1

ASSIGNMENT11.15 13Q

EE22BTECH11219 - Sai Sujan Rada

QUESTION:

Given below are some functions of x and t to represent the displacement (transverse or longitudinal) of an elastic wave. State which of these represents (a) travelling wave, (ii) a stationary wave or (iii) none at all:

(a)
$$y = 2\cos(3x)\sin(10t)$$

(b)
$$y = 2\sqrt{x - vt}$$

(c)
$$y = 3\sin(5x - 0.5t) + 4\cos(5x - 0.5t)$$

(d)
$$y = \cos x \sin t + \cos 2x \sin 2t$$

SOLUTION:

TRAVELLING WAVE:

The general equation of a travelling wave is, $y(x, t) = A \sin(kx \pm \omega t)$

Here, the amplitude of the wave is A, it's angular velocity is ω and it's position is x and it's wavenumber is k.

STATIONARY WAVE:

The general equation of a stationary wave is, $y(x,t) = A \sin kx \cos \omega t$

Here, the amplitude of the wave is A, it's angular velocity is ω and it's position is x and it's wavenumber is k.

TRAVELLING WAVE	STATIONARY WAVE
$y(x,t) = A\sin(kx \pm \omega t)$	$y(x,t) = A\sin kx \cos \omega t$
A=Amplitude, ω =angular velocity, x =position of the particle, k =wavenumber	A=Amplitude, ω =angular velocity, x =position of the particle, k =wavenumber
TABLE 0	

TRAVELLING WAVE VS STATIONARY WAVE

(a) The given equation is: $y = 2 \cos(3x) \sin(10t)$

Fig. 0. DIPLACEMENT vs TIME-graph1

We can observe the nodes and antinodes in the graph with fixed spatial pattern and different amplitude peaks at various positions of x maintaining symmetry with axis. This shows that the graph is stationary or a standing wave.

(b) The given equation is: $y = 2\sqrt{x - vt}$

Fig. 0. DIPLACEMENT vs TIME-graph2

We can observe the graph and conclude that the given equation is not a wave as there is no periodic

oscillation and proper wave shape.

(c) The given equation is: $y = 3 \sin(5x - 0.5t) + 4 \cos(5x - 0.5t)$

Fig. 0. DIPLACEMENT vs TIME-graph3

We can observe the graph having exhibiting periodic oscilltions with equal amplitude and proper sinusoidal wave shape uniformly. Thus, we can conclude that is a travelling wave.

(d) The given equation is: $y = \cos x \sin t + \cos 2x \sin 2t$

Fig. 0. DIPLACEMENT vs TIME-graph3

We can observe fixed spatial patter but with multiple frequencies. The graph even shows interference patterns having uniformity by which we can say it is a superimposed stationary wave equation.