Naive Bayes für Regressionsprobleme Vorhersage numerischer Werte mit dem Naive Bayes Algorithmus

Nils Knappmeier

Fachgebiet Knowledge Engineering Fachbereich Informatik Technische Universität Darmstadt

14.12.2005

Gliederung

- Einleitung
 - Traditioneller Naive Bayes
 - Naive Bayes und Regression
- Annäherung durch Interpolation mit Gauss-Kurven
- Algorithmus: Naive Bayes für Regression
 - Ermittlung der Teilfunktionen $p(A_i|Z)$ und p(Z)
 - Berechnung des Zielwerts
- 4 Evaluation
 - Allgemeines
 - Probleme mit unabhängigen Attributen
 - Standard-Datensätze

Gliederung

- Einleitung
 - Traditioneller Naive Bayes
 - Naive Bayes und Regression
- 2 Annäherung durch Interpolation mit Gauss-Kurven
- 3 Algorithmus: Naive Bayes für Regression
 - Ermittlung der Teilfunktionen $p(A_i|Z)$ und p(Z)
 - Berechnung des Zielwerts
- Evaluation
 - Allgemeines
 - Probleme mit unabhängigen Attributen
 - Standard-Datensätze

Traditioneller Naive Bayes

Der Naive Bayes Algorithmus

Rahmenbedingungen

- Gegeben: Diskrete Attribute
- Gesucht: Zuordnung zu einer Kategorie
- Trainingsdaten enthalten möglichst zu jedem Zielwert mehrerer Beispiel

Der Naive Bayes Algorithmus

Lösungsmechanismus

•
$$p(K|A_1, A_2, ..., A_n) = \frac{p(A_1, A_2, ..., A_n|K) \cdot p(K)}{p(A_1, A_2, ..., A_n)}$$

- Annahme: A_k sind unabhängig voneinander.
- Daher: Wähle k mit maximalem

$$\hat{P}(K|A_1,A_2,\ldots,A_n)=p(K)\cdot\prod_{i=1}^n p(A_i|k)$$

 p(K) und p(A_i|K) kann anhand der Trainingsdaten berechnet werden. Naive Bayes und Regression

Neue Rahmenbedingungen

- Gegeben: Numerische und nominale Attribute
- Gesucht: Ein numerischer Zielwert
- Numerische Attribute k\u00f6nnen auch kontinuierlich sein
- Zielwert ist ebenfalls kontinuierlich
- Zielwert kommt möglicherweise nicht in den Trainingsdaten vor.

Allgemeine Vorgehensweise

- Erstellung einer Annäherungsfunktion für p(Z|A)
- Berechnung der Funktionwerte für ein diskretisiertes Intervall
- Berechnung des Zielwertes auf Basis der Funktionswerte
- Zielwert ist Durchschnitt oder Median der Annäherungsfunktion

Angepasste Bayes-Formel

$$p(Z|A) = \frac{p(A|Z) \cdot p(Z)}{\int p(A|Z) \cdot p(Z) dZ}$$

Nach Anwendung der Unabhängigkeitsannahme:

$$p(Z|A) = \frac{p(Z) \cdot \prod_{i=1}^{n} p(A_i|Z)}{\int p(Z) \cdot \prod_{i=1}^{n} p(A_i|Z) dZ}$$

• Zu ermitteln: Annäherungen an $p(A_i|Z)$ und p(Z)

Quellen

Bayes Formel

Angepasste Bayes-Formel

$$p(Z|A) = \frac{p(A|Z) \cdot p(Z)}{\int p(A|Z) \cdot p(Z) dZ}$$

Nach Anwendung der Unabhängigkeitsannahme:

$$p(Z|A) = \frac{p(Z) \cdot \prod_{i=1}^{n} p(A_i|Z)}{\int p(Z) \cdot \prod_{i=1}^{n} p(A_i|Z) dZ}$$

• Zu ermitteln: Annäherungen an $p(A_i|Z)$ und p(Z)

Bayes Formel

Angepasste Bayes-Formel

$$p(Z|A) = \frac{p(A|Z) \cdot p(Z)}{\int p(A|Z) \cdot p(Z) dZ}$$

Nach Anwendung der Unabhängigkeitsannahme:

$$p(Z|A) = \frac{p(Z) \cdot \prod_{i=1}^{n} p(A_i|Z)}{\int p(Z) \cdot \prod_{i=1}^{n} p(A_i|Z) dZ}$$

• Zu ermitteln: Annäherungen an $p(A_i|Z)$ und p(Z)

