XXX 大学

《计算机网路》实验报告

专业班级: <u>物联网 XXXX</u> 学号: <u>XXXXXXXXX</u> 姓名: <u>郭 XX</u>

实验三 UDP 协议的研究

实验时间: ____2018.9

【实验目的】

- 1. 快速简单了解 UDP 协议
- 2. 了解 UDP 的标头数据,报文段数据结构

【实验步骤】

下载作者的实验结果,并且打开(略)。

使用 UDP 过滤器过滤实验结果。

【实验结果】

1. 从跟踪中选择一个 UDP 数据包。从此数据包中,确定 UDP 标头中有多少字段。(建议不要查看课本,直接根据您的数据包跟踪结果回答),并为这些字段命名。
ANS:作者说 SNMP(简单网络管理协议),是在 UDP 协议上的一种更上层的协议,我们并不需要详细了解这个协议,只需要了解它是 UDP 协议上更复杂协议即可,我们使用 UDP 过滤选项,会发现作者抓包结果全是 SNMP 协议,但是我们可以在下面分析窗口看到 SNMP 协议上层,包括 UDP 和 IP 以及物理层。

回答这一题:

UDP 头很简单就包括 4 各部分,每个部分 2Byte = 16Bit

分别是源端口号

目标端口号

报文长度:包括 UDP 头+数据长度

校验和: 可选, 用来数据校验

2. 通过查询 Wireshark 的数据包内容字段中显示的信息,确定每个 UDP 报头字段的长度(以字节为单位)

ANS:由于UDP报头就4个部分,每部分2Byte=16Bit,因此每个UDP报头8Byte=64Bit。

3. 长度字段中的值是指的是什么? (此问题您可以参考课本)。使用捕获的 UDP 数据包验证您的声明。

ANS:长度是包括 UDP 头+数据长度

UDP 头长度是 8Byte

有着以下的公式: (仅限 IPV4 下 UDP 传输)

IP 长度=IP 头长度(20Byte)+UDP 头长度(8Byte)+UDP 数据

UDP 长度=UDP 头长度(8Byte)+UDP 数据

在作者抓包结果中 UDP 长度=UDP 头长度(8Byte)+SNMP 服务长度

4. UDP 有效负载中可包含的最大字节数是多少? (提示: 这个问题的答案可以通过你 对上述 2 的回答来确定

ANS:UDP 长度占 2Byte=65536Bit, 所以可以包含带 8Byte UDP 头的长度是是 65536字节,也就是说负荷大小是=65536-8=65528字节。

当然这是理论值,实际因为 IP 头也是有 20 字节的大小,所以达不到这么大。

- 5. 最大可能的源端口号是多少? (提示: 见 4 中的提示)
 ANS:端口号也是 2Byte=65536Bit, 但是端口号从 0 标出, 因此最大是 2^16-1=65535。
- 6. UDP 的协议号是什么?以十六进制和十进制表示法给出答案。要回答这个问题,您需要查看包含此 UDP 段的 IP 数据报的 Protocol 字段(参见书中的图 4.13 和 IP 头字段的讨论)

ANS:UDP 协议号是 17 (10 进制), 16 进制 0x11

十进制	十六进制	关键字	协议	引用
0	0x00	HOPOPT	IPv6逐跳选项	RFC 2460@
1	0x01	ICMP	互联网控制消息协议 (ICMP)	RFC 792₽
2	0x02	IGMP	因特网组管理协议 (IGMP)	RFC 1112₽
3	0x03	GGP	网关对网关协议	RFC 823 ₽
4	0x04	IPv4	IPv4 (封装)	RFC 791 ₽
5	0x05	ST	因特网流协议	RFC 1190@, RFC 1819@
6	0x06	TCP	传输控制协议 (TCP)	RFC 793 ₽
7	0x07	CBT	有核树组播路由协议	RFC 2189₩
8	0x08	EGP	外部网关协议	RFC 888₽
9	0x09	IGP	内部网关协议 (任意私有内部网关 (用于思科的IGRP))	
10	0x0A	BBN-RCC-MON	BBN RCC 监视	
11	0x0B	NVP-II	网络语音协议	RFC 741 €
12	0x0C	PUP	Xerox PUP	
13	0x0D	ARGUS	ARGUS	
14	0x0E	EMCON	EMCON	
15	0x0F	XNET	Cross Net Debugger	IEN 158
16	0x10	CHAOS	Chaos	
17	0x11	UDP	用户数据报协议 (UDP)	RFC 768₽
18	0x12	MUX	Multiplexing	IEN 90
19	0x13	DCN-MEAS	DCN Measurement Subsystems	
20	0x14	HMP	Host Monitoring Protocol	RFC 869₽
21	0x15	PRM	Packet Radio Measurement	
22	0x16	XNS-IDP	XEROX NS IDP	

7. 观察发送 UDP 数据包后接收响应的 UDP 数据包,这是对发送的 UDP 数据包的回复,请描述两个数据包中端口号之间的关系。(提示:对于响应 UDP 目的地应该为发送 UDP 包的地址

发送 UDP:

接收 UDP:

也是就说,发送者发送端口号在接收返回(响应)UDP 时候会变成接收端口号。 接收者发送返回(响应)UDP 时候接受端口号会变成发送端口号。