VYSOKÉ UČENÍ TECHNICKÉ

Fakulta Informačních Technologií

ELEKTRONIKA PRO INFORMAČNÍ TECHNOLOGIE 2020/2021

Semestrálny projekt

Natália Bubáková (xbubak01)

22. apríla 2021

Obsah

1	Príklad 1	2
2	Príklad 2	6
3	Príklad 3	8
4	Príklad 4	11
5	Príklad 5	12
6	Zhrnutie výsledkov	14

Stanovte napětí U_{R6} a proud I_{R6} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
Н	135	80	680	600	260	310	575	870	355	265

Najskôr si urobíme prvotné zjednodušenia a prekreslíme obvod tak, aby...

$$\begin{array}{ccc} \pmb{U} = U_1 + U_2 & \Rightarrow & 135 + 80 = 215V \\ \hline \pmb{R_{34}} = \frac{R_3 * R_4}{R_3 + R_4} & \Rightarrow & \frac{260 * 310}{260 + 310} = \frac{8060}{57} \approx 141,4035\Omega \\ \hline \pmb{R_{234}} = R_2 + R_{34} & \Rightarrow & 600 + \frac{8060}{57} = \frac{42260}{57} \approx 741,4035\Omega \end{array}$$

..sme mohli pokračovať úpravou $TROJUHOLNÍK \Rightarrow HVIEZDA$

Ďalej zjednodušujeme...

$$R_{B7} = R_B + R_7 \quad \Rightarrow \quad \frac{4457400}{22759} + 355 = \frac{12536845}{22759} \approx 550,8522\Omega$$

$$R_{C6} = R_C + R_6 \quad \Rightarrow \quad \frac{4859900}{22759} + 870 = \frac{24660230}{22759} \approx 1083,5375\Omega$$

$$\frac{R_{B7C6}}{R_{B7}+R_{C6}} \Rightarrow \frac{12536845*24660230}{22759^2} * \frac{22759}{12536845+24660230} = 365 + \frac{6563090069}{33862729197} \approx 365,1938\Omega$$

$$\frac{\textit{R}_{\textit{EKV}}}{\textit{R}_{\textit{A}} + \textit{R}_{\textit{B7C6}} + \textit{R}_{\textit{8}} \Rightarrow \frac{5747360}{22759} + (365 + \frac{6563090069}{33862729197}) + 265 = 882 + \frac{1078895}{1487883} \approx 882,7251\Omega$$

..až napokon s výsledným R_{EKV} môžeme dopočítať celkový prúd a napätia na ňom závislé

$$\begin{split} I &= \frac{U}{R_{EKV}} \quad \Rightarrow \quad \frac{215}{882 + \frac{1078895}{1487883}} = \frac{319894845}{1313391701} \approx 0,2436A \\ \\ U_{RA} &= I*R_A \quad \Rightarrow \quad \frac{319894845}{1313391701} * \frac{5747360}{22759} = 61,50751753938 \approx 61,5075V \\ \\ U_{RB7C6} &= I*R_{B7C6} \quad \Rightarrow \quad \frac{319894845}{1313391701} * (365 + \frac{6563090069}{33862729197}) = 88 + \frac{977184361042}{1030740749071} \approx 88,9480V \\ \\ U_{R8} &= I*R_8 \quad \Rightarrow \quad \frac{319894845}{1313391701} * 265 = 64 + \frac{715065061}{1313391701} \approx 64,5444V \end{split}$$

Pokračujeme čiastkovými prúdmi v závislosti na rovnaké napätie v paralelnom zapojení a ďalej s čiastkovými napätiami v závislosti na rovnaký prúd v sériovom zapojení rezistorov..

