IN THE SPECIFICATION:

Please amend the specification as shown below.

At page 1, before the first line, please insert the following.

This application is a continuation application of Serial No. 09/580,542 filed May 30, 2000.

Beginning page 1, line 6

The present invention relates generally to an electronic money system and an electronic money terminal used therein, and more particularly to an electronic money system, as well as to an electronic money terminal, operative with the use of a portable electronic device which is typically but not exclusively an information card storing monetary value data [is used]. The invention also is concerned with a transaction method which uses the electronic money system.

Beginning page 1, line 16

A cash card or credit card issued by a bank or a credit company when used requires a salesclerk at [the] <u>a</u> store equipped with a compatible card terminal to operate the card terminal to read the card number stored in a magnetic stripe on the card[,] and to enter the amount of the sales

Beginning page 1, line 21

The card terminal then forms \underline{a} connection with a management computer of [the] \underline{a} bank or [the] credit company and sends information, such as \underline{the} card number and the amount of the sales, to the management computer. The management computer manages such information as expiration dates, transaction limits, \underline{and} loss

and theft, for each card a user carries, and determines whether the card transaction is allowable based on the information regarding the card number and the amount of the transaction sent from the card terminal via communication lines. When a card transaction is allowable, the management computer sends back information to that effect and debits the transaction amount from the designated account.

Beginning page 2, line 9

As seen from the above, the system using a cash card or credit card requires transmitting [of] a card verification request from a card terminal to the management computer of the bank or the credit company each time the user uses the card. The conventional system thus has a disadvantage of requiring the connection forming process, making the process of card transaction somewhat cumbersome.

Beginning page 2, line 24

To this end, according to one aspect of the present invention, there is provided an electronic money system, comprising: an electronic money terminal having withdrawing means for withdrawing a transaction amount from electronic money representing monetary value stored in a portable electronic device[,] and processing means form processing a balance due when the transaction amount exceeds the amount stored in the portable electronic device; and[,] an electronic money management means for compiling the transaction amount withdrawn from the electronic money through the electronic money terminal and the amount processed by the balance due processing means.

Beginning page 4, line 3

In accordance with another aspect of the present invention, there is provided an electronic money terminal in which settlement and clearing are carried out by using electronic money contained in an electronic device[,] comprising[:] a processing means for processing [a] the payment of a balance due so that the payment [be] is deferred when an amount of a transaction exceeds the amount of money data contained in the electronic device representing monetary value[,] at the time the transaction amount is withdrawn from a balance.

Beginning page 4, line 12

The arrangement may be such that the processing means shares the balance due to a designated account or loans[:], namely, it determines whether the balance due is to be funded from the account or loan, or from both of them, and stores the share or the funded amount.

Beginning page 4, line 17

The present invention in [its] still another aspect provides a transaction method which uses electronic money[,] comprising the steps of: subtracting a transaction amount from electronic money contained in an electronic device; and, processing a payment of a balance due so that the payment [be] is deferred when the transaction amount exceeds the amount of electronic money contained in the electronic device.

Beginning page 4, line 24

In this method, the deferred payment of the balance due may be funded from a designated account or by \underline{a} loan.

Beginning page 5, line 1

The present invention in [its] further aspect provides an electronic money system[,] comprising: an electronic money terminal having means for withdrawing a transaction amount from a balance on an electronic device having <u>an</u> information storage unit for storing electronic money representing monetary value[,] and [for] allowing the payment of any balance due to be deferred when the transaction amount exceeds the balance; and, <u>an</u> electronic money management means for compiling the transaction amount withdrawn from the balance in the electronic device through the electronic money terminal and an amount of the allowed deferred payment.

Beginning page 5, line 19

Preferably, the electronic money management means is arranged to record the date and time of the transaction using the electronic device[, along with] and the amount of the transaction.

Beginning page 5, line 23

[A] <u>The</u> user of the electronic money system having the foregoing features carries out a transaction by using an electronic device, typically an information card, <u>which</u> [storing] <u>stores</u> data representing monetary value, and when the balance on

the card is short, <u>changes</u> the balance due [is charged] to a designated account or [paid] <u>pays</u> by <u>a</u> loan. The user of the information card is, therefore, able to carry out a transaction solely by the electronic device, e.g., an information card, even when the balance stored [herein] <u>therein</u> is insufficient. The use, therefore, can fully enjoy the advantages offered by the use of the electronic money system.

Beginning page 6, line 9

The above and other objects, features and advantages of the present invention will become clear from the following description of the preferred embodiments when the same [is] <u>are</u> read in conjunction with the accompanying drawings.

