Topics in Macroeconomics

Value function iteration (VFI)

Richard Foltyn

University of Glasgow

February 2023

Topics covered in this unit

Solving household problems with VFI

We discuss the following models:

- 1 No uncertainty, no labour income: analytical solution
- Certain labour income
- Risky labour income

In all cases we assume CRRA preferences!

Solution methods

- Grid search: no interpolation
- 2 "Unrestricted" maximisation:
 - Linear interpolation
 - Spline interpolation

Contents

- VFI with analytical solution (no income)
- **2** VFI with grid search (constant income)
- **3** VFI with interpolation (risky income)

4 Appendix: Approximating AR(1) processes with Markov chains

Analytical solution

- Under some conditions value function has closed-form solution
- Assumptions:
 - CRRA preferences
 - 2 No labour income
 - 3 No uncertainty
- Solution methods:
 - 1 Iteration on value function ("manual" VFI)
 - 2 Guess and verify (not covered)

Illustration: manually iterate on closed form, compare with numerical solution.

Household problem

Analytical VFI

Consider infinite-horizon consumption-savings problem with log preferences:

$$V(a) = \max_{c, a'} \left\{ \log(c) + \beta V(a') \right\}$$

s.t. $c + a' = (1 + r)a$
 $c \ge 0, a' \ge 0$

where

- a Beginning-of-period assets
- a' Next-period assets (savings)
- r Constant interest rate
- β Discount factor $\beta \in (0, 1)$

Solving the household problem

Analytical VFI

How can we find *V* using VFI?

- Initial guess:
 - Consume everything: c = (1 + r)a
 - Continuation value is zero
- Value function in iteration 1:

$$V_1(a) = \log(c) = \log((1+r)a) = \log(1+r) + \log(a)$$

■ HH problem in iteration 2:

$$V_2(a) = \max_{c, a'} \left\{ \log(c) + \beta V_1(a') \right\}$$

$$= \max_{c, a'} \left\{ \log(c) + \beta \left[\log(1+r) + \log(a') \right] \right\}$$
s.t. $c + a' = (1+r)a$

$$c \ge 0, \ a' \ge 0$$

Iteration 2

■ First-order conditions:

$$c^{-1} = \lambda \qquad \qquad \beta \left(a' \right)^{-1} = \lambda$$

where λ is Lagrange multiplier on budget constraint.

- Eliminate Lagrange multiplier: $a' = \beta c$
- Substitute for *a'* in budget constraint to find policy functions:

$$c + \beta c = (1+r)a \implies c = (1+\beta)^{-1}(1+r)a$$
$$\implies a' = \beta(1+\beta)^{-1}(1+r)a$$

Plug policy functions into value function:

$$V_2(a) = \log \left((1+\beta)^{-1} (1+r)a \right) + \beta \left[\log(1+r) + \log \left(\beta (1+\beta)^{-1} (1+r)a \right) \right]$$

= $\beta \log \beta - (1+\beta) \log(1+\beta) + (1+2\beta) \log(1+r) + (1+\beta) \log(a)$

After 2 iterations we have:

$$V_1(a) = \underbrace{\log(1+r)}_{\chi_1} + \underbrace{1}_{\varphi_1} \times \log(a)$$

$$V_2(a) = \underbrace{\beta \log \beta - (1+\beta) \log(1+\beta) + (1+2\beta) \log(1+r)}_{\chi_2} + \underbrace{(1+\beta) \log(a)}_{\varphi_2}$$

- Continue iterating? Expressions become too complicated!
- Instead conjecture that value function takes the form

$$V_n(a) = \chi_n + \varphi_n \log(a) \tag{1}$$

We have shown this to be true for n = 1, 2

Solving via induction

Analytical VFI

- Assume V has functional form given in (1) for some n
- Then V_{n+1} will be given by

$$V_{n+1}(a) = \chi_{n+1} + \varphi_{n+1} \log(a)$$

- Task: find χ_{n+1} , φ_{n+1} given χ_n , φ_n
- We do this by solving

$$V_{n+1}(a) = \max_{c, a'} \left\{ \log(c) + \beta V_n(a') \right\}$$

$$= \max_{c, a'} \left\{ \log(c) + \beta \left[\chi_n + \varphi_n \log(a') \right] \right\}$$
s.t. $c + a' = (1 + r)a$

$$c \ge 0, \ a' \ge 0$$

Iteration n+1

■ First-order conditions for the (n + 1)-th iteration:

$$c^{-1} = \lambda \qquad \qquad \beta \varphi_n \left(a' \right)^{-1} = \lambda$$

