# Quartz Crystal Microbalance Studies of $Al_2O_3$ Atomic Layer Deposition Using Trimethylaluminum and Water at 125 $^{\circ}C^{\dagger}$

### R. A. Wind<sup>\(\perc),\(\pi\)</sup> and S. M. George\*,\(\phi\),\(\psi\)

Department of Chemistry and Biochemistry, Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309-0215

Received: May 27, 2009; Revised Manuscript Received: August 19, 2009

Al<sub>2</sub>O<sub>3</sub> atomic layer deposition (ALD) growth with Al(CH<sub>3</sub>)<sub>3</sub> (trimethylaluminum (TMA)) and H<sub>2</sub>O as the reactants was examined at the relatively low temperature of 125 °C using quartz crystal microbalance (QCM) measurements. The total Al<sub>2</sub>O<sub>3</sub> ALD mass gain per cycle (MGPC) and MGPCs during the individual TMA and H<sub>2</sub>O reactions were measured versus TMA and H<sub>2</sub>O exposures. The Al<sub>2</sub>O<sub>3</sub> MGPC increased with increasing H<sub>2</sub>O and TMA exposures at fixed TMA and H<sub>2</sub>O exposures, respectively. However, the TMA and H<sub>2</sub>O reactions were not completely self-limiting. The slower surface reaction kinetics at lower temperature may require very long exposures for the reactions to reach completion. The Al<sub>2</sub>O<sub>3</sub> MGPCs increased quickly versus H<sub>2</sub>O exposure and slowly reached limiting values that were only weakly dependent on the TMA doses. Small TMA exposures were also sufficient for the Al<sub>2</sub>O<sub>3</sub> MGPCs to reach different limiting values for different H<sub>2</sub>O doses. The TMA MGPCs increased for higher TMA exposures at all H<sub>2</sub>O exposures. In contrast, the H<sub>2</sub>O MGPCs decreased for higher TMA exposures at all H<sub>2</sub>O exposures. This decrease may occur from more dehydroxylation at larger hydroxyl coverages after the H<sub>2</sub>O exposures. The hydroxyl coverage after the H<sub>2</sub>O exposure was dependent only on the H<sub>2</sub>O exposure. The Al<sub>2</sub>O<sub>3</sub> MGPC was also linearly dependent on the hydroxyl coverage after the H<sub>2</sub>O dose. Both the observed hydroxyl coverage versus H<sub>2</sub>O exposure and the Al<sub>2</sub>O<sub>3</sub> ALD growth versus H<sub>2</sub>O and TMA exposures were fit using modified Langmuir adsorption isotherm expressions where the pressures are replaced with exposures. These results should be useful for understanding low-temperature Al<sub>2</sub>O<sub>3</sub> ALD, which is important for coating organic, polymeric, and biological substrates.

#### 1. Introduction

Atomic layer deposition (ALD) is a thin film deposition technique that can fabricate ultrathin, continuous, and conformal films on very complex shapes. ALD is based on two sequential, self-limiting surface reactions.  $^{1,2}$  Al $_2$ O $_3$  ALD is one of the most widely investigated ALD systems.  $^{3-12}$  Al $_2$ O $_3$  ALD typically utilizes Al(CH $_3$ ) $_3$  (trimethylaluminum (TMA)) and H $_2$ O as reactants.  $^{13,14}$  The growth is nearly self-limiting for temperatures of 30–300 °C, no residual carbon is incorporated into the film, and the only reaction byproduct is CH $_4$ . Al $_2$ O $_3$  ALD displays almost all the requirements for ideal ALD.

The surface chemistry of the binary reaction sequence during  $Al_2O_3$  ALD can be described as  $^{12,15}$ 

(A) 
$$A1(OH)_x^* + A1(CH_3)_3 \rightarrow A1O_xA1(CH_3)_{3-x}^* + xCH_4$$
(1)

(B1) 
$$A1O_xA1(CH_3)_{3-x}^* + (3-x)H_2O \rightarrow A1O_xA1(OH)_{3-x} + (3-x)CH_4$$
 (2)

§ Department of Chemical and Biological Engineering

(B2) 
$$(2x - 3)A1OH^* \leftrightarrow (x - 1.5)A1OA1^* + (x - 1.5)H_2O$$
 (3)

where the asterisks indicate the surface species. These equations are written for one Al site for steady-state  $Al_2O_3$  ALD growth. One Al atom is deposited during each reaction cycle.

The reaction of TMA with surface OH\* (hydroxyl) species is given by reaction A in eq 1. x is the number of OH\* species per Al site that react with each TMA molecule. The  $H_2O$  reaction occurs by direct replacement of  $CH_3^*$  (methyl) species with OH\* species, as indicated by reaction B1 in eq 2. Stoichiometric  $Al_2O_3$  is produced by only reactions A and B1 when x=1.5. Reaction B2 in eq 3 is required to maintain stoichiometric  $Al_2O_3$  if x>1.5 or x<1.5. When x>1.5, AlOH\* species undergo dehydroxylation to produce  $H_2O$ . When x<1.5,  $H_2O$  dissociatively adsorbs on a dehydroxylated AlOAl\* site to produce AlOH\* species. Reaction B2 in eq 3 runs in reverse when x<1.5.

Confirmation of these surface reactions is provided by Fourier transform infrared (FTIR) spectroscopy,  $^{3-5}$  quartz crystal microbalance (QCM),  $^{12,16}$  and quadrupole mass spectrometry (QMS)  $^{8,12}$  studies. FTIR spectroscopy monitors the OH\* and CH $_3^*$  surface species and their interconversion during the TMA and H2O reactions.  $^{3-5}$  QCM measures the mass change during the TMA and H2O reactions.  $^{12,16}$  QMS observes the production of CH4 as the primary gas phase reaction products.  $^{8,12}$  The surface reactions have also been shown to be self-limiting.  $^{3,9}$  Self-limiting growth allows ALD to produce conformal and atomically flat films on spatially complex substrates.  $^{4,17,18}$  The

<sup>†</sup> Part of the "W. Carl Lineberger Festschrift".

<sup>\*</sup> Corresponding author. E-mail: steven.george@colorado.edu.

<sup>&</sup>lt;sup>‡</sup> Department of Chemistry and Biochemistry.

 $<sup>^\</sup>perp$  Current address: Synkera Technologies, Inc., 2021 Miller Dr., Longmont, CO 80501.



Figure 1. Diagram of the gas switching valves used for H2O dosing.

