Single Qubit Clifford Gates

Gengyan Zhang

July 13, 2017

name	Unitary matrix	Primary gate decomposition
C1	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	I
C2	$\exp\left(-i\frac{\pi}{4}\sigma_x\right) = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & -i \\ -i & 1 \end{pmatrix}$	$X_{\pi/2}$
С3	$\exp\left(-i\frac{\pi}{2}\sigma_x\right) = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}$	X_{π}
C4	$\exp\left(-i\frac{3\pi}{4}\sigma_y\right) = \frac{\sqrt{2}}{2} \begin{pmatrix} -1 & -i\\ -i & -1 \end{pmatrix}$	$X_{-\pi/2}$
C5	$\exp\left(-i\frac{\pi}{4}\sigma_y\right) = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & -1\\ 1 & 1 \end{pmatrix}$	$Y_{\pi/2}$
C6	$\exp\left(-i\frac{\pi}{2}\sigma_y\right) = \begin{pmatrix} 0 & -1\\ 1 & 1 \end{pmatrix}$	Y_{π}
C7	$\exp\left(-i\frac{3\pi}{4}\sigma_x\right) = \frac{\sqrt{2}}{2} \begin{pmatrix} -1 & -1\\ 1 & -1 \end{pmatrix}$	$Y_{-\pi/2}$
C8	$\exp\left(-i\frac{\pi}{4}\sigma_z\right) = \frac{\sqrt{2}}{2} \begin{pmatrix} 1-i & 0\\ 0 & 1+i \end{pmatrix}$	$\begin{array}{c} X_{\pi/2}Y_{\pi/2}X_{-\pi/2} \\ X_{-\pi/2}Y_{-\pi/2}X_{\pi/2} \\ Y_{\pi/2}X_{-\pi/2}Y_{-\pi/2} \\ Y_{-\pi/2}X_{\pi/2}Y_{\pi/2} \end{array}$
С9	$\exp\left(-i\frac{\pi}{2}\sigma_z\right) = \begin{pmatrix} -i & 0\\ 0 & i \end{pmatrix}$	$\begin{array}{c} X_{\pi}Y_{\pi} \\ Y_{\pi}X_{\pi} \end{array}$
C10	$\exp\left(-i\frac{3\pi}{4}\sigma_z\right) = \frac{\sqrt{2}}{2} \begin{pmatrix} -1 - i & 0\\ 0 & -1 + i \end{pmatrix}$	$X_{\pi/2}Y_{-\pi/2}X_{-\pi/2} \ X_{-\pi/2}Y_{\pi/2}X_{\pi/2} \ Y_{\pi/2}X_{\pi/2}Y_{-\pi/2} \ Y_{-\pi/2}X_{-\pi/2}Y_{\pi/2}$
C11	$\exp\left(-i\frac{\pi}{2\sqrt{2}}(\sigma_x + \sigma_y)\right) = \frac{\sqrt{2}}{2} \begin{pmatrix} 0 & -1 - i\\ 1 - i & 0 \end{pmatrix}$	$X_{\pi/2}Y_{\pi/2}X_{\pi/2} X_{-\pi/2}Y_{-\pi/2}X_{-\pi/2} Y_{\pi/2}X_{\pi/2}Y_{\pi/2} Y_{-\pi/2}X_{-\pi/2}Y_{-\pi/2}$
C12	$\exp\left(-i\frac{\pi}{2\sqrt{2}}(\sigma_x - \sigma_y)\right) = \frac{\sqrt{2}}{2} \begin{pmatrix} 0 & 1 - i\\ -1 - i & 0 \end{pmatrix}$	$\begin{array}{c} X_{\pi/2}Y_{-\pi/2}X_{\pi/2} \\ X_{-\pi/2}Y_{\pi/2}X_{-\pi/2} \\ Y_{\pi/2}X_{-\pi/2}Y_{\pi/2} \\ Y_{-\pi/2}X_{\pi/2}Y_{-\pi/2} \end{array}$

