5 pt

Rules: Discussion of the problems is permitted, but writing the assignment together is not (i.e. you are not allowed to see the actual pages of another student).

Course Outcomes

- [O1. Abstract Concepts]
- [O2. Proof Techniques]
- [O3. Basic Analysis Techniques]
- 1. (10 pt) [O1] Express the following statements using the propositions p "He has the ID card", q "He has the password", and r "He opens the door" together with logical connectives.
 - (a) "He has the ID card and opens the door."
 - (b) "He does not have the password and opens the door."
 - (c) "If he has the password and does not have the ID card, he does not open the door."
 - (d) "He opens the door if and only if he has the ID card and has the password."
 - (e) "If he does not open the door, then he either does not have the ID card or does not have the password."

Solution:

(a)
$$p \wedge r$$

(b) $\neg q \wedge r$
(c) $(q \wedge \neg p) \rightarrow \neg r$
(d) $r \leftrightarrow (p \wedge q)$
(e) $\neg r \rightarrow (\neg p \vee \neg q)$

- 2. (10 pt) [O1, O2] Show that $(p \to q) \to r$ and $\neg r \to (p \land \neg q)$ are logically equivalent.
 - (a) using truth tables.
 - (b) using logical equivalence.

Solution:

(a) using truth tables.

p	q	r	$p \rightarrow q$	$(p \to q) \to r$	$\neg r$	$p \land \neg q$	$\neg r \to (p \land \neg q)$
T	Т	Τ	Т	T	F	F	T
T	Т	F	Т	F	Т	F	F
T	F	Т	F	T	F	Т	Т
T	F	F	F	Т	Т	T	Т
F	Т	Т	Т	Т	F	F	Т
F	Т	F	Т	F	Т	F	F
F	F	Т	Т	Т	F	F	Т
F	F	F	Т	F	Т	F	F

(b) using logical equivalence.

$$(p \to q) \to r$$

$$\Leftrightarrow r \lor \neg (p \to q)$$

$$\Leftrightarrow \neg r \to \neg (p \to q)$$

$$\Leftrightarrow \neg r \to \neg (q \lor \neg p)$$

$$\Leftrightarrow \neg r \to (p \land \neg q)$$

3. (15 pt) [O1] Consider the following conjecture in number theory:

Every even number is the difference of two primes.

- (a) Express the statement in terms of quantifiers, variable(s), equality and inequality symbols (<,>,=), logical operators (\land,\lor,\to) and predicates P(n): n is a prime number and E(n): n is an even number.
- (b) Express the negation of (a) without using the logical operator \neg .

[Be careful to define the domain(s) of your variable(s)]

Solution:

(a)
$$\forall n \left[E(n) \to \exists x, y \left(P(x) \land P(y) \land (x - y = n) \right) \right]$$
 7 pt
(b) $\exists n \left[E(n) \land \forall x, y \left(P(x) \land P(y) \to (x - y > n) \lor (x - y < n) \right) \right]$ 8 pt if \neq is used, -1 p

4. (10 pt) [O2] Assuming the truth of the theorem which states that " \sqrt{n} is irrational whenever n is a positive integer that is not a perfect square," prove that $\sqrt{3} + \sqrt{5}$ is irrational. (Hint: Suppose a is irrational and b is an integer, you can prove that a+b is irrational by contradiction.)

Solution:

Obviously, 15 is not a perfect square, hence $\sqrt{15}$ is irrational.

We will prove $8+2\sqrt{15}$ is irrational by contradiction. Assume that $8+2\sqrt{15}$ is rational and $8+2\sqrt{15}=a/b$, then we have $\sqrt{15}=(a/b-8)/2=(a-8b)/2b$ is rational. But we show that $\sqrt{15}$ is irrational at the beginning, which is a contradiction. Thus, the assumption is incorrect and $8+2\sqrt{15}$ must be irrational.

 $\begin{array}{c} \text{2pt} & \text{for proving} \\ \sqrt{15} & \text{is irrational} \end{array}$ $\begin{array}{c} \text{4pt for proving } 8+\\ 2\sqrt{15} & \text{is irrational} \end{array}$

5 pt

Since $8 + 2\sqrt{15}$ is irrational, it is not a perfect square. So, $\sqrt{8 + 2\sqrt{15}} = \sqrt{3} + \sqrt{5}$ is $\frac{4pt}{\sqrt{8 + 2\sqrt{15}}}$ is $\frac{4pt}{\sqrt{8 + 2\sqrt{15}}}$ is irrational, which completes the proof.

- 5. (18 pt) [O2, O3] Use mathematical induction to prove the following.
 - (a) Prove that $H_1 + H_2 + \cdots + H_n = (n+1)H_n n$ where $H_n = 1 + 1/2 + \cdots + 1/n$ denotes the n-th harmonic number.
 - (b) Prove that 21 divides $4^{n+1} + 5^{2n-1}$ whenever n is a positive integer.

Solution:

(a) Let P(n) denote that $H_1 + H_2 + \cdots + H_n = (n+1)H_n - n$ holds for n.

Base Case: When n=1, $(n+1)H_n-n=2\times 1-1=1=H_1$. So we know 2pt for base case that P(1) is true.

Inductive Step: We have to show that P(n+1) is true given the assumption that P(n) is true. By induction hypothesis, we have

1 pt for induction hypothesis 6 pt for inductive step

$$H_1 + H_2 + \dots + H_n + H_{n+1} = (n+1)H_n - n + H_{n+1}$$

$$= (n+1)(H_{n+1} - 1/(n+1)) - n + H_{n+1}$$

$$= (n+1)H_{n+1} - 1 - n + H_{n+1}$$

$$= (n+2)H_{n+1} - (n+1)$$

So we conclude that P(n+1) is true.

