2006级一元微积分期 考恩 (A) 等家

一. 填空愿 (每空 3 分, 共 15 空) (请将答案直接填写在横线上!)

1.
$$\lim_{x \to +\infty} \frac{e^{-x^2 - x}}{x} \int_0^x t^2 e^{t^2} dt = \frac{\int_0^x \int_0^x t^2 e^{t^2} dt}{x} = \lim_{x \to +\infty} \frac{e^{-x^2 - x}}{x} \int_0^x t^2 e^{t^2} dt = \lim_{x \to +\infty} \frac{\int_0^x t^2 e^{t^2} dt}{x} = \frac{1}{2}$$

答案: 令
$$x-t=u$$
, $F(x)=\int_{x}^{\cos x} f(x-t)dt$, 则 $F'(x)=\frac{f(x)-(1+\sin x)+f(x-\cos x)}{f(u)du}$, $F'(x)=f(x)-(1+\sin x)f(x-\cos x)$.

3.
$$\int (\sin x^3 + \sqrt{1 - x^2}) dx = \frac{\pi}{2}$$
 答案: $\frac{\pi}{2}$

4.
$$\int x \ln x dx = \frac{1}{2} \frac{x^2 \ln x - \frac{x^2}{4} + C}{2 \ln x - \frac{x^2}{4} + C}$$

5.
$$\int_{0}^{+\infty} \frac{dx}{1+e^{x}} = \frac{\ln \frac{e^{x}}{1+e^{x}}}{\ln \frac{e^{x}}{1+e^{x}}} = \ln \frac{e^{x}}{1+e^{x}} = \ln 2.$$

6.
$$\int \frac{1}{x^2} \sin \frac{1}{x} dx = \frac{\cos \frac{1}{x} + C}{\cos \frac{1}{x} + C}$$
答案: $\cos \frac{1}{x} + C$.

7. 当
$$p$$
的取值范围为 $\frac{\left(\left|\right|,^{2}\right)}{\prod_{i=1}^{p}}$ 时,广义积分 $\int_{1}^{\infty}\frac{dx}{x^{p}(x-2)^{p-1}}$ 收敛。 答案: 1

8. 设幂级数
$$\sum_{n=1}^{+\infty} \frac{(x-a)^n}{n}$$
 在点 $x = 2$ 收敛,则 a 的取值范围为 $(1,3)$. 答案: $1 < a \le 3$

级数
$$\sum_{n=1}^{\infty} \frac{(x-a)^n}{n}$$
 的收敛半径为1,收敛域为 $[a-1,a+1)$, $a+1>2 \ge a-1$, $1 < a \le 3$

9. 若广义积分
$$\int_0^{+\infty} \frac{\ln(1+x)}{x^p} dx$$
 收敛,则参数 p 的范围为 $(1,2)$. 答案: 1

10. 幂级数
$$\sum_{n=0}^{\infty} \frac{n+1}{2^{n+1}} x^{2n+1}$$
 的收敛半径是 $\sqrt{2}$

11.
$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln(1+n)}{1+n}$$
 是收敛还是发散? 全件 (填绝对收敛,条件收敛或发散)。答案: 条件收敛。 3^n 、

13. 级数
$$\sum_{n=1}^{+\infty} \frac{\sqrt{n!}}{n!}$$
 是收敛还是发散? ______ (填上收敛或发散)。 答案: 收敛。

$$\frac{\frac{\sqrt{n!}}{n^{\frac{1}{2}}}}{\frac{\sqrt{(n+1)!}}{(n+1)^{\frac{(n+1)!}{2}}}} = \sqrt{n+1} \frac{n^{\frac{n}{2}}}{(n+1)^{\frac{(n+1)!}{2}}} = \left(\frac{n}{n+1}\right)^{\frac{n}{2}} \to e^{\frac{1}{2}}$$

14. 方程
$$\begin{cases} \frac{dy}{dx} - 2y = 1 & y = -\frac{1}{2} + \frac{1}{2}e^{xX} \\ y(0) = 0 \end{cases}$$
 答案: 通解为 $y(x) = ce^{2x} - \frac{1}{2}$, 代入初值 $y(x) = \frac{1}{2}(e^{2x} - 1)$.

方程
$$\frac{dy}{dx} - y = y^2$$
 的通解为______。 答案: $y = \frac{1}{C\bar{e}^x - 1}$ 以及 $y = 0$.

$$1. \Re \int_{0}^{1} \frac{\arcsin \sqrt{x}}{\sqrt{x}(1-x)^{1-x}} dx.$$

$$=2\int_{0}^{1} \arcsin\sqrt{x} \ d\left(\arcsin\sqrt{x}\right) = \left(\arcsin\sqrt{x}\right)_{0}^{1} = \left(\frac{\pi}{2}\right)^{2} \qquad 4+2+2 = 8 \ \text{f}$$

