제 10 장 두 모집단의 추론

QIM. $x \sim N(100, 3^2)$

문제 1. $\mu_x =$

문제 2. μ_r 를 10번 구하고, 이들의 평균과 분산을 구하시오.

Note: μ_x 는 상수이다.

문제 3. n = 4인 표본을 5개 구한 후 통계처리한 결과이다.

	x_1	x_2	x_3	x_4	\overline{x}
1	99.89	96.68	102.40	102.85	100.45
2	101.06	99.45	100.07	93.57	98.54
3	94.64	95.68	102.83	97.63	97.70
4	103.92	97.21	104.25	100.06	101.36

 \overline{x} 는 상수이다. True, False

문제 4. n = 4인 가능한 모든 표본을 구한 후, 각 "표본의 평균"의 평균은 무엇인가?

문제 5. $\mu_{\overline{x}}$ 의 평균과 분산은?

예제. 두 도시의 가구별 월소득 격차에 대해 조사를 하려한다. 편의상 첫 번째 도시는 1, 두 번째 도시는 2로 표기하자. 도시 1에서 n_1 개의 가구별 월소득액을, 도시 2에서 n_2 개의 가구별 월소득액을 구하였다.

문제 1. 도시 1에서 구한 n_1 개의 월소득액의 평균을 기호로 표기하시오.

문제 2. 도시 2에서 구한 n_9 개의 월소득액의 평균을 기호로 표기하시오.

문제 3. 문제 1과 2에서 구한 값의 차이를 기호로 표기하시오.

문제 4. 도시 1에서 n_1 의 자료를 구하고 도시 2에서 n_2 개의 자료를 구한 후, 이들의 차이를 구한다. 이를 반복한다고 하자. 이들 값의 차이는 상수인가 아니면 변수인가? 변수라면 이들의 평균과 분산은 어떻게 표기할 수 있는가?

문제 5. 아래 표에서 M은 충분히 큰 값을 의미한다. M이 충분히 크다면, 빈 칸의 값들은 어떤 값에 근접하는가?

	x_{11}	x_{12}	x_{13}	x_{21}	x_{22}	$\overline{x_1}$	$\overline{x_2}$	$\overline{x_1} - \overline{x_2}$
1	654.57	879.54	710.47	1,047.48	964.76	748.19	1,006.12	-257.93
2	628.87	754.05	800.34	916.23	995.09	727.75	955.66	-227.91
:	:	:	÷	÷	:	÷	÷	:
M	896.15	525.96	877.68	949.74	940.57	766.60	945.16	-178.56
평균								
분산								
표준편차								

제1절 두 모집단 평균차의 추론: 독립표본

두 표본분포가 독립적이면

①
$$\mu_{\overline{X_1}-\overline{X_2}}=\mu_{\overline{X_1}}-\mu_{\overline{X_2}}=\mu_{X_1}-\mu_{X_2}=\mu_1-\mu_2$$
 함수 형식으로 표현하면 $E(\overline{x_1}-\overline{x_2})=E(\overline{x_1})-E(\overline{x_2})=E(x_1)-E(x_2)$ Note: $\mu_{\overline{X_1}+\overline{X_2}}=\mu_{\overline{X_1}}+\mu_{\overline{X_2}}=\mu_{X_1}+\mu_{X_2}=\mu_1+\mu_2$

②
$$\sigma_{\overline{X_1} - \overline{X_2}}^2 = \sigma_{\overline{X_1}}^2 + \sigma_{\overline{X_2}}^2 = \frac{\sigma_{X_1}^2}{n_1} + \frac{\sigma_{X_2}^2}{n_2}$$

함수 형식으로 표현하면
$$V(\overline{x_1}-\overline{x_2})=V(\overline{x_1})+V(\overline{x_2})=\frac{V(x_1)}{n_1}+\frac{V(x_2)}{n_2}$$

Note:
$$\sigma_{\overline{X_1}+\overline{X_2}}^2 = \sigma_{\overline{X_1}}^2 + \sigma_{\overline{X_2}}^2 = \frac{\sigma_{X_1}^2}{n_1} + \frac{\sigma_{X_2}^2}{n_2}$$

$$\mu_{\overline{X_1}+\overline{X_2}} \neq \mu_{\overline{X_1}-\overline{X_2}}$$
이지만, $\sigma_{\overline{X_1}+\overline{X_2}}^2 = \sigma_{\overline{X_1}-\overline{X_2}}^2$ 가 성립한다.

③ 두 모집단이 정규분포이거나 각 표본의 크기가 충분히 크면 $(\overline{X_1}$ 과 $\overline{X_2}$ 가 정규분포를 따를 조건임)

$$\overline{X_1}$$
- $\overline{X_2} \sim N \left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \right)$

예제 1. 두 모집단은 정규분포를 따르고, 각 표본은 서로 독립적이다.
$$\mu_1 = 2{,}000, \; \sigma_1^2 = 100^2, \; n_1 = 40, \; \mu_2 = 1{,}800, \; \sigma_2^2 = 50^2, \; n_2 = 50$$

① 두 모집단 표본 평균차는 어떤 분포인가? 두 모집단이 정규분포를 따르고, 각 표본은 서로 독립적이므로,

$$\begin{split} \overline{X_1} - \overline{X_2} &\sim N \bigg(\mu_1 - \mu_2 \,,\, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \bigg) \\ \rightarrow &\overline{X_1} - \overline{X_2} &\sim N \bigg(2,000 - 1,800 \,,\, \frac{100^2}{40} + \frac{50^2}{50} \bigg) \end{split}$$

② 두 모집단 표본 평균의 합은 어떤 분포인가?

