MATH 180A (Lecture A00)

mathweb.ucsd.edu/~ynemish/teaching/180a

Today: Gaussian distribution

Next: ASV 4.1

Week 6:

Homework 4 due Friday, February 17

Variance

Definition The variance of a random variable X is

$$Var(X) = E((X-E(X))^2)$$

Proposition. Let X be a random variable. Then $Var(X) = E(X^2) - (E(X))^2$

The square root of the variance is called standard deviation $G(x) = \sqrt{Var(x)}$

Variance Variance is a measure of how "spread out from the mean" the distribution is. Proposition Let X be a random variable with finite expectation E(X)= u. Then $Var(x) = 0 \quad iff \quad P(X = \mu) = 1$ Proof (=) Exercise (⇒) (Assume X is discrete). $0 = Var(X) = \sum_{t=0}^{\infty} (t-\mu)^2 P(X=t) \Rightarrow For all t, (t-\mu)^2 P(X=t) = 0$ For all t, either (t-m)=000 P(X=t=9 so if t+m, then P(X=t)=0 therefore, P(X= 21)=1

Expectation and variance of aX+b

Let X be a random variable, and let a, be R. Then

(i)
$$E(aX+b) = aE(X)+b$$

(ii) $Var(aX+b) = a^2 Var(X)$ if $E(X)$ and $Var(X)$ exist

Proof (i) < homework

(ii)
$$Var(aX+b) = E((aX+b-E(aX+b))^2)$$

= $E((aX+b-aE(X)-b)^2)$

$$= E \left(\frac{\alpha}{\alpha} \left(X - E(X) \right)^{2} \right)$$

$$= \alpha^{2} E \left(\left(X - E(X) \right)^{2} \right)$$

$$= \alpha^{2} Var \left(X \right)$$

Variance of geometric distribution

Let
$$X \sim \text{Geom}(p)$$
. We know that $E(X) = \frac{1}{p}$

$$E(X^2) = \sum_{k=1}^{\infty} k^2 P(X=k) = \sum_{k=1}^{\infty} k^2 p(1-p)^{k-1} = \sum_{k=1}^{\infty} ((k-1)+1)^2 p(1-p)^{k-1}$$

$$= \sum_{k=1}^{\infty} (k-1)^2 p(1-p)^{k-1} + 2 \sum_{k=1}^{\infty} (k-1) p(1-p)^{k-1} + \sum_{k=1}^{\infty} p(1-p)^{k-1}$$

$$= \sum_{k=1}^{\infty} (k-1)^2 p(1-p)^{k-1} + 2 \sum_{k=1}^{\infty} (k-1) p(1-p)^{k-1} + \sum_{k=1}^{\infty} p(1-p)^{k-1}$$

$$= \sum_{k=1}^{\infty} (k-1)^2 p(1-p)^{k-1} + 2 \sum_{k=1}^{\infty} (k-1) p(1-p)^{k-1} + \sum_{k=1}^{\infty} p(1-p)^{k-1}$$

$$= (1-p) \sum_{k=1}^{\infty} 2^2 p(1-p)^{k-1} + 2 \cdot (1-p) \sum_{k=1}^{\infty} 2^2 p(1-p)^{k-1} + 1$$

$$= (1-p) E(X^2) + 2 \cdot (1-p) \cdot E(X) + 1$$

$$= (1-p) E(X^2) + 2 \cdot (1-p) \cdot \frac{1}{p} + 1 = \sum_{k=1}^{\infty} E(X^2) = \frac{1-p}{p^2}$$

$$= \sum_{k=1}^{\infty} 2^2 p \cdot (1-p) \cdot \frac{1}{p} + 1 = \sum_{k=1}^{\infty} 2^2 p \cdot \frac{1-p}{p^2} = \frac{1-p}{p^2}$$

Random variables. Summary									
Discrete	Continuous								
Finite/countable set of possible	Uncountable set of possible								
values, $\sum_{t} P(X=t)=1$	values, $Y \in \mathbb{R}$ $P(X=t)=0$								
$PMF: P_X(t) = P(X=t)$	$PDF: f_{X}: \mathbb{R} \to \mathbb{R}$								
$P(X \in B) = \sum_{t \in B} P_X(t)$	$P(X \in B) = \int_{B} f_{X}(t) dt$								
CDF Fx is a step function	CDF Fx is a continuous function								
Expectation: $E(X) = \sum_{t} t P(X=t)$	Expectation: $E(X) = \int_{\mathbb{R}} t f_X(t) dt$								
$E(g(X)) = \sum_{t} g(t) P(X=t)$	$E(g(X)) = \int_{\mathbb{R}} g(t) f_X(t) dt$								
Relation between CDF and PMF:	Relation between CDF and PDF:								
magnitude of jump of Fx at t is	$f_{x}(t) = F_{x}(t)$ on the intervals where								
) P(X=t)	Fx is differentiable								

Random variables. Summary

(iii)
$$\lim_{t\to-\infty} F_x(t) = 0$$
, $\lim_{t\to+\infty} F_x(t) = 1$

Variance:
$$Var(X) = E((X-E(X))^2) = E(X^2) - (E(X))^2$$

$$E(aX+b) = aE(X)+b$$
, $Var(aX+b) = a^2 Var(X)$

Gaussian (normal) distribution

Gaussian (normal) distribution

Def Random variable Z has the standard normal (Gaussian) distribution if the PDF of Z is given by

 $\varphi(t) = \frac{1}{2\pi} e^{-\frac{t^2}{2}}$

Notation:
$$Z \sim \mathcal{N}(0,1)$$

Is $\Psi(t)$ indeed a PDF?

indeed a PDF!

$$\frac{t^2}{2}$$

$$\frac{t^2}{2}$$

 $I = \int_{e^{2}}^{e^{2}} dt \int_{e^{2}}^{e^{2}} ds = \iint_{e^{2}}^{e^{2}} ds = \iint_{e^{2}}^{e^{2}} ds dt = \iint_{e^{2}}^{e^{2}} e^{2} ds dt = \iint_{e^{2}}^{e^{2}} e^{2} ds dt = 2\pi \int_{e^{2}}^{e^{2}} e^{2} d$

CDF of N(O11)

Suppose X-N(011). What is P(1X1=1)?

$$P(-1 \le X \le 1)$$

$$= \int_{2\pi}^{1} e^{-\frac{t^2}{2}} dt = \int_{2\pi}^{1} e^{-\frac{t^2}{2}} dt$$

Cannot use the polar coordinate trick.

$$\varphi(x) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dt - CDF \text{ of } X \sim N(0.1)$$

$$\varphi(1) - \varphi(1) - \varphi(1)$$

no simple explicit formula

Normal table of values (Appendix E in textbook)

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
This	s tab	ole gi	Nes	P(Z	< 군)	when	re Z-	- N(o,	1), 2	$= x_i$

Example
$$P(0.91) = P(Z \le 0.91) = P(Z \le 0.9 + 0.01) \approx 0.8186$$

Fact: