Chapter 12 Poisson Regression and Related Loglinear Models

12.1 Introduction

- Categorical data often appear as discrete counts that are considered to be distributed as Poisson:
 - → colony counts for bacteria or viruses
 - → accidents or equipment failure
 - \rightarrow incidence for diseases
- Interested in estimating a rate or incidence and determining its relationship to a set of explanatory variables:
 - → bacteria counts per unit volume
 - → cancer deaths per person-months of exposure

Methodology for Poisson Regression

• Suppose response variable Y is distributed as Poisson, with expected value and variance both equal to μ . If we have a single explanatory variable x, the regression model is:

$$g(\mu) = \alpha + x\beta$$

where *g* is a link function, in terms of a GLM (usually the log function).

$$log(\mu) = \alpha + x\beta$$

Can be re-written

$$\mu = e^{\alpha} e^{x\beta}$$

If the explanatory variable x is increased by one unit, it has a multiplicative effect on μ .

• Frequently, discrete counts represent information collected over time or in space, and interest lies in modeling rates.

If the exposure time or volume is denoted as N, the rate is Y/N with expected value μ/N . Modeling this rate with a loglinear model is written:

$$\log \frac{\mu}{N} = \alpha + x\beta$$

or

$$\log(\mu) = \alpha + x\beta + \log(N)$$

The term log(*N*) is called an *offset* and must be accounted for in the estimation process. Note that:

$$\mu = \exp\{\alpha + x\beta + \log(N)\} = Ne^{\alpha}e^{x\beta}$$

So that the mean is proportional to *N*.

• More generally, we can write the model in matrix terms:

$$\mu(x) = \{N(x)\}\{g(\beta | x)\}$$

Where $\mu(x)$ is the expected value of the number of events n(x), x is the vector of explanatory variables, and N(x) is the known total exposure to risk in the units in which the events occur.

The rate for incidence is $\lambda(x) = \mu(x) / N(x)$

The loglinear model is written as

$$\log\left\{\frac{\mu(x)}{N(x)}\right\} = \mathbf{x}'\boldsymbol{\beta}$$

for counts n(x) with independent Poisson distributions.

The loglinear Poisson model is often written

$$\log\{n_i\} = \log\{N_i\} + \boldsymbol{x}_i'\boldsymbol{\beta}$$

in the generalized linear models framework.

Probability distribution: Poisson distribution

Link function: log

Offset: $log\{N_i\}$

The offset is a qualitative variable whose regression coefficient is known to be 1.

Poisson Regression

This method also applies when n_1 and n_2 are Poisson with expected values $N_1\lambda_1$ and $N_2\lambda_2$ where N_1 and N_2 can be person-time units of exposure. In this case the null hypothesis is $\lambda_1 = \lambda_2$ and one notes n_1 given $(n_1 + n_2) = n$ is $Bin(n,N_1/N)$

Let n_c = number with disease for control n_v = number with disease for vaccine

Assume
$$n_c$$
 is Poisson $(\lambda_c N_c)$
 n_v is Poisson $(\lambda_v N_v)$
 n_c and n_v independent

where N_c is extent of exposure for controls, and N_v is extent of exposure for vaccine

 n_v given $(n_v + n_c) = n$ as a conditional distribution is

$$Bin\left(n = n_v + n_c, P = \frac{\lambda_v N_v}{\lambda_v N_v + \lambda_c N_c}\right)$$

Then
$$P = \frac{\frac{\lambda_v}{\lambda_c} \left(\frac{N_v}{N_c}\right)}{\frac{\lambda_v}{\lambda_c} \left(\frac{N_v}{N_c}\right) + 1} = \frac{RC}{RC + 1}$$
 where $R = \frac{\lambda_v}{\lambda_c}$, $C = \frac{N_v}{N_c}$.

Use (n_v, n_c) or $p = n_v/(n_v + n_c)$ to produce a $100(1 - \alpha)\%$ confidence interval (P_L, P_U) for P.

Use
$$\frac{P}{(1-P)C}$$
 or $\frac{N_c P}{(1-P)N_v}$ as estimator for R and $\left\{\frac{P_L}{(1-P_L)C}, \frac{P_U}{(1-P_U)C}\right\}$ as $100(1-\alpha)\%$ confidence interval for $R = \lambda_v / \lambda_c$.

