Reconstructing a simple 3D object using phase-shift coherence holography

Generation of a Fourier transform coherence hologram

Figure 1

Object beam at hologram plane:

Defocus and propagation of the angular spectrum

$$G\left(\hat{x},\hat{y}\right) \propto \int \left\{ \iint g\left(x,y,z\right) \exp\left[-i\frac{2\pi}{\lambda f}\left(x\hat{x}+y\hat{y}\right)\right] dxdy \right\} \exp\left[-ik_z\left(\hat{x},\hat{y}\right)z\right] dz, (1) \qquad k_z\left(\hat{x},\hat{y}\right) = \frac{2\pi}{\lambda} \sqrt{1 - \left(\frac{\hat{x}}{f}\right)^2 - \left(\frac{\hat{y}}{f}\right)^2}.$$

Fourier Transform (Based on Fraunhofer diffraction)

Phase-shift holograms

 A set of phase-shift holograms are generated numerically by giving known phase shifts to the object spectrum

$$G(\hat{x}, \hat{y}; m) = G(\hat{x}, \hat{y}) \exp(i 2\pi m / N), \qquad (2)$$

• There is a term $|G(\hat{x}, \hat{y})|^2$ that is the source of unwanted autocorrelation image \rightarrow numerically eliminate this term

Intensity transmittance of the hologram

 Unlike conventional hologram, the intensity (rather than amplitude) transmittance of the hologram was made proportional to the interference fringe pattern

$$H\left(\hat{x},\hat{y};m\right) \propto \left|G\left(\hat{x},\hat{y}\right)\right| + \frac{1}{2}G\left(\hat{x},\hat{y}\right) \exp\left(i\frac{2m\pi}{N}\right) + \frac{1}{2}G^{*}\left(\hat{x},\hat{y}\right) \exp\left(-i\frac{2m\pi}{N}\right)$$

$$\propto \left|G\left(\hat{x},\hat{y}\right)\right| \left\{1 + \cos\left[\Phi\left(\hat{x},\hat{y}\right) + \frac{2m\pi}{N}\right]\right\}$$
(3)

Incoherence illumination

$$\sqrt{H\left(\hat{x},\hat{y};m\right)}\exp\left[i\,\Phi_{R}\left(\hat{x},\hat{y}\right)\right]$$
(4)

Incoherent term

The transmitted wave

Incoherence Illumination

The transmitted wave

Coherence function- used to reconstruct the object $\Gamma(\Delta x, \Delta y; \Delta z) = \langle u^*(x_1, y_1; z_1) u(x_2, y_2; z_2) \rangle$:Correlation of 2 signals

$$\begin{split} \Gamma(\Delta x, \Delta y; \Delta z) &= \left\langle u^*(x_1, y_1; z_1) \, \mathbf{u} \left(x_2, y_2; z_2 \right) \right\rangle \quad \text{:Correlation of 2 signals} \\ &= \iiint \sqrt{H(\widehat{x_1}, \widehat{y_1})} \, \sqrt{H(\widehat{x_2}, \widehat{y_2})} \, \left\langle \exp\left[-i\Phi_R\left(\hat{x}_1, \hat{y}_1\right)\right] \exp\left[i\Phi_R\left(\hat{x}_2, \hat{y}_2\right)\right] \right\rangle \\ &\quad \times \exp\left[-ik_z\left(\hat{x}_1, \hat{y}_1\right) z_1\right] \exp\left[ik_z\left(\hat{x}_2, \hat{y}_2\right) z_2\right] \\ &\quad \times \exp\left[-i\frac{2\pi}{\lambda f} \left(x_1 \hat{x}_1 + y_1 \hat{y}_1\right)\right] \exp\left[i\frac{2\pi}{\lambda f} \left(x_2 \hat{x}_2 + y_2 \hat{y}_2\right)\right] d\hat{x}_1 d\hat{y}_1 d\hat{x}_2 d\hat{y}_2 \\ &= \iiint H(\widehat{x_1}, \widehat{y_1}) \, \exp\left[ik_z\left(\hat{x}_1, \hat{y}_1\right) \Delta z\right] \exp\left[i\frac{2\pi}{\lambda f} \left(\hat{x}_1 \Delta x + \hat{y}_1 \Delta y\right)\right] d\hat{x}_1 d\hat{y}_1, \, \text{IFFT of the Intensity transmittance hologram} \end{split}$$

where < > denotes ensemble average, $\Delta x = x_2 - x_1$, $\Delta y = y_2 - y_1$, $\Delta z = z_2 - z_1$, and use has been made of the assumption $\left\langle \exp\left[-i\Phi_R\left(\hat{x}_1,\hat{y}_1\right)\right]\exp\left[i\Phi_R\left(\hat{x}_2,\hat{y}_2\right)\right]\right\rangle = \delta\left(\hat{x}_1 - \hat{x}_2,\hat{y}_1 - \hat{y}_2\right)$ for an ideal rotating ground glass.