Now by mathematical induction, we know that P(n) is true for all $n \geq 1$.

(b) Let P(n) denote that $21 \mid (4^{n+1} + 5^{2n-1})$.

Base Case: When $n = 1, 21 \mid (4^{n+1} + 5^{2n-1} = 4^2 + 5 = 21)$. So we know that 2pt for base case P(1) is true.

Inductive Step: We have to show that P(n+1) is true given the assumption that P(n) is true. By induction hypothesis, we have $21 \mid (4^{n+1} + 5^{2n-1})$ which means $4^{n+1} + 5^{2n-1} = 21k$, where $k \in \mathbb{Z}$. Then

1 pt for induction hypothesis 6 pt for inductive

$$4^{(n+1)+1} + 5^{2(n+1)-1} = 4 \times 4^{n+1} + 25 \times 5^{2n-1}$$

$$= 4 \times (4^{n+1} + 5^{2n-1}) + 21 \times 5^{2n-1}$$

$$= 4 \times 21k + 21 \times 5^{2n-1}$$

$$= 21 \times (4k + 5^{2n-1})$$

Since $4k + 5^{2n-1} \in \mathbb{Z}$, so we have $21 \mid (4^{(n+1)+1} + 5^{2(n+1)-1})$, which makes us conclude that P(n+1) is true.

Now by mathematical induction, we know that P(n) is true for all $n \geq 1$.

- 6. (10 pt) [O1, O2] Decide whether the following statements about big-O notation are true or not.
 - (a) Let $f(n) = \sqrt{n} + 5$, then $f(n) = \Omega(\log n)$.

- (b) Let $f(n) = n \log n 4$, then $f(n) = O(n^2)$.
- (c) Let $f(n) = n + \log n$, then $f(n) = O(\log^2 n)$.
- (d) Let $f(n) = 2n^3 + 5n^2 \log n + 4$, then $f(n) = O(n^3)$.
- (e) Let $f(n) = 5 \log n + \sqrt{n} + 2$, then $f(n) = \Theta(\sqrt{n})$.

Solution:

- (a) True
 (b) True
 (c) False
 (d) True
 2 pt
 (e) True
 2 pt
 2 pt
 2 pt
 2 pt
- 7. (15 pt) [O2, O3] A relation R is defined on the set Z of integers by xRy if 3x 7y is even. Prove that R is an equivalence relation.

Solution: We will show that R is reflexive, symmetric and transitive.

- (a) To show that R is reflexive, i.e. $\forall x \in Z, xRx$. Let $x \in Z$. Then 3x 7x = -4x = 5 pt 2(-2x), which is even. Thus, xRx for each $x \in Z$.
- (b) To show that R is symmetric, i.e. $\forall x,y \in Z$, if xRy then yRx. Assume xRy that is 3x-7y is even, and we have 3x-7y=2k for some $k \in Z$. Now 3y-7x=3x-7y-10x+10y=2k-10x+10y by assumption. Then 3y-7x=2(k-5x+5y), where $k-5x+5y \in Z$. Thus 3y-7x is even and we have yRx.
- (c) To show that R is transitive, i.e. $\forall x, y, z \in Z$, if xRy and yRz, then xRz. Let $_{5 \text{ pt}}$ $x, y, z \in Z$.

$$xRy$$
 and $yRz \Rightarrow 3x - 7y$ is even and $3y - 7z$ is even
$$\Rightarrow 3x - 7y = 2k \text{ for some } k \in Z \text{ and } 3y - 7z = 2t \text{ for some } t \in Z$$
$$\Rightarrow 3x - 7y + 3y - 7z = 2k + 2t \text{ for some } k, t \in Z$$
$$\Rightarrow 3x - 7z = 2k + 2t + 4y \text{ for some } k, t \in Z$$
$$\Rightarrow 3x - 7z = 2(k + t + 2y), \text{ where } k + t + 2y \in Z$$
$$\Rightarrow 3x - 7z \text{ is even } \Rightarrow xRz.$$

- 8. (12 pt) [O2, O3] Let $f: X \to Y$ be a function. Show that the following statements are equivalent.
 - (a) There exists a function $g: Y \to X$ such that g(f(x)) = x for all $x \in X$ and f(g(y)) = y for all $y \in Y$.
 - (b) f is a bijection.

(Hint: Prove (a) \Rightarrow (b) and (a) \Leftarrow (b). When proving (a) \Leftarrow (b), if you use the inverse of function f, you should prove that it exists first.)

Solution:

- $(a) \Rightarrow (b)$:
- (1) To show that f is injective by contradiction. Suppose there exist two different $x_1, x_2 \in X$ such that $f(x_1) = f(x_2)$. Then $x_1 = g(f(x_1)) = g(f(x_2)) = x_2$, which is a contradiction. Thus, f is injective.
- (2) To show that f is surjective. For any $y \in Y$, we have f(g(y)) = y. So there exists $a = g(y) \in X$ such that f(x) = y. Thus, f is surjective.

Since f is both injective and surjective, it is bijective.

(a) \Leftarrow (b): Since f is a bijection, for each $y \in Y$ there exists exactly one $x \in X$ such that f(x) = y. Thus, the inverse of function f, denoted by f^{-1} , exists. Let $g(y) = f^{-1}(y)$ for each $y \in Y$. Then g(f(x)) = x and f(g(y)) = y follows for all $x \in X$ and $y \in Y$.