Computing Pure Strategy Nash Equilibria in Compact Symmetric Games

Christopher Thomas Ryan, Albert Xin Jiang, Kevin Leyton-Brown

University of British Columbia, Vancouver, Canada

► Computational questions: How hard is it to decide if a game has a PSNE? How hard is it to find one? etc.

- Computational questions: How hard is it to decide if a game has a PSNE? How hard is it to find one? etc.
- Answer: depends on the input.
 - Polynomial time when input is in normal form.
 - size exponential in the number of players

- Computational questions: How hard is it to decide if a game has a PSNE? How hard is it to find one? etc.
- Answer: depends on the input.
 - Polynomial time when input is in normal form.
 - size exponential in the number of players
 - Potentially difficult (NP-complete, PLS-complete) when input is "compact".
 - Congestion games [Fabrikant, Papadimitriou & Talwar, 2004; leong et al., 2005]
 - ► Graphical games [Gottlob, Greco & Scarcello 2005]
 - Action graph games [Jiang & Leyton-Brown, 2007; Daskalakis, Schoenebeck, Valiant & Valiant 2009]

- ▶ We focus on
 - Symmetric games: all players are identical and indistinguishable.
 - \blacktriangleright Fixed number of actions m, varying number of players n.
 - Utilities are integers.

- ▶ We focus on
 - Symmetric games: all players are identical and indistinguishable.
 - \blacktriangleright Fixed number of actions m, varying number of players n.
 - Utilities are integers.
- Define configuration:

$$\mathbf{x}=(x_a:a\in A)$$

- We focus on
 - Symmetric games: all players are identical and indistinguishable.
 - \blacktriangleright Fixed number of actions m, varying number of players n.
 - Utilities are integers.
- Define configuration:

$$\mathbf{x} = (x_a : a \in A)$$

- Sufficient to specify utility function $u_a(\mathbf{x})$ for each action a and each configuration \mathbf{x} .
 - ▶ There are $\binom{n+m-1}{m-1} = \Theta(n^{m-1})$ distinct configurations.

- ▶ We focus on
 - Symmetric games: all players are identical and indistinguishable.
 - \blacktriangleright Fixed number of actions m, varying number of players n.
 - ▶ Utilities are integers.
- Define configuration:

$$\mathbf{x} = (x_a : a \in A)$$

- Sufficient to specify utility function $u_a(\mathbf{x})$ for each action a and each configuration \mathbf{x} .
 - ▶ There are $\binom{n+m-1}{m-1} = \Theta(n^{m-1})$ distinct configurations.
 - ▶ In previous studies [e.g. Brandt, Fischer & Holzer, 2009; Roughgarden & Papadimitriou, 2005], utility values are given explicitly.

- ▶ We focus on
 - Symmetric games: all players are identical and indistinguishable.
 - \blacktriangleright Fixed number of actions m, varying number of players n.
 - Utilities are integers.
- Define configuration:

$$\mathbf{x} = (x_a : a \in A)$$

- Sufficient to specify utility function $u_a(\mathbf{x})$ for each action a and each configuration \mathbf{x} .
 - ▶ There are $\binom{n+m-1}{m-1} = \Theta(n^{m-1})$ distinct configurations.
 - ▶ In previous studies [e.g. Brandt, Fischer & Holzer, 2009; Roughgarden & Papadimitriou, 2005], utility values are given explicitly.
 - Compute PSNE in poly time by enumerating configurations

▶ We focus on compact representations of u_a : those requiring only $poly(\log n)$ bits.

- ▶ We focus on compact representations of u_a : those requiring only $poly(\log n)$ bits.
- Sanity check:
 - ► Specifying input: need only $m \log n$ bits.
 - ▶ Specifying output: can map utilities to $\left\{1,2,\ldots,\binom{n+m-1}{m-1}\right\}$ while preserving PSNE, thus need only $O(\log n)$ bits.

- ▶ We focus on compact representations of u_a : those requiring only $poly(\log n)$ bits.
- Sanity check:
 - ► Specifying input: need only $m \log n$ bits.
 - ▶ Specifying output: can map utilities to $\left\{1,2,\ldots,\binom{n+m-1}{m-1}\right\}$ while preserving PSNE, thus need only $O(\log n)$ bits.
- ► Computing PSNE: with such a compact representation, is it even in NP?

