

Teória obvodov

Semestrálny projekt

2014/2015

### Príklad 1 variant B

Stanovte napätie U<sub>R7</sub> a prúd I<sub>R7</sub>. Použite metódu postupného zjednodušovania obvodu.

| Sk. | U [V] | R <sub>1</sub> [Ω] | $R_2[\Omega]$ | R <sub>3</sub> [Ω] | R <sub>4</sub> [Ω] | R <sub>5</sub> [Ω] | R <sub>6</sub> [Ω] | R <sub>7</sub> [Ω] | R <sub>8</sub> [Ω] |
|-----|-------|--------------------|---------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| В   | 95    | 650                | 730           | 340                | 330                | 410                | 830                | 340                | 220                |



1. Odpory R<sub>5</sub> a R<sub>6</sub> sú paralelne. Spočítame ich dohromady. 
$$R_{56} = \frac{R_5*R_6}{R_5+R_6} = \frac{410*830}{410+830} = 274,4355\Omega$$

2. Odpory R<sub>2</sub>,R<sub>3</sub>,R<sub>4</sub> transformujeme z trojuholníka na hviezdu.



$$R_A = \frac{R_2 * R_3}{R_2 + R_3 + R_4} = \frac{730 * 340}{730 + 340 + 330} = 177,2857\Omega$$

$$R_B = \frac{R_2 * R_4}{R_2 + R_3 + R_4} = \frac{730 * 330}{730 + 340 + 330} = 172,07143\Omega$$

$$R_C = \frac{R_4 * R_3}{R_2 + R_3 + R_4} = \frac{330 * 340}{730 + 340 + 330} = 80,1429\Omega$$

3. Odpory  $R_B$  a  $R_{56}$ ,  $R_C$  a  $R_7$ ,  $R_1$  a  $R_A$  sú zapojené sériovo. Všetky 3 dvojice spočítame.



$$R_{B56} = R_B + R_{56} = 172,07143 + 274,4355 = 446,5069\Omega$$
  
 $R_{C7} = R_C + R_7 = 80,1429 + 340 = 420,1429\Omega$   
 $R_{A1} = R_A + R_1 = 177,2857 + 650 = 827,2857\Omega$ 

4. Odpory R<sub>B56</sub> a R<sub>C7</sub> sú spojené paralelne.



$$R_{BC567} = \frac{R_{B56} * R_{C7}}{R_{B56} + R_{C7}} = \frac{446,5069 * 420,1429}{446,5069 + 420,1429} = 216,4619\Omega$$

5. Všetky odpory sú v sérií, spočítame odpor R. (ekvivalentný odpor)



$$R = R_{A1} + R_{BC567} + R_8 = 827,2857 + 216,4619 + 220 = 1263,7476\Omega$$

6. Celkový prúd vypočítame z Ohmovho zákona.

$$I = \frac{U}{R} = \frac{95}{1263,7476} = 0,07517 A$$

7. Vypočítame napätie rezistoru R<sub>BC567</sub>.

$$U_{BC567} = I * R_{BC567} = 0.07517 * 216,4619 = 16,2714 V$$

8. Vypočítame prúd na rezistore R<sub>C7</sub>. Napätie na paralelných rezistoroch je rovnaké a prúd na sériových rezistoroch je rovnaký.

$$U_{BC567} = U_{C7}$$

$$I_{C7} = \frac{U_{C7}}{R_{C7}} = \frac{16,2714}{420,1429} = 0,03873 A$$

$$I_{C7} = I_7 = 0,03873 A$$

9. Dorátame napätie U<sub>7</sub>.

$$U_7 = I_7 * R_7 = 0.03879 * 340 = 13,1682 V$$

# Príklad 2 variant C

Stanovte napätie UR3 a prúd IR3. Použite metódu Theveninovej vety.

| Sk. | U [V] | R <sub>1</sub> [Ω] | $R_2[\Omega]$ | R <sub>3</sub> [Ω] | R <sub>4</sub> [Ω] | R <sub>5</sub> [Ω] | R <sub>6</sub> [Ω] |
|-----|-------|--------------------|---------------|--------------------|--------------------|--------------------|--------------------|
| С   | 200   | 220                | 630           | 240                | 450                | 230                | 200                |



1. Vypočítame náhradný odpor zdroja  $R_i$  medzi svorkami A,B. Urobíme to tak, že zdroj napätia nahradíme skratom a z obvodu vynecháme odpor  $R_3$ .



