Rappels

Soit E un espace vectoriel sur \mathbb{K} de dimension finie et u un endomorphisme de E. Supposons que le polynôme caractéristique P_u de u est scindé.

Définition

Soit λ une valeur propre de u de multiplicité algébrique $m_a(\lambda)$. On appelle sous-espace caractéristique de u associé à la valeur propre λ le sous-espace vectoriel

$$\mathcal{N}_{\lambda} = \ker \left((u - \lambda \mathrm{id}_E)^{m_a(\lambda)} \right).$$

- 1. Il s'agit d'un sous espace vectoriel de E stable par u de dimension $m_a(\lambda)$.
- 2. \mathcal{N}_{λ} contient le sous-espace propre $E_{\lambda} = \ker (u \lambda i d_E)$.
- 3. $E = \bigoplus_{\lambda \in \sigma(u)} \mathcal{N}_{\lambda}$.
- 4. La projection π_{λ} de E sur \mathcal{N}_{λ} parallèlement à $\bigoplus_{\mu \in \sigma(u) \setminus \{\lambda\}} \mathcal{N}_{\mu}(u)$ est un polynôme en u. De plus, pour tout λ et μ deux valeurs propres distinctes de u,

$$\pi_{\lambda}\pi_{\mu} = \pi_{\mu}\pi_{\lambda} = 0.$$

De plus, si on note la restriction de u à \mathcal{N}_{λ} par u_{λ} alors on a :

- 1. u_{λ} admet une seule valeur propre et cette valeur propre est λ .
- 2. Le polynôme caractéristique de u_{λ} est donné par $P_{u_{\lambda}}(X) = (\lambda X)^{m_a(\lambda)}$.
- 3. Il existe une base B_{λ} de \mathcal{N}_{λ} dans laquelle la matrice de u_{λ} s'écrit

$$T_{\lambda} = \operatorname{Mat}_{B_{\lambda}}(u_{\lambda}) = \begin{pmatrix} \lambda & * & * & * \\ 0 & \lambda & * & * \\ \vdots & \ddots & \ddots & * \\ 0 & \dots & 0 & \lambda \end{pmatrix} = \lambda I_{m_{a}(\lambda)} + N_{\lambda},$$

avec N_{λ} une matrice triangulaire supérieure stricte (u_{λ} est trigonalisable).

4. Il existe une base de E dans laquelle la matrice de u est diagonale par blocs où chaque bloc est une matrice triangulaire supérieure de la forme $T_{\lambda} = \lambda I_{m_a(\lambda)} + N_{\lambda}$, et N_{λ} est une matrice triangulaire supérieure stricte.

Exemple

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 4 & 1 & -1 \\ -6 & -1 & 2 \\ 2 & 1 & 1 \end{pmatrix}.$$

- 1. L'endomorphisme u est-il diagonalisable? Trigonalisable?
- 2. Trouver les sous espaces caractéristiques de u.
- 3. Trouver une matrice inversible P et une matrice triangulaire T telles que $P^{-1}AP = T$.
- 4. Montrer que u est bijectif et donner u^{-1} comme un polynôme de u.
- 5. Trouver les puissances de $u^n, n \in \mathbb{N}$.
- 6. Soit F la droite vectorielle engendrée par le vecteur $v_1 = (1, -2, 0)$ et G le plan vectoriel engendrée par $v_2 = (1, -2, 1)$ et $v_3 = (1, -1, 1)$.
 - (a) Montrer que F et G sont supplémentaires.
 - (b) Exprimer la projection π_F de E sur F parallèlement à G comme polynôme de u. De même, pour la projection π_G de E sur G parallèlement à F.
 - (c) Montrer que $d = 2\pi_F + \pi_G$ est diagonalisable.
 - (d) Posons n = u d. Calculer n^2 .

Solution : (1) On calcule d'abord le polynôme caractéristique de u :

$$P_{u}(X) = \begin{vmatrix} 4 - X & 1 & -1 \\ -6 & -1 - X & 2 \\ 2 & 1 & 1 - X \end{vmatrix} \stackrel{=}{\underset{L_{3} \cap L_{3} - L_{1}}{=}} \begin{vmatrix} 4 - X & 1 & -1 \\ -6 & -1 - X & 2 \\ X - 2 & 0 & 2 - X \end{vmatrix}$$

$$\stackrel{=}{\underset{C_{1} \cap C_{1} + C_{3}}{=}} \begin{vmatrix} 3 - X & 1 & -1 \\ -4 & -1 - X & 2 \\ 0 & 0 & 2 - X \end{vmatrix} = (2 - X)(1 - X)^{2}, .$$

En particulier, $\sigma_{\mathbb{R}}(u) = \{1, 2\}$. La valeur propre $\lambda = 1$ est double et $\lambda = 2$ est une valeur propre simple. Le polynôme caractéristique de A est scindé et donc A est trigonalisable. En revanche, comme la valeur propre $\lambda = 2$ est simple et la valeur propre $\lambda = 1$ est double,

$$u$$
 est diagonalisable \iff $m_g(1) = m_a(1) = 2.$

Nous devons donc calculer la dimension du sous espace propre E_1 .

 $(x, y, z) \in E_1$ si, et seulement si,

$$(A - I_3) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 & 1 & -1 \\ -6 & -2 & 2 \\ 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

ce qui équivaut aussi à

$$\begin{cases} y = -2x \\ z = x \end{cases}$$

de sorte que le sous espace propre associé à 1 est la droite vectorielle engendrée par $x_1 = (1, -2, 1)$. Finalement, u n'est pas diagonalisable car $m_g(1) < m_a(1)$.

(3) Les sous espaces caractéristiques de u sont

$$\mathcal{N}_1 = \ker(u - \mathrm{id}_E)^2$$
 et $\mathcal{N}_2 = \ker(u - 2\mathrm{id}_E) = E_2$.

D'abord, on calcule

$$(A - I_3)^2 = \begin{pmatrix} 3 & 1 & -1 \\ -6 & -2 & 2 \\ 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} 3 & 1 & -1 \\ -6 & -2 & 2 \\ 2 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 \\ -2 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

On voit alors que le noyau $\mathcal{N}_1 = \ker(u - \mathrm{id}_E)^2$ est le plan vectoriel d'équation x = z. Les vecteurs $x_1 = (1, -2, 1)$ et $x_2 = (1, -1, 1)$ forment une base de \mathcal{N}_1 . On remarque que le sous espace propre E_1 est inclus strictement dans le sous espace caractéristique \mathcal{N}_1 . De plus,

$$(u - \mathrm{id}_E)(x_2) = (1, -2, 1) = x_1.$$

La valeur propre 2 est simple et donc le sous espace caractéristique $\mathcal{N}_2 = \ker(u - 2\mathrm{id}_E)$ n'est rien d'autre que le sous espace propre E_2 associé à 2. Un vecteur (x, y, z) appartient à \mathcal{N}_2 si, et seulement si,

$$(A - 2I_3) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 & 1 & -1 \\ -6 & -3 & 2 \\ 2 & 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Ceci équivaut à y = -2x et z = 0. Finalement, le sous espace caractéristique \mathcal{N}_2 associé à 2 est la droite vectorielle engendrée par $x_3 = (1, -2, 0)$.

(4) D'après le lemme des noyaux et le théorème de Cayley-Hamilton,

$$E = \mathcal{N}_1 \oplus \mathcal{N}_2$$
.

Donc la famille (x_1, x_2, x_3) est une base de \mathbb{R}^3 . La matrice de u dans cette base est donnée par

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Autrement dit,

$$\begin{pmatrix} 1 & 0 & 1 \\ -2 & 1 & -2 \\ 1 & 0 & 0 \end{pmatrix}^{-1} \begin{pmatrix} 4 & 1 & -1 \\ -6 & -1 & 2 \\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ -2 & 1 & -2 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Il suffit de prendre

$$P = \begin{pmatrix} 1 & 0 & 1 \\ -2 & 1 & -2 \\ 1 & 0 & 0 \end{pmatrix} \quad \text{et} \quad T = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

(5) D'après la question 1)

$$\det(u) = P_u(0) = 2.$$

Donc u est bijective. Le théorème de Cayley-Hamilton implique que

$$-u^3 + 4u^2 - 5u + 2id_E = 0.$$

Ainsi, $u(u^2 - 4u + 5\mathrm{id}_E) = 2\mathrm{id}_E$ et

$$u^{-1} = \frac{1}{2}(u^2 - 4u + 5\mathrm{id}_E).$$

En language matriciel, A est inversible et

$$A^{-1} = \frac{1}{2}(A^2 - 4A + 5I_3).$$

Comme

$$A^{2} = \begin{pmatrix} 4 & 1 & -1 \\ -6 & -1 & 2 \\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 4 & 1 & -1 \\ -6 & -1 & 2 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 8 & 2 & -3 \\ -14 & -3 & 6 \\ 4 & 2 & 1 \end{pmatrix}$$

Finalement,

$$A^{-1} = \frac{1}{2} \begin{pmatrix} -3 & -2 & 1\\ 10 & 6 & -2\\ -4 & -2 & 2 \end{pmatrix}$$

(6) On peut aussi calculer les puissances successives de A en utilisant le théorème de Cayley-Hamilton. En effet, pour n=3 on a directement la formule

$$A^3 = 4A^2 - 5A + 2I_3.$$

Pour n quelconque on effectue la division euclidienne de X^n par $P_u(X)$ et on trouve qu'il existe a, b, c tels que

$$X^n = Q(X)P_u(X) + aX^2 + bX + c.$$

Comme 1 est racine double de $P_u(X)$ on obtient que

$$\begin{cases} 1 = a + b + c \\ n = 2a + b. \end{cases}$$

De même, 2 est racine de de $P_u(X)$ et on a

$$2^n = 4a + 2b + c$$
.

