Workflows of Manual Analysis Helper (MAH)

Yijian ZHOU

2022-01 V0

Outline

- Manual phase picking
- Source spectrum analysis
- CC clustering

1. Manual Phase Picking

- Input
 - fctlg: catalog file, just rough location would be enough
 - data_dir: directory of continuous waveform
- Output
 - fpha & fpha_hyp

Input	Operation	Output	Notes
fctlg & fsta	ctlg2pha.py	fpha_org	predicted phase arrival, need manual pick
fpha_org	cut events	events/[event_name] /[net.sta.chn].SAC	
	SAC <i>ppk</i> P/S/N in t0/1/2		only use <i>wh</i> !
events & fpha_org	head2pha.py	fpha	
fpha	cut events	events/[event_name] /[net.sta.chn].SAC	may repeat the manual picking process
fpha	event location	fpha_hyp	use Hypo-Interface-Py

2. PLD for Source Time Function

- Input
 - fctlg_tar: catalog that contains target events
 - fctlg_all: catalog that contains all available events
 - fsta: station file
 - data_dir: directory of continuous data
- Output
 - pld_stf_pha.npy

2.1 Prepare Target & EGF Event Data

Input	Operation	Command	Output	Notes
fctlg_tar & fsta	make phase file	ctlg2pha.py	fpha_tar_org	predicted phase arrival, need manual repick
fpha_tar_org	cut Target events	cut_events- small.py	input/events_tar	cut raw data
	SAC ppk	head2pha.py	fpha_tar	mark P/S/N in t0/1/2, only use <i>wh</i>
fpha_tar	cut Target events	cut_events- small.py	input/events_tar	optional
fpha_tar	event location		fpha_tar_hyp	optional

Input	Operation	Command	Output	Notes
fctlg_all & fsta	make phase file	ctlg2pha.py	fpha_all_org	predicted phase arrival, not accurate
fpha_all_org	cut events (filtered)	cut_events- big.py	bigdata/events	low freq_band, e.g. [0.5,5]
events_tar & events_all	CC selection	calc_egf-cc.py	fcc_tar-egf	no filter here
		select_egf.py	fpha_egf_org	should remain <20 EGF candidates
fpha_egf_org	inspect event waveform	plot_waveform- events.py	evid_name.pdf	check overall SNR of each candidate EGF
	inspect CC	plot_egf-cc.py	egf_cc.pdf	check overall CC of each candidate EGF
fpha_egf_org	cut events (raw data)	cut_events- small.py	input/events_egf	no filter here
	SAC ppk	head2pha.py	fpha_egf	optional

Event Waveform: 1 20210521213733.80 M3.1 Z 1-20Hz

2.2 Perform PLD (for the best EGF)

Input	Operation	Command	Output	Notes
events_tar & events_egf	CC alignment	pick_cc.py	tar/egf/ cc_sta_egf.pdf & sta/cc_pha.sac	
	manual pick CC to align tar & egf	SAC ppk	<i>t0</i> marks to calc <i>t1</i> marks not to calc	pick the first backward amin near global amax
cc_pha.sac	calc PLD misfit	calc_pld- misfit.py	tar/egf/sta pld_err_pha.sac & pld_stf_pha.sac	use SAC to pick the end time on misfit curve
	plot final PLD result	plot_pld.py	tar/egf/ pld_sta_pha.pdf & sta/pld_stf_pha.npy	