- ▶ We focus on compact representations of u_a : those requiring only $poly(\log n)$ bits.
- Sanity check:
 - ► Specifying input: need only $m \log n$ bits.
 - ▶ Specifying output: can map utilities to $\left\{1,2,\ldots,\binom{n+m-1}{m-1}\right\}$ while preserving PSNE, thus need only $O(\log n)$ bits.
- Computing PSNE: with such a compact representation, is it even in NP?
 - ► To check if **x** is in *N*, the set of of PSNE configurations, only need to check for each pair of actions *a* and *a'*, whether there is a profitable deviation from playing *a* to playing *a'*.
 - ▶ Checking whether $x \in N$ is in P (thus computing PSNE in NP) if the utility functions can be evaluated in poly time.

Circuit Symmetric Games

- ▶ How hard can it get?
- Represent each u_a by a Boolean circuit
 - general method for representing utility functions; complexity for other circuit-based models studied in e.g. [Schoenebeck & Vadhan, 2006]
- ► Compact when number of gates is $poly(\log n)$

Circuit Symmetric Games

- How hard can it get?
- ▶ Represent each *u*_a by a Boolean circuit
 - general method for representing utility functions; complexity for other circuit-based models studied in e.g. [Schoenebeck & Vadhan, 2006]
- ▶ Compact when number of gates is $poly(\log n)$

Theorem (Circuit symmetric games)

- ▶ When utilities are represented by Boolean circuits, and $m \ge 3$, deciding if a PSNE exists is NP-complete.
- When m = 2, there exists at least one PSNE and a sample PSNE can be found in poly time.
- existence of PSNE for the m = 2 case was proved by [Cheng, Reeves, Vorobeychik & Wellman 2004]; also follows from the fact that such a game is a potential game.

Piecewise-linear symmetric games

► We can do better by considering a natural subclass: piecewise-linear functions.

Piecewise-linear symmetric games

► We can do better by considering a natural subclass: piecewise-linear functions.

Theorem (Informal version)

When utilities are expressed as piecewise-linear functions, there exist polynomial time algorithms to decide if a PSNE exists and find a sample equilibrium.

► Domain of utility functions: configurations

$$D = \left\{ \mathbf{x} \in \mathbb{Z}^m : \sum_{a \in A} x_a = n, \mathbf{x} \ge \mathbf{0} \right\}$$

► Domain of utility functions: configurations

$$D = \left\{ \mathbf{x} \in \mathbb{Z}^m : \sum_{\mathbf{a} \in A} x_{\mathbf{a}} = n, \mathbf{x} \geq \mathbf{0} \right\}$$

Domain of utility functions: configurations

$$D = \left\{ \mathbf{x} \in \mathbb{Z}^m : \sum_{a \in A} x_a = n, \mathbf{x} \ge \mathbf{0} \right\}$$

Piecewise linear utilities: For each a ∈ A:

$$D = \biguplus_{P_{a,j} \in \mathbf{P}_a} (P_{a,j} \cap \mathbb{Z}^m)$$

Domain of utility functions: configurations

$$D = \left\{ \mathbf{x} \in \mathbb{Z}^m : \sum_{a \in A} x_a = n, \mathbf{x} \ge \mathbf{0} \right\}$$

Piecewise linear utilities: For each a ∈ A:

$$D = \biguplus_{P_{a,j} \in \mathbf{P}_a} (P_{a,j} \cap \mathbb{Z}^m)$$

▶ Over each cell $P_{a,j} \cap \mathbb{Z}^m$ there is an affine function $f_{a,j}(\mathbf{x}) = \alpha_{a,j} \cdot \mathbf{x} + \beta_{a,j}$.

► Domain of utility functions: configurations

$$D = \left\{ \mathbf{x} \in \mathbb{Z}^m : \sum_{a \in A} x_a = n, \mathbf{x} \ge \mathbf{0} \right\}$$

Piecewise linear utilities: For each a ∈ A:

$$D = \biguplus_{P_{a,j} \in \mathbf{P}_a} (P_{a,j} \cap \mathbb{Z}^m)$$

Piecing them together:

$$u_a(\mathbf{x}) = f_{a,j}(\mathbf{x}) \text{ for } \mathbf{x} \in P_{a,j} \cap \mathbb{Z}^m$$

Compact when number of pieces $|\mathbf{P}_a|$ is $poly(\log n)$.

