How Big Are the Betti Numbers of Finite Length Modules?

October 23, 2020

- $S = k[x_1, \ldots, x_n]$
- I a homogeneous ideal.

What can we say about the Betti numbers of S/I?

- I a homogeneous ideal.

What can we say about the Betti numbers of S/I?

Recall,

- $\beta_0(S/I) = \#$ generators of S/I
- $\beta_1(S/I) = \#$ generators of I
- $\beta_2(S/I) = \#$ relations on gens of I
-

- I a homogeneous ideal.

What can we say about the Betti numbers of S/I?

Recall,

- $\beta_0(S/I) = 1$
- $\beta_1(S/I) = \#$ generators of I
-
- $\beta_{pdim}(S/I) = last nonzero betti number.$

Krull Altitude Theorem

Number of generators of $I \geq \operatorname{ht}(I)$

Krull Altitude Theorem

Number of generators of $I \geq ht(I)$

We will refer to codim(I) instead of height.

$$\beta_1(S/I) \geq \operatorname{codim}(I)$$

Auslander-Buchsbaum

$$\operatorname{pdim}(S/I) + \operatorname{depth}(S/I) = \dim k[x_1, \dots, x_n]$$

$$\dots$$

$$\operatorname{pdim}(S/I) \geq \operatorname{codim}(I)$$

Auslander-Buchsbaum

$$\operatorname{pdim}(S/I) + \operatorname{depth}(S/I) = \dim k[x_1, \dots, x_n]$$

$$\dots$$

$$\operatorname{pdim}(S/I) \geq \operatorname{codim}(I)$$

$$\beta_{\operatorname{codim}(I)}(S/I) \neq 0.$$

Auslander-Buchsbaum

$$\operatorname{pdim}(S/I) + \operatorname{depth}(S/I) = \dim k[x_1, \dots, x_n]$$

$$\dots$$

$$\operatorname{pdim}(S/I) \geq \operatorname{codim}(I)$$

$$\beta_{\operatorname{codim}(I)}(S/I) \geq 1.$$

- I a homogeneous ideal
- $\operatorname{codim}(I) = c$.

What can we say about the Betti numbers of S/I?

Recall,

- $\beta_0(S/I) = 1$
- $\beta_1(S/I) \geq c$
- ...
- $\beta_c(S/I) \ge 1$.

General Case

- $\beta_0(S/I) = 1$
- $\beta_1(S/I) \geq c$
- ...
- $\beta_i(S/I) = ?$
- ...
- $\beta_c(S/I) \ge 1$.

 $I = \langle \text{ regular sequence } \rangle$

- $\beta_0(S/I) = 1$
- $\beta_1(S/I) = c$

General Case

- $\beta_0(S/I) = 1$
- $\beta_1(S/I) \geq c$
- ...
- $\beta_i(S/I) = ?$
- ...
- $\beta_c(S/I) \ge 1$.

 $I = \langle \text{ regular sequence } \rangle$

- $\beta_0(S/I) = 1$
- $\beta_1(S/I) = c = \binom{c}{1}$
-
- $\beta_i(S/I) = \binom{c}{i}$
-
- $\beta_c(S/I) = 1 = \binom{c}{c}$.

General Case

•
$$\beta_0(S/I) = 1$$

•
$$\beta_1(S/I) \geq c$$

- ...
- $\beta_i(S/I) = ?$
- <u>。</u> . . .
- $\beta_c(S/I) \ge 1$.

$$I = \langle \text{ regular sequence } \rangle$$

•
$$\beta_0(S/I) = 1$$

•
$$\beta_1(S/I) = c = \binom{c}{1}$$

•
$$\beta_i(S/I) = \binom{c}{i}$$

•
$$\beta_c(S/I) = 1 = \binom{c}{c}$$
.

Conjecture (Buchsbaum-Eisenbud-Horrocks)

If I is an ideal of codimension c then for all i:

$$\beta_i(S/I) \ge {c \choose i}.$$

Conjecture (Buchsbaum-Eisenbud-Horrocks)

If I is an ideal of codimension c then for all i:

$$\beta_i(S/I) \geq {c \choose i}.$$

Known Results

- (Buchsbaum-Eisenbud '77) True if the resolution of S/I has a DG-Algebra structure
- True in general for $c \le 4$ (these proofs are easy)
- Open for c = 5
 - Even open for ideals with 6 generators!
- True in other special cases
 - If I is monomial, licci, of "low regularity" etc.