두 모집단이 정규분포를 따르고, 각 표본은 서로 독립적이므로,

$$\begin{split} & \overline{X_1} + \overline{X_2} \ \sim \ N \bigg(\mu_1 + \mu_2 \,, \ \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \bigg) \\ & \to \ \overline{X_1} + \overline{X_2} \ \sim \ N \bigg(2,000 + 1,800 \,, \ \frac{100^2}{40} + \frac{50^2}{50} \bigg) \end{split}$$

모의실험 1. $x_1 \sim N(5,4^2)$, $x_2 \sim N(-5,3^2)$, $n_1 = n_2 = 2$ (두 모집단은 서로 독립적)

	모집	단 1	모집	단 2	_			
	x_{11}	x_{12}	x_{21}	x_{22}	x_1	x_2	$x_1 + x_2$	<i>x</i> ₁ - <i>x</i> ₂
1	-0.79	10.74	-5.18	2.50	4.97	-1.34	3.64	6.31
2	10.71	-2.76	-9.57	-12.13	3.97	-10.85	-6.88	14.82
3	-1.95	3.88	-7.78	-8.66	0.96	-8.22	-7.25	9.18
100,000	8.54	2.62	-7.30	-2.40	5.58	-4.85	0.73	10.43
평균	4.99	5.00	-5.00	-4.98	4.99	-4.99	-0.00	9.99
분산	16.04	16.11	8.96	8.97	8.05	4.47	12.54	12.49

연습문제 1.

문제 1. x_{11} 의 평균과 분산은?

문제 2. $\overline{x_1}$ 의 평균과 분산은?

문제 3. x_{21} 의 평균과 분산은?

문제 4. $\overline{x_2}$ 의 평균과 분산은?

문제 5. $E(\overline{x_1} + \overline{x_2})$ 와 $E(\overline{x_1} - \overline{x_2})$

문제 6. $V(\overline{x_1} + \overline{x_2})$ 와 $V(\overline{x_1} - \overline{x_2})$

문제 7. $\overline{x_1} + \overline{x_2}$ 와 $\overline{x_1} - \overline{x_2}$ 는 어떤 분포를 따르는가?

3.05

19.72

	모집	단 1		모집단 2		_	1	-
	x_1	x_2	y_1	y_2	y_3	x	y	x - y
1	1.89	18.17	8.59	1.25	6.08	10.03	5.31	4.72
2	14.15	17.57	7.25	3.08	6.95	15.86	5.76	10.10
3	10.24	8.41	4.63	6.28	1.67	9.32	4.19	5.13
4	10.31	6.38	9.38	4.02	5.68	8.34	6.36	1.98
5	3.73	6.13	5.27	6.50	5.19	4.93	5.65	-0.72
•••	5.46	5.94	4.45	3.95	7.99	5.70	5.47	0.24
10,000	5.72	8.68	8.10	6.95	6.20	7.20	7.08	0.12
평균	10.07	10.05	5.03	4.99	5.00	10.06	5.00	5.05

8.89

9.15

16.61

모의실험 2. $x \sim U[0, 20], y \sim N(5, 3^2), n_x = 2, n_y = 3$

33.27

8.96

연습문제 2.

분산

문제 1. $E(\overline{x}), E(\overline{y}), V(\overline{x}), V(\overline{y})$

33.76

문제 2. $E(\overline{x}-\overline{y}), V(\overline{x}-\overline{y})$

문제 3. $\bar{x} - \bar{y}$ 는 어떤 분포를 따르는가?

문제 4. 위의 실험에서 $n_x=30,\ n_y=10$ 으로 변경시킨다고 하자. 이때 $E(\overline{x}-\overline{y}),\ V(\overline{x}-\overline{y})$ 는?

문제 5. 위의 실험에서 $n_x=30,\; n_y=10$ 으로 변경시킨다고 하자. $\overline{x}-\overline{y}$ 는 어떤 분포를 따르는가?

1. 두 모집단의 분산을 알고 있는 경우

- (1) 가설검정의 조건: $\overline{X_1}$ $\overline{X_2} \sim N \left(\mu_1 \mu_2, \, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \right)$
 - ... X_1 과 X_2 가 정규분포를 따르거나 또는 n_1 과 n_2 가 충분히 큰 경우(중심극한의 정리) 이고 두 표본이 서로 독립적인 경우

[참고] $[\overline{X_1}$ - $\overline{X_2}$]를 하나의 변수로 생각합니다.

① $(\overline{X_1} - \overline{X_2})$ 의 평균과 분산의 표기는?

평균: E(변수) 또는 $\mu_{변수}$, 분산: V(변수) 또는 $\sigma_{변수}^2$

ightarrow 현재 변수는 $(\overline{X_1} ext{-}\overline{X_2})$ 이므로,

평균: $E(\overline{X_1} - \overline{X_2})$, $\mu_{\overline{X_1} - \overline{X_2}}$

분산: $V(\overline{X_1} - \overline{X_2}), \ \sigma^2_{\overline{X_1} - \overline{X_2}}$

② $(\overline{X_1}-\overline{X_2})$ 의 평균과 분산을 $\mu_1,~\mu_2,~\sigma_1^2,~\sigma_2^2,~n_1$ 과 n_2 로 표현하면? (단, 각 표본이 서로

독립적이란 전제가 필요하다.)

$$\mu_{\overline{X_1}-\overline{X_2}} = \mu_1 - \mu_2$$

$$\sigma_{\overline{X_1} - \overline{X_2}}^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$

③ 정규분포를 따르는 어떤 변수의 z값은?

$$z = rac{$$
변수 $-$ 모집단 평균_{변수}
모집단 표준편차_{변수}

④ ③에 $(\overline{X_1} - \overline{X_2})$ 를 대입하면

$$z = \frac{(\overline{X_1} - \overline{X_2}) - \mu_{\overline{X_1} - \overline{X_2}}}{\sigma_{\overline{X_1} - \overline{X_2}}} = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

1-1. 양측검정(Two-tailed Test)

- (1) H_0 : $\mu_1 \mu_2 = 0$, H_A : $\mu_1 \mu_2 \neq 0$ μ_1 - μ_2 =0은 $\mu_{\overline{X_1}-\overline{X_2}}$ =0과 동일하며, μ_1 - $\mu_2 \neq 0$ 은 $\mu_{\overline{X_1}-\overline{X_2}} \neq 0$ 과 동일하다.
- $(\overline{X_1}$ $\overline{X_2}$)의 표준통계량

$$z = \frac{(\overline{X_1} - \overline{X_2}) - \mu_{\overline{X_1} - \overline{X_2}}}{\sigma_{\overline{X_1} - \overline{X_2}}} = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \circ \mathsf{Th}.$$

