SCHRÖDINGER®

Ligand-based Virtual Screening Methods

Virtual screening can quickly evaluate ligand libraries

Use different screening methods for different available data

Structure-based virtual screens

- Structure of Target
- Ligand-binding site known
- (optional) ligand/hit bound

Ligand-based virtual screens

- a single known hit
- multiple known hits
- (optional) active conformation

Virtual screen with many tools for best results

A pharmacophore is an abstract representation of interactions

A pharmacophore is the ensemble of steric and electronic features that is necessary to ensure the optimal supramolecular interactions with a specific biological target and to trigger (or block) its biological response

-IUPAC

Pharmacophores are represented using features

- Common features
 - D for h-bond donor
 - A for h-bond acceptor
 - R for aromatic ring
 - H for hydrophobic
 - N for negative ionic
 - P for positive ionic
- D/A/R features have vector characteristics
- D/A features can be treated as projected points or vectors
- Can customize features

There are several ways to create pharmacophore hypotheses

Shape screening makes use of known binders

- Hard sphere volume overlaps are used for similarity assessment
- Incorporate property information by allowing only atoms with similar types to match
- Sphere types
 - Heavy atom (shape only)
 - Heavy atom by element/atomtype (color)
 - Pharmacophore feature-located (color)
 - Hydrophobic

 Aromatic
 - Acceptor Donor
 - Negative

 Positive

CPU and GPU Shape screening are both useful

- Shape algorithm is primarily linear algebra
 - Same mathematical operations performed many times across different datasets
 - Small amount of data required per conformer compared

CPU	GPU
Small number of faster cores	Large number of slower cores
Works on a variety of tasks simultaneously	Optimized for taking huge batches of data and performing the same operation over and over very quickly

Generalized shape screening workflow

There are speed limitations to using 3D-based screening at scale

Method	Timings	Time to process 500M compounds on a single CPU or GPU	CPUs required to process 500M compounds in 7 days
Docking*	~10 sec/ligand	~158 years	~8200
Pharmacophore*	~5 ligands/sec @ 50 confs each	~3 years	~165
CPU Shape	~200 ligands/sec @ 10 confs each	~1 month	~4
GPU Shape	~10,500 ligands/sec @ 10 confs each	13 hours	NA

^{*}Necessary Ionization/tautomeric expansion typically expands number of structures to be screened by 2.5X

Historically compound collections were comprised of already synthesized molecules with < 20 million compounds

GDB-17* with 166.4 billion compounds

All molecules with up to 17 atoms containing C, N, O, S, and halogen atoms

Diverse, synthetically-tractable libraries are becoming common

- Multiple vendors with >100M synthesizable libraries
- 720M Enamine REAL set (<u>readily accessible</u>)
 - Synthesis success rates of 85% or higher reported

DNA encoded libraries of potentially trillions of compounds created combinatorially in one flask

Chemical screening libraries are growing substantially

Virtual Screening with Molecular Modeling

DNA encoded libraries of potentially trillions of compounds created combinatorially in one flask

CADD can explore large chemical space, which can lead to new hits

Image from: https://en.wikipedia.org/wiki/Chemical space

- 19.2 million structures
- the further away to points are, the more chemically distinct they are

Shoichet Hypothesis

- Chemical diversity increases with larger chemical space searching
- Shoichet hypothesis: As screening decks expand, more tight binders and tighter binders found

