

Cifrado RSA. Autentificación de firma

• En 1978 Rivest, Shamir y Adleman idearon un sistema criptográfico que se conoce como RSA en su honor.

- En 1978 Rivest, Shamir y Adleman idearon un sistema criptográfico que se conoce como RSA en su honor.
- Es un sistema de clave pública y por tanto asimétrica.

- En 1978 Rivest, Shamir y Adleman idearon un sistema criptográfico que se conoce como RSA en su honor.
- Es un sistema de clave pública y por tanto asimétrica.
- El receptor genera tanto la clave pública como la privada y el emisor sólo conocerá la pública.

- En 1978 Rivest, Shamir y Adleman idearon un sistema criptográfico que se conoce como RSA en su honor.
- Es un sistema de clave pública y por tanto asimétrica.
- El receptor genera tanto la clave pública como la privada y el emisor sólo conocerá la pública.
- La función matemática de un sólo sentido en la que se basa es la descomposición en factores primos.

- En 1978 Rivest, Shamir y Adleman idearon un sistema criptográfico que se conoce como RSA en su honor.
- Es un sistema de clave pública y por tanto asimétrica.
- El receptor genera tanto la clave pública como la privada y el emisor sólo conocerá la pública.
- La función matemática de un sólo sentido en la que se basa es la descomposición en factores primos.
- Supongamos que *A* es el receptor y *B* el emisor.

- En 1978 Rivest, Shamir y Adleman idearon un sistema criptográfico que se conoce como RSA en su honor.
- Es un sistema de clave pública y por tanto asimétrica.
- El receptor genera tanto la clave pública como la privada y el emisor sólo conocerá la pública.
- La función matemática de un sólo sentido en la que se basa es la descomposición en factores primos.
- Supongamos que *A* es el receptor y *B* el emisor.

Pasos del método Generación de claves (A) Cifrado (B) Descifrado (A)

A elige dos números primos grandes p y q.
 Los va a mantener en secreto.

- A elige dos números primos grandes p y q.
 Los va a mantener en secreto.
- Halla $n = p \cdot q$.

- A elige dos números primos grandes p y q.
 Los va a mantener en secreto.
- Halla $n = p \cdot q$.
- Calcula $\varphi(n) = (p-1)(q-1)$.

- A elige dos números primos grandes p y q.
 Los va a mantener en secreto.
- Halla $n = p \cdot q$.
- Calcula $\varphi(n) = (p-1)(q-1)$.
- Elige $e < \varphi(n)$ de modo que $M.C.D.(e, \varphi(n)) = 1$. O, equivalentemente, M.C.D.(e, p-1) = M.C.D.(e, q-1) = 1.

- A elige dos números primos grandes p y q.
 Los va a mantener en secreto.
- Halla $n = p \cdot q$.
- Calcula $\varphi(n) = (p-1)(q-1)$.
- Elige $e < \varphi(n)$ de modo que $M.C.D.(e, \varphi(n)) = 1$. O, equivalentemente, M.C.D.(e, p-1) = M.C.D.(e, q-1) = 1.
- Halla d tal que $1 < d < \varphi(n)$ de modo que $d = e^{-1} \mod \varphi(n)$.

CLAVE PÚBLICA: (n, e).

CLAVE PRIVADA: (n, d).

- A elige dos números primos grandes p y q.
 Los va a mantener en secreto.
- Halla $n = p \cdot q$.
- Calcula $\varphi(n) = (p-1)(q-1)$.
- Elige $e < \varphi(n)$ de modo que $M.C.D.(e, \varphi(n)) = 1$. O, equivalentemente, M.C.D.(e, p-1) = M.C.D.(e, q-1) = 1.
- Halla d tal que $1 < d < \varphi(n)$ de modo que $d = e^{-1} \mod \varphi(n)$.

CLAVE PÚBLICA:
$$(n, e)$$
.
CLAVE PRIVADA: (n, d) .

- * Difícil calcular d.
- * Clásicamente: $e = F_4 = 1 + 2^{2^4} = 65537$ (Primo de Fermat).

- A elige dos números primos grandes p y q. (p = 643 y q = 11) Los va a mantener en secreto.
- Halla $n = p \cdot q$. (n = 7073)
- Calcula $\varphi(n) = (p-1)(q-1)$. $(\varphi(n) = 6420)$
- Elige $e < \varphi(n)$ de modo que $M.C.D.(e, \varphi(n)) = 1$. O, equivalentemente, M.C.D.(e, p-1) = M.C.D.(e, q-1) = 1. (e=31)
- Halla d tal que $1 < d < \varphi(n)$ de modo que $d = e^{-1} \mod \varphi(n)$. (d = 2071)

- Difícil calcular d.
- * Clásicamente: $e = F_4 = 1 + 2^{2^4} = 65537$ (Primo de Fermat).

• Supongamos que B quiere enviar un mensaje M a A.

- Supongamos que *B* quiere enviar un mensaje *M* a *A*.
- Convierte numéricamente cada caracter de M, usando la identificación con \mathbb{Z}_{27} , pero empleando dos dígitos por caracter.

