Vectors MATH 1511, BCIT

Technical Mathematics for Geomatics

November 13, 2017

Vectors

A vector is a special type of matrix: it has only one row or only one column. Here are two examples of a vector,

$$a=\left(\begin{array}{c} -2\\ 3 \end{array}\right) \text{ and } b=\left(\begin{array}{c} \frac{1}{2}\\ 7 \end{array}\right)$$
 (1)

We add them as we would add matrices,

$$a+b=\begin{pmatrix} -2\\3 \end{pmatrix}+\begin{pmatrix} \frac{1}{2}\\7 \end{pmatrix}=\begin{pmatrix} -1.5\\10 \end{pmatrix} \tag{2}$$

Vector Subtraction

We define the additive inverse -a of a vector a to be the vector whose components are the additive inverses of a's components.

$$-a = \begin{pmatrix} 2 \\ -3 \end{pmatrix} \tag{3}$$

Vector subtraction is defined as follows: a - b = a + (-b).

$$a-b = \begin{pmatrix} -2\\3 \end{pmatrix} + \begin{pmatrix} -\frac{1}{2}\\-7 \end{pmatrix} = \begin{pmatrix} -2.5\\-4 \end{pmatrix} \tag{4}$$

Scalar Multiplication

Scalar multiplication is defined for vectors as it was for matrices. A real number C and a vector a can be multiplied as follows,

$$C \cdot a = C \cdot \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} C \cdot a_1 \\ C \cdot a_2 \end{pmatrix} \tag{5}$$

Vectors and Geometry

One way to interpret two-dimensional vectors is to have them describe movement in the plane. They have no home in the coordinate system, but only describe how to get from one point to another. By convention, unless we have reason to do otherwise, we let them start at the origin.

Vectors and Angles

Each vector (except the vector whose components are all zero) has an angle associated with it, which mathematicians conventionally measure counter-clockwise from the x-axis. You are welcome to represent the angle any way you like as long as it is clear what you mean.

Example

Let

$$a = \begin{pmatrix} -2\\3 \end{pmatrix} \tag{6}$$

Then

$$\tan \alpha' = \frac{3}{-2} \longrightarrow \alpha' = -56.31^{\circ} \tag{7}$$

This is not the correct angle, however. The correct angle is $\alpha=180^\circ+\alpha'=123.69^\circ.$ You can also represent it as N33.69°W. The length of the vector is

$$|a| = \sqrt{(-2)^2 + 3^2} \approx 3.61$$
 (8)

Exercises

Exercise 1: Calculate the length $|a_i|$ and the angle α_i for the following vectors,

$$a_1 = \begin{pmatrix} 7 \\ 3 \end{pmatrix} \tag{9}$$

$$a_2 = \begin{pmatrix} -6 \\ -11 \end{pmatrix} \tag{10}$$

$$a_3 = \begin{pmatrix} -\pi \\ 10.5 \end{pmatrix} \tag{11}$$

$$a_4 = \begin{pmatrix} \frac{7}{13} \\ -\frac{1}{5} \end{pmatrix} \tag{12}$$

Word Problems

Exercise 2: Jim starts at P = (-34, 19) (units are metres) and walks 60 metres on a bearing of N79°E. Which vector describes Jim's movement? What are the coordinates of Jim's destination?

Vectors and Points

The vector \overrightarrow{PQ} displaces P to Q. The coordinates of point P and the elements of vector \overrightarrow{OP} match. To find the coordinates of Jim's destination in the problem on the last slide, note that

$$\vec{OQ} = \vec{OP} + \vec{PQ} \tag{13}$$

We can easily calculate the RHS (right-hand side), and the LHS provides us with the coordinates of point Q.

Word Problems

Exercise 3: Mr. X walks 5km east and 2km north from A to B. Ms. Y walks 6km west and 6km north from A to C. What angles could they have chosen to minimize the distance to their destination? What would be that minimal distance? What angle does Ms. Y need to choose and how far does she need to walk if she wants to rejoin Mr. X, going from C to B?

Consider the following triangle:

Start with the traditional formula for the area of this triangle,

$$A = \frac{1}{2}bh \tag{14}$$

Then look at the smaller triangle to the left. Because the height is drawn perpendicular to the base, the sides and height form a right triangle. The acute angle θ has a sine equivalent to the following:

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{h}{a} \tag{15}$$

If you solve that equation for h by multiplying each side by a, you get

$$\sin \theta = \frac{h}{a} \tag{16}$$

$$a\sin\theta = h \tag{17}$$

Replace the h in the traditional formula with its equivalent from the preceding equation, and you get

$$A = \frac{1}{2}bh = \frac{1}{2}b(a\sin\theta) = \frac{1}{2}ab\sin\theta \tag{18}$$

Two linearly independent vectors correspond to a triangle. Two vectors a and b are linearly dependent if and only if $a = C \cdot b$ for a real number C. The cross product $a \times b$ is the vector which is perpendicular to both a and b, follows the right-hand rule, and whose length is the area of the parallelogram generated by a and b. Knowing a and b, how would you calculate $|a \times b|$?

