

BAHASAN MATERI PERTEMUAN 2

- 1. Logika
- 2. Proposisi
- 3. Kombinasi Proposisi
- 4. Kaidah Inferensi
- 5. Toutologi dan Kontradiksi
- 6. Latihan 2

1. DEFINISI LOGIKA

- *Logika merupakan ilmu yang membantu kita dalam berpikir dan penalaran (reasoning)
- ❖ Definis Penalaran artinya cara berpikir dengan mengembangkan sesuatu berdasarkan akal (logika) dan bukan dengan perasaan.
- *Fokus logika adalah pada hubungan antara pernyataan (statement) yang satu dengan pernyataan (statement) yang lain

Jika anda mahasiswa informatika maka anda tidak sulit dalam membuat suatu aplikasi.

Jika anda tidak suka Bahasa pemrograman java **maka** anda bukan mahasiswa informatika.

Tetapi, anda sulit membuat aplikasi dan **tidak suka** Bahasa pemrograman java.

Jadi, anda bukan mahasiswa informatika.

Wahyu Nur Cholifah, M.Kom

Apakah penarikan kesimpulan dari pernyataan disamping valid?

Untuk memahami argument tersebut dibutuhkan **logika**

Logika tidak membantu apakah pernyataan tersebut benar atau salah

2. PROPOSISI

Proposisi: Pernyataan atau kalimat deklaratif yang bernilai benar (true) atau salah (false), tetapi tidak keduanya.

Simbolik proposisi dilambangkan dengan huruf kecil: p, q, r, ...

Contoh:

- 1. p = Keyboard adalah alat yang dapat digunakan input data kedalam computer (T)
- 2. q = Harddisk adalah alat yang menentukan kecepatan kerja computer (F)
- 3. w = Memory merupakan media penyimpanan data (T)

a.

KOMBINASI PROPOSISI

Negasi/Ingkaran/Komplmen/Not

Definisi: sebuah pernyataan yang meniadakan pernyataan yang ada.

Simbolik: $\sim p$; \overline{p} ; p' = 'adalah salah', 'bukan'

Tabel Kebenaran:

	p	$\sim p$			
•	T	F			
	F	T			
	T = True				
	F = 1	False			

Contoh:

p = hardisk adalah alat untuk menentukan kecepatan komputer (F)

 $\sim p = hardisk bukan alat untuk menentukan kecepatan komputer (T)$

3.

KOMBINASI PROPOSISI

b.

Conjuction/Konjungsi/Dan

Definisi: pernyataan gabungan dari dua pernyataan atau lebih dengan kata penghubung \underline{dan} .

Simbolik: $p \land q; p \times q; p, q; pq$

Tabel Kebenaran:

p	q	p ∧ q
T	T	T
T	F	\mathbf{F}
\mathbf{F}	T	F
\mathbf{F}	F	\mathbf{F}

Contoh:

p = Processor alat yang berfungsi sebagai otak dari komputer (T)

q = Hardisk adalah alat yg menentukan kecepatan kerja komputer (F)

$$p \wedge q =$$

Processor alat yang berfungsi sebagai otak dari sebuah komputer $oldsymbol{dan}$ hardisk adalah alat yang menentukan kecepatan kerja komputer (\mathbf{F})

Wahyu Nur Cholifah, M.Kom

3.

KOMBINASI PROPOSISI C.

Disjunction/Disjungsi/Atau

Definisi: pernyataan gabungan dari dua pernyataan atau lebih dengan kata penghubung <u>atau</u>.

Simbolik: $p \lor q$; p + q

Tabel Kebenaran:

p	q	$\mathbf{p} \lor \mathbf{q}$
T	T	T
${f T}$	\mathbf{F}	${f T}$
\mathbf{F}	T	T
\mathbf{F}	F	F

Contoh:

p = Processor alat yang berfungsi sebagai otak dari komputer (T)

q = Hardisk adalah alat yg menentukan kecepatan kerja komputer (F)

$$p \lor q =$$

Processor alat yang berfungsi sebagai otak dari sebuah komputer atau hardisk adalah alat yang menentukan kecepatan kerja komputer (T)

Wahyu Nur Cholifah, M.Kom

3.

KOMBINASI PROPOSISI

d.

Implikasi/Kondisional/ Proposisi Bersyarat

Definisi: pernyataan gabungan dari dua pernyataan dengan kata penghubung *jika ... maka*.

Simbolik: $p \rightarrow q$

Tabel Kebenaran:

p	q	$\mathbf{p} ightarrow q$
T	T	T
${f T}$	\mathbf{F}	\mathbf{F}
F	T	T
F	F	T

Contoh:

p = Keyboard alat untuk menginput dokumen (T)

r = printer alat untuk untuk mencetak dokumen (T)

 $p \rightarrow r = jika$ keyboard alat untuk menginput dokumen **maka** printer alat mencetak dokumen (**T**)

3.