2. 计算上半心形线:
$$\begin{cases} x = a(1 + \cos \theta) \cos \theta \\ y = a(1 + \cos \theta) \sin \theta \end{cases}, \quad 0 \le \theta \le \pi, \quad \text{绕 x 轴旋转一周所得到的旋转体的体积 } V.$$

$$\mathcal{H}: \qquad dx = -a[(1+\cos\theta)\sin\theta + \cos\theta\sin\theta]d\theta \qquad \qquad 2 \, \mathcal{H}$$

所以
$$V = \int_0^{\pi} \pi y^2(\theta) dx(\theta) = \pi a^3 \int_0^{\pi} (1 + \cos \theta)^2 \sin^2 \theta (1 + 2\cos \theta) d(\cos \theta) = 3 + 2 = 5$$

$$=\pi a^{3} \int_{-1}^{1} (1+t)^{2} (1-t^{2})(1+2t)dt = \frac{8}{3}\pi a^{3}$$

 $\sum_{n=1}^{\infty} n(x+1)^{n-1}$ (-2,0) 3. 将函数 $f(x) = \frac{1}{x^2}$ 展开成 x+1 的幂级数、求该幂级数的收敛域、并求幂级数 $\sum_{n=1}^{\infty} n^2(x+1)^n$ 的和函数。

$$\exists x : \frac{-1}{x} = \frac{1}{1 - (x + 1)} = \sum_{n=0}^{\infty} (x + 1)^n , (|x + 1| < 1),$$

此幂级数的收敛域为(-2,0)。

进而
$$\frac{x+1}{x^2} = \sum_{n=1}^{\infty} n(x+1)^n$$
 ,再两边求导即得: $\frac{-1}{x^2} - \frac{2}{x^3} = \sum_{n=1}^{\infty} n^2 (x+1)^{n-1}$,

$$\begin{cases} \frac{d^2y}{dx^2} = 2y(y-a)(2y-a), & 0 < x < +\infty, \\ y(0) = 1, \ y'(0) = \sqrt{2}(1-a), \end{cases}$$

解:
$$\diamondsuit \frac{dy}{dx} = p(y)$$
,则 $\frac{d^2y}{dx^2} \frac{dp}{dy} \frac{dy}{dx} = \frac{dp}{dy} p$

再积分
$$\frac{dy}{dx} = \sqrt{2}y(y-a)$$
, 得到

$$\sqrt{2x} = \int \frac{dy}{y(y-a)} = \frac{1}{a} \left(\ln \left| \frac{y-a}{y} \right| + C \right), \qquad (4.5)$$

进一步整理得到
$$y(x) = \frac{a}{1 + (\alpha - 1)e^{\sqrt{2}ax}}$$
.

1. (8分) 设 f(x) 在[a,b]上连续, 且单调增, 求证

$$\int_{a}^{b} xf(x) dx \ge \left(\frac{a+b}{2}\right) \int_{a}^{b} f(x) dx$$

证明: 证法一: 记 $F(b) = \int_a^b x f(x) dx$, $G(b) = \left(\frac{a+b}{2}\right) \int_a^b f(x) dx$, 则

$$F(a) = G(a)$$

证法二:
$$\int_{a}^{b} xf(x) dx - \left(\frac{a+b}{2}\right) \int_{a}^{b} f(x) dx = \int_{a}^{b} \left(x - \frac{a+b}{2}\right) f(x) dx$$

$$= \int_{a}^{\frac{a+b}{2}} \left(x - \frac{a+b}{2}\right) f(x) dx + \int_{\frac{a+b}{2}}^{b} \left(x - \frac{a+b}{2}\right) f(x) dx$$

$$= f(\xi_1) \frac{a-b}{2} + f(\xi_2) \frac{b-a}{2},$$
4 \(\frac{a+b}{2}\)

其中
$$\xi_1 \in \left[a, \frac{a+b}{2}\right]$$
, $\xi_2 \in \left[\frac{a+b}{2}, b\right]$. 因为 $f(x)$ 单调增, $f(\xi_1) \leq f(\xi_2)$, 故

$$\int_{a}^{b} x f(x) dx \ge \left(\frac{a+b}{2}\right) \int_{a}^{b} f(x) dx \qquad ... 25$$

(2.)(7分) 设
$$f \in C^1[0,+\infty)$$
 且 $\iint_0^{\infty} f(x) + |f'(x)| dx$ 收敛, 求证 $\lim_{x \to +\infty} f(x) = 0$,

证明:由已知 $\int f'(x)dx$ 绝对收敛,从而收敛,所以

$$\lim_{A \to +\infty} f(A) = f(0) + \lim_{A \to +\infty} \int_{0}^{A} f'(x) dx = f(0) + \int_{0}^{+\infty} f'(x) dx \, \tilde{A} \, \tilde{A} \, . \tag{3.5}$$

如果 $\lim_{x \to +\infty} f(x) = 0$. 不妨令 $\lim_{x \to +\infty} f(x) = a > 0$. 则由极限保序性

 $\exists M>0$,使得 $x\geq M$ 之后 $f(x)\geq a/2$,从而 $\forall K>M$

$$\int_{0}^{+\infty} f(x) dx \ge \int_{M}^{K} f(x) dx \ge \frac{a}{2} (K - M)$$

高等微积分 B 期末试题(2008年1月11日)(A)

