

Unit 2: Boundary value problems

Course > and PDEs

> Part A Homework 2 > 2. Lecture 5

2. Lecture 5

The following can be done after Lecture 5.

Please enter solutions in terms of π rather than numerical approximations to guarantee a correct grading. Simply type **pi** into the answer box and treat as any other variable, using * to denote multiplication, / to denote division, and \wedge to denote exponents.

5-1

5.0/5.0 points (graded)

Which of the following are true of the heat equation $\frac{\partial \theta}{\partial t}=\alpha \frac{\partial^2 \theta}{\partial x^2}$, where α is a positive constant?

Check all that apply.

✓ The set of solutions is a vector space.

 $\overline{}$ Every solution has the form $heta\left(x,t
ight)=v\left(x
ight)w\left(t
ight)$ for some functions $v\left(x
ight)$ and $w\left(t
ight)$.

Solution:

Only the first statement is true.

The zero function is a solution, multiplying any solution by a scalar gives another solution, and adding any two solutions gives another solution, so the set of solutions is a vector space.

Although there is a basis of solutions consisting of functions of the form $v\left(x\right)w\left(t\right)$, there are other solutions that are linear combinations of these, and most of these are not products $v\left(x\right)w\left(t\right)$; for example, $e^{-t}\sin x + e^{-9t}\sin 3x$ is not such a product.

How can you tell that there is not some sneaky way to write

$$e^{-t}\sin x + e^{-9t}\sin 3x = v(x) w(t)$$
?

If such an identity existed, setting $x=\pi/3$ would show that w(t) is a scalar multiple of e^{-t} , but then

$$rac{e^{-t}\sin x + e^{-9t}\sin 3x}{w\left(t
ight)} = v\left(x
ight)$$

is proportional to $\sin x + e^{-8t} \sin 3x$, which is a contradiction since v(x) does not depend on t.

Submit

You have used 1 of 2 attempts

Answers are displayed within the problem

5-2

15.0/15.0 points (graded)

The function $\theta\left(x,t\right)$ for $x\in\left[0,1\right]$ and $t\geq0$ is a solution to the heat equation $\frac{\partial\theta}{\partial t}=\frac{\partial^{2}\theta}{\partial x^{2}}$ with conditions $\theta\left(x,0\right)=2\sin\pi x+32\sin2\pi x$, $\theta\left(0,t\right)=0$, and $\theta\left(1,t\right)=0$. What is $\theta\left(x,\pi^{-2}\ln2\right)$?

Note: The answer box will recognize sin, cos, tan, sinh, cosh, etc.; simply put the argument in round parentheses; e.g. sin(pi*x/L).

$$\theta\left(x,\pi^{-2}\ln 2\right) = \boxed{\sin(\mathrm{pi}^*x) + 2^*\sin(2^*\mathrm{pi}^*x)} \quad \checkmark \text{ Answer: } \sin(\mathrm{pi}^*x) + 2^*\sin(2^*\mathrm{pi}^*x)$$

$$\sin\left(\pi \cdot x\right) + 2\cdot\sin\left(2\cdot\pi \cdot x\right)$$

Solution:

For each positive integer n, the function $e^{-n^2\pi^2t}\sin n\pi x$ is the solution to the heat equation satisfying $\theta\left(0,t\right)=0$ and $\theta\left(1,t\right)=0$. So the linear combination

$$heta(x,t) = 2e^{-\pi^2 t} \sin \pi x + 32e^{-4\pi^2 t} \sin 2\pi x$$

is a solution that satisfies all the conditions. Then

$$heta\left(x,\pi^{-2}\ln 2
ight) = 2e^{-\ln 2}\sin\pi x + 32e^{-4\ln 2}\sin2\pi x = \sin\pi x + 2\sin2\pi x.$$

Submit

You have used 1 of 15 attempts

• Answers are displayed within the problem

5-3

10/10 points (graded)

Consider an insulated uniform metal rod of length π with exposed ends and with thermal diffusivity 1. Suppose that at t=0, the temperature profile is

$$heta \left({x,0} \right) = 10 + \sin 3x + 20\sin 5x + 2\sin 7x,$$

but then the ends are held in ice at 0° C. When t is large, the temperature profile is closely approximated by a sinusoidal function of x whose amplitude is decaying to 0. What is the angular frequency of that sinusoidal function?

(Hint: Start with the general solution to the heat equation with boundary conditions, and then match it to the given initial condition.)

1 ✓ Answer: 1

Solution:

The answer is 1.

The general solution to the heat equation with boundary conditions $heta\left(0,t
ight)=0$ and $heta\left(\pi,t
ight)=0$ is

$$\theta(x,t) = b_1 e^{-t} \sin x + b_2 e^{-4t} \sin 2x + b_3 e^{-9t} \sin 3x + \cdots$$

As $t \to \infty$, the sinusoidal functions of x have amplitude decaying at different rates, and it is the first nonzero term in the series that decays the slowest and that hence will eventually become most prominent.

