Цель работы. Изучение математических моделей и исследование характеристик электромеханического объекта управления, построенного на основе электродвигателя постоянного тока независимого возбуждения.

Исходные данные. В таблице 1 представлены исходные данные для моделирІвания ДПТ.

Таблица 1 – Исходные данные.

U_{H}	n_0	$I_{ m H}$	$M_{ m H}$	R	$U_{\rm H}$	$J_{ m f J}$	$T_{ m y}$	i_{p}	$J_{ m M}$
В	об/мин	A	H_{M}	Ом	мс	кг·м ²	мс		кг•м2
36	4000	6.5	0.57	0.85	3	$2.2 \cdot 10^{-4}$	6	40	0.15

Рассчет параметров моделирования.

В ходе эксперимента, изменяя нагрузочный момент, мы получили различные значения времени переходного процесса и установившиеся значения тока и угловой скорости, которые представлены в таблице ниже.

Таблица 2 – Данные о перехоных процессах при изменении момента нагрузки.

$M_{ m CM}$	$t_{\scriptscriptstyle \Pi}$	ω_y	I_y
0	$3.6 \cdot 10^{-2}$	5	$3.12 \cdot 10^{-3}$
5.7	$3.7 \cdot 10^{-2}$	4.61	0.52
11.4	$3.8 \cdot 10^{-2}$	4.23	1.04
17.1	$3.9 \cdot 10^{-2}$	3.85	1.56
22.8	$4 \cdot 10^{-2}$	3.46	2.08