OUT OF THE CODE - A FENICS RISES

Vincent Quenneville-Bélair, Columbia University

MAIN REFERENCES

Anders Logg, Kent-Andre Mardal, and Garth N. Wells. Automated solution of differential equations by the finite element method, 2012.

Douglas N. Arnold, Richard S. Falk, and Ragnar Winther. Finite element exterior calculus: from Hodge theory to numerical stability, 2010.

FENICS

POLYNOMIAL BASIS

SOLVING PHYSICAL PROBLEM IN FENICS

- 1. Identify PDE along with IC and BC.
- 2. Reformulate PDE in variational form.
- 3. Make code for mesh, input data, and variational form.
- 4. Add statements to solve system, and visualize.

POISSON'S PROBLEM

FORMULATION

First Step

Find u such that $-\Delta u = \operatorname{div}\operatorname{grad} u = f$ in square Ω , with u = 0 on $\partial\Omega$.

Second Step

Find $u \in V = \mathring{H}^1(\Omega)$ such that

$$\int_{\Omega} \operatorname{grad} u \cdot \operatorname{grad} v \, dx - \int_{\partial \Omega} \frac{\partial u}{\partial n} v \, ds = \int_{\Omega} \operatorname{fu} \, dx$$

for any $v \in V$.

NUMERICAL RESULT

u on left. -u' on right.

PRIMAL VS MIXED

In primal form...

$$-\operatorname{div}\operatorname{grad} u = f \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \partial\Omega$$

In mixed form...

$$\begin{aligned} -\operatorname{div}\sigma &= f & \text{in } \Omega \\ \sigma &= \operatorname{grad} u & \text{in } \Omega \\ u &= 0 & \text{on } \partial\Omega \end{aligned}$$

MIXED FORMULATION

First Step

Find (σ, u) such that $-\operatorname{div} \sigma = f$ and $\sigma = \operatorname{grad} u$ in square Ω , with u = 0 on $\partial \Omega$.

Second Step

Find $(\sigma, u) \in V = H(\text{div}, \Omega) \times L^2(\Omega)$ such that

$$\int_{\Omega} \operatorname{div} \sigma \, v \, dx = -\int_{\Omega} f v \, dx,$$

$$\int_{\Omega} \sigma \cdot \tau \, dx + \int_{\Omega} u \operatorname{div} \tau \, dx - \int_{\partial \Omega} u \, (\tau \cdot \mathbf{n}) \, ds = 0,$$

for any $(\tau, v) \in V$.

FINITE ELEMENTS

In 1D, pick (σ_h, u_h) in ...

singular? stable? unstable?

NUMERICAL RESULT

FINITE ELEMENTS

In 2D, pick (σ_h, u_h) in ...

unstable? stable?

NUMERICAL RESULT

(
$$\sigma$$
, u) in $\mathcal{P}_1 \times \mathcal{P}_0$ or $\mathcal{P}_1^- \times \mathcal{P}_0$

HOW TO GET CONVERGENCE?

Consistency – is discrete problem close to continuous one? Stability – is discrete problem well-posed?

...then convergence!

VECTOR LAPLACIAN

Consistency – is discrete problem close to continuous one? $H^1 \subsetneq H(\text{curl}) \cap H(\text{div})$

Stability – is discrete problem well-posed?

Harmonic functions

HODGE LAPLACIAN

POISSON'S EQUATION

The complex

...associated 2nd order operator

$$-\operatorname{div}\operatorname{grad} u = 0$$

...leads to the mixed formulation

$$\sigma - \operatorname{grad} u = 0$$
$$-\operatorname{div} \sigma = 0$$

HODGE LAPLACIAN

The de Rham complex in 3D

$$0 \longrightarrow L^{2}(\mathbb{R}) \xrightarrow{\operatorname{grad}} L^{2}(\mathbb{V}) \xrightarrow{\operatorname{curl}} L^{2}(\mathbb{V}) \xrightarrow{\operatorname{div}} L^{2}(\mathbb{R}) \longrightarrow 0$$

...associated Hodge Laplacian

$$d^*du + dd^*u = 0$$

...leads to the mixed formulation

$$\sigma - d^*u = 0$$
$$d^*\rho + d\sigma = 0$$
$$\rho - du = 0$$

POLYNOMIAL DE RHAM COMPLEXES

PERIODIC TABLE OF FINITE ELEMENTS

FEMtable.org

