Kapitel 8

Zufallsvektoren

8.1 Mehrstufige Zufallsexperimente

Oft besteht ein Zufallsexperiment aus einer Reihe von Vorgängen. Sei $(\Omega_i, \mathcal{A}_i, P_i)$ ein Wahrscheinlichkeitsraum für die Vorgänge i = 1, ..., n.

Für das Gesamtexperiment wählen wir dann:

$$\Omega = \Omega_1 \times \dots \times \Omega_n$$

$$\mathcal{A} := \mathcal{A}_1 \otimes \cdots \otimes \mathcal{A}_n$$

wobei \mathcal{A} die sogenannte **Produkt-** σ **-Algebra** ist, d.h.

$$\mathcal{A} = \sigma(\{A_1 \times \cdots \times A_n | A_i \in \mathcal{A}_i, i = 1 \dots n\})$$

Bemerkung 8.1

a) $A_1 \times \cdots \times A_n$ nennt man **Rechteckmengen**.

b) Ist
$$A_1 = \cdots = A_n = \mathfrak{B} = \mathfrak{B}(\mathbb{R})$$
, so gilt:
$$\mathfrak{B}(\mathbb{R}^n) := \underbrace{\mathfrak{B} \otimes \cdots \otimes \mathfrak{B}}_{n-mal} = \sigma(\{(-\infty, x_1] \times \cdots \times (-\infty, x_n] | x_i \in \mathbb{R}, i = 1, \dots, n\})$$

Sei P nun ein Wahrscheinlichkeitsmaß auf (Ω, \mathcal{A}) . Für $A_i \in \mathcal{A}_i$ wird durch $Q_i(A_i) := P(\Omega_1 \times \cdots \times \Omega_{i-1} \times A_i \times \Omega_{i+1} \times \cdots \times \Omega_n)$ auf (Ω_i, A_i) wieder ein Wahrscheinlichkeitsmaß definiert, die sogenannte **Randverteilung (Marginalverteilung)**, denn:

(i)
$$Q_i(\Omega_i) = P(\Omega) = 1$$

(ii)

$$Q_i(\sum_{i=1}^{\infty} A_i^{(j)}) = P(\Omega_1 \times \dots \times \Omega_{i-1} \times \sum_{j=1}^{\infty} A_i^{(j)} \times \Omega_{i+1} \times \dots \times \Omega_n) =$$

$$= P(\sum_{i=1}^{\infty} (\Omega_1 \times \dots \times \Omega_{i-1} \times A_i^{(j)} \times \Omega_{i+1} \times \dots \times \Omega_n) = \sum_{i=1}^{\infty} Q_i(A_i^{(j)})$$

Damit P sinnvoll ist, sollte gelten $Q_i(A_i) = P_i(A_i) \quad \forall A_i \in \mathcal{A}, i = 1 \dots n$

8.2 Zufallsvariablen

Gegeben sei ein Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) . Wir betrachten jetzt mehrere Zufallsvariablen.

Beispiel 8.1 n-mal würfeln $\Omega = \{1, \dots, 6\}^n$ $\mathcal{A} = P(\Omega)$ $P(A) = \frac{|A|}{|\Omega|}$

$$X(\omega) = X((\omega_1, \dots, \omega_n)) = \max_{i=1,\dots,n} \omega_i$$

$$Y(\omega) = Y((\omega_1, \dots, \omega_n)) = \min_{i=1,\dots,n} \omega_i$$

$$P(X = 3, Y = 3) = P(\{3, \dots, 3\}) = \frac{1}{6^n}$$

Definition 8.1 Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und $X_1, \ldots, X_n : \Omega \to \mathbb{R}$ Zufallsvariablen.

- a) $X = (X_1, \dots, X_n) : \Omega \to \mathbb{R}^n$ heißt **Zufallsvektor**
- b) Die (gemeinsame) Verteilung von X ist gegeben durch:

$$P_X: \mathfrak{B}(\mathbb{R}^n) \to [0,1) \quad P_X(B) := P(\{\omega \in \Omega | X(\omega) \in B\}), B \in \mathfrak{B}(\mathbb{R}^n)$$

c) Die (gemeinsame) **Verteilungsfunktion** $F_X : \mathbb{R}^n \to [0,1]$ ist definiert durch: $F_X(x_1,\ldots,x_n) = P(X_1 \leq x_1,\ldots,X_n \leq x_n)$

Bemerkung 8.2 Wie im Fall n = 1 ist P_X durch F_X bestimmt.

Definition 8.2 Sei $X = (X_1, ..., X_n) : \Omega \to \mathbb{R}^n$ ein Zufallsvektor.

- a) X heißt diskret, falls es eine endliche oder abzählbare $Menge\ C = \{x_1, x_2, \ldots\} \subset \mathbb{R}^n$ gibt, so $dass\ P(X \in C) = 1$. Die $Folge\ \{p_X(k)\}_{k \in \mathbb{N}}$ $mit\ p_X(k) = P(X = x_k)$ heißt (gemeinsame) Zähldichte.
- b) X heißt **absolutstetig**, falls es eine integrierbare Funktion $f_X : \mathbb{R}^n \to [0, \infty)$ (die gemeinsame Dichte) gibt mit:

$$F_X(x_1,\ldots,x_n) = \int_{-\infty}^{x_n} \ldots \int_{-\infty}^{x_1} f_X(y_1,\ldots,y_n) dy_1 \ldots dy_n$$

