1. Physicochemical Property

Property	Value	Comment
Molecular Weight	490.26	Contain hydrogen atoms. Optimal:100~600
Volume	521.277	Van der Waals volume
Density	0.94	Density = MW / Volume
nHA	5.0	Number of hydrogen bond acceptors. Optimal:0~12
nHD	1.0	Number of hydrogen bond donors. Optimal:0~7
nRot	10.0	Number of rotatable bonds. Optimal:0~11
nRing	1.0	Number of rings. Optimal:0~6
MaxRing	6.0	Number of atoms in the biggest ring. Optimal:0~18
nHet	6.0	Number of heteroatoms. Optimal:1~15
fChar	0.0	Formal charge. Optimal:-4 ~4
nRig	24.0	Number of rigid bonds. Optimal:0~30
Flexibility	0.417	Flexibility = nRot /nRig
Stereo Centers	2.0	Stereo Centers. Optimal: ≤ 2
TPSA	53.01	Topological Polar Surface Area. Optimal:0~140
logS	-4.779	The logarithm of aqueous solubility value.
logP	4.254	The logarithm of the n-octanol/water distribution coefficients at pH=7.4.
logD	3.773	The logarithm of the n-octanol/water distribution coefficient.
pka (Acid)	9.235	Acid-base dissociation constant (pKa) value represents the strength of a drug molecule's acidity or basicity.
pka (Base)	6.205	Acid-base dissociation constant (pKa) value represents the strength of a drug molecule's acidity or basicity.
Melting point	130.125	The predicted melting point of a compound is expressed in degrees Celsius (°C). Melting points below 25°C are classified as liquids, while melting points above 25°C are classified as solids.
Boiling point	350.366	The predicted melting point of a compound is expressed in degrees Celsius (°C). A normal boiling point below 25°C is categorized as a gas.

2. Medicinal Chemistry

Property	Value	Decision	Comment

QED	0.427	•	■ A measure of drug-likeness based on the concept of desirability; ■ Attractive: > 0.67; ■ unattractive: 0.49~0.67; ■ too complex: < 0.34
GASA	0.0	•	■ ES: Easy to synthesize; HS: Hard to synthesize; ■ The output value represents the probability of being difficult to synthesize, ranging from 0 to 1.
Synth	3.0	•	 ■ Synthetic accessibility score is designed to estimate ease of synthesis of drug-like molecules. ■ SAscore ≥ 6, difficult to synthesize; SAscore <6, easy to synthesize
Fsp3	0.367	•	 ■ The number of sp3 hybridized carbons / total carbon count, correlating with melting point and solubility. ■ Fsp³ ≥0.42 is considered a suitable value.
MCE-18	76.683	•	■ MCE-18 stands for medicinal chemistry evolution.■ MCE-18≥45 is considered a suitable value.
NPscore	-0.838	-	 ■ Natural product-likeness score. ■ This score is typically in the range from -5 to 5. ■ The higher the score is, the higher the probability is that the molecule is a NP.
Lipinski Rule	0.0	•	 ■ MW ≤ 500; logP ≤ 5; Hacc ≤ 10; Hdon ≤ 5 ■ If two properties are out of range, a poor absorption or permeability is possible, one is acceptable.
Pfizer Rule	1.0	•	■ logP > 3; TPSA < 75 ■ Compounds with a high log P (>3) and low TPSA (<75) are likely to be toxic.
GSK Rule	1.0	•	 ■ MW ≤ 400; logP ≤ 4 ■ Compounds satisfying the GSK rule may have a more favorable ADMET profile
Golden Triangle	0.0		■ 200 ≤ MW ≤ 500; -2 ≤ logD ≤ 5 ■ Compounds satisfying the Golden Triangle rule may have a more favorable ADMET profile.
PAINS	0 alerts	3 ?	frequent hitters, Alpha-screen artifacts and reactive compound 480 substructures (J Med Chem 201053:2719-40)
ALARM NMR	2 alerts	-	Thiol reactive compounds.
BMS	0 alerts	-	undesirable, reactive compounds 176 substructures (J Chem Inf Model 200646:1060-8)
Chelator Rule	1 alerts	-	Chelating compounds.
Colloidal aggregators	0.643	-	 ■ Category 0: non-colloidal aggregators; ■ Category 1: colloidal aggregators. ■ The output value is the probability of being colloidal aggregators, within the range of 0 to 1.

