Exercices:

1. Faites correspondre chacune des PDU suivantes à une couche OSI (1,5pt)

PDU	Couche de l'OSI
Trame	
Segment	
Bits	
Données	

- 2. La couche liaison de données assure un acheminement des données de bout en bout (VRAI ou FAUX)?
- 3. Quelle est la méthode d'accès au support utilisé dans un réseau Ethernet?
- 4. Quel type de support de transmission on devra utiliser pour connecter des réseaux longue distance tout en assurant une bande passante élevée ?
- 5. Quel est le rôle du champ FCS dans une trame Ethernet?
- 6. Qu'affiche les commandes de visualisation suivantes:
 - a. show ip arp
 - b. show running-config
 - c. show ip route
- 7. Quelles sont les limites du protocole IPv4 qui vont obliger la communauté internet à migrer vers IPv6 ?
- 8. IP est un protocole d'acheminement au mieux (best effort delivery), expliquer cette caractéristique
- 9. Pourquoi les applications temps réel comme la VoIP et la visioconférence utilisent-elles le protocole de transport UDP plutôt que TCP ?
- 10. On établit un canal de satellite 2Mbps entre deux nœuds A et B ayant un délai de propagation de bout en bout 300ms. La taille de trame soit 3000 bits la taille de trame ACK/NAK soit 64 bits. Le mécanisme de Go-back-N est utilisé avec la taille de la fenêtre est 3.
 - a. Supposant que la transmission soit sans erreur et sans perte de trame. Déterminer le temps nécessaire pour transférer 150 trames et recevoir toutes 150 trames ACK.
 - b. Si la première trame soit erronée de checksum, déterminer combien de trames et quand elles sont retransmises? Déterminer le temps nécessaire pour transférer 150 trames et recevoir toutes 150 trames ACK.

Projets:

- 1. Etudier (lire et comprendre) le RFCs suivants :
 - o RFC 2131: Dynamic Host Configuration Protocol
 - o RFC 792: Internet Control Message Protocol
 - o RFC 826 : An Ethernet Address Resolution Protocol
- Vous êtes l'administrateur du réseau IP présenté ci-dessous. Vous venez d'obtenir de votre fournisseur d'accès à internet l'adresse de réseau 202.160.22.0.la répartition des machines entre les différents sites est donnée dans le tableau suivant

Figure 1

site	Nombres d'hôtes
Site A	30
Site B	5
Site C	10
Site D	25
Site E	115

- a. Quelle est la classe d'appartenance de l'adresse 202.160.22.0?en déduire le masque par défaut
- b. Peut-on proposer un plan d'adressage pour ce réseau en attribuant le même masque de sous-réseau à tous les sous-réseaux?justifier votre réponse
- c. Proposer un plan d'adressage pour ce réseau qui répond au besoin en termes d'adresses indiqué dans le tableau ci-dessus et dresser le résultat dans le tableau suivant

site	Adresse sous- réseau	Masque sous- réseau en décimal pointé	Adresse de diffusion	Intervalle des adresses hôtes valides
Site A				
Site B				

Site C		
Site D		
Site E		
Liaison WAN R1-R2		
Liaison WAN R2-R3		

d. Pour le routeur R1 configurer à l'aide de commandes IOS les éléments suivants :

paramètre	valeur
Nom d'hôte	R1
Mot de passe console	EFM_2015
Mot de passe exécution privilégiée	tri_2015
Bannière mot du jour	« tout accès non autorisé est strictement interdit »

- e. Configurer les deux interfaces LAN du routeur R1 avec des adresses IP valides
- f. Donner un exemple de configuration IP(adresse,masque et passerelle par défaut) pour une machine se trouvant dans site1
- 3. On donne ci-dessous la topologie du réseau de la société WEBMAR spécialisée dans la création et la maintenance des sites Web :

 Table au d'adressage:

Périphérique (Nom d'h ôte)	Interface	Adresse IP	Masque de sous- rése au	Passerelle par déf aut
Switch1	VLAN 99	172.20.99.1	255.255.255. 0	172.20.99.1
Switch2	VLAN 99	172.20.99.1 2	255.255.255. 0	172.20.99.1
Switch3	VLAN 99	172.20.99.1	255.255.255. 0	172.20.99.1

R1	Fa 0/0	172.20.50.1	255.255.255. 0	N/D
R1	Fa 0/1	config	bleau de uration erfaces	N/D
PC1	Carte rése au	172.20.10.2	255.255.255. 0	172.20.10.1
PC2	Carte rése au	172.20.20.2	255.255.255. 0	172.20.20.1
PC3	Carte rése au	172.20.30.2	255.255.255. 0	172.20.30.1
Serveur WEB /TFTP	Carte rése au	172.20.50.2 54	255.255.255. 0	172.20.50.1

Affectations des ports – Commutateur : Switch 2

Ports	Affectation	Réseau
Fa0/1 - 0/4	Agrégations 802.1q (VLAN 99 natif)	172.20.99.0 /24
Fa0/5 - 0/10	VLAN 30 – Invité (par défaut)	172.20.30.0 /24
Fa0/11 - 0/17	VLAN 10 – Développeur-web	172.20.10.0 /24
Fa0/18 - 0/24	VLAN 20 - Designers	172.20.20.0 /24

Tableau de configuration des interfaces – Routeur R1

Interface	Affectation	Adresse IP
Fa0/1.1	VLAN 1	172.20.1.1 /24
Fa0/1.10	VLAN 10	172.20.10.1 /24
Fa0/1.20	VLAN 20	172.20.20.1 /24
Fa0/1.30	VLAN 30	172.20.30.1 /24

Fa0/1.99	VLAN 99	172.20.99.1 /24

- a. Donnez les lignes de commande qui permettent de supprimer les configurations actuelles des commutateurs.
- b. Donnez les lignes de commande qui permettent de désactiver tous les ports des commutateurs.
- c. Donnez les lignes de commande qui permettent de réactiver les ports utilisateur actifs sur Switch2 en mode access.
- d. Donnez la configuration des commutateurs Switch 2 en fonction du tableau d'adressage et des instructions suivantes :
 - Configurez le nom d'hôte du commutateur.
 - Désactivez la recherche DNS.
 - Définissez pass comme mot de passe secret actif.
 - Configurez le mot de passe webmar pour les connexions console.
 - Configurez le mot de passe webmar pour les connexions vty.
 - Configurez la passerelle par défaut sur chaque commutateur.
- e. Configurez le protocole VTP sur les trois commutateurs à l'aide du tableau suivant :

Nom du commutateur	Mode de fonctionnement VTP	Domaine VTP	Mot de passe VTP
Switch 1	Serveur	DomVTP	webmar
Switch 2	Client	DomVTP	webmar
Switch 3	Client	DomVTP	webmar

- f. Configurez les ports Fa0/1 à Fa0/5 comme ports d'agrégation et désignez VLAN 99 c omme réseau local virtuel natif pour ces agrégations.
- g. Configurez les réseaux locaux virtuels suivants sur le serveur VTP :

VLAN	Nom VLAN
VLAN 99	direction
VLAN 10	Développeur-web
VLAN 20	Designers
VLAN 30	invité

- h. Configurez l'adresse de l'interface de gestion sur les trois commutateurs.
- i. Affectez les ports de commutateur aux réseaux locaux virtuels sur Switch 2.
- j. Supprimez la configuration du routeur et la rechargez.
- k. Configurez l'interface d'agrégation sur R1.

Note bien: Associer un VLAN avec la sous-interface et Affecter une adresse IP à la sous-interface depuis le VLAN

- I. Configurez l'interface réseau du serveur sur R1.
- m. Afficher la table de commutation du Switch 2.

Figure 2