PH101 Lecture17

04.09.14

Recap

Taylor's series expansion of P.E. U(r) about a point r_0

$$U(r) = U(r_0) + (r - r_0) \frac{dU}{dr} \bigg|_{r_0} + \frac{1}{2} (r - r_0)^2 \frac{d^2U}{dr^2} \bigg|_{r_0} + \dots$$

$$= 0 \text{ because } U \text{ is minimum at } r = r_0 \text{ for a parabolic P.E.}$$

For sufficiently small displacements, terms beyond the 3rd term can be ignored \Rightarrow

$$U(r) \cong U(r_0) + \frac{1}{2}(r - r_0)^2 \frac{d^2 U}{dr^2} \bigg|_{r_0} \equiv \text{const} + \frac{1}{2} k(r - r_0)^2$$

Effective spring const.

$$k = \frac{d^2U}{dr^2}\bigg|_{r_0}$$

Frequency of molecular vibrations

Eqs of motion for two atoms are

$$m_1 \ddot{r_1} = k(r - r_0)$$

$$m_2 \ddot{r_2} = -k(r - r_0)$$
where $r = r_2 - r_1$

is the instantaneous separation of the atoms

which we assume to be small enough

 \Rightarrow separation \sim close to equilibrium length r_0 of a spring of spring constant k

To solve divide the eqs respectively by m_1 and m_2 and subtract 1st from the 2nd

$$\ddot{r}_2 - \ddot{r}_1 \equiv \ddot{r} = -k \left(\frac{1}{m_1} + \frac{1}{m_2} \right) (r - r_0)$$

$$\ddot{r_2} - \ddot{r_1} \equiv \ddot{r} = -k \left(\frac{1}{m_1} + \frac{1}{m_2} \right) (r - r_0) = -k \left(\frac{m_1 + m_2}{m_1 m_2} \right) (r - r_0)$$

$$\ddot{r} = -\frac{k}{\mu} (r - r_0)$$

$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$
 Dimension of μ ? Called reduced mass

For a harmonic oscillator, eq of motion is

$$\ddot{x} = -\frac{k}{m} (x - x_0)$$

What is its freq of oscillation?

$$\omega = \sqrt{\frac{k}{m}}$$

From this analogy

Freq of vibration of the molecule

$$\omega_{\text{vib}} = \sqrt{\frac{k}{\mu}}$$

$$\mu \equiv m$$

$$\text{and } k = \frac{d^2 U}{dr^2}$$

 $v_{\rm vib}$ typically lies in the near-infra red (3 x 10¹³ Hz)

Vibrational motion is a characteristic of a molecule and identifies the light emitted by the molecule

 $v_{\rm vib}$ yields value of $\frac{d^2U}{dr^2}$ at the P.E. minimum is 5 x 10⁵ dynes/cm

For HCl molecule, k

⇒ All such bound systems behave like a harmonic oscillator for small displacements

For larger amplitudes, higher order terms in Taylor's series introduce certain anharmonicity, which modifies the P.E. curve

Harmonic oscillator approxn is thus quite ubiquitous even down to internal motions in nuclei!

For the simple case
$$U = \frac{1}{2}kx^2; K = \frac{1}{2}m\dot{x}^2; \omega = \sqrt{\frac{k}{m}}$$

In terms of a general variable q appropriate to a problem

From

$$U = \frac{1}{2}Aq^2 + \text{const}; K = \frac{1}{2}B\dot{q}^2$$

By comparison with the case of a harmonic oscillator of a mass m on a spring of spring const k, frequency in the general case

$$\omega = \sqrt{\frac{A}{B}}$$

Total energy of the system

$$E = U + K = \frac{1}{2}Aq^2 + \text{const} + \frac{1}{2}B\dot{q}^2$$

the system being conservative $\frac{dE}{dt} = 0$

$$\Rightarrow \frac{1}{2}A.2/q\dot{q} + \frac{1}{2}B.2\dot{q}\ddot{q} = 0 \Rightarrow Aq + B\ddot{q} = 0$$
$$\Rightarrow \ddot{q} + \frac{A}{B}q = 0 \Rightarrow \omega = \sqrt{\frac{A}{B}}$$

Work-energy theorem for nonconservative force

For a body falling through air under gravity, force

$$\vec{F} = \vec{F}^c + \vec{F}^{nc}$$

gravitational force (conservative) and air friction (nonconservative)

Total work done

$$W_{ba}^{T} = \int_{a}^{b} \vec{F} \cdot d\vec{r}$$

$$= \int_{a}^{b} \vec{F}^{c} \cdot d\vec{r} + \int_{a}^{b} \vec{F}^{nc} \cdot d\vec{r}$$

$$= -U_{b} + U_{a} + W_{ba}^{nc}$$

Thus work-energy theorem takes the form

$$K_b - K_a = -U_b + U_a + W_{ba}^{nc} \qquad \Rightarrow E_b - E_a = W_{ba}^{nc}$$
$$\Rightarrow W_{ba}^{nc} = K_b + U_b - (K_a + U_a)$$

Thus E = K + U is no longer const but depends on the state of the system

Power

$$P = \frac{dW}{dt}$$
 i.e. rate of doing work

$$\vec{F} \cdot d\vec{r} = dW \Longrightarrow$$
 Power delivered by the force :

$$P = \frac{dW}{dt} = \vec{F} \cdot \frac{d\vec{r}}{dt} = \vec{F} \cdot \vec{v}$$

$$1 W = 1 J/s$$

When the sun is overhead, it supplies $\sim 1000 \text{ W/m}^2$ of energy to Earth's surface

