Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО" Факультет ПИиКТ

ОТЧЁТ

По лабораторной работе:

Вариант: 20/10

Исследование СМО произвольного вида

По предмету: Моделирование

Студенты: Андрейченко Леонид Вадимович Степанов Михаил Алексеевич Группа Р34301

> Преподаватель: Алиев Тауфик Измайлович

Санкт-Петербург 2023

Цель

Исследование свойств системы, моделируемой в виде замкнутых и разомкнутых сетей массового обслуживания (CeMO) с однородным потоком заявок с применением имитационного моделирования при различных предположениях о параметрах структурно-функциональной организации и нагрузки.

Задачи

Разработка имитационных моделей и проведение модельных экспериментов с целью исследования зависимостей характеристик функционирования от параметров и выявления свойств замкнутых и разомкнутых CeMO, а также сравнительный анализ эффективности разомкнутых и замкнутых CeMO.

Исследования выполняются с применением имитационного моделирования в среде GPSS World.

Выполнение

Исходные данные

Таблица 1. Структурные параметры и количество заявок ЗСеМО.

Вариант	Кол-во	Колич	ество пр	иборов в	узлах	Номер	Тип		
	узлов	У1	У2	У3	У4	узла модели			
20	4	2	1	1	2	2	M2		

Таблица 2. Вероятности передач и средние длительности обслуживания заявок в узлах ЗСеМО.

Вариант	Вероятность передач			Средние длительности обслуживания			
	P10	P12	P13	B 1	B 2	В3	B 4
10	0,2	0,5	0,1	10	12	15,5	25

Рисунок 1. Граф модели.

3CeMO

Описание модели

- Сеть массового обслуживания замкнутая четырехузловая.
- Количество приборов в узлах: узлы 2 и 3 одноканальные, узлы 1 и 4 двухканальные.
- Поток заявок однородный.
- Средние длительности обслуживания заявок в узлах 3CeMO: b1=10, b2=12, b3=15,5, b4=25
- Вероятности передач:

Таблица 3. Матрица вероятностей передач.

	0	1	2	3	4
0		1			
1	0,2		0,5	0,3	
2					1
3					1
4		1			

- Рассчитанные значения коэффициентов передач для узлов сети: $\alpha 1 = 5 \ \alpha 2 = 2,5 \ \alpha 3 = 1,5 \ \alpha 4 = 4$
- Число заявок, циркулирующих в замкнутой СеМО варьируемый параметр, который мы будем изменять в процессе исследования.

Предположения и допущения

- Длительности обслуживания заявок во всех узлах распределены по экспоненциальному закону с интенсивностями $\mu 1 = \frac{1}{b1}$, $\mu 2 = \frac{1}{b2}$, $\mu 3 = \frac{1}{b3}$, $\mu 4 = \frac{1}{b4}$. где b1, b2, b3, b4 средние длительности обслуживания заявок. В некоторых экспериментах будем изменять закон распределения времени обслуживания заявок в узле 2
- Приборы в двухканальных узлах У1 и У4 идентичны, и любая заявка может обслуживаться в любом приборе.
- Заявка после обслуживания в У1 с вероятностью р10 = 0,2 возвращается в тот же узел 1.
- Дуга, выходящая из узла 1 и входящая обратно в этот же узел, рассматривается как внешняя по отношению к СеМО, и на ней выбирается нулевая точка «0».

