大 葉 大 學

資訊 工程 學系專題 製作報告

移動式手臂

學生: 林建成 F0106036 王炫鈞 F0106213

劉俊延 F0106031

賴佑益 F0106011

指導老師:林仁勇 老師

中華民國 104年 12月

摘要

近年來物聯網蓬勃的發展,想必與物聯網相關技術在未來的趨勢一定不容小覷,所以我們就先往領域去研究,最後我們經由網路資訊,發現了 Arduino 在這裡技術領域裡佔有一席之地,又還有具備硬體便宜、網路有開放源範例,所以我們決定朝著去做專研。

在決定討論題目時,我們跟指導教授還有學長朝了許多方面 去做探討,像是四軸直升機加攝影機組成的空拍機,或是加裝超 音波以及光線感測器的循線自走車,還有插座電流量的計量,最 後我們決定先從基本的方面去著手進行研究,所以我們決定了實 作操控型的單臂。

在研究的過程中,我們遇到了許多問題點,像是機器手臂的組裝就遇到了動作無法像是預期的行動; Inventor 2 寫出來的 APP 跟手機品牌以及解析度的相容性問題; Arduino 程式方面從無到有的學習,在學習的歷程裡遇到許多疑問,多虧學長的熱心教導才得以解決的,最後將車子與手臂做組合時整體重量的配置、排線問題以及如何使他具備優良的活動性。

在這一年期間我們從無到有,最後有現在的成果,全多虧了 教授跟學長們的不厭其煩地熱情指導,以及組員們努力地研究、 討論、學習,以及即使爭吵也可以互相包容。相信這塊領域的技 術會越來越成熟,未來我們的機器人不再是只有操控性,而是具 有智慧、高機動性、可自動地去解決人類的問題。

致謝

這次的專題可以順利且完整的呈現給大家,首先要歸功於 我們的指導教授(林仁勇 老師),非常感謝他,當我們每一次的研 究遇到瓶頸時,總是能在第一時間幫助我們找到合適的解決方 案,並且提供我們當時所欠缺的研究相關器材,同時也謝謝與老 師一同教導我們的學長姐們,多虧了學長姊們與我們分享的許多 經驗,使我們在研究的過程中也吸收到了相當多的知識與技巧, 感謝他們不管是平日或者是假日,都願意犧牲自己的時間來指導 我們,只要我們有遇到解決不了的問題需要請教他們時,我們都 可以跟他們約個時間,之後到學校與他們進行討論與測試。

最後也要感謝這組的每位成員(林建成、王炫鈞、劉俊延、賴佑益),大家都竭盡所能做好自己被分配到的工作,發揮自己的專長,一起在不斷的測試中學習,雖然中間總是會遇到瓶頸,不過大家都會透過各別的意見,採取最好的應對方法。當然意見總會有分歧的時候,畢竟每個人的價值觀各不相同,所以講究的細節也會不同,但是每次到了最後,我們大家總會各退一步,因為大家覺得,每個人的意見都是值得受到尊重與包容的,在此多謝各組員的互相體諒與包容,非常感謝大家。

目錄

摘要	• • • • • • • • • • • • • • • • • • • •	i
致謝	•••••	ii
目錄	•••••	iii
圖目錄		v
表目錄	· · · · · · · · · · · · · · · · · · ·	viii
kk 1 ti	. <i>k</i> ⁄5 . .	
第1章	間介	
	1.1	專題研究動機1
	1.2	專題目標1
	1.3	實驗計畫2
	1.4	分配工作2
	1.5	實驗中所遭遇到的問題及解決方法3
第2章	相關	研究4
	2.1	Arduino UNO 板的規格介面4
	2.2	Bluetooth(藍牙)7
第3章	Ardui	ino UNO 版與手機 App 設計9
	3.1	手機遠端操控程式9
	3.2	App Inventor 2 環境介紹10
	3.3	遠端程式使用步驟13
	3.4	App Inventor 2 程式碼15
	3.5	自走車與機器手臂的藍牙程式介紹18
		3.5.1 App Inventor 2 自走車部分18

		3.5.2 App Inventor 2 機器手臂部分	20
	3.6	Arduino 開發環境介紹和設定	24
第4章	移動:	式手臂完整操作	38
	4.1	地圖規劃及介紹	38
	4.2	實際完整操作	40
第5章	結論.		46
參考文獻			47

圖目錄

圖	2.1	Arduino UNO 外觀	6
置	2.2	Arduino UNO 內部介紹	6
昌	2.3	近期常用的 Bluetooth 模組	8
昌	3.1	App Inventor 2 圖樣	9
昌	3.2	App Inventor 2 新建專案1	0
昌	3.3	App Inventor 2 介面設計說明1	1
置	3.4	App Inventor 2 程式碼設計說明1	2
昌	3.5	程式畫面1	3
昌	3.6	連接選擇畫面1	3
置	3.7	連接成功後的畫面1	4
置	3.8	藍牙斷開後的畫面1	4
置	3.9	螢幕初始化後的程式碼設定1	5
昌	3.10	連接按鈕內容設定1	5
昌	3.11	連接成功後 程式碼設定1	6
置	3.12	連藍牙線斷開後 程式碼設定1	6
昌	3.13	App Inventor 2 車往前的程式1	8
昌	3.14	App Inventor 2 車往後的程式1	8
置	3.15	App Inventor 2 車往左的程式1	9
置	3.16	App Inventor 2 車往右的程式1	9
昌	3.17	App Inventor 2 手臂底部往左的程式2	0
昌	3.18	App Inventor 2 手臂底部往右的程式2	0
圖	3.19	App Inventor 2 手臂往上的程式2	1

