UNCLASSIFIED

AD NUMBER

AD825764

LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited. Document partially illegible.

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; OCT 1967. Other requests shall be referred to Air Force Technical Applications Center, Attn: VELA Seismological Center, Washington, DC 20333. Document partially illegible. This document contains export-controlled technical data.

AUTHORITY

usaf ltr, 25 jan 1972

TECHNICAL REPORT NO. 67-73

OPERATION OF THE UINTA BASIN SEISMOLOGICAL OBSERVATORY

Quarterly Report No. 6 1 August through 31 October 1967

STATEMENT #2 UNCLASSIFIED

This document is subject to special export controls and each transmittal to fereign governments or foreign nationals may be made enly with prior approval of Alice Controls of Control of Controls of Controls of Control of Control

TECHNICAL REPORT NO. 67-73

OPERATION OF THE UINTA BASIN SEISMOLOGICAL OBSERVATORY, QUARTERLY REPORT NO. 6 1 August through 31 October 1967

Sponsored by

Advanced Research Projects Agency Nuclear Test Detection Office ARPA Order No. 624

> TELEDYNE INDUSTRIES GEOTECH DIVISION 3401 Shiloh Road Garland, Texas

IDENTIFICATION

AFTAC Project No:

Project Title:

ARPA Order No:

ARPA Program Code No:

Name of Contractor:

Date of Contract:

Amount of Contract:

Contract Number:

Contract Expiration Date:

Program Manager:

VF A T/6705

Operation of UBSO

624

6F10

Teledyne Industries

Geotech Division

Garland, Texas

1 May 1966

\$624,897

AF 33(657)-16563

31 October 1967

B. B. Leichliter, BR1-2561

Garland, Texas

CONTENTS

			Page
ABS	RACT		
1.	INTROL	OUCTION	1
		uthority	1
	1.2 H	•	1
2.	OPERA	TION OF UBSO	1
	2.1 G	eneral	1
	2	.2.1 Standard seismographs	3
	2	.2.2 Filters for multichannel array processors (MAP)	3
	2	.2.3 Filters for shallow-buried array summ. tions	3
		.2.4 Filters for vertical array summations	3
	2.3 D	Data channel assignments	3
	2.4 C	Commercial power failures and data outages	11
		hipment of data to the Seismic Data Laboratory (SDL)	11
		Quality control	11
	2.7 S	ecurity inspection	••
3.	EVALU	JATE DATA AND PROVIDE MOST EFFECTIVE	11
		VATORY POSSIBLE	
		Modifications to instrumentation at UBSO	11
		Additions to instrumentation at UBSO	12
		.2.1 Long-period triaxial seismometer	12
	3	3.2.2 Long-period array	12
4.	TRANS	SMIT DAILY MESSAGES TO THE COAST AND GEODETIC	12
5.	PUBLIS	SH MONTHLY EARTHQUAKE BULLETIN	14
		Bulletin status	14
	5.2 T	Transfer of keypunching responsibility to SDL	14
6.	MAINT	TAIN UBSO FACILITIES	14
7.	MAINT	CAIN UBSO EQUIPMENT	17
•		Magnetic tape recorders	17
		Develocorders	17
	7.3		17
8.	INSTRI	UMENT EVALUATION	18
٠.		Evaluation of vertical array	18
	8.2	Technical assistance and monitor of Sandia's USO	18

CONTENTS, Continued

		Page
9.	SPECIAL INVESTIGATIONS	18
	9.1 Signal classification study	18
	9.2 Routine noise measurements	21
10.	PROVIDE OBSERVATORY FACILITIES AND ASSISTANCE TO OTHER ORGANIZATIONS	22
	10.1 Data sent to the University of Utah and to C&GS	22
	10.2 Data sent to ESD	22
	10.3 Visitors	22
11.	REPORTS	23

APPENDIX - Statement of work to be done

ILLUSTRATIONS

Figure		Page
1	Orientation and configuration of UBSO arrays	2
2	Normalized response characteristics of the standard seismographs at UBSO	6
3	Distribution of Coast and Geodetic Survey located epicenters in the northern hemisphere for April, May, and June 1967	15
4	Distribution of Coast and Geodetic Survey located epicenters in the southern hemisphere for April, May, and June 1967	16

TABLES

Table		Page
1	Operating parameters and tolerances of seismographs at UBSO	4
2	Calibration norms and operating tolerances for frequency responses of the standard seismographs at UBSO	5
3	Data channel assignments and normal operating magnifications at UBSO	7
4	Key to the designations used in the data format assignments at UBSO	8
5	Events reported to the C&GS by UBSO during August, September, and October 1967	13
6	Percentage of hypocenters reported in the C&GS "Earthquake Data Report" for which UBSO data were used	13
7	Results of tape transport speed test	17
8	Percent of agreement of analysts' classifications with the reference classifications	20

ABSTRACT

This report describes the operation of the Uinta Basin Seismological Observatory (UBSO) from 1 August through 31 October 1967. Modifications and additions to the observatory instrumentation are described, and tests to improve the operations of the observatory are reported. Also discussed is the status of special investigations designed to evaluate and improve the detection capability of the observatory.

OPERATION OF UBSO - QUARTERLY REPORT NO. 6 1 AUGUST 1967 THROUGH 31 OCTOBER 1967

1. INTRODUCTION

1.1 AUTHORITY

The work described in this report was supported by the Advanced Research Projects Agency, Nuclear Test Detection Office, and was monitored by the Air Force Technical Applications Center (AFTAC), under Contract AF 33(657)-16563. The statement of work for this contract is shown in the appendix.

