- CC1-S2 -

- 2017-2018

- Correction - Algèbre - Géométrie -

Exercice 1

On se place dans l'espace muni d'un repère orthonormé direct $\mathcal{R} = \left(0, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)$. On note S la surface d'équation

$$(E): \quad xy + \sqrt{3}(x+y)z = 0$$

c'est-à-dire l'ensemble des points de l'espace dont les coordonnées vérifient l'équation (E).

1. Soit

$$A = \begin{pmatrix} 0 & 1 & \sqrt{3} \\ 1 & 0 & \sqrt{3} \\ \sqrt{3} & \sqrt{3} & 0 \end{pmatrix}$$

a. Justifier, sans calcul, que A est diagonalisable. A est une matrice symétrique réelle, elle est donc diagonalisable dans \mathbb{R} en base orthonormée.

b. Donner le spectre de
$$A$$
. $Sp(A) = \{-1, -2, 3\}$

c. Montrer qu'il existe un repère orthonormé $\mathcal{R}_1 = \left(0, \overrightarrow{i_1}, \overrightarrow{j_1}, \overrightarrow{k_1}\right)$, pour lequel les coordonnées sont notées (x_1, y_1, z_1) , tel que l'équation de S dans \mathcal{R}_1 soit :

$$x_1^2 + 2y_1^2 - 3z_1^2 = 0$$

D'après les questions précédentes, il existe une matrice orthogonale P telle que $A = P \operatorname{diag}(-1, -2, 3)^t P$. On note $(\overrightarrow{i_1}, \overrightarrow{j_1}, \overrightarrow{k_1})$ l'image de la base $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ par l'isométrie de matrice P dans la base canonique. Cette nouvelle base est orthonormée.

Si on note (x,y,z) les coordonnées d'un point dans le repère initial, et (x_1,y_1,z_1) les coordonnées dans le nouveau repère, on a : $\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = {}^tP \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, et $\begin{pmatrix} x & y & z \end{pmatrix} P = \begin{pmatrix} x_1 & y_1 & z_1 \end{pmatrix}$.

 $(x,y,z) \in \mathbb{R}^3$ vérifie (E) si, et seulement si :

$$\begin{pmatrix} x & y & z \end{pmatrix} \frac{1}{2} A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$$

ce qui équivaut à :

$$\begin{pmatrix} x & y & z \end{pmatrix} P \operatorname{diag}(-1, -2, 3) {}^{t} P \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$$

soit encore:

$$x_1^2 + 2y_1^2 - 3z_1^2 = 0$$

2. Soit \mathcal{P} le plan d'équation

$$x + y = \sqrt{2}$$

dans le repère initial \mathcal{R} .

a. Donner la matrice, dans la base canonique, de la rotation r d'axe Vect (\overrightarrow{k}) et d'angle $\frac{\pi}{4}$.

$$R = \max(r) = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Spé PT

b. On note $(\overrightarrow{I}, \overrightarrow{J}, \overrightarrow{K})$ l'image par r de la base $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. Justifier que cette nouvelle base est orthonormée.

Une rotation est une isométrie. Elle transforme une base orthonormée, en une base orthonormée.

c. On note \mathcal{R}_2 le repère $\left(O, \overrightarrow{I}, \overrightarrow{J}, \overrightarrow{K}\right)$, et (X, Y, Z) les coordonnées dans ce repère. Déterminer les équations de S et \mathcal{P} dans \mathcal{R}_2 .

On a :
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = R \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{2}(X - Y) \\ \frac{\sqrt{2}}{2}(X + Y) \\ Z \end{pmatrix}$$
.

Dans le nouveau repère, l'équation (E) devient :

$$X^2 - Y^2 + 2\sqrt{6}XZ = 0$$

celle du plan \mathcal{P} devient :

$$X = 1$$

d. Donner la nature de la courbe \mathcal{C} , intersection de S et \mathcal{P} .

On se place dans le repère $\left(O,\overrightarrow{I},\overrightarrow{J},\overrightarrow{K}\right)$.