Il vient que

$$\begin{cases} a = 2^{n} - 1 - n \\ b = -2^{n+1} + 3n + 2 \\ c = 2^{n} - 2n \end{cases}$$

Finalement,

$$A^{n} = \begin{pmatrix} 2^{n} + 2n & n & -2^{n} + 1 \\ -2^{n+1} - 4n + 2 & -2n + 1 & 2^{n+1} - 2 \\ 2n & n & 1 \end{pmatrix}$$

(7)(a) On remarque que $F = \mathcal{N}_2$ et $G = \mathcal{N}_1$ et le théorème de Cayley-Hamilton et le lemme des noyaux nous permet de conclure.

(7)(b)&(c) Cherchons les projections π_F (respectivement π_G) de E sur F (respectivement G) parallèlement à G (respectivement F). D'abord, on a

$$X(2-X) + (1-X)^2 = 1$$

Ainsi

$$(\mathrm{id}_E - u)^2 + u(2\mathrm{id}_E - u) = \mathrm{id}_E.$$

En particulier, tout $x \in E$ s'écrit

$$(id_E - u)^2(x) + u(2id_E - u)(x) = x$$

D'après le théorème de Cayley-Hamilton on a

$$\begin{cases} (\mathrm{id}_E - u)^2(x) \in \mathcal{N}_2 = F \\ u(2\mathrm{id}_E - u)(x) \in \mathcal{N}_1 = G \end{cases}.$$

Donc

$$\pi_F(x) = (\mathrm{id}_E - u)^2(x)$$
 et $\pi_G(x) = u(2\mathrm{id}_E - u)(x)$.

Finalement,

$$\pi_F = (id_E - u)^2$$
 et $\pi_G(x) = u(2id_E - u)$.

On remarque que

$$\pi_F + \pi_G = \mathrm{id}_E$$
 et $\pi_F \pi_G = \pi_G \pi_F = 0$.

(7)(d) D'abord,

$$d = 2\pi_F + \pi_G = u^2 - 2u + 2id_E$$
.

Un calcul direct montre que

$$(d-1)(d-2) = (u - id_E)^2 u(u - 2id_E) = 0.$$

Ainsi d possède un polynôme annulateur scindé à racine simple et donc d est diagonalisable. De plus,

$$n = u - d = -u^2 + 3u - 2id_E = -(u - id_E)(u - 2id_E)$$

En particulier

$$n^2 = (u - id_E)^2 (u - 2id_E)^2 = 0.$$

Exemple

Soit u l'endomorphisme de E et $P \in \mathbb{R}[X]$. Supposons que P et P_u sont premiers entre eux. Alors P(u) est inversible. En effet, d'après le théorème de Bezout, il existe $A, B \in \mathbb{R}[X]$ tels que

$$AP + BP_u = 1.$$

Ainsi,

$$A(u)P(u) + B(u)P_u(u) = \mathrm{Id}_E.$$

Or d'après le théorème de Cayley-Hamilton, $P_u(u)$ est l'endomorphisme nul. On en déduit que

$$A(u)P(u) = P(u)A(u) = \mathrm{Id}_E$$
.

Donc P(u) est inversible et son inverse est A(u).

Exemple

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est $A = \begin{pmatrix} 2 & 1 & 3 \\ 5 & 3 & 6 \\ -2 & -1 & -2 \end{pmatrix}$

- 1. u est-il diagonalisable? trigonalisable?
- 2. L'endomorphisme u est-il bijectif? Si oui donner son inverse comme polynôme de u.
- 3. Trouver les sous espaces caractéristiques de u.
- 4. Trouver une base de \mathbb{R}^3 dans la quelle la matrice de u est la matrice triangulaire supérieure suivante :

$$T = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Solution : (1) On cherche le polynôme caractéristique de A :

$$P_A(X) = \begin{vmatrix} 2 - X & 1 & 3 \\ 5 & 3 - X & 6 \\ -2 & -1 & -2 - X \end{vmatrix} = \begin{vmatrix} 2 - X & 1 & 0 \\ 5 & 3 - X & 3(X - 1) \\ -2 & -1 & 1 - X \end{vmatrix} \quad C_3 \sim C_3 - 3C_1$$
$$= \begin{vmatrix} 2 - X & 1 & 0 \\ -1 & -X & 0 \\ -2 & -1 & 1 - X \end{vmatrix} \quad L_2 \sim L_2 + 3L_3$$
$$= (1 - X)^3$$

Ainsi $\sigma_{\mathbb{R}}(u) = \{1\}$. La valeur propre $\lambda = 1$ est triple. Le polynôme caractéristique de u est scindé et donc u est trigonalisable. En revanche, u n'est pas diagonalisable. En effet,

$$(A-I)\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

équivaut à

$$\begin{cases} x + y + 3z &= 0\\ 5x + 2y + 6z &= 0\\ -2x - y - 3z &= 0 \end{cases}$$

ou encore x = 0 et y = -3z de sorte que le sous espace propre associé à 1 est la droite vectorielle engendrée par $v_1 = (0, -3, 1)$. Finalement, $m_g(1) < m_a(1)$.

(2) Par ailleurs, $\det(u) = P_u(0) = 1$ et donc u est inversible. De plus, grâce au théorème de Cayley-Hamilton on a

$$0 = P_A(A) = I - 3A + 3A^2 - A^3$$

Donc

$$I = A(3I - 3A + A^2) = (3I - 3A + A^2)A.$$

Finalement,

$$A^{-1} = 3I - 3A + A^2$$

6

et donc $u^{-1} = P(u)$ où $P(X) = 3 - 3X + X^2$.

(3) D'après la théorème de Cayley-Hamilton, $\mathcal{N}_1 = E$.

(4) Prenons pour v_1 le vecteur propre déjà trouvé ci-dessus. Cherchons $v_2 = (x, y, z)$ tel que $u(v_2) = v_2 + v_1$. Ceci équivaut à

$$\begin{cases} x + y + 3z &= 0\\ 5x + 2y + 6z &= -3\\ -2x - y - 3z &= 1 \end{cases}$$

ou encore x = -1 et y = -3z + 1. On peut prendre $v_2 = (-1, 1, 0)$. Puis on cherche $v_3 = (x, y, z)$ tel que $u(v_3) = v_3 + v_2$, ce qui équivaut à

$$\begin{cases} x + y + 3z &= -1\\ 5x + 2y + 6z &= 1\\ -2x - y - 3z &= 0 \end{cases}$$

ou encore x = 1 et y = -3z - 2. On peut prendre $v_2 = (1, -2, 0)$.

On vérifie que (v_1, v_2, v_3) est une base de E. De plus, $u(v_1) = 0$, $u(v_2) = v_2 + v_1$ et $u(v_3) = v_3 + v_2$, de sorte que la matrice de l'endomorphisme u est le bloc de Jordan suivant :

$$T = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Remarque

Voici une autre façon de faire la question précédente. On calcule d'abord

$$(A-I)^2 = \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 3 & 9 \\ -1 & -1 & -3 \end{pmatrix}$$

Le noyau $\ker(u-\mathrm{id}_E)^2$ est la plan vectoriel d'équation x+y+3z=0. On prend un vecteur

$$v_3 \not\in \ker(u - \mathrm{id}_E)^2$$
.

