NCI CBIIT training

Exome sequencing analysis Hands-on Tutorial

Qingrong Chen & Daoud Meerzaman

National Cancer Institute Center of Biomedical Informatics and Information Technology

July 2023

Table of Contents

Outline of workflow	1
Get a Galaxy account	1
Exome sample dataset	
Upload dataset	
Pre-alignment QC	2
Alignment with BWA	
Post-alignment Summary	
Mark duplicates	
Variant detection	
Variant annotation	3
Visualize alignments and variants on IGV	

Outline of workflow

Get a Galaxy account

Galaxy is an open source, web-based platform for data intensive biomedical research (https://usegalaxy.org/).

a. Register for a galaxy account

Exome sample dataset

- a. Illumina paired-end sequencing data (2x76bp)
 - i. Human normal blood sample
 - demo_norm_r1.fastq (forward)
 - demo_norm_r2.fastq (reverse)
 - ii. Human tumor sample
 - demo_tumor_r1.fastq (forward)
 - demo_tumor_r2.fastq (reverse)
- b. Reference genome (use built-in hg19 reference genome)

Upload dataset

- a. Log in Galaxy account
- b. Upload exome dataset
 - i. On the left panel 'Tools', select 'Get Data → Upload File'
 - ii. Choose local file: go to the data folder and select all 4 '*.fastq' files
 - iii. Select Genome: Human Feb. 2009 (GRCh37/hg19) (hg19)
 - iv. **Select Type:** fastqsanger (for .fastq files)
 - v. After files are uploaded, add a tag to each file
 - a. Click on the dataset
 - b. Click on galaxy-tags Edit dataset tags
 - c. Add a tag starting with #normal or #tumor
 - d. Check that the tag is appearing below the dataset name

Pre-alignment QC

FastQC (version 0.72) aims to provide a simple way to do some quality control checks on raw sequence data coming from high throughput sequencing pipelines. We use FastQC to check sequenicng data quality.

- a. Under 'NGS: QC and manipulation' and select 'FastQC'
- b. Use Multiple (middle button) to select all fastq files
- c. Output: Webpage & RawData

Alignment with BWA

BWA (version 0.7.17.4) is a software package for mapping sequences against a large reference genome, such as the human genome.

- a. Under 'NGS: Mapping', select 'Map with BWA'
- b. 'Will you select a reference genome from your history or use a built-in index?'
 - i. Select 'Use a built-in genome index'
 - ii. Use reference genome
 - Human (Homo sapiens) (b37): hg19
- c. Select input type:
 - i. Paired fastq
 - ii. Select first set of reads (Forward, *_r1)
 - demo.tumor r1.fast
 - demo.norm_r1.fastq
 - iii. Select second set of reads (Reverse, *_r2)
 - demo.tumor_r2.fastq
 - demo.norm r2.fastq

d. Output: Mapped reads in BAM format

Post-alignment Summary

Samtools flagstat (version 2.0.3) can be used to get a basic summary of an alignment for BAM dataset.

- a. Under 'NGS: SAMtools' and select 'Flagstat'
- b. Select all BAM files

Mark duplicates

MarkDuplicates (version 2.18.2.3) examines mapped reads in BAM files to locate duplicate reads.

- a. Under 'NGS: Picard' and select 'MarkDuplicates'
- b. Select all BAM files
- c. If true do not write duplicates to the output file instead of writing them with appropriate flags set
 - Yes
- d. Output: BAM files without duplicated reads

Variant detection

VarScan somatic (version 2.4.3.6): call germline/somatic and LOH variants from tumor-normal sample pairs.

- a. Under 'NGS: Variant Analysis' and select 'Varscan'
- b. Use a built-in genome
- c. Reference genome:
 - Select "Human (Homo sapiens): hg19
- d. Aligned reads from normal and tumor samples:
 - Select MarkDuplicates bam files for normal and tumor sample respectively
- e. Run Tool
- f. Output: VCF (variant call format) files

Variant annotation

SnpEff (version 4.3) is a genetic variant annotation and effect prediction toolbox.

a. Download a SnpEff database for GRCh37.75

- b. Under 'NGS: Annotation' and select 'SnpEff Download'
- c. Select the genome version you want to download: GRCh37.75
- d. Execute
- e. Under 'NGS: Annotation' and select 'SnpEff eff'
- f. Sequence changes
 - Select Varscan output
- g. Genome source
 - 'Custom snpEff database in your history'
 - SnpEff4.3 Genome Data
 - o 'Downloaded SnpEff SnpEff4.3 GRCh37.75'

Visualize alignments and variants on IGV

The **Integrative Genomics Viewer (IGV)** is a high-performance visualization tool for interactive exploration of large, integrated genomic datasets.

- a. Galaxy platform
 - i. Select MarkDuplicate outputs under the current history
 - ii. Download Dataset & Download bam_index
- b. Open IGV to view the variants
 - i. Launch IGV on the computer
 - ii. Choose 'Human hg19' genome in the upper left corner
 - iii. File -> Load from file -> Select the downloaded files to open
- c. Example gene and regions
 - i. TP53 gene
 - ii. chr17:7,578,208 (Somatic)
 - iii. chr17:7,579,472 (Germline)
 - iv. chr17:7,573,057 (LOH)