Homework Assignment 4

Due Friday, February 21

- 1. Let G be a group. Let $H, K \leq G$ be two subgroups.
 - (a) Show that the intersection $H \cap K$ is a subgroup of G.
 - (b) Give an example to show that the union $H \cup K$ need not be a subgroup of G.
 - (c) Show that $H \cup K$ is a subgroup of G if and only if $H \subset K$ or $K \subset H$.
- 2. Let A be an abelian group.
 - (a) Let $A^n = \{a^n | a \in A\}$ be the collection of nth powers of elements in A. Show that this is a subgroup of A.
 - (b) Let $A[n] = \{a \in A | a^n = 1\}$. Show that A[n] is a subgroup of A. This is often called the *n*-torsion subgroup of A.
 - (c) Let $A^{\text{tors}} = \{a \in A | |a| < \infty\}$. Show that A^{tors} is a subgroup of A. This is often called the *torsion* subgroup of A.
 - (d) Give an example of a nonabelian group G where G^{tors} is not a subgroup of G. (Note that G must be infinite, as if G were finite every element would have finite order so that we would have $G^{\text{tors}} = G$).
- 3. Compute the center of the dihedral group. Explicitly, let n be an integer ≥ 3 . Compute $Z(D_{2n})$. (Note: you will need to split into the two cases, where n is even or n is odd).
- 4. Let G be a group.
 - (a) Show that if H is a subgroup of G, then $H \leq N_G(H)$.
 - (b) Give an example where $A \subset G$ is a subset (not necessarily a subgroup), and $A \not\subset N_G(A)$.
 - (c) Show that $H \leq C_G(H)$ if and only if H is abelian.
- 5. In class we classified all finite cyclic groups and their generators. In this exercise you take care of the infinite case. Let $H = \langle x \rangle$ be a cyclic group of infinite order.
 - (a) Show that the map $\varphi: \mathbb{Z} \to H$ defined by the rule $\varphi(a) = x^a$ is an isomorphism.
 - (b) Since H is cyclic every element of H is of the form x^a for some a. Show that x^a generates H if and only if $a = \pm 1$.
- 6. In this exercise we study products of finite cyclic groups. Recall that we denote by Z_n the cyclic group of order n (written multiplicatively).
 - (a) Prove that $Z_2 \times Z_2$ is not a cyclic group.
 - (b) Prove that $Z_2 \times Z_3 \cong Z_6$. Conclude that $Z_2 \times Z_3$ is a cyclic group.

Those two examples really cover all the bases. Use the intuition you gained from them to prove the following classification result.

- (c) Show that $Z_n \times Z_m$ is cyclic if and only if gcd(n, m) = 1. (Hint: recall that up to isomorphism there is only one cyclic group of order N for every positive integer N).
- 7. Let $G = S_n$ be the symmetric group equipped with it's natural action on $\Omega_n = \{1, 2, \dots, n\}$ by permutations. For $i \in \Omega_n$, let $G_i = \{\sigma \in G | \sigma(i) = i\}$ be the stabilizer of i. What is $|G_i|$?