Par exemple, $v_3 = (1, 0, 0)$. Ensuite on pose

$$v_2 = (u - id_E)v_3 = (1, 5, -2)$$

et puis

$$v_1 = (u - id_E)v_2 = (u - id_E)^2v_3 = (0, 3, -1)$$

qui est évidemment un vecteur propre de u. On montre que ces vecteurs forment une base de E. Par définition de ces vecteurs, la matrice de u dans cette base (v_1, v_2, v_3) est la matrice

$$T = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Endomorphismes nilpotents

Définition

- 1. Un endomorphisme $u \in \mathcal{L}(E)$ est dit **nilpotent** s'il existe un entier $k \geq 1$ tel que $u^k = 0$.
- 2. Un endomorphisme $u \in \mathcal{L}(E)$ est nilpotent d'indice k si, et seulement si, $u^{k-1} \neq 0$ et $u^k = 0$. Autrement dit, l'indice de nilpotence est le plus petit entier $k \geq 1$ tel que $u^k = 0$.
- L'endomorphisme nul est nilpotent d'indice 1.
- L'endomorphisme u de \mathbb{R}^2 dont la matrice dans la base canonique est

$$N_1 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

est nilpotent d'indice 2.

• L'endomorphisme de \mathbb{R}^2 dont la matrice dans la base canonique est

$$N_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

n'est pas nilpotent.

• L'endomorphisme u de \mathbb{R}^3 dont la matrice dans la base canonique est

$$N = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

et nilpotent d'indice 3.

 \bullet L'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$N' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

et nilpotent d'indice 2.

• Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est $A = \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix}$ et nilpotent d'indice 3. En effet,

$$A^{2} = \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 3 & 9 \\ -1 & -1 & -3 \end{pmatrix}$$

et

$$A^{3} = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 3 & 9 \\ -1 & -1 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

• L'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est $B = \begin{pmatrix} 1 & -3 & -4 \\ -1 & 3 & 4 \\ 1 & -3 & -4 \end{pmatrix}$ et nilpotent d'indice 2. En effet,

$$B^{2} = \begin{pmatrix} 1 & -3 & -4 \\ -1 & 3 & 4 \\ 1 & -3 & -4 \end{pmatrix} \begin{pmatrix} 1 & -3 & -4 \\ -1 & 3 & 4 \\ 1 & -3 & -4 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

8

Proposition

Un endomorphisme u de E est nilpotent si, et seulement si, son polynôme caractéristique P_u est scindé et son spectre est réduit au singleton $\{0\} = \sigma(u)$. En particulier, l'indice de nilpotence est au plus équl à $n = \dim E$).

Démonstration : \Longrightarrow) Supposons que u est nilpotent d'indice k. Donc

$$(\det(u))^k = \det(u^k) = 0$$

et donc 0 est une valeur propre de u. De plus, on sait que $\sigma_{\mathbb{C}}(u)$ est l'ensemble des racines complexes du polynôme caractéristique P_u . Comme $P=X^k$ est un polynôme annulateur de u, si λ est une valeur propre de u alors

$$P(\lambda) = \lambda^k = 0$$

et donc $\lambda = 0$. Finalement $\sigma_{\mathbb{C}}(u) = \{0\}$ et le polynôme caractéristique de u s'écrit $P_u(X) = (-X)^n$ qui est scindé dans \mathbb{K} .

 \iff Si P_u est scindé et $\sigma(u) = \{0\}$, alors $P_u(X) = (-X)^n$. Le théorème de Cayley-Hamilton s'écrit alors

$$P_u(u) = (-1)^n u^n = 0$$

ce qui montre que u est nilpotent d'indice au plus n.

Corollaire

Un endomorphisme $u \in \mathcal{L}(E)$ est nilpotent si, et seulement si, il existe une base dans laquelle la matrice de u est triangulaire supérieure stricte.

Démonstration : Supposons qu'il existe une base dans laquelle la matrice N de u est triangulaire supérieure stricte. Alors $P_u(X) = \det(N - XI_n) = (-X)^n$. Le théorème de Cayley-Hamilton permet de conclure.

Réciproquement, si u est nilpotent, alors P_u est scindé. Donc il existe une base de E dans laquelle la matrice de u est triangulaire supérieure, avec sur la diagonale les valeurs propres de u. Mais u admet une seule valeur propre $\lambda = 0$. La matrice obtenue est ainsi triangulaire supérieure stricte.

Corollaire

Un endomorphisme $u \in \mathcal{L}(E)$ est diagonalisable et nilpotent si, et seulement si, il est nul.

Démonstration Si u est nilpotent, $\sigma(u) = \{0\}$ donc u est diagonalisable si, et seulement si, $E = \bigoplus_{\lambda \in \sigma(u)} E_{\lambda} = E_0(u) = \ker(u)$, ou encore, u est l'endomorphisme nul.

Exemple

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est $A = \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix}$

- 1. Montrer que u est nilpotent? Est-il diagonalisable?
- 2. Trouver une base de \mathbb{R}^3 dans laquelle la matrice de u est triangulaire supérieure.
- 3. Peut-on trouver une base de \mathbb{R}^3 dans la quelle la matrice de u est la matrice triangulaire supérieure suivante :

$$T = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Solution: (1) On a

$$A^{2} = \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 3 & 9 \\ -1 & -1 & -3 \end{pmatrix}$$
$$A^{3} = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 3 & 9 \\ -1 & -1 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Ainsi u est nilpotent d'indice 3. En particulier, u n'est pas diagonalisable. En revanche, il existe une base dans laquelle la matrice de u est triangulaire supérieure stricte.

(2) Cherchons une base dans laquelle la matrice de u est triangulaire supérieure stricte. On détermine d'abord le sous espace propre E_0 . On a

$$(x,y,z) \in E_0 \iff A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

ce qui équivaut aussi à

$$\begin{cases} x + y + 3z &= 0\\ 5x + 2y + 6z &= 0\\ -2x - y - 3z &= 0 \end{cases}$$

ou encore x = 0 et y = -3z. Ainsi le sous espace propre associé à 0 est la droite vectorielle engendrée par $v_1 = (0, -3, 1)$.

De même, $\ker(u^2)$ est la plan d'équation x+y+3z=0. On remarque que $\ker(u) \subset \ker(u^2)$. On complète v_1 par le vecteur $v_2=(-1,1,0)$ pour obtenir une base de $\ker(u^2)$. Maintenant on complète par un vecteur $v_3 \notin \ker(u^2)$ par exemple $v_3=(1,0,0)$. Ainsi on a

$$u(v_1) = 0$$
, $u(v_2) = v_1$, $u(v_3) = 2v_1 + v_2$.

Donc la matrice de u dans cette base est

$$T = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

(3) Prenons v_1 déjà trouvé. Cherchons v_2 tel que $u(v_2) = v_1$, c-à-d

$$\begin{cases} x + y + 3z &= 0\\ 5x + 2y + 6z &= -3\\ -2x - y - 3z &= 1 \end{cases}$$

ou encore x = -1 et y = -3z + 1. On peut prendre $v_2 = (-1, 1, 0)$. Puis on cherche v_3 tel que $u(v_3) = v_2$, c-à-d

$$\begin{cases} x + y + 3z &= -1 \\ 5x + 2y + 6z &= 1 \\ -2x - y - 3z &= 0 \end{cases}$$

ou encore x = 1 et y = -3z - 2. On peut prendre $v_3 = (1, -2, 0)$.

On vérifie que (v_1, v_2, v_3) est une base de E. De plus, $Av_1 = 0$, $Av_2 = v_1$ et $Av_3 = v_2$, de sorte que la matrice de l'endomorphisme u est le bloc de Jordan suivant :

$$T = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Proposition

Supposons que l'endomorphisme u de E est un nilpotent d'indice k. Si $x \notin \ker u^{k-1}$ alors la famille $(u^{k-1}(x), u^{k-2}(x), \dots, u(x), x)$ est libre. En particulier, $k \leq \dim E$.

Démonstration : Comme u est nilpotent d'indice k, alors $\ker u^{k-1}$ n'est pas réduit au vecteur nul. Soit $x \notin \ker u^{k-1}$ et soit $\alpha_0, \alpha_1, \cdots, \alpha_{k-1}$ des scalaires tels que

$$\alpha_0 x + \alpha_1 u(x) + \dots + \alpha_{k-1} u^{k-1}(x) = 0.$$

Appliquons u^{k-1} à cette identité. Vue que $u^i(x) = 0$ pour tout $i \ge k$, il vient que $\alpha_0 = 0$. Ensuite on applique u^{k-2} et on obtient $\alpha_1 = 0$ et ainsi de suite on montre que tous les α_j sont nuls.