2. Obvod zjednodušíme transformáciou trojuholníka R<sub>1</sub>, R<sub>4</sub>, R<sub>6</sub> na hviezdu.



$$R_X = \frac{R_1 * R_4}{R_1 + R_4 + R_6} = \frac{220 * 450}{220 + 450 + 200} = 113,7931\Omega$$

$$R_Y = \frac{R_1 * R_6}{R_1 + R_4 + R_6} = \frac{220 * 200}{220 + 450 + 200} = 50,5747\Omega$$

$$R_Z = \frac{R_4 * R_6}{R_1 + R_4 + R_6} = \frac{450 * 200}{220 + 450 + 200} = 103,4483\Omega$$

3. Odpory R<sub>y</sub> a R<sub>2</sub>, R<sub>z</sub> a R<sub>5</sub> sú v sérií. Po ich spočítaní nám vzniknú 2 paralelné odpory R<sub>Y2</sub> a R<sub>z5</sub>. Výsledný odpor R<sub>Yz25</sub> je v sérií s odporom R<sub>X</sub> a vznikne odpor R<sub>i</sub>.

$$R_{Y2} = R_Y + R_2 = 50,5747 + 630 = 680,5747\Omega$$
  
 $R_{Z5} = R_Z + R_5 = 103,4483 + 230 = 333,4483\Omega$   
 $R_{YZ25} = \frac{R_{Y2} * R_{Z5}}{R_{Y2} + R_{Z5}} = \frac{680,5747 * 333,4483}{680,5747 + 333,4483} = 223,7982\Omega$   
 $R_i = R_X + R_{YZ25} = 113,7931 + 223,7982 = 337,5913\Omega$ 

4. Vypočítame celkový odpor R<sub>12456</sub> v obvode bez odporu R<sub>3</sub>.

$$R_{12456} = \frac{(R_1 + R_4) * (R_2 + R_5)}{R_1 + R_2 + R_4 + R_5} + R_6 = \frac{(220 + 450) * (630 + 230)}{220 + 450 + 630 + 230} + 200 = 576,6013\Omega$$

5. Vypočítame celkový prúd Ix prechádzajúci obvodom a napätie U<sub>1245</sub> v paralelnej časti obvodu.

$$I_X = \frac{U}{R_{12456}} = \frac{200}{576,6013} = 0,3469A$$

$$U_{1245} = I_X * (R_{12456} - R_6) = 0,3469 * (576,6013 - 200) = 130,6430\Omega$$

6. Z obrázku vypočítame prúdy IA a IB.



$$I_A = \frac{U_{1245}}{R_1 + R_4} = \frac{130,6430}{220 + 450} = 0,1950A$$

$$I_B = \frac{U_{1245}}{R_2 + R_5} = \frac{130,6430}{630 + 230} = 0,1519A$$

7. Vypočítame napätie U<sub>i</sub> na svorkách A,B ako napätie naprázdno.



$$U_i = (R_2 * I_B) - (R_1 * I_A) = (630 * 0.1519) - (220 * 0.1950) = 52,7970 V$$

8. Zostavíme náhradný obvod a vypočítame napätie UR3 a prúd IR3.



$$I_{R3} = \frac{U_i}{R_i + R_3} = \frac{52,797}{337,5913 + 240} = \mathbf{0}, \mathbf{09141}A$$

$$U_{R3} = I_{R3} * R_3 = 0.09141 * 240 = 21,9384 V$$

#### Príklad 3

#### variant D

Stanovte napätie UR5 a prúd IR5. Použite metódu uzlových napätí(UA, UB, UC).

