Определение 1. Последовательность (x_n) называется бесконечно малой, если любой интервал, содержащий 0, будет для неё ловушкой.

Определение 2. Последовательность (x_n) называется бесконечно малой, если для каждого числа $\varepsilon > 0$ найдётся такое число N, что при любом натуральном $n \geqslant N$ будет выполнено неравенство $|x_n| < \varepsilon$.

Задача 1. Докажите эквивалентность определений 1 и 2.

Задача 2 $^{\varnothing}$. Для последовательности (x_n) найдите по данному $\varepsilon>0$ какое-нибудь N, такое что при n>Nверно неравенство $|x_n| < \varepsilon$, если (x_n) — это **a)** $\frac{1}{n}$; **б)** $\frac{2}{n^3}$; **в)** $\frac{1}{2n^2+n}$; **г)** $(0,9)^n$; **д)** $\frac{1}{n} + (0,9)^n$?

Задача 3. Можно ли в определении 2 заменить слова «каждого $\varepsilon > 0$ » на слова «каждого ε , где $1 > \varepsilon > 0$ »?

Задача 4. Последовательность $(x_n y_n)$ бесконечно малая. Верно ли, что одна из (x_n) , (y_n) бесконечно малая?

Задача 5. а) Любая ли убывающая последовательность из положительных членов бесконечно малая?

6) Любая ли бесконечно малая последовательность из положительных членов убывает с какого-то момента?

Задача 6. Пусть (x_n) и (y_n) бесконечно малые. Будет ли бесконечно малой последовательность $x_1, y_1, x_2, y_2, \dots$?

Задача 7 Докажите, что сумма, разность и произведение бесконечно малых последовательностей — бесконечно малые последовательности.

Задача 8 $^{\varnothing}$. (*Теорема о двух милиционерах*) Последовательности (x_n) и (y_n) бесконечно малые, а последовательность (z_n) такова, что $x_n \leqslant z_n \leqslant y_n$, начиная с некоторого n. Докажите, что (z_n) бесконечно малая.

Задача 9 $^{\varnothing}$. Является ли бесконечно малой последовательность **a)** $\frac{1-0.5^n}{n+7}$; **б)** $\frac{3^n+4^n}{2^n+5^n}$?

Задача 10. Дана последовательность (x_n) с положительными членами. Верно ли, что (x_n) бесконечно малая тогда и только тогда, когда последовательность $(\sqrt{x_n})$ бесконечно малая?

Задача 11 $^{\varnothing}$. Даны две последовательности: (x_n) — бесконечно малая, а (y_n) — ограниченная. Докажите, что $(x_n + y_n)$ — ограниченная последовательность, а $(x_n y_n)$ — бесконечно малая последовательность.

Задача 12. В бесконечно малой последовательности (x_n) переставили члены (то есть взяли какое-то взаимно однозначное соответствие $f: \mathbb{N} \to \mathbb{N}$ и получили новую последовательность (y_n) , где $y_n = x_{f(n)}$ для всех $n \in \mathbb{N}$). Обязательно ли полученная последовательность будет бесконечно малой?

3адача 13[©]. Последовательность состоит из положительных членов, причем сумма любого количества её членов не превосходит 1. Докажите, что эта последовательность бесконечно малая.

Задача 14. Дана бесконечная вправо и вниз таблица. В каждой строчке записана бесконечно малая последовательность. Пусть x_n — произведение верхних n чисел n-го столбца. Верно ли, что (x_n) бесконечно малая?

Задача 15*. Любая ли последовательность есть отношение двух бесконечно малых?

Определение 3. Последовательность (x_n) называется бесконечно большой, если никакой отрезок не является для неё кормушкой.

Определение 4. Последовательность (x_n) называется бесконечно большой, если для любого числа C>0 найдётся такое число k, что при всех натуральных n, больших k, будет верно неравенство $|x_n| > C$.

Задача 16. Докажите эквивалентность определений 3 и 4.

Задача 17. Последовательность не является ограниченной. Обязательно ли она бесконечно большая?

Задача 18 $^{\varnothing}$. Запишите без отрицания: (x_n) не является **a)** бесконечно малой; **б)** бесконечно большой.

Задача 19 $^{\circ}$. Какие из последовательностей ограничены, какие — бесконечно малые, а какие — бесконечно большие: **a)** $(1,1)^n$; **б)** $\sqrt{n^3+n}-\sqrt{n^3}$; **в)** $\frac{n^5+1}{n^4+n^2}$; **г)** $\frac{n^2}{2^n}$; **д)** $1-\sqrt[n]{n}$?

Задача 20. Верно ли, что последовательность (x_n) с ненулевыми членами бесконечно малая тогда и только тогда, когда последовательность $(1/x_n)$ бесконечно большая?

Задача 21. Одна последовательность бесконечно большая, а другая бесконечно малая. Что можно сказать а) о сумме; б) об отношении; в) о произведении этих последовательностей?

Задача 22*. Для каждого натурального n пусть x_n — сумма чисел вида 1/k, где k — натуральное, $1 \leqslant k \leqslant n$ и в десятичной записи k нет цифры 9. Докажите, что (x_n) ограничена сверху числом **a)** 80; **b)** 50; **b)** 30.

1	2 a	2 6	2 B	2 Г	2 д	3	4	5 a	5 б	6	7	8	9 a	9 б	10	11	12	13	14	15	16	17	18 a	18 б	19 a	19 б	19 B	19 Г	19 Д	20	21 a	21 б	21 B	22 a	22 б	22 B