

UNIVERSITAT POLITÈCNICA DE VALÈNCIA Escola Politècnica Superior de Gandia

Polimedias recomendados

La cabecera de los paquetes IPv4

https://youtu.be/NBKGQLErm2w

Tablas de Encaminamiento IP

https://youtu.be/gyRXRI 3gJ4

Tema 5: Secciones y objetivos

5.1 Protocolos de capa de red

- Describir el propósito de la capa de red en la comunicación de datos.
- Explicar por qué el protocolo IPv4 requiere otras capas para proporcionar confiabilidad.
- Explicar la función de los principales campos de encabezado en los paquetes IPv4 e IPv6.

5.2 Enrutamiento

- Explicar la forma en que un dispositivo host utiliza las tablas de enrutamiento para dirigir paquetes a sí mismo, a un destino local o a un gateway predeterminado.
- Comparar una tabla de enrutamiento de un host con una tabla de enrutamiento de un router.

Capa de red

Capa de red

Protocolos de capa de red

La capa de red en la comunicación

Los protocolos de capa de red reenvían las PDU de la capa de transporte entre hosts.

Símil de las empresas

La capa de red en la comunicación

La capa de red

Función básica de la capa de red:

 Permitir el intercambio de paquetes a través de la red entre dos dispositivos finales

Tareas a resolver:

- Direccionamiento de dispositivos finales*
- Encapsulación en paquetes*
- Enrutamiento

*También en otras capas

La capa de red en la comunicación La capa de red

- Direccionamiento de terminales: Los terminales se deben configurar con una dirección IP única para identificarlos en la red.
- Encapsulamiento: La capa de red encapsula segmentos o datagramas de la capa de transporte a un paquete. El proceso de encapsulamiento agrega información de encabezado IP, como la dirección IP de los hosts de origen y de destino.
- Enrutamiento: La capa de red permite dirigir paquetes a un host de destino en otra red. Para transferir un paquete a otras redes, debe procesarlo un router. La función del router es seleccionar la mejor ruta y dirigir los paquetes al host de destino en un proceso que se denomina "enrutamiento". Un paquete puede cruzar muchos dispositivos intermediarios antes de llegar al host de destino. Se denomina "salto" a cada router que cruza un paquete antes de alcanzar el host de destino.
- Desencapsulamiento: Cuando el paquete llega a la capa de red del host de destino, el host revisa el encabezado IP del paquete. Si la dirección IP de destino coincide con su propia dirección IP, se elimina el encabezado IP del paquete y se obtiene se transfiere al servicio apropiado (TCP o UDP) en la capa de transporte.

Protocolos de la capa de red

Protocolos de capa de red actuales:

- Protocolo de Internet versión 4 (IPv4)
- Protocolo de Internet versión 6 (IPv6)

Protocolos de capa de red antiguos:

- Intercambio Novell de paquetes de internetwork (IPX)
- AppleTalk
- Servicio de red sin conexión (CLNS/DECNet)

Características de IP

- Sin conexión
- No confiable (poca sobrecarga)
- Independiente de los medios

IP: Sin conexión

Se envía una carta.

El emisor no sabe:

- · Si el receptor está presente
- Si la carta llegó
- Si el receptor puede leer la carta

El receptor no sabe:

Cuándo llegará

IP: No confiable (poca sobrecarga)

IP: Independiente de los medios

Encapsulación de IP

Encapsulación de la capa de transporte

Encabezado del segmento

Encabezado IP

Datos

Datos

Datos

Encapsulación de la capa de red

Paquete IP

PDU de la capa de red

Paquete IPV4

Encabezado de paquetes IPv4

L E	Byte 1	Byte 2		Byte	3	Byte 4
Versión	Longitud del encabezado IP	Servicios diferenciados		Longitud total del paquete		
10101011		DSCP	ECN			paquess
Identificación			Señalizador	Desplazamie	nto de fragmentos	
Tiempo de Vida (TTL) Protocolo		Checksum del encabezado				
Dirección IP de origen						
Dirección IP de destino						
	Opciones (optativo) Relleno				Relleno	

