

$$P_{crit} = \frac{\sqrt{\frac{E}{g_{\mu}}}}{L_{e}^{2}}$$

$$r_{g}^{2} = I/A$$

$$\lambda = L_{e}/r_{g}$$

$$\delta = e \left[\sec \left(\frac{\pi}{2} \sqrt{\frac{P}{P_{\rm cr}}} \right) - 1 \right]$$

$$\begin{array}{c|c}
P & e \\
\hline
 & L \\
 & L \\
\hline
 & L \\
 & L \\
\hline
 & L \\
 & L \\$$

$$L_e = 2 L$$

$$L_e$$
=0,5 L

$$L_e=0,7L$$

$$\frac{c}{(r)^2} = \frac{1}{n} \left[1 - \frac{(KL/r)^2}{2(KL/r)^2} \right]$$

$$\underline{\underline{S}} = s_{ij} \underline{e}_{i} \underline{e}_{j} = (\sigma_{ij} - \delta_{ij} \sigma_{h}) \underline{e}_{i} \underline{e}_{j} , \quad s_{ii} = 0 \quad \sigma'_{ij} = Q_{ip} Q_{jq} \sigma_{pq} \qquad Q_{ij} = \cos(x'_{i}, x_{j})$$

$$\sigma_h = p = \frac{E}{3(1-2\nu)} \varepsilon_{pp} = K \varepsilon_{pp}$$
 $\sigma_{ij} = C_{ijkl} (\epsilon_{kl} - \epsilon_{kl}^{\theta})$ $\epsilon_{ij}^{\theta} = \alpha \Delta \theta \delta_{ij}$

$$\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} + \frac{\partial u_m}{\partial x_i} \frac{\partial u_m}{\partial x_j} \right) e_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i}) \hat{e}_{ij} = e_{ij} - \frac{1}{3} e_{kk} \delta_{ij} \quad \tilde{e}_{ij} = \frac{1}{3} e_{kk} \delta_{ij} = \frac{1}{3} \theta_{kk} \delta_{ij}$$

$$e_{ij} = \frac{1 + v}{F} \sigma_{ij} - \frac{v}{F} \sigma_{kk} \delta_{ij}$$

$$\sigma_{ij} = \lambda \delta_{ij} \varepsilon_{kk} + \mu (\varepsilon_{ij} + \varepsilon_{ji})$$

	Е	ν	k	μ	λ
Ε, ν	E	ν	$\frac{E}{3(1-2v)}$	$\frac{E}{2(1+v)}$	$\frac{Ev}{(1+v)(1-2v)}$
Ξ,k	E	$\frac{3k-E}{6k}$	k	$\frac{3kE}{9k-E}$	$\frac{3k(3k-E)}{9k-E}$
Ξ, μ	E	$\frac{E-2\mu}{2\mu}$	$\frac{\mu E}{3(3\mu - E)}$	μ	$\frac{\mu(E-2\mu)}{3\mu-E}$
Ξ, λ	E	$\frac{2\lambda}{E+\lambda+R}$	$\frac{E+3\lambda+R}{6}$	$\frac{E-3\lambda+R}{4}$	λ
v, k	3k(1-2v)	ν	k	$\frac{3k(1-2v)}{2(1+v)}$	$\frac{3kv}{1+v}$
, μ	$2\mu(1+v)$	ν	$\frac{2\mu(1+\nu)}{3(1-2\nu)}$	μ	$\frac{2\mu v}{1-2v}$
, λ	$\frac{\lambda(1+\nu)(1-2\nu)}{\nu}$	ν	$\frac{\lambda(1+\nu)}{3\nu}$	$\frac{\lambda(1-2\nu)}{2\nu}$	λ
k, μ	$rac{9k\mu}{6k+\mu}$	$\frac{3k - 2\mu}{6k + 2\mu}$	k	μ	$k-\frac{2}{3}\mu$
έ, λ	$\frac{9k(k-\lambda)}{3k-\lambda}$	$\frac{\lambda}{3k-\lambda}$	k	$\frac{3}{2}(k-\lambda)$	λ
ι, λ	$\frac{\mu(3\lambda+2\mu)}{\lambda+\mu}$	$\frac{\lambda}{2(\lambda+\mu)}$	$\frac{3\lambda+2\mu}{3}$	μ	λ

Solution	To Convert to:	E is Replaced by:	ν is Replaced by:
Plane stress	Plane strain	$\frac{E}{1-\nu^2}$	$\frac{\nu}{1-\nu}$
Plane strain	Plane stress	$\frac{1+2\nu}{(1+\nu)^2}E$	$\frac{\nu}{1+\nu}$

$$\text{Plane Strain} \quad \begin{cases} \begin{bmatrix} \sigma_{rr} \\ \sigma_{\theta\theta} \\ \sigma_{zz} \end{bmatrix} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu \\ \nu & 1-\nu \\ \nu & \nu \end{bmatrix} \begin{bmatrix} \varepsilon_{rr} \\ \varepsilon_{\theta\theta} \end{bmatrix} \\ & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

$$\varepsilon_{rr} = u_{r,r}, \ \varepsilon_{\theta\theta} = \frac{1}{r} (u_{\theta,\theta} + u_r), \ \varepsilon_{zz} = u_{z,z}$$

$$2\varepsilon_{\theta r} = \frac{1}{r} (u_{r,\theta} - u_{\theta}) + u_{\theta,r}, \quad 2\varepsilon_{rz} = u_{z,r} + u_{r,z}, \quad 2\varepsilon_{z\theta} = u_{\theta,z} + \frac{1}{r} u_{z,\theta}$$

Plane Stress
$$\begin{cases} \begin{bmatrix} \sigma_{rr} \\ \sigma_{\theta\theta} \end{bmatrix} = \frac{E}{\left(1-v^2\right)} \begin{bmatrix} 1 & v \\ v & 1 \end{bmatrix} \begin{bmatrix} \varepsilon_{rr} \\ \varepsilon_{\theta\theta} \end{bmatrix} \quad ; \qquad \varepsilon_{zz} = -\frac{v}{1-v} \left(\varepsilon_{rr} + \varepsilon_{\theta\theta}\right)$$