Beginning page 6, line 13

It is to be noted that the electronic device to be used in the electronic money system of the invention is not limited to <u>a</u> card-type medium, although information cards are specifically mentioned in the following description. Thus, any portable electronic device which carries data representing monetary value can be used, for example, a mobile phone, a mobile computer or a watch. Furthermore, an information card may have one or more functions [n] <u>in</u> addition to carrying electronic data representing monetary value. For example, an information card may also serve as a personal identification card for office staffs, an electronic key for locking an unlocking the office (especially where the security is demanded), a railway pass, a driver's license, a passport, an insurance document, or the like, depending on the contents of memory mounted on the electronic device. Thus, the present invention

can be implemented in a variety of forms, and all such forms are encompassed by the scope of the present invention.

Beginning page 8, line 14

Referring now to Fig.1, an electronic money system, generally denoted by reference numeral 1, has the following components: an electronic money management unit 10 serving to issue IC cards 50 while managing electronic money and settling and clearing the electronic money account; a plurality of deposit terminals 21_x that are used to deposit electronic money (money data) into IC cards 50; a plurality of electronic money terminals 25_x located at outlets 3[,] for accepting payment from users through the IC cards 50 on which electronic money is held; vending machines 19[x] which sell commercial items to users when paid by means of the IC cards 50; and, a vending machine server 18 which stores data from the vending machines[,] concerning the reports of uses of the IC cards 50, such as monetary amounts of transactions, [and] dates and times.

Beginning page 10, line 2

Referring to Fig. 4, the integrated server 16 includes a CPU 16A, a storage unit 16B, a database 16C, and a communication unit 16H. The CPU 16A runs on an operating program stored in the storage unit 16B. The CPU 16A allows various transaction reports to be passed over the second LAN, through the access server 17, over the first LAN, via the security server 11 to the integrated server 16. Such transaction reports include, but may not be limited to, amount data equivalent to the amount of money deposited through the deposit terminals 21₁ to 21_n, [and] a transaction report of the IC card 50 including IC card number, and the transaction

amounts and transaction dates, which are stored in the electronic money terminals 25_1 to 25_n . The integrated server 16 receives these reports from the communication unit 16H[.] and then stores them into the database 16C via a data bus BUS16.

Beginning page 10, line 17

The integrated server 16 also stores in the database 16C the amount data to be withdrawn from a user's designated account, which is sent from a bank/credit card company management computer 100 (hereinafter sometimes referred to as a "management computer 100") via the electronic money server 13.

Beginning page 11, line 6

In the issue data server 14, the IC card number of the IC card 50 issued by the issue unit 15 is registered into a database in combination with the credit card number of the user who possesses the IC card 50.

Beginning page 11, line 10

The vending machine server 18 stores transaction reports of the IC card 50 including transaction amounts and dates which have been transmitted from the vending machines 19_1 to 19_n . These reports are then delivered, for example, once a day, over the second LAN, via the security server 11 to the integrated server 16. The reports are then stored in [the] database 16C of the integrated server 16.

Beginning page 11, line 18

According to the electronic money system 1 of the illustrated embodiment, the card issuing unit 15 in the electronic money management unit 10 issues IC

(Integrated Circuit) cards 50 from/to which data can be read/written in a contactless manner. The IC cards 50 are then given to users at an issue window site 2 in each tenant company (see Fig. 1). Each of the IC cards 50 has a memory into which an IC card number is uniquely prestored.

Beginning page 12, line 1

Specifically, as shown in Figs. 5 and 6, the IC card 50 is [a battery-free] an IC card that is free of a battery for a power supply. The IC card 50 of this type includes a flat substrate 55 used as a base, a coiled loop antenna 52 for receiving the electromagnetic wave emitted from a data read/write unit 60 to convert it into an electric signal, a modem (modulation/demodulation) circuit 53 for modulating transmission data or demodulating received data, and a control unit 54 for analyzing the received data and [for] generating data to be transmitted.

Beginning page 12, line 11

In the IC card 50 of this type, the electromagnetic wave emitted from the data read/write unit 60 is received by the loop antenna 52[,] and then transmitted as a modulated wave to the modern circuit 53. The modulated wave is demodulated by the modern circuit 53 and [is] sent to a signal processing circuit 54 [so as] to be used as transmission data D1 that has been transmitted from the data read/write unit 60.

Beginning page 12, line 19

The signal processing circuit 54 incorporated a control unit 59, including a hard logic circuit or a CPU (Central Processing Unit), [and] a memory unit including a ROM (Read Only Memory) 57, and a RAM (Random Access Memory) 58. The

control unit 59 analyzes the transmission data D1 on the RAM 58 according to the program written to the ROM 57[,] and then reads various data D2 regarding the electronic money stored in the RAM 58 based on the analyzed transmission data D1, which is then sent to the modem circuit 53. The modem circuit 53 modulates the data D2[,] and delivers it to the data read/write unit 60 as an electromagnetic wave from the loop antenna 52 (see Fig. 5).

