Sveučilište u Zagrebu Geotehnički fakultet

Riješeni zadaci					Ocjena
1	2	3	4	5	

Rješenja 1. kolokvij iz kolegija Fizika I

Akademska godina 2023./2024.

19. travnja 2024.

Obavezno ispuniti:

Prezime:	
Ime:	
Vlastoručni potnis:	

1. Pretvorite mjerene jedinice (za priznavanje zadatka svi rezultati moraju biti točni!):

a)
$$\frac{\pi}{15} rad =$$
_______ °

b)
$$86^{\circ} = \underline{\qquad} rad$$

c)
$$63 \text{ kmh}^{-1} = \underline{\qquad} \text{ms}^{-1}$$

d)
$$5.7 L = \underline{\qquad} m^3$$

b)
$$86^{\circ} = \underline{\qquad \qquad rad}$$

c) $63 \ kmh^{-1} = \underline{\qquad \qquad ms^{-1}}$
d) $5,7 \ L = \underline{\qquad \qquad m^3}$
e) $32768 \ mm^2 = \underline{\qquad \qquad cm^2}$

Rješenje:

a)
$$\frac{\pi}{15} rad = 12^{\circ}$$

a)
$$\frac{\pi}{15} rad = 12^{\circ}$$

b) $86^{\circ} = 1.5 \ rad$

c)
$$63 \text{ } kmh^{-1} = 17.5 \text{ } ms^{-1}$$

d) $5.7 \text{ } L = 0.0057 \text{ } m^3$

d)
$$5.7 L = 0.0057 m^3$$

e)
$$32768 \ mm^2 = 327,68 \ cm^2$$

2. Kamen bačen horizontalno pada na tlo poslije pola sekunde na udaljenosti od 5 metara. Pod kojim kutom prema horizontali kamen udara u tlo? (Otpor zraka se zanemaruje!)

Rješenje: $\alpha=26,13^{\circ}$

 ${\bf 3.}$ Vektor trenutne brzine materijalne točke koja se giba u xy-ravnini zadan je izrazom

$$\vec{v}(t) = 6e^{-3t}\vec{i} + 4\sqrt{t}\vec{j} \ [ms^{-1}].$$

U trenutku t=0 vektor položaja materijalne točke je

$$\vec{r}_0 \equiv \vec{r}(t=0s) = 2\vec{i} + 3\vec{j} \ [m]$$

Izračunajte vektor položaja $\vec{r}(t)$ materijalne točke u trenutku $t_1=0.5~s.$

Rješenje: $\vec{r}(t=0.5\ s)=3.55\vec{i}+3.94\vec{j}\ [m]$

$$\vec{r}(t) = 2\left(2 - e^{-3t}\right)\vec{i} + \left(3 + \frac{8}{3}t^{\frac{3}{2}}\right)\vec{j}$$

$$\vec{r}(t=0.5\ s) = 3.55\vec{i} + 3.94\vec{j}\ [m]$$

4. Vanjska sila iznosa $F_1=25,0\ N$ djeluje na blok A mase $m_A=3\ kg$ koji je spojen nerastezljivom niti s blokom B mase $m_B=1\ kg$ na kojega djeluje sila $F_2=5,0\ N$ u suprotnom smjeru kao na slici. Izračunajte iznos ubrzanja sustava blokova A i B ako zanemarimo kinetičko trenje između blokova i podloge.

Rješenje: $a = 5 ms^{-1}$

5. Iznos ubrzanja tijela koje klizi po kosini nagiba 45° je 5 ms^{-2} . Izračunajte koeficijent kinetičkog trenja između tijela i kosine.

Rješenje: $\mu_k = 0.279$

$$\mu_k = \frac{g \sin \alpha - a}{g \cos \alpha}$$