

BLANK PAGE

Indian Standard

POWER TRANSMISSION — SHAFTS — DIMENSIONS FOR CYLINDRICAL AND 1/10 CONICAL SHAFT ENDS

(Second Revision)

भारतीय मानक पावर प्रेषण — शंफट — बेलनाकार और १/१० शंक्वाकार शंफट सिरों के आयाम (दूसरा पुनरीक्षण)

UDC 621.824.2

© BIS 1990

BUREAU OF INDIAN STANDARDS

MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG

NEW DELHI 110002

Indian Standard

POWER TRANSMISSION — SHAFTS — DIMENSIONS FOR CYLINDRICAL AND 1/10 CONICAL SHAFT ENDS

(Second Revision)

NATIONAL FOREWORD

This Indian Standard (Second Revision) which is identical with ISO/R 775: 1969 'Cylindrical and 1/10 conical shaft ends', issued by the International Organization for Standardization (ISO) was adopted by the Bureau of Indian Standards on the recommendation of the Transmission Devices Sectional Committee (LMD 10) and approval of the Light Mechanical Engineering Division Council.

This standard was first published in 1966. It was revised in 1977 taking assistance from ISO/R 775: 1969. This second revision has now been fully aligned with ISO/R 775:1969.

The text of the ISO standard has been approved as suitable for publication as Indian Standard without deviations. Certain conventions are, however, not identical to those used in Indian Standards. Attention is particularly drawn to the following:

- a) Wherever the words 'International Standard' appear, referring to this standard, they should be read as 'Indian Standard'.
- b) Comma (,) has been used as a decimal marker while in Indian Standards, the current practice is to use a point (.) as the decimal marker.

CROSS REFERENCES

In this Indian Standard, the following International Standards are referred to. Read in their respective places the following:

International Standard

ISO 286/1: 1988* ISO system of

limits and fits - Part 1: Bases of tolerances, deviations and fits

ISO 286/2: 1988* ISO system of limits and fits—Part 2: Tables of standard tolerance grades and limit deviations for holes and shafts

square parallel keys and their corresponding keyways

their corresponding keyways with or without gib head

their corresponding keyways

ISO 3: 1973* Preferred numbers— Series of preferred numbers

Indian Standard

Degree of Correspondence

IS 919 (Part 1): 1963 Recommenda- Technically equivalent tions for limits and fits for engineering: Part 1 General engineering

ISO/R 773: 1969 Rectangular or IS 2048: 1983 Parallel keys and Technically equivalent keyways (second revision)

ISO/R 774: 1969 Taper keys and IS 2292: 1974 Taper keys and Technically equivalent keyways (first revision)

ISO 3912: 1977* Woodruff keys and IS 2294: 1986 Woodruff keys and Technically equivalent keyways (second revision)

> IS 1076 (Part 1): 1985 Preferred Identical numbers: Part 1 Series of preferred numbers

An Erratum issued by the ISO in March 1969 relating to a value given in table on page 9 has been incorporated while printing this Indian Standard.

Addendum 1 issued by the ISO in November 1974 has been reproduced in full at the end.

^{*}Revision of earlier version.

1. SCOPE

This ISO Recommendation determines the dimensional characteristics of

- cylindrical shaft ends (long series and short series);
- 1/10 conical shaft ends (long series and short series), without keys and keyways or with keyways for parallel keys.

For cylindrical shaft ends, the transmissible torques for various applications (pure torque, torque and bending moment) are also given.

This ISO Recommendation will be completed later by details of

- the joining fillets for cylindrical shaft ends,
- the external and internal threads for conical shaft ends,
- -- the tolerances on form and position,

and by the addition of

- cylindrical shaft ends with internal thread,
- 1/10 conical shaft ends with Woodruff keys,
- conical shaft ends without keyways.

