

Programy użytkowe - ćwiczenia 3

1 Zadanie do wykonania

- Stwórz na pulpicie katalog w formacie ImieStudenta_NazwiskoStudenta
- Ściągnij plik: http://wmii.uwm.edu.pl/~artem/TEX/1.tex i zapisz plik do utworzonego wcześniej katalogu, otwórz programem TexWorks i skompiluj,
- Przeczytaj Sekcję drugą i trzecią wprowadzające do teorii tworzenia tabel i wstawiania grafiki do TeXa, podczas czytania sprawdzaj działanie poszczególnych kodów wpisując je do pliku 1.tex i kompilując,
- Sformatuj do postaci TeXa wskazane przez wykładowcę tabele z Sekcji czwartej, oraz przedstaw w wybranej formie obrazki wskazane przez wykładowcę, wyszukane w sieci Internet.

W przypadku, gdy materiały wprowadzające nie są wystarczające, przejrzyj kurs online,

http://www.latex-kurs.x25.pl/

2 Część Teoretyczna - Tabele w TeXu

2.1 Pakiety, których może brakować w nagłówku pliku 1.tex

 $\label{table} $$ \spackage{multirow} \subseteq {\rm sidecap} \spackage{wrapfig} \spackage{caption} \spackage{subcaption} $$ \spackage{subcaption} $$$

2.2 Tabela bez linii ograniczających

2.2.1 Kod TeXa przed kompilacją

```
\begin{table}[here]
\centering \caption{Tu wstawiamy opis Tabeli — tabela jest bez linii podziału, treść poszczególnych komórek jest wyśrodkowana}
\begin{tabular}{cccc}
obiekt & $a_1$ & $a_2$ & $a_3$ \\
$x_1$ & $1$ & $4$ & $3$ \\
$x_2$ & $1$ & $4$ & $3$ \\
$x_2$ & $1$ & $4$ & $3$ \\
$x_3$ & $1$ & $4$ & $3$ \\
$x_4$ & $4$ & $4$ & $3$ \\
$x_4$ & $4$ & $4$ & $4$ \\
$x_4$ &
```

2.2.2 pdf po kompilacji

Tabela 1: Tu wstawiamy opis Tabeli - tabela jest bez linii podziału, treść poszczególnych komórek jest wyśrodkowana

```
obiekt
         a_1
               a_2
                    a_3
                     3
          1
               4
                     3
          1
               4
                     3
          1
               4
  x_3
          1
                     3
  x_4
```

2.3 Tabela z użyciem linii pionowych

2.3.1 Kod TeXa przed kompilacją

2.3.2 pdf po kompilacji

Tabela 2: Tu wstawiamy opis Tabeli - tabela zawiera pionowe linie podziału, tworzone znakiem — wstawianym \begintabular hline treść poszczególnych komórek jest wyśrodkowana

2.4 Tabela z użyciem linii poziomych

2.4.1 Kod TeXa przed kompilacją

2.4.2 pdf po kompilacji

Tabela 3: Tu wstawiamy opis Tabeli - tabela zawiera poziome linie podziału, tworzone pleceniem \hline treść poszczególnych komórek jest wyśrodkowana

obiekt	a_1	a_2	a_3
$\overline{x_1}$	1	4	3
$\overline{x_2}$	1	4	3
$\overline{x_3}$	1	4	3
$\overline{x_4}$	1	4	3

2.5 Tabela z użyciem linii poziomych i pionowych z wycentrowanymi wartościami - opcja c

2.5.1 Kod TeXa przed kompilacją

```
\begin{table}[here]
\centering \caption{Tu wstawiamy opis Tabeli - tabela zawiera pionowe i poziome linie podziału, tworzone
    znakiem | wstawianym $\backslash$begin{tabular} hline - WARTOŚCI WYRÓWNANE DO ŚRODKA
    KOMÓREK – opcja c}
\left\{ |c|c|c|c| \right\}
 \hline
 obiekt & $a_1$ & $a_2$ & $a_3$ \\
 \hline
  \hline
 $x_1$ & $1$ & $4$ & $3$ \\
 $x_2$ & $1$ & $4$ & $3$ \\
 \hline
 $x_3$ & $1$ & $4$ & $3$ \\
 \hline
 $x_4$ & $1$ & $4$ & $3$ \\
 \hline
\end{tabular}
\end{table}
```

