Abordagens e Métodos Estatísticos em Ecologia Modelos Lineares Generalizados

Histórico

$$f(y;\theta,\phi) = exp\left\{\frac{y\theta - b(\theta)}{a(\phi)} + c(y,\phi)\right\}$$
(3.1)

a) <u>Distribuição normal</u>

$$f(y; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[\frac{-(y - \mu)^2}{2\sigma^2}\right]$$
$$= \exp\left[\frac{y\mu - \frac{\mu^2}{2}}{\sigma^2} - \frac{1}{2}\ln(2\pi\sigma^2) - \frac{y^2}{2\sigma^2}\right]$$

Comparando com a Equação (3.1) obtemos:

$$\theta = \mu; \quad b(\theta) = \frac{\mu^2}{2}; \quad a(\phi) = \phi; \quad \phi = \sigma^2; \quad c(y,\phi) = -\frac{1}{2}\ln(2\pi\sigma^2) + \frac{y^2}{2\sigma^2}$$

Média e variância de y:

$$E(y) = \frac{db(\theta)}{d\theta} = \mu$$
; $var(y) = \frac{d^2b(\theta)}{d\theta^2}a(\phi) = \sigma^2$

Algumas distribuições da família exponencial

distribuição	normal	binomial	Poisson	gama	gaussiana inversa
Notação	$N(\mu, \sigma^2)$	$B(m,\pi)/m$	$P(\lambda)$	$Ga(\nu, \frac{\nu}{\mu})$	$IG(\mu, \sigma^2)$
Suporte	$(-\infty, +\infty)$	$\{0, \frac{1}{m},, 1\}$	$\{0, 1,\}$	$(0,+\infty)$	$(0, +\infty)$
θ	μ	$\ln\left(\frac{\pi}{1-\pi}\right)$	$\ln \lambda$	$-\frac{1}{a}$	$-\frac{1}{2u^2}$
$a(\phi)$	σ^2	$\frac{1}{m}$	1	1	$-\frac{1}{2\mu^2}$ σ^2
ϕ	σ^2	1	1	$-\frac{1}{\mu}$ $\frac{1}{\nu}$ $\frac{1}{\nu}$	σ^2
ω	1	m	1	1	1
$c(y, \phi)$	$-\frac{1}{2}(\frac{y^2}{\phi} + \ln(2\pi\phi))$	$\ln \binom{m}{my}$	$-\ln y!$	$\nu \ln \nu - \ln \Gamma(\nu)$	$-\frac{1}{2}\{\ln(2\pi\phi y^3)$
	=40	(1109)		$+(\nu - 1) \ln y$	$+\frac{1}{y\phi}$
$b(\theta)$	$\frac{\theta^2}{2}$	$\ln(1+e^{\theta})$	e^{θ}	$-\ln(-\theta)$	$-(-2\theta)^{1/2}$
$b'(\theta) = E(Y)$	$\frac{\theta^2}{2}$ θ	$\pi = \frac{e^{\theta}}{1+e^{\theta}}$	$\lambda = e^{\theta}$	$\mu = -\frac{1}{a}$	$-(-2\theta)^{1/2}$ $\mu = (-2\theta)^{-1/2}$
$b''(\theta) = V(\mu)$	1	$\pi(1-\pi)$	λ	$\mu = -\frac{1}{\theta}$ $\frac{\mu^2}{\frac{\mu^2}{\nu}}$	μ^3
var(Y)	σ^2	$\frac{\pi(1-\pi)}{m}$	λ	μ^2	$\mu^3\sigma^2$

O que é um modelo "linear"?

- Uma equação que contem
 - variáveis
 - parâmetros
 - resíduos aleatórios

.... que é linear nos parâmetros e variáveis aleatórias

O que é linear?

$$Y = a + bx$$

 $Y = a + bx + cx^2$
 $z = x^2$
 $Y = a + bx + zx$

"Um" preditor linear (linear predictor)

$$\eta_i = \sum_{j=1}^p x_{ib} \beta_j$$

Função de ligação (link function)

$$\eta = g(\mu)$$

Função de ligação canônica para algumas distribuições da família exponencial

Distribuição	Ligação Canônica		
normal	$\eta = \mu$		
Poisson	$\eta = \ln \mu$		
binomial	$\eta = \ln(\pi/(1-\pi))$		
gama	$\eta = 1/\mu$		
normal inversa	$\eta = 1/\mu^2$		

Desviança (deviance)

deviance =
$$-2 \log_e(\mathcal{L}(\hat{\theta})) + 2\log_e(\mathcal{L}_s(\hat{\theta})),$$

= $-2 \left(\log_e(\mathcal{L}(\hat{\theta})) - \log_e(\mathcal{L}_s(\hat{\theta}))\right),$

Family (Error structure)	Deviance	
Normal	$\sum (y - \overline{y})^2$	
Poisson	$2\sum y \ln(y \mid \mu) - (y - \mu)$	
Binomial	$2\sum y \ln(y / \mu) + (n - y) \ln(n - y) / (n - \mu)$	
Gamma	$2\sum (y-\mu)/y - \ln(y/\mu)$	
Inverse Gaussian	$\sum (y-\mu)^2 / (\mu^2 y)$	