Regressions- och tidsserieanalys Föreläsning 9 - Autokorrelation. Autoregressiva modeller.

Mattias Villani

Statistiska institutionen Stockholms universitet

Institutionen för datavetenskap Linköpings universitet

Översikt

- Autokorrelation
- Autoregressiva modeller
- Prognosutvärderingsmått

Mattias Villani

Repetition - Korrelation

Kovarians mellan två variabler

$$s_{xy} = \text{cov}(x, y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

Korrelation mellan två variabler:

$$r_{xy} = \operatorname{corr}(x, y) = \frac{s_{xy}}{s_x s_y}$$

där

$$s_x^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}$$

Samma formel som i F2, men med andra symboler:

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}_i)(y_i - \bar{y}_i)}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x}_i)^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y}_i)^2}}$$

Repetition - Korrelation

Autokorrelation av ordning 1

- Observationerna i en tidsserie y_t är ofta beroende/korrelerade.
- Autokorrelation av ordning 1:

$$r_1 = \operatorname{corr}(y_t, y_{t-1})$$

- "Korrelation mellan dagens värde och gårdagens värde."
- "Korrelation mellan denna månad och förra månaden".
- Första laggen": y_{t-1} .

Inflation

Laggade variabler - inflation

	А	В	С	D	E	F
1	Månad	Inflation(t)	Inflation(t-1)	Inflation(t-2)	Inflation(t-3)	Inflation(t-4)
2	1995-05-01	2.96				
3	1995-06-01	2.88	2.96			
4	1995-07-01	2.79	2.88	2.96		
5	1995-08-01	2.68	2.79	2.88	2.96	
6	1995-09-01	2.39	2.68	2.79	2.88	2.96
7	1995-10-01	2.58	2.39	2.68	2.79	2.88
8	1995-11-01	2.65	2.58	2.39	2.68	2.79
9	1995-12-01	2.6	2.65	2.58	2.39	2.68
10	1996-01-01	1.75	2.6	2.65	2.58	2.39
11	1996-02-01	1.47	1.75	2.6	2.65	2.58
12	1996-03-01	1.56	1.47	1.75	2.6	2.65
13	1996-04-01	1.31	1.56	1.47	1.75	2.6
14	1996-05-01	1.06	1.31	1.56	1.47	1.75
15	1996-06-01	1.04	1.06	1.31	1.56	1.47
16	1996-07-01	0.88	1.04	1.06	1.31	1.56
17	1996-08-01	0.66	0.88	1.04	1.06	1.31
18	1996-09-01	0.25	0.66	0.88	1.04	1.06
19	1996-10-01	0.03	0.25	0.66	0.88	1.04
20	1996-11-01	-0.05	0.03	0.25	0.66	0.88
21	1996-12-01	0.12	-0.05	0.03	0.25	0.66
22	1997-01-01	0.69	0.12	-0.05	0.03	0.25

Mattias Villani

Inflation - autokorrelation lag 1

Mattias Villani

Autokorrelation av ordning 2

Autokorrelation av ordning 2:

$$r_2 = \operatorname{corr}(y_t, y_{t-2})$$

- "Korrelation mellan dagens värde och förrgårs värde."
- "Korrelation mellan denna månad och förrförra månaden".
- \blacksquare "Andra laggen": y_{t-2} .

Inflation - autokorrelation lag 2

Autokorrelationsfunktionen

Autokorrelation av ordning k

$$r_k = \operatorname{corr}(y_t, y_{t-k})$$

- "Korrelation mellan månadens värde och k månader innan".
- Autokorrelationsfunktionen (ACF) är r_k som en funktion av tidsavståndet k.

Inflation - autokorrelationsfunktion

Autoregressiva modeller

Autoregressiv modell av ordning 1 (AR(1))

$$y_t = \alpha + \beta y_{t-1} + \varepsilon_t, \qquad \varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$$

- AR(1) är regression med y_{t-1} som förklarande variabel!
- Skattas med minstakvadrat-metoden

$$y_t = a + by_{t-1}$$

Autoregressiv modell av ordning p(AR(p))

$$y_t = \alpha + \beta_1 y_{t-1} + \ldots + \beta_p y_{t-p} + \varepsilon_t$$

AR(p) är en multipel regression med de p förklarande variablerna $y_{t-1}, ..., y_{t-p}$.

AR(1) för inflation - R

```
> library(SUdatasets)
> arimafit = arima(swedinfl$KPIF, order = c(1,0,0))
> arima_coef_summary(arimafit)
Parameter estimates
    Estimate Std. Error z-ratio Pr(>|z|) 2.5 % 97.5 %
ar1 0.91801 0.022383 41.0135 0 0.87414 0.96188
mean 1.43624 0.165006 8.7042 0 1.11282 1.75965
```

AR(4) för inflation - R

ar2 0.0586250

ar3 0.0062025

-0.0405666

1.4334525

ar4

mean

0.158225 9.059583 0.00000

```
Mattias Villani
```

0.075101 0.780619 0.43503 -0.088572 0.205822

0.076370 0.081216 0.93527 -0.143483 0.155888

0.057249 -0.708605 0.47857 -0.152774 0.071641

1.123331 1.743573

Autokorrelationsfunktion AR(1)

AR(1)

$$y_t = \alpha + \beta y_{t-1} + \varepsilon_t, \qquad \varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$$

Autokorrelationsfunktion (ACF) för AR(1) i populationen:

$$\rho_k = \beta^k$$
, för $k = 1, 2, ...$

Mattias Villani

Autoregressiva modeller - stationäritet

AR(1) är stationär (icke-explosiv) modell om $-1 < \beta < 1$.

Prognoser med AR(1) modell

Skattad AR(1)-modell

$$y_t = a + b \cdot y_{t-1}$$

Vid tidpunkt T, prognos för nästa månad T+1

$$\hat{y}_{T+1} = a + b \cdot y_T$$

Prognos för T+2

$$\hat{y}_{T+2} = a + b \cdot \hat{y}_{T+1}$$

Mattias Villani

Prognoser med AR(2) modell

■ Skattad AR(2)-modell

$$y_t = a + b_1 \cdot y_{t-1} + b_2 \cdot y_{t-2}$$

■ Vid tidpunkt T, prognos för nästa månad T+1

$$\hat{y}_{T+1} = a + b_1 \cdot y_T + b_2 \cdot y_{T-1}$$

Prognos för T+2

$$\hat{y}_{T+2} = a + b_1 \cdot \hat{y}_{T+1} + b_2 \cdot y_T$$

Prognos för T+3

$$\hat{y}_{T+3} = a + b_1 \cdot \hat{y}_{T+2} + b_2 \cdot \hat{y}_{T+1}$$

Mått på prognosförmåga

Genomsnittliga kvadrerade prognosfel

$$MSE = \frac{\sum_{t=1}^{n} (y_t - \hat{y}_t)^2}{n}$$

Genomsnittliga absoluta prognosfel

$$MAE = \frac{\sum_{t=1}^{n} |y_t - \hat{y}_t|}{n}$$

Genomsnittlig procentuella absoluta prognosfel

MAPE =
$$\frac{1}{n} \sum_{t=1}^{n} \frac{|y_t - \hat{y}_t|}{y_t} \cdot 100$$