BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯ**ỜNG ĐẠI HỌC QUY NHƠN**

Đỗ ĐĂNG KHOA

ĐỘ TƯƠNG TỰ HÀNH VI CỦA CHƯƠNG TRÌNH VÀ THỰC NGHIỆM

LUẬN VĂN THẠC SĨ KHOA HỌC MÁY TÍNH

Bình Định – Năm 2018

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯ**ỜNG ĐẠI HỌC QUY NHƠN**

Đỗ ĐĂNG KHOA

ĐỘ TƯƠNG TỰ HÀNH VI CỦA CHƯƠNG TRÌNH VÀ THỰC NGHIỆM

Chuyên ngành: Khoa học máy tính

Mã số: 60 48 01 01

Người hướng dẫn: TS. PHẠM VĂN VIỆT

LÒI CAM ĐOAN

Tôi xin cam đoan: Luận văn này là công trình nghiên cứu thực sự của cá nhân, được thực hiện dưới sự hướng dẫn khoa học của TS. Phạm Văn Việt.

Các số liệu, những kết luận nghiên cứu được trình bày trong luận văn này trung thực và chưa từng được công bố dưới bất cứ hình thức nào.

Tôi xin chịu trách nhiệm về nghiên cứu của mình.

LÒI CẢM ƠN

Tôi xin chân thành cảm ơn sự hướng dẫn, chỉ dạy và giúp đỡ tận tình của các thầy cô

giảng dạy sau đại học - Trường đại học Quy Nhơn.

Đặc biệt, tôi cảm ơn thầy TS.Phạm Văn Việt, giảng viên bộ môn Công nghệ phần mềm,

khoa Công nghệ thông tin, Trường Đại học Quy Nhơn đã tận tình hướng dẫn truyền

đạt kiến thức và kinh nghiệm quý báu giúp tôi có đầy đủ kiến thức hoàn thành luận

văn này.

Và tôi xin cảm ơn bạn bè, những người thân trong gia đình đã tin tưởng, động viên tôi

trong quá trình học tập và nghiên cứu đề tài này.

Mặc dù đã tôi đã cố gắng trong việc thực hiện luận văn, song với thời gian có hạn nên

đề tài này không thể tránh khỏi những thiếu sót và chưa hoàn chỉnh. Tôi rất mong nhận

được ý kiến đóng góp của quý thầy, cô và các bạn để đề tài được hoàn thiện hơn.

Một lần nữa, tôi xin chân thành cảm ơn!.

HỌC VIÊN

Đỗ Đăng Khoa

4

Mục lục

M	Mục lục					
1	GIỚI THIỆU					
	1.1	Lý do chọn đề tài	7			
	1.2	Đối tượng, phạm vi, phương pháp nghiên cứu	8			
	1.3	Những nghiên cứu có liên quan	10			
2	TƯƠNG TỰ VỀ HÀNH VI GIỮA CÁC CHƯƠNG TRÌNH					
	2.1	Kiến thức cơ sở	13			
	2.2	Hành vi của chương trình	26			
	2.3	Một số phép đo độ tương tự hành vi	29			
3	THỰC NGHIỆM, ĐÁNH GIÁ					
	3.1	Dữ liệu thực nghiệm	36			
	3.2	Công cụ dùng trong thực nghiệm	37			
	3.3	Đánh giá kết quả thực nghiệm	41			
	3.4	Khả năng ứng dụng	46			
	3.5	Kết luận	47			
Tà	i liệu	ı tham khảo	49			
A	QUYẾT ĐỊNH GIAO LUẬN VĂN					
В	MÔT SỐ MÃ LÊNH QUAN TRONG					

DANH MỤC CÁC CHỮ VIẾT TẮT

Ký hiệu	Diễn giải	
RS	Random Sampling	
SSE	Singleprogram Symbolic Execution	
PSE	Paired-program Symbolic Execution	
DSE	Dynamic symbolic execution	
MOOC	Massive Open Online Courses	
UT	Unit Test	
DFAs	Automated Grading of DFA Constructions	
AAA	Arrange, Act, Assert	

Chương 1

TƯƠNG TỰ VỀ HÀNH VI GIỮA CÁC CHƯƠNG TRÌNH

Chương này trình bày một số định nghĩa liên quan đến hành vi chương trình, các phép đo độ tương tự hành vi của chương trình và tiêu chí đánh giá các phép đo này.

1.1 Kiến thức cơ sở

Phần này trình bày những kiến thức cơ sở để triển khai luận văn này, bao gồm kiến thức về kiểm thử phần mềm, kỹ thuật sinh ngẫu nhiên dữ liệu thử, và kỹ thuật Dynamic Symbolic Execution.

Kiểm thử phần mềm

Trong nền kinh tế hiện nay, ngành công nghiệp phần mềm giữ vai trò hết sức quan trọng, một số nước có nền công nghệ thông tin phát triển thì ngành công nghiệp phần mềm có khả năng chi phối cả nền kinh tế. Vì vậy việc đảm bảo chất lượng phần mềm trở nên cần thiết hơn bao giờ hết. Quá trình phát hiện và khắc phục lỗi cho phần mềm là một công việc đòi hỏi nhiều nỗ lực, công sức, cũng như tiêu tốn nhiều hơn chi phí trong việc phát triển phần mềm. Hiện nay, một sản phẩm phần mềm chất lượng có thể được nhiều người sử dụng biết đến, nó mang lại hiệu quả tích cực trong công việc của người sử dụng. Tuy nhiên, một phần mềm kém chất lượng sẽ gây thiệt hại về kinh tế cũng như tiến độ công việc của người sử dụng. Phần mềm phải luôn đảm bảo được sự ổn định, không phát sinh lỗi trong quá trình sử dụng.

Việc kiểm thử phần mềm chính là một quá trình hoặc một loạt các quy trình được thiết kế, để đảm bảo mã máy tính chỉ làm những gì nó được thiết kế và không làm bất cứ điều gì ngoài ý muốn [41]. Phần mềm phải được dự đoán và nhất quán, không gây bất ngờ cho người dùng. Đây là một bước quan trọng trong quá trình phát triển một phần mềm, giúp cho người phát triển phần mềm và người sử dụng thấy được hệ thống đã đáp ứng yêu cầu đặt ra.

Các phương pháp kiểm thử

Có nhiều phương pháp để kiểm thử phần mềm, nhưng trọng tâm là hai phương pháp kiểm chính là kiểm thử tính và kiểm thử động. *Kiểm thử tĩnh (Static testing)*: Là phương pháp kiểm thử phần mềm bằng cách duyệt lại các yêu cầu và các đặc tả bằng tay, thông qua việc sử dụng giấy, bút để kiểm tra tính logic từng chi tiết mà không cần chạy chương trình. Kiểu kiểm thử này thường được sử dụng bởi chuyên viên thiết kế, người viết mã lệnh chương trình. Kiểm thử tĩnh cũng có thể được tự động hóa bằng cách thực hiện kiểm tra toàn bộ hệ thống thông qua một trình thông dịch hoặc trình biên dịch, xác nhận tính hợp lệ về cú pháp của chương trình.

Kiểm thử động (Dynamic testing): Là phương pháp kiểm thử thông qua việc chạy chương trình để điều tra trạng thái tác động của chương trình, dựa trên các ca kiểm thử xác định các đối tượng kiểm thử của chương trình. Đồng thời kiểm thử động sẽ tiến hành kiểm tra cách thức hoạt động của mã lệnh, tức là kiểm tra phản ứng từ hệ thống với các biến luôn thay đổi theo thời gian. Trong kiểm thử động, phần mềm phải được biên dịch và chạy, và bao gồm việc nhập các giá trị đầu vào và kiểm tra giá trị đầu ra có như mong muốn hay không.

Các chiến lược kiểm thử

Kiểm thử phần mềm có nhiều chiến lược để kiểm thử, trong đó có hai chiến lược được sử dụng nhiều nhất đó là kiểm thử hộp đen và kiểm thử hộp trắng.

