

Europäisches Patentamt European Patent Office Office européen des brevets

(1) Publication number:

0 253 478 B1

1

EUROPEAN PATENT SPECIFICATION

- 3 Date of publication of patent specification: 03.04.91 (1) Int. Cl.5: A61F 9/00
- 2) Application number: 87304624.7
- 2 Date of filing: 26.05.87
- Ophtalmic aspirator-irrigator.
- (3) Priority: 17.07.86 US 886371
- ② Date of publication of application: 20.01.88 Bulletin 88/03
- Publication of the grant of the patent: 03.04.91 Bulletin 91/14
- Designated Contracting States: CH DE ES FR GB IT LI
- References cited: DE-B- 2 854 514

DE-B- 2 854 514 US-A- 4 168 707 US-A- 4 143 649 US-A- 4 377 897

US-A- 4 428 748

US-A- 4 377 897 US-A- 4 496 342

- Proprietor: MENTOR O & O INC. 3000 Longwater Drive Norwell Massachusetts 02061(US)
- ② Inventor: Reimels, Harry G.
 20 Bramblewood Lane
 Braitree Massachusetts 02184(US)
 Inventor: Walsh, David A.
 64 Potter Road
 Waitham Massachusetts 02156(US)
 Inventor: Arsenault, Michael J.
 68 Ocean Street
 Brant Rock Massachusetts 02020(US)
- Representative: Bond, Bentley George et al HASELTINE LAKE & CO. Hazlitt House 28 Southampton Buildings Chancery Lane London, WC2A 1AT(GB)

) 253 478 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to ophthalmic instruments and, more particularly, to an ophthalmic aspirator-irrigator useful during extracapsular cataract surgery.

2. The Prior Art

Extracapsular cataract surgery involves the break-up and removal of the cortex of the cataract and other tissue from the eye by an aspirator Instrument and the continuous substitution of fluids back into the eye to maintain appropriate internal pressure therein lest it collapses. Extracapsular cataract surgery is typically performed with small and delicate manually operated hand-held instruments viewed through a microscope. The precision and delicateness with which ophthalmic surgery is performed requires very durable precision instruments. A great variety of such precision instruments are presently in use. One such instrument employs a pulsating high velocity liquid let to disintegrate the cortex and removing by suction the fluid entraining the disintegrated tissue. See U.S. Patent 3,930,505. Another instrument uses a pair of Jaws for engaging the cortex and removing portions thereof by moving the jaws relative to one another. See U.S. Patent 3,996,935. A further instrument involves one blade surface rotating relative to another. See U.S. Patent 4,167,943. Another instrument includes a rotating stylus, a fluid source for washing away cut tissue and a vacuum tube for removing slurry consisting of the cut tissue and washing fluid. See U.S. Patent 4,320,761. A still further instrument uses a handpiece with an ultrasonic motor for driving a needle, including a cutting tube mounted within a needle, with Irrigation and aspiration also provided. See U.S. Patent 4,428,748. Another instrument discloses an automatically operated device, which can be held and operated in one hand by the user and which does not utilize long tubing in operation and wherein the controls are mounted on the handpiece itself. See U.S. Patent 4,508,532. As observed in this Patent No. 4,508,532, and in US-A-4428 748, the pumps are connected to the aspiration cannula by long flexible tubing. Such connection can cause fluctuations in the aspiration pressures and time delays in the operation of the instruments.

SUMMARY OF THE INVENTION

It is a principal object of the present invention to overcome the disadvantages of prior art devices by providing an improved ophthalmic aspirator-irrigator system particularly for use during extracapsular cataract surgery.

More specifically, it is an object of the present invention to provide an ophthalmic aspirator-irrigator system particularly adapted for use during extracapsular cataract surgery and essentially comprising a hand held device (12) with a cannula (14) having an axial channel (50) and a surrounding annular channel (56), a source of fluid (30) connected via a flexible tube (32) to said annular channel (56) and a foot-operable control means (20) for controlling the operation of a drive means (18) characterized by a pressure-differential creating means (16) connected to said axial channel (50) and driven by said drive means (18), said footoperable control means (20) provided with a pedal (24) a power source (100), a circuit (102) connected to said source and a socket (42) coupled to said circuit (102), a flexible power cord (22) having a plug (44) designed to be connected to said socket (42) for coupling power from said power source (100) to said drive means (18), and a container (40(a)(b)) for maintaining said cannula (14) and said pressure-differential creating means (16) in a sterile condition.

Other objects of the present invention will in part be obvious and will in part appear hereinafter.

The invention accordingly comprises the ophthalmic aspirator-irrigator of the present disclosure, its components, parts and their interrelationships, the scope of which will be indicated in the appended claims.

Brief Description of the Drawings

For a fuller understanding of the nature and objects of the present invention, reference is to be made to the following detailed description, which is to be taken in connection with the accompanying drawings, wherein:

FIG. 1 is a perspective explosive view, partly in section, of an ophthalmic aspirator-irrigator instrument constructed in accordance with the present invention;

FIG. 2 is a longitudinal elevation, partly in section, of control means for operating the ophthalmic aspirator-irrigator instrument of FIG. 1;

FIG. 3 is a perspective view of one part of a modified ophthalmic aspirator-irrigator instrument according to the invention;

FIG. 4 is a perspective view of another part of the modified ophthalmic aspirator-irrigator instrument:

FIG. 5 is a perspective view illustrating the operative use of the modified ophthalmic aspirator-irrigator instrument according to FIGS. 3 and 4;

Fig. 6 is a perspective view of an adjustable stand carrying a source of fluid;

FIG. 7 is a fragmentary section of an eye and illustrates the use of the ophthalmic aspirator-irrigator instrument of FIG. 1 during cataract surgery;

FIG. 8 is an enlarged perspective of the tip of a part of the ophthalmic aspirator-irrigator instrument of FIG. 1;

FIG. 9 is a plan view, partly in section, of the control means of FIG. 2;

FIG. 10 is a fragmentary plan view, on an enlarged scale, of the control means of FIGS. 2;

FIG. 11 is an elevation, partly in section, along the line 11-11 of FIG. 10:

FIG. 12 is a block diagram of a control circuit for the operation of the ophthalmic aspirator-irrigator instrument according to the invention;

FIG. 13 is a schematic diagram of the control circuit for the operation of the ophthalmic aspirator-irrigator instrument according to the invention;

FIG. 14 is a perspective explosive view of another embodiment of an ophthalmic aspirator-irrigator instrument constructed in accordance with the present invention;

FIG. 15 is a longitudinal section, partly in elevation, of a portion of the ophthalmic aspirator-irrigator instrument of FIG. 14;

FIG. 16 is a graph useful in the understanding of the operation of the ophthalmic aspirator-irrigator instrument according to the invention;

FIG. 17 is a perspective view, on an enlarged scale, of an operative part of the control means shown in FIGS. 2, 10 and 11; and

FIG. 18 is a perspective view of a revised component part of the ophthalmic aspirator-irragator instrument illustrated in FIGS. 14 and 15.

Detailed Description of the Preferred Embodiments

The illustrated preferred embodiments of an ophthalmic aspirator-irrigator system constructed in accordance with the present invention have been designed for use during extracapsular cataract surgery both to remove the cortex of the cataract and provide an infusion of replacement fluid to maintain appropriate internal pressure in the anterior segment of the eye.

The Embodiment of FIGS. 1 and 2.

