NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

MA1522 Linear Algebra for Computing

Tutorial 7

- 1. (a) Let $a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$ be a linear equation. Express this linear system as $\mathbf{a} \cdot \mathbf{x} = b$ for some (column) vectors \mathbf{a} and \mathbf{x} .
 - (b) Find the solution set of the linear system

(c) Find a nonzero vector $\mathbf{v} \in \mathbb{R}^4$ such that $\mathbf{a}_1 \cdot \mathbf{v} = 0$, $\mathbf{a}_2 \cdot \mathbf{v} = 0$, and $\mathbf{a}_3 \cdot \mathbf{v} = 0$, where

$$\mathbf{a}_1 = \begin{pmatrix} 1\\3\\-2\\0 \end{pmatrix}, \quad \mathbf{a}_2 = \begin{pmatrix} 2\\6\\-5\\-2 \end{pmatrix}, \quad \mathbf{a}_3 = \begin{pmatrix} 0\\0\\5\\10 \end{pmatrix}.$$

This exercise demonstrates the fact that if **A** is a $m \times n$ matrix, then the solution set of the homogeneous linear system $\mathbf{A}\mathbf{x} = \mathbf{0}$ consist of all the vectors in \mathbb{R}^n that are orthogonal to every row vector of **A**.

2. Let $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be an orthonormal set. Suppose

$$\mathbf{x} = \mathbf{v}_1 - 2\mathbf{v}_2 - 2\mathbf{v}_3$$
 and $\mathbf{y} = 2\mathbf{v}_1 - 3\mathbf{v}_2 + \mathbf{v}_3$.

Determine the value for each of the following

- (a) $\mathbf{x} \cdot \mathbf{y}$.
- (b) $||\mathbf{x}||$ and $||\mathbf{y}||$.
- (c) The angle θ between \mathbf{x} and \mathbf{y} .

3. Let
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, and $\mathbf{V} = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{pmatrix}$.

- (a) Compute $\mathbf{v}_1 \cdot \mathbf{v}_1$, $\mathbf{v}_1 \cdot \mathbf{v}_2$, $\mathbf{v}_2 \cdot \mathbf{v}_1$ and $\mathbf{v}_2 \cdot \mathbf{v}_2$.
- (b) Compute $\mathbf{V}^T\mathbf{V}$. What does the entries of $\mathbf{V}^T\mathbf{V}$ represent?
- 4. Let W be a subspace of \mathbb{R}^n . The orthogonal complement of W, denoted as W^{\perp} , is defined to be

$$W^{\perp} := \{ \ \mathbf{v} \in \mathbb{R}^n \ \big| \ \mathbf{v} \cdot \mathbf{w} = 0 \text{ for all } \mathbf{w} \in W \ \}.$$

Let
$$\mathbf{w}_1 = \begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix}$$
, $\mathbf{w}_2 = \begin{pmatrix} 1\\2\\-1\\-2\\0 \end{pmatrix}$, and $\mathbf{w}_3 = \begin{pmatrix} 1\\-1\\1\\-1\\0 \end{pmatrix}$, and $W = \operatorname{span}\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$.

- (a) Show that $S = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ is linearly independent.
- (b) Show that S is orthogonal.
- (c) Show that W^{\perp} is a subspace of \mathbb{R}^5 by showing that it is a span of a set. What is the dimension? (**Hint**: See Question 1.)
- (d) Obtain an orthonormal set T by normalizing $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$.

(e) Let
$$\mathbf{v} = \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \\ -1 \end{pmatrix}$$
. Find the projection of \mathbf{v} onto W .

(f) Let \mathbf{v}_W be the projection of \mathbf{v} onto W. Show that $\mathbf{v} - \mathbf{v}_W$ is in W^{\perp} .

This exercise demonstrated the fact that every vector \mathbf{v} in \mathbb{R}^5 can be written as $\mathbf{v} = \mathbf{v}_W + \mathbf{v}_W^{\perp}$, for some \mathbf{v}_W in W and \mathbf{v}_W^{\perp} in W^{\perp} . In other words, $W + W^{\perp} = \mathbb{R}^5$.

5. Let $S = \{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}, \mathbf{u_4}\}$ where

$$\mathbf{u_1} = \begin{pmatrix} 1 \\ 2 \\ 2 \\ -1 \end{pmatrix}, \ \mathbf{u_2} = \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \ \mathbf{u_3} = \begin{pmatrix} -1 \\ 1 \\ -1 \\ -1 \end{pmatrix}, \ \mathrm{and} \ \mathbf{u_4} = \begin{pmatrix} -2 \\ 1 \\ 1 \\ 2 \end{pmatrix}.$$

- (a) Check that S is an orthogonal basis for \mathbb{R}^4 .
- (b) Is it possible to find a nonzero vector \mathbf{w} in \mathbb{R}^4 such that $S \cup \{\mathbf{w}\}$ is an orthogonal set?
- (c) Obtain an orthonormal set T by normalizing $\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}, \mathbf{u_4}$.

(d) Let
$$\mathbf{v} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \end{pmatrix}$$
. Find $[\mathbf{v}]_S$ and $[\mathbf{v}]_T$.

(e) Suppose \mathbf{w} is a vector in \mathbb{R}^4 such that $[\mathbf{w}]_S = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix}$. Find $[\mathbf{w}]_T$.

Extra problems

- 1. Let **A** be an $m \times n$ matrix.
 - (a) Show that the nullspace of \mathbf{A} is equal to the nullspace of $\mathbf{A}^T \mathbf{A}$.
 - (b) Show that $\operatorname{nullity}(\mathbf{A}) = \operatorname{nullity}(\mathbf{A}^T \mathbf{A})$ and $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^T \mathbf{A})$.
 - (c) Is it true that $\text{nullity}(\mathbf{A}) = \text{nullity}(\mathbf{A}\mathbf{A}^T)$? Justify your answer.
 - (d) Is it true that $rank(\mathbf{A}) = rank(\mathbf{A}\mathbf{A}^T)$? Justify your answer.
- 2. Let **A** and **B** be two matrices of the same size. Show that

$$rank(\mathbf{A} + \mathbf{B}) \le rank(\mathbf{A}) + rank(\mathbf{B}).$$

3. (a) Let W be a subspace of \mathbb{R}^n . Prove that the orthogonal complement of the orthogonal complement of W is W, i.e.

$$(W^{\perp})^{\perp} = W.$$

(b) Show that for any matrix \mathbf{A} , the column space of \mathbf{A} is the orthogonal complement of the nullspace of \mathbf{A}^T ,

$$\operatorname{Col}(\mathbf{A})^{\perp} = \operatorname{Null}(\mathbf{A}^T),$$

or equivalently, the row space of A is the orthogonal complement of the nullspace of A,

$$\operatorname{Row}(\mathbf{A})^{\perp} = \operatorname{Null}(\mathbf{A}).$$