Towards automation of operando experiments: A case study in contactless conductivity measurements

P. Kraus,* E. H. Wolf, C. Prinz, G. Bellini, A. Trunschke, and R. Schlögl Supplementary Material

Table of contents

1. Excerpt from an <i>instrument log</i> file.	p. S2
2. Excerpt from a <i>VNA log</i> file.	p. S3
3. Summary of the MCPT data for samples activated in C ₃ -oxidation, stu- Handbook protocol. The full archive, including datagrams, schema file files, and all raw data, is available at DOI: 10.5281/zenodo.5008960	
4. Summary of the MCPT data for other samples studied with the <i>Handb</i> The full archive, including <i>datagrams</i> , <i>schema</i> files, <i>parameter files</i> , and is available at DOI: 10.5281/zenodo.5010992	-
5. Summary of the MCPT data for samples studied with the perovskite purified full archive, including datagrams, schema files, parameter files, and all available at DOI: 10.5281/zenodo.4980210	
6. Piping and instrumentation diagram of the MCPT instrument	p. S6
7. Technical diagram of the MCPT dewar	p. S7
8. Technical diagram of a MCPT reactor	p. S8
9. Illustration of the MCPT dewar/reactor assembly	p. S9

Additional supplemental files and archives in computer-readable form are available on Zenodo, see DOI: 10.5281/zenodo.4783007. An executable version of this archive is available on Binder.

