Mecânica e Campo Eletromagnético

DEPARTAMENTO DE FÍSICA

TURMAS: TP1, TP2, TP3

Aula 3

Exercício 3.1

Sobre uma partícula de massa 5,0 kg atua uma única força, descrita pela equação $\vec{F} = (-2y+4)\hat{e}_x + (-2x-2)\hat{e}_y$ (N), que é conservativa.

- a) Usando a definição geral de trabalho, calcule o trabalho realizado pela força quando a partícula se move da posição x = 1,0 m para x = 5,0 m ao longo da trajetória $y=\frac{x}{2}$.
- b) Calcule a variação na energia potencial do sistema.
- c) Determine a energia cinética da partícula na posição x = 5,0m, sabendo que em x = 1,0 m a velocidade era de 4,0 m/s.

R: W(F) = -12 J; $\Delta E p = 12 \text{ J}$; $E c_f = 28 \text{ J}$

Exercício 3.2

Um corpo de massa 3 kg é lançado com uma velocidade de 5 m/s, em x= 0 m, sobre uma pista retilínea, num plano horizontal, onde sofre a ação de uma força de atrito cujo coeficiente de atrito depende da posição segundo μ =0,6 e^x.

- a) Escreva a expressão que traduz a força de atrito. R: $f_a = -18 e^x \hat{e}_x N$.
- b) Calcule o trabalho realizado pela força de atrito até atingir x = 1 m. R: $W(f_a)=-30.9$ J
- c) Calcule a velocidade do corpo em x= 1 m. R: $vf \approx 2,1$ m/s

Exercício 3.3

Uma partícula de massa m_1 viaja com velocidade $\overrightarrow{v_{1l}}$ segundo +x e colide com uma outra partícula de massa m_2 que se encontra em repouso antes da colisão. Após a colisão, as partículas têm velocidades $\overrightarrow{v_{1f}}$ e $\overrightarrow{v_{2f}}$, e as suas trajetórias fazem, respetivamente, um ângulo θ_1 e θ_2 com o eixo x.

- a) Qual a razão entre os valores das velocidades $(\frac{v_{1f}}{v_{2f}})$, após o choque?
- b) Considere $m_1 = m_2$, $\theta_1 = 45^\circ$ e $\theta_2 = 30^\circ$. O choque entre as partículas é elástico? Justifique.

Exercício 3.4

Calcule a aceleração angular do sistema ilustrado na figura, para um corpo cuja massa é de 1 kg. O disco tem raio igual a 0,5 m e massa de 20 kg. O eixo dos ZZ' é fixo e é um eixo principal.

