初探 $\lambda_{\min} \geq -2$ 的简单图

Author: 张陈成, Student ID: 5190171910019

```
初探 \lambda_{\min} \geq -2 的简单图 摘要 问题转化 \lambda_{\min} \geq -2 的简单图所对应的根系类最简根系对应的 Coxeter 图 A_n 图 D_n 图 E_{6,7,8} 图 \lambda_{\min} \geq -2 简单图之分类 \lambda_{\min} = -2 的强正则图 参考文献 附图
```

摘要

本稿旨在解答课本 $^{[3]}$ 中的问题: 如何寻找并分类所有 $\lambda_{\min} \geq -2$ 的简单图. 笔者结合前人工作(见参考文献)与个人所学, 整理了以下结论:

- 1. 一切 $\lambda_{\min} \geq -2$ 的简单图可由有限类标准图直接导出, 且上述标准图与 Coxeter 图直接对应.
- 2. 一切 $\lambda_{\min} \geq -2$ 的强正则图可被简单分类并列举.

 $\lambda_{\min} \geq -2$ 之简单图的分类工作肇端于 19 世纪 60 年代, 其提出者Hoffman已做出具体而微的成果. 而 E Doob, Cvetković 等研究者将根系理论引入该问题中, 基本解决了一般的 $\lambda_{\min} \geq -2$ 之简单图的分类工作.

本文关于广义线图之定义参照 $^{[3]}$, 关于根系理论与 Coxeter 图之定义参照 $^{[4][5]}$, 关于 Petersen 图为例外图之证明参阅 $^{[1]}$. 一般 $\lambda_{\min} \geq -2$ 之简单图的根系分类系笔者自行推导, 强正则图相关部分整理自 $^{[2][5]}$.

问题转化

任取 G(V,E) 为顶点数为 n 的简单图, 记 A 为其邻接矩阵. 当 $\lambda_{\min}(G)\geq 2$ 时, A+2I 半正定, 则存在实数矩阵 Q 使得 $Q^TQ=A$. 记列向量 $Q=(q_1\,q_2\,\cdots\,q_n)$, a_{ij} 为 A 中第 ij 个元素, 则 $i\neq j$ 时有 $a_{ij}=\langle q_i,q_j\rangle$. 实际上

$$\langle q_i,q_j
angle = egin{cases} 0 & i pprox j, \ 1 & i \sim j, \ 2 & i = j. \end{cases}$$

视 $\{q_i\}$ 为 \mathbb{R}^n 中以原点为起点的向量, 则诸 q_i 模长均为 2 , 且两两成角为 $\pi/3$ 或 $\pi/2$.

由是可知, 任一满足 $\lambda_{\min} \geq -2$ 的简单图与某组两两成角为 $\pi/2$ 或 $\pi/3$ 的单位向量集可建立——对应. 实际上, 可采用根系 (root system) 理论研究一般欧式空间高度对称的向量系统, 关于根系理论的公理化 叙述可参见 $^{[4]}$.

$\lambda_{ m min} \geq -2$ 的简单图所对应的根系类

沿用上节记号,令 $\mathbf{c}(Q):=\{\pm\frac{1}{\sqrt{2}}q_i\}$ 为所有列向量对应的方向.若 $\mathbf{c}(Q)$ 中存在夹角为 $\pi/3$ 的两个向量 $\{x,y\}$,则 $\{x-y\}$ 与 $\mathbf{c}(Q)$ 中所有向量的夹角余弦值仍为 $\{0,\pm 1/2,\pm 1\}$ 中一者.某种意义上,在 $\mathbf{c}(Q)$ 中为成角为 $\pi/3$ 的二元向量组添加差向量之操作可视作一种完备化.依照以上步骤有限扩充 $\mathbf{c}(Q)$ 可直接导出更大的图 \tilde{G} ,且原图 G 为 \tilde{G} 的删点子图.由于每一 $\mathbf{c}(Q)$ 有唯一对应的 $\mathbf{c}(\tilde{Q})$,下仅需研究所有可能的 $\mathbf{c}(\tilde{Q})$,即满足以下条件的向量集 Φ :

