Part IB — Linear Algebra

Based on lectures by Prof. P. Raphael and notes by third sgames.co.uk ${\rm Michaelmas}~2022$

Contents

1	Vect	or spaces and linear dependence	4
	1.1	Vector spaces	4
	1.2	Subspaces	5
	1.3	Sum of subspaces	6
	1.4	Quotients	7
	1.5	Span	7
	1.6	Dimensionality	8
	1.7	Linear independence	9
	1.8	Bases	9
	1.9	Steinitz exchange lemma	11
	1.10	Consequences of Steinitz exchange lemma	11
	1.11	Dimensionality of sums	12
	1.12	Direct sums	13
_			1.0
2			16
	2.1	Linear maps	
	2.2		17
	2.3	Kernel and image	18
	2.4	Rank and nullity	19
	2.5	Space of linear maps	21
	2.6	Matrices	21
	2.7	Linear maps as matrices	22
	2.8	Change of basis	25
	2.9	Equivalent matrices	27
	2.10	Column rank and row rank	29
	2.11	Conjugation and similarity	31
		Elementary operations	31
		Gauss' pivot algorithm	33
		Representation of square invertible matrices	33

3	Dua	l spaces	35			
	3.1	Dual spaces	35			
	3.2	Annihilators	37			
	3.3	Dual maps	38			
	3.4	Properties of the dual map	40			
	3.5	Double duals	41			
4	Bilin	ear Forms	44			
	4.1	Introduction	44			
	4.2	Change of basis for bilinear forms	47			
5	Dete	erminant and Traces	49			
	5.1	Trace	49			
	5.2	Permutations and transpositions	50			
	5.3	Determinant	50			
	5.4	Volume forms	51			
	5.5	Multiplicative property of determinant	54			
	5.6	Singular and non-singular matrices	55			
	5.7	Determinants of linear maps	56			
	5.8	Determinant of block-triangular matrices	57			
6	Adjugate Matrices 59					
	6.1		59			
	6.2	Adjugates	61			
	6.3	Cramer's rule	62			
7	Eige	nvectors and Eigenvalues	64			
	7.1	Eigenvalues	64			
	7.2	Elementary facts about polynomials	65			
	7.3	Characteristic polynomials	66			
	7.4	Polynomials for matrices and endomorphisms	68			
	7.5	Sharp criterion of diagonalisability	69			
	7.6	Simultaneous diagonalisation	72			
	7.7	Minimal polynomials	73			
	7.8	Cayley-Hamilton theorem	73			
	7.9	Algebraic and geometric multiplicity	75			
	7.10	Characterisation of diagonalisable complex endomorphisms	77			
8	Jordan Normal Form 77					
	8.1	Definition	77			
	8.2	Similarity to Jordan normal form	77			
	8.3	Direct sum of eigenspaces	78			
9	Prop	perties of bilinear forms	82			
	9.1	Changing basis	82			

9.2	Quadratic forms	82
9.3	Diagonalisation of symmetric bilinear forms	84
9.4	Sylvester's law	85
9.5	Kernels of bilinear forms	88
9.6	Sesquilinear forms	88
9.7	Hermitian forms	89
9.8	Polarisation identity	90
9.9	Hermitian formulation of Sylvester's law	90
9.10	Skew-symmetric forms	91
9.11	Skew-symmetric formulation of Sylvester's law	91

§7 Eigenvectors and Eigenvalues

§7.1 Eigenvalues

Let V be an F-vector space. Let $\dim_F V = n < \infty$, and let α be an endomorphism of V

Question

Can we find a basis B of V such that, in this basis, $[\alpha]_B \equiv [\alpha]_{B,B}$ has a simple (e.g. diagonal, triangular) form?

Recall that if B' is another basis and P is the change of basis matrix, $[\alpha]_{B'} = P^{-1}[\alpha]_B P$. Equivalently, given a square matrix $A \in M_n(F)$ we want to conjugate it by a matrix P such that the result is 'simpler'.