- 1. 坑空池(直接填在横线上)(4分/小翘)
- 1). 设交情级数 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ 条件收敛、则 $\lim_{n\to\infty} \sum_{k=1}^{n} u_{2k} = -\infty$ 。
- 2). $f' \times \theta(f) \int_{10}^{r} \frac{dx}{x'' \ln^q x(\ln \ln x)'} dx = p > 1 \text{ su}(p = 1 \text{ H.} q > 1) \text{ su}(p = q = 1 \text{ H.} r > 1) \text{ substitution}$
- 3). $\partial_t A_n = \{x \mid x \in \mathbb{T}, \exists 1x < n, \exists 1x = n, \exists 1, \vec{x}\}, \rho(n) \exists 1x = n, \exists 1x \neq n$

 $\lim_{n\to\infty} \sqrt[n]{\varphi(n)} = 1$

4). 叙述函数繁曼可积的e- δ 定义。函数f(x)在区间[a,b]可积是指

∃/ ∈ ¯ ∀ε > 0∃δ > 0 对于[a,b]的任意划分T = {x_k}_{k=n}∀ξ_k ∈[x_{k-1},x_k]

 $(\lambda_{\tau} < \delta \Rightarrow \mid \sum_{k=1}^{\infty} f(\zeta_k) \Delta x_k - I \mid < \varepsilon).$

- 2. 选择题 (直接填在括号内) (3 分/小题)
- 1). 设级数 $\sum_{n=1}^\infty u_n$ 绝对收敛, $\sum_{n=1}^\infty v_n$ 条件收敛,则级数 $\sum_{n=1}^\infty (u_n+v_n)$ 的级版情况是[B].

A. 绝对收敛;
C. 收敛但不能用定是绝对收敛还是条件收敛; D. 不能判断是否收敛

2)、己知强级最 $\sum_{n=0}^\infty a_n x^n$, $\sum_{n=0}^\infty b_n x^n$ 的收敛半径分别是 $R_1>0,R_2>0$,则下列关于强权数

 $\sum_{n=0}^{\infty}(a_n+b_n)x^n$ 的收敛半径R 的叙述中正确的是 $[D]_{oldsymbol{s}}$

A. $R < \min(R_1, R_2)$:

B. $R = \min(R_1, R_2)$

C. $R > \min(R_1, R_2)$:

D A, B, C 都不一定成立。

- 3). 下列陈述中,正确的是[C]。
- A. 若级粒 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ 条件收敛,则级数 $\sum_{n=1}^{\infty} u_n$ 发散:

- B. 若函数 f(x) 在区间[a,b]黎曼可积,则函数 $\int_{\mathbb{R}}^{\infty} f(t)dt$ 在区间[a,b]可分。
- C. 正项级数收敛的充要条件是: 以某种方式加括号后所得限数收敛;
- D. 若广义积分 [** f(x) dx 收敛,则广义积分 [**] f(x) dx 收沒
- 收敛于[B]

(A)
$$\pi^2 - 1$$
; (B) $\frac{1 + \pi^2}{2}$; (C) 1; (D) $\frac{1}{2}$.

- 3. 判断题:指出下列陈述是否证确,并简述理由(存正确、给出简要证明:存信误、存出反例)(5 分/小题,其中判断 2 分,简述 3 分。简述理由不需要证明的细节、主要看学生对于 语言表达混乱 1-2 分,一无是处或毫无意义的陈述 0 分)。 知识的理解是否正确到位。切中要点就可以给3分、相关但有明显概念应逻辑上的混乱、或
- 1). 若兩数f(x) 在区间 [a,b],[b,c] 都一致连续、则在区间[a,c]一致连续

证法 2 $\forall \varepsilon > 0$,因为 f(x) 在区间 [a,b] 。我连续,所以 证法1 因为在区间 [a, b]、[b, e]连续,所以在区间[a, e]连续,所以在区间[a, e]三致连续。

 $\exists \delta_i > 0 \forall x, t \in [a, b] (|x - t| < \delta_i \Rightarrow |f(x) - f(t)| < \varepsilon/2)$

因为 f(x) 在区间 [b, c] 致连续、所以

 $\exists \delta_2 > 0 \forall x, t \in [b, c] (|x - t| < \delta_2 \Rightarrow |f(x) - f(t)| < \varepsilon/2)$

 $\delta = \min(\delta_1, \quad \delta_2). \quad \forall x, t \in [a, c] \quad \text{``} |x - t| < \delta \text{ ind }.$

- ① $x,t \in [a,b]$,因为 $|x-t| < \delta \le \delta_1$,所以 $|f(x)-f(t)| < \epsilon/2 < \epsilon$
- ② $x,t \in [b,c]$,因为 $|x-t| < \delta \le \delta_2$,所以 $|f(x)-f(t)| < \varepsilon/2 < \varepsilon$

 $|t-b| \le |x-t| < \delta \le \delta$, $|f(t)-f(b)| < \varepsilon/2$

从而有 $|f(x)-f(t)| < \varepsilon$.

