Department of Mathematics, IIT Madras MA1020 Series & Matrices

Assignment-4 Linear Systems & Eigenvalue Problem

1. Solve the following system by Gauss-Jordan elimination:

$$x_1$$
 $+x_2$ $+x_3$ $+x_4$ $-3x_5$ $= 6$
 $2x_1$ $+3x_2$ $+x_3$ $+4x_4$ $-9x_5$ $= 17$
 x_1 $+x_2$ $+x_3$ $+2x_4$ $-5x_5$ $= 8$
 $2x_1$ $+2x_2$ $+2x_3$ $+3x_4$ $-8x_5$ $= 14$

- 2. Let $A \in \mathbb{F}^{m \times n}$ have columns A_1, \ldots, A_n . Let $b \in \mathbb{F}^m$. Show the following:
 - (a) The equation Ax = 0 has a non-zero solution iff A_1, \ldots, A_n are linearly dependent.
 - (b) The equation Ax = b has at least one solution iff $b \in \text{span}\{A_1, \dots, A_n\}$.
 - (c) The equation Ax = b has at most one solution iff A_1, \ldots, A_n are linearly independent.
 - (d) The equation Ax = b has a unique solution iff $\operatorname{rank} A = \operatorname{rank}[A|b] = \operatorname{number}$ of unknowns.
- 3. Let $x,y\in\mathbb{F}^{1\times n}$ (or in $\mathbb{F}^{n\times 1}$); $\alpha\in\mathbb{F}$. Prove the following:
 - (a) $||x + y||^2 + ||x y||^2 = 2(||x||^2 + ||y||^2)$. (Parallelogram Law)
 - (b) $|\langle x, y \rangle| \le ||x|| ||y||$. (Cauchy-Schwartz inequality)
 - (c) ||x + y|| = ||x|| + ||y||. (Triangle inequality)
 - (d) If $x \perp y$, then $||x + y||^2 = ||x||^2 + ||y||^2$. (Pythagoras' Law)
- 4. Find the eigenvalues and the associated eigenvectors for the matrices given below.

(a)
$$\begin{bmatrix} 3 & 10 \\ 8 & -1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 13 & 2 \\ -1 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} -2 & -1 \\ 15 & 12 \end{bmatrix}$ (d) $\begin{bmatrix} -2 & 0 & 3 \\ -2 & 3 & 0 \\ 10 & 0 & 5 \end{bmatrix}$

- 5. Let $A \in \mathbb{C}^{n \times n}$ be invertible. Show that $\lambda \in \mathbb{C}$ is an eigenvalue of A if and only if $1/\lambda$ is an eigenvalue of A^{-1} .
- 6. Let A be an $n \times n$ matrix and α be a scalar such that each row (or each column) sums to α . Show that α is an eigenvalue of A.
- 7. Give examples of matrices which cannot be diagonalized.
- 8. Which of the following matrices is/are diagonalizable? If it is diagonalizable, diagonalize it.
 - (a) $A \in \mathbb{R}^{3\times 3}$ is such that $A(a,b,c)^t = (a+b+c, a+b-c, a-b+c)^t$.
 - (b) $A \in \mathbb{R}^{3\times 3}$ is such that $Ae_1 = 0$, $Ae_2 = e_1$, $Ae_3 = e_2$.
 - (c) $A \in \mathbb{R}^{3\times 3}$ is such that $Ae_1 = e_2$, $Ae_2 = e_3$, $Ae_3 = 0$.
 - (d) $A \in \mathbb{R}^{3\times 3}$ is such that $Ae_1 = e_3$, $Ae_2 = e_2$, $Ae_3 = e_1$.
- 9. Check whether each of the following matrix is diagonalizable. If diagonalizable, find a basis of eigenvectors for the space $\mathbb{R}^{3\times 1}$:

(a)
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$.

10. Show that each orthogonal 2×2 matrix is either a reflection or a rotation.