

Embedded System Hardware - Processing -

Peter Marwedel Informatik 12 TU Dortmund Germany

© Springer, 2010

2012年 11 月 20 日

These slides use Microsoft clip arts. Microsoft copyright restrictions apply.

Efficiency: slide from lecture 1 applied to processing

- CPS & ES must be efficient
- Code-size efficient
 (especially for systems on a chip)

Run-time efficient

Weight efficient

Cost efficient

Energy efficient

Key idea of very long instruction word (VLIW) computers (1)

- Instructions included in long instruction packets.
- Instruction packets are assumed to be executed in parallel.
- Fixed association of packet bits with functional units.

Compiler is assumed to generate these "parallel" packets

Key idea of very long instruction word (VLIW) computers (2)

 Complexity of finding parallelism is moved from the hardware (RISC/CISC processors) to the compiler;

- Ideally, this avoids the overhead (silicon, energy, ..) of identifying parallelism at run-time.
- A lot of expectations into VLIW machines
- However, possibly low code efficiency, due to many NOPs
- Explicitly parallel instruction set computers (EPICs) are an extension of VLIW architectures: parallelism detected by compiler, but no need to encode parallelism in 1 word.

EPIC: TMS 320C6xxx as an example

1 Bit per instruction encodes end of parallel exec.

Instr. Instr. Instr. Instr. Instr. Instr. A B C D E F G

Cycle	Instruction		
1	Α		,
2	В	C	D
3	E	F	G

Instructions B, C and D use disjoint functional units, cross paths and other data path resources. The same is also true for E, F and G.

Partitioned register files

- Many memory ports are required to supply enough operands per cycle.
- Memories with many ports are expensive.
- Registers are partitioned into (typically 2) sets, e.g. for TI C6xxx:

Parallel execution cannot span several packets FIA64

More encoding flexibility with IA-64 Itanium

3 instructions per bundle:

1	27			
	instruc 1	instruc 2	instruc 3	template

There are 5 instruction types:

- A: common ALU instructions
- I: more special integer instructions (e.g. shifts)
- M: Memory instructions
- F: floating point instructions
- B: branches

The following combinations can be encoded in templates:

• MII, MMI, MFI, MIB, MMB, MFB, MMF, MBB, BBB, MLX with LX = move 64-bit immediate encoded in 2 slots

Instruction

information

grouping

Templates and instruction types

End of parallel execution called **stops**.

Stops are denoted by underscores.

Example:

bundle 1 bundle 2

... MMI M_II MFI_ MII MMI MIB_

Group 1 Group 2 Group 3

Very restricted placement of stops within bundle. Parallel execution within groups possible. Parallel execution can span several bundles

Itanium® 9300 (Tukwila), 2010

- 2 G transistors
- 4 cores
- 8-fold hyperthreading/core
- 1.5 GHz at 1.3V

[http://www.intel.com/cd/corporate/pressroom/emea/deu/442093.htm]

Large # of delay slots, a problem of VLIW processors

Large # of delay slots, a problem of VLIW processors

Large # of delay slots, a problem of VLIW processors

The execution of many instructions has been started before it is realized that a branch was required.

Nullifying those instructions would waste compute power

- Executing those instructions is declared a feature, not a bug.
- How to fill all "delay slots" with useful instructions?
- Avoid branches wherever possible.

Predicated execution: Implementing IF-statements "branch-free"

Conditional Instruction "[c] I" consists of:

- condition c (some expression involving condition code regs)
- instruction I

```
c = true  I executed
```


Predicated execution: Implementing IFstatements "branch-free": TI C6xxx

Conditional branch

```
[c] B L1
NOP 5
B L2
NOP 4
SUB x,y,a
|| SUB x,z,b
ADD x,y,a
|| ADD x,z,b
```

Predicated execution

```
[c] ADD x,y,a
|| [c] ADD x,z,b
|| [!c] SUB x,y,a
|| [!c] SUB x,z,b
```

max. 12 cycles

L1:

