ДЗ 10

Биктимиров Данила, группа 204

1. Рассмотрим с.в. $W=X\cdot Y$ её ф.р. $FW(\alpha)$ равна нулю при $\alpha<0$ и единице при $\alpha>1$. При $\alpha\in[0;1]$ по методу монте-карло получим $F_W(\alpha)=\iint\limits_{[0;1]^2\cap xy<\alpha}1\,dx\,dy=\alpha+\int\limits_{\alpha}^1\frac{\alpha}{x}\,dx=\alpha-\alpha\cdot\ln\alpha$

Тогда плотность этой с.в. равна $f_W(\alpha) = -\ln \alpha$. Дальше рассмотри с.в S = WZ, у неё так же с.в. $FS(\beta)$ равна нулю при $\beta < 0$ и единице при $\beta > 1$ и снова по методу монте-карло получаем, что при $\beta \in [0;1]$ $F_S(\beta) = \iint\limits_{[0;1]^2 \cap s^z < \beta} (-\ln s) \, ds \, dz$

Если сделать замену $u = \ln s, v = z$, то $(s; z) \in [0; 1]^2 \to (u; v) \in (-\infty; \ln \beta] \times [0; 1]$ получим

$$F_S(\beta) = \iint_{(-\infty; \ln \beta] \times [0;1] \cap uv < \ln \beta} (-u \cdot e^u) \, du \, dv = \int_{-\infty}^{\ln \beta} (-u \cdot e^u) \, du \int_{\frac{\ln \beta}{u}}^{1} 1 \, dv = \ldots = \beta$$