

Estatística Introdução

Estatística Introdução

Com a **crescente quantidade de dados disponíveis** em todo o mundo, é cada vez maior também o interesse em utilizar esses dados para responder questões importantes de forma **objetiva e robusta**.

A "quantificação" de nossas vidas acontecem nos mais variados meios, como por exemplo:

- Utilização de redes sociais
- Compras em e-commerce
- Utilização de serviços de streaming
- Entre outros

Com a **evolução da computação**, fomos conseguindo tabular e resumir esses dados de forma muito mais eficiente do que antes.

No entanto, **essa facilitação trouxe o risco da má interpretação** desses dados, pois pessoas sem o devido conhecimento dos **conceitos** utilizados nas **técnicas analíticas** podem ser induzidas ao erro.

Introdução: Áreas da Estatística

Este conjunto de **técnicas analíticas** pode ser definido como:

O conjunto de técnicas que permite, **organizar**, **descrever**, **analisar** e **interpretar os dados** oriundos de estudos ou experimentos, realizados em qualquer área do conhecimento, é chamado de **Estatística**.

A **Estatística** pode ser divida em três áreas:

Introdução: Estatística Descritiva

O primeiro passo para tirar conclusões sobre os dados envolve o seu resumo e descrição. Portanto, a **Estatística Descritiva** pode ser interpretada como o **conjunto de técnicas utilizadas para descrever e resumir um conjunto de dados**.

Um exemplo de utilização da **Estatística Descritiva**, é a construção de uma tabela de frequência com as notas de 311 alunos de uma escola. Nessa tabela, temos as faixas de notas e a frequência observada.

ID	Aluno	Nota
1	João	17
2	Mariana	89
3	Carlos	50
4	Juliana	3
5	George	69
6	Luiz	90
7	Rosa	41
•••	•••	•••
311	Bianca	99

Faixa de nota	Frequência Observada
De 0 a 70	30
De 71 a 89	80
De 90 a 99	154
100	47
Total	311

Introdução: Probabilidades

A **Probabilidade** pode ser pensada como a **teoria matemática utilizada** para se **estudar a incerteza oriunda de fenômenos de caráter aleatório**. Denominamos fenômeno aleatório a situação ou acontecimento cujos resultados **não podem ser previstos com certeza**.

Exemplos:

		Previsão	de	Tempo	para	hoje	e	próximos	dias.
--	--	----------	----	--------------	------	------	---	----------	-------

- Quantidade de pessoas que utilizarão o metro em São Paulo em uma 2ª-feira comum.
- □ As dezenas sorteadas da Mega Sena da Virada.

No entanto, podemos utilizar técnicas que nos permitem quantificam nossa incerteza.

Exemplos:

- 23% de probabilidade de chover na Zona Sul de São Paulo.
- 85% de probabilidade de que mais de 3 milhões de pessoas utilizarão o metro de SP em uma 2a-feira.
- □ 0,0001% de probabilidade da Mega Sena da Virada sair para apenas um ganhador.

Introdução: Inferência Estatística

Inferência é a área da Estatística responsável pelo conjunto de técnicas que possibilitam que as conclusões obtidas a partir de uma **amostra**, sejam estendidos para a **população**.

Essas técnicas são fundamentais quando **não temos acesso à população** de interesse, como por exemplo:

- Novo medicamento
- Fábrica de lâmpadas

Revisão

Nesta introdução vimos que diversos eventos do nosso dia a dia são **quantificados**, gerando muitas oportunidades para a **análise desses dados**.

Apresentamos também as **3 principais áreas da estatística** que estão diretamente relacionadas com os **fundamentos de análise de dados**.

Por fim, a Estatística é um assunto fantástico e uma área bem extensa, por isso exige alguns cuidados:

- O desafio é crescente, ou seja, é importante entender bem um tema antes de passar para o próximo.
- Franha paciência e disposição para rever conceitos que podem ter vindo do trabalho ou da graduação distorcidos. Aproveite a oportunidade para tirar todas as dúvidas!

