

UNIVERSIDAD DE CALDAS

FORMATO PARA CREACIÓN – MODIFICACIÓN DE ACTIVIDADES ACADÉMICAS

CÓDIGO: R-1202-P-DC-503 VERSIÓN: 3

PLAN INSTITUCIONAL DE ACTIVIDAD ACADÉMICA

I.IDENTIFICACIÓN

Facultad que ofrece la Actividad Académica:			CIENCIAS EXACTAS Y NATURALES		
Departamento que ofrece la Actividad Académica:			FÍSICA		
Nombre de la Actividad Académica:			PROTOTIPADO RÁPIDO Y FABRICACIÓN INTELIGENTE		
Código de la Actividad Académica:					
Versión del Programa Institucional de la Actividad Académica (PIAA):			1		
Acta y fecha del Consejo de Facultad para: aprobación modificación			Acta No Fecha:		
Programas a los que se le ofrece la Actividad Académica (incluye el componente de formación al cual pertenece):					
Actividad Académica abierta a la comunidad:			Si _X_ No		
Tipo de actividad: Teórica Teórico - Práctica X Práctica					
Horas teóricas:	16	Horas prácticas:		16	
Horas presenciales:	32	Horas no presenciales:		64	
Horas presenciales del docente:	32	Relación Presencial/No presencial:		1:2	
Horas inasistencia con las que se reprueba:	4	Cupo máximo de estudiantes:		40	
Habilitable (Si o No):	SI	Nota aprobatoria:		3	
Créditos que otorga:	2	Duración en semanas:		3	

Requisitos (escribir los códigos y el nombre de las actividades académicas que son requisitos, diferenciados por programas para el caso de una actividad académica polivalente):

I. **JUSTIFICACIÓN**: describe las razones por las cuales es importante la actividad académica desde la perspectiva del conocimiento, el objeto de formación del programa, el perfil profesional del egresado(s), y su lugar en el currículo.

El prototipado rápido y la fabricación inteligente son dos componentes esenciales de la Industria 5.0, que permiten una mayor personalización, reducción de tiempos de producción, y sostenibilidad en los procesos productivos. El prototipado rápido permite a las empresas crear versiones funcionales de productos en un corto período de tiempo, utilizando tecnologías como la impresión 3D y la fabricación aditiva, facilitando así la innovación y la optimización del diseño de productos. Por su parte, la fabricación inteligente integra tecnologías como el Internet de las Cosas (IoT), inteligencia artificial, y robótica para automatizar y mejorar la eficiencia de los sistemas de producción. Este curso prepara a los estudiantes para aprovechar estas tecnologías en el desarrollo de soluciones avanzadas para la personalización y la optimización de la producción.

I. **OBJETIVOS**: describe en forma clara lo que se pretende con el desarrollo de la actividad académica.

Desarrollar en los estudiantes las habilidades necesarias para aplicar técnicas de **prototipado rápido** y **fabricación inteligente** en procesos productivos, permitiendo la personalización, innovación y optimización de los productos, utilizando tecnologías emergentes y automatización.

- 2. Específicos:
 - 1. Entender los principios básicos del prototipado rápido y la fabricación inteligente en el contexto de la Industria 5.0.
 - 2. Identificar y utilizar herramientas y tecnologías de prototipado rápido, como la impresión 3D y la fabricación aditiva.
 - 3. Aplicar tecnologías de fabricación inteligente para automatizar procesos de producción, mejorando la eficiencia y personalización.
 - 4. Evaluar la sostenibilidad de los procesos productivos mediante la integración de tecnologías emergentes.
 - 5. Desarrollar prototipos funcionales que integren la personalización y la sostenibilidad a través de técnicas de fabricación inteligente.

NOTA: en el caso que el Programa Institucional de la Actividad Académica (PIAA) se desarrolle por competencias, es necesario completar los siguientes aspectos, en lugar de objetivos:

 COMPETENCIAS: describe actuaciones integrales desde saber ser, el saber hacer y el saber conocer, para identificar, interpretar, argumentar y resolver problemas del contexto con idoneidad y ética.

1. Genéricas

- Pensamiento crítico y resolución de problemas: Capacidad para diseñar soluciones innovadoras mediante el uso de tecnologías de prototipado rápido y fabricación inteligente.
- Trabajo en equipo: Colaborar con otros en el desarrollo de proyectos multidisciplinarios que integren tecnologías emergentes en procesos de fabricación.
- Innovación: Aplicar principios creativos para diseñar productos y soluciones personalizados que mejoren la competitividad y sostenibilidad.
- 2. Específicas
- Prototipado rápido: Habilidad para diseñar y crear prototipos funcionales utilizando herramientas como la impresión 3D y la fabricación aditiva.
- Fabricación inteligente: Capacidad para integrar tecnologías de automatización, IoT y robótica en procesos de producción para mejorar la eficiencia y flexibilidad.
- Optimización de procesos productivos: Competencia para analizar y optimizar procesos productivos utilizando técnicas de fabricación inteligente, con un enfoque en sostenibilidad y personalización.

