# **Results of EM algorithm on GMM**

LIBIN N GEORGE

111501015

### **Clustering Performance using Rand index**

#### For 2 dimensional data

- 1. K = 2
  - 1. N=100

Rand Index = 0.8362

2. N=1000

Rand Index = 0.791848

3. N=10000

Rand Index = 0.79706632

- 2. K = 5
  - 1. N=100

Rand Index = 0.8076

2. N=1000

Rand Index = 0.864072

3. N=10000

Rand Index = 0.9137696

- 3. K = 10
  - 1. N=100

Rand Index = 0.891

2. N=1000

Rand Index = 0.886802

3. N=10000

Rand Index = 0.89645128

#### For 5 dimensional data

- 4. K = 2
  - 1. N=100

Rand Index = 1.0

2. N=1000

Rand Index = 1.0

3. N=10000

Rand Index = 1.0

- 5. K = 5
  - 1. N=100

Rand Index = 0.932

2. N=1000

Rand Index = 0.93395

3. N=10000

Rand Index = 0.79515272

- 6. K = 10
  - 1. N=100

Rand Index = 0.8978

2. N=1000

Rand Index = 0.90309

3. N=10000

Rand Index = 0.95433612

#### For 10 dimensional data

- 7. K = 2
  - 1. N=100

Rand Index = 0.52 (error due to small or large value (resulting inf in python))

2. N=1000

Rand Index = 1.0

3. N=10000

Rand Index = 1.0

- 8. K = 5
  - 1. N=100

Rand Index = 0.802

2. N=1000

Rand Index = 0.899348

3. N=10000

Rand Index = 0.9315452

- 9. K = 10
  - 1. N=100

Rand Index = 0.9062

2. N=1000

Rand Index = 0.932594

3. N=10000

Rand Index = 0.94650118

#### **Observation**

The Rand Index gets better when number of points increases and also when dimensions increase. As number of clusters increases the error also increases due to overlapping Gaussian distributions

## Some Results plotted for 2 dimension







