Applying Embeddings

- First layer of your network: map from word indices to embeddings
- Approach 1: learn these embeddings as parameters from your data
 - Often works pretty well
- Approach 2: initialize word embeddings using GloVe, keep fixed
 - Faster because no need to update these parameters
- ▶ Approach 3: initialize word embeddings GloVe, fine-tune
 - Works best for some tasks
- Can also evaluate embeddings intrinsically on tasks like word similarity

 Deep Averaging Networks: feedforward neural network on average of word embeddings from input

Contradicts a widely-held view that we need to model syntactic structure to represent language

Simple averaging can work as well as syntactic composition for some problems!

No pretrained	Model	RT	SST fine	SST bin	IMDB	Time (s)	
embeddings	DAN-ROOT		46.9	85.7		31	
	► DAN-RAND	77.3	45.4	83.2	88.8	136	
	DAN	80.3	47.7	86.3	89.4	136	lyyer et al. (2015)
Bag-of-words {	NBOW-RAND	76.2	42.3	81.4	88.9	91	
	NBOW	79.0	43.6	83.6	89.0	91	
	BiNB		41.9	83.1			Wang and Manning
	NBSVM-bi	79.4			91.2		(2012)
Tree-structured neural networks	RecNN*	77.7	43.2	82.4			
	RecNTN*		45.7	85.4			
	DRecNN		49.8	86.6		431	
	TreeLSTM		50.6	86.9			
	$DCNN^*$		48.5	86.9	89.4		
	PVEC*		48.7	87.8	92.6		14' (0044)
	CNN-MC	81.1	47.4	88.1		2,452	Kim (2014)
	WRRBM*				89.2		

Sentence	DAN	DRecNN	Ground Truth
who knows what exactly godard is on about in this film, but	positive	positive	positive
his words and images do n't have to add up to mesmerize			
you.			
it's so good that its relentless, polished wit can withstand	negative	positive	positive
not only inept school productions, but even oliver parker's			
movie adaptation			
too bad, but thanks to some lovely comedic moments and	negative	negative	positive
several fine performances, it's not a total loss			
this movie was not good	negative	negative	negative
this movie was good	positive	positive	positive
this movie was bad	negative	negative	negative
the movie was not bad	negative	negative	positive

Will return to compositionality with syntax and LSTMs