# Finding the correlation between air pollutants using Data Mining Techiniques

### submitted by

### Hrishikesh Salpekar — 1MS16CS040 Rahul R — 1MS16CS072 Suraj S Jarali — 1MS16CS106

### supervised by:

# Sowmya B J

Data Source: https://data.gov.in/catalog/historical-daily-ambient-air-quality-data

### **Data Exploration**

```
In [20]:
```

```
#importing libraries for Data Exploration

import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import style
import numpy as np
style.use ('ggplot')
```

```
In [21]:
```

```
df=pd.read_csv('ddata.csv')
df.head()
```

### Out[21]:

|   | Stn.Code | Sampling.Date | State     | City.Town.Village.Area | loctype                                  | SO2 | NO2  | RSPM.PM10 | SPM     | Location.of.Monit                        |
|---|----------|---------------|-----------|------------------------|------------------------------------------|-----|------|-----------|---------|------------------------------------------|
| 0 | 150.0    | 1990-02-01    | Telangana | Hyderabad              | Residential,<br>Rural and<br>other Areas | 4.8 | 17.4 | NaN       | NaN     | Tarnaka, NEERI L<br>Campus, Hyderab      |
| 1 | 151.0    | 1990-02-01    | Telangana | Hyderabad              | Industrial<br>Area                       | 3.1 | 7.0  | NaN       | NaN     | Nacharam                                 |
| 2 | 152.0    | 1990-02-01    | Telangana | Hyderabad              | Residential,<br>Rural and<br>other Areas | 6.2 | 28.5 | NaN       | NaN     | ABIDS Circle Gene<br>Office Building, Hy |
| 3 | 150.0    | 1990-03-01    | Telangana | Hyderabad              | Residential,<br>Rural and<br>other Areas | 6.3 | 14.7 | NaN       | NaN     | Tarnaka, NEERI L<br>Campus, Hyderab      |
| 4 | 151.0    | 1990-03-01    | Telangana | Hyderabad              | Industrial<br>Area                       | 4.7 | 7.5  | NaN       | NaN     | Nacharam                                 |
| 4 |          |               |           |                        |                                          |     |      |           | 1000000 | N.                                       |

```
In [22]:
```

```
df.describe()
```

Out[22]:

|       | Stn.Code     | SO2          | NO2          | RSPM.PM10    | SPM          | PM.2.5      |
|-------|--------------|--------------|--------------|--------------|--------------|-------------|
| count | 95146.000000 | 91175.000000 | 93732.000000 | 92317.000000 | 48927.000000 | 1756.000000 |
| mean  | 295.195352   | 10.322864    | 30.796267    | 108.308604   | 232.205665   | 48.247722   |
| std   | 190.189699   | 9.781473     | 21.614489    | 81.454458    | 153.108841   | 38.433731   |
| min   | 1.000000     | 0.500000     | 0.300000     | 3.000000     | 0.000000     | 4.000000    |
| 25%   | 146.000000   | 5.000000     | 18.000000    | 54.000000    | 123.000000   | 27.000000   |
| 50%   | 324.000000   | 8.000000     | 26.600000    | 85.000000    | 193.000000   | 32.000000   |
| 75%   | 416.000000   | 13.000000    | 36.000000    | 141.000000   | 311.000000   | 55.000000   |
| max   | 814.000000   | 909.000000   | 640.000000   | 6307.033333  | 1885.000000  | 318.000000  |

### In [23]:

```
df.drop(['Stn.Code'], axis=1, inplace=True)
df["Sampling.Date"]=pd.to_datetime(df["Sampling.Date"])
df.rename(columns={'City.Town.Village.Area':'City'},inplace=True)
```

#### In [24]:

```
df.isna().sum()
# Shows the number of missing values in each attribute
```

#### Out[24]:

Sampling.Date 0 0 State City 0 loctype 0 SO2 4896 NO2 2339 3754 RSPM.PM10 47144 Location.of.Monitoring.Station 608 PM.2.5 94315 dtype: int64

### In [25]:

### import seaborn as sns

### In [26]:

```
df.rename(columns={'Sampling.Date':'date'}, inplace=True)
df.rename(columns={'City.Town.Village.Area':'City'}, inplace=True)
df.rename(columns={'Location.of.Monitoring.Station':'location'}, inplace=True)
df.rename(columns={'RSPM.PM10':'RSPM10'}, inplace=True)

# Percentage of missing values in each column
print(df.isnull().sum(axis = 0) * 100 / df.shape[0])
date

0.000000
```

0.000000 State 0.000000 City loctype 0.000000 5.096231 SO2 NO2 2.434658 RSPM10 3.907527 SPM 49.072040 location 0.632865 PM.2.5 98.172185 dtype: float64

sns.heatmap(df.isnull(), yticklabels=False, cbar=False).set\_title('Missing values')
Out[27]:

