Advanced Numerical Techniques Lab Report

Submitted By:Ramit Pahwa 14MA20029

<u>Index</u>

S.No	Date	Assignment No.	Description	Page NO.	Signature
1.	25/1/17		Implementation of Thomas Algorithm for solving Second Order Boundary Value Problem	2-19	oignature -

Assignment No.1

Using Thomas Algorithm Solve the Following Second Order Boundary Value Problem:

1. $x^2y'' + xy' = 1$ y(1) = 0, y(1.4) = 0.0566

Solve the above problem for h = 0.1, 0.5, 0.01.

2. y'' - 2xy' - 2y = -4xSubject to y(0) - y'(0) = 02y(1) - y'(1) = 1

Solve the above problem for $h \le 0.1$.

Algorithms Involved:

 <u>Tridiagonal matrix algorithm:</u> In numerical linear algebra, the tridiagonal matrix algorithm, also known as the <u>Thomas algorithm</u> (named after Llewellyn Thomas), is a simplified form of Gaussian elimination that can be used to solve tridiagonal systems of equations.

A tridiagonal system for n unknowns may be written as

$$a_i x_{i-1} + b_i x_i + c_i x_{i+1} = d_i,$$

where $a_i = 0$ & $c_n = 0$.

$$egin{bmatrix} b_1 & c_1 & & & 0 \ a_2 & b_2 & c_2 & & \ & a_3 & b_3 & \ddots & \ & & \ddots & \ddots & c_{n-1} \ 0 & & & a_n & b_n \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \ dots \ x_n \end{bmatrix} = egin{bmatrix} d_1 \ d_2 \ d_3 \ dots \ d_n \end{bmatrix}.$$

For such systems, the solution can be obtained O(n) in operations instead of $O(n^3)$ required by **Gaussian elimination**

The forward sweep consists of modifying the coefficients as follows, denoting the new coefficients with primes:

$$c_i' = \left\{ egin{array}{ll} rac{c_i}{b_i} & ; & i = 1 \ & & & \ rac{c_i}{b_i - a_i c_{i-1}'} & ; & i = 2, 3, \ldots, n-1 \end{array}
ight.$$

$$d_i' = \left\{ egin{array}{ll} rac{d_i}{b_i} & ; & i=1 \ & & \ rac{d_i - a_i d_{i-1}'}{b_i - a_i c_{i-1}'} & ; & i=2,3,\ldots,n. \end{array}
ight.$$

The solution is obtained by back substitution,

$$x_n=d_n'$$
 $x_i=d_i'-c_i'x_{i+1}$; $i=n-1,n-2,\ldots,1.$

• Forward and Backward Difference Formula Used for Discretization

Forward difference
$$\frac{\delta f}{\delta x} = \frac{f_{i+1} - f_i}{\Delta x}$$
,
Backward difference $\frac{\delta f}{\delta x} = \frac{f_i - f_{i-1}}{\Delta x}$,
Central difference $\frac{\delta f}{\delta x} = \frac{f_{i+1} - f_{i-1}}{2\Delta x}$.

$$f_i'' = \frac{f_{i-1} - 2f_i + f_{i+1}}{\Delta x^2} + \mathcal{O}\left(\Delta x^2\right) ,$$

$$\frac{df}{dx} = \frac{f_{i-2} - 4f_{i-1} + 3f_i}{2\Delta x} + \mathcal{O}\left(\Delta x^2\right) ,$$

• Modules Used

- Numpy
 - For numerical arrays and interpolation
- Matplotlib
 - For plotting graphs

Code has been written in python

Code For Problem:1

```
import os
import matplotlib.pyplot as plt
import numpy as np
from tabulate import tabulate
def A(x):
    return (1.0 / x)
def B(x):
    return 0.0
def C(x):
    return (1 / x **2)
def thomasAlgo(
    а,
    b,
    с,
    d,
    ):
    n = len(d)
    c1 = [0 \text{ for i in } range(0, n)]
    d1 = [0 \text{ for i in range}(0, n)]
    y = [0 \text{ for i in range}(0, n)]
    c1[0] = c[0] / b[0]
    d1[0] = d[0] / b[0]
    for i in range(1, n, 1):
        c1[i] = c[i] / (b[i] - a[i] * c1[i - 1])
        d1[i] = (d[i] - a[i] * d1[i - 1]) / (b[i] - a[i] * c1[i - 1])
    y[n - 1] = d1[n - 1]
    for i in range(n - 2, -1, -1):
        y[i] = d1[i] - c1[i] * y[i + 1]
    return y
def solveBVP(
    a_intial,
    b_intial,
    h,
    y_a,
    y_b,
    ):
    n = int((b_intial - a_intial) / h)+1
    a = [0 \text{ for i in } range(1, n)]
    b = [0 \text{ for i in } range(1, n)]
```

```
c = [0 \text{ for i in range}(1, n)]
    d = [0 \text{ for i in range}(1, n)]
    for i in range(1, n):
        x = a_{intial} + i * h
        a[i-1] = (1.0 / (h ** 2)) - (A(x) / (2.0 * h))
        b[i-1] = (-2.0 / (h ** 2)) + B(x)
        c[i-1] = (1.0 / (h ** 2)) + (A(x) / (2.0 * h))
        if i == 1:
            d[i-1] = C(x) - a[i-1] * y_a
        elif i == n - 1:
            d[i-1] = C(x) - c[i-1] * y_b
        else:
            d[i-1] = C(x)
    return [y_a] + thomasAlgo(a, b, c, d) + [y_b]
def main():
    a_{intial} = 1
    b_{intial} = 1.4
    stepsize = [0.1, 0.05, 0.01]
    y_a = 0
    y_b = 0.0566
    n1 =int( (b_intial- a_intial) / stepsize[0])+1
    n2=int((b_intial - a_intial) / stepsize[1])+1
    n3=int((b_intial - a_intial) / stepsize[2])+1
    y_1 = [0 \text{ for i in range}(n1 + 1)]
    y_2 = [0 \text{ for i in range}(n2 + 1)]
    y_3 = [0 \text{ for i in range}(n3 + 1)]
    x_1= np.linspace(a_intial, b_intial, int((b_intial - a_intial) /
stepsize[0]+1) + 1)
    x_2= np.linspace(a_intial, b_intial, int((b_intial - a_intial) /
stepsize[1]+1) + 1)
    x_3= np.linspace(a_intial, b_intial, int((b_intial - a_intial) /
stepsize[2]+1) + 1)
    y_1 = solveBVP(a_intial, b_intial, stepsize[0], y_a, y_b)
    y_2 = solveBVP(a_intial, b_intial, stepsize[1], y_a, y_b)
    y_3 = solveBVP(a_intial, b_intial, stepsize[2], y_a, y_b)
    cwd=os.getcwd()
    f=open(str(cwd)+"/Result-h="+str(stepsize[0])+".txt",'w+')
    f.write("\t\tResult\n\n")
    f.write("\tValue of X\t\tValue of Y\n\n")
    for i in range(len(x_1)):
        f.write("\t"+str(x_1[i])+"\t\t"+str(y_1[i])+"\n")
    f=open(str(cwd)+"/Result-h="+str(stepsize[1])+".txt",'w+')
    f.write("\t\tResult\n\n")
    f.write("\tValue of X\t\tValue of Y\n\n")
    for i in range(len(x_2)):
        f.write("\t"+str(x_2[i])+"\t"+str(y_2[i])+"\n")
    f=open(str(cwd)+"/Result-h="+str(stepsize[2])+".txt",'w+')
    f.write("\t\tResult\n\n")
    f.write("\tValue of X\t\tValue of Y\n\n")
```

```
for i in range(len(x_3)):
        f.write("\t"+str(x_3[i])+"\t\t"+str(y_3[i])+"\n")

plt.ylabel("Y")
plt.xlabel ("X")

p1,p2,p3=plt.plot(x_3,np.interp(x_3,x_1,y_1),'r--',x_3,np.interp(x_3,x_2,y_2),'gs',x_3,y_3,'b')
   plt.legend([p1, p2, p3], ["h = 0.1", "h =0.05", "h = 0.01"], loc =4)
   # pl1=plt.plot(x_1,y_1,'r')
   # plt.legend(p11,["h=0.1",],loc=4)
   plt.show()
```

<u>Output</u>

Result for h=0.1

Value of X	Value of Y
1.0	0
1.1	0.00457418107894
1.2	0.0166557456214
1.3	0.0344374516671
1.4	0.0566

Value of X	Value of Y
1.0	0
1.01	4.93560595464e-05
1.02	0.000195772552979
1.03	0.000436408608121
1.04	0.000768523907794
1.05	0.00118947432054
1.06	0.00169670775803
1.07	0.00228776024553
1.08	0.00296025219262
1.09	0.00371188485226
1.1	0.00454043695727
1.11	0.00544376152368
1.12	0.00641978281155
1.13	0.00746649343401
1.14	0.00858195160624
1.15	0.00976427852653
1.16	0.0110116558819
1.17	0.0123223234716
1.18	0.0136945769418

1.19	0.0151267656256
1.2	0.0166172904822
1.21	0.0181646021311
1.22	0.0197671989748
1.23	0.021423625406
1.24	0.0231324700952
1.25	0.0248923643542
1.26	0.0267019805714
1.27	0.0285600307151
1.28	0.0304652649029
1.29	0.0324164700307
1.3	0.0344124684625
1.31	0.0364521167737
1.32	0.0385343045486
1.33	0.0406579532277
1.34	0.0428220150027
1.35	0.0450254717576
1.36	0.0472673340523
1.37	0.0495466401484
1.38	0.0518624550734
1.39	0.0542138697233
1.4	0.0566

Value of X	Value of Y
1.0	0
1.05	0.0011946931352
1.1	0.00454865857198
1.15	0.00977376089843
1.2	0.0166266572054
1.25	0.0249005237312
1.3	0.034418552354
1.35	0.0450287888953
1.4	0.0566

<u>Plot</u>

Code for Problem 2:

```
import os
import matplotlib.pyplot as plt
import numpy as np
from tabulate import tabulate
def A(x):
    return (-2.0*x)
def B(x):
    return (-2.0)
def C(x):
    return (-4.0*x)
def thomasAlgo(
    a,
    b,
    с,
    d,
    ):
    n = len(d)
    c1 = [0 \text{ for i in } range(0, n)]
    d1 = [0 \text{ for i in range}(0, n)]
    y = [0 \text{ for i in range}(0, n)]
    c1[0] = c[0] / b[0]
    d1[0] = d[0] / b[0]
    for i in range(1, n, 1):
        c1[i] = c[i] / (b[i] - a[i] * c1[i - 1])
        d1[i] = (d[i] - a[i] * d1[i - 1]) / (b[i] - a[i] * c1[i - 1])
    y[n - 1] = d1[n - 1]
    for i in range(n - 2, -1, -1):
        y[i] = d1[i] - c1[i] * y[i + 1]
    return y
def solveBVP(
    alpha,
    beta,
    gamma,
    h,
    a_intial,
    b_intial
    ):
    n = int((b_intial - a_intial) / (1.0*h))
    a = [0 \text{ for i in } range(1, n)]
    b = [0 \text{ for i in } range(1, n)]
```

```
c = [0 \text{ for i in range}(1, n)]
    d = [0 \text{ for i in } range(1, n)]
    for i in range(1, n):
        x = a_{intial} + i * h
        a[i-1] = (1.0 / (h ** 2)) - (A(x) / (2.0 * h))
        b[i-1] = (-2.0 / (h ** 2)) + B(x)
        c[i-1] = (1.0 / (h ** 2)) + (A(x) / (2.0 * h))
        d[i-1] = C(x)
        if i == 1:
            denom0 = alpha[0] - (1.5 * beta[0] / h);
            b[i-1] += a[i-1] * (-2 * beta[0] / h) / denom0;
            c[i-1] += a[i-1] * (0.5 * beta[0] /h) / denom0;
            d[i-1] -= a[i-1] * (gamma[0] / denom0);
    denom1 = alpha[1] + (1.5 * beta[1] / h);
    b[i-1] += c[i-1] * (2 * beta[1] / h) / denom1;
    a[i-1] += c[i-1] * (-0.5 * beta[1] /h) / denom1;
    d[i-1] = c[i-1] * (gamma[1] / denom1);
    y=thomasAlgo(a, b, c, d)
    y_a=((-2 * beta[0]/ h)*y[0] + (0.5 * beta[0]/h)*y[1]
+gamma[0])/denom0;
    y_b = ((2 * beta[1] / h)*y[-1] + (-0.5 * beta[1] / h)*y[-2] +
gamma[1])/denom1;
    return [y_a] + y + [y_b]
def createFile(input_x,output_y,h):
    cwd=os.getcwd()
    f=open(str(cwd)+"/Result-h="+str(h)+".txt",'w+')
    f.write("\t\tResult for h="+str(h)+"\n\n")
    f.write("\tValue of X\t\tValue of Y\n\n")
    for i in range(len(input_x)):
        f.write("\t"+str(input_x[i])+"\t\t"+str(output_y[i])+"\n")
def plotGraph(input_x,output_y,h):
    plt.ylabel("Y")
    plt.xlabel ("X")
    p=plt.plot(input_x,output_y,'r')
    plt.legend(p,["h="+str(h),],loc=4)
    plt.show()
def main():
    a_{intial} = 0
    b_{intial} = 1
    stepsize = [0.1, 0.05, 0.005]
    alpha= [1.0,2.0]
    beta=[-1.0,-1.0]
    gamma = [0.0, 1.0]
    n1 =int( (b_intial- a_intial) / stepsize[0])+1
    n2=int((b_intial - a_intial) / stepsize[1])+1
```

```
n3=int((b_intial - a_intial) / stepsize[2])+1
    y_1 = [0 \text{ for i in range}(n1 + 1)]
    y_2 = [0 \text{ for i in range}(n2 + 1)]
    y_3 = [0 \text{ for i in range}(n3 + 1)]
    x_1= np.linspace(a_intial, b_intial, int((b_intial - a_intial) /
(1.0*stepsize[0])+1))
    x_2= np.linspace(a_intial, b_intial, int((b_intial - a_intial) /
(1.0*stepsize[1])+1))
    x_3= np.linspace(a_intial, b_intial, int((b_intial - a_intial) /
(1.0*stepsize[2])+1))
    y_1 = solveBVP(alpha, beta ,gamma, stepsize[0], a_intial, b_intial)
    y_2 = solveBVP(alpha, beta,gamma, stepsize[1], a_intial, b_intial)
    y_3 = solveBVP(alpha, beta,gamma, stepsize[2], a_intial, b_intial)
    createFile(x_1,y_1,stepsize[0])
    createFile(x_2,y_2,stepsize[1])
    createFile(x_3,y_3,stepsize[2])
p1,p2,p3=plt.plot(x_3,np.interp(x_3,x_1,y_1),'r',x_3,np.interp(x_3,x_2,y_2)
,'g',x_3,y_3,'b')
    plt.legend([p1, p2, p3], ["h = 0.25", "h = 0.1", "h = 0.001"], loc =4)
    plt.show()
main()
```

