Diffie-Hellman Key Exchange

- first public-key type scheme proposed
- by Diffie & Hellman in 1976 along with the exposition of public key concepts
 - note: now know that James Ellis (UK CESG) secretly proposed the concept in 1970
- is a practical method for public exchange of a secret key
- used in a number of commercial products

Diffie-Hellman Key Exchange

- a public-key distribution scheme
 - cannot be used to exchange an arbitrary message
 - rather it can establish a common key
 - known only to the two participants
- value of key depends on the participants (and their private and public key information)
- based on exponentiation in a finite (Galois) field (modulo a prime or a polynomial) - easy
- security relies on the difficulty of computing discrete logarithms (similar to factoring) – hard

q prime number

 $\alpha < q$ and α a primitive root of q

User A Key Generation

Select private $X_A < q$

Calculate public $Y_A = \alpha^{X_A} \mod q$

User B Key Generation

Select private X_B $X_B < q$

Calculate public $Y_B = \alpha^{X_B} \mod q$

Generation of Secret Key by User A

 $K = (Y_B)^{X_A} \bmod q$

Generation of Secret Key by User B

 $K = (Y_A)^{X_B} \bmod q$

Figure 10.7 The Diffie-Hellman Key Exchange Algorithm

Figure 10.8 Diffie-Hellman Key Exchange

Diffie-Hellman Example

- users Alice & Bob who wish to swap keys:
- agree on prime q=353 and $\alpha=3$
- select random secret keys:
 - A chooses $x_A = 97$, B chooses $x_B = 233$
- compute public keys:
 - $y_A = 3^{97} \mod 353 = 40$ (Alice) $y_B = 3^{233} \mod 353 = 248$ (Bob)
- compute shared session key as:

$$K_{AB} = y_{B}^{XA} \mod 353 = 248^{97} = 160$$
 (Alice)
 $K_{AB} = y_{A}^{XB} \mod 353 = 40^{233} = 160$ (Bob)

Elgamal encryption algorithm

Prime p and generator g are public keys of Bob

Elgamal = Diffie Hellman key exhange + encryption by multiplying mod p

Elgamal example

Alice sends a message M = 100 to Bob

Prime p = 139 and g = 3

Alice:

public key

 $44 = 3^{12} \mod 139$

Bob:

Chooses k = 52

Chooses private x = 12

Calculates

 $K = 44^{52} \mod 139 = 112$

Calculates

$$C_1 = 3^{52} \mod 139 = 38$$

 $C_2 = 100*112 \mod 139 = 80$

 $(C_1, C_2)=(39,80)$

Calculates K = 38^{12} mod 139 = 112

 $K^{-1} = 112^{-1} \mod 139 = 36$

and recovers message

 $M = K^{-1}C_2 \mod p =$

 $36*80 \mod 139 = 100$

Elgamal = Diffie Hellman key exhange + encryption by multiplying mod p

Elgamal security

- Each user has a private key x
- Each user has three public keys: prime modulus p, generator g and public Y = g^x mod p
- Security is based on the difficulty of DLP
- Secure key size > 1024 bits (today even 2048 bits)
- Elgamal is quite slow, it is used mainly for key authentication protocols
- Now widely used, but Elliptic Curve variant is increasingly popular