Elements, their Atomic Number and Molar Mass

Element	Symbol	Atomic Number	Molar mass/ (g mol ⁻¹)		Element	Symbol	Atomic Number	Molar mass/ (g mol ⁻¹)
Actinium	Ac	89	227.03		Mercury	Hg	80	200.59
Aluminium	Al	13	26.98		Molybdenum	Мо	42	95.94
Americium	Am	95	(243)		Neodymium	Nd	60	144.24
Antimony	Sb	51	121.75		Neon	Ne	10	20.18
Argon	Ar	18	39.95		Neptunium	Np	93	(237.05)
Arsenic	As	33	74.92		Nickel	Ni	28	58.71
Astatine	At	85	210		Niobium	Nb	41	92.91
Barium	Ba	56	137.34		Nitrogen	N	7	14.0067
Berkelium	Bk	97	(247)		Nobelium	No	102	(259)
Beryllium	Ве	4	9.01		Osmium	Os	76	190.2
Bismuth	Bi	83	208.98		Oxygen	0	8	16.00
Bohrium	Bh	107	(264)		Palladium	Pd	46	106.4
Boron	В	5	10.81		Phosphorus	P Dt	15 78	30.97
Bromine	Br	35	79.91		Platinum Plutonium	Pt Pu	78 94	195.09
Cadmium	Cd	48	112.40		Polonium	Po	84	(244) 210
Caesium	Cs	55	132.91		Potassium	K FO	84 19	39.10
Calcium	Ca	20	40.08		Praseodymium	Pr	59	140.91
Californium Carbon	Cf C	98 6	251.08		Promethium	Pm	61	(145)
Carbon	Ce		12.01		Protactinium	Pa	91	231.04
Chlorine	Cl	58 17	140.12		Radium	Ra	88	(226)
Chromium	Cr	24	35.45 52.00	Ä	Radon	Rn	86	(222)
Cobalt	Co	24 27	58.93		Rhenium	Re	75	186.2
Copper	Cu	29	63.54		Rhodium	Rh	45	102.91
Curium	Cm	96	247.07		Rubidium	Rb	37	85.47
Dubnium	Db	105	(263)		Ruthenium	Ru	44	101.07
Dysprosium	Dy	66	162.50	.C	Rutherfordium	Rf	104	(261)
Einsteinium	Es	99	(252)		Samarium	Sm	62	150.35
Erbium	Er	68	167.26		Scandium	Sc	21	44.96
Europium	Eu	63	151.96)	Seaborgium	Sg	106	(266)
Fermium	Fm	100	(257.10)		Selenium	Se	34	78.96
Fluorine	F	9	19.00		Silicon	Si	14	28.08
Francium	Fr	87	(223)		Silver	Ag	47	107.87
Gadolinium	Gd	64	157.25		Sodium	Na	11	22.99
Gallium	Ga	31	69.72		Strontium	Sr	38	87.62
Germanium	Ge	32	72.61		Sulphur	S	16	32.06
Gold	Au	79	196.97		Tantalum	Ta	73	180.95
Hafnium	Hf	72	178.49		Technetium	Tc	43	(98.91)
Hassium	Hs	108	(269)		Tellurium	Te	52	127.60
Helium	He	2	4.00		Terbium	Tb	65	158.92
Holmium	Но	67	164.93		Thallium	T1	81	204.37
Hydrogen	Н	1	1.0079		Thorium	Th	90	232.04
Indium	In	49	114.82		Thulium	Tm	69 50	168.93
Iodine	I	53	126.90		Tin Titanium	Sn T:	50 22	118.69
Iridium	Ir	77	192.2			Ti W	74	47.88 183.85
Iron	Fe	26	55.85		Tungsten Ununbium	w Uub	14 112	(277)
Krypton Lanthanum	Kr	36 57	83.80		Ununnilium	Uun	112	(269)
	La	57	138.91 (262.1)		Unununium	Uuu	111	(272)
Lawrencium Lead	Lr Pb	103 82	207.19		Uranium	U	92	238.03
Lead Lithium	Pb Li	3	6.94		Vanadium	V	23	50.94
Lutetium	Lu	3 71	174.96		Xenon	Xe	54	131.30
Magnesium	Mg	12	24.31		Ytterbium	Yb	70	173.04
Manganese	Mn	25	54.94		Yttrium	Y	39	88.91
Meitneium	Mt	109	(268)		Zinc	Zn	30	65.37
Mendelevium	Md	101	258.10		Zirconium	Zr	40	91.22

The value given in parenthesis is the molar mass of the isotope of largest known half-life.

Some Useful Conversion Factors

Common Unit of Mass and Weight 1 pound = 453.59 grams

1 pound = 453.59 grams = 0.45359 kilogram 1 kilogram = 1000 grams = 2.205 pounds1 gram = 10 decigrams = 100 centigrams = 1000 milligrams 1 gram = 6.022×10^{23} atomic mass units or u 1 atomic mass unit = 1.6606×10^{-24} gram 1 metric tonne = 1000 kilograms = 2205 pounds

Common Unit of Volume 1 quart = 0.9463 litre 1 litre = 1.056 quarts

1 litre = 1 cubic decimetre = 1000 cubic centimetres = 0.001 cubic metre 1 millilitre = 1 cubic centimetre = 0.001 litre $= 1.056 \times 10^{-3}$ quart 1 cubic foot = 28.316 litres = 29.902 quarts = 7.475 gallons

Common Units of Energy 1 joule = 1×10^7 ergs

1 thermochemical calorie**

= 4.184 joules $= 4.184 \times 10^7 \text{ ergs}$

= 4.129×10^{-2} litre-atmospheres = 2.612×10^{19} electron volts

1 ergs = 1×10^{-7} joule = 2.3901×10^{-8} calorie

1 electron volt = 1.6022×10^{-19} joule $= 1.6022 \times 10^{-12} \text{ erg}$

= 96.487 kJ/mol†

1 litre-atmosphere = 24.217 calories

= 101.32 joules $= 1.0132 \times 10^9 \text{ ergs}$

1 British thermal unit = 1055.06 joules $= 1.05506 \times 10^{10} \text{ ergs}$

= 252.2 calories

Common Units of Length 1 inch = 2.54 centimetres (exactly)