The ophthalmic aspirator-irrigator instrument 10 essentially comprises a hand-held device 12, con-

trol means 20 and a flexible power cord 22 coupling the control means 20 to the device 12. The control means 20 is portable and is provided with a foot pedal 24. The foot pedal 24 represents a single control input to the instrument 10, freeling thus both hands of the surgeon for the operative tasks in front of him. The foot pedal 24 is designed to travel through an arc 26 of displacement. The position of the pedal 24 along this arc 26 of displacement controls both the speed and the aspiration or ejection functions of the device 12, as will be more evident from below.

The hand-held device 12 includes a cannula 14; and a housing 13 including a pressure-differential creating means 16 operatively connected to the cannula 14, and drive means 18 to drive the pressure-differential creating means 16. Preferably, the pressure-differential creating means 16 comprises a perfistaltic pump rotated by a shaft 17, and having a flexible tubing 28 wound about it and held in place by a tube retaining member 19. One end of the tubing 28 is connected to a connecting member 66, and the other to a collection pouch 21, note Fig. 5. Preferably, the collection pouch 21 is clamped to a surgical drape 23, by a clamp 25, near an operative site 27.

The housing 13 preferably is formed, as for instance by injection forming in a die, of a suitable hard plastic material, such as polycarbonate or the like. The housing 13 essentially is formed of a hollow main frusto-conical section 15a. The main section 15a, in addition to accommodating the drive means 18 within its hollow interior, is glued or otherwise secured to a heavier section 15b. Section 15b is designed in its rear removably to mount the tube retaining member 19 thereto, with the aid of a clamp assembly 29. Clamp assembly 29, preferably formed of a suitable metal, comprises a Ushaped clamp 31, designed to pivot about a pair of mounting pins 33 formed on the housing 13, and a fastening member 35, designed to bear down and to hold the tube retaining member 19 in place, as shown. If either the drive means 18 or the thereby driven persistaltic pump 16 needs servicing or the flexible silicone tubing 28 needs to be replaced, the fastening member 35 is loosened until the clamp 31 can be pivoted, in the direction of the arrow, out of engagement with the tube retaining member 19. Member 19 can then be removed, exposing thereby the pump 16 and the tubing 28.

The main frusto-conical section 15a is formed at its front center with an axial tubular opening 37 designed frictionally to accommodate therein the connecting member 68. Member 68 is provided with an elbow 66a and an axial passage 66b communicating therewith. The elbow 66a is designed removably to secure one end of the tubing 28 thereto. The main frusto-conical section 15a fur-

thermore is preferably provided with a pair of longitudinal channels 15c designed respectively and removably to secure therein portions of the flexible tubings, as illustrated with reference to the tubing 28 being partially wedged in one of the channels

5

A source of fluid 30, preferably an inverted plastic bottle filled with saline solution, is connected via a flexible tube 32 to the cannula 14, observe FIG. 6. The bottle 30 preferably is hung, as known, on a vertically adjustable stand 34 so as to allow for the gravity-feeding of the fluid via the cannula 14 into the eye. A clamp 36 and an appropriate filter 38 preferably are incorporated in the tube 32.

Preferably, both the cannula 14 and the housing 13 containing the pressure-differential creating means 16 are enclosed in a suitable container to maintain the same in sterile condition. The container can be a single container, formed of a semirigid transparent plastic material, or it can comprise two separate containers as shown: container 40a, preferably formed of a semi-rigid transparent plastic material and, container 40b, preferably formed of a flexible yet strong transparent plastic material.

Following use, the hand-held device 12, including both the cannula 14 and the thereto attached power cord 22, all of which are autoclavable, preferably are sterilized before any reuse. Sterilization may be effected in an autoclave, by gamma sterilization or by ETO. On the other hand, the flexible tubings 28 and 32, designed for single use only, together with the pouch 21, preferably are discarded after operative use and replaced with sterile tubings immediately before operative re-use of the

The control box 20 is provided with a jack 42 to receive a plug 44 carried by the free end of the flexible power cord 22. It is to be noted that cord 22 is but a power cord, carrying but an electrical signal. It is not a long tubing connecting the cannula 14 to a distant pump for creating the required negative aspiration pressures, as is the case in some prior art devices, which can cause fluctuations in the aspiration pressures and delays in the use of the instrument.

The cannula 14 essentially comprises two parts: a hollow cone 46 and a needle 48 concentrically extending therefrom. The needle 48 is formed with a central channel 50, which is in fluid communication with the hollow cone 46 at one end and terminates in an aspiration port 52 and a rounded end 53 near a tapered portion 54 of the needle 48, note FIGS. 1 and 8. An annular channel 56 surrounds the central channel 50 and is in fluid communication with a hollow arm 58 at one end, and terminating in a pair of irrigation channels 60, also in the tapered portion 54 of the needle 48 but

offset from the aspiration port 52 and at right angles thereto, as may be best observed in FIG. 8. The hollow arm 58 preferably is formed integral with the hollow cone 46 of the cannula 14. The cannula 14 can be formed of a suitable metal, such as stainless steel, or it may be formed as by injection forming or compression molding of a suitable plastic material, such as polypropylene, in a sultable mold (not shown) in which the needle 48 had been inserted previously. The needle 48, however, preferably is made of metal, such as stainless steel. The hollow cone 46 of the cannula 14 is, of course, designed to fit snugly about the front frusto-conical end of the connecting member 66.

The pressure-differential creating means 16, whose function is to create a pressure-differential within the central channel 50 of the cannula 14, preferably comprises a persistaltic pump. The pressure-differential created by the pump 16 is with respect to ambient, and can be either a positive or a negative pressure emanating from the aspiration port 52, depending on how it is driven by the drive means 18.

With the hollow cone 46 of the cannula 14 in place over the frusto-conical shaped end of the connecting member 66, the central channel 50 of the cannula 14 is in fluid-communication with the flexible tubing 28. Rotation of the drive shaft 17 and thereby of the peristaltic pump 16 clockwise creates a positive pressure within the central channel 50 of the cannula 14, causing whatever may be within the channel 50 or the aspiration port 52 (be it air, liquid or slurry) to be ejected therefrom via the aspiration port 52. Conversely, rotation of the shaft .17 and of the pump 16 counter-clockwise creates a negative pressure within the central channel 50 of the cannula 14, causing the cannula 14 to aspirate via the aspiration port 52 whatever may be in the vicinity of the aspiration port 52. The drive means 18 for driving the pressure-differential creating means 16 essentially comprises a DC micromotor 62, a gear head 64, and the drive shaft 17.

The foot-operable control unit 20, as illustrated in FIGS. 2, 9, 10 and 11, in addition to the pedal 24, further is provided with a power source 100, preferably comprising a six volt DC battery pack, and a control circuitry 102 connected to the power source 100 and to the jack 42. The unit 20 also can be operated via a 110 VAC power source, with the aid of a transformer and rectifier, not shown. Control of the circuitry 102 is effected via a potentiometer 104. The potentiometer's 104 electrical position, hence its wiper voltage, Is controlled by and Is linearly proportional to the position of the pedal 24 along its arc of displacement 26 about a fulcrum 27. The pedal's 24 position along the arc of displacement 26 is transmitted to the potentiometer 104 via a link 106 and a sliding member 108.

The potentiometer 104 may be of the conventional type. Preferably however, it comprises a linear motion slide-type potentiometer as best illustrated in FIGS. 10 and 17. The liner motion slide-type potentiometer 104 is provided with a slidable actuating arm 110, designed to be axially displaced substantially along the axial length of the potentiometer 104. The actuating arm 110 is, in turn, caused to be axially displaced by a drive pin 112, secured to the sliding member 108.

