# Fundaments of Machine learning for and with engineering applications

#### Enrico Riccardi<sup>1</sup>

Department of Energy Resources, University of Stavanger (UiS).1

Jan 22, 2025



### **Statistics**

#### Definition

Statistics is the science of acquiring and utilizing data

- It comprises tools for data collection, summarization, and interpretation.
- The aim is identifying the underlying structure, trends, and relationships inherent in the data.
- Is it all statistics then? Yes.
- Numbers to data, data to information

# Data properties

Before we talk about machine learning, we need to refresh some terminology.

#### Population

The universe of all possible outcomes and events.

### Sample

A finite subset extracted from the population.

### Exhaustivity

The samples covered the population spectra.

### Representativity

The population is properly described by the samples.

# Big data

We speak of big data when dataset are very large: i.e. many instances and features Models have thus a large set of parameters (and often no one has a clue anymore of what is going on).

- Volume of data
- Variety different types of data sources with different length and scale.
- Frequency of data generation

# Sampling

Samples shall have no bias (to be randomly selected). If not, the bias has to be corrected for.

### Cycle of data

- Data is collected
- 2 Checked upon
- Some modelling
- Analysis and visualization



# Data quality

- Data has to be acquired and integrated
- ② Data are passed to a quality analysis and control
- Oata cleaning, consistency check. Most of time goes here



# Preliminary Modeling

#### Main tasks:

- Hunt for redundancy
- 2 Reduce dimensionality
- AnOmAlles removal
  - Descriptive modeling (unsupervised learning)
  - Predictive modeling (supervised learning)
  - The model can be used to guide data acquisition (risky!)

# Visualization and reporting

- The data has to be condensed into a visualization to provide input for decisions.
- Depending on the goal, very very different visualizations are possible.
- Use a model to indicate what is undersampled or oversampled.

# Summarizing and visualizing data as a starting point for more analysis later on.

- Computing summary statistics (e.g. means and variance)
- Determining conditional probabilities of cause+effect relationships
- Calculating correlation and rank correlation coefficient between two variables
- Visualizing univariate, bivariate and multivariate data
- ...

# Exploratory data analysis

# Summarizing and visualizing data as a starting point for more analysis later on.

- ...
- Estimating probability coverage levels for different distributions
- Analyzing behaviour of normal distributions
- Calculating confidence interval and sampling distribution for the mean
- Testing for significance of difference in means
- Comparing two different distributions for statistical equivalence
- Developing a nonparametric regression model from given data
- Reducing data dimensionality
- Grouping data

### Random Variables

- A random variable is a real valued function that assigns a value to each outcome in the sample space
- A random variable (RV) can be either discrete or continuous
  - Discrete RV
  - Continuous RV

 The probability mass function (PMF),P, of a discrete RV, X, denotes the probability that the RV is equal to a specified value, a.

$$p(a) = p(X = a)$$

 The cumulative distribution function (CDF), F, denotes the sum

$$F(a) = P(X \le a) = \sum_{0}^{a} f(x) dx$$

# Random Variables

| а    | 1    | 2    | 3    | 4     | 5     | 6     |
|------|------|------|------|-------|-------|-------|
| p(a) | 1/36 | 3/36 | 5/36 | 7/36  | 9/36  | 11/36 |
| F(a) | 1/36 | 4/36 | 9/36 | 16/36 | 25/36 | 1     |





# Sampling

- What are the effective sampling strategies? (Wind turbine example)
- Solar Panels to determine the efficiency of the source (Usage patterns, energy production forecast)
- Drilling (penetration rate)
- Corrosion extension
- Concrete Rigidity
- etc

