

**HiPerFAST™ IGBT
with Diode
ISOPLUS247™
(Electrically Isolated Backside)**

IXGR 32N60CD1

V_{CES}	= 600 V
I_{C25}	= 45 A
V_{CE(SAT)typ}	= 2.1 V
t_{fi(typ)}	= 55 ns

Symbol	Test Conditions	Maximum Ratings		
V _{CES}	T _J = 25°C to 150°C	600		V
V _{CGR}	T _J = 25°C to 150°C; R _{GE} = 1 MΩ	600		V
V _{GES}	Continuous	±20		V
V _{GEM}	Transient	±30		V
I _{C25}	T _C = 25°C	45		A
I _{C90}	T _C = 90°C	28		A
I _{CM}	T _C = 25°C, 1 ms	120		A
SSOA (RBSOA)	V _{GE} = 15 V, T _{VJ} = 125°C, R _G = 10 Ω Clamped inductive load, L = 100 μH	I _{CM} = 64 @ 0.8 V _{CES}		A
P _c	T _C = 25°C	140		W
T _J		-55 ... +150		°C
T _{JM}		150		°C
T _{stg}		-55 ... +150		°C
Maximum Lead and Tab temperature for soldering 1.6 mm (0.062 in.) from case for 10 s		300		°C
V _{ISOL}	50/60 Hz, RMS t = 1 min leads-to housing	2500		V~
Weight		5		g

ISOPLUS 247™ (IXGR)

E153432

G Gate, C Collector,
E Emitter, TAB = Collector

* Patent pending

Features

- DCB Isolated mounting tab
- Meets TO-247AD package Outline
- High current handling capability
- Latest generation HDMOS™ process
- MOS Gate turn-on
 - drive simplicity

Applications

- Uninterruptible power supplies (UPS)
- Switched-mode and resonant-mode power supplies
- AC motor speed control
- DC servo and robot drives
- DC choppers

Advantages

- Easy assembly
- High power density
- Very fast switching speeds for high frequency applications

Symbol	Test Conditions	Characteristic Values		
		(T _J = 25°C, unless otherwise specified)	min.	typ.
BV _{CES}	I _C = 250 μA, V _{GE} = 0 V	600		V
V _{GE(th)}	I _C = 250 μA, V _{CE} = V _{GE}	2.5		5.0 V
I _{CES}	V _{CE} = 0.8 • V _{CES} V _{GE} = 0 V	T _J = 25°C T _J = 125°C		200 μA 3 mA
I _{GES}	V _{CE} = 0 V, V _{GE} = ±20 V			±100 nA
V _{CE(sat)}	I _C = I _T , V _{GE} = 15 V Note 1	2.1	2.5	V

Symbol	Test Conditions	Characteristic Values		
		($T_J = 25^\circ\text{C}$, unless otherwise specified)	min.	typ.
g_{fs}	$I_C = I_T; V_{CE} = 10 \text{ V}$, Pulse test, $t \leq 300 \mu\text{s}$, duty cycle $\leq 2\%$		25	S
C_{ies}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		2700	pF
C_{oes}			240	pF
C_{res}			50	pF
Q_g	$I_C = I_T, V_{GE} = 15 \text{ V}, V_{CE} = 0.5 V_{CES}$		110	nC
Q_{ge}			22	nC
Q_{gc}			40	nC
$t_{d(on)}$	Inductive load, $T_J = 25^\circ\text{C}$ $I_C = I_T, V_{GE} = 15 \text{ V}, L = 100 \mu\text{H}$, $V_{CE} = 0.8 V_{CES}, R_G = R_{off} = 4.7 \Omega$ Remarks: Switching times may increase for V_{CE} (Clamp) $> 0.8 \cdot V_{CES}$, higher T_J or increased R_G		25	ns
t_{ri}			20	ns
$t_{d(off)}$			85	ns
t_{fi}			55	ns
E_{off}			0.32	mJ
$t_{d(on)}$	Inductive load, $T_J = 125^\circ\text{C}$ $I_C = I_T, V_{GE} = 15 \text{ V}, L = 100 \mu\text{H}$, $V_{CE} = 0.8 V_{CES}, R_G = R_{off} = 4.7 \Omega$ Remarks: Switching times may increase for V_{CE} (Clamp) $> 0.8 \cdot V_{CES}$, higher T_J or increased R_G		25	ns
t_{ri}			25	ns
E_{on}			1	mJ
$t_{d(off)}$			110	170 ns
t_{fi}			100	160 ns
E_{off}			0.85	1.25 mJ
R_{thJC}				0.90 K/W
R_{thCK}			0.15	K/W