Definition 7.1 (Diagonalisable)

Let $\alpha \in L(V)$ be an endomorphism. We say that α is **diagonalisable** if there exists a basis B of V such that the matrix $[\alpha]_B$ is diagonal.

Definition 7.2 (Triangulable)

We say that α is **triangulable** if there exists a basis B of V such that $[\alpha]_B$ is triangular.

Remark 33. We can express this equivalently in terms of conjugation of matrices.

Definition 7.3 (Eigenvalue, Eigenvector and Eigenspace)

A scalar $\lambda \in F$ is an **eigenvalue** of an endomorphism α if and only if there exists a vector $v \in V \setminus \{0\}$ such that $\alpha(v) = \lambda v$. Such a vector is an **eigenvector** with eigenvalue λ .

 $V_{\lambda} = \{v \in V : \alpha(v) = \lambda v\} \leq V$ is the **eigenspace** associated to λ .

Lemma 7.1

Let $\alpha \in L(V)$ and $\lambda \in F$. λ is an eigenvalue iff $\det(\alpha - \lambda I) = 0$.

Proof. If λ is an eigenvalue, there exists a nonzero vector v such that $\alpha(v) = \lambda v$, so $(\alpha - \lambda I)(v) = 0$. So the kernel is non-trivial. So $\alpha - \lambda I$ is not injective, so it is not

surjective by the rank-nullity theorem. Hence this matrix is not invertible, so it has zero determinant. \Box

Remark 34. If $\alpha(v_j) = \lambda_j v_j$ $(v_j \neq 0)$ for $j \in \{1, ..., m\}$, we can complete the family v_j into a basis $(v_1, ..., v_n)$ of V. Then in this basis, the first m columns of the matrix α has diagonal entries λ_j .

§7.2 Elementary facts about polynomials

Recall the following facts about polynomials on a field F, for instance

$$f(t) = a_n t^n + \dots + a_1 t + a_0, \quad a_i \in F$$

We say that the degree of f, written $\deg f$ is n. The degree of f+g is at most the maximum degree of f and g. $\deg(fg) = \deg f + \deg g$.

Let F[t] be the vector space of polynomials with coefficients in F.

 λ is a root of $f(t) \iff f(\lambda = 0)$.

Lemma 7.2

If λ is a root of f then $(t - \lambda)$ divides F. I.e. $f(t) = (t - \lambda)g(t)$ where $g(t) \in F[t]$.

Proof.

$$f(t) = a_n t^n + \dots + a_1 t + a_0$$

Hence,

$$f(\lambda) = a_n \lambda^n + \dots + a_1 \lambda + a_0 = 0$$

which implies that

$$f(t) = f(t) - f(\lambda) = a_n(t^n - \lambda^n) + \dots + a_1(t - \lambda)$$

But note that, for all n,

$$t^{n} - \lambda^{n} = (t - \lambda)(t^{n-1} + \lambda t^{n-2} + \dots + \lambda^{n-2}t + \lambda^{n-1})$$

Remark 35. We say that λ is a root of multiplicity k if $(t-\lambda)^k$ divides f but $(t-\lambda)^{k+1}$ does not.

Corollary 7.1

A nonzero polynomial of degree n has at most n roots, counted with multiplicity.

Proof. Induction on the degree. Left as an exercise.

Corollary 7.2

If f_1, f_2 are two polynomials of degree less than n such that $f_1(t_i) = f_2(t_i)$ for $i \in \{1, ..., n\}$ and t_i distinct, then $f_1 \equiv f_2$.

Proof. $f_1 - f_2$ has degree less than n, but has n roots. Hence it is zero.

Theorem 7.1

Any polynomial $f \in \mathbb{C}[t]$ of positive degree has a complex root. When counted with multiplicity, f has a number of roots equal to its degree.

Corollary 7.3

Any polynomial $f \in \mathbb{C}[t]$ can be factorised into an amount of linear factors equal to its degree. $f(t) = c \prod_{i=1}^{r} (t - \lambda_i)^{\alpha_i}$, with $c \in \mathbb{C}$, $\lambda_i \in \mathbb{C}$, $\alpha_i \in \mathbb{N}$.