Bemerkung 8.3

a) Ist $X = (X_1, ..., X_n)$ diskret bzw. stetig, so sind auch $X_1 ... X_n$ selbst diskret bzw. stetig und wir können die **Rand-(Marginal) Zähldichte (Dichte)** bestimmen:

$$P(X_i = x_i) = P(\{\omega | X(\omega) \in C, X_i(\omega_i) = x_i\}) = \sum_{\substack{y \in C \\ y_i = x_i}} P(X = y)$$

$$f_{X_i}(x_i) = \underbrace{\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty}}_{(n-1)mal} f_X(y_1, \dots, y_{i-1}, x_i, y_{i+1}, \dots, y_n) dy_1 \dots dy_{i-1} dy_{i+1} \dots dy_n$$

denn:
$$F_{X_i}(x_i) = P(X_i \le x_i) = \lim_{\substack{x_j \to \infty \\ (i \ne j)}} \underbrace{P(X_1 \le x_1, \dots, X_n \le x_n)}_{=F_X(x_1, \dots, x_n)} = \int_{-\infty}^{x_i} f_{X_i}(u) du$$

b) Ist X absolutstetig mit Dichte f_X , so ist die Verteilung von X gegeben durch:

$$P_X(B) := \int_B f_X(y) dy \qquad \forall B \in \mathfrak{B}(\mathbb{R}^n)$$

Beispiel 8.2 (Multinomialverteilung) Ein Experiment (z.B. Würfeln) hat r mögliche Ausgänge E_1, \ldots, E_r mit jeweiliger Wahrscheinlichkeit p_1, \ldots, p_r , wobei $p_1 + \cdots + p_r = 1$.

$$\Omega = \{ \omega = (\omega_1, \dots, \omega_n) | w_i \in \{ E_1, \dots, E_r \} \}, \quad \mathcal{A} = \sigma(\Omega)$$

 $X_i(\omega)$ sei die Anzahl der E_i -Ausgänge, $P(\{\omega_1,\ldots,\omega_n\}):=p_1^{X_1(\omega)}\cdot\cdots\cdot p_r^{X_r(\omega)}$ Sei nun $k_1,\ldots,k_n\in\mathbb{N}_0$ mit $k_1+\cdots+k_n=n$.

$$P(X_1 = k_1, \dots, X_n = k_n) = p_1^{k_1} \cdots p_r^{k_r} \cdot \text{Anzahl der } \omega_i, \text{ bei denen } k_i \text{ Komponenten}$$

$$\text{den Wert } E_i \text{ haben, } i = 1 \dots r$$

$$= p_1^{k_1} \cdots p_r^{k_r} \cdot \frac{n!}{k_1! \cdots k_n!}$$

Dies ist die Zähldichte der **Multinomialverteilung** $(M(n, r, p_1, \dots, p_r).$

Bemerkung 8.4 a) Für r=2 erhalten wir die Binomialverteilung, also M(n,2,p,1-p)=B(n,p).

b) Die eindimensionalen Randverteilungen einer Multinomialverteilung sind binomialverteilt.

Beispiel 8.3 Der Zufallsvektor $X = (X_1, X_2)$ hat eine bivariate Normalverteilung, falls X absolut stetig ist mit Dichte

$$f_X(x_1, x_2) = \frac{1}{2\pi(|\Sigma|)^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\underline{x} - \underline{\mu})^{\top} \Sigma^{-1}(\underline{x} - \underline{\mu})\right)$$

wobei:
$$\underline{\mu} = (\mu_1, \mu_2)^{\top} \in \mathbb{R}^2$$
, $\Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix}$, $\sigma_1^2 > 0$, $|\sigma_{12}| < \sigma_1 \sigma_2$

Schreibweise: $X \sim N(\mu, \Sigma)$

Beispiel 8.4 Gegeben sei $X = (X_1, X_2)$ mit Dichte

$$f_{(X_1, X_2)}(x_1, x_2) = \begin{cases} 4x_1 x_2 & \text{für } 0 \le x_1, \ x_2 \le 1\\ 0 & \text{sonst} \end{cases}$$

Test: $(f_{(X_1,X_2)} \text{ Dichte})$

$$\int_{0}^{1} \int_{0}^{1} 4x_{1}x_{2} \ dx_{1}dx_{2} = \int_{0}^{1} 2x_{2} \left[x_{1}^{2}\right]_{0}^{1} \ dx_{2} = x_{2}^{2}\Big|_{0}^{1} = 1$$

Randdichte von X_1 :

$$f_{X_1}(x_1) = \int_0^1 4x_1 x_2 \, dx_2 = 2x_1 \left[x_2^2 \right]_0^1 = 2x_1 \qquad \text{für } 0 \le x_1 \le 1$$

$$\begin{split} P(X_1 \leq 2X_2) &= P\left((X_1, X_2) \in B\right) \\ &= \int_0^{\frac{1}{2}} \int_0^{2t_2} 4t_1 t_2 \ dt_1 dt_2 + \int_{\frac{1}{2}}^1 \int_0^1 4t_1 t_2 \ dt_1 dt_2 \\ &= \int_0^{\frac{1}{2}} 2t_2 \left[t_1^2\right]_0^{2t_2} \ dt_2 + \int_{\frac{1}{2}}^1 2t_2 \left[t_1^2\right] \ dt_2 \\ &= 2 \left[t_2^4\right]_0^{\frac{1}{2}} + \left[t_2^2\right]_{\frac{1}{2}}^1 = \frac{7}{8} \end{split}$$