数据一 课堂笔记

目录

数据一 课堂笔记	
day01	2
一、主机配置命令	2
二、liunx 基本结构介绍	2
三、修改配置虚拟机网络	3
day02	4
一、Liunx 的常用命令	4
二、linux 定时任务	5
day03	6
一、ntp 服务器时间同步 - 需要关闭防火墙	6
二、安装 Java 环境变量	7
三、安装 Hadoop 环境变量	8
四、克隆虚拟机	10
五、配置 ssh 免密登录	10
六、格式化 HDFS	11
day04	12
一、从代码层看 hadoop	12
二、启动 hadoop	12
三、block 的概念	12
四、HDFS shell 命令	12
day05	14
—————周总结考核	14
—————构建 Maven 项目	15
一、HDFS 基本架构关系图解	16
二、HDFS 文件读写过程图解	16
hdfs 流式写入过程	17
hdfs 文件读操作	18
三、HDFS 基础理论知识	19

----- day01 -----

一、主机配置命令

- 一、修改主机名 vi /etc/sysconfig/network
- 二、修改 ip 地址映射 vi /etc/hosts
- 三、ctrl + c 结束当前终端的前台进程
- 四、重启 reboot 、init 6
- 五、关机 halt 、shutdown -h now 、init 0
- 六、tab 键 ----> 命令的补全和提示功能

space 向下一屏

- b 向上一屏
- d 向下半屏
- u 向上半屏
- 七、帮助命令
- 内部命令 shell 自带开机会加载到内存中的 help 可以查看内部命令的帮助
- 2. 外部命令 其他应用程序提供的 man 可以查看外部命令的帮助

二、liunx 基本结构介绍

八、Linux 目录结构

```
dr-xr-xr-x.
             2 root root
                             4096 May 31 04:46 bin
                             1024 May 31 04:47
3740 Jun 1 03:17
dr-xr-xr-x.
               5 root root
                                                boot
              18 root root
drwxr-xr-x.
                                                dev
drwxr-xr-x. 102 root root
                             4096 Jun
                                        1 03:19
                                                 etc
drwxr-xr-x.
               3 root root
                             4096 May 31 04:49
                                                home
                                       31 04:41
dr-xr-xr-x.
              10 root root
                             4096 May
dr-xr-xr-x.
              9 root root 12288 May
                                       31 04:41
                            16384 May
drwx----.
               2 root root
                                       31 04:35 lost+found
                             4096 Sep
               2 root root
drwxr-xr-x.
                                       23
                                           2011 media
drwxr-xr-x.
               3 root root
                             4096 May
                                       31 04:50
               3 root root
                                       31 04:52
drwxr-xr-x.
                             4096 May
                                                opt
                                        1 03:17
dr-xr-xr-x. 148 root root
                                  Jun
                                                 proc
dr-xr-x---.
                             4096 Jun
             24 root root
                                        1 03:18
                                                root
                           12288 May 31 04:50 sbin
dr-xr-xr-x.
                root root
drwxr-xr-x.
               7 root root
                                        1 03:17
                                0 Jun
                                                selinux
                             4096 Sep 23
               2 root root
drwxr-xr-x.
                                           2011 srv
                                        1 03:17
drwxr-xr-x.
              13 root root
                                0
                                  Jun
                                                sys
                             4096 Jun
                                       1 03:23 tmp
drwxrwxrwt.
              16 root root
                             4096 May 31 04:36 usr
4096 May 31 04:44 var
drwxr-xr-x.
              13 root root
drwxr-xr-x.
              21 root root
```

在 linux 中所有以 • 开头的文件都是隐藏目录

- 1. bin : 存放二进制可执行文件(Is,cat,mkdir 等),常用命令一般都在这里。
- 2. dev :用于存放设备文件。/dev/null "黑洞",所有写入该设备的信息都将消失。

