

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2025/0263727 A1 **THOMPSON**

(54) COMPOSITION FOR REGULATING PRODUCTION OF INTERFERING RIBONUCLEIC ACID

(71) Applicant: Wyvern Pharmaceuticals Inc., Calgary (CA)

(72) Inventor: Bradley G. THOMPSON, Calgary (CA)

(21) Appl. No.: 18/971,273

(22) Filed: Dec. 6, 2024

Related U.S. Application Data

(62) Division of application No. 18/582,272, filed on Feb. 20, 2024.

Publication Classification

(51) Int. Cl. (2010.01)C12N 15/113 C12N 15/86 (2006.01)

Aug. 21, 2025 (43) **Pub. Date:**

(52) U.S. Cl. CPC C12N 15/1138 (2013.01); C12N 15/86 (2013.01); C12N 2310/141 (2013.01); C12N 2750/14143 (2013.01)

ABSTRACT (57)

Some embodiments of the present disclosure relate to one or more compositions that upregulate the production of one or more sequences of micro-interfering ribonucleic acid (miRNA). The sequences of miRNA may be complimentary to a sequence of target messenger RNA (mRNA) that encodes for translation of a target biomolecule and the miRNA can cause the target mRNA to be degraded or inactivated, thereby causing a decrease in bioavailability of the target biomolecule because it is degraded or inactivated by the miRNA, thereby decreasing the bioavailability of the target biomolecule within a subject that is administered the one or more compositions. In some embodiments of the present disclosure, the target biomolecule is a serotonin receptor, such as serotonin receptor 5HT1a, 5HT1b, 5HT1d, 5HT1e, 5HT1f, 5HT2a, 5HT2b, 5HT2c, 5HT3, 5HT4, 5HT6, or 5HT7.

Specification includes a Sequence Listing.

COMPOSITION FOR REGULATING PRODUCTION OF INTERFERING RIBONUCLEIC ACID

[0001] This application contains a Sequence Listing electronically submitted via Patent Center to the United States Patent and Trademark Office as an XML Document file entitled "A8149441US—Sequence Listing.xml" created on 2024 Feb. 12 and having a size of 110,545 bytes. The information contained in the Sequence Listing is incorporated by reference herein.

TECHNICAL FIELD

[0002] The present disclosure generally relates to compositions for regulating production of interfering ribonucleic acid (RNA). In particular, the present disclosure relates to compositions for regulating gene expression and therefore, the production of interfering RNA, that will suppress serotonin receptor expression.

BACKGROUND

[0003] Bioactive molecules, including complements and factors, are necessary for the homeostatic control of biological systems.

[0004] When bioactive molecules are over-expressed, under-expressed or mis-expressed, homeostasis is lost, and disease is often the result.

[0005] As such, it may be desirable to establish therapies, treatments and/or interventions that address when homeostasis and regulation of bioactive molecules is lost to prevent or treat the resulting disease.

SUMMARY

[0006] Some embodiments of the present disclosure relate to one or more compositions that upregulate the production of one or more sequences of micro-interfering ribonucleic acid (miRNA). The sequences of miRNA may be complimentary to a sequence of target messenger RNA (mRNA) that encodes for translation of a target biomolecule and the miRNA can cause the target mRNA to be degraded or inactivated, thereby causing a decrease in bioavailability of the target biomolecule because it is degraded or inactivated by the miRNA, thereby decreasing the bioavailability of the target biomolecule within a subject that is administered the one or more compositions. In some embodiments of the present disclosure, the target biomolecule is a serotonin receptor. In some embodiments of the present disclosure, the target biomolecule is a serotonin receptor such as serotonin receptor 5HT1a. In some embodiments of the present disclosure, the target biomolecule is a serotonin receptor such as serotonin receptor 5HT1b. In some embodiments of the present disclosure, the target biomolecule is a serotonin receptor such as serotonin receptor 5HT1c. In some embodiments of the present disclosure, the target biomolecule is a serotonin receptor such as serotonin receptor 5HT1d. In some embodiments of the present disclosure, the target biomolecule is a serotonin receptor such as serotonin receptor 5HT1e. In some embodiments of the present disclosure, the target biomolecule is a serotonin receptor such as serotonin receptor 5HT1f. In some embodiments of the present disclosure, the target biomolecule is a serotonin receptor such as serotonin receptor 5HT2a. In some embodiments of the present disclosure, the target biomolecule is a serotonin receptor such as serotonin receptor 5HT2b. In some embodiments of the present disclosure, the target biomolecule is a serotonin receptor such as serotonin receptor 5HT2c. In some embodiments of the present disclosure, the target biomolecule is a serotonin receptor such as serotonin receptor 5HT3. In some embodiments of the present disclosure, the target biomolecule is a serotonin receptor such as serotonin receptor 5HT4. In some embodiments of the present disclosure, the target biomolecule is a serotonin receptor such as serotonin receptor 5HT6. In some embodiments of the present disclosure, the target biomolecule is a serotonin receptor such as serotonin receptor 5HT7.

[0007] In some embodiments of the present disclosure the compositions comprise a plasmid of deoxyribonucleic acid (DNA) that includes one or more insert sequences of nucleic acids that encode for the production of miRNA and a backbone sequence of nucleic acids that facilitates introduction of the one or more insert sequences into one or more of a subject's cells where it is expressed and/or replicated. Expression of the one or more insert sequences by one or more cells of the subject results in an increased production of the miRNA and, therefore, decreased translation or production of the target biomolecule by one or more of the subject's cells.

[0008] Some embodiments of the present disclosure relate to compositions that upregulate the production of miRNA that degrades, or causes degradation of, or inactivates or causes the inactivation of, the target mRNA of the target biomolecule.

[0009] Some embodiments of the present disclosure relate to a recombinant plasmid (RP). In some embodiments of the present disclosure, the RP comprises a nucleotide sequence of SEQ ID NO. 1 and SEQ ID NO. 2. The RP comprises a nucleotide sequence encoding one or more nucleotide sequences encoding a miRNA sequence that targets the mRNA of serotonin receptor 5HT1a.

[0010] Some embodiments of the present disclosure relate to a recombinant plasmid. In some embodiments of the present disclosure, the RP comprises a nucleotide sequence of SEQ ID NO. 1 and SEQ ID NO. 3. The RP comprises a nucleotide sequence encoding one or more nucleotide sequences encoding a miRNA sequence that targets the mRNA of serotonin receptor 5HT1b.

[0011] Some embodiments of the present disclosure relate to a recombinant plasmid. In some embodiments of the present disclosure, the RP comprises a nucleotide sequence of SEQ ID NO. 1 and SEQ ID NO. 4. The RP comprises a nucleotide sequence encoding one or more nucleotide sequences encoding a miRNA sequence that targets the mRNA of serotonin receptor 5HT1d.

[0012] Some embodiments of the present disclosure relate to a recombinant plasmid. In some embodiments of the present disclosure, the RP comprises a nucleotide sequence of SEQ ID NO. 1 and SEQ ID NO. 5. The RP comprises a nucleotide sequence encoding one or more nucleotide sequences encoding a miRNA sequence that targets the mRNA of serotonin receptor 5HT1e.

[0013] Some embodiments of the present disclosure relate to a recombinant plasmid. In some embodiments of the present disclosure, the RP comprises a nucleotide sequence of SEQ ID NO. 1 and SEQ ID NO. 6. The RP comprises a nucleotide sequence encoding one or more nucleotide sequences encoding a miRNA sequence that targets the mRNA of serotonin receptor 5HT1f.

[0014] Some embodiments of the present disclosure relate to a recombinant plasmid. In some embodiments of the present disclosure, the RP comprises a nucleotide sequence of SEQ ID NO. 1 and SEQ ID NO. 7. The RP comprises a nucleotide sequence encoding one or more nucleotide sequences encoding a miRNA sequence that targets the mRNA of serotonin receptor 5HT2a.

[0015] Some embodiments of the present disclosure relate to a recombinant plasmid. In some embodiments of the present disclosure, the RP comprises a nucleotide sequence of SEQ ID NO. 1 and SEQ ID NO. 8. The RP comprises a nucleotide sequence encoding one or more nucleotide sequences encoding a miRNA sequence that targets the mRNA of serotonin receptor 5HT2b.

[0016] Some embodiments of the present disclosure relate to a recombinant plasmid. In some embodiments of the present disclosure, the RP comprises a nucleotide sequence of SEQ ID NO. 1 and SEQ ID NO. 9. The RP comprises a nucleotide sequence encoding one or more nucleotide sequences encoding a miRNA sequence that targets the mRNA of serotonin receptor 5HT2c.

[0017] Some embodiments of the present disclosure relate to a recombinant plasmid. In some embodiments of the present disclosure, the RP comprises a nucleotide sequence of SEQ ID NO. 1 and SEQ ID NO. 10. The RP comprises a nucleotide sequence encoding one or more nucleotide sequences encoding a miRNA sequence that targets the mRNA of serotonin receptor 5HT3.

[0018] Some embodiments of the present disclosure relate to a recombinant plasmid. In some embodiments of the present disclosure, the RP comprises a nucleotide sequence of SEQ ID NO. 1 and SEQ ID NO. 11. The RP comprises a nucleotide sequence encoding one or more nucleotide sequences encoding a miRNA sequence that targets the mRNA of serotonin receptor 5HT4.

[0019] Some embodiments of the present disclosure relate to a recombinant plasmid. In some embodiments of the present disclosure, the RP comprises a nucleotide sequence of SEQ ID NO. 1 and SEQ ID NO. 12. The RP comprises a nucleotide sequence encoding one or more nucleotide sequences encoding a miRNA sequence that targets the mRNA of serotonin receptor 5HT6.

[0020] Some embodiments of the present disclosure relate to a recombinant plasmid. In some embodiments of the present disclosure, the RP comprises a nucleotide sequence of SEQ ID NO. 1 and SEQ ID NO. 13 The RP comprises a nucleotide sequence encoding one or more nucleotide sequences encoding a miRNA sequence that targets the mRNA of serotonin receptor 5HT7.

[0021] Some embodiments of the present disclosure relate to a method of making a composition/target cell complex. The method comprising a step of administering a RP comprising SEQ ID NO. 1 and one of SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4, SEQ ID NO. 5, SEQ ID NO. 6, SEQ ID NO. 7, SEQ ID NO. 8, SEQ ID NO. 9, SEQ ID NO. 10, SEQ ID NO. 11, SEQ ID NO. 12, or SEQ ID NO. 13 to a target cell for forming the composition/target cell complex, wherein the composition/target cell complex causes the target cell to increase production of one or more sequences of miRNA that decreases production of a target biomolecule. [0022] Embodiments of the present disclosure relate to at least one approach for inducing endogenous production of one or more sequences of miRNA that target and silence the

mRNA of a target biomolecule, for example serotonin

receptor 5HT1a. A first approach utilizes gene vectors containing nucleotide sequences for increasing the endogenous production of one or more sequences of miRNA, which are complete or partial sequences and/or combinations thereof, that target and silence the mRNA of serotonin receptor 5HT1a, which can be administered to a subject to increase the subject's production of one or more sequences of the miRNA.

[0023] Embodiments of the present disclosure relate to at least one approach for inducing endogenous production of one or more sequences of miRNA that target and silence the mRNA of a target biomolecule, for example serotonin receptor 5HT1b. A first approach utilizes gene vectors containing nucleotide sequences for increasing the endogenous production of one or more sequences of miRNA, which are complete or partial sequences and/or combinations thereof, that target and silence the mRNA of serotonin receptor 5HT1b, which can be administered to a subject to increase the subject's production of one or more sequences of the miRNA.

[0024] Embodiments of the present disclosure relate to at least one approach for inducing endogenous production of one or more sequences of miRNA that target and silence the mRNA of a target biomolecule, for example serotonin receptor 5HT1d. A first approach utilizes gene vectors containing nucleotide sequences for increasing the endogenous production of one or more sequences of miRNA, which are complete or partial sequences and/or combinations thereof, that target and silence the mRNA of serotonin receptor 5HT1d, which can be administered to a subject to increase the subject's production of one or more sequences of the miRNA.

[0025] Embodiments of the present disclosure relate to at least one approach for inducing endogenous production of one or more sequences of miRNA that target and silence the mRNA of a target biomolecule, for example serotonin receptor 5HT1e. A first approach utilizes gene vectors containing nucleotide sequences for increasing the endogenous production of one or more sequences of miRNA, which are complete or partial sequences and/or combinations thereof, that target and silence the mRNA of serotonin receptor 5HT1e, which can be administered to a subject to increase the subject's production of one or more sequences of the miRNA.

[0026] Embodiments of the present disclosure relate to at least one approach for inducing endogenous production of one or more sequences of miRNA that target and silence the mRNA of a target biomolecule, for example serotonin receptor 5HT1f. A first approach utilizes gene vectors containing nucleotide sequences for increasing the endogenous production of one or more sequences of miRNA, which are complete or partial sequences and/or combinations thereof, that target and silence the mRNA of serotonin receptor 5HT1f, which can be administered to a subject to increase the subject's production of one or more sequences of the miRNA.

[0027] Embodiments of the present disclosure relate to at least one approach for inducing endogenous production of one or more sequences of miRNA that target and silence the mRNA of a target biomolecule, for example serotonin receptor 5HT2a. A first approach utilizes gene vectors containing nucleotide sequences for increasing the endogenous production of one or more sequences of miRNA, which are complete or partial sequences and/or combinations thereof,

that target and silence the mRNA of serotonin receptor 5HT2a, which can be administered to a subject to increase the subject's production of one or more sequences of the miRNA.

[0028] Embodiments of the present disclosure relate to at least one approach for inducing endogenous production of one or more sequences of miRNA that target and silence the mRNA of a target biomolecule, for example serotonin receptor 5HT2b. A first approach utilizes gene vectors containing nucleotide sequences for increasing the endogenous production of one or more sequences of miRNA, which are complete or partial sequences and/or combinations thereof, that target and silence the mRNA of serotonin receptor 5HT2b, which can be administered to a subject to increase the subject's production of one or more sequences of the miRNA.

[0029] Embodiments of the present disclosure relate to at least one approach for inducing endogenous production of one or more sequences of miRNA that target and silence the mRNA of a target biomolecule, for example serotonin receptor 5HT2c. A first approach utilizes gene vectors containing nucleotide sequences for increasing the endogenous production of one or more sequences of miRNA, which are complete or partial sequences and/or combinations thereof, that target and silence the mRNA of serotonin receptor 5HT2c, which can be administered to a subject to increase the subject's production of one or more sequences of the miRNA.

[0030] Embodiments of the present disclosure relate to at least one approach for inducing endogenous production of one or more sequences of miRNA that target and silence the mRNA of a target biomolecule, for example serotonin receptor 5HT3. A first approach utilizes gene vectors containing nucleotide sequences for increasing the endogenous production of one or more sequences of miRNA, which are complete or partial sequences and/or combinations thereof, that target and silence the mRNA of serotonin receptor 5HT3 which can be administered to a subject to increase the subject's production of one or more sequences of the miRNA.

[0031] Embodiments of the present disclosure relate to at least one approach for inducing endogenous production of one or more sequences of miRNA that target and silence the mRNA of a target biomolecule, for example serotonin receptor 5HT4 A first approach utilizes gene vectors containing nucleotide sequences for increasing the endogenous production of one or more sequences of miRNA, which are complete or partial sequences and/or combinations thereof, that target and silence the mRNA of serotonin receptor 5HT4, which can be administered to a subject to increase the subject's production of one or more sequences of the miRNA.

[0032] Embodiments of the present disclosure relate to at least one approach for inducing endogenous production of one or more sequences of miRNA that target and silence the mRNA of a target biomolecule, for example serotonin receptor 5HT6. A first approach utilizes gene vectors containing nucleotide sequences for increasing the endogenous production of one or more sequences of miRNA, which are complete or partial sequences and/or combinations thereof, that target and silence the mRNA of serotonin receptor 5HT6, which can be administered to a subject to increase the subject's production of one or more sequences of the miRNA.

[0033] Embodiments of the present disclosure relate to at least one approach for inducing endogenous production of one or more sequences of miRNA that target and silence the mRNA of a target biomolecule, for example serotonin receptor 5HT7. A first approach utilizes gene vectors containing nucleotide sequences for increasing the endogenous production of one or more sequences of miRNA, which are complete or partial sequences and/or combinations thereof, that target and silence the mRNA of serotonin receptor 5HT7, which can be administered to a subject to increase the subject's production of one or more sequences of the miRNA.

DETAILED DESCRIPTION

[0034] Unless defined otherwise, all technical and scientific terms used therein have the meanings that would be commonly understood by one of skill in the art in the context of the present description. Although any methods and materials similar or equivalent to those described therein can also be used in the practice or testing of the present disclosure, the preferred methods and materials are now described. All publications mentioned therein are incorporated therein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.

[0035] As used therein, the singular forms "a", "an", and "the" include plural references unless the context clearly dictates otherwise. For example, reference to "a composition" includes one or more compositions and reference to "a subject" or "the subject" includes one or more subjects.

[0036] As used therein, the terms "about" or "approximately" refer to within about 25%, preferably within about 20%, preferably within about 15%, preferably within about 10%, preferably within about 5% of a given value or range. It is understood that such a variation is always included in any given value provided therein, whether or not it is specifically referred to.

[0037] As used therein, the term "ameliorate" refers to improve and/or to make better and/or to make more satisfactory.

[0038] As used therein, the term "cell" refers to a single cell as well as a plurality of cells or a population of the same cell type or different cell types. Administering a composition to a cell includes in vivo, in vitro and ex vivo administrations and/or combinations thereof.

[0039] As used therein, the term "complex" refers to an association, either direct or indirect, between one or more particles of a composition and one or more target cells. This association results in a change in the metabolism of the target cell. As used therein, the phrase "change in metabolism" refers to an increase or a decrease in the one or more target cells' production of one or more proteins, and/or any post-translational modifications of one or more proteins.

[0040] As used therein, the term "composition" refers to a substance that, when administered to a subject, causes one or more chemical reactions and/or one or more physical reactions and/or one or more biological reactions in the subject. In some embodiments of the present disclosure, the composition is a plasmid vector.

[0041] As used therein, the term "endogenous" refers to the production and/or modification of a molecule that originates within a subject.

[0042] As used therein, the term "exogenous" refers to a molecule that is within a subject but that did not originate

within the subject. As used therein, the terms "production", "producing" and "produce" refer to the synthesis and/or replication of DNA, the transcription of one or more sequences of RNA, the translation of one or more amino acid sequences, the post-translational modifications of an amino acid sequence, and/or the production of one or more regulatory molecules that can influence the production and/or functionality of an effector molecule or an effector cell. For clarity, "production" is also used therein to refer to the functionality of a regulatory molecule, unless the context reasonably indicates otherwise.

[0043] As used therein, the term "subject" refers to any therapeutic target that receives the composition. The subject can be a vertebrate, for example, a mammal including a human. The term "subject" does not denote a particular age or sex. The term "subject" also refers to one or more cells of an organism, an in vitro culture of one or more tissue types, an in vitro culture of one or more cell types, ex vivo preparations, and/or a sample of biological materials such as tissue, and/or biological fluids.

[0044] As used therein, the term "target biomolecule" refers to a serotonin receptor that is found within a subject. A biomolecule may be endogenous or exogenous to a subject and when bioavailable the biomolecule may inhibit or stimulate a biological process within the subject.

[0045] As used therein, the term "target cell" refers to one or more cells and/or cell types that are deleteriously affected, either directly or indirectly, by a dysregulated biomolecule. The term "target cell" also refers to cells that are not deleteriously affected but that are the cells in which it is desired that the composition interacts.

[0046] As used therein, the term "therapeutically effective amount" refers to the amount of the composition used that is of sufficient quantity to ameliorate, treat and/or inhibit one or more of a disease, disorder or a symptom thereof. The "therapeutically effective amount" will vary depending on the composition used, the route of administration of the composition and the severity of the disease, disorder or symptom thereof. The subject's age, weight and genetic make-up may also influence the amount of the composition that will be a therapeutically effective amount.

[0047] As used therein, the terms "treat", "treatment" and "treating" refer to obtaining a desired pharmacologic and/or physiologic effect. The effect may be prophylactic in terms of completely or partially preventing an occurrence of a disease, disorder or symptom thereof and/or the effect may be therapeutic in providing a partial or complete amelioration or inhibition of a disease, disorder, or symptom thereof. Additionally, the term "treatment" refers to any treatment of a disease, disorder, or symptom thereof in a subject and includes: (a) preventing the disease from occurring in a subject which may be predisposed to the disease but has not yet been diagnosed as having it; (b) inhibiting the disease, i.e., arresting its development; and (c) ameliorating the disease

[0048] As used therein, the terms "unit dosage form" and "unit dose" refer to a physically discrete unit that is suitable as a unitary dose for patients. Each unit contains a predetermined quantity of the composition and optionally, one or more suitable pharmaceutically acceptable carriers, one or more excipients, one or more additional active ingredients, or combinations thereof. The amount of composition within each unit is a therapeutically effective amount.

[0049] Where a range of values is provided therein, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the disclosure. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges, and are also, encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosure.

[0050] In some embodiments of the present disclosure, a composition is a recombinant plasmid (RP) for introducing genetic material, such as one or more nucleotide sequences, into a target cell for reproduction or transcription of an insert that comprises one or more nucleotide sequences that are carried within the RP. In some embodiments of the present disclosure, the RP is delivered without a carrier, by a viral vector, by a protein coat, or by a lipid vesicle. In some embodiments of the present disclosure, the vector is an adeno-associated virus (AAV) vector.

[0051] In some embodiments of the present disclosure, the insert comprises one or more nucleotide sequences that encode for production of at least one sequence of miRNA that decreases the production of target biomolecules. The miRNA may, directly or indirectly, bind to and degrade the target mRNA or otherwise inactivate the target mRNA so that less or none of the target-biomolecule protein is produced.

[0052] In some embodiments of the present disclosure, the target biomolecule is serotonin receptor 5HT1a.

[0053] In some embodiments of the present disclosure, the target biomolecule is serotonin receptor 5HT1b.

[0054] In some embodiments of the present disclosure, the target biomolecule is serotonin receptor 5HT1d.

[0055] In some embodiments of the present disclosure, the target biomolecule is serotonin receptor 5HT1e.

[0056] In some embodiments of the present disclosure, the target biomolecule is serotonin receptor 5HT1f.

[0057] In some embodiments of the present disclosure, the target biomolecule is serotonin receptor 5HT2a.

[0058] $\,$ In some embodiments of the present disclosure, the target biomolecule is serotonin receptor 5HT2b.

[0059] In some embodiments of the present disclosure, the target biomolecule is serotonin receptor 5HT2c.

[0060] In some embodiments of the present disclosure, the target biomolecule is serotonin receptor 5HT3.

[0061] In some embodiments of the present disclosure, the target biomolecule is serotonin receptor 5HT4.

[0062] In some embodiments of the present disclosure, the target biomolecule is serotonin receptor 5HT6.

[0063] In some embodiments of the present disclosure, the target biomolecule is serotonin receptor 5HT7.

[0064] In some embodiments of the present disclosure, the insert comprises one or more nucleotide sequences that each encode for one or more miRNA sequences that may be complimentary to and degrade, or cause degradation of, mRNA of the target biomolecule.

[0065] Some embodiments of the present disclosure relate to a composition that can be administered to a subject with a condition that results, directly or indirectly, from the production of a dysregulated biomolecule. When a therapeutically effective amount of the composition is adminis-

tered to the subject, the subject may change production and/or functionality of one or more biomolecules.

[0066] In some embodiments of the present disclosure, the subject may respond to receiving the therapeutic amount of the composition by changing production and/or functionality of one or more intermediary molecules by changing production of one or more DNA sequences, one or more RNA sequences, and/or one or more proteins that regulate the levels and/or functionality of the one or more intermediary molecules. The one or more intermediary molecules regulate the subject's levels and/or functionality of the one or more biomolecules.

[0067] In some embodiments of the present disclosure, administering a therapeutic amount of the composition to a subject upregulates the production, functionality or both one or more sequences of miRNA that each target the mRNA of one or more target biomolecules. In some embodiments of the present disclosure, there are one, two, three, four, five, or six miRNA sequences that each are complimentary to and degrade, or cause degradation of, one biomolecule, such as the mRNA of serotonin receptor 5HT1a, serotonin receptor 5HT1b, serotonin receptor 5HT1d, serotonin receptor 5HT1e, serotonin receptor 5HT1f, serotonin receptor 5HT2a, serotonin receptor 5HT2b, serotonin receptor 5HT2c, serotonin receptor 5HT3, serotonin receptor 5HT4, serotonin receptor 5HT6, or serotonin receptor 5HT7. In some embodiments of the present disclosure, the composition may comprise multiple copies of the same nucleotide sequence of miRNA.

[0068] In some embodiments of the present disclosure, the composition is an RP that may be used for gene therapy. The gene therapy is useful for increasing the subject's endogenous production of one or more sequences of miRNA that target the mRNA of a target biomolecule. For example, the RP can contain one or more nucleotide sequences that cause increased production of one or more nucleotide sequences that cause an increased production of one or more miRNA sequences that are each complimentary to and degrade, or cause degradation of, or inactivate, or cause inactivation of, one biomolecule, such as serotonin receptor 5HT1a, serotonin receptor 5HT1b, serotonin receptor 5HT1d, serotonin receptor 5HT1e, serotonin receptor 5HT1f, serotonin receptor 5HT2a, serotonin receptor 5HT2b, serotonin receptor 5HT2c, serotonin receptor 5HT3, serotonin receptor 5HT4, serotonin receptor 5HT6, or serotonin receptor 5HT7.

[0069] In some embodiments of the present disclosure, the delivery vehicle of the RP used for gene therapy may be a vector that is comprised of a virus that can be enveloped, or not (unenveloped), replication effective or not (replication ineffective), or combinations thereof. In some embodiments of the present disclosure, the vector is a virus that is not enveloped and not replication effective. In some embodi-

ments of the present disclosure, the vector is a virus of the Parvoviridae family. In some embodiments of the present disclosure, the vector is a virus of the genus *Dependoparvovirus*. In some embodiments of the present disclosure, the vector is an adeno-associated virus (AAV). In some embodiments of the present disclosure, the vector is a recombinant AAV. In some embodiments of the present disclosure, the vector is a recombinant AAV6.2FF.

[0070] In some embodiments of the present disclosure, the delivery vehicle of the RP used for gene therapy may be a protein coat.

[0071] In some embodiments of the present disclosure, the delivery vehicle of the RP used for gene therapy may be a lipid vesicle.

[0072] The embodiments of the present disclosure also relate to administering a therapeutically effective amount of the composition. In some embodiments of the present disclosure, the therapeutically effective amount of the composition that is administered to a patient is between about 10 and about 1×10¹⁶ TCID₅₀/ kg (50% tissue culture infective dose per kilogram of the patient's body mass). In some embodiments of the present disclosure, the therapeutically effective amount of the composition that is administered to the patient is about 1×10^{13} TCID₅₀/ kg. In some embodiments of the present disclosure, the therapeutically effective amount of the composition that is administered to a patient is measured in TPC/kg (total particle count of the composition per kilogram of the patient's body mass). In some embodiments the therapeutically effective amount of the composition is between about 10 and about 1×10¹⁶ TCP/kg. [0073] Some embodiments of the present disclosure relate to an adeno-associated virus (AAV) genome consisting of a RP that when operable inside a target cell will cause the target cell to produce a miRNA sequence that downregulates production of a biomolecule, with examples being serotonin receptor 5HT1a, serotonin receptor 5HT1b, serotonin receptor 5HT1d, serotonin receptor 5HT1e, serotonin receptor 5HT1f, serotonin receptor 5HT2a, serotonin receptor 5HT2b, serotonin receptor 5HT2c, serotonin receptor 5HT3, serotonin receptor 5HT4, serotonin receptor 5HT6, or serotonin receptor 5HT7. The RP is comprised of AAV2 inverted terminal repeats (ITRs), a composite CASI promoter, a human growth hormone (HGH) signal peptide followed by a miRNA expression cassette containing up to six different miRNAs targeting the mRNA of serotonin receptor 5HT1a, serotonin receptor 5HT1b, serotonin receptor 5HT1d, serotonin receptor 5HT1e, serotonin receptor 5HT1f, serotonin receptor 5HT2a, serotonin receptor 5HT2b, serotonin receptor 5HT2c, serotonin receptor 5HT3, serotonin receptor 5HT4, serotonin receptor 5HT6, or serotonin receptor 5HT7, followed by a Woodchuck Hepatitis Virus post-transcriptional regulatory element (WPRE) and a Simian virus 40 (SV40) polyadenylation (polyA) signal.

CCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGG $\tt CTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGGAAATCATCGTCCTTTCCTTGGCTG$ $\tt CTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCC$ $\tt CTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCCTAAGCTT$ ATCGATACCGTCGAGATCTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAA TAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTC CAAACTCATCAATGTATCTTATCATGTCTGGATCTCGACCTCGACTAGAGCATGGCTACG TAGATAAGTAGCATGGCGGGTTAATCATTAACTACAAGGAACCCCTAGTGATGGAGTTGG AAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGAT TCCGTTGCAATGGCTGGCGGTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTG AGTTCTTCTACTCAGGCAAGTGATGTTATTACTAATCAAAGAAGTATTGCGACAACGGTT AATTTGCGTGATGGACAGACTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCT CAGGATTCTGGCGTACCGTTCCTGTCTAAAATCCCTTTTAATCGGCCTCCTGTTTTAGCTCC CGCTCTGATTCTAACGAGGAAAGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGC GCCCTGTAGCGGCGCATTAAGCGCGGGGGGTGTGGTGGTTACGCGCAGCGTGACCGCTAC ${\tt ACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTTCTTCTCGCCACGTT}$ $\tt CGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGC$ $\tt TTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATC$ $\tt GCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACT$ $\tt CTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGG$ GATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGC GAATTTTAACAAAATATTAACGTTTACAATTTAAATATTTGCTTATACAATCTTCCTGTT $\tt TTTGGGGCTTTTCTGATTATCAACCGGGGTACATATGATTGACATGCTAGTTTTACGATT$ ${\tt ACCGTTCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGT}$ AGAGACCTCTCAAAAATAGCTACCCTCTCCGGCATGAATTTATCAGCTAGAACGGTTGAA ${\tt TATCATATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCGTTTGAATCTTTACCT}$ ACACATTACTCAGGCATTGCATTTAAAATATATGAGGGTTCTAAAAATTTTTATCCTTGC GTTGAAATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACC GATTTAGCTTTATGCTCTGAGGCTTTATTGCTTAATTTTGCTAATTCTTTGCCTTGCCTG TATGATTTATTGGATGTTGGAATTCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGG TATTTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAG CCAGCCCGACACCCGCCAACACCCGCTGACGCGCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACC GTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAA TGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGG AACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATA

ACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCG TGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTTGCTCACCCAGAAAC $\tt GCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACT$ $\tt GGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGAT$ ${\tt GAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGA}$ GCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCAC AGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCAT GAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAAC CGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCT GAATGAAGCCATACCAAACGACGAGGCGTGACACCACGATGCCTGTAGCAATGGCAACAAC GTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGA $\tt GTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACT$ GGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAAC TATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTA TAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGA GTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCC $\tt TTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGT$ $\tt TTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGC$ $\tt GCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTC$ $\tt TGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCCAGTGG$ $\tt CGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCG$ GTCGGGCTGAACGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGA ACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGC $\tt GGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGG$ $\tt GGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCG$ ATTTTTGTGATGCTCGTCAGGGGGGGGGGGGCCTATGGAAAAACGCCAGCAACGCGGCCTT $\tt TTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCC$ TGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCG AACGACCGAGCGAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACC GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGC GAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTTGTAGTTAATG ATTAACCCGCCATGCTACTTATCTACGTAGCCATGCTCTAGGACATTGATTATTGACTAG TGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACC CCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCC ATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGT ATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATT

continued ATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCA CCTCCCCACCCCAATTTTGTATTTATTTTTTTTAATTATTTTTTGTGCAGCGATGGGGG TGACTGACCGCGTTACTAAAACAGGTAAGTCCGGCCTCCGCGCCGGGTTTTGGCGCCTCC TCCTGATCCTTCCGCCCGGACGCTCAGGACAGCGGCCCGCTGCTCATAAGACTCGGCCTT AGAACCCCAGTATCAGCAGAAGGACATTTTAGGACGGGACTTGGGTGACTCTAGGGCACT GGTTTTCTTTCCAGAGAGCGGAACAGGCGAGGAAAAGTAGTCCCTTCTCGGCGATTCTGC GGAGGGATCTCCGTGGGGCGGTGAACGCCGATGATGCCTCTACTAACCATGTTCATGTTT TCTTTTTTTTCTACAGGTCCTGGGTGACGAACAGGGTACC 3' SEQ ID NO. 2 (miRNA expression cassette No. 2-serotonin receptor 5HT1a): ${\tt 5'} \quad {\tt GCCACCATGGCCACCGGCTCTCGCACAAGCCTGCTGCTGGCTTTCGGACTGCTGTGC}$ CTGCCTTGGCTCCAGGAGGGCTCCGCCGCTAGCATCGATACCGTCGCTATGTGCTGGAGG $\tt CTTGCTGAAGGCTGTATGCTGATCAATCGGATTGCGGTAATCGCGTTTTGGCCTCTGACT$ ${\tt GACGCGATTACCGATCCGATTGATCAGGACACAAGGCCTGTTACTAGCACTCACATGGAA}$ ${\tt CAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTATGCTGATCTTTGCTAAATTGGT}$ $\tt GCACGCGTTTTGGCCTCTGACTGACGCGTGCACCATTAGCAAAGATCAGGACACAAGGCC$ $\tt TGTTACTAGCACTCACATGGAACAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTA$ ATTGAAGTCAGGACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCTCTCTAG SEQ ID NO. 3 (miRNA expression cassette No. 3-serotonin receptor 5HTlb): 5' GCCACCATGGCCACCGGCTCTCGCACAAGCCTGCTGCTGCTTTCGGACTGCTGTGC $\tt CTGCCTTGGCTCCAGGAGGGCTCCGCCGCTAGCATCGATACCGTCGCTATGTGCTGGAGG$ $\tt CTTGCTGAAGGCTGTATGCTGTAATCTTTCGCTGGCTGCAGTTCGTTTTTGGCCTCTGACT$ GACGAACTGCAGCGCGAAAGATTACAGGACACAAGGCCTGTTACTAGCACTCACATGGAA CAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTATGCTGTTAATGCTGATGTCA $\tt CGCTGCGTTTTGGCCTCTGACTGACGCAGCGTGACCAGCATTAACACAGGACACAAGGCC$ TGTTACTAGCACTCACATGGAACAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTA CAGGTGAACAGGACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCTCTCTAG AAT 3' SEQ ID NO. 4 (miRNA expression cassette No. 4-serotonin receptor 5HT1d): 5' GCCACCATGGCCACCGGCTCTCGCACAAGCCTGCTGCTGCTTTCGGACTGCTGTGC $\tt CTGCCTTGGCTCCAGGAGGGCTCCGCCGCTAGCATCGATACCGTCGCTATGTGCTGGAGG$

 $\tt CTTGCTGAAGGCTGTATGCTGATTTCTTCCTGTGCGCTTTTCGCCGTTTTGGCCTCTGACT\\ GACGCCGAAAGCGCAGGAAGAATCAGGACACAAGGCCTGTTACTAGCACTCACATGGAA\\$

ACGCTCGTTTTGGCCTCTGACTGACGACGCTGCTGATTATTCTCAGGACACAAGGCC TGTTACTAGCACTCACATGGAACAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTA $\verb|CCTGATTACAGGACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCTCTCTAG|\\$ AAT 3' SEQ ID NO. 5 (miRNA expression cassette No. 5-serotonin receptor 5HTle): $\tt CTGCCTTGGCTCCAGGAGGGCTCCGCCGCTAGCATCGATACCGTCGCTATGTGCTGGAGG$ $\tt CTTGCTGAAGGCTGTATGCTGATAATCACCGCTGCAGGTTCAGCGTTTTGGCCTCTGACT$ GACGCTGAACCTGGCGGTGATTATCAGGACACAAGGCCTGTTACTAGCACTCACATGGAA ${\tt CAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTATGCTGTTCAATCGCGTATTGGT}$ ${\tt AATCGCGTTTTGGCCTCTGACTGACGCGATTACCAACGCGATTGAACAGGACACAAGGCC}$ ${\tt TGTTACTAGCACTCACATGGAACAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTA}$ CATGATCACAGGACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCTCTCTAG AAT 3' SEQ ID NO. 6 (miRNA expression cassette No. 6-serotonin receptor 5HT1f): 5' GCCACCATGGCCACCGGCTCTCGCACAAGCCTGCTGCTGCTTTCGGACTGCTGTGC $\tt CTGCCTTGGCTCCAGGAGGGCTCCGCCGCTAGCATCGATACCGTCGCTATGTGCTGGAGG$ $\tt CTTGCTGAAGGCTGTATGCTGAGGTAATATCCTGACGCTCAGCCGTTTTGGCCTCTGACT$ ${\tt GACGGCTGAGCGTGGATATTACCTCAGGACACAAGGCCTGTTACTAGCACTCACATGGAA}$ CAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTATGCTGTACAGAATCAGATAATC AGCGCCGTTTTGGCCTCTGACTGACGGCGCTGATTCTGATTCTGTACAGGACACAAGGCC $\tt TGTTACTAGCACTCACATGGAACAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTA$ $\verb|AAACATGACAGGACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCTCTCTAG|$ AAT 3' SEQ ID NO. 7 (miRNA expression cassette No. 7-serotonin receptor 5HT2a): ${\tt 5'} \ {\tt GCCACCATGGCCACCGGCTCTCGCACAAGCCTGCTGCTGCTTTCGGACTGCTGTGC}$ CTGCCTTGGCTCCAGGAGGGCTCCGCCGCTAGCATCGATACCGTCGCTATGTGCTGGAGG $\tt CTTGCTGAAGGCTGTATGCTGATGAATCGGGTTGTCTGAATCGCGTTTTGGCCTCTGACT$ ${\tt GACGCGATTCAGGACCCGATTCATCAGGACACAAGGCCTGTTACTAGCACTCACATGGAA}$ ${\tt CAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTATGCTGAACACTTTGCTATATCA}$ ${\tt TCCTGCGTTTTGGCCTCTGACTGACGCAGGATGATAGCAAAGTGTTCAGGACACAAGGCC}$

 $\tt TGTTACTAGCACTCACATGGAACAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTA$

 ${\tt GAACAGAACAGGACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCTCTCTAG}$ SEQ ID NO. 8 (miRNA expression cassette No. 8-serotonin receptor 5HT2b): 5' GCCACCATGGCCACCGGCTCTCGCACAAGCCTGCTGCTGGCTTTCGGACTGCTGTGC $\tt CTGCCTTGGCTCCAGGAGGGCTCCGCCGCTAGCATCGATACCGTCGCTATGTGCTGGAGG$ $\tt CTTGCTGAAGGCTGTATGCTGGAGCATTAGCAATGCGAACAGAAGTTTTGGCCTCTGACT$ GACTTCTGTTCGTTGCTAATGCTCCAGGACACAAGGCCTGTTACTAGCACTCACATGGAA CAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTATGCTGAAACATAATGGATTCAG ${\tt CAGCGCGTTTTGGCCTCTGACTGACGCGCTGCTGACCATTATGTTTCAGGACACAAGGCC}$ TGTTACTAGCACTCACATGGAACAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTA AAAGATAACAGGACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCTCTCTAG AAT 3' SEQ ID NO. 9 (miRNA expression cassette No. 9-serotonin receptor 5HT2c): ${\tt 5'} \quad {\tt GCCACCATGGCCACCGGCTCTCGCACAAGCCTGCTGCTGGCTTTCGGACTGCTGTGC}$ CTGCCTTGGCTCCAGGAGGGCTCCGCCGCTAGCATCGATACCGTCGCTATGTGCTGGAGG $\tt CGCGGCAACATTCTGGTGATTACAGGACACAAGGCCTGTTACTAGCACTCACATGGAACA$ ${\tt AATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTATGCTGTCATAATCGCTATTTTGGTG}$ $\tt CGGCGTTTTGGCCTCTGACTGACGCCGCACCAAAGCGATTATGACAGGACACAAGGCCTG$ $\tt TTACTAGCACTCACATGGAACAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTATGCT$ A GAACAGGACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCTCTCTAGAATSEQ ID NO. 10 (miRNA expression cassette No. 10-serotonin receptor 5HT3): 5' GCCACCATGGCCACCGGCTCTCGCACAAGCCTGCTGCTGGCTTTCGGACTGCTGTGC $\tt CTGCCTTGGCTCCAGGAGGGCTCCGCCGCTAGCATCGATACCGTCGCTATGTGCTGGAGG$ $\tt CTTGCTGAAGGCTGTATGCTGAAATCTTCCGGTGGTTCCACTGCGTTTTTGGCCTCTGACT$ GACGCAGTGGAACCCGGAAGATTTCAGGACACAAGGCCTGTTACTAGCACTCACATGGAA CAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTATGCTGATATCCTGAATATGGTA $\tt TGCAGCGTTTTGGCCTCTGACTGACGCTGCATACCATTCAGGATATCAGGACACAAGGCC$ TGTTACTAGCACTCACATGGAACAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTA GCTTTAAACAGGACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCTCTCTAG AAT 3' SEQ ID NO. 11 (miRNA expression cassette No. 11-serotonin receptor 5HT4): 5' GCCACCATGGCCACCGGCTCTCGCACAAGCCTGCTGCTGCTTTCGGACTGCTGTGC $\tt CTGCCTTGGCTCCAGGAGGGCTCCGCCGCTAGCATCGATACCGTCGCTATGTGCTGGAGG$ $\tt CTTGCTGAAGGCTGTATGCTGTAATAAAGGTCTGGGAATCACCCGTTTTGGCCTCTGACT$ ${\tt GACGGGTGATTCCGACCTTTATTACAGGACACAAGGCCTGTTACTAGCACTCACATGGAA}$

 ${\tt CAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTATGCTGTAATACGCCAGATCACC}$ ${\tt ATCAGCGTTTTGGCCTCTGACTGACGCTGATGGTGCTGGCGTATTACAGGACACAAGGCC}$ $\tt TGTTACTAGCACTCACATGGAACAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTA$ $\tt TTCTGTATCAGGACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCTCTCTAG$ AAT ' SEQ ID NO. 12 (miRNA expression cassette No. 12-serotonin receptor 5HT6): 5' GCCACCATGGCCACCGGCTCTCGCACAAGCCTGCTGCTGCTTTCGGACTGCTGTGC CTGCCTTGGCTCCAGGAGGGCTCCGCCGCTAGCATCGATACCGTCGCTATGTGCTGGAGG $\tt CTTGCTGAAGGCTGTATGCTGTCAGATCGCTGTGGTAAACAGGCGTTTTGGCCTCTGACT$ GACGCCTGTTTACCAGCGATCTGACAGGACACAAGGCCTGTTACTAGCACTCACATGGAA CAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTATGCTGAGAATCAGATCAGATAG CGATCCGTTTTGGCCTCTGACTGACGGATCGCTATCTGCTGATTCTCAGGACACAAGGCC TGTTACTAGCACTCACATGGAACAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTA GCATGTTTCAGGACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCTCTCTAG AAT 3' SEQ ID NO. 13 (miRNA expression cassette No. 13-serotonin receptor 5HT7): 5' GCCACCATGGCCACCGGCTCTCGCACAAGCCTGCTGCTGGCTTTCGGACTGCTGTGC $\tt CTGCCTTGGCTCCAGGAGGGCTCCGCCGCTAGCATCGATACCGTCGCTATGTGCTGGAGG$ $\tt CTTGCTGAAGGCTGTATGCTGACAATCAGATATGGTTGCTCGGCGTTTTTGGCCTCTGACT$ ${\tt GACGCCGAGCAACTATCTGATTGTCAGGACACAAGGCCTGTTACTAGCACTCACATGGAA}$ ${\tt CAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTATGCTGTTTCACAATGCATCGTT}$ ${\tt CAGCGCGTTTTGGCCTCTGACTGACGCGCTGAACGGCATTGTGAAACAGGACACAAGGCC}$ $\tt TGTTACTAGCACTCACATGGAACAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTA$ ${\tt ATTATTGTCAGGACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCTCTCTAG}$ AAT 3' SEQ ID NO. 14 = SEQ ID NO. 1 + SEQ ID NO. 2 5' AATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTT $\tt GCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCC$ CGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAG TTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCC ACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCCTC CCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTTGGACAGGGGCTCGG $\tt CTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTG$ $\tt CTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCC$ $\tt CTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGT$ CTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCCTAAGCTT

ATCGATACCGTCGAGATCTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAA

TAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTC ${\tt CAAACTCATCATGTATCTTATCATGTCTGGATCTCGACCTCGACTAGAGCATGGCTACG}$ ${\tt TAGATAAGTAGCATGGCGGGTTAATCATTAACTACAAGGAACCCCTAGTGATGGAGTTGG}$ AAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGAT ${\tt TCCGTTGCAATGGCTGGCGGTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTG}$ AGTTCTTCTACTCAGGCAAGTGATGTTATTACTAATCAAAGAAGTATTGCGACAACGGTT ${\tt AATTTGCGTGATGGACAGACTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCT}$ ${\tt CAGGATTCTGGCGTACCGTTCTGAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCC}$ CGCTCTGATTCTAACGAGGAAAGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGC GCCCTGTAGCGGCGCATTAAGCGCGGCGGCTGTGGTGGTTACGCGCAGCGTGACCGCTAC ACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTTCCTCTTCTCGCCACGTT CGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGC TTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATC $\mathsf{GCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACT$ CTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGG ${\tt GATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGC}$ GAATTTTAACAAAATATTAACGTTTACAATTTAAATATTTGCTTATACAATCTTCCTGTT $\tt TTTGGGGCTTTTCTGATTATCAACCGGGGTACATATGATTGACATGCTAGTTTTACGATT$ ${\tt ACCGTTCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGT}$ AGAGACCTCTCAAAAATAGCTACCCTCTCCGGCATGAATTTATCAGCTAGAACGGTTGAA ${\tt TATCATATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCGTTTGAATCTTTACCT}$ ACACATTACTCAGGCATTGCATTTAAAATATATGAGGGTTCTAAAAATTTTTATCCTTGC $\tt GTTGAAATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACC$ GATTTAGCTTTATGCTCTGAGGCTTTATTGCTTAATTTTTGCTAATTCTTTGCCTTGCCTG ${\tt TATGATTTATTGGATGTTGGAATTCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGG}$ TATTTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAG $\tt CCAGCCCGACACCCGCCAACACCCGCTGACGCGCCTGACGGGCTTGTCTGCTCCCGGC$ $\tt ATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACC$ GTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAA TGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGG AACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATA ACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCG TGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTTGCTCACCCAGAAAC GCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACT GGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGAT GAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCAC

AGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCAT GAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAAC $\tt CGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCT$ GAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAAC GTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGA $\tt GTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACT$ GGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAAC TATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTA TAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGA GTTTTCGTTCCACTGAGCCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCC TTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAACCACCGCTACCAGCGGTGGT TTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGC GCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTC TGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGG CGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCG $\tt GTCGGGCTGAACGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGA$ ${\tt ACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGC}$ $\tt GGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCG$ ATTTTTGTGATGCTCGTCAGGGGGGGGGGGGCCTATGGAAAAACGCCAGCAACGCGGCCTT $\tt TTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCC$ TGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCG AACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACC $\tt GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGC$ GAGCGAGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTTGTAGTTAATG ATTAACCCGCCATGCTACTTATCTACGTAGCCATGCTCTAGGACATTGATTATTGACTAG TGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACC CCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGT ATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATT ATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCA TCGCTATTACCATGGTCGAGGTGAGCCCCACGTTCTGCTTCACTCTCCCCATCTCCCCCC CCTCCCCACCCCAATTTTGTATTTATTTATTTTTTAATTATTTTTGTGCAGCGATGGGGG GAGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTTCCTTTTAT

TGCGCGCTGCCTTCGCCCCGTGCCCCGCTCCGCCGCCCGCCCGCCCCGGCT CCGCGGGCGCCCCCTCCTCACGGCGAGCGCTGCCACGTCAGACGAAGGGCGCAGCGAGC $\tt GTCCTGATCCTTCCGCCCGGACGCTCAGGACAGCGGCCCGCTGCTCATAAGACTCGGCCT$ TAGAACCCCAGTATCAGCAGAAGGACATTTTAGGACGGGACTTGGGTGACTCTAGGGCAC $\tt TGGTTTTCTTTCCAGAGAGCGGAACAGGCGAGGAAAAGTAGTCCCTTCTCGGCGATTCTG$ $\tt CGGAGGGATCTCCGTGGGGCGGTGAACGCCGATGATGCCTCTACTAACCATGTTCATGTT$ ${\tt TCCGCCGCTAGCATCGATACCGTCGCTATGTGCTGGAGGCTTGCTGAAGGCTGTATGCTG}$ GATCAGGACACAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCTCTAGCCTGGAG GCTTGCTGAAGGCTGTATGCTGATCTTTGCTAAATTGGTGCACGCGTTTTTGGCCTCTGAC TGACGCGTGCACCATTAGCAAAGATCAGGACACAAGGCCTGTTACTAGCACTCACATGGA ACAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTATGCTGACTTCAATCACAATTC CAGCGCCGTTTTGGCCTCTGACTGACGGCGCTGGAAGTGATTGAAGTCAGGACACAAGGC CTGTTACTAGCACTCACATGGAACAAATGGCCTCTCTAGAAT 3'

SEQ ID NO. 15 = SEQ ID NO. 1 + SEQ ID NO. 3 ${\tt 5'} \ \, {\tt AATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTT}$ $\tt GCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCC$ $\tt CGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAG$ ACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTC CCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGG $\tt CTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGGAAATCATCGTCCTTTCCTTGGCTG$ $\tt CTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCCTAAGCTT$ ATCGATACCGTCGAGATCTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAA TAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTC CAAACTCATCAATGTATCTTATCATGTCTGGATCTCGACCTCGACTAGAGCATGGCTACG TAGATAAGTAGCATGGCGGGTTAATCATTAACTACAAGGAACCCCTAGTGATGGAGTTGG GCCCGGCTTTGCCCGGCCGCCTCAGTGAGCGAGCGAGCGCGCAGCTGGCGTAATAGCG AAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGAT TCCGTTGCAATGGCTGGCGGTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTG AGTTCTTCTACTCAGGCAAGTGATGTTATTACTAATCAAAGAAGTATTGCGACAACGGTT AATTTGCGTGATGGACAGACTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCT ${\tt CAGGATTCTGGCGTACCGTTCTGAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCC}$

GCCCTGTAGCGGCGCATTAAGCGCGCGGGGGTGTGGTGGTTACGCGCAGCGTGACCGCTAC $\tt CGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGC$ $\tt TTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATC$ $\tt GCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACT$ $\tt CTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGG$ GATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGC GAATTTTAACAAAATATTAACGTTTACAATTTAAATATTTGCTTATACAATCTTCCTGTT $\tt TTTGGGGCTTTTCTGATTATCAACCGGGGTACATATGATTGACATGCTAGTTTTACGATT$ ACCGTTCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGT AGAGACCTCTCAAAAATAGCTACCCTCTCCGGCATGAATTTATCAGCTAGAACGGTTGAA TATCATATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCGTTTGAATCTTTACCT ACACATTACTCAGGCATTGCATTTAAAATATATGAGGGTTCTAAAAATTTTTATCCTTGC GTTGAAATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACC GATTTAGCTTTATGCTCTGAGGCTTTATTGCTTAATTTTTGCTAATTCTTTGCCTTGCCTG TATGATTTATTGGATGTTGGAATTCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGG ${\tt TATTTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAG}$ $\tt CCAGCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGC$ $\tt ATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACC$ $\tt GTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTATAGGTTAA$ AACCCCTATTTGTTTATTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATA ACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCG $\tt TGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAAC$ $\tt GCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACT$ $\tt GGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGAT$ GAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGA $\tt GCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCAC$ AGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCAT GAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAAC CGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCT GAATGAAGCCATACCAAACGACGAGGGTGACACCACGATGCCTGTAGCAATGGCAACAAC GTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGA GTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACT GGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAAC ${\tt TATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTA}$ TAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGA

GTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCC $\tt TTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGT$ $\tt TTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGC$ $\tt GCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTC$ $\tt TGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCCAGTGG$ $\tt CGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCG$ GTCGGGCTGAACGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGA ACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGC GGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGG $\mathsf{GGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCG$ ATTTTTGTGATGCTCGTCAGGGGGGGGGGGCCTATGGAAAAACGCCAGCAACGCGGCCTT TTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCC TGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCG AACGACCGAGCGCAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACC GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGC ${\tt GAGCGAGCGCGCAGAGAGGGGAGTGGCCAACTCCATCACTAGGGGTTCCTTGTAGTTAATG}$ ATTAACCCGCCATGCTACTTATCTACGTAGCCATGCTCTAGGACATTGATTATTGACTAG $\tt CCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCC$ ATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGT ATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATT ATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCA CCTCCCCACCCCAATTTTGTATTTATTTTTTTTAATTATTTTTTGTGCAGCGATGGGGG $\tt AGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTTCCTTTTATG$ $\tt TGACTGACCGCGTTACTAAAACAGGTAAGTCCGGCCTCCGCGCCGGGTTTTGGCGCCTCC$ ${\tt TCCTGATCCTTCCGCCCGGACGCTCAGGACAGCGGCCCGCTGCTCATAAGACTCGGCCTT}$ AGAACCCCAGTATCAGCAGAAGGACATTTTAGGACGGGACTTGGGTGACTCTAGGGCACT GGTTTTCTTTCCAGAGAGCGGAACAGGCGAGGAAAAGTAGTCCCTTCTCGGCGATTCTGC GGAGGGATCTCCGTGGGGCGGTGAACGCCGATGATGCCTCTACTAACCATGTTCATGTTT $\mathsf{TCTTTTTTTTTCTACAGGTCCTGGGTGACGAACAGGTACCGCCACCATGGCCACCGGCT$ $\tt CTCGCACAAGCCTGCTGCTGGCTTTCGGACTGCTGTGCCTTGGCTCCAGGAGGGCT$ $\tt CCGCCGCTAGCATCGATACCGTCGCTATGTGCTGGAGGCTTGCTGAAGGCTGTATGCTGT$

TACAGGACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCTCTAGCCTGGAGG

 $\tt CTTGCTGAAGGCTGTATGCTGTTTAATGCTGATGTCACGCTGCGTTTTGGCCTCTGACT$ ${\tt GACGCAGCGTGACCAGCATTAACACAGGACACAAGGCCTGTTACTAGCACTCACATGGAA}$ ${\tt CAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTATGCTGTTCACCTGGTTAACACA}$ ${\tt TACACCGTTTTGGCCTCTGACTGACGGTGTATGTGAACCAGGTGAACAGGACACAAGGCC}$ TGTTACTAGCACTCACATGGAACAAATGGCCTCTCTAGAAT 3' SEQ ID NO. 16 = SEQ ID NO. 1 + SEQ ID NO. 4 5' AATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTT GCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCC CGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAG ACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCCTC CCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTTGGACAGGGGCTCGG $\tt CTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTG$ CTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCCGCGT CTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCCTAAGCTT ATCGATACCGTCGAGATCTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAA ${\tt TAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTC}$ ${\tt CAAACTCATCATGTATCTTATCATGTCTGGATCTCGACCTCGACTAGAGCATGGCTACG}$ ${\tt TAGATAAGTAGCATGGCGGGTTAATCATTAACTACAAGGAACCCCTAGTGATGGAGTTGG}$ $\tt CCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGAC$ AAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGAT ${\tt TCCGTTGCAATGGCTGGCGGTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTG}$ AGTTCTTCTACTCAGGCAAGTGATGTTATTACTAATCAAAGAAGTATTGCGACAACGGTT ${\tt AATTTGCGTGATGGACAGACTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCT}$ ${\tt CAGGATTCTGGCGTACCGTTCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCC}$ $\tt CGCTCTGATTCTAACGAGGAAAGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGC$ $\tt GCCCTGTAGCGGCGCATTAAGCGCGGGGGGGTGTGGTGGTTACGCGCAGCGTGACCGCTAC$ ACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTTCTTCTCGCCACGTT CGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATC $\mathsf{GCCCTGATAGACGGTTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACT$ CTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGG GATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGC GAATTTTAACAAATATTAACGTTTACAATTTAAATATTTGCTTATACAATCTTCCTGTT $\tt TTTGGGGCTTTTCTGATTATCAACCGGGGTACATATGATTGACATGCTAGTTTTACGATT$ ${\tt ACCGTTCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGT}$

continued AGAGACCTCTCAAAAATAGCTACCCTCTCCGGCATGAATTTATCAGCTAGAACGGTTGAA TATCATATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCGTTTGAATCTTTACCT ACACATTACTCAGGCATTGCATTTAAAATATATGAGGGTTCTAAAAATTTTTATCCTTGC GTTGAAATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACC GATTTAGCTTTATGCTCTGAGGCTTTATTGCTTAATTTTGCTAATTCTTTGCCTTGCCTG TATGATTTATTGGATGTTGGAATTCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGG TATTTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAG ATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACC GTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAA TGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGG AACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATA ACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCG TGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAAC GCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACT GGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGAT GAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGA $\tt GCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCAC$ AGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCAT ${\tt GAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAAC}$ $\tt CGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCT$ GAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAAC GTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGA $\tt GTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACT$ TATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTA TAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGA GTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCC $\tt TTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGT$ TTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGC GCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTC TGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGG CGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCG GTCGGGCTGAACGGGGGTTCGTGCACACACCCCAGCTTGGAGCGAACGACCTACACCGA ACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGC GGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGGGCGCACGAGGGAGCTTCCAGG GGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCG

continued ATTTTTGTGATGCTCGTCAGGGGGGGGGGGCCTATGGAAAAACGCCAGCAACGCGGCCTT $\tt TTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCC$ TGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCG AACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACC GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGC GAGCGAGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTTGTAGTTAATG ATTAACCCGCCATGCTACTTATCTACGTAGCCATGCTCTAGGACATTGATTATTGACTAG TGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACC CCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGT ATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATT ATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCA TCGCTATTACCATGGTCGAGGTGAGCCCCACGTTCTGCTTCACTCTCCCCATCTCCCCCC CCTCCCCACCCCAATTTTGTATTTATTTATTTTTTAATTATTTTTGTGCAGCGATGGGGG GAGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTTCCTTTTAT $\tt CTGACTGACCGCGTTACTAAAACAGGTAAGTCCGGCCTCCGCGCCGGGTTTTGGCGCCTC$ $\tt GTCCTGATCCTTCCGCCCGGACGCTCAGGACAGCGGCCCGCTGCTCATAAGACTCGGCCT$ $\tt TGGTTTTCTTTCCAGAGAGCGGAACAGGCGAGGAAAAGTAGTCCCTTCTCGGCGATTCTG$ $\tt CGGAGGGATCTCCGTGGGGCGGTGAACGCCGATGATGCCTCTACTAACCATGTTCATGTT$ $\tt TTCTTTTTTTTTCTACAGGTCCTGGGTGACGAACAGGGTACCGCCACCATGGCCACCGGC$ ${\tt TCTCGCACAAGCCTGCTGCTTGCTTTCGGACTGCTTGTGCTTGGCTCCAGGAGGGC}$ ${\tt TCCGCCGCTAGCATCGATACCGTCGCTATGTGCTGAAGGCTTGCTGAAGGCTGTATGCTG}$ AATCAGGACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCTCTAGCCTGGAG GCTTGCTGAAGGCTGTATGCTGAGAATAATCAGATCAGCACGCTCGTTTTTGGCCTCTGAC TGACGAGCGTGCTGATTATTCTCAGGACACAGGCCTGTTACTAGCACTCACATGGA ACAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTATGCTGTAATCAGGCTGAATTC ${\tt AGATAGCGTTTTGGCCTCTGACTGACGGCTATCTGAACAGCCTGATTACAGGACACAAGGC}$ CTGTTACTAGCACTCACATGGAACAAATGGCCTCTCTAGAAT 3' SEQ ID NO. 17 = SEQ ID NO. 1 + SEQ ID NO. 5 5' AATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTT

ACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTC $\tt CCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGG$ $\tt CTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTG$ $\tt CTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGGACGTCCTTCTGCTACGTCCCTTCGGCC$ $\tt CTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTTCCGCGT$ $\tt CTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCCTAAGCTT$ ATCGATACCGTCGAGATCTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAA ${\tt TAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTC}$ ${\tt CAAACTCATCAATGTATCTTATCATGTCTGGATCTCGACCTCGACTAGAGCATGGCTACG}$ TAGATAAGTAGCATGGCGGGTTAATCATTAACTACAAGGAACCCCTAGTGATGGAGTTGG GCCCGGCTTTGCCCGGCCGCCTCAGTGAGCGAGCGAGCGCGCAGCTGGCGTAATAGCG AAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGAT TCCGTTGCAATGGCTGGCGGTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTG AGTTCTTCTACTCAGGCAAGTGATGTTATTACTAATCAAAGAAGTATTGCGACAACGGTT AATTTGCGTGATGGACAGACTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCT CAGGATTCTGGCGTACCGTTCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCC CGCTCTGATTCTAACGAGGAAAGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGC $\tt GCCCTGTAGCGGCGCATTAAGCGCGGGGGGTGTGGTGGTTACGCGCAGCGTGACCGCTAC$ $\tt CGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGC$ $\tt TTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATC$ GCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACT $\tt CTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGG$ ${\tt GATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGC}$ GAATTTTAACAAAATATTAACGTTTACAATTTAAATATTTGCTTATACAATCTTCCTGTT TTTGGGGCTTTTCTGATTATCAACCGGGGTACATATGATTGACATGCTAGTTTTACGATT ${\tt ACCGTTCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGT}$ AGAGACCTCTCAAAAATAGCTACCCTCTCCGGCATGAATTTATCAGCTAGAACGGTTGAA TATCATATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCGTTTGAATCTTTACCT ACACATTACTCAGGCATTGCATTTAAAATATATGAGGGTTCTAAAAATTTTTATCCTTGC GTTGAAATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACC GATTTAGCTTTATGCTCTGAGGCTTTATTGCTTAATTTTGCTAATTCTTTGCCTTGCCTG TATGATTTATTGGATGTTGGAATTCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGG TATTTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAG CCAGCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGC ${\tt ATCCGCTTACAGACCAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACC}$ GTCATCACCGAAACGCCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAA

AACCCCTATTTGTTTATTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATA ACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCG ${\tt TGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAAC}$ $\tt GCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACT$ $\tt GGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGAT$ GAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGA $\tt GCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCAC$ AGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCAT GAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAAC CGCTTTTTTGCACACACGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCT GAATGAAGCCATACCAAACGACGAGGGTGACACCACGATGCCTGTAGCAATGGCAACAAC GTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGA $\tt GTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACT$ GGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAAC TATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTA TAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGA $\tt GTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCC$ $\tt TTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGT$ $\tt TTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGC$ GCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTC TGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGG $\tt CGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCG$ $\tt GTCGGGCTGAACGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGA$ $\tt GGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCG$ ATTTTTGTGATGCTCGTCAGGGGGGGGGGGGCCTATGGAAAAACGCCAGCAACGCGGCCTT $\tt TTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCC$ TGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCG AACGACCGAGCGAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACC GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGC GAGCGAGCGCGCAGAGAGGGGAGTGGCCAACTCCATCACTAGGGGTTCCTTGTAGTTAATG ATTAACCCGCCATGCTACTTATCTACGTAGCCATGCTCTAGGACATTGATTATTGACTAG TGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACC CCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCC ${\tt ATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGT}$

ATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATT ATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCA $\tt AGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTTCCTTTTATG$ GCGCGCTGCCTTCGCCCCGTGCCCCGCTCCGCCGCCCCGCCCCGCCCCGGCTC ${\tt TCCTGATCCTTCCGCCCGGACGCTCAGGACAGCGGCCCGCTGCTCATAAGACTCGGCCTT}$ AGAACCCCAGTATCAGCAGAAGGACATTTTAGGACGGGACTTGGGTGACTCTAGGGCACT GGTTTTCTTTCCAGAGAGCGGAACAGGCGAGGAAAAGTAGTCCCTTCTCGGCGATTCTGC GGAGGGATCTCCGTGGGGCGGTGAACGCCGATGATGCCTCTACTAACCATGTTCATGTTT TCTTTTTTTTCTACAGGTCCTGGGTGACGAACAGGGTACCGCCACCATGGCCACCGGCT $\tt CTCGCACAAGCCTGCTGCTGGCTTTCGGACTGCTGTGCCTTGGCTCCAGGAGGGCT$ CCGCCGCTAGCATCGATACCGTCGCTATGTGCTGGAGGCTTGCTGAAGGCTGTATGCTGA ${\tt ATCAGGACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCTCTAGCCTGGAGG}$ $\tt CTTGCTGAAGGCTGTATGCTGTTCAATCGCGTATTGGTAATCGCGTTTTGGCCTCTGACT$ GACGCGATTACCAACGCGATTGAACAGGACACAAGGCCTGTTACTAGCACTCACATGGAA CAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTATGCTGTGATCATGCTGAAAATG $\tt GTGCACGTTTTGGCCTCTGACTGACGTGCACCATTCAGCATGATCACAGGACACAAGGCC$ TGTTACTAGCACTCACATGGAACAAATGGCCTCTCTAGAAT 3'

AAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGAT ${\tt TCCGTTGCAATGGCTGGCGGTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTG}$ AGTTCTTCTACTCAGGCAAGTGATGTTATTACTAATCAAAGAAGTATTGCGACAACGGTT AATTTGCGTGATGGACAGACTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCT ${\tt CAGGATTCTGGCGTACCGTTCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCC}$ CGCTCTGATTCTAACGAGGAAAGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGC GCCTGTAGCGCGCATTAAGCGCGGCGGTGTGGTGGTTACGCGCAGCGTGACCGCTAC ACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTTCTTCTCGCCACGTT CGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGC TTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATC $\mathsf{GCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACT$ CTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGG GATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGC GAATTTTAACAAATATTAACGTTTACAATTTAAATATTTGCTTATACAATCTTCCTGTT TTTGGGGCTTTTCTGATTATCAACCGGGGTACATATGATTGACATGCTAGTTTTACGATT ${\tt ACCGTTCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGT}$ AGAGACCTCTCAAAAATAGCTACCCTCTCCGGCATGAATTTATCAGCTAGAACGGTTGAA ${\tt TATCATATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCGTTTGAATCTTTACCT}$ ${\tt ACACATTACTCAGGCATTGCATTTAAAATATATGAGGGTTCTAAAAATTTTTATCCTTGC}$ $\tt GTTGAAATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACC$ GATTTAGCTTTATGCTCTGAGGCTTTATTGCTTAATTTTTGCTAATTCTTTGCCTTGCCTG TATGATTTATTGGATGTTGGAATTCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGG TATTTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAG $\tt CCAGCCCGACACCCGCCAACACCCGCTGACGCGCCTGACGGGCTTGTCTGCTCCCGGC$ $\tt ATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACC$ GTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAA AACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATA ACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCG TGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTTGCTCACCCAGAAAC GCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACT GGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGAT GAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGA GCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCAC AGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCAT GAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAAC

CGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCT

continued GAATGAAGCCATACCAAACGACGAGGGTGACACCACGATGCCTGTAGCAATGGCAACAAC GTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGA $\tt GTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACT$ TATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTA TAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGA GTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCC TTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGT TTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGC GCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTC TGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGG CGATAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCG GTCGGGCTGAACGGGGGTTCGTGCACACACCCCAGCTTGGAGCGAACGACCTACACCGA ACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGC GGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGGGCGCACGAGGGAGCTTCCAGG $\tt GGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCG$ $\tt ATTTTTGTGATGCTCGTCAGGGGGGGGGGGGGCCTATGGAAAAACGCCAGCAACGCGGCCTT$ $\tt TTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCC$ $\tt TGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCG$ ${\tt AACGACCGAGCGAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACC}$ GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGC GAGCGAGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTTGTAGTTAATG ${\tt ATTAACCCGCCATGCTACTTATCTACGTAGCCATGCTCTAGGACATTGATTATTGACTAG}$ $\tt CCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCC$ ${\tt ATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGT}$ ATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATT ATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCA TCGCTATTACCATGGTCGAGGTGAGCCCCACGTTCTGCTTCACTCTCCCCATCTCCCCCC AGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTTCCTTTTATG TGACTGACCGCGTTACTAAAACAGGTAAGTCCGGCCTCCGCGCCGGGTTTTTGGCGCCTCC

TCCTGATCCTTCCGCCCGGACGCTCAGGACAGCGCCCGCTGCTCATAAGACTCGGCCTT
AGAACCCCAGTATCAGCAGAAGGACATTTTAGGACGGGACTTGGGTGACTCTAGGGCACT

 $\tt GGTTTTCTTTCCAGAGAGCGGAACAGGCGAGGAAAAGTAGTCCCTTCTCGGCGATTCTGC$ $\tt GGAGGGATCTCCGTGGGGCGGTGAACGCCGATGATGCCTCTACTAACCATGTTCATGTTT$ $\tt CTCGCACAAGCCTGCTGGCTTTCGGACTGCTGTGCCTTGGCTCCAGGAGGGCT$ CTCAGGACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCTCTAGCCTGGAGG $\tt CTTGCTGAAGGCTGTATGCTGTACAGAATCAGATAATCAGCGCCGTTTTGGCCTCTGACT$ GACGGCGCTGATTCTGATTCTGTACAGGACACAAGGCCTGTTACTAGCACTCACATGGAA CAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTATGCTGTCATGTTTAAAAATTCG CTGCGCGTTTTTGGCCTCTGACTGACGCGCGCAGCGAATTTAAACATGACAGGACACAAGGCC TGTTACTAGCACTCACATGGAACAAATGGCCTCTCTAGAAT 3' SEQ ID NO. 19 = SEQ ID NO. 1 + SEQ ID NO. 7 ${\tt 5'} \ \ {\tt AATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTT}$ GCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCC CGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAG $\tt TTGTGGCCGTTGTCAGGCAACGTGGCGTGTGTGCACTGTGTTTGCTGACGCAACCCCC$ ${\tt ACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTC}$ $\tt CCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGG$ $\tt CTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGGAAATCATCGTCCTTTCCTTGGCTG$ $\tt CTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCC$ CTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCCTAAGCTT ATCGATACCGTCGAGATCTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAA ${\tt TAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTC}$ ${\tt CAAACTCATCAATGTATCTTATCATGTCTGGATCTCGACCTCGACTAGAGCATGGCTACG}$ ${\tt TAGATAAGTAGCATGGCGGGTTAATCATTAACTACAAGGAACCCCTAGTGATGGAGTTGG}$ AAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGAT TCCGTTGCAATGGCTGGCGGTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTG AGTTCTTCTACTCAGGCAAGTGATGTTATTACTAATCAAAGAAGTATTGCGACAACGGTT AATTTGCGTGATGGACAGACTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCT CAGGATTCTGGCGTACCGTTCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCC CGCTCTGATTCTAACGAGGAAAGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGC GCCCTGTAGCGGCGCATTAAGCGCGGGGGGTGTGGTGGTTACGCGCAGCGTGACCGCTAC ACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTTCTTCTCGCCACGTT

 $\tt CGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCCTCTTAGGGTTCCGATTTAGTGCCTTAGGGTTCCGATTTAGTGCCTCTTAGGGTTCCGATTTAGTGCCTCTTAGGGTTCCGATTTAGTGCCTCTTAGGGTTCCGATTTAGTGCCTCTTAGGGTTCCGATTTAGTGCCTCTTAGGGTTCCGATTTAGTGCCTCTTAGGGTTCCGATTTAGGGTTCCGATTTAGGGTTCCGATTTAGGGTTCCGATTTAGGGTTCCGATTTAGGGTTCCGATTTAGGGTTCCGATTTAGGGTTCCGATTTAGGGTTCCGATTTAGGGTTCCGATTTAGGGTTCCGATTTAGGGTTCCGATTTAGGGTTCCGATTTAGGGTTCCGATTTAGGGTTCCGATTAGGGTTCCGATTAGGGTTCCGATTAGGGTTCCGATTAGGGTTCCGATTTAGGGTTCGATTAGGGTTCGATTAGGGTTCGATTAGGGTTCGATTAGGGTTCGATTAGGGTTCGATTAGGGTTCGATTAGGGTTCGATTAGGGTTCGATTAGGGTTCGATTAGGGTTCGATTAGGGTTCCGATTAGGGTTGAGATTAGGGTTCGATTAGGGTTCGATTAGGGTTCGATTAGGGTTGATAGGGTTCGATAGGATTAGGGTTGATAGGGTTCGATAGGATGATAGGGTTCGATAGGATGATAGGGTTCGATAGGATGATAGGGTTCGATAGGATGAGGTTCGATAGGGTTGATAGGGTTCGATAGGATGATGAGGATGATAGGATGATGATGATAGGGTTGATAGGGTTTAGGGTTGATAGGGTTGATAGGGTTGAGGGTTCAGATGAT$

 $\tt TTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATC$ $\tt GCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACT$ $\tt CTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGG$ ${\tt GATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGC}$ ${\tt GAATTTTAACAAAATATTAACGTTTACAATTTAAATATTTGCTTATACAATCTTCCTGTT}$ TTTGGGGCTTTTCTGATTATCAACCGGGGTACATATGATTGACATGCTAGTTTTACGATT ACCGTTCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGT AGAGACCTCTCAAAAATAGCTACCCTCTCCGGCATGAATTTATCAGCTAGAACGGTTGAA TATCATATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCGTTTGAATCTTTACCT ACACATTACTCAGGCATTGCATTTAAAATATATGAGGGTTCTAAAAATTTTTATCCTTGC GTTGAAATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACC GATTTAGCTTTATGCTCTGAGGCTTTATTGCTTAATTTTGCTAATTCTTTGCCTTGCCTG TATGATTTATTGGATGTTGGAATTCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGG TATTTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAG CCAGCCCGACACCCGCCAACACCCGCTGACGCGCCTGACGGGCTTGTCTGCTCCCGGC ATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACC GTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAA TGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGG AACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATA ACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCG ${\tt TGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAAC}$ $\tt GCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACT$ GGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGAT GAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGA $\tt GCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCAC$ AGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCAT ${\tt GAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAAC}$ $\tt CGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCT$ GAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAAC GTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGA GTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACT GGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAAC TATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTA TAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGA GTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCC TTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAACCACCGCTACCAGCGGTGGT

GCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTC $\tt TGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCCAGTGG$ $\tt CGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCG$ $\tt GTCGGGCTGAACGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGA$ ${\tt ACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGC}$ $\tt GGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCG$ ATTTTTGTGATGCTCGTCAGGGGGGGGGGGGCCTATGGAAAAACGCCAGCAACGCGGCCTT $\tt TTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCC$ TGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCG AACGACCGAGCGAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACC GAGGCCGCCCGGCCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGC GAGCGAGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTTGTAGTTAATG ATTAACCCGCCATGCTACTTATCTACGTAGCCATGCTCTAGGACATTGATTATTGACTAG TGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACC CCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCC ${\tt ATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGT}$ ATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATT ATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCA CCTCCCCACCCCAATTTTGTATTTATTTTTTTTTAATTATTTTTTGTGCAGCGATGGGGG $\tt GAGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTTCCTTTTAT$ $\tt GTCCTGATCCTTCCGCCCGGACGCTCAGGACAGCGGCCCGCTGCTCATAAGACTCGGCCT$ TGGTTTTCTTTCCAGAGAGCGGAACAGGCGAGGAAAAGTAGTCCCTTCTCGGCGATTCTG CGGAGGGATCTCCGTGGGGCGGTGAACGCCGATGATGCCTCTACTAACCATGTTCATGTT TTCTTTTTTTTCTACAGGTCCTGGGTGACGACAGGGTACCGCCACCATGGCCACCGGC TCCGCCGCTAGCATCGATACCGTCGCTATGTGCTGGAGGCTTGCTGAAGGCTGTATGCTG GCTTGCTGAAGGCTGTATGCTGAACACTTTGCTATATCATCCTGCGTTTTTGGCCTCTGAC $\tt TGACGCAGGATGATAGCAAAGTGTTCAGGACACAAGGCCTGTTACTAGCACTCACATGGA$

ACAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTATGCTGTTCTGTTAAGCT

AATGCTCGTTTTGGCCTCTGACTGACGAGCATTAGCAACGAACAGAACAGGACACAAGGC ${\tt CTGTTACTAGCACTCACATGGAACAAATGGCCTCTCTAGAAT 3!}\\$ SEQ ID NO. 20 = SEQ ID NO. 1 + SEQ ID NO. 8 5' AATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTT ${\tt GCTCCTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCC}$ $\tt CGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAG$ ACTGGTTGGGGCATTGCCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTC $\tt CCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGG$ $\tt CTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTG$ $\tt CTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGGACGTCCTTCTGCTACGTCCCTTCGGCC$ CTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCCGCGT CTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCCTAAGCTT ATCGATACCGTCGAGATCTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAA TAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTTGTTTTTTGTC CAAACTCATCAATGTATCTTATCATGTCTGGATCTCGACCTCGACTAGAGCATGGCTACG ${\tt TAGATAAGTAGCATGGCGGGTTAATCATTAACTACAAGGAACCCCTAGTGATGGAGTTGG}$ $\tt CCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGAC$ ${\tt AAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGAT}$ ${\tt TCCGTTGCAATGGCTGGCGGTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTG}$ ${\tt AGTTCTTCTACTCAGGCAAGTGATGTTATTACTAATCAAAGAAGTATTGCGACAACGGTT}$ ${\tt AATTTGCGTGATGGACAGACTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCT}$ ${\tt CAGGATTCTGGCGTACCGTTCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCC}$ $\tt CGCTCTGATTCTAACGAGGAAAGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGC$ $\tt CGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGC$ $\tt TTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATC$ GCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACT CTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGG GATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGC GAATTTTAACAAAATATTAACGTTTACAATTTAAATATTTTGCTTATACAATCTTCCTGTTTTTGGGGCTTTTCTGATTATCAACCGGGGTACATATGACATGCTAGTTTTACGATT ACCGTTCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGT AGAGACCTCTCAAAAATAGCTACCCTCTCCGGCATGAATTTATCAGCTAGAACGGTTGAA TATCATATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCGTTTGAATCTTTACCT ACACATTACTCAGGCATTGCATTTAAAATATATGAGGGTTCTAAAAATTTTTATCCTTGC

continued GTTGAAATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACC GATTTAGCTTTATGCTCTGAGGCTTTATTGCTTAATTTTTGCTAATTCTTTGCCTTGCCTG TATGATTTATTGGATGTTGGAATTCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGG TATTTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAG ATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACC GTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAA TGTCATGATAATAGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGG AACCCCTATTTGTTTATTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATA ACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCG TGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAAC $\tt GCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACT$ GGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTTCGCCCCGAAGAACGTTTTCCAATGAT GAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGA GCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCAC AGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCAT GAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAAC $\tt CGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCT$ ${\tt GAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAAC}$ $\tt GTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGA$ $\tt GTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACT$ $\tt GGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAAC$ TATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTA TAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGA $\tt GTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCC$ TTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGT $\tt TTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGC$ $\tt GCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTC$ TGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGG CGATAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCG GTCGGGCTGAACGGGGGGTTCGTGCACACACCCCAGCTTGGAGCGAACGACCTACACCGA ACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGC GGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGGGCGCACGAGGGAGCTTCCAGG GGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCG ATTTTTGTGATGCTCGTCAGGGGGGGGGGGCCTATGGAAAAACGCCAGCAACGCGGCCTT TGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCG

AACGACCGAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACC GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGC ${\tt GAGCGAGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTTGTAGTTAATG}$ ${\tt ATTAACCCGCCATGCTACTTATCTACGTAGCCATGCTCTAGGACATTGATTATTGACTAG}$ $\tt CCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCC$ ATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGT ATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATT ATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCA GAGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTTCCTTTTAT GGCGAGGCGGCGGCGGCGGCCCTATAAAAAGCGAAGCGCGCGGCGGCGGGAGTCGC CTGACTGACCGCGTTACTAAAACAGGTAAGTCCGGCCTCCGCGCCCGGGTTTTGGCGCCTC $\tt CCGCGGGCCCCCCTCCTCACGGCGAGCGCTGCCACGTCAGACGAAGGGCGCAGCGAGC$ $\tt GTCCTGATCCTTCCGCCCGGACGCTCAGGACAGCGGCCCGCTGCTCATAAGACTCGGCCT$ $\tt TGGTTTTCCAGAGAGCGGAACAGGCGAGGAAAAGTAGTCCCTTCTCGGCGATTCTG$ $\tt CGGAGGGATCTCCGTGGGGCGGTGAACGCCGATGATGCCTCTACTAACCATGTTCATGTT$ $\tt TTCTTTTTTTTTCTACAGGTCCTGGGTGACGAACAGGGTACCGCCACCATGGCCACCGGC$ ${\tt TCTCGCACAAGCCTGCTGCTTGCTTTCGGACTGCTTGCCTTGGCTCCAGGAGGGC}$ ${\tt TCCGCCGCTAGCATCGATACCGTCGCTATGTGCTGAAGGCTTGCTGAAGGCTGTATGCTG}$ $\tt CTCCAGGACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCTCTAGCCTGGAG$ $\tt GCTTGCTGAAGGCTGTATGCTGAAACATAATGGATTCAGCAGCGCGTTTTGGCCTCTGAC$ TGACGCGCTGCTGACCATTATGTTTCAGGACACAAGGCCTGTTACTAGCACTCACATGGA ACAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTATGCTGTTATCTTTGCGAAGCT GCCATCCGTTTTGGCCTCTGACTGACGGATGGCAGCCGCAAAGATAACAGGACACAAGGC CTGTTACTAGCACTCACATGGAACAAATGGCCTCTCTAGAAT 3 '

SEQ ID NO. 21 = SEQ ID NO. 1 + SEQ ID NO. 9
5' AATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTT
GCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCC
CGTATGGCTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGA (GAG
TTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTTTTCCTGACGCAACCCCC
ACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGGACTTTCCCCCTCC
CTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGGTGGACAGGGGCTCGGC
TGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGCCTTTCCTTGGCTGCT

 ${\tt AAACTCATCAATGTATCTTATCATGTCTGGATCTCGACCTCGACTAGAGCATGGCTACGT}$ AGATAAGTAGCATGGCGGGTTAATCATT, ACTACAAGGAACCCCTAGTGATGGAGTTGGC CACTCCCTCTCTGCGCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACG AGAGGCCCGCACCGATC (CCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGATT CCGTTGCAATGGCT (GCGGTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTGA GTTCTTCTACTCAGGCAAGTGATGTTATTACTAATCAAAGAAGTATTGCGACAACGGTTA ATTTGCGT (ATGGACAGACTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCTC AGGATTCTGGCGTACCGTTCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCCC GCTCTGATTCTAACGAGGAAAGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGCG CCCTGTAGCGGCGCATTAAGCGCGGGGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACA $\tt GCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCT$ $\tt TTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCG$ $\tt CCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTAATAGTGGACTCT$ $\tt TGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTTTTTGATTTATAAGGGAT$ TTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTAACAAAAATTTAACGCGAAT TTTAACAAAATATTAACGTTTACAATTTAAATATTTGCTTATACAATCTTCCTGTTTTTG GGGCTTTTCTGATTATCAACCGGGGTACATATGATTGACATGCTAGTTTTACGATTACCG $\tt TTCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGTAGAG$ ACCTCTCAAAAATAGCTACCCTCTCCGG (ATGAATTTATCAGCTAGAACGGTTGAATATC ATATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCGTTTGAATCTTTACCTACAC ATTACTCAGGCATTGCATTTAAAATATATGAGGGTTCTAAAAATTTTTATCCTTGCGTTG ${\tt AAATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACCGATT}$ TAGCTTTATGCTCTGAGGCTTTATTGCTTAATTTTGCTAATTCTTTGCCTTGCCTGTATG ATTTATTGGATGTTGGAATTCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATT TCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAG GCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCA TCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTC $\tt ATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACC$ CCTATTTGTTTATTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCC TGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTC

continued GCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTG $\tt CTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGC$ ACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAA $\tt CTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAA$ AAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGT GATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCT TTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAAT GAAGCCATACCAAACGACGAGGGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTG CGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGG ATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGG CCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATG GATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTG TCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAA AGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTT TCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTT $\tt TTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGT$ $\tt TTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAG$ $\tt ATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTA$ $\tt GCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCCAGTGGCGAT$ ${\tt AAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCG}$ GGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTG AGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGAC AGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGGGGGCGCACGAGGGAGCTTCCAGGGGGA ${\tt AACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTT}$ $\tt TTGTGATGCTCGTCAGGGGGGGGGGGGGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTA$ $\tt CGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGAT$ ${\tt TCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACG}$ ACCGAGCGCAGCGAGTCAGTGAGCGAGGAGCGGCAGAGAGCGCCCAATACGCAAACCGCCT GAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTTGTAGTTAATGATTA ACCCGCCATGCTACTTATCTACGTAGCCATGCTCTAGGACATTGATTATTGACTAGTGGA GTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCG CCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTG ACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCA TATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGC $\tt CCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGC$

CCCACCCCAATTTTGTATTTATTTTTTTAATTATTTTTTGTGCAGCGATGGGGGCGGG $\tt CGGAGAGGTGCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTTCCTTTTATGGCG$ $\tt CGCTGCCTTCGCCCGGTGCCCCGCTCCGCCGCCCGGCCCGGCCCCGGCTCTGA$ TGATCCTTCCGCCCGGACGCTCAGGACAGCGGCCCGCTGCTCATAAGACTCGGCCTTAGA ACCCCAGTATCAGCAGAAGGACATTTTAGGACGGGACTTGGGTGACTCTAGGGCACTGGT TTTCTTTCCAGAGAGCGGAACAGGCGAGGAAAAGTAGTCCCTTCTCGGCGATTCTGCGGA $\tt GGGATCTCCGTGGGGCGGTGAACGCCGATGATGCCTCTACTAACCATGTTCATGTTTTCT$ TTTTTTTTTCTACAGGTCCTGGGTGACGAACAGGGTACCGCCACCATGGCCACCGGCTCTC GCACAGCCTGCTGCTGCTTTCGGACTGCTGTGCCTTGGCTCCAGGAGGGCTCCG CCGCTAGCATCGATACCGTCGCTATGTGCTGGAGGCTTGCTGAAGGCTGTATGCTGGCTC $\tt CTCCACTTGGTGGTTTTGGCCTCTGACTGACGCGGCAACATTCTGGTGATTACAG$ GACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCTCTAGCCTGGAGGCTTGC $\tt CGCACCAAAGCGATTATGACAGGACACAAGGCCTGTTACTAGCACTCACATGGAACAAAT$ $\tt GGCCTCTAGCCTGAAGGCTTGAAGGCTGTATGCTGTTCTGATCCTGAAGTTCGGGTT$ $\tt CGTTTTGGCCTCTGACTGACGAACCCGAACCAGGATCAGAACAGGACACAAGGCCTGTTA$ CTAGCACTCACATGGAACAAATGGCCTCTCTAGAAT 3'

SEQ ID NO. 22 = SEQ ID NO. 1 + SEQ ID NO. 10 5' AATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTT $\tt GCTCCTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCC$ $\tt CGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAG$ ACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTC $\tt CCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGG$ $\tt CTGTTGGGCACTGACAATTCCGTGGTGTTTTCTGGGGGAAATCATCGTCCTTTCCTTGGCTG$ $\tt CTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCCTAAGCTT$ ATCGATACCGTCGAGATCTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAA TAGCATCACAAATTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTTGTC CAAACTCATCAATGTATCTTATCATGTCTGGATCTCGACCTCGACTAGAGCATGGCTACG TAGATAAGTAGCATGGCGGGTTAATCATTAACTACAAGGAACCCCTAGTGATGGAGTTGG

 ${\tt TCCGTTGCAATGGCTGGCGGTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTG}$ ${\tt AGTTCTTCTACTCAGGCAAGTGATGTTATTACTAATCAAAGAAGTATTGCGACAACGGTT}$ ${\tt AATTTGCGTGATGGACAGACTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCT}$ ${\tt CAGGATTCTGGCGTACCGTTCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCC}$ $\tt CGCTCTGATTCTAACGAGGAAAGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGC$ $\tt GCCCTGTAGCGGCGCATTAAGCGCGGGGGGGTGTGGTGGTTACGCGCAGCGTGACCGCTAC$ $\tt CGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGC$ $\tt TTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATC$ CTTGTTCCAAACTGGAACACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGG GATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGC GAATTTTAACAAATATTAACGTTTACAATTTAAATATTTGCTTATACAATCTTCCTGTT TTTGGGGCTTTTCTGATTATCAACCGGGGTACATATGATTGACATGCTAGTTTTACGATT ACCGTTCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGT AGAGACCTCTCAAAAATAGCTACCCTCTCCGGCATGAATTTATCAGCTAGAACGGTTGAA TATCATATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCGTTTGAATCTTTACCT ACACATTACTCAGGCATTGCATTTAAAATATATGAGGGTTCTAAAAATTTTTATCCTTGC $\tt GTTGAAATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACC$ GATTTAGCTTTATGCTCTGAGGCTTTATTGCTTAATTTTTGCTAATTCTTTGCCTTGCCTG TATGATTTATTGGATGTTGGAATTCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGG TATTTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAG ATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACC $\tt GTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTATAGGTTAA$ AACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATA ACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCG TGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTTGCTCACCCAGAAAC GCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACT GGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGAT GAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGA GCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCAC AGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCAT GAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAAC CGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCT GAATGAAGCCATACCAAACGACGAGGGTGACACCACGATGCCTGTAGCAATGGCAACAAC GTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGA

GTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACT $\tt GGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAAC$ ${\tt TATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTA}$ ${\tt TAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGA}$ $\tt GTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCC$ TTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGT $\tt TTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGC$ GCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTC TGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGG CGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCG GTCGGGCTGAACGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGA ACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGC GGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCG ATTTTTGTGATGCTCGTCAGGGGGGGGGGGCCTATGGAAAAACGCCAGCAACGCGGCCTT $\tt TTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCC$ $\tt TGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCG$ ${\tt AACGACCGAGCGAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACC}$ ${\tt GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGC}$ GAGCGAGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTTGTAGTTAATG ATTAACCCGCCATGCTACTTATCTACGTAGCCATGCTCTAGGACATTGATTATTGACTAG TGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACC $\tt CCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCC$ ${\tt ATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGT}$ ATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATT ATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCA CCTCCCCACCCCAATTTTGTATTTATTTTTTTTAATTATTTTTGTGCAGCGATGGGGG AGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTTCCTTTTATG TGACTGACCGCGTTACTAAAACAGGTAAGTCCGGCCTCCGCGCCGGGTTTTGGCGCCTCC

 $\tt GGAGGGATCTCCGTGGGGCGGTGAACGCCGATGATGCCTCTACTAACCATGTTCATGTTT$

 ${\tt TCTTTTTTTTTCTACAGGTCCTGGGTGACGAACAGGGTACCGCCACCATGGCCACCGGCT}$ $\tt CTCGCACAAGCCTGCTGCTTTCGGACTGCTGTGCCTTGCCTTGGCTCCAGGAGGGCT$ ${\tt TTCAGGACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCTCTAGCCTGGAGG}$ $\tt CTTGCTGAAGGCTGTATGCTGATATCCTGAATATGGTATGCAGCGTTTTGGCCTCTGACT$ GACGCTGCATACCATTCAGGATATCAGGACACAAGGCCTGTTACTAGCACTCACATGGAA CAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTATGCTGTTTAAAGCTCAAACGCG TTCGCCGTTTTGGCCTCTGACTGACGGCGAACGCGTGAGCTTTAAACAGGACACAAGGCC TGTTACTAGCACTCACATGGAACAAATGGCCTCTCTAGAAT 3' SEQ ID NO. 23 = SEQ ID NO :. 1 + SEQ ID NO. 11 $\verb§5' AATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTT$ GCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCC CGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAG TTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGTGCACTGTGTTTTGCTGACGCAACCCCC ACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTC CCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGG $\tt CTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGGAAATCATCGTCCTTTCCTTGGCTG$ $\tt CTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCC$ $\tt CTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTTGCGGCTTTCCGCGT$ $\tt CTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCCTAAGCTT$ ATCGATACCGTCGAGATCTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAA TAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTC ${\tt CAAACTCATCAATGTATCTTATCATGTCTGGATCTCGACCTCGACTAGAGCATGGCTACG}$ ${\tt TAGATAAGTAGCATGGCGGGTTAATCATTAACTACAAGGAACCCCTAGTGATGGAGTTGG}$ ${\tt AAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGAT}$ TCCGTTGCAATGGCTGGCGGTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTG AGTTCTTCTACTCAGGCAAGTGATGTTATTACTAATCAAAGAAGTATTGCGACAACGGTT AATTTGCGTGATGGACAGACTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCT CAGGATTCTGGCGTACCGTTCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCC CGCTCTGATTCTAACGAGGAAAGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGC GCCCTGTAGCGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTAC ACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTTCTTCTCGCCACGTT CGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATC

 $\tt GCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACT$

continued $\tt CTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGG$ GATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGC GAATTTTAACAAAATATTAACGTTTACAATTTAAATATTTGCTTATACAATCTTCCTGTT $\tt TTTGGGGCTTTTCTGATTATCAACCGGGGTACATATGATTGACATGCTAGTTTTACGATT$ ACCGTTCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGT AGAGACCTCTCAAAAATAGCTACCCTCTCCGGCATGAATTTATCAGCTAGAACGGTTGAA TATCATATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCGTTTGAATCTTTACCT ACACATTACTCAGGCATTGCATTTAAAATATATGAGGGTTCTAAAAATTTTTATCCTTGC GTTGAAATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACC GATTTAGCTTTATGCTCTGAGGCTTTATTGCTTAATTTTGCTAATTCTTTGCCTTGCCTG TATGATTTATTGGATGTTGGAATTCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGG TATTTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAG CCAGCCCCGA CA CCCGCCA A CACCCGCTGA CGCGCCCTGA CGGGCTTGTCTGCTCCCGGC ATCCGCTTACAGACAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACC GTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAA TGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGG AACCCCTATTTGTTTATTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATA ACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCG ${\tt TGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAAC}$ $\tt GCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACT$ $\tt GGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGAT$ GAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGA $\tt GCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCAC$ AGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCAT GAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAAC GAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAAC GTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGA $\tt GTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACT$ GGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAAC TATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTA TAAAAGGATCTAGGTGAAGATCCTTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGA GTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCC TTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAACCACCGCTACCAGCGGTGGT TGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCCGCTGCCAGTGG

continued CGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCG GTCGGGCTGAACGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGA ACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGC $\tt GGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCG$ ATTTTTGTGATGCTCGTCAGGGGGGGGGGGGCCTATGGAAAAACGCCAGCAACGCGGCCTT TGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCG AACGACCGAGCGAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACC GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGC GAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTTGTAGTTAATG ATTAACCCGCCATGCTACTTATCTACGTAGCCATGCTCTAGGACATTGATTATTGACTAG TGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACC CCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGT ATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATT ATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCA $\tt AGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTTCCTTTTATG$ GCGCGCTGCCTTCGCCCCGTGCCCCGCTCCGCCGCCCCGCCCCGCCCCGGCTC $\tt TGACTGACCGCGTTACTAAAACAGGTAAGTCCGGCCTCCGCGCCGGGTTTTGGCGCCTCC$ ${\tt TCCTGATCCTTCCGCCCGGACGCTCAGGACAGCGGCCCGCTGCTCATAAGACTCGGCCTT}$ $A {\tt GAACCCCAGTATCAGCAGAAGGACATTTTAGGACGGGACTTGGGTGACTCTAGGGCACT}$ GGTTTTCTTTCCAGAGAGCGGAACAGGCGAGGAAAAGTAGTCCCTTCTCGGCGATTCTGC GGAGGGATCTCCGTGGGGCGGTGAACGCCGATGATGCCTCTACTAACCATGTTCATGTTT ${\tt TCTTTTTTTTCTACAGGTCCTGGGTGACGAACAGGGTACCGCCACCATGGCCACCGGCT}$ CCGCCGCTAGCATCGATACCGTCGCTATGTGCTGGAGGCTTGCTGAAGGCTGTATGCTGTTACAGGACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCTCTAGCCTGGAGG $\tt CTTGCTGAAGGCTGTATGCTGTAATACGCCAGATCACCATCAGCGTTTTTGGCCTCTGACT$ GACGCTGATGGTGCTGGCGTATTACAGGACACAGGCCTGTTACTAGCACTCACATGGAA CAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTATGCTGATACAGAAACGAAGGTT ${\tt CAGGCCGTTTTGGCCTCTGACTGACGGCCTGAACCCGTTTCTGTATCAGGACACAAGGCC}$

