Sémantické tablá a Rezolventa

Augusta Ada King, countess of Lovelace (1815-1852)

Babbageho spolupracovníčka, dcéra anglického básnika Byrona.

- 1.Odhalila *základy programovania* a význam podmieneného vetvenia programu podľa výsledku predchádzajúceho kroku a význam cyklov v programovaní,
- 2. napísala *program na riešenie sústavy lineárnych rovníc* a na generovanie Bernoulliho čísel,
- 3. uvažovala tiež o možnosti použiť stroj na *generovanie hudobných diel* pomocou zakódovania zákonov harmónie a kompozície na dierne štítky. Taktiež uvažovala o možnosti použiť analytický stroj v *úlohe manipulátora s algebraickými výrazmi*.

Lady Ada v dopise svojmu známemu v r. 1835 napísala:

Analytický stroj nemá ambície vymyslieť niečo originálne. Dokáže urobiť iba čokoľvek, o čom vieme, ako mu prikázať, aby to vykonal. Môže postupovať podľa výsledkov analýzy riešenia; nemá ale žiadnu schopnosť vymyslieť akékoľvek analytické vzťahy alebo tvrdenia.

Sémantické tablá (semantic tableaux)

Terminológia

- (1) *Literál* je buď výroková premenná alebo jej negácia. Literály sú *pozitívne* (výroková premenná) alebo *negatívne* (negácia výrokovej premennej). Dva literály sú *komplementárne* ak majú tvar p a $\neg p$.
- (2) *Konjunktívna* (*disjunktívna*) *klauzula* je konjunkcia (disjunkcia) literálov. *DNF* (*KNF*) je disjunkcia (konjunkcia) konjuktívnych klauzulí (disjunktívnych klauzulí).

Príklad

- $\mathcal{A} = \{x, y, u, z\}$ je množina výrokových premenných,
- formule x, y, u, z sú pozitívne literály,
- formule $\neg x, \neg y, \neg u, \neg z$ sú negatívne literály,
- literály z a $\neg z$ sú komplementárne,
- formula $x \wedge y \wedge \neg y$ je konjuktívna klauzula,
- formula $x \lor u \lor \neg y \lor z$ je disjunktívna klauzula.

Lemma.

Disjunktívna klauzula je *tautológia* vtedy a len vtedy ak obsahuje komplmentárne literály.

Konjuktívna klauzula je *kontradikcia* vtedy a len vtedy ak obsahuje komplementárne literály.

Disjunktívna klauzula $x \lor u \lor \neg x \lor z$ je tautológia.

$$(x \lor u \lor \neg x \lor z) \equiv \left(\underbrace{x \lor \neg x}_{1} \lor u \lor z\right) \equiv (1 \lor u \lor z) \equiv 1$$

Konjunktívna klauzula $x \wedge y \wedge \neg y$ je kontradikcia

$$(x \land y \land \neg y) \equiv \left(\underbrace{y \land \neg y}_{0} \land x\right) \equiv (0 \land x) \equiv 0$$

Veta

- (1) Formula $\varphi(p,q,r,...)$ je *tautológia* ak jej ekvivalentná KNF forma $\varphi_{NKF}(p,q,r,...)$ má všetky disjunktívne klauzule také, že obsahujú dvojicu komplementárnych literálov.
- (2) Formula $\varphi(p,q,r,...)$ je *kontradikcia* ak jej ekvivalentná DNF forma $\varphi_{NDF}(p,q,r,...)$ má všetky konjunktívne klauzule také, že obsahujú dvojicu komplementárnych literálov.

Príklady

- DNF formula $\varphi_1 = (\neg p_1 \land \neg p_2 \land p_3 \land p_4) \lor (\neg p_1 \land \neg p_2 \land p_2 \land \neg p_4)$ nie je kontradikcia, prvý konjunktívny člen neobsahuje komplementárne literály.
- DNF formula $\varphi_2 = (\neg p_3 \land p_3 \land p_4) \lor (\neg p_1 \land \neg p_2 \land p_3 \land p_1)$ je kontradikcia, každý konjuktívny člen obsahuje dvojicu $p_i \land \neg p_i$, čiže sú kontradikcie, disjunkcia dvoch kontradikcií je taktiež kontradikcia.
- KNF formula $\phi_3 = (\neg p_1 \lor \neg p_2 \lor p_3 \lor p_4) \land (\neg p_1 \lor \neg p_2 \lor p_2 \lor \neg p_4)$ nie je tautológia, prvá disjunktívna klauzula neobsahuje dvojicu komplementárnych literálov.
- KNF formula $\varphi_4 = (\neg p_3 \lor p_3 \lor p_4) \land (\neg p_1 \lor \neg p_2 \lor p_3 \lor p_1)$ je tautológia, každá disjunktívna klauzula obsahuje dvojicu komplementárnych literálov.

