Epreuve: Mathématiques

II-Algèbre

Session PRINCIPALE

<u>Date</u>: **10/06/2021** Durée: **02 heures**

Nombre de Pages : 02

Université de Sousse

Institut des Hautes Etudes Commerciales de Sousse Niveau : 1ére Année

Filière: Licence Gestion

Chargés de cours :

<u>Boubaker Heni</u>

<u> Hamrita Mohamed Essaied</u>

Nefzi Hana

Exercice 1 (7 pts)

Soient
$$A = \begin{pmatrix} 2 & 4 & 6 \\ 0 & 2 & 4 \\ 0 & 0 & 2 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 2 & 3 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$.

- 1. Trouver les réels α et β tels que $A = \alpha B + \beta I_3$. (1 pt)
- 2. Calculer B^2 , B^3 et $B^n \forall n \geq 3$. (1 pt)
- 3. Calculer A^n en fonction de I, B et de $B^2 \forall n \geq 2.(1 \text{ pt})$
- 4. Montrer que A est inversible et calculer A^{-1} . (1 pt)
- 5. Montrer que $(A-2I)^3 = (A^3 6A^2 + 12A 8I_3)$. (1 pt)
- 6. En déduire que A n'est pas diagonalisable. (1 pt)
- 7. Exprimer A^{-1} en fonction de A et de I_3 et recalculer A^{-1} . (1 pt)

Exercice 2 (6 pts)

Soient
$$A = \begin{pmatrix} -7 & 0 & 6 \\ -8 & 1 & 6 \\ -12 & 0 & 10 \end{pmatrix}$$
, $V_1 = (3, 2, 4)$, $V_2 = (0, 1, 0)$ et $V_3 = (-2, -2, -3)$.

- 1. Vérifier que les vecteurs V_1 , V_2 et V_3 sont des vecteurs propres de A dont on précisera les valeurs propres associées. (1 pt)
- 2. En déduire que A est diagonalisable. (1 pt)
- 3. Soit P la matrice de colonnes V_1 , V_2 , V_3 . Calculer P^2 et donner P^{-1} telle que $A = PDP^{-1}$. (1 pt)
- 4. En déduire que A est inversible et donner A^{-1} . (1 pt)
- 5. En déduire $\ker(A)$ et préciser sa dimention. (1 pt)
- 6. Calculer A^n pour tout $n \in \mathbb{N}$. (1 pt)

Exercice 3 (7 pts)

On considère la matrice
$$A = \begin{pmatrix} 1 & 1 & 2 & 2 & 1 \\ 3 & 4 & 7 & 6 & 4 \\ 2 & 2 & 4 & 4 & 3 \\ 2 & 2 & 4 & 4 & 2 \end{pmatrix}.$$

- 1) Déterminer la ligne réduite échelonneé \mathcal{R}_A de la matrice A. (1 pt)
- 2) Déterminer $\ker(A)$, en donner une base et préciser sa dimention. (1 pt)
- 3) Déterminer $\ker({}^tA)$, en donner une base et préciser sa dimention. (1 pt)
- 4) Déterminer $\mathcal{C}(A)$, l'espace colonne de A, en donner une base et préciser sa dimention. (1 pt)
- 5) Déterminer $\mathcal{L}(A)$, l'espace ligne de A, en donner deux bases et préciser sa dimention. (1 pt)

6) Soit
$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \in \mathbb{R}^5, b = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \in \mathbb{R}^4 \text{ et } (S) : AX = b.$$

Donner une condition nécessaire et suffisante sur a, b, c et d pour que (S) soit compatible. (2 pts)

Bon travail