 $(1) t \in [a,b]$, $x \in [b,c]$ 时与③同州可证。

2)、 若级程 $\sum_{n=0}^\infty a_n x^n$ 在区间 [a,b]收敛、则级数 $\sum_{n=1}^\infty na_n x^{n-1}$ 在区间 [a,b]也收敛

計。例如级数
$$\sum_{n=0}^{\infty} \frac{x^n}{n+1}$$
 在[-1, 0] 收敛,但级数 $\sum_{n=1}^{\infty} \frac{nx^{n-1}}{n+1}$ 在 $x=-1$ 发散。

3). 得用的数数
$$\sum_{n=1}^\infty u_n$$
 收敛, $\forall n$ 有 $v_n > 0$ 出 $\frac{v_{n+1}}{v_n} \leq \frac{u_{n+1}}{u_n}$, 则级数 $\sum_{n=1}^\infty v_n$ 收敛。

正确。因为对于任意
$$n>1$$
有 $\frac{\nu_n}{\nu_{n-1}}\cdots\frac{\nu_2}{\nu_1}\leq \frac{u_n-\cdots\frac{\mu_2}{\nu_1}}{u_1}$,从而 $\nu_n'\leq \frac{\nu_1}{u_1}u_n'$ 。
4)、若两双 $f(x)$ 在区间 $[a,b]$ 上黎曼可积、则函数 $f(x)$ 在 $[a,b]$ 上只有有限多个问题点

错。例如祭是函数
$$f(x) = \begin{cases} 1 & \exists x = \frac{q}{p} (既约分数); \\ p & p \end{cases}$$
 在区间[0.1]可积,但有光彩多个间 $0 & \exists x \in \mathbb{R}$

断点,有理点都是问断点。

正明
$$\forall \varepsilon > 0$$
,度 $|\frac{\ln n}{n} - 0| < \varepsilon$,只要 $\ln n < n\varepsilon$,只要 $e^{\ln n} < e^{n\varepsilon}$,即只要 $n < \left(e^{\varepsilon}\right)^n$.

$$|\Re |\operatorname{UV} | \forall \varepsilon > 0 \exists \mathcal{N} = \max(2, \big[\frac{2}{(e^\varepsilon - 1)^2}\big]) \forall n > \mathcal{N} \, | \, \frac{\ln n}{n} - 0 \, | < \varepsilon \, , \quad |\Re |\operatorname{UV} \lim_{n \to \infty} \frac{\ln n}{n} = 0 \, ,$$

5 (12分). 将南航 $f(x) = \sin ax \, \mathcal{L}[0, \pi]$ 展开为余弦级数。

$$\begin{array}{lll} W & 1) & \overset{n_1}{\sim} a \not\in & \overset{\|\cdot\|_{-}}{\sim} \\ a_{,i} & = \frac{2}{\pi} \int_{0}^{\pi} \sin ax \cos nx dx = \frac{1}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} \sin ax \cos(nx dx) = \frac{1}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} \sin ax \cos(nx dx) = \frac{1}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} \sin ax \cos(nx dx) = \frac{1}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} \sin ax \cos(nx dx) = \frac{1}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} \sin ax \cos(nx dx) = \frac{1}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} \sin ax \cos(nx dx) = \frac{1}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a-n)x + \sin(a-n)x) dx \\ & & = \frac{2}{\pi} \int_{0}^{\pi} (\sin(a-n)x + \sin(a$$

$$= \frac{1}{\pi} \left(-\frac{\cos(a+n)x}{a+n} - \frac{\cos(a-n)x}{a-n} \right)_0^{\tau} = \frac{1}{\pi} \left(\frac{1-\cos(a+n)\pi}{a+n} + \frac{1-\cos(a-n)\pi}{a-n} \right)$$

$$= \frac{1}{\pi} \left(\frac{1-(-1)^n \cos a\pi}{a+n} + \frac{1-(-1)^n \cos a\pi}{a-n} \right) = \frac{2a}{\pi} \frac{1-(-1)^n \cos a\pi}{a^2-n^2}.$$

$$f(x) = \frac{1 - \cos a\pi}{\pi a} + \sum_{n=1}^{\infty} \frac{2a}{\pi} \frac{1 - (-1)^n \cos a\pi}{a^2 - n^2} \cos nx.$$

2) ${}^{4}\!\!1 a \in \mathbb{R}^{4}, \ a_{n} = \frac{2}{\pi} \int_{0}^{\pi} \sin ax \cos nx dx = \frac{1}{\pi} \int_{0}^{\pi} (\sin(a+n)x + \sin(a-n)x) dx.$

因为当 k 为奇数时, $\int_0^\pi \sin kx dx = \frac{2}{k}$; 当 k 为即 数时, $\int_0^\pi \sin kx dx = 0$, 所 以 当 a 为 分数时, $a_{2n-1} = 0$, $a_{2n} = \frac{2}{a+2n} + \frac{2}{a-2n} = \frac{4a}{a^2-4n^2}$.