Príklad transformácie formuly do DNF

Transformácia formule $\varphi = (p \equiv q) \land (r \lor \neg (r \lor \neg p))$ do DNF tvaru:

- Odstránime ekvivalenciu, $\varphi_1 = ((p \Rightarrow q) \land (q \Rightarrow p)) \land (r \lor \neg (r \lor \neg p)).$
- Odstránime implikácie, $\varphi_2 = ((\neg p \lor q) \land (\neg q \lor p)) \land (r \lor \neg (r \lor \neg p)).$
- Odstránime negáciu disjunkcie, $\varphi_3 = ((\neg p \lor q) \land (\neg q \lor p)) \land (r \lor (\neg r \land \neg \neg p)).$
- Použijeme distribučný zákon pre odstránenie konjunkcie v podformule špecifikovanej l'avou zátvorkou,

$$\varphi_4 = ((\neg p \land \neg q) \lor (\neg p \land p) \lor (q \land \neg q) \lor (q \land p)) \land (r \lor (\neg r \land \neg \neg p)).$$

 Podobne odstránime konjunkciu medzi prvou a druhou zátvorkou, dvojité negácie a prebytočné zátvorky

$$\phi_{5} = (\neg p \land \neg q \land r) \lor (\neg p \land p \land r) \lor (q \land \neg q \land r) \lor (q \land p \land r) \lor (q \land p \land \neg r \land p) \lor (\neg p \land p \land \neg r \land p) \lor (q \land \neg q \land \neg r \land p) \lor (q \land p \land \neg r \land p) \lor (q \land p \land \neg r \land p)$$

Záver: Formula φ nie je kontradikcia.

Sémantické tablá

Sémantické tablo je diagramatická reprezentácia procesu transformácie formule φ do DNF.

Sémantické tablo je reprezentované binárnym stromom, ktorého jednotlivé vrcholy reprezentujú elementárne kroky transformácie

V čom spočíva výhoda sémantického tabla?

- Aplikácia *distribučných zákonov* pri úprave formuly DNF tvaru je pomerne náročnou operáciou a preto je výhodné prenechať ju diagramatickej metódy konštrukcie sémantického tabla.
- *Predčasné uzavretie* tej vetvy, ktorá obsahuje komplementárne literály. Predlžovanie takejto vetve už neprináša žiadnu novú skutočnosť z pohľadu toho, či daná formula je kontradikciou alebo je splniteľná.

Terminológia

- Vetvy stromu, ktoré *obsahujú* (*neobsahujú*) komplementárne literály sú označené symbolom '**X**' a nazývajú sa *uzavreté vetvy* (symbolom '**O**' a nazývajú sa *otvorené vetvy*)
- Ak sémantické tablo obsahuje len uzavreté vetvy, potom sa nazýva *uzavreté sémantické tablo*.
- Sémantické tablo priradené formule A je označené $\mathcal{T}(A)$.

Veta.

Ak sémantické tablo $T(\varphi)$ formuly φ je uzavreté, potom formula φ je kontradikcia.

Táto veta, ktorá je základom metódy sémantických tabiel, je priamym dôsledkom skutočnosti, že každá formula φ pretransformovaná do ekvivalentného DNF, je kontradikciou vtedy a len vtedy, ak všetky jej konjunktívne klauzule obsahujú dvojice komplementárnych literálov.

$$\Phi_{DNF} = (\neg p_3 \land p_3 \land p_4) \lor (\neg p_1 \land \neg p_2 \land p_3 \land p_1)$$

Ilustračný príklad 1

Koná sa oslava, Ján, Júlia, Klára a Štefan sú potenciálni účastníci tejto oslavy. K tomu, aby sme mohli zapísať študovaný problém pomocou formúl výrokovej logiky, zavedieme tieto štyri výroky:

p	Ján pôjde na oslavu
\overline{q}	Júlia pôjde na oslavu
r	Klára pôjde na oslavu
S	Štefan pôjde na oslavu

Účasť jednotlivých členov skupiny je ohraničenú troma podmienkami

	Ján alebo Júlia pôjdu na oslavu.
$q \Rightarrow (r \land s)$	Ak Júlia pôjde na oslavu, potom na oslavu pôjde tak Klára ako aj Štefan.
	Ak nepôjde na oslavu Ján, potom pôjde na oslavu Štefan.