Casos axisimétricos seleccionados (Plane Stress):

$$\sigma_{r} = \frac{a^{2}p_{i} - b^{2}p_{o}}{b^{2} - a^{2}} - \frac{(p_{i} - p_{o})a^{2}b^{2}}{(b^{2} - a^{2})r^{2}}$$

$$\sigma_{\theta} = \frac{a^{2}p_{i} - b^{2}p_{o}}{b^{2} - a^{2}} + \frac{(p_{i} - p_{o})a^{2}b^{2}}{(b^{2} - a^{2})r^{2}}$$

$$u = \frac{1 - \nu}{E} \frac{(a^{2}p_{i} - b^{2}p_{o})r}{b^{2} - a^{2}} + \frac{1 + \nu}{E} \frac{(p_{i} - p_{o})a^{2}b^{2}}{(b^{2} - a^{2})r}$$

$$\sigma_r = \frac{3+\nu}{8} \left(a^2 + b^2 - r^2 - \frac{a^2 b^2}{r^2} \right) \rho \omega^2$$

$$\sigma_\theta = \frac{3+\nu}{8} \left(a^2 + b^2 - \frac{1+3\nu}{3+\nu} r^2 + \frac{a^2 b^2}{r^2} \right) \rho \omega^2$$

$$u = \frac{(3+\nu)(1-\nu)}{8E} \left(a^2 + b^2 - \frac{1+\nu}{3+\nu}r^2 + \frac{1+\nu}{1-\nu}\frac{a^2b^2}{r^2}\right)\rho\omega^2r$$

T= 50 (m t. wiaxist) - sol bu c. b MOHR

$$\sigma_{VM} = \frac{1}{\sqrt{2}} \sqrt{(\sigma_I - \sigma_{II})^2 + (\sigma_{II} - \sigma_{III})^2 + (\sigma_{III} - \sigma_I)^2} = \sqrt{I_1^2 - 3I_2}$$

$$\sigma_{VM} = \sqrt{\sigma_{11}^2 + \sigma_{22}^2 + \sigma_{33}^2 - \sigma_{22}\sigma_{33} - \sigma_{33}\sigma_{11} - \sigma_{11}\sigma_{22} + 3(\sigma_{23}^2 + \sigma_{13}^2 + \sigma_{12}^2)} \qquad \frac{\sigma_o}{2} = \text{MAX}\left(\frac{|\sigma_1 - \sigma_2|}{2}, \frac{|\sigma_2 - \sigma_3|}{2}, \frac{|\sigma_3 - \sigma_1|}{2}\right)$$

$$\sigma_{VM} = \frac{1}{\sqrt{2}} \sqrt{(\sigma_{11} - \sigma_{22})^2 + (\sigma_{22} - \sigma_{33})^2 + (\sigma_{33} - \sigma_{11})^2 + 6(\sigma_{23}^2 + \sigma_{13}^2 + \sigma_{12}^2)}$$

$$p = \frac{E\delta}{b} \frac{(b^2 - a^2)(c^2 - b^2)}{2b^2(c^2 - a^2)}$$

$$\sigma_r = (\sigma_r)_p + \frac{3+\nu}{8} \left(a^2 + b^2 - \frac{a^2b^2}{r^2} - r^2\right) \rho \omega^2$$

$$\sigma_{\theta} = (\sigma_{\theta})_{p} + \frac{3 + \nu}{8} \left(a^{2} + b^{2} - \frac{1 + 3\nu}{3 + \nu} r^{2} + \frac{a^{2}b^{2}}{r^{2}} \right) \rho \omega^{2}$$

$$u = (u)_{p} + \frac{(3 + \nu)(1 - \nu)}{8E} \left(a^{2} + b^{2} - \frac{1 + \nu}{3 + \nu} r^{2} + \frac{1 + \nu}{1 - \nu} \frac{a^{2}b^{2}}{r^{2}} \right) \rho \omega^{2}$$

$$\sigma = \sigma_{i} = -p$$

$$u = -\frac{1 - \nu}{E_s} pr \qquad T = Fa = 2\pi a^2 f pt$$

$$\delta = \frac{ap}{E_d} \left(\frac{a^2 + b^2}{b^2 - a^2} + \nu \right) + \frac{ap}{E_s} (1 - \nu) + \frac{a\rho\omega^2}{4E_d} [(1 - \nu)a^2 + (3 + \nu)b^2]$$

criterios le fallo

$$\sigma_u = \text{MAX}(|\sigma_1|, |\sigma_2|, |\sigma_3|)$$
 (at fracture)

$$\left(\frac{|\sigma_3|}{2}, \frac{|\sigma_3 - \sigma_1|}{2}\right)$$
 (at yielding)

$$\sigma_u = \text{MAX}(|\sigma_1|, |\sigma_2|, |\sigma_3|)$$
 (at fracture)

$$\tau_h = \frac{1}{3}\sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2} \qquad \tau_o = \text{MAX}\left(\frac{|\sigma_1 - \sigma_2|}{2}, \frac{|\sigma_2 - \sigma_3|}{2}, \frac{|\sigma_3 - \sigma_1|}{2}\right) \qquad \text{(at yielding)} \qquad \tau_{ho} = \frac{\sqrt{2}}{3}\sigma_o$$

$$\sigma_o = \text{MAX}\left(\frac{|\sigma_1 - \sigma_2|}{2}, \frac{|\sigma_2 - \sigma_3|}{2}, \frac{|\sigma_3 - \sigma_1|}{2}\right)$$

$$|\tau| + \mu \sigma = \tau_i \quad m = \sin \phi = \frac{\mu}{\sqrt{1 + \mu^2}} \sigma'_{uc} = -2\tau_i \sqrt{\frac{1 + m}{1 - m}} \quad \sigma_i = -|\sigma'_{uc}| + \sigma_{ut} \frac{1 + m}{1 - m}$$

$$C_{12} = \frac{1}{1 - m} \Big[|\sigma_1 - \sigma_2| + m(\sigma_1 + \sigma_2) \Big] \, \bar{\sigma}_{CM} = \text{MAX}(C_{12}, C_{23}, C_{31}), \qquad X_{CM} = \frac{\left|\sigma'_{uc}\right|}{\bar{\sigma}_{CM}}$$

