

수학 계산력 강화

(1)도함수의 정의~(2)미분법의 공식(01)

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일 : 2019-03-11
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

01 / 도함수의 정의

미분가능한 함수 $y\!=\!f(x)$ 의 정의역의 각 원소 x에 미분계수 f'(x)를 대응시키면 새로운 함수

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

를 얻는다. 이때 이 함수 f'(x)를 f(x)의 **도함수**라 한다.

☑ 도함수의 정의를 이용하여 다음 함수의 도함수를 구하여라.

- **1.** f(x) = 4
- **2.** f(x) = -5
- 3. f(x) = 10
- **4.** f(x) = x + 3
- **5.** f(x) = 2x
- **6.** f(x) = 3x + 4
- 7. $f(x) = x^2 4$

8.
$$f(x) = x^2 - 3x$$

9.
$$f(x) = x^2 - 5x$$

10.
$$f(x) = 4x^2$$

11.
$$f(x) = x^4$$

□ 다음 함수의 도함수를 구하여라. 또, 이 도함수를 이용하여 각 함수의 x = 2에서의 미분계수를 구하여라.

12.
$$f(x) = 2x + 5$$

13.
$$f(x) = 3x - 7$$

14.
$$f(x) = x^2$$

15.
$$f(x) = x^2 + 2x$$

16.
$$f(x) = x^2 + x$$

17.
$$f(x) = x^2 - x$$

미분법의 공식 02

- (1) 함수 x^n 과 상수함수의 도함수
 - ① $y=x^n$ $(n \ge 2$ 인 정수) $\Rightarrow y'=nx^{n-1}$
 - $\bigcirc y = x \Rightarrow y' = 1$
 - ③ y=c (c는 상수) ⇒ y'=0
- (2) 함수의 실수배, 합, 차의 미분법

두 함수 f(x), g(x)가 미분가능할 때,

- ① $\{cf(x)\}' = cf'(x)$ (단, c는 상수)
- ② $\{f(x)+g(x)\}'=f'(x)+g'(x)$
- $(3) \{f(x) g(x)\}' = f'(x) g'(x)$
- (3) 곱의 미분법
 - ① $\{f(x)g(x)\}' = f'(x)g(x) + f(x)g'(x)$
 - ② $\{f(x)g(x)h(x)\}'$
- = f'(x)g(x)h(x) + f(x)g'(x)h(x) + f(x)g(x)h'(x)

☑ 다음 함수를 미분하여라.

- **18.** $y = -x^8$
- **19.** $y = x^3$
- **20.** $y = x^5$
- **21.** $y = x^9$
- **22.** $y = x^{10}$
- **23.** y = 6

24.
$$y = 15$$

25.
$$y = 20$$

26.
$$y = 3x^6$$

27.
$$y = 2x + 3$$

28.
$$y = 3x + 2$$

29.
$$y = -5x + 2$$

30.
$$y = -x^2 + 2x - 4$$

31.
$$y = -x^2 + 4x + 3$$

32.
$$y = -x^2 + 8x + 5$$

33.
$$y = \frac{1}{2}x^2 - x + 3$$

34.
$$y = 2x^3 - 4x^2 + 3x + 1$$

35.
$$y = \frac{1}{4}x^4 + \frac{1}{3}x^3 - \frac{1}{2}x^2 - x$$

36.
$$y = \frac{1}{5}x^5 + \frac{1}{4}x^4 + \frac{1}{3}x^3 + \frac{1}{2}x^2 + x$$

ightharpoonup 함수 f(x)에 대하여 다음 값을 구하여라.

37. 함수
$$f(x) = x^2 + x + 3$$
에 대하여 $f'(10)$ 의 값

38. 함수
$$f(x) = 200x - \frac{3}{2}x^2 - \frac{1}{3}x^3$$
에 대하여 $f'(10)$ 의 값

- **39.** 함수 $f(x) = 7x^3 ax + 3$ 에 대하여 f'(1) = 2를 만 족시키는 상수 a의 값
- **40.** 이차함수 $f(x) = x^2 + 3x$ 에 대하여 f(2) + f'(2)의 값

☑ 다음 함수를 미분하여라.

