065	103.063	0.001	$4.3*10^{-8}$	6.393	6.484	0.102	0.003	31,515	0.976
$\frac{1}{512}$	103.040	103.038	0.001	$1.3*10^{-8}$	6.408	6.464	0.119	0.002	47,885	12.938
N = 1,000,000										
$\frac{1}{64}$	103.882	103.903	0.017	$5.3*10^{-4}$	6.747	7.078	0.318	0.008	120,650	0.064
$\frac{1}{128}$	103.079	103.083	0.009	$1.6*10^{-5}$	6.233	6.514	0.331	0.006	169,400	0.291
$\frac{1}{256}$	102.947	103.945	-0.001	$1.6*10^{-7}$	6.394	6.418	0.141	0.004	259,560	1.952
$\frac{1}{512}$	103.057	103.057	0.001	$1.7*10^{-8}$	6.406	6.495	0.150	0.004	278,610	25.139

Appendix: MATLAB Code

Problem 1

```
%% (a) Simulation of option price
clear
steps = 7; %number of different (equidistant) step lengths
samples = [3:7]; %number of different sample size
for i=1:length(steps)
   N = 2^steps(i) % number of timesteps
   randn('state',0);
   T = .5; dt = T/N; t = 0:dt:T;
   r = .04; sig = .2; S0 = 35; K = S0;
   S_bar_ks = {}; var_S_ks = {}; f_ks = {}; ft_ks = {}; St_ks = {};
   errorS_ks = {}; errorf_ks = {};
   S_{par_j} = []; var_{s_j} = []; f_j = []; fT_j = [];
   errorf_j = []; MSE_S_j = []; MSE_S_ks = []; MSE_f_ks = []; err_S_ks =
       []; err f ks = [];
   for j=1:length(samples)
       M = 10^samples(j); % number of realisations
       S = S0*ones(M,1); % S(0) for all realizations
       W = zeros(M,1); \% W(0) for all realizations
       S_{bar} = []; var_S = []; f = []; ST = []; fT = [];
       for k=1:N
          dW = sqrt(dt)*randn(M,1); % Wiener increments
          S = S + S.*(r*dt+sig*dW); % stock price at next time step
          W = W + dW; % Brownian paths at next step
          S bar(k) = mean(S); % mean of S at next step
          var_S(k) = var(S); % variance of S at next step
          f(k) = \exp(-r*k*dt)*mean(max(S - K, 0)); % a constant (mean)
              value of f at time step k
          Sk = S0*exp((r-sig^2/2)*k*dt + sig*W); % exact stock
              realizations at time k
          ft(k) = exp(-r*k*dt)*mean(max(Sk - K, 0));
          St(k) = mean(Sk);
       end
       S_bar_ks{j} = S_bar;
       var S ks{j} = var S;
       f ks{j} = f;
       St ks{j} = St;
       ft_ks{j} = ft;
       errorS_ks{j} = S_bar - St;
```

```
errorf ks{j} = f - ft;
                       MSE_S_ks(j) = var(errorS_ks{j});
                       MSE_f_ks(j) = var(errorf_ks{j});
                        err_S_ks(j) = mean(errorS_ks{j});
                        err_f_ks(j) = mean(errorf_ks{j});
                       S_{bar_{j(j)}} = S_{bar(end)};
                        var_S_j(j) = var_S(end);
                        f j(j) = f(end);
                       ST_j = S0*exp((r-sig^2/2)*T + sig*W); % exact final value;
                        errorS_j = ST_j - S;
                       MSE_S_j(j) = var(errorS_j);
                       fT j(j) = exp(-r*T)*mean(max(ST j - K, 0));
                       errorf_j(j) = fT_j(j) - f_j(j);
           end
end
%dt = T./2. steps;
figure; % stock price over time
plot(t(2:end),St,'--',t(2:end),S) bar ks\{1\},'o--',t(2:end),S bar ks\{2\},'*--',t(2:end),S
