Module 10 - MOLP

Exploratory Data Analysis

In this section, you should perform some data analysis on the data provided to you. Please format your findings in a visually pleasing way and please be sure to include these cuts:

- Choose a visualization method (expect 7 nodes and ~24 arcs):
 - Make a visual graph of your data on a map (coordinates should be within US borders)
 - https://mymaps.google.com/
 - Find a map with latitude/longitude and place them approximately
 - Any alternative that gives the same effect
 - o Make a visual graph of your data like what we saw for the sample problem
 - https://excalidraw.com
 - https://mermaid.live
 - https://dreampuf.github.io/GraphvizOnline
 - Powerpoint

Untitled map - Google My Maps

Model Formulation

Write the formulation of the model into here prior to implementing it in your Excel model. Be explicit with the definition of the decision variables, objective function, and constraints. For this problem, I am only asking that you perform the model formulation for the MOLP model.

Model Optimized for Equally Weighted Objectives

Implement your formulation into Excel and be sure to make it neat. This section should include:

- A screenshot of your optimized final model (formatted nicely, of course)
- A text explanation of what your model is recommending
- Update your graph from the EDA section to indicate which arcs are used

The model recommends a transportation strategy that focuses primarily on minimizing total transportation cost while balancing environmental impact, congestion, and distance. The current weight distribution places equal importance on all four objectives, resulting in transportation cost having the lowest deviation from its target, while congestion has the highest deviation. This suggests that the chosen routes prioritize economic efficiency, utilizing lower-cost shipping methods even if they lead to slightly more congestion and environmental impact. The model highlights trade-offs among competing goals, indicating that in order to achieve cost savings, some compromise in eco-friendliness and traffic levels was necessary. This configuration could serve well in scenarios where budget constraints are tight, and sustainability remains important but not dominant.

A	0 1			г	u	П	1	J	N.	L	IM	14		F	u		5	1	U
	from	o cost_per_unit_shipped	latitude	longitude	latitude B	longitude B	distance	Eco	transportation_method	congestion_level	Binary		Notes	Inflow		Net flow	Supply/Demand		
9623	1	4 10	37.5	-102.5	43.22	-119.94		1	Diesel Trucks	32	0		1	0	9623	-9623	-9623		
0	1	7 19	37.5	-102.5	41.11	-118.56	16.46073206		Diesel Rail	80	1		2	1379	0	1379	1379		
0	2	1 10	40.27	-109.63	37.5	-102.5	7.64916989		Air Freight	84	1		3	2796	1379	1417	1417		
0	2	3 11	40.27	-109.63	33.53	-119.1	11.6236182		Diesel Trucks	12	0		4	9623	7787	1836	1836		
0	2	5 14	40.27	-109.63	34.4	-111.46			Air Freight	95	1		5	1559	0	1559	1559		
0	2	6 11	40.27	-109.63	39.04	-88.2	21.46526962		Air Freight	31	. 0		6	3452.12651	1925.12651	1527	1527		
1379	3	2 9	33.53	-119.1	40.27	-109.63	11.6236182	1	Diesel Rail	22	0		7	5357.12651	3452.12651	1905	1905		
0	3	4 20	33.53	-119.1	43.22	-119.94	9.726340525	0	Wind-powered Ships	33	0								
0	3	5 16	33.53	-119.1	34.4	-111.46	7.689375787	0	Electric/Hybrid Trucks	88	1		Total Distance Traveled		Target Value				
0	3	6 19	33.53	-119.1	39.04	-88.2	31.38741945	0	Electrified Rail	70	1		399176.5578		274799.1933				
0	3	7 13	33.53	-119.1	41.11	-118.56	7.599210485	1	Diesel Trucks	81	1								
871	4	3 7	43.22	-119.94	33.53	-119.1	9.726340525	1	Diesel Rail	84	1		Eco-friendliness		Target Value				
1559	4	5 11	43.22	-119.94	34.4	-111.46	12.23530956	1	Air Freight	70	1		24166.25302		15505				
5357	4	7 9	43.22	-119.94	41.11	-118.56	2.521210027	1	Cargo Ships (Heavy Fuel Oil)	29	0								
0	5	2 6	34.4	-111.46	40.27	-109.63	6.148642127	0	Wind-powered Ships	87	1		Congestion Levels		Target Value				
0	5	4 7	34.4	-111.46	43.22	-119.94	12.23530956	0	Electrified Rail	98	1		2429.87349		1559				
0	5	6 18	34.4	-111.46	39.04	-88.2	23.7182883	1	Diesel Trucks	92	1								
0	5	7 7	34.4	-111.46	41.11	-118.56	9.769037824	1	Cargo Ships (Heavy Fuel Oil)	94	1		Total Transportation Cost		Target Value				
0	6	1 5	39.04	-88.2	37.5	-102.5	14.38268403	1	Diesel Trucks	25	0		279944.8074		202209				
0	6	2 21	39.04	-88.2	40,27	-109.63	21.46526962	0	Wind-powered Ships	110	1								
1925	6	3 16	39.04	-88.2	33.53	-119.1	31.38741945	1	Cargo Ships (Heavy Fuel Oil)	27	0								
0	6	4 11	39.04	-88.2	43.22	-119.94	32.01405941	0	Electrified Rail	85	1		Totals	Target Values	Deviation	% Deviation	Weight	Weighted Deviation %	
0	7	1 11	41.11	-118.56	37.5	-102.5	16.46073206	1	Air Freight	92	1		total transportation	202209	77735.80739	38%	1	0.384432975	
3452	7	6 20	41.11	-118.56	39.04	-88.2	30.43048636	1	Diesel Trucks	29	0		total distance	274799.193	124377.3646	45%	1	0.452611826	
													total eco-friendliness	15505	8661.25302	56%	1	0.558610321	
												1	total congestion	1559	870.8734898	56%	1	0.558610321	
													Minimax Variable	56%					
												1							

Model with Stipulation

Please copy the tab of your original model before continuing with the next part to avoid messing up your original solution.