Campos del encabezado de IPv4

- Versión (4 bits)
 Número de la versión IP (0100 para IP v4)
- Longitud del encabezado IHL (4 bits)
 Tamaño del encabezado del paquete (en general 20 bytes, pero, si hay opciones, serán más)
- Tipo de servicio o servicios diferenciados (8 bits)
 Prioridad del paquete. Mecanismo de Calidad del Servicio (QoS)
- Longitud del paquete (16 bits)
 Tamaño en bytes del paquete, incluidos el encabezado + datos
- Identificación (16 bits)
 Identifica el paquete IP original para poder unir los fragmentos
- Desplazamiento de fragmentos y señalizadores de frag. (16 bits)
 A veces un router tiene que fragmentar un paquete cuando lo pasa a una red con tamaño de paquete menor

Campos del encabezado de IPv4

Tiempo de vida – TTL (Time To Live) (8 bits)

Resto de vida que le queda al paquete. Se resta uno cada vez que el paquete pasa por un router. Cuando llega a cero, el router descarta el paquete. Es una protección frente a errores de enrutamiento

Protocolo (8 bits)

Tipo de contenido que el paquete traslada para pasárselo al protocolo adecuado. (01-ICMP, 06-TCP, 17-UDP)

Checksum del encabezado (16 bits)

Para controlar errores del encabezado del paquete. No resulta muy necesario hoy en día

- Dirección origen (32 bits)
- Dirección destino (32 bits)
- Opciones y relleno:

Rara vez utilizados (en este caso, serían más de 20 bytes de encabezado)

Identificación de paquetes y fragmentación

 Puede haber redes que admitan tamaños de paquetes más grandes y otras que admitan más pequeños

Ej: Ethernet admite tamaño máximo de 1500 bytes, y es un valor que actualmente se ha estandarizado

- Si llega un paquete demasiado grande para una red, hay que <u>fragmentarlo</u>
- Cada fragmento mantiene el mismo identificador de paquete, pero cambia el offset (desplazamiento)

El primer fragmento tiene offset 0

El segundo, tiene como offset el tamaño del primer fragmento,...

 El señalizador de fragmento indica si ese era el último fragmento

Encabezados de IPv4 de muestra

La capa de red en la comunicación Limitaciones de IPv4

- Agotamiento de direcciones IP
- Las tablas de enrutamiento en IPv4 son complejas
- Varios ordenadores han de compartir la misma IP pública (uso de NAT en el gateway: Network Address Translation)

La capa de red en la comunicación Introducción a IPv6

- Mayor espacio de direcciones
- Mejor manejo de paquetes (menos campos)
- Elimina la necesidad de NAT (compartir IP)
- Nuevo campo de identificador de flujo

- 4000 millones de direcciones IPv4 (32 bits): 2³² =
 4.000.000.000

Encabezado de paquetes IPv6

Encabezado de paquetes IPv6

- **Versión:** (4 bits = **0110**).
- Clase de tráfico: (8 bits)

Prioridad del paquete. Notificación de congestión

Identificador de flujo: (20 bits)

En aplicaciones en tiempo real (*streaming*, por ejemplo) para indicar al router que todos los paquetes sigan el mismo camino << Nuevo>>

Longitud de contenido: (16 bits)

Tamaño en bytes del contenido, solamente

Siguiente encabezado: (8 bits)

Tipo de contenido del paquete (01-ICMP, 06-TCP, 17-UDP)

Límite de saltos (8 bits)

Equivalente a TTL en IPv4

- Dirección origen (128 bits)
- Dirección destino (128 bits)

Paquetes IPv6 Encapsulación de IPv6

Longitud: 20-60 bytes Longitud: 40 bytes

Encabezados de IPv6 de muestra

¿Qué es una tabla de enrutamiento?

- Cada vez que llega un paquete a un router, este ha de decidir por dónde retransmitirlo
- Esta tarea se realiza utilizando la tabla de enrutamiento

Símil con la (antigua) red telefónica

Prefijo	salida
964000000 /3	1
93000000 /2	2
971000000 /3	3
968000000 /3	4
000000000 /0	5

¿Qué es una tabla de enrutamiento?

Red destino		salida
192.168.10.0	/24	G0/0
192.168.11.0	/24	G0/1
209.165.200.22	24 /30	S0/0/0
10.1.1.0	/24	209.165.200.226
10.1.2.0	/24	209.165.200.226
0.0.0.0	/0	209.165.200.226

