## EE25BTECH11010 - Arsh Dhoke

## **Question:**

The position vector of the point which divides the join of points  $2\mathbf{a} - 3\mathbf{b}$  and  $\mathbf{a} + \mathbf{b}$  in the ratio 3:1 is \_\_\_\_\_.

**Solution:** 

$$\mathbf{P} = 2\mathbf{a} - 3\mathbf{b} \tag{0.1}$$

$$\mathbf{Q} = \mathbf{a} + \mathbf{b} \tag{0.2}$$

Now, the matrix form for **Q** and **P** is:

$$\begin{pmatrix} \mathbf{Q} & \mathbf{P} \end{pmatrix} = \begin{pmatrix} \mathbf{a} & \mathbf{b} \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & -3 \end{pmatrix} \tag{0.3}$$

Using the section formula, the point  $\mathbf{R}$  dividing  $\mathbf{Q} - \mathbf{P}$  in ratio 3:1 is:

$$\mathbf{R} = \frac{3\mathbf{Q} + 1\mathbf{P}}{3+1} \tag{0.4}$$

$$\mathbf{R} = \frac{1}{4} \cdot \begin{pmatrix} \mathbf{Q} & \mathbf{P} \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \tag{0.5}$$

$$\mathbf{R} = \frac{1}{4} \cdot \begin{pmatrix} \mathbf{a} & \mathbf{b} \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \tag{0.6}$$

$$\mathbf{R} = \frac{1}{4} \cdot \begin{pmatrix} \mathbf{a} & \mathbf{b} \end{pmatrix} \begin{pmatrix} 5 \\ 0 \end{pmatrix} \tag{0.7}$$

$$\mathbf{R} = \frac{1}{4} \cdot \left(5\mathbf{a}\right) \tag{0.8}$$

Let  $\mathbf{a} = 1$  and  $\mathbf{b} = 1$ .

l



Fig. 0.1: Graph for question 1