NUMBER REPRESENTATIONS

Lecture-12

Binary numbers

Binary

0 and 1

Integers

Place values

$$\underline{0101_b} = 0 \times \underline{2^3} + 1 \times \underline{2^2} + 0 \times \underline{2^1} + 1 \times \underline{2^0} = 5_d$$

Negative Numbers

- No sign: compensate using convention
 - Signed magnitude: 1st bit indicates sign
 - o Two's complement

Negative Numbers

- No sign: compensate using convention
 - Signed magnitude: 1st bit indicates sign
 - Two's complement

2's complement

$$0101_b = 0 imes (-2^3) + 1 imes 2^2 + 0 imes 2^1 + 1 imes 2^0 = 5_d$$
 $1101_b = 1 imes (-2^3) + 1 imes 2^2 + 0 imes 2^1 + 1 imes 2^0 = -3_d$

Subtraction is now almost identical to addition

Ratio of largest magnitude to smallest (non-zero) magnitude

Ratio of largest magnitude to smallest (non-zero) magnitude

eg Decimal 4 digits (+ve):

- Largest: 9999
- Smallest: 1
- Dynamic range = 9999
 - $\circ~$ Usually expressed in dB: $20\log D \approx 80dB$

Ratio of largest magnitude to smallest (non-zero) magnitude

eg Decimal 4 digits (+ve):

- Largest: 9999
- Smallest: 1
- Dynamic range = 9999
 - \circ Usually expressed in dB: $20\log D pprox 80dB$
- Binary:
 - \circ Each bit doubles range: $20\log 2 pprox 6dB$
 - \circ 16 bits pprox 96dB

$$(no 2's c)$$
 $\Rightarrow 31$
 $eg. 5-bit +ve: 11111$

$$00001 \Rightarrow 1$$

$$DR = \frac{31}{1} = 31$$

$$20109031$$

Real-valued numbers

Convention: Choose location of *decimal* or *binary* point

Scaling

Choice of scaling factor determines resolution

Real-valued numbers

Convention: Choose location of *decimal* or *binary* point

Scaling

Choice of scaling factor determines resolution

- Decimal:
 - xxxxx => smallest increment = 1
 - \circ xxxxx => smallest increment = 0.01
 - x.xxxx => smallest increment = 0.0001

Real-valued numbers

Convention: Choose location of *decimal* or *binary* point

Scaling

Choice of scaling factor determines resolution

- Decimal:
 - xxxxx => smallest increment = 1
 - xxx.xx => smallest increment = 0.01
 - x.xxxx => smallest increment = 0.0001

Dynamic range is the same for all: $99999/1 = 999.99/0.01 = 9.9999/0.00001 \approx 100 dB$

Arithmetic: Addition 0101.01 = 5.25 + 01.0001 = 1.0625 0110.0101 = 6.3125Scaling factor $17/2^4 = 17/6$

Align the binary points

Arithmetic: Addition

- Align the binary points
- Truncate output if needed?
- Overflow possible, same as with integers

Arithmetic: Multiplication

Product.

```
0101.01 -> Multiplicand
  01_0001 -> Multiplier
 .010101 x 2^-4 Partial product.
0.00000 x 2^-3 x 2^-2
 000.000 x 2^-1
0101.01 x 2<sup>0</sup> 0
00000.0 x 2<sup>1</sup>
00101.100101
```

Scaling factors: Significand / Manhissa.

