Модели формирования многомерных мнений с ограниченным доверием

Забарянская Ирина

Московский физико-технический институт кафедра интеллектуальных систем

> Научно-исследовательская работа 21 декабря 2024 года

Многомерные мнения и ограниченное доверие

Многомерное мнение: набор мнений по различным темам.

Например: как распределить ресурс

Ограниченное доверие: склонность индивидуума доверять только мнениям, которые близки к его собственному.

Многомерные мнения и ограниченное доверие

Многомерное мнение: набор мнений по различным темам.

Например: как распределить ресурс

Ограниченное доверие: склонность индивидуума доверять только мнениям, которые близки к его собственному.

Близость - ?

Модель

- f M Множество агентов $\mathcal{V} \stackrel{\Delta}{=} \{1,\ldots,n\}$
- $oldsymbol{2}$ Дискретное время $t=0,1,\ldots$
- **3** Мнение агента $i \in \mathcal{V}$ в момент времени t это вектор $\xi^i(t) = (\xi^i_1(t), \dots, \xi^i_d(t)) \in \mathbb{R}^d$
- **4** "Близость" мнений ξ и ξ' характеризуется доверительным множеством $\mathcal{O}\subseteq\mathbb{R}^d\colon \xi'-\xi\in\mathcal{O}$

Примеры доверительных множеств (слева направо): шары в ℓ_p метрике, неограниченное множество $\mathcal{O} = \{\xi : \min_{i \in \{1,2\}} |\xi_i| \leq 0.1\}.$

Граф доверия

Обозначение: $\boldsymbol{\xi} \stackrel{\Delta}{=} (\xi_k^i)_{k=1,\dots,d}^{i\in\mathcal{V}}$ – семейство мнений.

Агент i принимает во внимание мнения агентов из множества $\mathcal{N}_i(\boldsymbol{\xi}) \stackrel{\Delta}{=} \{j: \xi^j \in \xi^i + \mathcal{O}\}.$

Предположение: $0 \in \mathcal{O}$, то есть агент доверяет собственному мнению: $i \in \mathcal{N}_i(\boldsymbol{\xi})$.

Граф доверия $\mathcal{G}(\xi) \stackrel{\Delta}{=} (\mathcal{V}, \mathcal{E}(\xi))$:

- Вершины = агенты
- **2** Ребра: $i \to j$, если $j \in \mathcal{N}_i(\boldsymbol{\xi})$ (агент i доверяет агенту j)

Система A (generalized Hegselmann-Krause)

Агенты синхронно обновляют свои мнения.

Новое мнение агента i — среднее "близких" мнений:

$$\xi^{i}(t+1) = \frac{1}{|\mathcal{N}_{i}(\xi(t))|} \sum_{j \in \mathcal{N}_{i}(\xi(t))} \xi^{j}(t), \quad i \in \mathcal{V} \quad (A)$$

Динамическая система с разрывной правой частью!

Решение может сходиться к неравновесной точке!

Hegselmann R., Krause U. Opinion Dynamics and Bounded Confidence Models, Analysis, and Simulation // Journal of Artificial Societies and Social Simulation. 2002

Система A (generalized Hegselmann-Krause)

Агенты синхронно обновляют свои мнения.

Новое мнение агента i – среднее "близких" мнений:

$$\xi^i(t+1) = rac{1}{|\mathcal{N}_i(\boldsymbol{\xi}(t))|} \sum_{j \in \mathcal{N}_i(\boldsymbol{\xi}(t))} \xi^j(t), \quad i \in \mathcal{V} \quad (\mathsf{A})$$

Динамическая система с разрывной правой частью!

Решение может сходиться к неравновесной точке!

Hegselmann R., Krause U. Opinion Dynamics and Bounded Confidence Models, Analysis, and Simulation // Journal of Artificial Societies and Social Simulation. 2002.