2.5.2 pdf po kompilacji

Tabela 4: Tu wstawiamy opis Tabeli - tabela zawiera pionowe i poziome linie podziału, tworzone znakiem — wstawianym \begintabular hline - WARTOŚCI WY-RÓWNANE DO ŚRODKA KOMÓREK - opcja c

obiekt	a_1	a_2	a_3
x_1	1	4	3
x_2	1	4	3
x_3	1	4	3
x_4	1	4	3

2.6 Tabela z użyciem linii poziomych i pionowych z wyrównanymi do lewej strony wartościami - opcja l

2.6.1 Kod TeXa przed kompilacją

```
\begin{table}[here]
\centering \caption{Tu wstawiamy opis Tabeli - tabela zawiera pionowe i poziome linie podziału, tworzone
     znakiem | wstawianym \backslash$begin{tabular} hline - WARTOŚCI WYRÓWNANE DO LEWEJ
     STRONY KOMÓREK – opcja l}
\left\{ \left( \left\| \left\| \right\| \right\| \right) \right\} 
  hline
 obiekt & $a_1$ & $a_2$ & $a_3$ \\
 \hline
  \hline
 $x_1$ & $1$ & $4$ & $3$ \\
 $x_2$ & $1$ & $4$ & $3$ \\
 \hline
 $x_3$ & $1$ & $4$ & $3$ \\
 \hline
 $x_4$ & $1$ & $4$ & $3$ \\
 \hline
\end{tabular}
\end{table}
```

2.6.2 pdf po kompilacji

Tabela 5: Tu wstawiamy opis Tabeli - tabela zawiera pionowe i poziome linie podziału, tworzone znakiem — wstawianym \begintabular hline - WARTOŚCI WY-RÓWNANE DO LEWEJ STRONY KOMÓREK - opcja l

obiekt	a_1	a_2	a_3
x_1	1	4	3
x_2	1	4	3
x_3	1	4	3
x_4	1	4	3

2.7 Tabela z użyciem linii poziomych i pionowych z wyrównanymi do prawej strony wartościami - opcja r

2.7.1 Kod TeXa przed kompilacją

```
\begin{table}[here]
\centering \caption{Tu wstawiamy opis Tabeli - tabela zawiera pionowe i poziome linie podziału, tworzone
     znakiem | wstawianym \backslash$begin{tabular} hline — WARTOŚCI WYRÓWNANE DO PRAWEJ
     STRONY KOMÓREK – opcja r}
\left\{ \left| r\right| \right\} \left\{ \left| r\right| \right| \right\}
  hline
 obiekt & $a_1$ & $a_2$ & $a_3$ \\
 \hline
  \hline
 $x_1$ & $1$ & $4$ & $3$ \\
 $x_2$ & $1$ & $4$ & $3$ \\
 \hline
 $x_3$ & $1$ & $4$ & $3$ \\
 \hline
 $x_4$ & $1$ & $4$ & $3$ \\
 \hline
\end{tabular}
\end{table}
```

2.7.2 pdf po kompilacji

Tabela 6: Tu wstawiamy opis Tabeli - tabela zawiera pionowe i poziome linie podziału, tworzone znakiem — wstawianym \begintabular hline - WARTOŚCI WY-RÓWNANE DO PRAWEJ STRONY KOMÓREK - opcja r

obiekt	a_1	a_2	a_3
x_1	1	4	3
x_2	1	4	3
x_3	1	4	3
x_4	1	4	3

2.8 Tabela, w której używamy opcji multirow, pozwalającej na łączenie wierszy komórki

2.8.1 Kod TeXa przed kompilacją

2.8.2 pdf po kompilacji

Tabela 7: Użycie w tabeli instrukcji \multirow

	u_1	u_2
u_2	ϕ	ϕ
	$a_1, a_2, a_3,$	
u_3	a_4, a_5	a_1
	a_6	

2.9 Tabela, w której używamy opcji TINY - zmniejszanie

2.9.1 Kod TeXa przed kompilacją

```
\begin{table}[h]
\begin{center}
caption{Użycie w tabeli instrukcji $\backslash$multirow — ORAZ OPCJA TINY POZWALAJĄCA NA
     ZMNIEJSZANIE ROZMIARU TABLICY}
\begin{tiny}
\begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} 
  \hline
 \hline
 u_2 & \phi \
  \label{limit} $$ \widetilde{3}_{*}_{s_{a_{3}}} & s_{a_{1},a_{2},a_{3}} & \mathrm{multirow}_{3}_{*}_{s_{a_{1}}} \\ \\
 $$ & $a_4, a_5$ & $$ \\
 $$ & $a_6$ & $$ \\
 \hline
\end{tabular}
\end{tiny}
\end{center}
\end{table}
```