昌	3.20	App Inventor 2 手臂往下的程式	.21
圖	3.21	App Inventor 2 手臂往前的程式	. 22
圖	3.22	App Inventor 2 手臂往後的程式	. 22
圖	3.23	App Inventor 2 手臂開夾的程式	. 23
圖	3.24	App Inventor 2 手臂關夾的程式	. 23
圖	3.25	Arduino Software 主頁	. 24
圖	3.26	設計 Arduino 版的介面	. 25
昌	3.27	連接 UNO 版	. 25
圖	3.28	選擇編譯器	. 26
圖	3.29	專題整體程式碼解析	.27
昌	3.30	車子輪子對應腳位的程式碼	. 27
圖	3.31	藍牙版對應腳位和設定連接鮑率的程式碼	. 28
圖	3.32	初始化伺服馬達和設定腳位的程式碼	. 28
圖	3.33	宣告使用一般參數的程式碼	. 28
圖	3.34	Arduino 自走車程式碼	. 29
圖	3.35	Arduino 手臂往前程式碼	.30
圖	3.36	Arduino 手臂往後程式碼	.31
圖	3.37	Arduino 手臂底部往左程式碼	. 32
圖	3.38	Arduino 手臂底部往右程式碼	. 33
圖	3.39	Arduino 手臂開夾程式碼	. 34
圖	3.40	Arduino 手臂關夾程式碼	. 35
圖	3.41	Arduino 手臂往下程式碼	.36
圖	3.42	Arduino 手臂往上程式碼	.37
昌	4 1	赵張	38

置	4.2	地圖起點	. 38
昌	4.3	途中障礙物	. 39
昌	4.4	地圖終點	. 39
昌	4.5	準備出發	. 40
置	4.6	正式出發	. 40
邑	4.7	夾起路障	.41
昌	4.8	把路障移至線路旁	.41
昌	4.9	放置完成	.42
昌	4.10	導正姿態	.42
昌	4.11	到達終點	.43
昌	4.12	調整手臂高度	.43
邑	4.13	夾起物品	.43
昌	4.14	準備回程	. 44
昌	4.15	返回起點的路中	. 44
昌	4.16	到達起點	.45
置	4.17	放置物品	.45
圖	4 18	完	45

表目錄

表	1.1	成員工作分配表	2
		Arduino UNO 規格表	
表	2.2	常用的 Bluetooth 簡介	8
表	3.1	圖片按鈕名稱與變數名稱對照表	17

第一章 簡介

1.1 專題研究動機

剛開始的時候,我們一起在未知領域尋找這次的主題是什麼,雖然我們事前都有聽過什麼是 Arduino,但是實際要我們舉例有哪些相關作品時,其實我們大家只能舉少數例子,之後我們大家各自收集了相關的資訊,並和老師討論未來作品的可行性,其中我們對機器手臂挺感興趣的,但是覺得只有一個機器手臂太單調了,所以我們決定研究機器手臂加上自走車,使它變得更特別。

1.2 專題目標

在多方面的探討後,我們決定研究由 Arduino 板子所衍生的作品,在這次的研究中,從組裝機器手臂與自走車至使用智慧型手機去控制。過程雖然很複雜且要逐一修正程式碼,但是我們從中學習到機器手臂與自走車之間的配合及操作細節,進而做出二合一的移動式機器手臂,希望此專題在未來可以擁有更多延伸,不僅能像電影裡的拆彈情節一樣,為了避免人員傷亡所設計的機器手臂,也能用在室內,提供看護的工作,幫助老人以及傷患所需要的幫助。

1.3 實驗計畫

本專題研究擬進行下列相關研究步驟:

- 1. 研究 Arduino 如何開發。
- 2. 研究藍牙協定以及連接。
- 3. 組裝機器手臂與自走車。
- 4. 撰寫機器手臂、自行車與藍牙的 code。
- 5. 調整手臂與自走車之間的配置與合適度。
- 6. 將成果結合,實際運作。

1.4 分配工作

表 1.1 成員工作分配表

蒐集相關資料、程式撰寫、硬體組裝、Arduino 測試、
書面撰寫
蒐集相關資料、程式撰寫、硬體組裝、Arduino 測試、
書面撰寫
蒐集相關資料、程式撰寫、Arduino 測試、硬體組裝、
書面編排、書面撰寫
蒐集相關資料、硬體組裝、書面編排、書面撰寫

1.5 實驗中所遭遇到的問題及解決方法

1 問題:

在進行藍牙撰寫時,由於相關軟體太多,不知道該用哪種撰寫。 解決問題:

請教老師或是對於藍牙撰寫比較強的學長姐們,針對我們的問題,對照他們以前的經驗來幫助我們認知個別差異,並選用對的軟體。

2 問題:

在測試機器手臂的遠端操作時,發現手臂有動,但是與指令不連貫,斷斷續續的。

解決問題:

請教老師關於這情況的緣由,並先檢查硬體方面有無接觸不 良,沒問題後,藉由老師的指導,逐步改寫手臂與藍牙軟體程式碼。

3 問題:

在進行手臂與自走車組合時,自走車大小比例與手臂不合,而後續配重也有問題。

解決問題:

