BRINGING THE FIGHT TO THE ADVERSARY

Integrating SABSA and Cyber Threat Intelligence to improve cyber security operations

/whois @beLarge

A cyber security architecture enthusiast, infrastructure tourist and "cyber hype guy"

- Operational Technology (OT) Security Team Leader at Powerlink
- Worked in IT and OT in Network & System Engineering and Cyber Security roles for 15 years
- Chartered Engineer (CPEng) and Registered Professional Engineer of Queensland (RPEQ)
- Proud member of Professional's Australia (PA) and a union delegate for PA at Powerlink
- Vice Chair of the Queensland Branch of the Australian Information Security Association (AISA) and Chair of the AISA Security Architecture Special Interest Group (SecARCH SIG)
- Bach Eng (Telecomms) QUT First Class Honours and Master Business (Applied Finance) with Distinction QUT

Agenda

- 1. Why this presentation?
- 2. An overview of Military Intelligence and applying it to Cyber Threat Intelligence
- 3. Aligning CTI and SABSA
- 4. Worked Example
- 5. Further Resources

Why this presentation?

AN OVERVIEW OF MILITARY INTELLIGENCE AND CYBER THREAT INTELLIGENCE

WHAT IS A THREAT?

6

THREAT DATA, INFORMATION AND INTELLIGENCE

Data

Raw Sensor Data, Indicators of Compromise (IoC), Network Telemetry, Endpoint Telemetry

Information

Has been processed to add some context to the data – "What has happened"

Intelligence

Adds human analysis to derive insight – "Why this happened" and "What may happen"

THE THREE TIERS OF INTELLIGENCE

Strategic

What are the Geopolitical trends? What is happening in my industry? What Business Assets are they targeting?

Operational

What Tactics, Techniques and Procedures are adversaries using? Do I have appropriate controls to counter the threats?

Tactical

Specific Technical Indicators of Compromise (IoC) with Context (!) – Are controls enriched with threat data?

CYBER THREAT INTELLIGENCE IS A KEY COMPONENT OF ACTIVE DEFENCE

THE INTELLIGENCE PLANNING LIFE CYCLE

RELATIONSHIP BETWEEN INTELLIGENCE REQUIREMENTS AND INFORMATION REQUIREMENTS

Intelligence Requirement

"Any subject, general or specific, upon which there is a need for the collection of information, or the production of intelligence."

Priority Intelligence Requirement

• "An intelligence requirement stated as a priority for intelligence support, that the commander and staff need to understand the adversary or operational environment."

Information Requirements

"In intelligence usage, those items of information regarding the adversary and other relevant aspects of the operational environment that need to be collected and processed in order to meet the intelligence requirements of a commander."

Essential Element of Information (EEI)

"The most critical information requirements regarding the adversary and the environment needed by the commander by a particular time to relate with other available information and intelligence in order to reach a logical decision."

Ref – US DoD JP 2-0

11

A NOTE ON BIASES

- Given the human analysis it is critical that Cyber Threat Intelligence processes considers and manages potential biases of analysts
- Example Biases:
 - Confirmation Bias
 - Mirroring
 - Recency Bias
 - Causality Bias (The illusion of causality)
 - And many more ...
- Huer's Psychology of Intelligence Analysis is a must read
- An excellent paper on this topic is Patrick Dunstan's SABSA Master Thesis – please reach out to him to request if it if you are interested

THE INTELLIGENCE PREPARATION OF THE OPERATIONAL ENVIRONMENT

 A structured process to determine the Operational Environment and the Adversary Capabilities and courses of action

Figure I-2. A Synergistic Integration of Perspectives

Define the Operational Environment

Describe the Environmental Effects on Operations

Evaluate the Threat

Determine Threat Courses of Actions

WHAT ARE COURSES OF ACTION?

Kill Chains and MITRE ATT&CK

- A Course of Action is an option that the adversary has
- For Cyber Security CoAs can be expressed as "Cyber Kill Chains"
 - Can be expressed as MITRE ATT&CK TTPs and consider the Impact techniques effecting Attributes
- The key is to understand Most Likely and Most Dangerous CoA as scoping to ensure you have appropriate control coverage and defence in depth

INTELLIGENCE PREPARATION OF THE CYBER ENVIRONMENT

- IPCE applies Intelligence Preparation of the Operational Environment to the Cyber Domain, The Fifth Domain of Warfare
- Modifies key concepts like Terrain and Weather and links to Computer Network Operations concepts like Network and Traffic
- Provides a framework for how to apply cyber security controls based on intelligence collection plans (ICP) and defined responses for indicators and warnings

