

Neural Nets 3

Performance & Optimization

Overview:

- CNN Visualization
- Performance Metrics
- Batch, Mini-Batch and Stochastic Learning
- K-Fold-Cross Validation
- Momentum
- Dropout
- Plot while Training in tensorflow

Visualizing the process within a CNN: https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Improve generalization of CNN through augmentation of dataset:

- Rotate
- Add Noise
- Mirror

•

In which situations is the accuracy of a classifier not an appropriate metric?

Test-Set

Test-Set

More Metrics

Binary Classification

True Class	Predicted Class	Туре
0	0	True Positive
0	1	False Positive
1	0	False Negative
1	1	True Negative

Confusion Matrix

(#True Positive

#False Negative\ (#False Positive - #True Negative)

True Class	Predicted Class	Туре
0	0	True Positive
0	1	False Positive
1	0	False Negative
1	1	True Negative

(#True Positive (#False Positive

#False Negative\ #True Negative)

Accuracy =

#True Positive + #True Negative #Examples

(#True Positive |#False Positive #False Negative \
#True Negative)

$$Accuracy = \frac{\#True\ Positive + \#True\ Negative}{\#Examples}$$

$$Accuracy * 100\% = \frac{110 + 0}{120} * 100\% = 91.67\%$$

(#True Positive (#False Positive

#False Negative \
#True Negative)

Precision =

#True Positive

#True Positive + #False Positive

$$Precision = \frac{\#True\ Positive}{\#True\ Positive + False\ Positive}$$

$$Precision * 100\% = \frac{110}{110 + 10} * 100\% = 91.67\%$$

(#True Positive (#False Positive

#False Negative \
#True Negative)

Recall =

#True Positive

#True Positive + #False Negative

$$Recall = \frac{\#True\ Positive}{\#True\ Positive + \#False\ Negative}$$

$$Precision * 100\% = \frac{110}{110 + 0} * 100\% = 100\%$$

Precision =

#True Positive

#True Positive + #False Positive

Recall =

#True Positive

#True Positive + #False Negative

F1Score =

2 * Precision * Recall

Precision + Recall

$$Precision = 1 Recall = 1 F1Score = \frac{2 * 0.9167 * 1}{1 + 0.9167} \sim 0.957$$

$$F1Score = \frac{2 * Precision * Recall}{Precision + Recall}$$

predicted condition					
	total population	prediction positive	prediction negative	$= \frac{\Sigma \text{ condition positive}}{\Sigma \text{ total population}}$	
true condition	condition positive	True Positive (TP)	False Negative (FN) (type II error)	True Positive Rate (TPR), Sensitivity, Recall, Probability of Detection $= \frac{\sum TP}{\sum condition positive}$	False Negative Rate (FNR), Miss Rate $= \frac{\Sigma \text{ FN}}{\Sigma \text{ condition positive}}$
	condition negative	False Positive (FP) (Type I error)	True Negative (TN)	False Positive Rate (FPR), Fall-out, Probability of False Alarm $= \frac{\sum FP}{\sum \text{ condition negative}}$	True Negative Rate (TNR),
	$= \frac{\sum TP + \sum TN}{\sum \text{total population}}$	Positive Predictive Value (PPV), $= \frac{\text{Precision}}{\sum \text{TP}}$ $= \frac{\sum \text{TP}}{\sum \text{prediction positive}}$	False Omission Rate (FOR) $= \frac{\Sigma \text{ FN}}{\Sigma \text{ prediction negative}}$	Positive Likelihood Ratio (LR+) $= \frac{TPR}{FPR}$	Diagnostic Odds Ratio (DOR) $= \frac{LR+}{LR-}$
		False Discovery Rate (FDR) $= \frac{\sum FP}{\sum prediction positive}$	$\begin{aligned} & \text{Negative Predictive Value (NPV)} \\ &= \frac{\Sigma \text{ TN}}{\Sigma \text{ prediction negative}} \end{aligned}$	Negative Likelihood Ratio (LR-) $= \frac{FNR}{TNR}$	- LR-

(#True Positive #False I (#False Positive #True N

#False Negative\ #True Negative)

