Assignment 6 - Viewing I & II

Alyssa Perry

Tuesday, April 1, 2025

1. Screen Space Description

You can think of screen space as the 2D grid where everything gets drawn on your screen. It's kind of like a canvas that your computer uses to show stuff. The origin usually starts in a corner (like the top-left), and the x and y axes go across and down. It's often a left-handed system, which means the axes follow a certain direction convention. It's useful because it makes positioning things on screen a lot more predictable.

To transform a 3D point to screen space using perspective projection:

- (a) Model Transformation: Convert object coordinates to world space.
- (b) **View Transformation**: Convert world coordinates to camera/view space.
- (c) **Projection Transformation**: Apply a perspective projection matrix to get clip space coordinates.
- (d) **Clipping**: Remove any parts of the geometry outside the view frustum
- (e) **Perspective Divide**: Divide by w to get normalized device coordinates (NDC).
- (f) **Viewport Transformation**: Convert NDC to screen space using screen width and height.
- 2. Perspective View Volume Properties

Given: $z_{\text{near}} = -1$, distance to far $= 49 \Rightarrow z_{\text{far}} = -50$

Near clipping window: width = 200, height = 100

- a. Near and Far Planes: $z_{\rm near}=-1,\,z_{\rm far}=-50$
- **b.** Clipping Window: $x_l = -100$, $x_r = 100$, $y_b = -50$, $y_t = 50$
- c. Perspective to Orthographic Matrix $M_{persp \to ortho}$:

$$M_{\text{persp}\to \text{ortho}} = \begin{bmatrix} -1 & 0 & 0 & 0\\ 0 & -1 & 0 & 0\\ 0 & 0 & -51 & -50\\ 0 & 0 & 1 & 0 \end{bmatrix}$$

d. Final Normalized Matrix $M_{\mathbf{persp} \to \mathbf{norm}}$ can be obtained by multiplying with the orthographic normalization matrix.

1

3. Viewport Transformation

a. Viewport Matrix:

$$M_{\text{viewport}} = \begin{bmatrix} 6 & 0 & 0 & 6 \\ 0 & 5 & 0 & 5 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{(width = 12, height = 10)}$$

b. Transform NDC (0.5, 0.5, 0.5):

$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} 6 & 0 & 0 & 6 \\ 0 & 5 & 0 & 5 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.5 \\ 0.5 \\ 1 \end{bmatrix} = \begin{bmatrix} 9 \\ 7.5 \\ 0.5 \\ 1 \end{bmatrix}$$

- c. Pixel Coordinates: $(x_{pixel}, y_{pixel}) = (9, 7.5)$
- 4. Calculating Vertical Field of View (FOV)

Given: Near plane at z = -10, Window size $= 10 \times 12$ Vertical FOV:

$$\theta = 2 \cdot \tan^{-1} \left(\frac{H}{2 \cdot |z_{\text{near}}|} \right) = 2 \cdot \tan^{-1} \left(\frac{12}{20} \right) = 2 \cdot \tan^{-1} (0.6) \approx 61.9^{\circ}$$