Приближение линейными пространствами

Пусть H — гильбертово пространство, $L \subset H$. Мы знаем, что $H = L \oplus L^{\perp}$, т.е. любой $x \in H$ однозначно представляется в виде x = l + l', $l \in L$, $l' \perp L$ (напомним: l — ближайший к x в L, разность x - l ортогональна, т.к. иначе образуется острый угол и расстояние можно уменьшить). Отображение $P_L \colon x \mapsto l$ называется ортопроектором на подпространство L. Напомним его свойства:

- P_L линейный оператор на H;
- P_L проектор на L, то есть $P_L x \in L$ и $P_L y = y$ для $y \in L$;
- $P_L x$ единственный ближайший к x элемент L:

$$|x-y|^2 = |x-P_L x|^2 + |P_L x-y|^2$$
 для $y \in L$.

Тем самым, метрическая проекция x на L есть $P_L x$ (точнее, одноточечное множество $\{P_L x\}$), что позволяет нам использовать для них одно и то же обозначение P.

Следствие: евклидовы пространства устроены проще в смысле аппроксимации, наилучшее приближение линейным подпространством задаётся линейным оператором.

Определение: система $u_1, \ldots, u_n \in H$ ортонормирована, если $|u_i| = 1$ и $\langle u_i, u_j \rangle = 0$ при $i \neq j$.

Утверждение: если u_1, \ldots, u_n — ортонормированный базис L, то ортопроектор имеет вид

$$P_L x = \sum_{k=1}^n \langle x, u_k \rangle u_k.$$

Если H сепарабельно, то в нём существует ортонормированный базис (полная ортонормированная система) u_1, \ldots, u_n, \ldots Пусть dim $H = \infty$. Для любого $x \in H$ имеем

$$x = \sum_{k=1}^{\infty} \langle x, u_k \rangle u_k$$
 — ряд Фурье по системе $\{u_k\}$,

$$|x|^2 = \sum_{k=1}^{\infty} \langle x, u_k \rangle^2$$
 — равенство Парсеваля.

При этом наилучшее приближение первыми n функциями u_k даётся частичной суммой ряда Фурье.

Ортогонализация: систему линейно независимых векторов $x_1, \ldots, x_n \in H$ можно превратить в ортогональную — из x_k вычитаем ортопроекцию на подпространство, порождённое x_1, \ldots, x_{k-1} .

Матрица Грама: $G_{i,j} = \langle x_i, x_j \rangle$. Матрица невырождена, т.к. её определитель не меняется при ортогонализации системы.

Пример: пространство $L_2[0,2\pi]$ со скалярным произведением

$$\langle f, g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(x)g(x) dx.$$

Тригонометрическая система: $\{1, \sqrt{2}\cos kx, \sqrt{2}\sin kx\}_{k=1}^{\infty}$ — ортонормирована, ряд Фурье:

$$f = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx,$$

где $a_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos kx \, dx, \ b_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin kx \, dx.$ Замечание: теория евклидовых пространств переносится на случай

Замечание: теория евклидовых пространств переносится на случай пространств над полем \mathbb{C} . В этом случае от скалярного произведения требуются свойства: $\langle y, x \rangle = \overline{\langle x, y \rangle}$, линейность по первому и и антилинейность по второму аргументу: $\langle x, \lambda y \rangle = \overline{\lambda} \langle x, y \rangle$, и $\langle x, x \rangle > 0$ при $x \neq 0$.

