操作系统

Operating system

孔维强 大连理工大学

内容纲要

10.2 文件操作与访问模式

- 一、文件操作
- 二、文件访问模式

一、文件操作

- 文件是抽象数据类型(abstract data type)基本操作
 - Create (find a space, entry of the file in directory)
 - Write at write pointer location
 - Read at read pointer location
 - Reposition within file seek
 - **Delete** (release file space, erase directory entry)
 - **Truncate** (revise file's contents but keeps attributes)

为避免反复搜索目录以查找文件

- Open(F_i) search the directory structure on disk for entry F_i, and move the content of entry to memory
- Close (F_i) move the content of entry F_i in memory to directory structure on disk

一、文件操作

文件常规操作对应的操作内容

文件操作	操作内容
Open	首次打开,创建并返回句柄;非首次打开,在打开文件表中找 到句柄并返回
Close	进程关闭文件后,文件句柄在相应进程中不再可用
Create	在磁盘上分配空间,存放文件内容;在目录结构内增加新目录项
Read	读文件内容,并自动调整文件指针
Write	写入文件,并自动调整文件指针
Seek	在文件内重新定位文件指针
Truncate	文件截短(释放文件所占部分空间,调整文件size属性)
Delete	删除文件(删除文件及其目录项)

一、文件操作

- 管理文件打开需要多个数据:
 - Open-file table: tracks open files
 - File pointer: pointer to last read/write location (as the currentfile-position), per process that has the file open
 - File-open count: counter of number of times a file is open to allow removal of data from open-file table when last processes closes it
 - Disk location of the file: cache of data access information
 - Access rights: per-process access mode information

一、文件操作——文件打开锁

- 某些操作系统和文件系统提供文件打开锁
 - Similar to reader-writer locks
 - Shared lock similar to reader lock several processes can acquire concurrently
 - Exclusive lock similar to writer lock only 1 process can get
- 强制性 or 建议性:
 - Mandatory access is denied depending on locks held and requested (OS decides)
 - Advisory processes can find status of locks and decide what to do (programmers decide)

一、文件操作——文件打开锁

```
import java.io.*;
import java.nio.channels.*;
public class LockingExample {
  public static final boolean EXCLUSIVE = false;
  public static final boolean SHARED = true;
  public static void main(String arsg[]) throws IOException {
        FileLock sharedLock = null;
        FileLock exclusiveLock = null:
                 RandomAccessFile raf = new RandomAccessFile("file.txt", "rw")
        try {
                 // get the channel for the file
                 FileChannel ch = raf.getChannel();
                 // this locks the first half of the file - exclusive
                 exclusiveLock = ch.lock(0, raf.length()/2, EXCLUSIVE);
                 /** Now modify the data . . . */
                 // release the lock
                 exclusiveLock.release();
```

一、文件操作——文件打开锁

```
// this locks the second half of the file - shared
        sharedLock = ch.lock(raf.length()/2+1, raf.length(),
        SHARED);
        /** Now read the data . . . */
        // release the lock
        sharedLock.release();
} catch (java.io.IOException ioe) {
        System.err.println(ioe);
}finally {
        if (exclusiveLock != null)
        exclusiveLock.release();
        if (sharedLock != null)
        sharedLock.release();
```


二、文件访问模式

文件访问的三种 典型模式 顺序访问

随机访问

索引访问

二、文件访问模式。-顺序访问

- 从当前文件指针所指地址开始,沿逻辑地址增长的方向依次访问文件内容
 - 基本操作: read next, write next, rewind
 - 典型存储介质: 磁带 (Tape)

二、文件访问模式。一随机访问

- 直接访问给定逻辑地址的文件内容
 - 基本操作: read(n), write(n), seek(n)
 - 典型存储介质: 磁盘 (Magnetic Disk)

二、文件访问模式 - 随机访问

- 直接访问给定逻辑地址的文件内容
 - 基本操作: read(n), write(n), seek(n)
 - 典型存储介质: 磁盘 (Magnetic Disk)

sequential access	implementation for direct access
reset	cp = 0;
read next	read cp; cp = cp + 1;
write next	write cp ; $cp = cp + 1$;

二、文件访问模式。-索引访问

- 基于记录关键字建立索引,以索引方式访问文件内容
 - 基本操作: read(key), write(key)
 - 典型应用: 数据库表 (DBMS Table Access)

本讲小结

- 文件操作
- 文件访问模式

