1. Perform one-time step for the following methods using h = 0.1:

$$\begin{cases} \frac{dx}{dt} = -tx^2\\ x(0) = 2 \end{cases}$$

- (a) Taylor Method of order 4
- (b) Runge-Kutta Method of order 4

```
(a) pg 277
         f^{(1)}(t_i, w_i) = -t * x^2
         f^{(1)}(t_i, w_i) = -0*2^2
         f^{(1)}(t_i, w_i) = 0
         f^{(2)}(t_i, w_i) = 2 * t^2 * x^3 - x^2
         f^{(2)}(t_i, w_i) = 2 * 0^2 * 2^3 - 2^2
         f^{(2)}(t_i, w_i) = -4
         f^{(3)}(t_i, w_i) = -6 * t^3 * x^4 + 6 * t * x^3
         f^{(3)}(t_i, w_i) = -6 * 0^3 * 2^4 + 6 * 0 * 2^3
         f^{(3)}(t_i, w_i) = 0
         f^{(4)}(t_i, w_i) = 24 * t^4 * x^5 - 36 * t^2 * x^4 + 6 * x^3
         f^{(4)}(t_i, w_i) = 24 * 0^4 * 2^5 - 36 * 0^2 * 2^4 + 6 * 2^3
         f^{(4)}(t_i, w_i) = -8
         T^{(4)}(t_i, w_i) = x + h^*f^{(1)}(t_i, w_i) + (h^2 / 2)^*f^{(2)}(t_i, w_i) + (h^3 / 6)^*f^{(3)}(t_i, w_i) + (h^4 / 24)^*f^{(4)}(t_i, w_i)
         T^{(4)}(t_i, w_i) = 2 + 0.1*0 + (0.1^2 / 2)*-4 + (0.1^3 / 6)*0 + (0.1^4 / 24)*-8
         T^{(4)}(t_i, w_i) = 1.9799
(b) pg 282
         k1 = h * f(t,w)
         k1 = 0.1 * f(0.0, 2.0)
         k1 = 0.0
         k2 = h * f((t + h/2.0), (w + k1/2.0))
         k2 = 0.1 * f((0.0 + 0.1/2.0), (2.0 + -0.0/2.0))
         k2 = -0.02
         k3 = h * f((t + h/2.0), (w + k2/2.0))
         k3 = 0.1 * f((0.0 + 0.1/2.0), (2.0 + -0.02/2.0))
         k3 = -0.01980
         k4 = h * f((t + h), (w + k3))
         k4 = 0.1 * f((0.0 + 0.1), (2.0 + -0.01980))
         -0.03921
         w = w + (k1 + (2.0 * k2) + (2.0 * k3) + k4)/6.0
         w = 2 + (-0.0 + (2.0 * -0.02) + (2.0 * -0.01980) + -0.03921)/6.0
```

$$w = 1.9802$$

2. Reduce this differential equation into a system of first order equations

$$\begin{cases} x''' = 2x' + \log x'' + \cos x \\ x(0) = 1, x'(0) = -3, x''(0) = 5 \end{cases}$$

Solution: Higher order ODEs video. Around 56 minutes in

Old Variable	New Variable	IV	DE
х	X ₁	1	$x_1' = x_2$
x'	X ₂	3	$x_2' = x_3$
x''	X ₃	5	$x_{3}' = 2x_{2} + \log x_{3} + \cos x_{1}$

$$x' = \begin{bmatrix} x_2 \\ x_3 \\ 2x_2 + \log x_3 + \cos x_1 \end{bmatrix}$$

$$x(0) = [1,3,5]^T$$

3. Given the following differential equations

$$\begin{cases} x''' = t + x + 2x' + 3x'' \\ x(1) = 3, x'(1) = -7, x''(1) = 4 \end{cases}$$

(a) Reduce the differential equation to first order system and perform one time step of Euler Method using h=0.1

Solution: Higher order ODEs video. Around 56 minutes in

Old Variable	New Variable	IV	DE
х	X ₁	3	$x_1' = x_2$
x'	\mathbf{x}_2	-7	$x_2' = x_3$
x"	\mathbf{x}_3	4	$x_3' = t + x_1 + 2x_2 + 3x_3$

