Kryptografia z elementami algebry, wykład 5

Maciej Grześkowiak

29 stycznia 2022

Elementy algebry

Ciało K

Definicja

Zbiór $(K, +, \cdot)$ z dwoma działaniami, który spełnia następujące warunki:

- (K, +) jest grupą abelową,
- $(K \setminus \{0\}, \cdot)$ jest grupą abelową,
- $\forall a, b, c \in K$ mamy
 - a(b+c) = ab + ac,
 - (b+c)a = ba + ca

nazywamy ciałem.

Ciało p-elementowe \mathbb{F}_p

Przyklad Niech *p* będzie liczbą pierwszą.

Definiujemy z dwoma działaniami

$$(\mathbb{F}_{p},+,\cdot), \qquad \mathbb{F}_{p}=\{0,1,2,\ldots,p-1\},$$

który spełnia warunki

- $(\mathbb{F}_p, +)$ jest grupą abelową,
- $(\mathbb{F}_p \setminus \{0\}, \cdot)$ jest grupą abelową
- $\forall a, b, c \in \mathbb{F}_p$ mamy
 - $\bullet \ a(b+c)=ab+ac,$
 - (b+c)a = ba + ca

Struktura $(\mathbb{F}_p,+,\cdot)$ jest ciałem skończonym.

Krzywa eliptyczna nad \mathbb{F}_p

Niech p > 3 będzie liczbą pierwszą.

Definicja: Krzywa eliptyczna nad ciałem \mathbb{F}_p zdefinowanana jest przez równanie

$$E: Y^2 = X^3 + AX + B, \quad A, B \in \mathbb{F}_p,$$

gdzie wyróżnik $\Delta_E = 4A^3 + 27B^2 \not\equiv 0 \pmod{p}$.

Uwaga: Zapis E/\mathbb{F}_p oznacza, że krzywa E jest zdefiniowana nad \mathbb{F}_p .

Krzywa eliptyczna nad $\mathbb{F}_{ ho}$

Definicja: Mówimy, że punkt $P = (x_0, y_0)$ należy do E/\mathbb{F}_p jeśli spełnia równanie:

$$y_0^2 \equiv x_0^3 + Ax_0 + B \pmod{p}.$$

Definicja: Zbiór wszystkich punktów należących do E/\mathbb{F}_p :

$$E(\mathbb{F}_p) = \{(x, y) : y^2 \equiv x^3 + Ax + B \pmod{p}\} \cup \mathcal{O}$$

Krzywe $Y^2 = X^3 + 4X + 4$ oraz $Y^2 = X^3 - 3X$ nad \mathbb{R}

Krzywa eliptyczna nad \mathbb{F}_p , przykład

Przykład:

Niech p=11. Zbadaj czy równanie defniuje krzywą eliptyczną nad F_{11} :

- ② $E_2: Y^2 = X^3$

Rozwiązanie: Mamy,

$$\Delta_{E_1} = 4A^3 + 27B^2 \equiv 27 \equiv 5 \pmod{11},$$

 $\Delta_{E_2} = 4A^3 + 27B^2 \equiv 0 \pmod{11}.$

Krzywa eliptyczna nad \mathbb{F}_p , przykład

Przykład: Niech E/F_7 będzie postaci

$$E: Y^2 = X^3 + 1.$$

Wyznacz zbiór $E(\mathbb{F}_7)$.

Rozwiązanie: Mamy, $\Delta_E = 4A^3 + 27B^2 \equiv 27 \equiv 6 \pmod{7}$. Zatem

X	$x^{3} + 1$	у	(x,y)
0	1	±1	$(0,\pm 1)$
1	2	±3	$(1,\pm 3)$
2	2	±3	$(2,\pm 3)$
3	0	0	(3,0)
-3	2	±3	$(-3,\pm 3)$
-2	0	0	(-2,0)
-1	0	0	(-1,0)

Stąd

$$E(\mathbb{F}_7) = \{(0,\pm 1), (1,\pm 3), (2,\pm 3), (3,0), (4,\pm 3), (-2,0), (-1,0)\} \cup \{\mathcal{O}\}$$

$\overline{\mathsf{Krzywa}}$ eliptyczna $E:Y^2=X^3-7X+10$ nad \mathbb{F}_{19}

Rząd $E(F_p)$ i rząd punktu na E

Twierdzenie:(Hasse)

$$\sharp E(F_p) = p + 1 - t, \quad |t| \le 2\sqrt{p}$$

Maciej Grześkowiak

Definiujemy działanie \oplus , $P \oplus Q = R$

Definiujemy działanie \oplus , $P \oplus Q = R$

Niech

$$E/\mathbb{F}_p: Y^2=X^3+AX+B.$$

Niech

$$P, Q \in E(\mathbb{F}_p), \quad P = (x_1, y_1), \quad Q = (x_2, y_2), \quad x_1 \neq x_2$$