經由老師的幫忙,找到了一台以前經由學長姊所組裝而成,大 小比例剛好與手臂也剛好吻合的自走車,之後,大家與老師一起討 論配重問題。

第二章 相關研究

Arduino 是一塊基於開放原始碼的 Simple i/o 介面版,它使用了 Atmel AVR 單片機,並且具有使用類似 JAVA、C 語言的開發環境。

Arduino 可以使用 SuperCollider、Max/MSP、Processing、Java、Macromedia Flash 和 Pure Data...等軟體,結合電子元件,像是控制器件,例如:開關、感測器...等,或是其他輸出裝置,例如:LED、步進馬達...等,作出可互動作品。Arduino 可以是一個獨立運作且跟軟體溝通的介面。

2.1 Arduino UNO 板的規格介面

在大部分的使用情况下,所有的 Arduino 控制板其實並沒有差別,因為它們的核心都是由 ATmega328 型號的微控制器所組成的。而在安裝 Windows 版的 Arduino 軟體時,過程中可加入 UNO 的驅動程式。此外,Mac OS X和 Linux 系統的使用者,可以不用安裝UNO 的 USB 驅動程式。Arduino UNO 板的優勢在於使用者可以自行燒錄 USB 序列轉換控制器的韌體。最初的 UNO 板採用的是MEGA8U2 晶片,它的記憶體容量比較小,快閃記憶體有 8KB,主記憶體與 EEPROM 只有 512Bytes,而 UNO "R3"版則換成記憶體容量較大的 MEGA16U2 晶片,它的快閃記憶體有 16KB,主記憶體與 EEPROM 一樣只有 512Bytes,並新增燒錄韌體的 ICSP 接腳。

表 2.1 Arduino UNO 規格表

Arduino UNO 規格表		
微控制器晶片	ATmega328	
工作電壓	5V	
輸入電壓(建議值)	7-12V	
輸入電壓 (限制)	6-20V	
數位 I/O 腳數	14 (其中 6 個是 PWM output)	
類比輸入 Pins	6	
I/O 腳直流電流	40 mA	
3.3V 腳直流電流	50 mA	
快閃記憶體	32 KB 其中 0.5 KB 用在 bootloader	
静態記憶體	2 KB	
EEPROM	1 KB	
時脈速度	16 MHz	

圖 2.1 Arduino UNO 外觀

圖 2.2 Arduino UNO 內部介紹

2.2 Bluetooth(藍牙)

Bluetooth 是一種無線技術標準,可以用來讓固定或是行動的裝置,在短距離間內,互相交換資料,以便形成一個個人區域網路(PAN)。而它所使用的短波特高頻(UHF)無線電波,是經由 2.4至 2.485 GHz 的 ISM 頻段來進行通訊的。近期間,Bluetooth 用於在不同的裝置上,與其它物件進行無線連線,像是連線電腦和外圍裝置,如:印表機、鍵盤....等,或是讓個人數位助理(PDA)與附近其它的 PDA 或電腦進行通訊。具備 Bluetooth 技術的手機可以連線到電腦、PDA 甚至免持聽筒。事實上,根據技術上的驗證,Bluetooth 可以支援功能更強的長距離通訊,也可以構成無線區域網路。每個 Bluetooth 裝置可同時維護 8 個連線,而每個裝置都被設定為可以向附近的裝置偵測並宣告自身存在,以便建立連線。另外也可以對二個裝置之間的連線進行密碼保護,以防止被其他裝置接收或入侵。

常見的兩種支援 SPP (Serial Port Profile,序列埠規範) 的 Bluetooth 模組:

HC-05:

主/從(master/slave)一體型,出廠預設通常是「從端」模式,但是能自行透過AT命令修改,如圖2.3。

HC-06:

主控端或從端模式,出廠前就設定好,不能更改;市面上販售的通常是「從端」模式,如圖 2.3。

不管是 HC-05,HC-06,對 Arduino 都沒有影響,控制程式都一樣,實際接線也只用到 4 條線:電源、接地、傳送(TxD)和接收(RxD)。而關於 Bluetooth 模組的操作模式有兩種,一種為自動連線 (automatic connection),又稱為透通模式 (transparent communication),另一種為命令回應 (order-response),又稱為 AT模式 (AT mode)。

圖 2.3 近期常用的 Bluetooth 模組

表 2.2 常用的 Bluetooth 簡介

模組型號	用途	模式
HC-05	一般用(成本便宜)	主從一體,能自行透過 AT
		命令修改。
HC-06	一般用(成本便宜)	單一模式(出廠前就設定好
		主端或從端,不能更改。)
HC-07	一般用(成本便宜)	單一模式(出廠前就設定好
	,精簡型 HC-06	主端或從端,不能更改。)

第三章 Arduino UNO 版與手機 App 設計

3.1 手機遠端操控程式

本專題是使用 App Inventor 2 來撰寫 App 程式 , 並透過藍牙連線來遠端操控機械手臂車。

App Inventor 2 使用拼圖模式來開發 Android 裝置應用程式,並且也支援多國語言,能夠使得對於程式語言不熟悉的人能輕易地使用,而 App Inventor 2 是一個完全線上開發的 Android 程式環境,只要有連上網路,它可以在 Chrome、FireFox、Internet Explorer 這些一般的瀏覽器上進行開發,因為它原本是由 Google 所研發,之後所有在網際網路上所開發的設計專案,都會透過 Google Account 儲存在 Server 上。

