Thermopile Array With Lens Optics Rev.13: 2020.05.11 Schnorr/M. Lupp

Page 1 of 27

Content

Co	ntent		1
1	Cle	aning and Handling of Sensors with Optical Elements	2
2		ncipal Schematic for HTPA32x32d	
3	Pin	Assignment– Bottom View	4
4	Opt	tical Orientation	5
5	Ord	ler Code Example	6
6	App	plication Note	7
7	Seri	ial Order of Frame	7
8	Cha	aracteristics:	9
	8.1	Common Specifications:	9
	8.2	Optical characteristics:	9
	8.3	Electric Specifications:	9
9	I ² C	Timings HTPA32x32d:	11
10	I^2	C Communication:	12
	10.1	Write Command	12
	10.2	Read Command	12
	10.3	Sensor Commands	12
	10.4	EEPROM communication	15
	10.5	I ² C Example Sequences – Init and Read Thermopile Array	16
11	T	emperature calculation	17
	11.1	Ambient Temperature	18
	11.2	Thermal Offset	19
	11.3	Electrical Offset	19
	11.4	Vdd Compensation	19
	11.5	Object Temperature	20
	11.6	Example calculation	21
	11.7	Pixel Masking	23
	11.8	Look-up Table	25
12	C	Outer Dimensions	26

Thermopile Array With Lens Optics Rev.13: 2020.05.11 Schnorr/M. Lupp Page 2 of 27

1 Cleaning and Handling of Sensors with Optical Elements

Cleaning of Filter with Isopropyl Alcohol or Acetone

This is the method most universally used for cleaning optical elements with or without coatings. Filters or lenses mounted in our sensors may be cleaned rubbing the surfaces lightly with a clean, soft, all-cotton cloth or cotton swab during immersion in solvent or simply moistened with the solvent. The parts are then immediately wiped dry with another clean, soft, all-cotton cloth or cotton swab.

Cleaning with Detergent and Water

A very mild, non-abrasive detergent (one which does not contain additives) and water may also be used for cleaning optical elements. In general, a detergent and water mixture is an excellent method for removing fingerprints and other smudges. The liquid detergent is first mixed with deionized water (proportions recommended by the manufacturer should be followed). The element is then washed, rinsed, and immediately wiped dry. Use a clean, soft cloth when cleaning and drying. If the part is allowed to dry in air, a permanent stain may result.

Please note:

- Do not use isopropyl alcohol or acetone or detergent if the elements will be mounted in an assembly with a finish which may be soluble by these solvents.
- Please avoid glass isolation being moistened by solvent.
- If the part is allowed to dry in air, a permanent stain may result.

Handling Advises

Sensors with optical elements deserve special consideration in their handling and care. Ordinarily, filters or lenses are cleaned and inspected prior to shipment. If proper care is exercised during handling cleaning should not be necessary prior to use.

- Wear gloves when handling a sensor or optical element. Lightweight nylon or cotton gloves which are relatively lint-free are recommended.
- Avoid touching the surface of filters and lenses.
- Protect devices from static discharge and static fields.
- Thermopile sensors are electrostatic sensitive devices. Sensors should be handled over an electrostatic protected work area.
- Precautions should be taken to avoid reverse polarity of power supply for sensors with integrated signal processing. Reversed polarity of power supply results in a destroyed unit
- Sensors should rest preferably in a partitioned container where the mounted filters or lenses will be not coming into contact with other material.
- During storage optical surfaces should be covered to avoid contamination from the surrounding environment.

Thermopile Array With Lens Optics Rev.13: 2020.05.11 Schnorr/M. Lupp Page 3 of 27

- A covered container can eliminate damage during transportation and storage.
- Sensors or optical elements should be stored in a restricted access area to eliminate handling
- Do not expose the sensors to aggressive detergents such as freon, trichlorethylen, etc.
- Avoid rotating the sensors when they are soldered into a PCB or something similar
- Shortening of the pins is not suggested. This may cause cracks in the glass of the pins and result in a leakage.
- If this is necessary, a tool for this is recommended. Please contact Heimann Sensor for further information.

Soldering Recommendations

Attention: For all of our array sensors we give no guarantee on the calibration and its performance if the pins are shortened by the customer. Additionally we strongly recommend to not solder the sensor with its back plate directly to a PCB. This will cause different thermal conductivity compared to air and the measurement results could get worse. Use a minimum gap between PCB and backplate of 2mm or more. The glass of the pins to the back plate can get damage by applying high temperatures (during soldering), which will lead into a lower temperature reading what cannot be repaired afterwards.

Figure 1: Soldering height

Manual Iron Soldering and Automatic Point-to-Point Iron Soldering

Manual Iron Soldering and Automatic Point-to-Point Iron Soldering methods are allowed for TO packages. It is recommended for through hole applications to shield the package body from soldering heat by PCB or similar.

The soldering iron temperature should be set as low as possible (maximum 350C) and should not exceed recommended soldering time (maximum 3 seconds). The minimum distance

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

Thermopile Array With Lens Optics Rev.13: 2020.05.11 Schnorr/M. Lupp Page 4 of 27

between the housing body and the liquid solder should be at least 1.5mm for 350°C. Reflow soldering is not recommended.

2 Principal Schematic for HTPA32x32d

3 Pin Assignment-Bottom View

Figure 3: pin-allocation

Pin	Symbol	Description
1	SCL	Digital I/O, Open Drain, 100k PU, Serial Clock
2	VDD	Positive supply voltage

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet

Thermopile Array With Lens Optics Rev.13: 2020.05.11 Schnorr/M. Lupp Page 5 of 27

3	VSS	Negative supply voltage / Ground (0V) (connected to housing)
4	SDA	Digital I/O, Open Drain, 100k PU, Serial Data

4 Optical Orientation

Figure 4: Optical orientation

Thermopile Array With Lens Optics Rev.13: 2020.05.11 Schnorr/M. Lupp Page 6 of 27

5 Order Code Example

Figure 5: Exemplary order code

Thermopile Array With Lens Optics Rev.13: 2020.05.11 Schnorr/M. Lupp Page 7 of 27

6 Application Note

This Application Note is giving a short recommendation for the connection of the HTPA32x32d to achieve the best performance.

A pull-up resistor of 4.7 k Ω for the I²C pins (SDA and SCL) is recommended. In addition adding 100 nF and 47 μ F are improving the stability of the supply voltage.

Figure 6: Recommended circuit for operation

The Sensor can be powered directly via 3.35 V if the supply voltage is stable enough, this has to be measured before and tested with the sensor. It is important to not insert any inductor or otherwise the noise will increase.

7 Serial Order of Frame

The sensor is divided into two parts (top and bottom half) which are again separated into 4 blocks. The readout order is shown below for the different blocks.

Block 0 (top)
Block 1 (top)
Block 2 (top)
Block 3 (top)
Block 3 (bottom)
Block 2 (bottom)
Block 1 (bottom)
Block 0 (bottom)

Figure 7: Division of blocks

Whenever a conversion is started the Block x of the top and bottom half are measured at the same time. Each block consists of 128 Pixel that are sampled fully parallel. The readout order on the bottom half is mirrored compared to the top half so that the central lines are always read last.

