Table 1. MP concentrations in muscle and gut per unit body wet weight and the ratio between muscle and gut concentrations. Data adapted from Abbasi et al. (1) and Barboza et al. (2).

Species	N	Total weight of N species (g)	MP conc in muscle (#/BWW)	MP conc in gut (#/BWW)	Ratio (muscle:gut)	Reference
Sillago sihama	17	972.4	0.055	0.015	3.533	Abbasi et al., 2018
Platycephalus indicus	12	441.6	0.109	0.057	1.921	Abbasi et al., 2018
Saurida tumbil	4	144.4	0.083	0.069	1.200	Abbasi et al., 2018
Cynoglossus abbreviatus	11	833.8	0.031	0.037	0.838	Abbasi et al., 2018
Dicentrarchus labrax	50	17150	0.001	0.004	0.269	Barboza et al., 2019
Trachurus trachurus	50	11400	0.003	0.004	0.673	Barboza et al., 2019
Scomber colias	50	17200	0.002	0.003	0.508	Barboza et al., 2019
			Avo	erage (±SD) Minimum	1.28 (±1.13) 0.27	
				Maximum	3.53	

Table 2. Search terms/strings for each food source in FOSCOLLAB

Food source	Search Strings				
Fish	Fish (meat); Freshwater fish; Marine fish; Miscellaneous (misc.) coastal marine fishes; Misc. demersal marine fishes; Misc. freshwater fishes; Misc. pelagic marine fishes				
Mollusc	Molluscs; Freshwater molluscs; Misc. marine molluscs				
Crustacean	Crustaceans; Freshwater shrimps or prawns; Shrimps and prawns; Shrimps; common, White shrimp; Freshwater crayfishes				
Tap Water	Tap water; Filtered tap water				
Bottled Water	Bottled drinking water; Bottled water; Carbonated bottled drinking water; Flavoured bottled water; Fortified bottled water; Still bottled drinking water				
Salt	Salt; Salt, flavoured; Salt, iodised; Salt, iodised and fluoridated; Salt, low Sodium; Sea salt				
Beer	Beer; Beer and beer-like beverage; Ale beer; Lager beer; Beer, strong; Beer, regular; Beer, light; Beer, alcohol-free; Pale ale beer; Dark ale beer; Stout beer; Wheat beer; Beer-like beverages; Low malt beers				
Milk	Milk; cow milk; cow milk, natural high fat; cow milk, semi skimmed (half fat); cow milk, skimmed (low fat); cow milk, whole				

Table 3. Minimum and maximum inhalation rates defined for this study based on Allan and Richardson (3) and Stifelman (4).

Age category	Min inhalation rate (m³/day)	Max inhalation rate (m³/day)
Toddlers (7 months–4 years)	4.9	16.1
Children (5 – 11 years)	8.8	23.3
Teenagers $(12 - 19 \text{ years})$	9.5	27.9
Adults $(20 - 59 \text{ years})$	9.7	26.7
Seniors (>60 years)	8.6	24.1

Table 4. Biliary excretion rates (k_{tis}) for human. The rate constants for rat and mouse from Ogawara et al. (5) and Li et al. (6) were rescaled for human with a correction factor of 2.5 which is based on the ratio from the biliary excretion rates of rat:human from Bachler et al. (7).

Material	Size (nm)	Route of exposure	Organism	ktis (min-1)	Reference
Polystyrene	50	Intravenous	Rat	5.76E-03	Ogawara et al. (5)
Polystyrene	500	Intravenous	Rat	5.56E-03	Ogawara et al. (5)
Silver NP	15-150	Dermal, oral, inhalation	Human	3.54E-03	Bachler et al. (7)
Silver NP	15-150	Dermal, oral, inhalation	Rat	9.00E-03	Bachler et al. (7)
Poly(lactic-co- glycolic) acid	133.5	Intravenous	Mouse	4.67E-05	Li et al. (6)
Poly(lactic-co- glycolic) acid	114.8	Intravenous	Mouse	4.67E-04	Li et al. (6)
Poly(lactic-co- glycolic) acid	97.4	Intravenous	Mouse	1.00E-04	Li et al. (6)
Poly(lactic-co- glycolic) acid	79	Intravenous	Mouse	3.87E-04	Li et al. (6)
Poly(lactic-co- glycolic) acid	67	Intravenous	Mouse	4.27E-04	Li et al. (6)
Poly(lactic-co- glycolic) acid	57.5	Intravenous	Mouse	2.73E-04	Li et al. (6)
			No excretion	0	day ⁻¹
			Minimum	0.0672	day ⁻¹
			Median	0.614	day ⁻¹
			Maximum	8.30	day ⁻¹

Table 5. Probability density functions for chemical concentrations on plastic of each source category. Goodness-of-fit analysis was not carried out for these datasets due to low sample size. Distributions with the best fit were evaluated visually.

