This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

 \star KURI/ P32 95-080244/11 \star RU 2014039-C1 Procedure for varying the optical strength of artificial lens for eye has lens surrounded by supporting ring of material which possesses shape memory effect

KURILOV V 90.12.13 90SU-4891094

(94.06.15) A61F 2/16

The procedure consists of subjecting the lens (1) to a thermal influence in a radial direction to change its shape and, consequently, its focal length. The lens is surrounded by a supporting ring (2) made from a material with a reversible shape memory effect, e.g. a nickel-titanium or copper-aluminium-zinc alloy.

The focal length of the lens is changes by holding in front of the eye a heated body with a temperature above that of normal human body temperature (36.6 deg.C) so that it raises the temperature of the eye through the surrounding air to 37 deg C, for example. This alters the shape of the supporting ring and changes the focus of the lens. It returns to its original shape when the heat source is removed.

ADVANTAGE - Design simplicity, incorporating possibility of change in lens focus. Bul. 11/15.6.94 (3pp Dwg.No.1/5) N95-063452

©1995 DERWENT INFORMATION LIMITED

Derwent House 14 Great Queen Street London WC2B 5DF England UK

Derwent Incorporated
1420 Spring Hill Road Suite 525 McLean VA 22102 USA
Unauthorised copying of this abstract not permitted

Комитет Российской Федерации по патентам и товарным знакам

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ

к патенту Российской Федерации

(21) 4891094/14

(22) 13 12 90

(46) 15.06.94 Bion № 11

(76) Курилов Виктор Викторович

(56) Патент США N 4575378, кл. A 61F 2/16, 1986.

(54) СПОСОБ ИЗМЕНЕНИЯ ОПТИЧЕСКОЙ СИ-ЛЫ ЛИНЗЫ ИСКУССТВЕННОГО ХРУСТАЛИКА И ИСКУССТВЕННЫЙ ХРУСТАЛИК КУРИЛОВА

(57) Использование: в медицине, а именно в офтальмологии для временного изменения оптической

силы линзы. Сущность изобретения: способ изменения оптической силы линзы искусственного хрусталика включает периодическое осуществление радиального сжатия торцевой части линзы искусственного хрусталика. Предлагаемый искусственный хрусталик для осуществления способа содержит линзу и опорное кольцо, линза снабжена кольцевой канавкой, выполненной на ее торцевой поверхности, а опорное кольцо выполнено из материала с памятью формы. 2 с. и 1 зл.ф-лы, 5 ил.

Изобретение относится к медицине, к офтальмологии и может быть использовано для временного увеличения остроты зрения.

Известен способ измерения оптической силы линзы при введении искусственног хрусталика в глаз.

Извествн и искусственный хрусталик, содержащий линзу и опорное кольцо, расположенное на теле линзы.

Недостатком известных технических решений является то, что остротой зрения невозможно управлять после внедрения в глаз искусственного хрусталика.

Целью изобретения является упроще- 15 ние при одновременном обеспечении временного изменения оптической силы линзы.

Сущность изобретения заключается в следующем. При необходимости увеличения дальнозоркости изменяют фокусное 20 расстояние искусственного хрусталика сдавливая тело хрусталика радиальными усилиями.

Для возвращения фокусного расстояния в исходное положение, убирают ради- 25 альные усилия.

Радиальные усилия возникают при сжатии кольца, размещенного на теле хрусталика. Кольцо выполнено из материала, обладающего обратимой памятью формы, 30 например NI-TI, Cu-AI-Zn. Перед установкой на хрусталик кольцо подвергают предварительной термической обработке — закалке в сжатом положении в состоянии высокотемпературной фазы и деформации в разжатое 35 положение в состоянии низкотемпературного мартенситного превращения.

На фиг. 1 изображен хрусталик в исходном положении, разрез, на фиг. 2 - хруста-

Формула изобретения

1.Способ изменения оптической силы линзы искусственного хрусталика путем теплового воздействия в радиальном на- 45 правлении на тело линзы, отличающийся тем, что, с целью упрощения при одновременном обеспечении временного изменения оптической силы линзы, радиальное воздействие осуществляют периодически.