$$C_{23} = \frac{1}{1 - m} \left[|\sigma_2 - \sigma_3| + m(\sigma_2 + \sigma_3) \right] \frac{\bar{\sigma}_{CM} = 0, \quad X_{CM} = \infty, \quad \text{if MAX} \le 0}{\bar{\sigma}_{NP} = \text{MAX}(\sigma_1, \sigma_2, \sigma_3), \qquad X_{NP} = \frac{\sigma_{ut}}{\bar{\sigma}_{NP}}$$

$$X_{NP} = \text{MAX}(\sigma_1, \sigma_2, \sigma_3), \qquad X_{NP} = \frac{\sigma_{ut}}{\bar{\sigma}_{NP}}$$

$$C_{31} = \frac{1}{1 - m} \Big[|\sigma_3 - \sigma_1| + m(\sigma_3 + \sigma_1) \Big] \, \bar{\sigma}_{NP} = 0, \quad X_{NP} = \infty, \quad \text{if MAX} \le 0$$

$$X_{MM} = MIN(X_{CM}, X_{NP})$$

(at yielding)
$$au_{ho} = \frac{\sqrt{2}}{3}\sigma_o$$

31.35 – Resistencia de Materiales

$$X_a = \frac{a_c}{a} = \left(\frac{F}{F_c}X_K\right)^2$$
 $X_K = \frac{K_{Ic}}{K} = \frac{K_{Ic}}{FS_g\sqrt{\pi a}}$

Values for small a/b and limits for 10% accuracy:

(a, b)
$$K = 1.12 S_g \sqrt{\pi a}$$
 $(a/b \le 0.4)$

Expressions for any $\alpha = a/b$:

(a)
$$F = \sqrt{\frac{2}{\pi \alpha} \tan \frac{\pi \alpha}{2}} \left[\frac{0.923 + 0.199 \left(1 - \sin \frac{\pi \alpha}{2}\right)^4}{\cos \frac{\pi \alpha}{2}} \right]$$
 (large h/b)

(b) F is within 3% of (a) for h/b = 4, and within 6% for h/b = 2, at any a/l

$$F = \frac{1.99 - \alpha (1 - \alpha) (2.15 - 3.93\alpha + 2.7\alpha^{2})}{\sqrt{\pi} (1 + 2\alpha) (1 - \alpha)^{3/2}}$$

(h/b = 2)

Values for small a/b and limits for 10% accuracy:

(a)
$$K = S_g \sqrt{\pi a}$$

(b)
$$K = 1.12 S_g \sqrt{\pi a}$$

(c)
$$K = 1.12 S_g \sqrt{\pi a}$$

$$(a/b \le 0.4)$$

$$(a/b \le 0.6)$$

$$(a/b \le 0.13)$$

Expressions for any $\alpha = a/b$:

(a)
$$F = \frac{1 - 0.5\alpha + 0.326\alpha^2}{\sqrt{1 - \alpha}}$$
 $(h/b \ge 1.5)$

(b)
$$F = \left(1 + 0.122\cos^4\frac{\pi\alpha}{2}\right)\sqrt{\frac{2}{\pi\alpha}\tan\frac{\pi\alpha}{2}}$$
 $(h/b \ge 2)$

(c)
$$F = 0.265 (1 - \alpha)^4 + \frac{0.857 + 0.265\alpha}{(1 - \alpha)^{3/2}}$$
 $(h/b \ge 1)$

Table 8.1 Fracture Toughness and Corresponding Tensile Properties for Representative Metals at Room Temperature

	Toughness	Yield	Ultimate	Elong.	Red. Area
Material	K_{Ic}	σ_o	σ_u	$100\varepsilon_f$	%RA
	$MPa\sqrt{m}$	MPa	MPa	%	%
	(ksi√in)	(ksi)	(ksi)		
(a) Steels					
AISI 1144	66	540	840	5	7
	(60)	(78)	(122)		
ASTM A470-8	60	620	780	17	45
(Cr-Mo-V)	(55)	(90)	(113)		
ASTM A517-F	187	760	830	20	66
	(170)	(110)	(121)		
AISI 4130	110	1090	1150	14	49
	(100)	(158)	(167)		
18-Ni maraging	123	1310	1350	12	54
air melted	(112)	(190)	(196)		
18-Ni maraging	176	1290	1345	15	66
vacuum melted	(160)	(187)	(195)		
300-M	152	1070	1190	18	56
650°C temper	(138)	(156)	(172)		
300-M	65	1740	2010	12	48
300°C temper	(59)	(252)	(291)		
(b) Aluminum and	Titanium Allo	ys (L-T C	rientation)		
2014-T651	24	415	485	13	_

	(22)	(60)	(70)		
2024-T351	34 (31)	325 (47)	470 (68)	20	_
2219-T851	36 (33)	350 (51)	455 (66)	10	_
7075-T651	29 (26)	505 (73)	570 (83)	11	_
7475-T7351	52 (47)	435 (63)	505 (73)	14	_
Ti-6Al-4V annealed	66 (60)	925 (134)	1000 (145)	16	34

Table 8.2 Fracture Toughness of Some Polymers and Ceramics at Room Temperature

Material	K_{Ic}		Material	K_{Ic}	
Polymers ¹	MPa√m	(ksi√in)	Ceramics ²	MPa√m (ksi√	
ABS	3.0	(2.7)	Soda-lime glass	0.76	(0.69)
Acrylic	1.8	(1.6)	Magnesia, MgO	2.9	(2.6)
Epoxy	0.6	(0.55)	Alumina, Al ₂ O ₃	4.0	(3.6)
PC	2.2	(2.0)	Al_2O_3 , 15% ZrO_2	10	(9.1)
PET	5.0	(4.6)	Silicon carbide	3.7	(3.4)
Polyester	0.6	(0.55)	SiC		
PS	1.15	(1.05)	Silicon nitride	5.6	(5.1)
PVC	2.4	(2.2)	Si_3N_4		
PVC	3.35	(3.05)	Dolomitic limestone	1.30	(1.18)
rubber mod.			Westerly granite	0.89	(0.81)
			Concrete	1.19	(1.08)

