# **Computer Vision**

Two-view geometry





# Reading

· Reading: Szeliski (2nd Edition), 12.1 12.6

### **Back to stereo**



· Where do epipolar lines come from?

• Where do epipolar lines come from?



Where do epipolar lines come from?



Where do epipolar lines come from?



Where do epipolar lines come from?





· This *epipolar geometry* of two views is described by a <u>very special</u>3x3 matrix, called the *fundamental matrix*  ${f F}$ 



- $\cdot$  Epipolar geometry, very special 3x3 fundamental matrix  ${f F}$
- .  ${f F}$  maps (homogeneous) *points* in image 1 to *lines* in image 2!

# Relationship between F matrix and homography?



Images taken from the same center of projection? Use a homography!



- Epipolar geometry, very special 3x3 fundamental matrix
- maps (homogeneous) points in image 1 to lines in image 2!

The epipolar line (in image 2) of point p is:

$$\mathbf{p} = egin{bmatrix} p_x \ p_y \ 1 \end{bmatrix}, \quad \mathbf{q} = egin{bmatrix} q_x \ q_y \ 1 \end{bmatrix} \ egin{bmatrix} \mathbf{l'} = \mathbf{F}\mathbf{p} \ = egin{bmatrix} l'_a \ l'_b \ l'_c \end{bmatrix}$$

$$egin{aligned} \mathbf{p} = egin{bmatrix} p_x \ p_y \ 1 \end{bmatrix}, \quad \mathbf{q} = egin{bmatrix} q_x \ q_y \ 1 \end{bmatrix} egin{bmatrix} \mathbf{l}' = \mathbf{F}\mathbf{p} \ = egin{bmatrix} l'_a \ l'_b \ l'_c \end{bmatrix} \end{bmatrix} egin{bmatrix} \mathbf{q}^T \mathbf{l}' = egin{bmatrix} q_x & q_y & 1 \end{bmatrix} egin{bmatrix} l'_a \ l'_b \ l'_c \end{bmatrix} = q_x l'_a + q_y l'_b + l'_c = 0 \end{bmatrix}$$



 $\mathbf{F}$ 

· Epipolar geometry, very special 3x3 fundamental matrix

• **F**' maps (homogeneous) *points* in image 1 to *lines* in image 2!

The epipolar line (in image 2) of point p is:  ${f F}$ 

 ${f \cdot}$  Epipolar constraint on corresponding points.  ${f q}^T{f F}{f p}=0$ 



• Two Special points:  $\mathbf{e}_1$  and  $\mathbf{e}_2$  (the *epipoles*): projection of one camera into the other



- Two Special points:  $\mathbf{e}_1$  and  $\mathbf{e}_2$  (the *epipoles*): projection of one camera into the other
- · All of the epipolar lines in an image pass through the epipole
- Epipoles may or may not be inside the image

### **Properties of the Fundamental Matrix**

 $\cdot \; \mathbf{F} \mathbf{p} \;$  is the epipolar line associated with  $\; \mathbf{P} \;$ 

•  $\mathbf{F}^T\mathbf{q}$  is the epipolar line associated with  $\mathbf{q}$ 



$$\mathbf{q}^T \mathbf{F} \mathbf{p} = 0 \quad \Longrightarrow \quad (\mathbf{F}^T \mathbf{q})^T \mathbf{p} = 0$$

# **Example**





#### Demo

https://www.cs.cornell.edu/courses/cs5670/2023sp/demos/FundamentalMatrix/?demo=demo1



- Why does  ${f F}$  exist?
- Let's derive it...

#### Fundamental matrix - calibrated case



 $\mathbf{K}_1$ : intrinsics of camera 1

 $\mathbf{K}_2$  : intrinsics of camera 2

**R**: rotation of image 2 w.r.t. camera 1

 $ilde{\mathbf{p}} = \mathbf{K}_1^{-1} \mathbf{p}$  : ray through **p** in camera 1's (and world) coordinate system

 $ilde{\mathbf{q}}=\mathbf{K}_2^{-1}\mathbf{q}$  : ray through  $\mathbf{q}$  in camera 2's coordinate system

