CS2030S

Programming Methodology II

Recitation 09

Monad & Functor

Recap
- Monad

Recap

(9+6)+c=a+(b+c)=9+b+c

Monad

Definition

A monad has two methods of (some, none, ok, err etc) and flatMap (or next, bind, etc) and obeys three laws:

- 1. Left Identity Law:
 - \circ Monad.of(x).flatMap(y -> f(y)) = f(y)
- 2. Right Identity Law:
 - o monad .flatMap(y → Monad.of(y)) ₹ monad
- 3. Left Identity Law:
 - o monad.flatMap(x -> f(x)) .flatMap(x -> g(x))

monad.flatMap(x -> f(x).flatMap(x -> g(x)))

A 550 C

Recap

- Monad
- Functor

Definition

Recap

Functor

A **monad** has two methods **of** (**some**, **none**, **ok**, **err** etc) and **map** (**or fmap**, **transform**, etc) and obeys **two** laws:

- 1. Identity Morphism:
 - \circ functor .map(x -> x) = functor
- 2. Composition Morphism:
 - o functor.map(x -> f(x)).map(x -> g(x))

 =
 functor.map(x -> g(f(x)))

Recap NULL - Maybe

Dealing with NULL Values

Maybe< T >

Method	NULL	Non-NULL
static some(val)	NULL	Maybe
flatMap(f : T -> Maybe)	f.apply()	<i>''</i>
map(f : T -> R)	Maybe.some(f	.apply())

Recap NULL

- Maybe Optional

Dealing with NULL Values

Optional < T >

Java SE 17 & JDK 17

Module java.base Package java.util

Class Optional<T>

java.lang.Object java.util.Optional<T>

Type Parameters:

T - the type of value

public final class Optional<T> extends Object

A container object which may or may not contain a non-null value. If a value is present, isPresent() returns true. If no value is present, the object is considered *empty* and <code>isPresent()</code> returns <code>false</code>.

Recap NULL Questions - Maybe

Maybe

Question

Which of the three Monad laws and two Functor laws do Maybe obey?

Choice Comment

Α	Left Identity Law	?
В	Right Identity Law	?
C	Associative Law	?
D	Identity Morphism	?
E	Composition Morphism	?

Total Results: 13

Recap NULL Questions - Maybe

- Optional

Left Identity Law Right Identity Law Associative Law Identity Morphism Composition Morphism 15%

Optional

Question

Which of the three Monad laws and two Functor laws do **Optional** obey?

Choice Comment

A	Left Identity Law	?
В	Right Identity Law	?
C	Associative Law	?
D	Identity Morphism	?
Ε	Composition Morphism	?

Total Results: 27

Stream

Stream

Stream

Question

What is the result of the following code?

```
Stream.of(1, 2, 3, 4)
.reduce(0, (result, x) -> result * 2 + x);
```


Choice Comment

Α	20	?
В	26	?
С	49	?

Total Results: 6

Fibonacci

Fibonacci

Fibonacci

Definition

```
F_1 = 1

F_2 = 1

F_n = F_{n-1} / F_{n-2}
```

Recursive

```
int fibR(int n) {
  if (n <= 2) {
    return 1;
  } else {
    return fibR(n-1) + fibR(n-2);
  }
}</pre>
```

Iterative

```
int fibR(int n) {
  int f1 = 1; int f2 = 1;
  for (int i=0; i<n; i++) {
    int fn = f2 + f1; f2 = f1; f1 = fn;
  }
  return f2;
}</pre>
```

