Raport 2

Dyskretyzacja cech ciągłych. Redukcja wymiaru (PCA i MDS).

Jan Solarz 243889 Szymon Suszek 237288

27 kwietnia 2020

Spis treści

1	Krótki opis przeprowadzanych analiz	1
2	Zadanie 1. Dyskretyzacja (przedzialowanie) cech ciągłych 2.1 Wprowadzenie do zadania i przygotowanie danych 2.2 Analiza właściwa danych iris 2.2.1 Porównanie nienadzorowanych metod dyskrytyzacji 2.2.2 Wstępna analiza klas ze wzgłedu na cechy 2.3 Wpływ obserwacji odstających 2.4 Wnioski dyskretyzacji	2 2 8 10
3	Zadanie 2. Analiza składowych głównych PCA 3.1 Wprowadzenie do zadania i przygotowanie danych 3.2 Analiza właściwa 3.2.1 Wyznaczenie składowych głównych. 3.2.2 Zmienności odpowiadające poszczególnym składowym głównym. 3.2.3 Wizualizacja danych wielowymiarowych 3.2.4 Korelacja zmiennych 3.3 Wnioski do PCA	13 13 14 16 20
4	Zadanie 3. Skalowanie wielowymiarowe MDS 4.1 Wprowadzenie do zadania i przygotowanie danych	24

1 Krótki opis przeprowadzanych analiz

Zadanie 1. Analiza 4 cech 150 kwiatow irysa o 3 gatunkach. Na poczatku badamy zdolnosc do separacji klas ¡gatunkow¿. Nastepnym krokiem jest zastosowanie poznanych algortymow: qual width, equal frequency, k-means clustering oraz dyskretyzacji przedziałów zadanych przez użytkownika, ktore pomogą nam przyporzadkowac dane obiekty do konkretnej klasy. Przyjrzymy sie skuteczności dyskretyzcji algorytmow.

- Zadanie 2. PCA. W tym zadaniu skupimy sie na skladowych glownych cech i przeanalizujemy najwiekszy wklad wektorow ladunkowych.
- Zadanie 3. Pierwszy kontakt z MDS, metodą skalowania wielowymiarowego, mającego na
 celu wykrycie zmiennych ukrytych, które choć nie obserwowane bezpośrednio, wyjaśniają
 podobieństwa i różnice pomiędzy badanymi obiektami.

2 Zadanie 1. Dyskretyzacja (przedzialowanie) cech ciągłych

2.1 Wprowadzenie do zadania i przygotowanie danych

```
## Error in install.packages(arules): nie znaleziono obiektu 'arules'
## Loading required package: Matrix
##
## Attaching package: 'arules'
## The following objects are masked from 'package:base':
##
## abbreviate, write
```

2.2 Analiza właściwa danych iris

2.2.1 Porównanie nienadzorowanych metod dyskrytyzacji

- W tej sekcji przeprowadzimy kompletną analizę. Badać będziemy kolejno każdą cechę przy użyciu wszystkich czterech algorytmow.
- W raporcie ukazane są jedynie porównawcze wykresy przy każdej zmiennej

Przekształcenie zmiennej ciągłej na zmienną jakościową

1. Sepal.Length

```
##porównanie wszystkich metod
par(mfrow=c(1,4))
plot(iris$Species~x1.disc.equal.freq, col=1:3) #metoda1
plot(iris$Species~x1.disc.equal.width, col=1:3) #metoda2
plot(iris$Species~x1.disc.k.means, col=1:3) #metoda3
plot(iris$Species~x1.disc.user, col=1:3) #metoda4
```


