SEQUENCE LISTING

<110>	DSM IP ASSETS BV Institute National de la Recherche Agronomique	
<120>	YEAST STRAINS WITH IMPROVED FRUCTOSE FERMENTATION CAPACITY	
<130>	21568WO	
<150> <151>	EP 03078992.9 2003-12-19	
<160>	30	
<170>	PatentIn version 3.1	
<210> <211> <212> <213>		
<400>		
grgcgg	ggatc cgaaggcaat atc	23
<210><211><211><212><213>	27	
<400>	2	
gatcgg	gatce atcatcacgt tectage	27
<210><211><211><212><213>	63 DNA	
<400>	3	
aagtga	acggg cgatgagtaa gaaagaaata actgactcat tagaccatca tcacgttcct	60
agc		63
<210><211><211><212><213>	4 20 DNA primer	
<400>	4	
ttaago	catga tcgtctaggc	20
<210><211><211>	5 68 DNA	

<213> primer <400> 5 60 aacacaaaaa caaaaagttt ttttaatttt aatcaaaaac tgagttaaac aatcatgaat 68 tcaactcc <210> 6 <211> 65 <212> DNA <213> primer <400> 6 gaatgtaagc gtgacataac taattacatg actcgagacg gtttagcgtg aaattatttc 60 65 ttgcc <210> 7 <211> 20 <212> DNA <213> primer <400> 7 20 gacacagtga catatgcacc <210> 8 <211> 21 <212> DNA <213> primer <400> 8 21 gccaatactt cacaatgttc g <210> 9 <211> 60 <212> DNA <213> primer <400> 9 tgttggtggt attgccgttt tatctcctat gttgatttct ttcgtacgct gcaggtcgac 60 <210> 10 <211> 62 <212> DNA <213> primer cacagagttg gagtagttct tagtaccgaa gttggtacag gcataggcca ctagtggatc 60 62 tg

	<210>	11	
	<211> <212>		
	<400> tttcgaa	11 aact totattgttt toggtgtogt caacttotto ttogtaogot goaggtogao	60
	.07.0		
	<210> <211>		
	<212> <213>	DNA primer	
	<400>	12	60
-	- 11 · · · ·	cage agaccatace aatggcacca tataacaaac gcataggcca ctagtggate	62
	tg		02
	<210> <211>		
	<212>	DNA	
		primer	
	<400> ttgggt	13 gata tgtacggtcg	20
	<210> <211>		
	<212> <213>	DNA primer	
	<400>	14	
	agagat	gctc ttgcttcgtc	20
	<210>	15	
	<211> <212>		
	<213>	primer	
	<400>	15 catga tocaatotot	20
	J J		
	<210> <211>	16 20	
	<212> <213>	DNA	
	<400>	primer 16	
		taatc tagtgactcc	20
	Z210×	17	
	<210>	17	

	DNA primer	
<400> ggtatc	atga tccaatctct	20
<210> <211> <212> <213>	20	
<400> atcata	18 cagt taccagcacc	20 .
<210> <211> <212> <213>	31	
<400> cgaggg	19 gate caateatgaa tteaacteea g	31
<210> <211> <212> <213>	31	
<400> cgagga	20 Nagot togtgaaatt atttottgoo g	31
<210> <211> <212> <213>	37	
<400> cctaac	21 ggaaa tgagaggtac tttagtctcc tgttacc	37
<210> <211> <212> <213>	37 DNA	
<400> ggtaad	22 cagga gactaaagta cctctcattt ccttagg	37
<210> <211> <212> <213>	40 DNA	

