

FUNDAMENTALS — FAULT DIAGNOSIS AND FAULT TOLERANCE —

Riccardo M.G. Ferrari r.ferrari@tudelft.nl, DCSC (3ME)

Lecture 1.2 22/04/2025

LECTURE SUMMARY

What are we going to talk about today?

- > A taxonomy of different kind of **FD approaches**
- > A taxonomy of different kind of **FT approaches**

An overview of different approaches

It is not that much different from medical diagnosis!

Whatever approach you use, this is the common structure of FD

Feature extraction is different according to the FD approach

Signal based

Model based

Feature extraction is different according to the FD approach

Signal based

- · Ran signal
- · Mean on std over moving window
- · Peak values
- · Forsier transform, STFT, Wevelet, ...
- · Cepstrum
- Contosis

Model based

- · (Kalmen) observer estimation enon
- · Perity relations even
- · Mødel peameters E.g. x = -Kx - bx

E.g.
$$\ddot{x} = -Kx - b\dot{x}$$

Symptoms generation

> From Wikipedia (sorry, but they actually have a good definition)

"A **symptom** (from Greek σύμπτωμα, "accident, misfortune, that which befalls", [...]) is a **departure** from **normal** function or feeling"

> In FD, a **symptom** is a measure of the **difference** between **actual** value of **features** extracted from observations, and **nominal** ones

Signal based

Model based

Symptoms generation

> From Wikipedia (sorry, but they actually have a good definition)

"A **symptom** (from Greek σύμπτωμα, "accident, misfortune, that which befalls", [...]) is a **departure** from **normal** function or feeling"

> In FD, a **symptom** is a measure of the **difference** between **actual** value of **features** extracted from observations, and **nominal** ones

Symptoms evaluation

- > Physiological changes shall be ignored, but pathological changes are evaluated in the next step
- > A measure of a symptom is so compared against a known pathological threshold
- > In general, this is a **change detection problem** (more in upcoming lectures)

Once symptoms evaluation is done, diagnosis entails:

- > STEP 1: **DETECTION**
 - > Testing the **null hypothesis**:

 \mathcal{H}_0 : "Is the system behaving in a **nominal** way?"

- > STEP 2: ISOLATION
 - > Testing *N* faulty hypotheses:

 \mathcal{H}_i : "Is the system behaving as if the *i*-th fault is present?"

- > STEP 3: IDENTIFICATION/ESTIMATION
 - > If \mathcal{H}_0 and every but one \mathcal{H}_i are falsified \Rightarrow **estimate** parameters of i-th fault
 - > If \mathcal{H}_0 and every \mathcal{H}_i are falsified \Rightarrow identify model of a new fault

Different approaches to fault tolerance

By design Switching Adaptive

Different approaches to fault tolerance

Fault accommodation: remember the behaviour diagram?

Control of the faultless system

Control of the faulty system

CONCLUSION

Recap of this lecture and plan for next

> TODAY

- > We introduced an **overview** of FD and FT
- > We introduced **definitions**
- > We provided some **taxonomy** of existing approaches

> TOMORROW

> System structural analysis and components and services model

CONCLUSION

Thank you for your attention!

For further information:

Course page on Brightspace

or

r.ferrari@tudelft.nl