Permutation Detection Algorithm with Linear Complexity

Ezra A. Singh

April 29, 2017

Abstract

The algorithm will use a product of indexed primes to generate permutation invariant value. This method allows for $\mathcal{O}(N)$ possibly one of the fastest methods to date for this type of problem.

The Problem

Given two sets A and B of symbols with finite length, how can we determine if set A permutes set B. We will use the base 10 radix to define our set of symbols. Such that A^N defines set of length N where

$$A^{N} = \{a_0, a_1, a_2, ..., a_{N-2}, a_{N-1}\}$$
(1)

$$a_j \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}; \quad j \in [0, N)$$
 (2)

Next we define a function P, the permutation function, which takes in two sets A^N and B^N and returns 1 if the two sets permute each other else returns some other number. Our goal is to explicitly define an algorithm that resolves P(A,B) in linear time.

The Permutation Algorithm

Let us first map our symbol set to the set of prime numbers

$$B_{10} \longrightarrow \mathcal{P}^{10}$$
 (3)

$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \longrightarrow \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29\}$$
 (4)

We will then introduce an indexing notation such that $\mathcal{P}_0 = 2$ and $\mathcal{P}_9 = 29$. Now given two sets A and B^1 we can apply this mapping to each symbol within our sets creating what I call a projection into prime number space.

$$A = \{a_1, a_2, \dots a_N\} \longrightarrow \{\mathcal{P}_{a_1}, \mathcal{P}_{a_2}, \dots \mathcal{P}_{a_N}\} = \mathcal{P}(A)$$

$$\tag{5}$$

 $^{^{1}}$ We will omit the superscript because the length of A and B are implied to be the same, otherwise the sets trivially do not permute each other.

We can define our permutation function as'

$$P(A,B) = \prod_{j=1}^{N} \frac{\mathcal{P}(a_j)}{\mathcal{P}(b_j)} = \frac{\mathcal{P}(a_1) \times \mathcal{P}(a_2) \times \dots \times \mathcal{P}(a_N)}{\mathcal{P}(b_1) \times \mathcal{P}(b_2) \times \dots \times \mathcal{P}(b_N)}$$
(6)

Lets analyze this algorithm with two examples, the first example will demonstrate two sets that permute each other and the second will demonstrate two sets that do not.

Example 1

$$A = \{3, 3, 4, 1\} \tag{7}$$

$$B = \{3, 1, 3, 4\} \tag{8}$$

$$P(A,B) = \frac{\mathcal{P}(3) \times \mathcal{P}(3) \times \mathcal{P}(4) \times \mathcal{P}(1)}{\mathcal{P}(3) \times \mathcal{P}(1) \times \mathcal{P}(3) \times \mathcal{P}(4)} = \frac{7 \times 7 \times 11 \times 3}{7 \times 3 \times \times 7 \times 11} = \frac{7^2 \times 11 \times 3}{7^2 \times 11 \times 3} = 1$$

Example 2

$$A = \{0, 2, 0, 2\} \tag{10}$$

$$B = \{2, 3, 0, 0\} \tag{11}$$

$$P(A,B) = \frac{\mathcal{P}(0) \times \mathcal{P}(2) \times \mathcal{P}(0) \times \mathcal{P}(2)}{\mathcal{P}(2) \times \mathcal{P}(3) \times \mathcal{P}(0) \times \mathcal{P}(0)} = \frac{2 \times 3 \times 2 \times 3}{3 \times 7 \times 2 \times 2} = \frac{2^2 \times 3^2}{2^2 \times 3 \times 7} = \frac{3}{7}$$
(12)

Implementation

Python

Complexity²: $\mathcal{O}(K * (2^K) * N) \alpha \mathcal{O}(N)$; K = [16, 24]

```
def isPermutation(A, B):
    primes = [2.0, 3.0, 5.0, 7.0, 11.0, 13.0, 17.0, 19.0, 23.0, 29.0]
if not (len(A) - len(B)):
    product = 1.0
    N = len(A)
    for j in range(N):
        product *= primes[int(A[j])]
        product /= primes[int(B[j])]
    return product
else:
    # trivial case
    return 0.0
```

With this implementation it is possible to detect permutations from an arbitrary amount of sets through daisy chaining

```
 \# \ P(A, B, C) \\  \text{isPermutation}(A,B)*\text{isPermutation}(B,C) \\  \# \ P(A, B, \ldots Y, Z) \\  \text{isPermutation}(A, B)*\ldots*\text{isPermutation}(Y, Z)
```

 $^{^2}K$ represents the bit width of a floating point number in python which is implementation specific. For further information refer to the architecture of your system and the IEEE 754 standard