(3) μ₁-μ₂의 (1-α)100% 신뢰구간

$$(\overline{X_1} - \overline{X_2}) \pm z_{\frac{\alpha}{2}} \cdot \sigma_{\overline{X_1} - \overline{X_2}} \rightarrow (\overline{X_1} - \overline{X_2}) \pm z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

예제 2. 두 모집단은 정규분포를 따르고, 각 표본은 서로 독립적이다.

$$\overline{X_1}$$
 = 810, σ_1^2 = 100², n_1 = 40, $\overline{X_2}$ = 850, σ_2^2 = 50², n_2 = 50, α = 0.05

(1)
$$H_0$$
: $\mu_1 - \mu_2 = 0$, H_A : $\mu_1 - \mu_2 \neq 0$ (\rightarrow 양측 검정)

(2) Test Statistic:
$$\frac{(\overline{X_1} - \overline{X_2}) - \mu_{\overline{X_1} - \overline{X_2}}}{\sigma_{\overline{X_1} - \overline{X_2}}} = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

(두 모집단이 정규분포를 따르고, 각 표본이 서로 독립적이며, 모집단 분산을 알고 있으므로 이 Test Statistic을 사용할 수 있다.)

[설명] Test Statistic에서 μ_1 - μ_2 의 값은 H_0 에서 설정한 값을 사용하고, $\overline{X_1}$ 과 $\overline{X_2}$ 는 표 본에서 구한 값을 사용한다.

(3) For $\alpha = 0.05$,

> Rejection Region: $Z > Z_{0.025} = 1.96$ 또는 $Z < -Z_{0.025} = -1.96$ (양측검정이므로 $z_{\frac{\alpha}{2}}$ 와 $-z_{\frac{\alpha}{2}}$ 가 사용된다.)

[설명] H_0 가 사실일 때, $-Z_{0.025}$ 보다 작거나 또는 $Z_{0.025}$ 보다 큰 Z값이 나올 확률은 α 이다.

(4) Value of the Test Statistic:

$$Z = \frac{-40 - 0}{17.32} = -2.31$$

[설명] 여기서, $\mu_1 - \mu_2 = 0$ 은 바로 H_0 이다.

Conclusion: (5)

Ⅱ를 기각. 두 모집단의 평균의 차이가 유의하다.

[참고] p-value = $2 \cdot P(z > | -2.31 |) = 2 \cdot 0.0104 = 0.0208$

[참고] μ_1 - μ_2 의 95% 신뢰구간:

$$(\overline{X_1} - \overline{X_2}) \pm z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \rightarrow -40 \pm 1.96(17.32) = [-73.9, -6.11]$$

연습문제 3.

무모집단은 모두 정규분포를 따른다. Test Statistic으로 $z=\frac{(\overline{X_1}-\overline{X_2})-(\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{n}+\frac{\sigma_2^2}{n}}}$ 를

사용할 있는 지를 살펴보고자 한다.

문제 1. 수식에 사용된 변수, 상수들 중 표본을 통해 알 수 있는 값을 모두 나열하시오.

문제 2. 가설로부터 인용하는 값을 모두 나열하시오.

문제 3. 표본으로부터 구할 수 없고 가설로부터도 인용할 수 없는 값(즉, 알려져 있어야 하는 값)을 모두 나열하시오.

연습문제 4.

두 모집단은 정규분포를 따르고, 각 표본은 서로 독립적이다. 두 모집단 평균이 같지 않다는 의심이 들어 조사한 결과 아래의 통계량을 구했다.

$$\overline{X_1} = 800, \ \sigma_1^2 = 100^2, \ n_1 = 10, \ \overline{X_2} = 850, \ \sigma_2^2 = 50^2, \ n_2 = 5,$$

문제 1. 가설검정을 수행하시오. 단, $\alpha = 0.05$

문제 2. μ_1 - μ_2 의 95% 신뢰구간을 구하시오.

문제 3. 신뢰구간과 가설검정의 결론에 대해 논하시오.

문제 4. p-value를 구하시오.

문제 5. p-value와 가설검정의 결론에 대해 논하시오.

2. 두 모집단 분산을 모르는 경우

2.1 대표본인 경우

(1) 가설검정의 조건: $\overline{X_1}$ - $\overline{X_2} \sim N \left(\mu_1 - \mu_2, \, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \right)$

 X_1 과 X_2 가 정규분포를 따르거나 또는 n_1 과 n_2 가 충분히 큰 경우(중심극한의 정리)이고 두 표본이 서로 독립적인 경우

(2) σ_1^2 과 σ_2^2 의 추정

두 모집단의 분산이 알려져 있으면 $\overline{X_1}$ - $\overline{X_2}$ 의 분산은 $\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}$ 으로 구할 수 있다. 대 표본이므로 (각 표본에서 구하는) S_1^2 과 S_2^2 로 σ_1^2 과 σ_2^2 을 추정한다.

$$(\overline{X_1}$$
- $\overline{X_2}$)의 모집단 분산 = $\sigma_{\overline{X_1}-\overline{X_2}}^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$

$$(\overline{X_1}-\overline{X_2})$$
의 모집단 분산 추정치 = $S_{\overline{X_1}-\overline{X_2}}^2 = \frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}$

(3) $(\overline{X_1}$ - $\overline{X_2}$)의 표준통계량

$$z = \frac{(\overline{X_1} - \overline{X_2}) - \mu_{\overline{X_1} - \overline{X_2}}}{S_{\overline{X_1} - \overline{X_2}}} = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \, \text{olth}.$$

 $(\sigma_{X_1-X_2}^2$ 을 모르는 경우 표준통계량으로 t를 사용한다. 그런데 t의 자유도가 커지면 t 값은 z값에 근접하므로, t대신 z를 사용해도 차이가 별 차이가 없다. 물론 정확히

하려면 t를 사용한다.)

