We will begin thinking about the idea of closure and interior:

Definition 1. Let X be a topological space, let $A \subseteq X$. The closure \overline{A} of A is the intersection of all closed subsets of X containing A.

In other words, it is the smallest closed set containing A

Definition 2. The **interior** of A, written Int A, (sometimes A°) is the union of all open subsets of X contained in A

Example 1. A = (0,1] in $X = \mathbb{R}$ then

$$\overline{A} = [0, 1]$$
 $A^{\circ} = (0, 1)$

Notice that the context of our closure is important. To see this, if A = (0, 1], X = (0, 2], then $\overline{A} = (0, 1].$

Lemma 1. Let Y be a subspace of X, (a subset of X given the subspace topology). Then a subset $B \subseteq Y$ is closed iff there exists a closed set $Z \subseteq X$ such that $B = Z \cap Y$

Proof. Observe that if $U \subseteq X$ then

$$Y - (U \cap Y) = (X - U) \cap Y$$

Then we have that $B \subseteq Y$ is closed in Y iff Y - B is open in Y iff $\exists U \subseteq X$ open such that $Y - B = U \cap Y$ iff $\exists U \subseteq X$ open such that $B = (X - U) \cap Y$ iff $\exists Z \subseteq X$ closed such that $B = Z \cap Y$.

Theorem 1. Let Y be a subspace of X, A be a subset of Y. Let \overline{A} be the closure of A in X. Then the closure of A in Y is $\overline{A} \cap Y$

Proof. Let B be the closure of A in Y. Then \overline{A} is closed in X, so by the lemma, $\overline{A} \cap Y$ is closed in Y. On the other hand, $\overline{A} \cap Y$ contains A.

Since B is in the intersection of the closed subsets of Y containing A, $B \subseteq \overline{A} \cap Y$. \triangle On the other hand, since B is closed in Y, there exists a closed subset $Z \subseteq X$ such that $B = Z \cap Y$ by the lemma. This Z then is a closed subset of Z containing A. Since \overline{A} is the intersection of all closed subsets of X containing A, $\overline{A} \subseteq Z$. Then

$$\overline{A} \cap Y \subseteq Z \cap Y = B$$

In such situations, \overline{A} will be the closure in X.

We will now somehow demonstrate a relationship between the closure and the interior.

Lemma 2. Let A be a subset of a topological space X. Then

$$\overline{A} = ((A^c)^\circ)^c$$
$$A^\circ = (\overline{A^c})^c$$

Proof.

$$\overline{A} = \left(\bigcap_{Z \subseteq X \text{ closed}} Z\right)
A = \overline{A}^{cc} = \left(\bigcap_{Z \subseteq X \text{ closed}} Z\right)^{cc}
= \left(\bigcap_{Z \subseteq X \text{ closed}} Z\right)^{c}
= \left(\bigcap_{Z \subseteq X \text{ closed}} Z\right)^{c}
= \left(\bigcap_{Z \subseteq X \text{ open}} Z\right)^{c}
= \left(\bigcap_{U \subseteq X \text{ open}} U\right)^{c}
= ((A^{c})^{\circ})^{c}$$

Theorem 2. Let A be a subset of the topological space X. Then

1. $x \in \overline{A}$ iff every open neighborhood U of x intersects A. (where x is an adherent point).

2. If the topology on X is generated by a basis \mathcal{B} , then $x \in \overline{A}$ iff every basic open neighborhood B of x intersects A.

Proof. 1. Let's prove by contrapositive:

 $x \notin A$ iff There exists an open neighborhood of x such that U does not intersect A. Now let's suppose $x \notin \overline{A}$ then $U = X - \overline{A}$ is an open subset of X containing x and $U \cap A = \emptyset$. Conversely, suppose that U is an open neighborhood of x not containing A. then U^c is a closed subset of X containing A. Then $\overline{A} \subseteq U^c$). Thus $x \notin \overline{A}$.

2. Suppose now that all open neighborhoods U of x intersect A. Then in particular this holds of the basic open neighborhoods, so each basic open neighborhood of x intersects A.

Conversely, suppose all basic open neighborhoods B of x intersect A.

If U is an open neighborhood of x, then there exists a basis element B such that $x \in B \subseteq U$. Then $B \cap A \neq \emptyset$, so $U \cap A \neq \emptyset$ as well.

Definition 3. A point $x \in X$ is said to be a **limit point** of a subset $A \subseteq X$ if each open neighborhood U of x intersects A in a point other than x (i.e. $(U - \{x\}) \cap A \neq \emptyset$).

Theorem 3. Let A be a subset of a topological space X. Write A' for the set of limit points of A, then $\overline{A} = A \cup A'$.

Proof. $(A \cup A') \subseteq \overline{A}$ Let $x \in A'$, then each open neighborhood of x intersects A in a point (other than x) so $x \in \overline{A}$.

If $x \in A$ then $x \in \overline{A}$ since $A \subseteq \overline{A}$ by definition.

So $A \cup A' \subseteq \overline{A}$.

For the reverse inclusion, let $x \in A$. Then $x \in A \cup A'$. If $x \notin A$ then any open neighborhood U of x intersects A. Since $x \notin A$ this must be a point other than x. So x is a limit point and $x \in A'$. So $x \in A \cup A'$.

Corollary 1. A subset A of a topological space X is closed iff it contains all of its limit points.