Oznaczenia podstawowe

N - zbiór liczb naturalnych

Z - zbiór liczb całkowitych

Q - zbiór liczb wymiernych

R - zbiór liczb rzeczywistych

C - zbiór liczb zespolonych

∀ - kwantyfikator ogólny (dla każdego)

∃ - kwantyfikator szczegółowy (istnieje)

 $a = \inf A \Leftrightarrow \bigvee_{x \in A} x \ge a \text{ oraz } \bigvee_{\varepsilon > 0} \exists_{x_0 \in A} x_0 < a + \varepsilon \text{ - kres dolny (infimum) zbioru}$

 $b = \sup A \Leftrightarrow \bigvee_{x \in A} x \le b \text{ oraz } \bigvee_{\varepsilon > 0} \exists_{x_0 \in A} x_0 > a - \varepsilon \text{ - kres górny (supremum) zbioru}$

Funkcje – informacje podstawowe

Definicja (funkcja, dziedzina, przeciwdziedzina i zbiór wartości funkcji).

Funkcją określoną na zbiorze $X \subset R$ o wartościach w zbiorze $Y \subset R$ nazywamy przyporządkowanie każdemu elementowi $x \in X$ dokładnie jednego elementu $y \in Y$, co zapisujemy $f: X \to Y$.

Zbiór X nazywamy dziedziną funkcji $f\left(D_f\right)$, zbiór Y jej przeciwdziedziną, a $\left\{f(x)\in Y:x\in D_f\right\}$ nazywamy zbiorem wartości funkcji $f\left(W_f\right)$.

Definicja (wykres funkcji). Wykresem funkcji $f: X \to Y$ to zbión $\{(x, y) \in R^2 : x \in X, y = f(x)\}.$

Przykład. y = E(x) = [x] = a dla $a \le x < a+1, a \in Z$ (funkcja część całkowita)

Definicja (odwzorowanie "na" (suriekcja)). Jeżeli $W_f = Y$, to mówimy, że funkcja f odwzorowuje zbiór X na zbiór Y, co zapisujemy $f: X \stackrel{na}{\to} Y$.

Własności funkcji

Funkcja $f: X \to R$ jest:

• parzysta, jeżeli $\forall x [-x \in X \text{ oraz } f(-x) = f(x)],$

• nieparzysta, jeżeli $\forall [-x \in X \text{ oraz } f(-x) = -f(x)],$

• okresowa, jeżeli $\exists_{T>0} \forall [x \pm T \in X \text{ oraz } f(x+T) = f(x)],$

• ograniczona na zbiorze $A \subset D_f$, jeżeli $\exists \forall m \leq f(x) \leq M$,

• malejąca na zbiorze $A \subset D_f$, jeżeli $\bigvee_{x_1, x_2 \in A} [(x_1 < x_2) \Rightarrow (f(x_1) > f(x_2))],$ (podobnie określamy funkcję nierosnącą),

- monotoniczna na zbiorze, jeżeli jest rosnąca, malejąca, nierosnąca lub niemalejąca na tym zbiorze,
- różnowartościowa

różnowartościowa (iniekcja) na zbiorze
$$A \subset D_f$$
, jeżeli
$$\bigvee_{x_1, x_2 \in A} [(x_1 \neq x_2) \Rightarrow (f(x_1) \neq f(x_2))] \left(\bigvee_{x_1, x_2 \in A} [(f(x_1) = f(x_2)) \Rightarrow (x_1 = x_2)] \right).$$

Definicja (złożenie (superpozycja) funkcji). Niech $f: X \to Y$, $g: Z \to W$, przy czym X,Y,Z,W są podzbiorami liczb rzeczywistych spełniającymi warunek $Y \subset Z$. Złożeniem funkcji g i f nazywamy funkcję $g \circ f: X \to W$ określoną wzorem

$$(g \circ f)(x) = g(f(x)) \text{ dla } x \in X.$$

Definicja (funkcja odwrotna). Załóżmy, że funkcja $f: X \to Y$ jest różnowartościowa na dziedzinie. Funkcja odwrotna do f to funkcja $f^{-1}: Y \to X$ określona przez warunek

$$f^{-1}(y) = x \Leftrightarrow y = f(x) \text{ dla } x \in X, y \in Y.$$

Podstawowe funkcje elementarne: stałe, potęgowe, wykładnicze, logarytmiczne, trygonometryczne oraz cyklometryczne.

Funkcje cyklometryczne (kołowe)

$$y = \arcsin x \Leftrightarrow x = \sin y, \ x \in \langle -1,1 \rangle, \ y \in \langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle,$$

 $y = \arccos x \iff x = \cos y, \ x \in \langle -1,1 \rangle, \ y \in \langle 0,\pi \rangle,$

$$y = \operatorname{arctg} x \iff x = \operatorname{tg} y, \ x \in \mathbb{R}, \ y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right),$$

 $y = \operatorname{arcctg} x \iff x = \operatorname{ctg} y, \ x \in R, \ y \in (0, \pi).$

Tożsamości z funkcjami cyklometrycznymi

$$\arcsin x + \arccos x = \frac{\pi}{2}, \ x \in [-1,1],$$

$$\arctan x + \arctan x = \frac{\pi}{2}, x \in \mathbb{R}.$$

Logarytm naturalny

$$y = \ln x \ (= \log_e x), \ x > 0, \text{ gdzie liczba } \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e = 2,718...$$

Podstawowe własności

$$ln(xy) = ln x + ln y,$$

$$\ln \frac{x}{y} = \ln x - \ln y,$$

$$\ln x^y = y \ln x,$$

$$x = e^{\ln x}$$
.

