Definition 7.4.7. If A is an $m \times n$ matrix, then A^TA is the **Gram** matrix or **Gramian** of A.

Theorem 7.4.8. If A is an $m \times n$ matrix then:

- (a) $\operatorname{null}(A^TA) = \operatorname{null}(A)$ (b) $\operatorname{rank}(A^TA) = \operatorname{rank}(A)$ Prob. Set
- (c) A^TA is invertible iff A has linearly independent columns

Proof. Let $A = [\alpha_1 - \alpha_n]$ First note A^TA is $n \times n$. Th $\alpha_1 \cdot 5 \cdot 7$ implies A^TA is invertible $\Rightarrow A^TAx = \alpha_1 \quad \text{only for } x = \alpha_2 \quad \text{only } x = \alpha_2 \quad \text$

AEM MIN

$$\mathbb{R}^n = \text{row}(A) \oplus \text{rol}(A)$$

R= col(A) Dwl(AT)

$$A \propto = \mathcal{L}$$
 has no $sol^2 s$ when $\mathcal{L} \neq \mathcal{Q}$
But $\propto = p + \mathcal{L}$ is a LS sol^2 to $A \propto = \mathcal{L}$
for all $\mathcal{L} \in null(A)$, for any $\mathcal{L} \in null(A^T)$

7.5 Application: Data fitting (A&R §6.5)

Suppose we are interested in how a quantity y depends upon another quantity x, and suppose we have a theoretical hunch that y should depend linearly on x, so y = a + bx for some choice of a and b. Suppose further that we perform an experiment and obtain n pairs of values $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$. We would like to use our data to determine a and b.

If, as would be ideal, our data did all lie on a single line we would have

$$y_1 = a + b x_1$$

$$y_2 = a + b x_2$$

$$\vdots \qquad \vdots$$

$$y_n = a + b x_n$$

This can be expressed more succinctly in matrix form as y = Mv, where

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \qquad M = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}, \qquad \mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix}.$$

Because of experimental error however, we cannot expect the data to fall perfectly on a straight line. Therefore, $M\mathbf{v} = \mathbf{y}$ will generally have no exact solution, and we will instead be interested in obtaining a least squares solution, $\mathbf{v} = \mathbf{v}_*$, which is a choice of (a, b) that minimizes $\|\mathbf{y} - M\mathbf{v}\|$.

Theorem 7.4.5 implies that our task is to solve $M^TM\mathbf{v} = M^T\mathbf{y}$.

In fact, it can be shown that the column vectors of M are linearly independent iff the n data points do not all lie on a vertical line in the xy-plane. Theorem 7.4.8 then implies that under this (very reasonable) assumption on the data, the least squares problem has a unique solution, $\mathbf{v} = (M^T M)^{-1} M^T \mathbf{y}$.

Since we are fitting to a linear function, M^TM will always be a 2×2 matrix in this case, so that $(M^TM)^{-1}$ is very straightforward to calculate.

If we express the squared error $\|\mathbf{y} - M\mathbf{v}\|^2$ in terms of its components we obtain

$$\|\mathbf{y} - M\mathbf{v}\|^2 = d_1^2 + d_2^2 + \dots + d_n^2,$$

where $d_i = y_i - a - bx_i$, and a and b are the components of the least squares solution for \mathbf{v} .

The quantity d_i is often called a **residual**, and gives the difference between the value of y predicted by the model and the value found experimentally in the ith datum.

