This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

1999-11-5

(72)【発明者】

【氏名】

岩島 微

【住所又は居所】

神家川県横浜市栄区田谷町1番地 住友電気 工業株式会社横浜製作所内

Agents

(74)【代理人】

【弁理士】

【氏名又は名称】

上代 哲司 (外2名)

Abstract

(57)【要約】

【課題】

【解決手段】

複数の固定側光ファイバ 1 を端部を揃えて並列 に設置した配列部 5 と、各固定側光ファイバ 1 の端部側延長方向に対向して位置する光ファイ パ導入溝 3b を設けた基板 3 を備え、 該光ファイ バ導入溝 3b のうち 1 本又は複数本の光ファイ バ導入溝 3b 内に可動側光ファイバ 2 の先端部 を挿入離脱することによって、光ファイバの結 合、切り替えを行う光スイッチの結合部であっ て、配列部 5 の固定側光ファイバの端面側に固 定側光ファイバ 1 と各光軸を合わせてコリメート レンズアレイ9を固定し、可動側光ファイバ2の 端面にもコリメートレンズ 10 を固定して、可動側 光ファイバ2を光ファイバ導入溝36へ挿入した 時には、コリメートレンズ 10 とコリメートレンズア レイ9のコリメートレンズとが、対向して光結合を 行なう。

69-055-6345) Yokohama Works

(72) [Inventor]

[Name]

Tctsu Iwashima

[Address]

Inside of Kanagawa Prefecture Yokohama City Sakae-ku Taya-cho 1 Sumitomo Electric Industries Ltd. (DB 69-055-6345) Yokohama Works

(74) [Attorney(s) Representing All Applicants]

[Patent Attorney]

[Name]

Kamishiro Tetsuji (2 others)

(57) [Abstract]

[Problems to be Solved by the Invention]

Using moving side optical fiber, it eases precision of position adjustment of relative position of the moving side optical fiber and stationary side optical fiber in bonding section of optical switch which it inserts to the optical fiber introduction slot.

[Means to Solve the Problems]

To have substrate 3 which provides optical fiber introduction slot 3b whicharranging end, arrangement section 5 which it installs in parallel array and, opposing to end side extending direction of each stationary side optical fiber 1, position does the stationary side optical fiber 1 of plural, inside optical fiber introduction slot 3b of inside single or multiple of said optical fiber introduction slot 3b it inserts separates tip portion of moving side optical fiber 2 with, connection of optical fiber, With bonding section of optical switch which changes, stationary side optical fiber 1 and each optical exis itlocks collimator lens array 9 together in edge surface side of stationary side optical fiber of arrangement section, 5 locking collimator lens 10 even in endface of moving side optical fiber 2, wheninscriing moving side optical fiber 2 to optical fiber introduction slot 3b, collimator lens of the collimator lens 10 and collimator lens array 9 opposing, it does optical coupling.

1999-11-5

Parties

Applicants

(71)【出願人】

【識別番号】

000002130

【氏名又は名称】

住友電気工業株式会社

【住所又は居所】

大阪府大阪市中央区北浜四丁目5番33号

Inventors

(72)【発明者】

【氏名】

田村 充章

【住所又は居所】

神奈川県横浜市栄区田谷町1番地 住友電気

工梨株式会社横浜製作所内

(72)【発明者】

【氏名】

斉藤 和人

【住所又は居所】

神奈川県横浜市栄区田谷町1番地 住友電気

工業株式会社横浜製作所内

(72)【発明者】

[氏名]

佐野 知已

【住所又は居所】

神奈川県横浜市栄区田谷町1番地 住友電気

工業株式会社横浜製作所内

(72)【発明者】

【氏名】

耕田 浩

【住所又は居所】

神奈川県機浜市栄区田谷町1番地 住友電気

工業株式会社横浜製作所内

(71) [Applicant]

[Identification Number]

000002130

[Name]

SUMITOMO ELECTRIC INDUSTRIES LTD. (DB

69-055-6345)

[Address]

Osaka Prefecture Osaka City Chuo-ku Kitahama 4-5-33

(72) [Inventor]

[Name]

Tamura being full chapter

[Address]

Inside of Kanagawa Prefecture Yokohama City Sakae-ku

Taya-cho 1 Sumitomo Electric Industries Ltd. (DB

69-055-6345) Yokohama Works

(72) [Inventor]

[Name]

Saito Kazuto

[Restable]

Inside of Kanagawa Prefecture Yokohama City Sakac-ku

Taya-cho 1 Sumitomo Electric Industries Ltd. (DB

69-055-6345) Yokohama Works

(72) [Inventor]

[Name]

Sano Tomomi

[Address]

Inside of Kanagawa Prefecture Yokohama City Sakae-ku

Taya-cho 1 Sumitomo Electric Industries Ltd. (DB

69-055-6345) Yokohama Works

(72) [Inventor]

[Name]

Hiroshi Kouda

[Address]

Inside of Kanagawa Prefecture Yokohama City Sakae-ku

Taya-cho 1 Sumitomo Electric Industries Ltd. (DB

KO OSE 4345) Valentame Wanter

Page 2 Paterra Instant MT Machine Translation

(1)

1999-11-5

Claims

【特許請求の範囲】

【請求項1】

複数の固定側光ファイバを端部を揃えて並列に 設置した配列部と、各固定側光ファイバの端部 側延長方向に対向して位置する光ファイパ導入 溝を設けた基板を備え、該光ファイバ導入溝の うち1本又は複数本の光ファイバ導入溝内に可 動側光ファイバの先端部を挿入離脱することに よって、光ファイバの結合、切り替えを行う光ス イッチの結合部において、前配配列部の固定側 光ファイバの端面側に固定側光ファイバと各光 軸を合わせてコリメートレンズアレイを固定し、 可動側光ファイバの端面にもコリメートレンズを 固定して、可動側光ファイバを光ファイバ導入溝 へ挿入した時には、可動側光ファイバの端面に 固定したコリメートレンズと固定側光ファイバの 配列部に固定したコリメートレンズアレイのコリ メートレンズとが、対向して結合を行なうことを特 徴とする光スイッチの結合部。

【請求項 2】

前記コリメートレンズアレイは、固定側光ファイバの配列ピッチと同じピッチでアレイ用基板上に

[Claim(s)]

[Claim 1]

To have substrate which provides optical fiber introduction slot whicharranging end, opposing to arrangement section and end side extending direction of each stationary side optical fiber it installs in parallel array, position does stationary side optical fiber of plural, in optical fiber introduction groove of inside single or multiple of the said optical fiber introduction slot it inserts separates tip portion of moving side optical fiber with, connection of optical fiber, When stationary side optical fiber and each optical axis collimator lens array is locked together in the edge surface side of stationary side optical fiber of aforementioned arrangement section in the bonding section of optical switch which changes, collimator lens is locked even in the endface of moving side optical fiber, moving side optical fiber being inserted to optical fiber introduction slot, collimator lens of collimator lens array which locks in arrangement section of collimator lens and stationary side optical fiber which are locked in endface of moving side optical fiber opposing, bonding section. of optical switch which connects and makesfeature

