Maths

ORAUX

Juillet 2021

1 Mines

1.1 Exercice 1

On pose $E = \mathcal{M}_n(R)$, avec $n \geq 2$.

Soit $A \in E$. On définit l'endomorphisme $f_A \in \mathcal{L}_R(E)$ tel que pour tout $M \in E, f_A = AM$.

- 1. $\forall P \in R[X]$ déterminer $P(f_A)$.
- 2. Montrer que f_A est diagonalisable ssi A est diagonalisable.
- 3. Donner le polynôme caractéristique de f_A en fonction de celui de A. Indication: Etudier le cas particulier n=2.
- 4. Donner les éléments propres de f_A en fonction de ceux de A (valeurs propres, vecteurs propres et ordre de multiplicité).
- 5. Retrouver le résultat de la question 2.

1.2 Exercice 2

Soit $\alpha > 0$, On définit (U_n) par $\forall n \geq 1$, $U_n = \sum_{k=1}^n \ln(k)^{\alpha}$.

Etudier la convergence de $\sum\limits_{\geq 2}\frac{1}{U_n}$

2 Centrale

2.1 Centrale 2

On définit (a_n) par $\forall n \in \mathbb{N}, \ a_n = \frac{1}{\binom{2n}{n}}$.

On pose $f(x) = \sum_{n=0}^{\infty} a_n x^n$.

- 1. Déterminer le rayon de convergence R de $\sum a_n x^n$.
- 2. Représenter la courbe représentative de f grâce à Python.
- 3. Donner une valeur approchée à 10^{-4} près de $\sum_{n=0}^{\infty} a_n$.

- 4. Trouver une équation différientielle d'ordre 1 vérifiée par f sur]0,R[.
- 5. Donner la valeur de $\sum_{n=0}^{\infty} a_n$.