# Deep Learning 101

# 4주차

12기 이두형 12기 임효진



### Curriculum

1주차: 딥러닝 소개 및 기초 (XOR문제, 퍼셉트론, 활성화 함수 등)

2주차: Multi-layer Neural Network (Loss Function, Gradient Descending, Backpropagation, MNIST practice, Optimization)

3주차 : CNN 소개 및 기초 (Convolution, Padding, Stride, Pooling등 기초 개념 소개)

4주차 : CNN 실습 (CIFAR-10)

5주차 : RNN, LSTM, GRU

6주차 : seq2seq, 실습 (세션 후 조별 과제 부여)

7주차 : 조별 과제 발표





#### • CNN





#### Convolution





#### Padding



(4, 4) 입력 데이터(패딩: 1)



필타

(3, 3)

10

16

15

10

12

15

6

10

10

8



• Stride





• Feature map size

$$OH = \frac{H + 2P - FH}{S} + 1$$

$$OW = \frac{W + 2P - FW}{S} + 1$$



#### Channel





#### Pooling



[그림 7] Max-pooling 예제



● LeNet & AlexNet

그림 7-28 AlexNet의 구성(20)

그림 7-27 LeNet의 구성(20)

NPUT 32x32

C3: f. maps 16@10x10 S4: f. maps 16@5x5 S2: f.



Full connection

Full connection

Subsampling

Convolutions

Subsampling

Convolutions

Gaussian connections

# Week4



### CIFAR-10

CIFAR-10 airplane automobile bird cat deer dog frog horse ship truck



### CIFAR-10

#### CIFAR-10





## CIFAR-10

#### • CIFAR-10

#### CIFAR-10

| method                              | error (%)        |
|-------------------------------------|------------------|
| NIN                                 | 8.81             |
| DSN                                 | 8.22             |
| FitNet                              | 8.39             |
| Highway                             | 7.72             |
| ResNet-110 (1.7M)                   | 6.61             |
| ResNet-1202 (19.4M)                 | 7.93             |
| ResNet-164, pre-activation (1.7M)   | 5.46             |
| ResNet-1001, pre-activation (10.2M) | 4.92 (4.89±0.14) |



#### Degradation

| model | D    | D+2  | D+4  | D+6  | D+8  |
|-------|------|------|------|------|------|
| top-1 | 34.5 | 34.0 | 33.9 | 34.0 | 34.2 |
| top-5 | 13.9 | 13.6 | 13.4 | 13.5 | 13.6 |

Table 3. Error rates of models with increased depth. The model "D+i" means (2, 256)×i are added on the last stage of the model D. In this table, we do not constrain the time complexity, so the deeper models are slower.



ResNet

Plaint net



Residual net





Residual





#### Residual Block



```
shorcut = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += shortcut
out = self.relu(out)
```



#### PlainNet vs. ResNet







#### Bottle Neck







#### Limitation

| me                  | error (%)           |       |                         |  |  |
|---------------------|---------------------|-------|-------------------------|--|--|
| Maxo                | Maxout [10]         |       |                         |  |  |
| NII                 | NIN [25]            |       |                         |  |  |
| DS                  | DSN [24]            |       |                         |  |  |
|                     | # layers   # params |       |                         |  |  |
| FitNet [35]         | 19                  | 2.5M  | 8.39                    |  |  |
| Highway [42, 43]    | Highway [42, 43] 19 |       | 7.54 (7.72±0.16)        |  |  |
| Highway [42, 43] 32 |                     | 1.25M | 8.80                    |  |  |
| ResNet              | 20                  | 0.27M | 8.75                    |  |  |
| ResNet              | 32                  | 0.46M | 7.51                    |  |  |
| ResNet              | 44                  | 0.66M | 7.17                    |  |  |
| ResNet              | 56                  | 0.85M | 6.97                    |  |  |
| ResNet              | 110                 | 1.7M  | <b>6.43</b> (6.61±0.16) |  |  |
| ResNet              | 1202                | 19.4M | 7.93                    |  |  |





#### train\_error tag: log/train\_error





# From 100 to 1000 Layers

pre-activation





ResDrop





#### Wide





#### Wide

| group name | output size    | block type = $B(3,3)$                                                                             |
|------------|----------------|---------------------------------------------------------------------------------------------------|
| conv1      | $32 \times 32$ | $[3 \times 3, 16]$                                                                                |
| conv2      | 32×32          | $\left[\begin{array}{c} 3\times3, 16\times k \\ 3\times3, 16\times k \end{array}\right] \times N$ |
| conv3      | 16×16          | $\left[\begin{array}{c} 3\times3, 32\times k \\ 3\times3, 32\times k \end{array}\right]\times N$  |
| conv4      | 8×8            | $\begin{bmatrix} 3\times3, 64\times k \\ 3\times3, 64\times k \end{bmatrix} \times N$             |
| avg-pool   | 1×1            | [8×8]                                                                                             |

| depth | k  | # params | CIFAR-10 | CIFAR-100 |
|-------|----|----------|----------|-----------|
| 40    | 1  | 0.6M     | 6.85     | 30.89     |
| 40    | 2  | 2.2M     | 5.33     | 26.04     |
| 40    | 4  | 8.9M     | 4.97     | 22.89     |
| 40    | 8  | 35.7M    | 4.66     | -         |
| 28    | 10 | 36.5M    | 4.17     | 20.50     |
| 28    | 12 | 52.5M    | 4.33     | 20.43     |
| 22    | 8  | 17.2M    | 4.38     | 21.22     |
| 22    | 10 | 26.8M    | 4.44     | 20.75     |
| 16    | 8  | 11.0M    | 4.81     | 22.07     |
| 16    | 10 | 17.1M    | 4.56     | 21.59     |



#### Wide

| depth | k  | dropout | CIFAR-10 | CIFAR-100 | SVHN |
|-------|----|---------|----------|-----------|------|
| 16    | 4  |         | 5.02     | 24.03     | 1.85 |
| 16    | 4  | ✓       | 5.24     | 23.91     | 1.64 |
| 28    | 10 |         | 4.00     | 19.25     | -    |
| 28    | 10 | ✓       | 3.89     | 18.85     | -    |
| 52    | 1  |         | 6.43     | 29.89     | 2.08 |
| 52    | 1  | ✓       | 6.28     | 29.78     | 1.70 |



# DenseNet

#### DenseNet





### DenseNet

DenseNet



PyramidNet : ResNet에서의 down sampling 해결



• Why 'Pyramid'?