1.2 HISTORY

The Uinta Basin Seismological Observatory (UBSO) was constructed under Contract AF 33(657)-7185. Site selection and noise surveys were accomplished by Geotech; the final decision on the observatory location was made by AFTAC. Texas Instruments Incorporated (TI) was responsible for the construction of all physical facilities.

2. OPERATION OF UBSO

2.1 GENERAL

Data are recorded at UBSO on a 24-hour basis. The observatory is normally manned 8 to 10 hours a day, 5 days a week. On weekends and holidays, a skeleton crew mans the observatory 8 hours a day; however, additional personnel are on call in case of emergency.

The UBSO array configuration is shown in figure 1.

The Project Officer and the Geotech Program Manager visited UBSO on 28 and 29 September to discuss plans for the long-period array.

----I KM-----

Figure 1. Orientation and configuration of UBSO arrays

2.2 SEISMOGRAPH OPERATING PARAMETERS

2.2.1 Standard Seismographs

The operating parameters and the tolerances for the standard observatory seismographs are shown in table 1. These parameters are reset if the frequency response of a seismograph is found to be out of tolerance. The frequency response norms and their respective tolerances are shown in table 2. The frequency responses of the UBSO seismographs, as normally operated, are shown in figure 2.

2.2.2 Filters for Multichannel Array Processors (MAP)

All MAP channels utilize a band-pass filter with the following settings: a high-cut corner frequency of 3 cps at 6 dB per octave cutoff rate, and a low-cut corner frequency of 1 cps at 12 dB per octave cutoff rate.

2.2.3 Filters for Shallow-Buried Array Summations

The summation of the ten-element shallow-buried array is filtered by a band-pass filter with the following settings: a high-cut corner frequency of 3 cps and a low-cut corner frequency of 0.8 cps, both at a cutoff rate of 18 dB per octave.

2.2.4 Filters for Vertical Array Summations

The vertical array was inoperative during this quarter because of a faulty cable. A new cable is scheduled to be sent to UBSO when it is available as Government furnished equipment. Prior to 1 July, the summation output of the vertical array was filtered as follows: a high-cut corner frequency of 3 cps at a cutoff rate of 24 dB per octave and a low-cut corner frequency of 0.75 cps at a cutoff rate of 36 dB per octave.

2.3 DATA CHANNEL ASSIGNMENTS

The current data-channel assignments and normal operating magnifications for all UESO data groups are shown in table 3. The key to the designators used in the data-channel assignments is given in table 4.

2.4 COMMERCIAL POWER FAILURES AND DATA OUTAGES

Failures of commercial power occurred on 6, 11, 12, and 13 August; 11 and 12 September; and 6 October. No loss of data resulted from the August failures or from the failure on 11 September. The failure on 12 September lasted for 2 hours and 22 minutes. The emergency systems functioned

Table 1. Operating parameters and tolerances of seismographs at UBSO

Seismograph	sismograph				Operating parameters and tolerances	ameters and	tolerances		Filter	Filter settings Cut off rate
		Seismometer							Bandpass at 3 dB cutoff	at SP side
System	Comp	Type	Model	H	γ	Tg	γ	20	(sec)	(dB /oct)
	Z and E	Johnson Matheson Geotech	7515 6480 18300	1.25 ±2% 1.25 ±2%	0.51 ±5% 0.51 ±5%	0.33 ±5% 0.33 ±5%	0.65 ±5% 0.65 ±5%	0.03	0.1-100	12
SP IB	2 2 2	UA Benioff Melton	1051 10012	1.0 ±5% 2.5 ±5%	1.0 0.65 ±5%	0.083 ±5% 0.64 ±5%	≈l. 4 1. 2 ±5%	1. 0 0. 018	0.05-100	- 12 13
•	HZ	Geotech Geotech	8700B 7505	2.5 ±5% 12.5 ±5%	0.65 ±5% 0.485 ±5%	0.64 ±5% 0.64 ±5%	1. 2 ±5% 9. 0 ±5%	0.001	0.05-100	12
E L L	нхн	Geotech Geotech Geotech	8700A 7505A 8700A	12.5 ±5% 20.0 ±5% 20.0 ±5%	0.485 0.74 ±5% 0.74 ±5%	0.64 ±5% 110 ±10% 110 ±10%	9.0 ±5% C.85 ±10% O.85 ±10%	0.0007 0.63 0.63	0. 03-100 25-1000 25-1000	12 12
					KEY					
SP S IB IB BB B ILP L	Short period Intermediate Broad band Long period Unamplified	Short period Intermediate band (currently inactive) Broad band Long period Unamplified (i. e., earth powered)	(oA:	Ts Seis Tg Galv λs Seis λg Galv	Seismometer free period (sec) Galvanometer free period (sec) Seismometer damping constant Galvanometer damping constant Coupling coefficient	period (sec) pericd (sec) ing constant ping constant				

Table 2. Calibration norms and operating tolerances for frequency responses of the standard seismographs at UBSO

SP Vertical 18300 and SP Johnson-Matheson Vertical and Horizontal

T.P	Vertical	and	Horizontal C
$_{\rm LP}$	V ertical	and	Horizontal

f (cps)	T <u>(sec)</u>	R. M.	A. T. (±%)	(cps)	T (sec)	R. M.	A. T. (±%)
0.2	5.0	0.0113	10	0.01	100	0.246	20
0.4	2.5	0.0950	7.5	G. 0125	80	0.377	20
0.8	1.25	0.685	5	0.0167	60	0.589	15
1.0	1.0	1.0		0.02	50	0.745	15
1.5	0.67	1.52	5	0.025	40	0.899	10
2.0	0.5	1.90	5	0.033	30	1.06	5
3.0	0.33	2, 12	7.5	0.01	25	1.0	-
4.0	0.25	1.87	12	0.05	20	0.822	5
6.0	0.167	1.15	20	0.0667	15	0.506	10
8.0	0.125			0.10	10	0.173	20
10.0	0.100			0.143	7	b	a