<400> 2	_	tgatgatt	accttgggta	ttttcttggg			40
<212> D	4 0 NA rimer						
<400> 2 cccaagaa		cccaaggt	aatcatcagt	tggtaacagg			40
<211> 1 <212> D	5 704 NA accha	romyces c	cerevisiae				
	:5 :aa ct	ccagattt	aatatctcca	caaaagtcaa	gtgagaattc	gaatgctgac	60
ctgccttc	ga at:	agctctca	ggtaatgaac	atgcctgaag	aaaaaggtgt	tcaagatgat	120
ttccaagc	tg ag:	gccgacca	agtacttacc	aacccaaata	caggtaaagg	tgcatatgtc	180
actgtgtc	ta tc	tgttgtgt	tatggttgcc	ttcggtggtt	tcgttttcgg	ttgggatact	240
ggtaccat	tt ct	ggtttcgt	cgcccaaact	gatttcttga	gaagattcgg	tatgaagcat	300
aaagatgg	ıta gt	tattattt	gtctaaggtt	agaactggtt	taattgtctc	cattttcaac	360
attggttg	stg cc	attggtgg	tattattttg	gctaaattgg	gtgatatgta	cggtcgtaaa	420
atgggttt	ga tt	gtcgttgt	tgttatctac	atcatcggta	ttattattca	aattgcatcc	480
atcaacaa	at gg	taccaata	tttcatcggt	agaattattt	ccggtttggg	tgttggtggt	540
attgccgt	tt ta	tctcctat	gttgatttct	gaagtcgctc	ctaaggaaat	gagaggtact	600
ttagtctc	cct gt	taccaact	gatgattacc	ttgggtattt	tcttgggtta	ctgtaccaac	660
ttcggtac	cta ag	gaactactc	caactctgtg	caatggagag	ttccattagg	tttgtgtttt	720
gcctgggc	ett te	ıtttatgat	cggtggtatg	actttcgttc	cagaatcccc	acgttatttg	780
gttgaagc	ctg gt	caaattga	cgaagcaaga	gcatctcttt	ccaaagttaa	caaggttgcc	840
ccagacca	atc ca	ıttcattca	acaagagttg	gaagttattg	aagctagtgt	tgaagaagct	900
agagctgc	ctg gt	tcagcatc	atggggtgag	ttgttcactg	gtaagccggc	catgtttaag	960
cgtactat	ga to	ggtatcat	gatccaatct	ctacaacaat	tgactggtga	taactatttc	1020
ttctacta	atg gt	actaccgt	ttttaacgct	gttggtatga	gtgattcttt	cgaaacttct	1080
attgttt	tcg gt	gtcgtcaa	cttcttctct	acttgttgtt	ctttgtacac	tgtcgatcgt	1140

tttggacgtc	gtaactgttt	gttatatggt	gccattggta	tggtctgctg	ttatgtagtt	1200
tacgcttctg	ttggtgtcac	cagactatgg	ccaaatggtg	aaggtaatgg	ttcatccaag	1260
ggtgctggta	actgtatgat	tgtctttgcc	tgtttctata	ttttctgttt	tgctaccact	1320
tgggctccaa	ttgcttatgt	tgttatttct	gaaactttcc	cattgagagt	caagtctaag	1380
gctatgtcta	ttgctacagc	tgctaattgg	ttgtggggtt	tcttgattgg	tttcttcact	1440
ccatttatta	ctggtgctat	taacttctac	tacggttacg	ttttcatggg	ctgtatggtt	1500
ttcgcctact	tctacgtttt	cttctttgtg	ccagaaacta	agggtttgac	tttggaagaa	1560
gtcaatgata	tgtacgctga	aggtgttcta	ccatggaagt	ctgcttcatg	ggttccaaca	1620
tctcaaagag	gtgctaacta	cgatgctgat	gcattgatgc	atgatgacca	gccattctac	1680
aagaaaatgt	tcggcaagaa	ataa				1704

