神戸市立工業高等専門学校 電気工学科/電子工学科 専門科目「数値解析」

2017.4.21

方程式の根

山浦 剛 (tyamaura@riken.jp)

講義資料ページ

http://climate.aics.riken.jp/members/yamaura/numerical_analysis.html

1変数方程式の根

- 数学的問題 f(x) = 0 という方程式を満たすx を考える
 - > xが4次以下であれば、解の公式が存在する
 - ▶ 一般解を与える公式は存在しない

- ightharpoonup数値計算では、反復計算により根(f(x) = 0の解をこう呼ぶ)を求める
 - f(x) = g(x) を解くことは、f(x) g(x) = 0 を解くことと同値である
 - 上 任意の方程式はf(x) = 0の形にすることができるので、根を求めることは方程式の解を求めることに等しい
 - ▶ f(x) の形が三角関数や指数関数を含んでいたり、偏微分方程式だとしても、近似値を計算することができる
 - ightharpoonup ある保存則を満たすような式 $(\frac{DA}{Dt}=0)$ を考える場合に適用し、解を求めることもある

1変数方程式の根

- ▶ 方程式の根を求める代表的な数値解法は2つ
 - ▶ 二分法
 - ▶ 中間値の定理を基礎とした求根アルゴリズム
 - > ニュートン法
 - ▶ 接線を利用した求根アルゴリズム

- ▶ その他、求根アルゴリズムは多数ある
 - > ハウスホルダー法(ハレー法)、割線法、ブレント法、etc.

2分法

> 2分法の原理

- f(x)が連続で、もしf(a) < 0, f(b) > 0 となるa, bが存在すれば、 $f(\alpha) = 0$ となる根 α が区間[a, b] の間に少なくとも1つ以上存在する
- 例: $f(x) = x^3 5 = 0$ の根を数値計算的に求める
 - 答えは³√5。これを小数点数で表現する。
 - $ightharpoonup 1^3 < (\sqrt[3]{5})^3 < 2^3$ なので、a = 1, b = 2 と考える。

step	а	b	c = (a+b)/2	$c^{3} - 5$	
1	1	2	1.5	-1.625	< 0
2	1.5	2	1.75	0.359375	> 0
3	1.5	1.75	1.625	-0.708984375	< 0
4	1.625	1.75	1.6875	-0.19458007812	
5	1.6875	1.75	1.71875	0.07736206055	
6	1.6875	1.71875	1.703125	-0.05985641479	
7	1.703125	1.71875	1.7109375	0.00843954086	

2分法

- ▶ 2分法のアルゴリズム
 - 1. f(a) < 0, f(b) > 0 となる初期値a, b を決める
 - 2. $c \coloneqq \frac{a+b}{2}$, $d \coloneqq \frac{|a-b|}{2}$ を計算
 - d < ε ならば3に移る
 - o d $\geq \varepsilon$, f(c) < 0 ならばaにcを代入し(a := c)、2を繰り返す
 - $d \ge \varepsilon, f(c) > 0$ ならばbにcを代入し(b := c)、2を繰り返す
 - 3. c を数値解とする
- > このεを"収束判定条件"と呼ぶ
 - f(c) = 0 を数学的に完全に満たすcを決定することは困難
 - このとき、数値解cの誤差はε程度

2分法

- > 2分法の計算量
 - ▶ 何が最も計算しづらいか?
 - ▶ 反復計算の中身(前ページの2)が最も演算を実行する箇所
 - ▶ 条件判定や四則演算しかないcやdの計算量は大したことはない
 - \triangleright ここではf(c)の値を求めることが最も大きな計算量となる
 - ▶ 計算終了までの計算回数Nを考える
 - ▶ 前ページの2を1回実行すると、区間[a,b]の幅は半分になる
 - この幅の半分がε未満の大きさになれば計算終了
 - \triangleright 即ち、 $\frac{|a-b|}{2^{N+1}}$ < ε を満たすNを考える
 - \geq $2^{N+1} > \frac{|a-b|}{\varepsilon}$
 - $N > \log_2\left(\frac{|a-b|}{\varepsilon}\right) 1$

- ▶ ニュートン法の原理
 - f(x)の x_n における接線がx軸と交わる点を x_{n+1} とする
 - $f(x_n) = 0$ となる x_n を漸次的に求める
 - ightharpoonup 点 $(x_n, f(x_n))$ における接線の傾きは $f'(x_n)$ で表現される
 - ▶ この点における接線の式
 - $g(x) = f'(x_n)(x x_n) + f(x_n)$
 - g(x) = 0 となるxが次にf(x)を求めるときのxになる $\Rightarrow x_{n+1}$
 - $> 0 = f'(x_n)(x_{n+1} x_n) + f(x_n)$