<u>Output</u>

Result for h=0.1

Value of X	Value of Y
0.0	1.19476896184
0.1	1.32696464931
0.2	1.48459791933
0.3	1.6707998518
0.4	1.89059777702
0.5	2.15143298304
0.6	2.46396522092
0.7	2.84328806833
0.8	3.31075173295
0.9	3.89670368126
1.0	4.64463961234

Value of X	Value of Y
0.0	1 04462037002

0.05	1.09949391347
0.1	1.15965250684
0.15	1.22523808359
0.2	1.29647602716
0.25	1.3736807778
0.3	1.45726377924
0.35	1.54774404864
0.4	1.64576175282
0.45	1.7520952906
0.5	1.86768252214
0.55	1.99364695798
0.6	2.13132993239
0.65	2.2823300492
0.7	2.44855151778
0.75	2.63226341163
0.8	2.83617240585
0.85	3.06351221419
0.9	3.31815379255
0.95	3.60474145573
1.0	3.92886143942

Value of X	Value of Y
0.0	1.0004693245
0.005	1.00549668485
0.01	1.01057407265
0.015	1.0157014994
0.02	1.02087898409
0.025	1.02610655323
0.03	1.03138424086
0.035	1.03671208853
0.04	1.04209014534
0.045	1.04751846794
0.05	1.05299712052
0.055	1.05852617489
0.06	1.06410571043
0.065	1.06973581414
0.07	1.07541658068
0.075	1.08114811235
0.08	1.08693051916
0.085	1.09276391881
0.09	1.09864843678
0.095	1.1045842063
0.1	1.11057136841
0.105	1.11661007203
0.11	1.12270047394
0.115	1.12884273883
0.12	1.13503703939

0.125	1.14128355629
0.13	1.14758247827
0.135	1.15393400216
0.14	1.16033833295
0.145	1.16679568383
0.15	1.17330627626
0.155	1.17987034
0.16	1.18648811317
0.165	1.19315984236
0.17	1.19988578261
0.175	1.20666619755
0.18	1.21350135944
0.185	1.2203915492
0.19	1.22733705657
0.195	1.23433818009
0.2	1.24139522723
0.205	1.24850851447
	1.25567836735
0.21	
0.215	1.26290512059
0.22	1.27018911814
0.225	1.2775307133
0.23	1.28493026878
0.235	1.29238815685
0.24	1.29990475934
0.245	1.30748046785
0.25	1.31511568376
0.255	1.3228108184
0.26	1.3305662931
0.265	1.33838253936
0.27	1.3462599989
0.275	1.35419912383
0.28	1.36220037674
0.285	1.37026423082
0.29	1.37839116998
0.295	1.38658168902
0.3	1.39483629371
0.305	1.40315550092
0.31	1.41153983882
0.315	1.41998984694
0.32	1.42850607638
0.325	1.43708908992
0.33	1.44573946216
0.335	1.45445777971
0.34	1.46324464133
0.345	1.47210065807
0.35	1.48102645347
0.355	1.4900226637
0.36	1.49908993775
0.365	1.50822893759
0.37	1.51744033836
0.375	1.52672482854

0.38	1.53608311016
0.385	1.54551589897
0.39	1.55502392465
0.395	1.56460793098
0.4	1.57426867609
0.405	1.58400693264
0.41	1.59382348803
0.415	1.60371914463
0.42	1.61369472
0.425	1.62375104709
0.43	1.63388897453
0.435	1.6441093668
0.44	1.65441310453
0.445	1.66480108469
0.45	1.67527422089
0.455	1.6858334436
0.46	1.69647970046
0.465	1.70721395648
0.47	1.71803719437
0.475	1.72895041479
0.48	1.73995463667
0.485	1.75105089743
0.49	1.76224025336
0.495	1.77352377986
0.5	1.78490257179
0.505	1.79637774376
0.51	1.80795043046
0.515	1.81962178699
0.52	1.8313929892
0.525	1.84326523402
0.53	1.85523973983
0.535	1.86731774678
0.54	1.87950051719
0.545	1.89178933592
0.55	1.90418551073
0.555	1.91669037266
0.56	1.92930527647
0.565	1.94203160097
0.57	1.95487074952
0.575	1.96782415037
0.58	1.98089325713
0.585	1.99407954922
0.59	2.00738453226
0.595	2.02080973859
0.6	2.03435672768
0.605	2.04802708666
0.61	2.06182243075
0.615	2.07574440377
0.62	2.08979467867
0.625	2.10397495803
0.63	2.11828697456
0.03	2.1102009/430

```
0.635
            2.13273249167
0.64
            2.147313304
0.645
            2.16203123798
0.65
            2.17688815241
            2.19188593903
0.655
0.66
            2.2070265231
0.665
            2.22231186406
0.67
            2.23774395607
0.675
            2.25332482872
0.68
            2.2690565476
0.685
            2.28494121502
            2.30098097065
0.69
0.695
            2.31717799222
0.7
            2.33353449618
0.705
            2.35005273848
0.71
            2.36673501525
0.715
            2.38358366355
0.72
            2.40060106215
            2.41778963229
0.725
0.73
            2.43515183848
0.735
            2.45269018929
0.74
            2.47040723821
0.745
            2.48830558445
0.75
            2.50638787384
0.755
            2.52465679968
0.76
            2.54311510365
0.765
            2.56176557673
0.77
            2.58061106012
            2.59965444621
0.775
0.78
            2.61889867955
0.785
            2.63834675784
0.79
            2.65800173295
0.795
            2.67786671196
0.8
            2.69794485824
0.805
            2.71823939248
0.81
            2.73875359385
0.815
            2.75949080111
0.82
            2.78045441374
0.825
            2.80164789318
0.83
            2.82307476395
0.835
            2.84473861496
0.84
            2.8666431007
0.845
            2.88879194258
            2.91118893018
0.85
0.855
            2.93383792264
0.86
            2.95674285001
0.865
            2.97990771462
0.87
            3.00333659256
0.875
            3.02703363508
0.88
            3.05100307012
0.885
            3.07524920382
```

0.89 3.09977642206 0.895 3.12458919207 0.9 3.14969206404 0.905 3.17508967277 0.91 3.2007867394 0.915 3.22678807308 0.92 3.2530985728 0.925 3.27972322917 0.93 3.30666712626 0.935 3.3339354435 0.94 3.36153345762 0.945 3.38946654458 0.95 3.41774018164 3.44635994938 0.955 0.96 3.47533153383 0.965 3.50466072859 0.97 3.53435343708 0.975 3.56441567472 0.98 3.5948535713 0.985 3.62567337329 0.99 3.65688144622 0.995 3.68848427721 1.0 3.72048847738

Plot

Assignment No.2

1. Solve the following equation using Block Tridiagonal method

$$y''' + 4y'' + y' - 6y = 1$$

Subject to .
$$y(0) = 0$$
, $y'(0) = 0$, $y'(1) = 1$

Algorithms is stated below .

The Thomas algorithm can be easily extended to solve a system of equations that involves a block tridiagonal matrix. Consider block tridiagonal system of the form

$$\begin{bmatrix} \mathbf{B}_1 & \mathbf{C}_1 & [0]. & \dots & & [0]. \\ \mathbf{A}_2 & \mathbf{B}_2 & \mathbf{C}_2 & \dots & \dots & & \\ \dots & \dots & \dots & & [0]. \\ \dots & \dots & \dots & \dots & \mathbf{B}_{n-1} & \mathbf{C}_{n-1} \\ [0] & \dots & \dots & [0] & \mathbf{A}_n & \mathbf{B}_n \end{bmatrix} \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \\ \vdots \\ \mathbf{x}^{(n)} \end{bmatrix} = \begin{bmatrix} \mathbf{d}^{(1)} \\ \mathbf{d}^{(2)} \\ \vdots \\ \mathbf{d}^{(n)} \end{bmatrix} - \dots (41)$$

where \mathbf{A}_i , \mathbf{B}_i and \mathbf{C}_i are matrices and $(\mathbf{x}^{(i)},\,\mathbf{d}^{(i)})$ represent vectors of appropriate dimensions.

Step 1:Block Triangularization

$$\Gamma_{1} = [\mathbf{B}_{1}]^{-1}\mathbf{C}_{1}$$

$$\Gamma_{k} = [\mathbf{B}_{k} - \mathbf{A}_{k}\Gamma_{k-1}]^{-1}\mathbf{C}_{k} \text{ for } k = 2, 3, \dots (n-1) \cdots (42)$$

$$\beta^{(1)} = [\mathbf{B}_{1}]^{-1}\mathbf{d}^{(1)} \cdots (43)$$

$$\beta^{(k)} = [\mathbf{B}_{k} - \mathbf{A}_{k}\Gamma_{k-1}]^{-1}(\mathbf{d}^{(k)} - \mathbf{A}_{k}\beta^{(k-1)}) \text{ for } k = 2, 3, \dots n$$

Step 2: Backward sweep

$$\mathbf{x}^{(n)} = \beta^{(n)} - \cdots - (44)$$

$$\mathbf{x}^{(k)} = \beta^{(k)} - \Gamma_k \mathbf{x}^{(k+1)} - \cdots - (45, 46)$$

$$k = (n-1), (n-2), \dots, 1$$

Code for Problem:

```
import os
import numpy as np
import matplotlib.pyplot as plt
def blockAlgo(a, b, c, d):
    n = len(d)
    b_ = np.zeros(a.shape)
    c_ = np.zeros(a.shape)
    d_{-} = np.zeros((n,2,1))
    w = np.zeros((n,2,1))
    c_{0} = np.linalg.inv(b[0]).dot(c[0])
    d_{0} = np.linalg.inv(b[0]).dot(d[0])
    for i in range(1,n):
        b_[i] = b[i] - a[i].dot(c_[i-1])
        c_{[i]} = np.linalg.inv(b_{[i]}).dot(c_{[i]})
        d_{[i]} = np.linalg.inv(b_{[i]}).dot((d[i] - a[i].dot(d_{[i-1]})))
    w[n-1] = np.copy(d_[n-1])
    for i in range(n-2, -1, -1):
        w[i] = d_{[i]} - c_{[i]}.dot(w[i+1])
    return w
def solveBVP(a_intial, b_intial, c1, c2, c3, h):
    n = int ((b\_intial - a\_intial) / (1.0*h))
    a = np.zeros((n-1,2,2))
    b = np.zeros((n-1,2,2))
    c = np.zeros((n-1,2,2))
    d = np.zeros((n-1,2,1))
    for i in range(n-1):
        # As i starts from 0, we define x = l + (i+1)*h
        x = a_{intial} + (i+1) *h
        a[i] = np.array(([[((1.0 / (h**2))-(2.0/h)), 0],[1, 2.0/h]]))
        b[i] = np.array(([[1.0-(2.0 / (h**2)), -6.0], [1, -2.0 / h]]))
        c[i] = np.array(([[((1.0 / (h**2))+(2.0/h)), 0],[0, 0]]))
        d[i] = np.array(([[1],[0]]))
        if i == 0:
            d[i] = d[i] - a[i].dot(np.array(([[c1], [c2]])))
    d[n-2] = d[n-2] - c[n-2].dot(np.array(([[c3], [0]])))
    w = blockAlgo(a, b, c, d)
    w = np.vstack(([np.array(([[c1], [c2]]))], w))
    return np.vstack((w, [np.array(([[c3], [0]]))]))
def createFile(input_x,output_y,h):
    cwd=os.getcwd()
    f=open(str(cwd)+"/Result-h="+str(h)+".txt",'w+')
```

```
f.write("\t\tResult\ for\ h="+str(h)+"\n\n")
                    f.write("\tValue of X\t\tValue of Y\n\n")
                    for i in range(len(input_x)):
                                       f.write("\t"+str(input_x[i])+"\t\t"+str(output_y[i])+"\n")
def plotGraph(input_x,output_y,h):
                   plt.ylabel("Y")
                   plt.xlabel ("X")
                   p=plt.plot(input_x,output_y,'r')
                   plt.legend(p,["h="+str(h),],loc=4)
                   plt.savefig("plot-h="+str(h)+".png")
                   plt.show()
 def main():
                                a intial=0
                                b_intial=1
                                c1=0
                                c2=0
                                c_{3}=1
                                step sizes=[0.1,0.5,0.002]
                                n1=int((b_intial - a_intial) / (1.0*step_sizes[0])+1)
                                n2=int((b_intial - a_intial) / (1.0*step_sizes[1])+1)
                                n3=int((b_intial - a_intial) / (1.0*step_sizes[2])+1)
                                x_1= np.linspace(a_intial, b_intial, int((b_intial - a_intial) /
 (1.0*step_sizes[0])+1))
                                x_2= np.linspace(a_intial, b_intial, int((b_intial - a_intial) /
 (1.0*step_sizes[1])+1))
                                x_3= np.linspace(a_intial, b_intial, int((b_intial - a_intial) /
 (1.0*step_sizes[2])+1))
                                w_1=solveBVP(a_intial,b_intial,c1,c2,c3,step_sizes[0])
                                w_2=solveBVP(a_intial,b_intial,c1,c2,c3,step_sizes[1])
                               w_3=solveBVP(a_intial,b_intial,c1,c2,c3,step_sizes[2])
                               y_1 = w_1[[range(w_1.shape[0])],[1],[0]]
                               y_2 = w_2[[range(w_2.shape[0])],[1],[0]]
                               y_3 = w_3[[range(w_3.shape[0])],[1],[0]]
                               y_1=y_1[0]
                               y_2=y_2[0]
                               y_3=y_3[0]
                                z_1 = w_1[[range(w_1.shape[0])],[0],[0]]
                               z_2 = w_2[[range(w_2.shape[0])], [0], [0]]
                                z_3 = w_3[[range(w_3.shape[0])],[0],[0]]
                                z_1=z_1[0]
                               z_2=z_2[0]
                                z_3=z_3[0]
y_1[n1-1] = (step\_sizes[0]/2.0) * (y_1[n1-2] * (2.0/step\_sizes[0]) + z_1[n1-1] + z_1[n1-
y_2[n2-1] = (step\_sizes[1]/2.0) * (y_2[n2-2] * (2.0/step\_sizes[1]) + z_2[n2-1] + z_2[n2-
2-1])
y_3[n3-1] = (step\_sizes[2]/2.0) * (y_3[n3-2] * (2.0/step\_sizes[2]) + z_3[n3-1] + z_3[n3-
3-1])
                                createFile(x_1,y_1,step_sizes[0])
```

```
createFile(x_2,y_2,step_sizes[1])
    createFile(x_3,y_3,step_sizes[2])
    plotGraph(x_1,y_1,step_sizes[0])
    plotGraph(x_2,y_2,step_sizes[1])
    plotGraph(x_3,y_3,step_sizes[2])

p1,p2,p3=plt.plot(x_3,np.interp(x_3,x_1,y_1),'r.',x_3,np.interp(x_3,x_2,y_2)
,'g--',x_3,y_3,'b')
    plt.legend([p1, p2, p3], ["h = 0.1", "h =0.5", "h = 0.002"], loc =4)
    plt.savefig("allTogether.png")
    plt.show()
```

