

Задача – ДНК

Дано Найти **Критерий**

Построить алгоритм легко! Чтобы улучшить... надо уметь оценивать.

Метрики

- функции ошибки
- функционалы качества

Функции ошибки / функционалы качества

Пожалуй, самое главное, при решении задачи... иногда важнее данных!

а что такое решение!

В анализе данных:

- формализация ответа (формат)
- как ответ оценивается (критерий качества)

Случай из практики: задача про траектории зрачка

(задача с 3 классами, а не с двумя)

Задача регрессии

4 слайд из 118

Задача регрессии

Будем дальше пытаться всё решать в классе констант

1. Простейшее решение

2. Примерно это и происходит в листьях решающих деревьев 3. Раскрывает природу функционалов

Средний модуль отклонения – Mean Absolute Error (MAE), Mean Absolute Deviation (MAD)

$$MAE = \frac{1}{q} \sum_{i=1}^{q} |a_i - y_i|$$

Напоминание:

$$\frac{1}{q} \sum_{i=1}^{q} |a - y_i| \to \min$$

$$a = median(\{y_i\}_{i=1}^q)$$

Это открывает смысл решений!

Средний модуль отклонения

Средний модуль отклонения

Способы использования тайных знаний:

- медиана, вместо усреднения, в ансамбле
- округление ответа (если целевой вектор целочисленный)

Откуда берётся МАЕ

$$y = a_w(x) + \varepsilon$$
 w – параметры алгоритма $a_w(x)$ ε ~ laplace(0, α)

Для оценки параметров выписываем правдоподобие модели

$$p(y \mid x, w) = \frac{\alpha}{2} \exp\left[-\alpha \mid y - a_w(x)\mid\right]$$

Метод максимального правдоподобия:

$$\log L(w) = \log \prod_{i=1}^{m} p(y_i \mid x_i, w) =$$

$$= \sum_{i=1}^{m} \left[\log \frac{\alpha}{2} - \alpha \mid y_i - a_w(x_i) \mid \right] \rightarrow \max$$

Откуда берётся МАЕ

Получаем

$$\alpha \sum_{i=1}^{m} |y_i - a_w(x_i)| \to \min$$

т.е. задачу минимизации МАЕ!

- не зависит от природы модели
- зависит от распределения ошибок

(почему Residual Plots)

Максимизация правдоподобия эквивалентна минимизации МАЕ!

Чему соответствует минимизация весового МАЕ?

Средний квадрат отклонения ~ Mean Squared Error (MSE)

$$MSE = \frac{1}{q} \sum_{i=1}^{q} |a_i - y_i|^2$$

$$a = \frac{1}{q} \sum_{i=1}^{q} y_i$$

Root Mean Squared Error (RMSE)

или Root Mean Square Deviation (RMSD)

RMSE =
$$\sqrt{\frac{1}{q} \sum_{i=1}^{q} |a_i - y_i|^2}$$

Средний квадрат отклонения ~ Mean Squared Error (MSE)

Способы использования тайных знаний

- ничего не делать (в RF, GBM и т.д. всё равно усредняют)
 - метод НСКО классическая регрессия!

Нормированная версия: коэффициент детерминации R² (Coefficient of Determination)

$$R^{2} = 1 - \frac{\sum_{i=1}^{q} |a_{i} - y_{i}|^{2}}{\sum_{i=1}^{q} |\overline{y} - y_{i}|^{2}}$$

$$\overline{y} = \frac{1}{q} \sum_{i=1}^{q} y_{i}$$

В общем случае (в статистике) коэффициент детерминации:

$$R^2 = 1 - \frac{\mathbf{D}(y \mid x)}{\mathbf{D}(y)}$$

Откуда берётся (R)MSE

$$y = a_w(x) + \varepsilon$$
 w – параметры алгоритма $a_w(x)$
$$\varepsilon \sim \text{norm}(0, \sigma^2)$$

Для оценки параметров выписываем правдоподобие модели

$$p(y \mid x, w) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y - a_w(x))^2}{2\sigma^2}\right]$$

Метод максимального правдоподобия:

$$\log L(w) = \log \prod_{i=1}^{m} p(y_i \mid x_i, w) =$$

$$= \sum_{i=1}^{m} \left[-\frac{1}{2} \log(2\pi\sigma^2) - \frac{(y_i - a_w(x_i))^2}{2\sigma^2} \right] \rightarrow \max$$

Откуда берётся (R)MSE

Получаем

$$\frac{1}{2\sigma^2} \sum_{i=1}^m (y_i - a_w(x_i))^2 \to \min$$

т.е. задачу минимизации MSE!

- не зависит от природы модели
- зависит от распределения ошибок

(почему Residual Plots)

Максимизация правдоподобия эквивалентна минимизации среднеквадратичной ошибки!

ДЗ Каким ещё распределениям какие ошибки соответствуют?

