Particle spectrograph

Wave operator and propagator

	-4 t_1 $\omega_{, heta}^{ heta}$		$^{9}\partial^{ heta}f^{lpha\prime}$ -	+	,								
	$S = = \iiint (\frac{1}{6} (2t_1 \ \omega^{\alpha\prime}_{\alpha} \ \omega^{\theta}_{, \theta} + 6 \ f^{\alpha\beta} \ \tau_{\alpha\beta} + 6 \ \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} - 4t_1 \ \omega^{\theta}_{\alpha \ \theta} \ \partial_{,f}^{\alpha\prime} + 4t_1 \ \omega^{\theta}_{, \theta}$	f_{α}^{θ} +	$4t_1\partial' f^\alpha_{\ \alpha}\partial_{\theta} f^{\ \theta}_{\ \prime} - 24r_3\partial_\alpha\omega^{\alpha\beta\prime}\partial_\theta\omega^{\ \theta}_{\ \beta} + 48r_3\partial'\omega^{\alpha\beta}_{\ \alpha}\partial_\theta\omega^{\ \theta}_{\ \beta} - 6t_1\partial_\alpha f_{\ \prime\theta}\partial^\theta f^{\alpha\prime} - 24r_3\partial_\alpha\omega^{\alpha\beta\prime}\partial_\theta\omega^{\ \theta}_{\ \beta} + 48r_3\partial'\omega^{\alpha\beta}_{\ \alpha}\partial_\theta\omega^{\ \theta}_{\ \beta} - 6t_1\partial_\alpha f_{\ \beta}\partial_\theta f^{\alpha\prime}_{\ \beta} - 6r_1\partial_\alpha f_{\ \beta}\partial$	$3t_1\partial_\alpha f_{\theta_I}\partial^\theta f^{\alpha\prime} + 3t_1\partial_\iota f_{\alpha\theta}\partial^\theta f^{\alpha\prime} + 3t_1\partial_\theta f_{\alpha\prime}\partial^\theta f^{\alpha\prime} + 3t_1\partial_\theta f_{\iota\alpha}\partial^\theta f^{\alpha\prime} +$	$6t_1 \ \omega_{\alpha\theta_I} \ (\ \omega^{lpha_I heta} + 2\ \partial^{ heta}f^{lpha_I}) + 8\ r_2\ \partial_{eta}\omega_{lpha_I heta}\partial^{ heta}\omega_{lpha_I} - 4\ r_2\ \partial_{eta}\omega_{lpha_{eta_I}}\partial^{ heta}\omega_{lpha_{eta_I}} +$) ^{αβι} +	y वी x वीt	$f_{1^{-}}^{\#2}$	0	0	0	<u>i k t 1</u> 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$
	$_{\chi}$ -4 t_{1}	$f_{\alpha'}^{\alpha'}$	$_{lpha}^{\beta}\partial_{ heta}\omega$	'+3t	$r_2 \partial_{\beta}$	$n_{\theta} e^{\theta \theta}$] מן צ מן	$f_{1^-}^{\#1} \alpha$	0	0	0	0	0
	.6 ω ^{αβχ} σ _{αβ}	$\partial' f^\alpha_{\sigma} - 2t_1\partial_i f^\theta_{\theta}\partial^i f^\alpha_{\sigma} - 24r_3\partial_\beta\omega_i^{\theta}\partial^i\omega^{\alpha\beta}_{\sigma} - 2t_1\partial_i f^{\alpha i}\partial_\theta f_\alpha^{\theta} +$	$+48 r_3 \partial' \omega^{lpha f}$	$t_1\partial_ heta f_{lpha\prime}\partial^ heta f^lpha$	$\alpha_{\alpha 1 \theta} \partial^{\theta} \omega^{\alpha \beta 1} - 1$	$4r_2\partial_\beta\omega_{,\theta\alpha}\partial^\theta\omega^{\alpha\beta\prime} - 24r_3\partial_\beta\omega_{,\theta\alpha}\partial^\theta\omega^{\alpha\beta\prime} - 2r_2\partial_\gamma\omega_{\alpha\beta\theta}\partial^\theta\omega^{\alpha\beta\prime} +$	$2r_2\partial_\theta\omega_{\alphaeta_1}\partial^\theta\omega^{lphaeta_1}-4r_2\partial_\theta\omega_{lpha_1eta}\partial^\theta\omega^{lphaeta_1})][t, x, y, z]dzdydxdt$	$\omega_{1^{^{-}}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	1 <u>7</u> 3
