

Algorithms & Data Structures

Lesson 2: Math Review, Algorithm Analysis

Marc Gaetano

Edition 2017-2018

- Definition: $x = 2^y$ if $log_2 x = y$
 - $-8 = 2^3$, so $\log_2 8 = 3$
 - $-65536=2^{16}$, so $\log_2 65536=16$
- The exponent of a number says how many times to use the number in a multiplication. e.g. 2³ = 2 × 2 × 2 = 8
 (2 is used 3 times in a multiplication to get 8)
- A logarithm says how many of one number to multiply to get another number. It asks "what exponent produced this?" e.g. log₂8 = 3 (2 makes 8 when used 3 times in a multiplication)

- Definition: $x = 2^y$ if $log_2 x = y$
 - $-8 = 2^3$, so $\log_2 8 = 3$
 - $-65536=2^{16}$, so $\log_2 65536=16$
- Since so much is binary in CS, log almost always means log₂
- log₂ n tells you how many bits needed to represent n combinations.
- So, log₂ 1,000,000 = "a little under 20"
- Logarithms and exponents are inverse functions. Just as exponents grow very quickly, logarithms grow very slowly.

Properties of logarithms

- log(A*B) = log A + log B
- $log(N^k) = k log N$
- log(A/B) = log A log B
- log(log x) is written log log x
 - Grows as slowly as 2^{2y} grows quickly
- (log x) (log x) is written log^2x
 - It is greater than log x for all x > 2
 - It is not the same as log log x

Algorithm Analysis

As the "size" of an algorithm's input grows (integer, length of array, size of queue, etc.), we want to know

- How much longer does the algorithm take to run? (time)
- How much more memory does the algorithm need?
 (space)

Because the curves we saw are so different, often care about only "which curve we are like"

Separate issue: Algorithm *correctness* – does it produce the right answer for all inputs

Usually more important, naturally

Algorithm Analysis: A first example

Consider the following program segment:

```
x:= 0;
for i = 1 to n do
   for j = 1 to i do
x := x + 1;
```

What is the value of x at the end?

```
i j x

1 1 to 1 1

2 1 to 2 3

3 1 to 3 6

4 1 to 4 10 = n*(n+1)/2

...

Number of times x gets incremented by 1 is = 1 + 2 + 3 + ... + (n-1) + n = n*(n+1)/2
```

Analyzing the loop

Consider the following program segment:

```
x := 0;
for i = 1 to n do
  for j = 1 to i do
  x := x + 1;
```

- The total number of loop iterations is n*(n+1)/2
 - This is a very common loop structure, worth memorizing
 - This is *proportional to* n², and we say $O(n^2)$, "big-Oh of"
 - $n*(n+1)/2 = (n^2 + n)/2$
 - For large enough n, the lower order and constant terms are irrelevant, as are the assignment statements
 - See plot... (n²+ n)/2 vs. just n²/2

Lower-order terms don't matter

n*(n+1)/2 vs. just $n^2/2$

We just say O(n2)

Big-O: Common Names

```
O(1)
               constant (same as O(k) for constant k)
O(\log n)
               logarithmic
O(n)
               linear
O(n \log n) "n \log n"
O(n^2)
               quadratic
O(n^3)
               cubic
O(n^k)
               polynomial (where is k is any constant)
O(k^n)
               exponential (where k is any constant > 1)
O(n!)
               factorial
```

Note: "exponential" does not mean "grows really fast", it means "grows at rate proportional to k^n for some k>1"

Big-O running times

For a processor capable of one million instructions per second

	n n	$n \log_2 n$	n ²	n³	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10^{25} years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Analyzing code

Basic operations take "some amount of" constant time

- Arithmetic (fixed-width)
- Assignment
- Access one Java field or array index
- Etc.

(This is an approximation of reality: a very useful "lie".)

Consecutive statements Sum of times

Conditionals Time of test plus slower branch

Loops Sum of iterations

Calls Time of call's body

Recursion Solve recurrence equation

(next lecture)

Analyzing code

- Add up time for all parts of the algorithm e.g. number of iterations = (n²+ n)/2
- 2. Eliminate low-order terms i.e. eliminate n: (n²)/2
- 3. Eliminate coefficients i.e. eliminate 1/2: (n²)

Examples:

```
-4n + 5 = O(n)
-0.5n \log n + 2n + 7 = O(n \log n)
-n^3 + 2^n + 3n = O(2^n)
-n \log (10n^2) = n\log(10) + n \log(n^2) = n\log(10) + 2n \log(n) = O(n \log n)
```