LABORATORIUM PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE					
Autorzy sprawozdania		Informacje o ćwiczeniu			
Imię i nazwisko:	Numer indeksu:	Numer ćwiczenia:	Data wykonania:		
Marta Kubińska	236434	2	10.10.2018r.		
Jakub Siembida	236728				
Joanna Stecura	Joanna Stecura 236629				
Tytuł ćwiczenia:					
Metody po	Metody pomiaru rozchodzenia się fali ultradźwiękowej.				

1. Cel ćwiczenia

Celem wykonanego ćwiczenia było:

- Wyznaczenie prędkości rozchodzenia się fali podłużnej ultradźwiękowej w ośrodkach stałych: stali, mosiądzu, aluminium i pleksi.
- Wyznaczenie prędkości rozchodzenia się ultradźwięków w ośrodku biologicznym, jakimi są żółtko i białko jaja kurzego.

2. Przebieg pomiarów

- Zmierzono wymiary geometryczne walców wykonanych z w/w materiałów.
- Pomiar prędkości w ciałach stałych odbywał się na defektoskopie analogowym, oraz defektoskopie cyfrowym.
- Pomiar na urządzeniu analogowym odbywał się poprzez odczyt działek na osi czasu, natomiast na urządzeniu cyfrowym- odczytywano wartość czasu w ms.
- Pomiary przeprowadzono dla trzech nadajników- 2LN13, 4LN13 i 10LN7.
- Zmierzono temperaturę wody oraz wyznaczono na jej podstawie prędkość fali ultradźwiękowej w wodzie. Następnie wyznaczono głębokość poziom cieczy w naczyniu z prędkości fali ultradźwiękowej w wodzie oraz czasu przejścia fali.
- Zmierzono defektoskopem cyfrowym czas przejścia fali ultradźwiękowej przez żółtko i białko jaja kurzego. Wyznaczono prędkości.

3. Wyniki

Tabela 1. Zestawienie czasu przejścia fali ultradźwiękowej przez próbki i wyznaczonych prędkości dla trzech różnych głowic, zmierzonych defektoskopem cyfrowym.

	Wymiary p	, ,	GŁOWICA 2LN13		GŁOWICA 10LN7		GŁOWICA 4LN13				
							1	1		1	
	I [cm]	ΔI [cm]	t [ms]	Δt [ms]	c [m/s]	t [ms]	Δt [ms]	c [m/s]	t [ms]	Δt [ms]	c [m/s]
	Mosiądz										
1	10.0	0.01	45.17	0.006	4427.7	45.26	0.038	4418.9	45.14	0.012	4430.7
			45.17			45.27			45.14		
			45.16			45.33			45.12		
2	6.0		27.39	0.068	4381.2	27.82	0.053	4313.4	26.67	0.006	4499.4
			27.36			27.8			26.67		
			27.26			27.9			26.68		
3	5.0		22.05	0.031	4544.2	22.46	0.020	4461.3	22.26	0.089	4501.3
			22.11			22.5			22.43		
			22.07			22.48			22.39		

	Wymiary p	niary próbek GŁOWICA 2LN13		GŁOWICA 10LN7		GŁOWICA 4LN13					
	l [cm]	ΔI [cm]	t [ms]	Δt [ms]	c [m/s]	t [ms]	Δt [ms]	c [m/s]	t [ms]	Δt [ms]	c [m/s]
					P	lexi					
1	9.98	0.01	73.14	0.017	2729.0	-	-	-	-	-	-
			73.11			-			-		
			73.14			-			-		
2	5.00		36.36	0.012	2750.3	-	-	-	36.03	0.012	2775.5
			36.38			-			36.01		
			36.36			-			36.03		
3	5.02		36.5	0.058	2750.7	-	-	-	36.15	1.39E-	2777.3
			36.4			-			36.15	08	
			36.5			-			36.15		
					Alur	minium					
1	11.99	0.01	37.38	0.010	6415.2	37.47	0.012	6399.8	37.42	1.39E-	6408.3
			37.39			37.47			37.42	08	
			37.4			37.49			37.42		
2	5.97		18.17	0.012	6571.3	18.57	0.006	6429.7	18.55	0.092	6436.7
			18.15			18.57			18.39		
			18.15			18.58			18.55		
3	5.00		15.6	0.173	6410.3	15.6	0.010	6410.3	15.55	0.104	6430.9
			15.3			15.62			15.37		
			15.6			15.61			15.37		
		T	1			Stal		T			
1	10.01	0.01	33.78	0.006	5926.6	33.78	0.012	5926.6	33.69	1.39E-	5942.4
			33.78			33.76			33.69	08	
			33.77			33.76			33.69		
2	6.97		23.49	0.006	5934.4	23.5	0.000	5931.9	23.44	1.39E-	5947.1
			23.49			23.5			23.44	80	
			23.5			23.5			23.44		
3	5.99		20.24	0.017	5919.0	20.21	0.006	5927.8	20.17	0.012	5939.5
			20.21			20.21			20.15		
			20.21			20.2			20.15		

Tabela 2. Zestawienie wartości granic pola bliskiego dla tablicowych wartości prędkości dla próbek stałych.

