Lecture 3 GP, SDP, Relaxation

Table of Contents

- Geometric Programming
- Semi-definite Programming
- Non-convex and Approximate Algorithm

- What is This?
- Why We Need This?
- Standard Form and Transformation
- Use Cases
- Proof for Convexity

minimize
$$cx_1^{a_1}x_2^{a_2}x_3^{a_3}...x_n^{a_n}$$

minimize
$$x_1^2 x_2^{-1} x_3^3$$

subject to
$$bx_1^{b_1}x_2^{b_2}x_3^{b_3}...x_n^{b_n} \le 1$$

subject to
$$x_1^2 x_2^3 \le 1$$

$$cx_1^{c_1}x_2^{c_2}x_3^{c_3}\dots x_n^{c_n}=1$$

Why we need such optimization problem?

Monomials and Posynomial

Properties of Monomials

Monomials are closed under multiplication and division

if f and g are monomials:

- f*g is monomials
- f/g is monomials

Problem

Which of the followings are **monomials**?

$$B. 2 + 3x + 3y$$

$$D. x_1^3 x_2^{-1/2}$$

$$F$$
. $-xyz$

Problem

Which of the followings are posynomial?

A.
$$2xy + x + xy^{1/3}$$

$$B. 3xz - 2x$$

E.
$$2(1 + 2xy)^2$$

F. $3(1 + x)^{0.5}$

$$F. \ \ 3(1+x)^{0.5}$$

Standard Form

Example Problem

minimize
$$x^{-1}y^{-1/2}z^{-1} + 2.3xz + 4xyz$$

subject to $(1/3)x^{-2}y^{-2} + (3/4)y^{1/2}z^{-1} \le 1$
 $x + 2y + 3z \le 1$
 $xy = 1$

Problem1: Chang to Standard Form

maximize
$$x/y$$

subject to $2 \le x \le 3$
 $x^2 + 3y/z \le \sqrt{y}$

 $x/y = z^2$

Problem2: Chang to Standard Form

minimize
$$\sqrt{1+x^2} + (1+y/z)^{3.1}$$
 subject to
$$\frac{1}{x} + \frac{z}{y} \le 1$$

$$(x/y + y/z)^{2.2} + x + y \le 1$$

Problem2: Chang to Standard Form

minimize
$$\sqrt{1+x^2} + (1+y/z)^{3.1}$$
 subject to
$$\frac{1}{x} + \frac{z}{y} \le 1$$

$$(x/y + y/z)^{2.2} + x + y \le 1$$

Problem3: Chang to Standard Form

minimize
$$\max\{x+y,1+(y+z)^{1/2}\}$$

subject to $\max\{y,z^2\}+\max\{yz,0.3\}\leq 1$
$$\frac{3xy}{z}=1$$

Problem

We optimize the shape of a box-shaped structure with height h, width w, and depth d. We have a limit on the total wall area 2(hw + hd), and the floor area wd, as well as lower and upper bounds on the aspect ratios h/w and w/d. Subject to these constraints, we wish to maximize the volume of the structure, hwd.

Other Problem – Circuit design

Other Problem – Truss Design

Other Problem – Wire Sizing

Q: Is it convex?

Convex Optimization

Two Conditions

- Feasible region: Convex set
- Objective: Convex function

Feasibility Analysis

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 1$, $i=1,2,...m$ $g_i(x)=1$, $i=1,2,...p$

Feasibility Analysis

```
minimize f_0(x) subject to f_i(x) \leq 1, i=1,2,...m g_i(x)=1, \qquad i=1,2,...p
```

Table of Contents

- Geometric Programming
- Semi-definite Programming
- Non-convex and Approximate Algorithm

Recall: Linear Programming

minimize
$$c^T x$$
 subject to $a_i^T x = b_i$ $i = 1, 2, ... p$ $x \ge 0$

Basics for Positive Semi-definite Matrix

If matrix M is PSD, then

For symmetric matrix $M \in S^n$, we have $M = QDQ^T$

Semi-definite Programming

minimize
$$C * X$$

subject to $A_i * X = b_i$ $i = 1,2,...p$
 $X \ge 0$

Semi-definite Programming

minimize
$$C * X$$
 subject to $A_i * X = b_i$ $i = 1,2,...p$ $X \ge 0$

$$A_1 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 3 & 7 \\ 1 & 7 & 5 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & 2 & 8 \\ 2 & 6 & 0 \\ 8 & 0 & 4 \end{pmatrix}, \text{ and } C = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 9 & 0 \\ 3 & 0 & 7 \end{pmatrix}$$

$$b_1 = 11$$
 $b_2 = 19$

SDP is Convex?

minimize C * X subject to $A_i * X = b_i \quad i = 1, 2, ... p$ $X \geqslant 0$

LP is special case of SDP

minimize $c^T x$

minimize C * X

subject to
$$a_i^T x = b_i$$
 $i = 1, 2, ... p$

$$i = 1, 2, ... p$$

$$x \ge 0$$

subject to
$$A_i * X = b_i$$
 $i = 1,2,...p$

$$X \geqslant 0$$

Major applications of SDP

- Non-convex problem relaxes to SDP
- Directly modeling using SDP

Table of Contents

- Geometric Programming
- Semi-definite Programming
- Non-convex and Approximate Algorithm

Non-convex problems

- Vertex cover problem
- Set cover problem

General Approach for very Hard Problem

Vertex cover problem

Mathematical Programming

Integer Linear Programming Formulation

It is a hard problem!

Linear Programming Relaxation

Relax to simple problem and solve it

Rounding to get integer solution

Back to solve original problem

Analysis of Solution – Correctness?

Analysis of Solution – How far from true optimal?

True optimal solution: OPT

The lower and upper bound of our solution ???

Set Cover Problem

假设我们有个全集U (Universal Set), 以及m个子集合 $S_1, S_2 \dots, S_m$, 目标是要寻找最少的集合,使得集合的union等于U.

例子: $U = \{1,2,3,4,5\}$, $S: \{S_1 = \{1,2,3\}, S_2 = \{2,4\}, S_3 = \{1,3\}, S_4 = \{4\}, S_5 = \{3,4\}, S_6 = \{4,5\}\}$, 最少的集合为: $\{1,2,3\}, \{4,5\}$, 集合个数为2.

Set Cover Problem

例子: $U = \{1,2,3,4,5\}$, $S: \{S_1 = \{1,2,3\}, S_2 = \{2,4\}, S_3 = \{1,3\}, S_4 = \{4\}, S_5 = \{3,4\}, S_6 = \{4,5\}\}$, 最少的集合为: $\{1,2,3\}, \{4,5\}$, 集合个数为2.

Mathematical Programming

$$minimize \sum_{i=1}^{m} x_i$$

$$s. t. \sum_{i:e \in s_i} x_i \ge 1$$

$$x_i \in \{0,1\}$$
 $i = 1, ..., m$

It is a hard problem!

Convert to Linear Programming

$$minimize \sum_{i=1}^{m} x_i$$

$$s.t. \sum_{i:e \in s_i} x_i \ge 1$$

$$x_i \in [0,1]$$
 $i = 1, ..., m$

Randomize Rounding

The LP solution will give solutions for x_i , i.e., $x_1 = 0.6$

We view this as the probability of this set being selected

Analysis of Solution – Correctness?

Analysis of Solution – How far from true OPT

Analysis of the solution