MA571 Homework 9

Carlos Salinas

October 29, 2015

Problem 9.1 (Munkres §46, Ex. 6)

Show that the compact-open topology, $\mathcal{C}(X,Y)$ is Hausdorff if Y is Hausdorff, and regular if Y is regular. [Hint: If $\overline{U} \subset V$, then $\overline{S(C,U)} \subset S(C,V)$.]

Proof. Suppose that Y is regular. We shall proceed by the hint and Lemma 31.1(b). Consider the subbasis element S(C,U). Since Y is regular, there exists a neighborhood $V\supset U$ such that $V\supset \overline{U}$. Let $f\in \overline{S(C,U)}$. Then, we claim that $f\in S(C,V)$. For suppose not, then there exists an element $x_0\in C$ such that $f(x_0)\notin V$. Then, since $\overline{U}\subset V$, by hypothesis, $f(x_0)\notin \overline{U}$. Consider the subbasic neighborhood $S\left(\{x_0\},Y-\overline{U}\right)$ of f. Then, $S\left(\{x_0\},Y-\overline{U}\right)\cap S(C,U)$ is nonempty. Let g be in the aforementioned intersection. Then $g(x_0)\in g(C)\subset U$, but $g(x_0)\in Y-\overline{U}$. This is a contradiction. Thus, $\overline{S(C,U)}\subset S(C,V)$.

Now, let $f \in \mathcal{C}(X,Y)$ and let $V = \bigcap_{i=1}^n S(C_i,V_i)$ be a basic neighborhood of f. Then, since Y is regular, for every $y = f(x_i) \in f(C_i)$ there exists an open neighborhood U_{x_i} such that $\overline{U_{x_i}} \subset V_i$. These U_{x_i} 's form an open cover of $f(C_i)$ which is compact by Theorem 25.6 so there exists a finite collection of them, say $\{U_{x_i,j}\}_{j=1}^{n_i}$ that covers $f(C_i)$. Let $U_i = \bigcup_{j=1}^{n_i} U_{x_i,j}$. Then $\overline{U}_i = \bigcup_{j=1}^{n_i} \overline{U_{x_i,j}} \subset V_i$ by induction on Problem 2.2 (Munkres §17, Ex. 6(b)). Let $U = \bigcap_{i=1}^n S(C_i, U_i)$. We claim that U is the desired neighborhood of f that, by Theorem 31.1(b), shows that $\mathcal{C}(X,Y)$ is regular. Let us verify this. First, note that $f \in U$ since $f(C_i) \subset U_i$ for all i so U is indeed a neighborhood of U. Moreover, by the hint, we have that $\overline{S(C_i, U_i)} \subset S(C_i, V_i)$ since $\overline{U_i} \subset V_i$. Then $\overline{U} \subset \bigcap_{i=1}^n \overline{S(C_i, U_i)} \subset V$ by Lemma B. It follows, by Theorem 31.1(b), that $\mathcal{C}(X,Y)$ is regular.

MA571 Homework 9

Problem 9.2 (Munkres $\S46$, Ex. 9(A,B,C))

Here is a (unexpected) application of Theorem 46.11 to quotient maps. (Compare Exercise 11 of §29.)

Theorem. If $p: A \to B$ is a quotient map and X is locally compact Hausdorff, then $(id_X, p): X \times A \to X \times B$ is a quotient map.

- *Proof.* (a) Let Y be the quotient space induced by (id_X, p) ; let $q: X \times A \to Y$ be the quotient map. Show there is a bijective continuous map $f: Y \to X \times B$ such that $f \circ q = (id_X, p)$.
- (b) Let $g = f^{-1}$. Let $G: B \to \mathcal{C}(X, Y)$ and $Q: A \to \mathcal{C}(X, Y)$ be the maps induced by g and q, respectively. Show that $Q = G \circ p$.
- (c) Show that Q is continuous; conclude that G is continuous, so that g is continuous.

Actual proof. (a) Note that, by Munkre's definition of the "quotient topology induced by (id_X, p) ," i.e., the identification space $X \times A/\sim$ where two elements $(x_1, a_1) \sim (x_2, a_2)$ if and only if $(x_1, p(a_1)) = (x_2, p(a_2))$, it follows that the map (id_X, p) preserves the equivalence relation on $X \times A$ so that, by Theorem Q.3, the induced map $f \colon Y \to X \times B$ is continuous since (id_X, p) is. Lastly, it is clear by Theorem Q.2 that $q \circ f = (\mathrm{id}_X, B)$. This map is surjective since (id_X, p) is subjective. To see that f is injective, let $[x_1, a_1], [x_1, a_2] \in Y$ and suppose that $f([x_1, a_1]) = f([x_2, a_2])$. Then, taking a representative of each equivalence class, $(x_1, p(a_1)) = (x_2, p(a_2))$ implies $x_1 = x_2$ and $p(a_1) = p(a_2)$, i.e., $(x_1, a_1) \sim (x_2, a_2)$. Thus, f is invective.

(b) Recall, from the definition given on Munkres §46, p. 287, that the induced map G (respectively Q) are defined by the equation (G(b))(x) = (x,b) (respectively (Q(a))(x) = (x,p(a))). Then we have that the composition

$$(G \circ p)(a) = G(p(a)) = (G(p(a)))(x) = (x, p(a)) = (Q(a))(x) = Q(a)$$

as desired.

(c) By Theorem 46.11, since q is continuous with respect to the quotient topology on Y, it follows that the induced map Q is continuous. Additionally, since Q is equal to the composition $G \circ p$ by part (b) so by Theorem Q.2 G is continuous. Since X is locally compact Hausdorff, it follows by Theorem 46.11 that the map q is continuous.

