

Universidad de la República Facultad de Ingeniería

Implementación de un transmisor de ISDB-T abierto bajo el paradigma de Radio Definida por Software

Memoria de proyecto presentada a la Facultad de Ingeniería de la Universidad de la República por

Javier Hernández, Santiago Castro

EN CUMPLIMIENTO PARCIAL DE LOS REQUERIMIENTOS
PARA LA OBTENCIÓN DEL TÍTULO DE
INGENIERO ELECTRICISTA.

Tutor	
Dr. Federico La Rocca	Universidad de la República
M.Sc. Pablo Flores Guridi	Universidad de la República
Tribunal	
Dr. Alicia Fernández	Universidad de la República
Dr. Víctor González-Barbone	Universidad de la República
Dr. Rafael Sotelo	Universidad de la República

Montevideo sábado 15 septiembre, 2018 Implementación de un transmisor de ISDB-T abierto bajo el paradigma de Radio Definida por Software, Javier Hernández, Santiago Castro.

Esta tesis fue preparada en LATEX usando la clase iietesis (v1.1). Contiene un total de 39 páginas. Compilada el sábado 15 septiembre, 2018. http://iie.fing.edu.uy/

Sean los orientales tan ilustrados como valientes.

José Gervasio Artigas

Agradecimientos

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur non neque tempor nunc fringilla tincidunt a a tortor. Phasellus leo turpis, commodo aliquam vehicula a, auctor in magna. Nulla non venenatis neque. Sed sit amet turpis metus, vel accumsan ligula. Suspendisse malesuada lacus sed tellus mollis a posuere mi porttitor. Nunc venenatis ante sit amet metus euismod iaculis. Phasellus accumsan lacinia eros, nec tempor lacus malesuada a. Suspendisse leo justo, pulvinar vitae molestie sit amet, ullamcorper ut mauris. Proin sed est ipsum.

Nulla leo ligula, porttitor eu dapibus non, porta sit amet enim. Ut eros nibh, fringilla ultrices rhoncus ut, luctus ut nibh. Nam id urna ac ligula fermentum rutrum. Sed eu cursus lacus. Donec pretium fermentum augue, eu interdum ipsum faucibus a. Praesent feugiat elit ligula. Sed ac augue luctus ligula aliquet scelerisque commodo nec justo. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Vivamus eget sem ac sapien elementum suscipit. Ut odio tellus, accumsan sit amet condimentum vehicula, vestibulum quis dui. Quisque posuere semper massa quis cursus. Aliquam gravida tellus eget lorem congue dapibus. Duis id quam eu arcu porta commodo vel at nunc. Nulla in venenatis lorem. Donec congue vehicula bibendum.

Vestibulum pulvinar lorem a velit bibendum porttitor sagittis nisl tempus. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce ut mi sit amet metus ultrices feugiat ut nec lorem. Nunc felis lorem, consectetur ut eleifend et, vestibulum id purus. Praesent nec augue quis neque sodales commodo nec ac urna. Sed a nibh ac odio sodales pulvinar. Pellentesque ut odio orci. Nam dictum hendrerit felis at ullamcorper. Integer eget sapien libero, in congue tortor. Nullam blandit vestibulum aliquet. Nullam vulputate sapien quis nisl molestie vulputate. Aliquam elementum eros quis ante ultrices ultricies. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec porttitor sodales aliquam. Ut sit amet risus justo. Integer eu iaculis orci.

Sed lectus tellus, porttitor in viverra sed, viverra nec nunc. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Fusce gravida eleifend nisi, sit amet pulvinar ligula gravida id. Vivamus est massa, viverra sit amet ornare non, consectetur sit amet elit. Nam sapien lectus, pharetra sit amet imperdiet ultrices, iaculis eget enim. Curabitur in felis et lectus malesuada pellentesque vestibulum ac dolor. Vivamus quis nulla tortor. Sed adipiscing fringilla leo, sit amet sodales felis volutpat id. Proin vitae arcu libero. Suspendisse sit amet est tellus. Aliquam sit amet metus ut arcu placerat feugiat. Nulla eget magna id odio

facilisis blandit. Nam porta ultricies est, sed bibendum mauris volutpat ac. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas vel lorem lorem. Donec et purus a tellus lacinia fringilla a non lectus.