Thermopile Array With Lens Optics Rev.13: 2020.05.11 Schnorr/M. Lupp Page 8 of 27

Figure 8: 32x32d readout order for active pixel

The electrical offsets are sampled in parallel for the top and bottom half. The matching rows for the corresponding electrical offsets and active Pixel are marked with the same color. The conversion of the electrical offsets is started by sending the command for the BLIND bit during the start command.

Figure 9: 32x32d readout order for electrical offsets

Thermopile Array With Lens Optics Rev.13: 2020.05.11 Schnorr/M. Lupp Page 9 of 27

8 Characteristics:

8.1 Common Specifications:

Technology n-poly/p-poly Si Element Resistance approx. 300 kOhms

Sensitivity approx. 450 V/W without optics and filter

Thermal pixel time constant <4 ms
Digital Interface IPC
Analog Output No

selectable Clock 1 to 13 MHz EEPROM size 64 kBit

Pitch 90 µm Absorber size 44 µm Max. Framerate 60 Hz

(complete frame with maximum I2C and sensor clock speed and reduced ADC resolution)

1024 sensitive elements

8.2 Optical characteristics:

Focal length: 5.0 mm ("L" equals the focal length of the lens)

F-Number: 0.85

Field of view: 33 x 33 deg

Lens coating: LWP-Coating 7.7

Cut On (Tr. 5%): 7.7 μ m \pm 0.3 μ m

Accuracy: $\pm 3\% \cdot |TO - TA|$ or $\pm 3K$ (whatever is larger) for pixel within

radiometric radius

8.3 Electric Specifications:

Table 1: Absolute Maximum Ratings

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply Voltage	V_{DD}		-0.3		3.6	V
Voltage at All inputs and outputs	V_{IO}		-0.3		V _{DD} +0.3	V
Storage Temperature	T _{STG}		-40		85	Deg. C

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30

D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet

Thermopile Array With Lens Optics Rev.13: 2020.05.11 Schnorr/M. Lupp

Page 10 of 27

Table 2: Operating Conditions

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply Voltage	V_{DD}		3.3	3.35	3.6	V
Supply Current (sensor running)	I_{DD}		5.0	6.2	7.4	mA
Supply Current (sensor in idle state)	I_{DD}		tbd	5.9	tbd	mA
Standby Current (sensor in sleep state)	I_{SBY}		2.0	2.1	2.5	μΑ
Operation Temperature	T_A		-20		85	Deg. C
ESD-Protection		Human body model 100pF + 1k5Ohm	2.0			kV

Table 3: Electrical Characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit						
Digital Input												
Internal Clock	F _{CLK}		1	5	13	MHz						
frequency												
Internal I ² C Pull up	R_{PU}		1	100	100	kOhm						
Bias current	I _{BIAS}		1	3	13	μΑ						
BPA current	I_{BPA}		0.2	1.5	4.0	μΑ						
Input voltage high	V_{IH}		$0.7xV_{DD}$			V						
Input voltage low	V_{IL}				$0.3xV_{DD}$	V						
PTAT												
Temperature range			TBD		TBD	Deg. C						
PTAT gradient			328	339	350	K/V						

Thermopile Array With Lens Optics

Rev.13: 2020.05.11 Schnorr/M. Lupp

Page 11 of 27

Table 4: Preamplifier / ADC

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Chopper frequency	FCHP			20		kHz
Preamplifier Noise	N_{PA}	at 20 kHz		72		$nV/HZ^{1/2}$
Frame rate (Full Array)	FR1		2	9	60	Hz
Frame rate (Quarter Array)	FR4		8	36	240	HZ
ADC pos. Reference	V_{REFP}	REF_CAL 00		1.529		
		REF_CAL 01		1.442		V
		REF_CAL 10		1.355		'
		REF_CAL 11		1.268		
ADC neg. Reference	V_{REFN}	REF_CAL 00		0.850		
		REF_CAL 01		0.901		V
		REF_CAL 10		0.968		ľ
		REF_CAL 11		1.056		
ADC resolution	ADC_{LSB}	at 16 Bit	6.5		20.7	μV

9 I²C Timings HTPA32x32d:

Figure 10: I2C Timings of HTPA32x32d

Table 5: I2C Timings

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
I ² C clock frequency	F _{CLK}			400	1000	kHz
low pulse duration	T _{CLK,lo}		0.50			μs
high pulse duration	T _{CLK,hi}		0.26			μs
data set up time	T _{SU,data}		0.05			μs
data hold time	T _{hd,data}		0.00			μs
start setup time	T _{SU,start}		0.26			μs
start hold time	T _{hd,start}		0.26			μs
stop setup time	$T_{SU,stop}$		0.26			μs
stop hold time	$T_{hd,stop}$		0.26			μs
time between	T _{buf}		0.50			μs
STOP / START						
Time startup	T _{startup}			100		μs

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet

Thermopile Array With Lens Optics Rev.13: 2020.05.11 Schnorr/M. Lupp Page 12 of 27

10 I²C Communication:

The chip uses the **7-bit I**²**C** address **0x1A** for configuration and **sensor** data and the **7-bit I**²**C** address **0x50** to access the internal **EEPROM**. The address byte is followed by a W/R bit and an **8-bit** command.

10.1 Write Command

In case of a write access to an internal register the command is followed by the data byte. The chip acknowledges each byte with a low active ACK bit.

Figure 11: Write command

10.2 Read Command

To read data from the chip first the address and read command must be sent. After the last ACK a new start-bit (repeated start) and the address with a set read-flag initiates the read sequence. There can be bytes read as many as required. The last byte must be denoted by a not-acknowledge. The shown example below can be used e.g. to get the status register.

Figure 12: Read command

10.3 Sensor Commands

The sensor has several registers that can be written and read, they are listed below.

Table 6: Configuration register (write only)

Addr / CMD	0x1A (7 Bit!) / 0x01											
Config Reg	7 6 5 4 3 2 1 0							0				
Name	RI	RFU		BLOCK		VDD_MEAS	BLIND	WAKEUP				
Default	0	0	0	0	0	0	0	0				

The WAKEUP bit is used to switch on / off the chip and must be set prior all other operations. After the START bit is set the chip starts a conversion of the array or blind elements and enters the idle state (not sleep!) when finished. The BLOCK selects one of the four multiplexed array blocks.

If the BLIND bit is set the electrical offsets are sampled instead of the active pixel and the setting of the BLOCK is ignored.

If VDD_MEAS bit is set the VDD voltage is measured instead of the PTAT value. RFU means reserved for future use and can be subject to change.

Thermopile Array With Lens Optics

Rev.13: 2020.05.11 Schnorr/M. Lupp Page 13 of 27 HEIMANN Sensor

Table 7: Status Register (read only)

Addr / CMD	0x1A (7	0x1A (7 Bit!) / 0x02									
Status Reg	7	6	5	4	3	2	1	0			
Name	RI	Ŧ U	BLC	OCK	RFU	VDD_MEAS	BLIND	EOC			

If the EOC flag is set a previous started conversion has been finished.