Notes: ^{1,2}See Tables 4.3 and 3.10, respectively, for additional properties of similar materials. Sources: Data in [ASM 88] p. 739, [Karfakis 90], [Kelly 86] p. 376, [Shah 95] p. 176, and [Williams 87] p. 243.

$$\theta = \frac{h}{2AG} \oint \frac{ds}{t} = \frac{1}{2AG} \oint \tau \, ds \quad \theta = \frac{3T}{bt^3 G}$$

$$\tau = \frac{T}{2At} \quad \tau = \frac{h}{t} \quad T = 2Ah \qquad \tau_r = \frac{M_t}{I_P} \quad r$$

$$C = \frac{T}{\theta} = \frac{1}{3}bt^3 G = J_e G \quad J_e = \sum \frac{1}{3}bt^3 \quad \tau_i = \frac{T \cdot b_i}{J_e}$$

U			, je		
Cross section	Maximum shearing stres.	s	Angle of twist per unit length		
$ \begin{array}{c c} 2b & A \\ \hline A & A \end{array} $ For circular bar: $a=b$	$\tau_A = \frac{2T}{\pi a b^2}$	θ	$=\frac{(a^2+b^2)T}{\pi a^3 b^3 G}$		
Equilateral triangle	$\tau_A = \frac{20T}{a^3}$		$\theta = \frac{46.2T}{a^4 G}$		
	$\tau_A = \frac{T}{\alpha a b^2}$		$\theta = \frac{T}{\beta ab^3 G}$		
	a/b	β	α		
	$ \begin{array}{c} 1.0 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \\ 4.0 \\ 5.0 \\ 10.0 \\ \infty \end{array} $ $ \tau_{A} = \frac{T}{2abt_{1}} $	0.141 0.196 0.229 0.249 0.263 0.281 0.291 0.312 0.333	0.208 0.231 0.246 0.256 0.267 0.282 0.292 0.312 0.333 $= \frac{(at + bt_1)T}{2tt_1a^2b^2G}$		
b t a b	$\tau_B = \frac{T}{2abt}$		211 ₁ a-b-G		
For circular tube: $a=b$	$\tau_A = \frac{T}{2\pi abt}$	$\theta =$	$=\frac{\sqrt{2(a^2+b^2)}T}{4\pi a^2b^2tG}$		
A a Hexagon	$\tau_A = \frac{5.7T}{a^3}$		$\theta = \frac{8.8T}{a^4 G}$		

$$\begin{split} \nabla^4 w &= \frac{p}{D} \quad D = \frac{Et^3}{12(1-\nu^2)} \ \sigma_x = \frac{E}{1-\nu^2} \left(\varepsilon_x + \nu \varepsilon_y \right) = -\frac{Ez}{1-\nu^2} \left(\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2} \right) \\ M_x &= -D \left(\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2} \right) \qquad \sigma_y = \frac{E}{1-\nu^2} \left(\varepsilon_y + \nu \varepsilon_x \right) = -\frac{Ez}{1-\nu^2} \left(\frac{\partial^2 w}{\partial y^2} + \nu \frac{\partial^2 w}{\partial x^2} \right) \\ M_y &= -D \left(\frac{\partial^2 w}{\partial y^2} + \nu \frac{\partial^2 w}{\partial x^2} \right) \qquad \tau_{xy} = \frac{E}{2(1+\nu)} \gamma_{xy} = -\frac{Ez}{1+\nu} \frac{\partial^2 w}{\partial x \partial y} \\ M_{xy} &= -D(1-\nu) \frac{\partial^2 w}{\partial x \partial y} \qquad \sigma_{x,\,\text{max}} = \frac{6M_x}{t^2}, \qquad \sigma_{y,\,\text{max}} = \frac{6M_y}{t^2}, \qquad \tau_{xy,\,\text{max}} = \frac{6M_{xy}}{t^2} \\ Q_x &= -D \frac{\partial}{\partial x} \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right), \quad Q_y &= -D \frac{\partial}{\partial y} \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right) \qquad \tau_{xz,\,\text{max}} = \frac{3}{2} \frac{Q_x}{t}, \qquad \tau_{yz,\,\text{max}} = \frac{3}{2} \frac{Q_y}{t} \end{split}$$

$$\frac{1}{r}\frac{d}{dr}\left\{r\frac{d}{dr}\left[\frac{1}{r}\frac{d}{dr}\left(r\frac{dw}{dr}\right)\right]\right\} = \frac{p}{D}$$

$$\frac{D}{p_o}w = \int \frac{1}{r} \int r \int \left[\frac{1}{r} \left(\frac{r^2}{2} + c_1 \right) \right] dr dr dr = \frac{r^4}{64} + \frac{c_1 r^2}{4} (\ln r - 1) + \frac{c_2 r^2}{4} + c_3 \ln r + c_4$$

$$M_r = -D \left(\frac{d^2 w}{dr^2} + \frac{\nu}{r} \frac{dw}{dr} \right)$$

$$M_{\theta} = -D\left(\frac{1}{r}\frac{dw}{dr} + \nu \frac{d^2w}{dr^2}\right)$$
$$Q_r = -D\frac{d}{dr}\left(\frac{d^2w}{dr^2} + \frac{1}{r}\frac{dw}{dr}\right)$$

$$\frac{N_{\phi}}{r_{\phi}} + \frac{N_{\theta}}{r_{\theta}} = -p_{z}$$

$$2\pi r_{0} N_{\phi} \sin \phi + F = 0$$

$$r_{0} = r_{\theta} \sin \phi$$

$$N_{\phi}$$

$$\varepsilon_{\varphi} = \frac{1}{r_{\varphi}} \frac{dv}{d\varphi} - \frac{w}{r_{\varphi}}$$
 $\varepsilon_{\theta} = \frac{1}{r_{0}} (v \cos \varphi - w \sin \varphi)$

$$\frac{dv}{d\varphi} - v\cot\varphi = \frac{1}{E} \left[\sigma_{\varphi} (r_{\varphi} + vr_{\theta}) - \sigma_{\theta} (r_{\theta} + vr_{\varphi}) \right] = f(\varphi) \quad v = \left[\int \frac{f(\varphi)}{\sin\varphi} d\varphi + c \right] \sin\varphi$$

$$U = \int \frac{N^2 dx}{2AE} + \int \frac{M^2 dx}{2EI} + \int \frac{\alpha V^2 dx}{2AG} + \int \frac{T^2 dx}{2JG} \quad \frac{\partial U}{\partial P_i} = \delta_i \quad \frac{\partial U}{\partial C_i} = \theta_i$$