Beginning page 13, line 6

The modem circuit 53 contains a power supply circuit for converting electromagnetic wave energy into a stable dc power supply. The electromagnetic wave emitted from the data read/write unit 60 and received by the loop antenna 52 is based to generate a dc power supply DC1, which is then sent to the control unit 59. A clock signal CLK1 generated on the basis of the received electromagnetic wave [is also] also is sent to the control unit 59, while a control signal CTL1 for various controls is received from the control unit 59.

Beginning page 13, line 15

In the data read/write unit 60, various kinds of transmission data sent via a data bus BUS are input into a modern circuit 61, [that] which modulates the input data according to the received data using a carrier wave of a predetermined frequency band [where] so that the input data can be efficiently emitted as an electromagnetic wave. The modulated data is then emitted from a loop antenna 62 in the form of the electromagnetic wave.

Beginning page 13, line 23

Further, in the data read/write unit 60, the electromagnetic wave emitted from the IC card 50 is received as a modulated wave by the loop antenna 62 and sent to the modern circuit 61. The modern circuit 61 demodulates the modulated wave[,] and then sends it as data transmitted from the IC card 50 to a signal processing unit (not shown) via the data bus BUS.

Beginning page 14, line 5

A variety of information on the electronic money is stored in [the] RAM 58 of the IC card 50 where such information is saved into a plurality of files managed with a directory. Specifically, [the] RAM 58 of the IC card 50 stores therein management information D10, or an upper-level information unit of the directory, and electronic money information D20, or a low-level information unit of the directory. The management information D10 may include but is not [be] limited to IC card number D11, file/directory definition information D12 and file access key 13, as shown in fig. 7A. As shown in Fig. 7B, the electronic money information D20 may include but is not [be] limited to balance data D22 indicating a balance of electronic money, electronic money log data D23 indicating transaction reports of electronic money, a credit card flag D24 that is previously registered into the IC card 50 before the card is received by a user, as described later, and any other user information D25, such as staff number or entry/exit data. When the balance data D22 falls short of the amount data of the transaction amount while a user uses the IC card 50 for shopping and the like, the credit card flag D24 is used to indicate whether or not the balance due may

be paid through a credit card. The aforementioned data are written to the files, respectively.

Beginning pate 15, line 4

The user who has received an IC card 50 is able to enter on the IC card 50 electronic money data equivalent to a desired amount of money, either by cash or cash card/credit card, via [a] the deposit terminal 21_x shown in Fig. 1. As shown in Fig. 8, the exterior of a deposit terminal 21_x comprises a card communication unit 21D (having the same construction as that implemented by the loop antenna 62 and the modem circuit 61 in Fig. 5) for exchanging data with an IC card 50 in a contactless manner, a credit card communication unit 21E which reads out data on the magnetic stripes of cash cards/credit cards 40, a cash receiver 21J for receiving cash, a display unit 21F and an operation unit 21G provided together in a touch panel, and a receipt ejector 21I for ejecting receipts on which details of transactions are printed.

Beginning page 15, line 19

The deposit terminal 21_x may accept different depositing methods by which electronic money data enters an IC card 50. The user may throw cash into the cash receiver 21J so that the deposit terminal 21_x will write equivalent electronic money data to the RAM 58 of the IC card 50. Alternatively, the user may insert into the credit card communication unit 21E either a cash card issued from a bank or a credit card issued from a credit card company. The user then specifies a desired sum to deposit by operating [on] the operating unit 21G[,] so that the deposit terminal 21_x will transfer from a designated cash/credit card account into the IC card 50 the

specified monetary value. A cash card herein refers to a card for utilizing deposits in bank accounts, while a credit card refers to a card by means of which the credit card company which has issued the credit card loans a particular amount of money to the card holder.

Beginning page 16, line 10

Referring to Fig. 9, a CPU 21A in a deposit terminal 21_x performs a deposit processing routine, as shown in Fig. 10, according to a particular program stored in a storage unit 21B. When the user brings an IC card 50 close to the card communication unit 21D and initiates a deposit via the operation unit 21G, the CPU 21A starts the deposit processing routine (step SP10 shown in Fig. 10). The routine then proceeds to step SP11 to read out from the IC card 50 a set of information, including the card number, and to prompt the user to select the depositing method via the operation unit 21G.