Theorem (Formal version)

Consider a symmetric game with PWL utilities given by the following input:

- the binary encoding of the number n of players;
- ▶ for each $a \in A$, the utility function $u_a(\mathbf{x})$ represented as the binary encoding of the inequality description of each P_{aj} and affine functions f_{aj} .

Theorem (Formal version)

Consider a symmetric game with PWL utilities given by the following input:

- the binary encoding of the number n of players;
- ▶ for each $a \in A$, the utility function $u_a(\mathbf{x})$ represented as the binary encoding of the inequality description of each P_{aj} and affine functions f_{aj} .

Then, when the number of actions m is fixed, and even when the number of pieces are poly(log n), there exists

- 1. a polynomial-time algorithm to compute the number of PSNE
- 2. a polynomial-time algorithm to find a sample PSNE
- 3. a polynomial-space, polynomial-delay enumeration algorithm to enumerate all PSNE.

Tool of analysis

- ▶ Encode the set of PSNE by a rational generating function.
- ► Leverage theory from encoding sets of polytopal lattice points.
 - previously applied in combinatorics, optimization, compiler design [e.g. De Loera et al. 2007]

Tool of analysis

- ▶ Encode the set of PSNE by a rational generating function.
- ► Leverage theory from encoding sets of polytopal lattice points.
 - previously applied in combinatorics, optimization, compiler design [e.g. De Loera et al. 2007]

▶ Given $S \subseteq \mathbb{Z}^n$ we represent the points as a generating function:

$$g(S, w) = \sum_{a \in S} w_1^{a_1} w_2^{a_2} \cdots w_n^{a_n}$$

▶ Given $S \subseteq \mathbb{Z}^n$ we represent the points as a generating function:

$$g(S, w) = \sum_{a \in S} w_1^{a_1} w_2^{a_2} \cdots w_n^{a_n}$$

- w_i are complex variables
- ▶ Point (2, -3) is encoded as monomial $w_1^2 w_2^{-3}$.

▶ Given $S \subseteq \mathbb{Z}^n$ we represent the points as a generating function:

$$g(S, w) = \sum_{a \in S} w_1^{a_1} w_2^{a_2} \cdots w_n^{a_n}$$

- w_i are complex variables
- ▶ Point (2, -3) is encoded as monomial $w_1^2 w_2^{-3}$.

Example

 $> S = \{0, 1, \dots, 1000\}$

▶ Given $S \subseteq \mathbb{Z}^n$ we represent the points as a generating function:

$$g(S, w) = \sum_{a \in S} w_1^{a_1} w_2^{a_2} \cdots w_n^{a_n}$$

- w_i are complex variables
- ▶ Point (2, -3) is encoded as monomial $w_1^2 w_2^{-3}$.

Example

- $> S = \{0, 1, \dots, 1000\}$
- $g(S, w) = 1 + w + w^2 + \cdots + w^{1000}$

▶ Given $S \subseteq \mathbb{Z}^n$ we represent the points as a generating function:

$$g(S, w) = \sum_{a \in S} w_1^{a_1} w_2^{a_2} \cdots w_n^{a_n}$$

- w_i are complex variables
- ▶ Point (2, -3) is encoded as monomial $w_1^2 w_2^{-3}$.

Example

- $S = \{0, 1, \dots, 1000\}$
- $ightharpoonup g(S, w) = 1 + w + w^2 + \cdots + w^{1000}$
- $ightharpoonup g(S, w) = \frac{1}{1-w} \frac{w^{1001}}{1-w}$

Barvinok's result (1994)

Theorem

Let P be a rational convex polytope, i.e. $P = \{x \in \mathbb{R}^m : Ax \leq b\}$. There is a polynomial time algorithm which computes a short rational generating function:

$$g(P \cap \mathbb{Z}^m; w) = \sum_{j \in J} \gamma_j \frac{w^{c_j}}{(1 - w^{d_{j1}})(1 - w^{d_{j2}}) \dots (1 - w^{d_{jm}})},$$

of the lattice points inside P when the dimension m is fixed. The number of terms in the sum is polynomially bounded and $\gamma_j \in \{-1,1\}.$

