Maximum Flow

Problem ID: maxflow
CPU Time limit: 2 seconds
Memory limit: 1024 MB

Difficulty: 6.0

Author: Per Austrin

Source: KTH CSC Popup 2005

License: (cc) BY

Input

The first line of input contains a line with four non-negative integers, $2 \le n \le 500$, $0 \le m \le 10\,000$, $0 \le s \le n-1$ and $0 \le t \le n-1$, separated by single spaces, where n is the numbers of nodes in the graph, m is the number of edges, s is the source and t is the sink ($s \ne t$). Nodes are numbered from 0 to n-1. Then follow m lines, each line consisting of three (space-separated) integers u, v and v indicating that there is an edge from v to v in the graph with capacity v is v and v indicating that there is an edge from v to v in the graph with capacity v is v and v indicating that there is an edge from v to v in the graph with capacity v is v in the graph with capacity v in the graph with capacity v is v in the graph with capacity v in the graph with capacity v is v in the graph with capacity v in the graph with v in the graph wi

Output

The output should begin with a line containing three integers n, f, and m n is the number of nodes in the flow graph (same as in input), f is the size of a maximum flow from node f to node f in the flow graph, and f is the number of edges used in the solution. You may assume that $f < 2^{31}$.

Then there should be m' lines, each containing three integers u, v and x, indicating that x units of flow are transported from u to v. x must be greater than 0 and at most as big as the capacity from u to v. Each pair of vertices (u, v) should be given at most once in the output.

Sample Input 1

Sample Output 1

4 5 0 3	4 3 5	
0 1 10	0 1 2	
1 2 1	0 2 1	
1 3 1	1 2 1	
0 2 1	1 3 1	
2 3 10	2 3 2	

Sample Input 2

Sample Output 2

Sample Input 3

Sample Output 3

2 1 1 0	2 0 0
0 1 100000	