C. Adjoints and Normal Matrices

Here we review

- 1. Complex inner-products
- 2. Adjoints
- 3. Normal Matrices and the spectral theorem

1. Complex-inner products

We will use bars to denote the complex-conjugate: if z = x + iy then $\bar{z} = x - iy$.

Definition 1 (inner-product) An inner product $\langle \cdot, \cdot \rangle$ over $\mathbb C$ satisfies, for $\mathbf x, \mathbf y, \mathbf z \in \mathbb C^n$ and $a,b\in \mathbb C$,

- 1. Conjugate symmetry: $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$
- 2. Linearity: $\langle \mathbf{x}, a\mathbf{y} + b\mathbf{z} \rangle = a \langle \mathbf{x}, \mathbf{y} \rangle + b \langle \mathbf{x}, \mathbf{z} \rangle$. (Some authors use linearity in the first argument.)
- 3. Positive-definiteness: for $\mathbf{x} \neq 0$ we have $\langle \mathbf{x}, \mathbf{x} \rangle > 0$.

We will usually use the standard inner product defined on \mathbb{C}^n :

$$\langle \mathbf{x}, \mathbf{y}
angle := ar{\mathbf{x}}^ op \mathbf{y} = \sum_{k=1}^n ar{x}_k y_k$$

Note that $\overline{zw}=\bar{z}\bar{w}$ and $\overline{z+w}=\bar{z}+\bar{w}$ together imply that:

$$\overline{A}\mathbf{x} = A\bar{\mathbf{x}}.$$

2. Adjoints

Definition 2 (adjoint) Given an inner product, an adjoint of a matrix $A \in \mathbb{C}^{m \times n}$ is the unique matrix A^* satisfying

$$\langle \mathbf{x}, A\mathbf{y}
angle = \langle A\mathbf{x}, \mathbf{y}
angle$$

for all $\mathbf{x} \in \mathbb{C}^m$, $\mathbf{y} \in \mathbb{C}^n$. (Note this definition can be extended to other inner products.)

Proposition 1 (adjoints are conjugate-transposes) For the standard inner product, $A^\star=A^\top$. If $A\in\mathbb{R}^{m\times n}$ then it reduces to the transpose $A^\star=A^\top$.

Proof

$$A_{k,j} = \langle \mathbf{e}_k, A \mathbf{e}_j
angle = \langle A^\star \mathbf{e}_k, \mathbf{e}_j
angle = \mathbf{e}_k^ op \overline{(A^\star)}^ op \mathbf{e}_j = \overline{A_{j,k}^\star}$$

In this module we will assume the standard inner product (unless otherwise stated), that is, we will only use the standard adjoint $A^\star=A^\top$. Note if $A=A^\star$ a matrix is called Hermitian. If it is real it is also called Symmetric.

3. Normal matrices

Definition 3 (normal) A (square) *normal matrix* commutes with its adjoint:

$$AA^* = A^*A$$

Examples of normal matrices include: 2. Symmetric and Hermitian: $(A^\star A=A^2=AA^\star)$ 3. Orthogonal and Unitary: $(Q^\star Q=I=QQ^\star)$

An important property of normal matrices is that they are diagonalisable using unitary eigenvectors:

Theorem 1 (spectral theorem for normal matrices) If $A \in \mathbb{C}^{n \times n}$ is normal then it is diagonalisable with unitary eigenvectors:

$$A = Q\Lambda Q^{\star}$$

where $Q \in U(n)$ and Λ is diagonal.

We will prove this later in the module. There is an important corollary for symmetric matrices that you may have seen before:

Corollary 1 (spectral theorem for symmetric matrices) If $A \in \mathbb{R}^{n \times n}$ is symmetric then it is diagonalisable with orthogonal eigenvectors:

$$A = Q \Lambda Q^\top$$

where $Q \in O(n)$ and Λ is real and diagonal.

Proof

 $A=Q\Lambda Q^{\star}$ since its normal hence we find that:

$$\Lambda = \Lambda^\star = (Q^\star A Q)^\star = Q^\star A^ op Q = Q^\star A Q = \Lambda$$

which shows that Λ is real. The fact that Q is real follows since the column $\mathbf{q}_k = Q\mathbf{e}_k$ is in the null space of the real matrix $A - \lambda_{\mathbf{k}}I$.