The foot-operable control unit 20 essentially comprises the foot pedal 24 and a control box 70 provided with a pair of ears 72 whose bores serve as the fulcrum 27 for the foot pedal 24. The foot pedal 24 in turn is formed with a pair of pins 74 rotatably mounted within the bores. The underside of the control box 70 preferably is provided with a non-skid surface and/or a plastic or rubber mat. Preferably, both the foot pedal 24 and the control box 70 are formed of a suitable light metal, such as aluminum. Preferably, the upper surface of the foot pedal 24 is provided with a plurality of parallel ribs 76 running lengthwise thereof, and with a semicircular heel rest 78. Preferably, on an indented side surface plate 80 of the foot pedal 24, observe FIGS. 2 and 9, there is provided a knob 82 and a pair of L.E.D.'s 84 and 85, in addition to the pump power connect jack 42. Manual depression of the knob 82 will cause one of the L.E.D.'s 84 or 85 to light up, indicating whether the batteries 100 are in good working order or need to be replaced. The plate 80 is removably secured to the side of the foot pedal 24 by a screw 41.

Axial motion and control of the actuating sliding member 108 within the control box 70 is facilitated by a pair of spring mounts 86 mounted astride a control circuitry 102, observe FIG. 10. The pair of spring mounts 86 are operatively connected to the actuating sliding member 108 by a bar member 88, observe FIGS. 10 and 11. Axial displacement of the sliding member 108 from a position of rest to its position, as illustrated in FIG. 10, against the force of the spring mounts 86, causes the corresponding axial displacement of the actuating arm 110 of the sliding potentiometer 104. The initial axial displacement of the actuating arm 110 also triggers a micro-switch 114, causing battery power to be applied via the power cord 22 to the drive means 18.

The potentiometer's 104 electrical position, i.e., its wiper voltage, also is controlled by and is linearly proportional to the position of the foot pedal 24 along the pedal's arc of displacement 26. A layout of the control circuitry 102 is illustrated in FiG. 12 and a schematic of the circuitry 102 is shown in FiG. 13. The operative DC voltage applied to the DC motor 62 as a function of the pedal's 24 displacement from its shown, normally-off position in FiG. 2 and along the arc of displace-

ment 26, is illustrated in FIG. 16.

As mentioned, the function of the circuitry 102 is to provide both speed and direction control, i.e., clockwise or counter-clockwise, to the DC motor 62, and that from a single control input, i.e., the foot pedal 24.

Operation of the Control Circuitry-FIGS 12 and 13

Control circuitry 102 operates as follows. The power source 100 is connected to the circuitry 102 via a power micro-switch 114 integral with the potentiometer 104, observe FIG. 12. When the pedal 24 is in its shown horizontally rest position, (FIG. 2), the power switch 114 is off, hence no power is applied to the circuitry 102. When the pedal 24 is moved downward, (FIG. 16) power from the power source 100 is applied to the logic integrated circuits IC1, IC2, and IC3 via a filter circuit comprised of resistor 116 and capacitor 118. In FIG. 13, note the point +V marked 120, which is connected via leads, not shown to preserve clarity, to points also marked +V in the respective logic integrated circuits and identified by the reference characters 122, 124 and 126, respectively. Further filtering is provided by resistor 128 and capacitor 130 into a reference voltage regulator 132. The junction 134 of resistor 128 and capacitor 130, marked 2.5 within a circle, also is connected electrically to one end of a resistor 136, whose other end is connected to TP1, and also to a mid point adjuster circuit 138.

Wiper voltage from the potentiometer 104 is applied via lead 140 to the positive input of a positive amplifier 142, IC2A, and to the negative input of a negative amplifier 144, IC2B. The reference inputs to these amplifiers 142 and 144 are tied to a divider string 146 connected to the output of a voltage follower 148, IC2C, whose positive input is connected to the mid point adjuster circuit 138. The mid point adjuster circuit 138, together with the voltage follower 148 and the divider string 146, provide the proper offset voltages to the DC amplifiers 142 and 144 so that they will operate symmetrically about the center portion of travel of the pedal 24 along the arc 28. The outputs of the DC amplifiers 142 and 144 are respectively connected to the inputs of an electronic switch 150, IC3A, an analog multiplexer. A control voltage also is applied to the electronic switch 150 at pin 11. Depending on the level of this control voltage, the electronic switch 150 selects one of the inputs, either from amplifier 142 or 144, to be coupled to the positive Input of a pulse-width modulated (PWM) gate circuit, IC2D. When a positive voltage is sensed at the input pin 12 of the PWM gate 152, its output at pin 14 will be high. This high output is then connected via another electronic switch 154, IC3B, to a direction control switch 156, IC3C. Direction control switch 156 determines whether the motor 84 is caused to rotate clockwise or counterclockwise. Depending on the level of the control voltage at pin 9, which voltage is the same as applied to pin 11 of switch 150 via a lead 158, only one of the switch's 156 two outputs at pins 3 or 5 will be high at any one time. The outputs at pins 3 or 5 are coupled to a transistor bridge circuit 160.

A positive voltage appearing at the base of one of two input transistors 162 and 164 will cause its corresponding NPN transistor 166 and PNP transistor 168 if the former, and NPN transistor 170 and PNP transistor 172 if the latter, to saturate and apply motor voltage to the DC motor 84 in the proper polarity. One of two diodes 174 and 176 will sense this applied motor voltage, rectify it and direct it back via lead 178 and filter resistors 180 and 182 to the negative input at pin 13 of the PWM gate 152 as feed-back control. The feed-back control will shut down the outputs of the direction control switch 156 and consequently the applied motor voltage will also go to zero. This feedback process will repeat until the average feedback voltage equals the input control voltage at pin 9 of the switch 156. The duty cycle of the transistor bridge circuit 160 is thus changed and controlled by varying the DC input control voltage at pin 9 of the switch 156. Short width pulses are evident at slow motor speeds and longer pulses prevail at higher motor speeds. The DC motor 62 itself senses only a filtered DC voltage however and, being an inductive device, motor 62 provides a smooth, continuous rotational force to its drive shaft 88.

The control pins 9 of switch 156 and 11 of switch 150 are connected together via the lead 158 to the output at 8 of a comparator 184, ICTC. The positive input at 10 of the comparator 184 also is the wiper voltage generated by the potentiometer 104 and carried by lead 140. The negative input at 9 of the comparator 184 is referenced to a voltage at TP2, which is adjusted by the mid point adjuster circuit 138 to equal the wiper voltage at mid travel of the slide-type potentiometer 104. When the wiper voltage at the potentiometer 104 exceeds this mid travel voltage, the output of the comparator 184 at pin 8 will go high, causing thereby the switches 150 and 156 to change states and the direction of rotation of the DC motor 84 will reverse.

A control voltage also is applied to the electronic switch 154 at pln 10 thereof via lead 188. Lead 186 connects through diodes 188 and 190 to comparators 192 IC1A, and 194, IC1B, respectively. These comparators 192 and 194 are connected in a window detector configuration. The reference voltages into the comparators 192 and 194 at pins 3 and 6, respectively, are selected to

be slightly above and slightly below the mid travel voltage. The wiper voltage at the potentiometer 104 also is applied via the lead 140 to the connected inputs of the comparators 192 and 194 at pins 2 and 5, respectively. When the wiper voltage is within the selected range, the control voltage applied to pin 10 of the electronic switch 154 will be low, causing thereby the switch 154 to connect to zero at pin 2 and assuring that the DC motor 62 will be off. The electronic switch 154 thus prevents search pulses from the PWM gate 152 during this selected window range and provides a motor-off state for the DC motor 62 when the foot pedal 24 is in the center of its downward travel along the arc 28 of its displacement.