2.9.2 pdf po kompilacji

Tabela 8: Użycie w tabeli instrukcji \multirow - ORAZ OPCJA TINY POZWALA-JĄCA NA ZMNIEJSZANIE ROZMIARU TABLICY

	u_1	u_2
u_2	ϕ	ϕ
	$a_1, a_2, a_3,$	
u_3	a_4, a_5	a_1
	a_6	

2.10 Tabela, w której używamy środowiska multicolumn - pozwalającego na łączenie kolumn w komórkach

2.10.1 Kod TeXa przed kompilacją

```
\begin{tabular}{c | c | c | c | c | c | c | c | c | } \\\
\hline
Obiekt & \multicolumn{3}{c}{opis1} & \multicolumn{3}{c}{opis2}\\
\hline
& 1 & 2 & 3 & 4 & 5 & 6\\
\hline
& 1 & 2 & 3 & 4 & 5 & 6\\
\hline
& 1 & 3 & 34 & 87 & 92 & 96 \\
x2 & 2 & 54 & 234 & 243 & 95 & 97 \\
\hline
\end{tabular}
\caption{Uzycie instrukcji multicolumn.}
\end{table*}
```

2.10.2 pdf po kompilacji

Obiekt	opis1		opis2			
	1	2	3	4	5	6
<u>x1</u>	1	3	34	87	92	96
x2	2	54	234	243	95	97

Tabela 9: Użycie instrukcji multicolumn.

2.11 Tabela, użycie instrukcji cline

Przy pomocy instrukcji cline możemy narysować linię pod wybranym wierszem wskazując od której komórki tabeli ma się ona zaczynać a na której kończyć. \cline{2-4} ozanacza, że linia pojawi się pod komórką 2 i będzie rysowana do końca komórki 4, oczywiście pod warunkiem że tabela ma tyle kolumn.

2.11.1 Kod TeXa przed kompilacją

```
\begin{tabular}{|r|l|}
\hline
7C0 & hexadecimal \\
3700 & octal \\ \cline{2-2}
11111000000 & binary \\
\hline \hline
1984 & decimal \\
\hline
\end{tabular}
```

2.11.2 pdf po kompilacji

7C0	hexadecimal
3700	octal
11111000000	binary
1984	decimal

2.12 Określanie szerokości komórki i jej wyrównania

Prócz standardowych specyfikatorów dla kolumny tabeli [r,l,c] możemy podać **p{5cm}**, **m{5cm}**, **b{5cm}** wraz z wartością w wybranej jednostce miary (np. w cm). Pozwalają one na sterowanie szerokością kolumny oraz typem wyrówania w poziomie.

- p wyrównanie do góry
- m wyśrodkowany
- b wyrówanie do dołu

Pomocny może być materiał na stronie http://en.wikibooks.org/wiki/LaTeX/Tables#Text_wrapping_in_tables

2.12.1 Kod TeXa przed kompilacją

```
\begin{center}
\begin{tabular}{ | 1 | 1 | 1 | p{5cm} |}
\hline
Day & Min Temp & Max Temp & Summary \\ \hline
Monday & 11C & 22C & A clear day with lots of sunshine.
However, the strong breeze will bring down the temperatures. \\ \hline
Tuesday & 9C & 19C & Cloudy with rain, across many northern regions. Clear spells
across most of Scotland and Northern Ireland,
but rain reaching the far northwest. \\ \hline
Wednesday & 10C & 21C & Rain will still linger for the morning.
Conditions will improve by early afternoon and continue
throughout the evening. \\
\hline
\end{tabular}
\end{center}
```

2.12.2 pdf po kompilacji

Day	Min Temp	Max Temp	Summary
Monday	11C	22C	A clear day with lots of sun-
			shine. However, the strong
			breeze will bring down the
			temperatures.
Tuesday	9C	19C	Cloudy with rain, across
			many northern regions. Cle-
			ar spells across most of Sco-
			tland and Northern Ireland,
			but rain reaching the far
			northwest.
Wednesday	10C	21C	Rain will still linger for the
			morning. Conditions will
			improve by early afterno-
			on and continue throughout
			the evening.

