Mediation and Moderation Materials

Brier Gallihugh, M.S.

2024-07-11

Table of contents

Running a Moderation Analysis in R	. 1
Running a Mediation Analysis in R	. 2
Assumptions of Moderation Analyses	. 5
Assumptions of Mediation Analyses	. 5
Using Moderation and Mediation Usings Hayes PROCESS Macro (for R)	. 8
A Moderation Example Using Hayes PROCESS Macro	. 8
A Mediation Example Using Hayes PROCESS Macro	10

```
set.seed(10311993)
library(mediation)
library(psych)
library(tidyverse)

# Created Toy Data Set
# Variance Covariance
sigma <- rbind(c(1,-0.4,-0.3), c(-0.4,1, 0.7), c(-0.3,0.7,1))
# Variable Mean
mu <- c(7, 50, 7)
# Generate the Multivariate Normal Distribution
df <- as.data.frame(mvrnorm(n=100, mu=mu, Sigma=sigma))
df <- round(df,0)
colnames(df) <- c("mediator1","outcome","predictor")
df$condition <- rep(1:2,50)</pre>
```

Running a Moderation Analysis in R

```
moderation <- lm(outcome ~ condition*predictor, data = df)
summary(moderation)</pre>
```

Line 1

Create a mediation object using the lm() function. The condition*predictor syntax gets you both the main effects of condition and predictor as well as the interaction effect between the two

Line 2

Show a summary of the moderation using the summary() function.

```
lm(formula = outcome ~ condition * predictor, data = df)
Residuals:
   Min
          10 Median
                       30
                                Max
-1.79555 -0.56073 -0.05061 0.55043 1.71457
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
              44.85018 1.68125 26.677 < 2e-16 ***
              -0.01414 1.06533 -0.013 0.98943
condition
               predictor
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.8027 on 96 degrees of freedom
Multiple R-squared: 0.5089, Adjusted R-squared: 0.4936
F-statistic: 33.16 on 3 and 96 DF, p-value: 8.49e-15
```

Running a Mediation Analysis in R

```
#Regress M on X
outcomeM_fit <- lm(mediator1 ~ condition, data = df)</pre>
summary(outcomeM_fit)
#Regress Y on M and X
outcomeY_fit <- lm(outcome ~ mediator1 + condition, data = df)</pre>
summary(outcomeY_fit)
#Run Mediation with Bootstrap
outcome fit <- mediation::mediate(outcomeM fit,</pre>
                                    outcomeY fit,
                                    treat = "condition",
                                    mediator = "mediator1",
                                    boot = TRUE,
                                    sims = 5000)
#Summary of Mediation
summary(outcome fit)
#Path Coefficients
plot(outcome_fit)
```

Line 2

Run a regression of the M (mediator) on X using the lm() function

Line 3

Show output of the M on X regression using the summary() function

Line 6

Run a regression of Y on M and X using the lm() function

Line 7

Show output of the Y on M and X regression using the summary() function

Lines 10-15

Run a mediation using the two regressions above. treat is the name of your X condition. mediator is the name of your mediating variable. Setting boot to TRUE will ensure that your mediation is bootstrapped. Lastly, the sims argument tells R how many samples you wish to bootstrap from. Typically you want ~ 5000 or more.

Line 17

For a summary of your mediation, use the summary() function. The indirect effect is labeled ACME

Line 20

The plot() function here will give you a graphical representation of the output above with respect to the range of the confidence interval for each metric. Please note by default this is the 95% confidence interval


```
Call:
lm(formula = mediator1 ~ condition, data = df)
Residuals:
  Min
         10 Median
                    30
-2.860 -0.755 0.140 1.140 2.280
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.0000 0.3412 20.515 <2e-16 ***
condition -0.1400
                       0.2158 -0.649
                                       0.518
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.079 on 98 degrees of freedom
Multiple R-squared: 0.004276, Adjusted R-squared: -0.005884
F-statistic: 0.4209 on 1 and 98 DF, p-value: 0.518
Call:
lm(formula = outcome ~ mediator1 + condition, data = df)
Residuals:
   Min
          10 Median
                         30
                                 Max
-2.2245 -0.5522 -0.0769 0.4724 3.4724
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 53.53460  0.74376  71.979  < 2e-16 ***
mediator1 -0.45066 0.09569 -4.709 8.28e-06 ***
condition -0.30309 0.20487 -1.479 0.142
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.022 on 97 degrees of freedom
Multiple R-squared: 0.1954, Adjusted R-squared: 0.1788
F-statistic: 11.78 on 2 and 97 DF, p-value: 2.634e-05
Causal Mediation Analysis
Nonparametric Bootstrap Confidence Intervals with the Percentile Method
              Estimate 95% CI Lower 95% CI Upper p-value
ACME
               0.0631
                         -0.1217
                                         0.29
                                                 0.52
ADE
              -0.3031
                                         0.08
                                                 0.12
                          -0.7098
Total Effect
              -0.2400
                          -0.6849
                                          0.19
                                                 0.28
```

```
Prop. Mediated -0.2629 -6.0955 4.66 0.76

Sample Size Used: 100

Simulations: 5000
```