Rysunek 1: Analiza Sepal.Length

```
matchClasses(tab.equal.freq1) #metoda1
## Cases in matched pairs: 72 %
      [4.3,5.4) [5.4,6.3)
                                [6.3, 7.9]
       "setosa" "versicolor" "virginica"
##
matchClasses(tab.equal.width1) #metoda2
## Cases in matched pairs: 70 %
                [5.5,6.7)
                              [6.7, 7.9]
##
      [4.3, 5.5)
       "setosa" "versicolor" "virginica"
##
matchClasses(tab.k.means1) #metoda3
## Cases in matched pairs: 72 %
     [4.3,5.33) [5.33,6.27)
                              [6.27, 7.9]
##
       "setosa" "versicolor" "virginica"
matchClasses(tab.user1) #metoda4
## Cases in matched pairs: 70 %
##
          small
                      medium
                                    large
##
       "setosa" "versicolor" "virginica"
```

- Zaczynamy od histogramu zmiennej, aby zobaczyc rozkład długości i obrać przedziały do algorytmu "user".
- Skuteczność wszystkich algorytmów w okolicach 70 procent
- Skuteczność bardzo podobna, najlepiej equal.freq i k.means, ropzietość 2 procent

2. Sepal.Width

```
## Error in discretize(x2, method = "fixed", breaks = przedzial2, labels =
c("small", : The calculated breaks are: -Inf, 2.8, 3, 3, Inf
## Some breaks are not unique. Look at the distribution of the data (e.g.,
histogram) to determine appropriate breaks and use the discretization method
'fixed'.
## Error in table(x2.disc.user, iris$Species): nie znaleziono obiektu 'x2.disc.user
##porównanie wszystkich metod
par(mfrow=c(1,4))
plot(iris$Species~x2.disc.equal.freq, col=1:3) #metoda1
plot(iris$Species~x2.disc.equal.width, col=1:3) #metoda2
plot(iris$Species~x2.disc.k.means, col=1:3) #metoda3
plot(iris$Species~x2.disc.user, col=1:3) #metoda4
## Error in eval(predvars, data, env): nie znaleziono obiektu 'x2.disc.user'
matchClasses(tab.equal.freq2) #metoda1
## Cases in matched pairs: 55.33 %
   [2,2.9) [2.9,3.2) [3.2,4.4]
## "versicolor" "versicolor"
                               "setosa"
matchClasses(tab.equal.width2) #metoda2
## Cases in matched pairs: 50.67 %
## [2,2.8) [2.8,3.6) [3.6,4.4]
## "versicolor"
                  "setosa"
                              "setosa"
matchClasses(tab.k.means2) #metoda3
## Cases in matched pairs: 56 %
      [2,3.02) [3.02,3.55) [3.55,4.4]
## "versicolor"
                  "setosa"
                              "setosa"
matchClasses(tab.user2) #metoda4
```

Error in apply(tab, 1, which.max): nie znaleziono obiektu 'tab.user2'

Rysunek 2: Analiza Sepal.Width

- Skuteczność w okolicach 50 procent
- Najlepiej equal.freq i k.means, rozpietosc 6 procent

3. Petal.Length

```
##porównanie wszystkich metod
par(mfrow=c(1,4))
plot(iris$Species~x3.disc.equal.freq, col=1:3) #metoda1
plot(iris$Species~x3.disc.equal.width, col=1:3) #metoda2
plot(iris$Species~x3.disc.k.means, col=1:3) #metoda3
plot(iris$Species~x3.disc.user, col=1:3) #metoda4
```


Rysunek 3: Analiza Petal.Length

```
matchClasses(tab.equal.freq3) #metoda1
## Cases in matched pairs: 95.33 \%
       [1,2.63) [2.63,4.9)
                             [4.9, 6.9]
       "setosa" "versicolor" "virginica"
matchClasses(tab.equal.width3) #metoda2
## Cases in matched pairs: 94.67 %
       [1,2.97) [2.97,4.93)
##
                              [4.93, 6.9]
       "setosa" "versicolor" "virginica"
##
matchClasses(tab.k.means3) #metoda3
## Cases in matched pairs: 89.33 %
       [1,2.95) [2.95,5.13) [5.13,6.9]
##
       "setosa" "versicolor" "virginica"
matchClasses(tab.user3) #metoda4
## Cases in matched pairs: 90 %
##
          small
                      medium
                                    large
##
       "setosa" "versicolor" "virginica"
```

- Skuteczność w okolicach 93 procent
- Bardzo wysoka skutecznosc, bliskie siebie wyniki, nejlepiej equal.freq i k.means, rozpietosc 5.33 procent.

