

ETHOROBOTICS

Dr. Balázs Nagy

Motivation

- Building a Transformer is the ultimate goal
- Anki's Vector
 - Behaviour as a tool in communication
 - Robots can be treated as a new spices
 - Social robots becoming widespread

Vector

- Background
 - 2018 Developed by Anki
 - 2019 Anki is no longer in business
 - 2019 Digital Dream Labs purchased
- Al related skills
 - Navigation
 - Path planning
 - Object avoidance
 - Voice recognition (cloud based) NLP
 - Realtime CNN architecture
 - Person detection
 - Novelty detection
 - Object classification
 - Emotion engine
 - Cat like 'personality'

Emotions of Vector

What are the Goals?

- Integrate robots into the everyday life
- Overcome the communication gap
- Interact with humans
- Help with simple task
 - Weather forecast
 - News
 - Entertainment
- Give the technology a body to connect with people more easily

How?

- Behaviour model
- Social robotics
 - A social robot is an artificial intelligence (AI) system that is designed to interact with humans and other robots.
- Ethology + Robotics = Ethorobotics
 - Ethology = is the scientific study of animal behaviour
 - Robotics = design, construction, and use of machines (robots) to perform tasks

How?

- Emotion
 - Tune the behaviour
 - Do it fast = Angry + Display Angry face
 - Do it slow = Focused + Display Focused face
- Behaviour
 - Sequence of behaviour patterns
 - Lift up actuator
 - Put down actuator
 - Display face
 - Play sound
- Behaviour pattern
 - Lift up and put down actuator
- Motoric functions
 - Lift up actuator

Overview

- Ethologically inspired robot behaviour
- Leading questions:
 - How can we measure animals quantitatively?
 - How can we use deep learning to learn animal behaviour pattern?
 - How can we implement animal like behaviour on an autonomous robot?

Base behaviour model

- Behaviour models based on social animals: dogs
- During domestication, dogs acquired social skills that helped them to integrate into the human environment
 - Communication
 - Cooperation
 - Attachment
- Help dogs
 - Guide dogs for the blind
 - Search and rescue dogs
 - Guarding dogs

Research and Development flow

Ethological experiment: Human – Animal interaction Ethological behaviour model Mathematical model Robot control Ethorobotical experiment: Human – Robot interaction

Leading to sound source

11

Leading to sound source

Sunflower robot

Ethology research process

- Experiment/observation
- Recording measurements (usually video recordings)
- Behaviour coding
- Data
- Statistics
- Behavioural model

Ethograms

Time	Default	Orientál	Érint	Beszél	Mutat
594,00		OriR		BeszélR	
595,00		OriR		BeszélR	
596,00		OriR		BeszélR	
597,00		OriR			
598,00		OriR		BeszélR	
599,00		OriR		BeszélR	
600,00		*		BeszélR	
601,00		*			
602,00		*		BeszélR	
603,00		OriR			
604,00		8			
605,00		OriR			
606,00				BeszélR	
607,00		8		BeszélR	
608,00		OriR		BeszélR	Mutat
609,00		OriR			
610,00		OriR			
611,00		OriR		BeszélR	
612,00		OriR		BeszélR	Mutat
613,00		OriR		BeszélR	
614,00				BeszélR	Mutat
615,00		OriR			
616,00		OriR		BeszélR	
617,00		*			
618,00		8			
619,00		8			
620,00		8		BeszélR	
621,00		8			
622,00		OriR		BeszélR	
623,00		OriR		BeszélR	
624,00		OriR			
625,00		OriR			
626,00		OriR			
627,00		OriR			
628,00		OriR			
629,00		OriR			

Observed behaviour

- How long does the dog:
 - Play
 - Wait
 - beside the owner
 - beside the door
 - Explore
- How many times does the dog:
 - Initiate contact
 - With owner
 - With stranger