	-αβ τ _{αβ} +	$^3\partial_eta\omega^{ heta}_{ ho}$	$^{3\prime}\partial_{\theta}\omega_{\beta}^{\theta}$.	$\theta^{\theta}f^{\alpha\prime} + 3$	н 8 r2 д _в и	$\omega_{, \theta \alpha} \partial^{\theta} \omega'$	$_{\alpha _{1}eta }\partial ^{ heta }\omega ^{lpha eta }$	$\omega_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	9 [1]	$\frac{t_1}{3\sqrt{2}}$
ion	9+6	α -24 r	$_3 \partial_{\alpha} \omega^{\alpha l}$	$\partial_{i}f_{\alpha\theta}\dot{\delta}$	$-(_{ij}f_{\alpha i})$	$4 r_3 \partial_{\beta}$	$r_2 \partial_{ heta} \omega$	$f_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
ee) act	$^{ \alpha }_{\alpha}\omega_{'}^{\epsilon}$	د و م کر کر ع	, 9-24 r	$\alpha' + 3t_1$	<i>α</i> 1θ + 2 θ	$\omega^{\alpha\beta\prime}$ - 2	$\omega^{lphaeta_{\prime}}$ - 4	$\omega_{1}^{\#1}_{+} \omega_{1}^{\#2}_{+} \omega_{1}^{\#2}_{+} \epsilon_{\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0
Quadratic (free) action	$(2t_1 \omega$	$-2t_1\partial_t f$	$f^{\alpha}_{\ \alpha}\partial_{\theta}f_{\ \beta}$	$f_{\theta'}g_{\theta}f_{\theta}$	$_{lpha heta}^{lpha}$ (ω^{c}	$\omega_{1 \theta \alpha} \partial^{\theta}$	$\omega_{lphaeta_{\prime}}\partial_{ heta}$	$\omega_{1}^{\#1}{}_{\alpha\beta}$	- <u>t1</u>	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0
Quadra	$S == \int \int \int \int \left(\frac{1}{6} \right)^{\frac{1}{6}}$	$\partial' f^{\alpha}$	$4t_1 \partial'$	$3t_1\partial_{\alpha}$	$6t_1 \omega$	$4 r_2 \partial_{\beta}$	$2 r_2 \partial_{\theta}$	•	$\omega_1^{\#1} +^{lphaeta}$	$\omega_1^{\#2} + ^{lphaeta}$	$f_{1}^{\#1} + \alpha^{\beta}$	$\omega_{1}^{\#_{1}} +^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										$\omega_2^{\#1} +^{lphaeta}$	$f_2^{\#1} + ^{\alpha \beta}$	$\omega_2^{*1} + ^{lphaeta\chi}$		
Source constraints/gauge generators	Multiplicities							$-2ik \sigma_{2+}^{\#1}\alpha\beta == 0$ 5		$\sigma_{2}^{\#1}{}_{lphaeta\chi}$	0	0	$\frac{2}{t_1}$	
	Multip	1	1	0 3	т	Ж	== 0 3		19	$\tau_2^{\#1}_+ \alpha_\beta$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
	SO(3) irreps			$+2ik \sigma_{1}^{\#1}\alpha ==$	0	$= \sigma_1^{\#2\alpha}$	ξαβ		Total constraints:	$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	
		$\tau_{0}^{\#2} == 0$	$\tau_{0}^{\#1} == 0$	$\tau_{1}^{\#2\alpha}$ +	$\tau_{1}^{\#1\alpha} == 0$	$\sigma_{1}^{\#1}\alpha ==$	$\tau_1^{\#1}\alpha\beta$ +	$\tau_2^{\#1}\alpha\beta$ -	Total co		$\sigma_{2}^{\#1} + \alpha^{\beta}$	$\tau_{2}^{\#1} + \alpha \beta$	$\int_{2^{-1}}^{\#1} + \alpha \beta \chi$	

0

0

0

0

0

0

0

0

0

 $6 k^2 r_3$

 $k^2 r_2 - t_1$

0

0

0

0

0

 $2k^2t_1$

0

 $\alpha \beta \chi$

 $\omega_{2}^{\#1}$

 $\omega_2^{\#1}{}_+ \alpha \beta$

0

0

0

0

<u>†1</u> 2 0

 $\frac{i\,k\,t_1}{\sqrt{2}}$

Massive and massless spectra

Massive particle
Pole residue:
$$-\frac{1}{r_2} > 0$$
Polarisations: 1
Square mass: $\frac{t_1}{r_2} > 0$
Spin: 0
Parity: Odd

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_1 < 0$