| Sk. | U <sub>1</sub> [V] | U <sub>2</sub> [V] | I[A] | R <sub>1</sub> [Ω] | $R_2[\Omega]$ | R <sub>3</sub> [Ω] | R <sub>4</sub> [Ω] | $R_5[\Omega]$ | $R_6[\Omega]$ |
|-----|--------------------|--------------------|------|--------------------|---------------|--------------------|--------------------|---------------|---------------|
| D   | 115                | 60                 | 0,9  | 500                | 380           | 480                | 370                | 285           | 125           |



1. Zostavíme si rovnice pre jednotlivé uzly podľa 1. Kirchhoffovho zákona.

$$A: I_{R1} + I_{R3} - I - I_{R2} = 0$$

$$B: I + I_{R6} - I_{R3} - I_{R5} = 0$$

$$C: I_{R5} - I_{R4} - I_{R6} = 0$$

2. Všetky prúdy si vyjadríme pomocou príslušných napätí a odporov(2. Kirchhoffov zákon).

$$(I_{R1} * R_1) + U_A - U_1 = 0$$

$$(I_{R2} * R_2) - U_A = 0$$

$$(I_{R3} * R_3) + U_A - U_B = 0$$

$$(I_{R4} * R_4) - U_C = 0$$

$$(I_{R5} * R_5) + U_C - U_B = 0$$

$$(I_{R6} * R_6) + U_B - U_C - U_2 = 0$$

$$I_{R1} = \frac{U_1 - U_A}{R_1}$$
;  $I_{R2} = \frac{U_A}{R_2}$ ;  $I_{R3} = \frac{U_B - U_A}{R_3}$ ;  $I_{R4} = \frac{U_C}{R_4}$ ;  $I_{R5} = \frac{U_B - U_C}{R_5}$ ;  $I_{R6} = \frac{U_2 + U_C - U_B}{R_6}$ 

3. Prúdy dosadíme do rovníc pre uzly.

$$A: \frac{U_1 - U_A}{R_1} + \frac{U_B - U_A}{R_3} - I - \frac{U_A}{R_2} = 0$$

$$B: I + \frac{U_2 + U_C - U_B}{R_6} - \frac{U_B - U_A}{R_3} - \frac{U_B - U_C}{R_5} = 0$$

$$C: \frac{U_B - U_C}{R_5} - \frac{U_C}{R_4} - \frac{U_2 + U_C - U_B}{R_6} = 0$$

4. Riešime sústavu 3 rovníc o 3 neznámych UA, UB a Uc.

$$U_{1}R_{2}R_{3} - U_{A}R_{2}R_{3} + U_{B}R_{1}R_{2} - U_{A}R_{1}R_{2} - IR_{1}R_{2}R_{3} - U_{A}R_{1}R_{3} = 0$$

$$IR_{3}R_{5}R_{6} + U_{2}R_{3}R_{5} + U_{C}R_{3}R_{5} - U_{B}R_{3}R_{5} - U_{B}R_{5}R_{6} + U_{A}R_{5}R_{6} - U_{B}R_{3}R_{6} + U_{C}R_{3}R_{6} = 0$$

$$U_{B}R_{4}R_{6} - U_{C}R_{4}R_{6} - U_{C}R_{5}R_{6} - U_{2}R_{4}R_{5} - U_{C}R_{4}R_{5} + U_{B}R_{4}R_{5} = 0$$

$$U_{A}(-R_{2}R_{3} - R_{1}R_{2} - R_{1}R_{3}) + U_{B}(R_{1}R_{2}) = R_{2}R_{3}(IR_{1} - U_{1})$$

$$U_{A}(R_{5}R_{6}) + U_{B}(-R_{3}R_{5} - R_{5}R_{6} - R_{3}R_{6}) + U_{C}(R_{3}R_{5} + R_{3}R_{6}) = -R_{3}R_{5}(IR_{6} + U_{2})$$