App Inventor 2

圖 3.1App Inventor 2 圖樣

3.2 App Inventor 2 環境介紹

進入到 App Inventor 2 後,點擊左上角新建專案,如圖 3.2。

圖 3.2 App Inventor 2 新建專案

如圖 3.3,區塊 1 是元件面板,裡面包含了使用者介面、界面布局、多媒體...等工具欄。區塊 2 是工作面板,裡面有手機程式本身的畫面,可以藉由元件面板新增功能放置工作面板。區塊 3 是元件清單,由元件面板所新增的功能都會顯示在這條例表上面。區塊

4是元件屬性,在點選元件清單上的元件後,將會在此顯示此元件 的詳細屬性。區塊 5 是素材,所有上傳的圖片與素材皆會此顯示。 區塊 6 是畫面增加與畫面程式碼設計切換,可以在此新增主程式畫 面與切換成程式碼設計。

圖 3.3 App Inventor 2 介面設計說明

如圖 3.4,區塊 1 裡包含了內建區塊、Screen 畫面以及元件三大點,而內建區塊裡有流程控制、邏輯運算、算術運算、文字...等,而 Screen 畫面則是所有新增的畫面皆會在此,最後的元件會把所有

新增的按鈕或元件都在此設計。區塊2裡是素材,所有上傳的圖片或素材皆會在此顯示。區塊3是工作面板,可以從區塊拉選區塊或元件等等來進行拼湊程式碼。

圖 3.4 App Inventor 2 程式碼設計說明

3.3 遠端程式使用步驟

首先開啟 App 並開啟藍牙點選連接裝置,如圖 3.5。

圖 3.5 程式畫面

連接機械手臂自走車的藍牙,如圖 3.6。

圖 3.6 連接選擇畫面

連接成功,如圖 3.7。

圖 3.7 連接成功後的畫面

點選圖中的 on/off 按鈕即可斷開連結,如圖 3.8。

圖 3.8 藍牙斷開後的畫面

3.4 App Inventor 2 程式碼

當軟體開啟時,只有藍牙連接按鈕將設置成可以使用,如圖 3.9。

圖 3.9 螢幕初始化後的程式碼設定

將清單選擇器的內容設定為藍牙連接,如圖 3.10。

圖 3.10 連接按鈕內容設定

若藍牙連線成功,所有按鈕將會設置成可以使用,除了藍牙裝置連接按鈕外,開關按鈕會切至 on,如圖 3.11。

圖 3.11 連接成功後 程式碼設定

若點選 dbt 按鈕將會斷開藍牙連接,且所有按鈕將會關閉,除了藍牙連接按鈕外,開關按鈕則會切製成 off,如圖 3.12。

圖 3.12 連藍牙線斷開後 程式碼設定

如表 3.1,此表格為按鈕按下後,所傳輸對應的變數名稱。

表 3.1 圖片按鈕名稱與變數名稱對照表

按鈕名稱	變數名稱
F	F
L	L
R	R
В	В
О	О
С	С
W	W
A	A
S	S
D	D
U	U
N	N
連接裝置	RE
開關按鈕(ON/OFF)	DBT

3.5 自走車與機器手臂的藍牙程式介紹

3.5.1 App Inventor 2 自走車部分

當F按鈕被按壓後,會送出文字F至機械手臂車,車子會有往 「前」的動作,鬆開按鈕後,會送出文字X至機械手臂車,停止動 作,如圖 3.13。

```
當 F · .被接壓
執行 呼叫 藍牙客戶端1 · .發送文字
文字 / " F "
當 F · .被鬆開
執行 呼叫 藍牙客戶端1 · .發送文字
```

圖 3.13 App Inventor 2 車往前的程式

當 B 按鈕被按壓後,會送出文字 B 至機械手臂車,車子會有往「後」的動作,鬆開按鈕後,會送出文字 X 至機械手臂車,停止動作,如圖 3.14。

```
當 B · .被按壓
執行 呼叫 藍牙客戶端1 · .發送文字
文字 / * B "
當 B · .被鬆開
執行 呼叫 藍牙客戶端1 · .發送文字
文字 / * X "
```

