PROGRAMMING IN PYTHON II

Introduction

Michael Widrich
Institute for Machine Learning

Copyright statement:

This material, no matter whether in printed or electronic form, may be used for personal and non-commercial educational use only. Any reproduction of this material, no matter whether as a whole or in parts, no matter whether in printed or in electronic form, requires explicit prior acceptance of the authors.

Outline

1. Recap Python I

2. Outline Python II

3. Python II Project

RECAP PYTHON I

■ In Python I we have learned about programming and Python...

In Python I we have learned about programming and Python...a lot of it actually:

 Basics about hardware and datatype 		Basics	about	hardware	and	dataty	oes
--	--	--------	-------	----------	-----	--------	-----

- Command line, Python Interpreter
- ☐ Usage of PyCharm Editor
- Python scripts
- Debugging
- Python syntax/style
- Floats, ints, strings, lists, dictionaries
- Conditions, loops, list comprehensions
- Exceptions

÷	
	Functions
	Regular expressions
	Classes
	os/sys (Python as pseudo shell-script)
	Matlpotlib/Pyplot (Plotting in Python)
	Numpy (efficient computation in Python)
	Multiprocessing (subprocesses in Python)
	Numba (compiling and speeding up Python programs)
	PyTorch (optimized programming for ML)

- 1	
	Functions
	Regular expressions
	Classes
	os/sys (Python as pseudo shell-script)
	Matlpotlib/Pyplot (Plotting in Python)
	Numpy (efficient computation in Python)
	Multiprocessing (subprocesses in Python)
	Numba (compiling and speeding up Python programs)
	PyTorch (optimized programming for ML)
	need a recap? Materials available here:
	https://github.com/widmi/programming-in-python

OUTLINE PYTHON II

What awaits you in Python II?

What awaits you in Python II?

A full-fledged Machine Learning project

What awaits you in Python II?

- A full-fledged Machine Learning project
 - Collection of data
 - Setup of a project with git integration
 - Analysis of the data
 - Preprocessing of the data
 - Loading of the data
 - Implementation of the Neural Network (inference)
 - Implementation of the Neural Network (training)
 - Implementation of data augmentation
 - Evaluation of performance

Goals of this course

Main goal: You will be able to set up your own ML project
☐ Implementation in Python and PyTorch
 Usage of git to access resources on github
 Fundamentals and pitfalls in data preparation
☐ Fundamentals and pitfalls in design, training, and
evaluation of a ML model
☐ Knowledge about where theory and math comes in (we wi
keep it on the practical side!)
☐ Practical tools and knowledge on how to implement a ML
project

PYTHON II PROJECT

Python II Project: Goal

Extrapolate image data

Python II Project: Goal

■ Extrapolate image data

Python II Project: Goal

Extrapolate image data

Python II Project: Data

- We will create our own dataset
- JPG images up to 850kB
- 100 images per student
- We will crop out small images and pretend they are the original images
 - → we do not need to collect labels!
- Evaluation on testset with different images
- We will perform analysis and preprocessing of the data

Python II Project: Hardware/Software and Methods

- Hardware/Software
 - ☐ Harware is up to you (see introduction slides)
 - □ Python 3.6 or higher (recommended: 3.7)
 - PyTorch
- Methods
 - ☐ Simple Convolutional Neural Network (CNN)
 - You may also use other NN types/more complex settings
 - Design and fine-tuning is up to you

Python II Project: Evaluation

- We will have a challenge server where you can evaluate your model on testsets
- Testset will be private (you will not know the ground-truth)
- Leaderboard based on model score
- Model score determines achieved points

Python II Project

■ More information during semester

