Appunti belli di Algebra

Floppy Loppy

September 2021

Contents

1	Insi	emi 2	2	
	1.1	Proprietà degli insiemi	2	
	1.2		3	
	1.3		4	
	1.4		4	
	1.5		5	
	1.6	Negazione di un quantificatore	5	
	1.7		5	
	1.8		6	
	1.9	Proprietà degli insiemi	7	
	1.10	Insiemi numerici	7	
2	Ese	mpio 8	8	
3	Nur	neri Primi	9	
	3.1	Teoria fondamentale dell'aritmetica	9	
	3.2	Teorema di euclide	9	
4	Numeri complessi 9			
	4.1	Piano di Gauss	0	
	4.2	Proprietà dei numeri complessi	0	
	4.3	Forma esponenziale	1	
	4.4	Equazioni di secondo grado complesse	1	
	4.5	Radici complesse	2	
	4.6	Teorema fondametale dell'Algebra	2	
5	Rela	azioni di Equivalenza	3	
	5.1	Equivalenza modulare	3	
	5.2	Classe di equivalenza	3	
6	Car	dinalità 14	4	
-		Teorema di Cantor-Bernstein	_	

1 Insiemi

Noi definiamo **insieme** una **collezione** di elementi, questi elementi possono qualsiasi cosa: numeri, oggetti, persone, ecc..

Gli elementi fanno parte di un insieme soltanto se rispettano le proprietà dell'insieme stesso, per esempio gli elementi dell'insieme dei numeri pari dovranno avere come proprietà quella di essere pari appunto.

Perfetto ora che abbiamo una definizione di insieme possiamo iniziare ad introdurre la sintassi e alcune proprietà.

1.1 Proprietà degli insiemi

Consideriamo di avere un insieme di nome A e un elemento che chiamiamo x che fa parte di A (perchè rispetta le proprietà dell'insieme), allora si dice che x Appartiene ad A, ciò in Algebra si scrive:

$$x \in A$$
 (1)

Mentre l'opposto ovvero che un elemento x non fa parte di A (perchè non rispetta le proprietà dell'insieme), allora si dice x Non Appartiene ad A, e ciò in si scrive (Nella lingua degli algebristi):

$$x \notin A$$
 (2)

Se un insieme ha più di un elemento, che possono essere $\{x1, x2, \ldots, x_n\}$ allora possiamo sintetizzare la scrittura del fatto che ognuno di questi elementi appartiene all'insieme A scrivendo:

$$x = \{x1, x2, \dots, x_n\} \tag{3}$$

Oppure (visto che piace ai matematici) sintetizzare ancora di più scrivendo:

$$A = \{x : P(x)\}\tag{4}$$

Che si legge A uguale agli elementi di x tali che P(x), dove:

- x sono gli elementi.
- \bullet P(x) la proprietà dell'insieme A che gli elementi di A devono rispettare.

La proprietà P(x) ha l'obbligo di essere **oggettiva** ovvero in grado di dare un valore oggettivamente vero o falso ad un elemento.

Possiamo utilizzare un esempio più concreto come può essere quello dei numeri pari scriviendo:

$$A = \{x : x \quad \text{è un numero pari}\}\tag{5}$$

In questo caso possiamo dire che:

$$\begin{aligned} 2 \in A \\ 3 \not \in A \\ Alessio \not \in A \end{aligned}$$

In quanto 2 è pari perciò appartiene ad A, 3 è dispari quindi non appartiene all'insieme e Alessio non è un numero pari quindi non può appartenere all'insieme descritto.

Questo perchè la proprietà di essere pari è oggettiva mentre per esempio:

$$B = \{x : x \quad \text{è un libro interessante}\} \tag{6}$$

Non può essere un insieme in quanto essere un libro interessante non è una proprietà oggettiva.

Proseguendo possiamo trovare anche insiemi che contengono un solo elemento, questi insiemi sono detti **singoletti** e sono scritti:

$$\{*\}\tag{7}$$

Dove * rappresenta il singolo elemento.

Ed infine, l'insieme vuoto che si rappresente con il simbolo:

$$\emptyset$$
 (8)

Spiegandolo brevemente questo insieme non contiene nessun elemento (infatti si definisce vuoto), e possiede alcune proprietà interessanti come per esempio quello di essere contenuto in qualsiasi insieme.

