

「工科数学」葵花宝典

高数、线代、概率、复变

作者: sikouhjw、xajzh

组织: 临时组织起来的重排小组

时间: May 17, 2019

版本: 1.00

确实,时 间和空间 是有限的。确实,我们总会有 分开的时候。但是正因为这样, 我们才会努力学习,我们才会 努力前进。我们的信仰是 享受数学。因为"数 学穿越时空"。

 \Diamond

"不论一个人的数学水平有多高,只要对数学拥有一颗真诚的心,他就在自己的心灵上得到了升华。"—SCIbird

目 录

1	声明																			1
2	高等	数学试	卷汇总																	2
	2.1	高数 (-	一) 期中	٠.						 				 				 		2
		2.1.1	复习题	<u> 1</u>						 				 				 		2
		2.1.2	复习题	ī 1 :	答案					 				 				 		3
	2.2	高数 (-	一) 期终	ζ.						 				 				 		5
		2.2.1	复习题	<u> 1</u>						 				 				 		5
		2.2.2	复习题	ī 1 :	答案					 				 				 		5
	2.3	高数 (二) 期中	1.						 				 				 		5
		2.3.1	复习题	<u> 1</u>						 				 				 		5
		2.3.2	复习题	ī 1 :	答案					 				 				 		5
		2.3.3	复习题	Į 2						 				 				 		5
		2.3.4	复习题	Į 2	答案					 				 				 		5
	2.4	高数 (二) 期终	٤.						 				 				 		5
		2.4.1	复习题	<u> 1</u>						 				 				 		5
		2.4.2	复习题	ī 1 :	答案					 				 				 		6
		2.4.3	复习题	<u> 1</u> 2						 				 				 		6
		2.4.4	复习题	ī 2	答案					 				 				 		8
		2.4.5	难度与	考	试近	似的	的是	匢		 								 		8
3	线性	代数试	卷汇总																	11
4	概率	统计试	卷汇总																	12
	4.1	复习题	1							 				 				 		12
	4.2	复习题	1答案							 	•		•	 	•	 •				14
5	复变	函数试:	卷汇总																	17
	5.1	复习题	1							 				 				 		17
	5.2	复习题	1																	12

第1章 声明

本汇总不得用于商业用途,最新版下载地址: Github,不保证题目、答案的正确性,如有错误可通过 QQ 群 1 或者邮箱 2 联系我们

¹⁹⁹¹⁸³²²²⁶

 $^{^{2}489765924@}qq.com$

第2章 高等数学试卷汇总

2.1 高数 (一) 期中

2.1.1 复习题 1

一、选择题

1.	微分方程 $(y')^3 + 3\sqrt{y''}$	+ x ⁴ y''' = sin x 的阶数是		
	(A) 1	(B) 4	(C) 2	(D) 3
2.	设 $f(x, y) = x - y - \sqrt{x^2}$	$\overline{(2+y^2)}$, \emptyset $f_x(3,4) = ($		
	(A) $\frac{3}{5}$	(B) $\frac{2}{5}$	(C) $-\frac{2}{5}$	(D) $\frac{1}{5}$
3.	微分方程 $y' = \frac{y}{x}$ 的一个	、特解是()		
	(A) y = 2x		$(C) y = x^2$	(D) $y = \ln x$
4.	若 $z = \ln \sqrt{1 + x^2 + y^2}$,	则 $dz _{(1,1)} = ($)		
	(A) $\frac{dx + dy}{3}$	(B) $\frac{dx + dy}{2}$	(C) $\frac{dx + dy}{1}$	(D) $3(dx + dy)$
5.	设直线 $L:$ $\begin{cases} x+3y+2x\\2x-y-16 \end{cases}$	z + 1 = 0 $0z + 3 = 0$, 平面 $\eta : 4$.	$x - 2y + z - 2 = 0$, \mathbb{D} ()
		(B) L 平行于 η		
6.	方程 $y' + 3xy = 6x^2y$ 是			
	(A) 二阶微分方程		(B) 非线性微分方程	
	(C) 一阶线性非齐次微。	分方程	(D) 可分离变量的微分	方程
7.		β 平面 $x = y$ 的交线是()	
	(A) 两条直线	(B) 双曲线	(C) 椭圆	(D) 抛物线
8.	设 $z = e^{x^2 y}$,则 $\frac{\partial^2 z}{\partial x \partial y} = ($)		
	(A) $2y(1+x^3)e^{x^2y}$		(B) e^{x^2y}	
	(C) $2x (1 + x^2y) e^{x^2y}$		(D) $2xe^{x^2y}$	
9.	下列结论正确的是()		
	(A) $\vec{a} \times (\vec{b} - \vec{c}) = \vec{a} \times \vec{b}$	$-\vec{a} \times \vec{c}$	(B) 若 $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ 且 \vec{c}	$\vec{a} \neq \vec{0}$,则 $\vec{b} = \vec{c}$
	(C) $\vec{a} \times \vec{b} = \vec{b} \times \vec{a}$		(D) 若 $ \vec{a} = 1$, $ \vec{b} = 1$, $ \vec{b} = 1$	$ \vec{a} \times \vec{b} = 1 $
- 、	填空题			
1.	平面过点 (2,0,0), (0,1,0	0), (0, 0, 0.5), 则该平面的	方程是	
		$q(x)y = f(x)$ 的解, y_2 是		
	是	方程的解		
3.		$ z _{(1,2)} = \underline{\hspace{1cm}}$		
		\overline{z} 面 $x + 2z = 1$ 和 $y - 2z =$		
		$f_y(1,0) = $		

6. $y = e^x$ 是微分方程 y'' + py' + 6y = 0 的一个特解, 则 $p = _____$

2.1 高数 (一) 期中 -3/20-

7. 己知平面 η_1 : $A_1x + B_1y + C_1z + D_1 = 0$ 与平面 η_2 : $A_2x + B_2y + C_2z + D_2 = 0$, 则 $\eta_1 \perp \eta_2$ 的充要条件是

- 8. 微分方程 y" + 2y' + 5y = 0 的通解为 y =______
- 9. 设 $z = e^{xy} + \cos(x^2 + y)$, 则 $\frac{\partial z}{\partial y} =$

三、大题

- 1. 求方程 $\frac{dz}{dx} = -z + 4x$ 的通解
- 2. 求曲线 $2z + 1 = \ln(xy) + e^z$ 在点 $M_0(1, 1, 0)$ 处的切平面和法线方程
- 3. 设由方程组 $\begin{cases} x+y+z=0\\ x^2+y^2+z^2=1 \end{cases}$ 确定了隐函数 x=x(z), y=y(z),求 $\frac{\mathrm{d}x}{\mathrm{d}z}$, $\frac{\mathrm{d}y}{\mathrm{d}z}$
- 5. 设 $z = x^2y + \sin x + \varphi(xy + 1)$, 且 $\varphi(u)$ 具有一阶连续导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$

2.1.2 复习题 1 答案

一、选择题

1.	微分方程 (y')3	$+3\sqrt{y''}$	$+ x^4 y^{\prime\prime\prime\prime} = s$	sin x 的阶数。	是(D)
----	------------	----------------	--	------------	------

(C) 2

(D) 3

- 2. 设 $f(x,y)=x-y-\sqrt{x^2+y^2}$, 则 $f_x(3,4)=($ B)