Example

	Fail	Success	Total
Vaccine	1	19,999	20,000
Control	5	9,995	10,000
Total	6	29,994	30,000

```
proc freq order=data;
  tables group;
  exact bin;
run;
```

	T	he FREQ Proc	edure	
group	Frequency	Percent	Cumulative Frequency	Cumulative Percent
vaccine	1	16.67	1	16.67
control	5	83.33	6	100.00
		nomial Propo r group = va		
	Proportion	(P)	0.1667	
	ASE		0.1521	
	95% Lower (Conf Limit	0.0000	
	95% Upper (Conf Limit	0.4649	
	Exact Conf	Limits		
	95% Lower (Conf Limit	0.0042	
	0=0 11	Conf Limit	0.6412	

$$C = \frac{N_v}{N_c} = \frac{20,000}{10,000} = 2$$

$$P = \frac{1}{6} = 0.1667$$

 $P_L = 0.0042$ (exact 95% lower limit from SAS output)

 $P_U = 0.6412$ (exact 95% upper limit from SAS output)

So, the point estimate for $R = \lambda_v / \lambda_c$ is

$$\frac{P}{(1-P)C} = \frac{1/6}{(5/6)2} = 0.10$$

and the exact 95% confidence interval for R is

$$\left\{ \frac{P_L}{(1-P_L)C}, \frac{P_U}{(1-P_U)C} \right\} = \left\{ \frac{0.0042}{(0.9958)2}, \frac{0.6412}{(0.3588)2} \right\}$$
$$= \left\{ 0.0021, 0.8935 \right\}$$

Since the upper limit is less than 1, we can conclude that the rate ratio is significantly less than 1, and thus the vaccine is protective against failure relative to control. Consider a very large, randomized field study to compare failure rates for a new vaccine versus a control condition.

Suppose the data are

	Fail	Success	Total
Vaccine	n_1	$N_1 - n_1$	N_1
Control	n_2	$N_2 - n_2$	N_2
Total	n	N-n	N

Note that N_1 , N_2 are very large; but n_1 , n_2 are very small; e.g., $n \le 20$ and $N \ge 1000$. Consider Fisher's test probability function for n_1

$$\Pr\{n\} = \frac{N_1! N_2! (N-n)! n!}{n_1! n_2! (N_1 - n_1)! (N_2 - n_2)! N!}$$

$$\approx \frac{n!}{n_1! n_2!} \left(\frac{N_1}{N}\right)^{n_1} \left(\frac{N_2}{N}\right)^{n_2}$$

Since $N_1 \gg n_1, N_2 \gg n_2$, $\Pr\{n_1\}$ is binomial $\operatorname{Bin}\left(n, \frac{N_1}{N}\right)$.

Thus, the left-hand (lower) tail *p*-value for Fisher's test in this case is

$$p = \sum_{j=0}^{n_1} \frac{n!}{j!(n-j)!} \left(\frac{N_1}{N}\right)^j \left(\frac{N_2}{N}\right)^{n-j}$$

For moderately large n so that $\frac{nN_1}{N}, \frac{nN_2}{N} \ge 10$, then n_1 is Approximately normal $N\left(\frac{nN_1}{N}, \frac{nN_1N_2}{N^2}\right)$.

Example

	Fail	Success	Total
Vaccine	1	19,999	20,000
Control	5	9,995	10,000
Total	6	29,994	30,000

$$p = {6 \choose 0} \left(\frac{1}{3}\right)^6 + {6 \choose 1} \left(\frac{2}{3}\right) \left(\frac{1}{3}\right)^5 = \frac{13}{3^6} = \frac{13}{729} \approx 0.02$$

12.3 Simple Poisson Counts Example

Salmonella Counts

Science Lab	Counts
A	63 64 65 68 69 70 72 73
	75 80 82 83 83 84 84 85 90 91
В	168 171 174 175 185 189 190
	191 195 197 198 198 203 205 205
	207 210 214 216 218

• It is reasonable to consider bacteria counts to be distributed as Poisson.

```
proc genmod;
  class lab;
  model counts=lab/ dist=poisson link=log type3;
run;
```

Model Information

Model Information

Data Set	WORK.SALMONELLA
Distribution	Poisson
Link Function	Log
Dependent Variable	counts

Class Variable Information

Class	Level Inform	nation	
Class	Levels	Values	
lab	2	АВ	

Assessment of Fit

Criteria For	Assessing G	oodness Of Fit	
Criterion	DF	Value	Value/DF
Deviance Scaled Deviance Pearson Chi-Square Scaled Pearson X2	36 36 36 36	40.3451 40.3451 40.0077 40.0077	1.1207 1.1207 1.1113 1.1113
Log Likelihood	30	21324.9700	

Type 3 Analysis

LR Statistics For Type 3 Analysis				
Source	DF	Chi- Square	Pr > ChiSq	
lab	1	1007.19	<.0001	

Maximum Likelihood Parameter Estimates

	A	Analysis c	of Maximum	Likelihoo	d Paramet	er Estimate	S
			Standard		d 95%	Wald	
Paramete	r DF	Estimate	Error	Confidenc	ce Limits	Chi-Square	Pr > ChiSq
Intercep	t 1	5.2753	0.0160	5.2440	5.3067	108783	<.0001
lab A	1	-0.9351	0.0313	-0.9965	-0.8738	892.34	<.0001
lab B	0	0.0000	0.0000	0.0000	0.0000		
Scale	0	1.0000	0.0000	1.0000	1.0000		
NOTE: T	he s	cale param	neter was	held fixed	d.		

