$Mag(F) = \{aX + bY + cZ \mid a, b, c \text{ in } F\}$ [works over any field F, by the way]

recall: we also view Mag(F) as a subspace of F^9 in this sense, (a, b, c) mapsto aX + bY + cZ "embeds" F^3 into F^9

(Axler §3A) let V, W be vector spaces / F

<u>Df</u> an F-linear map from V to W is a map/function T : V to W s.t.

1)
$$T(v + v') = T(v) + T(v')$$
 for all v, v' in V

2) T(a • v) = a • T(v) for all v in V and a in F

i.e., T "respects"/"preserves" the operations +, •

<u>Lem</u> if T : V to W linear, then $T(\mathbf{0}_{V}) = \mathbf{0}_{W}$

$$\underline{\mathsf{Pf}} \qquad \mathsf{T}(\mathbf{0}_{-}\mathsf{V}) = \mathsf{T}(\mathbf{0}_{-}\mathsf{V} + \mathbf{0}_{-}\mathsf{V}) \\
= \mathsf{T}(\mathbf{0}_{-}\mathsf{V}) + \mathsf{T}(\mathbf{0}_{-}\mathsf{V})$$

subtracting from both sides, $\mathbf{0}_{\mathbf{W}} = \mathsf{T}(\mathbf{0}_{\mathbf{V}})$

<u>Ex</u>	if T: F^3 to W is a linear map, then	<u>Ex</u>	any linear map F^2 to F^3 is det by $3 \times 2 = 6$ numbers:
T((a, b, o	c))		T((1, 0)) = (x, y, z),
= T((a, 0))	, 0) + (0, b, 0) + (0, 0, c)) [next?]		T((0, 1)) = (x', y', z')
= T((a, 0))	(0,0) + T((0,b,0)) + T((0,0,c)) [next?]		and any six numbers will work
$= a \cdot T(($	$(1, 0, 0) + b \cdot T((0, b, 0)) + c \cdot T((0, 0, 1))$		
thus any linear map T: F^3 to W is determined by		<u>Ex</u>	any linear map F^n to F^m is det by
the	values T((1, 0, 0)), T((0, 1, 0)), T((0, 0, 1))		mn numbers
[note: {(1	1, 0, 0), (0, 1, 0), (0, 0, 1)} is a basis here]		
"The Ole	o. o. o. "	<u>Ex</u>	any linear map T : F[x] to W is det by
<u>"The Slo</u>	<u>gan</u>		the set $\{T(1), T(x), T(x^2),\}$
if we kno	ow some basis for V,	Ex	take F = R
	give a linear map from V to W is to decide	<u></u>	an R-linear map T : C to W is det by
_	ere it sends the elements of the basis—		the set {T(1), T(i)}
and any	values will do	or,	the set $\{T(1 + i), T(1 - i)\}$

Ex let
$$V = R^R = \{\text{functions } f : R \text{ to } R\}$$

let $U = \{\text{differentiable functions } f\}$
let $D(f) = df/dx$

D is a well-defined map from U to V [why into V?]

also
$$D(f + g) = d(f + g)/dx = df/dx + dg/dx$$
$$= D(f) + D(g)$$
$$D(a \cdot f) = d(a \cdot f)/dx = a df/dx = a \cdot D(f)$$

so D is R-linear

Review a map of sets T: X to Y is:

injective iff (T(x) = T(x') forces x = x')
 surjective iff (for all y in Y, some x s.t. T(x) = y)

know that T is bijective (both inj and surj) iff it has a two-sided inverse S: Y to X: i.e., S(T(x)) = x and T(S(y)) = y

is D injective? [no: D(any constant) = 0]
is D surjective? [no: D(f) must be locally integable]
[quantify lack of injectivity/surjectivity in general?]

(Axler §3B)

- <u>Df</u> suppose T : V to W is linear
 - the kernel or nullspace of T is ker(T) = {v in V | T(v) = 0_W}
 - 2) the image or range of T is im(T) = {T(v) in W | v in V}

Rem	some people say "range" to mean W, not im(T) [why I prefer "image"]	<u>Pro</u>
<u>Prop</u>	for a linear map T : V to W 1) T is injective iff ker(T) = { 0 _ V } 2) T is surjective (onto W) iff im(T) = W	<u>Pf</u> obs
<u>Pf</u>	2) tautological	ker
	ppose $ker(T) = \{0_{V}\}$ ppose $T(v) = T(v')$	KGI

Pf 2) tautological

1) suppose
$$ker(T) = \{\mathbf{0}_{-}\mathbf{V}\}$$
suppose $T(v) = T(v')$
then $T(v - v') = \mathbf{0}_{-}\mathbf{W}$
then $v - v'$ in $ker(T)$, so $v - v' = \mathbf{0}_{-}\mathbf{V}$

conversely suppose T injective
if $T(v) = \mathbf{0}_{-}\mathbf{W}$, then $T(v) = T(\mathbf{0}_{-}\mathbf{V})$, so $v = \mathbf{0}_{-}\mathbf{V}$

2) im(T) is a linear subspace of W

<u>Pf</u> want: contain **0** and stable under +, •

observe that T(**0**_**V**) = **0**_**W** so **0**_**V** in ker(T) and **0**_**W** in im(T)

ker(T) stable under +, • because if v, v' in ker(T), then $T(av + v') = aT(v) + T(v') = a\mathbf{0}_{\mathbf{W}} + \mathbf{0}_{\mathbf{W}}$

im(T) stable under +, • because
 if w, w' in im(T), then
 w = Tv and w' = Tv' for some v, v' in V
 aw + w' = aT(v) + T(v') = T(av + v')

Ex let T : F^3 to F^3 be def by
$$T((1, 0, 0)) = (1, 1, 1)$$
$$T((0, 1, 0)) = (0, 1, 2)$$
$$T((0, 0, 1)) = (-3, -2, -1)$$

ker(T) =
$$\{(3c, b, c) \mid 3c + b - 2c = 0, 3c + 2b - c = 0\}$$

= $\{(3c, b, c) \mid b + c = 0, 2c + 2b = 0\}$
= $\{(3c, -c, c)\}$ [dim 1]

i.e.,
$$T((a, b, c))$$

= $(a, a, a) + (0, b, 2b) + (-3c, -2c, -c)$
= $(a - 3c, a + b - 2c, a + 2b - c)$

ker(T) =
$$\{(a, b, c) \mid a - 3c = 0, a + b - 2c = 0, a + 2b - c = 0\}$$

im(T) = span((1, 1, 1), (0, 1, 2), (-3, -2, -1))
= span((1, 1, 1), (0, 1, 2))
[consider
$$-3(1, 1, 1) + (0, 1, 2)$$
]

$$im(T) = \{(a - 3c, a + b - 2c, a + 2b - c) \mid a, b, c\}$$

as
$$\{(1, 1, 1), (0, 1, 2)\}$$
 is lin. indep., dim im(T) = 2

```
<u>Thm</u> if V is fin dim and T : V to W is linear,
then dim V = \dim \ker(T) + \dim \operatorname{im}(T)
```

Pf Sketch

```
pick basis {w 1, ..., w r} for im(T)
pick u_1, ..., u_r s.t. T(v_i) = w_i for all i
let U = span(u_1, ..., u_r)
pick basis v_1, ..., v_k for ker(T)
show that
     {u_1, ..., u_r} is a basis for U
     ker(T) + U = V
     ker(T) + U is a direct sum
by formula from last time,
     \dim V = \dim \ker(T) + \dim U
                = \dim \ker(T) + \dim \operatorname{im}(T)
```