23MT2004 - Mathematical Programming

Topic: Geometric Programming with equality constraints

Dr. V Viswanath Shenoi, Professor, Integrated Reasearch and Discovery

September 16, 2024

Geometric Programming with equality constraints

AIM OF THE SESSION

 To familiarize students with the method of Geometric Programming to optimize an objective function, subject to an equality constraint.

INSTRUCTIONAL OBJECTIVES

This Session is designed to:

- Learn about optimization of posynomial objective function, subject to an equality constraint.
- 2 Learn about the degree of difficulty in the case of GP with constraints.

Learning Outcomes

- Optimize a posynomial objective function, subject to an equality constraint using Geometric Programming.
- Oetermine when a GP problem with constraints is not feasible, has a unique solution or has multiple solutions.

GP to solve a constrained optimization problem

A constrained optimization problem:

Minimize
$$f(x), x = (x_1, x_2, ..., x_n)$$
,
subject to constraints $g(x) = \alpha$,
where α is a positive constant.

In the above case, both f(x) and g(x) are posynomials. For example:

Minimize
$$f(x)=40x_1^{-1}x_2^{-1}x_3^{-1}+40x_1x_3$$
 subject to constraints
$$4x_1x_2+2x_2x_3=8$$
 where $x_1,x_2.x_3\geq 0$

RECALL: Arithmetic-Geometric mean inequality

$$\frac{u_1 + u_2 + \ldots + u_n}{n} \ge (u_1 * u_2 * \ldots * u_n)^{\frac{1}{n}}$$

$$u_i \ge 0 \ \forall i \ n \in \mathbb{N}$$

$$\sum_{i=1}^n u_i = 1 \ \forall i \ n \in \mathbb{N}$$

$$\sum_{i=1}^n \frac{u_i}{n} \ge \prod_{i=1}^n (u_i)^{\frac{1}{n}}$$

$$\text{Let } \delta_i = \frac{1}{n} \ \forall i$$

$$\sum_{i=1}^n \delta_i u_i \ge \prod_{i=1}^n (u_i)^{\delta_i}$$

Arithmetic-Geometric mean inequality (contd.)

Let
$$\delta_1 + \delta_2 + \ldots + \delta_n = \lambda$$

 $\Longrightarrow \frac{\delta_1}{\lambda} + \frac{\delta_2}{\lambda} + \ldots + \frac{\delta_n}{\lambda} = 1$

$$\sum_{i=1}^{n} U_{i} \ge \prod_{i=1}^{n} \left(\frac{u_{i}}{\delta_{i}/\lambda}\right)^{\delta_{i}/\lambda} \tag{1}$$

$$(\sum_{i=1}^{n} u_i)^{\lambda} = \prod_{i=1}^{n} (\frac{\lambda u_i}{\delta_i})^{\delta_i}$$
(2)

$$= (\lambda)^{\delta_1 + \delta_2 + \dots + \delta_n} \prod_{i=1}^n (\frac{u_i}{\delta_i})^{\delta_i}$$
 (3)

$$=\lambda^{\lambda} \prod_{i=1}^{n} (\frac{u_{i}}{\delta_{i}})^{\delta_{i}} \tag{4}$$

where $u_i, \delta_i \geq 0$

Geometric Programming: Optimization with equality constraints

Let us solve the minimization problem

Minimize
$$f(x)=40x_1^{-1}x_2^{-1}x_3^{-1}+40x_1x_3$$
 subject to constraints
$$4x_1x_2+2x_2x_3=8$$
 where $x_1,x_2.x_3\geq 0$

Solution:

$$f(x) = 40x_1^{-1}x_2^{-1}x_3^{-1} + 40x_1x_3$$

$$= U_1 + U_2$$

$$\geq \left(\frac{u_1}{\delta_1}\right)^{\delta_1} \left(\frac{u_2}{\delta_2}\right)^{\delta_2}$$

where $u_1, u_2, \delta_1, \delta_2 \geq 0$ and $\delta_1 + \delta_2 = 1$

Geometric Programming: Optimization with equality constraints (contd.)

