2変数関数

2022.09.30

2 変数関数

1変数関数と2変数関数

ullet これまでの関数 y=f(x)(1 変数関数) 1 つの値 x を与えると,y の値が決まる 例) $y=x^2$

1変数関数と2変数関数

- ullet これまでの関数 y=f(x)(1 変数関数) 1 つの値 x を与えると,y の値が決まる 例) $y=x^2$
- ullet 2 変数関数 $z=f(x,\ y)$ 2 つの値 $x,\ y$ を与えると,z の値が決まる例) $z=x^2+y^2$

2変数関数のグラフ

● 1変数関数のグラフは曲線

2変数関数のグラフ

- 1変数関数のグラフは曲線
- 2変数関数のグラフは曲面になる

2変数関数のグラフ

- 1変数関数のグラフは曲線
- 2変数関数のグラフは曲面になる

2変数関数のグラフ (課題)

課題 0930-1 次のグラフとなる 2 変数関数を選べ

$$1\; z = \sqrt{1-y^2} \qquad 2\; z = \sqrt{1-x^2}$$

$$2 z = \sqrt{1 - x^2}$$

$$3\;z=rac{x^2y^2}{x^2+y^2}$$

$$3\; z = rac{x^2 y^2}{x^2 + y^2} \qquad 4\; z = \sqrt{1 - x^2 - rac{y^2}{4}}$$

• 2 変数関数 z = f(x, y)

ullet 2 変数関数 $z=f(x,\ y)$ 例えば $z=x^2+3y$

- ullet 2 変数関数 $z=f(x,\ y)$ 例えば $z=x^2+3y$
- \bullet x だけを変数と考えて(y は定数とみて)

- ullet 2 変数関数 $z=f(x,\ y)$ 例えば $z=x^2+3y$
- x だけを変数と考えて(y は定数とみて) z を x で微分したものを x についての偏微分といい

- ullet 2 変数関数 $z=f(x,\ y)$ 例えば $z=x^2+3y$
- $oldsymbol{\cdot}$ x だけを変数と考えて(y は定数とみて) z を x で微分したものを x についての偏微分といい $\frac{\partial z}{\partial x}$

と書く.

- ullet 2 変数関数 $z=f(x,\ y)$ 例えば $z=x^2+3y$
- x だけを変数と考えて(y は定数とみて) z を x で微分したものを x についての偏微分といい $\frac{\partial z}{\partial x}$

と書く.

ullet y についての偏微分 $\dfrac{\partial z}{\partial y}$ も同様

- ullet 2 変数関数 $z=f(x,\ y)$ 例えば $z=x^2+3y$
- ullet x だけを変数と考えて(y は定数とみて) z を x で微分したものを x についての偏微分といい $\underline{\partial z}$

と書く.

- ullet y についての偏微分 $\dfrac{\partial z}{\partial y}$ も同様
- 注) z_x , z_y とも書く.

- ullet 2 変数関数 $z=f(x,\ y)$ 例えば $z=x^2+3y$
- x だけを変数と考えて(y は定数とみて) z を x で微分したものを x についての偏微分といい

 $rac{oz}{\partial x}$

と書く.

- ullet y についての偏微分 $\dfrac{\partial z}{\partial y}$ も同様
- 注) z_x , z_y とも書く.
- 注) z' とは書かない.

例)
$$z = x^3 + y^2 + x^4y^5$$

例)
$$z = x^3 + y^2 + x^4y^5$$

$$\bullet \ \frac{\partial z}{\partial x} = \frac{\partial}{\partial x} (x^3 + y^2 + x^4 y^5)$$

例)
$$z = x^3 + y^2 + x^4y^5$$

例)
$$z = x^3 + y^2 + x^4y^5$$

例)
$$z = x^3 + y^2 + x^4y^5$$

$$\bullet \ \frac{\partial z}{\partial y} = \frac{\partial}{\partial x} (x^3 + y^2 + x^4 y^5)$$

例)
$$z = x^3 + y^2 + x^4y^5$$

例)
$$z = x^3 + y^2 + x^4y^5$$

課題 (偏微分) |

課題 0930-2 次の 2 変数関数の偏微分 z_x, z_y を求めよ.

