125 110 105

Asset Management: Investments

Capital Asset Pricing Model

Dr. Benjamin Wilding

03. Oktober 2018

Lernziele

- Du weisst, wie Portfolios mithilfe eines Ein-Faktor-Modells gebildet werden können und welche Vor- und Nachteile diese Modelle aufweisen.
- Du kannst erklären, welche Aussagen mithilfe des Capital Asset Pricing Models (CAPM) gemacht werden können und welche Annahmen hinter diesem Modell stehen.
- Du kennst die Unterschiede zwischen der Capital Market Line (CML) und der Security Market Line (SML).
- Du kannst die Kennzahlen Alpha und Beta beurteilen.
- Du kennst die wichtigsten Gründe, welche aus Sicht eines Investors für und gegen die Suche nach Alpha sprechen.

Ein-Faktor Modell

Grundidee

- Rendite einer Aktie ist abhängig von einem Faktor (z.B. einem makroökonomischen Faktor).
- Ausgangsgleichung:

$$r_i = E(r_i) + \beta_i m + e_i$$

 β_i : Sensitivität der Rendite zum Marktfaktor

m: Marktfaktor z.B. makroökonomischer Schock

 e_i : Firmenspezifischer Störterm

Vorteile:

- Anzahl an Inputparameter wird deutlich reduziert.
- Industrie-spezifische Aktienanalyse wird möglich.

Rendite und Risiko

• Schätzer für Sensitivitätsfaktor wird mittels Regressionsgleichung ermittelt:

$$R_i(t) = \alpha_i + \beta_i R_m(t) + e_i(t)$$

 R_i, R_m : Excess Return Wertpapier i, Markt

 α_i : Achsenabschnitt

 β_i : Steigung der Regression $\beta_i = \frac{\sigma_{iM}}{\sigma_{M}^2}$

 r_m : Marktrendite, meist ein breit diversifizierter Aktienindex

 e_i : Störterm mit Erwartungswert von Null

• Erwartete Rendite des Wertpapiers i:

$$E(R_i) = \alpha_i + \beta_i E(R_m)$$
, da $E(e_i) = 0$

• Gesamtrisiko der Aktie = Marktrisiko & firmenspezifisches Risiko

$$\sigma_i^2 = \beta_i^2 \sigma_M^2 + \sigma^2(e_i)$$

Diversifikation

• Firmenspezifisches Risiko eines gleichgewichteten Portfolios:

$$\sigma^{2}(e_{P}) = \left(\frac{1}{n^{2}}\right) \sum_{i=1}^{n} \sigma^{2}(e_{i}) = \frac{1}{n} \overline{\sigma}^{2}(e_{i})$$

Wenn nun n grösser wird, wird der Term kleiner und kann vernachlässigt werden.

Portfoliovarianz:

$$\sigma_p^2 = \beta_P^2 \sigma_M^2 + \sigma^2(e_P)$$

Figure 8.1 The variance of an equally weighted portfolio with risk coefficient β_{P} in the single-factor economy

Beispiel: Schätzer für Beta

Regressionsgleichung: $R_{ABB}(t) = \alpha_{ABB} + \beta_{ABB}R_{SPI}(t) + e_{ABB}(t)$

Beispiel: Schätzer für Beta

Regressionsoutput aus Excel:

Regression Statistics

Multiple R	0.76
R Square	0.58
Adjusted R Square	0.58
Standard Error	0.01

	Coefficients	Standard Error	t Stat	P-value
Intercept	0.00	0.00	0.18	0.86
SPI	1.02	0.03	35.46	0.00

Markowitz vs. Ein-Faktor Modell

- Portfoliooptimierung nach Markowitz: Bestimmung des optimalen Portfolios, in dem sämtliche Kovarianzen benötigt werden.
 - → Sehr aufwändiges und rechenintensives Verfahren
- Verfahren wird vereinfacht, indem darauf verzichtet wird, die Kovarianzen untereinander zu schätzen. Einzig die Sensitivität eines Wertpapiers im Vergleich zum Markt ist von Relevanz.
- Unterschiede im Rendite-Risiko-Profil sind kaum ersichtlich. Jedoch können die Portfoliogewichte zwischen den beiden Verfahren stark unterscheiden.