- $(C) -\frac{2}{5}$
- (D) $\frac{1}{5}$

- 3. 微分方程 $y' = \frac{y}{x}$ 的一个特解是 (A)
- (B) $e^{y} = x$
- (D) $y = \ln x$

4. 若
$$z = \ln \sqrt{1 + x^2 + y^2}$$
,则 $dz|_{(1,1)} = (A)$
(A) $\frac{dx + dy}{3}$ (B) $\frac{dx + dy}{2}$ (C) $\frac{dx + dy}{1}$ (D) $3(dx + dy)$

5. 设直线 $L: \begin{cases} x + 3y + 2z + 1 = 0 \\ 2x - y - 10z + 3 = 0 \end{cases}$,平面 $\eta: 4x - 2y + z - 2 = 0$,则 (C)

- (A) *L* 在 n 上

- (B) L 平行于 η (C) L 垂直于 η (D) L 与 η 斜交
- 6. 方程 $y' + 3xy = 6x^2y$ 是(D)
 - (A) 二阶微分方程

(B) 非线性微分方程

(C) 一阶线性非齐次微分方程

- (D) 可分离变量的微分方程
- 7. 曲面 $\frac{x^2}{9} \frac{y^2}{4} + \frac{z^2}{4} = 1$ 与平面 x = y 的交线是 (B)
 - (A) 两条直线
- (B) 双曲线
- (C) 椭圆
- (D) 抛物线

- 8. 读 $z = e^{x^2y}$,则 $\frac{\partial^2 z}{\partial x \partial y} = (C)$
 - (A) $2y(1+x^3)e^{x^2y}$

(B) e^{x^2y}

(C) $2x(1+x^2y)e^{x^2y}$

(D) $2xe^{x^2y}$

- 9. 下列结论正确的是(A)
 - (A) $\vec{a} \times (\vec{b} \vec{c}) = \vec{a} \times \vec{b} \vec{a} \times \vec{c}$
- (B) 若 $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ 且 $\vec{a} \neq \vec{0}$, 则 $\vec{b} = \vec{c}$

(C) $\vec{a} \times \vec{b} = \vec{b} \times \vec{a}$

(D) 若 $|\vec{a}| = 1$, $|\vec{b}| = 1$, 则 $|\vec{a} \times \vec{b}| = 1$

二、填空题

- 1. 平面过点 (2,0,0), (0,1,0), (0,0,0.5), 则该平面的方程是 $\frac{x}{2} + y + 2z = 1$
- 2. $\forall y_1 \neq y'' + p(x)y' + q(x)y = f(x)$ 的解, $y_2 \neq y'' + p(x)y' + q(x)y = f(x)$ 的解, $y_1 + y_2 \neq y'' + p(x)y' + q(x)y = f(x)$ 是 y'' + p(x)y' + q(x)y = 2f(x) 方程的解
- 3. 设 $z = y \arctan x$, 则 $\operatorname{grad} z|_{(1,2)} = \underline{dx + \frac{\pi}{4} dy}$ 4. 过点 P(0, 2, 4) 且与两平面 x + 2z = 1 和 y 2z = 2 平行的直线方程是 $\underline{x} = \frac{y-2}{2} = \frac{z-4}{1}$
- 5. 设 $f(x, y) = \arcsin \frac{y}{x}$, 则 $f_y(1, 0) = 1$
- 7. 已知平面 η_1 : $A_1x + B_1y + C_1z + D_1 = 0$ 与平面 η_2 : $A_2x + B_2y + C_2z + D_2 = 0$, 则 $\eta_1 \perp \eta_2$ 的充要条件是 $A_1A_2 + B_1B_2 + C_1C_2 = 0$
- 8. 微分方程 y'' + 2y' + 5y = 0 的通解为 $y = C_1 e^{-x} \sin(2x) + C_2 e^{-x} \cos(2x)$
- 9. $\forall z = e^{xy} + \cos(x^2 + y)$, $\iint \frac{\partial z}{\partial y} = \underline{xe^{xy} \sin(x^2 + y)}$

三、大题

1. 求方程 $\frac{dz}{dx} = -z + 4x$ 的通解 解 运用一阶线性非齐次微分方程公式,得

$$z = e^{-\int dx} \left(\int 4x e^{\int dx} dx + C \right) = e^{-x} \left(\int 4x e^{x} dx + C \right)$$
$$= e^{-x} \left(4(x-1)e^{x} + C \right) = 4(x-1) + Ce^{-x}$$

- 2. 求曲线 $2z + 1 = \ln(xy) + e^z$ 在点 $M_0(1, 1, 0)$ 处的切平面和法线方程
- 3. 设由方程组 $\begin{cases} x + y + z = 0 \\ x^2 + y^2 + z^2 = 1 \end{cases}$ 确定了隐函数 x = x(z), y = y(z),求 $\frac{dx}{dz}, \frac{dy}{dz}$ 解 对方程组 $\begin{cases} x + y + z = 0 \\ x^2 + y^2 + z^2 = 1 \end{cases}$ 两式求微分,得

$$\begin{cases} dx + dy + dz = 0 \\ 2x dx + 2y dy + 2z dz = 0 \end{cases}$$

解得

$$\begin{cases} \frac{dx}{dz} = -\frac{x+2z}{2x+z} \\ \frac{dy}{dz} = -\frac{y+2x}{2y+z} \end{cases}$$

4. 求方程 $y'' + 6y' + 13y = e^t$ 的通解

解 方程 $y''+6y'+13y=e^t$ 对应的齐次方程 y''+6y'+13y=0 的特征方程为 $r^2+6r+13=0$,解得 $r = -3 \pm 2i$,那么齐次方程的通解为 $C_1e^{-3t}\sin(2t) + C_2e^{-3t}\cos(2t)$ 设特解为 ae^t , 代入方程 $y'' + 6y' + 13y = e^t$ 后解得 $a = \frac{1}{20}$ 综上, 方程 $y'' + 6y' + 13y = e^t$ 的通解为 $C_1e^{-3t}\sin(2t) + C_2e^{-3t}\cos(2t) + \frac{e^x}{20}$

2.2 高数 (一) 期终 -5/20-

5. 设 $z = x^2y + \sin x + \varphi(xy+1)$, 且 $\varphi(u)$ 具有一阶连续导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 解 $\frac{\partial z}{\partial x} = 2xy + \cos x + y\varphi'(xy+1)$, $\frac{\partial z}{\partial y} = x^2 + x\varphi'(xy+1)$

2.2 高数 (一) 期终

- 2.2.1 复习题 1
- 2.2.2 复习题 1 答案
- 2.3 高数 (二) 期中
- 2.3.1 复习题 1
- 2.3.2 复习题 1 答案
- 2.3.3 复习题 2
- 2.3.4 复习题 2 答案
- 2.4 高数 (二) 期终

2.4.1 复习题 1

一、选择题 (每小题 3 分, 共 24 分)

