

Phase Retrieval Under a Generative Prior

Paul Hand, Oscar Leong, and Vladislav Voroninski

Northeastern University, Rice University, and Helm.ai

Generative models can outperform sparsity models in signal recovery

Generative models provide explicit low dimensional representation of natural signal manifold

Sparsity-based models view signals as living in union of combinatorially many subspaces

Why generative models in signal recovery?

- Signal dimensionality under generative priors can be smaller than for sparsity priors
- Representation can be directly and efficiently exploited in problem formulation

Case in point: Phase retrieval

No sample efficient sparsity-based algorithm exists BUT we show there does using generative models

Compressive Phase Retrieval: A problem in which sparsity has not succeeded

Given $m \ll n$ meas. $|Ay_0|$ find $y_0 \in \mathbb{C}^n$

Open problem: no algorithm to recover s-sparse y_0 with less than $O(s^2)$ generic measurements exists

- Sparsity creates an $O(s^2)$ computational bottleneck
- But a k-dim. latent code can be recovered from O(k) measurements

Our formulation: Deep Phase Retrieval

Given: matrix $A \in \mathbb{R}^{m \times n}$, generative model $G : \mathbb{R}^k \to \mathbb{R}^n$, $m \ll n$ measurements $|AG(x_0)|$, Find: $x_0 \in \mathbb{R}^k$

Non-convex optimization

Solve

$$\min_{x \in \mathbb{R}^k} f(x) := \frac{1}{2} ||AG(x)| - |AG(x_0)||^2$$

where

 $G(x) := \text{relu}(W_d \dots \text{relu}(W_2 \text{relu}(W_1 x)) \dots)$

Phase Retrieval Under a Generative Prior

Under a generative prior, the empirical risk minimization problem exhibits favorable geometry for gradient descent with optimal sample complexity. In particular, the objective function f exhibits a strict descent direction if m = O(k), the network has sufficiently expansive layers, and the weights are Gaussian with high probability.

Figure 1: Expectation of f with $x_0 = [1, 0] \in \mathbb{R}^2$

Variation of gradient descent

Algorithm 1 DPR Gradient method

Require: W_i , A, $|AG(x_0)|$, & step size $\alpha > 0$ Choose an arbitrary initial point $x_1 \in \mathbb{R}^k \setminus \{0\}$

- 1: **for** $i = 1, 2, \dots$ **do**
- if $f(-x_i) < f(x_i)$ then
- $x_i \leftarrow -x_i$;
- 4: end if
- $x_{i+1} = x_i \alpha \nabla f(x_i)$
- 6: end for

Synthetic experiments

Gaussian signals:

Image experiments

MNIST:

CelebA:

500 measurements

Conclusions

Generative models can solve signal recovery problems with lower sample complexity by:

- providing a lower dimensional representation of the data
- \bullet exploiting the low dimensionality directly & efficiently through empirical risk minimization

OL & PH acknowledge support by the NSF grants DGE-1450681 & DMS-1464525, resp.