IB	Vertical	and Horizo	ontal	BB \	Vertical an	d Horizo	ntal
f	т		Α. Τ.	f	T		A. T
(cps)	(sec)	R. M.	<u>(±%)</u>	(cps)	(sec)	R. M.	<u>(±%)</u>
0, 1	10.0	0.0090	25	0.04	25.0	0.104	20
0.2	5.0	0.068	20	0.06	16.7	0.350	20
0.3	3.3	0.25	15	0.08	12.5	0.775	15
0.4	2.5	0.46	10	0.1	10.0	0.950	10
0.5	2.0	0.64	5	0.2	5.0	1.0	5
0.7	1.43	0.86	5	0.4	2.5	1.0	5
1.0	1.0	1.0	-	0.8	1.25	1.0	-
1.5	0.67	1.04	5	1.6	0.625	1.0	5
2.0	0.5	1.0	10	3.2	0.312	1.0	10
3.0	0.33	0.89	15	6.4	0.156	0.980	15
5.0	0.2	0.66	20				

KEY

- R. M. Pelative magnification
- A. T. Amplitude tolerance
- a Tolerance not established in the period
- b Measurements not reliable due to interference from microseismic background noise
- These norms and tolerances apply to the broad-response, long-period system (LP1).

Figure 2. Normalized response characteristics of the standard seismographs at UBSO

G 1438

Table 3. Data channel assignments and normal operating magnifications at UBSO

	3mm/min.	OUP		e Mag.	W1 $\frac{3 \text{ mph/mm}}{5 = 0.8 \text{ mm} (E = 6)}$	300K			1 25K	2 1C0K	2 100K			2 3µb/mm		3 1.0K		3 1.0K	Λ	1		
	SLOW SPEED 3mm/min.	DATA GROUP	5074	Channel Trace Mag.	1 WI	2 SZ2	3 ZLP1	4 NLPI	5 ELPI	6 ZLP2	7 NLP2	8 ELP2	9 ML1	10 ML2	11 USO -	12 ZBB	13 NBB	14 EBB	15 WWV	16		
		ĘĮ.		Mag.	į	Testing	Testing	Testing	Testing	Testin	Testing	Testing	T sting	Testing	Testing	Testing	Testing	Testing	Testing	:		
		DATA GROUP	5072 MAP II	Trace	Test	MCF11	MCF12	MCF13	MCF14	MCF15	MCF16	MCF17	BSSV1	BSSV2	BSSV3	BSSV4	B3SV5	BSSV6	SDAS	WWV		
		DA'		Channel Trace	í	2	m	4	S	9	7	00	6	10	11	12	13	14	15	16		ERS
DERS	/min.			Mag.	60K	60K	_	5K			X009	600K	600K	6000K	1500K	600K	600K	600K	1	(1	!	RECORD
OCORI	D 30mm	DATA GROUP	9205	Channel Trace Mag.	SZ10L	NSPL	ESPL	ZIOLL	NSPLL	ESPLL	SZ1	SZ 3	SZ 5	SSSE	SS	210	NSP	000	Lor	TCDMG (Tape #1)	WWV	TAPE
DEVELOCORDERS	FAST SPEED 30mm/min.	DATA		Channel		7	٣	4	Ŋ	9	7	œ	6	01		12	13	7.		15	16	MAGNETIC TAPE RECORDERS
	F	ρ,	ı	Mag.	XX	0.75µb/mm	0.75µb/mm	1000K	1000K	1000K	1000K	1000K	1000K	2000K	1500K	900K	:		:	$W1 = \frac{3 \text{ mph/mm}}{5 = 0/8 \text{ mm (E = 6)}}$:	ΣI
		DATA GROUP	5064	Channel Trace Mag.	۵	MS1	MS2	DH6	DHS	DH4	DH3	DH2	DHI	COHE	EDH	828	uso-	IISO-	Time	$W1 = \frac{3}{S}$	WWV	
		DAT		Channe		. 7	٣	4	5	9	1-	œ	6	10	11	12	13	:	14	15	16	
		ρ		Mag.	2012	600K	600K	600K	600K	800K	600K	800K	600K	800K			600K		600K	900K	WWV	
		TROIL	5044	SP Primary	>	57.1	SZ3	SZ5	\$23	SZ4	8 26	527	828	829	ESSE	SSZ	SZ10		NSP	ESP	WWV	
		1		SP	,	٠ ،	, m	4	, ru	9	7	00	6	10	11	12	13		14	15	16	

DATA GROUP 5035	No. 4	Channel Trace	1 TCDMG	2 USOZSP	3 USOZLP	4 USO Time	J ESSF	6 MCF11	7 Comp.	8 MCF12	9 MCF13	10	11	12	13	14 WWV	& Voice
DATA GROUP 5025	No. 3	Channei Trace	1 TCDMG	2 521	3 522	4 SZ 3	5 \$24	6 SZ5	7 Comp.	8 526	9 SZ7	10 SZ8	11 529	12 SZ 10	13 2SS	14 WWV	& Voice
DATA GROUP 5023	No. 2	Channel Trace	1 TCDMG	2 ZBB	3 NBR	4 EB33	5 NSP	b ESP	7 Comp.	8 ZLP1	9 NLP1	10 ELP1	11 ZLP2	12 NLP2	13 ELP2	14 WWV	& Voice
DATA GROUP	No. 1	Channel Trace	TCDMG	2 DH1	3 DH2	4 DH3	5 DH4	6 DH5	7 Comp.	8 DH6	9 7.DH	10 EDHF	11 Z10LL	12 NSPLL	13 ESPLL	14 WWV	& Voice

