

In the Claims

This listing of claims will replace all prior versions and listings of claims in the application:

1 1. (Original) A method for distributed device identifier number
2 assignment and device counting in a serially connected chain of
3 devices, comprising:

4 receiving a first sequence of received pulses;
5 determining a unique device identifier based upon the first
6 sequence received of pulses;

7 transmitting a first sequence of transmitted pulses;
8 receiving a second sequence of received pulses;
9 transmitting a second sequence of transmitted pulses; and
10 determining a total device count based upon the first and
11 second sequences of received pulses.

1 2. (Original) The method of claim 1, further comprising the step
2 of initializing a first and a second memory locations before
3 receiving the first sequence of received pulses.

1 3. (Original) The method of claim 2, wherein the first and second
2 memory locations are both initialized to a value that is equal to a
3 maximum allowed number of devices in the serially connected chain.

1 4. (Original) The method of claim 3, wherein the determining a
2 unique device identifier step comprises:

3 counting a number of pulses in the first sequence of received
4 pulses; and

5 subtracting the number of pulses from the value stored in the
6 first memory location.

1 5. (Original) The method of claim 4, wherein the unique device
2 identifier is stored back to the first memory location.

1 6. (Original) The method of claim 3, wherein the determining a
2 total device count comprises:

3 counting the number of pulses in the second sequence of
4 received pulses;

5 subtracting the number of pulses from the value stored in the
6 second memory location to obtain a difference; and

7 adding the value stored in the first memory location and the
8 difference.

1 7. (Original) The method of claim 6, further comprising
2 incrementing the result of adding the value stored in the first
3 memory location and the difference by one (1.0).

1 8. (Original) The method of claim 1, wherein the first sequence
2 of transmitted pulses is a sequence of pulses with one pulse less
3 than the number of pulses in the first sequence of received pulses.

1 9. (Original) The method of claim 1, wherein the second sequence
2 of transmitted pulses is a sequence of pulses with one pulse less
3 than the number of pulses in the second sequence of received
4 pulses.

1 10. (Original) The method of claim 1, wherein the receiving first
2 received sequence and the transmitting first transmitted sequence
3 are received and transmitted over different input/output
4 connections.

1 11. (Original) The method of claim 1, wherein the receiving second
2 received sequence and the transmitting second transmitted sequence

3 are received and transmitted over different input/output
4 connections.

1 12. (Original) The method of claim 1, wherein the receiving first
2 received sequence and transmitting second transmitted sequence are
3 received and transmitted over the same input/output connection.

1 13. (Original) The method of claim 1, wherein the transmitting
2 first transmitted sequence and receiving second received sequence
3 are received and transmitted over the same input/output connection.

1 14. (Original) A semiconductor device comprising:
2 a counter, coupled to an input/output node, the counter for
3 counting a number of pulses in a sequence of pulses received at the
4 input/output node;
5 a first storage location to store a first count result; and
6 a pulse generator, for generating a specified length sequence
7 of pulses, the specified length being one less than the number of
8 pulses in the sequence of pulses received at the input/output node.

1 15. (Original) The semiconductor device of claim 14, wherein the
2 semiconductor device uses the first count result as a device
3 identifier.

1 16. (Original) The semiconductor device of claim 14, wherein a
2 second sequence of pulses is received at a second input/output
3 node.

1 17. (Original) The semiconductor device of claim 16, further
2 comprising a second storage location to store a second count
3 result.

1 18. (Original) The semiconductor device of claim 17, wherein the
2 first and second count results are combined to provide information
3 on a total number of devices in a system that includes the
4 semiconductor device.

1 19. (Original) The semiconductor device of claim 14, further
2 comprising a controller, coupled to the first storage location, the
3 counter and the pulse generator, the controller controlling the
4 operation of the counter and the pulse generator.

1 20. (Original) The semiconductor device of claim 19, wherein the
2 controller is a microcontroller.

1 21. (Original) The semiconductor device of claim 19, wherein the
2 controller is a microprocessor.

1 22. (Original) The semiconductor device of claim 19, wherein the
2 controller is a finite state machine.

1 23. (Original) A system comprising:
2 a processor, coupled to a sequence of least one codec, adapted
3 to processing digital data;
4 a controller, coupled to the sequence of at least one codec,
5 adapted to controlling communications between the processor and the
6 sequence of at least one codec;
7 the sequence of at least one codec, each codec comprising:
8 a port coupled to the processor and the controller; and
9 a semiconductor device for distributed device identifier
10 number assignment and device counting coupled to the port.

1 24. (Original) The system of claim 23, wherein the semiconductor
2 device further comprising:

3 a counter, coupled to an input/output node, the counter for
4 counting a number of pulses in a sequence of pulses received at the
5 input/output node;

6 a first storage location to store a first count result; and
7 a pulse generator, for generating a specified length sequence
8 of pulses, the specified length being one less than the number of
9 pulses in the sequence of pulses received at the input/output node.

1 25. (Original) The system of claim 23, wherein a FSD signal line
2 of a final codec in the sequence of at least one codec is connected
3 to an external pulse generator.

1 26. (Original) The system of claim 23, wherein the semiconductor
2 device operates each time the system is reset.

1 27. (Original) The system of claim 23, wherein the semiconductor
2 device operates each time the system is powered-up.

28 to 47. (Canceled)