Откуда берётся (R)MSE: ещё одно «оправдание»

Пусть функция ошибки
$$l(y,a) = g(y-a)$$

Что логично?

1.
$$g(0) = 0$$

2.
$$|z_1| \le |z_2| \Rightarrow g(z_1) \le g(z_2)$$

3. достаточно гладкая...

$$g(z) = g(0) + g'(0)z + \frac{g''(0)}{2}z^2 + o(z^2)$$

но тогда

$$l(y,a) = g(y-a) \approx g(0) + \underbrace{g'(0)(y-a)}_{=0(2)} + \frac{g''(0)}{2}(y-a)^2 = C(y-a)^2$$

Функция Хьюбера

17 слайд из 118

huber(z) =
$$\begin{cases} \frac{1}{2}z^2, & |z| \leq \delta, \\ \delta(|z| - \frac{1}{2}\delta^2), & |z| > \delta. \end{cases}$$

Как только что вывели:

когда отклонение мало – ошибка квадратичная когда велико (в т.ч. выбросы) – линейная

Различия MSE и MAE: посмотрим на неконстантное решение:

$$\sum_{i=1}^{m} |y_i - a(x_i)|^p \to \min, \ a(x) = \alpha x + \beta$$

Различия MSE и MAE

внутри «треугольника» одинаковый МАР=1.5

можно привести примеры, когда МАР меняется слабо, а RMSE значительно

> ДЗ Хороший нетривиальный пример? ДЗ Может ли быть наоборот?

Обобщения

$$\sqrt[p]{\frac{1}{q}\sum_{i=1}^{q}w_i \mid \varphi(a_i) - \varphi(y_i) \mid^p}$$

Рецепты

- 1. Преобразование целевого вектора $\varphi(y)$
- 2. Веса ~ вероятности появления объектов в сэмплировании Некоторые модели поддерживают веса объектов
 - 3. В случае нетривиальных p прямая настройка

Дальше к этому вернёмся...

Про нетривиальные р

Как точка минимума зависит от степени

Symmetric mean absolute percentage error (SMAPE or sMAPE)

SMAPE =
$$\frac{2}{q} \sum_{i=1}^{q} \frac{|y_i - a_i|}{y_i + a_i} = 100\% \cdot \frac{1}{q} \sum_{i=1}^{q} \frac{|y_i - a_i|}{(y_i + a_i)/2}$$

Когда надо интерпретировать погрешность как проценты - плохо, если есть нули (и отрицательные значения)

Начальники не знают, что такое проценты...

Применение SMAPE – прогноз временных рядов

Mean Absolute Percent Error (MAPE)

MAPE =
$$\frac{1}{q} \sum_{i=1}^{q} \frac{|y_i - a_i|}{|y_i|}$$

Чем МАРЕ явно лучше SMAPE на практике?

Mean Absolute Percent Error (MAPE)

MAPE =
$$\frac{1}{q} \sum_{i=1}^{q} w_i | y_i - a_i |$$

$$w_i = \frac{1}{|y_i|}$$

Просто весовой МАЕ!

как оптимизировать? дальше...

МАРЕ и SMAPE

Что настораживает в этом графике?

MAPE u SMAPE

Масштаб! Типичная ошибка (и во многих курсах).

MAPE u SMAPE

Например, MAPE – весовой МАЕ, но на практике веса не сильно отличаются!

Поэтому решение около медианы

ДЗ Предложить минимизацию для МАРЕ и SMAPE

PMAD

Другой способ нормировки ошибки...

$$PMAD = \frac{\frac{1}{q} \sum_{i=1}^{q} |y_i - a_i|}{\sum_{i=1}^{q} |y_i|}$$

эквивалентен МАЕ

ДЗ Как на типичных и специальных выборках соотносятся решения задач минимизации перечисленных функций ошибки?

Меры на сравнении с бенчмарком

30 слайд из 118

Классная идея:

сделать простой алгоритм и смотреть ошибку относительно него

Mean Relative Absolute Error (MRAE)

MRAE =
$$\frac{1}{q} \sum_{i=1}^{q} \frac{|y_i - a_i|}{|y_i - a_i'|}$$

REL MAE

$$REL_MAE = \frac{\sum_{i=1}^{q} |y_i - a_i|}{\sum_{i=1}^{q} |y_i - a_i'|}$$

Percent Better

PB(MAE) =
$$\frac{1}{q} \sum_{i=1}^{q} I[|y_i - a_i| < |y_i - a_i'|]$$

Меры на сравнении с бенчмарком

Как выбрать бенчмарк в задачах прогнозирования?

Нормированные ошибки

Не зависят от шкалы...

Mean Absolute Scaled Error

MASE =
$$\frac{1}{\frac{q}{q-1} \sum_{i=2}^{q} |y_{i-1} - y_i|} \sum_{i=1}^{q} |a_i - y_i|$$

Какие ещё бывают функционалы в регрессии?