/dev/zero 是类 Unix 操作系统中的一个特殊文件,用来提供一个空字符文件,其一个典型的应用就是提供字符

流进行数据存储初始化

- 3. home: 存放所有用户文件的根目录,是用户主目录的基点。不包括 root 用户
 - 1).进入家目录的方式 cd~ cd/home/jingyue
- 4. mnt : 系统管理员安装临时文件系统的安装点,系统提供这个目录是让用户临时挂载其他的文件系统。
- 5. root: root 目录是超级用户的目录。
- 6. sbin:一般是命令的扩展命令目录
- 7. tmp:Linux 开关机时自动维护的临时目录,所以不要把文件创建或安装在这个目录下
- 8. usr: usr 是个很重要的目录,通常这一文件系统很大,因为所有程序安装在这里。

三、修改配置虚拟机网络

- 1、物理机网络共享设置
- 2、确定 VMware 网络连接模式 NAT
- 3、虚拟机中进行网络配置

九、如何修改网卡信息(红色部分注意替换)

ifconfig 显示当前的网络配置信息

1.vi /etc/udev/rules.d/70-persistent-net.rules 修改物理地址 网络连接描述信息

2.vi /etc/sysconfig/network-scripts/ifcfg-eth0 ONBOOT="yes" 启动时是否激活网卡

TYPE=Ethernet

DEVICE=eth0

ONBOOT=yes

BOOTPROTO=static

IPADDR=192.168.137.101

NETMASK=255.255.255.0

GATEWAY=192.168.137.1

DNS1=192.168.137.1

HWADDR=00:0c:29:a8:a7:45

十、虚拟机的网络连接方式

仅主机:虚拟机只能和当前的宿主机相连

桥 接:会创建一个实际的 ip,用这个 ip 对外可提供放,可访问外网上网

NAT : 会和宿主机共享一块网卡,不会创建实际的 ip,但可以利用宿主机的 ip 访问外网上网

----- day02 -----

一、Liunx 的常用命令

- 1.防火墙
- 1) service iptables status 查看状态
- 2)service iptables stop 停止
- 3)chkconfig iptables --list 查看各种运行状态下的防火墙状态
- 4)chkconfig iptables off 关闭各种运行状态下的防火墙

Chkconfig iptables on --level 234

- 2.ctrl+l 清空屏幕
- 3.find -name soft 查找一个文件或目录
- 4.which pwd 查找一个命令所在的位置
- 5.pwd 查看当前所在的工作目录
- 6.ls 列出目录下所有内容
 - -1 显示详细信息 等价 ||
 - -a 显示所有文件包括隐藏文件(以.开头的文件是隐藏文件)
 - -h 人性化展示
- 7. vi 编辑器
- 1) 进入编辑模式
- i 光标当前 a 光标的下一个位置 o 下一行
- esc 退出编辑模式
- #yy 复制 p 粘贴 #dd 删除 u 后退 ctrl+r 前进
- G 光标定位到最后一行 gg 光标定位到第一行
- : 命令行模式 :set nu 显示行号 :set nonu 取消行号
- :w 保存:q 退出!强制执行
- ctrl+w,s 水平分屏
- ctrl + w,v 垂直分屏
- ctrl+w,w 移动光标到下一个
- ctrl+w,c 关闭当前屏
- ctrl+w,p 切换分屏光标
- /string 从上向下查找字符串 ?string 从下向上查找字符串
- 8. mkdir 在指定位置创建目录
 - 1) -p 递归创建目录
- 9. rm 删除
 - 1) -r 递归删除
 - 2) -f 不提示强制执行

10.touch 文件目录 创建一个空文件

- 11.echo 在控制台输出语句
- 12.cat 读取一个文件内容到控制台
- 13.-rw-r--r--. 1 root root 0 Jun 1 09:55 test01