A skôr ako sme sa spätným rozkladom zjednodušeného obvodu dostali k tomu pôvodnému, už v tejto fáze vieme určiť napätie $U_{R6}\approx71,4183V$ a prúd $I_{RC6}=I_{R6}\approx0,0821A$

A to si vďaka Kirchhoffovým zákonom môžeme o krok ďalej i skontrolovať...

$$I.. \quad U_{R234} + U_{R6} + U_{R8} - U = 0$$

$$U_{R234} = U - U_{R6} - U_{R8} \quad \Rightarrow \quad 215 - (71 + \frac{18960811}{45289369}) - (64 + \frac{715065061}{1313391701}) = 79 + \frac{48463121}{1313391701} \approx 79,0369V$$

$$II.. \quad U_{R1} + U_{R7} + U_{R8} - U = 0$$

$$U_{R1} = U - U_{R7} - U_{R8} \quad \Rightarrow \quad 215 - \left(57 + \frac{424355233}{1313391701}\right) - \left(64 + \frac{715065061}{1313391701}\right) = 93 + \frac{173971407}{1313391701} \approx 93,1325V$$

$$III. \quad U_{R1} + U_{R5} - U_{R234} = 0$$

$$U_{R5} = U_{R234} - U_{R1} \quad \Rightarrow \quad (79 + \frac{48463121}{1313391701}) - (93 + \frac{173971407}{1313391701}) = -(14 + \frac{5456882}{57103987}) \approx -14,0956V$$

$$I_{R234} = \frac{U_{R234}}{R_{234}} \quad \Rightarrow \quad (79 + \frac{48463121}{1313391701}) * \frac{57}{42260} = \frac{7369125}{69125879} \approx 0,1066A$$

$$\frac{\textit{\textbf{I}}_{\textit{\textbf{R5}}}}{\textit{\textbf{R}}_{\textit{\textbf{5}}}} \quad \Rightarrow \quad -(14 + \frac{5456882}{57103987}) * \frac{1}{575} = -\frac{32196508}{1313391701} \approx -0,0245 A$$

$$\begin{split} I_{R234} + I_{R5} - I_{R6} &= 0 \\ \frac{7369125}{69125879} + \left(-\frac{32196508}{1313391701} \right) - \frac{3717823}{45289369} &= 0 \end{split}$$

...a kontrola nám pekne vyšla!

Stanovte napětí U_{R3} a proud I_{R3} . Použijte metodu Théveninovy věty.

sk.	U [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
H	220	190	360	580	205	560	180

V prvom kroku si prekreslíme obvod bez zdroju (nahradíme ho skratom) a R_3 nahradíme rozpojenými svorkami pre výpočet R_i .

Pre ľahší výpočet sme si sériovo zapojené R_4 a R_5 zjednotili a obvod prekreslili. Ďalej len dopočítame celkový odpor cez čiastkové odpory získané z paralelného a navzájom seriového zapojenia rezistorov..

$$\begin{split} R_{145} &= R_4 + R_5 \quad \Rightarrow \quad 205 + 560 = 765\Omega \\ R_{145} &= \frac{R_1 * R_{45}}{R_1 + R_{45}} \quad \Rightarrow \quad \frac{190 * 765}{190 + 765} = 152 + \frac{38}{191} \approx 152,1990\Omega \\ R_{26} &= \frac{R_2 * R_6}{R_2 + R_6} \quad \Rightarrow \quad \frac{360 * 180}{360 + 180} = 120\Omega \\ R_i &= R_{145} + R_{26} \quad \Rightarrow \quad (152 + \frac{38}{191}) + 120 = 272 + \frac{38}{191} \approx 272,1990\Omega \end{split}$$

V ďaľšiom kroku počítame so zdrojom, avšak medzi rozpojené svorky akoby vložíme voltmeter a tým dopočítame U_i

A nakoľko dvojica R_1 a R_{45} rovnako ako aj R_2 a R_6 sú v sérii priamo napojené na zdroj napätia U, tak pri výpočte môžeme použiť vzorec pre výpočet deliča napätia..