1 mile = 5280 feet = 1.609 kilometres

1 yard = 36 inches = 0.9144 metre

1 metre = 100 centimetres = 39.37 inches

= 3.281 feet

= 1.094 yards

1 kilometre = 1000 metres = 1094 yards

= 0.6215 mile

1 Angstrom = 1.0×10^{-8} centimetre

= 0.10 nanometre

= 1.0×10^{-10} metre

 $= 3.937 \times 10^{-9}$ inch

Common Units of Force* and Pressure

1 atmosphere = 760 millimetres of mercury

= 1.013×10^5 pascals

= 14.70 pounds per square inch

1 bar = 10^5 pascals

1 torr = 1 millimetre of mercury

 $1 \text{ pascal} = 1 \text{ kg/ms}^2 = 1 \text{ N/m}^2$

Temperature SI Base Unit: Kelvin (K)

 $K = -273.15^{\circ}C$

 $K = ^{\circ}C + 273.15$

 $F = 1.8(^{\circ}C) + 32$

$$^{\circ}$$
C = $\frac{^{\circ}F - 32}{1.8}$

Force: 1 newton (N) = 1 kg m/s^2 , i.e., the force that, when applied for 1 second, gives a 1-kilogram mass a velocity of 1 metre per second.

The amount of heat required to raise the temperature of one gram of water from 14.5°C to 15.5°C.

Note that the other units are per particle and must be multiplied by 6.022×10^{23} to be strictly comparable.

APPENDIX II

Standard potentials at 298 K in electrochemical order

Reduction half-reaction	E ^e /V	Reduction half-reaction	E ^e /V
$H_4XeO_6 + 2H^+ + 2e^- \longrightarrow XeO_3 + 3H_2O$	+3.0	$Cu^+ + e^- \longrightarrow Cu$	+0.52
$F_2 + 2e^- \longrightarrow 2F-$	+2.87	$NiOOH + H_2O + e^- \longrightarrow Ni(OH)_2 + OH^-$	+0.49
$O_3 + 2H^+ + 2e^- \longrightarrow O_2 + H_2O$	+2.07	$Ag_2CrO_4 + 2e^- \longrightarrow 2Ag + CrO_4^{2-}$	+0.45
$S_2O_8^{2-} + 2e^- \longrightarrow 2SO_4^{2-}$	+2.05	$O_2 + 2H_2O + 4e^- \longrightarrow 4OH^-$	+0.40
$Ag^+ + e^- \longrightarrow Ag^+$	+1.98	$ClO_4^- + H_2O + 2e^- \longrightarrow ClO_3^- + 2OH^-$	+0.36
$Co^{3+} + e^{-} \longrightarrow Co^{2+}$	+1.81	$[Fe(CN)_6]^{3-} + e^- \longrightarrow [Fe(CN)_6]^{4-}$	+0.36
$H_2O_2 + 2H^+ + 2e^- \longrightarrow 2H_2O$	+1.78	$Cu^{2+} + 2e^{-} \longrightarrow Cu$	+0.34
$Au^+ + e^- \longrightarrow Au$	+1.69	$Hg_2Cl_2 + 2e^- \longrightarrow 2Hg + 2Cl^-$	+0.27
$Pb^{4+} + 2e^- \longrightarrow Pb^{2+}$	+1.67	$AgCl + e^{-} \longrightarrow Ag + Cl^{-}$	+0.27
$2HClO + 2H^{+} + 2e^{-} \longrightarrow Cl_{2} + 2H_{2}O$	+1.63	$Bi^{3+} + 3e^{-} \longrightarrow Bi$	+0.20
$Ce^{4+} + e^{-} \longrightarrow Ce^{3+}$	+1.61	$SO_4^{2^-} + 4H^+ + 2e^- \longrightarrow H_2SO_3 + H_2O$	+0.17
2HBrO + 2H $^+$ + 2e $^ \longrightarrow$ Br ₂ + 2H ₂ O	+1.60	$Cu^{2+} + e^{-} \longrightarrow Cu^{+}$	+0.16
$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$	+1.51	$\operatorname{Sn}^{4+} + 2e^{-} \longrightarrow \operatorname{Sn}^{2+}$	+0.15
$Mn^{3+} + e^- \longrightarrow Mn^{2+}$	+1.51	$AgBr + e^{-} \longrightarrow Ag + Br^{-}$	+0.07
$Au^{3+} + 3e^{-} \longrightarrow Au$	+1.40	$Ti^{4+} + e^- \longrightarrow Ti^{3+}$	0.00
$Cl_2 + 2e^- \longrightarrow 2Cl^-$	+1.36	$2H^+ + 2e^- \longrightarrow H_2$	0.0 by
$Cl_2 + 2Cl \longrightarrow 2Cl$ $Cr_2O_7^{7-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7H_2O$	+1.33		definition
2	+1.33	$Fe^{3+} + 3e^- \longrightarrow Fe$	-0.04
$O_3 + H_2O + 2e^- \longrightarrow O_2 + 2OH^-$	+1.24	$O_2 + H_2O + 2e^- \longrightarrow HO_2^- + OH^-$	-0.08
$O_2 + 4H^+ + 4e^- \longrightarrow 2H_2O$		$Pb^{2+} + 2e^- \longrightarrow Pb$	-0.13
$ClO_4^- + 2H^+ + 2e^- \longrightarrow ClO_3^- + 2H_2O$	+1.23	$\operatorname{In}^+ + \operatorname{e}^- \longrightarrow \operatorname{In}$	-0.14
$MnO_2 + 4H^+ + 2e^- \longrightarrow Mn^{2+} + 2H_2O$	+1.23	$\operatorname{Sn}^{2^+} + 2e^- \longrightarrow \operatorname{Sn}$	-0.14
$Pt^{2+} + 2e^{-} \longrightarrow Pt$	+1.20	$AgI + e^{-} \longrightarrow Ag + I^{-}$	-0.15
$Br_2 + 2e^- \longrightarrow 2Br^-$	+1.09	$Ni^{2^+} + 2e^- \longrightarrow Ni$ $V^{3^+} + e^- \longrightarrow V^{2^+}$	-0.23
$Pu^{4+} + e^{-} \longrightarrow Pu^{3+}$	+0.97	$V^{-} + e \longrightarrow V^{-}$ $Co^{2+} + 2e^{-} \longrightarrow Co$	-0.26
$NO_3^- + 4H^+ + 3e^- \longrightarrow NO + 2H_2O$	+0.96		-0.28
$2Hg^{2^+} + 2e^- \longrightarrow Hg_2^{2^+}$	+0.92	$In^{3+} + 3e^- \longrightarrow In$	-0.34
$ClO^- + H_2O + 2e^- \longrightarrow Cl^- + 2OH^-$	+0.89	$Tl^+ + e^- \longrightarrow Tl$	-0.34
$Hg^{2+} + 2e^{-} \longrightarrow Hg$	+0.86	$PbSO_4 + 2e^- \longrightarrow Pb + SO_4^{2-}$ $Ti^{3+} + e^- \longrightarrow Ti^{2+}$	-0.36
$NO_3^- + 2H^+ + e^- \longrightarrow NO_2 + H_2O$	+0.80	$\begin{array}{ccc} & & & & & & & \\ & & & & & & \\ & & & & $	-0.37 -0.40
$Ag^+ + e^- \longrightarrow Ag$	+0.80	$ \begin{array}{ccc} \text{Cd} & +2e & \longrightarrow \text{Cd} \\ \text{In}^{2+} + e^- & \longrightarrow \text{In}^+ \end{array} $	-0.40 -0.40
$Hg_2^{2+} + 2e^- \longrightarrow 2Hg$	+0.79	$\begin{array}{ccc} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$	-0.40 -0.41
$Fe^{3+} + e^- \longrightarrow Fe^{2+}$	+0.77	$Fe^{2^{+}} + 2e^{-} \longrightarrow Fe$	
$BrO^- + H_2O + 2e^- \longrightarrow Br^- + 2OH^-$	+0.76	$In^{3+} + 2e^{-} \longrightarrow In^{+}$	-0.44
$Hg_2SO_4 + 2e^- \longrightarrow 2Hg + SO_4^{2-}$	+0.62	$\begin{array}{ccc} & & + 2e & \longrightarrow & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $	-0.44 -0.48
$MnO_4^{2-} + 2H_2O + 2e^- \longrightarrow MnO_2 + 4OH^-$	+0.60	$S + 2e \longrightarrow S$ $In^{3+} + e^- \longrightarrow In^{2+}$	-0.48 -0.49
$MnO_4^- + e^- \longrightarrow MnO_4^{2-}$	+0.56	$U^{4+} + e^{-} \longrightarrow U^{3+}$	-0.49 -0.61
$I_2 + 2e^- \longrightarrow 2I^-$	+0.54	$Cr^{3+} + 3e^{-} \longrightarrow Cr$	-0.01 -0.74
$I_3^- + 2e^- \longrightarrow 3I^-$	+0.53	$\operatorname{Zn}^{2+} + 2e^{-} \longrightarrow \operatorname{Zn}$	-0.74 -0.76
		ZII	-0.70

