a)
$$|2x - 8| = 4$$

a)
$$|2x - \delta| = 4$$

b) $|4x + 2| = 6$

c)
$$\left| \frac{1}{2}x - 1 \right| = 3$$

d) $\left| \frac{2}{3}x + 4 \right| = 2$

e)
$$|10 - x| = 4$$

f) $|1 - 3x| = 6$

a)
$$|2x + 4| \le 8$$

b) $|3x - 9| \ge 6$

d)
$$|2 - \frac{1}{3}x| < 1$$

c)
$$\left| \frac{5}{2}x + 10 \right| \ge 5$$

5 h)
$$|x+11| > 0$$

g) $|2x - 4| \le 0$

f)
$$|0,75 + \frac{5}{4}x| < \frac{1}{4}$$

i)
$$|x - 3| \ge -1$$

c) $|2x + \frac{1}{2}| > 2$

a)
$$\sqrt{(x+5)^2} = 5$$

b) $\sqrt{(3-x)^2} = 2$

c)
$$\sqrt{x^2 - 2x + 1} = 1$$
 e)

c)
$$\sqrt{x^2 - 2x + 1} = 1$$
 e) $\sqrt{\frac{1}{4} + x + x^2} = 4$
d) $\sqrt{4x^2 + 4x + 1} = 3$ f) $\sqrt{9x^2 - 12x + 4} = 6$

4. Rozwiąż nierówność.

a)
$$|x| \leqslant \sqrt{(4-2\sqrt{2})^2} + \sqrt{(4-3\sqrt{2})^2}$$

b)
$$|x+1| \ge \sqrt{(3-2\sqrt{3})^2} - \sqrt{(2\sqrt{3}-2)^2}$$

5. Jakie liczby
$$x$$
 spelniają równanie?

Jakie liczby
$$x$$
 spelniają rów a) $|x-3|=x-3$

c)
$$|x + \sqrt{2}| = -x - \sqrt{2}$$

b)
$$|3x - 6| = 6 - 3x$$

d)
$$\sqrt{(x-2)^2} = x - \sqrt{2}$$

6. Uprość wyrażenie dla
$$x < 0$$
.

a)
$$\sqrt{x^2} + x$$

b)
$$\sqrt{(x-3)^2} - \sqrt{x^2}$$
 c) $\sqrt{x^2 - 4x + 4} + x$

7. Korzystając z interpretacji geometrycznej wartości bezwzględnej, uzasadnii
$$\sigma_0$$
 iogli $a < b$ to zbiorem rozwiazań nierówności $|x - a| < |x - b|$ iest

Korzystając z interpretacji geometrycznej wartości bezwzgiędnej, uzasadnij, że jeśli
$$a < b$$
, to zbiorem rozwiązań nierówności $|x - a| < |x - b|$ jest przedzial $(-\infty; \frac{a+b}{2})$.

Wykaż, że wyrażenie przyjmuje stale tę samą wartość dla podanych warœ,

a)
$$|-x| + |2 - x| - |3 - 2x| d \ln x \ge 2$$

b)
$$\sqrt{x^2 + 6x + 9} + |-x| - |-2x - 6| \text{ dla } x \leqslant -3$$

9. Wykaż, że jeśli
$$0 \leqslant a \leqslant b$$
, to $\sqrt{a+b+2\sqrt{ab}} - \sqrt{a+b-2\sqrt{ab}} = 2\sqrt{a}$.

Logika matematyczna

wają reguly logiki matematycznej. Odnoszą się one do zdań, którym można Sposoby budowania zdań w języku, którym porozumiewamy się na co dzień są określone przez reguly gramatyki. W matematyce podobną rolę odgryw jednoznaczny sposób przypisać wartość logiczną; prawdy lub falszu. Stosowane są oznaczenia: 1 (prawda), 0 (falsz)

Na przykład:

a)
$$\sqrt{2}$$
 jest liczbą wymierną.

falsz 0

Ze zdań składowych (będziemy je oznaczać literami: p,q,r,...) możemy tworzyć zdania złożone przy użyciu spójników logicznych: "nie", "lub", i", "jeżeli..., to...", "wtedy i tylko wtedy, gdy...".

Negacja zdania

Rozpatrzmy dwa zdania: zdanie p i jego zaprzeczenie – zdanie Nieprawda, że p, co zapisujemy $\sim p$. Na przykład:

Zdanie p jest falszywe, zdanie
$$\sim p$$
 – prawdziwe.

2			
d	-		0
	$,p$ i $\sim p,$	a jedno	
	Zwróć uwagę, że z dwóch zdań, p i $\sim p$,	zawsze jedno jest prawdziwe, a jedno	
	że z	jest	
	uwagę,	jedno	.c.
	Zwróć	zawsze	falszywe.

	를 2	Je to
4 ~	0	П
h	-	0

ssli zdanie p jest falszywe, zdanie $\sim p$ jest prawdziwe. śli zdanie p jest prawdziwe,

- က 1. Jeżeli zdanie p ma postać $\sqrt{8} < 3$, to zdanie $\sim p$ ma postać $\sqrt{8} \geqslant$ Wartości logiczne zdań p i $\sim p$ to odpowiednio 1 i 0.
- a) Sformuluj zdanie $\sim p$, jeżeli p ma postać $\sqrt{625} \neq 25$. Określ wartości logiczne zdań p i $\sim p$.
- b) Sformuluj zdanie p, jeżeli $\sim p$ ma postać 100 jest liczbą nieparzystą. Określ wartości logiczne zdań p i $\sim p$.