$$[1]\;z=x^3+2y^3\,$$
のとき, $rac{\partial z}{\partial x}$

$$[2]\;z=x^3+2y^3\,$$
のとき, $rac{\partial z}{\partial y}$

$$[3]$$
 $z=x^2+xy-y^2$ のとき, z_x

$$[4]$$
 $z=x^2+xy-y^2$ のとき, z_y

- ullet x の変化量 $\Delta x = z x$
- ullet y の変化量 $\Delta y = f(\xi) f(x)$

- ullet x の変化量 $\Delta x = z x$
- ullet y の変化量 $\Delta y = f(\xi) f(x)$
- $ullet \; rac{dy}{dx} = \lim_{\Delta x o 0} rac{\Delta y}{\Delta x}$

- ullet x の変化量 $\Delta x = z x$
- y の変化量 $\Delta y = f(\xi) f(x)$

$$ullet \; rac{dy}{dx} = \lim_{oldsymbol{\Delta}x o 0} rac{oldsymbol{\Delta}y}{oldsymbol{\Delta}x}$$

• これは図の接線の傾き

1変数関数の微分 |

- ullet x の変化量 $\Delta x = z x$
- y の変化量 $\Delta y = f(\xi) f(x)$

$$ullet \ rac{dy}{dx} = \lim_{\Delta x o 0} rac{\Delta y}{\Delta x}$$

ullet 赤の直角三角形の底辺と高さを $dx,\ dy$ と書く

$$\Delta x = dx$$

- ullet x の変化量 $\Delta x = z x$
- y の変化量 $\Delta y = f(\xi) f(x)$

$$ullet rac{dy}{dx} = \lim_{oldsymbol{\Delta}x o 0} rac{oldsymbol{\Delta}y}{oldsymbol{\Delta}x}$$

- ullet 赤の直角三角形の底辺と高さを $dx,\ dy$ と書く
- ullet $an heta = rac{dy}{dx}$ より $rac{dy}{dx} = rac{dy}{dx} dx$ (dx, dy の意味付け)

$$\Delta x = dx$$

• 2 変数関数 z = f(x, y)

- 2 変数関数 z = f(x,y)
- $ullet \ rac{\partial z}{\partial x}$ は

- 2 変数関数 z = f(x, y)
- ullet $\frac{\partial z}{\partial x}$ は x だけが変化したときの変化率

• 2 変数関数 z = f(x, y)

• $\dfrac{\partial z}{\partial x}$ は x だけが変化したときの変化率変化量 $\Delta z_1 = f(x',y) - f(x,y)$

• 2 変数関数 z = f(x, y)

- 2 変数関数 z = f(x, y)
- $\frac{\partial z}{\partial x}$ は x だけが変化したときの変化率 変化量 $\Delta z_1 = f(x',y) - f(x,y)$ $\Rightarrow dz_1 = rac{\partial z}{\partial x} dx$ で近似 f(x',y) f(x,y) f(x,y)

全微分

 $x,\ y$ の両方を $dx,\ dy$ だけ変えたとき,z の変化量 dz は?

x, yの両方をdx, dyだけ変えたとき,zの変化量dzは?

$$dz = dz_1 + dz_2$$

x, yの両方をdx, dyだけ変えたとき,zの変化量dzは?

$$dz = dz_1 + dz_2$$

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

例
$$z=x^2+5y^3$$
の全微分

例
$$z=x^2+5y^3$$
の全微分

解
$$\frac{\partial z}{\partial x}=2x$$

例
$$z=x^2+5y^3$$
の全微分

解
$$\frac{\partial z}{\partial x}=2x$$

$$rac{\partial z}{\partial y} = 15 y^2$$

例
$$z=x^2+5y^3$$
の全微分

解
$$\dfrac{\partial z}{\partial x}=2x$$

$$rac{\partial z}{\partial y} = 15 y^2$$

$$dz = 2x \, dx + 15y^2 \, dy$$

例
$$z=x^2+5y^3$$
の全微分

解
$$\frac{\partial z}{\partial x} = 2x$$

$$\frac{\partial z}{\partial y} = 15y^2$$

$$dz = 2x \, dx + 15y^2 \, dy$$

課題 0930-3 次の関数の全微分を求めよ.

$$[1] z = 2x + y$$

$$[2] z = xy$$