Università degli Studi di Padova

DIPARTIMENTO DI MATEMATICA "TULLIO LEVI-CIVITA"

CORSO DI LAUREA IN INFORMATICA

Riconoscimento del linguaggio naturale per assistenti virtuali: interpretazione e apprendimento di comandi vocali

Tesi di laurea triennale

Relatore	
Prof.Paolo Baldan	
	Laure and o

Massimo Toffoletto

Annie Agguppiago 2010 2020

Anno Accademico 2019-2020

Sommario

Il presente documento descrive il lavoro svolto durante il periodo di stage, della durata di 320 ore, dal laureando Massimo Toffoletto presso l'azienda Zucchetti S.p.A. Gli obiettivi da raggiungere sono stati molteplici e suddivisi in due parti.

Nella prima parte ho studiato il funzionamento dei tre principali assistenti virtuali nel seguente ordine: Assistant, Alexa e Siri. Gli obiettivi sono stati quindi l'analisi dei singoli assistenti e lo svolgimento di una comparazione tra gli stessi, sia delle funzionalità offerte agli sviluppatori che delle capacità riconoscitive del linguaggio naturale. A questo proposito ho realizzato un proof of concept dimostrativo per ciascuno di essi.

Nella seconda parte gli obiettivi sono stati lo studio di regole per la realizzazione di grammatiche che interpretano il linguaggio naturale, implementate da Zucchetti ma ancora in via di sviluppo, e la costruzione di un'applicazione che le utilizzi. Infine ho esplorato ed implementato un'interfaccia vocale con un modo conversazionale di interagire che si integri con le regole già realizzate da Zucchetti.

"Il computer non è una macchina intelligente che aiuta le persone stupide, anzi, è una macchina stupida che funziona solo nelle mani delle persone intelligenti."

— Umberto Eco

Ringraziamenti

Innanzitutto, vorrei esprimere la mia gratitudine al Prof. Paolo Baldan, relatore della mia tesi, per l'aiuto e il sostegno che mi ha fornito durante lo svolgimento del lavoro.

Desidero ringraziare con affetto tutta la mia famiglia per il loro sostegno e per essere stati sempre presenti durante gli anni di studio.

Voglio ringraziare inoltre i miei amici per gli anni meravigliosi passati assieme ed in particolare Alberto, Lorenzo e Fiammetta che mi hanno sempre sostenuto nei momenti più difficili ma anche in quelli più felici.

Padova, Luglio 2020

Massimo Toffoletto

Indice

1	Intr	oduzione	1
	1.1	Zucchetti S.p.A	1
	1.2	Lo stage proposto	1
	1.3	Organizzazione del testo	2
2	Lo s	stage	3
	2.1	Descrizione del progetto	3
3	Des	crizione dello stage	5
	3.1	Introduzione al progetto	5
	3.2	Analisi preventiva dei rischi	5
	3.3	Requisiti e obiettivi	5
	3.4	Pianificazione	5
4	Ana	alisi dei requisiti	7
	4.1	Casi d'uso	7
	4.2	Tracciamento dei requisiti	8
5	Pro	gettazione e codifica	11
	5.1	Tecnologie e strumenti	11
	5.2	Ciclo di vita del software	11
	5.3	Progettazione	11
	5.4	Design Pattern utilizzati	11
	5.5	Codifica	11
6	Ver	ifica e validazione	13
7	Con	nclusioni	15
	7.1	Consuntivo finale	15
	7.2	Raggiungimento degli obiettivi	15
	7.3	Conoscenze acquisite	15
	7.4	Valutazione personale	15
\mathbf{A}	App	f oendice $f A$	17
Bi	bliog	grafia	21

Elenco delle figure

$\mathrm{El}\epsilon$	enco delle tabelle
4.1 4.2	Tabella del tracciamento dei requisti funzionali

4.3 Tabella del tracciamento dei requisiti di vincolo

Introduzione

1.1 Zucchetti S.p.A

Zucchetti è un'azienda italiana fondata più di 40 anni fa che produce soluzioni software, hardware e servizi per soddisfare le esigenze tecnologiche dei propri clienti, anche a livello internazionale. Le sedi sono dislocate in numerose città italiane, tra cui Padova dove ho svolto lo stage e Lodi in cui risiede la sede amministrativa.

