Prelegerea 12

Sistemul de criptare El Gamal

12.1 Descrierea algoritmului de criptare El Gamal

Sistemul de criptare El Gamal¹, prezentat în 1985 (vezi [1]) de Taher ElGamal, se bazează pe problema logaritmului discret, care este următoarea:

Fie
$$p$$
 număr prim şi $\alpha, \beta \in Z_p, \ \beta \neq 0$.
Să se determine $a \in Z_{p-1}$ astfel ca
$$\alpha^a \equiv \beta \ (mod \ p).$$
Acest întreg a – dacă există – este unic şi se notează $log_{\alpha}\beta$.

Exemplul 12.1 Fie p = 11 și $\alpha = 6$. Toate elementele din Z_{11}^* pot fi exprimate ca puteri ale lui α :

De aici rezultă imediat tabelul logaritmilor în baza 6:

 $Pentru \ \alpha = 3 \ \hat{i}ns \check{a} \ nu \ vom \ avea \ tot de auna \ soluție. \ De oarece$

valorile $\beta \in \{2, 6, 7, 8, 10\}$ nu pot fi exprimate ca logaritmi în baza 3. Altfel spus, ecuația $log_3x = \beta$ nu are soluție în Z_{11} pentru aceste valori ale lui b.

 $^{^{1}}$ Implementări ale sistemului sunt conținute în softuri pentru GNU Privacy Guard și PGP – pentru a lista cele mai cunoscute aplicații.

Observația 12.1 Pentru problema logaritmului discret, nu este obligatoriu ca p să fie număr prim. Important este ca α să fie rădăcină primitivă de ordinul p-1 a unității: $\forall i \ (0 < i < p-1), \ \alpha^i \not\equiv 1 \ (mod \ p).$ Teorema lui Fermat asigură $\alpha^{p-1} \equiv 1 \ (mod \ p).$

La o alegere convenabilă a lui p, problema este NP - completă. Pentru siguranță, pse alege de minim 512 biţi² iar p-1 să aibă cel puţin un divizor prim "mare". Pentru un astfel de modul p, spunem că problema logaritmului discret este dificilă în Z_p . Utilitatea acestei cerințe rezidă în faptul că, deși este foarte dificil de calculat un logaritm discret, operația inversă – de exponențiere – este foarte simplă (după cum s-a văzut la sistemul RSA).

Sistemul de criptare El Gamal este următorul:

Fie p număr prim pentru care problema logaritmului discret în \mathbb{Z}_p este dificilă, și $\alpha \in \mathbb{Z}_p^*$ primitiv.

Fie
$$\mathcal{P} = Z_p^*$$
, $\mathcal{C} = Z_p^* \times Z_p^*$ şi
$$\mathcal{K} = \{(p, \alpha, a, \beta) | \beta \equiv \alpha^a \pmod{p}\}.$$

Valorile p, α, β sunt publice, iar a este secret.

Pentru $K = (p, \alpha, a, \beta)$ şi $k \in \mathbb{Z}_{p-1}$ aleator (secret) se defineşte

$$e_K(x,k) = (y_1, y_2)$$

unde $y_1 = \alpha^k \pmod{p}$, $y_2 = x \cdot \beta^k \pmod{p}$.

Pentru $y_1, y_2 \in \mathbb{Z}_p^*$ se definește

$$d_K(y_1, y_2) = y_2 \cdot (y_1^a)^{-1} \pmod{p}$$

Verificarea este imediată:

$$y_2 \cdot (y_1^a)^{-1} \equiv x \cdot \beta^k \cdot (\alpha^{ka})^{-1} \equiv x \cdot \beta^k (\beta^k)^{-1} \equiv x \pmod{p}$$

Sistemul este evident nedeterminist: criptarea depinde de x și de o valoare aleatoare aleasă de Alice. Există deci mai multe texte criptate corespunzătoare unui anumit text clar.

Exemplul 12.2 Să alegem p=2579, $\alpha=2$, a=765. Prin calcul se obține $\beta=$ $2^{765} \pmod{2579} = 949.$

Să presupunem că Alice vrea să trimită mesajul x=1299. Ea alege aleator k (să $spunem \ k = 853) \ si \ calculeaz \ y_1 = 2^{853} = 435, \ apoi \ y_2 = 1299 \cdot 949^{853} = 2396 \ (to at e = 1299 \cdot 949^{853})$ calculele se fac modulo 2579).

 $C\hat{a}nd\ Bob\ primește\ mesajul\ criptat\ y=(435,2396),\ el\ va\ determina$

$$x = 2396 \cdot (435^{765})^{-1} = 1299 \pmod{2579}.$$

²Pentru o securitate pe termen lung se recomandă 1024 biți ([3]).

