Student-T Process Instead of Gaussian Process for NTK

資工21 周聖諺

Motivation

According to the paper "Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time evolution of the Neural Tangent Kernel" (presented by 袁哥),

- Problem: Infinite-width NTK gives a poor prediction on the loss of the finite-width neural network during training
- Reason: Final basin(of the loss surface) chosen by a child highly sensitive to SGD noise and the NTK involves very rapidly.

My Idea: Model the noise of the NTK with Student-T process

To argue that NTK is sensitive to SGD noise and changes rapidly in the early stage of training, recall

- Hierarchical Exploration of Loss Landscape through Parents and Children
- Error Barrier Between Spawned Children During Training
- Visualization of The Function Space Motion During Training
- Kernel Distance During Training

Hierarchical Exploration of Loss Landscape through Parents and Children

- In this process, a parent network is trained from initialization to a spawning time t_s , yielding a parent weight trajectory $\{w_t\}_{t=0}^{t_s}$.
- At the spawn time t_s , several copies of the parent network are made, and these so-called children are then training with independent minibatch stochasticity, yielding different child weight trajectories $\{w_t^{t_s,a}\}_{t=t_s}^T$, where a indexes the children, and T is the final training time.

Visualization of The Function Space Motion During Training

Function Distance

- To compute the distance between the two functions f_w and $f_{w'}$, parameterized by weights w and w_0 , we would ideally like to calculate the **degree of disagreement** between their outputs averaged over the whole input space x.
- ullet Let S test denote the test set. Then,

$$||f_w(x) - f_{w'}(x)||_{S^{test}} = rac{1}{Z|S^{test}_x|} \sum_{x \in S^{test}_x} (f_w(x)
eq f_{w'}(x)) 1$$

Where S_x^{test} are test inputs and Z is normalizing constant.

- T-SNE visualization of parent and children evolution in the function space with different spawn epoch.
- The trajectories of the children are highly sensitive to SGD noise

Error Barrier Between Spawned Children During Training

- Compute the error barrier between children along a linear path interpolating between them in weight space.
- Let $w^lpha_t=lpha w_t+(1-lpha)w'_t$, where w_t and w'_t are the weight of 2 children networks, spawn from some iteration t_s , and $lpha\in[0,1]$.
- At various t_s we compute $\max_{\alpha \in [0,1]} \hat{R}_S(w_t^\alpha) \frac{1}{2}(\hat{R}_S(w_t) + \hat{R}_S(w_t'))$, which we call the **error barrier**.

Figure 4: ResNet20 trained on CIFAR10 using SGD with momentum and constant learning rate.

the error barrier drops rapidly within a few epochs in panel B,

Kernel Distance During Training

Kernel Distance

For finite width networks, the kernel $\kappa_t(S) = \kappa_{w_t}(S)$ changes with training time t. Define the kernel distance as

$$S(w,w') = 1 - rac{Tr(\kappa_w(S)\kappa_{w'}^T(S))}{\sqrt{Tr(\kappa_w(S)\kappa_w^T(S))}\sqrt{Tr(\kappa_{w'}(S)\kappa_{w'}^T(S))}}$$

Figure 4: ResNet20 trained on CIFAR10 using SGD with momentum and constant learning rate.

Panel E shows that function, kernel and ReLU distances between children at the end of training also drop as a function of spawn time.

Main Idea

Why not just add some random noise to the NTK, to simulate the unstable NTK?

With inverse Wishart distribution $\Sigma \sim \mathcal{IW}(\nu,K)$ where the degree of freedom $\nu>2$ and K is positive definite, we can generate a random matrix Σ with expectation $\mathbb{E}[\Sigma]=\frac{K}{\nu-2}$.

