Метод главных компонент

Виктор Китов

victorkitov.github.io

Победитель конкурса VK среди курсов по IT

Курс поддержан фондом 'Интеллект'

Содержание

- 1 Задача снижения размерности
- Применение метода главных компонент
- 3 Разброс распределения признаков
- 4 Подпространство наилучшей аппроксимации
- Построение главных компонент
- 6 Оптимальность главных компонент

Задача снижения размерности

Снижение размерности: трансформация признаков в уменьшенное число признаков, зависящих от всех входных в общем случае.

Применения снижения размерности

Применения снижения размерности:

- Визуализация многомерных данных в 2D или 3D
- Снижение вычислительных ресурсов при обучении и применении
 - процессор, память, хранение на диске, пересылка
- Повышение интерпретируемости модели
 - если извлеченные признаки интерпретируемы
- Повышение устойчивости некоторых методов
 - при линейно-зависимых признаках коэффициенты лин. регрессии не определены

Категоризация методов снижения размерности

- Снижение размерности с учителем/без учителя, линейное/нелинейное
- Метод главных компонент линейный метод снижения размерности без учителя.

Содержание

- Задача снижения размерности
- 2 Применение метода главных компонент
- 3 Разброс распределения признаков
- 4 Подпространство наилучшей аппроксимации
- Построение главных компонент
- 6 Оптимальность главных компонент

Визуализация

Фильтрация данных

Убираем шум из данных¹:

¹X. Huo and Jihong Chen (2002). Local linear projection (LLP). First IEEE Workshop on Genomic Signal Processing and Statistics (GENSIPS).

Применение метода главных компонент

Снижение размерности

Задача идентификации человека по лицу:

Для фото *HxW*: *HW* признаков, переобучение.

Главные компоненты (eigenfaces)

Главные компоненты (eigenfaces).

Проекции на гл. компоненты - информативные признаки.

Анализ текстов

- Объекты текстовые файлы.
- Индикаторные, TF, TF-IDF кодировки приводят в высокому *D*.
 - ullet вычислительно долгая работа с X и настройкой моделей
- Разреженность данных приводит к проблемам:
 - например, задача поиска:
 "ремонт машины" != "обслуживание автомобилей"

Анализ текстов

- Объекты текстовые файлы.
- Индикаторные, TF, TF-IDF кодировки приводят в высокому *D*.
 - ullet вычислительно долгая работа с X и настройкой моделей
- Разреженность данных приводит к проблемам:
 - например, задача поиска:
 "ремонт машины" != "обслуживание автомобилей"
- Снижение размерности РСА позволяет решить эти проблемы.
 - технически-через сокр. сингулярное разложение
 - достаточно 200-300 гл. компонент
 - признаки не центрируются, чтобы не потерять разреженность
 - англ. latent semantic analysis (LSA)

Содержание

- Задача снижения размерности
- Применение метода главных компонент
- 3 Разброс распределения признаков
- 4 Подпространство наилучшей аппроксимации
- 5 Построение главных компонент
- 6 Оптимальность главных компонент

Матрица ковариации

• Матрица ковариации

$$\Sigma = \left\{ cov(x^i, x^j) \right\}_{i,j=1}^D = \left\{ \mathbb{E}\{ (x^i - \mathbb{E} x^i)(x^j - \mathbb{E} x^j) \} \right\}$$

- Из определения $\Sigma = \Sigma^T$.
- Свойства симметричных матриц:
 - все СЗ симметричной матрицы вещественные.
 - существует ортонормированный базис из СВ.

Теорема (Спектральное разложение.)

Любая симметричная $\Sigma \in \mathbb{R}^{D imes D}$ может быть представлена как

$$\Sigma = A \Lambda A^T$$

где $A \in \mathbb{R}^{D \times D}$ - ортогональная матрица, колонки которой $a_1,...a_D$ - CB, а $\Lambda = \operatorname{diag}\{\lambda_1,...\lambda_D\}$ с C3 Σ на диагонали.