圖 3.14 App Inventor 2 車往後的程式

當L按鈕被按壓後,會送出文字L至機械手臂車,車子會有往「左」的動作,鬆開按鈕後,會送出文字X至機械手臂車,停止動作,如圖3.15。

圖 3.15 App Inventor 2 車往左的程式

當 R 按鈕被按壓後,會送出文字 R 至機械手臂車,車子會有往「右」的動作,鬆開按鈕後,會送出文字 X 至機械手臂車,停止動作,如圖 3.16。

圖 3.16 App Inventor 2 車往右的程式

3.5.2 App Inventor 2 機器手臂部分

當 A 按鈕被按壓後,會送出文字 A 至機械手臂車,手臂底部會有往「左」的動作,鬆開按鈕後,會送出文字 X 至機械手臂車,停止動作,如圖 3.17。

圖 3.17 App Inventor 2 手臂底部往左的程式

當 D 按鈕被按壓後,會送出文字 D 至機械手臂車,手臂底部會有往「右」的動作,鬆開按鈕後,會送出文字 X 至機械手臂車,停止動作,如圖 3.18。

圖 3.18 App Inventor 2 手臂底部往右的程式

當 U 按鈕被按壓後,會送出文字 U 至機械手臂車,手臂會有往「上」的動作,鬆開按鈕後,會送出文字 X 至機械手臂車,停止動作,如圖 3.19。

圖 3.19 App Inventor 2 手臂往上的程式

當 N 按鈕被按壓後,會送出文字 N 至機械手臂車,手臂會有往「下」的動作,鬆開按鈕後,會送出文字 X 至機械手臂車,停止動作,如圖 3.20。

圖 3.20 App Inventor 2 手臂往下的程式

當 W 按鈕被按壓後,會送出文字 W 至機械手臂車,手臂會有往「前」的動作,鬆開按鈕後,會送出文字 X 至機械手臂車,停止動作,如圖 3.21。

圖 3.21 App Inventor 2 手臂往前的程式

當 S 按鈕被按壓後,會送出文字 S 至機械手臂車,手臂會有往「後」的動作,鬆開按鈕後,會送出文字 X 至機械手臂車,停止動作,如圖 3.22。

圖 3.22 App Inventor 2 手臂往後的程式

當 O 按鈕被按壓後,會送出文字 O 至機械手臂車,手臂會有「開夾」的動作,鬆開按鈕後,會送出文字 X 至機械手臂車,停止動作,如圖 3.23。

圖 3.23 App Inventor 2 手臂開夾的程式

當 C 按鈕被按壓後,會送出文字 C 至機械手臂車,手臂會有 「關夾」的動作,鬆開按鈕後,會送出文字 X 至機械手臂車,停止 動作,如圖 3.24。

圖 3.24 App Inventor 2 手臂關夾的程式

3.6 Arduino 開發環境介紹和設定

請先到 Arduino 的官方網站下載 Arduino Software,請依照自己作業系統來下載安裝,如圖 3.25。

Source Code

Active development of the Arduino software is hosted by GitHub. See the instructions for building the code.

圖 3.25 Arduino Software 主頁

安裝好之後,開啟 Arduino 的 IDE介面,畫面如圖 3.26。

圖 3.26 設計 Arduino 版的介面

再來連接 Arduino 的 UNO 版,設定 Port,連接時請確認是否有驅動成功,並且記住 Port 的名稱,如圖 3.27。

圖 3.27 連接 UNO 版

在編譯器介面時選擇: Tools→Serial Port→選擇 Port(在這是使用 COM3) ,如圖 3.28。

圖 3.28 選擇編譯器

這樣環境就設定完成,可以開始撰寫程式碼了。

#include 是了為引用函示庫,而#include <SoftwareSerial.h>是使用藍牙模組時所需的引用,另外,#include <Servo.h>是使用伺服馬達時所需的引用,如圖 3.29。

ArmCar §

```
#include <SoftwareSerial.h>
#include <Servo.h>
void setup()
 int RM_F=8;
 int RM_B=6;
  int LM_F=5;
  int LM_B=7;
  pinMode(RM_F,OUTPUT);
 pinMode(RM_B,OUTPUT);
 pinMode(LM_F,OUTPUT);
 pinMode(LM_B,OUTPUT);
 SoftwareSerial I2CBT(0,1);
 I2CBT.begin(9600);
 Servo servoClaw, servoLeft, servoRight, servoBottom;
 servoBottom.attach(3);
 servoBottom.write(90);
 servoLeft.attach(11);
 servoLeft.write(100);
 servoRight.attach(10);
 servoRight.write(110);
 servoClaw.attach(9);
 servoClaw.write(20);
  int Claw=20,Left=100,Right=110,Bottom=90;
```

圖 3.29 專題整體程式碼解析

初始化車子輪子對應腳位,如圖 3.30。

```
int RM_F=8;
int RM_B=6;
int LM_F=5;
int LM_B=7;
pinMode(RM_F,OUTPUT);
pinMode(RM_B,OUTPUT);
pinMode(LM_F,OUTPUT);
pinMode(LM_F,OUTPUT);
```

圖 3.30 車子輪子對應腳位的程式碼

初始化藍牙版對應腳位&設定連接鮑率,如圖 3.31。

```
SoftwareSerial I2CBT(0,1);
I2CBT.begin(9600);
```

圖 3.31 藍牙版對應腳位和設定連接鮑率的程式碼

初始化伺服馬達和設定腳位,如圖 3.32。

```
Servo servoClaw,servoLeft,servoRight,servoBottom;
servoBottom.attach(3);
servoBottom.write(90);
servoLeft.attach(11);
servoLeft.write(100);
servoRight.attach(10);
servoRight.write(110);
servoClaw.attach(9);
servoClaw.write(20);
```

圖 3.32 初始化伺服馬達和設定腳位的程式碼

宣告使用一般參數,如圖 3.33。

```
int Claw=20, Left=100, Right=110, Bottom=90; 
圖 3.33 宣告使用一般參數的程式碼
```

