

Status Update

Texas A&M + Rice Joint Meeting on Muon Analysis

Benjamin Michlin Rice University

$\epsilon_{\text{full}}/\alpha_{\text{gen}}$

From last time:

Ratio of full analysis acceptance at reco level to gen level acceptance as a function of dark photon cT

Denominator:

- 4 GEN mu p_T > 8 (|η|
 2.4) && 1 GEN mu p_T > 17 (|η|< 0.9)
- Dark photon $L_{XY} < 4.4 \text{ cm}$ && $L_7 < 34.5$

Numerator:

- 4 RECO mu $p_T > 8 (|\eta| < 2.4) && 1 RECO mu <math>p_T > 17 (|\eta| < 0.9)$
- VtxOK, 2 Dimuons,
 2DimVtxOK,
 2DimDzOK,HitPixOK,
 2DimMassOK,
 2DimIsoOK, 2DimHLT

$\epsilon_{\text{full}}/\alpha_{\text{gen}}$ with fiducial cut in numerator

From last time:

- Ratio of full analysis acceptance at reco level to gen level acceptance as a function of dark photon cT
- Denominator:
 - 4 GEN mu $p_T > 8$ (|η| < 2.4) && 1 GEN mu $p_T > 17$ (|η| < 0.9)
 - Dark photon $L_{XY} < 4.4 \text{ cm } \&\& L_7 < 34.5$
- Numerator:
 - Dark photon L_{XY} < 4.4 cm && L₇ < 34.5
 - 4 RECO mu $p_T > 8 (|\eta| < 2.4)$ && 1 RECO mu $p_T > 17 (|\eta| < 0.9)$
 - VtxOK, 2 Dimuons,
 2DimVtxOK,
 2DimDzOK,HitPixOK,
 2DimMassOK, 2DimIsoOK,
 2DimHLT

Mitigation of fake dimuons

- Closely spaced high η tracks
 - \blacksquare Small mismeasurement in η substantially moves vertex position
 - Imprecise L_{XY} measurement
- Fake dimuons pass offline selection but fail GEN fiducial cut
- The plan: model signal shape to remove fakes and remain model independent

Previously shown plots

- 2-dimensional η-L_{XY} cut is promising discriminant for real and fake dimuons
- Making cut while maintaining high efficiency turned out to be non-trivial

Previously shown plots

- Since fake dimuons are at high L_{xy} and high η Alexei suggested removing the top ~3% of events from each η -bin
- This will guarantee a high efficiency (>97%) and should remove most fakes

- L_{xy} allowed to be negative
- \blacksquare Cut made for each $\eta\text{-bin}$ (individually) for m $_{\gamma\,\text{D}}\text{=}~0.25~GeV$ sample

Cut made for each η-bin results

RECO level results:

- Efficiency looks really good!
- Why is efficiency vs η not perfectly flat at ~97%?
 - When cut is determined individual dimuons are counted and removed
 - When cut is used both dimuons in an event are required to pass cut

Cut made for each η -bin results

GEN level results:

- Efficiency looks really good!
- Efficiency vs GEN L_{xy} decreases after 4.4 cm
 - This is passed the fiducial cut
 - We are unconcerned with this area at GEN level
- Recall that cut is made on RECO level quantities

Adjustment of bin-width

- Exact cut made is sensitive to bin width
- I chose a reasonable bin width that gave reasonably smooth cuts
 - Increasing → flat → decreasing
 - η-bins are 0.1 wide
 - L_{XY}-bins are 0.2 cm wide

Adjustment of bin-width

- Want smooth curve rather than discrete cut for every bin
- Several shapes attempted using
 - Linear, parabola, quartic, ellipse
 - Quartic and ellipse have reasonable χ^2
 - Increasing order of polynomial will produce arbitrarily good fit
- Using ellipse because that was initial idea and is simple

$$\frac{\eta_{\rm dim}^2}{2.88^2} + \frac{Lxy_{\rm dim}^2}{8.20^2} \le 1$$

Visualization of smooth cut

- Only top half of ellipse is used
 - Negative L_{XY} dimuons are never rejected
- Cut looks good!
- Recall that if cut works for $m_{\gamma D}$ = 0.25 GeV sample then all samples are expected to work

Efficiencies with elliptical cut

RECO level results:

■ RECO level efficiencies look good!