MA571 Homework 9

Problem 9.3 (Munkres §51, Ex. 1)

Show that if $h, h': X \to Y$ are homotopic and $k, k': Y \to Z$ are homotopic, then $k \circ h$ and $k' \circ h'$ are homotopic.

Proof. Let $H: X \times I \to Y$ and $K: Y \times I \to Z$ denote the homotopies from h to h' and k to k', respectively. Then, we claim that the map L(x,t) = K(H(x,t),t) is a homotopy from $k \circ h$ to $k' \circ h'$. First, we check that L starts and ends where we want it to, i.e., L(x,0) = K(H(x,0),0) = k(h(x)) and L(x,1) = K(H(x,1),1) = k'(h'(x)). Lastly, we must assure ourselves that L is in fact continuous. But this last claim follows from the fact that L can be expressed as the composition $K \circ (h_t,t)$ where h_t denotes the continuous map H(x,t) at time t. Since K is (by assumption) continuous and (h_t,t) are continuous by Theorem 18.4, it follows by Theorem 18.2(a) that L is continuous. Thus, $k \circ h \simeq k' \circ h'$ as desired.

 $MA571\ Homework\ 9$ 3

Problem 9.4 (Munkres §51, Ex. 2)

Given spaces X and Y, let [X,Y] denote the homotopy classes of maps of X into Y

- (a) Let I = [0, 1]. Show that for any X, the set [X, I] has a single element.
- (b) Show that if Y is path connected, the set [I, Y] has a single element.

Proof. (a) Let $f, g: X \to I$ be arbitrary continuous maps. Then we claim that the straight line homotopy H(x,t) = (1-t)f(x) + tg(x) gives a homotopy from f to g. Note that the image of H(x,t) stays in the interval I since $(1-t)f(x) + tg(x) \le (1-t) + t = 1$ for all x and for all t. Lastly, note that by Theorem 25.1 H is continuous since it is the sum of a product of continuous functions. Hence, $f \simeq g$. Since f and g were arbitrary, it follows that [X,I] consists of a single equivalence class.

(b) Note that if $f,g\colon I\to Y$ are constant maps, say $f(x)=x_0$ and $g(x)=x_1$ for all $x\in I$, then the path $p\colon I\to Y$ where $p(0)=x_0$ and $p(1)=x_1$ defines a homotopy H(x,t)=p(t). This map is clearly continuous since for any open neighborhood U of Y, since p is continuous, by Theorem 18.1(4) there exists a neighborhood $V\subset I$ such that $p(V)\subset U$ so $H(I\times V)=p(V)\subset U$ implies H is continuous by Theorem 18.1(4). Therefore, it suffices to show that given a continuous map $f\colon I\to Y, f$ is nulhomotopic. Let H(x,t) be the map f((t-1)x). The map (t-1)x is continuous by Theorem 25.1 so the composition $f\circ ((t-1)x)$ is continuous by Theorem 18.2(c). Then, observing that H(x,0)=f(x) and H(x,1)=f(0), H(x,t) gives a homotopy from f to f(0). It follows by Lemma 51.1 that given any $f,g\colon I\to Y$ continuous maps $f\simeq g$ by transitivity of homotopy.

MA571 Homework 9

PROBLEM 9.5 (MUNKRES §51, Ex. 3(A,B,C,))

A space X is said to be *contractible* if the identity map $id_X : X \to X$ is nullhomotopic.

- (a) Show that I and \mathbf{R} are contractible.
- (b) Show that a contractible space is path connected.
- (c) Show that if Y is contractible, then for any X, the set [X,Y] has a single element.

Proof. (a) It is clear that $\mathrm{id}_I \colon I \to I$ is nulhomotopic, say to the constant map 0, via the homotopy H(x,t) = (1-t)x. Note that $H(x,0) = x = \mathrm{id}_I(x)$ and H(x,1) = 0 and H(x,t) is continuous since (1-t)x is continuous by Theorem 25.1.¹ In the case of \mathbf{R} the previous map H(x,t) also works to show that $\mathrm{id}_{\mathbf{R}}$ is nulhomotopic since $H(x,0) = x = \mathrm{id}_{\mathbf{R}}$ and H(x,1) = 0 and H(x,t) is continuous by Theorem 25.1.

- (b) Suppose that X is contractible. Then there exists a homotopy H(x,t) with H(x,0)=x and $H(x,1)=x_0$ for some point $x_0 \in X$. Now, let $x_1, x_2 \in X$. Then the map $p_1(t)=H(x_1,t)$ and $p_2(t)=H(x_2,t)$ are path homotopies from x_1 to x_0 and x_2 to x_0 . It follows by the fact that $x_1 = x_0 = x_0$ is an equivalence relation that $x_1 = x_0 = x_0$.
- (c) Since Y is contractible there exist a homotopy H(y,t) with H(y,0)=x and $H(y,1)=y_0$ for some fixed $y_0 \in X$. Therefore, it suffices to show that an arbitrary continuous map $f\colon X\to Y$ is nulhomotopic. Consider the map K(x,t)=H(f(x),t). This map is continuous since it is the composition $H\circ (f,\mathrm{id}_I)$. Moreover, $K(x,0)=\mathrm{id}_Y(f(x))=f(x)$ and $K(x,1)=e_{y_0}(f(x))=y_0$. Thus, f is nulhomotopic and it follows that [X,Y] has a single element (all maps are null homotopic and Y is path connected by part (b)).

MA571 Homework 9 5

¹More generally, we showed that products, sums and quotients (when they are defined) of maps from a metric space (X, d) to \mathbf{R} (or a subspace of \mathbf{R} by Theorem 18.2(d)) for that matter, are continuous.