Proved in Complex Analysis.

§7.3 Characteristic polynomials

Definition 7.4 (Characteristic polynomials)

Let α be an endomorphism. The characteristic polynomial of α is

$$\chi_{\alpha}(t) = \det(A^{a} - tI)$$

Remark 36. 1. χ_{α} is a polynomial because the determinant is defined as a polynomial in the terms of the matrix.

2. Note further that conjugate matrices have the same characteristic polynomial, so the above definition is well defined in any basis. Indeed, $\det(P^{-1}AP - \lambda I) = \det(P^{-1}(A - \lambda I)P) = \det(A - \lambda I)$.

 $^{^{}a}A = [\alpha]_{B}$ for any basis B, we will see it's well defined below.

Theorem 7.2

Let $\alpha \in L(V)$. α is triangulable iff χ_{α} can be written as a product of linear factors over F. I.e. $\chi_{\alpha}(t) = c \prod_{i=1}^{n} (t - \lambda_i)^a$

Corollary 7.4

In particular, all complex matrices are triangulable.

Proof. (\Longrightarrow): Suppose α is triangulable. Then for a basis B, $[\alpha]_B$ is triangulable with diagonal entries a_i . Then

$$\chi_{\alpha}(t) = (a_1 - t)(a_2 - t) \cdots (a_n - t)$$

 (\Leftarrow) : We argue by induction on $n = \dim V$. True for n = 1.

By assumption, let $\chi_{\alpha}(t)$ be the characteristic polynomial of α with a root λ . Then, $\chi_{\alpha}(\lambda) = 0$ implies λ is an eigenvalue. Let V_{λ} be the corresponding eigenspace. Let (v_1, \ldots, v_k) be the basis of this eigenspace, completed to a basis (v_1, \ldots, v_n) of V. Let $W = \text{span } \{v_{k+1}, \ldots, v_n\}$, and then $V = V_{\lambda} \oplus W$. Then

$$[\alpha]_B = \begin{pmatrix} \lambda I & \star \\ 0 & C \end{pmatrix}$$

where \star is arbitrary, and C is a block of size $(n-k)\times (n-k)$. Then α induces an endomorphism $\overline{\alpha}\colon V/V_\lambda\to V/V_\lambda$ with $C=[\overline{\alpha}]_{\overline{B}}$ and $\overline{B}=(v_{k+1}+V_\lambda,\ldots,v_n+V_\lambda)$.

Then (block product)

$$\det([\alpha]_B - tI) = \det\begin{pmatrix} (\lambda - t)I & \star \\ 0 & C - tI \end{pmatrix}$$

$$= (\lambda - t)^k \det(C - tI)$$
We know
$$\det([\alpha]_B - tI) = c \prod_{i=1}^n (t - a_i)$$

$$\implies \det(C - tI)^a = c \prod_{k=1}^n (t - \tilde{a_i})$$

By induction on the dimension, we can find a basis (w_{k+1}, \ldots, w_n) of W for which $[C]_W$ has a triangular form. Then the basis $(v_1, \ldots, v_k, w_{k+1}, \ldots, w_n)$ is a basis for

 $^{^{}a}\lambda_{i}$ need not be distinct.

which α is triangular.

^aAs det(C - tI) is a polynomial

Lemma 7.3

Let $n = \dim V$, and V be a vector space over \mathbb{R} or \mathbb{C} . Let α be an endomorphism on V. Then

$$\chi_{\alpha}(t) = (-1)^n t^n + c_{n-1} t^{n-1} + \dots + c_0$$

with

$$c_0 = \det A; \quad c_{n-1} = (-1)^{n-1} \operatorname{tr} A$$

Proof.

$$\chi_{\alpha}(t) = \det(\alpha - tI) \implies \chi_{\alpha}(0) = \det(\alpha)$$