- 1. $\forall q \in \Phi$, $\|q\|_2 = 1$. $\pm q \in \Phi$.
- 2. $\forall x,y \in \Phi$, $\langle x,y
 angle \in \{0,\pm 1/2,\pm 1\}$.
- 3. 若 $\exists x, y \in \Phi$ 使得 $\langle x, y \rangle = 1/2$, 则 $\pm (x y) \in \Phi$.
- 4. 为研究方便, 不妨设图连通(等价地称 Φ 连通), 即不存在非空划分 $\Phi=\Phi_1\dot{\cup}\Phi_2$ 使得 $\forall (x,y)\in (\Phi_1,\Phi_2)$, $\langle x,y\rangle\equiv 0$.

下对 Φ 删除若干元素以简化, 同时保证每一简化后的集合 Φ' 与原集合 Φ 唯一对应.

- 1. 选择 $\mathrm{span}(\Phi)$ 中半空间(开集)使得 Φ 中恰有一半元素落在该半空间中. 例如选择 $\alpha \in \mathrm{span}(\Phi)$ 使得 $\forall x \in \Phi$, $\langle \alpha, x \rangle \neq 0$. 记 $\Phi_{\alpha}^+ := \{x : \langle \alpha, x \rangle > 0\}$.
- 2. 若存在 $x,y\in\Phi$ 使得 $\langle x,y\rangle=-1/2$, 则删去 x+y , 如是重复直至不可再操作得 Φ' . 实际上, 分步操作等价于同时操作, 且最终对应的 Φ' 唯一且连通.

下证明第二步中所述之论断. 视 Φ 中元素为顶点集 $V(\Phi)$, 构造带权重 ± 1 的边集 $E(\Phi)$, 其中权重定义为 $\langle v_i,v_j\rangle$ (权重为0即不连边). 依对 Φ 之构造, 图 $G(\Phi)$ 满足以下性质: 任意权重为 -1 的边含于唯一的三角形, 且该三角形其余两边权重均为 1 .

实际上, $G(\Phi')$ 由 $G(\Phi')$ 删去一切边权重为 $\{-1,-1,1\}$ 的三角形中权为 -1 之边所对的顶点所得. 由于该些顶点确定, 故删除方式存在且唯一. 下考虑连通性: 若子图 $\triangle ABC$ 中 A 点连接了 $\triangle ABC$ 中两条权重为 -1 的边, 且 A 的度数大于 2 , 则不妨设 $A\sim D$. 由于

 $1=|\langle A,D\rangle|=|\langle B,D\rangle+\langle C,D\rangle|\neq 0$, 从而 D 与 B 或 C 存在连边. 从而删除顶点 A 不会造成连通度的增加. 综上, 原论断正确.

自 Φ' 补全为 Φ 之方式更为简单, 只需确保一切权重为 -1 的边含于唯一的三角形, 且该三角形其余两边权重均为 1 . 下称 Φ' 为最简根系.

最简根系对应的 Coxeter 图

Coxeter 图之定义见附录. 本文中的 $G(\Phi')$ 即一类特殊的 Coxeter 图.

 $G(\Phi')$ 满足如下性质:

1. 对任意 $\{x,y\}\subset \Phi'$, $\langle x,y
angle \leq 0$.

实际上, 若存在夹角为 $\pi/3$ 的 $\{x,y\}$, 则 $\{\pm(x-y)\}\subset \Phi$, 从而简化 $\Phi\to\Phi'$ 之时 x 或 y 应被消除. 上以证明简化过程存在且唯一, 故矛盾.

2. $G(\Phi')$ 中边数 e 严格小于顶点数 n.

