Методы решения задач классификации с категориальными признаками

Глушкова Таисия Воронкова Дарья

12 декабря, 2016

• Матрица объект-признак

$$F = ||f_{ij}||_{m \times n},$$

 m - число объектов, n - число признаков, f_{ij} - значение j-го признака на i-м объекте

• Целевой вектор

$$(y_1,...,y_m)^T,$$

 y_i - значение целевого признака на і-м объекте Будем рассматривать задачу классификации с двумя непересекающимися классами:

$${y_1,...,y_m} = {0,1}$$

• Постановка задачи Нужно разработать алгоритм, который по признаковому описанию нового объекта $(f_1, ..., f_n)$ выдает значение его целевого признака y

- Отложенный контроль (hold-out)
- leave-one-out
- Будем считать, что все признаки в задаче категориальные
- Всегда можно перенумеровать категории $f_{ij} \in \{1,2,...,n_j\}$, n_j число разных категорий j-го признака, $j \in \{1,2,...,n\}$

• one hot encoding $\{1,2,...,n_*\}$ - значения категориального признака Заменим столбец $(h_1,...,h_m)^T$ матрицы F (соответсвующего признака) бинарной матрицей $||\delta_{ij}||_{m\times n_*}$,

$$\delta_{ij} = \begin{cases} 1, & h_i = j \\ 0, & h_i \neq j \end{cases} \tag{1}$$

$$i \in \{1, 2, ..., m\},\ j \in \{1, 2, ..., n_*\}.$$

- Нет потерь информации
- В случае большого числа категорий (n_*) такая перекодировка может существенно увеличить число столбцов в матрице объект-признак

- Будем считать, что алгоритм по описанию объекта выдает значения из отрезка [0; 1].
- В качестве функционала качества будем использовать площадь под ROC-кривой (receiver operating characteristics): AUC (area under curve).
- $y^1,...,y^q$ верные метки контрольных объектов $a^1,...,a^q$ значения, которые выдал алгоритм на контрольных объектах

ROC-кривая образуется соединением точек (fp(c), tp(c)),

$$fp(c) = \frac{|\{t \in \{1, 2, ..., q\} | y^t = 0, a^t \ge c\}|}{|\{t \in \{1, 2, ..., q\} | y^t = 0\}|},$$
(2)

$$tp(c) = \frac{|\{t \in \{1, 2, ..., q\} | y^t = 1, a^t \ge c\}|}{|\{t \in \{1, 2, ..., q\} | y^t = 1\}|},$$
(3)

при варьировании порога с.

- $(f_{1j},...,f_{mj}),(f_{1t},...,f_{mt})$
- Сформируем новый признак $((f_{1j},f_{1t}),...,(f_{mj},f_{mt}))$ конъюнкция двух исходных признаков
- Конъюнкция порядка k: формирование признака на основе k категориальных

• Разложение заключается в представлении матрицы Z размера $m \times n$ в виде произведения $U \wedge V$, где $U_{m \times m}$ и $V_{n \times n}$ - ортогональные матрицы $V_{m \times n}$ - матрица с элементами $V_{$

• $\lambda_1,...,\lambda_r,0,...,0$ - сингулярные числа, которые равны квадратным корням собственных значений матрицы ZZ^T

• Разложение можно переписать в сокращённом представлении, считая, что матрица U имеет размеры $m \times r$, $V - m \times r$, $\Lambda - r \times r$, тогда

$$Z = \sum_{i=1}^{r} \lambda_i u_i v_i^T$$

 u_i — і-й столбец матрицы U, ${v_i}^T$ — і-я строка матрицы V

• Наилучшее приближение матрицы Z среди всех матриц ранга k в L_2 -норме:

$$Z = \sum_{i=1}^{r} \lambda_i u_i v_i^T$$

k < rank(Z) $||Z - Z_k||_2 = \lambda_{k+1}$ (теорема Эккарта– Янга) Поэтому мы будем говорить об усечённом сингулярном разложении:

$$Z \approx U_{m \times k} \Lambda_{k \times k} V_{k \times n}$$

 Одно из наиболее частых применений SVD - сокращение размерности пространства.

Пусть $F = ||f_{ij}||_{m \times n}$ - исходная матрица объект-признак и число признаков n очень велико.

