INF721

2023/2

Aprendizado em Redes Neurais Profundas

A10: Otimização

Logística

Avisos

▶ Teste T2: Multilayer Perceptron na próxima aula!

Última aula

- ► Regularização L1
- ► Regularização L2
- Dropout

Plano de Aula

- Gradiente Descendente Mini-batch
- Gradiente Descendente com Momento
 - Média Móvel Exponencial
- Root Mean Squared Propagation (RMSProp)
- Adaptive Moment Estimation (Adam)

A Prática de Deep Learning

- Processo iterativo de avaliação de modelos:
 - 1. Ideia de modelo;
 - 2. Implementar e treinar o modelo;
 - 3. Testar o modelo.
- ▶ Funciona muito bem com altos volumes de dados (big data)
- ▶ O tempo de treinamento é um fator crucial para criar modelos neurais de sucesso:
 - Vetorização
 - ▶ GPUs

Vetorização

- Vetorização nos permite treinar RNAs de maneira eficiente
- Em conjuntos de dados pequenos, podemos processar uma época do gradiente descendente em tempo constante.
- Em conjuntos de dados muito grandes, isso não é possível:
 - ▶ A matriz de entrada X e consequente os pesos da RNA ((W1, b1), (W2, b2), ..., (WL, bL)) não cabem em memória "de uma vez"

Gradiente Descendente Mini-batch

Divididir o conjunto de treinamento em subconjuntos chamados mini-batches

Gradiente Descendente Mini-batch

```
n_batches = n//batch_size
# Para cada época
for e in range(n_epochs):
 # Para cada minibatch X_t
  for t in range(n_batches):
   # Propagação da entrada X_t
   Yh_t = forward_pass(X_t)
   # Cálculo de perda de Yh_t
   l_t = 1/1000 * np.sum(L(Yh_t, Y_t))
   # Retropropagação de l_t
   dW_t, db_t = backward_pass(X_t, Y_t)
   # Atualização de pesos
   W[l] = W[l] - lr * dW_t
   b[l] = b[l] - lr * db t
```

- lacktriangle Calcular o erro e atualizar os pesos para cada batch $X^{\{t\}}$, ao invés do conjunto de treinamento inteiro X.
- Múltiplas atualizações de pesos por época
- Gradiente Descendente Batch (b = n)
- ► Gradiente Descendente Estocástico (b = 1)
- ▶ Gradiente Descendente Mini-batch (1 > b < n)

Comportamento de treinamento

Tempo de treinamento

Gradiente Descendente Batch

- Uma atualização de pesos por época
- Gradiente exato, porém atualização muito lenta

Gradiente Descendente Estocástico

- n atualizações de pesos por época
- Atualização muito rápida, porém gradiente com ruído
- Não utiliza vetorização

Gradiente Descendente Mini-batch (mais usado!)

- lacktriangle Uma atualização de pesos para cada mibi-bath X^t
- Atualização rápida com boas aproximações do gradiente

Escolhendo o tamanho do mini batch

Conjunto de treinamento pequeno

Gradiente Descendente Batch

Conjunto de treinamento grande

- Gradiente Descendente Mini-batch
- Tamanho de mini-batch (híper-parâmetro):
 - Potência de dois
 - Cabe em memória da CPU/GPU
 - ▶ 64, 128, 256, 512, 1024, ...

Gradiente Descendente com Momento

Média Móvel

Médias móveis são métricas de média para séries temporais:

Média móvel simples:
$$v_t = \frac{1}{T} \cdot \sum_{t=1}^{T} x_t$$

Média móvel ponderada:
$$v_t = \frac{1}{\sum_{t=1}^{T} w_t} \cdot \sum_{t=1}^{T} x_t \cdot w_t$$

Média móvel exponencial: $v_t = \beta v_{t-1} + (1 - \beta)\theta_t$

Média Móvel Exponencial

$$v_t = \beta v_{t-1} + (1 - \beta)\theta_t$$

$$\beta = 0.9$$

$$v_1 = 0.9v_0 + 0.1\theta_1$$

$$\theta_1 = 16$$

$$v_2 = 0.9v_1 + 0.1\theta_2$$

$$\theta_2 = 24$$

$$v_3 = 0.9v_2 + 0.1\theta_3$$

$$\theta_3 = 28$$

• • •

• • •

 v_t é aproxidamente a média dos últimos $\frac{1}{1-\beta}$ dias!

$$\beta = 0.9 = \frac{1}{1 + 0.9} \approx 10 \text{ dias}$$

$$\beta = 0.98 = \frac{1}{1 + 0.98} \approx 50 \text{ dias}$$

$$\beta = 0.5 = \frac{1}{1 + 0.5} \approx 2 \text{ dias}$$

Quanto maior o valor de eta, mais lentamente a média se adapta aos novos valores de $heta_i$