(4) μ₁-μ₂의 (1-α)100% 신뢰구간

$$(\overline{X_1} - \overline{X_2}) \pm z_{\frac{\alpha}{2}} \cdot S_{\overline{X_1} - \overline{X_2}} \rightarrow (\overline{X_1} - \overline{X_2}) \pm z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$$

예제 4. 두 표본은 서로 독립적이다.

$$\overline{X_1} = 2.4$$
, $S_1 = 4.0$, $n_1 = 35$, $\overline{X_2} = 4.5$, $S_2 = 6.2$, $n_2 = 30$, $\alpha = 0.05$

(1)
$$H_0$$
: $\mu_1 - \mu_2 = 0$, H_A : $\mu_1 - \mu_2 \neq 0$ (\rightarrow 양측 검정)

(2) Test Statistic:
$$t_{n_1+n_2-2} = \frac{(\overline{X_1} - \overline{X_2}) - \mu_{\overline{X_1} - \overline{X_2}}}{S_{\overline{X_1} - \overline{X_2}}} = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

(여기서, $t_{n_1+n_2-2}$ 대신 z를 사용해도 무방)

(3) For
$$\alpha=0.05$$
, Rejection Region: $Z>Z_{0.025}=1.96$ 또는 $Z<-Z_{0.025}=-1.96$

(4) Value of the Test Statistic:

$$z = \frac{(2.4 - 4.5) - 0}{\sqrt{\frac{4.0^2}{35} + \frac{6.2^2}{30}}} = -1.59$$

(5) Conclusion:

 H_0 를 기각하는데 실패. 두 모집단의 평균의 차이가 유의하다 할 수 없다.

Note:
$$(\overline{X_1} - \overline{X_2})$$
의 모집단 분산 추정치 = $\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2} = \frac{4.0}{35} + \frac{6.2^2}{30}$

[참고]
$$p$$
-value = $2 \cdot P(z > | -1.59 |) = $2 \cdot 0.0559 = 0.1118$ p -value가 α 보다 크므로, H_0 를 기각할 수 없다.$

[참고] μ_1 - μ_2 의 95% 신뢰구간:

$$(\overline{X_1} - \overline{X_2}) \pm z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} \rightarrow -2.1 \pm 1.96(1.32) = [-4.69, 0.49]$$

양측검정이고, H_0 : $\mu_1-\mu_2=0$ 이다. 신뢰구간이 H_0 에서 설정한 $\mu_1-\mu_2$ 값인 0을 포함하고 있으므로, H_0 를 기각할 수 없다.

연습문제 5.

문제 1. Test Statistic으로 $z=\frac{(\overline{X_1}-\overline{X_2})-(\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}}$ 를 사용할 수 있는 조건을 나열하시오.

문제 2. σ_1 과 σ_2 를 모르는 경우, 표본으로부터 이들을 추정할 수 있는 통계량은?

문제 3. 어떤 표본을 정리하였다. $\{3.0,\ 5.0,\ 5.8,\ 6.2\}$ $\overline{X},\ s^2,\ s,\ s_{\overline{X}}$ 값을 구하시오.

문제 4. $\overline{X_1}$ - $\overline{X_2}$ 이 정규분포를 따르지만 σ_1^2 , σ_2^2 은 알려져 있지 않다. n_1 과 n_2 는 크다. 이 경우 가설검정에서 사용 가능한 통계량은?

연습문제 6.

두 표본은 서로 독립적이다. 모집단 분산들은 알려져 있지 않다.

$$\overline{X_1}$$
 = 3.5, S_1 = 4.0, n_1 = 25, $\overline{X_2}$ = 3.0, S_2 = 6.0, n_2 = 36, α = 0.05

문제 1. $S_{\overline{X_1}}$, $S_{\overline{X_2}}$, $S_{\overline{X_1}-\overline{X_2}}$ 을 구하시오.

문제 2. 양측 가설검정을 수행하시오. 단, H_0 : $\mu_1 - \mu_2 = 0$ 이다.

문제 3. $\mu_1 - \mu_2$ 의 95% 신뢰구간을 구하시오.

문제 4. 신뢰구간과 가설검정의 결론에 대해 논하시오.

문제 5. p-value를 구하시오.

문제 6. p-value와 가설검정의 결론에 대해 논하시오.

2.2 소표본인 경우 [기초]

두 모집단의 분산이 같은 경우 표본으로부터 분산을 추정하는 방법

모의실험 3. $x_1 \sim N(100, 10^2), x_2 \sim N(200, 10^2)$

	x_1	$(x_{1i}-\overline{x_1})^2$	x_2	$(x_{2i}-\overline{x_2})^2$
1	97.94	0.54	183.96	158.04
2	97.30	0.01	194.91	2.63
3	106.06	78.49	192.81	13.81
4	110.20	168.81	207.93	129.90
5	100.78	12.77	203.04	42.39
6	95.36	3.42		
7	81.66	241.62		
8	94.94	5.15		
9	99.59	5.71		
10	88.23	80.60		
합계	972.05	597.12	982.65	346.77
분모	10	9	5	4
평균	97.21	66.35	196.53	86.69

연습문제 7.

- 문제 1. S_1^2 과 S_2^2 를 구하시오.
- 문제 2. 두 모집단의 분산은 동일한 것으로 알려져 있다. 위의 표에서 어떤 데이터들의 기대값이 같다는 것인가?
- 문제 3. 두 모집단의 분산이 동일하다면, S_1^2 과 S_2^2 으로부터 어떤 방법으로 모집단 분산을 추정할 수 있는가?
- 문제 4. 두 모집단의 분산이 동일하다고 한다. 각 표본들의 편차제곱의 합만 알려져 있다면, 어떤 방법으로 모집단 분산을 추정할 수 있는가?
- 문제 5. 문제 3과 문제 4에서 구한 값이 동일함을 보이시오.

모의실험 4.	$x_1 \sim N(100, 10^2),$	$x_2 \sim N(200, 10^2),$	$n_1 = 10, n_2 = 5$
---------	--------------------------	--------------------------	---------------------

	1		
	S_1^2	S_2^2	가중평균
1	109.47	98.62	106.13
2	90.30	14.64	67.02
3	43.79	16.60	35.42
4	119.80	109.51	116.63
5	198.57	11.19	140.92
6	162.99	67.25	133.53
7	106.87	47.36	88.56
8	125.88	32.83	97.25
9	40.27	23.34	35.06
10	176.20	24.10	129.40
•••	•••	•••	•••
10,000	100.70	32.62	79.75
평균	99.56	100.51	99.85
분산	2,220.02	5,158.14	1,555.59

왼쪽부터 S_2^2 , S_1^2 , 가중평균이다.