Kiểm thử hộp đen – Black box. Là một chiến lược kiểm thử với cách thức hoạt động chủ yếu dựa vào hướng dữ liệu inputs/ouputs của chương trình, xem chương trình như là một "hộp đen", chiến lược kiểm thử này hoàn toàn không quan tâm về cách xử lý và cấu trúc bên trong của chương trình. Kiểm thử hộp đen tập trung vào tìm các trường hợp mà chương trình không thực hiện theo các đặc tả kỹ thuật. Kiểm thử viên hộp đen cố gắng tìm ra những lỗi mà lập trình viên không tìm ra. Tuy nhiên, phương pháp kiểm thử này cũng có mặt hạn chế của nó, kiểm thử viên không biết các phần mềm được kiểm tra thực sự được xây dựng như thế nào, cố gắng viết rất nhiều ca kiểm thử để kiểm tra một chức năng của phần mềm nhưng lẽ ra chỉ cần kiểm tra bằng một ca kiểm thử duy nhất, hoặc một số phần của chương trình có thể bị bỏ qua không được kiểm tra.

Do vậy, kiểm thử hộp đen có ưu điểm là đánh giá khách quan, mặt khác nó lại có nhược điểm là thăm dò mù. Trong phần nghiên cứu của đề tài, kiểm thử hộp đen cũng được sử dụng như một phương pháp đo độ tương tự hành vi của các chương trình.

Kiểm thử hộp trắng – White box. Đây là một chiến lược kiểm thử khác, trái ngược hoàn toàn với kiểm thử hộp đen, kiểm thử hộp trắng hay còn gọi là kiểm thử hướng logic của phần mềm. Cách kiểm thử này cho phép tạo ra dữ liệu thử nghiệm từ việc kiểm tra, khảo sát cấu trúc bên trong và kiểm thử tính logic của chương trình. Dữ liệu thử nghiệm có độ phủ lớn, đảm bảo được tất cả các đường dẫn, hoặc các nhánh của chương trình được thực hiện ít nhất một lần, khắc phục được những nhược điểm thăm dò mù trong cách kiểm thử hộp đen.

Phương pháp kiểm thử hộp trắng cũng có thể được sử dụng để đánh giá một bộ kiểm thử được tạo với các phương pháp kiểm thử hộp đen. Trong các phép đo độ tương tự

của đề tài, phương pháp kiểm thử hộp trắng là một phương pháp quan trọng, được áp dụng để đo hành vi của các chương trình.

Các cấp độ kiểm thử trong kiểm thử phần mềm

Kiểm thử phần mềm gồm có các cấp độ kiểm thử như sau:

- Kiểm thử đơn vị
- Kiểm thử tích hợp
- Kiểm thử hệ thống
- Kiểm thử chấp nhận sản phẩm

Hình 1.1: Sơ đồ các cấp độ kiểm thử

Sinh dữ liệu kiểm thử

Sinh ngẫu nhiên dữ liệu thử là một kỹ thuật kiểm thử phần mềm Black-Box, kỹ thuật này tạo ra ngẫu nhiên các giá trị đầu vào và thực thi từng giá trị đầu vào trên chương

trình được kiểm thử. Kết quả đầu ra của chương trình được so sánh với các thông số kỹ thuật của phần mềm, xác định đầu ra thử nghiệm thành công hoặc không thành công [41].

Kỹ thuật sinh ngẫu nhiên dữ liệu thử không quan tâm đến hành vi và cấu trúc bên trong của chương trình, chỉ tập trung tìm kiếm những trường hợp chương trình không hoạt động theo đặc tả kỹ thuật của chương trình. Trong phương pháp này, dữ liệu thử nghiệm được tạo ngẫu nhiên từ các đặc tả kỹ thuật của phần mềm (tức là không liên quan tới hành vi và cấu trúc của chương trình).

Ví dụ:

Mã lệnh 1.1: Hàm sinh ngẫu nhiên dữ liệu thử

```
int myAbs(int x) {
   if (x > 0) {
      return x;
   }
   else {
      return x;
   }
}

void testAbs(int n) {
   for (int i = 0; i < n; i++) {
      int x = getRandomInput();
      int result = myAbs(x);
      assert(result >= 0);
   }
}
```

Đây là một hàm sinh ngẫu nhiên dữ liệu thử, chúng ta thấy hàm **testAbs** chỉ thực hiện việc tạo giá trị đầu vào ngẫu nhiên **int x** theo đặc tả tham số đầu vào của chương trình **myAbs**, và kiểm tra kết quả đầu ra của chương trình **assert(result >= 0)**, không quan tâm hành vi và cấu trúc bên trong của hàm **myAbs**.

Ưu điểm và hạn chế

Sinh ngẫu nhiên dữ liệu thử có một số ưu điểm và nhược điểm như sau: * Ưu điểm:

- Đơn giản, dễ dàng sinh các đầu vào ngẫu nhiên
- Không tốn nhiều tài nguyên bộ nhớ lúc thực thi

* Hạn chế:

- Một nhánh hành vi của chương trình được kiểm thử nhiều lần với nhiều đầu vào khác nhau
- Có thể một số nhánh hành vi của chương trình bị bỏ qua
- Khó xác định khi nào việc kiểm thử nên dừng lại
- Không biết dữ liệu thử có duyệt được tất cả các nhánh trong chương trình hay không

Hướng khác phục

Để xác định khi nào việc kiểm thử dừng lại, hệ thống kiểm thử ngẫu nhiên có thể kết hợp với kỹ thuật Adequacy Criterion [68]. Kỹ thuật Adequacy Criterion là một kỹ thuật yêu cầu duyệt tất cả các nhánh của chương trình, bằng việc kết hợp này cho phép việc kiểm thử chỉ dừng lại khi tất cả các câu lệnh của chương trình được thực thi ít nhất một lần.

Một kỹ thuật khác giúp khắc phục được hạn chế của kiểm thử ngẫu nhiên đó là kỹ thuật thực thi tượng trưng [33]. Thực thi tượng trưng là một kỹ thuật xây dựng các ràng buộc dựa vào các điều kiện tại các nút nhánh của chương trình, giải quyết các ràng buộc đó để sinh ra các giá trị đầu của chương trình. Thực thi các giá trị đầu vào này, chúng ta có thể duyệt được tất cả các nhánh của chương trình.

Kỹ thuật Dynamic symbolic execution

Dynamic symbolic execution (DSE) là một kỹ thuật duyệt tự động tất cả các đường đi có thể của chương trình bằng cách chạy chương trình với nhiều giá trị đầu vào khác nhau để tăng độ phủ của dữ liệu thử [67].

Dựa trên các tham số đầu vào của chương trình, DSE sẽ tạo ra các giá trị đầu vào cụ thể và thực thi chương trình với các giá trị cụ thể này. Trong quá trình thực thi, DSE sẽ ghi nhận lại ràng buộc tại các nút, phủ định lại các ràng buộc này và sinh các giá trị đầu vào thỏa điều kiện ràng buộc tại các nút rẽ nhánh này. Với một giá trị đầu vào cụ thể, DSE sẽ thực thi chương trình và duyệt được một đường đi cụ thể, quá trình thực thi này sẽ lặp lại cho đến khi duyệt hết tất cả các đường đi của chương trình.

Ví dụ:

Mã lệnh 1.2: Minh họa kỹ thuật DSE

Trong ví dụ trên, chúng ta xem xét hàm *test_me* với hai tham số đầu vào là *intx* và *inty*, và hàm này không có giá trị trả về. Cách thức làm việc của DSE trên hàm *test_me* như sau:

Đầu tiên, DSE tạo hai giá trị đầu vào thử nghiệm ngẫu nhiên x và y, giả sử x = 22 và y = 7. Ngoài ra, DSE sẽ theo dõi trạng thái các giá trị đầu vào thử nghiệm của chương trình: x bằng một số x_0 và y bằng một số y_0 .

