Ordenação em tempo linear

CLRS 8.2-8.3

Recebe vetores A[1 ... n] e B[1 ... n] e devolve no vetor B[1 ... n] os elementos de A[1 ... n] em ordem crescente.

Cada A[i] está em $\{0,\ldots,k\}$.

Entra:

Recebe vetores A[1..n] e B[1..n] e devolve no vetor B[1..n] os elementos de A[1..n] em ordem crescente.

Cada
$$A[i]$$
 está em $\{0,\ldots,k\}$.

Entra:

Sai:

```
COUNTING-SORT (A, B, n, k)
      para i \leftarrow 0 até k faca
             C[i] \leftarrow 0
3
      para i \leftarrow 1 até n faça
             C[A[i]] \leftarrow C[A[i]] + 1
    \triangleright C[i] é o número de is tais que A[i] = i
5
      para i \leftarrow 1 até k faca
             C[i] \leftarrow C[i] + C[i-1]
    \gt C[i] é o número de is tais que A[i] < i
      para i \leftarrow n decrescendo até 1 faça
8
             B[C[A[i]]] \leftarrow A[i]
9
             C[A[i]] \leftarrow C[A[i]] - 1
```

Obs: são feitas 0 comparações entre elementos do vetor.

Consumo de tempo

linha	consumo na linha
	0 (1)
1-2	$\Theta(k)$
3 - 4	$\Theta(n)$
5-6	$\Theta(k)$
7-9	$\Theta(n)$

Consumo total: $\Theta(n+k)$

Conclusões

O consumo de tempo do Counting-Sort é $\Theta(n+k)$.

- ▶ se $k \le n$ então consumo é $\Theta(n)$
- ▶ se $k \le 10n$ então consumo é $\Theta(n)$
- ▶ se k = O(n) então consumo é $\Theta(n)$
- ▶ se $k \ge n^2$ então consumo é $\Theta(k)$
- se $k = \Omega(n)$ então consumo é $\Theta(k)$

Estabilidade

A propósito: Counting-Sort é estável:

na saída, chaves com mesmo valor estão na mesma ordem que apareciam na entrada.

\boldsymbol{A}	2	5	3	0	2	3	0	5	3	0
	1	2	3	4	5	6	7	8	9	10
В	0	0	0	2	2	3	3	3	5	5

Exemplo:

Exemplo:

32 <mark>9</mark>	7 <mark>20</mark>
457	3 55
65 <mark>7</mark>	436
839	457
436	657
72 <mark>0</mark>	3 <mark>29</mark>
35 <mark>5</mark>	839

Exemplo:

329	7 <mark>20</mark>	720
457	355	329
65 <mark>7</mark>	436	436
839	457	839
436	657	355
72 <mark>0</mark>	3 <mark>29</mark>	457
35 <mark>5</mark>	839	657

Exemplo:

32 <mark>9</mark>	7 <mark>20</mark>	720	329
45 <mark>7</mark>	3 55	329	355
65 <mark>7</mark>	436	436	436
839	457	839	457
436	657	355	657
72 <mark>0</mark>	329	457	720
35 <mark>5</mark>	839	657	839

Exemplo:

329	720	720	329
45 <mark>7</mark>	355	329	355
65 <mark>7</mark>	436	436	436
839	457	839	457
436	657	355	657
72 <mark>0</mark>	3 <mark>29</mark>	457	720
35 <mark>5</mark>	839	657	839

Cada A[j] têm d dígitos decimais:

$$A[j] = a_d 10^{d-1} + \dots + a_2 10^1 + a_1 10^0$$

Exemplo com d = 3: $3 \cdot 10^2 + 2 \cdot 10 + 9$

Ordenação digital

```
RADIX-SORT (A, n, d)

1 para i \leftarrow 1 até d faça

2 \triangleright 1 até d e não o contrário!

3 ordene A[1...n] pelo dígito i
```

Linha 3:

▶ faz ordenação $A[j_1...j_n]$ de A[1...n] tal que

$$A[j_1]_{\mathbf{i}} \leq \cdots \leq A[j_n]_{\mathbf{i}};$$

- ordenação deve ser estável; e
- ▶ use Counting-Sort.

