Описание лабораторной работы №1

«Оптимальное управление процессом нагрева стержня»

однородный стержень $0 \le s \le l$, левый конец s = 0теплоизолирован, на правом конце s = l происходит теплообмен с внешней средой, и кроме того, в стержне имеются источники (или стоки) тепла. Через x = x(s,t) обозначим температуру стержня в точке *s* в момент *t*. Пусть $x(s, 0) = \varphi(s), 0 \le s \le l$ – распределение температуры в стержне в начальный момент времени t=0. Требуется, управляя температурой внешней среды и плотностью источников тепла в стержне, к заданному моменту T > 0 распределение температуры в стержне сделать как можно ближе к заданному распределению y(s), $0 \le s \le l$.

Математическая формулировка: требуется минимизировать функционал

$$J(u) = \int_{0}^{l} |x(s, T, u) - y(s)|^{2} ds$$

при условии, что x = x(s, t, u) является решением краевой задачи

$$x_t = a^2 x_{ss} + f(s, t),$$
 $(s, t) \in Q = \{0 < s < l, 0 < t \le T\},$

$$x_s|_{s=0} = 0, \qquad 0 < t \le T,$$

$$|x_s|_{s=l} = \nu[p(t) - x(l,t)], \quad 0 < t \le T,$$

$$x|_{t=0} = \varphi(s), \qquad 0 \le s \le l$$

 $x_s|_{s=0}=0, \quad 0 < t \leq T,$ $x_s|_{s=l}=\nu[p(t)-x(l,t)], \quad 0 < t \leq T,$ $x|_{t=0}=\varphi(s), \quad 0 \leq s \leq l,$ где a^2,l,ν,T — заданные положительные величины (определяются студентом самостоятельно); p(t) – температура внешней среды, f(s,t) – плотность источников тепла; предполагается, что u = (p(t), f(s, t)) – управление – принадлежит множеству U, состоящему из пар (p(t), f(s, t)) таких, что

$$p = p(t) \in L_2[0,T], p_{min} \le p(t) \le p_{max}$$
 п. в. на $[0,T]$;

$$f = f(s,t) \in L_2(Q), \iint\limits_Q |f(s,t)|^2 ds dt \le R^2,$$

где $p_{min} < p_{max}, \ R > 0$ — заданные числа; $\varphi(s), y(s) \in L_2[0,l]$ (определяются студентом самостоятельно).

Обозначим $H = L_2[0,T] \times L_2(Q)$ – гильбертово пространство пар u = (p(t),f(s,t))со скалярным произведением

$$\langle u_1, u_2 \rangle_H = \int_0^T p_1(t) p_2(t) dt + \iint_Q f_1(s, t) f_2(s, t) ds dt$$

и с нормой $\|u\|_H = (\langle u, u \rangle_H)^{1/2} = (\|p\|_{L_2}^2 + \|f\|_{L_2}^2)^{1/2}.$

Рассматриваемый функционал дифференцируем в Н и его градиент имеет вид $I'(u) = (a^2 \nu \psi(l, t, u), \psi(s, t, u)) \in H$

причем первая компонента пары является «частной» производной функционала по переменной p, вторая компонента — по переменной f, где $\psi(s,t,u) = \psi(s,t)$ — обобщенное решение следующей вспомогательной краевой задачи:

$$\begin{split} & \psi_t = -a^2 \psi_{ss}, (s,t) \in Q, \\ & \psi_s|_{s=0} = 0, \psi_s|_{s=l} = -\nu \psi(l,t), 0 < t < T, \\ & \psi|_{t=T} = 2 \big(x(s,T,u) - y(s) \big), 0 \le s \le l. \end{split}$$

Для получения градиента функционала при фиксированном $u \in H$ нужно решить две краевые задачи: сначала из основной краевой задачи надо определить функцию x(s,t,u), затем, подставив получившееся x(s,T,u) во вспомогательную краевую задачу, найти $\psi(s,t,u)$ и, наконец, полученное $\psi(s,t,u)$ подставить в формулу градиента.

