## UFRGS – INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma A - 2016/1 Prova da área II

| 1-6 | 7 | 8 | Total |
|-----|---|---|-------|
|     |   |   |       |
|     |   |   |       |
|     |   |   |       |

| Nome: | Cartão: |  |
|-------|---------|--|
|       |         |  |

#### ${\bf Regras\ Gerais:}$

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

#### Regras para as questões abertas

- Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- $\bullet~$  Use notação matemática consistente.

## COORDENADAS CILÍNDRICAS E ESFÉRICAS

# a) Coordenadas cilíndricas : ρ,φ,z



### b) Coordenadas esféricas : r, θ, φ







Elipsóide: 
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$



Parabolóide Elíptico: 
$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$



Parabolóide Hiperbólico: 
$$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$



Hiperbolóide de uma folha: 
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$



$$\begin{array}{ll} {\rm Hiperbol\'oide} \\ {\rm de\ duas\ folhas:} \end{array} \quad -\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \\ \end{array}$$



Tabela do operador  $\vec{\nabla}$ : f = f(x, y, z) e g = g(x, y, z) são funções escalares;  $\vec{F} = \vec{F}(x, y, z)$  e  $\vec{G} = \vec{G}(x, y, z)$  são funções vetoriais

| F = F | $\vec{G}(x,y,z)$ e $\vec{G}=\vec{G}(x,y,z)$ são funções vetoriais.                                                                                                                                                                                                          |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.    | $\vec{\nabla}\left(f+g\right) = \vec{\nabla}f + \vec{\nabla}g$                                                                                                                                                                                                              |
| 2.    | $\vec{\nabla} \cdot \left( \vec{F} + \vec{G} \right) = \vec{\nabla} \cdot \vec{F} + \vec{\nabla} \cdot \vec{G}$                                                                                                                                                             |
| 3.    | $\vec{\nabla} \times \left( \vec{F} + \vec{G} \right) = \vec{\nabla} \times \vec{F} + \vec{\nabla} \times \vec{G}$                                                                                                                                                          |
| 4.    | $\vec{\nabla} \left( fg \right) = f \vec{\nabla} g + g \vec{\nabla} f$                                                                                                                                                                                                      |
| 5.    | $\vec{ abla}\cdot\left(f\vec{F} ight)=\left(\vec{ abla}f ight)\cdot\vec{F}+f\left(\vec{ abla}\cdot\vec{F} ight)$                                                                                                                                                            |
| 6.    | $\vec{ abla} 	imes \left( f \vec{F}  ight) = \vec{ abla} f 	imes \vec{F} + f \vec{ abla} 	imes \vec{F}$                                                                                                                                                                     |
| 7.    | $\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$                                                                                                         |
|       | onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano                                                                                                                         |
| 8.    | $ec{ abla} 	imes \left( ec{ abla} f  ight) = 0$                                                                                                                                                                                                                             |
| 9.    | $\vec{\nabla} \cdot \left( \vec{\nabla} \times \vec{F} \right) = 0$                                                                                                                                                                                                         |
| 10.   | $\vec{\nabla} \times \left( \vec{\nabla} \times \vec{F} \right) = \vec{\nabla} \left( \vec{\nabla} \cdot \vec{F} \right) - \vec{\nabla}^2 \vec{F}$                                                                                                                          |
| 11.   | $\vec{\nabla} \cdot \left( \vec{F} \times \vec{G} \right) = G \cdot \left( \vec{\nabla} \times \vec{F} \right) - F \cdot \left( \vec{\nabla} \times \vec{G} \right)$                                                                                                        |
| 12.   | $\vec{\nabla} \times \left( \vec{F} \times \vec{G} \right) = \left( \vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left( \vec{\nabla} \cdot \vec{F} \right) - \left( \vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left( \vec{\nabla} \cdot \vec{G} \right)$ |
|       | $ec{ abla}\left(ec{F}\cdotec{G} ight)=\left(ec{G}\cdotec{ abla} ight)ec{F}+\left(ec{F}\cdotec{ abla} ight)ec{G}+$                                                                                                                                                           |