4. Petal.Width

```
##porównanie wszystkich metod
par(mfrow=c(1,4))
plot(iris$Species~x4.disc.equal.freq, col=1:3) #metoda1
plot(iris$Species~x4.disc.equal.width, col=1:3) #metoda2
plot(iris$Species~x4.disc.k.means, col=1:3) #metoda3
plot(iris$Species~x4.disc.user, col=1:3) #metoda4
```


Rysunek 4: Analiza Petal. Width

```
matchClasses(tab.equal.freq4) #metoda1

## Cases in matched pairs: 94.67 %

## [0.1,0.867) [0.867,1.6) [1.6,2.5]

## "setosa" "versicolor" "virginica"

matchClasses(tab.equal.width4) #metoda2

## Cases in matched pairs: 96 %

## [0.1,0.9) [0.9,1.7) [1.7,2.5]

## "setosa" "versicolor" "virginica"
```

```
matchClasses(tab.k.means4) #metoda3

### Cases in matched pairs: 96 %

## [0.1,0.785) [0.785,1.69) [1.69,2.5]

## "setosa" "versicolor" "virginica"

matchClasses(tab.user4) #metoda4

## Cases in matched pairs: 88.67 %

## small medium large

## "setosa" "versicolor" "virginica"
```

- Skuteczność w okolicach 95 procent
- Bardzo wysoka skutecznosc, nejlepiej k.means 96 procent, rozpietosc 7.33 procent, najgorzej metoda user(reczna).

2.2.2 Wstępna analiza klas ze wzgłedu na cechy

```
par(mfrow=c(2,2))
boxplot(x1~iris$Species, col=1:3, main="Sepal.Length")
boxplot(x2~iris$Species, col=1:3, main="Sepal.Width")
boxplot(x3~iris$Species, col=1:3, main="Petal.Length")
boxplot(x4~Species, col=1:3, main="Petal.Width")
```


Rysunek 5: Wstępne wykresy pudełkowe

plot_histogram(iris)


```
par(mfrow=c(2,2))
plot(x1, y1, col=iris$Species, main = "Rozrzut dlugosci dzialki")
abline(v = breaks.equal.frequency1, col = "red", lwd=3)

plot(x2, y2, col=iris$Species, main = "Rozrzut szerokosci dzialki")
abline(v = breaks.equal.frequency2, col = "red", lwd=3)

plot(x3, y3, col=iris$Species, main = "Rozrzut dlugosci plata")
abline(v = breaks.equal.frequency3, col = "red", lwd=3)

plot(x4, y4, col=iris$Species, main = "Rozrzut szerokosci plata")
abline(v = breaks.equal.frequency4, col = "red", lwd=3)
```

Rozrzut dlugosci dzialki Rozrzut szerokosci dzialki ζ 2.0 3.0 4.5 5.5 6.5 4.0 х2 х1 Rozrzut dlugosci plata Rozrzut szerokosci plata 8 ¥ 0.0 5 2 3 4 6 0.5 1.5 2.5 хЗ х4

- 4 cechy ilościowe, 1 jakościowa (klasa-gatunek), brak brakujacych danych
- Po wstepnych rysunkach widzimy lepsza separacje cech dotyczacych Płata irysa, a więc Petal. Length i Petal. Width niz w pzypadku dzialki kielicha.