Table 8: Trim Register 1 (write only)

Addr / CMD	0x1A (7	0x1A (7 Bit!) / 0x03								
Trim Reg 1	7	6	5	4	3	2	1	0		
Name	RFU		REF CAL		MBIT TRIM					

REF_CAL: selectable amplification

MBIT_TRIM: m = 4 to $12 \implies (m+4)$ bit as ADC resolution

Table 9: Trim Register 2 (write only)

Addr / CMD	0x1A (7	x1A (7 Bit!) / 0x04								
Trim Reg 2	7	7 6 5 4 3 2 1 0								
Name		RFU		BIAS TRIM TOP						

BIAS_TRIM_TOP: 0 to 31 \Rightarrow 1µA to 13µA

This setting is used to adjust the bias current of the ADC. A faster clock frequency requires a higher bias current setting.

Table 10: Trim Register 3 (write only)

Addr / CMD	0x1A (7	x1A (7 Bit!) / 0x05									
Trim Reg 3	7	7 6 5 4 3 2 1 0									
Name		RFU		BIAS TRIM BOT							

BIAS TRIM BOT: 0 to 31 \Rightarrow 1 μ A to 13 μ A

This setting is used to adjust the bias current of the ADC. A faster clock frequency requires a higher bias current setting.

Table 11: Trim Register 4 (write only)

Addr / CMD	0x1A (7	x1A (7 Bit!) / 0x06								
Trim Reg 4	7	7 6 5 4 3 2 1 0								
Name	RF	īU	CLK TRIM							

CLK_TRIM: $0 \text{ to } 63 \implies 1 \text{MHz to } 13 \text{MHz}$

NOTE: The measure time depends on the clock frequency settings. One quarter frame takes about:

$$t_{FR4} = \frac{32 \cdot (2^{MBIT} + 4)}{F_{CLK}} \approx 27ms @ 5MHz$$

Table 12: Trim Register 5 (write only)

Addr / CMD	0x1A (7	0x1A (7 Bit!) / 0x07								
Trim Reg 5	7	7 6 5 4 3 2 1 0								
Name		RFU		BPA TRIM TOP						

HEIMANN Sensor GmbH Maria-Reiche-Str. 1

Contact / Customer Support Phone 49 (0) 6123 60 50 30

D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet

Thermopile Array With Lens Optics

Rev.13: 2020.05.11 Schnorr/M. Lupp

Page 14 of 27

BPA_TRIM_TOP: 0 to 31 \Rightarrow 0.2 μ A to 4.0 μ A

This setting is used to adjust the common mode voltage of the preamplifier.

Table 13: Trim Register 6 (write only)

Addr / CMD	0x1A (7	x1A (7 Bit!) / 0x08								
Trim Reg 6	7	7 6 5 4 3 2 1 0								
Name		RFU		BPA TRIM BOT						

BPA_TRIM_BOT: 0 to 31 \Rightarrow 0.2 μ A to 4.0 μ A

This setting is used to adjust the common mode voltage of the preamplifier.

Table 14: Trim Register 7 (write only)

Addr / CMD	0x1A (7	0x1A (7 Bit!) / 0x09								
Trim Reg 7	7	7 6 5 4 3 2 1 0								
Name		PU SDA	A TRIM		PU SCL TRIM					

PU SDA TRIM: select internal pull up resistor on SDA PU_SCL_TRIM: select internal pull up resistor on SCL

"1000" = 100 kOhm; "0100" = 50 kOhm; "0010" = 10 kOhm; "0001" = 1 kOhm

Table 15: Read Data 1 Command (Top Half of Array)

Addr / CMD	0x1A (7 E)x1A (7 Bit!) / 0x0A										
Read Data	7	6	5	4	3	2	1	0				
1. Byte / 2. Byte		PTAT 1 MSB / LSB or Vdd 1 MSB / LSB										
3. Byte / 4. Byte		Pixel (0+BLOCK*128) MSB / LSB										
5. Byte / 6. Byte		Pixel (1+BLOCK*128) MSB / LSB										
257. Byte / 258. Byte		Pixel (127+BLOCK*128) MSB / LSB										

Table 16: Read Data 2 Command (Bottom Half of Array)

Addr / CMD	0x1A (7 E	it!) / 0x0)B							
Read Data	7	6	5	4	3	2	1	0		
1. Byte / 2. Byte		I	PTAT 2 MS	SB / LSB o	or Vdd 2	MSB / LSI	В			
3. Byte / 4. Byte			Pixel (99	2-BLOCK	*128) M	SB / LSB				
5. Byte / 6. Byte										
•••										
65. Byte / 66. Byte			Pixel (102	23-BLOCK	X*128) M	ISB / LSB				
67. Byte / 68. Byte			Pixel (96	0-BLOCK	*128) M	SB / LSB				
69. Byte / 70. Byte			Pixel (96	1-BLOCK	*128) M	SB / LSB				
•••										
129. Byte / 130. Byte			Pixel (99	1-BLOCK	*128) M	SB / LSB				
131. Byte / 132. Byte		Pixel (928-BLOCK*128) MSB / LSB								
		•	•					·		
257. Byte / 258. Byte		Pixel (927-BLOCK*128) MSB / LSB								

HEIMANN Sensor GmbH Contact / Customer Support Phone 49 (0) 6123 60 50 30 Maria-Reiche-Str. 1 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet

Thermopile Array With Lens Optics Rev.13: 2020.05.11 Schnorr/M. Lupp

Page 15 of 27

The complete sensor data must be read at once. If the communication fails somewhere in between, all successive data will be corrupted. The readout can be stopped anywhere by pausing the clock. A new initialized readout proceeds at this stopped byte by continuing the clock, but the index is reset when a new conversion has been started.

If the bit for the electrical offsets (Bit 1 in Config 0x01) is set the electrical offsets are sampled and can be read similar to the active pixel:

Table 17: Read Data electrical offsets (Top Half of Array)

Addr / CMD	0x1A (7 B	0x1A (7 Bit!) / 0x0A										
Read Data	7	7 6 5 4 3 2 1 0										
1. Byte / 2. Byte		PTAT 1 MSB / LSB or Vdd 1 MSB / LSB										
3. Byte / 4. Byte		electrical offset (0) MSB / LSB										
5. Byte / 6. Byte		electrical offset (1) MSB / LSB										
257. Byte / 258. Byte			electr	ical offset (127) MSB	/ LSB	•					

Table 18: Read Data electrical offsets (Bottom Half of Array)

Addr / CMD	0x1A (7 B	it!) / 0x0B									
Read Data	7	6	5	4	3	2	1	0			
1. Byte / 2. Byte		PTAT 2 MSB / LSB or Vdd 2 MSB / LSB									
3. Byte / 4. Byte		electrical offset (224) MSB / LSB									
5. Byte / 6. Byte		electrical offset (225) MSB / LSB									
					• •						
65. Byte / 66. Byte			electr	ical offset (255) MSB	/ LSB					
67. Byte / 68. Byte			electr	ical offset (192) MSB	/ LSB					
•••											
257. Byte / 258. Byte		electrical offset (159) MSB / LSB									

The complete sensor data must be read at once. If the communication fails somewhere in between, all successive data will be corrupted. The readout can be stopped anywhere by pausing the clock. A new initialized readout proceeds at this stopped byte by continuing the clock, but the index is reset when a new conversion has been started.