1.2 Connettivi Logici

Attraverso quelli che chiamiamo **connettivi logici** possiamo eseguire delle operazioni tra insiemi, da queste operazioni noi possiamo ricavare due valori: vero o falso, andiamone a vederne alcune.

Prima di tutto definiamo due **proposizioni/affermazioni** fittizzie che chiamiamo P e D e partendo da questi andiamo a scrivere le operazioi che si possono effettuare su di essi:

- La **Disgiunzione** scritta: $P \lor D$ ha valore vero quando almeno una delle due proposizione risulta vera, se entrambe sono false avremo invece un valore falso.
- La Congiunzione scritta: $P \wedge D$ ha valore vero solo quando entrambe sono vere altrimenti otteniamo un valore falso.
- La Negazione scritta: $\neg P$ inverte il valore della propsizione, se infatti P è vera $\neg P$ sarà falsa e viceversa.

- L' Implicazione scritta: $P \Rightarrow D$ ha valore vero solo quando D è vera.
- L' **Equivalenza** scritta: $P \Leftrightarrow D$ ha valore vero solo quando P e D hanno lo stesso valore logico (vero;vero), (falso;falso).

1.3 Quantificatori universali

Abbiamo poi quelli che si chiamano quantificatori universali che servono a descrivere le proposizioni e le andremo a spiegare partendo da una proposizione qualsiasi che chiameremo P.

Scriviamo:

$$P: \forall x \in A \tag{9}$$

per dire che **per ogni** elemento di A la proposizione P vale.

Mentre scriviamo:

$$P: \exists x \in A \tag{10}$$

Per dire che **esiste almeno** un elemento di A tale per cui la proposizione P è vera.

Possiamo fare un esempio concreto, prendiamo un insieme $A = \{2, 4, 6, 8\}$ e P(x) = x + 2 è pari da questo possiamo dire con certezza che:

$$\forall x \in A \quad P(x) \quad \text{è vera in quanto ogni elemento di A è pari}$$
 (11)

$$\exists x \in A \ P(x)$$
 è vera in quanto almeno un elemento di A è pari (12)

Abbiamo poi **l'esiste unico** che sta ad indicare che esiste un solo elemento in un dato insieme affinché una proposizione risulti vera:

$$\exists ! x \in A \tag{13}$$

1.4 Ordine dei quantificatori

Come ogni cosa in matematica bisogna rispettare gli ordini delle varie operazioni e questo vale anche per i quantificatori universali, si abbia per esempio:

$$P: x + y = 0 \quad \text{allora:} \tag{14}$$

$$\exists y \forall x P : \exists y \forall x \quad x + y = 0 \tag{15}$$

La proposizione dice che esiste un numero che è opposto di ogni numero (perchè appunto un numero sommato al suo opposto è a zero).

Se cambiamo l'ordine dei quantificatori però cambiamo il significato di della proposizione, proviamo:

• $\forall y \exists x P$ che significa che ogni y esiste almeno un opposto

• $\exists x \forall y$ che significa esiste almeno un x che è opposto a tutti i numeri

Come abbiamo visto abbiamo radicalmente cambiato il significato della proposizione P.

Nel caso ci fossero ancora dubbi utilizzerò questo esempio: Prendiamo una proposizione P che dice che x paga da bere a y, utilizzando gli esempi di prima avremo che:

- $\forall y \exists x P$ che significa che ogni y a almeno una persona x che gli paga da bere.
- $\exists x \forall y$ che significa esiste almeno una persona x che paga da bere a tutti.

Spero che con questo esempio possa aver chiarito le idee.

1.5 Quantificatori Rquivalenti

Per indicare un equivalenza tra proposizioni noi utilizziamo il simbolo \equiv un esempio di equivalenza tra proposizioni può essere: $\exists x \exists \equiv \exists y \exists x$.

1.6 Negazione di un quantificatore

Ok la negazione è semplice quindi non mi dilungherò molto: Prendiamo una proposizone P: lo studente supererà l'esame, avremo:

1.7 Definizioni

Ora andiamo ad introdurre alcune definizioni della teoria degli insiemi prendendo due insiemi fittizzi A e B.