$$5.25_d = 0101.01_b = (010101)_b \times 2^{-2}$$

6-bit mantissa = 21 and $scale factor = 2^{-2}$

Scaling factors:

$$5.25_d = 0101.01_b = (010101)_b \times 2^{-2}$$

6-bit mantissa = 21 and scale factor = 2^{-2}

$$1.0625_d = 01.0001_b = (010001)_b \times 2^{-4}$$

6-bit mantissa = 17 and scale factor = 2^{-4}

VIVADO HLS

ap_fixed<>

ap_fixed

- Arbitrary precision fixed point
- ap_fixed<W,I,Q,O,N>

Identifier	Description			
W	Word length in bits			
I	The number of bits used to represent the integer value (the number of bits above the binary point)			
Q	Quantization mode This dictates the behavior when greater precision is generated than can be defined by smallest fractional bit in the variable used to store the result.			
	SystemC Types	ap_fixed Types	Description	
	SC_RND	AP_RND	Round to plus infinity	
	SC_RND_ZERO	AP_RND_ZERO	Round to zero	
	SC_RND_MIN_INF	AP_RND_MIN_INF	Round to minus infinity	
	SC_RND_INF	AP_RND_INF	Round to infinity	
	SC_RND_CONV	AP_RND_CONV	Convergent rounding	
	SC_TRN	AP_TRN	Truncation to minus infinity (default)	
	SC_TRN_ZERO	AP_TRN_ZERO	Truncation to zero	

->

Identifier	Description			
0	Overflow mode. This dictates the behavior when the result of an operation exceeds the maximum (or minimum in the case of negative numbers) value which can be stored in the result variable.			
	SystemC Types	ap_fixed Types	Description	
	SC_SAT	AP_SAT	Saturation	
	SC_SAT_ZERO	AP_SAT_ZERO	Saturation to zero	
	SC_SAT_SYM	AP_SAT_SYM	Symmetrical saturation	
	SC_WRAP	AP_WRAP	Wrap around (default)	
	SC_WRAP_SM	AP_WRAP_SM	Sign magnitude wrap around	
N	This defines the number of saturation bits in the overflow wrap modes.			

Scaling factors:

QUANTIZATION AND ERROR

Lecture 12

Quantization

- Magnitude
 - Largest value to be represented: integer
- Resolution
 - Smallest delta to be resolved: fraction

Quantization effects

Quantization Error

Error

- Assume uniformly distributed:
 - Model as additive noise
- * Signal to Noise Ratio (SNR)
- Roughly 6dB per bit of additional precision

FLOATING POINT AND OTHER NUMBER REPRESENTATIONS

Lecture 12

The scaling factor problem

Example: SPICE circuit simulation

The scaling factor problem

- Example: SPICE circuit simulation
- Typical ranges of values (for low-power electronic circuits)
 - Voltages: up to about 5.0V max, resolution in mV (for references etc.)

~ DR: 1000s.

- Currents: nA to mA (leakage currents to bias currents)
- \circ Impedance: $k\Omega$ to $M\Omega$

The scaling factor problem

- Example: SPICE circuit simulation
- Typical ranges of values (for low-power electronic circuits)
 - Voltages: up to about 5.0 max, resolution in mV (for references etc.)
 - Currents nA to mA (leakage currents to bias currents)
 - Impedance: $k\Omega$ to $M\Omega$ 10
- Dynamic range
 - $\circ~$ with individual units (μA), $k\Omega$ etc.) \approx 10 6 20 bits $\circ~$ SI units: nA to $M\Omega$ 10^{15} 45 bits

- 0.000123
- 12.3
- 123000000

- 0.000123
- 12.3
- 123000000

- 0.000123
- 12.3
- 123000000

Significant bits / digits

Exponent

- 1.23×10^{-4}
- 1.23×10^{1}
- 1.23×10^{8}

- 0.000123
- 12.3
- 123000000

Significant bits / digits

Exponent

Options

- Each block has own exponent
- Each number has own exponent

digit before point is not O.