Observaţia 12.2

- 1. Un dezavantaj al sistemului El Gamal constă în dublarea lungimii textului criptat (comparativ cu lungimea textului clar).
- 2. Dacă (y_1, y_2) , (z_1, z_2) sunt textele criptate ale mesajelor m_1, m_2 atunci se poate deduce imediat un text criptat pentru m_1m^2 : (y_1z_1, y_2z_2) . Similar poate fi dedusă o criptare pentru $2m_1$ (sau $2m_2$). Acest lucru face sistemul El Gamal sensibil la un atac cu text clar ales.
- 3. Indicația ca pentru criptarea a două texte diferite să se folosească valori diferite ale parametrului k este esențială: astfel, să prsupunem că mesajele m_1, m_2 au fost criptate în (y_1, y_2) respectiv (z_1, z_2) folosind același k. Atunci $y_2/z_2 = m_1/m_2$ și cunoașterea unuia din mesaje în determină imediat pe celălalt.

12.2 Calculul logaritmului discret

În cele de mai jos presupunem că p este număr prim, iar α este o rădăcină primitivă de ordinul p-1 a unității. Aceste două valori fiind fixate, problema logaritmului se poate reformula astfel:

Fiind dat un
$$\beta \in \mathbb{Z}_p^*$$
, să se determine exponentul $a \in \mathbb{Z}_{p-1}$ astfel ca $\alpha^a \equiv \beta \pmod{p}$.

Evident această problemă se poate rezolva printr-o căutare directă (se calculează puterile lui α) în timp O(p) și folosind $\mathcal{O}(1)$ memorie. Pe de-altă parte, dacă se calculează anterior într-o tabelă toate valorile $(a, \alpha^a \mod p)$, aflarea valorii căutate se poate face în $\mathcal{O}(1)$, dar cu un spațiu de complexitate $\mathcal{O}(p)$.

Toţi algoritmii construiţi pentru calculul logaritmului discret stabilesc un compromis spaţiu - timp.

12.2.1 Algoritmul Shanks

Fie $m = \left\lceil \sqrt{p-1} \right\rceil$. Algoritmul Shanks este:

- 1. Se construiește lista $L_1 = \{(j, \alpha^{mj} \pmod{p}) \mid 0 \leq j \leq m-1\};$
- 2. Se construiește lista $L_2 = \{(i, \beta \alpha^{-i} \pmod{p}) \mid 0 \le i \le m-1\};$
- 3. Se determină perechile $(j, y) \in L_1$, $(i, y) \in L_2$ (identice pe a doua poziție);
- 4. Se defineşte $log_{\alpha}\beta = m \cdot j + i \pmod{(p-1)}$

De remarcat că prin alegerea perechilor $(j, y) \in L_1, (i, y) \in L_2$ vom avea

$$\alpha^{mj} = y = \beta \alpha^{-i}, \text{ deci } \alpha^{mj+i} = \beta.$$

Invers, pentru orice β putem scrie $\log_{\alpha}\beta = m \cdot j + i$ cu $0 \le i, j \le m - 1$, deci căutarea de la pasul 3 se termină totdeauna cu succes.

Implementarea acestui algoritm se poate face în timp $\mathcal{O}(m)$ și spațiu O(m).

Exemplul 12.3 Fie p = 809 şi să determinăm log_3525 . Avem deci $\alpha = 3$, $\beta = 525$, $m = \lceil \sqrt{808} \rceil = 29$, $iar \alpha^{29} \mod 809 = 99$. Lista L_1 a perechilor $(j, 99^j \pmod {809})$, $0 \le j \le 28$ este:

Lista L_2 a cuplurilor $(i, 525 \cdot (3^i)^{-1} \pmod{809}), 0 \le i \le 28$ este:

Parcurgând (eventual simultan) cele două liste se găsește $(10,644) \in L_1$, $(19,644) \in L_2$. Se poate scrie deci

$$loq_3525 = 29 \cdot 10 + 19 = 309.$$

Se verifică uşor că $3^{309} \equiv 525 \pmod{809}$.

12.2.2 Algoritmul Pohlig - Hellman

Mai întâi, un rezultat matematic:

Lema 12.1 Fie $x \in \mathbb{Z}_p$ un element primitiv. Atunci

$$x^m \equiv x^n \pmod{p}$$
 \iff $m \equiv n \pmod{(p-1)}$

Demonstrație: Relația $x^m \equiv x^n \pmod p$ se poate rescrie $x^{m-n} \equiv 1 \pmod p$. Dar – conform Teoremei lui Fermat – $x^{p-1} \equiv 1 \pmod p$ și $x^i \not\equiv 1 \pmod p$ pentru 0 < i < p-1. Deci p-1|m-n, sau $m-n \equiv 0 \pmod {(p-1)}$, relație echivalentă cu $m \equiv n \pmod {p-1}$.

Revenind la sistemul de criptare El Gamal, să considerăm descompunerea în factori primi

$$p-1 = \prod_{i=1}^k q_i^{c_i}.$$

Dacă s-ar putea calcula $a \pmod{q_i^{c_i}}$ pentru toți i = 1, ..., k, atunci – folosind Teorema chineză a resturilor – s-ar putea determina $a \mod (p-1)$.

Să presupunem deci că q este un număr prim astfel ca $p-1 \equiv 0 \pmod{q^c}$ şi $p-1 \not\equiv 0 \pmod{q^{c+1}}$. Să arătăm cum se poate calcula atunci $x \equiv a \pmod{q^c}$ pentru orice x, $(0 \le x \le q^c - 1)$.