Table 4. Key to the designations used in the data format assignments at UBSO

Z	Amplified vertical short- period seismograph from a	EBB	East-west broad-band seismograph
	surface site identified by a suffix number	Σs	Summation of Z1 through Z10
SZ	Amplified vertical short-	Σ SF	Σ S filtered
	period seismograph from a shallow-buried site identified	ΣSS	Summation of SZ1 through SZ10
	by a suffix number	ΣSSF	Σ SS filtered
NSP	Amplified north-south short-period seismograph	DH1	Vertical-array element at 8895 feet
ESP	Amplified east-west short- period seismograph	DH2	Vertical-array element at 7903 feet
v	Unamplified vertical short- period seismograph	DH3	Vertical-array element at 6910 feet
ZLPl	Vertical long-period seismograph, broad response	DH4	Vertical-array element at 5894 feet
NLPI	North-south long-period seismograph, broad response	DH5	Vertical-array element at 4901 feet
ELPI	East-west long-period seismograph, broad response	e DH6	Vertical-array element at 3907 feet
ZLPZ	Vertical long-period seismograph, narrow	Σрн	Summation of DH1 through DH6
	response	ΣDHF	ΣDH filtered
NLP	North-south long-period seismograph, narrow response	MLl	Long-period microbarograph (inside LP vault)
ELP	2 East-west long-period seismograph, narrow	ML2	Long-period microbarograph (outside LP vault)
	response	MSl	Short-period microbarograph
ZBB	Vertical broad-band seismograph		(inside LP vault)

Table 4. Continued

NBB	North-south broad-band seismograph	MS2	Short-period microbarograph (outside LP vault)
wwv	Radio time (WWV, STS, and voice on tape)	WI	Anemometer-wind speed and direction
Test	Test instrumentation	BSS3	Beam-steered summation: 8.1 km/sec signal from
Comp	Compensation		azimuth of 120°, using Z1 - Z10
Mag	Magnification (see note)	BSS4	Beam-steered summation: 8.1 km/sec signal from
TCDMG	Time code data management group		azimuth of 180°, using Z1 - Z10
		BSS5	Beam-steered summation:
USO-SP	Unmanned seismological		8.1 km/sec signal from
	observatory short-period seismograph		azimuth of 240°, using Z1 - Z10
		BSS6	Beam-steered summation:
USO-LP	Unmanned seismological		8.1 km/sec signal from
	observatory long-period seismograph		azimuth of 300°, using Z1 - Z10
		MCF11	Multichannel filter:
MCFl	Multichannel filter:		∞velocity signal and measured
	∞velocity signal and		noise correlations (not including
	measured noise correlations (not including road noise)		road noise), using SZ1 - SZ10
	using Z1 - Z10	MCF12	Multichannel filter:
			∞velocity signal and theoretical
MCF3	Multichannel filter: 8.1 \(^km/\)sec velocity		noise model, using SZ! - SZ10 and DH1-DH6
	signal and measured noise		
	correlations (not including	MCF13	Multichannel filter:
	road noise) using Z1 - Z10		∞velocity signal and theoretical noise model, using DH1 - DH6
MCF4	Multichannel filter:		
	∞velocity signal and	MCF14	Deghost filter: up-going
	measured noise correlations		∞velocity P-wave signal and
	(including road noise), using Z1 - Z10		theoretical noise model, using DH1, DH3, and DH5
ΣSBS	Summation of Z1 - Z10, with		
	MAP band-pass filter		

Table 4. Continued

BSS1	Beam-steered summation: 8.1 km/sec signal from azimuth of 0°, using Z1 - Z10	MCF15	Deghost filter: down-going welocity P-wave signal and theoretical noise model, using DH1, DH3, and DH5
BSS2	Beam-steered summation: 8.1 km/sec signal from azimuth of 60°, using Z1 - Z10	MCF16	Deghost filter: up-going ∞velocity P-wave signal and theoretical noise model, using DH2, DH4, and DH6
BSSV1	Beam-steered summation: up-going ovelocity P-wave, using DH1 - DH6	MCF17	Deghost filter: down-going ovelocity P-wave signal and theoretical noise model, using DH2, DH4, and DH6
BSSV2	Beam-steered summation: up-going 8.1 km/sec P-wave, using DH1 - DH6	BSSV5	Beam-steered summation: down-going 8.1 km/sec P-wave, using DH1 - DH6
BSSV3	Beam-steered summation: up-going 8.1 km/sec S-wave, using DH1 - DH6	BSSV6	Beam-steered summation: down-going 8.1 km/sec S-wave, using DH1 - DH6
BSSV4	Beam-steered summation: down-going ovelocity P-wave, using DH1 - DH6	ΣDVS	Summation of SZ1 - SZ10 and DH1 - DH6, with MAP band-pass filter

NOTE

Magnification of:
Short-period measured at 1 cps
Broad-band measured at 0.8 cps
Long-period measured at 0.04 cps
MCF measured at 1 cps
BSS measured at 1 cps

properly, but all systems except the short-period primary data were shut down after 1 hour and 45 minutes of operation to conserve secondary power. On 6 October, a power failure resulted in the loss of data from all short-period seismographs for 3 hours and 30 minutes.