(continued)

APPENDIX III CONTINUED

Reduction half-reaction	E^{Θ}/V	Reduction half-reaction	E^{Θ}/V
$Cd(OH)_2 + 2e^- \longrightarrow Cd + 2OH^-$	-0.81	$La^{3+} + 3e^- \longrightarrow La$	-2.52
$2H_2O + 2e^- \longrightarrow H_2 + 2OH^-$	-0.83	$Na^+ + e^- \longrightarrow Na$	-2.71
$Cr^{2+} + 2e^{-} \longrightarrow Cr$	-0.91	$Ca^{2+} + 2e^{-} \longrightarrow Ca$	-2.87
$Mn^{2+} + 2e^- \longrightarrow Mn$	-1.18	$Sr^{2+} + 2e^- \longrightarrow Sr$	-2.89
$V^{2+} + 2e^- \longrightarrow V$	-1.19	$Ba^{2+} + 2e^- \longrightarrow Ba$	-2.91
$Ti^{2+} + 2e^{-} \longrightarrow Ti$	-1.63	$Ra^{2+} + 2e^- \longrightarrow Ra$	-2.92
$Al^{3+} + 3e^{-} \longrightarrow Al$	-1.66	$Cs^+ + e^- \longrightarrow Cs$	-2.92
$U^{3+} + 3e^- \longrightarrow U$	-1.79	$Rb^+ + e^- \longrightarrow Rb$	-2.93
$Sc^{3+} + 3e^{-} \longrightarrow Sc$	-2.09	$K^+ + e^- \longrightarrow K$	-2.93
$Mg^{2+} + 2e^{-} \longrightarrow Mg$	-2.36	$Li^+ + e^- \longrightarrow Li$	-3.05
$Ce^{3+} + 3e^{-} \longrightarrow Ce$	-2.48		

Logarithms

Sometimes, a numerical expression may involve multiplication, division or rational powers of large numbers. For such calculations, logarithms are very useful. They help us in making difficult calculations easy. In Chemistry, logarithm values are required in solving problems of chemical kinetics, thermodynamics, electrochemistry, etc. We shall first introduce this concept, and discuss the laws, which will have to be followed in working with logarithms, and then apply this technique to a number of problems to show how it makes difficult calculations simple.

We know that

$$2^3 = 8$$
, $3^2 = 9$, $5^3 = 125$, $7^0 = 1$

In general, for a positive real number a, and a rational number m, let $a^m = b$,

where b is a real number. In other words

the mth power of base a is b.

Another way of stating the same fact is

logarithm of b to base a is m.

If for a positive real number a, $a \ne 1$

$$a^m = b$$
,

we say that m is the logarithm of b to the base a.