Text(0.5,1,'Missing values')



#### In [28]:

```
df.drop(['PM.2.5','SPM', 'loctype', 'location'], axis=1, inplace=True)
sns.heatmap(df.isnull(), yticklabels=False, cbar=False).set_title('Dropping attributes with many missing values')
```

### Out[28]:

Text(0.5,1,'Dropping attributes with many missing values')



# **Removing Duplicates and Splitting Data on Cities**

```
In [29]:
```

```
df.drop_duplicates(inplace=True)

dfs = dict(tuple(df.groupby('City')))

for 1, DF in dfs.items():
    dfs[1]['S02'] = dfs[1].groupby(['date'])['S02'].transform('mean')
    dfs[1]['N02'] = dfs[1].groupby(['date'])['N02'].transform('mean')
    dfs[1]['RSPM10'] = dfs[1].groupby(['date'])['RSPM10'].transform('mean')
    dfs[1].drop_duplicates(subset=['date'], keep=False)

df = pd.concat(dfs.values(), ignore_index=True)
```

### **Outlier Analysis**

Removing outliers using Tukey's fences:  $\frac{1QR} = Q_3 - Q_1$  Taking data points only within range  $\frac{1.5}{Q_1 - 1.5}$  \text{IQR}, Q 3 + 1.5 \text{IQR}\right]\$\$ \$\text{where} Q 1 \text{and} Q 3 \text{are first and third quartile}\$\$

### In [30]:

```
locations = ['Agra', 'Ahmedabad', 'Bangalore', 'Chennai', 'Delhi', 'Hyderabad', 'Kolkata', 'Mumbai'
               'Vishakhapatnam' ]
fig1, axes = plt.subplots(3, 1)
for i, y in enumerate(['SO2', 'NO2', 'RSPM10']):
    sns.boxplot(x = 'City', y = y,
                                         data = df, order = locations, ax = axes[i])
for i in range(2):
    axes[i].set_xticklabels('')
axes[2].set_xticklabels(locations, rotation = 45)
axes[0].set_title('With Outliers')
fig1
import math
df = pd.DataFrame()
for 1, df_i in dfs.items():
    q = 1
    for attr in ['SO2', 'NO2', 'RSPM10']:
        Q1 = df_i[attr].quantile(0.25)
         Q3 = df i[attr].quantile(0.75)
         IQR = Q3 - Q1
          \begin{tabular}{ll} \textbf{if} & \textbf{not} & (\texttt{math.isnan}\,(\texttt{Q1}) & \textbf{and} & \texttt{math.isnan}\,(\texttt{Q3})\,) \end{tabular} .
              q += f'(\{Q1\} - 1.5 * \{IQR\}) \le \{attr\} \le (\{Q3\} + 1.5 * \{IQR\}) and '
    dfs[1] = df_i.query(q[:-5])
```



### In [31]:

```
df = pd.concat(dfs.values(), ignore_index=True)
fig2, axes = plt.subplots(3, 1)

for i, y in enumerate(['SO2', 'NO2', 'RSPM10']):
    sns.boxplot(x = 'City', y = y, data = df, order = locations, ax = axes[i])
for i in range(2):
    axes[i].set_xticklabels('')
axes[2].set_xticklabels(locations, rotation = 30)
axes[0].set_title('Without Outliers')
```

### Out[31]:

Text(0.5,1,'Without Outliers')





# **Treating Missing Values**

```
In [32]:
```

```
import warnings
warnings.filterwarnings("ignore")
for df_i in dfs.values():
    df_i.fillna(method = 'pad', inplace=True)
```

#### In [33]:

```
for df_i in dfs.values():
    so2 = df_i.So2.quantile(0.5)
    no2 = df_i.No2.quantile(0.5)
    rspm = df_i.RSPM10.quantile(0.5)
    df_i.So2.fillna(so2, inplace=True)
    df_i.No2.fillna(no2, inplace=True)
    df_i.RSPM10.fillna(rspm, inplace=True)

df = pd.concat(dfs.values(), ignore_index=True)

print(df.isnull().sum(axis = 0))

# Saving treated dataset as new csv file
    df.to_csv("final.csv")
```