С точностью до порога

33 слайд из 118

функция ошибки

$$\frac{1}{q} \sum_{i=1}^{q} I[|y_i - a_i| > \varepsilon]$$

функционал качества

$$\frac{1}{q} \sum_{i=1}^{q} I[|y_i - a_i| < \varepsilon]$$

был в задаче Dunnhumby

Оптимальное решение – мода парзеновской плотности

С точностью до порога

Несимметричные функции потерь

$$\frac{1}{q} \sum_{i=1}^{q} \begin{cases} g(|y_i - a_i|), & y_i < a_i, \\ h(|y_i - a_i|), & y_i \ge a_i, \end{cases}$$

Зачем нужны такие функции?

Несимметричные функции потерь

$$\frac{1}{q} \sum_{i=1}^{q} \begin{cases} k_2 \mid y_i - a_i \mid, & y_i < a_i, \\ k_1 \mid y_i - a_i \mid, & y_i \ge a_i, \end{cases}$$

Совет

Функции ошибок иногда и классные признаки...

Пример: в Casuality придумываем бенчмарки (восстановление одной переменной по другой), признаки – их относительные ошибки, т.к. абсолютные брать нельзя

Почему?

Совет

Аналогично во многих задачах с сигналами...

Признак – не только коэффициенты в приближении, но и ошибка приближения!

~ отклонение от типичного поведения

Монотонное изменение функции ошибки

Формально задачи эквивалентные:

$$MSE \rightarrow min$$

$$\frac{1}{a} \sum_{i=1}^{q} |a - y_i|^2 \to \min$$

$$RMSE \rightarrow min$$

$$\sqrt{\frac{1}{q} \sum_{i=1}^{q} |a_i - y_i|^2} \to \min$$

Решения на практике могут отличаться... В методе градиентного спуска разные производные

$$\frac{\partial MSE}{\partial a} = \frac{2}{q} \sum_{i=1}^{q} (a - y_i)$$

$$\frac{\partial \text{RMSE}}{\partial a} = \frac{1}{q \text{RMSE}} \sum_{i=1}^{q} (a_i - y_i)$$

ДЗ На что это влияет на практике? что лучше минимизировать?

Задача классификации

Задача классификации: матрица ошибок / несоответствий «Confusion Matrix»

ответы

	У	a		
0	1	1		

7 3 3

8 1 2

9 2 2

матрица ошибок

Для классов $\{1, 2, ..., l\}$

$$N = \parallel n_{ij} \parallel_{l \times l}$$

$$n_{ij} = \sum_{t=1}^{q} I[a_t = i]I[y_t = j]$$

from sklearn.metrics import confusion_matrix
n = confusion_matrix(df.y, df.a)
n = pd.crosstab(df.y, df.a)

Обычная точность – Accuracy, Mean Consequential Error

MCE =
$$\frac{1}{q} \sum_{i=1}^{q} I[a_i = y_i] = \frac{\sum_{t=1}^{l} n_{tt}}{\sum_{t=1}^{l} \sum_{s=1}^{l} n_{ts}}$$

- первое, что приходит в голову
- не учитывает разную мощность классов

y = [0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0]

Выгодно выдавать решение - константу 0!

Задача классификации с двумя классами

Confusion Matrix

Задача классификации с двумя классами

Как запомнить названия ошибок

1 рода – не учил, но сдал (= знает по мнению экзаменатора) 2 рода – учил, но не сдал (= не знает по мнению экзаменатора)

Ошибка 1 рода Ошибка 2 рода

Точность Accuracy

$$ACC = \frac{TP + TN}{ALL}$$

Полнота (Sensitivity, True Positive Rate, Recall, Hit Rate)

TPR = TP / сколько правда 1

Specificity (True Negative Rate)

$$SPC = \frac{TN}{FP + TN}$$

FPR = 1 - Specificity

Точность (Precision, Positive Predictive Value)

False Positive Rate (FPR, fall-out, false alarm rate)

$$\mathsf{FPR} = \frac{\mathsf{FP}}{\mathsf{FP} + \mathsf{TN}}$$

FPR = FP / сколько правда 0

F₁ score

$$\frac{2}{\frac{1}{TP/(TP+FP)} + \frac{1}{TP/(TP+FN)}} =$$

$$= \frac{2TP}{2TP+FP+FN}$$

F_{β} score

$$\frac{1}{\frac{\alpha}{P} + \frac{1 - \alpha}{R}} = \frac{PR}{\alpha R + (1 - \alpha)P} = \frac{1}{R}$$

$$= \frac{1}{\alpha} \frac{PR}{R + (\frac{1}{\alpha} - 1)P}$$

$$\beta^{2} = \left(\frac{1}{\alpha} - 1\right)$$

$$F_{\beta} = (1 + \beta^{2}) \frac{PR}{R + \beta^{2}P}$$

Почему используется F-мера

$$(P+R)/2$$

$$\sqrt{P \cdot R}$$

Почему используется F-мера

$$2/(1/P+1/R)$$

$$1/(0.9/P+0.1/R)$$

Почему используется F-мера

Можно сколь угодно улучшать один из показателей (R), если второй не увеличивается (Р), то качество ограничено

