# Colégio BBBB Bandeirantes

### Caderno de Questões

| Bimestre | Disciplina     |           | Turmas                              | Período | Data da prova | P 161006 |
|----------|----------------|-----------|-------------------------------------|---------|---------------|----------|
| 1.0      | Matemática - ( | Geometria | 1.a Série                           | М       | 15/04/2016    |          |
| Questões | Testes         | Páginas   | Professor(es)                       | •       |               |          |
| 10       |                | 7         | Fábio Cáceres/Oliveira/Rosana Alves |         |               |          |

Verifique cuidadosamente se sua prova atende aos dados acima e, em caso negativo, solicite, imediatamente, outro exemplar. Não serão aceitas reclamações posteriores.

| Aluno(a) |           | Turma         | N.o       |
|----------|-----------|---------------|-----------|
| Nota     | Professor | Assinatura do | Professor |

# Instruções:

- 1. A prova pode ser resolvida a lápis. Respostas finais somente com tinta azul ou preta.
- 2. É **proibido** o uso de qualquer aparelho eletrônico e qualquer tipo de relógio.
- 3. Únicos materiais permitidos: lápis (ou lapiseira), caneta, régua e borracha.
- 4. Resposta sem resolução não será considerada.

01.

a. (valor: 0,5) Calcule x.



b. (valor: 0,5) Calcule x, sabendo que a área do trapézio ABCD é  $108 \text{ cm}^2$ .



Resposta:

02.

- Rascunho
- a. (valor: 0,5) Quantas diagonais **não** passam pelo centro de um polígono regular cuja soma dos ângulos internos é igual a 5040°?

| Resnosta. |  |  |
|-----------|--|--|

b. (valor: 0,5) A figura mostra um quadrado e um pentágono regular. Calcule as medidas dos ângulos indicados.



Resposta: x =\_\_\_\_\_\_; y =\_\_\_\_\_\_

| Aluno(a) | Turma | N.o | P 161006 |
|----------|-------|-----|----------|
|          |       |     | p 3      |

03. (valor: 1,0) Calcule a área do triângulo ABC.





Resposta:

04. (valor: 1,0) Calcule a área de um trapézio de bases 5 cm e 26 cm, cujos lados oblíquos medem 13 cm e 20 cm. Esboce uma figura, usando régua, mas não necessariamente em escala.

05. (valor: 1,0) Se aumentarmos a diagonal de um quadrado em  $5\sqrt{2}\,\mathrm{cm}$  (de modo que ele continue quadrado), sua área aumenta  $85\,\mathrm{cm}^2$ . Quanto mede a diagonal do quadrado original?

Rascunho

Resposta:

06. (valor: 1,0) A figura mostra um quadrado ABCD e um triângulo equilátero PAB. Calcule a área da região sombreada, sabendo que a área do triângulo PAB vale  $81\sqrt{3}~{\rm cm}^2$ .



07. (valor: 1,0) (FUVEST) Uma folha de papel ABCD de formato retangular é dobrada em torno do segmento  $\overline{\mathrm{EF}}$ , de maneira que o ponto A ocupe a posição G, como mostra a

figura. Se  $\overrightarrow{AE} = 3$  e  $\overrightarrow{BG} = 1$ , então a medida do segmento  $\overrightarrow{AF}$  é igual a

Rascunho



Aluno(a)

- a.  $\frac{3\sqrt{5}}{2}$
- b.  $\frac{7\sqrt{5}}{2}$
- c.  $\frac{3\sqrt{5}}{4}$
- d.  $\frac{3\sqrt{5}}{5}$
- e.  $\frac{\sqrt{5}}{3}$

(**Obs**: essa questão só será considerada se vier com resolução).

| 08. | . (valor: 1,0) Em um triângulo isósceles de área 120 cm² a base excede a correspondente altura em 1 cm. Quanto mede o perímetro desse triângulo? Faça uma figura. | Rascunho |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|     |                                                                                                                                                                   |          |
|     | Resposta:                                                                                                                                                         |          |
| 09. | (valor: 1,0) Em um losango de perímetro 116 cm uma diagonal excede a outra em 2 cm. Quanto vale a área desse losango?                                             |          |
|     | Resposta:                                                                                                                                                         |          |

| Aluno(a) | Turma | N.o | P 161006 |
|----------|-------|-----|----------|
|          |       |     | p 7      |