 $Al_2O_3$  ALD reaction is also able to initiate  $Al_2O_3$  growth on a wide variety of surfaces, including oxides, nitrides, metals, semiconductors, and polymers.<sup>4–6,19</sup>

The thermochemistry of  $Al_2O_3$  ALD is very favorable. The heat of reaction for  $2Al(CH_3)_3 + 3H_2O \rightarrow Al_2O_3 + 6CH_4$  is -376 kcal. This large exothermicity helps enable  $Al_2O_3$  ALD at low temperatures.  $Al_2O_3$  ALD is operative at temperatures as low as 33 °C. Investigations have shown that  $Al_2O_3$  ALD yields very well-defined films from 33 to 177 °C. The low temperatures have allowed  $Al_2O_3$  ALD to deposit on a range of thermally fragile substrates, such as organic, polymeric, and biological substrates. These low-temperature  $Al_2O_3$  ALD films are particularly useful for gas diffusion barriers on polymer substrates.

Because of the importance of low-temperature  $Al_2O_3$  ALD, this paper explores the dependence of  $Al_2O_3$  ALD on  $H_2O$  and TMA exposures at 125 °C. These investigations are conducted using QCM studies. The total  $Al_2O_3$  ALD mass gain per cycle (MGPC) is examined versus  $H_2O$  and TMA exposures. The separate MGPCs after the  $H_2O$  and TMA doses are also explored versus the  $H_2O$  and TMA exposures. The MGPCs provide information on the coverage of the OH\* and CH3\* surface species and the deposited Al coverage per cycle during  $Al_2O_3$  ALD. Modified Langmuir adsorption isotherm expressions are also used to fit the hydroxyl coverage versus  $H_2O$  exposures and  $Al_2O_3$  ALD growth versus  $H_2O$  and TMA exposures.

#### 2. Experimental Section

The viscous-flow ALD reactor used in this study has been described in detail previously. 15,16 Briefly, TMA and H2O are alternately entrained in a N2 flow by operating gas switching valves. Each reactant enters the reaction zone through a separate 1/4" stainless steel tube. Figure 1 shows a diagram of the gas switching valves for the H<sub>2</sub>O line. During the purge step, most of the 40 sccm of N<sub>2</sub> entering the line flows into the reaction zone. The remaining N<sub>2</sub> is diverted through the regulating valve and purges the small reservoir to a separate pump. During the dose step, the purge valve is closed while the dose valve is opened. H<sub>2</sub>O rapidly fills the reservoir before entering the N<sub>2</sub> gas stream through the regulating valve. The dose valve is closed while the purge valve is opened after the set dose time. In this manner, the gas switching valves allow for the rapid turn-on and shut-off of the reactant gases.<sup>16</sup> The TMA gas switching valves are configured in an identical fashion.

The reaction zone consists of a 3.5-cm-diameter flow tube divided into two externally heated zones. The temperatures of each zone were monitored with chromel-alumel thermocouples attached to the outside of the flow tube under the heaters. The temperatures were maintained using PID controllers. The first zone consists of a 15-cm-long preheating zone that was operated at  $132\pm0.5$  °C. This zone preheated the  $N_2$  and the reactant gases before they entered the reaction zone. This preheating prevented temperature-induced fluctuations in the QCM signal due to cool reactants entering the flow tube.  $^{26}$ 

The second zone was a 30-cm-long reaction zone that was operated at a temperature of  $125\pm0.5\,^{\circ}\text{C}$ . A Baratron pressure manometer was positioned just behind the reaction zone and monitored the reactor pressure. A total  $N_2$  flow of 200 sccm used in these experiments produced a measured pressure of  $\sim 1$  Torr. A QCM inside a custom holder was placed inside the reaction zone. The back side of the crystal was purged with nitrogen to prevent back-side deposition. This back-side purge added  $\sim 0.1$  Torr of  $N_2$  pressure to the total nitrogen pressure. An integral thermocouple showed that the QCM temperature during these experiments was  $121.9\pm0.1\,^{\circ}\text{C}$ .

The QCM crystals were AT-cut, 6 MHz quartz crystal with a special low-roughness surface polish. Prior to making any measurements,  $\sim\!500$  Å of  $Al_2O_3$  ALD was deposited on the QCM crystals to create a reproducible starting surface. A Maxtek TM400 deposition monitor was used to control and monitor the QCM crystal. The resolution of the TM400 mass signal is limited to  $\sim\!2$  ng/cm² due to an apparent rounding error. This rounding error does not affect the TM400 digital output of the period of the QCM crystal.

The period of the QCM crystal was recorded at 100 ms intervals by a personal computer running Labview software. Assuming the acoustic impedance of the deposited film is equal to the acoustic impedance of an AT-cut crystal (i.e.,  $8.83 \times 10^5 \text{ g cm}^{-2} \text{ s}^{-1}$ ), the mass deposited per unit area, m, equals<sup>27</sup>

$$m = N_{\rm q} \cdot \rho_{\rm q} \cdot \Delta \tau \tag{4}$$

In this equation,  $N_{\rm q}=1.668\times 10^5$  Hz-cm is the frequency constant for an AT-cut crystal,  $\rho_{\rm q}=2.649$  g/cm<sup>3</sup> is the density of the AT-cut crystal,  $^{28}$  and  $\Delta \tau$  is the change in the period. Using eq 4 and the output of the TM400, the mass resolution is  $\sim 0.137$  ng/cm<sup>2</sup>. The assumption that the acoustic impedance of Al<sub>2</sub>O<sub>3</sub>



Figure 2. Pressure profiles measured by a capacitance manometer for (a) H<sub>2</sub>O and (b) TMA dosing during Al<sub>2</sub>O<sub>3</sub> ALD at 125 °C. Pressure profiles are shown for different dosing times in seconds. These pressure profiles were recorded after the surface reactions had reached completion.

ALD equals the acoustic impedance of quartz will lead to an error; however, for a 1% frequency shift, the error in the mass is <2%.<sup>28</sup> The crystal was replaced when the frequency changed by 1% relative to the starting frequency.

Al<sub>2</sub>O<sub>3</sub> ALD films were deposited using alternating exposures of H<sub>2</sub>O (Fisher, Optima) and TMA (Strem, 98+%). The reactants were maintained at room temperature. These conditions provided vapor pressures of ~20 Torr H<sub>2</sub>O and ~11 Torr TMA inside the chemical bottles. The dose times for TMA and H<sub>2</sub>O were varied between 0.2 and 6 s with 40 s purges between reactant gases. However, the purge time was increased to 60 s for the 6 s doses. These purge times are significantly longer than purge times used during typical ALD experiments. Monitoring the reactor pressure during the ALD growth revealed that these were the minimum purge times required to return the reactor pressure back to the baseline pressure. During the Al<sub>2</sub>O<sub>3</sub> ALD, the QCM period and reactor pressure were recorded at 100 ms intervals.

