HW 11: page 220 - 221, #1, 2, 5 and page 226-227, #1 - 3, 4(a)(b), 5, 11

Exercise 1 (pages 220 - 221)

Mark each statement True or False. Justify each answer.

- a. Let D be a compact subset of \mathbb{R} and suppose that $f: D \longrightarrow \mathbb{R}$ is continuous. Then f(D) is compact. True, by Theorem 5.3.2.
- b. Suppose that $f: D \longrightarrow R$ is continuous. Then, there exists a point x_1 in D st $f(x_1) \ge f(x) \ \forall \ x \in D$ False.

Let: f(x) = x and $D = \mathbb{R}$

Suppose: $\exists x_1 \in D \text{ st } f(x_1) \geq f(x) \ \forall \ x \in D$

Notice that $(f(x_1) + 1) \in \mathbb{R}$, and if $x_2 = (f(x_1) + 1)$, then $f(x_2) = (f(x_1) + 1) > f(x_1)$. A contradiction.

c. Let D be a bounded subset of $\mathbb R$ and assume that $f:D\longrightarrow \mathbb R$ is continuous. Then f(D) is bounded. False.

Let: $f:(0,\infty) \longrightarrow \mathbb{R}$ be defined by $f(x) = \frac{1}{x}$

Suppose: $\exists f(x_1) \text{ st } f(x_1) \geq f(x) \ \forall \ x \in (0, \infty)$

Notice that $(f(x_1) + 1) \in \mathbb{R}$, and if $x_2 = \frac{1}{f(x_1) + 1}$, then $f(x_2) = (f(x_1) + 1) > f(x_1)$. A contradiction.

Exercise 2 (pages 220 - 221)

Mark each statement True or False. Justify each answer.

a. Let $f:[a,b] \longrightarrow \mathbb{R}$ be continuous and assume f(a) < 0 < f(b). Then there exists a point $c \in (a,b)$ st f(c) = 0.

True, by Theorem 5.3.6 (IVT).

b. Let $f:[a,b] \longrightarrow \mathbb{R}$ be continuous and assume $f(a) \le k \le f(b)$. Then there exists a point $c \in [a,b]$ st f(c) = k.

True, by Theorem 5.3.6 (IVT). Also because this statement is just (a) above with k=0, except weaker.

c. If $f:D\longrightarrow \mathbb{R}$ is continuous and bounded on D, then f assumes maximum and minimum values on D. False.

Let: $f:(0,1) \longrightarrow \mathbb{R}$ be defined by f(x) = x

Suppose: f has $x \in D$, a maximum value on D

Notice that 0 < x < 1, and that $x < x + \frac{1-x}{2}$.

However, notice also that $x + \frac{1-x}{2} < 1$

But x is a maximum value on D. A contradiction.

WLOG, a minimum value on D is similar.

Exercise 5 (pages 220 - 221)

Show that the equation $5^x = x^4$ has at least one real solution.

Let: $f: [-1, 0] \longrightarrow \mathbb{R}$ be defined by $f(x) = 5^x - x^4$

Notice that f(-1) = -0.8 and f(0) = 1

Since $5^x - x^4 = 0$ means $5^x = x^4$, and -0.8 < 0 < 1,

by Theorem 5.3.6, since f(x) is continuous on \mathbb{R} ,

 $\exists c \in [-1, 0] \text{ st } f(c) = 0.$

Exercise 1 (pages 226 - 227)

Let $f: D \longrightarrow \mathbb{R}$. Mark each statement True or False. Justify each answer.

a. f is uniformly continuous on D iff for every $\epsilon > 0$ there exists a $\delta > 0$ st $|f(x) - f(y)| < \delta$ whenever $|x - y| < \epsilon$ and $x, y \in D$.

This isn't the definition, but I can't find a counter example for it...

b. If $D = \{x\}$, then f is uniformly continuous at x.

True. Since x is the only element in the domain, and since f is a function, f(x) is the only element in the range of f which makes |f(x) - f(y)| always less than any $\epsilon > 0$ since there is only one object in the range, making them the same object in any possible case.

c. If f is continuous and D is compact, then f is uniformly continuous on D.

True, by Theorem 5.4.6.

Exercise 2 (pages 226 - 227)

Let $f: D \longrightarrow \mathbb{R}$. Mark each statement True or False. Justify each answer.

a. In the definition of uniform continuity, the positive δ depends only on the function f and the given $\epsilon > 0$.

False. The positive δ depends on the given $x, y \in D$ as well.

b. If f is continuous and (x_n) is a Cauchy sequence in D, then $(f(x_n))$ is a Cauchy sequence.

False.

Let: $x_n = \frac{1}{n}$, $n \in \mathbb{N}$ and $f: (0, 1] \longrightarrow \mathbb{R}$ be defined by $f(x) = \frac{1}{x}$

Notice that $f(x_n) = 1, 2, 3...$

This is not a Cauchy sequence.

c. If $f:(a, b) \longrightarrow \mathbb{R}$ can be extended to a function that is continuous on [a, b], then f is uniformly continuous on (a,b).

True, by Theorem 5.4.9.

Exercise 3 (pages 226 - 227)

Determine which of the following continuous functions are uniformly continuous on the given set. Justify your answers.

