Politecnico di Milano – Facoltà di Ingegneria Informatica

Anno Accademico 2009/2010

Corso di Statistica (2L) per INF e TEL

Docente: Antonio Pievatolo; esercitazioni: Raffaele Argiento

Esercitazione del 19/03/10

Alcuni risultati sulla somma di variabili aleatorie indipendenti

1. Siano X_1, \ldots, X_n variabili indipendenti ed identicamente distribuite (i.i.d.) con distribuzione Bernoulli(p). Allora

$$Y = \sum_{i=1}^{n} X_i \sim \text{Bin}(n, p)$$

2. Siano $X_1 \sim \text{Bin}(m_1, p), X_2 \sim \text{Bin}(m_2, p), \dots, X_n \sim \text{Bin}(m_n, p), \text{ allora}$

$$Y = \sum_{i=1}^{n} X_i \sim \operatorname{Bin}(\sum_{i=1}^{n} m_i, p)$$

3. Siano $X_1 \sim \text{Poisson}(\lambda_1), X_2 \sim \text{Poisson}(\lambda_2), \dots, X_n \sim \text{Poisson}(\lambda_n), \text{ allora}$

$$Y = \sum_{i=1}^{n} X_i \sim \text{Poisson}(\sum_{i=1}^{n} \lambda_i)$$

4. Siano $X_1 \sim \text{gammma}(\alpha_1, \beta), X_2 \sim \text{gamma}(\alpha_2, \beta), \dots, X_n \sim \text{gamma}(\alpha_n, \beta), \text{ allora}$

$$Y = \sum_{i=1}^{n} X_i \sim \operatorname{gamma}(\sum_{i=1}^{n} \alpha_i, \beta)$$

5. (Caso particolare di 4.) Siano X_1, \ldots, X_n i.i.d con disribuione $\text{Exp}(\beta)$

$$Y = \sum_{i=1}^{n} X_i \sim \text{gamma}(n, \beta)$$

6. (Caso particolare di 4.) Siano $X_1 \sim \chi^2(m_1), X_2 \sim \chi^2(m_2), \ldots, X_n \sim \chi^2(m_n)$, dove con $\chi^2(m)$ è la distribuzione chi-quadro con m gradi di libertà, allora

$$Y = \sum_{i=1}^{n} X_i \sim \chi^2(\sum_{i=1}^{n} m_i)$$

Un risultato sulla densità di variabili aleatorie funzione di variabili aleatorie

Sia X una variabile aleatoria assolutamente continua con densità $f_X(x)$, con $x \in \mathbb{R}$. Sia g(x) una funzione derivabile strettamente crescente o strettamente decrescente. Allora la variabile aleatoria definita da Y = f(X) è anch'essa assolutamente continua con densità:

$$f_Y(y) = f_X\left(g^{-1}(y)\right) \left| \frac{d}{dy}g^{-1}(y) \right| \tag{1}$$

con $y \in (\alpha, \beta)$ dove $\alpha = \min\{g(-\infty), g(+\infty)\}\ e \beta = \max\{g(-\infty), g(+\infty)\}.$

Esempio 1

Sia $X \sim \text{gamma}(\alpha, \beta)$ e sia Y = aX con a > 0 qual è la distribuzione di Y?

Volendo applicare il risultato prima appena descritto si osservi che la funzione g(x)=ax è derivabile e strettamente crescente in $(0,+\infty)$. La sua inversa è $g^{-1}(y)=\frac{y}{a}$ con derivata $\frac{d}{dy}g^{-1}(y)=\frac{1}{a}$. Si ha dunque che

$$f_Y(y) = \frac{1}{\Gamma(\alpha)} \frac{1}{(a\beta)^{\alpha}} y^{\alpha - 1} e^{-\frac{x}{a\beta}}.$$

In conclusione $Y \sim \operatorname{gamma}(\alpha, a\beta)$

Esempio 2

Sia $X \sim N(\mu, \sigma^2)$ e Y = aX + b con $a \neq 0$, determinare la densità di Y.

Si osservi che la funzione g(x) = ax + b è strettamente crescente se (a > 0) o strettamete decrescente se a < 0, e che la sua inversa è $g^{-1}(y) = \frac{y-b}{a}$ con derivata $\frac{d}{dy}g^{-1}(y) = \frac{1}{a}$. Utilizzando la (1) si ottiene

$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma a}} \exp\left\{-\frac{(y - (a\mu + b))^2}{(a\sigma)^2}\right\}.$$

In conclusione $Y \sim N(a\mu + b, a^2\sigma^2)$.

