Problem 1

Design an NFA for the following languages over their respective alphabets:

- $L = \{w|w \text{ has } 3m \text{ or } 4m \text{ } a's \text{ for some } m \in \mathbb{N}\}$. L is over the alphabet $\Sigma = \{a,b\}$. [Tug22]
- $L = \{lab, cab, dab\}$. L is over the alphabet $\Sigma = \{a, b, c, d, l\}$ [HMU01]
- $L = \{1101, 101, 111\}$. L is over the alphabet $\Sigma = \{0, 1\}$. [HMU01]
- $L=\{w|w \text{ ends with } 00\}$. L is over the alphabet $\Sigma=\{0,1\}$. (For this one, your NFA can only have 3 states.) [Sip96]

1.

2.

P2

Problem 2

In the previous problem, you defined an N such that $L(N) = \{w | w \text{ ends with } 00\}$, Convert this NFA into a DFA.

δ	0	1
Ø	Ø	Ø
$\rightarrow \{q0\}$	$\{q0, q1\}$	$\{q0\}$
$\{q0,q1\}$	$\{q0,q1,q2\}$	$\{q0\}$
$*\{q0, q1, q2\}$	$ \{q0,q1,q2\}$	q0

Table 1: Converted DFA Transition Table for Reachable States (δ)

δ	0	1
Ø	Ø	Ø
$\longrightarrow \{q0\}$	$\{q0,q1\}$	$\{q0\}$
$\{q1\}$	$\{q2\}$	Ø
$*\{q2\}$	Ø	Ø
$\{q0,q1\}$	$\{q0,q1,q2\}$	$\{q0\}$
$*\{q0, q2\}$	$\{q0,q1\}$	$\{q0\}$
$*\{q1, q2\}$	$\{q2\}$	Ø
$*{q0, q1, q2}$	$\mid \{q0, q1, q2\}$	$\{q0\}$

Table 2: Converted DFA Transition Table for All States (δ)

Solution to Problem 2

Let $(Q_N, \Sigma, \Delta_N, S_N, F_N)$ be the tuple representation of the NFA. Doing the Tuple definition for a DFA with reachable states:

- $Q = 2^Q = \{\emptyset, \{q0\}, \{q0, q1\}, \{q0, q1, q2\}\}$
- $\Sigma = \{0, 1\}$
- δ can be defined using the transition table in Table 1
- $s = \{q0\}$
- $F = \{\{q0, q1, q2\}\}$

Doing the Tuple definition for a DFA with all states:

- $\bullet \ \ Q=2^Q=\{\emptyset,\{q0\},\{q1\},\{q2\},\{q0,q1\},\{q0,q2\},\{q1,q2\},\{q0,q1,q2\}\}$
- $\Sigma = \{0, 1\}$
- δ can be defined using the transition table in Table 2
- $s = \{q0\}$
- $F = \{\{q2\}, \{q0, q2\}, \{q1, q2\}, \{q0, q1, q2\}\}$

DFA for reachable states:

DFA with unreachable states:

$$\begin{array}{c|c|c|c} \Delta & 0 & 1 \\ \hline \rightarrow p & \{p,q\} & \{p\} \\ q & \emptyset & \{r\} \\ *r & \{p,r\} & \{q\} \\ \hline \end{array}$$

Table 3: NFA

P3

Problem 3

Convert the NFA defined in Table 3 to a DFA. [HMU01]

δ	0	1
Ø	Ø	Ø
$\longrightarrow \{p\}$	$\{p,q\}$	{ <i>p</i> }
$\{q\}$	Ø	$\{r\}$
$*\{r\}$	$\{p,r\}$	$\{q\}$
$\{p,q\}$	$\{p,q\}$	$\{p,r\}$
$*\{p,r\}$	$\{p,q,r\}$	$\{p,q\}$
$*\{q,r\}$	$\{p,r\}$	$\{q,r\}$
$*\{p,q,r\}$	$\{p,q,r\}$	$\{p,q,r\}$

Table 4: Converted DFA Transition Table with All States (δ)