Разработка имитационной модели

```
Модель ЗСМО
                             Исходные данные
UZEL_1
        STORAGE 2;
UZEL 2
         STORAGE
UZEL_4 STORAGE 4;
         EOU
b3
*Номер генератора для длительноси обслуживания * RN_b EQU 69;
* Параметры гипоэкспоненциального распределения (Эрланга):
k_erl EQU 2; порядок распределения Эрланга
RN_erll EQU 10; номер первого генератора для распределения Эрланга 2-го порядка
         ZQU 20; номер второго генератора для распределения Эрланга 2-го порядка
VARIABLE (Exponential(RN_erl1,0,b2/2))+(Exponential(RN_erl2,0,b2/2)); сл. величина по закону Эрланга 2-го порядка
* Параметры гиперэкспоненциального распределения:
                  91; номер генератора для гиперэкспоненциального распределения 0.2; вероятность выбора первой фазы
                   41.39; мат. ожидание первой фазы гиперэкспоненциального распределения
         EQU 4.65; мат. ожидание второй фазы гиперэкспоненциального распределения
                OTABLE
                                 buf1,0.1,0.1,50;
                  QTABLE buf2,0.1,0.1,50;
QTABLE buf3,0.1,0.1,50;
QTABLE buf4.0.1.0.
TU buf2
TU_buf3
TU buf4
```

```
***********
* В качестве исполняемого оставить только ОДИН оператор GENERATE *
**************************
SUM LEN VARIABLE 0
       INITIAL X$SUM LEN, 0
SUM TIME VARIABLE 0
       INITIAL X$SUM TIME, 0
*GENERATEt a
*GENERATE (Exponential (RN a, 0, t a))
*GENERATE (GetRandomNumberFromFile("numbers.txt"))
*GENERATE(hyper1(RN_H, qq, tt_1, tt_2))
*GENERATEV$Er1 2
GENERATE ,,,9
UI
        OUEUE bufl
        ENTER UZEL 1
        DEPART bufl
        ADVANCE (Exponential(RN_b,0,bl))
        LEAVE UZEL 1
        TRANSFER 0.2,,U_0
        TRANSFER 0.625,,U 2
        TRANSFER ,U 3
U O
        SAVEVALUE SUM LEN, (QA$buf1 + QA$buf2 + QA$buf3 + QA$buf4)
        SAVEVALUE SUM_TIME, (TB$TU_buf1 + TB$TU_buf2 + TB$TU_buf3 + TB$TU_buf4)
        TRANSFER ,U_1
       QUEUE
U 2
              buf2
              UZEL_2
       ENTER
       DEPART buf2
        *ADVANCE (hyperl(RN H, qq, tt 1, tt 2))
        ADVANCE (Exponential(RN_b,0,b2))
        *ADVANCE (V$Er1_2)
        LEAVE UZEL 2
        TRANSFER ,U_4
       OUEUE buf3
U_3
       ENTER UZEL 3
       DEPART buf3
       ADVANCE (Exponential(RN_b,0,b3))
       LEAVE UZEL 3
       TRANSFER ,U_4
U 4
       QUEUE
               buf4
               UZEL 4
       ENTER
       DEPART buf4
        ADVANCE (Exponential(RN b, 0, b4))
        LEAVE UZEL_4
       TRANSFER ,U_1
        GENERATE 1000000
        TERMINATE 1
        START
*****************
* Процедура возвращает значение псевдослучайной величины,
* распределенной по гиперэкспоненциальному закону, в
^{*} соответствии с параметрами распределения qq, tt_1, tt_2. ^{*}
PROCEDURE hyper1(RN_H, qq, tt_1, tt_2) BEGIN
       if (uniform(1,0,1) < qq) then return exponential(RN_H,0,tt_1);
        else return exponential (RN H, 0, tt 2);
END:
```

Проведение имитационных экспериментов

Таблица 4. Зависимость производительности сети от числа циркулирующих в ней заявок

M	1	2	3	4	5	6	7	8	9	10
Произв одител ьность c-1	0,00	0,01	0,01	0,02	0,02	0,02	0,02	0,02	0,02	0,02
%	-	48,83%	27,05%	15,76%	9,16%	5,81%	3,48%	3,39%	1,59%	0,71%

Из данных представленной таблицы видим, что критическое число заявок M^* в нашей сети $M^* = 9$.

Производительность системы в зависимости от количесва заявок

Рисунок 2. График зависимости производительности от заявок.

При найденном критическом числе заявок выявим «узкое место» сети

Таблица 5	Zazmizica	UDTOR CHEMON	ы при критическол	1111070 200001
тиолици 5.	Jucpysku	узлов систем	ы при критическол	и числе зильок.