Beginning page 16, line 21

If the user selects deposit by means of cash (hereinafter referred to as the first depositing method), [the] CPU 21A opens the cash receiver 21J for the user to throw cash therein. When the user has thrown cash in the cash receiver 21J, [the] CPU 21A counts the amount of received cash.

Beginning page 17, line 2

If the user selects deposit by means of cash card/credit card 40 (hereinafter referred to as the second depositing method), [the] CPU 21A prompts the user with a message on the display unit 21 to insert a cash card/credit card 40 into the credit

card communication unit 21E and to specify the amount to deposit. Accordingly, the user specifies [a] the desired sum to be deposited via the operation unit 21G.

Beginning page 17, line 10

When the first depositing method has been selected by the user, the routine skips from step SP12 to step SP17. In step SP17, [the] CPU 21A informs, via the card communication unit 21D, the IC card 50 of the amount of cash which has been thrown into the cash receiver 21J by the user. At this time, data indicating the cash amount is also transmitted via the communication unit 21H to the integrated server 16 of the electronic management unit 10[,] and [is then] then is stored therein. Thus, the control unit 59 of the IC card 50 adds electronic money value according to the received cash amount data to the balance of the electronic money value stored in RAM 58, thereby updating the balance data D22 (shown in Fig. 7B) indicating the electronic money balance.

Beginning page 17, line 23

Alternatively, when the user has selected the second depositing method, [the] CPU 21A proceeds with the routine from step SP12 to step SP13. In step SP13, [the] CPU 21A reads the magnetic stripe of the cash card/credit card 40 [which] that has been inserted into the credit card communication unit 21E to identify the number of that particular cash card/credit card. [The] CPU 21A then transmits via communication unit 21H to the electronic money management unit (shown in Fig. 1) the number of the cash card/credit card 40, the PIN (personal identification number) for the cash card/credit card 40 [which] that has been entered by the user via the operating unit 21G, a verification request for the cash card/credit card 40 and the

requested transaction/credit amount. At his time, the mutual authentication unit 21C of the deposit terminal 21_x verifies that the destination of the transmission from the CPU 21A is a legitimate one.

Beginning page 18, line 15

When the above transmission is authenticated and completed, the electronic money management unit 10 forwards via a communication line to the management computer 100 of the bank/credit card company which is in charge of the particular cash card/credit card the number of cash card/credit card, the user-entered PIN, the verification request and the requested transaction/credit amount [which] that have been transmitted from the deposit terminal 21_x.

Beginning page 18, line 23

The bank/credit card company management computer 100 holds therein legitimate pairs of card number and corresponding PIN for each cash card/credit card [which] that has been issued. The bank/credit card company management computer 100 compares the pair of cash/credit card number and user-entered PIN transmitted from electronic money management unit 10 against the legitimate pairs. When a match is found, the transmitted verification request is properly received by the bank/credit card company management computer 100.

Beginning page 19, line 8

The bank/credit card company management computer 100 then checks the balance of the account designated for the cash card/credit card identified by the transmitted cash card/credit card number[,] and also determines whether or not the

card is valid based on such information as expiration date of the card and any loss [and] or theft reported for the card.

Beginning page 19, line 14

If the user-entered amount to deposit does not exceed the balance of the designated account and [also] the cash card/credit card is found valid, the bank/credit card company management computer 100 authorizes the transaction/credit of the amount, returns a message to that effect to the electronic money management unit 10, and transfers the specified value from the designated account to the integrated server 16 of the electronic money management unit 10. On the other hand, if the use-entered amount to deposit exceeds the balance of the designated account or the cash card/credit card is found invalid, the bank/credit card company management computer 100 rejects the request for the transaction/credit of that amount[,] and returns a message to that effect to the electronic money management unit 10.

Beginning page 20, line 3

The electronic money management unit 10 forwards the verification result to the deposit terminal 21_x . In step SP14 of the flow shown in Fig. 10, [the] CPU 21A of the deposit terminal 21_x receives the verification result via the communication unit 21H.

Beginning page 20, line 8

If the verification result is positive, [the] CPU 21A proceeds with the routine from step SP15 to step SP17 in which the user-specified sum is forwarded to the IC

card 50. Thus, the control unit 59 of the IC card adds electronic money value according to the received sum to the balance of the electronic money value stored in RAM 58, thereby updating the balance data D22 (shown in Fig. 7B) indicating the electronic money balance.

Beginning page 20, line 16

Thereafter, [the] CPU 21A ejects a receipt indicating the details of the transaction through the receipt ejector 21I to complete the deposit processing routine.