[Claim 2]

Is done and consists of push plate which makes feature the bonding section. of optical switch which is stated in Claim 1

Page 4 Paterra Instant MT Machine Translation

1999-11-5

平行に形成した複数のアレイ用 V 満と、該各ア レイ用 V 溝内に挿入し配列したグレーデッドイン デックス型の光ファイバと、該光ファイバを押さ えて接着固定する押さえ板からなることを特徴 とする請求項1に記載の光スイッチの結合部。

[請求項 3]

複数の固定側光ファイバを端部を揃えて並列に 設置した配列部と、各固定側光ファイバの端部 側延長方向に対向して位置する光ファイバ導入 溝を設けた基板を備え、該光ファイバ導入溝の うち 1 本又は複数本の光ファイバ源入溝内に可 動側光ファイバの先端部を挿入離脱することに よって、光ファイパの結合、切り替えを行う光ス イッチの結合部の製造方法において、前記配列 部と光ファイバ導入溝との間に固定側光ファイ バのファイバ軸に垂直な横断溝を設け、該横断 溝の滯底部を貫通する接着剤硬化用孔を設け て、該横断溝内に紫外線硬化型接着剤を介し てコリメートレンズアレイを配置し、 前記溝底部 の裏面から前記接着剤硬化用孔を通して紫外 線を照射して溝底部とコリメートアレイレンズと の間に塗布された紫外線硬化型接着剤を硬化 させてコリメートレンズアレイを満底部に接着固 定することを特徴とする光スイッチの結合部の 製造方法。

【請求項4】

複数の固定側光ファイバを端部を揃えて並列に 設置した配列部と、各園定側光ファイバの端部 側延長方向に対向して位置する光ファイバ導入 溝を設けた基板を備え、該光ファイバ導入溝の うち」本又は複数本の光ファイバ導入溝内に可 動側光ファイバの先端部を挿入離脱することに よって、光ファイバの結合、切り替えを行う光ス イッチの結合部の製造方法において、前記光フ ァイバ導入港のうち一部の溝にダミ一用光ファ イバの先端部を挿入固定しておき、前配配列部 の端面にコリメートレンズアレイを配置し固定す るに当たって、鉄ダミー用光ファイバを使ってコ リメートレンズアレイの位置調整をすることを特 徴とする光スイッチの結合部の製造方法。

Specification

【発明の詳細な説明】

where as array pitch of stationary side optical fiber it inserts aforementioned collimator lens array, V groove for the array of plural which was formed parallel on substrate for the array with same gait and and into V groove for said each array holding down optical fiber and said optical fiber of graded index type which isarranged, fixing

[Claim 3]

To have substrate which provides optical fiber introduction slot whicharranging end, opposing to arrangement section and end side extending direction of each stationary side optical fiber it installs in parallel array, position does stationary side optical fiber of plural, in optical fiber introduction groove of inside single or multiple of the said optical fiber introduction slot it inserts separates tip portion of moving side optical fiber with, connection of optical fiber, Between aforementioned arrangement section and optical fiber introduction slot it provides perpendicular intersection slot in the fiber axis of stationary side optical fiber in manufacturing method of bonding section of optical switch whichchanges, providing hole for adhesive hardening which penetrates the groove bottom of said intersection slot, through ultraviolet curing type adhesive in said intersection groove, it arranges collimator lens array, Irradiating ultraviolet light through hole for aforementioned adhesive hardening from rear surface of aforementioned groove bottom, hardening the ultraviolet curing type adhesive which coating fabric is done between groove bottom and collimate array lens, manufacturing method. of bonding section of optical switch which fixing designates collimator lons array as groove bottom and makes

[Claim 4]

To have substrate which provides optical fiber introduction slot whicharranging end, opposing to arrangement section and end side extending direction of each stationary side optical fiber it installs in parallel array, position does stationary side optical fiber of plural, in optical fiber introduction groove of inside single or multiple of the said optical fiber introduction slot it inserts separates tip portion of moving side optical fiber with, connection of optical fiber, In manufacturing method of bonding section of optical switch which changes, when it inscrtsand it locks tip portion of optical fiber for dummy in slot of theinside portion of aforementioned optical fiber introduction slot, arranges collimator lens array in endface of aforementioned arrangementsection and locks, Using optical fiber for said dummy, manufacturing method. of bonding section of optical switch which does position adjustment of collimator lens array and makes feature

[Description of the Invention]

1999-11-5

[0001]

【発明の属する技術分野】

本発明は、複数の固定側光ファイバを端部を揃えて並列に設置した配列部と、各固定側光ファイバの端部側延長方向に対向して位置する光ファイバ導入溝を設けた基板を備え、該光ファイバ導入溝のうち1本又は複数本の光ファイバ導入溝内に可動側光ファイバの先端部を挿入離脱することによって、光ファイバの結合、切り替えを行う光スイッチの結合部とその製造方法に関する。

[0002]

【従来の技術】

複数の固定側光ファイバを並列に設置した配列 部と固定側光ファイバのファイバ軸と合致する 複数の光ファイバ導入溝を備え、可動側光ファ イバと組み合わせて使用する光スイッチは、特 開平 8-286129 号公報等で知られている。

[0003]

この種の光スイッチにおいては、可動倒光ファイバを光ファイバ導入溝に搬送するため、光ファイバ導入溝の配列方向及び上下方向に可動倒光ファイバを移動させる搬送機構を有し、該搬送機構によって可動側光ファイバの先端部を光ファイバ導入溝内に挿入したり離脱したりして、所望の固定側光ファイバと可動側光ファイバの結合、切替えを図る構造になっている。

[0004]

図 4 はそのような従来技術による光スイッチの 結合部を示す図であって、図 4(A)は断面図、図 4(B)は斜視図である。

図4に示す通り、基板 14上には平行に複数の V溝 14aが形成され、そのV溝 14aの延長線上 にV溝状の光ファイバ導入溝 14bが形成され、 更にV溝 14aと光ファイバ導入溝 14bをの間に V溝 14aの長手方向に垂直な模断溝 14cが形成されている。

[0005]

その基板 14のV 溝 14aにはそれぞれ固定側光ファイバ 15 が端面を揃えて挿入され、押さえ板16によって押圧して接着固定され、配列部 17を構成している。

[0001]

[Technological Field of Invention]

this invention to have substrate which provides optical fiber introduction slot which arranging end, opposing to arrangement sectionand end side extending direction of each stationary side optical fiber it installs in parallel array, position does stationary side optical fiber of plural, in optical fiber introduction groove of inside single or multiple of said optical fiber introduction slot it inserts separates tip portion of moving side optical fiber with, connection of optical fiber, It regards bonding section and manufacturing method of optical switch which changes.