12.4 Poisson Regression for Incidence Densities

• Interested in fitting a model to the log rate, or incidence densities, of melanoma exposure (involves including an offset).

New Melanoma Cases Among White Males: 1969-1971

Region	Age Group	Cases	Total
Northern	< 35	61	2880262
Northern	35-44	76	564535
Northern	45-54	98	592983
Northern	55-64	104	450740
Northern	65-74	63	270908
Northern	> 75	80	161580
Southern	< 35	64	1074246
Southern	35-44	75	220407
Southern	45-54	68	198119
Southern	55-64	63	134084
Southern	35-74	45	70708
Southern	> 75	27	34233

• Fit a loglinear model to the ratio of cancer incidence to exposure:

```
data melanoma;
   input age $ region $ cases total;
   ltotal=log(total);
   datalines;
35-44 south 75 220407
45-54 south 68 198119
<35 north 61 2880262
proc genmod data=melanoma;
   class region (ref='north') age (ref='<35')/param=ref;</pre>
   model cases = age region / dist=poisson
                       link=log offset=ltotal;
run;
```

Model Information

Model Information

Data Set	WORK.MELANOMA
Distribution	Poisson
Link Function	Log
Dependent Variable	cases
Offset Variable	ltotal
Observations Used	12

Class Variable Information

Class Level Information							
Class	Levels	Values					
age region	6 2	35-44 45-54 55-64 65-74 75+ <35 south north					

Assessment of Fit

Criteria	For Assessing	Goodness Of Fit	
Criterion	DF	Value	Value/DF
Deviance	5	6.2149	1.2430
Scaled Deviance	5	6.2149	1.2430
Pearson Chi-Square	5	6.1151	1.2230
Scaled Pearson X2	5	6.1151	1.2230
Log Likelihood		2694.9262	

Estimated Model Parameters

Analysis Of Parameter Estimates											
	Standard Wald 95% Chi-										
Paramet	er	DF	Estimate	Error	Confiden	ce Limits	Square P	r > ChiSq			
Interce	pt	1	-10.6583	0.0952	-10.8449	-10.4718	12538.4	<.0001			
age	35-44	1	1.7974	0.1209	1.5604	2.0344	220.92	<.0001			
age	45-54	1	1.9131	0.1184	1.6810	2.1452	260.90	<.0001			
age	55-64	1	2.2418	0.1183	2.0099	2.4737	358.89	<.0001			
age	65-74	1	2.3657	0.1315	2.1080	2.6235	323.56	<.0001			
age	75+	1	2.9447	0.1320	2.6859	3.2035	497.30	<.0001			
region	south	1	0.8195	0.0710	0.6803	0.9587	133.11	<.0001			
Scale		0	1.0000	0.0000	1.0000	1.0000					

NOTE: The scale parameter was held fixed.

• You can exponentiate these parameters to express incidence density ratios in a manner similar to exponentiating parameters in logistic regression to obtain odds ratios

```
proc genmod data=melanoma;
  class region (ref='north') age (ref='<35')/param=ref;
  model cases = age region / dist=poisson link=log offset=ltotal;
  estimate '45-54 vs. <35' age 0 1 0 0 0 / exp;
  estimate 'South vs. North' region 1 / exp;
run;</pre>
```

Contrast Estimate Results									
		Mean	Mear		L'Beta	Standard			
Label	E	Estimate C	onfidence	Limits	Estimate	Error	Alpha		
45-54 vs.	<35	6.7740	5.3707	8.5440	1.9131	0.1184	0.05		
Exp(45-54	vs. <35)				6.7740	0.8023	0.05		
South vs.	North	2.2693	1.9744	2.6083	0.8195	0.0710	0.05		
Exp(South	vs. North))			2.2693	0.1612	0.05		
		L'Be	ta						
Label		Confidence	Limits	Chi-Squ	are Pr >	ChiSq			
45-54 vs.		1.6810	2.1452	260	.90	<.0001			
Exp(45-54	vs. <35)	5.3707	8.5440						
South vs.	North	0.6803	0.9587	133	.11	<.0001			
Exp(South	vs. North)	1.9744	2.6083						

12.5 Overdispersion in Lower Respiratory Infection Example

- Data: 284 children examined every 2 weeks for one year. Explanatory variables: passive smoking, SES, crowding. Outcome: total number of times of lower respiratory infection in the year.
- Reasonable to expect that the children experiencing colds are more likely to have other infections; therefore there may be some additional variance, or overdispersion (observed variance is larger than the nominal variance for a particular distribution).