Let us consider the constraint equation

$$\frac{1}{2}x_1x_2 + \frac{1}{4}x_2x_3 = 1$$

we have

$$U_3 + U_4 = 1$$
$$(U_3 + U_4)^{\lambda} = 1^{\lambda}$$

From Arithmetic mean - Geometric mean in equality, we get

$$(U_3 + U_4)^{\lambda} \ge (\lambda)^{\lambda} (\frac{u3}{\delta_3})^{\delta_3} (\frac{u4}{\delta_4})^{\delta_4}$$

Geometric Programming: Optimization with equality constraints (contd.)

Now, combine the objective function and constraint equation,

$$f(x) \ge \left(\frac{u_1}{\delta_1}\right)^{\delta_1} \left(\frac{u_2}{\delta_2}\right)^{\delta_2} (\lambda)^{\lambda} \left(\frac{u_3}{\delta_3}\right)^{\delta_3} \left(\frac{u_4}{\delta_4}\right)^{\delta_4} \\ \ge (\lambda)^{\lambda} \left(\frac{40x_1^{-1}x_2^{-1}x_3^{-1}}{\delta_1}\right)^{\delta_1} \left(\frac{40x_1x_3}{\delta_2}\right)^{\delta_2} \left(\frac{x_1x_2}{2\delta_3}\right)^{\delta_3} \left(\frac{x_2x_3}{4\delta_4}\right)^{\delta_4}$$

comparing the powers of x_1, x_2, x_3 on LHS and RHS, we get

$$-\delta_1 + \delta_2 + \delta_3 + 0\delta_4 = 0 \tag{5}$$

$$-\delta_1 + \delta_2 + 0\delta_3 + \delta_4 = 0 \tag{6}$$

$$-\delta_1 + 0\delta_2 + \delta_3 + \delta_4 = 0 \tag{7}$$

$$\delta_1 + \delta_2 + 0\delta_3 + 0\delta_4 = 1 \tag{8}$$

solving the above equations by elimination, we get

$$\delta_1 = \frac{2}{3}, \delta_2 = \delta_3 = \delta_4 = \frac{1}{3}, \lambda = \delta_3 + \delta_4 = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$$

Geometric Programming: Optimization with equality constraints (contd.)

Objective Function	Constraint Equation
$f(x) = 40x_1^{-1}x_2^{-1}x_3^{-1} + 40x_1x_3$	$g(x) = \frac{1}{2}x_1x_2 + \frac{1}{4}x_2x_3 = 1$
$U_1+U_2=1$	$U_3+U_4=1$
$f(x) \geq (\frac{u_1}{\delta_1})^{\delta_1} (\frac{u_2}{\delta_2})^{\delta_2}$	$\left(\frac{u_3}{\delta_3}\right)^{\delta_3}\left(\frac{u_4}{\delta_4}\right)^{\delta_4}$
$\frac{u_1}{\delta_1} = \frac{u_2}{\delta_2}$	$\frac{u_3}{\delta_3} = \frac{u_4}{\delta_4}$
	$\frac{u_3}{\delta_3} = \frac{u_4}{\delta_4} = \frac{u_3 + u_4}{\delta_3 + \delta_4} = \frac{1}{2/3}$

We have 3 equations and 3 variables (x_1, x_2, x_3) .

The values of the variables and the minimum value of f can be computed.

Self-Assessment Questions

- In a GP problem, an equality constraint function could be of the following form:
 - All the 3 below options are OK.
 - LHS is a posynomial and RHS is a positive number
 - LHS is a posynomial and RHS is a negative number
 - LHS is a polynomial and RHS is a positive number
- ② If there are 3 terms in the objective function of 4 variables, and 2 terms in the constraint function, the degree of difficulty is
 - A Negative
 - Zero
 - One
 - Uncountable

Terminal Questions

- Write an example of a GP problem with equality constraints whose degree of difficulty is 1.
- 2 Compute the degree of difficulty and solve the following problem using Geometric Programming:

Minimize
$$f(x) = 40x_1^{-1}x_2^{-1}x_3^{-1} + 40x_1x_3$$

subject to constraints
 $x_1 \times x_2 = 100$
where $x_1, x_2, x_3 \ge 0$