Problem 1

Let v_1, \ldots, v_n be mutually orthogonal vectors in an inner product space V. Show that

$$\left\| \sum_{k=1}^{n} v_k \right\|^2 = \sum_{k=1}^{n} \|v_k\|^2.$$

Proof:

$$\left\| \sum_{k=1}^{n} v_k \right\|^2 = \left\langle \sum_{k=1}^{n} v_k, \sum_{k=1}^{n} v_k \right\rangle$$

$$= \sum_{i=1}^{n} \left\langle \sum_{k=1}^{n} v_k, v_i \right\rangle$$

$$= \sum_{i=1}^{n} \left\langle v_i, v_i \right\rangle$$

$$= \sum_{i=1}^{n} \|v_i\|^2$$
since for $i \neq j$, $\langle v_i, v_j \rangle = 0$

Problem 2

Let V be an inner product space and fix $w \neq 0$ in V. We define the one-dimensional projection

$$P_w: V \to V; P_w(v) := \frac{\langle v, w \rangle}{\langle w, w \rangle} w.$$

- (i) Prove that $v P_w(v) \perp P_w(v)$.
- (ii) Show that $P_w:V\to V$ is a linear operator with $\|P_w\|_{\mathrm{op}}=1.$
- (iii) Show that $P_w \circ P_w = P_w$.

Problem 3

Let V be an inner product space. Prove the reverse Cauchy-Schwarz Inequality which states

$$v, w \in V$$
, and $|\langle v, w \rangle| = ||v|| ||w|| \Rightarrow v = \alpha w$.

Problem 4

Let V be an inner product space. Then, for any $v, w \in V$, show that

$$||v + w||^2 + ||v - w||^2 = 2 ||v||^2 + 2 ||w||^2$$

Problem 5

Let $\lambda = (\lambda_k)_k$ belong to ℓ_{∞} . Show that the map

$$D_{\lambda}: \ell_2 \to \ell_2: D_{\lambda}((\xi_k)_k) = (\lambda_k \xi_k)_k$$

is well-defined, linear, and bounded with $\|D_{\lambda}\|_{\mathsf{op}} = \|\lambda\|_{\infty}$

Problem 6

Consider the vector space $C([0, 2\pi])$ equipped with

$$\langle f, g \rangle := \frac{1}{2\pi} \int_0^{2\pi} f(t) \overline{g(t)} dt.$$

- (i) Show that this pairing defines an inner product on $C([0, 2\pi])$.
- (ii) For $n \in \mathbb{Z}$, set $e_n(t) = \cos(nt) + i\sin(nt)$. Show that the family $\{e_n\}_{n \in \mathbb{Z}}$ is orthonormal.

Problem 7

Let V be any normed space, $p \in [1, \infty]$, and suppose $T : \ell_p^n \to V$ is linear. Show that T is bounded.

Problem 8

Let $\mathbb{P}[0,1] = \{\sum_{k=0}^{n} a_k x^k \mid a_k \in \mathbb{C}\} \subseteq C([0,1])$ denote the linear subspace of all polynomial functions equipped with the uniform norm $\|\cdot\|_{\mathcal{U}}$ inherited from C([0,1]). We define the map

$$D: \mathbb{P}[0,1] \to \mathbb{P}[0,1]; D(p(x)) = p'(x).$$

Show that D is unbounded.

Problem 9

Let V be an infinite-dimensional normed space. Show that there is a linear functional $\varphi:V\to\mathbb{F}$ that is unbounded.

Problem 10

Let $a, b \in \mathbb{M}_n$. Show the following properties of the operator norm.

- (i) $||a||_{op} = \sup \{ |\langle a\xi, \eta \rangle| | \xi, \eta \in B_{\ell_2^n} \}$
- (ii) $\|a^*\|_{op} = \|a\|_{op}$
- (iii) $||ab||_{op} \le ||a||_{op} ||b||_{op}$
- (iv) $\|a^*a\|_{op} = \|a\|_{op}^2$