-rw-r--r-- 文件类型和权限

- 文本文件
- d 目录

c/b 设备文件

I 连接文件

1 连接次数

root root 属主 属组

14.cp -r 递归拷贝 src path tarpath 将 srcpath 复制到 tarpath cp test01_01

15.mv srcpath tarpath 将 srcpath 移动到 tarpath mv test02 test02_02

如果在当前目录下对文件 mv 相当于是对文件重命名

16.chmod 修改文件权限 r=4 w=2 x=1 chmod 755 test_01_01

chmod o+rx test_01_01

17.tail 读取一个文件尾部指定行数的数据 默认显示 10 条 tail -15 test01 tail -F test01 监控文件尾部数据变化

- -F 参数如果文件被删除又重新创建依然可以监控空数据
- -f 如果文件删除断开监控状态 -F 如果文件删除不会断开监控状态
- 18.date 查看时间 date -s "2018-6-4 04:15:19" 设置时间 date +'%Y-%m-%d'
- 19.kill -9 ps_id 强制关闭进程

二、linux 定时任务

service crond status 查看状态 crontab -e 配置定时任务的内容

* * * * *

分 时 日 月 周 ***3* commend 每下个单位的对应这个时间执行一次

*/1 **** commend 每隔当前对应的时间执行一次

在定时任务中有时会找不到系统配置的环境 尽量把命令写成全路径

如果有多个任务就每个任务一行

因为 linux 是多用户多线程的操作系统,所以控制台的功能有限

date -s "2018-12-16 9:35" 查看时间

----- day03 -----

一、ntp 服务器时间同步 - 需要关闭防火墙

- 1. 编辑 ntpd 服务配置文件 (在时间服务器主机上,想作为时间同步的标准主机)
 - a) vi /etc/ntp.conf
 - i. 文件中查找如下内容并修改: 修改红色部分
 - 1. 设置允许哪个网段来访问时间服务器(ntpd) 这里允许 227 网段
 - 2. restrict 192.168.227.0 mask 255.255.255.0 nomodify notrap
 - ii. 注释掉外网服务

#server 0.centos.pool.ntp.org iburst

#server 1.centos.pool.ntp.org iburst

#server 2.centos.pool.ntp.org iburst

#server 3.centos.pool.ntp.org iburst

iii. # 添加如下内容,本机访问,无需外网时间同步时间 **server 127.127.1.0**

- 2. 启动 ntp 服务
 - a) 查看防火墙状态 确保防火墙关闭 (service iptables stop)
 - i. [root@hadoop-2 ~]# service iptables status
 - ii. iptables: Firewall is not running.
 - b) 查看 ntp 服务状态
 - i. [root@hadoop-1/]# service ntpd status
 - ii. ntpd is stopped
 - c) 启动 ntp 服务

- 3. 测试 ntp 时间同步服务功能 、 在其他机器, 如 102 机器 ; 同步时间
 - a) 登录其他机器
 - i. 比如 192.168.137.102 hadoop-2 机器进行操作
 - b) **修改**本机**时间**,修改错误了
 - i. [root@hadoop-2 ~]# date -s "2018-12-16 18:46"
 - c) <mark>执行 ntp</mark> 时间同步指令(与 101 ip 主机同步,因为 101 启动了 ntpd 服务)
 - i. [root@hadoop-2 ~]# **ntpdate -u 192.168.137.101** (ntp 服务器的地址)
 - d) 查看时间验证是否同步成功
 - i. [root@hadoop-2~]# date
 - **、 102 机器、通过 crontab 定时进行时间同步

