

Generated by Gemini AI September 5, 2025

Contents

1	Sets (Entities)	3
2	Indices	4
3	Goals	5
4	Conditions	6
5	Decision Variables	7

1 Sets (Entities)

The following sets and their corresponding symbols are derived from the Entities.csv file. They represent the foundational elements of the SCRUM domain model.

- P: The set of all Projects.
- T: The set of all Teams.
- \bullet W: The set of all Workers.
- \bullet F: The set of all Features.
- S: The set of all Skills.
- R: The set of all Roles.
- PO: The set of all Product Owners.
- \bullet SM: The set of all Scrum Masters.
- PB: The set of all Product Backlogs.
- SP: The set of all Sprints.
- SPP: The set of all Sprint Plannings.
- DS: The set of all Daily Scrums.
- \bullet SR: The set of all Sprint Reviews.
- SRE: The set of all Sprint Retrospectives.
- SBL: The set of all Sprint Backlogs.
- \bullet SG: The set of all Sprint Goals.
- E: The set of all Epics.
- \bullet US: The set of all User Stories.
- TSK: The set of all Tasks.
- *DEV*: The set of all Development Snapshots.
- \bullet *BL*: The set of all Blockers.
- SH: The set of all Stakeholders.
- *VEL*: The set of all Velocity metrics.
- *REP*: The set of all Release Plans.
- \bullet RM: The set of all Roadmaps.
- SCB: The set of all Scrum Boards.
- \bullet *FED*: The set of all Feature Documentations.

2 Indices

For each set defined above, a corresponding index is used to refer to a specific element within that set.

- $p \in P$: Index for a Project.
- $t \in T$: Index for a Team.
- $w \in W$: Index for a Worker.
- $f \in F$: Index for a Feature.
- $s \in S$: Index for a Skill.
- $r \in R$: Index for a Role.
- $po \in PO$: Index for a Product Owner.
- $sm \in SM$: Index for a Scrum Master.
- $pb \in PB$: Index for a Product Backlog.
- $sp \in SP$: Index for a Sprint.
- $spp \in SPP$: Index for a Sprint Planning.
- $ds \in DS$: Index for a Daily Scrum.
- $sr \in SR$: Index for a Sprint Review.
- $sre \in SRE$: Index for a Sprint Retrospective.
- $sbl \in SBL$: Index for a Sprint Backlog.
- $sg \in SG$: Index for a Sprint Goal.
- $e \in E$: Index for an Epic.
- $us \in US$: Index for a User Story.
- $tsk \in TSK$: Index for a Task.
- $dev \in DEV$: Index for a Development Snapshot.
- $bl \in BL$: Index for a Blocker.
- $sh \in SH$: Index for a Stakeholder.
- $vel \in VEL$: Index for a Velocity metric.
- $rep \in REP$: Index for a Release Plan.
- $rm \in RM$: Index for a Roadmap.
- $scb \in SCB$: Index for a Scrum Board.
- $fed \in FED$: Index for a Feature Documentation.

Note: Parameters extracted from the model are denoted as $Attribute_{index}$, e.g., $StoryPoints_{us}$ for the story points of user story us.

3 Goals

The objective functions of the optimization model are defined below. These are goals to be maximized or minimized, derived from Goals.csv.

G0 maximize_story_points_per_sprint: Maximize the sum of story points from user stories assigned to a given sprint. Let $x_{us,sp}$ be 1 if user story us is in sprint sp, 0 otherwise.

$$\max \sum_{us \in US} StoryPoints_{us} \cdot x_{us,sp}$$

G1 minimize_project_budget: Minimize the total budget consumed across all projects. This assumes a variable cost c_p for each project.

$$\min \sum_{p \in P} c_p$$

G2 maximize_high_priority_feature_completion: Maximize the sum of priorities for all completed features. Let y_f be 1 if feature f is completed, 0 otherwise.

$$\max \sum_{f \in F} \text{Priority}_f \cdot y_f$$

G3 minimize_unresolved_blockers: Minimize the count of blockers that are not in a 'resolved' state. Let z_{bl} be 1 if blocker bl is resolved, 0 otherwise.

$$\min \sum_{bl \in BL} (1 - z_{bl})$$

G4 maximize_team_velocity: Maximize the average story points for a given team t.

$$\max AvgStoryPoints_{vel_t}$$

G5 maximize_sprint_goal_achievement: Maximize the count of sprints that achieve their goal.

$$\max \sum_{sp \in SP} \text{AchievementOfGoal}_{sp}$$

G6 maximize_team_satisfaction: Maximize the satisfaction level reported by a team in a retrospective.

$$\max \text{TeamSatisfaction}_{sre_t}$$

G7 maximize_high_priority_story_completion: Maximize the sum of priorities for all completed user stories. Let v_{us} be 1 if user story us is completed, 0 otherwise.

$$\max \sum_{us \in US} \text{Priority}_{us} \cdot v_{us}$$

G8 minimize_total_task_effort: Minimize the total effort for all tasks assigned to a sprint. Let $a_{tsk,sp}$ be 1 if task tsk is in sprint sp.

$$\min \sum_{tsk \in TSK} \text{Effort}_{tsk} \cdot a_{tsk,sp}$$

G9 maximize_stakeholder_influence: Maximize the influence level of stakeholders engaged in the project.

$$\max \sum_{sh \in SH} \text{InfluenceLevel}_{sh}$$

G10 minimize_epic_effort: Minimize the total estimated effort for all planned epics.

$$\min \sum_{e \in E} \text{EstimatedEffort}_e$$

G11 maximize_project_priority: Maximize the priority of the projects being worked on.

$$\max \sum_{p \in P} \operatorname{Priority}_p$$

4 Conditions

The constraints of the optimization model are defined below. These are rules and limits that must be adhered to, derived from Conditions.csv.

