SVEUČILIŠTE U RIJECI

Fakultet informatike i digitalnih tehnologija

Diplomski sveučilišni studij informatike

KRATKI IZVJEŠTAJ O PRVOM EKPERIMENTALNOM RADU

EKSPERIMENTALNI RAD IZ KOLEGIJA RAČUNALNI VID

Mentori: Prof. dr. sc. Marina Ivašić-Kos

mag. Inf. Kristina Host

Autori: Duje Vidas, Tim Jerić

Uvod

Cilj ovog zadatka bio je osmisliti inovativan način za izbjegavanje sudara brodova sa santama leda, pri čemu se naglasak stavio na razvoj sustava koji može ranije detektirati sante leda i upozoriti posadu. U okviru ovog projekta implementirane su, trenirane i evaluirane tri jednostavne konvolucijske neuronske mreže (CNN) za klasifikaciju slika santi leda i brodova. Krajnji cilj bio je identificirati model s najboljim performansama na validacijskom skupu podataka, čime bi se doprinijelo razvoju učinkovitih alata za prevenciju nesreća.

1. Učitavanje i analiza podataka

Podaci za treniranje i validaciju učitani su iz .npz datoteke (<u>input_data.npz</u>). Datoteka sadrži sljedeće elemente:

- X_train i Y_train: podaci za treniranje
- X_validation i Y_validation: podaci za validaciju

Kako bi se osigurala odgovarajuća evaluacija, skup podataka za treniranje podijeljen je na novi **train** i **test** skup pomoću funkcionalnosti iz skripte.

Karakteristike podataka nakon analize i podjele:

- Dimenzije slika: 75×75×3 (RGB format)
- Broj uzoraka:
 - o Trening skup (X_train, Y_train): Ažurirani skup podataka nakon podjele
 - Test skup (X_test, Y_test): 1000 uzoraka (500 brodova i 500 santi leda)
 - o Validacijski skup (X_validation, Y_validation): 100 uzoraka

Distribucija klasa:

- Trening podaci (X_train): Ravnomjerno raspoređeni preostali uzorci nakon izdvajanja testnog skupa.
- Test podaci (X_test): 500 brodova i 500 santi leda (uravnotežen skup).
- Validacijski podaci (X_validation): 51 brod i 49 santi leda (gotovo uravnoteženo).

Dodatna analiza:

• Nedostajuće vrijednosti: Nije pronađeno NaN vrijednosti.

Prikazano je nekoliko uzoraka slika s pripadajućim oznakama za vizualnu provjeru kvalitete podataka.

2. Implementacija CNN modela

Razvijene su četiri verzije CNN modela, svaka s različitim razinama složenosti:

SimpleCNN_v1:

- **Slojevi:** Jedan konvolucijski sloj s 8 filtera, kernel veličine 3×3.
- Aktivacija: ReLU
- **Pooling:** MaxPooling (2×2)
- **Potpuno povezani slojevi:** Jedan sloj s 32 neurona i izlazni sloj s 2 neurona (za binarnu klasifikaciju).

SimpleCNN_v2:

- **Slojevi:** Dva konvolucijska sloja s 32 i 64 filtera, oba kernela veličine 3×3.
- Aktivacija: ReLU
- **Pooling:** MaxPooling (2×2) nakon svakog konvolucijskog sloja.
- Potpuno povezani slojevi: Jedan sloj s 128 neurona i izlazni sloj s 2 neurona.

SimpleCNN_v3:

- **Slojevi:** Tri konvolucijska sloja s 32, 64 i 128 filtera.
- Aktivacija: ReLU
- **Pooling:** MaxPooling (2×2) nakon svakog konvolucijskog sloja.
- Potpuno povezani slojevi: Jedan sloj s 128 neurona i izlazni sloj s 2 neurona.

SimpleCNN_v4:

- Slojevi: Tri konvolucijska sloja s 32, 64 i 128 filtera.
- Aktivacija: ReLU
- **Pooling:** MaxPooling (2×2) nakon svakog konvolucijskog sloja.
- Regularizacija: Dropout sloj s vjerojatnošću 0.3 za sprječavanje pretreniranosti.
- Potpuno povezani slojevi: Jedan sloj s 128 neurona i izlazni sloj s 2 neurona.

3. Treniranje i validacija modela

Svi modeli trenirani su korištenjem skripte **train.py**, koja podržava:

- Treniranje pojedinačnih modela (v1, v2, v3, v4).
- Treniranje svih modela odjednom.

Postavke treniranja:

- Optimizator: Adam
- Funkcija gubitka: CrossEntropyLoss
- Broj epoha: Maksimalno 1000 (s ranim zaustavljanjem)
- Rano zaustavljanje: Aktivira se ako gubitak na validacijskom skupu ne pokazuje poboljšanje kroz 3 uzastopne epohe.
- Metode evaluacije: Točnost (Accuracy), Preciznost (Precision), Odziv (Recall), F1 score

Rezultati treniranja pohranjeni su u JSON datoteke (training_history_model_v1.json, itd.), dok su težine modela spremljene u .pth formate.

