# Geometria Plana

### **Conceitos Iniciais**

A palavra Geometria significa medidas da terra sendo:

- Geo = Terra
- **Metria** = Medida

A geometria plana irá tratar dos elementos planos.

Assim temos três entes primitivos, ou melhor, conceitos iniciais que não possuem definição, são eles:

• **Ponto**: ao invés de definição o que temos são imagens de pontos como por exemplo as estrelas do céu, cada uma corresponde a imagem de um ponto. A representação do ponto ocorre por meio de letras MAIÚSCULAS do nosso alfabeto.



• **Reta**: podemos até dizer que é um conjunto de pontos alinhados mas na realidade o que temos é a imagem de uma reta como por exemplo o encontro do céu com o mara que é chamado de linha do horizonte. Nele vemos a imagem de uma reta. E as retas são representadas por letras MINÚSCULAS do nosso alfabeto como as retas r, s e t.



As retas possuem setas em suas pontas o que indica que elas são infinitas para os dois lados. Porém cabe colocar uns pontos importantes sobre a reta:



É importante atentar em como são as anotações.

• **Plano**: é o terceiro ente primitivo. Trata-se da imagem de um plano como por exemplo o chão da nossa casa, a nossa parede, o quadro da nossa sala, o quadro que temos nos exemplos anteriores e a seguir, eles são planos e o que temos nele e dentro deles temos exemplos. A seguir veja dois exemplos de imagem de plano, o plano Alfa e o plano Beta (os planos são representados por letras do alfabeto grego).



### ÂNGULOS

Quando se fala em ângulos logo vem a mente a questão de abertura.

Considere duas semi-retas de mesma origem sendo uma semi-reta de origem  $\overrightarrow{OA}$  e outra de origem  $\overrightarrow{OB}$ , agora na figura abaixo nos é mostrado um ângulo e percebemos que nele há a união das duas semi-retas na mesma origem  $(A\hat{OB})$ .



**Definição:** ângulo é a união de duas semi-retas de mesma origem

$$\hat{AOB} = \overrightarrow{OA} \square \overrightarrow{OB}$$

### Medida de ângulo:

Todos conhecemos o sistema decimal de medida. Ele é que utilizamos no dia-a-dia e ocorre de 10 em 10 elementos. É formado por pelo C / D / U, ou seja:

- Unidade (U): elemento inteiro minimo
- Dezena (D): corresponde a 10 unidades
- Centena (C): corresponde a 10 dezenas ou 100 unidades

No caso dos ângulos a medida ocorre pelo sistema sexagesimal, isto é, de 60 em 60. A sua representação se dá por:

- (°) Grau = 1/360 da circunferência, ou seja, a circunferência possui 360°
- (')Minuto = 1/60 do grau
- ('')Segundo = 1/60 do Minuto

É importante notar que quando falamos em notação é comum vermos o exemplo abaixo:

O atleta fez o percurso em 3h 20'32"

ou

O atleta fez o percurso em 3h 20 mim 32 seg

Nós entendemos a mensagem de ambas as formas escritas porém a primeira forma escrita esta totalmente errada. Nesse exemplo estamos falando em medida de tempo o que no caso exige que sejam realmente escritas. Esta parte que diferencia (20'32") é medida de ângulo, em outras palavras, na primeira frase o atleta teria corrido um percurso em 3 horas, parado dado uma voltinha de 20 minutos e outra voltinha menor ainda de 32 segundos.

# Classificação:

1. Ângulo agudo (0°<x<90°)



2. Ângulo reto ( $x = 90^{\circ}$ )



Obs.: sempre se coloca o quadrado com um pingo central

3. Ângulo obtuso (90° <x<180°)



5. Ângulo volta completa (x= 360°)

#### **Propriedades:**

Agora vamos tratar das propriedades dos angulos. Para isso vamos utilizar três clasificações para enterdermos melhor.

**Ângulos complementares**: soma igual a 90°



Primeiro pegamos o ângulo reto (90°);

Depois acrescentamos uma reta dividindo ele;

Na sequência chamamos um lado de X

Como o ângulo reto possui 90°, o outro lado passa a ser chamado de 90° - X.

Ângulo Complementar de  $X = 90^{\circ}$  - X



Dica para não esquecer: Considere que esse ângulo represente recém-casados. Um quer ir para cima do outro, tudo fica para cima. Eles se complementam.

**Ângulos suplementares:** soma igual a 180°.

São chamados de Suplementares pois ambos os lados se suportam, se suplementam.



Primeiro pegamos o ângulo raso (180°);

Depois acrescentamos uma reta dividindo ele;

Na sequência chamamos um lado de X

Como o ângulo reto possui 180°, o outro lado passa a ser chamado de 180° - X.