Ciel': Určenie podmienok za ktorých sa Štefan zúčastní oslavy zistíme pomocou riešenia problému, kedy z teórie $T = \{p \lor q, q \Rightarrow (r \land s), \neg p \Rightarrow s\}$ vyplýva, že Štefan sa zúčastní oslavy

$$\{p \lor q, q \Rightarrow (r \land s), \neg p \Rightarrow s\} \vdash s$$

Použitím vety 2.3 dostaneme

$$((p \lor q) \land (q \Longrightarrow (r \land s)) \land (\neg p \Longrightarrow s)) \Longrightarrow s$$

Túto formulu môžeme jednoducho prepísať pomocou jej negácie do tvaru

$$(p \lor q) \land (q \Longrightarrow (r \land s)) \land (\neg p \Longrightarrow s) \land (\neg s)$$

Aplikujeme metódu sémantických tabiel k analýze kontradikčnosti formule

$$(p \lor q) \land (q \Rightarrow (r \land s)) \land (\neg p \Rightarrow s) \land \neg s$$

ktorú zjednodušíme tak, že odstránime implikácie

$$(p \lor q) \land (\neg q \lor (r \land s)) \land (p \lor s) \land \neg s$$

Sémantické tablá pre $(p \lor q) \land (\neg q \lor (r \land s)) \land (p \lor s) \land \neg s$

Toto sémantické tablo nie je uzavreté, preto študovaná formula nie je kontradikcia.

Dôsledok: neplatí $T \vdash s$, t.j. výrok s nie je dôsledkom teórie T.

Modikácia riešenej úlohy: ako rozšíriť teóriu T na novú teóriu T' (kde $T \subset T'$), aby výrok s už bol dôsledkom tejto novej teórie. K tomuto účelu nám dobre poslúži zostrojené sémantické tablo T z predošlého obrázku, našim cieľom bude také rozšírenie teórie T, aby otvorené vetve tabla sa stali uzavretými. Teóriu rozšírime o tento výrok

$\neg q \Rightarrow \neg p$	Ak Júlia nepôjde na oslavu, potom aj Ján
	nepôjde na oslavu.

Rozšírená teória má tvar

$$T' = \{ p \lor q, q \Longrightarrow (r \land s), \neg p \Longrightarrow s, \neg q \Longrightarrow \neg p \}$$

potom pomocou sémantických tabiel budeme študovať formulu

$$(p \lor q) \land (q \Rightarrow (r \land s)) \land (\neg p \Rightarrow s) \land (\neg q \Rightarrow \neg p) \land \neg s$$

Sémantické tablo pre takto modifikovanú formulu je už uzavretým, $T' \vdash s$.

Ilustračný príklad 2

ak je X otcom Márie a má krvnú skupinu A a matka Márie nemá krvnú skupinu A, potom Mária má krvnú skupina 0 alebo A X a matka Márie majú krvnú skupinu A Mária nemá krvnú skupinu A Mária nemá krvnú skupinu 0

X nie je otcom Márie

Elementárne výroky:

p = X je otcom Márie,

q = X má krvnú skupinu A,

r = matka Márie má krvnú skupinu A,

s = Mária má krvnú skupinu 0,

t = Mária má krvnú skupinu A

1. predpoklad:
$$\varphi_1 = (p \land q \land \neg r) \Rightarrow (s \lor t)$$

- 2. predpoklad: $\varphi_2 = (q \wedge r)$
- 3. predpoklad: $\varphi_3 = \neg s$
- 4. predpoklad: $\varphi_4 = \neg t$

záver: $\varphi = \neg p$

Ciel': Dokaz tautologičnosti formule $\phi_1 \wedge \phi_2 \wedge \phi_3 \wedge \phi_4 \Rightarrow \phi$ pomocou sémantického table prostredníctvom dôkazu, že negácia formule je kontradikcia.

$$((p \land q \land \neg r) \Rightarrow (s \lor t)) \land (q \land r) \land (\neg s) \land (\neg t) \Rightarrow \neg p$$

$$((p \land q \land \neg r) \Rightarrow (s \lor t)) \land (q \land r) \land (\neg s) \land (\neg t) \land p$$

$$((p \land q \land \neg r) \Rightarrow (s \lor t)) \land (q \land r) \land (\neg s) \land (\neg t) \land p$$
Ak dokážeme, že táto formula je kontradikcia, potom daný záver vyplýva z predpokladov.