- > ニュートン法の収束判定条件
 - ▶ x_nの真の値との誤差はどの程度なのかを知る確実な方法はない
 - \triangleright 次善策として、 $x_n \approx x_{n+1}$ となっていれば計算終了とする
 - ightharpoonup 即ち、誤差 ε に対して、 $\left| \frac{x_{n+1} x_n}{x_{n+1}} \right| < \varepsilon$
 - $\varepsilon = 10^{-N}$ とすると、おおよそ x_n と x_{n+1} がN桁一致する
- ▶ ニュートン法のアルゴリズム
 - 1. 初期値 x_0 と許容する誤差 ϵ を決める
 - 2. $c \coloneqq x \frac{f(x)}{f'(x)}$ を計算
 - $\left|\frac{c-x}{c}\right| < \varepsilon$ ならば3に移り、そうでなければxにcを代入し、2を繰り返す
 - 3. c を数値解とする

step	x	f(x)	f'(x)	С
1	2	3	12	1.75
2	1.75	0.359375	9.1875	1.71088435374
3	1.71088435374	0.00797282908	8.78137581562	1.70997642892
4	1.70997642892	0.00000423026	8.77205816239	1.70997594668
5	1.70997594668	0.0000000003	8.77205321467	1.70997594668

- > 二分法に比べ、少ない計算回数で精度よく計算できている ⇒ 収束が速い
- ▶ なぜ二分法に比べ、ニュートン法は高速なのか?

- > ニュートン法の精度
 - ightharpoonup 根を α 、 x_n と α の誤差 $\varepsilon_n = x_n \alpha$ とする
 - ightharpoonup テイラー展開により、 $f(x_n)$ と $f'(x_n)$ を3次の項まで考える
 - $f(x_n) = f(\alpha) + \varepsilon_n f'(\alpha) + \frac{\varepsilon_n^2}{2} f''(\alpha) + \frac{\varepsilon_n^3}{6} f'''(\xi_1)$
 - $f'(x_n) = f'(\alpha) + \varepsilon_n f''(\alpha) + \frac{\varepsilon_n^2}{2} f'''(\xi_2)$
 - > これを、 ε_{n+1} に代入
 - $\varepsilon_{n+1} = \varepsilon_n \frac{f(\alpha) + \varepsilon_n f'(\alpha) + \frac{\varepsilon_n^2}{2} f''(\alpha) + \frac{\varepsilon_n^3}{6} f'''(\xi_1)}{f'(\alpha) + \varepsilon_n f''(\alpha) + \frac{\varepsilon_n^2}{2} f'''(\xi_2)} = \frac{\varepsilon_n^2}{2} \frac{f''(\alpha) + \varepsilon_n f'''(\xi_2) \frac{\varepsilon_n}{3} f'''(\xi_1)}{f'(\alpha) + \varepsilon_n f''(\alpha) + \frac{\varepsilon_n^2}{2} f'''(\xi_2)} \approx \varepsilon_n^2 \frac{f''(\alpha)}{2 f'(\alpha)}$
 - ightharpoonup 次の誤差 ε_{n+1} が ε_n の二乗で小さくなっていくことを示す
 - \triangleright これらは x_n が十分に α に近く、 $f'(\alpha) \neq 0$ の場合にのみ、成立する
 - ightarrow 重根($f'(\alpha)=0$)の場合、根への収束の速さは極端に悪くなる($\varepsilon_{n+1}pprox rac{\varepsilon_n}{2}$)

- > ニュートン法の短所
 - ▶ 関数の形によっては、反復計算を行っても根に収束していかないことがある
 - ▶ ニュートン法が成立する条件
 - 1. 関数が連続である
 - 2. 関数が単調に変化(単調増加、単調減少)する
 - 3. 関数が急激に変化しない
 - f'(x) の値はxに対して概ね同じ
 - f'(x)の値が0に近づかない
 - ▶ ニュートン法は初期値が根に近ければ、成功する可能性が上がる
 - ▶ はじめに二分法である程度根に近い値を求めておき、その後ニュートン法を適用するといった工夫をする

1変数方程式の根

- ▶ 代表的な方程式の根の求め方は2つある
- > 二分法の特徴
 - ▶ 連続であれば、関数の形に依らず、数値的に安定に解くことができる
 - ▶ 計算量を予め見積もることができる
 - ▶ ニュートン法と比べ、収束が遅い
- > ニュートン法の特徴
 - ▶ 二分法よりも収束が速い
 - ▶ 関数が連続でも、関数の形によっては、根に収束しない可能性がある。