Technische Universität München Zentrum Mathematik Lehrstuhl für Mathematische Statistik Prof. Claudia Czado, Ph.D. (cczado@ma.tum.de) Ariane Hanebeck (ariane.hanebeck@tum.de)

Exercise Sheet 1 Generalized Linear Models

Discussion of the tutorial exercises on October 24 and 27, 2021

Problem 1 (*) Prove the following property of the bivariate normal distribution.

Let $X \sim N_2(\boldsymbol{\mu}, \Sigma)$. Then with $A \in \mathbb{R}^{2 \times 2}$ and $\boldsymbol{b} \in \mathbb{R}^2$, it holds

$$Y := AX + b \sim N_2(A\mu + b, A\Sigma A^T).$$

Hint: Use the moment-generating function of X which is of the form

$$M_{m{X}}(m{t}) = \mathbb{E}\left[\exp(m{t}^Tm{X})
ight] = \exp\left(m{t}^Tm{\mu} + rac{1}{2}m{t}^T\Sigmam{t}
ight)$$

for $t \in \mathbb{R}^2$.

Problem 2 (*) Load the data set USCRIME which is provided on the *moodle* course side. It contains a crime rate per 1,000,000 population in 47 states of USA. Additionally, 13 covariates are available which may have an influence on the crime rate R. Investigate this assumption in a linear model.

Remark: For a) and b) we exclude the covariables LF and NW since they need a special transformation.

Proceed the following steps:

- a) Perform an explorative data analysis with the help of pairs plots. What are three important findings?
- b) Fit a linear model to the data using the **R** function 1m(). Which covariates are significant at the $\alpha = 0.05$ level? Give an estimate of the error variance σ^2 .
- c) Transform the covariates LF and NW using the least-squares-method as follows. For LF, use a polynomial f of degree 2. For NW, use a polynomial g of degree three. Then, the least-squares-method for LF is of the form

$$\min_{\beta_0,\beta_1,\beta_2} ||R - (\beta_0 + \beta_1 LF + \beta_2 LF^2)||^2.$$

Use the results to transform LF.tr=f(LF) and NW.tr=g(NW).

Plot the LF vs. R scatterplot and the NW vs. R scatterplot including the respective calculated polynomial. Furthermore, plot the scatterplots of the transformed covariates together with R.

Hint: You can use the **R** function optim with method="BFGS" and 0 for the initial values to find the minimizing parameters of the least-squares problem.

Problem 3 (Additional) Let

$$\mathbb{R}^n \ni \mathbf{Y} = X_1 \boldsymbol{\beta}_1^{(1)} + \boldsymbol{\epsilon}$$

with $X_1 \in \mathbb{R}^{n \times p}$, $\boldsymbol{\beta}_1^{(1)} \in \mathbb{R}^p$. Assume that X_1 has full rank and that $\boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I}_n)$. Further let $\widehat{\boldsymbol{\beta}}_1^{(1)}$ denote the least squares estimator of $\boldsymbol{\beta}_1^{(1)}$. Consider the second linear model

$$\mathbb{R}^n \ni \mathbf{Y} = X_1 \boldsymbol{\beta}_1 + X_2 \boldsymbol{\beta}_2 + \boldsymbol{\epsilon}$$

with $\boldsymbol{\beta}_1 \in \mathbb{R}^p$, $X_2 \in \mathbb{R}^{n \times q}$, $\boldsymbol{\beta}_2 \in \mathbb{R}^q$. Assume that $X = (X_1 : X_2)$ is of full rank as well. Let $\widehat{\boldsymbol{\beta}} = (\widehat{\boldsymbol{\beta}}_1^\top, \widehat{\boldsymbol{\beta}}_2^\top)^\top$ be the least-squares-estimator of $\boldsymbol{\beta} = (\boldsymbol{\beta}_1^\top, \boldsymbol{\beta}_2^\top)^\top$. When does $\widehat{\boldsymbol{\beta}}_1^{(1)} = \widehat{\boldsymbol{\beta}}_1$ hold?