41.
$$y = (x-1)(2x+5)$$

42.
$$y = (x-3)(2x-1)$$

43.
$$y = -5x(x^2+1)$$

44.
$$y = (3x^2 - 2)(2x - 1)$$

45.
$$y = (2x^2 - 3)(x - 2)$$

46.
$$y = (x^2 - 4x + 5)(3x + 7)$$

47.
$$y = (2x-1)(x^2-3x+1)$$

48.
$$y = (2x^2 + 5)(x^2 - 2)$$

49.
$$y = (x^2 + 3x - 2)(x^2 - 4)$$

50.
$$y = (x^2 + x)(x^3 + 1)$$

51.
$$y = (x^2 - x)(x^3 + 1)$$

52.
$$y = (2x^2 + 3)(x^3 - x + 3)$$

53.
$$y = (3x^2 + 2)(x^3 - 3x + 1)$$

54.
$$y = (3x-4)^2$$

55.
$$y = (x-1)^3$$

56.
$$y = (3x-2)^4$$

57.
$$y = (-3x+4)^5$$

58.
$$y = (2x^2 - x + 5)^3$$

59.
$$y = (x+2)^2(3x^2-1)$$

60.
$$y = (x-5)^2(x^2+1)^3$$

61.
$$y = x(x+3)(3x+1)$$

62.
$$y = x(x+1)(x+2)$$

63.
$$y = (x-5)(2x+1)(-x+7)$$

64.
$$y = (x-1)(x+2)(2x+3)$$

65.
$$y = x(x+2)(2x+1)$$

66.
$$y = (2x-1)(x+3)(3x+2)$$

67.
$$y = (x^2 + 1)(x + 1)(x^2 - 2x)$$

68.
$$y = (2x-5)^4$$

69.
$$y = (x^2 - 2x + 1)^5$$

ightharpoonup 다음 함수 f(x)의 x=1에서의 미분계수를 구하여라.

70.
$$f(x) = (2x-5)(x+1)$$

71.
$$f(x) = (2x+1)(x^2+3x+1)$$

72.
$$f(x) = (x^2 + 1)(x^2 + x - 2)$$

73.
$$f(x) = (x^2 + 3)(x^3 + 9)$$

74.
$$f(x) = (x^3 + 5)(x^2 - 1)$$

75.
$$f(x) = (2x+1)^3$$

76.
$$f(x) = (-3x+4)^6$$

77. $f(x) = (2x^3 + 1)(x - 1)^2$

정답 및 해설

1)
$$f'(x) = 0$$

$$\Rightarrow f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{4 - 4}{\Delta x} = 0$$

2)
$$f'(x) = 0$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{-5 - (-5)}{h} = 0$$

3)
$$f'(x) = 0$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{10 - 10}{h} = 0$$

4)
$$f'(x) = 1$$

$$\Rightarrow f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\{(x + \Delta x) + 3\} - (x + 3)}{\Delta x}$$

$$=\lim_{\Delta x \to 0} \frac{\Delta x}{\Delta x} = 1$$

5)
$$f'(x) = 2$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{2(x+h) - 2x}{h}$$
$$= \lim_{h \to 0} 2$$