Дисперсия распределения вдоль направления

Для случайной величины $x \in \mathbb{R}^D$, $x \sim F(\mu, \Sigma)$, и $\forall b \in \mathbb{R}^D$:

$$var(b^{T}x) = \mathbb{E}\left\{\left(b^{T}x - b^{T}\mu\right)^{2}\right\}$$
$$= \mathbb{E}\left\{\left(b^{T}x - b^{T}\mu\right)\left(x^{T}b - \mu^{T}b\right)\right\}$$
$$= b\mathbb{E}\left\{\left(x - \mu\right)\left(x - \mu\right)^{T}\right\}b = b^{T}\Sigma b$$

Поскольку b - произвольно, то $\Sigma \succeq 0$, т.к. $b^T \Sigma b = var(b^T x) > 0$.

ullet следовательно все C3 \geq 0, т.к. $0\leq a_i^T \Sigma a_i = \lambda_i a_i^T a_i = \lambda_i$

Дисперсия распределения вдоль разных направлений

ullet Для различных $b\in\mathbb{R}^D, \|b\|=1$:

$$b^T x$$
 — проекция на ось b .
 $var(b^T x) = b^T \Sigma b = b^T A \Lambda A^T b =$

$$\forall \mathsf{ar}(b \ x) \equiv b \ \mathsf{Z}b \equiv b \ \mathsf{A}\mathsf{A}\mathsf{A} \ b \equiv$$

$$= \left(\mathsf{\Lambda}^{1/2}\mathsf{A}^\mathsf{T}b\right)^\mathsf{T} \left(\mathsf{\Lambda}^{1/2}\mathsf{A}^\mathsf{T}b\right) = \left\|\mathsf{\Lambda}^{1/2}\mathsf{A}^\mathsf{T}b\right\|^2$$

ullet Интуиция: b oв базис СВ, координаты масштабируются на $\sqrt{\lambda_1},...\sqrt{\lambda_D}$.

Направления максимального разброса

- Упорядочим СВ $a_1, ... a_D$ по убыванию СЗ $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_D \geq 0$.
- $a_1, ... a_D$ называются главными компонентами
 - ullet a_1 направление макс. дисперсии $\mathrm{var}(a_1^Tx)=\lambda_1$
 - $oldsymbol{a}_2$ ортогональное a_1 направление макс. дисперсии $ext{var}(a_2^Tx)=\lambda_2$
 - a_3 ортогональное a_1, a_2 направление макс. дисперсии ${\sf var}(a_3^T x) = \lambda_3$
 -
- Относительный разброс вдоль осей $a_1, ... a_D$:

$$\frac{\lambda_1}{\lambda_1 + \dots + \lambda_D}, \dots \frac{\lambda_D}{\lambda_1 + \dots + \lambda_D}$$

Оценка разброса распределения

Оценим средний разброс сл. вел. $x \sim F(\mu, \Sigma)$:

• используя инвариантность tr и det к смене базиса

$$\frac{1}{D} (\lambda_1 + ... + \lambda_D) = \frac{1}{D} \operatorname{trace} \Lambda = \frac{1}{D} \operatorname{trace} A \Lambda A^T = \frac{1}{D} \operatorname{trace} \Sigma$$

$$\sqrt[D]{\lambda_1 \cdot ... \cdot \lambda_D} = \sqrt[D]{\det \Lambda} = \sqrt[D]{\det A \Lambda A^T} = \sqrt[D]{\det \Sigma}$$

Метод главных компонент

- ullet Отцентрируем признаки $x_n := x_n \mu \ orall n$
- Матрица попарных скалярных произведений признаков:

$$X^TX = N\frac{1}{N}X^TX = N\widehat{\Sigma}$$

- Главные компоненты: $a_1,...a_D$ CB $\widehat{\Sigma}$, отвечающие C3 $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_D \geq 0$.
 - совпадают с CB X^TX , а C3 отличаются в N раз при предварительном центрировании признаков.
- В TF-IDF представлениях текстов признаки не центрируются, т.к. потеряем разреженность.
 - ullet в силу разреженности X в любом случае $\mathbb{E} x^i pprox 0$.
- Метод главных компонент: x oпроекции на $a_1, ... a_K$, K < D.