Тогда сделаем усечённое сингулярное разложение матрицы

$F \approx U \Lambda V$

, где ${\it U}$ - новая матрица объект признак

Если известны контрольные объекты, то раскладываем матрицу признаковых описаний для всех объектов.

Если контрольные объекты не известны, то вместо U используем матрицу $FV^T\Lambda^{-1}$, а при классификации объекта с признаковым описанием $f=(f_1,...,f_n)$ его заменяем на $fV^T\Lambda^{-1}$

3. Реальная прикладная задача с категориальными признаками

- Amazon.com Employee Access Challenge https://www.kaggle.com/c/amazon-employee-access-challenge/data
- Матрица объект-признак 32769x10
- 8 признаков
- Число категорий для различных признаков

Номер признака	1	2	3	4	5	6	7	8
Число категорий	7518	4243	128	177	449	343	2358	67

• Обучение - первые 25000 объектов

ullet - методы, которые при классификации объекта $(f_1,...,f_n)$ используют значение линейной комбинации

$$L = w_1 f_1 + ... + w_n f_n$$

 $(f_1,...,f_n)$ - вещественные признаки (либо исходные, либо новые, полученные некоторым преобразованием из исходных)

 Пример линейного метода - линейный классификатор, результат действия которого - индикатор сравнения с порогом

$$S(x) = \begin{cases} 1, & L \ge w_0, \\ 0, & L < w_0 \end{cases}$$

• Можно использовать значение L в качестве ответа и перевести на отрезок [0,1] преобразованием

$$rac{1}{1+e^{-L}}$$

• Простейший персептронный алгоритм Последовательно перебираются все объекты обучения и вектор весов $(w_1,...,w_n)$ корректируется в случае, если і-й объект классифицируется неверно: к нему прибавляется

$$\lambda(2y_i-1)(f_{i1},...,f_{in})$$

- Если в процессе перебора объектов не было коррекций весов, то классификатор настроен, иначе объекты перебираются снова (в случайном порядке)
- В задаче Employee Access Challenge параметр λ оптимальнее было выбирать так:

$$\lambda = \frac{1}{\log(s+1)}$$

s - номер итерации (номер прохождения по обучающей выборке)

- Простейший персептронный алгоритм:
 - настраивается достаточно быстро
 - показывает неплохое качество (0.8285 AUC)
 - может быть использован в качестве «бенчмарка» (для сравнения с ним более сложных моделей алгоритмов)

Логистическая регрессия
 Последовательно пересчитываются веса по формуле:

$$(w_1,...,w_n) = (w_1,...,w_n) + \lambda \sum_{i=1}^m \left(y_i + \frac{1}{1 + e^{-(w_1 f_1 + ... + w_n f_n)}} \right)$$

• настраивается аналогично, но качество существенно выше: 0.8713

- Для экспериментов был использован пакет LIBLINEAR, в котором реализованы алгоритмы логистической регрессии и SVM для больших разреженных матриц.
 - В логистической регрессии можно выбрать тип регуляризации: L1 или L2, а в SVM вид функции потерь: L1 или L2.

Рис.: Качество при настройке простейшего персептронного алгоритма

Рис.: Качество алгоритмов пакета LIBLINEAR после one-hot-кодирования признаков

- Лучшее качество среди линейных алгоритмов показала логистическая регрессия с L2-регуляризацией
- Селекция признаков не проводилась
- При отборе признаков логистическая регрессия является лучшим алгоритмом для решения рассматриваемой задачи

Качество логистической регрессии на конъюнкциях разных порядков.

Порядок конъюнкции	1	2	3	4
ROC AUC	0.8591	0.8703	0.8713	0.8704

• Значения признаков f_j заменим на g_j - оценки принадлежности классу 1, полученные по j-ому признаку:

$$g_{j} = \begin{cases} \frac{|l_{j}(f_{j}) \cap Y_{1}|}{|l_{j}(f_{j})|}, & f_{j} \in F_{j} \\ \Delta_{j}, & f_{j} \notin F_{j} \end{cases}$$
(4)

 $I_j(f_j) = \{t \in \{1,2,...,m\} | f_j = f_{tj}\}$ - номера объектов, у которых значение j-ого признака равно f_i ,