^{*}E-Mail: peter.kraus@curtin.edu.au

7	
T_cal	
flow;	
heater	0.00 0.10 0.00
	0.10202020202020202020202020202020202020
flush;	115; 8 115; 8 11
cav.	
	10.00
flow high;	8 4 4 · · · / · · · 4 · · 0 · 0 0 0 0 0 0 0 0 0 0 0 0
ow; f	## ## ## ## ## ## ## ## ## ## ## ## ##
low l	HO.000000000000000000000000000000000000
.ss.; f	# 0 · 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
pres	bar; ml/min; ml/min; ml/min; l/min; C 0.00;0.00;0.00;1300.6;1.210;0.00;15;8;20. 0.00;0.00;0.00;1299.7;1.210;0.00;15;8;21. 0.00;0.00;0.00;1299.7;1.210;0.00;15;8;21. 0.00;0.00;0.00;1300.3;1.211;0.00;15;8;21. 0.00;0.00;0.00;1300.0;1210;0.00;15;8;20. 0.00;0.00;0.00;1300.0;1210;0.00;15;8;20. 0.00;0.00;0.00;1300.0;1211;0.00;15;8;20. 0.00;0.00;0.00;1299.7;1.211;0.00;15;8;20. 0.00;0.00;0.00;1299.7;1.211;0.00;15;8;20. 0.00;0.00;0.00;1300.0;1211;0.00;15;8;20. 0.00;0.00;0.00;1300.0;1.211;0.00;15;8;48;0.00;0.00;0.00;1300.0;1.211;0.00;15;8;30. 0.00;0.00;0.00;0.00;1300.0;1.211;0.00;15;8;30. 0.00;0.00;0.00;0.00;1300.0;1.211;0.00;15;8;30. 0.00;0.00;0.00;0.00;1300.0;1.211;0.00;15;8;32;7.33;0.00;0.00;1300.0;0.065;0.09;15;832;7.34;0.00;0.00;1300.0;0.065;0.00;15;832;7.34;0.00;0.00;1300.0;0.065;0.00;15;832;7.34;0.00;0.00;1299.7;0.656;0.00;15;832;7.34;0.00;0.00;1299.7;0.656;0.00;15;832;7.34;0.00;0.00;1299.7;0.656;0.00;15;832;7.34;0.00;0.00;1299.7;0.656;0.00;15;8;20.00;0.00;0.00;1299.7;1.211;0.09;15;8;20.00;0.00;0.00;0.00;1299.7;1.211;0.09;15;8;20.00;0.00;0.00;0.00;1299.7;1.211;1.00;15;8;20.00;0.00;0.00;0.00;0.00;1299.7;1.211;1.00;15;8;20.00;0.00;0.00;0.00;0.00;1299.7;1.211;1.00;15;8;20.00;0.00;0.00;0.00;1299.7;1.211;1.00;15;8;20.00;0.00;0.00;0.00;1299.7;1.211;1.00;15;8;20.00;0.00;0.00;0.00;1299.7;1.211;1.00;15;8;20.00;0.00;0.00;0.00;1299.7;1.211;1.00;15;8;20.00;0.00;0.00;0.00;1299.7;1.211;1.00;15;8;20.00;0.00;0.00;0.00;1299.7;1.211;1.00;15;8;20.00;0.00;0.00;0.00;1299.7;1.211;1.00;15;8;20.00;0.00;0.00;0.00;1299.7;1.211;1.00;15;8;20.00;0.00;0.00;0.00;1299.7;1.211;1.00;15;8;20.00;0.00;0.00;0.00;1299.7;1.211;1.00;15;8;20.00;0.00;0.00;0.00;1299.7;1.211;1.00;15;8;20.00;0.00;0.00;0.00;1299.7;1.211;1.00;15;8;20.00;0.00;0.00;0.00;0.00;1299.7;1.211;1.00;15;8;20.00;0.00;0.00;0.00;0.00;1299.7;1.211;1.00;15;8;20.00;0.00;0.00;0.00;0.00;1299.7;1.211;1.00;15;8;20.00;0.00;0.00;0.00;0.00;0.00;0.00;0
sat.;	H O 8 8 8 8 8 4 4 4 4 8 8 8 8 8 8 8
alkane; CO/CO2; sat.; press.; flow low;	/min; ml/min; ml/min; ml/min; ml/min; ml/min; ml/min; ml/min; l/min; l/min; l/min; ml/min; ml/
e; CO,	88 22 28 28 28 28 28 28 28 28 28 28 28 2
alkan	81.66.11 1.1.66.11 14.2.21 1.1.11 15.2.21 1.1.11 16.2.21 1.1.11 17.2.21 1.1.11 18.2.21 1.1.
02;	## ## ## ## ## ## ## ## ## ## ## ## ##
T_co; N2;	
	/min; m1/mi; 21.6;0.0;1;23.6;1.3;1;25.6;9.3;1;27.7;11.8;;33.7;12.0;;33.7;14.7;;33.7.7;14.7;;33.7.7;14.7;;33.7.7;15.4;;33.7.7;15.4;;33.7.7;16.4;0;252.0;48.0;252.0;48.0;252.0;48.0;252.0;48.0;252.0;48.0;252.0;48.0;252.0;48.0;252.0;48.0;252.0;48.0;252.0;48.0;252.0;48.0;252.0;48.0;252.0;48.0;252.0;48.0;252.0;48.0;252.0;48.0;252.0;48.0;252.0;48.0;252.0
T_cs;	н т т т т т т т т т т т т т т т т т т т
T_c;	0 0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
T_fo;	%; m1/min; m1 0h 1m 0s; 22.9 0h 2m 0s; 22.9 0h 3m 1s; 23.1 0h 4m 2s; 26.0 0h 5m 2s; 29.0 0h 6m 3s; 31.1 0h 7m 3s; 33.1 0h 9m 4s; 37.2 0h 10m 5s; 39.2 2h 10m 32s; 252.2 2h 11m 32s; 252.2 2h 16m 34s; 252.2 2h 16m 34s; 256.2 2h 16m 36s; 256.2 2h 16m 34s; 256.2 2h 16m 36s; 26s.2 2h 16m 36s; 423.1 1h 56m 25s; 423.1 1h 56m 26s; 423.1 2h 1m 26s; 285.2 2h 2m 26s; 105.2 2h 2m 26s; 105.2 2h 2m 26s; 105.2 2h 2m 26s; 105.2
T_fs;	4 . 4 4 4 4 4 4 4 4 4 . 0 0 0 0
T_f;	7:37
elapsed;	\(\lambda\); \(C;\lambda\); \(C;\lam
	C;;
timestamp;	; ; C; C; \%; C; C; \%; m1/min; 2019-08-29-16-36-37; 0h 1m 0s; 22 2019-08-29-16-38-37; 0h 2m 0s; 22 2019-08-29-16-38-38; 0h 3m 1s; 23 2019-08-29-16-38-38; 0h 3m 1s; 23 2019-08-29-16-49-39; 0h 6m 2s; 29 2019-08-29-16-44-40; 0h 6m 3s; 31 2019-08-29-16-44-40; 0h 7m 3s; 33 2019-08-29-16-44-41; 0h 9m 4s; 37 2019-08-29-16-44-41; 0h 9m 4s; 37 2019-08-29-16-44-41; 0h 9m 4s; 37 2019-08-29-18-46-08; 2h10m 5s; 39 2019-08-29-18-46-09; 2h11m 32s; 25 2019-08-29-18-48-09; 2h11m 32s; 25 2019-08-29-18-49-10; 2h11m 32s; 25 2019-08-29-18-49-10; 2h11m 34s; 25 2019-08-29-18-50-11; 2h16m 36s; 25 2019-08-29-18-50-11; 2h16m 36s; 25 2019-08-29-18-51-11; 2h16m 36s; 25 2019-08-29-18-51-11; 2h16m 36s; 25 2019-08-29-18-51-11; 2h16m 36s; 25 2019-08-29-18-51-11; 2h16m 36s; 25 2019-08-31-20-33-00; 5l1h57m 23s; 42 2019-08-31-20-34-01; 5l1h59m 25s; 42 2019-08-31-20-34-01; 5l1h59m 25s; 42 2019-08-31-20-36-02; 52h 1m 25s; 28 2019-08-31-20-38-03; 52h 1m 25s; 51 2019-08-31-20-38-03; 52h 4m 28s; 69 2019-08-31-20-38-03; 52h 4m 28s; 69 2019-08-31-20-41-06; 52h 4m 28s; 69 5019-08-31-20-41-06; 52h 5m 29s; 51
time	
1	GJ 60 60 60 60 60 60 60 60 60 60 60 60 60

