생성적 적대 신경망(GAN) 머신러닝을 활용한 글의 이미지화

2020년 전기 졸업과제 최종 발표 (2020.09.25)

GAN다 박창조

정보컴퓨터공학전공 201524461 박 성국 정보컴퓨터공학전공 201724557 장 수현 정보컴퓨터공학전공 201724480 박 창조

INDEX

- 1.개요
- 2. 연구 사례
- 3. 설계
- 4. 구현
- 5. 분석 및 평가
- 6. 발전 방향

1. 개요

주제

생성적 적대 신경망(GAN) 머신러닝을 활용한 글의 이미지화

생성자 (Generator)

Generative Adversarial Network

식별자 (Discriminator)

1. 개요

배경

2019 국민 독서실태 조사에 따른 '종이책 독서율' 변화 추이(성인·학생)

커뮤니티 '3줄 요약' 댓글 캡처 화면

커뮤니티 '길어서 패스' 댓글 캡처 화면

연구 사례 설계 구현 분석 및 평가 개요 발전 방향

1. 개요

목표

TEXT

to

→ IMAGE

입력 – 객체 묘사 문장 ▶ ▶ 출력 1 – 이미지 생성 ▶ ▶ 출력 2 – 이미지 화풍 적용

숲 속 어느 마을에 귀가 크고 뾰족 하고, 눈과 코가 까맣고, 이마와 꼬리는 갈색 털을, 배는 하얀 털을 가진 여우가 살고 있었어요.

2. 연구 사례

- 이미지 생성

Text-to-Image Generation on COCO

연구 사례 설계 기구현 분석 및 평가

2. 연구 사례

Microsoft Microsoft Al

- 이미지 생성 (Text-to-Image)

개요

AttnGAN

We have created a bot capable of creating an image based on the description of a user, pixel by pixel, from scratch, also returning the sequence of the process from a low resolution image to the final art.

- GitHub에 코드 제공
- 인터페이스 미제공

- 한글 사용 사례 無
- 화풍 미적용

발전 방향

2. 연구 사례

- 화풍 적용 (Image-to-Image)

pix2pix

- Paired Data

CycleGAN

- Unpaired Data
- GitHub에 코드 제공
- 인터페이스 미제공
- 이미지 생성 불가능

2. 연구 사례

>>> 시스템 기능 목표

AttnGAN, CycleGAN, 과제 시스템의 비교표

	AttnGAN	CycleGAN	과제 시스템
인터페이스 제공	X	X	0
한글 사용 가능	×	무관	Ο
이미지 생성	0	×	0
화풍 적용	×	Ο	Ο

- ✔ 사용자에게 웹 인터페이스 제공해야 한다.
- ✓ 사용 대상은 한국인으로 한글 입력이 가능하도록 해야 한다.
- ✓ 한 시스템 내에서 이미지 생성과 화풍 적용이 모두 이뤄져야 한다.

3. 설계

전체 시스템 설계

시스템 DFD

3. 설계

시스템 세부 설계 1

AttnGAN 구조

3. 설계

시스템 세부 설계 2

CycleGAN 구조

4. 구현

(1) 라이브러리 테스트 - 개발환경

- ※ 딥러닝에서는 CPU보다 GPU의 성능이 중요
 - 구글 코랩
 - 충분한 메모리
 - 비교적 높은 GPU 성능 VS
 - ⇒트레이닝가능

- 로컬
 - 낮은 메모리
 - 매우 낮은 GPU성능
 - ⇒ 사실상 트레이닝 불가능

4. 구현

(1) 라이브러리 테스트 – 초기 결과물

AttnGAN(초기)

이미지 2889장, 텍스트 28890문장 에포크: DAMSM-600, Attn-600

CycleGAN(초기)

사과 이미지 1109장, 오렌지 이미지 928장 에포크:100

⇒ 낮은 퀄리티

개요 | 연구 사례 실계 구현 분석 및 평가 | 발전 방향

4. 구현

(2) CycleGAN 동화풍 데이터 수집

- 동화 풍 이미지
- 육안으로 봤을 때 비슷한 느낌의 이미지 수집
- ⇒ 동화 풍 데이터 약 3000장 수집 후 품질이 떨어지는 데이터 약 2000장을 제외하여 양질의 이미지 약 1000장 선정

4. 구현

(2) CycleGAN 동화풍 데이터 수집

⇒ 하지만 <mark>절대적인 트레이닝 횟수 부족</mark>으로 인해 눈에 띄는 차이가 나타나지 않음.

