Метод замороженного спина для поиска электрического дипольного момента дейтрона в накопительном кольце

Выступающий: А. Е. Аксентьев Руководитель: д-р. физ.-мат. наук, проф. Ю. В. Сеничев

канд. физ-мат. наук, доц. С.М. Полозов

Национальный Исследовательский Ядерный Университет "МИФИ" (НИЯУ МИФИ)

Москва, 2019

Цели и задачи

- Предмет исследования: методология частотной области для детектирования ЭДМ дейтрона в накопительном кольце с замороженным спином
- Исследуемые характеристики:
 - устойчивость к систематическим ошибкам
 - статистическая точность
- Цель исследования: оценка возможности детектирования ЭДМ дейтрона с точностью $10^{-29}~e\cdot$ см предложенным методом
- **Актуальность:** исследование велось в рамках проекта, посвящённого поиску ЭДМ элементарных частиц

Классификация методологий

Проблемы

- Возмущения спиновой динамики
- Декогеренция спинов частиц пучка
- Поля неидеальности машины
- Смена полярности ведущего поля ускорителя

Общие проблемы измерения ЭДМ

методом накопительного кольца

И их канонические решения

Спин-Колесо

- Возмущения полей
- Бетатронное движение
- * Обе вызывают возмущение направления \bar{n}

Частное решение

- Спиновая декогеренция
- Р: Секступольные поля
 - Неидеальности машины
- P: CW/CCW-инжекция

План работ

- Возмущения спиновой динамики
 - Постановка проблемы
 - Результаты симуляции
- Декогеренция спинов
 - Симуляция подавления декогеренции в идеальном ускорителе
 - Симуляция подавления декогеренции в неидеальном ускорителе
 - Анализ механизма подавления декогеренции

- Поля неидеальности ускорителя
 - Исследование зависимости от распределения неидеальностей вдоль кольца
 - Сравнение систематической ошибки при движении пучка в прямом и обратном направлениях в кольце
- Смена полярности ведущего поля
 - Алгоритм калибровки
 - Результаты симуляции

- Спин-тюн эквивалентность частиц с одинаковыми эффективными Лоренц-факторами
 - Формулировка А
 - Формулировка В
- Структуры колец для поиска ЭДМ методом замороденного спина
 - BNL FS
 - ▶ QFS 6.3
 - QFS E+B

Возмущения спиновой динамики

Постановка проблемы

 Решение Т-БМТ уравнения для вертикальной компоненты спина

$$s_y(n_{turn}) = \sqrt{(\bar{n}_y \bar{n}_z)^2 + \bar{n}_x^2} \cdot \sin(2\pi \nu_s \cdot n_{turn} + \delta).$$

• Данные фитируются функцией

$$f(n_{turn}) = a \cdot \sin(b \cdot n_{turn} + c), \ (a, b, c) = const$$

• При значительной вариации ν_s , \bar{n} — ошибка спецификации уравнения регрессии

Симуляция

Симуляция

Неидеальности

- $\alpha \sim N(\mu_i, 3 \cdot 10^{-4})^{\circ}$
- μ_i симулирует Спин-Колесо

Частицы

- бетатронные колебания в вертикальной плоскости
- $E_{FS} \neq E_{kin} \rightarrow E_{FS}$
- $\Rightarrow \bar{n}_{x} \ll 1 \Rightarrow$ повышенная чувствительность к возмущениям

Анализ

Данные

TRK данные трекера TR COSY Infinity

GEN вычислены по формуле, $\bar{\pmb{n}}$, ν_s вычислены на данном обороте

IDL как в GEN, но
$$ar{n}=\langlear{n}
angle$$
, $u_{s}=\langle
u_{s}
angle$

Сравнительные статистики

$$\epsilon_1(t) = s_y^{gen}(t) - s_y^{idl}(t)$$

$$\epsilon_2(t) = s_y^{trk}(t) - s_y^{idl}(t)$$

А. Е. Аксентьев, НИЯУ "МИФИ"

А. Е. Аксентьев, НИЯУ "МИФИ"

MoSW, Sourcength

C)(104 43 34

Выводы

- Влияние вариации \bar{n} на дисперсию невязки между идеальными данными, и трекерными, незначительно, по сравнению с вариацией ν_s
- $\sigma[\epsilon_2] \ll \sigma[P_y]$, значит суперпозиция систематической ошибки со случайной ошибкой измерений поляризации не будет обладать статистически значимой систематичностью

