SPECTRA: FIRST EXAMPLES

MATTHEW A. NIEMIRO

ABSTRACT. Follow-up to my prespectra notes. Some first examples of spectra.

These are just notes, subject to all nonliability clauses which usually preface notes. I used K.G. Wickelgren's notes and some of Neil Strickland's.

Example (Suspension spectrum). For a topological space X, its suspension spectrum $\Sigma^{\infty}X$ has $\Sigma_{n}^{\infty}:=\Sigma^{n}X$ and structure maps $\epsilon_{n}:\Sigma(\Sigma^{n}X)\to\Sigma^{n+1}X$ the identity. This defines a functor $\Sigma^{\infty}:\mathsf{Top}_{*}\to\mathsf{PreSpec}$. A map $f:X\to Y$ induces a family of maps $\Sigma^{n}f:\Sigma^{n}X\to\Sigma^{n}Y$ denoted $\Sigma^{\infty}f$. This is a function of spectra, i.e. a morphism.

Example (Loop spectrum). There is an analogous functor Ω^{∞} : Top_{*} \to PreSpec to Σ^{∞} .

Example (Eilenberg-Maclane spectrum). Fix G abelian. Recall K(G, n) denotes the space whose only nontrivial homotopy group is π_n , which is $\cong G$. We may represent it by a CW-complex, unique up to weak equivalence. Since

$$\pi_n(\Omega K(G, n+1)) = \pi_{n+1} K(G, n+1),$$

The space $\Omega K(G, n + 1)$ is a K(G, n). We may take it to be a CW-complex, so it is weakly equivalent to our CW representative of K(G, n) by uniqueness. Thus, Whitehead's theorem begets a homotopy equivalence¹

(0.1)
$$K(G, n) \simeq \Omega K(G, n+1).$$

This specifies a spectrum, the *Eilenberg-Maclane spectrum* HG of G, having spaces $HG_n = K(G, n)$ and structure maps the equivalences 0.1.

Other Important Examples. There are many. They deserve their own notes (to-do.) But to name some:

- ullet Thom spectra MG. The complex cobordism spectrum MU is an important example of a Thom spectrum. Then, tmf.
- Brown Representability (to-do) associates a spectrum to any generalized cohomology theory.
- Let \widetilde{G} be an abelian group. A Moore spectrum X is one having $\pi_n(X) = 0$ for n < 0 and $H_n(X) = 0$ for n > 0. Up to a non-canonical isomorphism, there is a unique Moore spectrum having $H_0 = G$.

1

¹Relevant MO discussion here.