Protein Engineering:

Structural & Functional Analysis

Protein Engineering: Structural & Functional Analysis

Contents:

- **❖** Introduction:
 - Amino acid and its classification
 - Isoelectric point
- **Types of Protein Structure:**
 - Primary Structure
 - Secondary structure
 - Tertiary structure
 - Quaternary structure
- Proteolytic cleavage
- Protein purification:
 - On the basis of Size
 - *On the basis of charge to mol. weight*
- Applications
- ❖ Objective questions and answer

Introduction:

- □ Proteins are biologically functional molecules and polymers of structural units called **amino acids** i.e. amino acids are the building blocks (monomers) of proteins.
- ☐ Amino acids are organic molecules with carboxyl and amino groups and differ in their properties due to differing side chains, called **R** groups
- The α-carbon is the central point in the backbone of every amino acid. i. e. before the carbonyl carbon atom in the molecule.

□ 20 different types of amino acid exist as zwitter ion form contain one functional group have a +ive charge and the other have a negative (-ive) charge i.e. overall charge is zero.

Classification of Amino acid

- \Box They are classified on the basis of :
 - \triangleright R group that is attached to α -carbon.
 - > Source of energy for the body.

R group attached to α -carbon.

Hydrophobic (Nonpolar side chains)

Hydrophilic (Polar side chains)

Acidic (Negatively charged)

Basic (Positively charged)

Zwitter ion

Hydrophobic (Nonpolar side chains): CH₃ CH₃ CH₃ Side chain CH2 CH3 CH3 (R group) CH3 CH, H3C-CH H₃N⁺-C-C-O Glycine Isoleucine Valine Leucine Alanine (Gly or G) (Leu or L) (Ile or I) (Val or V) (Ala or A) CH₃ Pyrrolidine loop CH, CH, CH2 ÇH, H,C H₃N⁺-H₃N+-C-H₃N⁺-H₂N+ Methionine Phenylalanine Tryptophan Proline (Trp or W) (Met or M) (Phe or F) (Pro or P)

2. On the basis of source of energy for the body.

Three Types:

- Essential amino acids
- Nonessential amino acids
- Conditional amino acids
- Essential amino acids cannot be made by the body. They must come from food.

Example: VIF HRK L Me TW (10)

• Nonessential amino acids can be produced by our body, even if we do not get it from the food.

Examples: D N A S E G Y (7)

 Conditional amino acids usually not essential, except in times of illness and stress.

Examples: P C Q (3)

Peptide bonds & Its Formation:

- Amino acids are linked by **Peptide Bonds** to form a polypeptide chain i.e. each polypeptide has a unique linear sequence of amino acids, with a carboxyl end (C-terminus) and an amino end (N-terminus).
- In a polypeptide chain dihedral angles are as follows:

 ϕ (phi) is the angle between $C\alpha - N$ ψ (psi) is the angle between $C\alpha - C$

Isoelectric Point (pI)

- It is the pH at which a amino acid carries no net electrical charge.
- The net charge on the molecule is affected by the pH and can become more positive or negative due to the gain or loss of protons, respectively.

$$pI = \frac{pK_{a1} + pK_{a2}}{2}$$

Zwitter ion

pKa describes acid dissociation constant

$$pKa = -log10 Ka$$

Note: The lower the pKa value, the stronger the acid.

If P^H> pKa (Deprotonation); If P^H< pKa (Protonation)

If P^H> pKa (Deprotonation); If P^H > pKa (Deprotonation)

Types of Protein Structure:

• Primary Structure

- It is the simplest level of protein structure.
- The linear sequence of amino acids within a protein is considered the primary structure of the protein.
- It is stabilized by Peptide bond (Covalent bond)

Secondary Structure

- It is regular folding of polypeptide backbone of primary structure.
- The most common types of secondary structures are the α helix and the β pleated sheet.
- Both structures are held in shape by hydrogen bonds, formed between the carbonyl O of one amino acid and the H of other amino acids.

