1 Kullback-Leibler distance

Consider the uniform discrete probability distribution $p = (p_j)_{1 \le j \le n}$ on the set $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$:

$$p_i = P(\{\omega_i\}) = 1/n.$$

If $x = (x_j)$ with $x_j > 0$ and $\sum x_j = 1$ is another probability distribution on Ω , then the Kullback-Leibler distance $d_{KL}(x, p)$ of x from p is defined as

$$d_{KL}(x,p) = \sum_{j} p_{j} \log(p_{j}/x_{j}) = -\log(n) - \frac{1}{n} \sum_{j} \log(x_{j}).$$
 (1)

This function is convex in the variable x and also symmetric in x. The symmetry uses the fact that the p_j are all equal and will be used for the analytic solution of the minimization problems below. Note that we have

$$\nabla d_{KL}(x,p) = -\frac{1}{n}(1/x_1, 1/x_2, \dots, 1/x_n)'$$
 and (2)

$$\nabla^2 d_{KL}(x,p) = \frac{1}{n} diag(1/x_1^2, 1/x_2^2, \dots, 1/x_n^2), \tag{3}$$

where $diag(\lambda)$ denotes the diagonal matrix with the vector λ on the diagonal as usual.

2 Minimization of d_{KL} under probability constraints

Now let $A_k \subseteq \Omega$, k = 1, ..., m be disjoint events (subsets) and consider the convex minimization problem

$$x^* = argmin\{ d_{KL}(x, p) : P^x(A_k) = q_k \}.$$
 (4)

Here $P^x(A) = E^x[1_A]$ denotes the probability of the event A under the discrete probability distribution $x = (x_j)$ on the set Ω . Note that a constraint on the probabilities x of the form $P^x(A) = r$ has the form

$$r = P^{x}(A) = \sum_{j} x_{j} 1_{A}(\omega_{j})$$

and is therefore a linear constraint in the variable x. Moreover the right hand side is a symmetric function of the variables x_j . Consequently the solution x^* of (4) must be symmetric under all permutations of coordinates which leave the sets A_k invariant, in other words the probability function

$$x^*: \omega_j \mapsto x_j^* = P^*(\omega_j)$$

is constant on all the sets A_k as well as the complement $D = [\cup A_k]^c$. This uses the fact that the A_k are disjoint since this implies that points $\omega \in \Omega$ which are in the same set A_k or are in D cannot be distinguished by the conditions $\omega \in A_k$ (i.e. if it is only determined in which of the sets A_k they are).

More formally the system of constraints

$$r_k = P^x(A_k) = \sum_j x_j 1_{A_k}(\omega_j)$$
 (5)

is invariant under all permutations of the variables x_j which (when applied to the points ω_j) leave the sets A_k invariant. Thus the solution x^* has the form

$$x_j^* = \begin{cases} q_k & \text{if } j \in A_k \\ q_* & \text{if } j \in D \end{cases}$$

and the variables q_k, q_* can be computed from the following system of equations

$$r_k = P^{x^*}(A_k) = q_k |A_k|$$

 $1 - \sum_k r_k = P^{x^*}(D) = q_* |D|$

or explicitly

$$x_j^* = \begin{cases} r_k/|A_k| & \text{if } \omega_j \in A_k\\ \frac{1}{|D|} (1 - \sum_k r_k) & \text{if } \omega_j \in D. \end{cases}$$
 (6)

Here |D| denotes the cardinality of the set D as usual.