<u>Output</u>

Result for h=0.5

Value of X	Value of Y
0.0	0.0
0.5	0.205882352941
1.0	0.705882352941

Result for h=0.1

Value of X	Value of Y
0.0	0.0
0.1	0.0122488896478
0.2	0.0452578101855
0.3	0.0928087770617
0.4	0.150836683241
0.5	0.216808096722
0.6	0.289277865241
0.7	0.367574503952
0.8	0.45157871506
0.9	0.54156915572
1.0	0.64156915572

Value of X	Value of Y
0.0	0.0
0.002	5.74938658445e-06
0.004	2.29556957878e-05
0.006	5.15355376525e-05
0.008	9.14061424647e-05

```
0.01
            0.000142485356683
0.012
            0.000204691638895
0.014
            0.000277944055796
0.016
            0.000362162278199
0.018
            0.000457266577066
0.02
            0.000563177819567
0.022
            0.000679817465159
0.024
            0.0008071075617
0.026
            0.000944970741578
0.028
            0.00109333021787
0.03
            0.00125210978053
0.032
            0.00142123379259
0.034
            0.00160062718638
0.036
            0.00179021545981
0.038
            0.00198992467263
0.04
            0.00219968144274
0.042
            0.00241941294252
0.044
            0.00264904689517
0.046
            0.00288851157108
0.048
            0.00313773578428
0.05
            0.00339664888876
0.052
            0.00366518077501
0.054
            0.00394326186645
0.056
            0.00423082311589
0.058
            0.00452779600208
0.06
            0.00483411252626
0.062
            0.00514970520864
0.064
            0.00547450708507
0.066
            0.00580845170357
0.068
            0.00615147312099
0.07
            0.00650350589965
0.072
            0.00686448510397
0.074
            0.00723434629723
0.076
            0.00761302553819
0.078
            0.0080004593779
0.08
            0.0083965848564
0.082
            0.00880133949949
0.084
            0.00921466131555
0.086
            0.00963648879236
0.088
            0.0100667608939
0.09
            0.0105054170572
0.092
            0.0109523971892
0.094
            0.0114076416638
0.096
            0.0118710913185
0.098
            0.0123426874516
0.1
            0.0128223718191
0.102
            0.0133100866313
0.104
            0.0138057745504
0.106
            0.0143093786872
0.108
            0.0148208425979
0.11
            0.0153401102818
```

0.112	0.0158671261777
0.114	0.0164018351612
0.116	0.0169441825421
0.118	0.0174941140611
0.12	0.0180515758872
0.122	0.0186165146148
0.124	0.019188877261
0.126	0.0197686112626
0.128	0.0203556644732
0.13	0.020949985161
0.132	0.0215515220055
	0.0213313220033
0.134	
0.136	0.0227760409235
0.138	0.0233989223891
0.14	0.0240288187901
0.142	0.0246656808229
0.144	0.0253094595792
0.146	0.0259601065437
0.148	0.026617573591
0.15	0.0272818129834
0.152	0.0279527773682
0.154	0.0286304197752
0.156	0.0293146936139
0.158	0.0300055526713
0.16	0.0307029511093
0.162	0.0314068434621
0.164	0.0321171846338
0.166	0.0328339298961
0.168	0.0335570348854
0.17	0.034286455601
0.172	0.0350221484021
0.174	0.0357640700058
0.176	0.0365121774846
0.178	0.037266428264
0.18	0.0380267801202
0.182	0.0387931911777
0.184	0.039565619907
0.186	0.0403440251224
	0.0403440251224
0.188	
0.19	0.0419186019735
0.192	0.0427146929358
0.194	0.0435165990329
0.196	0.0443242807637
0.198	0.0451376989573
0.2	0.0459568147708
0.202	0.0467815896869
0.204	0.0476119855125
0.206	0.0484479643754
0.208	0.0492894887232
0.21	0.0501365213205
0.212	0.050989025247

0.214	0.0518469638957
0.216	0.0527103009701
0.218	0.0535790004829
0.22	0.0544530267535
0.222	0.0553323444058
0.224	0.0562169183669
0.226	0.057106713864
0.228	0.0580016964235
0.23	0.0589018318683
0.232	0.0598070863159
0.234	0.0607174261766
0.236	0.0616328181516
0.238	0.0625532292308
0.24	0.0634786266911
0.242	0.0644089780945
0.244	0.0653442512858
0.246	0.0662844143912
0.248	0.0672294358163
0.25	0.068179284244
0.252	0.0691339286328
0.254	0.0700933382151
0.256	0.0710574824952
0.258	0.0720263312473
0.26	0.0729998545142
0.262	0.0739780226051
0.264	0.0749608060938
0.266	0.0759481758172
0.268	0.0769401028735
0.27	0.07793655862
0.272	0.0789375146721
0.274	0.0799429429009
0.276	0.080952815432
0.278	0.0819671046434
0.28	0.0829857831642
0.282	0.0840088238724
0.284	0.0850361998938
0.286	0.0860678846
0.288	0.0871038516068
0.29	0.0881440747725
0.292	0.0891885281967
0.294	0.0902371862179
0.296	0.0912900234128
0.298	0.0923470145941
0.3	0.0934081348088
0.302	0.0944733593374
0.304	0.0955426636914
0.306	0.0966160236126
0.308	0.0976934150707
0.31	0.0987748142628
0.312	0.0998601976107
0.314	0.10094954176

0.316	0.10204282358
0.318	0.103140020159
0.32	0.104241108804
0.322	0.105346067044
0.324	0.106454872619
0.326	0.107567503487
0.328	0.10868393782
0.33	0.109804154
0.332	0.110928130622
0.334	0.112055846487
0.336	0.113187280608
0.338	0.1143224122
0.34	0.115461220686
0.342	0.116603685693
0.344	0.117749787048
0.346	0.118899504781
0.348	0.12005281912
0.35	0.121209710492
0.352	0.122370159522
0.354	0.123534147029
0.356	0.124701654026
0.358	0.125872661721
0.36	0.127047151513
0.362	0.128225104989
0.364	0.129406503929
0.366	0.130591330299
0.368	0.13177956625
0.37	0.132971194121
0.372	0.134166196435
0.374	0.135364555895
0.376	0.136566255388
0.378	0.137771277983
0.38	0.138979606923
0.382	0.140191225635
0.384	0.141406117719
0.386	0.142624266952
0.388	0.143845657284
0.39	0.145070272841
0.392	0.146298097918
0.394	0.147529116984
0.396	0.148763314675
0.398	0.150000675798
0.4	0.151241185326
0.402	0.152484828399
0.404	0.153731590323
0.406	0.154981456566
0.408	0.156234412762
0.41	0.157490444705
0.412	0.15874953835
0.414	0.160011679814
0.416	0.161276855368
J. 120	0.1012/0000000

0.418	0.162545051447
0.42	0.163816254637
0.422	0.165090451684
0.424	0.166367629485
0.426	0.167647775092
0.428	0.16893087571
0.43	0.170216918696
0.432	0.171505891555
0.434	0.172797781943
0.436	0.174092577665
0.438	0.175390266672
0.44	0.176690837062
0.442	0.17799427708
0.444	0.179300575113
0.446	0.180609719692
0.448	0.181921699493
0.45	0.18323650333
0.452	0.18455412016
0.454	0.18587453908
0.456	0.187197749325
0.458	0.188523740266
0.46	0.189852501415
0.462	0.191184022416
0.464	0.192518293051
0.466	0.193855303234
0.468	0.195195043014
0.47	0.196537502572
0.472	0.19788267222
0.474	0.199230542401
0.476	0.200581103687
0.478	0.20193434678
0.48	0.20329026251
0.482	0.204648841834
0.484	0.206010075834
0.486	0.20737395572
0.488	0.20737393372
0.49	0.210109618604
0.492	0.21148138464
0.494	0.212855762634
0.496	0.21423274441
0.498	0.215612321911
0.5	0.216994487202
0.502	0.218379232466
0.504	0.219766550003
0.506	0.221156432233
0.508	0.222548871689
0.51	0.223943861023
0.512	0.225341393
0.514	0.226741460501
0.516	0.228144056519
0.518	0.229549174161
0.310	0.2233431/4101

0.52	0.230956806644
0.522	0.232366947298
0.524	0.233779589564
0.526	0.23519472699
0.528	0.236612353237
0.53	0.238032462072
0.532	0.239455047368
0.534	0.240880103108
0.536	0.242307623381
0.538	0.242307023381
0.54	0.245170034399
0.542	0.246604913845
0.544	0.248042235223
0.546	0.24948199314
0.548	0.250924182307
0.55	0.252368797537
0.552	0.25381583374
0.554	0.25526528593
0.556	0.256717149219
0.558	0.258171418816
0.56	0.259628090031
0.562	0.26108715827
0.564	0.262548619034
0.566	0.264012467924
0.568	0.265478700633
0.57	0.26694731295
0.572	0.268418300759
0.574	0.269891660037
0.576	0.271367386853
0.578	0.272845477371
0.58	0.274325927843
0.582	0.275808734617
0.584	0.277293894126
0.586	0.278781402898
0.588	0.280271257547
0.59	0.281763454777
0.592	0.283257991381
0.594	0.284754864239
0.596	0.286254070317
0.598	0.287755606669
0.6	0.289259470434
0.602	0.290765658836
0.604	0.292274169186
0.606	0.293784998878
0.608	0.295298145388
0.61	0.296813606277
0.612	0.298331379188
	0.298331379188
0.614	
0.616	0.301373852061
0.618	0.302898547717
0.62	0.304425546784

0.622	0.30595484731
0.624	0.307486447423
0.626	0.30902034533
0.628	0.310556539315
0.63	0.312095027742
0.632	0.31363580905
0.634	0.315178881758
0.636	0.316724244459
0.638	0.318271895822
0.64	0.319821834593
0.642	0.321374059592
0.644	0.321374039392
0.646	0.324485363923
0.648	0.326044441266
0.65	0.327605800856
0.652	0.32916944188
0.654	0.330735363598
0.656	0.332303565342
0.658	0.333874046513
0.66	0.335446806585
0.662	0.3370218451
0.664	0.338599161673
0.666	0.340178755985
0.668	0.341760627787
0.67	0.3433447769
0.672	0.344931203212
0.674	0.346519906677
0.676	0.348110887319
0.678	0.349704145228
0.68	0.351299680558
0.682	0.352897493531
0.684	0.354497584436
0.686	0.356099953624
0.688	0.357704601511
0.69	0.35931152858
0.692	0.360920735375
0.694	0.362532222504
0.696	0.36414599064
0.698	0.365762040516
0.7	
	0.36738037293
0.702	0.369000988738
0.704	0.370623888862
0.706	0.372249074282
0.708	0.37387654604
0.71	0.375506305237
0.712	0.377138353037
0.714	0.378772690659
0.716	0.380409319386
0.718	0.382048240557
0.72	0.38368945557
0.722	0.385332965881

0.724	0.386978773004
0.726	0.388626878511
0.728	0.390277284031
0.73	0.391929991248
0.732	0.393585001904
0.734	0.395242317797
0.736	0.39690194078
0.738	0.398563872762
0.74	0.400228115706
0.742	0.401894671631
0.744	0.403563542609
0.746	0.405234730766
0.748	0.406908238284
0.75	0.408584067395
0.752	0.410262220386
0.754	0.411942699597
0.756	0.413625507419
0.758	0.415310646296
0.76	0.416998118723
0.762	0.418687927247
0.764	0.420380074467
0.766	0.422074563031
0.768	0.423771395639
0.77	0.42547057504
0.772	0.427172104033
0.774	0.428875985469
0.776	0.430582222246
0.778	0.43229081731
0.78	0.434001773659
0.782	0.435715094336
0.784	0.437430782436
0.786	0.439148841099
0.788	0.440869273512
0.79	0.442592082913
0.792	0.444317272583
0.794	0.446044845853
0.796	0.447774806098
0.798	0.449507156741
0.8	0.45124190125
0.802	0.45297904314
0.804	0.454718585968
0.806	0.456460533341
0.808	0.458204888908
0.81	0.459951656363
0.812	0.461700839444
0.814	0.463452441935
0.816	0.465206467662
0.818	0.466962920495
0.82	0.468721804349
0.822	0.470483123179
0.824	0.472246880987
0.027	J. 712270000301