Conjecture (Buchsbaum-Eisenbud-Horrocks)

If I is an ideal of codimension c then for all i:

$$\beta_i(S/I) \geq {c \choose i}.$$

add everything up...

to get a (weaker) conjecture:

Conjecture (Buchsbaum-Eisenbud-Horrocks)

If I is an ideal of codimension c then for all i:

$$\beta_i(S/I) \geq {c \choose i}.$$

add everything up...

to get a (weaker) conjecture:

Total Rank Conjecture

If I is an ideal of codimension c then

$$\sum \beta_i(S/I) \geq 2^c$$

Total Rank Conjecture

If I is an ideal of codimension c then

$$\sum \beta_i(S/I) \geq 2^c$$

Known Results

- (Buchsbaum-Eisenbud) True if the resolution of S/I has a DG-Algebra structure
- True in general for $c \le 4$ (these proofs are easy)
- Proven for c = 5 (1993 Avramov-Buchweitz)
- True for all c (if $char k \neq 2$.) (Walker 2018)
- True in other special cases
 - If I is monomial, licci, of "low regularity" etc.
 - But these bounds are stronger!

If I is an ideal of height c (and $char k \neq 2$) then

$$\sum \beta_i(S/I) \geq 2^c$$

and

In char 2 the best lower bound is (Walker 2018)

$$2(\sqrt{3})^{c-1} > 2^{0.79c + 0.208}$$

The Avramov-Buchweitz bound (1993)

$$(\sqrt{3})^c > 2^{0.79c}$$

only holds if the multiplicity of I is even but not divisible by 6.

If I is an ideal of height c and $char k \neq 2$ then

$$\sum \beta_i(S/I) \geq 2^c$$

and

If I is an ideal of height c and $char k \neq 2$ then

$$\sum \beta_i(S/I) \geq 2^c$$

and equality holds if and only if I is generated by a regular sequence.

If I is an ideal of height c and $char k \neq 2$ then

$$\sum \beta_i(S/I) \geq 2^c$$

and equality holds if and only if I is generated by a regular sequence.

• If equality doesn't hold, how much bigger is $\sum \beta_i(S/I)$?

If I is an ideal of height c and $\operatorname{char} k \neq 2$ then

$$\sum \beta_i(S/I) \geq 2^c$$

and equality holds if and only if I is generated by a regular sequence.

- If equality doesn't hold, how much bigger is $\sum \beta_i(S/I)$?
- Well, $\sum \beta_i(S/I)$ must be even.

If I is an ideal of height c and $char k \neq 2$ then

$$\sum \beta_i(S/I) \geq 2^c$$

and equality holds if and only if I is generated by a regular sequence.

- If equality doesn't hold, how much bigger is $\sum \beta_i(S/I)$?
- Well, $\sum \beta_i(S/I)$ must be even.
- So if I is not generated by a regular sequence then $\sum \beta_i \ge 2^c + 2$.

• Is there an ideal of codimension $c \ge 3$ with $\sum \beta_i(S/I) = 2^c + 2$?

• Is there an ideal of codimension $c \ge 3$ with $\sum \beta_i(S/I) = 2^c + 2$? (I've not found one)

• Is there an ideal of codimension $c \ge 3$ with $\sum \beta_i(S/I) = 2^c + 2$? (I've not found one)

Conjecture / Question

If I is not generated by a regular sequence is

$$\sum \beta_i(S/I) \ge 2^c + 2^{c-1} = 1.5(2^c)$$
?

• Is there an ideal of codimension $c \ge 3$ with $\sum \beta_i(S/I) = 2^c + 2$? (I've not found one)

Conjecture / Question

If I is not generated by a regular sequence is

$$\sum \beta_i(S/I) \ge 2^c + 2^{c-1} = 1.5(2^c)$$
?

(there are plenty of these)

$$I\subset k[x_1,\dots,x_n]$$
 not generated by a regular sequence
$${\rm is}\ \sum \beta_i(S/I)\geq 2^c+2^{c-1}=1.5(2^c)?$$

This is true when:

- For any ideal if $c \le 4$
 - (Charalambous-Evans-Miller) Requires Classification of Tor Algebra Structures

$$I \subset k[x_1, \dots, x_n]$$
 not generated by a regular sequence

• (Monomial Case if $c = n = \dim S$)

