Evalution d'une partiable grantique dans un patentel

* Puits de potentiel infini

modelisation si
$$E \ll V_0$$
.

 $d \ll \lambda_{DS}$.

 $V(\infty) = \begin{cases} +\infty & \text{poul } x < 0 \\ 0 & \text{poul } 0 \leq x \leq \alpha \\ +\infty & \text{poul } x > \alpha \end{cases}$.

Lossage $V(x) \to \infty$, $\psi(x) \to 0$. Les régions de l'espace ai le potentiel est elleré sont intendites à la particule grantique

Pare 05 25 a.

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{2mE}{4h^2} \varphi(x) = 0.$$

$$y(x) = Aexp(kx) + Bexp(-kx)$$

continuité de $\varphi(x)$ en 0 et a impose: $\varphi(0) = \varphi(a) = 0$. on abhieut A=B=0 ELO saus intérêt.

> si E=0 → p(x)=Ax+B. Corditions aux limites imposed. A=B=O. E=O Ros d'intérêt.

b) (as
$$\pm >0$$
. $K = \frac{\sqrt{2mE^7}}{45}$
 $(6\infty) = Asin(K\infty) + B. cos (Kac)$

$$\varphi(0)=0 \rightarrow B=0$$

 $\varphi(0)=0 \rightarrow Asin(Ka)=0$

$$\Rightarrow$$
 A sin(Ka)=0. \Rightarrow $k_n = \frac{n\pi}{a}$ où $m \in \mathbb{N}^*$

RT = MT > a = An

$$\varphi_n = A_n \cdot \sin(\kappa_n x) = A_n \cdot \sin(m\pi \frac{x}{a})$$

An peut être determinée par la condition de nomolisation: $\int_0^a |\gamma_n(x)|^2 dx = 1$

$$\int_{0}^{a} A_{n}^{2} \cdot \sin^{2}(m\pi x) dx = 1$$

$$\int_{0}^{a} A_{n}^{2} \cdot \left(\frac{1 - \cos(2m\pi x)}{a}\right) dx = 1$$

$$= \frac{A_{n}^{2}a}{2} = 1 \Rightarrow A_{n} = \sqrt{\frac{2}{a}}$$

$$= \frac{A_{n}^{2}a}{2} = 1 \Rightarrow A_{n} = \sqrt{\frac{2}{a}}$$

$$\varphi_n(\alpha) = \sqrt{\frac{2}{\alpha}} \sin\left(n\pi\frac{\alpha}{\alpha}\right)$$

$$K = \sqrt{2mE}$$
 $\rightarrow K_n^2 = \frac{2mE_n}{f_n}$ donc $E_n = \frac{f_n}{2m} \cdot \frac{n^2 \pi^2}{\alpha^2}$

$$\Psi(x,t) = \sqrt{\frac{2}{a}} \exp(-i\frac{E_n}{h}t) \cdot \sin(m\pi \frac{x}{a})$$
 arec $E_n = \frac{1}{a}$

Rq: Les dévisées $\frac{dy_n(x)}{dx}$ ne sont pas continues en x=0 et x=a, en existent de la discontinuité d'amplitude infinire du potentiel en ces points.

comparaison conde

Il existe des parts où la desité de probabilité de presence est max (vontre) et nulle (mochads)

Différence: relation de dispersion. Propagation d'un pagnet d'ordes pour une pouticule sanutique: dispersion. Corde: pas de dispersion. Pouticule dans puits grantification de l'énengie tanudis se pour la corde Em choisie aubitairement.

Éreigles growthées : speake d'éreigle.

mireau fordamental En= TT2 \$12 Rmaz

d'énagie d'une poutsule groutique ne pout pous être inférieure à En. Ausse: niveaux excités.

Inégalité de Heisenberg:

Ln(x,t) s'écuit conne la sonne de doux copper. Rn et - Rn et

(Px)=0.

Spx=V(P2) et Dx &a.

$$\Delta p_x \cdot \Delta x \ge \frac{4h}{2}$$
 $\Delta p_x \ge \frac{4h}{a}$.