Pre urýchlenie konštrukcie sémantického table, odstránime z formuly implikáciu

$$(\neg p \lor \neg q \lor r \lor s \lor t) \land (q \land r) \land (\neg s) \land (\neg t) \land p$$

Sémantické tablo nie je uzavreté, to znamená, že záver

"X nie je otcom Márie"

nie je platný.

Stačí však zmeniť 1. predpoklad na

$$\varphi_1' = (p \land q \land r) \Longrightarrow (s \lor t)$$
, potom

φ'₁ = ak je X otcom Márie a má krvnú skupinu A a matka Márie <u>má</u> krvnú skupinu A, potom Mária má krvnú skupina 0 alebo A

záver "X nie je otcom Márie" sa stáva platným.

Konštrukcia modelu teórie pomocou sémantického tabla

Konštrukciu vysvetlíme pomocou jednoduchého príkladu

Príklad

$$T = \left\{ \underbrace{\left(p \lor q\right) \Rightarrow \left(p \land q\right), \left(p \Rightarrow q\right) \land \left(q \Rightarrow p\right)}_{\varphi_{1}}, \underbrace{\left(\neg p \land \neg q\right) \Rightarrow \left(p \Rightarrow q\right)}_{\varphi_{3}} \right\},$$

$$\varphi_1 = (p \lor q) \Rightarrow (p \land q)$$

$\varphi_1 = (p \vee q) \Longrightarrow (p \wedge q)$					
1	2	3	4	5	
p	q	$p \lor q$	$p \wedge q$	$3 \Rightarrow 4$	
0	0	0	0	1	
0	1	1	0	0	
1	0	1	0	0	
1	1	1	1	1	

$$\varphi_2 = (p \Rightarrow q) \land (q \Rightarrow p)$$

1	2	3	4	5	
p	q	$p \Rightarrow q$	$3 \wedge q$	$4 \Rightarrow p$	
0	0	1	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	1	1	1	1	

$$\varphi_3 = (\overline{p} \wedge \overline{q}) \Rightarrow (p \Rightarrow q)$$

				,		
1	2	3	4	5	6	7
p	q	$\neg p$	$\neg q$	3∧4	$p \Rightarrow q$	$5 \Rightarrow 6$
0	0	0	0	0	1	1
0	1	1	0	0	1	1
1	0	1	0	0	0	1
1	1	1	1	1	1	1

$$\tau_1 = (p/0, q/0)$$
a $\tau_2 = (p/1, q/1)$

Veta.

- (1) Teória $T = \{\varphi_1, \varphi_2, ..., \varphi_n\}$ je *konzistentná* práve vtedy, ak sémantické tablo $T(\psi)$, kde formula $\psi = \varphi_1 \wedge ... \wedge \varphi_n$ je konjunkciou elementov teórie, je otvorené. Model M(T) teórie $T = \{\varphi_1, \varphi_2, ..., \varphi_n\}$ je tvorený interpretáciami literálov z otvorených vetiev.
- (2) Teória $T = \{\phi_1, \phi_2, ..., \phi_n\}$ je **nekonzistentná** práve vtedy, ak sémantické tablo $T(\psi)$, je uzavreté.

Záver

- Metóda sémantických tabiel je vhodným diagramatickým prístupom vtedy, keď sa snažíme zistiť, či daná formula je kontradikciou alebo nie.
- Zo štruktúry sémantického tabla sa dá jednoducho odvodiť, akým spôsobom sa má vykonať také rozšírenie teórie, aby sémantické tablo bolo uzavreté.
- Pomocou metódy sémantických tabiel môžeme zostrojiť model teórie.

