PRÁCTICO 1

INF 319 LENGUAJES FORMALES. GESTIÓN 3-2019

LENGUAJES

1. Demuestre que

$$A-\phi = A$$

2. Pruebe que

$$A \cap \phi = \phi$$

3. Demuestre las Leyes de Augustus De Morgan

(a)
$$(A \cap B)^c = A^c \cup B^c$$

(b)
$$(A \cup B)^{c} = A^{c} \cap B^{c}$$

4. Pruebe que

Si
$$A \subseteq B$$
 y $B \subseteq C$, entonces $A \subseteq C$

5. Demuestre que

Si
$$C \subseteq A$$
 y $C \subseteq B$, entonces $C \subseteq (A \cap B)$

6. Pruebe que

$$A \cap (B-A) = A$$

7. Demuestre que

$$(P-Q')' \subseteq (P'-Q)$$

8. Demuestre que

$$P \cdot Q \subseteq P^* \cdot Q^*$$

9. Pruebe que

$$P^* \cdot Q^* \subseteq (P \cup Q)^*$$

10. Demuestre que

11. Demuestre que:

Si
$$\lambda \in Q$$
 entonces $P^* \subseteq (P \cdot Q)^*$

12. Demuestre que

Si
$$B \subseteq Q$$
 y $(Q \cdot P)' \subseteq A'$ entonces $A \cdot B \cdot P \subseteq A \cdot A$

//Recuerde que \forall A,B $\subseteq \Sigma^*$, (A·B)' = B'·A'

CADENAS

1. En Σ^* definimos la operación °, recursivamente, de la siguiente manera:

Sabiendo esto, demuestre que, para todo $u \in \Sigma^*$:

- (a) $|u^{\circ}| = 2|u|$
- (b) $(u^{\circ})' = u^{\circ}$
- **2.** (Cadenas) Pruebe **por inducción** que, para todo $s \in \Sigma^*$:

$$(s \cdot s')' = s \cdot s'$$

3. En Σ^* definimos la operación °, recursivamente, de la siguiente manera:

$$\begin{cases} \lambda^{\circ} = \lambda \\ (w \cdot a)^{\circ} = w^{\circ} \cdot a \end{cases} \quad (a \in \Sigma, w \in \Sigma^{*})$$

Sabiendo esto, demuestre que, para todo u, $v \in \Sigma^*$:

$$(u^{\circ} \cdot v^{\circ})' = (v^{\circ})' \cdot (u^{\circ})'$$

4. En Σ^* se define el prefijo de una cadena así:

DEFINICIÓN. Para toda u, $v \in \Sigma^*$, decimos que u es prefijo de v (anotado "u **pref** v") sii existe una $z \in \Sigma^*$, tal que

$$v = u \cdot z$$

Para toda s, u, $v \in \Sigma^*$, pruebe que :

- (a) $\lambda pref s$
- (b) s pref s
- (c) Si u <u>pref</u> v y v <u>pref</u> s entonces u <u>pref</u> s