Figure 8.5 Efficient frontiers with the index model and full-covariance matrix

Titelselektion im risikobehafteten Portfolio

- Das optimale risikobehaftete Portfolio setzt sich aus einem aktiv und einem passiv verwalteten Teil zusammen.
- Aktiver Teil:
 - Besteht aus Wertpapieren, welche eingehender analysiert werden.
 - Gesucht sind Wertpapiere, welche ein positives Alpha, d.h. eine Überrendite versprechen.
 - Der Anteil an einem Wertpapier im aktiven Portfolio wird mittels des Verhältnisses zwischen Überrendite und zusätzlichem Risiko berechnet:

$$w_{i}^{0} = \frac{\alpha_{i}}{\sigma_{(e_{i})}^{2}}$$

• Passiver Teil: Folgt dem Markt, d.h. dem zugrundeliegenden Aktienindex.

Core-Satellite Ansatz

- Als Core-Satellite Strategie wird die Aufteilung eines Portfolios in zwei Teile bezeichnet:
 - Core: Breit diversifizierte Kerninvestition, die eine Grundrendite mit ausreichender Sicherheit bietet

 Satellite: Einzelinvestitionen mit h\u00f6herem Risiko und Renditepotenzial, die zur Renditesteigerung angeh\u00e4ngt werden

Suche nach Alpha

- Anleger suchen nach Wertpapieren, die aus ihrer Sicht unterbewertet sind, um eine risikoadjustierte Überrendite im Vergleich zum Markt (Alpha) zu generieren.
- Mittels Aktienanalyse kann versucht werden, unterbewertete Aktien (mit einem positiven Alpha) zu finden und diese dann zu kaufen oder überbewertete Aktien zu verkaufen.
- Es existieren unzählige Modelle zur Aktienbewertung:
 - Fundamentalanalyse
 - Dividend Discount Model, Dividend Growth Model
 - Price Earning Ratio oder andere Kennzahlen
 - Cash-flow basierte Modelle wie Discounted Cash-flow Konzepte
 - Technische Analyse wie z.B. Momentum-Strategien
- Ziel bei der Suche nach Alpha ist es, besser als der Markt zu agieren und somit eine Überrendite zu erzielen.

Grundlagen

- Capital Asset Pricing Model: Gleichgewichtsmodell, welches vielen Theorien der Modern Finance zugrundeliegt.
- Beruht auf der Portfoliotheorie von Harry Markowitz (Portfolio Selection in Journal of Finance, 1952).
- Wurde gleichzeitig, aber unabhängig voneinander entwickelt:
 - William Sharpe (Capital Asset Prices in Journal of Finance, 1964)
 - John Lintner (A Theory of Market Equilibrium under Conditions of Risk, 1964)
 - Jan Mossin (Equilibrium in a Capital Asset Market, 1965).

Implikationen

Optimales risikobehaftetes Portfolio

Figure 9.1 The efficient frontier and the capital market line

- Alle Investoren halten das risikobehaftete Portfolio (Marktportfolio).
- Im Marktportfolio sind alle risikobehafteten Anlagen enthalten. Die Gewichtung entspricht dem Marktwert der Anlage im Vergleich zum Gesamtmarktwert.
- Die Risikoprämie für das Halten des Marktportfolios ist abhängig von der durchschnittlichen Risikoaversion aller Marktteilnehmer:

$$E(r_{M}) - r_{f} = \overline{A} \cdot \sigma_{M}^{2}$$

Risikoprämie für ein Wertpapier

• Die Kovarianz eines Wertpapiers und des Marktes setzt sich aus der Summe aller Kovarianzen dieses Wertpapiers mit allen anderen Wertpapieren des Marktes zusammen:

$$Cov(r_i, r_M) = Cov\left(r_i, \sum_{k=1}^n w_k r_k\right) = \sum_{k=1}^n w_k Cov(r_i, r_k)$$

- Beitrag eines Wertpapiers zur Portfoliovarianz: $w_i Cov(r_i, r_M)$
- Beitrag eines Wertpapiers zur Risikoprämie: $w_i(E(r_i)-r_f)$
- Verhältnis von Risikoprämie und Risiko muss im Gleichgewichtsmodell CAPM bei allen Wertpapieren inkl. Markt identisch sein:

$$\frac{\mathbf{w}_{i}\left(E(r_{i})-r_{f}\right)}{\mathbf{w}_{i}Cov(r_{i},r_{M})} = \frac{E(r_{M})-r_{f}}{\sigma_{M}^{2}} \rightarrow E(r_{i})-r_{f} = \frac{Cov(r_{i},r_{M})}{\sigma_{M}^{2}} \cdot \left[E(r_{M})-r_{f}\right] \rightarrow E(r_{i}) = r_{f} + \beta_{i} \cdot \left[E(r_{M})-r_{f}\right]$$