Sed pretium porttitor fermentum. Vivamus semper lobortis dictum. In interdum, libero id iaculis laoreet, sapien diam tristique lorem, sit amet aliquam sapien sem ac tortor. Phasellus tincidunt tempor condimentum. Aenean luctus, erat non fermentum rhoncus, quam odio gravida massa, sed scelerisque tellus elit ut massa. Suspendisse vel posuere ipsum. Vestibulum dolor leo, ornare quis faucibus non, consequat ut purus. Maecenas at massa turpis, vitae pretium metus. Mauris mollis dolor turpis, semper dignissim tellus. Sed vel ligula eu turpis accumsan vehicula id in nisl. Pellentesque sit amet mi lorem. Suspendisse potenti. Proin bibendum luctus accumsan. Mauris urna elit, lacinia sit amet adipiscing feugiat, vestibulum sed mauris.

Resumen

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur non neque tempor nunc fringilla tincidunt a a tortor. Phasellus leo turpis, commodo aliquam vehicula a, auctor in magna. Nulla non venenatis neque. Sed sit amet turpis metus, vel accumsan ligula. Suspendisse malesuada lacus sed tellus mollis a posuere mi porttitor. Nunc venenatis ante sit amet metus euismod iaculis. Phasellus accumsan lacinia eros, nec tempor lacus malesuada a. Suspendisse leo justo, pulvinar vitae molestie sit amet, ullamcorper ut mauris. Proin sed est ipsum.

Nulla leo ligula, porttitor eu dapibus non, porta sit amet enim. Ut eros nibh, fringilla ultrices rhoncus ut, luctus ut nibh. Nam id urna ac ligula fermentum rutrum. Sed eu cursus lacus. Donec pretium fermentum augue, eu interdum ipsum faucibus a. Praesent feugiat elit ligula. Sed ac augue luctus ligula aliquet scelerisque commodo nec justo. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Vivamus eget sem ac sapien elementum suscipit. Ut odio tellus, accumsan sit amet condimentum vehicula, vestibulum quis dui. Quisque posuere semper massa quis cursus. Aliquam gravida tellus eget lorem congue dapibus. Duis id quam eu arcu porta commodo vel at nunc. Nulla in venenatis lorem. Donec congue vehicula bibendum.

Vestibulum pulvinar lorem a velit bibendum porttitor sagittis nisl tempus. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce ut mi sit amet metus ultrices feugiat ut nec lorem. Nunc felis lorem, consectetur ut eleifend et, vestibulum id purus. Praesent nec augue quis neque sodales commodo nec ac urna. Sed a nibh ac odio sodales pulvinar. Pellentesque ut odio orci. Nam dictum hendrerit felis at ullamcorper. Integer eget sapien libero, in congue tortor. Nullam blandit vestibulum aliquet. Nullam vulputate sapien quis nisl molestie vulputate. Aliquam elementum eros quis ante ultrices ultricies. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec porttitor sodales aliquam. Ut sit amet risus justo. Integer eu iaculis orci.

Sed lectus tellus, porttitor in viverra sed, viverra nec nunc. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Fusce gravida eleifend nisi, sit amet pulvinar ligula gravida id. Vivamus est massa, viverra sit amet ornare non, consectetur sit amet elit. Nam sapien lectus, pharetra sit amet imperdiet ultrices, iaculis eget enim. Curabitur in felis et lectus malesuada pellentesque vestibulum ac dolor. Vivamus quis nulla tortor. Sed adipiscing fringilla leo, sit amet sodales felis volutpat id. Proin vitae arcu libero. Suspendisse sit amet est tellus. Aliquam sit amet metus ut arcu placerat feugiat. Nulla eget magna id odio

facilisis blandit. Nam porta ultricies est, sed bibendum mauris volutpat ac. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas vel lorem lorem. Donec et purus a tellus lacinia fringilla a non lectus.

Sed pretium porttitor fermentum. Vivamus semper lobortis dictum. In interdum, libero id iaculis laoreet, sapien diam tristique lorem, sit amet aliquam sapien sem ac tortor. Phasellus tincidunt tempor condimentum. Aenean luctus, erat non fermentum rhoncus, quam odio gravida massa, sed scelerisque tellus elit ut massa. Suspendisse vel posuere ipsum. Vestibulum dolor leo, ornare quis faucibus non, consequat ut purus. Maecenas at massa turpis, vitae pretium metus. Mauris mollis dolor turpis, semper dignissim tellus. Sed vel ligula eu turpis accumsan vehicula id in nisl. Pellentesque sit amet mi lorem. Suspendisse potenti. Proin bibendum luctus accumsan. Mauris urna elit, lacinia sit amet adipiscing feugiat, vestibulum sed mauris.

