Zusammenfassung Partielle DGLn

© Tim Baumann, http://timbaumann.info/uni-spicker

1. Einleitung

Def. Eine partielle Differentialgleichung (PDGL) hat die Form

$$E(x, u(x), Du(x), ..., D^k u(x)) = 0$$
 in $\Omega \subset \mathbb{R}^n$ offen, (\star)

wobei $E: \Omega \times \mathbb{R} \times \mathbb{R}^n \times ... \times \mathbb{R}^{n^k} \to \mathbb{R}$ gegeben und $u: \Omega \to \mathbb{R}$ gesucht ist. Die höchste Ableitungsordnung von u, die in E vorkommt, heißt **Ordnung** der PDGL.

Def. Eine PDGL von der Ordnung k heißt

• linear, falls sie folgende Form besitzt:

$$\sum_{|\alpha| \le k} a_{\alpha}(x) D^{\alpha} u(x) - f(x) = 0$$

 semilinear, falls sie linear in der höchsten Ableitungsordnung ist, man sie also schreiben kann als

$$\sum_{|\alpha|=k} a_{\alpha}(x) D^{\alpha} u(x) + E_{k-1}(x, u(x), Du(x), ..., D^{k-1} u(x)) = 0.$$

• quasilinear, falls sie sich schreiben lässt als

$$\sum_{|\alpha|=k} a_{\alpha}(x, u(x), Du(x), ..., D^{k-1}u(x))D^{\alpha}u(x)$$

$$+ E_{k-1}(x, u(x), Du(x), ..., D^{k-1}u(x)) = 0.$$

• sonst voll nichtlinear.

Bemerkung. { lineare PDGLn } \subsetneq { semilineare PDGLn } \subsetneq { quasilineare PDGLn } \subsetneq { PDGLn }

Def (Typeinteilung für lineare PDGLn 2. Ordnung). Seien $a_{ij}, b_i, c, f: \Omega \to \mathbb{R} \ (i, j \in \{1, ..., n\})$ vorgegebene Fktn. auf $\Omega \subset \mathbb{R}^n$ offen.

• Die lineare PDGL

$$\sum_{1 \leq i,j \leq n} a_{ij}(x) D_i D_j u(x) + \sum_{1 \leq j \leq n} b_j(x) D_j u(x) + c(x) u(x) + f(x) = 0$$

heißt elliptisch, falls die $(n \times n)$ -Matrix $(a_{ij})_{1 \le i,j \le n}$ für alle $x \in \Omega$ positiv definit ist.

• Die lineare PDGL

$$D_1D_1u(x)-\sum\limits_{2\leq i,j\leq n}a_j(x)D_iD_ju(x)+\sum\limits_{1\leq i\leq n}b_i(x)D_iu(x)+c(x)u(x)+f(x)=0$$

heißt hyperbolisch, falls die $(n-1) \times (n-1)$ -Matrix $(a_{ij})_{2 \le i,j \le n}$ für alle $x \in \Omega$ positiv definit ist.

• Die lineare PDGL

$$D_1 u(x) - \sum_{2 \le i, j \le n} a_{ij}(x) D_i D_j u(x) + \sum_{2 \le i \le n} b_i(x) D_i u(x) + c(x) u(x) + f(x) = 0$$

heißt parabolisch, falls die $(n-1) \times (n-1)$ -Matrix $(a_{ij})_{2 \leq i,j \leq n}$ für alle $x \in \Omega$ positiv definit ist.

Def. Eine Funktion $u: \Omega \to \mathbb{R}$ heißt klassische Lösung, falls $u \in \mathcal{C}^k(\Omega)$ und die Differentialgleichung (*) überall in Ω erfüllt ist.