FLuc inhibitors	0.008	•	 ■ Category 0: non-fLuc inhibitors; ■ Category 1: fLuc inhibitors. ■ The output value is the probability of being fLuc inhibitors, within the range of 0 to 1.
Blue fluorescence	0.008	•	 ■ Category 0: non-blue fluorescence; ■ Category 1: blue fluorescence. ■ The output value is the probability of being blue fluorescence, within the range of 0 to 1.
Green fluorescence	0.847	•	 ■ Category 0: non-green fluorescence; ■ Category 1: green fluorescence. ■ The output value is the probability of being green fluorescence, within the range of 0 to 1.
Reactive compounds	0.001	•	 ■ Category 0: non-reactive compound; ■ Category 1: reactive compound. ■ The output value is the probability of being reactive compound, within the range of 0 to 1.
Promiscuous compounds	0.001	•	 ■ Category 0: non-promiscuous compound; ■ Category 1: promiscuous compound. ■ The output value is the probability of being promiscuous compound, within the range of 0 to 1.

3. Absorption

Property	Value	Decision	Comment
Caco-2 Permeability	-5.088	•	Optimal: higher than -5.15 Log unit
MDCK Permeability	-4.679	•	 ■ low permeability: < 2 x 10-6 cm/s ■ medium permeability: 2-20 x 10⁻⁶ cm/s ■ high passive permeability: > 20 x 10⁻⁶ cm/s
PAMPA	0.001		 ■ The experimental data for Peff was logarithmically transformed (logPeff). ■ Molecules with log Peff values below 2.0 were classified as low-permeability (Category 0), while those with log Peff values exceeding 2.5 were classified as high-permeability (Category 1).
Pgp-inhibitor	0.913	•	 ■ Category 1: Inhibitor; ■ Category 0: Non-inhibitor; ■ The output value is the probability of being Pgp-inhibitor
Pgp-substrate	0.352	•	■ Category 1: substrate;■ Category 0: Non-substrate;■ The output value is the probability of being Pgp-substrate
НІА	0.0	•	 ■ Human Intestinal Absorption ■ Category 1: HIA+(HIA < 30%); ■ Category 0: HIA-(HIA >= 30%); ■ The output value is the probability of being HIA+

F _{20%}	0.005	•	 ■ 20% Bioavailability ■ Category 1: F 20% + (bioavailability < 20%); ■ Category 0: F 20% - (bioavailability ≥ 20%); ■ The output value is the probability of being F 20% +
F _{30%}	0.08	•	 ■ 30% Bioavailability ■ Category 1: F 30% + (bioavailability < 30%); ■ Category 0: F 30% - (bioavailability ≥ 30%); ■ The output value is the probability of being F 30% +
F _{50%}	0.479	•	 ■ 50% Bioavailability ■ Category 1: F 50% + (bioavailability < 50%); ■ Category 0: F 50% - (bioavailability ≥ 50%); ■ The output value is the probability of being F 50% +