$$f(x) = \frac{2}{a} + \sum_{n=1}^{\infty} \frac{4a}{a^2 - 4n^2} \cos 2nx.$$

(10分)

当 a 为偶数时,
$$a_{2n} = 0$$
, $a_{2n-1} = \frac{2}{a+2n-1} + \frac{2}{a-2n+1} = \frac{4a}{a^2-(2n-1)^2}$

$$f(x) = \sum_{n=1}^{\infty} \frac{4a}{a^2 - (2n-1)^2} \cos(2n-1)x.$$

6(12分),证明零点存在定理。若函数f(x)在区间[a,b]七连续。f(a)/(b)<0、则存在

 $\xi \in (a,b)$ 使得 $f(\xi) = 0$ 。

证则 不妨设f(a) < 0, f(b) > 0. 以 $a_1 = a, b_1 = b, c_1 \le \frac{a_1 + b_1}{2}$.

 $\pi_1 f(c_1) > 0$, $\text{th } a_2 = a_1, b_2 = c_1; c_2 = \frac{a_2 + b_2}{2}$

依此进行下去。或者在某一步得证,或者得到区间负 $\{a_x,b_y\}$ 满之

 $\forall n f(a_n) < 0, f(b_n) > 0.$

因为函数 f(x) 在区间[a,b]上连续,所以

$$f(\xi) = \lim_{n \to \infty} f(a_n) \le 0; f(\xi) = \lim_{n \to \infty} f(b_n) \ge 0.$$

从前有 $f(\xi)=0$.

------(12分)

7(12分)。求深级数
$$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$
的和。

$$\{P_i: j: 1\} \sum_{n=0}^{\infty} \frac{X^n}{n!} = e^x, x \in (-\infty, +\infty);$$

$$|| \mathcal{J}_{k}(f)| \ (i \sum_{n=0}^{\infty} \frac{(-x)^{n}}{n!} = e^{-x}, x \in (-\infty, +\infty).$$

$$\{H_i | H_i : \sum_{n=1}^{r} \left(\frac{x^n}{n!} - \frac{(-x)^n}{n!} \right) = e^x - e^{-x}, x \in (-\infty, +\infty).$$

$$\lim_{n \to \infty} \sum_{n=1}^{\infty} (1 - (-1)^n) \frac{x^n}{n!} = e^x - e^{-x}, \quad \lim_{n \to 0} \sum_{n=1}^{\infty} \frac{2x^n}{(2n+1)!} = e^x - e^{-x},$$

$$|1,1|\sum_{n=1}^{\infty}\frac{x^{n}}{(2n+1)!}=\frac{e^{x}-e^{-x}}{2}.$$

-----(12分)

$$\{l; 2\} \quad |2| \sum_{n=n}^{\infty} \frac{x^{2n+1}}{(2n+1)!} = S(x).$$

逐项求计得,
$$\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} = S'(x).$$

$$4. \ln f(S'(x) + S(x) = e^x.$$

(4分)

使用。所线性非齐次常微分方料的解的公式
$$S(x) = e^{-\int dt} \left(\int e^x e^{+\int dt} dx + C \right) = e^{-x} \left(\frac{1}{2} e^{2x} + C \right).$$

国为
$$S(0) = 0$$
,所以 $C = -\frac{1}{2}$.

$$S(x) = \frac{e^x - e^{-x}}{2}.$$

8(二选一)(6分,方法正确或基本正确者 5-6分。方法倡员者 0-1分。方法倡误但步骤中 包含有创见的想法的 2-4 分,解答是否逻辑语是和简语流畅作为给分言动的标准)

1)证明级数
$$\sum_{n=1}^{\infty} \frac{\sin nx}{n}$$
 在 $(-\infty, +\infty)$ 不 至項信息

$$\text{if if if } \quad \exists \mathcal{E} = \frac{\sqrt{2}}{4} \, \forall N \in \mathbb{C} \, \exists n = N+1 > N \\ \exists m = 2(N+1) > N \\ \exists N = \frac{\pi}{4(N+1)} \in (-\infty, +\infty)$$

$$\left| \sum_{k=n+1}^{m} \frac{\sin kx}{k} \right| = \frac{\sin \frac{N+2}{4(N+1)} \pi}{N+2} + \frac{\sin \frac{N+3}{4(N+1)} \pi}{N+3} + \frac{\sin \frac{2(N+1)}{4(N+1)} \pi}{2(N+1)}$$

$$= \frac{\sin \frac{N+2}{4(N+1)} \pi}{N+2} + \frac{\sin \frac{N+3}{4(N+1)} \pi}{N+3} + \frac{\sin \frac{2(N+1)}{4(N+1)} \pi}{2(N+1)}$$

$$\geq \frac{\sin \frac{\pi}{4}}{N+2} + \frac{\sin \frac{\pi}{4}}{N+3} + \dots + \frac{\sin \frac{\pi}{4}}{2(N+1)}$$

$$\geq \frac{\sin \frac{1}{4}}{N+2} + \frac{\sin \frac{1}{4}}{N+3} + \dots + \frac{\sin \frac{1}{4}}{2(N+1)}$$

$$\geq \frac{\sqrt{2}}{2} \left(\frac{1}{N+2} + \frac{1}{N+3} + \dots + \frac{1}{2(N+1)} \right)$$

$$\geq \frac{\sqrt{2}}{2} \left(\frac{1}{2(N+1)} + \frac{1}{2(N+1)} + \dots + \frac{1}{2(N+1)} \right) = \frac{\sqrt{2}}{2} \cdot \frac{N+1}{2(N+1)} = \frac{\sqrt{2}}{4}.$$

