### Monocular Visual-Inertial-Pressure SLAM for Underwater Localization and 3D Mapping Soutenance de thèse

#### Maxime Ferrera

Encadrants: Julien Moras, Pauline Trouvé-Peloux (DTIS - IVA) Directeur de thèse : Vincent Creuze (LIRMM - Université de Montpellier)

12 Décembre 2019













### Introduction

#### **Underwater Archaeology**

- Many sites below 100 meters deep
- Not human-friendly environnements





Credit: DRASSM

ONERA



### Introduction

#### Robots to the rescue

- ROV: Remotely Operated Vehicles
- ROVs are used for deep surveys













### Introduction

### Manual navigation is hard!



Credit: DRASSM





#### Introduction

#### Accurate localization in real-time is highly beneficial

- Assistance for efficient and safe piloting
- Autonomous navigation
- 3D reconstruction





#### Introduction

#### Accurate localization in real-time is highly beneficial

- Assistance for efficient and safe piloting
- Autonomous navigation
- 3D reconstruction

#### **Underwater localization is tough**

- GNSS-denied
- No easy access
- Requires 3D localization → 3D Orientation + 3D Position (Pose)



#### Context

#### **ROVs for underwater archaeology**

- Small / Lightweight ROVs
- Cost constraints





Maxime Ferrera

#### Context

#### **ROVs for underwater archaeology**

- Small / Lightweight ROVs
- Cost constraints



#### **Existing technologies**

- ► Accoustic sensors: USBL / SBL / LBL, Doppler Velocity Logs, Sonars
- ► Inertial Navigation Systems : high-end gyroscopes and accelerometers





Maxime Ferrera

#### Context

#### **ROVs for underwater archaeology**

- Small / Lightweight ROVs
- Cost constraints



#### **Existing technologies**

- ► Accoustic sensors: USBL / SBL / LBL, Doppler Velocity Logs, Sonars
- ► Inertial Navigation Systems : high-end gyroscopes and accelerometers
  - Bulky and expensive







# Localization from Vision

#### **Localization from visual sensors**

- Very popular in aerial / land robotics and AR / VR
- Cameras are cheap, lightweight and very informative





Maxime Ferrera

7 / 95

#### **Localization from visual sensors**

- Very popular in aerial / land robotics and AR / VR
- Cameras are cheap, lightweight and very informative

#### Monocular Visual SLAM

Localization from Vision

SLAM: Simultaneous Localization And Mapping

Maxime Ferrera





7 / 95

# Localization from Vision

#### Localization from visual sensors

- Very popular in aerial / land robotics and AR / VR
- Cameras are cheap, lightweight and very informative

#### Monocular Visual SLAM

- SLAM: Simultaneous Localization And Mapping
- Visual SLAM: Use pixel correspondences between images







### Localization from Vision

#### Single Image





Maxime Ferrera

### Localization from Vision

### **Multi-view**





#### Localization from Vision

#### **SLAM by Structure-from-Motion**



#### From pixel correspondences:

- Localization → 3D map
- 3D map → Localization

ONERA



#### Localization from Vision

#### **SLAM by Structure-from-Motion**



#### From pixel correspondences:

- Localization → 3D map
- 3D map → Localization

► Good features tracking is critical!



#### State-of-the-art

#### **Monocular Visual SLAM**

■ PTAM (KLEIN et al., 2007): Use of keyframes for efficient optimization





Maxime Ferrera

#### State-of-the-art

#### Monocular Visual SLAM

- PTAM (KLEIN et al., 2007): Use of keyframes for efficient optimization
- ORB-SLAM (Mur-Artal et al., 2015): Use of descriptors for loop closure





Maxime Ferrera 12 Décembre 2019

#### State-of-the-art

#### **Monocular Visual SLAM**

- PTAM (KLEIN et al., 2007): Use of keyframes for efficient optimization
- ORB-SLAM (Mur-Artal et al., 2015): Use of descriptors for loop closure
- LSD-SLAM (ENGEL et al., 2014) / SVO (FORSTER et al., 2014) / DSO (ENGEL et al., 2017): Joint tracking and pose estimation from the minimization of a photometric cost



#### State-of-the-art

#### Monocular Visual SLAM

- PTAM (KLEIN et al., 2007): Use of keyframes for efficient optimization
- ORB-SLAM (Mur-Artal et al., 2015): Use of descriptors for loop closure
- LSD-SLAM (ENGEL et al., 2014) / SVO (FORSTER et al., 2014) / DSO (ENGEL et al., 2017): Joint tracking and pose estimation from the minimization of a photometric cost
- Not designed for underwater environments



#### State-of-the-art

#### **Underwater Monocular Localization**

- Use of a camera as a complementary sensor for loop detections (KIM et al., 2013)
- Visual Mosaicking (GARCIA et al., 2001; NICOSEVICI et al., 2009; SINGH et al., 2004)
- EKF based Visual SLAM (Burguera et al., 2015)
- Fusion with IMU and pressure sensor : EKF-based (SHKURTI et al., 2011), incremental positioning (CREUZE, 2017)



12 / 95

#### State-of-the-art

#### **Underwater Monocular Localization**

- Use of a camera as a complementary sensor for loop detections (KIM et al., 2013)
- Visual Mosaicking (GARCIA et al., 2001; NICOSEVICI et al., 2009; SINGH et al., 2004)
- EKF based Visual SLAM (Burguera et al., 2015)
- Fusion with IMU and pressure sensor : EKF-based (SHKURTI et al., 2011), incremental positioning (CREUZE, 2017)
- ▶ Few works on keyframe-based 3D SLAM for underwater environments



### Thesis proposal

#### SLAM from a monocular vision-based system

- Convenient : double use of the ROV's camera
- ▶ Small size
- Low-cost
- > 3D Reconstruction capability

ONERA



Maxime Ferrera

13 / 95

### Thesis proposal

#### SLAM from a monocular vision-based system

- Convenient : double use of the ROV's camera
- Small size
- Low-cost
- > 3D Reconstruction capability

#### Monocular only

- ► No metric scale
- ► Fails if no visual information





#### Set of sensors







Camera

**MEMS-IMU** 

Pressure Sensor

- Monochromatic Camera
- 20 Hz

- Inertial meas.
- 200 Hz
- High drift

- Pressure meas. (bar)∞ Depth (m)
- 5-10 Hz







### **Designed Systems**



Size : 33.4  $\times$  11.4 cm Depth rated : 100 m



- $\rightarrow$  Autonomous and independent
- → No bandwidth issue





Size : 25.8  $\times$  8.9 cm Depth rated : 500 m

- Compact
- Low-cost : < 2.5 k€</p>

ONERA



#### **Dataset**

#### AQUALOC Dataset: http://www.lirmm.fr/aqualoc/



FIGURE - ROV Dumbo (DRASSM / LIRMM)



FIGURE - ROV Perseo (Copetech SM - Credit : DRASSM / F. Osada)

- 17 sequences
- Synchronized measurements
- Harbor & Archaeological sites
- Comparative baselines from offline photogrammetry





#### **Problem Statement**

- Underwater Features Tracking
- 2 Robust Underwater Monocular Visual SLAM
- **3 Multi-Sensors SLAM**
- 4 Monocular Dense 3D Mapping







