Table 1: T-test results comparing models without (CNR= ∞) and with (CNR=3) noise injection during training across different SNR dB levels. Significant p-values (p<0.05) are in bold.

SNR	Precision		Recall		F1	
(dB)	t	p	t	p	t	p
-6	-1.75	8.16e-02	-20.40	1.26e-61	-20.30	3.32e-61
-3	-1.83	6.80e-02	-17.94	1.44e-51	-16.73	1.18e-46
0	-5.17	3.94e-07	-14.44	1.98e-37	-13.37	2.93e-33
3	-7.01	1.22e-11	-10.77	1.50e-23	-10.18	1.64e-21
6	-7.99	1.90e-14	-7.61	2.58e-13	-7.56	3.54e-13
9	-7.84	5.26e-14	-5.41	1.15e-07	-5.71	2.40e-08
12	-6.78	4.99e-11	-3.64	3.08e-04	-3.93	1.03e-04
15	-5.39	1.32e-07	-2.40	1.67e-02	-2.87	$4.34\mathrm{e}\text{-}03$
18	-4.19	3.47e-05	-1.77	7.76e-02	-2.07	3.95e-02
21	-3.33	9.74e-04	-1.32	1.88e-01	-1.54	1.25e-01
24	-2.86	4.48e-03	-0.93	3.51e-01	-1.10	2.71e-01
27	-1.56	1.19e-01	-0.96	3.37e-01	-1.15	2.50e-01
30	-1.63	1.03e-01	-0.97	3.32e-01	-1.00	3.19e-01
33	0.00	1.00e + 00	-0.66	5.07e-01	-0.69	4.91e-01
36	0.00	$1.00 \mathrm{e}{+00}$	-0.66	5.10e-01	-0.68	4.95e-01
39	0.94	3.47e-01	-0.56	5.76e-01	-0.53	5.99e-01
42	0.94	3.47e-01	-0.67	5.02e-01	-0.53	5.99e-01
45	0.00	1.00e+00	-0.67	5.02e-01	-0.53	5.99e-01
∞	0.94	3.47e-01	-0.70	4.84 e - 01	-0.56	5.77e-01

Table 2: T-test results comparing models without (CNR= ∞) and with (CNR=1) noise injection during training across different SNR dB levels. Significant p-values (p<0.05) are in bold.

SNR	Precision		Recall		F1	
(dB)	t	p	t	p	t	p
-6	-1.82	6.90e-02	-25.18	9.69e-81	-24.83	2.25e-79
-3	-1.62	1.06e-01	-20.91	1.08e-63	-19.06	3.78e-56
0	-4.41	1.37e-05	-16.14	2.87e-44	-14.58	$5.54e ext{-}38$
3	-6.44	3.99e-10	-11.90	1.09e-27	-11.10	9.34e-25
6	-7.73	1.12e-13	-8.63	2.20e-16	-8.39	1.24e-15
9	-7.15	4.98e-12	-6.09	3.01e-09	-6.18	1.78e-09
12	-6.05	3.76e-09	-4.22	3.10e-05	-4.34	1.84e-05
15	-4.54	7.90e-06	-2.73	6.61e-03	-3.07	2.33e-03
18	-3.41	7.33e-04	-1.90	5.87e-02	-2.25	2.53e-02
21	-2.50	1.28e-02	-1.44	1.50e-01	-1.56	1.19e-01
24	-2.01	4.51e-02	-1.06	2.89e-01	-1.12	2.63e-01
27	-0.75	4.53e-01	-0.97	3.32e-01	-1.00	3.20e-01
30	-0.78	4.34e-01	-0.98	3.29e-01	-1.01	3.15e-01
33	0.82	4.14e-01	-0.77	4.39e-01	-0.69	4.91e-01
36	0.86	3.93e-01	-0.66	5.08e-01	-0.69	4.91e-01
39	1.70	8.94e-02	-0.56	5.74e-01	-0.53	5.99e-01
42	1.70	8.94e-02	-0.56	5.74e-01	-0.35	7.23e-01
45	1.70	8.94e-02	-0.57	5.72e-01	-0.35	7.23e-01
∞	1.70	8.94e-02	-0.23	8.15e-01	-0.18	8.54e-01

Table 3: T-test results comparing models without (CNR= ∞) and with (CNR=1/3) noise injection during training across different SNR dB levels. Significant p-values (p<0.05) are in bold.

