CSCI 3725: Computational Creativity

Music Fundamentals for Sonic Pi

Today's Outline

- One Goal for CC Researchers
- Getting Started with Sonic Pi
- Sound Properties: Frequency, Amplitude, Timbre, Time
- Example of How to Read Music (Western Notation)
- Intervals and Chords
- Emotion and Playing with Patterns

One Example Goal for CC Researchers

Gabriela Montero: live improvisation (based on audience's prompts)

Can we have a computer display this same level of creativity (novelty, meaningfulness, surprise...?)

Let's Learn Some Fundamentals

We'll talk about different approaches and systems later...

...for now, we need to learn a few **core ideas** related to **combining music with computers**!

Sonic Pi 🥕

 Create (live) music with Ruby-like code!

Download at: https://sonic-pi.net/

Tutorial at: https://sonic-pi.net/tutorial

```
with_fx :reverb do
  sample :elec_pop
  sleep 1
  use_synth :saw
  play :Eb2
  sleep 1
end
```

Frequency (Pitch)

Higher frequency of sound wave => **higher pitch** of note

Low note

High note

Sonic Pi:

- play 47 means play the 47th note on a piano

Amplitude (Loud/Soft)

Higher amplitude of sound wave => **louder** note

Soft note

Loud note

Sonic Pi: amplitude (how loud/soft) is written as amp

Timbre (Tone Color)

Different instruments have different sound wave shapes...

Sonic Pi examples:

- use_synth :piano will switch to a piano (synth list here)
- sample :ambi_choir will use a choir sound (you can also use your own samples!)

Tempo

Tempo: the speed at which your song plays

- Clock's tick is 60 beats per minute
- Faster tempo => More beats per minute

Sonic Pi: use_bpm 60 means 60 beats per minute

Simple Time

Many songs are in simple time, which means you can clap your hands or count out loud phrases of four beats each:

[1 2 3 4] **[1** 2 3 4] **[1** 2 3 4]

Or...you could count each of these phrases as 1 beat that takes place more slowly:

Reading Music Example (Western Notation)

Reading Music Example (Western Notation)

We Can Use Letters & Numbers to Describe Pitches

Intervals: Distance Between Pitches

Each pitch has a different sound wave...

which means when we combine pitches they blend together in interesting ways

1 2 3 4 5 6 7 8

Chords: Playing Multiple Notes at Once

Chord: combo of 3+ notes, built from a single note called the root.

Let's try a C major chord!

Chords: Playing Multiple Notes at Once

C is the first (I) note in our list of notes (and the **root**!).

Chords: Multiple Notes at Once

F is the fourth (IV) note in our list of notes.

Chords: Multiple Notes at Once

G is the fifth (V) note in our list of notes.

Chords: Multiple Notes at Once

A is the sixth (VI) note in our list of notes.

Chord Progressions Aren't Always Creative

Many popular songs ("Four Chord Songs") rely on the chord progressions we just saw (often I - V - VI - IV)

Establishing a Key vs. Establishing Emotion

Establishing a Key vs. Establishing Emotion

Establishing a Key vs. Establishing Emotion

The C chord is suspended (Csus4).

play chord(:c, :sus4)

C...E....C...E....

C...E...C...E...C...E.... *F*??

C...E...C...E...C...E....

F?? B???

C...E...C...E....C...E.... F?? B??? C...

Surprise and Tension: Also Important in Rhythm!

Example

• Kick 2 3 4 (Rest) 2 3 4 Kick 2 3 4 (Rest) 2 3 4

...has the listener waiting for that next kick more than:

• Kick 2 3 4 Kick 2 3 4 Kick 2 3 4

Surprise and Tension: Also Important in Rhythm!

Syncopation: emphasis on unexpected beats

Everyone imitated **Scott Joplin**'s music so much (etc.) that we've had to find **new ways** to include surprising rhythms in this way!

Symmetry Provides a Connection to the Familiar

Example

 Sequence: repeat the same melody, except up/down in pitch

Symmetry Provides a Connection to the Familiar

Example

 Ludwig van Beethoven playing his rival's music upside-down (possibly didn't happen, but still an example for our purposes)

Symmetry Provides a Connection to the Familiar

Example

 "Negative Harmony" (popularized in 2017)

> invert notes and/or chords around an axis (different definitions)

Example Song Analysis: Classic Mario Theme

Example Song Analysis: Classic Mario Theme

- Beginning riff: establish the (happy major) key
- Drums: establish a familiar beat
- Hint at Melody: gives us an idea of the melody using a rhythmic sequence. Plays it again to become familiar, until...
- Melody: breaks the familiarity!
 - "Biggest" notes are easy for people to sing along.
 - Surprise/tension comes from rhythm (would be WAY less exciting if all the rhythms were the same!)

Next Steps 🎝

- PQ4 Checkpoint!
 - Our How are you doing?
 - How are your team members doing?

 We'll return to Sonic Pi later this week (a chance to play around with coding and music!)