We write this as $\log_a^b = m$,

"log" being the abbreviation of the word "logarithm"

Thus, we have

$$\log_2 8 = 3$$
, Since $2^3 = 8$

$$\log 9 - 2$$
 Since $3^2 - 9$

$$\log_3 9 = 2$$
, Since $3^2 = 9$
 $\log_5 125 = 3$, Since $5^3 = 125$

$$\log_7 1 = 0$$
, Since $7^0 = 1$

Laws of Logarithms

In the following discussion, we shall take logarithms to any base a, $(a > 0 \text{ and } a \neq 1)$

First Law: $log_a (mn) = log_a m + log_a n$

Proof: Suppose that $\log_a m = x$ and $\log_a n = y$

Then $a^x = m$, $a^y = n$

Hence mn = $a^x.a^y = a^{x+y}$

It now follows from the definition of logarithms that

 $log_a (mn) = x + y = log_a m - log_a n$

Second Law: $log_a \left(\frac{m}{n}\right) = log_a m - log_a n$

Proof: Let $log_a m = x$, $log_a n = y$

Then $a^x = m$, $a^y = n$

Hence
$$\frac{m}{n} = \frac{a^x}{a^y} = a^{x-y}$$

Therefore

$$\log_a\left(\frac{m}{n}\right) = x - y = \log_a m - \log_a n$$

Third Law: $log_a(m^n) = n log_a m$

Proof: As before, if $\log_a m = x$, then $a^x = m$

Then
$$m^n = (a^x)^n = a^{nx}$$

giving $log_a(m^n) = nx = n log_a m$

Thus according to First Law: "the log of the product of two numbers is equal to the sum of their logs. Similarly, the Second Law says: the log of the ratio of two numbers is the difference of their logs. Thus, the use of these laws converts a problem of multiplication/division into a problem of addition/subtraction, which are far easier to perform than multiplication/division. That is why logarithms are so useful in all numerical computations.

Logarithms to Base 10

Because number 10 is the base of writing numbers, it is very convenient to use logarithms to the base 10. Some examples are:

The above results indicate that if n is an integral power of 10, i.e., 1 followed by several zeros or 1 preceded by several zeros immediately to the right of the decimal point, then log n can be easily found.

If n is not an integral power of 10, then it is not easy to calculate log n. But mathematicians have made tables from which we can read off approximate value of the logarithm of any positive number between 1 and 10. And these are sufficient for us to calculate the logarithm of any number expressed in decimal form. For this purpose, we always express the given decimal as the product of an integral power of 10 and a number between 1 and 10.

Standard Form of Decimal

We can express any number in decimal form, as the product of (i) an integral power of 10, and (ii) a number between 1 and 10. Here are some examples:

(i) 25.2 lies between 10 and 100

$$25.2 = \frac{25.2}{10} \times 10 = 2.52 \times 10^{1}$$

(ii) 1038.4 lies between 1000 and 10000.

$$\therefore 1038.4 = \frac{1038.4}{1000} \times 10^{3} = 1.0384 \times 10^{3}$$

(iii) 0.005 lies between 0.001 and 0.01

$$\therefore 0.005 = (0.005 \times 1000) \times 10^{-3} = 5.0 \times 10^{-3}$$

(iv) 0.00025 lies between 0.0001 and 0.001

$$\therefore 0.00025 = (0.00025 \times 10000) \times 10^{-4} = 2.5 \times 10^{-4}$$

273 Appendix

In each case, we divide or multiply the decimal by a power of 10, to bring one non-zero digit to the left of the decimal point, and do the reverse operation by the same power of 10, indicated separately.

Thus, any positive decimal can be written in the form

$$n = m \times 10^{F}$$

where p is an integer (positive, zero or negative) and 1≤ m < 10. This is called the "standard form of n."

Working Rule

- 1. Move the decimal point to the left, or to the right, as may be necessary, to bring one non-zero digit to the left of decimal point.
- 2. (i) If you move p places to the left, multiply by 10^p .
 - (ii) If you move p places to the right, multiply by 10^{-p} .
 - (iii) If you do not move the decimal point at all, multiply by 10°.
 - (iv) Write the new decimal obtained by the power of 10 (of step 2) to obtain the standard form of the given decimal.

Characteristic and Mantissa

Consider the standard form of n

 $n = m \times 10^p$, where $1 \le m < 10$

Taking logarithms to the base 10 and using the laws of logarithms

 $\log n = \log m + \log 10^{p}$

 $= \log m + p \log 10$

= p + log m

Here p is an integer and as $1 \le m < 10$, so $0 \le \log m < 1$, i.e., m lies between 0 and 1. When log n has been expressed as p + log m, where p is an integer and 0 log m < 1, we say that p is the "characteristic" of log n and that log m is the "mantissa of log n. Note that characteristic is always an integer – positive, negative or zero, and mantissa is never negative and is always less than 1. If we can find the characteristics and the mantissa of log n, we have to just add them to get log n.

Thus to find log n, all we have to do is as follows:

1. Put n in the standard form, say

$$n = m \times 10^p, 1 \le m < 10$$

- 2. Read off the characteristic p of log n from this expression (exponent of 10).
- 3. Look up log m from tables, which is being explained below.
- 4. Write $\log n = p + \log m$

If the characteristic p of a number n is say, 2 and the mantissa is .4133, then we have $\log n = 2 + .4133$ which we can write as 2.4133. If, however, the characteristic p of a number m is say -2 and the mantissa is .4123, then we have $\log m = -2 + .4123$. We cannot write this as -2.4123. (Why?) In order to avoid this confusion we write $\frac{1}{2}$ for -2 and thus we write $\log m = \frac{1}{2.4123}$.

Now let us explain how to use the table of logarithms to find mantissas. A table is appended at the end of this Appendix.

Observe that in the table, every row starts with a two digit number, 10, 11, 12,... 97, 98, 99. Every column is headed by a one-digit number, 0, 1, 2, ...9. On the right, we have the section called "Mean differences" which has 9 columns headed by 1, 2...9.

	0	1	2	3	4	5	6	7	8	9	 1	2	3	4	5	6	7	8	9
61	7853	7860	7868	7875	7882	7889	7896	7803	7810	7817	1	1	2	3	4	4	5	6	6
62	7924	7931	7935	7945	7954	7959	7966	7973	7980	7987	1	1	2	3	3	4	5	6	6
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1	1	2	3	3	4	5	6	6

Now suppose we wish to find log (6.234). Then look into the row starting with 62. In this row, look at the number in the column headed by 3. The number is 7945. This means that

```
log(6.230) = 0.7945*
```

But we want log (6.234). So our answer will be a little more than 0.7945. How much more? We look this up in the section on Mean differences. Since our fourth digit is 4, look under the column headed by 4 in the Mean difference section (in the row 62). We see the number 3 there. So add 3 to 7945. We get 7948. So we finally have

```
\log (6.234) = 0.7948.
```

Take another example. To find $\log (8.127)$, we look in the row 81 under column 2, and we find 9096. We continue in the same row and see that the mean difference under 7 is 4. Adding this to 9096, and we get 9100. So, $\log (8.127) = 0.9100$.