Security Market Line

Beta als neues Risikomass

Figure 9.2 The security market line

- Mit dem CAPM verlässt man die Portfoliosicht und wendet sich der Bewertung von Wertpapieren zu.
- Mit der Security Market Line (SML) lässt sich die Risikoprämie einzelner Wertpapiere ermitteln.
- Steigung der SML: $E(r_M) r_f$

Alpha als Performance-Kennzahl

Alpha: Abweichung von der SML

- Abweichungen können in der kurzen Frist auftreten, sollten in der langen Frist jedoch verschwinden.
- Systematische, positive Abweichungen (Alpha) können auf eine Überrendite eines Fonds hindeuten.
- Diese Überrendite kann der Fondsmanager durch Können (skill) oder auch Glück erreicht haben.
- Netto-Alphas aller Anleger muss Null betragen
 - → einem positiven Alpha steht ein negatives gegenüber

Alpha als Performance-Kennzahl

• Malkiel zeigt in ,Returns from Investing in Equity Mutual Funds 1971 to 1991' (Journal of Finance, 1995), dass Aktien-Funds durchschnittlich negative Alphas (nach Kosten) erwirtschaften.

Figure 9.4 Estimates of individual mutual fund alphas, 1972–1991. This is a plot of the frequency distribution of estimated alphas for all-equity mutual funds with 10-year continuous records.

Source: Burton G. Malkiel, "Returns from Investing in Equity Mutual Funds 1971–1991," *Journal of Finance* 50 (June 1995), pp. 549–72. Reprinted by permission of the publisher, Blackwell Publishing, Inc.

Analysis of the Performance of 239 Equity Funds

This table compares the 1982 to 1991 performance of 239 general equity mutual funds with 10-year records against two benchmark portfolios.

	Net Returns (After Expenses)	Gross Returns (Before Expenses)
Panel A	: Wilshire 5000 as Benchmark	Portfolio
Average α	-0.93%	+0.18%
t-ratio	-1.78	+0.37
No. of individual α s positive and statistically significant	3	8
No. of individual α s negative and statistically significant	12	8
Panel B: Sta	andard & Poor's 500 as Benchm	ark Portfolio
Average α	-3.20%	-2.03%
t-ratio	-5.27	-3.46
No. of individual α s positive and statistically significant	0	0
No. of individual α s negative and statistically significant	19	13

Alpha als Performance-Kennzahl

• Leippold und Rüegg zeigen in 'Fifty Shades of Active and Index Alpha', dass Anlagefunds - insbesondere für Privatkunden - nach Abzug der Kosten keine Überrendite generieren können.

Lohnt sich die Suche nach Alpha?

- Gründe, die für die Suche nach Alpha sprechen:
 - Alle Investoren sind ,Absolute Return' Investoren.
 - Alpha kann magere Rendite des Marktes (Beta) kompensieren.
 - Märkte sind nicht vollständig effizient.
- Gründe, die gegen die Suche nach Alpha sprechen:
 - 50% aller Suchen muss negativ enden.
 - In effizienten Märkten kann nur mit Glück Alpha generiert werden.
 - Suche nach Alpha kostet Geld → Durchschnittlich fallen nur Kosten ohne Gewinne an.
 - Über 10'000 Hedge-Funds suchen Alpha.

Probleme bei der Identifizierung von Alpha

Nicht alle im Portfolio enthaltenen Betas werden berücksichtigt:

$$R_0(t) = \alpha(t) + \sum_{i=1}^{m} \beta_i(t) R_i(t) + \sum_{i=m+1}^{M} \beta_j(t) R_j(t) + \varepsilon_t$$

$$R_0(t) = \tilde{\alpha}(t) + \sum_{i=1}^{m} \beta_i(t) R_i(t)$$

- Unterscheidung zwischen durch Glück entstandenen Alphas und durch Können verursachten Alphas ist komplex:
 - Naive Tests erlauben keine trennscharfe Unterscheidung
 - Es existieren jedoch statistische Methoden, um eine Unterscheidung vorzunehmen (siehe Romano & Wolf in Econometrica mit 210 Hedge-Funds).

Anzahl Skill	Naiver Test	Alternative 1	Alternative 2
95%-Niveau	102	11	16
90%-Niveau	130	16	36

Hält das CAPM dem Praxistext stand?

- Kann die Reliabilität des CAPM getestet werden?
 - Für das Marktportfolio müssen Proxis verwendet werden, da die Abbildung des Marktportfolios mit allen handelbaren Wertpapieren nicht möglich ist.
 - Empirische Tests zeigen, dass z.B. Alphas ungleich Null sind und daher das CAPM nicht uneingeschränkt korrekt ist.