6)
$$f'(x) = 3$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\{3(x+h)+4\} - (3x+4)}{h} = \lim_{h \to 0} \frac{3h}{h}$$

$$=\lim_{h\to 0} 3=3$$

7)
$$f'(x) = 2x$$

$$\Rightarrow f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\{(x + \Delta x)^2 - 4\} - (x^2 - 4)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{2x\Delta x + (\Delta x)^2}{\Delta x}$$

$$= \lim_{\Delta x \to 0} (2x + \Delta x) = 2x$$

8)
$$f'(x) = 2x - 3$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\left\{ (x+h)^2 - 3(x+h) \right\} - (x^2 - 3x)}{h}$$

$$=\lim_{h\to 0}\frac{2hx+h^2-3h}{h}$$

$$= \lim_{h \to 0} (2x + h - 3) = 2x - 3$$

9)
$$f'(x) = 2x - 5$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 - 5(x+h) - (x^2 - 5x)}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^2 - 5h}{h} = \lim_{h \to 0} (2x + h - 5)$$

$$=2x-5$$

10)
$$f'(x) = 8x$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$=\lim_{h\to 0}\frac{4(x+h)^2-4x^2}{h}$$

$$= \lim_{h \to 0} \frac{8xh + 4h^2}{h} = \lim_{h \to 0} (8x + 4h) = 8x$$

11) $f'(x) = 4x^3$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^4 - x^4}{h}$$

$$= \lim_{h \to 0} (4x^3 + 6hx^2 + 4h^2x + h^3)$$

$$=4x$$

12)
$$f'(x) = 2$$
, $f'(2) = 2$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\{2(x+h)+5\}-(2x+5)}{h}$$

$$=\lim_{h\to 0}\frac{2h}{h}=2$$

따라서 f(x)의 x=2에서의 미분계수는 f'(2)=2

13) f'(x) = 3, f'(2) = 3

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\{3(x+h)-7\} - (3x-7)}{h}$$

$$=\lim_{h\to 0}\frac{3h}{h}=3$$

따라서 f(x)의 x=2에서의 미분계수는 f'(2)=3

14) f'(x) = 2x, f'(2) = 4

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$=\lim_{h\to 0}\frac{(x+h)^2-x^2}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^2}{h}$$

$$=\lim_{h\to 0} (2x+h) = 2x$$

따라서 f(x)의 x=2에서의 미분계수는 $f'(2) = 2 \cdot 2 = 4$

15)
$$f'(x) = 2x + 2$$
, $f'(2) = 6$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\{(x+h)^2 + 2(x+h)\} - (x^2 + 2x)}{h}$$

$$=\lim_{h\to 0}\frac{2hx+h^2+2h}{h}$$

$$=\lim_{h\to 0}(2x+h+2)=2x+2$$

따라서 f(x)의 x=2에서의 미분계수는 $f'(2) = 2 \times 2 + 2 = 6$

16)
$$f'(x) = 2x + 1$$
, $f'(2) = 5$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\{(x+h)^2 + (x+h)\} - (x^2 + x)}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^2 + h}{h} = \lim_{h \to 0} (2x + h + 1)$$

따라서 f(x)의 x=2에서의 미분계수는 $f'(2) = 2 \cdot 2 + 1 = 5$

17)
$$f'(x) = 2x - 1$$
, $f'(2) = 3$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\{(x+h)^2 - (x+h)\} - (x^2 - x)}{h}$$