Для численного решения задачи могут быть использованы методы проекции градиента и условного градиента (см. вариант индивидуального задания).

а) <u>Метод проекции градиента</u>: $\{u_k = (p_k(t), f_k(s, t))\}$

$$\begin{split} p_{k+1}(t) &= \\ & \left\{ p_k(t) - \alpha_k a^2 v \psi(l,t,u_k) \text{ при } p_{min} \leq p_k(t) - \alpha_k a^2 v \psi(l,t,u_k) \leq p_{max}, \\ & p_{min} \text{ при } p_k(t) - \alpha_k a^2 v \psi(l,t,u_k) < p_{min}, \\ & p_{max} \text{ при } p_k(t) - \alpha_k a^2 v \psi(l,t,u_k) > p_{max}; \\ f_{k+1}(s,t) &= \\ & \left\{ f_k(s,t) - \alpha_k \psi(s,t,u_k) \text{ при } I = \iint_Q |f_k(s,t) - \alpha_k \psi(s,t,u_k)|^2 ds dt \leq R^2, \\ &= \begin{cases} R \Big(f_k(s,t) - \alpha_k \psi(s,t,u_k) \Big) \\ \Big(\iint_Q |f_k(s,t) - \alpha_k \psi(s,t,u_k)|^2 ds dt \Big)^{1/2} \text{ при } I > R^2. \end{cases} \end{split}$$

Выбор параметра α_k можно проводить с помощью одного из описанных в методе проекции градиента приемов (см. вариант индивидуального задания):

1) α_k выбирается из условия

$$f_k(\alpha_k) = \inf_{\alpha \ge 0} f_k(\alpha), \qquad f_k(\alpha) = J\left(P_U(u_k - \alpha J'(u_k))\right)$$

- $f_k(\alpha_k) = inf_{\alpha \geq 0} f_k(\alpha), \qquad f_k(\alpha) = J\left(P_U\big(u_k \alpha J'(u_k)\big)\right);$ 2) полагают $\alpha_k = \alpha > 0$, затем проверяют условие монотонности: $J(u_{k+1}) < J(u_k)$, и при необходимости дробят величину α , добиваясь выполнения условия монотонности;
- 3) если $J(u) \in C^{1,1}(H)$ и константа Липшица L для градиента известна (см. лекцию 6), то величину α_k можно взять любое число, удовлетворяющее условиям

$$0<\varepsilon_0\leq\alpha_k\leq{}^2/_{(L+2\varepsilon)'}$$

где ε , ε_0 — положительные числа, являющиеся параметрами метода;

4) возможен выбор α_k из условия

$$J(u_k) - J\left(P_U(u_k - \alpha_k J'(u_k))\right) \ge \varepsilon \|u_k - P_U(u_k - \alpha_k J'(u_k))\|^2, \varepsilon > 0$$

(для определения такого α_k можно задать $\alpha_k = \alpha$ и затем дробить α до тех пор, пока не выполнится указанное неравенство);

5) возможно априорное задание величины α_k из условий

$$\alpha_k > 0, k = 0, 1, \dots, \sum_{k=0}^{\infty} \alpha_k = \infty, \quad \sum_{k=0}^{\infty} \alpha_k^2 < \infty.$$

б) Метод условного градиента:
$$\{u_k = (p_k(t), f_k(s, t))\}\$$
 $p_{k+1}(t) = p_k(t) + \alpha_k (\bar{p}_k(t) - p_k(t)), 0 \le t \le T,$ $f_{k+1}(s,t) = f_k(s,t) + \alpha_k (\bar{f}_k(s,t) - f_k(s,t)), (s,t) \in Q,$

где

$$\bar{p}_k(t) = \begin{cases} p_{min} \text{ при } \psi(l,t,u_k) \geq 0, \\ p_{max} \text{ при } \psi(l,t,u_k) < 0, \end{cases} \\ \bar{f}_k(s,t) = \frac{-R\psi(s,t,u_k)}{\left(\iint_Q |\psi(s,t,u_k)|^2 ds dt\right)^{1/2}},$$

