Kinetic and Stoichiometric Calculations in Clonalyzer

Emiliano Balderas R.

Introduction

This document explains the core kinetic and stoichiometric calculations implemented in the Clonalyzer toolkit. These formulas are commonly used to analyze mammalian cell cultures, particularly CHO cells in fed-batch processes, but they are generalizable to other systems and process modes. All calculations are performed per biological replicate (Clone \times Rep), using volume-normalized data to maintain mass balance integrity [1, 2, 3, 4, 5].

1 Specific Growth Rate (μ)

The specific growth rate is defined as the slope of the natural logarithm of viable cell density (X) with respect to time:

$$\mu = \frac{\ln X_2 - \ln X_1}{t_2 - t_1} \tag{1}$$

Where:

- X_1 , X_2 are viable cell densities at times t_1 and t_2
- \bullet Units: X in cells/mL, t in hours
- Result: μ in h^{-1}

This formula assumes exponential growth in the interval $[t_1, t_2]$.

2 Integral of Viable Cell Density (IVCD)

The IVCD is a measure of biomass exposure over time and is calculated as the area under the VCD curve:

$$IVCD_{mL} = \int_{t_1}^{t_2} X(t) dt \approx \frac{X_1 + X_2}{2} \cdot \Delta t$$
 (2)

To compute total biomass exposure in the culture volume:

$$IVCD_{tot} = IVCD_{mL} \cdot \frac{V_1 + V_2}{2}$$
(3)

Where V_1 , V_2 are the culture volumes at t_1 and t_2 in mL.

Units: cells·h

3 Metabolite or Biomass Balance $(\Delta S, \Delta X)$

The net change of a species (cells, glucose, lactate) is calculated as the difference in total quantity (concentration \times volume):

$$\Delta X = X_2 \cdot V_2 - X_1 \cdot V_1 \tag{4}$$

$$\Delta S = S_1 \cdot V_1 - S_2 \cdot V_2 \tag{5}$$

Where:

- X in cells/mL
- S (substrate) in mol/mL
- V in mL

 ΔS is positive if the substrate was consumed, and negative if it was produced (e.g., lactate).

4 Yield on Substrate $(Y_{X/S})$

Yield is defined as the ratio of biomass produced per mole of substrate consumed:

$$Y_{X/S} = \frac{\Delta X}{\Delta S} \tag{6}$$

Units: cells/mol

5 Specific Rate (q_S)

The specific rate is the substrate consumption or production rate per cell per hour. It is normalized to IVCD:

$$q_S = \frac{\Delta S \cdot 10^{12}}{\text{IVCD}_{\text{tot}}} \tag{7}$$

Where:

- ΔS is in mol
- IVCD $_{tot}$ is in cell·h
- q_S is in pmol/(cell·h)

The conversion factor 10^{12} changes mol to pmol.

References

- [1] Theodora A. Bibila et al. "Monoclonal Antibody Process Development Using Medium Concentrates". en. In: *Biotechnology Progress* 10.1 (Jan. 1994). Publisher: Wiley, pp. 87–96. ISSN: 8756-7938, 1520-6033. DOI: 10.1021/bp00025a011. URL: https://aiche.onlinelibrary.wiley.com/doi/10.1021/bp00025a011 (visited on 07/16/2025).
- [2] Roshni L. Dutton, Jeno M. Scharer, and Murray Moo-Young. "Hybridoma growth and productivity: effects of conditioned medium and of inoculum size". In: *Cytotechnology* 29.1 (Jan. 1999), pp. 1–10. ISSN: 0920-9069. DOI: 10.1023/A:1008060802286. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3449469/ (visited on 07/02/2025).
- [3] Sadettin S. Ozturk. "Engineering challenges in high density cell culture systems". en. In: Cytotechnology 22.1-3 (1996). Publisher: Springer Science and Business Media LLC, pp. 3–16. ISSN: 0920-9069, 1573-0778. DOI: 10.1007/bf00353919. URL: http://link.springer.com/10.1007/BF00353919 (visited on 07/16/2025).
- [4] J. M. Renard et al. "Evidence that monoclonal antibody production kinetics is related to the integral of the viable cells curve in batch systems". en. In: *Biotechnology Letters* 10.2 (Feb. 1988). Publisher: Springer Science and Business Media LLC, pp. 91–96. ISSN: 0141-5492, 1573-6776. DOI: 10.1007/bf01024632. URL: http://link.springer.com/10.1007/BF01024632 (visited on 07/16/2025).
- [5] Liangzhi Xie and Daniel I. C. Wang. "High cell density and high monoclonal antibody production through medium design and rational control in a bioreactor". en. In: Biotechnology and Bioengineering 51.6 (Mar. 2000). Publisher: Wiley, pp. 725–729. ISSN: 0006-3592. DOI: 10.1002/(sici)1097-0290(19960920)51:6<725::aid-bit12>3.0.co;2-c. URL: https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0290(19960920)51:6<725::AID-BIT12>3.0.C0;2-C (visited on 07/16/2025).