Redes directamente conectadas

Redes remotas

Ruta de salida por defecto

Proceso para crear una tabla de enrutamiento

- Paso 1: identificar las redes directamente conectadas a cada uno de los interfaces del router (siempre habrá dos o más)
- Paso 2: poner línea a línea cada una de las redes anteriores, indicando como salida el interfaz correspondiente (el nombre, no la IP)
- Paso 3: identificar las redes remotas (no conectadas directamente a ninguno de los interfaces del router)
- Paso 4: poner línea a línea cada una de las redes anteriores, indicando como salida la IP del siguiente salto (<u>ha de ser una IP</u> <u>perteneciente a alguna de las redes directamente conectadas</u> y que actuará como pasarela al resto de la red)
- Paso 5: poner 0.0.0.0/0 (es decir, resto de IPs) indicando como salida la ruta por defecto (esta también deberá ser una IP perteneciente a alguna de las redes directamente conectadas y que actuará como pasarela al resto de Internet)

Ejercicio: tabla de enrutamiento R2

- Enumera redes conectadas a R2
- 2. Indica, como salida, el interfaz
- 3. Enumera redes remotas
- 4. Indica ip de siguiente salto
- 5. Introduce 0.0.0.0 /0
- 6. Indica ip ruta por defecto

Red destino	salida

Solución: tabla de enrutamiento R2

- Enumera redes conectadas a R2
- 2. Indica, como salida, el interfaz
- 3. Enumera redes remotas
- 4. Indica ip de siguiente salto
- 5. Introduce 0.0.0.0 /0
- 6. Indica ip ruta por defecto

Red destino	salida
10.1.1.0/24	G0/0
10.1.2.0/24	G0/1
209.165.200.224/30	S0/0/0
192.168.10.0/24	209.165.200.225
192.168.11.0/24	209.165.200.225
0.0.0.0/0	64.100.0.1

Ejercicio: tabla de enrutamiento R1

- 1. Enumera redes directamente conectadas a R1
- 2. Indica, como salida, el interfaz
- 3. Enumera redes remotas
- 4. Indica ip de siguiente salto
- 5. Introduce 0.0.0.0 /0
- 6. Indica ip ruta por defecto

Red destino	salida

Solución: tabla de enrutamiento R1

- 1. Enumera redes directamente conectadas a R1
- 2. Indica, como salida, el interfaz
- 3. Enumera redes remotas
- 4. Indica ip de siguiente salto
- 5. Introduce 0.0.0.0 /0
- 6. Indica ip ruta por defecto

Red destino	salida
192.168.10.0/24	G0/0
192.168.11.0/24	G0/1
209.165.200.224/30	S0/0/0
10.1.2.0/24	209.165.200.226
10.1.1.0/24	192.168.11.2
0.0.0.0/0	209.165.200.226 !!!

Aprendiendo la tabla de enrutamiento

- Enrutamiento estático → las entradas de la tabla de enrutamiento se configuran manualmente
- Protocolo de enrutamiento → los routers comunican a otros routers las redes que pueden alcanzar.
 - Ejemplos: RIP, EIGRP, OSPF,... En esta asignatura no se verán.

Tablas de enrutamiento de router

Tabla de enrutamiento de router IPv4

Supongamos que el PC1 con la dirección IP 192.168.10.10 desea enviar un paquete a PC2 con IP 192.168.11.10

Pasos:

- 1. El PC1 consulta la tabla de rutas IPv4 sobre la base de la dirección IP de destino
- 2. El PC1 descubre que el PC2 no está en la misma red y simplemente envía el paquete a su gateway predeterminado R1
- 3. El R1 recibe el paquete en su interfaz Gigabit Ethernet 0/0 (G0/0) y examina la dirección IP de destino
- 4. El R1 consulta la tabla de enrutamiento
- 5. El R1 busca en esa tabla la entrada que coincide con la dirección IP de destino, y descubre que esta corresponde a su interfaz local G0/1
- 6. El R1 retransmite el paquete IP por dicha interfaz

Tablas de enrutamiento de router

Tabla de enrutamiento de router IPv4


```
R1#show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
        10.1.1.0/24 [90/2170112] via 209.165.200.226, 00:00:05, Serial0/0/0
        10.1.2.0/24 [90/2170112] via 209.165.200.226, 00:00:05, Serial0/0/0
    192.168.10.0/24 is variably subnetted, 2 subnets, 3 masks
        192.168.10.0/24 is directly connected, GigabitEthernet0/0
        192.168.10.1/32 is directly connected, GigabitEthernet0/0
     192.168.11.0/24 is variably subnetted, 2 subnets, 3 masks
        192.168.11.0/24 is directly connected, GigabitEthernet0/1
        192.168.11.1/32 is directly connected, GigabitEthernet0/1
     209.165.200.0/24 is variably subnetted, 2 subnets, 3 masks
C
        209.165.200.224/30 is directly connected, Serial0/0/0
        209.165.200.225/32 is directly connected, Serial0/0/0
```

- La tabla del router también tiene información sobre cómo se obtuvo la ruta, su confianza y su calificación.
- C: identifica a una red conectada directamente y creada automáticamente cuando se configura una interfaz y se activa.
- L: indica que se trata de una interfaz local. Esta es la propia dirección IPv4 del router en esa red.

