

Considerations for IC and Component Selection for Space Systems*

Kenneth A. LaBel Co- Manager, NASA Electronic Parts and Packaging (NEPP) Program NASA/GSFC ken.label@nasa.gov 301-286-9936 http://nepp.nasa.gov

Lewis M. Cohn
Defense Threat Reduction Agency
Lewis Cohn@dtra.mil
703-767-2886

*focus is on active components and not passive

Outline

- Semiconductors: The Evolution of ICs
 - Availability and Technology
- IC Selection Requirements three fields of thought
 - Technical "The Good"
 - Programmatic "The Bad"
 - Risk/Reliability "The Ugly"
- · Reliability and Radiation
- Radiation Perspective Four methods of selecting ICs for space systems
 - Guaranteed hardness
 - Historical ground-based radiation data
 - Historical flight usage
 - Unknown assurance
- Understanding Risk
 - Risk trade space
 - Example: ASICs and FPGA sample selection criteria
- Conclusions

C and Component Selection for Space Systems – Presented by Kenneth A. Lebel

The Changes in Device Technology

- Besides increased availability, many changes have taken place in
 - Base technology,
 - Device features, and,
 - Packaging
- The table below highlights a few selected changes

<u>Feature</u>	<u>circa 1990</u>	<u>circa 2007</u>
Base technology	bulk CMOS/NMOS	CMOS with strained Si or SC
Feature size	> 2.0 um	65 nm
Memory size - volatile (device)	256 kb	1 Gb
Processor speed	64 MHz	> 3 GHz
FPGA Gates	2k	> 1M
Package	DIP or LCC - 40 pins	FCBGA - 1500 balls
Advanced system on a chip (SOC)	•	>Gbps Serial Link, Serdes, embedded processors,
features	Cache memory	embedded memory

The Challenge for Selecting ICs for Space

- Considerations since the "old days"
 - High reliability (and radiation tolerant) devices
 - Now a very small market percentage
 - Commercial "upscreening"
 - · Increasing in importance
 - Measures reliability, does not enhance
 - System level performance and risk
 - Hardened "systems" not devices

ADCs? SerDes?
SDRAM?
Processor? ASICs?

DSPs

OSPs FPGAs?

System Designer
Trying to meet high-resolution
instrument requirements AND
long-life

o and Community Salar New for Source Statement - Dresented by Houself & J. office

IC Selection Requirements

- To begin the discussion, we shall review IC selection from three distinct and often contrary perspectives
 - Performance,
 - Programmatic, and,
 - Reliability.
- Each of these will be considered in turn, however, one must ponder all aspects as part of the process

IC and Component Selection for Space Systems - Presented by Kenneth A. LaBel

Performance Requirements

- Rationale
 - Trying to meet science, surveillance, or other performance requirements
- Personnel involved
 - Electrical designer, systems engineer, other engineers
- Usual method of requirements
 - Flowdown from science or similar requirements to implementation
 - I.e., ADC resolution or speed, data storage size, etc...
- Buzzwords
 - MIPS/watt, Gbytes/cm³, resolution, MHz/GHz, reprogrammable
- Limiting technical factors beyond electrical
 - Size, weight, and power (SWaP)

Performance Inside a Apple iPhone™ player

Inside Apple's iPhone

n and Carrament Balantian for Space Systems . Descented by Reporth & Laft

Programmatic Requirements and Considerations

- Rationale
 - Trying to keep a program on schedule and within budget
- Personnel involved
 - Project manager, resource analyst, system scheduler
- Usual method of requirements
 - Flowdown from parent organization or mission goals for budget/schedule
 - I.e., Launch date
- Buzzwords
 - Cost cap, GANTT/PERT chart, risk matrix, contingency
- Limiting factors
 - Parent organization makes final decision

IC and Component Selection for Space Systems - Presented by Kenneth A. LaBe

Programmatics

A numbers game

Risk Requirements

- Rationale
 - Trying to ensure mission parameters such as reliability, availability, operate-through, and lifetime are met
- · Personnel involved
 - Radiation engineer, reliability engineer, parts engineer
- Usual method of requirements
 - Flowdown from mission requirements for parameter space
 - · I.e., SEU rate for system derived from system availability specification
- Buzzwords
 - Lifetime, total dose, single events, device screening, "waivers"
- Limiting factors
 - Management normally makes "acceptable" risk decision

An Example "Ad hoc" Battle

- Mission requirement: High resolution image
 - Flowdown requirement: 14-bit 100 Msps ADC
 - Usually more detailed requirements are used such as ENOB or INL or DNL as well
 - Designer
 - Searches for available radiation hardened ADCs that meet the above requirements
 - Searches for commercial alternatives that could be upscreened
 - Manager
 - Trades the cost of buying Mil-Aero part requiring less aftermarket testing than a purely commercial IC
 - Worries over delivery and test schedule of the candidate devices
 - Radiation/Parts Engineer
 - Evaluates existing device data to determine reliability performance and additional test cost and schedule
- The best device? Depends on mission priorities

C and Component Selection for Space Systems - Presented by Kenneth A. LaBel

Radiation Effects and Reliability

- Radiation reliability is viewed differently than a normal reliability (bathtub) consideration
 - It is a mix of a MTTF (or Time to First Failure TTFF)
 condition known as Total Ionizing Dose (TID) or
 Displacement Damage (DD) and a Mean Time Between
 Failures (MTBF) condition known as Single Event
 Effects (SEE).

