Bayesian Methods for Realtime Scene Perception

by

Austin J. Garrett

Department of Electrical Engineering and Computer Science Proposal for Thesis Research in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

December 2019
© Massachusetts Institute of Technology 2019. All rights reserved.
Author
Department of Electrical Engineering and Computer Science
December 11, 2019
Certified by
Vikash Mansinghka
Research Scientist
Thesis Supervisor
Accepted by

Chairman, Department Committee on Graduate Theses

Placeholder

Bayesian Methods for Realtime Scene Perception

by

Austin J. Garrett

Submitted to the Department of Electrical Engineering and Computer Science on December 11, 2019, in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science

Abstract

In this thesis, I designed and implemented a compiler which performs optimizations that reduce the number of low-level floating point operations necessary for a specific task; this involves the optimization of chains of floating point operations as well as the implementation of a "fixed" point data type that allows some floating point operations to simulated with integer arithmetic. The source language of the compiler is a subset of C, and the destination language is assembly language for a micro-floating point CPU. An instruction-level simulator of the CPU was written to allow testing of the code. A series of test pieces of codes was compiled, both with and without optimization, to determine how effective these optimizations were.

Thesis Supervisor: Vikash Mansinghka

Title: Research Scientist

Contents

1	Introduction	7
	1.1 Placeholder	7
2	Related Work	9
	2.1 Placeholder	9
3	Proposed Work	11
	3.1 Placeholder	11
4	Conclusion	13
	4.1 Placeholder	13

Introduction

TODO: replace me

1.1 Placeholder

Related Work

TODO: replace me

2.1 Placeholder

Proposed Work

TODO: replace me

3.1 Placeholder

Conclusion

TODO: replace me

4.1 Placeholder