Cohen's Kappa в задачах классификации

Chance adjusted index – статистика для измерения согласованности между ответами ($p_{
m observed}$) с нормировкой на согласованность по случайности ($p_{
m chance}$):

$$r = \frac{p_{\text{observed}} - p_{\text{chance}}}{1 - p_{\text{chance}}}$$

ans 1
$$n_{11}$$
 n_{12} ans 2 n_{21} n_{22}

$$p_{\rm observed} = \frac{n_{11} + n_{22}}{n}$$
 точность – ассигасу!
$$p_{\rm chance} = \frac{n_{11} + n_{12}}{n} \frac{n_{11} + n_{21}}{n} + \frac{n_{21} + n_{22}}{n} \frac{n_{12} + n_{22}}{n}$$
 точность по случайности

- вероятность, что случайно согласован ответ «1»
- вероятность, что случайно согласован ответ «2»

Cohen's Kappa

смысл: поправка значения точности.

Как раз для решения проблемы дисбаланса классов.

```
from sklearn.metrics import cohen_kappa_score
cohen_kappa_score(a, y)
```

Cohen's Kappa три модельные задачи

Как будет выглядеть график СК от порога бинаризации?
Как меняется ROC AUC?

Cohen's Kappa

график СК от порога бинаризации

ROC AUC: 0.77 во всех задачах!

Weighted kappa

57 слайд из 118

Если есть разумные веса ошибок за конкретные несогласованности

Когда это бывает?

$$\kappa = 1 - \frac{\sum_{i=1}^{l} \sum_{j=1}^{l} w_{ij} n_{ij}}{\sum_{i=1}^{l} \sum_{j=1}^{l} w_{ij} m_{ij}} \in [-1, +1]$$

матрица случайных ответов

$$m_{ij} = \sum_{j} n_{ij} \sum_{i} n_{ij}$$

$$m_{ij} \leftarrow \frac{m_{ij}}{\sum_{ts} m_{ts}} \sum_{ts} n_{ts}$$

квадратичные веса

$$w_{ij} = \frac{(i-j)^2}{(n-1)^2}$$

м.б. любая весовая схема

Вычисление Quadratic Weighted Kappa

ответы

y a

0 1 1

2 1 2

6 3 3

2 2

матрица ошибок

матрица случайных ответов

	0	1	2
0	12	16	12
1	9	12	9
2	9	12	9

после нормировки

	0	1	2
0	1.2	1.6	1.2
1	0.9	1.2	0.9
2	0.9	1.2	0.9

матрица весов

	0	1	2
0	0.00	0.25	1.00
1	0.25	0.00	0.25
2	1.00	0.25	0.00

WK = 0.615

Вычисление Quadratic Weighted Kappa

Quadratic Weighted Kappa Применяется в задачах, где классы упорядочены «ранжирование»

	y	1.0	0.83	0.83	0.33	8.0	0.0	-1.0
0	0	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1	2
2	0	0	1	0	2	0	2	2
3	1	1	1	1	1	0	0	1
4	1	1	1	1	1	0	1	1
5	1	1	0	2	1	0	2	1
6	2	2	2	2	2	2	0	0
7	2	2	2	2	2	2	1	0
8	2	2	2	1	0	2	2	0

Коэффициент Мэттьюса

$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

хорошо для дисбаланса?

Задача бинарной классификации

Теперь выдаём оценку принадлежности к классу 1

$$y \in \{0, 1\}$$

$$a \in [0, 1]$$

Log Loss

В задаче классификации с двумя непересекающимися классами (0, 1), когда ответ вероятность (?) принадлежности к классу 1

LOGLOSS =
$$-\frac{1}{q} \sum_{i=1}^{q} (y_i \log a_i + (1 - y_i) \log(1 - a_i))$$

На что похоже?

Так понятнее...

$$-\begin{cases} \log a_i, & y_i = 1, \\ \log(1-a_i), & y_i = 0. \end{cases}$$

Нельзя ошибаться!

Log Loss

В задаче классификации с двумя непересекающимися классами (0, 1), когда ответ вероятность (?) принадлежности к классу 1

LOGLOSS =
$$-\frac{1}{q} \sum_{i=1}^{q} (y_i \log a_i + (1 - y_i) \log(1 - a_i))$$

На что похоже?