Depending on the setting of VDD_MEAS the PTAT or the VDD is transmitted.

10.4 EEPROM communication

The built-in EEPROM (24AA64 from Microchip) consists of 8 blocks of 1K x 8-bit. The chip select of the EEPROM is set to 000 (A2 to A0). For further information please see the corresponding datasheet:

http://ww1.microchip.com/downloads/en/DeviceDoc/21189f.pdf

Thermopile Array With Lens Optics Rev.13: 2020.05.11 Schnorr/M. Lupp Page 16 of 27

10.5 I²C Example Sequences – Init and Read Thermopile Array

(There should be a delay of at least 5 ms between the write of each Configuration Register) Please be reminded, that you readout the calibration settings for MBIT, BIAS, CLK, BPA and PIJ and use them for a correct temperature calculation

PU an	d use them	for a co	rrect to	emper	ature c	alcu	ılati	on.							
	ADDR	W	/R	CONF	IG_REG		W	AKE	JР						
S	0x1A	(0	0	x01			0x01		P					
	•					•					,				
	ADDR	W	/R	TRIM	I_REG1		MBl	T_TI	RIM						
S	0x1A	(0	0	x03			0x0C		P					
•	-	•	•						•						
	ADDR	W	/R	TRIM	I_REG2	I	BIAS	S_TR	IML						
S	0x1A	(0	0	x04			0x0C		P					
		•	•						•						
	ADDR	W	/R	TRIM	I_REG3	F	3IAS	S_TR	IMR						
S	0x1A	(0	0	x05			0x0C		P					
	ADDR	W	/R	TRIM	I_REG4		CLI	K_TR	IM						
S	0x1A	(0	0	x06			0x14		P					
									-						
	ADDR	W	/R	TRIM	I_REG5		BPA	_TRI	ML						
S	0x1A	(0	0	x07			0x0C		P					
									-						
	ADDR	W	/R	TRIM	I_REG6]	BPA	_TRI	MR						
S	0x1A	(0	0	x08			0x0C		P					
									-						
	ADDR	W	/R	TRIM	I_REG7		PU	_TRI	M						
S	0x1A	(0	0	x09			0x88		P					
	ADDR	W	/R	CONF	IG_REG	ST	AR	ΓWA	KEUP						
S	0x1A		0		x01			0x09		P					
L	L	<u> </u>													
	ADDR	W	/R	STAT	US_REG			Д	DDR		W/I	R	STA	TUS	
S	0x1A		0		x02	_	Sr)x1A		1		?		P
Wait 3			-												
vv are s	ADDR	W	/R	STAT	US_REG			Δ	DDR		W/]	R	STA	TI IS	
S	Ox1A		0		x02	_	Sr		Ox1A		1		?		P
B	UALA		U		AU4	_ N	,1		MIA		1		1 '	•	1
	ADDR W/R R	EAD_DATA 1	l A	DDR V	V/R PTAT1	MSB	PTA	T1 LSB	P0,0 MSB	P0,01	LSB		Px,y MSB	Px,y LSF	3
S	0x1A 0	0x0A)x1A	1 ?			??	??	?			??	??	P
		EAD_DATA 2			V/R PTAT2			T2 LSB	P0,0 MSB	P0,01			Px,y MSB	Px,y LSF	
S	0x1A 0	0x0B	Sr ()x1A	1 ?)		??	??	??	,		??	??	P

	ADDR	W/R	CONFIG_REG	SLEEP	
S	0x1A	0	0x01	0x00	P

Figure 13: Init and Read Thermopile Array

Thermopile Array With Lens Optics Rev.13: 2020.05.11 Schnorr/M. Lupp Page 17 of 27

11 Temperature calculation

The object and ambient temperature can be calculated from the sensor output and the stored calibration data. The table below is showing an overview of the EEPROM.

Figure 14: EEPROM overview 32x32d

All values are stored as unsigned 8 bit values unless they are specified otherwise. The little endian format is used for larger values. Grey marked areas are used during calibration or for future use and are Heimann Sensor reserved.

MBIT(calib), BIAS(calib), CLK(calib), BPA(calib) and PU(calib) are the settings for the registers that have been used during calibration.

We recommend the usage of calibration settings of MBIT (stored in 0x1A), BIAS (0x1B), CLK (0x1c), BPA (0x1D) and PU (0x1E).

MBIT(user), BIAS(user), CLK(user), BPA(user) and PU(user) are free to be set by the user.

The temperature calculation is only valid if the same settings are used that have been set during calibration!

TN is the tablenumber and has to match the given tablenumber in the sample code.

GlobalOff is stored as an 8 bit signed value, GlobalGain and VddCalib are both stored as 16 bit unsigned.

VDDTH1 and VDDTH2 is the used supply voltage during calibration measured by the sensor itself and stored in Digits.

The corresponding order of $ThGrad_{ij}$, $ThOffset_{ij}$ and P_{ij} to the Pixelnumber is given by the following overview:

Thermopile Array With Lens Optics

Rev.13: 2020.05.11 Schnorr/M. Lupp

Page 18 of 27

ThGrad₀,₀ → Pixel 0 ThGrad_{0,1} \rightarrow Pixel 1 ... ThGrad_{0,31} \rightarrow Pixel 31 ThGrad_{1,0} \rightarrow Pixel 32 ThGrad_{1,1} \rightarrow Pixel 33 ... ThGrad_{1,31} \rightarrow Pixel 63 ThGrad_{15,0} → Pixel 480 ThGrad_{15,1} → Pixel 481 ThGrad₁5,31→Pixel 511 ThGrad_{16,31} Pixel 102 ThGrad_{16,0} → Pixel 992 ThGrad_{16,1} → Pixel 993 ThGrad_{17,0} → Pixel 960 ThGrad_{17,1} → Pixel 961 ThGrad₁7,31→Pixel 991 ThGrad_{31,0} → Pixel 512 ThGrad_{31,1} → Pixel 513 ... ThGrad₃₁,₃1→Pixel 543

Figure 15: Readout order 32x32d

The order of $VddCompGrad_{ii}$ and $VddCompOff_{ii}$ is similar to the electrical Offsets and have to be used block by block.

Figure 16: Readout of VDDCompGrad 32x32d

The order for *DeadPixAdr_Pij* is described more detailed in 11.7.

