CO – PO Mapping:

	P01	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	√	✓	√	✓								√
CO2	✓	✓	✓	✓	✓							✓
CO3	✓	✓	✓	✓	✓							✓
CO4	✓	✓	✓	✓	✓							✓
CO5	✓	✓	✓	✓	✓							✓
CO6	✓	✓	✓	✓	√							✓

CS6201	GRAPH THEORY	L	Т	Р	EL	CREDITS
		3	1	0	3	5

Prerequisites for the course: Discrete Mathematics

OBJECTIVES:

- To understand the fundamentals of graph theory
- To study the proofs related to various concepts in graphs
- To study about the different types of graphs and their properties
- To learn about the distinguishing features of various graph algorithms
- To study the applications of graphs in solving engineering problems

MODULE I	INTRODUCTION	L	Т	Р	EL
		4	1	0	3

Introduction - Graph Terminologies - Types of Graphs - Isomorphism - Isomorphic Graphs - Operations on graphs - Degree sequences - Euler graph - Hamiltonian Graph - Related theorems.

SUGGESTED ACTIVITIES:

• EL: Graphs and tournaments, Graphs in real world applications

SUGGESTED EVALUATION METHODS:

Assignment on graphs in real world applications

MODULE II	EDGE GRAPH	L	Т	Р	EL
		3	1	0	3

Edge Graphs and Traversability - Eccentricity Sequences and Sets - Isometry.

SUGGESTED ACTIVITIES:

• Graph Isometry Problems

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Quizzes

MODULE III	TREES	L	Т	Р	EL
		3	1	0	3

Trees -Properties- Distance and Centres - Types - Rooted and Binary Tree- Tree Enumeration- Labeled Tree - Unlabeled Tree

SUGGESTED ACTIVITIES: EL: Binary trees and signed trees **SUGGESTED EVALUATION METHODS:** Tutorial problems and assignment problems on generating trees with specified properties MODULE IV **SPANNING TREE** L Т Ρ EL Spanning Tree - Fundamental Circuits- Cut Sets - Properties - Connectivity- Separability - Network Flows -1-isomorphism, 2-isomorphism - Related Theorems SUGGESTED ACTIVITIES: Concept maps to relate spanning trees with other topics SUGGESTED EVALUATION METHODS: Tutorial problems on proof techniques Assignment problems on graph connectivity MODULE V **PLANARITY** EL L Т 0 3 Planar Graph - Representation - Detection of planarity - Dual Graph - Related Theorems.

SUGGESTED ACTIVITIES:

• Identification of planar and non-planar graphs

SUGGESTED EVALUATION METHODS:

• Tutorial problems on proving related theorems

MODULE VI	DIGRAPH	L	Т	Р	EL
		3	1	0	3

Digraph - Properties - Euler Digraph - Tournament graph - Applications.

SUGGESTED ACTIVITIES:

EL: Application of Digraph

SUGGESTED EVALUATION METHODS:

Assignment problems

MODULE VII	GRAPH REPRESENTATION	L	Т	Р	EL
		3	1	0	3

Matrix Representation- Adjacency matrix- Incidence matrix- Circuit matrix - Cut-set matrix - Path Matrix- Properties - Related Theorems - Correlations.

SUGGESTED ACTIVITIES:

• Graph representation for different types of graphs

SUGGESTED EVALUATION METHODS:

- Tutorial problems on comparative analysis on representation methods
- Assignment problems

MODULE VIII	COLORING AND COVERING	L	Т	Р	EL
		4	2	0	3

Graph Coloring - Chromatic Polynomial - Chromatic Partitioning - Matching - Covering - Related Theorems

SUGGESTED ACTIVITIES:

EL: Edge coloring and example problems

SUGGESTED EVALUATION METHODS:

- Tutorial problems to find chromatic number of special graphs
- · Assignment problems on applications using matching and covering

MODULE IX	GRAPH ALGORITHMS -1	L	Т	Р	EL
		3	0	0	3

Graph Algorithms- Connectedness and Components- Spanning Tree - Fundamental Circuits - Cut Vertices.

SUGGESTED ACTIVITIES:

Programming on related algorithms

SUGGESTED EVALUATION METHODS:

Demo on the programs for small applications

MODULE X	GRAPH ALGORITHMS -2	L	Т	P	EL
		4	0	0	3

Directed Circuits- Shortest Path – Planarity Testing – Isomorphism – Any two applications overview.

SUGGESTED ACTIVITIES:

• Project based learning to apply suitable concepts for a small application

SUGGESTED EVALUATION METHODS:

Mini Project demo and evaluation

OUTCOMES:

Upon completion of the course, the students will be able to:

- Point out the basic concepts of graphs, and different types of graphs
- Discuss the properties, theorems and be able to prove theorems
- Apply suitable graph models and algorithms for solving engineering problems
- Analyse various representations of graphs
- Analyse graph algorithms and discuss their suitability for applications

TEXT BOOKS:

- 1. Narsingh Deo, "Graph Theory with Applications to Engineering and Computer Science", Prentice-Hall of India Pvt. Ltd, 2003.
- 2. S. Pirzada, "An Introduction to Graph theory", University Press, 2012.

REFERENCES:

- 1. Frank Harary, "Graph Theory", Narosa Publishing House, 2001.
- 2. West D. B., "Introduction to Graph Theory", 2nd Edition, Pearson Education, 2001.
- 3. Diestel R, "Graph Theory", 5th Edition, Springer, 2017.

EVALUATION METHOD TO BE USED:

Category of Course	Continuous Assessment	Mid – Semester Assessment	End Semester
Theory	40	20	40

CO – PO Mapping:

	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	✓	✓	✓						✓			
CO2	✓	✓	✓					✓				✓
CO3	✓	✓	✓		✓			✓				✓
CO4	✓	✓	✓						✓		✓	
CO5	✓	✓	✓		✓					✓		

EC6201

SIGNALS AND SYSTEMS

OBJECTIVES:

- To understand the types of signals and systems
- To gain knowledge about understanding continuous time and discrete time signals.
- To learn time domain and frequency domain analysis of signals
- To learn the transformations from time domain to frequency domain
- To gain knowledge about the various functionalities available in signal processing software to support signal processing applications

SIGNALS AND SYSTEMS	L	Т	Р	EL	EL TOTAL CREDITS		
	3	0	4	3	6		
MODULE I:			L	Т	Р	EL	
			3	0	4	3	
Classification of Signals Leaful Signal models no	riadic and a n	oriod	io cia	nalc	random	cianale Energy	

Classification of Signals - Useful Signal models – periodic and a periodic signals, random signals, Energy & Power signals - Systems – Classification of systems