The length of the cross product is

$$|a \times b| = |a| \cdot |b| \cdot \sin \theta \tag{19}$$

where θ is the angle between a and b.

Area: Triangle Exercises

Exercise 4: Find the area for the triangle generated by

$$a = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
 and $b = \begin{pmatrix} 7 \\ -1 \end{pmatrix}$ (20)

Exercise 5: Find the area for the parallelogram generated by

$$a = \begin{pmatrix} -301 \\ 754 \end{pmatrix} \text{ and } b = \begin{pmatrix} 590 \\ -538 \end{pmatrix}$$
 (21)

Area: Trapezoid

Exercise 6: Find the formula for the area of a trapezoid.

Area: Units

Two common units of area are the hectare (ha) and the acre.

$$1ha = 100m \cdot 100m$$
 (22)

$$1acre = 43560ft^2$$
 (23)

Note that 1ft = 0.3048m. Historically, an acre was the amount of land one man with one ox could plow in one day.

Vector Resultant

Exercise 7: An office safe was lowered from an office building by two cables attached to buildings on opposite sides of the street. At one time the cables formed angles of 42° and 76° with the buildings. Find the pull on each of the cables if the safe weighed 1250 pounds.

Vector Resultant Exercise

Exercise 8: Two ropes hold a 175 Newton crate as shown in the figure. Find the tensions T_1 and T_2 in the ropes. (Hint: move the vectors so that they are tail to head to form a triangle. The vector sum $T_1 + T_2$ must equal 175 Newton for equilibrium.)

Vector Resultant Exercise

Exercise 9: Find the tension T in the left guy wire attached to the top of the tower as shown in the figure. (Hint: the horizontal component of the tensions must be equal and opposite for equilibrium. Thus, move the tension vectors tail to head to form a triangle with a vertical resultant. This resultant equals the upward force at the top of the tower for equilibrium. This last force is not shown and does not have to be calculated.)

Area: Acre

Area: Units Exercises

Exercise 10: Find the answer as a complete sentence.

- A plot has an area of 68 acres. Determine the area in hectares.
- ② A quarter section of land is one quarter of a mile by mile plot. Determine the area of a quarter section.
 - a Expressed in acres (recall that 1 mile= 1760 yards and 1 yard= 3 feet).
 - b Expressed in hectares.

Volume: Cone

First off, verify that

$$(a-b)^3 = (a^2 + ab + b^2)(a-b)$$
 (24)

Consider a frustum.

Volume: Cone

Let a be the base area of the frustum and A the base area of the cone on top of the frustum. Let α be the angle between the revolution axis of the cone and the generating side. Then

$$\frac{\sqrt{A}}{H} = \frac{\sqrt{R^2 \pi}}{H} = \frac{R\sqrt{\pi}}{H} = \frac{\sqrt{\pi} H \tan \alpha}{H} = \frac{\sqrt{\pi} r}{H+h} = \frac{\sqrt{r^2 \pi}}{H+h} = \frac{\sqrt{a}}{H+h}$$
(25)

Volume: Pyramids, Cones, and Spheres

There is material in a separate pdf file,

volume-of-cone-and-sphere-sans-calculus.pdf, as well as a youtube link provided in D2L.

Note the following formulas:

$$V_{\text{sphere}} = \frac{4}{3}r^3\pi \tag{26}$$

$$V_{\mathsf{cone}} = \frac{1}{3}r^2\pi h \tag{27}$$

$$V_{\text{pyramid}} = \frac{1}{3}abh \tag{28}$$

Note also the surface of the sphere:

$$A_{\text{sphere surface}} = 4r^2\pi$$
 (29)

Volume: Word Problems I

31. The Great Pyramid of Egypt has a square base approximately 230 m on a side. The height of the pyramid is about 150 m. What is its volume? See Fig. 2.114.

Fig. 2.114

Volume: Word Problems II

32. A paper cup is in the shape of a cone, as shown in Fig. 2.115. What is the surface area of the cup?

Fig. 2.115

Fig. 2.116

33. Spaceship Earth (shown in Fig. 2.116) at Epcot Center in Florida is a sphere 50.3 m in diameter. What is the volume of Spaceship Earth?

Volume: Word Problems III

34. A propane tank is constructed in the shape of a cylinder with a hemisphere at each end, as shown in Fig. 2.117. Find the volume of the tank.

End of Lesson

Next Lesson: Normal Distribution.