Guess:

$$=4T(\frac{n}{2})+\Theta(1)$$

$$= c + 4 * c + 16T(\frac{n}{4})$$

= c +
$$\frac{4*C*(4^{log_2n}-1)}{4-1}$$

= c +
$$\frac{4*C*(n^{log_24}-1)}{4-1}$$

$$= c + \frac{4}{3} * c * (n^2 - 1)$$

Proof:

Let $\Theta(1) = c$ (a constant)

1.

Assume
$$T(n) = O(n^2) \le 2 * c * n^2 - c$$

For
$$n = 1 T(1) = c \le 2 * c * 1 - c = c$$
 (boundary)

If for m < n the equation holds, take m = $\frac{n}{2}$

T(n)

$$= 4T(\frac{n}{2}) + c$$

$$\leq$$
 4 * (2 * c * $(\frac{n}{2})^2$ - c) + c

$$= 2 * c * n^2 - 3 * c$$

$$\leq$$
 2 * c * n² - c

The equation also holds on n

Therefore, we can induce that T(n) is $O(n^2)$

2.

Assume T(n) =
$$\Omega(n^2) \ge c * n^2$$

For
$$n = 1 T(1) = c \ge c * 1 = c (boundary)$$

If for m < n the equation holds, take m = $\frac{n}{2}$

T(n)

$$= 4T(\frac{n}{2}) + c$$

$$\geq$$
 4 * (c * $(\frac{n}{2})^2$) + c

$$= c * n^2 + c$$

$$\geq$$
 c * n²

The equation also holds on n

Therefore, we can induce that T(n) is $\Omega(n^2)$

Since T(n) is O(n²) and Ω (n²), we can conclude that T(n) is Θ (n²)

Answer

1.
$$T(n) = \Theta(n)$$
 false

2.
$$T(n) = \Theta(n + \log(n))$$
 false

3.
$$T(n) = \Theta(n^2)$$
 true

4.
$$T(n) = \Theta(n^2 + \log(n))$$
 false