## De-scoped PICO r statistics

## Aditya Rotti

| Case            | Moments                                                                                                                                                                                                                                                                                                                                           | Parame |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| cMILC00         | $I_{ m CMB}$                                                                                                                                                                                                                                                                                                                                      | 1      |
| cMILC01         | $I_{ m CMB} \; ; \; I_{ m sync}$                                                                                                                                                                                                                                                                                                                  | 2      |
| cMILC02         | $I_{ m CMB} \; ; \; I_{ m dust}$                                                                                                                                                                                                                                                                                                                  | 2      |
| cMILC03         | $I_{ m CMB} \; ;  I_{ m sync} \; ;  I_{ m dust}$                                                                                                                                                                                                                                                                                                  | 3      |
| cMILC04         | $I_{ m CMB} \; ; \; I_{ m dust} \; ; \; rac{dI_{ m dust}}{deta}$                                                                                                                                                                                                                                                                                 | 3      |
| ${\rm cMILC05}$ | $I_{ m CMB} \; ; \; I_{ m sync} \; ; \; I_{ m dust} \; ; \; rac{dI_{ m dust}}{deta}$                                                                                                                                                                                                                                                             | 4      |
| cMILC06         | $I_{ m CMB} \; ;  I_{ m sync} \; ;  I_{ m dust} \; ;  rac{dI_{ m sync}}{deta} \; ;  rac{dI_{ m dust}}{deta} \; ({ m H})$                                                                                                                                                                                                                        | 5      |
| ${\rm cMILC07}$ | $I_{ m CMB} \; ;  I_{ m sync} \; ;  I_{ m dust} \; ;  rac{dI_{ m sync}}{deta} \; ;  rac{dI_{ m dust}}{deta} \; ;  rac{dI_{ m dust}}{dT}$                                                                                                                                                                                                       | 6      |
| cMILC08         | $I_{ m CMB} \; ;  I_{ m sync} \; ;  I_{ m dust} \; ;  rac{dI_{ m sync}}{deta} \; ;  rac{dI_{ m dust}}{deta} \; ;  rac{dI_{ m dust}}{dT} \; ;  rac{d^2I_{ m dust}}{d^2T}$                                                                                                                                                                      | 7      |
| cMILC09         | $I_{\mathrm{CMB}}$ ; $I_{\mathrm{sync}}$ ; $I_{\mathrm{dust}}$ ; $\frac{dI_{\mathrm{sync}}}{d\beta}$ ; $\frac{dI_{\mathrm{dust}}}{d\beta}$ ; $\frac{dI_{\mathrm{dust}}}{dT}$ ; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$ (H)                                                                                                                            | 7      |
| cMILC10         | $I_{\mathrm{CMB}}$ ; $I_{\mathrm{sync}}$ ; $I_{\mathrm{dust}}$ ; $\frac{dI_{\mathrm{sync}}}{d\beta}$ ; $\frac{dI_{\mathrm{dust}}}{d\beta}$ ; $\frac{dI_{\mathrm{dust}}}{dT}$ ; $\frac{d^2I_{\mathrm{sync}}}{d^2\beta}$ ; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$                                                                                      | 8      |
| cMILC11         | $I_{\mathrm{CMB}}$ ; $I_{\mathrm{sync}}$ ; $I_{\mathrm{dust}}$ ; $\frac{dI_{\mathrm{sync}}}{d\beta}$ ; $\frac{dI_{\mathrm{dust}}}{d\beta}$ ; $\frac{dI_{\mathrm{dust}}}{dT}$ ; $\frac{d^2I_{\mathrm{sync}}}{d^2\beta}$ ; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$ (H)                                                                                  | 8      |
| cMILC12         | $I_{\mathrm{CMB}}$ ; $I_{\mathrm{sync}}$ ; $I_{\mathrm{dust}}$ ; $\frac{dI_{\mathrm{sync}}}{d\beta}$ ; $\frac{dI_{\mathrm{dust}}}{d\beta}$ ; $\frac{dI_{\mathrm{dust}}}{dT}$ ; $\frac{d^2I_{\mathrm{sync}}}{d^2\beta}$ ; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$ ; $\frac{d^2I_{\mathrm{dust}}}{d\beta dT}$                                           | 9      |
| cMILC13         | $I_{\mathrm{CMB}}$ ; $I_{\mathrm{sync}}$ ; $I_{\mathrm{dust}}$ ; $\frac{dI_{\mathrm{sync}}}{d\beta}$ ; $\frac{dI_{\mathrm{dust}}}{d\beta}$ ; $\frac{dI_{\mathrm{dust}}}{dT}$ ; $\frac{d^2I_{\mathrm{sync}}}{d^2\beta}$ ; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$ ; $\frac{d^2I_{\mathrm{dust}}}{d\beta dT}$ (H)                                       | 9      |
| cMILC14         | $I_{\mathrm{CMB}}$ ; $I_{\mathrm{sync}}$ ; $I_{\mathrm{dust}}$ ; $\frac{dI_{\mathrm{sync}}}{d\beta}$ ; $\frac{dI_{\mathrm{dust}}}{d\beta}$ ; $\frac{dI_{\mathrm{dust}}}{dT}$ ; $\frac{d^2I_{\mathrm{sync}}}{d^2\beta}$ ; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$ ; $\frac{d^2I_{\mathrm{dust}}}{d\beta dT}$ ; $\frac{d^2I_{\mathrm{dust}}}{d^2\beta}$ | 10     |

