

Linear Algebra Based High-Performance Graph Analysis

Semyon Grigorev

Saint Petersburg State University

June 7, 2023

Research areas

- Linear algebra based algorithms for graph analysis
 - GraphBLAS-based algorithms design, implementation and evaluation
 - ▶ Portable multi-GPGPU implementation of GraphBALS-like API
 - GraphBLAS API analysis
- Path problems with constraints
 - Formal Language Constrained Path Querying
 - ★ New algorithms development
 - ★ Complexity analysis
 - ★ New classes of languages investigation
 - ★ High performance algorithms implementation and evaluation

Our Results

Tools

- Spla: generalized sparse linear algebra framework with vendor-agnostic GPUs accelerated computations
- ▶ SPbLA: library of GPGPU-powered sparse boolean linear algebra operations
- CFPQ_PyAlgo: set of GraphBLAS-based FLPQ algorithms
- GLL4Graph: CFPQ for Neo4j
- CFPQ for RedisGraph

Our Results

Tools

- Spla: generalized sparse linear algebra framework with vendor-agnostic GPUs accelerated computations
- ► SPbLA: library of GPGPU-powered sparse boolean linear algebra operations
- CFPQ_PyAlgo: set of GraphBLAS-based FLPQ algorithms
- GLL4Graph: CFPQ for Neo4j
- CFPQ for RedisGraph
- Papers (> 10)
 - SPbLA: The Library of GPGPU-Powered Sparse Boolean Linear Algebra Operations (GrAPL@IPDPS)
 - Evaluation of the context-free path querying algorithm based on matrix multiplication (GRADES-NDA@SIGMOD)
 - ▶ Multiple-Source Context-Free Path Querying in Terms of Linear Algebra (EDBT, Core A)
 - Context-free path querying by matrix multiplication (GRADES-NDA@SIGMOD)