Beginning page 20, line 19

If the verification result received in step SP14 is negative, [the] CPU 21A proceeds with the routine from step SP15 to step SP16. In step SP16, a message is displayed on the display unit indicating that the cash card/credit card inserted into the credit card communication unit 21E by the user has not been accepted for transaction/credit of the specified amount[,].

[then] Then in step SP18 the deposit processing routine ends.

Beginning page 21, line 2

When the first depositing method is used to enter electronic money data on the IC card 50, the deposit terminal 21_x transmits data indicating the electronic money value to the integrated server 16 of the electronic money management unit 10[,] and stores the data therein. While, when the second depositing method is used to enter electronic money data on the IC card 50, the bank/credit card company management computer 100 transmits data indicating the electronic money value to

the integrated server 16 of the electronic money management unit 10[,] and stores the data therein.

Beginning page 21, line 20

Different stores have their own electronic money terminals 25_x (25_1 ~ 25_n) [which] that may be coupled to POS (Point Of Sale) registers. As shown in Fig. 11, the electronic money terminal 25_x comprises a main unit to be operated by the sales clerks[,] and an IC card read/write unit 25K which exchanges data in a contactless manner with the IC card 50 brought close thereto by the user.

Beginning page 22, line 2

On the exterior of the main unit 25J, there are provided a display unit 25F and an operation unit 25G together in a touch panel. The operation unit 25G has arithmetic function keys $25G_1$, function keys $25G_2$, a ¥-100-unit key $25G_3$, a ¥-1000-unit key $25G_4$, and so forth. Each function key $25G_2$ may be preassigned with the price of merchandise frequently sold so that the salesclerk operating the main unit 25J can readily enter the sum of a plurality of items sold[,] by using function keys $25G_2$ and arithmetic function keys $25G_1$ in such combination as, for example, "F1*3+F2*2". The ¥-100-unit key $25G_3$ and the ¥-1000-unit key $25G_4$ are used when salesclerk enters the price of merchandise by number entry keys of the arithmetic function keys $25G_1$.

Beginning page 22, line 17

Further, on the exterior of the IC card read/write unit 25K, there are provided a card communication unit 25D (having the same construction as that formed by the

combination of the loop antenna 62 and the modem circuit 61 in Fig. 5) for exchanging data with the IC card 50 in a contactless manner[,] and a display unit 25L for displaying details of a transaction. The arrangement is such that [the] \underline{a} user using the electronic money terminal 25_x is deemed to have an intent of using IC card 50 (i.e. an intent of purchase) when the user holds the IC card 50 over (brings the IC card 50 close to) the IC card read/write unit 25K of the electronic money terminal 25_x .

Beginning page 23, line 4

The display unit 25L has a sales amount display area $25L_1$ for displaying the sales amount entered by a salesclerk through the operation unit 25G at the main unit 25J, a balance due display area $25L_2$ for displaying the amount short of sales amount when the balance on the IC card 50 is insufficient, and a balance display area $25L_3$ for displaying the balance of the electronic money on the IC card 50 after the transaction using IC card 50 is carried out.

Beginning page 23, line 12

Referring now to Fig. 12, [a] CPU 25 on the electronic money terminal 25_x executes a routine for an IC card transaction in accordance with the program in Fig. 13 stored in a storage unit 25B. The CPU 25A initiates the IC card transaction routine at step SP20 when a salesclerk implements the transaction starting operation through the operation unit 25G of the main unit 25J while a user holds the IC cars 50 close to the card communication unit 25D of the IC card read/write unit 25K. Then the process proceeds to step SP21 to read such data as a card number from the IC

card 50 while prompting the salesclerk to enter the sales amount though the operating unit 25G.

Beginning page 23, line 24

At this stage, as the salesclerk enters the price of the merchandise through the operation panel 25G, the CPU 25A further proceeds with the routing to step SP22[,] and performs a subtraction of the sales amount from the balance or remainder data D22 (Fig. 7B) stored in the RAM 58 on the IC card 50 based on the specific sales amount. At the same time, the CPU 25A serves to store, in the electronic money transaction memory area in the storage unit 2B of the electronic money terminal 25_x, data regarding the amount of the electronic money subtracted, [along with] the card number of the IC card 50_x and date/time of the transaction. The [Date] date and time of the transaction are detected by a timer 25T provided in the main unit 25J.

Beginning page 24, line 12

When, at this stage, the sales amount is greater than the current balance (remainder) of the electronic money stored in the IC card 50, [the] CPU 25A displays a reminding message to the display unit 25F and balance due display unit 25L[,] and proceeds with the routine from [a] step SP23 to [a] step SP24 to read a credit card flag (Fig.7B) stored in the IC card 50. When a credit card transaction is allowable, step SP25 stores in the credit card transaction memory area of the storage unit 25B of the electronic money terminal 25_x [,] [an] the amount of the balance due as an amount to be funded by a credit card transaction.

