Modeling Regional Seawater Intrusion With SWI2

Mark Bakker, TUDelft, The Netherlands Frans Schaars, Artesia, The Netherlands

In collaboration with:
Joe Hughes, Chris Langevin, and Alyssa Dausman, USGS

What processes do we need in a coastal aquifer model?

Processes are often included because they exist, not because they matter (free after H. Haitjema)

Do we really need:
Dispersive mixing?
Inversion in aquifer?
Vertical fingering?
Viscosity variations?

Sea Water Intrusion (SWI) package for MODFLOW

- Simulate one aquifer with one model layer
- No (numerical) mixing of salinities during simulation
- Inversion between layers but not within layers

Seawater intrusion may be simulated in existing MODFLOW model through addition of one input file

Easy example of the approach: Rotation of an interface

Interface elevation: $\zeta(x,t)$

Interface tries to rotate to horizontal position (in absence of any other flow)

h is freshwater head at top of aquifer

$$Q_f = -KH_f \frac{\partial h}{\partial x}$$

$$Q_s = -KH_s \frac{\partial h}{\partial x} - KH_s \frac{\rho_s - \rho_f}{\rho_f} \frac{\partial \zeta}{\partial x}$$

Continuity of flow in the aquifer

$$Q_x = Q_f + Q_s$$

$$\frac{\partial Q_x}{\partial x} = -S\frac{\partial h}{\partial t} + N$$

Pseudo source term

$$\frac{\partial}{\partial x} \left(KH \frac{\partial h}{\partial x} \right) = S \frac{\partial h}{\partial t} - N \left(-\frac{\partial}{\partial x} \left(KH_s \frac{\rho_s - \rho_f}{\rho_f} \frac{\partial \zeta}{\partial x} \right) \right)$$

Continuity of flow below the interface

$$\frac{\partial Q_s}{\partial x} = -n\frac{\partial \zeta}{\partial t}$$

$$\frac{\partial}{\partial x} \left(KH_s \frac{\rho_s - \rho_f}{\rho_f} \frac{\partial \zeta}{\partial x} \right) = n\frac{\partial \zeta}{\partial t} \left(\frac{\partial}{\partial x} \left(KH_s \frac{\partial h}{\partial x} \right) \right)$$

Details: Bakker, WRR, 2003

Discretize aquifer into cells Specify interface in every cell

Water is salt when it is below the interface in an aquifer

Solve for the head in the entire model

Include interface position in pseudo-source term

Determine the inflow/outflow below the interface

Solve for the new position of the interface in the domain where interface is 'active' only

Include head solution in pseudo-source term

Solve for the new position of the interface in the domain where interface is 'active' only

Include head solution in pseudo-source term

Check if tips and toes move to adjacent cell

If above threshold, move tip/toe into next cell

Ready for the next time step

Interface moves to horizontal position

West-East cross-section through center of island

Regional model: Cape Cod

Steady position of interface in cross-section and plan view

The SWI2 package for MODFLOW2005: Quick simulation of seawater intrusion on Mac or PC

add one file to existing MODFLOW model

one model layer per aquifer

easy to interpret

SWI2 is part of MODFLOW2005

mark.bakker@tudelft.nl f.schaars@artesia-water.nl