Substituting t=0 and plugging the initial condition into the left hand side gives

$$10 + \sin 3x + 20\sin 5x + 2\sin 7x = b_1\sin x + b_2\sin 2x + b_3\sin 3x + \cdots$$

for all x in $(0, \pi)$.

To find all the numbers b_n , we need to figure out how to express the constant function 10 as a sum of sines on the interval $(0,\pi)$. To do so, extend it to an odd function on $(-\pi,\pi)$ and then extend this to a periodic function of period 2π :

$$10\mathrm{Sq}\left(t
ight)=rac{40}{\pi}igg(\sin x+rac{\sin 3x}{3}+rac{\sin 5x}{5}+\cdotsigg)\,.$$

Thus

$$rac{40}{\pi}igg(\sin x+rac{\sin 3x}{3}+rac{\sin 5x}{5}+\cdotsigg)+\sin 3x+20\sin 5x+2\sin 7x=b_1\sin x+b_2\sin 2x+b_3\sin 3x+\cdots,$$

SO

$$b_{1} = \frac{40}{\pi}$$

$$b_{2} = 0$$

$$b_{3} = \frac{40}{3\pi} + 1$$

$$b_{4} = 0$$

$$b_{5} = \frac{40}{5\pi} + 20$$

$$\vdots$$

In particular, the first nonzero b_n is b_1 , so the dominant term in $\theta(x,t)$ for large t is the first term,

$$\frac{40}{\pi}e^{-t}\sin x,$$

a sinusoidal function of x of angular frequency 1 whose amplitude is decaying to 0.

Submit

You have used 2 of 3 attempts

• Answers are displayed within the problem

10.0/10.0 points (graded)

Let $\theta(x,t)$ be the steady-state solution to the heat equation $\frac{\partial \theta}{\partial t} = \frac{\partial^2 \theta}{\partial x^2}$ for an insulated metal rod of length 10 meters with left end held at $10^{\circ}\mathrm{C}$ and right end held at $30^{\circ}\mathrm{C}$. What is the value of $\theta(x,t)$ at a point 4 meters from the left end, in degrees Celsius?

Solution:

The answer is 18.

In the steady-state solution, $\frac{\partial \theta}{\partial t}=0$, $\theta=\theta(x)$ is a function of x alone. The heat equation then forces $\frac{\partial^2 \theta}{\partial x^2}=0$, which says that $\theta(x)=ax+b$ for some constants a and b. Since $\theta(0)=10$ and $\theta(10)=30$ (if x measures distance along the rod measured from the left end), we get $\theta(x)=2x+10$, and $\theta(4)=18$.

Submit

You have used 1 of 15 attempts

• Answers are displayed within the problem

5-5

10.0/10.0 points (graded)

Consider an insulated uniform metal rod of length π with insulated left end (at x=0) and with exposed right end (at $x=\pi$) held at 0° C. Let $\theta\left(x,t\right)$ be its temperature in degrees Celsius at a position x units from the left end after t seconds. If $\theta\left(x,t\right)$ has the form $v\left(x\right)w\left(t\right)$ for some not-identically-zero functions $v\left(x\right)$ and $w\left(t\right)$, which of the following must be true of $v\left(x\right)$?

(Check all that apply.)

 $\bigvee v'(0) = 0.$

 $v(\pi) = 0.$

~

Solution:

The answer is that v'(0) = 0 and $v(\pi) = 0$ must hold, but not the others.

To say that the left end is insulated means that the heat flux across x=0 is 0, and heat flux is proportional to $-\frac{\partial \theta}{\partial x}$, so $\frac{\partial \theta}{\partial x}=0$ whenever x=0. In other words v'(x)w(t)=0 whenever x=0, so -v'(0)w(t)=0. But w(t) is not identically zero, so v'(0)=0.

To say that the right end is exposed and held at 0° C means that $\theta\left(\pi,t\right)=0$ for all t>0, so $v\left(\pi\right)w\left(t\right)=0$ for all t>0, but $w\left(t\right)$ is not identically zero, so $v\left(\pi\right)=0$.

The heat equation with these boundary conditions is going to have a solution of the form $\theta\left(x,t\right)=e^{-ct}\cos\left(x/2\right)$ for some constant c>0. Thus it is possible that $v\left(x\right)=\cos\left(x/2\right)$, in which case $v'\left(x\right)=-\frac{1}{2}\sin\left(x/2\right)$; this shows that $v\left(0\right)$ and $v'\left(\pi\right)$ can be nonzero.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

2. Lecture 5

Hide Discussion

Add a response:		
Preview		
Submit		

© All Rights Reserved