Wstęp do bioinformatyki

Nr ćwiczenia: 4

Temat ćwiczenia: Progresywne dopasowanie wielosekwencyjne

Nazwisko i Imię prowadzącego kurs: dr inż. Witold Dyrka

Wykonawcy:	
Imię i Nazwisko	Edyta Krukowska 217097, WPPT
Nr indeksu, wydział	
Termin zajęć: dzień tygodnia, godzina	Piątek 11.15
Data oddania sprawozdania	23.05.2019

Repozytorium: https://github.com/Edie1995/Bioinformatyka/tree/zadanie3

1. Prezentacja działania programu:

```
seq1
ACC---TGAC
7

seq2
-CC---T-AC
5

seq3
ACC---AG-C
6

seq4
-CCATTTG-C
8
```

>>seq1 ACC---TGAC >>seq2 -CC---T-AC >>seq3 ACC---AG-C >>seq4 -CCATTTG-C

Rysunek 1 Przykład działania programu, dla przykładowych sekwencji wczytanych z przykładowych plików

2. Schemat blokowy algorytmu dopasowania

Rysunek 2 Schemat blokowy -tworzenie dopasowania wielu sekwencji

3. Oszacowanie złożoności czasowej obliczeniowej i pamięciowej kodu poszczególnych funkcji i całego programu:

> Czasowa:

addGapSign:

3 operacje if w 2 pętlach for, jedna pętla przy pesymistycznym założeniu porównywania n sekwencji o rozmiarze n, druga przy pesymistycznym założeniu długości sekwencji m, o rozmiarze m, złożoność maksymalnie rzędu O(mn)

addStar:

Podobnie jak w przypadku wcześniejszej funkcji, dwie pętle for, jedna zależna od długości sekwencji, druga od ich ilości, co daje nam ponownie złożoność maksymalnie rzędu O(mn)

chooseCenterSequence:

Dwie pętle for obie o ilości iteracji równej ilości sekwencji, przy pesymistycznym założeniu, że ich ilość to n, cała funkcja maksymalnie rzędu O(n²)

createMatrix:

Dwie główne pętle zagnieżdżone o ilości iteracji równej długości poszczególnych sekwencji. W pesymistycznym założeniu, że jedna z nich będzie miała długość n a druga m funkcja maksymalnie rzędu O(mn)

searchingBestAligment:

Funkcja zawierająca pętlę o ilości iteracji równej ilości sekwencji sprawdzanych, w pesymistycznym założeniu n, dodatkowo pętla ta wywołuje funkcję zawierającą pętlę o ilości iteracji n w pętli o ilości iteracji n (zależą one od długości porównywanych sekwencji), całość maksymalnie rzędu O(nm²)

toTextFile:

Zawiera pętlę główną o ilości iteracji równej długości sekwencji /60, pod nią zagnieżdżona jest pętla o ilości iteracji równej ilości sekwencji, a w niej pętla o ilości iteracji równej długości sekwencji, w pesymistycznym założeniu n*m*n. Funkcja maksymalnie rzędu O(mn²).

Ponieważ pozostałe funkcje nie zawierają tak złożonych operacji, można przyjąć, że program jest maksymalnie rzędu O(mn²).

> Pamięciowa

Największa ze struktur w programie ma rozmiar n*m, jest to struktura zwierająca n sekwencji o długości m. Struktura ta jest wykorzystywana w kilku funkcjach, jednak wywołania te nie są wysokiego rzędu. Można więc przyjąć, że złożoność pamięciowa programu wyniesie O(mn)

4. Porównanie przykładowych par sekwencji

KC591872.1	CCGGCTCA-CTACTGGGAAGG-GATCAACT-ATATAATACAATCG	42
KC985188.1	ATATGG-TGAGCT-CATA-C-GATAAAGCCT-AA-AA-ACCCAATAG	40
JQ735459.1	TAGGC-CAACCTGGGACCCTACTAGGAGAT-GA-TCAGATCGACAAT-GTC-ATTG	51
	** * * * * * * * * * * * * * * * * * * *	
KC591872.1	TTAC-AGCCCACGCC-TTT-T-TAATAATCTTTTTTC-TCGTTA-TA-CC	85
KC985188.1	ATATTATTGCTCATACTATTCCTATATAACCGAAAGGCTCTTTTTTCCCTGAGTA	95
JQ735459.1	-TAACCGCCCATG-C-ATT-CGTAATAAT-TTTCGTGATGGTCA-TACCC	95
	** * ** * * * ** ** * * * * * * * * * *	
KC591872.1	-TGTAA-T-A-ATTG-GAGG-ATT-TGGTAATT-GA-CTGG-TACCTCTAATA-TT	130
KC985188.1	GTAAGTGACAATGTGAGAAATTATTCCG-AATCCGGGCAGGATAAGAATGTAA-ACTT	151
JQ735459.1	ATGA-T-A-ATCG-GAGG-ATT-CGGAAACT-GA-TTAG-T-CC-CCCTGATAATT	140
	* * * * * * * * * * * * * * * * * * * *	
KC591872.1	-AGGG-GCACCGGACAT-AGCTTTTCCTCGATTAAACAATATAAGGTTTTGG-CTACT	184
KC985188.1	CAGGATGC-CCGAAGA-ATCAG-AATAGGT-G-TTGATAT-AGGATAGGGTCT-CC	200
1072E4E0 1	GENGENCE TENTAL AGETTTECCECENATANACAACATAA GETTEGGATTACT	100