2.3 Wpływ obserwacji odstających

```
x1[which.min(x1)] <- min(x1) - 2*IQR(x1)
x1[which.max(x1)] <- max(x1) + 2*IQR(x1)

x2[which.min(x2)] <- min(x2) - 2*IQR(x2)
x2[which.max(x2)] <- max(x2) + 2*IQR(x2)

x3[which.min(x3)] <- min(x3) - 2*IQR(x3)
x3[which.max(x3)] <- max(x3) + 2*IQR(x3)

x4[which.min(x4)] <- min(x4) - 2*IQR(x4)
x4[which.max(x4)] <- max(x4) + 2*IQR(x4)</pre>
```

- Equal.freq nie wplynela, equal.width duzo mniejsza, k.means troche mneijsza, user nie wplynela.
- Equal.freq nie wplynela, equal.width duzo mniejsza, k.means taka sama, user nie wplynela.
- Equal.freq nie wplynela, equal.width z ponad 90 procent na 35 procent !!, k.means z 95 procent na 67 procent, user nie wplynela.

• Equal.freq - nie wplynela, equal.width z 96 procent na 35 procent !!, k.means - z 95 procent na 86 procent, user nie wplynela.

2.4 Wnioski dyskretyzacji

- Najlepszą zdolność dyskriminacyjną ma cecha Szerokosci Plata i Długosci Plata
- Najgorsza separacje na klasy ma szerokosc dzialki kielicha.
- Najbardziej skutecznym algorytmem jest k.means, zaraz po nim equal.freq. Rozpietossci sa wieksze przy cechach o lepszej separacji. Wplyw na to tez moze miec metoda wpisywania przedzialow przez uzytkownika.
- Przy algorytmie wpisywania przedziałów przez użytkownika działamy intuicyjnie patrząc
 na histogramy. Jest on jednak bardzo mylny i najmniej skuteczny, należy uważać na
 zmiane etykietyzacji.

3 Zadanie 2. Analiza składowych głównych PCA

3.1 Wprowadzenie do zadania i przygotowanie danych

plot_intro(dane)

Rysunek 6: Wstępne wykresy

Rysunek 7: Wstępne wykresy

boxplot(scale(dane),col=rainbow(8),main="Porownanie rozrzutu cech po standaryzacji")

Porownanie rozrzutu cech po standaryzacji

Rysunek 8: Wstępne wykresy

- Zaczynamy od wczytania danych, zajmować się będziemy analizą na 50 stanach USA.
- Zbiór charakteryzuje 8 zmiennych ilościowych, brak brakujących obserwacji/danych.
- Poza Area zmienna Population wyraża się także dużymi wartościami ¡ich wariancje odbiegaja od reszty¿, aby móc porównać wariancje cech należy dokonać stadaryzacji

3.2 Analiza właściwa

3.2.1 Wyznaczenie składowych głównych.

```
dane.po.pca <- prcomp(dane, scale.=TRUE)</pre>
dane.po.pca$rotation
                                    PC2
##
                       PC1
                                                PC3
                                                             PC4
                                                                          PC5
## Population
               0.12642809
                            0.41087417 -0.65632546 -0.40938555
                                                                  0.405946365
## Income
              -0.29882991
                            0.51897884 -0.10035919 -0.08844658 -0.637586953
## Illiteracy
               0.46766917
                            0.05296872
                                         0.07089849
                                                     0.35282802
                                                                  0.003525994
## Life Exp
              -0.41161037 -0.08165611 -0.35993297
                                                     0.44256334
                                                                  0.326599685
## Murder
               0.44425672
                            0.30694934
                                         0.10846751 -0.16560017 -0.128068739
## HS Grad
              -0.42468442
                            0.29876662
                                         0.04970850
                                                     0.23157412 -0.099264551
## Frost
              -0.35741244 -0.15358409
                                         0.38711447 -0.61865119
                                                                  0.217363791
## Area
              -0.03338461
                            0.58762446
                                         0.51038499
                                                     0.20112550
                                                                  0.498506338
##
                       PC6
                                     PC7
                                                 PC8
## Population -0.01065617 -0.062158658 -0.21924645
```

```
0.46177023 0.009104712 0.06029200
## Income
               0.38741578 -0.619800310 -0.33868838
## Illiteracy
## Life Exp
               0.21908161 -0.256213054
                                        0.52743331
## Murder
              -0.32519611 -0.295043151
                                         0.67825134
              -0.64464647 -0.393019181 -0.30724183
## HS Grad
               0.21268413 -0.472013140
                                        0.02834442
## Frost
               0.14836054 0.286260213
## Area
                                         0.01320320
boxplot(dane.po.pca$rotation[,1:8], main="Skladowe glowne", col=c("blue", "green", "yellow
```