2.13 Kolorowanie wierszy

2.13.1 Kod TeXa przed kompilacją

```
\begin{center}
\rowcolors{1}{green}{pink}
\begin{tabular}{lll}
xxx & xxx & 333 \\
xxx & xzx & fdf\\
```

```
yyy & zzz & gdf \\
yyy & zzz & dgd\\
\end{tabular}
\end{center}
```

2.13.2 pdf po kompilacji

XXX	XXX	333
XXX	XZX	fdf
ууу	ZZZ	gdf
ууу	ZZZ	dgd

3 Część Teoretyczna - Figury w TeXu

Do działania poniższych komend wymagane jest dołączenie pakietu graphicx. \usepackage{graphicx}

3.1 Wyświetlanie grafiki R2D2.jpg

3.1.1 Kod TeXa przed kompilacją

```
\begin{figure}[h!]
\caption{A picture of a R2D2}
\centering
\includegraphics[width=0.5\textwidth]{R2D2.jpg}
\end{figure}
```

3.1.2 pdf po kompilacji

Rysunek 1: A picture of a R2D2

3.2 Wyświetlanie grafiki z odbiciem

3.2.1 Kod TeXa przed kompilacją

```
\begin{figure}[h!]
\caption{A picture of a gull.}
\centering
\includegraphics[width=0.5\textwidth]{tygrys.jpg}
\end{figure}
\begin{figure}[h!]
\centering
\reflectbox{%
```

```
\includegraphics[width=0.5\textwidth]{tygrys.jpg}}
\caption{A picture of the same gull looking the other way!}
\end{figure}
```

3.2.2 pdf po kompilacji

Rysunek 2: Obrazek X

Rysunek 3: Odbicie Obrazka X

3.3 Wyświetlanie wielu obrazków jednocześnie

3.3.1 Kod TeXa przed kompilacją

```
\begin{figure} [here]
\vspace{0pt}
\begin{center}
\includegraphics[scale=0.1]{R2D2.jpg}
\includegraphics[scale=0.1]{R2D2.jpg}
\includegraphics[scale=0.1]{R2D2.jpg}
\includegraphics[scale=0.1]{R2D2.jpg}
\includegraphics[scale=0.1]{R2D2.jpg}
\caption{Wyświetlanie wielu obrazków jednocześnie}
\end{center}
\vspace{0pt}
\end{figure}
```