(A) $\int_L 3yx^2 dx + x^3 dy$

(C) $\int_L 2xy \, dx - x^2 \, dy$

1.	方程 $y'' - 3y' + 2y = e^x$	的待定特解 y* 的一个用	彡式是 y∗ = ()	
	(A) e^x	(B) ax^2e^x	(C) ae^x	(D) axe^x
2.	过点 (3, 1, -2) 且通过直	线 $\frac{x-4}{5} = \frac{y+3}{2} = \frac{z}{1}$ 的平面	方程()	
	(A) $5x + 2y + z - 15 = 0$)	(B) $\frac{x-3}{8} = \frac{y-1}{-9} = \frac{z+2}{-22}$	
	(C) $8x - 9y - 22z - 59 =$	= 0	(D) $\frac{x-3}{5} = \frac{y-1}{2} = \frac{z+2}{1}$	
3.	设 $f(x, y) = \ln\left(x + \frac{y}{2x}\right)$,则 $f_y(1,0) = ($)		
	(A) 1	(B) $\frac{1}{2}$	(C) $\frac{1}{3}$	(D) 0
4.	$D = \{(x, y) 0 \leqslant x \leqslant 1, 0 \leqslant x \leqslant x \leqslant 1, 0 \leqslant x \leqslant$	$0\leqslant y\leqslant 2\}$,利用二重积	\mathbb{R} 分的性质, $\iint_D \frac{1}{\sqrt{x^2+y^2+2x}}$	$\underbrace{\longrightarrow}_{y+16} dx dy$ 的最佳
	估值区间为()		y 30 - 1 y - 1 2 30,	y 1 10
	$(A) \left[\frac{2}{5}, \frac{1}{2} \right]$	(B) $\left[\frac{1}{5}, \frac{1}{2}\right]$	(C) $\left[\frac{2}{5}, 1\right]$	(D) $\left[\frac{1}{2}, 1\right]$
5.	$Ω 曲柱面 x^2 + y^2 = 1$	、平面 $z = 1$ 及三个	坐标面围成的在第一卦队	艮内的闭区域, 则
	$\iiint_{\Omega} xy \mathrm{d}V = ()$			
	(A) $\int_0^{\pi} d\theta \int_0^1 d\rho \int_0^1 \rho^3 \sin^2\theta d\theta$	$\ln \theta \cos \theta dz$	(B) $\int_0^{2\pi} \int_0^1 d\rho \int_0^1 \rho^2 \sin\theta$	$\cos\theta\mathrm{d}z$
	(C) $\int_0^{\frac{\pi}{2}} d\theta \int_0^1 d\rho \int_0^1 \rho^2 \sin^2\theta$	$\sin\theta\cos\theta\mathrm{d}z$	(D) $\int_0^{\frac{\pi}{2}} d\theta \int_0^1 d\rho \int_0^1 \rho^3 \sin^2\theta$	$\ln \theta \cos \theta dz$

(B) $\int_{L} y \, dx - x \, dy$ (D) $\int_{L} 3yx^{2} \, dx + y^{3} \, dy$

6. 设 $L \neq xoy$ 平面上的有向曲线,下列曲线积分中,()是与路径无关的

2.4 高数 (二) 期终 -6/20-

7. 设
$$L$$
 为圆周 $\begin{cases} x = a \cos t \\ y = a \sin t \end{cases}$ $(0 \le t \le 2\pi)$,则 $\oint_L (x^2 + y^2) \, ds = ()$ (A) a^3 (B) πa^3 (C) $2\pi a^3$ (D) $3\pi a^3$ 8. 下列级数中收敛的是 () (A) $\sum_{n=1}^{\infty} \frac{n}{n+1}$ (B) $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n+1}}$ (C) $\sum_{n=1}^{\infty} \frac{1}{2(n+1)}$ (D) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$

二、填空题 (每空 3 分, 共 24 分)

1. 微分方程 $\frac{dy}{dx} = -3y + e^{2x}$ 的通解是 $y = \underline{\hspace{1cm}}$ 2. 平行于 y 轴且通过曲线 $\begin{cases} x^2 + y^2 + 4z^2 = 1 \\ x^2 = y^2 + z^2 \end{cases}$ 的柱面方程是______

3. 设 $z = x^2y + xy^2$, 则 $dz = \underline{\hspace{1cm}}$ 4. $\iint_D y^2 \sin^3 x \, dx \, dy = \underline{\hspace{1cm}}$ (区域 D 为: $-4 \leqslant x \leqslant 4, -1 \leqslant y \leqslant 1$)
5. 设 D 为平面闭区域: $x^2 + y^2 \leqslant 1$, 则 $\iint_D \sqrt{x^2 + y^2} \, dx \, dy$ 化为极坐标系下二次积分的表达

- 8. 级数 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n} x^n$ 的收敛半径为___

三、综合题(请写出求解过程,8小题,共52分)

- 1. 求过点 (2,1,1), 且与直线 $\begin{cases} x-y+3z-7=0\\ 3x+5y-2z+1=0 \end{cases}$ 垂直的平面方程. $(6\,\%)$
- 2. 设 $z = f(e^{x+y}, \sin(xy))$, 且 f 具有一阶连续偏导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$. (6分)
- 3. 计算 $\iint_D (x^2 + y) dx dy$, D 是曲线 $y = x^2, x = y^2$ 围成的闭区域. (8分)
- 4. 计算 $\iiint_{\Omega} (x^2 + y^2) dx dy dz$, 其中 Ω 是由圆锥面 $z^2 = x^2 + y^2$ 及平面 z = 2 围成的闭区域. (6分)
- 5. 计算 $\int_{\Gamma} x^3 dx + 3zy^2 dy x^2y dz$, 其中 Γ 是从点 A(2,2,1) 到原点 O 的直线段 AO. (6分)
- 6. 空间区域 Ω 由开口向下的旋转抛物面 $z = 1 x^2 y^2$ 与平面 z = 0 所围, Ω 的表面取外侧 为 Σ , 利用高斯公式计算 $\iint_{\Sigma} x^2 y z^2 \, dy \, dz - x y^2 z^2 \, dz \, dx + z (1 + x y z) \, dx \, dy$. (8分)
- 7. 判断级数 $\sum_{n=1}^{\infty} \frac{n^e}{e^n}$ 的敛散性. (6分)
- 8. 求幂级数 $\sum_{n=0}^{\infty} (2n+1)x^{2n} (x \in (-1,1))$ 的和函数. (6分)

2.4.2 复习题 1 答案

2.4.3 复习题 2

一、选择题 (每小题 3 分, 共 24 分)

1. 微分方程 $y'' - 6y' + 9y = (6x^2 + 2)e^x$ 的待定特解的一个形式可为() (A) $y^* = (ax^2 + bx + c) e^x$ (B) $y^* = x (ax^2 + bx + c) e^x$ 2.4 高数 (二) 期终 -7/20-

(C)
$$y^* = x^2 (ax^2 + bx + c) e^x$$

(D)
$$y^* = x^2 (x^2 + 1) e^x$$

2. 设向量 \vec{a} 的三个方向角为 α 、 β 、 γ , 且已知 α = 60° 、 β = 120° , 则 γ = ()

(A) 120°

(B)
$$60^{\circ}$$

(C)
$$45^{\circ}$$

(D) 30°

3. 设 $z = \arctan e^{xy}$,则 $\frac{\partial z}{\partial y} = ($)

$$(A) - \frac{xe^{xy}}{\sqrt{1-e^{2xy}}}$$

(B)
$$\frac{xe^{xy}}{\sqrt{1-e^{2xy}}}$$

(C)
$$-\frac{xe^{xy}}{1+e^{2xy}}$$

 $(A) - \frac{xe^{xy}}{\sqrt{1-e^{2xy}}}$ $(B) \frac{xe^{xy}}{\sqrt{1-e^{2xy}}}$ $(C) - \frac{xe^{xy}}{1+e^{2xy}}$ $(D) \frac{xe^{xy}}{1+e^{2xy}}$ 4. D 为平面区域 $x^2 + y^2 \leqslant 4$,利用二重积分的性质, $\iint_D (x^2 + 4y^2 + 9) \, dx \, dy$ 的最佳估值区 间为()

- (A) $[36\pi, 52\pi]$
- (B) $[36\pi, 100\pi]$ (C) $[52\pi, 100\pi]$
- (D) $[9\pi, 25\pi]$

5. 设 $\Omega = \{(x, y, z) | x^2 + y^2 + z^2 \le 2, x \ge 0\}$,则以下等式错误的是()