Содержание

- 1 Задача снижения размерности
- 2 Применение метода главных компонент
- 3 Разброс распределения признаков
- Подпространство наилучшей аппроксимации
 - Определение
 - Оценка качества аппроксимации
 - ullet Проецирование на L_K
- 5 Построение главных компонент
- **6** Оптимальность главных компонент

Метод главных компонент - Виктор Китов Подпространство наилучшей аппроксимации Определение

- Подпространство наилучшей аппроксимации
 - Определение
 - Оценка качества аппроксимации
 - ullet Проецирование на L_K

Подпространство наилучшей аппроксимации

Метод главный компонент находит подпространство наилучшей аппроксимации:

Первые K главных компонент $a_1, a_2, ... a_K$ - ортонормированный базис этого подпространства.

Проекции, ортогональные дополнения

- Для точки x и подпространства L обозначим:
 - р: проекция x on L
 - h: ортогональное дополнение
 - x = p + h, $\langle p, h \rangle = 0$.
- Для обучающей выборки $x_1, x_2, ... x_N$ и подпространства L обозначим:
 - проекции: p₁, p₂, ...p_N
 - ортогональные дополнения: $h_1, h_2, ... h_N$.

Подпространство наилучшей аппроксимации

Рассмотрим K-мерное подпространство - линейную оболочку базиса $v_1, v_2, ... v_K$: $L_K = \mathcal{L}(v_1, v_2, ... v_K)$

Определение 1

Определение

 L_K - подпространство наилучшей аппроксимации для набора точек $x_1, x_2, ... x_N$, если решает задачу

$$\sum_{n=1}^{N} \|h_n\|^2 \to \min_{L: \operatorname{rg} L = K}$$

Предложение 1

 L_K - подпространство наилучшей аппроксимации для набора точек $x_1, x_2, ... x_N$, если решает задачу a .

$$\sum_{n=1}^{N} \|p_n\|^2 \to \max_{L: \operatorname{rg} L = K}$$

 $^{^{}a}$ Докажите, используя $\|x\|^{2}=\|p\|^{2}+\|h\|^{2}$ для x=p+h и $\langle p,h\rangle=0$.

Свойства главных компонент

- *D* главных компонент образуют ортонормированный базис пространства признаков.
- Не инвариантны к сдвигу $x_1, x_2, ... x_D$.
- Не инвариантны к масштабу $x_1, x_2, ... x_D$.
 - рекомендуется центрировать и приводить к одинаковой шкале.
 - не центрируется для текстовых данных:
 - X разреженная, поэтому уже $\bar{x_i} \approx 0$. Сдвиг сделает X не разреженной.

Пример L_1

• Рассмотрим одномерное подпространство наилучшей аппроксимации L_1 :

• В чем отличие от нахождения y = wx в линейной регрессии?

Метод главных компонент - Виктор Китов Подпространство наилучшей аппроксимации Оценка качества аппроксимации

- Подпространство наилучшей аппроксимации
 - Определение
 - Оценка качества аппроксимации
 - ullet Проецирование на L_K

- ullet Величина проекции (со знаком) x на a: $\langle x,a \rangle / \|a\|$
- ullet Т.к. $a_1, a_2, ... a_D$ ОНБ, для любого x

$$x = \langle x, a_1 \rangle a_1 + \langle x, a_2 \rangle a_2 + ... + \langle x, a_D \rangle a_D$$

- ullet Величина проекции (со знаком) x на a: $\langle x,a \rangle / \|a\|$
- Т.к. $a_1, a_2, ... a_D$ ОНБ, для любого x $x = \langle x, a_1 \rangle a_1 + \langle x, a_2 \rangle a_2 + ... + \langle x, a_D \rangle a_D$
- Пусть p^K проекция, а h^K орт. дополнение x на L_K . $p^K = \langle x, a_1 \rangle a_1 + \langle x, a_2 \rangle a_2 + ... + \langle x, a_K \rangle a_K$ $h^K = x p^K = \langle x, a_{K+1} \rangle a_{K+1} + ... + \langle x, a_D \rangle a_D$