а	Ь	С	d	e	f	g	h	i	j	k	1	m	n
00	01	02	03	04	05	06	07	08	09	10	11	12	13
ñ	0	р	q	r	S	t	и	V	W	X	у	Z	
14	15	16	17	18	19	20	21	22	23	24	25	26	

- Supongamos que B quiere enviar un mensaje M a A.
- Convierte numéricamente cada caracter de M, usando la identificación con \mathbb{Z}_{27} , pero empleando dos dígitos por caracter.

а	Ь	С	d	e	f	g	h	i	j	k	1	m	n
00	01	02	03	04	05	06	07	08	09	10	11	12	13
ñ	0	р	q	r	S	t	и	V	W	X	у	Z	
14	15	16	17	18	19	20	21	22	23	24	25	26	

• Agrupa en bloques, asegurando que el número de cada bloque sea menor que n (por ejemplo dígitos(n) - 1).

- Supongamos que B quiere enviar un mensaje M a A.
- Convierte numéricamente cada caracter de M, usando la identificación con \mathbb{Z}_{27} , pero empleando dos dígitos por caracter.

а	Ь	С	d	e	f	g	h	i	j	k	1	m	n
00	01	02	03	04	05	06	07	08	09	10	11	12	13
ñ	0	р	q	r	S	t	и	V	W	X	у	Z	
14	15	16	17	18	19	20	21	22	23	24	25	26	

- Agrupa en bloques, asegurando que el número de cada bloque sea menor que n (por ejemplo dígitos(n) 1).
- Completamos el último bloque con 0 o 30s para fijar el tamaño del bloque.

- Supongamos que B quiere enviar un mensaje M a A. (Viernes)
- Convierte numéricamente cada caracter de M, usando la identificación con \mathbb{Z}_{27} , pero empleando dos dígitos por caracter.

а	Ь	С	d	e	f	g	h	i	j	k	1	m	n
00	01	02	03	04	05	06	07	08	09	10	11	12	13
ñ	0	р	q	r	S	t	и	V	W	X	у	Z	
14	15	16	17	18	19	20	21	22	23	24	25	26	

(viernes
$$\Rightarrow$$
 22 08 04 18 13 04 19).

• Agrupa en bloques, asegurando que el número de cada bloque sea menor que n (por ejemplo dígitos(n) - 1).

```
(220 804 181 304 190)
```

• Completamos el último bloque con 0 o 30s para fijar el tamaño del bloque.

• Cada bloque M_i lo cifra mediante la fórmula

$$C_i = M_i^e \mod n$$
.

• Cada bloque M_i lo cifra mediante la fórmula

$$C_i = M_i^e \mod n$$
.

• Envía
$$C = [C_1 \quad C_2 \quad C_3 \quad ... \quad]$$
 a A .

• Cada bloque M_i lo cifra mediante la fórmula

$$C_i = M_i^e \mod n$$
.

$$220^{31} = 6809 \mod{7073}, \quad 804^{31} = 6623 \mod{7073}$$

 $181^{31} = 60 \mod{7073}, \quad 304^{31} = 469 \mod{7073}$
 $190^{31} = 6196 \mod{7073}$

• Envía $C = [C_1 \ C_2 \ C_3 \ ...]$ a A.

• Cada bloque M_i lo cifra mediante la fórmula

$$C_i = M_i^e \mod n$$
.

$$220^{31} = 6809 \mod{7073}, \quad 804^{31} = 6623 \mod{7073}$$

 $181^{31} = 60 \mod{7073}, \quad 304^{31} = 469 \mod{7073}$
 $190^{31} = 6196 \mod{7073}$

• Envía $C = [C_1 \quad C_2 \quad C_3 \quad ... \quad]$ a A.

$$C = [6809 \quad 6623 \quad 60 \quad 469 \quad 6196]$$

• A opera cada bloque C_i mediante $M_i = C_i^d \mod n$, recuperando así los bloques originales.

• A opera cada bloque C_i mediante $M_i = C_i^d \mod n$, recuperando así los bloques originales.

• Completa los bloques añadiendo 0's al principio si es necesario hasta que sean de tamaño dígitos(n) - 1.

• A opera cada bloque C_i mediante $M_i = C_i^d \mod n$, recuperando así los bloques originales.

- Completa los bloques añadiendo 0's al principio si es necesario hasta que sean de tamaño dígitos(n) 1.
- Concatena los bloques M_i , agrupa de 2 en 2 y vuelve a pasar a caracteres, recuperando M. Elimina los 30's y/o el 0 del final, si existen.

• A opera cada bloque C_i mediante $M_i = C_i^d \mod n$, recuperando así los bloques originales.

```
6809^{2071} = 220 \mod{7073}, \quad 6623^{2071} = 804 \mod{7073}

60^{2071} = 181 \mod{7073}, \quad 469^{2071} = 304 \mod{7073}

6196^{2071} = 190 \mod{7073}
```

• Completa los bloques añadiendo 0's al principio si es necesario hasta que sean de tamaño dígitos(n) - 1.