Further, for \mathbb{R} , \mathbb{C} we know that α is triangulable over \mathbb{C} . Hence $\chi_{\alpha}(t)$ is the determinant of a triangular matrix;

$$\chi_{\alpha}(t) = \prod_{i=1}^{n} (a_i - t)$$

Hence

$$c_{n-1} = (-1)^{n-1} a_i$$

Since the trace is invariant under a change of basis, this is exactly the trace as required. \Box

§7.4 Polynomials for matrices and endomorphisms

Let p(t) be a polynomial over F. We will write

$$p(t) = a_n t^n + \dots + a_0$$

For a matrix $A \in M_n(F)$, we write

$$p(A) = a_n A^n + \dots + a_0 \in M_n(F)$$

For an endomorphism $\alpha \in L(V)$,

$$p(\alpha) = a_n \alpha^n + \dots + a_0 I \in L(V); \quad \alpha^k \equiv \underbrace{\alpha \circ \dots \circ \alpha}_{k \text{ times}}$$

§7.5 Sharp criterion of diagonalisability

Theorem 7.3

Let V be a vector space over F of finite dimension n. Let α be an endomorphism of V. Then α is diagonalisable if and only if there exists a polynomial p which is a product of *distinct* linear factors, such that $p(\alpha) = 0$. In other words, there exist distinct $\lambda_1, \ldots, \lambda_k$ such that

$$p(t) = \prod_{i=1}^{n} (t - \lambda_i) \implies p(\alpha) = 0$$

Proof. Suppose α is diagonalisable in a basis B. Let $\lambda_1, \ldots, \lambda_k$ be the $k \leq n$ distinct eigenvalues. Let

$$p(t) = \prod_{i=1}^{k} (t - \lambda_i)$$

Let $v \in B$. Then $\alpha(v) = \lambda_i v$ for some i. Then, since the terms in the following product commute,

$$(\alpha - \lambda_i I)(v) = 0 \implies p(\alpha)(v) = \left[\prod_{i=1}^k (\alpha - \lambda_i I)\right](v) = 0$$

So for all basis vectors, $p(\alpha)(v)$. By linearity, $p(\alpha) = 0$.

Conversely, suppose that $p(\alpha) = 0$ for some polynomial $p(t) = \prod_{i=1}^{k} (t - \lambda_i)$ with distinct λ_i . Let $V_{\lambda_i} = \ker(\alpha - \lambda_i I)$. We claim that

$$V = \bigoplus_{i=1}^{k} V_{\lambda_i}$$

Consider the polynomials

$$q_j(t) = \prod_{i=1, i \neq j}^k \frac{t - \lambda_i}{\lambda_j - \lambda_i}$$

These polynomials evaluate to one at λ_j and zero at λ_i for $i \neq j$. Hence $q_j(\lambda_i) = \delta_{ij}$. We now define the polynomial

$$q = q_1 + \dots + q_k$$

The degree of q is at most (k-1). Note, $q(\lambda_i) = 1$ for all $i \in \{1, ..., k\}$. The only polynomial that evaluates to one at k points with degree at most (k-1) is exactly given by q(t) = 1. Consider the endomorphism

$$\pi_i = q_i(\alpha) \in L(V)$$

These are called the 'projection operators'. By construction,

$$\sum_{j=1}^{k} \pi_j = \sum_{j=1}^{k} q_j(\alpha) = I$$

So the sum of the π_j is the identity. Hence, for all $v \in V$,

$$I(v) = v = \sum_{j=1}^{k} \pi_j(v) = \sum_{j=1}^{k} q_j(\alpha)(v)$$

So we can decompose any vector as a sum of its projections $\pi_j(v)$. Now, by definition of q_j and p,

$$(\alpha - \lambda_j I) q_j(\alpha)(v) = \frac{1}{\prod_{i \neq j} (\lambda_j - \lambda_i)} (\alpha - \lambda_j I) \left[\prod_{i \neq j} (t - \lambda_i) \right] (\alpha)$$

$$= \frac{1}{\prod_{i \neq j} (\lambda_j - \lambda_i)} \prod_{i=1}^k (\alpha - \lambda_i I)(v)$$

$$= \frac{1}{\prod_{i \neq j} (\lambda_j - \lambda_i)} p(\alpha)(v)$$

By assumption, this is zero. For all v, we have $(\alpha - \lambda_j I)q_j(\alpha)(v)$. Hence,

$$(\alpha - \lambda_i I)\pi_i(v) = 0 \implies \pi_i(v) \in \ker(\alpha - \lambda_i I) = v_i$$

