Análise Comparativa de Métodos Numéricos para Cálculo de Raízes Reais em Polinômios de Grau Ímpar

Fabio Kauê Araujo da Silva — Nº USP: 16311045 Pedro Luís Anghievisck — Nº USP: 15656521 SME0206 – 2º semestre de 2025

8 de setembro de 2025

Resumo

Este artigo compara os métodos da Bisseção, de Newton-Raphson e das Secantes na determinação de raízes reais da função $f(x) = 3x^5 + 8x^4 - 6x^3 - 16x^2 - 9x - 24$. Apresentam-se as descrições detalhadas dos métodos, suas condições de convergência, a implementação computacional em Python, a análise gráfica da existência de raízes nos intervalos [-2, -1] e [1, 2], a determinação analítica das raízes exatas para comparação e uma discussão aprofundada dos resultados (número de iterações, precisão com tolerância 10^{-6} e eficiência computacional).

1 Introdução

O objetivo é resolver o problema proposto em disciplina de Análise Numérica: (i) descrever detalhadamente os métodos de Bisseção, Newton-Raphson e Secantes; (ii) evidenciar graficamente a existência de pelo menos uma raiz em [-2, -1] e [1, 2]; (iii) determinar todas as raízes exatas de f para servir de referência; (iv) verificar e aplicar as condições suficientes de convergência para cada método; (v) aproximar as raízes nos dois intervalos com precisão 10^{-6} , gerando arquivos de saída tabulados por método, em dupla precisão, com pelo menos oito casas decimais.

Contribuições. (i) Detalha-se a determinação das raízes exatas por meio do Teorema das Raízes Racionais e fatoração simbólica; (ii) documentam-se dificuldades práticas de implementação e as soluções adotadas; (iii) inclui-se um gráfico programático (pgfplots) que marca as raízes reais pedidas, auxiliando na visualização dos resultados.

2 Métodos e Procedimentos

2.1 Método da Bisseção

O Método da Bisseção é um algoritmo de busca incremental fundamentado no **Teorema do Valor Intermediário**. Este teorema garante que, para uma função contínua f em um intervalo fechado [a, b], se f(a) e f(b) tiverem sinais opostos (i.e., f(a)f(b) < 0), então existe pelo menos um ponto $\bar{x} \in (a, b)$ tal que $f(\bar{x}) = 0$.

O processo iterativo consiste em dividir o intervalo ao meio a cada passo. Em uma iteração k, calcula-se o ponto médio $x_k = \frac{a_k + b_k}{2}$. Em seguida, o sinal de $f(x_k)$ é avaliado:

- Se $f(a_k)f(x_k) < 0$, a raiz está no subintervalo $[a_k, x_k]$, então faz-se $b_{k+1} = x_k$ e $a_{k+1} = a_k$.
- Se $f(x_k)f(b_k) < 0$, a raiz está no subintervalo $[x_k, b_k]$, então faz-se $a_{k+1} = x_k$ e $b_{k+1} = b_k$.
- Se $f(x_k) = 0$, x_k é a raiz exata e o processo termina.

A principal vantagem do método é sua robustez e **convergência garantida**, desde que a condição inicial seja satisfeita. Sua taxa de convergência é linear, o que o torna relativamente lento em comparação com outros métodos. O critério de parada utilizado foi o tamanho do intervalo de incerteza: $(b_k - a_k)/2 < \text{tol}$. A saída tabular gerada contém as colunas: k, a_k , b_k , x_k , $f(x_k)$ e o erro verdadeiro $e_k = |x_k - \bar{x}|$ (usado apenas para análise posterior).

2.2 Método de Newton-Raphson

O Método de Newton-Raphson (ou método das tangentes) é um método aberto que aproxima a raiz de uma função utilizando a reta tangente ao gráfico de f(x) em um ponto. A ideia é que a intersecção da reta tangente com o eixo das abscissas seja uma aproximação melhor da raiz do que o ponto de tangência inicial. A fórmula de iteração é derivada da equação da reta tangente:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Para este método, é necessário que a função f seja diferenciável e que a derivada $f'(x_k)$ não seja nula. Sua principal vantagem é a **convergência quadrática** $(e_{k+1} \approx C \cdot e_k^2)$ quando a aproximação inicial x_0 está suficientemente próxima de uma raiz simples.

Garantia de Convergência. Uma condição suficiente para a convergência monotônica a partir de x_0 em um intervalo [a,b] que contém a raiz \bar{x} é que f'(x) e f''(x) não mudem de sinal em [a,b] e que x_0 seja escolhido tal que $f(x_0)f''(x_0) > 0$. Para o intervalo [1,2], a escolha $x_0 = 2$ satisfaz essa condição. No intervalo [-2,-1], as derivadas mudam de sinal, tornando a escolha de x_0 mais sensível. Adotou-se $x_0 = -1,5$ com base em análise empírica, que se mostrou eficaz. O critério de parada foi $|x_{k+1} - x_k| < tol.$ A saída tabular contém: $k, x_k, f(x_k), f'(x_k), e_k$.