A battery test circuit 200 also is connected to the power source 100 via a battery test button 82. When button 82 is depressed, power from the source 100 is applied to the test circuit 200 through a diode 204, to resistors 206 and 208, and to green and red LED's 210 and 212, respectively. Resistors 206 and 214 divide the battery source 100 voltage in half and apply it to the positive input at pin 12 of a comparator amplifier 216, IC1D. The negative input at pin 13 of the comparator amplifier 216 Is tied to the reference voltage regulator 132, herein set at 2.500 volts. Consequently, if the battery source 100 voltage, herein set at 6 volts, drops below twice the 2.500 volts, i.e., below 5.000 volts, the output of the comparator amplifier 216 at pin 14 will go low, turning on the red LED 212. Otherwise, the comparator 216 output at pin 14 will remain high, providing base current into an NPN transistor 218 and turning the green LED 210 on. The resistor 208 simulates the drain of the DC motor 62 on the battery power source 100 during the test.

In FIG. 16 is illustrated a graph 220 plotting the DC voltage applied by the circuitry 102 of FIG. 13 to drive the micro DC motor 62 during the downward displacement of the foot pedal 24 along the arc 26, as against a percentage of displacement along this arc 26. With the pedal 24 slightly depressed, the power switch 114 is closed and full DC power, herein positive six volts, is applied to the DC motor 62 to drive it in full speed reverse, that is clockwise. As a consequence, the peristaltic pump 16 will rotate rapidly clockwise, creating a positive ejaculatory pressure through the aspiration port 52 of the central channel 50 of the cannula 14. As the pedal 24 progressively is more and more depressed, the applied voltage to the motor 62 will fall, decreasing thereby the rotational speed of the pump 16. With the gradual decrease of the pump's 16 speed, the magnitude of the positive ejaculatory pressure through the aspiration port 52 of the cannula 14 also becomes less and less. With about 40% downward displacement of the pedal 24 along the arc 26, a zero applied voltage to the motor 62

is achieved from a previous +2.1V, and the motor . 62 and its drive shaft 17 will come to a full stop. As a result, the pump 16 also will cease rotating and no further ejaculatory pressure will be emanating from the port 52. The zero applied voltage condition is maintained during a window through about 60% in the downward travel of the pedal 24 along the arc 26. Further downward motion of the pedal 24 first will apply a negative DC voltage slightly in excess of 2V to the motor 62, reversing its rotation into a counter-clockwise direction but with a slow initial speed. As a result, the pump 16 will begin slowly to rotate in a counter-clockwise direction, creating thereby a negative aspiratory pressure through the aspiration port 52 of the cannula 14. With the further gradual depression of the pedal 24, the negative applied voltage to the DC motor 62 also is increased, progressively increasing thereby the speed of rotation of the pump 16. Consequently, the negative aspiratory pressure through the aspiration port 52 also is increased. With about 90% in the extent of the downward travel of the pedal 24 along the arc 26, almost maximum -6V is applied to the motor 62, bringing its rotational speed to the maximum. With the foot pedal 24 pressed all the way down (as shown in phantom lines in FIG. 2), maximum negative aspiration pressure is maintained through the aspiration port 52.

Preferably, the control circuitry 102 further Incorporates a trigger circuit to trigger an audible signal producing means 222, note FIG. 10. Preferably, the trigger circuit is so designed as to produce one audible signal at the commencement of the aspiration through the aspiration port 52 and a second audible signal at the commencement of reflux (ejection) via the post 52 during the reverse motion of the front pedal 24 from the position shown in phantom lines to the rest position shown in solld lines in FIG. 2. Preferably, this signal producing means 222 is adjustable regarding the loudness of the signal emitted by it, as by the provision of a knob 224 designed for rotation about a limited arc of displacement.

The Embodiment of FIGS. 3, 4 and 5

A modified ophthalmic aspirator-irrigator instrument 230 is illustrated in FIGS, 3, 4 and 5. This modified instrument 230 essentially comprises a lighter hand-held piece 232 than the device 12, illustrated in FIG. 4, and a shortened drive section 234, illustrated in FIG. 3. However, the modified instrument 230 also is powered by and operated from the same control means 20 of FIG. 2 and with the aid of the same control circuitry 102 described with reference to FIGS. 12 and 13 above.

The light hand-held piece 232 of this modified instrument 230 comprises a hollow tubular housing 236, preferably formed of a rigid or semi-rigid plastic material, a cannula 238 and a pair of flexible tubes 240 and 242. The cannula 238 can be formed exactly the same as the cannula 14 shown in and described with reference to Fig. 1 above. and frictionally mounted to the frusto-conical front end of the piece 232. If so, the tube 240 would need to be connected thereto either just like the tube 32 in FIG. 1 or by having the tube's 240 end exit from the housing 236 at the front thereof so as to connect to the arm 58 of the cannula 14. In this event, the cannula 14 is preferably made of metal, such as stainless steel. The illustrated cannula 238 is, however, preferably formed with a hollow metal needle 244, provided with an aspiration port 246 in the front and with a connecting channel 248 in the rear, to which the end of the tube 240 is attached. A plastic sleeve member 250 is designed to surround the hollow metal needle 244 so as to form an annular channel about the axial length of the needle 244, in a fashion similar to that of the cannula 14, note especially FiG. 8. At its front end, the sleeve member 250 is provided with a pair of irrigation ports 252, whose orientation is similar to that of the ports 60 with respect to the port 52 of the cannula 14. The forward end of the tube 242 is in turn operatively connected to the annular channel formed between the needle 244 and the surrounding sleeve 250 so as to be in fluid communication therewith. Tube 240, just like the tube 32, also is connected to the saline containing bottle 30. via the clamp 36 and the filter 38, observe FiG. 6. Tube 242, on the other hand, is connected to the drive section 234, also shown secured to the surgical drape 23 adjacent the pouch 21 by means of a second clip 235. Preferably, a short chain 237 connects the clip 235 to one end of the drive section 234.

The drive section 234 is, for the most part, identical to the housing section 13, minus the forward conical part 15b, of the instrument 10 shown in FIG. 1. As best illustrated in FIG. 3, the drive section 234 also is provided with a pressure differential creating means 254, which is a peristaltic pump just like the pump 16, and held in place by a tube retaining member 255, just like the member 29. Inside a hollow housing 256, there is an identical drive means 258 comprising a D.C. micro motor 258a and a gear head 258b driving a shaft 260. The shaft 260 is drivingly coupled to the peristaltic pump 254. The tube 242, emanating from the hand-held piece 232, is trained about the peristaltic pump 254 and then is connected to the pouch 21, as illustrated in FIG. 5. A power cord 262 is, in turn, connected to the footpedal control means 20, shown in and described with reference to FIG. 2.

The Embodiments of FIGS. 14, 15 and 18

In FIGS. 14 and 15, another preferred embodiment of an ophthalmic aspirator-irrigator instrument 270 constructed in accordance with the present invention is illustrated. The ophthalmic aspiratorirrigator instrument 270 also comprises a hand-held device, with a flexible power cord 272 coupling it to the control means 20 of FIG. 2. The hand-held instrument 278 also includes a cannula 274, a pressure-differential creating means 276 designed frictionally to engage and hold the cannula 274, and drive means 278 releasably connected to the pressure-differential creating means 276 by means of a ring 280. The source of fluid 30, illustrated in FIG. 6 and containing a saline solution, is connected via a flexible tube 282 to the cannula 274. The bottle 30 again allows for the gravity-feeding of the fluid via the cannula 274 into the eye. The clamp 38 and the appropriate filter 38 preferably also are incorporated in the tube 282. Preferably, both the cannula 274 and the pressure-differential creating means 276 are enclosed in a container 284 to maintain the same in sterile condition. Following use, both the cannula 274 and the pressuredifferential creating means 278 preferably are discarded. On the other hand, the drive means 278 and the thereto attached power cord 272, which are autoclavable, preferably are sterilized before use. Sterilization may be effected in an autoclave, by gamma sterilization or by ETO.