0.826	0.474013081814
0.828	0.475781729745
0.83	0.477552828908
0.832	0.479326383471
0.834	0.481102397646
0.836	0.482880875684
0.838	0.48466182188
0.84	0.486445240568
0.842	0.488231136124
0.844	0.490019512962
0.846	0.491810375541
0.848	0.493603728357
0.85	0.495399575945
0.852	0.497197922882
0.854	0.498998773785
0.856	0.500802133307
0.858	0.502608006143
0.86	0.504416397026
0.862	0.506227310727
0.864	0.508040752057
0.866	0.509856725863
0.868	0.511675237033
0.87	0.513496290489
0.872	0.515430230483
0.874	0.517146044147
0.876	0.518974754385
0.878	0.52080602698
0.88	0.522639867044
0.882	0.524476279723
0.884	0.5263152702
0.886	0.528156843697
0.888	0.530001005467
0.89	0.531847760804
0.892	0.533697115035
0.894	0.535549073522
0.896	0.537403641664
0.898	0.539260824895
0.9	0.541120628684
0.902	0.542983058533
0.904	0.544848119982
0.906	0.546715818602
0.908	0.548586160001
0.91	0.550459149819
0.912	0.552334793732
0.914	0.554213097449
0.916	0.556094066711
0.918	0.557977707296
0.92	0.559864025013
0.922	0.561753025703
0.924	0.563644715243
0.926	0.565539099541

0.928	0.567436184538
0.93	0.569335976207
0.932	0.571238480555
0.934	0.57314370362
0.936	0.575051651471
0.938	0.576962330212
0.94	0.578875745975
0.942	0.580791904928
0.944	0.582710813266
0.946	0.584632477218
0.948	0.586556903045
0.95	0.588484097035
0.952	0.590414065512
0.954	0.592346814828
0.956	0.594282351365
0.958	0.596220681537
0.96	0.598161811788
0.962	0.600105748592
0.964	0.602052498454
0.966	0.604002067907
0.968	0.605954463516
0.97	0.607909691874
0.972	0.609867759604
0.974	0.611828673361
0.976	0.613792439824
0.978	0.615759065707
0.98	0.617728557749
0.982	0.61970092272
0.984	0.621676167418
0.986	0.623654298669
0.988	0.625635323331
0.99	0.627619248285
0.992	0.629606080446
0.994	0.631595826753
0.996	0.633588494176
0.998	0.63558408971
1.0	0.63758408971

<u>Plot</u>

Assignment No.3

- 1. Solve the following Nonlinear equations:
 - y'' = 2 + y y(0) = 0, y(1) = 0, h = 0.001• $y'' - (y')^2 - y^2 + y + 1 = 0$ $y(0) = 0.5, y(\pi) = 0.5, n = 100$

First **newton raphson** method used to convert tri-diagonal system of equation then **thomas algorithm** used to solve system for each iteration

Code for Equation 1:

```
import os
import numpy as np
import matplotlib.pyplot as plt
def intialGuess(x):
      return x*(1-x)
def thomasAlgo(
    a,
    b,
    С,
    d,
    ):
    n = len(d)
    c1 = [0 \text{ for } i \text{ in } range(0, n)]
    d1 = [0 \text{ for } i \text{ in } range(0, n)]
    y = [0 \text{ for } i \text{ in } range(0, n)]
    c1[0] = c[0] / b[0]
    d1[0] = d[0] / b[0]
    for i in range(1, n, 1):
        c1[i] = c[i] / (b[i] - a[i] * c1[i - 1])
        d1[i] = (d[i] - a[i] * d1[i - 1]) / (b[i] - a[i] * c1[i - 1])
    y[n - 1] = d1[n - 1]
    for i in range(n - 2, -1, -1):
        y[i] = d1[i] - c1[i] * y[i + 1]
    return y
def solver(a_intial,b_intial,y_a,y_b,h,k,y,n):
      A=np.array([1.0/h**2 for i in range(1,n)],dtype=np.float64)
      B=np.array([-2.0/h**2 -2.0*(y[i]) for i in
range(1,n)],dtype=np.float64)
      C=np.array([1.0/h**2 for i in range(1,n)],dtype=np.float64)
      # here discretized term is set negative to solve for nan problem
      D=np.array([(y[i+1] - 2*y[i] + y[i-1]) / (-1*h**2) + 2.0 + (y[i])**2
for i in range(1,n)],dtype=np.float64)
      dy=np.array([0]+thomasAlgo(A,B,C,D)+[0],dtype=np.float64)
      return dy
def createFile(input_x,output_y,h):
    cwd=os.getcwd()
    f=open(str(cwd)+"/Result-h="+str(h)+".txt",'w+')
```

```
f.write("\t\tResult for h="+str(h)+"\n\n")
    f.write("\tValue of X\t\tValue of Y\n\n")
    for i in range(len(input_x)):
        f.write("\t"+str(input_x[i])+"\t\t"+str(output_y[i])+"\n")
def plotGraph(input_x,output_y,h):
    plt.ylabel("Y")
    plt.xlabel ("X")
    p=plt.plot(input_x,output_y,'r')
    plt.legend(p,["h="+str(h),],loc=4)
    plt.savefig("plot-h="+str(h)+".png")
    plt.show()
def main():
      a intial=0
      b intial=1
      y_a=0
      y_b = 0
      h=0.01
      error=0.01
      n=int ((b_intial-a_intial)/h)
      y=np.zeros(n+1)
      y_temp=np.zeros(n+1)
      # dy here may not be required
      dy=np.zeros(n+1)
      for i in range(n+1):
            y[i]=intialGuess(a_intial+i*h)
      # print y
      # for k th iteration
      k=1
      flag=0
      while(flag==0):
            # print k
            dy=solver(a_intial,b_intial,y_a,y_b,h,k,y,n)
            y_temp=np.add(y,dy)
            if np.amax(np.absolute(np.subtract(y_temp,y)))<=error :</pre>
                  y=y_temp
                  flag=1
            else:
                  y=y_temp
                  flag=0
                  k=k+1
      x=np.linspace(0,1,n+1)
      createFile(x,y,h)
      plotGraph(x,y,h)
main()
```

<u>Output</u>

Result for h=0.01

Value of X	Value of Y
0.0	0.0
0.01	-0.0100743699275
0.02	-0.0199487297057
0.03	-0.0296230496887
0.04	-0.0390972819192
0.05	-0.04837136129
0.06	-0.0574452066819
0.07	-0.0663187220786
0.08	-0.0749917976581
0.09	-0.0834643108606
0.1	-0.091736127434
0.11	-0.0998071024557
0.12	-0.107677081332
0.13	-0.115345900772
0.14	-0.122813389745
0.15	-0.130079370405
0.16	-0.137143659001
0.17	-0.144006066759
0.18	-0.150666400742
0.19	-0.157124464688
0.2	-0.163380059825
0.21	-0.169432985658
0.22	-0.175283040736
0.23	-0.180930023401
0.24	-0.186373732498
0.25	-0.191613968079
0.26	-0.196650532068
0.27	-0.201483228915
0.28	-0.206111866212
0.29	-0.210536255299
0.3	-0.214756211835
0.31	-0.218771556348
0.32 0.33	-0.222582114762
0.33	-0.226187718896 -0.229588206941
0.35	-0.232783423913
	-0.232783423913
0.36 0.37	-0.238557461331
0.38	-0.241136009623
0.39	-0.243508743258
0.4	-0.245675547242
0.41	-0.247636315579
J.71	0.241030313313

```
0.42
            -0.249390951542
0.43
            -0.25093936792
0.44
            -0.252281487242
0.45
            -0.253417241969
            -0.254346574666
0.46
0.47
            -0.255069438146
            -0.255585795584
0.48
0.49
            -0.255895620612
            -0.255998897384
0.5
0.51
            -0.255895620612
0.52
            -0.255585795584
0.53
            -0.255069438146
0.54
            -0.254346574666
0.55
            -0.253417241969
0.56
            -0.252281487242
0.57
            -0.25093936792
            -0.249390951542
0.58
0.59
            -0.247636315579
            -0.245675547242
0.6
0.61
            -0.243508743258
0.62
            -0.241136009623
0.63
            -0.238557461331
0.64
            -0.235773222072
0.65
            -0.232783423913
0.66
            -0.229588206941
0.67
            -0.226187718896
0.68
            -0.222582114762
0.69
            -0.218771556348
0.7
            -0.214756211835
0.71
            -0.210536255299
0.72
            -0.206111866212
0.73
            -0.201483228915
0.74
            -0.196650532068
            -0.191613968079
0.75
0.76
            -0.186373732498
0.77
            -0.180930023401
0.78
            -0.175283040736
0.79
            -0.169432985658
0.8
            -0.163380059825
0.81
            -0.157124464688
            -0.150666400742
0.82
0.83
            -0.144006066759
0.84
            -0.137143659001
            -0.130079370405
0.85
0.86
            -0.122813389745
0.87
            -0.115345900772
0.88
            -0.107677081332
0.89
            -0.0998071024557
            -0.091736127434
0.9
0.91
            -0.0834643108606
0.92
            -0.0749917976581
```

```
0.93
            -0.0663187220786
0.94
            -0.0574452066819
0.95
            -0.04837136129
0.96
            -0.0390972819192
0.97
            -0.0296230496887
0.98
            -0.0199487297057
0.99
            -0.0100743699275
1.0
            0.0
```


Code for Equation -2:

```
import os
import numpy as np
import matplotlib.pyplot as plt
import math
def intialGuess(x):
      return x*(math.pi-x)+0.5
def thomasAlgo(
    a,
    b,
    с,
    d,
    ):
    n = len(d)
    c1 = [0 \text{ for } i \text{ in } range(0, n)]
    d1 = [0 \text{ for } i \text{ in } range(0, n)]
    y = [0 \text{ for } i \text{ in } range(0, n)]
    c1[0] = c[0] / b[0]
    d1[0] = d[0] / b[0]
    for i in range(1, n, 1):
        c1[i] = c[i] / (b[i] - a[i] * c1[i - 1])
        d1[i] = (d[i] - a[i] * d1[i - 1]) / (b[i] - a[i] * c1[i - 1])
    y[n - 1] = d1[n - 1]
    for i in range(n - 2, -1, -1):
        y[i] = d1[i] - c1[i] * y[i + 1]
    return y
def solver(a_intial,b_intial,y_a,y_b,h,k,y,n):
      A=np.array([1.0/h**2 - ((1.0/4*h**2)*(2*y[i-1]-2*y[i+1]))) for i in
range(1,n)],dtype=np.float64)
      B=np.array([-2.0/h**2 -2.0*(y[i]) + 1 for i in
range(1,n)],dtype=np.float64)
      C=np.array([1.0/h**2 - ((1.0/4*h**2)*(2*y[i+1]-2*y[i-1]))) for i in
range(1,n)],dtype=np.float64)
      D=np.array([-1.0 - y[i]+y[i]**2 + ((y[i+1]-y[i-1])/2*h)**2
-((1.0/h**2)*(y[i+1]-2*y[i]+y[i-1])) for i in range(1,n)],dtype=np.float64)
      dy=np.array([0]+thomasAlgo(A,B,C,D)+[0],dtype=np.float64)
      return dy
def createFile(input_x,output_y,h):
    cwd=os.getcwd()
```

```
f=open(str(cwd)+"/Result-h="+str(h)+".txt",'w+')
    f.write("\t\tResult for h="+str(h)+"\n\n")
    f.write("\tValue of X\t\tValue of Y\n\n")
    for i in range(len(input_x)):
        f.write("\t"+str(input_x[i])+"\t\t"+str(output_y[i])+"\n")
def plotGraph(input_x,output_y,h):
    plt.ylabel("Y")
    plt.xlabel ("X")
    p=plt.plot(input_x,output_y,'r')
    plt.legend(p,["h="+str(h),],loc=4)
    plt.savefig("plot-h="+str(h)+".png")
    plt.show()
def main():
      a intial=0
      b_intial=math.pi
      y_a=0.5
      y_b = 0.5
      error=0.01
      n=100
      h=math.pi/n
      y=np.zeros(n+1)
      y_temp=np.zeros(n+1)
      # dy here may not be required
      dy=np.zeros(n+1)
      for i in range(n+1):
            y[i]=intialGuess(a_intial+i*h)
      # print y
      # for k th iteration
      k=1
      flag=0
      while(flag==0):
            # print k
            dy=solver(a_intial,b_intial,y_a,y_b,h,k,y,n)
            y_temp=np.add(y,dy)
            if np.amax(np.absolute(np.subtract(y_temp,y)))<=error :</pre>
                  y=y_temp
                  flag=1
            else:
                  y=y_temp
                  flag=0
                  k=k+1
      x=np.linspace(0,1,n+1)
      createFile(x,y,h)
      plotGraph(x,y,h)
main()
```

<u>Output</u>

Result for h=0.0314159265359

Value of X	Value of Y
0.0	0.5
0.01	0.540572619992
0.02	0.57991316566
0.03	0.61802631508
0.04	0.654919513883
0.05	0.690602700517
0.06	0.72508804346
0.07	0.758389690939
0.08	0.790523533532
0.09	0.821506979852
0.1	0.851358745369
0.11	0.880098654325
0.12	0.90774745455
0.13	0.934326644935
0.14	0.959858315215
0.15	0.98436499767
0.16	1.00786953029
0.17	1.03039493091
0.18	1.05196428184
0.19	1.07260062439
0.2	1.09232686282
0.21	1.11116567705
0.22	1.12913944379
0.23	1.14627016524
0.24 0.25	1.16257940514 1.17808823146
0.26	1.19281716521
0.27	1.20678613503
0.28	1.22001443696
0.29	1.23252069899
0.3	1.24432285001
0.31	1.25543809263
0.32	1.26588287965
0.33	1.27567289371
0.34	1.28482302985
0.35	1.2933473806
0.36	1.30125922338
0.37	1.30857100994
0.38	1.3152943575
0.39	1.32144004149
0.4	1.32701798957
0.41	1.33203727683
0.42	1.33650612196

0.43	1.34043188416
0.44	1.34382106084
0.45	1.34667928578
0.46	1.3490113278
0.47	1.35082108974
0.48	1.35211160778
0.49	1.35288505092
0.5	1.35314272068
0.51	1.35288505092
0.52	1.35211160778
0.53	1.35082108974
0.54	
	1.3490113278
0.55	1.34667928578
0.56	1.34382106084
0.57	1.34043188416
0.58	1.33650612196
0.59	1.33203727683
0.6	1.32701798957
0.61	1.32144004149
0.62	1.3152943575
0.63	1.30857100994
0.64	1.30125922338
0.65	1.2933473806
0.66	1.28482302985
0.67	1.27567289371
0.68	1.26588287965
0.69	1.25543809263
0.7	1.24432285001
0.71	1.23252069899
0.72	1.22001443696
0.73	1.20678613503
0.74	1.19281716521
0.75	1.17808823146
0.76	1.16257940514
0.77	1.14627016524
0.78	1.12913944379
0.79	
	1.11116567705
0.8	1.09232686282
0.81	1.07260062439
0.82	1.05196428184
0.83	1.03039493091
0.84	1.00786953029
0.85	0.98436499767
0.86	0.959858315215
0.87	0.934326644935
0.88	0.90774745455
0.89	0.880098654325
0.9	0.851358745369
0.91	0.821506979852
0.92	0.790523533532
0.93	0.758389690939