$$U_{B}(R_{4}R_{6} + R_{4}R_{5}) + U_{C}(-R_{4}R_{6} - R_{5}R_{6} - R_{4}R_{5}) = U_{2}R_{4}R_{5}$$

$$-U_A(380 * 480 + 500 * 380 + 500 * 480) + U_B(500 * 380)$$

$$= 380 * 480(0.9 * 500 - 115)$$

$$U_A(285 * 125) - U_B(480 * 285 + 285 * 125 + 480 * 125) + U_C(480 * 285 + 480 * 125)$$

$$= -480 * 285(0.9 * 125 + 60)$$

$$U_B(370 * 125 + 370 * 285) - U_C(370 * 125 + 285 * 125 + 285 * 370) = 60 * 370 * 285$$

$$\mathsf{M} = \begin{bmatrix} -612\,400 & 190\,000 & 0 & 61\,104\,000 \\ 35\,625 & -232\,425 & 196800 & -23\,598\,000 \\ 0 & 151\,700 & -187\,325 & 6\,327\,000 \end{bmatrix}$$
 
$$\mathsf{M} = \begin{bmatrix} -6124 & 1900 & 0 & 611\,040 \\ 1425 & -9297 & 7872 & -943\,920 \\ 0 & 6068 & -7493 & 253\,080 \end{bmatrix}$$

$$\begin{bmatrix} 1425 & -9297 & 7872 & -943 & 920 \\ 0 & 6068 & -7493 & 253 & 080 \end{bmatrix}$$

$$\begin{split} M_0 &= \begin{bmatrix} -6124 & 1900 & 0 \\ 1425 & -9297 & 7872 \\ 0 & 6068 & -7493 \end{bmatrix} M_2 = \begin{bmatrix} -6124 & 611\,040 & 0 \\ 1425 & -943\,920 & 7872 \\ 0 & 253\,080 & -7493 \end{bmatrix} \\ M_1 &= \begin{bmatrix} 611\,040 & 1900 & 0 \\ -943\,920 & -9297 & 7872 \\ 253\,080 & 6068 & -7493 \end{bmatrix} M_3 = \begin{bmatrix} -6124 & 1900 & 611\,040 \\ 1425 & -9297 & -943\,920 \\ 0 & 6068 & 253\,080 \end{bmatrix} \end{split}$$

$$\begin{split} |M_0| &= (-6124)(-9297)(-7493) - (7872)(6068)(-6124) - (-7493)(1900)(1425) \\ |M_0| &= -113\,798\,448\,000 \\ |M_1| &= (611040)(-9297)(-7493) - (7872)(6068)(611040) + (253080)(1900)(7872) \\ &- (-7493)(1900)(-943920) \\ |M_1| &= 3\,725\,758\,260\,000 \\ |M_2| &= (-6124)(-943920)(-7493) - (7872)(253080)(-6124) \\ &- (-7493)(611040)(1425) \\ |M_2| &= -24\,588\,873\,727\,200 \\ |M_3| &= (-6124)(-9297)(253080) + (1425)(6068)(611040) \\ &- (-943920)(6068)(-6124) - (253080)(1900)(1425) \\ |M_3| &= -16\,069\,021\,027\,200 \\ \\ U_A &= \frac{|M_1|}{|M_0|} = -32,73997V \\ U_B &= \frac{|M_2|}{|M_0|} = 216,07389V \end{split}$$

5. Vypočítané hodnoty dosadíme do vzorca pre IR5. Vypočítame aj UR5.

$$I_{R5} = \frac{U_B - U_C}{R_5} = \frac{216,07389 - 141,206}{285} = \mathbf{0}, 2627A$$

$$U_{R5} = I_{R5} * R_5 = 0,2627 * 285 = \mathbf{74}, \mathbf{8679}V$$

 $U_C = \frac{|M_3|}{|M_0|} = 141,2060V$ 

# Príklad 4 variant B

Pre napájacie napätie platí:  $u = U*sin(2\pi ft)$ .