<210> 26

<211> 567

<212> PRT

<213> Saccharomyces cerevisiae

<400> 26

Met Asn Ser Thr Pro Asp Leu Ile Ser Pro Gln Lys Ser Ser Glu Asn 1 5 10 15

Ser Asn Ala Asp Leu Pro Ser Asn Ser Ser Gln Val Met Asn Met Pro 20 25 30

Leu Thr Asn Pro Asn Thr Gly Lys Gly Ala Tyr Val Thr Val Ser Ile 50 55 60

Cys Cys Val Met Val Ala Phe Gly Gly Phe Val Phe Gly Trp Asp Thr 65 70 75 80

Gly Thr Ile Ser Gly Phe Val Ala Gln Thr Asp Phe Leu Arg Arg Phe 85 90 95

Gly Met Lys His Lys Asp Gly Ser Tyr Tyr Leu Ser Lys Val Arg Thr 100 105 110

Gly	Leu	Ile 115	Val	Ser	Ile	Phe	Asn 120	Ile	Gly	Cys	Ala	Ile 125	Gly	Gly	Ile
Ile	Leu 130	Ala	Lys	Leu	Gly	Asp 135	Met	Tyr	Gly	Arg	Lys 140	Met	Gly	Leu	Ile
Val 145	Val	Val	Val	Ile	Tyr 150	Ile	Ile	Gly	Ile	Ile 155	Ile	Gln	Ile	Ala	Ser 160
Ile	Asn	Lys	Trp	Tyr 165	Gln	Туг	Phe	Ile	Gly 170	Arg	Ile	Ile	Ser	Gly 175	Leu
Gly	Val	Gly	Gly 180	Ile	Ala	Val	Leu	Ser 185	Pro	Met	Leu	Ile	Ser 190	Glu	Val
Ala	Pro	Lys 195	Glu	Met	Arg	Gly	Thr 200	Leu	Val	Ser	Cys	Tyr 205	Gln	Leu	Met
Ile	Thr 210	Leu	Gly	Ile	Phe	Leu 215	Gly	Tyr	Cys	Thr	Asn 220	Phe	Gly	Thr	Lys
Asn 225	Туг	Ser	Asn	Ser	Val 230	Gln	Trp	Arg	Val	Pro 235	Leu	Gly	Leu	Cys	Phe 240
Ala	Trp	Ala	Leu	Phe 245	Met	Ile	Gly	Gly	Met 250	Thr	Phe	Val	Pro	Glu 255	Ser
Pro	Arg	Tyr	Leu 260	Val	Glu	Ala	Gly	Gln 265	Ile	Asp	Glu	Ala	Arg 270	Ala	Ser
Leu	Ser	Lys 275	Val	Asn	ГÀЗ	Val	Ala 280	Pro	Asp	His	Pro	Phe 285		Gln	Gln
Glu	Leu 290	Glu	Val	Ile	Glu	Ala 295		Val	Glu	Glu	. Ala 300		Ala	Ala	Gly
Ser 305	Ala	Ser	Trp	Gly	Glu 310	Leu	Phe	Thr	Gly	Lys 315		Ala	Met	Phe	Lys 320
Arg	Thr	Met	Met	Gly 325		Met	Ile	Gln	Ser 330		. Gln	Gln	Leu	Thr 335	

Asp Asn Tyr Phe Phe Tyr Tyr Gly Thr Thr Val Phe Asn Ala Val Gly

345 350 340 Met Ser Asp Ser Phe Glu Thr Ser Ile Val Phe Gly Val Val Asn Phe 355 360 Phe Ser Thr Cys Cys Ser Leu Tyr Thr Val Asp Arg Phe Gly Arg Arg 375 Asn Cys Leu Leu Tyr Gly Ala Ile Gly Met Val Cys Cys Tyr Val Val 395 390 Tyr Ala Ser Val Gly Val Thr Arg Leu Trp Pro Asn Gly Glu Gly Asn Gly Ser Ser Lys Gly Ala Gly Asn Cys Met Ile Val Phe Alá Cys Phe Tyr Ile Phe Cys Phe Ala Thr Thr Trp Ala Pro Ile Ala Tyr Val Val 440 Ile Ser Glu Thr Phe Pro Leu Arg Val Lys Ser Lys Ala Met Ser Ile Ala Thr Ala Ala Asn Trp Leu Trp Gly Phe Leu Ile Gly Phe Phe Thr 475 Pro Phe Ile Thr Gly Ala Ile Asn Phe Tyr Tyr Gly Tyr Val Phe Met 485 490 Gly Cys Met Val Phe Ala Tyr Phe Tyr Val Phe Phe Phe Val Pro Glu Thr Lys Gly Leu Thr Leu Glu Glu Val Asn Asp Met Tyr Ala Glu Gly 520 Val Leu Pro Trp Lys Ser Ala Ser Trp Val Pro Thr Ser Gln Arg Gly 535 Ala Asn Tyr Asp Ala Asp Ala Leu Met His Asp Asp Gln Pro Phe Tyr 555 Lys Lys Met Phe Gly Lys Lys

