

Lab 5: Character LCD Control

Chun-Jen Tsai and Lan-Da Van
Department of Computer Science
National Yang Ming Chiao Tung University
Taiwan, R.O.C.

Fall, 2024

Lab 5: Character LCD Control

- In this lab, you will implement a slot machine by switches and display the results on the standard 1602 character LCD.
- The lab file submission deadline is on 10/14 by 6:00pm.

1602 Character LCD Display

- The Arty board has only simple I/O devices such as the LEDs, switches, buttons, and UART.
- We have designed an expansion board, Arty_IO, that adds three more peripherals to Arty:
 - a 1602 character LCD device (supports only 4-bit mode)
 - a SD card socket (supports only the SPIF mode)
 - a 12-bit color VGA interface

Memory Map of the LCD

Lab 5

- The LCD device can be treated as a 32-byte memory.
 - Each memory cell corresponds to a character on the display.
 - Writing an ASCII code to a cell will display the character on the corresponding location on the LCD:

Note: the LCD device is slow, you should not update the screen faster than 2 Hz.

Display data memory (DD RAM) addresses:

Character LCD Interface (1/2)

- The LCD interface has 8 data wires (DB0 ~ DB7) and 3 control wires (LCD E, LCD RS, LCD RW):
 - LCD E enables/disables the inputs to the LCD module.
 - The rest of the wires are defined depending on the functions:

Function		RW	l	Upper	Nibble)	Lower Nibble			
		CCD	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Clear Display	0	0	0	0	0	0	0	0	0	1
Return Cursor Home	0	0	0	0	0	0	0	0	1	-
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	S
Display On/Off	0	0	0	0	0	0	1	D	С	В
Cursor and Display Shift	0	0	0	0	0	1	S/C	R/L	-	-
Function Set	0	0	0	0	1	0	1	0	-	-
Set CG RAM Address	0	0	0	1	A5	A4	A3	A2	A1	A0
Set DD RAM Address	0	0	1	A6	A5	A4	A3	A2	A1	A0
Read Busy Flag and Address	0	1	BF	A6	A5	A4	A3	A2	A1	A0
Write Data to CG RAM or DD RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0
Read Data from CG RAM or DD RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0

Character LCD Interface (2/2)

However, the Arty_IO board uses the 4-bit operating mode of the LCD device, that is, only DB4~DB7 are

connected to the FPGA.

 Execution of a function will need two transmissions, using only LCD_E, LCD_RS, LCD_RW, and DB4~DB7:

Timing Diagrams for Transmission

- The timing diagram for one transmission in four-bit mode is as follows:
 - Note that execution of a function requires two transmissions.

Sample Circuit of Lab 5

- Two Verilog program files will be provided to you:
 - LCD_Module.v An LCD controller module (You do not need to modify this file)
 - Lab5.v a sample top-level module that prints a "Hello, World!" message using the LCD controller module

Slot Machine

- In this lab, you will implement a slot machine using switches and LCD display.
- Since a casino needs to earn money, we should implement the certain rule.
- [Important] It is not wise to gambling!

Lab 5

- In Lab 5, you will need to implement following things:
 - Design a circuit to generate some numbers sequences and store the results into the register array.
 - Once they are stored, the LCD will start displaying numbers:
 - In the initial state, your LCD should only display the first and second number in each column.
 - If switch 0 (SW0) is push down, the LCD scrolls up one number for each column cyclically roughly every 1 or 2 sec.
 - If switch 1 (SW1) is push down, the last column of number should stop counting.
 - If switch 2 (SW2) is push down, the middle column of number should stop counting.
 - If switch 3 (SW3) is push down, the first column of number should stop counting.

row1	1
row2	2
	,

col1 col2 col3

	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F
I	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F
	-1	2	3	1	5	6	7	Ω	٥	10	11	12	12	1/1	15	16

- If all switches are pull down(low signal level), your LCD should immediately show some result:
 - If all the numbers of three columns are the same, your LCD should output "Jackpots!" in first row.
 - If two of the numbers of three columns are the same, your LCD should output "Free Game!" in first row.
 - If none of numbers of three columns are the same, your LCD should output "Loser!" in first row.
 - You should also show "Game over" in second row in each case.
- Your circuit should come back to initial status and well-prepared for next player when the reset button is pressed.

Lab 5

- Each column of LCD should display the following number sequence:
 - First column: {1,2,3,4,5,6,7,8,9,1,2,3...} (scrolls up each second)
 - Second column: {9,8,7,6,5,4,3,2,1,9,8,7...}(scrolls up each two second)
 - Third column: you can design your own number sequence! But each sequence should contains all 9 numbers
 (scrolls up each second)
- The first row in LCD should show the future number, while the second row in LCD should show current number.
- Example: assume third column is same as first column:

Initial state

2	8	2
1	9	1

3	8	3	
2	9	2	

4	7	4	
3	8	3	

(Advanced) What to Do in Lab5

- You can earn extra 20% on this lab by correctly implementing the advanced circuit.
- For the advanced part, we'll add a circuit to prevent misuse or cheating.

(Advanced) What to Do in Lab5

- If SW1~3 are pulled down before SW0, stop the game.
- During gameplay, if any switch is pulled down and then up again, stop the game.
- Show "ERROR" on the first row and "game stopped" on the second row when these conditions occur.

- You can assume when the circuit is first activate or reset, all switches are pulled up (high signal level).
- Your LCD should remain clear when there is no character need to be printed.
- TA will provide an demo example video on E3.
- TA would ask some questions during demo.
 - Please zip and upload the whole project including .bit file on E3 before deadline.