Консенсус и рассогласование

Начальные 2d**-мнения**: сгенерированы случайно из $[-1,1] \times [-1,1]$. Доверительное множество: $\mathcal{O} = \{\xi: \|\xi\|_2 \leq 0.6\}$.

Сходимость за конечное число шагов!

Сходимость мнений

Дополнительные предположения:

- A1. Доверительное множество симметрично: $\mathcal{O} = -\mathcal{O}$.
- A2. $0 \in \mathbb{R}^d$ внутренняя точка \mathcal{O} .

Теорема (о сходимости мнений при всех $\boldsymbol{\xi}(0)$)

Из А1 следует:

$$\blacksquare \exists \xi^i(\infty) \stackrel{\triangle}{=} \lim_{t \to \infty} \xi^i(t) \in \mathbb{R}^d, \quad \forall i \in \mathcal{V}$$

Из $A1 \wedge A2$ следует:

- $lacksymbol{ullet} \boldsymbol{\xi}(\infty)$ равновесие (A)
- мнения сходятся за конечное число шагов

Классификация положений равновесия

Кластер агента i: множество $\{j \in \mathcal{V} : \xi^i = \xi^j\}$.

Семейство мнений $\boldsymbol{\xi}$ кластеризовано, если агенты из разных кластеров не доверяют друг другу: $\xi^i = \xi^j$ или $\xi^j - \xi^i \notin \mathcal{O}$.

Граф доверия разбивается на клики.

Теорема (классификация положений равновесия)

Если $\boldsymbol{\xi}^*$ кластеризовано, то $\boldsymbol{\xi}^*$ – равновесие (A).

Если ${\mathcal O}$ замкнуто, то любое кластеризованное равновесие устойчиво по Ляпунову.

Если $\mathcal{O}=-\mathcal{O}$, то все равновесия кластеризованы.

Система В (инерциальная)

В модели (A) агент i присваивает своему мнению вес $\frac{1}{|\mathcal{N}_i(\xi)|}$.

Вес собственного мнения может быть $\frac{1}{n}$ (зависит от графа).

Инерциальная модель (вес своего мнения не меньше константы):

$$\xi^{i}(t+1) = (1-h_{i})\xi^{i}(t) + \frac{h_{i}}{|\mathcal{N}_{i}(\xi(t))|} \sum_{j \in \mathcal{N}_{i}(\xi(t))} \xi^{j}(t), \quad i \in \mathcal{V} \quad (\mathsf{B})$$

- 11 "Упрямый" агент: $h_i = 0$ (не рассматриваем
- f 2 Модель (A): $h_i=1, \quad orall i\in \mathcal V$
- Вез "упрямых" агентов равновесия (А) и (В) совпадают
- B. Chazelle and C. Wang, Inertial Hegselmann–Krause systems // IEEE Trans. Autom. Control. 2017.

Система В (инерциальная)

В модели (A) агент i присваивает своему мнению вес $\frac{1}{|\mathcal{N}_i(\pmb{\xi})|}$.

Вес собственного мнения может быть $\frac{1}{n}$ (зависит от графа).

Инерциальная модель (вес своего мнения не меньше константы):

$$\xi^i(t+1) = (1-h_i)\xi^i(t) + rac{h_i}{|\mathcal{N}_i(m{\xi}(t))|} \sum_{j \in \mathcal{N}_i(m{\xi}(t))} \xi^j(t), \quad i \in \mathcal{V} \quad (\mathsf{B})$$

- **1** "Упрямый" агент: $h_i = 0$ (не рассматриваем)
- f 2 Модель (A): $h_i=1, \quad \forall i\in \mathcal{V}$
- Вез "упрямых" агентов равновесия (А) и (В) совпадают
- B. Chazelle and C. Wang, Inertial Hegselmann–Krause systems // IEEE Trans. Autom. Control. 2017.

Упрямые агенты: периодическая траектория

С упрямыми агентами мнения могут расходиться!