(A)
$$\iiint_{\Omega} x^2 y \, dv = 0$$

(A)
$$\iiint_{\Omega} x^2 y \, dv = 0$$
 (B) $\iiint_{\Omega} (x + y) \, dv = 0$ (C) $\iiint_{\Omega} z \, dv = 0$ (D) $\iiint_{\Omega} xy \, dv = 0$

(C)
$$\iiint_{\Omega} z \, \mathrm{d}v = 0$$

(D)
$$\iiint_{\Omega} xy \, \mathrm{d}v = 0$$

6. 设 L 为直线 $y = y_0$ 上从点 $A(0, y_0)$ 到点 $B(3, y_0)$ 的有向直线段, 则 $\int_L 2 \, dy = ($)

(A) 6

(B) $6y_0$

(C) $3y_0$

(D) 0

7. Σ 为平面 x+y+z=1 与三坐标面所围区域表面的外侧,则 $\iint_{\Sigma} (2y+3z) \, dy \, dz + (x+2z) \, dz \, dx +$ (y+1) dx dy = ()

(A) 0

(C) $\frac{2}{3}$

(D) $\frac{5}{2}$

8. 交错级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{3^{n-1}}$ ()

(A) 发散

(B) 条件收敛

(C) 绝对收敛

(D) 无法确定

二、填空题 (每空 3 分, 共 24 分)

1. 以 $y_1 = e^x$, $y_2 = xe^x$ 为特解的阶数最低的常系数齐次线性微分方程是______

2. 直线 $L: \begin{cases} x = 3t - 2 \\ y = t + 2 \end{cases}$ 和平面 $\pi: 2x + 3y + 3z - 8 = 0$ 的交点是______

3. 设 $z = xy^3$, 则 dz =_____

6. 设 L 为由三点 (0,0), (3,0), (3,2) 围成的平面区域 D 的正向边界曲线, 由格林公式知 $\int_{\Gamma} (3x -$

三、综合题 (8 小题, 共 52 分)

1. 求方程 $\frac{dy}{dx} = \frac{xy}{1+x^2}$ 的通解. (6分)

2. 设 $z = \ln(x^2 - y)$, 而 $y = \tan x$, 求 $\frac{dz}{dx}$. (6分)

3. 计算 $\iint_D (x^2 + y^2) dx dy$, D 为曲线 $x^2 - 2x + y^2 = 0$, y = 0 围成的在第一象限的闭区域. (

4. 计算三重积分 $\iiint_{\Omega}z\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z$, 其中 Ω 是由圆锥面 $z=\sqrt{x^2+y^2}$ 与球面 $z=\sqrt{2-x^2-y^2}$ 围 成的区域.(6分)

5. 用高斯公式计算 $\iint_{\Sigma} \left(a^2x+x^3\right)\,\mathrm{d}y\,\mathrm{d}z+y^3\,\mathrm{d}z\,\mathrm{d}x+z^3\,\mathrm{d}x\,\mathrm{d}y$, 其中 Σ 为球面 $x^2+y^2+z^2=a^2$

2.4 高数 (二) 期终 -8/20-

,取外侧.(8分)

- 6. 用格林公式计算 $\oint_C x^2 y \, \mathrm{d}x x y^2 \, \mathrm{d}y$, 其中 C 为圆周 $x^2 + y^2 = 4$, 取正向. (8 分)
- 7. 判断级数 $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}(2n-1)}$ 的敛散性. (6分) 8. 在区间 (-1,1) 内求幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n}$ 的和函数 s(x). (6分)

11. 设 L 是平面有向曲线, 下列曲线积分中, () 是与路径无关的

2.4.4 复习题 2 答案

2.4.5 难度与考试近似的题

V	选择题			
1.	微分方程 $y' = p(x)y$ 的:	通解是()		
	(A) $y = e^{\int p(x) dx}$	(B) $y = Ce^{\int -p(x) dx}$	(C) $y = Ce^{\int p(x) dx}$	(D) $y = Cp(x)$
2.	已知曲线 $\begin{cases} x^2 + y^2 + z^2 \\ x + y + z = 0 \end{cases}$	= 2 在 yoz 坐标面上i	的投影曲线为 $\begin{cases} y^2 + yz + x \\ x = 0 \end{cases}$	$-z^2=1$,则 $a=$
	()	(D) 0	(0) 1	(D) 2
2		(B) 0	(C) 1	(D) 2
3.	设 $z = e^y \tan x$, 则 $dz =$		aV	
	(A) $e^y \tan x dx + e^y \sec^2 x$	x dy	(B) $\frac{e^y}{1+x^2} dx + e^y \tan x dy$ (D) $e^y \sec^2 x dx + e^y \tan x$,
	(C) $e^x \tan y dx + e^x \sec^2 y$			x dy
4.	设积分区域 $D: x^2 + y^2$	≤ 4 ,则二重积分 $\iint_D \sqrt{x}$	$x^2 + y^2 \mathrm{d}x \mathrm{d}y = ()$	277 27
	(A) $\int_0^{2\pi} d\theta \int_0^2 \rho^2 d\rho$	(B) $\int_0^{2\pi} d\theta \int_{\rho}^{4\pi} d\rho$	(C) $\int_0^{2\pi} d\theta \int_0^1 \rho^2 d\rho$	(D) $\int_0^{2\pi} d\theta \int_1^2 \rho d\rho$
5.	设 Ω 由圆锥面 $z=1$	$\sqrt{x^2 + y^2} $ 与半由 $z = 0$ 围	成的闭区域,则 $\iiint_{\Omega} z dv$	= ()
	(A) $\int_0^{\pi} d\theta \int_0^1 \rho d\rho \int_0^{1-\rho} z$	z dz	(B) $\int_0^{2\pi} d\theta \int_0^1 d\rho \int_0^{1-\rho} z$	dz
	(C) $\int_0^{\pi} d\theta \int_0^1 d\rho \int_0^{1-\rho} z d\theta$	lz	(D) $\int_0^{2\pi} d\theta \int_0^1 \rho d\rho \int_0^{1-\rho}$	z dz
6.	设 L 为圆周 $\begin{cases} x = a \cos x \\ y = a \sin x \end{cases}$ (A) a^3 L 为平面闭区域: $-1 \le x$	t $(0 \leqslant t \leqslant 2\pi)$,则 \oint_L	$\left(x^2 + y^2\right) \mathrm{d}s = ()$	
	(A) a^3	(B) πa^3	(C) $2\pi a^3$	(D) $3\pi a^3$
7.	L 为平面闭区域: -1 ≤ .	$x \leqslant 1, 0 \leqslant y \leqslant 1$ 的正向是	边界,则 $\int_L \left(\frac{1}{2}y + 3xe^x\right) d$	$4x - \left(\frac{1}{2}x - y\sin y\right) \mathrm{d}y =$
	()		,	()
	(A) -2	(B) 2	(C) -1	(D) 1
8.	设幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的	I收敛半径为 $R(0 < R <$	$+\infty$),则幂级数 $\sum_{n=1}^{\infty} a_n$	$_{i}\left(\frac{x}{2}\right)^{n}$ 的收敛半径
	为()			
	(A) $\frac{R}{2}$	(B) 2 <i>R</i>	(C) R	(D) $\frac{2}{R}$
9.	微分方程 $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2$	$y = xe^{3x}$ 的待定特解 y^*	的一个形式是()	
	(A) $y^* = (ax + b) + ce^{3x}$		(B) $y^* = (ax + b) + cxe^3$	3x
	$(C) y^* = (ax + b)e^{3x}$		$(D) y^* = (ax + b)xe^{3x}$	
10.	过点 (3, 2, -7) 且在三坐	标轴上的截距相等,则出	心平面方程是()	
	(A) $x + y + z + 2 = 0$	(B) $z + y + z - 2 = 0$	(C) $x - y + z - 2 = 0$	(D) $x - y - z - 2 = 0$