$$= \lim_{h \to 0} \frac{2hx + h^2 - h}{h} = \lim_{h \to 0} (2x + h - 1)$$

$$=2x-1$$

따라서 f(x)의 x=2에서의 미분계수는

$$f'(2) = 2 \times 2 - 1 = 3$$

18)
$$y' = -8x^7$$

$$\Rightarrow y' = (-x^8)' = -8x^7$$

19)
$$y' = 3x^2$$

$$\Rightarrow y' = 3x^{3-1} = 3x^2$$

20)
$$y' = 5x^4$$

$$\Rightarrow y' = 5x^{5-1} = 5x^4$$

21)
$$y' = 9x^8$$

$$\Rightarrow y' = 9x^{9-1} = 9x^8$$

22)
$$y' = 10x^9$$

$$\Rightarrow y' = 10x^{10-1} = 10x^9$$

23)
$$y' = 0$$

$$\Rightarrow y' = (6)' = 0$$

24)
$$y' = 0$$

25)
$$y' = 0$$

26)
$$y' = 18x^5$$

$$\Rightarrow y' = (3x^6)' = 18x^5$$

27)
$$y' = 2$$

$$\Rightarrow y' = (2x+3)' = (2x)' + (3)' = 2$$

28)
$$y' = 3$$

$$\Rightarrow y' = (3x+2)' = (3x)' + (2)' = 3$$

29)
$$y' = -5$$

$$\Rightarrow y' = (-5x+2)' = (-5x)' + (2)' = -5$$

30)
$$y' = -2x + 2$$

$$\Rightarrow y' = (-x^2 + 2x - 4)' = (-x^2)' + (2x)' - (4)'$$

31)
$$y' = -2x + 4$$

$$\Rightarrow y' = (-x^2 + 4x + 3)' = (-x^2)' + (4x)' + (3)'$$
= -2x + 4

32)
$$y' = -2x + 8$$

$$\Rightarrow y' = (-x^2 + 8x + 5)'$$

$$=(-x^2)'+(8x)'+(5)'=-2x+8$$

33)
$$y' = x - 1$$

$$\Rightarrow y' = \left(\frac{1}{2}x^2 - x + 3\right)' = \left(\frac{1}{2}x^2\right)' - (x)' + (3)' = x - 1$$

34)
$$y' = 6x^2 - 8x + 3$$

$$\Rightarrow y' = (2x^3 - 4x^2 + 3x + 1)'$$

$$= (2x^3) - (4x^2) + (3x)' + (1)' = 6x^2 - 8x + 3$$

35)
$$y' = x^3 + x^2 - x - 1$$

$$\Rightarrow y' = \left(\frac{1}{4}x^4 + \frac{1}{3}x^3 - \frac{1}{2}x^2 - x\right)'$$

$$= \left(\frac{1}{4}x^4\right)' + \left(\frac{1}{3}x^3\right)' - \left(\frac{1}{2}x^2\right)' - (x)' = x^3 + x^2 - x - 1$$

36)
$$y' = x^4 + x^3 + x^2 + x + 1$$

$$\Rightarrow y' = \left(\frac{1}{5}x^5 + \frac{1}{4}x^4 + \frac{1}{3}x^3 + \frac{1}{2}x^2 + x\right)'$$

$$= \left(\frac{1}{5}x^{5}\right)' + \left(\frac{1}{4}x^{4}\right)' + \left(\frac{1}{3}x^{3}\right)' + \left(\frac{1}{2}x^{2}\right)' + (x)'$$

$$=x^4+x^3+x^2+x+1$$

$$\Rightarrow f(x) = x^2 + x + 3$$
이므로 $f'(x) = 2x + 1$
 $\therefore f'(10) = 20 + 1 = 21$

$$\Rightarrow f(x) = 200x - \frac{3}{2}x^2 - \frac{1}{3}x^3$$
이므로

$$f'(x) = 200 - 3x - x^2$$

 $\therefore f'(10) = 200 - 30 - 100 = 70$

39) 19
$$\Rightarrow f(x) = 7x^3 - ax + 3$$
이므로 $f'(x) = 21x^2 - a$ 이때, $f'(1) = 2$ 이므로 $21 - a = 2$ $a = 19$

41)
$$y' = 4x + 3$$

 $\Rightarrow y' = (x-1)'(2x+5) + (x-1)(2x+5)'$
 $= 1 \times (2x+5) + (x-1) \times 2 = 4x + 3$

42)
$$y' = 4x - 7$$

 $\Rightarrow y' = (x-3)'(2x-1) + (x-3)(2x-1)'$
 $= (2x-1) + 2(x-3) = 4x - 7$

43)
$$y' = -15x^2 - 5$$

 $\Rightarrow y' = (-5x)'(x^2 + 1) - 5x(x^2 + 1)'$
 $= -5(x^2 + 1) - 5x \cdot 2x$
 $= -15x^2 - 5$