Define the Operational Environment

Describe the Impact on the environment

Evaluate the Adversary

Determine Adversary Courses of Actions

F3EAD

A fusion of Operations and Threat Intelligence applied to Cyber Security Operations

TYING IT ALL TOGETHER - CYBER THREAT PROFILE

- A living document that articulates:
 - Critical Business Assets
 - Feasible Threat and Threat Actors
 - Most likely and most dangerous Courses of Actions and/or Tactics,
 Techniques and Procedures
- "A characterization of the likely intent, capability, and targets for threats to the function. It is the result of one or more threat assessments across the range of feasible threats to the IT, OT, and information assets of an organization and to the organization itself, identifying feasible threats, describing the nature of the threats, and evaluating their severity." (Ref C2M2 v2.1)
- The C2M2 team are releasing an example threat profile but the SANS paper is a great reference as well

QUICK OVERVIEW OF SABSA

SABSA 101

- SABSA has its origins as the Enterprise Security Architecture for the SWIFT Payments Network
- Business Aligned, Top Down and Deliberate, not just best practice
- Focus on Attributes which are security goals/objectives/requirements
- Two Way Traceability

The SABSA Matrix also provides two-way traceability:

Completeness: has every business requirement been met? The layers and matrix allow you to trace every
requirement through to the components that provide a solution.

Business Justification: is every component of the architecture needed? When someone questions 'Why are
we doing it this way?' the rationale is plain by tracing back to the business requirements that drive the
specific solution.

SABSA MATRIX

	ASSETS (What)	MOTIVATION (Why)	PROCESS (How)	PEOPLE (Who)	LOCATION (Where)	TIME (When)
CONTEXTUAL	Business	Business	Business The Bus	siness Viewss	Business	Business Time
ARCHITECTURE	Decisions	Risk	Process	Governance	Geography	Dependence
CONCEPTUAL	Business Knowledge	Risk Management	Strategies for Praise Arch	nitect's View.	Domain	Time Management
ARCHITECTURE	& Risk Strategy	Objectives	Assurance	Responsibilities	Framework	Framework
LOGICAL	Information	Risk Management	Process Map The Desi	igner's View	Domain	Calendar &
ARCHITECURE	Assets	Policies	Services	Framework	Maps	Timetable
PHYSICAL ARCHITECTURE	Data Assets	Risk Management Practices	Process The Bui Mechanisms	lder's View erface	ICT Infrastructure	Process Schedule
COMPONENT ARCHITECTURE	ICT Components	Risk Management Tools & Standards	Process Tool he Trade Standards	Personnel Mgmt, esman's View Tools & Standards	Locator Tools & Standards	Step Timing & Sequencing Tools
SERVICE MGMT	Service Delivery	Operational Risk	Process Delivery	Manager's View	Management of	Time & Performance
ARCHITECTURE	Management	Management	Management	Management	Environment	Management

WHY 6 LAYERS?

SABSA MATRIX (CONT.)

Table 3: SABSA MATRIX

	ASSETS (What)	MOTIVATION (Why)	PROCESS (How)	PEOPLE (Who)	LOCATIO	ON (Where)	
	Business Decisions	Business Risk	Business Processes	Business Governance	Business Geography		
ARCHITECURE	Taxonomy of Business Assets, including Goals & Objectives	Opportunities & Threats Inventory	Inventory of Operational Processes	Organisational Structure & the Extended Enterprise	Inventory of Buildings, Sites, Territories, Jurisdi-		
	Business Knowledge & Risk Strategy	Risk Management Objectives	Strategies for Process Assurance	Roles & Responsibilities	Domain		
CONCEPTUAL ARCHITECTURE	Business Attributes Profile	Enablement & Control Objectives; Policy Architecture	Process Mapping Framework; Architectural Strategies for ICT	Owners, Custodians and Users; Service Providers & Customers	Securi Cor Fra		
	Information Assets	Risk Management Policies	Process Maps & Services	Entity & Trust Framework	Dom		
LOGICAL ARCHITECTURE	Inventory of Information Assets	Domain Policies	Information Flows; Functional Transformations; Service Oriented Architecture	Entity Schema; Trust Models; Privilege Profiles	Domain Inter associ inte	ARCHITE	
PHYSICAL ARCHITECTURE	Data Assets	Risk Management Practices	Process Mechanisms	Human Interface	ICT Inf		
	Data Dictionary & Data Inventory	Risk Management Rules & Procedures	Applications; Middleware; Systems; Security Mechanisms	User Interface to ICT Systems; Access Control Systems	Host I L & N	ARCHITEC	
	ICT Components	Risk Management Tools & Standards	Process Tools & Standards	Personnel Man'ment Tools & Standards	Locati Sta		
COMPONENT ARCHITECTURE	ICT Products, including Data Repositories and Processors	Risk Analysis Tools; Risk Registers; Risk Monitoring and Reporting Tools	Tools and Protocols for Process Delivery	Identities; Job Descriptions; Roles; Functions; Actions & Access Control Lists	Nodes, and oth	LOGIC ARCHITEC	
	Service Delivery Management	Operational Risk Management	Process Delivery Management	Personnel Management	Mana Envi		
SERVICE MANAGEMENT ARCHITECTURE	Assurance of Operational Continuity & Excellence	Risk Assessment; Risk Monitoring & Reporting; Risk Treatment	Management & Support of Systems, Applications & Services	Account Provisioning; User Support Management	Mana Buildir Plat Ne	PHYSIC ARCHITEC	