2.3 Método das Secantes

O Método das Secantes é uma variação do método de Newton que evita o cálculo explícito da derivada. Ele aproxima a derivada $f'(x_k)$ pela inclinação da reta secante que passa pelos dois pontos anteriores, $(x_{k-1}, f(x_{k-1}))$ e $(x_k, f(x_k))$:

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

Substituindo essa aproximação na fórmula de Newton, obtém-se a iteração das Secantes:

$$x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}$$

Este método requer duas aproximações iniciais, x_0 e x_1 . Sua taxa de convergência é **superlinear** (com ordem $\phi \approx 1.618$), sendo mais rápido que a Bisseção, porém mais lento que a convergência quadrática ideal de Newton.

Garantia de Convergência. As condições de convergência são semelhantes às de Newton, exigindo que as aproximações iniciais estejam suficientemente próximas da raiz. Uma escolha comum e robusta, adotada neste trabalho, é usar os extremos do intervalo de interesse, $x_0 = a$ e $x_1 = b$, especialmente quando f(a)f(b) < 0. O critério de parada foi $|x_{k+1} - x_k| < \text{tol.}$ A saída tabular contém: $k, x_k, f(x_k), e_k$.

2.4 Ferramentas Computacionais e Implementação

Cada método foi implementado em um arquivo Python distinto (bissecao.py, newton_raphson.py, secantes.py) e orquestrado por um script principal (main.py). As entradas foram a função f, sua derivada f' (para Newton), as aproximações iniciais, a tolerância tol = 10^{-6} e um número máximo de iterações. As saídas foram formatadas em arquivos de texto com colunas alinhadas e 8 casas decimais. Para a fatoração simbólica, foi utilizado o Teorema das Raízes Racionais, com verificação por meio de um Sistema de Computação Algébrica (CAS). O gráfico foi gerado usando o pacote pgfplots do LaTeX.

2.5 Escolha das Aproximações Iniciais

A escolha dos valores iniciais para cada método foi guiada pela teoria e por experimentação:

- Bisseção: Os extremos dos intervalos, [-2, -1] e [1, 2], foram usados diretamente, pois f(a)f(b) < 0 em ambos os casos, garantindo a convergência.
- Newton-Raphson: Em [1,2], escolheu-se $x_0 = 2$, pois satisfaz $f(x_0)f''(x_0) > 0$. Em [-2, -1], onde as condições teóricas globais não se aplicam facilmente, $x_0 = -1, 5$ foi escolhido empiricamente por estar no centro do intervalo e convergir corretamente.
- Secantes: Os extremos de cada intervalo foram usados como x_0 e x_1 , uma escolha natural que cerca a raiz e dispensa o cálculo da derivada.

3 Resultados

3.1 Análise Gráfica e Existência de Raízes

A Figura 1 mostra o gráfico de f(x). A análise visual e de sinais confirma a existência de raízes nos intervalos de interesse: f(-2) = 10 e f(-1) = -20, logo f(-2)f(-1) < 0; e f(1) = -44 e f(2) = 70, logo f(1)f(2) < 0. Pelo Teorema do Valor Intermediário, há pelo menos uma raiz real em cada intervalo.

Figura 1: Gráfico de $f(x) = 3x^5 + 8x^4 - 6x^3 - 16x^2 - 9x - 24$ com raízes reais destacadas.

3.2 Determinação Analítica das Raízes Exatas

Para encontrar as raízes exatas de $f(x) = 3x^5 + 8x^4 - 6x^3 - 16x^2 - 9x - 24$, aplicou-se o **Teorema das Raízes Racionais**. As possíveis raízes racionais são da forma p/q, onde p divide o termo independente (-24) e q divide o coeficiente líder (3). Testando os candidatos, verifica-se que x = -8/3 é uma raiz, pois f(-8/3) = 0. Isso implica que (3x+8) é um fator de f(x). Realizando a divisão polinomial de f(x) por (3x+8), obtemos:

$$\frac{3x^5 + 8x^4 - 6x^3 - 16x^2 - 9x - 24}{3x + 8} = x^4 - 2x^2 - 3$$

Agora, precisamos encontrar as raízes de $g(x)=x^4-2x^2-3$. Esta é uma equação biquadrada. Fazendo a substituição $u=x^2$, temos a equação quadrática $u^2-2u-3=0$. Fatorando, obtemos (u-3)(u+1)=0, cujas soluções são u=3 e u=-1. Substituindo de volta:

- $x^2 = 3 \implies x = \pm \sqrt{3}$
- $x^2 = -1 \implies x = \pm i$

Portanto, a fatoração completa de f(x) é $f(x) = (3x + 8)(x^2 - 3)(x^2 + 1)$, e as **raízes** exatas são x = -8/3, $x = \pm \sqrt{3}$ e $x = \pm i$. As raízes reais de interesse para este trabalho são $-\sqrt{3} \in [-2, -1]$ e $\sqrt{3} \in [1, 2]$.