legend('Analytical','N=1,000','N=10,000','N=100,000','N=1,000,000','Location','northwe
figure; % option price over time
plot(t(2:end),ft,'--',t(2:end),f_ks\{1\},'o--',t(2:end),f_ks\{2\},'*--',t(2:end),f_ks\{3\},'
legend('Analytical','N=1,000','N=10,000','N=100,000','N=1,000,000','Location','northwe
figure; % variance of S over time
plot(t(2:end), var_S_ks\{1\}, 'o--', t(2:end), var_S_ks\{2\}, '*--', t(2:end), var_S_ks\{3\}, '---', t(2:end), var_S_ks[3], 
legend('N=1,000','N=10,000','N=100,000','N=1,000,000','Location','northwest')
figure; % stock price error over time
plot(t(2:end),errorS ks{1},'o--',t(2:end),errorS ks{2},'*--',t(2:end),errorS ks{3},'--
legend('N=1,000','N=10,000','N=100,000','N=1,000,000','Location','southwest')
figure; % option price error over time
plot(t(2:end), errorf_ks\{1\}, 'o--', t(2:end), errorf_ks\{2\}, '*--', t(2:end), errorf_ks\{3\}, '--', t(2:end), errorf_ks\{3\}, '--
legend('N=1,000','N=10,000','N=100,000','N=1,000,000','Location','southwest')
figure; % log-variance of S and f errors
x = 10.^samples;
plot(log10(x),log10(MSE_S_ks),'o--',log10(x),log10(MSE_f_ks),'*--')
legend('Stock price Log-MSE','Option price Log-MSE','Location','southwest')
figure; % log-mean of S and f errors
x = 10.^samples;
plot(log10(x),log10(errorf_j),'o--',log10(x),log10(err_f_ks),'*--',log10(x),log10(err_
```

```
legend('Option price Log-Error (final time)','Option price Log-Error
   (mean)','Stock price Log-Error (mean)','Location','southwest')
%% (b) Computing the Sensitivity (delta)
delta s = []; delta = []; fDev = [];
f all = {}; fT_hat_all = []; fT = [];
N = 2^steps % number of timesteps
randn('state',0);
T = .5; dt = T/N; t = 0:dt:T;
r = .04; sig = .2;
%intervals = [.05, .25, .5, 1.25, 2.5, 5, 10, 15, 25];
intervals = linspace(-2,1,13);
for i=1:length(intervals)
   int = 10^intervals(i);
   SOs = linspace(35-int,35+int,3);
   for j=1:length(SOs)
       K = SOs(j); SO = SOs(j);
       M = 10^samples(4); % number of realisations
       S = S0*ones(M,1); % S(0) for all realizations
       W = zeros(M,1); \% W(0) for all realizations
       S hat = []; sigma sq = []; f = [];
       for k=1:N
          %rng('default');
          dW = sqrt(dt)*randn(M,1); % Wiener increments
          S = S + S.*(r*dt+sig*dW); % processes at next time step
          W = W + dW; % Brownian paths at next step
          f(k) = mean(max(S - K, 0));
       end
       f all{j} = f;
       fT_hat_all(j) = f(N);
       ST = S0*exp((r-sig^2/2)*T + sig*W); % exact final value
       fT(j) = mean(max(ST - K, 0))*exp(-r*T);
       fDev(j) = fT(j) - fT_hat_all(j);
   end
   delta s(i) = mean(diff(SOs));
   delta(i) = mean(diff(fT hat all)./diff(SOs));
end
figure;
plot(log10(delta s),delta,'o--')
%print -deps epsFig
figure;
plot(log10(delta s),abs(delta),'o--')
```

Problem 2 (c, d)

```
%% understanding the numerical properties of F-E of Y(t)
clear
steps = [7:10]; %number of different (equidistant) step lengths
samples = [4:6]; %number of different sample size
Y_hat_js = []; YT_js = []; errorY_js = []; MSE_js = []; devY_js = [];