Să descompunem întâi x în baza q folosind egalitatea

$$x = \sum_{i=0}^{c-1} a_i q^i \quad 0 \le a_i \le q - 1, \ 0 \le i \le c - 1$$

Atunci, se poate scrie $a = x + q^c \cdot s$ pentru un anumit număr întreg pozitiv s. La primul pas trebuie calculat a_0 . Se pornește de la observaț ia că

$$\beta^{(p-1)/q} \equiv \alpha^{(p-1)a_0/q} \pmod{p}.$$

Pentru a arăta aceasta, deoarece $\beta^{(p-1)/q} \equiv \alpha^{(p-1)(x+q^c s)/q} \pmod{p}$, este suficient să se verifice că $\alpha^{(p-1)(x+q^c s)/q} \equiv \alpha^{(p-1)a_0/q} \pmod{p}$.

Această relație este adevărată dacăși numai dacă

$$\frac{(p-1)(x+q^{c}s)}{q} \equiv \frac{(p-1)a_{0}}{q} \; (mod \; p-1),$$

ceea ce se poate verifica prin calcul direct:

$$\frac{(p-1)(x+q^cs)}{q} - \frac{(p-1)a_0}{q} = \frac{p-1}{q} \left(x + q^cs - a_0 \right) = \frac{p-1}{q} \left(\sum_{i=0}^{c-1} a_i q^i + q^cs - a_0 \right)$$

$$= \frac{p-1}{q} \left(\sum_{i=1}^{c-1} a_i q^i + q^cs \right) = (p-1) \left(\sum_{i=1}^{c-1} a_i q^{i-1} + q^{c-1}s \right) \equiv 0 \pmod{p-1}.$$

Putem acum să începem calculul lui $\beta^{(p-1)/q} \pmod{p}$. Dacă $\beta^{(p-1)/q} \equiv 1 \pmod{p}$, atunci $a_0 = 0$. Altfel se calculează în $Z_p \quad \gamma = \alpha^{(p-1)/q}, \ \gamma^2, \ldots$ până se obţ ine un număr întreg pozitiv i pentru care $\gamma^i \equiv \beta^{(p-1)/q}$. Atunci $a_0 = i$.

Dacă c=1, algoritmul se termină; altfel, (c>1), se caută valoarea lui a_1 . Pentru aceasta se definește

$$\beta_1 = \beta \alpha^{-a_0}$$

şi se notează $x_1 = log_{\alpha}\beta_1 \pmod{q^c}$.

Deoarece (evident) $x_1 = \sum_{i=1}^{c-1} a_i q^i$, se va obţine $\beta_1^{(p-1)/q^2} \equiv \alpha^{(p-1)a_1/q} \pmod{p}$.

Se calculează atunci $\beta_1^{(p-1)/q^2} \pmod{p}$ și se caută i astfel ca

$$\gamma^i \equiv \beta_1^{(p-1)/q^2} \pmod{p}.$$

Se ia $a_1 = i$.

Dacă c=2, s-a terminat; în caz contrar, se mai efectuează c-2 paşi pentru determinarea coeficienților a_2, \ldots, a_{c-1} .

Formal, algoritmul Pohlig - Hellman este următorul:

1. Se calculează
$$\gamma^{i} = \alpha^{(p-1)i/q} \pmod{p}, \quad 0 \leq i \leq q-1;$$
2. $\beta_{0} \leftarrow \beta;$
3. **for** $j = 0$ **to** $c-1$ **do**

3.1 $\delta \leftarrow \beta_{j}^{(p-1)/q^{j+1}} \pmod{p};$
3.2. Se caută i astfel ca $\delta = \gamma^{i};$
3.3. $a_{j} \leftarrow i;$
3.4. $\beta_{j+1} \leftarrow \beta_{j} \alpha^{-a_{j}q^{j}} \mod{p}.$

Reamintim, α este o rădăcină primitivă de ordinul p a unității, iar q este număr prim; în plus, $p-1 \equiv 0 \pmod{q^c}$, $p-1 \not\equiv 0 \pmod{q^{c+1}}$.

Algoritmul calculează
$$a_0, a_1, \ldots, a_{c-1}$$
 unde $\log_{\alpha}\beta \pmod{q^c} = \sum_{i=0}^{c-1} a_i q^i$.

Exemplul 12.4 Fie p = 29. Avem $n = p - 1 = 28 = 2^27^1$.

Să alegem $\alpha = 2$, $\beta = 18$ şi ne punem problema determinării lui $a = \log_2 18$. Pentru aceasta se va calcula a (mod 4) şi a (mod 7).

 $S\Breve{a}$ începem cu $q=2,\ c=2.$ Avem (toate calculele se efectuează modulo 29):

$$\gamma^0 = 1, \quad \gamma^1 = \alpha^{28/2} = 2^{14} = 28, \text{ deci } \delta = \beta^{28/2} = 18^{14} = 28, \text{ de unde rezultă } a_0 = 1.$$
 $\beta_1 = \beta_0 \cdot \alpha^{-1} = 9, \quad \beta_1^{28/4} = 9^7 = 28. \quad \text{Cum } \gamma_1 = 28, \text{ rezultă } a_1 = 1. \quad \text{Avem deci } a \equiv 3 \pmod{4}.$

 $S\ddot{a}$ consider $\breve{a}m$ acum $q=7,\ c=1.$ Vom avea (modulo 29):

$$\beta^{28/7} = 18^4 = 25$$
, $\gamma^1 = \alpha^{28/7} = 2^4 = 16$, apoi $\gamma^2 = 24$, $\gamma^3 = 7$, $\gamma^4 = 25$, deci $a_0 = 4$ si $a \equiv 4 \pmod{7}$.

