

COMP2054 Tutorial Session 5: Master Theorem

Rebecca Tickle
Warren Jackson
AbdulHakim Ibrahim

Session outcomes

- Identify which recurrences can the Master Theorem be applied to.
- Prove runtime complexities of recurrences using the M.T.

Master Theorem

Master Theorem cases and complexity proofs

Master Theorem "Cheat Sheet"

For a given recurrence of the form $T(n) = a \cdot T(n/b) + f(n)$ the M.T. can tell us the growth rate of T(n) according to three cases:

Case 1: Recurrence dominates (plus special case that f(n) = 0)

IF f(n) is $O(n^c)$ with $c < \log_b a$ THEN T(n) is $O(n^{\log_b a})$

Case 2: Neither term dominates

IF f(n) is $\Theta(n^c(\log n)^k)$ with $c = \log_b a$ and $k \ge 0$ THEN T(n) is $\Theta(n^c(\log n)^{k+1})$

Case 3: f(n) dominates

IF f(n) is $\Omega(n^c)$ with $c > \log_b a$ THEN T(n) is $\Theta(f(n))$

Q1. $T(n) = 2 \cdot T(n/2)$ and T(1) = 1

- Case 1 (special case f(n) = 0) growth depends on the recurrence.
 - For $T(n) = a \cdot T(n/b)$ and T(1) = 1
 - T(n) is $\Theta(n^{\log_b a})$
 - a = 2; b = 2
 - T(n) is $\Theta(n^{\log_2 2})$
 - Hence is $\Theta(n)$

Q2. $T(n) = 2 \cdot T(n/2) + n$ and T(1) = 1

- For $T(n) = a \cdot T(n/b) + f(n)$
- a = 2; b = 2; f(n) = n
- $c = \log_2 2 = 1$
- f(n) is at least $O(n^1)$ and 1 $< log_2 2$; hence not case 1.
- Similarly, f(n) is at most $Ω(n^1)$ and $1 > log_2 2$; hence not case 3.
- Case 2 growth depends on both recurrence and f(n).
- f(n) is $\Theta(n^1(\log n)^0)$, hence f(n) is $\Theta(n^c(\log n)^k)$ with $c = \log_b a$ and $k \ge 0$
- : T(n) is $\Theta(n^c(\log n)^{k+1}) = \Theta(n^1(\log n)^1) = \Theta(n\log n)$

Q3. $T(n) = 2 \cdot T(n/4) + n$ and T(1) = 1

$$a = 2; b = 4; f(n) = n$$

$$c = \log_4 2 = \frac{1}{2}$$

- $1 \le \frac{1}{2}$ hence is not case 1 or 2.
- Case 3 growth depends on f(n)
- f(n) is $\Omega(n^1)$ with 1 > 0.5.
- T(n) is $\Theta(n)$.

Q4.
$$T(n) = T(n-1) + 1$$
 and $T(1) = 1$

- T(n) not in the form $a \cdot T(n/b) + f(n)$ hence
- M.T. does not apply, sorry.
- Need to prove only by induction.

With the base case T(1) = 1:

• Q5.
$$T(n) = 2 \cdot T(n/4) + 1$$

• Q6.
$$T(n) = 4 \cdot T(n/2) + n^2$$

■ Q7.
$$T(n) = 2 \cdot T(n-1)$$

• Q8.
$$T(n) = 3 \cdot T(n/3) + n \log n$$

• Q9.
$$T(n) = 2 \cdot T(n/2) + 2n^2$$

• Q10.
$$T(n) = 2 \cdot T(n/2) + n(\log n)^2$$

- Q5. $T(n) = 2 \cdot T(n/4) + 1$
- f(n) = 1 hence is $O(1) = O(n^0)$
- c = 0 and $0 < \log_4 2$ hence case 1 applies.
- $T(n) \text{ is } \Theta\left(n^{\log_b a}\right) = \Theta(n^{0.5})$

- Q6. $T(n) = 4 \cdot T(n/2) + n^2$
- $a = 4; b = 2; f(n) = n^2$
- f(n) is $O(n^2)$ hence $c \ge 2$ but $2 \ne \log_2 4$ so is not case 1.
- f(n) is $\Theta(n^2(\log n)^0)$ with $2 = \log_2 4$ and $0 \ge 0$ hence is case 2 with T(n) is $\Theta(n^2 \log n)$

- Q7. $T(n) = 2 \cdot T(n-1)$
- a = 2; b = not defined
- M.T. not applicable solve by induction.
- $T(n) = 2^{n-1}$
- Base case: $T(1) = 2^0 = 1$
- IH: $T(k) = 2^{k-1}$
- Prove: $T(k + 1) = 2 \cdot T(k)$
- $= 2 \cdot 2^{k-1}$
- $= 2^{k+1-1}$
- QED.

- Q8. $T(n) = 3 \cdot T(n/3) + n \log n$
- $\bullet f(n) = n \log n$
- Does not match case 1
- Case 2: f(n) is $\Theta(n^1(\log n)^1)$ with $c = \log_b a$ (1 = $\log_3 3$)
- : T(n) is $\Theta(n^c(\log n)^{k+1}) = \Theta(n(\log n)^2)$

- $\mathbf{Q}9.T(n) = 2 \cdot T(n/2) + 2n^2$
- $f(n) = 2n^2$
- Not case 1 or 2 since 2 ≤ 1
- Case 3:
 - T(n) is $\Theta(f(n))$ if f(n) is $\Omega(n^c)$ with $c > \log_b a$
 - f(n) is $\Omega(n^2)$ and $2 > \log_2 2$
 - : T(n) is $\Theta(n^2)$

- Q10. $T(n) = 2 \cdot T(n/2) + n(\log n)^2$
- $f(n) = n(\log n)^2$
- $c(1) = \log_b a(1)$ hence M.T. case 2 with k = 2:
- T(n) is $\Theta(n(\log n)^3)$

Additional Practice Questions

If you would like some additional practice with the Master Theorem, check the MT Additional Practice Questions document on Moodle.

Thank you