Prefacio

Algo que decir antes de empezar con el contenido?

El autor

Tabla de contenidos

Αį	grade	ecimier	itos	III
Re	esum	en		VI
Pr	efaci	io		IX
1.	Intr	oducci	ión	1
2.	Fun	damen	nto Teórico	9
	2.1.	Model	ado del canal	
		2.1.1.	Canales Continuos	ę
		2.1.2.	Canales Discretos	5
		2.1.3.	Las no idealidades del Canal	9
	2.2.	Estrat	egias para mitigar los efectos del canal	ę
		2.2.1.	Códigos de detección y correción de errores	5
		2.2.2.	Códigos Cíclicos	4
		2.2.3.	Códigos BCH	6
		2.2.4.	Códigos de Reed-Solomon	6
		2.2.5.	Entrelazamiento de datos	6
	2.3.	Modul	lación OFDM	6
		2.3.1.	Fundamentos	6
		2.3.2.	Continuos	ϵ
		2.3.3.	Discretos	6
	2.4.	El esta	andard MPEG-4	ϵ
		2.4.1.	Generalidades	6
		2.4.2.	Transport Stream Packet	ϵ
		2.4.3.	Tablas PAT	6
		2.4.4.	Tablas PMT	6
3.	El S	Sistema	a de Televisión Digital Terrestre ISDB-T	7
	3.1.	BTS c	como fuente de datos	7
	3.2.	Robus	tecimiento frente a las no idealidades del canal	7
	3.3.	Las po	ortadoras y la modulacion	7
	3.4.	Forma	cion de los frames OFDM	7
	3.5.	La pue	esta en el aire de la señal	7

Tabla de contenidos

4.	Radio definida por Software	9
	4.1. GNU Radio	9
	4.2. Hardware	9
	4.2.1. Alcance del transmisor	9
	4.2.2. Antenas de laboratorio	9
	4.3. gr-isdbt	9
5.	Un transmisor ISDBT implementado en GNU Radio	11
	5.1. Generalidades del Transmisor	11
	5.2. El flujo de datos en GNU Radio	11
	5.3. Obtencion de los TSP por capa	11
	5.4. Codificaciones de Canal	11
	5.5. La modulacion	11
	5.6. El uso de los entrelazamientos	11
	5.7. Formacion de cuadros OFDM	11
	5.7.1. Las portadoras piloto	11
	5.7.2. Las portadoras activas	11
	5.8. El prefijo ciclico	11
	5.9. La transmision desde USRP	11
6.	Evaluacion del sistema	13
	6.1. Pruebas sobre gr-isdbt	13
	6.2. Pruebas sobre televisores comerciales	13
7.	Conclusiones y trabajo a futuro	15
Α.	. Algo que agregar	17
Re	eferencias	19
		20
In	dice de tablas	20
Ín	dice de figuras	22

Introducción

Implementar un transmisor de televisión digital, no es una tarea sencilla. El primer problema a enfrentar es el acceso a la información técnica. Existe poca documentación generada en el país, para cumplir con las condiciones técnicas de un sistema complejo y que, además, ya lleva 7 años de vigencia como oficial. La norma presentada por la ARIB deja varias zonas grises, asume por conocidos conceptos clave, y no se explaya mas de lo necesario en cuestiones de fondo.

Existen fuertes limitaciones económicas para hacerse con software o hardware comercial que resuelvan incluso algunas de las funcionalidades que exige la norma.

Esta tesis intenta suplir esa carencia, en principio complementando el trabajo iniciado por el grupo ARTES con el receptor *gr-isdbt*. Se desarrolló a lo largo de este proyecto, un transmisor de televisión digital que cumple con las condiciones establecidas en la norma, y cuyas señales son decodificables por los televisores comerciales homologados por el LATU.

Contar con el trabajo presentado en *gr-isdbt* fue una ayuda mayúscula, ya que el paradigma de código abierto permitió contrastar y testear los conceptos vertidos en la norma, lo que fue fundamental para la comprensión de que cosas sería necesario implementar para transmitir. Es fundamental para este grupo de trabajo destacar lo valioso de la generación de proyectos de código abierto.