We have then proven that, for all $v \in V$,

$$v = \sum_{j=1}^{k} \underbrace{\pi_j(v)}_{\in V_i}$$

Hence,

$$V = \sum_{j=1}^{k} V_j$$

It remains to show that the sum is direct. Indeed, let

$$v \in V_{\lambda_j} \cap \left(\sum_{i \neq j} V_{\lambda_i}\right)$$

We must show v = 0. Applying π_j ,

$$\pi_j(v) = q_j(\alpha)(v) = \prod_{i \neq j} \frac{(\alpha - \lambda_i I)(v)}{\lambda_j - \lambda_i}$$

Since $\alpha(v) = \lambda_i v$,

$$\pi_j(v) = \prod_{i \neq j} \frac{(\lambda_j - \lambda_i)v}{\lambda_j - \lambda_i} = v$$

Hence π_j really projects onto V_{λ_j} . However, we also know $v \in \sum_{i \neq j} V_{\lambda_i}$. So we can write $v = \sum_{i \neq j} w_i$ for $w \in V_{\lambda_i}$. Thus,

$$\pi_j(w_i) = \prod_{m \neq j} \frac{(\alpha - \lambda_m I)(v)}{\lambda_m - \lambda_j}$$

Since $\alpha(w_i) = \lambda_i w_i$, one of the factors will vanish, hence

$$\pi_i(w_i) = 0$$

So

$$v = \sum_{i \neq j} w_i \implies \pi_j(v) = \sum_{i \neq j} \pi_j(w_i) = 0$$

But $v = \pi_j(v)$ hence v = 0. So the sum is direct. Hence, $B = (B_1, \ldots, B_k)$ is a basis of V, where the B_i are bases of V_{λ_i} . Then $[\alpha]_B$ is diagonal.

Remark 37. We have shown further that if $\lambda_1, \ldots, \lambda_k$ are distinct eigenvalues of α , then

$$\sum_{i=1}^{k} V_{\lambda_i} = \bigoplus_{i=1}^{k} V_{\lambda_i}$$

Therefore, the only way that diagonalisation fails is when this sum is not direct, so

$$\sum_{i=1}^{k} V_{\lambda_i} < V$$

Example 7.1

Let $F = \mathbb{C}$. Let $A \in M_n(F)$ such that A has finite order; there exists $m \in \mathbb{N}$ such that $A^m = I$. Then A is diagonalisable. This is because

$$t^m - 1 = p(t) = \prod_{j=1}^m (t - \xi_m^j); \quad \xi_m = e^{2\pi i/m}$$

and p(A) = 0.

§7.6 Simultaneous diagonalisation

Theorem 7.4

Let α, β be endomorphisms of V which are diagonalisable. Then α, β are simultaneously diagonalisable (there exists a basis B of V such that $[\alpha]_B, [\beta]_B$ are diagonal) if and only if α and β commute.

Proof. Two diagonal matrices commute. If such a basis exists, $\alpha\beta = \beta\alpha$ in this basis. So this holds in any basis. Conversely, suppose $\alpha\beta = \beta\alpha$. We have

$$V = \bigoplus_{i=1}^{k} V_{\lambda_i}$$

where $\lambda_i, \ldots, \lambda_k$ are the k distinct eigenvalues of α . We claim that $\beta(V_{\lambda_j}) \leq V_{\lambda_j}$. Indeed, for $v \in V_{\lambda_j}$,

$$\alpha\beta(v) = \beta\alpha(v) = \beta(\lambda_i v) = \lambda_i\beta(v) \implies \alpha(\beta(v)) = \lambda_i\beta(v)$$