Metóda rezolventy

- Táto metóda pracuje s KNF formulami, jej cieľom je rozhodnúť či daná formula je tautológia alebo je splniteľná.
- Nech $\varphi(p,q,r,...)$ je výroková formula s premennými p,q,r,... . Jej KNF je ekvivalentná formula, ktorá obsahuje konjunkciu disjunktívnych klauzúl $\varphi_{KNF}(p,q,...) \equiv (\neg p \lor \neg p \lor ...) \land (p \lor \neg q \lor ...)$... , kde každá zátvorka reprezentuje klauzulu. Jednotlivé klauzule označme B,C,U,..., potom $\varphi_{KNF}(p,q,r,...) \equiv B \land C \land U \land ...$
- Pretože konjunkcia je komutatívna a asociatívna logická spojka, nezáleží na poradí a zátvorkovaní jednotlivých klauzúl v formule $\phi_{KNF}(p,q,r,...)$, preto táto formula je jednoznačne zadaná množinou svojich klauzúl

$$T_{\varphi} = \{B, C, U, \ldots\}$$

Lemma.

Ak je daná formula φ splniteľná, potom aj množina T_{φ} zložená z jej klauzúl je konzistetná.

Ak pre formulu φ existuje taká interpretácia τ jej premenných, že $val_{\tau}(\varphi) = 1$, potom aj pre množinu T_{φ} platí $val_{\tau}(B) = val_{\tau}(C) = ... = 1$, čo skratkovito zapisujeme $val_{\tau}(T_{\varphi}) = 1$.

Definícia.

Formula $C = C_1' \vee C_2'$ sa nazýva *rezolventa* formúl $C_1 = C_1' \vee l$ a $C_2 = C_2' \vee \neg l$ vzhľadom k literálu l, $C = res_l(C_1, C_2)$.

Lemma.

- (a) Rezolventy vzhľadom k literálom l a $\neg l$ sú rovnaké, $res_l(C_1, C_2) = res_{\neg l}(C_1, C_2)$ a
- (b) ak C_1 a C_2 sú klauzule, potom aj ich rezolventa je taktiež klauzula.

Veta

(Rezolučné pravidlo odvodzovania alebo rezolventa). Nech B a C sú dve výrokové formule tvaru $B = B' \lor l$ a $C = C' \lor \neg l$, kde l je literál, potom platí $(B' \lor l) \land (C' \lor \neg l) \Rightarrow (B' \lor C')$

Dôkaz vety

1.
$$(B' \vee l)$$
2. $(C' \vee \neg l)$ 3. $\neg B' \Rightarrow l$ (prepis 1. do tvaru implikácie)4. $l \Rightarrow C'$ (prepis 2. do tvaru implikácie)5. $\neg B' \Rightarrow C'$ (použitie hypotetického sylogizmu na 3. a 4.)6. $B' \vee C'$ (prepis implikácie 5. do disjunktívneho tvaru)

Dokázali sme
$$\{B' \lor l, C' \lor \neg l\} \vdash B' \lor C'$$
 alebo
$$\vdash (B' \lor l) \land (C' \lor \neg l) \Rightarrow (B' \lor C')$$

Veta.

Nech $\varphi = A \wedge (B' \vee l) \wedge (C' \vee \neg l)$ je výroková formula, kde A, B', C' sú jej podformule a l je literál, potom konjunktívne rozšírenie φ o rezolventu $(B' \vee C')$ je ekvivalentné s pôvodnou formulou X

$$\varphi \equiv \left(\varphi \wedge \left(B' \vee C' \right) \right)$$

Dôsledok predošlej vety podľa formuly
$$(p \Rightarrow q) \equiv (p \Rightarrow p \land q)$$

 $(\neg p \lor q) \equiv (\neg p \lor (p \land q))$
 $(\neg p \lor q) \equiv ((\neg p \lor p) \land (\neg p \lor q))$

Táto veta má jednoduchú množinovo-teoretickú interpretáciu:

- 1.každú formulu φ v KNF tvare môžeme chápať ako množinu jej disjunktívnych klauzúl. Ak je formula φ splniteľná, potom aj príslušná množina T_{φ} je splniteľná.
- 2. podľa vety platí, že množiny T_{φ} a $T_{\varphi} \cup \{B' \vee C'\}$ sú tautologický ekvivalentné množiny, $val_{\tau}(T_{\varphi}) = val_{\tau}(T_{\varphi} \cup \{B' \vee C'\})$.

Nech T je množina disjunktívnych klauzúl $T = \{A, B, C, U, ...\}$, symbolom R(T) označíme množinu T rozšírenú o všetky možné klauzule, ktoré vzniknú rezolventou vhodných dvojíc disjunktívnych klauzúl z T, zavedieme označenie:

$$R(T) = T \cup res(T,T)$$

$$R^{0}(T) = T$$

$$R^{i}(T) = R(R^{i-1}(T)) \quad (i=1,2,3,...)$$

kde res(T,T) je množina všetkých možných rezolvent, ktoré sa dajú vytvoriť z klauzúl patriacich do množiny T.