#### **Problem Statement**

- **1** Underwater Features Tracking
- Robust Underwater Monocular Visual SLAM
- **3 Multi-Sensors SLAM**
- 4 Monocular Dense 3D Mapping





#### **Problem Statement**

- Underwater Features Tracking
- 2 Robust Underwater Monocular Visual SLAM
- Multi-Sensors SLAM
- 4 Monocular Dense 3D Mapping





Maxime Ferrera

#### **Problem Statement**

- Underwater Features Tracking
- 2 Robust Underwater Monocular Visual SLAM
- **3 Multi-Sensors SLAM**
- Monocular Dense 3D Mapping







## 1. Underwater Features Tracking







### **Underwater Features Tracking**

t 1







Maxime Ferrera

19 / 95

### **Underwater Features Tracking**





### **Underwater Features Tracking**





Maxime Ferrera 12 Décembre 2019

19 / 95

### **Underwater Features Tracking**

#### **Challenging Imaging Conditions**



Credit: DRASSM





# **Underwater Features Tracking**

#### **Direct methods**

■ Tracking by searching for photometric minima







# Underwater Features Tracking

#### **Direct methods**

- Tracking by searching for photometric minima
- Optical Flow (KLT):

$$\mathop{\rm arg\,min}_{du,dv} \sum_{u} \sum_{v} \left( \textbf{I}_{\textbf{1}}(u,v) - \textbf{I}_{\textbf{2}}(u+du,v+dv) \right)^2$$



ONERA



Maxime Ferrera

# **Underwater Features Tracking**

#### **Indirect methods**

- Use descriptors (vectors)
- Similarity score between descriptors
- Descriptors : BRIEF, BRISK, FREAK, ORB, SURF, SIFT, ...



ONERA



Maxime Ferrera 12 Décembre 2019

# **Underwater Features Tracking**

### **Evaluation of robustness to turbidity**





# **Underwater Features Tracking**

#### Evaluation of tracking efficiency on a real sequence





# **Underwater Features Tracking**

#### Conclusion

- ▶ Optical Flow (KLT) is very efficient
- ▶ Descriptors get too ambiguous for efficient tracking





Maxime Ferrera

## 2. Robust Underwater Monocular Visual SLAM





## Robust Underwater Monocular Visual SLAM

- UW-VO: Keyframe-based monocular VSLAM
- Frame-to-frame features tracking from KLT
- Retracking mechanism





Maxime Ferrera 12 Décembre 2019

## Robust Underwater Monocular Visual SLAM

#### **Problem Statement**

- Estimate the pose of the camera at each new image
- Pose :  $X_i = (R, t) \in \mathbb{SE}(3)$  |  $R \in \mathbb{SO}(3)$   $t \in \mathbb{R}^3$
- $\blacksquare$  Estimate the position of 3D landmarks :  $\textbf{lm_i} \in \mathbb{R}^3$





Maxime Ferrera

#### Robust Underwater Monocular Visual SLAM

### Tracking / Mapping: Two threads for efficient computation



### Robust Underwater Monocular Visual SLAM



 Pre-processing: Contrast Local Adaptive Histogram Equalization (CLAHE)





#### Robust Underwater Monocular Visual SLAM



Features tracking:
Frame-to-frame KLT



## Robust Underwater Monocular Visual SLAM



Features tracking:
Frame-to-frame KLT



KLT not robust to occlusions



# Robust Underwater Monocular Visual SLAM

## Many short occlusions due to moving fishes



Credit: DRASSM





## Robust Underwater Monocular Visual SLAM

### **Retracking mechanism**

- Store the most recent images + lost features
- Multi-frame KLT retracking





### Robust Underwater Monocular Visual SLAM



#### Pose estimation :

■ Use 2D / 3D observations



## Robust Underwater Monocular Visual SLAM

### **Keyframe selection decision**



### Robust Underwater Monocular Visual SLAM

### **Keyframe selection decision**

■ Enough motion since last keyframe







## Robust Underwater Monocular Visual SLAM



#### **Mapping thread**

 Triangulation of new 3D points from 2D / 2D features between previous and current keyframes



#### Robust Underwater Monocular Visual SLAM



#### **Mapping thread**

- Triangulation of new 3D points from 2D / 2D features between previous and current keyframes
- Detection of new 2D features to track (for next triangulation)



#### Robust Underwater Monocular Visual SLAM



### **Mapping thread**

- Triangulation of new 3D points from 2D / 2D features between previous and current keyframes
- Detection of new 2D features to track (for next triangulation)
- Optimization of the 3D map : Bundle Adjustment



## Robust Underwater Monocular Visual SLAM

## **Bundle Adjustment**

Triangulation from two views not accurate because of noise





### Robust Underwater Monocular Visual SLAM

### **Bundle Adjustment**

- Triangulation from two views not accurate because of noise
- Apply multi-view constraints for trajectory and 3D map optimization





### Robust Underwater Monocular Visual SLAM

### **Bundle Adjustment**

- Triangulation from two views not accurate because of noise
- Apply multi-view constraints for trajectory and 3D map optimization





### Robust Underwater Monocular Visual SLAM

### **Bundle Adjustment**

- Triangulation from two views not accurate because of noise
- Apply multi-view constraints for trajectory and 3D map optimization



lacktriangle Factor Graph ightarrow Maximum Likelihood Estimation



#### **Bundle Adjustment: Maximum Likelihood Estimation**

Minimization of reprojection errors :

$$\chi^* = \operatorname*{arg\,min}_{\chi}\left( rac{ extsf{E}_{ extsf{visual}}}{\chi}(\chi) 
ight) \quad \chi = \left[ extsf{X}_{ extsf{KF}_i} \quad extsf{lm}_j 
ight]^{ extsf{T}}$$

■ Non-linear optimization solved with Levenberg-Marquardt







### Robust Underwater Monocular Visual SLAM

#### **Bundle Adjustment: Maximum Likelihood Estimation**



► Full problem not tractable in real-time



### Robust Underwater Monocular Visual SLAM

#### **Local Adaptive Windowed BA**

- Optimize most recent keyframes and 3D landmarks only
- Monocular setup : scale unobservable ⇒ fix at least two keyframes



### Robust Underwater Monocular Visual SLAM

### **Experimental Results**

- Evaluation of UW-VO against ORB-SLAM, LSD-SLAM and SVO
- Video sequences acquired on a shipwreck (300 meters) by the DRASSM
- Monocular SLAM ⇒ scaling w.r.t. groundtruth





## Robust Underwater Monocular Visual SLAM

### **Experimental Results**

|       |          |                    |                     | Absolute Trajectory Error RMSE (in %) |          |      |       |
|-------|----------|--------------------|---------------------|---------------------------------------|----------|------|-------|
| Seq.# | Duration | Turbidity<br>Level | Short<br>Occlusions | LSD-SLAM                              | ORB-SLAM | SVO  | UW-VO |
| 1     | 4'       | Low                | Few                 | Х                                     | 1.67     | 1.63 | 1.76  |
| 2     | 2'30"    | Medium             | Some                | Χ                                     | 1.91     | 2.45 | 1.73  |
| 3     | 22"      | High               | Many                | Χ                                     | Χ        | 1.57 | 1.04  |
| 4     | 4'30"    | Low                | Many                | Χ                                     | 1.13     | Χ    | 1.58  |
| 5     | 3'15"    | Medium             | Many                | Χ                                     | 1.94     | Χ    | 1.88  |

TABLE - Sequences taken on a shipwreck (300 meters deep).







