

Model Optimization and Tuning Phase Template

Date	24 June 2025
Team ID	SWTID1749708868
Project Title	Revolutionizing Liver Care: Predicting Liver Cirrhosis Using Advanced Machine Learning Techniques
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Performance Metrics Comparison Report (2 Marks):

Model	В	aselir	ie Me	tric		Optimized Metric				
Logistic Regression	Classification Re		recall f	1-score s	upport	Classification	Report: precision	recall	f1-score	support
	0 1 2	0.00 0.85 0.82	0.00 0.85 0.85	0.00 0.85 0.83	11 4 172	0 1 2	0.00 1.00 0.94	0.00 1.00 0.97	0.00 1.00 0.95	11 4 172
	accuracy macro avg weighted avg	0.56 0.76	0.57 0.78	0.78 0.56 0.77	187 187 187	accuracy macro avg weighted avg	0.65 0.88	0.66 0.91	0.91 0.65 0.90	187 187 187
SVM (RBF)	Classification Report: precision recall f1-score support				Classification	Report: precision	recall	f1-score	support	
	0 1 2	0.00 1.00 0.94	0.00 1.00 1.00	0.00 1.00 0.97	11 4 172	0 1 2	0.00 1.00 0.94	0.00 1.00 1.00	0.00 1.00 0.97	11 4 172
	accuracy macro avg weighted avg	0.65 0.89	0.67 0.94	0.94 0.66 0.91	187 187 187	accuracy macro avg weighted avg	0.65 0.89	0.67 0.94	0.94 0.66 0.91	187 187 187
KNN	Classification precision			re suppoi	rt	Classification	Report: precision	recall	f1-score	support
	1 1.00 2 0.94	1.00	1.00	4 172		0 1 2	0.00 1.00 0.94	0.00 1.00 1.00	0.00 1.00 0.97	11 4 172
	accuracy 0. macro avg 0 weighted avg			.66 187 0.91	7 187	accuracy macro avg weighted avg	0.65 0.89	0.67 0.94	0.94 0.66 0.91	187 187 187

Decision Tree	Classificat		recall	f1-score	support	Classification	n Report: precision	recall	f1-score	support
	0	0.60	0.55	0.57	11	0	0.60	0.55	0.57	11
	1	1.00	1.00	1.00	4	1	1.00	1.00	1.00	4
	2	0.97	0.98	0.97	172	2	0.97	0.98	0.97	172
	accurac macro av weighted av	9 0.86		0.95 0.85 0.95	5 187 187 187	accuracy macro avg weighted avg	0.86 0.95	0.84 0.95	0.95 0.85 0.95	187 187 187
Random Forest	Classification Report:			Classification Report:						
	precisi						precision	recall	f1-score	support
	0 0.0		0.00		1	0	0.00	0.00	0.00	11
	1 1.0	0 1.00	1.00)	4	1	1.00	1.00	1.00	4
	2 0.9	4 0.98	0.96	5 17	'2	2	0.94	0.98	0.96	172
	accuracy macro avg weighted av	0.65 g 0.88	0.66 0.93	0.93 0.65 0.90	187 187 187	accuracy macro avg weighted avg	0.65 0.88	0.66 0.93	0.93 0.65 0.90	187 187 187

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	The Decision Tree was chosen for its strong performance,
Decision Tree	interpretability, and clinical relevance. It provided clear, traceable
	decision rules for cirrhosis diagnosis while maintaining good
	accuracy. Feature importance rankings identified key biomarkers, and
	tuning prevented overfitting.