GETTING TO KNOW THE CARDINALS

Notes on Akihiro Kanamori's The Higher Inifite

 $\begin{array}{c} & & \\$

0 Preliminaries

Definition 0.1. For $X \subseteq \text{On}$, γ is a limit point of X iff $\bigcup (X \cap \gamma) = \gamma > 0$

Notice that a limit point is necessarily a limit ordinal: if $\gamma = \alpha + 1$ then $\bigcup \gamma = \alpha$ and we have $\bigcup (X \cap \gamma) \subseteq \bigcup \gamma = \alpha < \gamma$.

Definition 0.2. C is closed unbounded in δ iff C is an unbounded subset of δ containing all its limit points less than δ .

These sets are also called *club* sets. Here C is unbounded iff for all $x \in \delta$ there exists $y \in C$ such that x < y (the alternative would have $x \le y$). This definition of unbounded implies that δ must be infinite for club sets to exist.

Definition 0.3. For regular $\nu < \delta$, C is ν -closed unbounded in δ iff C is an unbounded subset of δ containing all its limit points less than δ of cofinality ν .

Definition 0.4. For limit ordinals δ , S is stationary in δ iff $S \subseteq \delta$ and $S \cap C \neq \emptyset$ for any C closed unbounded in δ .

Definition 0.5. If $\langle X_{\alpha} \mid \alpha < \delta \rangle \in {}^{\delta}\mathcal{P}(\delta)$, then its diagonal intersection is $\{\xi < \delta \mid \xi \in \bigcap_{\alpha < \xi} X_{\alpha}\}$, denoted $\triangle_{\alpha < \delta} X_{\alpha}$.

Definition 0.6. For $X \subseteq \text{On}$ and $f: X \to \text{On}$, f is regressive iff $f(\alpha) < \alpha$ for every $\alpha \in X - \{\emptyset\}$.

Proposition 0.7. Suppose that $\lambda > \omega$ is regular.

- (a) If something
- (b) fkflkadsl;