4. Distribution

Property	Value	Decision	Comment
PPB	98.345	•	 ■ Plasma Protein Binding Optimal: < 90%. ■ Drugs with high protein-bound may have a low therapeutic index.
VDss	0.22	•	■ Volume Distribution ■ Optimal: 0.04-20L/kg
BBB	0.973	•	 ■ Blood-Brain Barrier Penetration ■ Category 1: BBB+; Category 0: BBB-; ■ The output value is the probability of being BBB+
Fu	1.58	•	■ The fraction unbound in plasms■ Low: <5%; Middle: 5~20%; High: > 20%
OATP1B1 inhibitor	0.935	•	■ Category 0: Non-inhibitor; Category 1: inhibitor. ■ The output value is the probability of being inhibitor, within the range of 0 to 1.
OATP1B3 inhibitor	0.41	•	■ Category 0: Non-inhibitor; Category 1: inhibitor. ■ The output value is the probability of being inhibitor, within the range of 0 to 1.
BCRP inhibitor	0.017		 ■ Category 0: Non-inhibitor; Category 1: inhibitor. ■ The output value is the probability of being inhibitor, within the range of 0 to 1.
MRP1 inhibitor	0.977	•	■ Category 0: Non-inhibitor; Category 1: inhibitor. ■ The output value is the probability of being inhibitor, within the range of 0 to 1.

5. Metabolism

Property	Value	Decision	Comment
CYP1A2 inhibitor	0.0	•	■ Category 1: Inhibitor; Category 0: Non-inhibitor; ■ The output value is the probability of being inhibitor.

CYP1A2			■ Category 1: Substrate; Category 0: Non-substrate;
substrate	1.0	•	■ The output value is the probability of being substrate.
CYP2C19 inhibitor	0.352	•	 ■ Category 1: Inhibitor; Category 0: Non-inhibitor; ■ The output value is the probability of being inhibitor.
CYP2C19 substrate	1.0	•	 ■ Category 1: Substrate; Category 0: Non-substrate; ■ The output value is the probability of being substrate.
CYP2C9 inhibitor	0.918	•	■ Category 1: Inhibitor; Category 0: Non-inhibitor; ■ The output value is the probability of being inhibitor.
CYP2C9 substrate	0.16	•	 ■ Category 1: Substrate; Category 0: Non-substrate; ■ The output value is the probability of being substrate.
CYP2D6 inhibitor	0.983	•	 ■ Category 1: Inhibitor; Category 0: Non-inhibitor; ■ The output value is the probability of being inhibitor.
CYP2D6 substrate	0.853	•	 ■ Category 1: Substrate; Category 0: Non-substrate; ■ The output value is the probability of being substrate.
CYP3A4 inhibitor	0.953	•	■ Category 1: Inhibitor; Category 0: Non-inhibitor; ■ The output value is the probability of being inhibitor.
CYP3A4 substrate	0.999	•	 ■ Category 1: Substrate; Category 0: Non-substrate; ■ The output value is the probability of being substrate.
CYP2B6 inhibitor	0.017	•	■ Category 1: Inhibitor; Category 0: Non-inhibitor; ■ The output value is the probability of being inhibitor.
CYP2B6 substrate	0.24	•	 ■ Category 1: Substrate; Category 0: Non-substrate; ■ The output value is the probability of being substrate.
CYP2C8 inhibitor	0.998	•	 ■ Category 1: Inhibitor; Category 0: Non-inhibitor; ■ The output value is the probability of being inhibitor.
HLM Stability	0.998		■ human liver microsomal (HLM) stability ■ Category 0: stable+ (HLM > 30 min); Category 1: unstable- (HLM ≤ 30 min). The output value is the probability of human liver microsomal instability, where a value closer to 1 indicates a higher likelihood of instability. The range is between 0 and 1.

6. Excretion

Proberty Value Decision Comment	Property	Value	Decision	Comment
---------------------------------------	----------	-------	----------	---------

CL _{plasma}	5.888	•	■ The unit of predicted CLplasma penetration is ml/min/kg. >15 ml/min/kg: high clearance; 5-15 ml/min/kg: moderate clearance; < 5 ml/min/kg: low clearance.
T _{1/2}	0.538	•	■ The unit of predicted T1/2 is hours. ■ ultra-short half-life drugs: 1/2 < 1 hour; short half-life drugs: T1/2 between 1-4 hours; intermediate short half-life drugs: T1/2 between 4-8 hours; long half-life drugs: T1/2 > 8 hours.

