Hana Abou Baker

Week 9

Task 1

Use a weather forecast website, and utilize the psychometric chart and the formula we went through in the class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapor in the air in Classroom A (Aula A) of Piacenza campus in the moment that you are solving

Umidità: Relative humidity, Pressione atmospheric: Air total pressure (1 hPa: 0.1 kPa), Temperature effettiva: temperature to be utilized.

	T		er today i , 03 Decer				
	1:00 pm	14:00	4:00 pm	18:00	8:00 pm	21:00	22:00
	LightCloud	LightCloud	PartlyCloud	LightCloud	Sun	Sun	Sun
Effective temperature	9 ° C	10 ° C	8 ° C	6 ° C	4 ° C	2°C	2°C
Perceived temperature	7°C	10 ° C	6°C	4°C	2°C	0°C	0°C
Rainfall	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm
Humidity	67 %	65 %	69 %	70 %	75 %	83 %	87 %
Atmospheric pressure	1025 hPa	1025 hPa	1025 hPa	1026 hPa	1027 hPa	1027 hPa	1028 hPa
Wind intensity	15 km / h	14 km / h	9 km / h	9 km / h	7 km / h	8 km / h	8 km / h
Wind direction	← _	\leftarrow	←	\leftarrow	5	1	1

The hour at the moment is 14:30. According to the weather forecast shown above we know that there is no chances of rainfall, effective temperature 9° C (T= 282.15 Kalvin), the humidity is 65% (relative humidity Φ = 65%), and the atmospheric pressure 1025 hPa (total air pressure P= 102.5 kPa)

Utilize the psychometric chart, we can see, the humidity ratio, i.e., the absolute humidity ω =0.0052

The web-bulb temperature $T_{wb} = 10^{\circ}C$

Therefore
$$\omega = \frac{0.622 \, Pv}{Pa} = \frac{0.622 \, Pv}{P-Pv} = 0.0052$$
, introduce P = 102.5 KPa into this equation, and solve it. $\frac{0.622 \, Pv}{102.5 - pv} = 0.0052$

 $P_V = 0.8498 \text{ KPa}$

Autem,
$$\Phi = \frac{mv}{mg} = 70\%$$
 (1)

For any ideal gas, m = $\frac{Pv}{RSPT}$, during the class we were told that for water vapor, R_{sp}= 0.4615

Introduce the pressure of water vapor $P_V = 0.8498$ KPa, and define the volume of Aula A is

V:
$$m_v = \frac{0.8498V}{0.4615*282.15} = 130.212225 \text{ V}$$

Subordinate this value to equation number (1)

Calculate the maximum water vapor $m_g = \frac{mv}{70\%} = 9.34 \times 10^{-3} \text{V}$

Task 2

Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a *good* construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

		BRINDISI, Italy													WMO#:	163200	
	Lat	40.65N	Long:	17.95E	Elev:	10	StdP:	101.2		Time Zone:	1.00 (EU	W)	Period:	86-10	WBAN:	99999	
	Annual He	ating and H	lumidificat	ion Design C	onditions												
	Coldest	Heatin	g DB	Humidification DP/MCDB and HR 99.6% 99%					Coldest month WS/MCDB 0.4% 1%					MCWS/PCWD to 99.6% DB			
	Month	99.6%	99%	DP	99.0% HR	MCDB	DP	99% HR	MCDB	WS U.	MCDB	WS	MCDB	MCWS	PCWD		
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(/)	(k)	(1)	(m)	(n)	(0)		
(1)	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(1)
	_							5.0	7.4	10.4	10.2	12.4	10.0	0.4	250		117
	Annual Cooling, Dehumidification, and Enthalpy Design Conditions																
		Hottest			Cooling DB/MCWB Evaporation WB/MCDB											S/PCWD	
	Hottest	Month	0	.4%		%	2%			0.4% 1%			2%		to 0.4% DB		
	Month	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
(2)	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	(2)
				Dehumidific	ation DP/M	CDB and HF	3		Enthalpy/MCDB							Hours	
		0.4% 1% 2%					2%	0.4% 1%				2	%	8 to 4 &			
	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	
	(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	
(3)	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3)
Extreme Annual Design Conditions																	
	Extreme Annual WS 1% 2.5% 5%		ws	Extreme Extreme Annual DB Max Mean Standard deviation			de delle					d Values of Extreme DB n=20 years n=50					
			Max WB	Min	an Max	Standard Min	Max	Min	years Max	n=10 Min	years Max	n=20 Min	years Max	n=50	years Max		
	(8)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(o)	(p)	
	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2		
(4)	11.3	9.9	0.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4)

Height= 2.5 m; Floor area= 200 m²; Wall area= 144 m²

Internal Gains:

Sensible cooling load from internal gains,

$$q_{ig,sensible} = 136+2.2A_{cf}+22N_{oc} = 136+2.2*200+22*2 = 620W$$

Latent cooling load from internal gains,

$$q_{ig,latent} = 20+0.22A_{cf}+12N_{oc}=20+0.22*200+12*2=88W$$

Infiltration:

Unit leakage area A_{ul}= 1.4 cm²/m²

Exposed surface A_L= A(wall)+ A(roof)= 200+144= 344m²

So,
$$A_L = A_{es} * A_{ul} = 344 * 1.4 = 481.6 \text{ cm}^2$$

Define the cooling temperature T_{cooling} = 24°C, and heating temperature T_{heating} = 20°C in Brindisi,

$$\triangle$$
 T cooling = 31.1– 24 = 7.1°C = 7.1 k

$$\triangle$$
 T heating = 20 °C – (- 4.1°C) = 24.1 °C = 24.1 k

Given: IDF (heating) = 0.073 $\frac{L}{s*cm2}$

IDF (cooling) =
$$0.033 \frac{L}{s*cm2}$$

Calculate infiltration airflow rate,

Q_{I, heating} =
$$A_L$$
* IDF _{heating} = 481.6 * 0.073 = 35.157 $\frac{L}{s}$

$$Q_{i,cooling} = A_L * IDF_{cooling} = 481.6 * 0.033 = 15.893 \frac{L}{s}$$

The required minimum whole building ventilation rate is

Qv=
$$0.05A_{cf} + 3.5$$
 ($N_{br} + 1$) = $0.05 * 200 + 3.5 * (1+1) = 17 \frac{L}{s}$

Thus,

$$Q_{i-v, heating} = Q_{i, heating} + Q_{v} = 35.157 + 17 = 52.157 \frac{L}{s}$$

$$Q_{i-v, cooling} = Q_{I, cooling} + Q_v = 15.893 + 17 = 32.893 \frac{L}{s}$$

Given that C_{sensible} = 1.23, C_{talent} = 3010, $\triangle \omega$ cooling = 0.0039

$$\dot{q}$$
 inf-ventilation (cooling sensible) = C sensible Q i-v,cooling \triangle T cooling = 1.23 * 32.893 * 7.1 = 287.25 W

$$\dot{q}_{\text{ inf-ventilation (cooling talent)}}$$
 = C $_{\text{talent}}$ Q $_{\text{i-v,cooling}}$ $\triangle \omega$ cooling = 3010 * 32.893 * 0.0039 = 386.13 W

$$\dot{q}$$
 inf-ventilation (heating sensible) = C sensible Q i-v,cooling \triangle Theating = 1.23 * 52.157 * 24.1 = 1546.09W