# Relatório sobre variações de arquitetura de uma PMC para classificação do Dermathology Data Set

#### Matheus M Korb

<sup>1</sup>Departamento de Computação – Universidade Federal de São Carlos (UFSCar) São Carlos – SP – Brazil

{v8korb}@gmail.com

# 1. Informações Gerais sobre o Data Set

Para a classificação dos dados foi escolhida a base de dados Dermathology [REF], esta base de dados classifica um conjunto de sintomas de um paciente em uma determinada doença dermatológica. Para tal são utilizados 34 atributos que resultam em 6 classes distintas. As tabelas 1 e 2 demonstram os 34 atributos, divididos em 12 atributos clínicos e 22 atributos histopatológicos e na tabela 3 pode-se encontrar as 6 classificações e o número de instâncias de cada classe.

| 1  | erythema                   |
|----|----------------------------|
| 2  | scaling                    |
| 3  | definite borders           |
| 4  | itching                    |
| 5  | koebner phenomenon         |
| 6  | polygonal papules          |
| 7  | follicular papules         |
| 8  | oral mucosal involvement   |
| 9  | knee and elbow involvement |
| 10 | scalp involvement          |
| 11 | family history, (0 or 1)   |
| 34 | Age (linear)               |

O atributo *Age* foi excluído do processo de classificação por estar com valores faltantes em 8 pacientes do database.

O atributo *family history* tem o valor de 1 se qualquer destas doenças tiver sido observada na família, e 0 caso contrário. A característica idade representa simplesmente a idade do paciente. Para todas as outras características (clínicas e histopatológicas) foi dado um grau na escala de 0 a 3. Onde 0 indica que o recurso não estava presente, 3 indica a maior quantidade possível, e 1, 2 indicam os valores intermediários relativos.

Para o trenameito e teste de validação, a base de dados foi separada aleatóriamente em 2 partes, uma de treinamento contendo 75%(274 instâncias) e outra para o teste dos resultados contendo 25%(91 instâncias) da base de dados. A quantidade de instâncias de cada classe utilizadas para o treinamento e teste podem ser visualizadas na tabela 4.

Tabela 2. Atributos histopatológicos utilizados pelo Dermathology Data Set

| 12 | melanin incontinence                     |
|----|------------------------------------------|
| 13 | eosinophils in the infiltrate            |
| 14 | PNL infiltrate                           |
| 15 | fibrosis of the papillary dermis         |
| 16 | exocytosis                               |
| 17 | acanthosis                               |
| 18 | hyperkeratosis                           |
| 19 | parakeratosis                            |
| 20 | clubbing of the rete ridges              |
| 21 | elongation of the rete ridges            |
| 22 | thinning of the suprapapillary epidermis |
| 23 | spongiform pustule                       |
| 24 | munro microabcess                        |
| 25 | focal hypergranulosis                    |
| 26 | disappearance of the granular layer      |
| 27 | vacuolisation and damage of basal layer  |
| 28 | spongiosis                               |
| 29 | saw-tooth appearance of retes            |
| 30 | follicular horn plug                     |
| 31 | perifollicular parakeratosis             |
| 32 | inflammatory monoluclear inflitrate      |
| 33 | band-like infiltrate                     |

## 2. Ambiente de implementação

Para a implementação da rede neural foi escolhida a linguagem R. Foi escolhida esta linguagem por ela dar uma grande facilidade com a manipulação de dados, por ser interpretada e poder rodar em terminal, facilitando a implementação e verificação por etapas, além de ser uma linguagem fortemente utilizada para trabalhos de redes neurais e aprendizado de máquinas em geral. Para a implementação foi utilizada a versão 3.2.4 revised do R. Em conjunto foram utilizados os pacotes *neuralnet* e *clusterSim*, o primeiro para configuração da arquitetura e treinamento da rede e o segundo para normalização dos dados.

As redes neurais implementadas foram baseadas no algoritmo MLP contido no pacote *neuralnet*.

## 3. Configurações para treinamento

Inicialmente, antes de colocar os dados para serem treinados, foi preciso normalizá-los. Os valores dos atributos da base de dados estavam no intervalo entre 0 e 4, portanto decidiu-se colocá-los no intervalo entre -1 e 1, com o intuito de facilitar a classificação. Esta normalização foi feita de forma simples, através do pacote *clusterSim* onde utilizamos a normalização *n5*, a qual se baseia na seguinte equação:

$$((x - mean)/max(abs(x - mean))) (1)$$

Tabela 3. Classificações da doença dermatológica

| Número | Nome                     | Quantidade de instâncias |
|--------|--------------------------|--------------------------|
| 1      | psoriasis                | 112                      |
| 2      | seboreic dermatitis      | 61                       |
| 3      | lichen planus            | 72                       |
| 4      | pityriasis rosea         | 49                       |
| 5      | cronic dermatitis        | 52                       |
| 6      | pityriasis rubra pilaris | 20                       |

Tabela 4. Quantitade de instâncias para treinamento e teste

| Classe                   | Treinamento | Teste |
|--------------------------|-------------|-------|
| psoriasis                | 79          | 32    |
| seboreic dermatitis      | 54          | 11    |
| lichen planus            | 55          | 17    |
| pityriasis rosea         | 32          | 13    |
| cronic dermatitis        | 39          | 13    |
| pityriasis rubra pilaris | 30          | 5     |

#### 4. As Redes Neurais

As redes neurais foram definidas contendo 33 valores de entrada, 6 neurônios na camada de saída (um para representar cada classe) e 1 neurônios na camada escondida. A variação nas arquiteturas deu-se na camada escondida, onde foram utilizadas 3 varições na quantidade de neurônios.