7. Toxicity

Property	Value	Decision	Comment
hERG Blockers	0.975	•	■ Molecules with IC50 ≤10μM or ≥50% inhibition at 10 μM were classified as hERG+ (Category 1), ■ while molecules with IC50 >10μM or < 50% inhibition at 10μM were classified as hERG - (Category 0). ■ The output value is the probability of being hERG+, within the range of 0 to 1.
hERG Blockers (10um)	0.909	•	 ■ Molecules with IC50 ≤10 μM are classified as hERG+ (Category 1), ■ and molecules with IC50 > 10μM are classified as hERG- (Category 0). ■ The output value is the probability of being hERG+, within the range of 0 to 1.
DILI	0.437	•	 ■ Drug Induced Liver Injury. ■ Category 1: drugs with a high risk of DILI; ■ Category 0: drugs with no risk of DILI. ■ The output value is the probability of being toxic.
AMES Muta genicity	0.284	•	 ■ AMES Toxicity ■ Category 1: Ames positive(+); ■ Category 0: Ames negative(-); ■ The output value is the probability of being toxic.
Rat Oral Acute Toxicity	0.57		 ■ Rat Oral Acute Toxicity. ■ Category 0: low-toxicity, > 500 mg/kg; ■ Category 1: high-toxicity; < 500 mg/kg. ■ The output value is the probability of being toxic, within the range of 0 to 1.
FDAMDD	0.917	•	 ■ FDA Maximum (Recommended) Daily Dose. ■ Category 1: FDAMDD (+); ■ Category 0: FDAMDD (-); The output value is the probability of being positive.
Skin Sensiti zation	0.75	•	 ■ Category 1: Sensitizer; ■ Category 0: Non-sensitizer. ■ The output value is the probability of being toxic, within the range of 0 to 1.
Carcinogeni city	0.274	•	 ■ Category 1: carcinogens; ■ Category 0: non-carcinogens; ■ The output value is the probability of being toxic.

Eye Corrosion	0.0	•	 ■ Eye Corrosion ■ Category 1: corrosives; Category 0: noncorrosives; ■ The output value is the probability of being corrosives.
Eye Irritation	0.01	•	 ■ Eye Irritation ■ Category 1: irritants; Category 0: nonirritants; ■ The output value is the probability of being irritants.
Respiratory	0.991	•	 ■ Category 1: respiratory toxicants; ■ Category 0: non-respiratory toxicants. ■ The output value is the probability of being toxic, within the range of 0 to 1.
Human Hep atotoxicity	0.745	•	 ■ Human Hepatotoxicity ■ Category 1: H-HT positive(+); ■ Category 0: H-HT negative(-); ■ The output value is the probability of being toxic.
Drug-induce d Nephrotox icity	0.996	•	 ■ Category 0: non-nephrotoxic (-); ■ Category 1: nephrotoxic (+). ■ The output value is the probability of being nephrotoxic (+), within the range of 0 to 1.
Ototoxicity	0.665	•	 ■ Category 0: non-ototoxicity (-); ■ Category 1: ototoxicity (+). ■ The output value is the probability of being ototoxicity (+), within the range of 0 to 1.
Hematotoxic ity	0.3	•	 ■ Category 0: non-hematotoxicity (-); ■ Category 1: hematotoxicity (+). ■ The output value is the probability of being hematotoxicity (+), within the range of 0 to 1.
Genotoxicity	0.984	•	 ■ Category 0: non-Genotoxicity (-); ■ Category 1: Genotoxicity (+). ■ The output value is the probability of being ototoxicity (+), within the range of 0 to 1.
RPMI-8226 Immunitoxici ty	0.108		 ■ Category 0: non-cytotoxicity (-); ■ Category 1: cytotoxicity (+). ■ The output value is the probability of being ototoxicity (+), within the range of 0 to 1.
A549 Cytotoxicity	0.714	•	 ■ Category 0: non-cytotoxicity (-); ■ Category 1: cytotoxicity (+). ■ The output value is the probability of being ototoxicity (+), within the range of 0 to 1.
Hek293 Cytotoxicity	0.944	•	■ Category 0: non-cytotoxicity (-); ■ Category 1: cytotoxicity (+). ■ The output value is the probability of being ototoxicity (+), within the range of 0 to 1.
Drug-induce d Neurotoxi city	0.989	•	 ■ Category 0: non-neurotoxic (-); ■ Category 1: neurotoxic (+). ■ The output value is the probability of being neurotoxic (+), within the range of 0 to 1.