11.1 Ambient Temperature

The ambient temperature (Ta) is calculated from the average measured PTAT value, the PTAT_{gradient} and the PTAT_{offset}.

$$Ta = PTAT_{av} \cdot PTAT_{gradient} + PTAT_{offset}$$
 (Value is given back in dK) where:
 $PTAT_{gradient}$ is the gradient of the PTAT stored in the EEPROM as a float value $PTAT_{offset}$ is the offset of the PTAT stored in the EEPROM as a float value $PTAT_{av} = \frac{\sum_{i=0}^{7} PTAT_i}{8}$ is the average measured PTAT value

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

www.heimannsensor.com mail: info@heimannsensor.com

Internet

Thermopile Array With Lens Optics Rev.13: 2020.05.11 Schnorr/M. Lupp Page 19 of 27

11.2 Thermal Offset

The thermal offset of the sensor needs to be subtracted for each pixel to compensate for any thermal drifts.

$$V_{ij_Comp} = V_{ij} - \frac{ThGrad_{ij} \cdot PTAT_{av}}{2^{gradScale}} - ThOffset_{ij}$$

where:

ij represents the row (i) and column (j) of the pixel

 $V_{ii Comp}$ is the thermal offset compensated voltage

 V_{ij} is the raw pixel data (digital), readout from the RAM

 $ThGrad_{ij}$ is the thermal gradient, stored in the EEPROM from 0x740 to 0xF3F is the thermal offset, stored in the EEPROM from 0xF40 to 0x173F

gradScale is the scaling coefficient for the thermal gradient stored in the EEPROM

11.3 Electrical Offset

The electrical offset is used to compensate changes in the supply voltage. This compensation is only a substraction so it can be done before or after the thermal offset compensation (here done afterwards).

The compensation for the top half is done by using the following formula:

$$V_{ij_Comp} *= V_{ij_Comp} - elOffset[(j+i\cdot32)\%128]$$

and the bottom half analogue with this formula:

$$V_{ij_Comp} * = V_{ij_Comp} - elOffset[(j+i\cdot32)\%128+128]$$

where:

ij represents the row (i) and column (j) of the pixel and electrical offset

 $V_{ii Comp}$ * is the thermal and electrical offset compensated voltage

 V_{ij_Comp} is the thermal offset compensated voltage elOffset[ij] is the electrical offset belonging to Pixel ij

i%128 is the rest of the integer division of i by 128 (e.g. 130% 128=2)

11.4 Vdd Compensation

A supply voltage compensation called VddComp is used to take care of supply voltage changes. In order to use this compensation the supply voltage of the sensor (Vdd) has to be measured by the sensor from time to time by setting the configuration register and the average of Vdd 1 and Vdd 2 is resulting in Vdd (similar like $PTAT_{av}$).

The compensation for the top half is done by using the following formula:

$$VDD_{av} = \frac{\sum_{i=0}^{7} VDD_i}{8}$$

Thermopile Array With Lens Optics

Rev.13: 2020.05.11 Schnorr/M. Lupp

Page 20 of 27

$$\begin{split} &V_{ij_VDDComp} = V_{ij_Comp} * \\ & - \underbrace{\left(\frac{VddCompGrad[(j+i\cdot32)\%128] \cdot PTAT_{av}}{2^{VddScGrad}} + VddCompOff[(j+i\cdot32)\%128] \right)}_{2^{VddScOff}} \\ \cdot \underbrace{\left(VDD_{av} - VDD_{TH1} - \left(\frac{VDD_{TH2} - VDD_{TH1}}{PTAT_{TH2} - PTAT_{TH1}} \right) \cdot (PTAT_{av} - PTAT_{TH1}) \right)}_{} \end{split}$$

and the bottom half analogue with this formula:

$$V_{ij_VDDComp} = V_{ij_Comp} * \\ - \underbrace{\left(\frac{VddCompGrad[(j+i\cdot32)\%128+128] \cdot PTAT_{av}}{2^{VddScGrad}} + VddCompOff[(j+i\cdot32)\%128+128] \right)}_{2^{VddScOff}}$$

$$\cdot \left(VDD_{av} - VDD_{TH1} - \left(\frac{VDD_{TH2} - VDD_{TH1}}{PTAT_{TH2} - PTAT_{TH1}}\right) \cdot \left(PTAT_{av} - PTAT_{TH1}\right)\right)$$

where:

ij represents the row (i) and column (j) of the pixel

 $V_{ii\ VDDComp}$ is the Vdd compensated voltage

 V_{ij_Comp} * is the thermal and electrical offset compensated voltage VddCompGrad[ij] is the VddComp gradient belonging to Pixel ij VddCompOff[ij] is the VddComp offset belonging to Pixel ij

i% 128 is the rest of the integer division of i by 128 (e.g. 130% 128=2) VDD_{av} is the average measured supply voltage of the sensor in Digits

VddScGrad is a scaling coefficient and stored in the EEPROM 0x4E vddScOff is a scaling coefficient and stored in the EEPROM 0x4F

 VDD_{TH1} is the supply voltage during calibration 1 stored in the EEPROM 0x26, 0x27 VDD_{TH2} is the supply voltage during calibration 2 stored in the EEPROM 0x28, 0x29

 $PTAT_{TH1}$ is the PTAT value of calibration 1 stored in the EEPROM 0x3C, 0x3D $PTAT_{TH2}$ is the PTAT value of calibration 2 stored in the EEPROM 0x3E, 0x3F

11.5 Object Temperature

The calculation of the object temperature is done by using a look-up table and doing a bilinear interpolation, the matching table is given by the tablenumber (TN). The table is supplied in a separate file named "Table.c". If you do not have the file, please ask Heimann Sensor for support.

The sensitivity coefficients ($PixC_{ii}$) are calculated in the following way:

$$PixC_{ij} = \left(\frac{P_{ij} \cdot \left(PixC_{\max} - PixC_{\min}\right)}{65535} + PixC_{\min}\right) \cdot \frac{epsilon}{100} \cdot \frac{GlobalGain}{10000}$$

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet

Thermopile Array With Lens Optics

Rev.13: 2020.05.11 Schnorr/M. Lupp

Page 21 of 27

HEIMANN Sensor

where:

 $PixC_{ii}$ is the sensitivity coefficient for each pixel

 P_{ii} is the stored sensitivity coefficient scaled to 16 bit

 $PixC_{min}$ is the minimum sensitivity coefficient, used for scaling $PixC_{max}$ is the maximum sensitivity coefficient, used for scaling

epsilon is the emissivity factor

GlobalGain is a factor for fine tuning of the sensitivity for all Pixel

Leading to a compensation of the pixel voltage

$$V_{ij_PixC} = \frac{V_{ij_VDDComp} \cdot PCSCALEVAL}{PixC_{ii}}$$

where:

 $V_{ij PixC}$ is the sensitivity compensated IR voltage

PCSCALEVAL is a defined scaling coefficient, typically set to 1.10^8

11.6 Example calculation

Example values:

$$PTAT_{av} = \frac{\sum_{i=0}^{7} PTAT_i}{8} = 38152Digits$$

 $PTAT_{gradient} = 0.0211 \, dK/Digit$

 $PTAT_{offset} = 2195.0 \ dK$

 $V_{00} = 34435 \ Digits$

elOffset[0] = 34240

gradScale = 17

 $THGrad_{00} = 87 \rightarrow signcheck 87$

 $THOffset_{00} = 65506 \rightarrow signcheck - 30$

 $VDD_{av} = 35000$

 $VDD_{TH1} = 33942$

 $VDD_{TH2} = 36942$

 $PTAT_{TH1} = 30000$

 $PTAT_{TH2} = 42000$

 $VddCompGrad[0] = 10356 \rightarrow signcheck \ 10356$

 $VddCompOff[0] = 51390 \rightarrow signcheck - 14146$

VddScGrad = 16

VddScOff = 23

 $PixC_{00} = 1 \cdot 10^8$

 $PCSCALEVAL = 1 \cdot 10^8$

Calculation of ambient temperature:

$$Ta = PTAT_{av} \cdot PTAT_{eradient} + PTAT_{offset} = 38152 \cdot 0.0211 + 2195.0 dK = 3000 dK$$