Si dice che A è contenuto in B se:

$$\{\forall x \in A : x \in B\} \tag{16}$$

e si legge per tutti gli elementi di A sono elementi di B e lo scriviamo in questo modo:

$$A \subseteq B \tag{17}$$

ovvero A sottoinsieme di B oppure A contenuto in B.

Poi abbiamo A uguale a B se:

$$x \in A \Leftrightarrow x \in B \tag{18}$$

ovvero ogni elemento x appartiene sia ad A che a B.

Troviamo poi l'unione tra due insiemi:

$$A \cup B \tag{19}$$

che sta a significare che ogni elemento di A appartene anche a B, scritto in matematichese:

$$A \cup B = \{x : (x \in A) \lor (x \in B)\}$$
 (20)

Mentre **l'intersezione** che rappresenta l'insieme degli elementi in comune tra due insiemi si scrive:

$$A \cap B$$
 (21)

e significa:

$$A \cap B = \{x : (x \in A) \land (x \in B)\}$$

$$\tag{22}$$

Infine abbiamo la **differenza o complementare** che è praticamente una sottrazione tra insiemi si scrive:

$$B \setminus A = x : (x \in B) \land (x \notin A) \tag{23}$$

ovvero tutti gli elementi di B che non appartengono ad A, spiegato meglio si tolgono a B gli elementi che fanno parte di A.

Ma noi vogliamo esempi pratici giusto?, ok e allora prendiamo due insiemi: $A = \{1, 2, 4\}$ e $B = \{1, 2, 3, 4, 5\}$ avremo che:

$$A \subseteq B$$
 vero (24)

$$A = B$$
 falso (25)

$$A \cup B = \{1, 2, 3, 4, 5\}$$
 oppure $A \cup B = B$ (26)

$$A \cap B = \{1, 2, 4\}$$
 oppure $A \cap B = A$ (27)

$$B \setminus A = \{3, 4, 5\}$$
 (28)

1.8 Insieme delle parti

L'insieme delle parti è l'insieme dei sottoinsiemi contenuti in un dato insieme, ok spieghiamolo meglio, l'insieme delle parti di un insieme A è l'insieme degli elementi che sono sottoinsiemi dell'insieme A.

Se la cosa vi confonde ancora facciamo un esempio concreto, prendiamo un insieme $A = \{1, 2, 3\}$ l'insieme delle parti, che si scrive P(A) è:

$$P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, A\}$$
 (29)

Adesso il concetto dovrebbe essere (spero), più chiaro.

Prendiamo un esempio particolare dell'insieme delle parti, l'insieme delle parti dell'insieme vuoto, come sappiamo infatti l'insieme vuoto non ha nessun elemento, ma l'insieme delle parti è differente è l'insieme dei sotto insiemi di un

dato insieme e come sappiamo ogni insieme ha come elemento l'insieme vuoto perciò:

$$P\{\emptyset\} = \{\emptyset\} \tag{30}$$

1.9 Proprietà degli insiemi

Ora mostriamo alcune proprietà degli insiemi per poi successivamente dimostrarli:

- 1. $A \cup B = B \cup A$
- $2. \ (A \cup B) = A \cup (B \cup C)$
- 3. $A \cup A = A$ Idempotenza
- 4. $(A \cap B) \cap C = A \cap (B \cap C)$
- 5. $A \cap A = A$

AGGIUNGERE LE DIMOSTRAZIONI

1.10 Insiemi numerici

2 Esempio

Se considero la funzione:

$$f: \mathbb{Z}^2 \to \mathbb{Z} \tag{31}$$

$$f: \mathbb{Z}^2 \to \mathbb{Z}$$

$$(x,y) \to 21x - 15y$$

$$(31)$$

Dobbiamo dimostrare che la funzione è iniettiva o surriettiva. Prendiamo quindi f(1,1) = 21 - 15 = 6 possiamo dire che

fsurriettiva $\Leftrightarrow f(\mathbb{Z}^2) = 2$ e che quindi: $f(\mathbb{Z}^2) = n \in \mathbb{Z}$: $\exists (x,y) \in \mathbb{Z}^2 n = f(x,y) = 21x - 15y$ Quella che abbiamo appena scritto è una funzione **Diofantea** ovvero MCD(21,15): $n \Leftrightarrow f(\mathbb{Z}^2) = 3k : k \in \mathbb{Z}.$