Inverse Normal-Wishart Distribution

Consider the **randomness of the kernel matrix**, with Bayesian rule, we can model the kernel matrix with **Inverse Wishart distribution**.

$$p(y|\phi,
u,K) = \int p(y|\phi,\Sigma)p(\Sigma|
u,K)d\Sigma = \mathcal{TP}(\phi,K,
u)$$

Denote Inverse Wishart distribution as $\Sigma|
u,K\sim\mathcal{IW}(
u,K)=p(\Sigma|
u,K)$ and the Gaussian process as $y|\phi,\Sigma\sim\mathcal{GP}(\phi,\Sigma)=p(y|\phi,\Sigma)$. Note that the random matrix $\Sigma\in\mathbb{R}^{N\times N}$ is generated by Inverse Wishart. The hyperparameters are $K\in\mathbb{R}^{N\times N}$, $\nu\in\mathbb{R}$, $\phi\in\mathbb{R}^N$.

Finally, $\mathcal{TP}(\phi,K,
u)$ is the **Student-T process**.

Student-T Process

The Student-T process can be written as

$$y \sim \mathcal{TP}(\phi, K,
u)$$

The hyperparameter ν is called **degrees of freedom**, it can control the covariance of the output $cov(y) = \frac{\nu}{\nu-2} K$. Thus, when $\nu \to \infty$, \mathcal{TP} will converge to \mathcal{GP} in distribution.

$$P(X) = \lim_{
u o \infty} P(Y)$$
 $X \sim \mathcal{GP}(\phi, K), \quad Y \sim \mathcal{TP}(\phi, K,
u),$

Student-T Process

Figure 2: Uncorrelated bivariate samples from a Student-t copula with $\nu = 3$ (left), a Student-t copula with $\nu = 10$ (centre) and a Gaussian copula (right). All marginal distributions are N(0,1) distributed.

Degrees of freedom is the number of values in the final calculation of a statistic that are free to vary.

Student-T Process Posterior

Given a training dataset $\{X_1,Y_1\}$ with n_1 samples and a testing dataset $\{X_2,Y_2\}$ with n_2 samples where $X_1\in\mathbb{R}^{n_1 imes d}$, $Y_1\in\mathbb{R}^{n_1}$, and $X_2\in\mathbb{R}^{n_2 imes d}$, $Y_2\in\mathbb{R}^{n_2}$.

Denote the mean function as z and the kernel function as k. Thus, $\phi_i=z(X_i)$ and $K_{ij}=k(X_i,X_j)$

$$egin{pmatrix} egin{pmatrix} Y_1 \ Y_2 \end{pmatrix} \sim \mathcal{TP}(egin{pmatrix} \phi_1 \ \phi_2 \end{pmatrix}, egin{pmatrix} K_{11} & K_{12} \ K_{21} & K_{22} \end{pmatrix},
u)$$

Student-T Process Posterior

The posterior is

$$y_2|y_1 \sim \mathcal{TP}(\hat{\phi}, rac{
u + eta + -2}{
u + n_1 - 2} \hat{K}_{22},
u + n_1)$$

Where

$$egin{aligned} \hat{\phi} &= K_{21} K_{11}^{-1} (Y_1 - \phi_1) + \phi_2 \ eta &= (Y_1 - \phi_1)^ op K_{11}^{-1} (Y_1 - \phi_1) \ \hat{K}_{22} &= K_{22} - K_{21} K_{11}^{-1} K_{12} \end{aligned}$$

Experiment

We've already known, if $\nu=\infty$, the student-T process will converge to Gaussian process. In the above figure, we compare the result of fitting a $\sin()$ function with \mathcal{TP} (blue) and \mathcal{GP} (yellow) respectively. The left part of above figure shows the training/testing progress of fitting. The right part is the value of ν during training progress.

As the blue line shows above(left part), as the training progress goes, the ν gets lower. It shows that we can control ν of \mathcal{TP} to achieve a better fitting(closer to black line, real NN training).

Conclusion

- During training progress, the ν gets lower.
- By controlling the value of ν of \mathcal{TP} , we can get a more accurate prediction on the training loss rather than \mathcal{GP}
- If the NTK follows the \mathcal{TP} , the bigger training dataset, the larger degree of freedom of the posterior.

Thanks For Listening