Statistical Theory and Modeling (ST2601) Integration

Mattias Villani

Department of Statistics Stockholm University

Overview

Integration

Integration

- We often need to compute the area under a function.
- Statistics: probabilities for continuous random variables

$$\Pr(a \le X \le b)$$

are areas under the probability density function f(x).

Rectangle sum to approximate areas

Approximate area under f(x) over [a, b] by a rectangle sum

$$\sum_{i=1}^{n} f(x_i^*) \Delta x_i$$

Partitioning of the interval [a, b]

$$x_0 = a < x_1 < x_2 < \ldots < x_{n-1} < x_n = b$$

 \mathbf{x}_{i}^{\star} is some value in the *i*th bin, for example the midpoint.

Integration widget

Many choices for rectangle design

- Width of rectangles Δx_i
- Height of rectangles (midpoint, lower or upper sum)
- Equal width?

The Riemann integral

- Idea to compute area under f(x) over [a, b]
 - ▶ Approximate by *both* lower and upper sum of rectangles.
 - ▶ Let the rectangle widths approach zero $\Delta x_i \rightarrow 0$
 - ▶ If lower and upper sum converge to the same value, then the function is Riemann integrable with integral $\int_a^b f(x) dx$

$$\sum_{i=1}^{n} f(x_i^*) \Delta x_i \to \int_{a}^{b} f(x) dx$$

- The notation is really thoughtful:
 - ▶ The integral sign \int looks like the letter s as in sum.
 - ▶ The dx is a small version of Δx (Δ is capital D in greek).

Lower and upper sums converging

The fundamental theorem of calculus

- Computing integrals by limiting rectangle sums is messy.
- The anti-derivative is a life-saver

Definition. A function F(x) is the **anti-derivative** to the function f(x) if

$$F'(x) = f(x)$$
, for all x

The second fundamental theorem of calculus

Theorem 1. If f(x) is integrable on [a,b] and F(x) is an antiderivative of f(x), then

$$\int_{a}^{b} f(x) \mathrm{d}x = F(b) - F(a),$$

Definite vs indefinite integrals

The anti-derivative is also called an indefinite integral

$$F(x) = \int f(x) \mathrm{d}x$$

lacksquare A definite integral is the integral over a given interval [a,b]

$$\int_{a}^{b} f(x) \mathrm{d}x$$

- A definite integral is a *number*.
- An indefinite integral (anti-derivative) is a function.

Improper/generalized integrals

- Two general cases:
 - 1 The function f(x) is **unbounded** for some x.
 - 2 One or both the integral endpoints a and b is $\pm \infty$

$$\int_{-\infty}^{b} f(x) dx \qquad \int_{a}^{\infty} f(x) dx \qquad \int_{-\infty}^{\infty} f(x) dx$$

Example of 1:

$$\int_0^1 \frac{1}{\sqrt{x}} \mathrm{d}x$$

Example of 2: density function of Exponential distribution

$$\int_0^\infty \lambda e^{-\lambda x} \mathrm{d}x$$

■ The types of improper integrals are handled as limits:

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx$$

Diverging/converging improper integrals

An improper integral can diverge

$$\int_{1}^{\infty} \frac{1}{x} \, \mathrm{d}x = \infty$$

 $f(x) = \frac{1}{x}$ does not go fast enough to zero as $x \to \infty$.

Or converge

$$\int_{1}^{\infty} \frac{1}{x^2} \, \mathrm{d}x = 1$$

 $f(x) = \frac{1}{x^2}$ goes to zero fast enough.

Integrals for common functions

Anti-derivatives of elementary functions

f(x)	F(x)	comment
x^n	$\frac{1}{n+1}x^{n+1}$	for $n \neq -1$
e^{ax}	$\frac{1}{a}e^{ax}$	for $a \neq 0$
$\frac{1}{x}$	$\ln x $	
a^x	$\frac{a^x}{\ln a}$	
$\sin x$	$-\cos x$	
$\cos x$	$\sin x$	

Integral rules for combined functions

Integrals for combinations of functions

Constant rule $\int_a^b kf(x) dx = k \int_a^b f(x) dx$ for constant k

Sum rule $\int_a^b (f(x) + g(x)) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$

Product rule $\int_a^b f(x)g'(x) dx = \left[f(x)g(x) \right]_a^b - \int_a^b f'(x)g(x) dx$