$$\begin{array}{ccc} \textbf{\textit{U}}_{R1} = U * \frac{R_1}{R_1 + R_{45}} & \Rightarrow & 220 * \frac{190}{190 + 765} = 43 + \frac{147}{191} \approx 43,7696V \\ \\ \textbf{\textit{U}}_{R2} = U * \frac{R_2}{R_2 + R_6} & \Rightarrow & 220 * \frac{360}{360 + 180} = 146 + \frac{2}{3} \approx 146,6667V \\ \\ \textbf{\textit{U}}_{R1} + U_i - U_{R2} = 0 \\ \\ \textbf{\textit{U}}_i = U_{R2} - U_{R1} & \Rightarrow & (146 + \frac{2}{3}) - (43 + \frac{147}{191}) = 102 + \frac{514}{573} \approx 102,8970V \end{array}$$

V poslednom kroku si prekreslíme zjednodušný obvod s R_3 ..

..a napokon len dopočítame I_{R3} a U_{R3} podľa Ohmovho zákona

$$I_{R3} = \frac{U_i}{R_i + R_3} \implies \frac{102 + \frac{514}{573}}{(272 + \frac{38}{191}) + 580} = \frac{5896}{48831} \approx \underline{0,1207A}$$

$$U_{R3} = R_3 * I_{R3} = 580 * \frac{5896}{48831} = 70 + \frac{1510}{48831} \approx \underline{70,0309V}$$

Prúd I_{R3} vyšiel 120, 743mA a napätie U_{R3} 70, 0309V

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

sk.	U[V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
A	120	0.9	0.7	53	49	65	39	32

Podľa Kirchhoffových zákonov si odvodíme vzťahy prisúdzujúce ku každému z uzlov, z ktorých vychádzajú napätia $U_A,\,U_B$ a U_C

Uzol A:

A keďže nepoznáme smery jednotlivých napätí, predpokladáme, že všetky prúdy z daného uzlu vždy vychádzajú (i keď nie) a napokon ich v rovnici len neutrálne sčítame. V slučkách počítame napätie v smere hodinových ručičiek..

$$I_{R1} + I_{R2} + I_{R3} = 0$$

$$U_A - U - I_{R1} * R_1 = 0 \quad \Rightarrow \quad I_{R1} = \frac{U_A - U}{R_1}$$

$$I_{R2} * R_2 - U_A = 0 \quad \Rightarrow \quad I_{R2} = \frac{U_A}{R_2}$$

$$I_{R3} * R_3 + U_B - U_A = 0 \quad \Rightarrow \quad I_{R3} = \frac{U_A - U_B}{R_3}$$

Uzol B:

Nakoľko prúd I_1 má opačný smer od nášho predpokladu, musíme mu dať i opačné znamienko...

$$I_{R3} + I_{R5} - I_1 = 0$$

$$U_B - U_A - I_{R3} * R_3 = 0 \quad \Rightarrow \quad I_{R3} = \frac{U_B - U_A}{R_3}$$
 $I_{R5} * R_5 + U_C - U_B = 0 \quad \Rightarrow \quad I_{R5} = \frac{U_B - U_C}{R_5}$

Uzol C:

$$U_C - U_B - I_{R5} * R_5 = 0 \quad \Rightarrow \quad I_{R5} = \frac{U_C - U_B}{R_5}$$

$$U_C - I_{R4} * R_4 = 0 \quad \Rightarrow \quad I_{R4} = \frac{U_C}{R_4}$$

 $I_{R4} + I_{R5} + I_1 - I_2 = 0$

Doplníme si rovnice a zjednodušíme..

$$A: \quad \frac{U_A-U}{R_1} + \frac{U_A}{R_2} + \frac{U_A-U_B}{R_3} = 0 \Rightarrow \frac{U_A-120}{53} + \frac{U_A}{49} + \frac{U_A-U_B}{65} = 0 \Rightarrow 9227U_A - 2597U_B = 382200$$

$$\frac{B}{R_3}: \quad \frac{U_B-U_A}{R_3} + \frac{U_B-U_C}{R_5} - I_1 = 0 \\ \Rightarrow \frac{U_B-U_A}{65} + \frac{U_B-U_C}{32} - 0.9 = 0 \\ \Rightarrow -32U_A + 97U_B - 65U_C = 1872 \\ = 187$$

$$C: \quad \frac{U_C}{R_4} + \frac{U_C - U_B}{R_5} + I_1 - I_2 = 0 \Rightarrow \frac{U_C}{39} + \frac{U_C - U_B}{32} + 0, 9 - 0, 7 = 0 \Rightarrow -39U_B + 71U_C = -249, 6 = -249, 7 = -$$

