10/23 Information to competers > Compiler -- Target
Program Rowce Puogram ENVION Messages Phases of ca Compiler idnalysis of the source program D'Acxical Analysis (or scanning or linear)

D'Hierarchical Analysis (syntax/Rasing).

D'Simantic Analysis. Lincor Analysis sum = a+b; (hetter followed by letter/Light) Joken ≠ operators keywords,... special édentifier byambol

	source program is scanned from left to right thereby equoup unto tokens.
	Token > sequence of acharacters having a collective > sequence of acharacters having a collective meaning and moreover at must match with a peattern (regular expressions)
	> ciclintifiers > keyword > operator > special symbol > constant
C.	houme > sequence of echaracters in the source program is inaturally the pointern in order to wifertify a specific token ag: Position = indial + order *60 sum = ca+b; Sd1 = Id2 + Id3 * 60
	print (" anter the numbers"); Huiranchica Amodysis (Parsing / Syntaa)
	CFG Rule E > E+E E*E CE) ad num. Position = Unlia + secte * 60

Intermediate Code efiniation - it should be easy to produce > easy le transalate unto target program. > position = antial + nate + 60 id1 - ida + od3 * 60 temp1 = inforceal (60) temp2 = id3* cemp1 temp3 = éga+ tempa. id 1 = temp3. Code Optimisation Temp1 = id 3 x inttornal (60) id1 = id2 + temp1. Code Blanvagion -> Final phase of the compular is the generalion of larget ucode iconsultaing of reporator/
machine code. Memory becalions care selected for each of the variables used by the program.

Code Luxical Analysis Syntax Analyzer -Symbo fati Simantic Analyxis Generator Coge optimiza Cool Generator اله و (الا و)

herical Analyxu Lid, 1> <=> < id, 2> <+> < id, 3> <*> <60> Rymfax Analyzes (Lid,1) <id,2 + in to leat float float float float Informediate code Generafos dg = confdof wat (60) ta - ida * dg da= ida+ ta

Content Free Gramman
-> act of tokens derminals
→ nom-terminal → del of productions (A → B)
A
B→ R·H·s
> Slaut symbol.
$\rightarrow S \rightarrow AB$
$A \rightarrow a \mid E$
AB > Terminals a t -> Non. ferminals.
Terminals
a, b, 1 Clowercase letters)
> aharcor dejonto)
> punitecation dymbols
> puniteration dymbols > ed on uf
Non-terminals
> cepperceuse letters: > lower italie names (expression, étatement operator (op)
-y
$\Rightarrow \omega \downarrow \Lambda \Rightarrow \alpha_1 \uparrow \gamma \alpha_2 , \dots \Lambda \Rightarrow \alpha_k$
we can while
$A \rightarrow \alpha_1 \alpha_2 \cdots \alpha_k$

Module 2.

	Ducivation
-	ron-tuminals.
	ag: derivation of (ed *id) > y enviate derivation for (id *id)
	E→ E+E → E*E } Productions.
	$\rightarrow -E$ $\rightarrow c\bar{d}$
,	$E \rightarrow (E)$
	-> Cid * cid)
	sintential form of G. uf α ccontains mon-terminals, vit its ccalled sentential form of G. uf α cconfouns mon-terminals ut its ccalled sentence of G.
	→ if we choose the leftmost non-terminal ern each derivation derivation. Cused ein top gawon).
	> if we calways choose the suightmost ederival non-terming that derivation suightmost derivation (eved un bottom up
	= hejtemost decivation.
	generale deulvation (id kid) + i'd
	$E \rightarrow E + E$

ラ E*E >-E,

$$E \rightarrow E + E$$

$$\rightarrow (E) + E$$

$$\rightarrow (E + E) + E$$

$$\rightarrow (E$$

Rightmost derivation (ed kid) + id.

$$E \rightarrow E$$

$$\rightarrow E+E$$

$$\rightarrow E+id$$

$$\rightarrow CE)+id$$

$$\rightarrow (E*E)+id$$

$$\rightarrow (E*E)+id$$

$$\rightarrow (E*E)+id$$

$$\rightarrow (E*E)+id$$

$$\rightarrow (E*E)+id$$

$$\rightarrow (E*E)+id$$

Parse tree civing rightmost derivation.

unoig nightmost derivation. cidered) erd Ambigalow Grammar. -> A grammax is ambigous if there care multiple parse trus for the same dentence gramma for programming language ils ambigois. > Suppered) + red -> cd+id*id eftemost derivation $E \rightarrow E$ $\longrightarrow E + E$ -> i'd + Ext -> cd+ E*E -> ed + cd +E -> id + ud + id. = ieftmost derivation #2 $E \rightarrow E$ -> EXE → F+F*F -> id+F *F

> cated*F

-> cid+ cid *cid.