1 cycle

Energy efficiency reached with VLIW processors

© Silicon Hive
41 Issue VLIW for SDR
130 nm, 1,2 V, 6,5mm², 16 bit
30 operations/cycle (OFDM)
150 MHz, 190 mW (incl. SRAMs)
24 GOPs/W, ~1/5 IPE

© Hugo De Man: From the Heaven of Software to the Hell of Nanoscale Physics: An Industry in Transition, *Keynote Slides*, ACACES, 2007

Microcontrollers

- MHS 80C51 as an example -

8-bit CPU optimised for control applications ←	T
	eat
 64 k Program Memory address space 	ures
 64 k Data Memory address space 	V Si
■ 4 k bytes of on chip Program Memory <	 T
■ 128 bytes of on chip data RAM *	⊩mbed
■ 32 bi-directional and individually addressable I/O lines ·	DO
■ Two 16-bit timers/counters	ldea
• Full duplex UART ←	C,
• 6 sources/5-vector interrupt structure with 2 priority levels	vsten
■ On chip clock oscillators	E 0
 Very popular CPU with many different variations 	ろ

http://www.mpsoc-forum.org/2007/slides/Hattori.pdf

Trend: multiprocessor systems-on-a-chip (MPSoCs)

3G Multi-Media Cellular Phone System

Embedded System Hardware - Reconfigurable Hardware -

Peter Marwedel Informatik 12 TU Dortmund Germany

© Springer, 2010

2012年 11 月 20 日

These slides use Microsoft clip arts. Microsoft copyright restrictions apply.

Energy Efficiency of FPGAs

Reconfigurable Logic

Custom HW may be too expensive, SW too slow.

Combine the speed of HW with the flexibility of SW

- HW with programmable functions and interconnect.
- Use of configurable hardware; common form: field programmable gate arrays (FPGAs)

Applications:

- algorithms like de/encryption,
- pattern matching in bioinformatics,
- high speed event filtering (high energy physics),
- high speed special purpose hardware.

Very popular devices from

XILINX, Actel, Altera and others

Floor-plan of VIRTEX II FPGAs

Interconnect for Virtex II

Hierarchical Routing Resources;

More recent: Virtex 5, 6, 7

no routing plan found for Virtex 7.

Virtex 7 Configurable Logic Block (CLB)

http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf

Virtex 7 Slice (simplified)

Memories typically used as look-up tables to implement any Boolean function of ≤ 6 variables.

Processors typically implemented as "soft cores" (microblaze)

Resources available in Virtex 7 devices (max)

Device	XC7V2000T
Logic cells	1,954,560
Slices	305,400
Max distributed RAM [Kb]	21,550
DSP slices	2,160
Block RAM blocks 18 Kb	2,584
Block RAM blocks 36 Kb	1,292
Block RAM blocks Max [Kb]	46,512
PCIe	4
GTX Transceivers	36
A/D converters	1
User I/O	1,200

[http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf

Virtex-7 FPGAs

Maximum Capability	Virtex-7 T	Virtex-7 XT	Virtex-7 HT
Logic density	1,995 k	1,139 k	864 k
Peak transceiver speed	12.5 Gb/s (GTX)	13.1 Gb/s (GTH)	28.05 Gb/s (GTZ)
Peak bi-directional bandwidth	0.9 Tb/s	2.515 Tb/s	2.784 Tb/s
DSP throughput (symmetric filter)	2,756 G MACS	5,314 GMACS	5,053 GMACS
Block RAM	46.5 Mb	85 Mb	64.4 Mb
I/O pins	1,200	1,100	700

http://www.xilinx.com/products/silicon-devices/fpga/virtex-7/index.htm

Memory

© Springer, 2010

2012年 11 月 20 日

These slides use Microsoft clip arts. Microsoft copyright restrictions apply.

Memory

Memories?

Oops!
Memories!