Skladowe glowne

Rysunek 9: Pierwsze składowe główne

- Największą różnorodnością wartości charakteryzują się wektory ładunkowe PCA3-PCA6.
- Widzimy że PCA1 przypisuje się największą wagę cechom Illiteracy, LifeExp, Murder oraz HS Grad, są one na podobym poziomie około 0.43. PC1 możemy interpretować jako ogólny wskaźnik wykształcenia i długości życia, a więc wskaźnik związany z człowiekiem.
- Do PCA2 natomiast przypisane są wysokie wartości Area, Income oraz Population na poziomie 0.41-0.58, przypisać go możemy do charakterystyki danego Stanu związanego z zarobkami.

3.2.2 Zmienności odpowiadające poszczególnym składowym głównym.

```
podsumowanie <- summary(dane.po.pca)</pre>
podsumowanie
## Importance of components:
##
                              PC1
                                     PC2
                                            PC3
                                                     PC4
                                                             PC5
                                                                     PC6
                                                                              PC7
## Standard deviation
                           1.8971 1.2775 1.0545 0.84113 0.62019 0.55449 0.38006
## Proportion of Variance 0.4499 0.2040 0.1390 0.08844 0.04808 0.03843 0.01806
## Cumulative Proportion
                           0.4499 0.6539 0.7928 0.88128 0.92936 0.96780 0.98585
##
                               PC8
## Standard deviation
                           0.33643
## Proportion of Variance 0.01415
## Cumulative Proportion 1.00000
barplot(podsumowanie$importance[2,], ylab = "wariancja")
title("Wariancje skladowych")
```

Wariancje skladowych

Rysunek 10: Wkład wyjaśnionej zmienności

- Widać zdecydowaną przewagę zmienności składowej PC1- aż 45 procent.
- Zmienność maleje z każdą kolejną składową.
- Standard deviation odchylenie standardowe dla każdej składowej głównej PC1, ... (liczone dla elementów każdej kolumny)
- Cumulative Proportion kumulacyjna proporcja zmienności np. w kolumnie PC2 jest to zmienność wszystkich danych opisana przez dwie pierwsze składowe główne 65,39 procent

```
barplot(podsumowanie$importance[3,], ylab = "wariancja skumulowana")
abline(h=0.8, col = "Red", lty = 5, )
abline(h=0.9, col = "Green", lty = 5)
title("Wariancje skumulowane skladowych")
```

Wariancje skumulowane skladowych

Rysunek 11: Ile składowych jest nam potrzebnych?

- Aby pokryć 80 procent zmienności wystarczyłyby prawie 3 składowe 79,28 procent, ale aby w ppełni pokryć 80 procent potrzebujemy jednak 4 składowych 88.5 procent (mozna łatwo odczytać z Cumulative proportion).
- do wyjaśnienia 90 procent zmienności potrzeba 5 składowych 92,9 procent

3.2.3 Wizualizacja danych wielowymiarowych

Badanie podobieństw poszczególnych stanów na podstawie charakterystycznych cech z głównych składowych