Sequence #2





## Robust Underwater Monocular Visual SLAM

### **Experimental Results**

|       |          |                    |                     | Absolute Trajectory Error RMSE (in %) |          |      |       |
|-------|----------|--------------------|---------------------|---------------------------------------|----------|------|-------|
| Seq.# | Duration | Turbidity<br>Level | Short<br>Occlusions | LSD-SLAM                              | ORB-SLAM | SVO  | UW-VO |
| 1     | 4'       | Low                | Few                 | Х                                     | 1.67     | 1.63 | 1.76  |
| 2     | 2'30"    | Medium             | Some                | Χ                                     | 1.91     | 2.45 | 1.73  |
| 3     | 22"      | High               | Many                | Χ                                     | X        | 1.57 | 1.04  |
| 4     | 4'30"    | Low                | Many                | Χ                                     | 1.13     | X    | 1.58  |
| 5     | 3'15"    | Medium             | Many                | X                                     | 1.94     | Х    | 1.88  |

TABLE - Sequences taken on a shipwreck (300 meters deep).







Sequence #2





Maxime Ferrera

## Robust Underwater Monocular Visual SLAM

## **UW-VO for localization during shipwreck exploration**



ONERA DLIM

# Robust Underwater Monocular Visual SLAM

#### Conclusion

- Robust to underwater imaging conditions
- Accurate localization
- Real-time





Maxime Ferrera

## Robust Underwater Monocular Visual SLAM

#### Conclusion

- Robust to underwater imaging conditions
- Accurate localization
- Real-time
- ▶ Monocular ⇒ No scale





Maxime Ferrera

## 3. Multi-sensors SLAM





Maxime Ferrera

Tight Fusion: Insert other measurement modalities within the factor graph







Tight Fusion: Insert other measurement modalities within the factor graph

#### Fusion from Maximum Likelihood Estimation

$$\chi^{*} = \operatorname*{arg\,min}_{\chi}\left(\mathsf{E}_{\mathit{visual}}\left(\chi\right) + \mathsf{E}_{\mathit{depth}}\left(\chi\right) + \mathsf{E}_{\mathit{IMU}}\left(\chi\right)\right)$$

- E<sub>visual</sub>: Energy term based on visual measurements
- E<sub>depth</sub>: Energy term based on pressure measurements
- *E*<sub>IMU</sub>: Energy term based on inertial measurements



# 3.1. Visual-Pressure SLAM





## **Visual-Pressure Setup**



- Pressure measurements : pressure (Pa) \( \precedex \) depth (m)
- Depth variation from starting point :

$$\tilde{d}_i = {}_{\mathsf{raw}}\tilde{d}_i - {}_{\mathsf{raw}}\tilde{d}_0$$

ONERA



## Visual-Pressure SLAM

# Strategy 1: Integration of absolute depth measurements

■ Depth error term :  $E_{depth}(\mathbf{X}_i) = \| ilde{d}_i - \hat{\mathbf{t}}^2_{Wc_i}\|_{\sigma^2_{depth}}^2$ 





## Visual-Pressure SLAM

#### **Visual-Pressure Fusion**

► Misalignement issue!



■ Linear error along  $z^W$ :  $\overline{d}_i = \overline{t^z}_{c_0c_i} \cdot \cos(\alpha)$ 

$$\overline{d}_i = \overline{t^z}_{c_0 c_i} \cdot \cos(\alpha)$$



## Visual-Pressure SLAM

## Strategy 2: Integration of relative depth measurements

Relative depth:

$$E_{depth}\left(\boldsymbol{X}_{k},\boldsymbol{X}_{i}\right) = \left(\|\left(\tilde{\boldsymbol{d}}_{i}-\tilde{\boldsymbol{d}}_{k}\right)-\left(\hat{\boldsymbol{t}}^{2}_{Wc_{i}}-\hat{\boldsymbol{t}}^{2}_{Wc_{k}}\right)\|_{\left(2\cdot\boldsymbol{\sigma}_{depth}\right)^{2}}^{2}\right)$$







## Visual-Pressure SLAM

## **Experimental Results**

■ Init. Only: UW-VO with scale factor estimation from 1<sup>st</sup> meas. only

$$\chi^* = \operatorname*{\mathsf{arg\,min}}_{\chi} \left( \mathsf{E}_{\mathsf{visual}} \left( \chi \right) \right)$$

■ **UW-VP**: Strategy 1 vs Strategy 2

$$\chi^* = \operatorname*{arg\,min}_{\chi}\left(\mathsf{E}_{\mathit{visual}}\left(\chi\right) + \mathsf{E}_{\mathit{depth}}\left(\chi\right)\right)$$

- Dataset : sequences from AQUALOC
  - 7 sequences in a harbor
  - 2 sequences on a shipwreck (400 meters)

ONERA



SLAM **Visual-Inertial-Pressure SLAM** Dense 3D Mapping Conclusion Références

# Visual-Pressure SLAM

# **Experimental Results**

TABLE - Absolute trajectory errors (RMSE in m).

|      |            | Absolute Trajectory Error (m) |          |          |
|------|------------|-------------------------------|----------|----------|
|      |            | Init. Only                    | UW-VP    |          |
| Seq. | Length (m) | UW-VO                         | Strat. 1 | Strat. 2 |
| #1   | 39.3       | 1.01                          | 0.55     | 0.53     |
| # 2  | 75.6       | 1.70                          | 1.23     | 0.40     |
| #3   | 23.6       | 0.52                          | 0.30     | 0.26     |
| # 4  | 55.8       | Χ                             | Χ        | Χ        |
| # 5  | 28.5       | 0.96                          | 0.19     | 0.11     |
| #6   | 19.5       | 0.17                          | 0.11     | 0.06     |
| #7   | 32.9       | Χ                             | Χ        | Χ        |
| # A  | 41.2       | 0.96                          | 0.58     | 0.52     |
| # B  | 65.4       | 1.3                           | 0.99     | 0.90     |



# Visual-Pressure SLAM

#### Conclusion

- ▶ Recovery of the scale factor
- Improved localization accuracy





Maxime Ferrera 12 Décembre 2019

56 / 95

# Visual-Pressure SLAM

#### Conclusion

- Recovery of the scale factor
- Improved localization accuracy
- ▶ Misalignement issue has to be taken care of!