	У1	У2	У3	У4	Сеть
Загрузка	0,488	0,583	0,452	0,970	2,493

Узким местом в нашей сети является У4, на который всегда прилетают заявки из У2 и У3. Заметим, что среднее время обслуживания заявки в этом узле b4 = 25 самое большое из всех имеющихся в системе. Попробуем уменьшить это значение и посмотрим на результат.

Таблица 6. Результаты устранения узкого места путем уменьшения времени обслуживания заявок.

Характеристики СеМО	b4 = 25	b4 = 20	b4 = 15	b4 = 14	b4 = 13	b4 = 12	b4 = 11	b4 = 10
Длина очереди	5,049	4,796	4,664	4,679	4,709	4,743	4,791	4,86
Время ожидания	77,101	68,244	65,086	65,022	65,763	65,965	66,753	67,749
Время пребывания	96,376	89,1	81,102	78,079	78,563	77,684	77,174	77,814
Производительно сть	0,020	0,023	0,027	0,027	0,028	0,028	0,029	0,029

Как видно из таблицы, при уменьшении среднего времени обслуживания заявок У4, производительность системы увеличивается, в то время как остальные характеристики (длина очереди, время ожидания и время пребывания) изменяются с параболическим характером. Таким образом для оптимизации системы необходимо найти такое значение времени обслуживания, при котором указанные характеристики имеют наименьшее значение. В нашем случае оптимальным временем обслуживания является 15 секунд.

Так как мы имеем замкнутую семо, то мы можем увеличивать время обслуживания до минимума, при этом производительность системы, основная сетевая характеристика 3CeMO, будет расти.

Таблица 7. Загрузка узлов системы при изменении среднего времени обслуживания заявок в У4.

b4	У1	У2	У3	У4	Сеть
b4 = 25	0,488	0,583	0,452	0,97	2,493
b4 = 20	0,571	0,685	0,531	0,923	2,71
b4 = 15	0,663	0,799	0,618	0,796	2,876
b4 = 14	0,678	0,81	0,633	0,761	2,882
b4 = 13	0,69	0,827	0,646	0,719	2,882
b4 = 12	0,705	0,841	0,655	0,675	2,876
b4 = 11	0,713	0,856	0,669	0,629	2,867
b4 = 10	0,72	0,867	0,672	0,58	2,839

Зависимость загрузки от среднего времени обслуживания

Как видно по графику при уменьшении значения времени обслуживания на 4м приборе до значения 15, общая загрузка сети и остальных узлов растет, после данного значения загрузка системы начинает падать, а на остальных узлах очень медленно расти. Эти данные хорошо коррелируют с данными предыдущей таблицы, где видно что после уменьшения времени обслуживания на приборе до 15, такие характеристики как длина очереди, время ожидания начинают расти. Это связано с повышение нагрузки на этих узлах.

Теперь попробуем увеличить число обслуживающих приборов в данном узле.

 Таблица 8. Результаты устранения узкого места путем увеличения количества обслуживающих приборов.

Характеристики СеМО	k4 = 2	k4 = 3	k4 = 4	k4 = 5	k4 = 6
Длина очереди	5,049	3,927	3,559	3,444	3,397
Время ожидания	77,101	57,573	53,609	52,399	51,793
Время пребывания	99,376	78,264	73,282	72,548	71,351
Производительность	0,020	0,025	0,027	0,027	0,028

Как видно из таблицы, данная оптимизация довольно быстро позволила устранить "бутылочное горлышко", причем остальные характеристики системы намного лучше. Выбираем k4 = 4, как оптимальный вариант по соотношению устройств к приросту характеристик.

Таблица 9. Загрузка узлов системы при изменении количества обслуживающих приборов в У4.

b4	У1	У2	У3	У4	Сеть
k4 = 2	0,488	0,583	0,452	0,97	2,493
k4 = 3	0,623	0,745	0,582	0,833	2,728
k4 = 4	0,669	0,804	0,625	0,668	2,766
k4 = 5	0,684	0,823	0,635	0,546	2,688
k4 = 6	0,691	0,824	0,644	0,459	2,618

Как видно по загрузке сети четыре - обслуживающих прибора являются наилучшим выбором

Зависимость загрузки от количесва обслуживающих приборов

Выбираем данный метод как лучший, и будем использовать 4 прибора на 4м устройстве.