Mapa dywizji użytych w zadaniu

Error in contrib.url(repos, "source"): trying to use CRAN without setting a mirror

```
plot(dane.po.pca$x[,1], dane.po.pca$x[,2], col=kolory[as.numeric(state.division)], pch=1
text(dane.po.pca$x[,1], dane.po.pca$x[,2]+0.2, labels=state.abb, cex=0.6)
legend("topright",legend=levels(state.division), col=kolory, pch=16, cex=0.7, bg="azure2")
```


Rysunek 12: Wykres rozrzutu podobieństwa stanów 2D PC1-PC2

- Przy zestawieniu PC1 i PC2 zwracmy uwage na cechy Area, Illeteracy i LifeExp
- Wyizolowany Stan Alaski, zdecydowanie najwieksza powierzchnia, ktora wyróżnia PC1. Drugim takim Stanem jest California
- Grupa stanów z dywizji South Atlantic i East South Central charakteryzuje się wysokim wskaźnikiem PC1 (położenie po dolnej prawej stronie)- wysoki analfabetyzm.

```
plot(dane.po.pca$x[,3], dane.po.pca$x[,8], col=kolory[as.numeric(state.division)], pch=8
text(dane.po.pca$x[,3], dane.po.pca$x[,8]+0.2, labels=state.abb, cex=0.7)
legend("bottomright",legend=levels(state.division), col=kolory, pch=16, cex=0.5, bg="azu
```


Rysunek 13: Wykres rozrzutu podobieństwa stanów 2D PC3-PC8

- Przy zestawieniu PC3 i PC8 zwracmy uwage na cechy Frost i Murder
- Wyizolowany Stan Alaski, zdecydowanie ma najwiecej dni poznizej zera stpopni, pozniej taka ceche wykazuja stany Wyoming, Minesota i Montana- wszystkie na polnocy USA
- Grupa stanów z dywizji South Atlantic i East South Central charakteryzuje się wysokim wskaźnikiem PC1 (położenie po dolnej prawej stronie)- wysoki analfabetyzm.
- Stany z północy charaktryzuja sie mniejszym wskaznikiem morderstw.

```
scatter3D(dane.po.pca$x[,1], dane.po.pca$x[,2], dane.po.pca$x[,3], colvar=as.numeric(st
text3D(dane.po.pca$x[,1], dane.po.pca$x[,2], dane.po.pca$x[,3], labels = state.abb, add
```


Rysunek 14: Wykres rozrzutu podobieństwa stanów 3D PC1-PC2-PC3

- Widzimy zdecydowane grupowanie sie stanów ze wzledu na dywziej(ten sam kolor), izolacja Alaski.
- Dywizja niebieska/zielona(PCA1 i PCA2), dywizja fioletowa (PC3 i PCA2)
- Duże skuepienie głównie kolorów czerwonych ale również ciemnoniebieskich w spłocie osi PC1, PC2 i PC3- niskie wskazniki

3.2.4 Korelacja zmiennych

```
plot(dane.po.pca, type='l', main="Wplyw kolejnych skladowych")
```

Wplyw kolejnych skladowych

Rysunek 15: Wykresy korelacji

biplot(dane.po.pca, scale=0, main="Charakterystyki stanow")