2.4 高数 (二) 期终 -9/20-

(A) $\int_{L} (ye^{x} + x^{2} - y) dx + (x + e^{x} - 2y^{2}) dy$ (B) $\int_{L} (\cos x + y) dx + (x + \cos y) dy$ (C) $\int_{L} (\cos x - y) dx + (x + \cos y) dy$ (D) $\int_{L} (\frac{1}{2}y + 3xe^{x}) dx - (\frac{1}{2}x - y\sin y) dy$

12. 设 Σ 是平面 x = 1, y = 1, z = 1 与三个坐标面围成区域的表面, 取外侧, 则曲面积分 $\iint_{\Sigma} 2x \, \mathrm{d}y \, \mathrm{d}z + 2z \, \mathrm{d}z \, \mathrm{d}x + 3y \, \mathrm{d}x \, \mathrm{d}y = ()$

(C)4

(D) 7

13. 级数 $1 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{3}\right)^2 + \dots + \left(\frac{1}{n}\right)^2 + \dots$ 是 ()

(B) 调和级数

(C) p 级数

(D) 等比级数

二、填空题

1. 以 e^x , xe^x 为解的阶数最低的常系数线性齐次微分方程是

2. 过点 A(1, -2, 1) 且以 $\vec{n} = (1, 2, 3)$ 为法向量的平面方程是

3. 设 $z = \sin(x^2 + y)$, 则 $\frac{\partial^2 z}{\partial x \partial y} =$ __

4. 设 D 是圆环形闭区域 $1 \leqslant x^2 + y^2 \leqslant 4$,那么 $\iint_D \sqrt{x^2 + y^2} \, d\sigma =$ _______

6. L 为抛物线 $x = y^2$ 上从点 (1,-1) 到 (1,1) 的一段弧, 则 $\int_L xy \, dy =$ ______

7. $\oint_{\Sigma} (xy+z) \, \mathrm{d}x \, \mathrm{d}y + (xz+y) \, \mathrm{d}x \, \mathrm{d}z + (x+yz) \, \mathrm{d}y \, \mathrm{d}z = ______,$ 其中 Σ 是由六张平 面 x = 1, x = 2, y = 1, y = 2, z = 1, z = 3 围成的六面体的表面, 取内侧

8. 级数 $\frac{1}{3} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{3}} + \dots$ (填收敛或发散)

10. 设 \vec{a} 与轴 \vec{l} 的夹角为 $\frac{\pi}{6}$, 且 $|\vec{a}| = 4$, 则 $Prj_{\vec{l}}\vec{a} =$ ______

11. 设 $f(x,y) = \tan(xy^2)$,则 $f_x(0,2) =$
12. 交换二次积分次序的积分次序后, $\int_1^2 dx \int_{2-x}^{\sqrt{2x-x^2}} f(x,y) dy =$
13. 已知 Ω 是由旋转抛物面 $z = x^2 + y^2$ 与上半球面 $z = \sqrt{2-x^2-y^2}$ 围成的区域,则

 $\iint_{\Omega} xyz \, dx \, dy \, dz = \underline{\qquad}$ 14. 设 Σ 是球面 $x^2 + y^2 + z^2 = 1$,则 $\iint_{\Sigma} (x^2 + y^2 + z^2) \, dS = \underline{\qquad}$ 15. 积分 $\oint_{L} (x^2 - y) \, dx + (y^2 + x) \, dy = \underline{\qquad}$, 其中 L 为圆周 $(x - 1)^2 + y^2 = a^2$ 的正向

三、综合题

1. 求过点 (2,0,-3), 且过直线 $\begin{cases} x-2y+4z-7=0\\ 3x+5y-2z+1=0 \end{cases}$ 垂直的平面方程. (6分)

2. 设 $z = x^y(x > 0)$, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$. (6分)

3. 计算 $\iint_D x^2 y^2 \, \mathrm{d}x \, \mathrm{d}y$, 其中 $D = \{(x,y) | 0 \leqslant x \leqslant 1, 0 \leqslant y \leqslant 1\}$. (6分)

4. 计算 $I = \iiint_{\Omega} (x^2 + y^2) dv$, 其中 Ω 为旋转抛物面 $z = x^2 + y^2$ 与平面 z = 4 所围成的区域. (6分)

5. L 是圆环区域 $D:1\leqslant x^2+y^2\leqslant 4$ 的正向边界曲线, 计算曲线积分 $\oint_L\sqrt{x^2+y^2}\,\mathrm{d}x$ + $\left[xy^2 + y \ln \left(x + \sqrt{x^2 + y^2} \right) \right] dy . (8 \%)$

- 6. 计算 $\iint_{\Sigma} \frac{2}{z} dS$, 其中 Σ 是球面 $x^2 + y^2 + z^2 = 1$ 在平面 $z = \frac{1}{2}$ 上方的部分. (8分)
- 7. 判断级数 $\sum_{n=1}^{\infty} \frac{3^n}{n \cdot 2^n}$ 的敛散性. (6分) 8. 求幂级数 $\sum_{n=0}^{\infty} (n+1)x^n$ 在收敛域 (-1,1) 的和函数 s(x). (6分)

第3章 线性代数试卷汇总

第4章 概率统计试卷汇总

4.1 复习题 1

1生 +又 日五	/信略	211	# 21	11

则 $P \{0 < X < \pi/4, \pi/4 < Y < \pi/2\} =$

- 6. 设随机变量 X 的数学期望 $\mathbb{E}(X) = \mu$,方差 $D(X) = \sigma^2$,则由切比雪夫不等式有 $P\{|X \mu| \ge 3\sigma\} \le$
- 7. 设 X_1, X_2 是取自正态总体 $X \sim N(\mu, \sigma^2)$ 的一个容量为 2 的样本, 则 μ 的无偏估计量 $\hat{\mu}_1 = \frac{1}{2}X_1 + \frac{1}{2}X_2$, $\hat{\mu}_2 = \frac{2}{3}X_1 + \frac{1}{3}X_2$, $\hat{\mu}_3 = \frac{1}{4}X_1 + \frac{3}{4}X_2$ 中最有效的是______

三、解答题 (共 58 分)

- 1. (10 分)车间里有甲、乙、丙 3 台机床生产同一种产品,已知它们的次品率依次是 0.05、0.1、0.2,产品所占份额依次是 20%、30%、50%. 现从产品中任取 1 件,发现它是次品,求次品来自机床乙的概率.
- 2. (10 分) 设随机变量 X 的分布函数为 $F(x) = \begin{cases} k ke^{-x^3}, & x > 0 \\ 0, & x \leq 0 \end{cases}$, 试求:
- (1) 常数 k;
- (2) X 的概率密度 f(x).
- 3. (10分)设二维随机变量(X,Y)的概率密度为:

$$f(x,y) = \begin{cases} \frac{1}{4}, & 2 \leqslant x \leqslant 4, 1 \leqslant y \leqslant 3\\ 0, & 其他 \end{cases},$$

试求 (X,Y) 关于 X 与 Y 的边缘概率密度 $f_X(x)$ 与 $f_Y(y)$, 并判断 X 与 Y 是否相互独立.