Chemical	Source category	Distribution	Units	Parameters
PCB126	Pelagic	Exponential [†]	ng/g lipid	λ=0.225
	Littoral	Exponential [†]	ng/g lipid	$\lambda = 17.48$
	Packaging	Triangle	μg/kg	min=0 max=7.9
	Air	Log-logistic [‡]	pg/m ³	β =1.12 α =0.155
Lead	Pelagic	Lognormal	mg/kg ww	meanlog=-2.17 sdlog=2.12
	Littoral	Lognormal	mg/kg ww	meanlog=-1.78 sdlog=1.32
	Packaging	Lognormal	mg/kg	meanlog=4.00 sdlog=4.00
	Air	Lognormal	ng/m ³	meanlog=4.22 sdlog=1.88
DEHP	Pelagic	Lognormal	ng/g lipid	meanlog=8.83 sdlog=1.60
	Littoral	Triangle	ng/g lipid	min=0 max=5284
	Packaging	Log-logistic [‡]	μg/kg	β=0.59 α=89261.05
	Air	Log-logistic [‡]	pg/m ³	β =1.42 α =35594.55
BaP	Pelagic	Lognormal	ng/g lipid	meanlog=6.09 sdlog=3.55
	Littoral	Exponential	ng/g lipid†	$\lambda = 0.023$
	Air	Log-logistic [‡]	pg/m ³	β =1.55 α =146.09

 $^{^{\}dagger}\lambda$ is the rate constant for an exponential distribution.

References

- 1. S. Abbasi, N. Soltani, B. Keshavarzi, F. Moore, A. Turner, M. Hassanaghaei, B. Keshavarzi, S. Abbasi, F. Moore, A. Turner, N. Soltani, B. Keshavarzi, F. Moore, A. Turner, M. Hassanaghaei, B. Keshavarzi, S. Abbasi, F. Moore, A. Turner, Microplastics in different tissues of fish and prawn from the Musa Estuary, Persian Gulf. *Chemosphere*. **205**, 80–87 (2018).
- 2. L. G. A. Barboza, C. Lopes, P. Oliveira, F. Bessa, V. Otero, B. Henriques, J. Raimundo, M. Caetano, C. Vale, L. Guilhermino, Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. *Sci. Total Environ.* 717 (2020), doi:10.1016/j.scitotenv.2019.134625.
- 3. M. Allan, G. M. Richardson, Human and Ecological Risk Assessment: An International Probability Density Functions Describing 24-Hour Inhalation Rates For

 $^{^{\}ddagger}\beta$ is the shape parameter and α is the scale parameter for a log-logistic distribution.

- Use in Human Health Risk Assessments Probability Density Functions Describing 24-Hour Inhalation Rates For Use in Human Health Ri. **7039** (2010), doi:10.1080/10807039891284389.
- 4. M. Stifelman, Using doubly-labeled water measurements of human energy expenditure to estimate inhalation rates. *Sci. Total Environ.* **373**, 585–590 (2007).
- 5. K. ichi Ogawara, M. Yoshida, J. ichi Kubo, M. Nishikawa, Y. Takakura, M. Hashida, K. Higaki, T. Kimura, Mechanisms of hepatic disposition of polystyrene microspheres in rats: Effects of serum depend on the sizes of microspheres. *J. Control. Release.* **61**, 241–250 (1999).
- 6. M. Li, Z. Panagi, K. Avgoustakis, J. Reineke, Physiologically based pharmacokinetic modeling of PLGA nanoparticles with varied mPEG content. *Int. J. Nanomedicine*. 7, 1345–1356 (2012).
- 7. G. Bachler, N. von Goetz, K. Hungerbühler, A physiologically based pharmacokinetic model for ionic silver and silver nanoparticles. *Int. J. Nanomedicine*. **8**, 3365–3382 (2013).