Definition of impulse response

$$\Gamma(\Delta x, \Delta y, \Delta z; m) = \langle u^*(x_1, y_1, z_1; m) u(x_2, y_2, z_2; m) \rangle$$

$$= \iint H(\hat{x}, \hat{y}; m) \exp\left[ik_z(\hat{x}, \hat{y}) \Delta z\right] \exp\left[i\frac{2\pi}{\lambda f}(\hat{x}\Delta x + \hat{y}\Delta y)\right] d\hat{x}d\hat{y}$$
(7)

Sagnac Interferometer- CCD captures the interference of this interferometer $\langle \mu(x_1,y_1,z_1;m) + \mu(x_2,y_2,z_2;m) \rangle^2$

$$I(\Delta x, \Delta y, \Delta z; m) = \langle |u(x_1, y_1, z_1; m) + u(x_2, y_2, z_2; m)|^2 \rangle$$

= $2\Gamma(0, 0, 0; m) + 2\operatorname{Re}[\Gamma(\Delta x, \Delta y, \Delta z; m)],$

$$\Delta x = x_{2} - x_{1}, \Delta y = y_{2} - y_{1}, \qquad \Delta z = z_{2} - z_{1}$$

$$\Delta \mathbf{r} = (\Delta x, \Delta y, \Delta z) = (m_{x}^{-1} \tilde{x}, m_{y}^{-1} \tilde{y}, m_{z}^{-1} \tilde{z})$$

$$m_{x} = m_{y} = -(\alpha - \alpha^{-1})^{-1} \qquad m_{z} = (\alpha^{2} - \alpha^{-2})^{-1}$$

The equation of CCD image

The purpose of adding phase-shift to the holograms

From (3) and (7)
$$\Gamma(\Delta x, \Delta y, \Delta z; m) = \tilde{g}(\Delta x, \Delta y, \Delta z) + \frac{1}{2}g(\Delta x, \Delta y, \Delta z) \exp\left(i\frac{2m\pi}{N}\right) + \frac{1}{2}g^*(-\Delta x, -\Delta y, -\Delta z) \exp\left(-i\frac{2m\pi}{N}\right)$$
(8)

where

$$\tilde{g}\left(\Delta x, \Delta y, \Delta z\right) = \iint \left|G\left(\hat{x}, \hat{y}\right)\right| \exp\left[ik_z\left(\hat{x}, \hat{y}\right)\Delta z\right] \exp\left[i\frac{2\pi}{\lambda f}\left(\hat{x}\Delta x + \hat{y}\Delta y\right)\right] d\hat{x}d\hat{y}. (9)$$

Vary sinusoidally -> Sin-fit Algorithm

$$I(\Delta x, \Delta y, \Delta z; m) = \operatorname{Re}\left\{2\tilde{g}(0,0,0) + 2\tilde{g}(\Delta x, \Delta y, \Delta z)\right\}$$

$$+ g(0,0,0) \exp\left(i\frac{2m\pi}{N}\right) + g(\Delta x, \Delta y, \Delta z) \exp\left(i\frac{2m\pi}{N}\right)$$

$$+ g^{*}(0,0,0) \exp\left(-i\frac{2m\pi}{N}\right) + g^{*}(-\Delta x, -\Delta y, -\Delta z) \exp\left(-i\frac{2m\pi}{N}\right)$$

$$(10)$$

The purpose of adding phase-shift to the holograms

$$I(\Delta x, \Delta y, \Delta z, m) = \{|g(\Delta x, \Delta y, \Delta z)|\cos[\theta(\Delta x, \Delta y, \Delta z)] + |g(-\Delta x, -\Delta y, -\Delta z)|\cos[\theta(-\Delta x, -\Delta y, -\Delta z)]\}\cos[\frac{2m\pi}{N}] + \{-|g(\Delta x, \Delta y, \Delta z)|\sin[\theta(\Delta x, \Delta y, \Delta z)] - |g(-\Delta x, -\Delta y, -\Delta z)|\sin[\theta(-\Delta x, -\Delta y, -\Delta z)]\sin[\frac{2m\pi}{N}] + C$$

