

OCELOTL: LARGE TRACE OVERVIEWS BASED ON MULTIDIMENSIONAL DATA AGGREGATION

OCELOTL: CLOSE ENCOUNTERS OF THE THIRD KIND

8th International Parallel Tools Workshop 1st October 2014

Damien Dosimont ^{1 2}, Youenn Corre ^{1 2}, Lucas M. Schnorr ³, Guillaume Huard ^{2 1}, Jean-Marc Vincent ^{2 1}

¹ Inria,

first.last@inria.fr,

² Univ. Grenoble Alpes, LIG, CNRS, F-38000 Grenoble, France first.last@imag.fr

³ Informatics Institute, UFRGS, Porto Alegre schnorr@inf.ufrgs.br

TRACE VISUALIZATION PROBLEMATIC

- ► Trace contents:
 - **SPACE** = application structure:
 - ▶ hardware components: clusters, machines, cores, etc.
 - ► **software** components: *processes, threads, etc.*
 - **TIME** = timestamped events:
 - ▶ function calls, communications, CPU load, malloc, etc.
- ► Traces can be **HUGE**
 - → **scalability issues** of space-time representations

PROBLEMATIC VISUALIZATION

OUR PROPOSAL MULTIDIMENSIONAL OVERVIEWS

- Several overviews generated thanks to data aggregation
 - Temporal
 - Spatiotemporal
- ► Showing **meaningful information** (phases, perturbations)
- ► Possibility to adjust dynamically the level of details

EXAMPLE: TEMPORAL OVERVIEW

EXAMPLE: SPATIOTEMPORAL OVERVIEW

THEORETICAL BACKGROUND : LAMARCHE-PERRIN METHODOLOGY

ADAPTING AN AGGREGATION METHODOLOGY

INFORMATION LOSS: KL DIVERGENCE

COMPLEXITY REDUCTION: SHANNON ENTROPY

TRADE-OFF: PIC

- ► For a given p: choose \mathcal{P} with the highest pIC
- ► Aggregate in priority most homogeneous values

VIVA: SPATIAL AGGREGATION (SCHNORR & LP)

TEMPORAL AGGREGATION AND VISUALIZATION

MINIMUM INFORMATION LOSS: P=0

MAXIMUM COMPLEXITY REDUCTION: P=1

INTERESTING TRADE-OFF

GENERATE A TRACE MICROSCOPIC MODEL

$$|X| = 2$$
, $\rho_x(s, t) = d_x(s, t)/d(t) \in [0, 1]$, $\rho_1(s, t) = 1 - \rho_2(s, t)$

AGGREGATE THE MICROSCOPIC MODEL

OCELOTL TOOL

- ► Implementation of the overview techniques
- ▶ Generic architecture. Add:
 - Your own aggregation operator (dimensions, metric)
 - Your own visualization
- ▶ Persistent caches to avoid long recomputations
- ► Integrated in Framesoc:
 - · Trace and tools management
 - Fast trace reading (DB gueries)
 - Interaction with other analysis tools
 - · Also enable to add you own tools

FRAMESOC

► Trace format compatibility : Pajé (Akypuera: tool to convert from OTF2, Tau), LTTng, KPTrace

PERFORMANCE: TEMPORAL ANALYSIS

Total analysis time as a function of trace size (100 time slices)

PERFORMANCE: TEMPORAL ANALYSIS

Total analysis time as a function of trace size (1000 time slices)

PERFORMANCE: SPATIOTEMPORAL ANALYSIS

Total analysis time as a function of trace size (30 time slices)

DEMONSTRATION

CONCLUSION

- Visualizations based on spatiotemporal data aggregation
 - Solves screen, computing and analyst capability limitations
 - Gives meaningful information about homogeneity (phases, perturbations)
- ▶ Implementation:
 - Interaction (zoom, switch to other tools)
 - Helps to drastically reduce computation times (caches)
 - Generic architecture: add your own aggregation and visualization
- ► Future work:
 - Extend methodology and design new algorithms $(\mathcal{H}(S) \times \mathcal{H}(S) \times \mathcal{I}(T)$, surface, etc.)
 - Improve visualization and interaction to get more details
 - · Framesoc: native compatibility with OTF2 (soon)