Hình 1.2: DSE khởi tạo các giá trị đầu vào

Ở dòng đầu tiên, số nguyên z được gán bằng hàmfoo(y). Điều này có nghĩa là z=14, và ở trạng thái tượng trưng, biến $z=2*y_0$.

Hình 1.3: Số nguyên Z được gán bằng hàm foo(y)

Tại nhánh z == x, DSE nhận biết giá trị của x không bằng giá trị của z. Về mặt biểu tượng, DSE lưu trữ ràng buộc này là z! = x, và giá trị tương trưng của đường này là: $2 * y_0! = x_0$. DSE đi theo nhánh false dẫn đến kết thúc chương trình.

Hình 1.4: Với điều kiện z == x, giá trị của z! = x nên DSE chạy theo nhánh false

Sau khi kết thúc chương trình, DSE sẽ quay trở lại điểm nhánh gần nhất và cố gắng chọn nhánh true. Với mục đích này, nó phủ định ràng buộc được thêm gần nhất trong điều kiện đường dẫn $2*y_0! = x_0$ thành $2*y_0 = x_0$. Để thỏa mãn ràng buộc $2*y_0! = x_0$ thì hai số nguyên này sẽ là $x_0 = 2$ và $y_0 = 1$.

Hình 1.5: Các giá trị DSE sinh ra sau khi thực thi chương trình lần 1

Sau đó, DSE khởi động lại hàm $test_m e$, lần này nó gọi các giá trị đầu vào cụ thể với giá trị: x=2 và y=1 được tạo ra bởi quá trình giải quyết ràng buộc trước đó. DSE tiếp tục theo dõi trạng thái các biến với $x=x_0$ và $y=y_0$.

Hình 1.6: DSE khởi động lại hàm test_me

Sau khi thực hiện dòng đầu tiên, z có giá trị cụ thể 2 và giá trị biểu tượng $2 * y_0$.

Hình 1.7: Thực hiện dòng đầu tiên intz = foo(y)

Ở dòng kế tiếp, chúng ta kiểm tra tình trạng nhánh z == x. Trong trường hợp này, điều kiện là đúng vì vậy điều kiện đường dẫn của chúng ta trở thành $2 * y_0 == x_0$. Sau đó DSE kiểm tra dòng tiếp theo của nhánh true.

Hình 1.8: DSE thực hiện điều kiện đường dẫn true

Tại điểm nhánh tiếp theo, x có giá trị cụ thể là 2 và y + 10 có giá trị cụ thể là 11, vì vậy DSE lấy nhánh false, kết thúc chương trình. Thêm ràng buộc tượng trưng $x_0 <= y_0 + 10$ vào điều kiện đường dẫn, đây là sự phủ định của điều kiện nhánh mà DSE phát hiện là fasle.

Hình 1.9: DSE lấy nhánh false kết thúc chương trình

Vì DSE đã đến cuối chương trình, nó phủ nhận ràng buộc vừa được thêm gần nhất trong điều kiện đường dẫn để có được $x_0 > y_0 + 10$, và sau đó nó vượt qua các ràng buộc $2*y_0 == xANDx_0 > y_0 + 10$. Để thỏa những ràng buộc này, DSE trả về $x_0 = 30$ và $y_0 = 15$.

```
Concrete
                                                              Symbolic
                                           Execution
                                                              Execution
int foo(int v) {
   return 2*v;
                                                                        path
                                                      symbolic
                                    concrete
}
                                                                      condition
                                                       state
                                      state
void test_me(int x, int y) {
                                      x = 2
                                                      x = x_0
   int z = foo(y);
                                      y = 1
   if (z == x)
                                                                     x_0 <= y_0 + 10
                                      z = 2
                                                      z = 2*y_0
      if (x > y+10)
         ERROR;
                                       Solve: (2*y_0 == x_0) and (x_0 > y_0 + 10)
                                            Solution: x_0 = 30, y_0 = 15
```

Hình 1.10: Các giá trị DSE sinh ra sau khi thực thi chương trình lần 2

Bây giờ, DSE chạy hàm $test_m e$ một lần nữa, lần này với các đầu vào x=30 và y=15.

Trạng thái biểu tượng các biến bắt đầu $x = x_0$ và $y = y_0$. z được gán giá trị cụ thể là 30, trong khi giá trị tượng trưng của nó là $2 * y_0$ như những lần chạy trước.

Khi tới điều kiện rẻ nhánh z == x, DSE nhận thấy đây là điều kiện true, vì vậy DSE thêm điều kiện tượng trưng $2 * y_0 == x_0$.

Sau đó tại điểm nhánh tiếp theo, với x > y + 10 vì vậy DSE thêm ràng buộc tượng trưng mới $x_0 > y_0 + 10$. Nhánh này dẫn đến ERROR, tại thời điểm đó chúng ta đã xác định được đầu vào cụ thể làm cho chương trình dẫn đến ERROR là: x = 30 và y = 15.

Hình 1.11: Các giá trị DSE sinh ra sau khi thực thi chương trình lần 3

Kết quả, sau 3 lần chạy chương trình, DSE tạo ra được các cặp giá trị đầu vào có thể duyệt hết các nhánh của chương trình $test_me$ đó là: [22,7], [2,1], [30,15]

Một số công cụ ứng dụng DSE

Trên thế giới hiện đã có nhiều công cụ sử dụng kỹ thuật DSE để giải quyết các ràng buộc và tạo ra các giá trị đầu vào có độ phủ cao như như Pex [58] và SAGE [22]... và

những công cụ này được phát triển để có thể chạy được trên nhiều nền tảng khác nhau. Chúng ta có thể tham khảo một số công cụ sau đây:

Tên Công cụ	Ngôn ngữ	Url
KLEE	LLVM	klee.github.io/
JPF	Java	babelfish.arc.nasa.gov/trac/jpf
jCUTE	Java	github.com/osl/jcute
janala2	Java	github.com/ksen007/janala2
JBSE	Java	github.com/pietrobraione/jbse
KeY	Java	www.key-project.org/
Mayhem	Binary	forallsecure.com/mayhem.html
Otter	С	bitbucket.org/khooyp/otter/overview
Rubyx	Ruby	www.cs.umd.edu/avik/papers/ssarorwa.pdf
Pex	.NET Framework	research.microsoft.com/en-us/projects/pex/
Jalangi2	JavaScript	github.com/Samsung/jalangi2
Kite	LLVM	www.cs.ubc.ca/labs/isd/Projects/Kite/
pysymemu	x86-64 / Native	github.com/feliam/pysymemu/
Triton	x86 and x86-64	triton.quarkslab.com
BE-PUM	x86	https://github.com/NMHai/BE-PUM

1.2 Hành vi của chương trình

Để định lượng hai chương trình tương tự nhau, chúng ta nghiên cứu các định nghĩa liên quan hành vi của hai chương trình như sau:

Thực thi chương trình

Định nghĩa 1 Cho P là một chương trình, I là tập hợp các trị đầu vào của P và O là tập hợp các giá trị đầu ra của P. Thực thi chương trình P là ánh xa exec : $P \times I \rightarrow O$. Với giá trị đầu vào

 $i \in I$, sau khi thực thi P trên i ta có giá trị đầu ra tương ứng $o \in O$ và ký hiệu o = exec(P, i).