WARTOŚCI OCZEKIWANE			GRANICE POLA BLISKIEGO [m]					
PRĘDKO:	ŚCI [m/s]]	4LN	N13	2LN	N13	10L	.N7
Stal	5900	6000	0.029	0.028	0.014	0.014	0.021	0.020
Pleksi	2670		0.063		0.032		0.046	
aluminium	6320		0.027		0.013		0.019	
Mosiądz	4300	4400	0.039	0.038	0.020	0.019	0.028	0.028

Tabela 3. Zestawienie wartości działek czasu oraz wyznaczonych prędkości dla próbek stałych defektoskopem analogowym (nastawa czasu 4*10⁻⁶ ms) dla przetwornika 4LN13.

	GŁOWICA 4LN13							
	I [cm]	tdz [dz]	c [m/s]	Δc [m/s]	U(c) [m/s]			
	Stal							
1	10.01	8.4	5958	42	71			
2	6.97	5.9	5907	7	100			
3	5.99	5.1	5873	27	116			
	Pleksi							
1	9.98	1	-	-	-			
2	5.00	9.0	2778	108	31			
3	5.02	9.1	2758	88	31			
			Aluminiu	m				
1	11.90	9.3	6398	78	69			
2	5.97	4.7	6351	31	136			
3	5.00	4.0	6250	70	157			
	Mosiądz							
1	10.00	8.0	6250	1850	78			
2	6.00	-	-	-	-			
3	5.01	5.7	4395	5	78			

Tabela 4. Zestawienie wartości działek czasu oraz wyznaczonych prędkości dla próbek stałych defektoskopem analogowym (nastawa czasu 4*10⁻⁶ ms) dla przetwornika 2LN13.

	GŁOWICA 2LN13					
	l [cm]	tdz [dz]	c [m/s]	Δc [m/s]	U(c) [m/s]	
			Stal			
1	10.01	7.5	6673	673	89	
2	6.97	5.2	6702	702	129	
3	5.99	4.5	6656	656	148	
	Pleksi					
1	9.98	1	1	1	-	
2	5.00	1	1	1	-	
3	5.02	-	1	1	-	
		A	Aluminium			
1	11.9	8.3	7169	849	87	
2	5.97	4.3	6942	622	162	
3	5.00	3.5	7143	823	205	
	Mosiądz					
1	10.00	10	5000	600	50	
2	6.00	6.2	4839	439	78	
3	5.01	5.1	4912	512	97	

Tabela 5. Zestawienie wartości działek czasu oraz wyznaczonych prędkości dla próbek stałych defektoskopem analogowym (nastawa czasu 4*10⁻⁶ ms) dla przetwornika 10LN7.

	GŁOWICA 10LN7					
	I [cm]	tdz [dz]	c [m/s]	Δc [m/s]	U(c) [m/s]	
			Stal			
1	10.01	7.6	6586	586	87	
2	6.97	5.4	6454	454	120	
3	5.99	4.6	6511	511	142	
			Pleksi			
1	9.98	6.9	2893	223	105	
2	5.00	8.1	3086	416	39	
3	5.02	8.1	3099	429	39	
		A	Aluminium			
1	11.9	9.4	6330	10	68	
2	5.97	4.2	7107	787	170	
3	5.00	3.6	6944	624	193	
	Mosiądz					
1	10.00	10	5000	600	51	
2	6.00	-	-	-	-	
3	5.01	5	5010	610	101	

Tabela 6. Zestawienie wyników pomiaru wysokości poziomu cieczy.

t [ms]	T [°C]	cwody [m/s]	lwyznaczone [m]	Izmierzone [m]
108.18	22.9	1491	0.081	0.08

Tabela 7. Zestawienie prędkości wyznaczonych dla białka i żółtka jaja kurzego wraz z prędkościami tablicowymi.

	Białko	Żółtko
czas [ms]	23.44	29.78
odległość [cm]	1.91	2.38
c [m/s]	1630	1598
C _{tablicowe} [m/s]	1521 - 1536	1504 –
		1510

- 4. Przykładowe obliczenia:
- We wszystkich wymienionych przypadkach s=2l ze względu na fakt, iż fala musi pokonać dwa razy dystans l by wrócić do nadajnika- fala propaguje w głąb próbki, pokonuje drogę l, zostaje odbita od dolnej podstawy próbki i wraca do odbiornika, pokonując drogę l.
- Prędkość fali ultradźwiękowej dla pomiarów defektoskopem cyfrowym została wyznaczona ze wzoru:

$$c = \frac{2l}{\bar{t}}, przykładowo c = 2 * \frac{5 * 10^{-2} m}{\frac{36.36 + 36.38 + 3636}{3} * 10^{-6} s} = 2750.3 \frac{m}{s}$$

Za czas została podstawiona średnia z trzech pomiarów.

