MOSFET

		9	J. 32-1 9.7
e	n-Channel		p-Channel
*	Enhancement	4	Ennancement
# := #	MOSFET		MOSFET
Circuit Symbol	DOVID So		og yin
			0
V_t	+ ; ;		<u></u>
To turn			$v_{GS} < V_{t}$
transistor on		$v_{GS} > V_t$	0GS / 1:
v_{DS}		. +	
To operate in the			
triode region	B:	$v_{DS} \le v_{GS} - V_t$	$v_{DS} \ge v_{GS} - V_t$
To operate in			9 9
the saturation region		$v_{DS} \ge v_{GS} - V_{t}$	$v_{DS} \le v_{GS} - V_t$

MOS Transistor $\mathbb{E}QU \land TIONS$ $V_T = V_{T0} \div \gamma (\sqrt{|-2\phi_F + V_{SB}|} - \sqrt{|-2\phi_F|})$ $I_D = \frac{k'_n W}{2L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS}) (\text{sat})$ $I_D = \mathcal{R}_n \frac{W}{L} \left((V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right) \text{ (triode)}$