Prior Sampling

Prior Sampling

- For i=1, 2, ..., n (in topological order)
 - Sample X_i from P(X_i | parents(X_i))
- Return $(x_1, x_2, ..., x_n)$

Prior Sampling

This process generates samples with probability:

$$S_{PS}(x_1,...,x_n) = \prod_i P(x_i \mid parents(X_i)) = P(x_1,...,x_n)$$

...i.e. the BN's joint probability

- Let the number of samples of an event be $N_{PS}(x_1,...,x_n)$
- Estimate from N samples is $Q_N(x_1,...,x_n) = N_{PS}(x_1,...,x_n)/N$
- Then $\lim_{N\to\infty} Q_N(x_1,...,x_n) = \lim_{N\to\infty} N_{PS}(x_1,...,x_n)/N$ = $S_{PS}(x_1,...,x_n)$ = $P(x_1,...,x_n)$
- I.e., the sampling procedure is consistent

Example

• We'll get a bunch of samples from the BN:

```
C, ¬S, r, W
C, S, r, W
¬C, S, r, ¬W
C, ¬S, r, W
¬C, ¬S, ¬r, W
```


- If we want to know P(W)
 - We have counts <w:4, ¬w:1>
 - Normalize to get $P(W) = \langle w:0.8, \neg w:0.2 \rangle$
 - This will get closer to the true distribution with more samples

Rejection Sampling

Rejection Sampling

- A simple application of prior sampling for estimating conditional probabilities
 - Let's say we want $P(C | r, w) = \alpha P(C, r, w)$
 - For these counts, samples with ¬r or ¬w are
 not relevant
 - So count the C outcomes for samples with r, w and reject all other samples
- This is called rejection sampling
 - It is also consistent for conditional probabilities (i.e., correct in the limit)

- Problem with rejection sampling:
 - If evidence is unlikely, rejects lots of samples
 - Evidence not exploited as you sample
 - Consider P(Shape | Color=blue)

pyramid, green
pyramid, red
sphere, blue
cube, red
sphere, green

- Idea: fix evidence variables, sample the rest
 - Problem: sample distribution not consistent!
 - Solution: weight each sample by probability of evidence variables given parents

- Input: evidence $e_1,...,e_k$
- w = 1.0
- for i=1, 2, ..., n
 - if X_i is an evidence variable
 - x_i = observed value, for X_i
 - Set $w = w * P(x_i \mid parents(X_i))$
 - else
 - Sample x_i from P(X_i | parents(X_i))
- return $(x_1, x_2, ..., x_n), w$

Sampling distribution if Z sampled and e fixed evidence

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{j} P(z_{j} \mid parents(Z_{j}))$$

Now, samples have weights

$$w(\mathbf{z}, \mathbf{e}) = \prod_{k} P(e_{k} \mid parents(E_{k}))$$

Together, weighted sampling distribution is consistent

$$S_{WS}(\mathbf{z}, \mathbf{e}) \cdot w(\mathbf{z}, \mathbf{e}) = \prod_{j} P(z_{j} \mid parents(Z_{j})) \prod_{k} P(e_{k} \mid parents(E_{k}))$$

= $P(\mathbf{z}, \mathbf{e})$

- Likelihood weighting is an example of importance sampling
 - Would like to estimate some quantity based on samples from P
 - P is hard to sample from, so use Q instead
 - Weight each sample x by P(x)/Q(x)

Car Insurance: *P*(*PropertyCost* | *e*)

- Likelihood weighting is good
 - All samples are used
 - The values of *downstream* variables are influenced by *upstream* evidence

- Likelihood weighting still has weaknesses
 - The values of *upstream* variables are unaffected by downstream evidence
 - E.g., suppose evidence is a video of a traffic accident
 - With evidence in k leaf nodes, weights will be $O(2^{-k})$
 - With high probability, one lucky sample will have much larger weight than the others, dominating the result
- We would like each variable to "see" all the evidence!

CS 188: Artificial Intelligence

Bayes Nets: Gibbs Sampling

Instructors: Stuart Russell and Dawn Song

University of California, Berkeley

Gibbs sampling

A particular kind of MCMC

- States are complete assignments to all variables
 - (Cf local search: closely related to simulated annealing!)
- Evidence variables remain fixed, other variables change
- To generate the next state, pick a variable and sample a value for it conditioned on all the other variables: $X_i' \sim P(X_i \mid x_1,...,x_{i-1},x_{i+1},...,x_n)$
 - Will tend to move towards states of higher probability, but can go down too
 - In a Bayes net, $P(X_i \mid x_1,...,x_{i-1},x_{i+1},...,x_n) = P(X_i \mid markov_blanket(X_i))$
- Theorem: Gibbs sampling is consistent*
- Provided all Gibbs distributions are bounded away from 0 and 1 and variable selection is fair

Why would anyone do this?

Samples soon begin to reflect all the evidence in the network

Eventually they are being drawn from the true posterior!

How would anyone do this?

- Repeat many times
 - Sample a non-evidence variable X, from

$$P(X_i | X_{1'}...,X_{i-1'},X_{i+1'},...,X_n) = P(X_i | markov_blanket(X_i))$$

= $\alpha P(X_i \mid parents(X_i)) \prod_j P(y_j \mid parents(Y_j))$

Gibbs Sampling Example: $P(S \mid r)$

- Step 1: Fix evidence
 - *R* = true

- Step 2: Initialize other variables
 - Randomly

- Step 3: Repeat
 - Choose a non-evidence variable X
 - Resample X from P(X | markov_blanket(X))

Markov chain given s, w

Car Insurance: P(Age | mc,lc,pc)

Gibbs sampling and MCMC in practice

- The most commonly used method for large Bayes nets
 - See, e.g., BUGS, JAGS, STAN, infer.net, BLOG, etc.
- Can be <u>compiled</u> to run very fast
 - Eliminate all data structure references, just multiply and sample
 - ~100 million samples per second on a laptop
- Can run asynchronously in parallel (one processor per variable)
- Many cognitive scientists suggest the brain runs on MCMC

Quiz

- Suppose I perform a random walk on a graph, following the arcs out of a node uniformly at random. In the infinite limit, what fraction of time do I spend at each node?
 - Consider these two examples:

Why does it work? (see AIMA 13.4.2 for details)

- Suppose we run it for a long time and predict the probability of reaching any given state at time t: $\pi_t(x_1,...,x_n)$ or $\pi_t(\underline{\mathbf{x}})$
- Each Gibbs sampling step (pick a variable, resample its value) applied to a state $\underline{\mathbf{x}}$ has a probability $k(\underline{\mathbf{x'}} \mid \underline{\mathbf{x}})$ of reaching a next state $\underline{\mathbf{x'}}$
- So $\pi_{t+1}(\underline{\mathbf{x'}}) = \sum_{\mathbf{x}} k(\underline{\mathbf{x'}} \mid \underline{\mathbf{x}}) \ \pi_t(\underline{\mathbf{x}})$ or, in matrix/vector form $\pi_{t+1} = \mathbf{K}\pi_t$
- When the process is in equilibrium $\pi_{t+1} = \pi_t = \pi$ so $K\pi = \pi$
- This has a unique* solution $\pi = P(x_1,...,x_n \mid e_1,...,e_k)$
- So for large enough t the next sample will be drawn from the true posterior
 - "Large enough" depends on CPTs in the Bayes net; takes <u>longer</u> if nearly deterministic

Bayes Net Sampling Summary

Prior Sampling P

Likelihood Weighting P(Q | e)

Rejection Sampling P(Q | e)

