Worksheet # 8

MATH 3160 – Complex Variables Miguel Gomez

Completed: October 19, 2025

Problem 1

A contour C is parametrized by $\gamma(t) = e^{i(\pi - t)}$ $(0 \le t \le \pi)$. Draw the contour C, carefully indicating its starting point and ending point.

$$e^{i(\pi-t)} = e^{i\pi}e^{-it}$$

This can be understood as taking the path for e^{-it} which from 0 to π should sweep around clockwise from 0 to $-\pi$. Every point in this path is then rotated in a counter-clockwise rotation by π . So the path is the following:

Problem 2

Write down the parametrization of the following contour:

Starting from the blue point above, we move in a circular path along the arc, landing us at the red point. The following is the parametrization of that arc:

$$\gamma_1(t): [0,1] \to 2e^{-i\pi(t+1)} = 2e^{-i(\pi t)}e^{-i\pi} \quad 0 \le t \le 1$$

We start gamma at π by including the factor of $e^{-i\pi}$. Then as t sweeps from 0 to 1, we end at $e^{-i2\pi}$, effectively rotating the semicircular path on the bottom of the circle around the origin. Then for γ_2 we will then do the following:

$$\gamma_2: [1,2] \to 2 + 2i(t-1) \quad 1 \le t \le 2$$