4. Vizualizacija i analiza metrike

Uz detaljne grafove za metrike treninga i validacije, implementirala se i funkcionalnost za prikaz pojedinačnih slika iz validacijskog skupa s predikcijama modela.

Trening metrike:

- 1. **Gubitak:** Svi modeli pokazuju konstantno smanjenje gubitka kroz epohe. Model v2 postiže najniži trening gubitak, što ukazuje na njegovu visoku sposobnost učenja.
- 2. **Točnost:** Sva četiri modela pokazuju stalan rast točnosti, pri čemu Model v2 dominira u završnim epohama s najvišom točnošću.
- 3. **Preciznost i F1 score:** Oba pokazatelja značajno rastu tijekom treninga, a Model v2 ima najbolje performanse na trening podacima.

Validacijske metrike:

- 1. **Gubitak:** Validacijski gubitak kod Modela v3 pokazuje najmanju vrijednost, dok Model v4 ima oscilacije, što ukazuje na mogući problem s prekomjernim učenjem kod Modela v4.
- 2. **Točnost:** Točnost na validacijskom skupu raste za sve modele tijekom epoha. Model v3 postiže najvišu točnost, dok Model v1 zaostaje. Model v2 i model v4 pokazuju promjene nakon 5. epohe, što može ukazivati na mogući problem s pretreniranjem ili fluktuacijama u performansama.
- 3. **Preciznost i F1 score:** Model v3 nadmašuje druge modele u ovim pokazateljima, što potvrđuje njegovu preciznost u klasifikaciji brodova i santi leda, no Model v4 je dosta blizu.

Test metrike

Rezultati na testnom skupu za sve modele prikazani su u obliku bar grafova:

1. Točnost:

 Model v4 i Model v3 ostvaruju najvišu točnost (~0.87 - 0.89), dok Model v1 ima najslabiji rezultat (0.79).

2. Preciznost, Odziv i F1 score:

 Model v4 i Model v3 pokazuju najbolje performanse u svim metrikama, dok Model v1 zaostaje.

Prikaz slika i predikcija:

Kako bi se dodatno evaluirale performanse modela, implementirana je funkcija *display_predictions*, koja nasumično odabire slike iz validacijskog skupa i prikazuje njihove stvarne i predviđene oznake.

Model v1 - Predikcije:

- Slike za Model v1 pokazuju ograničene performanse s nekoliko netočnih predikcija.
- Primjeri uključuju situacije gdje je "Iceberg" (santa leda) pogrešno klasificiran kao "Ship" (brod) i obrnuto.
- Model uspijeva točno klasificirati jednostavnije uzorke, ali ima problema s kompleksnijim ili šumnim slikama.

Model v2 - Predikcije:

- Performanse Modela v2 pokazuju vidljiva poboljšanja u usporedbi s Modelom v1.
- lako su netočnosti još uvijek prisutne, uglavnom se odnose na slike s visokim nivoom šuma.
- Ovaj model točnije prepoznaje većinu primjera, ali nije potpuno precizan u složenijim scenarijima.

Model v3 - Predikcije:

- Model v3 pokazuje najbolju točnost i pouzdanost među svim verzijama.
- Većina predikcija je ispravna, s vrlo rijetkim greškama.
- Stabilnost i robusnost Modela v3 potvrđene su uspješnim klasificiranjem čak i izazovnijih slika s pozadinskim šumom.

Model v4 - Predikcije:

- lako Model v4 donosi dodatne prilagodbe, njegove performanse su na sličnom ili blago poboljšanom nivou u usporedbi s Modelom v3.
- Netipične greške su rjeđe, ali prisutne, primjerice, pogrešna klasifikacija "Ship" u "Iceberg".
- Model je dobro optimiziran za većinu slučajeva, ali postoji prostor za dodatna poboljšanja na specifičnim uzorcima.

Zaključak

Model 3 pokazuje najbolje performanse i na skupu za treniranje i na skupu za validaciju, s najnižim gubitkom, najvišom točnošću, preciznošću i F1 rezultatom, što ukazuje na dobru generalizaciju.

Model 2 je vrlo dobar na skupu za treniranje, ali pokazuje nestabilnost na validacijskom skupu nakon nekoliko epoha, što može biti znak pretreniranosti. Model 1 ima najslabije performanse u svim metrikama, ali stabilno napreduje kroz epohe. Zbog toga je Model 3 najbolji izbor za generalizaciju na novim podacima, dok bi Model 2 zahtijevao dodatnu provjeru kako bi se izbjegla pretreniranost.