Алгоритмы и структуры данных. Домашнее задание №8

Выполнил студент Наседкин Дмитрий Сергеевич (группа 242)

Письменная часть

№ 1

Давайте для начала заметим, что если существует правильное разделение на связные области, то можно провести от каждой красной клетки 1 путь до синей и только таких путей тоже будет достаточно, а именно после разбиения на пути можно запустить например \mathbf{dfs} от клеток очередного пути и походить по свободным еще областям, и так от каждого пути. Очевидно что получится какое-то корректное разделение на области. Доказали эквивалентность этих двух задач(разбиению на непересекающиеся пути и разделение на связные области). (Суммарное время на поиск в глубину O(nm+k)).

Будем работать с новой задачей про пути.

Алгос

Теперь сведем нашу задачу к потокам следующим образом:

- 1. Создадим $2n \times m$ вершин, ij-ой клетке соответствует $v_{ij_{in}}$ и $v_{ij_{out}}$ вершина, и проведем ориентированное ребро из in в out пропускной способности 1 между ними. Это будет означать, что можно зайти в каждую клетку не более одного раза.
- 2. Каждую из соседних клеток(их 4) для данной, соедним ребрами с пропускной способностью 1, причем из out нашей вершины в in соседней. Это будет означать, что перейти можно только в одну соседную клетку + не более одного раза.
- 3. Создадим исток s и от него проведем в **in** вершины соответствующие красным клеткам ребра пропускной способности 1.
- 4. Создадим сток t и от каждой синей вершины out проведем ребро пропускной способности 1 в t.

Построение очевидно работает за O(nm+k).

Теперь на итоговом графе будем искать поток максимальной стоимости. Будем пользоваться Фордом-Фалкерсоном для поиска макс. потока.

Корректность

Очевидно, что максимальный поток здесь будет не больше k, осталось заметить, что если мы нашли макс. поток такого размера(k), то это соответствует правильному разбиению на пути(мы вошли в каждую красную вершину, прошли по каким-то соседним клеточкам, и закончили в синей). В обраную сторону точно также, каждому разбиению на пути можно построить такой поток размера k. То есть построили эквивалентность.

Если макс. поток размера k не найдется, то решения очевидно нет. (Так как если бы оно было то можно построить такой поток, а значит мы бы его нашли).

После алгоритма можно запустить декомпозирование на пути(будет почти тоже самое, что еще один Фалкерсон), путей k, циклов не будет из-за особенностей строения графа, а значит будет работать за время Форда-Фалкерсона.

Форд-Фалкерсон работает за O(U(V+E)), где U - размер макс. потока, а (V,E) - кол-во вершин и кол-во ребер в графе соответственно.

Время работы: макс. поток не больше k, а ребер и вершин в нашем графе суммарно $\leq 12nm(c$ запасом), тогда время работы составит O(nmk).

№ 2

(a)

Давайте для каждой вершины левой доли отсортируем список смежности по весам ребер, и возьмем первые a наименьших ребер, заметим, что больше рассмотривать и не придется, так как тх точно хватит (Вершин слева всего a). Суммарно это работает за время работы сортировки, то есть O(mlogm). Заметим, что теперь в графе $\leq a^2$ ребер.

А теперь запустим min-cost-max-flow за O(U(m+nlogn)) стандартным сведением поиска макс. парсочка минимального веса к макс. потоку мин. стоимости, где U, n, m - макс. поток, число вершин и ребер соответственно. Очевидно, что у нас макс. поток не больше a.

В нашем случае тогда получим время работы $O(a^3 + a^3 loga + m logm)$.