

Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva Zavod za osnove elektrotehnike i električka mjerenja

10. TEMA

ANALIZA SPOSOBNOSTI PROCESA

Prof.dr.sc. Roman Malarić

Kolegij "Upravljanje kakvoćom" Zagreb, 2013.

TEME

- Granice specifikacije
- Indeks sposobnosti procesa
- Statistička kontrola procesa
- Kontrolne karte
- Primjeri

Granice specifikacije (tolerancije)

- U procesima je nužno prihvatiti određenu mjeru promjenjivosti zbog ograničenja u proizvodnji
- Tolerancije određuju granice promjenjivosti koje opisuje neki parametar (npr. promjer)
- Granice specifikacije (tolerancije):
 - definirane u proizvodnom procesu ili od korisnika
 - granice = cilj ± tolerancija
 - jednoznačno određuju ispravan od neispravnog proizvoda
 - LSL donja granica specifikacije (lower specification limit)
 - USL gornja granica specifikacije (upper specification limit)

Granice specifikacije

Tradicionalno mišljenje

- Unutar specifikacija = Dobro
- Izvan specifikacija = Loše

Granice specifikacije

Granični slučajevi?

Taguchijeva funkcija gubitaka

Taguchijeva funkcija

Kakvoća se povećava smanjenjem promjenjivosti

Primjer - nogometna lopta

	Norma od FIFE	Adidas + Teamgeist
Opseg lopte	68.5 cm – 69.5 cm	69.0 cm – 69.25 cm
Promjer lopte	Max 1,5 % razlike	Max 1 % razlike
Upijanje vode	Max 10 % veća težina	Max 0,1 % veća težina
Težina lopte	420 do 445 g	441 do 444 g
Zadržavanje oblika lopte	2000 udaraca s 50 km/h	3500 udaraca s 50 km/h
Odbijanje lopte	Max 10 cm	Max 2 cm

Procesni pristup

Sposobnost procesa

Sposobnost procesa

- Proces je sposoban ako je raspon zahtjeva veći ili jednak od raspona procesa
- Raspon zahtjeva (tolerancijsko područje) T je područje između gornje (USL) i donje granice specifikacije (LSL), odnosno T = USL LSL
- Raspon procesa podrazumijeva područje unutar ±3σ (tri standardna odstupanja, tj. ukupno 6σ) u odnosu na sredinu procesa (99,73 % površine ispod krivulje normalne raspodjele kojom se aproksimira proces)
- □ Temeljni uvjet sposobnosti procesa je: T ≥ 6σ

 Indeks sposobnosti procesa C_p je definiran kao omjer raspona zahtjeva i raspona procesa

$$C_{\rm p} = \frac{\rm USL - LSL}{6\sigma} = \frac{\rm T}{6\sigma}$$

- Njime se uspoređuju granice specifikacije i prirodna promjenjivost u nekom procesu pomoću jedne kvantitativne mjere
- Računanje i pravilna interpretacija indeksa sposobnosti procesa temelji se na pretpostavkama:
 - da se razdioba podataka može aproksimirati normalnom
 - proces koji se razmatra je stabilan i bez značajnih uzroka promjenjivosti

- Iznos indeksa C_p
 neposredno
 pokazuje je li proces
 sposoban
- U razvijenim zemljama danas se zahtijeva da najmanja vrijednost indeksa C_p iznosi 1,33. Taj zahtjev neke kompanije podižu na 1,67, odnosno na C_p ≥ 2.

Dobra kakvoća: defektni proizvod je rijedak ($C_p > 1$)

Loša kakvoća: defektni proizvod je uobičajen (C_p <1)

C_p određuje "sposobnost procesa"

- Uvažavajući vrijeme odvijanja procesa, procjenjivanje sposobnosti (i pripadajući indeks) može pripadati jednoj od sljedeće tri kategorije:
 - Sposobnost procesa u dužem vremenskom razdoblju (Long-Term Process Capability);
 - Indeks sposobnosti procesa računa se za razložno dugo vremensko razdoblje u kojem su se mogle pojaviti sve moguće promjenjivosti procesa; preporuka je 20 dana
 - 2. **Preliminarna** sposobnost procesa (Preliminary Process Capability);
 - 3. Sposobnost u **kratkom vremenskom razdoblju** (Short-Term Capability).