Пример: пространство $L_2^{\mathbb{C}}[0,2\pi]$ со скалярным произведением

$$\langle f, g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(x) \overline{g(x)} \, dx.$$

Тригонометрическая система в комплексной форме: $\{e^{ikx}\}_{k\in\mathbb{Z}}$, ряд Фурье

$$f = \sum_{k \in \mathbb{Z}} c_k e^{ikx}, \quad c_k = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-ikx} dx.$$

Пространство тригонометрических полиномов порядка не выше n:

$$\mathcal{T}_n = \operatorname{span}\{\cos(kx), \sin(kx)\}_{k=0}^n,$$
$$\mathcal{T}_n^{\mathbb{C}} = \operatorname{span}\{e^{ikx}\}_{k=-n}^n.$$

Ясно, что

$$\mathcal{T}_n = \{ T \in \mathcal{T}_n^{\mathbb{C}} : T(x) \in \mathbb{R} \ \forall x \} = \{ \sum_{k=-n}^n c_k e^{ikx} : c_k \equiv \overline{c_{-k}} \}.$$

Наилучшее приближение в L_2 пространством \mathcal{T}_n даётся начальным отрезком ряда Фурье:

$$f \approx S_n(f) = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos kx + b_k \sin kx = \sum_{|k| \le n} c_k e^{ikx}.$$

В других L_p нахождение наилучшего полинома — сложная задача!

Пример: система Хаара в $L_2[0,1]$: $h_0=1$, далее разбиваются на "пачки"

$$h_{k,j}(x) = \begin{cases} 2^{k/2}, & \frac{j-1}{2^k} < x < \frac{j-1/2}{2^k}, \\ -2^{k/2}, & \frac{j-1/2}{2^k} < x < \frac{j}{2^k}. \end{cases}$$

Задача: для непрерывной функции $f \not\equiv \text{const}$ невозможно, чтобы $\max_j h_{k,j} = o(2^{-3k/2})$ при $k \to \infty$.

Пример: система Радемахера $r_k(x)=(-1)^{x_k}$, где $x=\sum_{k=1}^{\infty}x_k2^{-k}$. Не полна (почему?).

Пример: триг. система $\{e^{ikx}\}$ обладает тем свойством, что $|e^{ikx}| \equiv 1$. Существует ли вещественная система с тем же свойством? Да, например, система Уолша: $\{r_{k_1}(x) \cdot r_{k_2}(x) \cdot \dots \cdot r_{k_s}(x)\}$. Она уже полна.

Пример: при ортогонализации мономов $\{1, x, x^2, ...\}$ в $L_2[-1, 1]$ получаем многочлены Лежандра $P_n(x)$. Они обладают рядом свойств, например, $P_n(x) = 0$ имеет n решений на [-1, 1] (почему?).

Конечномерный случай.

Изучим подробнее случай $H=\mathbb{R}^n$. Подпространство $L\subset\mathbb{R}^n$ размерности k задаётся матрицей A размера $n\times k$, в столбцы которой записаны координаты какого-либо базиса $\{v_1,\ldots,v_k\}$ пространства L. Тогда $L=\{Az\colon z\in\mathbb{R}^k\}$. Найдём матрицу оператора $P_L\colon\mathbb{R}^n\to\mathbb{R}^n$. Имеем $P_Lx=\sum_{i=1}^k z_iv_i$ с неизвестным $z\in\mathbb{R}^k$. Условие $x-P_Lx\perp L$ равносильно тому, что $x-P_Lx\perp v_j,\ j=1,\ldots,k$, то есть

$$\langle x, v_j \rangle = \langle P_L x, v_j \rangle = \sum_{i=1}^k z_i \langle v_i, v_j \rangle, \quad j = 1, \dots, k,$$

что в матричном виде записывается как $A^t x = (A^t A)z$, откуда $z = (A^t A)^{-1} A^t x$. (Почему матрица $A^t A$ обратима?) Окончательно, $P_L x = Az$,

$$P_L x = A(A^t A)^{-1} A^t x.$$

Пример: линейная регрессия (метод наименьших квадратов). Известна "выборка" $(X_1,Y_1),\ldots,(X_n,Y_n)$ пар, состоящих из векторов $X_i\in\mathbb{R}^k$ и соответствующих им чисел $Y_i\in\mathbb{R}$. Требуется аппроксимировать неизвестную нам зависимость $Y\approx F(X)$ линейной функцией от X:

$$\sum_{i=1}^{n} |Y_i - \langle v, X_i \rangle|^2 \to \min_{v}.$$

Мы должны приблизить вектор $Y = (Y_1, \ldots, Y_n)^t$ векторами вида $\mathbf{X}v$, где в матрице \mathbf{X} размера $n \times k$ записаны по *строкам* вектора X_i , $i = 1, \ldots, n$.. Отсюда, оптимальная аппроксимация имеет вид:

$$Y \approx \mathbf{X}(\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t X.$$

Прямые и обратные теоремы

Пусть $f = \sum c_k e^{ikx}$ (можно считать, что функция вещественная, но удобней всё равно работать с комплексной записью). Определим наилучшее приближение

$$E_n(f)_{L_2} = \inf_{T \in \mathcal{T}_n} \|f - T\|_2 = \|f - \sum_{|k| \le n} c_k e^{ikx}\|_2 = \left(\sum_{|k| > n} |c_k|^2\right)^{1/2}$$

и модуль непрерывности

$$\omega(f,\delta)_{L_2} := \sup_{0 \le h \le \delta} \|f(x+h) - f(x)\|_{L_2}.$$

Теорема (Джексон — прямая теорема): Для любой функции $f \in L_2[0,2\pi]$ имеем $E_n(f)_{L_2} \leqslant C\omega(f,\pi/n)_{L_2}$. Доказательство.

$$||f(x+h)-f(x)||_2^2 = ||\sum c_k(e^{ikh}-1)e^{ikx}||_2^2 = \sum |c_k|^2|e^{ikh}-1|^2 = \sum |c_k|^2 4\sin^2\frac{kh}{2}.$$

Положим $\delta_n := \pi/n$ и усредним по отрезку $[0,\delta_n]$:

$$\omega^{2}(f, \delta_{n}) \geqslant \frac{1}{\delta_{n}} \int_{0}^{\delta_{n}} \|f(x+h) - f(x)\|_{2}^{2} dh = 4 \sum |c_{k}|^{2} \frac{1}{\delta_{n}} \int_{0}^{\delta_{n}} \sin^{2} \frac{kh}{2} dh.$$

При k > n последний интеграл

$$\frac{1}{\delta_n} \int_0^{\delta_n} \sin^2 \frac{kh}{2} \, dh = \int_0^1 \sin^2 \frac{\pi kx}{2n} \, dx \geqslant \text{const.}$$

Следовательно,

$$\omega^2(f, \delta_n) \geqslant C \sum_{|k| > n} |c_k|^2.$$

Теорема (Бернштейн — обратная теорема): Для любой функции $f \in L_2[0,2\pi]$ имеем

$$\omega^2(f, \pi/n)_{L_2} \leqslant \frac{C}{n^2} \sum_{k=1}^n k E_{k-1}^2(f)_{L_2}.$$

Доказательство.

$$||f(x+h) - f||_2^2 = \sum_{|k| < n} |c_k|^2 4 \sin^2(kh/2) + \sum_{|k| \ge n} |c_k|^2 4 \sin^2(kh/2) \le$$

$$\le \sum_{|k| < n} |c_k|^2 k^2 h^2 + 4 \sum_{|k| \ge n} |c_k|^2.$$

Откуда

$$\omega^{2}(f, \pi/n) \leqslant \frac{\pi^{2}}{n^{2}} \sum_{k=1}^{n-1} (|c_{k}|^{2} + |c_{-k}|^{2})k^{2} + 4E_{n-1}^{2}(f) =$$

$$= \frac{\pi^{2}}{n^{2}} \sum_{k=1}^{n-1} k^{2} (E_{k-1}^{2}(f) - E_{k}^{2}(f)) + 4E_{n-1}^{2}(f).$$

Последнее слагаемое легко оценивается.