Esperamos contribuir con esta comunidad poniendo a disposición de cualquier persona el transmisor, para que continúen con el trabajo de aprendizaje, la optimización del mismo por técnicos y estudiantes con un mejor panorama del rubro del que tuvimos al implementar qr-isdbt-tx.

Contribuir con la comunidad nacional de técnicos que trabajan en el rubro, y que no cuentan con documentacion técnica generada por y para la norma nacional, con los problemas y las particularidades que la transmisión tiene en nuestro país y no tener que abstraer de trabajos de terceros, que resolvieron problemas similares en contextos diferentes.

Existen en el Uruguay XX licencias de transmisión de televisión para el área nacional. Durante la implementación en el marco legal de la televisión digital, se entregaron 22 licencias para transmisión de televisión digital bajo la norma ISDBT. De ese total, solo algunos estan brindando el servicio de forma adecuada.

La situación de los consumidores del servicio tampoco es la ideal. La television

Capítulo 1. Introducción

analógica sigue siendo la mayor puerta de acceso al medio. La Encuesta Continua de Hogares del Instituto Nacional de Estadística [2], cuyos indicadores son una muestra representativa de la situación de todos los hogares del país, dió a conocer que en el año 2017 solamente el 47 % de los hogares encuestados tienen recepción a TV digital abierta. Tanto es asi, que el apagón analógico programado para 2015, fue postpuesto por tiempo indeterminado. En Argentina, la situación es similar, siendo postpuesto para 2019. El alto costo del recambio de equipamiento, y posturas sobre la democratización del acceso a la información para personas de bajos recursos, fundamentan estas decisiones.

Se logra visualizar el funcionamiento de la norma de televisión nacional, de forma mas clara y consisa de lo que habia actualmente. Los conceptos que deja la norma como documento se bajan a tierra en un formato de código abierto, y gratuito, lo que democratiza el acceso a la información que hoy por hoy existe mayoritariamente en hardware y software propietario con licencias caras.

Aparece la posibilidad de recrear una planta de transmisión de televisión nacional a muy bajo costo, permitiendo su reproducción tanto en el hogar por entusiastas, en el aula por docentes o en la industria, por tecnicos, lo cual puede colaborar con el mejoramiento de la calidad del servicio actual.

Sirve como ejemplo para algunos de los cursos de Facultad, generalmente denominados por el estudiantado como muy teóricos y con poco alcance práctico.

Miren todo lo que aprendí, ver [1].

Fundamento Teórico

La sección de canal van a dar pie a los time interleavers y esas cosas, no? O sea, hablar de fading tanto en frecuencia y tiempo y cómo contrarrestarlo? Yo pondría la parte de DFT, FFT y convolución circular dentro de OFDM. En FFT van a hablar del algoritmo? Me parece medio al santo botón. En la parte de códigos les faltó hablar de convolucionales.

2.1. Modelado del canal

- 2.1.1. Canales Continuos
- 2.1.2. Canales Discretos
- 2.1.3. Las no idealidades del Canal

No idealidades del canal inalámbrico móvil.

2.2. Estrategias para mitigar los efectos del canal

2.2.1. Códigos de detección y correción de errores

La comunicación entre emisor y receptor puede modelarse mediante el proceso de la Figura 2.1. La situación es la siguiente, una fuente emisora envía mensajes m (palabras fuente) al receptor a través de un canal de comunicación. El mensaje debe ser traducido a algún mensaje que el canal esté capacitado para enviar, estos mensajes se conocen como palabras código.

Al otro lado del canal llega un mensaje codificado c', el cual seguramente sea erróneo, pues en todo proceso real de comunicación existe ruido e imperfecciones en los canales. El mensaje es decodificado en una palabra m', y generalmente $m' \neq m$.

Se desea que el receptor sea capaz de darse cuenta si el mensaje m' es realmente lo que se transmitió del otro lado, y más aún, poder corregirlo.

Capítulo 2. Fundamento Teórico

Figura 2.1: Esquema básico de codificación de canal.

La Teoría de Códigos es un campo de la matemática aplicada que busca resolver los problemas de las etapas de codificación-decodificación y corrección, y que presenta su propia complejidad.

La transmisión inalámbrica de una señal la expone a diversas fuentes de ruido, con lo cual los tipos de errores generados pueden ser muy variados. Por ejemplo los errores en ráfaga, en los que un conjunto de bits consecutivos se ven alterados, son muy comunes en las comunicaciones inalámbricas. También podría suceder que el canal radioeléctrico presente distorsión en algunas portadoras en particular.