Proposition

Soit $u \in \mathcal{L}(E)$ un endomorphisme nilpotent de E d'indice de nilpotence $n = \dim E$. Alors il existe une base dans laquelle la matrice de u est une bloc de Jordan de la forme

$$\begin{pmatrix} 0 & 1 & 0 & \cdots & \cdots & 0 \\ 0 & \ddots & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \cdots & 0 & 0 \end{pmatrix}$$

Démonstration : Comme u est nilpotent d'indice n, il existe $x \in E$ tel que $u^{n-1}(x) \neq 0$. On sait que $(u^{n-1}(x), u^{n-2}(x), \dots, u(x), x)$ est libre et donc une base E. Dans cette base la matrice de u a la forme souhaitée.

Exemple

Refaire la question (3) de l'exemple précédent en utilisant la proposition ci-dessus.

Le noyau $\ker(u^2)$ est la plan vectoriel d'équation x+y+3z=0. On prend un vecteur

$$v_3 \not\in \ker(u^2).$$

Par exemple, $v_3 = (1, 0, 0)$. Ensuite on pose

$$v_2 = u(v_3) = (1, 5, -2)$$

et puis

$$v_1 = u(v_2) = u^2(v_3) = (0, 3, -1)$$

qui est évidemment un vecteur propre de u. Ces vecteurs forment une base de E dans laquelle la matrice de u est la matrice

$$T = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Remarque

Plus généralement, voici une méthode pour trigonaliser un endomorphisme nilpotent n d'indice de nilpotence k. Il est clair que

$$\ker n \subset \ker n^2 \subset \cdots \subset \ker n^k = E.$$

Alors on peut construire une base qui trigonalise u en procédant comme suit :

- 1. D'abord on choisit une base B_1 de ker n;
- 2. si $Card(B_1) < k$, on complète B_1 en une base B_2 de $\ker n^2$;
- 3. si $Card(B_2) < k$, on complète B_2 en une base B_3 de $\ker n^3$;
- 4. On itère le procédé, jusqu'à obtenir une base B_k qui contient k vecteurs. Il y a au plus k étapes.
- 5. Par construction, la matrice de n dans cette base est triangulaire supérieure stricte, car si $x \in B_k \setminus B_{k-1}$, alors $n(x) \in \ker n^{k-1}$, et s'exprime donc en fonction des vecteurs de B_{k-1} .

Exemple

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}$$

Montrer que A est nilpotente. Trouver une base dans laquelle la matrice de u est de le bloc de Jordan suivant :

$$T = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

On a

$$A^{2} = \begin{pmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \\ 1 & -1 & 0 \end{pmatrix} \quad \text{et} \quad A^{3} = 0.$$

La matrice A est nilpotente d'indice maximal 3. En particulier, le polynôme caractéristique de u est $P_u(X) = -X^3$ et u admet une valeur propre $\lambda = 0$ triple. Un calcul direct montre que le sous-espace propre $E_0 = \ker u$ est la droite vectorielle engendrée par $v_1 = (1, 1, 1)$.

De même $\ker u^2$ est le plan d'équation x = y. On complète v_1 par le vecteur $v_2 = (1, 1, 0)$ pour obtenir une base de $\ker u^2$

Prenons un vecteur qui n'appartient pas à ce plan, par exemple $v_3 = e_1 = (1,0,0)$. On vérifie que (v_1, v_2, v_3) est une base de E. De plus, $u(v_1) = 0$, $u(v_2) = v_1$ et $u(v_3) = v_2$, de sorte que la matrice de l'endomorphisme u est de le bloc de Jordan suivant :

$$T = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Notons que la construction de cette base aurait pu être comme suit. D'abord on choisit un vecteur v_3 qui n'appartient pas à ker u^2 , puis on calcule $u(v_3) = u(e_1) = (1, 1, 0)$ et $u^2(e_1) = (1, 1, 1)$ qui est bien un vecteur propre de u. Finalement, on pose

$$\varepsilon_1 = u^2(e_1) = (1, 1, 1), \varepsilon_2 = u(e_1) = (1, 1, 0)$$
 et $\varepsilon_3 = e_1 = (1, 0, 0)$.

Il est clair que $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ une base de E dans laquelle la matrice de l'endomorphisme u est le bloc de Jordan ci-dessus. La matrice de passage de la base canonique à la base $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$

$$P = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{array}\right)$$

vérifie

$$P^{-1}AP = T$$

Proposition

Si u et v sont des endomorphismes nilpotents qui commutent, alors toute combinaison linéaire de u et v est nilpotente.

Démonstration : Puisque u et v commutent, on a pour tout entier N :

$$(au + bv)^N = \sum_{k=0}^{N} {N \choose k} a^k b^{N-k} u^k v^{N-k}.$$

En particulier, si N=2n, alors chaque terme u^kv^{2n-k} est nul car si $k \leq n$, v^{2n-k} est nul, et si $k \geq n$, u^k est nul, donc $(au+bv)^{2n}=0$ et ainsi au+bv est nilpotent.

Remarque

La proposition n'est pas toujours vraie si u et v ne commutent pas. Par exemple, les matrices

$$A = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right), \quad B = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right)$$

sont nilpotentes mais $A + B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ ne l'est pas car son carrée c'est la matrice identité.

La décomposition de Jordan-Chevalley

Dans certains livres et en particulier les livres de l'agrégation interne et externe on parle de décomposition de **Dunford**.

Théorème : la décomposition de Jordan-Chevalley

Soit $u \in \mathcal{L}(E)$ un endomorphisme dont le polynôme caractéristique est scindé. Alors il existe un unique couple (d, n) tel que :

- 1. d un endomorphisme diagonalisable;
- 2. n un endomorphisme nilpotent;
- 3. u = d + n;
- 4. d et n commutent, i.e. $d \circ n = n \circ d$;
- 5. les endomorphismes d et n sont des polynômes de l'endomorphisme u.

Démonstration : (i) Soient $\lambda_1, \lambda_2 \cdots, \lambda_k$ les valeurs propres distinctes de u et $m_a(\lambda_i)$ est la multiplicité algébrique λ_i . On sait que

$$E = \bigoplus_{1 \le i \le k} \mathcal{N}_{\lambda_i} \quad \text{avec} \quad \mathcal{N}_{\lambda_i} = \ker(u - \lambda_i \cdot \mathrm{id}_E)^{m_a(\lambda_i)}.$$

Notons π_i la projection de E sur \mathcal{N}_{λ_i} parallèlement à $\underset{j\neq i}{\oplus} \mathcal{N}_{\lambda_j}(u)$. D'après le lemme des noyaux, chaque projection π_i s'écrit comme un polynôme en u. Posons

$$d = \sum_{i=1}^{k} \lambda_i \pi_i$$
 et $n = u - d = \sum_{i=1}^{k} \pi_i (u - \lambda_i \mathrm{id}_E).$

Autrement dit, pour tout $i = 1, \dots, k$ et tout $x \in \mathcal{N}_{\lambda_i}$,

$$d(x) = \lambda_i x$$
 et $n(u) = (u - \lambda_i id_E)x$.

Donc d est diagonalisable et n est nilpotent. De plus, d et n sont des polynômes de u, et donc ils commutent.

Pour montrer l'unicité de la décomposition supposons qu'il existe un autre couple (d', n') tel que

- $\bullet \ u = d' + n'$
- d' diagonalisable et n' nilpotent
- d'n' = n'd'.

Puisque d' commute avec n', il commute avec u = d' + n' et donc avec d qui est par construction un polynôme en u. De la même façon on montre que n et n' commutent. Il vient que v = d - d' = n' - n est à la fois diagonalisable et nilpotent Finalement v = 0, et donc d = d' et n = n'.

Version matricielle

Théorème : la décomposition de Jordan-Chevalley

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice dont le polynôme caractéristique est scindé sur \mathbb{K} . Alors il existe un unique couple (d,n) de matrices où :

- 1. d est une matrice diagonalisable;
- 2. n est une matrice nilpotente;
- 3. A = d + n;
- 4. d et n commutent, i.e. dn = nd;
- 5. les matrices d et n sont des polynômes de A.

Exemple

Soit $x \in \mathbb{R}$. Quelle est la décomposition de Jordan-Chevalley de la matrice $J(x) = \begin{pmatrix} 1 & 1 \\ 0 & x \end{pmatrix}$?

• Si x = 1 alors

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = D + N.$$

De plus, la partie diagonale D et la partie nilpotente N commutent. La décomposition de Jordan-Chevalley de la matrice J est donc J = D + N.

• En revanche, si $x \neq 1$ alors la matrice J(x) admet deux valeurs propres distinctes et donc elle est diagonalisable. Ainsi sa décomposition de Jordan-Chevalley est J = D + N avec D = J(x) et N = 0.