Hence, $\beta(v) \in V_{\lambda_j}$. By assumption, β is diagonalisable. Hence, there exists a polynomial p with distinct linear factors such that $p(\beta) = 0$. Now, $\beta(V_{\lambda_j}) \leq V_{\lambda_j}$ so we can consider $\beta|_{V_{\lambda_j}}$. This is an endomorphism of V_{λ_j} . We can compute

$$p\bigg(\beta\bigg|_{V_{\lambda_j}}\bigg) = 0$$

Hence, $\beta|_{V_{\lambda_j}}$ is diagonalisable. Let B_i be the basis of V_{λ_i} in which $\beta|_{V_{\lambda_j}}$ is diagonal. Since $V = \bigoplus V_{\lambda_i}$, $B = (B_1, \dots, B_k)$ is a basis of V. Then the matrices of α and β in V are diagonal.

§7.7 Minimal polynomials

Recall from IB Groups, Rings and Modules the Euclidean algorithm for dividing polynomials. Given a, b polynomials over F with b nonzero, there exist polynomials q, r over F with deg $r < \deg b$ and a = qb + r.

Definition 7.5

Let V be a finite dimensional F-vector space. Let α be an endomorphism on V. The minimal polynomial m_{α} of α is the nonzero polynomial with smallest degree such that $m_{\alpha}(\alpha) = 0$.

Remark 38. If dim $V = n < \infty$, then dim $L(V) = n^2$. In particular, the family $\{I, \alpha, \ldots, \alpha^{n^2}\}$ cannot be free since it has $n^2 + 1$ entries. This generates a polynomial in α which evaluates to zero. Hence, a minimal polynomial always exists.

Lemma 7.4

Let $\alpha \in L(V)$ and $p \in F[t]$ be a polynomial. Then $p(\alpha) = 0$ if and only if m_{α} is a factor of p. In particular, m_{α} is well-defined and unique up to a constant multiple.

Proof. Let $p \in F[t]$ such that $p(\alpha) = 0$. If $m_{\alpha}(\alpha) = 0$ and $\deg m_{\alpha} < \deg p$, we can perform the division $p = m_{\alpha}q + r$ for $\deg r < \deg m_{\alpha}$. Then $p(\alpha) = m_{\alpha}(\alpha)q(\alpha) + r(\alpha)$. But $m_{\alpha}(\alpha) = 0$. But $\deg r < \deg m_{\alpha}$ and m_{α} is the smallest degree polynomial which evaluates to zero for α , so $r \equiv 0$ so $p = m_{\alpha}q$. In particular, if m_1, m_2 are both minimal polynomials that evaluate to zero for α , we have m_1 divides m_2 and m_2 divides m_1 . Hence they are equivalent up to a constant.

Example 7.2

Let $V = F^2$ and

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; \quad B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

We can check $p(t) = (t-1)^2$ gives p(A) = p(B) = 0. So the minimal polynomial of A or B must be either (t-1) or $(t-1)^2$. For A, we can find the minimal polynomial is (t-1), and for B we require $(t-1)^2$. So B is not diagonalisable, since its minimal polynomial is not a product of distinct linear factors.

§7.8 Cayley-Hamilton theorem

Theorem 7.5

Let V be a finite dimensional F-vector space. Let $\alpha \in L(V)$ with characteristic polynomial $\chi_{\alpha}(t) = \det(\alpha - tI)$. Then $\chi_{\alpha}(\alpha) = 0$.

Two proofs will provided; one more physical and based on $F = \mathbb{C}$ and one more algebraic.