Beginning page 24, line 23

As a result of such operations, the amount fetched from the remainder on the IC card 50, [along with] the card number of the IC card 50, and the transaction date/time data[, is] <u>are</u> stored in the storage unit 25B of the electronic money terminal 25_x [,] as an electronic money transaction data. The amount of the credit card transaction, [along with] the card IC of the IC card 50, and transaction date/time data[,] [is] <u>are</u> stored in the storage unit 25B of the electronic money terminal 25_x [,] as credit card transaction data.

Beginning page 25, line 7

It should be noted that when the IC card 50 is handed out to [the] an individual user[s], the issue data server 14 (Fig. 2) of the electronic money management unit 10 registers [an] the account number of effective credit card issued by [a] the credit card company each user registers and [a] the card number of the IC card 50 at that time is set to enable the credit card transaction. Then the electronic money management unit 10 routinely checks the validity of that credit card account through interrogating the credit card company expiration date of the card, overdue payments, loss and theft information, and so forth.

Beginning page 25, line 19

If the result of [such] <u>this</u> check [proved] <u>proves</u> that the credit card is invalid, the electronic money management unit 10 sends to each electronic money terminal 25_x (25_1 - 25_n) a message indicating that the credit card transaction is disabled[, along with] <u>and</u> the number of the IC card 50 on which the invalidated credit account number is registered. This prevents each terminal 25_x

(25₁-25_n) from performing the credit card transaction for the balance due incurred upon usage of the IC card 50, [and] displays on [the] display units 25F and 25L a message [reminding] stating insufficiency of balance, and [while altering] alters the credit card flag in the memory of the IC card 50 to disable the credit card transaction.

Beginning page 26, line 6

When the status of the credit card flag set in the memory of the IC card 50 is changed to disable the credit card transaction, each electronic money terminal 25_x (25₁-25_n) conducts only electronic money transactions within the amount previously deposited. Consequently, CPU 25 on the electronic money terminal 25_x proceeds with the process from step SP24 to SP26 in Fig. 13[,] and displays a message indicating the credit card is invalid on the display unit 25F and 25L.

Beginning page 26, line 15

When the transaction routine using the IC card 50 is finished, [the] CPU 25A of the electronic money terminal 25_x proceeds with the process to step SP27 and writes the particular transaction report as an electronic money log data D23 (Fig. 7B) on the RAM 58 of the IC card 50. Step SP28 then ends the IC card transaction routine.

Beginning page 26, line 21

As a consequence, [the] storage unit 25B in the electronic money terminal 25_x stores the amount of the transaction using the electronic money previously stored on the IC card 50 and the amount of the credit card transaction

conducted when the balance of the electronic money is insufficient[,] as separate transaction reports upon usage of the IC card 50. The transaction date/time is also stored in the storage unit 25B as [a] transaction report data along with the transaction amount.

Beginning page 27, line 5

The electronic money log data D23 (Fig. 7B) to be written on the RAM 58 of the IC card 50 is configured to include, for example, up to fifteen [of] transaction report blocks written in a cyclic manner, each one of the transaction report blocks consisting of 32 bytes of data, providing 12 times, as shown in Fig. 14A.

Beginning page 27, line 11

This transaction report block contains [a] the communication identifying information D23₁ for identifying through the IC card 50 a communication to be written on the block at the time of the transaction, [a] the log type data D23₂ indicating the type[s] of electronic money transction (method of deposit, type of purchase[,] and whether the transaction involved credit card or just electronic money) of that particular transaction report, [a] the date/time information D23₃ [a] the terminal number data D23₄ indicating the number of the electronic money terminal used, [a] the transaction amount (dealing value) information D23₅ of the particular transaction report, [a] the key version information D23₆ indicating the version of the encryption key at the time the IC card 50 is used, [a] the balance data D23₇ indicating the balance of the electronic money in the IC card 50 after the transaction has been carried out, [a] the communication identifying information D23₈ for

identifying the communication between the electronic money terminal 25_x used for that particular transaction and the IC card 50, and [a] the signature information D239 written according to the key designated by the above-described key version information D236.

Beginning page 28, line 7

Thus, the control unit 59 of the IC card 50 is

constructed to form the electronic money log data D23, including one transaction report block (Fig. 14A) for each transaction. The transaction using electronic money previously stored on the IC card 50 and the transaction using credit card when the balance of the electronic money is insufficient are reported separately, each forming a separate transaction report block.