For the memory, efficiency is again a concern:

- capacity
- energy efficiency
- speed (latency and throughput); predictable timing
- size
- cost
- other attributes (volatile vs. persistent, etc)

Memory capacities expected to keep increasing

Figure ORTC2 ITRS Product Function Size Trends:

MPU Logic Gate Size (4-transistor); Memory Cell Size [SRAM (6-transistor); Flash (SLC and MLC), and

DRAM (transistor + capacitor)]--Updated

Where is the power consumed?

- Stationary systems -

 According to International Technology Roadmap for Semiconductors (ITRS), 2010 update, [www.itrs.net]

- Switching power, logic dominating
- Overall power consumption a nightmare for environmentalists

Where is the power consumed?

- Consumer portable systems -

- According to International Technology Roadmap for Semiconductors (ITRS), 2010 update, [www.itrs.net]
- Based on current trends

© ITRS, 2010

- Memory and logic, static and dynamic relevant
- Following current trends will violate maximum power constraint (0.5-1 W).

Memory energy significant even if we take display and RF of mobile device into account

[O. Vargas (Infineon Technologies): Minimum power consumption in mobile-phone memory subsystems; Pennwell Portable Design - September 2005;] Thanks to Thorsten Koch (Nokia/ Univ. Dortmund) for providing this source.

Energy consumption and access times of memories

Example CACTI: Scratchpad (SRAM) vs. DRAM (DDR2):

16 bit read; size in bytes;65 nm for SRAM, 80 nm for DRAM

Source: Olivera Jovanovic, TU Dortmund, 2011

Access times and energy consumption for multi-ported register files

Trends for the Speeds

Speed gap between processor and main DRAM increases

Similar problems also for embedded systems & MPSoCs

- Memory access times
- >> processor cycle times
- "Memory wall" problem

[P. Machanik: Approaches to Addressing the Memory Wall, TR Nov. 2002, U. Brisbane]

However, clock speed increases have come to a halt

Copyright © 2011, Elsevier Inc. All rights Reserved. Hennessy/Patterson: Computer Architecture, 5th ed., 2011]

Set-associative cache *n*-way cache

data block

|Set| = 2
Address
Tag Index
way 0 \$ (€)

Tags

Tags

way 1

data block

Data

Hierarchical memories using scratch pad memories (SPM)

SPM is a small, physically separate memory mapped into the address space

Address space

o scratch pad memory

FFF..

Examples:

- Most ARM cores allow tightly coupled memories
- IBM Cell
- Infineon TriCore
- Many multi-cores, due to high costs of coherent caches

no tag memory

Comparison of currents using measurements

E.g.: ATMEL board with ARM7TDMI and ext. SRAM

Why not just use a cache?

2. Energy for parallel access of sets, in comparators, muxes.

Influence of the associativity

Summary

- Processing
 - VLIW/EPIC processors
 - MPSoCs
- FPGAs
- Memories
 - "Small is beautiful" (in terms of energy consumption, access times, size)

SPARE SLIDES

Instruction types are mapped to functional unit types

There are 4 functional unit (FU) types:

- M: Memory Unit
- I: Integer Unit
- F: Floating-Point Unit
- B: Branch Unit

Instruction types → corresponding FU type, except type A (mapping to either I or M-functional units).

Nevertheless, (parallel) performance keeps increasing

[Hennessy/Patterson: Computer Architecture, 5th ed., 2011]

Similar information according to other sources

Strong ARM

IEEE Journal of SSC Nov. 96

[Based on slide by and ©: Osman S. Unsal, Israel Koren, C. Mani Krishna, Csaba Andras Moritz, U. of Massachusetts, Amherst, 2001]

[Segars 01 according to Vahid@ISSS01]

http://www.mpsoc-forum.org/2007/slides/Hattori.pdf

Multiprocessor systems-on-a-chip (MPSoCs) (2)

SH-MobileG1: Chip Overview

TriMedia-Processor

Lastest version: starting 5-8 operations per cycle

http://www.tridentmicro.com/producttree/stb/media-processor/pnx100x/© Trident, 2010 (since 2012/1 under chapter 11)

