Maximum Flow

The Problem

Given a network which has a single source vertex with no in edges and a single destination (sink) vertex with no out edges, compute the maximum flow capacity for the network.

The Input

The first line contains the number of test cases T ($T \le 250$).

The first line of each test case contains 4 integers -N, E, S and D. N is the number of vertices in the network, $2 \le N \le 1000$. E is the number of directed edges in the network, $1 \le E \le 10,000$. S is the source vertex of the network, $0 \le S < N$. D is the sink vertex of the network, $0 \le D < N$. There is a further constraint that $S \ne D$.

The next E lines contain three integers $-V_i$, V_j , C — where V_i is the source vertex of the directed edge, V_j is the destination vertex of the directed edge and C is the capacity of the directed edge. $1 \le C \le 10,000$.

The Output

For each test case, output the message "Test x: Maximum flow = y", where x is the test case number and y is the maximum flow capacity for the given network. Test case numbers start at 1.

Sample Input

Sample Output

```
Test 1: Maximum flow = 3
```