Поиск значения монотонной функции, записанной в массиве, заключается в сравнении срединного элемента массива с искомым значением, и повторением алгори гма для той или другой половины, в зависимости от результата сравнения.

Пускай переменные L_b и U_b содержат, соответственно, левую и правую границы отрезка массива, где находится нужный нам элемент. Исследования начинаются со среднего элемента отрезка. Если искомое значение меньше среднего элемента, осуществляется переход к поиску в верхней половине отрезка, где все элементы меньше только что проверенного, то есть значением U_b становится $(M-1)_{\rm H}$ и на следующей итерации исследуется только половина массива. Т.о., в результате каждой проверки область поиска сужается вдвое.

Например, если длина массива равна 1023, после первого сравнения область сужается до 511 элементов, а после второй — до 255. Т.о. для поиска в массиве из 1023 элементов достаточно 10 сравнений.

```
1 = леваяГраница - 1
r = праваяГраница + 1
while (r - 1 > 1) {
   ceредина = (l+r) / 2
   if (массив[середина] < значение)
        l = середина
   else
        r = середина
}
if (массив[r-1] ≠ значение)
   return -1 // элемент не найден
else
   return r</pre>
```

Программный код

- х_п начало отрезка по х;
- х_k конец отрезка по х;
- х_і середина отрезка по х;
- eps требуемая точность вычислений.

Таким образом, весь алгоритм можно записать следующим образом (в псевдокоде):

- 1. Начало.
- 2. Ввод x_n , x_k , eps.
- 3. Если $F(x_n) = 0$, то Вывод (корень уравнения x_n).
- 4. Если $F(x_k) = 0$, то Вывод (корень уравнения x_k).
- 5. Пока ($F(x_i) < 0$) и $|x_k x_n| > \text{ерѕ повторять:}$
- 6. $xi := (x_k + x_n)/2$;
- 7. если $(F(x_n)*F(x_i) \le 0)$, то $x_k := x_i$;
- 8. если $(F(x_i)*F(x_k) \le 0)$, то $x_n := x_i$.
- 9. Вывод (Найден корень уравнения хі точности є).
- 10. Конец.