IV.4.8.

Reprezentarea numerelor reale: aritmetica în virgulă mobilă

Reprezentarea în virgulă mobilă

- Reprezentările în virgulă fixă nu sunt potrivite pentru numere reale
- Dualitatea magnitudine / precizie
 - lungimea n+m fixată
 - creşterea magnitudinii înrăutățește precizia și reciproc
- Virgulă mobilă: un număr se reprezintă printr-o pereche de reprezentări în virgulă fixă
 - permiţând reprezentarea simultană de numere cu magnitudini şi precizii diferite

Notația științifică; normalizare

Exemple

- 7.015791043..._{zece}
 - » scriere pozițională
- $55312.1784_{\text{zece}} \times 10^{-105}$
 - » ar necesita 110 cifre în scriere pozițională, doar 14 aici.
- $0.00000083_{\text{zece}} \times 10^{-4}$
 - » Se poate scrie și eliminând zerourile semnificative
- Numeroase scrieri posibile pentru acelaşi număr
- Notația științifică:
 - o singură cifră la stânga virgulei
 - $-0.031056_{\text{zece}} \times 10^{-7}$
 - încă numeroase scrieri posibile pentru același număr
 - » $m_1 \times B^{e1} = m_2 \times B^{e1+k}$, unde $m_2 = m_1 / B^{-k}$, pt. oricare $k \in \mathbf{Z}$.
- Scriere normalizată: reprezentare în notație științifică fără prefix de zerouri semnificative
 - $6.15_{\text{zece}} \times 10^{-75}$
 - » pozițional → 78 de cifre semnificative, dintre care 75 zerouri
 - unică pentru un număr dat

Notația științifică în binar

- $1.101_{\text{doi}} \times 2^2$ • 6.5_{zece}
- $1.xxx...x_{doi} \times 2^{yyy}$
 - în binar, doar numărul 0 nu conține nici o cifră 1
 - definire specială a reprezentării lui 0
 - pentru oricare alt număr reprezentabil, cel mai semnificativ 1 trebuie să devină singura cifră de la partea întreagă
 - ceea ce, în general, alterează exponentul lui 2

Reprezentări în virgulă mobilă

- Semnul (S): 0 sau 1
 - 1 hit
- Partea fracționară (f); mantisa este 1+f
 - mantisa are 1+23 (sau 1+52) biţi
- Caracteristica (C)
 - k=8 sau k=11 biţi

$$exces = 2^{k-1} - 1$$

- C = exponent + exces
- $x = (+/-) 1.f \times B^{C-exces}$
- Primul 1 și baza 2 se subînțeleg/nu se reprezintă
 - » O figură similară pentru numerele reprezentabile în virgulă fixă ar indica un singur interval conținând numere reprezentabile, simetric față de 0 și cu cele două capete aflate fiecare într-unul din intervalele figurate aici cu verde.

Standardizare

- Esenţială pentru portabilitate şi pentru ataşarea unei semantici generale a reprezentării în virgulă mobilă.
- Proces început în 1977, încheiat parțial în 1985.
- W. Kahan (University of Toronto).
- Prima implementare comercială a standardului IEEE (pe atunci, în curs de elaborare): 1981 Intel 8087.

Standardul IEEE 754 / 1985

• Precizie simplă: *float* în C/C++ (32 biţi)

Margini în baza 10: $1.2 \times 10^{-38} \rightarrow 3.4 \times 10^{-38}$

Interesează nu doar structura reprezentării, ci mai ales *operațiile* ce se pot efectua cu reprezentări.

Exemple:

Compararea: reprezentarea în XS are avantajul inducerii ordinii naturale pe mulțimea reprezentării exponenților

Înmulțirea: adunarea exponenților la înmulțire – cu scăderea excesului

Precizie dublă

• Precizie dublă: *double* în C/C++ (64 biţi)

Margini în baza 10: $1.7 \times 10^{-308} \rightarrow 1.7 \times 10^{308}$

Față de precizia simplă:

- Creşte intervalul pentru exponent
- La exponent egal, crește acuratețea (precizia) reprezentării datorită lungimii mai mari a părții fracționare a mantisei

Două reprezentări în virgulă fixă = o reprezentare în virgulă mobilă

- Mantisa: reprezentare *modul și semn* (A+S) a coeficientului puterii bazei
- Caracteristica: reprezentare *în exces* a exponentului