|                         |       | $r_1$ .       | σ          | ror      | SNR      |  |  |  |
|-------------------------|-------|---------------|------------|----------|----------|--|--|--|
| Case                    | Alens | $r_{ m bias}$ | $\sigma_r$ | $r_{95}$ | SIVIL    |  |  |  |
|                         |       | 0.00071       | 0.00000    | NT NT    | 00.00001 |  |  |  |
| cMILC00                 | 0.0   | 0.00271       | 0.00009    | NaN      | 30.62201 |  |  |  |
|                         | 0.3   | 0.00334       | 0.00017    | NaN      | 19.79747 |  |  |  |
|                         | 0.6   | 0.00401       | 0.00027    | NaN      | 14.59523 |  |  |  |
| 3 FTT (C) 4             | 0.9   | 0.00450       | 0.00038    | NaN      | 11.89022 |  |  |  |
| cMILC01                 | 0.0   | 0.00264       | 0.00008    | NaN      | 31.25218 |  |  |  |
|                         | 0.3   | 0.00330       | 0.00016    | NaN      | 20.00825 |  |  |  |
|                         | 0.6   | 0.00398       | 0.00028    | NaN      | 14.31053 |  |  |  |
|                         | 0.9   | 0.00448       | 0.00039    | NaN      | 11.59415 |  |  |  |
| cMILC02                 | 0.0   | 0.00200       | 0.00008    | NaN      | 25.21423 |  |  |  |
|                         | 0.3   | 0.00235       | 0.00015    | NaN      | 15.17177 |  |  |  |
|                         | 0.6   | 0.00279       | 0.00026    | NaN      | 10.80115 |  |  |  |
|                         | 0.9   | 0.00320       | 0.00036    | NaN      | 8.78118  |  |  |  |
| cMILC03                 | 0.0   | 0.00187       | 0.00008    | NaN      | 24.69358 |  |  |  |
|                         | 0.3   | 0.00223       | 0.00015    | NaN      | 14.84988 |  |  |  |
|                         | 0.6   | 0.00268       | 0.00026    | NaN      | 10.35723 |  |  |  |
|                         | 0.9   | 0.00308       | 0.00036    | NaN      | 8.51984  |  |  |  |
| cMILC04                 | 0.0   | 0.00186       | 0.00009    | NaN      | 19.79835 |  |  |  |
|                         | 0.3   | 0.00219       | 0.00016    | NaN      | 13.56261 |  |  |  |
|                         | 0.6   | 0.00265       | 0.00027    | NaN      | 9.82245  |  |  |  |
|                         | 0.9   | 0.00306       | 0.00038    | NaN      | 7.93825  |  |  |  |
| cMILC05                 | 0.0   | 0.00171       | 0.00009    | NaN      | 18.78346 |  |  |  |
|                         | 0.3   | 0.00206       | 0.00016    | NaN      | 12.84751 |  |  |  |
|                         | 0.6   | 0.00252       | 0.00027    | NaN      | 9.42805  |  |  |  |
|                         | 0.9   | 0.00294       | 0.00038    | NaN      | 7.71034  |  |  |  |
| cMILC06                 | 0.0   | 0.00245       | 0.00013    | NaN      | 18.85235 |  |  |  |
|                         | 0.3   | 0.00258       | 0.00017    | NaN      | 14.89615 |  |  |  |
|                         | 0.6   | 0.00282       | 0.00026    | NaN      | 10.86735 |  |  |  |
|                         | 0.9   | 0.00304       | 0.00034    | NaN      | 8.91907  |  |  |  |
| cMILC07                 | 0.0   | 0.00085       | 0.00019    | NaN      | 4.61672  |  |  |  |
|                         | 0.3   | 0.00088       | 0.00019    | NaN      | 4.57787  |  |  |  |
|                         | 0.6   | 0.00093       | 0.00021    | NaN      | 4.45803  |  |  |  |
|                         | 0.9   | 0.00098       | 0.00023    | NaN      | 4.26685  |  |  |  |
| $_{ m cMILC08}$         | 0.0   | 0.00186       | 0.00123    | 0.00459  | 1.51181  |  |  |  |
| 2 2 2 2 2 2             | 0.3   | 0.00186       | 0.00123    | 0.00459  | 1.51091  |  |  |  |
|                         | 0.6   | 0.00186       | 0.00123    | 0.00460  | 1.50822  |  |  |  |
| Continued on next page  |       |               |            |          |          |  |  |  |
| Constitued on next page |       |               |            |          |          |  |  |  |

