Семинар №10.

Линейная регрессионная модель.

Постановка задачи.

Пусть наблюдение X — случайный вектор из \mathbb{R}^n , причём

$$X = l + \varepsilon$$
,

где l — фиксированный неизвестный вектор (который мы и хотим оценить), а ε — случайный вектор, $E\varepsilon=0, D\varepsilon=\sigma^2I_n,\ I_n$ — единичная диагональная матрица размера $n\times n$.

Линейность модели: про l известно, что $l \in L$ — линейное подпространство в \mathbb{R}^n , $\dim L = k < n$. Что неизвестно? l и σ^2 .

Дано: L задано в виде базиса Z_1, \ldots, Z_k (вектор-столбцы). Введём матрицу $Z=(Z_1, \ldots, Z_k)$ (просто столбцы рядом поставили). Тогда

$$l = Z_1 \theta_1 + \ldots + Z_k \theta_k = Z \theta,$$

где $\theta = (\theta_1, \dots, \theta_k)^T$ - неизвестные координаты l в базисе Z. Таким образом, задача оценки l сведена к задаче оценки $\theta \in \mathbb{R}^k$.

Метод наименьших квадратов.

$$\widehat{\theta} := \arg\min_{\theta} \|X - Z\theta\|^2,$$

т.е. мы ищем такое $Z\theta$ из линейного подпространства L, которое минимизирует евклидово расстояние до X. Нетрудно догадаться, что $Z\widehat{\theta}=proj_L X$ (проекция X на L).

Определение. $\widehat{\theta}$ называется оценкой θ по методу наименьших квадратов (далее – о.н.к.).

Утверждение 1. $\hat{\theta} = (Z^T Z)^{-1} Z^T X$.

Доказательство.

$$||X - Z\theta||^2 = (X - Z\theta)^T (X - Z\theta) = X^T X - X^T Z\theta - \theta^T Z^T X + \theta^T Z^T Z\theta =$$

$$= X^T X - 2X^T Z\theta + \theta^T (Z^T Z)\theta.$$

Стоит заметить, что $\|X - Z\theta\|^2$ — это число, поэтому $X^TZ\theta$ и θ^TZ^TX — тоже числа. Но $\forall a \in \mathbb{R}$ $a = a^T$, поэтому $X^TZ\theta = (X^TZ\theta)^T = \theta^TZ^TX$. Дифференцируем по θ_i и приравниваем к нулю, чтобы найти минимум:

$$-2(X^TZ)_i + 2(\theta^TZ^TZ)_i = 0 \Rightarrow X^TZ - \theta^TZ^TZ = 0 \Rightarrow \widehat{\theta} = (Z^TZ)^{-1}Z^TX. \ \Box$$

Что взять в качестве оценки σ^2 ?

Утверждение 2.
$$E\left(\frac{1}{n-k}\|X-Z\widehat{\theta}\|^2\right)=\sigma^2.$$

Задача. Имеется 2 объекта с весами a и b. Мы взвесили (с ошибками) первый, второй и потом оба вместе на одних и тех же весах. Найти оценки наименьших квадратов для a и b.

<u>Решение.</u> Пусть взвешивания показали результат $X_1,~X_2$ и $X_3,~X=(X_1,X_2,X_3)^T,$ тогда $X=l+\varepsilon,$ где

 $l=(a,b,a+b)^T$ и $\theta=(a,b)$. Далее, $l=(1,0,1)^Ta+(0,1,1)^Tb$, т.е. базис линейного подпространства L можно выбрать таким: $\{(1,0,1)^T,(0,1,1)^T\}$ и матрица

$$Z = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{array}\right)$$

Тогда

$$\widehat{\theta} = \begin{pmatrix} \widehat{a} \\ \widehat{b} \end{pmatrix} = (Z^T Z)^{-1} Z^T X = \begin{pmatrix} \frac{2}{3} X_1 - \frac{1}{3} X_2 + \frac{1}{3} X_3 \\ -\frac{1}{3} X_1 + \frac{2}{3} X_2 + \frac{1}{3} X_3 \end{pmatrix} \square$$

Гауссовская линейная модель.

Это модель линейной регрессии $X = l + \varepsilon$, в которой $\varepsilon \sim N(0, \sigma^2 I_n)$.

Утверждение 3. В гауссовской линейной модели $(proj_L X, \|proj_{L^{\perp}}\|^2)$ — достаточная статистика для (l, σ^2) .

Доказательство. Распишем плотность вектора наблюдений $X \sim N(l, \sigma^2 I_n)$.

$$p(x) = \left(\frac{1}{\sqrt{2\pi}}\right)^n \frac{1}{\sigma^n} \exp\left(\frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - l_i)^2\right) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left(\frac{1}{2\sigma^2} ||X - l||^2\right).$$

Но по теореме Пифагора (sic!) $||X - l||^2 = ||proj_L X - proj_L l||^2 + ||proj_{L^{\perp}} X - proj_{L^{\perp}} l||^2$. Вектор l лежит в линейном подпространстве L, поэтому $proj_L l = l$, а $proj_{L^{\perp}} l = 0$, следовательно, плотность вектора X представляется в виде

$$p(x) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left(-\frac{\|proj_L X - l\|^2 + \|proj_{L^{\perp}} X\|^2}{2\sigma^2}\right).$$

отсюда по критерию факторизации получаем, что $(proj_L X, \|proj_{L^{\perp}} X\|^2)$ – достаточная статистика. \square К тому же, она является полной по теореме об экспоненциальных семействах.

Следствие 1. $\widehat{ heta}$ – оптимальная оценка для $heta, \ \frac{1}{n-k}\|X-Z\widehat{ heta}\|^2$ – оптимальная оценка для σ^2 .

Доказательство. Теорема Лемана-Шефаре говорит, что если у нас есть несмещённая оценка, которая является функцией от полной достаточной статистики, то эта оценка является оптимальной. Ранее мы устанавливали, что $Z\hat{\theta} = proj_L X$, поэтому $X - Z\hat{\theta} = X - proj_L X = proj_L X \Longrightarrow \frac{1}{n-k} \|X - Z\hat{\theta}\|^2$ — оптимальная оценка для σ^2 . Ну а $\hat{\theta}$ — несмещённая оценка θ и, к тому же, $\hat{\theta} = (Z^T Z)^{-1} Z^T \cdot Z\hat{\theta}$, т.е. $\hat{\theta}$ — тоже оптимальная. \square

Теорема 1. (Об ортогональном разложении гауссовского вектора)

Пусть $X \sim N(a, \sigma^2 I_n), \ L_1 \oplus \ldots \oplus L_r$ — разложение \mathbb{R}^n в прямую сумму ортогональных подпространств. Положим $Y_j = \operatorname{proj}_{L_j} X$. Тогда Y_1, \ldots, Y_r — независимые в совокупности, причём $\frac{1}{\sigma^2} \|Y_j - EY_j\|^2 \sim \chi^2_{\dim L_j}$ (где $\chi^2_{\dim L_j}$ — хи-квадрат распределение с $\dim L_j$ степенями свободы).