El estándar ISDB-T hace uso de distintas técnicas modernas para la protección de los datos en transmisión. De hecho para proteger los datos en los ejemplos mencionados el estándar utiliza la dispersión de energía y el entrelazamiento frecuencial. Para la comprensión del estándar y el desarrollo de gr-isdbt-tx, es importante conocer el funcionamiento de estas técnicas. Profundizar en estos temas escapa los objetivos de este trabajo, por lo cual los detalles técnicos se pueden encontrar en las bibliografías mencionadas.

Para asegurarse que el receptor pueda llevar a cabo satisfactoriamente la demodulación y decodificación en una transmisión jerárquica, en la cual se utilizan múltiples parámetros de transmisión, se utiliza una señal denominada Transmission and Multiplexing Configuration Control (TMCC).

Como se verá en el Capítulo XX, la TMCC junto con otras señales piloto y las señales correspondientes a la transmisión de los datos útiles, conforman el cuadro OFDM.

Al tratarse de una señal que contiene información crítica sobre la transmisión se la debe proteger fuertemente frente a los distintos tipos de errores que podría sufrir durante su transmisión.

En particular ISDB-T establece que para la TMCC se debe utilizar el código acortado (200,118) del difference-set cyclic code (273,191) como código corrector de errores.

2.2.2. Códigos Cíclicos

El conjunto de números $GF(2) \triangleq \{0,1\}$, con las operaciones de suma " + " y producto "×" usuales módulo 2, cumple con la propiedad de que cualquier elemento de GF(2) distinto de cero tiene inverso. Esta propiedad se cumple trivialmente en este conjunto y es la condición necesaria para que GF(2) sea un Campo de Galois. Es común encontrar que a este campo también se lo llame campo binario y se

lo denote como \mathbb{F}_2 . Las operaciones de suma y producto definidas en GF(2) son asociativas, conmutativas y distributivas, y llevan elementos de GF(2) en elementos de GF(2). Por esto GF(2) también es un anillo. El conjunto de todos los polinomios con coeficientes en GF(2) con las operaciones usuales de suma y producto forman un anillo de polinomios en GF(2) y se denota como GF(2)[x]. Por ejemplo $g(x) = x^3 + x + 1$ es un elemento de GF(2)[x].

Sea $\mathbf{c} = (c_0, c_1, ..., c_{n-1}) \in GF(2)$, con GF(2) tal como se describió anteriormente. Un código \mathcal{C} de bloque (n, k) se dice que es un código cíclico si para cada vector $\mathbf{c} = (c_0, c_1, ..., c_{n-1}) \in \mathcal{C}$ cualquier rotación circular a la derecha de \mathcal{C} también pertenece a \mathcal{C} , es decir $(c_{n-1}, c_0, c_1, ..., c_{n-2}) \in \mathcal{C}$. Los códigos de bloque se caracterizan por codificar mensajes de longitud fija k en codewords de longitud fija n, con lo cual el tamaño del mensaje original se incrementa en n-k. Cada codeword del código \mathcal{C} puede ser representada en una forma polinomial de la siguiente manera:

$$c(x) = \sum_{i=0}^{n-1} c_i x^i \tag{2.1}$$

A continuación se enumera una serie de propiedades de los códigos cíclicos, en [3] se puede encontrar una demostración detallada de cada una de ellas.

- Un código cíclico es un código lineal de bloque
- Cada *codeword* se corresponde con un polinomio
- Los polinomios del código forman un *ideal* en $GF(2)[x]/(x^n-1)$
- Para un código cíclico existe un generador g(x) que es divisor de $x^n 1$ y que puede generar todos las codewords c(x) = m(x)g(x)

Se puede probar que esto implica la existencia de una matriz de chequeo de paridad $\mathbb{H} \in \mathcal{M}_{(n-k)\times n}$ tal que para toda codeword \mathbf{c} de \mathcal{C} se cumple $\mathbf{c}\mathbb{H}^T = \mathbf{0}$.