依照接受到的藍牙訊息,進行控制車子移動的程式碼,如圖 3.34。

```
void loop()
 char cmd;
 if (I2CBT.available()>0)
     cmd=I2CBT.read();
                                           LOW 為停止 HIGH 為啟動
   switch (cmd)
   {
    case 'F': //車往前
                                     digitalWrite(RM_F, HIGH) 為正轉右輪;
      digitalWrite(RM_F,LOW);
      digitalWrite(RM_B,HIGH);
                                     digitalWrite(RM_B, LOW); 為反轉右輪;
      digitalWrite(LM_F,LOW);
      digitalWrite(LM_B,HIGH);
      break;
                                     digitalWrite(LM_B, HIGH);為正轉左輪;
     case 'B': //車往後
      digitalWrite(RM_F,HIGH);
                                     digitalWrite(LM_F, LOW); 為反轉左輪;
      digitalWrite(RM_B,LOW);
      digitalWrite(LM_F,HIGH);
      digitalWrite(LM_B,LOW);
    case 'L': //車左轉
      digitalWrite(RM_F,HIGH);
      digitalWrite(RM_B,LOW);
      digitalWrite(LM_F,LOW);
      digitalWrite(LM_B,HIGH);
      break:
     case 'R': //車右轉
      digitalWrite(RM_F,LOW);
      digitalWrite(RM_B,HIGH);
      digitalWrite(LM_F,HIGH);
      digitalWrite(LM_B,LOW);
      break;
     case 'X': //停止動作(各按键放開發送)
      digitalWrite(RM_F,LOW);
      digitalWrite(RM_B,LOW);
      digitalWrite(LM_F,LOW);
      digitalWrite(LM_B,LOW);
      servoClaw.detach();
      servoLeft.detach();
      servoRight.detach();
      servoBottom.detach();
      break;
```

圖 3.34 Arduino 自走車程式碼

下圖 3.35,此段程式碼用於控制手臂,此段 case 為接受到藍牙訊息為'W'時(接收藍牙程式碼於行標 96 至 99 行;判斷收到訊息程式碼於行標 100 至 103)執行手臂往前之動作,至於外部 while 迴圈是為了使得手臂一直重複執行此動作。行標 105 至 110 此段程式碼為操控右邊的伺服馬達角度,第 105 行為設定安全轉動動範圍,去控制能轉動的最大值,第 107 行 Right=Right+2 為增加伺服馬達的角度,delay 的部分是為了延遲馬達轉動的速度,其時間單位為毫秒。

```
94
          while(1)
95
96
            if (I2CBT.available()>0)
97
            {
                cmd=I2CBT.read(); //讀取藍芽訊息
98
99
            }
100
            if(cmd!='W')
101
102
             break; //如果接受到訊息不為'W'則離開此While()迴圈
103
104
            servoRight.attach(10);
105
            if(Right<=220) //設定安全轉動範圍,即轉動最大值不得超過220
106
             Right=Right+2; //轉動伺服馬達兩個單位
107
108
             servoRight.write(Right);
109
             delay(50);
110
            }
111
            else
112
            {
113
             break;
114
            }
115
116
          break;
```

圖 3.35 Arduino 手臂往前程式碼

下圖 3.36,此段程式碼用於控制手臂,此段 case 為接受到藍牙訊息為'S'時(接收藍牙程式碼於行標 120 至 123 行;判斷收到訊息程式碼於行標 124 至 127 行)執行手臂往前之動作,至於外部 while 迴圈是為了使得手臂一直重複執行此動作。行標 129 至 134 此段程式碼為操控右邊的伺服馬達角度,第 129 行為設定安全轉動動範圍,去控制能轉動的最大值,第 131 行 Right=Right.2 為減少伺服馬達的角度,delay 的部分是為了延遲馬達轉動的速度,其時間單位為毫秒。

```
117
         case 'S': //譬往後
118
           while(1)
119
120
            if (I2CBT.available()>0)
121
               cmd=I2CBT.read(); //讀取藍芽訊息
122
123
             }
            if(cmd!='S')
124
125
126
              break; //如果接受到訊息不為'S'則離開此While()迴圈
127
128
            servoRight.attach(10);
129
            if(Right>=50) //設定安全轉動範圍,即轉動最小值不得小於50
130
131
              Right=Right-2; //轉動伺服馬達兩個單位
132
              servoRight.write(Right);
133
              delay(50);
134
             }
135
            else
136
            {
137
              break;
             }
138
139
           }
140
           break;
```

圖 3.36 Arduino 手臂往後程式碼

下圖 3.37,此段程式碼用於控制手臂,此段 case 為接受到藍牙訊息為'A'時(接收藍牙程式碼於行標 144 至 147 行;判斷收到訊息程式碼於行標 148 至 151 行)執行手臂往前之動作,至於外部 while 迴圈是為了使得手臂一直重複執行此動作。行標 153 至 158 此段程式碼為操控底下的伺服馬達角度,第 153 行為設定安全轉動動範圍,去控制能轉動的最大值,第 155 行 Bottom=Bottom+4 為增加伺服馬達的角度,delay 的部分是為了延遲馬達轉動的速度,其時間單位為毫秒。

```
141
         case'A': //底左轉
142
          while(1)
143
144
            if (I2CBT.available()>0)
145
            {
146
                 cmd=I2CBT.read(); //讀取藍芽訊息
147
            if(cmd!='A')
148
149
              break; //如果接受到訊息不為'A'則離開此While()迴圈
150
151
152
            servoBottom.attach(3);
            if(Bottom<=150) //設定安全轉動範圍,即轉動最大值不得超過150
153
154
              Bottom=Bottom+4; //轉動伺服馬達四個單位
155
              servoBottom.write(Bottom);
156
157
              delay(50);
158
            }
159
            else
160
            {
161
              break;
162
            }
163
           }
164
          break;
```

