Relatório Laboratório 03 - Otimização com Métodos de Busca Local

Instituto Tecnológico de Aeronáutica – ITA Inteligência Artificial para Robótica Móvel – CT-213

Nicholas Scharan Cysne Turma 22

1. Introdução

Tem-se como objetivo deste laboratório a aplicação e comparação de três diferentes algoritmos de otimização: Gradient Descent, Hill Climbing e Simulated Annealing no problema de achar a taxa de desaceleração devido o atrito numa roda real. A seguir estão reproduzidos a implementação e resultado de cada um, bem como os valores reais esperados encontrados utilizando o Método dos Mínimos Quadrados.

2. Gradient Descent

A implementação do Gradient Descent é realizado da seguinte forma: analisa-se todos os vizinhos 8-conectados de um determinado ponto e determina-se aquele que possua a maior taxa de variação mediante o gradiente. Em casos de minimização de custo seguimos o caminho que exibiu a maior taxa de variação negativa, analogamente a maximização segue o caminho de variação positiva.

Considera-se que o ponto ótimo foi encontrado quando o gradiente apresenta uma variação menor que o erro considerado ou por número de iterações excedente à máxima. A Figura 1 apresenta o resultado dado pelo Gradient Descent.

Figura 1: Gradient Descent

O valor do ponto ótimo encontrado está descrito na Tabela 1.

Gradient Descent	f(m/s²)	v _o (m/s)
Ponto Ótimo	0.43337067	-0.10101846

Tabela 1: Dados de otimização do Gradient Descent.

3. Hill Climbing

A implementação do Hill Climbing é realizada da seguinte forma: Analisa-se os vizinhos de um determinado ponto que estão espaçados de um ângulo α , no nosso caso utilizou-se o 8-conectado, logo $\alpha=\frac{\pi}{4}$, e aplica-se a função de custo em cada um destes pontos. O caminho a ser seguido é determinado por aquele ponto que possuir a maior função de custo, no caso de maximização, ou menor, no caso de minimização.

Considera-se que foi encontrado o ponto ótimo assim que o erro entre o valor de custo atual e o desejável for menor que um valor ϵ , ou quando o número de iterações exceder o limite. A Figura 2 representa o resultado gráfico do Hill Climbing.

Figura 2: Hill Climbing

O valor do ponto ótimo encontrado está descrito na Tabela 2.

Hill Climbing	f(m/s²)	v _o (m/s)
Ponto Ótimo	0.43341125	-0.10119596

Tabela 2: Dados de otimização do Hill Climbing.

4. Simulated Annealing

A implementação do Simulated Annealing é realizada da seguinte forma: Analisa-se os vizinhos de um determinado ponto e segue o caminho daquele que apresentar uma função de custo mais próxima ao objetivo. A fim de evitar cair em ótimos locais simula-se uma temperatura de estado que diminui a cada iteração, esta define enquanto ainda está alta a escolha de vizinhos aleatórios quando em ótimos locais, e quando vai diminuindo vai escolhendo menos vizinhos aleatórios.

Considera-se que foi encontrado o ponto ótimo assim que o erro entre o valor de custo atual e o desejável for menor que um valor ϵ , ou quando o número de iterações exceder o limite. A Figura 3 representa o resultado gráfico do Simulated Annealing.

Figura 3: Simulated Annealing

O valor do ponto ótimo encontrado está descrito na Tabela 3.

Simulated Annealing	f(m/s²)	v _o (m/s)
Ponto Ótimo	0.43393926	-0.10182085

Tabela 3: Dados de otimização do Simulated Annealing.

5. Dados Comparativos

A Tabela 4 representa os valores em comparação com o valor aproximado do ponto ótimo esperado, obtido por Método dos Mínimos Quadrados. Analisando a tabela, e sabendo que todos tiveram o mesmo número de 1000 iterações, o algoritmo utilizando Gradient Descent chegou mais próximo ao ponto ótimo, seguido por Hill Climbing e Simulated Annealing.

Algoritmo	f(m/s²)	v _o (m/s)
Least Squares	0.43337277	-0.10102096
Gradient Descent	0.43337067	-0.10101846
Hill Climbing	0.43341125	-0.10119596
Simulated Annealing	0.43393926	-0.10182085

 Tabela 4: Comparativo dos resultados encontrados.