

Bases de Datos 1

Clase del 01 de Octubre de 2020

Alejandra Beatriz Lliteras

Contenidos de la materia

- Modelo de datos
 - Conceptos generales
 - Algunos modelos en particular
 - Modelo de Entidades y Relaciones
 - Modelo relacional
- Transformación entre modelos de datos
- Álgebra Relacional
 - Operaciones y Consultas
 - Optimización de consultas
- Teoría de diseño de bases de datos
 - Conceptos generales
 - Proceso de Normalización
- SGBD Relacional
- Conceptos generales de bases de datos

Álgebra Relacional

- Lenguaje de consulta, procedimental
 - Operaciones fundamentales
 - Operaciones adicionales
- Lenguaje de manipulación de datos
 - Operaciones de manipulación

Álgebra Relacional

- Álgebra Relacional -Lenguaje de Consulta
 - Operaciones fundamentales: son suficientes para expresar cualquier consulta en álgebra relacional
 - Selección (σ)
 - Proyección (Π)
 - Producto Cartesiano (X)
 - Renombre (p)
 - De una relación
 - De atributos de una relación
 - Unión (U)
 - Diferencia ()

Selección (σ)

- -Operación unaria (Ocondición R)
- Requiere una condición booleana
 - Operaciones: and, or y not
- El resultado es una relación con un subconjunto
- "horizontal" de la relación dada

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

O edad >= 30 (Ingenieros)

E#	Nombre	Edad
320	José	34
322	Rosa	37

- Proyección (Π)
 - Operación unaria ($\Pi_{ ext{lista_de_atributos}} R$)
 - Dada una lista de atributos produce un corte "vertical" de la relación
 - Los atributos de la lista se toman de izquierda a derecha.

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

II_{nombre, edad} (Ingenieros)

Nombre	Edad
José	34
Rosa	37
María	25

- Producto Cartesiano (X)
 - Operación binaria (A X B)
 - El resultado es una relación que incluye todas las tuplas posibles que se obtienen concatenando cada tupla de A con cada una de las tuplas de B
 - La concatenación de una tupla

```
a=(a1, ..., am) y una tupla
b=(bm+1, ..., bm+n), es una tupla
t=(a1,..., am, bm+1, ..., bm+n)
```

Producto Cartesiano (X)

I	ng	e	n	ie	r	o	S
		•				•	•

E#	Nombre	D#
320	José	D1
322	Rosa	D3

Proyectos

Proyecto	Tiempo
RX338A	21
PY254Z	32

Ingenieros X Proyectos

E#	Nombre	D#	Proyecto	Tiempo
320	José	D1	RX338A	21
320	José	D1	PY254Z	32
322	Rosa	D3	RX338A	21
322	Rosa	D3	PY254Z	32

Producto Cartesiano (X)

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

J	e	f	е	S
•	•		•	•

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros X Jefes

Ingenieros.E#	Ingenieros.Nombre	Ingenieros.Edad	Jefes.E#	Jefes.Nombre	Jefes. Edad
320	José	34	320	José	34
320	José	34	421	Jorge	48
322	Rosa	37	320	José	34
322	Rosa	37	421	Jorge	48
323	María	25	320	José	34
323	María	25	421	Jorge	48

- Renombre de una relación (p)
 - Operación unaria (P_xR)
 - El resultado es la relación R con nombre X

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

PROFESIONALES

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

- Renombre de atributos de una relación (p)
 - ightharpoonup Operación unaria ($ho_{x (lista_de_atributos)} R$)
 - El resultado es la relación R con nombre X y atributos nombrados como se expresa en lista_de_atributos

Ingenieros		
E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

PRO		$V \cap V$	
$\Gamma \Lambda \cup I$	LOIC	ノハハー	LLJ

E#	NombreProfesional	Edad
320	José	34
322	Rosa	37
323	María	25

- Unión (U)
 - Operación binaria (A U B)
 - El resultado es una relación en la que se agrega a la relación A los elementos (no repetidos) de la relación B
 - Es necesario que las relaciones A y B sean de «unión compatible»
 - Relaciones con igual aridad (igual número de atributos)
 - El dominio del i-ésimo atributo de ambas relaciones debe ser el mismo (∀ i)

