- (c) Define, random variable, distribution function and probability density function.
- 6. (a) Let X be a continuous random variable with p.d.f.

$$f(x) = \begin{cases} ax + 1, & 0 \le x < 1 \\ a - 1, & \text{if } 1 \le x < 2 \\ ax + 4a, & \text{if } 2 \le x < 3 \\ 0, & \text{elsewhere} \end{cases}$$

- (i) Determine the constant 'a'
- (ii) Compute P $\{X \le 2\}$

6

(b) The diameter of an electric cable, say X, is assumed to be a continuous random variable with p.d.f.,

$$f(x) = 6x (1 - x), 0 \le x \le 1,$$

- (i) Check that the above function is a p.d.f.
- (ii) Determine a number 'b' such that,

$$P(X < b) = P(X > b)$$

(c) A continuous random variable X has the probability density function, f(x) = A + Bx, $0 \le x \le 1$, if the mean of the distribution is $\frac{1}{2}$, find A and B.

<u>UNIT - IV</u>

- 7. (a) A coin is tossed until a head appears. What is the expectation of the number of tosses required?
 - (b) Define mathematical expectation. Two unbiased dice are thrown. Find the expected values of the sum of numbers of points on them.

UG EVEN SEMESTER (CBCS) EXAMINATION, SEPTEMBER - 2021

COMPUTER SCIENCE

2nd Semester

COURSE NO. MCSCC - 202 (Statistical Methods and Applications)

Full Marks: 70 Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

(Answer any five questions, taking one from each unit)

UNIT - I

- 1. (a) A committee of 4 people is to be appointed from 4 officers of the production department, 3 officers of the purchase department, 3 officers of the of the sales department and 1 chartered accountant. Find the probability of forming the committee in the following manner:
 - i) There must be one from each category
 - ii) It should have at least one from the purchase department
 - iii) The chartered accountant must be in the committee.

(b) If the letters of the word 'REGULATIONS', be arranged at random, what is the chance that there will be exactly 4 letters between R and E?

- 2. (a) Prove that in a single throw with a pair of dice the probability of getting the sum of 7 is equal to 1/6 and the probability of getting the sum of ten is equal to $\frac{1}{12}$.
 - 4
 - (b) Two card is drawn from a pack of 52 cards. What is the chance that
 - (i) they belong to the same suit?
 - (ii) they belong to different suits and different denominations.
 - (c) For any three events A, B and C, prove that $P(A \cup B \mid C) = P(A \mid C) + P(B \mid C) P(A \cap B \mid C)$

UNIT - II

- 3. (a) A problem in statistics is given to the three students A, B and C, whose chances of solving it are $\frac{1}{3}$, $\frac{2}{5}$ and $\frac{3}{5}$ respectively.
 - What is the probability that the problem will be solved if all of them try independently?
 - (b) The odds against manager X, setting the wage dispute with the workers are 8:6 and odds in favour of manager Y setting the same dispute are 14:16.
 - (i) What is the chance that neither settles the dispute, if they both try, independently of each other?
 - (ii) What is the probability that the dispute will be settled?
 - 7

- 4. (a) The odds that person X speaks the truth are 3: 2 and the odds that person Y speaks the truth are 5:3. In what percentage of cases are they likely to contradict each other on an identical point.
 - (b) A and B throw alternately with a pair of ordinary dice. A wins if he throws 6, before B throws 7, and B wins if he throws 7 before A throws 6. If A begins, show that his chance of winning is $\frac{30}{61}$.

UNIT - III

5. (a) A random variable X assumes the values -3, -2, -1, 0, 1, 2, 3, such that

$$P(X = -3) = P(X = -2) = P(X = -1)$$

$$P(X = 1) = P(X = 2) = P(X = 3)$$

and
$$P(X = 0) = P(X < 0) = P(X > 0)$$

obtain the probability mass function of X and its distribution function.

(b) A random variable X has the following probability distribution:

$$p(x)$$
: a 2a 5a 4a 3a 6a 2a 3a a

- (i) Determine the value of a
- (ii) Find P (X < 3), P (X \ge 3) and P (0 < X < 5)
- (iii) What is the smallest value of x, for which $P(X \le x) > \frac{2}{3}$?
- (iv) Find out the distribution function of X?

8. (a) Let X be a random variable with the following probability distribution:

$$x: -3 6 9$$

P(X=x): $\frac{1}{6} \frac{1}{2} \frac{1}{3}$

Find E (X), E (X^2) and using the laws of expectation, evaluate E (2X + 1)².

- (b) Six coins are tossed 6,400 times. Using the Poisson distribution, find the approximate probability of getting six heads 20 times.
- (c) If X and Y are independent Poisson variates such that

$$P(X = 1) = P(X = 2)$$

and
$$P(Y = 2) = P(Y = 3)$$

Find the variance of X - 2Y.

<u>UNIT - V</u>

- 9. (a) Show that the correlation coefficient is independent of change of origin and scale.
 - (b) Ten coins are thrown simultaneously. Find the probability of getting at least seven heads. 7
- 10. (a) A computer while calculating correlation coefficient between two variables X and Y from 25 pairs of observations obtained the following results:

$$n = 25$$
, $\Sigma X = 125$, $\Sigma X^2 = 650$,

$$\Sigma Y = 100, \ \Sigma Y^2 = 460, \ \Sigma XY = 508$$

It was however discovered at the time of checking that he had copied down two pairs as

X	Y
6	14
8	6

While the correct values were

X	Y
8	12
6	8

Obtain the correct value of correlation coefficient.

10. (b) After correcting 50 pages of the proof of a book, the proof reader finds that there are, on an average, 2 errors per 5 page. How many pages would one expect of find with 0, 1, 2, 3 and 4 errors, in 1000, pages of the first print of the book?

(Given that
$$e^{-0.4} = 0.6703$$
)