Откуда берётся Log Loss

Обучающая выборка ~ реализация обобщённой схемы Бернулли:

для \mathcal{X}_i генерируем

$$y_i = \begin{bmatrix} 1, & p_i, \\ 0, & 1 - p_i. \end{bmatrix}$$

Пусть наша модель генерирует эти вероятности!

$$a_i = a(x_i \mid w)$$

Правдоподобие:

$$p(y | X, w) = \prod_{i} p(y_i | x_i, w) = \prod_{i} a_i^{y_i} (1 - a_i)^{1 - y_i} \rightarrow \max$$

Откуда берётся Log Loss

Максимизация правдоподобия эквивалентна

$$\sum_{i} \left(-y_i \log a_i - (1 - y_i) \log(1 - a_i)\right) \to \min$$

Логична ровно настолько, насколько MSE в задаче регрессии (тоже выводится из ММП)

Названия

- логистическая функция ошибки
 - «ЛОГЛОСС»
 - перекрёстная энтропия
 - кросс-энтропия

Log Loss - Оптимальная константа

$$-\frac{1}{q}\sum_{i=1}^{q} (y_i \log a + (1 - y_i)\log(1 - a)) \rightarrow \min_{a}$$

$$-\frac{q_1}{q}\log a - \frac{q_0}{q}\log(1 - a) \rightarrow \min_{a}$$

$$a = \frac{q_1}{q}$$

Интерпретация константного решения

Посчитаем матожидание ошибки –

у нас один (і-й) объект, который с вероятностью p принадлежит классу 1.

$$-p\log(a_i) - (1-p)\log(1-a_i)$$

Минимизируем это выражение:

$$\frac{p}{a_i} - \frac{1-p}{1-a_i} = 0$$

$$a_i = p$$

О чудо!

Но так не всегда...

Вот почему используют log_loss

Интерпретация константного решения

Если подставить оптимальное значение $a_{\scriptscriptstyle i}=p$ в

$$-p\log(a_i) - (1-p)\log(1-a_i)$$

получаем энтропию:

$$- p \log(p) - (1-p) \log(1-p)$$

Вот почему используют энтропийный критерий расщепления!

он минимизирует logloss!

Log Loss

В каких пределах варьируется log_loss?

Какие недостатки log_loss?

Log Loss

В каких пределах варьируется log_loss?

Эффективное изменение в

$$\left[0, -\frac{q_1}{q} \log \frac{q_1}{q} - \frac{q_0}{q} \log \frac{q_0}{q}\right]$$

Если логарифм по основанию 2, то на сбалансированной выборке это [0,1]

Какие недостатки log_loss?

Его значение неинтерпретируемы...

Связь logloss с логистической регрессией

см. лекцию про минимизацию...

Другая форма функционала Подставим выражение для сигмоиды, сделаем переобозначение: метки классов теперь -1 и +1, тогда

$$\log\log(a, y) = \log(1 + \exp(-y \cdot w^{T} x))$$

Кстати

SVM

$$\sum_{i} \max[1 - y_{i} w^{\mathsf{T}} x, 0] + \alpha w^{\mathsf{T}} w \to \min$$

RVM

$$\sum_{i} \log(1 + \exp(-y_i w^{\mathsf{T}} x)) + w^{\mathsf{T}} \operatorname{diag}(\alpha) w \to \min$$

Связь logloss с расхождением Кульбака-Лейблера

$$D_{\text{KL}}(P \parallel Q) = \int p(z) \log \frac{p(z)}{q(z)} \partial z$$
$$D_{\text{KL}}(P \parallel Q) = \sum_{i} P_{i} \log \frac{P_{i}}{Q_{i}}$$

распределение алгоритма: (1-a, a) истинное: (1-y, y)

расхождение КЛ между ними:

$$(1-y)\log\frac{(1-y)}{(1-a)} + y\log\frac{y}{a} = -(1-y)\log(1-a) - y\log a$$
9TO logloss!!!

Hастройка на Logloss калибровка Платта (Platt calibration)

- для SVM
$$a(x) = sigmoid(\alpha \cdot r(x) + \beta)$$

ещё есть – монотонная регрессия (Isotonic regression)

Если использовать MSE в задаче классификации

$$L(y,a) = (y-a)^2 = y(1-a)^2 + (1-y)a^2$$

Если объект x с вероятностью p принадлежит классу 1, то матожидание ошибки

$$p(1-a)^2 + (1-p)a^2$$

подставляем оптимальный ответ (как делали в logloss, здесь оптимальный ответ тоже a=p):

$$p(1-p)^2 + (1-p)p^2 = p(1-p)$$

т.е. критерий расщепления Джини фактически минимизирует эту функцию ошибки!

