Projet numérique : Soutenance finale Modèle de Vicsek

ROYER Antoine and PEYROUTET Alexis

L3 PCAME - Tarbes

- Présentation et explication
 - Présentation du modèle
 - Explications sur le modèle
- Méthode utilisée
 - Classes et méthodes
 - Créations et manipulations sur les agents
- Résultats et interprétations physiques
 - Premiers résultats et paramètres importants
 - Résultats historiques de Vicsek
 - Au-delà du modèle de Vicsek

Présentation du modèle

Tamás Vicsek (74 ans);

Présentation du modèle

Essaim d'oiseaux

- Tamás Vicsek (74 ans);
- Etude des mouvements collectifs (systèmes auto-organisés);

Migration des grues

- Tamás Vicsek (74 ans);
- Etude des mouvements collectifs (systèmes auto-organisés);
- Auncun agent leader dans le modèle ;

Présentation du modèle

- Tamás Vicsek (74 ans);
- Etude des mouvements collectifs (systèmes auto-organisés);
- Auncun agent leader dans le modèle ;
- Création du modèle en 1995.

Les bases du modèles

Le modèle de Vicsek permet d'étudier un groupe d'agents qui se déplace dans un espace.

Les bases du modèles

Chacun des agents a une vitesse donnée (en norme et en direction) et va interagir avec ses voisins.

Les bases du modèles

Création d'un mouvement de groupe suite aux interactions entre les agents.

$$\begin{cases} \Theta_i(t+dt) = \Theta_{j|r_i-r_j|< r} + \eta_i(t) \\ r_i(t+dt) = r_i(t) + v_i \Delta t \end{cases}$$

• r; la position de chaque individu ;

$$\begin{cases} \Theta_i(t+dt) = \Theta_{j|r_i-r_j|< r} + \eta_i(t) \\ r_i(t+dt) = r_i(t) + v_i \Delta t \end{cases}$$

- r_i la position de chaque individu ;
- i est l'indice de l'agent en question et t le temps ;

$$\begin{cases} \Theta_i(t+dt) = \Theta_{j|r_i-r_j|< r} + \eta_i(t) \\ r_i(t+dt) = r_i(t) + v_i \Delta t \end{cases}$$

- r_i la position de chaque individu ;
- i est l'indice de l'agent en question et t le temps ;
- η le bruit et Θ l'angle définissant la direction de sa vitesse.

$$\begin{cases} \Theta_i(t+dt) = \Theta_{j|r_i-r_j|< r} + \eta_i(t) \\ r_i(t+dt) = r_i(t) + v_i \Delta t \end{cases}$$

• $\Theta_{j|r_i-r_i|< r}$ est la direction moyenne des vitesses des agents dans un cercle de rayon r;

$$\begin{cases} \Theta_i(t+dt) = \Theta_{j|r_i-r_j|< r} + \eta_i(t) \\ r_i(t+dt) = r_i(t) + v_i \Delta t \end{cases}$$

- $\Theta_{j|r_i-r_j|< r}$ est la direction moyenne des vitesses des agents dans un cercle de rayon r;
- *j* représentera alors l'ensemble des voisins de *i* compris dans ce cercle.

Autres intérêts du modèle

Comportement des foules et construction de bâtiments

Autres intérêts du modèle

Domaine de la robotique

- - Présentation du modèle
 - Explications sur le modèle
- Méthode utilisée
 - Classes et méthodes
 - Créations et manipulations sur les agents
- - Premiers résultats et paramètres importants
 - Résultats historiques de Vicsek
 - Au-delà du modèle de Vicsek

Classes et méthodes

Programmation orientée objet \Rightarrow Deux classes composées de plusieurs méthodes

```
class Group:
"""
Simule un groupe d'agents, permet de le faire évoluer et de l'afficher.
```

Création et manipulation d'agents

- Créations d'agents ;
- Choix des paramètres (bruit, vitesse, cône de vision . . .);
- Evolution dans le temps grâce aux équations.

$$r_i(t + dt) = r_i(t) + v_i \Delta t$$

Création et manipulation de groupe

- Création de groupes ;
- Evolution dans le temps en fonction des voisins ;
- Calcul du paramètre d'alignement.

$$\Theta_i(t+dt) = \Theta_{j|r_i-r_i| < r} + \eta_i(t)$$

- - Présentation du modèle
 - Explications sur le modèle
- - Classes et méthodes
 - Créations et manipulations sur les agents
- Résultats et interprétations physiques
 - Premiers résultats et paramètres importants
 - Résultats historiques de Vicsek
 - Au-delà du modèle de Vicsek

Mouvements de groupe

Images avec agents colorés pour indiquer leur direction

Apparition de petits groupes

Regroupement en un seul et même groupe

Cône de vision

 Meilleure visualisation des voisins visibles par l'agent;

Cône de vision

- Meilleure visualisation des voisins visibles par l'agent;
- Images trop chargées pour observer correctement les mouvements de groupe.

Paramètre de bruit

 Ce paramètre perturbe ainsi la communication entre les agents;

Paramètre de bruit

- Ce paramètre perturbe ainsi la communication entre les agents;
- La cohésion du groupe est significativement réduite lorsque le bruit augmente.

Paramètre d'alignement en fonction du bruit

40 agents

Densité fixe \rightarrow 4,15 agents par unité d'espace au carré

Paramètre d'alignement en fonction du bruit

Agents plus nombreux

Meilleur alignement

Paramètre d'alignement en fonction de la densité

Bruit fixé à 1

Densité plus forte → Meilleur alignement