PAY BACK METHOD

Delta Company is planning to purchase a machine known as machine X. Machine X would cost \$25,000 and would have a useful life of 10 years with zero salvage value. The expected annual cash inflow of the machine is \$10,000.

Required: Compute payback period of machine X and conclude whether or not the machine would be purchased if the maximum desired payback period of Delta company is 3 years.

Solution:

Since the annual cash inflow is even in this project, we can simply divide the initial investment by the annual cash inflow to compute the payback period. It is shown below:

According to payback period analysis, the purchase of machine X is desirable because its payback period is 2.5 years which is shorter than the maximum payback period of the company.

Example 2:

Due to increased demand, the management of Rani Beverage Company is considering to purchase a new equipment to increase the production and revenues. The useful life of the equipment is 10 years and the company's maximum desired payback period is 4 years. The inflow and outflow of cash associated with the new equipment is given below:

Initial cost of equipment: \$37,500

Annual cash inflows:

Sales: \$75,000

Annual cash Outflows:

Cost of ingredients: \$45,000 Salaries expenses: \$13,500 Maintenance expenses: \$1,500

Non cash expenses:

Depreciation expense: \$5,000

Required: Should Rani Beverage Company purchase the new equipment? Use payback method for your answer.

Solution:

Step 1: In order to compute the payback period of the equipment, we need to work out the net annual cash inflow by deducting the total of cash outflow from the total of cash inflow associated with the equipment.

Computation of net annual cash inflow:

$$$75,000 - ($45,000 + $13,500 + $1,500)$$

= \$15,000

Step 2: Now, the amount of investment required to purchase the equipment would be divided by the amount of net annual cash inflow (computed in step 1) to find the payback period of the equipment.

Depreciation is a non-cash expense and therefore has been ignored while calculating the payback period of the project.

According to payback method, the equipment should be purchased because the payback period of the equipment is 2.5 years which is shorter than the maximum desired payback period of 4 years.

ARR – Example 1

XYZ Company is looking to invest in some new machinery to replace its current malfunctioning one. The new machine, which costs \$420,000, would increase annual revenue by \$200,000 and annual expenses by \$50,000. The machine is estimated to have a useful life of 12 years and zero salvage value.

Step 1: Calculate Average Annual Profit	
Inflows, Years 1-12	
(200,000*12)	\$2,400,000
Less: Annual Expenses	
(50,000*12)	-\$600,000
Less: Depreciation	-\$420,000
Total Profit	\$1,380,000
Average Annual Profit	
(1,380,000/12)	\$115,000
Step 2: Calculate Average Investment	
Average Investment	
(\$420,000 + \$0)/2 = \$210,000	

Step 3: Use ARR Formula

ARR = \$115,000/\$210,000 = **54.76%**

Therefore, this means that for every dollar invested, the investment will return a profit of about 54.76 cents.

ARR – Example 2

XYZ Company is considering investing in a project that requires an initial investment of \$100,000 for some machinery. There will be net inflows of \$20,000 for the first two years, \$10,000 in years three and four, and \$30,000 in year five. Finally, the machine has a salvage value of \$25,000.

Step 1: Calculate Average Annual Profit		
Inflows, Years 1 & 2		
(20,000*2)	\$40,000	
Inflows, Years 3 & 4		
(10,000*2)	\$20,000	
Inflow, Year 5	\$30,000	
Less: Depreciation		
(100,000-25,000)	-\$75,000	
Total Profit	\$15,000	
Average Annual Profit		
(15,000/5)	\$3,000	
Step 2: Calculate Average Investment		
Average Investment		
(\$100,000 + \$25,000) / 2 = \$62,500		
Step 3: Use ARR Formula		
ARR = \$3,000/\$62,500 = 4.8%		

Examples of Net Present Value

NPV = Initial Investment + (Annual Cash Flow / Discount Rate) * (1+Inflation Rate)^Years

To illustrate the concept of NPV, consider the following examples.

Example 1: You invest \$2,000 in a project and expect to receive \$3,000 in cash flows over the next five years.

Using the formula above, you would calculate the NPV as follows:

NPV = \$2,000 + (\$3,000 / 0.04) = \$8,250

In this example, the NPV is \$8,250, meaning the project is expected to generate a positive return of \$6,250.

Example 2: You invest \$2,000 in a project and expect to receive \$3,000 in cash flows over the next five years with an inflation rate of 2%.

Using the formula above, you would calculate the NPV as follows:

 $NPV = \$2,000 + (\$3,000 \ 0.04) * (1+0.02)^5 = \$8,805$

In this example, the NPV is \$8,805, which means the project is expected to generate a positive return of \$6,805.

If the expected cash flows in either example had been negative, the NPV would have been negative, indicating that the project would likely yield a negative return investment. You can also use NPV to compare two different investments. For example, if you had two projects with the same expected cash flows but various initial investments and discount rates, the higher NPV would be the more profitable option.