Proof. Let $B = \{v_1, \ldots, v_n\}$ be a basis of V such that $[\alpha]_B$ is triangular. This can be done when $F = \mathbb{C}$. Note, if the diagonal entries in this basis are a_i ,

$$\chi_{\alpha}(t) = \prod_{i=1}^{n} (a_i - t) \implies \chi_{\alpha}(\alpha) = (\alpha - a_1 I) \dots (\alpha - a_n I)$$

We want to show that this expansion evaluates to zero. Let $U_j = \text{span } \{v_1, \ldots, v_j\}$. Let $v \in V = U_n$. We want to compute $\chi_{\alpha}(\alpha)(v)$. Note, by construction of the triangular matrix.

$$\chi_{\alpha}(\alpha)(v) = (\alpha - a_1 I) \dots \underbrace{(\alpha - a_n I)(v)}_{\in U_{n-1}}$$

$$= (\alpha - a_1 I) \dots \underbrace{(\alpha - a_{n-1} I)(\alpha - a_n I)(v)}_{\in U_{n-2}}$$

$$= \dots$$

$$\in U_0$$

Hence this evaluates to zero.

The following proof works for any field where we can equate coefficients, but is much less intuitive.

Proof. We will write

$$\det(tI - \alpha) = (-1)^n \chi_{\alpha}(t) = t^n + a_{n-1}t^{n-1} + \dots + a_0$$

For any matrix B, we have proven $B \operatorname{adj} B = (\det B)I$. We apply this relation to the matrix B = tI - A. We can check that

$$\operatorname{adj} B = \operatorname{adj}(tI - A) = B_{n-1}t^{n-1} + \dots + B_1t + B_0$$

since adjugate matrices are degree (n-1) polynomials for each element. Then, by applying $B \operatorname{adj} B = (\det B)I$,

$$(tI - A)[B_{n-1}t^{n-1} + \dots + B_1t + B_0] = (\det B)I = (t^n + \dots + a_0)I$$

Since this is true for all t, we can equate coefficients. This gives

$$t^n$$
:
$$I = B_{n-1}$$

$$t^{n-1}$$
:
$$a_{n-1}I = B_{n-2} - AB_{n-1}$$

$$\vdots$$

$$t^0$$
:
$$a_0I = -AB_1$$

Then, substituting A for t in each relation will give, for example, $A^nI = A^nB_{n-1}$. Computing the sum of all of these identities, we recover the original polynomial in terms of A instead of in terms of t. Many terms will cancel since the sum telescopes, yielding

$$A^n + a_{n-1}A^{n-1} + \dots + a_0I = 0$$

§7.9 Algebraic and geometric multiplicity

Definition 7.6

Let V be a finite dimensional F-vector space. Let $\alpha \in L(V)$ and let λ be an eigenvalue of α . Then

$$\chi_{\alpha}(t) = (t - \lambda)^{a_{\lambda}} q(t)$$

where q(t) is a polynomial over F such that $(t-\lambda)$ does not divide q. a_{λ} is known as the algebraic multiplicity of the eigenvalue λ . We define the geometric multiplicity g_{λ} of λ to be the dimension of the eigenspace associated with λ , so $g_{\lambda} = \dim \ker(\alpha - \lambda I)$.

Lemma 7.5

If λ is an eigenvalue of $\alpha \in L(V)$, then $1 \leq g_{\lambda} \leq a_{\lambda}$.

Proof. We have $g_{\lambda} = \dim \ker(\alpha - \lambda I)$. There exists a nontrivial vector $v \in V$ such that $v \in \ker(\alpha - \lambda I)$ since λ is an eigenvalue. Hence $g_{\lambda} \geq 1$. We will show that $g_{\lambda} \leq a_{\lambda}$. Indeed, let $v_1, \ldots, v_{g_{\lambda}}$ be a basis of $V_{\lambda} \equiv \ker(\alpha - \lambda I)$. We complete this into a basis $B \equiv (v_1, \ldots, v_{g_{\lambda}}, v_{g_{\lambda}+1}, \ldots, v_n)$ of V. Then note that

$$[\alpha]_B = \begin{pmatrix} \lambda I_{g_\lambda} & \star \\ 0 & A_1 \end{pmatrix}$$

for some matrix A_1 . Now,

$$\det(\alpha - tI) = \det\begin{pmatrix} (\lambda - t)I_{g_{\lambda}} & \star \\ 0 & A_1 - tI \end{pmatrix}$$

By the formula for determinants of block matrices with a zero block on the off diagonal,

$$\det(\alpha - tI) = (\lambda - t)^{g_{\lambda}} \det(A_1 - tI)$$

Hence $g_{\lambda} \leq a_{\lambda}$ since the determinant is a polynomial that could have more factors of the same form.

