Example 9

In $\triangle ABC$, $\angle ACB = 90^{\circ}D$ is the midpoint of BC. E is the midpoint of AD. Extend CE to meet AB at F.FG//AC and meet AD at G.. Prove: FB = 2CG. Solution: Take H, the midpoint of BF.

Connect DH.

Since point D is the midpoint of BC, by Theorem 2.1, DH//CF//EF. Since E is the midpoint of AD, by Theorem 2.2. F is the midpoint of AH.

a AD DIL IID

So AF = FH = HB.

Note that CE is the median of right triangle ACD. So CE

= AE.

Therefore, $\triangle AEC$ is an isosceles triangle with $\angle ACE = \angle CAE = \alpha$.

Since FG//AC, $\angle GFE = \angle ACE = \alpha$. $\angle FGE = \angle CAE = \alpha$.

Therefore, $\triangle FGE$ is an isosceles triangle with EG=EF.

We also know that $\angle AEF = \angle CEG$.

Thus $\triangle AEF \cong \triangle CEG$. CG = AF = FH = HB, or FB = 2CG.