$$= \frac{A\cos[\frac{2m\pi}{N}] + B\sin[\frac{2m\pi}{N}] + C}{|g(\Delta x, \Delta y, \Delta z)| + |g(-\Delta x, -\Delta y, -\Delta z)|\cos[\theta(-\Delta x, -\Delta y, -\Delta z)]\}\cos[\frac{2m\pi}{N}] + C}{|g(\Delta x, \Delta y, \Delta z)| + |g(-\Delta x, -\Delta y, -\Delta z)|\cos[\theta(-\Delta x, -\Delta y, -\Delta z)]\}\cos[\frac{2m\pi}{N}] + C}$$

3 Unknowns: $\mathbf{x} = (A, B, C)^T \rightarrow$ need at least 3 equations or 3 CCD images (y_1, y_2, y_3) with different phase-shifts

$$\mathbf{y} = (y_1, \dots, y_N)^T. \tag{3}$$

Then, y obeys the linear set of equations

$$y = Dx (4)$$

where **D** is the $N \times 3$ matrix

$$\mathbf{D} = \begin{pmatrix} \cos \omega t_1 & \sin \omega t_1 & 1\\ \cos \omega t_2 & \sin \omega t_2 & 1\\ \vdots & \vdots & \vdots\\ \cos \omega t_N & \sin \omega t_N & 1 \end{pmatrix}. \tag{5}$$

Equation (4) is an overdetermined (i.e. N > 3) set of linear equations, with the least-squares solution $\hat{\mathbf{x}}$ (in general, $\hat{\mathbf{x}}$ denotes an estimate) given by [3]

$$\hat{\mathbf{x}} = (\mathbf{D}^T \mathbf{D})^{-1} \mathbf{D}^T \mathbf{y}. \tag{6}$$

The Reconstructed object

$$\Gamma(\Delta x, \Delta y, \Delta z; m) = \langle u^*(x_1, y_1, z_1; m) u(x_2, y_2, z_2; m) \rangle$$

$$= \iint H(\hat{x}, \hat{y}; m) \exp\left[ik_z(\hat{x}, \hat{y}) \Delta z\right] \exp\left[i\frac{2\pi}{\lambda f}(\hat{x}\Delta x + \hat{y}\Delta y)\right] d\hat{x}d\hat{y}$$

$$(7)$$

$$\Delta x = x_2 - x_1, \Delta y = y_2 - y_1 \qquad \Delta z = z_2 - z_1$$

$$\Delta \mathbf{r} = (\Delta x, \Delta y, \Delta z) = (m_x^{-1} \tilde{x}, m_y^{-1} \tilde{y}, m_z^{-1} \tilde{z})$$

$$m_x = m_y = -(\alpha - \alpha^{-1})^{-1} \qquad m_z = (\alpha^2 - \alpha^{-2})^{-1}$$

The reconstructed object at $(\alpha^2 - \alpha^{-2})^{-1} \times z_{object}$ plane is scale by a factor $(\alpha - \alpha^{-1})^{-1}$, where z_{object} is the z coordinate of the 3 planes of the 3D object

The setup to record the CCD images

Results at $(\alpha^2 - \alpha^{-2})^{-1} \times z_{object}$ plane, $z_{object} = 0$

Results at $(\alpha^2 - \alpha^{-2})^{-1} \times z_{object}$ plane, $z_{object} = -10$ mm

paper

IEEE paper

One of the CCD images

Results at $(\alpha^2 - \alpha^{-2})^{-1} \times z_{object}$ plane, $z_{object} = 10$ mm

One of the CCD images

Reconstructed object's amplitude from IEEE paper

Reconstructed object's phase from IEEE paper

References

- (1) D. N. Naik, T. Ezawa, R. K. Singh, Y. Miyamoto, and M. Takeda, "Coherence holography by achromatic 3-D field correlation of generic thermal light with an imaging Sagnac shearing interferometer", 2012 Optical Society of America
- (2) P. H"andel, Senior Member, IEEE, "Properties of the IEEE-STD-1057 four parameter sine wave fit algorithm", IEEE January 2001
- (3) D. N. Naik, T. Ezawa, Y. Miyamoto, and M. Takeda, "Real-time coherence holography", 2010 Optical Society of America