Compensation of thermal offset:

$$V_{00_Comp} = V_{00} - \frac{ThGrad_{00} \cdot PTAT_{av}}{2^{gradScale}} - ThOffset_{00} = 34435 - \frac{87 \cdot 38152}{2^{17}} - (-30)$$

$$= 34439$$

HEIMANN Sensor GmbH Contact / Customer Support Internet

Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 <u>www.heimannsensor.com</u> D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 <u>www.heimannsensor.com</u> mail: info@heimannsensor.com

Thermopile Array With Lens Optics

Rev.13: 2020.05.11 Schnorr/M. Lupp

Page 22 of 27

Compensation of electrical offset:

$$V_{00_Comp}$$
*= V_{00_Comp} -elOffset[0]=34439-34240=199

Compensation of supply voltage:

$$V_{ij_VDDComp} = V_{ij_Comp} * - \frac{\left(\frac{VddCompGrad[0] \cdot PTAT_{av}}{2^{VddScGrad}} + VddCompOff[0]\right)}{2^{VddScOff}} \cdot \left(VDD_{av} - VDD_{TH1} - \left(\frac{VDD_{TH2} - VDD_{TH1}}{PTAT_{TH2} - PTAT_{TH1}}\right) \cdot (PTAT_{av} - PTAT_{TH1})\right) = 199 - \frac{\left(\frac{10356 \cdot 38152}{2^{16}} - 14146\right) \cdot \left(35000 - 33942 - 2038\right)}{2^{23}} = 199 - (1) = 198$$

Table 19: Example look-up table

TA[dK]/dig	2882	3032	3182	3332
-64	1494	2128	2491	2775
-32	2466	2692	2898	3091
0	2882	3032	3182	3332
32	3170	3285	3406	3530
64	3396	3491	3592	3699
96	3584	3665	3754	3848
128	3746	3818	3897	3981
160	3890	3954	4025	4102
192	4019	4078	4143	4214
224	4137	4191	4251	4317
256	4246	4296	4351	4413
288	4347	4393	4445	4503
320	4441	4485	4534	4588

$$V_{00_{-}PixC} = \frac{198 \cdot 1 \cdot 10^{8}}{1.087 \cdot 10^{8}} = 182$$

Ta was calculated before to 3000 dK.

The matching region in the look-up table is already marked yellow, the bi-linear interpolation is leading to an object temperature of $4026 \text{ dK} = 129.4 \,^{\circ}\text{C}$.

A global Offset (GlobalOff) is used for fine tuning of the measured object temperature and has to be added to the object temperature. This value is stored in the EEPROM.

Thermopile Array With Lens Optics Rev.13: 2020.05.11 Schnorr/M. Lupp Page 23 of 27

11.7 Pixel Masking

A maximum of 5 defect Pixels are allowed on the complete array, this means that at least 99.5 % of the Pixels are working correctly. The amount of defect Pixels is given in the EEPROM at address 0x007F and is named *NrOfDefPix*. *DeadPixAdr* is the address of the defect Pixels and *DeadPixMask* determines the neighbours that should be used for masking the pixel. A simple averaging of all selected nearest neighbours is done to overwrite the temperature value of these Pixel. Only the amount of pixels "*NrOfDefPix*" is stored in *DeadPixAdr*. These values are stored as 16 bit unsigned values. For example: If only one pixel has to be masked, then the other values of *DeadPixAdr* are set to 0.

The value stored in *DeadPixAdr* is equal to the pixel number if *DeadPixAdr* is <0x0200. If the value is greater, that means between 0d512 and 0d1024, the actual read-out pixel has to be calculated first. For example: If you have a pixel number of 997 stored to the EEPROM, this is actually 517 (please refer to 6). The pixel number, that is stored in the EEPROM corresponds to the number of the read-out pixel. So the bottom half is mirrored. Example calculation:

$$adaptedAdr[i] = 1024 + 512 - DeadPixAdr[i] + k[i] \cdot 2 - 32$$

where:

adaptedAdr[i] is the adapted dead pixel address

k[i] is the column of the corresponsive pixel (for pixel number 997 this

would be 5)

adaptedAdr[i] = 1024 + 512 - 997 + 10 - 32 = 517

The neighbours to use is given in a binary format and the order is shown in the overview below in decimal and binary values for the top and bottom half.

top half

128	1	2
64	DeadPix	4
32	16	8

0b1000 0000	0b0000 0001	0b0000 0010
0b0100 0000	DeadPix	0b0000 0100
0b0010 0000	0b0001 0000	0b0000 1000

bottom half

32	16	8
64	DeadPix	4
128	1	2

0b0010 0000	0b0001 0000	0b0000 1000
0b0100 0000	DeadPix	0b0000 0100
0b1000 0000	0b0000 0001	0b0000 0010

Example values for the masking:

NrOfDefPix = 0x03

 $DeadPixAdr[0] = 0x000F \rightarrow Pixel 15$

 $DeadPixAdr[1] = 0x012C \rightarrow Pixel\ 300$

 $DeadPixAdr[0] = 0x0295 \rightarrow Pixel\ 661\ (read - out\ pixel)$ actual pixel number is 885

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet www.heimannser

Thermopile Array With Lens Optics Rev.13: 2020.05.11 Schnorr/M. Lupp Page 24 of 27

$$DeadPixMask[0] = 0x7C \rightarrow 0b01111100(top)$$

$$DeadPixMask[1] = 0x8F \rightarrow 0b10001111(top)$$

$$DeadPixMask[3] = 0xFE \rightarrow 0b111111110(bot)$$

According to the sample values 3 Pixels are defect and need to be interpolated. 2 Pixels are on the top and 1 Pixel on the bottom half. Assuming that the neighbouring Pixels are having the temperature data stated below and the green marked cells are used for averaging (according to DeadPixMask) then the interpolated temperature will be the following:

Pixel
$$15 = \frac{3007 + 3008 + 3008 + 3011 + 3009}{5} dK = \frac{15043}{5} dK \approx 3009 dK$$

Pixel $300 = \frac{3010 + 3012 + 3005 + 3008 + 3009}{5} dK = \frac{15044}{5} dK \approx 3009 dK$
Pixel $977 = \frac{3010 + 3012 + 3005 + 3007 + 3008 + 3009}{7} dK = \frac{21059}{7} dK \approx 3008 dK$

All values are given in dK

3007	Pixel 15	3008
3008	3011	3009

Pixel 14	Pixel 15	Pixel 16
Pixel 46	Pixel 47	Pixel 48

3010	3012	3005		
3007	Pixel 300	3008		
3008	3011	3009		

Pixel 267	Pixel 268	Pixel 269
Pixel 299	Pixel 300	Pixel 301
Pixel 331	Pixel 332	Pixel 333