44)
$$y' = 18x^2 - 6x - 4$$

 국의 미분법을 이용하면

 $y' = \{(3x^2 - 2)(2x - 1)\}'$
 $= (3x^2 - 2)'(2x - 1) + (3x^2 - 1)(2x - 1)'$
 $= 6x(2x - 1) + (3x^2 - 2) \times 2$
 $= (12x^2 - 6x) + (6x^2 - 4)$
 $= 18x^2 - 6x - 4$

45)
$$y' = 6x^2 - 8x - 3$$
 \Rightarrow 곱의 미분법을 이용하면
$$y' = \{(2x^2 - 3)(x - 2)\}'$$

$$= (2x^2 - 3)'(x - 2) + (2x^2 - 3)(x - 2)'$$

$$= 4x(x - 2) + (2x^2 - 3) \times 1$$

$$= (4x^2 - 8x) + (2x^2 - 3)$$

$$= 6x^2 - 8x - 3$$

46)
$$y' = 9x^2 - 10x - 13$$

 $\Rightarrow y' = (x^2 - 4x + 5)'(3x + 7) + (x^2 - 4x + 5)(3x + 7)'$
 $= (2x - 4)(3x + 7) + 3(x^2 - 4x + 5)$
 $= 9x^2 - 10x - 13$

47)
$$y' = 6x^2 - 14x + 5$$

 $\Rightarrow y' = (2x - 1)'(x^2 - 3x + 1) + (2x - 1)(x^2 - 3x + 1)'$
 $= 2 \times (x^2 - 3x + 1) + (2x - 1)(2x - 3)$
 $= 6x^2 - 14x + 5$

48)
$$y' = 8x^3 + 2x$$

$$\Rightarrow y' = (2x^2 + 5)'(x^2 - 2) + (2x^2 + 5)(x^2 - 2)'$$
$$= 4x(x^2 - 2) + (2x^2 + 5) \times 2x = 8x^3 + 2x$$

49)
$$y' = 4x^3 + 9x^2 - 12x - 12$$

 $\Rightarrow y' = (x^2 + 3x - 2)'(x^2 - 4) + (x^2 + 3x - 2)(x^2 - 4)'$
 $= (2x + 3)(x^2 - 4) + (x^2 + 3x - 2) \times 2x$
 $= 4x^3 + 9x^2 - 12x - 12$

50)
$$y' = 5x^4 + 4x^3 + 2x + 1$$

 $\Rightarrow y' = (x^2 + x)'(x^3 + 1) + (x^2 + x)(x^3 + 1)'$
 $= (2x + 1)(x^3 + 1) + (x^2 + x) \times 3x^2$
 $= 5x^4 + 4x^3 + 2x + 1$

51)
$$y' = 5x^4 - 4x^3 + 2x - 1$$

 $\Rightarrow y' = (x^2 - x)'(x^3 + 1) + (x^2 - x)(x^3 + 1)'$
 $= (2x - 1)(x^3 + 1) + (x^2 - x) \times 3x^2$
 $= 5x^4 - 4x^3 + 2x - 1$

52)
$$y' = 10x^4 + 3x^2 + 12x - 3$$

 $\Rightarrow y' = (2x^2 + 3)'(x^3 - x + 3) + (2x^2 + 3)(x^3 - x + 3)'$
 $= 4x(x^3 - x + 3) + (2x^2 + 3)(3x^2 - 1)$
 $= 10x^4 + 3x^2 + 12x - 3$

53)
$$y' = 15x^4 - 21x^2 + 6x - 6$$

 \Rightarrow
 $y' = (3x^2 + 2)'(x^3 - 3x + 1) + (3x^2 + 2)(x^3 - 3x + 1)'$
 $= 6x(x^3 - 3x + 1) + (3x^2 + 2)(3x^2 - 3)$
 $= 15x^4 - 21x^2 + 6x - 6$