# 10. Leia com atenção.

A tabela mostra os sete primeiros polígonos regulares. Em cada um deles estão desenhadas as diagonais com os tamanhos possíveis para elas, ou seja: se você traçar qualquer outra diagonal em um dos polígonos, ela terá tamanho igual ao de uma diagonal que já está traçada nesse polígono.

| /                                                                                                      |                                          |       |     |
|--------------------------------------------------------------------------------------------------------|------------------------------------------|-------|-----|
| a. (valor: 0,25) Quantos ta<br>de diagonais é possível<br>polígono regular com <i>n</i><br>número par? | 0 diagonais                              | n = 3 |     |
| Resposta                                                                                               | 1 tamanho<br>possível de<br>diagonal.    | n = 4 |     |
| b. (valor: 0,25) Quantos ta<br>de diagonais é possível<br>polígono regular com <i>n</i>                | 1 tamanho<br>possível de<br>diagonal.    | n = 5 | *   |
| número ímpar?                                                                                          | 2 tamanhos<br>possíveis de<br>diagonais. | n = 6 | #   |
| Resposta<br>c. (valor: 0,5) Quantos tan<br>de diagonais tem um pe                                      | 2 tamanhos<br>possíveis de<br>diagonais. | n = 7 | *   |
| com 30 lados?                                                                                          | 3 tamanhos<br>possíveis de<br>diagonais. | n = 8 | #   |
| Resposta                                                                                               | 3 tamanhos<br>possíveis de<br>diagonais. | n = 9 | *** |
| J                                                                                                      | l .                                      |       |     |

| a. | (valor: 0,25) Quantos tamanhos diferentes    |
|----|----------------------------------------------|
|    | de diagonais é possível obter em um          |
|    | polígono regular com $n$ lados, sendo $n$ um |
|    | número par?                                  |

| Resposta: |  |
|-----------|--|
|           |  |

manhos diferentes obter em um lados, sendo n um

| Resposta: |  |
|-----------|--|

nanhos diferentes olígono regular

| Resposta: |  |
|-----------|--|
|           |  |

# Rascunho

01.

a. (valor: 0,5) Calcule x.



(1) 
$$y^2 = (\sqrt{11})^2 + (\sqrt{13})^2 \Rightarrow y^2 = 24$$

(2) 
$$x^2 = y^2 + 5^2$$
  
 $x^2 = 24 + 25$   
 $x = 7$ 

Resposta: 7 cm

b. (valor: 0,5) Calcule x, sabendo que a área do trapézio ABCD é  $108 \text{ cm}^2$ .



(1) 
$$\frac{(21+6) h}{2} = 108 \Rightarrow h = 8$$

(2) 
$$x^2 = h^2 + 15^2$$
  
 $x^2 = 8^2 + 15^2$   
 $x = 17$ 

Resposta: 17 cm

02.

a. (valor: 0,5) Quantas diagonais **não** passam pelo centro de um polígono regular cuja soma dos ângulos internos é igual a 5040°?

Sejam S,  $n \in d$ , respectivamente, a soma dos ângulos internos, o número de lados e o número de diagonais do polígono tem-se:

(1) 
$$S = 5040^{\circ} \Rightarrow (n-2) \cdot 180^{\circ} = 5040^{\circ} \Rightarrow n = 30$$

(2) 
$$d = \frac{n(n-3)}{2} \Rightarrow d = \frac{30 \cdot (30-3)}{2} \Rightarrow d = 405$$

(3) Como o número de diagonais que passam pelo centro do polígono é  $\frac{30}{2}$  = 15, não passsam pelo centro 405 – 15 = 390 diagonais.

b. (valor: 0,5) A figura mostra um quadrado e um pentágono regular. Calcule as medidas dos ângulos indicados.