A Tale of Two Representations

Lattice points: S

A Tale of Two Representations

Inequality representation:

$$\{x: Ax \le b, \ x \in \mathbb{Z}^n\}$$

Data: A, b

Lattice points: S

A Tale of Two Representations

Inequality representation:

$$\{x: Ax \le b, \ x \in \mathbb{Z}^n\}$$

Data: A, b

Gen. Function Representation:

$$\sum_{j\in J} \gamma_j \frac{w^{c_j}}{\prod_{k=1}^n (1-w^{d_{jk}})}$$

Data: c_j , d_{jk}

Lattice points: S

► Count the number of integer points in *S* in polynomial time. [Barvinok, 1994]

► Count the number of integer points in *S* in polynomial time. [Barvinok, 1994]

Example

```
• S = \{0, 1, \dots, 1000\}
```

► Count the number of integer points in *S* in polynomial time. [Barvinok, 1994]

Example

- $S = \{0, 1, \dots, 1000\}$
- ► $g(S, w) = 1 + w + w^2 + \cdots + w^{1000}$. Count: substitute w = 1, get g(S, 1) = 1001.

► Count the number of integer points in *S* in polynomial time. [Barvinok, 1994]

Example

- $S = \{0, 1, \dots, 1000\}$
- ► $g(S, w) = 1 + w + w^2 + \dots + w^{1000}$. Count: substitute w = 1, get g(S, 1) = 1001.
- ▶ $g(S, w) = \frac{1}{1-w} \frac{w^{1001}}{1-w}$. Count: take limit as $w \to 1$, get $\lim_{w \to 1} g(S, w) = 1001$.

► Count the number of integer points in *S* in polynomial time. [Barvinok, 1994]

Example

- $S = \{0, 1, \dots, 1000\}$
- ▶ $g(S, w) = 1 + w + w^2 + \cdots + w^{1000}$. Count: substitute w = 1, get g(S, 1) = 1001.
- $g(S, w) = \frac{1}{1-w} \frac{w^{1001}}{1-w}.$ Count: take limit as $w \to 1$, get $\lim_{w \to 1} g(S, w) = 1001$.

► Enumerate the elements of *S*: There exists a polynomial-delay enumeration algorithm which outputs the elements of *S*. [De Loera et al. 2007]

Boolean combinations:

Boolean combinations:

Boolean combinations:

Disjoint unions:

$$g(S_1 \cup S_2, w) = g(S_1, w) + g(S_2, w)$$

Key insight into proof: Express PSNE via polytopes

► Want to encode *N*, the set of PSNE configurations

$$\mathbf{x} \in N \iff \forall a \in A : (\mathbf{x}_a = \mathbf{0}) \ \ \mathsf{OR} \ \ (\forall a' \in A, \ u_a(\mathbf{x}) \geq u_{a'}(\mathbf{x} + \mathbf{e}_{a'} - \mathbf{e}_a))$$

▶ *D* is the set of configurations and candidate equilibria:

$$D = \left\{ \mathbf{x} \in \mathbb{Z}^m : \sum_{a \in A} x_a = n, \mathbf{x} \ge \mathbf{0} \right\}$$

Key insight into proof: Express PSNE via polytopes

► Want to encode *N*, the set of PSNE configurations

$$\mathbf{x} \in N \iff \forall a \in A : (x_a = 0) \text{ OR } (\forall a' \in A, u_a(\mathbf{x}) \ge u_{a'}(\mathbf{x} + \mathbf{e}_{a'} - \mathbf{e}_a))$$

▶ *D* is the set of configurations and candidate equilibria:

$$D = \left\{ \mathbf{x} \in \mathbb{Z}^m : \sum_{a \in A} x_a = n, \mathbf{x} \ge \mathbf{0} \right\}$$

▶ D_{a,a'} those configurations where it is profitable for a player playing action a to deviate.