据上条结论, 注意到

$$0 \leq \left\langle \sum_{x \in \Phi'} x, \sum_{x \in \Phi'} x
ight
angle = \sum_{x \in \Phi'} \left\langle x, x
ight
angle + 2 \sum_{i < j} \left\langle x_i, x_j
ight
angle \leq n - e.$$

取等时要求 Φ' 中不等的向量间夹角恒为 $\pi/3$, 即 Φ' 由转化完全图之 Φ 所得. 而 $2I+A(K_n)$ 满秩, 从而一切满足 $Q^TQ=QQ^T=(2I+A(K_n))$ 的方阵满秩. 注意到一切对应 Φ 的 $\mathbf{c}(Q)$ 的包含了某一等距同构于 Φ' 的子集, 反之 $\mathbf{c}(Q)$ 无法补全至 Φ . 而 $\sum_{x\in\Phi'}x=0$ 说明 Φ' 含有线性无关项, 从而 $\mathbf{c}(Q)$ 并非线性无关. 矛盾.

3. (已证明) $G(\Phi')$ 连通.

从而 $G(\Phi')$ 为树. 下推导该类树的性质

1. $G(\Phi')$ 中顶点度数不超过 3 . 设 $\{x_i\}_{i=1}^k$ 为 y 的邻点, 由于 $G(\Phi')$ 无圈, 则 $\{x_i\}_{i=1}^k$ 两两不交. 从而

$$1 = \langle y,y
angle \geq \left\langle \sum_{i=1}^k \langle x_k,y
angle x_k, \sum_{i=1}^k \langle x_k,y
angle x_k
ight
angle \geq \sum_{i=1}^k \left\langle x_k,y
angle^4 = rac{k}{4}.$$

实际上,第一处等号无法取到(即 y 与 $\{x_i\}_{i=1}^k$ 线性无关);反之设 $y=\sum_{i=1}^k c_i x_i$,则 $\langle y,y\rangle=\sum_{i=1}^k c_i^2=1$. $c_i=\langle x_i,y\rangle\in\{-1/2,0\}$,从而 y 与至少四个元素夹角为 $2\pi/3$.从而 y 在 $G(\Phi)$ 中含于某一三角形,且 y 在该三角形中连边均为 1,从而 y 应被消除.矛盾.

2. $G(\Phi')$ 中路可视作单点. 如取 $x_1-x_2-\cdots-x_k$ 为 $G(\Phi')$ 中一条路 (即 P_n 子图), 记 $x_0=\sum_{i=1}^k x_i$, 则

$$\langle x,x
angle = \sum_{i=1}^k \langle x_i,x_1
angle + 2\sum_{i< j} \langle x_i,x_j
angle = k-(k-1)=1.$$

由于任意路外点 (如取 y) 与路至多有一个交点, 从而 $\langle x,y \rangle \in \{0,-1/2\}$.

结合上述两点论断,任意链有至多一个分叉点,即 $G(\Phi')$ 有至多三个末端。

为方便, 约定 \mathbb{B}^n 为 \mathbb{R}^n 中的标准正交基.

A_n 图

若 $G(\Phi') = P_n$, 考虑

$$A_n \sim \{\pm (e_i - e_j) : e_i, e_j \in \mathbb{B}^{n+1}, i \neq j\}$$

即可.

D_n 图

若 $G(\Phi')$ 为有三个端点的树,不妨设 $G(\Phi')$ 由三条路 $\{u_i\}_{i=1}^p$, $\{v_i\}_{i=1}^q$, $\{u_i\}_{i=1}^r$ 连接而成,且令 $c=u_p=u_q=u_r$.记 $u=\sum_{i=1}^{p-1}i\cdot u_i$, $v=\sum_{i=1}^{q-1}i\cdot v_i$, $w=\sum_{i=1}^{r-1}i\cdot w_i$,则

$$1 = \langle c,c
angle \geq \sum_{x \in \{u,v,w\}} rac{\left\langle c,x
ight
angle^2}{\left\langle x,x
ight
angle} = \sum_{t \in \{p,q,r\}} rac{1-p^{-1}}{2}.$$

从而 $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}\geq 1$. 实际上, 若采用多数 Lie 群相关教材中对最简根系之定义, Φ' 中元素的线性无关性从定义中即可说明. 因此上式等号不可取.

