Übung 7

Aufgabe 12:

Bei einer gedächnislosen binären Quelle ist die Entropie dieser gegeben als:

$$H(X) = -p \log_2(p) - (1-p) \log_2(1-p)$$

Algemein ist die Entropie einer Quelle:

$$H(X) = -\sum_{i=1}^M p(x_i) \cdot \log_2(p(x_i))$$

Für eine Quelle $\alpha=\{a,b\}$ mit Wahrscheinlichkeiten $\{p_a=0.85,p_b=0.15\}$ ist die Entropie $H(X_1)=-0.85\log_2(0.85)-0.15\log(0.15)\approx 0.60984$ und nach der Zusammenfassung zu Blöcken $\{aa,ab,ba,bb\}$ mit $\{p_{aa}=p_a\cdot p_a=0.7225,p_{ab}=p_a\cdot p_b=0.1275,p_{ba}=p_b\cdot p_a=0.1275,p_{bb}=p_b\cdot p_b=0.0225,\}$ ist $H(X_2)=-0.7225\log_2(0.7225)-2(\cdot0.1275\log_2(0.1275))-0.0225\log_2(0.0225)\approx$ 1.21968

Da in X_2 die doppelte Anzahl an symbolen pro Zeichen wie in X_1 vorhanden sind, ist auch die Entropie doppelt so groß $H(X_1)=\frac{1}{2}H(X_2)$.

Aufgabe 13:

Für die mittlere Codewortlänge l_C gilt:

$$l_C = \sum_{i=1}^M l_i \cdot p(x_i)$$

Darüber wird die Redundanz definiert als:

$$RC(X) = l_C - H(X)$$

Teil A) Huffman Code

Die Quelle sendet die Zeichen $\alpha = \{a,b,c,d,e\}$

1.

Die Wahrscheinlichkeitsverteilung ist $orall i: p(x_i) = rac{1}{5}$

Wort	Code	l_i
a	00	2
b	010	3
c	011	3
d	10	2
e	11	2

Mit der obigen Formel für die Mittlere Codelänge ist $l_C=\frac{12}{5}$ und die Entropie $H(X)=-\log_2(\frac{1}{5})$ wodurch die Redundanz $RC=\frac{12}{5}+\log_2(\frac{1}{5})\approx 0.07807[bit]$ ist.

2.

Die Wahrscheinlichkeitsverteilung ist $\{p_a=\frac{1}{2},p_b=\frac{1}{4},p_c=\frac{1}{8},p_d=\frac{1}{16},p_e=\frac{1}{16}\}$

Wort	Code	l_i
a	0	1
b	10	2
c	110	3
d	1110	4
e	1111	4

Mit der obigen Formel für die Mittlere Codelänge ist $l_C=\frac{1}{2}+\frac{2}{4}+\frac{3}{8}+\frac{4}{16}+\frac{4}{16}=\frac{15}{8}=1.875$ und die Entropie $H(X)=-\frac{1}{2}\log_2(\frac{1}{2})-\frac{1}{4}\log_2(\frac{1}{4})-\frac{1}{8}\log_2(\frac{1}{8})-\frac{1}{16}\log_2(\frac{1}{16})-\frac{1}{16}\log_2(\frac{1}{16})=1.625$ wodurch die Redundanz RC=1.875-1.625=0.25[bit] ist.

3.

Die Wahrscheinlichkeitsverteilung ist $\{p_a=0.4, p_b=0.3, p_c=0.2, p_d=0.05, p_e=0.05\}$

Wort	Code	l_i
a	0	1
b	10	2
c	110	3
d	1110	4
e	1111	4

Mit der obigen Formel für die Mittlere Codelänge ist $l_C = 1 \cdot 0.4 + 2 \cdot 0.3 + 3 \cdot 0.2 + 4 \cdot 0.05 + 4 \cdot 0.05 = 2$ und die Entropie $H(X) = -0.4 \log_2(0.4) - 0.3 \log_2(0.3) - 0.2 \log_2(0.2) - 0.05 \log_2(0.05) - 0.05 \log_2(0.05) \approx 1.73034$ wodurch die Redundanz $RC \approx 2 - 1.73034 = 0.26966[bit]$ ist.

Teil B) Fano Code

Die Quelle sendet die Zeichen $\alpha = \{a,b,c,d,e\}$

1.

Die Wahrscheinlichkeitsverteilung ist $orall i: p(x_i) = rac{1}{5}$

Die Aufteilung in die einzelnen Mengen ergibt sich wie folgt:

1.
$$\left\{\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right\}$$

2.
$$\left\{\frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right\}, \left\{\frac{1}{5}, \frac{1}{5}\right\}$$

3.
$$\left\{\frac{1}{5}\right\}\left\{\frac{1}{5}, \frac{1}{5}\right\}, \left\{\frac{1}{5}\right\}, \left\{\frac{1}{5}\right\}$$

4.
$$\left\{\frac{1}{5}\right\}, \left\{\frac{1}{5}\right\}, \left\{\frac{1}{5}\right\}, \left\{\frac{1}{5}\right\}, \left\{\frac{1}{5}\right\}$$

Der dadurch aufgespannte Baum ist identisch zu dem aus **Aufgabe 13 Teil A) 1.** und somit sind auch alle folgenden Rechnungen identisch und die Redundanz damit $RC \approx 0.07807[bit]$

2.

Die Wahrscheinlichkeitsverteilung ist $\{p_a=\frac{1}{2},p_b=\frac{1}{4},p_c=\frac{1}{8},p_d=\frac{1}{16},p_e=\frac{1}{16}\}$

Die Aufteilung der einzelnen Mengen ergibt sich wie folgt:

1.
$$\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{16}\right\}$$

2.
$$\left\{\frac{1}{2}\right\}, \left\{\frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{16}\right\}$$

3.
$$\left\{\frac{1}{2}\right\}, \left\{\frac{1}{4}\right\}, \left\{\frac{1}{8}, \frac{1}{16}, \frac{1}{16}\right\}$$

4.
$$\left\{\frac{1}{2}\right\}, \left\{\frac{1}{4}\right\}, \left\{\frac{1}{8}\right\}, \left\{\frac{1}{16}, \frac{1}{16}\right\}$$

5.
$$\left\{\frac{1}{2}\right\}, \left\{\frac{1}{4}\right\}, \left\{\frac{1}{8}\right\}, \left\{\frac{1}{16}\right\}, \left\{\frac{1}{16}\right\}$$

Der dadurch aufgespannte Baum ist identisch zu dem aus **Aufgabe 13 Teil A) 2.** und somit sind auch alle folgenden Rechnungen identisch und die Redundanz damit RC=0.25[bit]

3.

Die Wahrscheinlichkeitsverteilung ist $\{p_a=0.4, p_b=0.3, p_c=0.2, p_d=0.05, p_e=0.05\}$

Die Aufteilung auf die einzelnen Mengen ergibt sich wie folgt:

- 1. $\{0.4, 0.3, 0.2, 0.05, 0.05\}$
- 2. $\{0.4\}, \{0.3, 0.2, 0.05, 0.05\}$
- 3. $\{0.4\}, \{0.3\}, \{0.2, 0.05, 0.05\}$
- 4. $\{0.4\}, \{0.3\}, \{0.2\}, \{0.05, 0.05\}$
- 5. $\{0.4\}, \{0.3\}, \{0.2\}, \{0.05\}, \{0.05\}$

Der dadurch aufgespannte Baum ist identisch zu dem aus **Aufgabe 13 Teil A) 3.** und somit sind auch alle folgenden Rechnungen identisch und die Redundanz damit $RC \approx 0.26966[bit]$