Key insight into proof: Express PSNE via polytopes

► Want to encode *N*, the set of PSNE configurations

$$\mathbf{x} \in N \iff \forall a \in A : (x_a = 0) \text{ OR } (\forall a' \in A, u_a(\mathbf{x}) \ge u_{a'}(\mathbf{x} + \mathbf{e}_{a'} - \mathbf{e}_a))$$

► *D* is the set of configurations and candidate equilibria:

$$D = \left\{ \mathbf{x} \in \mathbb{Z}^m : \sum_{a \in A} x_a = n, \mathbf{x} \ge \mathbf{0} \right\}$$

▶ $D_{a,a'}$ those configurations where it is profitable for a player playing action a to deviate.

$$N = D \setminus \bigcup_{a,a' \in A} D_{a,a'}$$

$$D_{a,a'} = \biguplus_{P_{a,j} \in \mathbf{P}_a} \biguplus_{P_{a',j'} \in \mathbf{P}_{a'}} \left\{ \begin{array}{l} \mathbf{x} \in D : x_a \ge 1, \mathbf{x} \in P_{a,j}, \\ \mathbf{x}' = \mathbf{x} + \mathbf{e}_{a'} - \mathbf{e}_a \in P_{a',j'} \\ f_{a,j}(\mathbf{x}) \le f_{a',j'}(\mathbf{x}') - 1 \end{array} \right\}$$

$$D_{a,a'} = \biguplus_{P_{a,j} \in \mathbf{P}_a} \biguplus_{P_{a',j'} \in \mathbf{P}_{a'}} \left\{ \begin{array}{l} \mathbf{x} \in D : x_a \ge 1, \mathbf{x} \in P_{a,j}, \\ \mathbf{x}' = \mathbf{x} + \mathbf{e}_{a'} - \mathbf{e}_a \in P_{a',j'} \\ f_{a,j}(\mathbf{x}) \le f_{a',j'}(\mathbf{x}') - 1 \end{array} \right\}$$

- Polynomial number of disjoint unions
- ▶ Once the pieces $P_{a,j}$ and $P_{a',j'}$ fixed, can formulate profitable deviation as a set of linear constraints

$$D_{a,a'} = \biguplus_{P_{a,j} \in \mathbf{P}_a} \biguplus_{P_{a',j'} \in \mathbf{P}_{a'}} \left\{ \begin{array}{l} \mathbf{x} \in D : x_a \ge 1, \mathbf{x} \in P_{a,j}, \\ \mathbf{x}' = \mathbf{x} + \mathbf{e}_{a'} - \mathbf{e}_a \in P_{a',j'} \\ f_{a,j}(\mathbf{x}) \le f_{a',j'}(\mathbf{x}') - 1 \end{array} \right\}$$

- Polynomial number of disjoint unions
- Once the pieces P_{a,j} and P_{a',j'} fixed, can formulate profitable deviation as a set of linear constraints
 - $x_a \ge 1$: at least one player chose a

$$D_{a,a'} = \biguplus_{P_{a,j} \in \mathbf{P}_a} \biguplus_{P_{a',j'} \in \mathbf{P}_{a'}} \left\{ \begin{array}{l} \mathbf{x} \in D : x_a \ge 1, \mathbf{x} \in P_{a,j}, \\ \mathbf{x}' = \mathbf{x} + \mathbf{e}_{a'} - \mathbf{e}_a \in P_{a',j'} \\ f_{a,j}(\mathbf{x}) \le f_{a',j'}(\mathbf{x}') - 1 \end{array} \right\}$$

- Polynomial number of disjoint unions
- ▶ Once the pieces $P_{a,j}$ and $P_{a',j'}$ fixed, can formulate profitable deviation as a set of linear constraints
 - $x_a \ge 1$: at least one player chose a
 - $\mathbf{x}' = \mathbf{x} + \mathbf{e}_{a'} \mathbf{e}_a$: result of deviating from a to a'

$$D_{a,a'} = \biguplus_{P_{a,j} \in \mathbf{P}_a} \biguplus_{P_{a',j'} \in \mathbf{P}_{a'}} \left\{ \begin{array}{l} \mathbf{x} \in D : x_a \ge 1, \mathbf{x} \in P_{a,j}, \\ \mathbf{x}' = \mathbf{x} + \mathbf{e}_{a'} - \mathbf{e}_a \in P_{a',j'} \\ f_{a,j}(\mathbf{x}) \le f_{a',j'}(\mathbf{x}') - 1 \end{array} \right\}$$