For each combination of TMA and H<sub>2</sub>O dose times, 30 cycles were grown before switching to a different combination of dose times. Changes in the growth rates were observed to occur over the first 5-10 cycles of Al<sub>2</sub>O<sub>3</sub> ALD growth for every combination of dose times. These changes are attributed to the coverage of surface sites from the previous 30 cycles of growth. The coverage of surface sites is dependent on the particular dose times. Only data recorded for the last 20 cycles of growth were considered to eliminate this complication.

#### 3. Results and Analysis

A. Pressure Profiles. The total reactant exposure during each reactant dose was quantified using the recorded pressure profiles. The pressure profile during Al<sub>2</sub>O<sub>3</sub> ALD consists of three separate components: N<sub>2</sub>, Al(CH<sub>3</sub>)<sub>3</sub> and H<sub>2</sub>O reactants and CH<sub>4</sub> reaction products. The relative amounts of Al(CH<sub>3</sub>)<sub>3</sub> and H<sub>2</sub>O reactants



Figure 3. QCM mass gain measured during Al<sub>2</sub>O<sub>3</sub> ALD at 125 °C with TMA and H<sub>2</sub>O dose times of 2 s indicated by the black bars at the top of the plot. Mass gains during the TMA and H<sub>2</sub>O exposures are  $\Delta M_{\rm A}$  and  $\Delta M_{\rm B}$ , respectively. Solid gray areas show pressure profiles.

consumed and CH<sub>4</sub> reaction products generated are not known. Consequently, the pressure profiles during ALD growth cannot be used to quantify the reactant exposures. Instead, the Al(CH<sub>3</sub>)<sub>3</sub> and H<sub>2</sub>O reactant exposures were quantified by recording the pressures for Al(CH<sub>3</sub>)<sub>3</sub> and H<sub>2</sub>O individually after the surface reaction producing CH<sub>4</sub> reached completion. The pressure profiles were integrated to determine the total exposure in Torr-s after subtracting the N<sub>2</sub> background pressure.

Figure 2 shows the measured pressure profiles in the reactor at 125 °C for the individual Al(CH<sub>3</sub>)<sub>3</sub> and H<sub>2</sub>O reactants. To ensure that these pressure profiles were obtained after the surface reaction reached completion, these pressure profiles were recorded after dosing one of the reactants into the reactor multiple times, separated by a N<sub>2</sub> purge, without dosing the other reactant. Note that the N2 base pressure was subtracted from each pressure profile. Figure 2a shows the pressure profiles during H<sub>2</sub>O doses of 1, 2, 4, and 6 s separated by 40 s N<sub>2</sub> purges. The pressure rises to  $\sim$ 29 mTorr in 300 ms and then begins to fall at  $\sim 0.5$  s for all the H<sub>2</sub>O dose times. For the dose times of 2, 4, and 6 s, the H<sub>2</sub>O pressure begins to rise again about 1 s after opening the valve.

For the dose time of 6 s, the  $H_2O$  pressure levels off  $\sim 5$  s after opening the dose valve. For all the dose times, the pressure drops rapidly after the dose valve is closed and the purge valve is reopened. However, after the initial drop, the pressure rises slightly after the purge valve is opened before decaying to the zero level. This additional pressure rise is reduced for longer dose times. The pressure decays following the closing of the dose valves may result from slight changes in the effective pumping speed resulting from the H<sub>2</sub>O exposures. In addition, some H<sub>2</sub>O may slowly desorb from the surfaces of the reactor and prevent the pressure from reaching the zero level.

Similarly, Figure 2b shows the pressure profiles during TMA doses of 0.6, 1, 1.6, 2, 4, and 6 s separated by 40 s purges. The pressure rise during the TMA dose follows a curve that appears to be identical regardless of dose time. The TMA pressure rises during the entire TMA dose. The TMA pressure drops after the dose valve is closed. During the purge step, the TMA pressure rises slightly for about 2-3 s after the TMA valve is closed for the TMA doses of 0.6, 1, 1.6, and 2 s. For all the TMA doses, the pressure slowly decays to the zero level. This slow decay following the closing of the dose valves again may result from changes in the effective pumping speed resulting from the TMA exposures.



**Figure 4.** QCM mass gains for  $Al_2O_3$  ALD at 125 °C with a 2 s TMA dose and variable  $H_2O$  doses. Each curve is the average of 20 different runs. From left to right the curves are laterally offset in order of decreasing  $H_2O$  dose time. The dotted line indicates the start of the  $H_2O$  dose.



**Figure 5.** QCM mass gains for Al<sub>2</sub>O<sub>3</sub> ALD at 125 °C with a 2 s H<sub>2</sub>O dose and variable TMA doses. Each curve is the average of 20 different runs. From left to right, the curves are offset in order of decreasing TMA dose time. The dotted line indicates the start of the H<sub>2</sub>O dose.

TMA exists in monomer—dimer equilibrium in the gas phase, and both the monomer and the dimer will be present in the reactor.  $^{29-31}$  At equilibrium at 120.5 °C, the monomer—dimer equilibrium constant has been measured as  $K_d = P_{\text{m-TMA}}^2/P_{d-\text{TMA}} = 1.32 \times 10^{-2}$  mol/L where m-TMA is the monomer and d-TMA is the dimer.  $^{30}$  This equilibrium constant indicates that a significant fraction of the TMA is present as the dimer. Lower total TMA pressures will increase the relative fraction of monomer. At total TMA pressures of 1, 0.1, and 0.01 Torr at 120.5 °C, the pressure ratios of  $P_{\text{m-TMA}}/P_{\text{d-TMA}}$  are approximately 0.11, 0.43, and 1.94, respectively. However, in viscous flow, the mass difference and interconversion between the monomer and dimer should not affect the travel time of TMA through the reactor.

**B.** Mass Gain versus Time for Variable  $H_2O$  and TMA Exposures. Figure 3 shows the mass gain and reactor pressure obtained during a single cycle of  $Al_2O_3$  ALD. The dose times for TMA and  $H_2O$  were 2 s, indicated by the solid bars at the top of the graph. The reactant doses were separated by  $40 \text{ s N}_2$  purges. The mass gains during the TMA and  $H_2O$  doses are indicated by  $\Delta M_A$  and  $\Delta M_B$ , respectively. The pressure from the reactants and products obtained after subtracting the  $N_2$  background pressure of  $\sim 1$  Torr is also shown in Figure 3. Close examination of the pressure profile reveals that the purge time of 40 s is the minimum time required for the pressure to return back to the zero level. Much longer purge times are required for low temperature  $Al_2O_3$  ALD than are typical at higher temperatures.