Finding N when $\log N$ is given

We have so far discussed the procedure for finding $\log n$ when a positive number n given. We now turn to its converse i.e., to find n when $\log n$ is given and give a method for this purpose. If $\log n = t$, we sometimes say n = antilog t. Therefore our task is given t, find its antilog. For this, we use the readymade antilog tables.

```
Suppose \log n = 2.5372.
```

To find n, first take just the mantissa of log n. In this case it is .5372. (Make sure it is positive.) Now take up antilog of this number in the antilog table which is to be used exactly like the log table. In the antilog table, the entry under column 7 in the row .53 is 3443 and the mean difference for the last digit 2 in that row is 2, so the table gives 3445. Hence,

```
antilog (.5372) = 3.445
```

Now since log n = 2.5372, the characteristic of log n is 2. So the standard form of n is given by $n = 3.445 \times 10^2$ or n = 344.5

Illustration 1:

If $\log x = 1.0712$, find x.

Solution: We find that the number corresponding to 0712 is 1179. Since characteristic of $\log x$ is 1, we have

$$x = 1.179 \times 10^{1}$$

= 11.79

Illustration 2:

If
$$\log_{10} x = \overline{2.1352}$$
, find x.

Solution: From antilog tables, we find that the number corresponding to 1352 is 1366. Since the

```
characteristic is 2 i.e., -2, so x = 1.366 \times 10^{-2} = 0.01366
```

Use of Logarithms in Numerical Calculations

Illustration 1:

Find 6.3 × 1.29

Solution: Let $x = 6.3 \times 1.29$

Then $\log_{10} x = \log (6.3 \times 1.29) = \log 6.3 + \log 1.29$

Now,

 $\log 6.3 = 0.7993$

log 1.29 = 0.1106

 $\log_{10} x = 0.9099,$

^{*} It should, however, be noted that the values given in the table are not exact. They are only approximate values, although we use the sign of equality which may give the impression that they are exact values. The same convention will be followed in respect of antilogarithm of a number.

Taking antilog

$$x = 8.127$$

Illustration 2:

Find
$$\frac{(1.23)^{1.5}}{11.2 \times 23.5}$$

Solution: Let
$$x = \frac{(1.23)^{\frac{3}{2}}}{11.2 \times 23.5}$$

Then
$$\log x = \log \frac{(1.23)^{\frac{3}{2}}}{11.2 \times 23.5}$$

$$= \frac{3}{2} \log 1.23 - \log (11.2 \times 23.5)$$
$$= \frac{3}{2} \log 1.23 - \log 11.2 - 23.5$$

$$log 1.23 = 0.0899$$

$$\frac{3}{2}$$
 log 1.23 = 0.13485

$$log 11.2 = 1.0492$$

$$\log 23.5 = 1.3711$$

$$\log x = 0.13485 - 1.0492 - 1.371$$

$$= \overline{3.71455}$$

$$x = 0.005183$$

Find
$$\sqrt{\frac{(71.24)^5 \times \sqrt{560}}{(2.3)^7 \times \sqrt{210}}}$$

Solution: Let
$$x = \sqrt{\frac{(71.24)^5 \times \sqrt{56}}{(2.3)^7 \times \sqrt{21}}}$$

$$\frac{3}{2} \log 1.23 = 0.13485$$

$$\log 11.2 = 1.0492$$

$$\log 23.5 = 1.3711$$

$$\log x = 0.13485 - 1.0492 - 1.3711$$

$$= \overline{3.71455}$$

$$\therefore x = 0.005183$$
Illustration 3:

Find $\sqrt{\frac{(71.24)^5 \times \sqrt{56}}{(2.3)^7 \times \sqrt{21}}}$

Solution: Let $x = \sqrt{\frac{(71.24)^5 \times \sqrt{56}}{(2.3)^7 \times \sqrt{21}}}$

Then $\log x = \frac{1}{2} \log \left[\frac{(71.24)^5 \times \sqrt{56}}{(2.3)^7 \times \sqrt{21}} \right]$

$$= \frac{1}{2} [\log (71.24)^5 + \log \sqrt{56} - \log (2.3)^7 - \log \sqrt{21}]$$

$$= \frac{5}{2} \log 71.24 + \frac{1}{4} \log 56 - \frac{7}{2} \log 2.3 - \frac{1}{4} \log 21$$

Now, using log tables

$$log 71.24 = 1.8527$$

$$\log 56 = 1.7482$$

$$\log 2.3 = 0.3617$$

$$log 21 = 1.3222$$

$$\therefore \log x = \frac{5}{2}\log (1.8527) + \frac{1}{4}(1.7482) - \frac{7}{2}(0.3617) - \frac{1}{4}(1.3222)$$
$$= 3.4723$$