Ainsworth test

- Ainswort's strange situation test (Human Human)
 - The strange situation is a standardized procedure devised by Mary Ainsworth in the 1970s to observe attachment security in children within the context of caregiver relationships.
- Modified Ainsworth test (Human Dog)
 - The ethologists of ELTE redefined the procedure to observe attachment between a dog and its owner.
- Projected Ainsworth test (Human Robot)
 - Extend the procedure to examine behaviour between a robot and a human

Ainsworth's test with a dog

- #1: Acclimatisation
- #2: Introduction to STR
- #3: OWN leaves, first separation
- #4: First reunion with OWN
- #5: Dog alone, second separation
- #6: Separation continuation with STR
- #7: 2nd reunion with OWN
- *Instructions*:
 - First half of every scenario is passive, the second is active
 - Use the dominant hand with the marker set

Episode	Subject	Duration
1	DOG, OWN, TOY	2 min
2	DOG, OWN, STR, TOY	2 min
3	DOG, STR, TOY	2 min
4	DOG, OWN, TOY	2 min
5	DOG, TOY	2 min
6	DOG, STR, TOY	2 min
7	DOG, OWN, TOY	2 min

DOG – dog OWN – owner of the dog STR – Stranger to the dog TOY - toy

Behaviour Transfer System

- Define an ethological measurement
 - Ainsworth's strange situation test
- Develop a measurement system
 - MoCap (iSpace)
 - Collect data (quality and quantity)
- Design and build a robot
 - Mecanumbot
- Use deep learning to process the data and learn behaviour patterns
- Implement the learned behaviour patterns on the robot

Robot design approaches

- Top-down: breaking down of a system to gain insight into its compositional subsystems in a reverse-engineering fashion. In a top-down approach an overview of the system is formulated, specifying, but not detailing, any first-level subsystems.
- **Bottom-up:** piecing together of systems to give rise to more complex systems, thus making the original systems subsystems of the emergent system.
- Be aware of the "Uncanny Valley" effect
 - Form from function

Uncanny Valley (Masahiro Mori, 1970)

Hiroshi Ishiguro with Geminoid HI-4 2013, Osaka University

19

Feature matching

Get his cube, Blackjack	Play	Fetch a ball
Using worm wheels	Move	Using legs
Eyes on LCD screen, movements	Emotion expression	Complex mimic, tail movement, body language

Biscee

- First version of the ethorobot project
 - Ethon
 - Biscee
- Moduls
 - SLAM
 - Camera
 - MARG sensor
 - Microphone

Mecanumbot

- External intelligence Remote PC
 - Deep learning-based behaviour model
 - High level robot control
 - Data collection from observer
- Robot Mecanumbot
 - Motor control OpenCR
 - Core functionalities Raspberry PI
 - Dog like features
- External observer MoCap
 - Marker based position tracking
 - Environment monitoring

Mecanumbot – Play

- Search the toy
 - Based on colour discrimination
 - Red light
- Find human
 - Using Yolo neural network to identify humans
 - Blue light
- Bring the toy to the human
 - Green light

MoCap

- Measurement system
 - Contains 18 infra cameras
 - Capable of tracking the position and orientation of marker sets made from infra reflective markers
- Intelligent space
 - Automated measurement
 - Sound controlling the participants

Modell and Tracking

- 3D printed marker sets
- Infra reflective markers
- At least 3 markers for a set
 - Position tracking
 - Orientation tracking

25

Results

- Examined behaviours of dog:
 - Tail wagging
 - Contact seeking
 - Attention
- Neural networks
 - 8-10 hidden layers
 - 10-100 neurons in each layer

Pattern	Train	Valid	Test
Contact	99%	92%	88%
Tail wag	94%	88%	82%
Attention	96%	74%	88%

FIGURE 6. Result of attention prediction. (Dog looking at 0: non specified location, 1: owner, 2: stranger, 3: door, 4: toy)

FIGURE 7. Result of contact prediction. (0: No contact, 1: Contact with owner, 2: Contact with stranger)

FIGURE 8. Result of tail wag prediction. (0: No tail wag, 1: Tail wag)

Thank you for your attention!