Attention

Supposons que $x \neq 1$. Bien que

$$\begin{pmatrix} 1 & 1 \\ 0 & x \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & x \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = D' + N'$$

avec D' diagonalisable et N' nilpotente il ne s'agit pas de la décomposition de Jordan-Chevalley de J(x), $x \neq 1$, car D' et N' ne commutent pas.

En particulier, une décomposition de la forme A = D + N avec D diagonale et N triangulaire supérieure stricte n'est pas toujours la décomposition de Jordan-Chevalley de A. Ce n'est le cas que si D et N commutent.

15

Exemple

Quelle est la décomposition de Jordan-Chevalley de la matrice $J = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$?

On a

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = D + N.$$

De plus, la partie diagonale D et la partie nilpotente N commutent. La décomposition de Jordan-Chevalley de la matrice J est J=D+N.

Exemple

Quelle est la décomposition de Jordan-Chevalley de la matrice $J = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$?

Ici aussi nous avons J = D' + N' avec

$$D' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \quad \text{et} \quad N' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Cependant, ce n'est pas la décomposition de Jordan-Chevalley de J car

$$D'N' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \neq N'D' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

Ici on remarque que J est diagonalisable et donc sa décomposition de Jordan-Chevalley est

$$J = D + N$$
 où $D = J$ et $N = 0$.

Exemple

Soit $A = \begin{pmatrix} 5 & 4 & 3 \\ -1 & 0 & -3 \\ 1 & 1 & 4 \end{pmatrix}$. Montrer que la décomposition de Jordan-Chevalley de la matrice A est

$$d = \begin{pmatrix} 4 & 3 & 3 \\ 0 & 1 & -3 \\ 0 & 0 & 4 \end{pmatrix} \quad \text{et} \quad n = \begin{pmatrix} 1 & 1 & 0 \\ -1 & -1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

On a d est diagonalisable, n est nilpotente d'indice 2 et dn = nd.

On retient que

En particulier, si A = d + n est la décomposition de Jordan-Chevalley de A alors

- 1. La partie diagonalisable d de A n'est pas diagonale en générale.
- 2. A est diagonalisable \iff A = d et n = 0.
- 3. A est nilpotente \iff A = n et d = 0

Corollaire

Pour tout endomorphisme $u \in \mathcal{L}(E)$ dont le polynôme caractéristique est scindé il existe une base B de E dans laquelle la matrice de u s'écrit

- 1. $Mat_B(u) = D + N$
- 2. $D = Mat_B(d)$ une matrice diagonale,
- 3. $N = Mat_B(n)$ une matrice triangulaire supérieure stricte et
- 4. D et N commutent, i.e. DN = ND.

Démonstration : Soient $\lambda_1, \lambda_2 \cdots, \lambda_k$ les valeurs propres distinctes de u. Pour tout $i = 1, \dots, k$, on choisit une base B_i du sous-espace caractéristique \mathcal{N}_{λ_i} dans laquelle la matrice de $u_{|\mathcal{N}_{\lambda_i}}$ est triangulaire. Soit $B = (B_1, B_2, \dots, B_k)$ la base de E obtenue en regroupant les bases B_i . Dans cette base E la matrice E de E de E de E dans la base E la existe un seul E de E de E de E dans la base E la existe un seul E de E de E de E de E dans la base E la existe un seul E de E

$$\pi_i(\varepsilon) = \varepsilon$$

$$\pi_j(\varepsilon) = 0 \quad \forall j \neq i$$

et donc $d(\varepsilon) = \lambda_i \varepsilon$. De plus, toujours dans cette base B, la matrice N de n est diagonale par blocs, chaque bloc étant de taille $m_a(\lambda_i) = \dim \mathcal{N}_{\lambda_i}$. À l'intérieur de chaque bloc, la matrice correspondante, $\operatorname{Mat}_{B_i}(u - \lambda_i)_{|\mathcal{N}_{\lambda_i}}$ est triangulaire supérieure stricte par construction de B_i .

Exemple

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est $A = \begin{pmatrix} 1 & 4 & -2 \\ 0 & 6 & -3 \\ -1 & 4 & 0 \end{pmatrix}$.

- 1. Calculer le polynôme caractéristique de u. L'endomorphisme u est-il trigonalisable?
- 2. En déduire l'ensemble des valeurs propres de u.
- 3. L'endomorphisme u est-il bijectif?
- 4. Déterminer les sous espaces propres de u.
- 5. L'endomorphisme u est-il diagonalisable?
- 6. Déterminer une base de \mathbb{R}^3 dans laquelle la matrice de u est triangulaire supérieure. En déduire une matrice inversible P et une matrice triangulaire T telles que $P^{-1}AP = T$.
- 7. Déterminer les sous espaces caractéristiques de u.
- 8. Trouver la décomposition de Jordan-Chevalley de u.
- (1) Le polynôme caractéristique de u:

$$P_{u}(X) = \begin{vmatrix} 1 - X & 4 & -2 \\ 0 & 6 - X & -3 \\ -1 & 4 & -X \end{vmatrix} = \begin{vmatrix} 2 - X & 0 & X - 2 \\ 0 & 6 - X & -3 \\ -1 & 4 & -X \end{vmatrix} L1 \curvearrowright L1 - L3$$
$$= \begin{vmatrix} 2 - X & 0 & 0 \\ 0 & 6 - X & -3 \\ -1 & 4 & -1 - X \end{vmatrix} = (2 - X)(X^{2} - 5X + 6) = (2 - X)^{2}(3 - X).$$

Le polynôme caractéristique de u est scindé et donc u est trigonalisabe.

- (2) D'après 1), le spectre de u est $\sigma(u) = \{2, 3\}$. la valeur propre $\lambda = 2$ est double et la valeur propre $\lambda = 3$ est simple .
- (3) On sait que $det(u) = P_u(0) = 12 \neq 0$ et donc u est inversible.
- (4) Le sous espace propre $E_3 = \ker(u 3i\mathbf{d}_E)$: Un calcul simple montre que $u = (x, y, z) \in E_3$ si, et seulement si,

$$\begin{cases} -x + 2y - z = 0\\ 3y - 3z = 0 \end{cases}$$

Ainsi E_3 est la droite vectorielle engendrée par $\varepsilon_1 = (1, 1, 1)$.

Le sous espace propre $E_2 = \ker(u - 2i\mathbf{d}_E)$: Un calcul simple montre que $u = (x, y, z) \in E_2$ si et seulement si

$$\begin{cases} -x + 4y - 2z = 0\\ 4y - 3z = 0 \end{cases}$$

Ainsi E_2 est la droite vectorielle engendrée par $\varepsilon_2 = (4, 3, 4)$.

- (5) On en déduit que u n'est pas diagonalisable car $m_a(2) = 2 \neq m_q(2)$.
- (6) Recherche d'une base qui trigonalise u: On complète $(\varepsilon_1, \varepsilon_2)$ par un vecteur quelconque ε_3 por avoir une base de \mathbb{R}^3 , par exemple avec $\varepsilon_3 = (1, 0, 0)$.

$$\begin{cases} u(\varepsilon_1) = 3\varepsilon_1 \\ u(\varepsilon_2) = 2\varepsilon_2 \\ u(\varepsilon_3) = 2\varepsilon_3 - \varepsilon_2 + 3\varepsilon_1. \end{cases}$$

Ainsi la matrice de u dans cette base est

$$T = \begin{pmatrix} 3 & 0 & 3 \\ 0 & 2 & -1 \\ 0 & 0 & 2 \end{pmatrix}$$

Il suffit de prendre P la matrice de passage de la base canonique à la base $(\varepsilon_1, \varepsilon_2)$:

$$P = \begin{pmatrix} 1 & 4 & 1 \\ 1 & 3 & 0 \\ 1 & 4 & 0 \end{pmatrix}.$$

Recherche des sous espaces caractéristiques de u. Comme la valeur propre 3 est simple le sous espace caractéristique

$$\mathcal{N}_3 = \ker(u - 3\mathrm{id}_E) = E_3 = \mathrm{vect}(\varepsilon_1).$$

La valeur propre 2 est double et donc le sous espace caractéristique associé est $\mathcal{N}_2 = \ker(u - 2\mathrm{id}_E)^2$. Or

$$(A - 2I_3)^2 = \begin{pmatrix} -1 & 4 & -2 \\ 0 & 4 & -3 \\ -1 & 4 & -2 \end{pmatrix} \begin{pmatrix} -1 & 4 & -2 \\ 0 & 4 & -3 \\ -1 & 4 & -2 \end{pmatrix} = \begin{pmatrix} 3 & 4 & -6 \\ 3 & 4 & -6 \\ 3 & 4 & -6 \end{pmatrix}$$

Ainsi $\mathcal{N}_2 = \ker(u - 2\mathrm{id}_E)^2$ est le plan d'équation 3x + 4y - 6z = 0. On remarque que $E_2 \subset \mathcal{N}_2$.