[root@hadoop-2 ~]# crontab -e

编辑后自动保存到路径: /var/spool/cron/

文件添加以下内容:表示每2分钟与101机器同步一次

13.server 0.cn.pool.ntp.org

fudge 0.cn.pool.ntp.org stratum 10 当前服务器等级如果需要向其他服务器同步时间不要设置成 0 ntpstat ntpq-p

二、安装 Java 环境变量

1. 配置 java jdk 环境变量

- a) Ftp == filezilla 工具
 - i. 如何安装
 - ii. 如何连接
 - 1. ip name password port
- b) Java JDK 环境
 - i. 通过 ftp 工具把 windows 里边的 jdk 复制到 远程机器
 - 1. 注意:不要放到 root 目录下,这里建议 /usr/soft
 - ii. 访问、登陆远程机器, 找到 那个文件
 - 1. cd /usr/soft
 - iii. 解压文件
 - 1. tar -zxvf 要解压的 jdk.tar.gz 文件
 - 2. cd 解压后的 jdk 文件夹
 - 3. pwd
 - 4. 复制显示的 jdk 路径 备用
 - iv. 配置环境变量
 - 1. 用 vi 编辑环境变量的配置文件
 - a) vi /etc/profile
 - b) 打开后在 profile 最下边 添加 三个 export 开头的配置
 - i. export JAVA_HOME=/usr/soft/jdk1.8.0_40
 - ii. export PATH=\$PATH:\$JAVA_HOME/bin:
 - iii. export CLASSPATH=.:\$JAVA_HOME/jre/lib/rt.jar:\$JAVA_HOME/lib/dt.jar:\$JAVA_HOME/lib/tools.jar
 - v. 生效
 - 1. source /etc/profile
 - vi. 测试
 - 1. java -version
 - 2. javac

2. Hadoop 环境

- a) ftp 拷贝同上
- b) hadoop 环境配置
 - i. ftp 拖拽同上
 - ii. 访问 cd 同上
 - iii. 解压同上

- iv. 配置 环境变量文件
 - 1. 用 vi 编辑环境变量的配置文件
 - a) vi /etc/profile
 - b) 打开后在 profile 最下边
 - i. 添加
 - 1. export HADOOP_HOME=<mark>/usr/soft/hadoop-2.7.1</mark>
 - ii. 更新
 - 1. export PATH=\$PATH:\$JAVA_HOME/bin: \$HADOOP_HOME/bin:\$HADOOP_HOME/sbin
 - 2. 生效
 - a) source /etc/profile
 - 3. 测试
 - a) java -version
 - b) javac

三、安装 Hadoop 环境变量

1. 解压 hadoop 安装包

/usr/soft/hadoop*****

- 2. 配置 hadoop 环境变量同上 , (以下仅作参考,以自己实际地址为准)
 - c) export HADOOP_HOME=/usr/soft/myhadoop/hadoop-2.7.1
 - d) export PATH=\$PATH:\$JAVA_HOME/bin:\$HADOOP_HOME/bin:\$HADOOP_HOME/sbin
- 3. 修改 hadoop 配置文件

hadoop-env.sh

slaves (这个文件单独添加所有机器的 对应 ip 和 hosts 名)

core-site.xml

hdfs-site.xml

varn-site.xml

mapred-site.xml (特殊需要 cp,然后编辑)

hadoop-env.sh 环境变量的配置文件

文件中找到如下两行对应信息,修改等号后边红色部分,为自己的 java 和 hadoop 路径

- 1) export JAVA_HOME=/usr/soft/myhadoop/jdk1.8.0_40
- 2) export HADOOP_CONF_DIR=/usr/soft/myhadoop/hadoop-2.7.1/etc/hadoop

slaves

文件的配置 放值 hadoop 工作节点的目录 主机名 每台机器一行

hadoop-1

hadoop-2

hadoop-3

3.hadoop 的加载顺序是先加载 -default ---> -site ???

