

Problem Statement

Existing models for predicting COVID-19 mortality are limited by oversimplified assumptions, resulting in reduced accuracy. This project aims to develop a robust machine learning model to improve mortality predictions and support data-driven public health decisions.

Solution Approach

Data Preparation

- Cleaned and standardized global COVID-19 datasets.
- Integrated population data, addressing missing values and outliers.
- Selected key features relevant to predicting COVID-19 mortality.
- Conducted Exploratory Data Analysis (EDA) to uncover trends and relationships.

Model Selection

Chose XGBoost Regressor for its high accuracy and scalability.

Evaluation Metrics

Validated model performance using Mean Squared Error (MSE), R², and Mean Absolute Error (MAE).

Exploratory Data Analysis (EDA)

- Key Trends
 - Active Cases: Strongest predictor of mortality trends.
 - High Death Rates: Observed in the US, San Marino, and the UK, reflecting overwhelmed healthcare systems.
- Geographical Insights
 - US: High death toll due to large population and strained resources.
 - San Marino: Exceptionally high mortality despite its small size.

Implications

- Overburdened healthcare systems correlate with higher mortality rates.
- Tracking active cases and new deaths is essential for predicting future trends.

Key Features and Their Impact

Selected Features

- Confirmed Cases
- Active Cases
- New Deaths
- Recovered Cases

Feature Importance

- Active Cases: 75.03%
- Confirmed Cases: 16.85%
- New Deaths: 2.20%

Insights

- Active Cases are the most critical factor in predicting mortality trends.
- Monitoring trends in Confirmed Cases and New Deaths provides actionable insights.

Results

Model Performance

- **Mean Squared Error (MSE):** 1,114,649.87
- **R-Squared** (**R**²): 0.97
- Mean Absolute Error (MAE): 162.05

Interpretation

- The model explains 97% of the variance in COVID-19 deaths.
- Accurate predictions with an average deviation of 162 deaths from actual values.

What's Next?

1. Model Improvement

- Hyperparameter tuning for better accuracy.
- Add time-series features to capture trends.

2. Broader Validation

• Test on additional regions for generalization.

3. Deployment

• Create a **real-time dashboard** for decision-makers.

4. Future Research

• Explore the impact of vaccination and healthcare capacity.

Conclusion & Recommendations

Conclusion

- XGBoost Regressor effectively predicted COVID-19 mortality rates with high accuracy.
- Key Features: Active cases, confirmed cases, and new deaths were critical in mortality predictions.
- **Performance**: Achieved high R² (0.97) and low MSE (1,114,649.87).

Recommendations

- Public Health: Use model insights for resource allocation and policy formulation.
- Further Research: Explore
 additional variables like vaccination
 data and healthcare infrastructure.
- Model Expansion: Include more regions and real-time data for better generalization.