Numerical Relativity Cheat Sheet

Equations I should remember, but I don't

Gabriele Bozzola

Contents

L	Conventions	1
2	ADM Decomposition 2.1 Constraints	1
3	Matter and Equations of State 3.1 Velocity definitions	2 2
1	Useful identities	2
1	Conventions	
W	The denote the metric as $g_{\alpha\beta}$.	
2	ADM Decomposition	
Γŀ	ne line element ds^2 is	
	$ds^{2} = g_{\alpha\beta} dx^{\alpha} dx^{\beta} = -\alpha^{2} dt^{2} + \gamma_{ij} (dx^{i} + \beta^{i} dt)(dx^{j} + \beta^{j} dt)$	(1)
	$\gamma_{aeta}=g_{lphaeta}+n_lpha n_eta$	(2)
	$\gamma^{a\beta}=g^{\alpha\beta}+n^{\alpha}n^{\beta}$	(3)
	$n^{lpha}\gamma_{lphaeta}=0$	(4)
	$n^{\alpha} = \frac{1}{\alpha}(1, -\beta^i)$	(5)
	$n_{\alpha} = (-\alpha, 0, 0, 0)$	(6)
2.	1 Constraints	
M	omentum constraint $S_i = -\gamma_{i\alpha} n_\beta T^{\alpha\beta} .$	(7)

3 Matter and Equations of State

Let ρ_0 be the rest-mass density, and ϵ the specific internal energy density, the total mass-energy ρ measured by an observer comoving with the fluid is

$$\rho = \rho_0 (1 + \epsilon) = \rho_0 + \rho_0 \epsilon = \rho_0 + \varepsilon_{\text{int}}, \tag{8}$$

with $\varepsilon_{\mathrm{int}}$ internal energy density.

The enthalpy is $h = (1 + \epsilon + P/\rho_0)$, or $\rho_0 h = \rho + P$.

The Gamma-law equation of state is $P = (\Gamma - 1)\rho_0\epsilon$, or $P = (\Gamma - 1)\varepsilon_{\text{int}}$.

3.1 Velocity definitions

Let u^{α} be the four-velocity of the fluid.

$$W = -n_{\alpha}u^{\alpha} \tag{9}$$

$$u^t = \frac{W}{\alpha} \,. \tag{10}$$

IllinoisGRMHD:

$$v_{\rm IL}^i = \frac{u^i}{u^t} \tag{11}$$

Valencia:

$$v_{\text{VA}}^{i} = \frac{1}{\alpha} \left(\frac{u^{i}}{u^{t}} + \beta^{i} \right) \tag{12}$$

Conversion:

$$v_{\text{VA}}^{i} = \frac{1}{\alpha} \left(v_{\text{IL}}^{i} + \beta^{i} \right) \tag{13}$$

$$v_{\rm IL}^i = \alpha \left(\alpha v_{\rm IL}^i - \beta^i \right) \tag{14}$$

Stress-energy tensor of a perfect fluid

$$T^{\alpha\beta} = \rho_0 h u^{\alpha} u^{\beta} + P g^{\alpha\beta}, \qquad (15)$$

4 Useful identities

$$\sqrt{-g} = \alpha \sqrt{\gamma} \tag{16}$$