# Algumas fórmulas:

| Algumas formulas.        |                                                                                                                                                                              |  |  |  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Nome                     | Definição                                                                                                                                                                    |  |  |  |
| Curvatura                | $\kappa = \left\  \frac{d\vec{T}}{ds} \right\  = \left\  \frac{\frac{d\vec{T}}{dt}}{\frac{ds}{dt}} \right\  = \frac{\ \vec{r}'(t) \times \vec{r}''(t)\ }{\ \vec{r}'(t)\ ^3}$ |  |  |  |
| Torção                   | $\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{(\vec{r}'(t) \times \vec{r}''(t)) \cdot \vec{r}'''(t)}{\ \vec{r}'(t) \times \vec{r}''(t)\ ^2}$                            |  |  |  |
| Módulo<br>da Torção      | $ 	au  = \left\  rac{d ec{B}}{ds}  ight\  = \left\  rac{d ec{B}}{dt}  ight\ $                                                                                              |  |  |  |
| Aceleração<br>normal     | $a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{\rho} = \kappa v^2$                                                                                                 |  |  |  |
| Aceleração<br>tangencial | $a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$                                                                                                                      |  |  |  |



( ) 
$$\vec{a}_T = 6\vec{i} + 9\vec{j} - 18\vec{k}$$
.

( ) 
$$\vec{a}_T = 4\vec{i} + 6\vec{j} - 12\vec{k}$$
.

( ) 
$$\vec{a}_T = 2\vec{i} + 3\vec{j} - 6\vec{k}$$
.

( ) 
$$\vec{a}_T = \vec{0}$$
.

- ( ) Não é possível calcular apenas com os dados dados.
- ( ) Nenhuma das anteriores.
- Questão 2 (1.0 ponto) Considere a curva representada no gráfico abaixo. Pode-se afirmar que as componentes do vetor unitário normal  $(N_1, N_2, N_3)$  no ponto destacado satisfazem:



( ) 
$$N_1 \ge 0, N_2 \ge 0, N_3 \le 0$$

( ) 
$$N_1 \ge 0, N_2 \le 0, N_3 \ge 0$$

( ) 
$$N_1 \ge 0, N_2 \le 0, N_3 \le 0$$

( ) 
$$N_1 \le 0, N_2 \ge 0, N_3 \ge 0$$

( ) 
$$N_1 \le 0, N_2 \ge 0, N_3 \le 0$$

( ) 
$$N_1 \le 0, N_2 \le 0, N_3 \ge 0$$

( ) 
$$N_1 \le 0, N_2 \le 0, N_3 \le 0$$



• Questão 3 (1.0 pontos) Considere o campo vetorial  $\vec{F}$  dado abaixo.

Pode-se afirmar que

( ) No ponto (0.5,-0.5), 
$$\left( \vec{\nabla} \times \vec{F} \right) \cdot \vec{k} > 0.$$

( ) No ponto (0.5,-0.5), 
$$\left( \vec{\nabla} \times \vec{F} \right) \cdot \vec{k} < 0.$$

( ) Na origem, 
$$\left(\vec{\nabla} \times \vec{F}\right) \cdot \vec{k} > 0$$
.

( ) Na origem, 
$$(\vec{\nabla} \times \vec{F}) \cdot \vec{k} < 0$$
.

( ) O campo 
$$\vec{F}$$
 é irrotacional.



• Questão 4 (1.0 ponto) Considere o campo escalar radial dado pela função suave f(r) e o campo vetorial dado por  $\vec{F} = -\vec{\nabla} f(r)$ . Assinale a alternativa FALSA:

( ) 
$$\iint_S \vec{F} \cdot \vec{n} ds = -4\pi f'(1) \text{ onde } S = \{(x,y,z): x^2 + y^2 + z^2 = 1\} \text{ orientada para for a.}$$

( ) 
$$\oint_C \vec{F} \cdot \vec{dr} = 0$$
 para todo caminho fechado C.