Gliederung

- Einleitung
 - Traditioneller Naive Bayes
 - Naive Bayes und Regression
- Annäherung durch Interpolation mit Gauss-Kurven
- 3 Algorithmus: Naive Bayes für Regression
 - Ermittlung der Teilfunktionen $p(A_i|Z)$ und p(Z)
 - Berechnung des Zielwerts
- Evaluation
 - Allgemeines
 - Probleme mit unabhängigen Attributen
 - Standard-Datensätze

Interpolation durch Gauss-Kernfunktionen

Wie leite ich eine kontinuierliche Wahrscheinlichkeitsfunktion aus Beispielwerten ab?

b sei nunr der Zielwert Wert und b_j der Wert der Beispielwert j.

$$\frac{1}{h}K\left(\frac{b-b_i}{h}\right) \quad \text{mit} \quad K(x) = (2\pi)^{-\frac{1}{2}} \cdot e^{-\frac{x^2}{2}}$$

Interpolation durch Gauss-Kernfunktionen

Wie leite ich eine kontinuierliche Wahrscheinlichkeitsfunktion aus Beispielwerten ab?

b sei nunr der Zielwert Wert und b_j der Wert der Beispielwert j.

$$\frac{1}{h}K\left(\frac{b-b_i}{h}\right) \quad \text{mit} \quad K(x) = (2\pi)^{-\frac{1}{2}} \cdot e^{-\frac{x^2}{2}}$$

Einleitung

Evaluation

$$\frac{1}{n \cdot h} \sum_{i=1}^{n} K\left(\frac{b - b_i}{h}\right) \quad h \text{ ist zu klein}$$

Einleitung

$$\frac{1}{n \cdot h} \sum_{i=1}^{n} K\left(\frac{b - b_i}{h}\right) \quad h \text{ ist zu groß}$$

Die richtige Wahl des h

Leave-One-Out-Cross-Validation

- Intuitiv: Maximale Wahrscheinlichkeit bei den Beispielwerten
- Problem: $h \rightarrow 0$
- Lösung: Maximierung einer Pseudo-Wahrscheinlichkeit, bei der alle Kernel ausser dem über b_i berücksichtigt werden.

$$f_i^*(b_i) = \frac{1}{(n-1)h} \sum_{i=1; i \neq j}^n K\left(\frac{b_i - b_j}{h}\right)$$

Exkurs: Die richtige Wahl des h (2)

Leave-One-Out-Cross-Validation

Maximierung der Wahrscheinlichkeit über alle i

$$h_{CV} = \arg\max_{h} \left\{ \frac{1}{n} \sum_{i=1}^{n} \log f^{*}(b_{i}) \right\}$$

Vorgehen: Ausprobieren von Werten für *h* über einem festgelegten Intervall.

Gliederung

- Einleitung
 - Traditioneller Naive Bayes
 - Naive Bayes und Regression
- 2 Annäherung durch Interpolation mit Gauss-Kurven
- Algorithmus: Naive Bayes für Regression
 - Ermittlung der Teilfunktionen $p(A_i|Z)$ und p(Z)
 - Berechnung des Zielwerts
- Evaluation
 - Allgemeines
 - Probleme mit unabhängigen Attributen
 - Standard-Datensätze

$p(A_i|Z)$ für numerische Attribute

$$p(Z|A) = \frac{p(Z) \cdot \prod_{i=1}^{n} p(A_i|Z)}{\int p(Z) \cdot \prod_{i=1}^{n} p(A_i|Z) dZ}$$

- Gesucht: $p(A_i|Z) =: p(B|Z) = \frac{p(B,Z)}{p(Z)}$
- $\hat{p}(B = b, Z = z)$ durch zweidimensionale Gauss-Interpolation
- $\hat{p}(Z)$: Gauss Interpolation über alle z

$p(A_i|Z)$ für numerische Attribute

$$p(Z|A) = \frac{p(Z) \cdot \prod_{i=1}^{n} p(A_i|Z)}{\int p(Z) \cdot \prod_{i=1}^{n} p(A_i|Z) dZ}$$

- Gesucht: $p(A_i|Z) =: p(B|Z) = \frac{p(B,Z)}{p(Z)}$
- $\hat{p}(B = b, Z = z)$ durch zweidimensionale Gauss-Interpolation
- $\hat{p}(Z)$: Gauss Interpolation über alle z

