Stochastic of Finance Lecture 1

Contents

1	Recap	1
2	Content	4
	2.1 Conditional expectation	4
	2.2 Brownian Motion	Ę
	2.2.1 First and quadratic variation	6

1 Recap

Definition 1

Axiomatic definition of probability spaces

Let Ω be the set of all possible outcomes of a random experiment. Let $\mathcal{F} \subseteq 2^{\Omega}$ be a σ -algebra on Ω , i.e., the following hold:

- 1. $\Omega \in \mathcal{F}$.
- 2. $A \in \mathcal{F} \implies \Omega \setminus A \in \mathcal{F}$.
- 3. \mathcal{F} is closed under countable union, that is, if $A_i \in \mathcal{F}$ for i = 1, 2, ..., then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Let P be a function (measure) $P: \mathcal{F} \to [0,1]$ such that the following hold:

- 1. $P(A) \ge 0$ (trivially holds due to range).
- 2. P is σ -additive, i.e., if $\{A_i\}_{i=1}^{\infty} \subseteq \mathcal{F}$ is a countable collection of disjoint subsets, then we have $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$.
- 3. $P(\Omega) = 1$.

Then (Ω, F, P) is a probability space.

The classical probability comes from the formal definition when Ω is finite, $|\Omega| = n$, $P(\{\omega\}) = \frac{1}{n}$ where $\omega \in \Omega$, \mathcal{F} is the power set of Ω , which also turns out to be a σ -field on Ω .

Definition 2

Random variables:

Given a probability space (Ω, \mathcal{F}, P) , if $X : \Omega \to \mathbb{R}$ is a function such that $X^{-1}((-\infty, x]) \in \mathcal{F} \ \forall x \in \mathbb{R}$, then X is a random variable, or a measurable function w.r.t. \mathcal{F} .

Example 1

If F is the largest σ -field (power set but maybe for infinite sets), then any real-function is a random variable.

Example 2

A constant function is always a random variable.

Definition 3

Stochastic processes:

A stochastic process $\{X(t), t \in T\}$ is a collection of random variables defined on the probability space (Ω, \mathcal{F}, P) .

Example 3

Examples of real-life stochastic processes:

- 1. Price of some stock at the end of the day.
- 2. Number of trades made every second.
- 3. Market index at time t.
- 4. Number of companies registered in stock market at the end of the week.
- 5. Variance in a stock price in a day measure on the random variables (since computed from the data). Usually we call observed information (and not computed information) a random variable. Note also time series. Nothing wrong with calling this a random variable, but this won't be the focus of the course.

Some stochastic processes have some important properties, as follows:

- 1. Independence (mutual, not pairwise) can verify such assumptions.
- 2. Stationary many times we can assume that data is stationary. Two types:
 - (a) Wide sense
 - (b) Strict sense (by default)
- 3. Memoryless property.
- 4. Martingale property also useful with conditional expectations.

For more, revisit MTL106. Time homogeneous is similar to stationary.

Example 4

Poisson process

 $\{N(t), t \geq 0\}$ - number of events occurring upto and including time t. Suppose $N(t) \sim \mathcal{P}(\lambda t)$ where \mathcal{P} is the Poisson distribution, and λ is a fixed parameter. This stochastic process is called a Poisson process. Some properties:

- 1. Increments are independent.
- 2. Increments are stationary.
- 3. Satisfies the memoryless property.
- 4. Doesn't satisfy the martingale property.

We can derive a random variable that satisfies the martingale property from any random variable.

Example 5

Brownian motion/Wiener process

Let $\{W(t), t \geq 0\}$ be a stochastic process which satisfies the following conditions:

- 1. W(0) = 0
- 2. For fixed t, $W(t) \sim \mathcal{N}(0, t)$
- 3. Increments are independent.
- 4. Increments are stationary.

Definition 4

Filtration: Let (Ω, \mathcal{F}, P) be a probability space. A family $\{\mathcal{F}_t \mid t \geq 0\}$ of sub σ -fields of \mathcal{F} is called a filtration if $\mathcal{F}_s \subset \mathcal{F}_t$ if $s \leq t$.

HW: create some examples of filtrations.

Definition 5

If Ω is a space of functions on $T \subset \mathbb{R}^+$, then it comes with a natural filtration $\mathcal{F}_t = \sigma\{x(s), s \leq t\}$ where x is a stochastic process. That is, consider the set of all possible values of x(s) where $s \leq t$, and generate a σ -field out of it.