 $x' = \begin{bmatrix} x_2 \\ x_3 \\ t + x_1 + 2x_2 + 3x_3 \end{bmatrix}$

$$x(1) = [3,-7,4]^{T}$$

$$w_{1} = w_{0} + hf(t,w)$$

$$w_{1} = w_{0} + hf(t,w)$$

$$w_{1} = 4 + (0.1 * (0.1 + 3 + (2*-7) + (3*4)))$$

$$w_{1} = 4.11$$

4. Perform one-time step of Forward Euler Method for the first order system of differential equation using h= 0.1

$$\begin{cases} x_1' = x_1^2 + e^t - t^2 \\ x_2' = x_2 - \cos t \\ x_1(0) = 0, x_2(1) = 0 \end{cases}$$

$$x'_{1} = x_{1}^{2} + e^{t} - t^{2}$$

$$w_{1} = w_{0} + hf(t, w)$$

$$w_{1} = 0 + (0.1)*f(0.1, 0)$$

$$w_{1} = 0 + (0.1)*(0 + e^{(0.1)} - (0.1)^{2})$$

$$w_{1} = 0.1095$$

$$x'_{3} = x_{2} - \cos(t)$$

$$w_{1} = 0 + (0.1)*f(0.1, 0)$$

$$w_{1} = 0 + (0.1)*(0 - \cos(0.1))$$

$$w_{1} = -0.09950$$

5. Let

$$A = \left[\begin{array}{ccc} 8 & 1 & 0 \\ 1 & 4 & -2 \\ 0 & -2 & 8 \end{array} \right]$$

- (a) Find $||A||_{\infty}$.
- (b) Find $\rho(A)$.
- (c) Find an eigenvector of A corresponding to the eigenvalue for which $|\lambda|$ = $\wp(A)$.

(d) Is matrix A symmetric? Is matrix A positive definite?

(a) Video "Review of Test 3"

Row
$$1 = |8| + |1| + |0| = 9$$

Row
$$2 = |1| + |4| + |-2| = 7$$

Row
$$3 = |0| + |-2| + |8| = 10$$

$$||A||_{\infty} = \max(9, 7, 10) = 10$$

$$\rho(A) = \max(\lambda_i)$$

Solve (c) first

$$\rho(A) = \max(3, 8, 9) = 9$$

(c)

Use characteristic polynomial > eigenvalues > eigenvectors

$$\rho(\lambda) = \det(A - \lambda I) = 0$$

det(

8	1	0
1	4	-2
0	-2	8

-λ(

1	0	0
0	1	0
0	0	1

) = 0

det(

8	1	0
1	4	-2
0	-2	8

-

λ	0	0
0	λ	0

0	0	λ

) = 0

det(

8 - λ	1	0
1	4 - λ	-2
0	-2	8 - λ

) = 0

 $-\lambda^3 + 20 \lambda^2 - 123 \lambda + 216 = 0$

 $\lambda = 3, 8, 9$ (Eigenvalues)

 $\lambda_1 = 3$

 $(A - \lambda I)x = 0$

(A - 3I)x = 0

8 - λ	1	0
1	4 - λ	-2
0	-2	8 - λ

5	1	0	X ₁	0
1	1	-2	X ₂	0
0	-2	5	x ₃	0

(d)
All eigenvalues are positive so the matrix is not symmetric but is positive definite.

6. Find the first two iterations of Jacobi method for the following linear systems using $x^{(0)} = 0$;

$$4x_1 + x_2 - x_3 + x_4 = -2$$

$$x_1 + 4x_2 - x_3 - x_4 = -1$$

$$-x_1 - x_2 + 5x_3 + x_4 = 0$$

$$x_1 - x_2 + x_3 + 3x_4 = 1$$

Solution: pg 456 $x^{(0)} = (0,0,0,0)$

X ⁽¹⁾ ₁		-x ⁽⁰⁾ ₂ /4	x ⁽⁰⁾ ₃ /4	-x ⁽⁰⁾ ₄ /4	-2/4
X ⁽¹⁾ ₂	-x ⁽⁰⁾ ₁ /4		x ⁽⁰⁾ ₃ /4	x ⁽⁰⁾ ₄ /4	-1/4
X ⁽¹⁾ ₃	x ⁽⁰⁾ ₁ /5	x ⁽⁰⁾ ₂ /5		-x ⁽⁰⁾ ₄ /5	0
X ⁽¹⁾ ₄	-x ⁽⁰⁾ ₁ /3	x ⁽⁰⁾ ₂ /3	-x ⁽⁰⁾ ₃ /3		1/3