Domenico Zucchetti, fondatore dell'azienda, ha avuto la geniale intuizione di costruire un software per agevolare il lavoro dei commercialisti, allora completamente cartaceo e manuale. Con il passare degli anni il suo prodotto ha avuto un successo sempre maggiore tanto da ottenere collaborazioni con aziende del calibro di IBM. A partire da questo, Zucchetti ha continuato a perseguire l'innovazione del proprio prodotto integrandolo con nuovi moduli quali ERP e la più recente fatturazione elettronica, con l'obiettivo di conferire maggiore flessibilità e adattabilità per ogni tipologia di impresa, senza più limitarsi alla categoria dei commercialisti. Forte di questo, Zucchetti si è espansa a livello nazionale ed internazionale ed ora si pone sul mercato con una vasta gamma di servizi per numerosi settori quali industrie manifatturiere, trasporti, logistica, sanità, fitness e molti altri.

1.2 Lo stage proposto

Uno dei pilastri di Zucchetti che ne ha caratterizzato la costante crescita è l'innovazione e la propensione alla ricerca di nuove tecnologie.

A questo proposito la sede di Padova è caratterizzata da un reparto di ricerca e sviluppo nel quale sono stato inserito durante la mia esperienza. Il coordinatore di questo reparto

è il dott. Gregorio Piccoli che mi ha proposto il progetto di stage e si è offerto come mio tutor.

L'azienda sta cercando di introdurre nei propri prodotti, in particolare nel software gestionale, un'interfaccia vocale che permetta agli utenti un'interazione più veloce e spontanea per le operazioni più comuni. L'obiettivo è quindi implementare un'interfaccia diversa da quella grafica, con caratteristiche proprie, che permetta un nuova modalità di interazione, ancora poco sviluppata ma dalle grosse potenzialità.

Il principale ostacolo da superare per il raggiungimento di tale obiettivo è il riconoscimento del linguaggio naturale attraverso un'applicativo software. Per fare ciò l'azienda ha sviluppato delle regole per la creazione di grammatiche in grado di riconoscere comandi espressi con il linguaggio naturale.

Tuttavia è una tecnologia ancora in fase di sviluppo ed in merito a ciò mi sono stati proposte, come progetto di stage, due tematiche legate tra loro e pensate per suddividere lo stage in due parti:

- analizzare i tre assistenti virtuali attualmente più diffusi sul mercato, Assistant, Alexa e Siri, per comprenderne le abilità e, qualora esistesse la possibilità, permettere agli utenti di utilizzarli per impartire comandi al proprio software gestionale Zucchetti;
- esplorare la possibilità di aggiungere la capacità conversazionale in un'applicazione che utilizzi una grammatica costruita con la nuova tecnologia dell'azienda, ispirandosi anche agli assistenti virtuali precedentemente studiati.

1.3 Organizzazione del testo

Il secondo capitolo descrive ...

Il terzo capitolo approfondisce ...

Il quarto capitolo approfondisce ...

Il quinto capitolo approfondisce ...

Il sesto capitolo approfondisce ...

Nel settimo capitolo descrive ...

Riguardo la stesura del testo, relativamente al documento sono state adottate le seguenti convenzioni tipografiche:

- * gli acronimi, le abbreviazioni e i termini ambigui o di uso non comune menzionati vengono definiti nel glossario, situato alla fine del presente documento;
- * per la prima occorrenza dei termini riportati nel glossario viene utilizzata la seguente nomenclatura: $parola^{[g]}$;
- * i termini in lingua straniera o facenti parti del gergo tecnico sono evidenziati con il carattere *corsivo*.

Lo stage

2.1 Descrizione del progetto

Il progetto di stage è legato ad uno degli ambiti più innovativi della ricerca scientifica e tecnologica: il riconoscimento del linguaggio naturale. Nel corso degli ultimi anni l'azienda sta affrontando la nuova sfida della comprensione di comandi vocali integrata nei propri prodotti e ha deciso di puntare sulle capacità di giovani studenti universitari per esplorare ancor più questo tema. È tuttora in via di sviluppo una tecnologia che permette la creazione di grammatiche attraverso regole ben precise ed in merito a questo argomento è stato costruito lo stage.

La proposta di Zucchetti è di analizzare in modo dettagliato e comparativo i tre assistenti virtuali più utilizzati e, sulla carta, migliori:

- * Assistant: assistente di Google presente in quasi tutti i dispositivi Android oltre ad essere integrato nella linea Google Home e Nest;
- * Alexa: assistente di Amazon presente principalemente nella linea di dispositivi Echo ma integrabile nei dispositivi con sistema operativo Android e IOS;
- * Siri: assistente di Apple presente esclusivamente in tutti i prodotti Apple.

Lo studio deve comprendere tutte le capacità che posseggono, ad eccezione di quelle relative alla costruzione di smart home in quanto non di diretto interesse per i prodotti aziendali, mentre di particolare interesse è la costruzione di *Skill* personalizzate ed integrabili nei propri progetti.