[0002]

[Prior Art]

It has arrangement section and optical fiber introduction slot installs stationary side optical fiber of plural in parallel array of plural which whichcoincides with fiber axis of stationary side optical fiber, optical switch which is usedcombining with moving side optical fiber is known with Japan Unexamined Patent Publication Hei 8-286129 disclosure etc.

[0003]

Regarding optical switch of this kind, in order to convey moving side optical fiber to the optical fiber introduction slot, possessing arrayed direction of optical fiber introduction slot, and transport mechanism which moves moving side optical fiber to up/down direction inserting in optical fiber introduction groove with said transport mechanism and/orseparating tip portion of moving side optical fiber, it has become structure which assures connection and changeover of desired stationary side optical fiber and moving side optical fiber.

[0004]

As for Figure 4 in figure which shows bonding section of optical switch withhat kind of Prior Art, as for Figure 4 (A) as for sectional view. Figure 4 (B) it is a oblique view.

As shown in Figure 4, V groove 14a of plural is formed parallel on substrate 14, optical fiber introduction slot 14b of V groove condition is formedon extrapolation of V groove 14a, furthermore perpendicular intersection slot 14c isformed to longitudinal direction of V groove 14a between V groove 14a and optical fiber introduction slot 14b.

10005

Respective stationary side optical fiber 15 arranging endface in V groove 14a of substrate 14, it is inserted, presses with push plate 16 and fixing is done, configuration does arrangement section 17.

1999-11-5

また1 本又は複数本の可動側光ファイバ 18 の 先端部は、光ファイバ導入溝 14b に斜め方向か ら挿入され、その端面が所望の固定側光ファイ パ 15 の端面と対向する。

横断溝 14c は、V 溝よりも深い断面矩形状の溝で、固定側光ファイバ 15 の端面を揃えたり、固定側光ファイバ 15 と可動側光ファイバ 18 の端面間にシリコーンオイル等の屈折率整合剤を満たすために使用するものである。

なお、15a は固定側光ファイバを一括被覆で被ったテープ心線である。

[0006]

また、可動側光ファイバ 18 は、図示しない可動 アームに固定されており、可動アームと共に、光 ファイバ導入溝 14b の配列方向及び光ファイバ 導入溝 14b に対して上下方向に、駆動装置によって駆動され搬送されるようになっている。

そして、この種の光スイッチでは図 4 に示す通り、可動側光ファイバ 18 の先端部を光ファイバ 3 の先端部を光ファイバ 3 入溝 14b に挿入することによって、可動側光ファイバ 18 の端面は囲折率整合剤を介して固定側光ファイバ 15 の端面と対向し、光結合が図られる。

[0007]

また、可動側光ファイバ 18 の先端部は、光ファイパ導入溝 14b に斜め方向から押付けることによって可動側光ファイバの剛弾性を利用して先端部のファイバ軸を光ファイバ導入溝の方向に合わせることが出来るが、その押付け状態をより確実に安定させるため、可動側光ファイバ 18 を光ファイパ導入溝 14b に挿入した時には、その先端部近傍を押付け部材にて上部から押付けるということも行われる。

[0008]

なお、これらの光ファイバを使った光スイッチは、可動側光ファイバ、固定側光ファイバとしては一般的に使用されているシングルモード型の光ファイバが用いられるため、可動側光ファイバ又は固定側光ファイバの端面から出た光は急激に放射状に広がる。

従って、光緒合による損失を小さくするためには、可動倒光ファイバの端面と固定側光ファイバの端面と固定側光ファイバの端面との間隔を20μm以下という非常に小さい値にしなければならない。

一方、可動側光ファイバは固定側光ファイバに

In addition tip portion of moving side optical fiber 18 of single or multiple in optical fiber introduction slot 14b is inserted from oblique direction, endface opposes with endface of desired stationary side optical fiber 15.

It is something which is used in order intersection slot 14c, with slot of deep cross section rectangle, arranges endface of stationary side optical fiber 15 incomparison with V groove, to fill up silicone oil or other refractive index matching medicine between the endface of stationary side optical fiber 15 and moving side optical fiber 18.

Furthermore, 15 a are tape core which receives stationary side optical fiber with the collective sheath.

10006

In addition, moving side optical fiber 18 is locked by unshown movable arm, is driven by up/down direction, with driving device with movable arm, vis-a-vis arrayed direction and optical fiber introduction slot 14b of optical fiber introduction slot 14b and is designed insuch a way that it is conveyed.

As and, with optical switch of this kind shown in Figure 4, tip portion of moving side optical fiber 18, endface of moving side optical fiber 18 through refractive index matching medicine, opposes with endface of stationary side optical fiber 15 it inserts in optical fiber introduction slot 14b with, optical coupling is assured.

[0007]

In addition, as for tip portion of moving side optical fiber 18, you push to optical fiber introduction slot 14b from oblique direction, fiber axis of tip portion isadjusted to direction of optical fiber introduction slot, making useof hardness elasticity of moving side optical fiber with it is possible, but because pushing state is stabilized more securely, when inserting moving side optical fiber 18 in optical fiber introduction slot 14b, It is done that you push tip portion vicinity and with member push from the upper part.

[8000]

Furthermore, as for optical switch which used these optical fiber, as moving side optical fiber, stationary side optical fiber because it can use optical fiber of single mode type which is usedgenerally, light which comes out of endface of moving side optical fiber or the stationary side optical fiber spreads to radial suddenly.

Therefore, in order to make loss small with optical coupling, endface of moving side optical fiber and you must make very 20;mu m or less calls interval of the endface of stationary side optical fiber small value.

On one hand, moving side optical fiber does because it is a

対して相対的に可動であるため、あまり間隔を 小さくすると先端が触れて破損することが考えら れる。

そのため、極めて小さい間隙を保って間隔及び ファイバ軸を合わせる位置調整が必要となる。

[0009]

【発明が解決しようとする課題】

以上説明した光スイッチの結合部では、可動側 光ファイバの端面と固定側光ファイバの端面が 対向することによって結合が行われるため、可 助側光ファイバと固定側光ファイバのファイバ軸 が完全に一致するようにする必要がある。

また、可動倒光ファイバの端面と固定側光ファイバの端面との間隔も精密に調整する必要がある。

これらの位置調整は極めて厳しい精度を要求され、かつ全ての光ファイバ導入溝に対して保証する必要があるため、位置調整には相当な作業時間を要するものとなっている。

本発明は、そのような問題点を解消した光スイッチの結合部を提供するものである。

[0010]

【課題を解決するための手段】

本発明の光スイッチの結合部は、複数の固定 側光ファイバを端部を揃えて並列に設置した配 列部と、各固定側光ファイバの端部側延長方向 に対向して位置する光ファイバ導入溝を設けた 基板を備え、該光ファイパ導入溝のうち] 本又 は複数本の光ファイバ導入溝内に可動側光ファ イバの先端部を挿入離脱することによって、光 ファイバの結合、切り替えを行うものであって、 前記配列部の固定側光ファイバの端面側に固 定側光ファイバと各光軸を合わせてコリメートレ ンズアレイを固定し、可動側光ファイバの端面 にもコリメートレンズを固定して、可動側光ファイ バを光ファイバ導入溝へ挿入した時には、可動 側光ファイバの端面に固定したコリメートレンズ と固定側光ファイバの配列部に固定したコリメー トレンズアレイのコリメートレンズとが、対向して 結合を行なうものである。

[0011]

また、上述したコリメートレンズアレイを固定倒 光ファイバの端面に固定するに当たっては、前 1999-11-5

movable relatively vis-a-vis stationary side optical fiber, when excessively spacing is made small, tip touching, breakage, it is thought.