Y Hat = {}; MSE = {}; dev Y = {}; dev VarY = {}; errorY = [];
for i=1:length(steps)
   for j=1:length(samples)
       N = 2^steps(i); % number of timesteps
       randn('state',0);
       T = .75; dt = T/N; t = 0:dt:T;
       alpha = 100; Y0 = -1; rho = -.3;
       Yinf = -2+0.4*sqrt(0.91/alpha);
       M = 10^samples(j); % number of realisations
       Y = Y0*ones(M,1); % Y(0) for all realizations
       W = zeros(M,1); % W(0) for all realizations
       Z hat = zeros(M,1); % Z(0) for all realizations
       Y_hat = []; sigma_sq = []; YT = [];
       for k=1:N
          dW = sqrt(dt)*randn(M,1); % Wiener increments
          dZ = sqrt(dt)*randn(M,1); % Wiener increments
          dZ hat = rho*dW + sqrt(1-rho^2)*dZ;
          Y = Y + (-alpha*(2+Y)+0.4*sqrt(alpha)*sqrt(1-rho^2)).*dt +
              0.4*sqrt(alpha)*dZ hat;
          W = W + dW;
          Z_hat = Z_hat + dZ_hat; % Brownian paths at next step
          Y hat(k) = mean(Y);
           sigma_sq(k) = var(Y); % variance of S at next step
          YT(k) = mean(-2+0.4*sqrt(0.91/alpha) +
              (Y0+2-0.4*sqrt(0.91/alpha))*exp(-alpha*k*dt) +
              0.4*sqrt(alpha)*Z_hat);
       end
       Y_hat_js(j) = Y_hat(end);
       YT js(j) = YT(end);
       errorY js(j) = Y hat js(j) - YT js(j);
       MSE_js(j) = mean(sigma_sq);
       dev_Y_js(j) = Yinf - Y_hat_js(j);
       dev VarY js(j) = MSE js(j) - 0.08;
   %YT = (-2+0.4*sqrt(0.91/alpha)) +
       ((Y0+2-0.4*sqrt(0.91/alpha))*exp(-alpha*T)) +
       (0.4*sqrt(alpha)*Z hat);
```

```
Y Hat{i} = Y hat js;
   errorY{i} = errorY js;
   MSE\{i\} = MSE_js;
   dev Y{i} = dev Y js;
   dev VarY{i} = dev VarY js;
end
figure;
plot(t(2:end),Y hat,'o--',t(2:end),YT,'*--')
legend('F-E Approximation', 'Analytic', 'Location', 'northwest')
print -depsc epsFig2
figure;
plot(t(2:end),sigma_sq,'.-')
legend('Error over time', 'Location', 'southeast')
%% (2c & d) Simulation of option price
clear;
steps = [6:9]; %number of different (equidistant) step lengths
samples = [3:6]; %number of different sample size
MSEs S = \{\}; MSEs f = \{\}; errs S = \{\}; errs f = \{\}; N ov ssqs = \{\};
durations = {}; all Ss = {}; all fs ={};
ST = []; fT = [];
rng('default')
s = rng;
for i=1:length(steps)
duration_j = []; S_j = []; f_j = [];
tStart = tic;
N = 2^steps(i) % number of timesteps
T = .75; dt = T/N; t = 0:dt:T;
r = .04; alpha = 100; YO = -1; rho = -.3; SO = 100; K = SO;
errorS ks = {}; errorf ks = {};
MSE_S_j = []; MSE_f_j = []; err_S_j = []; err_f_j = []; N_ov_ssq_j = [];
for j=1:length(samples)
   M = 10^samples(j); % number of realisations
   S = S0*ones(M,1); % S(0) for all realizations
   Y = Y0*ones(M,1); % Y(0) for all realizations
   W = zeros(M,1); \% W(0) for all realizations
   Z hat = zeros(M,1); % Z(0) for all realizations
   S_hat = []; Y_hat = []; f = []; Yt = []; St = []; ft = [];
```

```
randn('state',0);
   for k=1:N
       dW = sqrt(dt)*randn(M,1); % Wiener increments
       dZ = sqrt(dt)*randn(M,1); % Wiener increments