$p(A_i|Z)$ für numerische Attribute

$$p(Z|A) = \frac{p(Z) \cdot \prod_{i=1}^{n} p(A_i|Z)}{\int p(Z) \cdot \prod_{i=1}^{n} p(A_i|Z) dZ}$$

- Gesucht: $p(A_i|Z) =: p(B|Z) = \frac{p(B,Z)}{p(Z)}$
- $\hat{p}(B = b, Z = z)$ durch zweidimensionale Gauss-Interpolation
- $\hat{p}(Z)$: Gauss Interpolation über alle z

Beispiel: Lebensdauer von Ameisen

Trainingsdaten: $Z \in [10, 20]$ Monate, $A_1 \in [2.0, 4.0]$ mm und $A_2 \in \{\text{rot,schwarz}\}$

 A_2 A_1 10.5 2.3 rot 15.5 3.3 schwarz 11.2 2.6 rot 12.1 3.5 schwarz 3.0 rot

p(Z=z,A1=3.0)

Berechnung von $p(A_1 = 3.0 | Z = z)$ für alle $z \in \{10, 10.1, 10.2, ..., 20\}$

Beispiel: Lebensdauer von Ameisen

Trainingsdaten: $Z \in [10, 20]$ Monate, $A_1 \in [2.0, 4.0]$ mm und $A_2 \in \{\text{rot,schwarz}\}$

Z	A_1	A_2
10.5	2.3	rot
15.5	3.3	schwarz
11.2	2.6	rot
12.1	3.5	schwarz
?	3.0	rot

Berechnung von $p(A_1 = 3.0 | Z = z)$ für alle $z \in \{10, 10.1, 10.2, ..., 20\}$

$p(A_i|Z)$ für nominale Attribute

$$p(Z|A) = \frac{p(Z) \cdot \prod_{i=1}^{n} p(A_i|Z)}{\int p(Z) \cdot \prod_{i=1}^{n} p(A_i|Z) dZ}$$

Nach Bayes:

$$p(A_i|Z) =: p(B = b|Z = z) = \frac{p(B=b) \ p(Z=z|B=b)}{\sum_{b \in Kat_B} p(B=b) \ p(Z=z|B=b)}$$

- $\hat{p}(Z = z | B = b)$: Gauss-Interpolation über alle Zielwerte von Beispielen mit $A_i = b$.
- $\hat{p}(B=b)$ ist der prozentuale Anteil der Beispiele mit $A_i=b$ an der Gesamtzahl der Beispiele.

$p(A_i|Z)$ für nominale Attribute

$$p(Z|A) = \frac{p(Z) \cdot \prod_{i=1}^{n} p(A_i|Z)}{\int p(Z) \cdot \prod_{i=1}^{n} p(A_i|Z) dZ}$$

Nach Bayes:

$$p(A_i|Z) =: p(B = b|Z = z) = \frac{p(B=b) \ p(Z=z|B=b)}{\sum_{b \in \mathsf{Kat}_B} p(B=b) \ p(Z=z|B=b)}$$

- $\hat{p}(Z = z | B = b)$: Gauss-Interpolation über alle Zielwerte von Beispielen mit $A_i = b$.
- $\hat{p}(B=b)$ ist der prozentuale Anteil der Beispiele mit $A_i=b$ an der Gesamtzahl der Beispiele.

$$p(Z|A) = \frac{p(Z) \cdot \prod_{i=1}^{n} p(A_i|Z)}{\int p(Z) \cdot \prod_{i=1}^{n} p(A_i|Z) dZ}$$

Nach Bayes:

$$p(A_i|Z) =: p(B = b|Z = z) = \frac{p(B=b) \ p(Z=z|B=b)}{\sum_{b \in \mathsf{Kat}_B} p(B=b) \ p(Z=z|B=b)}$$

- $\hat{p}(Z = z | B = b)$: Gauss-Interpolation über alle Zielwerte von Beispielen mit $A_i = b$.
- $\hat{p}(B=b)$ ist der prozentuale Anteil der Beispiele mit $A_i=b$ an der Gesamtzahl der Beispiele.