$$x^{(1)} = (-1/2, -1/4, 0, 1/3)$$

X ⁽²⁾ ₁		-x ⁽¹⁾ ₂ /4	x ⁽¹⁾ ₃ /4	-x ⁽¹⁾ ₄ /4	-2/4
X ⁽²⁾ ₂	-x ⁽¹⁾ ₁ /4		x ⁽¹⁾ ₃ /4	x ⁽¹⁾ ₄ /4	-1/4
X ⁽²⁾ ₃	x ⁽¹⁾ ₁ /5	x ⁽¹⁾ ₂ /5		-x ⁽¹⁾ ₄ /5	0
X ⁽²⁾ ₄	-x ⁽¹⁾ ₁ /3	x ⁽¹⁾ ₂ /3	-x ⁽¹⁾ ₃ /3		1/3

X ⁽²⁾ ₁		-(-1/4)/4	0/4	-(1/3)/4	-2/4
X ⁽²⁾ ₂	-(-1/2)/4		0/4	(1/3)/4	-1/4
X ⁽²⁾ ₃	(-1/2)/5	(-1/4)/5		(1/3)/5	0
X ⁽²⁾ ₄	-(-1/2)/3	(-1/4)/3	-0/3		1/3

 $x^{(2)} = (-0.5208, -0.04166, -0.2166, 0.4166)$

7. Find the first two iterations of Gauss-Seidel for the following linear systems using $x^{(0)} = 0$;

$$4x_1 + x_2 - x_3 + x_4 = -2$$

$$x_1 + 4x_2 - x_3 - x_4 = -1$$

$$-x_1 - x_2 + 5x_3 + x_4 = 0$$

$$x_1 - x_2 + x_3 + 3x_4 = 1$$

$$4x_{1} + x_{2} - x_{3} + x_{4} = -2$$

$$x_{1}^{1} = (-2 - x_{2}^{0} + x_{3}^{0} - x_{4}^{0})/4$$

$$x_{1} + 4x_{2} - x_{3} - x_{4} = -1$$

$$x_{2}^{1} = (-1 - x_{1}^{1} + x_{3}^{0} + x_{4}^{0})/4$$

$$-x_{1} - x_{2} + 5x_{3} + x_{4} = 0$$

$$x_{3}^{1} = (x_{1}^{1} + x_{2}^{1} - x_{4}^{0})/5$$

$$x_{1} - x_{2} + x_{3} + 3x_{4} = 1$$

$$x_{4}^{1} = (1 - x_{1}^{1} + x_{2}^{1} - x_{3}^{1})/3$$

$$\begin{aligned} x_1^{(1)} &= (-2 - (-1) + (0) - (1))/4 = -1/2 \\ x_2^{-1} &= (-1 - (-1/2) + (0) + (1))/4 = -1/8 \\ x_3^{-1} &= ((-1/2) + (1/8) - (1))/5 = -1/8 \\ x_4^{-1} &= (1 - (-1/2) + (-1/8) - (-1/8))/3 = 1/2 \end{aligned}$$

$$\begin{aligned} x_1^{-2} &= (-2 - x_2^{-1} + x_3^{-1} - x_4^{-1})/4 \\ x_2^{-2} &= (-1 - x_1^{-2} + x_3^{-1} + x_4^{-1})/4 \\ x_3^{-2} &= (x_1^{-2} + x_2^{-2} - x_4^{-1})/5 \\ x_4^{-2} &= (1 - x_1^{-2} + x_2^{-2} - x_3^{-2})/3 \end{aligned}$$

$$\begin{aligned} x_1^{-2} &= (-2 - (-1/8) + (-1/8) - (1/2))/4 = -5/8 \\ x_2^{-2} &= (-1 - (-5/8) + (-1/8) + (1/2))/4 = 0 \\ x_3^{-2} &= ((-5/8) + (0) - (1/2))/5 = -9/40 \\ x_4^{-2} &= (1 - (-5/8) + (0) - (-9/40))/3 = 37/60 \end{aligned}$$

$$\begin{aligned} x_{(1)} &= (-0.5, -0.125, -0.125, 0.5) \\ x_{(2)} &= (-0.625, 0, -0.225, 0.6166) \end{aligned}$$