出关于 : 致收敛的 Cauchy 收敛准则知。 $\sum_{r=1}^{\sin nx} \hat{n} \left(-\sigma_r + \kappa \right)$ 小 民权数

(也可以用 Fourier 级数的 Dirichlet 定理来证明)

2) $\mathfrak{A} \, \forall n \, u_n > 0, v_n > 0$, $a_n = \frac{u_n v_n}{u_{n+1}} - v_{n+1}$ if $\| \hat{u} \|_{L^{\infty}} = \frac{1}{2} + \frac{1}{2}$

$$\text{iif [ij]} \quad a_n = \frac{u_n v_n - u_{n+1} v_{n+1}}{u_{n+1}}, \quad u_{n+1} = \frac{u_n v_n - u_{n+1} v_{n+1}}{a_n}.$$

因为
$$\lim_{n\to\infty} a_n = A > 0$$
,所以 $\exists N \in \mathbb{R} \ \forall n > N \mid a_n = A \mid \frac{A}{2}, \ \forall n > N a_n > \frac{A}{2}$.

因为 $\forall n \ u_n > \forall n > Na_n > \frac{A}{2} > 0, \ \$ 的[12] $\forall n > Nu_n v_n - u_{n+1} v_{n+1} > 0.$

所(以 $\forall n > N$ $S_n = S_{N+1} + u_{N+2} + \dots + u_n$ $< S_{N+1} + \frac{u_{N+1}v_{N+1} - u_{N+2}v_{N+2}}{A} + \dots + \frac{u_{n}v_{n} - u_{n+1}v_{n+1}}{A}$ $\leq S_{N+1} + \frac{2u_{N+1}v_{N-1}}{A} .$ $\leq S_{N+1} + \frac{2u_{N+1}v_{N-1}}{A} .$ $|\widehat{y}_{1}| \ge \forall n > N \quad u_{n+1} < \frac{u_{n} v_{n} - u_{n+1} v_{n+1}}{A}$

一元微积分期末考试试题试卷 A 参考解答

2009年1月9日

- 一. 填空题 (共15个空,每个空3分)
 - 1. 定积分 $\int_0^{100} (x [x]) dx = 50$, 其中 [x] 表示取整函数. 注: 如果能看出函数 x [x] 是周期的, 且周期为1, 那么这个空就非常容易填了.
 - 2. 极限 $\lim_{n \to +\infty} \left(\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n} \right) = \ln 2.$ 注: 上述极限实际上是函数 $\frac{1}{1+x}$ 在区间 [0,1] 上的 Riemann 和的极限.

3. 不定积分
$$\int \frac{dx}{\sqrt{x(1-x)}} =$$

解法一: $\int \frac{dx}{\sqrt{x(1-x)}} = \int \frac{d(x-1/2)}{\sqrt{1/4-(x-1/2)^2}} = \arcsin(2x-1) + c.$
解法二: $\int \frac{dx}{\sqrt{x(1-x)}} = 2 \int \frac{d\sqrt{x}}{\sqrt{1-x}} = 2\arcsin\sqrt{x} + c.$

- 4. 定积分 $\int_{1/e}^{e} (\ln x)^2 dx = e 5/e$
- 5. 若广义积分 $\int_0^{+\infty} \frac{\ln(1+x)dx}{x^p(1+x)^{p-1}}$ 收敛,则参数 p 的范围是 1 .
- 7. 微分方程 $\frac{dy}{dx} = \frac{1}{x-y} + 1$ 的通解为 $(x-y)^2 = -2x + c$.
- 8. 已知函数 f(x) 的一个原函数为 $\frac{\sin x}{x}$, 则 $\int f(\frac{x}{a})dx = \frac{a^2}{x}\sin\frac{x}{a} + c$.

10. 设
$$a \neq 0$$
, 则 $\int \frac{dx}{x(a+x^n)} =$ _______.

答: 作变换 $t=x^n$, 可得不定积分为 $\frac{1}{na} \ln \left| \frac{x^n}{a+x^n} \right| + c$.