ROC M AUC ROC

Функционал зависит не от конкретных значений, а от их порядка

	оценка	класс
0	0.5	0
1	0.1	0
2	0.2	0
3	0.6	1
4	0.2	1
5	0.3	1
6	0.0	0

	оценка	класс	ответ
3	0.6	1	1
0	0.5	0	1
5	0.3	1	1
2	0.2	0	0
4	0.2	1	0
1	0.1	0	0
6	0.0	0	0


```
df['ответ'] = (df['оценка'] > 0.25).astype(int)
df.sort_values('оценка', ascending=False)
```

ROC M AUC ROC

наилучший (AUC=1), случайный (AUC~0.5) и наихудшый (AUC=0) алгоритма

Смысл AUC

AUC ~ число правильно отсортированных пар (на рис. «кирпичики»)

Это сложно объяснить заказчику!

$$AUC = \frac{\sum_{i=1}^{q} \sum_{j=1}^{q} I[y_i < y_j] I[a_i < a_j]}{\sum_{i=1}^{q} \sum_{j=1}^{q} I[y_i < y_j]}$$

Чем хороша эта запись?

Что неправильно (требует пояснения) в формуле?

Смысл AUC

AUC ~ число правильно отсортированных пар (на рис. «кирпичики»)

Это сложно объяснить заказчику!

$$AUC = \frac{\sum_{i=1}^{q} \sum_{j=1}^{q} I[y_i < y_j] I[a_i < a_j]}{\sum_{i=1}^{q} \sum_{j=1}^{q} I[y_i < y_j]}$$

Чем хороша эта запись?

Можно обобщить, например, на регрессию.

$$I[a_i < a_j] = \begin{cases} 1, & a_i < a_j, \\ 1/2, & a_i = a_j, \\ 0, & a_i > a_j. \end{cases}$$

Настройка RF/GBM на AUC ROC

Случай из жизни (Интернет-математика)

82 слайд из 118

классификация → классификация пар Можно дублировать, Можно брать разности/отношения.

AUC – не всегда ступеньки!

GINI

История... изначально мера расслоения общества относительно какого-нибудь экономического показателя (чаще дохода)

Кривая Лоренца

Пример для доходов: 1, 1, 2, 2, 3

40% населения имеют 2/9 дохода.

GINI Вычисление

$$gini = \frac{A}{A+B} = 2A$$

gini =
$$1 - \sum_{t=1}^{m} (p_t - p_{t-1})(i_t + i_{t-1}) = 2/9$$

не путать с Gini impurity

GINI в машинном обучении

Кривая Лоренца (или САР – Cumulative Accuracy Profile Curve)

PR = Positive Rate – процент объектов, которые при определённом выборе порога, отнесены к классу 1

Коэффициент Джини – отношение площадей **■** / (**■** + **□**) =7/12

GINI в машинном обучении

AUCROC =
$$\int_{0}^{1} \text{TPR } \partial \text{FPR} = \int_{0}^{1} \frac{\text{TP}}{q_1} \partial \frac{\text{FP}}{q_0} = \frac{1}{q_1 q_0} \int_{0}^{1} \text{TP } \partial \text{FP}$$

$$\sin i = \frac{\int_{0}^{1} \text{TPR } \partial \text{PR} - 0.5}{0.5q_{0} / (q_{0} + q_{1})} = \frac{\int_{0}^{1} \frac{\text{TP}}{q_{1}} \partial \frac{\text{FP+TP}}{q_{0} + q_{1}} - 0.5}{0.5q_{0} / (q_{0} + q_{1})}$$

GINI в машинном обучении

gini =
$$\frac{2}{q_1 q_0} \int_0^1 \text{TP} \partial (\text{FP} + \text{TP}) - \frac{q_0 + q_1}{q_0} =$$

= $2 \text{AUCROC} + \frac{2}{q_1 q_0} \int_0^1 \text{TP} \partial \text{TP} - \frac{q_1}{q_0} - 1$

gini =
$$2 \text{ AUCROC} - 1$$

Меняется от -1 до +1 - может сбивать с толку

GINI в задаче регрессии

суммы страховых случаев: 0, 0, 5, 0, 3, 10, 2, 5 (так упорядочил алгоритм)

gini ≈ 0.57

AUC ROC

Если задаться распределениями классов (на ответах алгоритма) и получать оценку AUC ROC

Для оценки AUC ROC маленькие выборки не подходят!

AUC ROC

Если задаться распределениями классов (на ответах алгоритма) и получать оценку AUC ROC

AUC ROC

- + в задачах, где важен порядок
- + учитывает разную мощность классов
 - + не важны значения, важен порядок
- + можно использовать для оценки признаков
 - «завышает» качество
- оценивает не конкретный классификатор, а регрессию
 - сложно объяснить заказчику
 - не путать классификацию и регрессию

Маленький AUC не всегда плохо...

В каких случаях хороша такая **ROC**-кривая?

Маленький AUC не всегда плохо...

11010010110...011010100000100000

Мы не можем хорошо решить задачу классификации, но можем хорошо отделить часть объектов одного класса

Пример: клиенты, которые не купят билет (чтобы предложить его им со скидкой)

Ещё примеры кривых... «полнота-точность»

	оценка	класс
0	0.5	0
1	0.1	0
2	0.2	0
3	0.6	1
4	0.2	1
5	0.3	1
6	0.0	0

	оценка	класс	ответ
3	0.6	1	1
0	0.5	0	1
5	0.3	1	1
2	0.2	0	0
4	0.2	1	0
1	0.1	0	0
6	0.0	0	0

Максимизация AUC ROC

- замена индикаторных функций на дифференцируемые
- использование смысла функционала (переход к парам)
 - ансамблирование с ранговой деформацией

ДЗ Пройти тест goo.gl/93qkum

Совет

Ищите матожидание!

