Academia Sabatina de Jóvenes Talento

Polinomios Clase #9

Encuentro: 11 Nivel: 5
Curso: Polinomios Semestre: I

Fecha: 8 de junio de 2024 Instructor: Kenny Jordan Tinoco Instructor Aux: Cristian Castilblanco

Contenido: Clase práctica #1

En esta primera clase práctica veremos ejercicios y problemas de los contenido desarrollados en las clases del curso, con el objetivo de afianzar lo aprendido hasta el momento.

1. Ejercicios y problemas

Ejercicios y problemas para el autoestudio.

Ejercicio 1.1. Sea P(x) un polinomio mónico de grado 3 tal que

$$P(x+1) = P(x) + nx + 2.$$

Hallar la suma de coeficientes del término cuadrático y lineal, sabiendo que su término independiente igual a 5.

Ejercicio 1.2. Determine todos los posibles valores que puede tomar $\frac{x}{y}$ si se cumple la ecuación $6x^2 + xy = 15y^2 \operatorname{con} x, y \neq 0$.

Ejercicio 1.3. Hallar $K \in \mathbb{R}$ tal que $P(x) = K^2(x-1)(x-2)$ tiene raíces reales.

Ejercicio 1.4. Encontrar todas las soluciones de la ecuación $m^2 - 3m + 1 = n^2 + n - 1$, con $m, n \in \mathbb{Z}^+$.

Ejercicio 1.5. Sea el polinomio P(x) tal que

$$P(x^2 + 1) = x^4 + 4x^2,$$

encontrar $P(x^2 - 1)$.

Ejercicio 1.6. Sea S(x) un polinomio cúbico tal que S(1) = 1, S(2) = 2, S(3) = 3 y S(4) = 5, encontrar S(6).

Ejercicio 1.7. Para que la división de $6x^4 - 11x^2 + ax + b$ entre $3x^2 - 3x - 1$ sea exacta, encuentre los valores de a y b apropiados.

Ejercicio 1.8. Calcular la suma de coeficientes del resto que deja $x^{3333} - 9$ entre $x^2 - 729$.

Ejercicio 1.9. Porbar que para todo n entero positivo se cumple que

1.
$$1+3+5+\cdots+(2n-1)=n^2$$

2.
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Ejercicio 1.10. Con la ayuda del teorema de la raíz racional, encontrar todas las raíces de los siguientes polinomios

1.
$$2x^3 - 21x^2 + 52x - 21$$

2.
$$x^4 - 7x^3 - 19x^2 + 103x + 210$$

Ejercicio 1.11. Dado el polinomio

$$P(a, b, c) = a^2b + b^2c + c^2a$$

expresarlo en términos de los polinomios simétricos elementales y en función de sí mismo.

 $c^2 = 2021$, hallar el valor de

$$E = \frac{(a+b)^2(b+c)^2(c+a)^2}{(a^2+1)(b^2+1)(c^2+1)}.$$

Problema 1.3. El cociente de la división Problema 1.1. Sea r una raíz de x^2-x+7 . Hallar el valor de $r^3+6r+\pi$. $\frac{x^{n+1}+2x+5}{x-3} \text{ es } Q(x), \text{ la suma de coeficientes}$ Problema 1.2. Si $a+b+c=\sqrt{2023}$ y a^2+b^2+ de Q es $\frac{9^{10}+3}{2}$. Hallar el valor de n.

Problema 1.4. Sean a, b y c las raíces reales de la ecuación $x^3 + 3x^2 - 24x + 1 = 0$. Probar que

$$\sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c} = 0.$$

Problema 1.5. Si la división

$$\frac{x^{80} - 7x^{30} + 9x^5 - mx + 1}{x^3 + x - 2}$$

Deja como resto a $R(x) = x^2 + x - 1$, hallar el valor de m.

Problema 1.6. Sean r_1 , r_2 y r_3 raíces distintas del polinomio $y^3 - 22y^2 + 80y - 67$. De tal manera que existen números reales α , β y θ tal que

$$\frac{1}{y^3 - 22y^2 + 80y - 67} = \frac{\alpha}{y - r_1} + \frac{\beta}{y - r_2} + \frac{\theta}{y - r_3}$$

para toda $y \notin \{r_1, r_2, r_3\}$. ¿Cuál es valor de $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\beta}$?

Problema 1.7. La ecuación

$$2^{333x-2} + 2^{111x+2} = 2^{222x+1} + 1$$

tiene tres raíces reales. Dado que su suma es $\frac{m}{n}$ con $m, n \in \mathbb{Z}^+$ y mcd(m, n) = 1. Calcular m + n.

Problema 1.8. Si $P(x) = x^4 + ax^3 + bx^2 + cx + d$ es un polinomio tal que P(1) = 10, P(2) = 20 y P(3) = 30, determine el valor de

$$\frac{P(12)+P(-8)}{10}$$
.

Problema 1.9. Sea F(x) un polinomio mónico con coeficientes enteros. Probar que si existen cuatro enteros diferentes a, b, c y d tal que F(a) = F(b) = F(c) = F(d) = 5, entonces no existe un entero k tal que F(k) = 8.

Problema 1.10. Sea el polinomio $P_0(x) = x^3 + 313x^2 - 77x - 8$. Para enteros $n \ge 0$, definimos $P_n(x) = P_{n-1}(x-n)$. ¿Cuál es el coeficiente de x en $P_{20}(x)$?

Problema 1.11. Determine un polinomio cúbico P(x) en los reales, con una raíz igual a cero y que satisface $P(x-1) = P(x) + 25x^2$.

Problema 1.12. Suponga que x, y y z son números distintos de cero tal que $(x+y+z)(x^2+y^2+z^2) =$ $x^3 + y^3 + z^3$. Hallar el valor de

$$(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right).$$

Problema 1.13 (OMCC 2020, shortlist). Sean a, b y c números reales no nulos tales que a+b+c=0. Determine el valor de la expresión

$$\frac{(a^2+b^2)(b^2+c^2)+(b^2+c^2)(c^2+a^2)+(c^2+a^2)(a^2+b^2)}{a^4+b^4+c^4}.$$

Problema 1.14. Si a, b, c y d son las raíces de la ecuación $x^4 - 3x^3 + 1 = 0$, calcular el valor de

$$\frac{1}{a^6} + \frac{1}{b^6} + \frac{1}{c^6} + \frac{1}{d^6}.$$

Referencias

[BGV14] Radmila Bulajich, Jose Gómez, and Rogelio Valdez. Álgebra. UNAM, 2014.

[Rub19] Carlos Rubio. Un breve recorrido por los polinomios. Tzaloa, (2), 2019.

En caso de consultas

Instructor: Kenny J. Tinoco Teléfono: +505 7836 3102 (*Tigo*) Correo: kenny.tinoco10@gmail.com

Instructor: Cristian Castilblanco **Teléfono:** +505 8581 1745 (*Tigo*)

Correo: cristian.castilblanco120@gmail.com