11. 设
$$f(x)$$
 在 $(-\infty, +\infty)$ 上连续可导,则 $\lim_{a\to 0} \frac{1}{4a^2} \int_{-a}^{a} (f(t+a) - f(t-a)) dt = f'(0)$

12.
$$\bar{x} \approx \sum_{n=0}^{+\infty} \frac{2^n (1+n)}{n!} = \frac{1}{12} = \frac{1}{12}$$

答:
$$\sum_{n=0}^{+\infty} \frac{2^n (1+n)}{n!} = 2 \sum_{n=0}^{+\infty} \frac{2^{n-1} n}{n!} + \sum_{n=0}^{+\infty} \frac{2^n}{n!} = 2e^2 + e^2 = 3e^2.$$

13. 设
$$f(x)$$
 为连续函数, $F(x) = \int_0^{\sin x} f(t-x)dt$, 则 $F'(x) = \underline{\hspace{1cm}}$.
 答: 令 $t-x=u$,则 $F(x) = \int_{-x}^{\sin x-x} f(u)du$, $F'(x) = (\cos x-1)f(\sin x-x)+f(-x)$.

15. 微分方程
$$xy'' + 3y' = 0$$
 的通解为 ______.
答: 令 $p = y'$. 则 $xp' + 3p = 0$. 解得 $p = c/x^3$. 从而 $y = c_1/x^2 + c_2$.

二. 计算题 (共5道题, 每道题8分)

- 1. 求解二阶常微分方程的初值问题 $y'' y' = e^{2x}$, $y(0) = \frac{1}{2}$, y'(0) = 1. 解: 令 z = y'. 则 $z' z = e^{2x}$. 进一步有 $(ze^{-x})' = e^x$. 于是解得 $z(x)e^{-x} = e^x + c_1$. 因 y'(0) = 1, 得 $c_1 = 0$. 故 $y' = e^{2x}$. 从而 $y = e^{2x}/2 + c_2$. 因 y(0) = 1/2, 得 $c_2 = 0$. 故 $y = e^{2x}/2$.
- 2. 设函数 f(x) 在 [0,1] 上连续, 在 (0,1) 内可导, 且满足 $xf'(x) = f(x) + x^2$. 又设曲线 y = f(x) 与 x = 0, x = 1, y = 0 所围的图形 S 的面积为 2. 求 f(x) 的表达式以及图形 S 绕 x 轴旋转一周所得旋转体的体积。

解: If
$$x \neq 0$$
, then $\frac{xf'(x) - f(x)}{x^2} = 1$, that is

$$\frac{d}{dx} \left(\frac{f(x)}{x} \right) = 1.$$

we get

$$f(x) = x^2 + Cx, \quad x \in [0, 1].$$

由于曲线 y = f(x) 与 x = 0, x = 1, y = 0 所围的图形 S 的面积为 2, 故

$$\int_0^1 |x^2 + Cx| dx = 2.$$

当 $C \ge 0$ 时, f(x) > 0. 由此我们解得 $C = \frac{10}{3}$. Then

$$f(x) = x^2 + \frac{10x}{3}.$$

图形 S 绕 x 轴旋转一周所得的旋转体的体积是

$$V = \pi \int_0^1 f^2(x) dx = \left(\frac{1}{5} + \frac{5}{3} + \frac{100}{27}\right) \pi.$$

当 -1 < C < 0 时, 我们有

$$\int_0^1 |f(x)| dx = \int_0^{|C|} x(|C| - x) dx + \int_{|C|}^1 x(x - |C|) dx = 2.$$

由此得到

$$2|C|^3 - 3|C| - 10 = 0.$$

容易看出,函数 $g(t)=2t^3-3t-10=0$ 在 [-1,1] 在 $t=\pm 1/\sqrt{2}$ 处取得极值,且 $g(1/\sqrt{2})=-10-\sqrt{2}$ 、 $g(-1/\sqrt{2})=-10+\sqrt{2}<0$,g(1)=-11<0,g(-1)=-9<0. 因此 $t\in[-1,1]$ 时,函数 g(t)<0。因此当 -1<C<0 时,不合乎要求。

当 $C \le -1$ 时, 我们有

$$\int_0^1 |f(x)| dx = \int_0^1 x(|C| - x) dx = 2.$$

由此得到 $C=-\frac{14}{3}$. 此时图形 S 绕 x 轴旋转一周所得的旋转体的体积是

$$V = \pi \int_0^1 \left(x^2 - \frac{14x}{3} \right)^2 dx = \left(\frac{1}{5} - \frac{7}{3} + \frac{196}{27} \right) \pi.$$

3. 设函数 f(x) 在 $(-\infty, \infty)$ 内满足 $f(x) = f(x - \pi) + \sin x$, 且当 $x \in [0, \pi)$ 时, f(x) = x. 计算 $\int_{\pi}^{3\pi} f(x) dx$.