Độ tương đương về hành vi (Behavioral Equivalence)

Dựa trên định nghĩa về thực thi chương trình, chúng ta tìm hiểu thế nào là độ tương đương về hành vi giữa hai chương trình thông qua hai chương trình minh họa sau:

```
Mã lệnh 1.3: Switch...Case

public static int TinhY(int x) {
    y = 0;
    switch (x) {
        case 1: y += 4; break;
        case 2: y *= 2; break;
        default: y = y * y;
    }
    return y;
}
```

```
Mã lệnh 1.4: If...Else

public static int TinhY(int x) {
    y = 0;
    if (x == 1)
        y += 4;
    else if (x == 2)
        y *= 2;
    else y = y * y;
    return y;
}
```

Mã lệnh 3.1 và 3.2 có tham số đầu vào cùng kiểu giá trị *int*. Mã lệnh 3.1 sử dụng cấu trúc *switch...case*, mã lệnh 3.2 sử dụng cấu trúc *if...else* để kiểm tra giá trị đầu vào x. Mặc dù cú pháp sử dụng trong hai chương trình là khác nhau nhưng cách thức xử lý trả về kết quả y là như nhau. Từ đó, chúng ta có thể định nghĩa thế nào là độ tương đương hành vi giữa hai chương trình như sau:

Định nghĩa 2 (Độ tương đương về hành vi) Cho P_1 và P_2 là hai chương trình có cùng miền các giá trị đầu vào I. Hai chương trình này được gọi là tương đương khi và chỉ khi thực thi của chúng giống nhau trên mọi giá trị đầu vào trên I, ký hiệu là $exec(P_1, I) = exec(P_2, I)$.

Sự khác biệt về hành vi (Behavioral Difference)

Để tìm hiểu sự khác biệt về hành vi của hai chương trình, chúng ta tìm hiểu hai mã lệnh sau:

```
Mã lệnh 1.5: Chương trình P_1
using System;
public class Program {
   public static int P1(int x){
     return x - 10;
   }
}
```

```
Mã lệnh 1.6: Chương trình P_2
using System;
public class Program {
   public static int P2(int x){
      return x + 10;
   }
}
```

Mã lệnh 3.3 và Mã lệnh 3.4 của Chương trình P_1 và P_2 , cả hai Chương trình có miền giá trị đầu vào cùng kiểu int, giá trị trả về của Chương trình P_1 là x-10, giá trị trả về của Chương tình P_2 là x+10. Với mọi giá trị của x được thực thi trên cả hai chương trình P_1 và P_2 kết quả trả về sẽ không giống nhau. Mặc dù cả hai Chương trình P_1 và P_2 có miền giá trị đầu vào như nhau, nhưng hành vi của hai Chương trình hoàn toàn khác nhau. Qua đó, chúng ta có thể định nghĩa sự khác biệt về hành vi như sau:

Định nghĩa 3 (Sự khác biệt hành vi) Cho P_1 và P_2 là hai chương trình có cùng một miền các giá trị đầu vào I. Hai chương trình này được xem là có sự khác biết về hành vi khi và chỉ khi thực thi của chúng khác nhau trên mọi giá trị đầu vào I, ký hiệu là $exec(P_1, I) \neq exec(P_2, i)$.

Độ tương tự hành vi (Behavioral Similarity)

Để hiểu thế nào là tương tự hành vi, chúng ta phân tích hai Mã lệnh sau:

Mã lệnh 1.7: Chương trình P_1

```
using System;
public class Program {
   public static int P1(int x) {
      if (x >= 0 && x <= 100)
        return x + 10;
      else
        return x;
   }
}</pre>
```

Mã lệnh 1.8: Chương trình P_2

```
using System;
public class Program {
   public static int P2(int x) {
     if (x >= 0 && x <= 100)
        return x + 10;
   else
        return -1;
   }
}</pre>
```

Với Mã lệnh 3.5 và Mã lệnh 3.6 của hai Chương trình P_1 và P_2 , chúng ta thấy cả hai Chương trình có giá trị đầu vào cùng kiểu dữ liệu là int, nếu giá trị đầu vào của biến x nằm trong khoảng 0 đến 100 thì giá trị trả về của cả hai Chương trình đều bằng nhau là x+10. Ngược lại, giá trị đầu vào của biến x nằm ngoài khoảng 0 đến 100, thì giá trị trả về của Chương trình P_1 là x và giá trị trả về của Chương trình P_2 là -1. Hai Chương trình P_1 và P_2 tuy có kiểu dữ liệu đầu vào như nhau nhưng kết quả đầu ra có thể giống nhau hoặc khác nhau tùy theo giá trị đầu vào của biến x. Dựa trên kết quả phân tích, chúng ta định nghĩa độ tương tự hành vi của Chương trình như sau:

Định nghĩa 4 (Độ tương tự hành vi) Cho P_1 và P_2 là hai chương trình có cùng miền giá trị đầu vào I, và I_s là tập con của I. Hai Chương trình được xem là tương tự hành vi khi thực thi chúng giống nhau trên mọi giá trị đầu vào I_s , ký hiệu $exec(P_1, I_s) = exec(P_2, I_s)$ và khác nhau $\forall j \in I \setminus I_s$, ký hiệu $exec(P_1, j) \neq exec(P_2, j)$

1.3 Một số phép đo độ tương tự hành vi

Để đo độ tương tự về hành vi giữa hai Chương trình, chúng ta có thể chạy từng giá trị đầu vào trong miền giá trị đầu vào của hai Chương trình. Tỷ lệ giữa số lượng đầu vào

thử nghiệm khi thực thi trên cả hai Chương trình cho kết quả đầu ra giống nhau trên tổng số lượng đầu vào được thử nghiệm là độ tương tự hành vi giữa hai Chương trình. Dựa trên cách tính tỷ lệ kết quả đầu ra của hai Chương trình, chúng ta có một số phép đo độ tương tự hành vi như sau:

Phép đo lấy mẫu ngẫu nhiên (RS)

Kỹ thuật của phép đo **RS** là thực hiện lấy ngẫu nhiên giá trị đầu vào trên miền giá trị đầu vào của hai Chương trình. Thực thi cả hai Chương trình trên từng giá trị đầu vào, tiến hành so sánh giá trị kết quả đầu ra của cả hai Chương trình. Tỷ lệ giữa tổng số mẫu đầu vào khi thực thi những mẫu này hai chương trình cho kết quả đầu ra có giá trị giống nhau, trên tổng số mẫu đầu vào được thử nghiệm là kết quả cho phép đo RS. Từ đó, chúng ta có định nghĩa phép đo **RS** như sau:

Định nghĩa 5 (Phép đo RS) Cho P_1 và P_2 là hai Chương trình có cùng miền giá trị đầu vào I, I_s là tập con ngẫu nhiên của I, I_a là tập con I_s . Hai Chương trình thực thi giống nhau với $\forall i \in I_a$, ký hiệu $exec(P_1,i) = exec(P_2,i)$ và hai Chương trình thực thi khác nhau với $\forall j \in I_s \setminus I_a$, ký hiệu $exec(P_1,j) \neq exec(P_2,j)$. Chỉ số phép đo **RS** được định nghĩa là $M_{RS}(P_1,P_2) = |I_a| / |I_s|$.

Phép đo **RS** là một một phép đo đơn giản và hiệu quả để tính độ tương tự của hành vi. Khi miền giá trị của tham số đầu vào rất lớn hoặc vô hạn, phép đo **RS** thực hiện lấy mẫu ngẫu nhiên để tính toán độ tương tự của hành vi, kết quả đầu ra tương đối tốt và hợp lý so với hành vi thực tế của chương trình. Phép đo **RS** xử lý, tính toán độ tương tự hành vi dưới dạng hộp đen và không phân tích chương trình để tạo thử nghiệm, nên tốc độ xử lý nhanh và chiếm ít tài nguyên. Mặc khác, phép đo **RS** không phân tích chương trình để tạo đầu vào thử nghiệm nên phép đo **RS** có thể bỏ qua một vài tham số đầu vào thử nghiệm có thể được sử dụng để thực thi một số nhánh khác nhau giữa hai chương trình. Vì vậy, phép đo **RS** không phân biệt được các chương trình có một

số hành vi khác nhau. Chúng ta phân tích Mã lệnh 3.7 và 3.8 sau để thấy được hạn chế của phép đo **RS**:

Mã lệnh 1.9: Chương trình P_1

```
public static int Y(string x) {
   if (x == "XYZ") return 0;
   if (x == "ABC") return 1
   return -1;
}
```

```
Mã lệnh 1.10: Chương trình P2

public static int Y(string x) {
   if (x == "ABC") return 1
    return -1;
}
```

Chúng ta thấy đoạn Mã lệnh 3.7 và 3.8 của hai Chương trình P_1 và P_2 có cùng miền giá trị đầu vào là stringx, cấu trúc mã lệnh hai chương trình gần như nhau. Nhưng Chương trình P_1 khác với Chương trình P_2 đó là sẽ trả kết quả về 0 nếu tham số đầu vào có giá trị là XYZ. Tỷ lệ phép đo \mathbf{RS} lấy ngẫu nhiên giá trị đầu vào x trên miền giá trị đầu vào của hai chương trình có giá trị bằng XYZ là rất thấp, vì vậy khả năng câu lệnh if(x == "XYZ")return0; của Chương trình P_1 có thể sẽ không được thực thi nên kết quả của phép đo \mathbf{RS} sẽ ở mức tương đối so với hành vi thực tế của chương trình.

