

Случайные события. Вероятность события. Условная вероятность. Формула Байеса

Теория вероятностей и математическая статистика / Урок 1

Случайные события

Случайные события

Случайное событие — любой исход эксперимента, который может произойти или не произойти.

Случайные события

Случайное событие — любой исход эксперимента, который может произойти или не произойти.

Например,

- f 0 При броске двух игральных костей на одной выпало число 1, а на другой 2.
- Клиент банка не вернул кредит.
- Температура воздуха в Москве за последние десять дней не превышала 29 градусов по Цельсию.

Операции над случайными событиями

Пусть A и B — случайные события.

- Сумма событий A+B соответствует наступлению хотя бы одного из событий A и B. Такое событие иногда называют объединением.
- Произведение $A \cdot B$ соответствует наступлению событий A и B одновременно. Такое событие ещё называется совместным.
- Отрицание \overline{A} соответствует тому, что событие A не наступило. Такое событие также называется дополнением.

Событие называется достоверным, если в результате испытания оно обязательно произойдёт.

Событие называется достоверным, если в результате испытания оно обязательно произойдёт.

Например,

- При броске игральной кости выпало число, не превышающее 6.
- 🧕 Подбросили монету, и выпал либо орёл, либо решка.
- ${f 3}$ Монету подбросили стократно, и решка выпала не более 100 раз.

Невозможным событием мы называем событие, которое никогда не произойдёт.

Невозможным событием мы называем событие, которое никогда не произойдёт.

Например,

- Две игральные кости бросили один раз, и сумма выпавших чисел составила 15.

Совместные и несовместные события

Совместными называются события, которые могут произойти вместе. Соответственно, несовместными называются события, которые вместе случиться не могут.

Совместные и несовместные события

Совместными называются события, которые могут произойти вместе. Соответственно, несовместными называются события, которые вместе случиться не могут.

Например,

- При броске монеты не могут одновременно выпасть орёл и решка.
- При броске дротика в круглую мишень можно попасть одновременно в правую половину мишени и в нижнюю половину.

Статистическая вероятность

Относительная частота

Относительная частота случайного события — это отношение количества испытаний, в которых данное событие состоялось, к общему числу испытаний:

$$W(A) = \frac{m}{n},$$

где

- m число испытаний, в результате которых произошло событие A,
- n общее число испытаний.

Статистическая вероятность

Как правило, чем больше испытаний мы делаем, тем больше значение частоты «стабилизируется», т.е. приближается к какому-то конкретному значению.

Статистической вероятностью события A называется его относительная частота при достаточно большом («бесконечном») количестве опытов. Вероятность события A обозначается P(A).

Статистическая вероятность

Как правило, чем больше испытаний мы делаем, тем больше значение частоты «стабилизируется», т.е. приближается к какому-то конкретному значению.

Статистической вероятностью события A называется его относительная частота при достаточно большом («бесконечном») количестве опытов. Вероятность события A обозначается P(A).

Например, при многократном повторении бросков монеты относительная частота выпадения орла может различаться, однако, вероятность выпадения орла равна 0.5.

Свойства вероятности

- $0 \le P(A) \le 1$ для любого события A.
- $P(\varnothing)=0$, $P(\Omega)=1$, где \varnothing невозможное событие, Ω достоверное событие.
- P(A+B) = P(A) + P(B) P(AB), где A+B объединение событий (происходит хотя бы одно), а AB совместное событие (происходят оба).
- В частности, для несовместных событий: P(A+B) = P(A) + P(B).
- $P(A) + P(\overline{A}) = 1$ для любого события A.

Замечание. Ещё раз подчеркнём, что вероятности произвольных событий суммировать нельзя, сперва необходимо установить несовместность событий.

Комбинаторика

Комбинаторика

Комбинаторика — раздел математики, в котором изучаются задачи выбора элементов из заданного множества и расположения их в группы по заданным правилам.

Комбинаторика

Комбинаторика — раздел математики, в котором изучаются задачи выбора элементов из заданного множества и расположения их в группы по заданным правилам.

Мы изучим:

- размещения,
- перестановки,
- в сочетания.

Размещение из n элементов по k элементов — это упорядоченный набор из k элементов, выбранных из множества, содержащего n элементов.

 $\emph{Замечание}$: здесь k и n — натуральные числа и $0 \leq k \leq n.$

Размещение из n элементов по k элементов — это упорядоченный набор из k элементов, выбранных из множества, содержащего n элементов.

 $\it 3$ амечание: здесь $\it k$ и $\it n$ — натуральные числа и $\it 0 \leq \it k \leq \it n$.

Например, набор (1,3,5) является размещением из множества $\{1,2,3,4,5\}$.

Размещение из n элементов по k элементов — это упорядоченный набор из k элементов, выбранных из множества, содержащего n элементов.

 $\it 3$ амечание: здесь $\it k$ и $\it n$ — натуральные числа и $\it 0 \leq \it k \leq \it n$.

Например, набор (1,3,5) является размещением из множества $\{1,2,3,4,5\}.$

В размещениях важен порядок. Так, (1,3,5) и (5,1,3) — разные размещения.

Договорённость: будем обозначать круглыми скобками упорядоченные наборы, а фигурными — неупорядоченные.

