4.3 Comparators

PARTICIPATION

1) A: 1100

Indicate which comparator output will be 1.

A **comparator** compares two numbers, indicating whether the numbers are equal, or which number is greater. Same-length numbers can be compared by hand just like base ten numbers: Starting from the left, digits are compared until a difference

ACTIVITY 4.3.1: Comparator.				
Start 2x speed	Note: A is a3a2a1a0. B is b3b2b1b0.			
ZX Speed	A: 0101(5)	A's bit is 0, B's bit is 1.	A < B	
0 1 0 1 0 1 0 1	B: 0111(7)			
a3 a2 a1 a0 b3 b2 b1 b0				
4-bit comparator	A: 0100(4)	A's bit is 1, B's bit is 0.	A > B	
4-bit comparator	B: 0010(2)			
gt It eq				
0 0 1	A: 0101(5)	A's bits are the same as B's bits.	A = B	
	B: 0101(5)			
PARTICIPATION ACTIVITY 4.3.2: Comparator.				

B: 1101	
O gt	
O It	
O eq	
2) A: 0100 B: 1000 O gt O lt O eq	
3) A: 1111 B: 1111 O gt O lt	
O eq	

A *carry-ripple comparator* compares two N-bit numbers from left to right, with the result of each digit's comparison "ripplin digit. For each digit, a *one-bit comparator* compares two bits a and b only if the eq input was 1 from the higher digit, else ju a gt 1 or an lt 1. The rightmost digit's output becomes the N-bit comparator's output. The name "carry-ripple" refers to the s comparator's implementation to a carry-ripple adder's implementation.

PARTICIPATION ACTIVITY	4.3.3: Carry-ripple comparator.						_
Start	2x speed						
0 1	0 1		0	1	1	1	
a3 a2	a1 a0 4-bit	comparator	b3	b2	b1	b0	

The correct output of leftmost digit ripples to next digit, and so on. Eventually the external outputs become correct.

4.3.4: Carry-ripple comparator. **ACTIVITY**

Consider a 4-bit carry-ripple comparator (seen in the above animation). Indicate which output will be 1 for each digit.

Assume: a3a2a1a0 = 0100 (4), b3b2b1b0 = 0010 (2)

- 1) Digit 3

PARTICIPATION

- O gto
- O Ito
- O eqo
- 2) Digit 2

O gto	
O Ito	
O eqo	
3) Digit 1	
O gto	
O Ito	
O eqo	
4) Digit 0	
O gto	
O Ito	
O eqo	

A one-bit comparator can be implemented using combinational logic for each output. A designer could start by filling in a triputs gti, lti, eqi, a, and b, and 3 outputs gto, lto, eqo. The truth table will have $2^5 = 32$ rows. Alternatively, the designer can ϵ equations.

- eqo should be 1 if eqi is 1 AND a, b are the same. Thus: eqo = eqi(ab + a'b').
- gto should be 1 if gti is 1, OR eqi is 1 AND ab are 10. Thus: gto = gti + eqi(ab').
- Ito should be 1 if Iti is 1, OR eqi is 1 AND ab are 01. Thus: Ito = Iti + eqi(a'b).

Figure 4.3.1: 1-bit comparator circuit (used in questions below).

PARTICIPATION ACTIVITY

4.3.5: 1-bit Comparator.

- 1) Given: a = 1, b = 1, gti = 0, lti = 0, eqi = 1.
 - **O** eqo = 0
 - **O** eqo = 1
- 2) Given: a = 1, b = 0, gti = 0, Iti = 0, eqi = 1.
 - **O** eqo = 0
 - **O** eqo = 1
- 3) Given: a = 0, b = 0, gti = 0, Iti = 1, eqi = 0.

$$\sim$$
 eqo = 0

- O eqo = 1
- 4) Given: a = 0, b = 0, gti = 0, Iti = 1, eqi = 0.

L

- O Ito = 0
- O Ito = 1
- 5) Given: a = 0, b = 1, gti = 0, lti = 0, eqi = 1.

- \bigcirc Ito = 0
- O Ito = 1
- 6) Given: a = 1, b = 0, gti = 0, lti = 0, eqi = 1.

- \bigcirc Ito = 0
- O Ito = 1
- 7) Given: a = 0, b = 1, gti = 1, Iti = 0, eqi = 0.

- **O** gto = 0
- **O** gto = 1
- Provide feedback on this section