病态问题一般被认为存在于神经网络训练过程中。病态体现在随机梯度下降会 "卡"在某些情况,此时即使很小的更新步长也会增加代价函数。

回顾方程式(4.9),代价函数的二阶泰勒级数展开预测梯度下降中的 $-\epsilon g$ 会增加 $rac{1}{2}\epsilon^2oldsymbol{g}^{ op}oldsymbol{H}oldsymbol{g} - \epsilonoldsymbol{g}^{ op}oldsymbol{g}$ (8.10)

到代价中。当 $\frac{1}{2}\epsilon^2 \mathbf{g}^{\mathsf{T}} \mathbf{H} \mathbf{g}$ 超过 $\epsilon \mathbf{g}^{\mathsf{T}} \mathbf{g}$ 时,梯度的病态会成为问题。判断病态是否不利 于神经网络训练任务,我们可以监测平方梯度范数 $g^{T}g$ 和 $g^{T}Hg$ 。在很多情况中, 梯度范数不会在训练过程中显著缩小,但是 $g^{\mathsf{T}}Hg$ 的增长会超过一个数量级。其结 果是尽管梯度很强, 学习会变得非常缓慢, 因为学习速率必须收缩以弥补更强的曲 率。如图8.1所示,成功训练的神经网络中,梯度显著增加。

尽管病态存在于包括神经网络训练的其他情况中,有些适用于其他情况的解

_		用于神经网络。例如,牛顿法在解决带有病态条件数的Hessian矩
_	阵的凸优化问题时, 是	是一个非常优秀的工具,但是我们将会在以下小节中说明牛顿
	法运用在神经网络前需	言要很大的改动。
_		