 0.94
 0.72508804346

 0.95
 0.690602700517

 0.96
 0.654919513883

 0.97
 0.61802631508

 0.98
 0.57991316566

 0.99
 0.540572619992

 1.0
 0.5

<u>Plot</u>

Assignment No:4

Using Crank-Nicolson Solve the following:

1.
$$u_{t} = u_{xx}$$

Initial conditions

$$u(x, 0) = 1$$
 , $0 < x < 1$
 $u_x(0, t) = u$, $t > 0$
 $u_x(1, t) = -u$, $t > 0$

Assume $\Delta x = 0.2$, $t_{max} = 50$

2.
$$u_t + cu_x = vu_{xx}$$

Initial conditions

$$u(x, 0) = 1$$
 , $0 < x < 1$
 $u_x(0, t) = u$, $t > 0$
 $u_x(1, t) = -u$, $t > 0$

Assume
$$\Delta x = 0.2$$
, $t_{max} = 50$

Code for Problem 1:

```
import numpy as np
import matplotlib.pyplot as plt

def triDiagonal(A, C, n):
    B = np.zeros(n)
    gamma = np.zeros(n-2)
```

```
rho = np.zeros(n-2)
      for i in range(n-2):
            if i==0:
                  gamma[0] = A[0][1]/A[0][0]
                  rho[0] = C[1]/A[0][0]
            elif i==n-3:
                  gamma[i] = 0
                  rho[i] =
(C[i]-A[i][i-1]*rho[i-1])/(A[i][i]-A[i][i-1]*gamma[i-1])
            else:
                  gamma[i] = (A[i][i+1])/(A[i][i]-A[i][i-1]*gamma[i-1])
                  rho[i] =
(C[i]-A[i][i-1]*rho[i-1])/(A[i][i]-A[i][i-1]*gamma[i-1])
      for i in range(n-2, 0, -1):
            if i==n-2:
                  B[i] = rho[i-1]
            else:
                  B[i] = rho[i-1] - gamma[i-1]*B[i+1]
      return B
def crank(a, b, dx, r, j_max):
    n = int((b - a)/dx) + 1
    w = np.zeros((j_max+1,n))
    A = np.zeros((n-2,n-2))
    C = np.zeros(n-2)
    for j in range(j_max+1):
      if j==0:
            for i in range(n):
                  w[j][i] = intialcondition(a+i*dx)
      else:
            for i in range(n-2):
                  if i==0:
                        A[i][i] = 2+2*r-r/(1+dx)
                        A[i][i+1] = -r
                  elif i==n-3:
                        A[i][i-1] = -r
                        A[i][i] = 2+2*r-r/(1+dx)
                  else:
                        A[i][i-1] = -r
                        A[i][i] = 2+2*r
                        A[i][i+1] = -r
                  C[i] = r*w[j-1][i-1] + (2-2*r)*w[j-1][i] + r*w[j-1][i+1]
            w[j] = triDiagonal(A,C,n)
            w[j][0] = w[j][1]/(1+dx)
            w[j][n-1] = w[j][n-2]/(1+dx)
    return w
def intialcondition(x):
      return 1
def main():
```

```
a = 0
   b = 1
   dx = 0.2
    r = 1
   j_max = 50
   x = np.linspace(a,b,(b - a)/dx +1)
   n = int((b - a)/dx) + 1
   w = crank(a, b, dx, r, j_max)
    for j in range(j_max,j_max+1,1) :
    #for j in range(j_max+1) :
        file = open("result(j="+str(j)+").txt", 'w')
        for i in xrange(n):
            file.write(str(x[i]) + "\t" + str(w[j][i]) + "\n")
        file.close()
        plt.plot(x, w[j], label="h={0}".format(j))
        plt.xlabel('x')
        plt.ylabel('y(x)')
        plt.savefig('Plot(j=' + str(j) + ').png')
        plt.clf()
if __name__ == '__main__':
  main()
```

Output

0.0	0.00449735475037
0.2	0.00539682570044
0.4	0.00573077047522
0.6	0.00616707862423
0.8	0.00609487346371
1.0	0.00507906121976

Plot

Code for Problem 2:

```
import numpy as np
import matplotlib.pyplot as plt
def triDiagonal(A, C, n):
     B = np.zeros(n)
     gamma = np.zeros(n-2)
     rho = np.zeros(n-2)
     for i in range(n-2):
           if i==0:
                gamma[0] = A[0][1]/A[0][0]
                rho[0] = C[1]/A[0][0]
           elif i==n-3:
                gamma[i] = 0
                rho[i] =
(C[i]-A[i][i-1]*rho[i-1])/(A[i][i]-A[i][i-1]*gamma[i-1])
                gamma[i] =
(A[i][i+1])/(A[i][i]-A[i][i-1]*gamma[i-1])
                rho[i] =
(C[i]-A[i][i-1]*rho[i-1])/(A[i][i]-A[i][i-1]*gamma[i-1])
     for i in range(n-2, 0, -1):
           if i==n-2:
                B[i] = rho[i-1]
           else:
                B[i] = rho[i-1] - gamma[i-1]*B[i+1]
     return B
def crank(a, b, dx, r, c, v, j_max):
   n = int((b - a)/dx) + 1
   dt = r * dx * dx
   w = np.zeros((j_max+1,n))
   A = np.zeros((n-2,n-2))
   C = np.zeros(n-2)
   for j in range(j_max+1):
     if j==0:
           for i in range(n):
                w[j][i] = intialcondition(a+i*dx)
     else:
           for i in range(n-2):
                if i==0:
```

```
A[i][i] = 1/dt + v/(dx*dx) + 4*(-c/(4*dx)-
v/(2*dx*dx))/(3+2*dx)
                      A[i][i+1] = c/(4*dx) - v/(2*dx*dx) -
(-c/(4*dx)-v/(2*dx*dx))/(3+2*dx)
                elif i==n-3:
                      A[i][i-1] = -c/(4*dx) - v/(2*dx*dx) -
(c/(4*dx)-v/(2*dx*dx))/(3+2*dx)
                      A[i][i] = 1/dt + v/(dx*dx) + 4*(c/(4*dx) -
v/(2*dx*dx))/(3+2*dx)
                 else:
                      A[i][i-1] = -c/(4*dx) - v/(2*dx*dx)
                      A[i][i] = 1/dt + v/(dx*dx)
                      A[i][i+1] = c/(4*dx) - v/(2*dx*dx)
                C[i] = (c/(4*dx) + v/(2*dx*dx))*w[j-1][i-1] + (1/dt -
v/(dx*dx))*w[j-1][i] + (-c/(4*dx)+v/(2*dx*dx))*w[j-1][i+1]
           w[j] = triDiagonal(A,C,n)
           w[i][0] = (4*w[i][1]-w[i][2])/(3+2*dx)
           w[j][n-1] = (4*w[j][n-2]-w[j][n-3])/(3+2*dx)
   return w
def intialcondition(x):
     return 1
def main():
   a = 0
   b = 1
   dx = 0.2
   r = 1
   j_max = 50
   v = 1
   c_{vals} = [0, 0.05, 0.1]
   x = np.linspace(a,b,(b - a)/dx +1)
   n = int((b - a)/dx) + 1
   for c in c vals:
     w = crank(a, b, dx, r, c, v,j_max)
     for j in range(j_max,j_max+1,1):
           file = open("result(j="+str(j)+"_c="+str(c)+").txt", 'w')
           for i in xrange(n):
                      file.write(str(x[i]) + "\t" + str(w[j][i]) +
"\n")
           file.close()
           plt.plot(x, w[j], label="h={0}".format(j))
           plt.xlabel('x')
```

<u>Output</u>

C = 0

0.0 0.0139841666745 0.2 0.0161126909483 0.4 0.0169045970998 0.6 0.0179436974319 0.8 0.0178664291943 1.0 0.0157417703957

<u>Plot</u>

C = 0.05

- 0.0 0.013496336292
- 0.2 0.0155520260747
- 0.4 0.0163205609058
- 0.6 0.0173337981851
- 0.8 0.0172714670497
- 1.0 0.0152211970628

Plot

C = 0.1

- 0.0 0.0130220584757
- 0.2 0.0150068627936
- 0.4 0.0157524523568
- 0.6 0.0167400340657
- 0.8 0.0166916855674

<u>Index</u>

S.No	Assignment No.	Description	Page NO.	Signature
1.	5	Alternating Direction Implicit Scheme	3-6	
2.	6	Gauss-Seidel	6-8	
3.	7	Elliptical equation	9-10	
4.	8	FTBS,LAX, LAX-Wendroff, Mac-Cormack	11-21	

Assignment No:5

```
C_t = C_{xx} + C_{yy}

Subject to C(x, y, 0) = cos(\frac{\pi x}{2})cos(\frac{\pi y}{2}) - 1 \le x, y \le 1
C(x, y, t) = 0 \text{ at boundary value}
v = 0.5
```

Code

```
import os
import numpy as np
from math import *
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
def power(number):
      return number*number
def thomasAlgo(a,b,c,d):
      n=len(d)
      c_=np.zeros(n)
      d_=np.zeros(n)
      y=np.zeros(n)
      c_{1}=c[1]/b[1]
      d_[1]=d[1]/b[1]
      for i in range(2,n):
            c_{[i]=c[i]/(b[i]-a[i]*c_{[i-1]})
            d_[i]=(d[i]-a[i]*d_[i-1])/(b[i]-a[i]*c_[i-1])
      y[n-1]=d_[n-1]
      for i in range(n-2,0,-1):
            y[i]=d_[i]-c_[i]*y[i+1]
      return y
def step1(C, dx, dt, dy, n, m):
      a=np.zeros(n,dtype=np.float32)
      b=np.zeros(n,dtype=np.float32)
      c=np.zeros(n,dtype=np.float32)
      d=np.zeros(n,dtype=np.float32)
```

```
for j in range(1,m):
             print
             a=[(-1/(2*power(dx))) \text{ for } i \text{ in } range(n)]
             b=[(1/(power(dx))+1/dt) \text{ for } i \text{ in } range(n)]
             c=[(-1/(2*power(dx))) \text{ for } i \text{ in } range(n)]
             for i in range(n):
                    d[i]=(C[i][j]/dt +
(C[i][j+1]-2*C[i][j]+C[i][j-1])/(2*(dy**2)))
             y=thomasAlgo(a,b,c,d)
             for i in range(1, len(y),1):
                    C[i][i]=y[i]
             C[0][j]=0.0
             C[n][j] = 0.0
      C[0][m]=0
      C[n][m]=0
def step2(C, dx, dt, dy, n, m):
      a=np.zeros(n,dtype=np.float32)
      b=np.zeros(n,dtype=np.float32)
      c=np.zeros(n,dtype=np.float32)
      d=np.zeros(n,dtype=np.float32)
      for i in range(1,n):
             a=[(-1/(2*power(dy))) for j in range(m)]
             b=[(1/(power(dy))+1/dt) for j in range(m)]
             c=[(-1/(2*power(dy))) \text{ for } j \text{ in } range(m)]
             for j in range(m):
                    d[i]=(C[i][j]/dt +
(C[i+1][j]-2*C[i][j]+C[i-1][j])/(2*(dx**2)))
             y=thomasAlgo(a,b,c,d)
             for j in range(1, len(y),1):
                    C[i][j]=y[j]
             C[i][0]=0.0
             C[i][m] = 0.0
      C[n][m]=0
      C[n][0]=0
def main():
      dx = 0.25
      dv = 0.25
      dt=dx*dx/2
      a = -1.0
      b=1.0
      n=int((b-a)/dx)
      m=int((b-a)/dy)
      C=np.zeros((n+1,m+1),dtype=np.float32)
      for i in range(n+1):
             C[i][0]=0.0
```

```
for j in range(1,m):
            C[i][j]=cos(pi*(-1+i*dx)/2)*cos(pi*(-1+j*dy)/2)
      C[i][m] = 0.0
step1(C,dx,dt,dy,n,m)
step2(C,dx,dt,dy,n,m)
x=[-1+i*dx for i in range(n+1)]
x=np.asarray(x)
y=[-1+j*dy for j in range(m+1)]
y=np.asarray(y)
X, Y=np.meshgrid(x, y)
Z=C.reshape(X.shape)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_wireframe(X,Y,Z)
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
plt.show()
```

main()

<u>Plot</u>

Assignment No:6

```
U_{xx} + U_{yy} = 0

Subject to

U(0,y) = 0

U(4,y) = 8 + 2y

U(x,4) = x^2

U(x,0) = 0.5x^2

\delta t = \delta x = 0.1, 0.05, 0.01
```

Code

```
from numpy import *
from math import *
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
deltax=[0.1,0.05,0.01]
deltay=[0.1,0.05,0.01]
for l in range(3):
      fig = plt.figure()
      ax = fig.add_subplot(111, projection='3d')
      n=int(4/deltax[l])
      m=int(4/deltay[l])
      x=[-1+i*deltax[l] for i in range(n+1)]
      x=asarray(x)
      y=[-1+j*deltay[l] for j in range(m+1)]
      y=asarray(y)
      U=[7
      for i in range(n+1):
            U.append([((i*deltax[l])**2)/2])
            if(i==n):
                  for j in range(1,m+1):
                        U[i].append((8+2*j*deltay[l]))
            else:
                  for j in range(1,m):
                        U[i].append(0)
                  U[i].append((i*deltax[l])**2)
      # print U
      U=asarray(U)
      for k in range(50):
            for i in range(1,n):
                  for j in range(1,m):
                        U[i][j]=1/(2*((1/deltax[l]**2)+
1/deltay[l]**2))*((U[i+1][j]+U[i-1][j])/(deltax[l]**2)+(U[i][j+1]+U[i][j-1]
)/(deltay[l]**2))
```

dx=dy=0.1

$$dx=dy=0.05$$

dx=dy=0.01

Assignment No :7

$$U_t + U_x = 0$$
 $0 \le x \le 25$
Subject to $U(x, 0) = exp(-20(x-2)^2) + exp(-(x-5)^2)$