Definition 6

Given a probability space (Ω, \mathcal{F}, P) and a filtration $\mathcal{F}_t \subset F$, a family $\{M(t), t \geq 0\}$ (this is a stochastic process) is called a martingale wrt $(\Omega, \mathcal{F}_t, P)$ if

- 1. For almost all $w \in \Omega$, we have M(t, w) has left and right limits at every t and is continuous from the right.
- 2. For each $t \geq 0$, M(t) (random variable) is a measurable function wrt \mathcal{F}_t and integrable.
- 3. For $0 \le s \le t$, $\mathbb{E}[M(t) \mid \mathcal{F}_s] = M(s)$ almost everywhere/surely.

Example 6

Example for filtration:

The random experiment is tossing an unbiased coin infinitely many times.

We have $\Omega = \{HHH..., HTH..., ...\}.$

Let A_H be the collection of samples starting with H in the first toss.

Let A_T be the collection of samples starting with T in the second toss.

Let A_{HH} be the collection of samples starting with H in the first toss and H in the second toss.

Let A_{HT} be the collection of samples starting with H in the first toss and T in the second toss.

Consider the trivial σ -field $\mathcal{F}_0 = \{\emptyset, \Omega\}$.

Using the first toss, we construct the σ -field $\mathcal{F}_1 = \{\emptyset, A_H, A_T, \Omega\}$.

Using the second toss, we construct the σ -field $\mathcal{F}_2 = \{\emptyset, A_{HH}, A_{HT}, A_{TH}, A_{TT}, A_{HH} \cup A_{HT}, \dots, A_{HH}^c, \dots, \Omega\}$.

Note that $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots$. Also note that $\lim_{n\to\infty} \mathcal{F}_n = \mathcal{F}_\infty = \mathcal{F}$.

Example 7

Non-example for martingale:

Let $\{N(t), t \geq 0\}$ be a Poisson process on (Ω, \mathcal{F}, P) .

Now that the parameter space is contained in \mathbb{R}^+ , we have a natural filtration $\mathcal{F}_t = \sigma\{N(s), s \leq t\}$.

Note the following properties:

- 1. N(t, w) is right continuous at t for $w \in \Omega$.
- 2. N(t) is a measurable function wrt \mathcal{F}_t and integrable.
- 3. $\mathbb{E}[N(t) \mid \mathcal{F}_s] = \mathbb{E}[N(t) N(s) + N(s) \mid \mathcal{F}_s] = N(s) + \lambda(t s).$

Therefore this is not a martingale wrt the given filtration.

Example 8

 $\{W(t), t \geq 0\}$ on (Ω, \mathcal{F}, P) with the natural filtration. The first two conditions hold as usual. The third condition:

$$\mathbb{E}[W(t)\mid \mathcal{F}_s] = \mathbb{E}[W(t) - W(s) + W(s)\mid \mathcal{F}_s] = \mathbb{E}[W(t) - W(s)] + \mathbb{E}[W(s)\mid \mathcal{F}_s] = 0 + \mathbb{E}[W(s)\mid \mathcal{F}_s]$$
 since

 $W(t) \sim \mathcal{N}(0, t)$ and $\mathbb{E}[W(s) \mid \mathcal{F}_s] = \mathbb{E}[W(s)]$.

Hence brownian motion is a martingale wrt the natural filtration $\{\mathcal{F}(t), t \geq 0\}$.

Definition 7

Sub-martingale: If $\mathbb{E}[X(t) \mid \mathcal{F}(s)] \geq X(s)$ a.e., then it is called a sub-martingale.

Definition 8

Super-martingale: If $\mathbb{E}[X(t) \mid \mathcal{F}(s)] \leq X(s)$ a.e., then it is called a super-martingale.

Poisson process is a sub-martingale.

Example 9

Let $\{X_n \mid n = 0, 1, 2, ...\}$, where $X_n =$ the amount at the end of the n^{th} game. Y_i is the payoff of the i^{th} game, where $P[Y_i = 1] = P[Y_i = -1] = \frac{1}{2}$. Suppose $X_0 = A$.

We have $\mathbb{E}[X_{n+1} \mid \mathcal{F}_n] = \mathbb{E}[X_n + Y_{n+1} \mid \mathcal{F}_n] = \mathbb{E}[X_n \mid \mathcal{F}_n] + \mathbb{E}[Y_{n+1} \mid \mathcal{F}_n] = \mathbb{E}[X_n] + \mathbb{E}[Y_{n+1}] = \mathbb{E}[X_n]$. So this stochastic process is a martingale. Also note that $\mathbb{E}[X_n] = \mathbb{E}[X_0 + Y_1 + \dots + Y_n] = A + 0 + \dots + 0 = A$.