Phép đo tượng trưng trên một chương trình Single Program Symbol Execution (SSE)

Phép đo **SSE** là một phép đo dựa trên số lượng các nhánh đường đi của Chương trình mẫu, mỗi nhánh đường đi của Chương trình mẫu được xem là một hành vi của chương trình. Nếu chọn một giá trị đầu vào thử nghiệm cho một nhánh đường đi trong Chương trình thì các giá trị đầu vào thử nghiệm này sẽ khám phá hết các hành vi trong Chương trình mẫu. Do vậy, số phần tử trong tập các giá trị đầu vào thử nghiệm của phép đo **SSE** sẽ nhỏ hơn tập các giá trị đầu vào thử nghiệm được chọn theo phương pháp lấy ngẫu nhiên giá trị đầu vào.

Để tính độ tương tự hành vi của hai chương trình với phép đo SSE, chúng ta chọn Chương trình mẫu làm Chương trình tham chiếu và áp dụng kỹ thuật DSE để tạo ra các đầu vào thử nghiệm dựa trên Chương trình tham chiếu. Sau đó thực thi cả hai chương trình dựa trên các giá trị đầu vào thử nghiệm. Tỷ lệ số lượng các kết quả đầu ra giống nhau của cả hai chương trình trên tổng số các giá trị đầu vào thử nghiệm của Chương trình tham chiếu là kết quả của phép đo SSE. Qua đó, chúng ta có định nghĩa phép đo SSE như sau:

Định nghĩa 6 Cho P_1 và P_2 là hai chương trình có cùng miền giá trị đầu vào I, Chương trình P_1 là Chương trình tham chiếu, I_s là tập các giá trị đầu vào được tạo bởi DSE trên chương trình P_1 , và I_a là tập con I_s . Hai Chương trình thực thi giống nhau với $\forall i \in I_a$, ký hiệu $exec(P_1,i) = exec(P_2,i)$ và hai Chương trình thực thi khác nhau với $\forall j \in I_s \setminus I_a$, ký hiệu $exec(P_1,j) \neq exec(P_2,j)$. Chỉ số phép đo $exec(P_1,j) \neq exec(P_2,j)$. Chỉ số phép đo $exec(P_1,j) \neq exec(P_2,j)$.

Ngược lại với phép đo RS, phép đo SSE khám phá những đường đi khả thi khác nhau trong chương chình tham chiếu để tạo dữ liệu đầu vào của chương trình. Do đó, các đầu vào thử nghiệm này sẽ thực thi hết các đường đi của chương trình tham chiếu và có khả năng phát hiện được những chương trình cần tính có những hành vi khác so với Chương trình tham chiếu. Những phép đo SSE vẫn còn hạn chế, đó là phép đo SSE không xem xét đường đi của Chương trình cần phân tích để tạo các giá trị đầu vào thử nghiệm mà chỉ dựa vào các đầu vào thử nghiệm được phân tích từ Chương trình tham chiếu. Các đầu vào thử nghiệm này không nắm bắt được hết các hành vi của Chương trình cần phân tích, Chương trình cần phân tích có thể sẽ có những hành vi khác so với Chương trình tham chiếu. Một số chương trình có thể có những vòng lập vô hạn phụ thuộc vào giá trị đầu vào nên SSE không thể liệt kê được tất cả các đường dẫn của chương trình. Chúng ta xem xét và phân tích 2 đoạn Mã lệnh 3.9 và 3.10 để thấy được hạn chế của phép đo SSE như sau:

Mã lệnh 1.11: Chương trình P_1

Mã lệnh 1.12: Chương trình P_2

```
public static int sub(int x) {
    int y = 0;
    if (x == 1)
        return y += 4;
    if (x == 2)
        return y *= 4;
    else
        return y = x - 100;
}
```

Hai đoạn Mã lệnh 3.9 và Mã lệnh 3.10 của hai Chương trình P_1 và P_2 , chọn Chương trình P_1 làm Chương trình tham chiếu, sử dụng kỹ thuật **DSE** để phân tích chương trình P_1 ta được tập các giá trị đầu vào thử nghiệm là (0,1). Trong khi đó, phân tích Chương trình P_2 chúng ta được tập các giá trị đầu vào thử nghiệm của Chương trình P_2 là (0,1,2). Do đó, chúng ta thấy tập giá trị đầu vào thử nghiệm do phép đo **SSE** tạo ra thiếu giá trị đầu thử nghiệm 2 để có thể thực thi hết các đường đi của Chương trình P_2 .

Kỹ thuật thực thi chương trình kết hợp Paired Program Symbolic Execution (PSE)

Để giải quyết giới hạn của phép đo **SSE** khi tạo ra tập các giá trị đầu vào thử nghiệm không thực thi hết các các đi của Chương trình cần phân tích. Phép đo **PSE** giải quyết giới hạn của phép đo **SSE** bằng cách tạo một Chương trình kết hợp giữa Chương trình

cần phân tích với Chương trình tham chiếu. Dựa trên Chương trình kết hợp sử dụng kỹ thuật **DSE** để tạo ra đầu vào thử nghiệm cho cả hai chương trình, các đầu vào thử nghiệm này bao gồm các đầu vào thử nghiệm đúng và không đúng. Các đầu vào thử nghiệm đúng là những giá trị khi thực thi trên cả hai chương trình sẽ cho kết quả đầu ra như nhau, ngược lại các đầu vào thử nghiệm không đúng là những giá trị khi thực thi trên cả hai chương trình sẽ cho kết quả khác nhau. Do đó, phép đo **PSE** được tính bằng tỷ lệ các giá trị đầu vào thử nghiệm đúng trên tổng số các giá trị đầu vào được thử nghiệm.

Phép đo **SSE** là một phép đo cải tiến của phép đo **RS**, khi sử dụng kỹ thuật **DSE** dựa trên Chương trình tham chiếu để tạo các giá trị đầu vào thử nghiệm. Vì phải khám tất cả các nhánh đường đi của Chương trình tham chiếu nên tốc độ xử lý của phép đo **SSE** sẽ chậm và chiếm nhiều tài nguyên hơn phép đo **RS**. Tập dữ liệu đầu vào thử nghiệm được tạo bởi phép đo **SSE** có khả năng phủ tất cả các nhánh của Chương trình tham chiếu nên kết quả đánh giá độ tương tự hành vi của phép đo **SSE** sẽ chính xác hơn kết quả đánh giá độ tương tự hành vi của phép đo **RS**.

Phép đo **PSE** sử dụng kỹ thuật **DSE** khám phá tất cả các nhánh đường đi của Chương trình kết hợp để tạo ra tập dữ liệu đầu vào thử nghiệm chung cho cả hai chương trình. Vì vậy, phép đo **PSE** sẽ tốn nhiều thời gian thực thi chương trình và chiếm nhiều tài nguyên hơn phép đo **SSE**. Dữ liệu thử nghiệm của phép đo **PSE** sẽ có độ phủ cao hơn phép đo **SSE**, vì tất cả các giá trị đầu vào thử nghiệm có khả năng phủ tất cả các nhánh của Chương trình tham chiếu và Chương trình cần tình. Kết quả đánh giá độ tương tự hành vi của phép đo **PSE** sẽ chính xác hơn kết quả đánh giá độ tương tự của phép đo **SSE**.