- 1.23×10^{-4}
- 1.23×10^{1}
- 1.23×10^8

Normalized scientific notation

Self-contained representation

- Mantissa: Significant bits numerical value (1.23)
- Exponent: Scaling factor
 Fixed pt: implicit.
- Sign: Use a separate bit to represent this

Self-contained representation

- Mantissa: Significant bits numerical value (1.23)
- Exponent: Scaling factor
- **Sign**: Use a separate bit to represent this

Example: IEEE 754 SP Single Precision

-> 1.0101110... 1x2

- Largest positive value:
 - \circ $1.111...1 imes 2^{+127} \approx 3.4 imes 10^{38}$
- Smallest positive value:
 - $\circ~1.000...0 \times 2^{-126} \approx 1.2 \times 10^{-38}$
- DR: $\approx 10^{77}$

Dynamic range

- Largest positive value:
 - $\circ \ 1.111...1 \times 2^{+127} \approx 3.4 \times 10^{38}$
- Smallest positive value:

$$\circ~1.000...0 \times 2^{-126} \approx 1.2 \times 10^{-38}$$

• DR: $pprox 10^{77}$

• Contrast 32-bit integer:

$$\circ$$
 DR: $rac{2^{31}}{1}pprox 2.2 imes 10^9$

Dynamic range

Largest positive value:

$$\circ~1.111...1 \times 2^{+127} \approx 3.4 \times 10^{38}$$

• Smallest positive value:

$$\circ~1.000...0 \times 2^{-126} \approx 1.2 \times 10^{-38}$$

• DR: $\approx 10^{77}$

Contrast 32-bit integer:

$$\circ$$
 DR: $rac{2^{31}}{1}pprox 2.2 imes 10^9$

Problem?

- Representing 9 digit integers?
 - $\circ \ 123456789
 ightarrow 123456792$

Special cases

- exponent = 255

 mantissa = all zeros: ±∞
 - \circ mantissa non-zero: NaN (not-a-number: $eg~0/0, \infty-\infty$ etc.

Special cases

- exponent = 255
 - \circ mantissa = all zeros: $\pm \infty$
 - \circ mantissa non-zero: NaN (not-a-number: $eg~0/0, \infty-\infty$ etc.

```
1.23 x 10<sup>10</sup>
3.45 x 10<sup>4</sup>
-----? x 10<sup>?</sup>
```

- Convert to same exponent
 - Compare exponents, shift mantissas

- Convert to same exponent
 - Compare exponents, shift mantissas

```
1.23 x 10<sup>10</sup>
0.000345 x 10<sup>10</sup>
? x 10<sup>?</sup>
```

- Convert to same exponent
 - Compare exponents, shift mantissas
- Add mantissas

```
1.23 x 10<sup>10</sup>
0.000345 x 10<sup>10</sup>
------
1.230345 x 10<sup>?</sup>
```

- Convert to same exponent
 Compare exponents, shift mantissas
- Add mantissas

```
1.23 x 10<sup>10</sup>
0.000345 x 10<sup>10</sup>
------
1.230345 x 10<sup>?</sup>
```

- Convert to same exponent
 - Compare exponents, shift mantissas
- Add mantissas
- Round

- Convert to same exponent
 - Compare exponents, shift mantissas
- Add mantissas
- Round

```
1.23 x 10<sup>10</sup>
0.000345 x 10<sup>10</sup>
-----
1.23 x 10<sup>?</sup>
```

- Convert to same exponent
 - Compare exponents, shift mantissas
- Add mantissas
- Round
- Update exponent of result

```
1.23 x 10<sup>10</sup>
0.000345 x 10<sup>10</sup>
-----
1.23 x 10<sup>10</sup>
```

- Convert to same exponent
 Compare exponents, shift mantissas
- Add mantissas
- Round
- Update exponent of result

Extra steps compared to integer/fixed point

- Already same exponent
- Add mantissas

```
1.23 x 10<sup>10</sup>
9.99 x 10<sup>10</sup>
-----
11.22 x 10<sup>?</sup>
```

- Already same exponent
- Add mantissas
 - overflow

```
1.23 x 10<sup>10</sup>
9.99 x 10<sup>10</sup>
-----
1.122 x 10<sup>?</sup>
```

- Already same exponent
- Add mantissasoverflow
- Shift mantissa

```
1.23 x 10<sup>10</sup>
9.99 x 10<sup>10</sup>
1.12 x 10<sup>?</sup>
```

