1 Lexicalization of a Treebank

1.1 Question (time: 10:44, slide: 8)

Say we have the sentence "Mary said that John saw Bill" with the parse tree

We are also given the head rules (where * indicates the head)

$$S \to NP \ \mathbf{VP^*}$$

$$NP \to \mathbf{N}^*$$

$$\mathrm{VP} \to \mathbf{V}^* \; \mathrm{NP}$$

 $\mathrm{VP} \to \mathbf{V}^* \; \mathrm{SBAR} \quad \mathrm{SBAR} \to \mathbf{COMP}^* \; \mathrm{S}$

List the head words (separated by a space) of the following non-terminals

- 1. the "SBAR"
- 2. the "S" spanning "Mary \dots Bill"
- 3. the "VP" spanning "said... Bill"

2 Lexicalized PCFGs

2.1 Question (time: 4:54, slide: 11)

Say we are constructing a lexicalized PCFG with |N| = 10 and $|\Sigma| = 1000$. How many possible rule pairs are there of the form

$$X(h) \rightarrow_1 Y_1(h)Y_2(w)$$

$$X(h) \rightarrow_2 Y_1(w)Y_2(h)$$

where $X, Y_1, Y_2 \in N$ and $h, w \in \Sigma$?

- (a) $10^3 \times 1000^2$
- (b) $10^2 \times 1000^3$
- (c) 10×1000
- (d) 10^3

2.2 Question (time: 5:59, slide: 12)

We are given a lexicalized grammar with some valid rules and some invalid rules. Which of the following rules are **valid**?

- (a) $DT(the) \rightarrow a$
- (b) $DT(a) \rightarrow a$
- (c) SBAR(that) \rightarrow_1 COMP(that) S(was)
- (d) SBAR(was) \rightarrow_2 COMP(that) S(was)
- (e) SBAR(was) \rightarrow_1 COMP(that) S(was)
- (f) $PP(in) \rightarrow_1 IN(of) NP(company)$

3 Parameter Estimation in Lexicalized PCFGs (Part 1)

3.1 Question (time: 2:57, slide: 16)

Say we have the sentence "the fast car mechanic" and the parse tree

We are also given the following head rules (where * indicates the head) NP \rightarrow DT $\mathbf{N'^*}$ N' \rightarrow JJ $\mathbf{N'^*}$ N' \rightarrow NN $\mathbf{N'^*}$ N' \rightarrow NN*

Which of the following parameters are used in calculating the probability of this parse tree?

- (a) q(N') (mechanic) $\rightarrow_2 JJ(fast) N'$ (mechanic))
- (b) $q(N'(fast) \rightarrow_1 JJ(fast) N'(mechanic))$
- (c) $q(N' (mechanic) \rightarrow_2 NN(car) N' (mechanic))$
- (d) $q(N'(car) \rightarrow_1 NN(car) N'(mechanic))$
- (e) $q(NP(the) \rightarrow_1 DT(the) N$ ' (mechanic))
- (f) $q(NP(mechanic) \rightarrow_2 DT(the) N' (mechanic))$

4 Evaluation of Lexicalized PCFGs (Part 1)

4.1 Question (time: 5:46, slide: 22)

Say we have the phrase "saw the dog with the telescope" and we are given the gold parse tree (left) and a test parse tree (right)

What is the **precision** of this test parse tree?

5 Evaluation of Lexicalized PCFGs (Part 2)

5.1 Question (time: 6:35, slide: 25)

Say we have the fragment "saw the dog with the telescope" and we are given the gold parse tree (left) and a test parse tree (right)

What is the $\mathbf{dependency}$ $\mathbf{accuracy}$ of this test parse tree (to three decimal places)?

A Answers

• that said said

Trace the head word up from the bottom of the tree to the indicated non-terminal.

• (a)

There are 10 non-terminals, so there are 10^3 possible unlexicalized rules of the form $X \to Y_1 Y_2$. Each one of these rules can have any word as its head h and any other word as w yielding 1000^2 lexicalized variants. The final grammar has $10^3 \times 1000^2$ rules of this form.

• (b) (c) (d)

Invalid rules have a head word that (1) does not match any right-hand side head word, (2) matches the wrong right-hand side word, i.e. SBAR(was) \rightarrow_1 COMP(that) S(was).

• (a) (c) (f)

Note that these rules always have the right-most noun as the head word. The incorrect parameters have a non-noun as head or the left noun in the case of car.

• 0.8

The answer is 0.8. There are 5 constituents in both parse trees, and 4 of them are in both trees. The incorrect constituent is (NP, 2, 6), and the missing constituent is (VP, 2, 4).

• 0.833

The answer is 0.833. There are 6 words in this sentence and the test parse gets 5 of the dependencies correct. The one incorrect dependency is "with" modifying "dog" instead of "with" modifying "saw".