Exploring Simple Siamese Representation Learning

论文解读

https://www.bilibili.com/video/BV12M4y1u7ep

Work before 2018

Moco

Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

```
# f g, f k: encoder networks for guery and key
 queue: dictionary as a queue of K keys (CxK)
 m: momentum
# t: temperature
f_k.params = f_q.params # initialize
for x in loader: # load a minibatch x with N samples
  x_q = aug(x) # a randomly augmented version
  x_k = aug(x) # another randomly augmented version
   g = f_q.forward(x_g) # queries: NxC
   k = f_k.forward(x_k) # keys: NxC
  k = k.detach() # no gradient to keys
   # positive logits: Nx1
  l_{pos} = bmm(q.view(N,1,C), k.view(N,C,1))
   # negative logits: NxK
  l_neg = mm(q.view(N,C), queue.view(C,K))
   # logits: Nx(1+K)
  logits = cat([l_pos, l_neg], dim=1)
   # contrastive loss, Eqn. (1)
  labels = zeros(N) # positives are the 0-th
  loss = CrossEntropyLoss(logits/t, labels)
   # SGD update: query network
  loss.backward()
  update (f_q.params)
   # momentum update: key network
  f_k.params = m*f_k.params + (1-m)*f_q.params
   # update dictionary
  enqueue (queue, k) # enqueue the current minibatch
  dequeue (queue) # dequeue the earliest minibatch
```

bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation.

BYOL

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

BYOL-A by NTT

Method	Top-1	Top-5
Local Agg.	60.2	-
PIRL [35]	63.6	-
CPC v2 [32]	63.8	85.3
CMC [11]	66.2	87.0
SimCLR [8]	69.3	89.0
MoCo v2 [37]	71.1	-
InfoMin Aug. [12]	73.0	91.1
BYOL (ours)	74.3	91.6

Method	Architecture	Param.	Top-1	Top-5
SimCLR [8]	ResNet-50 (2 \times)	94M	74.2	92.0
CMC [11]	ResNet-50 $(2\times)$	94M	70.6	89.7
BYOL (ours)	ResNet-50 $(2\times)$	94M	77.4	93.6
CPC v2 [32]	ResNet-161	305M	71.5	90.1
MoCo [9]	ResNet-50 $(4\times)$	375M	68.6	-
SimCLR [8]	ResNet-50 $(4\times)$	375M	76.5	93.2
BYOL (ours)	ResNet-50 $(4\times)$	375M	78.6	94.2
BYOL (ours)	ResNet-200 (2 \times)	250M	79.6	94.8

(a) ResNet-50 encoder.

(b) Other ResNet encoder architectures.

Table 1: Top-1 and top-5 accuracies (in %) under linear evaluation on ImageNet.

Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning https://arxiv.org/pdf/2006.07733.pdf, NurlPS2020

CLIP

(2) Create dataset classifier from label text

SimSiam

Exploring Simple Siamese Representation Learning

Xinlei Chen, Kaiming He

Self-/Unsupervised Pre-Training

- > Many exciting frameworks in recent years
 - MoCo: surpasses supervised pretraining on multiple vision tasks
 - SimCLR/MoCo (v2)/BYOL/SwAV: closes accuracy gap on ImageNet
- > Common structure: Siamese networks
 - Weight-sharing networks applied to multiple inputs
 - Simplest form: two views from the same image predict the same output, maximize similarity
 - However, it suffers from collapsing solution that all inputs output the same
- ➤ Countering strategies in the literature
 - 1. Contrastive learning, with negatives (MoCo, SimCLR)
 - 2. Clustering with balanced size (SwAV)
 - 3. Momentum encoder w/ predictor (?) (BYOL)

SimSiam: Simple Siamese Representation Learning

Architecture

PyTorch-like code

```
# f: backbone + projection mlp
# h: prediction mlp
for x in loader: # load a minibatch x with n samples
  x1, x2 = aug(x), aug(x) # random augmentation
  z1, z2 = f(x1), f(x2) # projections, n-by-d
  p1, p2 = h(z1), h(z2) # predictions, n-by-d
  L = D(p1, z2)/2 + D(p2, z1)/2 # loss
  L.backward() # back-propagate
  update (f, h) # SGD update
def D(p, z): # negative cosine similarity
  z = z.detach() # stop gradient
  p = normalize(p, dim=1) # 12-normalize
  z = normalize(z, dim=1) # 12-normalize
  return - (p*z).sum(dim=1).mean()
```

Analysis

*predictor can be removed without collapsing (see paper)

	top-1
w/ stop-grad	67.7±0.1
w/o stop-grad	0.1

stop-grad is critical

	top-1
w/ default	67.7
w/o pred.	0.1
random pred.	1.5
not decay <i>pred</i> . <i>lr</i>	68.1

predictor is important*

Comparison to Others

Architecture

SimSiam works without:

1) negatives, 2) large batches, and 3) momentum encoders

ImageNet Linear Classification

method	batch size	negative pairs	momentum encoder	100-ep	200-ер	400-ep	800-ep
SimCLR	4096	√		66.5	68.3	69.8	70.4
MoCo	256	√	V	67.4	69.9	71.0	72.2
BYOL	4096		√	66.5	70.6	73.2	74.3
SwAV	4096			66.5	69.1	70.7	71.8
SimSiam	256			68.1	70.0	70.8	71.3

VOC Detection Transfer

method	AP50	AP75	AP
Supervised	74.4	42.4	42.7
SimCLR	75.9	46.8	50.1
MoCo	77.1	48.5	52.5
BYOL	77.1	47.0	49.9
SwAV	75.5	46.5	49.6
SimSiam (Optimal)	77.3	48.5	52.5

Discussions

- > Siamese networks are useful for invariance
 - Invariance: two views of the same concept produce the same output
 - Translation-invariance is baked in ConvNets. but harder for others
 - Siamese networks serve as a data-driven baseline without inductive biases (e.g., vision transformers)

```
super(SimSiam, self).__init__()
# create the encoder
# num classes is the output fc dimension, zero-initialize last BNs
self.encoder = base_encoder(num_classes=dim, zero_init_residual=True)
# build a 3-layer projector
prev dim = self.encoder.fc.weight.shape[1]
self.encoder.fc = nn.Sequential(nn.Linear(prev_dim, prev_dim, bias=False),
                                nn.BatchNorm1d(prev_dim),
                                nn.ReLU(inplace=True), # first layer
                                nn.Linear(prev_dim, prev_dim, bias=False),
                                nn.BatchNorm1d(prev dim),
                                nn.ReLU(inplace=True), # second layer
                                self.encoder.fc,
                                nn.BatchNorm1d(dim, affine=False)) # output layer
self.encoder.fc[6].bias.requires_grad = False # hack: not use bias as it is followed by BN
# build a 2-layer predictor
self.predictor = nn.Sequential(nn.Linear(dim, pred_dim, bias=False),
                                nn.BatchNorm1d(pred dim),
                                nn.ReLU(inplace=True), # hidden layer
                                nn.Linear(pred_dim, dim)) # output layer
```

```
# Data loading code
traindir = os.path.join(args.data, 'train')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])
# MoCo v2's aug: similar to SimCLR https://arxiv.org/abs/2002.05709
augmentation = [
    transforms.RandomResizedCrop(224, scale=(0.2, 1.)),
    transforms.RandomApply([
        transforms.ColorJitter(0.4, 0.4, 0.4, 0.1) # not strengthened
    ], p=0.8),
    transforms.RandomGrayscale(p=0.2),
    transforms.RandomApply([simsiam.loader.GaussianBlur([.1, 2.])], p=0.5),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    normalize
```