Tổng kết chương

Nội dung chính được trình bày trong chương này bao gồm những định nghĩa về thực thi chương trình, độ tương tự hành vi, sự khác biệt về hành vi độ tương tự về hành vi

của chương trình. Mô tả, định nghĩa 3 kỹ thuật đo RS, SSE, PSE cũng như trình bày những ưu điểm, nhược điểm và hướng khắc phục của 3 kỹ thuật đo. Qua đó, giới thiệu một số tiêu chí đánh giá hiệu quả các kỹ thuật đo.

Tài liệu tham khảo

- [1] Kalle Aaltonen, Petri Ihantola, and Otto Seppälä. Mutation analysis vs. code coverage in automated assessment of students' testing skills. In *Proceedings of the ACM international conference companion on Object oriented programming systems languages and applications companion*, pages 153–160. ACM, 2010.
- [2] Rajeev Alur, Loris D'Antoni, Sumit Gulwani, Dileep Kini, and Mahesh Viswanathan. Automated grading of dfa constructions. In *IJCAI*, volume 13, pages 1976–1982, 2013.
- [3] Paul Ammann and Jeff Offutt. Introduction to software testing. Cambridge University Press, 2016.
- [4] Samuel Bates and Susan Horwitz. Incremental program testing using program dependence graphs. In *Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles of programming languages*, pages 384–396. ACM, 1993.
- [5] Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant'Anna, and Lorraine Bier. Clone detection using abstract syntax trees. In *Software Maintenance*, 1998. Proceedings., International Conference on, pages 368–377. IEEE, 1998.
- [6] David Binkley. Using semantic differencing to reduce the cost of regression testing. In *Software Maintenance*, 1992. *Proceedings.*, Conference on, pages 41–50. IEEE, 1992.
- [7] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. Parallel symbolic execution for automated real-world software testing. In *Proceedings of the sixth conference on Computer systems*, pages 183–198. ACM, 2011.
- [8] Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S Păsăreanu, Koushik Sen, Nikolai Tillmann, and Willem Visser. Symbolic execution for software testing

- in practice: preliminary assessment. In *Proceedings of the 33rd International Conference on Software Engineering*, pages 1066–1071. ACM, 2011.
- [9] Cristian Cadar and Koushik Sen. Symbolic execution for software testing: three decades later. *Communications of the ACM*, 56(2):82–90, 2013.
- [10] Tsong Yueh Chen, Fei-Ching Kuo, Robert G Merkel, and TH Tse. Adaptive random testing: The art of test case diversity. *Journal of Systems and Software*, 83(1):60–66, 2010.
- [11] Coursera. https://www.coursera.org/.
- [12] Yingnong Dang, Dongmei Zhang, Song Ge, Chengyun Chu, Yingjun Qiu, and Tao Xie. Xiao: Tuning code clones at hands of engineers in practice. In *Proceedings of the 28th Annual Computer Security Applications Conference*, pages 369–378. ACM, 2012.
- [13] John A Darringer and James C King. Applications of symbolic execution to program testing. *Computer*, 11(4):51–60, 1978.
- [14] Peli de Halleux and Nikolai Tillmann. Parameterized test patterns for effective testing with pex. volume 21. Citeseer, 2008.
- [15] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. *Tools and Algorithms for the Construction and Analysis of Systems*, pages 337–340, 2008.
- [16] Christopher Douce, David Livingstone, and James Orwell. Automatic test-based assessment of programming: A review. *Journal on Educational Resources in Computing (JERIC)*, 5(3):4, 2005.
- [17] EdX. https://www.edx.org/.
- [18] Daniel Galin. Software quality assurance: from theory to implementation. Pearson Education India, 2004.

- [19] Jaco Geldenhuys, Matthew B Dwyer, and Willem Visser. Probabilistic symbolic execution. In *Proceedings of the 2012 International Symposium on Software Testing and Analysis*, pages 166–176. ACM, 2012.
- [20] Geoffrey K. Gill and Chris F. Kemerer. Cyclomatic complexity density and software maintenance productivity. volume 17, pages 1284–1288. IEEE, 1991.
- [21] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed automated random testing. In *ACM Sigplan Notices*, volume 40, pages 213–223. ACM, 2005.
- [22] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. Automated whitebox fuzz testing. In *NDSS*, volume 8, pages 151–166, 2008.
- [23] Jan B Hext and JW Winings. An automatic grading scheme for simple programming exercises. *Communications of the ACM*, 12(5):272–275, 1969.
- [24] Code Hunt. https://www.microsoft.com/en-us/research/project/code-hunt/.
- [25] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. Review of recent systems for automatic assessment of programming assignments. In *Proceedings of the 10th Koli Calling International Conference on Computing Education Research*, pages 86–93. ACM, 2010.
- [26] Julia Isong. Developing an automated program checkers. In *Journal of Computing Sciences in Colleges*, volume 16, pages 218–224. Consortium for Computing Sciences in Colleges, 2001.
- [27] Daniel Jackson, David A Ladd, et al. Semantic diff: A tool for summarizing the effects of modifications. In *ICSM*, volume 94, pages 243–252, 1994.
- [28] David Jackson and Michelle Usher. Grading student programs using assyst. In *ACM SIGCSE Bulletin*, volume 29, pages 335–339. ACM, 1997.

- [29] Lingxiao Jiang and Zhendong Su. Automatic mining of functionally equivalent code fragments via random testing. In *Proceedings of the eighteenth international symposium on Software testing and analysis*, pages 81–92. ACM, 2009.
- [30] Edward L Jones. Grading student programs-a software testing approach. *Journal of Computing Sciences in Colleges*, 16(2):185–192, 2001.
- [31] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Ccfinder: a multilinguistic token-based code clone detection system for large scale source code. *IEEE Transactions on Software Engineering*, 28(7):654–670, 2002.
- [32] Sarfraz Khurshid, Corina S Păsăreanu, and Willem Visser. Generalized symbolic execution for model checking and testing. In *International Conference on Tools and Algorithms for the Construction and Analysis of Systems*, pages 553–568. Springer, 2003.
- [33] James C King. Symbolic execution and program testing. *Communications of the ACM*, 19(7):385–394, 1976.
- [34] Raghavan Komondoor and Susan Horwitz. Using slicing to identify duplication in source code. In *International Static Analysis Symposium*, pages 40–56. Springer, 2001.
- [35] Daniel Kroening and Ofer Strichman. Decision procedures for propositional logic. In *Decision Procedures*, pages 27–58. Springer, 2016.
- [36] Shuvendu K Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebêlo. Symdiff: A language-agnostic semantic diff tool for imperative programs. In *CAV*, volume 12, pages 712–717. Springer, 2012.
- [37] Sihan Li, Xusheng Xiao, Blake Bassett, Tao Xie, and Nikolai Tillmann. Measuring code behavioral similarity for programming and software engineering education.

- In Proceedings of the 38th International Conference on Software Engineering Companion, pages 501–510. ACM, 2016.
- [38] John J. Marciniak, editor. *Encyclopedia of Software Engineering (Vol. 1 A-N)*. Wiley-Interscience, New York, NY, USA, 1994.
- [39] Ettore Merlo, Giuliano Antoniol, Massimiliano Di Penta, and Vincenzo Fabio Rollo. Linear complexity object-oriented similarity for clone detection and software evolution analyses. In *Software Maintenance*, 2004. *Proceedings*. 20th IEEE International Conference on, pages 412–416. IEEE, 2004.
- [40] Christophe Meudec. Atgen: automatic test data generation using constraint logic programming and symbolic execution. *Software Testing, Verification and Reliability*, 11(2):81–96, 2001.
- [41] Glenford J Myers, Corey Sandler, and Tom Badgett. *The art of software testing*. John Wiley & Sons, 2011.
- [42] Coursera MOOC on Software Engineering for SaaS. https://www.coursera.org/course/saas.
- [43] Carlos Pacheco, Shuvendu K Lahiri, Michael D Ernst, and Thomas Ball. Feedback-directed random test generation. In *Proceedings of the 29th international conference on Software Engineering*, pages 75–84. IEEE Computer Society, 2007.
- [44] Laura Pappano. The year of the mooc. The New York Times, 2(12):2012, 2012.
- [45] Corina S Păsăreanu and Neha Rungta. Symbolic pathfinder: symbolic execution of java bytecode. In *Proceedings of the IEEE/ACM international conference on Automated software engineering*, pages 179–180. ACM, 2010.
- [46] Corina S Păsăreanu and Willem Visser. Verification of java programs using symbolic execution and invariant generation. In *International SPIN Workshop on Model Checking of Software*, pages 164–181. Springer, 2004.