On sait que le sous espace caractéristique \mathcal{N}_3 et \mathcal{N}_2 sont complémentaires (grâce au lemme des noyaux et le théorème de Cayley-Hamilton). Cherchons la projection π_3 de E sur \mathcal{N}_3 parallèlement à \mathcal{N}_2 et la

projection π_2 de E sur \mathcal{N}_2 parallèlement à \mathcal{N}_3 . Pour cela on remarque que $(X-2)^2 - (X-1)(X-3) = 1$ de sorte que

$$(u - 2\mathrm{id}_E)^2 - (u - \mathrm{id}_E)(u - 3\mathrm{id}_E) = \mathrm{id}_E.$$

Ainsi, tout vecteur $x \in E$ s'écrit de façon unique

$$x = (u - 2id_E)^2(x) - (u - id_E)(u - 3id_E)(x).$$

Comme $x_1 = (u - 2\mathrm{id}_E)^2(x) \in \mathcal{N}_3$ et $x_2 = -(u - \mathrm{id}_E)(u - 3\mathrm{id}_E)(x) \in \mathcal{N}_2$ on déduit que

$$\pi_3(x) = (u - 2id_E)^2(x)$$

$$\pi_2(x) = -(u - id_E)(u - 3id_E)(x).$$

Finalement, la décomposition de Jordan-Chevalley de u est u=d+n où

$$d = 3\pi_3 + 2\pi_2 = 3(u - 2id_E)^2 - 2(u - id_E)(u - 3id_E)$$

$$n = u - d.$$

En termes matriciels, A = D + N où

$$D = 3(A - 2I_3)^2 - 2(A - I_2)(A - 3I_2)$$

$$= 3\begin{pmatrix} 3 & 4 & -6 \\ 3 & 4 & -6 \\ 3 & 4 & -6 \end{pmatrix} - 2\begin{pmatrix} 2 & 4 & -6 \\ 3 & 3 & -6 \\ 3 & 4 & -6 \end{pmatrix} = \begin{pmatrix} 5 & 4 & -6 \\ 3 & 6 & -6 \\ 3 & 4 & -4 \end{pmatrix}$$

$$N = A - D = \begin{pmatrix} -4 & 0 & 4 \\ -3 & 0 & 3 \\ -4 & 0 & 4 \end{pmatrix}.$$

Cherchons une base dans laquelle la matrice de u est donnée par

$$\begin{pmatrix}
3 & 0 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{pmatrix}$$

On choisit une vecteur de ce plan qui n'appartient pas à E_2 , par exemple, $\varepsilon_3 = (2,0,1)$. Ensuite on pose $\varepsilon_2 = (u - 2id_E)(2,0,1) = (-4,-3-4)$ que nous reconnaissons comme vecteur propre de u associé à la valeur propre 2. La base $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ répond à la question.

Exemple

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est $A = \begin{pmatrix} 4 & 0 & -1 \\ 1 & 3 & -1 \\ 0 & 1 & 2 \end{pmatrix}$. Mêmes questions que dans l'exemple précédent.

Calculons le polynôme caractéristique de u:

L'endomorphisme u admet une seule valeur propre $\lambda = 3$ qui est triple.

D'après le théorème de Cayley-Hamilton, $(u - 3id_E)^3 = 0$ et le sous espace caractéristique

$$\mathcal{N}_3 = E$$
.

On en déduit que la décomposition de Jordan-chevalley :

$$u = d + n$$
 où $d = 3id_E$ et $n = u - 3id_E$

Ce qui se traduit pour la matrice A par :

$$A = D + N$$

où la partie diagonale est

$$D = 3I_3 = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

et la partie nilpotente est

$$N = A - D = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}.$$

Recherche d'une base qui Trigonalise u: On a

$$A - 3I_3 = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}$$
 et $(A - 3I_3)^2 = \begin{pmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \\ 1 & -1 & 0 \end{pmatrix}$.

Il vient que le sous-espace propre $E_3 = \ker(u - 3id_E) = \text{Vect}(1, 1, 1)$. Posons $\varepsilon_1 = (1, 1, 1)$.

De même, le sous espace $\ker(u-3\mathrm{id}_E)^2$ est le plan d'équation x=y. On complète ε_1 par $\varepsilon_2=(1,1,0)$ pour avoir une base de $\ker(u-3\mathrm{id}_E)^2$. On remarque que $(u-3\mathrm{id}_E)\varepsilon_2=\varepsilon_1$.

Finalement, on complète $(\varepsilon_1, \varepsilon_2)$ par $\varepsilon_3 = (1, 0, 0)$. Il est clair que $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ est une base de E. On voit que $(u - 3id_E)\varepsilon_3 = \varepsilon_1$

Finalement, la matrice de u dans cette base est le bloc de Jordan suivant :

$$T = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$

La matrice de passage

$$P = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{array}\right)$$

vérifie

$$P^{-1}AP = T$$

Exemple

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 2 & -3 & -4 \\ -1 & 4 & 4 \\ 1 & -3 & -3 \end{pmatrix}.$$

- 1. Calculer le polynôme caractéristique de f.
- 2. L'endomorphisme f est-il diagonalisabe?
- 3. Montrer que $n = f id_3$ est un endomorphisme nilpotent et préciser son indice de nilpotence.
- 4. Quelle est la décomposition de Jordan-Chevalley de f?
- 5. Trouver une base de ker(n).
- 6. Soit w un vecteur qui n'appartient pas à $\ker(n)$. Posons v = n(w). Montrer que (v, w) est une famille libre de \mathbb{R}^3 .
- 7. Trouver une base dans laquelle la matrice de f est de la forme

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Solution:

- (1) $P_f(\lambda) = (1 \lambda)^3$.
- (2) E_1 est le plan d'équation x-3y-4z=0. Ainsi f n'est pas diagonalisable car $m_q(1)=2<3=m_a(1)$.
- (3) On a $(A I)^2 = 0$ et donc f est nilpotent d'indice 2.
- (4) $f = id_3 + (f id_3)$ et donc il suffit de prende

$$d = id_3$$
 et $n = f - id_3$.

En effet, d est diagonalisable, n est nilpotent et dn = nd.

- (5) $\ker(n) = \ker(f \mathrm{id}_3)$. Une base de $\ker(n)$ est (3, 1, 0) et (-4, 0, 1).
- (6) Soit w un vecteur qui n'appartient pas à $\ker(n)$. Posons v = n(w). Soit a, b des scalaires tels que aw + bv = 0. En appliquant n à cette identité on obtient

$$an(w) + bn(v) = an(w) + bn^{2}(w) = an(w) = 0.$$

Comme $v = n(w) \neq 0$ on déduit que a = 0. Ainsi bv = 0 et donc b = 0. Finalement, (v, w) est une famille libre de \mathbb{R}^3 .

(7) Il suffit de choisir un w.

Exercice

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} -2 & -1 & -3 \\ 2 & 3 & 2 \\ 1 & -1 & 2 \end{pmatrix}.$$

- 1. Calculer le polynôme caractéristique de f.
- 2. L'endomorphisme f est-il diagonalisabe?
- 3. Montrer que $n = f id_3$ est un endomorphisme nilpotent et préciser son indice de nilpotence.
- 4. Quelle est la décomposition de Jordan-Chevalley de f?
- 5. Trouver une base de ker(n).
- 6. Soit w un vecteur qui n'appartient pas à $\ker(n^2)$. Posons v = n(w) et $u = n^2(w)$. Montrer que (u, v, w) est une base de \mathbb{R}^3 .
- 7. Quelle est la matrice de f dans cette base?
- 8. Calculer A^{27} .

Application I : calcul des puissances d'une matrice

On se donne $A \in M_n(\mathbb{K})$, et on cherche à calculer A^p pour tout $p \in \mathbb{N}$.

Supposons que B est une matrice semblable à A, i.e.

$$\exists P \in GL_n(\mathbb{K}), \quad A = PBP^{-1}.$$

Ainsi,

$$\begin{array}{rcl} A^2 & = & (PBP^{-1})(PBP^{-1}) = PB(P^{-1}P)BP^{-1} = PB^2P^{-1} \\ & \vdots \\ A^p & = & PB^pP^{-1} \quad (\forall p \in \mathbb{N}). \end{array}$$

Cas où A est diagonalisable

Si A est diagonalisable alors on peut choisir B = D une matrice diagonale. On a ainsi

$$\forall p \in \mathbb{N} , \quad A^p = PD^pP^{-1}$$

 D^p étant obtenue en élevant à la puissance p chacun des coefficients de la diagonale.