Se obține sistemul $a \equiv 3 \pmod{4}$, $a \equiv 4 \pmod{7}$, de unde – folosind teorema chineză a resturilor – $a \equiv 11 \pmod{28}$. Deci, $\log_2 18 = 11$ în Z_{29} .

12.2.3 Algoritmul Pollard Rho

Fie p un număr prim şi $\alpha \in Z_p$ un element de ordin n. Vom considera $G_\alpha \subseteq Z_p$ subgrupul ciclic generat de α . Ne punem problema calculării lui $log_\alpha\beta$, unde $\beta \in G_\alpha$ este arbitrar.

Fie $Z_p = S_1 \cup S_2 \cup S_3$ o partiție a lui Z_p în mulțimi de cardinale aproximativ egale; considerăm funcția

$$f:G_{\alpha}\times Z_{n}\times Z_{n}\longrightarrow G_{\alpha}\times Z_{n}\times Z_{n}$$

definită prin

$$f(x,a,b) = \begin{cases} (\beta x, a, b+1) & \text{dacă} & x \in S_1 \\ (x^2, 2a, 2b) & \text{dacă} & x \in S_2 \\ (\alpha x, a+1, b) & \text{dacă} & x \in S_3 \end{cases}$$

Pe baza acestei funcții vom genera recursiv triplete (x, a, b) cu proprietatea $x = \alpha^a \beta^b$. Fie (1, 0, 0) tripletul inițial (el are această proprietate). În continuare

$$(x_i, a_i, b_i) = \begin{cases} (1, 0, 0) & \text{dacă} \quad i = 0\\ f(x_{i-1}, a_{i-1}, b_{i-1}) & \text{dacă} \quad i \ge 1 \end{cases}$$

În continuare se compară tripletele (x_{2i}, a_{2i}, b_{2i}) şi (x_i, a_i, b_i) până se găseşte o valoare a lui i pentru care $x_{2i} = x_i$. În acel moment,

$$\alpha^{a_{2i}}\beta^{b_{2i}} = \alpha^{a_i}\beta^{b_i}$$

Notând $c = log_{\alpha}\beta$, relația poate fi rescrisă

$$\alpha^{a_{2i}+cb_{2i}} = \alpha^{a_i+cb_i}$$

Cum α are ordinul n, rezultă

$$a_{2i} + cb_{2i} \equiv a_i + cb_i \pmod{n}$$

sau

$$c(b_{2i} - b_i) \equiv a_i - a_{2i} \pmod{n}$$

Dacă $cmmdc(b_{2i} - b_i, n) = 1$, atunci se poate obține c:

$$c = \frac{a_i - a_{2i}}{b_{2i} - b_i} \pmod{n}$$

Exemplul 12.5 Să considerăm p = 809 şi $\alpha = 89$; ordinul lui α în Z_{809}^* este n = 101. Se verifică uşor că $\beta = 618 \in G_{89}$. Vom calcula $log_{89}618$.

Să presupunem că alegem partiția

$$S_1 = \{x \mid x \in Z_{809}, \ x \equiv 1 \pmod{3}\}\$$

 $S_2 = \{x \mid x \in Z_{809}, \ x \equiv 0 \pmod{3}\}\$
 $S_3 = \{x \mid x \in Z_{809}, \ x \equiv 2 \pmod{3}\}\$

Pentru $i = 1, 2, 3, \dots$ obținem următoarele triplete:

i	(x_i, a_i, b_i)	(x_{2i}, a_{2i}, b_{2i})
1	(618, 0, 1)	(76, 0, 2)
2	(76, 0, 2)	(113, 0, 4)
3	(46, 0, 3)	(488, 1, 5)
4	(113, 0, 4)	(605, 4, 10)
5	(349, 1, 4)	(422, 5, 11)
6	(488, 1, 5)	(683, 7, 11)
7	(555, 2, 5)	(451, 8, 12)
8	(605, 4, 10)	(344, 9, 13)
9	(451, 5, 10)	(112, 11, 13)
10	(422, 5, 11)	(422, 11, 15)

Deci $x_{10} = x_{20} = 422$. Se poate calcula atunci $log_{89}618 = (11 - 5) \cdot (11 - 15)^{-1} \pmod{101} = 6 \cdot 25 \pmod{101} = 49$ (în grupul multiplicativ Z_{809}^*).