2. Laplace- und Poisson-Gleichung

Notation. Seien $f: \mathbb{R}^n \to \mathbb{R}$ und $F = (F_1, ..., F_n)^T : \mathbb{R}^n \to \mathbb{R}^n$ Funktionen. Dann heißt

- $\operatorname{div} F := \sum_{i=1}^{n} D_i F_i : \mathbb{R}^n \to \mathbb{R}$ Divergenz von F,
- grad $f := \nabla f := (\partial_1 f, ..., \partial_n f)^T : \mathbb{R}^n \to \mathbb{R}^n$ Gradient von f,
- $\Delta \min \Delta f = \operatorname{div}(\operatorname{grad} f) = \sum_{i=1}^{n} D_i D_i f$ Laplace-Operator.

 $\bf Def.$ Die Laplace- bzw. Poisson-Gleichung ist die Gleichung

$$\Delta u = 0$$
 bzw. $\Delta u = f$ auf $\Omega \subset \mathbb{R}^n$.

Satz (Transformations satz). Sei $T:\Omega\to T(\Omega)$ für $\Omega\subset\mathbb{R}^n$ ein $\mathcal{C}^1\text{-Diffeo, dann gilt für }f:T(\Omega)\to\overline{\mathbb{R}}$

$$f \in L^1(T(\Omega)) \iff (f \circ T) \circ |\det(DT)| \in L^1(\Omega) \quad \text{mit}$$

$$\int\limits_{T(\Omega)} f \, \mathrm{d}x = \int\limits_{\Omega} (f \circ T) \cdot |\det(DT)| \, \mathrm{d}x.$$

Bsp (Polarkoordinaten). Sei $f \in L^1(B_r(K))$. Dann ist f auf fast jeder Sphäre $\partial B_{\rho}(K)$ für $\rho \in [0, r]$ integrierbar und es gilt

$$\int_{B_r(x)} f(x) dx = \int_0^r \int_{\partial B_\rho(x_0)} f dS d\rho$$

Satz (Gauß). Sei $\Omega \subset \mathbb{R}^n$ beschränkt, offen mit \mathcal{C}^1 -Rand $\partial\Omega$. Ist $F \in \mathcal{C}^0(\overline{\Omega}, \mathbb{R}^n) \cap \mathcal{C}^1(\Omega, \mathbb{R}^n)$ mit div $F \in L^1(\Omega)$, so gilt

$$\int_{\Omega} \operatorname{div} F \, \mathrm{d}x = \int_{\partial \Omega} (F \circ \nu) \, \mathrm{d}S,$$

wobei ν der äußere Einheitsnormalenvektor ist.

Korollar. Sei $\Omega \subset \mathbb{R}^n$ beschränkt, offen mit \mathcal{C}^1 -Rand $\partial\Omega$. Sind $f, g \in \mathcal{C}^1(\overline{\Omega})$, dann gilt die partielle Integrationsregel

$$\int_{\Omega} D_i f g \, dx = - \int_{\Omega} f D_i g \, dx + \int_{\partial \Omega} f g \nu^i \, d\mathcal{H}^{n-1}$$

Sind $f, g \in \mathcal{C}^2(\overline{\Omega})$, dann gelten die Greenschen Formeln

$$\int_{\Omega} Df \cdot Dg \, dx = -\int_{\Omega} f \Delta g \, dx + \int_{\Omega} f D_{\nu} g \, d\mathcal{H}^{n-1}$$

$$\int_{\Omega} (f \Delta g - g \Delta f) \, dx = \int_{\partial\Omega} (f D_{\nu} g - g D_{\nu} f) \, d\mathcal{H}^{n-1}$$

Proposition. Sei $\Omega \subset \mathbb{R}^n$ messbar mit $|\Omega| < \infty$, $I =]a, b[\subset \mathbb{R}$ und $f : \Omega \times I \to \mathbb{R}$. Angenommen,

- $f(x,-) \in \mathcal{C}^1(I)$ für fast alle $x \in \Omega$,
- $f(-,t) \in L^1(\Omega) \frac{\partial f}{\partial t}(-,t) \in L^1(\Omega)$ für alle $t \in I$ und
- für alle $t \in I$ gibt es $\epsilon > 0$ sodass $|t \epsilon, t + \epsilon| \subset I$ und

$$\sup_{s\in]t-\epsilon,t+\epsilon[}|\tfrac{\partial f}{\partial t}(-,s)|\in L^1(\Omega).$$