Beginning page 28, line 15

The electronic money log data D23 thus formed each time a transaction using the IC card 50 is carried out[,] is written on the RAM 58 of the IC card 50 at step SP27 of the above-described IC card transaction routine of Fig. 13. The log data D23 is also stored in the storage unit 25B of the electronic money terminal 25x at above-described step SP22 and step SP25 in Fig. 13.

Beginning page 28, line 22

The CPU 25A in the electronic money terminal 25x adds
[a] the card identification information D23A for identifying the IC card 50 shown in Fig. 14B to the electronic money log data D23 (Fig. 14A) and writes these information on the storage unit 25B.

Beginning page 29, line 2

This card identification information D23A includes an

IC card number D23A₁ for specifying the IC card used in the transaction regarding that electronic money log data D23 to which that card identification information D23A is added, a transaction terminal flag D23A₂ for indicating whether the electronic money terminal 25_x writing the electronic money log data D23 coincides with the electronic money terminal 25_x used in that specific transaction when the electronic money log data D23 is formed, a key version information D23A₃ for indicating the version of communication data encryption key used when writing that electronic money log signature information D23A₄ written in accordance with the key designated by the key version information D23A₃.

Beginning page 29, line 16

When a transaction using an IC card 50 is carried out

and the electronic money log data D23 is updated, the CPU 25A of the electronic money 25_x writes the electronic money log data D23 to the Ram 58 of the IC card[,] and also writes the card identification information D23A [along with] and the electronic money log data D23 to the storage unit 25B of the electronic money terminal 25_x. An IC card 50 stores an electronic money log data D23_x, including old data of up to the past 15 times of transaction. Every time an IC card 50 is newly used, these old data included in the electronic money log data D23 [along with] and the card identification information D23A [is] are written to the electronic money terminal 25_x at which the IC card is used.

Beginning page 30, line 4

Accordingly, every time an IC card is used, an

electronic money terminal 25_x writes the electronic money log data D23 regarding the past 15 [times of] transactions to the storage unit 25B[, every time an IC card is used]. If an old data block included in the electronic money log data D23 has the terminal number information D23₄ referring to another electronic money terminal 25_x, the terminal transaction flag D23A₂ included in the card identification information D23A denotes that the specific data block is indicating the transaction with another electronic money terminal 25_x. This denotation is used by the electronic money management unit 10 for the settle and clear process performed afterwards.

Beginning page 30, line 16

Thus, an electronic money terminal 25_x stores transaction reports (electronic money log data D23), including transaction amount, card number, and date/time information, of each time an IC card is used. Once a day, the electronic money management unit 10 collects all the transaction reports of IC cards 50 stored in each electronic money terminal 25_x (25_1 to 25_n).

Beginning page 30, line 23

From all the information included in IC card transaction reports (electronic money log data D23 and card identification information D23A) collected from electronic money terminals 25_x (25_1 to 25_n), the electronic money management unit 10 then compiles the credit card transaction information regarding each IC card[,] in every predetermined period. The electronic money management unit 10 then transmits the compiled information [along with] and the card number of

an IC card 50 to the management computer 100, according to the registered credit card account number.

Beginning page 31, line.8

At this point, the management computer 100 withdraws from [a] the [users] user's account the total amount of money that was determined to be paid by a credit card[,] and transfers the total amount to the electronic money management unit 10, [to store] which stores it in the integrated server 16.

Beginning page 31, line 13

Accordingly, the amounts of money memorized as the credit card transaction amounts due to insufficiency of the electronic money in the IC card 50 are put together and withdrawn from the user's account by the management computer 100[, and] They are stored in the integrated server 16 of the electronic money management unit 10.

Beginning page 31, line 19

As described above, even when the balance of the electronic money is insufficient, so that the balance due is determined to be paid by a credit card, the management computer 100 does not immediately implement the withdrawing process. It puts together the amounts of money for the credit card payment and withdraws from the user's account afterwards so that one communication for sending a withdrawing request from the electronic money management unit 10 to the management computer 100 will cover many [times of] transactions. Thus, [the] a communication expense will not be incurred every time an IC card 50 is used[,];

and, an IC card 50 (a credit card) can be used even when the sales amount are small.

Beginning page 32, line 12

More specifically, the electronic money server 13 of the electronic money management unit 10 implements the settle and clear process shown in Fig.15, following the order from the integrated server 16 to start processing. At step SP31, transaction reports (electronic money log data D23 and card identification information D23A) [is] are classified by the time zones of the transactions according to the Date/Time information D233 (Fig.14A). Meanwhile, the fee to be charged to each store to utilize the electronic money system 1 is stored in advance in the database 16C of the integrated server 16 [in advance]. Plural fee rates [against] for the sales amount may be set depending on the time zones. In the present embodiment, the fee rate may be 5% when the time of the transaction using the IC card 50 is from 5:00 a.m. to 5:00 p.m. (the first time zone), and 7% for a transaction from 5:00p.m. to 5:00 a.m. (the second time zone).