It is to be again noted that cord 272 is but a power cord, carrying but an electrical signal. It is not a long tubing connecting the cannula 274 to a pump for creating the required negative aspiration pressures, as in some prior art devices, which can cause fluctuations in the aspiration pressures and delays in the use of the instrument.

The cannula 274 is just like the cannula 14 and comprises two parts: a hollow cone 286 and a needle 288 concentrically extending therefrom. The needle 288 is formed with a central channel which is in fluid communication with the hollow cone 286 at one end, and terminates in an aspiration port 290 located in the front tapered portion of the needle 288. An annular channel surrounds the central channel and is in fluid communication with a hollow arm 292 at one end, and terminating in a pair of irrigation channels also formed in the tapered portion of the needle 288 but offset from the aspiration port 290 and at right angles thereto, similar to the one shown in FIG. 8. The hollow arm 292 preferably is formed integral with the hollow cone 286 of the cannula 274, as by injection forming or compression molding a sultable plastic

material, such as polypropylene, in a suitable mold (not shown) in which the needle 288 had been inserted previously. The needle 288 however preferably is made of metal, such as stainless steel. Of course, if desired, the entire cannula 274 also can be formed from metal.

The pressure-differential creating means 276, whose function is to create a pressure-differential within the central channel of the cannula 274, also is preferably formed of a suitable plastic material, such as polypropylene or the like, as by injection forming or compression molding in a suitable mold, not shown. The pressure-differential created by the means 276 also is with respect to ambient, and can be either a positive or a negative pressure emanating from the aspiration port 290 depending on how it is driven by the drive means 278. The pressuredifferential creating means 276 essentially is formed like a syringe, having a tubular body 294 open at one end 296 and ending in a frusto-conical shape 298 at the other end. This frusto-conical shape 298 is designed to be frictionally engaged by the hollow cone 286 of the cannula 274 when the same is releasably secured thereto immediately prior to the instrument's 270 operative use during cataract surgery.

With the hollow cone 286 of the cannula 274 in place over the frusto-conical shaped end 298 of the pressure-differential creating means 276, the central channel of the cannula 274 is in fluid-communication with an inner chamber 300 formed within the tubular body 294 via a channel 302, all as may be best observed in FIG. 15. A plunger 304 is designed to be axially displaced within the chamber 300. The plunger 304 is formed with an axial channel 306 to accommodate an externally threaded drive shaft 308 designed to rotate, and thus be axially displaced, within a hexagonal standoff 310 secured in the rear end of the plunger 304. A hexagonal socket 312 is formed in the free end of the drive shaft 308. Rotating the drive shaft 308 clockwise will cause the plunger 304 to travel toward the rear (to the left in FIG. 15) within the tubular body 294. An externally-threaded sleeve 314 is secured about the rear end 296 of the tubular body 294 to prevent the plunger 304 from being withdrawn therefrom, the condition shown in FIG. 15. A counter-clockwise rotation of the drive shaft 308 will now cause the plunger 304 to travel forward (i.e., to the right in Fig. 15) within the inner chamber 300 until the plunger 304 abuts the front end of the tubular body 294.

When the plunger 304 travels forward, it creates a positive pressure within the central channel of the cannula 274, causing whatever may be within the chamber 300, the channel 302, the control channel or the aspiration port 290 (be it air, flquid or slurry) to be ejected therefrom via the aspiration

port 290. Conversely, when the plunger 304 is caused to travel backward, it creates a negative pressure within the central channel of the cannula 274, causing the cannula 274 to aspirate via the aspiration port 290 whatever may be in the vicinity of the aspiration port 290.

The drive means 278 for driving the pressuredifferential creating means 276 also is similar to the drive means 18 in FIG. 1 and essentially comprises a DC micro-motor 316, a gear head 318, and a drive shaft 320. Shaft 320 is provided with a hexagonal head 322 designed to fit within and mate with the hexagonal socket 312 of the drive shaft 308. The motor 316 and its gear head 318 preferably are mounted within a suitable plastic tubular housing 324. The connecting ring 280, which is internally-threaded, is rotatably secured about a shoulder of a motor-mount 326 and is designed to mate with and to be secured about the sleeve 314, releasably securing thereby the drive means 278 to the pressure-differential creating means 276. Preferably, the ring 280 is formed of a light metal, such as aluminum.

In FIG. 18, there is illustrated a revised component part 330 for use in the ophthalmic aspirator-irrigator instrument 270 shown in and described with reference to FIGS. 14 and 15. With the aid of this revised component part 330, the instrument 270 also is useful in an alternative manner for a different kind of operation. This alternative use involves the controlled injection of a viscous material into various parts of the human or animal body.

As will be noted, part 330 takes the place of the pressure-differential creating means 276, i.e., the pump. Its forward end of the part 330 preferably is a bit longer than that of the part 276, which makes the inner chamber of the part 330 correspondingly longer than is the chamber 300 of the part 276. This enlarged chamber of the revised part 330 is preloaded with the viscous material. The viscous material is maintained in an air tight environment between the plunger 304, which of course remains the same, and a plug 332 designed temporarily to block the channel 302. The plug 332 is then broken off by the user before the part 330 Is inserted into the cannula 274 immediately prior to its operative use. The plug 332 may be formed integral with the body of the part 330 or it may be inserted into the channel 302 after its inner chamber has been filled with the viscous material.

The viscous material may, of course, comprise any suitable material intended to be injected into the various parts of the body and its selection will be dictated by the end use thereof. One such viscous material comprises a paste made of teflon and glycerine, which paste is useful, inter alia, to reorient defective vocal cords or to relieve urinary incontinence by injection thereof adjacent to the

ureter to build resistance to uncontrolled urine flow. Other uses will readily suggest themselves to those skilled in the art.

The preloaded revised component part 330 also is mated to the same drive means 278 above described. This time, however, the plunger 304 will be caused to travel in the forward direction only by the counter-clockwise rotation of the drive shaft 308 by the use of the variable speed reflex mode of the foot operated control unit 20. The surgeon-operator thus has precise control of the speed and the amount of the viscous material that is injected by the revised instrument into the various parts of the human body. Following use, the revised component part 330 is conveniently discarded, even in instances when only a portion of the preloaded viscous material therein has been used up.

Thus it has been shown and described an ophthalmic aspirator-irrigator instrument designed for use during cataract surgery, which instrument satisfies the objects and advantages set forth above.

Since certain changes may be made in the present disclosure without departing from the scope of the present invention, it is intended that all matter described in the foregoing specification or shown in the accompanying drawings, be interpreted in an illustrative and not in a limiting sense.