- Unión (U)

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros **U** Jefes

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25
421	Jorge	48

- Diferencia ()
 - Operación binaria (A B)
 - El resultado es una relación donde están los elementos que pertenecen a A y no pertenecen a B
 - Es necesario que las relaciones A y B sean de «unión compatible»
 - Relaciones con igual aridad (igual número de atributos)
 - El dominio del i-ésimo atributo de ambas relaciones debe ser el mismo (∀ i)

Diferencia (-)

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

00103

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros - Jefes

E#	Nombre	Edad
322	Rosa	37
323	María	25

Álgebra Relacional

- Álgebra Relacional -Lenguaje de Consulta
 - Operaciones adicionales:
 - No agregan potencia al álgebra, simplifican consultas.
 - Son reescribibles en término de operaciones fundamentales
 - Intersección ()
 - Producto Theta (| X | e)
 - Producto Natural (| X |)
 - División (%)
 - Operación especial de Asignación (←)

- Intersección (∩)
 - Operación binaria (A B)
 - El resultado es una relación con aquellas tuplas que pertenecen a ambas relaciones (al mismo tiempo)
 - Es necesario que las relaciones A y B sean de «unión compatible»

 $ightharpoonup R \cap S$ es equivalente a R - (R - S)

Intersección (∩)

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros ∩ Jefes

E#	Nombre	Edad	
320	José	34	

- Producto Theta(| X | θ)
 - Operación binaria (R | X | e S)
 - Genera una nueva relación con las tuplas resultantes de aplicar una operación de selección con la condición indicada por **6** sobre el resultado de un producto cartesiano
 - La condición (€) se indica como una expresión booleana de términos (se pueden usar conectores lógicos entre las condiciones)
 - \blacksquare R | X | $_{\theta}$ S es equivalente a σ_{θ} (R X S)

Producto Theta(| X | e)

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

	Jetes		
E#	Nombre	Edad	

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros | X | Ingenieros.edad = Jefes.edad | Jefes

Ingenieros.E#	Ingenieros. Nombre	Ingenieros.Edad	Jefes.E#	Jefes.Nombre	Jefes.Edad
320	José	34	320	José	34

Producto Theta(|X|_e)

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros | X | Ingenieros.edad ≤ Jefes.edad Jefes

Ingenieros.E#	Ingenieros.Nombre	Ingenieros. Edad	Jefes.E#	Jefes. Nombre	Jefes. Edad
320	José	34	320	José	34
320	José	34	421	Jorge	48
322	Rosa	37	421	Jorge	48
323	María	25	320	José	34
323	María	25	421	Jorge	48

Producto Theta(| X | θ)

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros | X | Ingenieros.edad ≤ Jefes.edad and Ingenieros.E# ≠Jefes. E# Jefes

Ingenieros.E#	Ingenieros. Nombre	Ingenieros. Edad	Jefes.E#	Jefes.Nombre	Jefes.Edad
320	José	34	421	Jorge	48
322	Rosa	37	421	Jorge	48
323	María	25	320	José	34
323	María	25	421	Jorge	48

- Producto Natural (| X |)
 - Operación binaria (R | X | S)
 - Genera una nueva relación con las tuplas resultantes de aplicar una operación de selección con la condición indicada sobre el resultado de un producto cartesiano
 - La condición se indica como una expresión booleana de términos (se pueden usar conectores lógicos entre las condiciones)
 - R | X | S es equivalente a $\prod_{\text{lista}} (\mathbf{O}_{\text{condición}} (R X S))$

Donde:

condición implica a todos los atributos de R que están en S y son iguales

lista elimina columnas repetidas (dejando una sola en el conjunto) y los atributos que no tienen en común R y S

Producto Natural (| X |)

Postulantes

Nombre	Edad	DNI
Paula	19	29235142
Martina	22	35215415
Joaquín	28	28152478

Administrativos

Nombre	Edad	Domicilio	DNI
Martina	22	1 y 50	35215415
Paula	19	8 y 49	29899632
Pablo	32	26 y 50	20125789

