MATH 146B: Ordinary and Partial Differential Equations

Bonus 1

Reviewing page 2 of Lecture 7 notes may provide valuable insights.

Problem 1. Find the Taylor series expansion and determine the radius of convergence for the following functions.

(a) (3 points)
$$\frac{1}{(a-x)^2}$$
.

Hint: notice that
$$\frac{1}{(a-x)^2} = \left(\frac{1}{a-x}\right)'$$
 and $\frac{1}{a-x} = \frac{1}{a} \sum_{n \geq 0} \left(\frac{x}{a}\right)^n$.

(b) (2 points)
$$\frac{1}{(a-x)^3}$$
.

(c) (2 points) $\frac{1}{(\alpha-x)^k}$, k > 3.

(d) (3 points) Consider the rational function $f(x) = \frac{P(x)}{Q(x)}$, where Q(x) has roots x_1, x_2, \dots, x_k , possibly with nontrivial multiplicities. What does your conclusion in part (c) imply about the radius of convergence for the Taylor series of f(x) centered at zero?