GPS 骨架网布设与探讨

□张洪启(河南省水利勘测有限公司)

摘 要:介绍了南水北调中线城市輸水配套工程控制网—C级GPS 骨架网的布设、观测、精度分析,数字水准仪的特点及使用。 本文所论述骨架网布设的方法,不但可以用于水利,也可用于公路、电力等其他行业,只要在狭长地带,控制点分布不均匀、作业距 离较长的测区,在布设控制网时,首先应考虑组成骨架网,同时利用高精度的仪器进行施测。

关键词: GPS 测量; 骨架网; 数字水准仪; 数据处理; 精度评定

一、工程概况

南水北调中线城市输水配套工程,河南省黄河以北地区受水区供水城市19座,布设输水管线14条,长度约320km,其中34线向滚县、濮阳市输水,管线长度约100km,36线向内黄县输水,管线长度约60km。远离南水北调中线总干渠,为了保证城市输水配套工程与总干渠工程较好地衔接,根据技术大纲要求必须采用统一的平面、高程系统。

二、已有资料的利用与分析

沿南水北调中线总干渠,水利部长委院 2005 年测设的"南水北调中线—期工程干线(除京石段)首级施工控制网",平面坐标系统为 1954 年北京坐标系,等级为 C 级 GPS,高程系统为1985 国家高程基准,等级为二等水准。控制网精度良好,标石完整,可作为本工程的起算数据。

河南省水利勘测设计院提供的 1/5 万 "南水北调中线河南省受水区城市供水配套工程规划图册",内容详细,可作为控制网布设规划用图。

三、C 级 GPS 骨架网平面控制网

(一)布网方案

由于 34 线、36 线末端距总干渠的距离约为 100km 和 60km,两条线路相距约 30km,且基本平行,经过多种方案的比较、论证,最后决定首先布设 C 级 GPS 骨架网,作为这两条线路的首级控制网。34 线共埋设 20 座标石,取 C3411、C3419 两个点,36 线共埋设 12 座标石,取 C3606、C3612 两个点,和总干渠首级控制网的 ML254、ML308 构成骨架网,ML254、ML308 作为起算点。骨架网布设成典型的多边形控制网,在此基础上再做 C 级 GPS 控制网,骨架网形如图 1。

图 1 骨架网略图

(二)选点与埋石

控制网的点位选在便于使用和能长期保存的坚实原状土

上,避开耕地,选在道路旁边、沟坎边沿、河渠岸边,且要远离高压输电线,并考虑树冠的影响,尽量减少接收卫星信号的干扰和多路径误差。

标石尺寸参照三等水准标石规格预制,现场浇注底盘,柱石及底盘尺寸见图 2。标石露出地面 2cm,标志为半球状铸铁标志,中心刻十字线。

图 2 标石尺寸示意图(单位:m)

(三)仪器设备的选择与观测

使用 Leica1230 双频静态 4 台套 GPS 接收机,其标称精度为(±3mm+0.5ppm×D),观测时按照国家《全球定位系统(GPS)测量规范》B/T18314-2001 的相关规定进行作业,对其观测 2 个时段,每个时段长延长为 120min。

(四)数据处理与精度评定

数据处理采用 Leica LGO 软件进行基线向量解算和约束 平差计算,首先进行基线向量解算,全网共 11 条边,最大边长 为 47990m,最短边长为 18250m,平均边长为 34070m,基线观 测精度见表 1。该控制网异步环共 80 个,所有环的相对闭合差 均 < 1ppm,绝对闭合差最大为 69.3mm,最小为 3.1mm,精度统 计见表 2。同步闭合环 12 个,所有环的相对闭合差均 < 1ppm,绝对闭合差最大为 33.9mm,最小为 4.0mm,均小于规范规定的 限差值,其精度见表 3。其次是进行二维约束平差,由于本测区 只有 2 个已知点,且分布不均匀,只在网的一侧,故采用两步转换,先选择经典三维法,在参数数目选项卡选择"三平移、比例 因子、绕 Z 轴的旋转",确定一个预转换参数,再选择两步法进行第二步平差计算,在预转换选项中选择已确定的参数,这样