 $\pm cmin = \frac{\langle p_x^2 \rangle_{min}}{2m} \approx \frac{4h^2}{8ma^2}$ à or facteur pieces

 $\pm cmin \approx \frac{4h^2}{ma^2}$

Deusité de pubabilité de présence $|\psi_n(x)|^2$ est aprêtuige ple à $x = \frac{\alpha}{2}$ corség. directe de la symétrie du potentiel V(x)

For we particule closinge: Pel 1

Par une partiale grantique, pare nombleuses oscillations sin2 $(\frac{mx}{a})$ tend unes $\frac{1}{2}$ (valent mayorne). donc $P \Rightarrow \frac{1}{a}$

Toute forction d'orde non stationnaine peut être écuite comme une combinaison linéalise des fet d'ordes stationaires.

$$\Psi(x;t) = \sum_{n=1}^{+\infty} c_n Y_n(x) \exp(-it_n \cdot t)$$
 arec $\sum_{n=1}^{+\infty} |c_n|^2 = 1$.

* Puits de potentier de profondeur finie

Énergie E de la partiale grantique n'est plus négligeable devant le pot du pirts Vo.

$$V(x) = \begin{cases} V_0 & \text{par} & x < -a & (\text{leagor II}) \\ 0 & \text{par} & -a \leq x \leq a & (\text{leagor III}) \end{cases}$$

$$V_0 & \text{par} & x > a & (\text{leagor III}).$$

POUR E < Vo.

$$\varphi''(x) + \frac{2m}{R^2} (E - V(x)) \varphi(x) = 0$$

C.L: continuité en
$$\infty = \pm \alpha$$
 continuité de la dannée

$$\Psi'_{\pm}(-\alpha) = \Psi'_{\pm}(-\alpha)$$

ECUES I STITE

$$\varphi''(\infty) + \frac{2m}{\hbar^2} (E - V_0) \varphi(\infty) = 0$$

$$\varphi''(x) + \frac{2m}{\hbar^2} (E - V_0) \varphi(x) = 0.$$

$$\varphi_{I}(x) = A \cdot e^{kx} + Be^{-kx}$$

$$F^2 = \frac{2m}{\hbar^2} (V_0 - E) > 0.$$

$$\varphi_{I}(x) = Ae^{kx} - \infty cx \le -a$$

$$\varphi_{II}(x) = Be^{-kx}$$

$$\alpha \le x \le +\infty$$

$$\psi''(x) + \frac{2mE}{4n^2} \psi(x) = 0.$$

$$E > 0. \qquad \qquad K^2 = \frac{2mE}{4n^2}$$

$$y(x) = A \cdot \cos(kx) + B \sin(kx)$$

Car or a course le puits à x=0.

ÉTATS PATRS.

ETAIS HAIRS.

$$x = -\alpha.$$

$$Be^{-R\alpha} = A \cos(k\alpha) \otimes (k\alpha) \otimes (k\alpha)$$

ceicle eayon R.

Le nb d'Etate accessibles depend du layer. Plus l'est gand, plus 2 y a des intersections.

Il y a tojales au moins 1 stat paile solution.

000 pas de paints cou continuité de la devisée

ETATS IMPAIRS

a=-a

$$X^2 + Y^2 = R^2$$

j'ai beson de Occitan X

Les états impaises n'existent pas taijous, si le 1/2 il n'y a pas d'état Impais.

Donc état impale si R> T/2.

Daw le 300 I et III: $\exp(-Kx)$ et $\exp(Kx)$ al $K = \sqrt{\frac{2m}{R^2}}(k-E)$ Donc la proferdeur de pénération de la particule dans les régions

Merdites par la mérca classique est:

* Effet tunnel.

$$V(x) \begin{cases} 0 & \text{par} x < -\frac{\alpha}{2} & (\text{I}) \\ V_0 > 0 & \text{par} -\frac{\alpha}{2} \le x \le \frac{\alpha}{2} & (\text{II}) \\ 0 & \text{par} x > \frac{\alpha}{2} & (\text{III}) \end{cases}$$