Estatística Descritiva Tipos de Variáveis

Tipos de Variáveis

Um conjunto de dados pode ser organizado em formato de tabela. Quando isso acontece, os dados são ditos "estruturados". Vejamos um exemplo:

Observações (linhas da tabela)

ID	Nome	Escolaridade	Idade	Salário
2	Luis	Ensino Médio	49	5.130,80
4	Helena	Mestrado	33	4.193,52
5	João	Ensino Técnico	27	3.468,35

Variáveis

(colunas da tabela)

Tipos de Variáveis

Nesta tabela exemplo existem diferentes tipos de variáveis:

Tipos de Variáveis

Nesta tabela exemplo existem diferentes tipos de variáveis:

Tipos de Variáveis

Resumindo, as variáveis de um conjunto de dados diferem em relação a sua "natureza". Basicamente, temos **2 tipos de variáveis, com 2 subtipos cada**. São elas:

Revisão

Vimos que as variáveis são classificadas em 2 tipos principais: **Qualitativas** e **Quantitativas**. E que cada um desses tipos possui 2 subtipos.

Além disso, vimos que tratar uma variável **Qualitativa** como uma variável **Quantitativa** pode gerar **distorções** que irão comprometer os resultados da análise.

A seguir, veremos como selecionamos as técnicas mais adequadas para analisar cada **Tipo de Variável**.

Estatística Descritiva Tabelas de Frequência

Tabelas de Frequência

Uma das funções da **Estatística Descritiva** é a de **resumir um conjunto de dados** para **facilitar sua análise**. E as **Tabelas de Frequência** são muito úteis para atingir este objetivo. Veja o exemplo abaixo:

Nome	Escolaridade	Idade	Salário
Luis	Ensino Médio	49	5.130,00
Helena	Ensino Médio	33	4.193,00
João	Ensino Médio	27	3.468,00
Julio	Ensino Técnico	32	3.068,00
Mariana	Ensino Superior	59	2.670,00
Augusto	Ensino Médio	30	2.693,00
Gustavo	Ensino Superior	38	9.526,00
Cecilia	Ensino Técnico	29	3.068,00
Kaian	Ensino Superior	36	5.237,00
Ana	Mestrado	29	9.980,00

Resumo da variável **Escolaridade**

Escolaridade	Frequência absoluta
Ensino Médio	4
Ensino Técnico	2
Ensino Superior	3
Mestrado	1
Total	10

A **Frequência absoluta** é a contagem de vezes que o valor de uma variável ocorre em um conjunto de dados.

Tabelas de Frequência

A Tabela de Frequência pode ser aprimorada com a inclusão de outras duas frequências: Frequência Relativa e Frequência Acumulada. Veja o exemplo abaixo:

Escolaridade	Frequência absoluta	Frequência relativa	Frequência acumulada
Ensino Médio	4	40%	40%
Ensino Técnico	2	20%	60%
Ensino Superior	3	30%	90%
Mestrado	1	10%	100%
Total	10	100%	

A Frequência Acumulada mostra a soma das frequências relativas até um determinado valor do conjunto de dados. No exemplo ao lado, 60% das pessoas têm escolaridade ATÉ o Ensino Técnico.

Ou seja, 60% = 40% (Ensino Médio) + 20% (Ensino Técnico).

A **Frequência Relativa** mostra a quantidade de vezes que um valor aparece no conjunto dos dados em relação ao total de observações.

No exemplo acima, **40% das pessoas têm o Ensino Médio** (40% = 4/10).

Tabelas de Frequência

E se quiséssemos resumir a variável **Salário**? Seria interessante simplesmente criar uma **Tabela de Frequência**? Vejamos no exemplo abaixo:

Nome	Escolaridade	Idade	Salário
Luis	Ensino Médio	49	5.130,00
Helena	Ensino Médio	33	4.193,00
João	Ensino Médio	27	3.468,00
Julio	Ensino Técnico	32	3.068,00
Mariana	Ensino Superior	59	2.670,00
Augusto	Ensino Médio	30	2.693,00
Gustavo	Ensino Superior	38	9.526,00
Cecilia	Ensino Técnico	29	3.068,00
Kaian	Ensino Superior	36	5.237,00
Ana	Mestrado	29	9.980,00

Resumo da variável
Salário

Salário	Frequência absoluta
2.670,00	1
2.693,00	1
3.068,00	2
3.468,00	1
4.193,00	1
5.130,00	1
5.237,00	1
9.526,00	1
9.980,00	1
Total	10

Tabelas de Frequência

Como podemos observar, o **resumo** dessa variável **não ficou** muito **informativo**. Isso acontece com **variáveis que contêm muitos valores possíveis**, como as **variáveis quantitativas** em geral.

Salário	Frequência absoluta
2.670,00	1
2.693,00	1
3.068,00	2
3.468,00	1
4.193,00	1
5.130,00	1
5.237,00	1
9.526,00	1
9.980,00	1
Total	10

Para melhorar o resumo de variáveis desse tipo, podemos criar "Faixas de Valores". Veja:

Salário	Frequência absoluta
2.000,00 4.000,00	5
4.000,00 6.000,00	3
8.000,00 10.000,00	2
Total	10

A diferença entre o valor inicial e final da faixa de valor é chamado de **amplitude do intervalo**. No exemplo, a amplitude é de 2.000,00 reais.

