

S'20 CS410/510 Intro to

quantum computing

Fang Song

Week 7

- QFT recap
- Grover's algorithm
- Optimality of Grover's alg.

Review: QFT

$$QFT_n: |j_{n-1}j_{n-2}...j_0\rangle \mapsto \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n-1} \omega_{2^n}^{jk} |k_{n-1}k_{n-2}...k_0\rangle$$

$$\widetilde{QFT}_n: |j_{n-1}j_{n-2}...j_0\rangle \mapsto \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n-1} \omega_{2^n}^{jk} |k_0k_1...k_{n-2}k_{n-1}\rangle$$

$$\begin{vmatrix} j_{n-1} \rangle \\ |j_{n-2} \rangle \end{vmatrix} = \begin{vmatrix} k_0 \rangle \\ |k_1 \rangle \end{vmatrix} R_k = \begin{pmatrix} 1 & 0 \\ 0 & \omega_{2^k} \end{pmatrix}$$

$$\begin{vmatrix} j_1 \rangle \\ |j_0 \rangle \end{vmatrix} R_n R_{n-1} R_{2} H R_{2} H$$

Exercise

1. Let
$$\overrightarrow{x} = (\frac{1}{\sqrt{2}}, 0, 0, \frac{i}{\sqrt{2}})^T$$
. Compute $\overrightarrow{y} = F_4 \overrightarrow{x}$.

$$F_4 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & \omega_4 & \omega_4^2 & \omega_4^3 \\ 1 & \omega_4^2 & \omega_4^4 & \omega_4^6 \\ 1 & \omega_4^3 & \omega_4^6 & \omega_4^9 \end{pmatrix}$$

2. Draw the QFT circuit implementing F_4 (i.e. QFT_2). How about QFT_2^{\dagger} ?

Quantum order finding/factorization

Order finding à la phase estimation [Kitaev'95]

Shor's algorithm à la quantum Fourier sampling [Shor'94]

Quantum speedup for "structured" problems

Problem	Deterministic	Randomized	Quantum
Deutsch	2	2	1
Deutsch-Josza	2 ⁿ /2	O(n)	1
Simon	$2^{n}/2$	$\sqrt{2^n}$	$O(n^2)$
Order-finding Factoring N	$2^{O((\log N)^{1/3}(\log\log N)^{2/3})}$		$(\log N)^3$

Oracle/Query model

Today. Generic quantum speedup for unstructured search.

Grover's quantum search algorithm

Unstructured search

Given: a black-box function $f: \{0,1\}^n \to \{0,1\}$ Goal: find x such that f(x) = 1 (if there is one).

- Example.
 - $x \in \{0,1\}^n$ represents a record of a patient at a hospital
 - f(x) = 1 if x is tested positive for DIVOC-91
- \bullet Classical algorithms: 2^n queries necessary
- Grover's quantum algorithm: $O(\sqrt{2^n})$ queries

Grover's algorithm: basic operations

Grover's algorithm

Prepare
$$|h\rangle := H^{\otimes n} |0^n\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle.$$

- Repeat k times: $(-HZ_0H)Z_f$.
- Measure and get x, check if f(x) = 1.

Reflections and rotations

2 reflections = 1 rotation

Reflection about L_1 and L_2 \equiv Rotation by 2θ

Grover's algorithm: analysis Grover Iteration

Notations

•
$$A := \{x \in \{0,1\}^n : f(x) = 1\}$$

•
$$B := \{x \in \{0,1\}^n : f(x) = 0\} = \{0,1\}^n \setminus A$$

•
$$N = 2^n, a = |A|, b = |B|$$

A fundamental 2D-plane

$$|A\rangle := \frac{1}{\sqrt{a}} \sum_{x \in A} |x\rangle, |B\rangle := \frac{1}{\sqrt{b}} \sum_{x \in B} |x\rangle$$

$$V^{\alpha} x \in A \qquad V^{\beta} x \in B$$

$$|h\rangle := H^{\otimes n} |0^n\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle$$

• $|h\rangle^{\perp}$: orthogonal to $|h\rangle$ on span $\{|A\rangle, |B\rangle\}$