Ďalej len dosadzovacou metódou dopočítame napätia U_A , U_B a U_C , pomocou ktorých možno vypočítať zvyšné vlastnosti obvodu.

$$U_A = \frac{382200 + 2597U_B}{9227}$$

$$C:$$

$$U_C = \frac{-249.6 + 39U_B}{71}$$

$$B:$$

$$-32 * \frac{382200 - 2597U_B}{9227} + 97 * U_B - 65 * \frac{-249.6 + 39U_B}{71} = 1872$$

$$\frac{-32 * 382200 - 32 * 2597U_B}{9227} + 97U_B + \frac{65 * 249.6 - 65 * 39U_B}{71} = 1872$$

$$-71*32*382200 - 71*32*2597U_B + 9227*71*97U_B + 9227*65*249, 6 - 9227*65*39U_B = 9227*71*1872$$

$$-868358400 - 5900384U_B + 63546349U_B + 149698848 - 23390445U_B = 1226379024$$

$$34255520U_B = 1945038576$$

$$U_B = \frac{1945038576}{34255520} = 56 + \frac{128507}{164690} \approx 56,7803V$$

$$U_A = \frac{382200 + 2597 * (56 + \frac{128507}{164690})}{9227} = 57 + \frac{66387}{164690} \approx 57,4031V$$

$$U_C = \frac{-249.6 + 39 * (56 + \frac{128507}{164690})}{71} = 27 + \frac{110949}{164690} \approx 27,6737V$$

A tak si podľa Ohmovho zákonu dopočítame práve hľadaný prúd a napätie..

$$I_R 2 = \frac{U_A}{R_2} \implies (57 + \frac{66387}{164690}) * \frac{1}{49} = 1 + \frac{28243}{164690} \approx \underline{1,1715A}$$

$$U_R 2 = I_R 2 * R_2 \implies (1 + \frac{28243}{164690}) * 49 = 57 + \frac{66387}{164690} \approx \underline{57,4031V}$$

Prúd I_{R2} je 1,1715A a napätie U_{R2} je 57,4031V

Príklad $4\,$

Pro napájecí napětí platí: $u_1=U_1\cdot\sin(2\pi ft),\,u_2=U_2\cdot\sin(2\pi ft).$ Ve vztahu pro napětí $u_{L_2}=U_{L_2}\cdot\sin(2\pi ft+\varphi_{L_2})$ určete $|U_{L_2}|$ a φ_{L_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t = \frac{\pi}{2\omega})$.

						-		` .	Δω,
sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	$L_2 [\mathrm{mH}]$	C_1 [µF]	C_2 [µF]	f [Hz]
Н	65	60	10	10	160	75	155	70	95

V obvodu na obrázku níže v čase t=0[s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $i_L=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t = \frac{\pi}{2\omega})$.

sk.	U[V]	L [H]	$R\left[\Omega\right]$	$i_L(0)$ [A]
Н	18	50	40	5

Na vyjadrenie vzťahov v obvode, podľa II. Kirchhoffového zákonu zostavíme rovnicu, do ktorej dosadíme vzťahy platné pre rezistor $I_R=\frac{U_R}{R}$ a pre cievku $i_L'=\frac{U_L}{L}$, kde $i_L=I_R$.

$$U_R + U_L - U = 0 \implies R * i_l + L * i'_L - U = 0$$

 $i'_L = \frac{U - R * i_L}{L} \implies i'_L = \frac{18 - 40 * i_L}{50} = \frac{9}{25} - \frac{4}{5}i_L$

