PIEClass:
Weakly-Supervised Text Classification
with Prompting and Method
Noise-Robust Iterative Ensemble Training

Source: EMNLP 2023

Advisor: JIA-LING KOH

Speaker: FAN-CHI-YU

Date:2023/02/27

Outline

- Introduction
- Method
- Experiment
- Conclusion

Introduction

Weakly-Supervised Text Classification

Any labeled documents are not allowed, suface names or limited word-level

descriptions of each category can be used.

Fine-Tuning

Type of fine tuning

Head Token Fine-Tuning

Head Token Fine-Tuning

Prompt-Base Fine-Tuning(MLM)

Prompt-Based Fine-Tuning (MLM)

Prompt

$$\mathcal{T}^{\mathrm{MLM}}(d) = d \text{ It was [MASK]}.$$

$$p(w|d) = \mathrm{Softmax}(f(\mathbf{h}^{\mathrm{MASK}})). \tag{7}$$

Input Text

Prompt-Base Fine-Tuning(ELECTRA)

Prompt-Based Fine-Tuning (ELECTRA)

ELECTRA Pre-train model

Cast the word prediction problem into a binary classification problem

Introduction

Method

Construct input with the template

$$\mathcal{T}^{\mathrm{ELECTRA}}(d, \mathrm{good}) = d \mathrm{\ It\ was\ \underline{good}}.$$
 $\mathcal{T}^{\mathrm{ELECTRA}}(d, \mathrm{bad}) = d \mathrm{\ It\ was\ \underline{bad}}.$

 $\mathcal{T}(d, l(c)) \leftarrow \text{Construct input with the template;}$

$$p(l(c)|d) = \text{Sigmoid}(f(\mathbf{h}^{l(c)})),$$
 (1)

$$p(c|d) = \frac{p(l(c)|d)}{\sum_{c' \in C} p(l(c')|d)}.$$
 (2)

$$P^0 = topk(p(c|d))$$

Prompt-Based Fine-Tuning (ELECTRA)

$$p(l(c)|d) \leftarrow \text{Prompt } E \text{ with Eq. (1)}$$

$$p(l(c)|d) = \text{Sigmoid}(f(\mathbf{h}^{l(c)})),$$
 (1)

$$p(c|d) = \frac{p(l(c)|d)}{\sum_{c' \in \mathcal{C}} p(l(c')|d)}.$$
 (2)

$$P^0 = topk(p(c|d))$$

Prompt-Based Fine-Tuning (ELECTRA)

$$p(c|d) \leftarrow \text{Eq. } (2);$$

$$p(l(c)|d) = \text{Sigmoid}(f(\mathbf{h}^{l(c)})),$$
 (1)

$$p(c|d) = \frac{p(l(c)|d)}{\sum_{c' \in C} p(l(c')|d)}.$$
 (2)

$$P^0 = topk(p(c|d))$$

Prompt-Based Fine-Tuning (ELECTRA)

 $P^0 \leftarrow \text{top } t^0 \text{ percentage of predictions}$

for $i \leftarrow 1$ to T do

Utilize two PLM fine-tuning methods to ensure the quality of pseudo labels improve the self-training quality

1. Head token fine-tuning: Capturing the information of the entire document

1. **Prompt-based finetuning:** Focusing more on the context surrounding the

Two fine-tuning strategies for pre-trained language model

Prompt base only requires a small amount of data to achieve competitive performance with head token fine-tuning

21

Only those most confident ones into the pseudo label pool to alleviate the error accumulation problem.

 $P_k^i : \text{Candidate Pseudo label} \qquad \qquad \blacksquare \qquad \qquad P^i = \bigcap_{k=0}^i \mathcal{P}_k^i. \qquad (4)$

22

Experiment

DataSet

- Topic
 - Ag_News(New topic with 4 class)
 - 20_News (New topic with 20 class)
 - NYT-Topics (New York Times context: imbalanced with 9 class)
 - NYT-Fine (New York Times context: imbalanced & fine-grained with 9 class)
 - Semantic(with 2 class)
 - Yelp(Review:Semantic analysis)
 - IMDB(Movie Review: semantic analysis)
 - Amazon(Amazon Review:semantic analysis)

Compared Methods

- Weakly method compare
 - WeSTClass
 - o ConWea
 - LOTClass
 - XClass
 - ClassKG
- Pre-train model compare
 - o RoBERTa (0-shot):Head Token
 - ELECTRA (0-shot):Head Token
 - Fully- Supervised BERT baseline

