Chapter 03: Computer Arithmetic

Lesson 07: **Integer Division**

Objective

- Understand process of integer division
- Restoring Algorithm
- Non-restoring Algorithm

Division using successive subtraction

Division using successive subtraction

- Implemented on computer systems by repeatedly subtracting the divisor from the dividend
- Counting the number of times that the divisor can be subtracted from the dividend before the dividend becomes smaller than the divisor

Division 15 with 5

- Subtract repeatedly from 15, getting 10, 5, and 0 as intermediate results
- •The quotient, 3, is the number of subtractions that had to be performed before the intermediate result became less than the dividend

15 ÷ 5

Schaum's Outline of Theory and Problems of Computer Architecture Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009

Too long Time

- For example, 2³¹ (one of the larger numbers representable in 32-bit unsigned integers) divided by 2 is 2³⁰, meaning that 2³⁰ subtractions would have to be done to perform this division by repeated subtraction
- On a system operating at 1 GHz, this would take approximately 1 s, far longer than any other arithmetic operation

Division using look-up table

Lookup Table Method

- Using pre-generated tables, these techniques generate 2 to 4 bits of the quotient in each cycle
- This allows 32-bit or 64-bit integer divisions to be done in a reasonable number of cycles

Division using Restoring Algorithm

Restoring Algorithm

- •Assume— X register k-bit dividend
- Assume— Y the k-bit divisor
- Assume S a sign-bit

Restoring Algorithm

- 1. <u>Start</u>: Load 0 into accumulator *k*-bit *A* and dividend X is loaded into the *k*-bit quotient register *MQ*.
- 2. <u>Step A</u>: Shift 2*k*-bit register pair *A-MQ* left
- 3. Step B: Subtract the divisor Y from A.

Restoring Algorithm

- 4. Step C: If sign of A (msb) = 1, then reset MQ_0 (lsb) = 0 else set = 1.
- 5. Steps D: If $MQ_0 = 0$ add Y (restore the effect of earlier subtraction).
- 6. Steps A to D repeat again till the total number of cyclic operations = k.
- At the end, A has the remainder and MQ has the quotient

Division of 4-bit number by 7-bit dividend

Step	S-flag *	First Register for A	Second Register for MQ	Action Taken	Number of operations (instructions)
Start	0	0b 0000	0b 0000	Clear S, A, MQ	3 for clearing C, A and M
	0	0Ь 0001	0b 1110	Load dividend X (lower k bits) between MQ_{k-1} and MQ_0 and dividend higher bits in A	2 for loading A and MQ
Step 0A	0 /	0011	1100	Shift left S-A-M	2
Step 0B	0	0000	1100	Subtract Y from S-A, result in S-A	1
Step 0C	0	0000	1101	$MQ_0 = 1 \text{ as } S = 0$	1
Step 0D	0	0000	_ 1101	Skip restore by adding as $S = 0$	1 (test S)
Step 1A	0	0001	1010	Shift left S-A-M	2
Step 1B	1	1110	1010	Subtract <i>Y</i> from S- <i>A</i> , result in S- <i>A</i>	1
Step 1C	1	1110	1010	$MQ_0 = 0 \text{ as } S = 1$	1
Step 1D	0	0001	1010	Add Y into S-A to restore as $S = 1$	1

Division of 4-bit number by 7-bit dividend

P		<i>_</i>		1100 1 1110 0 1110 101010 00 0	
Step 2A	0	0011	0100	Shift left S-A-M	2
Step 2B	0	0000	0100	Subtract <i>Y</i> from S- <i>A</i> , result in S- <i>A</i>	1
Step 2C	0	0000	0101	$MQ_0 = 1 \text{ as } S = 0$	1
Step 2D	0	0000	0101	Skip restore as $S = 0$	1(test S)
Step 3A	0	0000	1010	Shift left S-A-M	2
Step 3B	1	1101	1010	Subtract Y from S-A, result in S-A	1
Step 3C	1	1101	1010	$MQ_0 = 0 \text{ as } S = 1$	1
Step 3D	0	0000	1010	Add Y into S-A to restore as $S = 1$	1
Answer	0	Remainder = 0,		Quotient Decimal 10	Total 25

^{*} after the left shift from msb of A.

Division using Non-restoring Algorithm

Non-Restoring Algorithm

- Assume—that there is an accumulator and MQ register, each of *k*-bits
- MQ₀, (lsb of MQ) bit gives the quotient, which is saved after a subtraction or addition

Non-Restoring Algorithm

• Total number of additions or subtractions are k-only and total number of shifts = k plus one addition for restoring remainder if needed

Non-Restoring Algorithm

- Assume—that X register has (2k-1) bit for dividend and Y has the k-bit divisor
- Assume— a sign-bit S shows the sign

Non- Restoring Algorithm

- 1. Load (upper half *k*–*l* bits of the dividend X) into accumulator *k*-bit A and load dividend X (lower half bits into the lower *k* bits at quotient register MQ
- Reset sign S = 0
- Subtract the k bits divisor Y from S-A (1 plus k bits) and assign MQ₀ as per S

Non- Restoring Algorithm

- 2. If sign of A, S = 0, shift S plus 2k-bit register pair A-MQ left and subtract the k bits divisor Y from S-A (1 plus k bits); else if sign of A, S = 1, shift S plus 2k-bit register pair A-MQ left and add the divisor Y into S-A (1 plus k bits)
- Assign MQ₀ as per S

Non- Restoring Algorithm

- 3. Repeat step 2 again till the total number of operations = k.
- 4. If at the last step, the sign of A in S = 1, then add Y into S-A to leave the correct remainder into A and also assign MQ_0 as per S, else do nothing.
- 5. A has the remainder and MQ has the quotient

Division of 4-bit number by 7-bit dividend by Non Restoring Algorithm

Step	S-flag *	First Register for A	Second Register for MQ	Action Taken	Number of operations (instructions)
Start	0	0ь0000	0ь0000	Clear S, A, MQ	3 for clearing C, A and M
	0	0b0001	0b1110	Load dividend X (lower k bits) in MQ_{k-1} and MQ_0 and dividend higher $k-1$ bits in A	2 for loading A and MQ
Step 0A	1	1110	1110	Subtract Y from S-A, because $S = 0$ result in S-A	1
Step 0B	1	1110	1110	$MQ_0 = 0 \text{ as } S = 1$	1
Step 0C	1	1101	1100	Shift left S-A-M	2

Division of 4-bit number by 7-bit dividend by Non Restoring Algorithm

Step 1A	0	0000	1100	Add Y into S-A, because S = 1	1
Step 1B	0	/ 0000	1101	$MQ_0 = 1 \text{ as } S = 0$	1
Step 1C	0 1	0001	1010	Shift left S-A-M	2
Step 2A	1	1110	1010	Subtract Y into S-A, because $S = 0$	1
Step 2B	1		1010	$MQ_0 = 0 \text{ as } S = 1$	1
Step 2C	1	1101	0100	Shift left S-A-M	2
Step 3A	1	0000	0100	Add Y into S-A, because $S = 1$	1
Step 3B	0	_0000	0101	$MQ_0 = 1 \text{ as } S = 0$	1
Step 3C	0 -	0000	1010	Shift C-A-M	2
Last	0	0000	1010	Do not Add Y into S-A, because S = 0 and make no change in MQ ₀	1
Answer	0	Remainder =	0,	Quotient Decimal 10	Total 22

Summary

We learnt

- Division by successive subtraction is slowest
- Restoring Algorithm
- Non-Restoring Algorithm

End of Lesson 07 on **Integer Division**