# Wind turbine example example

| Turbine | Height | х     | Υ    | Wind<br>Speed | Air<br>Density | Temperature |      | Rotor<br>Diameter | Hub<br>Height | Air<br>Pressure | Turbulence<br>Intensity |
|---------|--------|-------|------|---------------|----------------|-------------|------|-------------------|---------------|-----------------|-------------------------|
| WT-1    | 80     | 752.1 | 3945 | 7.5           | 1.225          | 15          | 1500 | 82                | 80            | 1013            | 0.1                     |
| WT-1    | 80     | 752.2 | 3945 | 8             | 1.223          | 15          | 1600 | 82                | 80            | 1012            | 0.12                    |
| WT-1    | 80     | 752.3 | 3945 | 7.8           | 1.224          | 16          | 1550 | 82                | 80            | 1013            | 0.11                    |
| WT-2    | 90     | 753.5 | 3946 | 6.5           | 1.226          | 14          | 1400 | 85                | 90            | 1012            | 0.15                    |
| WT-2    | 90     | 753.6 | 3946 | 7             | 1.225          | 14          | 1500 | 85                | 90            | 1011            | 0.13                    |
| WT-2    | 90     | 753.7 | 3946 | 7.2           | 1.227          | 14          | 1520 | 85                | 90            | 1012            | 0.14                    |

# Sampling approaches

### Experimental design

Grid, parallel, series.

### Sampling without replacement

SPR (single point representation).

## Sampling with replacement

The number of the members of the population does not change.

### Univariate statistics

- Easy to displaying data:
  - histogram
  - frequency plots
  - cumulative

- Measures of Location
  - Mean, median, mode
  - Quartiles, Percentiles, Quantiles

- Measure of Dispersion (Spread)
  - Standard deviation (sd)
  - Sariance (Var) or coefficient of variation

- Measures of shape
  - Skewness, modality

# Histograms

- Task 1: make a histogram from a 2d random distribution
- Task 2: make a 2d heat map from a 2d random distribution

# Frequency plots and Histograms

#### Given a set of data

- Look for min and max values
- Divide the range of values into a number of sensible class intervals (bins)
- Count
- Make a frequency table (or percentage)
- Open Plot (see jupyter notebook)

### Does this histogram represent uncertainty?

No. It shows variability, but it can be used to quantify uncertainty.

# Class widths

- Class widths (bin sizes) are usually CONSTANT
  - the height of each bar is proportional to the number of values in it
- If class width are VARIABLE
  - the AREA of each bar is proportional to the number of values in it
- For small samples, the shape of the histogram can be very sensitive to the number and definition of the class intervals

#### Exercise

Plot a histogram from different random number distributions and bin sizes.

# Cumulative Histogram

- Cumulative frequency
- Each data point can be plotted individually
- It helps to read quantiles and compare distributions
- Practice with your jupyter notebook

# Measure of Location: Central Tendency, MEAN

$$m_x = \langle x \rangle = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Each point weighted equally by  $\frac{1}{n}$  (assumption)

- Every element is the data set contributes to the values of the mean
- An average provides a common measure for comparing one set of data to another
- The mean is influenced by the extreme values in the data set
- The mean may not be an actual element if the dataset
- The sum of all deviation from the mean is zero, and the sum of squared deviation is minimized when those deviations are measured from the mean

## Means

- Arithmetic
  - Mean of raw data

$$\frac{1}{n}\sum_{i=1}^n x_i$$

- Geometric
  - $n^{th}$  root of product

$$\left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}}$$

Geometric

\* Mean of logarithms

$$\exp\left(\frac{1}{n}\sum_{i=1}^{n}\ln(x_i)\right)$$

- Harmonic
  - Mean of inverses

$$\left(\frac{1}{n}\sum_{i=1}^{n}\frac{1}{x_i}\right)^{-1}$$

### Median

```
if n is odd:
    median = x[(n+1)/2]
else:
    median = x[n/2] + x[(n/2)+1]
```

- On a cumulative density plot, the value of the x-axis that corresponds to 50 % of the y-axis
- Not influenced by extreme values
- May not be contained in the dataset (if n is even)
- For a perfectly symmetrical dataset, means = median

# Mode

• The mode is the most frequently occurring data element

or the most likely or most probable value (for a pmf)

- A data set may have more than one mode and it thus called multimodal
- A mode is always a data element in the set
- For a perfectly symmetrical dataset, means = median = mode

# Distribution Descriptors



# Quantiles

#### Quartiles

The data split into quarters.

