Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий

Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Лабараторная работа №4

Синтез сдвигающих регистров.

по дисциплинне «Архитуктуры вычислительных систем»

Выполнил студент:

Крутецкий Семен Павлович Группа: з3530903/00301

Руководитель:

доцент, к.т.н Вербова Наталья Михайловна

Содержание

интез 4х разрядного сдвигающего регистра
Аналитическая модель
Построение модели в Multisim
Тестирование
С К155ИР13
Демонстрационная модель
Тестирование
Коьцевой регистр

Синтез 4х разрядного сдвигающего регистра

Аналитическая модель

Для построение 4х разрядного регистра потребуется 4 тригера. Исходя из этого составим таблицу переходов тригера из состояния Q_i^t в Q_i^{t+1} .

$\mathcal{N}^{\underline{o}}$	Q_1^t	Q_2^t	Q_3^t	Q_4^t	Q_1^{t+1}	Q_2^{t+1}	Q_3^{t+1}	Q_4^{t+1}
1	0	0	0	0	0	0	0	0
2	0	0	0	1	0	0	0	0
3	0	0	1	0	0	0	0	1
4	0	0	1	1	0	0	0	1
5	0	1	0	0	0	0	1	0
6	0	1	0	1	0	0	1	0
7	0	1	1	0	0	0	1	1
8	0	1	1	1	0	0	1	1
9	1	0	0	0	0	1	0	0
10	1	0	0	1	0	1	0	0
11	1	0	1	0	0	1	0	1
12	1	0	1	1	0	1	0	1
13	1	1	0	0	0	1	1	0
14	1	1	0	1	0	1	1	0
15	1	1	1	0	0	1	1	1
16	1	1	1	1	0	1	1	1

Таблица 1: Таблица функционирования регистра

На основании таблицы функционирования регистра были составлены прикладные таблицы для каждого триггера регистра. Прикладные таблицы отражают переход данного триггера из предыдущего состояния в последующее. Для составления прикладных таблиц в клетки карты, соответствующие номерам предыдущих состояний автомата, вписываются 2-разрядные двоичные числа, выражающие переход триггера при изменении состояния автомата.

$Q_1^t \to Q_1^{t+1}$	Q_3	Q_3	\overline{Q}_3	\overline{Q}_3	
Q_4	00	10	10	00	\overline{Q}_2
Q_4	00	10	10	00	Q_2
\overline{Q}_4	00	10	10	00	Q_2
\overline{Q}_4	00	10	10	00	\overline{Q}_2
	\overline{Q}_1	Q_1	Q_1	\overline{Q}_1	

Таблица 2: Прикладная таблица для Q_1

$Q_2^t \to Q_2^{t+1}$	Q_3	Q_3	\overline{Q}_3	\overline{Q}_3	
Q_4	00	01	01	00	\overline{Q}_2
Q_4	10	11	11	10	Q_2
\overline{Q}_4	10	11	11	10	Q_2
\overline{Q}_4	00	01	01	00	\overline{Q}_2
	\overline{Q}_1	Q_1	Q_1	\overline{Q}_1	

Таблица 3: Прикладная таблица для Q_2

$Q_3^t \to Q_3^{t+1}$	Q_3	Q_3	\overline{Q}_3	\overline{Q}_3	
Q_4	10	10	00	00	\overline{Q}_2
Q_4	11	11	01	01	Q_2
\overline{Q}_4	11	11	01	01	Q_2
\overline{Q}_4	10	10	00	00	\overline{Q}_2
	\overline{Q}_1	Q_1	Q_1	\overline{Q}_1	

Таблица 4: Прикладная таблица для Q_3

$Q_4^t \to Q_4^{t+1}$	Q_3	Q_3	\overline{Q}_3	\overline{Q}_3	
Q_4	11	11	10	10	\overline{Q}_2
Q_4	11	11	10	10	Q_2
\overline{Q}_4	01	01	00	00	Q_2
\overline{Q}_4	01	01	00	00	\overline{Q}_2
	\overline{Q}_1	Q_1	Q_1	\overline{Q}_1	

Таблица 5: Прикладная таблица для Q_4

В качестве элементной базы были выбраны триггеры D типа, которые имеют следующую характеристическую таблицу:

$Q^t o Q^{t+1}$	D^t
00	0
01	1
10	0
11	1

Таблица 6: Характеристическая таблица для триаггера типа D

На основании полученных прикладных таблиц и характеристической таблицы D триггера были составлены карты Карно для входов каждого триггера (Таблицы 7-10). Для этого 2-разрядные двоичные числа в прикладных таблицах были заменены соответствующими обобщёнными значениями из клеток характеристической таблицы для каждого входа триггера.