2.2 소표본인 경우

(1) X_1 과 X_2 가 정규분포를 따르고, 서로 독립적이며, $\sigma_1 = \sigma_2$ 이고, n_1 과 n_2 는 충분히 크지 않다.

$$\cdots \ \, \text{가설검정의 조건:} \ \, \overline{X_1} \text{-} \ \, \overline{X_2} \ \, \sim \ \, N \bigg(\mu_1 - \mu_2, \, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \bigg) \ \, \rightarrow \ \, \sim \ \, N \bigg(\mu_1 - \mu_2, \, \frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2} \bigg)$$

 $\sigma_1 = \sigma_2$ 이므로 σ_1 과 σ_2 모두 σ 로 표기한다.

(2)
$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$
의 추정

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 - 1) + (n_2 - 1)} \leftarrow S_p^2$$
: pooled estimator of variance

일종의 가중평균법이다.

$$\sigma_{\overline{X_1} - \overline{X_2}}^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} = \frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2} \rightarrow \left(\stackrel{\stackrel{>}{>}}{=} \stackrel{\nearrow}{\sim} \right) \frac{S_p^2}{n_1} + \frac{S_p^2}{n_2}$$

(3) $(\overline{X_1} - \overline{X_2})$ 의 표준통계량

$$t \; = \; \frac{(\overline{X_1} - \overline{X_2}) - \mu_{\overline{X_1} - \overline{X_2}}}{S_{\overline{X_1} - \overline{X_2}}} \; = \; \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_p^2}{n_1} + \frac{S_p^2}{n_2}}} \, \text{olth}.$$

자유도(degree of freedom, df) = $(n_1-1)+(n_2-1)$

 $(\sigma_{X_1-X_2}^2)$ 을 모르는 경우 표준통계량으로 t를 사용한다. 그런데 t의 자유도가 커지면 t값은 z값에 근접하므로, t대신 z를 사용해도 차이가 별 차이가 없지만, 이번 경우는 자유도가 크지 않은 경우이다.)

Note: S_p^2 은 두 모집단 분산의 추정치이고, $\frac{S_p^2}{n_1} + \frac{S_p^2}{n_2}$ 는 $(\overline{X_1} - \overline{X_2})$ 의 분산 추정치이다.

예제 5. 두 모집단은 독립적이고 정규분포를 이루며 두 모집단 분산은 같다. $\alpha = 0.10$

A: 85, 63, 92, 40, 76, 82, 85, 68, 80, 95

B: 98, 92, 60, 83, 85, 89, 70, 85, 53, 80

$$\overline{X_1} = 76.6, \ S_1 = 16.18, \ n_1 = 10, \ \overline{X_2} = 78.5, \ S_2 = 14.20, \ n_2 = 10$$

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 - 1) + (n_2 - 1)} = \frac{(10 - 1)16.18^2 + (10 - 1)14.20^2}{(10 - 1) + (10 - 1)} = 231.72$$

(1) H_0 : $\mu_1 - \mu_2 = 0$, H_A : $\mu_1 - \mu_2 \neq 0$ (\rightarrow 양측 검정)

(2) Test Statistic:
$$t = \frac{(\overline{X_1} - \overline{X_2}) - \mu_{\overline{X_1} - \overline{X_2}}}{S_{\overline{X_1} - \overline{X_2}}} = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_p^2}{n_1} + \frac{S_p^2}{n_2}}}$$

(3) For $\alpha = 0.10$,

Rejection Region: $t > t_{0.05, 18} = 1.7341$ 또는 $t < -t_{0.05, 18} = -1.7341$

(4)
$$t = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_p^2}{n_1} + \frac{S_p^2}{n_2}}} = \frac{(76.6 - 78.5) - 0}{\sqrt{\frac{231.72}{10} + \frac{231.72}{10}}} = -0.28$$

(5) H₀ 기각 실패

[참고]
$$p$$
-value = $2 \cdot P(t_{18} > | -0.28 |) = 2 \cdot 0.3913 = 0.7827$

[참고] μ_1 - μ_2 의 90% 신뢰구간:

$$(\overline{X_1} - \overline{X_2}) \pm t_{0.05, 18} \cdot \sqrt{\frac{S_p^2}{n_1} + \frac{S_p^2}{n_2}} \rightarrow -1.9 \pm 1.734(6.81) = [-13.71, 9.91]$$

연습문제 8.

두 모집단은 독립적이고 정규분포를 이루며 두 모집단 분산은 같다.

$$\overline{X_1} = 95.6, S_1 = 16.18, n_1 = 16, \overline{X_2} = 101.2, S_2 = 17.3, n_2 = 11$$

문제 1. 두 모집단의 분산을 추정하시오.

문제 2. 양측 가설검정을 수행하시오. 단, H_0 : $\mu_1 - \mu_2 = 0$ 이다.

문제 3. $\mu_1 - \mu_2$ 의 95% 신뢰구간을 구하시오.

문제 4. 신뢰구간과 가설검정의 결론에 대해 논하시오.

문제 5. p-value를 구하시오.

문제 6. p-value와 가설검정의 결론에 대해 논하시오.