Результаты имитационного моделирования

В качестве способа устранения узкого места выберем увеличение количества приборов в узле k4=4.

Результаты имитационного моделирования для 3CeMO. Длительность моделирования 1000000. Количество заявок 9

	3СеМО-экспоненциальная							
Характеристики								
CeMO	У1	У2	У3	У4	Сетевые			
Загрузка	0,669	0,804	0,625	0,668	2,766			
Длина очереди	0,692	1,702	0,781	0,384	3,559			
Время ожидания	5,164	25,482	19,375	3,589	53,610			
Производительность	0,027							

	ЗСеМО-неэкспоненциальная (Эрланг)							
Характеристики	Характеристики Узловые							
CeMO	У1	У2	У3	У4	Сетевые			
Загрузка	0,686	0,818	0,642	0,686	2,832			
Длина очереди	0,711	1,523	0,819	0,373	3,426			
Время ожидания	5,177	22,237	19,835	3,396	50,645			
Производительность	0,028							

	ЗСеМО- неэкспоненциальная (Гиперэкспонента)								
	Узловые								
Характеристики СеМО	У1	Сетевые							
Загрузка	0,615	0,746	0,574	0,617	2,552				
Длина очереди	0,655	2,194	0,685	0,448	3,982				
Время ожидания	5,315	35,605	18,490	4,538	63,948				
Производительность	0,025								

Длина очереди

Время ожидания

Производительность

Представленные результаты моделирования ожидаемо говорят нам о том, что использование распределения Эрланга показывает наилучшие характеристики, так как имеет меньшую степень разброса.

PCeMO

- Сеть массового обслуживания замкнутая четырехузловая.
- Количество приборов в узлах: узлы 2 и 3 одноканальные, узлы 1 и 4 двухканальные.
- Поток заявок однородный.
- Ёмкость накопителей в узлах сети не ограничена, то есть в сети не может быть потери заявок.
- Средние длительности обслуживания заявок в узлах PCeMO: b1=2, b2=5,5, b3=10, b4=12
- Интенсивность поступления заявок $\lambda 0 = 0,027$, тогда среднее время между поступлением заявок a = 37
- Вероятности передач:

Таблица 11. Матрица вероятностей передач.

	0	1	2	3	4
0		1			
1	0,2		0,5	0,3	
2					1
3					1
4		1			

• Рассчитанные значения коэффициентов передач для узлов сети: $\alpha 1 = 5 \ \alpha 2 = 2,5 \ \alpha 3 = 1,5 \ \alpha 4 = 4$

Предположения и допущения

Поступающие в разомкнутую СеМО заявки образуют простейший поток с интенсивностью λ0.

