Shusen Wang

Advantage Function

Return

Definition: Discounted return.

•
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \cdots$$

Value Functions

Definition: Discounted return.

•
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \cdots$$

Definition: Action-value function.

•
$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = a_t\right].$$

Value Functions

Definition: Discounted return.

•
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \cdots$$

Definition: Action-value function.

•
$$Q_{\pi}(s_t, \mathbf{a_t}) = \mathbb{E}\left[U_t | S_t = s_t, A_t = \mathbf{a_t}\right].$$

Definition: State-value function.

•
$$V_{\pi}(s_t) = \mathbb{E}_{\mathbf{A}}[Q_{\pi}(s_t, \mathbf{A})]$$

Optimal Value Functions

Definition: Optimal action-value function.

•
$$Q^*(s, \mathbf{a}) = \max_{\pi} Q_{\pi}(s, \mathbf{a}).$$

Optimal Value Functions

Definition: Optimal action-value function.

•
$$Q^*(s, \boldsymbol{a}) = \max_{\pi} Q_{\pi}(s, \boldsymbol{a}).$$

Definition: Optimal state-value function.

$$\bullet V^{\star}(s) = \max_{\pi} V_{\pi}(s).$$

Optimal Value Functions

Definition: Optimal action-value function.

•
$$Q^*(s, \boldsymbol{a}) = \max_{\pi} Q_{\pi}(s, \boldsymbol{a}).$$

Definition: Optimal state-value function.

$$\bullet V^{\star}(s) = \max_{\pi} V_{\pi}(s).$$

Definition: Optimal advantage function.

$$\bullet \ A^{\star}(s, \mathbf{a}) = Q^{\star}(s, \mathbf{a}) - V^{\star}(s).$$

Theorem 1:
$$V^*(s) = \max_a Q^*(s, a)$$
.

• Recall the definition of the optimal advantage function:

$$A^*(s, \boldsymbol{a}) = Q^*(s, \boldsymbol{a}) - V^*(s).$$

It follows that

$$\max_{a} A^{\star}(s, a) = \max_{a} Q^{\star}(s, a) - V^{\star}(s).$$

Theorem 1:
$$V^*(s) = \max_{a} Q^*(s, a)$$
.

Recall the definition of the optimal advantage function:

$$A^{\star}(s, \boldsymbol{a}) = Q^{\star}(s, \boldsymbol{a}) - V^{\star}(s).$$

It follows that

$$\max_{\mathbf{a}} A^*(s, \mathbf{a}) = \max_{\mathbf{a}} Q^*(s, \mathbf{a}) - V^*(s)$$

 $\max_a A^*(s,a) = \max_a Q^*(s,a) - V^*(s).$ • Using Theorem 1, we get $\max_a A^*(s,a) = 0.$

Definition of advantage: $A^*(s, \mathbf{a}) = Q^*(s, \mathbf{a}) - V^*(s)$.

Theorem 2: $Q^*(s, \mathbf{a}) = V^*(s) + A^*(s, \mathbf{a})$

Definition of advantage: $A^*(s, a) = Q^*(s, a) - V^*(s)$.

Theorem 2:
$$Q^*(s, a) = V^*(s) + A^*(s, a) - \max_a A^*(s, a)$$
.

Reference:

1. Wang et al. Dueling network architectures for deep reinforcement learning. In ICML, 2016.

Revisiting DQN

• Approximate $Q^*(s, \mathbf{a})$ by a neural network, $Q(s, \mathbf{a}; \mathbf{w})$.

Approximating Advantage Function

• Approximate $A^*(s, \mathbf{a})$ by a neural network, $A(s, \mathbf{a}; \mathbf{w}^A)$.

Approximating State-Value Function

• Approximate $V^*(s)$ by a neural network $V(s; \mathbf{w}^V)$.

Theorem 2:
$$Q^*(s, \mathbf{a}) = V^*(s) + A^*(s, \mathbf{a}) - \max_{\mathbf{a}} A^*(s, \mathbf{a})$$
.