개요

연구 사례

설계

구현

분석 및 평가

발전 방향

4. 구현

(3) AttnGAN 한글화 문제

텍스트 데이터 오 번역

the small bird has a large white eye, a short orange and gray bill, and dark colored secondaries.

수 가지고 있다. 작은 새는 큰 하얀 눈, 짧은 주황색과 회색의 지폐, 그리고 어두운 색의 2차관을 가지고 있다.

- Bill(새의 부리)이 '지폐'로 번역
 - Secondaries(보조)가 '2차관'으로 번역

부적합한 형태소 분석기

한글 자연어 처리에 부적합

4. 구현

(3) AttnGAN 한글화 문제

이미지 약 2800장, 한글 텍스트 약 28000문장 트레이닝, DAMSM: epoch 600, Attn: epoch 500

⇒ 새라고 보기에는 너무 낮은 퀄리티

4. 구현

(4) 시도 1 : CycleGAN 화풍 다양화

동양화 데이터셋 일부

수묵화 데이터셋 일부

4. 구현

(4) 시도 2 : AttnGAN 한글 데이터 품질 개선

- 파파고 번역 결과 <mark>오역</mark>이 다소 발견됨.
- 같은 의미의 단어를 다른 단어로 번역
- ⇒ 구글 번역기를 통해 재 번역

- 기존의 NLTK는 영어 문장 분석에 적합
- 한글 문장 분석에 적합한 KoNLPy
- 명사, 형용사, 동사에 해당하는 품사만 포함
- ⇒ NLTK를 KoNLPy로 교체

4. 구현

(4) 시도 3: 트레이닝 이어서 하기

여러가지를 개선했지만 근본적으로 절대적인 트레이닝 횟수 부족

트레이닝에 사용되는 여러가지 변수들과 업데이트 된 가중치를 저장해두면 트레이닝이 중지되더라도 중지된 지점 이후부터 다시 이어하기가 가능

트레이닝 횟수에 사실상 제한이 없어지면서 결과물의 정확도와 퀄리티가 크게 향상

4. 구현

(5) 패키징 및 웹 호스팅

- Python으로 작성된 마이크로 웹 프레임워크
- Werkzeug 툴킷과 Jinja2 템플릿 엔진에 기반
- ⇒ Python으로 작성된 프로그램과 웹을 연결

- Python을 기반으로 하는 웹 호스팅 서비스
- 온라인 통합개발환경 및 Bash 인터페이스 제공
- ⇒ 작성한 프로그램을 웹으로 호스팅

4. 구현

(6) 최종 구현 결과 – AttnGAN

AttnGAN

- 새(bird) 이미지 생성 가능(정확도 비교적 높음)
- 토끼 이미지 생성 가능(정확도 비교적 낮음)
- 호랑이 이미지 생성 가능(정확도 매우 낮음)

4. 구현

(6) 최종 구현 결과 - CycleGAN

원본 세잔 수묵화 모네 동양화 반고흐

CycleGAN

- 동양화, 수묵화, 세잔, 반 고흐, 모네 화풍 적용 가능
- 이미지에 따라 변화의 정도에 차이가 있음

개요

연구 사례

설계

구현

분석 및 평가

발전 방향

5. 분석 및 평가

AttnGAN - DAMSM

- 평균값인 60k를 최적값으로 설정
- Iteration x Epoch = 60000

Iteration = 30

Epoch = 2000

- 최적 epoch를 2000으로 설정

- S_Loss : 문장 레벨 손실

- W_Loss : 단어 레벨 손실

5. 분석 및 평가

AttnGAN – Attentional Generative Network

- Loss_G : 생성자(Generator)의 손실 함수(Loss Function) 값
- Loss_D : 식별자(Discriminator)의 손실 함수(Loss Function) 값

