Motion and Optical Flow

Introduction to Computational Photography: EECS 395/495

Northwestern University

Motion and Optical Flow

Method to estimate apparent motion of scene objects from a sequence of images.

Topics:

- (1) Motion Field
- (2) Optical Flow
- (3) Optical Flow Constraints
- (4) Optical Flow Algorithms

Where is Motion Estimation Used?

Finding Velocities of Vehicles

Where is Motion Estimation Used?

Tracking of Facial Features

Where is Motion Estimation Used?

Estimating Mouse Movements

Motion Field

Image velocity of a point that is moving in the scene

Image Point Velocity:
$$\mathbf{v}_i = \frac{d\mathbf{r}_i}{dt}$$
 Scene Point Velocity: $\mathbf{v}_o = \frac{d\mathbf{r}_o}{dt}$ (Motion Field)

Motion Field

Image velocity of a point that is moving in the scene

Image Point Velocity:
$$\mathbf{v}_i = \frac{d\mathbf{r}_i}{dt} = f\frac{(\mathbf{r}_o \cdot \mathbf{z})\mathbf{v}_0 - (\mathbf{v}_o \cdot \mathbf{z})\mathbf{r}_0}{(\mathbf{r}_o \cdot \mathbf{z})^2}$$

(Motion Field)
$$\mathbf{v}_i = f\frac{(\mathbf{r}_o \times \mathbf{v}_0) \times \mathbf{z}}{(\mathbf{r}_o \cdot \mathbf{z})^2}$$

Optical Flow

Motion of brightness patterns in the image

Image Sequence (2 frames)

Ideally, Optical Flow = Motion Field

When is Optical Flow \neq Motion Field?

Motion Field exists
But no Optical Flow

No Motion Field exists
But There is Optical Flow

When is Optical Flow ≠ Motion Field?

Barber Pole Illusion

Motion Field

Optical Flow

Perceived Motion Without Motion

Donguri Wave Illusion

Optical Flow

Displacement: $(\delta x, \delta y)$

Optical Flow: $(u, v) = \left(\frac{\delta x}{\delta t}, \frac{\delta y}{\delta t}\right)$

Optical Flow Constraints

Assumption #1:

Brightness of an image point remains constant over time

$$E(x + \delta x, y + \delta y, t + \delta t) = E(x, y, t)$$

Optical Flow Constraints

Assumption #2:

Displacement $(\delta x, \delta y)$ and time step δt are small

Taylor Series Expansion

Expand a function as an infinite sum of its derivatives

$$f(x + \delta x) = f(x) + \frac{\partial f}{\partial x} \delta x + \frac{\partial^2 f}{\partial x^2} \frac{\delta x^2}{2!} + \dots + \frac{\partial^n f}{\partial x^n} \frac{\delta x^n}{n!}$$

If δx is small:

$$f(x + \delta x) = f(x) + \frac{\partial f}{\partial x} \delta x + O(\delta x^2)$$
 Almost Zero

For a function of three variables with small δx , δy , δt :

$$f(x + \delta x, y + \delta y, t + \delta t) \approx f(x, y, t) + \frac{\partial f}{\partial x} \delta x + \frac{\partial f}{\partial y} \delta y + \frac{\partial f}{\partial t} \delta t$$

Optical Flow Constraints

Assumption #2:

Displacement and time step are small

$$E(x + \delta x, y + \delta y, t + \delta t) = E(x, y, t) + \frac{\partial E}{\partial x} \delta x + \frac{\partial E}{\partial y} \delta y + \frac{\partial E}{\partial t} \delta t$$

$$E(x + \delta x, y + \delta y, t + \delta t) = E(x, y, t) + E_x \delta x + E_y \delta y + E_t \delta t$$

Optical Flow Constraint Equation

$$E(x + \delta x, y + \delta y, t + \delta t) = E(x, y, t)$$
(1)

$$E(x + \delta x, y + \delta y, t + \delta t) = E(x, y, t) + E_x \delta x + E_y \delta y + E_t \delta t$$
-----(2)

Subtract (1) from (2):
$$E_x \delta x + E_y \delta y + E_t \delta t = 0$$

Divide by
$$\delta t$$
 and take limit as $\delta t \to 0$: $E_x \frac{\partial x}{\partial t} + E_y \frac{\partial y}{\partial t} + E_t = 0$

Constraint Equation:
$$E_x u + E_y v + E_t = 0$$

 (E_x, E_y, E_t) can be easily computed from two frames (later).