Имитационная модель

```
* Модель РСеМО
* Исходные данные *
UZEL_1
UZEL_2
             STORAGE 2;
STORAGE 1;
UZEL 3
             STORAGE
UZEL_4
             STORAGE
             EQU
b4
             FOU
                           25;
             EQU
                           104;
t_a
*Номер генератора для длительноси обслуживания*
RN b
             EQU
T_U
             TABLE
                           М1,40,40,30; время пребывания в сети
* Параметры гипоэкспоненциального распределения (Эрланга):
             EQU 2; порядок распределения Эрланга
EQU 10; номер первого генератора пля
k_erl
RN_erll
RN_erl2
Erl_2
             10; номер первого генератора для распределения Эрланга 2-го порядка
EQU 20; номер второго генератора для распределения Эрланга 2-го порядка
VARIABLE (Exponential(RN_erl1,0,b2/2))+(Exponential(RN_erl2,0,b2/2)); сл.величина по вакону Эрланга 2-го порядка
             EQU 11; номер первого генератора для распределения Эрланга 2-го порядка
EQU 22; номер второго генератора для распределения Эрланга 2-го порядка
VARIABLE (Exponential(RN_erll1,0,t_a/2))+(Exponential(RN_erl21,0,t_a/2)); сл. величина по закону Эрланга 2-го порядка
* Параметры гиперэкспоненциального распределения:

RN_H EQU 91; номер генератора для гиперэкспоненциального распределения
qq EQU 0.2; вероятность выбора первой фазы
                           41.39; мат. ожидание первой фазы гиперэкспоненциального распределения 4.65; мат. ожидание второй фазы гиперэкспоненциального распределения
                           92; номер генератора для гиперэкспоненциального распределения 0.2; вероятность выбора первой фазы 358.75; мат. ожидание первой фазы гиперэкспоненциального распределения
RN_H1
             EOU
qql
tt_11
tt_21
                            40.31; мат. ожидание второй фазы гиперэкспоненциального распределения
TU_buf1
TU_buf2
TU_buf3
                            QTABLE
                                                    buf1.0.1.0.1.50:
                            QTABLE
QTABLE
                                                    buf2,0.1,0.1,50;
buf3,0.1,0.1,50;
TU_buf4
                            QTABLE buf4,0.1,0.1,50;
```

```
*GENERATE t a
*GENERATE (Exponential(RN b,0,t a))
*GENERATE (GetRandomNumberFromFile("numbers.txt"))
GENERATE (hyperl(RN_H1, qq1, tt_11, tt_21))
*GENERATE V$Erl 1
U 1
         QUEUE
                  bufl
                  UZEL_1
         ENTER
         DEPART bufl
         ADVANCE (Exponential (RN b, 0, bl))
         LEAVE
                   UZEL 1
         TRANSFER 0.2,,U_0
         TRANSFER 0.625,,U_2
TRANSFER ,U_3
U O
         SAVEVALUE SUM LEN, (QA$buf1 + QA$buf2 + QA$buf3 + QA$buf4)
         SAVEVALUE SUM_TIME, (TB$TU_buf1 + TB$TU_buf2 + TB$TU_buf3 + TB$TU_buf4)
         SAVEVALUE SUM_UTIL, ((SR$UZEL 1 + SR$UZEL 2 + SR$UZEL 3 + SR$UZEL 4) / 1000)
         TABULATE T U
         TERMINATE 1
         QUEUE
U 2
         ENTER
                  UZEL 2
                  buf2
         DEPART
         *ADVANCE (hyperl(RN_H, qq, tt_1, tt_2))
*ADVANCE (Exponential(RN_b,0,b2))
         ADVANCE (V$Er1 2)
                  UZEL_2
         LEAVE
         TRANSFER ,U 4
U_3
         QUEUE
                  buf3
         ENTER
                   UZEL 3
         DEPART buf3
         ADVANCE (Exponential (RN b, 0, b3))
         LEAVE
                   UZEL 3
         TRANSFER ,U 4
U 4
         QUEUE
                   buf4
                   UZEL 4
         ENTER
         DEPART buf4
         ADVANCE (Exponential (RN b, 0, b4))
         LEAVE
                   UZEL 4
         TRANSFER ,U_1
                  100000
         START
****************
* Процедура возвращает значение псевдослучайной величины,
* распределенной по гиперэкспоненциальному закону, в
* соответствии с параметрами распределения qq, tt_1, tt_2. *
PROCEDURE hyper1 (RN H, qq, tt 1, tt 2) BEGIN
         if (uniform(1,0,1) < qq) then return exponential(RN H,0,tt 1);
         else return exponential(RN_H,0,tt_2);
END:
```

Проведение имитационных экспериментов

Сравнение с ЗСеМО

Таблица 12. Сравнение характеристик функционирования систем

Характеристики СеМО	3CeMO	PCeMO
Длина очереди	3,426	5,717
Время ожидания	50,645	83,013
Время пребывания	61,776	98,231
Загрузка	2,832	2,786
Число заявок	9	100000

Определение предельной интенсивности поступления заявок, при которой в сети отсутствуют перегрузки

При проведении предыдущего эксперимента в качестве значения интенсивности простейшего потока поступления заявок в сеть мы брали значение производительность 3CeMO , откуда среднее время между поступлением заявок а = 37. Сеть перегружена. Изменяя значение а, определим предельную интенсивность поступления заявок в РСеМО, при которой в сети отсутствуют перегрузки.