El proceso de codificación se realiza de la siguiente manera, primero se construye el polinomio $x^{n-k}m(x)$ de grado n. Luego se divide entre el polinomio generador g(x) y el resto de esa división es el polinomio de paridad d(x) que se le agregará al mensaje:

$$x^{n-k}m(x) - q(x)g(x) = d(x)$$
(2.2)

La codeword se forma de la siguiente manera:

$$c(x) = x^{n-k}m(x) - d(x) = q(x)g(x)$$
(2.3)

Como se trata de un múltiplo de g(x), entonces efectivamente es una codeword válida. La representación vectorial de la codeword queda de la siguiente manera:

$$\mathbf{c} = (-d_0, -d_1, \dots, -d_{n-k-1}, m_0, m_1, \dots, m_{k-1}) \tag{2.4}$$

Capítulo 2. Fundamento Teórico

En una situación en la que se recibe una palabra \mathbf{r} cuyo mensaje es \mathbf{m} y sus bits de paridad son \mathbf{d} , el procedimiento para detectar si hubo error es codificar el mensaje \mathbf{m} que se recibió con el mismo codificador utilizado por el transmisor (ambas partes deben conocer el polinomio generador), y luego comparar el \mathbf{d} ' obtenido con el \mathbf{d} recibido. Si ambos difieren entonces hubo error. Por ejemplo, para un código cíclico (7, 4) con polinomio generador $g(x) = x^3 + x + 1$ se desea codificar el mensaje 1001. Los mensajes codificados tendran n - k = 7 - 4 = 3 bits de paridad. El mensaje en su forma polinomial queda $m(x) = 1 + x^3$. Los bits de paridad se obtienen calculando el resto de la division $x^{(7-4)}m(x)/g(x)$, los coeficientes de ese resto seran los bits de la paridad buscada. Operando se llega a que la paridad es 011 y el mensaje codificado queda 0111001.

- 2.2.3. Códigos BCH
- 2.2.4. Códigos de Reed-Solomon
- 2.2.5. Entrelazamiento de datos
- 2.3. Modulación OFDM
- 2.3.1. Fundamentos

Transformada de Fourier

Convolución circular

Esquema básico

- 2.3.2. Continuos
- 2.3.3. Discretos
- 2.4. El estandard MPEG-4
- 2.4.1. Generalidades
- 2.4.2. Transport Stream Packet
- 2.4.3. Tablas PAT
- 2.4.4. Tablas PMT

El Sistema de Televisión Digital Terrestre ISDB-T

Este sería el capítulo más corto, pero está bueno que sea únicamente de qué cosas usa ISDB-T de lo que se discutió en el capítulo anterior, y qué parámetros son importantes a la hora de implementar un tx/rx.

- 3.1. BTS como fuente de datos
- 3.2. Robustecimiento frente a las no idealidades del canal
- 3.3. Las portadoras y la modulación
- 3.4. Formacion de los frames OFDM
- 3.5. La puesta en el aire de la señal

Radio definida por Software

Acá hay que hablar en genérico qué es el paradigma para después hablar de hardware (las opciones que hay y cuáles usaron, dando sus especificaciones) y software (GNU Radio y gr-isdbt). - Implementación del transmisor Tratar de hablar de las cosas que más trabajo les dió y qué lecciones les quedaron. Si la explicación teórica ya está en un capítulo anterior, no ser repetitivos, me explico? O sea, que sea más de implementación.

- 4.1. GNU Radio
- 4.2. Hardware
- 4.2.1. Alcance del transmisor
- 4.2.2. Antenas de laboratorio
- 4.3. gr-isdbt

Un transmisor ISDBT implementado en GNU Radio

5.1. Generalidades del Transmisor

Por ejemplo algunas

- 5.2. El flujo de datos en GNU Radio
- 5.3. Obtencion de los TSP por capa
- 5.4. Codificaciones de Canal
- 5.5. La modulacion
- 5.6. El uso de los entrelazamientos
- 5.7. Formacion de cuadros OFDM
- 5.7.1. Las portadoras piloto
- 5.7.2. Las portadoras activas
- 5.8. El prefijo ciclico
- 5.9. La transmision desde USRP

Evaluacion del sistema

Al menos algunas pruebas de alcance y compatibilidad. Con el poco tiempo que nos queda no va a dar para mucho más.

- 6.1. Pruebas sobre gr-isdbt
- 6.2. Pruebas sobre televisores comerciales

Conclusiones y trabajo a futuro

Apéndice A

Algo que agregar

De lo que aprendí y no es tan relevante.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur non neque tempor nunc fringilla tincidunt a a tortor. Phasellus leo turpis, commodo aliquam vehicula a, auctor in magna. Nulla non venenatis neque. Sed sit amet turpis metus, vel accumsan ligula. Suspendisse malesuada lacus sed tellus mollis a posuere mi porttitor. Nunc venenatis ante sit amet metus euismod iaculis. Phasellus accumsan lacinia eros, nec tempor lacus malesuada a. Suspendisse leo justo, pulvinar vitae molestie sit amet, ullamcorper ut mauris. Proin sed est ipsum.

