Notes M18

Mehdi Ben Ahmed

November 29, 2023

Contents

1	Nor	mbres Complexes
	1.1	Definition
	1.2	Module et argument
		1.2.1 Définition
	1.3	Racine carrée
		1.3.1 Racine énieme
	1.4	Les Polynomes

1 Nombres Complexes

1.1 Definition

Soit z un nombre complexe. l'écriture z=a+bi est dite la forme algébrique de z.

- a est la partie réele de z, notée Re(z), si a=0, on dit que z est un imaginaire pur.
- b est la parie imaginaire de z, notée Im(z), si b=0, z est un réel

1.2 Module et argument

1.2.1 Définition

1.3 Racine carrée

Soit z un complexe non nul, on cherche a résoudre l'equation $w^2=z$ on peut écrire w et z sous forme cartésienne et identifier: si $z=a+ib, (a,b)\in\mathbb{R}^2$ et $w=\alpha+i\beta, (\alpha,\beta)\in\mathbb{R}^2$, on obtient: On obtient aussi, d'après l'égalité des modules, $\alpha^2+\beta^2=\sqrt{a^2+b^2}$

1.3.1 Racine énieme

1.4 Les Polynomes

Un polynome est définit comme suit

$$P(x) = 0 + 0_1 X + 0_2 X^2 + 0_3 X^3 + \dots + 0_n X^n$$

polynome comme objet abstrait P

Exemple 1 $p(x) = x^2$ comme polynome

Exemple 2 En Particulier P = 0 comme polynome

Definition 1 on dit que z_0 est une racine de P tel que $P(z_0) = 0$ On utilie le mot racine dans les deux senses

- racine (n-ieme) d'un nombre complexe tel que $z_0^n = w$
- racine d'un polynome tel que $P(z_0) = 0$

Definition 2 Soit P un polynôme on appelle degré en polynôme la puissance la plus grande pour laquelle $n \neq 0$

$x^5 + x^5 + 0x^3 + 3x^2 + x + 1$	$x^3 + 2x + 1$
$x^5 + 2x^3 + x^2$	$x^2 + x - 2$

Exemple 3

$$P(x) = 1 + x^2 + x^2 7$$
$$deg = 27$$

 $\textbf{\textit{Definition 3}} \ \ \textit{Question Soit P un polynôme de degré n combien de racine admettiel, (complexe et réel)?}$

Exemple 4

$$P(z) = z^n - 1$$

2 racines réels, et 2 racines complexes

$$z_0 racines \iff z_0^2 = 0$$

$$donc$$

$$z_0 \quad est \ la \ racine$$

Definition 4 Division des polynomes

 $\begin{tabular}{ll} \textbf{Th\'eoreme 1} & Soit F & et G & des polyn\^omes, & (degF \leq degG) \\ alors & ils & existent Q & et R & tels & que & degR < degG \\ \end{tabular}$

$$F = QG + R$$

 $Si\ R=0,\ on\ dit\ aue\ F\ est\ divisible\ par\ G$

Exemple 5 Voici un exemple de division polynomial