565

<210> 27 <211> 567 <212> PRT <213> Mutated HXT3 protein

<400> 27

Ser Asn Ala Asp Leu Pro Ser Asn Ser Ser Gln Val Met Asn Met Pro 20 25 30

Glu Glu Lys Gly Val Gln Asp Asp Phe Gln Ala Glu Ala Asp Gln Val
35 40 45

Leu Thr Asn Pro Asn Thr Gly Lys Gly Ala Tyr Val Thr Val Ser Ile 50 55 60

Cys Cys Val Met Val Ala Phe Gly Gly Phe Val Phe Gly Trp Asp Thr 65 70 75 80

Gly Thr Ile Ser Gly Phe Val Ala Gln Thr Asp Phe Leu Arg Arg Phe 85 90 95

Gly Met Lys His Lys Asp Gly Ser Tyr Tyr Leu Ser Lys Val Arg Thr
100 105 110

Gly Leu Ile Val Ser Ile Phe Asn Ile Gly Cys Ala Ile Gly Gly Ile 115 120 125

Ile Leu Ala Lys Leu Gly Asp Met Tyr Gly Arg Lys Met Gly Leu Ile 130 135 140

Val Val Val Ile Tyr Ile Ile Gly Ile Ile Gln Ile Ala Ser 145 150 155 160

Ile Asn Lys Trp Tyr Gln Tyr Phe Ile Gly Arg Ile Ile Ser Gly Leu 165 170 175

Gly Val Gly Gly Ile Ala Val Leu Ser Pro Met Leu Ile Ser Glu Val 180 185 190

The second section of the second section is a

	Ala	Pro	Lys 195	Glu	Met	Arg	Gly	Thr 200	Leu	Val	Ser	Cys	Tyr 205	Gln	Leu	Met
	Val	Thr 210	Leu	Gly	Ile	Phe	Leu 215	Gly	Tyr	Суѕ	Thr	Asn 220	Phe	Gly	Thr	Lys
	Asn 225	Туг	Ser	Asn	Ser	Val 230	Gln	Trp	Arg	Val	Pro 235	Leu	Gly	Leu	Cys.	Phe 240
	Ala	Trp	Ala	Leu	Phe 245	Met	Ile	Gly	Gly	Met 250	Thr	Phe	Val	Pro	Glu 255	Ser
•	Pro-	Arg.	Туг	Leu 260	·Val	Glu	Ala	Gly	Gln 265	Ile	Asp	Glu	Ala	Arg 270	Ala	Ser
	Leu	Ser	Lys 275	Val	Asn	Lys	Val	Ala 280	Pro	Asp	His	Pro	Phe 285	Ile	Gln	Gln
	Glu	Leu 290	Glu	Val	Ile	Glu	Ala 295	Ser	Val	Glu	Glu	Ala 300	Arg	Ala	Ala	Gly
	Ser 305	Ala	Ser	Trp	Gly	Glu 310	Leu	Phe	Thr	Gly	Lys 315	Pro	Ala	Met	Phe	Lys 320
	Arg	Thr	Met	Met	Gly 325	Ile	Met	Ile	Gln	Ser 330	Leu	Gln	Gln	Leu	Thr 335	Gly
	Asp	Asn	Туг	Phe 340	Phe	Tyr	Туг	Gly	Thr 345	Thr	Val	Phe	Asn	Ala 350	Val	Gly
	Met	Ser	Asp 355	Ser	Phe	Glu	Thr	Ser 360	Ile	Val	Phe	Gly	Val 365	Val	Asn	Phe
	Phe	Ser 370		Cys	Суз	Ser	Leu 375	Tyr	Thr	Val	Asp	Arg 380	Phe	Gly	Arg	Arg
	Asn 385	Суз	Ļeu	Leu	Туг	390 GJY	Ala	Ile	Gly	Met	Val 395	Cys	Cys	Туг	Val	Val 400
	Tyr	Ala	Ser	Val	Gly 405	Val	Thr	Arg	Leu	Trp 410	Pro	Asn	Gly	Glu	Gly 415	Asn .
	Gly	Ser	Ser	Lys	Gly	Ala	Gly	Asn	Cys	Met	Ile	Val	Phe	Ala	Cys	Phe