- [47] Corina S Păsăreanu and Willem Visser. A survey of new trends in symbolic execution for software testing and analysis. *International Journal on Software Tools for Technology Transfer (STTT)*, 11(4):339–353, 2009.
- [48] Suzette Person, Matthew B Dwyer, Sebastian Elbaum, and Corina S Păsăreanu. Differential symbolic execution. In *Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of software engineering*, pages 226–237. ACM, 2008.
- [49] Pex4Fun. https://pexforfun.com/.
- [50] Roger S Pressman. Software engineering: a practitioner's approach. Palgrave Macmillan, 2005.
- [51] Jane Radatz, Anne Geraci, and Freny Katki. Ieee standard glossary of software engineering terminology. *IEEE Std*, 610121990(121990):3, 1990.
- [52] Graham HB Roberts and Janet LM Verbyla. An online programming assessment tool. In *Proceedings of the fifth Australasian conference on Computing education-Volume* 20, pages 69–75. Australian Computer Society, Inc., 2003.
- [53] Koushik Sen, Darko Marinov, and Gul Agha. Cute: a concolic unit testing engine for c. In *ACM SIGSOFT Software Engineering Notes*, volume 30, pages 263–272. ACM, 2005.
- [54] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automated feedback generation for introductory programming assignments. *ACM SIGPLAN Notices*, 48(6):15–26, 2013.
- [55] Fang-Hsiang Su, Jonathan Bell, Kenneth Harvey, Simha Sethumadhavan, Gail Kaiser, and Tony Jebara. Code relatives: Detecting similarly behaving software. In *Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering*, pages 702–714. ACM, 2016.

- [56] Fang-Hsiang Su, Jonathan Bell, Gail Kaiser, and Simha Sethumadhavan. Identifying functionally similar code in complex codebases. In *Program Comprehension* (*ICPC*), 2016 IEEE 24th International Conference on, pages 1–10. IEEE, 2016.
- [57] Kunal Taneja and Tao Xie. Diffgen: Automated regression unit-test generation. In *Proceedings of the 2008 23rd IEEE/ACM International Conference on Automated Software Engineering*, pages 407–410. IEEE Computer Society, 2008.
- [58] Nikolai Tillmann and Jonathan De Halleux. Pex–white box test generation for. net. *Tests and Proofs*, pages 134–153, 2008.
- [59] Nikolai Tillmann, Jonathan De Halleux, and Tao Xie. Transferring an automated test generation tool to practice: From pex to fakes and code digger. In *Proceedings of the 29th ACM/IEEE international conference on Automated software engineering*, pages 385–396. ACM, 2014.
- [60] Nikolai Tillmann, Jonathan De Halleux, Tao Xie, Sumit Gulwani, and Judith Bishop. Teaching and learning programming and software engineering via interactive gaming. In *Proceedings of the 2013 International Conference on Software Engineering*, pages 1117–1126. IEEE Press, 2013.
- [61] Udacity. http://www.udacity.com/.
- [62] Andrew Walenstein, Mohammad El-Ramly, James R Cordy, William S Evans, Kiarash Mahdavi, Markus Pizka, Ganesan Ramalingam, and Jürgen Wolff von Gudenberg. Similarity in programs. In *Dagstuhl Seminar Proceedings*. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2007.
- [63] Tiantian Wang, Xiaohong Su, Yuying Wang, and Peijun Ma. Semantic similarity-based grading of student programs. volume 49, pages 99–107. Elsevier, 2007.
- [64] James A Whittaker. What is software testing? and why is it so hard? *IEEE software*, 17(1):70–79, 2000.

- [65] Wikipedia. https://en.wikipedia.org.
- [66] Xusheng Xiao, Sihan Li, Tao Xie, and Nikolai Tillmann. Characteristic studies of loop problems for structural test generation via symbolic execution. In *Automated Software Engineering (ASE)*, 2013 IEEE/ACM 28th International Conference on, pages 246–256. IEEE, 2013.
- [67] Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wolfram Schulte. Fitness-guided path exploration in dynamic symbolic execution. In *Dependable Systems & Networks*, 2009. *DSN'09. IEEE/IFIP International Conference on*, pages 359–368. IEEE, 2009.
- [68] Hong Zhu, Patrick AV Hall, and John HR May. Software unit test coverage and adequacy. volume 29, pages 366–427. ACM, 1997.

Phụ lục A QUYẾT ĐỊNH GIAO LUẬN VĂN

Quyết định

Phụ lục B

MỘT SỐ MÃ LỆNH QUAN TRỌNG

MỘT SỐ MÃ NGUỒN CHÍNH CỦA HÊ THỐNG

1. Mã nguồn tạo Project của sinh viên

```
public static void MakeProjects(string topDir) {
   string[] references = { "Microsoft.Pex.Framework",
       "Microsoft.Pex.Framework.Settings",
                                  "System.Text.RegularExpressions" };
   foreach (string taskDir in Directory.GetDirectories(topDir)) {
       foreach (var studentDir in Directory.GetDirectories(taskDir)) {
          if (studentDir.EndsWith("secret_project"))
              continue;
          foreach (var file in Directory.GetFiles(studentDir)) {
              if (file.EndsWith(".cs")) {
                  string fileName = file.Substring(file.LastIndexOf("\\")
                     + 1);
                  string projectName = "project" + fileName.Substring(0,
                     fileName.Length - 3);
                  string projectDir = studentDir + "\\" + projectName;
                  Directory.CreateDirectory(projectDir);
                  CreateProjectFile(projectDir + "\\" + projectName +
                     ".csproj", fileName);
                  string propertyDir = projectDir + "\\Properties";
                  Directory.CreateDirectory(propertyDir);
```

2. Mã nguồn tạo Project Chương trình tham chiếu

```
if (secretFile == null) {
          throw new Exception("secret implementation not found");
       }
       string fileName =
          secretFile.Substring(secretFile.LastIndexOf("\\") + 1);
       string projectName = "secret_project";
       string projectDir = taskDir + "\\" + projectName;
       Directory.CreateDirectory(projectDir);
       CreateProjectFile(projectDir + "\\" + projectName + ".csproj",
          fileName);
       string propertyDir = projectDir + "\\Properties";
       Directory.CreateDirectory(propertyDir);
       CreateAssemblyFile(propertyDir + "\\AssemblyInfo.cs", projectName);
       string newFile = projectDir + "\\" + fileName;
       File.Copy(secretFile, newFile, true);
       AddNameSpace(newFile, "Solution");
       AddUsingStatements(newFile, references);
       string[] classes = { "Program" };
       string[] methods = { "Puzzle" };
       AddPexAttribute(newFile, classes, methods);
   }
}
```

3. Mã nguồn build Project của sinh viên

4. Mã nguồn build Project Chương trình tham chiếu

```
public static void BuildSecretProjects(string topDir, bool rebuild){
    foreach (string taskDir in Directory.GetDirectories(topDir)){
        string secretDir = null;
        foreach (var dir in Directory.GetDirectories(taskDir)){
            if (dir.EndsWith("secret_project")){
                 secretDir = dir;
                 break;
            }
        }
        if (secretDir == null)
            throw new Exception("secret project not found");
        BuildSingleProject(secretDir, rebuild);
    }
}
```

