Operational Reactor Safety 22.091/22.903

Professor Andrew C. Kadak Professor of the Practice

Safety Systems and Functions Lecture 9

Topics to be Covered

- Fundamentals of Safety
 - Introduction to Safety Analysis
 - Defense in Depth
 - Design Basis Accidents
 - Beyond Design Basis Accidents
 - Safety Systems
 - Emergency Safeguards Systems
 - Containment

Key Safety Measures

- Prevention
 - Proper Design and Training
- Protection
 - Monitoring and Control Systems
 - Active shutdown and cooling systems
- Mitigation limit consequences
 - Engineered Safety Systems

Energy Sources

- Stored Energy in Fuel, Steam and Structures
- Energy from nuclear transients
- Decay Heat
- Chemical Reactions
- External events seismic, tornadoes, hurricanes, etc.

Mission - Remove Heat

- Prevent fuel cladding failure or core melting
 - Install systems to do this under many transient and accident conditions
- If unsuccessful, keep radioactive materials in the containment
 - Assure containment function is maintained and not breached by overpressure or missiles
- If unsuccessful, limit releases
- If unsuccessful, implement emergency plan

Design Basis Accidents

- Overcooling
- Undercooling
- Overfilling
- Loss of Flow
- Loss of Coolant
- Reactivity
- Anticipated Transients without Scram
- Spent fuel or handling events
- External Events

Energetic Reactions in Reactors

TABLE 13-1
Proportion of Potentially Energetic Chemical Reactions of Interest in Nuclear Reactor Safety

Reactant	Temperature	Oxide(s) formed	Heat of reacti	Hydrogen produced with	
			Oxygen (kcal/kg R)	Water (kcal/kg R)	water O/kg R)
·	1852 [§]	ZrO ₃	-2883	-1560	490
Zr (liq.)	1370	FeO, Cr2O3, NiO	-1330 to -1430	-144 to -253	440
SS (liq.) Na (solid)	25	Na ₂ O	-2162	-	-
	25	NaOH	_	-1466	490
Ne (solid)	1000	CO	-2267	+2700	1870
C (solid)		CO,	-7867	+2067	3740
C (solid) H ₂ (gas)	1000	H,O	-29,560		- ,

[†]Adapted from T. J. Thompson and J. G. Beckerley, eds., The Technology of Nuclear Reactor Safety, Vol. 1, by permission of The MIT Press, Cambridge, Mass. Copyright © 1964 by the Massachusetts Institute of Technology.

*Positive values indicate energy that must be added to initiate an endoergic reaction; negative values indicate energy released by excergic reactions.

Melting point.

Courtesy of MIT Press. Used with permission.

Pressurized Water Reactor Schematic

Massachusetts Institute of Technology

Prof. Andrew C. Kadak, 2008

Department of Nuclear Science & Engineering

Page 8

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Specific Design Basis Accidents

- Steam line break
- Loss of Flow
- Loss of heat sink
- Steam generator tube(s) rupture
- Control rod ejection or rapid withdrawal
- Anticipated Transients without Scram
- Pressurized thermal shock
- Loss of coolant
 - Double ended guillotine break
 - Small Break

Typical PWR

FIGURE 14-2

Engineered safety systems for a PWR. (From W. B. Cottrell, "The ECCS Rule-Making Hearing," Nuclear Safety, vol. 15, no. 1, Jan.-Feb. 1974.)

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Severe Accidents

- Beyond Design Basis
 - Successive failures of the engineering safety systems
 - Looking for cliff edge effects that may need to be addressed if consequences are severe and scenario is plausible.
 - Core Melt scenarios vaporization
 - Steam explosion
 - Hydrogen explosion
 - Fission product inventory for release

Fission Products for Release

TABLE 13-2

Estimate of Fission Products Available for Release from an LWR Meltdown Accident †

		Cumulative release percentage				
Fission products	Gap	Meltdown	Vaporization [‡]	Steam Explosion		
Noble gases (Kr, Xe)	3.0	90	100	90 (X)(Y)		
Halogens (I, Br)	1.7	90	100	90 $(X)(Y)$		
Alkali metals (Cs, Rb)	5	81	100	-		
Te, Se, Rb	10-2	15	100	60(X)(Y)		
Alkaline earths (Sr, Ba)	10-4	10	11			
Noble metals (Ru, Mo)		3	8	90 (X)(Y)		
Rare earths (La, Sm, Pu) & refractories (Zr, Nb)	_	0.3	1.3	<u>'</u>		

[†]Adapted from WASH-1400 (1975).

 ${}^{\S}X$ = fraction of core involved; Y = fraction of inventory remaining for release.

Massachusetts Institute of Technology

Prof. Andrew C. Kadak, 2008

Department of Nuclear Science & Engineering

Page 12

^{*}Exponential loss over 2 h with a half-time of 30 min. If a steam explosion confirst, only the core fraction not involved in the explosion can experience vaporization.

Loss of Coolant Accident Sequence

Department of Nuclear Science & Engineering Page 13

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Engineered Safety Systems

Conceptual engineered safety systems for LWRs. (Adapted from WASH-1400, 1975.)

Massachusetts Institute of Technology
Department of Nuclear Science & Engineering

PWR Engineered Safety Systems

FIGURE 14-2

Engineered safety systems for a PWR. (From W. B. Cottrell, "The ECCS Rule-Making Hearing," Nuclear Safety, vol. 15, no. 1, Jan.-Feb. 1974.)

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

PWR Containment

FIGURE 14-4
Representative PWR containment. (From NUREG-1150, 1989.)

Massachusetts Institute of Technology

Department of Nuclear Science & Engineering

Containment Pressure Response

FIGURE 14-5
Containment pressure response for a PWR to a design-bases LOCA with assumed safety system failures.
(Adapted from WASH-1400, 1975.)

Massachusetts Institute of Technology

Department of Nuclear Science & Engineering

BWR Early Engineered Safety Systems

FIGURE 14-6

Engineered safety systems for an early BWR. (From W. B. Cottrell, "The ECCS Rule-Making Hearing," Nuclear Safety, vol. 15, no. 1, Jan.-Feb. 1974.)

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Early BWR Containment Design

Massachusetts Institute of Technology

Department of Nuclear Science & Engineering

Later Version of BWR Containment

Containment Leakage

- Function of event and chemistry in building
- Driven by containment pressure
- Source terms
 - Noble gases not captured
 - Elemental iodine reactive and plated out
 - Organic iodides not chemically reactive
 - Particulates and aerosols heavy settle out
- What is not chemically reacted in containment, plated out or settled out is available for release.

Reading and Homework Assignment

- 1. Read Knief Chapter 13
- 2. Problems: 13.3, 13.5, 13.8, 13.12 Extra: 13.11

MIT OpenCourseWare http://ocw.mit.edu

22.091 Nuclear Reactor Safety Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.