

TO PASS 80% or higher

Keep Learning

GRADE 100%

Sequence Models & Attention Mechanism

LATEST SUBMISSION GRADE

100%

1/1 point

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence x.

- O True
- False

✓ Correct

2. In beam search, if you increase the beam width B, which of the following would you expect to be true? Check all that apply.

1/1 point

lacksquare Beam search will generally find better solutions (i.e. do a better job maximizing $P(y\mid x)$)

✓ Correct

Beam search will run more slowly.

✓ Correct

Beam search will use up more memory.

✓ Correct

- Beam search will converge after fewer steps.
- 3. In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.

1/1 point

- True
- O False

✓ Correct

4. Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y. Your algorithm uses beam search to try to find the value of y that maximizes $P(y \mid x)$.

1/1 point

On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y}=$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^*=$ "I'm building an AI system in Silicon Valley."

According to your model,

 $P(\hat{y} \mid x) = 1.09 * 10^-7$

 $P(y^* \mid x) = 7.21 * 10^{-8}$

Would you expect increasing the beam width B to help correct this example?

	$igcup Y$ es, because $P(y^* \mid x) \leq P(y \mid x)$ indicates the error should be attributed to the KNN rather than to the search algorithm.	
	O No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.	
	No, because $P(y^* \mid x) ≤ P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.	
	$ \bigcirc \ \text{Yes, because } P(y^* \mid x) \leq P(\hat{y} \mid x) \text{ indicates the error should be attributed to the search algorithm rather than to the RNN.} $	
	✓ Correct	
5.	Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, $P(y^* \mid x) > P(\hat{y} \mid x)$. This suggests you should focus your attention on improving the search algorithm.	1/1 point
	True. False.	
	✓ Correct	
6.	Consider the attention model for machine translation.	1/1 point
	\$\frac{9^{ <t-1>}}{\frac{1}{S^{<t-1>}}} \biggred{\frac{9^{<t>}}{S^{<t>}}} \biggred{\frac{1}{S^{\text{*}}}}</t></t></t-1></t-1>	
	$a^{<0>} \longrightarrow \cdots \longrightarrow $	
	Further, here is the formula for $lpha^{< t, t'>}$.	
	$\alpha^{\langle t,t'\rangle} = \frac{\exp(e^{\langle t,t'\rangle})}{\exp(e^{\langle t,t'\rangle})}$	
	$\frac{u}{\sum_{t'=1}^{T_x} \exp(e^{\langle t,t'\rangle})}$	
	Which of the following statements about $\alpha^{< t, t'>}$ are true? Check all that apply.	
	We expect $\alpha^{< t, t'>}$ to be generally larger for values of $a^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t>}$. (Note the indices in the superscripts.)	
	✓ Correct	
	$\sum_{t'} lpha^{< t, t'>} = 1$ (Note the summation is over t' .)	
	✓ Correct	
	$igsquare$ $\sum_t lpha^{< t, t^>} = 1$ (Note the summation is over t .)	
	We expect $\alpha^{<\!t,t'>}$ to be generally larger for values of $a^{<\!t>}$ that are highly relevant to the value the network should output for $y^{<\!t'>}$. (Note the indices in the superscripts.)	
7.	The network learns where to "pay attention" by learning the values $e^{-t,t'>}$, which are computed using a small neural network:	1/1 point
	We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t, t'>}$ which in turn depends on $e^{< t, t'>}$; so at the time we need to evaluate this network, we haven't computed $s^{< t>}$ yet.	
	True	
	○ False	
	✓ Correct	

8.	Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:	1/1 point
	$lacktriangle$ The input sequence length T_x is large.	
	$igcap$ The input sequence length T_x is small.	
	✓ Correct	
9.	Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the following string collapse to?	1/1 point
	_c_oo_o_kkb_ooooo_oo_kkk	
	O cook book	
	cookbook	
	O cokbok	
	O coookkbooooookkk	
	✓ Correct	
10.	In trigger word detection, $x^{< t>}$ is:	1 / 1 point
	igcup Whether the trigger word is being said at time t .	
	lacktriangledown Features of the audio (such as spectrogram features) at time $t.$	
	igcirc Whether someone has just finished saying the trigger word at time $t.$	
	O The <i>t</i> -th input word, represented as either a one-hot vector or a word embedding.	
	✓ Correct	