Vo vzťahu pre napätie  $u_{L2} = U_{L2}*sin(2\pi ft + \phi_{L2})$  určite  $|U_{L2}|$  a  $\phi_{L2}$ . Použite metódu zjednodušovania obvodu.

Poznámka: Pomocný "smer šípky napájacieho zdroja platí pre špeciálny časový okamih  $(t=\frac{\pi}{2*\omega})$ ."

| Sk. | U [V] | R <sub>1</sub> [Ω] | R <sub>2</sub> [Ω] | R <sub>3</sub> [Ω] | L <sub>1</sub><br>[mH] | L <sub>2</sub><br>[mH] | C₁<br>[µF] | C <sub>2</sub><br>[µF] | f [Hz] |
|-----|-------|--------------------|--------------------|--------------------|------------------------|------------------------|------------|------------------------|--------|
| В   | 35    | 160                | 220                | 270                | 480                    | 420                    | 440        | 170                    | 85     |



1. Vypočítame si uhlovú rýchlosť.

$$\omega = 2\pi f = 2\pi * 85 = 170\pi \ rad/_{S}$$

2. Zjednodušíme obvod a vypočítame impedancie jednotlivých prvkov obvodu.



$$Z_1 = R_1 = 160\Omega$$

$$Z_2 = R_2 - \frac{j}{\omega C_1} = 220 - \frac{j}{170\pi * 440 * 10^{-6}} = (220 - 4,2555j)\Omega$$

$$Z_3 = R_3 - \frac{j}{\omega C_2} = 270 - \frac{j}{170\pi * 170 * 10^{-6}} = (270 - 11,01418j)\Omega$$

$$Z_4 = j\omega L_1 = j * 170\pi * 0,48 = (81,6\pi j)\Omega$$

$$Z_5 = j\omega L_2 = j * 170\pi * 0,42 = (71,4\pi j)\Omega$$

3. Odpory Z<sub>2</sub>, Z<sub>3</sub>, Z<sub>5</sub> sú v paralelnom zapojení, odpory Z<sub>1</sub> a Z<sub>4</sub> sú k nim v sérií. Vypočítame celkovú impedanciu Z.

$$Z_{235} = \frac{Z_3 * Z_2 * Z_5}{Z_2 Z_3 + Z_2 Z_5 + Z_3 Z_5} =$$

$$= \frac{(270 - 11,01418j) * (220 - 4,2555j) * (71,4\pi j)}{(220 - 4,2555j)(270 - 11,01418j) + (220 - 4,2555j)(71,4\pi j) + (270 - 11,01418j)(71,4\pi j)}$$

$$= (50,573j + 99,6505)\Omega$$

$$Z = Z_1 + Z_4 + Z_{235} = 160 + 81,6\pi j + 50.573j + 99,6505 = (259,6505 + 306,927)\Omega$$

4. Z impedancie a napätia môžeme vypočítať celkový prúd. 
$$I=\frac{U}{Z}=\frac{35}{259,6505+306,927j}$$

5. V sériovom zapojení prechádza všade rovnaký prúd preto môžeme vypočítať napätie U<sub>235</sub>.

$$U_{235} = Z_{235} * I = \frac{(50,573j + 99,6505) * 35}{(306,927j + 259,6505)} = (8,9647 - 3,7797j)V$$

6. Napätie v paralelnom zapojení je rovnaké, preto:

$$U_{235} = U_{L2}$$

7. Vypočítame |U<sub>L2</sub>|:

$$|U_{L2}| = \sqrt{Re^2 + Im^2} = \sqrt{8,9647^2 + (-3,7797)^2} = 9,7289V$$

8. Vypočítame fázový posun:

$$\varphi_{L2} = \arctan\left(\frac{Im}{Re}\right) = \arctan\left(\frac{-3,7797}{8,9647}\right) = -0,399rad = -22,86^{\circ}$$

#### Príklad 5

#### variant C

Pre napájacie napätie platí:  $u_1 = U_1*\sin(2\pi ft)$ ,  $u_2 = U_2*\sin(2\pi ft)$ .