Assumptions of Moderation Analyses

```
# Residual Normality
shapiro.test(residuals(moderation))

# Multicollinearity
car::vif(moderation, type = c("predictor"))

# Independence of Errors
car::durbinWatsonTest(moderation)
```

Line 2

Test of the residual normality of the moderation using the shapiro.test() function

Line 5

Test of the multicollinearity of the moderation analyses using the vif() function in the car package. Because there is an interaction, you must specify an additional argument of type = c("predictor") to properly account for the interaction effect.

Line 8

To test the independence of errors assumption, you can do so using the durbinWatsonTest() function from the car package.

```
Shapiro-Wilk normality test

data: residuals(moderation)
W = 0.98684, p-value = 0.4272

GVIF Df GVIF^(1/(2*Df)) Interacts With Other Predictors
condition 1 3 1 predictor --
predictor 1 3 1 condition --
lag Autocorrelation D-W Statistic p-value
1 -0.02268275 2.029087 0.756
Alternative hypothesis: rho != 0
```

Assumptions of Mediation Analyses

```
# Linearity
plot(lm(outcome ~ predictor, data = df),2)
```

Line 2

To assess multicollinearity, the best course of action is a simple correlation matrix. You can achieve this using the cor() function for a correlation matrix


```
plot(lm(outcome ~ mediator1, data = df),2)
```


Multicollinearity
cor(df)

```
        mediator1
        outcome
        predictor
        condition

        mediator1
        1.00000000
        -0.4210068
        -0.38328907
        -0.06539201

        outcome
        -0.42100683
        1.0000000
        0.71129322
        -0.10692147

        predictor
        -0.38328907
        0.7112932
        1.00000000
        -0.07432941

        condition
        -0.06539201
        -0.1069215
        -0.07432941
        1.00000000
```

Using Moderation and Mediation Usings Hayes PROCESS Macro (for R)

Click on the following link to download the R script for the PROCESS macro for R.

```
source("process.R")
```

A Moderation Example Using Hayes PROCESS Macro

```
process(data = df,
    y = "outcome",
    x = "predictor",
    w = "mediator1",
    model = 1,
    stand = 1)
```

Line 1

Assign your data to the data argument

Line 2

Assign your outcome variable to the y argument

Line 3

Assign your predictor variable to the x argument

Line 4

Assign your moderator to the wargument

Line 5

Set your model argument to 1 for simple moderation

Line 6

The stand = 1 argument standardizes your output

```
************* PROCESS for R Version 4.3.1 **************
        Written by Andrew F. Hayes, Ph.D. www.afhayes.com
  Documentation available in Hayes (2022). www.guilford.com/p/hayes3
***************************
Model: 1
  Y : outcome
  X : predictor
  W : mediator1
Sample size: 100
***************************
Outcome Variable: outcome
Model Summary:
      R R-sq MSE F df1 df2
   0.7294   0.5320   0.6141   36.3739   3.0000   96.0000
                                                  0.0000
Model:
         coeff se t p LLCI ULCI
constant 47.3198 3.6872 12.8336 0.0000 40.0008 54.6389
predictor 0.5567 0.5256 1.0592 0.2922 -0.4866 1.6001
mediator1 -0.2975 0.5240 -0.5676 0.5716 -1.3377 0.7427
Int_1 0.0169 0.0761 0.2222 0.8246 -0.1341 0.1679
Product terms key:
Int_1 : predictor x mediator1
Test(s) of highest order unconditional interaction(s):
    R2-chng F df1 df2 p
   0.0002 0.0494 1.0000 96.0000 0.8246
X*W
************ ANALYSIS NOTES AND ERRORS *****************
Level of confidence for all confidence intervals in output: 95
NOTE: Standardized coefficients not available for models with moderators.
```

Tip

The Hayes PROCESS for R requires that all data is numeric in nature. As such, ensure that any potential factor variables are numeric prior to running the analyses. A failure to do so will result in PROCESS not running.