able 4: SAR9	A SERVICE	MANAGEMENT	T MATRIX	(Alianed with	ITII v3	۸

TIME (When)

Business Time

Dependence

Time dependencies

of business objectives

	ASSETS (What)	MOTIVATION (Why)	PROCESS (How)	PEOPLE (Who)	LOCATION (Where)	TIME (When)		
	Service Delivery Management	Operational Risk	Process Delivery	Personnel	Management of Environment	Time & Performance Management		
	wanagement	Management Management Environment Manage The row above is a repeat of Layer 6 of the main SABSA Matrix.						
	The five rows below are an exploded overlay of how this Layer 6 relates to each of these other Layers							
CONTEXTUAL ARCHITECURE	Business Driver Development	Business Risk Assessment	Service Management	Relationship Management	Point-of-Supply Management	Performance Management		
	Business Benchmarking & Identification of Business Drivers	Analysis of Internal & External Risk Factors	Managing Service Capabilities for Providing Value to Customers	Managing Service Providers & Service Customers; Contract Man'ment	Demand Man'ment; Service Supply, Deployment & Consumption	Defining Business- Driven Performance Targets		
	Proxy Asset Development	Developing ORM Objectives	Service Delivery Planning	Service Management Roles	Service Portfolio	Service Level Definition		
CONCEPTUAL ARCHITECTURE	Defining Business Attributes Profile with Performance Criteria, KPIs & KRIs	Risk Analysis on Business Attributes Proxy Assets	SLA Planning; BCP; Financial Planning & ROI; Transition Planning	Defining Roles, Responsibilities, Liabilities & Cultural Values	Planning & Maintaining the Service Catalogue	Managing Service Performance Criteria and Targets		
LOGICAL ARCHITECTURE	Asset Management	Policy Management	Service Delivery Management	Service Customer Support	Service Catalogue Management	Evaluation Management		
	Knowledge Management; Release & Deployment Management; Test & Validation Management	Policy Development; Policy Compliance Auditing	SLA Management; Supplier Management; BCM; Cost Management; Transition Management	Access Management; User Privileges, Account Administration & Provisioning	Configuration Management; Capacity Planning; Availability Management	Monitoring & Reporting Performance against KPIs and KRIs		
PHYSICAL ARCHITECTURE	Asset Security & Protection	Operational Risk Data Collection	Operations Management	User Support	Service Resources Protection	Service Performance Data Collection		
	Change Management; Software & Data Integrity Protection	Operational Risk Management Architecture	Job Scheduling; Incident & Event Management; Disaster Recovery	Service Desk; Problem Man'ment; Request Man'ment	Physical & Environmental Security Management	Systems and Service Monitoring Architecture		
COMPONENT ARCHITECTURE	Tool Protection	ORM Tools	Tool Deployment	Personnel Deployment	Security Management Tools	Service Monitoring Tools		
	Product & Tool Security & Integrity; Product & Tool Maintenance	ORM Analysis, Monitoring and Reporting Tools & Display Systems	Product & Tool Selection and Procurement; Project Management	Recruitment Process Disciplinary Process Training & Awareness Tools	Products & Tools for Managing Physical & Logical Security of Installations	Service Analysis, Monitoring and Reporting Tools & Display Systems		

ALIGNING TO SABSA

ALIGNING THE TIERS OF CTI AND THE SABSA MATRIX

WHERE DOES CTI INTEGRATE IN THE SABSA LIFE CYCLE?