Because of that, quite maintaining small gap, position adjustment which adjusts spacing and fiber axis becomes necessary.

[0009]

[Problems to be Solved by the Invention]

Above with bonding section of optical switch which is explained, because the endface of moving side optical fiber and endface of stationary side optical fiber connection is done itopposes by, it is necessary for fiber axis of moving side optical fiber and stationary side optical fiber that to try agrees completely.

In addition, it is necessary endface of moving side optical fiber and interval of endface of stationary side optical fiber to adjust precision.

These position adjustment quite are required harsh precision, because it isnecessary to guarantee at same time vis-a-vis all optical fiber introduction slot, have become something which requires corresponding work time in position adjustment.

this invention is something which offers bonding section of optical switch which cancels that kind of problem.

[0010]

[Means to Solve the Problems]

bonding section of optical switch of this invention to have substrate which provides optical fiber introduction slot which arranging end, opposing toarrangement section and end side extending direction of each stationary side optical fiber it installs in the parallel array, position does stationary side optical fiber of plural, in optical fiber introduction groove of inside single or multiple of said optical fiber introduction slot it inserts separates tip portion of moving side optical fiber with connection of optical fiber, Being something which changes, in edge surface side of stationary side optical fiber of theaforementioned arrangement section stationary side optical fiber and collimator lens of the collimator lens array which locks in arrangement section of collimator lens and stationary side optical fiber which when collimator lens array is locked together, collimator lens islocked even in endface of moving side optical fiber, moving side optical fiber being inserted to the optical fiber introduction slot, lock each optical axis in endface of moving side optical fiber, Opposing, it is something which connects.

[00]]

In addition, when collimator lens array which description above is done is locked in endface of stationary side optical

記配列部と光ファイバ導入溝との間に固定側光 ファイバのファイバ軸に垂直な横断溝を設け、 該横断溝の溝底部を貫通する接着剤硬化用孔 を設けて、該横断溝内に紫外線硬化型接着剤 を介してコリメートレンズアレイを配置する。

次いで、隣底部の豪面から前記接着剤硬化用 孔を通して紫外線を照射して溝底部とコリメートレンズアレイとの間に塗布された紫外線硬化型接着剤を硬化させて、コリメートレンズアレイを溝底部に接着固定することとすれば、コリメートレンズアレイ又は溝底部が不透明な材料で構成されていても紫外線硬化型接着剤を使用してコリメートレンズアレイを溝底部に接着固定することが出来る。

このようにすれば、加熱硬化型接着剤で固定する場合に比較して材料の熱応力による位置調整のずれが少なくなる。

[0012]

また、光ファイバ導入溝の一部の溝にダミー用 光ファイバを挿入固定しておき、前配配列部の 端面にコリメートレンズアレイを配置し固定する に当たって、該ダミー用光ファイバを使ってダミ 一用光ファイバと固定側光ファイバとの間の結 合損失が最小となるようにその間に配置するコ リメートレンズアレイの位置調整を行い、その位 置でコリメートレンズアレイを溝底部又は配列部 の端面に接着固定することとすれば、精度の高 い位置調整が容易に達成出来る。

[0013]

【発明の実施の形態】

図 1 は本発明にかかる光スイッチの結合部の実施形態を示す図であって、図 1(A)はコリメートレンズアレイを固定する前の斜視図、図 1(B)(C)はコリメートレンズアレイを固定した後の斜視図と断面図である。

[0014]

図 1 において、1 はシングルモード型光ファイバからなる固定側光ファイバ、1a は複数本の固定側光ファイバに一括被覆を施したテープ心線、2 はシングルモード型光ファイバからなる可動側光ファイバ、3 は基板、3a は基板 3 上に形成された光ファイバ導入溝 3b は基板 3 上に形成された光ファイバ導入溝 3b に対して垂直方向に基板 3 上に設けられた横断溝、3d は横断溝

1999-11-5

fiber, between aforementionedarrangement section and optical fiber introduction slot it provides the perpendicular intersection slot in fiber axis of stationary side optical fiber, providing thehole for adhesive hardening which penetrates groove bottom of said intersection slot, through ultraviolet curing type adhesive in said intersectiongroove, it arranges collimator lens array.

Next, irradiating ultraviolet light through hole for aforementioned adhesive hardening from rear surface of groove bottom, hardening ultraviolet curing type adhesive which thecoating fabric is done between groove bottom and collimator lens array, collimator lens arrayif fixing we make groove bottom, collimator lens array or groove bottom being opaque material, configuration being done, using ultraviolet curing type adhesive, fixing it designates collimator lens array as groove bottom, it ispossible.

If it makes this way, when it locks with thermosetting type adhesive, comparing, gapof position adjustment decreases with thermal stress of material.

100121

In addition, when it inserts and it locks optical fiber for dummy in slot of portion of optical fiber introduction slot, arranges collimator lens array in endface of aforementioned arrangement section andlocks, using optical fiber for said dummy, in order for optical fiber for the dummy and bonding loss between stationary side optical fiber to become minimum, position adjustment of collimator lens array which at that time arranges action, If collimator lens array fixing we make endface of groove bottom or arrangementsection with position, it can achieve position adjustment where precision ishigh easily.

[0013]

[Embodiment of the Invention]

As for Figure 1 in figure which shows embodiment of bonding section of optical switch which depends on this invention, as for Figure 1 (A) beforelocking collimator lens array, oblique view. Figure 1 (B) (C) after locking collimator lens array, is the oblique view and sectional view.