Vo vzťahu pre napätie  $u_{C1} = U_{C1}*sin(2\pi ft + \phi_{C1})$  určite  $|U_{C1}|$  a  $\phi_{C1}$ . Použite metódu slučkových prúdov.

Poznámka: Pomocný "smer šípky napájacieho zdroja platí pre špeciálny časový okamih  $(t=\frac{\pi}{2\omega})$ ."

| Sk. | U₁<br>[V] | U <sub>2</sub><br>[V] |     | R <sub>2</sub><br>[Ω] | R <sub>3</sub><br>[Ω] | L₁<br>[mH] | L <sub>2</sub><br>[mH] | C₁<br>[µF] | C <sub>2</sub><br>[µF] | f [Hz] |
|-----|-----------|-----------------------|-----|-----------------------|-----------------------|------------|------------------------|------------|------------------------|--------|
| С   | 35        | 45                    | 105 | 130                   | 220                   | 220        | 70                     | 230        | 85                     | 75     |



1. Vypočítame si uhlovú rýchlosť.

$$\omega = 2\pi f = 2\pi * 75 = 150\pi \ rad/_{S}$$

2. Pre kondenzátor a cievku platí:

$$X_C = \frac{1}{\omega C}$$

$$X_L = \omega L$$

3. Vypočítame hodnoty pre jednotlivé kondenzátory a cievky:

$$X_{C1} = \frac{1}{\omega C_1} = \frac{1}{150 * 230 * 10^{-6}} = 9,2264$$

$$X_{C2} = \frac{1}{\omega C_2} = \frac{1}{150 * 85 * 10^{-6}} = 24,9655$$

$$X_{L1} = \omega L_1 = 150 * 0,22 = 103,6726$$

$$X_{L2} = \omega L_2 = 150 * 0,07 = 32,9867$$

4. Zostavíme rovnice pre jednotlivé slučky, prúdy nahradíme prúdmi IA, IB, IC.

$$I_A: R_1 I_A - j X_{C1} (I_A - I_B) + R_2 (I_A - I_B) - j X_{C2} (I_A - I_C) - U_1 = 0$$

$$I_B: R_2 (I_B - I_A) - j X_{C1} (I_B - I_A) + j X_{L1} I_B + j X_{L2} (I_B - I_C) = 0$$

$$I_C: R_3 I_C - j X_{C2} (I_C - I_A) + j X_{L2} (I_C - I_B) - U_2 = 0$$

5. Vyriešime sústavu 3 rovníc o 3 neznámych:

$$I_A(R_1 + R_2 - jX_{C1} - jX_{C2}) + I_B(jX_{C1} - R_2) + I_C(jX_{C2}) = U_1$$

$$I_A(-R_2 + jX_{C1}) + I_B(R_2 - jX_{C1} + jX_{L1} + jX_{L2}) + I_C(-jX_{L2}) = 0$$

$$I_A(jX_{C2}) + I_B(-jX_{L2}) + I_C(R_3 - jX_{C2} + jX_{L2}) = U_2$$

$$I_A(105 + 130 - 9,2264j - 24,9655j) + I_B(9,2264j - 130) + I_C(24,9655j) = 35$$

$$I_A(-130 + 9,2264j) + I_B(130 - 9,2264j + 103,6726j + 32,9867j) + I_C(-32,9867j) = 0$$

$$I_A(24,9655j) + I_B(-32,9867j) + I_C(220 - 24,9655j + 32,9867j) = 45$$

$$\mathsf{M} = \begin{bmatrix} 235 - 34,1919j & -130 + 9,2264j & 24,9655j & 35 \\ -130 + 9,2264j & 130 + 127,4329j & -32,9867j & 0 \\ 24,9655j & -32,9867j & 220 + 8,0212j & 45 \end{bmatrix}$$