# Visual-Pressure SLAM

#### Conclusion

- Recovery of the scale factor
- Improved localization accuracy
- ▶ Misalignement issue has to be taken care of!
- Still fully dependent on vision











Maxime Ferrera 12 Décembre 2019

#### Low-cost MEMS-IMU Model

Angular Velocity measurements :

$$\int_{B}^{B} B(t) = \int_{B}^{B} B(t) + \mathbf{b}^{g}(t) + \int_{B}^{g} B(t) dt$$

■ Linear Acceleration méasurements :

$$ilde{oldsymbol{a}}_{\mathcal{B}}(t) = oldsymbol{R}_{\mathit{WB}}(t)^{\mathsf{T}} \cdot \left(oldsymbol{a}_{\mathit{W}}(t) - oldsymbol{g}_{\mathit{W}}
ight) + oldsymbol{b}^{\mathit{a}}(t) + \int\limits_{0}^{a}$$



#### Low-cost MEMS-IMU Model

Angular Velocity measurements :

$$\int\limits_{0}^{\infty} {}_{B}(t) = \int\limits_{0}^{\infty} {}_{B}(t) + \mathbf{b}^{g}(t) + \int\limits_{0}^{g}$$

Linear Acceleration méasurements :

$$ilde{oldsymbol{\mathsf{a}}}_{B}(t) = {oldsymbol{\mathsf{R}}}_{WB}(t)^{\mathsf{T}} \cdot \left( {oldsymbol{\mathsf{a}}}_{W}(t) - {oldsymbol{\mathsf{g}}}_{W} 
ight) + {oldsymbol{\mathsf{b}}}^{a}(t) + \int\limits_{0}^{a}$$

 Measurements corrupted by time-varying biases and zero-mean gaussian noise

ONERA



# Visual-Inertial-Pressure SLAM

#### **IMU Measurements**

■ Motion estimations from IMU meas. ⇒ **R**<sub>WBi</sub>, **v**<sub>WBi</sub>, **p**<sub>WBi</sub>





#### **IMU Measurements**

- Motion estimations from IMU meas. ⇒ **R**<sub>WBi</sub>, **v**<sub>WBi</sub>, **p**<sub>WBi</sub>
- ▶ Motion information at high rates (200 Hz)





#### **IMU Measurements**

- Motion estimations from IMU meas.  $\Rightarrow$   $\mathbf{R}_{WBi}$ ,  $\mathbf{v}_{WBi}$ ,  $\mathbf{p}_{WBi}$
- ▶ Motion information at high rates (200 Hz)
- ▶ But big drift because of varying biases and noise





# Visual-Inertial-Pressure SLAM

## **IMU Preintegration**

Summarize intra-keyframe IMU measurements as one measurement :



- Relative motion measurements :  $\Delta \tilde{\mathbf{R}}_{BiBi}$ ,  $\Delta \tilde{\mathbf{p}}_{BiBi}$ ,  $\Delta \tilde{\mathbf{v}}_{BiBi}$
- Easy insertion in the Factor Graph formulation



# Visual-Inertial-Pressure SLAM

### New state to estimate:

$$\mathbf{X}_i = \begin{bmatrix} \mathbf{R}_{WBi} & \mathbf{p}_{WBi} & \mathbf{v}_{WBi} & \mathbf{b}_i^g & \mathbf{b}_i^a \end{bmatrix}^T$$

ONERA



Maxime Ferrera 12 Décembre 2019

61 / 95

#### New state to estimate:

$$\mathbf{X}_i = \begin{bmatrix} \mathbf{R}_{WBi} & \mathbf{p}_{WBi} & \mathbf{v}_{WBi} & \mathbf{b}_i^g & \mathbf{b}_i^a \end{bmatrix}^T$$

### **IMU Preintegration : Relative errors between keyframes**

$$\begin{array}{ll} \mathbf{e}_{\Delta \mathbf{R}_{BiBj}} = \hat{\mathbf{R}}_{BiBj} \boxminus \Delta \tilde{\mathbf{R}}_{BiBj} \\ \mathbf{e}_{\Delta \mathbf{p}_{BiBj}} = \hat{\mathbf{p}}_{BiBj} - \Delta \tilde{\mathbf{p}}_{BiBj} \\ \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} = \hat{\mathbf{v}}_{BiBj} - \Delta \tilde{\mathbf{v}}_{BiBj} \\ \end{array} \qquad \begin{array}{ll} \mathbf{e}_{\Delta \mathbf{b}_{BiBj}^g} = \hat{\mathbf{b}}_{Bj}^g - \hat{\mathbf{b}}_{Bi}^g \\ \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} = \hat{\mathbf{v}}_{BiBj} - \Delta \tilde{\mathbf{v}}_{BiBj} \\ \end{array} \qquad \begin{array}{ll} \mathbf{e}_{\Delta \mathbf{b}_{BiBj}^g} = \hat{\mathbf{b}}_{Bj}^g - \hat{\mathbf{b}}_{Bi}^g \\ \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} = \hat{\mathbf{v}}_{BiBj} - \Delta \tilde{\mathbf{v}}_{BiBj} \\ \end{array} \qquad \begin{array}{ll} \mathbf{e}_{\Delta \mathbf{b}_{BiBj}^g} = \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} \\ \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} = \hat{\mathbf{v}}_{BiBj} - \Delta \tilde{\mathbf{v}}_{BiBj} \\ \end{array} \qquad \begin{array}{ll} \mathbf{e}_{\Delta \mathbf{b}_{BiBj}^g} = \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} \\ \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} = \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} \\ \end{array} \qquad \begin{array}{ll} \mathbf{e}_{\Delta \mathbf{b}_{BiBj}^g} = \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} \\ \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} = \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} \\ \end{array} \qquad \begin{array}{ll} \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} - \hat{\mathbf{v}}_{BiBj} \\ \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} = \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} \\ \end{array} \qquad \begin{array}{ll} \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} - \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} \\ \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} - \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} \\ \end{array} \qquad \begin{array}{ll} \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} - \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} \\ \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} - \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} \\ \end{array} \qquad \begin{array}{ll} \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} - \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} \\ \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} - \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} \\ \end{array} \qquad \begin{array}{ll} \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} - \hat{\mathbf{v}}_{BiBj} -$$

ONERA

61 / 95

#### New state to estimate:

$$\mathbf{X}_i = \begin{bmatrix} \mathbf{R}_{WBi} & \mathbf{p}_{WBi} & \mathbf{v}_{WBi} & \mathbf{b}_i^g & \mathbf{b}_i^a \end{bmatrix}^T$$

### IMU Preintegration: Relative errors between keyframes

$$\begin{array}{ll} \mathbf{e}_{\Delta\mathbf{R}_{BiBj}} = \hat{\mathbf{R}}_{BiBj} \boxminus \Delta \tilde{\mathbf{R}}_{BiBj} \\ \mathbf{e}_{\Delta\mathbf{p}_{BiBj}} = \hat{\mathbf{p}}_{BiBj} - \Delta \tilde{\mathbf{p}}_{BiBj} \\ \mathbf{e}_{\Delta\mathbf{p}_{BiBj}} = \hat{\mathbf{p}}_{BiBj} - \Delta \tilde{\mathbf{v}}_{BiBj} \\ \mathbf{e}_{\Delta\mathbf{v}_{BiBj}} = \hat{\mathbf{v}}_{BiBj} - \Delta \tilde{\mathbf{v}}_{BiBj} \end{array} \qquad \begin{array}{ll} \mathbf{e}_{\Delta\mathbf{b}_{BiBj}^g} = \hat{\mathbf{b}}_{Bj}^g - \hat{\mathbf{b}}_{Bi}^g \\ \mathbf{e}_{\Delta\mathbf{v}_{BiBj}} = \hat{\mathbf{v}}_{BiBj} - \Delta \tilde{\mathbf{v}}_{BiBj} \\ \end{array}$$