- Sind Beta bzw. Varianz adäquate Risikomasse?
 - Ist Risiko symmetrisch? Sind Abweichungen gegen oben auch Risiko?
 - Semivarianz oder Downside-Beta sind möglicherweise bessere Masse.

Low-Risk Anomalie: USA

Low- und High-Beta Portfolios (01/1979 - 03/2012)

Statistik der Low- und High-Beta Portfolios

• Datengrundlagen:

- Aktien werden jeden Monat aufgrund des Marktbetas (Schätzperiode: 5 Jahre) in eines der drei Portfolios eingeteilt
- Alle Portfolios sind gewichtet nach der Marktkapitalisierung der Aktien
- Sample: Alle US Aktien des MSCI Universums
- Das Sample enthält aktive und inaktive Aktien (kein Survivorship bias)

	Marktbeta Portfolios			Markt	Benchmark
	Low-Beta	Mid-Beta	High-Beta	(alle Aktien)	(S&P 500 Index)
Return p.a.	13.2%	12.5%	11.2%	12.1%	12.2%
Volatility p.a.	12.3%	15.9%	22.6%	15.9%	15.5%
Sharpe	1.07	0.79	0.49	0.77	0.79
maxDD	71.4%	112.4%	182.3%	101.9%	102.8%
Avg. Size	2.57	3.44	2.70	-	-
Avg. Marktbeta	0.40	0.95	1.71	-	-
Avg. # Aktien	591	591	592	-	-

Quelle: Datastream, Berechnungen: Philippe Rohner

Low-Risk Anomalie: Schweiz

Low- und High-Beta Portfolios (05/1993 - 04/2013)

Statistik der Low- und High-Beta Portfolios

	Low-Beta	Mid-Beta	High-Beta	SMIC
Geometric Return p.a.	9.6%	8.4%	5.6%	9.0%
Arithmetic Return p.a.	10.6%	10.8%	11.2%	10.7%
Standard Deviation p.a.	13.8%	20.8%	32.1%	17.4%
Beta	0.53	1.05	1.61	1
MDD	26.3%	64.4%	72.7%	51.5%
Jensen Alpha p.a.	3.4%	-0.9%	-7.1%	-
Sharpe Ratio	0.48	0.27	0.08	0.35
Treynor Ratio	0.13	0.05	0.02	0.06
Tracking Error	0.5%	0.3%	1.03%	-
Information Ratio	7.23	-2.99	-6.94	-
M^2 -Measure	6.85%	4.6%	1.45%	6.1%
Avg. Beta	0.58	1.05	1.66	1
Avg. # stocks	6.37	7.12	6.37	19.85

Quelle: Bloomberg, Berechnungen: Dominik Gottet

Erklärungsversuch der Low-Risk Anomalie

Zeitabhängige Marktbetas

- In Krisen ist Beta-Dispersion hoch, in steigenden Märkten ist sie tief
- Low-Risk Strategie verliert wenig in steigenden M\u00e4rkten und erreicht eine grosse Outperformance w\u00e4hrend Krisen

Korrelation zur Markrendite

- Das Marktbeta des Low-Risk Portfolios weist eine positive Korrelation zur Marktrendite auf, bei High-Risk Portfolio ist die Korrelation negativ
- Low-Risk Strategie fährt ein höheres Beta, wenn der Markt positiv und ein tieferes Beta wenn der Markt negativ ist

Korrelation zur Marktvolatilität.

- Das Marktbeta des Low-Risk Portfolios weist eine negative Korrelation zur Volatilität des Marktes auf
- Low-Risk Strategie fährt höheres Beta, wenn die Volatilität tief ist

Wichtigste Punkte

- Sowohl im Ein-Faktor-Modell als auch im Markowitz-Modell können optimale Portfolios ermittelt werden, falls die notwendigen Inputdaten vorhanden sind. Dabei wird versucht die Sharpe-Ratio, welche ein Mass für das Verhältnis von Risiko und Rendite ist, zu maximieren.
- Mittels des Capital Asset Pricing Models können erwartete Renditen von Wertpapieren geschätzt werden. Dabei ist die erwartete Rendite ausschliesslich von der Sensitivität des Wertpapiers im Vergleich zum Markt abhängig.
- Das CAPM, wie auch andere Ein- oder Multi-Faktor-Modelle, unterliegen zahlreichen, einschränkenden Annahmen. Daher müssen die Resultate kritisch hinterfragt werden.
- Das Alpha kann als Mass für eine Überrendite verwendet werden. Wichtig zu unterscheiden ist jedoch, ob das Alpha durch Glück, zusätzlich eingegangenes Risiko oder durch Wissen erzielt wurde.