Пример

- n = 3 агентов
- **2** Начальные мнения: $\xi^1(0) = 0$, $\xi^2(0) = -1$, $\xi^3(0) = 2$
- \blacksquare Доверительное множество: $\mathcal{O} = (-3,3) \setminus \{-1,1\}$
- 4 Коэффициенты инерции: $h_1=1$, $h_2=h_3=0$

Мнение агента 1: $\xi^1(t) = (t \mod 2)$.

Инерция и скорость сходимости

Начальные 2d**-мнения**: сгенерированы случайно из $[-1,1] \times [-1,1]$. **Доверительное множество**: $\mathcal{O} = \{\xi: \|\xi\|_2 \leq 0.6\}$.

Асимптотическая сходимость. Скорость зависит от h!

Сходимость мнений

Дополнительные предположения:

- A1. Доверительное множество симметрично: $\mathcal{O} = -\mathcal{O}$.
- A2. $0 \in \mathbb{R}^d$ внутренняя точка \mathcal{O} .

Теорема (о сходимости мнений для всех $\boldsymbol{\xi}(0)$)

Из А1 следует:

$$\blacksquare \exists \xi^i(\infty) \stackrel{\Delta}{=} \lim_{t \to \infty} \xi^i(t) \in \mathbb{R}^d, \quad \forall i \in \mathcal{V}$$

Из А1 ∧ А2 следует:

- граф перестает меняться через конечное время
- экспоненциально быстрая сходимость мнений

Если $\mathcal O$ открыто и $\mathtt{A1} \wedge \mathtt{A2}$, то

$$lacksquare$$
 $\xi(\infty)$ – равновесие (B)

Система С (с упрямыми агентами)

Модель (C) = Модель (A) + упрямые агенты

11 Упрямый агент не меняет свое мнение:

$$\mathcal{N}_i(m{\xi}) riangleq egin{cases} \{j: \xi^j \in \xi^i + \mathcal{O}\}, & ext{если } i ext{ обычный агент} \ \{i\}, & ext{если } i ext{ упрямый агент} \end{cases}$$

2 Динамическая система:

$$\xi^i(t+1) = rac{1}{|\mathcal{N}_i(oldsymbol{\xi}(t))|} \sum_{j \in \mathcal{N}_i(oldsymbol{\xi}(t))} \xi^j(t), \quad i \in \mathcal{V} \quad ext{(C)}$$

Q1: Iryna Zabarianska and Anton V. Proskurnikov. Opinion Dynamics with Set-Based Confidence: Convergence Criteria and Periodic Solutions // IEEE Control Systems Letters. 2024.

Сходимость мнений

Дополнительные предположения:

- A1. Доверительное множество симметрично: $\mathcal{O} = -\mathcal{O}$.
- A2. $0 \in \mathbb{R}^d$ внутренняя точка \mathcal{O} .
- A3. Упрямые агенты имеют одинаковое мнение ξ^* .

Теорема (о сходимости мнений при всех $\boldsymbol{\xi}(0)$)

Из А1 ∧ А3 следует:

$$\blacksquare \exists \xi^i(\infty) \stackrel{\Delta}{=} \lim_{t \to \infty} \xi^i(t) \in \mathbb{R}^d, \quad \forall i \in \mathcal{V}$$

Из $A1 \land A2 \land A3$ следует:

- $lacksymbol{ullet} \boldsymbol{\xi}(\infty)$ равновесие (С)
- $\xi^i(t)$ либо сходится к ξ^* , либо перестает меняться через конечное время

Заключение

- Исследованы некоторые из новых классов моделей динамики мнений с ограниченным доверием.
- Получены результаты о сходимости мнений для (A), (B) и (C).
- При дополнительных предположениях для (А) установлена сходимость мнений за конечное время.
- Дается классификация положений равновесия систем (A) и (B) и условия устойчивости.
- 5 Дополнительные предположения в теоремах существенны.