

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática

Disciplina: MTM5812 - H-Álgebra II **Professora:** Melissa Weber Mendonça

2a Lista de Exercícios

1 Espaços Vetoriais

1. Seja $V = \mathbb{R}^2$. Então defina as seguintes operações:

$$(x, y) + (x_1, y_1) = (x + x_1, y + y_1)$$

 $c(x, y) = (cx, y) (c \in \Re)$

Verifique se V com estas operações é um espaço vetorial.

2. Em \mathbb{R}^n , defina duas operações

$$\alpha + \beta = \alpha - \beta$$
$$c\alpha = -c\alpha$$

onde as operações à direita são as operações usuais em \mathbb{R} . Quais axiomas dos espaços vetoriais são satisfeitos para este conjunto com estas operações?

3. Seja $V = \mathbb{R}^2$ e considere

$$(x, y) + (x_1, y_1) = (x + x_1, 0)$$

 $c(x, y) = (cx, 0) (c \in \Re)$

Verifique se V com estas operações é um espaço vetorial.

4. Quais dos seguintes conjuntos de vetores $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{R}^n$ são subespaços de \mathbb{R}^n $(n \ge 3)$?

(a)
$$\{\alpha \in \mathbb{R}^n : \alpha_1 \ge 0\}$$

- (b) $\{\alpha \in \mathbb{R}^n : \alpha_1 + 3\alpha_2 = \alpha_3\}$
- (c) $\{\alpha \in \mathbb{R}^n : \alpha_2 = \alpha_1^2\}$
- (d) $\{\alpha \in \mathbb{R}^n : \alpha_1 \alpha_2 = 0\}$
- 5. Seja V o espaço de todas as funções $f : \mathbb{R} \to \mathbb{R}$. Quais dos seguintes subconjuntos são subespaços de V?
 - (a) $\{f \in V : f(x^2) = f(x)^2\}$
 - (b) $\{f \in V : f(0) = f(1)\}$
 - (c) $\{f \in V : f(3) = 1 + f(-5)\}\$
 - (d) $\{f \in V : f(-1) = 0\}$
- 6. Seja $V = \mathbb{R}^{n \times n}$, $n \ge 2$. Quais dos seguintes subconjuntos são subespaços de V?
 - (a) $\{A \in V : A \text{ \'e invers\'ivel}\}$
 - (b) $\{A \in V : A \text{ não \'e inversível}\}$
 - (c) $\{A \in V : AB = BA, \text{ onde } B \text{ \'e uma matriz fixa em } V\}$
 - (d) $\{A \in V : A^2 = A\}$
- 7. Seja V o espaço de todas as funções $f : \mathbb{R} \to \mathbb{R}$. Seja V_p o subconjunto de todas as funções pares, e V_i o subconjunto de todas as funções ímpares.
 - (a) Mostre que V_p e V_i são subespaços de V.
 - (b) Mostre que $V_p + V_i = V$
 - (c) Mostre que $V_p \cap V_i = \{0\}$.
- 8. Verifique se os vetores

$$\alpha_1=(1,1,2,4)$$

$$\alpha_2 = (2, -1, -5, 2)$$

$$\alpha_3 = (1, -1, -4, 0)$$

$$\alpha_4=(2,1,1,6)$$

são linearmente independentes em \mathbb{R}^4 . Em seguida, encontre uma base para o subespaço gerado por estes vetores.

- 9. Seja $V \subseteq \Re$ um espaço vetorial e suponha que $\alpha, \beta, \gamma \in V$ são l.i. Prove que $(\alpha + \beta), (\beta + \gamma), (\gamma + \alpha)$ são l.i.
- 10. Mostre que os vetores

$$\alpha_1 = (1, 1, 0, 0)$$

$$\alpha_2 = (0, 0, 1, 1)$$

$$\alpha_3 = (1, 0, 0, 4)$$

$$\alpha_4 = (0, 0, 0, 2)$$

formam uma base para \mathbb{R}^4 . Encontre as coordenadas de cada um dos vetores da base canônica nesta nova base ordenada $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$.

11. Seja W o subespaço de $\mathcal{M}(3,2)$ gerado por

$$\begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & -1 \\ 1 & 0 \end{bmatrix} e \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

O vetor
$$\begin{bmatrix} 0 & 2 \\ 3 & 4 \\ 5 & 0 \end{bmatrix}$$
 pertence a W ?