제2절 쌍체(matched pairs) 비교

번호	X_1 (전)	$X_2(\overline{\dot{\uparrow}})$	$d(X_1 ext{-}X_2)$ होः।	- d-d 편차	$(d-\overline{d})^2$ 편차제곱
1	70	68	2	-1	1
2	62	62	0	-3	9
3	54	50	4	1	1
	•••	•••	•••	•••	1
10	63	60	3	0	0
합계			30		94

번호	X_1 (전)	$X_2(\overset{\mathtt{ar{ au}}}{+})$	$d(X_1 ext{-}X_2)$ ই\ণ্	_ d-d 편차
1	$X_{1,1}$	$X_{1,2}$	$d_1 (=X_{1,1}-X_{1,2})$	d_1 - \overline{d}
2	$X_{2,1}$	$X_{2,2}$	$d_2 (=X_{2,1}-X_{2,2})$	d_2 - \overline{d}
3	$X_{3,1}$	$X_{3,2}$	$d_3 (=X_{3,1}-X_{3,2})$	d_3 - \overline{d}
•••	•••	•••	•••	•••
10	$X_{10,1}$	$X_{10,2}$	$d_{10} (=X_{10,1}-X_{10,2})$	d_{10} - \overline{d}

d의 표본 평균과 표본 분산

$$\bar{d} = \frac{\sum_{i=1}^{n} d_i}{n}$$

$$S_d^2 = \frac{\sum_{i=1}^{n} (d_i - \bar{d})^2}{n}$$

d가 정규분포를 이루는 경우, μ_d 에 관한 inference를 제시할 수 있다. 현실적으로 σ_d 는 잘 알려져 있지 않으므로 confidence interval이나 hypothesis test에서 t -distribution을 이용한다.

(1) 검정통계량 $t = \frac{\bar{d} - \mu_d}{S_d / \sqrt{n}}, \text{ degree of freedom} = n\text{-}1$

(2)
$$\mu_d$$
의 $(1-\alpha)100\%$ 신뢰구간 $\overline{d} \pm t_{\frac{\alpha}{2}, n-1} \cdot S_d / \sqrt{n}$

예)
$$\overline{d} = \frac{30}{10} = 3$$
, $S_d^2 = \frac{94}{10-1} = 10.44$, $S_d = \sqrt{10.4444} = 3.2318$, $\alpha = 0.05$

(1)
$$H_0$$
: $\mu_d = 0$, H_A : $\mu_d \neq 0$

(2)
$$d$$
의 검정통계량
$$t = \frac{\bar{d} - \mu_d}{S_d / \sqrt{n}}$$

(3) For α =0.05, Rejection Region: $t > t_{0.025, \, 9} = 2.262$ 또는 $t < -t_{0.025, \, 9} = -2.262$

(4)
$$t = \frac{\overline{d} - \mu_d}{S_d / \sqrt{n}} = \frac{3}{3.2318 / \sqrt{10}} = 2.9355$$

(5) Conclusion: Reject H_0 .

[참고] p-value =
$$2 \cdot P(t_9 > | 2.9355 |) = 2 \cdot 0.0083 = 0.0166$$

[참고]
$$\mu_d$$
의 95% 신뢰구간
$$\bar{d} \pm t_{\frac{\alpha}{2},\,n-1} \cdot S_d/\sqrt{n} = 3 \pm 2.262 \cdot 3.2318 / \sqrt{10} = [0.6883,\,5.3117]$$

연습문제 정답

- 1. (1) $x_1 \sim N(5,4^2)$ 이므로, 평균은 5, 분산은 4^2 이다.
 - (2) $x_1 \sim N(5, 4^2)$ 이고, $n_1 = 2$ 이므로, 평균은 5, 분산은 $\frac{4^2}{2}$ 이다.
 - (3) $x_2 \sim N(-5,3^2)$ 이므로, 평균은 -5, 분산은 3^2 이다.
 - (4) $x_2 \sim N(-5,3^2)$ 이고, $n_2 = 2$ 이므로, 평균은 -5, 분산은 $\frac{3^2}{2}$ 이다.

(5)
$$E(\overline{x_1} + \overline{x_2}) = E(\overline{x_1}) + E(\overline{x_2}) = E(x_1) + E(x_2) = 5 + (-5) = 0$$

 $E(\overline{x_1} - \overline{x_2}) = E(\overline{x_1}) - E(\overline{x_2}) = E(x_1) - E(x_2) = 5 - (-5) = 10$

(6)
$$V(\overline{x_1} + \overline{x_2}) = V(\overline{x_1}) + V(\overline{x_2}) = \frac{V(x_1)}{n_1} + \frac{V(x_2)}{n_2} = \frac{16}{2} + \frac{9}{2} = 12.5$$

 $V(\overline{x_1} - \overline{x_2}) = V(\overline{x_1}) + V(\overline{x_2}) = \frac{V(x_1)}{n_1} + \frac{V(x_2)}{n_2} = \frac{16}{2} + \frac{9}{2} = 12.5$

주의: $V(\overline{x_1} + \overline{x_2})$ 와 $V(\overline{x_1} - \overline{x_2})$ 는 동일하다. (단, 두 모집단이 서로 독립적이라면)

(7) x_1 과 x_2 모두 정규분포를 따르므로, $\overline{x_1}$ 과 $\overline{x_2}$ 는 정규분포를 따른다. $\overline{x_1}$ 과 $\overline{x_2}$ 가 정규분포를 따르므로, $\overline{x_1} + \overline{x_2}$ 와 $\overline{x_1} - \overline{x_2}$ 는 모두 정규분포를 따른다.

Note: 왼쪽 그래프는 $\overline{x_1} + \overline{x_2}$ 의 도수분포를, 오른쪽 그래프는 $\overline{x_1} - \overline{x_2}$ 의 도수분포이다. 두 그래프 모두 정규분포이다. 두 그래프의 중앙은 다르지만, 퍼져 있는 정도는 동일하다.

2. (1)
$$E(\overline{x}) = E(x) = \frac{20-0}{2} = 10,$$
 $E(\overline{y}) = E(y) = 5$

$$V(\overline{x}) = \frac{V(x)}{n_x} = \frac{(20-0)^2/12}{2} = 16.67, \quad V(\overline{y}) = \frac{V(y)}{n_y} = \frac{3^2}{3} = 3$$

(2)
$$E(\overline{x} - \overline{y}) = E(\overline{x}) - E(\overline{y}) = 5.0,$$
 $V(\overline{x} - \overline{y}) = V(\overline{x}) + V(\overline{y}) = 19.67$

(3) 잘 알려진 정규분포는 아님. (정규분포는 아님)

(4)
$$E(\overline{x} - \overline{y}) = E(\overline{x}) - E(\overline{y}) = 5.0,$$

$$V(\overline{x} - \overline{y}) = V(\overline{x}) + V(\overline{y}) = \frac{V(x)}{n_x} + \frac{V(y)}{n_y} = \frac{(20 - 0)^2 / 12}{30} + \frac{3^2}{10} = 2.0111$$

(5) $n_x = 30$ 로서 충분히 큰 값이므로 \overline{x} 는 정규분포를 따른다.