Claims

35

- 1. An ophthalmic aspirator-irrigator (10) compris-Ing a hand held device (12) with a cannula (14) having an axial channel (50) and a surrounding annular channel (56), a source of fluid (30) connected via a flexible tube (32) to said annular channel (56) and a foot-operable control means (20) for controlling the operation of a drive means (18) characterized by a pressuredifferential creating means (16) connected to said axial channel (50) and driven by said drive means (18), said foot-operable control means (20) provided with a pedal (24), a power source (100), a circuit (102) connected to said source and a socket (42) coupled to said circuit (102), a flexible power cord (22) having a plug (44) designed to be connected to said socket (42) tor coupling power from said power source (100) to said drive means (18), and a container (40(a)(b)) for maintaining said cannula (14) and said pressure-differential creating means (16) in a sterile condition.
- The ophthalmic aspirator-irrigator (10) of claim 1 wherein said cannula (14) is provided with a tapered tip (54), an aspiration port (52) formed

20

In the side of said tapered tip (54) and connecting with said axial channel (50) and at least one imigation opening (60) also formed in the side of said tapered tip (54) and at a right angle thereto and connecting with said surrounding annular channel (56).

- The ophthalmic aspirator-irrigator (10) of claim

 wherein sald hand-held device (12), sald
 pressure-differential creating means (16) and
 sald flexible tube (32) are disposable, and
 wherein sald pressure differential creating
 means (18) includes a D.C. micro-motor (62), a
 gear head (64) connected to said motor (62), a
 peristaltic pump (16) and a shaft (17) coupling
 said motor (62) via said gear head (64) to said
 pump (16).
- 4. The ophthalmic aspirator-irrigator (10) of claim 1 wherein said circuit (102) includes dual D.C. amplifiers (142, 144) and a pulse-width modulated gate circuit (152) and wherein said circuit (102) controls said drive means (18) bidirectionally with a smooth, continuous speed control effected by an electrical signal generated by said dual D.C. amplifiers (142, 144), said signal coupled to said pulse-width modulated gate circuit (152).
- The ophthalmic aspirator-irrigator (10) of claim 4 further including an audio signal generating means (222), wherein said pedal's (22) position controls both the direction and the speed of said drive means (18) and also the operation of said audio signal generating means (222).
- 6. The ophthalmic aspirator-irrigator (10) of claim 5 wherein sald circuit (102) includes a linear motion slide-type potentiometer (104) controlled by said pedal (24), and wherein said pedal (24) is in its normally-off, non-depressed position, hence its gradual depression first effects the generation of a gradually decreasing positive pressure in said pressure-differential creating means (16) until about midway through its downward motion, said pedal (24) effects a zero output of said pressure-differential creating means (16), from where the further gradual depression of said pedal (24) effects the generation of a gradually increasing negative pressure in said pressure-differential creating means (16) until the farthest depression of said pedal (24) maintains a maximum negative pressure generated by said Pressure-differential creating means (16).
- The ophthalmic aspirator-irrigator (10) of claim
 wherein said power source (100) comprises

- a battery pack (100) and said foot-operable control means (20) is portable, and wherein said pressure-differential creating means (16) is provided with an externally-threaded sleeve (314) and said drive means (18) is provided with an internally-threaded connecting ring (280), whereby said drive means (18) is releasably connected to said pressure-differential creating means (16).
- The ophthalmic aspirator-irrigator (10) of claim

 wherein said circuit (102) controls both the speed and the direction of said drive means (18) and the operation of said audio signal generating means (222) via a single control unit (102).
- 9. The ophthalmic aspirator-irrigator (10) of claim 8 wherein said circuit (102) comprises electronic switch means (150) connected to the outputs of said DC amplifiers (142, 144), and a pulse-width modulated gate circuit (152) coupled to said drive means (18) and via said electronic switch means (150) to one of the outputs of said DC amplifiers (142, 144), whereby the position of said foot pedal (24) along its arc of displacement controls both the speed and the direction of said drive means (18) and the operation of said audio signal generating means (222).
- 10. The ophthalmic aspirator-irrigator (10) of claim 1 further including a surgical drape (23) draped about a patient adjacent a surgical site (27), said pressure differential creating means (16) and said pouch (21) respectively secured to said surgical drape (23) via said fastening means (25) adjacent said surgical site (27).
- 11. The ophthalmic aspirator-irrigator (10) of claim 9 wherein said foot pedal (24) has two zero control positions; first, in its normally-off, non-depressed position and, second, in its off position located about midway of the foot pedal's downward travel along its said arc of displacement, and wherein said circuit (102) further includes a comparator network (192, 194) to disable said switch means between the output of said pulse-width modulated gate circuit (152) and said bridge circuit (160) when said foot pedal (24) is located about midway along said arc of displacement.
 - 12. The ophthalmic aspirator-irrigator (10) of claim 1 said cannula (14) is releasably secured to said pressuredifferential creating means (16) by a connecting means (66), and wherein the ophthalmic aspirator-irrigator (10) also includes

15

35

a portable control box (20) for controlling both the speed and direction of said drive means (18).

- 13. The ophthalmic aspirator-irrigator (10) of claim 12 wherein said cannula (14) and said pressure-differential creating means (16) are disposable, said power source (100) comprises a battery pack, and wherein said circuit (102) further includes a comparator network (192, 194) to disable said switch means (156) between the output of said pulse width modulated gate circuit (152) and said bridge circuit (160) when said foot pedal's (24) is located about midway along said arc of displacement.
- 14. The ophthalmic aspirator-irrigator (10) of claim 1 wherein said cannula (14) is formed with a hollow cone (46) and a concentric needle (48), said needle (48) having a central channel (50) in communication with said hollow cone (46) at one end and terminating in a port (52) at the other end and said surrounding annular channel (56) terminating in a pair of irrigation openings (60) at its free end.

Revendications

- 1. Un aspirateur-irrigateur ophtalmique (10) comprenant un dispositif tenu à la main (12) équipé d'une canule (14) ayant un canal axial (50) et un canal annulaire (56) entourant le canal axial, une source de fluide (30) reliée par un tube flexible (32) au canal annulaire (56), et des moyens de commande pouvant être actionnés au pied (20), pour commander le fonctionnement de moyens d'entraînement (18), caractérisé par des movens de création de différence de pression (16) qui sont reliés au canal axial (50) et sont entraînés par les moyens d'entraînement (18), les moyens de commande pouvant être actionnés au pied (20) comportant une pédale (24), une source d'alimentation (100), un circuit (102) connecté à la source et un connecteur fixe (42) connecté au circuit (102), un cordon d'alimentation flexible (22) portant une fiche (44) prévue pour être connectée au connecteur fixe (42), pour transmettre l'énergie d'alimentation de la source d'alimentation (100) aux moyens d'entraînement (18), et un boîtier (40(a)(b))) pour maintenir la canule (14) et les moyens de création de différence de pression (16) dans une condition stérile.
- L'aspirateur-irrigateur ophtalmique (10) de la revendication 1, dans lequel la canule (14)

comporte une pointe de section décroissante (54), un orifice d'aspiration (52) qui est formé sur le côté de la pointe de section décroissante (54) et qui est relié au canal axial (50), et au moins une ouverture d'irrigation (60) qui est également formée dans le côté de la pointe de section décroissante (54) et dans une direction perpendiculaire à cette dernière, et qui est reliée au canal annulaire (58) entourant le canal central.

