Problem 1: Show homotopy equivalence is an equivalence relation.

Solution: Let $A \simeq B \simeq C$. Let $f: A \to B, g: B \to A$ and $\overline{f}: B \to C, \overline{g}: C \to B$ with $fg \simeq 1$ and $\overline{fg} \simeq 1$ by $\gamma_1 = 1, \gamma_0 = fg$ and $\alpha_1 = 1, \alpha_0 = \overline{fg}$. Then

$$F_t = \begin{cases} g\alpha_{2t}f, & t \in \left[0, \frac{1}{2}\right] \\ \gamma_{2t-1}, & t \in \left[\frac{1}{2}, 1\right] \end{cases}$$

is a homotopy equivalence between A and C hence showing transitivity.

1.1.7: The homotopy

$$F: (S^1 \times I) \times I \to S^1 \times I$$

by

$$F(\theta, s, t) = (\theta + 2\pi st, s)$$

Then $F(\theta, s, 0) = 1$ while $F(\theta, s, 1) = f(\theta, s)$ and F is continuous hence a homotopy - also, it fixed the circle for s = 0.

Rest done on paper.

1.1.8: No, the proof of borsuk-ulam fails when we conclude η is nullhomotopic on $S^1 \times S^1$ which it is not.

More specifically, the natural projection of the torus onto the 2d-plane works.

1.1.18: Assume $\alpha \in \pi_1(X)$. Let $\varphi \colon S^1 \to X$ be the attaching map. We can let $p \colon I \to S^1$ by $t \to (\cos 2\pi t, \sin 2\pi t)$. Then $\varphi \circ p$ is the attaching loop.

Let $x_0 = (\varphi \circ p)(0) \in A$. Now, since A is path-connected, there exists a path $\gamma \colon I \to A$ from $\alpha(0)$ to x_0 . Then $\gamma \alpha \overline{\gamma}$ is a loop at x_0 in A.

Now choose a neighborhood around x_0 and let A_1 be the union of this neighborhood and the attached n-cell. Let A_2 be an ε -neighborhood of A in X that deformation retracts onto A - this becomes A union an annulus of the attached n-cell. And the annulus deformation retracts onto the attaching circle of A.

The intersection of A_1 and A_2 is path-connected - the union of the annulus with the neighborhood around x_0 -, so by lemma 1.15, the loop can be decomposed into running in A_1 and A_2 . Any loop in A_1 however is nullhomotopic in X, so it can be decomposed into loops running in A_2 only. Now deformation retract A_2 to A and we find the loop α can be decomposed into loops running in A only.

1.1.19: Let $\gamma: I \to X$ be a loop in X. The CW complex is composed of a 0-skeleton with edges which are path connected.