Média Móvel Exponencial

$$\begin{split} v_t &= \beta v_{t-1} + (1 - \beta)\theta_t \\ v_{100} &= 0.9v_{99} + 0.1\theta_{100} \\ v_{99} &= 0.9v_{98} + 0.1\theta_{99} \\ v_{98} &= 0.9v_{97} + 0.1\theta_{98} \\ \end{split}$$

$$\begin{aligned} v_{100} &= 0.1\theta_{100} + 0.9v_{99} \\ &= 0.1\theta_{100} + 0.9(0.1\theta_{99} + 0.9v_{98}) \\ &= 0.1\theta_{100} + 0.9(0.1\theta_{99} + 0.9(0.1\theta_{98} + 0.9v_{97})) \end{aligned}$$

 $= 0.1\theta_{100} + 0.1(0.9) \cdot \theta_{99} + 0.1(0.9)^2 \cdot \theta_{98} + 0.1(0.9)^3 \cdot \theta_{97} + \dots$

A **média móvel exponencial** é uma soma ponderada por pesos que decrescem exponencialmente!

Correção de Viés (Bias Correction)

$$v_t = \beta v_{t-1} + (1 - \beta)\theta_t \longrightarrow v_t = \frac{\beta v_{t-1} + (1 - \beta)\theta_t}{1 - \beta^t}$$

$$v_{0} = 0$$

$$v_{1} = \frac{0.98v_{0} + 0.02\theta_{1}}{v_{2}} = 0.98v_{1} + 0.02\theta_{2}$$

$$= 0.98 \cdot 0.02\theta_{1} + 0.02\theta_{2}$$

$$= 0.00196\theta_{1} + 0.02\theta_{2}$$

$$v_{2} = \frac{0.00196\theta_{1} + 0.02\theta_{2}}{1 - 0.98^{2}}$$

$$= 0.00196\theta_{1} + 0.02\theta_{2}$$

$$v_{2} = \frac{0.00196\theta_{1} + 0.02\theta_{2}}{0.00396}$$

$$\theta_1 = 16$$
 $v_1 = 0.32$
 $\theta_2 = 24$ $v_2 = 0.51136$

$$v_2 = \frac{0.00196\theta_1 + 0.02\theta_2}{1 - 0.98^2}$$

$$v_2 = \frac{0.00196\theta_1 + 0.02\theta_2}{0.00396}$$

Média ponderada!

Inicialmente, os valores das médias são estimativas muito ruins!

Quanto maior o valor de eta, mais lentamente a média se adapta aos novos valores de $heta_i$

Gradiente Descendente com Momento

Média zero na direção vertical!

Gradiente Descendente Batch

Taxa de aprendizado relativamente baixa para evitar divergência

Ideal

←→ Taxa de aprendizado alta no eixo horizontal

Gradiente Descendente com Momento

$$dw, db = backward(X^t)$$

$$Vdw = \beta \cdot Vdw + (1 - \beta)dw$$

$$Vdb = \beta \cdot Vdb + (1 - \beta)db$$

$$W^{[l]} = W^{[l]} - \alpha V dw$$

$$b^{[l]} = b^{[l]} - \alpha V db$$

Root Mean Squared Propagation (RMSProp)

Gradiente Descendente Batch

Taxa de aprendizado relativamente baixa para evitar divergência

Ideal

Taxa de aprendizado baixa no eixo vertical

Taxa de aprendizado alta no eixo horizontal

RMSProp

 $dw, db = backward(X^t)$

$$Sdw = \beta_2 \cdot Sdw + (1 - \beta_2)dw^2$$
 Valores esperados pequenos

$$Sdb = \beta_2 \cdot Sdb + (1 - \beta_2)db^2$$
 Valores esperados grandes

$$w = w - \alpha \frac{dw}{\sqrt{Sdw}}$$
 Divisão por um número pequeno

$$b=b-lpha rac{db}{\sqrt{Sdb}}$$
 Divisão por um número grande

Adaptive Moment Estimation (Adam)

O Adam combina o RMSProp e momento

 $dw, db = backward(X^t)$

$$Vdw = \beta_1 \cdot Vdw + (1 - \beta_1)dw, \quad Vdb = \beta_1 \cdot Vdb + (1 - \beta_1)db$$

$$Sdw = \beta_2 \cdot Sdw + (1 - \beta_2)dw^2$$
, $Sdb = \beta_2 \cdot Sdb + (1 - \beta_2)db^2$

$$Vdw = \frac{Vdw}{1 - \beta_1^t}, \quad Vdb = \frac{Vdb}{1 - \beta_1^t}$$

$$Sdw = \frac{Sdw}{1 - \beta_2^t}, \quad Sdb = \frac{Sdb}{1 - \beta_2^t}$$

$$w = w - \alpha \frac{Vdw}{\sqrt{Sdw}}$$

$$b = b - \alpha \frac{Vdb}{\sqrt{Sdb}}$$

Momento

RMSProp

Recomendações de valores para os híper-parâmetros:

$$\beta_1 = 0.9$$

$$\beta_2 = 0.999$$

Próxima aula

A11: Pytorch Autograd

Aula prática sobre o framework Pytorch, com enfoque no seu processo de derivação automática.