Case

No. Support and Loading

Edge simply supported (or no support); load uniform along edge

Maximum Bending Stress o, Deflection w at Center, and Slope θ at Edge

$$\sigma = 6\frac{M}{t^2}$$
 (uniform)

$$w = 6(1 - \nu) \frac{Ma^2}{Et^3}$$

$$\theta = 12(1 - \nu) \frac{Ma}{Et^3}$$

Edge simply supported; load uniform along a circle of radius c

$$\sigma = \frac{3}{2} \frac{P_1 c}{t^2} \left[(1 - \nu) \left(1 - \frac{c^2}{a^2} \right) + 2(1 + \nu) \ln \frac{a}{c} \right]$$

$$w = \frac{3(1-\nu)}{2} \frac{P_1 c}{E t^3}$$

$$\times \left[(3+\nu)(a^2 - c^2) - 2(1+\nu)c^2 \ln \frac{a}{c} \right]$$

$$\theta = 6(1-\nu)\frac{P_1 a c}{E t^3} \left(1 - \frac{c^2}{a^2} \right)$$

Concentrated load at a distance c from the center

Deflection w at center approximately same as Case 2 for edge simply supported, and same as Case 6 for edge fixed.

4. Edge simply supported;

$$\sigma = \frac{3(3+\nu)}{8} \frac{p_0 a^2}{t^2} \qquad \text{(at center)}$$

$$w = \frac{3(1 - \nu)(5 + \nu)}{16} \frac{p_0 a^4}{E t^3}$$
$$\theta = \frac{3(1 - \nu^2)}{2} \frac{p_0 a^3}{E t^3}$$

Edge simply supported; uniform load on circular area of radius c

$$\sigma = \frac{3}{8} \frac{p_0 c^2}{t^2} \left[4 - (1 - v) \frac{c^2}{a^2} + 4(1 + v) \ln \frac{a}{c} \right]$$

(at center)

$$w = \frac{3(1-\nu)}{16} \frac{p_0 c^2}{Et^3}$$

$$\times \left[4(3+\nu)a^2-(7+3\nu)c^2-4(1+\nu)c^2\ln\frac{a}{c}\right]$$

$$\theta = \frac{3(1-\nu)}{2} \frac{p_0 a c^2}{E t^3} \left(2 - \frac{c^2}{a^2} \right)$$

6. Edge fixed; load uniform along a circle of radius c

$$w = \frac{3(1 - v^2)}{2} \frac{P_1 c}{E t^3} \left(b^2 - c^2 - 2c^2 \ln \frac{a}{c} \right)$$

7. Edge fixed; load uniform

$$\sigma = \frac{3}{4} \frac{p_0 a^2}{t^2} \quad \text{(at edge)}$$

$$w = \frac{3(1 - v^2)}{16} \frac{p_0 a^{4\dagger}}{E t^3}$$

Edge fixed; load uniform over a circular area of

$$\sigma = \frac{3(1+\nu)}{8} \frac{p_0 c^2}{t^2} \left(\frac{c^2}{a^2} + 4 \ln \frac{a}{c}\right) \quad \text{(at center)}$$

$$\sigma = \frac{3}{4} \frac{p_0 c^2}{t^2} \left(2 - \frac{c^2}{a^2} \right) \quad \text{(at edge)}$$

$$w = \frac{3(1 - v^2)}{4} \frac{p_0 c^2}{Et^3} \left(a^2 - \frac{3}{4}c^2 - c^2 \ln \frac{a}{c} \right)$$

NOTATION: a = radius of plate; $p_0 = \text{uniform load per unit area}$; $P_1 = \text{load per unit length, uniformly distributed along a centric circle of radius <math>c$; P = concentrated load; M = moments per unit length uniformly distributed along edge; v = Poisson's ratio; E = modulus of elasticity.

Table 4.3 Variously supported and uniformly loaded annular plates

Case No.	Support	Load Diagram	Maximum Stress S max	Deflection between Edges
1. Inner edge fixed			$k_1 \frac{P}{t^2}$	$h_1 \frac{Pa^2}{Et^3}$
2.	Inner edge fixed		$k_2 \frac{p_0 a^2}{t^2}$	$h_2 \frac{p_0 a^4}{E t^3}$
3.	Inner edge simply supported		$k_3 \frac{P}{t^2}$	$h_3 \frac{Pa^2}{Et^3}$
4.	Inner edge simply supported		$k_4 \frac{p_0 a^2}{t^2}$	$h_4 \frac{p_0 a^4}{E t^3}$
5.	Outer edge simply supported		$k_5 \frac{p_0 a^2}{t^2}$	$h_5 \frac{p_0 a^4}{E t^3}$
6.	Outer edge simply supported, inner- edge rotation prevented	$\begin{array}{c c} -a & b & p_0 \\ \hline \end{array}$	$k_6 \frac{p_0 a^2}{t^2}$	$h_6 \frac{p_0 a^4}{E t^3}$
7.	Inner edge fixed, outer-edge rotation prevented		$k_7 \frac{P}{t^2}$	$h_7 \frac{Pa^2}{Et^3}$
8.	Inner edge fixed, outer-edge rotation prevented		$k_8 \frac{p_0 a^2}{t^2}$	$h_8 \frac{p_0 a^4}{E t^3}$
9.	Outer edge fixed		$k_9 \frac{P}{t^2}$	$h_9 \frac{Pa^2}{Et^3}$
10.	Outer edge fixed		$k_{10}\frac{p_0a^2}{t^2}$	$h_{10}\frac{p_0a^4}{Et^3}$

NOTATION: a = outer radius of plate; b = inner radius of plate; t = thickness of plate; E = modulus of elasticity; P = total load uniformly distributed along outer or inner edge; $p_0 = \text{uniform load per unit surface area of plate}$.