O formalizare a algoritmului Pollard Rho pentru calculul logaritmului discret³ este:

```
Algoritm Pollard Rho(Z_p, n, \alpha, \beta)
     Se definește partiția Z_p = S_1 \cup S_2 \cup S_3;
2.
     (x, a, b) \longleftarrow f(1, 0, 0), \qquad (x_1, a_1, b_1) \longleftarrow f(x, a, b)
3.
      while x \neq x_1 do
              3.1. (x, a, b) \leftarrow f(x, a, b);
              3.2. (x_1, a_1, b_1) \leftarrow f(x_1, a_1, b_1), (x_1, a_1, b_1) \leftarrow f(x_1, a_1, b_1);
      if cmmdc(b_1 - b, n) > 1 then return(Eşec)
4.
                                       else return((a-a_1)\cdot (b_1-b)^{-1} \pmod{n})
procedure f(x, a, b)
      if x \in S_1 then f \leftarrow (\beta \cdot x, a, (b+1) \pmod{n});
      if x \in S_2 then f \longleftarrow (x \cdot x, \ 2 \cdot a \ (mod \ n), \ 2 \cdot b \ (mod \ n));
2.
3.
      if x \in S_3 then f \leftarrow (\alpha \cdot x, (a+1) \pmod{n}, b);
4.
      return(f).
end procedure
```

În cazul $cmmdc(b_1 - b, n) = d > 1$, congruența $c \cdot (b_1 - b) \equiv a - a_1 \pmod{n}$ are d soluții posibile. Dacă d este destul de mic, aceste soluții se pot afla și o simplă operație de verificare găsește soluția corectă.

12.2.4 Metoda de calcul a indicelui

Această metodă seamănă cu unul din cei mai buni algoritmi de descompunere în factori. Vom da doar o descriere informală a acestui algoritm.

Se folosește o bază de divizori \mathcal{B} compusă din B numere prime "mici" Prima etapă constă în aflarea logaritmilor elementelor din baza \mathcal{B} .

În a doua etapă, folosind acești logaritmi, se va determina logaritmul discret al lui β .

I: Se construiesc C = B + 10 congruențe modulo p de forma

$$\alpha^{x_j} \equiv p_1^{a_{ij}} p_2^{a_{2j}} \dots p_B^{a_{Bj}} \pmod{p}, \quad 1 \le j \le C$$

Cu aceste C ecuații de necunoscute $log_{\alpha}p_i$ $(1 \leq i \leq B)$ se încearcă aflarea unei soluții unice modulo (p-1). În caz de reușită, primul pas este încheiat.

Problema ar fi cum să se găsească aceste C congruențe. O metodă elementară constă din trei pași: alegerea aleatoare a unui x, calculul lui $\alpha^x \pmod{p}$ și verificarea dacă acest număr are toți divizorii în \mathcal{B} .

II: Acum se poate determina $log_{\alpha}\beta$ cu un algoritm de tip Las Vegas. Se alege aleator un număr întreg s $(1 \le s \le p-2)$ și se determină $\gamma = \beta \alpha^s \pmod{p}$.

³Un algoritm similar Pollard Rho poate fi construit pentru factorizarea unui număr. Detalii se găsesc de exemplu în [4].

Se încearcă apoi descompunerea lui γ în baza \mathcal{B} . Dacă acest lucru este posibil, se obține o relație de forma

$$\beta \alpha^s \equiv p_1^{c_1} p_2^{c_2} \dots p_B^{c_B} \pmod{p}$$

care poate fi transformată în

$$log_{\alpha}\beta + s \equiv c_1 log_{\alpha}p_1 + \ldots + c_B log_{\alpha}p_B \pmod{p-1}$$
.

De aici - prin evaluarea membrului drept, se poate determina $log_{\alpha}\beta$.

Exemplul 12.6 Fie p = 10007 şi $\alpha = 5$ (element primitiv). Să considerăm $\mathcal{B} = \{2, 3, 5, 7\}$ ca bază de divizori. Cum – evident – $log_5 5 = 1$, trebuiesc determinați doar trei logaritmi de bază.

Trei numere aleatoare "norocoase" pot fi 4063, 5136, 9865.

Pentru x = 4063 calculăm 5^{4063} (mod 10007) = $42 = 2 \cdot 3 \cdot 7$, care conduce la congruența $log_5 2 + log_5 3 + log_5 7 \equiv 4063$ (mod 10006).

 $\hat{I}n \ mod \ similar \ se \ obțin \ 5^{5136} \ (mod \ 10007) = 54 = 2 \cdot 3^3, \quad 5^{9865} \ (mod \ 10007) = 189 = 3^3 \cdot 7.$

Ele dau relațiile

$$log_52 + 3log_53 \equiv 5136 \pmod{10006},$$

 $3log_53 + log_57 \equiv 9865 \pmod{10006}.$

Rezolvarea acestui sistem de trei ecuații în Z_{10006} conduce la soluția unică

$$loq_52 = 6578$$
, $loq_53 = 6190$, $loq_57 = 1301$.

Să presupunem acum că se caută log_59451 . Dacă se generează aleator numărul s = 7736, avem $9451 \cdot 5^{7736} \pmod{10007} = 8400 = 2^4 3^1 5^2 7^1$.

Cum acesta se poate factoriza în \mathcal{B} , avem

 $log_59451 = 4log_52 + log_53 + 2log_55 + log_57 - s = 4.6578 + 6190 + 2.1 + 1301 - 7736 = 6057$, calculele fiind realizate modulo 10006.

Se verifică ușor că $5^{6057} \equiv 9451 \pmod{10007}$.