圖 3.37 Arduino 手臂底部往左程式碼

下圖 3.38,此段程式碼用於控制手臂,此段 case 為接受到藍牙訊息為'D'時(接收藍牙程式碼於行標 168 至 171 行;判斷收到訊息程式碼於行標 172 至 175 行)執行手臂往前之動作,至於外部 while 迴圈是為了使得手臂一直重複執行此動作。行標 177 至 182 此段程式碼為操控底下的伺服馬達角度,第 177 行為設定安全轉動動範圍,去控制能轉動的最大值,第 179 行 Bottom=Bottom.4 為增加伺服馬達的角度,delay 的部分是為了延遲馬達轉動的速度,其時間單位為毫秒。

```
165
         case'D': //底右轉
166
          while(1)
167
168
            if (I2CBT.available()>0)
169
170
               cmd=I2CBT.read(); //讀取藍芽訊息
171
            }
            if(cmd!='D')
172
173
174
              break; //如果接受到訊息不為'D'則離開此While()迴圈
175
176
            servoBottom.attach(3);
            if(Bottom>=30) //設定安全轉動範圍,即轉動最小值不得小於30
177
178
179
              Bottom=Bottom-4;
180
              servoBottom.write(Bottom);
                                        -//轉動伺服馬達四個單位
181
              delay(50);
182
            }
183
            else
184
            {
185
              break;
186
            }
187
           }
          break;
188
```

圖 3.38 Arduino 手臂底部往右程式碼

下圖 3.39,此段程式碼用於控制手臂,此段 case 為接受到藍牙訊息為'O'時(接收藍牙程式碼於行標 192 至 195 行;判斷收到訊息程式碼於行標 196 至 199 行)執行手臂往前之動作,至於外部 while 迴圈是為了使得手臂一直重複執行此動作。行標 201 至 206 此段程式碼為操控底下的伺服馬達角度,第 201 行為設定安全轉動動範圍,去控制能轉動的最大值,第 203 行 Claw=Claw+2 為增加伺服馬達的角度,delay 的部分是為了延遲馬達轉動的速度,其時間單位為毫秒。

```
189
         case'0': //開夾
190
          while(1)
191
           {
192
            if (I2CBT.available()>0)
193
194
               cmd=I2CBT.read(); //讀取藍芽訊息
195
            }
            if(cmd!='0')
196
197
198
              break; //如果接受到訊息不為'0'則離開此While()迴圈
199
200
            servoClaw.attach(9);
201
            if(Claw<=60) //設定安全轉動範圍,即轉動最大值不得超過60
202
203
              Claw=Claw+2; //轉動伺服馬達工個單位
204
              servoClaw.write(Claw);
205
              delay(50);
206
            }
207
           }
208
          break;
```

圖 3.39 Arduino 手臂開夾程式碼

下圖 3.40,此段程式碼用於控制手臂,此段 case 為接受到藍牙訊息為'C'時(接收藍牙程式碼於行標 212 至 214 行;判斷收到訊息程式碼於行標 216 至 219 行)執行手臂往前之動作,至於外部 while 迴圈是為了使得手臂一直重複執行此動作。行標 221 至 226 此段程式碼為操控底下的伺服馬達角度,第 221 行為設定安全轉動動範圍,去控制能轉動的最大值,第 223 行 Claw=Claw.2 為增加伺服馬達的角度,delay 的部分是為了延遲馬達轉動的速度,其時間單位為毫秒。

```
209
         case'C': //酮夾
210
          while(1)
211
212
            if (I2CBT.available()>0)
213
            {
                 cmd=I2CBT.read(); //讀取藍芽訊息
214
215
            if(cmd!='C')
216
217
218
              break; //如果接受到訊息不為'C'則離開此While()迴圈
219
220
            servoClaw.attach(9);
            if(Claw>=5) //設定安全轉動範圍,即轉動最小值不得小於5
221
222
223
              Claw=Claw-2;
                           //轉動伺服馬達工個單位
              servoClaw.write(Claw);
224
225
              delay(50);
226
            }
227
            else
228
229
              break;
230
            }
231
232
          break;
```

圖 3.40 Arduino 手臂關夾程式碼

下圖 3.41,此段程式碼用於控制手臂,此段 case 為接受到藍牙訊息為'N'時(接收藍牙程式碼於行標 260 至 263 行;判斷收到訊息程式碼於行標 264 至 267 行)執行手臂往前之動作,至於外部 while 迴圈是為了使得手臂一直重複執行此動作。行標 269 至 274 此段程式碼為操控底下的伺服馬達角度,第 269 行為設定安全轉動動範圍,去控制能轉動的最大值,第 271 行 Left=Left.3 為增加伺服馬達的角度,delay 的部分是為了延遲馬達轉動的速度,其時間單位為毫秒。

```
257
         case'N': //劈往下
258
          while(1)
259
            if (I2CBT.available()>0)
260
261
262
               cmd=I2CBT.read(); //讀取藍芽訊息
263
            }
264
            if(cmd!='N')
265
266
              break; //如果接受到訊息不為'N'則離開此While()迴圈
267
268
            servoLeft.attach(11);
269
            if(Left>=85) //設定安全轉動範圍,即轉動最小值不得小於85
270
271
                Left=Left-3; //轉動伺服馬達三個單位
272
              servoLeft.write(Left);
273
              delay(50);
274
            }
275
            else
276
            {
277
              break;
            }
278
279
           }
280
          break;
```