Conservation laws and particle collisions

Scattering experiments e.g. of Rutherford in 1911

Scattering of α particles from a thin gold foil Variation in no. of scattered α particles with deflection angle

- a) Each particle is effectively free
- b) Momentum & energy of each particle changes. Why?
- c) Particles are again free & move along new directions and velocities Momentum is conserved since external forces could be neglected

$$\vec{P}_i = \vec{P}_f$$

For a two body collision

$$\implies m_1 \vec{v}_1 + m_2 \vec{v}_2 = m_1 \vec{v}_1' + m_2 \vec{v}_2'$$

Collision betn. two riders of mass *M* on a linear air track which interact via good coil springs

Total K.E. is conserved

Elastic collisions

If the interaction forces are conservative (here the spring force)

Replace the springs by lumps of sticky putty

By conservation of momentum

$$M \vec{v} = 2M \vec{v}'$$

$$v' = \frac{v}{2}$$

Initial K.E.= $\frac{1}{2}Mv^2$

Final K.E.=
$$(2M)^{\frac{v^{2}}{2}} = M^{\frac{v^{2}}{4}}$$

⇒ Half of initial K.E.! Why?

Interaction forces are nonconservative Inelastic collision

$$K_i = K_f + Q$$

$$Q = K_i - K_f$$

Amount of K.E. converted to some other form

 \Rightarrow energy eq becomes

$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 + Q$$

Elastic collision of two balls

Assume equal and opposite velocities before collision

$$---\circ \frac{m_1 \quad v_1'}{-----} - ---- - \frac{3m_1 \quad v_2'}{-------}$$
After

$$\Rightarrow m_1 v - 3 m_1 v = m_1 v_1' + 3 m_1 v_2'$$

$$\frac{1}{2}m_1v^2 + \frac{1}{2}(3m_1)v^2 = \frac{1}{2}m_1v_1^2 + \frac{1}{2}(3m_1)v_2^2$$

Eliminate v_1 from 1st eq and substitute in the 2nd eq

$$\Rightarrow 12v v_2' + 12v_2'^2 = 0 \Rightarrow v_2' (v_2' + v) = 0$$

After collision, m_1 moves with twice its initial velocity to the left while the heavier one remains at rest

Collision in center of mass coordinates

If \mathbf{v}_1 and \mathbf{v}_2 correspond to velocities of two masses m_1 and m_2

Center of mass velocities is given by

$$\vec{V} = \frac{m_1 \vec{v}_1 + m_2 \vec{v}_2}{m_1 + m_2}$$

velocities in center of mass system will be given by

$$\vec{v}_{1c} = \vec{v}_1 - \vec{V} = \vec{v}_1 - \frac{m_1 \vec{v}_1 + m_2 \vec{v}_2}{m_1 + m_2}$$

$$= \frac{m_2}{m_1 + m_2} (\vec{v}_1 - \vec{v}_2)$$

likewise

$$\vec{v}_{2c} = \vec{v}_2 - \vec{V} = \frac{-m_1}{m_1 + m_2} (\vec{v}_1 - \vec{v}_2)$$

 \mathbf{v}_{1c} and \mathbf{v}_{2c} lie back to back along the relative vel vector

$$v = v_1 - v_2$$

⇒ Momenta in the center of mass system

$$\vec{p}_{1c} = m_1 \vec{v}_{1c} = \frac{m_1 m_2}{m_1 + m_2} (\vec{v}_1 - \vec{v}_2) = \mu \vec{v}$$

$$\vec{p}_{2c} = m_2 \vec{v}_{2c} = \frac{-m_1 m_2}{m_1 + m_2} (\vec{v}_1 - \vec{v}_2) = -\mu \vec{v}$$

Total momentum in the C system?

where

$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$
 0

Total momentum in the lab system?

$$m_1 \vec{v}_1 + m_2 \vec{v}_2 = (m_1 + m_2) \vec{V}$$

$$m_1 \vec{v}_1 + m_2 \vec{v}_2 = (m_1 + m_2) \vec{V}$$

Total momentum in any collision is conserved

 \Rightarrow **V** must be a constant

Initial velocities in the Lab and center of mass (C) systems

Trajectories of 2 colliding particles with velocities \mathbf{v}_1 and \mathbf{v}_2

Velocities post-collision in C system

For elastic collisions, conservation of energy in the C system:

$$\frac{1}{2}m_1v_{1c}^2 + \frac{1}{2}m_2v_{2c}^2 = \frac{1}{2}m_1v_{1c}^2 + \frac{1}{2}m_1v_{2c}^2$$

For elastic collisions, since momentum is 0 in the C system:

$$m_{1}v_{1c} - m_{2}v_{2c} = 0$$

$$m_{1}v_{1c}' - m_{2}v_{2c}' = 0$$

$$\frac{1}{2}\left(m_{1} + \frac{m_{1}^{2}}{m_{2}}\right)v_{1c}^{2} = \frac{1}{2}\left(m_{1} + \frac{m_{1}^{2}}{m_{2}}\right)v_{1c}^{2}$$

$$\Rightarrow v_{1c} = v_{1c}^{/}$$

Similarly

$$v_{2c} = v_{2c}^{\prime}$$

Vel. vectors simply rotate In the scattering plane

If m_2 is at rest initially

$$\vec{V} = \frac{m_1}{m_1 + m_2} \vec{v}$$

$$\vec{v}_{1c} = \vec{v}_1 - \vec{V} = \frac{m_2}{m_1 + m_2} \vec{v}_1$$

$$\vec{v}_{2c} = \vec{v}_2 - \vec{V} = \frac{-m_1}{m_1 + m_2} \vec{v}_1$$