12.3 Securitatea logaritmilor discreţi faţă de informaţii parţiale

În această secțiune vom considera un tip de atac care încearcă să determine valoarea unuia sau mai multor biți din reprezentarea binară a logaritmilor discreți.

Mai exact se încearcă calculul lui $L_i(\beta)$: al *i*-lea bit (numărând de la cel mai puţin reprezentativ) din scrierea în binar a lui $log_{\alpha}\beta$ peste Z_p^* ; deci $1 \leq i \leq \lceil log_2(p-1) \rceil$.

Afirmația 12.1 $L_1(\beta)$ poate fi calculat printr-un algoritm de complexitate polinomială.

Demonstrație:Să considerăm funcția $f:Z_p^*\longleftarrow Z_p^*$ definită

$$f(x) = x^2 \; (mod \; p)$$

Notăm RP(p) mulțimea resturilor pătratice modulo p:

$$RP(p) = \{x \mid \exists y \in Z_p^*, \ x \equiv y^2 \ (mod \ p)\}$$

Pe baza observațiilor

- 1. f(x) = f(p x),
- 2. $x^2 \equiv y^2 \pmod{p} \iff x = \pm y \pmod{p}$

rezultă card(RP(p)) = (p-1)/2 (deci exact jumătate din elementele lui \mathbb{Z}_p^* sunt resturi pătratice).

Să presupunem acum că $\alpha \in \mathbb{Z}_p$ este primitiv. Deci $\alpha^i \in RP(p)$ pentru i par. Cum (p-1)/2 astfel de puteri sunt distincte, rezultă

$$RP(p) = \left\{ \alpha^{2i} \mid 0 \le i \le \frac{p-3}{2} \right\}$$

Deci β este rest pătratic dacă şi numai dacă $\log_{\alpha}\beta$ este par, adică $L_1(\beta) = 0$.

Conform teoremei 10.1 (Prelegerea 10), β este rest pătratic dacă și numai dacă

$$\beta^{\frac{p-1}{2}} \equiv 1 \; (mod \; p)$$

fapt care poate fi testat cu un algoritm de compmexitate polinomială. Deci putem da o formulă pentru calculul lui $L_1(\beta)$:

$$L_1(\beta) = \begin{cases} 0 & \text{dacă} \quad \beta^{(p-1)/2} \equiv 1 \pmod{p} \\ 1 & \text{altfel} \end{cases}$$

Afirmaţia 12.2 $Dac\,\ddot{a}\,p-1=2^{s}(2t+1),\ atunci$

- 1. Calculul lui $L_i(\beta)$ pentru $1 \le i \le s$ este uşor.
- 2. Orice algoritm (sau oracol) care poate calcula $L_{s+1}(\beta)$ permite rezolvarea problemei logaritmului discret în Z_p .

Prima parte a afirmației este simplă.

Vom demonstra a doua parte pentru cazul s=1. Deci vom arăta că dacă p este prim şi $p\equiv 3 \pmod 4$, atunci orice oracol care dă $L_2(\beta)$ poate fi folosit la rezolvarea problemei logaritmului discret în Z_p .

Se ştie (Prelegerea 11, algoritmul lui Rabin) că dacă β este rest pătratic în Z_p şi $p \equiv 3 \pmod{4}$, atunci rădăcinile pătrate ale lui $\beta \pmod{p}$ sunt $\pm \beta^{(p+1)/4} \pmod{p}$.

Lema 12.2 Dacă
$$p \equiv 3 \pmod{4}$$
 şi $\beta \neq 0$, atunci $L_1(p-\beta) = 1 - L_1(\beta)$.

Demonstrația lemei: Fie $\alpha^a \equiv \beta \pmod{p}$. Atunci $\alpha^{a+(p-1)/2} \equiv -\beta \pmod{p}$. Deoarece $p \equiv 3 \pmod{4}$, numărul (p-1)/2 este impar. Deci $L_1(\beta) \neq L_1(p-\beta)$.

Fie acum $\beta = \alpha^a$ pentru un exponent par a, necunoscut. Atunci

$$\pm \beta^{(p+1)/4} \equiv \alpha^{a/2} \; (mod \; p)$$

Cum $L_2(\beta) = L_1(\alpha^{a/2})$, valoarea $L_2(\beta)$ poate determina care din cele două variante (cu + sau -) este corectă. Acest lucru este folosit de următorul algoritm care dă valoarea logaritmului discret $log_{\alpha}\beta$ (s-a presupus că valoarea $L_2(\beta)$ se poate afla - folosind de exemplu un oracol):

```
Algoritm aflare bit(p, \alpha, \beta)

1. x_0 \leftarrow L_1(\beta);

2. \beta \leftarrow \beta/\alpha^{x_0} \pmod{p}

3. i \leftarrow 1;

4. while \beta \neq 1 do

4.1. x_i \leftarrow L_2(\beta);
4.2. \gamma \leftarrow \beta^{(p+1)/4} \pmod{p};
4.3. if L_1(\gamma) = x_i then \beta \leftarrow \gamma
else \beta \leftarrow p - \gamma;

4.4. \beta \leftarrow \beta/\alpha^{x_i} \pmod{p};
4.5. i \leftarrow i+1;

5. return(x_{i-1}, x_{i-2}, \dots, x_0).
```

