STAT5030 Linear Models (Final Exam 2020-2021)

3 May 2021

- 1. (15 marks) Let $\boldsymbol{x} = (X_1, \dots, X_k)^{\top} \sim N_k(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\mu}$ is a $k \times 1$ constant vector and $rank(\boldsymbol{\Sigma}) = k$.
 - (a) What is the distribution of $U = (\boldsymbol{x} \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} \boldsymbol{\mu})$?
 - (b) Let $A = \Sigma^{-1} (\Sigma^{-1} \mathbf{1}_k \mathbf{1}_k^{\top} \Sigma^{-1}) / (\mathbf{1}_k^{\top} \Sigma^{-1} \mathbf{1}_k)$. Here $\mathbf{1}_k$ is a $k \times 1$ vector with all elements being 1. Find the distribution of $x^{\top} A x$.
- 2. (15 marks) In the one-way ANOVA model

$$y_{ij} = \mu + \tau_i + \epsilon_{ij}, \quad i = 1, 2, 3, \quad j = 1, \dots, n,$$

where ϵ_{ij} are independently distributed as $N(0, \sigma^2)$, and $\tau_i's$ are fixed but unknown.

- (a) Consider a hypothesis $H_{01}: \mu + \tau_1 = 2(\mu + \tau_2) = 3(\mu + \tau_3)$. Is H_{01} testable? If yes, derive a test for testing H_{01} .
- (b) Is $H_{02}: \tau_2 = (\tau_1 + \tau_3)/2$ testable? If yes, derive a test for testing H_{02} .
- 3. (30 marks) Consider a linear model

$$Y = X\beta + \epsilon, \tag{1}$$

where \mathbf{Y} is $n \times 1$, \mathbf{X} is an $n \times (p+1)$ fixed design matrix, $\boldsymbol{\beta}$ is a (p+1)-vector of regression coefficient and $\boldsymbol{\epsilon}$ has mean $\mathbf{0}$ and known positive definite covariance matrix \mathbf{V} .

(a) When X is of full rank, find the best linear unbiased estimates (BLUE) of $p^{\top}\beta$, where $p \in \mathbb{R}^{p+1}$ is a constant vector. (Students are required to show the detailed proof of the Gauss-Markov theorem.)

- (b) When X is not of full rank, find a sufficient and necessary condition for $c^{\top}\beta$ to be estimable, where $c \in \mathbb{R}^{p+1}$.
- (c) For model (5), suppose that $\boldsymbol{\beta}$ is constrained by $\boldsymbol{R}\boldsymbol{\beta}=r$, where \boldsymbol{R} is a full-rank $m\times(p+1)$ matrix with m< p+1. Let $\boldsymbol{V}=\sigma^2\boldsymbol{I}$. Derive the constrained least square estimate of $\boldsymbol{\beta}$ and show that it is better than the ordinary least square estimate of $\boldsymbol{\beta}$ (without the constraint) in the sense of Gauss-Markov theorem.
- 4. (20 marks) Consider a linear regression model

$$y_i = x_{i1}\beta_1 + x_{i2}\beta_2 + \dots + x_{ip}\beta_p + \epsilon_i = \sum_{j=1}^p x_{ij}\beta_j + \epsilon_i, \quad i = 1, \dots, n.$$
 (2)

By convention, the response and covariates are centered and standardized. Model (2) can be written in matrix form

$$Y = X\beta + \epsilon$$
.

where $\boldsymbol{X}_{n\times p} = (x_1, \dots, x_p)$ is orthogonal design and $\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)^{\top}$.

(a) The non-negative lasso is defined to minimize

$$\frac{1}{2} \| \mathbf{Y} - \mathbf{X}\boldsymbol{\beta} \|_2^2 + \lambda \| \boldsymbol{\beta} \|_1 \text{ subject to } \beta_j \ge 0, j = 1, \dots, p,$$
 (3)

over β . Here $\|\cdot\|_2$ and $\|\cdot\|_1$ are the L_2 norm and the L_1 norm, respectively. Find the solution to the non-negative lasso problem. Explain the difference between lasso and the non-negative lasso by comparing the solutions. (Students are required to provide detailed steps.)

(b) Zou and Hastie (2005) introduced the elastic-net penalty

$$\lambda \sum_{j=1}^{p} (\alpha \beta_j^2 + (1-\alpha)|\beta_j|),$$

a different compromise between ridge and lasso with $0 \le \alpha \le 1$. Consider the elastic-net optimization problem

$$\min_{\boldsymbol{\beta}} \|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}\|^2 + \lambda[\alpha\|\boldsymbol{\beta}\|_2^2 + (1-\alpha)\|\boldsymbol{\beta}\|_1],$$

where $\mathbf{Y} = (y_1, y_2, \dots, y_n)^{\top}$, $\mathbf{X} = (x_1, x_2, \dots, x_p)_{n \times p}$. Show how one can turn this into a lasso problem.

5. (20 marks) Consider binary outcome $Y \in \{0, 1\}$, where Y = 0 represents the control (non-disease) and Y = 1 represents the case (disease). The logistic regression model assumes that Y is associated with the (p+1)-dimensional predictor X via the logistic link function

$$P(Y = 1|X = x) = \frac{e^{x^{\top}\beta}}{1 + e^{x^{\top}\beta}},$$
 (4)

where $\beta \in \mathbb{R}^{p+1}$ including an intercept. A latent variable formulation of model (4) is as follows: suppose that there is an unobserved continuous random variable \tilde{Y} such that Y = 1 if and only if $\tilde{Y} > \theta$, where θ is some unknown constant.

- (a) Show that θ is not identifiable under model (4).
- (b) For identifiability, we fix $\theta = 0$ without loss of generality. Assume that the latent \tilde{Y} depends on X via a linear regression model

$$\tilde{Y} = X^{\top} \beta + U, \tag{5}$$

where U is the error term. Show that when U follows the standard logistic distribution, model (5) is the logistic regression model in (4).

Hint: The density function of the standard logistic distribution is

$$f(x) = \frac{e^x}{(e^x + 1)^2}, \quad x \in R.$$

(c*) (**Optional question:** 10 bonus marks) For the logistic regression model (4), the observations are (Y_i, X_i) , i = 1, ..., n, a random sample of (Y, X) with size n. Let $\hat{\beta}_n$ be the maximum likelihood estimator of β . Derive the asymptotic distribution of $\sqrt{n}(\hat{\beta}_n - \beta_0)$ as $n \to \infty$, where β_0 is the true value of β in model (4). If it is possible, please provide the technical assumptions needed to establish the asymptotic distribution.