Geometric Interpretation

For any point (x, y) in the image, its optical flow (u, v) lies on the line:

$$E_{\chi}u + E_{\chi}v + E_t = 0$$

Optical Flow can be split into two components.

$$\mathbf{u} = \mathbf{u}_n + \mathbf{u}_p$$

 \mathbf{u}_n : Normal Flow

 \mathbf{u}_p : Parallel Flow

Normal Flow

Direction of Normal Flow:

Unit vector perpendicular to the constraint line:

$$\widehat{\mathbf{u}}_n = \frac{\left(E_x, E_y\right)}{\sqrt{E_x^2 + E_y^2}}$$

Magnitude of Normal Flow:

Distance of origin from the constraint line:

$$|\mathbf{u}_n| = \frac{|E_t|}{\sqrt{E_x^2 + E_y^2}}$$

$$\mathbf{u}_n = \frac{|E_t|}{\left(E_x^2 + E_y^2\right)} \left(E_x, E_y\right)$$

Aperture Problem

Aperture Problem

Locally, we can only determine normal flow!

Optical Flow is Under Constrained

We cannot determine the optical flow component \mathbf{u}_p parallel to the constraint line.

Finding optical flow (u, v) is under-constrained just like finding gradient (p, q) is under-constrained in shape from shading.

We need additional assumptions

Optical Flow Constraint

Requirement: Optical Flow must satisfy the constraint

equation: $E_x u + E_y v + E_t = 0$

Minimize:

$$e_c = \iint (E_x u + E_y v + E_t)^2 dx \, dy$$
Image

Aim: Penalize errors/departure from the constraint equation.

Smoothness Constraint

Assumption: Motion field and hence optical flow (u, v) varies "smoothly" in an image.

Minimize:

$$e_S = \iint (u_x^2 + u_y^2) + (v_x^2 + v_y^2) dx dy$$
Image

where:
$$u_x = \frac{\partial u}{\partial x}$$
, $u_y = \frac{\partial u}{\partial y}$, $v_x = \frac{\partial v}{\partial x}$ and $v_y = \frac{\partial v}{\partial y}$

Aim: Penalize rapid changes in u and v.

Computing Optical Flow

Find optical flow (u, v) at each pixel that minimizes:

$$e = e_s + \lambda e_c$$

where:

 e_s : Smoothness Error

 e_c : Optical Flow Error

 λ : Weighting factor

Optical Flow Constraint Error at point (i, j)

$$e_{c_{i,j}} = \left(E_{x_{i,j}}u_{i,j} + E_{y_{i,j}}v_{i,j} + E_{t_{i,j}}\right)^2$$

Smoothness Error at point (i, j)

$$e_{s_{i,j}} = \frac{1}{4} \left(\left(u_{i+1,j} - u_{i,j} \right)^2 + \left(u_{i,j+1} - u_{i,j} \right)^2 \right)$$

Find $(u_{i,j}, v_{i,j})$ for all (i,j) that minimize:

$$e = \sum_{i} \sum_{j} \left(e_{s_{i,j}} + \lambda e_{c_{i,j}} \right)$$

If
$$(u_{k,l}, v_{k,l})$$
 minimizes e , then $\frac{\partial e}{\partial u_{k,l}} = 0$ and $\frac{\partial e}{\partial v_{k,l}} = 0$

Given an image of size $N \times N$, there are $2N^2$ unknowns. $(N^2 \, u_{i,j}{}'\! s)$ and $N^2 \, v_{i,j}{}'\! s)$

However, note that each $u_{i,j}$ and $v_{i,j}$ appears in the terms of 3 pixels.