SEQ ID NO. 24 = SEQ ID NO. 1 + SEQ ID NO. 12 5' AATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTT $\tt GCTCCTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCC$ $\tt CGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAG$ $\tt TTGTGGCCCGTTGTCAGGCAACGTGGCGTGTGTGCACTGTGTTTGCTGACGCAACCCCC$ ${\tt ACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTC}$ $\tt CCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGG$ CTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTG $\tt CTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCC$ $\tt CTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTT$ $\tt CTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCCTAAGCTT$ ATCGATACCGTCGAGATCTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAA TAGCATCACAAATTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTTGTC CAAACTCATCAATGTATCTTATCATGTCTGGATCTCGACCTCGACTAGAGCATGGCTACG TAGATAAGTAGCATGGCGGGTTAATCATTAACTACAAGGAACCCCTAGTGATGGAGTTGG AAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGAT ${\tt TCCGTTGCAATGGCTGGCGGTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTG}$ AGTTCTTCTACTCAGGCAAGTGATGTTATTACTAATCAAAGAAGTATTGCGACAACGGTT AATTTGCGTGATGGACAGACTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCT ${\tt CAGGATTCTGGCGTACCGTTCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCC}$ CGCTCTGATTCTAACGAGGAAAGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGC GCCTGTAGCGCGCATTAAGCGCGGCGGTGTGGTGGTTACGCGCAGCGTGACCGCTAC ACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTTCTTCTCGCCACGTT CGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATC $\tt GCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACT$ $\mathtt{CTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGG$ GATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGC GAATTTTAACAAATATTAACGTTTACAATTTAAATATTTGCTTATACAATCTTCCTGTT TTTGGGGCTTTTCTGATTATCAACCGGGGTACATATGATTGACATGCTAGTTTTACGATT ACCGTTCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGT AGAGACCTCTCAAAAATAGCTACCCTCTCCGGCATGAATTTATCAGCTAGAACGGTTGAA $\mathsf{TATCATATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCGTTTTGAATCTTTACCT$ ACACATTACTCAGGCATTGCATTTAAAATATATGAGGGTTCTAAAAATTTTTTATCCTTGCGTTGAAATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACC GATTTAGCTTTATGCTCTGAGGCTTTATTGCTTAATTTTTGCTAATTCTTTGCCTTGCCTG ${\tt TATGATTTATTGGATGTTGGAATTCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGG}$

TATTTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAG $\tt CCAGCCCGACACCCGCCAACACCCGCTGACGCGCCTGACGGGCTTGTCTGCTCCCGGC$ $\tt ATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACC$ $\tt GTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAA$ $\tt TGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGG$ AACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATA ACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCG TGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTTGCTCACCCAGAAAC GCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACT GGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGAT GAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGA GCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCAC AGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCAT GAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAAC CGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCT GAATGAAGCCATACCAAACGACGAGGGTGACACCACGATGCCTGTAGCAATGGCAACAAC GTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGA $\tt GTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACT$ $\tt GGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAAC$ TATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTA TAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGA GTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCC $\tt TTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGT$ GCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTC $\tt TGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCCAGTGG$ CGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCG GTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGA ACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGC GGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGG GGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCG ATTTTTGTGATGCTCGTCAGGGGGGGGGGGGCCTATGGAAAAACGCCAGCAACGCGGCCTT TTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCC TGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCG AACGACCGAGCGCAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACC

GAGCGAGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTTGTAGTTAATG

ATTAACCCGCCATGCTACTTATCTACGTAGCCATGCTCTAGGACATTGATTATTGACTAG $\tt CCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCC$ $\tt ATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGT$ ATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATT ATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCA CCTCCCCACCCCAATTTTGTATTTATTTATTTTTTAATTATTTTTGTGCAGCGATGGGGG GAGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTTCCTTTTAT CTGACTGACCGCGTTACTAAAACAGGTAAGTCCGGCCTCCGCGCCGGGTTTTTGGCGCCTC CCGCGGGCCCCCCTCCTCACGGCGAGCGCTGCCACGTCAGACGAAGGGCGCAGCGAGC $\tt GTCCTGATCCTTCCGCCCGGACGCTCAGGACAGCGGCCCGCTGCTCATAAGACTCGGCCT$ $\tt TGGTTTTCTTTCCAGAGAGCGGAACAGGCGAGGAAAAGTAGTCCCTTCTCGGCGATTCTG$ $\tt CGGAGGGATCTCCGTGGGGCGGTGAACGCCGATGATGCCTCTACTAACCATGTTCATGTT$ $\tt TTCTTTTTTTTTCTACAGGTCCTGGGTGACGAACAGGGTACCGCCACCATGGCCACCGGC$ ${\tt TCTCGCACAAGCCTGCTGCTTGCCTTTCGGACTGCTTGTGCCTTGGCTCCAGGAGGGC}$ ${\tt TCCGCCGCTAGCATCGATACCGTCGCTATGTGCTGGAGGCTTGCTGAAGGCTGTATGCTG}$ $\tt TGACAGGACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCTCTAGCCTGGAG$ $\tt GCTTGCTGAAGGCTGTATGCTGAGAATCAGATCAGATAGCGATCCGTTTTGGCCTCTGAC$ TGACGGATCGCTATCTGCTGATTCTCAGGACACAAGGCCTGTTACTAGCACTCACATGGA ACAAATGGCCTCTAGCCTGGAGGCTTGCTGAAGGCTGTATGCTGAAACATGCCAACAGCA ${\tt GAATGCCGTTTTGGCCTCTGACTGACGGCATTCTGCTGGGCATGTTTCAGGACACAAGGC}$ CTGTTACTAGCACTCACATGGAACAAATGGCCTCTCTAGAAT 3' SEQ ID NO. 25 = SEQ ID NO. 1 + SEQ ID NO. 13 5' AATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTT GCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCC $\tt CGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAG$ TTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGTGTCACTGTGTTTTGCTGACGCAACCCCC ACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTC CCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGG CTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTG $\tt CTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCC$ $\tt CTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCCTCTTCCGCGT$

CTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCCTAAGCTT ATCGATACCGTCGAGATCTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAA ${\tt TAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTC}$ ${\tt CAAACTCATCATGTATCTTATCATGTCTGGATCTCGACCTCGACTAGAGCATGGCTACG}$ ${\tt TAGATAAGTAGCATGGCGGGTTAATCATTAACTACAAGGAACCCCTAGTGATGGAGTTGG}$ AAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGAT TCCGTTGCAATGGCTGGCGGTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTG AGTTCTTCTACTCAGGCAAGTGATGTTATTACTAATCAAAGAAGTATTGCGACAACGGTT AATTTGCGTGATGGACAGACTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCT CAGGATTCTGGCGTACCGTTCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCC CGCTCTGATTCTAACGAGGAAAGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGC GCCCTGTAGCGGCGCATTAAGCGCGGCGGCGGTGTGGTTGCGCGCAGCGCAGCGTGACCGCTAC ACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTTCTTCTCGCCACGTT $\tt CGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGC$ TTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATC GCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACT $\tt CTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGG$ ${\tt GATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGC}$ ${\tt GAATTTTAACAAAATATTAACGTTTACAATTTAAATATTTGCTTATACAATCTTCCTGTT}$ $\tt TTTGGGGCTTTTCTGATTATCAACCGGGGTACATATGATTGACATGCTAGTTTTACGATT$ ${\tt ACCGTTCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGT}$ AGAGACCTCTCAAAAATAGCTACCCTCTCCGGCATGAATTTATCAGCTAGAACGGTTGAA TATCATATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCGTTTGAATCTTTACCT ACACATTACTCAGGCATTGCATTTAAAATATATGAGGGTTCTAAAAATTTTTATCCTTGC $\tt GTTGAAATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACC$ GATTTAGCTTTATGCTCTGAGGCTTTATTGCTTAATTTTGCTAATTCTTTGCCTTGCCTG ${\tt TATGATTTATTGGATGTTGGAATTCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGG}$ TATTTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAG CCAGCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACC GTCATCACCGAAACGCCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAA TGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGG AACCCCTATTTGTTTATTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATA ACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGGATATGAGTATTCAACATTTCCG TGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTCCTGTTTTTGCTCACCCAGAAAC GCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACT GGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGAT

GAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGA GCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCAC ${\tt AGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCAT}$ GAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAAC $\tt CGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCT$ GAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAAC GTTGCGCAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGA GTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACT $\tt GGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAAC$ TATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTA TAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGA GTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCC TTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGT TTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGC GCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTC TGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGG CGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCG GTCGGGCTGAACGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGA ACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGC GGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGGCGCACGAGGGAGCTTCCAGG GGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCG $\tt ATTTTGTGATGCTCGTCAGGGGGGGGGGGGGCCTATGGAAAAACGCCAGCAACGCGGCCTT$ $\tt TGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCG$ $\verb|AACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACC||$ GAGCGAGCGCGCAGAGAGGGGAGTGGCCAACTCCATCACTAGGGGTTCCTTGTAGTTAATG ATTAACCCGCCATGCTACTTATCTACGTAGCCATGCTCTAGGACATTGATTATTGACTAG $\tt CCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCC$ $\tt ATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGT$ ATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATT ATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCA

CCTCCCCACCCCAATTTTGTATTTATTTATTTTTTAATTATTTTTGTGCAGCGATGGGGG $\tt AGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTTCCTTTTATG$ GCGCGCTGCCTTCGCCCCGTGCCCCGCTCCGCCGCCCCCGCCCCGCCCCGGCTC TCCTGATCCTTCCGCCCGGACGCTCAGGACAGCGGCCCGCTGCTCATAAGACTCGGCCTT AGAACCCCAGTATCAGCAGAAGGACATTTTAGGACGGGACTTGGGTGACTCTAGGGCACT GGTTTTCTTTCCAGAGAGCGGAACAGGCGAGGAAAAGTAGTCCCTTCTCGGCGATTCTGC GGAGGGATCTCCGTGGGGCGGTGAACGCCGATGATGCCTCTACTAACCATGTTCATGTTT $\tt CTCGCACAAGCCTGCTGGCTTTCGGACTGCTGTGCCTTGGCTCCAGGAGGGCT$ CCGCCGCTAGCATCGATACCGTCGCTATGTGCTGAGGCTTGCTGAAGGCTGTATGCTGA $\tt GTCAGGACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCTCTAGCCTGGAGG$ $\tt CTTGCTGAAGGCTGTATGCTGTTTCACAATGCATCGTTCAGCGCGTTTTGGCCTCTGACT$ ${\tt GACGCGCTGAACGGCATTGTGAAACAGGACACAAGGCCTGTTACTAGCACTCACATGGAA}$ GGGTCGTTTTGGCCTCTGACTGACGACCACCCTGGGCATTATTGTCAGGACACAAGGCCT GTTACTAGCACTCACATGGAACAAATGGCCTCTCTAGAAT 3'

[0074] As will be appreciated by those skilled in the art, because the recombinant plasmid is a circular vector, the one or more sequences of the miRNA expression cassettes may be connected at the 3' end of SEQ ID NO. 1, as shown in SEQ ID NO. 14, SEQ ID NO. 15, SEQ ID NO. 16, SEQ ID NO. 17, SEQ ID NO. 18, SEQ ID NO. 19, SEQ ID NO. 20, SEQ ID NO. 21, SEQ ID NO. 22, SEQ ID NO. 23, SEQ ID NO. 24 and SEQ ID NO. 25, or at the 5' end of SEQ ID NO. 1

[0075] As will be appreciated by those skilled in the art, a perfect match of nucleotides with each of the miRNA expression cassette sequences is not necessary in order to have the desired result of decreased bioavailability of the target biomolecule as a result of the target cell producing the miRNA sequence that will bind to and degrade the mRNA of the target biomolecule. In some embodiments of the present disclosure, about 80% to about 100% nucleotide sequence matching with each of the miRNA expression cassettes causes the desired result. In some embodiments of the present disclosure, about 85% to about 100% nucleotide sequence matching with each of the miRNA expression cassettes causes the desired result. In some embodiments of the present disclosure, about 90% to about 100% nucleotide sequence matching with each of the miRNA expression cassettes causes the desired result. In some embodiments of the present disclosure, about 95% to about 100% nucleotide sequence matching with each of the miRNA expression cassettes causes the desired result.

Example 1—Expression Cassette

[0076] Expression cassettes for expressing miRNA were synthesized. The synthesized miRNA expression cassettes were cloned into the pAVA-00200 plasmid backbone containing the CASI promoter, multiple cloning site (MCS), Woodchuck Hepatitis Virus post-transcriptional regulatory element (WPRE), and Simian virus 40 (SV40) polyadenylation (polyA) sequence, all flanked by the AAV2 inverted terminal repeats (ITR). pAVA-00200 was cut with the restriction enzymes KpnI and XbaI in the MCS and separated on a 1% agarose gel. The band of interest was excised and purified using a gel extraction kit. Each miRNA expression cassette was amplified by polymerase chain reaction (PCR) using Taq polymerase and the PCR products were gel purified and the bands on interest were also excised and purified using a gel extraction kit. These PCR products contained the miRNA expression cassettes in addition to 15 base pair 5' and 3' overhangs that aligned with the ends of the linearized pAVA-00200 backbone. Using in-fusion cloning, the amplified miRNA expression cassettes were integrated with the pAVA-00200 backbone via homologous recombination. The resulting RP contained the following: 5' ITR, CASI promoter, miRNA expression cassette, WPRE, SV40 polyA and ITR 3'.

SEQUENCE LISTING

```
Sequence total quantity: 25
SEQ ID NO: 1
                       moltype = DNA length = 5799
                       Location/Qualifiers
source
                       1..5799
                       mol_type = other DNA
                       organism = synthetic construct
SEOUENCE: 1
aatcaacctc tqqattacaa aatttqtqaa aqattqactq qtattcttaa ctatqttqct
cettttaege tatgtggata egetgettta atgeetttgt ateatgetat tgetteeegt
atggetttea tttteteete ettqtataaa teetqqttqc tqtetettta tqaqqaqttq
tggcccgttg tcaggcaacg tggcgtggtg tgcactgtgt ttgctgacgc aacccccact
ggttggggca ttgccaccac ctgtcagctc ctttccggga ctttcgcttt ccccctccct
                                                                   300
attgccacgg cggaactcat cgccgcctgc cttgcccgct gctggacagg ggctcggctg
                                                                   360
ttgggcactg acaattccgt ggtgttgtcg gggaaatcat cgtcctttcc ttggctgctc
                                                                   420
gcctgtgttg ccacctggat tctgcgcggg acgtccttct gctacgtccc ttcggccctc
                                                                   480
aatccagogg acctteette cogoggeetg etgeoggete tgeoggeetet teegegtett
                                                                   540
cgccttcgcc ctcagacgag tcggatctcc ctttgggccg cctccccgcc taagcttatc
                                                                   600
gataccgtcg agatctaact tgtttattgc agcttataat ggttacaaat aaagcaatag catcacaaat ttcacaaata aagcattttt ttcactgcat tctagttgtg gtttgtccaa
                                                                   660
                                                                   720
actcatcaat gtatcttatc atgtctggat ctcgacctcg actagagcat ggctacgtag
                                                                   780
ataagtagca tggcgggtta atcattaact acaaggaacc cctagtgatg gagttggcca
                                                                   840
ctccctctct gcgcgctcgc tcgctcactg aggccgggcg accaaaggtc gcccgacgcc
                                                                   900
egggetttge eegggeggee teagtgageg agegagegeg eagetggegt aatagegaag
                                                                   960
aggcccqcac cqatcqccct tcccaacaqt tqcqcaqcct qaatqqcqaa tqqcqattcc
                                                                   1020
gttgcaatgg ctggcggtaa tattgttctg gatattacca gcaaggccga tagtttgagt
                                                                   1080
tettetaete aggeaagtga tgttattaet aateaaagaa gtattgegae aaeggttaat
                                                                   1140
ttgcgtgatg gacagactct tttactcggt ggcctcactg attataaaaa cacttctcag
                                                                   1200
gattetggeg taccgtteet gtetaaaate cetttaateg geeteetgtt tageteeege
                                                                   1260
tetgatteta acgaggaaag cacgttatac gtgetegtea aagcaaccat agtacgegee
                                                                   1320
ctgtagegge geattaageg eggegggtgt ggtggttaeg egeagegtga eegetacaet
                                                                   1380
tgccagcgcc ctagcgcccg ctcctttcgc tttcttccct tcctttctcg ccacgttcgc
                                                                   1440
cggctttccc cgtcaagctc taaatcgggg gctcccttta gggttccgat ttagtgcttt
                                                                   1500
acggcacctc gaccccaaaa aacttgatta gggtgatggt tcacgtagtg ggccatcgcc
                                                                   1560
ctgatagacg gtttttcgcc ctttgacgtt ggagtccacg ttctttaata gtggactctt
                                                                   1620
gttccaaact ggaacaacac tcaaccctat ctcggtctat tcttttgatt tataagggat
                                                                   1680
tttgccgatt tcggcctatt ggttaaaaaa tgagctgatt taacaaaaat ttaacgcgaa
                                                                   1740
ttttaacaaa atattaacgt ttacaattta aatatttgct tatacaatct tcctgttttt
                                                                   1800
ggggcttttc tgattatcaa ccggggtaca tatgattgac atgctagttt tacgattacc
                                                                   1860
gttcatcgat tctcttgttt gctccagact ctcaggcaat gacctgatag cctttgtaga
                                                                   1920
gacctctcaa aaatagctac cctctccggc atgaatttat cagctagaac ggttgaatat
catattgatg gtgatttgac tgtctccggc ctttctcacc cgtttgaatc tttacctaca
                                                                   2040
cattactcag gcattgcatt taaaatatat gagggttcta aaaattttta tccttgcgtt
                                                                   2100
gaaataaagg cttctcccgc aaaagtatta cagggtcata atgtttttgg tacaaccgat
ttagetttat getetgagge tttattgett aattttgeta attetttgee ttgeetgtat
gatttattgg atgttggaat tcctgatgcg gtattttctc cttacgcatc tgtgcggtat
ttcacacege atatggtgca eteteagtae aatetgetet gatgeegeat agttaageea
geocegacae cegecaacae eegetgacge geeetgacgg gettgtetge teeeggeate
cgcttacaga caagctgtga ccgtctccgg gagctgcatg tgtcagaggt tttcaccgtc
atcaccgaaa cgcgcgagac gaaagggcct cgtgatacgc ctatttttat aggttaatgt
                                                                   2520
catgataata atggtttctt agacgtcagg tggcactttt cggggaaatg tgcgcggaac
ccctatttgt ttattttct aaatacattc aaatatgtat ccgctcatga gacaataacc
                                                                   2640
ctgataaatg cttcaataat attgaaaaag gaagagtatg agtattcaac atttccqtqt
                                                                   2700
cgcccttatt cccttttttg cggcattttg ccttcctgtt tttgctcacc cagaaacgct
                                                                   2760
ggtgaaagta aaagatgctg aagatcagtt gggtgcacga gtgggttaca tcgaactgga
                                                                   2820
teteaacage qqtaaqatee ttqaqaqttt teqeeceqaa qaacqtttte caatqatqaq
                                                                   2880
cacttttaaa gttctgctat gtggcgcggt attatcccgt attgacgccg ggcaagagca
                                                                   2940
actoggtogo ogcatacact attotoagaa tgacttggtt gagtactcac cagtcacaga
                                                                   3000
aaagcatctt acggatggca tgacagtaag agaattatgc agtgctgcca taaccatgag
                                                                   3060
tgataacact geggecaact tacttetgac aacgategga ggacegaagg agetaacege
                                                                   3120
ttttttgcac aacatggggg atcatgtaac tcgccttgat cgttgggaac cggagctgaa
                                                                   3180
tgaagccata ccaaacgacg agcgtgacac cacgatgcct gtagcaatgg caacaacgtt
                                                                   3240
gcgcaaacta ttaactggcg aactacttac tctagcttcc cggcaacaat taatagactg
                                                                   3300
gatggaggcg gataaagttg caggaccact tetgegeteg geeetteegg etggetggtt
                                                                   3360
tattgctgat aaatctggag ccggtgagcg tgggtctcgc ggtatcattg cagcactggg
                                                                   3420
gecagatggt aageceteee gtategtagt tatetacaeg aeggggagte aggeaactat
                                                                   3480
ggatgaacga aatagacaga tcgctgagat aggtgcctca ctgattaagc attggtaact
                                                                   3540
3600
aaggatctag gtgaagatcc tttttgataa tctcatgacc aaaatccctt aacgtgagtt
                                                                   3660
ttcgttccac tgagcgtcag accccgtaga aaagatcaaa ggatcttctt gagatccttt
                                                                   3720
ttttctgcgc gtaatctgct gcttgcaaac aaaaaaacca ccgctaccag cggtggtttg
                                                                   3780
tttgccggat caagagctac caactctttt tccgaaggta actggcttca gcagagcgca
                                                                   3840
gataccaaat actgtccttc tagtgtagcc gtagttaggc caccacttca agaactctgt
                                                                   3900
agcaccgcct acatacctcg ctctgctaat cctgttacca gtggctgctg ccagtggcga
                                                                   3960
taagtcgtgt cttaccgggt tggactcaag acgatagtta ccggataagg cgcagcggtc
                                                                   4020
gggctgaacg gggggttcgt gcacacagcc cagcttggag cgaacgacct acaccgaact
```

```
gagataccta cagcgtgagc tatgagaaag cgccacgctt cccgaaggga gaaaggcgga
caggtatccg gtaagcggca gggtcggaac aggagagcgc acgagggagc ttccaggggg
                                                                   4200
aaacgcctgg tatctttata gtcctgtcgg gtttcgccac ctctgacttg agcgtcgatt
                                                                   4260
tttgtgatgc tcgtcagggg ggcggagcct atggaaaaac gccagcaacg cggccttttt
                                                                   4320
acggttcctg gccttttgct ggccttttgc tcacatgttc tttcctgcgt tatcccctga
                                                                   4380
ttetgtggat aaccgtatta eegeetttga gtgagetgat accgetegee geageegaac
                                                                   4440
gaccgagcgc agcgagtcag tgagcgagga agcggaagag cgcccaatac gcaaaccgcc
                                                                   4500
teteceegeg egttggeega tteattaatg eageagetge gegetegete geteaetgag
                                                                   4560
geogeologic caaageologic gegtegggeg acctttggte geologic agtgagegag
                                                                   4620
cgagcgcgca gagagggagt ggccaactcc atcactaggg gttccttgta gttaatgatt
aacccgccat gctacttatc tacgtagcca tgctctagga cattgattat tgactagtgg
                                                                   4740
agttccgcgt tacataactt acggtaaatg gcccgcctgg ctgaccgccc aacgaccccc
                                                                   4800
gcccattgac gtcaataatg acgtatgttc ccatagtaac gccaataggg actttccatt
gacgtcaatg ggtggagtat ttacggtaaa ctgcccactt ggcagtacat caagtgtatc
atatgccaag tacgcccct attgacgtca atgacggtaa atggcccgcc tggcattatg
cccagtacat gacettatgg gactttecta ettggeagta catetacgta ttagteateg
ctattaccat ggtcgaggtg agcccacgt tctgcttcac tctccccatc tccccccct
ccccaccccc aattitgtat ttatttattt tttaattatt ttgtgcagcg atggggggg
ggggggggg gggcgcgcgc caggcggggc ggggcggggc gaggggcggg gcggggcgag
                                                                   5220
geggagaggt geggeggeag ceaateagag eggegegete egaaagttte ettttatgge
gaggcggcgg cggcggcggc cctataaaaa gcgaagcgcg cggcgggcgg gagtcgctgc
                                                                   5340
gegetgeett egeceegtge eeegeteege egeegeeteg egeegeeege eeeggetetg
                                                                   5400
actgaccgcg ttactaaaac aggtaagtcc ggcctccgcg ccgggttttg gcgcctcccg
                                                                   5460
cgggcgcccc cctcctcacg gcgagcgctg ccacgtcaga cgaagggcgc agcgagcgtc
                                                                   5520
ctgatccttc cgcccggacg ctcaggacag cggcccgctg ctcataagac tcggccttag
                                                                   5580
aaccccagta tcagcagaag gacattttag gacgggactt gggtgactct agggcactgg
                                                                   5640
ttttctttcc agagagcgga acaggcgagg aaaagtagtc ccttctcggc gattctgcgg
                                                                   5700
agggatetee gtggggeggt gaacgeegat gatgeeteta etaaceatgt teatgtttte
                                                                   5760
ttttttttc tacaggtcct gggtgacgaa cagggtacc
                                                                   5799
SEO ID NO: 2
                      moltype = DNA length = 540
FEATURE
                      Location/Qualifiers
source
                      1..540
                      mol_type = other DNA
                      organism = synthetic construct
SEOUENCE: 2
gccaccatgg ccaccggctc tcgcacaagc ctgctgctgg ctttcggact gctgtgcctg
cettggetee aggagggete egeegetage ategataceg tegetatgtg etggaggett
                                                                   120
gctgaaggct gtatgctgat caatcggatt gcggtaatcg cgttttggcc tctgactgac
                                                                   180
gcgattaccg atccgattga tcaggacaca aggcctgtta ctagcactca catggaacaa
                                                                   240
atggcctcta gcctggaggc ttgctgaagg ctgtatgctg atctttgcta aattggtgca
                                                                   300
cgcgtttttgg cctctgactg acgcgtgcac cattagcaaa gatcaggaca caaggcctgt
                                                                   360
tactagcact cacatggaac aaatggcctc tagcctggag gcttgctgaa ggctgtatgc
                                                                   420
tgacttcaat cacaattcca gcgccgtttt ggcctctgac tgacggcgct ggaagtgatt
                                                                   480
gaagtcagga cacaaggcct gttactagca ctcacatgga acaaatggcc tctctagaat
SEO ID NO: 3
                      moltype = DNA length = 540
FEATURE
                      Location/Qualifiers
                      1..540
source
                      mol_type = other DNA
                      organism = synthetic construct
SEQUENCE: 3
gccaccatgg ccaccggctc tcgcacaagc ctgctgctgg ctttcggact gctgtgcctg
cettggetee aggagggete egeegetage ategataceg tegetatgtg etggaggett
gctgaaggct gtatgctgta atctttcgct ggctgcagtt cgttttggcc tctgactgac
gaactgcagc gcgaaagatt acaggacaca aggcctgtta ctagcactca catggaacaa
atggcctcta gcctggaggc ttgctgaagg ctgtatgctg tgttaatgct gatgtcacgc
tgcgttttgg cctctgactg acgcagcgtg accagcatta acacaggaca caaggcctgt
tactagcact cacatggaac aaatggcctc tagcctggag gcttgctgaa ggctgtatgc
tgttcacctg gttaacacat acaccgtttt ggcctctgac tgacggtgta tgtgaaccag
gtgaacagga cacaaggeet gttactagea etcacatgga acaaatggee tetetagaat
SEO ID NO: 4
                      moltype = DNA length = 540
FEATURE
                      Location/Qualifiers
source
                      1..540
                      mol type = other DNA
                      organism = synthetic construct
gccaccatgg ccaccggctc tcgcacaagc ctgctgctgg ctttcggact gctgtgcctg
cettggetee aggagggete egeogetage ategataceg tegetatgtg etggaggett
gctgaaggct gtatgctgat ttcttcctgt gcgctttcgc cgttttggcc tctgactgac
ggcgaaagcg caggaagaaa tcaggacaca aggcctgtta ctagcactca catggaacaa
atggeeteta geetggagge ttgetgaagg etgtatgetg agaataatea gateageaeg
ctcgttttgg cctctgactg acgagcgtgc tgctgattat tctcaggaca caaggcctgt
tactagcact cacatggaac aaatggcctc tagcctggag gcttgctgaa ggctgtatgc
```