5. Mã nguồn thực thi DSE trên Chương trình tham chiếu

```
public static void BuildMetaProjects(string topDir, bool rebuild){
   foreach (var taskDir in Directory.GetDirectories(topDir)){
```

```
foreach (var studentDir in Directory.GetDirectories(taskDir)){
    if (studentDir.EndsWith("secret_project"))
        continue;
    foreach (var projectDir in
        Directory.GetDirectories(studentDir)){
        if (projectDir.Contains("meta_project")){
            BuildSingleProject(projectDir, rebuild);
        }
    }
}
```

6. Mã nguồn thực thi DSE trên Chương trình kết hợp

7. Mã nguồn phép đo PSE

```
double metric = 0;
if(projectDir.Contains("meta_project"))
{
   string projectNo =
       projectDir.Substring(projectDir.LastIndexOf("meta_project")+12)
   List<Test> tests =
       Serializer.DeserializeTests(projectDir +
       @"\PexTests.xml");
   MethodInfo method = Utility.GetMethodDefinition(
           Utility.GetAssemblyForProject(projectDir),
              "MetaProgram", "Check");
   foreach (var test in tests)
       try
       {
           object result = method.Invoke(null,
              test.TestInputs.ToArray());
           pass++;
       }
       catch (Exception e)
       {
           if
              (e.InnerException.Message.Contains("Submission
              failed"))
           {
              notPass++;
           }
       }
   }
   metric = pass / (notPass + pass);
```

8. Mã nguồn phép đo SSE

```
public static void ComputeMetric2(string topDir) {
   foreach (var taskDir in Directory.GetDirectories(topDir)){
       List<Test> tests = Serializer.DeserializeTests(taskDir +
          @"\secret_project\PexTests.xml");
       MethodInfo secretMethod = Utility.GetMethodDefinition(
           Utility.GetAssemblyForProject(taskDir + @"\secret_project"),
              "Program", "Puzzle");
       foreach (var test in tests){
          try{
              test.TestOuput = secretMethod.Invoke(null,
                  test.TestInputs.ToArray());
           }
           catch (Exception e){
              test.TestOuput = e;
          }
       }
       foreach (var studentDir in Directory.GetDirectories(taskDir)){
           StringBuilder sb = new StringBuilder();
           sb.AppendLine("projectNo\t#match\t#all\tmetric2");
```

```
if (studentDir.EndsWith("secret_project"))
   continue;
foreach (var projectDir in
   Directory.GetDirectories(studentDir)){
   double match = 0;
   double metric = 0;
   if (!projectDir.Contains("meta_project")){
       string projectNo =
          projectDir.Substring(projectDir.LastIndexOf("project")
       MethodInfo method = Utility.GetMethodDefinition(
                  Utility.GetAssemblyForProject(projectDir),
                      "Program", "Puzzle");
       foreach (var test in tests){
           object result;
          try {
              result = method. Invoke(null,
                  test.TestInputs.ToArray());
          }
          catch (Exception e){
              result = e;
          }
           if (result is Exception){
              if (test.TestOuput is Exception){
                  string type1 =
                      ((Exception)result).InnerException.GetType().ToStrin
                  string type2 =
                      ((Exception)test.TestOuput).InnerException.GetType()
                  if (type1 == type2){
                      match++;
```

```
}
   }
}
else {
   if (test.TestOuput is Exception)
       continue;
   if (result == null){
       if (test.TestOuput == null)
           match++;
   }
   else if (result is Int32){
       if ((int)result == (int)test.TestOuput)
           match++;
   }
   else if (result is Double){
       if ((double)result == (double)test.TestOuput)
           match++;
   }
   else if (result is String){
       if ((string)result == (string)test.TestOuput)
           match++;
   }
   else if (result is Byte){
       if ((byte)result == (byte)test.TestOuput)
           match++;
   }
   else if (result is Char){
       if ((char)result == (char)test.TestOuput)
          match++;
   }
```

```
else if (result is Double){
           if ((double)result == (double)test.TestOuput)
              match++;
       }
       else if (result is Boolean){
           if ((bool)result == (bool)test.TestOuput)
              match++;
       }
       else if (result is Int32[]){
           int[] array1 = (int[])result;
           int[] array2 = (int[])test.TestOuput;
           if (array1.Length == array2.Length){
              bool equal = true;
              for (int i = 0; i < array1.Length; i++){</pre>
                  if (array1[i] != array2[i]){
                      equal = false;
                      break;
                  }
              }
               if (equal)
                  match++;
           }
       }
       else{
           throw new Exception("Not handled return type
              at " + projectDir);
       }
   }
}
metric = match / tests.Count;
```

9. Mã nguồn phép đo RS

```
public static void ComputeMetric3(string topDir) {
   foreach (var taskDir in Directory.GetDirectories(topDir)) {
       //Console.WriteLine(taskDir);
       List<Test> tests = Serializer.DeserializeTests(taskDir +
          @"\secret_project\RandomTests.xml");
       MethodInfo secretMethod = Utility.GetMethodDefinition(
           Utility.GetAssemblyForProject(taskDir + @"\secret_project"),
              "Program", "Puzzle");
       foreach (var test in tests) {
          try {
              test.TestOuput = secretMethod.Invoke(null,
                  test.TestInputs.ToArray());
          }
           catch (Exception e) {
              test.TestOuput = e;
          }
       }
       foreach (var studentDir in Directory.GetDirectories(taskDir)) {
           StringBuilder sb = new StringBuilder();
```

```
sb.AppendLine("projectNo\t#match\t#all\tmetric3");
if (studentDir.EndsWith("secret_project"))
   continue;
foreach (var projectDir in
   Directory.GetDirectories(studentDir)) {
   double match = 0;
   double metric = 0;
   if (!projectDir.Contains("meta_project")) {
       string projectNo =
          projectDir.Substring(projectDir.LastIndexOf("project")
          + 7);
       MethodInfo method = Utility.GetMethodDefinition(
                  Utility.GetAssemblyForProject(projectDir),
                     "Program", "Puzzle");
       foreach (var test in tests) {
          object result;
          try {
              result = method.Invoke(null,
                  test.TestInputs.ToArray());
          }
          catch (Exception e) {
              result = e;
          if (result is Exception) {
              if (test.TestOuput is Exception) {
                  string type1 =
                      ((Exception)result).InnerException.GetType().ToStrin
                  string type2 =
                      ((Exception)test.TestOuput).InnerException.GetType()
                  if (type1 == type2) {
```

```
match++;
       }
   }
}
else {
   if (test.TestOuput is Exception)
       continue;
   if (result == null){
       if (test.TestOuput == null)
           match++;
   }
   else if (result is Int32){
       if ((int)result == (int)test.TestOuput)
           match++;
   }
   else if (result is Double){
       if ((double)result == (double)test.TestOuput)
           match++;
   }
   else if (result is String){
       if ((string)result == (string)test.TestOuput)
           match++;
   }
   else if (result is Byte){
       if ((byte)result == (byte)test.TestOuput)
           match++;
   }
   else if (result is Char){
       if ((char)result == (char)test.TestOuput)
           match++;
```

}

```
else if (result is Double){
           if ((double)result == (double)test.TestOuput)
              match++;
       }
       else if (result is Boolean){
           if ((bool)result == (bool)test.TestOuput)
              match++;
       }
       else if (result is Int32[]){
           int[] array1 = (int[])result;
           int[] array2 = (int[])test.TestOuput;
           if (array1.Length == array2.Length){
              bool equal = true;
              for (int i = 0; i < array1.Length; i++){</pre>
                  if (array1[i] != array2[i]){
                      equal = false;
                      break;
                  }
              }
              if (equal)
                  match++;
           }
       }
       else {
           throw new Exception("Not handled return type
              at " + projectDir);
       }
   }
}
```