name	Unitary matrix	Primary gate decomposition
C13	$\exp\left(-i\frac{\pi}{2\sqrt{2}}(\sigma_x + \sigma_z)\right) = \frac{\sqrt{2}}{2} \begin{pmatrix} -i & -i \\ -i & i \end{pmatrix}$	$\begin{array}{c} Y_{-\pi/2} X_{\pi} \\ X_{\pi} Y_{\pi/2} \end{array}$
C14	$\exp\left(-i\frac{\pi}{2\sqrt{2}}(\sigma_x - \sigma_z)\right) = \frac{\sqrt{2}}{2} \begin{pmatrix} i & -i \\ -i & -i \end{pmatrix}$	$Y_{\pi/2}X_{\pi} \\ X_{\pi}Y_{-\pi/2}$
C15	$\exp\left(-i\frac{\pi}{2\sqrt{2}}(\sigma_y + \sigma_z)\right) = \frac{\sqrt{2}}{2} \begin{pmatrix} -i & -1\\ 1 & i \end{pmatrix}$	$\begin{array}{c} X_{\pi/2}Y_{\pi} \\ Y_{\pi}X_{-\pi/2} \end{array}$
C16	$\exp\left(-i\frac{\pi}{2\sqrt{2}}(\sigma_y - \sigma_z)\right) = \frac{\sqrt{2}}{2} \begin{pmatrix} i & -1\\ 1 & -i \end{pmatrix}$	$\begin{array}{c} X_{-\pi/2}Y_{\pi} \\ Y_{\pi}X_{\pi/2} \end{array}$
C17	$\exp\left(-i\frac{\pi}{3\sqrt{3}}(\sigma_x + \sigma_y + \sigma_z)\right) = \frac{1}{2} \begin{pmatrix} 1 - i & -1 - i \\ 1 - i & 1 + i \end{pmatrix}$	$X_{\pi/2}Y_{\pi/2}$
C18	$\exp\left(-i\frac{2\pi}{3\sqrt{3}}(\sigma_x + \sigma_y + \sigma_z)\right) = \frac{1}{2} \begin{pmatrix} -1 - i & -1 - i\\ 1 - i & -1 + i \end{pmatrix}$	$Y_{-\pi/2}X_{-\pi/2}$
C19	$\exp\left(-i\frac{\pi}{3\sqrt{3}}(\sigma_x - \sigma_y + \sigma_z)\right) = \frac{1}{2} \begin{pmatrix} 1 - i & 1 - i \\ -1 - i & 1 + i \end{pmatrix}$	$Y_{-\pi/2}X_{\pi/2}$
C20	$\exp\left(-i\frac{2\pi}{3\sqrt{3}}(\sigma_x - \sigma_y + \sigma_z)\right) = \frac{1}{2} \begin{pmatrix} -1 - i & 1 - i \\ -1 - i & -1 + i \end{pmatrix}$	$X_{-\pi/2}Y_{\pi/2}$
C21	$\exp\left(-i\frac{\pi}{3\sqrt{3}}(\sigma_x + \sigma_y - \sigma_z)\right) = \frac{1}{2} \begin{pmatrix} 1+i & -1-i\\ 1-i & 1-i \end{pmatrix}$	$Y_{\pi/2}X_{\pi/2}$
C22	$\exp\left(-i\frac{2\pi}{3\sqrt{3}}(\sigma_x + \sigma_y - \sigma_z)\right) = \frac{1}{2} \begin{pmatrix} -1+i & -1-i\\ 1-i & -1-i \end{pmatrix}$	$X_{-\pi/2}Y_{-\pi/2}$
C23	$\exp\left(-i\frac{\pi}{3\sqrt{3}}(-\sigma_x + \sigma_y + \sigma_z)\right) = \frac{1}{2} \begin{pmatrix} 1 - i & -1 + i \\ 1 + i & 1 + i \end{pmatrix}$	$Y_{\pi/2}X_{-\pi/2}$
C24	$\exp\left(-i\frac{2\pi}{3\sqrt{3}}(-\sigma_x + \sigma_y + \sigma_z)\right) = \frac{1}{2} \begin{pmatrix} -1 - i & -1 + i\\ 1 + i & -1 + i \end{pmatrix}$	$X_{\pi/2}Y_{-\pi/2}$

Comments

- The primary gates are chosen as $\{I, X_{\pm\pi/2}, Y_{\pm\pi/2}, X_{\pi}, Y_{\pi}\}$. X_{π} and Y_{π} can be replaced by $X_{-\pi}$ and $Y_{-\pi}$.
- The primary gates are applied **from right to left**, i.e., in the pulse sequence the rightmost gate is the earliest one.
- The primary decomposition might differ from the Clifford gate by a factor of -1.
- For each Clifford gate there might be multiple primary gate decompositions. The above table lists all possible decompositions with the shortest length. In a randomized benchmarking experiment, one can randomly choose one of them.