• Approximate $V^*(s)$ by a neural network $V(s; \mathbf{w}^V)$.

Theorem 2:
$$Q^*(s, \mathbf{a}) = V^*(s) + A^*(s, \mathbf{a}) - \max_{\mathbf{a}} A^*(s, \mathbf{a}).$$

- Approximate $V^*(s)$ by a neural network, $V(s; \mathbf{w}^V)$.
- Approximate $A^*(s, a)$ by a neural network $A(s, a; \mathbf{w}^A)$.

Theorem 2:
$$Q^*(s, a) = V^*(s) + A^*(s, a) - \max_a A^*(s, a)$$
.

- Approximate $V^*(s)$ by a neural network, $V(s; \mathbf{w}^V)$.
- Approximate $A^*(s, a)$ by a neural network, $A(s, a; \mathbf{w}^A)$.
- Thus, approximate $Q^*(s, a)$ by the dueling network:

$$Q(s, \mathbf{a}; \mathbf{w}^A, \mathbf{w}^V) = V(s; \mathbf{w}^V) + A(s, \mathbf{a}; \mathbf{w}^A) - \max_{\mathbf{a}} A(s, \mathbf{a}; \mathbf{w}^A).$$

$$Q(s, \mathbf{a}; \mathbf{w}) = V(s; \mathbf{w}^V) + A(s, \mathbf{a}; \mathbf{w}^A) - \max_{\mathbf{a}} A(s, \mathbf{a}; \mathbf{w}^A).$$

$$Q(s, \mathbf{a}; \mathbf{w}) = V(s; \mathbf{w}^V) + A(s, \mathbf{a}; \mathbf{w}^A) - \max_{\mathbf{a}} A(s, \mathbf{a}; \mathbf{w}^A).$$

$$Q(s, \mathbf{a}; \mathbf{w}) = V(s; \mathbf{w}^V) + A(s, \mathbf{a}; \mathbf{w}^A) - \max_{\mathbf{a}} A(s, \mathbf{a}; \mathbf{w}^A).$$

Training

- Dueling network, $Q(s, \mathbf{a}; \mathbf{w})$, is an approximation to $Q^*(s, \mathbf{a})$.
- Learn the parameter, $\mathbf{w} = (\mathbf{w}^A, \mathbf{w}^V)$, in the same way as the other DQNs.
- Tricks can be used in the same way.
 - Prioritized experience replay.
 - Double DQN.
 - Multi-step TD target.

Overcome Non-identifiability

Problem of Non-identifiability

• Equation 1:
$$Q^*(s,a) = V^*(s) + A^*(s,a)$$
.

• Equation 1:
$$Q^*(s,a) = V^*(s) + A^*(s,a)$$
.
• Equation 2: $Q^*(s,a) = V^*(s) + A^*(s,a) - \max_a A^*(s,a)$

Question: Why is the zero term necessary?

Problem of Non-identifiability

- Equation 1: $Q^*(s, a) = V^*(s) + A^*(s, a)$.
- Equation 1 has the problem of non-identifiability.
 - Let $V' = V^* + 10$ and $A' = A^* 10$.
 - Then $Q^*(s, a) = V^*(s) + A^*(s, a) = V'(s) + A'(s, a)$.
- Why is non-identifiability a problem?

Problem of Non-identifiability

- Equation 2: $Q^*(s,a) = V^*(s) + A^*(s,a) \max_a A^*(s,a)$.
- Equation 2 does not have the problem.

$$Q(s, \mathbf{a}; \mathbf{w}) = V(s; \mathbf{w}^V) + A(s, \mathbf{a}; \mathbf{w}^A) - \max_{\mathbf{a}} A(s, \mathbf{a}; \mathbf{w}^A).$$

Alternative:

$$Q(s, \mathbf{a}; \mathbf{w}) = V(s; \mathbf{w}^V) + A(s, \mathbf{a}; \mathbf{w}^A) - \max_{\mathbf{a}} A(s, \mathbf{a}; \mathbf{w}^A).$$

Thank you!