1月21日,FATE 开源社区第七期圆桌会圆满落幕。本次圆桌会,微众银行高级研究员魏文斌为我们详细介绍了联邦学习的新领域——FedVision,并对其原理进行了相应的演示。接下来,我们先回顾下 FedVision 的基本信息,并对本次圆桌会问答环节中,社区朋友们提出的问题进行详细讲解。

FedVision 介绍

FedVision 是首个轻量级、模型可复用、架构可扩展的视觉横向联邦开源框架,内置 PaddleFL/PaddleDetection 插件,支持多种常用的视觉检测模型,助力视觉联邦场景快速落地。FedVision 是基于 Python 实现的,作为一个视觉横向联邦方向机器学习项目,已经在 GitHub (https://github.com/FederatedAl/FedVision) 上开源首个版本 FedVision v0.1。

FedVision 项目的主要目标是:

- ▲ 在学术场景下,助力实验人员快速验证相关的实验想法。
- ▲ 在实际生产环境中,助力视觉横向联邦项目进行快速落地。

为了快速实现最小可用版本,FedVision v0.1 版本借助 PaddleFL 项目的部分能力,实现视觉领域的横向联邦建模功能。由于借助了 Paddle 的丰富生态,经简单的调制适配,FedVision v0.1 即可直接使用 PaddleDetection 项目实现的几乎全部的视觉检测模型。

FedVision 逻辑构图

FedVision 从项目逻辑上可分成两个部分:

1. 框架

FedVision 的框架部分由几个相对独立的小组件构成,相互之间通过网络通信配合实现整个联邦学习任务的生命周期。这些小组件根据所属的角色不同又归为两类:

Coordinator

这个组件是单独的功能模块,在横向联邦学习任务的生命周期中属于协调者的角色,被所有的"Party"订阅。

当前版本所有的建模任务需要发布到 "Coordinator" ,由其分发给所有订阅对应类型任务的 "Party" 端。在所有收到订阅的参与方应答(或者超时)之后, 根据规则筛选出最终参与建模的所有 "Party" ,最后才分发任务的最终都任务配置。

目前版本的 "Coordinator" 只负责命令层面(任务信息)的信息分发,数据由 "Party" 任务之间直接建立的通信传递。在后续的版本中,数据的聚合分发功能将由 "Coordinator" 直接负责,从而推动 FedVision的 "Party" 端往端上部署的能力。

Party

目前 Party 端包含了一个简单的 "Cluster" 组件,负责往多个不同的计算节点分发 Task、 一个 "Submitter" 组件(供用户提交任务)以及一个 "Master" 组件(负责对话 "Coordinator" 和 "Submiter")。

2. 拓展

目前机器学习框架已经非常丰富了,无论从构建生态、用户学习和研发成本考虑,都没必要去重复造轮子。

因此,从设计之初,FedVision 就准备依托现有的机器学习框架来构建联邦场景下的机器学习平台,因此抽象了一些合理的接口,用于扩展及支持多种计算引擎的任务类型。

目前,借助 PaddleFL 和 PaddleDetection 项目的强大能力,FedVision 得以快速完成了第一阶段的功能迭代。我们将在下一个版本迎来 PyTorch 的扩展支持。

FedVision 功能特点

1. 部署简捷

通过 PyPI 已发布了一个简单的部署与服务起停的工具。

\$ python3 -m venv venv && source venv/bin/activate

install fedvision_deploy_toolkit

(venv) python -m pip install -U pip && python -m pip install fedvision_deploy_toolkit

100%

Successfully installed fedvision_deploy_toolkit

generate deploy template
(venv) fedvision-deploy template standalone

read comments in generated template standalone template.yaml` and modify as you want.

deploy now
(venv) fedvision-deploy deploy deploy standalone_template.yaml
deploying 2 machines: ['machine1']

100%

deploy done

简单几步即可开始使用! 有小伙伴可能会问, 为啥不用 k8s 呢? 嗯, 已经在准备当中了!

2. 使用便捷

通过集成 PaddleDetection 的能力,在用户构建视觉检测模型的时候,简单配置一份 yaml 文件即可,不需要写一行代码!