11/16

430 425 420 Tyr Ile Phe Cys Phe Ala Thr Thr Trp Ala Pro Ile Ala Tyr Val Val 435 Ile Ser Glu Thr Phe Pro Leu Arg Val Lys Ser Lys Ala Met Ser Ile Ala Thr Ala Ala Asn Trp Leu Trp Gly Phe Leu Ile Gly Phe Phe Thr 470 475 Pro Phe Ile Thr Gly Ala Ile Asn Phe Tyr Tyr Gly Tyr Val Phe Met .48.5 ي د د د ميوره د Gly Cys Met Val Phe Ala Tyr Phe Tyr Val Phe Phe Phe Val Pro Glu Thr Lys Gly Leu Thr Leu Glu Glu Val Asn Asp Met Tyr Ala Glu Gly Val Leu Pro Trp Lys Ser Ala Ser Trp Val Pro Thr Ser Gln Arg Gly Ala Asn Tyr Asp Ala Asp Ala Leu Met His Asp Asp Gln Pro Phe Tyr 545 550 555 Lys Lys Met Phe Gly Lys Lys 565 <210> 28 <211> 1704 <212> DNA <213> Mutated HXT3 gene atgaattcaa ctccagattt aatatctcca caaaagtcaa gtgagaattc gaatgctgac 60 ctgccttcga atagctctca ggtaatgaac atgcctgaag aaaaaggtgt tcaagatgat 120 ttccaagctg aggccgacca agtacttacc aacccaaata caggtaaagg tgcatatgtc 180 actytytcta tetyttytyt tatyyttyce ttegytyytt teytttegy ttyggataet 240 ggtaccattt ctggtttcgt cgcccaaact gatttcttga gaagattcgg tatgaagcat 300 aaagatggta gttattattt gtctaaggtt agaactggtt taattgtctc cattttcaac 360

WO 2005/058947 PCT/EP2004/014577

attggttgtg	ccattggtgg	tattattttg	gctaaattgg	gtgatatgta	cggtcgtaaa	420
atgggtttga	ttgtcgttgt	tgttatctac	atcatcggta	ttattattca	aattgcatcc	480
atcaacaaat	ggtaccaata	tttcatcggt	agaattattt	ccggtttggg	tgttggtggt	540
attgccgttt	tatctcctat	gttgatttct	gaagtcgctc	ctaaggaaat	gagaggtact	600
ttagtctcct	gttaccaact	gatggttacc	ttgggtattt	tcttgggtta	ctgtaccaac	660
ttcggtacta	agaactactc	caactctgtg	caatggagag	ttccattagg	tttgtgtttt	720
gcctgggctt	tgtttatgat	cggtggtatg	actttcgttc	cagaatcccc	acgttatttg	780
gttgaagctg	gtcaaattga	cgaagcaaga	gcatctcttt	ccaaagttaa	caaggttgcc	840
ccagaccatc	cattcattca	acaagagttg	gaagttattg	aagctagtgt	tgaagaagct	900
agagctgctg	gttcagcatc	atggggtgag	ttgttcactg	gtaagccggc	catgtttaag	960
cgtactatga	tgggtatcat	gatccaatct	ctacaacaat	tgactggtga	taactatttc	1020
ttctactatg	gtactaccgt	ttttaacgct	gttggtatga	gtgattcttt	cgaaacttct	1080
attgttttcg	gtgtcgtcaa	cttcttctct	acttgttgtt	ctttgtacac	tgtcgatcgt	1140
tttggacgtc	gtaactgttt	gttatatggt	gccattggta	tggtctgctg	ttatgtagtt	1200
tacgcttctg	ttggtgtcac	cagactatgg	ccaaatggtg	aaggtaatgg	ttcatccaag	1260
ggtgctggta	actgtatgat	tgtctttgcc	tgtttctata	ttttctgttt	tgctaccact	1320
tgggctccaa	ttgcttatgt	tgttatttct	gaaactttcc	cattgagagt	caagtctaag	1380
gctatgtcta	ttgctacagc	tgctaattgg	ttgtggggtt	tcttgattgg	tttcttcact	1440
ccatttatta	ctggtgctat	taacttctac	tacggttacg	ttttcatggg	ctgtatggtt	1500
ttcgcctact	tctacgtttt	cttctttgtg	ccagaaacta	agggtttgac	tttggaagaa	1560
gtcaatgata	tgtacgctga	aggtgttcta	ccatggaagt	ctgcttcatg	ggttccaaca	1620
tctcaaagag	gtgctaacta	cgatgctgat	gcattgatgc	atgatgacca	gccattctac	1680
aagaaaatgt	tcggcaagaa	ataa			•	1704