依假定, $p,q,r\geq 2$. 从而 p=q=1 时 $r\in\mathbb{N}=\{0,1\}$. 即

$$D_n \sim \{\pm e_i \pm e_j : e_i, e_j \in \mathbb{B}^n\}.$$

$E_{6,7,8}$ 图

考虑解 p=2 , q=3 , r=3,4,5 . 构造并检验之 (过程略) 得

$$E_8 \sim D_8 \cup iggl\{ \sum_{i=1}^8 rac{arepsilon_i}{2} e_i : arepsilon \in \{\pm 1\}, e_i \in \mathbb{B}^8, \prod_{i=1}^n arepsilon_i = 1 iggr\}.$$

对应r=6之情形.

$$E_7 \sim \{x \perp v : x \in E_8\} \quad ext{for any fixed } v \in E_8.$$

对应r=5之情形.

$$E_6 \sim \{x \perp \operatorname{span}(v_1, v_2, v_3) : x \in E_8\} \quad ext{for any fixed } v_i \in E_8.$$

因此,我们对所有 $\lambda_{\min} \geq -2$ 的简单图之类别进行了初步界定.

$\lambda_{\min} \geq -2$ 简单图之分类

本节将给出以下结论:

- 图 G 有 A_n 表示若且仅若 G 为某一顶点数为 n+1 的二分图之线图.
- 图 G 有 D_n 表示若且仅若 G 为某一广义线图 (含不以 A_n 表示的线图).
- 图 G 有 E_n 表示若且仅若 G 为例外图.

对 G 而言, 线图 L(G) 以 E(G) 为顶点集合, 以 E(G) 中的边相邻关系决定 V(L(G)) 中的顶点相邻关系. 下图为由 G 构造 L(G) 之方式.

作 G 的导出矩阵 $B:=(b_{ve})_{|V|\times |E|}$, $b_{ve}=1$ 若且仅若点 v 与边 e 相连, 反之 $b_{ve}=0$. 从而 $B^TB-2I_{|E|}$ 即为 G 线图之邻接矩阵 A(L(G)) . 由于 B^TB 半正定, L(G)之特征值至少为 -2 .

若在 G 中顶点 j 处添上一条边得图 G' , 则 L(G) 为 L(G') 的某一删点图. 特别地, 记 A:=A(L(G)) , 则 A(L(G')) 具有一般形式 $\begin{pmatrix} 0 & u^T \\ u & A \end{pmatrix}$. 对图 G'' 使得

$$A(L(G'')) = egin{pmatrix} 0 & 0 & u^T \ 0 & 0 & u^T \ u & u & A \end{pmatrix}.$$

经构造, G'' 并非简单图, 但可通过在简单图上添加重边获得. 由于 A(L(G'')) 仍为简单图, 同时具备线图的重要特点: A(L(G''))+2I 半正定, 即 $\lambda_{\min}\geq -2$. 现称该类形如 A(L(G'')) 的图为广义线图.

如下图所示,构造广义线图的一般步骤如下:

- 1. 在简单图 H 的部分顶点处添加若干条花瓣 (pendant) , 即有偶数条重边的添边. 例如 \hat{H} 由 H 于点 1 上添加一片花瓣, 于点 4 上添加两片花瓣所得.
- 2. 仿照线图的定义, 对 \hat{H} 中边进行编号. 其中, 两边相邻若且仅若仅有一个公共顶点. 例如, $i\sim h$, $c\sim a$; 但 $i\sim j$.
- 3. 根据连边关系作线图 $L(\hat{H})$.