LINKS

Ocelotl:

http://github.com/dosimont/ocelotl

Framesoc:

http://github.com/generoso/framesoc

Viva:

http://github.com/schnorr/viva

THANK YOU FOR YOUR ATTENTION

OCELOTL: TEMPORAL AGGREGATION (1)

OCELOTL: TEMPORAL AGGREGATION (2)

GENERATE A TRACE MICROSCOPIC MODEL

DATA AGGREGATION METHODOLOGY

- ► A1. Choose a model and a metric
- ▶ A2. Choose on which dimension(s) aggregate
- ► A3. Define the operands
- ▶ A4. **Constrain** the aggregation : \rightarrow partitions $\mathcal P$ allowed
- ► A5. Define the operator
- ► A6. Define the **trigger** the aggregation condition
- ► A7. Build the algorithm satisfying A1-A6

A2-A5

- ▶ A2. We aggregate simultaneously on *T* and *S*
- ▶ A3. Operands: $(s, t) \in S \times T$
- ► A4. Constraint: $\mathcal{A}(S \times T) = \mathcal{H}(S) \times \mathcal{I}(T)$ Aggregation result is a partition $\mathcal{P}(S \times T) \in \mathcal{A}(S \times T)$
- ► A5. Operator: +
- ▶ A6. Trigger: maximize pIC of the partition $\mathcal{P}(S \times T)$

BEST CUT ALGORITHM

- ► Compute the partition with the highest pIC :
 - Cut an area: time, space (or no cut)
 - Best cut: the partition $\mathcal P$ where $\sum_{E\in\mathcal P}\operatorname{pIC}_E$ is max
 - Recursively cut and evaluate the partitions of $E_1, E_2 \in \mathcal{P}$
 - · Useless recomputation is avoided

A6. TRIGGER THE AGGREGATION

- Quantification of data reduction and information loss
 - aggregate the homogeneous areas
 - preserve the microscopic information of the heterogeneous areas
- ► Each $(S_k, T_{(i,j)}) \in A(S \times T)$ has an associated gain and loss
- ▶ gain and loss of a partition $\mathcal{P}(S \times T)$ is the sum of gain and loss of its content $(S_k, T_{(i,j)}) \in \mathcal{P}(S \times T)$

ELMQVIST-FEKETE CRITERIA

- ► Shneiderman : overview, zoom and filter, then get details on demand
- Elmqvist & Fekete: guidelines to design an overview visualization based on hierarchical aggregation
 - · G1. Entity Budget
 - · G2. Visual Summary
 - · G3. Visual Simplicity
 - · G4. Discriminability
 - · G5. Fidelity
 - G6. Interpretability

VISUALIZATIONS NOT FULFILLING THESE CRITERIA (1)

Example of Gantt chart - space-time diagram

VISUALIZATIONS NOT FULFILLING THESE CRITERIA (2)

KPTrace: G1 (time), G2, G4, G5

VISUALIZATIONS NOT FULFILLING THESE CRITERIA (2)

Pajé: G1 (space), G2

CG CLASS C, 64 PROCESSES ON G5K RENNES

LU CLASS C, 700 PROCESSES ON G5K NANCY

PERFORMANCES (SPATIOTEMPORAL)

	Case A	Case B	Case C	Case D
Application	CG, class C	CG, class C	LU, class C	LU, class B
Processes	64	512	700	900
Site	Rennes	Grenoble	Nancy	Rennes
Clusters (nodes)	parapide(8)	adonis(9), edel(24), genepi(31)	graphene(26), graphite(4), griffon(67)	paradent(38), parapide(21), parapluie(18)
Event number	3,838,144	49,149,440	218,457,456	177,376,729
Trace size	136.9 MB	1.8 GB	8.3 GB	6.7 GB

Ocelotl computation times (30 time slices)					
Trace reading + Microscopic description	5s	31 s	222 s	174 s	
Aggregation	<1s	<1s	2s	2s	