Matrix Analysis and Applications (Autumn 2021)

Homework: 1

矩阵分析基础(1)

Lecturer: Feng Chen chenfeng@mail.tsinghua.edu.cn

TA: Tianren Zhang, Yizhou Jiang, Chongkai Gao zhang-tr19, jiangyz20, gck20@mails.tsinghua.edu.cn

1. 设 $P[x]_3$ 的两基为

(I): $\begin{aligned} f_1(x) &= 1, & f_2(x) &= 1+x, \\ f_3(x) &= 1+x+x^2, & f_4(x) &= 1+x+x^2+x^3. \\ (II): & g_1(x) &= 1+x^2+x^3, & g_2(x) &= x+x^2+x^3, \\ g_3(x) &= 1+x+x^2, & g_4(x) &= 1+x+x^3. \end{aligned}$

- (1) 求由基 (I) 变到基 (II) 的过渡矩阵;
- (2) 求 $P[x]_3$ 中在基 (I) 和基 (II) 下有相同坐标的全体多项式。

2. 设三维线性空间间 \mathcal{V}^3 上的线性变换 \mathscr{A} 在基 e_1, e_2, e_3 下的矩阵为

$$m{A} = egin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

- (1) 求 \mathscr{A} 在基 e_3, e_2, e_1 下的矩阵;
- (2) 求 \mathscr{A} 在基 e_1, ke_2, e_3 下的矩阵, $k \neq 0$;
- (3) 求 \mathcal{A} 在基 $e_1 + e_2, e_2, e_3$ 下的矩阵。

3. 已知 $n \times n$ 矩阵 $M = I - X(X^{T}X)^{-1}X^{T}$ 。若矩阵 X 的秩为 r_{X} ,且 y 是一个正态分布的随机向量,其 均值向量为 Xb, 协方差矩阵为 $\sigma^2 I$, 即 $y \sim N(Xb, \sigma^2 I)$, 证明:

- (1) $\mathbf{E}\{y^{\mathrm{T}}My\} = (n r_{X})\sigma^{2};$
- (2) $\mathbf{y}^{\mathrm{T}}\mathbf{M}\mathbf{y}/\sigma^{2}$ 服从自由度为 $(n-r_{\mathbf{X}})$ 的 χ^{2} 分布,即 $\mathbf{y}^{\mathrm{T}}\mathbf{M}\mathbf{y}/\sigma^{2}\sim\chi_{n-r_{\mathbf{Y}}}^{2}$ 。

提示: 借助性质 $M^2 = M, M^T = M$ 作特征值分解。

矩阵分析基础 (1) 2

4. 设 $\mathbf{A} \in \mathbb{R}^{m \times n}$, 证明:

$$\operatorname{rank} \boldsymbol{A} = \operatorname{rank} \left(\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}} \right) = \operatorname{rank} \left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} \right)$$

5. 设 n 维向量空间 \mathbb{U} 和 m 维向量空间 \mathbb{V} 中各有如下基变换:

在
$$\mathbb{U}$$
 中: $(\tilde{\boldsymbol{u}}_1,\cdots,\tilde{\boldsymbol{u}}_n)=(\boldsymbol{u}_1,\cdots,\boldsymbol{u}_n)\boldsymbol{P}$,

在
$$\mathbb{V}$$
中: $(\tilde{\boldsymbol{v}}_1,\cdots,\tilde{\boldsymbol{v}}_n)=(\boldsymbol{v}_1,\cdots,\boldsymbol{v}_m)\boldsymbol{Q}$,

再设线性变换 $\mathcal{L}: \mathbb{U} \mapsto \mathbb{V}$ 在基 $U = [u_1, \cdots, u_n]$ 和 $V = [v_1, \cdots, v_m]$ 下的表示矩阵为 A,即 $[\mathcal{L}(r)]_V = A[r]_U$;而在基 $\tilde{U} = [\tilde{u}_1, \cdots, \tilde{u}_n]$ 和 $\tilde{V} = [\tilde{v}_1, \cdots, \tilde{v}_m]$ 下的表示矩阵为 \tilde{A} ,求证:

$$\tilde{\boldsymbol{A}} = \boldsymbol{Q}^{-1} \boldsymbol{A} \boldsymbol{P}$$

6. 设线性算子 $\mathscr{A}: \mathbb{R}^4 \to \mathbb{R}^3$, 有

$$\mathscr{A}\left[(x_1, x_2, x_3, x_4)^{\mathrm{T}}\right] = (x_1 - x_2 + x_3 + x_4, x_1 + 2x_2 - x_4, x_1 + x_2 + 3x_3 - x_4)^{\mathrm{T}}$$

求 \mathscr{A} 的核空间 $N(\mathscr{A})$ 及像空间 $R(\mathscr{A})$ (基可自行选定)。

- 7. 请作图说明三阶行列式的几何意义。并利用几何意义求 $\|\det[\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3]\|$, 其中 $\mathbf{u}_1=(-3,1,-2)^{\mathrm{T}},\mathbf{u}_2=(1,1,-1)^{\mathrm{T}},\mathbf{u}_3=(1,-5,-4)^{\mathrm{T}}$ 。
- 8. 设 $A \in \mathbb{R}^{n \times n}$ 为一实对称矩阵,而 $f(x) = x^{T}Ax$, $x \in \mathbb{R}^{n}$ 为二次型。
 - (1) 证明: f 半正定 (即 $\mathbf{A} \succeq 0$), 当且仅当存在 $\mathbf{F} \in \mathbb{R}^{k \times n}$ 使得

$$f(\boldsymbol{x}) = \|\boldsymbol{F}\boldsymbol{x}\|^2$$

其中 $\|\cdot\|$ 表示 l_2 范数。若 A 半正定,试说明如何求解矩阵 F? 又如何确定最小 k 值?

(2) 证明: f(x) 可表示为

$$f(x) = \|Fx\|^2 - \|Gx\|^2$$

其中 F 和 G 为合适的矩阵。试确定 F 和 G 的最小维数。

(3) 当矩阵 A 分别为

$$m{A}_1 = egin{bmatrix} 5 & 2 \ 2 & 2 \end{bmatrix}, \ m{A}_2 = egin{bmatrix} -1 & 2 \ 2 & 2 \end{bmatrix}, m{A}_3 = egin{bmatrix} 2 & 2 \ 2 & 2 \end{bmatrix}$$

时,利用 Matlab 画出 $f(x) = x^{T} A x$ 对应的空间曲面。同时研究并解释 f 取不同值时的等高线形状。