D) Show that PX'X = QX'X => PX' = QX' for any conforming matrices P,QQ and X. Use this to show that $(x'x)^-X'$ is a generalized inverse of X

Solution:
$$|X'X = QX'X|$$

=) $(PX' - QX') X = 0$
=> $PX' - QX' = 0$
 $PX' = QX'$

For $(X'X)^-X'$ to be generalized inverse gX, we need to prove: $X'(X'X)^-X'X = X$

Let $X' \times (X' \times)^T = P$ and I = Q.

Hence Px'x = Qx'x

As shown above => Px' = Gx'

$$\Rightarrow x'x(x'x)^Tx' = x'$$

Transposing this, we have

$$X(X'X)^TX'X = X$$

 $(x'x)^{-}x'$ is a generatived inverse of x