Postulantes | X | Administrativos

Nombre	Edad	DNI	Domicilio
Martina	22	35215415	1 y 50

- División (%)
 - Operación binaria (R%S)R dividendo

 - S divisor
 - Los atributos del divisor S deben ser un subconjunto de los atributos de la relación R con igual dominio
 - La relación resultante de la división, llamémosla T, posee tuplas t tal que:
 - Los valores de t deben aparecer en R en combinación con todas las tuplas de S
 - R%S es equivalente a:

$$\Pi_{\text{att(R)- att(S)}} R - \Pi_{\text{att(R)- att(S)}} ((\Pi_{\text{att(R)- att(S)}} (R)xS) - R)$$

donde att(R)- att(S) significan los atributos de la relación R menos los atributos de la relación S

División (%)

_	
ĸ	

E#	Proyecto
320	RX338A
320	PY254Z
323	RX338A
323	PY254Z
323	NC168T
324	NC168T
324	KT556B

R2

Proyecto RX338A PY254Z

R1 % R2

E#	
320	
323	

División (%)

Lugar_Trabajo

Nombre	Sucursal	
Juan	Sucursal1	
Pedro	Sucursal1	
Juan	Sucursal2	
María	Sucursal 1	
Juan	Sucursal3	

Sucursales_Vip

Sucursal
Sucursal1
Sucursal2

Lugar_Trabajo % Sucursales_Vip

Nombre Juan

División (%)

Lugar_Trabajo

Nombre	Nombre Sucursal	
Juan	Sucursal1	Rojo
Pedro	Sucursal1	Verde
Juan	Sucursal2	Azul
María	Sucursal 1	Rojo
Juan	Sucursal3	Violeta
Pedro	Sucursal1	Rojo
Pedro	Sucursal2	Azul
Juan	Sucursal1	Verde

Sucursales_Vip

Sucursal	Color
Sucursal1	Rojo
Sucursal2	Azul
Sucursal1	Verd
	е

Lugar_Trabajo % Sucursales_Vip

Nombre
Juan
Pedro

- Asignación (←)
 - Es una forma conveniente de expresar operaciones complejas
 - Modularidad
 - El resultado de una operación se asigna temporalmente a una variable
 - La variable a la cual se asigna el resultado de una operación se puede usar en otras operaciones

- Asignación (←)
 - Ejemplo

Lugar_Trabajo

Nombre	Sucursal
Juan	Sucursal1
Pedro	Sucursal1
Juan	Sucursal2
María	Sucursal 1
Juan	Sucursal3

Sucursales_Vip

Sucursal
Sucursal1
Sucursal2

Empleado

Nombre	Domicilio
Juan	1 y 50
Pedro	120 y 43
María	150 y 62

Empleados_Vip ← Lugar_Trabajo % Sucursales_Vip

Empleados_Vip | X | Empleado

Nombre	Domicilio
Juan	1 y 50

Nombre Juan

- Combinación de operaciones para formar consultas
 - Las operaciones se pueden usar
 - Aisladas o
 - Combinadas (expresiones)
 - Permiten resolver consultas complejas
 - Se usan paréntesis cuando es necesario agrupar operaciones
 - Notación lineal

Álgebra Relacional

- Lenguaje de consulta, procedimental
 - Operaciones fundamentales
 - Operaciones adicionales
- Lenguaje de manipulación de datos
 - Operaciones de manipulación

Álgebra Relacional

- Lenguaje de manipulación de datos
 - Operaciones de manipulación: se expresan usando la operación de asignación
 - Modifican la cantidad o los valores de las tuplas de una relación

- Inserción (U)
- Eliminación ()
- Actualización (δ)

- Inserción (U)
 - La o las tuplas a insertar deben ser compatibles con la relación
 - R ← R U E
 - Donde R es la relación donde se insertarán los resultados de la expresión E

- Inserción (U)
 - Ejemplo

Empleado

Nombre	Domicilio
Juan	1 y 50
Pedro	120 y 43
María	150 y 62

Empleado ← Empleado U {("Joaquín", "4 y 497")}

Nombre	Domicilio
Juan	1 y 50
Pedro	120 y 43
María	150 y 62
Joaquín	4 y 497

- Inserción (U)
 - Ejemplo

Empleado

Nombre	Domicilio
Juan	1 y 50
Pedro	120 y 43
María	150 y 62

Empleado ← **Empleado** U {("Joaquín", "4 y 497"), ("Martina", "1 y 32")}

•	
Nombre	Domicilio
Juan	1 y 50
Pedro	120 y 43
María	150 y 62
Joaquín	4 y 497
Martina	1 y 32