54)
$$y' = 6(3x-4)$$

 $\Rightarrow y' = 2(3x-4)(3x-4)' = 6(3x-4)$

55)
$$y' = 3(x-1)^2$$

56)
$$y' = 12(3x-2)^3$$

 $\Rightarrow y' = \{(3x-2)^4\}' = 4(3x-2)^{4-1}(3x-2)'$
 $= 12(3x-2)^3$

57)
$$y' = -15(-3x+4)^4$$

 $\Rightarrow y' = 5(-3x+4)^4 \times (-3) = -15(-3x+4)^4$

58)
$$y' = 3(2x^2 - x + 5)^2 (4x - 1)$$

 $\Rightarrow y' = \{(2x^2 - x + 5)^3\}'$
 $= 3(2x^2 - x + 5)^{3-1} (2x^2 - x + 5)'$
 $= 3(2x^2 - x + 5)^2 (4x - 1)$

59)
$$y' = 2(x+2)(6x^2+6x-1)$$

 $\Rightarrow y' = \{(x+2)^2\}'(3x^2-1) + (x+2)^2(3x^2-1)'$
 $= 2(x+2)(x+2)'(3x^2-1) + (x+2)^2 \cdot 6x$
 $= 2(x+2)(3x^2-1) + 6x(x+2)^2$
 $= 2(x+2)(6x^2+6x-1)$

60)
$$y' = 2(x-5)(x^2+1)^2(4x^2-15x+1)$$

 $\Rightarrow y' = \{(x-5)^2\}'(x^2+1)^3 + (x-5)^2\{(x^2+1)^3\}'$
 $= 2(x-5)(x-5)'(x^2+1)^3$
 $+(x-5)^2 \cdot 3(x^2+1)^2(x^2+1)'$
 $= 2(x-5)(x^2+1)^3 + 6x(x-5)^2(x^2+1)^2$
 $= 2(x-5)(x^2+1)^2(4x^2-15x+1)$

61)
$$y' = 9x^2 + 20x + 3$$

 $\Rightarrow y' = x'(x+3)(3x+1) + x(x+3)'(3x+1) + x(x+3)(3x+1)'$
 $= 1 \times (x+3)(3x+1) + x \times 1 \times (3x+1) + x(x+3) \times 3$
 $= 9x^2 + 20x + 3$

62)
$$y' = 3x^2 + 6x + 2$$

 $\Rightarrow y' = (x)'(x+1)(x+2) + x(x+1)'(x+2) + x(x+1)(x+2)'$
 $= (x+1)(x+2) + x(x+2) + x(x+1)$
 $= 3x^2 + 6x + 2$

63)
$$y' = -6x^2 + 46x - 58$$

 $\Rightarrow y' = (x-5)'(2x+1)(-x+7)$
 $+(x-5)(2x+1)'(-x+7) + (x-5)(2x+1)(-x+7)'$
 $= (2x+1)(-x+7) + 2(x-5)(-x+7)$
 $-(x-5)(2x+1)$
 $= -6x^2 + 46x - 58$

64)
$$y' = 6x^2 + 10x - 1$$

 $\Rightarrow y' = \{(x-1)(x+2)(2x+3)\}'$
 $= (x-1)'(x+2)(2x+3) + (x-1)(x+2)'(2x+3) + (x-1)(x+2)(2x+3)'$
 $= 1 \times (x+2)(2x+3) + (x-1) \times 1 \times (2x+3) + (x-1)(x+2) \times 2$
 $= 6x^2 + 10x - 1$

65)
$$y' = 6x^2 + 10x + 2$$

 $\Rightarrow y' = x'(x+2)(2x+1) + x(x+2)'(2x+1) + x(x+2)(2x+1)'$
 $= 1 \cdot (x+2)(2x+1) + x \cdot 1 \cdot (2x+1) + x(x+2) \cdot 2$
 $= 6x^2 + 10x + 2$

