Fundamental Cut-set Matrix

- Fundamental cut set or f-cut set is the minimum number of branches that are removed from a graph in such a way that the original graph will become two isolated subgraphs.
- The f-cut set contains only one twig and one or more links.
- The number of f-cut sets will be equal to the number of twigs.
- Fundamental cut set matrix is represented with letter C. This matrix gives the relation between branch voltages and twig voltages.

- If there are 'n' nodes and 'b' branches are present in a directed graph, then the number of twigs present in a selected Tree of given graph will be n-1.
- The fundamental cut set matrix will have 'n-1' rows and 'b' columns.
- Rows and columns are corresponding to the twigs of selected tree and branches of given graph.
- The order of fundamental cut set matrix will be $(n-1) \times b$.

The elements of fundamental cut set matrix will be having one of these three values, +1, -1 and 0.

- The value of element will be +1 for the twig of selected f-cutset.
- The value of elements will be 0 for the remaining twigs and links, which are not part of the selected f-cut set.
- If the direction of link current of selected f-cut set is same as that of the cut set twig current, then the value of element will be +1.
- If the direction of link current of selected f-cut set is opposite to that off-cut set twig current, then the value of element will be -1.

Procedure to find Fundamental Cut-set Matrix

- To find the fundamental cut set matrix of given directed graph.
- Select a Tree of given directed graph and represent the links with the dotted lines.
- By removing one twig and necessary links at a time, we get one f-cut set. Fill the values of elements corresponding to this f-cut set in a row of fundamental cut set matrix.
- Repeat the above step for all twigs.

Example

- Consider the same directed graph
- Select the branches d, e & f of this directed graph as twigs.
- The remaining branches a, b & c of this directed graph will be the links.
- The twigs d, e & f are represented with solid lines
- The links a, b & c are represented with dotted lines in the figure.

- By removing one twig and necessary links at a time, we will get one f-cut set.
- So, there will be three f-cut sets, since there are three twigs. These three f-cut sets are shown in the following figure.

$$C = egin{bmatrix} 1 & -1 & 0 & 1 & 0 & 0 \ 0 & -1 & 1 & 0 & 1 & 0 \ 1 & 0 & -1 & 0 & 0 & 1 \end{bmatrix}$$

- The rows and columns of the above matrix represents the twigs and branches of given directed graph.
- The order of this fundamental cut set matrix is 3×6 .
- The number of Fundamental cut set matrices of a directed graph will be equal to the number of Trees of that directed graph. Because, every Tree will be having one Fundamental cut set matrix.

Example: Draw the directed

Example

Give the graph of a network. Show the possible TREES, TWIGS and LINKS

Example

Develop the fundamental TIE-SET matrix for the following directed graph

Tie-sets	/	Bri			
(or loop currents)	1	2	3	4	5
I_1	$\lceil \sqrt{1} \rceil$	0	0	1	17
I_2	_ 1	1	1	0	1

Assume the divection of the link is the divection of the loop whet I, or Iz

Tie-sets		Bri	anche	es	
(or loop currents)	1	2	3	4	5
I_1	1	0	0	1	17
I_2	_ 1	1	1	0	1

Francon Edminay on

If V, V2, V3, V4 and V5 are the branch Vollages

Then U,+0+0+V4+V5=0

01+04103

e 2nd row

Similarly each brough Currents (i) is given by the Sychric sum of link whats

Summatrian
$$J_1+J_2$$

$$O+J$$

$$I_{1}+I_{2}=J_{1}$$
 $I_{1}+0=J_{4}$
 $0+I_{2}=J_{2}$ $I_{1}+I_{2}=J_{5}$
 $0+I_{2}=J_{3}$

Example:Draw the graph and develop the fundamental TIE-SET matrix

Branches

	Tie-set (loop)	1	2	3	4	5	6
1. 2 the	I_1	⁻ 1	0	0	r de aus la-disparat	uni na landin	0 0 7
m Jan Jange.	I_{2}	0	1	0	0	1	-1
6005	$I_{f 3}$	0	0	1	-1	0	$1 \int$

Example

Develop the fundamental CUT-SET matrix for the following directed graph

CUT SET C1: TWIG 2 + LINK 3 CUT SET C2: TWIG 5 X LINIU 3 X 4 CWT SET C3: TWIG 1 Y LINKS 4 X 3

Branches

The Lurrent balance equations can be obtained from cut-set methix

Example: Develop the fundamental CUT-SET matrix for the following circuit

Objant Kundons Moraless Marie Colored

 $C_1[1,6,4]$ | 1 | 0 | 0 | -1 | 0 | $C_2[2,4,5]$ | 0 | 1 | 0 | -1 | -1 | $C_3[3,6,4]$ | 0 | 0 | +1 | -1 | 0

Example: For the given network, draw the network graph. Select tree branches as 4, 5,6. Write TIE-SET matrix and develop equilibrium equations and calculate the loop currents.

Ndd	~~ <u>`</u>
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/

Γ	Link No.		Branch No.						
)		1	2	3	4	5	6		
	$I_1(1, 5, 4)$	+'1	0	0	+1	-1	0		
	$I_2(2, 6, 5)$	0	+1	0	0	+ 1	-1		
	$I_3(3, 4, 6)$	0	0	+1	-1	0	+1		

 $J_{5}=I_{2}-I_{1}$ $J_{6}=I_{3}-I_{2}$

Branch Voltage 4 13 ₿ VV

$$V_1 + V_4 - V_5 = 0$$

$$V_2 + V_5 - V_6 = 0$$

$$V_3 - V_4 + V_6 = 0$$

Link No.		Branch No.							
	1	2	3	4	5	6			
$I_1(1, 5, 4)$	+'1	0	0	+1	-1	0			
$I_2(2, 6, 1)$	0	+1	0	0	+1	-1 -			
$I_3(3, 4, 5)$	0	0	+ 1	-1	0	+1			

J, Jz, ... J 6 De the branch currents

Link No.		Branch No.							
	1	2	3	4	5	6			
$I_1(1, 5, 4)$	+'1	0	0	+1	-1	0			
$I_2(2, 6, 5)$	0	+ 1	0	0	+ 1	-1			
$I_3(3, 4, 5)$	0	0	+ 1	-1	0	+1			

$$V_1 = J_1 R_1 = R_1 I_1 = 5I_1$$

$$V_2 = J_2 R_2 = R_2 I_2 = 5I_2$$

$$V_3 = J_3 R_3 = 1 = 5I_3 - 1$$

$$V_4 = J_4 R_4 = (I_1 - I_3)10$$

$$V_5 = J_5 R_5 = (I_2 - I_1)10$$

$$V_6 = J_6 R_6 = (I_3 - I_2)10$$

$$5I_1 - 10(I_2 - I_1) + 10(I_1 - I_3) = 0$$
$$25I_1 - 10I_2 - 10I_3 = 0$$
$$10(I_2 - I_1) + 5I_2 - 10(I_3 - I_2) = 0$$

$$-10I_1 + 25I_2 - 10I_3 = 0$$

$$(5I_3 - 1) - 10(I_2 - I_3) + 10(I_3 - I_2) = 0$$
$$-10I_1 + 10I_2 - 25I_3 = 1$$

$$\begin{bmatrix} 25 & -10 & -10 \\ -10 & 25 & -10 \\ -10 & -10 & 25 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$I_1 = \frac{1}{17.5} = 0.057 \text{ A}$$

$$I_2 = \frac{1}{17.5} = 0.057 \text{ A}$$

$$I_3 = \frac{3}{35} = 0.0857 \text{ A}$$

Example: Write the cut-set matrix and equilibrium equation on voltage basis. Hence obtain the values of branch voltages and branch currents. Given, R1=R2= 5 Ohm and R3=R4=R5= 10 Ohm

Tree branch	Basic cut-sets
3	1, 3, 5
4	2, 4, 5
6	1, 2, 6

Basic cut-set		Elements							
tree branch	1	2	3	4	5	6			
3 (1, 3, 5)	-1	0	+1	0	+1	0			
4 (2, 4, 5)	0	-1	0	+1	+1	0			
6 (1, 2, 6)	+1	-1	0	0	0	+1			

$$e_1 = e_6 - e_3$$
 $e_2 = -e_4 - e_6$
 $e_3 = e_3$
 $e_4 = e_4$
 $e_5 = e_3 + e_4$
 $-j_1 + j_2$
 $-j_2 + j_3$

Basic cut-set		Elements						
tree branch	e 1	e 2	C33	C _k 4	C/ 5	er 6		
3 (1, 3, 5) 63	3 √ −1	5 ~ 0	+1	Ju 0	+1	70 —		
4 (2, 4, 5)	0	_1	0	+1	+1	0		
6 (1, 2, 6)	+1	-1	0	0	0	+1		

$$- j_1 + j_3 + j_5 = 0$$

$$- j_2 + j_4 + j_5 = 0$$

$$+ j_1 - j_2 + j_6 = 0$$

 $\begin{aligned} &-j_1+j_3+j_5=0\\ &-j_2+j_4+j_5=0\\ &+j_1-j_2+j_6=0 \end{aligned}$ which the branch of the large j_1

$$-0.2 (e_6 - e_3 - 910) + 0.1e_3 + 0.5 (e_3 + e_4) = 0$$

$$0.8e_3 + 0.5e_4 - 0.2e_6 = -182$$

$$0.2 (e_4 + e_6) + 0.1e_4 + 0.5 (e_3 + e_4) = 0$$

$$0.5e_3 + 0.8e_4 + 0.2e_6 = 0$$

$$0.2 (e_6 - e_3 - 910) + 0.2 (e_4 + e_6) + 0.1e_6 = 0$$

$$-0.2e_3 + 0.2e_4 + 0.5e_6 = 182$$

$$\begin{bmatrix} 0.8 & 0.5 & -0.2 \\ 0.5 & 0.8 & 0.2 \\ -0.2 & 0.2 & 0.5 \end{bmatrix} \begin{bmatrix} e_3 \\ e_4 \\ e_6 \end{bmatrix} = \begin{bmatrix} -182 \\ 0 \\ 182 \end{bmatrix}$$
The power matrix for e_2 , e_3 , and e_4 :

Solving above matrix for e_3 , e_4 , and e_6 :

$$e_3 = -200 \text{ V}, e_4 = 60 \text{ V}, e_6 = 260 \text{ V}$$

The branch voltages and branch currents are:

$$e_1 = e_6 - e_3 = 460 \text{ V}$$

 $e_2 = -e_4 - e_6 = -320 \text{ V}$
 $e_3 = e_3 = -200 \text{ V}$
 $e_4 = 60 \text{ V}$
 $e_5 = e_3 + e_4 = -140 \text{ V}$
 $e_6 = 260 \text{ V}$

The further of solf

Branch currents are:

$$j_1 = 0.2 (460 - 910) = -90 \text{ A}$$

 $j_2 = 0.2 (-320) = -64 \text{ A}$
 $j_3 = 0.1 (-200) = -20 \text{ A}$
 $j_4 = 0.1 (60) = 6 \text{ A}$
 $j_5 = 0.5 (-140) = -70 \text{ A}$
 $j_6 = 0.1 (260) = 26 \text{ A}$