 $n_y = 10$ 로서 충분히 큰 값이 아니지만 y가 정규분포를 따르므로 \overline{y} 는 표본의 크기와 무관하게 정규분포를 따른다.

 \bar{x} 와 \bar{y} 모두 정규분포를 따르므로 \bar{x} - \bar{y} 도 정규분포를 따른다.

- 3. (1) $\overline{X_1}$, $\overline{X_2}$, n_1 , n_2
 - (2) μ_1 μ_2 (이 값은 H_0 에서 정한다.)
 - (3) 표본으로부터 구할 수는 없는 값 (즉, 알려져 있어야 하는 값): σ_1^2 , σ_2^2
- 4. (1) H_0 : $\mu_1 \mu_2 = 0$, H_A : $\mu_1 \mu_2 \neq 0$

Test Statistic:
$$z = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

Rejection Region: $z > z_{0.025} = 1.96$ 또는 $z < -z_{0.025} = -1.96$

Value of the Test Statistic:
$$z=\frac{(\overline{X_1}-\overline{X_2})-(\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}}=\frac{-50-(0)}{\sqrt{\frac{100^2}{10}+\frac{50^2}{5}}}=-1.29$$

Conclusion: Do not Reject H_0 .

(2)
$$(\overline{X_1} - \overline{X_2}) \pm z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} = -50 \pm 1.96(38.73) = -50 \pm 75.91$$
 (-125.91, 25.91)

- (3) 신뢰구간에 H_0 에서 설정한 μ_1 - μ_2 값인 0이 포함되므로, 양측 검정의 H_0 는 기각 실패
- (4) 양측검정이므로 *p*-value = 2 × $P(z > \mid -1.29 \mid)$ = 2×0.0985 = 0.1971
- (5) p-value가 α 보다 크므로, H_0 를 기각할 수 없다.
- 5. (1) a. $\overline{X_1}$ $\overline{X_2}$ 이 정규분포를 따른다.
 - ① X₁과 X₂가 정규분포를 따르거나
 - ② n₁과 n₂가 충분히 크다.
 - 이 두 조건 중 최소 하나는 충족되어야 한다. (두 조건들은 모두 $\overline{X_1}$ 과 $\overline{X_2}$ 가

정규분포를 따를 조건이며, $\overline{X_1}$ 과 $\overline{X_2}$ 가 정규분포를 따르면 $\overline{X_1}$ - $\overline{X_2}$ 도 정규분 포를 따른다.)

b. σ_1^2 , σ_2^2 이 알려져 있다. $(\sigma_1^2$ 와 σ_2^2 는 모수이므로, 표본으로부터 구할 수 없다.)

(2) σ_1 과 σ_2 은 표본으로부터 s_1 과 s_2 로 추정한다.

(3)
$$\overline{X} = \frac{3.0 + 5.0 + 5.8 + 6.2}{4} = 5$$

$$s^{2} = \frac{(3.0 - 5.0)^{2} + (5.0 - 5.0)^{2} + (5.8 - 5.0)^{2} + (6.2 - 5.0)^{2}}{4 - 1} = 2.0267$$

$$s = \sqrt{s^{2}} = 1.4236$$

$$s_{\overline{X}} = \frac{s}{\sqrt{n}} = \frac{1.4236}{\sqrt{4}} = 0.7118$$
(4) $z = \frac{(\overline{X_{1}} - \overline{X_{2}}) - \mu_{\overline{X_{1}} - \overline{X_{2}}}}{S_{\overline{X_{1}} - \overline{X_{2}}}} = \frac{(\overline{X_{1}} - \overline{X_{2}}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}}$

 $(\sigma_{\overline{X_1}-\overline{X_2}}^2$ 을 모르는 경우 표준통계량으로 $t_{n_1+n_2-2}$ 를 사용한다. 그런데 t의 자유도가

커지면 t값은 z값에 근접하므로, t대신 z를 사용해도 차이가 별 차이가 없다.)

6. (1)
$$S_{\overline{X_1}} = \frac{S_1}{\sqrt{n_1}} = \frac{4.0}{\sqrt{25}} = 0.8$$
, $S_{\overline{X_2}} = \frac{S_2}{\sqrt{n_2}} = \frac{6.0}{\sqrt{36}} = 1$

$$S_{\overline{X_1} - \overline{X_2}} = \sqrt{S_{\overline{X_1}}^2 + S_{\overline{X_2}}^2} = \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} = \sqrt{\frac{4^2}{25} + \frac{6^2}{36}} = \sqrt{1.64} = 1.2806$$

(2) z로 하는 경우

$$H_0$$
: $\mu_1 - \mu_2 = 0$, H_A : $\mu_1 - \mu_2 \neq 0$

$$\text{Test Statistic:} \qquad z \, = \, \frac{(\overline{X_1} - \overline{X_2}) - \mu_{\overline{X_1} - \overline{X_2}}}{S_{\overline{X_1} - \overline{X_2}}} \, = \, \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

Rejection Region: $z>z_{0.025}$ = 1.96 또는 $z<-z_{0.025}$ = -1.96

Value of the Test Statistic: $z = \frac{(3.5 - 4.0) - 0}{1.2806} = -0.39043$

Conclusion: H_0 를 기각하는 데 실패

t로 하는 경우

$$H_0$$
: $\mu_1 - \mu_2 = 0$, H_A : $\mu_1 - \mu_2 \neq 0$

$$\text{Test Statistic:} \qquad t_{n_1+\,n_2-\,2} \,=\, \frac{(\overline{X_1}-\,\overline{X_2})\,-\,\mu_{\overline{X_1}-\,\overline{X_2}}}{S_{\overline{X_1}-\,\overline{X_2}}} \,=\, \frac{(\overline{X_1}-\,\overline{X_2})\,-\,(\mu_1-\mu_2)}{\sqrt{\frac{S_1^2}{n_1}+\frac{S_2^2}{n_2}}}$$