WHERE DOES CTI MAP TO THE BLUE BOOK PROCESSES

Figure 7-4: Developing the Contextual Security Architecture

Figure 7-5: Developing the Conceptual Security Architecture

ALIGNING THE CTI LIFECYLE TO THE SABSA RMP

HOW ARCHITECTS ALIGN WITH F3EAD

 Architects must develop Logical Services and Physical Mechanisms that support cyber security Incident Response

- Architects must use the Cyber Threat Intelligence Products of the Enterprise to ensure that they are aware of current state of the threat landscape
- Architects should be involved in the Cyber Threat Intelligence Development activities in the Enterprise
- Architects should be involved in Lessons Learnt following any cyber security incidents to understand control failure(s)

ALIGNING CTI AND MTCS

- Consider attack paths or CoA (most likely and most dangerous)
- Do you have Defense-in-Depth
 (e.g. a mix of Multi-Tiered Control
 Strategy across the kill chain)?
- An opportunity for a project to map MITRE D3FEND (https://d3fend.mitre.org/) to SABSA?

ALIGNING CTI AND MTCS (CONT.)

WORKED EXAMPLE

STATE POWER CORPORATION (SPC)

BACKGROUND CONTEXT OF THE STATE POWER CORPORATION

- State Power Corporation (SPC) owns, operates and maintains the electricity generation, transmission and distribution assets for the state
- There has been a recent cyber security incident in it's electricity generation portfolio and the organisation is looking to conduct a root cause analysis to prevent a similar incident in it's other assets
- SPC has an inflight Digital Transformation program that is delivering change in both the IT and OT environments
- We have been engaged by the SPC Group CISO to articulate the Enterprise Conceptual Security Architecture and to inform their 5 year Security Management program

SCENARIO BACKGROUND

- The State Power Corporation (SPC) have learnt of the recently discovered PIPEDREAM Malware# and the Audit and Risk Committee have asked the group CISO for a strategic risk assessment on the issue
- The SPC Group CISO has asked the Cyber Threat Intelligence (CTI) team to see whether it is a credible threat for SPC
- The CTI team has engaged with the Enterprise Security Architecture team for support on the current state of the cyber security architecture at SPC

QUICK SUMMARY OF PIPEDREAM

DRAGOS WHITEPAPER

TLP: WHITE information may be distributed without restriction

KEY FINDINGS

Summary of Key Findings:

- · PIPEDREAM is a clear and present threat to the availability, control, and safety of industrial control systems and processes. PIPEDREAM can be used to endanger operations and lives.
- PIPEDREAM's industrial-related components expose a command-line interface for manipulating target controllers and OPC-UA
- · PIPEDREAM can execute 36 MITRE ICS-ATT&CK techniques.
- · CHERVONITE can manipulate the speed and torque of Omron servo motors used in many industrial applications. This manipulation can cause disruption or destruction of industrial processes, leading to potential lossof-life scenarios.
- · PIPEDREAM's Windows-related components facilitate host reconnaissance, command and control (C2), lateral tool transfer, and the deployment of unsigned rootkits.
- CHERNOVITE can leverage PIPEDREAM's multiple components to perform rapid reconnaissance of ICS networks by using a variety of mechanisms, including:
- o Identifying known MAC addresses
- o Port numbers
- o HTTP banners
- o Omron's proprietary Factory Interface Network Service Protocol (FINS)
- o Modbus
- o Schneider's custom Discovery broadcast protocol (NetManage).
- · CHERNOVITE can achieve Develop, Deliver, Install/Modify, and Execute ICS Attack portions of the ICS Cyber Kill Chain Stage 2 in several ways. These are some examples

- o Remotely interacting with PLCs using CODESYS to support numerous attacks like brute-force passwords, performing denial-of-service (DoS) attacks against controller, and severing connections.
- o Remotely interacting with Omron PLCs through HTTP and Telnet to load a nativ implant to support further command execution.
- o Remotely interacting with Omron PLCs through exposed HTTP endpoints to change the operating mode (program. run, etc.), backing up and restoring configurations, and wiping the PLC's memory, among other capabilities.
- o Writing arbitrary node attributes on an OPC-UA server.
- CHERNOVITE can trigger Denial of Control and Denial of View for operators using multiple methods.
- · CHERNOVITE disrupts operational technology by subverting and masqueradia within trusted processes.
- · CHERNOVITE can significantly extend time-to-recovery after an industrial incider by disabling process controllers, potentially requiring them to be returned to the manufacturer before reuse.
- CHERNOVITE can operate across process and security zones by using PLCs as network proxies across an OT environmen potentially bypassing firewalls, DMZs, and perimeter-based threat detection.
- CHERNOVITE can undermine authentication and encryption inside OT environments by collecting network traffic from PLCs and weakening PLC authentication.

