Milestone Presentation

PBL 12- Teal

Objectives	Constraints			
To design an unmanned, lightweight, durable ground vehicle capable of effectively containing a fire.	The UGV's length must be less than 300mm, width less than 200mm and height less than 300mm. The gross weight of the UGV, including water, must be under 3kg.			
The UGV will be required to stop, start as well as travel in a forward and backward direction at a controllable speed.	Return to the starting point of the course.			
The UGV will have a pump which will expel water alongside a rotating arm to direct the stream.	The drive, fluid and structural system must be located on the vehicle.			
A reservoir stored on the UGV will contain water sufficient to extinguish multiple fires.	Power is supplied by batteries.			
The structure itself must be firm, durable, withstand displacement while the fluid delivery system is in use at multiple trajectories.	Must extinguish fires within 6 minutes.			

Control

Control: Arduino with Bluetooth

Using Arduino Uno with L293D
 Motor Driver Shield and HC-05
 Bluetooth Module

 L293D shield can take up to 18V and distribute voltage evenly across all components.

Control Testing

Structure

Material of Chassis

Ideal chassis material for the UFV requires it to be:

- Light
- Durable

Other considerations:

 Heat resistant → resistant to potential flames

Therefore, aluminium was chosen to be the material for the chassis. This is because it is known for both its durability and its low weight compared to other metals.

Structure of Unmanned Firefighting Vehicle

Requirements

- to accommodate and protect all components → Chassis.
- Stable → Centre of gravity

Considerations

 Overall mass needs to be considered due to weight constraints.

Structure of Unmanned Firefighting Vehicle

Chassis Design

Flat sheet chassis design was used because of the UFV's simple structural requirement.

A more complex design may not be needed, although it adds more structural support, it can increase the total mass of the UFV and its materials costs → not worth it.

Fluid Delivery

Fluid Storage

Two current options for the water tank:

- A 1L plastic bottle
 - More reliable
 - Durable
- Foam board tank
 - Sturdier, better weight distribution
 - Environmentally friendly

Fluid Delivery

Machifit JT80SL Submersible Water Pump

- DC 3-6V
- Max. 120L/H flow rate

Fluid Expulsion

1) Piping

Clear Vinyl Tubing 8mm x 5mm

Advantages: Lightweight and flexible

Fluid Expulsion

2) Nozzle

Extended Range Flat Fan

Hollow Cone Spray Nozzle

Spinning Tooth Nozzle

Fence Line Spray Nozzle

Fluid Expulsion

2) Nozzle

Extended Range Flat Fan

Hollow Cone Spray Nozzle

Spinning Tooth Nozzle

Fence Line Spray Nozzle

Drive

Drive

- 12V Machifit 33rpm DC Motor
- 3D printing gears with AutoCAD for customizability
- The gear was required to have strong tensility and efficien

material used will be 3D printing

plastic(ABS) instead of ready made gear

selections using nylon.

Project Management

Failure Modes and Effects Analysis (FMEA)

The scope of analysis will allow us to define, identify, prioritise and then eliminate known or potential failures within the scope of the unmanned Firefighting vehicle. The UFV has many components within 4 larger subsystems. Due to the nature of the risk associated with each individual component the resolution of the FMEA is very specific, focusing on a component level. The focus must also be defined for our FMEA. Our focus is on a combination of different areas that hold equal weighting of importance to our project. Safety is of high importance, as is functionality. The aim of the project is to create a UFV that works according to the specified aim safely.

Hazard	Failure Mode	Causes	Consequences	Risk Priority Rating				Mitigation	Risk Priority Rating			
				Sev	Prob	Det	RPN		Sev	Prob	Det	RPN
Tanks	Tank not made securely so water leaks from openings Tank not secured to chassis. Instability leads it to tipping over and falling	Poor manufacturing of the tank Poor choice of glue or other binding strategy	Short circuits electrical boards if water gets into contact with it	4	2	1	8	Create tank out of non- permeable material so as to ensure no water leakage. Using centre of mass	4	1	1	4
	Tank tips over and pump is no longer submerged leading to the system operation failing	Instability of tank	Pump Stops					principles create a physically stable structure				
Stability of Chassis	Material not strong enough to withhold the mass	Aluminium chassis too thin to be able to withstand the mass	Structure collapse	3	2	1	6	Increase thickness of chassis	3	1	1	3
Pipes	Piping unfastens itself from connecting components	Rapid movement of UFV causes piping to move	Water flow no longer continuous and hence it does not reach the nozzle. Cannot put of fires	2	3	2	12	Add extra material to secure piping	2	2	2	6
Battery	Wiring of battery	Not attached correctly	No current	2	1	2	4	Test with DC voltage to check if wired correctly	1	1	1	1
Material not able to withstand	Melting of metal	Materials sensitive to heat	System stops operating	4	2	2	16	Create a 'lid' like structure	2	1	3	6
heat	Plastic melting	Piping too close to the heat source target						that goes over the main body of the UFV protecting the				
	Electrical boards overheating	No proper insulation to protect systems from external heat sources and internal overheating						inner components from any external risks. Also adds aesthetic appeal				

Summary

Main area of concern where our system could most likely fail is due to the piping.

Mitigation techniques must be put into place to ensure the UFV functions accordingly

Completion Plan

Gantt chart

Fireman Sam (Unmanned Firefighting Vehicle)

Appendix (1): Defined Weightings

	Weightings		Definition
Severity	4	Catastrophic	Extremely severe consequences to both the system and individuals around it. (95% - 100% system failure)
	3	Critical	System is no longer functioning accordingly to the aim (efficiency of output is reduced by 40%)
	2	Marginal	Risk of severity is not that high. (efficiency of output is reduced by 20%)
	1	Negligible	No threat detected (minimum 5% impact of total output and functionality)
Probability	4	Expected	Will most likely occur immediately
	3	Occasional	75% chance of occurrence
	2	Remote	>50% chance of occurrence
	1	Improbable	>10% chance of occurrence
Detection	4	Impossible	Impossible to detect
	3	Possible	<50% chance of detection
	2	Likely	<75% chance of detection
	1	Certain	100% chance of detection

Q&A