лик в сжатом положении, разрез; на фиг. 3 – кольцо, вид сверху; на фиг. 4 – схема работы хрусталика в глазе; на фиг. 5 – кольцо <-образной формы, разрез.

Пример выполнения способа.

Для временного увеличения дальнозоркости производят нагрев кольца, в результате тело хрусталика деформируется (сжимается) и изменяется его фокусное расстояние.

Нагрев кольца осуществляют, например, размещением перед глазами нагретого тела с температурой выше нормальной человеческого тела (36,6°С), которое через нагретый окружающий воздух нагреет глаз или временным поднятием температуры тела человека, например до 37°С, или подачей в маску теплого воздуха. Для возвращения фокусного расстояния в исходное положение убирают источник тепла и т.д.

Устройство содержит искусственный хрусталик 1 на теле которого размещено кольцо 2 из материала с обратимой памятью формы, имеющее как минимум три внутренних шипа 3 и опорные элементы 4.

Устройство работает следующим образом. Нагреваясь, кольцо 2 сжимается и сжимает упругое тело искусственного хрусталика 1, изменяя его фокусное расстояние, следовательно, увеличивая дальнозоркость. Шипы 3 предохраняют кольцо 2 от соскакивания с тела хрусталика 1. Опорные элементы 4 удерживают хрусталик в глазу.

Для предотвращения выскакивания кольца 2 на теле хрусталика выполнена кольцевая канавка или само кольцо имеет <-образную форму, тем самым охватывая тело хрусталика.

2.Искусственный хрусталик, содержащий линзу и опорное кольцо, отличающийся тем, что, с целью упрощения при одновременном обеспечении временного изменения оптической силы линзы, опорное кольцо выполнено из материала с обратимой памятью формы.

3. Хрусталик по п.2, отличающийся тем. что торцевая поверхность линзы снабжена кольцевой канавкой.

• φ_{u2.} 1

Редактор Г.Мельникова Т хред М.М ргентал Корректор О.Кравцова

Заказ 334 Тираж
НПО "Поиск" Роспатента

First Hit

Generate Collection Print

L2: Entry 1 of 6

File: DWPI

Jun 15, 1994

DERWENT-ACC-NO: 1995-080244

DERWENT-WEEK: 199511

COPYRIGHT 2004 DERWENT INFORMATION LTD

TITLE: Procedure for varying the optical strength of artificial lens for eye - has lens surrounded by supporting ring of material which possesses shape memory effect

INVENTOR: KURILOV, V V

PATENT-ASSIGNEE:

ASSIGNEE

CODE

KURILOV V V

KURII

PRIORITY-DATA: 1990SU-4891094 (December 13, 1990)

Search Selected Search ALL Clear

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE

PAGES

MAIN-IPC

RU 2014039 C1

June 15, 1994

003

A61F002/16

APPLICATION-DATA:

PUB-NO

APPL-DATE

APPL-NO

DESCRIPTOR

RU 2014039C1

December 13, 1990

1990SU-4891094

INT-CL (IPC): A61F 2/16

ABSTRACTED-PUB-NO: RU 2014039C

BASIC-ABSTRACT:

The procedure consists of subjecting the lens (1) to a thermal influence in a radial direction to change its shape and, consequently, its focal length. The lens is surrounded by a supporting ring (2) made from a material with a reversible shape memory effect, e.g. a nickel-titanium or copper-aluminium-zinc alloy.

The focal length of the lens is changes by holding in front of the eye a heated body with a temperature above that of normal human body temperature (36.6 deg.C) so that it raises the temperature of the eye through the surrounding air to 37 deg C, for example. This alters the shape of the supporting ring and changes the focus of the lens. It returns to its original shape when the heat source is removed.

ADVANTAGE - Design simplicity, incorporating possibility of change in lens focus. Bul. 11/15.6.94

CHOSEN-DRAWING: Dwg.1/5

TITLE-TERMS: PROCEDURE VARY OPTICAL STRENGTH ARTIFICIAL LENS EYE LENS SURROUND

SUPPORT RING MATERIAL POSSESS SHAPE MEMORY EFFECT

DERWENT-CLASS: P32

SECONDARY-ACC-NO:

Non-CPI Secondary Accession Numbers: N1995-063452