<210> 29

<211> 1704

<212> DNA

<213> Mutated HXT3 gene II

<400> 29

atgaattcaa ctccagattt aatatctcca caaaagtcaa gtgagaattc gaatgctgac '60 ctgccttcga atagctctca ggtaatgaac atgcctgaag aaaaaggtgt tcaagatgat 120

+ + 5x x + x + x

ttccaagctg	aggccgacca	agtacttacc	aacccaaata	caggtaaagg	tgcatatgtc	180
actgtgtcta	tctgttgtgt	tatggttgcc	ttcggtggtt	tcgttttcgg	ttgggatact	240
ggtaccattt	ctggtttcgt	cgcccaaact	gatttcttga	gaagattcgg	tatgaagcat	300
aaagatggta	gttattattt	gtctaaggtt	agaactggtt	taattgtctc	cattttcaac	360
attggttgtg	ccattggtgg	tattattttg	gctaaattgg	gtgatatgta	cggtcgtaaa	420
atgggtttga	ttgtcgttgt	tgttatctac	atcatcggta	ttattattca	aattgcatcc	480
atcaacaaat	ggtaccaata	cttcatcggt	agaattattt	ccggtttggg	tgttggtggt	540
attgccgttt	tatctcctat	gttgatttct	gaagtcgctc	ctaaggaaat	gagaggtgct	600
ttagtctcct	gttaccaact	gatggttacc	ttgggtattt	tcttgggtta	ctgtaccaac	·- 660
ttcggtacta	agaactactc	caactctgtg	caatggagag	ttccattagg	tttgtgtttt	720
gcctgggctt	tgtttatgat	cggtggtatg	actttcgttc	cagaatcccc	acgttatttg	780
gttgaagctg	gtcaaattga	cgaagcaaga	gcatctcttt	ccaaagttaa	caaggttgcc	840
ccagaccatc	cattcattca	acaagagttg	gaagttattg	aagctagtgt	tgaagaagct	900
agagctgctg	gttcagcatc	atggggtgag	ttgttcactg	gtaagccggc	catgtttaag	960
cgtactatga	taggtatcat	gatccaatct	ctacaacaat	tgactggtga	taactatttc	1020
ttctactatg	gtactaccgt	ttttaacgct	gttggtatga	gtgattcttt	cgaaacttct	1080
attgttttcg	gtgtcgtcaa	cttcttctcc	acttgttgtt	ctctgtacac	cgttgaccgt	1140
tttggccgtc	gtaactgttt	gatgtggggt	gctgtcggta	tggtctgctg	ttatgttgtc	1200
tatgcttctg	ttggagtcac	tagattatgg	ccaaatggtc	aaaacaacgg	ctcatccaag	1260
ggtgctggta	actgtatgat	tgtctttgcc	tgtttctata	ttttctgttt	cgctactacc	1320
tgggccccaa	ttgcttatgt	cgttgtttct	gaaactttcc	cattgagagt	caagtctaag	1380
gctatgtcta	ttgctacagc	tgctaactgg	atctggggtt	tcttgattgg	tttcttcact	1440
ccatttatta	ctggtgctat	taacttctac	tacggttacg	ttttcatggg	ctgtatggtt	1500
ttcgcctact	tctacgtttt	cttctttgtg	ccagaaacta	agggtttgac	tttggaagaa	1560
gtcaatgata	tgtacgctga	aggtgttcta	ccatggaagt	ctgcttcatg	ggttccaaca	1620
tctcaaagag	gtgctaacta	cgatgctgat	gcattgatgc	atgatgacca	gccattctac	1680
aagaaaatgt	tcggcaagaa	ataa				1704