Lemma 7.6

Let V be a finite dimensional F-vector space. Let $\alpha \in L(V)$ and let λ be an eigenvalue of α . Let c_{λ} be the multiplicity of λ as a root of the minimal polynomial of α . Then $1 \leq c_{\lambda} \leq a_{\lambda}$.

Proof. By the Cayley-Hamilton theorem, $\chi_{\alpha}(\alpha) = 0$. Since m_{α} is linear, m_{α} divides χ_{α} . Hence $c_{\lambda} \leq a_{\lambda}$. Now we show $c_{\lambda} \geq 1$. Indeed, λ is an eigenvalue hence there exists a nonzero $v \in V$ such that $\alpha(v) = \lambda v$. For such an eigenvector, $\alpha^{P}(v) = \lambda^{P}v$ for $P \in \mathbb{N}$. Hence for $p \in F[t]$, $p(\alpha)(v) = [p(\lambda)](v)$. Hence $m_{\alpha}(\alpha)(v) = [m_{\alpha}(\lambda)](v)$. Since the left hand side is zero, $m_{\alpha}(\lambda) = 0$. So $c_{\lambda} \geq 1$.

Example 7.3

Let

$$A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

The minimal polynomial can be computed by considering the characteristic polynomial

$$\chi_A(t) = (t-1)^2(t-2)$$

So the minimal polynomial is either $(t-1)^2(t-2)$ or (t-1)(t-2) We check (t-1)(t-2). (A-I)(A-2I) can be found to be zero. So $m_A(t)=(t-1)(t-2)$. Since this is a product of distinct linear factors, A is diagonalisable.

Example 7.4

Let A be a Jordan block of size $n \geq 2$. Then $g_{\lambda} = 1$, $a_{\lambda} = n$, and $c_{\lambda} = n$.

§7.10 Characterisation of diagonalisable complex endomorphisms

Lemma 7.7

Let $F = \mathbb{C}$. Let V be a finite-dimensional \mathbb{C} -vector space. Let α be an endomorphism of V. Then the following are equivalent.

- 1. α is diagonalisable;
- 2. for all λ eigenvalues of α , we have $a_{\lambda} = g_{\lambda}$;
- 3. for all λ eigenvalues of α , $c_{\lambda} = 1$.

Proof. First, the fact that (i) is true if and only if (iii) is true has already been proven. Now let us show that (i) is equivalent to (ii). Let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of α . We have already found that α is diagonalisable if and only if $V = \bigoplus V_{\lambda_i}$. The sum was found to be always direct, regardless of diagonalisability. We will compute the dimension of V in two ways;

$$n = \dim V = \deg \chi_{\alpha}; \quad n = \dim V = \sum_{i=1}^{k} a_{\lambda_i}$$

since χ_{α} is a product of $(t - \lambda_i)$ factors as $F = \mathbb{C}$. Since the sum is direct,

$$\dim\left(\bigoplus_{i=1}^k V_{\lambda_i}\right) = \sum_{i=1}^k g_{\lambda_i}$$

 α is diagonalisable if and only if the dimensions are equal, so

$$\sum_{i=1}^{k} g_{\lambda_i} = \sum_{i=1}^{k} a_{\lambda_i}$$

Conversely, we have proven that for all eigenvalues λ_i , we have $g_{\lambda_i} \leq a_{\lambda_i}$. Hence, $\sum_{i=1}^k g_{\lambda_i} = \sum_{i=1}^k a_{\lambda_i}$ holds if and only if $g_{\lambda_i} = a_{\lambda_i}$ for all i.