Continuous Distributions

Example: A first pdf. Let

$$f(x) = \begin{cases} (ax)(1-x), & x \in [0,1] \\ 0, & \text{otherwise} \end{cases}$$

- (a) Draw a graph of f in RStudio, using a = 2 for convenience.
- (b) Determine the value of a so that

ax
$$(1-x)$$
, $x \in [0,1]$
0, otherwise
 $a = 2$ for convenience.

$$\int_{-\infty}^{\infty} f(x) dx = 1.$$
Take $a = 0$

Definition 1: A function $f: \mathbb{R} \to \mathbb{R}$ is a **probability density function**, or **pdf**, if it has the properties

- $f(x) \ge 0$ for all $x \in \mathbb{R}$, and
- $\bullet \int_{-\infty}^{\infty} f(x) \, dx = 1.$

Example: Is the following function a pdf for some choice of *a*?

What if we replace
$$(-2)$$
 with $b \le 0$?
$$f(x) = \begin{cases} 0, & x < ae^{-2x}, & x \ge ae^{-2x}, & x \le ae$$

on a pdf for some choice of a? $f(x) = \begin{cases} 0, & x < 0 \\ ae^{-2x}, & x \ge 0 \end{cases}$ $f(x) = \begin{cases} 0, & x < 0 \\ 0, & x < 0 \end{cases}$ $f(x) = \begin{cases} 0, & x < 0 \\ 0, & x < 0 \end{cases}$

A continuous random variable X

- · can take on values throughout an interval
- satisfies P(X = x) = 0

- | Im a e | B = a = |
- has a **cumulative distribution function**, or **cdf**, defined to be $F_X(x) = P(X \le x)$. Note that *F* is
 - monotone increasing (in x), making F (almost everywhere) differentiable (a deep insight from 20th Century analysis).
 - the derivative $f=F^{\prime}$ is (almost everywhere) nonnegative, and

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt.$$

– as a consequence of the above, $\int_{-\infty}^{\infty} f(x) dx = \lim_{x \to \infty} F(x) = 1$.

So, the derivative of *F* is a pdf.

• satisfies $P(a \le X \le b) = F(b) - F(a) = \int_a^b f(x) dx$.

As a result, one can *define* a random variable *X*

- starting with a pdf and using integration to get its cdf, or
- starting with a cdf (any $F: \mathbb{R} \to [0,1]$ with $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to \infty} F(x) = 1$), and using differentiation to get its pdf.

Uniform distributions

This family of distributions arises from having a pdf that is an appropriately-scaled indicator function on a finite interval [a, b]. That is, $X \sim \text{Unif}(a, b)$ if

$$f(x) = \left\{ \begin{array}{l} \frac{1}{b-a}, & x \in [a,b] \\ 0, & \text{otherwise} \end{array} \right\} = \frac{1}{b-a} \chi_{[a,b]}(x) = \frac{1}{b-a} \left[a \le x \le b \right]. \qquad \text{piff}$$

 \rightarrow **Example** $(X \sim \text{Unif}(-2,2))$.

(a) Plot the pdf $f_X(x)$.

(b) Find P(X < -3), $P(X \le 0)$, and P(X < 1).

(d) Give a formula for the cdf
$$F_X(x)$$
.

$$F_X(x) = \int_{-\infty}^{x} f(t) dt = \begin{cases} 0, & \text{if } x < -2 \\ \frac{1}{4} f(x+2), & \text{if } -2 \le x \le 2 \end{cases}$$

$$f(x) = \int_{-\infty}^{x} \frac{1}{4} dt$$

$$f(x) = \int_{-\infty}^{x} f(x) dt = \int_{-\infty}^{x} \frac{1}{4} dt$$

2 P(x > 5) :1-P(X45)

1- panif(5, -2, 2)

For -2<x<2