Dann ist die Abbildung

$$g: I \to \mathbb{R}, \qquad t \mapsto \int_{\Omega} f(x, t) \, \mathrm{d}x$$

wohldefiniert und stetig differenzierbar mit

$$\frac{\partial g}{\partial t}(t) = \int_{\Omega} \frac{\partial f}{\partial t}(x, t) dx.$$

Bemerkung. Die Voraussetzungen sind erfüllt, wenn Ω offen und beschränkt ist, $f(x,-) \in \mathcal{C}^1(I)$ für alle $x \in \Omega$ und $f, \frac{\partial f}{\partial t} \in \mathcal{C}(\overline{\Omega} \times I)$.

Notation. Bezeichne mit \mathcal{L}^n das Lebesgue-Maß auf dem \mathbb{R}^n . Für messbare Teilmengen $A \subset \mathbb{R}^n$ schreibe $|A| := \mathcal{L}^n(A)$.

Bsp. Zwischen dem Volumen von Kugeln und Sphären im \mathbb{R}^n bestehen folgende Zusammenhänge:

$$|B_r(0)| = r^n \cdot |B_1(0)|$$
 und $|B_r(0)| = \frac{r}{n} \cdot \int_{\partial B_r(0)} 1 \, dS$

Notation.
$$\omega_n := \mathcal{L}^n(B_1(0)) = \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)}$$

Notation. Sei $f: \Omega/M \to \mathbb{R}$ integrierbar für $\Omega \subset \mathbb{R}^n$ messbar mit $\mathcal{L}^k(\Omega) \in]0, \infty[$ bzw. $M \subset \mathbb{R}^n$ eine k-dimensionale

Untermannigfaltigkeit mit $\int\limits_M 1\,\mathrm{d}S\in \left]0,\infty\right[$

$$\int_{\Omega} f(x) \, \mathrm{d}x := \frac{1}{|\Omega|} \int_{\Omega} f(x) \, \mathrm{d}x \quad \text{bzw.} \quad \int_{M} f(x) \, \mathrm{d}x := \frac{1}{|M|} \int_{M} f(x) \, \mathrm{d}x$$

heißen Mittelwerte von f auf Ω bzw. M.

Def. Ein Glättungskern auf \mathbb{R}^n ist eine nicht-negative, radialsymmetrische Funktion $\eta \in \mathcal{C}_0^{\infty}(B_1(0))$ mit $\int_{\mathbb{R}^n} \eta \, dx = 1$.

Def. Der Standardglättungskern ist die Funktion

$$\eta(x) \coloneqq C \cdot \exp\left(\frac{1}{|x|^2 - 1}\right) \cdot \mathbb{1}_{B_1(0)}(x)$$

mit Normierungskonstante C. Für $\epsilon>0$ ist der dazugehörige skalierte Glättungskern gegeben durch

$$\eta_{\epsilon}(x) \coloneqq \epsilon^{-n} \eta(x/\eta).$$

Alle Glättungskern-Eigenschaften bleiben bei Skalierung erhalten.

Notation. $\Omega_{\epsilon} := \{x \in \Omega \mid \operatorname{dist}(x, \partial \Omega) > \epsilon\}$

Def. Sei $\Omega \subset \mathbb{R}^n$ offen, $\epsilon > 0$. Für $f \in L^1_{loc}$ heißt die Funktion

$$f_{\epsilon}: \Omega_{\epsilon} \to \mathbb{R}, \quad x \mapsto \eta_{\epsilon} * f(x) \coloneqq \int_{B_{\epsilon}(x)} \eta_{\epsilon}(x-y) f(y) \, \mathrm{d}y \quad \epsilon\text{-Gl\"{a}ttung von } f$$