Esercizio 1.2.2

Esercizio 1.2.2 La durata di una batteria espressa in ore è una variabile aleatoria assolutamente continua con densità $f(x,\theta)$ data da

$$f(x,\theta) = \frac{1}{2\theta\sqrt{x}} \exp\left\{-\frac{\sqrt{x}}{\theta}\right\}, \quad x > 0, \ \theta > 0.$$

- 1. Determinate la densità di \sqrt{X} se $X \sim f(x, \theta)$.
- 2. Determinate in funzione di θ la probabilità che la batteria funzioni ancora dopo 11 ore dall'accensione.
- 3. Determinate la media di $X \sim f(x, \theta)$ in funzione di θ .

SOLUZIONE

1. Si osservi che la funzione $g(x) = \sqrt{x}$ è derivabile e crescente su $(0, \infty)$. Inoltre $g^{-1}(y) = y^2$ e $\frac{d}{dx}g^{-1}(y) = 2y$. Applicando allora la formula (1) si ha che

$$f_Y(y) = \frac{1}{2\theta\sqrt{y^2}} \exp\left\{-\frac{\sqrt{y^2}}{\theta}\right\} 2y = \frac{1}{\theta} \exp\left\{-\frac{y}{\theta}\right\}, \quad y > 0.$$

Si ha dunque che $Y \sim \text{Exp}(\theta)$

attenzione. questa funzione di ripartizione sembra avere l'integrale errato!!

2. Se $Y \sim \text{Exp}(\theta)$ allora la sua funzione di ripartizione sarà $F_Y(y) = 1 - \exp\left\{\frac{y}{\theta}\right\}$. Quindi

$$\mathbb{P}(X > 11) = \mathbb{P}(Y > \sqrt{11}) = 1 - F_Y(\sqrt{11}) = \exp\left\{\frac{\sqrt{11}}{\theta}\right\}$$
1 - (1 - EXP(y/theta)) =
1 - 1 + EXP(y(theta))

3. $\mathbb{E}(X) = \mathbb{E}(Y^2) = 2\theta^2$.

Esercizio 1.3.1

Sia X_1, \ldots, X_n un campione casuale da N(4.2, 4) e sia \bar{X}_n la media campionaria.

- 1. Calcolate $P(|\bar{X}_n 4.2| \le 0.3)$, con n = 4 e n = 25 e confrontate i risultati;
- 2. Per quali valori di $n \ P(|\bar{X}_n-4.2| \le 0.3) \ge 0.8$. perché: var media campionaria è Sigma^2/n. l'altra la traslo in zero Soluzione Si osservi che $\bar{X}_n - 4.2$ ha distribuzione $N(0, \frac{4}{n})$, allora sia $Z \sim N(0, 1)$
 - $1. \ \ \mathbb{P}(-0.3 \leq \bar{X}_n 4.2 \leq 0.3) = \mathbb{P}(-0.3 \frac{\sqrt{n}}{2} \leq Z \leq 0.3 \frac{\sqrt{n}}{2}) = 2\phi\left(0.3 \frac{\sqrt{n}}{2}\right) 1 \ \text{Quindi se } n = 4 \ \text{si ottiene}$ $P(|\bar{X}_4 4.2| \leq 0.3) = 2\phi(0.3) 1 = 0.2358$ moltiplico per la deviazione standard della media campionaria se n = 25 si ottiene $P(|\bar{X}_4 - 4.2| \le 0.3) = 2\phi(0.75) - 1 = 0.5467$ Osserviamo come, al crescere di n, cresce la probabilità che la media campionaria disti meno di 0.3 dalla sua media
 - 2. $P(|\bar{X}_n 4.2| \le 0.3) \ge 0.8 \Rightarrow 2\phi \left(0.15\sqrt{n} 1 \ge 0.8 \Rightarrow \phi(-.15\sqrt{n}) \ge 0.9 \Rightarrow 0.15\sqrt{n} \ge \phi^{-1}(0.9).\right)$ Utilizzando quindi le tavole della distribuzione normale si ottiene $n \geq 72.99$ ovvero, dato che n è un intero, $n \geq 73$.

Esercizio 1.3.3

Sia Z_1,\ldots,Z_n un campione casuale estratto dalla popolazione di densità gaussiana standard e sia Sia $S_n=Z_1^2+\ldots+Z_n^2$. In teoria delle probabilità una distribuzione (chi quadrato o chi quadro) è una distribuzione di probabilità che descrive la somma dei quadrati di alcune variabili aleatorie indipendenti aventi distribuzione normale standard. 1. Calcolate media e varianza di S_n ;

- 2. Sia n = 18. Calcolate $\mathbb{P}(S_n \leq 9.39)$.
- 3. Sia n = 300. Calcolate $\mathbb{P}(S_n \le 312.98)$.