Table 4.4 Coefficients k and h for cases 1 through 10 in Table 4.3

a/b	1.25	1.50	2.00	3.00	4.00	5.00
k ₁	0.227	0.428	0.753	1.205	1.514	1.745
h ₁	0.0051	0.0249	0.0877	0.209	0.293	0.350
h_2	0.135	0.410	1.04	2.15	2.99	3.69
	0.0023	0.0183	0.0938	0.2925	0.448	0.564
k ₃	1.10	1.26	1.48	1.88	2.17	2.34
h ₃	0.341	0.519	0.672	0.734	0.724	0.704
k ₄	0.66	1.19	2.04	3.34	4.30	5.10
h ₄	0.202	0.491	0.902	1.220	1.300	1.310
k ₅	0.592	0.976	1.440	1.880	2.080	2.19
h ₅	0.1841	0.4139	0.6640	0.8237	0.8296	0.813
k ₆	0.122	0.336	0.74	1.21	1.45	1.59
h ₆	0.0034	0.0313	0.1250	0.291	0.417	0.492
k ₇	0.115	0.220	0.405	0.703	0.933	1.13
h ₇	0.0013	0.0064	0.0237	0.0619	0.0923	0.114
k_8 h_8	0.090	0.273	0.71	1.54	2.23	2.80
	0.0008	0.0062	0.0329	0.1096	0.1792	0.2338
k9	0.194	0.320	0.454	0.673	1.021	1.305
h9	0.00504	0.0242	0.0810	0.172	0.217	0.288
$k_{10} \\ h_{10}$	0.105	0.259	0.480	0.657	0.710	0.730
	0.00199	0.0139	0.0575	0.130	0.162	0.175

Table 4.5 Variously supported and uniformly loaded annular plates with linearly varying thickness

Support	Load Diagram	$\begin{array}{c} \text{Maximum} \\ \text{Stress} \\ \boldsymbol{\sigma}_{\text{max}} \end{array}$	Deflection between Edges w _{max}
Inner edge fixed		$k_1 \frac{P}{a^2}$	$h_1 \frac{Pa^2}{Et_2^3}$
Inner edge fixed	$a \rightarrow b \rightarrow p_0$ ι_2	$k_2 \frac{p_0 a^2}{t_2^2}$	$h_2 \frac{p_0 a^4}{E t_2^3}$
Outer edge simply supported, inner- edge rotation prevented		$k_6 \frac{p_0 a^2}{t_2^2}$	$h_6 \frac{p_0 a^4}{E t_2^3}$
Inner edge fixed, outer-edge rotation prevented		$\frac{\frac{1}{2}}{2} k_7 \frac{P}{t_2^2}$	$h_7 \frac{Pa^2}{Et_2^3}$
Inner edge fixed, outer-edge rotation prevented		$k_8 \frac{p_0 a^2}{t_2^2}$	$h_8 \frac{p_0 a^4}{E t_2^3}$
	Inner edge fixed Outer edge simply supported, inner-edge rotation prevented Inner edge fixed, outer-edge rotation prevented Inner edge fixed, outer-edge rotation prevented	Inner edge fixed Outer edge simply supported, inner-edge rotation prevented Inner edge fixed, outer-edge rotation prevented Inner edge fixed, outer-edge rotation prevented Inner edge fixed, outer-edge rotation prevented	Inner edge fixed Outer edge simply supported, inner-edge rotation prevented Inner edge fixed, outer-edge rotation prevented Diagram $a \rightarrow b \rightarrow P$ $c \rightarrow c \rightarrow b \rightarrow P$ $c \rightarrow c \rightarrow$

NOTATION: a = outer radius of plate; b = inner radius of plate; t = outer edge thickness of plate; E = modulus of elasticity; P = total load uniformly distributed along outer edge; $p_0 = \text{uniform load per unit surface area of plate}$.

Table 4.6 Coefficients k and h for cases 1, 2, 6, 7, and 8 in Table 4.5. Poisson's ratio v = 1/3

a/b	1.25	1.50	2.00	3.00	4.00	5.00
h_1	0.353	0.933	2.63	6.88	11.47	16.51
	0.0082	0.0583	0.345	1.358	2.39	3.27
h_2	0.249	0.638	3.96	13.64	26.0	40.6
	0.0037	0.0453	0.401	2.12	4.25	6.28
h_6	0.149	0.991	2.23	5.57	7.78	9.16
	0.0055	0.0564	0.412	1.673	2.79	3.57
$\frac{k_7}{h_7}$	0.159	0.396	0.091	3.31	6.55	10.78
	0.0017	0.0112	0.0606	0.261	0.546	0.876
h_8	0.1275	0.515	2.05	7.97	17.35	30.0
	0.0011	0.0115	0.0934	0.537	1.261	2.16

Notation: A = area

 $\bar{x}, \bar{y} = \text{distances to centroid } C$

 I_x , I_y = moments of inertia with respect to the x and y axes, respectively

 I_{xy} = product of inertia with respect to the x and y axes

 $I_P = I_x + I_y = \text{polar moment of inertia with respect to the origin of the } x \text{ and } y \text{ axes}$

 I_{BB} = moment of inertia with respect to axis B-B

Rectangle (Origin of axes at centroid)

$$A = bh \qquad \bar{x} = \frac{b}{2} \qquad \bar{y} = \frac{h}{2}$$

$$I_x = \frac{bh^3}{12}$$
 $I_y = \frac{hb^3}{12}$ $I_{xy} = 0$ $I_P = \frac{bh}{12}(h^2 + b^2)$

$$I_x = \frac{bh^3}{3}$$
 $I_y = \frac{hb^3}{3}$ $I_{xy} = \frac{b^2h^2}{4}$ $I_P = \frac{bh}{3}(h^2 + b^2)$