If
$$(u_{k,l}, v_{k,l})$$
 minimizes e , then $\frac{\partial e}{\partial u_{k,l}} = 0$ and $\frac{\partial e}{\partial v_{k,l}} = 0$

Therefore:

Eq 1:
$$\frac{\partial e}{\partial u_{k,l}} = 2(u_{k,l} - \bar{u}_{k,l}) - 2E_{x_{k,l}}(E_{x_{k,l}}u_{k,l} + E_{y_{k,l}}v_{k,l} + E_{t_{k,l}}) = 0$$

Eq 2:
$$\frac{\partial e}{\partial v_{k,l}} = 2(v_{k,l} - \bar{v}_{k,l}) - 2E_{y_{k,l}}(E_{x_{k,l}}u_{k,l} + E_{y_{k,l}}v_{k,l} + E_{t_{k,l}}) = 0$$

where $\bar{u}_{i,j}$ and $\bar{v}_{i,j}$ are local averages.

$$\bar{u}_{i,j} = \frac{1}{4} (u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1})$$

$$\bar{v}_{i,j} = \frac{1}{4} (v_{i+1,j} + v_{i-1,j} + v_{i,j+1} + v_{i,j-1})$$

If
$$(u_{k,l}, v_{k,l})$$
 minimizes e , then $\frac{\partial e}{\partial u_{k,l}} = 0$ and $\frac{\partial e}{\partial v_{k,l}} = 0$

Therefore:

Eq 1:
$$\frac{\partial e}{\partial u_{k,l}} = 2(u_{k,l} - \bar{u}_{k,l}) - 2E_{x_{k,l}}(E_{x_{k,l}}u_{k,l} + E_{y_{k,l}}v_{k,l} + E_{t_{k,l}}) = 0$$

Eq 2:
$$\frac{\partial e}{\partial v_{k,l}} = 2(v_{k,l} - \bar{v}_{k,l}) - 2E_{y_{k,l}}(E_{x_{k,l}}u_{k,l} + E_{y_{k,l}}v_{k,l} + E_{t_{k,l}}) = 0$$

Moving all $u_{k,l}$'s and $v_{k,l}$'s to one side, we get...

Iterative Solution of (u, v)

Update Rule:

(No Need to Memorize)

$$u_{k,l}^{(n+1)} = \bar{u}_{k,l}^{(n)} + \frac{E_{x_{k,l}} \bar{u}_{k,l}^{(n)} + E_{y_{k,l}} \bar{v}_{k,l}^{(n)} + E_{t_{k,l}}}{1 + \lambda \left[\left(E_{x_{k,l}} \right)^2 + \left(E_{y_{k,l}} \right)^2 \right]} E_{x_{k,l}}$$

$$v_{k,l}^{(n+1)} = \bar{v}_{k,l}^{(n)} + \frac{E_{x_{k,l}} \bar{u}_{k,l}^{(n)} + E_{y_{k,l}} \bar{v}_{k,l}^{(n)} + E_{t_{k,l}}}{1 + \lambda \left[\left(E_{x_{k,l}} \right)^2 + \left(E_{y_{k,l}} \right)^2 \right]} E_{y_{k,l}}$$

where: n is iteration index

Initialize
$$u_{k,l}^{(0)} = 0$$
 and $v_{k,l}^{(0)} = 0$

 $E_{\mathbf{x}_{k,l}}$, $E_{\mathbf{y}_{k,l}}$, $E_{\mathbf{t}_{k,l}}$ and λ are known.

Finding Partial Derivatives E_x , E_y , E_t

$$E_{x_{k,l}} = \frac{1}{4} \left(E_{k+1,l,t} + E_{k+1,l,t+1} + E_{k+1,l+1,t} + E_{k+1,l+1,t+1} \right)$$
$$-\frac{1}{4} \left(E_{k,l,t} + E_{k,l,t+1} + E_{k,l+1,t} + E_{k,l+1,t+1} \right)$$

Similarly find $E_{y_{k,l}}$ and $E_{t_{k,l}}$

Results: Rotating Ball

Image Sequence (2 Frames)

Optical Flow ((Himal Renults))

Results: Rotating Camera

Image Sequence

(2 Frames)

Optical Flow

(Final Result)

Remarks: Low Texture Region (Bad)

Small gradient magnitude, can't compute flow

Remarks: Edges (Aperture Problem)

Large gradient magnitude, but constant along the edge

Remarks: High Texture Region (Good)

Large and diverse gradient magnitudes

What if we have large motion?