|         |       | $r_{ m bias}$ | $\sigma_r$ | $r_{95}$ | SNR      |
|---------|-------|---------------|------------|----------|----------|
| Case    | Alens |               |            |          |          |
|         | 0.9   | 0.00186       | 0.00123    | 0.00461  | 1.50372  |
| cMILC09 | 0.0   | 0.00195       | 0.00015    | NaN      | 13.33651 |
|         | 0.3   | 0.00133       | 0.00033    | NaN      | 3.97684  |
|         | 0.6   | 0.00136       | 0.00054    | NaN      | 2.51352  |
|         | 0.9   | 0.00144       | 0.00069    | NaN      | 2.08759  |
| cMILC10 | 0.0   | 0.00108       | 0.00401    | 0.00992  | 0.26855  |
|         | 0.3   | 0.00108       | 0.00401    | 0.00992  | 0.26854  |
|         | 0.6   | 0.00108       | 0.00401    | 0.00992  | 0.26849  |
|         | 0.9   | 0.00108       | 0.00401    | 0.00993  | 0.26841  |
| cMILC11 | 0.0   | 0.01135       | 0.00067    | NaN      | 16.97539 |
|         | 0.3   | 0.00692       | 0.00292    | NaN      | 2.37456  |
|         | 0.6   | 0.00352       | 0.00366    | 0.01147  | 0.96076  |
|         | 0.9   | 0.00235       | 0.00382    | 0.01071  | 0.61492  |
| cMILC12 | 0.0   | 0.00270       | NaN        | NaN      | NaN      |
|         | 0.3   | 0.00270       | NaN        | NaN      | NaN      |
|         | 0.6   | 0.00270       | NaN        | NaN      | NaN      |
|         | 0.9   | 0.00270       | NaN        | NaN      | NaN      |
| cMILC13 | 0.0   | 0.01301       | 0.00044    | NaN      | 29.52792 |
|         | 0.3   | 0.01284       | 0.00423    | NaN      | 3.03642  |
|         | 0.6   | 0.01226       | 0.00769    | 0.02803  | 1.59449  |
|         | 0.9   | 0.01205       | 0.01119    | 0.03494  | 1.07716  |
| cMILC14 | 0.0   | 0.00764       | NaN        | NaN      | NaN      |
|         | 0.3   | 0.00764       | NaN        | NaN      | NaN      |
|         | 0.6   | 0.00764       | NaN        | NaN      | NaN      |
|         | 0.9   | 0.00764       | NaN        | NaN      | NaN      |



- 1 Mask
- 2 Posterior plots













## 3 r constraints