Determinanty určíme Sarussovým pravidlom.

$$|\mathsf{M}| = \begin{bmatrix} 235 - 34,1919j & -130 + 9,2264j & 24,9655j \\ -130 + 9,2264j & 130 + 127,4329j & -32,9867j \\ 24,9655j & -32,9867j & 220 + 8,0212j \end{bmatrix}$$

$$|\mathsf{M}_\mathsf{A}| = \begin{bmatrix} 35 & -130 + 9,2264j & 24,9655j \\ 0 & 130 + 127,4329j & -32,9867j \\ 45 & -32,9867j & 220 + 8,0212j \end{bmatrix}$$

$$|\mathsf{M}_\mathsf{B}| = \begin{bmatrix} 235 - 34,1919j & 35 & 24,9655j \\ -130 + 9,2264j & 0 & -32,9867j \\ 24,9655j & 45 & 220 + 8,0212j \end{bmatrix}$$

$$|\mathsf{M}_\mathsf{C}| = \begin{bmatrix} 235 - 34,1919j & -130 + 9,2264j & 35 \\ -130 + 9,2264j & 130 + 127,4329j & 0 \\ 24,9655j & -32,9867j & 45 \end{bmatrix}$$

$$|\mathsf{M}| = (3,8791 * 10^6 + 6,3407 * 10^6j)$$

$$|\mathsf{M}_\mathsf{A}| = (1,1602 * 10^6 + 1,0647 * 10^6j)$$

$$|\mathsf{M}_\mathsf{B}| = (1,0728 * 10^6 + 1,6824 * 10^5j)$$

$$|\mathsf{M}_\mathsf{C}| = (9,3616 * 10^5 + 1,292 * 10^6j)$$

$$I_A = \frac{|M_A|}{|M|} = (0,2036 - 0,05839j)A$$

$$I_B = \frac{|M_B|}{|M|} = (0,09463 - 0,1113j)A$$

$$I_C = \frac{|M_C|}{|M|} = (0,1564 - 0,2557j)A$$

6. Vypočítame prúd Ic1 a napätie Uc1.

$$I_{C1} = I_A - I_B = (0,10897 + 0,05291j)A$$
  
 $U_{C1} = I_{C1} * (-jX_{C1}) = (0,4882 - 1,0054j)V$ 

7. Vypočítame |Uc1|:

$$|U_{C1}| = \sqrt{Re^2 + Im^2} = \sqrt{0.4882^2 + (-1.0054)^2} = 1.1177V$$

8. Vypočítame fázový posun:

$$\varphi_{C1} = \arctan\left(\frac{Im}{Re}\right) = \arctan\left(\frac{-1,0054}{0.4882}\right) = -1,1188rad = -64,1^{\circ}$$

### Príklad 6

#### variant D

Zostavte diferenciálnu rovnicu popisujúcu chovanie obvod na obrázku, ďalej ju upravte dosadením hodnôt parametrov. Vypočítajte analytické riešenie  $i_{\perp} = f(t)$ . Urobte kontrolu výpočtu dosadením do zostavenej diferenciálnej rovnice.

| Sk. | U [V] | L [H] | R [Ω] | I <sub>L</sub> (0) [A] |
|-----|-------|-------|-------|------------------------|
| D   | 14    | 25    | 30    | 6                      |