Portando:

Ângulo Suplementar de  $X = 180^{\circ}$  - X



**Dica para não esquecer:** Considere que esse ângulo represente aquele casal na crise dos sete anos.

Eles deitam na cama e um vira para um lado e o outro vira para o outro lado. Eles se suportam.

**Ângulos replementares:** soma igual a 360°

São chamados de Replementares pois o ângulo da a volta completa, isto é, procura-se e não acha nada.



Primeiro pegamos o ângulo volta completa (360°);

Depois acrescentamos uma reta dividindo ele;

Na sequência chamamos um lado de X

Como o ângulo reto possui 360°, o outro lado passa a ser chamado de 360° - X.

Portando:

Ângulo Replementar de  $X = 360^{\circ}$  - X

**Dica para não esquecer:** Considere que esse ângulo represente aquele casal que não se aguentam mais.

Um deita na cama, outro no sofá. Quando procuram não acham nada.

### Ângulos opostos pelo vértice (o.p.v.)

São ângulos que possuem a mesma origem mas seus lados pertencem à semi retas opostas



Nessa figura vemos duas semi-retas com o mesmo ponto de origem.



Agora transformamos as duas semi-retas em retas. Percebe-se que agora surgiu um novo ângulo no lado oposto. Ele é chamado de ângulo oposto pelo vértice (o.p.v.)



Na reta destacada em vermelho encontramos o ângulo X e seu Suplementar (180°-X)

A reta destacada em azul equivale a  $180^{\circ}$  portanto fica claro que o lado oposto, cortado pela reta vermelha, equivale a  $180^{\circ}$  -  $(180^{\circ}$ -X).

Calculando conforme o quadro percebemos que o ângulo do outro lado também é X.

Portanto os Ângulos o.p.v. são CONGRUENTES (tem a mesma medida).

#### Bissetriz

A palavra vêm de:

- Bi = dois
- Setriz = Setores

Vamos considerar este ângulo:



A bissetriz de um ângulo é uma semi-reta cuja origem é o vértice desse ângulo, que ela divide em dois ângulos congruentes (mesma medida).



No caso aqui, dividimos como uma reta. Cada parte do ângulo é chamado de  $\alpha/2$ 

# PARALELISMOS (ÂNGULOS DE RETASPARALELAS)



Sejam r e s duas retas paralelas e são representadas pelo símbolo r//s. t é uma reta transversal que corta as retas paralelas.

Cada reta cortada formou 4 ângulos. Neste caso, podemos identificar oito ângulos.

Agora vamos separa em pares de ângulos onde possuem as seguintes propriedades:

O chapéu em cima dos números indicam que eles representam um ângulo.

| Nomenclatura                           | Propriedade                                                                                                                                                                            | Explicação                                                                                                                                                             |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Correspondentes:                       | Congruentes                                                                                                                                                                            | Ocupam a mesma posição nas duas retas (vide cores no gráfico).                                                                                                         |
| 2 e 6<br>3 e 7<br>4 e 8                | Se trocarmos de posição entre eles não altera os valores pois possuem a mesma medida                                                                                                   | $ \begin{array}{c} \stackrel{2}{6} \stackrel{1}{3} \stackrel{1}{4} \rightarrow r \\ \stackrel{6}{7} \stackrel{1}{\sqrt{8}} \stackrel{1}{8} \rightarrow s \end{array} $ |
| Colaterais Internos:<br>3 e 6<br>4 e 5 | Suplementares  Como vimos no anterior, a troca por seu correspondente na outra reta não altera os valores. Nesse caso a união entre os internos faz com que os ângulos se suplementam. | Estão do mesmo lado porém internamente.                                                                                                                                |
| Colaterais Externos:<br>1 e 8<br>2 e 7 | Suplementares  Se juntarmos veremos que um suplementa o outro,                                                                                                                         | Estão do mesmo lado porém externamente.                                                                                                                                |
| Alternos Internos:<br>3 e 5<br>4 e 6   | Congruentes  Se trocassemos de posição com o seu correspondente na outra reta perceberiamos que são Opostos pelo Vertice (o.p.v.)                                                      | Estão do mesmo lado porém internamente.                                                                                                                                |
| Alternos Externos:<br>1 e 7<br>2 e 8   | Congruentes  Se trocassemos de posição com o seu correspondente na outra reta perceberiamos que são Opostos pelo Vertice (o.p.v.)                                                      | Estão do mesmo lado porém externamente.                                                                                                                                |

### Regras do Z ou N

Se repararmos a letra Z possui duas paralelas horizontais e a lentra N pessui duas paralelas verticais. Se inserirmos ângulos nas pontas do Z e do N perceberemos que eles são congruentes (possuem a mesma medida) pois se completassemos as retas e acrescentassemos os ângulos veriamos que eles possuem a mesma medida.



