№ 13 «Визначення питомого заряду електрона за допомогою магнетрона»

Дата виконання: Допуск	Розрахунковий лист
Відмітка про виконання:	до лабораторної
Відмітка про оформлення: Відмітка про захист:	роботи № 13
ыдмітка про захист	(v.2.01)

«Визначення питомого заряду електрона за допомогою магнетрона»

1 Експериментально визначити питомий заряд електрона.

Виконання роботи

1 Збираємо (перевіряємо) електричну схему експериментальної установки. З дозволу викладача включаємо джерела живлення. Даємо декілька хвилин на прогрівання приладів. Встановлюємо розмір анодної напруги

$$U_A = ___106,77______$$
 (вказується викладачем).

2 Поступово збільшуючи струм соленоїда I_c , через кожні $0.05\,A$ вимірюємо значення анодного струму I_A . Результати вимірювань записуємо до таблиці 2.1.

Таблиця 2.1

 I_A , мA

0,26

0.81

U_{A} = 106,77 , B						
I_A , MA	1,32	1,33	1,36	1,30	1,26	
I_{c} , A	0,00	0,05	0,10	0,15	0,22	
I_A , MA	1,24	1,25	1,20	1,07	0,97	
$I_{\rm c}, A$	0,26	0,30	0,36	0,42	0,46	
I_A , MA	0,82	0,69	0,59	0,43	0,36	
$I_{\rm c}, A$	0,55	0,58	0,66	0,67	0,75	

0,11

0.91

0,07

0.96

0,05

1.01

0,17

0.82

4 За графіком визначаємо $I_{\kappa p}$, та її похибку $\Delta I_{\kappa p}$ (див. рис. 2.4)

№ 13 «Визначення питомого заряду електрона за допомогою магнетрона»

$$I_{\text{kp}} = (0.65+0.70)/2 = 0.675 \text{ A}$$

 $\triangle I_{\text{kp}} = (0.70-0.65)/2 = 0.025 \text{ A}$

Графік залежності la = f (lc)

5 Обчислюємо е/т:

$$<\frac{e}{m}> = \left(\frac{8}{\left(\mu \, 0*n*ra\left(1 - \frac{r \, \kappa^2}{r \, a^2}\right)\right)^2}\right) * \left(\frac{Ua}{I \, \kappa \, p^2}\right) = 97444709364,26\frac{Kn}{\kappa 2}$$

При цьому враховуємо, що

- діаметр анода лампи $d_A = 1,2 \cdot 10^{-2} M$;
- діаметр катода лампи $d_K = 2,6 \cdot 10^{-3} M$;

³ За даними експерименту будуємо графік $I_A = f(I_c)$.

густина витків соленоїда $n = 2,3 \cdot 10^4 \text{ м}^{-1}$; 6 Обчислюємо похибку Де /т:

$$\triangle(e/m) = \langle \frac{e}{m} \rangle \sqrt{\left(\frac{delta(Ua)}{Ua}\right)^2 + \left(\frac{2*delta(I \kappa p)}{I \kappa p}\right)^2} = 38977984412 \frac{Kn}{\kappa z};$$

В цій формулі

$$\triangle U_A = 0,1 \text{ B}$$

похибка вимірювання напруги вольтметром (похибка приладу). 6 Остаточний результат записуємо у вигляді $e/m = \langle e/m \rangle \pm \triangle(e/m) = 97444709364 \pm 38977984412 \frac{K_{\Lambda}}{...};$

№ 13 «Визначення питомого заряду електрона за допомогою магнетрона»

висновки

Знайдено питомий заряд електрона. Він дорівнює

$$e/m = \langle e/m \rangle \pm \triangle (e/m) = 97444709364 \pm 38977984412 \frac{K_{\Lambda}}{\kappa c};$$

3 вимірів інших дослідників (таблиці фізичних величин) відомі значення заряду електрона та його маса:

$$e = 1,60 \cdot 10^{-19} \text{ Kл}, \quad m = 9,11 \cdot 10^{-31} \text{ кг}.$$

Звідси знаходимо, що

$$e/m = 1,76 \cdot 10^{11} \text{ Kл/кг}$$

Як бачимо, результати вимірів, що проведені в лабораторній роботі з точністю до похибки вимірів співпадають з результатами вимірів інших дослідників.