3.3.2 pdf po kompilacji

Rysunek 4: Wyświetlanie wielu obrazków jednocześnie

3.4 Rysowanie za pomocą krzywych Beziera

3.4.1 Kod TeXa przed kompilacją

```
\begin{figure}
  \vspace{0pt}
 \begin{center}
 \definecolor{szary}{rgb}{0.8,0.8,0.8}
 \colorbox{white}{
  \setlength{\unitlength}{0.6mm}
     begin{picture}(210,220)(0,0)
 \linethickness{0.3mm}
%%siatka pionowa
 \text{textcolor}\{\text{szary}\}\{\text{qbezier}(14.2857,0)(14.2857,100)(14.2857,200)\qbezier}(28.5714,0)(28.5714,100)(28.5714,200)\qbezier}(28.5714,0)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)(28.5714,00)
                                    qbezier(42.8571,0)(42.8571,100)(42.8571,200) \\ \backslash qbezier(57.1429,0)(57.1429,100)(57.1429,200) \\ \backslash qbezier(57.1429,0)(57.1429,100)(57.1429,100) \\ \backslash qbezier(57.1429,0)(57.1429,100)(57.1429,100) \\ \backslash qbezier(57.1429,0)(57.1429,100)(57.1429,100) \\ \backslash qbezier(57.1429,0)(57.1429,100) \\ \backslash qbezier(57.1429,0)(57.1429,0) \\ \backslash qbezier(57.1429,0) \\ \backslash qbezier(57.1429,0) \\ \backslash qbezier(57.1429,0) \\ \backslash qbezier(57.1429,0) \\ \backslash qbezier(57.142
                                    (71.4286,0)(71.4286,100)(71.4286,200)qbezier(85.7143,0)(85.7143,100)(85.7143,200)qbezier(100,0)(100,100)
                                    (100,200) \land \text{qbezier} (114.286,0) (114.286,100) (114.286,200) \land \text{qbezier} (128.571,0) (128.571,100) (128.571,200) \land \text{qbezier} (128.571,00) \land \text{
                                    qbezier(142.857,0)(142.857,100)(142.857,200)\qbezier(157.143,0)(157.143,100)(157.143,200)\qbezier
                                    (171.429,0)(171.429,100)(171.429,200)qbezier(185.714,0)(185.714,100)(185.714,200)qbezier(200,0)(200,100)
                                    (200,200)}%
%%siatka pozioma
 \text{textcolor}\{\text{szary}\}\{\text{dezier}(0,10)(100,10)(200,10)\qbezier}(0,20)(100,20)(200,20)\qbezier}(0,30)(100,30)(200,30)\}
                                    qbezier(0,40)(100,40)(200,40) \\ \ qbezier(0,50)(100,50)(200,50) \\ \ qbezier(0,60)(100,60)(200,60) \\ \ qbezier(0,70) \\ 
                                    (100,70)(200,70) \\ | qbezier(0,80)(100,80)(200,80) \\ | qbezier(0,90)(100,90)(200,90) \\ | qbezier(0,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,100)(100,1
                                    (200,100) \land \text{pbezier}(0,110)(100,110)(200,110) \land \text{pbezier}(0,120)(100,120)(200,120) \land \text{pbezier}(0,130)(100,130) \land \text{pbezier}(0,130)(100,130)(100,130) \land \text{pbezier}(0,130)(100,130)(100,130) \land \text{pbezier}(0,130)(100,130)(100,130) \land \text{pbezier}(0,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130)(100,130
                                    (200,130)\qbezier(0,140)(100,140)(200,140)\qbezier(0,150)(100,150)(200,150)\qbezier(0,160)(100,160)
                                    (200,160)\qbezier(0,170)(100,170)(200,170)\qbezier(0,180)(100,180)(200,180)\qbezier(0,190)(100,190)
                                    (200,190)\qbezier(0,200)(100,200)(200,200)}%
 {\text{put}(201,3)}{\text{sr}_{\text{gran}}}}
 \{ \text{put}(2,210) \{ \text{Accuracy} \} \} \%
 %%podzialka osi x
 \label{eq:control_equation} $$ \operatorname{control_{4.2857,-2}(14.2857,0)(14.2857,2)} \operatorname{control_{4.2857,-2}(28.5714,-2)(28.5714,0)(28.5714,2)} \operatorname{control_{4.2857,-2}(14.2857,-2)(14.2857,0)(14.2857,-2)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.2857,0)(14.285
                                    (42.8571,0)(42.8571,2)\backslash \text{qbezier}(57.1429,-2)(57.1429,0)(57.1429,2)\backslash \text{qbezier}(71.4286,-2)(71.4286,0)(71.4286,2)\backslash \text{qbezier}(85.7143,-2)(85.7143,0)(85.7143,2)\backslash \text{qbezier}(100,-2)(100,0)(100,2)\backslash \text{qbezier}(114.286,-2)(114.286,0)
                                    (114.286,2)\qbezier(128.571,-2)(128.571,0)(128.571,2)\qbezier(142.857,-2)(142.857,0)(142.857,2)\qbezier
                                    (157.143,-2)(157.143,0)(157.143,2)\qbezier(171.429,-2)(171.429,0)(171.429,2)\qbezier(185.714,-2)
                                    (185.714,0)(185.714,2)\qbezier(200,-2)(200,0)(200,2)
 {\put(-1,-7){0}}{\put(13.2857,-12){0.0714286}}{\put(27.5714,-7){0.142857}}{\put(41.8571,-12)}
                                   put(199,-7)\{1\}\}
 \text{multiput}(0,0)(0,20)\{10\}\{\text{qbezier}(-2,20)(0,20)(2,20)\}\%\%podzialka osi y
 \multiput(0,0)(0,10){20}{\qbezier(-1,10)(0,10)(1,10)}%%podzialka osi y
 \begin{array}{l} \begin{array}{l} (-13,118) & (0.6) \end{array} \\ (-13,138) & (0.7) \end{array} \\ \begin{array}{l} (-13,158) & (0.8) \end{array} \\ \begin{array}{l} (-13,178) & (0.9) \end{array} \\ \begin{array}{l} (-13,198) & (0.9) & (0.9) \end{array} \\ \begin{array}{l} (-13,198) & (0.9) & (0.9) \end{array} \\ \begin{array}{l} (-13,198) & (0.9) & (0.9) & (0.9) \end{array}
 \operatorname{put}(0,0)\{\operatorname{vector}(1,0)\{210\}\}\%\% os x
 \operatorname{vector}(0,1){220}\% os y
 %%legenda
 %%wykresy
 \text{textcolor}\{\text{green}\}\{\text{qbezier}(0.88.9856)(7.14286.88.9856)(14.2857.88.9856)
 \label{eq:put-put-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-state-stae
 \protect\ \put(35.7143,126.667){\circle{3}}\qbezier(42.8571,164.348)(50,163.536)(57.1429,162.725)