- Există deci o valoare minimă e_{min} și una maximă e_{max} pentru exponent
 - de unde structura mulţimii numerelor reprezentabile
- Ordinea din reprezentare (S C f) facilitează compararea reprezentărilor
 - ordinea numerelor reprezentate coincide astfel cu ordinea lexicografică a reprezentărilor

Reprezentări în norma IEEE 754

	Precizie simplă	Precizie dublă	
Biţi "precizie"	24	53	
Exponent maxim	128 (pentru numere: 127)	1024 (pentru numere: 1023)	
Exponent minim	-127 (pentru numere normalizate: -126)	· ·	
Exces (exponent)	127	1023	

Un exemplu

- Cum se reprezintă numărul -7 în virgulă mobilă simplă precizie (IEEE 754)?
- 1. Semnul: minus, deci 1
- 2. Trecere în baza 2: $7_{\text{zece}} = 111_{\text{doi}}$
- 3. Normalizare: $111_{\text{doi}} = 1.11_{\text{doi}} \times 2^{2}_{\text{zece}}$
- 4. Calculul caracteristicii (pe 8 biţi) : $(2 + 127)_{zece} = 129_{zece} = 10000001_{doi}$
- 5. Reprezentarea:

Încă un exemplu

- Cum se scrie pozițional în baza zece numărul reprezentat în simplă precizie IEEE 754 prin C1F00000 _{hexazecimal} ?
- 2. Semn: 1, deci (număr negativ)
- 3. Caracteristica: $10000011_{\text{doi}} = 131_{\text{zece}}$
- **4.** Exponentul: 131 127 = 4
- 5. Mantisa: $(1 + 0,111)_{doi} = 1,111_{doi}$
- **6.** Valoarea: $-1,111 \times 2^4 = -111110_{\text{doi}} = -30_{\text{zece}}$

Aritmetica extinsă (principii)

- Aritmetica reală uzuală
 - proiectată pe mulțimea numerelor reale reprezentabile
 - cu operaţiile uzuale
- La care se adaugă:
 - reprezentare pentru ∞ și reguli elementare de calcul cu acesta (a / ∞ , ∞ + ∞)
 - reprezentări pentru rezultatul operațiilor nedefinite (NaN) și reguli de propagare a acestuia (NaN op x = NaN)

Aritmetica extinsă - exemplu

- Calculul lui arccos cu formula:
 arccos (x) = 2 arctan (sqrt ((1-x) / (1+x)))
- arccos(-1) = ?
- $1+x \rightarrow 0 \Rightarrow 2/(1+x) \rightarrow \infty \Rightarrow$ $arctan((1-x)/(1+x)) \rightarrow \pi/2$
- Aceste relaţii fac parte din aritmetica în virgulă mobilă IEEE 754
- Rezultat corect: $arccos(-1) = \pi$

Tipuri de valori în virgulă mobilă

• În fiecare caz de mai jos, S este +1 sau -1 după cum bitul semn este 0 sau 1

Tip valoare	e	f	Valoare
normalizată	e _{min} <e<e<sub>max</e<e<sub>	f oarecare	$(-1)^s \times 1.f \times 2^e$
denormalizată	$e = e_{min}$	f ≠ 0	$(-1)^s \times 0.f \times 2^e$
zero	e = 0	f = 0	S 0
infinit	$e = e_{max}$	f = 0	S ∞
NaN	$e = e_{max}$	f ≠ 0	NaN

Depășiri

- Depășire inferioară: în forma normalizată a numărului, exponentul negativ nu poate fi reprezentat în câmpul caracteristicii
 - numărul va fi considerat 0
- Depășire superioară: în forma normalizată a numărului, exponentul pozitiv este prea mare pentru a putea fi reprezentat în câmpul caracteristicii
 - numărul va fi considerat ±∞

Reprezentări denormalizate

- număr mai mic în modul decât cea mai mică reprezentare normalizată
 - se renunță la normalizare
 - mantisa va fi 0.f, în loc de 1.f
 - iar exponentul va avea valoarea minimă
 - -127 pentru simplă precizie
 - -1023 pentru dublă precizie
 - astfel se pot reprezenta numere mai mici