- ullet Величина проекции (со знаком) x на a: $\langle x,a \rangle / \|a\|$
- Т.к. $a_1, a_2, ... a_D$ ОНБ, для любого x $x = \langle x, a_1 \rangle a_1 + \langle x, a_2 \rangle a_2 + ... + \langle x, a_D \rangle a_D$
- Пусть p^K проекция, а h^K орт. дополнение x на L_K . $p^K = \langle x, a_1 \rangle a_1 + \langle x, a_2 \rangle a_2 + ... + \langle x, a_K \rangle a_K$ $h^K = x p^K = \langle x, a_{K+1} \rangle a_{K+1} + ... + \langle x, a_D \rangle a_D$
- Рассчитаем квадраты длин x, p^K, h^K : $||x||^2 = \langle x, x \rangle = \langle x, a_1 \rangle^2 + ... + \langle x, a_D \rangle^2$ $||p^K||^2 = \langle p^K, p^K \rangle = \langle x, a_1 \rangle^2 + ... + \langle x, a_K \rangle^2$ $||h^K||^2 = \langle h^K, h^K \rangle = \langle x, a_{K+1} \rangle^2 + ... + \langle x, a_D \rangle^2$

 p_n^K, h_n^K - проекция и ортогональное дополнение x_n для L_K .

$$L(K) = \frac{\sum_{n=1}^{N} \|h_n^K\|^2}{\sum_{n=1}^{N} \|x_n\|^2}, \quad S(K) = \frac{\sum_{n=1}^{N} \|p_n^K\|^2}{\sum_{n=1}^{N} \|x_n\|^2}, \quad L(K) + S(K) = 1$$

Вклад a_k в описание $x: \langle x, a_k \rangle^2$.

Вклад a_k в описание $x_1, x_2, ... x_N$: $\sum_{n=1}^{N} \langle x_n, a_k \rangle^2$

Относительный вклад (explained variance ratio):

$$E(a_k) = \frac{\sum_{n=1}^{N} \langle x_n, a_k \rangle^2}{\sum_{n=1}^{N} \sum_{d=1}^{D} \langle x_n, a_d \rangle^2} = \frac{\sum_{n=1}^{N} \langle x_n, a_k \rangle^2}{\sum_{n=1}^{N} \|x_n\|^2}$$

$$E(a_k) \in [0,1]; \quad \sum_{k=1}^K E(a_k) = S(K)$$

Выбор числа главных компонент

• Визуализация данных: 2 или 3 компоненты.

- Можно брать a_k , пока $E(a_k)$ не упадет резко вниз.
- Или брать по порогу, например

$$K^* = \underset{K}{\operatorname{arg \; min}} \; E(a_K) < 0.01$$

$$K^* = \arg\min_{K} \left\{ S(K) > 0.95 \right\} = \arg\min_{K} \left\{ \sum_{k=1}^{K} E(a_k) > 0.95 \right\}$$

Метод главных компонент - Виктор Китов Подпространство наилучшей аппроксимации Проецирование на L_K

- Подпространство наилучшей аппроксимации
 - Определение
 - Оценка качества аппроксимации
 - ullet Проецирование на L_K

Проецирование на L_K

Расчет p^K по x

 $x \rightarrow y$ (значения проекций x на $a_1,...a_D$):

$$y = A^{T}(x - \mu)$$
 $\mu = \frac{1}{N} \sum_{n=1}^{N} x_{n}, \ A = [a_{1}|a_{2}|...|a_{D}] \in \mathbb{R}^{D \times D}$

Для $A_K = [a_1|a_2|...|a_K] \in \mathbb{R}^{DxK}$, значения проекций на $a_1,...a_K$:

$$y^K = A_K^T(x - \mu)$$

 $x \to p^K$ (вектор проекций в исх. базисе):

$$p^{K} = A \begin{pmatrix} y^{K} \\ 0 \end{pmatrix} + \mu = A_{K}y^{K} + \mu = A_{K}A_{K}^{T}(x - \mu) + \mu$$

