Université Laval Professeur: Leslie A. Rusch

GEL19962: Analyse des signaux 1999 Mini-test 2

Mercredi le 17 novembre 1999; Durée: 13h30 à 14h20 Aucune documentation permise; aucune calculatrice permise.

Problème 1 (1 point sur 5)

Lequel **ou** lesquels des énoncés suivants sont vrais? (Il est aussi possible qu'aucun énoncé ne soit vrai...)

b)
$$cos(t) \xrightarrow{\frac{1}{1+j\omega}} H(j\omega) = y(t) \implies y(t) = \frac{1}{\sqrt{2}}cos\left(t + \frac{\pi}{4}\right)$$

$$VRAI \quad ou \qquad FAUX$$

Nom: Matricule: .

Université Laval Professeur: Leslie A. Rusch

GEL19962: Analyse des signaux 1999 Mini-test 3

Problème 2 (1 point sur 5)

Lequel **ou** lesquels des énoncés suivants sont vrais? (Il est aussi possible qu'aucun énoncé ne soit vrai...)

Supposons que $f(t) \Leftrightarrow F(\omega)$ et $g(t) \Leftrightarrow G(\omega)$

a)
$$f(t) \cdot g(t) \Leftrightarrow \frac{1}{2\pi} F(\omega) * G(\omega)$$
 VRAI ou FAUX

b)
$$\mathsf{TF}^{-1} \bigg\{ \frac{2}{3 \, j \omega - \omega^2} \bigg\} = e^{-3t} U(t) * \mathsf{sgn}(t)$$

$$\mathsf{VRAI} \quad \mathsf{ou} \qquad \mathsf{FAUX}$$

c)
$$x(t)*\delta(t-t_0) = \delta(t-t_0)$$
 VRAI ou FAUX

d) Pour un système linéaire et invariant dans le temps où l'entrée a un spectre $X(\omega)$ et la sortie a un spectre $Y(\omega)$,

$$X(\omega) = 0 \quad \forall |\omega| > \omega_0 \qquad \Rightarrow \qquad Y(\omega) = 0 \quad \forall |\omega| > \omega_0$$

$$VRAI \qquad \text{ou} \qquad FAUX$$

Nom: Matricule: .

Université Laval Professeur: Leslie A. Rusch

GEL19962: Analyse des signaux 1999 Mini-test 3

Problème 3 (3 points sur 5)

Quelles sont les expressions analytiques de la convolution dans les **trois** régions de définition? (Vous pouvez laisser la réponse sous la forme d'une intégrale.)

Nom: Matricule: .

Fonction	Transformée de Fourier		
f(t)	$F(\omega)$		
F(t)	$2\pi f(-\omega)$		
f(t+a)	$e^{ja\omega}F(\omega)$		
f(at)	$\frac{1}{ a }F\bigg(\frac{\omega}{a}\bigg)$		
$e^{jbt}f(t)$	$F(\omega-b)$		
$t^n f(t)$	$(j)^n \frac{d^n}{d\omega^n} F(\omega)$		
$\frac{d^n}{dt^n}f(t)$	$\left(j\omega ight)^nF(\omega)$		
$\operatorname{Rect}(t/ au)^1$	$ au \mathrm{Sa}\left(\omega au/2 ight)$		
$\operatorname{Tri}(t/ au)_2$	$ au \operatorname{Sa}^2\left(\omega au/2 ight)$		
$\delta(t)$	1		
1	2πδ(ω)		
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$		
U(t)	$1/j\omega + \pi\delta(\omega)$		
Sgn(t)	2/ jω		
$\delta_{T_0}(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT_0)$	$\omega_0 \sum_{n=-\infty}^{+\infty} \delta(\omega - n\omega_0)$		
$e^{-eta t} \ \mathrm{U}(t)$	$\frac{1}{\beta + j\omega}$		
$e^{-eta t }$	$\frac{2\beta}{\beta^2 + \omega^2}$		

Rect $\left(\frac{t-t_0}{\tau}\right)$ est un rectangle de hauteur un, centré sur $t=t_0$, et de longueur τ .

$$\operatorname{Tri}\left(\frac{t-t_0}{\tau}\right)$$

Tri $\left(\frac{t-t_0}{\tau}\right)$ est un triangle de hauteur un centré sur $t=t_0$, avec un base de longueur 2τ .