Tipos de Relações

Reflexivas: Uma relação R em um conjunto A é **reflexiva** se aRa para todo $a \in A$, isto é, se $(a, a) \in R$ para todo $a \in A$. Portanto, A não é **reflexiva** se existe um $a \in A$ tal que $(a, a) \notin R$.

Simétricas: Uma relação R em um conjunto A é simétrica se aRb implica bRa, isto é, se $(a, b) \in R$ implica $(b, a) \in R$. Logo, R não é simétrica se existe $(a, b) \in R$, mas $(b, a) \notin R$.

Transitivas: Uma relação R em um conjunto A é transitiva se aRb e bRc, implica aRc, isto é, se (a, b) e $(b, c) \in R$, então $(a, c) \in R$. Logo, R não é transitiva se existirem a, b e $c \in A$ tais que (a, b) e $(b, c) \in R$, mas $(a, c) \notin R$.

Antissimétricas: Uma relação R em um conjunto A é antissimétrica se aRb e bRa implica a = b, isto é, se (a, b) e $(b, a) \in R$, então a = b. Portanto, R não é antissimétrica se existem $a, b \in A$ tais que (a, b) e $(b, a) \in R$, mas $a \ne b$.

Observação: As propriedades de simetria e antissimetria não são mutuamente excludentes.

TEORIA dos GRAFOS

Trilha: Caminho no qual todas as ARESTAS são DISTINTAS.

Grafo Atravessável: Se existir um caminho que inclua **todos os vértices** e usa cada **ARESTA** uma **ÚNICA VEZ.**

Caminho de Euler: Usa cada ARESTA exatamente UMA VEZ.

Grafo Euleriano: Cada vértice tem grau PAR.

Caminho Hamiltoniano: Caminho fechado (CICLO) que visita cada vértice exatamente UMA VEZ.

Grafo Hamiltoniano: Admite um Caminho Hamiltoniano.

Grau de uma Região: Comprimento do CICLO ou CAMINHO FECHADO que circunda a região.

Teoremas:

- 1) Num grafo conexo e planar, o **GRAU** de uma **REGIÃO** é o **comprimento** do ciclo ou caminho fechado que circunda essa região.
- 2) A SOMA dos GRAUS das REGIÕES é igual ao DOBRO do número de ARESTAS.
- 3) A SOMA dos GRAUS dos VÉRTICES de um grafo é igual ao dobro do número de ARESTAS.
- 4) O número de VÉRTICES ÍMPARES em um grafo é PAR, ou seja, em um grafo, o número de vértices ÍMPARES é 0, 2, 4, 6, 8, ...
- 5) Um grafo conexo é atravessável se NÃO EXISTEM VÉRTICES ÍMPARES ou existirem exatamente 2 VÉRTICES ÍMPARES.

Fórmula de Euler:

Em um grafo conexo, planar e com *r* regiões:

- 1) n a + r = 2
- **2)** Se $n \ge 3$, então $a \le 3n 6$
- 3) Se $n \ge 3$ e não existem ciclos de comprimento 3, então a $\le 2n 4$