注意到广义线图 $L(G, a_1, \ldots, a_m)$ 即线图 L(G) 上添加点

$$\{(i,\pm l): i=1,\ldots,m, l=1,\ldots,a_i\}$$

所得. 记 e_i+e_j 为 $L(G,a_1,\ldots,a_m)$ 中由边 $ij\in E(G)$ 对应点所表示的向量, $e_i\pm e_{(i,l)}$ 分别对应点 $(i,\pm l)$ 即可得广义线图之 D_n 表示. 若 G 为二分图, 将边 ij 记作 e_i-e_j 即可得 A_n 表示. 此外, 应说明无法由 A_n 或 D_n 表示的图之存在性.

实际上,部分满足 $\lambda_{\min} \geq -2$ 之图不属于线图或广义线图,如 Petersen 图. 注意到 Petersen 图中任意相邻的两点 u,v 满足 $N(u) \neq N(v)$. 从而 Petersen 图并非广义线图. 假设存在 H 使得 L(H) 为 Petersen 图,则由于 Petersen 图中相邻两点没有公共邻点,故 H 中不含度至少为 1 的点. 显然 1 为若干圈,散点及路之无交并. 矛盾.

注意到 E_n 有限, 故例外图有限. 从而对顶点足够多的连通图而言, 若 $\lambda_{\min} \geq -2$, 则该图为线图或广义线图, 进而可通过合适的算法约化之.

就最小特征值严格大于-2的图而言,可稽的结论[4]包括:

- 1. 若 H 为某一树的线图, 则 $\lambda_{\min} > -2$.
- 2. 若 H 为某一树添上一片花瓣所生成的广义线图, 则 $\lambda_{\min} > -2$.
- 3. 若H为顶点数为奇数的单圈图,则 $\lambda_{\min}>-2$.
- 4. 某些例外图也满足 $\lambda_{\min} > -2$.

$\lambda_{\min} = -2$ 的强正则图

本节将总结 $\lambda_{\min}=2$ 之强正则图, 原因有下:

- $1.\lambda_{\min} > 2$ 的图系本文中心议题.
- 2. Seidel 证明了 $\lambda_{\min} > -2$ 的所有强正则图无非 K_n 与 C_5 . 该结果较为平凡.

记强正则图 $G(v,k,\lambda,\mu)$ 为一切满足以下条件的图

- 1.G 为顶点数为v的正则图, 每条边度为 k.
- 2.G 中任意相邻的两点的公共邻点数量恒为 λ .
- 3.G 中任意不邻的两点的公共邻点数量恒为 μ .

强正则图 $G(v,k,\lambda,\mu)$ 含有重数为 1 的主特征值 k . 对任意非主特征值 x 所述的特征向量 x , 有 $x^T\mathbf{1}_v=0$. 注意到

$$A^2 = kI + \lambda A + \mu (\mathbf{1}_{v imes v} - I_v - A).$$

从而

$$[A^2 + (\mu - \lambda)A + (\mu - k)I_v]x = \mathbf{0}_v.$$

解得

$$\begin{cases} \tau = \frac{1}{2} \left[(\lambda - \mu) + \sqrt{(\lambda - \mu)^2 + 4(k - \mu)} \right], \\ \theta = \frac{1}{2} \left[(\lambda - \mu) - \sqrt{(\lambda - \mu)^2 + 4(k - \mu)} \right]. \end{cases}$$

重数 $m_{ au}$ 与 $m_{ heta}$ 满足 $\mathrm{trace}(A) = au m_{ au} + heta m_{ heta} + k = 0$,以及 $m_{ au} + m_{ heta} + 1 = n$. 从而

$$egin{aligned} m_{ au} &= rac{1}{2} \left[v - 1 - rac{2k + (v - 1)(\lambda - \mu)}{\sqrt{(\lambda - \mu)^2 + 4(k - \mu)}}
ight], \ m_{ heta} &= rac{1}{2} \left[v - 1 + rac{2k + (v - 1)(\lambda - \mu)}{\sqrt{(\lambda - \mu)^2 + 4(k - \mu)}}
ight]. \end{aligned}$$

对任意点 $v_0\in G$, v_0 的邻点集向非邻点集引出 $k(k-\lambda-1)$ 条边, 而 v_0 邻点集向非邻点集引出 $\mu(v-k-1)$ 条边,从而 $k(k-\lambda-1)=(v-k-1)\mu$.