Designs I et II: $\phi''(x) + k^2 \phi(x) = 0$ $\text{Resign} \quad \text{II:} \quad \phi''(x) + g^2 \phi(x) = 0$ ELVo.

$$K = \sqrt{\frac{2mE}{4}}$$
 $q = \sqrt{\frac{2m(V-E)}{4}}$

Solution des 3 espaces:

orde incidante orde réfléchie

(I): $Y(\infty) = A_1 \exp(ikx) + B_1 \exp(-ikx)$

(II): $Y(\infty) = A_2 \operatorname{ch}(g\infty) + B_2 \operatorname{sh}(g\infty)$

(III): $Y(\infty) = A_3 \exp(ik\infty) + B_3 \exp(-ik\infty)$.

B3=0 (car par d'orde qui avive vere la barrière)

C.L: continuite de φ eu $x=\pm\frac{q}{2}$ et continuité de φ' eu $x=\pm\frac{q}{2}$. 4 égls \rightarrow 5 inconnes. pas de groutification de ξ cau pautialle par confinée.

Bauière épaisse! pag. 1254.

molecule d'ammoniac

$$2h\frac{\partial\psi}{\partial t} = -\frac{h^2}{2m}\frac{\partial^2\psi}{\partial x^2} + V(x,t)\Psi(x,t)$$

$$\Psi(x,t) = \Psi(x) \exp(-i6t/h)$$

III. B. 1
$$\frac{1}{1} \left(-\frac{1}{1} \frac{E}{\pi} \right) \cdot \varphi(x) \exp(x) = -\frac{\kappa^2}{2m} \varphi''(x) \exp(x) + \sqrt{(x+1)} \varphi(x) \exp(x)$$

$$E\Psi(x) = -\frac{\pi^2}{2m} \Psi''(x) + V(x+) \Psi(x)$$

$$\frac{d^2\varphi}{dx^2} + \frac{2m(E - V(x))\varphi = 0}{K^2}$$

b)
$$\in L$$
. $\varphi_{B}(x_{0})$:

b) c.l.
$$\varphi_{\beta}(x_0) = \varphi_{\beta}(x_0 + \ell) = 0$$

$$\varphi_{A}(x_{0}) = \varphi_{A}(x_{0} + \varrho) = 0$$

c)
$$\int_{x_0}^{\infty+1} |Y_B|^2(x) dx = 1$$
 et $\int_{-\infty}^{-\infty} |Y_A|^2(x) dx = 1$

Partie II. Radioodivité a et effet tunnel

II.A. le granton Dibre

$$dP = \int_{\infty}^{\infty} |\underline{\Psi}(x,t)|^2 dx$$

$$[|\underline{\Psi}|_{=}^{1} |\underline{-}^{1/2}|$$

- $\int_{-\infty}^{\infty} |\psi(x,t)|^2 dx. \text{ la petrabilité de teaver la particule autre } -\infty \text{ et } +\infty \text{ est de 1. Condition de remodisantion.}$
- 20 $\rho = |\underline{\Psi}(x,t)|^2$: densité de probabilité de présence de pobabilité de présence $\rho = \frac{dP}{dx}$

Particule nor celeshists:
$$\infty$$
 defore à $u_{X} < c$.

$$\frac{P(x)}{2} = \frac{P(x)}{2} \cdot \frac{$$

(22)
$$\frac{h^2}{2m} \varphi''(\alpha) + \varepsilon \varphi(\alpha) = 0$$
 $k^2 = -\frac{2m\varepsilon}{\hbar^2}$,
 $\sin \varepsilon > 0$: $\varepsilon > 0$: ε

$$\frac{\varphi(x) = A \exp(+iRx) + B \exp(-iRx)}{\Psi(xc_1t) = A \cdot e^{1(Kx - \omega t)} + B \exp^{-i(Kx + \omega t)}}$$

$$\frac{\Psi(x) = A \exp(+iRx) + B \exp(-iRx)}{\Psi(xc_1t) = A \cdot e^{1(Kx - \omega t)} + B \exp^{-i(Kx + \omega t)}$$