2.5 SHIPMENT OF DATA TO THE SEISMIC DATA LABORATORY (SDL)

Magnetic-tape seismograms are shipped to SDL about 15 days after the end of the month during which they are recorded. The seismograms from magnetic-tape recorders 1, 2, 3, and 4 recorded at UBSO through 30 September have been shipped to SDL.

All 16-millimeter film seismograms recorded at UBSO through 31 August were sent to SDL. More recent films are currently held in Garland for special studies.

2.6 QUALITY CONTROL

Quality control checks were ma on randomly selected runs of all recordings from the observatory. Results of the checks were sent to the observatory for corrective action as necessary.

2.7 SECURITY INSPECTION

On 5 September, UBSC was notified by Mr. William J. Robertson, Industrial Security Specialist, that because UBSO has no classified documents, his quarterly security inspection will be conducted by telephone in the future. This procedure will continue until such time that the observatory holds classified documents.

3. EVALUATE DATA AND PROVIDE MOST EFFECTIVE OBSERVATORY POSSIBLE

3.1 MODIFICATIONS TO INSTRUMENTATION AT UBSO

Modified hose clamps and roller assemblies were installed in the peristaltic pumps of the Develocorders during the report period. The only failure of a modified pump occurred on 22 October when both hoses were split in the pump of Develocorder 3.

On 9 October, the procedure for use of the emergency power system was modified. Because low priority data are being recorded on magnetic-tape recorders 1 and 4, these recorders are turned off during a failure of commercial power. With this load removed from the emergency system, the standby generator can handle the remaining load of all instrumentation, including both battery chargers. The new configuration was successfully tested when during a planned outage of commercial power, the emergency system operated for a total of 1 hour and 40 minutes.

On 30 October, Develocorder 6, which was formerly used for MAP 1, was modified for use in the recording of the long-period triaxial system and other long-period test systems.

3.2 ADDITIONS TO INSTRUMENTATION AT UBSO

3.2.1 Long-Period Triaxial Seismometer

The drilling and casing of a 200-foot hole to be used for the evaluation of the long-period triaxial seismometer was completed during August. The drilling and casing were conducted under Project VT/6706 and were coordinated by the UBSO personnel. All of the surface facilities for the long-period triaxial installation were completed during September. In October a cable trench was dug from the central recording building to the site of the long-period triaxial seismcmeter, poles for the installation of power to the storage building were set, and the power was installed.

3.2.2 Long-Period Array

Suitable sites for the six positions of the long-period array were found by test drilling. The locations of the six sites were surveyed, and Mr. Ray E. Book, U. S. Corps of Engineers, is currently negotiating with representatives of the Ute Indian Tribe and the Bureau of Land Management, State of Utah, for the lease of the sites.

4. TRANSMIT DAILY MESSAGES TO THE COAST AND GEODETIC SURVEY

The arrival time, period, and amplitude measurements for events recorded at UBSO were reported daily to the Director of the Coast and Geodetic Survey in Washington, D. C. The number of events, by type, reported by UBSO during each month in this reporting period is shown in table 5. Table 6 shows the total number of events recorded by the observatory, the number of epicenters determined by the C&GS and reported in the "Earthquake Data Report,"

Table 5. Events reported to the C&GS by UBSO during August, September, and October 1967

Total	1678 1577 1647
Teleseisms	1256 1171 1224
Regional	36 66 29
Near Regional	363 328 384
Local	23 12 10
Month	August September October

Table 6. Percentage of hypocenters reported in the C&GS "Earthquake Data Report" for which UBSO data were used

Percent of C&GS hypocenters for which UBSO recorded a P, PKP, or later l phase, based on up- dated associated data	76.3	76.3	71.6
Percent of C&GS hypocenters for which UBSO recorded a P, PKP, or later a P or PKP phase, based phase, based on up-	69.2	70.9	68.2
Percent of C&GS hypocenters for which the C&GS listed a UBSO P or PKP arrival	59.5	6.79	65.6
No. C&GS hypocenters	426	413	444
No. events reported by UBSO	1683	1659	1678
Month	April	May	June

the percent of the C&GS hypocenters within 100 degrees of UBSO for which the C&GS report listed a UBSO P or PKP phase, the percent of C&GS hypocenters for which UBSO recorded a P or PKP phase, as determined from associated data, and the percent of C&GS hypocenters for which UBSO recorded a P. PKP, or later phase, based on updated associated data for April, May, and June. Lists of more recent epicenters have not been completed by the C&GS.

Figures 3 and 4 show the world-wide distribution of the C&GS-located epicenters for April, May, and June 1967. The three types of symbols used to show the locations of the epicenters represent the detection by UBSO of a P or PKP, the detection of an event in which the first recorded arrival was not P or PKP, and no detection.

5. PUBLISH MONTHLY EARTHQUAKE BULLETIN

5.1 BULLETIN STATUS

Data from UBSO were combined with data from BMSO, CPSO, TFSO, and WMSO and published in a multistation earthquake bulletin. The bulletins for April, May, and June 1967 were published and distributed during the reporting period. Raw data for July and August were keypunched, transcribed onto magnetic tape, and sent to SDL for association. The raw data for September were sent to SDL for keypunching and association.

5.2 TRANSFER OF KEYPUNCHING RESPONSIBILITY TO SDL

Beginning with the October 1967 raw data, the responsibility of bulletin keypunching was transferred to SDL. Checking and updating of the ABP output and publication of the bulletin will continue to be accomplished by Geotech.