Посчитаем количество размещений из n по k. Представим себе k пустых ячеек. В первой ячейке может быть любой из n элементов. Во второй ячейке может быть что угодно кроме элемента из первой ячейки, т.е. всего n-1 элементов. В третьей ячейке, аналогично, может быть любой из n-2 элементов, и т.д.

Теперь чтобы получить число всевозможных размещений, нужно перемножить все эти числа. Итак, количество размещений из n по k:

$$A_n^k = n \cdot (n-1) \cdot (n-2) \cdots (n-k+1) = \frac{n!}{(n-k)!},$$

где $n! = n \cdot (n-1) \cdot (n-2) \cdots 2 \cdot 1$ — факториал.

Перестановки

Перестановкой из n элементов называется размещение из n элементов по n элементов.

Чтобы посчитать количество перестановок, достаточно знать, что 0!=1. Итак, количество перестановок из n элементов:

$$P_n = \frac{n!}{0!} = n!$$

Сочетания

Сочетание из n элементов по k элементов — это неупорядоченный набор из k элементов, выбранных из множества, содержащего n элементов.

Например, набор $\{1,3,5\}$ является сочетанием из множества $\{1,2,3,4,5\}$. При этом, $\{1,3,5\}$ и $\{5,1,3\}$ — одно и то же сочетание.

Сочетания

Сочетание из n элементов по k элементов — это неупорядоченный набор из k элементов, выбранных из множества, содержащего n элементов.

Например, набор $\{1,3,5\}$ является сочетанием из множества $\{1,2,3,4,5\}$. При этом, $\{1,3,5\}$ и $\{5,1,3\}$ — одно и то же сочетание.

Сочетаний из n по k меньше, чем размещений. Насколько меньше? Из каждого сочетания размера k можно получить ровно k! различных размещений (переставляя элементы из сочетания всевозможными способами). Итак, число сочетаний из n по k:

$$C_n^k = \frac{A_n^k}{P_k} = \frac{n!}{k!(n-k)!}$$

Классическое определение вероятности

Классическое определение вероятности

Сформулируем классическое определение вероятности.

Предположим, проводится опыт с n возможными исходами, причём все эти исходы равновозможны и несовместны. Такие исходы называются элементарными событиями.

Например,

- $lue{1}$ Игральный кубик бросается однажды. Его выпадение каждой из 6 сторон все элементарные события.
- 😰 Кубик бросается дважды. Элементарные события все пары его значений.

Классическое определение вероятности

Рассмотрим событие A, которое можно «собрать» из элементарных событий (т.е. указать, какие элементарные события повлекут за собой событие A, а какие — нет).

Например, выпадение кубика стороной, значение которой не превышает 3, включает в себя три элементарных события.

В этом случае вероятность события A:

$$P(A) = \frac{m}{n}$$

Здесь n — общее число исходов, а m — число исходов, которые влекут за собой событие A.

Условная вероятность. Независимые события

Условная вероятность

Наступление одного события может влиять на наступление другого. Например, вероятность того, что за день хоть раз выпадет снег, выше зимой.

Условная вероятность P(A|B) — это вероятность наступления события A при условии, что произошло событие B:

$$P(A|B) = \frac{P(AB)}{P(B)}$$

Замечание. Такое определение интуитивно напоминает классическое определение вероятности, данное выше: «доля» вероятности совместного события AB относительно вероятности события B.

Независимые события

События A и B называются независимыми, если P(A|B) = P(A), т.е. если наступление события B не влияет на вероятность события A, и наоборот. Например, при многократном броске кубика результаты одного броска никак не влияют на результаты других бросков. Напротив, события «зима» и «снег» из примера выше, являются зависимыми.

Замечание. Зависимость событий не означает, что одно гарантированно влечёт другое. Она лишь означает, что наступление одного меняет вероятность наступления другого.

Независимые события

Для независимых событий:

$$P(AB) = P(A) \cdot P(B)$$

Замечание. Аналогично суммированию, вероятности произвольных событий перемножать нельзя, сперва необходимо установить независимость событий.

Формула полной вероятности. Формула Байеса

Формула полной вероятности

Говорят, что события H_1, H_2, \ldots, H_n образуют полную группу событий, если они несовместны, и в ходе любого испытания одно из этих событий обязательно произойдёт.

Формула полной вероятности для таких событий и произвольного события A:

$$P(A) = P(A|H_1) \cdot P(H_1) + P(A|H_2) \cdot P(H_2) + \dots + P(A|H_n) \cdot P(H_n).$$

В частности, для произвольных событий A и B:

$$P(A) = P(A|B) \cdot P(B) + P(A|\overline{B}) \cdot P(\overline{B})$$

Формула Байеса

Формула Байеса позволяет «развернуть» условную вероятность P(A|B), т.е. выразить её через P(B|A). По определению условной вероятности:

$$P(A|B) = \frac{P(AB)}{P(B)}$$

Совместную вероятность P(AB) можно теперь выразить в обратном порядке: $P(AB) = P(B|A) \cdot P(A)$

Итак, формула Байеса:

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

Наивный Байесовский классификатор

Формула Байеса является основой для одной из моделей машинного обучения, решающих задачу классификации — Наивного Байесовского классификатора (Naive Bayes classifier).

Как работает эта модель — читайте в дополнительных материалах к уроку.