- 3. L'aspirateur-irrigateur ophtalmique (10) de la revendication 1, dans lequel le dispositif tenu à la main (12), les moyens de création de différence de pression (16) et le tube flexible (32) sont prévus pour être jetés après utilisation, et dans lequel les moyens de création de différence de pression (16) comprennent un micromoteur à courant continu (62), un train d'engrenages (64) qui est accouplé au moteur (62), une pompe péristaltique (16) et un axe (17) qui accouple le moteur (62) à la pompe (16), par l'intermédiaire du train d'engrenages (64).
- 4. L'aspirateur-irrigateur ophtalmique (10) de la revendication 1, dans lequel le circuit (102) comprend deux amplificateurs à courant continu (142, 144) et un circuit de porte à modulation d'impulsions en largeur (52), et dans lequel le circuit précité (102) commande les moyens d'entraînement (18) de façon bidirectionnelle, en accomplissant une commande de vitesse continue et progressive au moyen d'un signal électrique qui est produit par les deux amplificateurs à courant continu (142, 144), ce signal étant appliqué au circuit de portes à modulation d'impulsions en largeur (152).
- 5. L'aspirateur-irrigateur ophtalmique (10) de la revendication 4, comprenant en outre des moyens de génération de signal audio (222), dans lequel la position de la pédale (22) commande à la fols la direction et la vitesse des moyens d'entraînement (18), ainsi que le fonctionnement des moyens de génération de signal audio (222).
- 6. L'irrigateur-aspirateur ophtalmique (10) de la revendication 5, dans lequel le circuit (102) comprend un potentiomètre du type glissant à mouvement linéaire (104), commandé par la pédale (24), et dans lequel la pédale (24) est dans une position de repos Inactive, non enfoncée, grâce à quoi son enfoncement progressif génère tout d'abord une pression positive diminuant progressivement dans les moyens de création de différence de pression (16), jusqu'à ce que la pédale arrive approxi-

25

mativement à mi-course de son mouvement descendant, la pédale (24) faisant alors apparaître une grandeur de sortie de zéro pour les moyens de création de différence de pression (16), et ensuite l'enfoncement progressif ultérieur de la pédale (24) provoquant la génération d'une pression négative croissant progressivement dans les moyens de création de différence de pression (16), jusqu'à ce que l'enfoncement complet de la pédale (24) maintienne la génération d'une pression négative maximale par les moyens de création de différence de pression (16).

- 7. L'aspirateur-irrigateur ophtalmique (10) de la revendication 1, dans lequel la source d'alimentation (100) comprend une batterie (100), et les moyens de commande pouvant être actionnés au pied (20) sont portables, et dans lequel les moyens de création de différence de pression (16) comportent une douille filletée extérieurement (314), et les moyens d'entraînement (18) comportent une bague d'accouplement filletée intérieurement (280), grâce à quoi les moyens d'entraînement (18) sont accouplés de façon libérable aux moyens de création de différence de pression (16).
- L'aspirateur-irrigateur ophtalmique (10) de la revendication 4, dans lequel le circuit (102) commande à la fois la vitesse et la direction des moyens d'entraînement (18), ainsi que le fonctionnement des moyens de génération de signal audio (222) à l'aide d'une seule unité de commande (102).
- 9. L'aspirateur-irrigateur ophtalmique (10) de la revendication 8, dans lequel le circuit (102) comprend des moyens de commutation électroniques (150) qui sont connectés aux sorties des amplificateurs à courant continu (142, 144), et un circuit de portes à modulation d'impulsions en largeur (152) qui est connecté aux moyens d'entraînement (18), et par l'intermédiaire des moyens de commutation électroniques (150) à l'une des sorties des amplificateurs à courant continu (142, 144), grâce à quoi la position de la pédale (124) sur son arc de déplacement commande à la fois la vitesse et la direction des moyens d'entraînement (18), ainsi que le fonctionnement des moyens de génération de signal audio (222).
- L'aspirateur-irrigateur ophtalmique (10) de la revendication 1, comprenant en outre un drap chirurgical (23) placé autour d'un patient dans une position adjacente à un emplacement d'opération chirurgicale (27), et les moyens de

création de différence de pression (16) et une poche (21) sont respectivement fixés au drap chirurgical (23) à l'aide de moyens de fixation (25) en position adjacente à l'empiacement d'une opération chirurgicale (27).

- 11. L'aspirateur-irrigateur ophtalmique (10) de la revendication 9, dans lequel la pédale (24) comporte deux positions de commande de zéro : premièrement, dans sa position de repos inactive, non enfoncée, et secondement dans sa position d'arrêt située approximativement à mi-chemin de la course descendante de la pédale le long de l'arc de déplacement, et dans lequel le circuit (102) comprend en outre un réseau comparateur (192, 194) qui est conçu pour invalider les moyens de commutation qui se trouvent entre la sortie du circuit de portes à modulation d'impulsions en largeur (152) et le circuit en pont (160) lorsque la pédale (24) se trouve approximativement à micourse le long de l'arc de déplacement.
- 12. L'aspirateur-irrigateur ophtalmique (10) de la revendication 1, dans lequel la canule (14) est fixée de façon amovible aux moyens de création de différence de pression (16) par un raccord (66), et dans lequel l'aspirateur-irrigateur ophtalmique (10) comprend également une boîte de commande portable (20) pour commander à la fois la vitesse et la direction des moyens d'entraînement (18).
- 13. L'aspirateur-irrigateur ophtalmique (10) de la revendication 12, dans lequel la canule (14) et les moyens de création de différence de pression (16) sont prévus pour être jetés après utilisation, la source d'alimentation (100) consiste en une batterie, et dans lequel le circuit (102) comprend en outre un réseau comparateur (192, 194) qui est conçu pour invalider les moyens de commutation (156) entre la sortie du circuit de porte à modulation d'impulsions en largeur (152) et le circuit en pont (160), lorsque la pédale (24) se trouve approximativement à micourse le long de l'arc de déplacement.
- 14. L'aspirateur-Imigateur ophtalmique (10) de la revendication 1, dans lequel la canule (14) présente un cône creux (46) et une aiguille concentrique (48), cette aiguille (48) ayant un canal central (50) en communication avec le cône creux (46) à une extrémité, et se terminant par un orifice (52) à l'autre extrémité, et le canal annulaire (56) qui entoure le canal central se terminant à son extrémité libre par une paire d'orifices d'irrigation (60).

Ansprüche

- 1. Ophtalmischer Aspirator-Irrigator (10) mit einem Handstück (12) mit einer Kanüle (14), die einen axialen Kanal (50) und einen diesen umgebenden ringförmigen Kanal (56) umfaßt, mit einer Fluidquelle (30), die über eine flexible Rohrleitung (32) mit dem ringförnigen Kanal (56) verbunden ist: und mit einer mit dem Fuß betätigbaren Steuereinrichtung (20) für die Steuerung der Funktionen einer Antriebsvorrichtung (18), dadurch gekennzeichnet, daß ein mit dem axialen Kanal (50) verbundener und von der Antriebsvorrichtung (18) angetriebener Druckdifferenz-Erzeuger (16) vorgesehen ist, und daß die mit dem Fuß betätigbare Steuereinrichtung (20) folgende Teile aufweist: ein Pedal (24), eine Stromversorgungsquelle (100), eine mit der Stromversorgungsquelle verbundene Schaltung (102) und eine mit dieser verbundene Steckbuchse (42), eine flexible Stromversorgungsleltung (22) mit einem Stekker (44), der mit der Steckbuchse (42) verbindbar ist, um elektrische Energie von der Stromversorgungsquelle (100) zu der Antriebsvorrichtung (18) zu übertragen, und einen Behälter (40(a)(b)) zur Aufbewahrung der Kanüle (14) und des Druckdifferenz-Erzeugers (16) unter sterilen Bedingungen.
- 2. Ophtalmischer Aspirator-Irrigator (10) nach Anspruch 1, bei dem die Kanüle (14) eine kegelige Spitze (54), eine in der Seitenwand dieser kegeligen Spitze (54) ausgebildete und mit dem axialen Kanal (50) verbundene Ansaugöffnung (52) und wenigstens eine Irrigationsöffnung (60) aufweist, die ebenfalls in der Seitenwand der kegeligen Spitze (54) rechtwinklig zu dieser ausgebildet ist und mit den umgebenden ringförmigen Kanal (56) in Verbindung steht.
- Ophtalmischer Aspirator-Irrigator (10) nach Anspruch 1, bei dem das Handstück (12), der Druckdifferenz-Erzeuger (16) und die flexible Rohneitung (32) Einwegartikel sind und bei dem der Druckdifferenz-Erzeuger (16) einen Gleichstrom-Mikromotor (62), einen mit diesem verbundenen Getriebekopf (64), eine perfstattsche Pumpe (16) und eine Welle (17) aufweist, die den Motor (62) über den Getriebekopf (64) mit der Pumpe (16) verbindet.
- Ophtalmischer Aspirator-irrigator (10) nach Anspruch 1, bei dem die Schaltung (102) Doppel-Gleichspannungsverstärker (142, 144) und eine pulsbreitenmodulierte Torschaltung (152) umfaßt und bei dem die Schaltung (102) die An-

