Dimensijos mažinimas klasifikavime

Matas Gaulia, Vainius Gataveckas, Dovydas Martinkus Duomenų Mokslas 3 kursas 2 gr.

Vilnius, 2022

Naudoti duomenys

- decade dainos sukūrimo metų dešimtmetis (80-ieji ar 2010-ieji)
- tempo greitis
- energy energiškumas
- danceability šokamumas
- loudness garsumas
- liveness gyvumas
- valence pozityvumas
- duration trukmė
- acousticness akustiškumas
- speechiness žodžių kiekis dainoje
- popularity populiarumas

Prieš tai laboratoriniuose naudotas Spotify dainų duomenų rinkinys. Požymių matavimo skalės suvienodintos standartizuojant.

Šiai vizualizacijai dimensija sumažinta iki dim=2 naudojant PCA.

Naivus Bajeso klasifikatorius

- Optimalus požymių rinkiniai rasti naudojant kryžminę validaciją.
- Naivus Bajeso metodas neturi parametrų, kuriuos reiktų parinkti.
- Požymiai atrinkti godžiu algoritmu kiekviename žingsnyje šalinant tuo metu blogiausią požymį. Iš viso pašalintų požymių dalis n_features_to_select naudota kaip modelio parametras, kurio optimalios reikšmės ieškotas kryžminės validacijos būdu.

- Paryškinta kryžmine validacija rasta optimali parametro reikšmė modeliui.
- *n_features_to_select*={0.2,0.4,**0.6**,0.8,1.0}.
- Toks gautas rezultatas yra natūralus, nes naivus Bajeso klasifikatorius priskiria vienodą svarbą visiems (ir mažiau informatyviems) požymiams.
- Optimaliam klasifikatoriui nenaudojami požymiai "Tempo", "Energy", "Liveness", "Valance".

Sprendimų medžio klasifikatorius

• Kadangi sprendimų medžiai požymį naudoja konstruoti sprendimų mazgui tik jeigu jis gerai atskiria klases (atlieka savaiminį požymių atrinkimą), todėl nesitikima gauti rezultatų pagerėjimo atrenkant požymių poaibį.

- *max_depth*={4,**5**,6},
- *min_samples_split*={2,**5**,10,15},
- *n_features_to_select*={0.6,0.8,**1.0**}
- Fiksavus kitų parametrų reikšmes, bet naudojant mažesnes n_features_to_select reikšmes dažniausiai gauti prastesni rezultatai lyginant su didesne požymių aibe. Tiesa, šie skirtumai maži.
- Parinkus optimalius parametrus stipriai pagerintas vidutinis kryžminės validacijos tikslumas lyginant su numatytaisiais parametrais.

Atsitiktinio miško klasifikatorius

- Dėl atsitiktinumo atsitiktinio mokymo procese, kiekvieną kartą galima gauti kitą optimalių parametrų rinkinį, todėl prasmingą kalbėti tik apie geriausius parametrus fiksavus tam tikrą random_state.
- Kadangi metodas paremtas sprendimų medžiais, nesitikima gauti didėlės požymių šalinimo įtakos.

- n_estimators={25,50,**100**},
- *max_features*={**2**,3,4},
- min_samples_split={**2**,5,10,**15**},
- *n_features_to_select*={0.8,0.9,**1.0**}
- Tiek pats optimalus parametrų rinkinys, tiek su juo gautas vidutinis kryžminės validacijos tikslumas tik minimaliai skyrėsi nuo numatytųjų parametrų rezultatų.

Modelių palyginimas: ROC naudojant kryžminę validaciją

Modelių palyginimas: tikslumas naudojant kryžminę validaciją

Modelių palyginimas: kokybės matai naudojant kryžminę validaciją

Modelis	Klasė	Precision	Recall	F1-	Accuracy
				Score	
Naivus Bajeso	10-ieji	0.85	0.90	0.87	0.87
Naivus Bajeso	80-ieji	0.89	0.83	0.86	0.87
Sprendimų	10-ieji	0.85	0.94	0.89	0.88
medis					
Sprendimų	80-ieji	0.93	0.83	0.88	0.88
medis					
Atsitiktinis	10-ieji	0.86	0.91	0.89	0.88
miškas					
Atsitiktinis	80-ieji	0.90	0.84	0.87	0.88
miškas					

Modelių palyginimas: ROC naudojant validacijos aibę

Modelių palyginimas: kokybės matai naudojant validacijos aibę

Modelis	Klasė	Precision	Recall	F1-	Accuracy
				Score	
Naivus Bajeso	10-ieji	0.86	0.96	0.90	0.89
Naivus Bajeso	80-ieji	0.94	0.80	0.86	0.89
Sprendimų medis	10-ieji	0.88	0.85	0.83	0.85
Sprendimų medis	80-ieji	0.81	0.85	0.83	0.85
Atsitiktinis miškas	10-ieji	0.87	1.00	0.93	0.91
Atsitiktinis miškas	80-ieji	1.00	0.80	0.89	0.91

Modelių palyginimas: dimensijos mažinimo algoritmai

•	Naudojant prieš tai aprašytą optimalių parametrų suradimo procedūrą, papildomai sudaryti modeliai, dimensijos mažinimui naudojantys PCA algoritmą vietoje rekursyvaus prasčiausių požymių eliminavimo.
•	Visų trijų modelių atvejais pagal modelio kokybės metrikas matomi prastesni PCA metodo rezultatai.

Naivus Bajeso rezultatai testavimo aibei

	Prognozuotos		
Tikros	16	4	
	2	18	

Sprendimų medžio rezultatai testavimo aibei

	Prognozuotos		
Tikros	18	2	
	6	14	

Atsitiktinio miško rezultatai testavimo aibei

	Prognozuotos		
Tikros	18	2	
	1	19	

Išvados

- Geriausi klasifikavimo rezultatai gauti naudojant atsitiktinio miško klasifikatorių. Metodas pasižymi ilgai trunkančia apmokymo trukme, tačiau šiuo atveju turima nesudėtinga duomenų aibė.
- Beveik tokie patys geri rezultatai gauti naudojant naivų Bajeso klasifikatorių. Šio klasifikatoriaus prielaidos yra visai natūralios turimoje duomenų aibėje. Modelis pasižymi aukštu mokymosi ir prognozavimo greičiu.
- Prasčiausi rezultatai gauti naudojant sprendimų medį.