Пробуйте константные решения.

Многоклассовая задача

Hamming Loss

Число ошибок в векторе классификаций

$$\mathrm{HL}(\tilde{a}, \tilde{y}) = \frac{\parallel \tilde{a} \oplus \tilde{y} \parallel}{l}$$

Log Loss

$$LOGLOSS = -\frac{1}{q} \sum_{i=1}^{q} \sum_{j=1}^{l} y_{ij} \log a_{ij}$$

Многоклассовая задача

Полнота и т.п. – всё что придумывается

- по строками матрицы
- по столбцам матрицы

Это множества – и можно усреднять функции сходства множеств

Как использовать на практике (LSHTC)

• Решающее правило с отсечкой:

$$\alpha_{ij} = \begin{cases} 1, & \gamma_{ij} \geq \min(c, \max\{\gamma_{ij}\}_{j=1}^l), \\ 0, & \text{иначе.} \end{cases}$$

• Решать задачу по вертикали / по горизонтали

Функционал в LSHTC

$$\widetilde{F} = \frac{2\widetilde{P}\widetilde{R}}{\widetilde{P} + \widetilde{R}}$$

$$\widetilde{P} = \frac{1}{l} \sum_{j=1}^{l} \frac{TP_j}{TP_j + FP_j}$$

$$\widetilde{R} = \frac{1}{l} \sum_{j=1}^{l} \frac{TP_j}{TP_j + FN_j}$$

Оценка результатов поиска/рекомендаций

Задача с бинарной релевантностью

$$x_1 \prec x_2 \prec \ldots \prec x_q$$
 $y_i = 1$ – релевантный объект

 $y_i = 0$ – нерелевантный объект

Задача ранжирования Целевой признак может быть бинарным, но это не задача

Precision at n

Точность на первых n элементах

классификации

$$p @ n = \frac{y_1 + \ldots + y_n}{n}$$

Average Precision at n Средняя точность на первых n элементах

$$ap @ n = \sum_{k=1}^{n} \frac{P(k)}{\min(n,m)}$$

m – мощность множества релевантных объектов (товаров, документов)

n – сколько рекомендаций будет учитываться

$$P(k) = \begin{cases} p @ k, & y_k = 1, \\ 0, & y_k = 0, \end{cases}$$

 y_i – бинарное значение релевантности

Average Precision at n Примеры (три релевантных объекта):

$$0 \prec 0 \prec 0$$

$$0 \prec 0 \prec 1$$

$$0 \prec 1 \prec 1$$

$$0 \prec 0 \prec 1 \prec 1 \prec 1$$

$$1 \prec 1 \prec 1 \prec 0 \prec 0$$

$$ap @ 3 = \frac{1}{3}[0+0+0]$$

$$ap @ 3 = \frac{1}{3}[0+0+\frac{1}{3}]$$

$$ap @ 3 = \frac{1}{3}[0+\frac{1}{2}+\frac{2}{3}]$$

$$ap @ 3 = \frac{1}{3}[\frac{1}{1}+0+0]$$

$$ap @ 5 = \frac{1}{3}[0+0+\frac{1}{3}+\frac{2}{4}+\frac{3}{5}]$$

$$ap @ 5 = \frac{1}{3}[\frac{1}{1}+\frac{2}{2}+\frac{3}{3}+0+0]$$

Mean Average Precision

- усреднение ap@n по всем пользователям

Concordant - Discordant ratio

$$\frac{|\{(i,j) \mid y_i > y_j, 1 \le i < j \le n\}|}{|\{i \mid y_i = 1\}| \cdot |\{j \mid y_j = 0\}|}$$

Упорядочили: E, D, C, B, A (по убыванию релевантности)

На самом деле: В, Е – релевантные

Пары «нерелевантный» – «релевантный»:

BA EA

BC EC

BD ED

Качество упорядочивания: 4 / (2 + 4)

Что ещё может встретиться... в задачах рекомендации

$$\frac{1}{|Z|} \sum_{z \in Z} \frac{|\{x_1, \dots, x_{h(z)}\} \cap \{x_1', \dots, x_{h(z)}'\}|}{h(z)}$$

$$x_1, \dots, x_n$$
 – упорядоченный список ответов x_1', \dots, x_m' – все релевантные

$$Z \subseteq \{1,2,\ldots,n\}$$

$$Z = \{5,10,15,20,25,30\}$$

когда логично применить?