KOMBINASI PROPOSISI

e.

Biimplikasi/Bikondisional

Definisi: pernyataan gabungan dari dua pernyataan dengan kata penghubung *jika dan hanya jika*.

Simbolik: $p \leftrightarrow q$

Tabel Kebenaran:

p	q	$\mathbf{p} \leftrightarrow \mathbf{q}$
T	${f T}$	T
T	\mathbf{F}	\mathbf{F}
F	T	F
F	F	T

Contoh:

p = MsWord software untuk membuat dokumen (T)

q = MsWord operating sistemnya linux(F)

 $p \leftrightarrow q = MsWord \ software \ untuk \ membuat \ dokumen$ $jika \ dan \ hanya \ jika \ operating \ sistemnya \ linux \ (F)$

Wahyu Nur Cholifah, M.Kom

Definisi: Proses penarikan kesimpulan dari beberapa proposisi.

Didalam proposisi terdapat sejumlah kaidah inferensi, antara lain:

a. Modus Ponen

b. Modus Tollen

kaidah modus ponen ditulis dengan cara:

$$p \rightarrow q$$

$$p$$

$$----$$

$$\therefore q$$

kaidah modus tollen ditulis dengan cara:

$$p \rightarrow q$$

$$\sim q$$

$$-----$$

$$\therefore \sim p$$

Simbol:

∴ dibaca "*jadi*" atau "*karena itu*"

c. Silogisme Hipotesis

d. Silogisme Disjungsi

kaidah modus silogisme ditulis dengan cara :

$$p \rightarrow q$$

$$q \rightarrow r$$

$$----$$

$$\therefore p \rightarrow r$$

kaidah modus silogisme disjungsi ditulis dengan cara:

e. Simpifikasi

f. Konjungsi

kaidah modus simplifikasi ditulis dengan cara:

$$\begin{array}{c} p \wedge q \\ ----- \\ \therefore p \end{array}$$

kaidah modus konjungsi ditulis dengan cara :

$$p$$

$$q$$

$$----$$

$$\therefore p \land q$$

g. Penjumlahan

kaidah modus disjungsi ditulis dengan cara :

Buatlah penggunaan infernsi dengan pernyataan dibawah ini.

p = printer merupakan output device

q = memory merupakan media penyimpanan data

r = keyboard adalah alat untuk menginput data ke dalam komputer

Jawaban

ModusPonen

- $p \rightarrow q =$ **Jika** printer merupakan output device **maka** memory merupakan media penyimpanan data = printer merupakan output device
- = memory merupakan media penyimpanan data

Modus Tollen

- $p \rightarrow q =$ *Jika* printer merupakan output device **maka** memory merupakan media penyimpanan data
- = memory bukan merupakan media penyimpanan data
- $\sim p = printer bukan merupakan output device$

Jawaban

c. Silogisme Hipotesis

- p o q =**Jika** printer merupakan output device **maka** memory merupakan media penyimpanan data
- q
 ightharpoonup r = **Jika** memory merupakan media penyimpanan data **maka** keyboard alat untuk menginput data ke dalam komputer
- $p \rightarrow r =$ **Jika** printer merupakan output device **maka** keyboard alat untuk menginput data ke dalam komputer

d. Silogisme Disjungsi

```
p \lor q = printer merupakan output device atau
memory merupakan media penyimpanan data
\sim p = printer bukan merupakan output device
```

 $\therefore q = memory merupakan media penyimpanan data$

Jawaban

e. Simplifikasi

 $p \land q = printer merupakan output device dan memory merupakan media penyimpanan data$

p = printer merupakan output device

f. Konjungsi

 $p = printer\ merupakan\ output\ device$

q = memory merupakan media penyimpanan data

 $p \land q = printer merupakan output device$ **dan** memory merupakan media penyimpanan data

g. Penjumlahan

p = printer merupakan output device

 $p \lor q = printer merupakan output device$ **atau** memory merupakan media penyimpanan data

5. TAUTOLOGI DAN KONTRADIKSI

TAUTOLOGI:

Pernyataan Majemuk yang nilai

kebenarannya Benar semua

Tabel Kebenaran:

p	~ p	$p \lor \sim p$
T	F	T
F	T	T

KONTRADIKSI:

Pernyataan Majemuk yang nilai kebenarannya **Salah**

semua

Tabel Kebenaran:

\boldsymbol{p}	~p	$p \land \backsim p$
T	F	F
F	T	F

Perhatikan dengan table kebenaran apakah:

1.
$$[p \land (p \rightarrow q)] \rightarrow p$$

2.
$$(p \land q) \land \neg (p \lor q)$$

1.
$$[p \land (p \rightarrow q)] \rightarrow p$$

2. $(p \land q) \land \neg (p \lor q)$
3. $((\neg p \land q) \land (q \land r)) \lor \neg q$

merupakan tautology atau kontradiksi

p	q	p ightarrow q	$p \wedge (p ightarrow q)$	$p \mid [p \land (p \rightarrow q)] \rightarrow p$
T	T	T	T	$/\mathrm{T}$
${ m T}$	F	\mathbf{F}	F	T
F	T	T	F	T
\mathbf{F}	F	T	F	$\backslash \mathrm{T}$
				\ /

Hasil akhirnya berniliai True = Tautologi

p	\boldsymbol{q}	$p \wedge q$	$p \lor q$	$\sim (p \lor q)$	$(p \wedge q)$) ^~	$(p \lor q)$
T	T	T	\mathbf{T}	F		/ F	
T	F	F	${f T}$	\mathbf{F}		\mathbf{F}	
F	T	F	\mathbf{T}	F		F	
F	F	F	\mathbf{F}	T		F/	

Hasil akhirnya bernilai False =Kontradiksi

p	q	r	~p	~q	$\sim p \wedge q$	$q \wedge r$	$(\sim p \land q) \land (q \land r)$	$((\sim p \land q) \land (q \land r)) \lor \sim q$
T	T	T	F	F	\mathbf{F}	T	F	$/\mathrm{F}$
Т	T	F	F	F	\mathbf{F}	F	\mathbf{F}	$\int \mathbf{F}$
T	\mathbf{F}	T	F	T	\mathbf{F}	F	F	T
Т	\mathbf{F}	F	F	T	\mathbf{F}	F	\mathbf{F}	Т
F	T	T	T	F	T	T	T	Т
F	T	F	T	F	${f T}$	F	\mathbf{F}	\mathbf{F}
F	F	T	T	T	\mathbf{F}	F	F	\backslash T
F	F	F	\mathbf{T}	\mathbf{T}	\mathbf{F}	F	\mathbf{F}	ackslash

Hasil akhirnya bernilai F dan T jadi bukan tautology maupun kontradiksi

HUKUM-HUKUM LOGIKA PROPOSISI

1. HKM IDENTITAS

$$i. p \lor F = p$$

 $ii. p \land T = p$

2. HKM NEGASI

i.
$$p \lor \sim p = T$$

ii. $p \land \sim p = F$

3. HKM INVOLUSI

$$i. \backsim (\backsim p) = p$$

4. HKM NULL/DOMINASI

$$i. p \lor T = T$$

 $ii. p \land F = F$

5. HKM KOMUTATIF

i.
$$p \lor q = q \lor p$$

ii. $p \land q = q \land p$

6. HKM DISTRIBUTIF

i.
$$p \lor (q \land r) = (p \lor q) \land (p \lor r)$$

ii. $p \land (q \lor r) = (p \land q) \lor (p \land r)$

7. HKM ASOSIATIF

i.
$$p \lor (q \lor r) = (p \lor q) \lor r$$

ii. $p \land (q \land r) = (p \land q) \land r$

8. HKM IDEMPOTEN

$$i. p \lor F = p$$
$$ii. p \land F = p$$

9. HKM PENYERAPAN

i.
$$p \lor (p \land q) = p$$

ii. $p \land (p \lor q) = p$

10. HKM De MORGAN

$$i. \backsim (p \lor q) = \backsim p \land \backsim q$$
$$ii. \backsim (p \land q) = \backsim p \lor \backsim q$$

LATIHAN 2

Dari pernyatan dibawah ini

p = Anda memiliki pasword yang sah

q = Anda bisa log on ke server

Terjemahkan notasi simbolik dengan kata-kata:

$$a. p \vee q$$

$$b. \sim p \lor (p \land q)$$

$$c. \sim q \longrightarrow p$$

$$c. \sim q \rightarrow \sim p$$

$$d. (p \lor q) \leftrightarrow q$$

2. Dari pernyataan dibawah buatlah inferensi ke dalam modus ponen dan silogisme hipotesis

a = printer merupakan output device

b = mouse merupakan input device

c = I/Odevice merupakan komponen darikomputer

3. Gunakan table kebenaran untuk menunjukkan apakah notasi simbolik dibawah merupakan tautology atau kontradiksi.

a.
$$\sim p \rightarrow (p \rightarrow q)$$

b.
$$[\neg p \land (p \lor q)] \rightarrow q$$

c.
$$(p \land q) \rightarrow (p \rightarrow q)$$