CYLINDRICAL SHAFT ENDS

2.1 Dimensions and tolerances

Dimensions in millimetres

 		· · · · · · · · · · · · · · · · · · ·	Dimensio	
	meter d 1		ngth /1	
nominal	tolerance ⁽²⁾	long series	short series	
6 7	j6	16	_	
· 8	j6	20	_	
10 11	j6	23	20 ⁽³⁾	
12 14	j6	30	25 ⁽³⁾	
16 18 19	j6	40	28	
20 22 24	j6	50	36	
25 28	j6	60	42	
30	j6			
32 35 38	k6	80	58	
40 42 45 48 50	k6	110	82	
55 56	m6			
60 63 65 70 71 75	m6	140	C 105	
80 85 90 95	m6	170	130	

	meter	Length				
nominal	tolerance ⁽²⁾	long series	short series			
100 110 120 125		210	765			
130 140 150		250	200			
160 170 180		300	240			
190 200 220		350	280			
240 250 260	m6	410	330			
280 300 320		470	380			
340 360 380	·	550	450			
400 420 440 450 460 480 500		650	540			
530 560 600 630		800	680			

Keys and keyways. The order relating to the keys and keyways, if required, should specify keys and keyways in conformity with one of the following ISO Recommendations:

ISO Recommendation R 773, Rectangular or square parallel keys and their corresponding keyways (Dimensions in millimetres);

ISO Recommendation R 774, Taper keys and their corresponding keyways with or without gib head (Dimensions in millimetres);

ISO Recommendation R . . ., (4) Woodruff keys and their corresponding keyways.

NOTE. - Tolerances on form and position will be specified later.

- (1) Detail A will be specified later.
- (2) See ISO Recommendation R 286, ISO System of limits and fits Part I: General, tolerances and deviations.
- (3) The dimensions thus indicated are not in agreement with the related dimensions of the long series conical shaft ends of the table in clause 3.1.1, and attention is drawn to this deviation from the relationship stated in the Annex.
- (4) At present at the stage of draft proposal.

2.2 Transmissible torques

Transmissible torque in kilogramme-force metres

Transmissible torque in newton metres

	Shaft end dia- neter	Tra	nsmissible T	torque	end dia- meter	dia- meter		Transmissible torque T			Tra	Transmissible torque		Shaft end dia- meter	i	sible torq	ue
	d_1 mm		<i>I</i> kgf∙m		d_1 mm	k	<i>I</i> .gf⋅m			d_1		<i>T</i> N·m		d ₁ mm	<u> </u>	T N·m	
		(a)	(b)	(c)		(a)	(b)	(c)			(a)	(b)	(c)		(a)	(b)	(c)
Γ	6		0.0315	0.015	90	580	412	195		6		0.307	0.145	90	5 600	4 120	1 900
	7	1	0.0545	0.025	95	670	500	236	١.	7	1	0.53	0.25	95	6 500	4 870	2 300
	8		0.0875	0.04	100	775	600	280		8		0.85	0.4	100	7 750	5 800	2 720
	9		0.132	0.0615	110	1 030	850	387		9		1.28	0.6	110	10 300	8 250	3 870
	10		0.19	0.09	120	1 360	1 120	530	l	10		1.85	0.875	120	13 200	11 200	5 150
L	11		0.265	0.122	125	1 550	1 320	615		11		2.58	1.22	125	15 000	12 800	6 000
Γ	12		0.355	0.17	130	1 700	1 500			12		3.55	1.65	130	17 000	14 500	
	14		0.615	0.29	140	2 120	1 950		i	14	ĺ	6	2.8	140	21 200	19 000	
	16		0.975	0.462	150	2 650	2 500		ļ	16		9.75	4.5	150	25 800	24 300	1 1
	18		1.5	0.69	160	3 250	3 070			18		14.5	6.7	160	31 500	30 700	
L	19		1.8	0.85	170	3 870	3 870			19	İ	17.5	8.25	170	37 500	37 500	
Γ	20		2.12	1	180	4 620			}	20		21.2	9.75	180	45 000		
	22		3	1.4	190	5 300				22		29	13.6	190	53 000		
Ì	24		4.12	1.9	200	6 300				24	ľ	40	18.5	. 200	61 500		1 1
	25		4.75	2.18	220	8 250				25		46.2	21.2	220	82 500		
	28		6.9	3.25	240	10 900				28		69	31.5	240	106 000		
	30	21.2	9	4.12	250	12 200				30	206	87.5	40	250	118 000		
	32	25.8		5.15	260	13 600				32	250		50	260	136 000		
	35	33.5	15	7.1	280	17 000			ĺ	35	325	150	69	280	170 000		
	38	42.5	20	9.5	300	21 200				38	425	200	92.5	300	206 000	}	1 1
L	40	50	24.3	11.2	320	25 800				40	487	236	112	320	250 000		
Ì	42	58	29	13.2	340	30 700				42	560	280	132	340	300 000		
	45	71	-36.5	17	360	36 500			ĺ	45	710	355	170	360	355 000°]	1 1
	48	87.5	46.2	21.2	380	42 500			ļ	48	850	450	212	380	425 000	·	
L	50	97.5	53	25	400	50 000				50	950	515	243	400	487 000		. ` `
	55	128	75	34.5	420	58 000			l	55	1 280	730	345	420	560 000		
	56	136	80	36.5	440	67 000				56	1 360	775	355	440	650 000		
	60	170	100	47.5	450	71 000				60	1 650		462	450	690 000		
	63	195	118	56	460	75 000				63	1 900		545	460	750 000		1 1
	65	212	132	61.5	480	87 500			:	65	2 120	1 280	600	480	850 000		
	70	272	175	80	500	97 500				70	2 650	1 700	800	500	950 000		\top
	71	280	180	85	530	115 000				71	2 720		825	530	1 150 000		
	75	335	218	103	560	136 000				75	3 250		1 000	560	1 360 000		
	80	400	272	128	600	170 000				80	3 870		1 250	600	1 650 000		
1	85	487	335	160	630	195 000		1		85	4 750	3 350	1 550	630	1 900 000		.]

