

National University of Computer & Emerging Sciences, Karachi Spring 2017/18 CS-Department

Midterm 1

26th May 2018, 10:30 am - 11:30 am

Course Code: CS481	Course Name: Data Science		
Instructor Name: Dr Muhammad Atif Tahir			
Student Roll No:	Section No:		

Instructions:

- Return the question paper.
- Read each question completely before answering it. There are 2 questions and 1 page
- In case of any ambiguity, you may make assumption. But your assumption should not contradict any statement in the question paper.
- Show all steps clearly.

Time: 60 minutes. Max Marks: 10 points

Question 1: Briefly answer the following questions. Each question should be answered in 3 – 4 lines including articles. Otherwise, answer will not be checked. [4 Points]

- a) What is data science?
- b) Briefly discuss any two issues to consider during data integration.
- c) What are the main steps of Data transformation
- d) Discuss 2 ways to handle missing data

Question 2: You are given the following training examples. Each example has only one attribute, and the classification into positive / negative [6 Points]

Index	Х	Label
1	1.0	Positive
2	2.0	Negative
3	4.0	Positive
4	5.0	Positive
5	6.0	Negative
6	7.0	Negative

Your main task is to evaluate the following algorithm that use a set *S* of training examples to classify the example with attribute value of *x*.

Algorithm:

Let S_p, S_n be the sets of positive and negative examples in S.

If S_p is empty classify x as negative. If S_n is empty classify x as positive.

Otherwise, compute u_p , the mean of the x values in S_p , and u_n , the mean of the x values in S_n .

If x value is closer to u_p than it is to u_n then classify x as positive. Otherwise classify x as negative.

Example: Using all the training examples above we have: $u_p = 3.33$, $u_n = 5$. Therefore, an example with x = 2.5 is classified as positive.

In case of Tie, randomly assign any class.

- (a) Use leave-one-out cross validation to estimate the errors of Algorithm above [3 Points]
- (b) Use 3 Fold CV to estimate the errors of Algorithm above. Run cross-validation using following permutations of the data points (1, 3, 4, 2, 5, 6) [3 Points]

BEST OF LUCK!