Grundlagen

D 1.1Sigma-Algebra

• $\omega \in \mathcal{F}$

 $A \in \mathcal{F} \implies A^c \in \mathcal{F}$

 $A_1, A_2, \dots \in \mathcal{F} \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

D 1.2 Wahrscheinlichkeitsmass

• $\mathcal{P}[\omega] = 1$

· σ – Additivität $\mathcal{P}[A] = \sum_{i=1}^{\infty} \mathcal{P}[A_i]$ if $A = \bigcup_{i=1}^{\infty} A_i$ (disjunkte Vereinigung)

D 1.3 Wahrscheinlichkeitsraum

Sei ω ein Grundraum, \mathcal{F} eine σ -Algebra und \mathcal{P} ein Wahrscheinlichkeitsmass. Wir nennen das Tripel $(\omega, \mathcal{F}, \mathcal{P})$ Wahrscheinlichkeitsraum.

D 1.5 Laplace Modell

• $\mathcal{F} = \mathcal{P}(\omega)$

• $\mathbb{P} : \to [0,1]$ ist definiert durch

$$\forall A \in \mathcal{F} \ \mathbb{P}[A] = \frac{|A|}{|\omega|}$$

S 1.6 Für eine Sigma-Algebra \mathcal{F} auf ω gilt:

 $\cdot \emptyset \in \mathcal{F}$

 $A_1, A_2, \dots \in \mathcal{F} \implies \bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$

 $A, B \in \mathcal{F} \implies A \cup B \in \mathcal{F}$

 $A, B \in \mathcal{F} \implies A \cap B \in \mathcal{F}$

S 1.7

 $\cdot \mathbb{P}[\emptyset] = 0$

• $A_1, \dots A_k$ paarweise disjunkte Ereignisse,

$$\mathbb{P}[A_1 \cup \cdots \cup A_k] = \mathbb{P}[A_1] + \dots \mathbb{P}[A_k]$$

• $\mathbb{P}[A^c] = 1 - \mathbb{P}[A]$

• $\mathbb{P}[A \cup B] = \mathbb{P}[A] - \mathbb{P}[B] - \mathbb{P}[A \cap B]$

S 1.8 Seien $A, B \in \mathcal{F}$ dann gilt

$$A \subset B \implies \mathbb{P}[A] \leq \mathbb{P}[B]$$

S 1.9 Sei A_1, A_2, \ldots eine Folge von nicht notwendigerweise disjunkten Ereignissen, dann gilt:

$$\mathbb{P}[\bigcup_{i=1}^{\infty} A_i \le \sum_{i=1}^{\infty} \mathbb{P}[A_i]]$$

D 1.13 Bedingte Wahrscheinlichkeit

Sei $(\omega,\mathcal{F},\mathbb{P})$ ein Wahrscheinlichkeitsraum. Seien A, B zwei Ereignisse mit $\mathbb{P}[B]>0$

$$\mathbb{P}[A|B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}$$

S 1.16 Gesetz der totalen Wahrscheinlichkeit

Sei B_1, \ldots, B_n eine Partition des Grundraumes ω , so dass $\mathbb{P}[B_i] > 0$ für jedes $1 \le i \le n$ gilt. Dann

gilt:

$$\forall A \in \mathcal{F} \ \mathbb{P}[A] = \sum_{i=1}^{n} \mathbb{P}[A|B_i] \, \mathbb{P}[B_i]$$

S 1.17 Satz von Bayes

Sei $B_1 \dots B_n \in \mathcal{F}$ eine Partition von ω sodass, $\mathbb{P}[B_i] > 0$ für jedes i gilt. Für jedes Ereignis A mit $\mathbb{P}[A] > 0$ gilt

$$\forall i = 1, \dots n \ \mathbb{P}[B_i|A] = \frac{\mathbb{P}[A|B_i]\mathbb{P}[B_i]}{\sum_{j=1}^n \mathbb{P}[A|B_j]\mathbb{P}[B_j]}$$

D 1.18 Unabhängigkeit

Sei $(\omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Zwei Ereignisse A und B heissen unabhängig falls

$$\mathbb{P}\left[A \cap B\right] = \mathbb{P}\left[A\right] \mathbb{P}\left[B\right]$$

S 1.20

Seien A,B $\in \mathcal{F}$ zwei Ereignisse mit $\mathbb{P}[A], \mathbb{P}[B] > 0$. Dann sind folgende Aussagen äquivalent:

1. $\mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B]$

2. $\mathbb{P}[A|B] = \mathbb{P}[A]$

3. $\mathbb{P}[B|A] = \mathbb{P}[B]$

D 1.21

Sei I eine beliebige Indexmenge. Eine Familie von Ereignissen $(A_i)_{i \in I}$ heisst unabhängig falls

$$\forall J \subset I$$
endlich $\mathbb{P}[\bigcap_{j \in J} A_j] = \prod_{j \in J} \mathbb{P}[A_j]$

Bem:

Drei Ereignisse A,B und C sind unabhängig falls alle 4 folgenden Gleichungen erfüllt sind

1. $\mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B]$

2. $\mathbb{P}[A \cap C] = \mathbb{P}[A]\mathbb{P}[C]$

3. $\mathbb{P}[B \cap C] = \mathbb{P}[B]\mathbb{P}[C]$

4. $\mathbb{P}[A \cap B \cap C] = \mathbb{P}[A]\mathbb{P}[B]\mathbb{P}[C]$

D 2.1 Zufallsvariable

Sei $(\omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Eine Zufallsvariable ist eine Abbildung $X:\omega\to\mathbb{R}$ so dass, für alle $a\in\mathbb{R}$ gilt

$$\{w\in\omega:X(w)\leq a\}\in\mathcal{F}$$

Bem:

Für Ereignisse im Bezug auf Z:V

 $\cdot \{X \le a\} = \{w \in \omega : X(w) \le a\}$

• $\{a < X \le b\} = \{w \in \omega : a < X(w) < b\}$

• $\{X \in \mathbb{Z}\} = \{w \in \omega : X(w) \in \mathbb{Z}\}$

$\mathbb{P}[X \leq a] = \mathbb{P}[\{X \leq a\}] = \mathbb{P}[\{w \in \omega : X(w) \leq a\}]$

D 2.2 Verteilungsfunktion

Sei X eine Zufallsvariable auf einem W-Raum $(\omega, \mathcal{F}, \mathbb{P})$. Die Verteilungsfunktion von X ist eine

Funtkion $F_X: \mathbb{R} \to [0, 1]$, definiert durch

$$\forall a \in \mathbb{R} \ F_X(a) = \mathbb{P}[X \le a]$$

S 2.3 Einfache Identität

Seien a ; b zwei reelle Zahlen. Dann gilt

$$\mathbb{P}[a < X \le b] = F(b) - F(a)$$

T 2.4 Eigenschaften der Verteilungsfunktion

Sei X eine Z.V a
if einem Wahrscheinlichkeitsraum. Die Verteilungsfunktion
 $F=F_X:\mathbb{R}\to[0,1]$ von X erfüllt folgende Eigenschaften

- · F ist monoton wachsend
- · F ist rechtsstetig
- $\cdot \lim_{a \to -\infty} F(a) = 0$ und $\lim_{a \to \infty} F(a) = 1$