Rysunek 16: Wykresy korelacji

- Czerwone strzałki (osie) wyznaczone są przez wektory własne dla każdej zmiennej.
- Wykres wizualizuje relację pomiędzy zmiennymi.
- Wyodrębnienie (wykres charakterystyki stanów) Alaski i Californi ze wzgledu na Powierzchnie, Texas, New York, również California i Florida na populacje.

```
##
                    PC1
                               PC2
                                     PC3
                                                      PC4
                                                                  PC5
## Population
             0.23984363
                         0.52487776 -0.69208615 -0.34434757
                                                          0.251765858
## Income
             -0.56690291
                         0.66297778 -0.10582738 -0.07439531 -0.395428165
## Illiteracy 0.88720374 0.06766573 0.07476148 0.29677518
                                                         0.002186803
## Life Exp
            -0.78085597 -0.10431289 -0.37954435 0.37225450
                                                          0.202555453
## Murder
             ## HS Grad
            -0.80565843 0.38166418 0.05241692 0.19478457 -0.061563366
## Frost
            -0.67803840 -0.19619845 0.40820686 -0.52036774
                                                          0.134807911
## Area
             -0.06333314
                         0.75067024
                                    0.53819393 0.16917324 0.309171079
##
                     PC6
                                 PC7
                                             PC8
## Population -0.005908762 -0.023624278 -0.073761915
## Income
             0.256048018 0.003460375
                                     0.020284268
## Illiteracy 0.214819050 -0.235563887 -0.113946217
## Life Exp
             0.121479057 -0.097377400
                                    0.177446387
## Murder
            -0.180318726 -0.112135329
                                     0.228186671
## HS Grad
            -0.357451480 -0.149372507 -0.103366533
## Frost
             0.117931704 -0.179395279 0.009536022
## Area
             0.082264769 0.108797248 0.004442002
```

```
library(reshape2)
library(ggplot2)
K <- melt(korelacja)</pre>
head(K)
##
           Var1 Var2
                          value
## 1 Population PC1 0.2398436
## 2
         Income
                PC1 -0.5669029
## 3 Illiteracy PC1 0.8872037
## 4
       Life Exp
                PC1 -0.7808560
## 5
         Murder
                PC1
                     0.8427885
## 6
        HS Grad
                PC1 -0.8056584
library(hrbrthemes)
## Error: package or namespace load failed for 'hrbrthemes' in dyn.load(file, DLLpath
   nie można załadować współdzielonego obiektu '/Library/Frameworks/R.framework/Versic
## dlopen(/Library/Frameworks/R.framework/Versions/3.6/Resources/library/systemfonts/1:
6): Library not loaded: /opt/X11/lib/libfreetype.6.dylib
   Referenced from: /Library/Frameworks/R.framework/Versions/3.6/Resources/library/syst
```

##

Reason: image not found

```
ggplot(data = K, aes(x=Var1, y=Var2, fill=value)) +
  geom_tile()+
  scale_fill_gradient(low="yellow", high="blue")
```


Rysunek 17: Mapa ciepła

- Widzimy wizaulizacje na mapie ciepła korealcji pomiędzy wartościami obserwacji dla poszczególnych zmiennych a wartościami po wykoaniu PCA
- Widzimy wyraziste kolory niebieskie i żółte przy PC1, które ma największy wpływ

3.3 Wnioski do PCA

- Zdecydowanie największy wpływ na zmienność ma główna składowa PC1- ponad 40 procent. Po korelacji widzimy, że ma ona wpływ głownie na zmienne Income, Illiteracy, LiveExp, Murder, Hs Grad i Frost.
- Każdy następny posiada mniejszy wpływ- wprowadza mniejszą zmienność
- Już 3 składowe zawierają niemal 80 procent całej zmienności.
- Zdecydowanie widać podobieństwo w danych zmiennych ze względu na położenie danego stanu (dystrykty). Główne składowe w większości przypadków poprawnie wskazują różnice stanów w poszczególnych zmiennych. Na wykresach widać jednak duże skupiska.

4 Zadanie 3. Skalowanie wielowymiarowe MDS

4.1 Wprowadzenie do zadania i przygotowanie danych

Do analizy wybrano zbiór danych iris, który został opisany podczas omawiania zadania
 1. Zmienna grupująca Species nie została wykorzystana do redukcji wymiaru, a jedynie podczas wizualizacji.

```
dane_iris <- iris[-102,]
podobienstwa_iris <- daisy(dane_iris[-5], stand=T)
# wykorzystanie metody skalowania niemetrycznego
wynik_mds <- isoMDS(podobienstwa_iris, k=2)

## initial value 4.671392
## iter 5 value 4.072982
## iter 5 value 4.071831
## iter 5 value 4.071830
## final value 4.071830
## converged</pre>
```