Satz (Eigenschaften von Glättungen). Sei $\Omega \subset \mathbb{R}^n$ offen, $\epsilon > 0$ und $f \in L^1_{loc}(\Omega)$. Dann gilt

- Regularität: $f_{\epsilon} \in C^{\infty}(\Omega_{\epsilon})$ mit $D^{\alpha}f_{\epsilon} = (D^{\alpha}\eta_{\epsilon}) * f$ für beliebige Multiindizes $\alpha \in \mathbb{N}^{n}$.
- Ist $D_i f$ stetig auf Ω , so gilt $D_i(f_{\epsilon}) = (D_i f)_{\epsilon}$ auf Ω_{ϵ} .
- Falls $f \in \mathcal{C}^{\alpha}(\Omega)$ für ein $\alpha \in]0,1]$, so gilt $f_{\epsilon} \in \mathcal{C}^{\alpha}(\Omega_{\epsilon})$ mit derselben Hölderkonstante.
- Falls $f \in L^p(\Omega)$ für $p \in [0, \infty]$, so gilt $||f_{\epsilon}||_{L^p(\Omega_{\epsilon})} \le ||f||_{L^p(\Omega)}$.

- $f_{\epsilon} \xrightarrow{\epsilon \to 0} f$ fast-überall in Ω .
- Falls $f \in \mathcal{C}(\Omega)$, so konvergiert f_{ϵ} gleichmäßig gegen f für $\epsilon \to 0$ auf kompakten Teilmengen von Ω ,
- Falls $f \in L^p_{loc}(\Omega)$ für $p \in [1, \infty[$, so gilt $f_{\epsilon} \xrightarrow{\epsilon \to 0} f$ in $L^p_{loc}(\Omega)$.
- Abschätzung der Approximationsgüte: Ist $Du \in L^p(\Omega)$, so gilt

$$||f - f_{\epsilon}||_{L^{p}(\Omega_{\epsilon})} \le \epsilon \cdot ||Df||_{L^{p}\Omega}$$

Def. Sei $\Omega \subset \mathbb{R}^n$ offen, $u \in \mathcal{C}^2(\Omega)$. Man nennt u

- harmonisch, falls $\Delta u = 0$ in Ω gilt.
- subharmonisch, falls $\Delta u > 0$ in Ω gilt.
- superharmonisch, falls $\Delta u < 0$ in Ω gilt.

Bspe. • Affine Funktionen sind harmonisch.

- Sei $A \in \mathbb{R}^{n \times n}$. Definiere $u(x) := x \cdot Ax$. Dann gilt $\Delta u = \operatorname{spur} A$, also $\Delta u = 0 \iff \operatorname{spur} A = 0$.
- Real- und Imaginärteil von holomorphen Fktn. sind harmonisch.

Def. Die Funktion $\Phi: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$, definiert durch

$$\Phi(x) := \begin{cases} -(2\pi)^{-1} \log|x|, & \text{wenn } n = 2\\ (n(n-2)\omega_n)^{-1}|x|^{2-n}, & \text{wenn } n \ge 3 \end{cases}$$

heißt Fundamentallösung der Laplacegleichung.

Bemerkung. • Φ ist radialsymmetrisch, d. h. für alle $x_1, x_2 \in \mathbb{R}^n \setminus \{0\}$ mit $||x_1|| = ||x_2||$ gilt $\Phi(x_1) = \Phi(x_2)$.

• Φ , $|D\Phi| \in L^1(B_R(0))$ für alle R > 0 aber $|D^2\phi| \notin L^1(B_1(0))$.