Nulla leo ligula, porttitor eu dapibus non, porta sit amet enim. Ut eros nibh, fringilla ultrices rhoncus ut, luctus ut nibh. Nam id urna ac ligula fermentum rutrum. Sed eu cursus lacus. Donec pretium fermentum augue, eu interdum ipsum faucibus a. Praesent feugiat elit ligula. Sed ac augue luctus ligula aliquet scelerisque commodo nec justo. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Vivamus eget sem ac sapien elementum suscipit. Ut odio tellus, accumsan sit amet condimentum vehicula, vestibulum quis dui. Quisque posuere semper massa quis cursus. Aliquam gravida tellus eget lorem congue dapibus. Duis id quam eu arcu porta commodo vel at nunc. Nulla in venenatis lorem. Donec congue vehicula bibendum.

Vestibulum pulvinar lorem a velit bibendum porttitor sagittis nisl tempus. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce ut mi sit amet metus ultrices feugiat ut nec lorem. Nunc felis lorem, consectetur ut eleifend et, vestibulum id purus. Praesent nec augue quis neque sodales commodo nec ac urna. Sed a nibh ac odio sodales pulvinar. Pellentesque ut odio orci. Nam dictum hendrerit felis at ullamcorper. Integer eget sapien libero, in congue tortor. Nullam blandit vestibulum aliquet. Nullam vulputate sapien quis nisl molestie vulputate. Aliquam elementum eros quis ante ultrices ultricies. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec porttitor sodales aliquam. Ut sit amet risus justo. Integer eu iaculis orci.

Sed lectus tellus, porttitor in viverra sed, viverra nec nunc. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Fusce gravida eleifend nisi, sit amet pulvinar ligula gravida id. Vivamus est massa, viverra sit

Apéndice A. Algo que agregar

amet ornare non, consectetur sit amet elit. Nam sapien lectus, pharetra sit amet imperdiet ultrices, iaculis eget enim. Curabitur in felis et lectus malesuada pellentesque vestibulum ac dolor. Vivamus quis nulla tortor. Sed adipiscing fringilla leo, sit amet sodales felis volutpat id. Proin vitae arcu libero. Suspendisse sit amet est tellus. Aliquam sit amet metus ut arcu placerat feugiat. Nulla eget magna id odio facilisis blandit. Nam porta ultricies est, sed bibendum mauris volutpat ac. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas vel lorem lorem. Donec et purus a tellus lacinia fringilla a non lectus.

Sed pretium porttitor fermentum. Vivamus semper lobortis dictum. In interdum, libero id iaculis laoreet, sapien diam tristique lorem, sit amet aliquam sapien sem ac tortor. Phasellus tincidunt tempor condimentum. Aenean luctus, erat non fermentum rhoncus, quam odio gravida massa, sed scelerisque tellus elit ut massa. Suspendisse vel posuere ipsum. Vestibulum dolor leo, ornare quis faucibus non, consequat ut purus. Maecenas at massa turpis, vitae pretium metus. Mauris mollis dolor turpis, semper dignissim tellus. Sed vel ligula eu turpis accumsan vehicula id in nisl. Pellentesque sit amet mi lorem. Suspendisse potenti. Proin bibendum luctus accumsan. Mauris urna elit, lacinia sit amet adipiscing feugiat, vestibulum sed mauris.

Referencias

- $[1] \ \, {\rm Author.\ pocho.}\ \, \textit{Journal},\, 10(2){:}1{-}2,\, 2001.$
- [2] Instituto Nacional de Estadística. Encuesta Continua de Hogares, 2017.
- [3] Todd K Moon. Error correction coding. Mathematical Methods and Algorithms. Jhon Wiley and Son, 2005.

Índice de tablas

Índice de figuras

2.1.	Esquema	básico	de	codificación	de	canal														4
------	---------	--------	----	--------------	----	-------	--	--	--	--	--	--	--	--	--	--	--	--	--	---

Esta es la última página. Compilado el sábado 15 septiembre, 2018.

http://iie.fing.edu.uy/