4.2 Analiza właściwa z wizualizacją daych

- Analiza skalowania wielowymiarowego NIEMETRYCZNEGO
- Usunięcie wiersza nr 102 ponieważ kolejna metoda nie przyjmuje jako argumentu wartości zerowych oraz ujemnych.
- Ponownie usuwamy zmienna gatunek uzyta tylko podczas wizualizacji

```
plot(wynik_mds$points[,1], wynik_mds$points[,2], pch=16)
```


Rysunek 18: Wykres w 2 wymiarach

4.2.1 Funkcja do wyznaczania wykresu wartości funkcji kryterialnej STRESS

```
scree.plot = function(d, k) {
  stresses=isoMDS(d, k=k)$stress
 for(i in rev(seq(k-1)))
    stresses=append(stresses,isoMDS(d, k=i)$stress)
 plot(seq(k), rev(stresses), type="b", xaxp=c(1,k, k-1), ylab="Stress", xlab="Number of
#Wykres funkcji kryterialnej STRESS
scree.plot(podobienstwa_iris, k =4)
## initial value 0.000000
## final value 0.000000
## converged
## initial value 0.687495
         5 value 0.582213
## iter
## final value 0.576638
## converged
## initial value 4.671392
## iter 5 value 4.072982
## iter 5 value 4.071831
## iter 5 value 4.071830
## final value 4.071830
```

```
## converged

## initial value 25.520935

## iter 5 value 20.532876

## iter 5 value 20.518557

## iter 5 value 20.518557

## final value 20.518557

## converged
```


Rysunek 19: jakis tytul

Funkcja wyznacza dla każdego z wymiarów funkcję stresu a następnie tworzy wykres

```
wyk_sh <- Shepard(podobienstwa_iris, wynik_mds$points)
plot(wyk_sh, pch = ".")
lines(wyk_sh$x, wyk_sh$yf, type = "S", col = "red")
title("Wykres Sheparda")</pre>
```

Wykres Sheparda

Rysunek 20: Wykres Sheparda

- Wykres ten przedstawia odtworzone odległości wykreślone na osi pionowej względem pierwotnych niepodobieństw wykreślonych na osi poziomej
- Pokazuje także funkcję krokową. Linia ta przedstawia wartości odległości, które są rzutami oryginalnych składowych (wynik transformacji monotonicznej danych wejściowych)
- Jeśli wszystkie odtworzone odległości znajdowałyby się na lini krokowej, to porządek rangowy odległości (lub niepodobieństw) byłby dokładnie odtworzony
- Odchylenia od lini krokowej wskazują na brak dopasowania
- UWAGA jak uwzględnimy zmienna gatunki podczas analiz czyli zamiast usuniete[-5] damy usuniete to otrzymamy na wykresach lepszą separację grup obiekty z tych samych grup będą blisko siebie
- Dla usuniete[-5] mamy dobrą duże lepsze dopasowanie krzywej krokowej (czerwony) a punktów dla usuniete punkty są w mniejszym stopniu skupione wokół krzywej krokowej (czerwony)

```
iris3 <- cbind(dane_iris, wynik_mds)
ggplot(iris3, aes(wynik_mds$points[,1], wynik_mds$points[,2], col = Species, fill = Species_point(shape = 21, col = "black")+
stat_ellipse(geom = "polygon",alpha = 0.5, col = "black")</pre>
```


Rysunek 21: jakis tytul

- Dobra separacja klasy setosa jest wyraźnie oddalona od innych obserwacji
- Nieco mniejsza separacja jest dla klas versicolor i virignica

Literatura

[1] dr inż. Adam Zagdański, http://prac.im.pwr.wroc.pl/~zagdan/polish_ver/ED2020/index.html, 2020.