Fibonacci - *Alternative*

Fibonacci

Alternative Definition

Let $\underline{F_1}$ to F_4 be known. Then

$$F_5 = F_3 + F_4$$

 $F_6 = F_4 + F_5$
 $F_7 = F_5 + F_6$

Fibonacci

Alternative Definition

•
$$F_6 = F_4 + F_5$$

•
$$F_7 = F_5 + F_6$$

Fibonacci

Alternative Definition

•
$$F_5 = F_3 + F_4$$

•
$$F_6 = F_4 + F_3 + F_4$$

Fibonacci - *Alternative*

Fibonacci

Alternative Definition

•
$$F_5 = F_3$$
 + F_4
• $F_6 = F_3$ + $F_4 + F_4$
• $F_7 = F_3 + F_3 + F_4 + F_4 + F_4$

Fibonacci

Alternative Definition

•
$$F_5 = \bigcap_{3} F_3 + \bigcap_{4}$$

• $F_6 = \bigcap_{3} F_3 + 2 \times F_4$
• $F_7 = 2 \times F_3 + 3 \times F_4$

•
$$F_6 = F_3 + 2 \times F_4$$

•
$$F_7 = \mathbf{2} \times F_3 + \mathbf{3} \times F_4$$

Fibonacci

Alternative Definition

•
$$F_5 = 1 \times F_3 + 1 \times F_4$$

• $F_6 = 1 \times F_3 + 2 \times F_4$
• $F_7 = 2 \times F_3 + 3 \times F_4$

•
$$F_7 = 2 \times F_3 + 3 \times F_4$$

Fibonacci

Alternative Definition

•
$$F_5 = \mathbf{F_1} \times F_3 + \mathbf{F_2} \times F_4$$

•
$$F_6 = F_2 \times F_3 + F_3 \times F_4$$

Fibonacci - Alternative

Fibonacci

Alternative Definition

Let F_1 to F_4 be known. Then

•
$$F_5 = F_1 \times F_3 + F_2 \times F_4$$

• $F_6 = F_2 \times F_3 + F_3 \times F_4$
• $F_7 = F_3 \times F_3 + F_4 \times F_4$

Notes

- There are no more F_5 to F_7
- Given F_1 to F_4 , we can generate each F_5 to F_7 independently

Fibonacci

Alternative Definition

•
$$F_{k+1} = \mathbf{F_{1}} \times F_{k-1} + \mathbf{F_{2}} \times F_{k}$$

• $F_{k+2} = \mathbf{F_{3}} \times F_{k-1} + \mathbf{F_{3}} \times F_{k}$
• $F_{k+3} = \mathbf{F_{3}} \times F_{k-1} + \mathbf{F_{4}} \times F_{k}$

•
$$F_{k+3} = F_3 \times F_{k-1} + F_4 \times F_k$$

Fibonacci - Alternative

Fibonacci

Alternative Definition

•
$$F_{k+1} = \mathbf{F_1} \times F_{k-1} + \mathbf{F_2} \times F_k$$

•
$$F_{k+2} = \mathbf{F_2} \times F_{k-1} + \mathbf{F_3} \times F_k$$

•
$$F_{k+3} = F_3 \times F_{k-1} + F_4 \times F_k$$

•
$$F_{k+i} = F_i \times F_{k-1} + F_{i+1} \times F_k$$

Fibonacci

Alternative Definition

•
$$F_{k+1} = \mathbf{F_1} \times F_{k-1} + \mathbf{F_2} \times F_k$$

•
$$F_{k+2} = \mathbf{F_2} \times F_{k-1} + \mathbf{F_3} \times F_k$$

• $F_{k+3} = \mathbf{F_3} \times F_{k-1} + \mathbf{F_4} \times F_k$

•
$$F_{k+3} = F_3 \times F_{k-1} + F_4 \times F_k$$

- :
 $F_{k+i} = \mathbf{F_i} \times F_{k-1} + \mathbf{F_{i+1}} \times F_k$
- : $F_{2k-1} = F_{k-1} \times F_{k-1} + F_k \times F_k$

Fibonacci

Alternative Definition

Let F_1 to F_k be known. Then

•
$$F_{k+1} = \mathbf{F_1} \times F_{k-1} + \mathbf{F_2} \times F_k$$

•
$$F_{k+2} = \mathbf{F_2} \times F_{k-1} + \mathbf{F_3} \times F_k$$

• $F_{k+3} = \mathbf{F_3} \times F_{k-1} + \mathbf{F_4} \times F_k$

•
$$F_{k+3} = F_3 \times F_{k-1} + F_4 \times F_k$$

Note

Given F_1 to F_k , we can compute F_{k+1} to F_{2k-1} in parallel

• :
•
$$F_{k+i} = F_i \times F_{k-1} + F_{k-1} \times F_k$$

•
$$F_{2k-1} = F_{k-1} \times F_{k-1} + F_k \times F_k$$

jshell> /exit | Goodbye