( ) 
$$\iint_B \vec{F} \cdot \vec{n} ds = 0$$
 onde  $B = \{(x, y, z) : x^2 + y^2 \le 1, z = 0.\}.$ 

( ) 
$$\vec{\nabla} \times \vec{F} = \vec{0}$$

( ) 
$$\vec{\nabla}^2 f = f''(r)$$
.

• Questão 5 (1.0 ponto) A curvatura da curva  $y=x^3$  no ponto x=1 é ( )  $\frac{3}{\sqrt{10}}$ .

$$(\ ) \frac{3}{\sqrt{10}}$$

$$() \frac{6}{\sqrt{10}}$$

$$(\ )\ \frac{3}{10\sqrt{10}}.$$

$$(\ )\ \frac{6}{10\sqrt{10}}.$$

$$(\ )\ \frac{3}{10}.$$

$$(\ ) \frac{3}{5}.$$

• Questão 6 (1.0 ponto) Considere as seguintes três superfícies abertas:

$$S_1: x^2 + y^2 + z^2 = 1$$
, limitada inferiormente plano  $z = 0$ .

$$S_2: z = 1 - x^2 - y^2,$$
 limitada inferiormente pelo plano  $z = 0.$ 

$$S_3: z = 1 - \sqrt{x^2 + y^2}$$
, limitada pelo plano  $z = 0$  e o plano  $z = 1$ .

e a seguinte curva positivamente orientada em relação às superfícies:

$$C: x^2 + y^2 = 1$$
, contida no plano  $z = 0$ .

Pode-se afirmar que, para o campo vetorial 
$$\vec{F} = \cos(x+y+z)\vec{i} + ye^x\vec{j} + ze^y\vec{k}$$
, vale: ( ) 
$$\iint_{S_1} \vec{\nabla} \times \vec{F} \cdot \vec{n} dS = \iint_{S_2} \vec{\nabla} \times \vec{F} \cdot \vec{n} dS = \iint_{S_3} \vec{\nabla} \times \vec{F} \cdot \vec{n} dS.$$

( ) 
$$\iint_{S_1} \vec{F} \cdot \vec{n} dS = \iint_{S_2} \vec{F} \cdot \vec{n} dS = \iint_{S_3} \vec{F} \cdot \vec{n} dS.$$

( ) 
$$\int_C \vec{F} \cdot d\vec{r} = \iint_{S_1} \vec{\nabla} \times \vec{F} \cdot \vec{n} dS = 0.$$

( ) 
$$\iint_{S_1} \vec{F} \cdot \vec{n} dS = \int_C \vec{F} d\vec{r}.$$

( ) 
$$\int_{C} \vec{F} \cdot d\vec{r} = \iint_{S_{1}} \vec{\nabla} \times \vec{F} \cdot \vec{n} dS + \iint_{S_{2}} \vec{\nabla} \times \vec{F} \cdot \vec{n} dS + \iint_{S_{3}} \vec{\nabla} \times \vec{F} \cdot \vec{n} dS.$$

• Questão 7 (2.0 ponto) Use o teorema de Stokes para calcular a circulação dada por  $\int_C \vec{v} \cdot d\vec{r}$ , onde C é quadrado de vértices  $V_1 = (0,0,0)$ ,  $V_2 = (1,0,0)$ ,  $V_3 = (1,0,1)$  e  $V_4 = (0,0,1)$  orientada no sentido  $V_1 \rightarrow V_2 \rightarrow V_3 \rightarrow V_4 \rightarrow V_1$  e  $\vec{v} = \vec{i} + z^4 \vec{j} + xy^2 \vec{k}$ .

- Questão 8 (2.0 ponto) Considere o campo  $\vec{F} = x^2\vec{i} + (1-z)\vec{k}$  e S a superfície composta superiormente por  $z = 1 \sqrt{x^2 + y^2}$  e inferiormente por  $\{(x,y,z);\ x^2 + y^2 \le 1,\ z = 0\}$  orientada para fora. Calcule o fluxo de  $\vec{F}$  através da superfície fechada S usando:
  - a) Usando uma parametrização direta da superfície, isto é, sem usar o Teorema da Divergência;
  - b) Usando o Teorema da Divergência.