Graph Theory: Homework #10

Lin Hung Cheng B01902059

Problem 1

Solution

1.

對2-連通圖G進行貪求耳分解,形成 p_1 , p_2 , p_3 ... p_n 。 只考慮 p_1 時,則依圈的方向組合成 P_3 ,明顯條件成立。

考慮 p_1+p_2 ,先將 p_2 的點排成兩兩相斥的 P_3 ,若無多餘點,因為 p_1 , p_2 都符合條件,條件成立;若有多餘點(最多兩個),則可和 p_1 的點排成 P_3 ,剩下的 p_1 仍為 P_N ,組合成 P_3 後,最多只會剩餘兩個點,條件成立。

考慮 $p_1+p_2+p_3$, 先將 p_3 的點排成兩兩相斥的 P_3 , 若 p_3 無多餘的點,條件成立; 若 p_3 有多餘點:

1. $若p_3$ 的端點皆屬於 p_1 :

否則, p_2 也有多餘點,因為G是claw-free的圖,此時 p_2 的端點和 p_3 的端點兩兩不同,令 p_2 的端點為 v_1 , v_2 , p_3 的端點為 v_3 , v_4 ,

不失一般性,可將 p_1 分為4個點集: $b1 = v_1 \ v_2$ (不含 v_1, v_2), $a_1 = v_2 \ v_3$, $b_2 = v_3 \ v_4$ (不含 v_3, v_4), $a_2 = v_4 \ v_1$ 后 $|a_1, a_2| \ge 0$, 因為是貪求耳分解, $|p_2| \le |b_1|$, 且 p_2 有多餘點, $|p_2| > 0$, $|b_1, b_2| > 0$ 。

先從 p_2 , p_3 開始組合 P_3 , 從 p_2 , p_3 取 v_1 = Neighbor(端點)為起始點組合出 P_3 , 因為 p_2 , p_3 各有兩個端點,有2*2 = 4種組合方法,此時 p_1 的兩個連通部分的點集分別為

 $\{(a_1),(a_2,b_1,b_2)\},\{(a_1,b_1),(a_2,b_2)\},\{(a_1,b_2),(a_2,b_1)\},\{(a_2),(a_1,b_1,b_2)\}$ (若 p_2,p_3 只剩一點,需要額外對其中一個連通部分去除一點,以形成 p_3),經列舉可知,必有一種方法可使兩個連通部分剩餘的點數目 ≤ 2 ,條件成立。

其餘耳朵也可用此方法遞迴證明條件成立。

Problem 2

Proof. 區塊可能為一條邊或是2-連通圖。

且因G無偶圈,區塊中無偶圈。

若區塊G'為2-連通圖,且無偶圈,此時G'的耳分解為 $p_1, p_2, \dots p_n$ 。

 p_1 必為奇圈,若 p_2 的端點為 v_1, v_2 :

因為 p_1 為奇圈, v_1, v_2 必有一奇數距離 P_1 ,一偶數距離的路徑 P_2 。

 Ξ_{p_2} 上有偶數個邊,則 P_{2p_2} 形成一偶圈;若 p_2 上有奇數個邊,則 v_1 , P_{1p_2} 形成一偶圈;所以G'沒有 p_1 以外的耳分解,即G'為奇圈。

所以在無偶圈的情況下,區塊只可能為一條邊或是奇圈。

Problem 3

Solution

不失一般性,可設從X為原點,到 $Y = \{0,1\} \times k$ 。

k條路徑的第一條邊分別為(1, 0, ..., 0), (0, 1, ..., 0), (0, 0, ..., 1),分別屬於路徑 $p_1, p_2, p_3..., p_k$ 。 p_i 的路徑產生方法為:先將第i個座標的值設為1,然後從i+1個座標軸開始,依序將每個座標軸的值修正成和Y相同的值,直到和Y完全相同或是修正到第i個座標軸。

 $\Xi Y_i = 1$, $p_j(j \neq i)$ 必不包含 p_i 經過的邊,因為 p_j 在修正到i時才會使第i個座標軸的值為1,此時已經修正過第i i座標軸的值。

 $\overline{A}Y_i = 0$, $p_i(j \neq i)$ 必不經過 p_i 經過的點,因為 p_i 的第i個座標軸的值永遠為0。

Problem 4

Solution

1.

令G為極小2連通圖,此時 $\delta(G) > \kappa(G) = 2$,而因為G為2-connected,所以有耳分解。

設耳分解的耳朵為 $p_1, p_2, p_3 \dots p_n$ 。若 $\delta(G) > 2$,則G中的每個點至少都屬於一個耳朵的端點。

此時除去一條邊產生圖G',設邊為 p_i 上的 v_1v_2 :

若有 p_j 為 v_1 , v_2 作為端點,則可將 p_j 放入 p_i 中,取代原本的 v_1v_2 ,並移除 p_j ;因為此時 p_1 , p_2 ,... p_i - v_1v_2 + p_j , ... p_i - 1, p_i + 1 ... p_n 為圖G' 的耳分解;

若無 v_1 , v_2 作為端點的耳分解,則可找到以 v_1 作端點的 p_j 和以 v_2 作端點的pk,將 p_i 中與 v_1 連通的部分 p_{i1} 放入 p_j 中,將 p_i 中與 v_2 連通的部分 p_{i2} 放入 p_k 中,並移除 p_i ,此時 p_1 , p_2 ,... p_j+p_{i1} , ... p_k+p_{i2} ... p_n 為圖G'的耳分解;

所以G'必為2-連通,與G為極小2連通圖的條件矛盾。因為 $2 = \kappa(G) < \delta(G) < 2, \delta(G) = 2$ 。

2.

令G為極小k邊連通圖,其 $\kappa'(G) = k < \delta(G)$ 。

 $ilde{\pi}\delta(G)>k$,不失一般性, $\diamondsuit\delta(G)=k+1$,則從G中去除一邊,形成圖G',因為...,圖G'是k-邊連通,矛盾。

Problem 5

Solution

1.

令圖G符合k = m時的條件,移除m個點時產生圖G',依所給的條件可知,G'中 d_j 的度數 $\geq j$,G'的度序列符合k = 0的條件。

若k=0時的圖不連通,不失一般性,設有兩個連通部份A, B, 且A包含 d_n 對應的點, 則A最少有 d_n +1個點;此時B最多只有n-1- d_n 個點,因為 $d_{n-1-d_n} \ge n-1-d_n$,B的最大點度數的最小值為n-1- d_n ,與B為一連通部分的假設矛盾,k=0時圖連通。

因為移除m個點後依然連通,k=m時,圖G為m+1連通,得證。

2.

 $V = \{a, b, c, d\}$ $E = \{ab, ac, ad, bd, cd\}$ j = 1, k = 2

若移除k個度數為n-1的點,則G剩下j個度數為j-1的點,n-j-k個度數為n-j-k-1。