Ecole Supérieure en Sciences et Technologies de l'Informatique et du Numérique

Detus x 1^{ère} année Classe Préparatoire Module: Analyse 1

Année: 2021/2022 Semestre:1

Série de TD Nº1 Chapitre 1: Nombres Réels

Exercice 1.

1. Montrer $\sqrt{2}$ est un nombre irrationnel.

2. Soit $N \in \mathbb{N}$. Montre que \sqrt{N} est rationnel si et seulement si N est un carré parfait (de la forme m^2 où $m \in \mathbb{N}$).

Exercice 2.

Déterminer (s'ils existent) (s'majorants, les minorants, la borne supérieure, la borne inférieure, le plus grand élément, le plus petit élément des ensembles suivants

$$A_1 = [0, 1] \cap \mathbb{Q}, \quad A_2 = [6, 47[\cup \{2\} \cup [100, +\infty[, A_3 = \{x \in \mathbb{R} : x^2 + x - 1 \le 0\}]])$$

$$A_4 = \{x \in \mathbb{R}, e^x < \frac{1}{2}\}; \quad A_5 = \{x \in \mathbb{Q} : x^2 < 7\}, \quad A_6 = \{x \in \mathbb{R}, \frac{1}{2} \le \sin x < \frac{\sqrt{3}}{2}\}$$

$$A_7 = \{\sin x, x \in]0, \pi[\}; A_8 = \{\frac{x+1}{x+2}, x \in \mathbb{R}, x \ge 3\} \quad A_9 = \{(-1)^n + \frac{1}{n} n \in \mathbb{N}^*\}.$$

Exercice 3.

Soit A une partie non vide de \mathbb{R} . On pose

$$(-A) = \{-x \mid /x \in A\}$$

Montrer que

1. Si A est majorée, (-A) est minorée et on a : $\inf(-A) = -\sup(A)$.

2. Si A est minorée, (-A) est majorée et on a: $\sup(-A) = -\inf(A)$.

Exercice 4.

Soient A et B deux parties non vides et bornées de \mathbb{R} .

Montrer que

1. Si $A \subset B$ alors $\sup(A) < \sup(B)$ et $\inf(A) > \inf(B)$.

2. $\sup(A \cup B) = \max(\sup A, \sup B)$ et $\inf(A \cup B) = \min(\inf A, \inf B)$.

3. Si $A \cap B \neq \emptyset$ alors $\sup(A \cap B) < \min(\sup A, \sup B)$ et $\inf(A \cap B) \ge \max(\inf A, \inf B).$

4. On pose $A + B = \{a + b : a \in A \mid et \mid b \in B\}$ alors $\sup(A+B) = \sup A + \sup B \text{ et } \inf(A+B) = \inf A + \inf B$

Exercice 5.

Soient les sous-ensembles de \mathbb{R} suivants

$$A_1 = [\sqrt{3}, 4] \cap \mathbb{Q}; \quad A_2 = \{x \in \mathbb{R}, \exists p \in \mathbb{N}^* \text{ tel que } x = \frac{\sqrt{2}}{p}\}$$

$$A_3 = \left\{ \frac{2n + (-1)^n}{n+1}, n \in \mathbb{N} \right\}.$$

- 1. Montrer que A_1 , A_2 et A_3 sont bornés.
- 2. Déterminer la borne supérieure, la borne inférieure, le minimum, le maximum, s'ils existent. Justifier votre réponse.

Exercice 6.

- 1. Pour $x, y \in \mathbb{R}$, montrer que

- a) $|x+y| \le |x| + |y|$ b) $||x| |y|| \le |x-y|$ c) $\frac{|x+y|}{1+|x+y|} \le \frac{|x|}{1+|x|} + \frac{|y|}{1+|y|}$
- 2. Pour $x_1, x_2, ..., x_n \in \mathbb{R}, n \in \mathbb{N}^*$, montrer que

$$|x_1 + x_2 + \dots + x_n| \le |x_1| + |x_2| + \dots + |x_n|.$$

3. Montrer que si $x \in \mathbb{R}$ et $|x| \le \varepsilon, \forall \varepsilon > 0$ alors x = 0.

Exercice 7.

Soit E la fonction partie entière sur \mathbb{R} .

- 1. Calculer E(2), E(2,01), E(1,99), E(-7,5), $E(-\sqrt{2})$, $E(-2\pi)$.
- 2. Montrer que $\forall x \in \mathbb{R}, \forall n \in \mathbb{Z}$ E(x+n) = E(x) + n.
- 3. Montrer que pour $x, y \in \mathbb{R}$, on a
 - i) $x \le y \Rightarrow E(x) \le E(y)$.
 - ii) $E(x+y) E(x) E(y) \in \{0,1\}.$
- 4. Montrer que $\forall x \in \mathbb{R}, \forall n \in \mathbb{N}^*$ $E(\frac{E(nx)}{n}) = E(x)$.

Exercice 8.

On définit le sous-ensemble de \mathbb{R} suivant

$$A = \{ E(x) + E(\frac{1}{x}), \quad x \in \mathbb{R}_+^* \}.$$

- 1. Calculer $E(x) + E(\frac{1}{x})$ pour $x = \frac{1}{2}$ et x = 1, 4.
- 2. Montrer que $\forall x \in]0,1]$: $E(x) + E(\frac{1}{x}) \geq 1$.
- 3. Montrer que A est minoré.
- 4. Montrer que A n'est pas majoré.
- 5. Déterminer $\sup A$; $\inf A$; $\max A$; $\min A$ s'ils existent. Justifier.