3.3 Aproximações Numéricas (tolerância 10⁻⁶)

As tabelas completas estão nos arquivos de saída. A Tabela 1 sumariza o número de iterações necessárias para cada método atingir a tolerância de 10^{-6} , usando os critérios de parada $|x_{k+1} - x_k| < \text{tol}$ para Newton/Secantes e (b-a)/2 < tol para Bisseção.

Tabela 1: Resumo de iterações para $tol = 10^{-6}$

Método	$[-2, -1]$ (raiz $-\sqrt{3}$)	$[1,2] \text{ (raiz } \sqrt{3}\text{)}$
Bisseção $([a,b])$	19	19
Newton (x_0)	$4 \pmod{x_0 = -1,5}$,
Secantes (x_0, x_1)	5 (com -2, -1)	$8 \pmod{1,2}$

Discussão. Os resultados alinham-se perfeitamente com a teoria. O método de Newton-Raphson foi o mais rápido em ambos os casos, refletindo sua convergência quadrática. O método das Secantes apresentou um desempenho intermediário, necessitando de poucas iterações a mais que Newton, mas superando largamente a Bisseção. A Bisseção, embora seja o método mais lento devido à sua convergência linear, cumpriu seu papel de forma robusta e previsível, exigindo o mesmo número de iterações para intervalos de mesmo tamanho.

4 Conclusões

Este trabalho realizou uma análise comparativa bem-sucedida dos métodos da Bisseção, Newton-Raphson e Secantes para encontrar as raízes reais de um polinômio de quinto grau. As raízes alvo, $-\sqrt{3}$ e $\sqrt{3}$, foram aproximadas com a precisão estipulada.

Do ponto de vista computacional, a análise revelou um claro *trade-off* entre velocidade, robustez e custo por iteração:

- Bisseção: É o método mais robusto. Sua principal virtude é a garantia de convergência, contanto que f(a)f(b) < 0. O custo computacional por iteração é mínimo (uma avaliação de f(x) e operações aritméticas simples). No entanto, sua convergência linear o torna ineficiente para problemas que exigem alta precisão, demandando um número significativamente maior e previsível de iterações.
- Newton-Raphson: É o método mais rápido em termos de iterações, graças à sua convergência quadrática. Contudo, essa velocidade tem um preço: o custo computacional por iteração é maior, pois requer a avaliação tanto de f(x) quanto de sua derivada f'(x), que pode ser analiticamente complexa ou computacionalmente cara. Além disso, é o método mais sensível às condições iniciais; uma má escolha de x_0 pode levar à divergência ou à convergência para uma raiz inesperada.
- Secantes: Representa um excelente equilíbrio entre os outros dois. Ao aproximar a derivada, elimina a necessidade de seu cálculo explícito, reduzindo o custo por iteração em comparação com Newton. Sua convergência superlinear o torna muito mais rápido que a Bisseção. Embora não seja tão robusto quanto a Bisseção, é geralmente menos sensível à escolha inicial do que Newton, sendo uma escolha pragmática e eficiente em muitos cenários práticos.

Em suma, a escolha do método ideal depende das características do problema: para garantia de convergência sem conhecimento prévio da função, a Bisseção é a escolha segura. Quando a derivada é facilmente calculável e uma boa aproximação inicial é conhecida, Newton é insuperável em velocidade. O método das Secantes emerge como a alternativa mais versátil, oferecendo convergência rápida sem a sobrecarga de calcular derivadas.

Referências

- IEZZI, G. Fundamentos de Matemática Elementar, 6: Complexos, Polinômios, Equações. 8. ed. São Paulo: Atual, 2013.
- LIMA, E. L. Curso de Análise. 12. ed. Rio de Janeiro: Instituto de Matemática Pura e Aplicada (IMPA), 2004.

- OLIVEIRA, M. L. B. de. **SME0206 Fundamentos de Análise Numérica: Aula 2**. São Carlos, 2025. Material de aula.
- OLIVEIRA, M. L. B. de. **SME0206 Fundamentos de Análise Numérica: Aula 4**. São Carlos, 2025. Material de aula.
- RUGGIERO, M. A. G.; LOPES, V. L. R. Cálculo Numérico: aspectos teóricos e computacionais. 2. ed. São Paulo: Makron Books, 1996.