ISOPLUS 247 (IXGR) OUTLINE

1 Gate, 2 Drain (Collector)
3 Source (Emitter)
4 no connection

Dim.	Millimeter Min.	Millimeter Max.	Inches Min.	Inches Max.
A	4.83	5.21	.190	.205
A ₁	2.29	2.54	.090	.100
A ₂	1.91	2.16	.075	.085
b	1.14	1.40	.045	.055
b ₁	1.91	2.13	.075	.084
b ₂	2.92	3.12	.115	.123
C	0.61	0.80	.024	.031
D	20.80	21.34	.819	.840
E	15.75	16.13	.620	.635
e	5.45 BSC		.215 BSC	
L	19.81	20.32	.780	.800
L1	3.81	4.32	.150	.170
Q	5.59	6.20	.220	.244
R	4.32	4.83	.170	.190
S	13.21	13.72	.520	.540
T	15.75	16.26	.620	.640
U	1.65	3.03	.065	.080

Reverse Diode (FRED)

Characteristic Values

(T_J = 25°C, unless otherwise specified)

Symbol	Test Conditions	min.	typ.	max.
V_F	$I_F = I_T, V_{GE} = 0 \text{ V}$, Pulse test $t \leq 300 \mu\text{s}$, duty cycle d $\leq 2\%$	$T_J = 150^\circ\text{C}$ $T_J = 25^\circ\text{C}$		1.6 V 2.5 V
I_{RM}	$I_F = I_T, V_{GE} = 0 \text{ V}, -di_F/dt = 100 \text{ A}/\mu\text{s}$ $V_R = 100 \text{ V}$ $I_F = 1 \text{ A}; -di/dt = 100 \text{ A}/\mu\text{s}; V_R = 30 \text{ V}$		6	A
t_{rr}		$T_J = 100^\circ\text{C}$ $T_J = 25^\circ\text{C}$	100 25	ns ns
R_{thJC}				1.15 K/W

Note: 1. $I_T = 32\text{A}$

Fig. 1. Output Characteristics

Fig. 2. Extended Output Characteristics

Fig. 3. High Temperature Output Characteristics

Fig. 4. Temperature Dependence of $V_{CE(sat)}$

Fig. 5. Admittance Curves

Fig. 6. Capacitance Curves

Fig. 7. Dependence of $E_{(ON)}$ and $E_{(OFF)}$ on I_c .Fig. 8. Dependence of $E_{(ON)}$ and $E_{(OFF)}$ on R_G .

Fig. 9. Gate Charge

Fig. 10. Turn-off Safe Operating Area

Fig. 11. Transient Thermal Resistance

Fig. 12. Forward current I_F versus V_F

Fig. 13. Reverse recovery charge Q_r versus $-di_F/dt$

Fig. 14. Peak reverse current I_{RM} versus $-di_F/dt$

Fig. 15. Dynamic parameters Q_r , I_{RM} versus T_{VJ}

Fig. 16. Recovery time t_{rr} versus $-di_F/dt$

Fig. 17. Peak forward voltage V_{FR} and t_{rr} versus di_F/dt

Fig. 18. Transient thermal resistance junction to case

Constants for Z_{thJC} calculation:

i	R_{thi} (K/W)	t_i (s)
1	0.436	0.0055
2	0.482	0.0092
3	0.117	0.0007
4	0.115	0.0418