Primary Structure Intrachain H-bonding **β-Sheet** Interchain H-bonding

Secondary Structure

α-Helix

In an α helix, C=O and N-H group is hydrogen-bonded to a peptide bond 4 residues away i.e.

CO(n) to $NH(n+4^{th})$

- The structure repeats (turn) itself every5.4 A along the helix axis (pitch).
- α helix have 3.6 amino acid residues/turn, i.e. a helix 36 amino acids long would form 10 turns.
- The separation of each amino acids along the helix axis is 5.4/3.6 or 1.5 A i.e the α helix has a rise/aa of 1.5 A.

β-sheets

- When two adjacent β-strands line up they can form bridges of hydrogen bonds. They can be in either **parallel** or **anti-parallel** orientation.
- In parallel orientation, the carbonyl oxygen and the amide hydrogens are staggered.
- In anti-parallel the carbonyl oxygen and the amide hydrogen are placed directly opposite to form hydrogen bond i.e. anti-parallel is more stable.

Parallel β Sheets

C-terminus
$$\begin{pmatrix} C_{\alpha} & C_{\alpha} &$$

Antiparallel β Sheets

Tertiary Structure

- The tertiary structure is the way the polypeptide chain coils and turns to form a complex molecular shape (i.e. the 3D shape)
- It is caused by interactions between R groups; including H-bonds, S-S bridges, ionic bonds and hydrophobic interactions

Quaternary Structure

- Multiple polypeptides may interact to form a single, larger, biologically active protein (quaternary structure)
- It also held together by a variety of bonds (similar to tertiary structure)

Proteolytic cleavage

- It is important in laboratory experiments where it is often useful to work with specific peptide fragments instead of entire proteins.
- Therefore, **proteases** often have a specific recognition site where the peptide bond is cleaved.

Example: Trypsin cleaves at C terminal of arginine (R) or lysine (K) residues

Proteases	Cleavage points	Amino acid
Trypsin	(C)	Lys (K), Arg (R)
Chymotrypsin	(C)	Phe (F), Trp (W), Tyr (Y)
Pepsin	(N)	Phe (F), Trp (W), Tyr (Y)
Cyanogen bromide (CNBr)	(C)	Met (M)
Pepsin CNBr	CN	NBr
Phe Trp Met Gly — Ala –	Lys—Leu—Pro—Met—	Asp — Gly— Arg — Cys — Ala — Gln —
Chymotrypsin	Trypsin	Trypsin

Protein purification: 1. On the basis of Size

2. On the basis of charge to mol. weight

1. On the basis of Size:

Size-exclusion chromatography

- Also called gel filtration, separates proteins according to size.
- The column matrix is a cross-linked polymer with pores of selected size.
- Larger proteins migrate faster than smaller ones, because they are too large to enter the pores and hence take a direct route through the column.
- The smaller proteins enter the pores and are slowed as they enter into the pores of the column.

by size; larger molecules pass more freely, appearing

in the earlier fractions.

2. On the basis of charge to mol. weight

Two-dimensional electrophoresis

- Proteins are first separated by **isoelectric focusing** in a cylindrical gel. The gel is then laid horizontally on a second, slab-shaped gel, and the proteins are separated by SDS-PAGE.
- Horizontal separation reflects differences in IP & vertical separation reflects differences in molecular weight.

Seconddimension

SDS polyacrylamide gel electrophoresis

Proteins are separated based on their polypeptide chain length by electrophoresis in a polyacrylamide gel with an appropriate mesh size.

Questions and Answer

Q. The peptide Ala-Arg-Gln-Met-Thr-Lys-Val, was digested with Cyanogen bromide to produce (IISc Banglore 2005, 2019)

- A. Ala-Arg-Gln + Met-Thr-Lys-Val,
- B. Ala-Arg-Gln-Met-Thr + Lys-Val,
- C. Ala-Arg-Gln-Met + Thr-Lys-Val,
- D. Ala-Arg + Gln-Met-Thr-Lys-Val,

Q. Hydrolysis of a peptide involves cleavage of the bond between the atoms

A. N and Cα

GAT**E-2016**

- B. C and O
- C. Ca and C
- D. N and C

THANK

YOU