Documentação Técnica – Algoritmo rank_similarity: Cálculos e Premissas

Objetivo

Este documento descreve, em nível matemático e procedimental, o algoritmo rank_similarity para ranquear candidatos (anos ou ano-mês) pela similaridade em relação a um alvo. Cobre notação, pré-processamentos, agregação temporal, remoção de outliers, métricas, normalizações, cálculo de scores e critérios de cobertura.

Notação

Seja $X_v(t)$ a série da variável v após agregação/normalização na malha temporal T. Seja $Y_v^c(t)$ a curva do candidato c para a variável v, alinhada à mesma malha. O conjunto de variáveis é V; os candidatos formam o conjunto C.

Construção do alvo (target)

Quando o alvo não é fornecido, é construído por estatística + método de agregação:

- compare_by='year', agg_freq='monthly': target_v(m) = estatística(média/min/máx) por mês m=1..12, agregando todos os anos.
- compare_by='year', agg_freq='daily': target_v(doy) = estatística por dia-do-ano.
- compare_by='year', agg_freq='hourly': target_v(k) com k=(dia-do-ano, hora).
- compare_by='month': restringe ao mês escolhido e agrega por dia-do-mês (e eventualmente hora).

Agregação temporal

Dados originais s_v(t_raw) são reamostrados conforme agg_freq \in {monthly, daily, hourly} e agregados por agg_stat \in {mean, min, max}. Pré e/ou pós-agregação podem aplicar filtros de outliers.

Remoção de outliers

Os métodos marcam pontos extremos como NaN (não removem linhas fisicamente):

- Z-score: $z_i = (x_i \mu) / \sigma$; marca $|z_i| > z_thresh$.
- IQR: Q1, Q3, IQR = Q3-Q1; marca for de [Q1-k·IQR, Q3+k·IQR].

• MAD: mediana m; MAD = median($|x_i-m|$); $z_rob = 0.6745 \cdot (x_i-m)/MAD$; marca $|z_rob| > mad$ thresh.

Escopos: pre_agg (dentro de cada janela antes da estatística), post_agg (na curva agregada), both.

Normalização (opcional)

Após agregação, cada série pode ser normalizada:

- zscore: x' = (x mean(x)) / std(x)
- minmax: x' = (x min(x)) / (max(x) min(x))
- none: mantém nível original.

Alinhamento e cobertura

Alinhamos alvo X_v(t) e candidato Y_v^c(t) via:

- inner: T = interseção dos índices.
- left_target: T = índices do alvo; candidato é reindexado.

Removem-se pares com NaN. Define-se coverage_v^c = (# pares válidos) / (# pontos válidos do alvo). O candidato c só é considerado se coverage_v^c \geq min_coverage para TODAS as variáveis $v \in V$.

Métricas (modo curve)

Para sequências alinhadas $x = X_v(t)$, $y = Y_v^c(t)$:

- Correlação de Pearson (corr, \uparrow melhor): corr = Cov(x,y)/($\sigma_x \cdot \sigma_y$).
- RMSE (\downarrow melhor): RMSE = sqrt($(1/n)\cdot\Sigma$ (x_i y_i)^2).
- MAE (\downarrow melhor): MAE = $(1/n)\cdot\Sigma |x_i y_i|$.
- DTW (↓ melhor): distância de Dynamic Time Warping com janela Sakoe-Chiba (raio r).

Métricas (modo value)

Quando compare_mode='value', comparamos escalares por grupo: abs_diff = $|\mu_y - \mu_x|$; pct_diff = abs_diff / $(|\mu_x| + \epsilon)$.

Normalização das métricas (min-max por variável)

Para cada variável v e métrica m, normaliza-se para [0,1]:

• Se \uparrow melhor (ex.: corr): score_m = (m - m_min)/(m_max - m_min).

• Se \downarrow melhor (ex.: rmse, mae, dtw): score_m = (m_max - m)/(m_max - m_min).

Se m_max == m_min ou não finito, define-se score_m = 1.0.

Score por variável

Com pesos de métrica w_m (distribuição que soma 1):

score_var(v,c) = Σ _m w_m · score_m(v,c). No modo value, utiliza-se 0.5 para abs_diff e 0.5 para pct_diff.

Score final do candidato

Com pesos por variável W_v (normalizados):

score_final(c) = $\Sigma_{v \in V} W_v \cdot \text{score_var}(v,c)$. O ranking ordena score_final em ordem decrescente.

Tratamento de NaNs

A remoção de outliers insere NaNs; o alinhamento remove pares com NaN. Coverage é calculada antes do scoring; candidatos abaixo do limiar são descartados.

Limitações e extensões

Exemplo numérico (ilustrativo)

Suponha, para uma variável v e três candidatos A,B,C: $corr=\{0.90,0.60,0.30\}$, $rmse=\{2,4,1\}$, $mae=\{1.2,2.2,1.5\}$.

Normalização (min-max por métrica):

• corr↑: A=1.00, B=0.50, C=0.00; rmse↓: A≈0.667, B=0.00, C=1.00; mae↓: A=1.00, B=0.00, C=0.70.

 $Com\ metric_weights\ \{corr:0.5, rmse:0.3, mae:0.2\}:\ score_var(A)=0.90;\ B=0.25;\ C=0.44.\ Com\ múltiplas\ variáveis,\ o\ score_final\ \'e\ a\ m\'edia\ ponderada\ por\ var_weights.$

Gerado automaticamente – rank_similarity (documentação de cálculos e premissas).