Tablas de enrutamiento de router

Entradas de tabla de enrutamiento

Α	Identifica el modo en que el router descubrió la red
В	Identifica la red de destino
С	Identifica la distancia administrativa (confiabilidad) del origen de la ruta
D	Identifica la métrica para llegar a la red remota
E	Identifica la dirección IP del siguiente salto para llegar a la red remota
F	Identifica el tiempo transcurrido desde que se descubrió la red
G	Identifica la interfaz de salida en el router para llegar a la red de destino

Tablas de enrutamiento de host

¿Cómo enrutan los hosts?

- Decisión de envío de paquetes en un host:
 - A sí mismo: 127.0.0.1
 - A un host local (de la misma red en la que se encuentra)
 - A un host remoto, a través de un router de su propia red que actuará como gateway predeterminado

Gateway predeterminado

- Gateway predeterminado:
 - Los hosts utilizarán el gateway predeterminado para enviar paquetes a redes remotas
 - Enruta el tráfico a otras redes
 - Tiene una dirección IP local en el mismo intervalo de direcciones que el host

Configuración del gateway predeterminado

Gateway predeterminado en un host

Tablas de enrutamiento de host

Tabla de enrutamiento de host IPv4

netstat – r muestra la tabla de enrutamiendo de un host con Windows

C:\Documents and Settings\cisco>netstat -r Route Table							
A	В	C	D	(
Active Routes: Network Destination 0.0.0.0 127.0.0.0 192.168.1.0 192.168.1.100	Netmask 0.0.0.0 255.0.0.0 255.255.255.0 255.255.255.255	Gateway 192.168.1.1 127.0.0.1 192.168.1.100 127.0.0.1	Interface 192.168.1.100 127.0.0.1 192.168.1.100 127.0.0.1	Metric 20 1 20 20	Host remoto A sí mismo A un host loca A sí mismo		

Enrutamiento

Tablas de enrutamiento de host

En este ejemplo, se observa:

El host tiene la IP 192.168.1.100

La red a la que está conectada es 192.168.1.0/24

El gateway predeterminado (R1) tiene la IP 192.168.1.1

<u> </u>
ric
20
1
20
20

Routers

Anatomía de un router

Anatomía de un router

Los routers son computadoras

CPU y OS del router

Anatomía de un router Memoria del router

Memoria	Volátil / No volátil	Almacena		
RAM	Volátil	 IOS en ejecución Archivo de configuración en ejecución Tabla enrutamiento y tabla ARP Buffer de paquetes 		
ROM	No volátil	Instrucciones de arranqueSoftware básico de diagnósticoIOS limitado		
NVRAM	No volátil	Archivo de configuración de inicio		
Flash	No volátil	IOS (Sistema operativo de internetworking)Otros archivos de sistema		

Anatomía de un router Backplane del router

Anatomía de un router Conexión al router

Anatomía de un router Interfaces LAN y WAN

Interfaces seriales

Arranque del router Archivos Bootset

Arranque del router

Proceso de arranque del router

- 1.Realizar la POST y cargar el programa bootstrap.
- 2.Localizar y cargar el software Cisco IOS.
- 3. Localizar y cargar el archivo de configuración de inicio o ingresar al modo Setup.

Arranque del router

Resultado de Show version

```
Router# show version
Cisco IOS Software, C1900 Software (C1900-UNIVERSALK9-M), Version 15.2(4)M1, RELEASE SOFTWARE (fc1)
Soporte técnico: http://www.cisco.com/techsupport
Copyright (c) 1986-2012 by Cisco Systems, Inc.
Compiled Thu 26-Jul-12 19:34 by prod rel team
ROM: System Bootstrap, Version 15.0(1r)M15, RELEASE SOFTWARE (fc1)
Router uptime is 10 hours, 9 minutes
System returned to ROM by power-on
System image file is "flash0:c1900-universalk9-mz.SPA.152-4.M1.bin"
Last reload type: Normal Reload
Last reload reason: power-on
<Resultado omitido>
Cisco CISCO1941/K9 (revision 1.0) with 446464K/77824K bytes of memory.
Processor board ID FTX1636848Z
2 Gigabit Ethernet interfaces
2 Serial(sync/async) interfaces
1 terminal line
DRAM configuration is 64 bits wide with parity disabled.
255K bytes of non-volatile configuration memory.
250880K bytes of ATA System CompactFlash 0 (Read/Write)
<Resultado omitido>
Technology Package License Information for Module: 'c1900'
             Technology-package
Current Type Technology-package
Next reboot
Technology Technology-package
ipbase ipbasek9 Permanent ipbasek9 security None None None data None None None
Configuration register is 0x2142 (will be 0x2102 at next reload)
Router#
```