- 4. (10 分) 已知红黄两种番茄杂交的第二代结红果的植株与结黄果的植株的比率为 3:1,现种植杂交种 400 株, 试用中心极限定理近似计算, 结红果的植株介于 285 与 315 之间的概率. $\left(\Phi\left(\sqrt{3}\right)=0.9582, \Phi\left(\sqrt{2}\right)=0.9207\right)$
- 5. (8分)设二维随机变量(X,Y)的分布律为

		Y	
X	-1	0	1
-1	<u>1</u> 8	1/8	1/8
0	$\frac{1}{8}$	0	$\frac{1}{8}$
1	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$

求 Cov(X,Y).

6. (10 分) 设 $X_1, X_2, ..., X_n$ 为总体 X 的一个样本, 总体 X 的概率密度为:

$$f(x) = \begin{cases} (\alpha + 1)x^{\alpha}, & 0 < x < 1 \\ 0, & 其他 \end{cases}$$

求未知参数 α 的矩估计.

4.2 复习题 1 答案

(A) $\frac{1}{12}$

一、选择题 (每题 3 分, 共 21 分)

1.	从 0, 1, 2, ,	9 中任意选出 3 个不同的数	[字, 三个数字中不含 0 与	月5的概率是(D)
	(A) $\frac{1}{15}$	(B) $\frac{2}{5}$	(C) $\frac{14}{15}$	(D) $\frac{7}{15}$

(A) $\frac{1}{15}$ (B) $\frac{2}{15}$ (C) $\frac{14}{15}$ (D) $\frac{7}{15}$ 2. 某人射击中靶的概率为 $\frac{3}{4}$. 若射击直到中靶为止, 则射击次数为 3 的概率为 (B) $(A)\left(\frac{3}{4}\right)^3$ (B) $\left(\frac{1}{4}\right)^2 \times \frac{3}{4}$ (C) $\left(\frac{1}{4}\right)^3$ (D) $\left(\frac{3}{4}\right)^2$

3. 设随机变量 X 的概率密度 f(x) 满足 f(-x) = f(x), F(x) 是分布函数, 则 (A)

(A)
$$F(-a) = 1 - F(a)$$
 (B) $F(-a) = \frac{1}{2}F(a)$ (C) $F(-a) = F(a)$ (D) $F(-a) = \frac{1}{2} - F(a)$

(B) $\frac{1}{3}$

4. 设二维随机变量 (X,Y) 的分布律为 $P\{X=i,Y=j\}=c\cdot i\cdot j, i=1,2,3,j=1,2,3,则 c=(C)$

(A)
$$\frac{1}{12}$$
 (B) $\frac{1}{3}$ (C) $\frac{1}{36}$ (D) $\frac{1}{2}$ 5. 设随机变量 X 服从均匀分布, 其概率密度为 $f(x) = \begin{cases} \frac{1}{2}, & 1 < x < 3 \\ 0, & \text{其他} \end{cases}$ (D) $\frac{1}{2}$ (D) $\frac{1}{2}$ (D) $\frac{1}{2}$

6. 设总体 $X \sim N\left(0,\sigma^2\right)$, X_1,X_2,\ldots,X_n 是总体 X 的一个样本, \overline{X},S^2 分别为样本均值和样本 方差,则下列样本函数中,服从 $\chi^2(n)$ 分布的是(D)

(A)
$$\sum_{i=1}^{n} X_{i}^{2}$$
 (B) $\frac{\overline{X}}{S/\sqrt{n-1}}$ (C) $\frac{(n-1)S^{2}}{\sigma^{2}}$ (D) $\frac{1}{\sigma^{2}} \sum_{i=1}^{n} X_{i}^{2}$ 7. 设 $X_{1}, X_{2}, \dots, X_{n}$ 是来自正态总体 $N(\mu, \sigma^{2})$ 的一个样本, σ^{2} 未知, \overline{X} 是样本均值, $S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}$,如果 $\overline{X} - k \frac{S}{\sqrt{n}}$ 是 μ 的置信度为 $1 - \alpha$ 的单侧置信下限,则 k 应取(C) (A) $t_{1-\alpha}(n)$ (B) $t_{\alpha}(n)$ (C) $t_{\alpha}(n-1)$ (D) $t_{\alpha/2}(n-1)$

二、填空题 (每题 3 分, 共 21 分)

- 1. 设 A, B 为随机事件, P(A) = 0.8, P(A B) = 0.3, 则 $P(\overline{AB}) = 0.5$
- 2. 设随机变量 X 的分布律为 $P\{x = k\} = c(0.5)^k, k = 1, 2, 3, ...$,则常数 c = 13. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} 3x^2, & 0 < x < 1 \\ 0, & \text{其他} \end{cases}$ 4. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{c}, & 0 < x < c \\ 0, & \text{其他} \end{cases}$ 4. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{c}, & 0 < x < c \\ 0, & \text{其他} \end{cases}$
- 5. 设二维随机变量 (X,Y) 的概率密度为

$$f(x,y) = \begin{cases} \sin x \cdot \cos y, & 0 < x < \pi/2, \ 0 < y < \pi/2 \\ 0, & \text{#th} \end{cases}$$

则 $P\{0 < X < \pi/4, \pi/4 < Y < \pi/2\} = \left(\frac{2-\sqrt{2}}{2}\right)^2$

6. 设随机变量 X 的数学期望 $\mathbb{E}(X) = \mu$, 方差 $D(X) = \sigma^2$, 则由切比雪夫不等式有 $P\{|X - \mu| \ge$ 3σ $\leq \frac{1}{9}$

7. 设 X_1, X_2 是取自正态总体 $X \sim N(\mu, \sigma^2)$ 的一个容量为 2 的样本, 则 μ 的无偏估计量 $\hat{\mu}_1 = \frac{1}{2}X_1 + \frac{1}{2}X_2$, $\hat{\mu}_2 = \frac{2}{3}X_1 + \frac{1}{3}X_2$, $\hat{\mu}_3 = \frac{1}{4}X_1 + \frac{3}{4}X_2$ 中最有效的是 $\hat{\mu}_1$

三、解答题 (共 58 分)

1. (10分)车间里有甲、乙、丙3台机床生产同一种产品,已知它们的次品率依次是0.05、 0.1、0.2,产品所占份额依次是 20%、30%、50%. 现从产品中任取 1件,发现它是次品, 求次品来自机床乙的概率.

解 设抽取的产品为次品的事件为 A, 抽取的次品来自机床甲的事件为 B_1 , 抽取的次品来 自机床乙的事件为 B_2 ,抽取的次品来自机床丙的事件为 B_3 . 根据全概率公式

$$P(A) = P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + P(A|B_3)P(B_3)$$

= 0.05 \times 0.2 + 0.1 \times 0.3 + 0.2 \times 0.5 = 0.14

根据贝叶斯公式

$$P(B_2|A) = \frac{P(AB_2)}{P(A)} = \frac{P(A|B_2)P(B_2)}{P(A)} = \frac{0.1 \times 0.3}{0.14} = \frac{3}{14}$$

- 2. (10 分) 设随机变量 X 的分布函数为 $F(x) = \begin{cases} k ke^{-x^3}, & x > 0 \\ 0, & x \leqslant 0 \end{cases}$, 试求:
- (1) 常数 k;
- (2) X 的概率密度 f(x).

