Reg No: 359607 CEU-42-A
Assignment # 4
Question 12:
a do
$\frac{t^3 + \sin 2t}{f(t) - t^3 + \sin 2t}$
$d[f(t)] = t + \sin 2t$ $d[f(t)] = d[t^3 + \sin 2t]$
$F(s) = d(t)^3 + d(sinat)$
$f(s) = d(t)^3 + d(sin \partial t)$ $f(s) = \int_0^\infty e^{-st} t^3 dt + \int_0^\infty e^{-st} sin \partial t$
0.01311
$\int_{0}^{\infty} \int_{0}^{-st} \frac{1^{3}}{s} dt = \lim_{A \to \infty} \left[\frac{t^{3}}{e^{st}} \right]_{-s}^{A} = \lim_{A \to \infty} \int_{-s}^{-st} \frac{1^{3}}{s} dt$
$= \lim_{t \to \infty} \left[\frac{3}{t} - \frac{3}{t} \right] + \frac{3}{t} \int_{-\infty}^{\infty} e^{-st} dt$
$A \rightarrow \infty$ S S
$= \lim_{A \to \infty} \left -\frac{t^3 e^{-st}}{s} \right ^A + 3 \left \frac{t^2 - st}{s} \right ^A - \left \frac{te^{-st}}{st} \right ^A$
1 3 st A 2 Ct A A
$\frac{1}{A \to \infty} \begin{vmatrix} -t e^{-st} & -\frac{3t^2 e^{-st}}{5^2} & +\frac{6}{5^2} & +\frac{6}{5^2} \end{vmatrix} + \frac{1}{5^2} $
dim [-t3-st A - 3 +2-st A +6 [te-st A - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -
$A \rightarrow \infty$ S^2 S^2 S^2 S^2

359607

Flom (2)

F= 1+2A-B-2F

 $F = 1 + 2(-\frac{1}{8}) - (-\frac{3}{4}) + 2(\frac{1}{5})$

F - 12

Patting values in (I)

$$f(s) = -7 - 3 - 1 + 27 + \frac{1}{5}s + \frac{2}{5}$$

$$8s + 48^2 + 28^2 + 40(5-2) + 5^2 + 1$$

$$\frac{-7 - 3}{8s} \frac{-1}{4s^2} \frac{+ 27}{26^2} \frac{+ 5}{40ls-2} \frac{+ 5}{5(s^2+1)} \frac{2}{5(s^2+1)}$$

Applying Lapalace inverse:

$$f(t) = -\frac{1}{3} \frac{1}{5} \frac{1}{4} \frac{1}{5^2} \frac{1}{3} \frac{1}{5^2} \frac{1}{3} \frac{1}{5^2} \frac{1}{40} \frac{1}{5^2} \frac{1}{3} \frac{1}{5^2} \frac{1}{5^2}$$

$$= \frac{-7}{8} - \frac{3}{4} + \frac{-1}{a} + \frac{1}{a} + \frac{27}{a} + \frac{24}{5} + \frac{1}{5} + \frac{2}{5} + \frac{2}{5} + \frac{1}{5} + \frac{2}{5} + \frac{2}{5}$$

$$\frac{1}{2} = -\frac{7}{8} + \left(\frac{-3t-t^2}{4}\right) + \frac{27}{40} + \frac{1}{5} \cos t + 2 \sin t$$