SNR	Precision		Recall		F1	
(dB)	t	p	t	p	t	p
-6	-1.96	5.07e-02	-24.71	6.72e-79	-24.42	9.87e-78
-3	-2.03	4.27e-02	-21.12	1.50e-64	-19.24	7.14e-57
0	-5.33	1.76e-07	-16.38	3.21e-45	-14.78	8.25e-39
3	-7.87	4.49e-14	-11.96	6.82e-28	-11.17	5.23e-25
6	-8.94	2.31e-17	-8.47	6.63e-16	-8.33	1.82e-15
9	-8.28	2.59e-15	-5.82	1.30e-08	-6.05	3.74e-09
12	-6.65	1.14e-10	-3.83	1.52e-04	-4.05	6.31e-05
15	-5.16	4.23e-07	-2.23	$2.64\mathrm{e}\text{-}02$	-2.73	6.57e-03
18	-4.08	5.48e-05	-1.36	1.74e-01	-1.73	8.39e-02
21	-3.13	1.90e-03	-0.80	4.22e-01	-1.06	2.89e-01
24	-2.01	4.51e-02	-0.52	6.06e-01	-0.62	5.35e-01
27	-1.50	1.33e-01	-0.21	8.34e-01	-0.32	7.48e-01
30	-0.78	4.34e-01	-0.21	8.32e-01	-0.16	8.71e-01
33	0.82	4.14e-01	0.11	9.14e-01	0.00	$1.00\mathrm{e}{+00}$
36	0.00	$1.00 \mathrm{e}{+00}$	0.11	9.14e-01	0.00	$1.00\mathrm{e}{+00}$
39	1.79	7.43e-02	0.33	7.43e-01	0.17	8.66e-01
42	1.70	8.94e-02	0.22	8.27e-01	0.34	7.35e-01
45	1.79	7.43e-02	0.33	7.43e-01	0.34	7.35e-01
∞	1.70	8.94 e-02	0.57	5.71 e-01	0.53	5.95 e-01

Table 4: T-test results comparing models without (CNR= ∞) and with (CNR=0) noise injection during training across different SNR dB levels. Significant p-values (p < 0.05) are in bold.

SNR	Precision		Recall		F1	
(dB)	t	p	t	p	t	p
-6	-3.47	5.83e-04	-20.85	1.92e-63	-21.11	1.70e-64
-3	-3.59	3.78e-04	-17.44	1.56e-49	-16.55	6.27e-46
0	-10.43	2.25e-22	-13.13	$2.56\mathrm{e}\text{-}32$	-12.51	5.91e-30
3	-11.80	2.64e-27	-9.34	1.15e-18	-9.23	2.51e-18
6	-12.23	6.71e-29	-6.25	1.17e-09	-6.60	1.50e-10
9	-12.09	2.24e-28	-3.72	$2.35\mathrm{e}\text{-}04$	-4.43	1.27e-05
12	-10.08	3.70e-21	-1.69	9.11e-02	-2.45	1.48e-02
15	-8.58	3.08e-16	-0.26	7.94e-01	-1.16	2.47e-01
18	-7.27	2.31e-12	0.64	5.21e-01	-0.14	8.91e-01
21	-5.64	3.48e-08	1.13	2.57e-01	0.57	5.69e-01
24	-4.56	6.97e-06	1.45	1.47e-01	1.02	3.08e-01
27	-3.37	8.48e-04	1.58	1.16e-01	1.20	2.29e-01
30	-2.56	1.10e-02	1.59	1.12e-01	1.38	1.70e-01
33	-0.94	3.50e-01	1.74	8.33e-02	1.43	1.52e-01
36	-0.89	3.71e-01	1.73	8.49e-02	1.58	1.15e-01
39	0.00	1.00e + 00	1.87	6.24 e-02	1.61	1.09e-01
42	0.00	1.00e + 00	1.77	7.83e-02	1.78	7.54e-02
45	0.94	3.47e-01	1.88	6.09e-02	1.62	1.06e-01
∞	0.94	3.47e-01	2.04	$\mathbf{4.22e\text{-}02}$	2.03	$4.31\mathrm{e}\text{-}02$