#### **IMU Energy term**

$$E_{\mathit{IMU}}\left(\boldsymbol{\chi}\right) = \sum_{\boldsymbol{\varepsilon}^*} \left( \mathbf{e}_{\mathit{imu}}(\mathbf{X}_i, \mathbf{X}_j)^\mathsf{T} \cdot \boldsymbol{\Sigma}_{\mathit{BiBj}}^{\mathit{imu}^{-1}} \cdot \mathbf{e}_{\mathit{imu}}(\mathbf{X}_i, \mathbf{X}_j) \right)$$

$$\mathbf{e}_{\mathit{imu}}(\mathbf{X}_{\mathit{i}},\mathbf{X}_{\mathit{j}}) = \begin{bmatrix} \mathbf{e}_{\Delta\mathbf{R}_{\mathit{BiBj}}} & \mathbf{e}_{\Delta\mathbf{p}_{\mathit{BiBj}}} & \mathbf{e}_{\Delta\mathbf{v}_{\mathit{BiBj}}} & \mathbf{e}_{\Delta\mathbf{b}_{\mathit{BiBj}}^{\mathit{g}}} & \mathbf{e}_{\Delta\mathbf{b}_{\mathit{BiBj}}^{\mathit{g}}} \end{bmatrix}^\mathsf{T}$$

## **Visual-Inertial-Pressure Optimization**



ONERA

## Visual-Inertial-Pressure SLAM

## **Visual-Inertial-Pressure Optimization**





## **Visual-Inertial-Pressure Optimization**



ONERA

## **Experimental Results**

TABLE - Absolute trajectory errors (RMSE in m).

|      |            | Absolute Trajectory Error (m) |        |  |
|------|------------|-------------------------------|--------|--|
| Seq. | Length (m) | UW-VP                         | UW-VIP |  |
| # 1  | 39.3       | 0.49                          | 0.42   |  |
| # 2  | 75.6       | 0.36                          | 0.37   |  |
| #3   | 23.6       | 0.25                          | 0.26   |  |
| # 4  | 55.8       | Χ                             | 1.56   |  |
| # 5  | 28.5       | 0.13                          | 0.09   |  |
| # 6  | 19.5       | 0.04                          | 0.06   |  |
| # 7  | 32.9       | Χ                             | 1.16   |  |
| # A  | 41.2       | 0.34                          | 0.36   |  |
| # B  | 65.4       | 0.72                          | 0.69   |  |



# Visual-Inertial-Pressure SLAM

### **UW-VIP** for localization with short loss of visual information





# Visual-Inertial-Pressure SLAM

#### Conclusion

Robust to short loss of visual information





## Visual-Inertial-Pressure SLAM

#### Conclusion

- Robust to short loss of visual information
- ► Factor graph formulation could be used to fuse even more sensors!



# 4. Monocular Dense 3D Mapping





# Monocular Dense 3D Mapping

## **Dense 3D Mapping**

- Densify the sparse 3D measurements
- Make use of optimized states: keyframes + 3D landmarks





# Monocular Dense 3D Mapping

## **Depth Map Densification**

Find 3D features nearest-neighbors from 2D Delaunay triangulation



• : pixels with known depth





# Monocular Dense 3D Mapping

## **Depth Map Densification**

- Find 3D features nearest-neighbors from 2D Delaunay triangulation
- Depth value interpolation from Delaunay triangles



ONERA



# Monocular Dense 3D Mapping

## **Depth Map Densification**

- Find 3D features nearest-neighbors from 2D Delaunay triangulation
- Depth value interpolation from Delaunay triangles



(a) 2D Delaunay triangulation.



(b) 2D densified depth map.





# Monocular Dense 3D Mapping

### **Online 3D Reconstruction**





Maxime Ferrera 12 Décembre 2019

72 / 95

# Monocular Dense 3D Mapping

### **Online 3D Reconstruction in Complex Environment**



# Monocular Dense 3D Mapping

#### Conclusion

- ▶ Dense 3D reconstruction from monocular camera
- Real-time dense 3D reconstruction (but delayed)

ONERA



Maxime Ferrera 12 Décembre 2019

# Conclusion





#### Conclusion

#### **Contributions**

- KLT is well suited for VSLAM tasks on underwater images
- Robust underwater monocular VSLAM method: UW-VO
- Tight fusion framework for Visual-Inertial-Pressure SLAM
- Dense 3D reconstruction module for monocular setup



#### Conclusion

## **Experimental Validation**

- Algorithms validated on the Tegra TX2
- All the methods run in real-time
- Release of a public dataset : AQUALOC







## Conclusion

#### **Perspectives**

- ▶ Add loop closure for drift reduction and relocalization
  - ightarrow Online Bag of Words (ANGELI et al., 2008; GARCIA-FIDALGO et al., 2018; NICOSEVICI et al., 2012)
- ► Binocular SLAM extension
  - $\rightarrow$  increased robustness
- ▶ Integration of the SLAM estimates in ROV's command :
  - Servoing
  - Autonomous navigation
  - Automatic photogrammetry

ONERA



## Conclusion

#### Publications & Dépôt logiciel

#### **Journal Papers**

Maxime Ferrera, Vincent Creuze, Julien Moras et Pauline Trouvé-Peloux (2019a). "AQUALOC: An Underwater Dataset for Visual-Inertial-Pressure Localization.". In: The International Journal of Robotics Research

Maxime FERRERA, Julien Moras, Pauline Trouvé-Peloux et Vincent Creuze (2019b). "Real-Time Monocular Visual Odometry for Turbid and Dynamic Underwater Environments". In: Sensors. T. 19. 3

#### International Conference Papers

Maxime FERRERA, Julien Moras, Pauline TROUVÉ-PELOUX, Vincent CREUZE et Denis DÉGEZ (2018a). "The Aqualoc Dataset: Towards Real-Time Underwater Localization from a Visual-Inertial-Pressure Acquisition System". In: IROS Workshop - New Horizons for Underwater Intervention Missions: from Current Technologies to Future Applications

#### **National Conference Papers**

Maxime Ferrera, Julien Moras, Pauline Trouvé-Peloux et Vincent Creuze (2018b). "Odométrie Visuelle Monoculaire en Environnement Sous-Marin". In : Reconnaissance des Formes, Image, Apprentissage et Perception (RFIAP)

Maxime Ferrera, Julien Moras, Pauline Trouvé-Peloux et Vincent Creuze (2017). "Localisation autonome basée vision d'un robot sous-marin et cartographie de précision". In : ORASIS

Maxime Ferrera

79 / 95

# Conclusion

Thank you for your attention!







ANGELI, Adrien, David FILLIAT, Stéphane Doncieux et Jean-Arcady Meyer (2008). "A fast and incremental method for loop-closure detection using bags of visual words". In: IEEE Transactions on Robotics, p. 1027-1037.



BURGUERA, A., F. BONIN-FONT et G. OLIVER (2015). "Trajectory-Based Visual Localization in Underwater Surveying Missions". In: Sensors. T. 15. 1, p. 1708-1735.



CREUZE, Vincent (2017). "Monocular Odometry for Underwater Vehicles with Online Estimation of the Scale Factor". In: IFAC 2017 World Congress.



ENGEL, J., T. SCHOPS et D. CREMERS (2014). "LSD-SLAM: Large-Scale Direct Monocular SLAM". In: European Conference on Computer Vision (ECCV). Zurich, Switzerland, p. 834-849.