If we have production of form. $A \rightarrow A \propto |B|$

eif could be suplaced by non-sumaire productions

$$\begin{vmatrix} A \rightarrow \beta A' \\ A' \rightarrow \alpha A' \end{vmatrix} e$$

$$\begin{array}{c} (\bullet, E \rightarrow TE) \\ E \rightarrow +TE \mid E \\ \hline T \rightarrow ET \mid \cdot \\ T \rightarrow +T \mid E \\ \hline T \rightarrow (E) \mid cd \end{array}$$

$$A \rightarrow AX \mid B$$

$$E \rightarrow E + T \mid T$$

$$A = F$$

$$X = + T$$

$$E \rightarrow TE \mid E$$

$$E' \rightarrow + TE \mid E$$

$$Q \cdot E \rightarrow E + T \mid T$$

$$T \rightarrow T + F \mid F$$

$$F \rightarrow C \not \models \downarrow \mid id .$$

$$A = \pi$$

$$C = *F$$

$$T \rightarrow F^{\dagger}$$

$$T \rightarrow C \neq V \mid id$$

T -> TXF/F

Induced heft Recussion
S -> Aalb A -> Ac Sc E.
Remove Left Recevision.
Puroduction of form: A -> & B1 & B2
Replaced By $A \rightarrow \alpha A!$ $A! \rightarrow B1 \mid B2$
Production Form: A -> xB1 xB2 (xBa / Y
Replaced By: $A \rightarrow AA Y$ $A \rightarrow B_1 B_2 B_n.$
$q. S \rightarrow cEls cEtses a$ $E \rightarrow b$
E[envia]: $A \rightarrow \alpha\beta_{4} \alpha\beta_{2} V$.
$A \rightarrow \alpha A' \mid \alpha \cdot A' \mid A \mid A \mid A \mid A \mid A \mid A' \mid A \mid A \mid A$
B A=S B=) CEtS

S -> CEAS! | a $\begin{array}{c} S' \longrightarrow \mathcal{CE} \in \left[eS \right] \\ E \longrightarrow b \end{array}$ -> heft factoring useful for producing a grammer a du for predictive on top-down, pavaing Jewhen chouse beliveen two allemative A peroductions is not refear, eve omay be able to rewrite produ to defer the decision antil enough of imput has been to imake ought choice. Parsing Top down Parsing Reccusive gecent Predictive Parsing Non-Recursive Preoportive Passing Recursive Prefective ve Pasing

Receivedire Deacent Passer (RDP)

- * Top down parsing technique
 - -> Dorput dearning from left do suight
 - -> Monterminal: Emplement Recusive Procedure.
 - > Terminal: Compare Lookahead to cheef with imput atruing.
 - > Or need boughtracking to identify the cownel A-production.

Poroductions

S-> eAd

A -> abla

Input storing "cad.

w=cad

band d

mismatch

80, backtrack

c A d

. WE cad

9. Parodeution: E→iE' E'→+iE'|E'

lookahead, l. getchaic);

```
match (chait)
 € cif (l== €)
   l= getchar ();
   paintf ("evioa").
FO
    match (c);
E10
q (l==!+')
    2 match (+);
     match (i);
      E1 ();
    return;
```

```
main ()

E();

if (l==\f')

print((Parsod successfull'))

9.
```

Compare P. Marian

- · Non-Recursive Predictive Parsing (Predictive Parsing)
 - -> Predictive pauser eis an efficient way of implementing eccusive- descent parsing by handling the stack of cartivation records explicitly
 - -> 2 lappes
 - 1 Recursive predictive Parsing.
 - 2 Non-Recursive predictive Passing.

Preductive Provising Trable.

- > elses & functions.
 - 1 FIRST ()
 - 2 FOLLOWO

-> () FIRST()

- 1 of x is a terminal then first(x) is Ex3
- Euro ag: X→a First(x) = First(a) = {a}
- @ of x → E then add e to FIRST(x).
- 3 of x is a non-terminal and x > y172 y3. yn: then put a un FIRST(X) if for some i, a is Fusit(ofy); and e is all of FIRST(Y1)... FIRST(Ym)

$$\begin{array}{c} (\overline{\mathfrak{g}}) & F \longrightarrow \widehat{\mathbb{C}}(F) & | id \\ FIRST(F) \longrightarrow \{C, id\} & E \longrightarrow \end{array}$$

FIRST(T) = FIRST(FT!)
= FIRST(F)
= FIRST(E)[i'd])
=
$$2 \mathcal{E}$$
, id ?
FIRST(E) = $2 \mathcal{E}$, id ?