#### Fundamental matrix - calibrated case



- · One more substitution:
  - Cross product with  $\mathbf{t}=\begin{bmatrix}t_x & t_y & t_z\end{bmatrix}$  (on left) can be represented as a 3x3 matrix

$$\left[\mathbf{t}\right]_{\times} = \left[egin{array}{cccc} 0 & -t_z & t_y \ t_z & 0 & -t_x \ -t_y & t_x & 0 \end{array}
ight] \qquad \mathbf{t} imes ilde{\mathbf{p}} = \left[\mathbf{t}\right]_{ imes} ilde{\mathbf{p}}$$

### Fundamental matrix - calibrated case



 $ilde{\mathbf{p}} = \mathbf{K}_1^{-1} \mathbf{p}$ : ray through  $ilde{\mathbf{p}}$  in camera 1's (and world) coordinate system

 $ilde{\mathbf{q}}=\mathbf{K}_2^{-1}\mathbf{q}$ : ray through  $\mathbf{q}$  in camera 2's coordinate system

$$\tilde{\mathbf{q}}^T \mathbf{R} [\mathbf{t}] \tilde{\mathbf{p}} = 0$$

$$\tilde{\mathbf{q}}^T \mathbf{E} \tilde{\mathbf{p}} = 0$$

$$\mathbf{E} \text{ the Essential matrix}$$

 $\mathbf{q}^T \mathbf{F} \mathbf{p} = 0$ 

#### Fundamental matrix – uncalibrated case



 $\mathbf{K}_1$ : intrinsics of camera 1

 $\mathbf{K}_2$  : intrinsics of camera 2

 ${f R}$  : rotation of image 2 w.r.t. camera 1

$$\mathbf{q}^T \mathbf{K}_2^{-T} \mathbf{R} \left[ \mathbf{t} \right]_{\times} \mathbf{K}_1^{-1} \mathbf{p} = 0$$

$$\mathbf{F} \longleftarrow \text{the Fundamental matrix}$$

### **Rectified case**



$$\mathbf{R} = \mathbf{I}_{3\times3}$$

$$\mathbf{t} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$$

$$\mathbf{E} = \mathbf{R} \begin{bmatrix} \mathbf{t} \end{bmatrix}_{\times} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

# Working out the math

• For a point 
$$[a,b,1]^T$$
 in image 1: 
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ b \end{bmatrix}$$

Its corresponding point  $[x, y, 1]^T$  in image 2 must satisfy:

$$\begin{bmatrix} x & y & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ -1 \\ b \end{bmatrix} = 0 \quad \Longrightarrow \quad y = b$$



Original stereo pair



### **Rectified case**



$$\mathbf{R} = \mathbf{I}_{3\times3}$$

$$\mathbf{t} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$$

$$\mathbf{E} = \mathbf{R} \begin{bmatrix} \mathbf{t} \end{bmatrix}_{\times} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

# Stereo image rectification

- · Reproject image planes onto a common plane
  - Plane parallel to the line between optical centers
- Pixel motion is horizontal after this transformation
- Two homographies, one for each input image
  - C. Loop and Z. Zhang. <u>Computing Rectifying Homographies for Stereo</u>
     <u>Vision</u>. CVPR 1999.



### Fundamental matrix song

http://danielwedge.com/fmatrix/

# **Questions?**

## Sparse correspondence

- Early stereo matching algorithms were featurebased, i.e., they first extracted a set of potentially matchable image locations, using either interest operators or edge detectors, and then searched for corresponding locations in other images using a patch-based metric
- More recent work in this area has focused on first extracting highly reliable features and then using these as seeds to grow additional matches

## 3D curves and profiles

 Example of sparse correspondence is the matching of profile curves (or occluding contours), which occur at the boundaries of objects



### Dense correspondence

- Most stereo matching algorithms today focus on dense correspondence, as this is required for applications such as image-based rendering or modeling.
- 1. matching cost computation;
- 2. cost (support) aggregation;
- · 3. disparity computation and optimization; and
- 4. disparity refinement

- 1. Matching cost computation
  - Compare with neighborhoods around pixels on the epipolar line for the best match
  - Consider its neighborhood defined by a square window



#### 2. Cost aggregation

- Color differences and a variation exist in the depth discontinuous
- The variation in the disparity value is small between adjacent pixels



#### 3. Disparity computation/optimization

- Winner-takes-all (WTA)
- Dynamic programming
- Graph-cut [1]





 Boykov, Yuri, Olga Veksler, and Ramin Zabih. "Fast approximate energy minimization via graph cuts." IEEE Transactions on pattern analysis and machine intelligence 23.11 (2001): 1222-

- 4. Disparity Refinement
  - Left-Right Consistency Check
  - Median filtering



Winner-takes-all (inverse) depth map



Confidence based outlier removal



Depth refinement [1]

 Ha, Hyowon, et al. "High-quality depth from uncalibrated small motion clip." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016.

