Fondamenti di Elettronica AA 2020-2021 3a esercitazione SPICE : amplificatore differenziale CMOS, current mirror, amplificatore operazionale; circuiti digitali CMOS – MODIFICATO

Esercizio 1

Il circuito in figura rappresenta un amplificatore operazionale CMOS a due stadi. L'uscita singleended del primo stadio è rappresentata dalla tensione nel punto D2. L'uscita del secondo stadio è la tensione v_o ai drain di Q6-Q7.

La corrente I_{REF} = 90 μ A; V_{Tn} = 0.7 V, k_n' = 160 μ A/V², V_{An} = V_{Ap} = 10V, V_{Tp} =-0.8 V, k_p' =40 μ A/V², V_{DD} = V_{SS} = 2.5V. Le dimensioni dei transistor sono specificate nella Tabella

Transistore	Q_1	Q_2	Q_3	Q_4	Q_5	Q_6	Q ₇	Q_8
W/L	20/0.8	20/0.8	5/0.8	5/0.8	40/0.8	10/0.8	40/0.8	40/0.8

- 1.1 Calcolare il punto di polarizzazione di ogni transistor: IDQ, VGSQ, VDSQ, trascurando l'effetto di modulazione della lunghezza di canale
- 1.2 Calcolare g_m e r_o per ogni transistor
- 1.3 Calcolare il guadagno complessivo dell'amplificatore
- 1.4 Per quale valore della tensione *di uscita* Q7 non è più in saturazione ? per quale valore di tensione di uscita Q6 non è più in saturazione ?
- 1.5 Simulare con SPICE il comportamento del circuito. Applicare un segnale differenziale puro v_{id} di ampiezza crescente e tracciare il grafico di v(D2) e v_o in funzione di v_{id} con v_{id} tra -100 mV e 100 mV
- 1.6 Simulare con SPICE un segnale di modo comune v_{icm} di ampiezza crescente e tracciare il grafico di v(D2) e v_o in funzione di v_{id} con v_{id} tra -1V e 1V
- 1.7 Valutare il guadagno differenziale e il guadagno di modo comune dell'amplificatore con SPICE

1.7 Applicare un segnale differenziale sinusoidale di ampiezza vid = 1 mV, frequenza 1 kHz e graficare il segnale di uscita risultante

Esercizio 2

Il circuito in figura genera la somma di A e B e il corrispondente riporto (entrambi negati). Sia V_{Tn} = 0.7 V, k_n' = 160 μ A/V², V_{An} = 10V, V_{Tp} =-0.7 V, k_p' =40 μ A/V². La tensione di alimentazione V_{DD} è di 2.5 V.

- 2.1 Identificare somma e riporto. Sia L = $0.8~\mu m$ per tutti i transistor. Dimensionare W per tutti i transistor in modo che nel caso peggiore pull-up e pull-down abbiano la stessa conducibilità (condizione di bilanciamento). Simulare con SPICE la caratteristica DC di trasferimento con B = 0~V, A da 0V a VDD, out=somma negata
- 2.2 Applicare all'uscita della somma un condensatore da 100 fF, e calcolare la potenza dissipata in uscita nel caso B=0, con A che commuta con una frequenza di clock pari al proprio numero di matricola
- 2.3 Mantenere B=0 e simulare con SPICE il transitorio di uscita della somma negata con A che commuta tra 0 e 1 con e senza carico capacitivo; utilizzare una frequenza del segnale di A e della scala dei tempi del grafico che metta in evidenza i tempi di salita e di discesa del segnale
- 2.4 Ripetere il punto 2.3 dimensionando tutti i transistor con W=6.4 μ m, L=0.8 μ m. Cosa cambia ? Perchè?