Выводы

- $\sigma[\hat{a},\hat{b}] < 10\%$, значит даже если вариация \bar{n} будет достаточной, чтобы повлиять на \hat{a} , её эффект на \hat{b} будет уменьшен как минимум в 10 раз
- ullet Этот систематический эффект контролируем. Увеличивая скорость вращения Спин-Колеса, мы непрерывно уменьшали амплитуду колебаний $ar{n}$

Декогеренция спинов

Декогеренция спинов

- $\nu_s = \gamma G$
- ullet из-за разницы длин орбит, у частиц в пучке разная γ_{eq}

Декогеренция спинов

Подавление секступольными полями

Сдвиг равновесного уровня импульса

$$\Delta \delta_{eq} = \frac{\gamma_0^2}{\gamma_0^2 \alpha_0 - 1} \left[\frac{\delta_m^2}{2} \left(\alpha_1 - \alpha_0 \gamma^{-2} + \gamma_0^{-4} \right) + \left(\frac{\Delta L}{L} \right)_{\beta} \right]$$

Эффекты секступольных полей

$$S_{sext} = \frac{1}{B\rho} \frac{\partial^2 B_y}{\partial x^2} - \frac{\Delta \alpha_{1,sext} = -\frac{S_{sext} D_0^3}{L}}{\left(\frac{\Delta L}{L}\right)_{sext}} = \mp \frac{S_{sext} D_0 \beta_{x,y} \varepsilon_{x,y}}{L}$$

Коэффициент сжатия орбиты

Коэффициент сжатия орбиты

Длина орбиты

Длина орбиты

Выводы

- Сигнатура эффекта секступольных полей на коэффициент сжатия орбиты изменение функциональной зависимости $\langle \nu_s \rangle (\langle \Delta K/K \rangle)$
- ullet . . . на длины орбит частиц банча уменьшение дисперсии $\langle \Delta K/K
 angle$

Подавление декогеренции в идеальной структуре

Подавление декогеренции в идеальной структуре

Подавление декогеренции в идеальной структуре

Декогеренция в неидеальной структуре

Декогеренция в неидеальной структуре

Включаем секступоли

Включаем секступоли

МДМ фальш-сигнал

Величина

$$\sigma\left[\Omega_{\rm x}^{MDM}
ight] = rac{q}{m\gamma} rac{G+1}{\gamma} rac{\sigma[B_{
m x}]}{\sqrt{n}}$$

Вопросы, требующие рассмотрения

- Является ли ошибка линейной, т.е. $\Omega_{\star}^{MDM} = f(\langle \Theta_{tilt} \rangle)?$
- Является ли ошибка симметричной, относительно обращения движения частицы, т.е.

$$|\Omega_x^{CW}| = |\Omega_x^{CCW}|$$
?

Рассматриваемая структура

Рассматриваемая структура

Рассматриваемая структура

- 11 симуляций
- наколнял только спин-ротаторы
- $\alpha \sim N(\mu_0 \cdot (i-5), \sigma_0)$
- \bullet $\mu_0 = 10 \cdot \sigma_0 = 10^{-4}$ рад
- ряды Тэйлора 3-го порядка

Линейность

Симметричность

Симметричность

Выводы

$\sigma_{ heta}=10^{-4}$ рад, $\emph{n}=100$ элементов

ω^{max} [рад/сек]	$P(\Omega_{x}^{MDM} < \omega^{max})$
50	67%
100	95%

Свойства

- Линейность
- Асимметричность, вероятно связанная с различием референсных орбит CW и CCW пучков
- Оправодной в приметричность в примет

Перспективы развития проекта

• Поляризованная программа на ускорительном комплексе НИКА, ОИЯИ, Дубна

Результаты работы

- Изучены эффекты спиновой динамики, составляющие систематические ошибки эксперимента:
 - возмущения спиновой динамики, вызванные бетатронным движением
 - декогеренция спинов
 - МДМ прецессия, связанная с неидеальностью машины
- Описаны средства борьбы с каждым из эффектов, проведено численное моделирование

- Сформулированы понятия:
 - методов пространственной и частотной областей
 - двумерно-замороженного спина
 - необходимые условия успешного измерения ЭДМ в накопительном кольце
 - методология, удовлетворяющая этим условиям
- Описаны структуры с замороженным и квази-замороженным спином

Спасибо за внимание!