De acordo com as medidas indicadas na figura ao lado, temos:

- $z + 45 = 180^{\circ} \Rightarrow z = 135^{\circ}$
- (2) No quadrilátero DEFG:  $x + z + 108^{\circ} + 18^{\circ} = 360^{\circ}$  $x + 135^{\circ} + 108^{\circ} + 18^{\circ} = 360^{\circ}$  $x = 99^{\circ}$
- (3)  $\triangle ACF: y + 72^{\circ} = x \Rightarrow$  $v + 72^{\circ} = 99^{\circ} \Rightarrow v = 27^{\circ}$ Resposta:  $x = 99^\circ$ ;  $y = 27^\circ$

03. (valor: 1,0) Calcule a área do triângulo ABC.



Por Pitágoras:

$$(1) \quad x^2 + y^2 = 81$$

(1) 
$$x^2 + y^2 = 81$$
  
(2)  $(10 + x)^2 + y^2 = 301$ 

$$(2) \Rightarrow 100 + 20x + x^2 + y^2 = 301 \tag{3}$$

(1) em (3): 
$$100 + 20x + 81 = 301 \Rightarrow x = 6$$

Mas, 
$$x^2 + y^2 = 81 \implies 36 + y^2 = 81 \implies$$

$$v^2 = 45 \Rightarrow v = 3\sqrt{5}$$

Portanto, área (ABC) = 
$$\frac{16 \cdot 3\sqrt{5}}{2} = 24\sqrt{5}$$

Resposta:  $24\sqrt{5}$  cm<sup>2</sup>

04. (valor: 1,0) Calcule a área de um trapézio de bases 5 cm e 26 cm, cujos lados oblíguos medem 13 cm e 20 cm. Esboce uma figura, usando régua, mas não necessariamente em escala.



De acordo com as medidas indicadas, tem-se:

$$(1) x^2 + h^2 = 169$$

(2) 
$$(21-x)^2 + h^2 = 400$$

Resolvendo o sistema formado por essas equações obtém-se x = 5 e h = 12

Logo, sendo A a área do trapézio, tem-se:

$$A = \frac{(26+5) \cdot h}{2} = \frac{31 \cdot 12}{2} \Rightarrow A = 186 \text{ cm}^2$$

Resposta: 186 cm<sup>2</sup>

05. (valor: 1,0) Se aumentarmos a diagonal de um quadrado em  $5\sqrt{2}$  cm (de modo que ele continue quadrado), sua área aumenta  $85~{\rm cm}^2$ . Quanto mede a diagonal do quadrado original?





De acordo com o enunciado:

$$\begin{cases} D = d + 5\sqrt{2} \Rightarrow \begin{cases} b\sqrt{2} = a\sqrt{2} + 5\sqrt{2} \\ A' = A + 85 \end{cases} \Rightarrow \begin{cases} b = a + 5 \\ b^2 = a^2 + 85 \end{cases} \Rightarrow \begin{cases} b = a + 5 \\ b^2 + a^2 = 85 \end{cases}$$
$$\therefore (a + 5)^2 = a^2 + 85 \Rightarrow 10a + 25 = 85 \Rightarrow a = 6$$

Resposta:  $6\sqrt{2}$  cm

06. (valor: 1,0) A figura mostra um quadrado ABCD e um triângulo equilátero PAB. Calcule a área da região sombreada, sabendo que a área do triângulo PAB vale  $81\sqrt{3}~\text{cm}^2$ .



Sendo x o lado do quadrado (que é igual ao lado do triângulo), temos:

(1) 
$$\frac{x^2\sqrt{3}}{4} = 81\sqrt{3} \Rightarrow x = 18$$

(2) 
$$\text{área (PBC)} = \frac{x \cdot \frac{x}{2}}{2}$$

área (PBC) = 
$$\frac{x^2}{4} = \frac{18^2}{4}$$

∴ área (PBC) =  $81 \text{ cm}^2$ 

Resposta: 81 cm<sup>2</sup>

07. (valor: 1,0) (FUVEST) Uma folha de papel ABCD de formato retangular é dobrada em torno do segmento  $\overline{EF}$ , de maneira que o ponto A ocupe a posição G, como mostra a figura. Se AE=3 e BG=1, então a medida do segmento  $\overline{AF}$  é igual a