Figure S1: Excerpt from an instrument log file, showing an example of start-up with a ramp reaching 252°C at 2°C/min (3-12), switch of feed from oxidative to reaction (14-23) and cooldown procedure (25-34). The header (highlighted in green) lists the cavity temperature, cavity temperature setpoint, Peltier duty cycle, N₂ flow, O₂ flow, alkane flow, CO/CO₂ flow, saturator flow, columns, which correspond to the timestamp, elapsed run time, inlet temperature, inlet temperature setpoint, heater duty cycle, inlet pressure, inlet flow (meter no. 1), inlet flow (meter no. 2), cavity flush, heater medium flow, temperature of the calibration thermocouple.

```
BW = 10000; AVG = 10
2 +7.100000E+9 -2.280313E-2 +9.412804E-1
3 +7.100015E+9 -2.241943E-2 +9.409110E-1
4 +7.100030E+9 -2.244101E-2 +9.406135E-1
5 +7.100045E+9 -2.181034E-2 +9.407906E-1
6 +7.100060E+9 -2.154459E-2 +9.396642E-1
7 +7.100075E+9 -2.166180E-2 +9.403051E-1
8 +7.100090E+9 -2.122021E-2 +9.408551E-1
9 +7.100105E+9 -2.164769E-2 +9.408164E-1
10 +7.100120E+9 -2.139573E-2 +9.404883E-1
+7.100135E+9 -2.145294E-2 +9.407361E-1
12
      [...]
13 +7.399865E+9 -2.219277E-2 -9.154096E-1
14 +7.399880E+9 -2.249969E-2 -9.151102E-1
15 +7.399895E+9 -2.282277E-2 -9.154791E-1
16 +7.399910E+9 -2.304419E-2 -9.154005E-1
17 +7.399925E+9 -2.431337E-2 -9.159150E-1
18 +7.399940E+9 -2.515590E-2 -9.163996E-1
19 +7.399955E+9 -2.466450E-2 -9.154912E-1
20 +7.399970E+9 -2.516757E-2 -9.149708E-1
                  -2.563848E-2
21 +7.399985E+9
                                  -9.151121E-1
22 +7.400000E+9 -2.602740E-2
                                  -9.156989E-1
```

Figure S2: Excerpt from a VNA log file. Only the header (highlighted in green) and the first and last 10 lines shown. The header lists the filter bandwidth (10000 Hz) and number of shots averaged (10). The columns correspond to the frequency f and the real and complex parts of the reflection coefficient $\Gamma(f)$.

Table S1: Results of the operando MCPT investigations of transition metal oxide samples, activated in C₃-oxidation, using the Handbook protocol. Columns include the name and nominal atomic composition, sample ID, reference conductivity at 300° C, activation energy of conductivity, changes in conductivity as a function of inlet stoichiometry and residence time, activation energy of mass-normalized conversion, the ideality of conversion with residence time, and interpolated selectivities to CO_x and C_3H_6 at 5% conversion (dashes correspond to cases where X is well below or above 5%).