Рекомендации

Mean Reciprocal Rank (MRR)

это усреднение Reciprocal rank (RR) по всем ранжированиям,
 который сделал алгоритм.

$$RR = \frac{1}{\underset{i}{\operatorname{arg \, min} \, y_i}}$$

неправильно

Часто оптимизируют именно его!

Классические функционалы в поиске

Случай небинарной релевантности Выдали id документов/товаров/..., а их ценность (релевантность):

$$y_1, \dots, y_q$$

Cumulative Gain at n

$$CG@ n = y_1 + ... + y_n$$

Discounted Cumulative Gain at n

DCG@
$$n = \sum_{i=1}^{n} \frac{2^{y_i} - 1}{\log_2(i+1)}$$

Ещё вариант:

$$DCG @ n = y_1 + \sum_{i=2}^{n} \frac{y_i}{\log_2(i)} = y_1 + y_2 + \frac{y_3}{\log_2 3} + \dots + \frac{y_n}{\log_2 n}$$

Цена ошибок за неправильное ранжирование

$$\frac{1}{\log_2(1+1)} - \frac{1}{\log_2(1+2)} \approx 0.37$$

$$\frac{1}{\log_2(1+10)} - \frac{1}{\log_2(1+11)} \approx 0.01$$

$$\frac{1}{\log_2(1+10)} - \frac{1}{\log_2(1+20)} \approx 0.06$$

Normalized DCG

$$nDCG = \frac{DCG}{IDCG}$$

IDCG = ideal DCG

для того, чтобы не было зависимости от длины выдачи

Ещё подход к сравнению порядков:

Пусть алгоритм выдал

$$x_1 \prec x_2 \prec \ldots \prec x_q$$

Правильный порядок

$$x_{i_1} \prec x_{i_2} \prec \ldots \prec x_{i_q}$$

Надо сравнить:

$$(1,2,...,q)$$

 $(i_1,i_2,...,i_q)$

Ранговые корреляции...

Ещё подход к оценке ранжирования

Известны вероятности того, что объект является релевантным

$$p_i = p(x_i)$$

~ пользователь выберет ссылку

Expected reciprocal rank (ERR)

ERR @
$$n = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{k} p_k \prod_{i < k} (1 - p_i)$$

Как интерпретировать?

Редакторское расстояние

Операции

добавление к кластеру создание кластера с одним объектом удаление из кластера удаление кластера с одним объектом

1	2 3;	4 5;6
1	2 3;	4 5 [delC]
2	3; 4	5 [del]
2	3; 4	5; 1 [insC]
2	3; 4	5 6; 1 [ins]

	2 3	4 5 6	1
1 2 3	1	6	2
4 5	4	1	3
6	3	2	2

Редакторское расстояние

- Плохо заносить не в тот кластер (целых две операции на перенос)
 - Плохо создавать неправильный кластер
 - ⇒ осторожный алгоритм

• Многое зависит от операций...

Задача с «неклассическим целевым вектором»

Надо предсказывать не значение, а интервал [a, b]

Как измерить качество?

Задача с интервальным целевым вектором

Интервал – это множество!

Коэффициент Жаккара (Jaccard)

$$\frac{|A \cap B|}{|A \cup B|}$$

коэффициент Шимкевича-Симпсона (Szymkiewicz, Simpson)

$$\frac{|A \cap B|}{\min(|A|,|B|)}$$

коэффициент Браун-Бланке (Braun-Blanquet)

$$\frac{|A \cap B|}{\max(|A|,|B|)}$$

См. википедию «Коэффициент сходства» для переноса идеи Колмогорова об обобщённом среднем...

Вариации на тему усреднения...

коэффициент Сёренсена (Sörensen)

$$\frac{2|A \cap B|}{|A|+|B|}$$

коэффициент Кульчинского (Kulczinsky)

$$\frac{|A \cap B|}{2} \frac{1}{1/|A|+1/|B|}$$

коэффициент Отиаи (Ochiai)

$$\frac{|A \cap B|}{\sqrt{|A| \cdot |B|}}$$

Меры включения

$$\frac{|A \cap B|}{|A|}$$

$$\frac{|A \cap B|}{2|A|-|A \cap B|}$$

$$\frac{\frac{|A \cap B|}{|B|}}{\frac{|A \cap B|}{2|B|-|A \cap B|}}$$

Как решать задачи с интервалами? Потом вернёмся...

Литература

Tom Fawcett An introduction to ROC analysis // Pattern Recognition Letters Volume 27 Issue 8, 2006, P. 861-874.

https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf

Стрижов В.В. Функция ошибки в задачах восстановления регрессии // Заводская лаборатория, 2013, 79(5): 65-73.

http://strijov.com/papers/Strijov2012ErrorFn.pdf

К.Д. Маннинг, П. Рагхаван, Х. Шютце «Введение в информационный поиск» // . — Вильямс, 2011.

Jeffrey M Girard «Inter-observer reliability» // https://github.com/jmgirard/mReliability/wiki