Ferienkurs zur Theoretischen Physik II 21. März - 24. März 2016

PHILIPP LANDGRAF, FRANZ ZIMMA

ÜBUNGSBLATT 1 Elektrostatik im Vakuum

Aufgabe 1.1: Gemischte Elektrostatik.....

Wir betrachten im Folgenden geladene Objekte mit Zentrum (bzw. Schwerpunkt) bei $\vec{0}$. Wir interessieren uns für verschiedene physikalische Größen im gesamten Raum. Wählen Sie für jedes Problem ein geeignetes Koordinatensystem und nutzen Sie Symmetrien. Alle angegebenen Größen sind zeitlich konstant.

- (a) Ein Hohlrohr mit Höhe h, Innenradius R_i und Außenradius R_a ist homogen geladen mit Q.
 - i. Geben Sie die Ladungsdichte $\rho(\vec{r})$ an.
 - ii. Überprüfen Sie den Betrag der Gesamtladung.
- (b) Eine (Voll-)Kugel mit Radius R ist homogen geladen mit Q.
 - i. Geben Sie die Ladungsdichte $\rho(\vec{r})$ an.
 - ii. Überprüfen Sie den Betrag der Gesamtladung.
 - iii. Berechnen Sie das \vec{E} -Feld dieser Konfiguration.
- (c) Eine (unendlich dünne) Kugeloberfläche mit Radius R_a ist homogen geladen mit Q.
 - i. Geben Sie die Ladungsdichte $\rho(\vec{r})$ an.
 - ii. Überprüfen Sie den Betrag der Gesamtladung.
 - iii. Konzentrisch zu dieser Oberfläche wird nun eine weitere Kugeloberfläche mit $R_i < R_a$ und -Q eingebracht. Berechnen Sie die Kapazität C = Q/U dieses "Kugelkondensators", wobei U die Potentialdifferenz zwischen den Schalen ist.
- (d) Eine (unendlich dünne) Kreisscheibe mit Radius R ist homogen geladen mit Q.
 - i. Geben Sie die Ladungsdichte $\rho(\vec{r})$ an.
 - ii. Überprüfen Sie den Betrag der Gesamtladung.
 - iii. Berechnen Sie das Dipolmoment \vec{p} dieser Konfiguration.
- (e) Innerhalb einer Kugel vom Radius R fällt die Ladungsdichte $\rho(r)$ vom Mittelpunkt bis zm Kugelrand hin linear auf den Wert Null ab. Die Gesamtladung in der Kugel beträgt Q.
 - i. Geben Sie die radialsymmetrische Ladungsdichte $\rho(\vec{r})$ ausgedrückt durch Q und R und stellen Sie sicher, dass der Betrag der Gesamtladung Q ist.
 - ii. Berechnen Sie für das elektrische Feld $\vec{E}(\vec{r}) = E(r)\hat{e}_r$ die r-abhängige Feldstärke E(r).
 - iii. Welche Arbeit W musste aufgewendet werden, um die Kugel mit der vorgebenen Ladungsverteilung aufzuladen?

Hinweis: Substituieren Sie r = sR im Integral über die Energiedichte $w = \frac{\varepsilon_0}{2}\vec{E}^2$.

Aufgabe 1.2: Wasserstoffatom

Das elektrostatische Potential eines Wasserstoffatoms ist

$$\Phi(\vec{r}) = \frac{q}{4\pi\varepsilon_0} \frac{\exp\left(-\frac{2r}{a_0}\right)}{r} \left(1 + \frac{r}{a_0}\right),\,$$

wobei q der Betrag der Elektronenladung und a_0 der Bohrsche Radius ist.

- (a) Bestimmen Sie die zugehörige Ladungsdichte $\rho(\vec{r})$.
- (b) Verifizieren Sie, dass die Gesamtladung wirklich 0 ist.

Hinweis: Spalten Sie den singulären Term $\frac{q}{4\pi\varepsilon_0 r}$ ab.

Aufgabe 1.3: Doppelkopf

In den Übungen wurden bereits das Potential Φ und das \vec{E} -Feld einer Punktladung vor einer Metallplatte berechnet. Diese Aufgabe ist wesentlich komplizierter.

Berechnen Sie das Potential und das elektrische Feld im Bereich z>0 von 2 Ladungen vor einer Metallplatte bei z=0. Die beiden Ladungen sind starr im Abstand d verbunden und tragen die Ladungen q und -q. Der Mittelpunkt befindet sich im Abstand $z_M>\frac{d}{2}$ zur Plattenoberfläche. Die Verbindungsachse der Punktladungen steht im Winkel α zur Oberflächennormale.

- (a) Geben Sie alle Bedingungen an, die das elektrostatische Potenzial $\Phi(\vec{r}$ im Bereich z>0 erfüllen muss
- (b) Berechnen Sie das Potential und das elektrische Feld für z>0 mit Hilfe der Bildladungsmethode.
- (c) Berechnen sie die induzierte Oberflächenladungsdichte σ
- (d) Noch komplizierter: Geben sie die Anzahl an Bildladungen an die benötigt werden, wenn man die zwei Ladungen zwischen zwei parallele Platten legt.

Aufgabe 1.4: Spiegeldipol

Ein elektrischer Dipol $\vec{p} = (0, 0, p)$ befindet sich am Punkt $\vec{a} = (0, 0, a)$ (mit a > 0) über einer in der xy-Ebene liegenden, geerdeten Platte.

(a) Bestimmen Sie unter Verwendung der Spiegelladungsmethode das Potential $\Phi(\vec{r})$ im oberen Halbraum z>0 zur Randbedingung, dass es auf der Metallplatte z=0 verschwindet. Überprüfen Sie diese Randbedingung explizit.

Hinweis: Das Potential eines elektrischen Dipols \vec{p} am Ursprung lautet:

$$\Phi_{\rm dip}(\vec{r}) = \frac{\vec{p} \cdot \vec{r}}{4\pi\varepsilon_0 |\vec{r}|^3}$$

- (b) Berechnen Sie die auf der Metallplatte influenzierte Flächenladungsdichte $\sigma(x,y)$.
- (c) Berechnen Sie die Kraft $\sim \hat{e}_z$, die auf den Dipol wirkt. Stellen Sie hierzu den Dipol durch zwei entgegengesetzte Punktladungen $\pm q$ mit sehr kleinem Abstand δ dar, so dass $p=q\delta$ ist. Hinweis: Verwenden Sie die Taylorentwicklung

$$(1+x)^{-2} = 1 - 2x + 3x^2 + \mathcal{O}(x^3).$$