 $Y_1=\{t\in\{1,2,...,m\}|y_t=1\}$ - номера объектов первого класса, $F_j=\{f_{1j},...,f_{mj}\}$ - множество значений j-ого признака на обучении

• Часто на практике полагают:

$$g_{j} = \frac{|I_{j}(f_{j}) \cap Y_{1}| + \Delta_{j} * c}{|I_{j}(f_{j})| + c}, \tag{5}$$

с - коэффициент регуляризации

• Обобщенный алгоритм: от признакового описания $(f_1,...,f_n)$ перейдем к признаковому описанию $(\phi(g_1),...,\phi(g_n),\gamma_1,...,\gamma_n)$, где $\phi:R\to R$ - некоторая функция,

$$\gamma_j = \begin{cases} 0, & f_j \in F_j \\ 1, & f_j \notin F_j \end{cases} \tag{6}$$

5. Байесовские алгоритмы и их обобщения Преимущества

- Можно использовать любые стандартные методы решения задачи
- Признаковое описание увеличивается незначительно
- Кодировки легко интерпретировать: первая группа признаков оценка принадлежности к классам, вторая группа - индикаторы новых категорий
- Быстро удается построить алгоритм неплохого качества

- Переобучение
- Оценки вероятности могут быть некорректными из-за дефицита информации
 На практике обычно отбрасывают небольшие категории:

$$g_{j} = \begin{cases} \frac{|F_{j} \cap Y_{1}|}{|F_{j}|}, & |I(f_{j})| \geq r \\ 0, & |I(f_{j})| < r \end{cases}$$
 (7)

 Не учитываются связи между признаками
 Признаки можно пополнять конъюнкциями, но при этом увеличивается число небольших категорий

- $\phi(x)$ -1-алгоритм алгоритм, который решает задачу линейным методом в новом признаковом пространстве
- На практике в качестве $\phi: R \to R$ часто оказывается лучше использовать тождественные функции или фукнции вида $\phi(g) = g^k$
- ullet Один из лучших алгоритмов: ϕ -2-алгоритм

$$L(f_1, ..., f_n) = \frac{\sum_{j=1, f_j \in F_j}^n w_j \phi(g_j)}{\sum_{j=1, f_j \in F_j}^n w_j}$$
(8)

Формула некорректна, если $f_j \notin F_j$ для всех $j \in \{1,2,..,n\}$. В этом случае можно в качестве ответа выдавать $\frac{y_1+...+y_m}{m}$

• Качество обобщений байесовских алгоритмов

Порядок конъюнкции	1	2	3	4	5
х-1-алгоритм	0.8491	0.8814	0.8864	0.8878	0.8868
х-2-алгоритм	0.8475	0.8746	0.8801	0.8834	0.8842
$\log(x)$ -1-алгоритм	0.8101	0.8234	0.8247	0.8242	0.8246
\sqrt{x} -1-алгоритм	0.8465	0.8726	0.8790	0.8809	0.8821

• Метод гребневой линейной регрессии Из усечённого сингулярного разложения $F' \approx U \Lambda V$, где F' - сильно разреженная матрица "объект-признак" можно использовать U как пизнаковую матрицу. Тогда можно решить задачу методом гребневой линейной регрессии:

$$Uw = Y$$

где Ү - целевой вектор, т.е.

$$w = (U^T U + \lambda I)^{-1} U^T Y$$

I - единичная матрица λ - коэффициент регуляризации

Рис.: Качество линейной регрессии после SVD от числа слагаемых в разложении.

На рис. показано также качество линейной регрессии после предварительных нормировок (деление и умножение на корень суммы элементов в столбце) вида:

$$\eta(||u_{ij}||_{m\times n})=||\frac{u_{ij}}{v_j}||_{m\times n}$$

И

$$\mu(||u_{ij}||_{m\times n})=||u_{ij}v_j||_{m\times n}$$

где
$$v_j = \sqrt{\sum_{t=1}^m u_{tj}}$$

Рис.: Зависимость качества классификации от коэффициента регуляризации (при использовании 1000 слагаемых в SVD).