Dans le plan \mathcal{P} , d'équation X=1, la courbe \mathcal{C} a pour équation : $Y^2=1+2\sqrt{6}Z$. C'est une parabole.

Exercice 2

On considère $E = \mathbb{R}_2[X]$, muni du produit scalaire :

$$\forall (P,Q) \in E^2, \quad (P|Q) = \int_0^1 P(t)Q(t)dt$$

On définit l'application $\varphi: E \to E$ par :

$$\forall P \in E, \quad \varphi(P(X)) = P(1 - X)$$

1. Montrer que φ est un automorphisme orthogonal.

 φ est clairement linéaire, de E dans E.

Pour tout
$$(P,Q) \in E^2$$
, on a : $(\varphi(P)|\varphi(Q)) = \int_0^1 P(1-t)Q(1-t)dt$.

Le changement de variable u = 1 - t donne immédiatement $(\varphi(P)|\varphi(Q)) = (P|Q)$. φ est donc un automorphisme orthogonal.

2. Montrer que φ est une symétrie.

Pour tout $P \in E$, on a : $\varphi(\varphi(P)) = \varphi(P(1-X)) = P(1-(1-X)) = P$. On en déduit que φ est une symétrie.

3. Donner les éléments caractéristiques de la symétrie φ , et vérifier qu'elle est orthogonale.

$$\begin{split} &(P=aX^2+bX+c\in \mathrm{Ker}(\varphi-\mathrm{Id}_E))\Leftrightarrow (-2aX-2bX+a+b=0).\\ &\text{On en déduit que }\mathrm{Ker}(\varphi-\mathrm{Id}_E)=\mathrm{Vect}\{X^2-X,1\}. \end{split}$$

$$(P = aX^2 + bX + c \in \text{Ker}(\varphi + \text{Id}_E)) \Leftrightarrow (-2aX + a + b + 2c = 0).$$

On en déduit que $Ker(\varphi + Id_E) = Vect\{2X - 1\}$.

Ainsi, φ est la symétrie par rapport à $\text{Vect}\{X^2-X,1\}$ parallèlement à $\text{Vect}\{2X-1\}$.

On a:
$$(2X - 1|X^2 - X) = \int_0^1 (2t - 1)(t^2 - t) dt = 0$$
 et $(2X - 1|1) = \int_0^1 2t - 1 dt = 0$.

On retrouve donc bien que la symétrie est orthogonale.

Spé PT Page 2 sur 4

Exercice 3

On considère la courbe paramétrée :

$$M(t) \left\{ \begin{array}{l} x(t) = \sin^2(t) \\ y(t) = (1 + \cos(t)) \sin(t) \end{array} \right.$$

1. Etudier et représenter graphiquement cette courbe dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. On déterminera la nature des points stationnaires, le cas échéant.

Cette courbe paramétrée est de classe C^{∞} sur \mathbb{R} .

 $\forall t \in \mathbb{R}, \ t+2\pi \in \mathbb{R}, \ \text{et} \ M(t+2\pi) = M(t).$ On obtient donc toute la courbe sur $[-\pi,\pi]$.

 $\forall t \in [-\pi, \pi], -t \in [-\pi, \pi], \text{ et } M(-t) \text{ et } M(t) \text{ sont symétriques par rapport à } \left(0, \overrightarrow{i}\right)$. On trace l'arc correspondence de l'arc cor

dant au segment $[0,\pi]$, que l'on complète par symétrie par rapport à $(0,\overrightarrow{i})$

On a également M'(t) $\begin{cases} x'(t) = 2\sin(t)\cos(t) \\ y'(t) = (1+\cos(t))(2\cos(t)-1) \end{cases}$. On en déduit le tableau de variations suivant :

On constate que

-M(0)=(0,0) est à tangente verticale,

$$-M\left(\frac{\pi}{3}\right) = \left(\frac{3}{4}, \frac{3\sqrt{3}}{4}\right)$$
 est à tangente horizontale,

– $M\left(\frac{\pi}{2}\right)=(1,1)$ est à tangente verticale,

– et enfin $M(\pi) = (0,0)$ est un point stationnaire. Reste à déterminer la nature du point stationnaire. On peut poser $h = t - \pi$.