Funkcje hiperboliczne

$$\sinh x = \frac{e^x - e^{-x}}{2}, \ x \in R,$$

$$\cosh x = \frac{e^x + e^{-x}}{2}, \ x \in R,$$

$$tgh x = \frac{\sinh x}{\cosh x}, x \in R,$$

$$\operatorname{ctgh} x = \frac{\cosh x}{\sinh x}, \ x \in R \setminus \{0\}.$$

Tożsamości z funkcjami hiperbolicznymi

 $\cosh^{2} x - \sinh^{2} x = 1,$ $\sinh 2x = 2\sinh x \cosh x,$ $\cosh 2x = \sinh^{2} x + \cosh^{2} x,$ $\sinh(x + y) = \sinh x \cosh y + \cosh x \sinh y,$ $\sinh(x - y) = \sinh x \cosh y - \cosh x \sinh y,$ $\cosh(x + y) = \cosh x \cosh y + \sinh x \sinh y,$ $\cosh(x - y) = \cosh x \cosh y - \sinh x \sinh y.$

Funkcje area

 $y = \operatorname{arsinh} x \iff x = \sinh y, \ x \in R, \ y \in R$ $\operatorname{arsinh} x = \ln(x + \sqrt{x^2 + 1})$

 $y = \operatorname{arcosh} x \iff x = \cosh y, \ x \in (1, +\infty), \ y \in (0, +\infty)$ $\operatorname{arcosh} x = \ln\left(x + \sqrt{x^2 - 1}\right)$ y = arcoshx

 $y = \operatorname{artgh} x \Leftrightarrow x = \operatorname{tghy}, \ x \in (-1,1), \ y \in R$ $1 \cdot 1 + x$

$$\operatorname{artgh} x = \frac{1}{2} \ln \frac{1+x}{1-x}$$

 $y = \operatorname{arctgh} x \Leftrightarrow x = \operatorname{ctgh} y, \ x \in (-\infty, -1), \ y \in (-\infty, 0); \ x \in (1, \infty), \ y \in (0, \infty)$ $\operatorname{arctgh} x = \frac{1}{2} \ln \frac{x+1}{x-1}$

Funkcja uwikłana

Niech dany będzie przedział X. Funkcją uwikłaną zdefiniowaną przez równość F(x, y) = 0 nazywamy funkcję y = y(x) spełniającą warunek F(x, y(x)) = 0, $x \in X$.

Analogicznie definiuje się funkcję uwikłaną $x = x(y), y \in Y$.

Funkcja określona parametrycznie

Mówimy, że w zbiorze X jest określona parametrycznie funkcja złożona y = f(x) za pomocą funkcji

$$x = x(t), y = y(t) \text{ dla } t \in T,$$

jeżeli funkcje x = x(t) i y = y(t) są określone w przedziale T, a funkcja x(t) jest różnowartościowa w tym przedziale i zbiorem jej wartości jest zbiór X. Zmienną $t \in T$ nazywamy parametrem.

Uwaga. Każdej wartości t, dla której określone są funkcje x = x(t) i y = y(t), odpowiada punkt na płaszczyźnie.

Ta sama funkcja może mieć różne przedstawienia parametryczne.

Wybrane krzywe określone parametrycznie Elipsa

Cykloida

Asteroida

Krzywe we współrzędnych biegunowych

Położenie punktu (x, y) na płaszczyźnie określa także para (r, φ) , gdzie r jest odległością tego punktu od początku układu współrzędnych, φ miarą kąta między dodatnią częścią osi OX a promieniem wodzącym tego punktu.

Parę (r, φ) nazywamy współrzędnymi biegunowymi punktu. Związek między współrzędnymi biegunowymi i kartezjańskimi określają zależności $x = r \cos \varphi$, $y = r \sin \varphi$.

Wybrane krzywe we współrzędnych biegunowych Krzywa rozetkowa $r = a \sin(n\varphi), n \in \mathbb{N}$:

• *n*=1

• n = 3

Spirala Archimedesa $r = a\varphi$

Kardioida $r = a(1 + \cos \varphi)$

Uwaga (parametryzacja krzywej). Jeżeli dane jest równanie krzywej w postaci y = f(x), to równania parametryczne tej krzywej określają wzory

$$x = t$$
, $y = f(t)$.

W przypadku krzywej we współrzędnych biegunowych $r=f(\varphi)$ następujące równania

$$x = r \cos \varphi = f(\varphi) \cos \varphi$$
, $y = r \sin \varphi = f(\varphi) \sin \varphi$,

są jej przedstawieniem parametrycznym.