3010	3012	3005
3007	Pixel 977	3008
3008	3011	3009

Pixel 944	Pixel 945	Pixel 946	
Pixel 976	Pixel 977	Pixel 978	
Pixel 1008	Pixel 1009	Pixel 1010	

Thermopile Array With Lens Optics Rev.13: 2020.05.11 Schnorr/M. Lupp Page 25 of 27

11.8 Look-up Table

The matching look-up table has to be taken from the Table.c file. Here is just shown an

exemp	olary	data data	for c	ne o	ptics.		
ig \ Ta[dK]	2782	2882	2982	3082	3182	3282	3382
-512 -448	$-\Box$			1295 1848	1742 2094	2005 2284	2202 2442
-384	T	o in o	dΚ	2156	2340	2496	2634
-320 -256	2042	2244	2414	2381 2562	2534 2697	2671 2822	2797 2938
-192	2287	2445	2587	2717	2839	2954	3065
-128	2481	2612	2735	2852	2964	3073	3180
-64	2642	2755	2865	2972	3078	3182	3285
0	2782	2882	2982	3082	3182	3282	3382
64	2906	2996	3089	3183	3278	3375	3473
128	3019	3101	3187	3276	3368	3462	3558
192	3121	3197	3278	3363	3452	3544	3638
256	3216	3286	3363	3445	3531	3621	3715
320	3305	3370	3443	3522	3606	3695	3787
384	3387	3449	3519	3595	3677	3764	3856
448	3465	3524	3590	3664	3745	3831	3922
512	3539	3595	3659	3731	3810	3895	3986
576	3609	3662	3724	3794	3872	3957	4047
640	3676	3727	3787	3855	3932	4016	4106
704	3740	3788	3847	3914	3990	4073	4163
768	3802	3848	3904	3971	4046	4128	4218
832	3861	3905	3960	4025	4100	4182	4271
896	3918	3960	4014	4078	4152	4233	4322
960	3973	4014	4066	4129	4202	4284	4372
1024	4026	4065	4117	4179	4251	4332	4421
1088	4077	4115	4166	4227	4299	4380	4469
1152	4127	4164	4213	4274	4345	4426	4515
1216	4175	4211	4260	4320	4391	4471	4560
1280	4222	4257	4305	4364	4435	4515	4604
1344	4268	4302	4349	4408	4478	4558	4647
1408	4312	4345	4391	4450	4520	4600	4689
1472	4355	4388	4433	4491	4561	4641	4730
1536	4398	4429	4474	4532	4601	4681	4770
1600	4439	4470	4514	4571	4640	4720	4809
1664	4480	4509	4553	4610	4679	4758	4848
1728	4519	4548	4591	4648	4716	4796	4885
1792	4558	4586	4629	4685	4753	4833	4922
1856	4595	4623	4666	4721	4790	4869	4959
1920	4633	4660	4702	4757	4825	4905	4995
1984	4669	4696	4737	4792	4860	4940	5030
2048	4705	4731	4772	4826	4894	4974	5064
2112	4740	4765	4806	4860	4928	5008	5098
2176	4774	4799	4839	4894	4961	5041	5131
2240	4808	4832	4872	4926	4994	5074	5164
2304	4841	4865	4904	4958	5026	5106	5197
2368	4873	4897	4936	4990	5058	5137	5228
2432	4906	4929	4968	5021	5089	5169	5260
2496	4937	4960	4998	5052	5119	5199	5291
2560	4968	4991	5029	5082	5149	5230	5321
2624	4999	5021	5059	5112	5179	5259	5351
2688	5029	5050	5088	5141	5208	5289	5381
2752	5059	5080	5117	5170	5237	5318	5410
2816	5088	5109	5146	5199	5266	5346	5439
2880 2944	5117 5145	5137	5174	5227	5294	5375 5402	5467
3008	5173	5165 5193	5202 5230	5255 5282	5322 5349	5402	5495 5523
3072	5201	5220	5257	5309	5376	5457	5550
3136	5228	5247	5284	5336	5403	5484	5577
3200	5255	5274	5310	5362	5429	5510	5604
3264	5282	5300	5336	5388	5455	5537	5630
3328	5308	5326	5362	5414	5481	5563	5656
3392	5334	5352	5388	5439	5507	5588	5682
3456	5360	5377	5413	5465	5532	5613	5708
3520	5385	5403	5438	5489	5557	5638	5733
3584	5410	5427	5462	5514	5581	5663	5758
3648	5435	5452	5487	5538	5606	5688	5783
3712	5459	5476	5511	5562	5630	5712	5807
3776	5483	5500	5535	5586	5654	5736	5831
3840	5507	5524	5558	5610	5677	5760	5855
3904	5531	5547	5582	5633	5701	5783	5879
3968	5554	5571	5605	5656	5724	5806	5902
4032	5578	5594	5628	5679	5747	5829	5925
4096	5601	5616		5702	5769	5852	5948
4160	5601 5623	5639	5650 5673	5724	5792	5875	5971
4224	5646	5661	5695	5746	5814	5897	5994
4288	5668	5683	5717	5768	5836	5919	6016
4352	5690	5705	5739	5790	5858 5879	5941 5963	6038
4416 4480	5712 5734	5727 5748	5760 5782	5811 5833	5901	5984	6060 6082
4544	5755	5770	5803	5854	5922	6006	6103
4608	5776	5791	5824	5875	5943	6027	6125
4672	5797	5811	5844	5896	5964	6048	6146
4736	5818	5832	5865	5916	5984	6069	6167
4800	5839	5853	5886	5937	6005	6089	6188
4864	5859	5873	5906	5957	6025	6110	6208
4928	5880	5893	5926	5977	6045	6130	6229
4992	5900	5913	5946	5997	6065	6150	6249
5056	5920	5933	5965	6017	6085	6170	6269
5120	5940	5953	5985	6036	6105	6190	6289
5184	5959	5972	6005	6056	6124	6209	6309
5248	5979	5991	6024	6075	6144	6229	6329
5312	5998	6011	6043	6094	6163	6248	6348
5376	6017	6030	6062	6113	6182	6267	6368
5440	6036	6049	6081	6132	6201	6286	6387
5504	6055	6067	6099	6150	6220	6305	6406
5568	6074	6086	6118	6169	6238	6324	6425
5632	6092	6104	6136	6187	6257	6343	6444
5696	6111	6123	6155	6206	6275	6361	6462
5760	6129	6141	6173	6224	6293	6379	6481
5824	6147	6159	6191	6242	6311	6398	6499
5888	6165		6209	6260	6329	6416	6517
5952	6183	6177 6195	6226	6277	6347	6434	6536
6016	6201	6212	6244	6295	6365	6451	6554
6080	6219	6230	6261	6313	6382	6469	6571
6144	6236	6247	6279	6330	6400	6487	6589
6208	6253	6264	6296	6347	6417	6504	6607
6272	6271	6282	6313	6364	6434	6522	6624
6336	6288	6299	6330	6381 6398	6451	6539	6642 6659
6400 6464	6305 6322	6316 6332	6347 6364	6415	6468 6485	6556 6573	6676
6528	6339	6349	6380	6432	6502	6590	6693
6592	6355	6366	6397	6448	6519	6607	6710
6656	6372	6382	6413	6465	6535	6623	6727
6720	6388	6399	6430	6481	6552	6640	6744
6784	6405	6415	6446	6497	6568	6656	6761

