PROBABILIDADE E **ESTATÍSTICA**

Prof. Marcos A. Santos de Jesus

jesusmar@unisanta.br

SISTEMAS DE INFORMAÇÃO

MEDIDAS DE DISPERSÃO

ATIVIDADES

1. As idades em anos de 25 pessoas presentes nesta sala de aula são: 20, 19, 22, 24, 25, 26, 18, 19, 18, 20, 21, 22, 23, 21, 19, 20, 19, 22, 21, 23, 24, 25, 22, 20, 22. Determine a média, moda e mediana de idade desse grupo de pessoas.

Idade em Anos (x_i)	Frequência f_i	$x_i f_i$
18	2	36
19	4	76
20	4	80
21	3	63
22	5	110
23	2	46
24	2	48
25	2	50
26	1	26
	25	535

Média aritmética
$$(\bar{x}) = \frac{\sum_{i=1}^{n} x_{i} f_{i}}{n} = \frac{535}{25} = 21,4 \ anos$$

A moda nesse caso é a idade de 22 anos. Pois é esse valor que aparece com maior frequência

A mediana nesse caso é o valor que ocupa a posição de ordem $\frac{n}{2}+1$, nesse caso é o décimo terceiro termo. Nesse caso a mediana é a idade de 21 anos

MEDIDAS DE DISPERSÃO

VARIÂNCIA E DESVIO PADRÃO

Servem para verificar a representatividade das medidas de posição. É possível encontrar séries de valores que têm a mesma média, porém são compostas de forma diferentes.

Exemplo:

Sejam as séries abaixo:

Média aritmética
$$(\bar{x}) = \frac{\sum_{i}^{n} x_{i} f_{i}}{n}$$

1^a) 10, 15, 25, 10, 5, 25

2^a) 15, 15, 15, 15, 15

Façamos a verificação para cada série.

$$\bar{x} = \frac{90}{6} = 15 \ em \ ambos \ os \ casos.$$

VARIÂNCIA AMOSTRAL

Considera-se nesse momento o quadrado de cada desvio $(x_i - \bar{x})^2$, para evitar que a soma dos desvios seja nula. Fórmula para cálculo da variância amostral:

$$\sigma^2 = \frac{\sum (x_i - \bar{x})^2 \cdot f_i}{n}$$

DESVIO PADRÃO AMOSTRAL

O Desvio Padrão é a raiz quadrada da variância, ou seja:

$$\sigma = \sqrt{\sigma^2}$$

COEFICIENTE DE VARIAÇÃO

Este valor é uma medida relativa de dispersão, e é utilizada para comparar em termos relativos do grau de concentração em torno da média de um conjunto de dados distintos.

$$CV = \frac{\sigma}{\bar{x}}$$

Exemplo1:

Calcular a variância, desvio padrão e o coeficiente de variação da amostra descrita abaixo.

					8	
f_i	2	4	6	8	2	3

Variável (x_i)	Frequência f_i	$x_i f_i$	$(x_i - \bar{x})^2 \cdot f_i$
3	2	6	$(3-6,16)^2.2=19,9712$
4	4	16	$(4-6,16)^2$. $4=18,6624$
5	6	30	$(5-6,16)^2.6 = 8,0736$
7	8	56	$(7-6,16)^2.8=5,6448$
8	2	16	$(8-6,16)^2.2=6,7712$
10	3	30	$(10 - 6,16)^2.3 = 44,2368$
	25	154	103,36

$$N = 25$$

Média aritmética
$$(\bar{x}) = \frac{\sum_{i}^{n} x_{i} f_{i}}{n} \bar{x} = \frac{154}{25} = 6,16$$

VARIÂNCIA AMOSTRAL

$$\sigma^2 = \frac{\sum (x_i - \bar{x})^2 f_i}{n} = \frac{103,36}{25} = 4,13$$

DESVIO PADRÃO AMOSTRAL

$$\sigma = \sqrt{\sigma^2} \quad \Longrightarrow \quad \sigma^2 = \sqrt{4,13} = 2,03$$

COEFICIENTE DE VARIAÇÃO
$$CV = \frac{\sigma}{\bar{x}} = \frac{2,03}{6,16} = 0,3295 ou 32,95\%$$

Qual o percentual de dados que existe entre $(\bar{x}$ - $\sigma)$ e $(\bar{x}$ + $\sigma)$?

Entre 4,13 e 8,19, qual o percentual de dados? $\frac{16}{25}$ = 0,64