E quindi possiamo dire con certezza che la funzione non è né surriettiva e né iniettiva perchè:

$$1 \notin f(\mathbb{Z}^2) \tag{33}$$

Perchè fissato
$$n \in 3Z$$
 (34)

3 Numeri Primi

I numeri primi sono quei numeri interi maggiori di 1 che sono divisibili solo per 1 e se stessi, se questa proprietà non viene rispettata allora il numero è invece composto che scritto in matematichese:

$$a \in \mathbb{Z}, a > 1 \tag{35}$$

Dimostramo ora un Lemma dei numeri primi:

$$a, b \in Z, p \in Z$$
 Primo (36)

$$p|a \quad op|a * b$$
 (37)

Quindi supponiamo di avere pTa, dimostriamo che p|b $p|a*b \Rightarrow \exists k \in \mathbb{Z}$ tale che a*b=k*p

Possiamo dimostrarlo utilizzando anche **Bezout** (DA FARE A CASA).

3.1 Teoria fondamentale dell'aritmetica

Ok prepariamoci a scrivere un pò di formule.

si dice che: $a \in \mathbb{Z}, a \neq 0, 1, -1$ allora a si scrive in un modo unico come prodotto di primi:

$$a = (38)$$

3.2 Teorema di euclide

Esistono infiniti numeri primi e lo possiamo dimostrare attraverso una dimostrazione per assurdo. Supponiamo infatti per assurdo che esistano soltato p_1, \ldots, p_n numeri primi.

Perfetto ora consideriamo un numero $N = p_1 * ... * p_n$. La divisione euclidea di N per p_1 da resto 1. Analogamente N diviso per $N = p_1 * ... * p_n$ da resto 1

 $p_1 \dagger N \dots p_n \dagger N$ contraddice il teorema precedente e perciò abbiamo dimostrato che ci sono infiniti numeri primi, ok può non essere chiarissimo quindi vado ad utilizzare i numeri per fare un esempio:

$$N = 2 * 7 + 1 = 14 + 1 = 15$$
 Non è primo $3|15, 5|15$

Abbiamo infatti trovato due nuovi numeri primi 3 e 5 quindi ci sono infiniti numeri primi.

4 Numeri complessi

Noi definiamo numeri complessi quei numeri che

C=RxRdenotiamo che $(x,y)\in R^2$ come x+iye consideriamo i come unità immaginaria, definiamo due operazioni su C

- Somma $(x + iy) + (u + iv) := (x + u) + i(y + v) \text{ con } x, y, u, v \in R$
- Prodotto (x+iy)*(u+iv) := (xu-yv)+i(xv+yu) con $x,y,u,v\in R$

Utiiziamo un esempio numerico:

Somma:
$$(2+3i) + (4+5i) = (2+4) + i(3+5) = 6+8i$$
 (39)

Prodotto:
$$(2+3i) + (4+5i) = (2*4) + i(2*5+3*4) = (8-15+i(10+12)) = 7+22i$$

Anche se i calcoli possono sembrare complssi possiamo semplificare il tutto con questo ragionamento:

$$i + i = (0 * 0 - 1 * 1) + i(0 + 1 + 0 + 1) = -1 + i0 = -1$$
 (41)

L'inverso di x + iy rispetto al punto si denota con $(x + iy)^{-1}$ oppure $\frac{1}{x+iy}$

4.1 Piano di Gauss

Con $\mathbb{C} = \mathbb{R}^2$ consideriamo un piano cartesiano possiamo rappresentare tutti i numeri complessi utilizzando però delle coordinate dette **Polari**. Da un punto x e un punto y troviamo un punto z possiamo infatti dire che z = x + iy dove il |z| rappresenta la distanza del punto z dall'origine (l'intersezione dell'asse x e y) e lo si può calcolare attraverso **Pitagora** con $|z| := \sqrt{x^2 + y^2}$.

E quindi se $z \in \mathbb{R}$ allora $|z| = \sqrt{x^2}$

4.2 Proprietà dei numeri complessi

- $\bullet \ \overline{zw} = z * \overline{w}$
- $\bullet \ \overline{z} = z$
- \bullet $\overline{z+w} = \overline{z} + \overline{w}$
- $z + \overline{z} = 2Re(z)$
- $z \overline{z} = 2Im(z)$

Cercare le dimostrazioni su internet perchè oggi il prof ha deciso di fare il cosplay di Flash.

