Retour sur la formation

Bonnes pratiques pour une recherche reproductible en écologie numérique

Les principaux outils - Data toolbox

Reproductible research

Data + Meta-data + Materials/Methods

Data Management: keep raw data, script the changes

Software: Conventions when writing your code, scripts

Software environment

Workflow

Tracking Changes: versionning

Collaboration: sharing the code with others

Project Organization: Research compendium

Manuscripts: automate the manuscript compilation process as much as possible

Reproductible research

Data + Meta-data + Materials/Methods

Data Management: keep raw data, script the changes

Software: Conventions when writing your code, scripts

Software environment → Renv

Workflow → **Targets**

Tracking Changes: versionning → **Git**

Collaboration: sharing the code with others → **GitHub**

Project Organization: Research compendium

Manuscripts: automate the manuscript compilation process as much as possible → RMarkdown

Git / GitHub

Keep versions of your code

Git / GitHub

Keep versions of your code

Git / GitHub

Renv

Keep package version, run on other machines

renv.lock file to share (on GitHub)

Renv


```
renv::init()
renv::install("pkg_name")
renv::install("pkg name@version")
renv::install("github/pkg_name")
## Install packages listed in DESCRIPTION (and/or R and Rmd files) ----
renv::install()
renv::status()
renv::snapshot()
renv::clean()
## Restore local environment ----
renv::restore()
```

Targets

Visualize links between data, scripts, and results & keep them up-to-date

DEFINITION WORKFLOW

- 1. Write a function → dans fichier make.R
- 2. Add a target to the pipeline \rightarrow dans fichier $_\mathtt{targets.R}$
- 3. Visualize pipeline → dans la console (tar visnetwork() ou tar glimpse())
- 4. Make the pipeline → dans la console (tar make())
- 5. Check the results → dans la console (tar read() ou tar load())
- 6. Correct

Targets

Visualize links between data, scripts, and results & keep them up-to-date

DEFINITION WORKFLOW

- 1. Write a function → dans fichier make. R
- 2. Add a target to the pipeline → dans fichier targets.R
- 3. Visualize pipeline → dans la console (tar visnetwork() ou tar glimpse())
- 4. Make the pipeline → dans la console (tar make())
- 5. Check the results → dans la console (tar read() ou tar load())
- 6. Correct


```
library(targets)
 3 - create plot <- function(data) {</pre>
       ggplot(data) +
        geom histogram(aes(x = Ozone), bins = 12) +
         theme_gray(24)
    list(
       tar target(raw data, airquality),
       tar target(data, raw data %>% filter(!is.na(Ozone)));
14
       tar target(hist, create plot(data)),
       tar_target(fit, {
17
         biglm(Ozone ~ Wind + Temp, data)
```

Targets

path_to_data

Rmarkdown

Integrate **analyses** and **text** in the same document

In practice

Header / Content / Code chunks

Biblio

Export (Knit)

Rmarkdown

.Rmd

Results The following map illustrates the distribution of the time series. Each point is colored according to its trend and sized according to the magnitude of its trend. ** ** ** ** Among the `r length(unique(LPI.long\$id))`, `r sum(LPI.mod\$slope_p<0.05 & LPI.mod\$slope>0)` are increasing, `r sum(LPI.mod\$slope_p<0.05 & LPI.mod\$slope<0)` are decreasing and 'r sum(LPI.mod\$slope_p>=0.05)` are showing constant trends (p>0.05).

.html

Results

The following map illustrates the distribution of the time series. Each point is colored according to its trend and sized according to the magnitude of its trend.

Figure 1: Terrestrial vertebrates population declines and increases worldwide.

Take home message

→ Tidy your project directories

→ Keep track of changes and versions

→ Automate your workflow

Small effort to adopt => Save much time!

Marwick B et al. (2018) Packaging Data Analytical Work Reproducibly using R (and friends). Peerl Preprints 6:e3192v2.

https://ropensal.aithub.io/reproducibility-auide/sections/references

initiative

(c)(1)