[0014]

In Figure 1, As for 1 as for stationary side optical fiber, 1a which consists of single mode type optical fiber as for tape core, 2 which administers collective sheath to multiple stationary side optical fiber as for moving side optical fiber, 3 which consists of single mode type optical fiber as for substrate, 3a as for V groove, 3b which was formed on substrate 3 as for optical fiber introduction slot, 3c which was formed on substrate 3 between V groove 3a and optical fiber introduction slot 3b in vertical direction it was provided on

1999-11-5

JP1999305151A

the substrate 3, vis-a-vis optical fiber introduction slot 3b intersection As for slot, 3d as for groove bottom, 3c of intersection slot 3c in orderto penetrate groove bottom 3d. hole for adhesive hardening which isprovided, as for 4 as for push plate. 5 arrangement section, as for 6as for substrate, 6a for array as for V groove, 7 for array which isprovided on

設けられた接着剤硬化用孔、4は押さえ板、5は 配列部、6はアレイ用基板、6aはアレイ用基板6 上に設けられたアレイ用 V 溝、7 はグレーデッド インデックス型の光ファイバ、8 は押さえ板、9 は グレーデッドインデックス光ファイバ型のコリメー トレンズアレイ、10 はグレーデッドインデックス光 ファイパ型のコリメートレンズである。

3c の潜底部、3e は溝底部 3d を貫通するように

[0015]

図1において、基板3はV滞3aが形成された 部分と光ファイバ導入溝 3b が形成された部分と が一体となっているが、別体で対向するように 相互の位置関係を調整して組み合わせたもの でもかまわない。

図 1 の場合は、シリコン、ジルコニア等からなる 基板 3 上に、V 溝 3a と光ファイバ導入溝 3b を 対向するように並列して一定問隔で複数本形成 する。

通常その配列ピッチは250μm程度でその本数 は数百になる場合が多い。

また、V 溝 32 と光ファイバ導入溝 3b との間には 垂直方向に断面矩形の機断溝 3c を形成する。

また、横断溝3cの溝底部3dには溝底部を貫通 する接着剤硬化用孔 3e を横断溝 3d の長手方 向に複数箇所設けることもある。

そして、それぞれのV済3aには端面を揃えて固 定側光ファイバ 1 を挿入し、押さえ板 4 で押さえ ると共に接着固定して配列部5を構成する。

固定側光ファイバ 1 の端面を精度良く揃えるた めに、接着固定後その端面を研削することもあ శ్త

[0016]

一方、コリメートレンズアレイ(グレーテッドインデ ックス光ファイバ型)8 は、次のようにして製作す

アレイ用基板 6 としてはシリコン、ジルコニア等 の基板3と同じ材料を用いることが出来る。

勿論、基板 3 にシリコンを使い、アレイ用基板に ジルコニアを使うという組み合わせも可能であ

アレイ用基板 6 上には固定倒光ファイバの配列 ピッチに合わせてアレイ用 V 溝 6a を形成する。

substrate 6 for array as for optical fiber, 8 of graded index type as for push plate, 9 collimator lens array of graded index optical fiber type, as for 10 it is a collimator lens of graded index optical fiber type.

[00]5]

In Figure 1, as for substrate 3 portion where V groove 3a was formedand portion where optical fiber introduction slot 3b was formed it is asone unit, but in order to oppose with separate body, adjusting mutual positional relationship, being a combination you are not concerned.

In case of Figure 1, on substrate 3 which consists of silicon. zirconia etc, inorder to oppose, lining up V groove 3a and optical fiber introduction slot 3b, multiple it forms with constant interval.

As for usually array pitch as for number when it becomes several hundred ismany with 250;mu m extent.

In addition, between V groove 3a and optical fiber introduction slot 3b theintersection slot 3c of cross section rectangular is formed in vertical direction.

In addition, in groove bottom 3d of intersection slot 3c hole 3 e for adhesive hardening which penetrates groove bottom multiple sites there arealso times when it provides in longitudinal direction of intersection slot 3d.

And, arranging endface in respective V groove 3a, as it inserts the stationary side optical fiber 1, holds down with push plate 4 fixing doing, configuration it doesarrangement section 5.

In order precision to arrange endface of stationary side optical fiber I well, there are also times when endface after fixing is done grinding.

[0016]

On one hand, collimator lens array (graded index optical fiber type) it produces 8, following way.

Same material as silicon, zirconia or other group board 3 is used as substrate 6 for array itis possible.

Of course, silicon is used in substrate 3, also combination thatis possible zirconia is used in substrate for array.

Adjusting to array pitch of stationary side optical fiber on substrate 6 for array, the V groove 6a for array is formed.

1999-11-5

アレイ用基板6のアレイ用7滞62と、基板3の V溝3aとの配列を相対的に精度良く製造するた め、基板 3 とアレイ用基板 6 を一つの基板材料 に平行に複数の溝を形成したものから、それぞ れ切り出す方法で作ることも可能である。

5087874730

[0017]

アレイ用 V 溝 6a にはそれぞれグレーデッドイン デックス型の光ファイバ 7 を挿入し、押さえ板 8 で押さえて接着固定する。

その後、両端面を研削してグレーデッドインデッ クス型の光ファイバ7がコリメートレンズとして機 能するように長さを調整し、コリメートレンズアレ イ9が完成する。

[0018]

このようにして製造したグレーデッドインデックス 光ファイバ型のコリメートレンズアレイは、コリメ ・トレンズの配列を固定側光ファイバ及び光フ ァイパ導入溝の配列と正確に合わせることが可 能で、かつ配列部を製造する技術がそのまま活 用出来るという利点を備えている。

このコリメートレンズアレイ9を固定倒光ファイバ 1 の端面に固定するに当たっては、コリメートレ ンズアレイ9に接着剤を塗布して横断溝3c内に 配置し、コリメートレンズアレイ 9 のファイバ軸と 固定側光ファイバ1のファイバ軸が一致するよう に位置調整をして、接着剤を硬化させて固定す る。

通常、コリメートレンズアレイ 9 のアレイ用基板 6、押さえ板 8、 溝底部 3d はシリコン、ジルコニア 等の不透明部材で構成されることが多いため、 接着剤としては紫外線硬化型接着剤はこのま までは使用し難い。

しかし、加熱型接着剤を使えば、上記のコリメー トレンズアレイと固定側光ファイバとの位置調整 を加熱時の熱応力歪みによって損なう心配があ る。

[0020]

· そこで、潜底部 3d の複数箇所の貫通した接着 剤硬化用孔 3e を設けて、その周辺に紫外線硬 化型樹脂を塗布して、コリメートレンズアレイ9を 配置し位置調整を行なった後、接着剤硬化用孔 3c の下方から紫外線を硬化しで接着剤を硬化 させてコリメートレンズアレイ9と溝底部 30 との 問を固定する。

In order precision to produce arrangement of V groove 6a for the array of substrate 6 for array and V groove 3a of substrate 3 relativelywell, substrate 3 and substrate 6 for array from those which formed slot of plural parallel to substrate material of one, also it ispossible to make with method which is cut respectively.

[0017]

It inserts optical fiber 7 of respective graded index type into V groove 6a for the array, holds down with push plate 8 and fixing does.

