Scalar Products

Integer sequence \$a\$ having length \$2n+2\$ is defined as follows:

- \$a 0 = 0\$
- \$a 1 = C\$

Write a function generator, \$gen\$, to generate the remaining values for a_2 through a_{2n+1} . The values returned by \$gen\$ describe two-dimensional vectors $v_1 \cdot v_n$, where each sequential pair of values describes the respective x and y coordinates for some vector v in the form x_1 , y_1 , x_2 , y_2 , v_1 , v_2 , v_2 , v_3 . In other words, v_1 = v_2 , v_3 , v_4 = v_4 , v_5 , v_5 , v_6 , v_7 = v_7 , v_7 ,

Let \$S\$ be the set of scalar products of \$v_i\$ and \$v_j\$ for each \$1 \le i, j \le n\$, where \$i \neq j\$. Determine the number of different residues in \$S\$ and print the resulting value modulo \$M\$.

Input Format

A single line of three space-separated positive integers: \$C\$ (the value of \$a_1\$), \$M\$ (the modulus), and \$n\$ (the number of two-dimensional vectors), respectively.

Constraints

- \$1 \le C \le 10^9\$
- \$1 \le M \le 10^9\$
- \$1 \le n \le 3 \times 10^5\$

Output Format

Print a single integer denoting the number of different residues \$\% \ M\$ in \$S\$.

Sample Input

453

Sample Output

2

Explanation

Sequence $a = a_0, a_1, (a_1+a_0)\M, (a_2+a_1)\M, \c (a_{2n}+a_{2n-1})\M, $$ = \(0, \ 4, \ (4+0)\%5, \ (3+4)\%5, \ (2+3)\%5, \ (0+2)\%5, \ (2+0)\%5, \ $$ = \(0, 4, 4, 3, 2, 0, 2, 2\)$.$

This gives us our vectors: $v_1 = (4, 3)$, $v_2 = (2, 0)$, and $v_3 = (2, 2)$.

Scalar product $\$S\ 0(v\ 1,v\ 2) = 8\$$.

Scalar product $\$S\ 2(v\ 2,v\ 3) = 4\$$.

Scalar product $S_0(v_1,v_3) = 14$.