E.g. 7.5.1. Find the line of best fit for the data:

$$(0,2), (1,3), (3,7), (6,12).$$

$$y = \begin{pmatrix} 2 \\ 3 \\ 7 \\ 12 \end{pmatrix}, M = \begin{pmatrix} 1 & 0 \\ 1 & 3 \\ 1 & 6 \end{pmatrix}$$

$$\Rightarrow M^{T}M = \begin{pmatrix} 4 & 10 \\ 10 & 46 \end{pmatrix} & M^{T}y = \begin{pmatrix} 24 \\ 96 \end{pmatrix}$$

$$So \quad Solving \quad M^{T}My = M^{T}y \Rightarrow$$

$$v_{2} = 12/7, \quad v_{1} = 12/7$$

$$So \quad line of best fit in$$

y= 12+12x

The technique we have discussed for least squares fitting to linear functions can be easily generalized to any polynomial. Suppose we again have n data points $(x_1, y_1), \ldots, (x_n, y_n)$ and suppose we believe these data to be described by a polynomial of degree m. The corresponding system is

$$y_{1} = a_{0} + a_{1} x_{1} + \dots + a_{m} x_{1}^{m}$$

$$y_{2} = a_{0} + a_{1} x_{2} + \dots + a_{m} x_{2}^{m}$$

$$\vdots$$

$$y_{n} = a_{0} + a_{1} x_{n} + \dots + a_{m} x_{n}^{m}$$

which can be expressed in matrix form as y = Mv with

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \qquad M = \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^m \\ 1 & x_2 & x_2^2 & \dots & x_2^m \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^m \end{bmatrix}, \qquad \mathbf{v} = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_m \end{bmatrix}.$$

E.g. 7.5.2. Find the quadratic polynomial that best fits the four points

$$(2,0), (3,-10), (5,-48), (6,-76).$$

5 olving
$$MTMY = MTY \Rightarrow Y = \begin{pmatrix} 2 \\ 5 \\ -3 \end{pmatrix}$$

So best fit quadratic is
$$y = 2 + 5x - 3x^2$$
.

7.6 Application: Linear Regression

A common problem in statistics is the following. We suspect that the mean y of a random quantity can be described by a polynomial in another quantity x,

$$y = a_0 + a_1 x^{\ell} + \ldots + a_k x^k$$
.

This curve is called a linear regression curve in statistics.

We are given experimental data $(x_1, y_1, s_1), \ldots, (x_n, y_n, s_n)$, and it is believed that

$$y_i = a_0 + a_1 x_i + \ldots + a_k x_i^k + \epsilon_i$$
 (7.6)

where ϵ_i has mean 0 and standard deviation s_i . We wish to estimate the parameters a_i .

If the s_i are known to be all equal, then statistical considerations imply that the best estimate for the a_i is simply the least-squares fit of the curve (7.6) to the pairs $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$, as described in Section 7.5.

Often, however, the s_i will not all be the same. E.g. if the data is generated from Monte Carlo simulations the s_i will typically be distinct. In this more general case, statistical considerations suggest that rather than minimizing the distance between y and Mv with respect to the dot product, it is more appropriate to consider a weighted inner product. In particular, we define the diagonal matrix S whose diagonal entries are $1/s_i^2$, and introduce the inner product

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^T S \mathbf{v}.$$

Problem 7.6.1 (Weighted least squares). Let $w_1, w_2, \ldots, w_m > 0$ and consider the corresponding weighted inner product on \mathbb{R}^m , as defined in E.g. 7.1.5. Given a linear system $A\mathbf{x} = \mathbf{b}$ of m equations in n unknowns, find a vector \mathbf{x} that minimizes $\|\mathbf{b} - A\mathbf{x}\|$ with respect to this weighted inner product on \mathbb{R}^m . We call such an \mathbf{x} a weighted least squares solution of the system, we call $\mathbf{b} - A\mathbf{x}$ the weighted least squares error vector and $\|\mathbf{b} - A\mathbf{x}\|$ the weighted least squares error.

Theorem 7.6.2. Let $w_1, \ldots, w_m > 0$ and consider the corresponding weighted inner product. A vector \mathbf{x} is a weighted least squares solution to $A\mathbf{x} = \mathbf{b}$ iff it is a solution of the associated weighted normal system

$$A^T W A \mathbf{x} = A^T W \mathbf{b}, \tag{7.7}$$

where W is the diagonal matrix with ii entry w_i . Moreover, the weighted normal system is always consistent.