After that, grinding doing both end faces, in order optical fiber 7 of graded index type to function as collimator lens, you adjust length, collimator lens array 9completes.

[0018]

collimator lens array of graded index optical fiber type which produces in this way adjustsarrangement of collimator lens to arrangement of stationary side optical fiber and optical fiber introduction slot accurately, being possible, it has the benefit that it can utilize technology which at same time produces arrangement section that way.

[0019]

When this collimator lens array 9 is locked in endface of stationary side optical fiber 1, the coating fabric doing adhesive in collimator lens array, 9 it arranges inside theintersection slot 3c, in order for fiber axis of collimator lens array 9 and fiber axis of stationary side optical fiber 1 to agree, doing position adjustment, hardening the adhesive, it

Usually, substrate 6. push plate 8. groove bottom 3d for array of collimator lens array 9 configuration is donewith silicon, zirconia or other opaque component, because is many, it is difficult touse ultraviolet curing type adhesive this way as adhesive.

But, if heating type adhesive is used, there is worry which impairs position adjustment of above-mentioned collimator lens array and stationary side optical fiber with thermal stress distortion when heating.

[0020]

Then, providing hole 3 e for adhesive hardening which multiple sites of groove bottom 3d penetrates, coating fabric doing ultraviolet curing type resin in the periphery, after arranged collimator lens array 9 and doing position adjustment, hardening the ultraviolet light from lower of hole 3 e for adhesive hardening,hardening adhesive, collimator lens array it locks between 9 and groove bottom 3d.

1999-11-5

コリメートレンズアレイと溝底部間は全面的に接 着剤が硬化していなくても、接着剤硬化用孔の 周辺の接着剤が硬化するだけで十分である。

また併せて、コリメートレンズアレイ9と配列部5 との間にも紫外線硬化型接着剤を塗布して、上 方から紫外線を照射することによって、コリメートレンズアレイ9と配列部5との隙間に入り込む 紫外線によって接着剤を硬化させることも可能 である。

[0021]

可動側光ファイバ 2 の先端にもコリメーとレンズ 10 を固定するが、それは次のように行なう。

可動倒光ファイバ 2 の先端に同じ外径のグレーデッドインデックス型光ファイバを固定し、コリメートレンズ 10 として機能するように長さを調整する。

なお固定は、融着接続か接着によって行なう。

[0022]

以上のようにして、固定側光ファイバ1の配列部の端面にはコリメートレンズアレイ 9 が固定され、可動側光ファイバ2 の端面にはコリメートレンズ 10 が固定されるので、可動側光ファイバ2 を図示しない搬送機構によって搬送して所望の光ファイバ導入溝 3b に挿入した時には、コリメートレンズアレイ9のアレイ用光ファイバ7の端面とコリメートレンズ 10 の端面とが向き合って、対向する。

[0023]

この場合、固定側光ファイバ又は可動側光ファイバを伝わってきた光は、コリメートレンズの端面では広がった平行光となって出射されるので、ファイバ軸を合わせる位置調整は、固定側光ファイバと可動側光ファイバとを直接対向させる場合に比較してそれほど精度は要求されない。

また、 端面 周志の間隔を大きくしても光束が広がることはないので、 接合損失が増大することはない。

コリメートレンズとして長さ0.75mm 程度のものを使用する場合、コリメートレンズの間隔は 2mm程度にまで拡大することが可能で、間隔が0.15mm程度ずれても結合損失は0.2dB以下に抑えることが可能である。

従って、位置調整に要する手間は少なくなる。

extensively adhesive not having hardened collimator lens array and between groove bottom, the adhesive of periphery of hole for adhesive hardening just hardens is the fully.

In addition together, collimator lens array coating fabric doing ultraviolet curing type adhesive even between 9 and arrangement section 5, collimator lens array also it ispossible it irradiates ultraviolet light from upward direction with, toharden adhesive with ultraviolet light where enters into gap of 9 andarrangement section 5.

[0021]

coli — and lens 10 are locked even in tip of the moving side optical fiber 2, but following way it does that.

graded index type optical fiber of same outer diameter to tip of moving side optical fiber 2 is locked, inorder to function as collimator lens 10, length is adjusted.

Furthermore fixing does with melt adhesion connection or glueing.

[0022]

Like above, collimator lens array 9 to be locked by endface of arrangements ection of stationary side optical fiber 1, because collimator lens 10 is locked to endface of the moving side optical fiber 2, conveying moving side optical fiber 2 with unshown transport mechanism, when inserting in desired optical fiber introduction slot 3b, endface of optical fiber 7 for array of collimator lens array 9 and endface of collimator lens 10 to face, it opposes.

[0023]

In this case, because light which is transmitted is done, with the endface of collimator lens becoming parallel light which spread, radiation, as for position adjustment which adjusts fiber axis, when it opposes directly, comparing stationary side optical fiber and moving side optical fiber, as for precision it is not required stationary side optical fiber or moving side optical fiber that much.

In addition, enlarging spacing of endface, because there are nottimes when light flux spreads, there are not times when connecting lossincreases.

When those of length 0.75 mm extent are used as collimator lens, spacing of collimator lens it expands to 2 mm extent being possible, spacing slipping, 0.15 mm extent holds down bonding loss to 0.2 dB or less, it is possible.

Therefore, labor which is required in position adjustment decreases.

1999-11-5

[0024]

なお、コリメートレンズアレイ 9 の端面とコリメー トレンズ 10 の端面との間には、空気との反射を なくするために屈折率整合剤が満たされるが、 それを省略するため、コリメートレンズアレイ 9 の端面とコリメートレンズ 10 の端面にそれぞれ 誘電体多層膜による反射防止膜を形成すること もある。

[0025]

また、図 3 はコリメートレンズアレイの位置調整 をダミー用光ファイバを使って行なう例を示す図 であって、図1と同じ符号は同じものを示す。

なお、図 3(A)はコリメートレンズアレイを固定す る前の斜視図、図 3(B)はコリメートレンズアレイ 固定後の斜視図である。

また、13 はダミー用光ファイバを示す。

この例ではコリメートレンズアレイの位置調整に 先立ち、光ファイバ導入溝 3b の一部の溝内に 固定側光ファイバと同じシングルモード型光ファ イバからなるダミー用光ファイバ 13 の先端部を 挿入して接着固定する。

なおこの接着固定に当たっては、図示しない押 さえ板を使うことも可能である。

またダミー用光ファイバ 13 の端面位置は、可動 側光ファイバ2を光ファイバ導入溝36の挿入し た時に可動倒光ファイバ2の端面の位置する箇 所と合わす。

[0026]

そうしておいて、コリメートレンズアレイ 9 を横断 溝 3c 内に配置し、ダミー用光ファイバ 13 と固定 側光ファイバ I との間の光結合の状態を監視し ながら、結合損失が最小になる位置にコリメート レンズアレイ9を位置調整してコリメートレンズア レイ9を配列部 5 の端面又は溝底部 3d に接着 固定する。

なお、ダミー用光ファイバ 13 の挿入位置は、光 ファイバ導入溝3bの配列両端あるいは、両端と 中央等、位置調整の基準となる箇所を選べば

また、ダミー用光ファイバ 13 を接着した位置の 光ファイバ導入講 3b は、光スイッチの結合には 使用しない。

[0027]

図2は本発明にかかる光スイッチの結合部の別 の実施形態を示す図であって、図 2(A)はコリメ

[0024]

Furthermore, in endface of collimator lens array 9 and between endface of collimator lens 10, refractive index matching medicine is filled up in order to lose thereflection of air, but in order to abbreviate that, there arealso times when in endface of collimator lens array 9 and endface of the collimator lens 10 antireflective film is formed with respective dielectric multilayer film.