5. 분석 및 평가

AttnGAN 결과

- 111

- 토끼

- 호랑이

5. 분석 및 평가

CycleGAN

- loss_cycle_a : 이미지를 도메인 A 이미지를 도메인 B로 변환 후 다시 A로 변환했을 때의 손실 함수 값
- loss_cycle_b : 이미지를 도메인 B 이미지를 도메인 A로 변환 후 다시 B로 변환했을 때의 손실 함수 값

5. 분석 및 평가

한글 토큰 정확도

<실험 환경>

입력 데이터: 한글 문장 약 3000개

* 명사, 형용사, 동사만 포함

VS

- 전체 토큰 개수 : 311,586개
- 5회 이하의 토큰 개수 : 4,805개
- 전체 토큰에 대한 비율 : 1.542%

- 전체 토큰 개수 : 283,181개
- 5회 이하의 토큰 개수 : 3,361개
- 전체 토큰에 대한 비율: 1,187%

개요 │ 연구 사례 │ 설계 │ 구현 │ 분석 및 평가 │ 발전 방향

5. 분석 및 평가

평가

전체적인 결과에 대한 평가

- 새에 대한 사진 품질은 양호
- 다른 동물에 대한 사진 품질은 비교적 낮음
- 화풍 적용 후 이미지 품질은 매우 만족스러운 결과
- 웹 디자인 또한 사용자 친화적으로 만족스러운 결과

아쉬운 점

- 데이터 로딩
 - 다른 방법을 모색하는데 많은 시간 소비
- 데이터 품질
 - 정렬된(Aligned) 이미지 데이터 수집
 - 일관성 있는 텍스트

6. 발전 방향

향후 과제

개요 | 연구 사례 | 설계 | 구현 | 분석 및 평가 | 발전 방향

6. 발전 방향

활용 방안

난독증, 아판타시아 병을 앓는 환자들을 위한 도움

글만 있는 소설이나 책에 자동으로 그림 삽입

역할 분담

장 수현 박 창조 박 성국 • AttnGAN 한글화 작업 • AttnGAN 한글화 작업 - 영어 텍스트 데이터 한글화 - 다른 객체 한글 텍스트 데이터 생성

- 다른 객체 한글 텍스트 데이터 생성 • 웹 UI 생성 및 모듈 통합 작업 - AttnGAN 동물 데이터 한글 학습
 - 웹 인터페이스 생성
 - 웹 인터페이스, 모듈 통합
 - 서버 개설 및 웹 호스팅
- AttnGAN 이미지 생성 작업
- AttnGAN 이미지 품질 향상

- Konlpy 라이브러리 확인 및 변경

- AttnGAN 한글화

- CycleGAN 화풍 변환 작업
- CycleGAN 라이브러리 테스트
- 이미지 화풍 변환 테스트
- 화풍 이미지 데이터 수집
- CycleGAN 화풍 데이터 학습
- 세잔, 모네, 고흐 화풍 적용

- AttnGAN 이미지 생성 작업
- 다른 객체 이미지 데이터 수집
- CycleGAN 화풍 변환 작업
- 화풍 이미지 데이터 수집
- 객체 이미지 데이터 수집
- CycleGAN 화풍 데이터 학습
- 수목화, 동양화 화풍 적용
- CycleGAN 화풍 품질 향상

- AttnGAN 한글화 작업
- 다른 객체 한글 텍스트 데이터 생성
- AttnGAN 객체 데이터 한글 학습
- 환경 개선을 위한 작업
- Google Cloud Platform 환경 확인
- AttnGAN 이미지 생성 작업
- AttnGAN 라이브러리 테스트
- AttnGAN 최소 데이터 set 측정
- 기존 동물 이미지 생성 테스트
- 다른 객체 이미지 데이터 수집
- AttnGAN 객체 데이터 영어 학습
- AttnGAN 이미지 생성 품질 향상

감사합니다.

GAN다 박창조

정보컴퓨터공학전공 201524461 박 성국 정보컴퓨터공학전공 201724557 장 수현 정보컴퓨터공학전공 201724480 박 창조