

•

JA998-232

ABSTRACT

implement an operation in Jacobian with improved To computation complexity, the sum is computed of a divisor $D_1=a.c.d.$ $(a_1(x), y-b_1(x))$ and а divisor $D_2=q.c.d.$ $(a_2(x), y=b_2(x))$ on Jacobian of a hyperelliptic curve $y^2+y=f(x)$ defined over $GF(2^n)$ by: storing $a_1(x)$, $a_2(x)$, $b_1(x)$ and $b_2(x)$; and calculating $q(x)=s_1(b_1(x)+b_2(x))$ mod $a_2(x)$ by using $s_1(x)$ in $s_1(x)a_1(x)+s_2(x)a_2(x)=1$ in case of $GCD(a_1(x),a_2(x))=1$ where GCD denotes a greatest common polynomial. Thus, function q(x) is provided so as to reduce the entire computational complexity and the hardware size. Moreover, in case of $D_1=D_2$, $a_1(x)$ and $b_1(x)$ is stored; and the $q(x) = Q(b_1^2(x) + f(x)) \mod a_1^2(x)$, $a_1(x)$) where Q(A,B)quotient of A/B is calculated.