Einleitung

$$\frac{p(A_2 = rot) \ p(Z = z | A_2 = rot)}{p(A_2 = rot)p(Z = z | B = rot) + p(A_2 = schw)p(Z = z | A_2 = schw)}$$

Z	A_1	A_2	
10.5	2.3	rot	
15.5	3.3	schwarz	
11.2	2.6	rot	
12.1	3.5	schwarz	
?	3.0	rot	
$p(A_2 = rot) = 0.5$			

Berechnung von $p(A_2 = rot | Z = z)$ für alle $k \in \{10, 10.1, 10.2, ..., 20\}$

Einleitung

$$\frac{p(A_2 = rot) \ p(Z = z|A_2 = rot)}{p(A_2 = rot)p(Z = z|B = rot) + p(A_2 = schw)p(Z = z|A_2 = schw)}$$

Z	A ₁	A_2	
10.5	2.3	rot	
15.5	3.3	schwarz	
11.2	2.6	rot	
12.1	3.5	schwarz	
?	3.0	rot	
$p(A_2 = rot) = 0.5$			

p(Z=z|A2=rot)

Berechnung von $p(A_2 = rot | Z = z)$ für alle $k \in \{10, 10.1, 10.2, ..., 20\}$

$$p(Z|A) = \frac{p(Z) \cdot \prod_{i=1}^{n} p(A_i|Z)}{\int p(Z) \cdot \prod_{i=1}^{n} p(A_i|Z) dZ}$$

- Es fehlt noch: p(Z)
- $\hat{p}(z)$: Gauss-Interpolation über die Zielwerte aller Objekte in den Trainingsdaten

Berechnung von p(Z = z) für alle $z \in \{10, 10.1, 10.2, ..., 20\}$

Berechnung von p(z)

$$p(Z|A) = \frac{p(Z) \cdot \prod_{i=1}^{n} p(A_i|Z)}{\int p(Z) \cdot \prod_{i=1}^{n} p(A_i|Z) dZ}$$

- Es fehlt noch: p(Z)
- $\hat{p}(z)$: Gauss-Interpolation über die Zielwerte aller Objekte in den Trainingsdaten

Berechnung von p(Z = z) für alle $z \in \{10, 10.1, 10.2, ..., 20\}$

Zielwert

$$p(Z|A) = \frac{p(Z) \cdot \prod_{i=1}^{n} p(A_i|Z)}{\int p(Z) \cdot \prod_{i=1}^{n} p(A_i|Z) dZ}$$

- p(Z = z|A) ist nun bekannt für das gesamte Intervall
- Entweder: Minimierung des quadratischen Fehlers
- Zielwert ist der Erwartungswert
- Oder: Minimierung des absoluten Fehlers
- Zielwert ist der Median

Zielwert

$$p(Z|A) = \frac{p(Z) \cdot \prod_{i=1}^{n} p(A_i|Z)}{\int p(Z) \cdot \prod_{i=1}^{n} p(A_i|Z) dZ}$$

- p(Z = z|A) ist nun bekannt für das gesamte Intervall
- Entweder: Minimierung des quadratischen Fehlers
- Zielwert ist der Erwartungswert
- Oder: Minimierung des absoluten Fehlers
- Zielwert ist der Median

Gliederung

- Einleitung
 - Traditioneller Naive Bayes
 - Naive Bayes und Regression
- 2 Annäherung durch Interpolation mit Gauss-Kurven
- 3 Algorithmus: Naive Bayes für Regression
 - Ermittlung der Teilfunktionen $p(A_i|Z)$ und p(Z)
 - Berechnung des Zielwerts
- 4 Evaluation
 - Allgemeines
 - Probleme mit unabhängigen Attributen
 - Standard-Datensätze

Vergleiche mit anderen Algorithmen

- Locally Weighted Linear Regression (LWR)
- Linear Regression (LR)
- Model Tree Prediction (M5')

Probleme mit unabhängigen Attributen

3D-Spirale $(x1, x2) \rightarrow y$

Auswertung

Vergleich mit dem Model Tree Inducer M5'

Vergleich mit anderen Lernalgorithmen Auswahl aus 41 Datensätzen

Datensatz	Instanzen	Fehlend	Numerisch	Nominal
Schlvote	38	0.4 %	4	1
EchoMonths	130	7.5 %	6	3
BreastTumor	286	0.3 %	1	8
Meta	528	4.3 %	19	2

Fehler bei verschiedenen Algorithmen

Durchschnittlicher Quadratischer Fehler

Datensatz	Naive Bayes	LR	LWR	M5'
Schlvote	95.92±7.2	114.23±3.6 ●	118.81±6.6 ●	94.00±10.2
EchoMonths	78.53±1.5	68.25±1.4 ∘	68.04±1.1 ∘	71.01±0.7 o
BreastTumor	100.96±1.2	97.43±1.2 ∘	103.05±1.2 ●	97.29±0.6 ∘
Meta	160.49±17.4	202.18±11.8 •	160.29 ± 10.4	150.68±32.2