- triebsvorrichtung (18) bidirektional mit weicher, kontinuierlicher Geschwindigkeitssteuerung steuert, wobei diese Geschwindigkeitssteuerung durch ein elektrisches Signal erfolgt, das von dem DoppelGleichspannungsverstärker (142, 144) erzeugt und der pulsbreitenmodulierten Torschaltung (152) zugeführt wird.
- Ophtalmischer Aspirator-Irrigator (10) nach Anspruch 4, ferner mit einer Einrichtung (222) zur Erzeugung eines Tonsignals, wobei sowohl die Richtung als auch die Geschwindigkeit der Antriebsvorrichtung (18) sowie die Funktion der Einrichtung (222) zur Erzeugung des Tonsignals durch die Position des Pedals (22) steuerbar sind.
- Ophtalmischer Aspirator-Irrigator (10) nach Anspruch 5, bei dem die Schaltung (102) ein lineares Potentiometer (104) enthält, das durch das Pedal (24) steuerbar ist, wobei das Pedal (24) sich zunächst in seinem nicht niedergedrückten Ruhezustand befindet, dann bei seinem allmählichen Niederdrücken zunächst die Erzeugung eines allmählich kleiner werdenden positiven Drucks in dem Druckdifferenz-Erzeuger (16) veranlaßt, bis etwa in der Mitte seiner Abwärtsbewegung ein Null-Ausgang des Druckdifferenz-Erzeugers (16) erzeugt wird, und von dort aus durch das allmähliche weitere Niederdrücken Pedals (24) die Erzeugung eines allmählich ansteigenden negativen Drucks in dem Druckdifferenz-Erzeuger (16) veranlaßt wird, bis schließlich bei ganz niedergedrücktem Pedal die Erzeugung eines maximalen negativen Druckes in den DruckdifferenzErzeuger (16) beibehalten bleibt.
- 7. Ophtalmischer Aspirator-Irrigator (10) nach Anspruch 1, bei dem die Stromversorgungsquelle (100) ein Batteriepack (100) enthält und die mit dem Fuß betätigbare Steuereinrichtung (20) eine tragbare Einrichtung ist, wobel der Druckdifferenz-Erzeuger (16) eine Hülse (314) mit Außengewinde und die Antriebsvorrichtung (18) einen Kupplungsring (280) mit Innengewinde aufweist, so daß die Antriebsvorrichtung (18) lösbar mit dem Druckdifferenz-Erzeuger (16) verbindbar ist.
- Ophtalmischer Aspirator-Irrigator (10) nach Anspruch 4, bei dem die Schaltung (102) über eine einzige Steuereinheit (102) sowohl die Geschwindigkeit als auch die Richtung der Antriebsvorrichtung (18) sowie die Betätigung der Einrichtung (222) zur Erzeugung des Tonslgnals steuert.

50

- 9. Ophtalmischer Aspirator-Irrigator (10) nach Anspruch 8, bei dem die Schaltung (102) mit den Ausgängen der Gleichspannungsverstärker (142, 144) verbundene elektronische Schaltmittel (150) sowie eine pulsbreitenmodullerte Torschaltung (152) aufweist, die mit der Antriebsvorrichtung (18) und Über die elektronischen Schaltmittel (150) mit einem der Ausgänge der Gleichspannungsverstärker (142, 144) so verbunden ist, daß durch die jeweilige Position des Pedals (24) auf seiner bogenförmigen Bewegungsbahn sowohl die Geschwindigkeit als auch die Richtung der Antriebsvorrichtung (18) und die Betätigung der Einrichtung (222) zur Erzeugung des Tonsignals gesteuert wird.
- 10. Ophtalmischer Aspirator-Irrigator (10) nach Anspruch 1, mit einem Operationstuch (23), das an einem Patienten im Bereich des Operationsfe1des (27) angeordnet wird, wobei der Druckdifferenz-Erzeuger (16) bzw. eine Tasche (21) in der Nähe des Operationsfeldes (27) mit Hilfe von Befestigungsmitteln (25) an dem Operationstuch (23) Defestigt sind.
- 11. Ophtalmischer Aspirator-Irrigator (10) nach Anspruch 9, bei dem das Pedal (24) zwei Nullstellungen hat, nämlich eine erste in seinem niedergedrückten Ruhezustand und eine zweite in seiner etwa in der Mitte seiner bogenförmigen Bewegungsbahn llegenden AUS-Stellung, und bei dem die Schaltung (102) ferner eine Komparatoranordnung (192,194) aufweist, durch die die zwischen dem Ausgang der pulsbreitenmodulierten Torschaltung (152) und der Brückenschaltung (160) angeordneten Schaltmittel gesperrt werden, wenn das Pedal (24) sich etwa in der Mitte seiner bogenförmigen Bewegungsbahn befindet.
- 12. Ophtalmischer Aspirator-Irrigator (10) nach Anspruch 1, bei dem die Kantile (14) durch eine Verbindungsvorrichtung (66) lösbar mit dem Druckdifferenz-Erzeuger (16) verbunden ist und eine tragbare Steuerbox (20) zur Steuerung sowohl der Geschwindigkeit als auch der Richtung der Antriebsvorrichtung (18) vorgesehen ist.
- 13. Ophtalmischer Aspirator-Irrigator (10) nach Anspruch 12, bei dem die Kanüle (14) und der Druckdifferenz-Erzeuger (16) Einwegartikel sind und die Stromversorgungsquelle (100) ein Batterlepack enthält und bei dem die Schaltung (102) ferner eine Komparatoranordnung (192,194) aufweist, durch die die zwischen dem Ausgang der pulsbreitenmodulierten Torschaltung (152) und der Brückenschaltung

- (160) angeordneten Schaltmittel gespernt werden, wenn das Pedal (24) sich etwa in der Mitte seiner bogenförmigen Bewegungsbahn befindet.
- 14. Ophtalmischer Aspirator-Irrigator (10) nach Anspruch 1, bei dem die Kanüle (14) mit einem Hohlkonus (48) und einer konzentrischen Nadel (48) ausgebildet ist, wobei die Nadel (48) einen zentralen Kanal (48) besitzt, der an einem Ende mit dem Hohlkonus (46) in Verbindung steht und mit dem anderen Ende in einer Öffnung (52) mündet, und wobei der umgebende ringförmige Kanal (56) mit seinem freien Ende in zwei Irrigationsöffnungen (60) mündet.

FIG.6

FIG.12

FIG.16