Beginning page 33, line 3

Therefore, the electronic money server 13 classifies electronic money log data D23 into the first time zone and the second time zone at step SP31[,] and then settles and clears the transactions according to the fee rate of each time zone.

Beginning page 33, line 8

Accordingly, the electronic money server 13 implements the settle and clear process using the fee rate of 5% for

the first time zone and 7% for the second time zone. The profit for each store will be the sales amount after subtraction of the 5% fee far the transaction carried out in the first time zone and the 7% fee for the second time zone. After settling and clearing the transactions, the electronic money server 13 withdraws the profit amount according to the results of the settling and clearing from the database 16C of the integrated server 16[,] and transfers it to the account of each store at step SP33. At this point, the transference details, including details classified by time zones and data in total, will be distributed to each store.

Beginning page 33, line 23

By changing the fee rate for utilizing the electronic money system 1 according to time zones, <u>i.e.</u>, setting <u>a</u> low fee rate at daytime when relatively low-priced goods tend to be sold and <u>a</u> high fee rate at nighttime when relatively high-priced goods tend to be sold, the fee rate reflecting the price setting at each store can be applied.

Beginning page 34, line 4

The operation of the above-described configuration of the electronic money system 1 will be described [hereafter] hereinafter. A user first deposits a certain amount of electronic money (money data) in an IC card at a deposit terminal 21_x. When the user tries to carry out the transaction using the IC card at an electronic money terminal 25_x at a certain store, [when] if the electric money (money data) deposited in the IC card is insufficient for the amount the user intends to spend, the electronic money terminal 25_x checks the credit card flag D24 (Fig.7B). If the credit card flag is set, the balance due is memorized as the credit card transaction amount [of] when the electronic money transaction amount is

memorized. The amount data memorized as the credit card transaction amount is settled and cleared [in certain timing) periodically by the electronic money management unit 10.

Beginning page 34, line 19

Thus, even if the electronic money (money data) in an IC card is insufficient when a user carried out the transaction using the IC card 50 at \underline{an} electronic money terminal[s] 25_x in \underline{a} store[s], the user can complete the payment by the IC card alone, without adding any cash.

Beginning page 35, line 5

The data regarding the money amounts determined to be paid by credit card are collectively settled and cleared together [in a certain timing] periodically by the electronic money management unit 10, making it unnecessary to request the management computer 100 to verify each time an IC card 50 is used.

Beginning page 35, line 14

Although the invention has been described though its preferred form, it [is to] should be understood that the described embodiment is only illustrative, and various changes and modifications [may] might be imparted thereto.

Beginning page 35, line 18

For instance, although in the described embodiment the balance due is determined [to be paid] by a credit card in the above description, when the electronic

money deposited in the IC card is insufficient, the balance due my be paid by cash card from an account of a bank[s].

Beginning page 36, line 1

Still further, although the above description assumes that an IC card is used a electronic money terminals 25_x , the invention also can be implemented such that IC cards are usable on vending machines 19_x , provided that the vending machines 19_x are configured to have [the] \underline{a} function for funding the balance due from a credit card account or from a cash card account.

Beginning page 36, line 8

In the described embodiment, transaction reports on IC cards 50 stored in each electronic money terminal 25_x are collected once a day, and the settle and clear process is implemented once a month by the electronic money management unit 10, but [other various] <u>various other</u> timings of collecting transaction reports from electronic money terminals 25_x and [of] implementing the settle and clear process can be applied within the scope of the present invention.

Beginning page 36, line 16

It should be appreciated by those skilled in the art that the function carried out by [an] the IC card 50 described above can be incorporated in other types of portable electronic devices. Such as[,] mobile telephone, mobile computers, watches, and so forth, and the use of such portable electronic devices in the described electronic money system falls within the scope of the present invention.

Beginning page 36, line 23

It should also be appreciated by those skilled in the art that usage of a memory mounted on an IC card 50 allows various additional functions besides being a carrier of the electronic money, such as[,] identifying individuals (verifying that the person is identical by checking the registered information regarding the individual) [as] with an employee ID. In addition, the IC card [may also] also may serve as an electronic key such as a key to enter or exit an office [for allowing a person to enter or to exit the room requiring security), railway pass, driver's license, passport, health insurance card, point awarding cad, and so forth.