Busca Adaptativa em Grandes Vizinhanças Aplicada à Minimização da Largura de Corte em Grafos

Vinícius Gandra Martins Santos

Orientador: Marco Antonio Moreira de Carvalho

Universidade Federal de Ouro Preto

23 de Novembro de 2018

Sumário

- 1 Introdução
- 2 Metodologia
- 3 Experimentos
- 4 Conclusão

Largura de Corte

Definição

- >> Problema de leiaute em grafos;
- >> Definir uma disposição linear de vértices;
- Minimizar o número de arestas entre vértices consecutivos no leiaute;
- » NP-Difícil.

Largura de corte

Função de avaliação

$$CW_{\pi}(G) = max_{v \in V} CW_{\pi}(v).$$

(±)

Motivação

- >> Processamento de linguagem natural;
- >> Projeto de circuitos integrados de larga escala;
- » Problema de agendamento de migração de redes.

Bibliografia

- Scatter search
 - ► Pantrigo et al. (2012).
- >> Variable Formulation Search (VFS)
 - ▶ Pardo et al. (2013).
- Modelo de programação inteira (CILP)
 - ► Coudert. (2016).

Busca Adaptativa em Grandes Vizinhanças (*Adaptive Large Neighborhood Search*, ALNS), Ropke e Pisinger (2006).

Solução inicial

Nova heurística gulosa

- 1 Selecionar vértice com menor grau e inserir na solução;
- 2 Calcular a largura de corte de cada vértice não inserido na solução;
- Selecionar o vértice que possui a menor largura de corte e que é adjacente ao vértice mais próximo presente na solução;
- 4 Inserir o vértice selecionado na próxima posição disponível;
- **6** Retornar para o passo 2 enquanto houver vértices fora da solução.

Solução inicial

Heurísticas

Heurísticas de remoção

- \gg Recebe solução representada por uma sequência de vértices π ;
- \gg Seleciona q vértices da solução para reinserção.

Heurísticas de inserção

- \gg Recebe solução π e um conjunto γ de vértices para inserção;
- \gg Cada vértice de γ é selecionada aleatoriamente e reinserido na solução.

Roleta

- Roleta é representada no intervalo $R = [0...1] \in \mathbb{R}$;
- Cada heurística i recebe uma fatia proporcional à sua probabilidade de ser selecionada;
- $\gg v1 = 60, v2 = 125, v3 = 115,$ v4 = 200.

Heurísticas de remoção

- >> Remoção aleatória;
- » Remoção de vértices desbalanceados.
- » Remoção de vértices direcionada por arestas.

- >> A Equação (2) segue uma distribuição triangular;
- \gg Seleciona aleatoriamente um número entre [1, n];
- $\gg u$ é uma variável aleatória entre [0,1].

$$q = \lfloor n - \sqrt{(1-u)(n-1)^2} + 0.5 \rfloor$$
 (2)

Remoção de vértices desbalanceados

 $RD e RD_P$.

Remoção de vértices direcionada por arestas

 RdA_L e RdA_R .

Heurísticas de inserção

- » Inserção aleatória;
- Inserção na melhor posição.

Inserção na melhor posição

IB, IBm e IB_N .

ANLS

ANLS

Critério de aceitação

Função de avaliação (CW1)

$$CW_{\pi}^{1}(G) = \max_{v \in V} CW_{\pi}(v). \tag{3}$$

$$\gg CW_{\pi 1}^1(G) = 3$$

$$\gg CW_{\pi 2}^1(G) = 3$$

Função de avaliação (CW²)

$$CW_{\pi}^{2}(G) = \sum_{v \in V} CW_{\pi}(v). \tag{4}$$

$$\gg CW_{\pi 1}^2(G) = 8$$

$$\gg CW_{\pi 2}^2(G) = 6$$

- \gg Aleatoriamente sorteado no intervalo [-maxN, maxN];
- $\gg CW' = max\{0, CW + noise\};$
- Aplicado no critério de aceitação com um probabilidade adaptativa;
- \gg Aplicado na heurística de inserção IB_N.

Pontuação

- $\gg \sigma_1$, quando as heurísticas (remoção e inserção) resultaram na melhor solução até o momento;
- $\gg \sigma_2$, quando as heurísticas resultaram em uma solução cujo custo seja menor que o da solução corrente; e
- $\gg \sigma_3$, quando as heurísticas resultaram em uma solução com custo maior que o da solução corrente, porém aceita por um critério de aceitação de soluções de piora.

