DistilBERT, a distilled version of BERT : smaller, faster, cheaper and lighter.

Abstract

- General purpose language representation model, called DistilBERT,
- While most prior work investigated the use of distillation for <u>building task-specific models</u>,
- we leverage **knowledge distillation during the pre-training phase** and show that it is possible to reduce the **size of a BERT model by 40%**, while **retaining 97% of its language understanding capabilities** and being **60% faster**.

Introduction

- large-scale pre-trained language models becoming a basic tool in many NLP tasks
- they often have **several hundred million parameters** and current research on pre-trained models indicates that **training even larger models still leads to better performances** on downstream tasks.
- several concerns
 - the **environmental cost** of exponentially scaling these models' computational requirements

• while operating these models on-device in real-time ... the growing computational and memory

requirements of these models may hamper wide adoption.

Figure 1: Parameter counts of several recently released pretrained language models.

Architecture

Fig. 5 The specific architecture of the benchmark knowledge distillation (Hinton et al., 2015).

$$q_i = \frac{exp(z_i/T)}{\sum_j exp(z_j/T)} \tag{1}$$

https://arxiv.org/pdf/2006.05525.pdf

Training loss

• The student is trained with a **distillation loss** over the soft target probabilities of the teacher.

$$L_{ce} = \sum_{i} t_i * \log(s_i)$$

- The supervised training loss, in our case the **masked language modeling loss** (Lmlm)
- We found it beneficial to add a **cosine embedding loss** (Lcos) which will tend to align the <u>directions of</u> the student and teacher hidden states vectors.

DistilBERT: a distilled version of BERT

Student architecture

- the same general architecture as BERT.
- The token-type embeddings (segment embedding) and the pooler are removed while the number of layers is reduced by a factor of 2.
 - <u>Transformer architecture</u> (linear layer and layer normalisation) are <u>highly optimized</u>
 - the last dimension of the tensor (hidden size dimension) have a smaller impact on computation efficiency (for a fixed parameters budget) than variations on other factors like the number of layers.
- Thus we focus on reducing the number of layers.

Student initialization / Distillation / Data and compute power

Student initialization

we initialize the student from the teacher by taking one layer out of two.

Distillation

- very large batches leveraging gradient accumulation (up to 4K examples per batch)
- using <u>dynamic masking</u>
- without the next sentence prediction (NSP)

Data and compute power

- the same corpus as the original BERT model
- 8 16GB V100 GPUs for approximately 90 hours.

Experiments

General Language Understanding

- We report scores on the development sets for each task by fine-tuning DistilBERT
 - Among the 9 tasks, DistilBERT is always on par or improving over the ELMo baseline.
 - DistilBERT also compares surprisingly well to BERT, retaining 97% of the performance with 40% fewer parameters.

Table 1: **DistilBERT retains 97% of BERT performance.** Comparison on the dev sets of the GLUE benchmark. ELMo results as reported by the authors. BERT and DistilBERT results are the medians of 5 runs with different seeds.

Model	Score	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST-2	STS-B	WNLI
ELMo BERT-base DistilBERT	68.7 79.5 77.0	44.1 56.3 51.3	68.6 86.7 82.2	76.6 88.6 87.5	71.1 91.8 89.2			92.7	70.4 89.0 86.9	56.3 53.5 56.3

Downstream task / Size and inference speed

downstream tasks

- only 0.6% point behind BERT in test accuracy on the IMDb benchmark
- On SQuAD, DistilBERT is within 3.9 points of the full BERT
- two successive steps
 - one during the pre-training phase
 - one during the adaptation phase

Size and inference speed

• DistilBERT has 40% fewer parameters than BERT and is 60% faster than BERT.

Table 2: **DistilBERT yields to comparable performance on downstream tasks.** Comparison on downstream tasks: IMDb (test accuracy) and SQuAD 1.1 (EM/F1 on dev set). D: with a second step of distillation during fine-tuning.

Model	IMDb (acc.)	SQuAD (EM/F1)
BERT-base	93.46	81.2/88.5
DistilBERT DistilBERT (D)	92.82	77.7/85.8 79.1/86.9

Table 3: **DistilBERT is significantly smaller** while being constantly faster. Inference time of a full pass of GLUE task STS-B (sentiment analysis) on CPU with a batch size of 1.

Model	# param. (Millions)	Inf. time (seconds)
ELMo	180	895
BERT-base	110	668
DistilBERT	66	410

Ablation study

- we investigate the influence of various components of the triple loss and the student initialization on the performances of the distilled model.
- removing the **Masked Language Modeling loss has little impact** while the two distillation losses account for a large portion of the performance

Table 4: **Ablation study.** Variations are relative to the model trained with triple loss and teacher weights initialization.

Ablation	Variation on GLUE macro-score
\emptyset - L_{cos} - L_{mlm}	-2.96
L_{ce} - \emptyset - L_{mlm}	-1.46
L_{ce} - L_{cos} - \emptyset	-0.31
Triple loss + random weights initialization	-3.69

Conclusion

- general-purpose pre-trained version of BERT, 40% smaller, 60% faster, that retains 97% of the language understanding capabilities.
- We further demonstrated that DistilBERT is a compelling option for edge applications.