生物医药合作项目开发

研究方向: 骨髓瘤思路设计

委托人:

受托人: 杭州铂赛生物科技有限公司

Contents

1	究背景	1							
	1 思路	. 1							
2	行性	1							
	1 以 "Multiple myeloma" AND "metabolic" 搜索文献,发现 MM 与代谢关联密切。	. 1							
	2 以 "Multiple myeloma" AND "TWAS" 搜索文献,已有借助 TWAS 研究 MM 的文章。	. 2							
	3 以 "Multiple myeloma" AND "metabolic" AND "GWAS" 搜索文献,发现一篇孟德尔随机体	1							
	研究,MM 基因与代谢的关系。	. 2							
3	创新性								
	1 以 "Multiple myeloma" AND "metabolic" AND "TWAS" 搜索文献,未发现相关研究。	. 3							
	2 以 "Multiple myeloma" AND "scRNA-seq" AND "metabolic" AND "GWAS" 搜索 PubMed	. ,							
	未发现相关研究。	. 4							
4	考文献和数据集	5							
	1 TWAS 方法	. 5							
	2 单细胞数据预测代谢通量的方法	. 5							
	3 GWAS 数据	. 5							
	4 scRNA-seq	. 5							
\mathbf{R}	rence	7							
	────								
\mathbf{L}	t of Figures								
	Unnamed chunk 6	. 1							
	Unnamed chunk 7	. 2							
	Unnamed chunk 8	. 3							
	Unnamed chunk 9	. 4							
	Unnamed chunk 10	. 4							

List of Tables

1	GWAS	,
2	Sample	(

1 研究背景

Multiple myeloma (MM) 是一种基因复杂、异质性高的疾病,其发展是一个多步骤的过程,涉及肿瘤细胞基因改变的获得和骨髓微环境的变化 (2024, Nature reviews. Disease primers, **IF:76.9**, Q1)¹。

1.1 思路

结合 MM 的 GWAS 研究 (变异与疾病的关系),预测基因表达变化水平 (即 TWAS,基因与疾病的关系); MM 的 scRNA-seq 肿瘤细胞分析,并进一步预测肿瘤细胞的代谢变化;最后,聚焦于基因对肿瘤细胞的代谢改变,以及对应的功能基因。

思路为: TWAS (GWAS + eQTL) + scRNA-seq + metabolic

(TWAS 部分可能会相对耗时,因为该部分的方法为首次接触,需要配置程序)

2 可行性

2.1 以 "Multiple myeloma" AND "metabolic" 搜索文献, 发现 MM 与代谢关联密切。

2.2 以 "Multiple myeloma" AND "TWAS" 搜索文献,已有借助 TWAS 研究 MM 的文章。

2.3 以 "Multiple myeloma" AND "metabolic" AND "GWAS" 搜索文献,发现一篇孟德尔随机化研究, MM 基因与代谢的关系。

3 创新性

3.1 以 "Multiple myeloma" AND "metabolic" AND "TWAS" 搜索文献,未发现相关研究。

3.2 以 "Multiple myeloma" AND "scRNA-seq" AND "metabolic" AND "GWAS" 搜索 PubMed,未发现相关研究。

≫⋘

4 参考文献和数据集

4.1 TWAS 方法

- FUSION (2016, Nature Genetics, **IF:31.7**, Q1)²
- FOCUS (2020, Human genetics, $\mathbf{IF:3.8}$, $\mathbf{Q2}$)³

4.2 单细胞数据预测代谢通量的方法

- scFEA 通过 scRNA-seq 预测代谢通量 (2021, Genome research, **IF:6.2**, Q1)⁴
- scFEA 的应用实例 (2023, Frontiers in endocrinology, IF:3.9, Q2)⁵

4.3 GWAS 数据

Table 1: GWAS

id	trait	ncase	group	year	author	consor	sex	pmid	popula
ieu-b	Multip	601	public	2021	Burrows	UK Bio	Males	NA	European
finn-b	Multip	598	public	2021	NA	NA	Males	NA	European
finn-b	Multip	598	public	2021	NA	NA	${\it Males}$	NA	European

4.4 scRNA-seq

GEO 上有多数 MM 的 scRNA-seq 数据集,以下举一例。

• GSE271107

Data Source ID:

GSE271107

data_processing:

Raw scRNA-seq data were preprocessed using the Cell Ranger analysis pipelines (10x Genomics) version 6 with reference genome of human genome (GRCh38) to demultiplex for cell and transcript and generate count table.

data_processing.1:

The count table was loaded into R through Seurat version 4 package for further analysis. Cells that have gene numbers lesser than 200, greater than 7,000, and more than 10mitochondrial genes were discarded from the analysis.

data_processing.2:

For individual sample, a principal component analysis (PCA) was performed on significantly variable genes for remained high-quality cells. Results of individual samples were used for data integration across samples using reciprocal PCA method to minimize technical differences between samples.

data_processing.3:

The integration results were employed as input for clustering using Louvain algorithm with multilevel refinement and the Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP).

(Others):

...

(上述信息框内容已保存至 Figure+Table/prods-content)

Table 2: Sample

rownames	title		disease.state.ch1	tissue.ch1	
GSM8369863	Healthy donor	1	Healthy	Bone marrow aspirate	

rownames	title	${\it disease.state.ch1}$	tissue.ch1
GSM8369864	Healthy donor_2	Healthy	Bone marrow aspirate
$\operatorname{GSM8369865}$	Healthy donor_3	Healthy	Bone marrow aspirate
$\operatorname{GSM8369866}$	Healthy donor_4	Healthy	Bone marrow aspirate
$\operatorname{GSM8369867}$	Healthy donor_5	Healthy	Bone marrow aspirate
GSM8369868	$MGUS_1$	MGUS	Bone marrow aspirate
GSM8369869	$MGUS_2$	MGUS	Bone marrow aspirate
GSM8369870	$MGUS_3$	MGUS	Bone marrow aspirate
GSM8369871	$MGUS_4$	MGUS	Bone marrow aspirate
GSM8369872	$MGUS_5$	MGUS	Bone marrow aspirate
GSM8369873	$MGUS_6$	MGUS	Bone marrow aspirate
GSM8369874	SMM_1	SMM	Bone marrow aspirate
GSM8369875	SMM_2	SMM	Bone marrow aspirate
GSM8369876	SMM_3	SMM	Bone marrow aspirate
GSM8369877	SMM_4	SMM	Bone marrow aspirate

Reference

- 1. Malard, F. et al. Multiple myeloma. Nature reviews. Disease primers 10, (2024).
- 2. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nature Genetics 48, 245-252 (2016).
- 3. Wu, C. & Pan, W. A powerful fine-mapping method for transcriptome-wide association studies. *Human genetics* **139**, 199–213 (2020).
- 4. Alghamdi, N. et al. A graph neural network model to estimate cell-wise metabolic flux using single-cell rna-seq data. Genome research 31, 1867–1884 (2021).
- 5. Agoro, R. et al. Single cell cortical bone transcriptomics define novel osteolineage gene sets altered in chronic kidney disease. Frontiers in endocrinology 14, (2023).