$$\therefore x = 2967$$

LOGARITHMS

TABLE I

N	o	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
10	0000	0043	0086	0128	0170						5	9	13	17	21	26	30	34	38
						0212	0253	0294	0334	0374	4	8	12	16	20	24	28	32	36
11	0414	0453	0492	0531	0569						4	8	12	16	20	23	27	31	
						0607	0645	0682	0719	0755	4	7	11	15	18	22	26	29	33
12	0792	0828	0864	0899	0934						3	7	11	14	18	21	25	28	-
						0969	1004	1038	1072	1106	3	7	10	14	17	20	24	27	
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	3	6 7	10 10	13 13	16 16	19 19	23 22	26 25	
14	1461	1492	1523	1553	1584	1000	1000	1007	1000	1100	3	6	9	12	15	19	22	25	
	1101	1102	1020	1000	1001	1614	1644	1673	1703	1732	3	6	9	12	14	17	20	23	
15	1761	1790	1818	1847	1875						3	6	9	11	14	17	20	23	
						1903	1931	1959	1987	2014	3	6	8	11	14	17	19	22	
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279	3	6 5	8	11 10	14 13	16 16	19 18	22 21	
17	2304	2330	2355	2380	2405						3	5	8	10	13	15	18	20	
						2430	2455	2480	2504	2529	3	5	8	10	12	15	17	20	
18	2553	2577	2601	2625	2648	0.000	000=		0=40	.=	2	5	7	9	12	14	17	19	
10	0700	0010	0000	0050	0070	2672	2695	2718	2742	2765	2	4	7	9	11	14	16	18	-
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989	2 2	4	7 6	9 8	11 11	13	16 15	18 17	
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2	4	6	8	11	13	15	17	19
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	2	4	6	8	10	12	14	16	18
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	2	4 .	6	8	10	12	14	15	17
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	2	4	6	7	9	11	13	15	17
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	2	4	5	7	9	11	12	14	16
25	3979	1	4014	4031	4048	4065	4082	4099	4116	4133	2	3	5	7	9	10	12	14	15
26	4150	1	4183	4200	4216	4232	4249	4265	4281	4298	2	3	5	7	8	10	11	13	- 1
27	4314	1	4346	4362	4378	4393	4409	4425	4440	4456	2	3	5	6	8	9	11	13	
28	4472		4502	4518	4533	4548	4564		4594	4609	2	3	5	6	8	9	11	12	
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	1	3	4	6	7	9	10	12	13
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	1	3	4	6	7	9	10	11	13
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	1	3	4	6	7	8	10	11	12
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	1	3	4	5	7	8	9	11	12
33	5185		5211	5224	5237	5250	5263		5289	5302	1	3	4	5	6	8	9	10	
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	1	3	4	5	6	8	9	10	11
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	1	2	4	5	6	7	9	10	11
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670	1	2	4	5	6	7	8	10	11
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786	1	2	3	5	6	7	8	9	10
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899	1	2	3	5	6	7	8	9	10
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010	1	2	3	4	5	7	8	9	10
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	1	2	3	4	5	6	8	9	10
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222	1	2	3	4	5	6	7	8	9
42	6232	1	6253	6263	6274	6284	6294	6304	6314	6325	1	2	3	4	5	6	7	8	9
43	6335		6355	6365	6375	6385	6395	6405	6415	6425	1	2	3	4	5	6	7	8	9
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	1	2	3	4	5	6	7	8	9
45	6532	6542	6551	6561	6471	6580	6590	6599	6609	6618	1	2	3	4	5	6	7	8	9
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712	1	2	3	4	5	6	7	7	8
47	6721		6739	6749	6758	6767	6776	6785	6794	6803	1	2	3	4	5	5	6	7	8
48	6812	1	6830	6839	6848	6857	6866	6875	6884	6893	1	2	3	4	4	5	6	7	8
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	1	2	3	4	4	5	6	7	8

LOGARITHMS

TABLE 1 (Continued)

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4	5	6	7	8
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	1	2	3	3	4	5	6	7	8
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	1	2	2	3	4	5	6	7	7
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	1	2	2	3	4	5	6	6	7
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	1	2	2	3	4	5	6	6	7
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	1	2	2	3	4	5	5	6	7
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	1	2	2	3	4	5	5	6	7
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	1	2	2	3	4	5	5	6	7
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	1	1	2	3	4	4	5	6	7
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	1	1	2	3	4	4	5	6	7
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	1	1	2	3	4	4	5	6	6
61	7853	7860	7768	7875	7882	7889	7896	7903	7910	7917	1	1	2	3	4	4	5	6	6
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987	1	1	2	3	3	4	5	6	6
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1	1	2	3	3	4	5	5	6
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	1	1	2	3	3	4	5	5	6
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	1	1	2	3	3	4	5	5	6
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	1	1	2	3	3	4	5	5	6
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319	1	1	2 .	3	3	4	5	5	6
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382	1	1	2	3	3	4	4	5	6
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	1	1	2	2	3	4	4	5	6
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	1 4	1	2	2	3	4	4	5	6
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	1	1	2	2	3	4	4	5	5
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	10	1	2	2	3	4	4	5	5
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686	i	1	2	2	3	4	4	5	5
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	1	1	2	2	3	4	4	5	5
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1	1	2	2	3	3	4	5	5
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	1	1	2	2	3	3	4	5	5
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	1	1	2	2	3	3	4	4	5
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	1	1	2	2	3	3	4	4	5
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	1	1	2	2	3	3	4	4	5
80				9047			(9069	9074		1	1	2	2		3	4	4	
81	9031 9085	9036	9042 9096	9101	9053 9106	9058 9112	9117	9122	9128	9079	1	1	2	2	3	3	4	4	5 5
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	1	1	2	2	3	3	4	4	5
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	1	1	2	2	3	3	4	4	5
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	1	1	2	2	3	3	4	4	5
85	9294 9345	9299 9350	9304 9355	9309 9360	9315 9365	9320 9370	9325 9375	9330 9380	9335 9385	9340 9390	1	1	2	2	3	3	4	4	5
87	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	1 0	1	1	2	2	3	3	4	5 4
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	0	1	1	2	2	3	3	4	4
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	0	1	1	2	2	3	3	4	4
90	9542 9590	9547	9552	9557	9562 9609	9566	9571	9576	9581	9586	0	1	1	2	2	3	3	4	4
91 92	9638	9595 9643	9600 9647	9605 9652	9609	9614 9661	9619 9666	9624 9671	9628 9675	9633 9680	0	1 1	1 1	2	2	3 3	3	4	4
93	9638	9643	9647	9652	9657	9708	9666	9671	9675	9680	0	1	1	2	2	3	3	4	4
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	0	1	1	2	2	3	3	4	4
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	0	1	1	2	2	3	3	4	4
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	0	1	1	2	2	3	3	4	4
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	0	1	1	2	2	3	3	4	4
98 99	9912 9956	9917 9961	9921 9965	9926 9969	9930 9974	9934 9978	9939	9943 9987	9948 9997	9952 9996	0	1	1	2	2	3 3	3	4	4
33	5550	5551	5505	3303	3314	3316	5565	0001	3331	3330		1	1			5	٦	J	