Change Operating Graphical Us Interface Hooking Controller Reporting Native API ia Removat Media Supply Chair

Figure 1 - Mapping for CHERNOVITE/PIPEDREAM MITH

OT Best Practices

MONITOR EAST-WEST ICS NETWORKS WITH ICS PROTOCOL AWARE **TECHNOLOGIES**

Perform network traffic monitoring with a focus on East-West communications instead of simply North-South (ingress/egress) communications. PIPEDREAM's ability to move from Engineering Workstation to PLC and then PLC to PLC means that simply monitoring North-South communications or putting emphasis on segregation will be insufficient. Specifically look for modifications to PLCs occurring outside of maintenance periods such as the changing of logic using native ICS protocols.

PLC NETWORK TELEMETRY ANALYSIS

Monitor for unusual interactions with PLCs from non-standard workstations or accounts.

ISOLATE MISSION CRITICAL SKID SYSTEMS

Consider implementing hardwired I/O between critical skid systems and distributed control systems I/O in place of direct communications if feasible.

NETWORK ISOLATION OF SAFETY SYSTEMS

Ensure network isolation for safety system components, monitor safety system networks for new connections or devices, and verify all configuration changes are compliant with change management procedures.

DRAGOS, INC.

APPROACH TO SCENARIO

- This would be an operational cyber threat intelligence product
- Review and update Threat Profile if appropriate
 - Understand the assets and systems that have been targeted and if they are relevant for SPC e.g. CODESYS PLCs
- Consider impact on attributes taxonomy
 a good communication tool for stakeholders for "so what"

APPROACH TO SCENARIO (CONT.)

- Be informed by the Intelligence Product to determine the attack path and adversary Courses of Action. Consider the coverage of controls for SPC sites
- Consider the security control recommendations from the report, would the report change your security portfolio of works?
- Investigate Enrichment of controls opportunities using Threat Data – Think about the IPCE Indicators and Warnings

Figure 1 - Mapping for CHERNOVITE/PIPEDREAM MITRE ATT&CK for ICS Techniques

OT Best Practices

MONITOR EAST-WEST ICS NETWORKS WITH ICS PROTOCOL AWARE TECHNOLOGIES

Perform network traffic monitoring with a focus on East-West communications instead of simply North-South (ingress/egress) communications. PIPEDREAM's ability to move from Engineering Workstation to PLC and then PLC to PLC means that simply monitoring North-South communications or putting emphasis on segregation will be insufficient. Specifically look for modifications to PLCs occurring outside of maintenance periods such as the changing of logic using native ICS protocols.

PLC NETWORK TELEMETRY ANALYSIS

Monitor for unusual interactions with PLCs from non-standard workstations or accounts.

ISOLATE MISSION CRITICAL SKID SYSTEMS

Consider implementing hardwired I/O between critical skid systems and distributed control systems I/O in place of direct communications if feasible.

NETWORK ISOLATION OF SAFETY SYSTEMS

Ensure network isolation for safety system components, monitor safety system networks for new connections or devices, and verify all configuration changes are compliant with change management procedures.

FURTHER RESOURCES

FURTHER RESOURCES

- SABSA White Paper (W100)
- Intelligence Driven Incident Response, Rebekah Brown, Scott J Roberts
- Intelligence Preparation of the Cyber Environment (IPCE): Finding the High Ground in Cyberspace, A Lemay, S Knight, JM Fernandez
- A Top 10 Reading List if you are getting started in Cyber Threat Intelligence, Katie Nickels
- US DoD JP 2-0 and US DoD JP 2-01.3

SUMMARY OF PRESENTATION

- Cyber Security architectures cannot be static, they must adjust and evolve to new threats and be threat informed
- Cyber Threat Intelligence requires human analysis,
 and it is not just a list of IoCs
- Architects must consider Cyber Threat Intelligence products to inform threat assessments for balanced risk management
- Intelligence Preparation of the Operating Environment (IPOE) and Intelligence Preparation of the Cyber Environment (IPCE) are useful tools for architects to understand threat actor Courses of Action (CoA) to inform cyber security architectures

THANK YOU, QUESTIONS?

https://linkedin.com/in/blargeau

https://github.com/beLarge

@beLarge