

# DEPARTAMENTO DE ENGENHARIA ELETRÓNICA E DE TELECOMUNICAÇÕES E COMPUTADORES

Licenciatura em Engenharia Informática e de Computadores

# Arquitetura de Computadores

### Memórias e Portos

Alun@s:

A49418 - Roberto Petrisoru

A49447 - Francisco Castelo

A49506 - Pedro Malafaia

Docentes:

Rui Policarpo

# Conteúdo

| 1 | Def                     | inição do mapa de endereçamento              | 1                               |  |  |  |  |  |  |  |
|---|-------------------------|----------------------------------------------|---------------------------------|--|--|--|--|--|--|--|
|   | 1.1                     | Caracterização dos módulos de memória        | 1                               |  |  |  |  |  |  |  |
|   |                         | 1.1.1 Caracterização dos dispostivos #2 e #3 | 1                               |  |  |  |  |  |  |  |
|   |                         | 1.1.2 Caracterização dos dispostivos #4 e #5 | . 1 . 1 . 1 . 1 . 1 . 1 . 2 . 3 |  |  |  |  |  |  |  |
|   | 1.2                     | Caracterização dos portos                    | 1                               |  |  |  |  |  |  |  |
|   | 1.3                     | Mapa de endereçamento                        | 1                               |  |  |  |  |  |  |  |
|   |                         | 1.3.1 Módulo #1                              | 1                               |  |  |  |  |  |  |  |
|   |                         | 1.3.2 Módulos #2 e #3                        | 1                               |  |  |  |  |  |  |  |
|   |                         | 1.3.3 Módulos #4 e #5                        |                                 |  |  |  |  |  |  |  |
|   | 1.4                     |                                              |                                 |  |  |  |  |  |  |  |
| 2 | Car                     | acterização da atividade dos barramentos     | 4                               |  |  |  |  |  |  |  |
| 3 | Evolução da Arquitetura |                                              |                                 |  |  |  |  |  |  |  |
|   | 3.1                     | Mapa de endereçamento                        | 5                               |  |  |  |  |  |  |  |
|   | 3.2                     | Expressões lógicas                           |                                 |  |  |  |  |  |  |  |
|   | 3.3                     | Logigrama do novo porto                      |                                 |  |  |  |  |  |  |  |
| 4 | Cor                     | nclusão                                      | 7                               |  |  |  |  |  |  |  |

### 1 Definição do mapa de endereçamento

#### 1.1 Caracterização dos módulos de memória

#### 1.1.1 Caracterização dos dispostivos #2 e #3

- **Tipo:** Estes módulos de memória tratam-se de ROMs, visto que estes não possuem um sinal de controlo para ativar a escrita (WE)
- Organização: 8K x 8. Este valor é obtido pelo facto deste módulo ter 13 bits em Address e 8 bits em Data. Assim, obtemos  $2^{13}$  x 8, que simplificado fica 8K x 8
- Capacidade: Este módulo tem uma capacidade de 16KB

#### 1.1.2 Caracterização dos dispostivos #4 e #5

- **Tipo:** Estes módulos de memória tratam-se de RAMs, sendo que estes possuem um sinal de controlo para escrita (WE)
- Organização: 2K x 8. Este valor é obtido pelo facto deste módulo ter 11 bits em Address e 8 bits em Data. Assim, obtemos 2<sup>11</sup> x 8, que simplificado fica 2K x 8
- Capacidade: Este módulo tem uma capacidade de 4KB

### 1.2 Caracterização dos portos

O único porto neste sistema é o módulo #1.

- **Tipo:** Este módulo é um porto de entrada. (justificação?)
- Dimensão: 2 bytes, pois liga-se aos bits 0-15 do barramento de dados
- Modos de acesso suportados: Word-wise porque é possível escrever 2 bytes no porto.

