

دانشكده مهندسي كامپيوتر

دکتر بهروز مینایی بهار ۱۴۰۱

تمرین سری سوم پردازش زبان و گفتار

ثمین حیدریان توحید عابدینی

تاریخ تحویل: جمعه ۱۳ خرداد ساعت ۲۳:۵۹:۵۹

قوانين:

- ♣ سوالات این تمرین از مبحث «تجزیه نحوی و برچسب زنی اجزای سخن » میباشد و برای پاسخ به سوالات آن نیاز به دانش نسبی درمورد این مبحث دارید.
 - ♣ این تمرین شامل ۴ سوال می باشد. ۳ سوال تئوری و نوشتاری هستند و ۱ سوال عملی و شامل پیاده سازی است.
 - **↓** درصورت وجود هرگونه سوال، در کلاس درس و یا در گروه تلگرامی درس بیرسید. (لطفا ییوی پیام ندهید.)
- ♣ هرگونه ایده گرفتن از تمرین دیگران و کدهای موجود در اینترنت که موجب تشابه غیرعادی و بالای کد شما با دیگری شود، تقلب محسوب می شود. درصورت مشاهده ی تقلب، نمره ی تمرین برای هر دو دانشجوی متخلف صفو منظور خواهد شد.
- لطفا برای انجام تمرین، زمان مناسب اختصاص دهید و انجام آن را به روزهای پایانی موکول نکنید. دقت کنید <u>تمرین به</u> هیچ عنوان تمدید نخواهد شد.
- استخ ارسالی شما باید علاوه بر کدهای مربوط به هر سوال، شمل یک گزارش در قالب یک فایل PDF باشد که محتوای گزارش مربوطه توضیحات تکمیلی شما درخصوص هر سوال و اسکرینشات از نتیجه اجرای کدهای شما باشد.
- ➡ تمامی فایل های موردنیاز برای تمرین را به صورت یک فایل ZIP با فرمت شماره دانشجویی_نام و نام خانوادگی_KW3 لا ZIP
 نام گذاری کرده و ارسال کنید. (برای مثال NameFamily_98000000)
- ا تاخیر در ارسال تمرین ها بر اساس نمودار زیر محاسبه خواهد شد. محور افقی نمودار، مقدار تاخیر به ثانیه و محور عمودی، ضریب اعمالی در نمره تمرین است.

¹ Constituency Parsing

² POS tagging

سوالات تئورى:

1. در این قسمت میخواهیم PoS tagging را با استفاده از روش HMM مطابق با ۴ جمله زیر انجام دهیم:

- Mark can watch.
- Will can mark watch.
- Can Tom watch?
- Tom will mark watch.

برچسب اجزای سخن (Part of Speech) زیر را طبق مراحلی که در ادامه نوشته شده اند مشخص کنید (فرض کنید سه تگ Noun، Verb و Modal را داریم).

• Can Tom mark watch?

مرحله ۱:

ابتدا جدولی مانند جدول زیر تشکیل دهید که Emission probability ها را تشکیل میدهد.

كلمات	Noun	Modal	Verb
Tom	2/6	0	0

مرحله ۲:

در این مرحله دو برچسب به ابتدا و انتهای جملات اضافه میشوند. < به ابتدای جمله و < به انتهای جمله اضافه میشود.

- <S> Mark can watch. <E>
- <S> Will can mark watch. <E>
- <S> Can Tom watch?
- <S> Tom will mark watch. <E>

•

سپس جدول زیر را تشکیل دهید و احتمال وقوع دو برچسب با یکدیگر (Transition probability) را محاسبه کنید.

³ Hiddem Markov Model

	Noun	Modal	Verb	<e></e>
<\$>				
Noun				
Modal				
Verb				

مرحله ۳:

در انتها گراف جملات را رسم کنید و با محاسبه احتمالات مسیر، برچسب صحیح کلمات را به دست آورید. در این مرحله راس ها و یال هایی که احتمال صفر دارند باید حذف شوند. همچنین راس هایی که به نقطه پایانی نمیرسند باید حذف شوند.

توجه: برای اطلاعات بیشتر به لینک زیر مراجعه کنید.

https://www.mygreatlearning.com/blog/pos-tagging/

2 . مطابق با گرامر داده شده و با استفاده از الگوریتم CKY، عملیات تجزیه و تحلیل نحوی را با کشیدن جدول برای جمله زیر انجام دهید.

• John eats pie with cream

$S \rightarrow NP VP$	0.8
$S \rightarrow S \text{ conj } S$	0.2
$NP \rightarrow Noun$	0.2
$NP \rightarrow Det Noun$	0.4
$NP \rightarrow NP PP$	0.2
$NP \rightarrow NP \operatorname{conj} NP$	0.2
$VP \rightarrow Verb$	0.4
$VP \rightarrow Verb NP$	0.3
$VP \rightarrow Verb NP NP$	0.1
$VP \rightarrow VP PP$	0.2

$PP \rightarrow P NP$	1.0
Noun → John	0.2
Noun → Jack	0.3
Noun → pie	0.1
Noun → cream	0.3
Noun → cake	0.1
$Verb \rightarrow eat$	0.2
Verb → eats	0.3
Verb → drinks	0.5
$P \rightarrow with$	0.6
$P \rightarrow by$	0.4
$Det \rightarrow a$	0.3
$Det \rightarrow the$	0.7
$conj \rightarrow and$	0.8
$conj \rightarrow or$	0.2

John	eats	pie	with	cream	
					John
					eats
					pie
					with
					cream

3 . محدودیت های PCFGs را با استفاده از مثال توضیح دهید. برای هر مورد توضیح دهید که PCFGs . 3 و grammer چگونه محدودیت مربوطه را کاهش میدهد؟

سوال عملي:

در این سوال باید یک PoS tagger برای زبان انگلیسی پیاده سازی نمایید. در فایل نوتبوک پیوست شده با نام PoS_Tagger کتابخانه هایی که امکان استفاده از آن را دارید آورده شده است و همچنین مجموعه داده مورد استفاده در آن نوشته شده است.

برای پیاده سازی PoS tagger باید از درخت تصمیم استفاده نمایید. با استفاده از دانش خود و مطالبی که در کلاس گفته شده و همچنین جست و جو در اینترنت سعی کنید ویژگی هایی کاربردی در این زمینه را استخراج نموده و در آموزش رده بند 6 درخت تصمیم از آنها استفاده کنید.

تفکیک مجموعه داده به دو داده آموز m^2 و آزمون V باید به صورت V -۲۰ باشد.

در صورتی که به مشکل حافظه برخوردید فقط از ۱۰۰۰۰ توکن اول در دیتاست خود (ترتیب مهم نیست.) استفاده نموده و دقت رده بند حداقل باید ۸۵٪ باشد.

موفق باشيد

⁴ Decision Tree

⁵ Classifier

⁶ Train

⁷ Test