Príklad

$$T = \{a \lor b, \neg a \lor b, \neg b \lor \neg c, c\}, \text{ potom } res(T, T) = \{b, a \lor \neg c, \neg a \lor \neg c, \neg b\}.$$

Je prirodzené očakávať, že existuje taký index n, že pre každé $i \ge n$ platí $R^*(T) = R^n(T) = R^{n+1}(T) = R^{n+2}(T) = ...$

Existencia "stabilnej" množiny $R^*(T)$ vyplýva zo skutočnosti, že operácia rezoloventy v podstate zjednodušuje formuly v množine T, toto zjednodušovanie nemôže prebiehať bez ohraničenia, po určitom momente zväčšovanie množiny sa musí zastaviť, ďalšie aplikácie aplikácie "operátora" R už nevedú k tvorbe nových klauzúl.

Prázdny symbol □

$$\left(\varphi_{KNF} = A \land B \land C \land \ldots \right) \equiv \left(T_{\varphi} = \left\{ A, B, C, \ldots \right\} \right)$$

$$A = \emptyset \lor l \text{ a } B = \emptyset \lor \neg l, \text{ potom } res_{l} \left(A, B \right) = \square$$

$$\left(\varphi_{KNF} = \underbrace{\left(l \land \neg l \right)}_{0} \land C \land \ldots = 0 \right) \equiv \left(T_{\varphi} = \left\{ A, B, C, \square \ldots \right\} \right)$$

Veta (Robinsonov rezolučný princíp).

Formula $\varphi_{KNF}(p,q,r,...) \equiv B \wedge C \wedge ... \wedge U$ je kontradikciou vtt, ak $R^*(T)$ obsahuje prázdnu formulu \square .

Robinsonov rezolučný princíp je teoretickým základom rezolventových metód dôkazu konzistentnosti alebo nekonzistentnosti (kontradikčnosti) množiny klauzúl.

Príklad

Je potrebné zistiť, či množina $T = \{a \lor \neg b, b \lor \neg c, \neg a, a \lor c\}$ je konzistentná.

Množina formúl T je konzistentná vtedy, ak jej formule spojené pomocou konjunkcií, $\varphi_{NKF} = (a \vee \neg b) \wedge (b \vee \neg c) \wedge (\neg a) \wedge (a \vee c)$, tvoria splniteľnú formulu. Aplikovaním Robinsonovho rezolučného princípu dostaneme túto postupnosť množín:

$$R^{0}(T) = T = \{a \lor \neg b, b \lor \neg c, \neg a, a \lor c\},$$

$$R^{1}(T) = R^{0}(T) \cup \{a \lor \neg c, \neg b, b \lor a, c\},$$

$$R^{2}(T) = R^{1}(T) \cup \{a, b, \neg c\},$$

$$R^{*}(T) = R^{3}(T) = R^{2}(T) \cup \{\Box\}$$

Pretože množina $R^*(T)$ obsahuje prázdnu formulu \square , množina formúl T je nekonzistentná.

#	klauzula	rezolúcia	#	klauzula	rezolúcia	
1	$a \vee \neg b$		15	а	(5,8)	
2	$b \vee \neg c$		16	а	(6,7)	
3	$\neg a$		17	а	(1,11)	
4	$a \lor c$		18	а	(1,13)	
5	$a \vee \neg c$	(1,2)	19		(3,9)	
6	$\neg b$	(1,3)	20		(3,14)	
7	$a \lor b$	(2,4)	21		(3,15)	
8	\mathcal{C}	(3,4)	22		(3,16)	
9	а	(1,7)	23	а	(4,10)	
10	$\neg c$	(2,6)	24	а	(4,12)	
11	b	(2,8)	25		(6,11)	
12	$\neg c$	(3,5)	26		(6,13)	
13	b	(3,7)	27		(8,10)	
14	а	(4,5)	28		(8,12)	

Zjednodušená metóda rezolventy

Nech T je konečná množina klauzúl. Zvolíme si jednu výrokovú premennú (označíme ju p), ktorá je obsiahnutá v niektorých klauzulách. Potom množinu T vzhľadom k premennej p rozdelíme na tri disjunktné podmnožiny:

$$T = T_0(p) \cup T_1(p) \cup T_2(p)$$

- (1) Podmnožina $T_0(p)$ je zložená z klauzúl, ktoré neobsahujú premennú p,
- (2) podmnožina $T_1(p)$ je zložená z klauzúl obsahujúcich pozitívnu premennú p,
- (3) podmnožina $T_2(p)$ je zložená z klauzúl obsahujúcich negatívnu premennú $\neg p$.