În final, se obține

$$log_{\alpha}\beta = \sum_{j>0} x_j \cdot 2^j.$$

Exemplul 12.7 Fie p = 19, $\alpha = 2$, $\beta = 6$. Decoarece numerele sunt foarte mici, se pot determina uşor valorile pentru L_1 şi L_2 . Ele sunt adunate în tabelul

x	$L_1(x)$	$L_2(x)$	x	$L_1(x)$	$L_2(x)$	x	$L_1(x)$	$L_2(x)$
1	0	0	7	0	1	13	1	0
2	1	0	8	1	1	14	1	1
3	1	0	9	0	0	15	1	1
4	0	1	10	1	0	16	0	0
5	0	0	11	0	0	17	0	1
6	0	1	12	1	1	18	1	0

Pe baza acestor informații, aplicăm algoritmul. Se obține:

$$x_0 \leftarrow 0, \quad \beta \leftarrow 6, \quad i \leftarrow 1;$$

 $x_1 \leftarrow L_2(6) = 1, \quad \gamma \leftarrow 5, \quad L_1(5) = 0 \neq x_1, \quad \beta \leftarrow 14, \quad \beta \leftarrow 7, \quad i \leftarrow 2;$
 $x_2 \leftarrow L_2(7) = 1, \quad \gamma \leftarrow 11, \quad L_1(11) = 0 \neq x_2, \quad \beta \leftarrow 8, \quad \beta \leftarrow 4, \quad i \leftarrow 3;$
 $x_3 \leftarrow L_2(4) = 1, \quad \gamma \leftarrow 17, \quad L_1(17) = 0 \neq x_3, \quad \beta \leftarrow 2, \quad \beta \leftarrow 1, \quad i \leftarrow 4.$
return $(1, 1, 1, 0).$
 $Deci log_2 6 = 1110_2 = 14.$

12.4 Generalizarea sistemului de criptare El Gamal

Sistemul de criptare El Gamal se poate construi pe orice grup (în loc de Z_n^*) în care problema logaritmului (definită corespunzător) este dificilă.

Fie (G, \circ) un grup finit. Problema logaritmului discret se definește în G astfel:

Fie
$$\alpha \in G$$
 şi $H = \{\alpha^i \mid i \geq 0\}$ subgrupul generat de α . Dacă $\beta \in H$, să se determine un a (unic) $(0 \leq a \leq card(H) - 1)$ cu $\alpha^a = \beta$, unde $\alpha^a = \underbrace{\alpha \circ \alpha \circ \ldots \circ \alpha}_{a \text{ ori}}$

Definirea sistemului de criptare El Gamal în subgrupul H în loc de Z_n^* este uşor de realizat; anume:

Fie (G, \circ) un grup și $\alpha \in G$ pentru care problema logaritmului discret în $H = \{\alpha^i \mid i \geq 0\}$ este dificilă.

Fie
$$\mathcal{P}=G$$
, $\mathcal{C}=G\times G$ și $\mathcal{K}=\{(G,\alpha,a,\beta)|\beta=\alpha^a\}$.

Valorile α , β sunt publice iar a este secret.

Pentru $K = (G, \alpha, a, \beta)$ și un $k \in Z_{card(H)}$ aleator (secret), se definește

$$e_K(x,k) = (y_1, y_2)$$
 unde $y_1 = \alpha^k, \ y_2 = x \circ \beta^k$.

Pentru $y = (y_1, y_2)$, decriptarea este

$$d_K(y) = y_2 \circ (y_1^a)^{-1}.$$

De remarcat că pentru criptare/decriptare nu este necesară cunoașterea ordinului card(H) de mărime al subgrupului; Alice poate alege aleator un k, $(0 \le k \le card(G) - 1)$ cu care cele două procese funcționează fără probleme.

Se poate observa de asemenea că G nu este neapărat abelian (H în schimb este, fiind ciclic).

Să studiem acum problema logaritmului discret "generalizat". Deoarece H este subgrup ciclic, orice versiune a problemei este echivalentă cu problema logaritmului discret într-un grup ciclic. În schimb, se pare că dificultatea problemei depinde mult de reprezentarea grupului utilizat.

Astfel în grupul aditiv Z_n , problema este simplă; aici exponențierea α^a este de fapt înmulțirea cu a modulo n. Deci, problema logaritmului discret constă în aflarea unui număr întreg a astfel ca

$$a\alpha \equiv \beta \pmod{n}$$
.

Dacă se alege α astfel ca $(\alpha, n) = 1$ (α este generator al grupului), α are un invers multiplicativ modulo n, care se determină uşor cu algoritmul lui Euclid. Atunci,

$$a = log_{\alpha}\beta = \beta\alpha^{-1} \pmod{n}$$

Să vedem cum se reprezintă problema logaritmului discret în grupul multiplicativ Z_p^* cu p prim. Acest grup este ciclic de ordin p-1, deci izomorf cu grupul aditiv Z_{p-1} . Deoarece problema logaritmului discret în grupul aditiv se poate rezolva ușor, apare întrebarea dacă se poate rezolva această problemă în Z_p^* reducând-o la Z_{p-1} .