date 0
State 0
City 0
SO2 0
NO2 0
RSPM10 0
dtype: int64

### **Scaling Features**

```
In [34]:
```

```
df.head() # Before scaling
```

### Out[34]:

|   | date       | State         | City | SO2 | NO2 | RSPM10 |
|---|------------|---------------|------|-----|-----|--------|
| 0 | 2004-09-13 | Uttar Pradesh | Agra | 7.0 | 7.5 | 67.0   |
| 1 | 2004-09-16 | Uttar Pradesh | Agra | 7.7 | 8.4 | 62.0   |
| 2 | 2004-09-20 | Uttar Pradesh | Agra | 7.3 | 7.8 | 156.0  |
| 3 | 2004-09-23 | Uttar Pradesh | Agra | 7.5 | 7.1 | 181.0  |
| 4 | 2004-09-27 | Uttar Pradesh | Agra | 8.2 | 8.9 | 303.0  |

```
df["Scale_S02"] = (df["S02"]/max(df.S02))
df["Scale_N02"] = (df["N02"]/max(df.N02))
df["Scale_RSPM10"] = (df["RSPM10"]/max(df.RSPM10))
df.head()
Out[35]:
```

|   | date       | State         | City | SO2 | NO2 | RSPM10 | Scale_SO2 | Scale_NO2 | Scale_RSPM10 |
|---|------------|---------------|------|-----|-----|--------|-----------|-----------|--------------|
| 0 | 2004-09-13 | Uttar Pradesh | Agra | 7.0 | 7.5 | 67.0   | 0.157303  | 0.060926  | 0.148641     |
| 1 | 2004-09-16 | Uttar Pradesh | Agra | 7.7 | 8.4 | 62.0   | 0.173034  | 0.068237  | 0.137549     |
| 2 | 2004-09-20 | Uttar Pradesh | Agra | 7.3 | 7.8 | 156.0  | 0.164045  | 0.063363  | 0.346090     |
| 3 | 2004-09-23 | Uttar Pradesh | Agra | 7.5 | 7.1 | 181.0  | 0.168539  | 0.057677  | 0.401553     |
| 4 | 2004-09-27 | Uttar Pradesh | Agra | 8.2 | 8.9 | 303.0  | 0.184270  | 0.072299  | 0.672213     |

# **Algorithm**

```
In [36]:
```

```
import statsmodels.api as sm
from sklearn.model_selection import train_test_split, cross_val_score
```

### In [38]:

```
# Applying the Linear Regression Algorithm for Bangalore

df = pd.read_csv('final.csv')
    d = df.loc[df.City == 'Bangalore']

from itertools import combinations

s = set(['SO2', 'NO2', 'RSPM10'])
    model = []

for (x1, x2) in combinations(s, 2):
    yi = set.difference(s, set([x1, x2])).pop()
    X = df[[x1, x2]]
    y = df[yi]
    model.append(([x1, x2], yi, sm.OLS(y, X).fit()))
```

### In [39]:

```
print(model[0][0], model[0][1])
print(model[0][2].summary())
```

['NO2', 'RSPM10'] SO2

OLS Regression Results

\_\_\_\_\_\_ Dep. Variable: SO2 R-squared: OLS Adj. R-squared: Model: Least Squares F-statistic:
Mon. 17 Dec 2018 Prob (F-statistic): 0.628 6.849e+04 Method: Mon, 17 Dec 2018 Date: 0.00 -2.6949e+05 10:53:00 Log-Likelihood: Time: No. Observations: 81209 AIC: 5.390e+05 Df Residuals: 81207 BIC: 5.390e+05 Df Model: 2. Covariance Type: nonrobust

|                           | coef             | std err   | t                 | P> t                                   | [0.025         | 0.975]            |
|---------------------------|------------------|-----------|-------------------|----------------------------------------|----------------|-------------------|
| NO2<br>RSPM10             | 0.2033<br>0.0157 | 0.001     | 152.684<br>42.396 | 0.000                                  | 0.201<br>0.015 | 0.206             |
| Omnibus:<br>Prob(Omnibus) | :                | 2507<br>0 |                   | =======<br>in-Watson:<br>ue-Bera (JB): |                | 0.208<br>6010.551 |

order of the second sec

 Skew:
 0.142
 Prob(JB):
 0.00

 Kurtosis:
 4.302
 Cond. No.
 7.40

#### Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

### In [40]:

```
print (model[1][0], model[1][1])
print (model[1][2].summary())
```

### ['NO2', 'SO2'] RSPM10

### OLS Regression Results

| ======================================= |                  |                     | =========== |
|-----------------------------------------|------------------|---------------------|-------------|
| Dep. Variable:                          | RSPM10           | R-squared:          | 0.741       |
| Model:                                  | OLS              | Adj. R-squared:     | 0.741       |
| Method:                                 | Least Squares    | F-statistic:        | 1.164e+05   |
| Date:                                   | Mon, 17 Dec 2018 | Prob (F-statistic): | 0.00        |
| Time:                                   | 10:53:02         | Log-Likelihood:     | -4.5122e+05 |
| No. Observations:                       | 81209            | AIC:                | 9.025e+05   |
| Df Residuals:                           | 81207            | BIC:                | 9.025e+05   |
| Df Model:                               | 2                |                     |             |
| Covariance Type:                        | nonrobust        |                     |             |
|                                         |                  |                     |             |
|                                         |                  |                     |             |