#Examples

= #True Positive + #False Negative + #False Positive + #True Negative

$$#Examples = 3 + 3 + 5 + 16 = 27$$

$$#Examples = 27$$

$$Accuracy = \frac{\#True\ Positive + \#True\ Negative}{\#Examples}$$

$$Accuracy = \frac{3+16}{27} \sim 0.7$$

$$Precision = \frac{\#True\ Positive}{}$$

#True Positive + #False Positive

$$Precision = \frac{3}{3+5} \sim 0.375$$

$$Recall = \frac{\#True\ Positive}{\#True\ Positive}$$

#True Positive + #False Negative

$$Recall = \frac{3}{3+3} = 0.5$$

$$F1Score = \frac{2*Precision*Recall}{Precision+Recall}$$

$$Precision = 0.375$$

$$Recall = 0.5$$

$$F1Score = \frac{2 * 0.375 * 0.5}{0.375 + 0.5} \sim 0.429$$

$$Accuracy = 0.7$$

$$Precision = 0.375$$

$$Recall = 0.5$$

$$F1Score = 0.429$$

Given the following Confusion Matrix – calculate:

- Accuracy
- Average Precision
- Average Recall
- F1Score of averaged Precision and Recall

Recall =

$$Accuracy = \frac{\#True\ Positive + \#True\ Negative}{\#Examples}$$

$$Precision = \frac{\#True\ Positive}{\#True\ Positive + \#False\ Positive}$$

$$F1Score = \frac{2 * Precision * Recall}{Precision + Recall}$$

#True Positive

#True Positive + #False Negative

• #Example = 12

- #Example = 12
- Accuracy = 0.5

- #Example = 12
- Accuracy = 0.5
- $Precision(Dog) \sim 0.3$
- Precision(Cat) = 0.75
- Precision(Mouse) = 0.4
- $\overline{Precision} = 0.48$

- #Example = 12
- Accuracy = 0.5
- $Precision(Dog) \sim 0.3$
- Precision(Cat) = 0.75
- Precision(Mouse) = 0.4
- $\overline{Precision} = 0.48$
- Recall(Dog) = 0.5
- Recall(Cat) = 0.6
- Recall(Mouse) = 0.4
- $\overline{Recall} = 0.5$

- #Example = 12
- Accuracy = 0.5
- $Precision(Dog) \sim 0.3$
- Precision(Cat) = 0.75
- Precision(Mouse) = 0.4
- $\overline{Precision} = 0.48$
- Recall(Dog) = 0.5
- Recall(Cat) = 0.6
- Recall(Mouse) = 0.4
- $\overline{Recall} = 0.5$
- *F1Score*~0.49

Full-Batch Learning

$E = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2$

repeat until convergence{

$$\theta_1 \coloneqq \theta_1 - \alpha * \frac{\partial E(\theta_1)}{\partial \theta_1}$$

}

Full Dataset Length

Stochastic Gradient Descent

One Example

$$E = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2 = \frac{1}{2} (\hat{y}_i - y_i)^2$$

repeat until convergence{

$$\theta_1 \coloneqq \theta_1 - \alpha * \frac{\partial E(\theta_1)}{\partial \theta_1}$$

}

Minibatch

$E = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2$

repeat until convergence{

$$\theta_1 \coloneqq \theta_1 - \alpha * \frac{\partial E(\theta_1)}{\partial \theta_1}$$

}

Length of Minibatch

	Stochastic GD	Full-Batch	Mini-Batch
Online- Learning	Yes	No	Yes
Variance of Gradients	High	Low	Middle
Fit in Memory	Yes	Depends on dataset length	Depends on batch-size
Speed of Convergence	High	Slow	Medium

Validation


```
Randomize dataset
Split whole dataset into K datasets (folds)
sum performance = 0
for i = 0 in range(K){
     testset = fold(i)
     trainset=fold(i \neq 0)
     train(trainset)
     perfomance = test(testset)
     sum performance+=performance
sum_performance /= K
```


Randomize dataset

Randomize dataset Split whole dataset into *K* datasets (folds)

Randomize dataset Split whole dataset into K datasets (folds) sum_performance = 0 for i = 0 in range(K){

}

Randomize dataset Split whole dataset into K datasets (folds) sum_performance = 0 for i = 0 in range(K){ testset = fold(i)

