re:Invent

CON314

Deploy a Deep Learning Framework on Amazon ECS

Chad Schmutzer, Solutions Architect Hubert Cheung, Solutions Architect David Kuo, Solutions Architect Andy Mui, Solutions Architect

November 2016

What to expect from this workshop

- Workshop goals
- Overview of ECS + ECR
- Overview of AWS CloudFormation
- Overview of EC2 Spot Instances
- Hands on workshop
- Wrap-up

Workshop Goals

Demonstrate ECS value

- Increase infrastructure utilization
- environment isolation
- placing mixed applications in same environment
- easy deployment
- We just chose to use MXNet as an example application to containerize

What's MXNet?

- MXNet is an open-source deep learning framework that allows you to define, train, and deploy deep neural networks on a wide array of devices, from cloud infrastructure to mobile devices. It is highly scalable, allowing for fast model training, and supports a flexible programming model and multiple languages.
- http://mxnet.io/

ECS + ECR

ECS Benefits

Cluster management made easy

Flexible scheduling

Integrated and extensible

Security

Performance at scale

ECS Architecture

ECS Common Use Cases

Applications and services

- Configuration and deployment
- Microservices

Batch processing

What's ECR?

- Amazon EC2 Container Registry (Amazon ECR) is a fully-managed Docker container registry that makes it easy for developers to store, manage, and deploy Docker container images. Amazon ECR is integrated with Amazon EC2 Container Service (Amazon ECS), simplifying your development to production workflow.
- Learn more: https://aws.amazon.com/ecr/

How does ECS use ECR?

```
VPC
                           "containerDefinitions": [
                               "memory": 128,
                               "portMappings": [
                                   "hostPort": 80,
                                   "containerPort": 80,
                                   "protocol": "tcp"
                               "essential": true,
                                                                                                    VPC subnet
                               "name": "nginx-container"
                               "image": "nginx",
                               "logConfiguration":
                                 "logDriver": "awslogs",
Amazon ECR
                                 "options": {
                                   "awslogs-group": "ecs-log-streaming",
                                   "awslogs-region": "us-west-2"
                               "cpu": 0
                                                                                                    VPC subnet
                           "family": "example task 1"
                                                                                                virtual private cloud
```

ECS Task Definition

AWS CloudFormation

CloudFormation – Components & Technology

JSON formatted file

Parameter definition
Resource creation
Configuration actions

Framework

Stack creation
Stack updates
Error detection and rollback

Configured AWS resources

Comprehensive service support
Service event aware
Customizable

CloudFormation Benefits

Templated resource provisioning

Infrastructure as code

Declarative and flexible

Easy to use

CloudFormation Use Cases

Stack replication

Infrastructure scale out

Blue-green deployments

Infrastructure as code

Why do customers use CloudFormation?

Developers/DevOps teams value CloudFormation for its ability to treat infrastructure as code, allowing them to apply software engineering principles, such as SOA, revision control, code reviews, integration testing to infrastructure.

IT Admins and MSPs value CloudFormation as a platform to enable standardization, managed consumption, and role-specialization.

ISVs value CloudFormation for its ability to support scaling out of multi-tenant SaaS products by quickly replicating or updating stacks. ISVs also value CloudFormation as a way to package and deploy their software in their customer accounts on AWS.

EC2 Spot Instances

Amazon EC2 Consumption Models

On-Demand

Pay for compute capacity by the hour with no long-term commitments

For spiky workloads, or to define needs

Reserved

Make a low, one-time payment and receive a significant discount on the hourly charge

For committed utilization

Spot

Bid for unused capacity, charged at a Spot price which fluctuates based on supply and demand

For time-insensitive or transient workloads

With Spot, the rules are simple

Markets where the price of compute changes based on supply and demand

You'll never pay more than your bid. When the market exceeds your bid you get 2 minutes to wrap up your work

Show me the markets!

Each instance family

Each instance size

Each Availability Zone

In every region

Is a separate **Spot Market**

Spot Fleet

Spot Fleet helps you

Get Best Price

Find the lowest priced horsepower that works for you. or

Get Diversified Resources

Diversify your fleet. Grow your availability.

And

Apply Custom Weighting

Create your own capacity unit based on your application needs

Diversification with EC2 Spot Fleet

Multiple EC2 Spot Instances selected

Multiple Availability Zones selected

Pick the instances with similar performance characteristics, e.g., c3.large, m3.large, m4.large, r3.large, c4.large.

Workshop: Image Classification

Overall Architecture

Lab 1: Getting Started

Lab 2: Build MXNet on a Docker Container

Amazon ECR

```
"containerDefinitions": [
    "memory": 128,
    "portMappings": [
        "hostPort": 80,
        "containerPort": 80,
        "protocol": "tcp"
    "essential": true,
    "name": "nginx-container"
    "image": "nginx",
    "logConfiguration":
      "logDriver": "awslogs",
      "options": {
        "awslogs-group": "ecs-log-streaming",
        "awslogs-region": "us-west-2"
    "cpu": 0
"family": "example task 1"
```


ECS Task Definition

Lab 3: Launch MXNet with ECS

Lab 4: Image Classification Demo

```
In [4]: url = 'http://writm.com/wp-content/uploads/2016/08/Cat-hd-wallpapers.jpg'
predict(get_image(url), mod, synsets)

probability=0.692329, class=n02122948 kitten, kitty
probability=0.043847, class=n01323155 kit
probability=0.030002, class=n01318894 pet
probability=0.029693, class=n02122878 tabby, queen
probability=0.026972, class=n01322221 baby
```


Wrap-up

- ECS makes cluster management easy
- ECS has flexible scheduling
- ECS has enables strong security posture
- What other applications can you containerize to deploy and manage at scale?

re:Invent

Thank you!

Remember to complete your evaluations!

Related Sessions

- MAC306 Using MXNet for Recommendation Modeling at Scale
- CON301 Operations Management with Amazon ECS
- CON302 Development Workflow with Docker and Amazon ECS
- CON401 Amazon ECR Deep Dive on Image Optimization

Appendix

Estimated Workshop Costs