**Figure 6.** Al<sub>2</sub>O<sub>3</sub> MGPC versus H<sub>2</sub>O exposure for four different TMA exposures. Solid lines are from a global fit to the data using eq 12.

Typical mass gains obtained for  $Al_2O_3$  ALD with variable  $H_2O$  and TMA dose times are shown in Figures 4 and 5, respectively. Each of the curves is the average of 20 ALD cycles. In Figure 4, the  $H_2O$  dose time was varied and the TMA dose time was held constant at 2 s. The curves are laterally offset from left to right in order of decreasing  $H_2O$  dose. The part of the curves to the left of the dotted line in Figure 4 corresponds to a 2 s TMA dose and a 40 s purge. The start of the  $H_2O$  dose is approximately indicated by the dotted line. Most of the  $H_2O$  doses are followed by a 40 s purge. However, the  $H_2O$  exposure of 6 s is followed by a 60 s purge.

Figure 4 reveals that  $Al_2O_3$  ALD at 125 °C is not completely self-limiting at higher  $H_2O$  exposures. The mass gain during the  $H_2O$  dose increases for increasing  $H_2O$  dose time. In addition, the mass gain increases during the constant TMA doses after the increasing  $H_2O$  dose times. Earlier studies have measured  $Al_2O_3$  ALD versus varying  $H_2O$  doses at higher temperatures than 125 °C. Slightly larger  $Al_2O_3$  ALD growth rates were observed for larger  $H_2O$  doses. This increase was explained in terms of a higher hydroxyl coverage on the  $Al_2O_3$  ALD surface after the larger  $H_2O$  doses.

Figure 4 also reveals the importance of sufficiently long purge times. As the H<sub>2</sub>O dose times become longer, Figure 4 shows a slight mass loss after the H<sub>2</sub>O exposure. This mass loss may result from the desorption of molecularly adsorbed H<sub>2</sub>O on the hydroxylated Al<sub>2</sub>O<sub>3</sub> surface or from recombinative desorption of hydroxyl species as expressed by the reverse of reaction B2 given by eq 3. The earlier larger growth rates for Al<sub>2</sub>O<sub>3</sub> ALD at higher temperatures<sup>32</sup> could have resulted from either higher hydroxyl coverages or molecularly adsorbed H<sub>2</sub>O after larger H<sub>2</sub>O doses. The purge time after the H<sub>2</sub>O dose will play a critical role in defining the time for desorption of molecularly adsorbed H<sub>2</sub>O or dehydroxylation of hydroxyl coverage.

The H<sub>2</sub>O dose time was constant while the TMA dose time was varied in Figure 5. The curves are again laterally offset from left to right in order of decreasing TMA dose times. The purge time after each reactant was 40 s. The TMA dose begins on the left of the figure; the start of the H<sub>2</sub>O dose is indicated by the dotted line. The results show that Al<sub>2</sub>O<sub>3</sub> ALD at 125° is not completely self-limiting at higher TMA exposures. For the largest TMA dose of 6 s, the mass gain reaches a maximum at the end of the TMA dose before dropping slightly during the TMA purge step. These results reiterate the importance of sufficiently long purge times. The mass gains were recorded only at the end of purge times to eliminate these transient effects.

The lack of complete self-limiting behavior for both the H<sub>2</sub>O and TMA doses suggests that the low temperature of 125 °C



Figure 7. Al<sub>2</sub>O<sub>3</sub> MGPC versus TMA exposure for four different H<sub>2</sub>O exposures. Solid lines are from a global fit to the data using eq 12.

may be kinetically limiting the reactions. The slower reaction kinetics at lower temperature may require very long exposures for the reactions to reach completion. Consequently, in addition to higher hydroxyl coverages after higher H<sub>2</sub>O exposures, another explanation for the lack of self-limiting behavior in Figures 4 and 5 is that extremely long H<sub>2</sub>O and TMA exposure times are needed to reach saturation given the kinetic constraints on the surface reactions at 125 °C.

C. Mass Gains per Cycle versus H<sub>2</sub>O and TMA Exposure. The MGPC during Al<sub>2</sub>O<sub>3</sub> ALD was determined for each cycle by measuring the mass at the end of the H<sub>2</sub>O purge and subtracting the mass prior to the TMA dose. Figure 6 displays the MGPC for Al<sub>2</sub>O<sub>3</sub> ALD at four different TMA exposures as a function of the H<sub>2</sub>O exposure. Similarly, Figure 7 shows the Al<sub>2</sub>O<sub>3</sub> MGPC for four different H<sub>2</sub>O exposures as a function of the TMA exposure. The H<sub>2</sub>O and TMA exposures are plotted in Langmuirs ( $10^6 L = 1$  Torr-s). The left-hand axis shows the MGPC. The right-hand axis indicates the number of aluminum atoms deposited per square nanometer per cycle (Al/nm²-cycle). The deposited aluminum coverage was determined from the well-established stoichiometry of Al<sub>2</sub>O<sub>3</sub> ALD.

Figure 6 displays that the Al<sub>2</sub>O<sub>3</sub> MGPCs increase quickly with small H<sub>2</sub>O doses. The Al<sub>2</sub>O<sub>3</sub> MGPCs then increase more slowly versus H<sub>2</sub>O dose before nearly reaching a limit at higher H<sub>2</sub>O doses. The limiting Al<sub>2</sub>O<sub>3</sub> MGPCs are only weakly dependent on the TMA doses. Figure 7 indicates that the Al<sub>2</sub>O<sub>3</sub> MGPCs also increase very rapidly with small TMA doses. The Al<sub>2</sub>O<sub>3</sub> MGPCs then reach limiting values that are dependent on the H<sub>2</sub>O dose. The solid lines in Figures 6 and 7 are fits to the data using a single multivariate fitting function incorporating both the TMA and H<sub>2</sub>O exposures. This fitting is described later in Section 4.

Rutherford backscattering has been used previously to determine that Al<sub>2</sub>O<sub>3</sub> ALD films grown at 125 °C are stoichiometric Al<sub>2</sub>O<sub>3</sub> with no carbon incorporation in the film.<sup>7</sup> However, forward recoil spectrometry revealed a hydrogen concentration of 11% for Al<sub>2</sub>O<sub>3</sub> ALD films grown at 125 °C.<sup>7</sup> An FTIR spectroscopy study has also shown earlier that hydroxyl groups remain in the Al<sub>2</sub>O<sub>3</sub> ALD film after a saturating TMA exposure.<sup>3</sup> The number of hydroxyl species increases with Al<sub>2</sub>O<sub>3</sub> ALD film thickness. In addition, the hydroxyl groups do not undergo isotopic exchange with D<sub>2</sub>O and can be eliminated from the film only after annealing above 1000 K.<sup>3</sup> These results indicate that hydroxyls are incorporated in the bulk of the Al<sub>2</sub>O<sub>3</sub> ALD film.