 $v = 0.8, \delta x = 0.05$ solve upto t = 17

Code:

```
from numpy import *
from math import *
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
deltax=.05
mu=.8
c=1;
deltat=mu*deltax/c
n=int(25/deltax)
m=int(17/deltat)
x=[i*deltax for i in range(n+1)]
x = asarray(x)
t=[i*deltat for i in range(m+1)]
t=asarray(t)
u=[7]
for i in range(n+1):
      u.append([exp(-20*(i*deltax-2)**2)+exp(-(i*deltax-5)**2)])
# print u
for i in range(m):
      u[0].append(u[0][i])
      for j in range(1,n+1):
            u[j].append((1-mu)*u[j][i]+mu*u[j-1][i])
u=asarray(u)
print shape(u)
# print u[:][m]
c=[]
for i in range(n+1):
      c.append(u[i][m-2])
c=asarray(c)
# plt.plot(x,c)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
X, T = meshgrid(x, t)
```


Assignment no:8

$$U_t + U_x = 0$$

Subject to

$$U(x, 0) = x^{2}$$
 $0 \le x \le 1$
 0 $x > 1$
 $U(0, t) = 0$
 $\delta x = 0.25, v = 0.5$

- FTBS
- Lax
- Lax-Wendroff
- Mac-Cormack

Code

```
import os
import matplotlib.pyplot as plt
# ut+ux=0
# Forward Time Backward Space, since c is positive
def FTBS():
      dx = 0.25
      v = 0.5
      dt=v*dx
      n=int(1.0/dx)
      U=[[0 for i in range(n+1) ] for j in range(100)]
      # intial contidions
      for i in range(n+1):
            x=i*dx
            U[0][i]=x*x
      for i in range(99):
            for j in range(1,n+1):
                  U[i+1][j]=U[i][j]-v*(U[i][j]-U[i][j-1])
      X=[]
      for i in range(n+1):
            X.append(i*dx)
      plt.ylabel("U")
      plt.xlabel ("X")
      p=plt.plot(X,U[1],'r')
      plt.legend(p,["v="+str(v)],loc=4)
      plt.savefig("I-TimeFTBS Step v="+str(v)+".png")
      plt.show()
      f=open("ResultsFTBS.txt",'w+')
      f.write(" Time
                                    Values\n\n")
      for i in range(99):
                                      "+str(U[i])+"\n")
            f.write(" "+str(i)+"
```

```
def LAX():
     dx = 0.25
      v = 0.5
     dt=v*dx
     n=int(1.0/dx)
     U=[[0 for i in range(n+3) ] for j in range(100)]
      # intial contidions
      for i in range(n+1):
           x=i*dx
           U \lceil 0 \rceil \lceil i \rceil = x * x
      for i in range(99):
            for j in range(1,n+2):
U[i+1][j]=0.5*((U[i][j-1]+U[i][j+1])+v*(U[i][j+1]-U[i][j-1]))
     X=[]
      for i in range(n+3):
           X.append(i*dx)
     plt.ylabel("U")
     plt.xlabel ("X")
     p=plt.plot(X,U[1],'r')
     plt.legend(p,["v="+str(v)],loc=4)
     plt.savefig("I-TimeLAX Step v="+str(v)+".png")
     plt.show()
      f=open("ResultsLAX.txt",'w+')
      f.write("
                 Time
                                   Values\n\n")
      for i in range(99):
                                         "+str(U[i])+"\n")
            f.write(" "+str(i)+"
def LW():
      # single step method
     dx = 0.25
      v = 0.5
     dt=v*dx
     n=int(1.0/dx)
     U=[[0 for i in range(n+3) ] for j in range(100)]
      # intial contidions
      for i in range(n+1):
           x=i*dx
           U[0][i]=x*x
      for i in range(99):
           for j in range(1,n+2):
2*U[i][j])
     X=[]
      for i in range(n+3):
```

```
X.append(i*dx)
      plt.ylabel("U")
      plt.xlabel ("X")
      p=plt.plot(X,U[1],'r')
      plt.legend(p,["v="+str(v)],loc=4)
      plt.savefig("I-TimeLW Step v="+str(v)+".png")
      plt.show()
      f=open("ResultsLW.txt",'w+')
      f.write(" Time
                                    Values \ | n \ | n")
      for i in range(99):
            f.write(" "+str(i)+" "+str(U[i])+"\n")
def MacCormack():
      dx = 0.25
      v = 0.5
      dt=v*dx
      n=int(1.0/dx)
      U=[[0 for i in range(n+3) ] for j in range(100)]
      # intial contidions
      for i in range(n+1):
            x=i*dx
            U[0][i]=x*x
      for i in range(99):
            # Predictor Step
            for j in range(1,n+2):
                  U[i+1][j]=U[i][j]-v*(U[i][j+1]-U[i][j])
            # Corrector Step
            for j in range(1,n+2):
U[i+1][j]=U[i][j]-(v*0.5*(U[i][j+1]-U[i][j]))-(v*0.5*(U[i+1][j]-U[i+1][j-1]))
))
      X = \Gamma 7
      for i in range(n+3):
            X.append(i*dx)
      plt.ylabel("U")
      plt.xlabel ("X")
      p=plt.plot(X,U[1],'r')
      plt.legend(p,["v="+str(v)],loc=4)
      plt.savefig("I-TimeMC Step v="+str(v)+".png")
      plt.show()
      f=open("ResultsMC.txt",'w+')
      f.write("
                 Time
                                    Values\n\n")
      for i in range(99):
            f.write(" "+str(i)+" "+str(U[i])+"\n")
FTBS()
LAX()
```

<u>Results</u>

• FTBS

Time	Values
0	[0.0, 0.0625, 0.25, 0.5625, 1.0]
1	[0, 0.03125, 0.15625, 0.40625, 0.78125]
2	[0, 0.015625, 0.09375, 0.28125, 0.59375]
3	[0, 0.0078125, 0.0546875, 0.1875, 0.4375]
4	[0, 0.00390625, 0.03125, 0.12109375, 0.3125]
5	[0, 0.001953125, 0.017578125, 0.076171875, 0.216796875]
6	[0, 0.0009765625, 0.009765625, 0.046875, 0.146484375]
7	[0, 0.00048828125, 0.00537109375, 0.0283203125, 0.0966796875]
8	[0, 0.000244140625, 0.0029296875, 0.016845703125, 0.0625]
9	[0, 0.0001220703125, 0.0015869140625, 0.0098876953125, 0.0396728515625]
10	[0, 6.103515625e-05, 0.0008544921875, 0.0057373046875, 0.0247802734375]
11	[0, 3.0517578125e-05, 0.000457763671875, 0.0032958984375, 0.0152587890625]
12	[0, 1.52587890625e-05, 0.000244140625, 0.0018768310546875, 0.00927734375]
13	[0, 7.62939453125e-06, 0.00012969970703125, 0.00106048583984375, 0.005577708740234375]
14	[0, 3.814697265625e-06, 6.866455078125e-05, 0.0005950927734375, 0.00331878662109375]
15 16	[0, 1.9073486328125e-06, 3.62396240234375e-05, 0.000331878662109375, 0.001956939697265625] [0, 9.5367431640625e-07, 1.9073486328125e-05, 0.00018405914306640625, 0.0011444091796875]
17	[0, 4.76837158203125e-07, 1.9073406328125e-05, 0.00010403914300640025, 0.0011444091796875]
0.0006642341613769531]	[0, 4.766571502051256 07, 1.60153505222550256 05, 0.00010130051405720502,
18	[0, 2.384185791015625e-07, 5.245208740234375e-06, 5.5789947509765625e-05,
0.0003829002380371094]	2.,
19	[0, 1.1920928955078125e-07, 2.7418136596679688e-06, 3.0517578125e-05, 0.0002193450927734375]
20	[0, 5.960464477539063e-08, 1.430511474609375e-06, 1.6629695892333984e-05,
0.00012493133544921875]	
21	[0, 2.9802322387695312e-08, 7.450580596923828e-07, 9.03010368347168e-06, 7.078051567077637e-05]
22	[0, 1.4901161193847656e-08, 3.8743019104003906e-07, 4.887580871582031e-06,
3.9905309677124023e-05]	
23	[0, 7.450580596923828e-09, 2.0116567611694336e-07, 2.637505531311035e-06,
2.2396445274353027e-05]	[0. 2. 70F200000451014- 00. 1. 042001203F502375- 07. 1.41032F5027130003- 05.
24 1.2516975402832031e-05]	[0, 3.725290298461914e-09, 1.043081283569336e-07, 1.4193356037139893e-06,
25	[0, 1.862645149230957e-09, 5.4016709327697754e-08, 7.618218660354614e-07, 6.96815550327301e-06]
26	[0, 9.313225746154785e-10, 2.7939677238464355e-08, 4.079192876815796e-07,
3.864988684654236e-06]	[6, 51020227.0207.0207.207.0000.0000.00, 707.02227.00227.000
27	[0, 4.656612873077393e-10, 1.4435499906539917e-08, 2.1792948246002197e-07,
2.1364539861679077e-06]	
28	[0, 2.3283064365386963e-10, 7.450580596923828e-09, 1.1618249118328094e-07,
1.1771917343139648e-06]	
29	[0, 1.1641532182693481e-10, 3.841705620288849e-09, 6.181653589010239e-08,
6.466871127486229e-07]	
30	[0, 5.820766091346741e-11, 1.979060471057892e-09, 3.282912075519562e-08,
3.5425182431936264e-07]	[0
31 1.9354047253727913e-07]	[0, 2.91038304733704e-11, 1.0186340659856796e-09, 1.7404090613126755e-08,
32	[0, 1.4551915228366852e-11, 5.238689482212067e-10, 9.211362339556217e-09,
1.0547228157520294e-07]	[6, 1, 1001200100010 11, 0,100000 1011110010 10, 0,11110010000001110 00,
33	[0, 7.275957614183426e-12, 2.6921043172478676e-10, 4.867615643888712e-09,
5.734182195737958e-08]	
34	[0, 3.637978807091713e-12, 1.382431946694851e-10, 2.5684130378067493e-09,
3.1104718800634146e-08]	
35	[0, 1.8189894035458565e-12, 7.09405867382884e-11, 1.3533281162381172e-09,
1.6836565919220448e-08]	
36	[0, 9.094947017729282e-13, 3.637978807091713e-11, 7.121343514882028e-10, 9.094947017729282e-09]
37	[0, 4.547473508864641e-13, 1.864464138634503e-11, 3.7425706977955997e-10,
4.903540684608743e-09]	[0
38 2.6388988771941513e-09]	[0, 2.2737367544323206e-13, 9.549694368615746e-12, 1.964508555829525e-10,
39	[0, 1.1368683772161603e-13, 4.888534022029489e-12, 1.0300027497578412e-10,
1.4176748663885519e-09]	[0, 1,1200000,,1210000 10, ,100000 10, 1100000 12, 1100000 12, 1100000 12, 1100000 12, 1100000 12, 1100000 12, 1100000 12, 1100000 12, 1100000 12, 1100000 12, 1100000 12, 110000000 12, 110000000 12, 110000000 12, 110000000 12, 11000000000 12, 110000000000
40	[0, 5.684341886080802e-14, 2.5011104298755527e-12, 5.3944404498906806e-11,
7.60337570682168e-10]	
41	[0, 2.842170943040401e-14, 1.2789769243681803e-12, 2.822275746439118e-11,
4.071409875905374e-10]	
42	[0, 1.4210854715202004e-14, 6.536993168992922e-13, 1.475086719437968e-11,
2.176818725274643e-10]	
43	[0, 7.105427357601002e-15, 3.339550858072471e-13, 7.702283255639486e-12,
1.1621636986092199e-10]	

```
44 [0, 3.552713678800501e-15, 1.7053025658242404e-13, 4.0181191707233666e-12,
6.195932655828074e-11]
45 [0, 1.7763568394002505e-15, 8.704148513061227e-14, 2.0943247136528953e-12,
3.298872286450205e-11]
46 [0, 8.881784197001252e-16, 4.440892098500626e-14, 1.0906830993917538e-12,
1.7541523789077473e-11]
47 [0, 4.440892098500626e-16, 2.2648549702353193e-14, 5.6754601018838e-13, 9.316103444234614e-12]
48 [0, 2.220446049250313e-16, 1.1546319456101628e-14, 2.950972799453666e-13,
4.941824727211497e-12]
49 [0, 1.1102230246251565e-16, 5.88418203051333e-15, 1.5332179970073412e-13,
50 [0, 5.551115123125783e-17, 2.9976021664879227e-15, 7.960299086562372e-14, 1.385891401639583e-12
```