[0025]

In addition, as for Figure 3 in figure which shows example which using optical fiber for dummy, does position adjustment of collimator lens array, same symbol as Figure 1 shows same ones.

Furthermore, as for Figure 3 (A) before locking collimator lens array, oblique view, Figure 3 (B) is oblique view after collimator lens array locking.

In addition, 13 shows optical fiber for durany.

With this example it precedes position adjustment of collimator lens array, as stationary side optical fiber it inserts tip portion of optical fiber 13 for dummy which consists of thesame single mode type optical fiber in groove of portion of optical fiber introduction slot 3b and fixing does.

Furthermore also it is possible to use unshown push plate, at time of this fixing.

In addition when optical fiber introduction slot 3b inserts moving side optical fiber 2, the position of endface of moving side optical fiber 2 it adjusts endface position of optical fiber 13 for dummy, to site which is done.

[0026]

So doing, while arranging collimator lens array 9 inside intersection slot 3c, watching optical fiber 13 for dummy and state of optical coupling between stationary side optical fiber 1, position adjustment doing collimator lens array 9 in position where bonding loss becomes minimum, fixing it designates collimator lens array 9 as endface or groove bottom 3d of arrangement section 5.

Furthermore, insertion position of optical fiber 13 for durany, it chooses, the site which such as arrangement both ends becomes reference of position adjustment or both ends and center of optical fiber introduction slot 3b, is good.

In addition, as for optical fiber introduction slot 3b of position whichglues optical fiber 13 for dummy, you do not use for connection of optical switch.

[0027]

As for Figure 2 in figure which shows another embodiment of bonding section of optical switch which depends on this

1999-11-5

ートレンズアレイを固定する前の斜視図、図2(B)(C)はコリメートレンズアレイを固定した後の斜視図と断面図である。

5087874730

図 2 において、図 1 と同じ符号は同じものを示す。

なお、11 はマイクロレンズ型のコリメートレンズ アレイ、IIa はアレイベース部材、IIb はレンズ 部で、12 はマイクロレンズ型のコリメートレンズ である。

[0028]

図 2 の実施形態は、コリメートレンズアレイ及び コリメートレンズが図 1 の実施形態と異なるだけ で、他は概略図 1 と同じである。

この図 2 の実施形態で使うコリメートレンズアレイは、プラスチックまたはガラスをアレイベース 部材 11a として、その中の一部分にレンズ部 11b を形成する。

レンズ部 11b は固定側光ファイバの蟠面から出た光を平行光とするレンズ機能を持つようにレンズの曲面設計を行いそれに合わせた金型を作ってプラスチックで成形するか、ガラスの面を研磨してレンズ状に加工するかして製作する。

また、可動側光ファイバ2の先端に固定されるコリメートレンズは、ガラス又はプラスチックをレンズ状に成形加工して可動側光ファイバの端面から出た光を平行光になるように焦点距離を合わせて製作し、接着剤等を用いて可動側光ファイバの先端に固定する。

[0029]

また、図 1、図 2、図 3 で図示した基板 3 は、固定側光ファイパを固定するための V 溝3aを形成した部分と、可動側光ファイパ2 が挿入される光ファイパ源入溝3bを形成した部分が一体化されているが、別体で製作し組み合わせて使うことを妨げるものではない。

勿論一体化した基板を用いて、V 溝 3a と光ファイバ導入溝 3b を一連で切削加工すれば、V 溝 3a と光ファイバ導入溝 3b の相対配列箱度を高める上で効果がある。

[0030]

【発明の効果】

本発明の光スイッチの結合部は、複数の固定側光ファイバを配列固定した配列部の固定側光

invention, as for Figure 2 (A) beforelocking collimator lens array, oblique view. Figure 2 (B) (C) after locking collimator lens array, is the oblique view and sectional view.

In Figure 2, same symbol as Figure 1 shows same ones.

Furthermore, as for 11 collimator lens array of microlens type, as for 11 a asfor array base member, 11b with lens part, as for 12 it is a collimator lens of microlens type.

[0028]

As for embodiment of Figure 2, collimator lens array and collimator lens just differ from embodiment of Figure 1, as for other things are same as the conceptual diagram 1.

collimator lens array which is used with embodiment of this Figure 2 forms the lens part 11b in portion among those with plastic or glass as array base member 11a.

lens part 11b as had lens function which designates light which comes out of endface of stationary side optical fiber as parallel light, designs lens curved surface andmaking die which is adjusted to that, forms with plastic, orgrinds surface of glass and processes in lens shape, or does and produces.

In addition, collimator lens which is locked to tip of moving side optical fiber 2, the glass or plastic molding and fabrication is designated as lens shape and lightwhich comes out of endface of moving side optical fiber in order to become the parallel light, to produce focal length together, is locked in tip of the moving side optical fiber making use of adhesive etc.

[0029]

In addition, as for substrate 3 which is illustrated with Figure 1. Figure 2. Figure 3, the portion which formed optical fiber introduction slot 3b where portion and moving side optical fiber 2 which formed V groove 3a in order to lock stationary side optical fiber are inserted is unified, it is not something where, but it produces with separate body and combines and uses and obstructs.

If being consecutive, cutting it does V groove 3a and optical fiber introduction slot 3b making use of substrate which is unified of course, when raising relative arrangement precision of V groove 3a and optical fiber introduction slot 3b, there is an effect.

