Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 19.04.2013

LÖSUNG

Aufgabe 1:

a) Die Gastemperaturdifferentialgleichung ergibt sich zu

$$\dot{T}_g = \frac{\kappa - 1}{R_s m_g} (c_g (T_U - T_g) + p_g A_k v_k).$$

b) Die Öldruckdifferentialgleichung folgt zu

$$\dot{p_o} = \frac{\beta}{A_k s_k} (q - A_k v_k).$$

c) Wahl des Systemzustands: $\mathbf{x} = [s_k, v_k, p_o, T_g]^T$. Die Modellgleichungen ergeben sich zu:

$$\dot{\mathbf{x}} = \begin{bmatrix} v_k \\ \frac{1}{m_k} (p_o - p_g) A_k \\ \frac{\beta}{A_k s_k} (k_p u - A_k v_k) \\ \frac{\kappa - 1}{R_s m_g} \left[c_g (T_U - T_g) + \frac{m_g R_s T_g}{L_k - s_k} v_k \right] \end{bmatrix}$$

$$y = \begin{bmatrix} s_k \\ \frac{m_g R_s T_g}{A_k (L_k - s_k)} \end{bmatrix}.$$

- d) Es gibt unendlich viele Ruhelagen der Form $\mathbf{x}_R = [s_{k,R}, v_{k,R}, p_{o,R}, T_U]^T$ mit $0 < s_{k,R} < L_k$ und $p_{o,R} = p_{g,R}$.
- e) Die Ruhelage \mathbf{x}_R ergibt sich zu

$$\mathbf{x_R} = \begin{bmatrix} \frac{L_k}{2} \\ 0 \\ 2\frac{T_u R_s m_g}{A_k L_k} \\ T_u \end{bmatrix}.$$

Aufgabe 2:

a) Das Bodediagramm der Übertragungsfunktion G(s) ist in Abbildung 1 dargestellt.

Abbildung 1: Bodediagramm zu Aufgabe 2 a).

b) Die Übertragungsfunktion des Kompensationsreglers lautet

$$R(s) = K \frac{2 + 2 \cdot 0.7s + 0.5s^2}{\left(1 + sT_R\right)^2}$$

mit den Reglerparametern

$$K = 2 - \sqrt{3}$$

und

$$T_R = \frac{2 - \sqrt{3}}{5}.$$

c) Unter den gegebenen Voraussetzungen folgt durch Anwendung des Routh-Hurwitz Verfahrens, dass der geschlossene Regelkreis für

$$\xi > \frac{5}{2}K$$

BIBO-stabil ist.

d) Nach Anwendung des Endwertsatzes der Laplace-Transformation ergibt sich der stationäre Wert der Ausgangsgröße zu

$$y_{\infty} = \frac{1}{K}.$$

Aufgabe 3:

a) Die dargestellte Übertragungsfunktion ist durch

$$G_2(s) = \frac{2-s}{2+s+2s^2}$$

gegeben.

- b) i Nach Anwendung des Nyquist-Kriteriums folgt die BIBO-Stabilität des geschlossenen Regelkreises.
 - ii Da das Nennerpolynom des offenen Kreises L(s) = R(s)G(s) kein Hurwitzpolynom ist, kann das Nyquist-Kriterium in Frequenzkennliniendarstellung in diesem Fall nicht zur Untersuchung der Stabilität herangezogen werden.
- c) i Die Lösung lautet

$$\mathbf{x}(t) = \mathbf{V}\tilde{\mathbf{\Phi}}(t)\mathbf{V}^{-1}\mathbf{x}_0.$$

ii Die Matrizen lauten

$$\tilde{\mathbf{A}} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -2 \end{bmatrix}, \quad \tilde{\mathbf{\Phi}} = \begin{bmatrix} e^{-t} & 0 & 0 \\ 0 & e^{-2t} & te^{-2t} \\ 0 & 0 & e^{-2t} \end{bmatrix}.$$

Aufgabe 4:

a) Die Beobachterverstärkung $\hat{\mathbf{k}}$ ergibt sich zu

$$\hat{\mathbf{k}} = \begin{bmatrix} \frac{1}{6} \\ -\frac{4}{3} \end{bmatrix}.$$

- b) Die Fehlerdynamikmatrix eines trivialen Beobachters entspricht der Dynamikmatrix des Systems. Da die Eigenwerte bei $2+\sqrt{15}$ sowie bei $2-\sqrt{15}$ zu liegen kommen, ist die Fehlerdynamik des trivialen Beobachters instabil.
- c) Die Transformationsvorschrift ergibt sich zu

$$z = x - x_R$$

mit der Ruhelage $\mathbf{A}\mathbf{x}_{\mathbf{R}} = -\mathbf{r}$ und den Matrizen $\bar{\mathbf{A}} = \mathbf{A}$ sowie $\bar{\mathbf{B}} = \mathbf{B}$.

d) i Die Hankelmatrix ergibt sich zu

$$\mathbf{H} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

ii Aus der Regularität der Hankelmatrix kann auf vollständige Beobachtbarkeit und vollständige Erreichbarkeit geschlossen werden.

3