Practice Problems for Lectures 9-11

(not to be submitted)

Problem 1

Which one of the following statements is the true one? Prove your answer.

(a)
$$\mathscr{P}(\mathbb{N}) \subseteq \bigcup_{n \in \mathbb{N}} \mathscr{P}([n])$$

(b)
$$\bigcup_{n\in\mathbb{N}} \mathscr{P}([n]) \subseteq \mathscr{P}(\mathbb{N})$$

Problem 2

Let A be a set. Evaluate the following:

(a)
$$\bigcup_{X \in \mathscr{P}(A)} X$$

(b)
$$\bigcap_{X \in \mathscr{P}(A)} X$$

Problem 3

For each of the following, decide if the given description is a well-defined function. Justify your answer.

- (a) $f: \mathbb{Q} \to \mathbb{Q}$, defied by $f(x) = \frac{1}{x+3}$, for all $x \in \mathbb{Q}$.
- (b) $g: \mathbb{R} \to \mathbb{R}$, defied by: for $x \in \mathbb{R}$

$$g(x) = \begin{cases} x^2 + 1, & \text{if } x \ge -2\\ x + 5, & \text{if } x < 0 \end{cases}$$

.

(c) $h: \mathbb{R} \times \mathbb{R} \to \{-2, -1, 0, 1, 2\}$, defied by: for $(x, y) \in \mathbb{R} \times \mathbb{R}$

$$h(x,y) = \begin{cases} 1, & \text{if } x > y \\ -1, & \text{if } y > x \\ 0, & \text{if } x = y \end{cases}$$

.

Problem 4

Let $f: \mathbb{N} \to \mathbb{Q}, g: \mathbb{Q} \to \mathbb{R}, h: \mathbb{N} \to \mathbb{Z}$, and $k: \mathbb{Z} \to \mathbb{R}$ defined by

$$f(x) = \frac{1}{x^2 + 1}$$
, for all $x \in \mathbb{N}$

$$g(x) = \begin{cases} \frac{1}{x}, & \text{if} \quad x \neq 0 \\ 0, & \text{if} \quad x = 0 \end{cases}, \text{ for all } x \in \mathbb{Q}$$

$$h(x) = x^4$$
, for all $x \in \mathbb{N}$

$$k(x) = \begin{cases} \sqrt{x} + 1, & \text{if } x \ge 0 \\ \sqrt{-x} + 1, & \text{if } x < 0 \end{cases}, \text{ for all } x \in \mathbb{Z}$$

Prove that $g \circ f = k \circ h$, using the extensionality axiom for functions.