100301

[Effects of the Invention]

When bonding section of optical switch of this invention stationary side optical fiber and each optical axis locks

ファイバの端面側に固定側光ファイバと各光軸を合わせてコリメートレンズアレイを固定し、可動側光ファイバの端面にもコリメートレンズを固定して、可動側光ファイバを光ファイバ源入溝へ挿入した時には、可動側光ファイバの端面に固定したコリメートレンズと固定側光ファイバのの列部の端面に固定したコリメートレンズアレイののコリメートレンズとが、対向して結合を行なうものであるので、対向するコリメートレンズを出た光東は光ファイバ内の光束よりも広がった平行光となっている。

5087874730

[0031]

従って、対向するコリメートレンズ間の問隔も大きくすることが可能で、かつファイバ軸の位置調整の特度も緩和されるので、可動側光ファイバの位置調整に要する作業時間が短縮出来るという効果を奏することが出来る。

なお、コリメートレンズアレイは複数個のコリメートレンズを有するものが一括して製造可能であり、コリメートレンズを固定側光ファイバの端面に個々に固定する場合に比較して光スイッチの結合部の製作が容易である。

[0032]

また、コリメートレンズアレイとして、アレイ用基板に形成したアレイ用V満内にグレーデッドインデックス型光ファイバを挿入固定したものを使用すれば、固定側光ファイバの配列部を作成する技術がそのまま応用することが可能で、かつ配列ピッチを含わせることも容易である。

[0033]

また、コリメートレンズアレイを設置する横断溝 の溝底部に接着剤硬化用孔を設けておけば、コ リメートレンズアレイを固定する接着剤として蒸 外線硬化型接着剤の使用が可能となり、接着 時の熱応力歪み等によって位置調整が損なわ れることはない。

[0034]

また、光ファイバ導入溝の一部にダミー用光ファイバの先端部を挿入固定して、コリメートレンズアレイを横断溝内に設置する時の位置調整に利用すれば、位置調整が容易に出来るという効果がもたらされる。

【図面の簡単な説明】

[図1]

1999-11-5

collimator lens array together in edge surface side of stationary side optical fiber of thearrangement section which it arranges locks stationary side optical fiber of plural locks collimator lens even in endface of moving side optical fiber, inserting moving side optical fiber to optical fiber introduction slot, collimator lens of collimator lens array which locks in endface of thearrangement section of collimator lens and stationary side optical fiber which are locked in the endface of moving side optical fiber opposing, because it is something which connects, light flux which comes out of collimator lens which opposes has become the parallel light which spread in comparison with light flux inside optical fiber.

[0031]

Therefore, it enlarges also spacing between collimator lens which opposesbeing possible, at same time because also precision of the position adjustment of fiber axis is eased, it possesses effect that it canshorten work time which it requires in position adjustment of moving side optical fiber, it ispossible.

Furthermore, as for collimator lens array those which possess collimator lens of the plurality lumping together, when with producible, it locks collimator lens individually in endface of stationary side optical fiber, comparing, production of the bonding section of optical switch is easy.

[0032]

In addition, if those which it inserts lock graded index type optical fiber inside V groove for array which was formed in substrate for array as collimator lens array, are used, also it is easy technology which draws up thearrangement section of stationary side optical fiber to apply that way possible being, atsame time to adjust array pitch.

[0033]

In addition, if hole for adhesive hardening is provided in groove bottom of intersection slot which installs collimator lens array, use of ultraviolet curing type adhesive becomes possible as adhesive which locks collimator lens array, position adjustment isimpaired with such as thermal stress distortion when glueing there are not times when.

F0034

In addition, inserting locking tip portion of optical fiber for dummy inportion of optical fiber introduction slot, when installing collimator lens arrayin intersection groove, if it utilizes in position adjustment, effectthat is brought it can make position adjustment easy.

[Brief Explanation of the Drawing(s)]

[Figure 1]

1999-11-5

本発明にかかる光スイッチの結合部の実施形態を示す図であって、(A)はコリメートレンズアレイを固定する前の斜視図、(B)(C)はコリメートレンズアレイを固定した後の斜視図と断面図である。

[図2]

本発明にかかる光スイッチの結合部の別の実施形態を示す図であって、(A)はコリメートレンズアレイを固定する前の斜視図、(B)(C)はコリメートレンズアレイを固定した後の斜視図と断面図である。

[図3]

本発明にかかる光スイッチの製造方法の一例を説明する図であって、(A)はコリメートレンズアレイを固定する前の斜視図、(B)はコリメートレンズアレイを固定した後の斜視図である。

【図4】

従来技術による光スイッチの結合部の例を示す 図であって、(A)は断面図、(B)は斜視図である。

【符号の説明】

1

固定側光ファイバ

10

コリメートレンズ(グレーデッドインデックス光ファイバ型)

11

コリメートレンズアレイ(マイクロレンズ型)

11a

アレイベース部材

116

レンズ部

12

コリメートレンズ(マイクロレンズ型)

13

ダミー用光ファイバ

1a

テープ心線

2

In figure which shows embodiment of bonding section of optical switch whichdepends on this invention, as for (A) before locking collimator lens array, the oblique view. (B) (C) after locking collimator lens array, is oblique view and sectional view.

[Figure 2]

In figure which shows another embodiment of bonding section of optical switch which depends on this invention, as for (A) before locking collimator lens array, oblique view.

(B) (C) after locking collimator lens array, is oblique view and sectional view.

[Figure 3]

In figure which explains one example of manufacturing method of optical switch whichdepends on this invention, as for (A) before locking collimator lens array, the oblique view. (B) after locking collimator lens array, is oblique view.

[Figure 4]

In figure which shows example of bonding section of optical switch with Prior Art, as for (A) as for sectional view. (B) it is a oblique view.

[Explanation of Symbols in Drawings]

1

stationary side optical fiber

10

collimator lens (graded index optical fiber type)

11

collimator lens array (microlens type)

11 a

array base member

116

lens part

12

collimator lens (microlens type)

13

optical fiber for dummy

1 a

tape core

2

Page 16 Paterra Instant MT Machine Translation

5087874730

1999-11-5

可動側光ファイバ	moving side optical fiber
3	3
基板	Substrace
3a .	3 a
V溝	V groove
3b	3 b
光ファイバ導入溝	optical fiber introduction slot
3c	3 c
横断潾	Intersection slot
3d	3 d
溝底部	groove bottom
3c	3 c
接着剤硬化用孔	Hole for adhesive hardening
4	4
押さえ板	push plate
5	5
配列部	Arrangement section
6	6
アレイ用基板	substrate for array
6a	6 a
アレイ用 V 溝	V groove for array
7	7
グレーデッドインデックス型の光ファイバ	optical fiber of graded index type
8	8
押さえ板	push plate
9	9
コリメートレンズアレイ(グレーデッドインデックス 光ファイバ型)	collimator lens array (graded index optical fiber type)
Drawings	
【図1】	[Figure 1]
	•

Page 17 Paterra Instant MT Machine Translation

(A

(B)

1999-11-5

【図2】

[Figure 2]

Page 18 Paterra Instant MT Machine Translation

20/21

JP1999305151A

(A) (B).

1999-11-5

[8图] (a)

[Figure 3]

(B)

【図4】

[Figure 4]

Page 19 Paterra Instant MT Machine Translation

1999-11-5

(A)

(B)

Page 20 Paterra Instant MT Machine Translation