Численное нахождение главных компонент

 Определяем вектор средних и станд. отклонений каждого признака:

$$\mu, \sigma \in \mathbb{R}^D$$

• Приводим все признаки к нулевому среднему и единой шкале:

$$x_1,...x_N \rightarrow \frac{x_1 - \mu}{\sigma},...\frac{x_N - \mu}{\sigma}$$

• Формируем матрицу объекты-признаки

$$X = [x_1^T; ... x_N^T]^T \in \mathbb{R}^{N \times D}$$

• Оцениваем выборочную ковариационную матрицу $\in \mathbb{R}^{D \! \! \times \! \! D}$:

$$\widehat{\Sigma} = \frac{1}{N} X^T X$$

Проецирование на L_K

Численное нахождение главных компонент

- По $\widehat{\Sigma}$: находим C3 $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_D \geq 0$ и соответствующие CB $a_1, a_2, ... a_D$.
 - $\widehat{\Sigma} = \widehat{\Sigma}^T$, поэтому существует ОНБ из СВ с вещественными СЗ
 - СЗ $\widehat{\Sigma} \succeq 0$, поэтому все C3 ≥ 0
- ullet $a_1, a_2, ... a_K$ первые K главных компонент, k=1,2,...D.
- Сумма квадратов проекций на а;:

$$||Xa_i||^2 = \sum_{n=1}^N \langle x_n, a_i \rangle^2 = \lambda_i$$

• Доля объясненной информации а;:

$$E(a_i) = \frac{\lambda_i}{\sum_{d=1}^D \lambda_d}$$

Содержание

- 1 Задача снижения размерности
- Применение метода главных компонент
- 3 Разброс распределения признаков
- 4 Подпространство наилучшей аппроксимации
- Построение главных компонент
- 6 Оптимальность главных компонент

Конструктивное определение главных компонент

- ullet $a_1= {
 m arg \; max}_a \left\| Xa
 ight\|^2$, при ограничении $\langle a,a
 angle =1$
- ullet $a_2=rg \max_a \|Xa\|^2$, при ограничениях $\langle a,a
 angle=1,\langle a,a_1
 angle=0$
- $a_3=\arg\max_a\|Xa\|^2$, при ограничениях $\langle a,a\rangle=1,\langle a,a_1\rangle=0,\langle a,a_2\rangle=0$
- ...
- $a_D=\arg\max_a\|Xa\|^2$, при ограничениях $\langle a,a\rangle=1,\langle a,a_1\rangle=0,...\langle a,a_{D-1}\rangle=0$
- $Xa_i = [\langle x_1, a_i \rangle, ... \langle x_N, a_i \rangle]$ вектор координат (проекций) всех объектов вдоль a_i .
- Квадрат нормы через $\langle \cdot, \cdot \rangle$:

$$||b||^2 = b^T b$$
, $||Xa||^2 = (Xa)^T (Xa) = a^T X^T Xa$

Векторные производные некоторых функций²

ullet Рассмотрим $x = [x^1, ... x^D]$ и $f(x) = f(x^1, ... x^D)$. Векторная производная

$$\frac{\partial f(x)}{\partial x} := \begin{pmatrix} \frac{\partial f(x)}{\partial x^1} \\ \frac{\partial f(x)}{\partial x^2} \\ \cdots \\ \frac{\partial f(x)}{\partial x^D} \end{pmatrix}$$

ullet Для любых $x,b\in\mathbb{R}^D$:

$$\frac{\partial [b^T x]}{\partial x} = b, \quad \frac{\partial [x^T x]}{\partial x} = 2x$$

ullet Для любых $x \in \mathbb{R}^D$ и симметричной $B \in \mathbb{R}^{D \! imes \! D}$:

$$\frac{\partial [x^T B x]}{\partial x} = 2Bx$$

 $^{^2}$ Докажите их формулу. Как изменится формула для несимметричной B? $^{35/48}$

Вычисление 1-й главной компоненты

$$\begin{cases} \|Xa_1\|^2 \to \mathsf{max}_{a_1} \\ \|a_1\| = 1 \end{cases} \tag{1}$$

Лагранжиан оптимизационной задачи (1):

$$L(a_1, \mu) = a_1^T X^T X a_1 - \mu(a_1^T a_1 - 1) o \operatorname{extr}_{a_1, \mu}$$

$$\frac{\partial L}{\partial a_1} = 2X^T X a_1 - 2\mu a_1 = 0$$

поэтому a_1 - один из CB матрицы X^TX .