tgtaatcagg ctgaattcag atagcgtttt ggcctctgac tgacgctatc tgaacagcct

```
gattacagga cacaaggcct gttactagca ctcacatgga acaaatggcc tctctagaat
SEQ ID NO: 5
                       moltype = DNA length = 540
FEATURE
                       Location/Qualifiers
source
                       1..540
                       mol type = other DNA
                       organism = synthetic construct
SEOUENCE: 5
gccaccatgg ccaccggctc tcgcacaagc ctgctgctgg ctttcggact gctgtgcctg
cettggetee aggagggete egeogetage ategataceg tegetatgtg etggaggett
gctgaaggct gtatgctgat aatcaccgct gcaggttcag cgttttggcc tctgactgac
gctgaacctg gcggtgatta tcaggacaca aggcctgtta ctagcactca catggaacaa
atggcctcta gcctggaggc ttgctgaagg ctgtatgctg ttcaatcgcg tattggtaat
cgcgttttgg cctctgactg acgcgattac caacgcgatt gaacaggaca caaggcctgt
tactagcact cacatggaac aaatggcctc tagcctggag gcttgctgaa ggctgtatgc
tgtgatcatg ctgaaaatgg tgcacgtttt ggcctctgac tgacgtgcac cattcagcat
gatcacagga cacaaggeet gttactagea etcacatgga acaaatggee tetetagaat
SEQ ID NO: 6
                       moltype = DNA length = 540
                      Location/Qualifiers
FEATURE
                       1..540
source
                      mol type = other DNA
                       organism = synthetic construct
SEQUENCE: 6
qccaccatqq ccaccqqctc tcqcacaaqc ctqctqctqq ctttcqqact qctqtqcctq
cettggetee aggagggete egeegetage ategataceg tegetatgtg etggaggett
qctqaaqqct qtatqctqaq qtaatatcct qacqctcaqc cqttttqqcc tctqactqac
                                                                   180
ggctgagcgt ggatattacc tcaggacaca aggcctgtta ctagcactca catggaacaa
                                                                   240
atggcctcta gcctggaggc ttgctgaagg ctgtatgctg tacagaatca gataatcagc
                                                                   300
gccgttttgg cctctgactg acggcgctga ttctgattct gtacaggaca caaggcctgt
                                                                   360
tactagcact cacatggaac aaatggcctc tagcctggag gcttgctgaa ggctgtatgc
                                                                   420
tgtcatgttt aaaaattcgc tgcgcgtttt ggcctctgac tgacgcgcag cgaatttaaa
                                                                   480
catgacagga cacaaggcct gttactagca ctcacatgga acaaatggcc tctctagaat
SEO ID NO: 7
                       moltype = DNA length = 540
FEATURE
                       Location/Qualifiers
source
                       1..540
                       mol_type = other DNA
                       organism = synthetic construct
SEOUENCE: 7
gccaccatgg ccaccggctc tcgcacaagc ctgctgctgg ctttcggact gctgtgcctg
cettggetee aggaggete egeegetage ategataceg tegetatgtg etggaggett
                                                                   120
gctgaaggct gtatgctgat gaatcgggtt gtctgaatcg cgttttggcc tctgactgac
                                                                   180
gcgattcaga acccgattca tcaggacaca aggcctgtta ctagcactca catggaacaa
                                                                   240
atggcctcta gcctggaggc ttgctgaagg ctgtatgctg aacactttgc tatatcatcc
                                                                   300
tgcgttttgg cctctgactg acgcaggatg atagcaaagt gttcaggaca caaggcctgt
                                                                   360
tactagcact cacatggaac aaatggcctc tagcctggag gcttgctgaa ggctgtatgc
tgttctgttc gttaagctaa tgctcgtttt ggcctctgac tgacgagcat tagcaacgaa
cagaacagga cacaaggeet gttactagea etcacatgga acaaatggee tetetagaat
SEQ ID NO: 8
                       moltype = DNA length = 540
FEATURE
                       Location/Qualifiers
source
                       1..540
                       mol_type = other DNA
                      organism = synthetic construct
gccaccatgg ccaccggctc tcgcacaagc ctgctgctgg ctttcggact gctgtgcctg
cettggetee aggaggete egeegetage ategataceg tegetatgtg etggaggett
gctgaaggct gtatgctgga gcattagcaa tgcgaacaga agttttggcc tctgactgac
ttotqttogt tqctaatqct ccaqqacaca aqqootqtta ctaqcactca catqqaacaa
atggcctcta gcctggaggc ttgctgaagg ctgtatgctg aaacataatg gattcagcag
egeqttttqq cetetqactq acqcqctqct qaccattatq tttcaqqaca caaqqcctqt
tactagcact cacatggaac aaatggcctc tagcctggag gcttgctgaa ggctgtatgc
tgttatettt gegaagetge eateegtttt ggeetetgae tgaeggatgg eageegeaaa
gataacagga cacaaggcct gttactagca ctcacatgga acaaatggcc tctctagaat
SEQ ID NO: 9
                       moltype = DNA length = 538
FEATURE
                       Location/Oualifiers
source
                       1..538
                       mol_type = other DNA
                      organism = synthetic construct
SEOUENCE: 9
gccaccatgg ccaccggctc tcgcacaagc ctgctgctgg ctttcggact gctgtgcctg
cettggetee aggagggete egeegetage ategataceg tegetatgtg etggaggett
getgaagget gtatgetgge teeteeactt ggtggtttgg ttttggeete tgaetgaege
ggcaacattc tggtgattac aggacacaag gcctgttact agcactcaca tggaacaaat
```

```
ggcctctagc ctggaggctt gctgaaggct gtatgctgtc ataatcgcta tttggtgcgg
cgttttggcc tctgactgac gccgcaccaa agcgattatg acaggacaca aggcctgtta
                                                                   360
ctagcactca catggaacaa atggcctcta gcctggaggc ttgctgaagg ctgtatgctg
                                                                   420
ttctgatcct gaagttcggg ttcgttttgg cctctgactg acgaacccga accaggatca
                                                                   480
gaacaggaca caaggcctgt tactagcact cacatggaac aaatggcctc tctagaat
                                                                   538
SEQ ID NO: 10
                      moltype = DNA length = 540
FEATURE
                      Location/Qualifiers
source
                      1..540
                       mol_type = other DNA
                       organism = synthetic construct
SEQUENCE: 10
gecaccatgg ccaccggete tegeacaage etgetgetgg ettteggaet getgtgeetg
cettggetee aggagggete egeegetage ategataceg tegetatgtg etggaggett
gctgaaggct gtatgctgaa atcttccggt ggttccactg cgttttggcc tctgactgac
gcagtggaac ccggaagatt tcaggacaca aggcctgtta ctagcactca catggaacaa
atggcctcta gcctggaggc ttgctgaagg ctgtatgctg atatcctgaa tatggtatgc
agggttttgg cctctgactg acgctgcata ccattcagga tatcaggaca caaggcctgt
tactagcact cacatggaac aaatggcctc tagcctggag gcttgctgaa ggctgtatgc
tgtttaaagc tcaaacgcgt tcgccgtttt ggcctctgac tgacggcgaa cgcgtgagct
ttaaacagga cacaaggcct gttactagca ctcacatgga acaaatggcc tctctagaat
SEQ ID NO: 11
                      moltype = DNA length = 540
FEATURE
                      Location/Qualifiers
source
                       1..540
                      mol type = other DNA
                       organism = synthetic construct
SEOUENCE: 11
qccaccatqq ccaccqqctc tcqcacaaqc ctqctqctqq ctttcqqact qctqtqcctq
cettagetee aggagggete egeegetage ategataceg tegetatgtg etggaggett
gctgaaggct gtatgctgta ataaaggtct gggaatcacc cgttttggcc tctgactgac
                                                                   180
gggtgattcc gacctttatt acaggacaca aggcctgtta ctagcactca catggaacaa
                                                                   240
atggcctcta gcctggaggc ttgctgaagg ctgtatgctg taatacgcca gatcaccatc
                                                                   300
agogttttgg cototgactg acgotgatgg tgctggcgta ttacaggaca caaggcctgt
                                                                   360
tactagcact cacatggaac aaatggeete tageetggag gettgetgaa ggetgtatge
                                                                   420
tgatacagaa acgaaggttc aggccgtttt ggcctctgac tgacggcctg aacccgtttc
                                                                   480
tgtatcagga cacaaggcct gttactagca ctcacatgga acaaatggcc tctctagaat
                                                                  540
SEO ID NO: 12
                      moltype = DNA length = 540
FEATURE
                      Location/Qualifiers
source
                      1..540
                      mol_type = other DNA
                      organism = synthetic construct
SEQUENCE: 12
gccaccatgg ccaccggctc tcgcacaagc ctgctgctgg ctttcggact gctgtgcctg
cettggetee aggagggete egeegetage ategataceg tegetatgtg etggaggett
                                                                  120
gctgaaggct gtatgctgtc agatcgctgt ggtaaacagg cgttttggcc tctgactgac
                                                                   180
gcctgtttac cagcgatctg acaggacaca aggcctgtta ctagcactca catggaacaa
                                                                   240
atggcctcta gcctggaggc ttgctgaagg ctgtatgctg agaatcagat cagatagcga
                                                                   300
teegttttgg cetetgactg acggateget atetgetgat teteaggaca caaggeetgt
                                                                   360
tactagcact cacatggaac aaatggcctc tagcctggag gcttgctgaa ggctgtatgc
tgaaacatgc caacagcaga atgccgtttt ggcctctgac tgacggcatt ctgctgggca
tgtttcagga cacaaggcct gttactagca ctcacatgga acaaatggcc tctctagaat
SEO ID NO: 13
                      moltype = DNA length = 540
FEATURE
                       Location/Qualifiers
source
                       1..540
                      mol type = other DNA
                      organism = synthetic construct
SEOUENCE: 13
gccaccatgg ccaccggctc tcgcacaagc ctgctgctgg ctttcggact gctgtgcctg
cettagetee aggaggete egeogetage ategataceg tegetatgtg etggaggett
gctgaaggct gtatgctgac aatcagatat ggttgctcgg cgttttggcc tctgactgac
gccgagcaac tatctgattg tcaggacaca aggcctgtta ctagcactca catggaacaa
atggcctcta gcctggaggc ttgctgaagg ctgtatgctg tttcacaatg catcgttcag
                                                                   300
cgcgttttgg cctctgactg acgcgctgaa cggcattgtg aaacaggaca caaggcctgt
tactagcact cacatggaac aaatggcctc tagcctggag gcttgctgaa ggctgtatgc
tgacaataat gccaacaggg tggtcgtttt ggcctctgac tgacgaccac cctgggcatt
attgtcagga cacaaggcct gttactagca ctcacatgga acaaatggcc tctctagaat
SEQ ID NO: 14
                       moltype = DNA length = 6339
FEATURE
                      Location/Qualifiers
                       1..6339
source
                       mol_type = other DNA
                       organism = synthetic construct
SEQUENCE: 14
```

aatcaacctc	tggattacaa	aatttgtgaa	agattgactg	gtattcttaa	ctatgttgct	60
	tatgtggata					120
	ttttctcctc					180
	tcaggcaacg					240
ggttggggca	ttgccaccac	ctgtcagctc	ctttccggga	ctttcgcttt	ccccctccct	300
attgccacgg	cggaactcat	cgccgcctgc	cttgcccgct	gctggacagg	ggctcggctg	360
	acaattccgt					420
	ccacctggat					480
	accttccttc					540
						600
	ctcagacgag					
	agatctaact					660
catcacaaat	ttcacaaata	aagcattttt	ttcactgcat	tctagttgtg	gtttgtccaa	720
actcatcaat	gtatcttatc	atgtctggat	ctcgacctcg	actagagcat	ggctacgtag	780
ataagtagca	tggcgggtta	atcattaact	acaaggaacc	cctagtgatg	gagttggcca	840
ctccctctct	gegegetege	tcqctcactq	aggccgggcg	accaaaqqtc	qcccqacqcc	900
	ccgggcggcc					960
	cgatcgccct					1020
	ctggcggtaa					1080
	aggcaagtga					1140
	gacagactct					1200
gattctggcg	taccgttcct	gtctaaaatc	cctttaatcg	gcctcctgtt	tagctcccgc	1260
tctgattcta	acgaggaaag	cacgttatac	gtgctcgtca	aagcaaccat	agtacgcgcc	1320
ctgtagcggc	gcattaagcg	cggcgggtgt	ggtggttacg	cgcagcgtga	ccgctacact	1380
	ctagcgcccg					1440
	cgtcaagctc					1500
	gaccccaaaa					1560
	gtttttcgcc					1620
	ggaacaacac					1680
tttgccgatt	tcggcctatt	ggttaaaaaa	tgagctgatt	taacaaaaat	ttaacgcgaa	1740
ttttaacaaa	atattaacgt	ttacaattta	aatatttgct	tatacaatct	tcctgttttt	1800
ggggcttttc	tgattatcaa	ccggggtaca	tatgattgac	atgctagttt	tacgattacc	1860
qttcatcqat	tctcttgttt	gctccagact	ctcaqqcaat	qacctqataq	cctttqtaqa	1920
	aaatagctac					1980
	gtgatttgac					2040
	gcattgcatt					2100
	cttctcccgc					2160
	gctctgaggc					2220
	atgttggaat					2280
ttcacaccgc	atatggtgca	ctctcagtac	aatctgctct	gatgccgcat	agttaagcca	2340
gccccgacac	ccgccaacac	ccgctgacgc	gccctgacgg	gcttgtctgc	tcccggcatc	2400
cgcttacaga	caagctgtga	ccgtctccgg	gagctgcatg	tgtcagaggt	tttcaccgtc	2460
	cgcgcgagac					2520
	atggtttctt					2580
	ttatttttct					2640
						2700
	cttcaataat					
	cccttttttg					2760
	aaagatgctg					2820
	ggtaagatcc					2880
cacttttaaa	gttctgctat	gtggcgcggt	attatcccgt	attgacgccg	ggcaagagca	2940
actcggtcgc	cgcatacact	attctcagaa	tgacttggtt	gagtactcac	cagtcacaga	3000
aaagcatctt	acggatggca	tgacagtaag	agaattatgc	agtgctgcca	taaccatgag	3060
	gcggccaact					3120
	aacatggggg					3180
	ccaaacgacg					3240
	ttaactggcg					3300
						3360
	gataaagttg					
	aaatctggag					3420
	aagccctccc		_			3480
ggatgaacga	aatagacaga	tcgctgagat	aggtgcctca	ctgattaagc	attggtaact	3540
gtcagaccaa	gtttactcat	atatacttta	gattgattta	aaacttcatt	tttaatttaa	3600
aaggatctag	gtgaagatcc	tttttgataa	tctcatgacc	aaaatccctt	aacgtgagtt	3660
	tgagcgtcag					3720
	gtaatctgct					3780
	caagagctac					3840
	actgtccttc					3900
agcaccgcct	acatacctcg	ctctgctaat	cctgttacca	gtggctgctg	ccagtggcga	3960
taagtcgtgt	cttaccgggt	tggactcaaq	acgatagtta	ccggataagq	cgcagcggtc	4020
	gggggttcgt					4080
	cagcgtgagc					4140
						4200
	gtaagcggca					
	tatctttata					4260
tttgtgatgc	tcgtcagggg	ggcggagcct	atggaaaaac	gccagcaacg	cggccttttt	4320
acggttcctg	gccttttgct	ggccttttgc	tcacatgttc	tttcctgcgt	tatcccctga	4380
	aaccgtatta					4440
	agcgagtcag					4500
						4560
cocceegeg	cgttggccga	cccactaaty	cagcagcige	gogooogooo	goccaccyay	1500

```
geogeologic caaageologic gegteggeg acctttggte geologicte agtgagegag
cgagcgcgca gagagggagt ggccaactcc atcactaggg gttccttgta gttaatgatt
                                                                     4680
aacccgccat gctacttatc tacgtagcca tgctctagga cattgattat tgactagtgg
                                                                     4740
agttccgcgt tacataactt acggtaaatg gcccgcctgg ctgaccgccc aacgaccccc
                                                                     4800
gcccattgac gtcaataatg acgtatgttc ccatagtaac gccaataggg actttccatt
                                                                     4860
gacgtcaatg ggtggagtat ttacggtaaa ctgcccactt ggcagtacat caagtgtatc
                                                                     4920
atatgccaag tacgcccct attgacgtca atgacggtaa atggcccgcc tggcattatg
                                                                     4980
cccagtacat gaccttatgg gactttccta cttggcagta catctacgta ttagtcatcg
                                                                     5040
ctattaccat ggtcgaggtg agcccacgt tctgcttcac tctccccatc tccccccct
                                                                     5100
ccccacccc aattitgtat ttatttattt tttaattatt ttgtgcagcg atggggggg
ggggggggg gggcgcgcgc caggcggggc ggggcggggc gaggggggg gcggggcgag
                                                                     5220
gcggagaggt gcggcggcag ccaatcagag cggcgcgctc cgaaagtttc cttttatggc
                                                                     5280
gaggeggegg eggeggegge cetataaaaa gegaagegeg eggegggegg gagtegetge
                                                                     5340
gegetgeett egeceegtge eeegeteege egeegeeteg egeegeeege eeeggetetg
actgaccgcg ttactaaaac aggtaagtcc ggcctccgcg ccgggttttg gcgcctcccg
cgggcgcccc cctcctcacg gcgagcgctg ccacgtcaga cgaagggcgc agcgagcgtc
ctgatccttc cgcccggacg ctcaggacag cggcccgctg ctcataagac tcggccttag
aaccccagta tcagcagaag gacattttag gacgggactt gggtgactct agggcactgg
ttttctttcc agagagcgga acaggcgagg aaaagtagtc ccttctcggc gattctgcgg
agggatetee gtggggeggt gaacgeegat gatgeeteta etaaccatgt teatgtttte
tttttttttt tacaggteet gggtgaegaa cagggtaeeg ceaccatgge caccggetet cgcacaagee tgetgetgge ttteggaetg etgtgeetge ettggeteea ggagggetee
                                                                     5820
gccgctagca tcgataccgt cgctatgtgc tggaggcttg ctgaaggctg tatgctgatc
                                                                     5940
aatcggattg cggtaatcgc gttttggcct ctgactgacg cgattaccga tccgattgat
                                                                     6000
caggacacaa ggcctgttac tagcactcac atggaacaaa tggcctctag cctggaggct
                                                                     6060
tgctgaaggc tgtatgctga tctttgctaa attggtgcac gcgttttggc ctctgactga
                                                                     6120
cgcgtgcacc attagcaaag atcaggacac aaggcctgtt actagcactc acatggaaca
                                                                     6180
aatggcctct agcctggagg cttgctgaag gctgtatgct gacttcaatc acaattccag
                                                                     6240
cgccgttttg gcctctgact gacggcgctg gaagtgattg aagtcaggac acaaggcctg ttactagcac tcacatggaa caaatggcct ctctagaat
                                                                     6300
                                                                     6339
                       moltype = DNA length = 6339
SEO ID NO: 15
                       Location/Qualifiers
FEATURE
                       1 6339
source
                       mol_type = other DNA
                       organism = synthetic construct
SEQUENCE: 15
aatcaacctc tggattacaa aatttgtgaa agattgactg gtattcttaa ctatgttgct
ccttttacgc tatgtggata cgctgcttta atgcctttgt atcatgctat tgcttcccgt
atggetttea tttteteete ettgtataaa teetggttge tgtetettta tgaggagttg
                                                                     180
tggcccgttg tcaggcaacg tggcgtggtg tgcactgtgt ttgctgacgc aacccccact
                                                                     240
ggttggggca ttgccaccac ctgtcagctc ctttccggga ctttcgcttt ccccctccct
                                                                     300
attgccacgg cggaactcat cgccgcctgc cttgcccgct gctggacagg ggctcggctg
                                                                     360
ttgggcactg acaattccgt ggtgttgtcg gggaaatcat cgtcctttcc ttggctgctc
                                                                     420
gcctgtgttg ccacctggat tctgcgcggg acgtccttct gctacgtccc ttcggccctc
                                                                     480
aatccagegg acctteette eegeggeetg etgeeggete tgeggeetet teegegtett
                                                                     540
egecttegee etcagaegag teggatetee etttgggeeg eetceeegee taagettate
                                                                     600
gataccgtcg agatctaact tgtttattgc agcttataat ggttacaaat aaagcaatag
                                                                     660
catcacaaat ttcacaaata aagcattttt ttcactgcat tctagttgtg gtttgtccaa
                                                                     720
actcatcaat gtatcttatc atgtctggat ctcgacctcg actagagcat ggctacgtag
                                                                     780
ataagtagca tggcgggtta atcattaact acaaggaacc cctagtgatg gagttggcca
ctccctctct gcgcgctcgc tcgctcactg aggccgggcg accaaaggtc gcccgacgcc
cgggctttgc ccgggcggcc tcagtgagcg agcgagcgcg cagctggcgt aatagcgaag
aggecegeae egategeeet teecaacagt tgegeageet gaatggegaa tggegattee
                                                                     1020
gttgcaatgg ctggcggtaa tattgttctg gatattacca gcaaggccga tagtttgagt
tettetaete aggeaagtga tgttattaet aateaaagaa gtattgegae aaeggttaat
ttgcgtgatg gacagactct tttactcggt ggcctcactg attataaaaa cacttctcag
gattetggcg taccgtteet gtetaaaate cetttaateg geeteetgtt tageteeege
totgattota acgaggaaag cacgttatac gtgctcgtca aagcaaccat agtacgcgcc
ctgtagegge gcattaageg eggeggtgt ggtggttaeg egeagegtga eegetacaet
tgccagcgcc ctagcgcccg ctcctttcgc tttcttccct tcctttctcg ccacgttcgc
cggctttccc cgtcaagctc taaatcgggg gctcccttta gggttccgat ttagtgcttt
                                                                     1500
acggcacctc gaccccaaaa aacttgatta gggtgatggt tcacgtagtg ggccatcgcc
                                                                     1560
ctgatagacg gtttttcgcc ctttgacgtt ggagtccacg ttctttaata gtggactctt
                                                                     1620
gttccaaact ggaacaacac tcaaccctat ctcggtctat tcttttgatt tataagggat
                                                                     1680
tttgccgatt tcggcctatt ggttaaaaaa tgagctgatt taacaaaaat ttaacgcgaa
ttttaacaaa atattaacgt ttacaattta aatatttgct tatacaatct tcctgttttt
                                                                     1800
ggggcttttc tgattatcaa ccggggtaca tatgattgac atgctagttt tacgattacc
                                                                     1860
gttcatcgat tctcttgttt gctccagact ctcaggcaat gacctgatag cctttgtaga
                                                                     1920
gacctctcaa aaatagctac cctctccggc atgaatttat cagctagaac ggttgaatat
                                                                     1980
catattgatg gtgatttgac tgtctccggc ctttctcacc cgtttgaatc tttacctaca
cattactcag gcattgcatt taaaaatatat gagggttcta aaaattttta tccttgcgtt
                                                                     2100
gaaataaagg cttctcccgc aaaagtatta cagggtcata atgtttttgg tacaaccgat
ttagctttat gctctgaggc tttattgctt aattttgcta attctttgcc ttgcctgtat
                                                                     2220
gatttattgg atgttggaat tcctgatgcg gtattttctc cttacgcatc tgtgcggtat
```

ttcacaccgc atatggtgca ctctcagtac aatctgctct gatgccgcat agttaagcca

```
geoecgacae eegecaacae eegetgaege geeetgaegg gettgtetge teeeggeate
cgcttacaga caagctgtga ccgtctccgg gagctgcatg tgtcagaggt tttcaccgtc
                                                                  2460
atcaccgaaa cgcgcgagac gaaagggcct cgtgatacgc ctattttat aggttaatgt
                                                                  2520
catgataata atggtttctt agacgtcagg tggcactttt cggggaaatg tgcgcggaac
                                                                  2580
ccctatttgt ttattttct aaatacattc aaatatgtat ccgctcatga gacaataacc
                                                                  2640
ctgataaatg cttcaataat attgaaaaag gaagagtatg agtattcaac atttccgtgt
                                                                  2700
cgcccttatt cccttttttg cggcattttg ccttcctgtt tttgctcacc cagaaacgct
                                                                  2760
ggtgaaagta aaagatgctg aagatcagtt gggtgcacga gtgggttaca tcgaactgga
                                                                  2820
totcaacago ggtaagatoo ttgagagttt togoocogaa gaacgtttto caatgatgag
                                                                  2880
cacttttaaa gttctgctat gtggcgcggt attatcccgt attgacgccg ggcaagagca
actoggtogo ogcatacact attotoagaa tgacttggtt gagtactcac cagtcacaga
                                                                  3000
aaagcatctt acggatggca tgacagtaag agaattatgc agtgctgcca taaccatgag
                                                                  3060
tgataacact gcggccaact tacttctgac aacgatcgga ggaccgaagg agctaaccgc
                                                                  3120
ttttttgcac aacatggggg atcatgtaac tcgccttgat cgttgggaac cggagctgaa
tgaagccata ccaaacgacg agcgtgacac cacgatgcct gtagcaatgg caacaacgtt
gcgcaaacta ttaactggcg aactacttac tctagcttcc cggcaacaat taatagactg
                                                                  3300
gatggaggcg gataaagttg caggaccact tetgegeteg geeetteegg etggetggtt
tattgctgat aaatctggag ccggtgagcg tgggtctcgc ggtatcattg cagcactggg
gccagatggt aagccctccc gtatcgtagt tatctacacg acggggagtc aggcaactat
ggatgaacga aatagacaga tcgctgagat aggtgcctca ctgattaagc attggtaact
                                                                  3540
3600
aaggatctag gtgaagatcc tttttgataa tctcatgacc aaaatccctt aacgtgagtt
                                                                  3660
ttcqttccac tgagcqtcaq accccgtaga aaaqatcaaa ggatcttctt gagatccttt
                                                                  3720
ttttctgcgc gtaatctgct gcttgcaaac aaaaaaacca ccgctaccag cggtggtttg
                                                                  3780
tttgccggat caagagctac caactctttt tccgaaggta actggcttca gcagagcgca
                                                                  3840
gataccaaat actgtccttc tagtgtagcc gtagttaggc caccacttca agaactctgt
                                                                  3900
agcaccgcct acatacctcg ctctgctaat cctgttacca gtggctgctg ccagtggcga
                                                                  3960
taagtcgtgt cttaccgggt tggactcaag acgatagtta ccggataagg cgcagcggtc
                                                                  4020
gggctgaacg gggggttcgt gcacacagcc cagcttggag cgaacgacct acaccgaact
                                                                  4080
gagataccta cagcgtgagc tatgagaaag cgccacgctt cccgaaggga gaaaggcgga
                                                                  4140
caggtatccg gtaagcggca gggtcggaac aggagagcgc acgagggagc ttccaggggg
                                                                  4200
aaacgcctgg tatctttata gtcctgtcgg gtttcgccac ctctgacttg agcgtcgatt
                                                                  4260
tttgtgatgc tcgtcagggg ggcggagcct atggaaaaac gccagcaacg cggccttttt
                                                                  4320
acggttcctg gccttttgct ggccttttgc tcacatgttc tttcctgcgt tatcccctga
                                                                  4380
ttctgtggat aaccgtatta ccgcctttga gtgagctgat accgctcgcc gcagccgaac
                                                                  4440
gaccgagcgc agcgagtcag tgagcgagga agcggaagag cgcccaatac gcaaaccgcc
                                                                  4500
teteceegeg egttggeega tteattaatg eageagetge gegetegete geteaetgag
                                                                  4560
geogeologic caaageologic geotegges acctttggto geologicto agtgagegag
                                                                  4620
cgagcgcgca gagagggagt ggccaactcc atcactaggg gttccttgta gttaatgatt
                                                                  4680
aaccegecat getaettate taegtageca tgetetagga cattgattat tgaetagtgg
                                                                  4740
agttccgcgt tacataactt acggtaaatg gcccgcctgg ctgaccgccc aacgaccccc
                                                                  4800
gcccattgac gtcaataatg acgtatgttc ccatagtaac gccaataggg actttccatt
                                                                  4860
gacgtcaatg ggtggagtat ttacggtaaa ctgcccactt ggcagtacat caagtgtatc
                                                                  4920
atatgccaag tacgcccct attgacgtca atgacggtaa atggcccgcc tggcattatg
                                                                  4980
cccagtacat gaccttatgg gactttccta cttggcagta catctacgta ttagtcatcg
                                                                  5040
ctattaccat ggtcgaggtg agcccacgt tctgcttcac tctccccatc tccccccct
                                                                  5100
                                                                  5160
ccccaccccc aattttgtat ttatttattt tttaattatt ttgtgcagcg atggggggg
ggggggggg gggcgcgcgc caggcggggc ggggcggggc gaggggggg gcggggcgag
                                                                  5220
gcggagaggt gcggcggcag ccaatcagag cggcgcgctc cgaaagtttc cttttatggc
                                                                  5280
gaggeggegg eggeggegge cetataaaaa gegaagegeg eggegggegg gagtegetge
                                                                  5340
gegetgeett egeceegtge eeegeteege egeegeeteg egeegeeege eeeggetetg
                                                                  5400
actgaccgcg ttactaaaac aggtaagtcc ggcctccgcg ccgggttttg gcgcctcccg
                                                                  5460
cgggcgcccc cctcctcacg gcgagcgctg ccacgtcaga cgaagggcgc agcgagcgtc
                                                                  5520
ctgatccttc cgcccggacg ctcaggacag cggcccgctg ctcataagac tcggccttag
                                                                  5580
aaccccagta tcagcagaag gacattttag gacgggactt gggtgactct agggcactgg
ttttctttcc agagagcgga acaggcgagg aaaagtagtc ccttctcggc gattctgcgg
agggatetee gtggggeggt gaacgeegat gatgeeteta etaaceatgt teatgtttte
ttttttttttt tacaggtcct gggtgacgaa cagggtaccg ccaccatggc caccggctct
cgcacaagcc tgctgctggc tttcggactg ctgtgcctgc cttggctcca ggagggctcc
geogetagea tegatacegt egetatgtge tggaggettg etgaaggetg tatgetgtaa
tetttegetg getgeagtte gttttggeet etgactgacg aactgeageg egaaagatta
caqqacacaa qqcctqttac taqcactcac atqqaacaaa tqqcctctaq cctqqaqqct
tgctgaaggc tgtatgctgt gttaatgctg atgtcacgct gcgttttggc ctctgactga
                                                                  6120
cgcagcgtga ccagcattaa cacaggacac aaggcctgtt actagcactc acatggaaca
                                                                  6180
aatggcctct agcctggagg cttgctgaag gctgtatgct gttcacctgg ttaacacata
                                                                  6240
caccgttttg gcctctgact gacggtgtat gtgaaccagg tgaacaggac acaaggcctg
                                                                  6300
ttactagcac tcacatggaa caaatggcct ctctagaat
                                                                  6339
SEQ ID NO: 16
                      moltype = DNA length = 6339
FEATURE
                      Location/Qualifiers
source
                      mol_type = other DNA
                      organism = synthetic construct
SEQUENCE: 16
aatcaacctc tggattacaa aatttgtgaa agattgactg gtattcttaa ctatgttgct
ccttttacgc tatgtggata cgctgcttta atgcctttgt atcatgctat tgcttcccgt 120
```