7. Методы, основанные на близости

• Оценка принадлежности классу

$$\Gamma_{y}(f_{1},...,f_{n}) = \frac{1}{N_{y}} \sum_{\Omega \in \Omega^{*}} \sum_{i:y_{i}=y} w^{i} w_{\Omega} B_{\Omega}((f_{1},...,f_{n}),(f_{i1},...,f_{in})), \quad (9)$$

где Ω^* — система опорных множеств: подмножеств множества признаков $\{1,2,...,n\}$,

 w_{Ω} – вес опорного множества Ω ,

 w^i — вес i-го объекта из обучения,

 N_y – нормирующий множитель,

 $B_{\Omega}(f,g)$ – функция близости, которая оценивает сходство объектов f и g на опорном множестве Ω .

7. Методы, основанные на близости

• Ответ алгоритма

$$\sum_{i=1}^{m} \left(\frac{2y_i - 1}{N_{y_i}} \sum_{\Omega \in \Omega^*} w_{\Omega} \prod_{j \in \Omega} I[f_j = f_{ij}] \right), I[f_j = f_{ij}] = \begin{cases} 1, & f_j = f_{ij} \\ 0, & f_j \neq f_{ij} \end{cases}$$
(10)

• Немного изменим алгоритм

$$\frac{\sum_{i=1}^{m} r_i y_i}{\sum_{i=1}^{m} r_i}, r_i = \left(\sum_{\Omega \in \Omega^*} w_{\Omega} \prod_{j \in \Omega} I[f_j = f_{ij}]\right)^d$$
(11)

• Можно перейти к конъюнкциям: обозначим f_Ω - конъюнкция признаков с номерами из $\Omega\subset \{1,2,...,n\}$

$$r_i = \left(\sum_{\Omega \in \Omega^*} w_{\Omega} I[f_{\Omega} = f_{i,\Omega}]\right)^d$$

7. Методы, основанные на близости

- Параметры модели w_{Ω} , d настриваются методом покоординатного спуска.
- Качество метода, основанного на близости

Степень конъюкции	1	2	3	4
Качество	0.8681	0.8884	0.8900	0.8919

- Необходимо хранить всю обучающую выборку
- Долгая настройка параметров

• Рассмотрим задачу с двумя категориальными признаками:

$$\begin{bmatrix} f_{11} & f_{12} \\ \vdots & \vdots \\ f_{m1} & f_{m2} \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$

учитывая, что первый признак принимает значения из $1,...,n_1$, а второй из $1,...,n_2$, задачу можно интерпретировать как:

$$Z = ||z_{ij}||_{n_1 \times n_2}$$

$$z_{f_{t1},f_{t2}}=y_t$$

для всех $t \in {1, 2, ..., m}$

• Классификация объекта (f_1,f_2) эквивалентна определению значения элемента z_{f_1,f_2} Будем искать разложение Z=UV, где $U=||u_{ij}||_{n_1\times k}$ $V=||v_{ij}||_{k\times n_2}$ минимизируя функционал

$$J = \sum_{t=1}^{m} e_t^2 + \lambda_1 \sum_{s=1}^{k} \sum_{i=1}^{n_1} u_{is}^2 + \lambda_2 \sum_{s=1}^{k} \sum_{j=1}^{n_2} v_{sj}^2$$

где

$$e_t = \sum_{s=1}^{k} (u_{f_{t1,s}} v_{f_{s,t2}}) - y_t$$

- Обычно используется два подхода минимизации:
 - Метод стохастического градиента (stochastic gradient descent)
 - Чередующиеся минимизации среднеквадратичной ошибки (alternating least squares)

- Чередующиеся минимизации среднеквадратичной ошибки Метод основан на последовательной фиксации одной из матриц: $U = ||u_{ij}||_{n_1 \times k}$ или $V = ||v_{ij}||_{k \times n_2}$
- Выпуклая задача оптимизации
- Сходится медленнее, чем метод стохастического градиента

8. Методы, основанные на тензорных разложениях

 Метод стохастического градиента Метод основан на итерационном изменении настраиваемых параметров в направлении антиградиента.

$$\frac{\partial J}{\partial u_{is}} = 2 \sum_{t:f_{t1}=i} e_t v_{s,f_{t2}} + 2\lambda_1 u_{is}$$
$$\frac{\partial J}{\partial v_{sj}} = 2 \sum_{t:f_{t2}=i} e_t u_{f_{t1},s} + 2\lambda_2 v_{sj}$$

