Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» Факультет Программной Инженерии и Компьютерной Техники

Группа РЗ2131	К работе допущен <u>04.10.202</u> 2
Студент <u>Давлетов Айдар</u>	Работа выполнена 20.11.2022
Преподаватель <u>Захаров Д. В.</u>	Отчет принят

Отчет по лабораторной работе №3.05 Температурная зависимость электрического сопротивления металла и полупроводника

1. Цель работы

- 1. Получить зависимость электрического сопротивления металлического и полупроводникового образцов в диапазоне температур от комнатной до 75°C.
- 2. По результатам п.1 вычислить температурный коэффициент сопротивления металла и ширину запрещенной зоны полупроводника.

2. Задачи, решаемые при выполнении работы

- 1. Измерить сопротивления металлического резистора последовательно увеличивая температуру на $\Delta T = 5 K$.
- 2. Измерить сопротивления полупроводникового резистора последовательно увеличивая температуру на $\Delta T = 5 \ K$.
- 3. Обработать измерения.
- 4. Сравнить результаты и сделать вывод.

3. Объект исследования

Резистор.

4. Метод экспериментального исследования

Прямое многократное измерение силы тока и напряжения при различных температурах.

5. Рабочие формулы и исходные данные

$$\alpha_{ij} = \frac{R_i - R_j}{R_j \cdot t_i - R_i \cdot t_j}$$
 (1); $E_{gij} = 2k \frac{lnR_i - lnR_j}{1/T_i - 1/T_j} = 2k \frac{T_i T_j}{T_j - T_i} ln(\frac{R_i}{R_j})$ (2).
 $k = 1.380649 \cdot 10^{-23}$ Дж/К $\approx 8.61733 \cdot 10^{-5}$ эВ/К

Таблица 1: Полупроводниковый образец

			HOMY IIPODO,		1 '	
Nº	T, K	<i>I,</i> мк <i>A</i>	<i>U</i> , B	<i>R</i> , Ом	ln R	$\frac{10^3}{T}$, $\frac{1}{K}$
1	295	1030	0,2	194,175	5,269	3,39
2	300	1069	0,159	148,737	5,002	3,333
3	305	1100	0,136	123,636	4,817	3,279
4	310	1121	0,114	101,695	4,622	3,226
5	315	1181	0,096	81,287	4,398	3,175
6	320	1189	0,085	71,489	4,270	3,125
7	325	1205	0,068	56,432	4,033	3,077
8	330	1224	0,055	44,935	3,805	3,03
9	335	1239	0,048	38,741	3,657	2,985
	340	1249	0,039	31,225	3,441	2,941

Таблица 2: Металлический образец

N₂	T, K	<i>I,</i> мк <i>A</i>	<i>U</i> , B	<i>R</i> , Ом	t, °C
1	355	1065	1,639	1,539	82
2	350	1075	1,620	1,507	77
3	345	1081	1,614	1,493	72

4	340	1095	1,602	1,463	67
5	335	1113	1,591	1,429	62
6	330	1117	1,577	1,412	57
7	325	1132	1,57	1,387	52
8	320	1145	1,557	1,36	47
9	315	1157	1,545	1,335	42
10	310	1179	1,532	1,299	37

6. Измерительные приборы

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	амперметр	цифровой	0 ÷ 2000 мкА	0.5 мкА
2	вольтметр	цифровой	0 ÷ 2 B	0.5 мкВ
3	термометр	цифровой	297 ÷ 337 K	0.5 K

7. Схема установки

8. Обработка результатов измерений

По формуле (1) считаем температурный коэффициент сопротивления металла α для пар точек:

Пары	α
1 - 6	4.53
2 - 7	4.22
3 - 8	4.79
4 - 9	4.57
5 - 10	4.70

среднее значение $\langle \alpha \rangle = 4.56$

Сопротивление находим по закону Ома.

$$R = \frac{U}{I} \qquad E_{g_{ij}} = 2k * \frac{T_i T_j}{T_j - T_i} \ln \ln \left(\frac{R_i}{R_j}\right),$$

считаем значения для каждой пары, подставляя постоянную Больцмана в двух размерностях

Пары	Eg, Дж	Eg, эВ
1-6	1,04E-19	0,65
2-7	1,04E-19	0,65
3-8	1,13E-19	0,70
4-9	1,11E-19	0,69
5-10	1,13E-19	0,71

9. Расчет погрешностей

Расчет погрешности для температурного коэффициента сопротивления.

$$\Delta lpha = \sqrt{rac{\sum (lpha - \langle lpha
angle)^2}{n \cdot (n-1)}} \cdot K_{_{\mathrm{CT}}}$$
, где $K_{_{\mathrm{CT}}}$ - коэф. Стьюдента для $n=5$ (2,78) $\Delta lpha = 0.27$

Расчет погрешности для температурного коэффициента сопротивления.

$$\Delta E_g = \sqrt{\frac{\Sigma (E_g - \langle E_g \rangle)^2}{5*(5-1)}} * K_{\rm cr}$$
, где $K_{\rm cr}$ - коэф. Стьюдента для $n=5$ (2,78)

пары	Ед, Дж	Ед, эВ	(Eg- <eg>)^2, Дж</eg>	(E- <eg>)^2, эВ</eg>
1-6	1,04E-19	0,65	2,3087E-41	0,000899386
2-7	1,04E-19	0,65	2,13642E-41	0,000832272
3-8	1,13E-19	0,70	1,24467E-41	0,000484877
4-9	1,11E-19	0,69	2,92076E-42	0,000113782
5-10	1,13E-19	0,71	1,75563E-41	0,000683931
$\langle E_g \rangle$	1,09E-19	0,68		
Δ			5,468E-21	0,0341287

10. Графики

График 1: ln(R) = ln(R)(1/T)

График 2: R = R(t)

11. Результаты

Температурный коэффициент сопротивления металла:

$$\alpha = 4.56 \pm 0.27$$

Ширина запрещенной зоны полупроводника:

$$E_g = 0.680 \pm 0.034 \,\mathrm{sB}$$

$$E_q = (1.09 \pm 0.05) \cdot 10^{-19}$$
Дж

12. Вывод

Можно увидеть, что оба графика линейны. Это подтверждает то, что сопротивление линейно возрастает у металлического образца и экспоненциально убывает у полупроводникового образца, в зависимости от температуры.

По значению температурного коэффициента сопротивления металла и ширине запрещенной зоны полупроводника:

металл - медь или олово,

полупроводник - германий или антимонид галлия.