atggctttca	ttttctcctc	cttgtataaa	tcctggttgc	tgtctcttta	tgaggagttg	180
				ttgctgacgc		240
				ctttcgcttt		300
attqccacqq	cqqaactcat	cqccqcctqc	cttqcccqct	gctggacagg	qqctcqqctq	360
				cgtcctttcc		420
gcctgtgttg	ccacctggat	tetgegeggg	acgtecttet	gctacgtccc	tteggeeete	480
aatccagcgg	accttccttc	ccgcggcctg	ctgccggctc	tgcggcctct	tccgcgtctt	540
				cctccccgcc		600
				ggttacaaat		660
catcacaaat	ttcacaaata	aagcattttt	ttcactgcat	tctagttgtg	gtttgtccaa	720
actdatdaat	gtatcttatc	atgtctggat	ctcgacctcg	actagagcat	gactacataa	780
				cctagtgatg		840
ctccctctct	gcgcgctcgc	tcgctcactg	aggccgggcg	accaaaggtc	gcccgacgcc	900
caaactttac	ccaaacaacc	traatgaaca	adcdadcdcd	cagctggcgt	aatagggaag	960
aggeeegeae	egategeeet	teceaacagt	tgegeageet	gaatggcgaa	tggegattee	1020
gttgcaatgg	ctggcggtaa	tattgttctg	gatattacca	gcaaggccga	tagtttgagt	1080
tettetacte	aggcaagt.ga	tgttattact	aat.caaagaa	gtattgcgac	aacggttaat	1140
						1200
				attataaaaa		
gattctggcg	taccgttcct	gtctaaaatc	cctttaatcg	gcctcctgtt	tagctcccgc	1260
tctgattcta	acqaqqaaaq	cacqttatac	atactcatca	aagcaaccat	agtacgcgcc	1320
						1380
				cgcagcgtga		
tgccagcgcc	ctagcgcccg	ctcctttcgc	tttcttccct	tcctttctcg	ccacgttcgc	1440
caactttccc	catcaaactc	taaatcqqqq	gctcccttta	gggttccgat	ttagtgcttt	1500
						1560
				tcacgtagtg		
ctgatagacg	gtttttcgcc	ctttgacgtt	ggagtccacg	ttctttaata	gtggactctt	1620
qttccaaact	qqaacaacac	tcaaccctat	ctcqqtctat	tcttttgatt	tataaqqqat	1680
				taacaaaaat		1740
ttttaacaaa	atattaacgt	ttacaattta	aatatttgct	tatacaatct	tcctgttttt	1800
ggggcttttc	tgattatcaa	ccggggtaca	tatgattgac	atgctagttt	tacgattacc	1860
				gacctgatag		1920
				cagctagaac		1980
catattgatg	gtgatttgac	tgtctccggc	ctttctcacc	cgtttgaatc	tttacctaca	2040
				aaaatttta		2100
						2160
				atgtttttgg		
ttagctttat	gctctgaggc	tttattgctt	aattttgcta	attctttgcc	ttgcctgtat	2220
gatttattgg	atqttqqaat	tcctgatgcg	qtattttctc	cttacgcatc	tqtqcqqtat	2280
				gatgccgcat		2340
gccccgacac	ccgccaacac	ccgctgacgc	gccctgacgg	gcttgtctgc	teceggeate	2400
cgcttacaga	caagctgtga	ccgtctccgg	gagctgcatg	tgtcagaggt	tttcaccgtc	2460
atcaccgaaa	cacacaaaac	gaaagggct	cataatacac	ctatttttat	aggttaatgt	2520
						2580
				cggggaaatg		
ccctatttgt	ttatttttct	aaatacattc	aaatatgtat	ccgctcatga	gacaataacc	2640
ctgataaatg	cttcaataat	attgaaaaag	gaagagtatg	agtattcaac	atttccatat	2700
						2760
				tttgctcacc		
ggtgaaagta	aaagatgctg	aagatcagtt	gggtgcacga	gtgggttaca	tcgaactgga	2820
tctcaacagc	ggtaagatcc	ttgagagttt	togococqaa	gaacgttttc	caatgatgag	2880
						2940
				attgacgccg		
actcggtcgc	cgcatacact	attctcagaa	tgacttggtt	gagtactcac	cagtcacaga	3000
aaaqcatctt	acqqatqqca	tqacaqtaaq	aqaattatqc	agtgctgcca	taaccatqaq	3060
				ggaccgaagg		3120
ttttttgcac	aacatggggg	atcatgtaac	tegeettgat	cgttgggaac	cggagctgaa	3180
tqaaqccata	ccaaacqacq	aqcqtqacac	cacqatqcct	gtagcaatgg	caacaacqtt	3240
				cggcaacaat		3300
				gcccttccgg		3360
tattgctgat	aaatctggag	ccggtgagcg	tgggtctcgc	ggtatcattg	cagcactggg	3420
accadatagt	aagccctccc	gtatcgtagt	tatctacacq	acadagaatc	aggcaactat	3480
				ctgattaagc		3540
gtcagaccaa	gtttactcat	atatacttta	gattgattta	aaacttcatt	tttaatttaa	3600
aaggatictag	gtgaagat.cc	tttttgataa	teteatgace	aaaatccctt	aacgtgagtt	3660
						3720
				ggatcttctt		
ttttctgcgc	gtaatctgct	gcttgcaaac	aaaaaacca	ccgctaccag	cggtggtttg	3780
tttqccqqat	caaqaqctac	caactctttt	tccqaaqqta	actggcttca	qcaqaqcqca	3840
						3900
				caccacttca		
agcaccgcct	acatacctcg	ctctgctaat	cctgttacca	gtggctgctg	ccagtggcga	3960
taaqtcqtqt	cttaccaaat	tggactcaag	acqataqtta	ccggataagg	cacaacaata	4020
						4080
		-		cgaacgacct	-	
gagataccta	cagcgtgagc	tatgagaaag	cgccacgctt	cccgaaggga	gaaaggcgga	4140
				acgagggagc		4200
				ctctgacttg		4260
tttgtgatgc	tcgtcagggq	ggcggagcct	atggaaaaac	gccagcaacg	cggccttttt	4320
				tttcctgcgt		4380
ttctgtggat	aaccgtatta	ccgcctttga	gtgagctgat	accgctcgcc	gcagccgaac	4440
gaccgagcgc	agcgaqtcaq	tgagcgagga	agcggaagag	cgcccaatac	gcaaaccqcc	4500
				gcgctcgctc		4560
gccgcccggg	caaagcccgg	gcgtcgggcg	acctttggtc	gcccggcctc	agtgagcgag	4620
cgagcgcgca	gagagggagt	ggccaactcc	atcactaggg	gttccttgta	gttaatgatt	4680
5 5 5-5-4	5 5 555-50	55	333			

```
aacccgccat gctacttatc tacgtagcca tgctctagga cattgattat tgactagtgg
agttccgcgt tacataactt acggtaaatg gcccgcctgg ctgaccgccc aacgaccccc
                                                                   4800
gcccattgac gtcaataatg acgtatgttc ccatagtaac gccaataggg actttccatt
                                                                   4860
gacgtcaatg ggtggagtat ttacggtaaa ctgcccactt ggcagtacat caagtgtatc
                                                                   4920
atatgccaag tacgcccct attgacgtca atgacggtaa atggcccgcc tggcattatg
                                                                   4980
cccagtacat gaccttatgg gactttccta cttggcagta catctacgta ttagtcatcg
                                                                   5040
ctattaccat ggtcgaggtg agccccacgt tctgcttcac tctccccatc tccccccct
                                                                   5100
ccccaccccc aattttgtat ttatttattt tttaattatt ttgtgcagcg atggggggg
                                                                   5160
ggggggggg gggcgcgcc caggcggggc ggggcggggc gaggggggg gcggggcgag
                                                                   5220
gcggagaggt gcggcggcag ccaatcagag cggcgcgctc cgaaagtttc cttttatggc
gaggeggegg eggeggegge ectataaaaa gegaagegeg eggegggegg gagtegetge
                                                                   5340
gegetgeett egeceegtge eeegeteege egeegeeteg egeegeeege eeeggetetg
                                                                   5400
actgaccgcg ttactaaaac aggtaagtcc ggcctccgcg ccgggttttg gcgcctcccg
                                                                   5460
cgggcgcccc cctcctcacg gcgagcgctg ccacgtcaga cgaagggcgc agcgagcgtc
ctgatccttc cgcccggacg ctcaggacag cggcccgctg ctcataagac tcggccttag
aaccccagta tcagcagaag gacattttag gacgggactt gggtgactct agggcactgg
ttttctttcc agagagcgga acaggcgagg aaaagtagtc ccttctcggc gattctgcgg
agggatetee gtggggeggt gaacgeegat gatgeeteta etaaccatgt teatgtttte
ttttttttt tacaggtcct gggtgacgaa cagggtaccg ccaccatggc caccggctct
cgcacaagcc tgctgctggc tttcggactg ctgtgcctgc cttggctcca ggagggctcc
geogetagea tegatacegt egetatgtge tggaggettg etgaaggetg tatgetgatt
                                                                   5940
tetteetgtg egetttegee gttttggeet etgactgaeg gegaaagege aggaagaaat
                                                                   6000
caggacacaa ggcctgttac tagcactcac atggaacaaa tggcctctag cctggaggct
                                                                   6060
tgctgaaggc tgtatgctga gaataatcag atcagcacgc tcgttttggc ctctgactga
                                                                   6120
cqaqcqtqct qctqattatt ctcaqqacac aaqqcctqtt actaqcactc acatqqaaca
                                                                   6180
aatggcctct agcctggagg cttgctgaag gctgtatgct gtaatcaggc tgaattcaga
                                                                   6240
tagogttttg gcctctgact gacgctatct gaacagcctg attacaggac acaaggcctg
                                                                   6300
ttactagcac tcacatggaa caaatggcct ctctagaat
                                                                   6339
SEO ID NO: 17
                       moltype = DNA length = 6339
FEATURE
                       Location/Qualifiers
source
                       1..6339
                       mol_type = other DNA
organism = synthetic construct
SEQUENCE: 17
aatcaacctc tggattacaa aatttgtgaa agattgactg gtattcttaa ctatgttgct
ccttttacgc tatgtggata cgctgcttta atgcctttgt atcatgctat tgcttcccgt
                                                                   120
atggetttea tttteteete ettgtataaa teetggttge tgtetettta tgaggagttg
                                                                   180
tggcccgttg tcaggcaacg tggcgtggtg tgcactgtgt ttgctgacgc aacccccact
                                                                   240
ggttggggca ttgccaccac ctgtcagctc ctttccggga ctttcgcttt ccccctccct
                                                                   300
attgccacgg cggaactcat cgccgcctgc cttgcccgct gctggacagg ggctcggctg
                                                                   360
ttgggcactg acaattccgt ggtgttgtcg gggaaatcat cgtcctttcc ttggctgctc
                                                                   420
geetgtgttg ceacetggat tetgegeggg aegteettet getaegteee tteggeeete
                                                                   480
aatccagegg acctteette eegeggeetg etgeeggete tgeggeetet teegegtett
                                                                   540
cgccttcgcc ctcagacgag tcggatctcc ctttgggccg cctccccgcc taagcttatc
                                                                   600
gataccgtcg agatctaact tgtttattgc agcttataat ggttacaaat aaagcaatag
                                                                   660
catcacaaat ttcacaaata aagcattttt ttcactgcat tctagttgtg gtttgtccaa
                                                                   720
actcatcaat gtatcttatc atgtctggat ctcgacctcg actagagcat ggctacgtag
                                                                   780
ataagtagca tggcgggtta atcattaact acaaggaacc cctagtgatg gagttggcca
                                                                   840
ctccctctct gcgcgctcgc tcgctcactg aggccgggcg accaaaggtc gcccgacgcc
                                                                   900
cgggctttgc ccgggcggcc tcagtgagcg agcgagcgcg cagctggcgt aatagcgaag
aggcccgcac cgatcgccct tcccaacagt tgcgcagcct gaatggcgaa tggcgattcc
                                                                   1020
gttgcaatgg ctggcggtaa tattgttctg gatattacca gcaaggccga tagtttgagt
                                                                   1080
tettetacte aggeaagtga tgttattact aateaaagaa gtattgegae aaeggttaat
                                                                   1140
ttgcgtgatg gacagactct tttactcggt ggcctcactg attataaaaa cacttctcag
gattetggeg tacegtteet gtetaaaate cetttaateg geeteetgtt tageteeege
totgattota acgaggaaag cacgttatac gtgctcgtca aagcaaccat agtacgcgcc
ctgtagcggc gcattaagcg cggcgggtgt ggtggttacg cgcagcgtga ccgctacact
tgccagcgcc ctagcgcccg ctcctttcgc tttcttccct tcctttctcg ccacgttcgc
eggettteee egteaagete taaategggg geteeettta gggtteegat ttagtgettt
acggcacctc gaccccaaaa aacttgatta gggtgatggt tcacgtagtg ggccatcgcc
                                                                   1560
ctgatagacg gtttttcgcc ctttgacgtt ggagtccacg ttctttaata gtggactctt
gttccaaact ggaacaacac tcaaccctat ctcggtctat tcttttgatt tataagggat
                                                                   1680
tttgccgatt tcggcctatt ggttaaaaaa tgagctgatt taacaaaaat ttaacgcgaa
                                                                   1740
ttttaacaaa atattaacgt ttacaattta aatatttgct tatacaatct tcctgttttt
                                                                   1800
ggggcttttc tgattatcaa ccggggtaca tatgattgac atgctagttt tacgattacc
gttcatcgat tctcttgttt gctccagact ctcaggcaat gacctgatag cctttgtaga
                                                                   1920
gacctctcaa aaatagctac cctctccggc atgaatttat cagctagaac ggttgaatat
catattgatg gtgatttgac tgtctccggc ctttctcacc cgtttgaatc tttacctaca
                                                                   2040
cattactcag gcattgcatt taaaatatat gagggttcta aaaattttta tccttgcgtt
                                                                   2100
gaaataaagg cttctcccgc aaaagtatta cagggtcata atgtttttgg tacaaccgat
ttagetttat getetgagge tttattgett aattttgeta attetttgee ttgeetgtat
                                                                   2220
gatttattgg atgttggaat tcctgatgcg gtattttctc cttacgcatc tgtgcggtat
```

ttcacaccgc atatggtgca ctctcagtac aatctgctct gatgccgcat agttaagcca gccccgacac ccgccaacac ccgctgacgc gccctgacgg gcttgtctgc tcccggcatc cgcttacaga caagctgtga ccgtctccgg gagctgcatg tgtcagaggt tttcaccgtc

```
atcaccgaaa cgcgcgagac gaaagggcct cgtgatacgc ctatttttat aggttaatgt
catgataata atggtttctt agacgtcagg tggcactttt cggggaaatg tgcgcggaac
                                                                 2580
ccctatttgt ttatttttct aaatacattc aaatatgtat ccgctcatga gacaataacc
                                                                 2640
ctgataaatg cttcaataat attgaaaaag gaagagtatg agtattcaac atttccgtgt
                                                                 2700
egecettatt ceettttttg eggeattttg eetteetgtt tttgeteace eagaaacget
                                                                 2760
ggtgaaagta aaagatgctg aagatcagtt gggtgcacga gtgggttaca tcgaactgga
                                                                 2820
tctcaacagc ggtaagatcc ttgagagttt tcgccccgaa gaacgttttc caatgatgag
                                                                 2880
cacttttaaa gttctgctat gtggcgcggt attatcccgt attgacgccg ggcaagagca
                                                                 2940
actoggtogo ogcatacact attotoagaa tgacttggtt gagtactoac cagtoacaga
                                                                 3000
aaagcatctt acggatggca tgacagtaag agaattatgc agtgctgcca taaccatgag
tgataacact gcggccaact tacttctgac aacgatcgga ggaccgaagg agctaaccgc
                                                                 3120
ttttttgcac aacatggggg atcatgtaac tcgccttgat cgttgggaac cggagctgaa
                                                                 3180
tgaagccata ccaaacgacg agcgtgacac cacgatgcct gtagcaatgg caacaacgtt
                                                                 3240
gcgcaaacta ttaactggcg aactacttac tctagcttcc cggcaacaat taatagactg
gatggaggcg gataaagttg caggaccact tctgcgctcg gcccttccgg ctggctggtt
tattgctgat aaatctggag ccggtgagcg tgggtctcgc ggtatcattg cagcactggg
gccagatggt aagccctccc gtatcgtagt tatctacacg acggggagtc aggcaactat
ggatgaacga aatagacaga tcgctgagat aggtgcctca ctgattaagc attggtaact
aaggatctag gtgaagatcc tttttgataa tctcatgacc aaaatccctt aacgtgagtt
                                                                 3660
ttcgttccac tgagcgtcag accccgtaga aaagatcaaa ggatcttctt gagatccttt
                                                                 3720
ttttctgcgc gtaatctgct gcttgcaaac aaaaaaacca ccgctaccag cggtggtttg
tttgccggat caagagctac caactctttt tccgaaggta actggcttca gcagagcgca
                                                                 3840
gataccaaat actgtccttc tagtgtagcc gtagttaggc caccacttca agaactctgt
                                                                 3900
agcaccgcct acatacctcg ctctgctaat cctgttacca gtggctgctg ccagtggcga
                                                                 3960
taagtcgtgt cttaccgggt tggactcaag acgatagtta ccggataagg cgcagcggtc
                                                                 4020
gggctgaacg gggggttcgt gcacacagcc cagcttggag cgaacgacct acaccgaact
                                                                 4080
gagataccta cagcgtgagc tatgagaaag cgccacgctt cccgaaggga gaaaggcgga
                                                                 4140
caggtateeg gtaageggea gggteggaac aggagagege acgagggage ttecaggggg
                                                                 4200
aaacgcctgg tatctttata gtcctgtcgg gtttcgccac ctctgacttg agcgtcgatt
                                                                 4260
tttgtgatgc tcgtcagggg ggcggagcct atggaaaaac gccagcaacg cggccttttt
                                                                 4320
acggttcctg gccttttgct ggccttttgc tcacatgttc tttcctgcgt tatcccctga
                                                                 4380
ttctgtggat aaccgtatta ccgcctttga gtgagctgat accgctcgcc gcagccgaac
                                                                 4440
gaccgagcgc agcgagtcag tgagcgagga agcggaagag cgcccaatac gcaaaccgcc
                                                                 4500
teteccegeg egitggeega ticattaatg cageagetge gegetegete geteactgag
                                                                 4560
geogeologic caaageologic geoteggee acctttggte geologicte agtgagegag
                                                                 4620
cgagcgcgca gagagggagt ggccaactcc atcactaggg gttccttgta gttaatgatt
                                                                 4680
aacccgccat gctacttatc tacgtagcca tgctctagga cattgattat tgactagtgg
                                                                 4740
agttccgcgt tacataactt acggtaaatg gcccgcctgg ctgaccgccc aacgaccccc
                                                                 4800
gcccattgac gtcaataatg acgtatgttc ccatagtaac gccaataggg actttccatt
                                                                 4860
gacgtcaatg ggtggagtat ttacggtaaa ctgcccactt ggcagtacat caagtgtatc
                                                                 4920
atatgccaag tacgcccct attgacgtca atgacggtaa atggcccgcc tggcattatg
                                                                 4980
cccagtacat gaccttatgg gactttccta cttggcagta catctacgta ttagtcatcg
                                                                 5040
ctattaccat ggtcgaggtg agccccacgt tctgcttcac tctccccatc tccccccct
                                                                 5100
ccccaccccc aattttgtat ttatttattt tttaattatt ttgtgcagcg atggggggg
                                                                 5160
5220
geggagaggt geggeggeag ceaateagag eggegegete egaaagttte ettttatgge
                                                                 5280
gaggeggegg eggeggegge cetataaaaa gegaagegeg eggegggegg gagtegetge
                                                                 5340
gegetgeett egeceegtge eeegeteege egeegeeteg egeegeeege eeeggetetg
                                                                 5400
actgaccgcg ttactaaaac aggtaagtcc ggcctccgcg ccgggttttg gcgcctcccg
                                                                 5460
cgggcgcccc cctcctcacg gcgagcgctg ccacgtcaga cgaagggcgc agcgagcgtc
                                                                 5520
ctgatccttc cgcccggacg ctcaggacag cggcccgctg ctcataagac tcggccttag
                                                                 5580
aaccccagta tcagcagaag gacattttag gacgggactt gggtgactct agggcactgg
                                                                 5640
ttttctttcc agagagcgga acaggcgagg aaaagtagtc ccttctcggc gattctgcgg
                                                                 5700
agggatetee gtggggeggt gaacgeegat gatgeeteta etaaceatgt teatgtttte
ttttttttt tacaggtcct gggtgacgaa cagggtaccg ccaccatggc caccggctct
cgcacaagcc tgctgctggc tttcggactg ctgtgcctgc cttggctcca ggagggctcc
gccgctagca tcgataccgt cgctatgtgc tggaggcttg ctgaaggctg tatgctgata
                                                                 5940
atcaccgctg caggttcagc gttttggcct ctgactgacg ctgaacctgg cggtgattat
caggacacaa ggcctgttac tagcactcac atggaacaaa tggcctctag cctggaggct
                                                                 6060
tgctgaaggc tgtatgctgt tcaatcgcgt attggtaatc gcgttttggc ctctgactga
                                                                 6120
egegattace aacqegattq aacaqqacac aaqqeetqtt actaqcacte acatqqaaca
                                                                 6180
aatggeetet ageetggagg ettgetgaag getgtatget gtgateatge tgaaaatggt
                                                                 6240
gcaegttttg gcctctgact gacgtgcacc attcagcatg atcacaggac acaaggcctg
                                                                 6300
ttactagcac tcacatggaa caaatggcct ctctagaat
                                                                 6339
SEQ ID NO: 18
                      moltype = DNA length = 6339
FEATURE
                      Location/Qualifiers
source
                      1..6339
                      mol_type = other DNA
                      organism = synthetic construct
SEOUENCE: 18
aatcaacctc tggattacaa aatttgtgaa agattgactg gtattcttaa ctatgttgct
ccttttacgc tatgtggata cgctgcttta atgcctttgt atcatgctat tgcttcccgt 120
atqqctttca ttttctcctc cttqtataaa tcctqqttqc tqtctcttta tqaqqaqttq
```

tggcccgttg tcaggcaacg tggcgtggtg tgcactgtgt ttgctgacgc aacccccact 240

gattagaaca	ttgccaccac	ctatcaactc	ctttccqqqa	ctttcacttt	cccctccct	300
	cggaactcat					360
	acaattccgt					420
	ccacctggat					480
	accttccttc					540
	ctcagacgag					600
						660
	agatctaact					720
	ttcacaaata					
	gtatcttatc					780
	tggcgggtta					840
	gcgcgctcgc					900
	ccgggcggcc					960
	cgatcgccct					1020
	ctggcggtaa					1080
tcttctactc	aggcaagtga	tgttattact	aatcaaagaa	gtattgcgac	aacggttaat	1140
ttgcgtgatg	gacagactct	tttactcggt	ggcctcactg	attataaaaa	cacttctcag	1200
gattctggcg	taccgttcct	gtctaaaatc	cctttaatcg	gcctcctgtt	tagctcccgc	1260
tctgattcta	acgaggaaag	cacgttatac	gtgctcgtca	aagcaaccat	agtacgcgcc	1320
ctgtagcggc	gcattaagcg	cggcgggtgt	ggtggttacg	cgcagcgtga	ccgctacact	1380
	ctagcgcccg					1440
	cgtcaagctc					1500
	gaccccaaaa					1560
	gtttttcgcc					1620
	ggaacaacac					1680
	tcggcctatt					1740
	atattaacgt					1800
	tgattatcaa					1860
	_				_	1920
	tetettgttt					1920
	aaatagctac					
	gtgatttgac					2040
	gcattgcatt					2100
	cttctcccgc					2160
	gctctgaggc					2220
	atgttggaat					2280
	atatggtgca					2340
gccccgacac	ccgccaacac	ccgctgacgc	gccctgacgg	gcttgtctgc	tcccggcatc	2400
cgcttacaga	caagctgtga	ccgtctccgg	gagctgcatg	tgtcagaggt	tttcaccgtc	2460
atcaccgaaa	cgcgcgagac	gaaagggcct	cgtgatacgc	ctatttttat	aggttaatgt	2520
catgataata	atggtttctt	agacgtcagg	tggcactttt	cggggaaatg	tgcgcggaac	2580
ccctatttgt	ttatttttct	aaatacattc	aaatatgtat	ccgctcatga	gacaataacc	2640
ctgataaatg	cttcaataat	attgaaaaag	gaagagtatg	agtattcaac	atttccgtgt	2700
cgcccttatt	cccttttttg	cggcattttg	ccttcctgtt	tttgctcacc	cagaaacgct	2760
ggtgaaagta	aaagatgctg	aagatcagtt	gggtgcacga	gtgggttaca	tcgaactgga	2820
	ggtaagatcc					2880
	gttctgctat					2940
	cgcatacact					3000
	acggatggca					3060
	gcggccaact					3120
	aacatggggg					3180
	ccaaacgacg					3240
	ttaactggcg					3300
	gataaagttg					3360
	aaatctggag					3420
	aagccctccc					3480
	aatagacaga					3540
	gtttactcat					3600
						3660
	gtgaagatcc					3720
	tgagcgtcag					3780
	gtaatctgct					3840
	caagagctac					
	actgtccttc					3900
	acatacctcg					3960
taagtcgtgt	cttaccgggt	tggactcaag	acgatagtta	ccggataagg	cgcagcggtc	4020
gggctgaacg	gggggttcgt	gcacacagcc	cagcttggag	cgaacgacct	acaccgaact	4080
gagataccta	cagcgtgagc	tatgagaaag	cgccacgctt	cccgaaggga	gaaaggcgga	4140
	gtaagcggca					4200
	tatctttata					4260
	tcgtcagggg					4320
						4380
	gccttttgct					
	aaccgtatta					4440
	agcgagtcag					4500
	cgttggccga					4560
gccgcccggg	caaagcccgg	gcgtcgggcg	acctttggtc	gcccggcctc	agtgagcgag	4620
cgagcgcgca	gagagggagt	ggccaactcc	atcactaggg	gttccttgta	gttaatgatt	4680
aacccgccat	gctacttatc	tacgtagcca	tgctctagga	cattgattat	tgactagtgg	4740
	tacataactt					4800
- 55		3			-	

```
gcccattgac gtcaataatg acgtatgttc ccatagtaac gccaataggg actttccatt
gacgtcaatg ggtggagtat ttacggtaaa ctgcccactt ggcagtacat caagtgtatc
                                                                   4920
atatgccaag tacgcccct attgacgtca atgacggtaa atggcccgcc tggcattatg
                                                                   4980
cccagtacat gaccttatgg gactttccta cttggcagta catctacgta ttagtcatcg
                                                                   5040
ctattaccat ggtcgaggtg agcccacgt tctgcttcac tctccccatc tccccccct
                                                                   5100
ccccaccccc aattitgtat ttatttattt tttaattatt ttgtgcagcg atggggggg
                                                                   5160
ggggggggg gggcgcgcgc caggcggggc ggggcggggc gaggggggg gcggggcgag
                                                                   5220
gcggagaggt gcggcggcag ccaatcagag cggcgcgctc cgaaagtttc cttttatggc
                                                                   5280
gaggeggegg eggeggege ectataaaaa gegaagegeg eggegggegg gagtegetge
                                                                   5340
gegetgeett egeceegtge eeegeteege egeegeeteg egeegeeege eeeggetetg
actgaccgcg ttactaaaac aggtaagtcc ggcctccgcg ccgggttttg gcgcctcccg
                                                                   5460
cgggcgcccc cctcctcacg gcgagcgctg ccacgtcaga cgaagggcgc agcgagcgtc
                                                                   5520
ctgatccttc cgcccggacg ctcaggacag cggcccgctg ctcataagac tcggccttag
aaccccagta tcagcagaag gacattttag gacgggactt gggtgactct agggcactgg
ttttctttcc agagagcgga acaggcgagg aaaagtagtc ccttctcggc gattctgcgg
agggatetee gtggggeggt gaacgeegat gatgeeteta etaaceatgt teatgtttte
ttttttttt tacaggtcct gggtgacgaa cagggtaccg ccaccatggc caccggctct
cgcacaagcc tgctgctggc tttcggactg ctgtgcctgc cttggctcca ggagggctcc
gccgctagca tcgataccgt cgctatgtgc tggaggcttg ctgaaggctg tatgctgagg
taatateetg acgeteagee gttttggeet etgactgaeg getgagegtg gatattaeet
caggacacaa ggcctgttac tagcactcac atggaacaaa tggcctctag cctggaggct
                                                                   6060
tgctgaaggc tgtatgctgt acagaatcag ataatcagcg ccgttttggc ctctgactga
                                                                   6120
cggcgctgat tctgattctg tacaggacac aaggcctgtt actagcactc acatggaaca
                                                                   6180
aatggcctct agcctggagg cttgctgaag gctgtatgct gtcatgttta aaaattcgct
                                                                   6240
gcgcgttttg gcctctgact gacgcgcagc gaatttaaac atgacaggac acaaggcctg
                                                                   6300
ttactagcac tcacatggaa caaatggcct ctctagaat
                                                                   6339
SEO ID NO: 19
                      moltype = DNA length = 6339
FEATURE
                      Location/Qualifiers
source
                      1..6339
                      mol_type = other DNA
                      organism = synthetic construct
SEOUENCE: 19
aatcaacctc tggattacaa aatttgtgaa agattgactg gtattcttaa ctatgttgct
cettttacgc tatgtggata egetgettta atgeetttgt atcatgetat tgetteeegt
atggetttea tttteteete ettgtataaa teetggttge tgtetettta tgaggagttg
tggcccgttg tcaggcaacg tggcgtggtg tgcactgtgt ttgctgacgc aacccccact
                                                                   240
ggttggggca ttgccaccac ctgtcagctc ctttccggga ctttcgcttt ccccctccct
                                                                   300
attgccacgg cggaactcat cgccgcctgc cttgcccgct gctggacagg ggctcggctg
                                                                   360
ttgggcactg acaattccgt ggtgttgtcg gggaaatcat cgtcctttcc ttggctgctc
                                                                   420
geetgtgttg ceacetggat tetgegeggg aegteettet getaegteee tteggeeete
                                                                   480
aatccagegg accttectte eegeggeetg etgeeggete tgeggeetet teegegtett
                                                                   540
cgccttcgcc ctcagacgag tcggatctcc ctttgggccg cctccccgcc taagcttatc
                                                                   600
gataccgtcg agatctaact tgtttattgc agcttataat ggttacaaat aaagcaatag
                                                                   660
catcacaaat ttcacaaata aagcattttt ttcactgcat tctagttgtg gtttgtccaa
                                                                   720
actcatcaat gtatcttatc atgtctggat ctcgacctcg actagagcat ggctacgtag
                                                                   780
ataagtagca tggcgggtta atcattaact acaaggaacc cctagtgatg gagttggcca
                                                                   840
ctccctctct gcgcgctcgc tcgctcactg aggccgggcg accaaaggtc gcccgacgcc
                                                                   900
cgggctttgc ccgggcggcc tcagtgagcg agcgagcgcg cagctggcgt aatagcgaag
                                                                   960
aggcccgcac cgatcgccct tcccaacagt tgcgcagcct gaatggcgaa tggcgattcc
                                                                   1020
gttgcaatgg ctggcggtaa tattgttctg gatattacca gcaaggccga tagtttgagt
tettetacte aggeaagtga tgttattact aateaaagaa gtattgegae aacggttaat
                                                                   1140
ttgcgtgatg gacagactct tttactcggt ggcctcactg attataaaaa cacttctcag
                                                                   1200
gattetggeg taccgtteet gtetaaaate cetttaateg geeteetgtt tageteeege
totgattota acgaggaaag cacgttatac gtgctcgtca aagcaaccat agtacgcgcc
ctgtagcggc gcattaagcg cggcgggtgt ggtggttacg cgcagcgtga ccgctacact
tgccagcgcc ctagcgcccg ctcctttcgc tttcttccct tcctttctcg ccacgttcgc
eggettteee egteaagete taaategggg geteeettta gggtteegat ttagtgettt
acggcacctc gaccccaaaa aacttgatta gggtgatggt tcacgtagtg ggccatcgcc
ctgatagacg gtttttcgcc ctttgacgtt ggagtccacg ttctttaata gtggactctt
gttccaaact ggaacaacac tcaaccctat ctcggtctat tcttttgatt tataagggat
tttqccqatt tcqqcctatt qqttaaaaaa tqaqctqatt taacaaaaat ttaacqcqaa
ttttaacaaa atattaacgt ttacaattta aatatttgct tatacaatct tcctgttttt
                                                                   1800
ggggcttttc tgattatcaa ccggggtaca tatgattgac atgctagttt tacgattacc
                                                                   1860
gttcatcgat tctcttgttt gctccagact ctcaggcaat gacctgatag cctttgtaga
                                                                   1920
gacctctcaa aaatagctac cctctccggc atgaatttat cagctagaac ggttgaatat
catattgatg gtgatttgac tgtctccggc ctttctcacc cgtttgaatc tttacctaca
                                                                   2040
cattactcag gcattgcatt taaaatatat gagggttcta aaaattttta tccttgcgtt
gaaataaagg cttctcccgc aaaagtatta cagggtcata atgtttttgg tacaaccgat
                                                                   2160
ttagetttat getetgagge tttattgett aattttgeta attetttgee ttgeetgtat
                                                                   2220
gatttattgg atgttggaat tcctgatgcg gtattttctc cttacgcatc tgtgcggtat
ttcacaccgc atatggtgca ctctcagtac aatctgctct gatgccgcat agttaagcca
geocegacae eegecaacae eegetgaege geoctgaegg gettgtetge teeeggeate
cgcttacaga caagctgtga ccgtctccgg gagctgcatg tgtcagaggt tttcaccgtc
                                                                   2460
atcaccgaaa cgcgcgagac gaaagggcct cgtgatacgc ctatttttat aggttaatgt
```

catgataata atggtttett agaegteagg tggeaetttt eggggaaatg tgegeggaae

```
ccctatttgt ttatttttct aaatacattc aaatatgtat ccgctcatga gacaataacc
ctgataaatg cttcaataat attgaaaaag gaagagtatg agtattcaac atttccgtgt
                                                                  2700
cgcccttatt cccttttttg cggcattttg ccttcctgtt tttgctcacc cagaaacgct
                                                                  2760
ggtgaaagta aaagatgctg aagatcagtt gggtgcacga gtgggttaca tcgaactgga
                                                                  2820
tctcaacagc ggtaagatcc ttgagagttt tcgccccgaa gaacgttttc caatgatgag
                                                                  2880
cacttttaaa gttctgctat gtggcgcggt attatcccgt attgacgccg ggcaagagca
                                                                  2940
actoggtogo ogcatacact attotoagaa tgacttggtt gagtactcac cagtoacaga
                                                                  3000
aaagcatctt acggatggca tgacagtaag agaattatgc agtgctgcca taaccatgag
                                                                  3060
tgataacact gcggccaact tacttctgac aacgatcgga ggaccgaagg agctaaccgc
                                                                  3120
ttttttgcac aacatggggg atcatgtaac tcgccttgat cgttgggaac cggagctgaa
tgaagccata ccaaacgacg agcgtgacac cacgatgcct gtagcaatgg caacaacgtt
                                                                  3240
gcgcaaacta ttaactggcg aactacttac tctagcttcc cggcaacaat taatagactg
                                                                  3300
gatggaggeg gataaagttg caggaccact tetgegeteg gecetteegg etggetggtt
                                                                  3360
tattgctgat aaatctggag ccggtgagcg tgggtctcgc ggtatcattg cagcactggg
gccagatggt aagccctccc gtatcgtagt tatctacacg acggggagtc aggcaactat
ggatgaacga aatagacaga tcgctgagat aggtgcctca ctgattaagc attggtaact
aaggatctag gtgaagatcc tttttgataa tctcatgacc aaaatccctt aacgtgagtt
ttcgttccac tgagcgtcag accccgtaga aaagatcaaa ggatcttctt gagatccttt
ttttctqcqc qtaatctqct qcttqcaaac aaaaaaacca ccqctaccaq cqqtqqtttq
tttgccggat caagagctac caactctttt tccgaaggta actggcttca gcagagcgca
                                                                  3840
gataccaaat actgtccttc tagtgtagcc gtagttaggc caccacttca agaactctgt
agcaccgcct acatacctcg ctctgctaat cctgttacca gtggctgctg ccagtggcga
                                                                  3960
taagtcgtgt cttaccgggt tggactcaag acgatagtta ccggataagg cgcagcggtc
                                                                  4020
gggctgaacg gggggttcgt gcacacagcc cagcttggag cgaacgacct acaccgaact
                                                                  4080
gagataccta cagcgtgagc tatgagaaag cgccacgctt cccgaaggga gaaaggcgga
                                                                  4140
caggtatccg gtaagcggca gggtcggaac aggagagcgc acgagggagc ttccaggggg
                                                                  4200
aaacqcctqq tatctttata qtcctqtcqq qtttcqccac ctctqacttq aqcqtcqatt
                                                                  4260
tttgtgatgc tcgtcagggg ggcggagcct atggaaaaac gccagcaacg cggccttttt
                                                                  4320
acggttcctg gccttttgct ggccttttgc tcacatgttc tttcctgcgt tatcccctga
                                                                  4380
ttetgtggat aaccgtatta eegeetttga gtgagetgat aeegetegee geageegaac
                                                                  4440
gaccgagcgc agcgagtcag tgagcgagga agcggaagag cgcccaatac gcaaaccgcc
                                                                  4500
teteccegeg egitggeega ticattaatg cageagetge gegetegete geteactgag
                                                                  4560
geegeeeggg caaageeegg gegtegggeg acetttggte geeeggeete agtgagegag
                                                                  4620
cgagegegea gagagggagt ggccaactcc atcactaggg gttccttgta gttaatgatt
                                                                  4680
aacccgccat gctacttatc tacgtagcca tgctctagga cattgattat tgactagtgg
                                                                  4740
agttccgcgt tacataactt acggtaaatg gcccgcctgg ctgaccgccc aacgaccccc
                                                                  4800
gcccattgac gtcaataatg acgtatgttc ccatagtaac gccaataggg actttccatt
                                                                  4860
gacgtcaatg ggtggagtat ttacggtaaa ctgcccactt ggcagtacat caagtgtatc
                                                                  4920
atatgccaag tacgcccct attgacgtca atgacggtaa atggcccgcc tggcattatg
                                                                  4980
cccagtacat gaccttatgg gactttccta cttggcagta catctacgta ttagtcatcg
                                                                  5040
ctattaccat ggtcgaggtg agcccacgt tctgcttcac tctccccatc tccccccct
                                                                  5100
ccccacccc aattttgtat ttatttattt tttaattatt ttgtgcagcg atggggggg
                                                                  5160
ggggggggg gggcgcgcgc caggcggggc ggggcggggc gaggggggg gcggggcgag
                                                                  5220
gcggagaggt gcggcggcag ccaatcagag cggcgcgctc cgaaagtttc cttttatggc
                                                                  5280
gaggeggegg eggeggegge eetataaaaa gegaagegeg eggegggegg gagtegetge
                                                                  5340
gegetgeett egeecegtge eeegeteege egeegeeteg egeegeeege eeeggetetg
                                                                  5400
actgaccgcg ttactaaaac aggtaagtcc ggcctccgcg ccgggttttg gcgcctcccg
                                                                  5460
cgggcgcccc cctcctcacg gcgagcgctg ccacgtcaga cgaagggcgc agcgagcgtc
                                                                  5520
ctgatccttc cgcccggacg ctcaggacag cggcccgctg ctcataagac tcggccttag
                                                                  5580
aaccccagta tcagcagaag gacattttag gacgggactt gggtgactct agggcactgg
ttttctttcc agagagcgga acaggcgagg aaaagtagtc ccttctcggc gattctgcgg
                                                                  5700
agggatetee gtggggeggt gaacgeegat gatgeeteta etaaceatgt teatgtttte
                                                                  5760
tttttttttt tacaggtcct gggtgacgaa cagggtaccg ccaccatggc caccggctct
                                                                  5820
cgcacaagcc tgctgctggc tttcggactg ctgtgcctgc cttggctcca ggagggctcc
geogetagea tegatacegt egetatgtge tggaggettg etgaaggetg tatgetgatg
                                                                  5940
aatcgggttg tctgaatcgc gttttggcct ctgactgacg cgattcagaa cccgattcat
                                                                  6000
caggacacaa ggcctgttac tagcactcac atggaacaaa tggcctctag cctggaggct
tgctgaaggc tgtatgctga acactttgct atatcatcct gcgtttttggc ctctgactga
cgcaggatga tagcaaagtg ttcaggacac aaggcetgtt actagcacte acatggaaca
                                                                  6180
aatggeetet ageetggagg ettgetgaag getgtatget gttetgtteg ttaagetaat
gctcqttttq qcctctqact qacqaqcatt aqcaacqaac aqaacaqqac acaaqqcctq
ttactagcac tcacatggaa caaatggcct ctctagaat
                                                                  6339
SEO ID NO: 20
                      moltype = DNA length = 6339
                      Location/Qualifiers
FEATURE
                      1..6339
source
                      mol_type = other DNA
                      organism = synthetic construct
SEQUENCE: 20
aatcaacctc tggattacaa aatttgtgaa agattgactg gtattcttaa ctatgttgct
ccttttacgc tatgtggata cgctgcttta atgcctttgt atcatgctat tgcttcccgt
atggctttca ttttctcctc cttgtataaa tcctggttgc tgtctcttta tgaggagttg
tggcccgttg tcaggcaacg tggcgtggtg tgcactgtgt ttgctgacgc aacccccact
ggttggggca ttgccaccac ctgtcagctc ctttccggga ctttcgcttt ccccctccct
```