$Q_1^t \to Q_1^{t+1}$	Q_3	Q_3	\overline{Q}_3	\overline{Q}_3	
Q_4	0	0	0	0	\overline{Q}_2
Q_4	0	0	0	0	Q_2
\overline{Q}_4	0	0	0	0	Q_2
\overline{Q}_4	0	0	0	0	\overline{Q}_2
	\overline{Q}_1	Q_1	Q_1	\overline{Q}_1	

Таблица 7: Карта Карно для D_1 входа

$Q_2^t \to Q_2^{t+1}$	Q_3	Q_3	\overline{Q}_3	\overline{Q}_3	
Q_4	0	1	1	0	\overline{Q}_2
Q_4	0	1	1	0	Q_2
\overline{Q}_4	0	1	1	0	Q_2
\overline{Q}_4	0	1	1	0	\overline{Q}_2
	\overline{Q}_1	Q_1	Q_1	\overline{Q}_1	

Таблица 8: Карта Карно для D_2 входа

$Q_3^t \to Q_3^{t+1}$	Q_3	Q_3	\overline{Q}_3	\overline{Q}_3	
Q_4	0	0	0	0	\overline{Q}_2
Q_4	1	1	1	1	Q_2
\overline{Q}_4	1	1	1	1	Q_2
\overline{Q}_4	0	0	0	0	\overline{Q}_2
	\overline{Q}_1	Q_1	Q_1	\overline{Q}_1	

Таблица 9: Карта Карно для D_3

$Q_4^t \to Q_4^{t+1}$	Q_3	Q_3	\overline{Q}_3	\overline{Q}_3	
Q_4	1	1	0	0	\overline{Q}_2
Q_4	1	1	0	0	Q_2
\overline{Q}_4	1	1	0	0	Q_2
\overline{Q}_4	1	1	0	0	\overline{Q}_2
	\overline{Q}_1	Q_1	Q_1	\overline{Q}_1	

Таблица 10: Карта Карно для D_4 входа

В результате был получен набор карт Карно, отражающих значения логических функций на входах каждого триггера в зависимости от состояний счётчика. Из полученного набора карт Карно были составлены логические уравнения входов триггеров, которые связывают между собой входы и выходы всех триггеров счётчика:

$$D_1 = 0; D_2 = Q_1; D_3 = Q_2; D_4 = Q_3;$$

Построение модели в Multisim

По полученным уравнениям был в Multisim был построен требуемый регистр. Ко входу D был подключен ключ, а на входы CLK тригеров был подключен генератор сигнала для более наглядной симуляции сдвига.

Рис. 1: 4х-разрядный сдвигающий триггер

Тестирование

Ниже на примере видим как на каждом тике происходит сдвиг регистра и загорается соответвующая проба.

Рис. 2: Демонстрация сдвига регистра

ИС К155ИР13

Демонстрационная модель

Универсальный сдвиговый регистр K155ИP13 является восьмиразрядным. Занесение информации в регистр осуществляется в параллельном или последовательном коде. Занесение информации в регистр выполняется по положительному перепаду. Считывание информации из регистра происходит в параллельном коде.

Рис. 3: К155ИР13

Тестирование

Режим записи. Для тестирования режима записи выставим входы $S_1 = 1, S_0 = 1$, на информационные входы подадим какое либо значение. По положительному перепаду ключа на вход CLK ожидаем на LED индикации соответвующее значение.

Рис. 4: Режим записи

Сдвиг вправо. Для режима работы 'сдвиг вправо' выставим входы $S_1 = 1, S_0 = 0$. На табло отображено ранее выставленное значение, после перепада ожидаем сдвиг вправо.

Рис. 5: Сдвиг вправо

Сдвиг влево. Для режима работы 'сдвиг влево' выставим входы $S_1 = 0, S_0 = 1$. На табло отображено значение выставленное на прошлом шагу, после перепада ожидаем сдвиг влево.

Рис. 6: Сдвиг влево

Режим храненя. Для режима работы 'хранение' выставим входы $S_1 = 0, S_0 = 0$. На табло отображено значение выставленное на прошлом шагу, после перепада значение будет сохранятся.

Порязрядная запись со сдвигом вправо. Для данного режима работы необходимо выставить режим работы 'сдвиг вправо' ($S_1=1,S_0=0$) и подать сигнал на вход R. На каждом перепаде ожидаем поэтапную запись со сдвигом вправо.

Рис. 7: Порязрядная запись со сдвигом вправо

Порязрядная запись со сдвигом влево. Для данного режима работы необходимо выставить режим работы 'сдвиг влево' ($S_1=0, S_0=1$) и подать сигнал на вход L. На каждом перепаде ожидаем поэтапную запись со сдвигом влево.

Рис. 8: Порязрядная запись со сдвигом влево

Коьцевой регистр

Далее схема была модифицирована таким образом, чтобы на базе ИС К155ИР13 был получен универсальный кольцевой регистр. Для этого было учтено, что если осуществляется сдвиг влево и на выходе А единица, то на выходе Н должна будет появиться единица. Аналогично, если осуществляется сдвиг вправо и на выходе Н единица, то на выходе А должна будет появиться единица. Ключи DL и DR в случае универсального кольцевого регистра не нужны.

Рис. 9: Универсальный кольцевой регистр

Кольцевой сдвиг вправо. Для проверки кольцевого сдвига право выставим пограничное значение через режим записи, затем выставим режим работы 'сдвиг вправо'. Ожидаем, что значение индикатора изменится с первого разряда на восьмой.

Рис. 10: Кольцевой сдвиг вправо

Кольцевой сдвиг влево. Для проверки кольцевого сдвига влево выставим пограничное значение через режим записи, затем выставим режим работы 'сдвиг влево'. Ожидаем, что значение индикатора изменится с восьмого разряда на первый.

Рис. 11: Кольцевой сдвиг влево