Definition 9

Markov Property

Let $\{X(t) \mid t \geq 0\}$ be a stochastic process defined on (Ω, \mathcal{F}, P) . If for $0 \leq s \leq t$, $P(X(t) \mid X(u), 0 \leq u \leq s) = P(X(t) \mid X(s))$, then this stochastic process is a Markov process, and is said to have the Markov property.

The same can be done for discrete processes.

For instance, verify that $P(X_{n+1} = x_{n+1} \mid X_0 = A, X_1 = x_1, \dots, X_n = x_n) = P(X_{n+1} = x_{n+1} \mid X_n = x_n)$, which gives us that the random walk is also a Markov process.

Example 10

Consider the Poisson process $\{N(t) \mid t \geq 0\}$. Then we have $P(N(t) = k \mid N(u), 0 \leq u \leq s) = P(N(t) = k \mid N(s))$ due to independent increments, so this is a Markov process.

Any process with independent increments is a Markov process.

A Markov process is a 1st order dependent process.

More generally, an auto-regressive process AR(r) is a process where X_n depends on X_{n-1}, \ldots, X_{n-r} .

Example 11

Consider Brownian motion $\{W(t) \mid t \geq 0\}$. This has independent increments, so this is a Markov process.

More properties: Nowhere differentiable property and so on.

2 Content

2.1 Conditional expectation

Let (Ω, \mathcal{F}, P) be a probability space, and X be an integrable random variable. Suppose γ is a sub- σ -algebrao of \mathcal{F} . Then $\mathbb{E}[X \mid \gamma]$ is a γ -measurable random variable such that $\int_A X dP = \int_A E[X \mid \gamma] dP$ for all A.

Theorem 1

Let X be an integrable random variable. Then for each σ -algebra $\gamma \subset \mathcal{F}$, the conditional expectation $\mathbb{E}[X \mid \gamma]$ exists and is unique upto γ -measurable sets of probability 0.

Properties of conditional expectation

- 1. $\mathbb{E}[X \mid \gamma] = X$ almost surely when X is γ -measurable.
- 2. Linear combinations work
- 3. If X is γ measurable and XY is integrable, then $\mathbb{E}[XY \mid \gamma] = X\mathbb{E}[Y \mid \gamma]$ a.s.
- 4. Tower property: $W \subset \gamma \subset \mathcal{F}$. Then $\mathbb{E}[X \mid W] = \mathbb{E}[\mathbb{E}[X \mid W] \mid \gamma] = \mathbb{E}[\mathbb{E}[X \mid \gamma] \mid W]$
- 5. $X \leq Y$ a.s. implies $\mathbb{E}[X \mid \gamma] \leq \mathbb{E}[Y \mid \gamma]$.

Lemma 1.1

(Conditional Jensen's inequality)

 $\Phi: \mathbb{R} \to \mathbb{R}$, convex such that $\mathbb{E}[|\Phi(X)|] < +\infty$ satisfies $\Phi(\mathbb{E}[X \mid \gamma]) \leq \mathbb{E}[\Phi(X) \mid \gamma]$.

2.2 Brownian Motion

 $\{B(t): t \geq 0\}$ is called Brownian motion if

- 1. B(0) = 0 a.s.
- 2. Independent increments: $0 < t_1 < \cdots < t_n$. Then $B(t_1), B(t_2) B(t_1), \cdots, B(t_n) B(t_{n-1})$ are independent.
- 3. $B(t) B(s) \sim N(0, t s)$ for all $t \ge s \ge 0$.
- 4. Sample paths are continuous with probability 1.

That is, we have:

$$P(a \le B(t) \le b) = \frac{1}{\sqrt{2\pi t}} \int_a^b \exp(-\frac{x^2}{2t}) dx$$

Now we have $P(a_1 \leq B(t_1) \leq b_1, ..., a_n \leq B(t_n) \leq b_n)$ equals

$$\int_{a_1}^{b_1} \cdots \int_{a_n}^{b_n} g(x_1, t_1 \mid 0) \cdot g(x_2, t_2 - t_1 \mid x_1) \cdots g(x_n, t_n - t_{n-1} \mid x_n) dx_n \cdots dx_1$$

where $g(x, t | y) = \frac{1}{\sqrt{2\pi t}} \exp(-\frac{(x-y)^2}{2t})$.

B(t) is a martingale with respect to its natural filtration $\mathcal{F}_t = \sigma(B(s) \mid 0 \le s \le t)$.

