IAML: Support Vector Machines I

Nigel Goddard School of Informatics

Semester 1

Outline

- Separating hyperplane with maximum margin
- Non-separable training data
- Expanding the input into a high-dimensional space
- Support vector regression
- Reading: W & F sec 6.3 (maximum margin hyperplane, nonlinear class boundaries), SVM handout. SV regression not examinable.

Overview

- Support vector machines are one of the most effective and widely used classification algorithms.
- SVMs are the combination of two ideas
 - Maximum margin classification
 - ► The "kernel trick"
- SVMs are a linear classifier, like logistic regression and perceptron

Stuff You Need to Remember

 $\mathbf{w}^{\mathsf{T}}\mathbf{x}$ is length of the projection of \mathbf{x} onto \mathbf{w} (if \mathbf{w} is a unit vector)

i.e.,
$$b = \mathbf{w}^T \mathbf{x}$$
.

(If you do not remember this, see supplementary maths notes on course Web site.)

Separating Hyperplane

For any linear classifier

- ▶ Training instances (\mathbf{x}_i, y_i) , i = 1, ..., n. $y_i \in \{-1, +1\}$
- ► Hyperplane $\mathbf{w}^{\top}\mathbf{x} + w_0 = 0$
- Notice for this lecture we use −1 rather than 0 for negative class. This will be convenient for the maths.

A Crap Decision Boundary

Idea: Maximize the Margin

The **margin** is the distance between the decision boundary (the hyperplane) and the closest training point.

Computing the Margin

- The tricky part will be to get an equation for the margin
- We'll start by getting the distance from the origin to the hyperplane
- ▶ i.e., We want to compute the scalar b below

Computing the Distance to Origin

- Define z as the point on the hyperplane closest to the origin.
- z must be proportional to w, because w normal to hyperplane
- ▶ By definition of *b*, we have the norm of *z* given by:

$$||\mathbf{z}|| = b$$

So

$$b\frac{\mathbf{w}}{||\mathbf{w}||} = 2$$

Computing the Distance to Origin

- ▶ We know that (a) **z** on the hyperplane and (b) $b_{||\mathbf{w}||} = \mathbf{z}$.
- First (a) means $\mathbf{w}^T \mathbf{z} + w_0 = 0$
- Substituting we get

$$\mathbf{w}^{T} \frac{b\mathbf{w}}{||\mathbf{w}||} + w_{0} = 0$$

$$\frac{b\mathbf{w}^{T}\mathbf{w}}{||\mathbf{w}||} + w_{0} = 0$$

$$b = -\frac{w_{0}}{||\mathbf{w}||}$$

- ► Remember $||\mathbf{w}|| = \sqrt{\mathbf{w}^T \mathbf{w}}$.
- Now we have the distance from the origin to the hyperplane!

Computing the Distance to Hyperplane

- Now we want c, the distance from \mathbf{x} to the hyperplane.
- ▶ It's clear that c = |b a|, where a the length of the projection of \mathbf{x} onto \mathbf{w} . Quiz: What is a?

Computing the Distance to Hyperplane

- Now we want c, the distance from \mathbf{x} to the hyperplane.
- ▶ It's clear that c = |b a|, where a the length of the projection of \mathbf{x} onto \mathbf{w} . Quiz: What is a?

$$a = \frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||}$$

Equation for the Margin

► The perpendicular distance from a point \mathbf{x} to the hyperplane $\mathbf{w}^T \mathbf{x} + w_0 = 0$ is

$$\frac{1}{||\mathbf{w}||}|\mathbf{w}^T\mathbf{x}+w_0|$$

► The margin is the distance from the closest training point to the hyperplane

$$\min_{i} \frac{1}{||\mathbf{w}||} |\mathbf{w}^T \mathbf{x}_i + w_0|$$

The Scaling

- Note that (\mathbf{w}, w_0) and $(c\mathbf{w}, cw_0)$ defines the same hyperplane. The scale is arbitrary.
- ► This is because we predict class y = 1 if $\mathbf{w}^T \mathbf{x} + w_0 \ge 0$. That's the same thing as saying $c\mathbf{w}^T \mathbf{x} + cw_0 \ge 0$
- ▶ To remove this freedom, we will put a constraint on (\mathbf{w}, w_0)

$$\min_{i} |\mathbf{w}^{\top} \mathbf{x}_{i} + w_{0}| = 1$$

▶ With this constraint, the margin is always $1/||\mathbf{w}||$.

First version of Max Margin Optimization Problem

 Here is a first version of an optimization problem to maximize the margin (we will simplify)

$$\begin{aligned} \max_{\mathbf{w}} \ 1/||\mathbf{w}|| \\ \text{subject to} \ \mathbf{w}^{\top}\mathbf{x}_i + w_0 &\geq 0 \\ \mathbf{w}^{\top}\mathbf{x}_i + w_0 &\leq 0 \\ \min_{i} \ |\mathbf{w}^{\top}\mathbf{x}_i + w_0| &= 1 \end{aligned} \qquad \text{for all } i \text{ with } y_i = 1$$

► The first two constraints are too lose. It's the same thing to say

$$\begin{aligned} \max_{\mathbf{w}} \ 1/||\mathbf{w}|| \\ \text{subject to} \ \mathbf{w}^{\top}\mathbf{x}_i + w_0 &\geq 1 \\ \mathbf{w}^{\top}\mathbf{x}_i + w_0 &\leq -1 \\ \min_{i} \ |\mathbf{w}^{\top}\mathbf{x}_i + w_0| &= 1 \end{aligned} \qquad \text{for all } i \text{ with } y_i = 1$$

Now the third constraint is redundant

First version of Max Margin Optimization Problem

▶ That means we can simplify to

$$\max_{\mathbf{w}} \ 1/||\mathbf{w}||$$
 subject to $\mathbf{w}^{\top}\mathbf{x}_i + w_0 \ge 1$ for all i with $y_i = 1$
$$\mathbf{w}^{\top}\mathbf{x}_i + w_0 \le -1$$
 for all i with $y_i = -1$

Here's a compact way to write those two constraints

$$\max_{\mathbf{w}} \ 1/||\mathbf{w}||$$
 subject to $y_i(\mathbf{w}^{\top}\mathbf{x}_i + w_0) \ge 1$ for all i

▶ Finally, note that maximizing $1/||\mathbf{w}||$ is the same thing as minimizing $||\mathbf{w}||^2$

The SVM optimization problem

So the SVM weights are determined by solving the optimization problem:

$$\min_{\mathbf{w}} \ ||\mathbf{w}||^2$$
 s.t. $y_i(\mathbf{w}^{\top}\mathbf{x}_i + w_0) \ge +1$ for all i

➤ Solving this will require maths that we don't have in this course. But I'll show the form of the solution next time.

Fin (Part I)