12. Seja $x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$ tais que

$$x_1 y_1 + x_2 y_2 = 0$$

$$x_1^2 + x_2^2 = y_1^2 + y_2^2 = 1.$$

Mostre que $\mathcal{B} = \{x, y\}$ é uma base para \mathbb{R}^2 . Encontre as coordenadas de um vetor (a, b) nesta nova base ordenada. O que querem dizer geometricamente estas condições impostas a $x \in y$?

13. Seja \mathcal{P}_2 o conjunto de todos os polinômios reais a coeficientes reais de grau menor ou igual a 2. Seja $t \in \mathbb{R}$ um número real fixo e defina

$$q_1(x) = 1$$

$$q_2(x) = x + t$$

$$q_3(x) = (x+t)^2$$

Prove que $\mathcal{B} = \{q_1, q_2, q_3\}$ é uma base para \mathcal{P}_2 . Se

$$f(x) = c_0 + c_1 x + c_2 x^2$$

quais são as coordenadas de f na base \mathcal{B} ?

14. Considere o sistema linear

$$\begin{cases} 2x_1 + 4x_2 - 6x_3 &= a \\ x_1 - x_2 + 4x_3 &= b \\ 6x_2 - 14x_3 &= c \end{cases}$$

Seja

$$W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : (x_1, x_2, x_3) \text{ é solução do sistema.} \}.$$

Isto é, W é o conjunto solução do sistema.

- a) Que condições devemos impor a a, b e c para que W seja subespaço vetorial de \mathbb{R}^3 ?
- b) Nas condições determinadas em a), encontre uma base para W.
- c) Que relação existe entre a dimensão de W e o grau de liberdade do sistema? Seria este resultado válido para quaisquer sistemas homogêneos?
- 15. Seja U o subespaço de \mathbb{R}^3 gerado por (1,0,0), e W o subespaço de \mathbb{R}^3 gerado por (1,1,0) e (0,1,1). Mostre que $\mathbb{R}^3=U\oplus W$.
- 16. Sejam

$$W_1 = \{(x, y, z, t) \in \mathbb{R}^4 : x + y = 0 \text{ e } z - t = 0\}$$

$$W_2 = \{(x, y, z, t) \in \mathbb{R}^4 : x - y - z + t = 0\}$$

subespaços de \mathbb{R}^4 .

- a) Determine $W_1 \cap W_2$.
- b) Exiba uma base para $W_1 \cap W_2$.
- c) Determine $W_1 + W_2$.
- d) $W_1 + W_2$ é soma direta? Justifique.
- e) $W_1 + W_2 = \mathbb{R}^4$?

17. Sejam

$$\beta = \{(1,0), (0,1)\}$$

$$\gamma = \{(-1,1), (1,1)\}$$

$$\rho = \{(\sqrt{3},1), (\sqrt{3},-1)\}$$

$$\nu = \{(2,0), (0,2)\}$$

bases ordenadas de \mathbb{R}^2 .

- a) Ache as matrizes de mudança de base $[I]^{\gamma}_{\beta}, [I]^{\beta}_{\gamma}, [I]^{\beta}_{\rho}, [I]^{\beta}_{\nu}$.
- b) Quais são as coordenadas do vetor v = (3, -2) em relação às quatro bases?
- c) As coordenadas de um vetor v em relação à base γ são dadas por

$$[v]_{\gamma} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}.$$

Quais são as coordenadas de v em relação às outras bases?

- 18. Sejam $\beta_1 = \{(1,0),(0,2)\}, \ \beta_2 = \{(-1,0),(1,1)\} \ e \ \beta_3 = \{(-1,-1),(0,-1)\} \ três$ bases ordenadas de \mathbb{R}^2 .
 - a) Ache $[I]_{\beta_1}^{\beta_2}$, $[I]_{\beta_2}^{\beta_3}$, $[I]_{\beta_1}^{\beta_3}$ e $[I]_{\beta_1}^{\beta_2} \cdot [I]_{\beta_2}^{\beta_3}$.
 - b) Se for possível, ache uma relação entre estas matrizes de mudança de base.