(3) 7→ 171 FIRST (1) = FIRST (1). = 2 (, vd3).

2. FOLLOW()

Rules

- 1) of Seis a deart symbol then add \$ to the Follows
- 2 of there is a peroduction such of foorm A → aBB then everything un tirst(B) except for €' is placed con tollow (B).
- 3 of those is a peroduction A> ab on a production A> abb where FIRST(B) contains & then everything in FOLLOW(A) win FOLLOW(B).

$$\begin{array}{c} (q:)E \longrightarrow TE \\ (q:)E \longrightarrow +TE \\ (q:)E \longrightarrow +T$$

$$\begin{array}{c}
\overrightarrow{I} \in \longrightarrow TE^{1} \\
F \longrightarrow (E) \mid \overrightarrow{id} \cdot \overrightarrow{I}$$

$$F \longrightarrow TE' \mid E$$

$$FOLLOW(E') = \{\$, \}\}$$

$$T \longrightarrow FT'$$

$$FOLLOW($$

$$T \longrightarrow TE'$$

$$FOLLOW($$

FOLLOW (T) =
$$\{+, \$, \}$$
?

FOLLOW (T) = $\{+, \$, \}$?

TOLLOW (T) = $\{+, \$, \}$, $\}$

$$\underbrace{A} + \longrightarrow FOLLOW(T1) = \underbrace{2} + \underbrace{3}, \underbrace{3}$$

Q.H.S -> variable ker

$$FIRST(F) = \{t, t\} \}$$

$$FIRST(F) \rightarrow FIRST(T)$$

$$FIRST(F) \rightarrow FIRST(F)$$

$$\rightarrow \{t, t\} \}$$

$$FIRST(F) = \{t, t\} \}$$

$$FIRST(T) = \{t, t\} \}$$

* FOLLOW(F)= 8+15, >3 {*, +, \$,)}

Paraing Table

			,			
E	id	+	*) -	\$
E	F->TE			F->TE	_	
E		E +TE	=1		E->E	£→€
7 4	T→FT	1		7->FT		
T	they	71->	* T'→*		T->E	1.>t
F	F→i°	d		F-> (5		

$$q: S \rightarrow iEtsg'|a$$

$$S \rightarrow esfe$$

$$E \rightarrow b$$

FIRST(S)
$$\longrightarrow \{c, a\}$$

FIRST(S') $\longrightarrow \{c, e\}$
FIRST(E) $\longrightarrow \{b\}$

FOLLOW(S)
$$\rightarrow \{e, \$, \$\}$$

FOLLOW(S') $\rightarrow \{e, \$\}$

FOLLOW(E) $\rightarrow \{t\}$

	ť.	a	e .	Ь	E	\$
5	S→ iFESS	S>a			•	
51			s'→es s'÷	, <u>*</u>		570
E			÷.	€→b		

Lince two production come un on row sofhis Grammar cis not (19).

> the first latands for acanning the imput from left to rught -> the second I stands for producing leftmost decivation

-> and stands for using one input ayonbol of lookahead at each step to madeparsing caution decision.

Algorithm (for exaling parsing table)

1) For each production A>x do steps 2 043

(2) Fox each terminal cacin FIRST(x), add A >x to M A, 2

3 of € cis cin' tirst(a), add A → α to M A, b | for each terminal b in tollow (A). of E cis cin FIRST (x); and & cis un' FOLLOW(A), add A > & to M/A, \$1 o Make each of undefined entry of M he evers.

Non-Recursive predictive parsing calgorithm.

Alganithm

Let cip do pount to the first symbol of ws;

repeat

let x be the top stack symbol cand a the symbol pounted to uf x is ca terminal on \$ then

uf X= a then

pop x from the stack and advance is

else evical)

else /* X is a nonterminal */

if M(x, a) = X -> Y1, Y2, ... Then begin pop x forom the stack; push y, yk.1, ... Is anto the stack, with y output production x > y1, y2. ... y end. else evrox() contil X= \$1* stack is empty*/ Q. Japut: vd+vd*id Output. Input Q Stark idtidakid\$ \$ F cd+cd*cd\$ E-TE \$ E'T T -> FTI. cidtud*cd\$ SET'F id + cd + cd = F->cd SET cd ea + cd* ed\$ + id ted\$ TI->C + vol * vid \$ \$ E'T+ E +TE cd*od\$. id * id \$ T -> FT od tods Faid

\$ ET1

\$ E

\$ET

SETTE

\$ ET co

* id \$ \$ 1 71 -> K FT1 *vd\$ SETTER \$ETF ids F->i'd SETTICA · od\$ TINE \$ \$ 271 \$ SEI : F'>E \$ \$