Transfer learning with Transformer networks

Grégory Châtel

Disaitek Intel Software Innovator

@rodgzilla github.com/rodgzilla

11/28/2018

Traditional architectures for NLP

 $Image\ from\ https://techblog.gumgum.com/articles/deep-learning-for-natural-language-processing-part-2-rnns\ and \ http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/$

Attention mechanisms

Scaled Dot-Product Attention

Q is the query vector, K is the key vector and V value vector.

$$\mathsf{Attention}(Q,K,V) = \mathsf{softmax}(rac{QK^T}{\sqrt{d_k}})V.$$

Attention mechanisms

Multi-Head Attention

MultiHead
$$(Q, K, V)$$
 = Concat $(head_1, ..., head_h)$
where $head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

where the projections W_{i}^{Q} , W_{i}^{K} and W_{i}^{V} are parameter matrices.

Transformer network

Original transformer

Transformer network

OpenAl multi-layer decoder

Pre-training task

Language modeling

Results on standard datasets

New state of the art on the following tasks:

- Textual Entailment
 - ► SNLI 89.3 → 89.9
 - ▶ MNLI Matched $80.6 \rightarrow 82.1$
 - ▶ MNLI Mismatched $80.1 \rightarrow 81.4$
 - ► SciTail 83.3 → 88.3
 - ▶ QNLI 82.3 → 88.1
- Semantic Similarity
 - ► STS-B 81.0 → 82.0
 - $\blacktriangleright \ \mathsf{QQP}\ 66.1 \to 70.3$
- Reading Comprehension
 - ► RACE 53.3 → 59.0
- Commonsense Reasoning
 - ► ROCStories 77.6 → 86.5
 - ► COPA 71.2 → 78.6
- Linguistic Acceptability
 - ► CoLA 35.0 → 45.4
- Multi-Task Benchmark
 - ► GLUE 68.9 → 72.8

References

- Vaswani, Ashish, et al. "Attention is all you need." Advances in Neural Information Processing Systems. 2017.
- Radford, Alec, et al. "Improving language understanding by generative pre-training." URL Article pdf link Blog post (2018).
- Devlin, Jacob, et al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805 (2018).