#### **Deciles**

The data are split into tenths. The fifth decile is also the median.

#### Percentiles

The data are split into hundredths. P10, P25, P50, P75 and P90 are the most commonly used.

#### Quantiles

A generalization of splitting data into any fraction

# Distribution Descriptors



# Dispersion (Spread)

### Range

R = maximum - minimum

### Inter-quantile Range

$$IQR = Q3 - Q1$$

### Mean Deviation from the Mean

$$MD = \sum_{i=1}^{n} (x_i - \bar{x})/n$$

#### Mean Absolute Deviation

$$MAD = \sum_{i=1}^{n} |x_i - \bar{x}|/n$$

### Variance

The variance is the average of squared differences between the sample data points and their mean

#### Variance

$$s_x^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$

### Standard Deviation (SD)

$$s_{x} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

# Standard Deviation



# Standard Deviation



# Measures of dispersion

# Standard Deviation (SD)

$$SE_{x} = \frac{s_{x}}{\sqrt{n}}$$

# Coefficient of Variability

$$CV = \frac{s_x}{\bar{x}}$$

# Modality

- Unimodal
- Bimodal
- Polymodal



### Skewness

It measures the symmetry in a distribution

$$Sk = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^3}{s^3}$$

Positive - Values clustered toward the lower end



Zero – Symmetric distribution



Negative - Values clustered toward the higher end



A bit out of fashion with ML

# Distribution Models

#### Distribution

means of expressing uncertainty or variability

#### Models

- Uniform: useful when only upper and lower bounds are known
- Triangular: useful when estimates of min, max, mode [P10, P50, P90] are available
- Normal: symmetric model of random errors or unbiased uncertainties with mean of standard deviation specified
  - very common for observed data
  - additive processes tend to be normal as a result of the Central Limit Theorem
- log normal comes from multiplicative uncertainties with mean and standard deviation specified

# Uniform Distribution

- The uniform distribution is useful as a rough model for representing low states of knowledge when only the upper and lower bounds are known.
- All possible values within the specified maximum and minimum values are equally likely (b=max, a=min):
- It can express maximum uncertainity

# PDF: f(x) =

$$/$$
frac $1b - a, a \le x \le b$ 

## CDF: F(x) =

$$/fracx - ab - a$$

Notation:  $X \sim U(a, b)$ 

# Uniform Distribution



# Triangular distribution

- The triangular distribution can be used for modeling situations, where non extremal (central) values are more likely than the upper and lower bounds.
- Take min, mode and max as inputs. Typically on the basis of subjective judgement:

### PDF: f(x) =

$$\frac{2(x-a)}{(b-a)(c-a)}; \text{ if } a \le x \le c$$

$$\frac{2(b-x)}{(b-a)(c-a)}; \text{ if } c \le x \le b$$

### CDF: F(x) =

$$\frac{(x-a)^2}{(b-a)(c-a)}$$
; if  $a \le x \le c$   
 $1 - \frac{(b-x)^2}{(b-a)(c-a)}$ ; if  $c \le x \le b$ 

# Triangular Distribution

Notation:  $X \sim T(a, b, c)$ 



It can be symmetric or asymmetric

### Normal Distribution

- The normal distribution ('bell curve' or Gaussian) for modeling unbiased uncertainties and random errors of the additive kind of symmetrical distributions of many material processes and phenomena.
- A commonly cited rational for assuming normal distribution is the central limit theorem, which states that the sum of independent observations asymptotically approaches a normal distribution regardless of the shape of the underlying distributions(s=

#### PDF:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\}; -\infty \le x \le \infty$$

# CDF: F(x) =

has no closed form solution but is often presented using the complementary error function solution

# Normal Distribution

Notation:  $X \sim G(\mu, \sigma)$ 

It is a Symmeytic distribution around the mean

 $\mu$  is the mean,  $\sigma$  is the standard deviation

 $\mu \pm \sigma$  : 68.3% probability

 $\mu \pm 2\sigma$  : 95.4% probability

 $\mu \pm 3\sigma$  : 99.7% probability

# Normal Distribution

