My title

Author One Author Two

1 Introduction

Introduction

2 Methods

Methods

 $\dots \top \times$

2.1 The Model

The Model

Let $s_i \in \mathbb{R}^2$ for each i = 1, ..., n denote a spatial location for which we have collected data, and $\mathbf{s} = (s_1, ..., s_n)^{\top}$ be the vector of all such locations. Then $Y(\mathbf{s})$ are univariate dependent variables and $\mathbf{X}(\mathbf{s}) = (X_1(\mathbf{s}), ..., X_p(\mathbf{s}))^{\top}$ are $p \times 1$ vectors of covariates. A linear regression model with spatially varying coefficients assumes $Y(\mathbf{s})$ are dependent on $\mathbf{X}(\mathbf{s})$ as follows:

$$Y(\mathbf{s}) = \sum_{j=1}^{p} X_r(\mathbf{s}) w_r(\mathbf{s}) + w_0(\mathbf{s}) + \epsilon(\mathbf{s}),$$

where $w_r(s)$ are the regression coefficients corresponding to $X_r(s)$, $w_0(s)$ are spatial random effects, and $\epsilon(s)$ are independently and identically distributed multivariate normal (MVN)

measurement errors, i.e.

$$\epsilon(\mathbf{s}) \sim \text{MVN}(0, \tau^2 I_n).$$

For convenience, we will treat $w_0(s)$ as the regression coefficients corresponding to $X_0(s) = \mathbf{1}_n$, a vector of length n with every element equal to 1.

For each $w_r(s)$, we assign a Gaussian process (GP) prior with squared exponential covariance, i.e.

$$w_r \sim GP(0, C(s, s'))$$
, where

$$C(s, s') = \sigma_r^2 \exp \phi_r^{-1} ||s - s'||^2.$$

We refer to $C(\cdot, \cdot)$ as the covariance function, which calculates the covariance between two locations s and s'. Squared exponential covariance is a commonly used covariance function due to useful properties such as infinite smoothness and gradual decrease in covariance with distance. The parameter σ_r^2 is the spatial variance and ϕ_r is the spatial decay, which indicates how quickly correlation decreases with the squared distance.

We assign inverse-gamma conjugate priors for the variance parameters τ^2 and each σ_r^2 . In addition, each phi_r is assigned a uniform prior. In summary,

$$au^2 \sim \text{Inv.Gamma}(\alpha_\tau, \beta_\tau),$$

$$\sigma_r^2 \sim \text{Inv.Gamma}(\alpha_r, \beta_r), \text{ and}$$

$$\phi_r \sim \text{Uniform}(l_r, u_r).$$

3 Conclusion

Conclusion