RVSTAR DAY0

一、RISC-V 介绍

1. **RISC-V**(发音为"risk-five")是一个基于<u>精简指令集</u>(RISC)原则的<u>开源指令集架构</u>(ISA)。

种类	介绍	
CISC复 杂指令 集	x86架构微处理器如Intel的Pentium/Celeron/Xeon与AMD的Athlon/Duron/Sempron;以及其 <u>64位</u> 扩展系统的x86-64的架构的EM64T的Pentium/Xeon与AMD64的Athlon 64/Opteron都属于CISC系列。主要针对的操作系统是微软的Windows。另外Linux,一些UNIX等都可以运行在x86(CISC)架构的微处理器。	
RISC精 简指令 集	RISC这种指令集运算包括HP的PA-RISC,IBM的PowerPC,Compaq (被并入HP)的Alpha, <u>MIPS公司</u> 的MIPS,SUN公司的SPARC等。 只有UNIX,Linux,MacOS等操作系统运行在RISC处理器上。	

常见指令集对比

2. 特点

特性	x86或ARM架构	RISC-V
架构篇幅	数千页	少于300页
模块化	不支持	支持模块化可配置的指令子集
可扩展性	不支持	支持可扩展定制指令
指令数目	指令数繁多, 不同的架构分支彼此不兼容	一套指令集支持所有架构。基本 指令子集仅40余条指令,以此为 共有基础,加上其他常用模块子 集指令总指令数也仅几十条
易实现性	硬件实现的复杂度高	硬件设计与编译器实现非常简单 仅支持小端格式存储器访问指令 一次只访问一个元素去除存储器 访问指令的地址自增自减模式规 整的指令编码格式简化的分支跳 转指令与静态预测机制 不使用分 支延迟槽(Delay Slot)不使用指 令条件码(Conditional Code) 运算指令的结果不产生异常(Exception) 16位的压缩指令有其对应的普通 32位指令不使用零开销硬件循环

二、硬件介绍

https://riscv.org/

https://www.gigadevice.com/

https://www.nucleisys.com/#anchor1

RV-STAR是一款基于GD32VF103 MCU的RISC-V评估开发板,提供了板载调试器、Reset和Wakeup用户按键、RGB LED、USB OTG,以及EXMC、Arduino和PMOD扩展接口等资源。

开发板示意图

RV-STAR开发板及功能简介:

- 微控制器: GD32VF103VBT6 (32位RISC-V处理器)
 - o 内核: Bumblebee内核(RV32IMAC)
 - o 主频: 108MHz
 - o 内存:内置128KB Flash、32KB SRAM
 - o 工作电压: 2.6~3.6V
 - 外设资源: Timer(高级16位定时器1,通用16位定时器4)、U(S)ART5、I2C2、SPI3、CAN2、USBFS1、ADC2(16路外部通道)、DAC2、EXMC1
- 供电方式: 5V USB 或者 5~9V 外部直流电源(Arduino Vin)
- 尺寸: 66mm*53.4mm
- 外设及接口:
 - USB Type-C接口:下载、调试、串口通信功能
 - o Micro USB接口: USB-OTG功能
 - o microSD卡插槽(默认没焊接):外扩SD卡存储(SPI接口)
 - o JTAG接口:可分离MCU与调试器,使其各自可单独工作
 - o PMOD接口*2: SPI、I2C

- o 双排标准2.54mm排母接口: Arduino兼容接口(外侧), EXMC扩展接口(内侧)
- o 用户按键*2: 复位、唤醒
- o RGB LED*1

图 1-1. GD32VF103 系列器件的系统架构示意图

JTAG: Joint Test Action Group, 联合测试行动小组,是一种国际标准测试协议,主要用于芯片内部测试及对系统进行仿真、调试, JTAG 技术是一种嵌入式调试技术,它在芯片内部封装了专门的测试电路 TAP(Test Access Port,测试访问口),通过专用的 JTAG 测试工具对内部节点进行测试。

功能说明

每个通用 I/O 端口都可以通过两个 32 位的控制寄存器(GPIOx_CTL0/ GPIOx_CTL1)和两个 32 位的数据寄存器(GPIOx_ISTAT, GPIOx_OCTL)配置为 8 种模式:模拟输入,浮空输入,上拉输入,下拉输入,GPIO 推挽输出,GPIO 开漏输出,AFIO 推挽输出和 AFIO 开漏输出。详情 请见表 7-1. GPIO 配置表。