Randomize dataset Split whole dataset into K datasets (folds) sum_performance = 0 for i = 0 in range(K){ testset = fold(i) trainset=fold($i \neq 0$)

}


```
Randomize dataset
Split whole dataset into K datasets (folds)
sum_performance = 0
for i = 0 in range(K){
     testset = fold(i)
     trainset=fold(i \neq 0)
     train(trainset)
     perfomance = test(testset)
```

}


```
Randomize dataset
Split whole dataset into K datasets (folds)
sum_performance = 0
for i = 0 in range(K){
     testset = fold(i)
     trainset=fold(i \neq 0)
     train(trainset)
     perfomance = test(testset)
     sum_performance+=performance
```



```
Randomize dataset
Split whole dataset into K datasets (folds)
sum performance = 0
for i = 0 in range(K){
     testset = fold(i)
     trainset=fold(i \neq 0)
     train(trainset)
     perfomance = test(testset)
     sum performance+=performance
sum_performance /= K
```


Recommendation:

K=10 (Gold Standard)

• Special Case K = #Examples:

Leave One Out Cross Validation (LOOCV)

Momentum

Momentum

Usual Weight Update:

$$\theta \coloneqq \theta - \alpha \frac{\partial E(\theta)}{\partial \theta}$$
, $\Delta \theta = -\alpha \frac{\partial E(\theta)}{\partial \theta}$

$$\theta \coloneqq \theta + \Delta \theta$$

Usual Weight Update:

$$\theta \coloneqq \theta - \alpha \frac{\partial E(\theta)}{\partial \theta}, \Delta \theta = -\alpha \frac{\partial E(\theta)}{\partial \theta}$$

$$\theta \coloneqq \theta + \Delta \theta$$

Momentum:

$$\Delta \theta_t \coloneqq -\alpha \frac{\partial E(\theta)}{\partial \theta} + \varepsilon * \Delta \theta_{t-1}, 0 < \varepsilon \le 1$$

$$\theta_{t+1} = \theta_t + \Delta \theta_t$$

Momentum:

- Faster convergence
- Smooth out variance of gradients
- Use Decay for Momentum ε
- Find good value and decay through cross validation

Rate performance of neural net

- High bias / Underfitting
- High variance / Overfitting

Dropout

- Strategy to avoid overfitting
- Randomly exclude some neurons from training process
 - Exclude from forward pass
 - Excude from backward pass

tensorboard

- Create a tf.summary
 - Store important variables (Scalars, Histograms, Images, ...)
- Write tf.summary to file
- Open tensorboard with events-file as target

tensorboard examples:

- Tensorflow documentation
- Internet
- Star Recognition (Repository)
- DQN (Repository)

Neural Nets 3 / M.Sc. Marcel Tiator

CNN example

- Start tensorboard to debug the training process
- Implement Momentum
- Use a data augmentation technique to make generalization more robust
- Implement train, test, validation split
- Download weights and image of one of the five stars to test prediction

Start tensorboard to debug the training process

- Start the training process
- Start tensorboard in directory with event-file

Hints: Implement Momentum

- Implement tf.train.MomentumOptimizer
- Search for "optimizer" in cnn.py

Use a data augmentation technique to make generalization more robust

- Change .tfrecord writing to save RGB-Images
- Implement RGB to Grayscale in training process
- Normalize data before the training process!!!
- Use tf.image.random... operations to augment the input data

Implement train, test, validation split

- Create a new python script
- Count the number of examples
- Randomize the examples
- Create variables for the train, test and validation proportion
- Write .tfrecord files
 - Have a look at write_tfrecord.py

Download weights and image of one of the five stars to test prediction

- Works only if RGB to Grayscale conversion is implemented
- Solution will be pushed at the end of the lesson

- Data (if not yet downloaded):
 https://nextcloud.mirevi.medien.hs duesseldorf.de/index.php/s/kPXwJiac7vTQVeu
- Pretrained Weights: <u>https://nextcloud.mirevi.medien.hs-</u> <u>duesseldorf.de/index.php/s/L6Y6tnD3PpANKmr</u>
- Repository: https://github.com/mati3230/modalg181
- Read: https://www.tensorflow.org/tutorials/deep_cnn