Design of a Single-Bit Half Adder and a Full Adder

Guideline:

- 1) Please prepare your submission in English. No Chinese submissions will be accepted.
- 2) Please put all your **simulation results** (including figures and values of coefficients) as well as some **descriptions** in a report (.PDF) and submit it to Blackboard. Also, please pack <u>all the source files</u> of each assignment to a zip with name 'EE213 Lab3 + your ID + your Name', and submit the source file package to this link:
 - (http://pan.shanghaitech.edu.cn/cloudservice/outerLink/decode?c3Vnb24xNjY3NjM1Mzc4O DM1c3Vnb24=)
- 3) Please submit on time. <u>Late submission less than 24h will only get 60% scores. Late submission</u> more than 24h will NOT be accepted.
- 4) Please work on your own. Discussion is permissible, but identical submissions are unacceptable! Here is the Academic Integrity policy of SIST. (https://sist.shanghaitech.edu.cn/2019/1107/c2842a46321/page.htm)

Design Goal:

The goal of this lab is to design <u>a single-bit half adder and full adder</u> of <u>45nm process</u> using Cadence Virtuoso and simulate them in HSPICE simulators. For each adder, you need to go through two phases:

- 1) **Schematic and Pre-simulation**: Do a literature survey on the half/full adder and design a schematic of one structure. You can test the functionality of your structure by SPICE.
- 2) Layout and Post-simulation: Draw the layout of your adder structure and extract the netlist to simulate in HSPICE simulators.

Design requirements:

- 1) Use **complementary static CMOS logic** in your design. No pass transistor or dynamic circuit.
- 2) Include the parasitic capacitances when extracting the layout.
- 3) Follow the naming conventions and input/output conditions given below.

	Half-adder	Full adder	Description
Input pin	A, B	A, B, Cin	Add buffers to input port A and B
Output pin	Cout, S	Cout, S	Add a load of 0.1pF at ouput port
Supply voltage	VDD! GND!		VDD!=0.7V

4) Your half adder and full adder should be like the following figure. You can use your inverter designed in Lab 1 as a buffer.

Simulation guidance:

1) Download the following files from Blackboard:

"halfadder_delay.sp", "fulladder_delay.sp", "halfadder_power.sp", "fulladder_power.sp".

You should include your netlist (named as halfadder.sp or fulladder.sp), the model files (PMOS_VTL.inc and NMOS_VTL.inc), the input signals and load capacitance in each of these files in your pre/post simulation.

Delay measurement: Run "halfadder_delay.sp" and "fulladder_delay.sp" to test the functionality of your adders using the following input patterns. Also, measure the worst case delay by providing the adders with proper input patterns.

Input pattern for half adder test cases:

A: 0 0 1 1 Vin1 A gnd PULSE (0v 0.7v 9.9n 0.1n 0.1n 9.9n 20n)

B: 0 1 0 1 Vin2 B gnd PULSE (0v 0.7v 4.9n 0.1n 0.1n 4.9n 10n)

Input pattern for full adder test cases:

A: 0 0 0 0 1 1 1 1 Vin1 A gnd PULSE (0v 0.7v 19.9n 0.1n 0.1n 19.9n 40n)

B: 0 0 1 1 0 0 1 1 Vin2 B gnd PULSE (0v 0.7v 9.9n 0.1n 0.1n 9.9n 20n)

Cin: 0 1 0 1 0 1 0 1 Win3 Cin gnd PULSE (0v 0.7v 4.9n 0.1n 0.1n 4.9n 10n)

3) After you find your maximum delay, replace "10NS" in command line ".PARAM DELAY_MAX =10NS" in "halfadder_power.sp" and "fulladder_power.sp" with **your measured maximum delay** and run simulation to measure power dissipation at maximum operating frequency.

Note: the input pattern for simulating power should not be changed.

Input patterns half adder:

A: 0 1 0 1 Vin1 A gnd PULSE (0v 0.7v 4.9n 0.1n 0.1n 4.9n 10n)

B: 0 0 1 1 Vin2 B gnd PULSE (0v 0.7v 9.9n 0.1n 0.1n 9.9n 20n)

Input patterns full adder:

A: 0 1 0 1 0 1 0 1 Vin1 A gnd PULSE (0v 0.7v 4.9n 0.1n 0.1n 4.9n 10n)

B: 0 0 1 1 0 0 1 1 Vin2 B gnd PULSE (0v 0.7v 9.9n 0.1n 0.1n 9.9n 20n)

Cin: 0 0 0 0 1 1 1 1 Vin3 Cin gnd PULSE (0v 0.7v 19.9n 0.1n 0.1n 19.9n 40n)

Submissions:

A report that contains:

1) Schematic and Pre-simulation:

- Explain your design of half adder and full adder briefly.
- Schematic of your half adder and full adder.
- · Give some bullet points explaining how you optimized your design.
- Show the input and output waveforms of the input test cases.
- Show the worst case delay and its corresponding input/output waveforms for VDD! = 0.7V
- Give the power consumption at the maximum operating frequency for VDD! = 0.7V.

2) Layout and Post-simulation:

- Layout (with the area information) of your half adder and full adder.
- LVS, DRC and PEX screenshots showing no violations.
- Show the input and output waveforms of input test cases.
- Show the worst case delay and its corresponding input/output waveforms for VDD! = 0.7V.
- Give the power consumption at the maximum operating frequency for VDD! = 0.7V.

Attachments:

- 1. Pack the lab files of test cases, worst case delay and power consumption measurements in presimulation with title "test_case", "worst_delay", and "power". Put these three files into a folder named as "half adder pre" or "full adder pre".
- 2. Similarly, pack the lab files of test cases, worst case delay and power consumption measurements in post-simulation with title "test_case", "worst_delay", and "power". Put these three files into a folder named as "half_adder_post" or "full_adder_post".
- 3. Pack these four files into a compressed file and name it with the title: 'EE213 Lab3 + your ID + your Name', and submit the source file package to this link: (http://pan.shanghaitech.edu.cn/cloudservice/outerLink/decode?c3Vnb24xNjY3NjM1Mzc4O DM1c3Vnb24=)