Komutativna algebra - 8. domača naloga

Benjamin Benčina, 27192018

5. maj 2020

<u>Nal. 1:</u> Naj bo $X = \operatorname{Spec} R$ opremljen s topologijo Zarinskega in naj bo $Y \subset X$ podprostor. Definiramo $I(Y) = \bigcap_{p \in Y} p \triangleleft R$. Pokažimo, da je Y nerazcepen natanko tedaj, ko je I(Y) praideal v R (torej element prostora X).

Naj bo Y nerazcepen topološki prostor in naj bo produkt elementov $fg \in I(Y)$. Potem po definiciji preseka $Y \subseteq V(I(Y)) \subseteq V(fg)$. Spomnimo se, da $V(fg) = V(f) \cup V(g)$. Prostor Y lahko torej razcepimo na naslednji način

$$Y = (V(f) \cap Y) \cup (V(q) \cap Y).$$

Vendar pa je Y nerazcepen, torej je Y kar enak eni izmed zgornjih množic; brez škode za splošnost vzamemo prvo, torej $Y = V(f) \cap Y$. Po definiciji operatorja V vsi praideali v Y vsebujejo element f, zato ga vsebuje tudi presek I(Y). Torej je I(Y) praideal.

Obratno, naj bo I(Y) praideal in naj obstajata množici $A, B \neq Y$, da je $Y = A \cup B$ (torej razcep prostora Y). Velja $I(Y) = I(A \cup B) = I(A) \cap I(B)$ po definiciji preseka. Opazimo, da če I(Y) = I(A), potem Y = A, zato lahko vzamemo $f \in I(A) \setminus I(Y)$. Za poljuben $g \in I(B)$ potem velja $fg \in I(A) \cap I(B) = I(Y)$. Ker je po predpostavki I(Y) praideal in po izbiri $f \notin I(Y)$, je $g \in I(Y)$. Ker je bil g poljuben element, je $I(B) \subseteq I(Y)$. Ker seveda $I(Y) = I(A) \cap I(B) \subseteq I(B)$, je I(Y) = I(B), kar je protislovje. Torej taki množici A, B ne obstajata in Y je nerazcepen.

Alternativna rešitev: Opazimo podobnost z 2. nalogo iz vaj, saj je $\sqrt{(0)} = \bigcap_{p \in X} p = I(X)$, zato poskusimo dokazati na podoben način. Omejimo operator V na podprostor Y, torej $V(W) := V_X(W) \cap Y$ (tako na običajen način definiramo zaprte množice na podprostoru Y z relativno topologijo).

Naj bo $I(Y) \in X$. Predpostavimo, da obstajata $V(I), V(J) \neq Y$, da je $V(I) \cup V(J) = V(I \cap J) = Y$. Hkrati po definiciji preseka velja V(I(Y)) = Y. Od tod $I \cap J \subseteq I(Y)$. Ker je I(Y) praideal, velja $I \subseteq I(Y)$ ali $J \subseteq I(Y)$. Torej V(I) = Y ali V(J) = Y, kar je seveda protislovje.

Obratno privzemimo, da je za vsaki dve množici $V(I), V(J) \neq Y$ velja $V(I \cap J) \neq Y$. Želimo pokazati, da je $I(Y) \in X$. Po definiciji preseka V(I(Y)) = Y. Ker $V(I) \neq Y$, velja $I \neq I(Y)$ in simetrično $J \neq I(Y)$. Torej obstajata $f \in I$ in $g \in J$, da $f, g \notin I(Y)$. Želimo $I \cap J \neq I(Y)$. Ker sta Y_f in Y_g neprazni odprti množici, je tudi $Y_f \cap Y_g$ neprazna odprta množica. Iz 5. vaj vemo $Y_f \cap Y_g = Y_{fg}$. Sledi torej $fg \notin I(Y)$. Sledi, da je I(Y) praideal.