#### Exercícios de Aula

01. (Escola Técnica Federal-RJ) – As medidas do complemento, do suplemento e do replemento de um ângulo de 40° são, respectivamente, iguais a

(A) 30°, 60° e 90°

(B) 30°, 45° e 60°

(C) 320°, 50° e 140°

(D) 50°, 140° e 320°

(E) 140°, 50° e 320°

| $X = 40^{\circ}$ |               |               |  |
|------------------|---------------|---------------|--|
| Complementares   | Suplementares | Replementares |  |
| 90° - X          | 180° - X      | 360° - X      |  |
| 90° - 40°        | 180° - 40°    | 360° - 40°    |  |
| 50°              | 140°          | 320°          |  |

142° 39' 53"

(MACKENZIE)- O complemento e o suplemento de um ângulo de 37º 20' 07" medem, respectivamente  $\hat{A}$ ngulo = 37° 20' 07"

(A) 149° 39' 53'' e 52° 39'53''

(B) 52°39'53'' e 142°39'53'' (C) 53°20'07'' e 143°20'07'' (D) 143°20'07'' e 53°20'07''

(E) 142°39'53'' e 53°20'07''

Conversão Conversão Complementares Suplementares  $90^{\circ} = 89^{\circ} 60^{\circ}$  $180^{\circ} = 179^{\circ} 60'$  $90^{\circ} = 89^{\circ} 59' 60"$  $180^{\circ} = 179^{\circ} 59' 60"$ Cálculo Cálculo 89° 59' 60" 179° 59' 60" -37° 20' 07" -37° 20' 07'

Para calcular o Suplementar também pode-se pegar o resultado do Complementar e somar 90°. Esta é a diferença entre os valores dos Ângulos Complementar e Suplementar.

> 52° 39' 53" +90° 142° 39' 53"

03. (PUC-MG) – O dobro do complemento de um ângulo é igual à quinta parte do suplemento desse ângulo. A medida do ângulo é igual a

(A)  $80^{\circ}$ 

Vamos por parte:

(B)  $60^{\circ}$ 

O dobro equivale a 2 multiplicando algo, então temos: (C)  $40^{\circ}$ 

(D)  $30^{\circ}$ 

Como enunciado deixou claro, é o dobro do Complemento, então temos:  $(E) 20^{\circ}$ 

 $2(90^{\circ} - X)$ 

52° 39' 53"

Esse valor é igual a algo, então temos:

 $2(90^{\circ} - X) =$ 

Esse valor é igual a quinta parte de algo, então temos:

 $2(90^{\circ} - X) = 1/5$ 

Esse algo é o Suplemento, então temos:

 $2(90^{\circ} - X) = 1/5(180^{\circ} - X)$ 

Agora é só calcular:

 $2(90^{\circ} - X) = 1/5(180^{\circ} - X)$ 

 $10 (90^{\circ} - X) = 180^{\circ} - X$  $900^{\circ} - 10X = 180^{\circ} - X$ 

 $900^{\circ} - 180^{\circ} = 10X - X$ 

 $9X = 720^{\circ}$ 

 $X = 720^{\circ}/9$ 

 $X = 80^{\circ}$ 

04. As restas r e s são interceptadas pela transversal t, conforme a figura. O valor de x para que r e s sejam paralelas é:

 $(A) 20^{\circ}$ 

(B)  $26^{\circ}$ 

 $(C) 28^{\circ}$  $(D) 30^{\circ}$ 

(E)  $35^{\circ}$ 



x+20 x + 204x+30

 $4x + 30^{\circ} + x + 20^{\circ} = 180^{\circ}$  $5x + 50^{\circ} = 180^{\circ}$ 

 $5x = 180^{\circ} - 50^{\circ}$ 

 $5x = 130^{\circ}$ 

 $x = 130^{\circ}/5$ 

 $x = 26^{\circ}$ 

05. Na figura, **r** // **s**, então **x** vale:

(A)  $90^{\circ}$ 

 $(B)100^{\circ}$ 

 $(C)110^{\circ}$  $(D)120^{\circ}$ 

(E)130°



103

Primeiro Z 180° Segundo Z

Lembrando que na figura inicial o quadrado do ângulo indicava ser um ângulo de 90° chegamos a conclusão de que a soma dos dois ângulos são iguais a 90°, portanto:

$$180^{\circ} - x + 10^{\circ} = 90^{\circ}$$

$$190^{\circ}$$
 - x =  $90^{\circ}$   
x =  $190^{\circ}$  -  $90^{\circ}$  =  $100^{\circ}$ 

