

Figure 1: UMSA

DESAFIO, MAT-117

Darío Choque L.

12 de April 2024

1 DESAFIO

1.1 Medida

- Por espacio medible entendemos un par ordenado (Ω, B) que consta de un conjunto Ω y un σ –álgebra B de subconjuntos de Ω . Un conjunto A de Ω se llama medible si $A \in B$.
- Una $medida~\mu$ en un espacio medible (Ω,B) es una función $\mu{:}B\longrightarrow [0,\infty]$ que satisface:

$$\mu(\varnothing) = 0$$

$$\mu(\bigcup_{i=0}^{\infty} E_i) = \sum_{i=0}^{\infty} \mu(E_i)$$

para cualquier suseción E_i de conjuntos medibles disjuntos, es decir $E_i \cap E_j = \emptyset, E_i \in B, i \neq j$.

- (Ω, B, μ) se llama espacio de medida.

2 DESAFIO

Teorema 1 Los siguientes afirmaciones son equivalentes para un grupo G.

1.
$$P(G) = 1$$

4.
$$G' = 1$$

2. G es abeliano

5. $C_G(a) = G \ para \ todo \ a \in G$

3.
$$Z(G) = G$$

6.
$$G/G' \cong G$$
.

Demostración. Si P(G)=1, entonces $|L(G)|=|G|^2$. Luego $L(G)=G^2$, y esto significa xy=yx para todo $x,y\in G$. Así G es un grupoabeliano. Es inmediatoobservar que el razonamiento inverso tambien es cierto, lo que prueba que 1, es equivalente a 2.

Segun este resultado, para tener grados de conmutatividad diferentes de 1 debemos analizar grupos no abelianos.