Since no carbon is incorporated during Al<sub>2</sub>O<sub>3</sub> ALD, the Al<sub>2</sub>O<sub>3</sub> MGPCs shown in Figures 6 and 7 can result from only three



Figure 8. (a) TMA MGPC and (b) H<sub>2</sub>O MGPC versus H<sub>2</sub>O dose for four different TMA doses. Solid lines are only intended to guide the eye.



Figure 9. (a) TMA MGPC and (b) H<sub>2</sub>O MGPC versus TMA dose for four different H2O doses. Solid lines are only intended to guide the

atomic species: aluminum, oxygen, and hydrogen. The aluminum coverage deposited per cycle,  $N_{\rm Al}$ , can be determined from the measured Al<sub>2</sub>O<sub>3</sub> MGPC using

$$N_{\rm Al} = \frac{\Delta M_{\rm Total} \cdot N_{\rm A}}{\left(m_{\rm Al} + \frac{3}{2}m_{\rm O} + h \cdot m_{\rm H}\right)} \tag{5}$$

 $\Delta M_{\text{Total}}$  is the measured MGPC,  $N_{\text{A}}$  is Avogadro's number, and  $m_{\text{Al}}$ ,  $m_{\text{O}}$ , and  $m_{\text{H}}$  are the aluminum, oxygen, and hydrogen molar masses, respectively. h is the fraction of hydrogen included as hydroxyl species in the growing film. The calculated value of  $N_{\text{Al}}$  is very insensitive to hydrogen incorporation into the film. Assuming the film contained 11% hydrogen decreases the calculated value of  $N_{\text{Al}}$  by only 0.22%. Because of this insensitivity, all calculations of  $N_{\text{Al}}$  were made assuming h = 0. As shown in Figure 6,  $N_{\text{Al}}$  ranged from 2.7 to 4.7 Al/nm²-cycle versus  $H_2O$  dose. These  $N_{\text{Al}}$  values are in good agreement with other experiments that have measured deposited aluminum coverage per cycle of  $\sim 4-5$  Al/nm²-cycle at higher temperatures after saturation  $H_2O$  doses. <sup>11</sup>

The effects of the  $H_2O$  and TMA exposures on the mass gains during each surface reaction were also determined by examining  $\Delta M_A$  and  $\Delta M_B$ . Figures 8 and 9 display the MGPCs during the TMA and  $H_2O$  doses, respectively, during one  $Al_2O_3$  ALD cycle. The lines in these figures are meant only to guide the eye. Figure 8a and b reveal that the TMA and  $H_2O$  MGPCs increase as the  $H_2O$  dose increases. Figure 9a shows that the TMA MGPC also increases with increasing TMA exposure. In contrast, Figure 9b shows that the  $H_2O$  MGPC decreases with increasing TMA exposure. This complex behavior is caused by the interactions between the TMA and  $H_2O$  reactions.

The decrease of  $H_2O$  MGPC versus TMA dose in Figure 9b may be caused by more dehydroxylation from the surface at higher hydroxyl coverages. The methyl coverages increase versus TMA dose. These higher methyl coverages would then lead to high initial hydroxyl coverages according to reaction B1 given by eq 2. However, these higher initial hydroxyl coverages may not be stable at 125 °C and may recombine to desorb  $H_2O$  via  $AIOH^* + AIOH^* \rightarrow AI-O-AI^* + H_2O$ . This  $H_2O$  loss is also expressed by reaction B2 in eq 3 when x > 1.5. Because higher TMA doses produce higher methyl coverages that lead to higher hydroxyl coverages, the  $H_2O$  MGPC could decrease after higher TMA doses.

**D.** Hydroxyl and Methyl Coverages versus  $H_2O$  and TMA Exposures. The  $Al_2O_3$  ALD surface chemistry is described by reactions A, B1, and B2 in eqs 1-3. However, these reactions can be simplified to just two reaction equations using the known characteristics for  $Al_2O_3$  ALD. First, because the Al/O ratio of the bulk alumina film equals 2:3, 1.5 oxygen atoms must be incorporated per Al surface site. Since water is the only oxygen source in the reactor, 1.5  $H_2O$  molecules must react with each aluminum site. Second, mass spectrometry experiments have shown that  $CH_4$  is the only reaction product. Likewise, Rutherford backscattering experiments have shown there is no carbon incorporation in the  $Al_2O_3$  ALD film. Consequently, all methyl groups remaining on the surface after the TMA dose must react to form  $CH_4$  during the water dose.

Using these characteristics for  $Al_2O_3$  ALD, the mechanism shown in reactions A, B1, and B2 in eqs 1-3 can be simplified to the following two reactions:<sup>12,15</sup>

$$A1(OH)_x^* + A1(CH_3)_3 \rightarrow A1O_xA1(CH_3)_{3-x}^* + xCH_4$$
(6)

$$A1O_xA1(CH_3)_{3-x}^* + 1.5H_2O \rightarrow A1O_{1.5}A1(OH)_x^* + (3-x)CH_4$$
 (7)

In these reactions, hydrogen atoms from  $H_2O$  remove the methyl groups from  $Al(CH_3)_{3-x}^*$  as  $CH_4$ . The remaining hydrogen atoms from  $H_2O$  produce  $Al(OH)_x^*$  species. Equations 6 and 7 cannot



**Figure 10.** (a)  $CH_3^*$  coverage after TMA dose and (b)  $OH^*$  coverage after  $H_2O$  dose versus  $H_2O$  dose for four different TMA doses. The lines fit to the  $CH_3^*$  coverages in panel a are from eq 10. The line fit to the  $OH^*$  coverage in panel b is from eq 11.



**Figure 11.** (a)  $CH_3^*$  coverage after TMA dose and (b)  $OH^*$  coverage after  $H_2O$  dose versus TMA dose for four different  $H_2O$  doses. The lines fit to the  $CH_3^*$  coverages in panel a are from eq 10. The line fit to the  $OH^*$  coverage in panel b is from eq 11.

describe hydrogen incorporation in the  $Al_2O_3$  ALD film. However, neglecting the hydrogen incorporation is only a minor error for the mass changes during  $Al_2O_3$  ALD.

