El Recap De Comer

January 21, 2024

1 Real Numbers

1.1 Completeness

Completeness is a property of \mathbb{R} that implies that there are no "gaps" in the real number line. It states that every non-empty set of \mathbb{R} that is bounded has a supremum and an infimum in \mathbb{R} .

1.2 Archimedean Property of \mathbb{R}

It states that $\forall \epsilon > 0, \ \exists \ n \in \mathbb{N} \ni \frac{1}{n} < \epsilon$. This means that there are no infinitesimally small elements in the real line, no matter how small ϵ gets, we will always be able to find an even smaller positive real number in the form $\frac{1}{n}$.

1.3 Boundedness

A set of real numbers is said to be **bounded** if it it bounded above and below. A subset S of $\mathbb R$ is said to be bounded $\iff |s| < \alpha \ \forall \ s \in S \implies -\alpha < s < \alpha \ \forall \ s \in S$.

1.4 Infimum and Supremum

Let S be a subset of \mathbb{R} . S is said to be **bounded above** if there is a real number $\alpha \ni \alpha \geq s \ \forall \ s \in S$. Such a number α is called an **upperbound** of S. S is **bounded below** if $\exists \ \beta \in \mathbb{R} \ni \beta \leq s \ \forall \ s \in S$. β is called a **lowerbound** of set S.

 α is the least upperbound / supremum of $S \iff$:

- $\alpha > s \ \forall \ s \in S$
- given $\epsilon > 0 \exists s \in S \ni \alpha \epsilon < s$

 β is the greatest upperbound / infinum of $S \iff$:

- $\beta < s \ \forall \ s \in S$
- given $\epsilon > 0 \exists s \in S \ni \beta + \epsilon > s$

2 Sequences

2.1 Limits And Convergence

Consider an infinite sequence $(a_n) = a_1, a_2, a_3, ...$ of real numbers. The sequence is said to converge if $\exists L \in \mathbb{R} \ni$ for any given $\epsilon > 0 \exists K \in \mathbb{R} \ni |x_n - L| < \epsilon \forall n \ge K$. In this case, we say that (x_n) has limit L and we write:

$$\lim_{n \to \infty} x_n = L$$

2.2 Example

Using the definition of the limit of a sequence, prove that $\lim_{n\to\infty} (1/n) = 0$.

Proof: Given e > 0, by the Archimedean property of \mathbb{R} , $\exists K \in \mathbb{N} \ni 1/K < \epsilon$. Then, if $n \geq K$, then $1/n \leq 1/K < \epsilon \implies |x_n - 0| = |1/n - 0| = 1/n \leq 1/K < \epsilon$. This proves, by definition, that $\lim_{n \to \infty} \frac{1}{n} = 0$.

2.3 Propositions

- Every convergent sequence is bounded. Thus, if (a_n) is convergent then $\exists \alpha \in \mathbb{R} \ni |a_n| < \alpha \ \forall \ n$.
- Suppose $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$. Then:

$$\lim_{n \to \infty} (a_n + b_n) = a + b$$

$$\forall k \in \mathbb{R}, \lim_{n \to \infty} (k \cdot a_n) = k \cdot a$$

$$\lim_{n \to \infty} (a_n \cdot b_n) = ab$$
if $b \neq 0$,
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}[2pt]$$

- Let (a_n) , (b_n) and (c_n) be sequences satisfying $(a_n) \leq (b_n) \leq (c_n) \forall n > k$, where k is some fixed positive integer. If (a_n) and (c_n) both converge to the same limit l, then (b_n) also converges to l.
- A sequence (a_n) is said to **tend to infinity** $[(a_n) \to \infty]$ if given $K \in \mathbb{R}$, $\exists N \in \mathbb{N} \ni n \geq N \implies a_n > K$.
- The sequence (a_n) is said to **tend to minus infinity** $[(a_n) \to -\infty]$ if given $K \in \mathbb{R}$, $\exists N \in \mathbb{N} \ni n \geq N \implies a_n < K$.

2.4 Monotonic Sequences

Let (x_n) be a sequence of real number. We say that:

- (x_n) is monotonic increasing if $x_{n+1} \ge x_n \ \forall \ n \in \mathbb{N}$.
- (x_n) is monotonic strictly increasing if $x_{n+1} > x_n \ \forall \ n \in \mathbb{N}$.
- (x_n) is monotonic decreasing if $x_{n+1} \leq x_n \ \forall \ n \in \mathbb{N}$.
- (x_n) is monotonic strictly decreasing if $x_{n+1} < x_n \ \forall \ n \in \mathbb{N}$.

2.5 Monotone convergence theorem

If (x_n) is bounded and monotone then:

• if it is bounded above and increasing:

$$\lim_{n \to \infty} x_n = Sup(x_n)$$

• if it is bounded below and decreasing:

$$\lim_{n \to \infty} x_n = Inf(x_n)$$

Proof: Suppose that (x_n) is bounded above and increasing. By the completeness property of \mathbb{R} , $Sup(x_n)$ exists. Let $\alpha = Sup(x_n)$ and $\epsilon > 0$ be arbitrary. Then, by the properties of the supremum, $\exists x_K \ni \alpha - \epsilon < x_K \le \alpha$. Since (x_n) is increasing and α is an upperbound for the range of the sequence, it follows that $x_K \le x_n \le \alpha \ \forall \ n \ge K \implies \alpha - \epsilon < x_n < \alpha + \epsilon \ \forall \ n \ge K \implies -\epsilon < x_n - \alpha < \epsilon \implies |x_n - \alpha| < \epsilon \ \forall \ n \ge K$.

If (x_n) is not bounded and monotone then:

- if it is increasing, then $(x_n) \to \infty$.
- if it is decreasing, then $(x_n) \to -\infty$.

2.6 Subsequences

Let (x_n) be a sequence. A subsequence of (x_n) is a sequence of the form $(x_{n_1}, x_{n_2}, x_{n_3}, ...)$ where $n_1 < n_2 < n_3 < ...$ is a sequence of strictly increasing natural numbers. A subsequence of (x_n) will be denoted by (x_{n_k}) .

2.7 Theorems

Let (x_n) be a sequence.

- if $(x_n) \to L$ then $(x_{n_k}) \to L$.
- if (x_n) has two subsequences converging to distinct limits, (x_n) is divergent.
- if (x_n) has a subsequence that diverges, then (x_n) is divergent.
- if (x_n) is bounded, then (x_{n_k}) is also bounded.
- if (x_n) is monotonic increasing, then (x_{n_k}) is also monotonic increasing.

2.8 Bolzano - Weierstrass theorem

It states that every bounded sequence has a convergent subsequence.