

consequence operator is determined by its fixed points

 ${\bf Canonical\ name} \quad {\bf Consequence Operator Is Determined By Its Fixed Points}$

Date of creation 2013-03-22 16:29:48 Last modified on 2013-03-22 16:29:48

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 6

Author rspuzio (6075)

Entry type Theorem
Classification msc 03G10
Classification msc 03B22
Classification msc 03G25

Theorem 1 Suppose that C_1 and C_2 are consequence operators on a set L and that, for every $X \subseteq L$, it happens that $C_1(X) = X$ if and only if $C_2(X) = X$. Then $C_1 = C_2$.

Theorem 2 Suppose that C is a consequence operators on a set L. Define $K = \{X \subseteq L \mid C(X) = X\}$. Then, for every $X \in L$, there exists a $Y \in K$ such that $X \subseteq Y$ and, for every $Z \in K$ such that $X \subseteq Z$, one has $Y \subseteq Z$.

Theorem 3 Given a set L, suppose that K is a subset of L such that, for every $X \in L$, there exists a $Y \in K$ such that $X \subseteq Y$ and, for every $Z \in K$ such that $X \subseteq Z$, one has $Y \subseteq Z$. Then there exists a consequence operator $C \colon \mathcal{P}(L) \to \mathcal{P}(L)$ such that C(X) = X if and only if $X \in K$.