Exemplos

- ▶ dígitos decimais: $\Theta(dn)$
- ▶ dígitos em 0..k: $\Theta(d(n+k))$.

Exemplo com d = 5 e k = 127:

$$a_5 128^4 + a_4 128^3 + a_3 128^2 + a_2 128 + a_1$$

sendo $0 \le a_i \le 127$

Dados n números com b bits e um inteiro $r \le b$, RADIX-SORT ordena esses números em tempo

$$\Theta\left(\frac{b}{r}(n+2^r)\right).$$

Prova: Considere cada chave com $d = \lceil b/r \rceil$ dígitos com r bits cada.

Dados n números com b bits e um inteiro $r \le b$, RADIX-SORT ordena esses números em tempo

$$\Theta\left(\frac{b}{r}(n+2^r)\right).$$

Prova: Considere cada chave com $d = \lceil b/r \rceil$ dígitos com r bits cada.

Use Counting-Sort com $k = 2^r - 1$.

Dados n números com b bits e um inteiro $r \le b$, RADIX-SORT ordena esses números em tempo

$$\Theta\left(\frac{b}{r}(n+2^r)\right).$$

Prova: Considere cada chave com $d = \lceil b/r \rceil$ dígitos com r bits cada.

Use Counting-Sort com $k = 2^r - 1$.

Cada passada do Counting-Sort: $\Theta(n+k) = \Theta(n+2^r)$.

Dados n números com b bits e um inteiro $r \le b$, RADIX-SORT ordena esses números em tempo

$$\Theta\left(\frac{b}{r}(n+2^r)\right).$$

Prova: Considere cada chave com $d = \lceil b/r \rceil$ dígitos com r bits cada.

Use Counting-Sort com $k = 2^r - 1$.

Cada passada do Counting-Sort: $\Theta(n+k) = \Theta(n+2^r)$.

$$\Theta(d(n+2^r)) = \Theta\left(\frac{b}{r}(n+2^r)\right).$$

Bucket sort

Bucket sort: algoritmo de ordenação em tempo esperado linear.

Descrito em CRLS 8.4.

Exercícios

Exercício 1.A

O seguinte algoritmo promete rearranjar o vetor A[1..n] em ordem crescente supondo que cada A[i] está em $\{0,...,k\}$. O algoritmo está correto?

```
C-SORT (A, n, k)
     para i \leftarrow 0 até k faça
             C[i] \leftarrow 0
     para i \leftarrow 1 até n faça
             C[A[i]] \leftarrow C[A[i]] + 1
    i \leftarrow 1
     para i \leftarrow 0 até k faca
             enquanto C[i] > 0 faça
                     A[i] \leftarrow i
                    j \leftarrow j + 1
                     C[i] \leftarrow C[i] - 1
```

Qual o consumo de tempo do algoritmo?

Exercício 1.B Mais exercícios

O seguinte algoritmo promete rearranjar o vetor $A[1 \dots n]$ em ordem crescente supondo que cada A[j] está em $\{1,\dots,k\}$. O algoritmo está correto? Estime, em notação O, o consumo de tempo do algoritmo.

```
VITO-SORT (A, n, k)

1 i \leftarrow 1

2 para \ a \leftarrow 1 \ até \ k - 1 \ faça

3 para \ j \leftarrow i \ até \ n \ faça

4 se \ A[j] = a

5 então \ A[j] \leftrightarrow A[i] > troca

6 i \leftarrow i + 1
```

Exercício 1.C

Suponha que os components do vetor A[1..n] estão todos em $\{0,1\}$. Prove que n-1 comparações são suficientes para rearranjar o vetor em ordem crescente.

Exercício 1.D

Qual a principal invariante do algoritmo RADIX-SORT?