1. Obvodom preteká len jeden prúd , ten je rovnaký pre všetky prvky.

$$i = i_L = i_R$$

2. Súčet všetkých napätí v tomto obvode je 0. Vyjadrime si  $U_R$  a  $U_L$  podľa pravidiel Ohmovho zákona.

$$U_R + U_L - U = 0$$

$$U_R = R * i_L$$

$$U_L = U - R * i_L$$

3. Rozpíšeme axióm.

$$i'_{L} = \frac{1}{L}U_{L}$$

$$i'_{L} = \frac{1}{L}(U - R * i_{L})$$

4. Zostavíme diferenciálnu rovnicu úpravou axiómu.

$$L * i'_L + R * i_L = U$$

5. Dosadíme hodnoty.

$$25 * i'_L + 30 * i_L = 14$$

16

6. Zostavíme charakteristickú rovnicu pre výpočet λ.

$$25\lambda + 30 = 0$$
$$\lambda = -\frac{30}{25} = -\frac{6}{5} = -1.2$$

Dosadíme λ do očakávaného riešenia.

$$i_L(t) = c(t) * e^{\lambda t}$$
$$i_L(t) = c(t) * e^{-1,2t}$$

8. Riešime diferenciálnu rovnicu. Zderivujeme i∟(t). Dosadíme deriváciu do diferenciálnej rovnice. Vypočítame c(t). Dosadíme c(t) do očakávaného riešenia. Pre výpočet k dosadíme i∟(0)=6.

$$i'_{L} = (c'(t) * e^{-1,2t}) + (-1,2 * c(t) * e^{-1,2t})$$

$$25 * (c'(t) * e^{-1,2t} - 1,2 * c(t) * e^{-1,2t}) + 30 * (c(t) * e^{-1,2t}) = 14$$

$$25 * c'(t) * e^{-1,2t} - 30 * c(t) * e^{-1,2t} + 30 * c(t) * e^{-1,2t} = 14$$

$$25 * c'(t) * e^{-1,2t} = 14$$

$$c'(t) = \frac{14}{25} * e^{1,2t}$$

$$\int c'(t)dt = \int \frac{14}{25} * e^{1,2t} dt$$

$$c(t) = \frac{14}{30} * e^{1,2t} + k$$

$$i_L(t) = c(t) * e^{-1,2t}$$

$$i_L(t) = \left(\frac{14}{30} * e^{1,2t} + k\right) * e^{-1,2t}$$

$$i_L(t) = \frac{14}{30} + k * e^{-1,2t}$$

$$6 = \frac{14}{30} + k * e^{-1,2*0}$$
$$k = 6 - \frac{14}{30} = \frac{166}{30} = \frac{83}{15}$$

9. Riešenie:

$$i_L(t) = \frac{14}{30} + \frac{83}{15} * e^{-1.2t}$$

10. Skúška správnosti riešenia:

$$i'_{L}(t) = (-1,2) * \frac{83}{15} * e^{-1,2t}$$

$$i'_{L}(t) = -\frac{166}{25} * e^{-1,2t}$$

$$25 * i'_{L} + 30 * i_{L} = 14$$

$$25 * (-\frac{166}{25} * e^{-1,2t}) + 30 * (\frac{14}{30} + \frac{83}{15} * e^{-1,2t}) = 14$$

$$-166 * e^{-1,2t} + 14 + 166 * e^{-1,2t} = 14$$

$$0 = 0$$

## Tabuľka výsledkov

| Príklad | Variant | Výsledok                                             |                                 |  |  |
|---------|---------|------------------------------------------------------|---------------------------------|--|--|
| 1       | В       | $I_{R7} = 0.03873A$                                  | $U_{R7} = 13,1682V$             |  |  |
| 2       | С       | $I_{R3} = 0.09141A$                                  | $U_{R3} = 21,9384V$             |  |  |
| 3       | D       | $I_{R5} = 0,2627A$                                   | $U_{R5} = 74,8679V$             |  |  |
| 4       | В       | $ U_{L2}  = 9,7289V$                                 | $\varphi_{L2} = -22,86^{\circ}$ |  |  |
| 5       | С       | $ U_{C1}  = 1,1177V$                                 | $\varphi_{C1} = -64,1^{\circ}$  |  |  |
| 6       | D       | $i_L(t) = \frac{14}{30} + \frac{83}{15} * e^{-1,2t}$ |                                 |  |  |