No hace falta

• Concatena los bloques M_i , agrupa de 2 en 2 y vuelve a pasar a caracteres, recuperando M. Elimina los 30's y/o el 0 del final, si existen.

22	80	04	18	13	04	19	0
V	i	е	r	n	е	5	

RSA: ¿Por qué funciona lo anterior?

• Sabemos que e y d cumplen $ed \equiv 1 \pmod{\varphi(n)}$, es decir, $ed - 1 = k\varphi(n)$ para cierto k.

RSA: ¿Por qué funciona lo anterior?

- Sabemos que e y d cumplen $ed \equiv 1 \pmod{\varphi(n)}$, es decir, $ed 1 = k\varphi(n)$ para cierto k.
- Por lo tanto, usando el Teorema de Euler:

$$C_i^d = M_i^{ed} = M_i^{1+k\varphi(n)} = M_i \left(M_i^{\varphi(n)}\right)^k \equiv M_i \pmod{n}.$$

RSA: ¿Por qué funciona lo anterior?

- Sabemos que e y d cumplen $ed \equiv 1 \pmod{\varphi(n)}$, es decir, $ed 1 = k\varphi(n)$ para cierto k.
- Por lo tanto, usando el Teorema de Euler:

$$C_i^d = M_i^{ed} = M_i^{1+k\varphi(n)} = M_i \left(M_i^{\varphi(n)}\right)^k \equiv M_i \pmod{n}.$$

- Problema: Para que eso funcione, cada M_i debe ser coprimo con n.
 - Podemos pensar que es poco probable haber cogido un bloque así...
 - Pero se puede probar que incluso en el caso de no ser coprimos, lo anterior sigue funcionando.
 - EJERCICIO: Comprobadlo, recordando que n = pq con p y q primos.

• Optimización 1: En lugar de calcular d inverso modular de e módulo $\varphi(n)$, calculamos

$$d_p \equiv e^{-1} \pmod{p-1}$$

$$d_q \equiv e^{-1} \pmod{q-1}$$

• Optimización 1: En lugar de calcular d inverso modular de e módulo $\varphi(n)$, calculamos

$$d_p \equiv e^{-1} \pmod{p-1}$$

$$d_q \equiv e^{-1} \pmod{q-1}$$

• Optimización 2: En lugar de calcular $C^d \pmod{n}$, vamos a calcular:

$$C^d \equiv C^{d_p} \equiv C_p^{d_p} \pmod{p}, \quad \text{donde } C_p \equiv C \pmod{p}$$

 $C^d \equiv C^{d_q} \equiv C_q^{d_q} \pmod{q}, \quad \text{donde } C_q \equiv C \pmod{q}$

• Optimización 1: En lugar de calcular d inverso modular de e módulo $\varphi(n)$, calculamos

$$d_p \equiv e^{-1} \pmod{p-1}$$

$$d_q \equiv e^{-1} \pmod{q-1}$$

• Optimización 2: En lugar de calcular $C^d \pmod{n}$, vamos a calcular:

$$C^d \equiv C^{d_p} \equiv C_p^{d_p} \pmod{p}, \quad \mathsf{donde} \ C_p \equiv C \pmod{p}$$

 $C^d \equiv C^{d_q} \equiv C_q^{d_q} \pmod{q}, \quad \mathsf{donde} \ C_q \equiv C \pmod{q}$

• Si $C^d \equiv x_1 \pmod{p}$ y $C^d \equiv x_2 \pmod{q}$, el teorema Chino de los restos nos dice que

$$C^d = qC_p^{d_p}\left(q^{p-2}\left(\operatorname{mod} p\right)\right) + pC_q^{d_q}\left(p^{q-2}\left(\operatorname{mod} q\right)\right)\left(\operatorname{mod} n\right)$$

• Optimización 1: En lugar de calcular d inverso modular de e módulo $\varphi(n)$, calculamos

$$d_p \equiv e^{-1} \pmod{p-1}$$

$$d_q \equiv e^{-1} \pmod{q-1}$$

• Optimización 2: En lugar de calcular $C^d \pmod{n}$, vamos a calcular:

$$C^d \equiv C^{d_p} \equiv C_p^{d_p} \pmod{p}, \quad \mathsf{donde} \ C_p \equiv C \pmod{p}$$

 $C^d \equiv C^{d_q} \equiv C_q^{d_q} \pmod{q}, \quad \mathsf{donde} \ C_q \equiv C \pmod{q}$

• Si $C^d \equiv x_1 \pmod{p}$ y $C^d \equiv x_2 \pmod{q}$, el teorema Chino de los restos nos dice que

$$C^d = qC_p^{d_p}\left(q^{p-2} \pmod{p}\right) + pC_q^{d_q}\left(p^{q-2} \pmod{q}\right) \pmod{n}$$

• Optimización 3: Fórmula de Garner...