GPIO(General Purpose I/O Ports)意思为通用输入/输出端口,通俗地说,就是一些引脚,可以通过它们输出高低电平或者通过它们读入引脚的状态-是高电平或是低电平。

GPIO口一是个比较重要的概念,用户可以通过GPIO口和硬件进行数据交互(如UART),控制硬件工作(如 LED、蜂鸣器等),读取硬件的工作状态信号(如中断信号)等。GPIO口的使用非常广泛。

GPIO的优点(端口扩展器)

•

三、环境配置

基于VSCode安装PlatformIO插件

- 1. 安装vscode https://code.visualstudio.com/Download
- 2. 驱动安装 https://www.riscv-mcu.com/attach-show-id-18.html

若成功安装,设备管理器的"通用串行总线控制器"选项会仅有一个UBS Serial Converter B,同时"通用串行总线设备"中会显示JTAG

ps:

- o 设备管理器打开方式: win+X, 选择设备管理器
- 。 未成功安装驱动,则会出现UBS Serial Converter A、UBS Serial Converter B两个设备
- 3. 安装platformio插件 https://platformio.org/install/ide?install=vscode

新建工程!!

安装platformio插件后,新建工程。

初次新建工程,PlatformIO会从GitHub自动下载支持多达1000种类型的开发板的依赖,因此会停留在该页面很久,在使用校园网不使用代理的情况下要下载1-2小时。为保证课堂进度,请课前自行进行环境的安装以及工程新建。

经过漫长的等待,工程成功创建。

四、程序烧录

在路径C:\Users\ *UserName* \ .platformio\platforms\nuclei\examples

右击helloworld, 选择用vscode打开

打开工程后,选择相应的编译环境。若不自行选择,则会按照default环境编译,default环境会将列表中的所有环境都编译一次,需等待较长时间。

五、LED闪动、观察串口输出

效果: 红灯间隔一秒闪烁, 通过串口向putty打印helloworld信息。

```
#include <stdio.h>
#include <stdlib.h>
#include "gd32vf103_gpio.h"
int main()
   rcu_periph_clock_enable(RCU_GPIOA); //使能GPIOA时钟
   gpio_init(GPIOA, GPIO_MODE_OUT_PP,
             GPIO_OSPEED_2MHZ, GPIO_PIN_2);//PA2--推挽输出--速度2MHZ
   gpio_bit_write(GPIOA, GPIO_PIN_2, 1); //PA2输出高电平
   while(1)
   {
       gpio_bit_reset(GPIOA, GPIO_PIN_2);
       delay_1ms(1000);//延迟1秒
       gpio_bit_set(GPIOA, GPIO_PIN_2);
       delay_1ms(1000);
       printf("hello,world!\r\n");
   }
}
```

PuTTY简介

PuTTY下载连接

六、蜂鸣器

```
#include <stdio.h>
#include <stdlib.h>
#include "gd32vf103_gpio.h"
int main()
{
    rcu_periph_clock_enable(RCU_GPIOE);//使能GPIOE时钟
   gpio_init(GPIOE, GPIO_MODE_OUT_PP,
             GPIO_OSPEED_2MHZ, GPIO_PIN_12);//PE12--推挽输出--速度2MHZ
   gpio_bit_write(GPIOE, GPIO_PIN_12, 1);//PCE输出高电平
   while(1)
        gpio_bit_reset(GPIOE, GPIO_PIN_12);
        delay_1ms(1000);
        gpio_bit_set(GPIOE, GPIO_PIN_12);
        delay_1ms(1000);
    }
}
```

七、SW 420震动传感器

- 4 GND: connect this module to the system GND
- 3 VCC: you can use 5V or 3.3V for this module
- 2 NC: none connected in this module
- O SIG: output the Vout voltage signal
- 5 Potentiometer: you can use a screwdriver to rotate the potentiometer which controls the sensitivity of this sensor.
- 6 GND: the GND pin of the potentiometer.
- 7 Vsen: the lower the voltage of Vsen, the higher the sensitivity
- Occ. With the second the second of the potention of the potention of the potention.
- 9 SW-420: the Vibration Sensor

LM393是双电压比较器,它有两个输入端和两个输出端,一个基准电压端.输入端电压低于基准电压时输出端为高电平,反之输出端电平翻转。

八、动手练习

- 1. 使用SW420与蜂鸣器模拟报警器
- 2. 已知 TTP223 触摸开关的数据传输与震动传感器相似, 试使用触摸开关控制LED的亮灭状态