当 $\theta = -2$ 时, 化简得 $k = 2\lambda - \mu + 4$.

- 当 $\mu = 2$ 时, 得通解 $(n^2, 2(n-1), n-2, 2)$, 其中 $n \geq 2$.
- 当 $\mu = 4$ 时, 得通解 (n(n-1)/2, 2(n-2), n-2, 4) , 其中 $n \geq 4$.

当 $\mu \neq 2,4$ 时,由特征值关系化简知 $m_{\tau}=\dfrac{2v-k-2}{\tau+2}=\dfrac{(\mu+2\tau)(\mu+2\tau+2)}{\mu(\tau+2)}$. 下从图的"部件"数量考察.

设 $x\sim a,b$ 但 $a\sim b$, 记 $\{x,a,b\}$ 包含于 $c \uparrow K_{1,3}$ 及 $q \uparrow C_4$. 这里限定 $K_{1,3}$ 中任意三点不为 G 中某一 K_3 的三个顶点, 例如 $G=K_4$ 不包含 $K_{1,3}$, 但 $G=K_{3,3}$ 包含 $K_{1,3}$. 计算 x 邻点数量得

$$k = \sum_{y \sim a, y \sim by \sim x} 1 + \sum_{y \sim a, y \sim by \sim x} 1 + \sum_{y \sim a, y \sim by \sim x} 1 - \sum_{y \sim a, y \sim by \sim x} 1$$
 $= 2 + 2\lambda - (\mu - 1 - q) + c$

故 $c+q=k-3-2\lambda+\mu=1$. 因此 c=0,q=1 或 c=1,q=0 .

若 c=1 , 则不妨设 $\{x,a,b,c\}$ 组成 $K_{1,3}$. 记 $N(v):=\{x:x\sim v\}$ 为 v 之邻域, $N(H):\{x\in N(v):v\in H\}$ 为 H 之邻域, $F(H):=V(G)\setminus (V(H)\cup N(H))$ 为外点集. 注意到

- 1. $N(x) \cap F(a)$ 内, $k \lambda 1 = \tau + 1$ 个点在 $\{b,c\} \cup N(b,c) \setminus \{x\}$ 中, 从而 $\tau \leq \mu$.
- 2. $(N(a)\cap F(x))\cup\{a\}$ 中的 $k-\lambda$ 个点包含于 $F(\{b,c\})$ 中的 $\lambda=v-2k+\mu-2$ 个点,从 而 $v\geq 5\tau+\mu+4$.

3.
$$\mu v=(k- au)(k+2)$$
 , 从而 $v=3 au+\mu+2+rac{2 au(au+1)}{\mu}\in\mathbb{N}$. 因此 $\mu\leq r$.

故得系数组

• (6 au+4,3 au,2 au-2, au) , 其中 $m_ au=9-rac{12}{ au+2}\in\mathbb{N}$. 据 A. E. Brouwer 对 μ 界之估计 ($v\leqrac{m_ au(m_ au+3)}{2}$) , 取 au=1,2,4,10 即可.

若 q=1 , $\{x,a,b\}$ 属于唯一的 C_4 , 进而 μ 必为偶数, N(a,b) 包含为 $K_{(\mu/2)\times 2}$. 若 $a\sim d\sim b$, 则 d 与 N(a,b) 中的 $\mu/2$ 个点恰好相邻 (此处从 $K_{1,3}$ 之不存在性分析即可) . 注意到 F(b) 导出强正则图 (系数为 $(v-k-1,k-\mu,\lambda-\mu/2,\mu)$) , 此处允许 v-k-1=0 及 $k-\mu=0$ 之情况.