attgccacgg cggaactcat cgccgcctgc cttgcccgct gctggacagg ggctcggctg 360

ttgggcactg acaattccgt ggtgttgtcg gggaaatcat cgtcctttcc ttggctgctc geetgtgttg ceacetggat tetgegeggg aegteettet getaegteee tteggeeete 480 aatccagegg accttectte eegeggeetg etgeeggete tgeggeetet teegegtett 540 cgccttcgcc ctcagacgag tcggatctcc ctttgggccg cctccccgcc taagcttatc 600 gataccgtcg agatctaact tgtttattgc agcttataat ggttacaaat aaagcaatag 660 catcacaaat ttcacaaata aagcattttt ttcactgcat tctagttgtg gtttgtccaa 720 actcatcaat gtatcttatc atgtctggat ctcgacctcg actagagcat ggctacgtag 780 ataagtagca tggcgggtta atcattaact acaaggaacc cctagtgatg gagttggcca 840 ctccctctct gcgcgctcgc tcgctcactg aggccgggcg accaaaggtc gcccgacgcc 900 cgggctttgc ccgggcggcc tcagtgagcg agcgagcgcg cagctggcgt aatagcgaag aggecegeae egategeeet teccaacagt tgegeageet gaatggegaa tggegattee 1020 gttgcaatgg ctggcggtaa tattgttctg gatattacca gcaaggccga tagtttgagt tottotacto aggoaagtga tgttattact aatcaaagaa gtattgcgac aacggttaat ttgcgtgatg gacagactct tttactcggt ggcctcactg attataaaaa cacttctcag gattetggeg taccgtteet gtetaaaate cetttaateg geeteetgtt tageteeege totgattota acgaggaaag cacgttatac gtgctcgtca aagcaaccat agtacgcgcc ctgtagcggc gcattaagcg cggcgggtgt ggtggttacg cgcagcgtga ccgctacact tgccagcgcc ctagcgcccg ctcctttcgc tttcttccct tcctttctcg ccacgttcgc eggettteee egteaagete taaategggg geteeettta gggtteegat ttagtgettt acggcacctc gaccccaaaa aacttgatta gggtgatggt tcacgtagtg ggccatcgcc 1560 ctgatagacg gtttttcgcc ctttgacgtt ggagtccacg ttctttaata gtggactctt 1620 gttccaaact ggaacaacac tcaaccctat ctcggtctat tcttttgatt tataagggat 1680 tttgccgatt tcggcctatt ggttaaaaaa tgagctgatt taacaaaaat ttaacgcgaa ttttaacaaa atattaacgt ttacaattta aatatttgct tatacaatct tcctgttttt 1740 1800 ggggcttttc tgattatcaa ccggggtaca tatgattgac atgctagttt tacgattacc 1860 gttcatcgat tctcttgttt gctccagact ctcaggcaat gacctgatag cctttgtaga 1920 gacctctcaa aaatagctac cctctccggc atgaatttat cagctagaac ggttgaatat 1980 catattgatg gtgatttgac tgtctccggc ctttctcacc cgtttgaatc tttacctaca 2040 cattactcag gcattgcatt taaaatatat gagggttcta aaaattttta tccttgcgtt 2100 gaaataaagg cttctcccgc aaaagtatta cagggtcata atgtttttgg tacaaccgat 2160 ttaqctttat qctctqaqqc tttattqctt aattttqcta attctttqcc ttqcctqtat 2220 gatttattgg atgttggaat tcctgatgcg gtattttctc cttacgcatc tgtgcggtat 2280 ttcacaccgc atatggtgca ctctcagtac aatctgctct gatgccgcat agttaagcca 2340 geocegacae cegecaacae cegetgaege geoctgaegg gettgtetge teceggeate 2400 cgcttacaga caagctgtga ccgtctccgg gagctgcatg tgtcagaggt tttcaccgtc 2460 atcaccgaaa cgcgcgagac gaaagggcct cgtgatacgc ctatttttat aggttaatgt 2520 catgataata atggtttctt agacgtcagg tggcactttt cggggaaatg tgcgcggaac 2580 ccctatttgt ttatttttct aaatacattc aaatatgtat ccgctcatga gacaataacc 2640 ctgataaatg cttcaataat attgaaaaag gaagagtatg agtattcaac atttccgtgt 2700 egecettatt ecettttttg eggeattttg cetteetgtt tttgeteace cagaaaeget 2760 ggtgaaagta aaagatgctg aagatcagtt gggtgcacga gtgggttaca tcgaactgga 2820 teteaacage ggtaagatee ttgagagttt tegeecegaa gaaegtttte caatgatgag 2880 cacttttaaa gttctgctat gtggcgcggt attatcccgt attgacgccg ggcaagagca 2940 actoggtogo ogoatacact attotoagaa tgacttggtt gagtactcac cagtoacaga 3000 aaagcatctt acggatggca tgacagtaag agaattatgc agtgctgcca taaccatgag 3060 tgataacact geggeeaact taettetgae aacgategga ggaeegaagg agetaaeege 3120 3180 ttttttgcac aacatggggg atcatgtaac tcgccttgat cgttgggaac cggagctgaa tgaagccata ccaaacgacg agcgtgacac cacgatgcct gtagcaatgg caacaacgtt 3240 gcgcaaacta ttaactggcg aactacttac tctagcttcc cggcaacaat taatagactg 3300 gatggaggcg gataaagttg caggaccact tetgegeteg gecetteegg etggetggtt 3360 tattgctgat aaatctggag ccggtgagcg tgggtctcgc ggtatcattg cagcactggg gccagatggt aagccctccc gtatcgtagt tatctacacg acggggagtc aggcaactat 3480 ggatgaacga aatagacaga tcgctgagat aggtgcctca ctgattaagc attggtaact 3540 3600 aaggatctag gtgaagatcc tttttgataa tctcatgacc aaaatccctt aacgtgagtt ttcgttccac tgagcgtcag accccgtaga aaagatcaaa ggatcttctt gagatccttt ttttctgcgc gtaatctgct gcttgcaaac aaaaaaacca ccgctaccag cggtggtttg tttgccggat caagagctac caactctttt tccgaaggta actggcttca gcagagcgca gataccaaat actgtccttc tagtgtagcc gtagttaggc caccacttca agaactctgt ageacceet acataceteg etetgetaat cetgttacea gtggetgetg ceagtggega taagtcgtgt cttaccgggt tggactcaag acgatagtta ccggataagg cgcagcggtc gggctgaacg gggggttcgt gcacacagcc cagcttggag cgaacgacct acaccgaact gagataccta cagcgtgagc tatgagaaag cgccacgctt cccgaaggga gaaaggcgga 4140 caggtatccg gtaagcggca gggtcggaac aggagagcgc acgagggagc ttccaggggg 4200 aaacgcctgg tatctttata gtcctgtcgg gtttcgccac ctctgacttg agcgtcgatt 4260 tttgtgatgc tcgtcagggg ggcggagcct atggaaaaac gccagcaacg cggccttttt acggtteetg geettttget ggeettttge teacatgtte ttteetgegt tateecetga 4380 ttctgtggat aaccgtatta ccgcctttga gtgagctgat accgctcgcc gcagccgaac 4440 gaccgagcgc agcgagtcag tgagcgagga agcggaagag cgcccaatac gcaaaccgcc 4500 teteceegeg egttggeega tteattaatg eageagetge gegetegete geteaetgag 4560 geogeologic caaageologic gegtegggeg acetttggte geologicte agtgagegag cgagcgcgca gagagggagt ggccaactcc atcactaggg gttccttgta gttaatgatt 4680 aaccegecat getaettate taegtageca tgetetagga cattgattat tgaetagtgg 4740 agttccgcgt tacataactt acggtaaatg gcccgcctgg ctgaccgccc aacgaccccc 4800 gcccattgac gtcaataatg acgtatgttc ccatagtaac gccaataggg actttccatt gacgtcaatg ggtggagtat ttacggtaaa ctgcccactt ggcagtacat caagtgtatc

```
atatgccaag tacgcccct attgacgtca atgacggtaa atggcccgcc tggcattatg
cccagtacat gaccttatgg gactttccta cttggcagta catctacgta ttagtcatcg
                                                                   5040
ctattaccat ggtcgaggtg agcccacgt tctgcttcac tctccccatc tccccccct
                                                                   5100
ccccacccc aattttgtat ttatttattt tttaattatt ttgtgcagcg atggggggg
                                                                   5160
ggggggggg gggcgcgcgc caggcggggc ggggcggggc gaggggcggg gcggggcgag
                                                                   5220
geggagaggt geggeggeag ceaateagag eggegegete egaaagttte ettttatgge
                                                                   5280
gaggeggegg eggeggege ectataaaaa gegaagegeg eggegggegg gagtegetge
                                                                   5340
gegetgeett egeceegtge eeegeteege egeegeeteg egeegeeege eeeggetetg
                                                                   5400
actgaccgcg ttactaaaac aggtaagtcc ggcctccgcg ccgggttttg gcgcctcccg
                                                                   5460
cgggcgcccc cctcctcacg gcgagcgctg ccacgtcaga cgaagggcgc agcgagcgtc
                                                                   5520
ctgatccttc cgcccggacg ctcaggacag cggcccgctg ctcataagac tcggccttag
                                                                   5580
aaccccagta tcagcagaag gacattttag gacgggactt gggtgactct agggcactgg
                                                                   5640
ttttctttcc agagagcgga acaggcgagg aaaagtagtc ccttctcggc gattctgcgg
agggatetee gtggggeggt gaacgeegat gatgeeteta etaaceatgt teatgtttte
ttttttttc tacaggtcct gggtgacgaa cagggtaccg ccaccatggc caccggctct
cgcacaagcc tgctgctggc tttcggactg ctgtgcctgc cttggctcca ggagggctcc
geogetagea tegatacegt egetatgtge tggaggettg etgaaggetg tatgetggag
cattagcaat gcgaacagaa gttttggcct ctgactgact tctgttcgtt gctaatgctc
caggacacaa ggcctgttac tagcactcac atggaacaaa tggcctctag cctggaggct
tgctgaaggc tgtatgctga aacataatgg attcagcagc gcgttttggc ctctgactga
                                                                   6120
cgcgctgctg accattatgt ttcaggacac aaggcctgtt actagcactc acatggaaca
                                                                   6180
aatggeetet ageetggagg ettgetgaag getgtatget gttatetttg egaagetgee
                                                                   6240
atcogttttg gcctctgact gacggatggc agccgcaaag ataacaggac acaaggcctg
                                                                   6300
ttactagcac tcacatggaa caaatggcct ctctagaat
                                                                   6339
SEQ ID NO: 21
                      moltype = DNA length = 6337
                      Location/Qualifiers
FEATURE
source
                      1..6337
                      mol type = other DNA
                      organism = synthetic construct
SEOUENCE: 21
aatcaacctc tggattacaa aatttgtgaa agattgactg gtattcttaa ctatgttgct
cettttacge tatgtggata egetgettta atgeetttgt ateatgetat tgetteeegt
                                                                   120
atggetttea tttteteete ettgtataaa teetggttge tgtetettta tgaggagttg
tggcccgttg tcaggcaacg tggcgtggtg tgcactgtgt ttgctgacgc aacccccact
                                                                   240
ggttggggca ttgccaccac ctgtcagctc ctttccggga ctttcgcttt ccccctccct
                                                                   300
attgccacgg cggaactcat cgccgcctgc cttgcccgct gctggacagg ggctcggctg
                                                                   360
ttgggcactg acaattccgt ggtgttgtcg gggaaatcat cgtcctttcc ttggctgctc
                                                                   420
geetgtgttg ceacetggat tetgegeggg aegteettet getaegteee tteggeeete
                                                                   480
aatccagegg accttectte eegeggeetg etgeeggete tgeggeetet teegegtett
                                                                   540
cgccttcgcc ctcagacgag tcggatctcc ctttgggccg cctccccgcc taagcttatc
                                                                   600
gataccgtcg agatctaact tgtttattgc agcttataat ggttacaaat aaagcaatag
                                                                   660
catcacaaat ttcacaaata aagcattttt ttcactgcat tctagttgtg gtttgtccaa
                                                                   720
actcatcaat gtatcttatc atgtctggat ctcgacctcg actagagcat ggctacgtag
                                                                   780
ataagtagca tggcgggtta atcattaact acaaggaacc cctagtgatg gagttggcca
                                                                   840
ctccctctct gcgcgctcgc tcgctcactg aggccgggcg accaaaggtc gcccgacgcc
                                                                   900
cgggctttgc ccgggcggcc tcagtgagcg agcgagcgcg cagctggcgt aatagcgaag
                                                                   960
aggecegeae egategeeet teccaacagt tgegeageet gaatggegaa tggegattee
                                                                   1020
gttgcaatgg ctggcggtaa tattgttctg gatattacca gcaaggccga tagtttgagt
                                                                   1080
tottotacto aggoaagtga tgttattact aatcaaagaa gtattgcgac aacggttaat
                                                                   1140
ttgcgtgatg gacagactct tttactcggt ggcctcactg attataaaaa cacttctcag
gattetggeg taccgtteet gtetaaaate cetttaateg geeteetgtt tageteeege
                                                                   1260
totgattota acgaggaaag cacgttatac gtgotogtoa aagcaaccat agtacgogco
                                                                   1320
ctgtagcggc gcattaagcg cggcgggtgt ggtggttacg cgcagcgtga ccgctacact
                                                                   1380
tgccagcgcc ctagcgcccg ctcctttcgc tttcttccct tcctttctcg ccacgttcgc
eggettteee egteaagete taaategggg geteeettta gggtteegat ttagtgettt
acggcacctc gaccccaaaa aacttgatta gggtgatggt tcacgtagtg ggccatcgcc
ctgatagacg gtttttcgcc ctttgacgtt ggagtccacg ttctttaata gtggactctt
gttccaaact ggaacaacac tcaaccctat ctcggtctat tcttttgatt tataagggat
tttgccgatt tcggcctatt ggttaaaaaa tgagctgatt taacaaaaat ttaacgcgaa
ttttaacaaa atattaacgt ttacaattta aatatttgct tatacaatct tcctgttttt
qqqqcttttc tqattatcaa ccqqqqtaca tatqattqac atqctaqttt tacqattacc
gttcatcgat tctcttgttt gctccagact ctcaggcaat gacctgatag cctttgtaga
gaccteteaa aaatagetae eeteteegge atgaatttat eagetagaae ggttgaatat
                                                                   1980
catattgatg gtgatttgac tgtctccggc ctttctcacc cgtttgaatc tttacctaca
                                                                   2040
cattactcag gcattgcatt taaaatatat gagggttcta aaaattttta tccttgcgtt
gaaataaagg cttctcccgc aaaagtatta cagggtcata atgtttttgg tacaaccgat
                                                                   2160
ttagetttat getetgagge tttattgett aattttgeta attetttgee ttgeetgtat
gatttattgg atgttggaat tcctgatgcg gtattttctc cttacgcatc tgtgcggtat
                                                                   2280
ttcacacege atatggtgca eteteagtae aatetgetet gatgeegeat agttaageea
georgacae eegecaacae eegetgaege geortgaegg gettgtetge teeeggeate
cgcttacaga caagctgtga ccgtctccgg gagctgcatg tgtcagaggt tttcaccgtc
                                                                   2460
atcaccgaaa cgcgcgagac gaaagggcct cgtgatacgc ctatttttat aggttaatgt
                                                                   2520
catgataata atggtttctt agacgtcagg tggcactttt cggggaaatg tgcgcggaac
                                                                   2580
ccctatttgt ttattttct aaatacattc aaatatgtat ccgctcatga gacaataacc
```

ctgataaatg cttcaataat attgaaaaag gaagagtatg agtattcaac atttccgtgt

```
cgcccttatt cccttttttg cggcattttg ccttcctgtt tttgctcacc cagaaacgct
ggtgaaagta aaagatgctg aagatcagtt gggtgcacga gtgggttaca tcgaactgga
                                                                  2820
teteaacage ggtaagatee ttgagagttt tegeecegaa gaacgtttte caatgatgag
                                                                  2880
cacttttaaa gttctgctat gtggcgcggt attatcccgt attgacgccg ggcaagagca
                                                                  2940
acteggtege egeatacact atteteagaa tgaettggtt gagtaeteae eagteacaga
                                                                  3000
aaagcatctt acggatggca tgacagtaag agaattatgc agtgctgcca taaccatgag
                                                                  3060
tgataacact gcggccaact tacttctgac aacgatcgga ggaccgaagg agctaaccgc
                                                                  3120
ttttttgcac aacatggggg atcatgtaac tcgccttgat cgttgggaac cggagctgaa
                                                                  3180
tgaagccata ccaaacgacg agcgtgacac cacgatgcct gtagcaatgg caacaacgtt
                                                                  3240
gcgcaaacta ttaactggcg aactacttac tctagcttcc cggcaacaat taatagactg
gatggaggcg gataaagttg caggaccact tetgegeteg geeetteegg etggetggtt
                                                                  3360
tattgctgat aaatctggag ccggtgagcg tgggtctcgc ggtatcattg cagcactggg
                                                                  3420
gccagatggt aagccctccc gtatcgtagt tatctacacg acggggagtc aggcaactat
ggatgaacga aatagacaga tcgctgagat aggtgcctca ctgattaagc attggtaact
aaggatctag gtgaagatcc tttttgataa tctcatgacc aaaatccctt aacgtgagtt
ttcgttccac tgagcgtcag accccgtaga aaagatcaaa ggatcttctt gagatccttt
ttttctgcgc gtaatctgct gcttgcaaac aaaaaaacca ccgctaccag cggtggtttg
tttgccggat caagagctac caactctttt tccgaaggta actggcttca gcagagcgca
gataccaaat actgtccttc tagtgtagcc gtagttaggc caccacttca agaactctgt
agcaccgcct acatacctcg ctctgctaat cctgttacca gtggctgctg ccagtggcga
                                                                  3960
taagtcgtgt cttaccgggt tggactcaag acgatagtta ccggataagg cgcagcggtc
                                                                  4020
gggctgaacg gggggttcgt gcacacagcc cagcttggag cgaacgacct acaccgaact
                                                                  4080
gagataccta cagcgtgagc tatgagaaag cgccacgctt cccgaaggga gaaaggcgga
                                                                  4140
caggtateeg gtaageggea gggteggaac aggagagege acgagggage ttecaggggg
                                                                  4200
aaacgcctgg tatctttata gtcctgtcgg gtttcgccac ctctgacttg agcgtcgatt
                                                                  4260
tttgtgatgc tcgtcagggg ggcggagcct atggaaaaac gccagcaacg cggccttttt
                                                                  4320
acggttcctg gccttttgct ggccttttgc tcacatgttc tttcctgcgt tatcccctga
                                                                  4380
ttotqtqqat aaccqtatta ccqcctttqa qtqaqctqat accqctcqcc qcaqccqaac
                                                                  4440
gaccgagcgc agcgagtcag tgagcgagga agcggaagag cgcccaatac gcaaaccgcc
                                                                  4500
teteceegeg egttggeega tteattaatg eageagetge gegetegete geteaetgag
                                                                  4560
geegeeeggg caaageeegg gegtegggeg acetttggte geeeggeete agtgagegag
                                                                  4620
cgagcgcgca gagagggagt ggccaactcc atcactaggg gttccttgta gttaatgatt
                                                                  4680
                                                                  4740
aacccqccat qctacttatc tacqtaqcca tqctctaqqa cattqattat tqactaqtqq
agtteegegt tacataactt aeggtaaatg geeegeetgg etgacegeee aaegaeeeee
                                                                  4800
gcccattgac gtcaataatg acgtatgttc ccatagtaac gccaataggg actttccatt
                                                                  4860
gacgtcaatg ggtggagtat ttacggtaaa ctgcccactt ggcagtacat caagtgtatc
                                                                  4920
atatgccaag tacgcccct attgacgtca atgacggtaa atggcccgcc tggcattatg
                                                                  4980
cccagtacat gaccttatgg gactttccta cttggcagta catctacgta ttagtcatcg
                                                                  5040
ctattaccat ggtcgaggtg agcccacgt tctgcttcac tctccccatc tccccccct
                                                                  5100
ccccacccc aattttgtat ttatttattt tttaattatt ttgtgcagcg atggggggg
                                                                  5160
ggggggggg gggcgcgc caggcggggc ggggcggggc gaggggcggg gcggggcgag
                                                                  5220
gcggagaggt gcggcggcag ccaatcagag cggcgcgctc cgaaagtttc cttttatggc
                                                                  5280
gaggeggegg eggeggege ectataaaaa gegaagegeg eggegggegg gagtegetge
                                                                  5340
gegetgeett egeceegtge eeegeteege egeegeeteg egeegeeege eeeggetetg
                                                                  5400
actgaccgcg ttactaaaac aggtaagtcc ggcctccgcg ccgggttttg gcgcctcccg
                                                                  5460
egggegeece ceteeteacg gegagegetg ceaegteaga egaagggege agegagegte
                                                                  5520
ctgatccttc cgcccggacg ctcaggacag cggcccgctg ctcataagac tcggccttag
                                                                  5580
aaccccagta tcagcagaag gacattttag gacgggactt gggtgactct agggcactgg
                                                                  5640
ttttctttcc agagagcgga acaggcgagg aaaagtagtc ccttctcggc gattctgcgg
                                                                  5700
agggatetee gtggggeggt gaacgeegat gatgeeteta etaaceatgt teatgtttte
                                                                  5760
tttttttttt tacaggtcct gggtgacgaa cagggtaccg ccaccatggc caccggctct
                                                                  5820
cgcacaagcc tgctgctggc tttcggactg ctgtgcctgc cttggctcca ggagggctcc
                                                                  5880
gccgctagca tcgataccgt cgctatgtgc tggaggcttg ctgaaggctg tatgctggct
                                                                  5940
cctccacttg gtggtttggt tttggcctct gactgacgcg gcaacattct ggtgattaca
ggacacaagg cetgttacta gcactcacat ggaacaaatg gcetetagee tggaggettg
ctgaaggctg tatgctgtca taatcgctat ttggtgcggc gttttggcct ctgactgacg
ccgcaccaaa gcgattatga caggacacaa ggcctgttac tagcactcac atggaacaaa
tggcctctag cctggaggct tgctgaaggc tgtatgctgt tctgatcctg aagttcgggt
tegttttgge etetgaetga egaaceegaa eeaggateag aacaggacae aaggeetgtt
actagcactc acatggaaca aatggcctct ctagaat
SEO ID NO: 22
                      moltype = DNA length = 6339
FEATURE
                      Location/Qualifiers
                      1..6339
source
                      mol type = other DNA
                      organism = synthetic construct
aatcaacctc tggattacaa aatttgtgaa agattgactg gtattcttaa ctatgttgct
cettttacgc tatgtggata cgctgcttta atgcctttgt atcatgctat tgcttcccgt
atggetttea tttteteete ettgtataaa teetggttge tgtetettta tgaggagttg
tggcccgttg tcaggcaacg tggcgtggtg tgcactgtgt ttgctgacgc aacccccact
ggttggggca ttgccaccac ctgtcagctc ctttccggga ctttcgcttt ccccctccct
attgccacgg cggaactcat cgccgcctgc cttgcccgct gctggacagg ggctcggctg
ttgggcactg acaattccgt ggtgttgtcg gggaaatcat cgtcctttcc ttggctgctc
```