6. MAINTAIN UBSO FACILITIES

The underside of the porch roof of the central recording building was repainted as were the tripod at the long-period vault, the top of the vault, and the multi-conductor cable reel. Also, the back and borders of the UBSO "KEEP OUT" sign were repainted.

Figure 3. Distribution of Coast and Geodetic Survey located epicenters in the northern hemisphere for April, May, and June 1967

Figure 4. Distribution of Coast and Geodetic Survey located epicenters in the southern hemisphere for April, May, and June 1967

7. MAINTAIN UBSO EQUIPMENT

7.1 MAGNETIC TAPE RECORDERS

A new set of Geotech magnetic tape-recorder heads was installed on recorder 1 on 23 October. The signal-to-tape noise ratio obtained using these heads is currently being evaluated.

A test of the speed of the magnetic-tape transports was made on 31 October. Tape recorders 2 and 3 were found to be out of tolerance, and their speeds were adjusted. The results of the test are shown in table 7.

Table 7. Results of tape transport speed test

Tape No.	Length of tape read	Reading time	Adjusted reading time
1	15 feet	9 min. 59 sec.	
2	15 feet	10 min. 6 sec.	10 min. l sec.
3	15 feet	10 min. 5 sec.	10 min. 0 sec.
4	15 feet	9 min. 58 sec.	

7.2 DEVELOCORDERS

Samples of water from several points in the UBSO water system and slime samples from the Develocorders were sent to the Western Filter Company, Denver, Colorado, for analysis and recommendations for the prevention of the slime formation. At the close of this reporting period, no results have been received.

7.3 CABLE

Nine, 6-reel lengths of spiral-four cable between the central recording building and the vertical array site were waterproofed with Kearney air seal on 19 August.

8. INSTRUMENT EVALUATION

8.1 EVALUATION OF VERTICAL ARRAY

As reported in section 2.2.4, the vertical array was inoperative during the reporting period; however, a study is currently in progress using previously-recorded vertical array data to relate observed attenuation of noise with depth to theoretically-predicted values.

8.2 TECHNICAL ASSISTANCE AND MONITOR OF SANDIA'S USO

Monitoring of the Sandia USO system continued throughout the reporting period. Sandia personnel were at UBSO on 21 September to replace a malfunctioning time code generator.

When the USO channels were switched to the Helicorder for the daily operational check on 4 October we discovered that the USO seismograph was inoperative. After the system had been recorded overnight and still found to be inoperative, Sandia Corporation was notified of the situation. Sandia personnel were at UBSO on 11 and 12 October to correct the malfunctioning seismograph. The trouble was traced to an amplifier that was saturated by the large earthquake near Richfield, Utah, on 4 October. A modification was installed that will prevent any future outages of this nature. The magnetic tape was changed, and the entire system checked during the Sandia visit.

9. SPECIAL INVESTIGATIONS

9.1 SIGNAL CLASSIFICATION STUDY

A study of a system for the classification of teleseismic earthquake signals was made in response to a need for a concise expression of the physical appearance of seismograms. In addition, a classification system based on the visual appearance of the signal could provide a means of focal mechanism discrimination.

The classification system investigated in this study describes a teleseismic signature by means of a seven-character, alphanumeric code. The seven characters of classification in order of decreasing generality, are as follows:

1. Four possible categories pertaining to the general shape of the signal envelope;

- 2. Ten possible categories concerned with the time lapse between the signal start and maximum;
- 3. Ten possible categories pertaining to the time lapse between the signal start and a secondary pulse;
- 4. Ten possible categories pertaining to the rate of buildup to the maximum;
- 5. Ten possible categories pertaining to the rate of buildup to a secondary pulse;
- 6. Eighteen possible categories pertaining to the rate of decay after the first principle pulse of the signal;
- 7. Six possible categories based on the amplitude of the maximum pulse relative to that of a secondary pulse.

One hundred and fifty-three earthquakes were selected which had epicenters at teleseismic distances from UBSO, TFSO, and WMSO, and whose magnitudes exceeded 5.0. The epicenter and magnitude data were taken from C&GS earthquake data reports of June through August 1966.

The recorded signals at each of the observatories were inspected, and those which had sufficient S/N to exhibit some definite signal character were classified by mutual agreement among a panel of Garland-based analysts. This resulted in a total of 247 signature classifications. These data were designated the "reference" set and were punched onto computer cards. The signatures from the various films were reproduced photographically and reassembled on one composite 16-millimeter film, ordered by date of origin. Copies of this classification study film were sent to UBSO and TFSO along with instructions for use of the system. Four TFSO and three UBSO analysts classified the signatures according to their understanding of the instructions. These classifications were recorded on standard computer data forms and were sent to the Garland facility where they were punched onto computer cards. The classifications of each of the seven categories for each of the seven analysts were compared with the reference classifications for all signals. Since the analysts did not necessarily use the same data trace (system) to classify a signal as did the reference, it was possible to make the comparison for the case of random trace selection by the analyst relative to the reference and for the case where both the analysts and the reference classified the signal from the same trace. To determine if experience in using the system improves the analyst's ability to classify a given signal correctly, the classifications made by two analysts who were experienced in using the system were compared to the reference. The lesults are summarized in table 8. The maximum percentage agreement with the reference upon a classification is obtained when the analysts are experienced in using

Table 8. Percent of agreement of analysts' classifications with the reference classifications

Comments	The analysts (7) were inexperienced in the use of classification system.	The analysts (7) were inexperienced in the use of classification system.	The analysts (2) were experienced in applying the system.
_	73.9	82.2	87.8
9	54.3	64.0	80.4
K) 2	60.1	71.5 64.0	85.2
CHARACTER	89.6	88.1	93.8
CHA 3	67.4	78.3 88.1	83.3
2	83.4	89.7	7.06
-	85.7	89.9	93.8
Source of analysis' classification	Classifications made using the trace which, in the analyst's opinion, showed the signal character best	Classifications made using the same trace as the reference	Classifications made using the same trace as the reference
Source of reference classification	Classifications made using various traces (systems)	Same	Same

51

the system, and they use the same trace as that used during the reference classification. These conditions would be the normal ones if the system were used on a routine basis.

