Công thức xét tính chẵn, lẻ của hàm số

I. Lí thuyết tổng hợp.

- Tập đối xứng: $\forall x \in D$ thì $-x \in D$ thì ta gọi D là tập đối xứng.
- Khái niệm: Cho hàm số y = f(x) có tập xác định D với D là tập đối xứng.
- + Hàm số y = f(x) được gọi là hàm số chẵn nếu với mọi x thuộc D thì f(x) = f(-x)
- + Hàm số f được gọi là hàm số lẻ nếu với mọi x thuộc D thì f(x) = -f(-x)
- Chú ý: Một hàm số có thể không chẵn cũng không lẻ.
- Đồ thị của hàm số chẵn, lẻ:
- + Đồ thị của hàm số chẵn nhận trục tung làm trục đối xứng.
- + Đồ thị của hàm số lẻ nhận gốc toạ độ làm tâm đối xứng.

II. Các công thức.

- Cho hàm số y = f(x) có tập xác định D là tập đối xứng:

+ Hàm số chẵn
$$\Leftrightarrow$$

$$\begin{cases} \forall x \in D \Rightarrow -x \in D \\ f(x) = f(-x) \end{cases}$$

+ Hàm số lẻ
$$\Leftrightarrow$$

$$\begin{cases} \forall x \in D \Longrightarrow -x \in D \\ f(x) = -f(-x) \end{cases}$$

- Phương pháp xét tính chẵn lẻ của hàm số: Cho hàm số y = f(x):

Bước 1: Tìm tập xác định D của hàm số.

Bước 2: Kiểm tra xem D có phải là tập đối xứng không:

Nếu $\exists x_0 \in D \Rightarrow -x_0 \notin D \Rightarrow D$ không phải tập đối xứng \Rightarrow Hàm số không chẵn cũng không lẻ.

Nếu $\forall x_0 \in D \Rightarrow -x_0 \in D \Rightarrow D$ là tập đối xứng \Rightarrow Chuyển sang bước tiếp theo.

Bước 3: Xác định $f(x_0)$ và $f(-x_0)$ và so sánh:

Nếu $f(x_0) = f(-x_0) \Rightarrow Hàm số là chẵn.$

Nếu $f(x_0) = -f(-x_0) \Rightarrow Hàm số là lẻ.$

Nếu $\exists x_0 \in D \Longrightarrow f(-x_0) \neq \pm f(x_0) \Longrightarrow Hàm số không chẵn cũng không lẻ$

III. Ví dụ minh họa.

Bài 1: Xét tính chẵn, lẻ của hàm số: $y = f(x) = \sqrt[3]{x} + x^3$.

Lời giải:

Hàm số $y = f(x) = \sqrt[3]{x} + x^3$ xác định trên \mathbb{R}

 \Rightarrow Tập xác định D = \mathbb{R}

Ta có: $\forall x \in D \Rightarrow -x \in D$

Xét:

$$f(x) = \sqrt[3]{x} + x^3$$

$$f(-x) = \sqrt[3]{(-x)} + (-x)^3 = \sqrt[3]{(-1)x} + (-1)^3 \cdot x^3 = -\sqrt[3]{x} - x^3 = -\left(\sqrt[3]{x} + x^3\right)$$

$$\Rightarrow f(-x) = -f(x)$$

$$\Rightarrow$$
 Hàm số $y = f(x) = \sqrt[3]{x} + x^3$ là hàm số lẻ.

Bài 2: Xét tính chẵn, lẻ của hàm số: $y = f(x) = x^4 + \sqrt{x^2 + 4}$

Lời giải:

Ta có: $\forall x \in \mathbb{R} \Rightarrow x^2 + 4 > 0$

$$\Rightarrow$$
 Tập xác định của hàm số $y = f(x) = x^4 + \sqrt{x^2 + 4}$ là $D = \mathbb{R}$

$$\Rightarrow \forall x \in D \Rightarrow -x \in D$$

Xét:

$$f(x) = x^4 + \sqrt{x^2 + 4}$$

$$f(-x) = (-x)^4 + \sqrt{(-x)^2 + 4} = (-1)^4 \cdot x^4 + \sqrt{(-1)^2 x^2 + 4} = x^4 + \sqrt{x^2 + 4}$$

$$\Rightarrow f(-x) = f(x)$$

$$\Rightarrow$$
 Hàm số $y = f(x) = x^4 + \sqrt{x^2 + 4} \,$ là hàm số chẵn.

Bài 3: Xét tính chẵn, lẻ của hàm số:
$$y = f(x) = \sqrt{2-x} + \frac{1}{\sqrt{2-x}}$$

Lời giải:

Điều kiện xác định của hàm số: $y = f(x) = \sqrt{2-x} + \frac{1}{\sqrt{2-x}}$ là: $2-x > 0 \Leftrightarrow x < 2$

 \Rightarrow Tập xác định $D = (-\infty; 2)$

Với $x_0 = -3 \in D$ nhưng $-x_0 = 3 \notin D$

 \Rightarrow Hàm số $y = f(x) = \sqrt{2-x} + \frac{1}{\sqrt{2-x}}$ không chẵn cũng không lẻ.

IV. Bài tập tự luyện.

Bài 1: Xét tính chẵn, lẻ của các hàm số:

a)
$$f(x) = \sqrt{x-3} + \sqrt{x+3}$$

b)
$$f(x) = \frac{x^2}{4} - \sqrt{x^4 + 2}$$

Bài 2: Tìm tham số m để hàm số $f(x) = \frac{x^2(x^2-2) + (2m^2-2)x}{\sqrt{x^2+1} - m}$ là hàm số chẵn.