geetgtgttg ceaectggat tetgegeggg acgteettet getaegteee tteggeeete 480

aatccagcgg	accttccttc	ccacaaccta	ctaccaactc	tacaacetet	ticcacatictt	540
	ctcagacgag					600
	agatctaact					660
	ttcacaaata	_	_			720
actcatcaat	gtatcttatc	atgtctggat	ctcgacctcg	actagagcat	ggctacgtag	780
ataagtagca	tggcgggtta	atcattaact	acaaggaacc	cctagtgatg	gagttggcca	840
	gcgcgctcgc					900
	ccgggcggcc					960
	cgatcgccct					1020
		_				1080
	ctggcggtaa					
	aggcaagtga					1140
	gacagactct					1200
gattctggcg	taccgttcct	gtctaaaatc	cctttaatcg	gcctcctgtt	tagctcccgc	1260
tctgattcta	acgaggaaag	cacgttatac	gtgctcgtca	aagcaaccat	agtacgcgcc	1320
ctgtagcggc	gcattaagcg	cggcgggtgt	ggtggttacg	cgcagcgtga	ccgctacact	1380
	ctagcgcccg					1440
	cgtcaagctc					1500
	gaccccaaaa					1560
						1620
	gtttttcgcc					
	ggaacaacac					1680
tttgccgatt	tcggcctatt	ggttaaaaaa	tgagctgatt	taacaaaaat	ttaacgcgaa	1740
ttttaacaaa	atattaacgt	ttacaattta	aatatttgct	tatacaatct	tcctgttttt	1800
ggggcttttc	tgattatcaa	ccggggtaca	tatgattgac	atgctagttt	tacgattacc	1860
	tctcttgttt					1920
	aaatagctac					1980
	gtgatttgac					2040
						2100
	gcattgcatt					
	cttctcccgc					2160
	gctctgaggc					2220
gatttattgg	atgttggaat	tcctgatgcg	gtattttctc	cttacgcatc	tgtgcggtat	2280
ttcacaccgc	atatggtgca	ctctcagtac	aatctgctct	gatgccgcat	agttaagcca	2340
gccccgacac	ccgccaacac	ccgctgacgc	gccctgacgg	gcttgtctgc	teceggeate	2400
	caagctgtga					2460
	cgcgcgagac					2520
	atggtttctt					2580
						2640
-	ttatttttct		-		-	
	cttcaataat					2700
	cccttttttg					2760
ggtgaaagta	aaagatgctg	aagatcagtt	gggtgcacga	gtgggttaca	tcgaactgga	2820
tctcaacagc	ggtaagatcc	ttgagagttt	tcgccccgaa	gaacgttttc	caatgatgag	2880
cacttttaaa	gttctgctat	gtggcgcggt	attatcccgt	attgacgccg	ggcaagagca	2940
actcggtcgc	cgcatacact	attctcagaa	tgacttggtt	gagtactcac	cagtcacaga	3000
	acggatggca					3060
	gcggccaact					3120
	aacatggggg					3180
	ccaaacgacg					3240
						3300
	ttaactggcg					
	gataaagttg					3360
	aaatctggag					3420
gccagatggt	aagccctccc	gtatcgtagt	tatctacacg	acggggagtc	aggcaactat	3480
ggatgaacga	aatagacaga	tcgctgagat	aggtgcctca	ctgattaagc	attggtaact	3540
gtcagaccaa	gtttactcat	atatacttta	gattgattta	aaacttcatt	tttaatttaa	3600
aaggatctag	gtgaagatcc	tttttgataa	tctcatgacc	aaaatccctt	aacgtgagtt	3660
	tgagcgtcag					3720
	gtaatctgct					3780
	caagagctac					3840
	actgtccttc					3900
						3960
	acatacctcg					
	cttaccgggt					4020
	gggggttcgt					4080
gagataccta	cagcgtgagc	tatgagaaag	cgccacgctt	cccgaaggga	gaaaggcgga	4140
caggtatccg	gtaagcggca	gggtcggaac	aggagagcgc	acgagggagc	ttccaggggg	4200
aaacqcctqq	tatctttata	atcctatcaa	qtttcqccac	ctctqacttq	agcqtcqatt	4260
	tcgtcagggg					4320
						4380
	gccttttgct					
	aaccgtatta					4440
gaccgagcgc	agcgagtcag	tgagcgagga	agcggaagag	cgcccaatac	gcaaaccgcc	4500
tctccccgcg	cgttggccga	ttcattaatg	cagcagctgc	gcgctcgctc	gctcactgag	4560
	caaagcccgg					4620
	gagagggagt					4680
						4740
	gctacttatc					
	tacataactt					4800
	gtcaataatg					4860
gacgtcaatg	ggtggagtat	ttacggtaaa	ctgcccactt	ggcagtacat	caagtgtatc	4920
	tacgccccct					4980
	gaccttatgg					5040
	5	J	55 5 - 4		5 9	

```
ctattaccat ggtcgaggtg agccccacgt tctgcttcac tctccccatc tccccccct
ccccacccc aattttgtat ttatttattt tttaattatt ttgtgcagcg atgggggcgg
                                                                  5160
5220
gcggagaggt gcggcggcag ccaatcagag cggcgcgctc cgaaagtttc cttttatggc
                                                                  5280
gaggeggegg eggeggegge cetataaaaa gegaagegeg eggegggegg gagtegetge
                                                                  5340
gegetgeett egeceegtge eeegeteege egeegeeteg egeegeeege eeeggetetg
                                                                  5400
actgaccgcg ttactaaaac aggtaagtcc ggcctccgcg ccgggttttg gcgcctcccg
                                                                  5460
egggegeece ectecteacg gegagegetg ecaegteaga egaagggege agegagegte
                                                                  5520
ctgatccttc cgcccggacg ctcaggacag cggcccgctg ctcataagac tcggccttag
                                                                  5580
aaccccagta tcagcagaag gacattttag gacgggactt gggtgactct agggcactgg
ttttctttcc agagagcgga acaggcgagg aaaagtagtc ccttctcggc gattctgcgg
                                                                  5700
agggatetee gtggggeggt gaacgeegat gatgeeteta etaaceatgt teatgtttte
                                                                  5760
ttttttttttt tacaggteet gggtgaegaa cagggtaeeg ceaceatgge caeeggetet
cgcacaagcc tgctgctggc tttcggactg ctgtgcctgc cttggctcca ggagggctcc
gccgctagca tcgataccgt cgctatgtgc tggaggcttg ctgaaggctg tatgctgaaa
                                                                  5940
tetteeggtg gtteeactge gttttggeet etgactgaeg eagtggaace eggaagattt
caggacacaa ggcctgttac tagcactcac atggaacaaa tggcctctag cctggaggct
tgctgaaggc tgtatgctga tatcctgaat atggtatgca gcgttttggc ctctgactga
cgctgcatac cattcaggat atcaggacac aaggcctgtt actagcactc acatggaaca
aatqqcctct aqcctqqaqq cttqctqaaq qctqtatqct qtttaaaqct caaacqcqtt
                                                                  6240
cgccgttttg gcctctgact gacggcgaac gcgtgagctt taaacaggac acaaggcctg
                                                                  6300
ttactagcac tcacatggaa caaatggcct ctctagaat
                      moltype = DNA length = 6339
SEO ID NO: 23
FEATURE
                      Location/Qualifiers
                      1..6339
source
                      mol_type = other DNA
                      organism = synthetic construct
SEOUENCE: 23
aatcaacctc tggattacaa aatttgtgaa agattgactg gtattcttaa ctatgttgct
cettttacqc tatqtqqata cqctqcttta atqcctttqt atcatqctat tqcttcccqt
                                                                  120
atggetttea tttteteete ettgtataaa teetggttge tgtetettta tgaggagttg
                                                                  180
tggcccgttg tcaggcaacg tggcgtggtg tgcactgtgt ttgctgacgc aaccccact
                                                                  240
qqttqqqqca ttqccaccac ctqtcaqctc ctttccqqqa ctttcqcttt cccctccct
                                                                  300
attgccacgg cggaactcat cgccgcctgc cttgcccgct gctggacagg ggctcggctg
                                                                  360
ttgggcactg acaattccgt ggtgttgtcg gggaaatcat cgtcctttcc ttggctgctc
                                                                  420
geetgtgttg ccacetggat tetgegeggg aegteettet getaegteee tteggeeete
                                                                  480
aatccagegg acctteette eegeggeetg etgeeggete tgeggeetet teegegtett
                                                                  540
cgccttcgcc ctcagacgag tcggatctcc ctttgggccg cctccccgcc taagcttatc
                                                                  600
gataccgtcg agatctaact tgtttattgc agcttataat ggttacaaat aaagcaatag
                                                                  660
catcacaaat ttcacaaata aagcattttt ttcactgcat tctagttgtg gtttgtccaa
                                                                  720
actcatcaat gtatcttatc atgtctggat ctcgacctcg actagagcat ggctacgtag
                                                                  780
ataagtagca tggcgggtta atcattaact acaaggaacc cctagtgatg gagttggcca
                                                                  840
ctccctctct gcgcgctcgc tcgctcactg aggccgggcg accaaaggtc gcccgacgcc
                                                                  900
cgggctttgc ccgggcggcc tcagtgagcg agcgagcgcg cagctggcgt aatagcgaag
                                                                  960
aggecegeae egategeeet teccaacagt tgegeageet gaatggegaa tggegattee
                                                                  1020
gttgcaatgg ctggcggtaa tattgttctg gatattacca gcaaggccga tagtttgagt
                                                                  1080
tottotacto aggoaagtga tgttattact aatcaaagaa gtattgogac aacggttaat
                                                                  1140
ttgcgtgatg gacagactct tttactcggt ggcctcactg attataaaaa cacttctcag
                                                                  1200
gattctggcg taccgttcct gtctaaaatc cctttaatcg gcctcctgtt tagctcccgc
                                                                  1260
totgattota acgaggaaag cacgttatac gtgctcgtca aagcaaccat agtacgcgcc
ctgtagcggc gcattaagcg cggcgggtgt ggtggttacg cgcagcgtga ccgctacact
                                                                  1380
tgccagcgcc ctagcgcccg ctcctttcgc tttcttccct tcctttctcg ccacgttcgc
                                                                  1440
cggctttccc cgtcaagctc taaatcgggg gctcccttta gggttccgat ttagtgcttt
                                                                  1500
acggcacctc gaccccaaaa aacttgatta gggtgatggt tcacgtagtg ggccatcgcc
ctgatagacg gtttttcgcc ctttgacgtt ggagtccacg ttctttaata gtggactctt
gttccaaact ggaacaacac tcaaccctat ctcggtctat tcttttgatt tataagggat
tttgccgatt tcggcctatt ggttaaaaaa tgagctgatt taacaaaaat ttaacgcgaa
ttttaacaaa atattaacgt ttacaattta aatatttgct tatacaatct tcctgttttt
ggggcttttc tgattatcaa ccggggtaca tatgattgac atgctagttt tacgattacc
                                                                  1860
gttcatcgat tctcttgttt gctccagact ctcaggcaat gacctgatag cctttgtaga
qacctctcaa aaatagctac cctctccqqc atqaatttat caqctagaac qqttqaatat
catattgatg gtgatttgac tgtctccggc ctttctcacc cgtttgaatc tttacctaca
                                                                  2040
cattactcag gcattgcatt taaaatatat gagggttcta aaaattttta tccttgcgtt
                                                                  2100
gaaataaagg cttctcccgc aaaagtatta cagggtcata atgtttttgg tacaaccgat
                                                                  2160
ttagetttat getetgagge tttattgett aattttgeta attetttgee ttgeetgtat
gatttattgg atgttggaat teetgatgeg gtattttete ettaegeate tgtgeggtat
                                                                  2280
ttcacaccgc atatggtgca ctctcagtac aatctgctct gatgccgcat agttaagcca
geocegacae cegecaacae cegetgaege geoctgaegg gettgtetge teeeggeate
                                                                  2400
cgcttacaga caagctgtga ccgtctccgg gagctgcatg tgtcagaggt tttcaccgtc
                                                                  2460
atcaccgaaa cgcgcgagac gaaagggcct cgtgatacgc ctatttttat aggttaatgt
catgataata atggtttctt agacgtcagg tggcactttt cggggaaatg tgcgcggaac
contattigt thattitict anatacatte anatatgiat cogeteatga gacantanee
ctgataaatg cttcaataat attgaaaaag gaagagtatg agtattcaac atttccgtgt
egecettatt ecettittig eggeattitig eetteetgit titigeteace eagaaaeget
ggtgaaagta aaagatgctg aagatcagtt gggtgcacga gtgggttaca tcgaactgga
```

```
tctcaacagc ggtaagatcc ttgagagttt tcgccccgaa gaacgttttc caatgatgag
cacttttaaa gttctgctat gtggcgcggt attatcccgt attgacgccg ggcaagagca
                                                                  2940
actoggtogo ogcatacact attotoagaa tgacttggtt gagtactcac cagtcacaga
                                                                  3000
aaagcatctt acggatggca tgacagtaag agaattatgc agtgctgcca taaccatgag
                                                                  3060
tgataacact gcggccaact tacttctgac aacgatcgga ggaccgaagg agctaaccgc
                                                                  3120
ttttttgcac aacatggggg atcatgtaac tcgccttgat cgttgggaac cggagctgaa
                                                                  3180
tgaagccata ccaaacgacg agcgtgacac cacgatgcct gtagcaatgg caacaacgtt
                                                                  3240
gcgcaaacta ttaactggcg aactacttac tctagcttcc cggcaacaat taatagactg
                                                                  3300
gatggaggcg gataaagttg caggaccact tetgegeteg gecetteegg etggetggtt
                                                                  3360
tattgctgat aaatctggag ccggtgagcg tgggtctcgc ggtatcattg cagcactggg
gccagatggt aagccctccc gtatcgtagt tatctacacg acggggagtc aggcaactat
                                                                  3480
ggatgaacga aatagacaga tcgctgagat aggtgcctca ctgattaagc attggtaact
                                                                  3540
aaggatctag gtgaagatcc tttttgataa tctcatgacc aaaatccctt aacgtgagtt
ttcgttccac tgagcgtcag accccgtaga aaagatcaaa ggatcttctt gagatccttt
ttttctgcgc gtaatctgct gcttgcaaac aaaaaaacca ccgctaccag cggtggtttg
                                                                  3780
tttgccggat caagagctac caactctttt tccgaaggta actggcttca gcagagcgca
gataccaaat actgtccttc tagtgtagcc gtagttaggc caccacttca agaactctgt
agcaccgcct acatacctcg ctctgctaat cctgttacca gtggctgctg ccagtggcga
taagtcgtgt cttaccgggt tggactcaag acgatagtta ccggataagg cgcagcggtc
gggctgaacg gggggttcgt gcacacagcc cagcttggag cgaacgacct acaccgaact
                                                                  4080
gagataccta cagcgtgagc tatgagaaag cgccacgctt cccgaaggga gaaaggcgga
                                                                  4140
caggtateeg gtaageggea gggteggaac aggagagege acgagggage ttecaggggg
                                                                  4200
aaacgcctgg tatctttata gtcctgtcgg gtttcgccac ctctgacttg agcgtcgatt
                                                                  4260
tttgtgatgc tcgtcagggg ggcggagcct atggaaaaac gccagcaacg cggccttttt
                                                                  4320
acggttcctg gccttttgct ggccttttgc tcacatgttc tttcctgcgt tatcccctga
                                                                  4380
ttctgtggat aaccgtatta ccgcctttga gtgagctgat accgctcgcc gcagccgaac
                                                                  4440
gaccgagcgc agcgagtcag tgagcgagga agcggaagag cgcccaatac gcaaaccgcc
                                                                  4500
totococqcq cqttqqccqa ttcattaatq caqcaqctqc qcqctcqctc qctcactqaq
                                                                  4560
geogeologic caaageologi gegtegggeg acetttggte geologicete agtgagegag
                                                                  4620
cgagegegea gagagggagt ggccaactee atcactaggg gtteettgta gttaatgatt
                                                                  4680
aacccgccat gctacttatc tacgtagcca tgctctagga cattgattat tgactagtgg
                                                                  4740
agtteegegt tacataactt aeggtaaatg geeegeetgg etgaeegeee aaegaeeeee
                                                                  4800
qcccattqac qtcaataatq acqtatqttc ccataqtaac qccaataqqq actttccatt
                                                                  4860
gacgtcaatg ggtggagtat ttacggtaaa ctgcccactt ggcagtacat caagtgtatc
                                                                  4920
atatgccaag tacgcccct attgacgtca atgacggtaa atggcccgcc tggcattatg
                                                                  4980
cccagtacat gaccttatgg gactttccta cttggcagta catctacgta ttagtcatcg
                                                                  5040
ctattaccat ggtcgaggtg agccccacgt tctgcttcac tctccccatc tccccccct
                                                                  5100
ccccacccc aattttgtat ttatttattt tttaattatt ttgtgcagcg atggggggg
                                                                  5160
ggggggggg gggcgcgcgc caggcggggc ggggcggggc gaggggcggg gcggggcgag
                                                                  5220
geggagaggt geggeggeag ceaateagag eggegegete egaaagttte ettttatgge
                                                                  5280
gaggeggegg eggeggege eetataaaaa gegaagegeg eggegggegg gagtegetge
                                                                  5340
gegetgeett egeceegtge eeegeteege egeegeeteg egeegeeege eeeggetetg
                                                                  5400
actgaccgcg ttactaaaac aggtaagtcc ggcctccgcg ccgggttttg gcgcctcccg
                                                                  5460
egggegeece ceteeteacg gegagegetg ceaegteaga egaagggege agegagegte
                                                                  5520
ctgatccttc cgcccggacg ctcaggacag cggcccgctg ctcataagac tcggccttag
                                                                  5580
aaccccagta tcagcagaag gacattttag gacgggactt gggtgactct agggcactgg
                                                                  5640
ttttctttcc agagagcgga acaggcgagg aaaagtagtc ccttctcggc gattctgcgg
                                                                  5700
agggatetee gtggggeggt gaacgeegat gatgeeteta etaaceatgt teatgtttte
                                                                  5760
ttttttttc tacaggtcct gggtgacgaa cagggtaccg ccaccatggc caccggctct
                                                                  5820
cgcacaagcc tgctgctggc tttcggactg ctgtgcctgc cttggctcca ggagggctcc
                                                                  5880
gccgctagca tcgataccgt cgctatgtgc tggaggcttg ctgaaggctg tatgctgtaa
                                                                  5940
taaaggtctg ggaatcaccc gttttggcct ctgactgacg ggtgattccg acctttatta
                                                                  6000
caggacacaa ggcctgttac tagcactcac atggaacaaa tggcctctag cctggaggct
                                                                  6060
tgctgaaggc tgtatgctgt aatacgccag atcaccatca gcgttttggc ctctgactga
cgctgatggt gctggcgtat tacaggacac aaggcctgtt actagcactc acatggaaca
aatggcctct agcctggagg cttgctgaag gctgtatgct gatacagaaa cgaaggttca
ggccgttttg gcctctgact gacggcctga acccgtttct gtatcaggac acaaggcctg
                                                                  6300
ttactagcac tcacatggaa caaatggcct ctctagaat
                      moltype = DNA length = 6339
FEATURE
                      Location/Qualifiers
                      1..6339
source
                      mol_type = other DNA
                      organism = synthetic construct
aatcaacctc tggattacaa aatttgtgaa agattgactg gtattcttaa ctatgttgct
ccttttacgc tatgtggata cgctgcttta atgcctttgt atcatgctat tgcttcccgt
atggetttea tttteteete ettgtataaa teetggttge tgtetettta tgaggagttg
                                                                  180
tggcccgttg tcaggcaacg tggcgtggtg tgcactgtgt ttgctgacgc aaccccact
                                                                  240
ggttggggca ttgccaccac ctgtcagctc ctttccggga ctttcgcttt ccccctccct
attgccacgg cggaactcat cgccgcctgc cttgcccgct gctggacagg ggctcggctg
ttgggcactg acaattccgt ggtgttgtcg gggaaatcat cgtcctttcc ttggctgctc
geetgtgttg ceacetggat tetgegeggg aegteettet getaegteee tteggeeete
                                                                  480
aatccagegg acctteette eegeggeetg etgeeggete tgeggeetet teegegtett
                                                                  540
```

egeettegee eteagaegag teggatetee etttgggeeg eeteeegee taagettate

gataccgtcg	agatctaact	tgtttattgc	agcttataat	ggttacaaat	aaagcaatag	660
	ttcacaaata					720
	gtatcttatc					780
	tggcgggtta					840
	gcgcgctcgc					900
cgggctttgc	ccgggcggcc	tcagtgagcg	agcgagcgcg	cagctggcgt	aatagcgaag	960
aggcccgcac	cgatcgccct	tcccaacagt	tgcgcagcct	gaatggcgaa	tggcgattcc	1020
gttgcaatgg	ctggcggtaa	tattgttctg	gatattacca	gcaaggccga	tagtttgagt	1080
tcttctactc	aggcaagtga	tgttattact	aatcaaagaa	gtattgcgac	aacggttaat	1140
ttgcgtgatg	gacagactct	tttactcggt	ggcctcactg	attataaaaa	cacttctcag	1200
gattctggcg	taccgttcct	gtctaaaatc	cctttaatcg	gcctcctgtt	tagctcccgc	1260
tctgattcta	acgaggaaag	cacgttatac	gtgctcgtca	aagcaaccat	agtacgcgcc	1320
ctgtagcggc	gcattaagcg	cggcgggtgt	ggtggttacg	cgcagcgtga	ccgctacact	1380
tgccagcgcc	ctagcgcccg	ctcctttcgc	tttcttccct	tcctttctcg	ccacgttcgc	1440
cggctttccc	cgtcaagctc	taaatcgggg	gctcccttta	gggttccgat	ttagtgcttt	1500
acggcacctc	gaccccaaaa	aacttgatta	gggtgatggt	tcacgtagtg	ggccatcgcc	1560
ctgatagacg	gtttttcgcc	ctttgacgtt	ggagtccacg	ttctttaata	gtggactctt	1620
gttccaaact	ggaacaacac	tcaaccctat	ctcggtctat	tcttttgatt	tataagggat	1680
tttgccgatt	tcggcctatt	ggttaaaaaa	tgagctgatt	taacaaaaat	ttaacgcgaa	1740
ttttaacaaa	atattaacgt	ttacaattta	aatatttgct	tatacaatct	tcctgttttt	1800
ggggcttttc	tgattatcaa	ccggggtaca	tatgattgac	atgctagttt	tacgattacc	1860
gttcatcgat	tctcttgttt	gctccagact	ctcaggcaat	gacctgatag	cctttgtaga	1920
	aaatagctac					1980
catattgatg	gtgatttgac	tgtctccggc	ctttctcacc	cgtttgaatc	tttacctaca	2040
cattactcag	gcattgcatt	taaaatatat	gagggttcta	aaaattttta	tccttgcgtt	2100
gaaataaagg	cttctcccgc	aaaagtatta	cagggtcata	atgtttttgg	tacaaccgat	2160
ttagctttat	gctctgaggc	tttattgctt	aattttgcta	attctttgcc	ttgcctgtat	2220
gatttattgg	atgttggaat	tcctgatgcg	gtattttctc	cttacgcatc	tgtgcggtat	2280
ttcacaccgc	atatggtgca	ctctcagtac	aatctgctct	gatgccgcat	agttaagcca	2340
gccccgacac	ccgccaacac	ccgctgacgc	gccctgacgg	gcttgtctgc	tcccggcatc	2400
cgcttacaga	caagctgtga	ccgtctccgg	gagctgcatg	tgtcagaggt	tttcaccgtc	2460
atcaccgaaa	cgcgcgagac	gaaagggcct	cgtgatacgc	ctatttttat	aggttaatgt	2520
catgataata	atggtttctt	agacgtcagg	tggcactttt	cggggaaatg	tgcgcggaac	2580
	ttatttttct					2640
ctgataaatg	cttcaataat	attgaaaaag	gaagagtatg	agtattcaac	atttccgtgt	2700
cgcccttatt	cccttttttg	cggcattttg	ccttcctgtt	tttgctcacc	cagaaacgct	2760
ggtgaaagta	aaagatgctg	aagatcagtt	gggtgcacga	gtgggttaca	tcgaactgga	2820
	ggtaagatcc					2880
	gttctgctat					2940
acteggtege	cgcatacact	attctcagaa	tgacttggtt	gagtactcac	cagtcacaga	3000
	acggatggca					3060
	gcggccaact					3120
	aacatggggg					3180
	ccaaacgacg					3240
	ttaactggcg					3300
	gataaagttg					3360
	aaatctggag					3420
	aagccctccc					3480
	aatagacaga					3540
	gtttactcat					3600
	gtgaagatcc					3660
	tgagcgtcag					3720
	gtaatctgct					3780
	caagagctac					3840
	actgtccttc					3900
					ccagtggcga	
	cttaccgggt					4020
	gggggttcgt					4080
	cagcgtgagc					4140
	gtaagcggca					4200 4260
	tatctttata					4320
	tcgtcagggg					
	gccttttgct					4380
	aaccgtatta					4440
	agcgagtcag					4500
	cgttggccga					4560
	caaagcccgg					4620
	gagaggagt					4680
aacccgccat	gctacttatc	tacgtagcca	tgctctagga	cattgattat	tgactagtgg	4740
	tacataactt					4800
gcccattgac	gtcaataatg	acgtatgttc	ccatagtaac	gccaataggg	actttccatt	4860
gacgtcaatg	ggtggagtat	ttacggtaaa	ctgcccactt	ggcagtacat	caagtgtatc	4920
	tacgccccct					4980
	gaccttatgg					5040
	ggtcgaggtg					5100
	aattttgtat					5160
	- 3			5 55-5	55555-55	

```
ggggggggg gggcgcgcgc caggcggggc ggggcggggc gaggggcggg gcggggcgag
geggagaggt geggeggeag ceaateagag eggegegete egaaagttte ettttatgge
                                                                   5280
gaggeggegg eggeggegge ectataaaaa gegaagegeg eggegggegg gagtegetge
                                                                   5340
gegetgeett egeceegtge eeegeteege egeegeeteg egeegeeege eeeggetetg
                                                                   5400
actgaccgcg ttactaaaac aggtaagtcc ggcctccgcg ccgggttttg gcgcctcccg
                                                                   5460
egggegeece cetecteacg gegagegetg ceaegteaga egaagggege agegagegte
                                                                   5520
ctgatccttc cgcccggacg ctcaggacag cggcccgctg ctcataagac tcggccttag
                                                                   5580
aaccccagta tcagcagaag gacattttag gacgggactt gggtgactct agggcactgg
                                                                   5640
ttttctttcc agagagcgga acaggcgagg aaaagtagtc ccttctcggc gattctgcgg
                                                                   5700
agggatetee gtggggeggt gaacgeegat gatgeeteta etaaceatgt teatgtttte
                                                                   5760
ttttttttt tacaggtcct gggtgacgaa cagggtaccg ccaccatggc caccggctct
                                                                   5820
cgcacaagcc tgctgctggc tttcggactg ctgtgcctgc cttggctcca ggagggctcc
                                                                   5880
gccgctagca tcgataccgt cgctatgtgc tggaggcttg ctgaaggctg tatgctgtca
                                                                   5940
gatcgctgtg gtaaacaggc gttttggcct ctgactgacg cctgtttacc agcgatctga
caggacacaa ggcctgttac tagcactcac atggaacaaa tggcctctag cctggaggct
tgctgaaggc tgtatgctga gaatcagatc agatagcgat ccgttttggc ctctgactga
cggatcgcta tctgctgatt ctcaggacac aaggcctgtt actagcactc acatggaaca
aatggcctct agcctggagg cttgctgaag gctgtatgct gaaacatgcc aacagcagaa
tgccgttttg gcctctgact gacggcattc tgctgggcat gtttcaggac acaaggcctg
ttactagcac tcacatggaa caaatggcct ctctagaat
SEQ ID NO: 25
                      moltype = DNA length = 6339
FEATURE
                       Location/Qualifiers
source
                      1..6339
                      mol type = other DNA
                      organism = synthetic construct
SEQUENCE: 25
aatcaacctc tqqattacaa aatttqtqaa aqattqactq qtattcttaa ctatqttqct
cettttacge tatgtggata egetgettta atgeetttgt ateatgetat tgetteeegt
                                                                   120
atggetttea tttteteete ettgtataaa teetggttge tgtetetta tgaggagttg
tggcccgttg tcaggcaacg tggcgtggtg tgcactgtgt ttgctgacgc aacccccact
                                                                   240
ggttggggca ttgccaccac ctgtcagctc ctttccggga ctttcgcttt ccccctccct
                                                                   300
attgccacgg cggaactcat cgccgcctgc cttgcccgct gctggacagg ggctcggctg
                                                                   360
ttgggcactg acaattccgt ggtgttgtcg gggaaatcat cgtcctttcc ttggctgctc
                                                                   420
gcctgtgttg ccacctggat tctgcgcggg acgtccttct gctacgtccc ttcggccctc
                                                                   480
aatccagegg acctteette eegeggeetg etgeeggete tgeggeetet teegegtett
                                                                   540
egeettegee eteagaegag teggatetee etttgggeeg eeteeegee taagettate
                                                                   600
gataccgtcg agatctaact tgtttattgc agcttataat ggttacaaat aaagcaatag
                                                                   660
catcacaaat ttcacaaata aagcattttt ttcactgcat tctagttgtg gtttgtccaa
                                                                   720
acticated gtatettate atgtetggat etegaceteg actagageat ggetaegtag
                                                                   780
ataagtagca tggcgggtta atcattaact acaaggaacc cctagtgatg gagttggcca
                                                                   840
ctccctctct gegegetege tegeteactg aggeegggeg accaaaggte geeegaegee
                                                                   900
cgggctttgc ccgggcggcc tcagtgagcg agcgagcgcg cagctggcgt aatagcgaag
                                                                   960
aggecegeae egategeeet teccaacagt tgegeageet gaatggegaa tggegattee
                                                                   1020
gttgcaatgg ctggcggtaa tattgttctg gatattacca gcaaggccga tagtttgagt
                                                                   1080
tottotacto aggoaagtga tgttattact aatcaaagaa gtattgcgac aacggttaat
                                                                   1140
ttgcgtgatg gacagactct tttactcggt ggcctcactg attataaaaa cacttctcag
                                                                   1200
gattctggcg taccgttcct gtctaaaatc cctttaatcg gcctcctgtt tagctcccgc
                                                                   1260
totgattota acgaggaaag cacgttatac gtgctcgtca aagcaaccat agtacgcgcc
                                                                   1320
ctgtagcggc gcattaagcg cggcgggtgt ggtggttacg cgcagcgtga ccgctacact
                                                                   1380
tgccagcgcc ctagcgcccg ctcctttcgc tttcttccct tcctttctcg ccacgttcgc
                                                                   1440
cggctttccc cgtcaagctc taaatcgggg gctcccttta gggttccgat ttagtgcttt
                                                                   1500
acggcacctc gaccccaaaa aacttgatta gggtgatggt tcacgtagtg ggccatcgcc
                                                                   1560
ctgatagacg gtttttcgcc ctttgacgtt ggagtccacg ttctttaata gtggactctt
                                                                   1620
gttccaaact ggaacaacac tcaaccctat ctcggtctat tcttttgatt tataagggat
tttgccgatt tcggcctatt ggttaaaaaa tgagctgatt taacaaaaat ttaacgcgaa
ttttaacaaa atattaacgt ttacaattta aatatttgct tatacaatct tcctgttttt
ggggcttttc tgattatcaa ccggggtaca tatgattgac atgctagttt tacgattacc
gttcatcgat tctcttgttt gctccagact ctcaggcaat gacctgatag cctttgtaga
gaccteteaa aaatagetae eeteteegge atgaatttat cagetagaae ggttgaatat
catattgatg gtgatttgac tgtctccggc ctttctcacc cgtttgaatc tttacctaca
cattactcaq qcattqcatt taaaatatat qaqqqttcta aaaattttta tccttqcqtt
                                                                   2100
gaaataaagg cttctcccgc aaaagtatta cagggtcata atgtttttgg tacaaccgat
ttagetttat getetgagge tttattgett aattttgeta attetttgee ttgeetgtat
                                                                   2220
gatttattgg atgttggaat tcctgatgcg gtattttctc cttacgcatc tgtgcggtat
                                                                   2280
ttcacaccgc atatggtgca ctctcagtac aatctgctct gatgccgcat agttaagcca
geoegacac eegecaacac eegetgaege geeetgaegg gettgtetge teeeggeate
cgcttacaga caagctgtga ccgtctccgg gagctgcatg tgtcagaggt tttcaccgtc
atcaccgaaa cgcgcgagac gaaagggcct cgtgatacgc ctatttttat aggttaatgt
                                                                   2520
catgataata atggtttctt agacgtcagg tggcactttt cggggaaatg tgcgcggaac
                                                                   2580
ccctatttgt ttatttttct aaatacattc aaatatgtat ccgctcatga gacaataacc
ctgataaatg cttcaataat attgaaaaag gaagagtatg agtattcaac atttccgtgt
                                                                   2700
cgcccttatt cccttttttg cggcattttg ccttcctgtt tttgctcacc cagaaacgct
ggtgaaagta aaagatgctg aagatcagtt gggtgcacga gtgggttaca tcgaactgga
                                                                   2820
teteaacage ggtaagatee ttgagagttt tegeeeegaa gaacgtttte caatgatgag
                                                                   2880
cacttttaaa gttctgctat gtggcgcggt attatcccgt attgacgccg ggcaagagca
```

actcggtcgc	cgcatacact	attctcagaa	tgacttggtt	gagtactcac	cagtcacaga	3000	
aaagcatctt	acggatggca	tgacagtaag	agaattatgc	agtgctgcca	taaccatgag	3060	
tgataacact	gcggccaact	tacttctgac	aacgatcgga	ggaccgaagg	agctaaccgc	3120	
	aacatggggg					3180	
_	ccaaacgacg	_				3240	
	ttaactggcg				_	3300	
	gataaagttg					3360	
	aaatctggag					3420	
	aagccctccc					3480	
	aatagacaga					3540	
	gtttactcat					3600	
	gtgaagatcc					3660	
	tgagcgtcag	-	-			3720	
	gtaatctgct					3780	
						3840	
	caagagctac						
	actgtccttc					3900	
	acatacctcg					3960	
	cttaccgggt					4020	
	gggggttcgt					4080	
	cagcgtgagc					4140	
	gtaagcggca					4200	
	tatctttata					4260	
tttgtgatgc	tcgtcagggg	ggcggagcct	atggaaaaac	gccagcaacg	cggccttttt	4320	
acggttcctg	gccttttgct	ggccttttgc	tcacatgttc	tttcctgcgt	tatcccctga	4380	
ttctgtggat	aaccgtatta	ccgcctttga	gtgagctgat	accgctcgcc	gcagccgaac	4440	
gaccgagcgc	agcgagtcag	tgagcgagga	agcggaagag	cgcccaatac	gcaaaccgcc	4500	
teteceegeg	cgttggccga	ttcattaatg	cagcagctgc	gcgctcgctc	gctcactgag	4560	
	caaagcccgg					4620	
	gagagggagt					4680	
	gctacttatc			-		4740	
_	tacataactt			_		4800	
	gtcaataatg					4860	
	ggtggagtat					4920	
	tacgccccct					4980	
	gaccttatgg					5040	
_	ggtcgaggtg	-		_		5100	
	aattttqtat					5160	
	_				00000 00	5220	
	gggcgcgcgc						
	gcggcggcag					5280	
0 00 00 00	cggcggcggc					5340	
	cgccccgtgc					5400	
	ttactaaaac					5460	
	cctcctcacg					5520	
	cgcccggacg					5580	
aaccccagta	tcagcagaag	gacattttag	gacgggactt	gggtgactct	agggcactgg	5640	
ttttctttcc	agagagcgga	acaggcgagg	aaaagtagtc	ccttctcggc	gattctgcgg	5700	
agggatctcc	gtggggcggt	gaacgccgat	gatgcctcta	ctaaccatgt	tcatgttttc	5760	
	tacaggtcct					5820	
	tgctgctggc					5880	
	tcgataccgt					5940	
	gttgctcggc					6000	
	ggcctgttac					6060	
	tgtatgctgt					6120	
	ggcattgtga					6180	
						6240	
	agcctggagg						
	gcctctgact			Ligicaggac	acaaggeetg	6300	
ttactagcac	tcacatggaa	caaatggcct	ctctagaat			6339	

The invention claimed is:

- 1. A composition that comprises a recombinant plasmid (RP) a sequence of nucleotides that encode micro-interfering ribonucleic acid (miRNA) that binds to and inactivates and/or degrades messenger ribonucleic acid (mRNA) that encodes for a serotonin receptor, wherein the sequence of nucleotides comprises 95-100% the same nucleotide sequence as SEQ ID NO. 8.
- 2. The composition of claim 1, wherein the sequence of nucleotides is configured to be delivered to a target cell that has expressed the serotonin receptor.
- 3. The composition of claim 1, wherein the sequence of nucleotides is encased in a protein coat, a lipid vesicle, or any combination thereof.

- **4**. The composition of claim **1**, wherein the sequence of nucleotides is encased in a viral vector.
- **5**. The composition of claim **4**, wherein the viral vector is one of a double stranded DNA virus, a single stranded DNA virus, a single stranded RNA virus, or a double stranded RNA virus.
- **6**. The composition of claim **4**, wherein the viral vector is an adeno-associated virus.
- 7. The composition of claim 1 wherein the serotonin receptor is serotonin receptor 5HT2b.
- **8**. A composition that comprises a recombinant plasmid (RP) with a sequence of nucleotides for encoding a sequence of micro-interfering ribonucleic acid (miRNA) that binds to and degrades and/or inactivates messenger ribonucleic acid

(mRNA) that encodes for a serotonin receptor, wherein the sequence of nucleotides comprises 95-100% of the same nucleotide sequence as SEQ ID NO. 20.

* * * * *