- Already same exponent
- Add mantissasoverflow
- Shift mantissa
- Round

```
1.23 x 10<sup>10</sup>
9.99 x 10<sup>10</sup>
-----
1.12 x 10<sup>11</sup>
```

- Already same exponent
- Add mantissas
 - overflow
- Shift mantissa
- Round
- Update exponent

```
1.23456 x 10<sup>10</sup>
-1.23455 x 10<sup>10</sup>
------
? x 10<sup>?</sup>
```

```
1.23456 x 10<sup>10</sup>
-1.23455 x 10<sup>10</sup>
-----? x 10<sup>?</sup>
```

- Exponents aligned
- Add mantissas (note: subtraction)

```
1.23456 x 10<sup>10</sup>
-1.23455 x 10<sup>10</sup>
-----
0.00001 x 10<sup>2</sup>
```

- Exponents aligned
- Add mantissas (note: subtraction)

```
1.23456 x 10<sup>10</sup>
-1.23455 x 10<sup>10</sup>
-----
0.00001 x 10<sup>?</sup>
```

- Exponents aligned
- Add mantissas (note: subtraction)
- Normalize!!!

Leading One Detection

```
1.23456 x 10<sup>10</sup>
-1.23455 x 10<sup>10</sup>
------
1.00000 x 10<sup>-5</sup> x 10<sup>?</sup>
```

- Exponents aligned
- Add mantissas (note: subtraction)
- Normalize!!!

```
1.23456 x 10<sup>10</sup>
-1.23455 x 10<sup>10</sup>
-----
1.00000 x 10<sup>-5</sup> x 10<sup>?</sup>
```

- Exponents aligned
- Add mantissas (note: subtraction)
- Normalize!!!
- Update exponent

```
1.23456 x 10<sup>10</sup>
-1.23455 x 10<sup>10</sup>
------
1.00000 x 10<sup>-5</sup> x 10<sup>10</sup>
```

- Exponents aligned
- Add mantissas (**note**: subtraction)
- Normalize!!!
- Update exponent

```
1.23456 x 10<sup>10</sup>
-1.23455 x 10<sup>10</sup>
-----1.00000 x 10<sup>5</sup>
```

- · Exponents aligned
- Add mantissas (note: subtraction)
- Normalize!!!
- Update exponent
- Final exponent

Variants

- Double precision
 - o 1 sign, 11 exponent, 52 mantissa: 64 bits
 - $\circ~\text{DR:} \approx 10^{600}$

Variants

- Double precision
 - 1 sign, 11 exponent, 52 mantissa: 64 bits
 - $\circ \ \, \text{DR:} \approx 10^{600}$
- Half precision
 - 1 sign, 5 exponent, 10 mantissa: 16 bits
 - \circ DR: $\approx 10^9$ \longrightarrow DR of 32b int.

Variants

- Double precision
 - 1 sign, 11 exponent, 52 mantissa: 64 bits
 - \circ DR: $\approx 10^{600}$
- Half precision
 - 1 sign, 5 exponent, 10 mantissa: 16 bits
 - \circ DR: $\approx 10^9$
- Bfloat 16
 - 1 sign, 8 exponent, 7 mantissa: 16 bits
 - \circ DR: $\approx 10^{77}! \rightarrow 32b fP$.
 - Easy conversion from single-precision
 - \circ Much lower *precision* (eg $\pi o 3.140625$)

Example: TensorFloat-32

Src: nvidia.com -- NVIDIA -- May 2020

BERT Large Training (FP32 & FP16) measures Pre-Training phase, uses PyTorch including (2/3) Phase1 with Seq Len 128 and (1/3) Phase 2 with Seq Len 512, V100 is DGX1 Server with 8xV100, A100 is DGX A100 Server with 8xA100, A100 uses TF32 Tensor Core for FP32 training

Hardware complexity

Instruction Energy Breakdown

Any Question...

Thank you