Lab-07-1 Tips
I. Maximum Likelihood Estimation (MCE)
BUREFOL BER BENOMINATOL SE.
$V \sim B(n,\theta) P(k=k) = {n \choose k} \theta^k C(-\theta)^{n-k}$
Local maximum
$0 \leftarrow 0 - 2 \nabla_{\theta} L(x; \theta)$
2. Overfitting 3012 days
1 2 2 142 121
titting 2. =validation set
Thaning set set test set
Over thing? Zlatal 1961 0.8 000.1/0.2
2 obsetudtion? U.S.
Validation (oss
overfitting (2to) tizy HZLE (2002) Training Loss
pide
The data & Denli features of 73 = De Overfifting
DF2 4 9/2
regularization: Overfitting = 15 to 5 of of other
Early stopping Walidation loss of Trolls
GOTALI COSE TON, NOTHONE SIZE ZOLO
weight 2) = 2/12tatt, dropout, batch normalization
Itahart Jadta nalmalization

Lab-67-2 MNIST Introduction
for X, Y in data_loader:
X=X_v:ev(-1, 28x 28)
1 epoch: training set 221 20127 boutch size: 3t Old epochod 11921 train data 4 iteration: 3 train data 4 = hatch size
1 epoch: thaining set an est &
1 1 1 - 1 = 5t Not To hat NASCE than data 4
DOLTAN SIZE. S. A.S. Spoendy The SZZ WAIN COURT
Holyfon. & train date 4 = Patch size
(16/70/10/1)