- Overdispersion occurs with some regularity in analysis of proportions and discrete counts, since in assumed distributions (binomial, Poisson), variances are fixed by a single parameter (mean).
- To manage overdispersion, one can adjust the covariance matrix of a Poisson-based analysis with a scaling factor. That is, assume variance to be $\phi\mu$ instead of μ . The chi-square statistic divided by the d.f. is used as ϕ . The covariance matrix is multiplied by ϕ , and the scaled deviance and log likelihoods are divided by ϕ .
- Alternatively, one could manage overdispersion using an assumption of a Negative Binomial distribution for the counts. This distribution has two parameters to accommodate overdispersion (compared to one for the Poisson distribution)

Poisson Regression without scaling factor

Model Information: Poisson Regression

The GENMOD Procedure

Model Information

Data Set	WORK.LRI
Distribution	Poisson
Link Function	Log
Dependent Variable	count
Offset Variable	logrisk
Observations Used	284

Fit Statistics: Poisson Regression

Criteria For Assessing Goodness Of Fit								
Criterion	DF	Value	Value/DF					
Deviance	276	408.1549	1.4788					
Scaled Deviance	276	408.1549	1.4788					
Pearson Chi-Square	276	495.4494	1.7951					
Scaled Pearson X2	276	495.4494	1.7951					
Log Likelihood		-260.4117						

•Poisson Regression with scaling factor:

Add scale=pearson to request Pearson scaling factor

```
proc genmod data=lri;
   class ses race agegroup / param=ref;
   model count = passive crowding ses race
        agegroup / dist=poisson
        offset=logrisk type3 scale=pearson;
run;
```

Assessment of Fit: Poisson Regression with Scaling Factor

Criteria	a For Asses	sing Goodness Of	Fit
Criterion	DF	Value	Value/DF
Deviance	276	408.1549	1.4788
Scaled Deviance	276	227.3708	0.8238
Pearson Chi-Square	276	495.4494	1.7951
Scaled Pearson X2	276	276.0000	1.0000
Log Likelihood		-145.0676	

Type 3 Analysis: Poisson Regression with Scaling Factor

LR Statistics For Type 3 Analysis								
Source	Num DF	Den DF	F Value	Pr > F	Chi- Square	Pr > ChiSq		
passive	1	276	3.89	0.0494	3.89	0.0484		
crowding	1	276	5.86	0.0162	5.86	0.0155		
ses	2	276	1.22	0.2966	2.44	0.2950		
race	1	276	0.38	0.5408	0.38	0.5403		
agegroup	2	276	1.07	0.3443	2.14	0.3429		

•Negative Binomial Regression:

Assessment of Fit: Negative Binomial Regression

Criter	ia For Assess	ing Goodness Of	Fit	
Criterion	DF	Value	Value/DF	
Deviance Scaled Deviance Pearson Chi-Square Scaled Pearson X2 Log Likelihood	276 276 276 276	256.9688 256.9688 298.2410 298.2410 -242.2932	0.9310 0.9310 1.0806 1.0806	

Type 3 Analysis: Negative Binomial Regression

LR Sta	LR Statistics For Type 3 Analysis										
	Chi-										
Source	DF	Square	Pr > ChiSq								
passive	1	4.43	0.0353								
crowding	1	5.83	0.0158								
ses	2	2.39	0.3034								
race	1	0.26	0.6112								
agegroup	2	2.92	0.2328								

Estimated Model Parameters: Poisson Regression

Analysis Of Parameter Estimates										
Standard Wald 95% Confidence Chi- Pr>										
Paramete	r	DF	Estimate	Error	Limi	ts	Square	ChiSq		
Intercep	t	1	0.6047	0.5452	-0.4638	1.6732	1.23	0.2673		
passive		1	0.4310	0.1652	0.1072	0.7548	6.81	0.009		
crowding		1	0.5199	0.1617	0.2030	0.8367	10.34	0.0013		
ses	0	1	-0.3970	0.2154	-0.8192	0.0252	3.40	0.0653		
ses	1	1	-0.0681	0.1961	-0.4524	0.3163	0.12	0.7285		
ses	2	0	0.0000	0.0000	0.0000	0.0000				
race	0	1	0.1402	0.1723	-0.1975	0.4780	0.66	0.4158		
race	1	0	0.0000	0.0000	0.0000	0.0000				
agegroup	1	1	-0.4792	0.6749	-1.8020	0.8436	0.50	0.4777		
agegroup	2	1	-0.9919	0.5119	-1.9951	0.0113	3.76	0.0526		
agegroup	3	0	0.0000	0.0000	0.0000	0.0000				
Scale		0	1.0000	0.0000	1.0000	1.0000				
NOTE: The	sca	ale	parameter wa	as held f	ixed.					