■ Substitute for *a'* in budget constraint to find policy functions:

$$c + \beta \varphi_n c = (1+r)a \implies c = (1+\beta \varphi_n)^{-1} (1+r)a$$
 (2)

$$\implies a' = \frac{\beta \varphi_n}{1 + \beta \varphi_n} (1 + r) a \tag{3}$$

Plug policy functions into value function:

$$V_{n+1}(a) = \log\left(\left(1 + \beta\varphi_n\right)^{-1}(1+r)a\right) + \beta\left[\chi_n + \varphi_n\log\left(\frac{\beta\varphi_n}{1+\beta\varphi_n}(1+r)a\right)\right]$$

Solution for *V*

Analytical VFI

Collect terms:

$$V_{n+1}(a) = \underbrace{\beta \chi_n + \beta \varphi_n \log(\beta \varphi_n) - (1 + \beta \varphi_n) \left[\log(1 + \beta \varphi_n) + \log(1 + r) \right]}_{\chi_{n+1}} + \underbrace{(1 + \beta \varphi_n) \log(a)}_{\varphi_{n+1}}$$

- Pin down sequence of $(\varphi_n)_{n=1}^{\infty}$:
 - Follows first-order linear difference equation

$$\varphi_{n+1} = 1 + \beta \varphi_n$$

■ General solution (φ_0 pinned down by $\varphi_1 = 1$):

$$\varphi_n = \beta^n \left(\varphi_0 - \frac{1}{1 - \beta} \right) + \frac{1}{1 - \beta}$$

Convergence to limit:

$$\varphi = \lim_{n \to \infty} \varphi_n = \frac{1}{1 - \beta}$$

Solution for *V*

Analytical VFI

- Difference equation for χ_n is much more complicated (depends on φ_n !)
- Compute only limiting value (move $\beta \chi_n$ to l.h.s.):

$$\lim_{n \to \infty} \chi_{n+1} - \beta \chi_n =$$

$$\lim_{n \to \infty} \beta \varphi_n \log(\beta \varphi_n) - (1 + \beta \varphi_n) \Big[\log(1 + \beta \varphi_n) + \log(1 + r) \Big]$$

Limiting value given by:

$$\chi = \lim_{n \to \infty} \chi_n = \frac{\beta}{1 - \beta} \log \beta + \log(1 - \beta) + \frac{1}{1 - \beta} \log(1 + r)$$

■ Converged value function *V*:

$$V(a) = \chi + \frac{1}{1 - \beta} \log(a)$$

Value function convergence

Analytical VFI

Convergence of coefficients χ_n and φ_n in

$$V_n(a) = \chi_n + \varphi_n \log(a)$$

Figure 1: Convergence of analytical value function coefficients.

Analytical vs. numerical iteration

Analytical VFI

Figure 2: Value function V_n for the first few iterations.

Apply same reasoning to policy functions

- Define MPC as $\kappa_n \equiv (1 + \beta \varphi_n)^{-1}$
- Rewrite policy functions (2) and (3) at iteration n + 1 as:

$$c_{n+1} = \kappa_n (1+r)a$$

 $a'_{n+1} = (1-\kappa_n)(1+r)a$

- $\lim_{n\to\infty} \kappa_n = 1 \beta$
- Policy functions usually converge faster than value functions!

Figure 3: Convergence of policy function coefficient.

Figure 4: Converged value and policy functions.

VFI with grid search

- Restriction: solution method forces next-period assets to be exactly on discretized grid: $a' \in \mathcal{G}_a$
- Advantages:
 - 1 Easy to implement
 - 2 Derivative-free method
 - 3 Fast (unless grid is very dense)
- Disadvantages:
 - Imprecise
 - 2 Policy functions are not smooth (unless grid is very dense)
 - 3 Does not scale well to multiple dimensions

Infinitely-lived HH solves consumption-savings problem

$$V(a) = \max_{c, a' \in \mathcal{G}_a} \left\{ u(c) + \beta V(a') \right\}$$

s.t. $c + a' = (1 + r)a + y$
 $c \ge 0, a' \ge 0$

where

 G_a Beginning-of-period asset grid y Constant labour income

■ Preferences are assumed to be CRRA with relative risk aversion γ :

$$u(c) = \frac{c^{1-\gamma} - 1}{1 - \gamma}$$

Note that with $\gamma = 1$, $u(c) = \log(c)$ as before

Solution algorithm

VFI with grid search

- 1 Create asset grid $G_a = (a_1, ..., a_{N_a})$
- **2** Pick initial guess for value function, V_0
- \blacksquare In iteration n, perform the following steps
 - **11** For each asset level a_i , find all feasible next-period asset levels $a_j \leq (1+r)a_i + y$, $a_j \in \mathcal{G}_a$
 - 2 For each *j*, compute consumption $c_j = (1 + r)a_i + y a_j$
 - **3** For each *j*, compute utility

$$U_j = u(c_j) + \beta V_n(a_j) \tag{4}$$

4 Find the index k that maximises (4):

$$k = \arg\max_{j} \left\{ u(c_j) + \beta V_n(a_j) \right\}$$

5 Set $V_{n+1}(a_i) = U_k$ and store k as the optimal choice at a_i

Parametrisation for problem with constant labour income

VFI with grid search

■ The next slides show solutions for the following parametrisation:

	Description	Value
β	Discount factor	0.96
σ	Coef. of relative risk aversion	2
r	Interest rate	0.04
y	Labour income	1
N_a	Asset grid size	50, 100, 1000

Table 1: Parameters for HH problem with constant labour income

- Each graph compares three solution methods:
 - VFI with grid search
 - 2 VFI with linear interpolation
 - 3 VFI with cubic spline interpolation

VFI with grid search

Grid search is quite sensitive to grid size!

Compare results for $N_a = 50$, $N_a = 100$ and $N_a = 1000$.

Figure 5: Solution with 50 asset grid points.

VFI with grid search

Figure 6: Solution with 100 assets grid points.

VFI with grid search

Figure 7: Solution with 1000 assets grid points.

VFI with interpolation

- Grid search is rarely used today
- We prefer solution algorithms which find local maximum for each point on the grid (i.e. solution satisfies first-order conditions)
- Optimal points need not be on the grid, hence we have to interpolate
- Advantages:
 - 1 "Exact" solution (in a numerical sense)
 - 2 Less affected by curse of dimensionality in case of multiple choice variables
 - 3 Easier to spot mistakes since policy functions don't have artificial kinks as in grid search
- Disadvantages:
 - Likely slower than grid search
 - 2 More complex to implement:
 - Need maximisation or root-finding routine
 - Need to compute derivatives of objective function or first-order condition, unless we use derivative-free methods or numerical differentiation.

Example: HH problem with risky labour income

VFI with interpolation

- Illustrate VFI with interpolation using standard Bewley/Huggett/Aiyagari problem with risky labour income
- Infinite-lived HH solves consumption-savings problem

$$V(a, y) = \max_{c, a'} \left\{ u(c) + \beta \mathbf{E} \left[V(a', y') \middle| y \right] \right\}$$

s.t. $c + a' = (1 + r)a + y$
 $c \ge 0, a' \ge 0$

where

- y Labour income process on state space \mathcal{G}_y with transition probability $\Pr\left(y'=y_j\mid y=y_i\right)=\pi_{ij}$
- As before, $u(\bullet)$ is CRRA
- Note that now we have a two-dimensional state space on $\mathcal{G}_a \times \mathcal{G}_y$.

Solution algorithm

VFI with interpolation

- 1 Create asset grid $G_a = (a_1, ..., a_{N_a})$
- 2 Create discrete labour income process with states $\mathcal{G}_y = (y_1, \dots, y_{N_y})$ and transition matrix Π_y
- \blacksquare Pick initial guess for value function, V_0
- 4 In iteration *n*, perform the following steps
 - 1 For each point (a_i, y_j) in the state space, find

$$a^{\star} = \underset{a' \in [0, x_{ij}]}{\arg \max} \left\{ u \left(x_{ij} - a' \right) + \beta \sum_{k=1}^{N_y} \pi_{jk} V_n \left(a', y_k \right) \right\}$$

where $x_{ij} = (1 + r)a_i + y_j$ is the cash at hand.

2 Compute value at optimum,

$$V^{\star} = u \left(x_{ij} - a^{\star} \right) + \beta \mathbf{E} \left[V_n \left(a^{\star}, y' \right) \middle| y_j \right]$$

3 Set $V_{n+1}(a_i, y_j) = V^*$ and store $A_{n+1}(a_i, y_j) = a^*$ as the savings policy function.

Solution algorithm

VFI with interpolation

How do we find a^* ?

1 We use a maximiser that finds the maximum $a^* \in [0, x_{ij}]$ of the function

$$f(a' | a_i, y_j) = u(x_{ij} - a') + \beta \sum_{k=1}^{N_y} \pi_{jk} V_n(a', y_k)$$

for given (a_i, y_j) .

- Need to interpolate $V_n(\bullet, y_k)$ onto arbitrary a'
- Need to either use derivative-free maximizer, or differentiate df/da' numerically
- 2 In principle, we could perform *root-finding* on the FOC

$$-u'(x_{ij} - a') + \beta \sum_{k=1}^{N_y} \pi_{jk} dV_n(a', y_k) / da' = 0$$

This is rarely done since we don't know $dV_n\left(a',y_k\right)/da'$ and fast root-finders additionally need the derivative of the FOC!

Parametrisation for problem with risky labour

VFI with interpolation

Assume labour process follows AR(1),

$$y_{t+1} = \rho y_t + \varepsilon_{t+1}$$
 $\varepsilon_{t+1} \stackrel{\text{iid}}{\sim} \mathcal{N}\left(0, \sigma^2\right)$

which we discretise as a Markov chain using the Rouwenhorst (1995) or Tauchen (1986) methods.