Вычисление 1-й главной компоненты

Поскольку мы ищем $\left\|Xa_1\right\|^2 o \mathsf{max}_{a_1}$ и

$$||Xa_1||^2 = (Xa_1)^T Xa_1 = a_1^T X^T Xa_1 = \lambda a_1^T a_1 = \lambda$$

 a_1 должен быть CB, отвечающим максимальному C3 λ_1 .

Если существует несколько СВ для λ_1 , выберем любой единичной нормы.

Вычисление 2-й главной компоненты

$$\begin{cases} \|Xa_2\|^2 \to \max_{a_2} \\ \|a_2\| = 1 \\ a_2^T a_1 = 0 \end{cases}$$
 (2)

Лагранжиан оптимизационной задачи (2):

$$L(a_2, \mu) = a_2^T X^T X a_2 - \mu(a_2^T a_2 - 1) - \alpha a_1^T a_2 \to \text{extr}_{a_2, \mu, \alpha}$$

$$\frac{\partial L}{\partial a_2} = 2X^T X a_2 - 2\mu a_2 - \alpha a_1 = 0 \tag{3}$$

Вычисление 2-й главной компоненты

Домножая на a_1^T слева, получим:

$$a_1^T \frac{\partial L}{\partial a_1} = 2a_1^T X^T X a_2 - 2\mu a_1^T a_2 - \alpha a_1^T a_1 = 0$$
 (4)

т.к.
$$\langle a_2, a_1 \rangle = 0$$
: $2\mu a_1^T a_2 = 0$

Поскольку $a_1^T X^T X a_2 \in \mathbb{R}$ и a_1 - CB $X^T X$:

$$a_1^T X^T X a_2 = (a_1^T X^T X a_2)^T = a_2^T X^T X a_1 = \lambda_1 a_2^T a_1 = 0$$

Следовательно (4) упрощается до $\alpha a_1^T a_1 = \alpha = 0$ и (3) становится

$$X^T X a_2 - \mu a_2 = 0$$

Значит a_2 - тоже CB $X^T X$.

Вычисление 2-й главной компоненты

Поскольку мы ищем $\|Xa_2\|^2 o \max_{a_2}$ и

$$||Xa_2||^2 = (Xa_2)^T Xa_2 = a_2^T X^T Xa_2 = \lambda a_2^T a_2 = \lambda$$

 a_2 должен быть CB, отвечающим 2-му максимальному C3 λ_2 .

Если существует несколько CB для λ_1 , выберем любой, удовлетворяющий (2).

Вычисление к-й главной компоненты

$$\begin{cases} \|Xa_k\|^2 \to \max_{a_k} \\ \|a_k\| = 1 \\ a_k^T a_1 = \dots = a_k^T a_{k-1} = 0 \end{cases}$$
 (5)

Лагранжиан оптимизационной задачи (5):

$$L(a_k, \mu) = a_k^T X^T X a_k - \mu(a_k^T a_k - 1) - \sum_{j=1}^{k-1} \alpha_j a_k^T a_j \to \mathsf{extr}_{a_k, \mu, \alpha_1, \dots \alpha_{k-1}}$$

$$\frac{\partial L}{\partial a_k} = 2X^T X a_k - 2\mu a_k - \sum_{j=1}^{k-1} \alpha_j a_j = 0$$
 (6)

Вычисление к-й главной компоненты

Домножая на a_i^T слева для i=1,2,...k-1 получим:

$$2a_{i}^{T}X^{T}Xa_{k} - 2\mu a_{i}^{T}a_{k} - \alpha_{1}a_{i}^{T}a_{1} - \dots - \alpha_{k-1}a_{i}^{T}a_{k-1} = 0$$
 т.к. $\forall i \neq j \ \langle a_{i}, a_{j} \rangle = 0$: $2\mu a_{i}^{T}a_{k} = 0$, $\alpha_{j}a_{i}^{T}a_{j} = 0 \ \forall i \neq j$ (7)

Поскольку $a_i^T X^T X a_2 \in \mathbb{R}$ и a_i - CB $X^T X$:

$$a_i^T X^T X a_2 = \left(a_i^T X^T X a_k\right)^T = a_k^T X^T X a_i = \lambda_i a_k^T a_i = 0$$

Следовательно (7) упрощается до $\alpha_i a_i^T a_i = \alpha_i = 0$. Выбирая i=1,2,...k-1, получим $\alpha_1=\alpha_2=...=\alpha_{k-1}=0$ и (6) становится

$$X^T X a_k - \mu a_k = 0$$

Значит a_k - тоже CB X^TX .