- a. f(x) = x on [2, 5] since f is continuous and D is compact, f is uniformly continuous (by Theorem 5.4.6)
- b. f(x) = x on (0, 2) since $\tilde{f} : [0, 2] \longrightarrow \mathbb{R}$ is continuous, f is uniformly continuous (by Theorem 5.4.9)
- c. $f(x) = x^2 + 2x 7$ on [0, 5] since f is continuous and D is compact, f is uniformly continuous (by Theorem 5.4.6)
- d. $f(x) = x^2 + 2x 7$ on (1, 4) since $\widetilde{f} : [1, 4] \longrightarrow \mathbb{R}$ is continuous, f is uniformly continuous (by Theorem 5.4.9)
- e. $f(x) = \frac{1}{x^2}$ on (0, 1) Since $\lim_{x\to 0} f(x)$ does not exist, f(x) cannot be extended to a continuous function. Therefore, f is not uniformly continuous.
- f. $f(x) = \frac{1}{x^2}$ on $(0, \infty)$ Since $\lim_{x\to 0} f(x)$ does not exist, f(x) cannot be extended to a continuous function. Therefore, f is not uniformly continuous.
- g. $f(x) = \frac{x^2-4}{x-2}$ on (2,4) Since $\lim_{x\to 2} f(x)$ and $\lim_{x\to 4} f(x)$ exist, f(x) can be extended to a continuous function. Therefore, f is uniformly continuous.
- h. $f(x) = x \sin(\frac{1}{x})$ on (0, 1) Since $\lim_{x\to 0} f(x) = 0$ and $\lim_{x\to 1} f(x) = \sin(1)$, f(x) can be extended to a continuous function. Therefore, f is uniformly continuous.

Exercise 4(a)(b) (pages 226 - 227)

Prove that each function is uniformly continuous on the given set by directly verifying the ϵ - δ property in Definition 4.1.

Definition 5.4.1:

 $f: D \longrightarrow \mathbb{R}$ is uniformly continuous on D if

 $\forall \epsilon > 0, \exists \delta > 0 \text{ st } 0 < |x - y| < \delta \text{ and } x, y \in D \text{ implies } |f(x) - f(y)| < \epsilon$

a. $f(x) = x^3$ on [0, 2]

 $\forall \ \epsilon > 0, \ \exists \ \delta > 0 \ \text{st} \ 0 < |x - y| < \delta \ \text{and} \ x, y \in D \ \text{implies} \ |x^3 - y^3| < \epsilon$

$$|x^3-y^3|$$

$$|(x-y)(x^2 + xy + y^2)|$$

$$|(x-y)(x^2+xy+y^2)| \le |(x-y)|(|x^2|+|xy|+|y^2|) \le 12|(x-y)| < \epsilon$$

so, whenever $|x - y| < \delta = \frac{\epsilon}{12}$, $|x^3 - y^3| < \epsilon$

b. $f(x) = \frac{1}{x}$ on $[2, \infty)$

 $\forall \epsilon > 0, \exists \delta > 0 \text{ st } 0 < |x - y| < \delta \text{ and } x, y \in D \text{ implies } |\frac{1}{x} - \frac{1}{y}| < \epsilon$

$$\left|\frac{1}{x} - \frac{1}{y}\right| = \left|\frac{y - x}{xy}\right|$$

Since all elements in the domain are positive,

$$\left|\frac{y-x}{xy}\right| = \left|y-x\right| \frac{1}{xy} = \left|x-y\right| \frac{1}{xy} < \epsilon$$

So, since $\frac{1}{x}$ is maximum at x = 2 and $\frac{1}{y}$ is maximum at y = 2,

$$|x - y| < xy\epsilon$$

$$|x-y| < (2)(2)\epsilon$$

$$|x - y| < \delta = 4\epsilon$$

so, whenever $|\mathbf{x}\,-\,\mathbf{y}| < \delta = 4\epsilon$, $|\frac{1}{x}\,-\,\frac{1}{y}| < \epsilon$

Exercise 5 (pages 226 - 227)

Prove that $f(x) = \sqrt{x}$ is uniformly continuous on $[0, \infty)$.

In other words, show that

 $\forall~\epsilon>0,\,\exists~\delta>0$ st $|{\bf x}-{\bf y}|<\delta$ and ${\bf x},\,{\bf y}\in[0,\,\infty$) implies $|\sqrt{x}-\sqrt{y}|<\epsilon$

$$|\sqrt{x} - \sqrt{y}|^2 \le |\sqrt{x} - \sqrt{y}||\sqrt{x} + \sqrt{y}| = |x - y| < \epsilon^2$$

so, if we let

$$\delta = \epsilon^2$$

then
$$|\sqrt{x} - \sqrt{y}| < \epsilon$$

Exercise 11 (pages 226 - 227)

Let $f: D \longrightarrow \mathbb{R}$ be uniformly continuous on the bounded set D. Prove that f is bounded on D. Use Theorem 4.4.6, 5.4.8 (but there is no theorem 4.4.6, figure out which one it is). The hint is that it's bounded.

Theorem 5.4.8

Let: $f: D \longrightarrow \mathbb{R}$ be uniformly continuous on D **Assume:** $\{x_n\}$ is a Cauchy sequence in D Then, $\{f(x_n)\}$ is a Cauchy sequence.

Lemma 4.3.11

Every Cauchy sequence is bounded.

Proof.

Any Cauchy sequence x_n in D means that $\{f(x_n)\}$ is a Cauchy sequence, and if $\{f(x_n)\}$ is a Cauchy sequence then it's bounded.

So, our strategy will be to somehow make a Cauchy sequence x_n that has a limit at c such that $f(c) = \max(f(D))$ and, WLOG, d such that $f(d) = \min(f(D))$.