Altre proprietà però con il modulo:

•
$$z*\overline{z}=|z|^2$$

- \bullet |zw| = |z||w|
- $|z+w| \leq |z| + |w|$
- $z \neq 0$ $z^{-1} = \frac{\overline{z}}{|z|^2}$

CERCARE SU INTERNET DISUGUAGLIANZA TRIANGOLARE E GRAFICO CON IL MODULO

 $\theta = \arg(z)$ argomento di z
 angolo formato da z e l'asse $Re~\theta$ è definito a meno di
 Remultipli di 2π

CERCARE SU INTERNET FORMA TRIGONOMETRICA Z

Ok facciamo un esempio, prendiamo z=2, avremo quindi $|z|=\sqrt{2^2=2}$ e arg z=0.

A questo punto possiamo dire che $z = 2(\cos(0) + i\sin(0))$

RICORDARSI CHE Re STA PER PARTE REALE (GRAZIE GABRIEL DEL PASSATO)

4.3 Forma esponenziale

Avendo
$$z \in \mathbb{C}, z \neq 0$$

 $\theta = \arg z \in z = |z|e^i * \arg(z)$
 $w \in \mathbb{C}, w \neq 0 := |z|(\cos(\theta) + i\sin(\theta))$

CERCARE FORMULA DI DE MOUIURE

4.4 Equazioni di secondo grado complesse

Una radice semplice si calcola quando si hanno equazioni di grado inferiore al terzo, nello specifico ogni equazione di secondo grado $ax^2 + bx + c = 0$ con $a, b, c \in \mathbb{C}$ ha due soluzioni in \mathbb{C} .

Si trovano così $\Delta := b^2 - 4ac$ dove:

- $\Delta = 0$ prendo $\delta_1 = \delta_2 = 0$
- $\Delta \neq 0$ per il teorema $\exists \delta_1, \delta_2 \in \mathbb{C}$ distinti, tali che $\delta_1^2 = \delta_2^2 = \Delta$

Le soluzioni dell'equazione di secondo grado si trovano facendo:

$$z_1 = \frac{-b + \delta_1}{2a} \tag{42}$$

$$z_1 = \frac{-b + \delta_2}{2a} \tag{43}$$

Mentre:

Se
$$\Delta = 0, \delta_1 = \delta_2$$
 quindi $z_1 = z_2$ (44)

Se
$$\Delta < 0, \delta_1 \neq \delta_2$$
 quindi $z_1 \neq z_2$ (45)

4.5 Radici complesse

le $\mathbb{Z}k$ sono chiamate radici complesse che se le andassimo a disegnare sul piano di Gauss formerebbero i su

Facciamo un esempio, le radici cubiche (n=3) di z=-8+i*0 del modulo di $z, \quad |z|=\sqrt{Re(z^2)+In(z^2)}=\sqrt{-8^2+0^2}=\sqrt{(-8^2)}=8.$

4.6 Teorema fondametale dell'Algebra

Il teorema fondamentale dell'algebra dice che ogni polinomio in $\mathbb R$ o $\mathbb C$ di grado ≥ 1 ha soluzioni nei $\mathbb C$

Ovvero sia $p(x) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$ un polinomio, $p(x) = a_n + a_{n-1} + \dots + a_1 + a_0 \in \mathbb{C} a_n \neq 0$ di grado n

Allora p(x) ha n soluzioni in $\mathbb C$ contate con la loro molteciplità.

Cioè p(x) si può decomporre come $p(x) = a_1(x - w_1)^{m_1} \cdots (x - w_r)^{m_r}$

(a detta del prof è troppo complesso dimostrarlo e se lo dice lui io mi fido)

5 Relazioni di Equivalenza

Prima di tutto definiamo un insieme A, una relazione $R\subseteq AxA$ si dice di equivalenza se soddisfa:

- 1. Riflessiva $(\forall a \in A(a, a) \in \mathbb{R})$
- 2. Simmetrica $((a,b) \in \mathbb{R} \Rightarrow (b,a) \in \mathbb{R})$
- 3. Transitiva $((a,b) \in \mathbb{R}, (b,c) \in \mathbb{R} \Rightarrow (a,c) \in \mathbb{R})$

Generalmente indichiamo una relazione d'equivalenza con un simbolo \backsim oppure \equiv e scriviamo $a \backsim b$ oppure $a \equiv b$ oppure aRb per indicare $(a,b) \in \mathbb{R}$

5.1 Equivalenza modulare

 $A = \mathbb{Z}$ fissiamo $n \in \mathbb{Z}, n \ge 1$ definiamo \backsim_n

 $x \backsim_n y \Leftrightarrow \exists k \in \mathbb{Z}$ tale che x-y=Kn si diche che x è congruo a y mmodulo n e si scrive $x \equiv yMODn$.