Lax

<u>Results</u>

Time	Values
0	[0.0, 0.0625, 0.25, 0.5625, 1.0, 0, 0]
1	[0, 0.1875, 0.4375, 0.8125, 0.140625, 0.25, 0]
2	[0, 0.328125, 0.65625, 0.21484375, 0.390625, 0.03515625, 0]
3	[0, 0.4921875, 0.2431640625, 0.45703125, 0.080078125, 0.09765625, 0]
4	[0, 0.182373046875, 0.4658203125, 0.120849609375, 0.1875, 0.02001953125, 0]
5	[0, 0.349365234375, 0.13623046875, 0.257080078125, 0.04522705078125, 0.046875, 0]
6	[0, 0.1021728515625, 0.2801513671875, 0.0679779052734375, 0.09942626953125, 0.0113067626953125,
0]	
7	[0, 0.210113525390625, 0.07652664184570312, 0.1446075439453125, 0.02547454833984375,
0.0248565673828125, 0]	
8	[0, 0.057394981384277344, 0.16098403930664062, 0.038237571716308594, 0.0547943115234375,
0.0063686370849609375, 0]	
9	[0, 0.12073802947998047, 0.04302692413330078, 0.08134174346923828, 0.014335870742797852,
0.013698577880859375, 0]	
10	[0, 0.032270193099975586, 0.09119081497192383, 0.021508634090423584, 0.0306093692779541,
0.003583967685699463, 0]	

```
\lceil 0.006839311122894287.0.024199023842811584.0.04575473070144653.0.008065134286880493.
0.007652342319488525, 0]
                             [0, 0.01814926788210869, 0.05141432583332062, 0.012098606675863266, 0.017177939414978027,
          12
0.0020162835717201233, 0]
                             [0,\ 0.03856074437499046,\ 0.013611271977424622,\ 0.025737036019563675,\ 0.004536864347755909,
          13
0.004294484853744507. 07
                             [0, 0.010208453983068466, 0.028942963108420372, 0.006805466255173087, 0.009655122645199299,
         14
0.0011342160869389772. 07
                             [0, 0.02170722233131528, 0.007656213187146932, 0.014477082761004567, 0.0025520286289975047.
         15
0.0024137806612998247. 07
                             [0,\ 0.005742159890360199,\ 0.016284617653582245,\ 0.0038280747685348615.\ 0.00542960618622601.
         16
0.0006380071572493762. 07
                             \lceil 0.0.012213463240186684.0.004306596048991196.0.008143359053065069.0.0014355240600707475.
         17
0.0013574015465565026. 07
                             [0,\ 0.003229947036743397,\ 0.009160885099845473,\ 0.0021532920573008596,\ 0.003053890923183644,
         18
0.0003588810150176869, 0]
         19
                             FO. 0.0068706638248841045. 0.002422455802161494. 0.004580639467349101. 0.0008074837755884801.
0.000763472730795911. 07
         20
                              \lceil 0. \ \ 0.0018168418516211204. \ \ 0.005153145556732852. \ \ 0.0012112267822317335. \ \ 0.0017177644149342086. 
0.00020187094389712001, 0]
         21
                             [0, 0.003864859167549639, 0.0013626305495790803, 0.0025766097003838695, 0.0004542099034807734,
0.00042944110373355215, 07
                              \lceil 0, \ 0.0010219729121843102, \ 0.002898672067175312, \ 0.0006813150650053501. \ 0.0009662332528961315. 
         22
0.00011355247587019335. 07
         23
                             [0,\ 0.002174004050381484,\ 0.0007664795268000901,\ 0.0014493429564659266,\ 0.00025549312315398254,
0.00024155831322403287. 07
                              \lceil 0. \ 0.0005748596451000676, \ 0.001630508229944816, \ 0.00038323972406550944. \ 0.0005435044740345063. \\
         24
6.387328078849563e-05, 0]
         25
                             [0, 0.001222881172458612, 0.000431144704324149, 0.0008152554130120837, 0.00014371489160774908,
0.00013587611850862658, 0]
                             [0, 0.00032335852824311173, 0.0009171618528737158, 0.00021557234478684906,
         26
0.00030572094213449086, 3.592872290193727e-05, 0]
                             [0, 0.0006878713896552868, 0.00024251889065091473, 0.0004585811698192971,
8.083962837316522e-05, 7.643023553362271e-05, 0]
                             [0, 0.00018188916798818604, 0.0005159037247782945, 0.0001212594439426026,
0.0001719679691050413, 2.0209907093291304e-05, 0]
                             [0, 0.0003869277935837209, 0.00013641687495399846, 0.0002579519080233546,
         29
4.547229130561913e-05, 4.299199227626033e-05, 0]
                             30
1.1368072826404782e-05. 01
                             [0, 0.00021764690956008464, 7.673449196716018e-05, 0.00014509794826313697,
         31
2.5578163924232076e-05. 2.4182992803258474e-05. 07
                             [0. 5.755086897537014e-05. 0.00016323518858737387. 3.8367245934964106e-05.
         32
5.44117316682281e-05. 6.394540981058019e-06. 07
                             [0, 0.0001224263914405304, 4.3163151695065614e-05, 8.161759589801454e-05,
         33
1.438771721953454e-05, 1.3602932917057024e-05, 0]
                             [0, 3.237236377129921e-05, 9.181979478364352e-05, 2.158157583841731e-05,
3.0606598662296404e-05, 3.596929304883635e-06, 0]
                             [0, 6.886484608773264e-05, 2.4279272821637785e-05, 4.590989769263318e-05,
         35
8.093090938267054e-06, 7.651649665574101e-06, 0]
                             [0, 1.8209454616228338e-05, 5.164863479140805e-05, 1.2139636409109737e-05,
1.721621167233887e-05, 2.0232727345667635e-06, 0]
                             [0, 3.8736476093556034e-05, 1.3657090960889387e-05, 2.5824317452106162e-05,
         37
4.552363653202507e-06, 4.304052918084717e-06, 0]
                             [0, 1.024281822066704e-05, 2.905235711246863e-05, 6.8285454801242264e-06, 9.68411905159008e-06,
         38
1.1380909133006267e-06. 01
         39
                             [0. 2.1789267834351473e-05. 7.682113665259929e-06. 1.4526178566809715e-05.
2.560704555006527e-06, 2.42102976289752e-06, 0]
                             [0, 5.7615852489449464e-06, 1.6341950883695153e-05, 3.841056832569877e-06,
         40
5.447316963875568e-06, 6.401761387516317e-07, 0]
                             [0, 1.2256463162771364e-05, 4.3211889366636434e-06, 8.170975443830463e-06,
          41
1.4403963122061928e-06, 1.361829240968892e-06, 0]
                             [0, 3.2408917024977326e-06, 9.192347373565689e-06, 2.1605944683205558e-06,
3.0641157916842847e-06, 3.600990780515482e-07, 0]
                             7.660289479210712e-07, 0]
                             [0, 1.8230015826486375e-06, 5.170695397909544e-06, 1.2153343884303127e-06,
         44
1.7235651327294625e-06, 2.0255573140470004e-07, 0]
         45
                             [0,\ 3.878021548432158e-06,\ 1.3672511869848939e-06,\ 2.5853476990244826e-06,
4.557503956611032e-07, 4.308912831823656e-07, 0]
         46
                             [0, 1.0254383902386705e-06, 2.9085161613764014e-06, 6.836255934920509e-07,
9.695053871428948e-07, 1.139375989152758e-07, 0]
                             [0, 2.181387121032301e-06, 7.690787926787058e-07, 1.4542580807012715e-06,
          47
2.5635959755946957e-07, 2.423763467857237e-07, 0]
                             [0, 5.768090945090294e-07, 1.6360403407840288e-06, 3.8453939633927863e-07,
         48
5.453467802646107e-07, 6.408989938986739e-08, 0]
                             [0, 1.2270302555880217e-06, 4.3260682088171637e-07, 8.180201703944651e-07,
          49
1.442022736272202e-07. 1.3633669506615268e-07. 07
                             [0, 3.2445511566128725e-07, 9.202726916928543e-07, 2.1630341044084423e-07,
3.067575638982308e-07, 3.605056840680505e-08, 0]
```

Plot

• Lax -Wendroff

Results

```
Time Values

0 [0.0, 0.0625, 0.25, 0.5625, 1.0, 0, 0]
1 [0, 0.015625, 0.140625, 0.390625, 0.9609375, 0.375, 0]
2 [0, -0.005859375, 0.0625, 0.25859375, 0.8203125, 0.6416015625, 0]
3 [0, -0.01220703125, 0.0164794921875, 0.090087880625, 0.61962890625, 0.788818359375, 0]
4 [0, -0.0112152099609375, -0.00347900390625, -0.0037078857421875, 0.39990234375, 0.823974609375,

0]

5 [0, -0.007976531982421875, -0.006351470947265625, -0.054073333740234375, 0.1955394744873047,

0.7679443359375, 0]
6 [0, -0.005188465118408203, -0.000995635986328125, -0.06737923622131348, 0.030384063720703125,

0.6492855548858643, 0]
7 [0, -0.0037668943405151367, 0.005730003118515015, -0.054705798625946045, -0.08363986015319824,

0.49835819005966187, 0]
8 [0, -0.0035414211452007294, 0.00972314178943634, -0.028425615280866623, -0.14553934335708618,

0.34240369498729706, 0]
```

```
[0. -0.0038714585825800896. 0.00951752532273531. 0.0005193846300244331. -0.16261457512155175.
0.20222551748156548, 0]
                                                     [0, -0.004093284602276981, \ 0.0056214239448308945, \ 0.024285432358738035, \ -0.14704435179010034, \ -0.004093284602276981, \ 0.0056214239448308945, \ 0.024285432358738035, \ -0.14704435179010034, \ -0.004093284602276981, \ 0.0056214239448308945, \ 0.004285432358738035, \ -0.14704435179010034, \ -0.004093284602276981, \ 0.0056214239448308945, \ 0.004285432358738035, \ -0.14704435179010034, \ -0.004093284602276981, \ 0.0056214239448308945, \ 0.004285432358738035, \ -0.14704435179010034, \ -0.004093284602276981, \ 0.0044935481, \ 0.004485439448308945, \ 0.004485432358738035, \ -0.0044935481, \ 0.0044935481, \ 0.004485481, \ 0.004485481, \ 0.004485481, \ 0.004485481, \ 0.004485481, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.0044851, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.0048541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.0044851, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, \ 0.00448541, 
                 10
0.0906886724405922, 0]
                                                     [0, -0.0037726414448115975, -0.00035459281207295135, 0.038702652222127654,
                 11
-0.11251231076312251. 0.012874872409156524. 07
                                                     12
-0.03253596222930355. 07
                 13
                                                     \lceil 0. -0.001274053151746557. -0.011303078340688444. \ 0.038709110218633214. -0.03343380698618148.
-0.05120700824954838. 07
                                                      \lceil 0. \ \ 0.00045734492877613775. \ \ -0.013793717464750443. \ \ 0.02897240415948943. \ \ -0.0041585628764551075. 
                 14
-0.05094293380697934. 07
                                                     \lceil 0. \ 0.0020672233796759087. \ -0.01379533427020796. \ 0.017076479429892544. \ 0.014113596128339623.
                 15
-0.03976666143390517. 07
                                                     [0,\ 0.0032748343185329265,\ -0.011705851864014072,\ 0.00586990970504897,\ 0.021959709561702567,
                 16
-0.02453239752730152, 0]
                                                      \lceil 0. \ 0.003919357221901454. \ -0.008285064741691828. \ -0.0027322258654313702. \ 0.02173754800158298. 
                 17
 -0.010164407059837677. 07
                 18
                                                     FO. 0.003975151009137569. -0.004402511364876904. -0.007873262177405835. 0.01654912718413018.
0.0005282752057153596, 0]
                 19
                                                     [0, 0.0035316771774627897, -0.0008270441230553605, -0.009624529292899489, 0.009393337670856027,
0.006602129098335337, 07
                                                     \lceil 0,\ 0.0027521383984790123,\ 0.001907162010869462,\ -0.00870270572467738,\ 0.0026105386310127945.
                 20
0.008474098450322513, 07
                 21
                                                     [0, 0.0018257085475005764, 0.003550261623166399, -0.006138160868308586, -0.002364872979784736,
0.007334525824371683. 07
                                                     \lceil 0.0009254987077296325.0.004114607031226089.-0.0029766634200709477.-0.004992280788500732.
                 22
0.004614067000859486, 07
                 23
                                                      \lceil 0. \ 0.00017979815189396323, \ 0.003805100216327047, \ -6.548482978083604e - 05, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.00543721774900959, \ -0.0054721774900959, \ -0.0054721774900959, \ -0.0054721774900959, \ -0.0054721774900959, \ -0.0054721774900959, \ -0.0054721774900959, \ -0.0054721774900959, \ -0.0054721774900959, \ -0.0054721774900959, \ -0.0054721774900959, \ -0.0054721774900959, \ -0.0054721774900959, \ -0.0054721774900959, \ -0.0054721774900959, \ -0.0054721774900959, \ -0.0054721774900959, \ -0.0054721774900959, \ -0.0054721774900959, \ -0.005472174900959, \ -0.005472174900959, \ -0.005472174
0.0015884449549568398, 0]
                                                     [0, -0.00034078891312040846, 0.0029294350729281264, 0.002057451177413214,
 -0.004301025742294611, -0.0008476229396609664, 0]
                                                    -0.002248601858106204, 07
                                                     [0, -0.0006928406848546529, 0.0007285033038164988, 0.0033575122452749943,
-0.0002879084210887171, -0.0025670534864796713, 0]
                                                     [0, -0.0006106934266180521, -0.00013312680961749497, 0.0028273114755235224,
                 27
0.0013640174619715438, -0.0020332557727680226, 0]
                                                     [0, -0.00044137921876135223, -0.0006822690766353311, 0.0019000588702896384,
0.0023374118713959816. -0.001013435281336688. 07
                                                    [0, -0.0002457507794915978, -0.0009147263732982102, 0.000877016765054482,
                 29
0.0025922603900726863. 0.00011645299077097716. 07
                                                    [0. -6.99722879564221e-05. -0.0008878284179148171. -9.292364955053149e-06.
                 30
0.0022585199556035733, 0.0010594373893554902, 0]
                                                    [0, 5.849933627203558e-05, -0.0006909493758003895, -0.000622219924884793,
                 31
0.0015579756561750987, 0.0016415230253679577, 0]
                                                    [0, 0.00013024317417907537, -0.0004184972901376796, -0.0009205179166106279,
0.000729958892128532. 0.0018153831400916304. 07
                                                    [0, 0.00014999454190151647, -0.00014996703770977794, -0.0009385697827756673,
                 33
 -2.4647942144040202e-05, 0.0016352719396169222, 0]
                                                    [0, 0.0001312417861398596, 6.109389777769364e-05, -0.0007570839834549121,
                 34
-0.0005748586176010207, 0.0012172109764086766, 0]
                                                     [0, 9.0794602382683e-05, 0.00018967159106758158, -0.00047304544872442134,
                 35
-0.000867201829047442, 0.0006973362507061247, 0]
                 36
                                                    [0, 4.438700290356455e-05, 0.000235432350284745, -0.00017525701126204268,
-0.0009149604463955051, 0.00019780150213680279, 0]
                 37
                                                    To. 3.861208392080287e-06. 0.0002151265152101508. 7.121442870968548e-05.
-0.0007766669017869952. -0.00019475904079571235. 07
                                                    [0, -2.3994908107208633e-05, 0.0001538910359659325, 0.00023116662745944504,
                 38
-0.0005314498854746503, -0.00043731936876690745, 0]
                                                    [0, -3.723256057614805e-05, 7.752435800181551e-05, 0.0002975153447661397,
                 39
 -0.0002572350077128324, -0.0005272832336281745, 0]
                                                    [0, -3.761496518233797e-05, 6.99164018953865e-06, 0.0002843625187893896,
 -1.5447597293800103e-05, -0.000491925553113443, 0]
                                                    [0, -2.908517891044581e-05, -4.440719664989646e-05, 0.0002178247038248442,
0.00015654094071485138, -0.00037473701382025726, 0]
                                                    [0, -1.62629846015973e-05, -7.144042755694504e-05, 0.00012714821153556554,
                 42
0.00024593209619798727, -0.00022234990759712367, 0]
                 43
                                                     [0,\ -3.2671850065798447e-06,\ -7.557246633525345e-05,\ 3.782948629307134e-05,
0.000259923389923968, -7.453789462359751e-05, 0]
                 44
                                                    [0, 6.9961695369718e-06, -6.263322991554145e-05, -3.2457983896412535e-05,
0.00021844583663082744, 4.156785025378987e-05, 0]
                                                    [0, 1.3076280892171532e-05, -4.029411087324009e-05, -7.513667871949088e-05,
                 45
0.00014646665223024214, 0.00011309307642690269, 0]
                                                    [0, 1.4843974528283662e-05, -1.592489298042938e-05, -8.977113214586346e-05,
                 46
6.753710009950968e-05, 0.00013974480190651783, 0]
                                                    [0, 1.3123592518766418e-05, 4.844212231017272e-06, -8.174232148949731e-05,
 -4.794497183812666e-07, 0.0001301350139672045, 0]
                                                    [0, 9.237167860197654e-06, 1.8772296553987526e-05, -5.943023031569384e-05,
 -4.7279834593248006e-05, 9.74214668310104e-05, 0]
                                                    [0, 4.581338825899799e-06, 2.4971939152526494e-05, -3.1623082204869057e-05,
                 49
-6.99238956671975e-05, 5.5336162150789805e-05, 0]
                                                    [0, 3.1451172535903756e-07, 2.439984169971593e-05, -5.612347513054671e-06,
                 50
```