Cas où A est trigonalisable

Si A est trigonalisable alors

1. On peut choisir B = D + N avec D une matrice diagonale, N est une matrice nilpotente et DN = ND. On a ainsi

$$\forall p \in \mathbb{N} , A^p = P(D+N)^p P^{-1}$$

2. La formule du binôme de Newton s'applique car DN = ND:

$$(D+N)^p = \sum_{k=0}^p \binom{p}{k} D^{p-k} N^k.$$

Puisque $N^k = 0$ pour k supérieur à l'indice de nilpotence de N.

Exemple

Soit a, b deux réels. Cherchons toutes les suites réelles (x_n) telles que

$$x_{n+1} = ax_n + bx_{n-1}$$
 avec x_1, x_0 deux réels donnés.

Le cas particulier où a = b = 1 avec $x_0 = 0, x_1 = 1$ correspond à la célèbre suite **de Fibonacci** dont les premiers termes sont

$$1, 1, 2, 3, 5, 8, 13, 21, \cdots$$

Posons

$$X_n = \begin{pmatrix} x_{n+1} \\ x_n \end{pmatrix}, \ \forall n \ge 0.$$

Ainsi le problème est réduit à

$$X_n = \begin{pmatrix} x_{n+1} \\ x_n \end{pmatrix} = \overbrace{\begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}}^A \begin{pmatrix} x_n \\ x_{n-1} \end{pmatrix} = \dots = \overbrace{\begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}}^n \begin{pmatrix} x_1 \\ x_0 \end{pmatrix}.$$

Il suffit donc de calculer les puissances A^n avec

$$A = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}.$$

Le polynôme caractéristique

$$P_A(X) = X^2 - aX - b.$$

1. Si $\Delta=a^2+4b>0$ alors A admet deux valeurs propres réelles distinctes :

$$\lambda_1 = \frac{a - \sqrt{\Delta}}{2}$$
 et $\lambda_2 = \frac{a + \sqrt{\Delta}}{2}$

Dans ce cas, A est diagonalisable dans \mathbb{R} .

2. Si $\Delta=a^2+4b<0$ alors A admet deux valeurs propres complexes conjuguées distinctes :

$$\lambda_1 = \frac{a - i\sqrt{-\Delta}}{2}$$
 et $\lambda_2 = \frac{a + i\sqrt{-\Delta}}{2}$

et A est diagonalisable dans \mathbb{C} (mais pas dans \mathbb{R}).

3. Si $\Delta = a^2 + 4b = 0$ alors A admet une valeur propre réelle double $\lambda = \frac{a}{2}$ et A n'est diagonalisable dans \mathbb{R} . Dans ce cas A est semblable à un bloc de Jordan.

Premier cas : supposons que $\Delta > 0$.

Alors A est diagonalisable dans $\mathbb R$ car admet deux valeurs propres réelles distinctes :

$$\lambda_1 = \frac{a - \sqrt{\Delta}}{2}$$
 et $\lambda_2 = \frac{a + \sqrt{\Delta}}{2}$

De plus, pour i = 1, 2 on a :

$$E_{\lambda_i} = \text{vect}(u_i)$$
 avec $u_i = (\lambda_i, 1)$

 (u_1, u_2) est une base de \mathbb{R}^2 formée de vecteurs propres de A. Posons

$$P = \begin{pmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{pmatrix} \quad \text{et} \quad D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}.$$

On a alors

$$P^{-1} = \frac{1}{\sqrt{\Delta}} \begin{pmatrix} -1 & \lambda_2 \\ 1 & -\lambda_1 \end{pmatrix} \text{ et } A = P \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} P^{-1}.$$

Ainsi

$$A^{n} = P \begin{pmatrix} \lambda_{1}^{n} & 0 \\ 0 & \lambda_{2}^{n} \end{pmatrix} P^{-1} = \frac{1}{\sqrt{\Delta}} \begin{pmatrix} \lambda_{1} & \lambda_{2} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \lambda_{1}^{n} & 0 \\ 0 & \lambda_{2}^{n} \end{pmatrix} \begin{pmatrix} -1 & \lambda_{2} \\ 1 & -\lambda_{1} \end{pmatrix}.$$

Il vient que

$$A^n = \frac{1}{\sqrt{\Delta}} \begin{pmatrix} \lambda_2^{n+1} - \lambda_1^{n+1} & \lambda_2 \lambda_1^{n+1} - \lambda_1 \lambda_2^{n+1} \\ \lambda_2^n - \lambda_1^n & \lambda_2 \lambda_1^n - \lambda_1 \lambda_2^n \end{pmatrix}$$

Comme $\lambda_1 \lambda_2 = -b$

$$A^n = \frac{1}{\sqrt{\Delta}} \begin{pmatrix} \lambda_2^{n+1} - \lambda_1^{n+1} & b\lambda_2^n - b\lambda_1^n \\ \lambda_2^n - \lambda_1^n & b\lambda_2^{n-1} - b\lambda_1^{n-1} \end{pmatrix}.$$

Finalement, pour tout $n \ge 2$ on a

$$x_n = \frac{1}{\sqrt{\Delta}} (\lambda_2^n - \lambda_1^n) x_1 + \frac{b}{\sqrt{\Delta}} (\lambda_2^{n-1} - \lambda_1^{n-1}) x_0.$$

Par exemple si a=2 et b=3 alors $\Delta=16$ et A admet deux valeurs propres distinctes $\lambda_1=-1$ et $\lambda_2=3$. Il vient que

$$A^{n} = \frac{1}{4} \begin{pmatrix} (-1)^{n} + 3^{n+1} & 3(-1)^{n+1} + 3^{n+1} \\ (-1)^{n+1} + 3^{n} & 3(-1)^{n} + 3^{n} \end{pmatrix}$$

Finalement, pour tout $n \ge 2$ on a

$$x_n = \frac{1}{4} \left((-1)^{n+1} + 3^n \right) x_0 + \frac{1}{4} \left(3(-1)^n + 3^n \right) x_1.$$

En particulier, si $x_0 = x_1 = 1$ alors

$$x_n = \frac{1}{2}((-1)^n + 3^n).$$

Le cas particulier où a = b = 1

Dans ce cas,

$$\lambda_1 = \frac{1-\sqrt{5}}{2}$$
 et $\lambda_2 = \frac{1+\sqrt{5}}{2}$ (le nombre d'or).

Ainsi

$$P = \begin{pmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{pmatrix}$$
 et $P^{-1} = \frac{1}{\sqrt{5}} \begin{pmatrix} -1 & \lambda_2 \\ 1 & -\lambda_1 \end{pmatrix}$.

En particulier

$$A^{n} = P \begin{pmatrix} \lambda_{1}^{n} & 0 \\ 0 & \lambda_{2}^{n} \end{pmatrix} P^{-1} = \frac{1}{\sqrt{5}} \begin{pmatrix} \lambda_{2}^{n+1} - \lambda_{1}^{n+1} & \lambda_{2}^{n} - \lambda_{1}^{n} \\ \lambda_{2}^{n} - \lambda_{1}^{n} & \lambda_{2}^{n-1} - \lambda_{1}^{n-1} \end{pmatrix}$$

Finalement, si $x_0 = 0$ et $x_1 = 1$ alors

$$x_n = \frac{1}{\sqrt{5}} (\lambda_2^n - \lambda_1^n) = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n.$$

Il s'agit de la célèbre suite de Fibonacci dont les premiers termes sont

$$1, 1, 2, 3, 5, 8, 13, 21, \cdots$$

et comme

$$x_{n+1} = x_n + x_{n-1}$$

les termes sont tous entiers. On a donc besoin de nombres irrationnels pour exprimer des entiers naturels que sont les termes de cette suite.

Deuxième cas où $\Delta < 0$.

