Unsupervised Learning Quiz, 5 questions

uiz. 5 questions

5/5 points (100%)

Congratulations! You passed!	Next Item
1/1 point	
1.	
For which of the following tasks might K-means clustering be a suit	able algorithm? Select all that apply.
Given a database of information about your users, automa market segments.	tically group them into different
Correct You can use K-means to cluster the database entries, and each c different market segment.	luster will correspond to a
Given sales data from a large number of products in a supertend to form coherent groups (say are frequently purchase the same shelf.	
Correct If you cluster the sales data with K-means, each cluster should content items.	orrespond to coherent groups of
Given historical weather records, predict the amount of rai valued output)	nfall tomorrow (this would be a real-
Un-selected is correct	
Given sales data from a large number of products in a supereach of these products. Un-selected is correct	ermarket, estimate future sales for
OII-Selected is Coffect	

1/1 point 2.

Unsupervised Learning Quiz, Suppose we have three cluster centroids $\mu_1=\begin{bmatrix}1\\2\end{bmatrix}$, $\mu_2=\begin{bmatrix}-3\\0\end{bmatrix}$ and $\mu_3=\begin{bmatrix}4\\2\end{bmatrix}$. Furthermor **5**/5, **PPINTS** (100%)

training example $x^{(i)} = egin{bmatrix} -1 \\ 2 \end{bmatrix}$. After a cluster assignment step, what will $c^{(i)}$ be?

- $c^{(i)}=2$
- $c^{(i)}=1$

Correct

 $x^{(i)}$ is closest to μ_1 , so $c^{(i)}=1$

- $c^{(i)}$ is not assigned
- $\bigcirc \quad c^{(i)}=3$

1/1 point

K-means is an iterative algorithm, and two of the following steps are repeatedly carried out in its inner-loop. Which two?

The cluster centroid assignment step, where each cluster centroid μ_i is assigned (by setting $c^{(i)}$) to the closest training example $x^{(i)}$.

Un-selected is correct

Move each cluster centroid μ_k , by setting it to be equal to the closest training example $x^{(i)}$

Un-selected is correct

Move the cluster centroids, where the centroids μ_k are updated.

Correct

The cluster update is the second step of the K-means loop.

The cluster assignment step, where the parameters $c^{\left(i
ight)}$ are updated.

Correct

This is the correst first step of the K-means loop.

Unsupervised Learning Quiz, 5 questions

5/5 points (100%)

4.

Suppose you have an unlabeled dataset $\{x^{(1)},\dots,x^{(m)}\}$. You run K-means with 50 different random

initializations, and obtain 50 different clusterings of the

data. What is the recommended way for choosing which one of

these 50 clusterings to use?

\bigcirc	For each of the clusterings, compute	$\frac{1}{m}$	$\sum_{i=1}^{m}$	$+ x^{(i)} $	$-\mu_{c^{(i)}} ^2$	and pick	the one th	nat minim	izes
	this.								

Correct

This function is the distortion function. Since a lower value for the distortion function implies a better clustering, you should choose the clustering with the smallest value for the distortion function.

The answer is ambiguous, and there is no good way of choosing.
Always pick the final (50th) clustering found, since by that time it is more likely to have converged to a good solution.
The only way to do so is if we also have labels $y^{\left(i ight)}$ for our data.

1/1 point

5

Which of the following statements are true? Select all that apply.

A good way to initialize K-means is to select K (distinct) examples from the training set and set the cluster centroids equal to these selected examples.

Correct

This is the recommended method of initialization.

On every iteration of K-means, the cost function $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_k)$ (the distortion function) should either stay the same or decrease; in particular, it should not increase.

Correct

Both the cluster assignment and cluster update steps decrese the cost / distortion function, so it should never increase after an iteration of K-means.

 $\label{eq:Machine Learning - Home | Coursera} \\ Once an example has been assigned to a particular centroid, it will never be reassigned to \\ Unsupervised in a particular centroid, it will never be reassigned to \\ Unsupervised in a particular centroid, it will never be reassigned to \\ Unsupervised in a particular centroid, it will never be reassigned to \\ Unsupervised in a particular centroid, it will never be reassigned to \\ Unsupervised in a particular centroid, it will never be reassigned to \\ Unsupervised in a particular centroid, it will never be reassigned to \\ Unsupervised in a particular centroid, it will never be reassigned to \\ Unsupervised in a particular centroid in a partic$

5/5 points (100%)

Quiz, 5 questio	elected is correct
	K-Means will always give the same results regardless of the initialization of the centroids.
Un-s	elected is correct

