

Runtime randomization and perturbation for virtual machines.

JAVIER CABRERA ARTEAGA

Licentiate Thesis in [Research Subject - as it is in your ISP]
School of Information and Communication Technology
KTH Royal Institute of Technology
Stockholm, Sweden [2022]

TRITA-ICT XXXX:XX ISBN XXX-XXX-XXXX-X KTH School of Information and Communication Technology SE-164 40 Kista SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av licentiatexamen i [ämne/subject] [veckodag/weekday] den [dag/day] [månad/month] [år/2022] klockan [tid/time] i [sal/hall], Electrum, Kungl Tekniska högskolan, Kistagången 16, Kista.

© Javier Cabrera Arteaga, [month] [2022]

Tryck: Universitetsservice US AB

Abstract

Write your abstract here... $\textbf{Keywords:} \ \, \textbf{Keyword1}, \, \textbf{keyword2}, \, \dots$

Sammanfattning

Write your Swedish summary (popular description) here... $\bf Keywords : Keyword1, \, keyword2, \, ...$

Acknowledgements

Write your professional acknowledgements here...

Acknowledgements are used to thank all persons who have helped in carrying out the research and to the research organizations/institutions and/or companies for funding the research.

 $Name\ Surname,$ Place, Date

Contents

C	onter	nts	vi
Li	st of	Figures	viii
Li	st of	Tables	ix
Li	st of	Acronyms	xi
1	Intr	roduction	1
	1.1	Motivation 1.1.1 Why variants? 1.1.2 Research questions Contributions	1 1 1 1
2	Bac	kground and State of the art	3
	2.1	CROW	3
3	Met	thodology	5
	3.1 3.2	Corpora	5 6
	3.3 3.4	RQ2. To what extent are the generated variants dynamically different? RQ3. To what extent the artificial variants exhibit different execu-	9
	3.5	tion times on Edge-Cloud platforms?	11 12
4	Res	ults	13
-	4.1	RQ1. To what extent can we artifically generate program variants	
		for WebAssembly?	13
	4.2	Answer to RQ1	15
	4.3	RQ2. To what extent are the generated variants dynamically different?	15
	4.4	Answer to RQ2	19

19 20 21
19
nt execu-
t extent the artificial variants exhibit differe

List of Figures

2.1	CROW workflow to generate program variants. CROW takes $C/C++$ source codes or LLVM bitcodes to look for code blocks that can be replaced by semantically equivalent code and generates program variants by combining them	3
3.1	The program variants generation for RQ1	7
3.2	Dynamic analysis for RQ2	9
3.3	Multivariant binary creation and workflow for RQ3 answering	11
4.1	Pairwise comparison of programs' population traces in logarithmic scale. Each vertical group of blue dots represents a programs' population. Each dot represents a comparison between two program execution traces according to Metric 2	17
4.2	Execution time distributions for Hilber_curve program and its variants. Baseline execution time mean is highlighted with the magenta	11
	horizontal line	18
4.3	Execution time distributions. Each subplot represents the quantile- quantile plot of the two distributions, original and multivariant binary.	
		20

List of Tables

3.1	Corpora description. The table is composed by the name of the corpus,	
	the number of modules, the number of functions, the lines of code range	
	and the location of the corpus	7
4.1	General program's populations statistics. The table is composed by the name of the corpus, the number of functions, the number of successfully diversified functions, the number of non-diversified functions and the	
	aumulative number of variants	1/

List of Acronyms

Wasm WebAssembly

DTW Dynamic Time Warping