## DANIEL GONÇALVES RIBEIRO – CB 301552-1

# Geometria Plana –conceitos iniciais

Tarefa Básica

01. Sabendo que as retas as retas r e s são paralelas, o valor de **x** na figura é:







Nesse caso, por serem paralelas e utilizando a regra de Z, percebemos que as medidas de ambos são idênticas, porém, percebemos que são suplementares e na reta s temos a informação que um lado equivale a 60° e como em um ângulo suplementar o seu total equivale a 180°, portanto:

$$x = 180^{\circ} - 60^{\circ} = 120^{\circ}$$

02. Na figura, x vale:



(E)40°





Nesse caso, por serem paralelas e utilizando a regra de Z, percebemos que as medidas de ambos são idênticas, porém, percebemos, na reta r que se trata de ângulos complementares (90°). Por paralelos, podemos alterar o posicionamento tendo em vista que são congruentes (possuem os mesmos valores), nesse caso, como Alternos Internos, fica claro que parte dos 120° que esta excedendo corresponde a x, portanto:

$$120^{\circ} - x = 90^{\circ}$$
  
  $x = 120^{\circ} - 90^{\circ} = 30^{\circ}$ 

03. Na figura, as retas **r** e **s** são paralelas. A medida do ângulo **x** é:



Neste caso por serem paralelas podesmo utilizar do Paralelismo trocando de posição o x pelo 2a (Alternos Internos) pois ambos tem o mesmo valor, com isso sabemos que:

$$180^{\circ} = 2a + a$$
  $x = 2^{a}$   
 $180^{\circ} = 3a$  Portanto:  $x = 2 \times 60^{\circ}$   
 $a = 180^{\circ}/3 = 60^{\circ}$   $x = 120^{\circ}$ 

04. Se r // s, determine x na figura:



Reposicionando as retas percebemos que ao utilizar do Paralelismo trocando os Alternos Externos há uma diferença de 10° entre os elementos que deve ser compensada entre x e 80° (Alternos Internos) para manter as retas em paralelo, assim temos:

$$x - 80^{\circ} = 40^{\circ} - 30^{\circ}$$
  
 $x = 10^{\circ} + 80^{\circ} = 90^{\circ}$ 

(U.E.Ceará) – O ângulo igual a 5/4 do seu suplemento mede:

 $(A)100^{\circ}$  $(B)144^{o}$  $(C)36^{\circ}$  $(D)80^{\circ}$ 

 $\hat{A}$ ngulo = (5/4) Suplementar  $180^{\circ} = \text{Ângulo} + \text{Suplementar}$ 

 $180^{\circ} = (5/4)$  Suplementar + Suplementar

 $180^{\circ} = (9/4)$  Suplementar  $(E)72^{\circ}$ Suplementar =  $720^{\circ}/9$ 

Suplementar =  $80^{\circ}$ 

Agora que descobrimos o Suplementar vamos encontrar o Ângulo:

 $180^{\circ} = \text{Ângulo} + \text{Suplementar}$  $180^{\circ} = \text{Ângulo} + 80^{\circ}$  $\hat{A}$ ngulo =  $180^{\circ}$  -  $80^{\circ}$  $\hat{A}$ ngulo =  $100^{\circ}$ 

06. (PUC-SP)- Um ângulo mede a metade do seu complemento. Entãoesse ângulo mede:

07. (UFES) – O triplo do complemento de um ângulo é igual àterça parte do suplemento desse ângulo. Esse ângulo mede:

```
\begin{array}{lll} \text{(A)45}^{\circ} & & \hat{\text{Angulo Complementar}} = 90^{\circ} & & \hat{\text{Angulo Suplementar}} = 180^{\circ} \\ \text{(B)48}^{\circ}30' & & 90^{\circ} = \hat{\text{Angulo}} + \text{Complementar} \\ \text{(C)56}^{\circ}15' & & \text{Complementar} = 90^{\circ} - \hat{\text{Angulo}} \\ \text{(D)60}^{\circ} & & \text{Suplementar} = 180^{\circ} - \hat{\text{Angulo}} \\ \end{array}
```

```
3 Complementar = 1/3 Suplementar

3 (90° - Ângulo) = 1/3 (180° - Ângulo)

270° - 3 Ângulo = 60° - 1/3 Ângulo

270° - 60° = 3 Ângulo - 1/3 Ângulo

210° = (9 - 1)/3 Ângulo

210° = 8/3 Ângulo

210° = 8/3 Ângulo

630/8 = Ângulo

Ângulo = 78,75°
```

Convertendo o valor quebrado:

1 h = 60 min 0.75 = x  $x = 60 \times 0.75$ x = 45

Portanto: 78° 45'

#### Respostas da Tarefa Básica

01.(C)

(E)78°45'

02.(B)

03.(D)

04.90°

05.(A)

06.(A) 07.(E)