Proposed solution for automating lane detection:

The data provided for automation is RGB image with corresponding pixel-wise mask. Hence the problem statement is based on image segmentation.

The task of image segmentation is to train a neural network to output a pixel-wise mask of the image. This helps in understanding the image at a much lower level.

For precise lane detection on the road I have used the U-Net network. The u-net is convolutional network architecture for fast and precise segmentation of images. Up to now it has outperformed the prior best method (a sliding-window convolutional network).

I have resized the images to 640 x 480 for training the model. We can also consider 480 x 360 but the details in images were more so decided to go for slightly bigger size.

Considering that we have images in a single folder that we want to use for lane prediction, passing the folder to predict.py will give us a predicted mask.

Since U-net training is done from scratch(no transfer learning) it required many epochs to give decent results. Please find the weights here.

The training results shown below are on 200 epochs with threshold > 0.5:

We can see in time-series graph that the loss is further decreasing and can be trained furthermore for better results and accuracy.

Further development/changes :

- 1. If we want to predict lane for continuous drive data we can also use LSTM along with Unet.
- 2. Instead of mask we can also save the lane mask on the original image for reference.