ENGEL, Jakob, Vladlen Koltun et Daniel Cremers (2017). "Direct sparse odometry". In: IEEE transactions on pattern analysis and machine intelligence 40.3, p. 611-625.



FERRERA, Maxime, Julien Moras, Pauline Trouvé-Peloux et Vincent Creuze (2017). "Localisation autonome basée vision d'un robot sous-marin et cartographie de précision". In: ORASIS.



FERRERA, Maxime, Julien Moras, Pauline Trouvé-Peloux, Vincent Creuze et Denis DÉGEZ (2018a). "The Aqualoc Dataset: Towards Real-Time Underwater Localization from a Visual-Inertial-Pressure Acquisition



- System". In: IROS Workshop New Horizons for Underwater Intervention Missions: from Current Technologies to Future Applications.
- FERRERA, Maxime, Julien Moras, Pauline Trouvé-Peloux et Vincent Creuze (2018b). "Odométrie Visuelle Monoculaire en Environnement Sous-Marin". In: Reconnaissance des Formes, Image, Apprentissage et Perception (RFIAP).
- FERRERA, Maxime, Vincent CREUZE, Julien MORAS et Pauline TROUVÉ-PELOUX (2019a). "AQUALOC: An Underwater Dataset for Visual-Inertial-Pressure Localization.". In: The International Journal of Robotics Research.
  - FERRERA, Maxime, Julien MORAS, Pauline TROUVÉ-PELOUX et Vincent CREUZE (2019b). "Real-Time Monocular Visual Odometry for Turbid and Dynamic Underwater Environments". In: Sensors. T. 19. 3.
  - FORSTER, C., M. PIZZOLI et D. SCARAMUZZA (2014). "SVO: Fast semi-direct monocular visual odometry". In: 2014 IEEE International Conference on Robotics and Automation (ICRA).
- GARCIA, Rafael, Xevi Cufi et Marc Carreras (2001). "Estimating the motion of an underwater robot from a monocular image sequence". In:

  Proceedings 2001 IEEE/RSJ International Conference on Intelligent
  Robots and Systems. Expanding the Societal Role of Robotics in the the
  Next Millennium (Cat. No. 01CH37180). T. 3. IEEE, p. 1682-1687.





GARCIA-FIDALGO, Emilio et Alberto ORTIZ (2018). "iBoW-LCD: An Appearance-Based Loop-Closure Detection Approach Using Incremental Bags of Binary Words". In: IEEE Robotics and Automation Letters 3.4, p. 3051-3057. DOI: 10.1109/LRA.2018.2849609.



KIM, Ayoung et Ryan M EUSTICE (2013). "Real-time visual SLAM for autonomous underwater hull inspection using visual saliency". In: IEEE Transactions on Robotics 29.3, p. 719-733.



KLEIN, G. et D. MURRAY (2007). "Parallel Tracking and Mapping for Small AR Workspaces". In: IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR). Nara, Japan, p. 225-234.



Mur-Artal, R., J. M. M. Montiel et J. D. Tardós (2015). "ORB-SLAM: A Versatile and Accurate Monocular SLAM System". In: IEEE Transactions on Robotics (T-RO). T. 31. 5, p. 1147-1163.



NICOSEVICI, Tudor, Nuno GRACIAS, Shahriar NEGAHDARIPOUR et Rafael GARCIA (2009). "Efficient three-dimensional scene modeling and mosaicing". In: booktitle of Field Robotics.



NICOSEVICI, Tudor et Rafael GARCIA (2012). "Automatic visual bag-of-words for online robot navigation and mapping". In: IEEE Transactions on Robotics 28.4, p. 886-898.



SHKURTI, Florian, Ioannis REKLEITIS, Milena SCACCIA et Gregory DUDEK (2011). "State estimation of an underwater robot using visual and inertial

information". In: **2011 IEEE/RSJ International Conference on Intelligent Robots and Systems**. IEEE, p. 5054-5060.



SINGH, Hanumant, Jonathan Howland et Oscar Pizarro (2004). "Advances in large-area photomosaicking underwater". In: IEEE Journal of Oceanic Engineering 29.3, p. 872-886.

ONERA



Maxime Ferrera 12 Décembre 2019

80 / 95

#### **Monocular Initialization**

- 2D/2D initialisation from Essential Matrix
- Up-to-scale transformation ( $\|\mathbf{t}\| = ?$ )



■ Scale arbitrary fixed :  $\|\mathbf{t}\| = 1$ 



#### **Bundle Adjustment**

Optimization of the keyframes and 3D landmarks:

$$\chi = \left\{ \mathbf{X}_{\mathrm{KF_i}}, \mathbf{lm_j} \right\} \quad \chi = \left[ \mathbf{X}_{\mathrm{cur}} \quad \mathbf{X}_{\mathrm{KF_i}} \quad \mathbf{lm}_j 
ight]^{\mathrm{T}}$$

Minimization of the reprojection errors :

$$\begin{split} \arg\min_{\mathbf{x}} &= \sum_{i} \sum_{j} \rho \left( \mathbf{e_{ij}}^{\mathsf{T}} \cdot \mathbf{\Sigma_{ij}^{-1}} \cdot \mathbf{e_{ij}} \right) \\ &\mathbf{e_{ij}} = \mathbf{x_{ij}} - proj(\mathbf{X_{KF_i}}, \mathbf{lm_j}) : \text{Reprojection error} \\ &\rho(\cdot) : \text{Huber norm} \end{split}$$



#### **Bundle Adjustment**

Levenberg-Marquardt Algorithm :

$$\left(\underbrace{\mathbf{J}_{\delta\chi}^{\mathsf{T}}(\chi)\cdot\mathbf{\Sigma}_{\mathsf{visual}}^{-1}\cdot\mathbf{J}_{\delta\chi}(\chi)}_{\mathbf{A}}+\lambda\cdot\mathsf{diag}(\mathbf{A})\right)\delta\chi = -\mathbf{J}_{\delta\chi}^{\mathsf{T}}(\chi)\cdot\mathbf{\Sigma}_{\mathsf{visual}}^{-1}\cdot\boldsymbol{e}(\chi)$$

ONERA



#### **Bundle Adjustment**

Levenberg-Marquardt Algorithm:

$$\left(\underbrace{\mathbf{J}_{\delta\chi}^{\mathsf{T}}(\chi)\cdot\mathbf{\Sigma}_{\mathit{visual}}^{-1}\cdot\mathbf{J}_{\delta\chi}(\chi)}_{\mathbf{A}}+\lambda\cdot\mathsf{diag}(\mathbf{A})\right)\delta\chi = -\mathbf{J}_{\delta\chi}^{\mathsf{T}}(\chi)\cdot\mathbf{\Sigma}_{\mathit{visual}}^{-1}\cdot\boldsymbol{e}(\chi)$$

■ Pose defined on SE(3)!