8. Environmental toxicity

Property	Value	Comment	
Bioconcentration Factors	1.524	 ■ Bioconcentration factors are used for considering secondary poisoning potential and assessing risks to human health via the food chain. ■ The unit is -log10[(mg/L)/(1000*MW)] 	
IGC ₅₀	4.03	 ■ Tetrahymena pyriformis 50 percent growth inhibition concentration. ■ The unit is -log10[(mg/L)/(1000*MW)] 	
LC ₅₀ FM	4.79	■ 96-hour fathead minnow 50 percent lethal concentration. ■ The unit is -log10[(mg/L)/(1000*MW)]	
LC ₅₀ DM	5.253	■ 48-hour daphnia magna 50 percent lethal concentration. ■ The unit is -log10[(mg/L)/(1000*MW)]	

9. Tox21 pathway

Property	Value	Decision	Comment
NR-AhR	0.022	•	 Aryl hydrocarbon receptor Category 1: actives; Category 0: inactives; The output value is the probability of being active.
NR-AR	0.0	•	 ■ Androgen receptor ■ Category 1: actives; ■ Category 0: inactives; ■ The output value is the probability of being active.
NR-AR-LBD	0.0	•	 Androgen receptor ligand-binding domain Category 1: actives; Category 0: inactives; The output value is the probability of being active.
NR-Aromatase	0.148	•	■ Category 1: actives ;■ Category 0: inactives;■ The output value is the probability of being active.
NR-ER	0.986	•	 ■ Estrogen receptor ■ Category 1: actives; ■ Category 0: inactives; ■ The output value is the probability of being active.
NR-ER-LBD	0.108	•	 ■ Estrogen receptor ligand-binding domain ■ Category 1: actives; ■ Category 0: inactives; ■ The output value is the probability of being active.
NR-PPAR-gam ma	0.0	•	 ■ Peroxisome proliferator-activated receptor gamma ■ Category 1: actives; ■ Category 0: inactives; ■ The output value is the probability of being active.
SR-ARE	0.026	•	 ■ Antioxidant response element ■ Category 1: actives; ■ Category 0: inactives; ■ The output value is the probability of being active.

SR-ATAD5	0.0	•	■ ATPase family AAA domain-containing protein 5 ■ Category 1: actives; ■ Category 0: inactives; ■ The output value is the probability of being active.
SR-HSE	0.0	•	 ■ Heat shock factor response element ■ Category 1: actives; ■ Category 0: inactives; ■ The output value is the probability of being active.
SR-MMP	0.935	•	 ■ Mitochondrial membrane potential ■ Category 1: actives; ■ Category 0: inactives; ■ The output value is the probability of being active.
SR-p53	0.0	•	 p53, a tumor suppressor protein Category 1: actives; Category 0: inactives; The output value is the probability of being active.

10. Toxicophore Rules

Property	Value	Comment
Acute Toxicity Rule	0	■ 20 substructures;■ acute toxicity during oral administration
Genotoxic Carcinogenicity Rule	0	■ 117 substructures; ■ carcinogenicity or mutagenicity
NonGenotoxic Carcinogenicity Rule	1 alerts	■ 23 substructures; ■ carcinogenicity through nongenotoxic mechanisms
Skin Sensitization Rule	4 alerts	■ 155 substructures; ■ skin irritation
Aquatic Toxicity Rule	1 alerts	■ 99 substructures; ■ toxicity to liquid(water)
NonBiodegradable Rule	4 alerts	■ 19 substructures; ■ non-biodegradable
SureChEMBL Rule	0	■ 164 substructures; ■ MedChem unfriendly status
Toxicophores Rule	1 alerts	154 toxic substructures from FAF-Drug4