66)
$$y' = 18x^2 + 38x + 1$$

 $\Rightarrow y' = \{(2x-1)(x+3)(3x+2)\}'$
 $= (2x-1)'(x+3)(3x+2) + (2x-1)(x+3)'(3x+2)$
 $+ (2x-1)(x+3)(3x+2)'$
 $= 2 \times (x+3)(3x+2) + (2x-1) \times 1 \times (3x+2)$
 $+ (2x-1)(x+3) \times 3$
 $= 18x^2 + 38x + 1$

67)
$$y' = 5x^4 - 4x^3 - 3x^2 - 2x - 2$$

 $\Rightarrow y' = (x^2 + 1)'(x + 1)(x^2 - 2x) + (x^2 + 1)(x + 1)'(x^2 - 2x) + (x^2 + 1)(x + 1)(x^2 - 2x)'$

$$= 2x(x+1)(x^2-2x) + (x^2+1) \times 1 \times (x^2-2x)$$

+ $(x^2+1)(x+1)(2x-2)$
= $5x^4-4x^3-3x^2-2x-2$

68)
$$y' = 8(2x-5)^3$$

 $\Rightarrow y' = 4(2x-5)^3 \cdot 2 = 8(2x-5)^3$

69)
$$y' = 10(x-1)^9$$

 $\Rightarrow y' = 5(x^2 - 2x + 1)^4 \cdot (2x - 2) = 10(x - 1)^9$

70) 1
$$\Rightarrow f'(x) = (2x-5)'(x+1) + (2x-5)(x+1)'$$

$$= 2 \cdot (x+1) + (2x-5) \cdot 1$$

$$= 4x-3$$

$$\therefore f'(1) = 4 \cdot 1 - 3 = 1$$

71) 25

$$\Rightarrow f'(x) = (2x+1)'(x^2+3x+1) + (2x+1)(x^2+3x+1)'$$

$$= 2(x^2+3x+1) + (2x+1)(2x+3)$$

$$= 6x^2+14x+5$$

$$f'(1) = 6+14+5=25$$

72) 6
$$\Rightarrow f(x) = (x^2 + 1)(x^2 + x - 2) \circ \square \exists \exists f'(x) = (x^2 + 1)'(x^2 + x - 2) + (x^2 + 1)(x^2 + x - 2)' \\ = 2x(x^2 + x - 2) + (x^2 + 1)(2x + 1) \\ \therefore f'(1) = 2 \cdot 0 + 2 \cdot 3 = 6$$

73) 32

$$\Rightarrow f'(x) = (x^2 + 3)'(x^3 + 9) + (x^2 + 3)(x^3 + 9)'$$

$$= 2x(x^3 + 9) + (x^2 + 3) \times 3x^2$$

$$= 5x^4 + 9x^2 + 18x$$

$$\therefore f'(1) = 5 + 9 + 18 = 32$$

74) 12

$$\Rightarrow f(x) = (x^3 + 5)(x^2 - 1) \circ \Box \Xi$$

$$f'(x) = (x^3 + 5)'(x^2 - 1) + (x^3 + 5)(x^2 - 1)'$$

$$= 3x^2(x^2 - 1) + (x^3 + 5) \times 2x$$

$$\therefore f'(1) = 3 \cdot 0 + 6 \cdot 2 = 12$$

75) 54
$$\Rightarrow f'(x) = 3(2x+1)^2 \cdot 2 = 6(2x+1)^2$$
$$\therefore f'(1) = 6(2+1)^2 = 54$$

76)
$$-18$$

 $\Rightarrow f'(x) = 6(-3x+4)^5 \times (-3) = -18(-3x+4)^5$
 $\therefore f'(1) = -18(-3+4)^5 = -18$

77) 0
$$\Leftrightarrow f(x) = (2x^3 + 1)(x - 1)^2$$
이므로
$$f'(x) = (2x^3 + 1)'(x - 1)^2 + (2x^3 + 1)\{(x - 1)^2\}'$$

$$=6x^{2}(x-1)^{2}+(2x^{3}+1)\times 2(x-1)$$

$$\therefore f'(1)=6\cdot 0+3\cdot 0=0$$