Таблица 13. Определение предельной интенсивности.

Среднее время между поступлением заявок	37	45	55	65	80
Длина очереди	5,717	2,342	1,175	0,706	0,381
Время ожидания	83,013	43,02	26,938	19,617	13,463
Время пребывания	98,231	55,28	41,883	32,299	26,474
Число заявок	100000	100000	100000	100000	100000
Загрузка	2,786	2,287	1,881	1,602	1,287
Интенсивность	0,027	0,022	0,018	0,015	0,013

Среднее время между поступлением заявок	37	45	55	65	80	100	102	103	104
Длина очереди	5,717	2,342	1,175	0,706	0,381	0,207	0,203	0,119	0,192
Время ожидания	83,013	43,02	26,938	19,617	13,463	9,403	9,353	9,237	9,068
Время пребывания	98,231	55,28	41,883	32,299	26,474	21,844	21,547	21,322	21,127
Число заявок	100000	100000	100000	100000	100000	100000	100000	100000	100000
Загрузка	2,786	2,287	1,881	1,602	1,287	1,028	1,018	1,009	0,996
Интенсивность	0,027	0,022	0,018	0,015	0,013	0,010	0,010	0,010	0,010

Таким образом, определяем искомое значение среднего времени между поступлением заявок а = 104, откуда интенсивность = 0.009.

Зависимость загрузки от времени между поступлением заявок

Результаты имитационного моделирования

	РСеМО-экспоненциальная							
Характеристики	рактеристики Узловые							
CeMO	У1	Сетевые						
Загрузка	0,241	0,289	0,224	0,242	0,996			
Длина очереди	0,029	0,093	0,065	0,005	0,192			
Время ожидания	0,603	3,845	4,495	0,124	9,067			
Число заявок	499861	249749	150111	399860	1299581			

	РСеМО-детерминированный							
Характеристики	Уарактеристики Узловые							
СеМО	У1	Сетевые						
Загрузка	0,240	0,288	0,223	0,240	0,991			
Длина очереди	0,014	0,063	0,047	0,001	0,125			
Время ожидания	0,285	2,605	3,248	0,019	6,157			
Число заявок	499861	249749	150111	399860	1299581			

	РСеМО-Эрланг							
Характеристики	Узловые Узловые							
CeMO	У1	Сетевые						
Загрузка	0,241	0,289	0,225	0,241	0,996			
Длина очереди	0,021	0,078	0,057	0,002	0,158			
Время ожидания	0,429	3,219	3,914	0,062	7,624			
Число заявок	499861	249749	150111	399860	1299581			

	РСеМО-гиперэкспонента							
Характеристики	арактеристики Узловые							
СеМО	У1	Сетевые						
Загрузка	0,243	0,291	0,226	0,243	1,003			
Длина очереди	0,067	0,167	0,106	0,021	0,361			
Время ожидания	1,382	6,887	7,236	0,551	16,056			
Число заявок	499861	249749	150111	399860	1299581			

Как и ожидалось самые лучшие результаты мы имеем, когда входящий поток заявок детерминированный. Далее идет Эрланг, экспоненциальный, и самый худший для нашей системы - гиперэкспоненциальный.

Выводы

Исследовали свойства системы, моделируемой в виде замкнутых и разомкнутых сетей массового обслуживания (CeMO) с однородным потоком заявок с применением имитационного моделирования при различных предположениях о параметрах структурно-функциональной организации и нагрузки.

Полученные результаты (там где это возможно) схожи с результатами моделирования CeMO - при уменьшении коэффициента вариации в PCeMO производительность увеличивается.

В нашем случае для PCeMO удалось добиться лучших показателей, чем для 3CeMO.

Увеличение количества обрабатывающих приборов для узла, показывает лучшие результаты, чем уменьшение времени обслуживания.

Критическое число заявок равно 9.