

Nature de l'information

I2D

Cours – Les signaux analogiques

3411

Source : extrait du cours www.gecif.net de J.C. Michel

1. Définition d'un signal analogique

<u>Définition:</u> Un signal est dit analogique si son amplitude peut prendre une infinité de valeurs dans un intervalle donné.

Remarques:

- Dans certains cas, le signal analogique varie suivant des lois mathématiques simples (signal sinusoïdal par exemple).
- Dans la suite de ce cours, les exemples de signaux utilisés seront par défaut des tensions électriques.
- On notera *u(t)*, avec une **minuscule**, une tension variable en fonction du temps.
- On notera U, avec une majuscule, une tension que nous pourrions chiffrer. Ainsi les grandeurs suivantes s'écrivent en majuscule : U_{MAX} , U_{MIN} , U_{MOY} et U_{EFF} .

2. Les signaux analogiques périodiques

Les formes de signaux analogiques périodiques les plus utilisées en électronique sont les suivantes :

Pour chaque signal analogique périodique, il faudra fournir les informations suivantes pour le connaître.

Définition de l' <i>amplitude</i> : L'amplitude d'un signal est la différence entre sa valeur maximale et sa valeur moyenne.	L'amplitude est notée A	A se mesure sur l'axe vertical	A s'exprime en volt (V) pour une tension
Définition de l'amplitude crête à crête : L'amplitude crête à crête d'un signal est la différence entre sa valeur maximale et sa valeur minimale.	L'amplitude crête à crête est notée Acc	Acc se mesure sur l'axe vertical	Acc s'exprime en volt (V) pour une tension
Définition de la période : La période d'un signal est la durée au bout de laquelle le signal se reproduit identique à lui-même.	La période est notée T	T se mesure sur l'axe horizontal	T s'exprime en seconde (s)
Définition de la fréquence : La fréquence d'un signal est le nombre de périodes parcourues pendant une seconde.	La fréquence est notée f	f se calcule à partir de T avec f = 1 / T	f s'exprime en hertz (Hz)
Définition de la valeur moyenne : La valeur moyenne d'un signal est égale à la surface algébrique occupée par le signal durant 1 période divisée par la période du signal.	La valeur moyenne est notée V моу.	V _{MOY} se mesure sur l'axe vertical	V _{MOY} s'exprime en volt (V) pour une tension

3. Les signaux trapézoïdaux

Les signaux trapézoïdaux sont aussi des signaux périodiques mais en forme de trapèzes. Nous les définirons à partir de 6 grandeurs physiques dont 2 caractéristiques de niveau et 4 caractéristiques temporelles :

- La valeur minimale du signal notée V_{MIN}, appelée aussi « niveau bas » (low level) du signal.
- La valeur maximale du signal notée V_{MAX}, appelée aussi « niveau haut » (high level) du signal.
- Le **temps de montée** (rise time), notée T_M , représentant la durée que met le signal pour passer du niveau bas au niveau haut.
- Le **temps de descente** (fall time), notée **T**_D, représentant la durée que met le signal pour passer du niveau haut au niveau bas.
- Le temps haut, noté TH, représentant la durée pendant laquelle le signal reste au niveau haut.
- La *période T* du signal.

<u>Remarque</u>: Souvent ni T_B , ni A_{cc} ne sont données directement. Il faut donc les déduire des 6 autre valeurs. Il en est de même pour la valeur moyenne V_{MOY} .

La définition de signaux sous forme de trapèzes permet de réaliser toutes formes de signaux périodiques utilisés en électronique à l'exception des signaux sinusoïdaux :

- Signal rectangulaire avec T_M et T_D nuls.
- Signal carré avec T_M et T_D nuls et avec $T_H = T_B$.
- Signal triangulaire avec T_H et T_B nuls et avec $T_M = T_D$.
- Signal en dents de scie avec T_H et T_B nuls et avec $T_M \neq T_D$.

La plupart des logiciels de simulation de circuits électroniques proposent un composant générateur appelé **pulse** qu'il faudra paramétrer avec les 6 grandeurs de base pour obtenir les formes désirées.

4. Particularités des signaux analogiques périodiques

4.1 Signal composite

Tout signal périodique sera un *signal composite*. Il sera la somme d'une *composante continue* et d'une *composante alternative*. Exemple pour une tension :

- u(t) et $u_a(t)$ sont des tensions variables dans le temps. u est écrit en lettre minuscule.
- U_c est une tension constante dans le temps. Elle peut être positive ou négative. U est écrit en lettre majuscule.

4.2 Décomposition d'un signal analogique périodique

Tout signal périodique peut être décomposé en somme de signaux sinusoïdaux (Théorème de Fourier).

Représentation temporelle

Représentation fréquentielle

Avec les harmoniques impaires de 3 et 13, un signal carré commence à se dessiner.

$$y = \sin(x) + (1/3).\sin(3x) + (1/5).\sin(5x) + (1/7).\sin(7x) + ... + (1/n).\sin(nx)$$

n est un entier impair

5. Comment produire un signal analogique avec des sorties logiques ?

On se sert de l'inertie des systèmes pour les tromper en leur faisant croire que le signal qui les alimente est un signal continu. En fait, il s'agit de la valeur moyenne d'un signal rectangulaire. Ce procédé s'appelle :

PWM = Pulse Width Modulation
MLI = Modulation de Largeur d'Impulsion

Un signal PWM est caractérisé par :

- f sa fréquence
- Vcc sa tension d'alimentation (ici 5V)
- rc ou α (alpha) son rapport cyclique

 $\alpha = \frac{T_{on}}{T}$

avec T_{on} la durée du signal à Vcc T la période du signal

- Average Output Voltage est la tension moyenne du signal.
- Duty Cycle correspond au rapport cyclique.