33

Estimated Model Parameters: Poisson Regression with Scaling Factor

Analysis Of Parameter Estimates									
				St	andard	Wald 95%	Confidence	Chi-	Pr>
Parame	ter		DF	Estimate	Error	Limi	ts	Square	ChiSq
Interc	ept		1	0.6047	0.7304	-0.8269	2.0362	0.69	0.4077
passiv	е		1	0.4310	0.2214	-0.0029	0.8649	3.79	0.0515
crowdi	ng		1	0.5199	0.2166	-0.0953	0.9444	5.76	0.0164
ses	0		1	-0.3970	0.2886	-0.9627	0.1687	1.89	0.1690
ses	1		1	-0.0681	0.2627	-0.5830	0.4469	0.07	0.7956
ses	2		0	0.0000	0.0000	0.0000	0.0000		
race	0		1	0.1402	0.2309	-0.3123	0.5928	0.37	0.5436
race	1		0	0.0000	0.0000	0.0000	0.0000		
agegro	up	1	1	-0.4792	0.9043	-2.2516	1.2931	0.28	0.5962
agegro	up	2	1	-0.9919	0.6858	-2.3361	0.3522	2.09	0.1481
agegro	up	3	0	0.0000	0.0000	0.0000	0.0000		
Scale	-		0	1.3398	0.0000	1.3398	1.3398		

NOTE: The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

Estimated Model Parameters: Negative Binomial Regression

Analysis Of Maximum Likelihood Parameter Estimates

Parameto	er	DF	Estimate	Standard Error		d 95% ce Limits	Wald Chi Square	i- Pr > ChiSq
Interce	pt	1	0.6751	0.6333	-0.5661	1.9163	1.14	0.2864
passive		1	0.4530	0.2144	0.0329	0.8732	4.47	0.0346
crowding	g	1	0.5017	0.2061	0.0978	0.9057	5.93	0.0149
ses	0	1	-0.3987	0.2933	-0.9736	0.1762	1.85	0.1740
ses	1	1	-0.0857	0.2775	-0.6296	0.4582	0.10	0.7574
ses	2	0	0.0000	0.0000	0.0000	0.0000		•
race	0	1	0.1178	0.2320	-0.3368	0.5725	0.26	0.6115
race	1	0	0.0000	0.0000	0.0000	0.0000	•	•
agegroup	p 1	1	-0.5652	0.8082	-2.1494	1.0189	0.49	0.4843
agegroup	p 2	1	-1.0131	0.6006	-2.1902	0.1641	2.85	0.0917
agegroup 3		0	0.0000	0.0000	0.0000	0.0000	•	•
Dispersion		1	0.9760	0.2593	0.4678	1.4843		

NOTE: The negative binomial dispersion parameter was estimated by maximum likelihood.

12.6 Exact Poisson Regression

• Exact Poisson regression is a useful strategy when you have small numbers of events because it does not depend on asymptotic results, but uses conditional distributions of the sufficient statistics of the parameters

• Example:

Medical Events for Rotavirus Vaccine Study

	,	Vaccine	Placebo		
Region	Events	Person Years	Events	Person Years	
United States	3	7500	58	7250	
Latin America	1	1250	10	1250	

- Request exact analysis with CLTYPE=EXACT.
- ESTIMATE=ODDS option requests incidence density ratios

```
data rotavirus;
  input region $ treatment $ counts years risk @@;
  logrisk = log(years risk);
datalines;
   Vaccine 3 7500 US Placebo
US
                                        58
                                             7250
LA Vaccine 1 1250 LA
                               Placebo
                                        10
                                             1250
run;
proc genmod order=data;
  class region treatment / param=ref;
  model counts = treatment region / dist=poisson
                        offset=log risk type3;
  estimate 'treatment' treatment 1 / exp;
  exact treatment / estimate=odds cltype=exact;
run;
```

Assessment of Fit

Criteria For Assessing Goodness Of Fit							
Criterion	DF	Value	Value/DF				
Deviance	1	0.2979	0.2979				
Scaled Deviance	1	0.2979	0.2979				
Pearson Chi-Square	1	0.3431	0.3431				
Scaled Pearson X2	1	0.3431	0.3431				
Log Likelihood		189.6784					

Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates										
Standard Wald 95% Wald Chi- Pr >										
Parameter	DF	Estimate	Error	Confidence	Limits	Square	ChiSq			
Intercept	1	-4.7886	0.3028	-5.3820	-4.1951	250.11	<.0001			
treatment Va	accine 1	-2.8620	0.5145	-3.8704	-1.8536	30.94	<.0001			
region US	3 1	-0.0467	0.3276	-0.6888	0.5953	0.02	0.8865			
Scale	0	1.0000	0.0000	1.0000	1.0000)				
NOTE: The so	cale parar	neter was h	eld tixed							

Exact Conditional Tests

Exact Conditional Tests							
E.C	T I	01.51.1.51.1.5	•	Value			
Effect	Test	Statistic	Exact	Mid			
treatment	Score	58.7561	<.0001	<.0001			
	Probability	8.62E-17	<.0001	<.0001			

Exact IDR Estimates and Confidence Intervals

Exact Odds Ratios							
95% Two-sided Parameter Estimate Confidence Limits p-value Type							
treatment Vaccine 0.057 0.015 0.153 <.0001 Exact							