Wtedy,

$$P \oplus Q = R$$
, $R = (x_3, y_3)$,

gdzie

$$x_3 = \lambda^2 - x_1 - x_2 \pmod{p},$$

 $y_3 = \lambda(x_1 - x_3) - y_1 \pmod{p},$
 $\lambda = (y_2 - y_1)(x_2 - x_1)^{-1} \pmod{p},$

Definiujemy działanie \oplus , $P \oplus P = 2P = Q$

Definiujemy działanie \oplus , $P \oplus P = 2P = Q$

Niech

$$E/\mathbb{F}_p: Y^2 = X^3 + AX + B.$$

Niech

$$P \in E(\mathbb{F}_p), \quad P = (x_1, y_1).$$

Wtedy,

$$P \oplus P = Q$$
, $Q = (x_3, y_3)$,

gdzie

$$x_3 = \lambda^2 - 2x_1 \pmod{p},$$

 $y_3 = \lambda(x_1 - x_3) - y_1 \pmod{p},$
 $\lambda = (3x_1^2 + A)(2y_1)^{-1} \pmod{p},$

Definiujemy działanie \oplus , $P \oplus Q$, gdy Q = -P

Maciej Grześkowiak ECC 29 stycznia 2022 16 / 3

Definiujemy działanie \oplus , $P \oplus Q$, gdy Q = -P

Niech

$$E/\mathbb{F}_p: Y^2=X^3+AX+B.$$

Niech

$$P, Q \in E(\mathbb{F}_p), \quad P = (x_1, y_1), \quad Q = (x_2, y_2), \quad x_1 = x_2, \quad y_1 = -y_2$$

Wtedy,

$$P \oplus Q = \mathcal{O}$$

Ponadto,

$$P \oplus \mathcal{O} = \mathcal{O} \oplus P = P$$
.

Działanie \oplus

Twierdzenie

- **4** działanie \oplus jest wewnetrzne w $E(\mathbb{F}_p)$, tzn. dla dowolnych $P,Q\in E(\mathbb{F}_p)$ mamy $P\oplus Q\in E(\mathbb{F}_p)$,
- ② dla dowolnych $P,Q,R\in E(\mathbb{F}_p)$ mamy $(P\oplus Q)\oplus R=P\oplus (Q\oplus R)$,
- lacksquare dla każdego $P \in E(\mathbb{F}_p)$ istnieje Q takie, że $P \oplus Q = \mathcal{O}$,
- lacktriangledown dla każdego $P,Q\in E(\mathbb{F}_p)$ mamy $P\oplus Q=Q\oplus P$,

Uwaga:

Przyjmujemy, że jeśli P=(x,y), to -P=(x,-y). Przyjmujemy $P\oplus (-Q)=P\ominus Q$.

Wniosek Zbiór $(E(\mathbb{F}_p), \oplus)$ jest grupą abelową.

Generowanie E nad \mathbb{F}_p

Dane k - liczba bitów

Wynik
$$E: Y^2 = X^3 + AX + B$$
 nad \mathbb{F}_p

- Losuj k- bitową liczbę pierwszą p,
- ② Losuj A oraz B z ciała \mathbb{F}_p ,
- **3** Oblicz $\Delta_E = 4A^3 + 27B^2 \pmod{p}$,
- \bullet if $\Delta_E = 0 \pmod{p}$ then
- skok do 2
- \bigcirc return (A, B, p)

Generowanie $P \in E(\mathbb{F}_p)$

Dane
$$E: Y^2 = X^3 + AX + B$$
 nad \mathbb{F}_p
Wynik $P = (x, y) \in E(\mathbb{F}_p)$

- **1** Losuj x z ciała \mathbb{F}_p ,
- Oblicz $f(x) = x^3 + Ax + B \pmod{p}$
- skok do 1,
- **o** Oblicz $y \in \mathbb{F}_p$ takie, że $y^2 = f(x) \pmod{p}$

Krzywa eliptyczna nad \mathbb{F}_p , przykład

Przykład:

Niech E/F_{11} będzie postaci $E:Y^2=X^3+2X-2$. Znajdź punkt należący do $E(\mathbb{F}_{11})$.