Durschnittlicher Absoluter Fehler

Datensatz	Naive Bayes	LR	LWR	M5'
Schlvote	90.13±7.0	112.43±4.3 ●	114.23±7.1 ●	89.78±7.4
EchoMonths	$72.34{\pm}1.5$	65.42±1.5 ∘	64.30±1.2 o	67.95±0.7 o
BreastTumor	104.26±0.9	99.29±1.6 ∘	106.25±1.4 •	99.91±0.6 o
Meta	$78.44{\pm}3.7$	146.42±4.5 ●	104.90±3.6 ●	79.00 ± 8.5

Direktvergleich zwischen den Algorithmen

	Gewinner			
Verlierer ↓	Naive Bayes	LR	LWR	M5'
Naive Bayes		18	20	23
LR	8		13	15
LWR	6	10		15
M5'	3	4	6	

Durchschnittlicher Quadratischer Fehler

	Gewinner			
Verlierer ↓	Naive Bayes	LR	LWR	M5'
Naive Bayes		13	19	22
LR	13		17	16
LWR	6	9		19
M5'	5	5	8	

Durschnittlicher Absoluter Fehler

Direktvergleich zwischen den Algorithmen

	Gewinner			
Verlierer ↓	Naive Bayes	LR	LWR	M5'
Naive Bayes		18	20	23
LR	8		13	15
LWR	6	10		15
M5'	3	4	6	

Durchschnittlicher Quadratischer Fehler

	Gewinner				
Verlierer ↓	Naive Bayes	LR	LWR	M5'	
Naive Bayes		13	19	22	
LR	13		17	16	
LWR	6	9		19	
M5'	5	5			

Durschnittlicher Absoluter Fehler

Vergleich mit Naive Bayes für Klassifikation Liegt der Fehler in der Ableitung des Naive Bayes?

- Modellierung eines Klassifikationsproblems als Regression:
 - Ein Regressionsproblem pro Zielklasse
- Tests auf Standard-Klassifikations-Datensätzen
- Ergebnis: Besseres Abschneiden als der normale Naive Bayes

Vergleich mit Naive Bayes für Klassifikation Liegt der Fehler in der Ableitung des Naive Bayes?

- Modellierung eines Klassifikationsproblems als Regression:
 - Ein Regressionsproblem pro Zielklasse
- Tests auf Standard-Klassifikations-Datensätzen
- Ergebnis: Besseres Abschneiden als der normale Naive Bayes

Vergleich mit einer modifizierten Version des M5' Liegt es an der Unabhängigkeitsannahme?

- M5'Independent: Mit Unabhängigkeitsannahme
- Direktvergleiche:
 - M5' gegen M5'Independent
 - M5' gegen Naive Bayes
- Ergebnis: M5'Independent schneidet im Vergleich genauso schlecht gegen M5' ab wie Naive Bayes

Vergleich mit einer modifizierten Version des M5' Liegt es an der Unabhängigkeitsannahme?

- M5'Independent: Mit Unabhängigkeitsannahme
- Direktvergleiche:
 - M5' gegen M5'Independent
 - M5' gegen Naive Bayes
- Ergebnis: M5'Independent schneidet im Vergleich genauso schlecht gegen M5' ab wie Naive Bayes

Vergleich mit einer modifizierten Version des M5' Liegt es an der Unabhängigkeitsannahme?

- M5'Independent: Mit Unabhängigkeitsannahme
- Direktvergleiche:
 - M5' gegen M5'Independent
 - M5' gegen Naive Bayes
- Ergebnis: M5'Independent schneidet im Vergleich genauso schlecht gegen M5' ab wie Naive Bayes

Fazit

Für Regressionsprobleme gilt: Unabhängigkeit der Attribute

- erfüllt: Naive Bayes funktioniert gut
- nicht-erfüllt: Andere Algorithmnen schneiden besser ab

Vielen Dank für eure Aufmerksamkeit!

Quellen

- Technical Notes: Naive Bayes for Regression; E. Frank,
 L.Trigg, G.Holmes, I.H.Witten; Machine Learning 41, 5-25,
 2000
- Retrofitting Decision Tree Classifiers Using Kernel Density Estimation; P.Smyth, A.Gray, U.M.Fayyad (Appendix: Univariate Bandwidth Selection for Kernel Density Estimation)
- Naive Bayes zur Klassifikation: http://www.ke.informatik.tudarmstadt.de/lehre/ws05/mldm/bayes.pdf