C0 **project_budget_limit**: The total cost of a project must not exceed its allocated budget. Let c_p be the calculated cost for project p.

$$c_p \leq \text{Budget}_p, \quad \forall p \in P$$

C1 team_size_upper_limit: The size of any team must not be greater than 9.

$$TeamSize_t \leq 9, \quad \forall t \in T$$

C2 sprint_end_date_is_fixed: The completion date of any task must be on or before the sprint's end date. Let d_{tsk} be the completion date of task tsk. Let task tsk be in sprint sp.

$$d_{tsk} \leq \text{EndDate}_{sn}, \quad \forall tsk \in TSK, \forall sp \in SP$$

C3 worker_availability_limit: The total effort assigned to a worker must not exceed their availability. Let $e_{w,tsk}$ be the effort of worker w on task tsk.

$$\sum_{tsk \in TSK} e_{w,tsk} \leq \text{Availability}_w, \quad \forall w \in W$$

C4 **critical_task_skill_requirement**: A worker assigned to a critical task must have a minimum skill level. Let $a_{w,tsk}$ be 1 if worker w is assigned to task tsk. Let $L_{w,s}$ be the level of worker w in skill s.

$$a_{w,tsk} = 1 \implies L_{w,s} \ge \text{MIN_SKILL_LEVEL}, \text{ for required skill } s$$

C5 feature_priority_is_set: The priority of any feature must be greater than zero.

Priority
$$f \geq 1$$
, $\forall f \in F$

C6 story_points_are_positive: The story points for any user story must be greater than zero.

StoryPoints_{us} > 0,
$$\forall us \in US$$

C7 **prefer_certified_skills**: A soft constraint, represented here as a condition that for a key task, the assigned worker should be certified. Let $C_{w,s}$ be 1 if worker w is certified in skill s.

$$a_{w,tsk} = 1 \implies C_{w,s} = 1$$
, for key tasks tsk

C8 assigned_team_is_active: A team assigned to a project must have an 'active' status.

TeamStatus_t = 'active',
$$\forall t \in T$$
 assigned to a project

C9 task_effort_is_estimated: The effort for every task must be a positive number.

$$Effort_{tsk} > 0, \quad \forall tsk \in TSK$$

C11 team_size_lower_limit: The size of any team must be at least 3.

TeamSize
$$_t \geq 3$$
, $\forall t \in T$

5 Decision Variables

The variables that the optimization model can manipulate to achieve the goals are defined below, derived from DecisionVariables.csv.

DV0 assign_story_to_sprint: Binary variable indicating if a User Story is assigned to a Sprint.

$$x_{us,sp} \in \{0,1\}, \quad \forall us \in US, \forall sp \in SP$$

DV1 assign_worker_to_task: Binary variable indicating if a Worker is assigned to a Task.

$$a_{w,tsk} \in \{0,1\}, \quad \forall w \in W, \forall tsk \in TSK$$

DV2 set_feature_priority: Integer variable for setting the priority of a Feature.

$$p_f \in \{1, 2, 3, 4, 5\}, \quad \forall f \in F$$

DV3 set_user_story_points: Integer variable for setting the story points for a User Story.

$$sp_{us} \in \{1, 2, 3, 5, 8, 13, 21, 40\}, \forall us \in US$$

DV4 **select_team_for_project**: Categorical variable to assign a team to a project. Let $a_{t,p}$ be 1 if team t is assigned to project p.

$$a_{t,p} \in \{0,1\}, \quad \forall t \in T, \forall p \in P$$

DV5 set_sprint_duration_weeks: Integer variable setting the duration of a sprint in weeks.

$$d_{sp} \in \{1, 2, 3, 4\}, \quad \forall sp \in SP$$

DV6 include_feature_in_release: Binary variable to include a Feature in a Release Plan.

$$i_{f,rep} \in \{0,1\}, \quad \forall f \in F, \forall rep \in REP$$

DV7 set_task_effort_hours: Integer variable for the estimated effort of a Task in hours.

$$e_{tsk} \in \mathbb{Z}^+, \quad 1 \le e_{tsk} \le 16, \quad \forall tsk \in TSK$$

DV8 **prioritize_blocker_resolution**: Binary variable to decide if a blocker is actively being resolved.

$$r_{bl} \in \{0, 1\}, \quad \forall bl \in BL$$

DV9 assign_worker_to_team: Binary variable to assign a Worker to a Team.

$$m_{w,t} \in \{0,1\}, \quad \forall w \in W, \forall t \in T$$

DV10 set_blocker_severity: Categorical variable for the severity of a Blocker.

$$s_{bl} \in \{\text{low, medium, high, critical}\}, \quad \forall bl \in BL$$

DV11 set_project_budget: Continuous variable for the budget of a Project.

$$b_p \in \mathbb{R}^+, \quad 50000 \le b_p \le 5000000, \quad \forall p \in P$$

DV12 define_task_type: Categorical variable for the type of a Task.

 $t_{tsk} \in \{\text{bug, new_development, research, testing}\}, \forall tsk \in TSK$