ANTILOGARITHMS

TABLE II

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
00	1000	1002	1005	1007	1009	1012	1014	1016	1019	1021	0	0	1	1	1	1	2	2	2
.01	1023	1026	1028	1030	1033	1035	1038	1040	1042	1045	0	0	1	1	1	1	2	2	2
.02	1047	1050	1052	1054	1057	1059	1062	1064	1067	1069	0	0	1	1	1	1	2	2	2
.03	1072	1074	1076	1079	1081	1084	1086	1089	1091	1094	0	0	1	1	1	1	2	2	2
.04	1096	1099	1102	1104	1107	1109	1112	1114	1117	1119	0	1	1	1	1	2	2	2	2
.05	1122	1125	1127	1130	1132	1135	1138	1140	1143	1146	0	1	1	1	1	2	2	2	2
.06	1148	1151	1153	1156	1159	1161	1164	1167	1169	1172	0	1	1	1	1	2	2	2	2
.07	1175	1178	1180	1183	1186	1189	1191	1194	1197	1199	0	1	1	1	1	2	2	2	2
.08	1202	1205	1208	1211	1213	1216	1219	1222	1225	1227	0	1	1	1	1	2	2	2	3
.09	1230	1233	1236	1239	1242	1245	1247	1250	1253	1256	0	1	1	1	1	2	2	2	3
1,,	1050	1000	1005	1268	1071	1074	1070	1070	1000	1005		,	,	١,	,	2		2	3
.10	1259 1288	1262 1291	1265 1294	1200	1271 1300	1274 1303	1276 1306	1279 1309	1282 1312	1285 1315	0	1 1	1 1	1 1	1 2	2	2 2	2	3
.12	1318	1321	1324	1327	1330	1334	1337	1340	1343	1346	0	1	1	1	2	2	2	2	3
.13	1349	1352	1355	1358	1361	1365	1368	1371	1374	1377	0	1	1	1	2	2	2	3	3
.14	1380	1384	1387	1390	1393	1396	1400	1403	1406	1409	0	1	1	1	2	2	2	3	3
.15	1413	1416	1419	1422	1426	1429	1432	1435	1439	1442	0	1	1	1	2	2	2	3	3
.16	1445	1449	1452	1455	1459	1462	1466	1469	1472	1476	0	1	1	1	2	2	2	3	3
.17	1479	1483	1486	1489	1493	1496	1500	1503	1507	1510	0	1	1	1	2	2	2	3	3
.18	1514	1517	1521	1524	1528	1531	1535	1538	1542	1545	0	1	1	1	2	2	2	3	3
.19	1549	1552	1556	1560	1563	1567	1570	1574	1578	1581	0	1	1	1	2	2	3	3	3
											_						_	_	_
.20	1585	1589	1592	1596	1600	1603	1607	1611	1614	1618	0	1	1	1	2	2	3	3	3
.21	1622	1626	1629	1633	1637	1641	1644	1648	1652	1656		1	7	2	2	2	3	3	3
.22	1660	1663	1667	1671	1675	1679	1683	1687	1690	1694	0	I	1	2	2	2	3	3	3
.23	1698 1738	1702 1742	1706 1746	1710 1750	1714 1754	1718 1758	1722 1762	1726 1766	1730 1770	1734 1774	0		1 1	2 2	2	2 2	3	3	4
.24	1730	1742	1740	1750	1734	1736	1702	1700	1770	1774		1	1		2	2	3	3	4
.25	1778	1782	1786	1791	1795	1799	1803	1807	1811	1816	0	1	1	2	2	2	3	3	4
.26	1820	1824	1828	1832	1837	1841	1845	1849	1854	1858	0	1	1	2	2	3	3	3	4
.27	1862	1866	1871	1875	1879	1884	1888	1892	1897	1901	0	1	1	2	2	3	3	3	4
.28	1905	1910	1914	1919	1923	1928	1932	1936	1941	1945	0	1	1	2	2	3	3	4	4
.29	1950	1954	1959	1963	1968	1972	1977	1982	1986	1991	0	1	1	2	2	3	3	4	4
.30	1995	2000	2004	2009	2014	2018	2023	2028	2032	2037	0	1	1	2	2	3	3	4	4
.31	2042	2046	2051	2056	2061	2065	2070		2080	2084	0	1	1	2	2	3	3	4	4
.32	2089	2094	2099	2104	2109	2113	2118	1	2128	2133	0	1	1	2	2	3	3	4	4
.33	2138	2143	2148	2153	2158	2163	2168		2178	2183	0	1	1	2	2	3	3	4	4
.34	2188	2193	2198	2203	2208	2213	2218		2228	2234	1	1	2	2	3	3	4	4	5
.35	2239	2244	2249	2254	2259	2265	2270	2275	2280	2286	1	1	2	2	3	3	4	4	5
.36	2291	2296	2301	2307	2312	2317	2323	2328	2333	2339	1	1	2	2	3	3	4	4	5
.37	2344	2350	2355	2360	2366	2371	2377	2382	2388	2393	1	1	2	2	3	3	4	4	5
.38	2399	2404	2410	2415	2421	2427	2432	2438	2443	2449	1	1	2	2	3	3	4	4	5
.39	2455	2460	2466	2472	2477	2483	2489	2495	2500	2506	1	1	2	2	3	3	4	5	5
.40	2512		2523	2529	2535	2541	2547	2553	2559	2564	1	1	2	2	3	4	4	5	5
.41	2570	2576	2582	2588	2594	2600	2606		2618	2624	1	1	2	2	3	4	4	5	5
.42	2630	2636	2642	2649	2655	2661	2667	2673	2679	2685	1	1	2	2	3	4	4	5	6
.43	2692	2698	2704	2710	2716	2723	2729	2735	2742	2748	1	1	2	3	3	4	4	5	6
.44	2754	2761	2767	2773	2780	2786	2793		2805	2812	1	1	2	3	3	4	4	5	6
.45	2818	2825	2831	2838	2844	2851	2858		2871	2877	1	1	2	3	3	4	5	5	6
.46	2884	2891	2897	2904	2911	2917	2924	2931	2938	2944	1	1	2	3	3	4	5	5	6
.47	2951 3020	2958 3027	2965 3034	2972	2979 3048	2985	2992 3062	2999 3069	3006 3076	3013 3083	1	1 1	2 2	3	3	4	5 5	5 6	6 6
.48				3041		3055										4			
.49	3090	3097	3105	3112	3119	3126	3133	3141	3148	3155	1	1	2	3	3	4	5	6	6

ANTILOGARITHMS

TABLE II (Continued)