Rejection Region:
$$t > t_{59,0.025} = 2.0010$$
, 또는 $t < -t_{59,0.025} = -2.0010$)

Value of the Test Statistic:
$$t = \frac{(3.5 - 4.0) - 0}{1.2806} = -0.39043$$

Conclusion: H_0 를 기각하는 데 실패

$$(3)$$
 $(\overline{X_1} - \overline{X_2}) \pm z_{\frac{\alpha}{2}} \cdot S_{\overline{X_1} - \overline{X_2}} = -0.5 \pm 1.96(1.2806)$ t 로 한다면 $(\overline{X_1} - \overline{X_2}) \pm t_{59,\; 0.025} \cdot S_{\overline{X_1} - \overline{X_2}} = -0.5 \pm 2.0010(1.2806)$

- (4) 신뢰구간이 H_0 : $\mu_1 \mu_2$ 값인 0을 포함하므로, H_0 를 기각하는 데 실패
- (5) 양측이므로 p-value = 2 × P(z > | -0.39043 |) = 2×0.348109 = 0.696219 t로 하면

$$p$$
-value = 2 × $P(t_{59} > | -0.39043 |) = 2×0.3488 = 0.6976$

(6) p-value가 α 보다 크므로, H_0 를 기각할 수 없다.

7. (1)
$$S_1^2 = \frac{\sum_{i=1}^{10} (x_{1i} - \overline{x_1})^2}{10 - 1} = \frac{597.12}{9} = 66.35, \quad S_2^2 = \frac{\sum_{i=1}^{5} (x_{2i} - \overline{x_2})^2}{5 - 1} = \frac{346.77}{4} = 86.69$$

- (2) S_1^2 와 S_2^2 의 기대값이 같다는 의미이며 또한 표본 1의 편차제곱값 0.54, 0.01,, 80.60과 표본 2의 편차제곱들 158.04, 2.63, ..., 42.39들의 기대값이 같다는 의미 (두 뜻은 동일한 의미이다.)
- (3) 두 표본의 크기가 다르므로, 가중평균으로 구한다. 단, S_1^2 을 구할 때는 10-1로 나누었고 S_2^2 를 구할 때는 5-1로 나누었으므로, 의 가중치는 $\frac{9}{9+4}$, S_2^2 의 가중치는 $\frac{4}{9+4}$ 로 한다.

이를 식으로 표현하면, 모집단 분산 추정치 = $\frac{9}{9+4}S_1^2 + \frac{4}{9+4}S_2^2$ 이 된다.

(4) 표본들의 편차제곱의 기대값은 모집단 분산이므로, 편차제곱들의 합을 적절한 수로 나누면 된다. 여기서 적절한 수란 (10-1)+(5-1)이다.
 S²을 구할 때는 10-1로, S²를 구할 때는 5-1로 나누었음을 상기하자.

이를 수식으로 표현하면
$$\frac{\displaystyle\sum_{i=1}^{10}(x_{1i}-\overline{x_1})^2+\sum_{i=1}^{5}(x_{2i}-\overline{x_2})^2}{(10-1)+(5-1)}$$
이다.

$$(5) \ \frac{9}{9+4} \, S_1^2 \ + \ \frac{4}{9+4} \, S_2^2 \ = \ \frac{9}{9+4} \, \frac{\displaystyle \sum_{i=1}^{10} (x_{1i} - \overline{x_1})^2}{10-1} \ + \ \frac{4}{9+4} \, \frac{\displaystyle \sum_{i=1}^{5} (x_{2i} - \overline{x_2})^2}{5-1} \\ = \ \frac{\displaystyle \sum_{i=1}^{10} (x_{1i} - \overline{x_1})^2}{(10-1) + (5-1)} + \frac{\displaystyle \sum_{i=1}^{5} (x_{2i} - \overline{x_2})^2}{(10-1) + (5-1)} = \ \frac{\displaystyle \sum_{i=1}^{10} (x_{1i} - \overline{x_1})^2 + \displaystyle \sum_{i=1}^{5} (x_{2i} - \overline{x_2})^2}{(10-1) + (5-1)}$$

8. (1)
$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 - 1) + (n_2 - 1)} = \frac{(16 - 1)16.18^2 + (11 - 1)17.3^2}{(16 - 1) + (11 - 1)} = 276.7914$$

(2)
$$H_0$$
: $\mu_1 - \mu_2 = 0$, H_A : $\mu_1 - \mu_2 \neq 0$

$$\text{Test Statistic:} \qquad t \ = \ \frac{(\overline{X_1} - \overline{X_2}) - \mu_{\overline{X_1} - \overline{X_2}}}{S_{\overline{X_1} - \overline{X_2}}} \ = \ \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_p^2}{n_1} + \frac{S_p^2}{n_2}}}$$

Rejection Region: $t > t_{0.025, 25} = 2.38461$ 또는 $t < -t_{0.025, 25} = -2.38461$

$$\mbox{Value of the Test Statistic:} t \ = \ \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_p^2}{n_1} + \frac{S_p^2}{n_2}}}$$

$$= \frac{(95.6 - 101.2) - 0}{\sqrt{\frac{276.7914}{16} + \frac{276.7914}{11}}} = -0.8594$$

Conclusion: H_0 기각 실패

(3)
$$(\overline{X_1}$$
- $\overline{X_2}$) $\pm t_{0.025, 25} \cdot \sqrt{\frac{S_p^2}{n_1} + \frac{S_p^2}{n_2}} \rightarrow -5.6 \pm 2.38461(6.516312) = [-21.1389, 9.938864]$

- (4) 신뢰구간이 H_0 에서 설정한 $\mu_1 \mu_2$ 의 값인 0을 포함하므로, H_0 를 기각할 수 없다.
- (5) 양측이므로 p-value = $2 \cdot P(t_{25} > | -0.8594 |) = <math>2 \cdot 0.1991 = 0.3983$
- (6) p-value가 α 보다 크므로, H_0 를 기각할 수 없다.