Radiation and Traditional IC Reliability: Are the two related?

- · The short answer is yes
 - Radiation MTTF conditions can accelerate reliability wearout mechanisms either by eroding electrical signal margins or material damage
 - Radiation MTBF conditions also can impact long-term reliability
 - A single energetic particle, for example, can cause device failure instantaneously (such as with a gate rupture) or at a later time due to material damage.
- The methods of coupling the radiation-induced impacts into reliability calculations are limited
 - NEPP Program has a new effort to explore this coupling on state-of-the-art commercial Flash memories that are highly sought by flight programs

Latent damage from a single particle —

IC and Component Selection for Space Systems - Presented by Kenneth A. LaBel

"Guaranteed" Radiation Tolerance

- A limited number of semiconductor manufacturers, either with fabs or fabless, will guarantee radiation performance of devices
 - Examples:
 - ATMEL, Honeywell, BAE Systems, Aeroflex
 - Radiation qualification usually is performed on either
 - · Qualification test vehicle,
 - · Device type or family member, or
 - · Lot qualification
 - Some vendors sell "guaranteed" radiation tolerant devices by "cherry-picking" commercial devices coupled with mitigation approaches external to the die
- The devices themselves can be hardened via
 - Process or material (RHBP or RHBM),
 - Design (RHBD), or
 - Serendipity (RHBS)

Most radiation tolerant foundries use a mix of hardening approaches

C and Component Selection for Space Systems - Presented by Kenneth A. LaSel

Archival Radiation Performance – Ground-based Data

- Reviewing existing ground radiation test data on a IC and it's application has been discussed previously
 - For example, Christian Poivey at NSREC Short Course in 2002
 - Using a "similar" device with data is risky, but sometimes considered (though not recommended)
- · In general, the flow is shown below

Archival Radiation Performance – Flight Heritage

NASA

- Can we make use of parts with flight heritage and no ground data for new mission?
- Similar flow to using archival ground data exist, but consider as well
 - Statistical significance of the flight data
 - · Environment severity?
 - · Number of samples?
 - · Length of mission?
 - Has storage of devices affected radiation tolerance or reliability?
 - And so forth
- This approach is rarely recommended by the radiation experts

Some heritage designs last better than others

IC and Component Selection for Space Systems - Presented by Kenneth A. Laßet

IC's with no Guarantee or Heritage

NASA

- Radiation testing is required in the vast majority of cases
 - Testing complexities and challenges are discussed elsewhere (e.g., Swift during this short course, LaBel during the conference)
 - The true challenge is to gather sufficient data in a cost and schedule effective manner.
 - A backup plan should be made in case device fails to pass radiation criteria.
- Reliability testing has similar concerns

SDRAM mounted on a daughtercard

"Abandon all hope, ye' who enter here"

IC and Component Selection for Space Systems - Presented by Kenneth A. Leffel

- · Exceptions for testing may include
 - Operational
 - Ex., The device is only powered on once per orbit and the sensitive time window for a single event effect is minimal
 - Acceptable data loss
 - Ex., System level error rate may be set such that data is gathered 95% of the time. This is data availability. Given physical device volume and assuming every ion causes an upset, this worst-case rate may be tractable.
 - Negligible effect
 - Ex., A 2 week mission on a shuttle may have a very low TID requirement. TID testing could be waived.

A FLASH memory may be acceptable without testing if a low TID requirement exists or not powered on for the large majority of time.

IC and Component Selection for Space Systems - Presented by Kenneth A. LaBel

Understanding Risk

- Risk for a mission falls in to the same topic areas as parts selection
 - Technical, programmatic, and reliability
- Technical risks
 - Relate to the circuit designs not being able to meet mission criteria such as jitter related to a long dwell time of a telescope on an object
- Programmatic risks
 - Relate to a mission missing a launch window or exceeding a budgetary cost cap which can lead to mission cancellation
- · Reliability risks
 - Relate to mission meeting its lifetime and performance goals without premature failures or unexpected anomalies
- Each mission must determine its priorities among the three risk types

\$

IC and Component Selection for Space Systems - Presented by Kenneth A. LaBel

22

The Risk Trade Space -

Considerations for Device Selection (Incomplete)

- · Cost and Schedule
 - Procurement
 - NRE
 - Maintenance
 - Qualification and test
- Performance
 - Bandwidth/density
 - SWaP
 - System function and criticality
 - Other mission constraints (ex., reconfigurability)
- System Complexity
 - Secondary ICs (and all their associated challenges)
 - Software, etc...

