COMP 330 Assignment 2

Name: Yuhao Wu ID Number: 260711365

2018-9-24

Question 1:

Give regular expressions for the following languages over $\{a, b\}$:

- $\{w|w \text{ contains an even number of occurrences of } a\}$
- $\{w|w \text{ contains an odd number of occurrences of } b\}$
- $\{w|w \text{ does not contain the substring } ab\}$
- $\{w|w \text{ does not contain the substring } aba\}$

SOLUTION:

(1):

 $\left(b^*ab^*a\right)^*b^*$

(2):

 $\left(a^*ba^*b\right)^*a^*ba^*$

(3): "b" can be followed by any letter but "a" can be only followed by "a"

 b^*a^*

(4): "a" may be followed by either "a" or by "bb"

But when I am ending, I can have "a" followed by "b" as there is no more letters coming

$$b^* \begin{pmatrix} a^*bb & b^* \end{pmatrix}^* a^*b^*$$

Question 2:

Suppose that you have a DFA $M=(S,\Sigma,s_0,\delta,F)$. Consider two distinct states s_1,s_2 i.e. $s_1\neq s_2$. Suppose further that for all $a\in\Sigma,\delta(s_1,a)=\delta(s_2,a)$. Show that for any nonempty word w over Σ we have $\delta^*(s_1,w)=\delta^*(s_2,w)$.

Proof. We prove by induction on the length of word |w|

• Base Case: we start with word with length 1, which means |w|=1 Obviously, we have that

$$\delta^*(s_1, a) = \delta(s_1, a) = \delta(s_2, a) = \delta^*(s_2, a).$$

• Inductive Step: Suppose it is true for word x, which means that

$$\delta^*(s_1, x) = \delta^*(s_2, x)$$

Then for w = xa, we have

$$\delta^*(s_1, xa) = \delta\left(\delta^*(s_1, x), a\right)$$

$$= \delta\left(\delta^*(s_2, x), a\right)$$
 By induction hypothesis
$$= \delta^*(s_2, xa)$$

Question 3:

Show that the following languages are not regular by using the pumping lemma.

- 1. $L = \{a^n b^m a^{n+m} | n, m \ge 0\},\$
- 2. $L = \{x | x = x^R, x \in \Sigma^*\}$, where x^R means x reversed; these strings are called palindromes. An example is abba, a non-example is baba.

(a):

- $\bullet\,$ Demon pick a random variable p
- I pick $w = a^p b^1 a^{p+1}$, obviously $w \in L$ and $|w| \ge p$
- Then Demon needs to pick x, y, z such that w = xyz and $|xy| \le p, |y| > 0$ As $|xy| \le p$, Demon's y must contain "a" only, which means $y = a^k \quad 0 < k \le p$
- I will choose i=2, such that $xy^2z=a^{p+k}b^1a^{p+1}$ Obviously, p+k+1>p+0+1=p+1Thus $xy^2z\notin L$.

Therefore, the language is not regular.

(b):

- \bullet Demon pick a random variable p
- I pick $w = a^p b a^p$, obviously $w \in L$ and $|w| \ge p$
- Then Demon needs to pick x, y, z such that w = xyz and $|xy| \le p, |y| > 0$ As $|xy| \le p$, Demon's y must contain "a" only, which means that $y = a^k \quad 0 < k \le p$
- I will choose i=2, such that $xy^2z=a^{p+k}ba^p$ Obviously, p+k>p+0=p, so $w=xy^2z$ can't be palindrome Thus $xy^2z\notin L$

Therefore, the language is not regular.

Question 4:

Show that the following languages are not regular by using the pumping lemma.

- (a) $L = \{x \in \{a, b, c\}^* | |x| \text{ is a square.} \}$ Here |x| means the length of x
- (b) $L = \{a^{2n}b^n\}$

(a):

- \bullet Demon pick a random value p
- I pick $w = a^{p^2}$, so $|w| = p^2$ and obviously $|w| \ge p$
- Then Demon needs to pick x, y, z such that w = xyz and $|xy| \le p, |y| > 0$

Suppose that: $y = a^k \quad 0 < k \le p$

• I will choose i = 2, such that $xy^2z = a^{p^2+k}$, so we have $|xy^2z| = p^2 + k$ we have:

$$|xy^2z| = p^2 + k$$

$$\leq p^2 + p$$

$$< (p+1)^2$$

And we have $|xy^2z|=p^2+k>p^2+0=p^2$, Thus, we have $p^2<|xy^2z|<(p+1)^2$ so we can say that $|xy^2z|$ is not a square $\implies xy^2z\notin L$.

Therefore, the language is not regular.

(b):

- \bullet Demon pick a random value p
- I pick $w = a^{2p}b^p$ obviously |w| > p and $w \in L$
- Then Demon needs to pick x, y, z such that w = xyz and $|xy| \le p, |y| < 0$ As $|xy| \le p$, Demon's y must contain "a" only, which is $y = a^k$ with $0 < k \le p$
- I will choose i = 2, such that $xy^2z = a^{2p+k}b^p$

$$\frac{2p+k}{p} = 2 + \frac{k}{p} > 2 \implies xy^2z \notin L$$

Therefore, the language is not regular.

Question 5:

We are using the alphabet $\{0,1\}$. We have a DFA with 5 states, $S = \{s_0, s_1, s_2, s_3, s_4\}$. The start state is s_0 and the only accepting state is also s_0 . The transitions are given by the formula

$$\delta(s_i, a) = s_j$$
 Where $j = i^2 + a \mod 5$

Draw the table showing which pairs of states are inequivalent and then construct the minimal automaton. Remember to remove useless states right from the start, before you draw the table. I am happy with a drawing of the automaton.

$$\begin{split} \delta(s_0,0) &= s_0 \quad \delta(s_0,1) = s_1 \quad \delta(s_1,0) = s_1 \quad \delta(s_1,1) = s_2 \\ \delta(s_2,0) &= s_4 \quad \delta(s_2,1) = s_0 \quad \delta(s_3,0) = s_4 \quad \delta(s_3,1) = s_0 \\ \delta(s_4,0) &= s_1 \quad \delta(s_4,1) = s_2 \end{split}$$

As we can see from the above automata, S_3 is unreachable. So, when we build the table without S_3

First Step: S_0 is accept state and S_1, S_2, S_4 are reject states, so we set position (0, 1), (0, 2), (0, 4) as 0

Second Step:

•
$$\left(\delta(S_1,1),\delta(S_2,1)\right) \implies (S_2,S_0)$$

•
$$\left(\delta(S_1,1),\delta(S_3,1)\right) \implies (S_2,S_0)$$

•
$$\left(\delta(S_2,1),\delta(S_4,1)\right) \implies (S_0,S_2)$$

Third Step: we set the remaining position as 1

Thus, we can say that

$$\begin{cases} S_1 \text{ is equivalent to } S_4 \\ S_3 \text{ is unreachable state and has been removed} \end{cases}$$

FINAL RESULT:

