Math 321 Lecture 3

Yuchong Pan

January 7, 2019

1 Theorem and Consequences

1.1 Theorem and Proof

Theorem 1. Let (X,d) and (Y,ρ) be metric spaces. Assume that $f_n: X \to Y$ is continuous for $n \ge 1$ and that $f_n \to f$ uniformly on X. Then f is continuous on X.

Proof. Fix $x_0 \in X$ and $\epsilon > 0$. We need to find $\delta = \delta(\epsilon, x_0) > 0$ such that

$$\rho(f(x), f(x_0)) < \epsilon$$

whenever $d(x, x_0) < \delta$.

Given:

$$f_n \xrightarrow{n \to \infty} f \text{ uniformly on } X$$

$$\Leftrightarrow \sup_{x \in X} \rho(f_n(x), f(x)) \xrightarrow{n \to \infty} 0$$

$$\Leftrightarrow \text{ given any } \epsilon > 0, \text{ there exists } N \ge 1 \text{ such that}$$

$$\sup_{x \in X} \rho(f_n(x), f(x)) < \frac{\epsilon}{3} \quad \text{ whenever } n \ge N. \tag{*}$$

Thus, by the triangular inequality applied twice,

$$\rho(f(x), f(x_0)) \le \underbrace{\rho(f(x), f_N(x))}_{(1)} + \underbrace{\rho(f_N(x), f_N(x_0))}_{(2)} + \underbrace{\rho(f_N(x_0), f(x_0))}_{(3)}.$$

Both (1) and (3) are buonded above by $\sup_{y\in X} \rho(f_N(y), f(y))$, which is $<\frac{\epsilon}{3}$ by (*). Therefore,

$$\rho(f(x), f(x_0)) < \frac{2\epsilon}{3} + \underbrace{\rho(f_N(x), f_N(x_0))}_{(2)} < \frac{2\epsilon}{3} + \frac{\epsilon}{3},$$

if we choose $\delta = \delta_N(\epsilon, x_0) > 0$ such that $\rho(f_N(x), f_N(x_0)) < \frac{\epsilon}{3}$ whenever $d(x, x_0) < \delta_N$, by the ϵ - δ definition of the continuity of f_N at $x_0 \in X$.

Example: $k_n(x) = x^n$ is continuous on [0, 1]. Last time, we showed that $k_n \xrightarrow{\text{pointwise}} k$, where

$$k(x) = \begin{cases} 0, & x \neq 1, \\ 1, & x = 1, \end{cases}$$

which is discontinuous.

Math 321 Lecture 3 Yuchong Pan

1.2 Consequences

1. Suppose X = [a, b] and $Y = \mathbb{R}$ or \mathbb{C} . Then Theorem 1 implies that C[a, b] is closed under uniform limits.

That is, any sequence in C[a, b], if it converges uniformly, admits the limit in C[a, b]; i.e., if $\{f_n\} \subseteq C[a, b]$ and $f_n \xrightarrow{n \to \infty} f$ uniformly on C[a, b], then $f \in C[a, b]$.

Note that C[a,b] is closed in $\mathcal{B}[a,b] = \left\{ f : [a,b] \xrightarrow{\text{bounded}} \mathbb{R} \text{ or } \mathbb{C} \right\}$, a metric space with metric $d(f,g) = \sup_{x \in a[a,b]} |f(x) - g(x)|$.

2. C[a, b] is complete.

That is, every Cauchy sequence $\{f_n\} \subseteq C[a,b]$ (i.e., $\sup_{x\in[a,b]} |f_n(x)-f_m(x)| \xrightarrow{n,m\to\infty} 0$) converges.

Step 1: Find a candidate for $\lim_{n\to\infty} f_n$.

Know: $||f_n - f_m||_{\infty} = \sup_{x \in [a,b]} |f_n(x) - f_m(x)| \xrightarrow{n,m \to \infty} 0.$

Fix any $x \in [a, b]$. Then $\{f_n(x)\}$ is a sequence of real (or complex) numbers, of $|f_n(x) - f_m(x)| \le ||f_n - f_m||_{\infty} \xrightarrow{n,m \to \infty} 0$.

Since \mathbb{R} and \mathbb{C} are complete, $\lim_{n\to\infty} f_n(x)$ exists for all $x\in[a,b]$. Set $f(x)=\lim_{n\to\infty} f_n(x)$. Note that f is pointwise convergent so far.

Step 2: We need to show:

i. $f_n \xrightarrow{n \to \infty} f$ uniformly on [a, b], and

ii. $f \in C[a, b]$.

i.

$$\sup_{x \in [a,b]} |f_n(x) - f(x)| = \sup_{x \in [a,b]} \left| f_n(x) - \lim_{m \to \infty} f_m(x) \right|$$

$$= \sup_{x \in [a,b]} \left| \lim_{m \to \infty} (f_n(x) - f_m(x)) \right|$$

$$= \sup_{x \in [a,b]} \lim_{m \to \infty} |f_n(x) - f_m(x)|$$

$$\leq \sup_{x \in [a,b]} \lim_{m \to \infty} |f_n - f_m|_{\infty}$$

$$\text{does not depend on } x$$

$$= \lim_{m \to \infty} ||f_n - f_m||_{\infty}$$

$$< \epsilon,$$

if $n \geq N_{\epsilon}$ (using the fact that $\{f_n\} \subseteq C[a,b]$ is Cauchy).

ii. $f \in C[a, b]$ by Theorem 1.

3. Weierstrass M-test:

Let $\{g_n\} \subseteq \mathcal{B}(X) = \{f : X \xrightarrow{\text{bounded}} \mathbb{R} \text{ or } \mathbb{C} \}$ be such that $\sum_{n=1}^{\infty} ||g_n||_{\infty} < \infty$.

Then $g = \sum_{n=1}^{\infty} g_n$ converges uniformly on X; i.e., $\left\{ S_n(x) = \sum_{n=1}^N g_n(x) : N \ge 1 \right\}$ converges uniformly on X. In addition, $g \in \mathcal{B}(X)$.

Moreover, if $\{g_n\} \subseteq C(X)$, then $g \in C(X)$.