Data Analyst Nanodegree Project 1 World Temperature Analysis

Prepared by Christopher Davis

Exploring Weather Trends

Assignment:

Extract and analyze local and global temperature data and compare the temperature trends where you live to overall global temperature trends. Visualize the comparisons.

Procedure:

1. Query three tables in a database and export all values to a .csv files that can be used for further data analysis by other analytic tools.

Data Files

File/Table	Fields	SQL Query
city_data.csv	year, city, country, avg_temp	Select *
		From city_data
		Where city = 'Miami';
city_list.csv	city, country	Select *
		From city_list;
global_data.csv	year, avg_temp	Select *
		From global_data;

2. An additional output file, containing only records where there is a temperature for the home city (Miami, United States) was created for analysis.

Data Extract: SQL Query

Select c.year,c.avg_temp as avg_miami_temp, g.avg_temp as avg_world_temp

From global_data g Join city_data c On c.year = g.year

Where c.city = 'Miami' and c.avg_temp > 0;

Data Analysis Process:

Steps

1. Graph the moving averages for Miami and Global temperatures. The five-year moving average showed more variation when plotted compared to the ten year and fifteen year moving averages. The ten-year moving average was selected for comparisons

2. Calculated Summary Descriptive Statistics for the average Miami and average Global temperatures

avg_miami_temp		
Mean	23.04069672	
Standard Error	0.049183816	
Median	23.06	
Mode	23.36	
Standard Deviation	0.768275771	
Sample Variance	0.590247661	
Kurtosis	45.52048212	
Skewness	-4.578974748	
Range	9.38	
Minimum	15.14	
Maximum	24.52	
Sum	5621.93	
Count	244	
Confidence Level(95.0%)	0.096881022	

avg_world_temp		
Mean	8.3575	
Standard Error	0.03595	
Median	8.35	
Mode	7.98	
Standard Deviation	0.56154	
Sample Variance	0.31533	
Kurtosis	0.5807	
Skewness	-0.134	
Range	2.99	
Minimum	6.74	
Maximum	9.73	
Sum	2039.24	
Count	244	
Confidence Level(95.0%)	0.070811447	

3. Performed a correlation analysis between average Miami temperatures and Global temperatures

Correlation between the average Miami and Global Temperatures (Celsius)

		<u>'</u>
	avg_miami_temp	avg_world_temp
avg_miami_temp	1	
avg_world_temp	0.578736654	1

4. Computed the five, ten, and fifteen year moving averages for both Miami and Global temperatures for graphing and analysis. Calculating the correlation on the moving averages resulted in the following

	Miami_5yr_ma	Global_5yr_ma
Miami_5yr_ma	1	
Global_5yr_ma	0.806191173	1

	Miami_10yr_ma	Global_10yr_ma
Miami_10yr_ma	1	
Global_10yr_ma	0.880630408	1

Miami_15yr_ma	1	
Global_15yr_ma	0.918497636	1

5. Computed the Analysis of Variance (ANOVA) for average Miami temperatures and the Global temperatures for analysis.

Anova: Single Factor						
SUMMARY						
Groups	Count	Sum	Average	Variance		
avg_miami_temp	244	5621.93	23.04069672	0.590247661		
avg_world_temp	244	2039.24	8.357540984	0.315328908		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	26302.59761	1	26302.59761	58090.27868	0	3.860664
Within Groups	220.0551061	486	0.452788284			
Total	26522.65272	487				

Results and Observations:

1. The average temperature in Miami is significantly warmer that the average global temperature.

Ho: There are no differences between the average temperature in Miami compared to global temperature.

H1: There average temperature in Miami is different from the average global temperature

There is small p value, so the null hypothesis is rejected.

- 2. The average temperature differences have persisted over time.
- Although the average temperature in Miami is significantly warmer than the average global temperature, the
 trend has been towards an increase in the average temperature for Miami and global temperatures.
 Observing the moving averages, there seems to be a correlation in the trends of the average temperature in
 Miami and the average global temperatures.
- 4. The average global temperate has been increasing over the last few hundred years.