<210> 30 <211> 567

<212> PRT

<213> Mutated HXT3 protein II

<400> 30

Met Asn Ser Thr Pro Asp Leu Ile Ser Pro Gln Lys Ser Ser Glu Asn 1 5 10 15

Ser Asn Ala Asp Leu Pro Ser Asn Ser Ser Gln Val Met Asn Met Pro 20 25 30

Leu Thr Asn Pro Asn Thr Gly Lys Gly Ala Tyr Val Thr Val Ser Ile 50 55 60

Cys Cys Val Met Val Ala Phe Gly Gly Phe Val Phe Gly Trp Asp Thr 65 70 75 80

Gly Thr Ile Ser Gly Phe Val Ala Gln Thr Asp Phe Leu Arg Arg Phe 85 90 95

Gly Met Lys His Lys Asp Gly Ser Tyr Tyr Leu Ser Lys Val Arg Thr 100 105 110

Gly Leu Ile Val Ser Ile Phe Asn Ile Gly Cys Ala Ile Gly Gly Ile 115 120 125

Ile Leu Ala Lys Leu Gly Asp Met Tyr Gly Arg Lys Met Gly Leu Ile 130 135 140

Val Val Val Ile Tyr Ile Ile Gly Ile Ile Gln Ile Ala Ser 145 150 155 160

Ile Asn Lys Trp Tyr Gln Tyr Phe Ile Gly Arg Ile Ile Ser Gly Leu 165 170 175

Gly Val Gly Gly Ile Ala Val Leu Ser Pro Met Leu Ile Ser Glu Val 180 185 190

Ala Pro Lys Glu Met Arg Gly Ala Leu Val Ser Cys Tyr Gln Leu Met 195 200 205

Val	Thr 210	Leu	Gly	Ile	Phe	Leu 215	Gly	Tyr	Cys	Thr	Asn 220	Phe	Gly	Thr	Lys				
Asn 225	Tyr	Ser	Asn	Ser	Val 230	Gln	Trp	Arg	Val	Pro 235	Leu	Gly	Leu	Суз	Phe 240				
Ala	Trp	Ala	Leu	Phe 245	Met	Ile	Gly	Gly	Met 250	Thr	Phe	Val	Pro	Glu 255	Ser				
Pro	Arg	Tyr	Leu 260	Val	Glu	Ala	Gly	Gln 265	Ile	Asp	Glu	Ala	Arg 270	Ala	Ser				
Leu	Ser.	Lys 275	Val	Asn	Lys	Val	Ala 280	Pro	Asp	His	Pro	Phe 285	Ile	Gln	.Gln .			,	
Glu	Leu 290	Glu	Val	Ile	Glu	Ala 295	Ser	Val	Glu	Glu	Ala 300	Arg	Ala	Ala	Gly	•			
Ser 305	Ala	Ser	Trp	Gly	Glu 310	Leu	Phe	Thr	Gly	Lys 315	Pro	Ala	Met	Phe	Lys 320				
Arg	Thr	Met	Ile	Gly 325	Ile	Met	Ile	Gln	Ser 330	Leu	Gln	Gln	Leu	Thr 335	Gly				
			340					345					Ala 350				٠.		
		355					360					365							
	370					375					380		- Gly						
385					390					395			Tyr		400				
				405					410	1			/ Gln	415	ı				
Gly	Ser	Ser	Lys 420		Ala	. Gly	Asn	425		: Il∈	e Val	. Phe	Ala 43C	. Cys	Phe				

. Tyr Ile Phe Cys Phe Ala Thr Thr Trp Ala Pro Ile Ala Tyr Val Val

		435					440					445			
Val	Ser 450	Glu	Thr	Phe	Pro	Leu 455	Arg	Val	Lys	Ser	Lys 460	Ala	Met	Ser	Ile
Ala 465	Thr	Ala	Ala	Asn	Trp 470	Ile	Trp	Gly	Phe	Leu 475	Ile	Gly	Phe	Phe	Thr 480
Pro	Phe	Ile	Thr	Gly 485	Ala	Ile	Asn	Phe	Tyr 490	Tyr	Gly	Tyr	Val	Phe 495	Met
Gly	Cys	Met	Val 500	Phe	Ala	Tyr	Phe	Tyr 505	Val	Phe	Phe	Phe	Val 510	Pro	Glu
Thr	Lys	Gly 515	Leu	Thr	Leu	Glu	Glu 520	Val	Asn	Asp	Met	Tyr 525	Ala	Glu	Gly
Val	Leu 530	Pro	Trp	Lys	Ser	Ala 535	Ser	Trp	Val	Pro	Thr 540	Ser	Gln	Arg	Gly
Ala 545	Asn	Tyr	Asp	Ala	Asp 550	Ala	Leu	Met	His	Asp 555	Asp	Gln	Pro	Phe	Tyr 560
Lys	Lys	Met	Phe	Gly 565	Lys	Lys									