Technische Universität Berlin

Fakultät II – Institut für Mathematik D. Hömberg, M. Karow, G. Penn-Karras, J. Suris WS 09/10 06. April 2010

April – Klausur (Verständnisteil) Analysis II für Ingenieure

Name:	. Vorname:					
MatrNr.:	Studi	engang	;:			
Neben einem handbeschriebenen A4 zugelassen.	Blatt r	nit No	tizen s	ind ke	ine Hil	fsmittel
Die Lösungen sind in Reinschrift auf schriebene Klausuren können nicht ge			_	ben. M	Iit Blei	stift ge-
Dieser Teil der Klausur umfasst die Ver Rechenaufwand mit den Kenntnissen a wenn nichts anderes gesagt ist, immer	aus der	Vorles	sung [°] lö	sbar se	ein. Gel	\circ
Die Bearbeitungszeit beträgt eine Stu	ınde.					
Die Gesamtklausur ist mit 40 von 80 beiden Teile der Klausur mindestens 13				,	•	
Korrektur						
	1	2	3	4	5	Σ

1. Aufgabe 8 Punkte

Sei \vec{c} eine von "oben" gesehen mathematisch positiv orientierte Parametrisierung des Randes der ebenen Fläche $D = \{(x, y, 0) \in \mathbb{R}^3 \mid -1 \le x \le 1, -2 \le y \le 2\}$. und das Vektorfeld $\vec{v} : \mathbb{R}^3 \to \mathbb{R}^3$ definiert durch

$$\vec{v}(x, y, z) = \begin{bmatrix} y \\ 3x \\ 1 \end{bmatrix}$$
.

Berechnen Sie mithilfe des Satzes von Stokes das Kurvenintegral $\int_{\vec{c}} \vec{v} \cdot \vec{ds}$.

2. Aufgabe 8 Punkte

Gegeben seien Konstanten $a \in \mathbb{R}$ und $k \in \mathbb{N} \setminus \{0\}$ und das Vektorfeld

$$\vec{v}_{a,k}: \mathbb{R}^3 \to \mathbb{R}^3, \quad \vec{v}_{a,k}(x,y,z) = \begin{bmatrix} xz + ay^k \\ xy + az^k \\ yz + ax^k \end{bmatrix}.$$

- (a) Wie sind die Konstanten a und k zu wählen, damit $\vec{v}_{a,k}$ ein Potential besitzt?
- (b) Bestimmen Sie den Wert des Kurvenintegrals von $\vec{v}_{\frac{1}{2},2}$ entlang der Kurve

$$\vec{c}: [0,1] \to \mathbb{R}^3, \quad \vec{c}(t) = \begin{bmatrix} 3e^{t^2-t} \\ 4 \\ \sin(\pi t) \end{bmatrix}.$$

3. Aufgabe 8 Punkte

Sind die folgenden Aussagen **immer** wahr? Geben Sie zusätzlich zu Ihrer Antwort immer eine **ausführliche** Begründung oder ein Gegenbeispiel an. Für Antworten ohne Begründung gibt es keine Punkte.

(a) Sei $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$ ein stetig partiell differenzierbares Potentialfeld. Dann gilt für jede zweimal stetig partiell differenzierbare Funktion $h: \mathbb{R}^3 \to \mathbb{R}$:

$$rot(\vec{v} + \operatorname{grad} h) = \vec{0}.$$

- (b) Sei $K = \{(x, y, z) \in \mathbb{R}^3 \setminus \{\vec{0}\} \mid x, y, z \in [-1, 1]\}$. Dann ist K kompakt.
- (c) Die Matrix

$$A_t = \begin{bmatrix} \sin(-\pi t) & 0 & 0\\ 0 & t^2 - t & 0\\ 0 & 0 & \cos(\pi t) \end{bmatrix}$$

ist für alle $t \in [\frac{1}{2}, 1]$ positiv definit.

(d) Sei $\vec{w}: \mathbb{R}^3 \to \mathbb{R}^3$ ein Vektorfeld mit stetigen zweiten partiellen Ableitungen und $\vec{v} = \operatorname{rot} \vec{w}$. Außerdem sei $K \subset \mathbb{R}^3$ kompakt. Dann gilt $\iint_{\partial K} \vec{v} \cdot d\vec{O} = 0$.

4. Aufgabe 8 Punkte

Gegeben sei die Funktion $f:\mathbb{R}^2\setminus\{(0,y)\in\mathbb{R}^2\,|\,y\in\mathbb{R}\}\to\mathbb{R},$ definiert durch

$$f(x,y) = xy\sin\left(\frac{1}{x}\right)$$
.

- (a) Zeigen Sie, dass f sich zu einer stetigen Funktion \tilde{f} auf \mathbb{R}^2 fortsetzen lässt und bestimmen Sie \tilde{f} .
- (b) Untersuchen Sie \tilde{f} im Punkt (0,1)auf partielle und totale Differenzierbarkeit.

5. Aufgabe 8 Punkte

Sei für $n\in\mathbb{N}$

$$\phi_n(x) = \frac{4}{\pi} \sum_{k=1}^n \frac{\sin(kx)}{k}$$

das n-te Fourierpolynom einer 2π periodischen Funktion $f: \mathbb{R} \to \mathbb{R}$.

Bestimmen Sie sämtliche Fourierkoeffizienten von $\tilde{f}: \mathbb{R} \to \mathbb{R}$ mit $\tilde{f}(x) = f(x) - 1$.