Feuille d'exercice n° 07 : Équations différentielles

Exercice 1 () Calculer les intégrales suivantes via un changement de variable adéquat :

calcular les integrales suivantes via un changement de variable adequat :

a)
$$\int_0^1 \sqrt{1-t^2} dt$$
 b) $\int_0^1 t^2 \sqrt{1-t^2} dt$ c) $\int_1^2 \frac{\ln t}{\sqrt{t}} dt$ d) $\int_1^e \frac{dt}{t+t(\ln t)^2}$ e) $\int_1^e \frac{dt}{t\sqrt{\ln t+1}}$ f) $\int_0^1 \frac{dt}{e^t+1}$ g) $\int_0^{\pi} \frac{\sin t}{3+\cos^2 t} dt$ h) $\int_1^2 \frac{dt}{\sqrt{t}+2t}$ i) $\int_1^2 \frac{\ln(1+t)-\ln t}{t^2} dt$.

Soit $I(a,b) = \int_a^b \frac{x^2 - 1}{(x^2 + 1)\sqrt{(x^4 + 1)}} dx$

- 1. Montrer que I(a,b) = I(-b,-a)
- 2. Soient a et b de même signe. Montrer que $I\left(\frac{1}{a},\frac{1}{b}\right)=I(a,b)$. En déduire que $I(a,\frac{1}{a})=0$.
- 3. Calculer I(a,b) pour $a \ge 1$ et $b \ge 1$ en posant $u = x + \frac{1}{x}$ puis $u = \sqrt{2} \operatorname{ch}(x)$.

Exercice 3 (${}^{\infty}$) On pose, pour tout entier naturel n, $I_n = \int_0^{\pi/2} (\sin x)^n dx$.

- 1. Calculer I_0 et I_1 . Donner une relation de récurrence entre I_n et I_{n-2} . En déduire la valeur de I_n selon la parité de n.
- 2. Montrer que la suite (I_n) est décroissante. En déduire $\lim_{n\to+\infty}\frac{I_{n-1}}{I_n}$
- 3. Montrer : $\forall n \geq 1$, $nI_nI_{n-1} = \frac{\pi}{2}$. En déduire $\lim_{n \to +\infty} I_n$ et $\lim_{n \to +\infty} I_n \sqrt{n}$
- 4. Montrer que : $\lim_{n \to +\infty} 2n(I_{2n})^2 = \frac{\pi}{2}$.

En déduire que : $\lim_{n \to +\infty} \left| n \left(\frac{1.3.5...(2n-1)}{2.4.6...2n} \right)^2 \right| = \frac{1}{\pi}$ (formule de Wallis)

Exercice 4 () Déterminer les solutions réelles des équations différentielles suivantes :

- 1. a) Vérifier que la fonction $x \mapsto \ln \tan \left(\frac{x}{2} + \frac{\pi}{4}\right)$ est définie et dérivable sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ et calculer sa
 - b) Résoudre : $y' y \tan x = \frac{1}{\cos^2 x} \sin \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ avec y(0) = 1.
- 2. $y' + y = (x^2 2x + 2)e^{2x} \text{ sur } \mathbb{R} \text{ avec } y(0) = 0.$
- 6. $xy' y = x \operatorname{sur} \mathbb{R}^{\star}_{\perp}$.

- 3. $y' 2y = \sinh x 2x \cosh x \text{ sur } \mathbb{R}$. 4. $xy' \ln x y = 3x^2 \ln^2 x \text{ sur }]0,1[$. 5. $y' + x^2y + x^2 = 0 \text{ sur } \mathbb{R} \text{ avec } y(0) = 0$. 6. $xy' y = x \text{ sur } \mathbb{R}^*$. 7. $y'\sqrt{1 x^2} y = 1 \text{ sur }]-1,1[$. 8. $y' 3y = x^2 e^x + x e^{3x} \text{ sur } \mathbb{R} \text{ avec } y(0) = 1$.

Déterminer les fonctions $f:[0,1]\to\mathbb{R}$ dérivables telles que $\forall x\in[0,1]$ f'(x)+f(x)=Exercice 5 f(0) + f(1).

Exercice 6 (\bigcirc Résoudre 2x(1-x)y' + (1-x)y = 1. On fera attention à bien préciser les intervalles de résolution. Existe-t-il des solutions définies sur $\mathbb R$? Lesquelles ?

1

Exercice 7 () Déterminer les solutions réelles des équations différentielles suivantes :

- 1. $y'' + y' 2y = 8 \sin x$ avec $y(\pi) = 0$ et $y'(\pi) = 1$.
- 2. $y'' + y' = 4x^2 e^x$ avec y(0) = e et y'(0) = 0.
- 3. $y'' + 4y = x^2 x + 1$.

5. $y'' - 3y' + y = \sin x + \cos x$.

4. $y'' + y' + 2y = (8x + 1)e^x$.

6. $y'' - y = \sinh x$.

Exercice 8 (\bigcirc On étudie les équations différentielles d'Euler, qui sont de la forme (\mathscr{E}): $ax^2y'' + bxy' + cy = g(x)$, où a, b et c sont des constantes et g est une fonction.

- 1. On suppose que l'on étudie (\mathscr{E}) sur \mathbb{R}_+^* et l'on pose $z(t)=y(e^t)$. Montrer que y est solution de (\mathscr{E}) si et seulement si z est solution d'une équation différentielle linéaire d'ordre deux, à coefficients constants.
- 2. Résoudre $x^2y'' + xy' y = 2x \ln(x)$ sur \mathbb{R}_+^* .
- 3. Résoudre $x^2y'' + 3xy' + y = (x+1)^2 \text{ sur } \mathbb{R}_+^*$.
- 4. Résoudre $x^2y'' + 3xy' + y = 0$ sur \mathbb{R} .
- 5. Trouver toutes les fonctions f dérivables sur \mathbb{R}_+^* telles que, pour tout x > 0, $f'(x) = f\left(\frac{1}{x}\right)$.

Exercice 9 (^{\circ}) Trouver les applications de \mathbb{R} dans \mathbb{R} de classe \mathscr{C}^2 telles que :

$$\forall x \in \mathbb{R} \ f''(x) + f(-x) = xe^x$$

Exercice 10 Le but de cet exercice est de résoudre le système différentiel (S) suivant :

$$\left\{ \begin{array}{lcl} x^{\prime\prime} & = & x^{\prime} + y^{\prime} - y \\ y^{\prime\prime} & = & x^{\prime} + y^{\prime} - x \end{array} \right., \; x,y \in \mathscr{C}^2(\mathbb{R},\mathbb{R}).$$

- 1. Soient $x, y \in \mathcal{C}^2(\mathbb{R}, \mathbb{R})$. On pose u = x + y et v = x y. Montrer alors qu'il existe deux équations différentielles du second ordre (\mathbf{E}) et (\mathbf{F}) telles que l'on ait : (x, y) est solution de (\mathbf{S}) si et seulement si u est solution (\mathbf{E}) et v est solution de (\mathbf{F}) .
- 2. Résoudre (**E**).
- 3. Résoudre (**F**).
- 4. En déduire les solutions de (S).