PyramidNet's Residual Block



PyramidNet's Residual Block



| Network                                  | # of Params | Output Feat. Dim. | Depth | Training Mem. | CIFAR-10      | CIFAR-100  |
|------------------------------------------|-------------|-------------------|-------|---------------|---------------|------------|
| NiN [18]                                 | -           | -                 | -     | -             | 8.81          | 35.68      |
| All-CNN [27]                             | -           | -                 | -     | -             | 7.25          | 33.71      |
| DSN [17]                                 | -           | -                 |       | -             | 7.97          | 34.57      |
| FitNet [21]                              | ~           | -                 | -     | -             | 8.39          | 35.04      |
| Highway [29]                             | -           |                   | -     | -             | 7.72          | 32.39      |
| Fractional Max-pooling [4]               | -           | -                 | -     | -             | 4.50          | 27.62      |
| ELU [29]                                 | -           | -                 | -     | -             | 6.55          | 24.28      |
| ResNet [7]                               | 1.7M        | 64                | 110   | 547MB         | 6.43          | 25.16      |
| ResNet [7]                               | 10.2M       | 64                | 1001  | 2,921MB       | -             | 27.82      |
| ResNet [7]                               | 19.4M       | 64                | 1202  | 2,069MB       | 7.93          | -          |
| Pre-activation ResNet [8]                | 1.7M        | 64                | 164   | 841MB         | 5.46          | 24.33      |
| Pre-activation ResNet [8]                | 10.2M       | 64                | 1001  | 2,921MB       | 4.62          | 22.71      |
| Stochastic Depth [10]                    | 1.7M        | 64                | 110   | 547MB         | 5.23          | 24.58      |
| Stochastic Depth [10]                    | 10.2M       | 64                | 1202  | 2,069MB       | 4.91          | -          |
| FractalNet [14]                          | 38.6M       | 1,024             | 21    | -             | 4.60          | 23.73      |
| SwapOut v2 (width×4) [26]                | 7.4M        | 256               | 32    | -             | 4.76          | 22.72      |
| Wide ResNet (width×4) [34]               | 8.7M        | 256               | 40    | 775MB         | 4.97          | 22.89      |
| Wide ResNet (width×10) [34]              | 36.5M       | 640               | 28    | 1,383MB       | 4.17          | 20.50      |
| Weighted ResNet [24]                     | 19.1M       | 64                | 1192  | -             | 5.10          | -          |
| DenseNet $(k = 24)$ [9]                  | 27.2M       | 2,352             | 100   | 4,381MB       | 3.74          | 19.25      |
| DenseNet-BC $(k = 40)$ [9]               | 25.6M       | 2,190             | 190   | 7,247MB       | 3.46          | 17.18      |
| PyramidNet ( $\alpha = 48$ )             | 1.7M        | 64                | 110   | 655MB         | 4.58±0.06     | 23.12±0.04 |
| PyramidNet ( $\alpha = 84$ )             | 3.8M        | 100               | 110   | 781MB         | 4.26±0.23     | 20.66±0.40 |
| PyramidNet ( $\alpha = 270$ )            | 28.3M       | 286               | 110   | 1,437MB       | 3.73±0.04     | 18.25±0.10 |
| PyramidNet (bottleneck, $\alpha = 270$ ) | 27.0M       | 1,144             | 164   | 4,169MB       | $3.48\pm0.20$ | 17.01±0.39 |
| PyramidNet (bottleneck, $\alpha = 240$ ) | 26.6M       | 1,024             | 200   | 4,451MB       | $3.44\pm0.11$ | 16.51±0.13 |
| PyramidNet (bottleneck, $\alpha = 220$ ) | 26.8M       | 944               | 236   | 4,767MB       | 3.40±0.07     | 16.37±0.29 |
| PyramidNet (bottleneck, $\alpha = 200$ ) | 26.0M       | 864               | 272   | 5,005MB       | 3.31±0.08     | 16.35±0.24 |





#### ResNeXt



## FractalNet

FractalNet





## FractalNet

#### FractalNet





Shake-Shake





#### Shake-Shake

|         |          |       | Model    |          |          |  |
|---------|----------|-------|----------|----------|----------|--|
| Forward | Backward | Level | 26 2x32d | 26 2x64d | 26 2x96d |  |
| Even    | Even     | n/a   | 4.27     | 3.76     | 3.58     |  |
| Even    | Shake    | Batch | 4.44     |          |          |  |
| Shake   | Keep     | Batch | 4.11     | -        | -        |  |
| Shake   | Even     | Batch | 3.47     | 3.30     | -        |  |
| Shake   | Shake    | Batch | 3.67     | 3.07     | -        |  |
| Even    | Shake    | Image | 4.11     |          |          |  |
| Shake   | Keep     | Image | 4.09     | -        | -        |  |
| Shake   | Even     | Image | 3.47     | 3.20     | -        |  |
| Shake   | Shake    | Image | 3.55     | 2.98     | 2.86     |  |



Cosine annealing



#### Result