对于想自定义模型的用户,框架也不限制您的发挥,类似于内置的卷积网络 demo 手动实现也相当容易。

3. 内置丰富模型

在现有的实际生产场景中,最适合横向联邦技术的场景的就是视觉检测相关的建模任务。

借助项目架构扩展的能力,目前主流的视觉检测模型均可使用,"Yolo","rcnn"一家子全都安排。

期待更多开发者加入

FedVision 将会持续完善,为开源社区提供更加友好强大的横向视觉联邦能力。我们将在下一版本支持
PyTorch 的扩展,虽然这依赖于 Coordinator 特性的升级。我们还将完善对加密聚合协议的支持,引入结构
化压缩聚合等技术。另外,更轻量的客户端也在计划之中。

圆桌会问答环节

FedVision 跟 FATE 的关系是啥?看介绍用的是 PaddleFL?

FATE 目前已经具备横向联邦通用框架,在 FATE 可以实现纵向联邦和横向联邦一体化应用。FedVision 吸收了 FATE 项目上积累的横向联邦框架经验,同时又要求更加聚焦视觉这个特定领域。所以,我们决定尝试用一种轻量化的框架去快速验证我们的一些想法。

引入 paddle 生态,可以复用 paddle 生态已有的成熟视觉功能比如 paddledetection,paddleocr 等,未来我们也会计划引入 pytorch 生态。FedVision 轻量化框架也更加适合未来边缘端部署和应用。可以说 FedVision 是横向视觉方向的先头部队,更适合探索一些新的概念,等成熟之后会反馈给 FATE 项目。

视觉上的具体实现和应用场景可以详细讲解一下么?

今天本身来说是给大家介绍下 FedVision,因为 FedVision 对大家来说是比较陌生的,后面结合应用场景的话,看看有没有机会以技术博客的方式给大家介绍一下。

对训练的权重进行聚合然后分发给客户端?

对。这个类似于数据并行的分布式训练,一般有两种模式:

- 各方用本地数据训练本地模型之后,对模型进行聚合。
- 各方用本地模型训练本地模型之后,计算出梯度(模型差值),对梯度进行聚合。

Party 中 user 和 client 的分工和协作分别是?

Party 中的 user 就是真实的人, 就是去操作 client, 通过一些简单的客户端命令进行交互, 它们相当于是 user 提交任务给 client 这样的一个关系。

FedVision 的任务调度为什么不用 FATE 现有的任务调度呢?

首先,如果是要用 FATE 调度的话,需要每方都部署一个 FATE,另外如果我们考虑往端上做的话这个东西有点不太现实,因为这样操作目前来看太重了。当然这不代表 FATE 以后做不了,只是按照项目的迭代周期,FATE 不会这么快做这件事情。所以我们开发一个 FedVision 项目来做一些横向联邦方向的快速迭代。

请问下 FedVision 现在都能支持哪些模型?

基于 Paddle 来做的,准确来说利用了 Paddle Detection 的项目,所以基本上它支持的模型我们现在都能用,也就是基本上主流的视觉模型都可以。

医学的图像联邦能说下是都交互了哪些参数么?

训练的算法用的 Yolov3 的算法,参数是模型本身的参数。

FedVision Paper 的模型压缩等算法,也在开源的版本里面吗?

模型压缩现在还没有做,后面会做这个东西。

本地训练可以多讲讲吗?如果本地没有训练所需要的资源要怎么解决呢?

现在的版本还处理不了这个问题,但是这个要解决也很容易,因为 Coordinator 广播相关的任务信息后,client 方可以选择加入也可以选择不加入,如果计算资源不够可以选择不加入。

训练过程中,参与方掉线后重新加入怎么处理?

参与方掉线,可以自己再选择加入后续的任务等待,但是之前参与的训练就没法再加入了。

以下为本次圆桌会的部分内容介绍,添加小助手 (FATEZS001) 可获取详细资料:

大纲

- 1. 横向联邦学习的基础知识
- 2. 简要介绍 FedVision
- 3. FedVision 使用的简单演示
- 4. FedVision 的后续规划

https://www.fedai.org

横向联邦训练的基本模式

Figure 1: (A) users' updates are aggregated (B) to form a consensus change (C) to the shared model, after which the procedure is repeated. https://www.fedai.org

什么是 FEDVISION

- 横向联邦视觉
- Python 实现
- 开源, FederatedAI, GitHub: FederatedAI/FedVision

https://www.fedai.org

"ring reduce"怎么样?

A

https://www.fedai.org

扩展

- 如何进行本地训练?
- 如何聚合模型参数或者梯度?
- 用户如何定义模型?

https://www.fedai.org

获取会议 PPT,或对圆桌会还有别的疑问?欢迎联系 FATE 开源社区助手获得帮助。

原文链接: https://mp.weixin.qq.com/s/41TVzaG6oBLhNYbGy6qtzw