Triangle (Origin of axes at centroid)

$$A = \frac{bh}{2} \qquad \overline{x} = \frac{b+c}{3} \qquad \overline{y} = \frac{h}{3}$$

$$I_x = \frac{bh^3}{36}$$
 $I_y = \frac{bh}{36}(b^2 - bc + c^2)$

$$I_{xy} = \frac{bh^2}{72}(b - 2c)$$
 $I_P = \frac{bh}{36}(h^2 + b^2 - bc + c^2)$

$$I_x = \frac{bh^3}{12}$$
 $I_y = \frac{bh}{12}(3b^2 - 3bc + c^2)$

$$I_{xy} = \frac{bh^2}{24}(3b - 2c)$$
 $I_{BB} = \frac{bh^3}{4}$

Isosceles triangle (Origin of axes at centroid)

$$A = \frac{bh}{2} \qquad \bar{x} = \frac{b}{2} \qquad \bar{y} = \frac{h}{3}$$

$$I_P = \frac{bh}{144}(4h^2 + 3b^2)$$
 $I_{BB} = \frac{bh^3}{12}$

(*Note:* For an equilateral triangle, $h = \sqrt{3} b/2$.)

Right triangle (Origin of axes at centroid)

$$A = \frac{bh}{2} \qquad \overline{x} = \frac{b}{3} \qquad \overline{y} = \frac{h}{3}$$

$$\frac{\sqrt{\bar{y}} - x}{B}$$
 $I_x = \frac{bh^3}{36}$ $I_y = \frac{hb^3}{36}$ $I_{xy} = -\frac{b^2h^2}{72}$

$$I_P = \frac{bh}{36}(h^2 + b^2)$$
 $I_{BB} = \frac{bh^3}{12}$

Right triangle (Origin of axes at vertex)

$$I_x = \frac{bh^3}{12}$$
 $I_y = \frac{hb^3}{12}$ $I_{xy} = \frac{b^2h^2}{24}$

$$I_P = \frac{bh}{12}(h^2 + b^2)$$
 $I_{BB} = \frac{bh^3}{4}$

Trapezoid (Origin of axes at centroid)

$$A = \frac{h(a+b)}{2} \qquad \overline{y} = \frac{h(2a+b)}{3(a+b)}$$

$$\overline{I}_{B}$$
 $I_{x} = \frac{h^{3}(a^{2} + 4ab + b^{2})}{36(a + b)}$ $I_{BB} = \frac{h^{3}(3a + b)}{12}$

Circle (Origin of axes at center)

$$A = \pi r^2 = \frac{\pi d^4}{4} \qquad I_x = I_y = \frac{\pi r^4}{4} = \frac{\pi d^4}{64}$$

$$I_{xy} = 0 \qquad I_P = \frac{\pi r^4}{2} = \frac{\pi d^4}{22} \qquad I_{BB} = \frac{5\pi r^4}{4} = \frac{5\pi d^4}{64}$$

Semicirc
$$A = \frac{\pi r^2}{2}$$

$$Q = \frac{\sqrt{2}}{2}$$

 $I_x = \frac{(9\pi^2 - 64)r^4}{72\pi} \approx 0.1098r^4$ $I_y = \frac{\pi r^4}{9}$ $I_{xy} = 0$ $I_{BB} = \frac{\pi r^4}{9}$

Quarter circle (Origin of axes at center of circle)

$$A = \overline{x}$$

$$C \qquad \uparrow \overline{y} \qquad B$$

$$I_x = \overline{y}$$

 $I_x = I_y = \frac{\pi r^4}{16}$ $I_{xy} = \frac{r^4}{8}$ $I_{BB} = \frac{(9\pi^2 - 64)r^4}{144\pi} \approx 0.05488r^4$

Circular sector (Origin of axes at center of circle)

$$\alpha = \text{angle in radians} \qquad (\alpha \le \pi/2)$$

$$A = \alpha r^2$$
 $\overline{x} = r \sin \alpha$ $\overline{y} = \frac{2r \sin \alpha}{3\alpha}$

$$I_x = \frac{r^4}{4}(\alpha + \sin \alpha \cos \alpha)$$
 $I_y = \frac{r^4}{4}(\alpha - \sin \alpha \cos \alpha)$ $I_{xy} = 0$ $I_P = \frac{\alpha r^4}{2}$

Circular segment (Origin of axes at center of circle)

$$A = r^{2}(\alpha - \sin \alpha \cos \alpha) \qquad \overline{y} = \frac{2r}{3} \left(\frac{\sin^{3} \alpha}{\alpha - \sin \alpha \cos \alpha} \right)$$

$$I_x = \frac{r^4}{4}(\alpha - \sin \alpha \cos \alpha + 2\sin^3 \alpha \cos \alpha) \qquad I_{xy} = 0$$

$$I_y = \frac{r^4}{12}(3\alpha - 3\sin\alpha\cos\alpha - 2\sin^3\alpha\cos\alpha)$$

Circle with core removed (Origin of axes at center of circle)

 α = angle in radians $(\alpha \le \pi/2)$

$$\alpha = \arccos \frac{a}{r}$$
 $b = \sqrt{r^2 - a^2}$ $A = 2r^2 \left(\alpha - \frac{ab}{r^2}\right)$

$$I_x = \frac{r^4}{6} \left(3\alpha - \frac{3ab}{r^2} - \frac{2ab^3}{r^4} \right)$$
 $I_y = \frac{r^4}{2} \left(\alpha - \frac{ab}{r^2} + \frac{2ab^3}{r^4} \right)$ $I_{xy} = 0$

Ellipse (Origin of axes at centroid)

$$A = \pi ab \qquad I_x = \frac{\pi ab^3}{4} \qquad I_y = \frac{\pi ba^3}{4}$$

$$I_{xy} = 0$$
 $I_P = \frac{\pi ab}{4}(b^2 + a^2)$

Circumference
$$\approx \pi [1.5(a+b) - \sqrt{ab}]$$
 $(a/3 \le b \le a)$
 $\approx 4.17b^2/a + 4a$ $(0 \le b \le a/3)$

Notation: A = area

 $\bar{x}, \bar{y} = \text{distances to centroid } C$

 I_x , I_y = moments of inertia with respect to the x and y axes, respectively

 I_{xy} = product of inertia with respect to the x and y axes

 $I_P = I_x + I_y = \text{polar moment of inertia with respect to the origin of the } x \text{ and } y \text{ axes}$