Table 8 shows percentage agreements with the reference for each of the seven character positions that constitute the complete signal classification. With the considerations of analysts experience and constancy of the trace used, good agreement is observed for most of the character positions; however, the percentage of agreement on the complete classification (all seven characters) is the product of the seven probabilities (assuming character independence) and is only about 40 percent.

Although the seven-character, alphanumeric system is adequate in the sense that the principle characteristics of the analog signal can be reproduced from the coded signal, it is too subjective in that a given signal cannot be identically classified upon subjection to repeated and independent analysis. The principal factor which introduces subjectivity into the system is that characters 1 through 6 are critically dependent upon the analyst's selection of the start time. A slight shift in the start time can cause a signal to fall into a different category.

We recommend that the seven-character, alphanumeric system be revised so that characters conveying the information now encoded by characters 1-6 would not be dependent upon the signal start. This change could be accomplished by keying on the signal maximum instead of the signal start. This modified classification system should be free of errors associated with picking the signal start time and should, as a result, permit identical classification of a signal under repeated, independent analysis. We also recommend that the modified system be evaluated to determine the degree to which the analog signal can be reproduced from the coded representation of the signal. The reproduction of the analog signal should be accomplished by machine processing to remove bias in the reproduction of the signals and also to evaluate possible routine reproduction of analog signals from codes received at a seismological data reduction center.

If the modified system proves to be sufficiently objective and capable of retaining the principal visual characteristics of a signal, we recommend that a number of signals of known but different source mechanism be classified and that these signals and the corresponding codes be examined to see if a particular type of source mechanism tends to produce signature which are similarly classified.

9.2 ROUTINE NOISE MEASUREMENTS

Measurements of ambient noise in the 0.4 to 1.4 seconds period range are made daily at UBSO. Data are processed in Garland, and monthly cumulative

probability curves of trace amplitude and ground displacement data are published. Noise data are reported from the SZ10, SS and SSF seismograms. Noise curves for June, July, August, and September were sent to the Project Officer during this reporting period.

10. PROVIDE OBSERVATORY FACILITIES AND ASSISTANCE TO OTHER ORGANIZATIONS

10.1 DATA SENT TO THE UNIVERSITY OF UTAH AND TO C&GS

Analysis information was given to Mr. Waverly J. Persons, C&GS, and Mr. Larry Wilson, University of Utah, concerning a large earthquake that occurred near Richfield, Utah, on 4 October.

10.2 DATA SENT TO ESD

All 16-millimeter film and magnetic-tape seismograms with corresponding logs for 21 October were sent to Mr. Don Clark, ESD, on 25 October at the request of the Project Officer.

10.3 VISITORS

Messrs. E. D. Zaffery, P. A. Fjelseth, and E. R. Stepka, Sandia Corporation, were at UBSO on 16 and 17 August to work on the USO.

Messrs. R. S. Reynolds and E. D. Zaffery, Sandia Corporation, were at UBSO on 21 September to service the USO.

Capthin Frederick D. Munzlinger, the VSC Project Officer, and Mr. B. B. Leichliter, Geotech Program Manager, visited UBSO on 28 and 29 September.

Messrs. P. A. Fjelseth and E. R. Stepka, Sandia Corporation, were at UBSO on 11 and 12 October for work on the USO.

On October 27, Messrs. John Wise and Noel Doss, Geotech, were at UBSO to work on the long-period triaxial seismograph system.

11. REPORTS

- a. Technical Report No. 67-10, Operation of UBSO, Quarterly Report No. 5, Project VT/6705, was mailed to the Project Officer on 28 August.
- b. Preparation of the draft of a technical report, Evaluation of Multiple Array Processors at the Unita Basin Seismological Observatory, is in progress. The draft of this report will be submitted to the Project Officer for review during the week of 20 November.

APPENDIX to TECHNICAL REPORT NO. 67-73 STATEMENT OF WORK TO BE DONE

EXHIBIT "A"

STATEMENT OF WORK TO BE DONE

AFTAC Project Authorization No. VELA T/6705/S/ASD (32)

1. Tasks:

8 February 1966

a. Operation:

