Overview

- 总价值不易计算时,但环境状态有显式的分布时
 - 如何使用迭代法计算总价值
 - 如何使用迭代法反复改进总策略
 - 策略迭代法的收敛

-----THIS CHAPTER FOCUSED ON ------

- 总价值不易计算时,环境状态没有显式的分布时,从连续的样本和经验中学习
 - * 蒙特卡洛方法 (Monte Carlo MC Method)
 - * 计算总价值
 - * 更新总策略

-----END-----

- 总价值不易计算时,环境状态没有显式的分布时,从每一次与环境状态的交互中学习
 - Temporal Differences
 - Temporal Differences与蒙特卡罗方法的对比
 - SARSA
 - Q-learning
- 当环境状态过多,如何将有限样本中的策略推广到更大的状态空间,作为更大状态空间的近似解?
 - 结合监督学习, function approximation
 - 线性方法等
- Q-learing+Deep-Learning
 - DQN
 - DQN的优势与特点

参考视频

参考书籍

参考中文知乎

- Iterative vs. MC:
- MC: 记住:对每一个possibility (path), 都一路走到黑 for each state, all the way until t=end;
 - t=end: example: if it is flappy bird, t=end means bird hit the pillar and game over

A Typical MC example: