1 Dokumentace

1.0.1 Kódy příkazů

- θ : obrazek = cv2.resize(obrazek, None, fx= $par\theta$, fy= $par\theta$, interpolation=interpolace) $fx \ a \ fy \ n$ ásobí velikost původního obrázku a získávají tak velikost výsledného obrázku.
 - 01: interpolace = cv2.INTER_AREA
 Vhodné pro zmenšování obrázku.
 - 02: interpolace = cv2.INTER_CUBIC
 Nejlepší pro zvětšení obrázku, ale pomalejší.

Přísluší jednotlivým osám. Jedná se o desetinná čísla. [1]

- 03: interpolace = cv2.INTER_LINEAR
 Pro zvětšení obrázku. Rychlejší, ale ne nejlepší.
- 11: obrazek = cv2.cvtColor(obrazek, cv2.COLOR_BGR2GRAY)
 Převede obrázek do grayscale.
- 21: obrazek = cv2.fastNlMeansDenoising(obrazek, par1,par2, par3)
 Vyžaduje grayscale obrázek. Desetinné číslo par1 určuje sílu filtru. Celá lichá čísla par2
 a par3 jsou parametry určující velikost okna. Výpočetní náročnost se zvětšuje pro vyšší hodnoty.
- 3: Provede rozmazání (angl. blurring) obrázku. [2]
 - 31: obrazek = cv2.blur(obrazek, $(par4,\,par4))$ Použije aritmetický průměr pole, kde výška a šířka je rovna par4, což je celé číslo.
 - 32: obrazek = cv2.bilateralFilter(obrazek, par5, par6, par7)
 Je efektivní pro odstranění šumu a zároveň zachovává ostré hrany. par5 je celé číslo

určující průměr okolí použitého ve filtraci. par
6 a par
7 jsou desetinné hodnoty odpovídající SigmaSpace a SigmaColor. Čím jsou větší, tím větší je síla efektu (viz dokumentace [3]

- 33: obrazek = cv2.GaussianBlur(obrazek, (par8,par8), par9)
 par8 určuje velikost oblasti, se kterou se počítá, musí být kladné liché číslo. par9
 určuje standartní deviaci, pokud je nulový, tak se vypočítá z velikosti oblasti
- -34: obrazek = cv2.medianBlur(obrazek, par10)
 Střed pole o výšce a šířce par10 je určen mediánem hodnot v tomto poli. par10 by měl být kladná liché číslo.
- 4 Vstupem by měl být grayscale obrázek. Výsledek je binarizovaný obrázek [4]
 - 41: obrazek = cv2.adaptiveThreshold(obrazek, 255,
 cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, par11, par12)
 Celé číslo par11 určuje velikost bloku. Spočítá se průměr a odečte se od něj konstanta par12.
 - 42: obrazek = cv2.adaptiveThreshold(obrazek, 255,
 cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, par13, par14)
 Celé číslo par13 určuje velikost bloku. Spočítá se průměr a odečte se od něj konstanta par14.
 - 43: ret, obrazek = cv2.threshold(obrazek, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
 Jedná se o binarizaci s globálním prahem, který je určen pomocí Otsuovi metody.
 Nevyžaduje žádný parametr. Funkce vrací 2 hodnoty a až druhá je upravený obrázek.

1.0.2 Formát souborů

Databáze obrázků

Každému obrázku připadá jeden řádek, který má mezerou oddělený název obrázku a text, který se na něm nachází.

Příkazy pro OpenCV

Název zdrojové složky, databáze obrázků, soubor s parametry a poté jednotlivé číselné kódy pro příkazy, jsou na jedné řádce odděleny mezerami. Chceme-li provést další operaci jednoduše ji stejným způsobem zapíšeme na následující řádku.

Soubor s parametry

Jednotlivé parametry jsou odděleny mezerou a všechny se nachází na jednom řádku.

Příkazy pro Tesseract

Na každém řádku je název složky, ze které má Tesseract brát obrázky, a mezerou oddělený název souboru s databází obrázků.

Výpočet úspěšnosti

Stejný formát předpokládá i algoritmus pro vyhodnocení úspěšnosti. V databázi se ale musí nacházet i text, který je na obrázku

Bibliografie

- [1] Geometric Image Transformations. URL: https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#ga47a974309e9102f5f08231edc7e7529d (cit. 16.02.2020).
- [2] Smoothing Images. URL: https://docs.opencv.org/master/d4/d13/tutorial_py_filtering.html (cit. 16.02.2020).
- [3] Image Filtering. URL: https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga9d7064d478c95d60003cf839430737ed (cit. 16.02.2020).
- [4] Image Thresholding. URL: https://docs.opencv.org/master/d7/d4d/tutorial_py_thresholding.html (cit. 16.02.2020).