Donja i gornja potencijalna sposobnost C_{pL} i C_{pU}

- □ Indeks C_p ne pokazuje kako je smješten proces u odnosu na granice specifikacija. To se može utvrditi usporedbom iznosa indeksa C_{pL} i C_{pU}:
- □ Iznosi indeksa C_{pL} i C_{pU} računaju se izrazima:

```
C_{\rm pL} = (sredina procesa – LSL) / 3\sigma
C_{\rm pU} = (USL – sredina procesa) / 3\sigma
```

- □ Identični iznosi ukazuju na potpunu centriranost procesa (iznosi indeksa jednaki su iznosu indeksa C_p)
- Iznos manji od 1 ukazuje na pojavu neskladnosti;
 proces je pomaknut prema granici specifikacije manjeg iznosa indeksa

Donja i gornja potencijalna sposobnost C_{pL} i C_{pU}

Primjer: dobar (granični) slučaj kad je $C_{pU} = 1$ (tj. granica od 3σ odgovara USL)

Indeks sposobnosti procesa C_{pk}

- $\Box C_{pk} = \min(C_{pL}, C_{pU})$
 - C_{pk} se može izraziti i drugačije: $C_{pk} = C_p(1-k)$, dok se faktor k dobiva kao omjer pomaka procesa i raspona zahtjeva
- □ Ako je proces idealno centriran tada je $C_{pk} = C_{p}$.

Primjer: loš slučaj kad je $C_{pU} = 0$ (tj. sredina razdiobe odgovara USL), pa je i $C_{pk} = 0$

Pregledni zapis obrađenih indeksa sposobnosti procesa:

$$C_{p} = \frac{USL - LSL}{6\sigma}$$

$$C_{pU} = \frac{USL - \mu}{3\sigma}$$

$$C_{pL} = \frac{\mu - LSL}{3\sigma}$$

$$C_{pk} = \min\{C_{pL}, C_{pU}\}$$

Računanje indeksa sposobnosti procesa

Dobra kakvoća ($C_{pk} > 1$)

Loša kakvoća ($C_{pk} < 1$)

$$C_{pk} = min \begin{cases} \frac{USL - \overline{x}}{3\sigma} = \frac{24 - 20}{3^{*}2} = 0,667\\ \frac{\overline{x} - LSL}{3\sigma} = \frac{20 - 15}{3^{*}2} = 0,833 \end{cases}$$

$$3\sigma = UPL - \overline{x} = \overline{x} - LPL = 6$$

Računanje indeksa sposobnosti procesa

	Α	В	С	D	Е	F	G	Н		J	K	L	М	N	0	Р	Q
1	Proces	s Capa	bility A	nalysis													
2																	
3	This spreadsheet is designed to handle up to 150 observations. Enter data ONLY in yellow-shaded cells.																
4																	
5	Nominal specification			10.75			\verage		10.7	171		Ср	0.96				
6	Upper tolerance limit			11		Stand	ard dev	/iation	0.08	368		Cpl	0.833				
7	Lower	tolerai	nce lim	it	10.5								Cpu	1.086			
8													Cpk	0.833			
9																	
10	DATA	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
11				10.500									-				
12				10.800													
13				10.650									-				
14				10.650									-				
15				10.700									$\overline{}$				
16				10.850									-				
17				10.800													
18				10.700									$\overline{}$				
19				10.750									-				
20	10	10.600	10.600	10.750	10.800	10.750	10.850	10.750	10.750	10.700	10.650	10.600	10.650				
21																	

Preliminarna sposobnost procesa

- Preliminarno procjenjivanje sposobnosti procesa provodi se na početku odvijanja procesa ili nakon relativno kratkog vremena praćenja procesa. Preporuka je da se razmatra uzorak od najmanje 100 jedinica
- U nazivlju indeksa se umjesto termina sposobnost (capability) koristi termin značajka (performance). U tom smislu se indeksi označavaju analogno kao P_p, P_{pL}, P_{pU} i P_{pk}
- □ Zahtjevi na najmanje iznose indeksa P_p i P_{pk} su stroži nego za iznose indeksa C_p i C_{pk} (npr. ako je zahtjev za $C_p \ge 1,33$ tada je ekvivalentni zahtjev za $P_p \ge 1,67$)

Statistička kontrola procesa

- Statistička kontrola procesa (Statistical Process Control – SPC): metodologija za praćenje procesa koja služi za:
 - identificiranje posebnih uzroka promjenjivosti
 - davanje signala za popravnu radnju kada je to potrebno

 U statističkoj kontroli procesa od iznimne važnosti su kontrolne karte

Statistička kontrola procesa

Histogrami ne uzimaju u obzir tijek vremena

Kontrolne karte nam mogu reći kada se proces promijenio

Sposobnost procesa i kontrolirani proces

- Kontrolirani proces i sposobnost procesa se ne smiju miješati
- Pouzdana procjena sposobnosti procesa može se donijeti samo temeljem praćenja procesa primjenom odgovarajuće kontrolne karte i nakon dovođenja procesa u stanje statističke kontrole (stanje «pod kontrolom»)
- Ukoliko proces nije «pod kontrolom» računanje indeksa sposobnosti je puka formalnost i zavaravanje!