|              | coef             | std err        | t                 | P> t         | [0.025         | 0.975]    |
|--------------|------------------|----------------|-------------------|--------------|----------------|-----------|
| NO2<br>SO2   | 2.7371<br>1.3793 | 0.010<br>0.033 | 263.047<br>42.396 | 0.000        | 2.717<br>1.316 | 2.758     |
| =========    |                  |                |                   |              |                |           |
| Omnibus:     |                  | 10865.         | 741 Durbi:        | n-Watson:    |                | 0.391     |
| Prob(Omnibus | ):               | 0.             | 000 Jarqu         | e-Bera (JB): |                | 25845.616 |
| Skew:        |                  | 0.             | 782 Prob (        | JB):         |                | 0.00      |
| Kurtosis:    |                  | 5.             | 279 Cond.         | No.          |                | 5.40      |
| =========    |                  |                | ========          |              |                |           |

### Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

### In [41]:

```
print(model[2][0], model[2][1])
print(model[2][2].summary())
```

#### ['RSPM10', 'SO2'] NO2

### OLS Regression Results

| Dep. Variable:    | NO2              | R-squared:          | 0.795       |
|-------------------|------------------|---------------------|-------------|
| Model:            | OLS              | Adj. R-squared:     | 0.795       |
| Method:           | Least Squares    | F-statistic:        | 1.571e+05   |
| Date:             | Mon, 17 Dec 2018 | Prob (F-statistic): | 0.00        |
| Time:             | 10:53:03         | Log-Likelihood:     | -3.3793e+05 |
| No. Observations: | 81209            | AIC:                | 6.759e+05   |
| Df Residuals:     | 81207            | BIC:                | 6.759e+05   |
| Df Model:         | 2                |                     |             |
| Covariance Type:  | nonrohuet        |                     |             |

|                  |        | <del>-</del> |   |      |        |        |
|------------------|--------|--------------|---|------|--------|--------|
| Covariance Type: |        | nonrobust    |   |      |        |        |
| ===========      |        |              |   |      |        |        |
|                  | coef s | std err      | t | P> t | [0.025 | 0.975] |
|                  |        |              |   |      |        |        |

| RSPM10<br>SO2  | 0.1681<br>1.0970 | 0.001<br>0.007 | 263.<br>152. |               | 0.000  | 0.167<br>1.083 | 0.169 |  |  |
|----------------|------------------|----------------|--------------|---------------|--------|----------------|-------|--|--|
| Omnibus:       |                  | 15905.3        | =====<br>N2  | <br>Durbin-Wa | etson: |                | 0.382 |  |  |
| Prob(Omnibus): | 0.0              |                | Jarque-Be    |               |        | 40494.585      |       |  |  |
| Skew:          |                  | 1.0            | 78           | Prob(JB):     | :      |                | 0.00  |  |  |
| Kurtosis:      |                  | 5.7            | 06           | Cond. No.     |        |                | 16.3  |  |  |
|                |                  |                |              |               |        |                |       |  |  |

#### Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [43]:
```

```
from sklearn.metrics import classification report, confusion matrix
from sklearn.neighbors import KNeighborsClassifier
X_train, X_test, y_train, y_test = train_test_split(df[['RSPM10', 'SO2', 'NO2']],
                                                     df.City,
                                                     test_size = 0.33,
                                                     random state = 42)
err rate = []
for i in range(1, 32, 2):
    knn = KNeighborsClassifier(n neighbors=i)
    knn.fit(X_train, y_train)
   pred i = knn.predict(X test)
    err_rate.append(np.mean(pred_i != y_test))
Y = err_rate
X = range(16)
plt.plot(X, Y)
plt.show()
```



The above graph tells that error rate increases as k value increases

### **Cross Validation**

### In [44]:

```
l = list(range(1,50))
neighbors = list(filter(lambda x: x % 2 != 0, 1))
cv scores = []
# perform 10-fold cross validation
for k in neighbors:
    knn = KNeighborsClassifier(n_neighbors=k)
    scores = cross_val_score(knn, X_train, y_train, cv=10, scoring='accuracy')
    cv scores.append(scores.mean())
# changing to misclassification error
MSE = [1 - x \text{ for } x \text{ in } cv\_scores]
\# determining best k
optimal k = neighbors[MSE.index(min(MSE))]
print ("The optimal number of neighbors is %d" % optimal k)
# plot misclassification error vs k
plt.plot(neighbors, MSE)
plt.xlabel('Number of Neighbors K')
plt.ylabel('Misclassification Error')
plt.show()
```

The optimal number of neighbors is 1



It can be seen that kNN model doesn't work as good as the Linear Regression Model as the optimal value for kNNN is just 1