Revisão

Vimos que as **Tabelas de Frequência** são simples e bastante úteis para realizarmos o primeiro passo em uma análise de dados.

Vimos também que quando a variável for **quantitativa** é necessário **criar faixas** para que as informações sejam resumidas **adequadamente** na tabela. A **quantidade de faixas** e a sua **amplitude** devem ser escolhidas de forma a facilitar o atingimento do **objetivo da análise**.

Estatística Descritiva Medidas Resumo

Medidas Resumo

Em grandes bases de dados, com centenas de variáveis e milhares ou mesmo milhões de observações, qual é a técnica que pode nos ajudar a compreender esse grande volume de dados?

Medidas Resumo

Acertou quem disse Estatística Descritiva!

Essa é a técnica que nos permitirá, principalmente:

Resumir um grande volume de observações em diferentes valores utilizando as chamadas Medidas Resumo

Medidas Resumo

Essas Medidas Resumo são bastante úteis para:

- Caracterizar o conjunto de dados.
- Realizar comparações entre diferentes conjuntos de dados ou grupos dentro do mesmo conjunto de dados.
- Compreender quais informações estão contidas nesse conjunto de dados.

Medidas Resumo

As Medidas Resumo são agrupadas em 2 principais grupos:

- Medidas de Posição: indicam posições de referência
 - Média
 - Mínimo e Máximo
 - Moda
 - Mediana
 - Quartis
- Medidas de Dispersão: indicam a variabilidade
 - Variância
 - Desvio Padrão

Medidas de Posição

Medidas Resumo: Medidas de Posição - Média

A Média é a medida resumo mais utilizada e conhecida para representar um conjunto de dados. Com certeza você já ouviu algo como:

- A média de salários em uma empresa de Tecnologia é de R\$ 5.000,00.
- O tempo médio de duração de um filme é de 2 horas.

Forma de cálculo da Média: somar todos os valores e dividir essa soma pela quantidade de valores:

Média =
$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Medidas Resumo: Medidas de Posição - Média

ID	Salário
1	5.130,00
2	4.193,00
3	3.468,00
4	3.068,00
5	2.670,00
6	2.693,00
7	9.526,00
8	3.068,00
9	5.237,00
10	9.980,00
11	2.426,00
12	2.911,00

A Média representa qual seria o valor do salário se o valor total de remuneração desses colaboradores fosse distribuído uniformemente entre eles.

Média =
$$\frac{54.370,00}{12}$$
 = 4.530,83

Porém, muitas vezes **ela não é a medida resumo mais indicada**. Veremos isso mais adiante.

Medidas Resumo: Medidas de Posição

O que você faria na seguinte situação?

Você é convidado para trabalhar em uma startup com 15 funcionários e, segundo o RH o salário **médio** dos funcionários é R\$4.200,00.

Você atualmente ganha R\$1.000,00.

Funcionário	Salário
1	1.000,00
2	1.000,00
3	1.000,00
4	1.000,00
5	1.000,00
6	1.000,00
7	1.000,00
8	1.000,00
9	1.000,00
10	1.000,00
11	1.000,00
12	1.000,00
13	1.000,00
14	10.000,00
15	40.000,00
Média	4.200,00

Medidas Resumo: Medidas de Posição - Mínimo e Máximo

ID	Salário	
11	2.426,00	Mínimo
5	2.670,00	†
6	2.693,00	
12	2.911,00	
4	3.068,00	
8	3.068,00	Amplitudo
3	3.468,00	Amplitude
2	4.193,00	
1	5.130,00	
9	5.237,00	
7	9.526,00	. ↓
10	9.980,00	Máximo

Ao ordenar a variável Salário, teremos o **Mínimo** na 1º posição e o **Máximo** na última.

Nesse exemplo, além do salário **mínimo** de R\$ 2.426,00 e do salário **máximo** de R\$ 9.980,00, temos a informação de que a **amplitude da variável** salário é de R\$ 7.554,00, que é o valor máximo menos o valor mínimo.

Medidas Resumo: Medidas de Posição - Mediana

ID	Salário	
11	2.426,00	
5	2.670,00	
6	2.693,00	
12	2.911,00	
4	3.068,00	ng a dia a a
8	3.068,00	Mediana
3	3.468,00	3.268,00
2	4.193,00	
1	5.130,00	
9	5.237,00	
7	9.526,00	
10	9.980,00	

A Mediana representa a posição central do conjunto de dados.