Taylor Series Expansion:

$$E(x + \delta x, y + \delta y, t + \delta t) =$$

$$E(x, y, t) + E_x \delta x + E_y \delta y + E_t \delta t$$

$$+O(\delta x^2,\delta y^2,\delta t^2)$$

Higher order terms cannot be ignored

Constraint Equation is Invalid!

$$E_x u + E_y v + E_t \neq 0$$

Determine Flow using Template Matching

Template Window T

Image E_1 at time t

Search Window W

Image E_2 at time $t + \delta t$

For each template window T in image E_1 , find the corresponding match in image E_2 .

Similarity Metrics for Template Matching

Find pixel $(k, l) \in W$ with Minimum Sum of Absolute Differences:

$$SAD(k, l) = \sum_{(i,j) \in T} |E_1(i,j) - E_2(i+k,j+l)|$$

Find pixel $(k, l) \in W$ with Minimum Sum of Squared Differences:

$$SSD(k,l) = \sum_{(i,j)\in T} |E_1(i,j) - E_2(i+k,j+l)|^2$$

Find pixel $(k, l) \in W$ with Minimum Normalized Cross-Correlation:

$$NCC(k,l) = \frac{\sum_{(i,j)\in T} |E_1(i,j) - E_2(i+k,j+l)|^2}{\sqrt{\sum_{(i,j)\in T} |E_1(i,j)|^2 \sum_{(i,j)\in T} |E_2(i+k,j+l)|^2}}$$

(See Image Processing Lecture 1)

Determine Flow using Template Matching

Template Window T

Image E_1 at time t

Search Window W

Image E_2 at time $t + \delta t$

Template matching is slow when search window W is large.

Coarse-to-fine estimation of optical flow

At lowest resolution, motion ≤ 1 pixel

Result: Large Motion

Image Sequence

Optical Flow

Result: Optical Flow on Video

Optical flow computed on video frames

Application: Video Retiming

Optical Flow is used to determine the intermediate frames when producing slow motion effects.

Application: Image Stabilization

Optical Flow is used to stabilize camera shake.

References

[Barron 2005] J. L. Barron, D. J. Fleet, and S. Beauchemin, "Performance of optical flow techniques". IJCV, 2005.

[Black 1993] M. J. Black and P. Anandan, "A framework for the robust estimation of optical flow." ICCV, 1993.

[Bouget 2000] J. Y. Bouguet, "Pyramidal Implementation of the Lucas Kanade Feature Tracker", Intel Corporation 2000.

[Brox 2004] T. Brox, A. Bruhn, N. Papenberg, and J.Weickert, "High accuracy optical flow estimation based on a theory for warping." ECCV, 2004.

[Horn 1981] B. K. P. Horn and B. G. Schunck, "Determining optical flow." Artificial Intelligence, 1981.

[Lucas 1981] B. D. Lucas and T. Kanade, "An iterative image registration technique with an application to stereo vision". Proceedings of Imaging understanding workshop, 1981.

Image Credits

http://www.youtube.com/watch?v=49BQVszT5mI I.1 I.2 Simon Baker et. al I.3 http://www.petervaldivia.com/eso/computers/images/opticalmouse.png I.4 http://www.greenbang.com/wp-content/uploads/2009/02/greenpcb.jpg I.5 http://mybirdie.ca/files/barbershop.gif http://www.ritsumei.ac.jp/~akitaoka/wave-e.html I.6 I.7 B. K. P. Horn, Robot Vision I.8 Frames from http://vimeo.com/30779242 I.9 http://www.youtube.com/watch?v=JlLkkom6tWwt I.10 http://vimeo.com/9608102 I.11 http://www.youtube.com/watch?v=2AA6NI7BWkst