core-site.xml 找到对应配置内容 进行复制粘贴;红色修改为本机 hosts 名

<!--指定 hdfs 的主端口 namenode 要放在哪台机器-->

<!--配置默认文件系统的名称-->

```
cproperty>
       HDFS 对外提供服务的位置
           <name>fs.defaultFS</name>
           <value>hdfs://hadoop-1:9000</value>
       </property>
       <!--流缓冲区大小-->
       cproperty>
           <name>io.file.buffer.size</name>
           <value>131072</value>
       </property>
                 找到对应配置内容 进行复制粘贴;红色修改为本机 hosts 名
hdfs-site.xml
       cproperty>
           指定副本数 小于等于 datanode 数
           <name>dfs.replication</name>
           <value>3</value>
       </property>
       cproperty>
       在本地(linux)磁盘上存放 namenode 数据的目录
         <name>dfs.namenode.name.dir</name>
         <value>/usr/soft/name</value>
       </property>
       cproperty>
       在本地(linux)磁盘上存放 datanode 数据的目录
         <name>dfs.datanode.data.dir</name>
         <value>/usr/soft/data</value>
       </property>
       cproperty>
       配置 secondarynamenode 的 Web url
           <name>dfs.namenode.secondary.http-address</name>
           <value>hadoop-1711-001:50090</value>
       </property>
               找到对应配置内容 进行复制粘贴;红色修改为本机 hosts 名
yarn-site.xml
           cproperty>
           配置服务类型 mapreduce shuffle
               <name>yarn.nodemanager.aux-services</name>
               <value>mapreduce shuffle</value>
           </property>
           cproperty>
           指定 resourcemanager 启动在哪台
               <name>yarn.resourcemanager.hostname</name>
               <value>hadoop-1711-001</value>
           </property>
mapred-site.xml
                    (需要通过 mapred-site.xml.template,拷贝然后修改)
   cp mapred-site.xml.template mapred-site.xml
   vi mapred-site.xml
       cproperty>
       把 mapreduce 的计算依赖给 yarn 框架
```

<!--9000 随意指定的端口 默认端口是 8020-->

```
<name>mapreduce.framework.name</name>
    <value>yarn</value>
</property>
cproperty>
程序操作历史日志的位置
    <name>mapreduce.jobhistory.address</name>
    <value>hadoop-1711-001:10020</value>
</property>
property>
web url 访问历史服务的地址
    <name>mapreduce.jobhistory.webapp.address</name>
    <value>hadoop-1711-001:19888
</property>
cproperty>
存放多少条历史服务
   <name>mapreduce.jobhistory.joblist.cache.size</name>
   <value>20000</value>
</property>
```

四、克隆虚拟机

1. 右键--->管理--->克隆--->虚拟机中当前状态--->创建完整克隆--->配置安装包---->完成 克隆完检查 1.ip 2.主机名和 ip 映射 3.防火墙是否关闭

1、修改 hosts ip

a) [root@hadoop-1 hadoop]# vi /etc/hosts

2、修改主机名称

a) [root@hadoop-1 hadoop]# vi /etc/sysconfig/network

3、 查看 ip 和 mac 地址

a) [root@hadoop-1 hadoop]# ifconfig

4、查看 网络情况

a) [root@hadoop-1 hadoop]# vi /etc/udev/rules.d/70-persistent-net.rules

5、修改配置网络 ip 文件

a) [root@hadoop-1 hadoop]# cd /etc/sysconfig/network-scripts/

b) [root@hadoop-1 network-scripts]# vim ifcfg-eth0

c) service network restart

d) ping www.baidu.com

五、配置 ssh 免密登录

1.编辑秘钥的配置文件

[root@hadoop-2 ~]# vim /etc/ssh/sshd_config

2.找到下边内容,对应去掉前面的#

RSAAuthentication yes

PubkeyAuthentication yes

AuthorizedKeysFile .ssh/authorized_keys

3.service sshd restart 重启 ssh 服务

3.1 配置 ssdh 服务开机启动,保证 CRT 可以正常连接

chkconfig ssdh on

4.设置 ssh 的密码是无密码并且使用 rsa 非对称加密生成公私钥

设置生成 非对称 秘钥

[root@hadoop-1 ~]# ssh-keygen -t rsa -P "" -f ~/.ssh/id_rsa

重复 三遍 分别把秘钥 拷贝给 hadoop-1 hadoop-2 hadoop-3

[root@hadoop-1 ~]# ssh-copy-id hadoop-3

分别尝试登陆连接

[root@hadoop-1 ~]# ssh hadoop-1

退出登陆连接

[root@hadoop-3 ~]# exit

六、格式化 HDFS

1. 格式化执行

如果有错误,仔细查看错误提示文件,参考以上配置重新修改;