- Błąd pomiaru czasu wynosi odchylenie standardowe trzech pomiarów. W przypadku, gdy odchylenie standardowe wynosi 0, błąd pomiaru czasu wynosi $\Delta t =$ $\frac{1}{f_{próbkowania}} = \frac{1}{72000000} = 1.39 * 10^{-8} s.$
- Dla pomiaru defektoskopem analogowym zostały wyznaczone dwa błędy- błąd względny względem danych tablicowych, oraz błąd wyznaczony z różniczki zupełnej.
 - Błąd względny:

 $\Delta c = \left| c_{wyznaczone} - c_{tablicowe} \right|,$ przykładowo dla mosiądzu 1, głowicy 10LN7:

$$\Delta c = |5000 - 4400| = 600 \frac{m}{s}$$

Błąd wyznaczony z różniczki zupełnej:

$$U(c) = \frac{2*\sqrt{\left(\frac{\Delta l}{t_{dz}}\right)^2 + \left(-\frac{l}{t_{dz}^2}*\Delta t_{dz}\right)^2}}{4*10^{-6}}, gdzie\ \Delta l = 0.01cm, \Delta t_{dz} = 0.1\ dz$$
 Przykładowo dla mosiądzu 1, głowicy 10LN7:

Przykładowo dla mosiądzu 1, głowicy 10LN7:

$$U(c) = \frac{2*\sqrt{\left(\frac{0.01*10^{-2}}{10}\right)^2 + \left(-\frac{10*10^{-2}}{10^2}*0.1\right)^2}}{4*10^{-6}} = 50.24 \approx 51\frac{m}{s}$$

Predkość rozchodzenia się fali ultradźwiękowej w wodzie wyznaczono za pomocą wzoru:

$$c_{woda} = \sum_{i=0}^{5} k_i t^i$$

Tabela 8. Wartości współczynników k użytych do wyznaczenia prędkości fali ultradźwiekowej w wodzie.

I	$k_i[\frac{m}{s}]$
0	1402,385
1	5,038813
2	$5,799136\cdot10^{-2}$
3	$3,28716\cdot10^{-4}$
4	$-1,39885\cdot10^{-6}$
5	2,78786·10 ⁻⁹

Wysokość słupa cieczy, w której był zanurzony przetwornik:
$$l = \frac{c*t}{2} = \frac{1491*108.18*10^{-6}}{2} = 0.080648 \ m \approx 0.081 \ m = 8.1 \ cm$$

• Z uwagi na fakt, iż pomiar czasu przejścia fali ultradźwiękowej przez żółtko i białko jaja kurzego odbywał się przy pomocy defektoskopu cyfrowego, prędkość została wyznaczona z tego samego wzoru, dla którego wyznaczano prędkości dla próbek stałych:

$$c = \frac{2l}{t}$$
, $przykładowo c_{żółtka} = 2 * \frac{2.38 * 10^{-2} m}{29.78 * 10^{-6} s} = 1598 \frac{m}{s}$

5. Wnioski

- Przy pomocy głowicy 10LN7 nie udało się zmierzyć czasu przejścia fali dla żadnej próbki zrobionej z plexi. Może to być spowodowane dużą częstotliwością pracy nadajnika (pierwsze dwie cyfry reprezentują częstotliwość pracy wyrażoną z MHz)tłumienność ośrodka jest wprost proporcjonalna do częstotliwości pracy nadajnika.
- Przy pomocy defektoskopu cyfrowego zmierzono więcej próbek, niż przy pomocy defektoskopu analogowego. Przy pomiarze urządzeniem analogowym szczyty nie były odróżnialne od szumu, mimo zwiększanego wzmocnienia sygnału. Oznacza to, że defektoskop cyfrowy lepiej oddziela zakłócenia.
- Wartości prędkości wyznaczone urządzeniem cyfrowym są dokładniejsze, niż wyznaczone sprzętem analogowym.
- Defektoskop może posłużyć jako element mierzący poziom cieczy w niewielkich zbiornikach wodnych, przy założeniu, że temperatura jest znana, a fala ultradźwiękowa odbija się prostopadle od dna.
- Wartości prędkości rozchodzenia się fal ultradźwiękowych w żółtku i białku jaja kurzego są większe od górnych granic przedziałów wartości tablicowych. Może to być spowodowane błędem pomiaru odległości suwmiarką na zakrzywionej powierzchni próbek, lub występowaniem niedoskonałości w strukturze żółtka i białka.