- Polynomial number of disjoint unions
- ▶ Once the pieces P_{a,j} and P_{a',j'} fixed, can formulate profitable deviation as a set of linear constraints
 - $x_a \ge 1$: at least one player chose a
 - $\mathbf{x}' = \mathbf{x} + \mathbf{e}_{a'} \mathbf{e}_a$: result of deviating from a to a'
 - $f_{a,j}(\mathbf{x}) \le f_{a',j'}(\mathbf{x}') 1$: since utilities are integers, equivalent to $f_{a,j}(\mathbf{x}) < f_{a',j'}(\mathbf{x}')$

$$D_{a,a'} = \biguplus_{P_{a,j} \in \mathbf{P}_a} \biguplus_{P_{a',j'} \in \mathbf{P}_{a'}} \left\{ \begin{array}{l} \mathbf{x} \in D : x_a \ge 1, \mathbf{x} \in P_{a,j}, \\ \mathbf{x}' = \mathbf{x} + \mathbf{e}_{a'} - \mathbf{e}_a \in P_{a',j'} \\ f_{a,j}(\mathbf{x}) \le f_{a',j'}(\mathbf{x}') - 1 \end{array} \right\}$$

- Polynomial number of disjoint unions
- Once the pieces P_{a,j} and P_{a',j'} fixed, can formulate profitable deviation as a set of linear constraints
 - $x_a \ge 1$: at least one player chose a
 - $\mathbf{x}' = \mathbf{x} + \mathbf{e}_{a'} \mathbf{e}_a$: result of deviating from a to a'
 - $f_{a,j}(\mathbf{x}) \le f_{a',j'}(\mathbf{x}') 1$: since utilities are integers, equivalent to $f_{a,j}(\mathbf{x}) < f_{a',j'}(\mathbf{x}')$
- ► Therefore *N* can be expressed as a short rational generating function

$$D_{a,a'} = \biguplus_{P_{a,j} \in \mathbf{P}_a} \biguplus_{P_{a',j'} \in \mathbf{P}_{a'}} \left\{ \begin{array}{l} \mathbf{x} \in D : x_a \ge 1, \mathbf{x} \in P_{a,j}, \\ \mathbf{x}' = \mathbf{x} + \mathbf{e}_{a'} - \mathbf{e}_a \in P_{a',j'} \\ f_{a,j}(\mathbf{x}) \le f_{a',j'}(\mathbf{x}') - 1 \end{array} \right\}$$

- Polynomial number of disjoint unions
- ▶ Once the pieces $P_{a,j}$ and $P_{a',j'}$ fixed, can formulate profitable deviation as a set of linear constraints
 - $x_a \ge 1$: at least one player chose a
 - $\mathbf{x}' = \mathbf{x} + \mathbf{e}_{a'} \mathbf{e}_a$: result of deviating from a to a'
 - $f_{a,j}(\mathbf{x}) \le f_{a',j'}(\mathbf{x}') 1$: since utilities are integers, equivalent to $f_{a,j}(\mathbf{x}) < f_{a',j'}(\mathbf{x}')$
- ► Therefore *N* can be expressed as a short rational generating function
- ► Can check existence of PSNE via counting operation; find a sample PSNE via enumeration operation.

Other results

- Find a PSNE that approximately optimizes the sum of the utilities (FPTAS).
- ► Encode the PSNEs of a parameterized family of symmetric games with utility pieces:

$$f_{a,j}(\mathbf{x},\mathbf{p}) = lpha_{a,j} \cdot \mathbf{x} + eta_{a,j} \cdot \mathbf{p},$$

where \mathbf{p} is a fixed dimensional integer vector of parameters inside a polytope.

Other results

- ► Find a PSNE that approximately optimizes the sum of the utilities (FPTAS).
- ► Encode the PSNEs of a parameterized family of symmetric games with utility pieces:

$$f_{a,j}(\mathbf{x},\mathbf{p}) = \alpha_{a,j} \cdot \mathbf{x} + \boldsymbol{\beta}_{a,j} \cdot \mathbf{p},$$

where \mathbf{p} is a fixed dimensional integer vector of parameters inside a polytope.

- Answer questions about PSNEs of the family of games without solving each game
- e.g. finding parameter **p** that optimizes some objective.

Conclusion

- computing PSNE for symmetric games with fixed number of actions, focusing on compact representations of utility: poly(log n) bits
- circuit symmetric games: NP-complete when at least 3 actions
- symmetric games with piecewise-linear utility: polynomial-time algorithms
 - encode set of PSNE as a rational generating function

Thanks!