Theorem 2

Let B(t) be a Brownian motion. Then the processes

- 1. $X(t) = B^2(t) t$.
- 2. $M(t) = \exp{\{\sigma B(t) \frac{1}{2}\sigma^2 t\}}, \ \sigma \in \mathbb{R}^+$

are both martingales wrt to its natural filtration.

Proof. We prove for the second martingale, which is also called the exponential martingale.

 $\mathbb{E}[\exp(\sigma B(t))] = \exp(\frac{1}{2}\sigma^2 t)$ using standard computation. So we have $\mathbb{E}[\exp(\sigma B(t) - \frac{1}{2}\sigma^2 t)] = 1$, hence it is integrable.

We know that $B(t) - B(s) \sim N(0, t - s)$ for $t \ge s \ge 0$.

We can show that $\mathbb{E}[\exp(\sigma(B(t) - B(s)))] = \exp(\frac{1}{2}\sigma^2(t-s)).$

So we can show that $\mathbb{E}[M(t) \mid \mathcal{F}_s] = \mathbb{E}[\exp(\sigma(B(t) - B(t))) \exp(\sigma B(s) - \frac{1}{2}\sigma^2 t) \mid \mathcal{F}_s] = \exp(\sigma B(s) - \frac{1}{2}\sigma^2 t) \cdot \mathbb{E}[\exp(\sigma(B(t) - B(s)))] = \exp(\sigma B(s) - \frac{1}{2}\sigma^2 t) \cdot \exp(\frac{1}{2}\sigma^2 t - s)^2) = M(s)$, a.s.

Hence M(t) is a martingale.

Lemma 2.1

Let $B(\cdot)$ be a one-dimensional Brownian motion. Then $\mathbb{E}[B(t)B(s)] = \min t, s$, with $t, s \ge 0$. (Covariance).

How to define other brownian motions in terms of a brownian motion?

Example 12

Let B(t) be a Brownian motion. Define a stochastic process: X(t) = 0 if t = 0, $t \cdot B(1/t)$ if t > 0.

Then we claim that X(t) is a standard Brownian motion.

Proof. Suppose t > s. Then we have X(t) - X(s) = (t-s)B(1/t) + s(B(1/t) - B(1/s)). Note that the second part is $\sim N(0, s^2 \cdot (1/s - 1/t))$, and the first term is normally distributed with distribution $N(0, \frac{(t-s)^2}{t})$. Moreover, these are independent, so their sum has variance added, i.e., it is normally distributed with distribution $N(0, s^2(1/s - 1/t) + (t-s)^2/t) = N(0, t-s)$.

Now we only need to show that increments are independent.

$$Cov(X(t), X(s)) = \mathbb{E}[X(t)X(s)] = stE[B(1/t)B(1/s)] = st\min(1/s, 1/t) = \min(s, t).$$

Let s < t, then $Cov(X(s), X(t) - X(s)) = Cov(X(s), X(t)) - Cov(X(s), X(s)) = \min(s, t) - s = 0$. Then these are independent (since normally distributed - check).

Now we need to check that they are continuous with probability 1. At t=0, we have $\lim_{t\to 0} X(t) = \lim_{t\to 0} tB(\frac{1}{t}) = \lim_{n\to\infty} \frac{B(n)}{n} = \lim_{n\to\infty} \frac{1}{n} \cdot \sum_{i=1}^n B(i) - B(i-1)$.

Let Y(i) = B(i) - B(i-1). All these are i.i.d. By SLLN (strong law of large numbers), we have that $\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n Y_i=0$ a.s., so we are done.

2.2.1 First and quadratic variation

Let $f : [0, T] \to \mathbb{R}$. $\Pi = \{0 = t_0 < t_1 < \dots < t_n = T\}$.

Definition 10

First variation of f upto time T is defined as $FV_T(f) = \lim_{\|\Pi\| \to 0} \sum_{j=0}^{n-1} |f(t_{j+1}) - f(t_j)|$.

Definition 11

The quadratic variation of f upto time T is defined by $[f, f](T) = \lim_{\|\Pi\| \to 0} \sum_{j=0}^{n-1} (f(t_{j+1}) - f(t_j))^2$.

Note 1

If $f:[0,T]\to\mathbb{R}$ such that |f'| is Riemann integrable on [0,T], then $FV_T(f)=\int_0^T|f'(t)|dt$. For a proof, using mean value theorem, we have $f(t_{j+1})-f(t_j)=f'(t_j^*)(t_{j+1}-t_j)$ for some $t_j^*in[t_j,t_{j+1}]$.