Sulla base dei risultati riscontrati emerge l'idea concreta proposta dall'azienda per lo stage: creare un'applicazione con un'interfaccia vocale, progettata secondo i canoni studiati in precedenza dagli altri assistenti e basata su grammatiche costruite tramite la tecnologia di Zucchetti, che permetta di intrattenere una conversazione con l'utente rispondendo alle sue richieste.

Descrizione dello stage

Breve introduzione al capitolo

3.1 Introduzione al progetto

3.2 Analisi preventiva dei rischi

Durante la fase di analisi iniziale sono stati individuati alcuni possibili rischi a cui si potrà andare incontro. Si è quindi proceduto a elaborare delle possibili soluzioni per far fronte a tali rischi.

1. Performance del simulatore hardware

Descrizione: le performance del simulatore hardware e la comunicazione con questo potrebbero risultare lenti o non abbastanza buoni da causare il fallimento dei test. **Soluzione:** coinvolgimento del responsabile a capo del progetto relativo il simulatore hardware.

3.3 Requisiti e obiettivi

3.4 Pianificazione

Analisi dei requisiti

Breve introduzione al capitolo

4.1 Casi d'uso

Per lo studio dei casi di utilizzo del prodotto sono stati creati dei diagrammi. I diagrammi dei casi d'uso (in inglese *Use Case Diagram*) sono diagrammi di tipo Unified Modeling Language (UML) dedicati alla descrizione delle funzioni o servizi offerti da un sistema, così come sono percepiti e utilizzati dagli attori che interagiscono col sistema stesso. Essendo il progetto finalizzato alla creazione di un tool per l'automazione di un processo, le interazioni da parte dell'utilizzatore devono essere ovviamente ridotte allo stretto necessario. Per questo motivo i diagrammi d'uso risultano semplici e in numero ridotto.

Figura 4.1: Use Case - UC0: Scenario principale

UC0: Scenario principale

Attori Principali: Sviluppatore applicativi.

Precondizioni: Lo sviluppatore è entrato nel plug-in di simulazione all'interno dell'I-DE.

Descrizione: La finestra di simulazione mette a disposizione i comandi per configurare, registrare o eseguire un test.

Postcondizioni: Il sistema è pronto per permettere una nuova interazione.

4.2 Tracciamento dei requisiti

Da un'attenta analisi dei requisiti e degli use case effettuata sul progetto è stata stilata la tabella che traccia i requisiti in rapporto agli use case.

Sono stati individuati diversi tipi di requisiti e si è quindi fatto utilizzo di un codice identificativo per distinguerli.

Il codice dei requisiti è così strutturato R(F/Q/V)(N/D/O) dove:

R = requisito

F = functionale

Q = qualitativo

V = di vincolo

N = obbligatorio (necessario)

D = desiderabile

Z = opzionale

Nelle tabelle 4.1, 4.2 e 4.3 sono riassunti i requisiti e il loro tracciamento con gli use case delineati in fase di analisi.

Tabella 4.1: Tabella del tracciamento dei requisti funzionali

Requisito	Descrizione	Use Case
RFN-1	L'interfaccia permette di configurare il tipo di sonde del	UC1
	test	

Tabella 4.2: Tabella del tracciamento dei requisiti qualitativi

Requisito	Descrizione	Use Case
RQD-1	Le prestazioni del simulatore hardware deve garantire la	-
	giusta esecuzione dei test e non la generazione di falsi negativi	

Tabella 4.3: Tabella del tracciamento dei requisiti di vincolo

Requisito	Descrizione	Use Case
RVO-1	La libreria per l'esecuzione dei test automatici deve essere	-
	riutilizzabile	

Progettazione e codifica

Breve introduzione al capitolo

5.1 Tecnologie e strumenti

Di seguito viene data una panoramica delle tecnologie e strumenti utilizzati.

Tecnologia 1

Descrizione Tecnologia 1.

Tecnologia 2

Descrizione Tecnologia 2

5.2 Ciclo di vita del software

5.3 Progettazione

Namespace 1

Descrizione namespace 1.

Classe 1: Descrizione classe 1

Classe 2: Descrizione classe 2

5.4 Design Pattern utilizzati

5.5 Codifica

Verifica e validazione

Conclusioni

- 7.1 Consuntivo finale
- 7.2 Raggiungimento degli obiettivi
- 7.3 Conoscenze acquisite
- 7.4 Valutazione personale

Appendice A

Appendice A

Citazione

Autore della citazione

Bibliografia