

Chapter 03. 쉽게 배우는 경사 하강 학습법

STEP1. 경사 하강 학습법

최적화 이론

손실 함수를 최소로 하는 입력 값(최적 값)을 찾아내는 연구 전쟁 물자의 분배를 연구하면서 발전

무차별 대입법 Brute-Force

- 가능한 모든 수를 대입해 보는 방법
- 가장 단순한 방법으로 함수를 알 수 있음
- 다음과 같은 문제로 최적화에 이용할 수 없다.
 - x*(최적값)이 존재하는 범위를 알아야 함
 - x^* 를 정확히 찾기 위해 무한히 촘촘하게 조사해야 함
 - f(x)의 계산 복잡도가 매우 높음

적게 대입해 보고 답을 찾을 수는 없을까?

경사 하강법 Gradient Descent

경사를 따라 여러 번의 스텝을 통해 최적점으로 다가간다.

경사는 기울기(미분, Gradient)를 이용해 계산한다.

학습률의 선택

학습률(Learning Rate) α 에 비례하여 이동한다. 적절한 학습률을 선택하는 것은 매우 중요하다.

볼록 함수 Convex Function

2-D Convex function

볼록 함수(Convex function)는 어디서 시작하더라도 경사 하강법으로 최적 값에 도달할 수 있다.

비볼록 함수 Non-convex Function

1-D Non-convex function

2-D Non-convex function

비볼록 함수(Non-convex function)는 시작 위치에 따라 다른 최적 값을 찾는다.

즉, 지엽 최적값(Local Minimum)에 빠질 위험이 있다.