$$\frac{\chi}{K} = \pm \sqrt{\frac{2me}{M}} \quad \frac{\chi}{Ux}$$

edation entre p et it:

$$\varepsilon = \frac{1}{2}mv^2 + \varepsilon.m = \frac{1}{2}m^2v^2 + \rho = \sqrt{2m\varepsilon}$$

donc $\rho = 4r.K$ polation de de Alonglie

Mérca chassige: La partiale a une évagie < Vo donc elle re poulla pas tealerses la bourière de potentiel en x=0. En=Ec+Ep=cte Ec>0 Em-Ep≥0 Ep≤Em

$$\frac{\pi^2}{2m} \psi'(x) + (\mathcal{E} - V) \psi(x) = 0.$$

$$\frac{\pi}{2m} \psi'(x) = 0 \text{ dans ces séglos.}$$

$$\psi(x) = A_{\pi} \exp(ikx) + \exp(-ikx).$$

$$\frac{\pi}{2m} \psi'(x) = A_{\pi} \exp(ikx) + \exp(-ikx).$$

26 légion II.
$$q = \sqrt{\frac{2m(16-8)}{h^2}}$$

$$\frac{4^2}{3n} \varphi''(x) + (8-v) \underline{\varphi}(x) = 0.$$

$$\frac{1}{4}\frac{1}{(2x)} + \frac{2m}{4k^2}(8-4)\frac{1}{(2x)} = 0$$

27
$$P_{I}(x=0) = P_{II}(x=0)$$
.
 $P_{II}(x=0) = A_{III}(x=0)$

$$\psi'_{\pm}(x=0) = \psi'_{\pm}(x=0)$$
 $\psi''_{\pm}(x=a) = \psi'_{\pm}(x=a)$

 $T = \left| \frac{\partial t}{\partial x} \right| = \left| \frac{\Delta m}{\Delta x} \right|^2$

L'amplitude de l'orde incidente.

$$\vec{J} = |\psi|^2 \frac{kR}{m}$$

$$\begin{array}{ccc}
\hline
\text{T} & \overrightarrow{J_i} = \left| A_{\text{T}} \right|^2 \frac{\mathcal{R} \cdot \overrightarrow{K_i}}{m} & = \frac{K^2 k_n^2}{2m} \\
\overrightarrow{J_i} = \left| B_{\text{T}} \right|^2 \frac{f_i \left(-\overrightarrow{K_i} \right)}{m}
\end{array}$$

$$R = \frac{|\vec{A}_{\perp}|^2}{|\vec{A}_{\perp}|^2} = \frac{|\vec{B}_{\perp}|^2}{|\vec{A}_{\perp}|^2} = \frac{|\vec{B}_{\perp}|^2}{|\vec{A}_{\perp}|^2}$$

R+T-1

$$T = \frac{\gamma}{1 + \frac{V_0^2}{4E(V_0 - E)} sh^2(qa)}$$

$$29$$
 $m_e = 9,11 \times 10^{-31} \text{ kg}$.
 $E = 1,00 \text{ eV}$
 $V_0 = 2,00 \text{ eV}$

(ch2x-sh2x=1)

tableau de valeurs de ga et T

$$T = \frac{1}{1 + sh^2(qq)}.$$
 (ae $\varepsilon = \frac{V_0}{2}$

$$T = \frac{1}{ch^2(qa)}$$
. $a = 0.5 = 1 = 2$
 $qa = 2.57 = 5.14 = 10.3$
 $T(qa) = 10.5$

$$q=(\delta)^{-1}$$

Barrière épaisse: $9a = \frac{a}{5} \gg 1$.

si banière épaisse:

$$T \simeq \frac{4 \in (V_0 - E)}{V_0^2} \cdot \frac{1}{\sinh^2(qa)}$$

$$shx = \frac{e^{x} - e^{-x}}{2}$$

$$shx \approx \frac{e^{x}}{2} \text{ gaid } x > 1.$$

$$f(x) = x(1-x) \cdot ou x = \frac{t}{6}$$