Internal Rate of Return (IRR): Formula and Examples

The Formula for IRR

The formula used to determine IRR is as follows:

 $0=NPV=t=1\sum T(1+IRR)tCt-C0$ **where:**Ct

- =Net cash inflow during the period t*C*₀
- =Total initial investment costs*IRR*=The internal rate of return*t*=The number of time periods

IRR Example

Assume a company is reviewing two projects. Management must decide whether to move forward with one, both, or neither. Its cost of capital is 10%. The cash flow patterns for each are as follows:

Project A

- Initial Outlay = \$5,000
- Year one = \$1,700
- Year two = \$1,900
- Year three = \$1,600
- Year four = \$1,500
- Year five = \$700

Project B

- Initial Outlay = \$2,000
- Year one = \$400
- Year two = \$700
- Year three = \$500
- Year four = \$400

• Year five = \$300

The company must calculate the IRR for each project. The initial outlay (period = 0) will be negative. Solving for IRR is an iterative process using the following equation:

$$$0 = \Sigma CFt \div (1 + IRR)t$$

where:

- CF = net cash flow
- IRR = internal rate of return
- t = period (from 0 to last period)

-or-

$$0 = (initial \ outlay \ ^* - 1) + CF1 \div (1 + IRR)1 + CF2 \div (1 + IRR)2 + ... + CFX \div (1 + IRR)X$$

Using the above examples, the company can calculate IRR for each project as:

IRR Project A

$$0 = (-\$5,000) + \$1,700 \div (1 + IRR)1 + \$1,900 \div (1 + IRR)2 + \$1,600 \div (1 + IRR)3 + \$1,500 \div (1 + IRR)4 + \$700 \div (1 + IRR)5$$

IRR Project A = **16.61** %

IRR Project B

$$$0 = (-$2,000) + $400 \div (1 + IRR)1 + $700 \div (1 + IRR)2 + $500 \div (1 + IRR)3 + $400 \div (1 + IRR)4 + $300 \div (1 + IRR)5$$

IRR Project B = **5.23** %

Given that the company's cost of capital is 10%, management should proceed with Project A and reject Project B.

Case study in final accounts

Case Study: Final Accounts Preparation for XYZ Ltd

Background: XYZ Ltd is a small retail business selling sports equipment. The financial year ended on December 31, 2023. Prepare the final accounts for the year ended December 31, 2023.

Trial Balance as at December 31, 2023:

Particulars	Debit (\$)	Credit (\$)
Sales	200,000	
Sales Returns	5,000	
Purchases		120,000
Carriage Inwards	3,000	
Wages	30,000	
Rent Expense	15,000	
Rates and Taxes	5,000	
Insurance	2,000	
Electricity	3,500	
Advertising	8,000	
Discount Allowed	2,500	
Discount Received		1,500
Bad Debts	1,200	
Debtors	40,000	
Creditors		28,000
Bank Overdraft		7,000
Cash in Hand	1,500	
Cash at Bank	10,000	
Fixtures and Fittings	25,000	
Motor Vehicles	15,000	
Loan	20,000	
Capital		90,000

Adjustments:

- 1. Depreciation on Fixtures and Fittings at 10% p.a.
- 2. Depreciation on Motor Vehicles at 20% p.a.
- 3. Provide for Bad Debts at 5% of Debtors.
- 4. Accrued Wages \$2,000.
- 5. Prepaid Insurance \$500.
- 6. Outstanding Rates and Taxes \$1,000.
- 7. Stock on December 31, 2023, \$30,000.

Solution:

Trading Account for the Year Ended December 31, 2023

Particulars	Amount (\$)
Sales	200,000
Less: Sales Returns	(5,000)
Net Sales	195,000
Cost of Goods Sold:	
Opening Stock	0
Add: Purchases	120,000
Add: Carriage Inwards	3,000
Less: Closing Stock	(30,000)
Cost of Goods Sold	93,000
Gross Profit	102,000

Profit and Loss Account for the Year Ended December 31, 2023

Particulars	Amount (\$)
Gross Profit	102,000
Operating Expenses:	
Wages	32,000
Rent Expense	15,000
Rates and Taxes	4,000
Insurance	1,500
Electricity	3,500
Advertising	8,000
Discount Allowed	2,500
Depreciation - Fixtures	2,500
Depreciation - Vehicles	3,000
Bad Debts Provision	2,000
Total Operating Expenses	74,000
Net Profit	28,000

Balance Sheet as at December 31, 2023

Particulars	Amount (\$)
Assets:	
Cash in Hand	1,500
Cash at Bank	10,000
Debtors	40,000
Less: Provision for Bad Debts	(2,000)
Stock	30,000
Fixtures and Fittings	22,500

Particulars	Amount (\$)
Less: Depreciation	(2,500)
Motor Vehicles	12,000
Less: Depreciation	(3,000)
Prepaid Insurance	500
Total Assets	111,500
Liabilities:	
Creditors	28,000
Accrued Wages	2,000
Bank Overdraft	7,000
Outstanding Rates and Taxes	1,000
Loan	20,000
Capital	90,000
Total Liabilities and Capital	148,000

This case study demonstrates how to prepare final accounts including the Trading Account, Profit and Loss Account, and Balance Sheet for a small business like XYZ Ltd.