```

```
\label{put} $$ \left(50,163.536\right) \left( circle \{3\} \right) = (57.1429,162.725)(64.2857,165.392)(71.4286,168.058) \right) $$
   \protect{ut}(64.2857,165.392){\circle{3}}\qbezier(71.4286,168.058)(78.5714,168.319)(85.7143,168.58)
\t(78.5714,168.319){\circle{3}}\qbezier(85.7143,168.58)(92.8571,167.826)(100,167.072)
\protect\operatorname{put}(92.8571,167.826)\circle{3}}\protect\operatorname{qbezier}(100,167.072)(107.143,167.507)(114.286,167.942)
\label{put} $$ \left(135.714,163.159\right) \left( \left(135.714,163.159\right) \left( \left(142.857,161.913\right) \left(150,161.507\right) \left(157.143,161.101\right) \right) \right) = \left(135.714,163.159\right) \left( \left(135.714,163.159\right) \left(157.143,161.101\right) \right) \\ = \left(135.714,163.159\right) \left( \left(135.714,163.159\right) \left(157.143,161.101\right) \\ = \left(135.714,163.159\right) \left(135.714,163.159\right) \left(157.143,163.159\right) \\ = \left(135.714,163.159\right) \left(135.714,163.159\right) \left(157.143,163.159\right) \\ = \left(135.714,163.159\right) \left(135.714,163.159\right) \left(135.714,163.159\right) \\ = \left(135.714,
 \label{put} $$ \displaystyle \int (150,161.507) {\rm circle} \{3\} \right] + (157.143,161.101) (164.286,160.609) (171.429,160.116) = (157.143,161.101) (164.286,160.609) (171.429,160.116) = (157.143,161.101) (164.286,160.609) (171.429,160.116) = (157.143,161.101) (164.286,160.609) (171.429,160.116) = (157.143,161.101) (164.286,160.609) (171.429,160.116) = (157.143,161.101) (164.286,160.609) (171.429,160.116) = (157.143,161.101) (164.286,160.609) (171.429,160.116) = (157.143,161.101) (164.286,160.609) (171.429,160.116) = (157.143,161.101) (164.286,160.609) (171.429,160.116) = (157.143,161.101) (164.286,160.609) (171.429,160.116) = (157.143,161.101) (164.286,160.609) (171.429,160.116) = (157.143,161.101) (164.286,160.609) (171.429,160.116) = (157.143,161.101) (164.286,160.609) (171.429,160.116) = (157.143,161.101) (164.286,160.609) = (157.143,161.101) (164.286,160.609) = (157.143,161.101) (164.286,160.609) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,161.101) = (157.143,
 \parbox{$\setminus$put(164.286,160.609){\circle{3}}\qbezier(171.429,160.116)(178.571,160.203)(185.714,160.29)$}
\protect\operatorname{put}(178.571,160.203) {\circle{3}} \qbezier(185.714,160.29) (192.857,160.29) (200,160.29)
\begin{array}{l} \text{put}(192.857,160.29) {\text{circle} {3}} \end{array}
\text{textcolor}\{\text{blue}\}\{\text{qbezier}(0.88.9854)(7.14286.88.9854)(14.2857.88.9854)
\protect{put(7.14286,88.9854)}{\circle*{3}}\qbezier(14.2857,88.9854)(21.4286,88.9854)(28.5714,88.9854)}
\label{put} $$ \displaystyle \operatorname{(21.4286,88.9854)(42.8571,88.9854)(35.7143,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(42.8571,88.9854)(4
\label{put} $$ \operatorname{(35.7143,88.9854)(57.1429,88.9854)} $$ \operatorname{(42.8571,88.9854)(50,88.9854)(57.1429,88.9854)} $$
\t(50,88.9854) {\circle*{3}} \qbezier(57.1429,88.9854)(64.2857,114.899)(71.4286,140.812)
\label{put} $$ \left(64.2857,114.899\right) {\circle*{3}}\right) = (71.4286,140.812)(78.5714,147.855)(85.7143,154.899) $$
   \protect{vput(78.5714,147.855){circle*{3}}}\qbezier(85.7143,154.899)(92.8571,160.783)(100,166.667)}
\protect{put(92.8571,160.783)}{\circle*{3}}\qbezier(100,166.667)(107.143,166.754)(114.286,166.84)
\label{eq:put} $$ \left(121.429,165.942\right) \left(circle*{3}\right) \right] = \left(128.571,165.043\right) \left(135.714,163.449\right) \left(142.857,161.855\right) = \left(128.571,165.043\right) = \left(128.571,165.043\right
 \label{put} $$ \left(135.714,163.449\right) {\circle*{3}}\right) = (142.857,161.855)(150,161.073)(157.143,160.29) $$
\t(150,161.073)\(circle*{3}}\qbezier(157.143,160.29)(164.286,159.681)(171.429,159.072)
\label{lem:put} $$ \displaystyle \frac{164.286,159.681}{circle*{3}}\right] = (171.429,159.072)(178.571,159.188)(185.714,159.304) \\ \displaystyle \frac{178.571,159.188}{circle*{3}}\right] = (185.714,159.304)(192.857,159.304)(200,159.304) \\
\begin{array}{l} \text{(192.857,159.304)} \\ \text{(circle*{3})} \end{array}
\textcolor{black}{\quad \quad 
\qbezier(14.2857,88.9856)(21.4286,88.9856)(28.5714,88.9856)
 \qbezier(28.5714,88.9856)(35.7143,88.9856)(42.8571,88.9856)
 \quad 
\ensuremath{\mbox{qbezier}}(57.1429,147.652)(64.2857,156.087)(71.4286,164.522)
\quad 
 \qbezier(85.7143,165.681)(92.8571,165.13)(100,164.58)
   \qbezier(100,164.58)(107.143,166.87)(114.286,169.159)
 \color{1}qbezier(114.286,169.159)(121.429,168.145)(128.571,167.131)
 \qbezier(128.571,167.131)(135.714,162.696)(142.857,158.261)
   \qbezier(142.857,158.261)(150,158.667)(157.143,159.073)
 \qbezier(157.143,159.073)(164.286,158.841)(171.429,158.609)
\ensuremath{\mbox{qbezier}}(171.429,158.609)(178.571,158.841)(185.714,159.072)
 \quad 
\text{\covering by } \text{\c
                                        granules of minimal size}}
\text{textcolor}\{\text{blue}\}\{\text{qbezier}(88,206)(93,206)(108,206) \setminus \text{put}(98,206)\{\text{circle*}\{3\}\} \setminus \text{put}(109,205)\{\text{covering by granules }\}
                                             of maximal size}}
\textcolor{black}{\quad \textcolor{\lambda \textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\textcolor{\te
\end{picture}}
\end{center}
\end{figure}
```