- (1) Continue operation of the Uinta Basin Seismological Observatory (UBSO), normally recording data continuously.
- (2) Evaluate the seismic data to determine optimum operational characteristics and make changes in the operating parameters as may be required to provide the most effective observatory possible. Addition and modification of instrumentation are within the scope of work. However, such instrument modifications and additions, data evaluation, and major parameter changes are subject to the prior approval of AFTAC.
- (3) Conduct daily analysis of seismic data at the observatory and transmit daily seismic reports to the US Coast and Geodetic Survey, Wash DC 20230, using the established report format and detailed instructions.
- (4) Record the results of daily analysis on magnetic tape in a format compatible with the automated bulletin program used by the Seismic Data Laboratory (SDL) in their preparation of the seismological bulletin of the VELA-UNIFORM seismological observatories. The format should be established by coordination with SDL through AFTAC. The schedule of routine shipments of these prepared magnetic tapes to SDL will be established by AFTAC.
- (5) Establish quality control procedures and conduct quality control, as necessary, to assure the recording of high quality data on both magnetic tape and film. Past experience indicated that quality control review of one magnetic tape per magnetic tape recorder at the observatory each week is setisfactory unless quality control tolerances have been exceeded and the necessity of additional quality control arises. Quality control of magnetic tape should include, but need not necessarily be limited to, the following items:
 - (a) Completeness and accuracy of operation logs.
- (b) Accuracy of observatory measurements of system noise and equivalent ground motion.
 - (c) Quality and completeness of voice comments.
- (d) Examination of all calibrations to assure that clipping does not occur.
- (e) Determination of relative phase shift on all array seismographs.

REPRODUCTION

EXHIBIT "A"

- (f) Measurement of DC unbalance.
- (g) Presence and accuracy of tape calibration and alignment.
- (h) Check of uncompensated noise on each channel.
- (i) Check of uncompensated signal-to-noise of channel 7.
- (j) Check of general strength and quality of timing data derived from National Bureau of Standards Station WWV.
- (k) Check of time pulse modulated 60 cps on channel 14 for adequate signal level and for presence of time pulses.
- (1) Check of synchronization of digital time encoder with wwv.
- (6) Provide observatory facilities, accompanying technical assistance by observatory personnel, and seismological data to requesting organizations and individuals after approval by AFTAC.
- (7) Maintain, repair, protect, and preserve the facilities of the seismological observatory in good physical condition in accordance with sound industrial practice.
- b. Instrument Evaluation: After approval by AFTAC, evaluate the performance characteristics of experimental or off-the-shelf equipment offering potential improvement in the performance of observatory seismograph systems. Operation and test of such instrumentation under field conditions should normally be preceded by laboratory test and evaluation.
- c. Special Investigations: Conduct research investigations as approved or requested by AFTAC to obtain fundamental information which will lead to improvements in the detection capability of UBSO. These programs should take advantage of geological, meteorological, and seismological conditions at UBSO. The following special studies should be accomplished.
 - (1) Long term evaluation of the multiple array processor units.
 - (2) Installation and evaluation of a vertical array.
 - (3) Evaluation of the long-period vault.
- (4) Provide technical assistance and monitor an unattended seismological observatory to be installed at UBSO in June 1967.

Research might pursue investigations in, but is not necessarily limited to, the following areas of interest: microseismic noise, signal characteristics, data presentation, detection threshold, and array design (surface and shallow borehole). Prior to commencing any research

EXHIBIT "A"

investigation, AFTAC approval of the proposed investigation and of a comprehensive program outline of the intended research must be obtained.

- 2. Approval by AFTAC will normally be provided through the project officer.
- 3. Reports: Provide reports in accordance with the/requirements outlined in DD Form 1423 and attachment 1 thereto.

REPRODUCTION

Unclassified			
Security Classification		·	
DOCUMENT CONT (Security classification of title, body of abstract and indexing.)			averall second to standified
1 ORIGINATING ACTIVITY (Corporate author)	amount of must be a		CURITY CLASSIFICATION
GEOTECH, A Teledyne Company		Unclass	sified
3401 Shiloh Road		2b. GROUP	
Garland, Texas			
3. REPORT TITLE			
Operation of UBSO			
Quarterly Report No. 6; Project VT/6705	, 1 August 1	967 throu	gh 31 October 1967
4. DESCRIPTI' E NOTES (Type of raport and inclusive dates)		· · · · · · · · · · · · · · · · · · ·	
Quarterly Report No. 6, Project VT/6705 5. AUTHOR(5) (First name, middle initial, last name)	, l August l	967 throu	gh 31 October 1957
5. AU (HOR(5) (First name, middle initial, last name)			
Leichliter, Braden B.			
6 REPORT DATE	74. TOTAL NO. OF	PAGES	7b. NO. OF REFS
15 November 1967	34		
84. CONTRACT OR GRANT NO.	94. ORIGINATOR'S	REPORT NUMB	(२(S)
AF 33(657)-16563			
VELA T/6705	Technical Report No. 67-73 9b. OTHER REPORT NO(5) (Any other numbers that may be assigned this report)		
c.	96. OTHER REPOR	RT NO(5) (Any of	her numbers that may be assigned
ARPA Order No. 624	this report)		
d ARPA Program Code No. 6F10			
This document is subject to special export	t controls an	d each tra	nemittal to foreign
governments or for sign national may be m			
Chief of AFTAC	due only with	in prior ap	provar or the
11. SUPPLEMENTARY NOTES	12. SPONSORING N		
			Projects Agency
			tion Office
13. ABSTRACT	Washingto	on, D. C.	
1 The			
This report describes the operation of the	Uinta Basin	Sei smolo	gical Observatory
(UBSO) from 1 August through 31 October	1967. Modi	fications a	and additions to the
observatory instrumentation are described	d, and tests	to improv	e the operations
of the observatory are reported. Also dis	cussed is th	e status o	f special investiga-
tions designed to evaluate and improve the	detection c	apability o	of the observatory.
			, t

Unclassified

Security Classification							
14	KEY WORDS	LINK A		LINK B		LINK C	
		ROLE	WT	ROLE	WT	ROLE	WT
14	Unattended Seismological Observatory Vertical Array Multichannel Array Processor Seismograph Operating Parameters Long-Period Array	LIN	WT	LIN		LIN	

Unclassified
Security Classification