解:

$$\int_{\pi}^{3\pi} f(x)dx = \int_{\pi}^{3\pi} [f(x-\pi) + \sin x] dx$$

$$= \int_{\pi}^{3\pi} f(x-\pi) dx$$

$$(Let t = x - \pi) = \int_{0}^{2\pi} f(t) dt = \int_{0}^{\pi} f(t) dt + \int_{\pi}^{2\pi} f(t) dt$$

$$= \int_{0}^{\pi} f(t) dt + \int_{\pi}^{2\pi} [f(t-\pi) + \sin t] dt$$

$$= \frac{\pi^{2}}{2} - 2 + \int_{\pi}^{2\pi} f(t-\pi) dt$$

$$(let x = t - \pi) = \frac{\pi^{2}}{2} - 2 + \int_{0}^{\pi} f(x) dx = \pi^{2} - 2.$$

4. 求级数 $\sum_{n=2}^{+\infty} \frac{1}{(n^2-1)2^n}$ 的和。

解: 记
$$S(x) = \sum_{n=2}^{+\infty} \frac{x^n}{n^2 - 1}$$
,则 $S(x) = \frac{1}{2} \sum_{n=2}^{+\infty} \left(\frac{x^n}{n - 1} - \frac{x^n}{n + 1} \right)$. 由于
$$\sum_{n=2}^{+\infty} \frac{x^n}{n - 1} = -x \ln(1 - x), \quad |x| < 1,$$

$$\sum_{n=2}^{+\infty} \frac{x^n}{n+1} = \frac{1}{x} \left(-\ln(1-x) - x - \frac{x^2}{2} \right) = -\frac{1}{x} \ln(1-x) - 1 - \frac{x}{2}, \quad |x| < 1,$$
 因此

$$2S(x) = -x\ln(1-x) + \frac{1}{x}\ln(1-x) + 1 + \frac{x}{2} = (1/x - x)\ln(1-x) + 1 + \frac{x}{2}.$$

故所求级数的和为

$$S(1/2) = \frac{1}{2} \left(\frac{3}{2} \ln \frac{1}{2} + 1 + \frac{1}{4} \right) = \frac{5}{8} - \frac{3}{4} \ln 2.$$

5. 设平面区域 D 由 y=0, y=a, x=0, $x=\sqrt{a^2+y^2}$ 围成 (a>0). 求 D 绕 y 轴生成的旋转体的体积 V, 以及旋转体的表面积 S (表面积 = 侧面积+上下底面积).

解:
$$V = \pi \int_0^a x^2 dy = \pi \int_0^a (a^2 + y^2) dy$$

 $= \pi (a^2 y + \frac{y^3}{3}) \Big|_0^a = \frac{4}{3} \pi a^3$
 $S = 2\pi \int_0^a x \sqrt{1 + \frac{y^2}{x^2}} dy + \pi (2a^2 + a^2)$ (侧面积+上下底面积)

$$= 2\pi \int_0^a \sqrt{a^2 + 2y^2} dy + 3\pi a^2$$
$$= \left(\frac{1}{\sqrt{2}} \ln(\sqrt{2} + \sqrt{3}) + \sqrt{3} + 3\right) \pi a^2$$

三. 证明题 (共两道题)

1. (7分) 已知方程 $x^n + nx - 1 = 0$ 在 $(0, +\infty)$ 上存在唯一的根, 记作 a_n , $n = 1, 2, \cdots$ 证明级数 $\sum_{n=1}^{+\infty} (-1)^n a_n$ 条件收敛。

证明: 记 $f(x) = x^n + nx - 1$. 则易见 $f(\frac{1}{n+1}) < 0$, $f(\frac{1}{n}) > 0$ 。 故有

$$\frac{1}{n+1} < a_n < \frac{1}{n}.$$

因此 $a_n \downarrow 0$, 即级数是 Leibniz 型的, 故收敛。由上述关于 a_n 估计可知级数条件收敛。证毕。

注: 方程 $x^n + nx - 1 = 0$ 在 $(0, +\infty)$ 上有唯一的根是显而易见的, 因为 $f'(x) = nx^{n-1} + n > 0$, 且 f(0) = -1 < 0, f(1) = n > 0.

2. (8分)设函数 f(x), g(x) 在闭区间 [a,b] 上连续, 满足 $\int_a^x g(t)dt \leq \int_a^x f(t)dt$, $\forall x \in [a,b)$, 且 $\int_a^b g(t)dt = \int_a^b f(t)dt$. 证明 $\int_a^b x f(x)dx \leq \int_a^b x g(x)dx$. 证明: 令 F(x) = f(x) - g(x), $G(x) = \int_a^x F(t)dt$, 由题设, G(x) > 0 for all $x \in [a,b]$.

证明: 令 F(x) = f(x) - g(x), $G(x) = \int_a^x F(t)dt$. 由題设, $G(x) \ge 0$ for all $x \in [a, b]$, $G(x) \ge 0$ G'(x) = F(x). 从而

$$\int_{a}^{b} x F(x) dx = \int_{a}^{b} x dG(x)$$

$$= xG(x) \Big|_{a}^{b} - \int_{a}^{b} G(x) dx$$

$$= bG(b) - aG(a) - \int_{a}^{b} G(x) dx = -\int_{a}^{b} G(x) dx.$$

由于 $G(x) \ge 0, x \in [a, b]$ 所以

$$\int_a^b x F(x) dx = -\int_a^b G(x) dx \le 0.$$

从而 $\int_a^b x f(x) dx \le \int_a^b x g(x) dx$. 证毕