6848	6421	6431	6462	6514	6584	6673	6777
6912	6437	6447	6478	6530	6600	6689	6794
6976	6453	6463	6494	6546	6616	6705	6810
7040	6469	6479	6510	6562	6632	6721	6826
7104	6485	6495	6526	6577	6648	6737	6842
7168	6501	6511	6542	6593	6664	6753	6858
7232	6517	6526	6557	6609	6680	6769	6874
7296	6532	6542	6573	6624	6695	6785	6890
7360	6548	6557	6588	6640	6711	6800	6906
7424	6563	6572	6603	6655	6726	6816	6922
7488	6578	6588	6618	6670	6742	6831	6937
7552	6594	6603	6634	6685	6757	6847	6953
7616	6609	6618	6649	6700	6772	6862	6968
7680	6624	6633	6664	6715	6787	6877	6984
7744 7808	6639 6654	6648 6663	6678	6730 6745	6802 6817	6892	6999 7014
7872	6669	6677	6693 6708	6760	6832	6907 6922	7029
7936	6683	6692	6723	6774	6846	6937	7044
8000	6698	6707	6737	6789	6861	6952	7059
8064	6712	6721	6752	6803	6876	6966	7074
8128	6727	6735	6766	6818	6890	6981	7089
8192	6741	6750	6780	6832	6905	6996	7104
8256	6756	6764	6795	6847	6919	7010	7118
8320	6770	6778	6809	6861	6933	7024	7133
8384	6784	6792	6823	6875	6947	7024	7147
8448	6798	6806	6837	6889	6961	7053	7162
8512	6812	6820	6851	6903	6976	7067	7176
8576	6826	6834	6865	6917	6990	7081	7190
8640	6840	6848	6878	6931	7003	7095	7205
8704	6854	6862	6892	6944	7017	7109	7219
8768	6868	6875	6906	6958	7031	7123	7233
8832	6881	6889	6919	6972	7045	7137	7247
8896	6895	6903	6933	6985	7058	7151	7261
8960	6908	6916	6946	6999	7072	7164	7275
9024	6922	6930	6960	7012	7086	7178	7288
9088	6935	6943	6973	7026	7099	7192	7302
9152	6949	6956	6987	7039	7112	7205	7316
9216	6962	6969	7000	7052	7126	7219	7329
9280	6975	6983	7013	7065	7139	7232	7343
9344	6988	6996	7026	7079	7152	7245	7356
9408	7001	7009	7039	7092	7165	7259	7370
9472	7015	7022	7052	7105	7178	7272	7383
9536	7028	7035	7065	7118	7191	7285	7396
9600	7040	7048	7078	7130	7204	7298	7410
9664	7053	7060	7091	7143	7217	7311	7423
9728	7066	7073	7103	7156	7230	7324	7436
9792	7079	7086	7116	7169	7243	7337	7449
9856	7092	7098	7129	7181	7256	7350	7462
9920	7104	7111	7141	7194	7268	7363	7475
9984	7117	7123	7154	7207	7281	7375	7488
10048	7129	7136	7166	7219	7294	7388	7501
10112	7142	7148	7179	7231	7306	7401	7513
10176	7154	7161	7191	7244	7318	7413	7526
10240	7166	7173	7203	7256	7331	7426	7539
10304	7179	7185	7215	7268	7343	7438	7551
10368	7191	7197	7228	7281	7356	7451	7564
10432	7203 7215	7210 7222	7240 7252	7293	7368	7463	7576
10496 10560	7227	7234	7264	7305 7317	7380 7392	7475 7488	7589 7601
10624	7239	7246	7276	7329	7404	7500	7614
10688	7251	7258	7288	7341	7416	7512	7626
10752	7263	7270	7300	7353	7428	7524	7638
10816	7275	7281	7312	7365	7440	7536	7651
10880	7287	7293	7323	7377	7452	7548	7663
10944	7299	7305	7335	7389	7464	7560	7675
11008	7311	7317	7347	7400	7476	7572	7687
11072	7322	7328	7358	7412	7488	7584	7699
11136	7334	7340	7370	7424	7499	7596	7711
11200	7346	7352	7382	7435	7511	7608	7723
11264	7357	7363	7393	7447	7523	7619	7735
11328	7369	7375	7405	7458	7534	7631	7747
11392	7380	7386	7416	7470	7546	7643	7758
11456	7392	7397	7427	7481	7557	7654	7770
11520	7403	7409	7439	7493	7569	7666	7782
11584	7414	7420	7450	7504	7580	7677	7793
11648	7426	7431	7461	7515	7592	7689	7805
11712	7437	7443	7473	7526	7603	7700	7817
11776 11840	7448 7459	7454	7484	7538	7614	7712	7828
11904	7471	7465 7476	7495 7506	7549 7560	7625 7637	7723 7734	7840 7851
11968	7482	7487	7517	7571	7648	7746	7862
12032	7493	7498	7528	7582	7659	7757	7874
12096	7504	7509	7539	7593	7670	7768	7885
12160	7515	7520	7550	7604	7681	7779	7896
12224	7526	7531	7561	7615	7692	7790	7908
12288	7536	7542	7572	7626	7703	7801	7919
12352	7547	7552	7583	7637	7714	7812	7930
12416	7558	7563	7593	7648	7725	7823	7941
12480	7569	7574	7604	7658	7736	7834	7952
12544	7580	7585	7615	7669	7746	7845	7963
12608	7590	7595	7625	7680	7757	7856	7974
12672	7601	7606	7636	7690	7768	7867	7985
12736	7612	7617	7647	7701	7779	7878	7996
12800	7622	7627	7657	7712	7789	7888	8007
12864	7633	7638	7668	7722	7800	7899	8018
12928	7643	7648	7678	7733	7810	7910	8029
12992	7654	7659	7689	7743	7821	7920	8040
13056	7664	7669	7699	7754	7832	7931	8050
13120	7675 7685	7679	7709	7764 7774	7842	7942	8061
13184	7685	7690	7720	7785	7852	7952	8072
13248	7695	7700	7730		7863	7963	8082
13312	7706	7710	7740	7795	7873	7973	8093
13376	7716	7720	7751	7805	7884	7984	8104
13440	7726	7731	7761	7816	7894	7994	8114
13504	7736	7741	7771	7826	7904	8004	8125
13568	7746	7751	7781	7836	7914	8015	8135
13632	7757	7761	7791	7846	7925	8025	8145
13696	7767	7771	7801	7856	7935	8035	8156
13760	7777	7781	7811	7866	7945	8046	8166
13824	7787	7791	7821	7876	7955	8056	8177
13888	7797	7801	7831	7886	7965	8066	8187
13952	7807	7811	7841	7896	7975	8076	8197
14016	7817	7821	7851	7906	7985	8086	8207
14080	7827	7831	7861	7916	7995	8096	8218
14144	7836	7841	7871	7926	8005	8106	8228

12 Outer Dimensions