δ	0	1
Ø	Ø	Ø
$\rightarrow \{p\}$	$\{p,q\}$	{ <i>p</i> }
$\{p,q\}$	$\{p,q\}$	$\{p,r\}$
$*\{p,r\}$	$\{p,q,r\}$	$\{p,q\}$
$*\{p,q,r\}$	$\{p,q,r\}$	$\{p,q,r\}$

Table 5: Converted DFA Transition Table with Reachable States (δ)

Solution to Problem 3

Let $(Q_N, \Sigma, \Delta_N, S_N, F_N)$ be the tuple representation of the NFA. Doing the Tuple definition for all states:

- $Q = 2^Q = \{\emptyset, \{p\}, \{q\}, \{r\}, \{p, q\}, \{p, r\}, \{q, r\}, \{p, q, r\}\}$
- $\Sigma = \{0, 1\}$
- δ can be defined using the transition table in Table 4
- s = p
- $F = \{\{r\}, \{p,r\}, \{q,r\}, \{p,q,r\}\}$

Doing the Tuple definition for reachable states:

•
$$Q = 2^Q = \{\emptyset, \{p\}, \{p,q\}, \{p,r\}, \{p,q,r\}\}$$

- $\Sigma = \{0, 1\}$
- δ can be defined using the transition table in Table 5
- s = p
- $F = \{\{p, r\}, \{p, q, r\}\}$

You don't need to do this next part, but for clarity, we also drew out the original NFA and the resulting DFA:

DFA with reachable states only:

Problem 4

In class we used the following lemma based on our definition of $\hat{\Delta}$. Prove it by induction on |y|. For any $x,y\in \Sigma^*$ and $A\subseteq Q$,

$$\hat{\Delta}(A, xy) = \hat{\Delta}(\hat{\Delta}(A, x), y)$$

$\hat{\Delta}(A, x\epsilon)$	Given
$=\hat{\Delta}(A,x)$	Simplifying concatenation.
$= \hat{\Delta}(\hat{\Delta}(A, x), \epsilon)$	Base case definition of $\hat{\Delta}$.

Table 6: Base case for Problem 4

$\hat{\Delta}(A, xy) = \hat{\Delta}(\hat{\Delta}(A, x), y)$	Inductive Hypothesis
$\hat{\Delta}(A, xya) = \bigcup_{q \in \hat{\Delta}(A, xy)} \Delta(q, a)$	Definition of $\hat{\Delta}$
$\hat{\Delta}(A, xya) = \bigcup_{q \in \hat{\Delta}(\hat{\Delta}(A, x), y)} \Delta(q, a)$	Applied Ind. Hypothesis to substitute subscription.
$\hat{\Delta}(A, xya) = \hat{\Delta}(\hat{\Delta}(A, x), ya)$	Applied Definition of $\hat{\Delta}$ to previous line.

Table 7: Inductive Step for Problem 4

Solution to Problem 4

Proof by induction on |y|.

Base case:

Let $y = \epsilon$, we want to show $\hat{\Delta}(A, x\epsilon) = \hat{\Delta}(\hat{\Delta}(A, x), \epsilon)$.

See Table 6 for solution.

(Doesn't have to be written exactly this way. Also a base case where $y = a, a \in \Sigma$ is acceptable.)

Inductive Hypothesis: For a y of arbitrary length, $\hat{\Delta}(A, xy) = \hat{\Delta}(\hat{\Delta}(A, x), y)$

We want to show: $\hat{\Delta}(A, xya) = \hat{\Delta}(\hat{\Delta}(A, x), ya)$

See Table 7 for solution.

Problem 5

Prove that every NFA can be converted to an equivalent one that has a single accept state. [Sip96]

References

- [HMU01] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to automata theory, languages, and computation. *Acm Sigact News*, 32(1):60–65, 2001.
- [Sip96] Michael Sipser. Introduction to the theory of computation. *ACM Sigact News*, 27(1):27–29, 1996.
- [Tug22] Randal Tuggle. Homework problem for comp 455. HW2, 2022.