8. Compute the eigenvalues and associated eigenvectors of the following matrix.

$$A = \left[\begin{array}{ccc} 3 & 2 & -1 \\ 1 & -2 & 3 \\ 2 & 0 & 4 \end{array} \right]$$

Det(

3 - λ	2	-1
1	- λ - 2	3
2	0	4-λ

$$= -\lambda^3 + 5\lambda^2 + 2\lambda - 24$$

$$\lambda^{1} = 4$$
$$\lambda^{2} = 3$$
$$\lambda^{3} = -2$$

$$\lambda^1 = 4$$

3 - 4	2	-1
1	-4-2	3
2	0	4-4

=

-1	2	-1
1	-6	3
2	0	0

$$\lambda^2 = 3$$

3 - 3	2	-1
1	-3-2	3
2	0	4-3

=

0	2	-1
1	-5	3
2	0	1

$$\lambda^{3} = -2$$

3 + 2	2	-1
1	2-2	3
2	0	4+2

=

5	2	-1
1	0	3

9. Find the l₂ norm for the matrix below.

$$B = \left[\begin{array}{rrr} \frac{1}{2} & 0 & 0 \\ -1 & \frac{1}{2} & 4 \\ 2 & 2 & -\frac{1}{3} \end{array} \right]$$

(a) maximum eigenvalue of B^tB (pg 453 example 3).

$$B^*B^T =$$

1/4	-1/2	1
-1/2	69/4	-7/3
1	-7/3	73/9

1/4 - λ	-1/2	1
-1/2	69/4 - λ	-7/3
1	-7/3	73/9 - λ

$$-\lambda^3 + (461/18)^*\lambda^2 - (2233/16)^*\lambda + (2401/144)$$

$$\lambda_1 = 17.8408$$

$$\lambda_2 = 0.1221$$

$$\lambda_3 = 7.6480$$

$$I_2 \text{ norm} = \sqrt{max(\lambda)} = \sqrt{17.8408} = 4.2238$$

10. The following linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ have \mathbf{x} as the actual solution and $\overline{\mathbf{x}}$ as an approximate solution. Compute $||\mathbf{x} - \overline{\mathbf{x}}||_{\infty}$ and $||A\overline{\mathbf{x}} - b||_{\infty}$.

$$0.04x_1 + 0.01x_2 - 0.01x_3 = 0.0478$$

 $0.4x_1 + 0.1x_2 - 0.2x_3 = 0.413$
 $x_1 + 2x_2 + 3x_3 = 0.14$

where

$$x = (1.81, -1.81, 0.65)^{t}$$

 $\overline{x} = (2, -2, 1)^{t}$

(pg 448 Example 7,8d)

$$||x_1 - \overline{x}_1|| = ||1.81 - 2||$$

 $||x_1 - \overline{x}_1|| = ||-0.19||$

$$||\mathbf{x}_1 - \overline{\mathbf{x}}_1|| = 0.19$$

$$||\mathbf{x}_2 - \overline{\mathbf{x}}_2|| = ||-1.81 + 2||$$

$$||x_1 - \overline{x}_1|| = ||0.19||$$

$$||x_1 - \overline{x}_1|| = 0.19$$

$$||x_3 - \overline{x}_3|| = ||0.65 - 1||$$

$$||x_1 - \overline{x}_1|| = ||-0.35||$$

$$||x_1 - \overline{x}_1|| = 0.35$$

$$max(0.19, 0.19, 0.35) = 0.35$$

A =

0.04	0.01	-0.01
0.4	0.1	-0.2
1	2	3

⊼=

2	
-2	
1	

b =

0.0478	
0.413	
0.14	

0.05- 0.0478 = 0.0022 0.4 - 0.413 = -0.013 1 - 0.14 = 0.86

max(|0.022|, |-0.013|, |0.86|) = 0.86