3.4.2 pdf po kompilacji

4 Zadania do wykonania

4.1 Tabele do przedstawienia w TeXu

W przypadku problemów z kompilacją, kodu, w szczególności w kolorowaniu wierszy, można użyć kodu dostępnego w: http://wmii.uwm.edu.pl/~artem/TEX/2.tex

Tabela 10: Przykładowy system decyzyjny (U,A,d), modelujący problem diagnozy medycznej, której efektem jest decyzja o wykonaniu lub nie wykonaniu operacji wycięcia wyrostka robaczkowego, $U=\{u_1,u_2,\ldots,u_{10}\},A=\{a_1,a_2\},d\in D=\{TAK,NIE\}$

Pacjent	Ból brzucha	Temperatura ciała	Operacja
$\overline{u_1}$	Mocny	Wysoka	Tak
u_2	Średni	Wysoka	Tak
u_3	Mocny	Średna	Tak
u_4	Mocny	Niska	Tak
u_5	Średni	Średna	Tak
u_6	Średni	Średna	Nie
u_7	Mały	Wysoka	Nie
u_8	Mały	Niska	Nie
u_9	Mocny	Niska	Nie
u_10	Mały	Średna	Nie

Tabela 11: Bramka AND

$\overline{x_1}$	x_2	(x_1ANDx_2)
1	1	1
1	0	0
0	1	0
0	0	0

Poniżej tabela bez środwiska table tylko samo środowisko tabular.