Aritmetica în virgulă mobilă

- În general: fie $x = x_m \times 2^{xe}$ și $y = y_m \times 2^{ye}$
 - Relaţiile de mai jos se referă la notaţia ştiinţifică, nu la reprezentarea în standard IEEE
 - » x_m și y_m sunt mantisele, iar xe și ye exponenții (nu caracteristicile)
 - $x + y = (x_m \times 2^{xe-ye} + y_m) \times 2^{ye}$, dacă $xe \le ye$
 - $x y = (x_m \times 2^{xe-ye} y_m) \times 2^{ye}$, dacă $xe \le ye$
 - $\mathbf{x} \times \mathbf{y} = (\mathbf{x}_{\mathsf{m}} \times \mathbf{y}_{\mathsf{m}}) \times 2^{\mathsf{xe} + \mathsf{ye}}$
 - $x : y = (x_m : y_m) \times 2^{xe-ye}$
- Operațiile sunt însă mai complicate decât o arată formulele

Adunarea în virgulă mobilă

1. Se compară exponenții termenilor adunării

- dacă aceștia sunt diferiți, atunci partea fracționară a numărului mai mic se deplasează spre dreapta (denormalizare!) până când exponentul său devine egal cu exponentul mai mare
- evident, unitatea hardware care face calculele operează în interior cu mai mulți biți decât reprezentarea standard

2. Se adună mantisele

- aici se decide şi semnul sumei
- adunarea mantiselor se efectuează în complement față de 2
 - deci pentru numere negative, se face complementarea corespunzătoare, iar rezultatul dacă este negativ se complementează pentru a reveni la A+S

3. Dacă este nevoie, se normalizează suma

- fie decalând rezultatul spre dreapta și incrementând exponentul, fie decalând spre stânga și decrementând exponentul
- 4. Dacă se poduce depășire → excepție → stop
- 5. Rotunjeşte mantisa la numărul permis de biţi
 - dacă astfel s-a produs denormalizare, reia de la 3

Temă

Să se urmărească paşii adunării în virgulă mobilă pentru reprezentările numerelor scrise în baza zece ca 0,75 şi -0,375.
Se va considera că semnul, exponentul şi mantisa sunt obţinute ca pentru IEEE 754, dar se reprezintă pe 1 bit, 8 biţi, respectiv 4 biţi.

Înmulțirea în virgulă mobilă

- 1. Se calculează exponentul rezultatului adunând exponenții celor doi factori
 - se adună caracteristicile și se scade excesul
- 2. Se înmulţesc mantisele
- 3. Se normalizează rezultatul
 - dacă se produce depăşire →excepţie → stop
- 4. Se fac rotunjirile necesare
 - dacă se produce denormalizare, reia de la 3
- 5. Se determină semnul rezultatului

Temă

• Să se urmărească paşii înmulţirii în virgulă mobilă pentru reprezentările numerelor scrise în baza zece ca 0,75 şi 0,375.

Reprezentările sunt cele din standardul

Reprezentările sunt cele din standardul IEEE 754.

Capitolul al V-lea

ARHITECTURA ŞI ORGANIZAREA CALCULATORULUI

V.1. CALCULATOARE VON NEUMANN

Calculatoare von Neumann

- program memorat
 - memorie infinită (ideal), timp de acces egal
 - realizată practic prin ierarhii de memorie
- la execuție, după o instrucțiune i urmează
 - instrucțiunea memorată imediat după ea (regula)
 - eventual instrucțiunea indicată de i (dacă i este instrucțiune de control)
- adresa instrucţiunii următoare se află într-un registru – PC
- în fiecare moment, o singură instrucțiune este încărcată pentru execuție

Calculatoare von Neumann

• Anterior:

- conceptul de automatizare a operaţiilor luate separat (Pascal, Leibniz)
- conceptul de program exterior (Babbage)
- conceptul de calcul ramificat / control
- Conceptul de program memorat
 - John von Neumann et al (1946)
 - concept arhitectural fundamental procesoarele moderne

Calculatoare von Neumann

- Programul și datele stocate în (aceeași) memorie
 - ideal: infinită, omogenă (locații la fel de rapid accesabile)
 - practic: o ierarhie de memorii, fiecare fiind omogenă
- Program counter (PC) indică locul din memorie al instrucțiunii de executat
 - conținutul PC este actualizat la execuția fiecărei instrucțiuni
 - o dată sau de două ori
- Instrucțiunile programului sunt aduse pe rând din locații de memorie în procesor
 - regula: locații succesive → incrementare PC
 - excepția: instrucțiuni de salt
 - ordine fizică și ordine logică

Arhitectura unui sistem de calcul

Componentele hardware ale unui calculator

Procesor Intrări (Input) **Control** Memorie Calea de date Ieşiri (Output)

Organizarea unui calculator