The values of transmissible torques have been calculated from the following formulae and rounded off to normal numbers of the exceptional R 80 series (1):

(a) transmission of pure torque:

$$T = \frac{\pi}{4} \times 10^{-3} \times d_1^3 \text{ (kgf·m)}$$
 or $\frac{9.80665 \pi}{4} \times 10^{-3} \times d_1^3 \text{ (N·m)}$

This torque corresponds to a stress of 4 kgf/mm². In case of reversal of rotation fluctuations, of high or irregular torque, or of high bending and deformation moments in the coupling, the stresses will have to be checked by appropriate means.

(b) transmission of torque and bending moment both of a known size:

$$T = 6 \times 10^{-5} \times d_1^{3.5} \text{ (kgf·m)}$$
 or $58.8399 \times 10^{-5} \times d_1^{3.5} \text{ (N·m)}$

This formula may be applied subject to checking when the torque and bending moment are disproportionate in their influence.

(c) transmission both of a known torque and of an undetermined bending moment:

$$T = 2.8 \times 10^{-5} \times d_1^{3.5} \text{ (kgf·m)}$$
 or $27.45862 \times 10^{-5} \times d_1^{3.5} \text{ (N·m)}$

This formula is applicable to the dimensioning of shaft ends of primary machines (for example, electric motors, pumps, etc.) of general manufacture and capable of meeting all conditions of usage.

NOTE. - The three formulae assume the use of steel having a tensile strength of 50 to 60 kgf/mm².

⁽¹⁾ See ISO Recommendation R 3, Preferred numbers - Series of preferred numbers.

3. 1/10 CONICAL SHAFT ENDS

3.1 Long series

3.1.1 Diameters $\leq 220 \text{ mm}$

Keys and keyways⁽¹⁾. The keys and keyways should conform to ISO Recommendation R 773, Rectangular or square parallel keys and their corresponding keyways (Dimensions in millimetres).

 ^{1/10} conical shaft ends can also be made without key and keyway.
 1/10 conical shaft ends with Woodruff keys will be the subject of a later ISO Recommendation.