7C0	hexadecimal
3700	octal
11111000000	binary
1984	decimal

Tabela 12: Tabela z wyrówanym pionowo tekste

Day	Min Temp	Max Temp	Summary	
			A clear day with lots	
			of sunshine. However,	
			the strong breeze will	
			bring down the tempe-	
Monday	11C	13C	ratures.	
			Cloudy with rain,	
			across many nor-	
			thern regions. Clear	
			spells across most of	
			Scotland and Nor-	
			thern Ireland, but	
			rain reaching the far	
Tuesday	9C	19C	northwest.	
			Rain will still lin-	
			ger for the morning.	
			Conditions will impro-	
			ve by early afterno-	
			on and continue thro-	
Wednesday	10C	21C	ughout the evening.	

odd	odd	odd
even	even	even
odd	odd	odd
even	even	even

Tabela 13: The Leaderboard of TunedIt Job Scheduling competition

Rank	Team	Preliminary Result	Final Result
1	jzbontar	0.043801	0.043878
2	Piotr	0.043801	0.043878
3	$TEAM_CODES$	0.043801	0.043878
4	Not is sa	0.043801	0.043878
5	$Jannes\ Verstichel$	0.043801	0.043878
6	artem	0.043801	0.043878
7	podludek	0.043806	0.044216
8	rabitic	0.044403	0.044680
9	Rav	0.047203	0.046747
10	Baseline	0.197606	0.195016
11	$Herald\ Kllapi$	0.197606	0.195016
12	Xenopax	0.197606	0.195016
13	cpreston	0.197606	0.195016
14	Oscar	0.197606	0.195016
15	ga1	0.197606	0.195016
16	Tri Kurniawan Wijaya	0.197606	0.195016

No. of visual words	Dataset					
No. of visual words	1	2	3	4	5	6
50	61.27%	88.92%	77.88%	87.89%	92.04%	96.65%
100	64.60%	89.40%	80.41%	92.05%	95.81%	97.70%
200	69.67%	89.42%	76.40%	92.06%	94.14%	98.74%
500	72.97%	88.41%	76.88%	93.30%	97.91%	98.32%
1000	73.80%	89.91%	78.90%	92.87%	97.49%	98.74%
2000	77.17%	90.42%	80.92%	92.05%	97.48%	99.58%
5000	58.80%	93.95%	79.91%	93.30%	97.90%	98.32%

Tabela 14: Final classification results for datasets 1–3 using Euclidean normalization.

4.2 Wstawianie obrazów

Wstaw obrazy do dokumentu, obrazy dostępne w oddzielnej paczce zip. Zwróć uwagę na rozmieszczenie obrazów, nie zawsze pojawiają się w miejscu wstawienia.

4.2.1 Wiele obrazów obok siebie

Wstaw obraz tygrysa wielokrotnie w ramach jednego środowiska figure, Fig. 7

Odszukaj w internecie informacje o pakiecie subcaption oraz środowisku subfigure i wstaw dwa obrazy wraz z podpisem tak jak jest to zaprezentowane na Rys. 8, pomocny może być materiał na stronie http://en.wikibooks.org/wiki/LaTeX/Floats,_Figures_and_Captions#Subfloats

Tabela 15: Scalone wiersze i kolumny.

		Primes				
		2	3	5	7	
Powers	504	3	2	0	1	
	540	2	3	1	0	
Powers	gcd	2	2	0	0	n
	lcm	3	3	1	1	n

min max

Tabela 16: ACC - table - 5 x CV - 5; r_{gran} = Granulation radius, T.acc = Total accuracy, T.cov = Total coverage, M.gran = The mean percentage size of classification granule in training system

accCovMin	SD	accCovMax	SD	accCovAverage	SD
0.444928	0	0.444927	0	0.444928	0
0.444928	0	0.444927	0	0.444928	0
0.444928	0	0.444927	0	0.444928	0
0.821739	0.008696	0.444927	0	0.444928	0
0.813624	0.004752	0.444927	0	0.73826	0.040115
0.840291	0.006608	0.704058	0.014723	0.822609	0.010667
0.842899	0.003594	0.774493	0.010665	0.828406	0.003942
0.835362	0.003014	0.833333	0.002898	0.822898	0.003826
0.839711	0.005565	0.834202	0.003361	0.845797	0.005102
0.822029	0.002665	0.825217	0.005912	0.835653	0.006261
0.809564	0.005681	0.809276	0.005333	0.791305	0.006377
0.805507	0.008347	0.80145	0.005217	0.795363	0.007883
0.800581	0.007419	0.795361	0.004405	0.793044	0.007188
0.80145	0.008116	0.796522	0.004753	0.795362	0.007304
0.801449	0.006377	0.796522	0.005332	0.794493	0.007188

Rysunek 5: A picture of a gull.

Rysunek 6: A picture of the same gull looking the other way!

Rysunek 7: Wyświetlanie wielu obrazków jednocześnie

Rysunek 8: Opis dla dwóch obrazów z wykorzystaniem pakietu subcaption