Critério de aceitação para soluções de piora

Uma solução de piora π' gerada a partir de outra solução π é aceita com probabilidade calculada de acordo com a Equação:

$$e^{-(f(\pi')-f(\pi))/T} \tag{5}$$

- $\gg T$ Temperatura:
- $T_{start} = -0.81 \times f(\pi_0) / \ln 0.5 \text{Temperatura inicial};$
- $T_{end} = -0.45 \times f(\pi^*) / \ln 0.5 \text{Temperatura final};$
- $T = T \times (T_{end}/T_{start})^{1/k}$ Taxa de resfriamento.

Gerar solução Início inicial π_0 Aplicar heurística Analisar solução e atribuir pontuação Sortear heurística para obter nova as heurísticas solução π' Não Condição de Sim Sim Final do Fim parada Suavizar pontuação segmento satisfeita

Não

Suavização dos pontos e atualização dos pesos

- $\gg w_{i,i}$ peso da heurística i no segmento *j*;
- ≫ r; pontuação observada da heurística i no segmento j;
- ≫ a; número de vezes que a heurística *i* foi chamada durante o segmento *i*;
- $\gg \rho \in (0,1)$ fator de reação.

$$w_{i,j+1} = \rho \frac{r_i}{a_i} + (1 - \rho)w_{i,j} \qquad (6)$$

$$r = [29.48, 3.28, 1.50, 2.69]$$

 $w_{j+1} = [2.56, 1.28, 0.62, 1.17]$

Pós-processamento

- ≫ Busca local 2-swap;
- » Aplicação única por instância;
- >> Movimentos de não melhora são descartados.

Experimentos

Ambiente computacional

- >> Processador Intel Core i7 3.6 GHz;
- > 16 GB RAM;
- > Ubuntu 14.04 LTS;
- \gg Código escrito em C++, compilado com g++ 4.8.4 e opções -O3 e -march=native.

Conjuntos de instâncias

- \gg Small: composto por 84 grafos com dimensões que variam entre $16 \le n \le 24$ e $18 \le m \le 49$;
- \gg *Grid*: composto por 81 matrizes que representam grades bidimensionais com dimensões entre 9×9 a 729×729 ;
- Harwell-Boeing (HB): subconjunto derivado do Harwell-Boeing Sparse Matrix Collection, composto por 87 instâncias que variam de 30 a 700 vértices e 46 a 41686 arestas.
- \gg Rome Graphs: composto por 11.534 grafos com dimensões que variam entre $10 \le n \le 100$ e $9 \le m \le 158$;

Resultados médios

	OPT/BKS	<i>S</i> *	5	<i>S</i> ₀	gap _{S₀,S*}	gap _{S*,OPT}	σ	T(s)
Small	4,92	4,92	4,93	5,15	6,52	0,00	0,02	0,08
Grid	11,56	11,56	11,56	11,56	0,00	0,00	0,00	8,60
HB	311,55*	311,80	315,01	336,70	22,12	0,39	2,19	222,23

	VFS			ALNS			
	<i>S</i> *	#OPT	gap	<i>S</i> *	#OPT	gap	
Grid	12,23	59	3,25	11,56	81	0,00	
HB	314,39	61	1,77	311,80	77	0,39	

Resultados médios

	<i>S</i> *	S	<i>S</i> ₀	gap _{S0,S*}	σ	T(s)
Rome Graphs	8,41	8,60	9,13	8,03	0,19	0,82

Comparação com a literatura

	CILP	ALNS
Média	6,91	6,70
#OPT	5.683	5.660
#Limites superiores iguais	1.197	1.197
#Limites superiores melhores	3	1.217

Pontuação das heurísticas

Heurísticas de remoção

- A remoção desbalanceada de vértices com grau par e a remoção aleatória apresentaram as melhores pontuações;
- A remoção direcionada por arestas apresentou diferença significativa em relação apenas a remoção aleatória.

Heurísticas de inserção

- As heurísticas de inserção na melhor posição obtiveram pontuações semelhantes sem diferença significativa;
- A inserção aleatória obteve o pior resultado e apresentou diferença significativa em relação a todas as outras heurísticas.

Conclusão

- Desenvolvimento da metaheurística Busca Adaptativa em Grandes Vizinhanças;
- Aplicação inédita do ALNS ao problema de Largura de Corte;
- Experimentos computacionais executados em 11.786 instâncias;
- >> Foram encontrados pela primeira vez 3.434 limitantes superiores e 22 soluções com valores ótimos;
- \gg O melhor valor conhecido foi melhorado para 1.222 instâncias;
- 97% das soluções ótimas foram encontradas com gap máximo de 0,39%;
- » Publicação no SBPO 2018;
- >> Submissão para o EJOR.

xperimentos 0000000

FIM!

Busca Adaptativa em Grandes Vizinhanças Aplicada à Minimização da Largura de Corte em Grafos

Vinícius Gandra Martins Santos

Orientador: Marco Antonio Moreira de Carvalho

Universidade Federal de Ouro Preto

23 de Novembro de 2018