-7.121859784607275e-05, 1.528066073789329e-05, 0]

• Mac-Cormack

<u>Results</u>

Time	Values
0	[0.0, 0.0625, 0.25, 0.5625, 1.0, 0, 0]
1	[0, 0.0234375, 0.154296875, 0.40576171875, 0.9764404296875, 0.244110107421875, 0]
2	[0, 0.001220703125, 0.0845947265625, 0.2541351318359375, 0.8874053955078125,
0.43544769287109375, 0]	
3	[0, -0.0095062255859375, 0.03987693786621094, 0.12141180038452148, 0.7524017095565796,
0.5691171586513519, 0]	
4	[0, -0.01330256462097168, 0.016390204429626465, 0.016282662749290466, 0.5912825167179108,
0.6457981429994106, 0]	
5	[0, -0.013688519597053528, 0.008883966132998466, -0.05744199315086007, 0.4222869359655306,
0.6706451091158669, 0]	
6	[0, -0.013087950414046645, 0.011681731906719506, -0.10012717802601401, 0.2606386358238524,
0.6519741294323467, 0]	
7	[0, -0.012912173100630753, 0.01950936939647363, -0.1153137679016254, 0.11773359819142115,
0.5999107628011586, 0]	
8	[0, -0.013736822637611112, 0.028050713550214823, -0.10860356830029616, 0.0008771609922746393,
0.5251412076990825, 0]	
9	[0, -0.015526059001686576, 0.034238305643553346, -0.08657819097590513, -0.08651968283812128,
0.43786863602716686. 07	

```
\lceil 0. -0.017865089831919923. \ 0.03631451885211734. \ -0.0558623270361225. \ -0.1444038837457826.
0.34703408558732535, 0]
                                                                            [0, -0.0201712684594446, 0.03371517776025683, -0.02240025624832015, -0.17533272303805547,
                         11
0.2598216441293958, 0]
                                                                            12
0.18143454489680083. 07
                                                                             \lceil 0, -0.022485568518134512, \ 0.016730880970479797, \ 0.035034338681599636, \ -0.17460361144917175, \ 0.035034338681599636, \ -0.017460361144917175, \ 0.035034338681599636, \ -0.017460361144917175, \ 0.035034338681599636, \ -0.017460361144917175, \ 0.035034338681599636, \ -0.017460361144917175, \ 0.035034338681599636, \ -0.017460361144917175, \ 0.035034338681599636, \ -0.017460361144917175, \ 0.035034338681599636, \ -0.017460361144917175, \ 0.035034338681599636, \ -0.017460361144917175, \ 0.035034338681599636, \ -0.017460361144917175, \ 0.035034338681599636, \ -0.017460361144917175, \ 0.035034338681599636, \ -0.017460361144917175, \ 0.035034338681599636, \ -0.017460361144917175, \ 0.035034338681599636, \ -0.017460361144917175, \ 0.035034338681599636, \ -0.017460361144917175, \ 0.03503438681599636, \ -0.017460361144917175, \ 0.03503438681599636, \ -0.017460361144917175, \ 0.03503438681599636, \ -0.017460361144917175, \ 0.03503438681599636, \ -0.017460361144917175, \ 0.03503438681599636, \ -0.017460361144917175, \ 0.03503438681599636, \ -0.017460361144917175, \ 0.035034386, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.0350346, \ 0.035046, \ 0.0350346, \ 0.0350346, \ 0.035046, \ 0.035046, \ 0.035046, \ 0.035046, \ 0.035046, \ 0.035046, \ 0.035046, \ 0.035046, \ 0.035046, \ 0.035046, \ 0.035046, \ 0.035046, \ 0.035046, \ 0.035046, \ 0.035046, \ 0.035046, \ 0.035046, \ 0.035046, \ 0.035046,
                         13
0.11510432392240781. 07
                                                                             \lceil 0, -0.02176623257467767, \ 0.004818670370300451, \ 0.05368516537012125, \ -0.15374490916579595, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.004818670370300451, \ 0.0048186703700451, \ 0.0048186703700451, \ 0.0048186703700451, \ 0.0048186703700451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.004818670300451, \ 0.00481
                         14
0.06228005614065785. 07
                                                                            15
0.02293841532391669. 07
                                                                            \lceil 0. -0.016266031896484845. -0.018589615576410725. \ 0.06742934869903966. -0.09645818303778593.
                        16
-0.00404343235101938. 07
                                                                            [0, -0.011909075962372898, -0.02767185120733256, 0.0641399901895498, -0.06786048356679783,
                         17
-0.020503124198841413, 0]
                                                                            \lceil 0. -0.006961460066159716. -0.03397073359664965. \ 0.05611236846254339. -0.04278694048045708.
                         18
 -0.028636968794100506. 07
                         19
                                                                            [0, -0.0018449358583085451, -0.0371996719194635, 0.04514677198491673, -0.022572258824908195,
 -0.03070041240106499, 0]
                        20
                                                                            [0, 0.0030356401139129607, -0.03743414939916692, 0.03296642049012393, -0.007671569799130567,
-0.02878075330071451, 07
                        21
                                                                            [0, 0.007335453774569705, -0.035041819841894126, 0.021044109193276227, 0.0021459978866691246,
-0.024646659666457918. 07
                        22
                                                                            [0, 0.010798749532985258, -0.03059241862757057, 0.010497241151390413, 0.007582890896990326,
-0.0196701044839031. 07
                                                                            \lceil 0.0.013272958169808422.-0.02476228190059595.0.002046654170193833.0.00960545613790288.
                        23
-0.014809977388939494, 0]
                        24
                                                                            \lceil 0.0.014709123636156864, -0.01824554752525647, -0.003971246499632373, 0.009263209669374361, -0.004709123636156864, -0.01824554752525647, -0.003971246499632373, 0.009263209669374361, -0.004709123636156864, -0.01824554752525647, -0.003971246499632373, 0.009263209669374361, -0.0047091246499632373, 0.009263209669374361, -0.0047091246499632373, 0.009263209669374361, -0.0047091246499632373, 0.009263209669374361, -0.0047091246499632373, 0.009263209669374361, -0.0047091246499632373, 0.009263209669374361, -0.0047091246499632373, 0.009263209669374361, -0.0047091246499632373, 0.009263209669374361, -0.004709124649963274, -0.0047091246499632374, -0.004709124649963274, -0.004709124649963274, -0.004709124649963274, -0.004709124649963274, -0.004709124649963274, -0.004709124649963274, -0.004709124649963274, -0.004709124649963274, -0.004709124649963274, -0.004709124649963274, -0.004709124649963274, -0.004709124649963274, -0.004709124649963274, -0.004709124649963274, -0.004709124649963274, -0.004709124649963274, -0.004709124649963274, -0.004709124649963274, -0.004709124649963274, -0.004709124649963274, -0.004709124649964, -0.004709124649964, -0.004709124649964, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047091464, -0.0047044, -0.0047044, -0.0047044, -0.0047044, -0.0047044, -0.0047044, 
-0.010642927797978466, 0]
                                                                            [0,\ 0.015151176622294316,\ -0.011680654116571789,\ -0.007552905424993069,\ 0.007547448079201607,
-0.007425699803430755, 07
                                                                            \lceil 0, \ 0.014717361309079, \ -0.0055971188466064315, \ -0.008951502968420743, \ 0.005294353802625065, \ -0.008951502968420743, \ 0.005294353802625065, \ -0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420743, \ 0.008951502968420744, \ 0.008951502968420744, \ 0.008951502968420744, \ 0.008951502968420744, \ 0.008951502968420744, \ 0.008951502968420744, \ 0.008951502968420744, \ 0.008951502968420744, \ 0.008951502968420744, \ 0.008951502968420744, \ 0.008951502968420744, \ 0.008951502968420744, \ 0.008951502968420744, \ 0.008951502968420744, \ 0.008951502968420744, \ 0.008951502968420744, \ 0.008951502968420744, \ 0.008951502968420744, \ 0.008951502968420744, \ 0.008951502968420744, \ 0.008951502968420744, \ 0.008951502968420744, \ 0.0089515020444, \ 0.0089515024444, \ 0.0089515024444, \ 0.0089515024444, \ 0.008951502444, \ 0.008951502444, \ 0.008951502444, \ 0.008951502444, \ 0.008951502444, \ 0.008951502444, \ 0.008951502444, \ 0.008951502444, \ 0.008951502444, \ 0.008951502444, \ 0.008951502444, \ 0.008951502444, \ 0.008951502444, \ 0.008951502444, \ 0.008951502444, \ 0.008951502444, \ 0.008951502444, \ 0.008951502444, \ 0.008951502444, \ 0.008951502444, \ 0.008951502444, \ 0.008951502444, \ 0.008951502444, \ 0.008951502444, \ 0.008951502444, \ 0.008951502444, \ 0.008951502444, \ 0.008951502444, \ 0.0089514444, \ 0.008951502444, \ 0.00895144444, \ 0.0089514444
 -0.005173898877345644, 07
                                                                            [0, 0.01357733100126993, -0.0003842083694105521, -0.008590411415048922, 0.003131694083202907,
-0.0037442379968767115, 0]
                                                                            [0,\ 0.011928190672287509,\ 0.003719666771718759,\ -0.006978155055638479,\ 0.0014637233085025127,
                        28
-0.002910277420141494, 07
                                                                            [0, 0.009972208491786726, 0.006620029930155405, -0.0046338436047076315, 0.00048608167128047714,
                         29
-0.002424972324803688. 07
                                                                            [0,\ 0.00789817868904396,\ 0.008346301311735423,\ -0.0020287980350953815,\ 0.000221243494197033,
                        30
-0.002066539910653969. 07
                                                                            31
-0.0016669319226890024, 0]
                        32
                                                                            [0,\ 0.0040062265935292135,\ 0.008840506738335984,\ 0.0025358790109929453,\ 0.0013368529900506325,
-0.0011243521848402188, 0]
                         33
                                                                            \lceil 0.002400384927046064.0.008018554751431383.0.004056426198720344.0.002324396939079417.
 -0.0004027089269653373. 01
                                                                            [0, 0.001098017467236383, 0.006783686499471513, 0.004954744931363253, 0.00332287217040597,
                         34
0.0004783477315068223, 0]
                                                                            [0,\ 0.00011280447139789596,\ 0.005344583688466642,\ 0.005256188715758761,\ 0.004161766861606561,
                         35
0.0014589959804701099, 0]
                                                                            36
0.002456928764969099, 0]
                        37
                                                                            [0, -0.0009828410269860468, 0.0025157626986296233, 0.004455988710222651, 0.004937956569136662,
0.003384301811632127. 07
                        38
                                                                            [0, -0.001174456235941494, 0.0013506797135377153, 0.0036194154786871663, 0.004802528141212355,
0.0041618961204812005. 07
                        39
                                                                            [0, -0.0011964841706410215, 0.0004302967718493497, 0.002674246719162064, 0.004350536788291177,
0.004729293302493844, 0]
                                                                            [0, -0.0011007107457920626, -0.00023294885097509266, 0.0017379115679866358,
                         40
0.003650035918939708, 0.005050640619417041, 07
                                                                            [0, -0.0009340032961961684, -0.0006545700146505777, 0.0009007756284581984,
0.002787645258759664, 0.005116221856679827, 07
                                                                            [0, -0.0007354316323403251, -0.0008692036244616116, 0.0002224221114405627,
0.001855267397189868, 0.004940510973892316, 0]
                                                                            [0, -0.000534852225240083, -0.0009220689916440011, -0.0002678063250492414,
                         43
0.0009388435195422848, 0.004557657982041348, 0]
                         44
                                                                            [0, \ -0.0003527370731295725, \ -0.0008615188453397389, \ -0.0005670656856958066,
0.00011001441042037907, 0.004015454336891274, 0]
                        45
                                                                           -0.0005789767864270799, 0.0033687783481730947, 0]
                                                                           [0, -8.418762918197964e-05, -0.0005759295866454513, -0.0006781869103752356,
                         46
-0.0010972487092391406, 0.002673368877341672, 0]
                                                                           [0, -1.6729772035507784e-06, -0.0004195832688187531, -0.0005611532751281269,
                        47
-0.0014345520490339889, 0.001980559755415466, 0]
                                                                           [0, 5.098405354923721e-05, -0.0002842451874380838, -0.0003827514064673834,
                         48
 -0.0015984908639485192, 0.001333367070001403, 0]
                                                                           [0, 8.014169528534302e-05, -0.00018083518937856463, -0.00018030492001003671,
 -0.0016104266197076388, 0.0007640895313243177, 0]
                                                                           [0, 9.272838204699572e-05, -0.00011251058019324053, 1.540887740636261e-05,
-0.0015007822643081329, 0.0002933827738317448, 0]
```