(1) 根据分布函数的性质 $\lim_{x\to+\infty} F(x) = k = 1$

$$(2) F(x) = \begin{cases} 1 - e^{-x^3}, & x > 0 \\ 0, & x \le 0 \end{cases}, \quad \iiint f(x) = F'(x) = \begin{cases} 3x^2 e^{-x^3}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

3. (10分)设二维随机变量(X,Y)的概率密度为:

$$f(x,y) = \begin{cases} \frac{1}{4}, & 2 \leqslant x \leqslant 4, 1 \leqslant y \leqslant 3\\ 0, & 其他 \end{cases},$$

试求
$$(X,Y)$$
 关于 X 与 Y 的边缘概率密度 $f_X(x)$ 与 $f_Y(y)$,并判断 X 与 Y 是否相互独立.
解 $f_X(x) = \int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}y = \begin{cases} \int_1^3 \frac{1}{4} \, \mathrm{d}y, & 2 \leqslant x \leqslant 4 \\ 0, & \text{其它} \end{cases} = \begin{cases} \frac{1}{2}, & 2 \leqslant x \leqslant 4 \\ 0, & \text{其它} \end{cases}$ 同理 $f_Y(y) = \begin{cases} \frac{1}{2}, & 1 \leqslant y \leqslant 3 \\ 0, & \text{其它} \end{cases}$, $f_X(x) f_Y(y) = \begin{cases} \frac{1}{4}, & 2 \leqslant x \leqslant 4, 1 \leqslant y \leqslant 3 \\ 0, & \text{其它} \end{cases} = f(x,y)$

同理
$$f_Y(y) = \begin{cases} \frac{1}{2}, & 1 \leq y \leq 3\\ 0, & 其它 \end{cases}$$
, $f_X(x)f_Y(y) = \begin{cases} \frac{1}{4}, & 2 \leq x \leq 4, 1 \leq y \leq 3\\ 0, & 其它 \end{cases} = f(x, y)$

因此 X 与 Y 相互独立

4. (10分)已知红黄两种番茄杂交的第二代结红果的植株与结黄果的植株的比率为3:1,现 种植杂交种 400 株, 试用中心极限定理近似计算, 结红果的植株介于 285 与 315 之间的概

率.
$$\left(\Phi\left(\sqrt{3}\right) = 0.9582, \Phi\left(\sqrt{2}\right) = 0.9207\right)$$

解 设结红果的植株的株数为 X, $X \sim B(400, 3/4)$, 则 $\mathbb{E}(X) = 300$, D(X) = 75 根据中心极限定理

$$P(285 \le X \le 315) = P\left(\frac{-15}{\sqrt{75}} \le \frac{X - 300}{\sqrt{75}} \le \frac{15}{\sqrt{75}}\right) = \Phi\left(\sqrt{3}\right) - \Phi\left(-\sqrt{3}\right)$$
$$= 2\Phi\left(\sqrt{3}\right) - 1 = 0.9164$$

5. (8分)设二维随机变量(X,Y)的分布律为

		Y	
X	-1	0	1
-1	1/8	<u>1</u> 8	1/8
0	$\frac{1}{8}$	0	$\frac{1}{8}$
1	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$

求 Cov(X,Y).

解
$$\mathbb{E}(X)=-1 imes rac{3}{8}+1 imes rac{3}{8}=0$$
,同理通过计算得 $\mathbb{E}(Y)=0$, $\mathbb{E}(XY)=0$ 因此 $\mathrm{Cov}(X,Y)=\mathbb{E}(XY)-\mathbb{E}(X)\mathbb{E}(Y)=0$

6. (10 分) 设 $X_1, X_2, ..., X_n$ 为总体 X 的一个样本, 总体 X 的概率密度为:

$$f(x) = \begin{cases} (\alpha+1)x^{\alpha}, & 0 < x < 1 \\ 0, & \text{其他} \end{cases}$$

求未知参数 α 的矩估计.

解
$$\mathbb{E}(X) = \int_0^1 (\alpha+1) x^{\alpha+1} \, \mathrm{d}x = \frac{\alpha+1}{\alpha+2}$$
 , $\mu_1 = \overline{X} = \sum_{i=1}^n \frac{X_i}{n}$, 因此 $\alpha = \frac{2\overline{X}-1}{1-\overline{X}}$

第5章 复变函数试卷汇总

5.1 复习题 1

一、选择题 (每小题 3 分, 共 15 分)

1.
$$\frac{(\sqrt{3}-i)^4}{(1-i)^8} = ($$

(A)
$$-\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

$$(C) \frac{1}{8} \left(-1 + \sqrt{3}i \right)$$

2.
$$\mathfrak{P}(z) = 2x^3 + 3y^3 i$$
, $\mathfrak{P}(z)(z)$

3. 下列等式正确的是()

(A) Ln i =
$$(2k\pi - \frac{\pi}{2})$$
 i, ln i = $\frac{\pi}{2}$ i

(C) Ln i =
$$\left(2k\pi + \frac{\pi}{2}\right)$$
 i, ln i = $\frac{\pi}{2}$ i

4.
$$z = 0$$
 是函数 $\frac{1-\cos z}{z-\sin z}$ 的 ()

 $(B) - \frac{1}{8} \left(1 + \sqrt{3}i \right)$

(D) 仅在 (0,0) 点可导

(D) $-\frac{1}{2} - \frac{\sqrt{3}}{2}i$

(B) Ln i = $(2k\pi + \frac{\pi}{2})$ i, ln i = $-\frac{\pi}{2}$ i

(D) Ln i = $(2k\pi - \frac{\pi}{2})$ i, ln i = $-\frac{\pi}{2}$ i

(B) 仅在 $6x^2 = 9y^2$ 上可导, 处处不解析

5. 设 C 为 z = (1 - i)t, t 从 1 到 0 的一段, 则 $\int_{C} \overline{z} dz = ($)

$$(A) -1$$

$$(C)$$
 $-i$

二、填空题 (每小题 3 分, 共 15 分)

- 1. 若 z + |z| = 2 + i,则 $z = _______$
- 3. 若 $z = 2 \pi i$, 则 $e^z =$
- 4. 若 $f(z) = \cos z^2$, 则 f(z) 在 z = 0 处泰勒展开式中 z^4 项的系数 $a_4 =$
- 5. 函数 $f(t) = \sin t$ 的拉普拉斯变换 F(s) =

三、计算题 (70分)

- 1. 设 u(x, y) = x 2xy 且 f(0) = 0, 求解析函数 f(z) = u + iv. (10分)
- 2. 计算积分 $\oint_C \frac{2e^x}{z^5} dz$ 的值, 其中 C 为正向圆周 |z| = 1. (7分)
- 3. 计算积分 $\oint_{\mathbb{C}} \frac{3z+5}{z^2-z} \, \mathrm{d}z$ 的值, 其中 \mathbb{C} 为正向圆周 $|z| = \frac{1}{2}$. (7分)
- 4. 求函数 $\frac{1-\cos z}{z^3}$ 在有限奇点处的留数. (7分) 5. 求函数 $\frac{2z^2+1}{z^2+2z}$ 在有限奇点处的留数. (7分)
- 6. 将 $f(z) = \frac{z}{(z-2)(z-6)}$ 在 2 < |z| < 6 内展开为洛朗级数. (10 分)
- 7. 若函数 $f(z) = ay^3 + bx^2y + i(x^3 + cxy^2)$ 是复平面上的解析函数, 求 a, b, c 的值. (12 分)
- 8. 利用拉普拉斯变换解常微分方程初值问题: $\begin{cases} x''(t) + 6x'(t) + 9x(t) = \mathrm{e}^{-3t} \\ x(0) = 0, x'(0) = 0 \end{cases}$. (10 分)

5.2 复习题 1 答案

一、选择题 (每小题 3 分, 共 15 分)