Ou seja, 50% dos valores são inferiores à Mediana e 50% dos valores são superiores à Mediana.

Quando o número de observações é par, a Mediana é a média entre os 2 valores centrais.

Medidas Resumo: Medidas de Posição - Mediana

Mediana = 3.268,00 Média = 4.530,83

ID	Salário
11	2.426,00
5	2.670,00
6	2.693,00
12	2.911,00
4	3.068,00
8	3.068,00
3	3.468,00
2	4.193,00
1	5.130,00
9	5.237,00
7	9.526,00
10	9.980,00

Mediana = 3.468,00 Média = 6.105,38

Salário
2.426,00
2.670,00
2.693,00
2.911,00
3.068,00
3.068,00
3.468,00
4.193,00
5.130,00
5.237,00
9.526,00
9.980,00
25.000,00

A Mediana também é bastante utilizada como alternativa a Média por ser menos sensível a valores extremos.

Adicionando 1 colaborador com salário de R\$25.000,00, vemos que a Mediana aumentou R\$200,00 enquanto a Média aumentou R\$1.574,55.

Medidas Resumo: Medidas de Posição

O que você faria na seguinte situação?

Você está doente e só existe um remédio que pode te ajudar. Segundo a bula, o tempo de sobrevida **mediano** é de 8 semanas. Todos que tomam o remédio tem severos efeitos colaterais. Vale a pena tomar o remédio?

Tempo de Sobrevida (em semanas)	% Relativa
2	15%
4	15%
8	20%
16	5%
32	5%
64	5%
128	5%
256	10%
512	20%

Medidas Resumo: Medidas de Posição

ID	Salário	
11	2.426,00	
5	2.670,00	25%
6	2.693,00	1º Quartil
12	2.911,00	2.856,50
4	3.068,00	25%
8	3.068,00	Mediana 3.268,00
3	3.468,00	3.200,00
2	4.193,00	25%
1	5.130,00	3º Quartil 5.156,75
9	5.237,00	3.130,73
7	9.526,00	25%
10	9.980,00	

Os Quartis representam posições específicas que permitem identificar como os dados estão distribuídos. Os Quartis têm esse nome porque dividem o conjunto de dados em 4 partes:

- 1º Quartil: indica que 25% das observações têm valores inferiores a ele.
- 2º Quartil ou Mediana: indica que 50% das observações têm valores inferiores a ele e 50% valores superiores a ele.
- 3º Quartil: indica que 75% das observações têm valores inferiores a ele.

Medidas Resumo: Medidas de Posição

Conjunto A
1
3
5
7
9

Conjunto B
5
5
5
5
5

Mediana = 5 Média = 5

Mediana = 5 Média = 5

Agora tente resumir os conjuntos de dados A e B ao lado usando a Média e a Mediana.

Neste exemplo observamos que as medidas de posição nem sempre conseguem resumir todas as características de um conjunto de dados.

Desta forma, precisamos avaliar outra característica dos dados: a variabilidade ou dispersão.

Medidas de Dispersão

Medidas Resumo: Medidas de Dispersão - Desvio Padrão

O **Desvio Padrão** representa o quão dispersas estão as observações do conjunto de dados.

Desvio Padrão =
$$\sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}}$$

Ou seja, quanto maior for a diferença entre a média e cada valor, mais dispersas estarão as observações e por consequência, maior será o **Desvio Padrão**.

Medidas Resumo: Medidas de Dispersão - Variância

A Variância é o Desvio Padrão ao quadrado, e também representa a dispersão das observações no conjunto de dados, porém em na escala ao quadrado.

Variância = Desvio Padrão²

Ou seja, se estamos medindo valores em reais, a Variância será uma medida em reais ao quadrado.

Na prática, a Variância não é tão utilizada na Estatística Descritiva, porém é fundamental em diversos métodos estatísticos que veremos mais adiante.

Revisão

Nesta aula aprendemos quais são as principais **Medidas Resumo** de **posição** e **dispersão** utilizadas em uma **análise de dados**.

Vimos também que em algumas situações, apenas as Medidas Resumo de posição não são suficientes para descrever os conjuntos de dados de forma a identificar suas diferenças.

E que uma forma bastante interessante para representar graficamente a distribuição dos dados.