- Inserción (U)
 - Ejemplo

Empleado

Nombre	Domicilio
Juan	1 y 50
Pedro	120 y 43
María	150 y 62

Asistentes

Nombre	Domicilio	DNI
Joaquín	4 y 497	1234536
Martina	1 y 32	2541258

Empleado ←
Empleado U
(Π nombre, domicilio Asistentes)

Nombre	Domicilio
Juan	1 y 50
Pedro	120 y 43
María	150 y 62
Joaquín	4 y 497
Martina	1 y 32

- Eliminación ()
 - La o las tuplas a eliminar deben ser compatibles con la relación
 - R ← R − E
 - Donde R es la relación donde se insertarán los resultados de la expresión E

- Eliminación ()
 - Ejemplo

Empleado

Nombre	Domicilio
Juan	1 y 50
Pedro	120 y 43
María	150 y 62
Joaquín	4 y 497
Martina	1 y 32

Empleado ← **Empleado –** {("Joaquín", "4 y 497"), ("Martina", "1 y 32")}

Nombre	Domicilio	
Juan	1 y 50	
Pedro	120 y 43	
María	150 y 62	

- Eliminación ()
 - Ejemplo

Empleado

Nombre	Domicilio
Juan	1 y 50
Pedro	120 y 43
María	150 y 62
Joaquín	4 y 497
Martina	1 y 32

Algunos_empleados ←

nombre="Martina" o nombre = "Joaquín" (Empleado)

Empleado ← Empleado - Algunos_empleados

Nombre	Domicilio	
Juan	1 y 50	
Pedro	120 y 43	
María	150 y 62	

- Actualización (δ)
 - Permite actualizar un valor particular de una tupla
 - $\delta_{\text{att}(R) \leftarrow E}$ (R)
 - Donde R es la relación a la que se le modificará el atributo mencionado en att(R), como resultado de la expresión E

- Actualización (δ)
 - Ejemplo

Empleado

Nombre	Domicilio	Salario
Juan	1 y 50	10200
Pedro	120 y 43	15000
María	150 y 62	22000

 $\delta_{\text{salario} \leftarrow \text{salario} * 1.2}$ (Empleado)

Nombre	Domicilio	Salario
Juan	1 y 50	12240
Pedro	120 y 43	18000
María	150 y 62	26400

- Actualización (δ)
 - Ejemplo

Empleado

Nombre	Domicilio	Salario
Juan	1 y 50	10200
Pedro	120 y 43	15000
María	150 y 62	22000

Nombre	Domicilio	Salario
Juan	1 y 50	12240
Pedro	120 y 43	15000
María	150 y 62	22000

Actividad

Para el encuentro participativo y sincrónico del Jueves 01 de Octubre de 2020

Ejercicio

INMUEBLE (<u>idInmueble</u>, nroCatastro, localidad, metrosCuadrados, tasacionFiscal, idPropietario)

PROPIETARIO (id Propietario, apellido, nombre, localidad, domicilio, dni)

MULTA(idInmueble, idMulta, añoMulta, montoMulta, descripcionMulta)

Nota:

- No todos los inmuebles tienen multa
- Cada inmueble posee un único propietario
- a) Hallar aquellos propietarios que solamente poseen propiedades en la localidad de "San Carlos de Bariloche". Listar su nombre, apellido, localidad donde vive y el dni.

Bibliografía de los temas abordados en esta clase

- Codd, E. F. (1970). A relational model of data for large shared data banks.
 Communications of the ACM, 13(6), 377-387.
- Codd, E. F. (1979). Extending the database relational model to capture more meaning. ACM Transactions on Database Systems (TODS), 4(4), 397-434.
- Garcia-Molina, H. (2008). Database systems: the complete book. Pearson Education India.
- Korth, H. F., & Silberschatz, A. (1993). Fundamentos de Base de Datos. Segunda Edición en español.

IMPORTANTE: los slides usados en las clases teóricas de esta materia, no son material de estudio por sí solos.