1

[Exercise 5.2.4 of Lebl 2023] Prove the mean value theorem for integrals: If $f:[a,b]\to\mathbb{R}$ is continuous, then there exists a $c\in[a,b]$ such that

$$\int_{a}^{b} f = f(c)(b-a). \tag{1}$$

 $\mathbf{2}$

[Exercise 5.3.8 of Lebl 2023] Suppose $f:[a,b]\to\mathbb{R}$ is continuous and $\int_a^x f=\int_x^b f$ for all x in [a,b]. Show that f(x)=0 for all $x\in[a,b]$.

3

[Exercise 5.3.9 of Lebl 2023] Suppose $f:[a,b]\to\mathbb{R}$ is continuous and $\int_a^x f=0$ for all rational x in [a,b]. Show that f(x)=0 for all $x\in[a,b]$.

4

[Exercise 6.1.8 of Lebl 2023] Let $\{f_n\}_{n=1}^{\infty}$, $\{g_n\}_{n=1}^{\infty}$, and $\{h_n\}_{n=1}^{\infty}$ be sequences of functions on [a,b]. Suppose $\{f_n\}_{n=1}^{\infty}$ and $\{h_n\}_{n=1}^{\infty}$ converge uniformly to some function $f:[a,b]\to\mathbb{R}$ and suppose $f_n(x) \leq g_n(x) \leq h_n(x)$ for all $x \in [a,b]$. Show that $\{g_n\}_{n=1}^{\infty}$ converges uniformly to f.

5

[Exercise 6.2.5 of Lebl 2023] Find an example of a sequence of continuous functions on [0,1] that converges pointwise to a continuous function on [0,1], but the convergence is not uniform.

References

Lebl, Jiri (July 11, 2023). Basic Analysis I: Introduction to Real Analysis, Volume I. version 6.0. URL: https://www.jirka.org/ra/realanal.pdf.