A Role for Genomics in Addressing Health Disparities?

Wylie Burke MD PhD
Department of Bioethics and Humanities
University of Washington
Seattle, WA

Discourse on precision medicine, genomics, and health disparities

"give everyone the best chance at good health" (Collins & Varmus NEJM 2015;372:793-5)

"improve outcomes for communities with disparities in health" (Flyer for community engagement with AIAN communities)

"understand the complex interplay that creates health disparities" (Bustamante et al Nature 2011;475:163-5)

Social conditions as fundamental causes of disease

Disadvantage creates conditions that put people "at risk of risks"

Influencing

- Multiple risk factors
- Multiple diseases

...and maintaining an association with disease, even when intervening mechanisms change

Survival by race in childhood acute lymphoblastic leukemia (ALL)

Lower 5 year survival for AA, NA and Hispanic compared to white children (p<0.001-0.002)

Incidence of childhood acute lymphoblastic leukemia (ALL)

Cases per million person years

Genetic contributors to disease risk

- 5 genes associated with ALL risk (involved in lymphoid development, cell cycle control or tumor suppression)
- Differential prevalence of risk variants in 2 genes (lower in African Americans) likely contributes to racial difference in incidence

Lim et al Cancer 2014; 120:955-62

Hu et al JNCI 2013:733-741

Pui et al JAMA 2003; 290:2001

Another difference

- Higher rate of poor prognostic indicators seen in black children in US and Africa in some studies – eg:
 - High leukocyte count
 - Unfavorable T-cell immunophenotype
 - Chromosomal translocation t(1:19) with E2A-PBX1 fusion
 - Also, less likely to have hyperdiploid blast cells
- Could population genetic differences contribute? Or environmental exposures?

Hu et al JNCI 2013:733-741; Pui et al JAMA 2003; 290:2001; Macharia. East Afr Med J 1998; 73:638-42; Gunier et al Environ Res 2017; 156:57-62

Results of therapy for ALL in Black and White children - St. Jude

Event-free survival

Pui et al JAMA 2003; 290:2001

Type 2 diabetes

- Accounts for 90-95% of diabetes
- >100 gene variants contribute to risk, with small additive effects
- In studies of ancestral groups:
 - Differences in variant prevalence
 - Some variants found exclusively or predominantly in specific groups

Could genetics account for the high rate of diabetes in the Arizona Pima?

Study of two Pima populations

- Located in Arizona, US and Sierra Madre mountains of Mexico
- Share common ancestry distinct from other Native American groups, with bootstrap value of 95% (947/1000)

Age-adjusted prevalence (±95% CIs) of diabetes in non-Pima Mexicans, Mexican Pima Indians, and U.S. Pima Indians.

Leslie O. Schulz et al. Dia Care 2006;29:1866-1871

Other differences between the two Pima Indian populations

- Physical activity
 - 2.5-fold↑ for men, 7.0-fold↑ for women among Mexican Pima
- Obesity
 - 10-fold↑ for men, 3.0-fold↑ for women among US Pima

Schulz et al.Diabetes Care 2016;29:1866-77

How did the Pima lifestyle change with western settlement?

- Pima agricultural economy disrupted by diversion of water to white settlements
 - Loss of healthy traditional foods
 - Poverty
- Surplus commodities (high in simple carbohydrates and processed food) introduced as dietary mainstays
- Communities experienced cultural loss, stigma and discrimination

Age-adjusted prevalence (±95% CIs) of diabetes in non-Pima Mexicans, Mexican Pima Indians, and U.S. Pima Indians.

Leslie O. Schulz et al. Dia Care 2006;29:1866-1871

APOL1 & kidney disease

African Americans experience a disproportionate burden of chronic (CKD) and end-stage kidney disease (ESKD)

Risk variants in the APOL1 gene contribute to increased risk

- Risk genotype (two copies of a risk variant) present in 13% of African Americans
- Penetrance estimated at 20%

Incidence of albuminuria (indicator of CKD) in the Cardia cohort

	White	Low risk Black	High risk Black
N	1651	1090	152
Albuminuria (per 1000 PY)	3.9	7.8	15.6
Relative risk		2.32	5.71
Corrected (smoking, BP, BMI, DM, SES)		1.21	3.50

Peralta et al. JASN 2016; 27:888-93

Kidney decline by race and APOL1

Peralta et al. JASN 2016; 27:888-93

Placing genomics in context

Genomics may:

 explain some population differences in disease incidence - sometimes aligned with outcome disparity, sometimes not

BUT

- Studied in isolation, may obscure far more important social determinants of health
- In so doing, may stigmatize disadvantaged populations and slow progress toward addressing health disparities