[root@hadoop-1 ~]# hadoop namenode -format

2. 启动两个服务,也可以单独使用

[root@hadoop-1 ~]# start-dfs.sh

[root@hadoop-1 ~]# start-yarn.sh

启动后查看 第一种 验证

[root@hadoop-1 ~]# jps

2787 NameNode

3605 Jps

3064 SecondaryNameNode

3304 NodeManager

3209 ResourceManager

2907 DataNode

启动后查看 第二种 验证

可以访问代表节点 3 的集群表示正常;

主机访问 hdfs 端口

http://192.168.137.101:50070

从属机器访问 yarn 端口

http://192.168.137.101:8088

3. 停止服务方法

stop-... 停止

[root@hadoop-1 ~]# stop-dfs.sh

[root@hadoop-1 ~]# stop-yarn.sh

----- day04 -----

hadoop 的作者 Doug Cutting 图标

一、从代码层看 hadoop

1. Hadoop Common: 其他组件的公共组件

2. Hadoop Distributed File System (HDFS™): 分布式的文件系统

3. Hadoop YARN: 资源调度框架

4. Hadoop MapReduce: 数据的计算框架

从使用的框架 有 2,3,4

二、启动 hadoop

- 1. start-dfs.sh 启动 HDFS
 - 1) hdfs 访问的 WEB url 主机 +50070 端口
 - 2) namenode 服务 HDFS 的主节点负责维护所有文件,是文件元数据(描述信息)
 - 3) datanode 服务 实际的数据负责维护实际的数据
 - 4) SecondaryNameNode 定期的改变 namenode 中的信息,它会拷贝 namenode,所以相当 nn 的冷备份。
- 2. start-yarn.sh 启动 yarn 负责资源调度的框架
 - 1) ResourceManager yarn 中的主节点负责分发资源和创建容器 NodeManager 一般和 datanode 是伴随的服务,负责维护实际数据

三、block 的概念

- 1. 一个文件切分开存放,每一部分叫一个 block。
- 2. 默认切分规则是 128M 对应一个 block。
- 3. 实际的文件大小按照文件的实际值。

四、HDFS shell 命令

- 1. hdfs dfs -help 帮助
- 2. -cat 查看文本文件的内容
- 3. -chmod 修改权限 使用创建的那个用户 hdfs dfs -chmod o+w /test
- 4. -copyFromLocal == -put

linux 的路径 hdfs 的路径 in_use.lock /

hdfs dfs -copyFromLocal hdfs dfs -put in use.lock / 5. -copyToLocal == -get

hdfs 的路径 linux 的路径

hdfs dfs -copyToLocal /in_use.lock

./

hdfs dfs -get /in_use.lock ./

- 6.-cp hdfs dfs -cp /LICENSE.txt /test/license -p 递归拷贝
- 7. -ls hdfs dfs -ls / 查看目录下的文件信息
- 8. -mkdir hdfs dfs -mkdir /test 指定位置创建目录 -p 递归创建
- 9. -appendToFile

由于 HDFS 上的文件修改不能支持很好,只能在文件末尾添加数据 linux 下的文件 HDFS 上的文件

hdfs dfs -appendToFile in_use.lock

/test/in_use.lock

- -text 高级的查看文本文件的内容 10.
- -rm hdfs dfs -rm /test/123.rar 删除文件 -f 不询问强制删除 -R 递归删除 11. hdfs dfs -rm -R -f /test 不支持参数的组合使用
- 12. -mv hdfs dfs -mv /Text.zip /output180401_2
- 13. rm 删除文件 如果需要加入回收站可以 修改 如下配置文件

core-site.xml

扩展回收站

cproperty>

<name>fs.trash.interval</name>

<value>1440</value>

</property>

还原回收站文件 -mv 到其他目录即可

----- day05 -----

—————周总结考核

周考内容:

- 01、使用的 Linux 的名称、属于哪个主流发行版本的分支? cnetos 6.5; 红帽系列的社区版本
- 02、查看 /usr/soft 下的详细信息,包括隐藏文件的命令是什么? ls -la
- 03、同时创建一个多级目录、在/usr/soft/huagong (soft huagong 都不存在) mkdir -p /usr/soft/huagong (递归创建 -p)
- 04、简述 NAT 模式、桥接模式、仅主机模式的作用?
 NAT 没有独立 ip、与宿主机想用相同网卡设施;
 桥接有独立 ip 相当于独立机器;
 仅主机、只能和宿主机相连,不能访问互联网和局域网;
- 05、Apache hadoop 的四大核心模块儿是什么?hadoop common:公共组件、代码底层公用组件hadoop hdfs:分布式文件系统mapraduce:yarn:
- 06、core-site.xml 哪个属性配置 HDFS 主节点? (NameNode) fs.defaultFS
- 07、如何启动 HDFS? start-dfs.sh
- 08、如何启动 YARN? start-yarn.sh
- 09、搭建集群为何要配置 SSH 免秘钥登录? hadoop 集群运行中需要通过 ssh 协议相互发送信息。
- 10、HDFS 中 block 的概念是什么? 如果文件存储在 hdfs 上,存储的单位叫做 block。
- 11、block 的默认大小多少? 128M
- 12、50070 访问的功能是? hdfs 浏览器【查看】端口; 只能查看
- 13、8088 访问的功能是? yarn 浏览器【查看】端口;只能查看
- 14、HDFS 启动后有哪些进程被启动? (jps 可以看到) NameNode 存放文件描述信息位置;

DataNode 存放实际数据的内容; 可以有多个;

15、yarn 启动后有哪些进程被启动?

ResourceManager 一个集群只有一个,在主节点上;

NodeManager 根据多少个 DataNode 出现多少个 NodeManager

−构建 Maven 项目

```
新建项目(Eclipse / MyEclipse)
1.
    选择 Maven
2.
    1 org.apache.maven.archetypes maven-archetype-quickstart 1.1
3.
    导入配置依赖路径 settings.xml 文件
    (1) Windows - Preferences - Maven - User Settings
    (2)
                  user setting s (open file); browse 选择 settings.xml 文件
    编辑 pom.xml 配置文件
4.
    添加 eclipse maven HDFSapi 依赖
<dependency>
         <groupId>org.apache.hadoop</groupId>
         <artifactId>hadoop-client</artifactId>
         <version>2.7.1
</dependency>
<build>
         <plugins>
              <plugin>
                  <groupId>org.apache.maven.plugins
                  <artifactId>maven-compiler-plugin</artifactId>
                  <configuration>
                      <source>1.8</source>
                      <target>1.8</target>
                  </configuration>
             </plugin>
         </plugins>
    </build>
5. 测试项目运行
//import java.net.URI;
//import org.apache.hadoop.conf.Configuration;
//import org.apache.hadoop.fs.FileSystem;
public class App
    public static void main( String[] args ) throws Exception
       System.out.println( "Hello World!" );
        Configuration conf = new Configuration();
```

FileSystem fileSystem = FileSystem.get(new URI("hdfs://hadoop-1:9000"), conf, "root");

fileSystem.close();

一、HDFS 基本架构关系图解

参考: http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html#Introduction

HDFS(Hadoop Distributed File System)Hadoop 分布式文件系统基本结构分 NameNode、SecondaryNameNode、DataNode 这几个

NameNode:是 Master 节点,有点类似 Linux 里的根目录。管理数据块映射;处理客户端的读写请求;配置副本策略;管理 HDFS 的名称空间;

Secondary NameNode: 保存着 NameNode 的部分信息(不是全部信息 NameNode 宕掉之后恢复数据用),是 NameNode 的冷备份;合并 fsimage 和 edits 然后再发给 namenode。(防止 edits 过大的一种解决方案)