Soluzione S_n è somma di n variabili aleatore indipendenti con distribuzione chi quadro con un grado di libertà. Dunque $S_n \sim \chi^2(n) \stackrel{d}{=} \operatorname{gamma}(\frac{n}{2}, 2)$

- 1. $\mathbb{E}(S_n) = \frac{n}{2} \times 2 = n$, mentre $\operatorname{Var}(S_n) = \frac{n}{2} \times 2^2 = 2n$
- 2. Dalle tavole della distribuzione chi quadro $\mathbb{P}(S_{18} \leq 9.39) = 0.05$.
- 3. La distribuzione chi quadro con n gradi di liberà non è tabulata per valori di n > 60. In questo caso si può applicare il teorema del limite centrale ottenedo che approssimativamente

$$\frac{S_n - \mathbb{E}(S_n)}{\sqrt{\operatorname{Var}(S_n)}} = \frac{S_n - n}{\sqrt{2n}} \stackrel{approx}{\sim} \operatorname{N}(0, 1).$$

Dunque $\mathbb{P}(S_n \leq 312.98) = \mathbb{P}(\frac{S_n - n}{\sqrt{2n}} \leq \frac{312.98 - n}{\sqrt{2n}}) \simeq \mathbb{P}(Z \leq \frac{312.98 - 300}{\sqrt{600}}) = \mathbb{P}(Z \leq 0.53) = 0.7019.$ Dove $Z \sim N(0, 1)$.

Esercizio 1.3.4

Abbiamo estratto il campione casuale X_1, \ldots, X_n dalla popolazione di densità esponenziale di parametro θ : $f(x,\theta) = \frac{1}{\theta} e^{-\frac{x}{\theta}} \mathbb{1}_{(0,\infty)}(x), \ \theta > 0$

- 1. Determinate la densità della media campionaria \bar{X} .
- 2. Determinate la densit'a della variabile aleatoria $\frac{2nX}{\theta}$

- 3. Sia $\alpha=5\%,\ n=3$ e $\theta=2$: determinate k tale che $\mathbb{P}(\bar{X}\leq k)=\alpha$
- 4. Sia n=3 e $\theta=1.49$: calcolate $\mathbb{P}(\bar{X}>\frac{1.64}{3})$
- 5. Sia n = 35 e $\theta 1.49$: calcolate $\mathbb{P}(\bar{X} > \frac{1.64}{3})$
- 6. Determinate k dipendente da θ e da n tale che $\mathbb{P}(\sum_{j=1}^{n} X_j > k) = 0.9$

SOLUZIONE

- 1. Si osservi che $X_1 + \cdots + X_n \sim \text{gamma}(n, \theta)$ e quindi $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i \sim \text{gamma}(n, \frac{\theta}{n})$.
- 2. Si ha che $\frac{2n\bar{X}}{\theta} \sim \text{gamma}(n,2) \stackrel{d}{=} \chi^2(2n)$ no no. dovrebbe essere al quadrato! non viene fuori
- una chi quadro 3. $\mathbb{P}(\bar{X} \leq k) = \alpha \Rightarrow \mathbb{P}(\frac{2n\bar{X}}{\theta} \leq \frac{2nk}{\theta}) \Rightarrow \frac{2nk}{\theta} = q_{\chi^2_{2n}}(\alpha)$ dove con $q_{\chi^2_n}$ si è indicata le funzione prcentile di una chi quadro con n gradi di libertà. Con l'ausilio delle tavole si ottiene $k = \frac{1.64}{3}$
- 4. $\mathbb{P}(\bar{X} > \frac{1.64}{3}) = \mathbb{P}(\frac{2n\bar{X}}{\theta} > \frac{2n}{\theta} \frac{1.64}{3}) = \mathbb{P}(\chi_6^2 > 2.2013) = 0.9$ Abbiamo utilizzato il simbolo χ_6^2 si per una v.a. che per la sua distribuzione.
- 5. $\mathbb{P}(\bar{X}>\frac{1.64}{3})=\mathbb{P}(\frac{2n\bar{X}}{\theta}>\frac{2n}{\theta}\frac{1.64}{3})=\mathbb{P}(\chi^2_{70}>25.6823)\simeq\mathbb{P}(Z>\frac{25.6823-70}{\sqrt{140}}=\mathbb{P}(Z>-375)=0.9999\simeq 1$ Nelle ultime uguaglianze si è usato il Teorema del limite centrale, e Z al solito ha distribuzione N(0,1).
- 6. $\mathbb{P}\left(\sum_{j=1}^n X_i > k\right) = 0.9 \Rightarrow \mathbb{P}\left(\frac{2}{\theta}\sum_{j=1}^n X_i \leq \frac{2}{\theta}k\right) = 0.1 \Rightarrow \mathbb{P}\left(\chi_{2n}^2 < \frac{2}{\theta}k\right) = 0.1$. Qindi $\frac{2}{\theta}k = q_{\chi_{2n}^2}(0.1) \Rightarrow k = \frac{\theta}{2}q_{\chi_{2n}^2}(0.1)$. Dove con $q_{\chi_n^2}(p)$ si è indicata la funzione quantile di una chi quadro con due gradi di libertà.