Sample name	Sample ID	σ_r	$E_A(\sigma) \mid$	$\Delta\sigma(\phi)$	$\Delta\sigma(au)$	$\mid E_A(X/m) \mid$	$\Delta X(\tau)/X$	$\mid S_{ ext{CO}_x}(5\%) \mid$	$S_{\mathrm{C_3H_6}}(5\%)$
		$[\mathrm{S/m}]$	[kJ/mol]	$[\mathrm{S/m}]$	$ \mathrm{Sm/S} $	[kJ/mol]	[%]	<u></u>	[%]
"VPP"-C ₃	32082	0.005(4)	20(1)	0.0067(7)	-0.00018(6)	16(31)	7(20)	69(2)	59(4)
MoO_3 - C_3	31845	0.02(1)	11(2)	0.00045(5)	0.0001(1)	76(15)	88(15)		I
MoVOx-C ₃	31804	0.6(2)	9.43(4)	-0.00515(7)	-0.0042(1)	80(2)	90(4)	56.87(6)	18.6(1)
MoVTeNbOx-C ₃	31821	0.33(8)	0.07(3)	0.0053(1)	0.00076(4)	86(2)	75(2)	39.9(1)	31.4(4)
$\mathrm{Sm}_{0.95}\mathrm{MnO}_3\text{-}\mathrm{C}_3$	31836	15(4)	5.21(6)	-0.009(2)	0.006(1)	62(3)	62(4)	88.3(1)	11.7(1)
V_2O_5 - C_3	31846	0.8(4)	8.03(4)	0.036(2)	0.0161(1)	66(15)	75(13)	69.61(5)	30.23(4)
$\mathrm{VOPO_{4^{*2}H_2O-C_3}}$	31847	0.04(1)	28(2)	0.00209(5)	0.0033(1)	(6)96	93(10)	55.42(5)	43.4(4)
VPP-C ₃	31849	0.03(1)	11.1(5)	-0.00117(8)	-0.00062(5)	(9)99	59(5)	78(1)	15.4(2)
VWPOx-C ₃	31851	0.19(5)	17.8(2)	0.0069(1)	0.0021(1)	86(3)	87(3)	81.09(6)	17.92(7)
α -V _{0.8} W _{0.2} OPO ₄ -C ₃	31850	0.14(4)	14.73(4)	0.00013(2)	0.00007(4)	86(4)	87(5)	(69.89(9))	29.49(5)
$\alpha\text{-VOPO}_4\text{-C}_3$	32084	0.005(6)	43(3)	0.0081(3)	0.0017(2)	86(44)	88(47)	48.82(5)	50.62(6)
$\beta\text{-VOPO}_4\text{-C}_3$	31848	0.021(7)	12.7(2)	0.00257(5)	0.00042(1)	80(11)	79(10)	42.50(5)	57.13(5)

Table S2: Results of the operando MCPT investigations of selected samples without previous activation in C₃-oxidation, using the *Handbook* protocol. Columns as in Table S1.

$S_{\mathrm{C_3H_6}}(5\%)$	[%]	8.4(1)	37.7(1)	11.47(2)	8.6(1)	22.1(2)	16.6(2)
$S_{\mathrm{CO}_x}(5\%)$	[%]	91.5(1)	38.10(7)	88.444(8)	91.3(1)	77.4(2)	77.4(2)
$\Delta X(\tau)/X$	<u>%</u>	(2)69	88(10)	56(3)	62(7)	58(4)	78(4)
$E_A(X/m)$	[kJ/mol]	(8)(3)	(2)06	61(2)	(2)09	60(5)	101(4)
$\Delta\sigma(au)$	$[\mathrm{S/ms}]$	0.008(2)	0.0009(2)	0.0019(3)	-0.003(2)	0.0229(1)	0.00002(6)
$\Delta\sigma(\phi)$	$[\mathrm{S/m}]$	0.0037(9)	0.0190(5)	-0.0021(3)	-0.0086(8)	-0.012(5)	-0.00002(3)
$E_A(\sigma)$	[kJ/mol]	-0.54(3)	0.88(6)	0.27(3)	5.30(2)	8.68(9)	18(3)
σ_r	[S/m]	11(4)	0.5(2)	1.8(5)	18(6)	0.5(2)	0.017(4)
Sample ID		30649	31652				19760
Sample name Sample ID		$LaMnO_3$	MoVTeNbOx	PrMnO_3	$\mathrm{Sm}_{0.95}\mathrm{MnO}_3$	V_2O_5	silica gel