Rozwiązanie: Mamy,

$$\Delta_E = 4A^3 + 27B^2 \equiv 4 \cdot 2^3 - 5 \cdot 4 \equiv 1 \pmod{11}.$$

Szukam x,y takiego, że $P=(x,y)\in E(\mathbb{F}_{11})$. W tym celu losujemy x=1 i obliczam

$$x^3 + 2x - 2 \equiv 1 \pmod{11}$$

Rozwiązuję kongruencję

$$Y^2 \equiv 1 \pmod{11},$$

Stąd $y \equiv \pm \pmod{11}$. Zatem

$$P = (1,1) \in E(\mathbb{F}_{11}).$$

Krzywa eliptyczna nad \mathbb{F}_p , przykład

Zadanie:

Niech E/F_7 będzie postaci

$$E: Y^2 = X^3 + 1.$$

Niech P = (1,3), Q = (2,4), R = (6,0). Oblicz

- $\mathbf{0} Q$
- $\mathbf{Q} R \oplus \mathcal{O}$
- \bigcirc $P \oplus Q$,
- 2R

Rozwiązanie:

$$-Q = -(2,4) = (2,-4),$$

 $R \oplus \mathcal{O} = R = (6,0).$

$E: Y^2 = X^3 + 1$ nad \mathbb{F}_7 , przykład

Rozwiązanie cd:

$$P \oplus Q = (1,3) \oplus (2,4) = (x_3, y_3),$$

gdzie

$$\lambda = (y_2 - y_1)(x_2 - x_1)^{-1} \equiv (4 - 3)(2 - 1)^{-1} \equiv 1 \pmod{7},$$

$$x_3 = \lambda^2 - x_1 - x_2 \equiv 1^2 - 1 - 2 \equiv -2 \equiv 5 \pmod{7},$$

$$y_3 = \lambda(x_1 - x_3) - y_1 \equiv 1(1 - 5) - 3 \equiv -7 \equiv 0 \pmod{7}.$$

Stąd,

$$P \oplus Q = (1,3) \oplus (2,4) = (5,0),$$

$E: Y^2 = X^3 + 1$ nad \mathbb{F}_7 , przykład

Rozwiązanie cd:

$$2P = P \oplus P = (1,3) \oplus (1,3) = (x_3,y_3),$$

gdzie

$$\lambda = (3x_1^2 + A)(2y_1)^{-1} \equiv (3 \cdot 1^2 + 0)6^{-1} \equiv 3 \cdot 6 \equiv 4 \pmod{7},$$

$$x_3 = \lambda^2 - 2x_1 \equiv 4^2 - 2 \equiv 0 \pmod{7},$$

$$y_3 = \lambda(x_1 - x_3) - y_1 \equiv 4(1 - 0) - 3 \equiv 1 \pmod{7}.$$

$$P \oplus P = (1,3) \oplus (1,3) = (0,1).$$

Funkcja jednokierunkowa, przykład

Niech p>3 będzie liczbą pierwszą oraz E/\mathbb{F}_p : $Y^2=X^3+AX+B$. $P\in E(\mathbb{F}_p),\ P\neq \mathcal{O}$, $1< n<\sharp E(\mathbb{F}_p),\ n\in \mathbb{N}$

Definicja:

$$F(P, E, n, p) = nP$$

oraz

$$F^{-1}(P,Q,E,p)=n$$
, takie, że $Q=nP$, $Q\in E(\mathbb{F}_p)$

Czy funkcja F może być jednokierunkowa?

Problem logarytmu dyskretnego, przykład

Niech E/F_7 będzie postaci

$$E: Y^2 = X^3 + 1.$$

Problem (ECDLP):

Dane $P = (6,0), Q = (1,3) \in E(\mathbb{F}_p)$

Wynik: znajdź, o ile istnieje, $n \in \mathbb{N}$ takie, że P = nQ.

Mamy,

$$1Q = (1,3), \quad 2Q = (0,1), \quad 3Q = (3,0),$$

 $4Q = (0,6), \quad 5Q = (1,4), \quad 6Q = \mathcal{O},$

Zatem, nie istnieje $n \in \mathbb{N}$ takie, że P = nQ.

Problem logarytmu dyskretnego, przykład

Problem (ECDLP):

Dane $P=(1,4), Q=(1,3)\in E(\mathbb{F}_p)$ Wynik: znajdź, o ile istnieje, $n\in\mathbb{N}$ takie, że P=nQ.

Mamy,

$$1Q = (1,3), \quad 2Q = (0,1), \quad 3Q = (3,0),$$

 $4Q = (0,6), \quad 5Q = (1,4), \quad 6Q = \mathcal{O},$

Zatem, istnieje n = 5 takie, że P = 5Q.

