Name:

$$A \longrightarrow Q$$

1. Given

$$A \wedge \neg B$$

(a) Write the truth table.

A	B	Output
0	0	0
0	1	0
1	0	1
1	1	0

(b) Draw the circuit diagram.

2. Given

$$\neg(A \land B) \lor B$$

(a) Write the truth table.

\overline{A}	B	Output
0	0	1
0	1	1
1	0	0
1	1	1

(b) Draw the circuit diagram.

3. Given

$$\neg A \wedge B \vee C$$

(a) Write the truth table.

A	B	C	Output
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

(b) Draw the circuit diagram.

4. Given

$$(\neg A \land B) \lor \neg (A \land B)$$

(a) Write the truth table.

A	B	Output
0	0	1
0	1	1
1	0	1
1	1	0

(b) Draw the circuit diagram.

5. Draw a circuit diagram to match this truth table:

A	B	Output
0	0	1
0	1	0
1	0	1
1	1	1

One way to capture this logic is with the expression

$$A \vee \neg B$$

6. Write the Boolean expression corresponding to this circuit:

This logic is captured with:

$$\neg(A \land B) \lor \neg B$$