Alter the weights of each objective to add weight to match what matters most to you. Perhaps run a few different scenarios to see how the routes change depending on the weights. When you find a weight mix and solution that satisfies you, please write a justification on why you chose the final model/weights and about how a configured model like yours can be used for scenario planning.

In my final model, I prioritized eco-friendliness and congestion by assigning them the highest weights, followed by transportation cost and then total distance. This reflects a shift toward more sustainable supply chain strategies, where minimizing environmental impact and avoiding congestion are more critical than purely focusing on cost. Although cost remains important, it's balanced against long-term goals like reducing emissions and improving delivery efficiency. This type of configured model is valuable for scenario planning because it allows companies to test different priority settings and see how changes in regulation, fuel prices, or sustainability targets might impact their logistics decisions.

		cost_per_unit_shipped						Eco	transportation_method	congestion_leve	Binary		Notes	Inflow			Supply/Demand	
9623	1 4	10	37.5		43.22	-119.94			Diesel Trucks	32	2 0		1	0	9623		-9623	
0	1 7	19	37.5	-102.5	41.11	-118.56	16.4607321		Diesel Rail	80	1		2	1379	0	1379	1379	
0	2 1	10	40.27	-109.63		-102.5	7.64916989	1	Air Freight	84	1 1		3	2796	1379	1417	1417	
0	2 3		40.27	-109.63	33.53	-119.1	11.6236182		DieselTrucks	12	2 0		4	9623	7787	1836	1836	
0	2 5		40.27	-109.63		-111.46			Air Freight	95	1		5	1559	0	1559	1559	
0	2 6	11	40.27		39.04	-88.2			Air Freight	31	. 0		6	2235.57134			1527	
1379		9	33.53	-119.1	40.27	-109.63	11.6236182	1	Diesel Rail	22	2 0		7	4140.57134	2235.57134	1905	1905	
0	3 4	20	33.53	-119.1	43.22	-119.94	9.72634052	0	Wind-powered Ships	33	3 0							
0	3 5		33.53	-119.1	34.4	-111.46	7.68937579	0	Electric/Hybrid Trucks	88	3 1		Total Distance Traveled		Target Value			
0	3 6	19	33.53	-119.1	39.04	-88.2	31.3874195	0	Electrified Rail	70	1		332737.1035		274799.193			
0	3 7	13	33.53	-119.1	41.11	-118.56	7.59921049	1	Diesel Trucks	8:	1							
2087.428663	4 3	7	43.22	-119.94	33.53	-119.1	9.72634052	1	Diesel Rail	84	1	1	Eco-friendliness		Target Value			
1559	4 5	11	43.22	-119.94	34.4	-111.46	12.2353096	1	Air Freight	70	1	1	21733.14267		15505			
4140.571337	4 7	9	43.22	-119.94	41.11	-118.56	2.52121003	1	Cargo Ships (Heavy Fuel Oil	29	0							
0	5 2	6	34.4	-111.46	40.27	-109.63	6.14864213	0	Wind-powered Ships	87	1		Congestion Levels		Target Value			
0	5 4	7	34.4	-111.46	43.22	-119.94	12.2353096	0	Electrified Rail	96	1		3646.428663		1559			
0	5 6	18	34.4	-111.46	39.04	-88.2	23.7182883	1	Diesel Trucks	92	1	1						
0	5 7	7	34.4	-111.46	41.11	-118.56	9,76903782	1	Cargo Ships (Heavy Fuel Oil	94	1	1	Total Transportation Cost		Target Value			
0	6 1	5	39.04	-88.2	37.5	-102.5	14.382684	1	Diesel Trucks	25			233715.7108		202209			
0	6 2	21	39.04	-88.2	40.27	-109.63	21.4652696	0	Wind-powered Ships	110	1							
708.5713366	6 3	16	39.04	-88.2	33.53	-119.1	31.3874195	1	Cargo Ships (Heavy Fuel Oil	27	7 0							
0	6 4	11	39.04	-88.2	43.22	-119.94	32.0140594	0	Electrified Rail	85	1	1	Totals	Target Values	Deviation	% Deviation	Weight	Weighted Deviation %
0	7 1	11	41.11	-118.56	37.5	-102.5	16.4607321	1	Air Freight	92	2 1	1	total transportation	202209	31506.7108	16%	2	0.311625208
2235.571337	7 6	20	41.11	-118.56	39.04	-88.2	30.4304864	1	Diesel Trucks	25	0		total distance	274799.193	57937.9102	21%	10	2.108372646
												1	total eco-friendliness	15505	6228.14267	40%	10	4.016860802
												1	total congestion	1559	2087.42866	134%	3	4.016860802
												1	Minimax Variable	402%				