- a.  $\frac{3\sqrt{5}}{2}$
- b.  $\frac{7\sqrt{5}}{2}$
- c.  $\frac{3\sqrt{5}}{4}$
- d.  $\frac{3\sqrt{5}}{5}$
- e.  $\frac{\sqrt{5}}{3}$

De acordo com as medidas indicadas, por Pitágoras:

- (1) no  $\triangle EGH$ :  $y^2 + 2^2 = 3^2 \Rightarrow y = \sqrt{5}$
- (2) no  $\triangle BFG$ :  $x^2 = (y x)^2 + 1^2$

$$Logo, x^2 = (\sqrt{5} - x)^2 + 1 \Rightarrow$$

$$\Rightarrow x^2 = 5 - 2\sqrt{5}x + x^2 + 1 \Rightarrow$$

$$\Rightarrow 2\sqrt{5} \ x = 6 \Rightarrow x = \frac{3\sqrt{5}}{5}$$

Resposta: Alternativa **d**.

(**Obs**: essa questão só será considerada se vier com resolução).

08. (valor: 1,0) Em um triângulo isósceles de área  $120 \text{ cm}^2$  a base excede a correspondente altura em 1 cm. Quanto mede o perímetro desse triângulo? Faça uma figura.





(1)  $\frac{(h+1)h}{2} = 120 \Rightarrow h^2 + h - 240 = 0 \Rightarrow (h+16)(h-15) = 0 \Rightarrow h = 15$ 

∴ a base do triângulo mede 16.

- (2) Por Pitágoras:  $x^2 = 8^2 + 15^2 \Rightarrow x = 17$
- (3) Perímetro do triângulo vale 17 + 17 + 16 = 50 cm

Resposta: 50 cm

09. (valor: 1,0) Em um losango de perímetro 116 cm uma diagonal excede a outra em 2 cm. Quanto vale a área desse losango?



- (1) Perímetro = 116  $4y = 116 \Rightarrow y = 29$
- (2) Por Pitágoras no triângulo destacado, temos:  $x^2 + (x+1)^2 = 29^2$  $2x^2 + 2x + 1 = 841$  $x^2 + x 420 = 0 \Rightarrow (x+21)(x-20) = 0 \Rightarrow$  $\Rightarrow x = 20 \text{ cm}$
- (3) Sendo A a área do losango, temos:

$$A = \frac{x \cdot (x+1)}{2} \cdot 4 \Rightarrow A = \frac{20 \cdot 21}{2} \cdot 4 \Rightarrow$$
$$\Rightarrow A = 840 \text{ cm}^2$$

Resposta: 840 cm<sup>2</sup>

### 10. Leia com atenção.

A tabela mostra os sete primeiros polígonos regulares. Em cada um deles estão desenhadas as diagonais com os tamanhos possíveis para elas, ou seja: se você traçar qualquer outra diagonal em um dos polígonos, ela terá tamanho igual ao de uma diagonal que já está traçada nesse polígono.

|     | <i>n</i> = 3 | 0 diagonais                              |
|-----|--------------|------------------------------------------|
|     | n = 4        | 1 tamanho<br>possível de<br>diagonal.    |
| *   | <i>n</i> = 5 | 1 tamanho<br>possível de<br>diagonal.    |
| #   | <i>n</i> = 6 | 2 tamanhos<br>possíveis de<br>diagonais. |
| #   | n = 7        | 2 tamanhos<br>possíveis de<br>diagonais. |
| ##  | n = 8        | 3 tamanhos<br>possíveis de<br>diagonais. |
| ### | n = 9        | 3 tamanhos<br>possíveis de<br>diagonais. |

a. (valor: 0,25) Quantos tamanhos diferentes de diagonais é possível obter em um polígono regular com n lados, sendo n um número par?

$$\frac{n-2}{2}$$
 Resposta:  $\frac{n-2}{2}$ 

b. (valor: 0,25) Quantos tamanhos diferentes de diagonais é possível obter em um polígono regular com n lados, sendo n um número ímpar?

$$\frac{n-3}{2}$$
 Resposta:  $\frac{n-3}{2}$ 

c. (valor: 0,5) Quantos tamanhos diferentes de diagonais tem um polígono regular com 30 lados?

$$\frac{n-2}{2} = \frac{30-2}{2} = \frac{28}{2} = 14$$