A Mediation Example Using Hayes PROCESS Macro

```
process(data = df,
    y = "outcome",
    x = "predictor",
    m = "mediator1",
    model = 4,
    stand = 1,
    boot = 5000)
```

Line 1

Assign your data to the data argument

Line 2

Assign your outcome variable to the y argument

Line 3

Assign your predictor variable to the x argument

Line 4

Assign your mediator to the margument

Line 5

Set your model argument to 4 for simple mediation

Line 6

The stand = 1 argument standardizes your output

Line 7

The boot argument specifies the number of samples you wish to bootstrap

```
Y : outcome
  X : predictor
  M : mediator1
Sample size: 100
Random seed: 818206
*****************************
Outcome Variable: mediator1
Model Summary:
   R R-sq MSE F df1 df2
0.3833 0.1469 0.9975 16.8766 1.0000 98.0000
                                                0.0001
Model:
         coeff se t
                               р
                                       LLCI
                                               ULCI
constant
        9.4738 0.6609 14.3352 0.0000
                                       8.1623 10.7852
predictor -0.3812 0.0928 -4.1081 0.0001 -0.5654 -0.1971
Standardized coefficients:
          coeff
predictor -0.3833
******************************
Outcome Variable: outcome
Model Summary:
            R-sq
                    MSE F df1
                                          df2
       R
   0.7292 0.5317 0.6081 55.0760 2.0000 97.0000
                                                0.0000
Model:
                               р
         coeff
                se t
                                       LLCI ULCI
constant 46.5259 0.9080 51.2386 0.0000 44.7237 48.3281
predictor 0.6722 0.0784 8.5694 0.0000 0.5165 0.8279
mediator1 -0.1824 0.0789 -2.3121
                               0.0229 -0.3389 -0.0258
Standardized coefficients:
         coeff
predictor
         0.6446
mediator1 -0.1740
****************************
Bootstrapping progress:
```

0%

	1%	
 >	1%	
 >	2%	
 >>	2%	
 >>	3%	
 >>	4%	
 >>>	4%	
 >>>	5%	
 >>>	6%	
 >>>>	6%	
 >>>>	7%	
 >>>>	7%	
 >>>>	8%	
 >>>>	9%	
 >>>>>	9%	
 >>>>>	10%	
 >>>>> 	10%	
 >>>>> 	11%	
 >>>>>	12%	
 >>>>>> 	12%	
 >>>>>> 	13%	
 >>>>>> 	14%	
 >>>>>> 	14%	
>>>>>>	15%	

 >>>>>>>	15%
 >>>>>>	16%
 >>>>>> 	17%
 >>>>>> 	17%
 >>>>>> 	18%
 >>>>>> 	19%
 >>>>>> 	19%
 >>>>>>> 	20%
>>>>>>>	20%
 >>>>>>> 	21%
>>>>>>>	22%
 >>>>>>> 	22%
>>>>>>>>	23%
>>>>>>>>	23%
>>>>>>>>	24%
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	25%
>>>>>>>>	25%
>>>>>>>>	26%
 >>>>>>>> 	27%
 >>>>>>>> 	27%
 >>>>>>>> 	28%
 >>>>>>>> 	28%
 >>>>>>>> 	29%
 >>>>>>>>>>>>	30%

>>>>>>>>>	I	30%
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1	31%
>>>>>>>>>>	1	31%
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1	32%
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Ī	33%
>>>>>>>>	I	33%
>>>>>>>	I	34%
>>>>>>>>>	I	35%
>>>>>>>>	I	35%
>>>>>>>>>	I	36%
>>>>>>>>>>	1	36%
>>>>>>>>>>	1	37%
>>>>>>>>>>	1	38%
>>>>>>>>	1	38%
>>>>>>>>	1	39%
>>>>>>>>>	I	40%
>>>>>>>>>	I	40%
>>>>>>>>>	I	41%
>>>>>>>>>	1	41%
>>>>>>>>	I	42%
>>>>>>	I	43%
>>>>>>>>	I	43%
>>>>>>	I	44%
>>>>>>>>		44%

