

Group: 03

Team: Alec Peterson

### Wine Reviews Dataset

129,971 wine reviews scraped from WineEnthusiast in 2017, available on Kaggle

| Variable              | Significance                                                                         |  |
|-----------------------|--------------------------------------------------------------------------------------|--|
| price                 | Price of wine, in dollars (\$)                                                       |  |
| description           | Natural language text of review                                                      |  |
| country               | Country of origin                                                                    |  |
| province              | Province within country (e.g. California)                                            |  |
| region_1              | Region within province (e.g. Napa Valley)                                            |  |
| region_2              | Sub-region, if applicable (e.g. California Other)                                    |  |
| taster_name           | Name of reviewer                                                                     |  |
| taster_twitter_handle | Twitter handle of reviewer                                                           |  |
| title                 | Title for wine review (including year)                                               |  |
| designation           | Vineyard with the winery where the grapes that made the wine are from                |  |
| variety               | Grape variety (e.g. Pinot Noir, Red Blend)                                           |  |
| winery                | Winery name                                                                          |  |
| points                | Point score for review from 0 – 100, though scores ranged from 80 – 100 in practice. |  |

<class 'pandas.core.frame.DataFrame'> RangeIndex: 129971 entries, 0 to 129970 Data columns (total 13 columns): Column Non-Null Count Dtype 120975 non-null float64 price description 129971 non-null object object country 129908 non-null province 129908 non-null object object region 1 108724 non-null region 2 50511 non-null object 103727 non-null object taster name taster twitter handle 98758 non-null object title 129971 non-null object designation 92506 non-null object variety 129970 non-null object winery 129971 non-null object points 129971 non-null int64 dtypes: float64(1), int64(1), object(11) memory usage: 12.9+ MB

## Features Used in Models

- price has good correlation with points
- description reflects sentiments of reviewer
- country did not have too many unique values and thought still added relevant info
- Individual tasters (as reflected by taster\_name)
   might tend to give a certain range of scores or descriptions
- Some tasters accounted for a large proportion of reviews
- variety reflects the wine type, not too many unique values as well
- points is the label to be predicted

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 129971 entries, 0 to 129970
Data columns (total 13 columns):
     Column
                            Non-Null Count
                                             Dtype
     price
                                             float64
                            120975 non-null
     description
                            129971 non-null
                                             object
                                             object
     country
                            129908 non-null
     province
                            129908 non-null
                                             object
                                             object
     region 1
                            108724 non-null
     region 2
                            50511 non-null
                                             object
                            103727 non-null
                                             object
    taster name
     taster_twitter handle
                                             object
                            98758 non-null
     title
                            129971 non-null
                                             object
     designation
                            92506 non-null
                                             obiect
                                             object
    variety
                            129970 non-null
                            129971 non-null
                                             object
    winerv
    points
                            129971 non-null
                                            int64
dtypes: float64(1), int64(1), object(11)
```

memory usage: 12.9+ MB

## Unused / Not useful features

- Too many unique values that could not be easily mapped or grouped together
- region\_2 has too many nulls

taster\_twitter\_handle redundant with taster\_name

- Too many unique values or nulls
- title offered redundant information, and year extracted from title did not have significant correlation with points

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 129971 entries, 0 to 129970
Data columns (total 13 columns):
     Column
                            Non-Null Count
                                             Dtype
     price
                                             float64
                            120975 non-null
     description
                            129971 non-null
                                             object
                                             obiect
     country
                            129908 non-null
                                             object
     province
                            129908 non-null
                                             object
     region 1
                            108724 non-null
     region 2
                            50511 non-null
                                             object
                            103727 non-null
     taster name
                                             object
     taster twitter handle 98758 non-null
                                             object
     title
                            129971 non-null
                                             object
     designation
                            92506 non-null
                                             obiect
    varietv
                            129970 non-null
                                             obiect
 11 winery
                            129971 non-null
                                             object
                            129971 non-null
    points
                                             int64
dtypes: float64(1), int64(1), object(11)
memory usage: 12.9+ MB
```



## NLTK Positive and Negative Word Lexicons

### **Positive Words**

| Θ            | a+               |
|--------------|------------------|
| 1            | abound           |
| 2            | abounds          |
| 3            | abundance        |
| 4            | abundant         |
|              |                  |
|              |                  |
| 2001         | youthful         |
| 2001<br>2002 | youthful<br>zeal |
|              |                  |
| 2002         | zeal             |

### **Negative Words**

| 0<br>1<br>2<br>3<br>4 | 2-faced<br>2-faces<br>abnormal<br>abolish |  |
|-----------------------|-------------------------------------------|--|
| 4                     | abominable                                |  |
|                       |                                           |  |
| 4778                  | zaps                                      |  |
|                       |                                           |  |
| 4779                  | zealot                                    |  |
| 4779<br>4780          |                                           |  |
|                       | zealot                                    |  |

## Lemmatization of description using spacy

|        | desc_lemmas                                    |
|--------|------------------------------------------------|
| 0      | [ripe, fruity, wine, smooth, structured, firm, |
| 1      | [tart, snappy, flavors, lime, flesh, rind, dom |
| 2      | [pineapple, rind, lemon, pith, orange, blossom |
| 3      | [like, regular, bottling, comes, rough, tannic |
| 4      | [blackberry, raspberry, aromas, typical, navar |
|        |                                                |
| 117019 | [notes, honeysuckle, cantaloupe, sweeten, deli |
| 117020 | [citation, given, decade, bottle, age, prior,  |
| 117021 | [drained, gravel, soil, gives, wine, crisp, dr |
| 117022 | [dry, style, pinot, gris, crisp, acidity, weig |
| 117023 | [big, rich, dry, powered, intense, spiciness,  |

# Correlations for price and description-derived features



## Linear Regression – Baseline Predictions

### **Features:**

| Numerical      | Categorical |
|----------------|-------------|
| price          | country     |
| pos_word_count | taster_name |
| neg_word_prop  | variety     |

#### **Constraints:**

- Filter price to < \$100:
  - Represents 90% of data (10% is \$100 \$3300)
  - · Correlation is strongest when filtered to this
  - Realistic upper limit for what someone might spend
- Remapped to "Other" to reduce problems when splitting:
  - countries with <10 wines</li>
  - Varieties with count <20</li>
- Split: 80 20 for Train Test
- Stratify on price (0 20, 20 40, etc.)

