Introduction to Object Detection **Brodmann**¹

Computer Vision Tasks

Classification

Classification+ Localization

Object Detection

Instance Segmentation

CAT

CAT

CAT, DOG, DUCK

CAT, DOG, DUCK

Single object

Multiple objects

Computer Vision Tasks

Classification

Classification + Localization

Object Detection

Instance Segmentation

CAT

CAT

CAT, DOG, DUCK

CAT, DOG, DUCK

Single object

Multiple objects

Classification + Localization

Classification:

- Input: Image
- Output: Class label
- Loss: Cross entropy (Softmaxlog)
- Evaluation metric: Accuracy

Localization:

- Input: Image
- Output: Box in the image (x, y, w, h)
- Loss: L2 Loss (Euclidean distance)
- Evaluation metric: Intersection over Union

Classification + Localization:

- Input: Image
- Output: Class label + box in the image
- Loss: Sum of both losses

Classification + Localization: ImageNet Challenge

- Dataset
 - 1000 Classes.
 - Each image has 1 class with at least one bounding box.
 - ~800 Training images per class.
- Evaluation
 - Algorithm produces 5 (class + bounding box) guesses.
 - Example is correct if at least one of guess has correct class AND bounding box at least 50% intersection over union.

Intersection Over Union (IoU)

- Important measurement for object localization.
- Used in both training and evaluation.

Classification + Localization: Model

Computer Vision Tasks

Classification

Classification + Localization

Object Detection

Instance Segmentation

CAT

CAT

CAT, DOG, DUCK

CAT, DOG, DUCK

Single object

Multiple objects

Object Detection 2001-2007

- Rapid Object Detection using a Boosted Cascade of Simple Features (2001)
 - Viola & Jones
- Histograms of Oriented Gradients for Human Detection (2005)
 - Dalal & Triggs
- Object Detection with Discriminatively Trained Part Based Models (2010)
 - Felzenszwalb, Girshick, Ramanan
- Fast Feature Pyramids for Object Detection (2014)
 - Dollar

Object Detection 2007-2012

Object Detection Today

Object Detection: Datasets

2007 2013 2015 Pascal VOC ImageNet ILSVRC MS COCO

- 20 Classes
- 11K Training images
- 27K Training objects

Was de-facto standard. currently used as quick benchmark to evaluate new detection algorithms.

- 200 Classes
- 476K Training images
- 534K Training objects

Essentially scaled up version of PASCAL VOC, similar object statistics.

- 80 Classes
- 200K Training images
- 1.5M Training objects

More categories and more object instances in every image. Only 10% of images contain a single object category, 60% in Pascal. More small objects than large objects.

Pascal Examples

COCO Examples

Object Detection

- Input: Image
- Output: For each object class c and each image i, an algorithm returns predicted detections: $\{(b_{ij},s_{ij})\}_{j=1}^{M}$ ocations b_{ij} th confidence scores s_{ij}

Object Detection: Evaluation

- True positive: correct class prediction AND IoU > 50%.
- False positive: wrong class or IoU < 50%.
- False negative: missed (not detected) object
- Only one detection can be matched to an object.

•
$$z_{ij} = \begin{cases} 1 & b_{ij} \text{ is a True Positive} \\ 0 & b_{ij} \text{ is a False Positive} \end{cases}$$

Object Detection: Evaluation

Mean Average Precision (mAP) across all classes, based on Average Precision

(AP) per class, based on Precision and Recall.

n

Precision And Recall For a Threshold

$$Recall(t) = \frac{\sum_{ij} 1[s_{ij} \ge t]z_{ij}}{N}$$

$$Precision(t) = \frac{\sum_{ij} 1[s_{ij} \ge t]z_{ij}}{\sum_{ij} 1[s_{ij} \ge t]}$$

$$z_{ij} = \begin{cases} 1 & b_{ij} \text{ is a True Positive} \\ 0 & b_{ij} \text{ is a False Positive} \end{cases}$$

Precision-Recall Curve

Average Precision (AP)

• [In the vision community] AP is the estimated area under the PR curve

$$AveragePrecision = \frac{\sum_{r \in Recall([0,1])} Precision(t_r)}{|Recall([0,1])|}$$

For example:

$$Recall([0,1]) = \{0,0.1,0.2, ..., 0.9,1.0\}$$

 $|Recall([0,1])| = 11$

Mean Average Precision (mAP)

- The winner of each object class is the team with the highest average precision
- The winner of the challenge is the team with the highest mean Average Precision (mAP) across all classes.

$$meanAveragePrecision = \frac{\sum_{c \in C} AveragePrecision_c}{|C|}$$

Object Detection: Evaluation

 Mean Average Precision (mAP) across all classes, based on Average Precision (AP) per class, based on Precision and Recall.

Table 4: Object detection results on PASCAL VOC 2007 *test* set. The performance is measured by mean of Average Precision (mAP, in %).

Method	mAP	areo	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbk	prsn	plant	sheep	sofa	train	tv
DenseNet-161 (k=48)	79.9	80.4	85.9	81.2	72.8	68.0	87.1	88.0	88.8	64.0	83.3	75.4	87.5	87.6	81.3	84.2	54.6	83.2	80.2	87.4	77.2
ResNet-101 [16]	76.4	79.8	80.7	76.2	68.3	55.9	85.1	85.3	89.8	56.7	87.8	69.4	88.3	88.9	80.9	78.4	41.7	78.6	79.8	85.3	72.0
ResNeXt-101 (32 \times 4d)	80.1	80.2	86.5	79.4	72.5	67.3	86.9	88.6	88.9	64.9	85.0	76.2	87.3	87.8	81.8	84.1	55.5	84.0	79.7	87.9	77.0
DPN-92 (32 × 3d)	82.5	84.4	88.5	84.6	76.5	70.7	87.9	88.8	89.4	69.7	87.0	76.7	89.5	88.7	86.0	86.1	58.4	85.0	80.4	88.2	83.1

Object Detection: Evaluation

- Today new metrics are emerging
 - Averaging precision over all IoU thresholds: 0.5:0.05:0.95
 - Averaging precision for different object sizes (small, medium, big)
 - Averaging recall as a metric to measure object proposal quality.

```
Average Precision (AP):
  AP
                          % AP at IoU=.50:.05:.95 (determines challenge winner)
  ApIoU=.50
                          % AP at IoU=.50 (PASCAL VOC metric)
  APIOU=.75
                          % AP at IoU=.75 (strict metric)
AP Across Scales:
  Apsmall
                          % AP for small objects: area < 32^2
  Apmedium
                          % AP for medium objects: 32^2 < area < 96^2
  Aplarge
                          % AP for large objects: area > 962
Average Recall (AR):
  ARmax=1
                          % AR given 1 detection per image
  ARmax=10
                         % AR given 10 detections per image
  ARmax=100
                          % AR given 100 detections per image
AR Across Scales:
  ARsmall
                          % AR for small objects: area < 322
  ARmedium
                          % AR for medium objects: 32^2 < area < 96^2
  ARlarge
                          % AR for large objects: area > 96^2
```

Brodmann

Looking for brilliant researchers

cv@brodmann17.com