A tak sme dostali charakteristickú rovnicu, z ktorej si vyjadríme λ ...

$$i'_L + \frac{4}{5}i_L = \frac{9}{25}$$

$$\lambda + \frac{4}{5} = 0 \quad \Rightarrow \quad \lambda = -\frac{4}{5}$$

Riešenie dosadíme do všeobecného tvaru riešenia a zderivujeme..

$$i_L(t) = k(t) * e^{\lambda t}$$

$$i_L(t) = k(t) * e^{-\frac{4}{5}t}$$

$$i'_L(t) = k'(t) * e^{-\frac{4}{5}t} - \frac{4}{5}k(t)e^{-\frac{4}{5}t}$$

Známe hodnoty doplníme do charakteristickej rovnice...

$$k'(t) * e^{-\frac{4}{5}t} - \frac{4}{5}k(t)e^{-\frac{4}{5}t} + \frac{4}{5}k(t) * e^{-\frac{4}{5}t} = \frac{9}{25}$$
$$k'(t) * e^{-\frac{4}{5}t} = \frac{9}{25}$$

Vyjadríme k(t)..

$$k'(t) = \frac{9}{25}e^{\frac{4}{5}t}$$

$$k(t) = \int \frac{9}{25}e^{\frac{4}{5}t}dt$$

$$k(t) = \frac{9}{20}e^{\frac{4}{5}t} + c$$

A toto doplníme do očakávaného tvaru riešenia..

$$i_L(t) = (\frac{9}{20}e^{\frac{4}{5}t} + c) * e^{\lambda t} \quad \Rightarrow \quad i_L(t) = \frac{9}{20} + c * e^{-\frac{4}{5}t}$$

Aplikujeme počiatočnú podmienku a dosadíme i_L ..

$$i_L(0) = \frac{9}{20} + c * e^{-\frac{4}{5}0}$$
$$5 = \frac{9}{20} + c \implies c = 5 - \frac{9}{20} = \frac{91}{20}$$

Hľadané analytické riešenie teda je:

$$i_{L}(t) = \frac{9}{20} + \frac{91}{20}e^{-\frac{4}{5}t}$$

..a to si môžme overiť dosadením $i_L(t)$ a $i_L^\prime(t)$ do rovnice popisujúcej obvod:

$$i_L' + \frac{4}{5}i_L = \frac{9}{25}$$

$$\begin{split} i_L(t) &= \frac{9}{20} + \frac{91}{20} e^{-\frac{4}{5}t} \\ i'_L(t) &= \frac{9}{25} e^{\frac{4}{5}t} * e^{-\frac{4}{5}t} - \frac{4}{5} * (\frac{9}{20} e^{\frac{4}{5}*t} + \frac{91}{20}) * e^{-\frac{4}{5}t} = -\frac{364}{100} e^{-\frac{4}{5}t} \end{split}$$

$$-\frac{364}{100}e^{-\frac{4}{5}t} + \frac{4}{5}*\left(\frac{9}{20} + \frac{91}{20}e^{-\frac{4}{5}t}\right) = \frac{9}{25}$$
$$-\frac{364}{100}e^{-\frac{4}{5}t} + \frac{36}{100} + \frac{364}{100}e^{-\frac{4}{5}t} = \frac{9}{25}$$
$$0 = 0$$

Zhrnutie výsledkov

Príklad	Skupina	Výsle	dky
1	Н	$U_{R6} = 71,4183V$	$I_{R6} = 0,0821A$
2	Н	$U_{R3} = 70,0309V$	$I_{R3} = 0,1207A$
3	A	$U_{R2} = 57,4031V$	$I_{R2} = 1,1715A$
4	Н	$ U_{L_2} =$	$\varphi_{L_2} =$
5	Н	$i_L(t) = rac{9}{20}$ -	$+\frac{91}{20}e^{-\frac{4}{5}t}$