■ The next slides show solutions for the following parametrisation:

	Description	Value
β	Discount factor	0.96
σ	Coef. of relative risk aversion	2
r	Interest rate	0.04
ρ	Autocorrelation of AR(1) process	0.95
σ	Conditional std. dev. of AR(1) process	0.20
N_y	Number of states for Markov chain	3
N_a	Asset grid size	50, 100, 1000

Table 2: Parameters for HH problem with risky labour income

VFI with interpolation

Solution for different income levels: low, middle, high

Figure 8: Solution with 50 asset grid points.

VFI with interpolation

Solution for different income levels: low, middle, high

Figure 9: Solution with 100 assets grid points.

VFI with interpolation

Solution for different income levels: low, middle, high

Figure 10: Solution with 1000 assets grid points.

Main take-aways

- Avoid grid search if you can!
- Test sensitivity of your solution to chosen grid size:
 - Check policy functions, value function almost always looks smooth!

Approximating AR(1) processes with Markov chains

AR(1) processes

Consider the following AR(1) process:

$$x_{t+1} = \mu + \rho x_t + \epsilon_{t+1}$$
 $\epsilon_{t+1} \stackrel{\text{iid}}{\sim} \mathcal{N}\left(0, \sigma_{\epsilon}^2\right)$

This process has the following conditional and unconditional moments:

	Conditional	Unconditional
Mean	$\mathbf{E}\left[\left.x_{t+1} \mid x_{t}\right.\right] = \mu + \rho x_{t}$	$\mathbf{E}\left[x_t\right] = \frac{\mu}{1-\rho}$
Variance	$\operatorname{Var}\left(\left x_{t+1}\right \mid x_{t}\right) = \operatorname{Var}\left(\left \epsilon_{t+1}\right \right) = \sigma_{\epsilon}^{2}$	$\operatorname{Var}\left(x_{t}\right) = \frac{\sigma_{\epsilon}^{2}}{1 - \rho^{2}}$
Autocorrelation	-	$\operatorname{Corr}\left(x_{t+1}, x_t\right) = \rho$

Unconditional moments:

- Reflect long-run behaviour of a single process
- With a large cross-section of individuals, they also represent the cross-sectional mean and variance of the stationary distribution

Approximating AR(1) processes

- Any Markov chain approximation of an AR(1) needs to provide:
 - 11 The discrete state space $\mathbf{x} = (x_1, x_2, \dots, x_N)$
 - **2** The transition matrix Π where the element (i, j) is the probability $\Pr\left(x_{t+1} = x_j \mid x_t = x_i\right)$

Using these, we can find the ergodic (invariant, stationary) distribution λ over states x which satisfies

$$\lambda' = \lambda' \Pi$$

- Approximation should match conditional / unconditional moments reasonably well!
- Frequently-used methods:
 - 1 Tauchen (1986)
 - 2 Rouwenhorst (1995): much better for processes with high persistence

Example: Income process

Assume that log income follows an AR(1) process:

$$\log y_{t+1} = \rho \log y_t + \epsilon_{t+1} \qquad \epsilon_{t+1} \stackrel{\text{iid}}{\sim} \mathcal{N}\left(0, \sigma_{\epsilon}^2\right)$$

with $\mu = 0$ (omitted), $\rho = 0.95$, $\sigma_{\epsilon}^2 = (0.2)^2$

Discretized Markov chain (Rouwenhorst method)

■ State space in logs, transition matrix and ergodic distribution:

$$\log \mathbf{y} = \begin{bmatrix} -0.9058 \\ 0 \\ 0.9058 \end{bmatrix} \qquad \Pi = \begin{bmatrix} 0.9506 & 0.0488 & 0.0006 \\ 0.0244 & 0.9512 & 0.0244 \\ 0.0006 & 0.0488 & 0.9506 \end{bmatrix} \qquad \boldsymbol{\lambda} = \begin{bmatrix} 0.25 \\ 0.50 \\ 0.25 \end{bmatrix}$$

State space in levels:

$$\mathbf{y} = \begin{bmatrix} 0.4042 \\ 1.0000 \\ 2.4740 \end{bmatrix}$$

• Unconditional average income: $\mathbf{E}y_t = \boldsymbol{\lambda}' \boldsymbol{y} = 1.2195$

References I

Rouwenhorst, Geert K. (1995). "Asset Pricing Implications of Equilibrium Business Cycle Models". In: Frontiers of Business Cycle Research. Ed. by Thomas F. Cooley. Vol. 10. Princeton University Press. Chap. 10, pp. 294–330. Tauchen, George (1986). "Finite state markov-chain approximations to univariate and vector autoregressions". In: Economics Letters 20.2, pp. 177–181.