 I_{BB} = moment of inertia with respect to axis B-B

22

Thin circular ring (Origin of axes at center) Approximate formulas for case when *t* is small

$$A = 2\pi rt = \pi dt$$
 $I_x = I_y = \pi r^3 t = \frac{\pi d^3 t}{8}$

$$I_{xy} = 0$$
 $I_P = 2\pi r^3 t = \frac{\pi d^3 t}{4}$

Thin circular arc (Origin of axes at center of circle) Approximate formulas for case when *t* is small

$$A = 2Brt$$
 $\overline{v} = \frac{r \sin \beta}{r}$

$$I_x = r^3 t(\beta + \sin \beta \cos \beta)$$
 $I_y = r^3 t(\beta - \sin \beta \cos \beta)$

 β = angle in radians (*Note:* For a semicircular arc, $\beta = \pi/2$.)

$$I_{xy} = 0$$
 $I_{BB} = r^3 t \left(\frac{2\beta + \sin 2\beta}{2} - \frac{1 - \cos 2\beta}{2} \right)$

Thin rectangle (Origin of axes at centroid) Approximate formulas for case when *t* is small

$$A = bt$$

$$I_x = \frac{tb^3}{12}\sin^2\beta$$
 $I_y = \frac{tb^3}{12}\cos^2\beta$ $I_{BB} = \frac{tb^3}{3}\sin^2\beta$

Regular polygon with *n* **sides** (Origin of axes at centroid)

$$\beta = \frac{360^{\circ}}{n} \qquad \alpha = \left(\frac{n-2}{n}\right)180^{\circ} \qquad \alpha + \beta = 180^{\circ}$$

 R_1 = radius of circumscribed circle (line CA) R_2 = radius of inscribed circle (line CB)

$$R_1 = \frac{b}{2}\csc\frac{\beta}{2}$$
 $R_2 = \frac{b}{2}\cot\frac{\beta}{2}$ $A = \frac{nb^2}{4}\cot\frac{\beta}{2}$

 $I_c=$ moment of inertia about any axis through C (the centroid C is a principal point and every axis through C is a principal axis)

$$I_c = \frac{nb^4}{192} \left(\cot \frac{\beta}{2} \right) \left(3\cot^2 \frac{\beta}{2} + 1 \right) \qquad I_P = 2I_c$$

31,34 ESTÁTICA:

Rotación de tensiones

$$\sigma_{x1} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos(2\theta) + \tau_{xy} \sin(2\theta)$$

$$\tau_{x_1 y_1} = -\frac{\sigma_x - \sigma_y^2}{2} \sin(2\theta) + \tau_{xy} \cos(2\theta)$$

$$\sigma_{prom} = \frac{\sigma_x + \sigma_y}{2}$$

$$R = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

$$\tan(2\theta_P) = \frac{2\tau_{xy}}{\sigma_x - \sigma_y}$$

Teorema de Castigliano

$$\delta_i = \frac{\partial U}{\partial P_i}$$

Equilibrio:

$$\sum \bar{F} = m\bar{a}$$

$$\sum_{\overline{M}} \overline{M} = I \ \overline{\propto}$$
$$\overline{M} = \overline{r} \times \overline{F}$$

Potencia:

$$P = F.V = T.\omega$$

Tensiones y Deformaciones

$$\sigma_{prom} = \frac{F_n}{A}$$
$$\sigma = E \cdot \varepsilon$$
$$\int d\delta = \int \epsilon \, dx$$

$$\tau_{prom} = \frac{F_t}{A}$$

$$\varepsilon_{total} = \varepsilon_{mec} + \varepsilon_{ter}$$
 $\varepsilon_{ter} = \infty . \Delta T$

 $U_e = \int F_e(x) dx$

Torsión:

$$\tau = \frac{M_x \, r}{J}$$

$$\varphi_{B-A} = \int_{A}^{B} \frac{M_{X}(x)}{J(x)G(x)} dx$$

$$\tau_{prom} = \frac{M_{\chi}}{2 t A_{r}}$$

<u>Áreas:</u>

$$\bar{x} = \frac{\int_{A} x \, dA}{\int_{A} dA} \qquad \bar{y} = \frac{\int_{A} y \, dA}{\int_{A} dA}$$

$$I_{y} = \int_{A} z^{2} dA \quad I_{z} = \int_{A} y^{2} dA \quad I_{yz} = \int_{A} yz \, dA$$

$$I_{p} = \int_{A} r^{2} dA = I_{y} + I_{z}$$

$$I_{y'} = I_{y} + Ad_{z}^{2} \qquad I_{z'} = I_{z} + Ad_{y}^{2} \qquad I_{y'z'} = I_{ysz} + Ad_{y}d_{z}$$

$$I_{y'} = \frac{I_{y} + I_{z}}{2} + \frac{I_{y} - I_{z}}{2} \cos 2\theta - I_{yz} \sin 2\theta$$

$$I_{z'} = \frac{I_{y} + I_{z}}{2} - \frac{I_{y} - I_{z}}{2} \cos 2\theta + I_{yz} \sin 2\theta$$

$$I_{y'z'} = \frac{I_{y} - I_{z}}{2} \sin 2\theta - I_{yz} \cos 2\theta$$

$$\tan 2\theta_{p} = -\frac{2I_{yz}}{I_{y} - I_{z}}$$

Flexión:

$$\varepsilon_{ter} = \propto \Delta T$$

$$q_{g}(x) = \int_{A}^{B} F_{e}(x) dx$$

$$\tau = \frac{M_{x} r}{J}$$

$$\varphi_{B-A} = \int_{A}^{B} \frac{M_{x}(x)}{J(x)G(x)} dx$$

$$\tau_{prom} = \frac{M_{x}}{2 t A_{m}}$$

$$q_{g}(x) = \frac{dV_{y}}{dx}$$

$$V_{g}(x) = \frac{dM_{z}}{dx}$$

$$Q_{g}(x) = \frac{dM_{z}}{dx}$$

Constantes: g=9.81 m/s2