#### 1.3 Mapa de endereçamento

#### 1.3.1 Módulo #1

- CS:  $A15 \cdot \overline{A14} \cdot A13 \cdot \overline{A12}$
- Gama de endereços: 0xA000 até 0xAFFF

#### 1.3.2 Módulos #2 e #3

- Capacidade do conjunto: 16K
- Capacidade utilizável: 16K
- CS:  $\overline{A15} \cdot \overline{A14}$
- Gama de endereços: 0x0000 até 0x3FFF

#### 1.3.3 Módulos #4 e #5

• CS:  $\overline{A14} \cdot \overline{A13}$ 

- Gama de endereços 1 ( $\overline{A15}$ ): 0x0000 até 0x1FFF
- Gama de endereços 2 (A15): 0x8000 até 0x9FFF
- Existência de foldback: Neste caso existe fold-back visto que o endereço A15 não está a ser utilizado para definir o endereço.

Na figura 1 é possível observar o mapa de endereçamento formado por todos os módulos descritos anteriormente.



Figura 1: Mapa de endereçamento

### 1.4 Comentário crítico

"A capacidade de memória instalada no sistema é plenamente acessível."

Esta afirmação é falsa, pelo que, como o bit A15 não é utilizado para codificar o Chip-Select. Assim, não é possível aceder a toda a memória.

# 2 Caracterização da atividade dos barramentos

Na figura 2 é possível observar a atividade dos barramentos e dos sinais em referência quando observados passo-a-passo.

| Instrucão         | Controlo |      |      | Endereço      | Dados           | Valores iniciais |
|-------------------|----------|------|------|---------------|-----------------|------------------|
| Instrução         | nRD      | nWRH | nWRL | A15A0         | D15D0           | R0 = 0xA055      |
| movt r0, #0xFD    | 0        | 1    | 1    | 0x3000        | 0x7FD0          | R1 = 0x1000      |
| strb r1, [r0, #0] | 0        | 1    | 1    | 0x3002        | 0x2810          | R2 = 0x0080      |
|                   | 1        | 1    | 0    | 0xA055 (r0+0) | 0x0000 (r1[07]) | SP = 0x8000      |
| push r1           | 0        | 1    | 1    | 0x3004        | 0x2401          | PC = 0x3000      |
|                   | 1        | 0    | 0    | 0x7FFE (SP-2) | 0x1000 (r1)     |                  |
| lsl, r1, r1, #3   | 0        | 1    | 1    | 0x3006        | 0xE191          |                  |
| ldr r3, [r2, #0]  | 0        | 1    | 1    | 0x3008        | 0x0023          |                  |
|                   | 0        | 1    | 1    | 0x0080 (r2+0) | R3 (???)        |                  |
| pop r4            | 0        | 1    | 1    | 0x3010        | 0x0404          |                  |
|                   | 1        | 0    | 0    | 0x8000 (SP+2) | 0x1000          |                  |

Figura 2: Atividade nos barramentos

# 3 Evolução da Arquitetura

### 3.1 Mapa de endereçamento

Na figura 3 é possível observar o mapa de endereçamento do novo sistema, desta vez, completamente funcional.



Figura 3: Mapa de endereçamento do novo sistema

### 3.2 Expressões lógicas

• ROM CS:  $\overline{A15} \cdot \overline{A14}$ 

• RAM CS:  $\overline{A15} \cdot A14 \cdot \overline{A13}$ 

• Porto de entrada CS:  $A15 \cdot \overline{A14} \cdot A13 \cdot \overline{A12}$ 

• Porto de saída CS:  $A15 \cdot \overline{A14} \cdot A13 \cdot A12$ 

# 3.3 Logigrama do novo porto

Na figura 4 é possível observar o logigrama do novo porto de saída.



Figura 4: Logigrama do novo porto de saída

# 4 Conclusão

Este trabalho permitiu aprofundar os conhecimentos de diversos conteúdos acerca de memórias e portos, como por exemplo o desenho de mapas de endereçamento, a existência de fold-back e de zonas de conflito, entre outros.