Exercise

Notations

•
$$A := \{x \in \{0,1\}^n : f(x) = 1\}$$

•
$$B := \{x \in \{0,1\}^n : f(x) = 0\} = \{0,1\}^n \setminus A$$

•
$$N = 2^n, a = |A|, b = |B|.(a < < N)$$

A fundamental 2D-plane

$$|A\rangle := \frac{1}{\sqrt{a}} \sum_{x \in A} |x\rangle, |B\rangle := \frac{1}{\sqrt{b}} \sum_{x \in B} |x\rangle$$

$$|h\rangle := H^{\otimes n} |0^n\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle$$

• $|h\rangle^{\perp}$: orthogonal to $|h\rangle$ on span $\{|A\rangle, |B\rangle\}$

1. Show that $\langle B | A \rangle = 0$.

2. Find α and β so that $|h\rangle = \alpha |A\rangle + \beta |B\rangle$

Grover's algorithm: analysis Grover Iteration

A fundamental 2D-plane

$$|A\rangle := 1/\sqrt{a} \sum_{x \in A} |x\rangle, |B\rangle := 1/\sqrt{b} \sum_{x \in B} |x\rangle$$

•
$$|h\rangle := H^{\otimes n} |0^n\rangle, |h\rangle^{\perp} \perp |h\rangle$$

ullet Obs. 1. Z_f is a reflection about $|B\rangle$

Grover's algorithm: analysis

Grover Iteration

A fundamental 2D-plane

$$|A\rangle := 1/\sqrt{a} \sum_{x \in A} |x\rangle, |B\rangle := 1/\sqrt{b} \sum_{x \in B} |x\rangle$$

•
$$|h\rangle := H^{\otimes n} |0^n\rangle, |h\rangle^{\perp} \perp |h\rangle$$

ullet Obs 2. $-HZ_0H$ is a reflection about $|h\rangle$.

Grover's algorithm: analysis

Grover Iteration G

• Obs. Each Grover iteration is a rotation of $2\theta, \theta = sin^{-1} \left(\sqrt{a/N} \right)$.

- Goal: $(2k+1)\theta \approx \pi/2$
- Theorem. $k = \Omega(\sqrt{N/a})$ suffice for $\Omega(1)$ success prob.

Unknown number of solutions

 $|A\rangle$ $|h\rangle^{\perp}$ $|h\rangle$ $|B\rangle$

- ullet One approach: if random k, then success prob. is the area under the curve
 - ... It turns out to be always > 0.4
- Read more if interested https://arxiv.org/abs/1709.01236

Optimality of Grover's algorithm

An unfortunate news...

- Theorem. Any quantum algorithm must make $\Omega(\sqrt{2^n})$ queries to f (assuming a single marked item).
- ullet A k-query quantum algorithm if of the form below

•
$$f = Z_f : |x\rangle \mapsto (-1)^{f(x)}|x\rangle$$

• $U_0, U_1, ..., U_k$ are arbitrary unitary operations

$$|0^n\rangle - U_0 - f - U_1 - f - \cdots - U_{k-1} - f - U_k$$

Optimality of Grover's algorithm: proof sketch

• For every $r \in \{0,1\}^n$, let $f_r: \{0,1\}^n \to \{0,1\}$ be such that $f_r(x) = 1$ iff. x = r.

- Averaging over $r \in \{0,1\}^n$, $||\psi_r^{(k)} |\phi^{(k)}|| \le 2k/\sqrt{2^n}$
 - each query only drifts the states apart by a tiny bit

Exercise

1. Show that $||\psi\rangle - |\phi\rangle|| \le 2|\alpha_r|$

$$\sum_{x} \alpha_{x} |x\rangle \qquad f_{r} \qquad |\psi\rangle$$

$$\sum_{x} \alpha_{x} |x\rangle \qquad I \qquad |\phi\rangle$$

$$f_r(x) = 1$$
 iff. $x = r$.

Logistics

- HW5 due Sunday
 - One more to go! Keep up the good work
- Project [Sign up on google spreadsheet]
 - Week8. Progress check-up
 - Office hour + after Friday's lecture: mandatory meetings. Sign up ASAP.
 - Week10. Presentations
 - Office hour: voluntary meetings, sign up as you wish
 - Friday's lecture: presentations from you! Sign up a slot ASAP. Details to follow.

Discussion: quantum factoring experiments

- [SSV13] Oversimplifying quantum factoring
 - What are the main critique of prior experiments?

- [MNM+16] Realization of a scalable Shor algorithm
 - Does it address adequately the criticisms in the SSV13? Why and why not?

Recent estimate on quantum Factoring [hear more from a final presentation]

Scratch