HENAN

确定一个较准确的 1954 年北京坐标系的参数,利用这一参数解算该控制网的 1954 年北京坐标,二维约束平差点位精度见表 4。

表 1 基线精度统计表

测站 目标 基线向量 m 残差 mm 相对精度 C3411 C3419 40230.868 8.8 0.2 C3606 C3411 33971.241 6.3 0.2	ppm
C2606 C2411 22071 241 62 0.2	
C3000 C3411 339/1.241 0.3 0.2	
C3411 M1308 37648.551 8.8 0.2	
C3612 C3411 38101.800 8.8 0.2	
C3612 C3419 18250.007 9.4 0.5	
C3606 C3612 21150.984 8.8 0.4	
C3411 ML254 42306.443 7.8 0.2	
C3606 M1254 26642.443 7.8 0.3	
M1308 C3411 37410.809 8.0 0.2	
C3606 ML308 47990.213 8.1 0.2	
ML254 ML308 31061.455 8.6 0.3	

表 2 异步环闭合差统计

范围	20mm>W>1mm	50mm>W>20mm	70mm>W>50mm
环数	14	51	15
比例	17.4%	63.8%	18.8%

表 3 同步环闭合差统计

环号	环总长(m)	绝对闭合差(mm)	相对闭合差(ppm)
1	111850.668	24.8	0.2
2	96582.675	5.7	0.1
3	93223.932	4.0	0.0
4	102920.290	22.7	0.2
5	102920.262	8.4	0.1
6	119372.270	17.8	0.1
7	119372.238	28.6	0.2
8	110778.725	10.7	0.1
9	105694.292	11.5	0.1
10	105694.270	22.2	0.2
11	77049.440	33.3	0.4
12	93223.920	33.9	0.4

表 4 点位精度统计

点号	点位中误差(mm)	
C3411	3.4	
C3419	1.2	
C3606	3.4	
C3612	3.6	

由以上数据可以看出 WGS-84 三维无约束平差和二维约束平差的精度良好,可以满足工程建设的要求。

四、高程控制测量

(一)布网方案

高程控制网采用 1985 国家高程基准,由 ML254、ML308 和 II 清濮 5、II 安清 14 四个二等水准点和 34 线的 20 座标石和 36 线的 12 座标石布设成由两个结点组成的结点网,按三等水准精度施测,布网略图见图 3。

图 3 水准网结点图

(二)仪器的选择与使用

水准线路的施测使用 Dini12 数字水准仪,其标称精度为往返测每公里高差中误差为±0.3mm。执行《国家三、四等水准测量规范》GB12898-91 的有关规定,在开始测量之前,首先将相应等级的限差输入仪器,把仪器的配置设置好。观测时,只需对准尺子,进行调焦、按键、仪器自动记录观测数据,操作方便。施测前,对线路的起算点 ML254 进行检测,检测结果见表 5。在进行观测时,要用绳尺丈量视距,尽量减小测站的前后视距差和线路的前后视距累计差。

表 5 检测精度统计表

测段	原测高差(m)	实测高差(m)	较差 mm	限差(mm)
ML254 ~ II EHE1	-0.051	-0.052	1	± 13.0

(三)平差计算与精度评定

平差计算采用河南省水利勘测有限公司编写的"三、四等水准平差"程序,观测高差进行尺长改正、正常水准面不平行改正和闭合差改正。线路环线总长度为 223km,线路条数为 5 条,每公里偶然中误差 $M_{\Delta}=\pm0.14$ mm,单位权中误差 $\mu=\pm1.6$ mm,每公里全中误差 $M_{W}=\pm1.8$ mm,精度见表 6。

表 6 三等水准精度统计表

环闭合差			结点高租	呈中误差	
最大(mm)	允许(mm)	最小(mm)	允许(mm)	最大(mm)	最小(mm)
28.5	± 127.9	2.6	± 131.3	6.7	6.5

由以上各项精度指标可以看出:该水准线路的各项限差均在范围之内,符合三等水准测量的要求。

参考文献

[1]武汉测绘科技大学,控制测量学[M],北京:测绘出版社, 1988.

收稿日期: 2010-05-10