### Pipeline:

- Simple Imputer (Median)
- Standard Scaler
- One-Hot Encoder

### **Model: Linear Regression (unoptimized)**

→ RMSE of 10-fold Cross-Validation (Benchmark): 2.31



# NLP Feature Engineering with

- Needed to better capture sentiment, context, and nuance of description natural language
- From research, best performance would likely come from pre-trained transformer models
- Hugging Face has publicly available models via the transformers module for sentiment analysis, with the ones used in this project derived from Bidirectional Encoder Representations from Transformers (BERT) models:

| Model                                    | Output                                                                                        |
|------------------------------------------|-----------------------------------------------------------------------------------------------|
| distilbert-base-uncased-emotion          | "Positive" or "Negative" label and associated score                                           |
| bert-base-multilingual-uncased-sentiment | "Score out of 5" label (like the number of stars for a customer review), and associated score |

## NLP Features - Correlations with points

Remapping 0 – 1 score for "Negative" labels from distilbert-base-uncased-emotion

num stars

80



## NLP Features - Correlations with points

## points VS. log1p(price \* num\_stars)



- price \* num\_stars seemed to make sense as a feature to magnify the effect of both features
- log() adds unique relation to reduce redundancy, determined from slightly stronger correlation observed between log(price) and points

### points correlations with price and NLP features:



# Linear Regression (unoptimized) with Various NLP Feature Combinations





## **ML Models Tested**

### Stochastic Gradient Descent (SGD) Regressor

- sklearn.linear\_model.LinearRegression() does not have tuning parameters...
- Linear models with ability add bias via Ridge, Lasso, Elasticnet penalties and other tuning parameters to potentially improve performance

### Support Vector Machines (SVM) Regressor

- Capture potential nonlinearity
- For this dataset, faster to test and tune than Random Forest (despite size)

### Neural Network

- Further capabilities to capture nonlinearity
- Implement learnings with Keras / Tensorflow
- Personal opportunity to implement CUDA and personal computer's GPU ©

# SGD Regressor

| Model        | Parameter     | Tuned<br>Value |
|--------------|---------------|----------------|
| SGDRegressor | alpha         | 0.001          |
|              | learning_rate | "constant"     |
|              | penalty       | "elasticnet"   |



# SVR

| Model        | Parameter     | Tuned<br>Value |
|--------------|---------------|----------------|
|              | alpha         | 0.001          |
| SGDRegressor | learning_rate | "constant"     |
|              | penalty       | "elasticnet"   |
| OTT.         | С             | 1              |
| SVR          | Kernel        | "rbf"          |



## **Neural Network**

| Model             | Parameter     | Tuned<br>Value |
|-------------------|---------------|----------------|
|                   | alpha         | 0.001          |
| SGDRegressor      | learning_rate | "constant"     |
|                   | penalty       | "elasticnet"   |
| OL ID             | С             | 1              |
| SVR               | Kernel        | "rbf"          |
|                   | Hidden Layer  |                |
|                   | # neurons     | 50             |
| 1                 | activation    | "relu"         |
| Neural<br>Network | Output L      | ayer           |
| (Dense)           | # neurons     | 1              |
|                   | optimizer     | SGD (lr=0.001) |
|                   | epochs        | 10             |





# SVR is technically "best"

| Model             | Parameter     | Tuned<br>Value |
|-------------------|---------------|----------------|
|                   | alpha         | 0.001          |
| SGDRegressor      | learning_rate | "constant"     |
|                   | penalty       | "elasticnet    |
| a                 | С             | 1              |
| SVR               | Kernel        | "rbf"          |
|                   | Hidden Layer  |                |
|                   | # neurons     | 200            |
| N                 | activation    | "relu"         |
| Neural<br>Network | Output L      | ayer           |
| (Dense)           | # neurons     | 1              |
|                   | optimizer     | SGD (lr=0.001) |
|                   | epochs        | 15             |



## Test Set Performance



## Conclusions, Limitations, Future Directions

### Available data is perhaps too limited to achieve higher accuracy, though more sophisticated feature engineering may help

- Scores assigned are also subjective to the taster and perhaps hard to do on a 100-point (or even 20-point ranged) scale
- Feature engineering I think will lead to significantly better performance.

### Wine-specific lexicons

- Lower scoring reviews contained words for undesirable flavors (e.g. "chemical", "vegetal", "unripe", "sugary") that wouldn't be captured in normal sentiment or emotion lexicons
- Dictionaries with desired flavor notes for a given variety could be applied, with similarity to these "vectors" or embeddings represented by these words as a feature

### Food & Beverage transformer models

- Transformer models trained on customer reviews for restaurants, bars or more specifically wine bars / vineyards / wine websites would improve model performance and sentiment scoring
- Practice seems to be using manually labeled datasets to verify performance...

### Implement Linear Regression or other linear model in practice

- The unoptimized linear regression had comparable RMSE to the more complex models, but computed much faster and with fewer resources than SVM or Neural Network
- More interpretable and easily understood



Group: 03

Team: Alec Peterson