Dia- meter		Length			ey and key	way	External thread	Internal thread
d_1	l_1	12	l ₃	d ₂	b×h	t	d ₃	d_4
6 7	16	10	6	5.5 6.5	<u> </u>	-	M4 M4	
8 9	20	12	. 8	7.4 8.4		_	M6 M6	-
10 11	23	15 ⁽²⁾	8	9.25 10.25	- 2×2	1.2	M6 M6	_
12 14	30	18(2)	12	11.1 13.1	2X2 3X3	1.2	M8×1 M8×1	M4 M4
16 18	40	28	12	14.6	3×3 4×4	1.8	M10×1.25	M4 M5
19	70	20	12	17.6	4X4	2.5	M10X1.25 M10X1.25	М5
20	50	36	. 14	18.2 20.2	4×4 4×4	2.5 2.5	M12X1.25 M12X1.25	M6 M6
24	60	42	18	22.2	5X5 5X5	3	M12X1.25 M16X1.5	M6 M8
28 30				25.9 27.1	5X5 5X5	3	M16X1.5 M20X1.5	M8 M10
32 35 38	80	58	22	29.1 32.1	6X6 6X6	3.5 3.5	M20X1.5 M20X1.5	M10 M10
40				35.1 35.9 37.9	6X6 10X8 10X8	3.5 5 5	M24X2 M24X2 M24X2	M12 M12 M12
45 48	110	82	28	40.9 43.9	12×8 12×8	5 5	M30X2 M30X2	M16 M16
50 55				45.9 50.9	12X8 14X9	5 5.5	M36X3 M36X3	M16 M20
56				51.9	14X9	5.5	M36X3	M20

Dia- meter	Length			Key	and keyway		External thread	Interna thread		
d_{1}	l_1	l ₂	l ₃	d_2 $b \times h$ t		t	d ₃	da		
60				54.75	16X10	6	M42X3	M20		
63				57.75	16X10	6	M42X3	M20		
65	140	105	35	59.75	16X10	6	M42X3	M20		
70	140	103	33	64.75	18X11	7	M48X3	M24		
71				65.75	1 8 ×11	7	M48×3	M24		
75				69.75	18×11	7	M48×3	M24		
80				73.5	20×12	7.5	M56×4	M30		
85	1.70	120	40	70.5	20 ×12	7.5	M56×4	M30		
90	170	130	40	78.5	22X14	9	M64×4	M30		
95. -				83.5 88.5	22×14	9	M64×4	M36		
100				91.75	25×14	9	M72X4	M36		
110	210	165	45	101.75	25×14	9	M80X4	M42		
120				ŀ		111.75	28 ×16	10	M90×4	M42
125				116.75	28 ×16	10	M90×4	M48		
130				120	28×16	10	M100×4	_		
140	250	200	50	130	32X18	-11	M100X4			
150				140	32×18	11	M110×4	-		
160				148	36×20	12	M125X4	_		
170	300	240	60	158	36X20	12	M125×4	-		
180				168	40×22	13	M140×6	-		
190				176	40×22	13	M140×6	_		
200	350	280	70	186	40X22	13	M160X6	_		
220	i			206	45×25	15	M160×6	_		

7

⁽¹⁾ Details of the internal thread will be specified later.

⁽²⁾ See corresponding shaft diameters in the table in clause 2.1, and footnote (3) to that table.

3.1.2 Diameters > 220 mm

Keys and keyways (1). The keys and keyways should conform to ISO Recommendation R 773, Rectangular or square parallel keys and their corresponding keyways (Dimensions in millimetres).

^{(1) 1/10} conical shaft ends can also be made without key and keyway.