The MGPC for the TMA reaction,  $\Delta M_A$ , described by eq 6 is

$$\Delta M_{\rm A} = N_{\rm Al}(m_{\rm TMA} - x \cdot m_{\rm CH_4}) \tag{8}$$

where  $N_{\rm Al}$  is the deposited aluminum coverage per cycle and  $m_{\rm TMA}$  and  $m_{\rm CH_4}$  are the molar masses of TMA and CH<sub>4</sub>, respectively. x is the number of hydroxyls that react per Al atom deposited on the surface. By combining eqs 5 and 8 with h = 0, the coverage of hydroxyl species,  $N_{\rm OH}$ , after the H<sub>2</sub>O reaction is given by

$$N_{\rm OH} = N_{\rm Al} \cdot x = \frac{N_{\rm Al} \cdot m_{\rm TMA}}{m_{\rm CH_4}} - \frac{\Delta M_{\rm A}}{m_{\rm CH_4}} \tag{9}$$

Similarly, the coverage of methyl species,  $N_{\text{CH}_3}$ , after the TMA reaction described by eq 6 is given by

$$N_{\rm CH_3} = 3N_{\rm Al} - N_{\rm OH}$$
 (10)

Figure 10 displays the CH<sub>3</sub>\* and OH\* coverages after the TMA and H<sub>2</sub>O reactions, respectively, as a function of the H<sub>2</sub>O exposure for various TMA doses. Figure 11 shows the CH<sub>3</sub>\* and OH\* coverages after the TMA and H<sub>2</sub>O reactions, respectively, as a function of the TMA exposure for various H<sub>2</sub>O doses. The CH<sub>3</sub>\* coverage after the TMA dose shown in Figures 10a and 11a is clearly dependent on both the TMA and H<sub>2</sub>O exposures. The lines are fits to the methyl coverage. The OH\* coverages after the H<sub>2</sub>O dose for the four different TMA exposures shown in Figure 10b are all nearly identical. The OH\* coverage after the H<sub>2</sub>O dose increases with increasing H<sub>2</sub>O exposure. Figure 11b shows that the OH\* coverage after the H<sub>2</sub>O dose is constant with respect to the TMA dose. The straight lines indicate the average hydroxyl coverage for each of the four different H<sub>2</sub>O exposures.

## **4.** Fitting Using Modified Langmuir Adsorption Isotherm Expressions

**A. Hydroxyl Coverage.** The dependence of the  $Al_2O_3$  ALD growth rate on the hydroxyl coverage at temperatures higher than 125 °C was discussed in a recent review paper. <sup>11</sup> At growth temperatures of 150–250 °C, the deposited aluminum per cycle was found to depend linearly on the surface hydroxyl coverage. Similarly, the methyl coverage after the TMA reaction was also found to depend linearly on the hydroxyl coverage. Because of the importance of the hydroxyl coverage, analysis of  $Al_2O_3$  ALD at 125 °C will first discuss the dependence of the hydroxyl coverage on the reactant exposures. The hydroxyl coverage on the surface was determined assuming that eqs 6 and 7 accurately describe the  $Al_2O_3$  ALD process.

Figure 10b indicates that the hydroxyl coverage on the surface after the H<sub>2</sub>O dose depends only on the H<sub>2</sub>O exposure. Figure 11b shows that the hydroxyl coverage is constant with respect to the TMA dose. However, Figure 7 reveals that the deposited aluminum coverage per cycle does depend slightly on the TMA dose. Therefore, the hydroxyl coverage after the H<sub>2</sub>O dose apparently does not depend on the deposited aluminum coverage per cycle. Figure 11a and b reveals that the OH\* coverage does not depend on the CH<sub>3</sub>\* coverage. Since the hydroxyl coverage after the H<sub>2</sub>O dose is independent of the surface produced by the TMA dose, the hydroxyl coverage can be calculated using only the H<sub>2</sub>O exposure.

The data in Figure 10b for the OH\* coverage after the H<sub>2</sub>O dose were fit using a modified Langmuir adsorption isotherm



**Figure 12.** Al<sub>2</sub>O<sub>3</sub> MGPC versus OH\* coverage after  $H_2O$  dose for five different TMA doses. OH\* coverages are calculated from eq 9. The solid lines are linear fits using a single *y*-intercept and different slopes.

expression. The Langmuir adsorption isotherm is applied to the equilibrium of surface coverage and adsorbate pressure assuming that each adsorbate occupies a single surface site.<sup>33</sup> In these ALD experiments, the adsorbate reacts with the surface, the pressure was not constant, and there is no equilibrium. However, the form of the Langmuir adsorption isotherm expression can still be used to fit the hydroxyl coverage versus H<sub>2</sub>O exposure. Exposure replaces pressure in this modified Langmuir adsorption isotherm expression:<sup>33</sup>

$$S = \frac{S_0}{\left(1 + \frac{L^*}{L_{\text{H}_2\text{O}}}\right)} \tag{11}$$

In this equation, S is the measured hydroxyl coverage,  $L_{\rm H_2O}$  is the  $H_2O$  exposure in Langmuirs, and  $S_0$  is the hydroxyl surface coverage corresponding to the saturation coverage.

In the standard Langmuir adsorption isotherm equation,  $L^* = 1/K_{eq}$  where  $K_{eq}$  is the equilibrium constant  $K_{eq} = k_a/k_d$  where  $k_a$  and  $k_d$  are the adsorption and desorption rate constants. In the modified Langmuir adsorption isotherm expression,  $L^*$  can be viewed as the H<sub>2</sub>O exposure that yields  $S = S_0/2$ ; that is, one-half of the complete hydroxyl coverage,  $S_0$ . The hydroxyl coverage grows progressively with H<sub>2</sub>O exposures before reaching a saturation coverage after long H<sub>2</sub>O exposures. The fit using eq 11 is shown by the solid line in Figure 10b.

This excellent fit suggests that  $H_2O$  reactive adsorption occurs with a probability that is dependent on the availability of unreacted AlCH $_3^*$  surface sites. For Langmuir adsorption, the adsorption probability is expressed as  $(1-\Theta)$ , where  $\Theta$  is the coverage of reacted AlOH\* surface sites.  $\Theta$  is a normalized coverage, and complete coverage is  $\Theta=1$ . The  $H_2O$  reactive adsorption versus  $H_2O$  exposure mirrors the adsorption/desorption equilibrium during Langmuir adsorption versus adsorbate pressure.

