Lenses

https://github.com/heptagons/lenses

2023/12/30

Abstract

Lenses are equilateral hexagons resembling concave and convex optical lenses. The hexagons consecutive six internal angles are $(\theta_1, \theta_2, \theta_3, \theta_1, \theta_2, \theta_3)$ where $\theta_1 = X\theta_0$, $\theta_2 = Y\theta_0$, and $\theta_3 = Z\theta_0$ where $\theta_0 = 2\pi/S$ is the base angle of symmetry S = X + Y + Z.

1 Lenses

2 Symmetry 5

Symmetry 5 uses as base the angle $\beta = \frac{2\pi}{5}$. Includes the rhombi (b, c) and the lenses (B, C).

2.1 Rhombi (b, c)

Figure 1: Rhombi (b, c).

Rhombus	θ_1	θ_2
b	$\beta/2$	$4\beta/2$
c	$2\beta/2$	$3\beta/2$

Table 1: Rhombi $(\boldsymbol{b}, \boldsymbol{c})$ internal angles $\theta_1 + \theta_2 = \pi$ where $\beta = 2\pi/5$.

Figure 1 show rhombi (b, c). Inspecting the figures we get these areas: Star at (i) is 10b, star at (ii) is 5c and regular pentagon at (iii) is 5b + 5c. Table 1 show the angles.

Figure 2: Regular pentagon and pentagram. Concave pentagon (in red).

Figure 2 show regular pentagon and pentagram dissected with rhombi $(\boldsymbol{b}, \boldsymbol{c})$ and a concave pentagon (in red). We calculate the areas of the regular pentagon P_1 at (i) and pentagram P_G at (ii) in function of rhombi $(\boldsymbol{b}, \boldsymbol{c})$. Let x be the concave pentagon area. From the figures we note pentagon P_2 at (iii) is double the side and then four times the area of pentagon P_1 . From the figures we note the area of P_1 is $x + \boldsymbol{c}$ and the area of P_2 is $2x + \boldsymbol{b} + 5\boldsymbol{c}$, so we compare the pentagons and solve for x to get:

$$4P_1 = P_2$$

$$4(x+c) = 2x + b + 5c$$

$$x = \frac{b+c}{2}$$
(1)

Then the areas of the pentagon and the pentagram are:

$$P_1 = x + c = \frac{b+c}{2} + c = \frac{b+3c}{2}$$
 (2)

$$P_G = 2x + b = \frac{2(b+c)}{2} + b = 2b + c$$
(3)

2.2 Lenses (B, C)

Figure 3: Lenses $(\boldsymbol{B}, \boldsymbol{C})$.

Rhombus	θ_1	θ_2	θ_3
B	β	2β	2β
C	β	β	3β

Table 2: Lenses $(\boldsymbol{B}, \boldsymbol{C})$ internal angles $\theta_1 + \theta_2 + \theta_3 = 2\pi$ where $\beta = 2\pi/5$.

Figure 3 show lenses $(\boldsymbol{B}, \boldsymbol{C})$. Figure (i) show the lense \boldsymbol{B} with perimeter $\overline{B_1...B_6}$ is formed adding two rhombi \boldsymbol{b} and adding one rhombus \boldsymbol{c} so its area is $2\boldsymbol{b} + \boldsymbol{c}$. Figure (ii) show the lense \boldsymbol{C} with perimeter $\overline{C_1...C_6}$ is formed adding two rhombi \boldsymbol{c} and substracting one rhombus \boldsymbol{b} so its area is $2\boldsymbol{c} - \boldsymbol{b}$. From the figures we see the area of star (iii) is $\boldsymbol{B}+2\boldsymbol{C}=5\boldsymbol{c}$ and the area of regular decagon (iv) is $3\boldsymbol{B}+\boldsymbol{C}=5\boldsymbol{b}+5\boldsymbol{c}$.

3 Symmetry 7

Symmetry 7 uses as base the angle $\gamma = \frac{2\pi}{7}$. Includes the rhombi $(\mathbf{d}, \mathbf{f}, \mathbf{e})$ and the lenses $(\mathbf{D}, \mathbf{E}, \mathbf{F})$.

3.1 Rhombi (d, e, f)

Figure 4: Rhombi (d, e, f).

Rhombus	θ_1	θ_2
d	$\gamma/2$	$6\gamma/2$
e	$2\gamma/2$	$5\gamma/2$
f	$3\gamma/2$	$4\gamma/2$

Table 3: Rhombi (d, e, f) internal angles $\theta_1 + \theta_2 = \pi$ where $\gamma = 2\pi/7$.

Figure 4 show rhombi (d, e, f). Inspecting the figures we get these areas: Star at (i) is 14d, star at (ii) is 7e and irregular shape (iii) is 4f. The star at (iv) is 7(e+f) and the regular 14-gon area is 7(d+e+f). Table 3 show the angles.