

Appendix-D Part-I Combining Part R and Part F of the Cutout scenario

Calculation Algorithm (1)

prepare the

 \boldsymbol{A}

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃
<i>Y</i> ₁	a_{11}	a_{12}	a_{13}
<i>Y</i> ₂	a_{21}	a ₂₂	a_{23}
<i>Y</i> ₃	a_{31}	a_{32}	a_{33}

 \boldsymbol{B}

	<i>Y</i> ₁	<i>Y</i> ₂	<i>Y</i> ₃
Z_1	b_{11}	b_{12}	b_{13}
Z_2	b ₂₁	b ₂₂	b ₂₃
Z_3	b ₃₁	b ₃₂	b_{33}

Athe variables X,Y contain B the Y,Z probabilities for . ($\Sigma \Sigma a_{ij} = 1,\Sigma \Sigma b_{ij} = 1$) For example , the $X = X_1,Y = Y_1$ probability a_{11} when . From these two matrices, X,Z find the

calculation algorithm (2)

A				
	X_1	X_2	<i>X</i> ₃	
<i>Y</i> ₁	a_{11}	a_{12}	a ₁₃	
Y ₂	a_{21}	a_{22}	a_{23}	
<i>Y</i> ₃	a ₃₁	a ₃₂	a ₃₃	

	Y ₁	Y ₂	<i>Y</i> ₃
Z_1	b_{11}	b_{12}	b_{13}
Z_2	b_{21}	b_{22}	b_{23}
Z_3	b_{31}	b ₃₂	b_{33}

R

As an example, $Pr[X = X_1 \cap Z = Z_1] Ask for$

 $X = X_1$ from (a_{11}, a_{21}, a_{31}) the matrix A.

Similarly, the probability of is $Z = Z_1$ from (b_{11}, b_{12}, b_{13}) the matrix B.

By the way, The variables Yare two matrices A, Bcommon to

Therefore, $Y = Y_1$ when $\Pr[Y = Y_1 \cap X = X_1]$ can be calculated $\Pr[Y = Y_1 \cap Z = Z_1]$ simultaneously (assumed X to be Z independent of)

Therefore ,
$$\Pr[Y = Y_1 \cap X = X_1 \cap Z = Z_1] = a_{11} \times b_{11}$$

computational algorithm (3)

A				
	X_1	X_2	<i>X</i> ₃	
<i>Y</i> ₁	a_{11}	a_{12}	a ₁₃	
<i>Y</i> ₂	a_{21}	a_{22}	a_{23}	
<i>Y</i> ₃	a ₃₁	a_{32}	a ₃₃	

	<i>Y</i> ₁	<i>Y</i> ₂	<i>Y</i> ₃
Z_1	b_{11}	b_{12}	b_{13}
Z_2	b_{21}	b_{22}	b_{23}
Z_3	b_{31}	b ₃₂	b_{33}

B

By the way
$$X = X_1 \cap Z = Z_1$$
, $Y = Y_2$ because sometimes $Pr[Y = Y_2 \cap X = X_1 \cap Z = Z_1] = a_{21} \times b_{12}$

Similarly,
$$Y = Y_3$$
 when

$$\Pr[Y = Y_3 \cap X = X_1 \cap Z = Z_1] = a_{31} \times b_{13}$$

becomes.

Therefore ,
$$\Pr[X = X_1 \cap Z = Z_1] = a_{11} \times b_{11} + a_{21} \times b_{12} + a_{31} \times b_{13}$$
 is.

computational algorithm (4)

A				
	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	
Y ₁	a_{11}	a_{12}	a ₁₃	
Y ₂	a_{21}	a_{22}	a_{23}	
<i>Y</i> ₃	a ₃₁	a ₃₂	a ₃₃	

	<i>Y</i> ₁	<i>Y</i> ₂	<i>Y</i> ₃
Z_1	b_{11}	b_{12}	b_{13}
Z_2	b_{21}	b_{22}	b_{23}
Z_3	b_{31}	b ₃₂	b_{33}

B

 $c_{11} = \Pr[X = X_1 \cap Z = Z_1] = a_{11} \times b_{11} + a_{21} \times b_{12} + a_{31} \times b_{13}$ and Calculating this for all cases gives the Note that this calculation C = BA is

 \boldsymbol{C}

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃
Z_1	c_{11}		
Z_2			
Z_3			

Calculated target

- All data for both parts R and F (no distinction between low speed and high speed regions)
 - Part R: N=50763
- Part F: N=4114
- Part R calculates
- normalization range is as follows
 - Part R own vehicle speed: 0-150[km/h], other vehicle speed: 0-150[km/h]
 - Part F other vehicle speed: 0-150[km/h], preceding vehicle speed: 0-120[km/h]
- number of divisions is as follows
 - Part R: 10 divisions Part F: 5 divisions
- All data for parts R and F (no distinction between low speed and high speed range)
 Part R: N = 50763 Part F: N = 4114
- Part R calculates the combined distribution (probability) for the subject vehicle speed [km/h] and cut-out vehicle speed [km/h], and Part F calculates the combined distribution (probability) for the cut-out vehicle speed [km/h] and the preceding vehicle speed [km/h].
- The normalization range is as follows: Part R subject vehicle speed: 0-150 [km/h], cut-out vehicle speed: 0-150 [km/h]; Part F cut-out vehicle speed: 0-150 [km/h], preceding vehicle speed: 0-120 [km/h]
- The number of divisions is as follows: Part R: 10 splits Part F: 5 splits

Part R

Part R are shown below.

There is a proportional relationship between the own vehicle speed and the other vehicle speed.

The probability peaks around

- There is a relationship such that the speed of the subject vehicle and the speed of the cut-out vehicle are proportional.
- The probability that the subject vehicle speed and cut-out vehicle speed are a found 60 [km / h] is the peak.

Part F

Part F are shown below.

is a proportional relationship between the

The probability peaks when the

- There is a relationship such that the speed of cut-out vehicle and the speed of the preceding vehicle are proportional .
- Cut-out peak density occurred when cut-out vehicle speed and preceding vehicle speed are around 70 (km/h).

Part R + F (contour diagram)

Part R+F (3D view)

10

Improvement of synthetic distribution estimation algorithm

- when the correlation between the two parameters used to calculate the composite distribution is high, the calculation result of the composite distribution does not match the actual situation (scatter diagram).
- ◆ Therefore, we improved the estimation algorithm and developed a method that can obtain results close to the actual situation even if the parameters

Calculation result by conventional method Number of

divisions: 5

Calculation result by improved method Number of divisions: 10

estimation algorithm

- Basically the same as the conventional method
- 1) Estimate for each divided α_n , β_n (This time from the example of 5 division, n=1,...,5) interval, (2) Regression was performed using the values of α_m , β_m (m=1,...,100) and β in adjacent intervals, and (3) after all a and β values were obtained, a moving average was obtained to reduce the difference for each interval.

dVrel

* If there is no adjacent interval (this time α_6 , β_6) or if the adjacent interval α_n , β_n is NaN , $b_{n-1,n}$ use

$$\alpha'_m = \mathbf{h}(\alpha_m) \quad \boldsymbol{\beta}'_m = \mathbf{h}(\boldsymbol{\beta}_m)$$

%h is the function for calculating the mean moving

 $\times \times \alpha_m$, β_m All values receive correction