# **Deep Neural Network**

2D and 3D Models

# DispNet (FlowNet)



### DispNet End-to-end disparity estimation network (No need optimization)

#### Convolution layer

- identical processing streams for the two images
- With this architecture the network is constrained to first produce meaningful representations of the two images separately

#### Correlation layer

- Multiplicative patch comparisons between two feature maps
- No trainable weights



### **Upconvolutional** layers

- high-level information passed from coarser feature maps
- fine local information provided in lower layer feature maps



# Human Visual System and DispNet



# Is DispNet the best??







**Figure 12.18** Disparity maps computed by three different DNN stereo matchers trained on synthetic data and applied to real-world image pairs (Zhang, Qi et al. 2020) © 2020 Springer.

### Deep Material Stereo [CVPR'18]

### Simultaneous Disparity Prediction & Spectral Translation



#### Materials with Large Appearance Variation



#### Incorporating Material Awareness into Disparity Prediction



### CNN version of RGB-W Stereo



Encoder

Depth estimation

Image recovery



### CNN version of RGB-W Stereo



### Convolutional Neural Network



DispNet, CVPR 16



PSMNet, CVPR 18



EdgeStereo, ArXiv

# EPINET [CVPR'18]



Table 1. The effect of the number of viewpoints on performance.

2-streams

4-streams

1-stream

### Lack of Data



Antinous, Range: [ -3.3, 2.8 ]



Kitchen, Range: [ -1.6, 1.8 ]



Pillows, Range: [ -1.7, 1.8 ]



Tomb, Range: [ -1.5, 1.9 ]



Boardgames, Range: [ -1.8, 1.6 ]



Medieval2, Range: [ -1.7, 2.0 ]



Platonic, Range: [ -1.7, 1.5 ]



Tower, Range: [ -3.6, 3.5 ]



Dishes, Range: [ -3.1, 3.5 ]



Museum, Range: [ -1.5, 1.3 ]



Rosemary, Range: [ -1.8, 1.8 ]



Town, Range: [ -1.6, 1.6 ]



Greek, Range: [ -3.5, 3.1 ]



Pens, Range: [ -1.7, 2.0 ]



Table, Range: [ -2.0, 1.6 ]



Vinyl, Range: [ -1.6, 1.2 ]

## Data Augmentation

### View-shift augmentation



### Scale augmentation



### Rotation augmentation



| Augular<br>resolution        | 3 × 3    | 5 × 5    | 7×7   |                      |                     |                    |          | 9 × 9    |
|------------------------------|----------|----------|-------|----------------------|---------------------|--------------------|----------|----------|
| Augmentaion type             | Full Aug | Full Aug | Color | Color +<br>Viewshift | Color +<br>Rotation | Color +<br>scaling | Full Aug | Full Aug |
| Mean square error            | 1.568    | 1.475    | 2.799 | 2.564                | 1.685               | 2.33               | 1.434    | 1.461    |
| Bad pixel ratio<br>(>0.07px) | 8.63     | 4.96     | 6.67  | 6.29                 | 5.54                | 5.69               | 3.94     | 3.91     |

# **Questions?**

# Quiz 1

- Q1-What are the challenges when dealing with computer vision problems? (3)
- Q2-Suppose that we have a 1D image with values as (3, 2, 5, 8,5,2). Apply the average filter of size (1 x 3). What would be the value of last-secondd pixel. (3)
- Q3 Differentiate between Afine transformation and Projective transformation with respect to homographic planner perspective map. (4)

# Quiz 1

- What are the challenges when dealing with computer vision problems?
  - Variation due to geometric change, photometric factors (illumination, appearance, noise), image occlusion etc
- Suppose that we havea 1D image with values as (3, 2, 5, 8,5,2). Apply the average filter of size (1 x 3). What whould be the value of last-second pixel?
  - (8+5+2)/3`=5
- Diifrentite between Afine transformation and Projective transformation  $\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix}$  pect to hor  $\mathbf{H} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{bmatrix}$  per perspective