Nal. 2: Pokažimo, da so naslednje trditve ekvivalentne:

- (a) $X = \operatorname{Spec} R$ je nepovezan.
- (b) $R \cong R_1 \times R_2$, kjer sta R_1 in R_2 netrivialna kolobarja.
- (c) R ima netrivialen idempotent.
 - (a) \Longrightarrow (b): Ekvivalentno je X enak disjunktni uniji dveh zaprtih množic (ki sta seveda tudi odprti). Po definiciji topologije na X so zaprte množice oblike V(I) za nek ideal $I \triangleleft R$ (tehnično smo jih definirali preko poljubnih podmnožic v R, vendar V(W) = V((W))). Naša predpostavka je torej ekvivalentna temu, da obstajata ideala $I, J \triangleleft R$, da $V(I) \cup V(J) = X$ in $V(I) \cap V(J) = \emptyset$. Ker $V(I) \cap V(J) = V(I+J)$, velja $V(I+J) = \emptyset$. Od tod sledi, da ideal I+J ni vsebovan v nobenem praidealu kolobarja R (tudi maksimalnem), torej I+J ni pravi ideal, oziroma I+J=R. Po drugi strani se spomnimo $V(I) \cup V(J) = V(I \cap J)$. Iz zgornje enačbe dobimo $I \cap J \subseteq \sqrt{(0)}$.

Sedaj se spomnimo, da je $X \approx \operatorname{Spec}(R/\sqrt{(0)})$, zato lahko privzamemo $I \cap J = (0)$. Po kitajskem izreku o ostankih imamo izomorfizem $R \cong R/I \times R/J$.

- (b) \Longrightarrow (a): Naj bo $R \cong R_1 \times R_2$ za neka netrivialna kolobarja. Trdimo, da so praideali v končnem produktu n kolobarjev enaki produktu $P = \prod_{i=1}^n A_i$, kjer je $A_j = P \lhd R_j$ praideal za nek j in $A_i = R_i$ za $j \neq i$. Jasno je, da je vsak ideal take oblike praideal v produktu. Obratno naj bo P praideal v produktu. Za $1 \leq k \leq n$ naj bo e_k element v produktu, ki ima k-to koordinato enako 1 in vse ostale enake 0. Ker je P pravi ideal, obstaja nek j, da $e_j \notin P$, brez škode j = 1. Za $k \neq 1$ imamo $e_1e_k = 0 \in P$, torej $e_k \in P$. Potem $0 \times \prod_{i=2}^n R_i \subseteq P$. Za kanonično projekcijo π_1 na prvo komponento je potem $\pi_1(P)$ praideal v R_1 , torej $P = \pi_1(P) \times \prod_{i=2}^n R_i$.
 - Ker po (b) $R \cong R_1 \times R_2$, je vsak praideal v P izomorfen praidealu oblike bodisi $P_1 \times R_2$ bodisi $R_1 \times P_2$, kjer $P_1 \lhd R_1$ in $P_2 \lhd R_2$. Če množici $R_1 \times \{0\}$ in $\{0\} \times R_2$ preslikamo z izomorfizmom v množici $A_1, A_2 \subset R$, je očitno prostor X disjunktna unija zaprtih množici $V(A_1)$ in $V(A_2)$, torej je nepovezan.
- (b) \implies (c): Trivialna idempotenta v $R_1 \times R_2$ sta 0 := (0,0) in 1 := (1,1), saj so operacije po komponentah. Seveda pa sta tudi elementa (1,0) in (0,1) idempotentna, ki nista enaka 0 ali 1 v produktu (bolj natančno, ta dva elementa z izomorfizmo preslikamo nazaj v R, kjer zaradi bijektivnosti ne moreta biti enaka 0 ali 1, kljub temu pa sta idempotenta v R).
- (c) \Longrightarrow (a): Naj bo $e \in R$ netrivialen idempotent. Potem je (e) + (1-e) = (1) in $(e) \cdot (1-e) = (0)$, torej

$$V(e) \cup V(1-e) = V((e) \cdot (1-e)) = V(0) = X$$

 $V(e) \cap V(1-e) = V((e) + (1-e)) = V(1) = \emptyset$

Po definiciji topologije Zarinskega sta seveda množici V(e) in V(1-e) zaprti. Ker $e \neq 0, 1$, sta obe množici tudi neprazni, torej je X nepovezan topološki prostor.