Dimensions in millimetres

Diameter	Length			ŀ	Key and keyway			
d_1	l_1	l_2	<i>l</i> ₃	d_2	$b \times h$	t	d_3	
240				223.5	*50 X 28	17	M180 X 6	
250	410	330	80	233.5	50 × 28	17	M180 × 6	
260				243.5	50 × 28	17	M200 × 6	
280				261	56 X 32	20	M220 X 6	
300	470	380	90	281	63 X 32	20	M220 × 6	
320				301	63 X 32	20	$M250 \times 6$	
340				317.5	70 × 36	22	M280 × 6	
360	550	450	100	337.5	70 X 36	22	$M280 \times 6$	
380				357.5	70 × 36	22	M300 × 6	
400				373	80 × 40	25	M320 X 6	
420				393	80 × 40	25	M320 × 6	
440				413	80 × 40	25	$M350 \times 6$	
450	650	540	110	423	90 X 45	28	M350 × 6	
460				433	90 X 45	28	M380 × 6	
480				453	90 × 45	28	M380 X 6	
500				473	90 X 45	28	$M420 \times 6$	
530				496	100 × 50	31	M420 × 6	
560	900	(00	120	526	100 × 50	31	M450 X 6	
600	800	680	120	566	100 × 50	31	M500 × 6	
630	ļ			596	100 × 50	31	M550 × 6	

3.2 Short series

Keys and keyways⁽¹⁾. The keys and keyways should conform to ISO Recommendation R 773, Rectangular or square parallel keys and their corresponding keyways (Dimensions in millimetres).

^{(1) 1/10} conical shaft ends can also be made without key and keyway.

Dimensions in millimetres

Diameter	Length		K	Key and keyv	vay	External thread	Internal thread ⁽¹⁾	
d_1	l_1	l ₂	<i>l</i> ₃	d_2	$b \times h$	(t).	d_3	d ₄
16				15.2	3 X 3	1.8	M10×1.25	M4
18	28	16	12	17.2	4 X 4	2.5	M10X1.25	M5
19				18.2	4 × 4	2.5	M10X1.25	M5
20				18.9	4 X 4	2.5	M13X1.25	М6
22	36	22	14	20.9	4 × 4	2.5	M12X1.25	M6
24				22.9	5 X 5	3	M12X1.25	M6
25	42	24	18	23.8	5 × 5	3	M16×1.5	М8
28	42	24	10	26.8	5 X 5	3	M16X1.5	М8
30				28.2	5 X 5	3	M20X1.5	M10
32	58	36	22	30.2	6 X 6	3.5	M20X1.5	M10
35	50	"		33.2	6 X 6	3.5	M20X1.5	M10
38				36.2	6 X 6	3.5	M24X2	M12
40	. 2			37.3	10 × 8	5 -	M24X2	M12
42				39.3	. 10 × 8	5	M24X2	M12
45				42.3	12 X 8	5	M30×2	M16
48	82	54	28	45.3	12 X 8	5	M30×2	M16
50				47.3	12 X 8	5	M36X3	M16
55		Ī	Ì	52.3	14 X 9	5.5	M36×3	M20
56				53.3	14 X 9	5.5	M36X3	M20
60				56.5	16 × 10	6	M42×3	M20
63				59.5	16 X 10	6	M42X3	M20
65	105	70 =	35	61.5	16 X 10	6	M42X3	M20
70				66.5	18 X 11	7	M48X3	M24
71 75		-		67.5 71.5	18 X 11 18 X 11	7	M48X3 M48X3	M 24 M 24
80				75.5	20 X 12	7.5	M56X4	M30
⁸⁵	130	90	40	80.5	20 × 12	7.5	M56X4	M30
95				85.5 90.5	22 × 14 22 × 14	9	M64X4 M64X4	M30 M36
100				- 94	25 × 14	. 9	M72X4	M36
110			,	104	25 X 14 25 X 14	9	M72X4 M80X4	M36 M42
120	165	120	45	114	28 × 16	10	M90X4	M42
125				119	28 × 16	10	M90X4	M48
130				122.5	28 X 16	10	M100X4	
140	200	150	50	132.5	32 × 18	11	M100X4	
150	ļ			142.5	32 × 18	11	M110X4	'
160				151	36 × 20	12	M125X4	
170	240	180	60	161	36 X 20	12	M125X4	
180		:		171	40 × 22	13	M140X6	-
190				179.5	40 × 22	13	M140X6	
200	280	210	70	189.5	40 X 22	13	M160X6	_
220	}			209.5	45 X 25	15	M160X6	_

⁽¹⁾ Details of the internal thread will be specified later.