Sposobnost procesa i kontrolirani proces

Kontrola

Pod kontrolom Izvan kontrole

Sposoban

Nije sposoban

Vrste i ciljevi kontrolnih karata

- Kontrolne karte dijele se u dvije temeljne skupine:
 - 1. kontrolne karte za mjerljive karakteristike
 - 2. kontrolne karte za atributivne karakteristike

Ciljevi:

- Dovođenje procesa u stanje statističke kontrole, odnosno u stanje «POD KONTROLOM»
- Utvrđivanje trendova i pomaka procesa u cilju zaštite od neželjenih rezultata (pojave dijelova lošije kakvoće, neskladnih dijelova i sl.)

Tehnika kontrolnih karata

- Tehnika kontrolnih karata sastoji se od uzimanja većeg broja malih uzoraka iz procesa
- Važno je naznačiti da se kontrolnom kartom prate promjene (varijacije) procesa u vremenu; to znači da uzorci uvijek moraju biti zadnje proizvedene jedinice
- Temeljem provedenih mjerenja (kontrole) uzoraka računa se jedan ili više statističkih parametara iz dobivenih rezultata mjerenja
- Vrijednosti statističkih parametara uzoraka predmet su praćenja primjenom odgovarajuće kontrolne karte

Značajke kontrolnih karata

 Na svakoj kontrolnoj karti treba odrediti kontrolne granice i središnju liniju

- Kontrolne granice su:
 - donja kontrolna granica DKG (lower control limit LCL)
 - gornja kontrolna granica GKG (upper control limit UCL)
- Kontrolne granice su statističke granice i nisu povezane s granicama specifikacije

Kontrolne granice

- Kontrolne granice se postavljaju (računaju) za granice rasipanja (± 3σ) statističkog parametra (x, R, s i druge) koji se prati kontrolnom kartom (računa iz uzoraka)
- Podatak izvan kontrolne granice (iznad GKG ili ispod DKG) pokazuje da se u procesu, statistički promatrano, dogodio ne slučajan već poseban uzrok promjenjivosti (odstupanja)
- Najefikasniji postupak poboljšavanja kakvoće praćenog procesa je promptno otkrivanje posebnih uzroka promjenjivosti i provođenje odgovarajućih popravnih radnji

Procesne i kontrolne granice

- Procesne i kontrolne granice:
 - procesne granice se upotrebljavaju za <u>pojedinačni</u> <u>proizvod</u>
 - kontrolne granice se koriste za <u>aritmetičke sredine</u>
 - uobičajene granice su (μ ± 3σ)

Procesne i kontrolne granice

Kontrola procesa

- Kada nema podataka izvan kontrolnih granica onda se koristi termin «PROCES JE POD KONTROLOM»
- Termin «POD KONTROLOM» je statistički termin kojim se pokazuje da se proces mijenja samo pod utjecajem slučajnih, procesu svojstvenih, utjecaja
- Za proces koji je «pod kontrolom» često se koristi i termin «STABILAN PROCES».
- Kada su podaci izvan kontrolnih granica to nipošto ne znači da proces daje neskladne jedinice (proizvode)
- □ Kontrolne karte se mogu i trebaju primjenjivati kako za procese koji nužno daju neskladne proizvode (C_p < 1), tako i za sposobne procese (C_p > 1).

Kontrola procesa

- U slučaju određivanja (računanja) kontrolnih granica za proces za koji nemamo prethodnih saznanja (nepoznate varijacije procesa) potrebno je provesti korekciju granica u slučaju pojave podataka izvan kontrolnih granica
- Ponovno računanje granica provodi se nakon eliminacije uzoraka (odgovarajućih statističkih parametara koji se prate) koji su izvan kontrolnih granica
- Za poznate procese (poznato rasipanje) kontrolne granice se postavljaju **prije** uzimanja uzoraka; to je i najprirodniji način korištenja kontrolnih karata jer se eventualna pojava značajnih odstupanja promptno može istražiti

Kontrola i poboljšanje

Izvan kontrole

Kada je očitanje izvan kontrole, što možemo zaključiti?

Izvan kontrole

Kada je očitanje izvan kontrole, što možemo zaključiti?

Promjena aritmetičke sredine

Analiza mogućih promjena

Ciklusi

Trend

Zaključak

- Indeks sposobnosti procesa C_p treba biti veći od 1 (to je minimalna vrijednost, a u praksi se traži da bude veći čak i od 2)
- Proces treba biti u stanju statističke kontrole (tj. «pod kontrolom»)
- Kontrolne karte služe za praćenje procesa