DataNode:负责存储 client 发来的数据块 block;执行数据块的读写操作。是 NameNode 的小弟。

热备份: b是a的热备份,如果a坏掉。那么b马上运行代替a的工作。

冷备份:b是a的冷备份,如果a坏掉。那么b不能马上代替a工作。但是b上存储a的一些信息,减少a坏掉之后的损失。

fsimage:元数据镜像文件(文件系统的目录树。)

edits: 元数据的操作日志(针对文件系统做的修改操作记录)

namenode 内存中存储的是=fsimage+edits。

参考: https://www.cnblogs.com/wxplmm/p/7239342.html

二、HDFS 文件读写过程图解

a. Client 将 FileA 按 64M 分块。分成两块,block1 和 Block2;

b. Client 向 nameNode 发送写数据请求,如图蓝色虚线①----->。

c. NameNode 节点,记录 block 信息。并返回可用的 DataNode,如粉色虚线②----->。

Block1: host2,host1,host3

Block2: host7,host8,host4

d. client 向 DataNode 发送 block1;发送过程是以流式写入。

hdfs 流式写入过程

- 1>将 64M 的 block1 按 64k 的 package 划分;
- 2>然后将第一个 package 发送给 host2;
- **3>host2**接收完后,将第一个 package 发送给 host1,同时 client 想 host2 发送第二个 package;
- **4>**host1 接收完第一个 package 后,发送给 host3,同时接收 host2 发来的第二个 package。
- 5>以此类推,如图红线实线所示,直到将 block1 发送完毕。
- **6>host2**,host1,host3 向 NameNode,host2 向 Client 发送通知,说"消息发送完了"。如图粉红颜色实线所示。
- **7>client** 收到 host2 发来的消息后,向 namenode 发送消息,说我写完了。这样就真完成了。如图<mark>黄色粗实线</mark>
- 8>发送完 block1 后,再向 host7,host8,host4 发送 block2,如图蓝色实线所示。
- **9>**发送完 block2 后,host7,host8,host4 向 NameNode,host7 向 Client 发送通知,如图浅**绿色实线**所示。

hdfs 文件读操作

读操作就简单一些了,如图所示,client 要从 datanode 上,读取 FileA。而 FileA 由 block1 和 block2 组成。

那么,读操作流程为:

- a. client 向 namenode 发送读请求。
- **b.** namenode 查看 Metadata 信息,返回 fileA 的 block 的位置。

block1:host2,host1,host3

block2:host7,host8,host4

c. block 的位置是有先后顺序的,先读 block1,再读 block2。而且 block1 去 host2 上读取;然后 block2,去 host7 上读取;

上面例子中,client 位于机架外,那么如果 client 位于机架内某个 DataNode 上,例如,client 是 host6。那么读取的时候,遵循的规律是:

优选读取本机架上的数据。

三、HDFS 基础理论知识

- 一、HDFS 的安全模式 安全模式下 HDFS 是只读
 - 1. hadoop dfsadmin -safemode get 查看是否是安全模式
 - 2. hdfs 在启动的时候回去检测各节点上的文件是否正常,进入安全模式
 - 3. hadoop dfsadmin -safemode leave 关闭安全模式
 - 4. hadoop dfsadmin -safemode enter 开启安全模式
 - 5. 没有文件不会进入安全模式
- 二、namenode 的大小是固定的----->无法高效存储大量小文件。
- 三、namenode 在启动后会把数据加载到内存中
- 四、查看块报告
- (1) hdfs dfsadmin -report 1 小时报告一次
- 五、心跳 3 秒一次 超过 10 分钟认为这个节点不可用
- 六、checksum 文件创建后的三周开始检测

Client

- 文件切分
- 与NameNode交互,获取文件位置信息;
- 与DataNode交互,读 取或者写入数据;
- 管理HDFS;
- 访问HDFS。

Secondary NameNode

- · 并非NameNode的热
- 辅助NameNode,分 担其工作量;
- 定期合并fsimage和 fsedits,推送给 NameNode;
- · 在紧急情况下,可辅助恢复NameNode。