Montrer que pour tout entier $n \ge 1$

$$1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
.

12+2+111+ m= m(n+1)(2n+1) Vn=1

Montros aci por induction su n.

La propriété - A vecie dons a cas

(2) Etope inductive Suppresons que la propriété ut vivie pour n 21, C'nd - à line 1222 + ... + m2 = m(n+1)(2n+1); c'nt notre

hypothèse d'induction

Montume que la propriétérest voir pour not! C'et à lie il font monton que

$$1^{2}+2^{2}+\dots+m^{2}+(n+1)^{2}=(n+1)(n+2)(2n+3)$$

(por Phypothese dinduction) = m(n+1)(2nn) + 6(nn)

$$= \frac{(m+1)[m(2m+1)+6(n+1)]}{6}$$

$$= \frac{(m+1)(m+2)(2m+3)}{6}.$$

Done, la propriété at toyous visis.

Soit h > -1 un nombre réel. Montrer l'inégalité de Bernoulli: $1 + nh \le (1 + h)^n$ pour tout entier $n \ge 0$.

h>-1, il fort monten que 1+nh ≤ (1+h) " y n≥0. Procédors por induction sur n:

D'an 1+nh≤ (1+h) don a cos

2) Etope inductive

- (i) Hyprothese d'induction on supprose que (1+nh) 5(1+h)
- (1) Conclusion trontrons que 4 (+1) h = (1+h) m+1

Mois $(l+h)^{n+1}$ = $(l+h)^n (l+h) \ge (l+nh)(l+h)$ [for Phypothe'se d'induction] = $l+h+nh+mh^2 = l+mh^2+(n+1)h \ge l+(n+1)h$ [cor $l+mh^2 \ge l$]. D'où $l+(n+1)h \le (l+h)^{n+1}$.

Por le principe d'induction, la propriété at vroie pour tont n2 o

Montrer que pour tout entier $n \ge 1$, $4^{n+1} + 5^{2n-1}$ est divisible par 21.

4 n+1 2n-1 divisible por 21 Vn ≥1.
Proceidons por induction:

- (1) Etope de Bose n=1: 4 +5 = 4 + 5= 21: divisible por 21
 - (1) Hypothese dinduction on suppress que 4 +5 est divisible por 21 pour n ≥1, Chd-à din

 4 1 5 = 21 K; KEN
 - (ii) Conclusion IP fact mont on fine

 4 n+2 2mx1 at divisible por 21;

 $4^{n+2} \stackrel{2n+1}{=} 4.4^{n+1} + 5 \stackrel{?}{\cdot} 5^{2m-1} = 4[21K-5^{m-1}] + 25.5^{2m-1}$ $= 4 \times 21 \cdot K - 4 \cdot 5^{2m-1} + 25 \cdot 5^{2m-1} = 4 \times 21 \times K + 21 \times 5^{2m-1}$ $= 21[4K+5^{2m-1}] : \text{divisiye por } 21.$

Por le principe d'induction, 4 not 5 at divisible por 21 pour tout n ≥ 1.

Pour quelles valeurs de l'entier naturel n a-t-on $2^n > n^3$? Justifier votre réponse.

Formons le tobleou mivont:

'n	2"	m'	2">m3
0	1	0	Vrai
1	2	1	Vroi
2	4	8	Four
3	8	27	Power
4	16	64	Four
5	32	125	Four
6	64	216	Four
7	129	343	Four
8	256	512	Fany
9	512	729	Form
10	1024	1000	Vrsc
4	2049	1331	Vioi

on romongue D'opnà ce tubleon que 2°>n³ Vn≥10. Montrons Cette observation por induction:

(1) Étope de Box = 10 2 = 1024, m= 1000: 2 sm3

(i) Hypothèse d'induction on suppose $2^n > n^3$ prom un $n \ge 10$.

(ii) Carcherion on doit mention que $2^{n+1} > (n+1)^3$ $(n+1)^3 = m^3 + 3m^2 + 3m + 1 \le m^3 + 3m^2 + 3m^2 + 3m^2 = m^3 + 9m^2$ $\le m^3 + m^3 = 2m^3$ [Cor $9m^2 \le m^3$ from $n \ge 10$] $< 2.2^n$ (por hypothèse d'induction on a $m < 2^n$) $= 2^{n+1}$

D'm 2"+1 > (n+1)3.