ANNEX

PRINCIPLES ESTABLISHING THE STANDARDIZATION OF CYLINDRICAL AND 1/10 CONICAL LONG AND SHORT SHAFT ENDS

Relationship between forms

The relationship between the various forms of shaft ends, cylindrical and conical, is shown below. This length relationship is generally valid, the exceptions being indicated in the tables in clauses 2.1 and 3.1.1.

IS 3688 : 1990 ISO/R 775 : 1969/Add. 1-1974

Addendum 1 to ISO Recommendation R 775-1969

November 1974

ADDENDUM 1 : CHECKING OF THE DEPTH OF KEYWAYS IN CONICAL SHAFT ENDS

1 SCOPE AND FIELD OF APPLICATION

This Addendum forms a supplement to sub-clauses 3.1.1 and 3.2 of ISO/R 775.

The table overleaf gives values for the checking of the depth t_1 of keyways when it is desired to measure this from the nominal diameter of the shaft end.

The values of t given in ISO/R 775 remain the reference dimensions.

IS 3688 : 1990 ISO/R 775 : 1969/Add. 1-1974

$$t_1 = \frac{d_1 - d_2}{2} + t$$

Dimensions in millimetres

Diameter of shaft	1	y depth
end d ₁	Long shaft end	Short shaft end
11	1,6	
12	1,7	
14	2,3	
16	2,5	2,2
18	3,2	2,9
19	3,2	2,9
20	3,4	3,1
22	3,4	3,1
24	3,9	3,6
25	4,1	3,6
28	4,1	3,6
30	4,5	3,9
32	5,0	4,4
35	5,0	4,4
38	5,0	4,4
40	7,1	6,4
42	7,1	6,4
45	7,1	6,4
48	7,1	6,4
50	7,1	6,4
55	7,6	6,9
56	7,6	6,9
60	8,6	7.8

Diameter of shaft	Keywa	y depth
end d_1	Long shaft end	Short shaft end
63	8,6	7,8
65	8,6	7,8
70	9,6	8,8
71	9,6	8,8
75	9,6	8,8
80	10,8	9,8
85	10,8	9,8
90	12,3	11,3
95	12,3	11,3
100	13,1	12,0
110	13,1	12,0
120	14,1	13,0
125	14,1	13,0
130	15,0	13,8
140	16,0	14,8
150	16,0	14,8
160	18,0	16,5
170	18,0	16,5
180	19,0	17,5
190	20,0	18,3
200	20,0	18,3
220	22,0	20,3
	/	

Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standard Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any from without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type of grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Revision of Indian Standards

Indian Standards are reviewed periodically and revised, when necessary and amendments, if any, are issued from time to time. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition. Comments on this Indian Standard may be sent in BIS giving the following reference:

Doc: No. LMD 10 (0005)

Amend No.

Amendments Issued Since Publication

Date of Issue

Amend No.	Date of issue	
В	ureau of indian s ta n dard	S
Headquarters:		
Manak Bhavan, 9 Bahadur Shah Telephone: 331 01 31, 331 13 75		Telegrams: Manaksanstha (Common to all Offices)
Regional Offices:		Telephone
Central : Manak Bhavan, 9 : NEW DELHI 1	Bahadur Shah Zafar Marg 10001	{ 331 01 31 331 13 75

Eastern: I/14, C.I.T. Scheme VII M, V.I.P. Road, Maniktola, 37 86 62
CALCUTTA 700054

Northern : SCO 445-446, Sector 35-C, CHANDIGARH 160036 2 18 43

Southern: C.I.T. Campus, IV Cross Road, MADRAS 600113 41 29 16

Western: Manakalaya, E9 MIDC, Marol, Andheri (East) 6 32 92 95

BOMBAY 400093

Branches: AHMADABAD, BANGALORE, BHOPAL, BHUBANESHWAR, COIMBATORE,

FARIDABAD. GHAZIABAD. GUWAHATI. HYDERABAD. JAIPUR.

KANPUR. PATNA. THIRUVANANTHAPURAM.

Text Affected