Efficiencies with elliptical cut

GEN level results:

- GEN level efficiencies look good!
- Efficiency vs η nearly (but not) identical for GEN and RECO
- Efficiency vs GEN L_{XY} decreases after ~4.4 cm
 - This is passed the fiducial cut
 - We are unconcerned with this area at GEN level

Elliptical cut on real and fake dimuons

Real_Reco_Eta_vs_Lxy

Fake Reco Eta vs Lxy

- After cut only 124/603 fakes remain
- Top-right
 - Both dimuons plotted if one dimuon in event is fake
- Bottom-right
 - Only fake dimuon plotted
- Events with low η in top-right are partners to fake dimuons

$\epsilon_{\text{full}}/\alpha_{\text{gen}}$ with elliptical cut

Without Elliptical Cut

With Elliptical Cut

- Ratio plot is mostly flat within uncertainty
 - Minor deviation should be fixed with pixel hit recovery
 - 10 cm is likely due to statistics

$\epsilon_{\text{full}}/\alpha_{\text{gen}}$ with elliptical cut

- Looks pretty good!
- Slight variation in low mass samples
 - Also seen with fiducial cut in numerator (slide 3)
 - Individual plots on next slide

$\epsilon_{\text{full}}/\alpha_{\text{gen}}$ with elliptical cut

Overall efficiency with elliptical cut (all samples combined)

Efficiency is flat and high!

Elliptical cut on combined real and fake dimuons

- Only 959/3158 fake dimuons remain!
 - 70% reduction in fakes with <5% reduction in reals
- Top-right
 - Both dimuons plotted if one dimuon in event is fake
- Bottom-right
 - Only fake dimuon plotted

Summary

- A model of the signal shape has been determined which removes the vast majority of fake dimuons
- The resulting ratio plot is very flat for all mass samples

Discussion

- Is this method of determining the signal shape rigorous enough?
 - Bin width influences results and was quasi-arbitrarily chosen
 - Uncertainty on cut placement not considered when fitting ellipse
- Have the fake dimuons been sufficiently mitigated?
 - If not
 - Use other signal shapes (super ellipse, higher order polynomials, etc.)
 - Investigate adding additional variables in to cut
 - If so
 - What can I work on next? Does anyone need help?
 - My only other task that is in progress is the J/ψ estimation
 - I need to bug hunt Luca's MC and my analysis, but I really need the SPS
 MC before this can move forward

Backup

Real RECO L_{XY} vs RECO eta for individual mass samples

Fake RECO L_{XY} vs RECO eta for individual mass samples

0.25 GeV sample zoom

Update of offline selection plots

• All MC samples added to offline selection plots

Update of model of the event acceptance as a function of $\rm m_{\gamma\,D}$ and $\rm c\tau_{\gamma\,D}$

CMS/ RICE

- Added all new MC samples/mass points
- MC values used includes fiducial cut in numerator)
 - See backup plot for details

Interpolation order

 $m_{\gamma D}$ [GeV]

- Interpolation order 1 still used
 - Order 2 used in previous AN
- We had hoped that adding in more mass points would stop ε_{rec} from dropping below zero

ɛfull/αgen (fiducial cut in numerator)

Denominator:

- 4 GEN mu $p_T > 8 (|\eta| < 2.4)$ && 1 GEN mu $p_T > 17 (|\eta| < 0.9)$
- Fiducial cut: Dark photon
 L_{XY} < 4.4 cm && L_Z < 34.5

Numerator:

- 4 RECO mu p_T > 8 (|η|< 2.4)
 && 1 RECO mu p_T > 17 (|η|
 < 0.9)
- Dark photon L_{XY} < 4.4 cm&& L_z < 34.5
- Event has a primary vertex, 2 dimuons in the event, both dimuons have a valid vertex, dimuon vertices pass Δz cut, both dimuons have a hit in the first pixel layer, dimuons pass mass compatability cut, fired HLT