Occupational Health Study Pertaining to Byssinosis Complaints

- Mantel-Haenszel methods for associations of byssinosis complaints with workplace as dusty or not, employment duration as ≥ 10 years or not, and smoking history as yes or no
- Logistic Regression model for proportions with byssinosis complaints

Byssinosis Complaints

Workplace	Years of			Complaints	
Conditions	Employment	Smoking	Yes	No	Proportion
Dusty	<10	Yes	30	203	0.129
Dusty	<10	No	7	119	0.056
Dusty	<u>≥</u> 10	Yes	57	161	0.261
Dusty	<u>≥</u> 10	No	11	81	0.120
Not Dusty	<10	Yes	14	1340	0.010
Not Dusty	<10	No	12	1004	0.012
Not Dusty	<u>≥</u> 10	Yes	24	1360	0.017
Not Dusty	<u>≥</u> 10	No	10	986	0.010

Poisson regression for log-linear models for WxExSxB counts

- Model 0 (full model) = W E W*E S W*S E*S W*E*S B W*B E*B W*E*B S*B W*S*B E*S*B W*E*S*B
- Model 1 (full model excluding 4-way interaction and E*S*B interaction)
- Model 2 (full model excluding 4-way interaction and all 3-way interactions with B)
- Model 3 = W E W*E S W*S B W*B E*B S*B
- Models 0, 1, 2 (but not Model 3) have identical results for corresponding logistic regression models with the variables being those that include B but with B deleted from them. Independent binomial distributions are assumed for the respective (W x E x S) cross-classifications.

Wald Test Statistics and p-values for Poisson Regression Loglinear Models for Byssinosis Data

		Mod	del 0	Mod	lel 1	Mod	Model 2		
	Variable	Q_W	<i>p</i> -value	Q_W	<i>p</i> -value	Q_W	<i>p</i> -value		
	Intercept	7990.10	<.0001	8117.64	<.0001	8102.94	<.0001		
	W	90.51	<.0001	93.08	<.0001	93.32	<.0001		
	E	1.12	0.2900	2.09	0.1485	4.00	0.0454		
	WxE	0.02	0.8745	0.00	0.9734	9.01	0.0027		
	S	57.65	<.0001	61.56	<.0001	70.15	<.0001		
į,	WxS	11.67	0.0006	11.74	0.0006	14.68	0.0001		
	ExS	1.95	0.1624	1.21	0.2704	1.82	0.1772		
	WxExS	0.27	0.6002	0.42	0.5192	0.86	0.3532		
í.	В	1046.29	<.0001	1055.96	<.0001	1051.02	<.0001		
	W x B	156.95	<.0001	157.32	<.0001	247.62	<.0001		
	ExB	6.95	0.0084	10.79	0.0010	13.52	0.0002		
	WxExB	2.96	0.0855	3.05	0.0808	X	N/A		
á	SxB	8.57	0.0034	9.40	0.0022	10.29	0.0013		
ŝ	WxSxB	3.46	0.0629	3.34	0.0677	X	N/A		
ĮĮ.	ExSxB	0.85	0.3555	X	N/A	X	N/A		
	WxExSxB	0.69	0.4067	X	N/A	X	N/A		
	Residual	Not	Not	Q _L =1.60	0.4490	Q _L =8.10	0.0879		
		Applicable	Applicable	43 (d.f.	=2)	(d.f.	.=4)		

Estimates and Standard Errors for Poisson Regression Loglinear Models for Byssinosis Data

		Mod	lel 0	Mod	lel 1	Model 2	
3/	Variable	Estimate	s.e.	Estimate	s.e.	Estimate	s.e.
	Intercept	4.3864	0.0491	4.3889	0.0487	4.3906	0.0488
	W	-0.4668	0.0491	-0.4700	0.0487	-0.4168	0.0431
Į,	E	0.0519	0.0491	0.0637	0.0441	0.0846	0.0423
	WxE	0.0077	0.0491	-0.0015	0.0441	-0.0685	0.0228
2	S	0.3726	0.0491	0.3768	0.0480	0.3906	0.0466
	WxS	0.1676	0.0491	0.1645	0.0480	0.0875	0.0228
	ExS	0.0686	0.0491	0.0247	0.0224	0.0299	0.0222
	WxExS	-0.0257	0.0491	0.0144	0.0224	0.0206	0.0221
	В	-1.5873	0.0491	-1.5847	0.0488	-1.5811	0.0488
	WxB	0.6148	0.0491	0.6117	0.0488	0.6671	0.0424
	ExB	0.1294	0.0491	0.1414	0.0430	0.1563	0.0425
	WxExB	0.0844	0.0491	0.0752	0.0430	X	N/A
	SxB	0.1437	0.0491	0.1478	0.0482	0.1526	0.0476
	WxSxB	0.0913	0.0491	0.0881	0.0482	X	N/A
	ExSxB	0.0453	0.0491	X	N/A	X	N/A
	WxExSxB	-0.0407	0.0491	¾ 4	N/A	Χ	N/A