Ştim că existăun izomorfism $\phi: Z_p^* \longrightarrow Z_{p-1}$, deci pentru care

$$\phi(xy \bmod p) = (\phi(x) + \phi(y)) \pmod{p-1}$$

În particular, $\phi(\alpha^a \mod p) = a\phi(\alpha) \pmod{p-1}$, adică

$$\beta \equiv \alpha^a \pmod{p} \iff a\phi(a) \equiv \phi(\beta) \pmod{p-1}.$$

Acum, căutarea lui a se realizează cu $log_{\alpha}\beta = \phi(\beta)(\phi(\alpha))^{-1} \pmod{(p-1)}$.

Deci, dacă se găsește o metodă eficace pentru calculul izomorfismului ϕ , se obține un algoritm eficace pentru calculul logaritmului discret în Z_p^* . Problema este că nu se cunoaște nici o metodă generală de construcție a lui ϕ pentru un număr prim p oarecare. Deși se știe că cele două grupuri sunt izomorfe, nu există încă un algoritm eficient pentru construcția explicită a unui izomorfism.

Această metodă se poate aplica problemei logaritmului discret într-un grup finit arbitrar. Implementările au fost realizate în general pentru Z_p , $GF(2^p)$ (unde problema logaritmului discret este dificilă) sau curbe eliptice.

12.5 Exerciţii

- **12.1** Implementați algoritmul Shanks pentru aflarea logaritmului discret. Aplicații pentru aflarea log $_{106}$ 12375 în Z^*_{24691} și log_6 248388 în Z^*_{458009} .
- 12.2 Numărul p=458009 este prim și $\alpha=2$ are ordinul 57251 în Z_p^* . Folosind algoritmul Pollard Rho, calculați $\log_2 56851$ în Z_p^* . Luați valoarea inițială $x_0=1$ și partiția din Exemplul 12.5.
- 12.3 Fie p un număr prim impar şi k un număr pozitiv. Grupul multiplicativ $Z_{p^k}^*$ are ordinul $p^{k-1} \cdot (p-1)$ şi este ciclic. Un generator al acestui grup este numit "element primitiv modulo p^k ".
- (a) Dacă α este un element primitiv modulo p, arătați că cel puțin unul din numerele $\alpha, \alpha + p$ este element primitiv modulo p^2 .
- (b) Descrieţi cum se poate poate verifica eficient că 3 este o rădăcină primitivă modulo 29 şi modulo 29². Arătăţoi întâi că dacă α este o rădăcină primitivă modulor p şi modulo p², atunci ea este rădăcină primitivă modulo p^j pentru orice j întreg.
- (c) Găsiți un întreg α care este rădăcină primitivă modulo 29 dar nu este rădăcină primitivă modulo 29^2 .
 - (d) Folosiți algoritmul Pohlig Hellman pentru a calcula log_33344 în Z^*_{24389} .

- 12.4 Implementați algoritmul Pohlig Hellman. Aplicație pentru log_58563 în Z_{28703} și $log_{10}12611$ în Z_{31153} .
- **12.5** Fie p = 227. Elementul $\alpha = 2$ este primitiv în \mathbb{Z}_p^* .
- (a) Calculați α^{32} , α^{40} , α^{59} și α^{156} modulo p și apoi factorizați-le pentru baza de factori $\{2,3,5,7,11\}$.
- (b) Folosind faptul că $log_2 2 = 1$, calculați $log_2 3, log_2 5, log_2 7, log_2 11$ folosind factorizarea anterioară.
- (c) Să presupunem că vrem să calculăm log_2173 . Înmulțim 173 cu valoarea "aleatoare" $2^{177} \pmod{p}$. Factorizați rezultatul peste baza de factori dată mai sus și determinatî log_2173 .
- **12.6** Să implementăm sistemul El Gamal în $GF(3^3)$. Polinomul $x^3 + 2x^2 + 1$ este ireductibil peste $Z_3[x]$ şi deci $GF(3^3) = Z_{[x]}/(x^3 + 2x^2 + 1)$. Asociem cele 26 luitere ale alfabetului cu cele 26 elemente nenule ale corpului (ordonate lexicografic):

Să presupunem că Bob folosește $\alpha=x$ și p=11 într-un sistem de criptare El Gamal. Apoi alege $\beta=x+2$. Decriptați mesajul

$$(K, H) (P, X) (N, K) (H, R) (T, F) (V, Y) (E, H) ((F, A) (T, W) (J, D) (U, J)$$

Bibliografie

- [1] T. El Gamal, A public key cryptosystem and a signature scheme based on discrete algorithms, IEEE Transactions on Information Theory, 31 (1985), 469-472
- [2] J. Gibson, Discrete logarithm hash function that is collision free and one way. IEEE Proceedings-E, 138 (1991), 407-410.
- [3] A. Menezes, P. Oorschot, S. Vanstome, Handbook of applied cryptography
- [4] D. Stinton; Cryptography, theory et pratice, Chapman & Hall/CRC, 2002
- [5] A. Salomaa, Criptografie cu chei publice, ed. Militara, 1994