Table S3: Results of the operando MCPT investigations of copper-doped lanthanide manganates, using the perovskite protocol. Columns as in Table S1

Sample name	Sample ID	σ_r	$E_A(\sigma)$	$\Delta\sigma(\phi)$	$\Delta\sigma(au)$	$E_A(X/m)$	$\Delta X(au)/X$	$S_{\text{CO}_x}(5\%)$	$S_{\mathrm{C_3H_6}}(5\%)$
		$[\mathrm{S/m}]$	[kJ/mol]	$[\mathrm{S/m}]$	$[\mathrm{S/ms}]$	$[\mathrm{kJ/mol}]$	[%]	[%]	[%]
$\mathrm{LaMn}_{0.60}\mathrm{Cu}_{0.40}\mathrm{O}_{3}$	31285	6(2)	10.02(8)	-0.15(1)	0.95(7)	72(3)	42(13)	79.88(4)	20.04(3)
$\mathrm{LaMn}_{0.65}\mathrm{Cu}_{0.35}\mathrm{O}_{3}$	30624	1.0(3)	13.7(2)	0.023(2)	0.61(8)	79(2)	41(7)	66.6(5)	33.5(4)
$\mathrm{LaMn}_{0.70}\mathrm{Cu}_{0.30}\mathrm{O}_{3}$	30659	1.9(5)	16.3(2)	0.0572(9)	0.91(7)	79(2)	50(10)	1	I
$\mathrm{LaMn}_{0.75}\mathrm{Cu}_{0.25}\mathrm{O}_{3}$	30635	1.4(4)	18.3(2)	0.043(1)	1.08(7)	75(2)	50(10)	75.44(5)	24.45(4)
$\mathrm{LaMn}_{0.80}\mathrm{Cu}_{0.20}\mathrm{O}_{3}$	31180	1.8(9)	9.71(8)	0.0100(8)	0.23(3)	81(11)	38(44)	28.9(6)	70.5(8)
$\mathrm{LaMn}_{0.90}\mathrm{Cu}_{0.10}\mathrm{O}_{3}$	30867	4(1)	13.6(1)	0.066(1)	0.97(7)	78(5)	40(19)	ı	l
$LaMnO_3$	30649	26(18)	5.79(8)	0.038(7)	2.6(2)	72(17)	47(68)	ı	l
${ m PrMn_{0.60}Cu_{0.40}O_3}$	31163	2(1)	6.47(6)	-0.065(3)	0.27(2)	76(14)	35(55)	71.25(8)	28.65(5)
$\mathrm{PrMn}_{0.65}\mathrm{Cu}_{0.35}\mathrm{O}_{3}$	31176	2.7(8)	2.69(4)	0.020(1)	0.18(2)	73(3)	49(11)	74.1(2)	25.6(2)
$\mathrm{PrMn}_{0.70}\mathrm{Cu}_{0.30}\mathrm{O}_{3}$	30934	4(1)	5.02(7)	0.014(1)	0.66(5)	82(2)	43(10)	72.95(6)	26.83(5)
$\mathrm{PrMn}_{0.75}\mathrm{Cu}_{0.25}\mathrm{O}_{3}$	30637	2.6(9)	8.38(9)	0.0245(9)	0.66(5)	81(5)	34(21)	68(2)	32(2)
$\mathrm{PrMn}_{0.80}\mathrm{Cu}_{0.20}\mathrm{O}_{3}$	31021	3(1)	8.10(5)	0.0131(5)	0.32(3)	71(8)	43(32)	(2)22	23(7)
$\mathrm{PrMn}_{0.90}\mathrm{Cu}_{0.10}\mathrm{O}_{3}$	31070	10(3)	2.00(6)	0.014(3)	0.85(6)	65(4)	46(15)	68(2)	32(3)
$PrMnO_3$	30650	1.8(5)	11.87(9)	0.0169(5)	0.32(3)	69(2)	25(8)	78(7)	22(7)