圖 3.41 Arduino 手臂往下程式碼

下圖 3.42,此段程式碼用於控制手臂,此段 case 為接受到藍牙訊息為'U'時(接收藍牙程式碼於行標 236 至 239 行;判斷收到訊息程式碼於行標 240 至 243 行)執行手臂往前之動作,至於外部 while 迴圈是為了使得手臂一直重複執行此動作。行標 245 至 250 此段程式碼為操控底下的伺服馬達角度,第 245 行為設定安全轉動動範圍,去控制能轉動的最大值,第 247 行 Left=Left+3 為增加伺服馬達的角度,delay 的部分是為了延遲馬達轉動的速度,其時間單位為毫秒。

```
233
         case'U': //劈往上
234
           while(1)
235
            if (I2CBT.available()>0)
236
237
               cmd=I2CBT.read(); //讀取藍芽訊息
238
239
            }
            if(cmd!='U')
240
241
242
              break; //如果接受到訊息不為'U'則離開此While()迴圈
243
244
            servoLeft.attach(11);
245
            if(Left<=150) //設定安全轉動範圍,即轉動最大值不得超過150
246
              Left=Left+3;
                          //轉動伺服馬達三個單位
247
248
              servoLeft.write(Left);
249
              delay(50);
250
            }
251
            else
252
253
              break;
            }
254
255
           }
256
           break;
```

圖 3.42 Arduino 手臂往上程式碼

第四章 移動式手臂完整操作

4.1 地圖規劃及介紹

如圖 4.1,這是移動式手臂的實作地圖,利用膠帶所構成的起點、路線和終點,而移動式手臂可以準確的從起點沿著路線到達終點,再從終點取得物品之後,沿著原路回到起點,並且把物品放置於起點上。如圖 4.2,正方形是地圖的起點,起點中央為取得物品後所放置的地方。

圖 4.1 整張地圖

圖 4.2 地圖起點

如圖 4.3,這是路線中設有的障礙,我們將藍牙耳機作為行進中的路障,移動式手臂必須將障礙物移至路線外放置並繼續前進,直到抵達終點為止。如圖 4.4,三角形是地圖的終點,終點處所放置的物品是一個蘑菇頭,為了要表現我們的移動式手臂可以能屈能伸,可拿高也可放低,我們將物品放置盒子上端,再操作移動式手臂去取得物品。

圖 4.3 途中障礙物

圖 4.4 地圖終點

4.2 實際完整操作

我們可以看到圖 4.5 至圖 4.6 表示,移動式手臂從起點出發, 準確的沿著膠帶前進,車體可以左轉、右轉、前進、後退,而它的 手臂可以收在中間放著,避免長期舉著手臂而造成馬達消耗或受 損。

圖 4.5 準備出發

圖 4.6 正式出發

我們可以看到圖 4.7 至圖 4.10 表示,在移動式手臂持續移動中,途中遇到了一個障礙,它可以不用讓車體轉向,只須讓手臂底盤轉向就可以輕鬆把障礙移除,並且輕放在旁邊,而不是直接拋出去,最後導正姿態,繼續前進。

圖 4.7 夾起路障

圖 4.8 把路障移至線路旁

圖 4.9 放置完成

圖 4.10 導正姿態

我們可以看到圖 4.11 至圖 4.14 表示,當移動式手臂到達終點時,要先取好與白色盒子的距離,之後將手臂升到與蘑菇頭相等的高度,並把蘑菇頭夾起來,之後倒車轉向,返回起點將物品放置中間。

圖 4.11 到達終點

圖 4.12 調整手臂高度

圖 4.13 夾起物品

圖 4.14 準備回程

我們可以看到圖 4.15 至圖 4.18 表示,移動式手臂夾著物品沿著原來路線返回到起點,在抵達起點後,可以經由車體和手臂的調整,將物品準確地放置到指定的位子上,完成這次實作。

圖 4.15 返回起點的路中

圖 4.16 到達起點

圖 4.17 放置物品

圖 4.18 完成

第五章 結論

此次的專題研究是由一塊 Arduino UNO 晶片燒錄在自製的自走車電路板上,在與 ARM 機器手臂的連接,並用寫一個 APP 去做遠端操控。我們在研究的過程裡發現實作上的比預想還要來的困難,遇到了我們沒預測到的問題,但慶幸的是我們經由學長還有教授的從中指導,不管是 Arduino Software、App Inventor 2、硬體設備的整合所產生的問題,我們最後都可以依照學長跟指導教授所教導知識去做解決。

經由這次研究我們大家都有不錯的收穫,讓我們更加了解了資訊產業的未來發展,相信我們的成品在未來裡可以擁有更多的發展空間,像是增加伸縮支架提高機動性,這樣就可以克服地形上更多的障礙;或是將藍牙模組改為 WIFI 模組這樣可以使操作距離大幅的提升,最後可以在加裝上更多的智慧模組,像是安裝超音波感測器、紅外線感測器,使他可以自行避開更多的障礙。我們之後也會更積極投入這項研究,努力實現我們大家的理想。

參考文獻

- $[1]\,Arduino\;.\,Wikiwand$
 - http://www.wikiwand.com/zh.hk/Arduino
- [2] Arduino UNO 控制板簡介. 網昱多媒體 http://swf.com.tw/?p=569
- [3] 藍牙. 維基百科,自由的百科全書.Wikipedia https://zh.wikipedia.org/wiki/%E8%97%8D%E7%89%99
- [4] 藍牙 Bluetooth Archives.網显多媒體

 http://swf.com.tw/?tag=%E8%97%8D%E7%89%99.bluetooth
- [5] App inventor 教學講義 chapter1 SlideShare

 http://www.slideshare.net/hotwusir/app-inventor-chapter1