Robust Stats and Financial Data

Colin T. Bowers

Macquarie University, colintbowers@gmail.com

2016-09-14

Preview

- Basic intuition and the trimmed mean
- Measuring tail fatness
- Fat tails in financial returns
- The trimmed mean and financial returns
- Sobust estimation of a linear model for financial returns

Fat-tailed data

20 observations from the Student-t (2 DoF*) Distribution

- True mean = 0
- Sample mean = 1.38
- Trimmed mean = 0.68

^{*}DoF = Degrees of Freedom

The trimmed mean

Simulated kernel density estimate for the trimmed mean given a Student-t (2 DoF) DGP*

 $*DGP = Data\ Generating\ Process$

Measures of tail fatness

Standard textbook definition:

$$Kurtosis = \frac{\mathbb{E}(X - \mu)^4}{(\mathbb{V}X)^2} \tag{1}$$

Problem: What if $\mathbb{E}X^4 \to \infty$?

Solution: Hogg's robust kurtosis:

$$RobustKurtosis = \frac{\mathbb{E}(X\mathbb{I}\{X > Q_{0.95}\}) - \mathbb{E}(X\mathbb{I}\{X < Q_{0.05}\})}{\mathbb{E}(X\mathbb{I}\{X > Q_{0.5}\}) - \mathbb{E}(X\mathbb{I}\{X < Q_{0.5}\})} \quad (2)$$

where Q_p is the quantile associated with probability p.

Hogg's robust kurtosis numerator

Numerator: $\mathbb{E}(X\mathbb{I}\{X > Q_{0.95}\}) - \mathbb{E}(X\mathbb{I}\{X < Q_{0.05}\})$

Hogg's robust kurtosis denominator

Denominator: $\mathbb{E}(X\mathbb{I}\{X > Q_{0.5}\}) - \mathbb{E}(X\mathbb{I}\{X < Q_{0.5}\})$

The problem with undefined moments

Sample kurtosis versus robust kurtosis for Student-t (2 DoF) DGP

Tail Fatness in Daily Financial Returns

Robust kurtosis of daily financial returns for some popular stocks. Note, Normal and Student-t (2 DoF) lines included for reference.

A model for unconditional fat tails

Unconditional fat tails can be generated by the model:

$$r_t \backsim \mathcal{N}(\mu, \sigma_t^2),$$
 (3)

where σ_t is typically stochastic, sometimes by conditioning on time t-1 (e.g. GARCH).

This suggests the random variable r_t/σ_t should be Normal...

10/25

Tail Fatness in Daily Financial Returns

Robust kurtosis of daily financial returns standardised by moving window* historical variance

Colin T. Bowers 11/25

^{*}window length = 100

The trimmed mean

Let $r_{[t]}$, t = 1, ..., T denote the sorted version of r_t , t = 1, ..., T, (i.e. the *order statistics*). Then the trimmed mean is defined:

$$m_{\alpha} = \frac{1}{(1-\alpha)T} \sum_{t=\frac{\vartheta}{2}T}^{(1-\frac{\alpha}{2})T} r_{[t]}$$
 (4)

for some $\alpha \in [0,1]$.

Note:

- $\alpha = 0 \rightarrow \text{sample mean}$
- $\alpha = 1 \rightarrow \mathsf{sample} \; \mathsf{median}$

Colin T. Bowers 12/25

Resampling financial returns

- Start with a sequence of returns r_t , t = 1, ..., T
- Centre the returns, i.e. $z_t = r_t \bar{r}$
- Sample (with replacement) blocks of observations from z_t , t = 1, ..., T. Denote a re-sampled observation z_t^* .
- Under fairly general assumptions, $\mathbb{E}z_t^* = 0$, but z_t will otherwise have "similar" statistical properties to r_t

Colin T. Bowers 13/25

Resampled NAB daily return data (2005 to 2015).

Colin T. Bowers 14/25

Resampled CCL daily return data (2005 to 2015).

Colin T. Bowers 15/25

Resampled NAB daily return data (100 sequential days with largest robust kurtosis).

Colin T. Bowers 16/25

Resampled NAB daily return data (100 sequential days with smallest robust kurtosis).

A univariate linear model

Assume daily returns are generated by the model:

$$r_t = \alpha + \beta s_t + e_t, \tag{5}$$

where s_t is a predictive signal.

Note: If the R^2 of this model is small, then r_t and e_t are likely to have similar statistical properties.

18/25

A broad class of estimators for a linear model

Given observable data vectors $\bf r$ and $\bf s$, we have $\bf e = \bf r - \alpha - \beta \bf s$. A broad class of estimators for $\{\alpha,\beta\}$ are the solution to the optimisation problem:

$$\min_{\alpha,\beta} L(\mathbf{e}),\tag{6}$$

for some loss function L.

- $L(\mathbf{e}) = ||\mathbf{e}||_2 \rightarrow \text{Least Squares (LS)}$
- $L(\mathbf{e}) = ||\mathbf{e}||_1 \rightarrow \text{Least Absolute Deviations (LAD)}$

Question: Given daily financial return data, should we prefer LS or LAD?

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣りで

Colin T. Bowers 19/25

Simulating data

We want to simulate data using $r_t = \alpha + \beta s_t + e_t$.

- Let $v_{t,\kappa}$ denote moving window historical variance on NAB returns, where κ is window length
- Use $e_t \backsim \mathcal{N}(0, v_{t,\kappa})$ to simulate residuals
- Use $s_t \backsim \mathcal{N}(0,1)$ to simulate signal
- Set $\alpha = 0$, and choose β such that $R^2 = 0.05$
- Simulate r_t

Note:

- Both r_t and e_t will exhibit the same pattern of heteroskedasticity (similar to NAB)
- $\kappa = 17$ results in robust kurtosis ≈ 4

Colin T. Bowers 20/25

Kernel density estimates for constant

Colin T. Bowers 21/25

Kernel density estimates for coefficient

Colin T. Bowers 22/25

Implications for portfolio manager

It immediately follows that LAD yields more accurate predictions. Question: Does this translate to better returns?

- Simple economy with 20 assets plus zero-interest cash asset
- Simulate all returns using method from previous slide
- Estimate $\{\alpha, \beta\}$ via LS and LAD using first half of sample
- For second half, hold (equal-weighted) in period t all assets with $\hat{r}_t = \hat{\alpha} + \hat{\beta} s_t > 0$

Colin T. Bowers 23/25

Kernel density estimates for terminal portfolio value

Portfolio terminal value for LS versus LAD estimation. Portfolio start value = 1 million.

Colin T. Bowers 24/25

Basic Intuition Tail Fatness Tail Fatness in Daily Financial Returns The Trimmed Mean for Daily Financial Returns Robust Estimation of a Linear Model for Financial Returns

TL;DR

TL;DR: Any empiricist working with financial return data should at least consider robust statistics.