Вычисление к-й главной компоненты

Поскольку мы ищем $\|Xa_k\|^2 o \mathsf{max}_{a_k}$ и

$$||Xa_{k}||^{2} = (Xa_{k})^{T} Xa_{k} = a_{k}^{T} X^{T} Xa_{k} = \lambda a_{k}^{T} a_{k} = \lambda$$

 a_k должен быть CB, отвечающим k-му максимальному C3 λ_k .

Если существует несколько CB для λ_k , выберем любой, удовлетворяющий (5).

Содержание

- 1 Задача снижения размерности
- Применение метода главных компонент
- 3 Разброс распределения признаков
- 4 Подпространство наилучшей аппроксимации
- Построение главных компонент
- 6 Оптимальность главных компонент

$$\mathcal{L}(a_1, a_2, ...a_K) = \mathcal{L}_K$$

Далее все рассматривается в контексте фиксированной выборки X, L_K - подпространство наилучшей аппроксимации ранга K для X.

Теорема 1

Линейная оболочка главных компонент $a_1, a_2, ... a_K$, рассчитанных по X. Тогда

$$\mathcal{L}(a_1, a_2, ... a_K) = L_K \ \forall K$$

Доказательство: по индукции. Для K=1

$$\begin{cases} \|Xa_1\|^2 \to \mathsf{max}_{a_1} \\ \|a_1\| = 1 \end{cases}$$

$$||Xa_1||^2 = ||\langle x_1, a_1 \rangle, ... \langle x_N, a_1 \rangle||^2 = \sum_{n=1}^N p_n^2 \to \max_{a_1}$$

$$\mathcal{L}(a_1, a_2, ...a_K) = \mathcal{L}_K$$

Предположим, теорема верна для K-1. Рассмотрим оптимальное L_K , dim L=K, для которого мы всегда можем выбрать ОНБ $b_1,b_2,...b_K$ такой, что

$$\begin{cases} ||b_{K}|| = 1 \\ b_{K} \perp a_{1}, b_{K} \perp a_{2}, \dots b_{K} \perp a_{K-1} \end{cases}$$
 (8)

выбирая b_K перпендикулярным проекциям $a_1, a_2, ... a_{K-1}$ на L_K .

$\mathcal{L}\left(a_1,a_2,...a_K ight)$ - подпространство наилучшей аппроксимации

Рассмотрим сумму квадратов проекций:

$$||Xb_1||^2 + ||Xb_2||^2 + ... + ||Xb_{K-1}||^2 + ||Xb_K||^2$$

По предположению индукции $L[a_1,a_2,...a_{K-1}]$ подпространство наилучшей аппроксимации K-1 и $L[b_1,...b_{K-1}]$ - того же ранга, поэтому сумма квадратов проекций не меньше:

$$||Xb_1||^2 + ||Xb_2||^2 + ... + ||Xb_{K-1}||^2 \le ||Xa_1||^2 + ||Xa_2||^2 + ... + ||Xa_{K-1}||^2$$

при этом

$$||Xb_K||^2 \le ||Xa_K||^2$$

т.к. b_K по (8) удовлетворяет (5) а a_K оптимальное решение.

Заключение

- Снижение размерности преобразование признаков с переходом в пространство меньшей размерности.
- Полезно для повышения точности, интерпретируемости и скорости работы моделей.
- Метод главных компонент метод линейного снижения размерности без учителя.
- Первые К главных компонент образуют ОНБ подпространства наилучшей аппроксимации.
 - в среднеквадратичном смысле