COMPETENCIAS GENÉRICAS: describen el conjunto de conocimientos, habilidades, destrezas y actitudes que le permiten al egresado del programa interactuar en diversos contextos de la vida profesional.

COMPETENCIAS ESPECÍFICAS: describen los comportamientos observables que se relacionan directamente con la utilización de conceptos, teorías o habilidades, logrados con el desarrollo del contenido de la Actividad Académica.

CONTENIDO: describe los temas y subtemas que se desarrollarán en la actividad académica. Estos deben estar en perfecta coherencia con los objetivos, método y evaluación de la asignatura y con los perfiles de formación de los programas a los que se ofrece la actividad académica.

Módulo 1: Introducción al Prototipado Rápido (8 horas)

- Definición y aplicaciones del prototipado rápido
- Tecnologías de impresión 3D: materiales, métodos y procesos
- Fabricación aditiva: procesos y herramientas
- Uso de software CAD para diseño de prototipos
- Ejemplos de prototipado rápido en la industria

Módulo 2: Fabricación Inteligente y Automatización (12 horas)

- Definición de fabricación inteligente y su relación con la Industria 5.0
- Integración de tecnologías de automatización en la fabricación: IoT, IA, y robótica
- Digitalización de procesos productivos y manufactura avanzada

- Sistemas de fabricación flexibles y su aplicación en la personalización de productos
- Monitoreo en tiempo real y análisis de datos en la fabricación inteligente

Módulo 3: Innovación, Personalización y Sostenibilidad en la Fabricación (6 horas)

- Personalización masiva en la Industria 5.0
- Principios de sostenibilidad en la fabricación inteligente
- Reducción de residuos y eficiencia energética en los procesos de fabricación
- Casos de estudio: innovación y sostenibilidad en la fabricación inteligente

Módulo 4: Taller Práctico de Prototipado Rápido y Fabricación Inteligente (6 horas)

- Diseño y desarrollo de un prototipo utilizando impresión 3D
- Simulación de procesos de fabricación inteligente mediante herramientas de software
- Evaluación de la sostenibilidad y eficiencia del prototipo desarrollado
- Presentación de los proyectos finales de prototipado
- /. METODOLOGÍA: describe las estrategias educativas, métodos, técnicas, herramientas y medios utilizados para el desarrollo del contenido, en coherencia con los objetivos o competencias.
 - Clases teóricas interactivas: Explicación de los conceptos fundamentales de prototipado rápido y fabricación inteligente, con análisis de casos reales y tendencias emergentes.
 - Talleres prácticos: Los estudiantes participarán en talleres donde diseñarán y fabricarán prototipos mediante tecnologías de impresión 3D y fabricación aditiva.
 - **Proyectos grupales:** Los estudiantes trabajarán en equipos para desarrollar un proyecto que integre técnicas de fabricación inteligente y prototipado rápido, aplicando soluciones innovadoras en un entorno simulado.
 - **Estudio de casos:** Análisis de empresas que han implementado fabricación inteligente y prototipado rápido en sus procesos productivos, discutiendo los impactos en personalización y sostenibilidad.

•

I. CRITERIOS GENERALES DE EVALUACIÓN: describe las diferentes estrategias evaluativas, con valoraciones cuantitativas y reportes cualitativos, si son del caso, que se utilizarán para determinar si el estudiante ha cumplido con lo propuesto como objetivos o como competencias de la Actividad Académica. Ver reglamento estudiantil y política curricular.

Participación en clase y talleres: 20%

Evaluación de la participación activa en los talleres y discusiones en clase.

Talleres prácticos: 30%

Evaluación del diseño y desarrollo de prototipos utilizando tecnologías de impresión 3D, así como la implementación de procesos de fabricación inteligente.

Estudio de casos: 20%

Análisis crítico de los casos presentados sobre fabricación inteligente y prototipado rápido, con énfasis en innovación y sostenibilidad.

Proyecto final grupal: 30%

Desarrollo de un proyecto grupal donde los estudiantes diseñarán y fabricarán un prototipo utilizando impresión 3D, integrando tecnologías de fabricación inteligente y personalización.

- I. **REFERENCIAS BIBLIOGRÁFICAS:** describe los textos guía, manuales, fuentes primarias, páginas de Internet, entre otras, que serán utilizadas para el desarrollo de la Actividad Académica.
 - Gibson, I., Rosen, D. W., & Stucker, B. (2015). Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. Springer.
 - Chua, C. K., & Leong, K. F. (2017). 3D Printing and Additive Manufacturing: Principles and Applications. World Scientific.
 - Groover, M. P. (2020). Automation, Production Systems, and Computer-Integrated Manufacturing. Pearson.
 - Monostori, L., Váncza, J., & Kumara, S. R. (2016). Agent-Based Manufacturing and Control Systems: New Agile Manufacturing Solutions for Achieving Peak Performance. CRC Press.
 - Pandey, P. M., & Madhusudhan, R. (2019). Additive Manufacturing: Materials, Processes, Quantifications and Applications. Springer.