On a alors
$$M(h+\pi) = \begin{cases} x(h+\pi) = \sin^2(h) & = h^2 + \circ(h^3) \\ y(h+\pi) = -(1-\cos(h))\sin(h) & = -\frac{h^3}{2} + \circ(h^3) \end{cases}$$
.

On peut conclure que la tangente en $M(\pi)$ est dirigée par (1,0) et qu'il s'agit d'un point de rebroussement de première espèce. On termine par le tracé ci-après.

2. a. Montrer que les vecteurs $\overrightarrow{OM}(t)$ et $\overrightarrow{OM}(t+\pi)$ sont orthogonaux.

On détermine les coordonnées de $\overrightarrow{OM}(t)$ et $\overrightarrow{OM}(t+\pi)$, puis $\overrightarrow{OM}(t).\overrightarrow{OM}(t+\pi)=0$ permet de conclure que $\overrightarrow{OM}(t)$ et $\overrightarrow{OM}(t+\pi)$ sont orthogonaux.

Montrer que le milieu I(t) de $[M(t)M(t+\pi)]$ est sur le cercle $\mathscr C$ de centre $\Omega\left(\frac{1}{2},0\right)$ et de rayon à préciser.

A partir des coordonnées
$$(X(t),Y(t))$$
 de $I(t)$, on a $\forall t \in \mathbb{R}$, $\left(X(t) - \frac{1}{2}\right)^2 + Y(t)^2 = \frac{1}{4}$.

Donc \mathscr{C} est le cercle de centre $\Omega\left(\frac{1}{2},0\right)$ et de rayon $\frac{1}{2}$.

Tracer \mathscr{C} , placer M(t), et en déduire $M(t+\pi)$ puis I(t).

On place M(t) sur la courbe. On déduit $M(t + \pi)$ par a), puis I(t) par b).

Spé PT Page 3 sur 4

Exercice 4

On considère la courbe paramétrée :

$$M(t) \begin{cases} x(t) = \frac{t^3}{t^2 - 1} \\ y(t) = \frac{t(3t - 2)}{3(t - 1)} \end{cases}$$

1. Démontrer qu'au voisinage de 1, cette courbe admet une asymptote ${\mathcal D}$ que l'on déterminera.

Tout d'abord, $\lim_{t\to 1}|x(t)|=\lim_{t\to 1}|y(t)|=+\infty$. Ce qui confirme que la courbe admet une branche infinie au voisi-

On a successivement :

$$\frac{y(t)}{x(t)} = \frac{(3t-2)(t+1)}{3t^2} \xrightarrow[t \to 1]{2} \frac{2}{3}$$
$$y(t) - \frac{2}{3}x(t) = \frac{t(t+2)}{3(t+1)} \xrightarrow[t \to 1]{2} \frac{1}{2}$$

On en déduit que la droite \mathscr{D} : $y = \frac{2}{3}x + \frac{1}{2}$ est asymptote à la courbe \mathscr{C} au voisinage de 1.

2. Préciser les positions relatives au voisinage de 1.

On détermine le signe de $\epsilon(t)=y(t)-\frac{2}{3}x(t)-\frac{1}{2}$ au voisinage de 1. On a $\epsilon(t)=\frac{t(t+2)}{3(t+1)}-\frac{1}{2}=\frac{(t-1)\left(t+\frac{3}{2}\right)}{3(t+1)} \underset{t\to 1}{\sim} \frac{5}{12}(t-1).$

On a
$$\epsilon(t) = \frac{t(t+2)}{3(t+1)} - \frac{1}{2} = \frac{(t-1)(t+\frac{3}{2})}{3(t+1)} \underset{t\to 1}{\sim} \frac{5}{12}(t-1).$$

On conclut qu'au voisinage de 1 à droite (resp. à gauche) $\mathscr C$ est au dessus (resp. en dessous) de $\mathscr D$.

Spé PT Page 4 sur 4