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
.50	3162	3170	3177	3184	3192	3199	3206	3214	3221	3228	1	1	2	3	4	4	5	6	7
.51	3236	3243	3251	3258	3266	3273	3281	3289	3296	3304	1	2	2	3	4	5	5	6	7
.52	3311	3319	3327	3334	3342	3350	3357	3365	3373	3381	1	2	2	3	4	5	5	6	7
.53	3388	3396	3404	3412	3420	3428	3436	3443	3451	3459	1	2	2	3	4	5	6	6	7
.54	3467	3475	3483	3491	3499	3508	3516	3524	3532	3540	1	2	2	3	4	5	6	6	7
.55	3548	3556	3565	3573	3581	3589	3597	3606	3614	3622	1	2	2	3	4	5	6	7	7
.56	3631	3639	3648	3656	3664	3673	3681	3690	3698	3707	1	2	3	3	4	5	6	7	8
	0001	0000	0010	0000	0001	00.0	0001	0000	0000	0.0.	1	_			•	0		•	
.57	3715	3724	3733	3741	3750	3758	3767	3776	3784	3793	1	2	3	3	4	5	6	7	8
.58	3802	3811	3819	3828	3837	3846	3855	3864	3873	3882	1	2	3	4	4	5	6	7	8
.59	3890	3899	3908	3917	3926	3936	3945	3954	3963	3972	1	2	3	4	5	5	6	7	8
											_	_	_	_	-	-	-	-	-
.60	3981	3990	3999	4009	4018	4027	4036	4046	4055	4064	1	2	3	4	5	6	6	7	8
.61	4074	4083	4093	4102	4111	4121	4130	4140	4150	4159	1	2	3	4	5	6	7	8	9
.62	4169	4178	4188	4198	4207	4217	4227	4236	4246	42S6	1	2	3	4	5	6	7	8	9
.63	4266	4276	4285	4295	4305	4315	4325	4335	4345	4355	1	2	3	4	5	6	7	8	9
.64	4365	4375	4385	4395	4406	4416	4426	4436	4446	4457	1	2	3	4	5	6	7	8	9
.65	4467	4477	4487	4498	4508	4519	4529	4539	4550	4560	1	2	3	4	5	6	7	8	9
.66	4571	4581	4592	4603	4613	4624	4634	4645	4656	4667	1	2	3	4	5	6	7	9	10
.67	4677	4688	4699	4710	4721	4732	4742	4753	4764	4775	1	2	3	4	5	7	8	9	10
.68	4786	4797	4808	4819	4831	4842	4853	4864	4875	4887	1	2	3	4	6	7	8	9	10
.69	4898	4909	4920	4932	4943	4955	4966	4977	4989	5000	1	2	3	5	6	7	8	9	10
												_C	7,		_	_	_	_	
.70	5012	5023	5035	5047	5058	5070	5082	5093	5105	5117	1	2	4	5	6	7	8		11
.71	5129	5140	5152	5164	5176	5188	5200	5212	5224	5236	1	2	4	5	6	7	8	10	- 1
.72	5248	5260	5272	5284	5297	5309	5321	5333	5346	5358	1	2	4	5	6	7	9	10	
.73	5370	5383	5395	5408	5420	5433	5445	5458	5470	5483	1	3	4	5	6	8	9	10	- 1
.74	5495	5508	5521	5534	5546	5559	5572	5585	5598	5610	1	3	4	5	6	8	9	10	
.75	5623	5636	5649	5662	5675	5689	5702	5715	5728	5741	1	3	4	5	7	8	9	10	
.76	5754	5768	5781	5794	5808	5821	5834	5848	5861	5875	1	3	4	5	7	8	9	11	- 1
.77	5888	5902	5916	5929	5943	5957	5970	5984	5998	6012	1	3	4	5	7	8	10	11	12
.78	6026	6039	6053	6067	6081	6095	6109	6124	6138	6152	1	3	4	6	7	8	10	11	
.79	6166	6180	6194	6209	6223	6237	6252	6266	6281	6295	1	3	4	6	7	9	10	11	13
.80	6310	6324	6339	6353	6368	6383	6397	6412	6427	6442	1	3	4	6	7	9	10	12	13
.81	6457	6471	6486	6501	6516	6531	6546	6561	6577	6592	2	3	5	6	8	9	11	12	- 1
.82	6607	6622	6637	6653	6668	6683	6699	6714	6730	6745	2	3	5	6	8	9	11	12	
.83	6761	6776	6792	6808	6823	6839	6855	6871	6887	6902	2	3	5	6	8	9	11		314
.84	6918	6934	6950	6966	6982	6998	7015	7031	7047	7063	2	3	5	6	8	10	11	13	- 1
.04	0310	0554	0930	0300	0302	0990	7013	7031	7047	7003	_	3	J	0	o	10	11	13	13
.85	7079	7096	7112	7129	7145	7161	7178	7194	7211	7228	2	3	5	7	8	10	12	13	15
.86	7244	7261	7278	7295	7311	7328	7345	7362	7379	7396	2	3	5	7	8	10	12	13	15
.87	7413	7430	7447	7464	7482	7499	7516	7534	7551	7568	2	3	5	7	9	10	12	14	16
.88	7586	7603	7621	7638	7656	7674	7691	7709	7727	7745	2	4	5	7	9	11	12	14	16
.89	7762	7780	7798	7816	7834	7852	7870	7889	7907	7925	2	4	5	7	9	11	13	14	16
.90	7943	7962	7980	7998	8017	8035	8054	8072	8091	8110	2	4	6	7	9	11	13	15	
.91	8128	8147	8166	8185	8204	8222	8241	8260	8279	8299	2	4	6	8	9	11	13	15	
.92	8318	8337	8356	8375	8395	8414	8433	8453	8472	8492	2	4	6	8	10	12	14	15	17
.93	8511	8531	8551	8570	8590	8610	8630	8650	8670	8690	2	4	6	8	10	12	14	16	18
.94	8710	8730	8750	8770	8790	8810	8831	8851	8872	8892	2	4	6	8	10	12	14	16	18
	0010	0000	0054	0074	9005	0010	0000	0055	0070	0000		4	C		10	10	, -	17	,
.95	8913	8933	8954	8974	8995	9016	9036	9057	9078	9099	2	4	6	8	10	12	15	17	
.96	9120	9141	9162	9183	9204	9226	9247	9268	9290	9311	2	4	6	8	11	13	15	17	
.97	9333	9354	9376	9397	9419	9441	9462	9484	9506	9528	2	4	7	9	11	13	15	17	
.98	9550	9572	9594	9616	9638	9661	9683	9705	9727	9750	2	4	7	9	11	13	16	18	- 1
.99	9772	9795	9817	9840	9863	9886	9908	9931	9954	9977	2	5	7	9	11	14	16	18	20