       dZ hat = rho*dW + sqrt(1-rho^2)*dZ;
       Y = Y + (-2*alpha+0.4*sqrt(alpha)*sqrt(1-rho^2))*dt -alpha*Y.*dt +
          0.4*sqrt(alpha)*dZ hat;
       S = S + S.*(r*dt+exp(mean(Y))*dW); % processes at next time step
       W = W + dW;
       Z hat = Z hat + dZ hat; % Brownian paths at next step
       Y hat(k) = mean(Y);
       S hat(k) = mean(S); % mean of S at next step
       f(k) = \exp(-r*k*dt)*mean(max(S - K, 0));
       % analytical solution to S & f at time step k (if the call
       % terminated earlier)
       Yk = -2+0.4*sqrt(0.91/alpha) +
          (Y0+2-0.4*sqrt(0.91/alpha))*exp(-alpha*k*dt) +
          0.4*sqrt(alpha)*Z hat;
       Yt(k) = mean(Yk);
       Sk = S0*exp((r-exp(2*Yt(k))/2)*k*dt + exp(Yt(k))*W); % exact
          stock realizations at time k
       St(k) = mean(Sk);
       ft(k) = exp(-r*k*dt)*mean(max(Sk - K, 0));
   YT = mean(-2+0.4*sqrt(0.91/alpha) +
       (Y0+2-0.4*sqrt(0.91/alpha))*exp(-alpha*T) + 0.4*sqrt(alpha)*Z_hat);
   ST j = S0*exp((r-exp(2*YT)/2)*T + exp(YT)*W); % exact stock
      realizations at final time
   ST((i-1)*length(steps)+j) = mean(ST_j);
   fT((i-1)*length(steps)+j) = exp(-r*T)*mean(max(ST j - K, 0));
   errorS_ks{j} = S_hat - St;
   errorf_ks{j} = f - ft;
   MSE_S_j(j) = var(errorS_ks{j});
   MSE_f_j(j) = var(errorf_ks{j});
   err_S_j(j) = mean(errorS ks{j});
   err f j(j) = mean(errorf ks{j});
   N_{ov_ssq_j(j)} = (10^samples(j))/MSE_f_j(j)
   duration_j(j) = toc(tStart);
   S j(j) = S hat(end);
   f_j(j) = f(end);
end
MSEs_S{i} = MSE_S_j;
MSEs_f{i} = MSE_f_j;
errs_S{i} = err_S_j;
errs_f{i} = err_f_j;
```

```
N_{ov_ssqs{i}} = N_{ov_ssq_j};
durations{i} = duration_j;
all_Ss{i} = S_j;
all_fs{i} = f_j;
end
toc(tStart)
figure;
plot(t(2:end),S_hat,'*-',t(2:end),St,'o-')
legend('Approx','Analyt','Location','northwest')
plot(t(2:end),f,'*-',t(2:end),ft,'o-')
legend('Approx','Analyt','Location','northwest')
plot(t(2:end), Y_hat, '*-', t(2:end), Yt, 'o-')
legend('Approx','Analyt','Location','northwest')
figure; % stock price error over time (step size = 1/512)
plot(t(2:end),errorS ks{1},'o--',t(2:end),errorS ks{2},'*--',t(2:end),errorS ks{3},'--
legend('N=1,000','N=10,000','N=100,000','N=1,000,000','Location','northwest')
figure; % option price error over time (step size = 1/512)
plot(t(2:end), errorf_ks\{1\}, 'o--', t(2:end), errorf_ks\{2\}, '*--', t(2:end), errorf_ks\{3\}, '--', t(2:end), errorf_ks[3], errorf_ks[3], errorf_ks[3], errorf_ks[3], errorf_ks[3], errorf_ks[3], errorf_ks[3], errorf_ks
legend('N=1,000','N=10,000','N=100,000','N=1,000,000','Location','northwest')
figure; % computational time over step & sample sizes
plot(samples,log(durations{1}),'o--',samples,log(durations{2}),'*--',samples,log(durat
legend('N=1,000','N=10,000','N=100,000','N=1,000,000','Location','northwest')
figure; % ratio of N to sample variance time over step & sample sizes
plot(samples,log10(N ov ssqs{1}),'o--',samples,log10(N ov ssqs{2}),'*--',samples,log10
legend('N=1,000','N=10,000','N=100,000','N=1,000,000','Location','northwest')
```