Estimates, Standard Errors, Wald Test Statistics and *p*-values, with Likelihood Ratio Test Statistics and *p*-values for a further simplified Poisson Regression Loglinear Model for Byssinosis Data

		Model 3							
Variable	Estimate	s.e.	Q _W	<i>p</i> -value	Q_L	<i>p</i> -value			
Intercept	4.3898	0.0489	8050.72	<.0001					
W	-0.4146	0.0431	92.64	<.0001	77.88	<.0001			
E	0.0978	0.0411	5.67	0.0172	5.80	0.0160			
WxE	-0.0610	0.0217	7.91	0.0049	7.96	0.0048			
S	0.3924	0.0466	70.99	<.0001	84.86	<.0001			
WxS	0.0844	0.0226	13.89	0.0002	14.22	0.0002			
В	-1.5836	0.0489	1048.73	<.0001	2584.06	<.0001			
WxB	0.6677	0.0424	248.11	<.0001	247.04	<.0001			
ExB	0.1606	0.0424	14.35	0.0002	14.81	0.0001			
SxB	0.1577	0.0474	11.06	0.0009	11.97	0.0005			
Residual	Q _L =9.97 (d.f.=6)	with <i>p</i> =0.1260							

•This model does not have a counterpart for logistic regression since logistic regression must include WxExS and everything WxExS contains as study design specifications for sample size

Model 3 has a multi-category logistic counterpart

- Independent multinomial distributions for (S x B) are assumed for the respective (W x E) cross-classifications
- Results are identical to those for a Poisson loglinear model except those for intercept, W, E, and (W x E), which do not exist
- The results for S and (W x S) represent the intercept for S and the association of W with S
- The results for B, (W x B), and (E x B) represent the intercept for B and the associations of W and E with B
- The result for (S x B) represents an intercept for the homogeneous association of S and B for the respective (W x E) cross-classifications

Wald Chi-Square tests and p-values from WLS analysis for proportions (p) with Byssinosis complaints (The model is $\mathbf{E}(\mathbf{p}) = \mathbf{X}\boldsymbol{\beta}$)

Source	d.f.	Chi-Square	<i>p</i> -value
Intercept	1	131.56	< 0.0001
Workplace	1	93.89	< 0.0001
Employ_years	1	14.47	0.0001
Workplace*employ_years	1	12.95	0.0003
Smoking	1	14.82	0.0001
Workplace*smoking	1	13.29	0.0003
Residual (E×S, W×E×S)	2	3.47	0.1761

For this method, independent binomial distributions are assumed for the respective $(W \times E \times S)$ cross-classifications.

These results indicate very strong interactions of workplace with employment years and smoking in a strictly linear model for proportions. Such interactions correspond to employment years and smoking having very strong associations with Byssinosis complaints in the dusty workplace versus no association with Byssinosis complaints in the not dusty workplace.

Wald Chi-square tests and *p*-values from WLS analysis for a simplified model for proportions with Byssinosis complaints

Source	d.f.	Chi-Square	<i>p</i> -value
Intercept	1	131.50	< 0.0001
Workplace	1	93.98	< 0.0001
Employ_years (workplace=dusty)	1	13.90	0.0002
Smoking (workplace=dusty)	1	14.27	0.0002
Residual	4	4.68	0.3215

This model has a structure for which there is no variation of Byssinosis proportions within the non-dusty workplace and with employment years and smoking having additive effects within the dusty workplace. Predicted proportions are shown in the last table.

Predicted Proportions with Byssinosis Complaints from the Linear Model with WLS and Poisson Loglinear Model 2 and Model 3

(via predicted probabilities for the WxExSxB cross-classification)

и,		(via pre	euicteu p	robabillues	STOLUTE W	XEXOXD CIO	SS-Classificat	1011)
	Work Condition	Years of Employ -ment	Smoking	Byssinosis Complaints	WLS Predicted Proportion	Predicted Proportion from Model 2	Predicted W x E x S x B from Model 3	Model 3 Predicted Proportion
Į.	Dusty	<10	Yes	Yes	0.140	0.1376	0.0061	0.1377
ğ				No			0.0382	
			No	Yes	0.046	0.0797	0.0017	0.0776
Š				No			0.0202	
		≥ 10	Yes	Yes	0.241	0.2297	0.0090	0.2314
Š				No			0.0299	
			No	Yes	0.146	0.1393	0.0025	0.1366
				No			0.0158	
	Not Dusty	<10	Yes	Yes	0.012	0.0109	0.0027	0.0107
				No			0.2491	
			No	Yes	0.012	0.0060	0.0011	0.0059
Š				No			0.1844	
ä		≥ 10	Yes	Yes	0.012	0.0203	0.0052	0.0205
Š				No			0.2482	
K			No	Yes	0.012	0.0111	0.0020	0.0108
				No	49		0.1837	