Nech množina $T_{12}(p) = res_p(T_1(p), T_2(p))$, potom množina $\tilde{T}(p) = T_0(p) \cup T_{12}(p)$ je zložená z pôvodných klauzúl T neobsahujúcich premennú p a zo všetkých možných rezolvent vzhľadom k premennej p.

Veta.

Množina klauzúl T je konzistentná vtedy a len vtedy, ak je konzistentná aj množina $\tilde{T}(p)$, pričom majú spoločný model.

Príklad

Dokážme konzistentnosť množiny $T = \{p \lor q, r \lor q, \neg r, \neg p\}.$

1. krok, premenná p:
$$T_0(p) = \{r \lor q, \neg r\}, T_1(p) = \{p \lor q\}, T_2(p) = \{\neg p\}, T_{12}(p) = \{q\},$$

$$\tilde{T}(p) = T_0(p) \cup T_{12}(p) = \{r \lor q, \neg r, q\}$$

2. *krok*, premenná r:
$$T_0(r) = \{q\}, T_1(r) = \{r \lor q\}, T_2(r) = \{\neg r\}, T_{12}(r) = \{q\}$$
$$\tilde{T}(r) = T_0(r) \cup T_{12}(r) = \{q\}$$

Potom množina T je konzistentná pre interpretáciu $\tau = (p/?, q/1, r/?)$, kde premenné p a r môžu mať ľubovolné pravdivostné hodnoty.

Postupný proces konštrukcie množín T_0 , T_1 , T_2 a T_{12} pre rôzne výbery premenných p a r je znázornený v tabuľke. Prvý riadok tabuľky obsahuje formule z množiny T. V druhom riadku (označený premennou p) prebieha konštrukcia množiny $\tilde{T}(p) = T_0(p) \cup T_{12}(p) = \{r \vee q, \neg r, q\}$, jednotlivé formule tejto množiny sú v tomto riadku neoznačené binárnou číslicou. V treťom riadku (označenom premennou r) prebieha konštrukcia množiny $\tilde{T}(r) = T_0(r) \cup T_{12}(r) = \{q\}$, ktorou končí proces štúdia konzistentnosti množiny T.

Znázornenie pomocou tabuľky

	$p \vee q$	$r \vee q$	$\neg r$	$\neg p$		_
p	1			0	q	
r		1	0			q
q					1	1

Príklad

Dokážte nekonzistentnosť množiny $T = \{a \lor \neg b, b \lor \neg c, \neg a, a \lor c\}$

- 1. krok, premenná a: $T_0(a) = \{b \lor \neg c\}, T_1(a) = \{a \lor \neg b, a \lor c\}, T_2(a) = \{\neg a\}, T_{12}(a) = \{\neg b, c\}$ $\tilde{T}(a) = T_0(a) \cup T_{12}(a) = \{b \lor \neg c, \neg b, c\}$
- **2.** *krok*, premenná *b*: $T_0(b) = \{c\}$, $T_1(b) = \{b \lor \neg c\}$, $T_2(b) = \{\neg b\}$, $T_{12}(b) = \{\neg c\}$ $\tilde{T}(b) = T_0(b) \cup T_{12}(b) = \{c, \neg c\}$
- 3. krok, premenná c: $T_0(c) = \emptyset$, $T_1(c) = \{c\}$, $T_2(c) = \{\neg c\}$, $T_{12}(c) = \{\Box\}$ $\tilde{T}(c) = T_0(c) \cup T_{12}(c) = \{\Box\}$

Znázornenie pomocou tabuľky

		$a \vee \neg b$	$b \vee \neg c$	$\neg a$	$a \lor c$				
(\mathcal{A}	1		0	1	$\neg b$	c		
	b		1			0		$\neg c$	
	\mathcal{C}						1	0	
							•	•	

Záver

Teória rezolventy tvorí teoretický základ metód automatického dôkazu formúl vo výpočtovej logike a patrí medzi základné procedúry logicko-programovacieho jazyka PROLOG.

THE END