Formularium Chemie 1

A. Matter and Energy

Dichtheid d = m/V

– Energie $E = F \Delta x$; F = m a

- Kinetische E $E = \frac{1}{2} \text{ m v}^2$ - Potentiële E E = m g h

- Coulomb E $E = 1/(4\pi\epsilon_0) \times (q_1 q_2)/r$

B. Elements and Atoms

Massagetal (A) #protonen + #neutronenAtoomgetal (Z) #protonen = #elektronen

C. Compounds

- Moleculen neutrale verbindingen
- Ionen geladen verbindingen
 - o Kationen (+)
 - NH₄⁺ ammonium
 - Hg₂²⁺ mercury (I)
 - o Anionen (-)
 - CN⁻ cyanide
 - O₂²- peroxide
 - OH⁻ hydroxide
 - Oxoanionen (-1)
 - CH₃CO₂⁻acetate
 - NO₂ nitrite
 - NO₃ nitrate
 - CIO⁻ hypochlorite
 - ClO₂ chlorite
 - ClO₃ chlorate
 - ClO₄ perchlorate
 - MnO₄ permanganate
 - Oxoanionen (-2)
 - CO₃²- carbonate
 - C₂O₄²⁻ oxalate
 - CrO₄²- chromate
 - Cr₂O₇²⁻ dichromate
 - SO₃²⁻ sulfite
 - SO₄²⁻ sulfate
 - S₂O₃²⁻ disulfate

- Oxoanionen (-3)
 - PO₄³- phosphate

D. Nomenclature of Compounds

- Kationen
 - o ... (oxidatiegetal) ion
- Anionen
 - o ... ide
- Oxyanionen
 - o Hypo ... iet
 - o ... iet
 - o ... aat
 - o Per ... aat

E. Moles and Molar Masses

- [1] mol = 6.0221 x 10^{23} aantal deeltjes
- [1] amu = 1.66052 x 10^{-24}
- Aantal mol deeltjes = massa / gemiddelde atoommassa per mol

F. Determination of Chemical Formules

- Proc samenstelling %X = massa X / massa tot. X 100
- Empirische formule Gram > mol > 1 (Zodat: gehele getallen)
- Brutoformule Emp form x n; n = molaire massa tot. / molaire massa emp form

G. Mixtures and Solutions

- Molariteit
 M = #mol opgeloste stof / #liter oplossing
 - #mol = m/m(molair)
- Verdunningen #mol(voor) = #mol(na)
 - $C(voor) \times V(voor) = C(na) \times V(na)$

H. Chemical Equations

- Solid (s)
- Liquid (I)
- Gas (g)
- Aq. solution (aq)
- − Reactie bij hogere T $\rightarrow \Delta$ $\rightarrow 80$ °C
- " met katalysator \rightarrow k \rightarrow V₂O₅

I. Aqueous solutions and Precipitation

Oplosbaar/onoplosbaar concentratie ≈ 0.1 M

Niet-elektrolieten methanol, suiker, aceton

Elektrolieten

○ Sterke NaCl, Kbr, Na₂SO₄, HCl, ...
○ Zwakke HCOOH, CH₃COOH, ...
Neerslagreacties NaCl (aq) + AgNO₃ \rightarrow ?
NaCl \rightarrow Na⁺ + Cl⁻

Ag⁺ + Cl⁻ → AgCl neerslag

- Ionaire reacties $Na^+(aq) + Cl^-(aq) + Ag^+(aq) + NO_3^-(aq)$

 $AgNO_3 \rightarrow Ag^+ + NO_3^-$

 \rightarrow Na⁺ (aq) + NO₃⁻ (aq) + AgCl (s)

- Netto-ionaire reactie $Cl^-(aq) + Ag^+(aq) \rightarrow AgCl(s)$

J. Acid and Bases

Arrhenius

○ Zuur: $HX \rightarrow H^+ + X^-$ ○ Base: $BOH \rightarrow B^+ + OH^-$

Brosted-Lowry

o Zuur

■ $HX \rightarrow H^+ + X^-$ (proton donor)

 $\blacksquare HX + H_2O \rightarrow H_3O^+ + X^-$

o Base

■ $B + H^+ \rightarrow BH^+$ (proton acceptor)

 $\blacksquare B + H_2O \rightarrow BH^+ + OH^-$

Sterk

 zwak zuur: volledig

 gedeeltelijk (K
) gedeprotoneerd

Sterkell zwakke base: volledigll gedeeltelijk (Kb) geprotoneerd

- Sterke zuren HCl, Hbr, HI, HClO₄, HNO₃, H₂SO₄

Sterke bases LiOH, NaOH, KOH, RbOH, CsOH, Mg(OH)₂, Ca(OH)₂, Sr(OH)₂, Ba(OH)₂

- Neutralisatie-reacties: zuur (aq) + base (aq) → zout (aq) + H_2O (I)

vb: HCl + NaOH → NaCl + H₂O

K. Redox Reactions

Oxidatiegetal (OG)

Niet-gebonden elementen OG = 0

- Neutrale moleculen; -ionen $\sum_{i}^{atomen} OG(i) = 0$; $\sum_{i}^{atomen} OG(i) = lading \ vh \ ion$

Waterstof

Metaal OG = -1 Niet-metaal OG = +1

Halogenen

Fluor OG = -1 (altijd)
 Chroom, broom, iood OG = -1 (meestal)

ZuurstofOG = -2 (meestal)

Balanceren v redoxreacties vb: $HNO_3 + H_2S \rightarrow NO + S$ $H^+ + NO_3^- + H_2S \rightarrow NO + S$ o lonaire vorm Deelreacties $NO_3^- \rightarrow NO$ $H_2S \rightarrow S$ Zuurstof-balans $NO_3^- \rightarrow NO + 2H_2O$ $H_2S \rightarrow S$ Waterstof-balans $NO_3^- + 4H^+ \rightarrow NO + 2H_2O$ $H_2S \rightarrow S + 2H^+$ Ladingsbalans $NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$ $H_2S \rightarrow S + 2H^+ + 2e^-$ Samenstellen 2 x $[NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O]$ 3 x [$H_2S \rightarrow S + 2H^+ + 2e^-$] $2NO_3^- + 8H^+ + 3 H_2S \rightarrow 2NO + 4 H_2O + 3S + 6H^+$ o Afwerken $2NO_3^- + 2H^+ + 3 H_2S \rightarrow 2NO + 4 H_2O + 3S$ $2HNO_3 + 3 H_2S \rightarrow 2NO + 4 H_2O + 3S$

L. Reaction Stoichiometry