Est similaire au premier cas si on travaille dans \mathbb{C} . Le sous espace propre associé à λ_i , i=1,2 est la droite vectorielle engendrée par $u_i=(\lambda_i,1)$. Alors (u_1,u_2) est une base de \mathbb{C}^2 formée de vecteurs propres de A. La matrice de passage de la base canonique à la base des vecteurs propres est donnée par

$$P = \begin{pmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{pmatrix}$$
 et $P^{-1} = \frac{1}{\sqrt{\Delta}} \begin{pmatrix} -1 & \lambda_2 \\ 1 & -\lambda_1 \end{pmatrix}$.

où on a noté $\sqrt{\Delta}=i\sqrt{-\Delta}.$ Comme dans le cas précédent :

$$A^{n} = P \begin{pmatrix} \lambda_{1}^{n} & 0 \\ 0 & \lambda_{2}^{n} \end{pmatrix} P^{-1} = \frac{1}{\sqrt{\Delta}} \begin{pmatrix} \lambda_{2}^{n+1} - \lambda_{1}^{n+1} & \lambda_{2} \lambda_{1}^{n+1} - \lambda_{1} \lambda_{2}^{n+1} \\ \lambda_{2}^{n} - \lambda_{1}^{n} & \lambda_{2} \lambda_{1}^{n} - \lambda_{1} \lambda_{2}^{n} \end{pmatrix}$$

Comme $\lambda_1 \lambda_2 = -b$

$$A^n = \frac{1}{\sqrt{\Delta}} \begin{pmatrix} \lambda_2^{n+1} - \lambda_1^{n+1} & b\lambda_2^n - b\lambda_1^n \\ \lambda_2^n - \lambda_1^n & b\lambda_2^{n-1} - b\lambda_1^{n-1} \end{pmatrix}.$$

Comme les nombres a,b sont réels, $\lambda_1=\overline{\lambda_2}$ et les coefficients de la matrices A^n sont aussi réels :

$$A^n = \frac{1}{\sqrt{-\Delta}} \begin{pmatrix} 2\Im(\lambda_2^{n+1}) & b\Im(\lambda_2^n) \\ \Im(\lambda_2^n) & b\Im(\lambda_2^{n-1}) \end{pmatrix}.$$

Finalement, pour tout $n \ge 2$ on a

$$x_n = \frac{b}{\sqrt{\Lambda}} \left(\lambda_2^{n-1} - \lambda_1^{n-1} \right) x_0 + \frac{1}{\sqrt{\Lambda}} \left(\lambda_2^n - \lambda_1^n \right) x_1.$$

et $|\lambda_2|^2 = \lambda_1 \lambda_2 = -b$, si les données x_0, x_1 sont réelles, les solutions restent réelles.

Finalement, pour tout $n \geq 2$ on a

$$x_n = \frac{b}{\sqrt{\Delta}} \left(\lambda_2^{n-1} - \lambda_1^{n-1} \right) x_0 + \frac{1}{\sqrt{\Delta}} \left(\lambda_2^n - \lambda_1^n \right) x_1.$$

Troisième cas : supposons que $\Delta = 0$.

Dans ce cas,

$$\lambda = \frac{a}{2}$$
 est valeur propre réelle double de A .

Son sous espace propre E_{λ} est la droite vectorielle engendrée par $u=(\lambda,1)$.

En prenant v = (1,0) la famille (u,v) est une base de E qui trigonalise A. Soit P la matrice de passage de la base canonique (u,v). On a :

$$P = \begin{pmatrix} \lambda & 1 \\ 1 & 0 \end{pmatrix}$$
 et $P^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & -\lambda \end{pmatrix}$.

Ainsi

$$A = P \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} P^{-1}.$$

Or le bloc de Jordan

$$J_2(\lambda) = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} = \underbrace{\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}}_{D} + \underbrace{\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}}_{N}.$$

De plus DN = ND et $N^k = 0$ pour tout $k \ge 2$. Ainsi

$$\begin{split} A^n &= P(D^n + nD^{n-1}N)P^{-1} &= P\begin{pmatrix} \lambda^n & n\lambda^{n-1} \\ 0 & \lambda^n \end{pmatrix} P^{-1} \\ &= \begin{pmatrix} (n+1)\lambda^n & -n\lambda^{n+1} \\ n\lambda^{n-1} & -(n-1)\lambda^n \end{pmatrix} \end{split}$$

Finalement, pour tout $n \ge 2$ on a :

$$x_n = -(n-1)\lambda^n x_0 + n\lambda^{n-1} x_1 = -(n-1)\left(\frac{a}{2}\right)^n x_0 + n\left(\frac{a}{2}\right)^{n-1} x_1.$$

C'est une combinaison linéaire des deux solutions linéairement indépendantes de l'équation $x_{n+2} = ax_{n+1} + bx_n$ données par $\left(\left(\frac{a}{2}\right)^n\right)_n$ et $\left(n\left(\frac{a}{2}\right)^n\right)_n$.

Examinons le cas particulier important où a = E et b = -1. Dans ce cas

$$\Delta = E^2 - 4.$$

Si |E| > 2 alors la matrice A admet deux valeurs propres distinctes

$$\lambda_1 = \frac{E - \sqrt{E^2 - 4}}{2} \text{ et } \quad \lambda_2 = \frac{E + \sqrt{E^2 - 4}}{2}.$$

Dans ce cas, pour tout $n \geq 2$ on a

$$x_n = \frac{1}{\sqrt{\Delta}} (\lambda_2^{n-1} - \lambda_1^{n-1}) x_0 + \frac{1}{\sqrt{\Delta}} (\lambda_2^n - \lambda_1^n) x_1.$$

Si |E| < 2 alors la matrice A admet deux valeurs propres complexes conjuguées $\lambda_1 = \frac{E - i\sqrt{4 - E^2}}{2}$ et $\lambda_2 = \frac{E + i\sqrt{4 - E^2}}{2}$. Ces deux valeurs propres sont de modules 1. Dans ce cas, pour tout $n \ge 2$ on a

$$x_n = \frac{b}{\sqrt{\Delta}} (\lambda_2^{n-1} - \lambda_1^{n-1}) x_0 + \frac{1}{\sqrt{\Delta}} (\lambda_2^n - \lambda_1^n) x_1.$$

Si |E|=2 alors la matrice A admet une valeur propres double $\lambda=\frac{E}{2}$. Dans ce cas, pour tout $n\geq 2$ on a

$$x_n = -(n-1)\lambda^n x_0 + n\lambda^{n-1} x_1 = -(n-1)\left(\frac{E}{2}\right)^n x_0 + n\left(\frac{E}{2}\right)^{n-1} x_1.$$

Avec le théorème de Cayley-Hamilton

Par la division euclidienne de X^n par $P_A(X) = X^2 - aX - b$, il existe deux constantes α, β on a :

$$X^n = P_A(X)Q(X) + \alpha X + \beta.$$

Grâce au théorème de Cayley-Hamilton,

$$A^n = \alpha A + \beta I_2.$$

Il suffit de trouver α, β . Il y a plusieurs cas.

Si $\Delta \neq 0$ alors $P_A(X)$ a deux racines distinctes λ_1, λ_2 .

$$\lambda_1^n = \alpha \lambda_1 + \beta$$

$$\lambda_2^n = \alpha \lambda_2 + \beta.$$

Ainsi

$$\alpha = \frac{\lambda_2^n - \lambda_1^n}{\lambda_2 - \lambda_1}$$
 et $\beta = \frac{\lambda_1 \lambda_2^n - \lambda_2 \lambda_1^n}{\lambda_1 - \lambda_2}$.

Comme $\lambda_1\lambda_2=-b$ et $\lambda_2-\lambda_1=-\sqrt{\Delta}$ on a

$$\alpha = \frac{\lambda_2^n - \lambda_1^n}{-\sqrt{\Delta}}$$
 et $\beta = \frac{b}{\sqrt{\Delta}} \left(\lambda_2^{n-1} - \lambda_1^{n-1} \right)$

Finalement, en tenant compte du fait que $a\lambda_i + b = \lambda_i^2$, on a

$$A^{n} = \frac{\lambda_{2}^{n} - \lambda_{1}^{n}}{-\sqrt{\Delta}} A + \frac{b}{\sqrt{\Delta}} \left(\lambda_{2}^{n-1} - \lambda_{1}^{n-1} \right) I_{2} = \frac{1}{\sqrt{\Delta}} \begin{pmatrix} \lambda_{2}^{n+1} - \lambda_{1}^{n+1} & b\lambda_{2}^{n} - b\lambda_{1}^{n} \\ \lambda_{2}^{n} - \lambda_{1}^{n} & b\lambda_{2}^{n-1} - b\lambda_{1}^{n-1} \end{pmatrix}$$

Si $\Delta=0$ alors pour trouver α,β on utilise le fait que $\lambda=a/2$ est racine double de $P_A(X)$:

$$\lambda^n = \alpha\lambda + \beta$$
$$n\lambda^{n-1} = \alpha.$$

ou encore

$$\alpha = n\lambda^{n-1}$$
 et $\beta = -(n-1)\lambda^n$.

Finalement, on retrouve que

$$A^{n} = n\lambda^{n-1}A - (n-1)\lambda^{n}I_{2} = \begin{pmatrix} (n+1)\lambda^{n} & -n\lambda^{n+1} \\ n\lambda^{n-1} & -(n-1)\lambda^{n} \end{pmatrix}$$