 $U = ||u_{ij}||_{n_1 \times k}$ и $V = ||v_{ij}||_{k \times n_2}$ - случайные матрицы (начальное приближение), которые потом пересчитываются по формулам:

$$u_{is} = u_{is} - \alpha \sum_{t:f_{t1}=i} e_t v_{s,f_{t2}} - \lambda_1 u_{is}$$
$$v_{sj} = u_{sj} - \alpha \sum_{t:f_{t2}=i} e_t u_{f_{t1},s} - \lambda_2 v_{sj}$$

8. Методы, основанные на тензорных разложениях

• Аналогично в общем случае:

Заданы n категориальных признаков, можно считать, что задана информация о m элементах многомерной матрицы размера $n_1 \times n_2 \times ... \times n_n$ — тензора n-го порядка.

Нужно найти матрицы $U(r) = ||u_{ij}^r||_{n_r \times k} \ r \in 1,...,m$, чтобы минимизировать

$$J = \sum_{t=1}^{m} e_t^2 + \lambda_1 \sum_{r=1}^{n} \lambda_r \left(\sum_{i,j} (u_{ij}^r)^2 \right)$$

где $e_t = \sum_{s=1}^k \prod_{r=1}^n (u^r_{f_{r1,s}}) - y_t$ Формулы для пересчета параметров:

$$v_{ij}^{r} = u_{ij}^{r} - \alpha \left(e_{t} \prod_{d=1, d \neq r}^{n} u_{f_{td}, s}^{d} - \lambda u_{ij}^{r} \right)$$

8. Методы, основанные на тензорных разложениях

• Результат применения этого алгоритма в задаче Employee Access Challenge

Рис.: Качество на обучении (тонкие графики) и контроле (толстые) методом, основанном на тензорном разложении

• Случайная кодировка

Рис.: Качество случайного леса от числа деревьев при случайных кодировках

• Случайная кодировка

Рис.: Качество случайного леса от параметра mtry при случайных кодировках

• Категориальные + Вещественные

 Φ - некоторое множество вещественных функций, в котором для произвольного натурального числа k есть ровно одна функция k переменных.

При этом все функции симметричные, т.е. для любой функции $\varphi \in \Phi$ от k переменных

$$\varphi(x_1,...,x_k) = \varphi(x_{\sigma(1)},...,x_{\sigma(k)})$$
 для любой перестановки σ .

Пример: множество сумм

$$\varphi(x_1,...,x_k) = x_1 + ... + x_k$$

Для кодирования значения f_j j-го категориального признака выбираем

$$I = \{t \in \{1, 2, ..., m\} | f_{tj} = f_j\},$$

вещественный признак - s-ый

Кодируем значение f_j значением подходящей функции из Φ (т.е. функции от |I| переменных) от значений $f_{is}, i \in I$

• Категориальные

```
Первый признак - кодируемый, \{1,2,...,n_1\} Второй признак - кодирующий, \{1,2,...,n_2\} P=||p_{ij}||_{n_1\times n_2}: p_{ij}=|\{t\in\{1,2,...,m\}|f_{t1}=i,f_{t2}=j\}| Сделаем неполное сингулярное разложение матрицы P\approx U\Lambda V (первые k слагаемых)
```

Получаем k различных кодировок: в t-ой кодировке заменяем значение i на it-ый элемент матрицы U.

• Категориальные

Рис.: Зависимость качества от параметра mtry случайного леса

• Категориальные

Рис.: Зависимость качества от числа деревьев в случайном лесе

10. Выпуклые комбинации алгоритмов

алгоритмы	4	5	7	8	9
4	0.8713	0.8914	0.8919	0.8731	0.8879
5		0.8878	0.8972	0.8884	0.8974
7			0.8919	0.8924	0.8919
8				0.8453	0.8872
9					0.8863

Рис.: Качество лучших линейных комбинаций

алгоритмы	4	5	7	8	9
4	1	0.9523	0.9543	0.9696	0.9568
5		1	0.9989	0.9858	0.9983
7			1	0.9866	0.9989
8				1	0.9880
9					1

Рис.: Корреляция ответов алгоритмов

10. Выпуклые комбинации алгоритмов

Рис.: Ответы двух алгоритмов

10. Выпуклые комбинации алгоритмов

Рис.: Качество при проверке на переобучение