Levenberg-Marquardt Algorithm:

$$\left(\underbrace{\mathbf{J}_{\delta\chi}^{\mathsf{T}}(\chi)\cdot\mathbf{\Sigma}_{\mathit{visual}}^{-1}\cdot\mathbf{J}_{\delta\chi}(\chi)}_{\mathbf{A}}+\lambda\cdot\mathsf{diag}(\mathbf{A})\right)\delta\chi = -\mathbf{J}_{\delta\chi}^{\mathsf{T}}(\chi)\cdot\mathbf{\Sigma}_{\mathit{visual}}^{-1}\cdot\boldsymbol{e}(\chi)$$

- Pose defined on SE(3)!
- On-manifold optimization :

$$proj(\mathbf{X}_i \boxplus \delta \mathbf{X}_i, \mathbf{lm}_j \boxplus \delta \mathbf{lm}_j) o \mathbf{X}_i \in \mathbb{SE}(3) \text{ and } \delta \mathbf{X}_i \in \mathbb{R}^6$$

$$\mathbf{X}_i \leftarrow \mathbf{X}_i \cdot \underbrace{\mathsf{Exp}(\delta \mathbf{X}_i)}_{\mathtt{sc}(3)} \; \; ; \; \; \mathbf{lm}_j \leftarrow \mathbf{lm}_j + \delta \mathbf{lm}_j$$

## Robust Underwater Monocular Visual SLAM

#### **Experimental Results: Synthetic Turbid Sequences**





- ORB-SLAM : Loop closing feature
- ORB-SLAM: Not robust to mid-level and high-level of turbidity
- UW-VO: Better accuracy in terms of pure localization

# Visual-Pressure SLAM

Is the depth axis observable?





# Visual-Pressure SLAM

Is the depth axis observable?

 $\Rightarrow$  Relaxation of the gauge constraints





Maxime Ferrera 12 Décembre 2019

85 / 95

## Visual-Pressure SLAM

## Is the depth axis observable?

- ⇒ Relaxation of the gauge constraints
  - lacksquare Monocular SLAM : no scale ightarrow fix at least two keyframes in BA





## Visual-Pressure SLAM

## Is the depth axis observable?

- ⇒ Relaxation of the gauge constraints
  - lacksquare Monocular SLAM : no scale ightarrow fix at least two keyframes in BA
  - $\blacksquare$  SLAM with scale : fix one keyframe in BA  $\rightarrow$  fix the localization frame



## Visual-Pressure SLAM

#### Is the depth axis observable?

- ⇒ Relaxation of the gauge constraints
  - lacksquare Monocular SLAM : no scale ightarrow fix at least two keyframes in BA
  - $lue{}$  SLAM with scale : fix one keyframe in BA ightarrow fix the localization frame
  - Free Gauge: no fixed state in BA during initialization phase



## Visual-Pressure SLAM

# Relaxation of the gauge constraints





#### **Experimental Results**

TABLE - Absolute trajectory errors (RMSE in m) on the Harbor dataset.

| Seq. | Length (m) | Absolute Trajectory Error (m) |          |          |            |          |
|------|------------|-------------------------------|----------|----------|------------|----------|
|      |            | Init. Only UW-VO              | Regular  |          | Free Gauge |          |
|      |            |                               | Strat. 1 | Strat. 2 | Strat. 1   | Strat. 2 |
| #1   | 39.3       | 1.01                          | 0.55     | 0.53     | 0.56       | 0.49     |
| # 2  | 75.6       | 1.70                          | 1.23     | 0.40     | 1.08       | 0.36     |
| #3   | 23.6       | 0.52                          | 0.30     | 0.26     | 0.23       | 0.25     |
| # 4  | 55.8       | Χ                             | Χ        | Χ        | Χ          | Χ        |
| # 5  | 28.5       | 0.96                          | 0.19     | 0.11     | 0.12       | 0.13     |
| # 6  | 19.5       | 0.17                          | 0.11     | 0.06     | 0.04       | 0.04     |
| # 7  | 32.9       | Χ                             | Χ        | Χ        | Χ          | Х        |
| # A  | 41.2       | 0.96                          | 0.58     | 0.52     | 0.44       | 0.34     |
| # B  | 65.4       | 1.3                           | 0.99     | 0.90     | 1.01       | 0.72     |

#### Low-cost MEMS-IMU Model

Angular Velocity measurements :

$$\int\limits_{0}^{\infty} {}_{B}(t) = \int\limits_{0}^{\infty} {}_{B}(t) + \mathbf{b}^{g}(t) + \int\limits_{0}^{g}$$

Linear Acceleration méasurements :

$$ilde{a}_{\scriptscriptstyle B}(t) = \mathbf{R}_{\scriptscriptstyle WB}(t)^{\scriptscriptstyle \mathsf{T}} \cdot \left(a_{\scriptscriptstyle W}(t) - \mathbf{g}_{\scriptscriptstyle W}\right) + \mathbf{b}^{\scriptscriptstyle a}(t) + \int\limits_{}^{a}$$

 Measurements at high rates (200 Hz) but big drift because of varying biases



# Visual-Inertial-Pressure SLAM

#### New state to estimate:

$$\mathbf{X}_i = \begin{bmatrix} \mathbf{R}_{WBi} & \mathbf{p}_{WBi} & \mathbf{v}_{WBi} & \mathbf{b}_i^g & \mathbf{b}_i^a \end{bmatrix}^\mathsf{T}$$

ONERA



#### New state to estimate:

$$\mathbf{X}_i = \begin{bmatrix} \mathbf{R}_{WBi} & \mathbf{p}_{WBi} & \mathbf{v}_{WBi} & \mathbf{b}_i^g & \mathbf{b}_i^a \end{bmatrix}^{\mathrm{T}}$$

#### **IMU Measurements:**

$$\begin{split} \mathbf{R}_{WBj} &= \mathbf{R}_{WBi} \cdot \prod_{k=i}^{j-1} \cdot \mathsf{Exp} \underbrace{\boldsymbol{\eta}_{\boldsymbol{\lambda}_{k}}^{q} - \boldsymbol{b}_{k}^{g} - \boldsymbol{b}_{k}^{g} - \boldsymbol{b}_{k}^{g}}_{}^{g}) \cdot \Delta t_{kk+1} ) \\ \mathbf{v}_{WBj} &= \mathbf{v}_{WBi} + \mathbf{g}_{W} \cdot \Delta t_{ij} + \sum_{k=i}^{j-1} \mathbf{R}_{WB_{k}} \cdot \boldsymbol{\tilde{a}}_{k} - \boldsymbol{b}_{k}^{a} - \boldsymbol{b}_{k}^{a} - \boldsymbol{b}_{k}^{a} - \boldsymbol{b}_{k}^{a} ) \cdot \Delta t_{kk+1} \\ \mathbf{p}_{WBj} &= \mathbf{p}_{WBi} + \frac{1}{2} \cdot \mathbf{g}_{W} \cdot \Delta t_{ij}^{g} \\ &+ \sum_{k=i}^{j-1} \left[ \mathbf{v}_{WB_{k}} \cdot \Delta t_{kk+1} + \frac{1}{2} \cdot \mathbf{R}_{WB_{k}} \cdot \boldsymbol{\tilde{a}}_{k} - \boldsymbol{b}_{k}^{a} - \boldsymbol{b}_{k}^{a} - \boldsymbol{b}_{k}^{a} - \boldsymbol{b}_{k}^{a} \right] \end{split}$$

ONERA

Maxime Ferrera

12 Décembre 2019

# Visual-Inertial-Pressure SLAM

#### **Issues**

- Measurements depend on optimized states!
- Every measurements have to be re-computed when states change