So we have $\sum_{j=0}^{n-1} |f(t_{j+1}) - f(t_j)| = \sum_{j=0}^{n-1} |f'(t_j^*)| (t_{j+1} - t_j)$, and hence

 $FV_T(f) = \lim_{||\Pi|| \to 0} \sum_{j=0}^{n-1} |f'(t_j^*)| (t_{j+1} - t_j)$, which is the Riemann integral of |f'| on [0, T].

Note 2

If f has continuous derivative, then [f, f](T) = 0.

Theorem 3

If B(t) is a one dimensional Brownian motion, then [B,B](T)=T for all $T\geq 0$ a.s.

Proof. Let $\Pi = \{0 = t_0 < t_1 < \dots < t_n = T\}$ be a partition of [0, T]. Then we have $Q_T^n = \sum_{j=0}^{n-1} (B(t_{j+1}) - B(t_j))^2$.

We have $\mathbb{E}[(Q_T^n - T)^2] = \mathbb{E}[(\sum_{j=0}^{n-1} (B(t_{j+1}) - B(t_j))^2 - (t_{j+1} - t_j))^2] = \sum_{k=0}^{n-1} \sum_{j=0}^{n-1} \mathbb{E}[((B(t_{j+1}) - B(t_j))^2 - t_{j+1} + t_j) \cdot \text{(same thing for k)}]$. For $k \neq j$, we can show that the terms are 0 (using symmetry and the fact that $B(t)^2 - t$ is also a Brownian motion).

This implies that $\mathbb{E}[(Q_T^n - T)^2] = \sum_{k=0}^{n-1} \mathbb{E}[(Y_k - 1)^2 (t_{k+1} - t_k)^2]$, where $Y_k = \frac{B(t_{k+1}) - B(t_k)}{\sqrt{t_{k+1} - t_k}} \sim N(0, 1)$.

So $\exists c > 0$ such that $\mathbb{E}[(Q_T^n - T)^2] \le c \cdot \sum_{k=0}^{n-1} (t_{k+1} - t_k)^2$, whence the limit as $||\Pi|| \to 0$ of the expectation is 0. Thus [B, B](T) = T for all $T \ge 0$ a.s. (due to convergence in L_2).

Lemma 3.1

For any t > 0, the first variation of Brownian motion $B(\cdot)$ upto time T is infinite almost surely.

Proof. Consider the partition yet again. Look at the quadratic variation formula. We have $\sum_{j=0}^{n-1} (B(t_{j+1}) - B(t_j))^2 \le \sup_{0 \le k \le n-1} |B(t_{k+1} - t_k)| \cdot \sum_{j=0}^{n-1} |B(t_{j+1}) - B(t_j)|$. Now since Brownian motion has a continuous sample path, the supremum is 0. So the sample path has infinite variation with probability 1. Because suppose it is finite, then it gives the inequality $T \le 0$, which is a contradiction.

Definition 12

Geometric Brownian motion: $S(t) = S(0) \exp(\sigma B(t) + (\alpha - \frac{1}{2}\sigma^2)t)$ where α and $\sigma > 0$ are constants.

This is used for stock pricing models.

Consider $0 \le T_1 < T_2$, and $T_1 \le t \le T_2$. Let Π be a partition $\{T_1 = t_0 < t_1 < \dots < t_n = T_2\}$.

Then we have
$$\log \left(\frac{S(t_{j+1})}{S(t_j)} \right) = \sigma(B(t_{j+1}) - B(t_j)) + (\alpha - \sigma^2/2)(t_{j+1} - t_j).$$

Summing this from j=0 to n-1 gives $\sum_{j=0}^{n-1}\log^2\left(\frac{S(t_{j+1})}{S(t_j)}\right)=\sum_{j=0}^{n-1}(\sigma(B(t_{j+1})-B(t_j))+(\alpha-\sigma^2/2)(t_{j+1}-t_j))^2=A_1+A_2+A_3$, where A_1 is term corresponding to difference of B squared, A_2 is the term corresponding to the other square and A_3 is the cross term. Then $\lim_{||\Pi||\to 0}A_1=\sigma^2(T_2-T_1)$, that for A_2 is 0. We need the following claim:

Claim 3.1

 $\lim_{|\Pi|\to 0} A_3 = 0$

Proof.
$$|\sum_{j=0}^{n-1} (B()-B())(()-())| \le \sum_{j=0}^{n-1} |B()-B()||()-()| \le \max |B()-B()| \sum_{j=0}^{n-1} |()-()| = 0 \cdot (T_2-T_1).$$
 □

So we have $\sigma^2 \approx \frac{1}{T_2 - T_1} \sum_{j=0}^{n-1} \left(\log \frac{S(t_{j+1})}{S(t_j)} \right)^2$ as an approximation to the volatility.