1.
$$\frac{(\sqrt{3}-i)^4}{(1-i)^8} = (D)$$

$$(A) - \frac{1}{2} + \frac{\sqrt{3}}{2}i$$

(C)
$$\frac{1}{8}\left(-1+\sqrt{3}i\right)$$

2. 设
$$f(z) = 2x^3 + 3y^3i$$
, 则 $f(z)$ (B)

(C) 处处解析

3. 下列等式正确的是(C)

(A) Ln i =
$$(2k\pi - \frac{\pi}{2})$$
 i, ln i = $\frac{\pi}{2}$ i

(C) Ln i =
$$\left(2k\pi + \frac{\pi}{2}\right)$$
 i, ln i = $\frac{\pi}{2}$ i

4. z = 0 是函数 $\frac{1-\cos z}{z-\sin z}$ 的 (D)

(A) 本性奇点

(B) 可去奇点

(C) 二级极点

 $(B) - \frac{1}{8} \left(1 + \sqrt{3}i \right)$

(D) 仅在 (0,0) 点可导

(D) $-\frac{1}{2} - \frac{\sqrt{3}}{2}i$

(D) 一级极点

5. 设 C 为 z = (1 - i)t, t 从 1 到 0 的一段, 则 $\int_C \overline{z} dz = (A)$

$$(A) -1$$

(B) 1

(C) -i

(D) i

(B) 仅在 $6x^2 = 9y^2$ 上可导, 处处不解析

(B) Ln i = $(2k\pi + \frac{\pi}{2})$ i, ln i = $-\frac{\pi}{2}$ i

(D) Ln i = $(2k\pi - \frac{\pi}{2})$ i, ln i = $-\frac{\pi}{2}$ i

二、填空题 (每小题 3 分, 共 15 分)

- 1. 若 z + |z| = 2 + i,则 $z = \frac{3}{4} + i$ 2. 若 C 为正向圆周 $|z| = \frac{1}{2}$,则 $\oint_C \frac{1}{z-2} dz = 0$
- 3. 若 $z = 2 \pi i$, 则 $e^z = -e^2$
- 4. 若 $f(z) = \cos z^2$, 则 f(z) 在 z = 0 处泰勒展开式中 z^4 项的系数 $a_4 = -\frac{1}{2}$
- 5. 函数 $f(t) = \sin t$ 的拉普拉斯变换 $F(s) = \frac{1}{s^2 + 1}$

三、计算题 (70 分)

1. 设 u(x, y) = x - 2xy 且 f(0) = 0, 求解析函数 f(z) = u + iv. (10分) 解解析函数的 u, v 必定满足 C. - R. 方程, 即

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}$$

 $\frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}=1-2y$, $\frac{\partial v}{\partial y}$ 对 y 积分得 $v=y-y^2+\varphi(x)$ $\frac{\partial u}{\partial y} = -2x = -\frac{\partial v}{\partial x} = -\varphi'(x)$,可以得出 $\varphi(x) = x^2 + C$ 由于 f(0) = 0, 因此 C = 0, 即 $f(z) = x - 2xy + i(y - y^2 + x^2)$

2. 计算积分 $\oint_{\mathbb{C}} \frac{2e^x}{z^5} dz$ 的值, 其中 \mathbb{C} 为正向圆周 |z| = 1. (7分) 解 根据高阶导数公式 $f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} \, \mathrm{d}z$, 那么

$$\oint_C \frac{2e^z}{(z-0)^5} dz = \frac{2\pi i}{4!} (2e^z)^{(4)} \Big|_{z=0} = \frac{\pi i}{6}$$

3. 计算积分 $\oint_{C} \frac{3z+5}{z^2-z} dz$ 的值, 其中 C 为正向圆周 $|z| = \frac{1}{2}$. (7分) **解**

$$\oint_C \frac{3z+5}{z^2-z} dz = 2\pi i \operatorname{Res}_{z=0} \frac{3z+5}{z(z-1)} = 2\pi i \left. \frac{3z+5}{z-1} \right|_{z=0} = -10\pi i$$

4. 求函数 $\frac{1-\cos z}{z^3}$ 在有限奇点处的留数. (7分) 解 对 $\cos z$ 进行洛朗展开, $\cos z = 1 + \sum_{n=1}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$, 那么 $1 - \cos z = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^{2n}}{(2n)!}$ 那么 $\frac{1-\cos z}{z^3} = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^{2n-3}}{(2n)!}$, 根据洛朗系数公式, $\underset{z=0}{\operatorname{Res}} \frac{1-\cos z}{z^3} = c_{-1} = \frac{1}{2}$

5. 求函数 $\frac{2z^2+1}{z^2+2z}$ 在有限奇点处的留数. (7分)

解

$$\operatorname{Res}_{z=0}^{2z^2+1} \left. \frac{2z^2+1}{z^2+2z} = \left. \frac{2z^2+1}{z+2} \right|_{z=0} = \frac{1}{2}, \operatorname{Res}_{z=-2}^{2z^2+1} \left. \frac{2z^2+1}{z^2+2z} = \left. \frac{2z^2+1}{z} \right|_{z=-2} = -\frac{9}{2}$$

6. 将 $f(z) = \frac{z}{(z-2)(z-6)}$ 在 2 < |z| < 6 内展开为洛朗级数. (10 分)解

$$f(z) = \frac{z}{4} \left(\frac{1}{z - 6} - \frac{1}{z - 2} \right) = \frac{z}{4} \left(-\frac{1}{6} \frac{1}{1 - z/6} - \frac{1}{z} \frac{1}{1 - 2/z} \right)$$
$$= \frac{z}{4} \left(-\frac{1}{6} \sum_{n=0}^{\infty} (z/6)^n - \frac{1}{z} \sum_{n=0}^{\infty} (2/z)^n \right)$$
$$= -\frac{1}{4} \left(\sum_{n=0}^{\infty} (z/6)^{n+1} + \sum_{n=0}^{\infty} (2/z)^n \right)$$

7. 若函数 $f(z) = ay^3 + bx^2y + i(x^3 + cxy^2)$ 是复平面上的解析函数, 求 a, b, c 的值. (12 分) 解 若 f(z) 为解析函数,则其实部、虚部满足 C. – R. 方程,设 $u = ay^3 + bx^2y$, $v = x^3 + cxy^2$,则有

$$\begin{cases} \frac{\partial u}{\partial x} = 2bxy = 2cxy = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = 3ay^2 + bx^2 = -3x^2 - cy^2 = -\frac{\partial v}{\partial x} \end{cases}$$

解得

$$\begin{cases} a = 1 \\ b = c = -3 \end{cases}$$

8. 利用拉普拉斯变换解常微分方程初值问题: $\begin{cases} x''(t) + 6x'(t) + 9x(t) = e^{-3t} \\ x(0) = 0, x'(0) = 0 \end{cases}$. (10 分) 解 设 $\mathcal{L}[x] = X(s)$, 对等式两边作拉普拉斯变换

$$\mathcal{L}[x'' + 6x' + 9x] = s^2 X(s) - sx(0) - x'(0) + 6sX(s) - 6x(0) + 9X(s)$$
$$= s^2 X(s) + 6sX(s) + 9X(s) = \frac{1}{s+3}$$

那么有 $X(s) = \frac{1}{(s+3)^3}$,根据拉普拉斯变换的微分性质 $F''(s) = \mathcal{L}[t^2 f(t)]$

$$\frac{1}{(s+3)^3} = \frac{1}{2} \left(\frac{1}{s+3} \right)^{"} = \frac{\mathcal{L}[t^2 e^{-3t}]}{2}$$

那么 $x(t) = \frac{t^2 e^{-3t}}{2}$