 $\forall x \in \mathbb{Z}$ vale $x \equiv x \mod n$ perchè $\exists K \in \mathbb{Z}$ tale che x - x = K * n

5.2 Classe di equivalenza

Sia A un insieme e sia \backsim una relazione di equivalenza su A. La <u>classe di equivalenza</u> di un elemento $a \in A$ con $\overline{a} = [a] := \{b \in A : b \backsim a\}$ è un insieme.

asi chiama rappresentante della classe [a]e notare bene che $a \in [a]$ perchè $a \backsim a.$

6 Cardinalità

Con **cardinalità** noi intendiamo definire quali e quanti elementi fanno parte di un certo insieme utilizzando il linguaggio matematico.

Supponiamo per esempio che A, B sono insiemi, possiamo dire che A, B sono **equipotenti** se $\exists f : A \to B$ bigettiva, in tal caso scriviamo |A| = |B|.

Ok detto questo mostriamo alcune proprietà:

- 1. Riflessiva A è equipotente con A tramite $id_A A \to A$ bigettiva.
- 2. Simmetrica A è equipotente a $B \Rightarrow \exists f : A \to B$ bigettiva.
- 3. Transitiva A equipotente a B, B equipotente a C.

Con X insieme diciamo che:

- X è finito se $X = \emptyset$ oppure $\exists n \in \mathbb{N}$ tale che X è equivalente a $\{1, 2, 3, 4, n\}$ e in tal caso diciamo che X ha cardinalità n scrivendo |X| = n.
- X è **infinito** se X non è finito (ovviamente), si dice che X insieme è = 0 allora sono equivalenti e si dice anche che:
 - 1. X è infinito
 - $2. \exists Y \subset X$
 - 3. c

•

X si dice **numerabile** (o di cardinalità numerabile) se $|X| = |\mathbb{N}|$ e scriviamo $|X| = X_0$ e lo si chiama **Aleph Zero**.

Se X è numerabile $\Rightarrow X$ infinito.

 $f \circ s \circ f^{-1}X \to X$ iniettiva, ma non surriettiva.

Esempio proviamo a vedere se \mathbb{Z} che contiene \mathbb{N} .

$$f: \mathbb{N} \to \mathbb{Z}$$
 (46)

ok ora vediamo che:

$$f(n) = \begin{cases} \frac{n}{2} & \text{se } n \text{ è pari} \\ \frac{n+1}{2} & \text{se } n \text{ è dispari} \end{cases}$$

se invece f è bigettiva, l'inversa è $f^{-1}: \mathbb{Z} \to \mathbb{N}$ $\mathbb{N}x\mathbb{N}$ è numerabile dimostriamo che $f: \mathbb{N}x\mathbb{N} \to \mathbb{N}$.

AGGIUNGERE ESEMPI.

Definiamo A, B insiemi e scriviamo:

Altra parte di lezione mancante

6.1 Teorema di Cantor-Bernstein

A,Binsiemi, $\exists f:A\to B$ iniettiva, $g:B\to A$ iniettiva, allora esiste una funzione $\exists h:A\to B$ bigettiva.

In formule questo ci dice che se:

$$|A| \le |B| \quad |B| \le |A| \Rightarrow |A| = |B| \tag{47}$$

Se A,B finiti, $|A|=n,\quad |B|=m\quad n,m\in\mathbb{N}$ allora:

$$n = m : \begin{cases} |A| \le |B| \Rightarrow n \le m \\ |B| \le |A| \Rightarrow m \le n \end{cases}$$

Definiamo X insieme, diciamo che:

- X è al più numerabile se $|X| \leq |\mathbb{N}|$
- $\bullet\,$ X è più che numerabile se $|X|>|\mathbb{N}|$