- Rede Neural 3: Nessa rede foram utilizados 39 neurônios na camada escondida, esse valor foi baseado na soma da quantidade de entradas e saídas.
- Rede Neural 2: Nessa rede foram utilizados 26 neurônios na camada escondida, 2/3 da quantidade de neurônios da rede neural 3.
- Rede Neural 1: Nessa rede foram utilizados 13 neurônios na camada escondida, 1/3 da quantidade de neurônios da rede neural 3.

As variações na arquitetura buscavam otimizar desempenho, uma vez que menos neurônios implicam em menos operações, e verificar a variação de acurácia entre elas.

O algoritmo utilizado foi o RPROP+, uma variação do backpropagation, esse algoritmo leva em conta apenas o sinal da derivada parcial sobre todos os padrões, e não o valor de sua magnitude, e atua de forma independente em cada **peso**. Para cada **peso**, se houve mudança no sinal da derivada parcial da função de erro total em comparação com a última iteração, o **peso** é multiplicado por um fator n-, com n<1. Se não houver variação no sinal, o **peso** é multiplicado por um fator n+, com n>1.

Outros parâmetros de inicialização ajustados manualmente foram:

- learningrate: taxa de aprendizado, ajustado em 0.001
- rep: número de épocas: 5
- linear.output: ajusatado para FALSE, buscando classificação

Os demais parâmetros foram deixados default:

• threshold: 0.001

• startweights: random

• err.fct: sse (sum of squares error)

act.fct: logistic likelihood: FALSE exclude: NULL

• constant.wights: NULL

A classificação na base de dados é feita através de um valor entre 1 e 6, como são utilizados 6 neurônios de saída, um para representar cada classe, foi utilizado um vetor de tamanho 6 para representar o resultado desejado da saída, onde o vetor era inicializado com 0's e o índice com o número da classe desejada continha o valor 1.

#### 5. Resultados

Devido a um grande número de atributos bem separados e uma pequena quantidade de classificações, a convergência da rede foi muito boa para todas as 3 variações de arquitetura. A rede com maior número de neurônios na camada oculta foi a que obteve melhor resultado.

A partir das matrizes 1, 2 e 3, que são matrizes de confusão, é possível visualizar os resultados de forma a se verificar a quantidade de acertos para cada classe assim como de instancias classificadas de forma errada.

|      | [,1] | [,2] | [,3] | [,4] | [,5] | [,6] |
|------|------|------|------|------|------|------|
| [1,] | 32   | 0    | 0    | 0    | 0    | 0    |
| [2,] | 0    | 7    | 0    | 0    | 0    | 0    |
| [3,] | 0    | 0    | 17   | 0    | 0    | 0    |
| [4,] | 0    | 5    | 0    | 12   | 0    | 0    |
| [5,] | 0    | 0    | 0    | 0    | 13   | 0    |
| [6,] | 0    | 0    | 0    | 0    | 0    | 5    |

Figura 1. Matriz de Confusão 3

|      | [,1] | [,2] | [,3] | [,4] | [,5] | [,6] |
|------|------|------|------|------|------|------|
| [1,] | 32   | 0    | 0    | 0    | 0    | 0    |
| [2,] | 0    | 7    | 0    | 0    | 0    | 0    |
| [3,] | 0    | 0    | 17   | 0    | 0    | 0    |
| [4,] | 0    | 7    | 0    | 10   | 0    | 0    |
| [5,] | 0    | 0    | 0    | 0    | 13   | 0    |
| [6,] | 0    | 0    | 0    | 0    | 0    | 5    |

Figura 2. Matriz de Confusão 2

|      | [,1] | [,2] | [,3] | [,4] | [,5] | [,6] |
|------|------|------|------|------|------|------|
| [1,] | 32   | 0    | 0    | 0    | 0    | 0    |
| [2,] | 0    | 7    | 0    | 0    | 0    | 0    |
| [3,] | 0    | 0    | 17   | 0    | 0    | 0    |
| [4,] | 0    | 6    | 0    | 11   | 0    | 0    |
| [5,] | 0    | 2    | 0    | 0    | 11   | 0    |
| [6,] | 0    | 0    | 0    | 0    | 0    | 5    |

Figura 3. Matriz de Confusão 1

# partir destas tabelas é possível também obter-se a acurácia de cada rede:

Rede 3: 0,945Rede 2: 0,923Rede 1: 0,912

# As redes finais ficaram da seguinte forma:



Figura 4. Rede 3



Figura 5. Rede 2



Figura 6. Rede 1

## 6. Conclusões

Com este trabalho pode-se perceber também a importância de outros métodos aliados com a Rede MLP, métodos que auxiliem na taxa de aprendizagem, como a normalização dos dados.

Pode-se notar que houve pouca diferença na acurácia dos resultados, porém isso se deve a boa separabilidade dos dados. Nem sempre um maior número de neurônios na camada oculta ou mais treinamento trazem melhroes resultados, este foi um caso particular.