6/15/2018

Stationarity and Linear filters \leftarrow

Quiz, 6 questions

point

Does any stochastic process with the covariance function $K(t,s)=sin(\lambda(t-s))$ exist?

- Yes
- No

1 point

Let Y_n be a stochastic process which is defined as follows:

 $Y_{n+1}=lpha Y_n+X_n$, n=0,1,... Assume $Y_0=0$, |lpha|<1 and X_n is a sequence of i.i.d. standard normal random random variables for n=0,1,2,... Decide whether Y_n is stationary and find its mean and variance:

- none of above
- Y_n is stationary, $\mathbb{E} Y_n = 0$, $Var Y_n = lpha^2 + 1$
- Y_n is non-stationary, $\mathbb{E} Y_n = 0$, $Var Y_n = rac{1}{1-lpha^2}$
- Y_n is non-stationary, $\mathbb{E} Y_n = 0$, $Var Y_n = lpha^2 + 1 + 2K(Y_n, X_n)$
- Y_n is stationary, $\mathbb{E} Y_n = 0$, $Var Y_n = rac{1}{1-lpha^2}$

point

Let W_t be a Brownian Motion. Is $X_t = (1-t)W_{t/(1-t)}$ a stationary process?

- X_t is strictly stationary process
- X_t is weakly stationary process
- none of above

point

Let W_t be a Brownian Motion and h>0 is a fixed number. Find a covariance function of a process $X_t = W_{t+h} - W_t$:

$$K(t,s) = egin{cases} h - |t-s|, & if |t-s| \leq h \ 0, & if |t-s| > h \end{cases}$$

$$K(t,s) = egin{cases} min(t,s), & if|t-s| \leq h \ 0, & if|t-s| > h \end{cases}$$

- none of above
- $K(t,s)=0\ \forall t,s$

Stationarity and Linear filters \leftarrow

Qui $\cite{5}$ -6 questions Let X_t is a process with independent and stationary increments. Moreover, $\mathbb{E}X_t=0$ and $\mathbb{E}X_t^2<\infty$. Is $Y_t = X_{t+h} - X_t$ is a wide-sense stationary process orall h > 0?

- Yes
- No
- Additional information on X_t is required

point

Let X_t be a wide-sense stationary process with autocovariance function γ , which equals to $\gamma(0)=2$, $\gamma(1)=\gamma(-1)=1$ and $\gamma(n)=0$ for all other n. Find a spectral density $g_X(u)$ of this process:

- $g_X(u) = rac{1+cosu}{\pi}$
- None of above
- $g_X(u) = rac{1 + 2 cos u}{\pi}$
- $g_X(u) = rac{1 + 2 cos u}{2\pi}$
- $g_X(u) = rac{1+cosu}{2\pi}$
- I, Mark R. Lytell, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.

Learn more about Coursera's Honor Code

Submit Quiz