- Design Environment and Tools
 - Existing infrastructure and heritage
 - Simulation tools
- System operating factors
 - Operate-through for single events
 - Survival-through for portions of the natural environment
 - Data operation (example, 95% data coverage)
- Radiation and Reliability
 - SEE rates
 - Lifetime (TID, thermal, reliability,...)
 - "Upscreening"
- System Validation and Verification

IC and Component Selection for Space Systems - Presented by Kenneth A. Laffel

Systems Engineering and Risk

- The determination of acceptability for device usage is a complex trade space
 - There is often more than one answer that's acceptable
- A more omnidirectional approach is taken to evaluate the various risks
 - Each of the three factors may be assigned weighted priorities
 - The systems engineer is often the "person in the middle" evaluating the technical/reliability risks and working with management to determine acceptable risk levels

IC and Component Selection for Space Systems - Presented by Kenneth A. LaBe

24

Example: Considerations for Selecting a "Custom" Device

- Three basic device type options
 - Custom ASIC (CA)
 - · Also called standard cell or just ASIC
 - Essentially a fully-custom design IC
 - Structured ASIC (SA)
 - Newer device that is a semi-custom design using built-in functional blocks that are interconnected for a user's design by the device manufacturer
 - Field Programmable Gate Array (FPGA)
 - One-time or reprogrammable interconnecting of logic performed by the user or can be done in-circuit (reprogrammable options)
- These class of devices now have so much functionality that they can be classified as system on a chip (SOC)
- We will use the three discussed selection criteria for this example.

IC and Component Selection for Space Systems - Presented by Kenneth A. LeBel

Selection Criteria: Radiation and Reliability

- While there is no "generic" answer for radiation tolerance and reliability levels in the trade, there are numerous considerations such as
 - What is known of the process radiation tolerance?
 - Was process/device radiation qualification sufficient for planned design or application?
 - Library? Cells? Speed? Etc...
 - · Is the process reliable and achieving good yield?
 - High-volume commercial fab vs. low-volume niche fab?
 - Are there lot-specific or application-specific concerns?
 - Is there a specific performance requirement such as reconfigurability or ultra-low power that forces a nonradiation tolerant device selection?
 - How does a fault-tolerant system architecture enter the equation?
 - How testable is the design/device?
- As has become more evident, trade spaces are much more complex than "just" an IC

IC and Component Selection for Space Systems - Presented by Kennetti A. LaGel

Current Radiation Hardening Considerations Category Generic CMOS CA SA FPGA Technology Niche vendors for RH; Commercial would rely on several vendors underway Commercial several vendors several vendors available, but

	Technology			
RH Availability	Poor	Niche vendors for RH; Commercial would rely on RHBS and RHBD	Niche vendors – none currently available, but several vendors are developing	Limited, but new developments underway
TID	RHBS; improving with scaling	RHBS, RHBD, RHBP	RHBS, RHBP, partial RHBD	RHBS
SEE	RHBS – not; increasing sensitivity; SOI?	RHBS, RHBD, RHBP (substrate)	RHBS, RHBD partial, RHBP (substrate)	RHBS
Notes	IP: Limited RH IP available; Commercial IP? Commercial manufacturers working soft error rate (SER) Issues	RH levels can be "tuned" via RHBD or RHBP; Difficult for radiation testing	Circuit tiles can incorporate mitigation options	External and internal SEE mitigation (TMR, scrubbing, reconfiguration, etc) for logic and configuration

IC and Component Selection for Space Systems - Presented by Renneth A. Label

ASICs versus FPGAs							
Category	SRAM - FPGA	OTP FPGA	SA	CA			
NRE	Low	Low	Med	High			
Production Cost	High	High	Med	High			
Risk	Low	Low	Med	High			
Development Span (TTM)	Low	Low	Med	High			
Electrical Performance	Low	Low	Med	High			
Density/Capacity	Low	Low	Med	High			
Power Consumption	High	Med	Med	Low			
Flexibility	High	Med	Med	Low			
Radiation Performance	Low	Med	High	High			

Conclusions

- In this talk, we have presented considerations for selection of ICs for space systems
 - Technical, programmatic, and risk-oriented
 - As noted, every mission may view the relative priorities between the considerations differently
- We have also noted a specific type of example, that of custom to semi-custom devices
- · As seen below, every decision type may have a process.
 - It's all in developing an appropriate one for your application.

http://www-rohan.sdsu.edu/~renglish/370/notes/chapt05/

IC and Component Selection for Space Systems - Presented by Kenneth A. LaBe