Structure of pHs RLC

Antoine Falaize¹ and John Doe²

 $^1\mathrm{Project\text{-}team}$ S3*, , STMS, IRCAM-CNRS-UPMC (UMR 9912), , 1 Place Igor-Stravinsky, 75004 Paris, France $^2\mathrm{Project\text{-}team}$ S3†, , STMS, IRCAM-CNRS-UPMC (UMR 9912), , 1 Place Igor-Stravinsky, 75004 Paris, France

June 12, 2016

1 System netlist

line	label	dictionary.component	nodes	parameters
$\overline{\ell_1}$	IN	electronics.source	('A', 'ref')	{ type voltage
ℓ_2	R1	electronics.resistor	('A', 'B')	R ('R1', 1000.0)
ℓ_3	L	electronics.inductor	('B', 'C')	L ('L', 0.05)
ℓ_4	С	electronics.capacitor	('C', 'ref')	C ('C', 2e-06)

```
\dim(\mathbf{x}) = n_{\mathbf{x}} = 2;

\dim(\mathbf{w}) = n_{\mathbf{w}} = 1;

\dim(\mathbf{y}) = n_{\mathbf{y}} = 1;

\dim(\mathbf{p}) = n_{\mathbf{p}} = 0;
```

2 System variables

State variable
$$\mathbf{x} = \begin{pmatrix} x_{\rm L} \\ x_{\rm C} \end{pmatrix}$$
;
Dissipation variable $\mathbf{w} = \begin{pmatrix} w_{\rm R1} \end{pmatrix}$;
Input $\mathbf{u} = \begin{pmatrix} u_{\rm IN} \end{pmatrix}$;

^{*}http://s3.ircam.fr

[†]http://s3.ircam.fr

Figure 1: Graph of system RLC.

Output $\mathbf{y} = (y_{\text{IN}})$;

3 Constitutive relations

Hamiltonian $\mathbf{H}(\mathbf{x}) = \frac{0.5}{L} \cdot x_{\mathrm{L}}^2 + \frac{0.5}{C} \cdot x_{\mathrm{C}}^2;$ Hamiltonian gradient $\nabla \mathbf{H}(\mathbf{x}) = \begin{pmatrix} \frac{1.0}{L} \cdot x_{\mathrm{L}} \\ \frac{1.0}{C} \cdot x_{\mathrm{C}} \end{pmatrix};$ Dissipation function $\mathbf{z}(\mathbf{w}) = \begin{pmatrix} \mathrm{R1} \cdot w_{\mathrm{R1}} \end{pmatrix};$ Jacobian of dissipation function $\mathcal{J}_{\mathbf{z}}(\mathbf{w}) = \begin{pmatrix} \mathrm{R1} \end{pmatrix};$

4 System parameters

4.1 Constant

parameter	value (SI)
C:	2e-06
R1:	1000.0
L:	0.05

$$\mathbf{J} = \left(\begin{array}{cccc} 0 & -1.0 & -1.0 & 1.0 \\ 1.0 & 0 & 0 & 0 \\ 1.0 & 0 & 0 & 0 \\ -1.0 & 0 & 0 & 0 \end{array}\right);$$