denotes a compact space and C(K) the space of all real-valued continuous functions on K. It will be essential that K is compact for all what follows since it will be needed that the positive cone of C(K) has interior points.

We reformulate condition (ii) of Theorem 1.3 for unbounded operators.

 $\frac{\text{Definition}}{\text{Definition}}$ 1.5. An (unbounded) operator A on C(K) is said to satisfy the positive minimum principle if

for every
$$0 \le f \in D(A)$$
 and $x \in K$,
(P)
$$f(x) = 0 \text{ implies } (Af)(x) \ge 0.$$

Our next theorem shows that the positive minimum principle characterizes the positivity of the semigroup; and in fact, the proof is very elementary. Using more involved arguments we will later prove a much stronger result (Theorem 1.13).

Theorem 1.6. Let A be the generator of a strongly continuous semigroup on C(K). Then the semigroup is positive if and only if the generator A satisfies the positive minimum principle (P).

<u>Proof.</u> The necessity of the condition is proved as "(i) implies (ii)" in Theorem 1.3. Assume that (P) holds. We claim that $R(\lambda,A) \geq 0$ for sufficiently large real λ . (This implies the positivity of the semigroup by Prop. 1.1). Let $s:=\inf\{\lambda\in\mathbb{R}: [\lambda,\infty)\subset\rho(A)\}$. Then $s\leq\omega(A)<\infty$. Let $0<< u\in C(K)$. Then $\lambda_O:=\inf\{\lambda>s:R(\mu,A)u>>0$ for all $\mu\in(\lambda,\infty)\}<\infty$ since $\lim_{\mu\to\infty}\mu R(\mu,A)u=u$. We claim that $\lambda_O=s$.

In fact, if this is not true, then $[\lambda_O,\infty) \subset \rho(A)$ and $R(\lambda_O,A)u \ge 0$ but $R(\lambda_O,A)u$ is not strictly positive. Consequently there exists $x \in K$ such that $(R(\lambda_O,A)u)(x)=0$. Then (P) implies that $A(R(\lambda_O,A)u)(x)\ge 0$. Hence, $0 < u(x)=\lambda_O(R(\lambda_O,A)u)(x)=0$. A contradiction. We have shown that $R(\lambda,A)u >> 0$ for all u >> 0 and $\lambda > s$. Since $\{u \in C(K): u >> 0\}$ is dense in $C(K)_A$, it follows that $R(\lambda,A)\ge 0$ for all $\lambda > s$.

Remark 1.7. The proof of Theorem 1.6 shows that for the generator A of a positive semigroup on C(K), $R(\lambda,A)u >> 0$ whenever $0 << u \in C(K)$ and $[\lambda,\infty) \subset \rho(A)$. In particular, $R(\lambda,A) \ge 0$ whenever $[\lambda,\infty) \subset \rho(A)$.