а параметр α_k , $0 \le \alpha_k \le 1$, может быть выбран одним из указанных в методе условного градиента приемов (см. вариант индивидуального задания):

1) α_k выбирается из условия

$$f_k(\alpha_k) = \inf_{0 \le \alpha \le 1} f_k(\alpha) = f_{k_*}, f_k(\alpha) = J(u_k + \alpha(\bar{u}_k - u_k)).$$

В тех случаях, когда точное определение величины α_k из этого условия затруднительно, то можно пользоваться условием

$$f_k(\alpha_k) \le f_{k_*} + \delta_k, \delta_k \ge 0, \sum_{k=0}^{\infty} \delta_k < \infty,$$

$$f_k(\alpha_k) \le (1 - \lambda_k) f_k(0) + \lambda_k f_{k_*}, 0 < \bar{\lambda} \le \lambda_k \le 1,$$

величины δ_k , λ_k здесь характеризуют погрешность выполнения условия 1).

- 2) Можно задать $\alpha_k = 1$, проверить условие монотонности: $J(u_{k+1}) < J(u_k)$, а затем при необходимости дробить α_k до тех пор, пока не выполнится условие монотонности.
- 3) Если $J(u) \in C^{1,1}(U)$ и константа Липшица L для J'(u) известна (см. лекцию 6), то возможен выбор α_k из условия

$$\alpha_k = \min\{1, \rho_k | \langle J'(u_k), \bar{u}_k - u_k \rangle | \cdot \| \bar{u}_k - u_k \|^{-2} \},$$
 где $0 < \varepsilon_0 \le \rho_k \le \frac{2}{(L+2\varepsilon)}$, ε , ε_0 –параметры метода, $\varepsilon > 0$.

4) Можно принять $\alpha_k = \lambda^{i_0}$, где i_0 — минимальный среди номеров $i \ge 0$, удовлетворяющих условию

$$J(u_k) - J\left(u_k + \lambda^i(\bar{u}_k - u_k)\right) \ge \lambda^i \varepsilon |\langle J'(u_k), \bar{u}_k - u_k \rangle|,$$

где λ , ε – параметры метода, $0 < \lambda$; $\varepsilon < 1$.

5) Возможно априорное задание величины α_k из условий

$$0 \le \alpha_k \le 1, k = 0, 1, \dots, \lim_{k \to \infty} \alpha_k = 0, \quad \sum_{k=0}^{\infty} \alpha_k = +\infty.$$

Последовательность $\{u_k\}$, построенная методом проекции градиента или методом условного градиента, является минимизирующей для рассматриваемой задачи и слабо в H сходится к U_* .

При численной реализации пользоваться разностными аналогами этих методов: встречающиеся интегралы вычисляются с помощью формул численного интегрирования (например, формулы прямоугольников или трапеций), а при решении краевых задач пользоваться неявной разностной схемой в сочетании с прогонкой.

Возможные критерии окончания:
$$||u_k - u_{k+1}|| < \varepsilon$$
, $|J(u_k) - J(u_{k+1})| < \delta$, $||J'(u_k)|| \le \gamma$.

Реализовать оптимальное управление в задаче по функции, указанной в варианте индивидуального задания, соответствующим методом минимизации с различными способами выбора шага спуска. Сравнить способы выбора шага спуска по числу итераций с различными вариантами входных данных. Объяснить полученные результаты.

Варианты индивидуальных заданий:

No	Метод минимизации	Управление	Номер способа	
			выбора шага спуска	
1	проекция градиента	p(t)	1	2
2	условный градиент	f(s,t)	2	3
3	проекция градиента	f(s,t)	3	4
4	условный градиент	p(t)	4	5
5	проекция градиента	p(t)	2	3
6	условный градиент	f(s,t)	1	2
7	проекция градиента	f(s,t)	4	5
8	условный градиент	p(t)	3	4
9	проекция градиента	p(t)	1	5
10	условный градиент	f(s,t)	2	4