Compared Methods

Although ClassKG achieves the better results ClassKG uses more time

Methods	AGNews	20News	NYT-Topics	NYT-Fine	Yelp	IMDB	Amazon
WeSTClass	0.823/0.821	0.713/0.699	0.683/0.570	0.739/0.651	0.816/0.816	0.774/-	0.753/-
ConWea	0.746/0.742	0.757/0.733	0.817/0.715	0.762/0.698	0.714/0.712	-/-	-/-
LOTClass	0.869/0.868	0.738/0.725	0.671/0.436	0.150/0.202	0.878/0.877	0.865/-	0.916/-
XClass	0.857/0.857	0.786/0.778	0.790/0.686	0.857/0.674	0.900/0.900	-/-	-/-
ClassKG [†]	0.881/0.881	<u>0.811</u> / 0.820	0.721/0.658	0.889/0.705	0.918/0.918	0.888/0.888	0.926/-
PIEClass		1					
ELECTRA+ELECTRA	0.884/0.884	0.816 /0.817	0.832/0.763	0.910/0.776	0.957/0.957	0.931/0.931	0.937/0.937
Fully-Supervised	0.940/0.940	0.965/0.964	0.943/0.899	0.980/0.966	0.957/0.957	0.945/-	0.972/-
				D T: 00N			

Micro-F1/Macro-F1

26

Experiment

Compared Methods

Methods	AGNews	20News	NYT-Topics	NYT-Fine	Yelp	IMDB	Amazon
RoBERTa (0-shot)	0.581/0.529	0.507/0.445‡	0.544/0.382	-/- [‡]	0.812/0.808	0.784/0.780	0.788/0.783
ELECTRA (0-shot)	0.810/0.806	0.558/0.529	0.739/0.613	0.765/0.619	0.820/0.820	0.803/0.802	0.802/0.801
PIEClass							
ELECTRA+BERT	<u>0.884/0.884</u>	0.789/0.791	0.807/0.710	0.898/0.732	0.919/0.919	0.905/0.905	0.858/0.858
RoBERTa+RoBERTa	0.895/0.895	0.755/0.760 [‡]	0.760/0.694	-/- [‡]	0.920/0.920	<u>0.906/0.906</u>	0.912/0.912
ELECTRA+ELECTRA	<u>0.884/0.884</u>	0.816 / <u>0.817</u>	0.832/0.763	0.910/0.776	0.957/0.957	0.931/0.931	0.937/0.937
Fully-Supervised	0.940/0.940	0.965/0.964	0.943/0.899	0.980/0.966	0.957/0.957	0.945/-	0.972/-

Micro-F1/Macro-F1

Ablation Study

Two-Stage: Directly trains classifier using pseudo labels from zero-shot prompting

Single-View ST: Standard self-training method(only using zero-shot pseudo label)

• **Co-Training:** W/O Regularize in step Intersection

Ablation Study

- The single-view and two-stage method is not stable.
- Co-training ensures the consistency of model predictions, yielding great results.

Methods	AGNews	20News	NYT-Topics	NYT-Fine	Yelp	IMDB	Amazon
Two-Stage	0.847/0.847	0.739/0.733	0.776/0.664	0.838/0.678	0.913/0.913	0.870/0.870	0.836/0.835
Single-View ST	0.871/0.871			0.853/0.695			
Co-Training	0.877/0.877	0.795/0.791	0.818/0.715	√ 0.877/0.744 ∧	0.948/0.948	0.925/0.925	0.930/0.930
PIEClass	0.884/0.884	0.816/0.817	0.832/0.763	0.910/0.776	0.957/0.957	0.931/0.931	0.937/0.937

Micro-F1/Macro-F1

Ablation Study

The PIEClass can surpass the bottleneck of traditional self-learning.

Traditional self-learning micor-f1 will

be flattened after several iterations.

Quantities and qualities of the pseudo labels

We can see at the **first servals iteration** the pseudo label qualities in well.

Conclusion

Conclusion

- Using zero-shot PLM prompting to assign pseudo labels based on contextualized text understanding.
- 2. Implementing a noise-robust iterative ensemble to expand pseudo labels while ensuring their quality.

Personal Comment

• In this paper, the noise-robust approach is crucial. Fully embracing it could significantly improve model adaptability in noisy environments.