Graphs-Topological Sort

December 13, 2023

Introduction

- There are many problems involving a set of tasks in which some of the tasks must be done before others.
- For example, consider the problem of taking a course only after taking its prerequisites.
- Is there any systematic way of linearly arranging the courses in the order that they should be taken?

CMPE Course Prerequisites

Problem

- Input: A directed acyclic graph G = (V, E), also known as a partial order or poset.
- **Problem description:** Find a linear ordering of the vertices of V such that for each edge $(i, j) \in E$, vertex i is to the left of vertex j.
- P: Assemble pingpong table
- F: Carpet the floor
- W: Panel the walls
- C: Install ceiling
- How would you order these activities?
- Topological sorting can be used to schedule tasks under precedence constraints.

Problem Graph

S: Start E: End

P: Assemble pingpong table **F**: Carpet the floor

W: Panel the walls C: Install ceiling

Some possible orderings:

SCWFPE

SWCFPE

SFPWCE

SCFPWE

Topological Sort

- RULE:
 - If there is a path from u to v, then v appears after u in the ordering.

Graphs' Characteristics

Directed

otherwise (u, v) means a path from u to v and from v to u. In that case,
G cannot be ordered.

Acyclic

- otherwise u and v can be on a cycle, which results in u would precede v, v would precede u.
- since any directed cycle provides an inherent contradiction to a linear order of tasks
- Each DAG has at least one topological sort
- There can be many such orderings for a given DAG
 - especially when there are few constraints

The ordering may not be unique

Possible orderings

V1, V2, V3, V4 V1, V3, V2, V4

Basic Algorithm

- Compute the indegrees of all vertices
- Find a vertex U with indegree 0 and print it (store it in the ordering) If there is no such vertex then there is a cycle and the vertices cannot be ordered. Stop.
- **3** Remove U and all its edges (U, V) from the graph.
- Update the indegrees of the remaining vertices.

Repeat steps 2 through 4 while there are vertices to be processed.

Example

Indegrees

V1 0

V2 1

V3 2

V4 2

V5 2

First to be sorted: V1

New indegrees:

V2 0

V3 1 V4 1 V5 2

Possible sorts: V1, V2, V4, V3, V5; V1, V2, V4, V5, V3

Complexity

- |V| the number of vertices.
- To find a vertex of indegree 0 we scan all the vertices |V| operations.
- We do this for all vertices: $|V|^2$ operations
- Time Complexity: $O(|V|^2)$

Improved Algorithm

- Find a vertex of degree 0,
- Scan only those vertices whose indegrees have been updated to 0.

Improved Algorithm

- Compute the indegrees of all vertices
- Store all vertices with indegree 0 in a queue.
- Opening the properties of t
- ullet For all edges (U, V) update the indegree of V, and put V in the queue if the updated indegree is 0.

Repeat steps 3 and 4 while the queue is not empty.

Example

Vertex	Indegree Before Dequeue #						
	1	2	3	4	5	6	7
ν ₁	0	0	0	0	0	0	0
ν ₂	1	0	0	0	0	0	0
ν ₃	2	1	1	1	0	0	0
ν ₄	3	2	1	0	0	0	0
ν ₅	1	1	0	0	0	0	0
ν ₆	3	3	3	3	2	1	0
ν ₇	2	2	2	1	0	0	0
Enqueue	ν_1	v_2	ν_5	ν_4	ν_3,ν_7		ν ₆
Dequeue	v_1	v_2	ν ₅	ν4	ν ₃	ν ₇	ν ₆

Complexity

- |V| number of vertices,
- |E| number of edges.
- Operations needed to compute the indegrees:
 - Adjacency lists: O(|E|)
 - Adjacency Matrix representation: $O(|V|^2)$
- Complexity of the improved algorithm
 - Adjacency lists: O(|E| + |V|),
 - Adjacency Matrix representation: $O(|V|^2)$
- Note that if the graph is complete $|E| = O(|V|^2)$