Maxime Ferrera 12 Décembre 2019

## Visual-Inertial-Pressure SLAM

#### **Issues**

- Measurements depend on optimized states!
- Every measurements have to be re-computed when states change

#### **IMU Preintegration**

Summarize intra-keyframe IMU measurements as one measurement :



- Remove dependency on optimized states
- Easy insertion in the Factor Graph formulation

ONER



90 / 95

#### **IMU Preintegration**

$$\begin{split} \Delta \tilde{\mathbf{R}}_{BiBj} &\doteq \mathbf{R}_{BiW} \cdot \mathbf{R}_{WBj} \\ &= \prod_{k=i}^{j-1} \cdot \mathsf{Exp} \stackrel{\boldsymbol{\eta} \boldsymbol{\eta}}{\boldsymbol{\eta}}_{k} - \mathbf{b}_{k}^{g} - \stackrel{g}{}_{)} \cdot \Delta t_{kk+1} ) \\ \Delta \tilde{\mathbf{v}}_{BiBj} &\doteq \mathbf{R}_{BiW} \cdot \stackrel{\boldsymbol{\eta}}{\mathbf{v}}_{WBj} - \mathbf{v}_{WBi} - \mathbf{g}_{W} \cdot \Delta t_{ij} ) \\ &= \sum_{k=i}^{j-1} \Delta \mathbf{R}_{BiB_{k}} \cdot \stackrel{\boldsymbol{\eta}}{\mathbf{a}}_{k} - \mathbf{b}_{k}^{a} - \stackrel{a}{}_{)} \cdot \Delta t_{kk+1} \\ \Delta \tilde{\mathbf{p}}_{BiBj} &\doteq \mathbf{R}_{BiW} \cdot \left( \mathbf{p}_{WBj} - \mathbf{p}_{WBi} - \mathbf{v}_{WBi} \cdot \Delta t_{ij} - \frac{1}{2} \cdot \mathbf{g}_{W} \cdot \Delta t_{ij}^{2} \right) \\ &= \sum_{k=i}^{j-1} \left[ \Delta \mathbf{v}_{WB_{k}} \cdot \Delta t_{kk+1} + \frac{1}{2} \cdot \Delta \mathbf{R}_{BiB_{k}} \cdot \stackrel{\boldsymbol{\eta}}{\mathbf{a}}_{k} - \mathbf{b}_{k}^{a} - \stackrel{a}{}_{)} \cdot \Delta t_{kk+1}^{2} \right] \end{split}$$

ONERA

#### **IMU Preintegrated Measurements**

$$\begin{split} \Delta \tilde{\mathbf{R}}_{\textit{BiBj}} &= \Delta \tilde{\mathbf{R}}_{\textit{BiBj}} \cdot \mathsf{Exp} \left( \frac{\partial \Delta \tilde{\mathbf{R}}_{\textit{BiBj}}}{\partial \mathbf{b}^g} \cdot \delta \mathbf{b}^g \right) \\ \Delta \tilde{\mathbf{v}}_{\textit{BiBj}} &= \Delta \tilde{\mathbf{v}}_{\textit{BiBj}} + \frac{\partial \Delta \tilde{\mathbf{v}}_{\textit{BiBj}}}{\partial \mathbf{b}^g} \cdot \delta \mathbf{b}^g + \frac{\partial \Delta \tilde{\mathbf{v}}_{\textit{BiBj}}}{\partial \mathbf{b}^a} \cdot \delta \mathbf{b}^a \\ \Delta \tilde{\mathbf{p}}_{\textit{BiBj}} &= \Delta \tilde{\mathbf{p}}_{\textit{BiBj}} + \frac{\partial \Delta \tilde{\mathbf{p}}_{\textit{BiBj}}}{\partial \mathbf{b}^g} \cdot \delta \mathbf{b}^g + \frac{\partial \Delta \tilde{\mathbf{p}}_{\textit{BiBj}}}{\partial \mathbf{b}^a} \cdot \delta \mathbf{b}^a \end{split}$$

#### **Biases Evolution:**

$$\mathbf{b}^g(t + \Delta t) = \mathbf{b}^g(t) + \mathbf{b}_g \quad , \quad \mathbf{b}_g \sim \mathcal{N}(\mathbf{0}_{3 \times 1}, \mathbf{I}_{3 \times 3} \cdot \sigma_{b_g}^2)$$

$$\mathbf{b}^a(t + \Delta t) = \mathbf{b}^a(t) + \mathbf{b}_a \quad , \quad \mathbf{b}_a \sim \mathcal{N}(\mathbf{0}_{3 \times 1}, \mathbf{I}_{3 \times 3} \cdot \sigma_{b_a}^2)$$

ONERA

Maxime Ferrera

12 Décembre 2019

92 / 95

#### **IMU Preintegrated Measurements**

$$\begin{split} & \Delta \tilde{\mathbf{R}}_{\textit{BiBj}} = \Delta \tilde{\mathbf{R}}_{\textit{BiBj}} \cdot \mathsf{Exp} \left( \frac{\partial \Delta \tilde{\mathbf{R}}_{\textit{BiBj}}}{\partial \mathbf{b}^g} \cdot \delta \mathbf{b}^g \right) \\ & \Delta \tilde{\mathbf{v}}_{\textit{BiBj}} = \Delta \tilde{\mathbf{v}}_{\textit{BiBj}} + \frac{\partial \Delta \tilde{\mathbf{v}}_{\textit{BiBj}}}{\partial \mathbf{b}^g} \cdot \delta \mathbf{b}^g + \frac{\partial \Delta \tilde{\mathbf{v}}_{\textit{BiBj}}}{\partial \mathbf{b}^a} \cdot \delta \mathbf{b}^a \\ & \Delta \tilde{\mathbf{p}}_{\textit{BiBj}} = \Delta \tilde{\mathbf{p}}_{\textit{BiBj}} + \frac{\partial \Delta \tilde{\mathbf{p}}_{\textit{BiBj}}}{\partial \mathbf{b}^g} \cdot \delta \mathbf{b}^g + \frac{\partial \Delta \tilde{\mathbf{p}}_{\textit{BiBj}}}{\partial \mathbf{b}^a} \cdot \delta \mathbf{b}^a \end{split}$$

#### **Biases Evolution:**

$$\begin{aligned} \mathbf{b}^g(t+\Delta t) &= \mathbf{b}^g(t) + \\ \mathbf{b}^a(t+\Delta t) &= \mathbf{b}^a(t) + \end{aligned} \begin{vmatrix} \mathbf{b}_g &, \\ \mathbf{b}_a &, \\ \mathbf{b}_a & & \mathcal{N}(\mathbf{0}_{3\times 1}, \mathbf{I}_{3\times 3} \cdot \sigma_{b_g}^2) \end{vmatrix}$$

ONERA

Maxime Ferrera

12 Décembre 2019

# Monocular Dense 3D Mapping

# 1. 3D Augmentation : Denser KLT tracking between last two optimized keyframes



(a) Initial set of 3D correspondences.



(b) Augmented set of 3D correspondences.

# Monocular Dense 3D Mapping

#### 3. Dense 3D Meshing



FIGURE - Example of a 2D TSDF grid (image taken from http://pointclouds.org/documentation/tutorials/using\_kinfu\_large\_scale.php).