Problem logarytmu dyskretnego, przykład

Mamy,

X	$x^{3} + 1$	у	(x,y)
0	1	±1	$(0,\pm 1)$
1	2	±3	$(1,\pm 3)$
2	2	±3	$(2,\pm 3)$
3	0	0	(3,0)
-3	2	±3	$(-3,\pm 3)$
-2	0	0	(-2,0)
-1	0	0	(-1,0)

Stąd

$$E(\mathbb{F}_7) = \{ (0,1), (0,6), (1,3), (1,4), (2,3), (2,4), (3,0), (4,3), (4,4), (5,0), (1,0) \} \cup \{ \mathcal{O} \}$$

Problem logarytmu dyskretnego, wnioski

$$E(\mathbb{F}_7) = \{(0,1), (0,6), (1,3), (1,4), (2,3), (2,4), (3,0), (4,3), (4,4), (5,0), (1,0)\} \cup \{\mathcal{O}\}$$

Widzimy, że $\operatorname{ord}_E(Q)=6$ i $\sharp E(F_p)=12$ oraz, że

$$\operatorname{ord}_{E}(P) \mid \sharp E(F_{p}).$$

Wniosek: Ze względu bezpieczeństwa:

- #E(F_p) powinnien mieć duży dzielnik pierwszy lub być dużą liczbą pierwszą,
- \bullet ord $_E(P)$ powinien być duży, najlepiej liczbą pierwszą,

Obliczanie nP, algorytm

Algorytm (metoda binarna):

Dane: $n \in \mathbb{N}$, $P \in E(\mathbb{F}_p)$, gdzie $n \in \mathbb{N}$ Wynik: $R \in E(\mathbb{F}_p)$, takie, że R = nP.

- Q = P
- $R = \mathcal{O}$

- 0 n = n 1
- $Q = Q \oplus Q$
- 0 n = n/2
- Return R

Kryptosystem ElGamala na krzywej eliptycznej E/\mathbb{F}_p

Alice (Algorytm generowania kluczy)

- Losuje liczbę pierwszą p i ustala \mathbb{F}_p ,
- 2 Losuje krzywą E nad \mathbb{F}_p ,
- **3** Losuje $P \in E(\mathbb{F}_p)$, $P \neq \mathcal{O}$,
- **4** Losuje $x \in \mathbb{N}$, $x < \sharp E(\mathbb{F}_p)$,
- O Przyjmuje $K_A = [E, p, P, Q]$ za klucz publiczny i go publikuje
- O Przyjmuje $k_A = [E, p, P, Q, x]$ za klucz tajny.

Kryptosystem ElGamala na krzywej eliptycznej E/\mathbb{F}_p

Bob (Algorytm szyfrowania)

$$K_A = [E, p, P, Q]$$

- Ustala wiadomość M,
- Pobiera K_A klucz publiczny Alice,
- Koduje M na P_M punkt krzywej E,
- **4** Losuje $y \in \mathbb{N}$, $y < \sharp E(\mathbb{F}_p)$,

- **3** Wysyła $C = [C_1, C_2]$ do Alice.

Kryptosystem ElGamala na krzywej eliptycznej E/\mathbb{F}_p

Alice (Algorytm deszyfrowania)

$$C = [C_1, C_2], k_A = [E, p, P, Q, x]$$

- ② Dekoduje P_M na M,

Poprawność:

Mamy,

$$C_2 \ominus (xC_1) = P_M \oplus yQ \ominus xyP = P_M \oplus yxP \ominus xyP = P_M \oplus \mathcal{O} = P_M.$$

Maciej Grześkowiak

Kodowanie M na $P_M \in E(\mathbb{F}_p)$, $E: Y^2 = X^3 + AX + B$

Algorytm kodowania

Wybieramy N, μ , takie, że $0 \le M < N$ oraz $p > N\mu$, gdzie $\mu \in \mathbb{N}$ Dane: M, N, μ

- Dla $j = 1, 2, \dots$ do μ wykonuj:
- $f \equiv x^3 + Ax + B \pmod{p},$
- $\oint \text{jeśli}\left(\frac{f}{p}\right) == 1, \text{ to}$
- oblicz y taki, że $y^2 \equiv f \pmod{p}$,

Uwaga:

wybór N związany jest z liczbą bitów M, algorytm zakoduje M z prawdopodobieństwem co najmniej $\frac{1}{2^{\mu}}$, warto wybrać $\mu \in \{30, \ldots, 50\}$.

Kodowanie M na $P_M \in E(\mathbb{F}_p)$, $E : Y^2 = X^3 + AX + B$

Algorytm dekodowania

Dane: $P_M = (x, y), \mu$

o Oblicz
$$|M = (x - 1)/\mu|$$

Return M.

Poprawność:

$$M + \frac{1-1}{\mu} \le \frac{x-1}{\mu} = \frac{M\mu + j - 1}{\mu} = M + \frac{j-1}{\mu} \le M + \frac{\mu - 1}{\mu}$$

Stąd,

$$\lfloor \frac{x-1}{\mu} \rfloor = M.$$