Remark 7.6.3. In fact, Theorem 7.6.2 can be generalized further by replacing the diagonal matrix W with any matrix C for which $\mathbf{x}^T C \mathbf{x} > 0$ for all nonzero \mathbf{x} . In the statistical context, the off diagonal entries in C are related to correlations between the data points.

To fit a polynomial (regression curve)

$$y = a_0 + a_1 x + \ldots + a_k x^k$$

to given experimental data $(x_1, y_1, s_1), \ldots, (x_n, y_n, s_n)$ we define

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, M = \begin{bmatrix} 1 & x_1 & \dots & x_1^m \\ 1 & x_2 & \dots & x_2^m \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & \dots & x_n^m \end{bmatrix}, S = \begin{bmatrix} s_1^{-2} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & s_m^{-2} \end{bmatrix}, \mathbf{v} = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_m \end{bmatrix}$$

and solve $M^T S M \mathbf{v} = M^T S \mathbf{y}$ for \mathbf{v} .

Exercise 7.6.4. We again consider the experimental data of *E.g. 7.5.1*, but this time the experimenter has also provided us with the standard deviation for each measurement.

x	y	S	
0	2	0.25	
1		0.5	
3	7	1	
6	12	1	$M = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $S = \begin{pmatrix} 16 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \end{pmatrix}$ $y = \begin{pmatrix} 3 & 1 \\ 3 & 1 & 1 \end{pmatrix}$
			$\begin{pmatrix} 13 \\ 10 \end{pmatrix}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Solve MISM $y = MTSy \Rightarrow y = \frac{574}{303} + \frac{497}{303}x$			
			303 303 303 T

8 Orthogonalization

8.1 Orthogonal matrices (A&R §7.1)

Definition 8.1.1. A square matrix A is said to be **orthogonal** if

$$A^{-1} = A^T.$$

E.g. 8.1.2. Let

$$A = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & -2 & 1 \\ -2 & -1 & 2 \end{bmatrix}$$

Show that A is orthogonal.

$$AA^{T} = I \Rightarrow A \text{ is onthogonal.}$$

E.g. 8.1.3. Let

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

Show that R_{θ} is orthogonal.

$$RoRo^{T} = \begin{bmatrix} cos^{2}\theta + sin^{2}\theta & 0 \\ 0 & cos^{2}\theta + sin^{2}\theta \end{bmatrix} = I$$

$$\Rightarrow Ro is orthogonal.$$

Theorem 8.1.4. Let A be an $n \times n$ matrix. The following are equivalent statements.

- (a) A is orthogonal
- (b) The row vectors of A form an orthonormal basis for \mathbb{R}^n with respect to the dot product
- (c) The column vectors of A form an orthonormal basis for \mathbb{R}^n with respect to the dot product

Let $A \in M_{nn}$ & let A have rows Proof.

Lin-, In. If (sci, jen then $(AA^{T})_{ij} = \sum_{k=1}^{n} (A)_{ik} (A^{T})_{kj} = \sum_{k=1}^{n} (A)_{ik} (A)_{jk}$ $= \sum_{k=1}^{N} (\Sigma_i)_k (\Sigma_j)_k = (\Sigma_i \cdot \Sigma_j)_k$ So: A is orthogonal iff $AA^T = I$ $(AA^{T})_{ij} = \begin{cases} 1 & i=j \\ 0 & i\neq j \end{cases} \qquad (i=j)_{i=j}$ The rows of A form an orthonormal set (wrt dot product). So (a) (b) · Now observe that A is onthogonal = $A^{-1} = A^{T} \Leftrightarrow (A^{T})^{-1} = A \Leftrightarrow (A^{T})^{-1} = (A^{T})^{T}$ € AT is onthogonal € rows of AT form an orthonormal baris Columns of A form an orthonormal baris

 S_{\circ} (e) \Leftrightarrow (c) \sim 225