 $I \subset k[x_1, \dots, x_n]$ not generated by a regular sequence

• (Monomial Case if $c = n = \dim S$)

$$\beta_i(S/I) \geq {c \choose i} + {c-1 \choose i-1}, \Longrightarrow$$

$$I \subset k[x_1, \dots, x_n]$$
 not generated by a regular sequence

• (Monomial Case if $c = n = \dim S$)

$$\beta_i(S/I) \ge {c \choose i} + {c-1 \choose i-1}, \implies \sum \beta_i(S/I) \ge 2^c + 2^{c-1}.$$

$$I \subset k[x_1, \dots, x_n]$$
 not generated by a regular sequence

• (Monomial Case if $c = n = \dim S$)

$$\beta_i(S/I) \geq {c \choose i} + {c-1 \choose i-1}, \implies \sum \beta_i(S/I) \geq 2^c + 2^{c-1}.$$

This bound for β_i does not hold for general ideals I,

$$I \subset k[x_1, \dots, x_n]$$
 not generated by a regular sequence

• (Monomial Case if $c = n = \dim S$)

$$\beta_i(S/I) \geq {c \choose i} + {c-1 \choose i-1}, \implies \sum \beta_i(S/I) \geq 2^c + 2^{c-1}.$$

This bound for β_i does not hold for general ideals I, not even for monomial ideals I.

$$I \subset k[x_1, \dots, x_n]$$
 not generated by a regular sequence

• (Monomial Case if $c = n = \dim S$)

$$\beta_i(S/I) \geq {c \choose i} + {c-1 \choose i-1}, \implies \sum \beta_i(S/I) \geq 2^c + 2^{c-1}.$$

This bound for β_i does not hold for general ideals I, not even for monomial ideals I.

 (B-Seiner) I is monomial of height c, not gen. by reg. seq. then

bound for β_i doesn't hold, yet still $\sum \beta_i(S/I) \ge 2^c + 2^{c-1}$.

Ideas

Why might this be true?

$$\sum \beta_i \ge 2^c + 2^{c-1} = 1.5(2^c)$$

Ideas

Why might this be true?

$$\sum \beta_i \ge 2^c + 2^{c-1} = 1.5(2^c)$$

• Maybe $\beta_i \ge {c \choose i} + {c-1 \choose i-1}$ or $\beta_i \ge {c \choose i} + {c-1 \choose i}$

(This is actually true if M or S/I is multigraded!)

Ideas

Why might this be true?

$$\sum \beta_i \ge 2^c + 2^{c-1} = 1.5(2^c)$$

- Maybe $\beta_i \geq {c \choose i} + {c-1 \choose i-1}$ or $\beta_i \geq {c \choose i} + {c-1 \choose i}$ (This is actually true if M or S/I is multigraded!)
- Or maybe $\beta_i \geq 1.5 \binom{c}{i}$

Why might this be true?

$$\sum \beta_i \ge 2^c + 2^{c-1} = 1.5(2^c)$$

- Maybe $\beta_i \geq {c \choose i} + {c-1 \choose i-1}$ or $\beta_i \geq {c \choose i} + {c-1 \choose i}$
 - (This is actually true if M or S/I is multigraded!)
- Or maybe $\beta_i \geq 1.5 \binom{c}{i}$
- Or maybe if $\beta_i + \beta_{c-i} \geq 3\binom{c}{i}$ (For instance, maybe the first half of the betti numbers are at least $2\binom{c}{i}...$)

Main Result

Main Theorem (B-Wigglesworth)

Let I be an ideal of height c and let a be the degree of the smallest generator of I. If $reg(S/I) \le 2a - 2$ then for all $c \ge 3$

$$\sum \beta_i(S/I) \ge 2^c + 2^{c-1}$$

and this is true because for all $c \ge 9$ the first half of the betti numbers satisfy: $\beta_i \ge 2\binom{c}{i}$ and the last half satisfy $\beta_i \ge \binom{c}{i}$.

A statement is also true for modules:

$$\sum \beta_i(M) \geq \beta_0(M)(2^c + 2^{c-1})$$

· Assume I has height c in $k[x_1,...,x_n]$ \rightarrow And 5/I is not a CI

	c < 4	C75	Monomid		low regularity
$\beta_i \ge \binom{c}{i} + \binom{c-1}{i-1}$	Fake	False	Artinian (c=n)	Non-Artinian (c <n) False</n) 	False
Σβ; > (1.5)2°	(90 CEM) Classification of Tor Algebras	?		('18 B-Seiner) Delicate Splitting Argument	yes ∀c. + theck ∑ βi
First half of Bi > 2 (c)	Folu	False	False	False	for c39