• Die Konstanten wurden so gewählt, dass gilt:

$$-\int\!\!D\Phi\cdot\nu\,\mathrm{d}\mathcal{H}^{n-1}=1\quad\text{für alle }r>0.$$

$$\partial B_r(0)$$

Lemma. Sei $\Omega \subset \mathbb{R}^n$ offen, $B_R(x_0) \subset \Omega$, $u \in \mathcal{C}^2(\Omega)$. Für

$$\phi:]0, R[\to \mathbb{R}, \quad r \mapsto \int_{\partial B_r(x_0)} u \, d\mathcal{H}^{n-1}$$
 gilt dann

•
$$\lim_{r \to 0} \phi(r) = u(x_0)$$
 • $\phi'(r) = \frac{r}{n} \int_{B_r(x_0)} \Delta u(x) dx$

Korollar (Mittelwertseigenschaft). Sei $\Omega \subset \mathbb{R}^n$ offen, $B_r(x_0) \in \Omega$ und $u \in C^2(\Omega)$. Dann gilt:

$$0 = \Delta u \implies u(x_0) = \int_{\partial B_r(x_0)} u \, d\mathcal{H}^{n-1} \quad \text{und} \quad u(x_0) = \int_{B_r(x_0)} u \, d\mathcal{H}^{n-1}$$

In diesen Gleichungen darf man = durch \leq , <, \geq oder > ersetzen.

Satz. Sei $\Omega \subset \mathbb{R}^n$ offen. Dann sind äquivalent:

- u ist harmonisch, d. h. es gilt $\Delta u = 0$ in Ω .
- \bullet u erfüllt die sphärische Mittelwertseigenschaft, d. h. es gilt

$$u(x_0) = \int_{\partial B_r(x_0)} d\mathcal{H}^{n-1}$$
 für alle Kugeln $B_r(x_0) \in \Omega$.

• u erfüllt die Mittelwertseigenschaft auf Kugeln, d.h. es gilt

$$u(x_0) = \int_{B_r(x_0)} d\mathcal{H}^{n-1}$$
 für alle Kugeln $B_r(x_0) \in \Omega$.

Bemerkung. Die Äquivalenz gilt auch unter den schwächeren Voraussetzungen $u \in \mathcal{C}(\Omega)$ oder $u \in L^1(\Omega)$.

Satz. Sei $\Omega \subset \mathbb{R}^n$ offen, beschränkt und $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}^0(\overline{\Omega})$ subharmonisch in Ω , d. h. $\Delta u \geq 0$ in Ω . Dann gilt

- Das starke Maximumsprinzip: Ist Ω zusammenhängend und existiert $x_0 \in \Omega$ mit $u(x_0) = \max_{\overline{\Omega}} u$, so ist u konstant.

Bemerkung. Sei $\Omega \subset \mathbb{R}^n$ beschränkt, offen, zusammenhängend und $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}(\overline{\Omega})$ harmonisch. Dann gilt

$$\min_{\partial \Omega} u < \max_{\partial \Omega} u \implies \min_{\partial \Omega} u < u < \max_{\partial \Omega} u \text{ auf } \Omega.$$

Korollar (Eindeutigkeit). Sei $\Omega \subset \mathbb{R}^n$ offen, beschränkt und $u, v \in C^2(\Omega) \cap C(\overline{\Omega})$. Dann ist u = v, falls gilt:

$$\left\{ \begin{array}{ll} \Delta u = \Delta v & \text{in } \Omega \\ u = v & \text{auf } \partial \Omega \end{array} \right.$$

Bemerkung (Stetige Abhängigkeit von Randwerten). Gilt lediglich $\Delta u = \Delta v$ in Ω , aber nicht u = v auf $\partial \Omega$, so gilt immerhin

$$\max_{\overline{\Omega}} |u - v| = \max_{\partial \Omega} |u - v|.$$

Satz (Harnack-Ungleichung). Sei $\Omega \subset \mathbb{R}^n$ offen, $V \subset\subset \Omega$ offen, zusammenhängend. Dann gibt es eine Konstante $c = c(\Omega, V)$, sodass

$$\sup_{V} u \leq c \cdot \inf_{V} u \qquad \text{für alle harmonischen Fktn. } u:\Omega \to \mathbb{R}_{\geq 0}.$$