Estatística Descritiva Visualizando um conjunto de dados

Visualização de dados

Embora a Tabela de Frequência seja um recurso eficaz no resumo de uma grande quantidade de dados, o **uso de gráficos facilita ainda mais a interpretação** do "comportamento" desses dados. Vejamos a seguir, as alternativas gráficas mais utilizadas na Estatística Descritiva.

Escolaridade	Frequência absoluta	Frequência relativa
Ensino Médio	4	40%
Ensino Técnico	2	20%
Ensino Superior	3	30%
Mestrado	1	10%
Total	10	100%

Percentual de Colaboradores por

Gráfico de Pizza

Uso: Frequências relativas de variáveis qualitativas com poucas categorias.

Visualização de dados

Salário Médio por Escolaridade

Gráfico de Barras

Uso: Resumo de variáveis quantitativas (contagem, média etc.) por categorias de variáveis qualitativas.

Visualização de dados

Salário Médio por Escolaridade

Gráfico de Linhas

Uso: Resumo de variáveis quantitativas (contagem, média etc.) por categorias de **variáveis qualitativas ordinais** - indica continuidade.

Visualização de dados

UF	Frequência absoluta	Frequência relativa	Frequência acumulada
SP	5	50%	50%
PE	3	30%	80%
MG	1	10%	90%
RJ	1	10%	100%
Total	10	100%	

Para resumir graficamente uma variável utilizando suas frequências relativas e acumuladas, podemos usar o Gráfico de Pareto.

O **Princípio de Pareto***, também conhecido como regra do 80/20, afirma que, para muitos eventos, aproximadamente 80% dos efeitos vêm de 20% das causas.

^{*} Fonte: https://pt.wikipedia.org/wiki/Princ%C3%ADpio de Pareto

Visualização de dados

Escolaridade	Frequência absoluta	Frequência relativa	Frequência acumulada
Ensino Médio	4	40%	40%
Ensino Superior	3	30%	70%
Ensino Técnico	2	20%	90%
Mestrado	1	10%	100%
Total	10	100%	

Para resumir graficamente uma variável utilizando suas frequências relativas e acumuladas, podemos usar o Gráfico de Pareto.

O **Princípio de Pareto***, também conhecido como regra do 80/20, afirma que, para muitos eventos, aproximadamente 80% dos efeitos vêm de 20% das causas.

^{*} Fonte: https://pt.wikipedia.org/wiki/Princ%C3%ADpio_de_Pareto

Visualização de dados

Outro gráfico muito importante em Estatística Descritiva é o Histograma. Ele é utilizado para resumir graficamente variáveis quantitativas. Veja no exemplo:

Faixa Etária	Frequência absoluta	Frequência relativa	Densidade
10 - 20	5	10%	0,01
20 - 30	10	20%	0,02
30 - 40	20	40%	0,04
40 - 50	10	20%	0,02
50 - 60	5	10%	0,01
Total	50	100%	

Em um Histograma, a área da barra equivale à Frequência Relativa da faixa de valor.

No exemplo, 40% das pessoas estão na faixa etária de 30 a 40 anos.

Amplitude da Faixa = 10

Medidas Resumo: Visualização Gráfica - Boxplot

Para visualizar essas medidas e ter uma ideia da posição e dispersão dos dados de uma maneira bastante prática e intuitiva utilizamos o *boxplot*.

Medidas Resumo: Visualização Gráfica - Boxplot

A Diferença Interquartil é a diferença entre o 1º Quartil e o 3º Quartil e fornece uma medida de variabilidade, pois indica como 50% das observações estão dispersas.

Medidas Resumo: Visualização Gráfica - Boxplot

Baseado na Diferença Interquartil (dq) são calculados Limite Inferior e Limite Superior.

Quanto maior o valor de dq, maiores serão esses limites.

Medidas Resumo: Visualização Gráfica - Boxplot

Os valores além desses limites são chamados de *outliers*, ou valores atípicos. Podem ser produto de erro nas medições ou de fato terem valores bastante diferentes dos demais.

Revisão

Vimos quais são os principais **gráficos** utilizados nas **análises de dados** e qual tipo de gráfico é mais adequado para cada tipo de variável.

Além do tipo de gráfico, é importante também manter uma coerência no código de cores utilizado. Se utilizar mais de 1 gráfico para representar as mesmas variáveis, utilize as mesmas cores para cada categoria.

Outro aspecto importante nos gráficos é o **título**, que **deve expressar claramente seu conteúdo**. Os títulos dos eixos, sempre que necessário, devem ser definidos de forma clara, assim que receber o gráfico não precisará se esforçar para absorver suas informações.