Standard errors for estimated proportions with Byssinosis Complaints

Work Condition	Years of Employment	Smoking	Model 0 $SE = \sqrt{p(1-p)/n}$	Model 2	Model 3	WLS s.e.
Dusty	<10	Yes	0.02196	0.01810	0.01797	0.020057
		No	0.02048	0.01498	0.01477	0.0189
	≥ 10	Yes	0.02975	0.02418	0.02445	0.024856
		No	0.03388	0.02354	0.02324	0.026402
Not Dusty	<10	Yes	0.00270	0.00195	0.00193	0.00158
		No	0.00342	0.00129	0.00126	0.00158
	≥ 10	Yes	0.00347	0.00303	0.00307	0.00158
		No	0.00315	0.00218	0.00215	0.00158

Comments

- 1. Mantel-Haenszel methods enable assessments without strictly requiring a formal model (which might not fit well) nor requiring assumptions for distributions
- 2. Interactions can be more evident in a strictly linear model than a log-linear model and vice versa
- 3. Poisson regression log-linear models (and their single multinomial counterparts) have broader scope than logistic regression models
- 4. Linear models are somewhat more straightforward to apply with WLS than with maximum likelihood, but are only realistic for situations with categorical explanatory variables and with all predictions in (0,1)
- 5. Weighted least squares methods need all counts to be at least 5 for all models whereas Poisson regression log-linear models only need this condition for marginal tables corresponding to the highest order interactions in the model

Poisson Regression Analysis of Relationship Between Event Rates and a Set of Explanatory Variables

Applications:

1. Epidemiologic studies: events are occurrences of rare diseases (or experiences) for populations with different sizes; explanatory variables are background covariables and risk factors; enumeration of number of events and determination of population size are through possibly different data sources.

- 2. Epidemiologic studies: events are occurrences of rare diseases (or experiences) for individuals with possibly different amounts of exposure to risk; explanatory variables are background covariables and risk factors.
- 3. Clinical trials: events are occurrences of rare disorders for individuals with possibly different levels of exposure to risk; explanatory variables are treatment and background covariables. The rare disorders in a vaccine study are the diseases to be prevented; in other studies, they can correspond to unfavorable side effects of a treatment.

Model specifications for expected total number of events for subject with total exposure N and $x_1, x_2, ..., x_t$ status for t explanatory variables is as follows:

Expected total:

$$\mu = N\lambda = N \exp\left(\alpha + \sum_{k=1}^{t} \beta_k x_k\right).$$

Incidence density:

$$\lambda = (\mu/N) = \exp\left(\alpha + \sum_{k=1}^{t} \beta_k x_k\right).$$

Log(Incidence density) =
$$\ln \lambda = \alpha + \sum_{k=1}^{r} \beta_k x_k$$

The possible range for the α and the β_k is $(-\infty, \infty)$. The $\exp(\beta_k)$ are incidence density ratios for unit changes in the x_k , i.e., the amounts by which the incidence density λ is multiplied per unit change in x_k . When the total numbers of events in n_1, n_2, \ldots, n_s for s populations with total exposures N_1, N_2, \ldots, N_s approximately have independent Poisson distributions, maximum likelihood equations for estimation of α and the $\{\beta_k\}$ have the structure

$$\sum_{i=1}^{s} \hat{\mu}_{i}(1, x_{i1}, ..., x_{it}) = \sum_{i=1}^{s} n_{i}(1, x_{i1}, ..., x_{it}) \text{ where}$$

$$\hat{\mu}_i = \exp\left(\hat{\alpha} + \sum_{k=1}^t \hat{\beta}_k x_k\right)$$
 is the model predicted value for μ_i .

The maximum likelihood estimates $\hat{\alpha}$ and $\{\hat{\beta}_k\}$ are obtained by iterative solution of these equations. When the linear functions $\sum_{i=1}^{s} n_i(1, x_{i1}, ..., x_{it})$ are based on sufficient sample size to have an approximately multivariate normal distribution, then $\hat{\alpha}$ and $\{\hat{\beta}_k\}$ have an approximately multivariate normal distribution for which a consistent estimate of covariance structure is available.

Linear hypotheses concerning the $\{\hat{\beta}_k\}$ can be assessed with log-likelihood ratio chi-square statistics or Wald statistics. When sample sizes are sufficiently large (e.g., 80% of the n_i are ≥ 5 and all others are ≥ 2), model goodness of fit can be assessed with Pearson chi-squared statistic

$$Q_P = \sum_{i=1}^{s} (n_i - \hat{\mu}_i)^2 / \hat{\mu}_i$$
 or the log-likelihood ratio statistic

$$Q_L = \sum_{i=1}^{s} 2n_i \log(n_i / \hat{\mu}_i).$$

Each of these criteria approximately has the chi-squared distribution with d.f. = (s - 1 - t) in this situation. More generally, goodness of fit can be assessed by using the log-likelihood ratio statistics to evaluate the impact of expansion of a model to include additional explanatory variable. If such expansions have negligible impact, goodness of fit is supported.