Capa de red

Configuración de un router Cisco

Configuración inicial

Pasos de configuración del router


```
Router> enable
Router# configure terminal
Ingrese los comandos de configuración, uno
por línea. Finalice con CNTL/Z.
Router(config)# hostname R1
R1(config)#
```

Router> en
Router# conf t
Ingrese los comandos de configuración, uno
por línea. Finalice con CNTL/Z.
Router(config)# ho R1
R2(config)#

```
R1 (config) # enable secret class
R1 (config) #
R1 (config) # line console 0
R1 (config-line) # password cisco
R1 (config-line) # login
R1 (config-line) # exit
R1 (config) #
R1 (config) # line vty 0 4
R1 (config-line) # password cisco
R1 (config-line) # login
R1 (config-line) # login
R1 (config-line) # exit
R1 (config) #
R1 (config) #
R1 (config) #
R1 (config) # service password-encryption
R1 (config) #
```

```
R1# copy running-config startup-config
Destination filename [startup-config]?
Building configuration...
[OK]
R1#
```


Configuración de interfaces

Configuración de interfaces LAN


```
R1# conf t
Ingrese los comandos de configuración, uno por línea. Finalice con
CNTL/Z.
R1(config)#
R1(config) # interface gigabitethernet 0/0
R1(config-if) # ip address 192.168.10.1 255.255.255.0
R1(config-if) # description Link to LAN-10
R1(config-if) # no shutdown
%LINK-5-CHANGED: Interface GigabitEthernet0/0, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0,
changed state to up
R1(config-if)# exit
R1(config)#
R1(config)# int g0/1
R1(config-if) # ip add 192.168.11.1 255.255.255.0
R1(config-if) # des Link to LAN-11
R1(config-if) # no shut
%LINK-5-CHANGED: Interface GigabitEthernet0/1, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/1,
changed state to up
R1(config-if)# exit
R1(config)#
```


Configuración de interfaces

Verificación de configuración de interfaz

R1# show ip interface brief								
Interface	IP-Address	OK?	Method	Status	Protocol			
	100 160 10 1		7					
GigabitEthernet0/0			manual	<u> </u>	up			
GigabitEthernet0/1				-	up			
Serial0/0/0				-	up			
Serial0/0/1	2			administratively down				
Vlan1	unassigned	YES	NVRAM	administratively down	n down			
R1#								
R1# ping 209.165.200.2	R1# ping 209.165.200.226							
Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 209.165.200.226, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/9 ms R1#								

Capa de red Resumen

- La capa de red permite que los dispositivos finales intercambien paquetes a través de la red
- La capa de red utiliza: la encapsulación, el direccionamiento jerarquico de dispositivos finales y el enrutamiento
- IPv4 continúa siendo el protocolo que más se utiliza
- IPv6 ofrece varias ventajas: mayor eficacia de enrutamiento, encabezados simplificados y capacidad de proceso por flujo
- Cuando un paquete llega a un router:

Lo desencapsula

Mira su IP destino y busca en la tabla de enrutamiento

Lo encapsula y lo reenvia por la interfaz adecuada

Capa de red Resumen

- En la tabla de enrutamiento de un router se almacena:
 - redes conectadas directamente → interfaz que lo conecta
 - redes remotas → IP del router de siguiente salto
 - ruta predeterminada → Si no existe ninguna entrada que coincida
- Enrutamiento estático → las entradas de la tabla de enrutamiento se pueden configurar manualmente
- Protocolo de enrutamiento → los routers comunican a otros routers las redes que pueden alcanzar
- Los hosts tambien tienen una tabla de enrutamiento para asegurarse de que los paquetes se dirijan a la red correcta
- La ruta predeterminada corresponde con la IP del router conectado a su red local