From the fit, the maximum absolute hydroxyl surface coverage at 125 °C is  $S_0=8.37\pm0.09~\rm nm^{-2}$ , and the  $H_2O$  exposure required to achieve 50% hydroxyl coverage half-exposure is  $L^*=1.41\pm0.04\times10^4$  L. In comparison, the full monolayer hydroxyl coverage on alumina powders at 100 °C is ~12.5 nm<sup>-2</sup>. <sup>34-36</sup> The hydroxyl coverage on alumina powders after annealing at 200 °C is ~9 nm<sup>-2</sup>. <sup>34</sup> The maximum hydroxyl coverage of  $S_0=8.37\pm0.09~\rm nm^{-2}$  at 125 °C is in reasonable agreement with the previously measured hydroxyl coverages on alumina powders. The slightly larger hydroxyl coverages

on the alumina powders may be attributed to the differences between the planar and powder samples.

**B.** Al<sub>2</sub>O<sub>3</sub> Mass Gain Per Cycle. Previous investigations at temperatures higher than 125 °C have shown that the number of aluminum atoms deposited during the TMA dose increases linearly with the hydroxyl coverage. <sup>11,37</sup> For Al<sub>2</sub>O<sub>3</sub> ALD at 125 °C, a plot of the Al<sub>2</sub>O<sub>3</sub> MGPC versus the hydroxyl coverage after the H<sub>2</sub>O dose is shown in Figure 12. The deposited Al coverage per cycle is shown on the right axis. The symbols are the measured data using five different TMA doses. The Al<sub>2</sub>O<sub>3</sub> MGPC increases very linearly with the OH\* coverage. The solid lines are linear fits to data using a constant *y*-intercept and variable slopes.

The *y*-intercept defines the deposited aluminum coverage per cycle on a completely dehydroxylated Al<sub>2</sub>O<sub>3</sub> surface. From the fits in Figure 12, the deposited aluminum coverage per cycle for the dehydroxylated surface equals 0.91  $\pm$  0.07 nm $^{-2}$ . The slope increases slightly with increasing TMA exposure. The slope (Al<sub>2</sub>O<sub>3</sub> MGPC)/(OH\* coverage) increases from 0.44  $\pm$  0.01 at a TMA dose of 2.6  $\times$  10<sup>5</sup> L to 0.48  $\pm$  0.01 at a TMA dose of 12.7  $\times$  10<sup>5</sup> L.

Previous measurements of complete TMA adsorption have been performed on powdered alumina and silica with different initial hydroxyl densities.  $^{11,37}$  The deposited Al coverage per cycle versus OH\* coverage was linear with a *y*-intercept of 1.68  $\pm$  0.09 nm $^{-2}$  and a slope of 0.37  $\pm$  0.02.  $^{11,37}$  These previous reports for the slope are in good agreement with our measured slopes of 0.44–0.48. The different *y*-intercepts may reflect the difference between the planar substrates used in the current experiments and the porous substrates utilized in the earlier measurements.

The  $Al_2O_3$  MGPC is a linear function of the hydroxyl coverage. The hydroxyl coverage depends on the  $H_2O$  exposure according to the modified Langmuir adsorption isotherm expression given in eq 11. A similar form for  $\Delta M_{\rm Total}$  can be constructed on the basis of contributions from  $H_2O$  and TMA exposures. A trial function for  $\Delta M_{\rm Total}$  versus  $H_2O$  and TMA exposures is

$$\Delta M_{\text{Total}} = \frac{M_{\text{max}}}{\left(1 + \frac{L_{\text{H}_2\text{O}}^*}{L_{\text{H}_2\text{O}}}\right) \cdot \left(1 + \frac{L_{\text{TMA}}^*}{L_{\text{TMA}}}\right)}$$
(12)

where  $L_{\rm H_2O}$  and  $L_{\rm TMA}$  are the  $\rm H_2O$  and TMA exposures in Langmuirs, respectively.  $M_{\rm Max}$  is the maximum mass gain. Similar to  $L^*$  in eq 11,  $L_{\rm H_2O}^*$  and  $L_{\rm TMA}^*$  can be viewed as the  $\rm H_2O$  and TMA "half exposures". When the  $\rm H_2O$  and TMA exposures are equal to their respective "half-exposures", the total mass gain corresponds to 25% of the maximum mass gain.

All the data shown in Figures 6 and 7 were fit using eq 12 to determine the values of the  $M_{\rm Max}$ ,  $L_{\rm H_2O}^*$  and  $L_{\rm TMA}^*$ . The fit using eq 12 to the data in Figures 6 and 7 is quite good. The average difference between the measured and calculated values is  $\sim 1\%$ . From this fit,  $M_{\rm Max} = 41.6 \pm 0.3$  ng/cm²-cycle. The maximum mass gain corresponds to a deposited Al coverage per cycle of  $4.91 \pm 0.03$  nm<sup>-2</sup> cycle<sup>-1</sup>. Previous experiments measured a maximum Al<sub>2</sub>O<sub>3</sub> growth rate at 125 °C equal to 39 ng/cm²-cycle. This previous measurement is in good agreement with  $M_{\rm Max} = 41.6 \pm 0.3$  ng/cm²-cycle. The half-exposures for H<sub>2</sub>O and TMA are  $L_{\rm H_2O}^* = 9.8 \pm 0.3 \times 10^3$  L and  $L_{\rm TMA}^* = 1.9 \pm 0.2 \times 10^4$  L, respectively.

This fit of the modified Langmuir adsorption isotherm expression to the data in Figures 6 and 7 suggests that  $H_2O$  and TMA reactive adsorption occurs with probabilities that are dependent on the availability of unreacted AlCH $_3^*$  and AlOH\* sites, respectively. The fits again argue that the reactive adsorption probabilities are proportional to  $(1-\Theta)$ , where  $\Theta$  is the coverage of either reacted AlCH $_3^*$  sites during  $H_2O$  adsorption or reacted AlOH\* sites during TMA adsorption.

#### 5. Conclusions

QCM measurements were used to examine  $Al_2O_3$  ALD growth using TMA and  $H_2O$  at  $125\,^{\circ}$ C. The  $Al_2O_3$  ALD MGPCs were measured versus TMA and  $H_2O$  exposures. The MGPCs for the individual TMA and  $H_2O$  reactions were also measured versus TMA and  $H_2O$  exposures. The  $Al_2O_3$  MGPC increased with increasing  $H_2O$  exposures at a fixed TMA exposure. The  $Al_2O_3$  MGPC also increased with increasing TMA exposure at a fixed  $H_2O$  exposure. The QCM studies revealed that neither the TMA nor the  $H_2O$  reactions were completely self-limiting. This behavior may be attributed to the slower reaction kinetics for the TMA and  $H_2O$  surface at lower temperature.

The  $Al_2O_3$  MGPCs increased rapidly after small  $H_2O$  doses and slowly reached a limiting value that was not very dependent on the TMA dose. The  $Al_2O_3$  MGPCs also increased rapidly after small TMA doses and different limiting values were obtained for different  $H_2O$  doses. The TMA MGPCs increased for higher TMA exposures for all  $H_2O$  exposures. On the other hand, the  $H_2O$  MGPC decreased for higher TMA exposures at all  $H_2O$  exposures. More dehydroxylation at higher hydroxyl coverages may explain this decrease. The higher hydroxyl coverages after  $H_2O$  exposures result from higher methyl coverages after higher TMA exposures. The hydroxyl coverage after the  $H_2O$  exposure was dependent only on the  $H_2O$  exposure. The  $Al_2O_3$  MGPC was linearly dependent on the hydroxyl coverage after the  $H_2O$  dose.

The hydroxyl coverage versus the  $H_2O$  exposures and the  $Al_2O_3$  MGPC versus the  $H_2O$  and TMA exposures were fit using modified Langmuir adsorption isotherm expressions. These fits suggest that reactant adsorption during the  $H_2O$  and TMA exposures occurs with a probability that is dependent on  $(1-\Theta)$ , where  $\Theta$  is the coverage of reacted surface sites. These results should be useful for understanding and modeling low temperature  $Al_2O_3$  ALD. Many applications result from low temperature  $Al_2O_3$  ALD on organic, polymeric, and biological substrates.

**Acknowledgment.** This work was funded by the Air Force Office of Scientific Research. Additional funding was provided by Sandia National Laboratories in Albuquerque.

#### References and Notes

- (1) George, S. M.; Ott, A. W.; Klaus, J. W. J. Phys. Chem. 1996, 100, 13121.
  - (2) Suntola, T. Thin Solid Films 1992, 216, 84.
- (3) Dillon, A. C.; Ott, A. W.; Way, J. D.; George, S. M. Surf. Sci. 1995, 322, 230.
- (4) Ferguson, J. D.; Weimer, A. W.; George, S. M. Thin Solid Films 2000, 371, 95.
- (5) Ferguson, J. D.; Weimer, A. W.; George, S. M. Chem. Mater. 2004, 16, 5602.
- (6) Groner, M. D.; Elam, J. W.; Fabreguette, F. H.; George, S. M. *Thin Solid Films* **2002**, *413*, 186.
- (7) Groner, M. D.; Fabreguette, F. H.; Elam, J. W.; George, S. M. Chem. Mater. **2004**, *16*, 639.

- (8) Juppo, M.; Rahtu, A.; Ritala, M.; Leskelä, M. Langmuir 2000, 16, 4034.
- (9) Ott, A. W.; Klaus, J. W.; Johnson, J. M.; George, S. M. Thin Solid Films 1997, 292, 135.
- (10) Ott, A. W.; McCarley, K. C.; Klaus, J. W.; Way, J. D.; George, S. M. Appl. Surf. Sci. 1996, 107, 128.
  - (11) Puurunen, R. L. J. Appl. Phys. 2005, 97.
  - (12) Rahtu, A.; Alaranta, T.; Ritala, M. Langmuir 2001, 17, 6506.
  - (13) Higashi, G. S.; Fleming, C. G.Appl. Phys. Lett. 1989, 55, 1963.
- (14) Soto, C.; Tysoe, W. T. J. Vac. Sci. Technol., A 1991, 9, 2686. (15) Wind, R. A.; Fabreguette, F. H.; Sechrist, Z. A.; George, S. M.
- J. Appl. Phys. 2009, 105, 074309. (16) Elam, J. W.; Groner, M. D.; George, S. M. Rev. Sci. Instrum. 2002,
- 73, 2981.
- (17) Mayer, T. M.; Elam, J. W.; George, S. M.; Kotula, P. G.; Goeke, R. S. Appl. Phys. Lett. 2003, 82, 2883.
- (18) Ritala, M.; Leskela, M.; Dekker, J. P.; Mutsaers, C.; Soininen, P. J.; Skarp, J. Chem. Vap. Deposition 1999, 5, 7.
- (19) Wilson, C. A.; Grubbs, R. K.; George, S. M. Chem. Mater. 2005, 17, 5625.
  - (20) HSC Chemistry 5.1; Outokumpu Research Oy: Pori, Finland.
- (21) Knez, M.; Kadri, A.; Wege, C.; Gosele, U.; Jeske, H.; Nielsch, K. Nano Lett. 2006, 6, 1172.
- (22) Lee, S. M.; Pippel, E.; Gosele, U.; Dresbach, C.; Qin, Y.; Chandran, V.; Brauniger, T.; Hause, G.; Knez, M. Science 2009, 324, 488.
- (23) Carcia, P. F.; McLean, R. S.; Reilly, M. H.; Groner, M. D.; George, S. M. Appl. Phys. Lett. 2006, 89, 031915.

- (24) Dameron, A. A.; Davidson, S. D.; Burton, B. B.; Carcia, P. F.; McLean, R. S.; George, S. M. J. Phys. Chem. C 2008, 112, 4573.
- (25) Groner, M. D.; George, S. M.; McLean, R. S.; Carcia, P. F. Appl. Phys. Lett. 2006, 88, 051907.
  - (26) Rocklein, M. N.; George, S. M. Anal. Chem. 2003, 75, 4975.
- (27) Theory of Operation. In Maxtek TM-350/400 Operation and Service Manual for Model TM-350/400 Maxtek Thickness Monitor, 10th ed.; Maxtek, Inc.: Santa Fe Springs, California, 2004.
  - (28) Benes, E. J. Appl. Phys. 1984, 56, 608.
- (29) Hay, J. N.; Hooper, P. G.; Robb, J. C. J. Organomet. Chem. 1971, 28, 193.
- (30) Henricks, Ch.; Eyman, D. P. *Inorg. Chem.* **1967**, *6*, 1461. (31) Laubengayer, L. W.; Gilliam, W. F. *J. Am. Chem. Soc.* **1941**, *63*,
- (32) Matero, R.; Rahtu, A.; Ritala, M.; Leskela, M.; Sajavaara, T. Thin Solid Films 2000, 368, 1.
- (33) Masel, R. I. Principles of Adsorption and Reaction on Solid Surfaces, 1st ed.; John Wiley & Sons, Inc.: New York, 1996.
- (34) Knozinger, H.; Ratnasamy, P. Catal. Rev. Sci. Eng. 1978, 17, 31.
  - (35) Peri, J. B. J. Phys. Chem. 1965, 69, 211.
  - (36) Peri, J. B. J. Phys. Chem. 1965, 69, 220.
  - (37) Puurunen, R. L. Appl. Surf. Sci. 2005, 245, 6.

JP9049268