• v-k-1=0情形对应 $K_{2\times n}$

若 F(b) 导出完全图, 则 $m_ au=8-rac{12}{ au+2}$. 从而枚举知

• (10, 6, 3, 4), (16, 10, 6, 6).

若F(b)导出(其余情形的)强正则图,则由

$$(k-\mu)=2(\lambda-\mu/2)-\mu+4$$

知 F(b) 导出的强正则图的最小特征值仍为 -2 . 该导出图的最大特征值重数为 $\dfrac{2\tau(\tau+1)}{(\tau-\mu/2+2)\mu/2}$, 从而 μ 仅可能为 6 或 8 , 或该导出的强正则图为 $K_{2\times n}$ 形式. 就此再进行有限次的枚举, 最终整理得到七类可能的图.

- 1. $K_{n\times 2}$.
- 2. $L_2(n)$, 亦作 H(2,n) . 系数为 $(n^2,2(n-1),n-2,2)$. 前一种表示方式对应格点图 (lattice graph) , 每一点仅与同行同列的点相连.

后一种表示方式为 2 阶 Hamming 图, H(2,n) 的顶点集与 $V(K_n) \times V(K_n)$ 相同, 记作

$$\{(x_1,x_2):x_1,x_2\in\{1,2,\ldots,n\}\}$$

 $(x_i, x_j) \sim (x_k, x_l)$ 若且仅若 i = k 或 j = l.

- 3. T(n) . 系数为 (n(n-1)/2, 2(n-2), n-2, 4) . 构造与 $L_2(n)$ 相似, 只是 n 阶正方形被换做了 n 阶三角形. 值得一提的是, $T(n) = L(K_n)$.
- 4. Shrikhand 图. Shrikhand 于1959年证明了结论: 格点图之系数决定了唯一的强正则图, 但 n=4 例外. 实际上, Shrikhand 图与 $L_2(4)$ 拥有相同的谱.

- 5. Chang 图. T(n) 之系数确定了唯一的强正则图, 除了 n=8 时的三个异构图. 该类图由 ChienChiang Lee (李建強) 首次发现, 图附于文末.
- 6. Petersen 图 ($KG_{5,2}$), 系数为 (10,3,0,1). 依 $KG_{5,2}$ 之定义作下图

图中以 \mathbb{Z}_5 之二元子集为点, 连边若且仅若点所对应的子集相离.

7. Clebsch 图, 系数为 (16, 10, 6, 6). 这是证明末段 $\mu = 6$ 情形所对应的结果, 其形如下.

8. Schläfli 图, 系数为 (27,16,10,8) . 这是证明末段 $\mu=8$ 情形所对应的结果. 善洞若观火, 明察秋 毫者可领会 Schläfli 图中任意一点的邻域 (16个点) 导出 Clebsch 图之补图. Schläfli 图附于文末.

参考文献

- [1] Douglas B. West. *Introduction to Graph Theory.* Pearson Education, Inc., 221 River Street Hoboken, NJ 07030 U.S.A., 2002.
- [2] Slobodan Simić, Dragoš Cvetković, Peter Rowlinson. *An Introduction to the Theory of Graph Spectra*. Cambrige University Press, The Edinburgh Building, Cambridge CB2 8RU, U.K., 2002.
- [3] G.F. Royle C. Godsil. *Algebraic Graph Theory (Graduate Texts in Mathematics, 207)*. Springer Publishing Company, Inc., New York, U.S.A., 2002.
- [4] Daniel Bump. *Lie Groups (Graduate Texts in Mathematics, 136)*. Springer Publishing Company, Inc., New York, U.S.A., 2013.
- [5] Andries E. Brouwer, Hendrik Van Maldeghem, *Strongly regular graphs*, a preprint downloaded 2021-06-17 from <u>Here</u>, listed as fragments of a text on strongly regular graphs in section 2021 of <u>This</u>.

Schläfli图

Chang图