 >>>>>>	ı	45%
 >>>>>>>	ı	46%
 >>>>>>	I	46%
 >>>>>>>>	I	47%
 >>>>>>>>>	I	48%
 >>>>>>>>>	ı	48%
 >>>>>>> 	ı	49%
 >>>>>>>> 	ı	49%
 >>>>>>> 	I	50%
 >>>>>>>>> 	I	51%
 >>>>>>> 	I	51%
 >>>>>> 	I	52%
>>>>>>	I	52%
 >>>>>> 		53%
>>>>>> 	I	54%
>>>>>> 	I	54%
>>>>>>>		55%
>>>>>>		56%
>>>>>>	İ	56%
>>>>>> 		57%
>>>>>>> 		57%
>>>>>>> 		58%
>>>>>> 	1	59% 59%
>>>>>>	1	J970

60%			
61%		1	60%
62%	 ->>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	· 	60%
62%	 >>>>>>>	I	61%
53%		I	62%
>>>>>>>>>>> 64%	 >>>>>>>>	I	62%
>>>>>>>>>>>	 >>>>>>>> 	I	63%
	 >>>>>>> 	I	64%
55% >>>>>>>>>>>>>	 >>>>>>> 	I	64%
>>>>>>>>>>>	 >>>>>>>> 	I	65%
	 >>>>>>>> 	I	65%
>>>>>>>>>>>	>>>>>>>> 	I	66%
	>>>>>>> 	I	67%
>>>>>>>>>>>>	>>>>>>> 	I	67%
>>>>>>>>>>>	>>>>>>>> 	I	68%
>>>>>>>>>>	>>>>>>> 	ı	69%
	>>>>>>>> 		
	>>>>>>>> 		
		I	
 >>>>>>> 73%			
	į		

>>>>>>>>> 	I	75%
 >>>>>>>>>>>>>>	1	75%
 >>>>>>>>>> 	1	76%
 >>>>>>>>>> 	1	77%
 >>>>>>>>>>>>	1	77%
 >>>>>>>>>>> 	1	78%
 >>>>>>>>>>>>>>	1	78%
>>>>>>>>>>	1	79%
>>>>>>>>>>>>	1	80%
 >>>>>>>>>>>>>>	1	80%
>>>>>>>>>>	1	81%
>>>>>>>>>>>	1	81%
>>>>>>>>>>>>>>	I	82%
>>>>>>>>>>>>>>	I	83%
>>>>>>>>>>>	I	83%
>>>>>>>>>>>>	1	84%
>>>>>>>>>>>	I	85%
>>>>>>>>>>>>>>	I	85%
>>>>>>>>>>>>>>>>>>	I	86%
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1	86%
>>>>>>>>>>>>>	1	87%
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1	88%
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1	88%
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	I	89%

```
| 90%
| 90%
|>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
                      | 91%
                      | 91%
92%
| 93%
|>>>>>>>>>>>>>>>
                      | 93%
| 94%
                      | 94%
| 95%
| 96%
|>>>>>>> | 96%
|>>>>>>> | 97%
|>>>>>>> | 98%
|>>>>>>> | 98%
|>>>>>>> | 99%
|>>>>>>>>>>> | 99%
|>>>>>>> | 100%
********* OIRECT AND INDIRECT EFFECTS OF X ON Y *************
Direct effect of X on Y:
               LLCI ULCI
 effect
                     c'_cs
    se
         t
 0.6722
    0.0784 8.5694 0.0000 0.5165 0.8279
                      0.6446
Indirect effect(s) of X on Y:
    Effect
       BootSE BootLLCI BootULCI
mediator1
    0.0695
       0.0353
           0.0100
              0.1483
Completely standardized indirect effect(s) of X on Y:
```

Effect BootSE BootLLCI BootULCI mediator1 0.0667 0.0339 0.0097 0.1436

************ ANALYSIS NOTES AND ERRORS **********************

Level of confidence for all confidence intervals in output: 95

Number of bootstraps for percentile bootstrap confidence intervals: 5000