Algorithm 1 Créer le réseau de flux

- 1: **function** Créer_réseau(nombre_de_mois, données_pluie, données_besoins, capacité_stockage)
- 2: Créer un graphe dirigé G
- 3: Ajouter un nœud source s (représente l'apport d'eau de pluie)
- 4: Ajouter un nœud puits t (représente la consommation finale d'eau)
- 5: **for** i = 0 **to** $nombre_de_mois 1$ **do**
- 6: Ajouter un nœud $collect_i$ (représente la collecte de pluie)
- 7: Ajouter un nœud *storage*_i (représente le stockage de l'eau)
- 8: Ajouter un nœud $demand_i$ (représente la demande d'eau)
- 9: Ajouter un arc de s vers $collect_i$ avec une capacité égale à $donn\acute{e}es_pluie[i]$
- 10: Ajouter un arc de $collect_i$ vers $storage_i$ avec une capacité égale à $capacité_stockage$
- 11: **if** $i < nombre_de_mois 1$ **then**
- 12: Ajouter un arc de $storage_i$ vers $storage_{i+1}$ avec une capacité égale à $capacité_stockage$
- 13: end if
- 14: Ajouter un arc de $storage_i$ vers $demand_i$ avec une capacité égale à $donn\'ees_besoins[i]$
- 15: Ajouter un arc de $demand_i$ vers t avec une capacité égale à $donn\acute{e}es_besoins[i]$
- 16: end for
- 17: $\mathbf{return} \ G$
- 18: end function

Algorithm 2 Calculer le flux maximal

- 1: **function** FLUX_MAXIMAL(graphe, source, puits)
- 2: Calculer le flux maximal entre la source et le puits dans le graphe
- 3: **return** Flux maximal, détails du flux
- 4: end function

Exemple d'utilisation:

- Définir $données_pluie \leftarrow [100, 120, 110, 90, 80, 60, 50, 40, 90, 110, 120, 100]$
- Définir $données_besoins \leftarrow [80, 90, 95, 85, 70, 60, 50, 40, 70, 90, 100, 85]$
- Définir $capacité_stockage \leftarrow 200$
- \bullet Créer le réseau G en appelant ${\tt Créer_réseau}$
- Calculer le flux maximal en appelant Flux maximal avec G, s, et t
- Afficher le flux maximal et les détails du flux