

Ayudantía 11

SVM - Support Vector Machines

Por Blanca Romero y Gonzalo Fuentes

8 de noviembre 2024

Queremos encontrar una **recta** que **separe los datos**

Para luego poder clasificar nuevos datos

Existen **infinitas** rectas que logran separar los datos:

Existen **infinitas** rectas que logran separar los datos:

¿Cómo elegimos la mejor?

SVM nos permite encontrar la mejor recta:

SVM nos permite encontrar la mejor recta:

Busca **maximizar** la distancia de los datos **más cercanos a la recta** (de cada clase)

y son los vectores de soporte

SVM nos permite encontrar la mejor recta:

Busca iterativamente para **maximizar d**

Y trabaja siempre con rectas **equidistantes** a los *vectores de soporte*

Debemos procurar que cada nueva recta considere los nuevos vectores de soporte que se podrían generar

¿Qué podemos hacer al respecto?

¡Transformamos los datos!

Transformamos los datos a un **nuevo espacio geométrico**

¡Transformamos los datos!

Así podemos tomar un plano para separar los datos

¡Transformamos los datos!

La proyección del plano es un segmento del espacio inicial

La idea nace de ver SVM dual

$$\max_{lpha} \sum_{i=1}^{M} lpha_i - rac{1}{2} \sum_{i,j=1}^{M} y^{(i)} y^{(j)} lpha_i lpha_j x^{(i)}.x^{(j)}$$

 $ext{subject to } 0 \leq lpha_i \leq C ext{ for all } i, ext{ and } \sum_{i=1}^M lpha_i y^{(i)} = 0.$

¿Cómo puedo transformar los datos a otro espacio?

$$K(x,x')=\langle \phi(x),\phi(x')
angle$$

Lineal

$$K(x, x') = x^T x'$$

Polinomial

$$K(x,x') = (x^Tx'+c)^d$$

RBF

$$K(x,x') = \exp\left(-\gamma \|x - x'\|^2\right)$$

$$egin{aligned} \max_{lpha} \sum_{i=1}^M lpha_i - rac{1}{2} \sum_{i,j=1}^M y^{(i)} y^{(j)} lpha_i lpha_j K(x^{(i)}, x^{(j)}) \end{aligned}$$
 subject to $0 \leq lpha_i \leq C$ for all i , and $\sum_{i=1}^M lpha_i y^{(i)} = 0$.

Función de Kernel

Conjunto de funciones que permite **transformar** el espacio de características con el que trabajamos

Función de Kernel

Existen varios tipos de Kernel para distintas aplicaciones