	Assignment - Parlometer Estimation
103	Assignment - Parlometer Estimation
white proper	Submitted by: Romjos Longdi
	CHUROUP: 3(56
	Roll No 5 102 1171-59 mls 1000
	1 Selike 1.1 = \$ 254,-10)
01.	Let (X, X2, be a rondom sample of
	size n taken from a Normal Population
	with parometeres mean = Or and varionce = &
	Find the Maximum Likelihood Estimates of
	there tun parameters.
0 =	for getting max volus 3 (n L(61,0)
<u> 501</u>	For now mal population,
	2
	$pmf = 1 e^{-\frac{1}{2}} \left(\frac{1}{\sqrt{\theta_2}} \right)$
	$pmf = \frac{1}{\sqrt{2\pi\theta_2}} \left(\frac{x-\theta_1}{\sqrt{\theta_2}}\right)^2$
	likelihood function: L(0, 0,)
	. 2
	$-\frac{1}{2}\left(\frac{y_{1}-\theta_{1}}{2}\right)^{-1}$
	L(0, 02) = 17 1/2 C
	$i=1$ $\sqrt{2\pi\theta_2}$
	(2) 3 = (.8, 90) 100 - 727
	On L(b, 0,) = \(\int \int \lambda_1 + \lambda_1 - \frac{1}{2} \frac{1}{2} \rangle \)
	$i=1$ $\int 2\pi \int 0_2$
a wh	ar beautiful as as a site and 27
16:25 A = 1	In L(0, 0) = E [-In JIT - In JO2 - (M;-01)
	i=1 [263]

 $ln L(\theta_1, \theta_2) = -n ln \sqrt{2\pi - n ln \sqrt{\theta_2 - \xi_1} (\eta_1 - \theta_1)^2}$ Taking partial derivative wit on Man $\frac{\partial}{\partial \theta_{i}} \ln L(\theta_{i}, \theta_{i}) = \frac{2}{2} \frac{2(x_{i} - \theta_{i})}{2\theta_{i}}$ $\frac{\partial}{\partial \theta_{i}} \ln L(\theta_{i}, \theta_{i}) = \frac{2}{2} \frac{2(x_{i} - \theta_{i})}{2\theta_{i}}$ Earl dip Marinage Lile liber For getting max value, 7 In L(01,02) =0 (En; -) E & = 0 1 = +ma En: = no, Basi $\left(\hat{\theta}_{i} = \overline{X} \right)$ (mean) had itali) Toking double derivative - (9) $\frac{3^{2} \ln L(0, 0_{2}) = \Xi(-1) = -n < 0}{(3 - 100)^{2} - (0_{2}) + (0_{2})}$ since it is < 0 so obtained value

Now, taking position desirative west 50,

 $\frac{\partial \ln L(\theta_{1}, \sigma^{2}) = -n + \frac{2}{2} \left(\frac{\pi i - \theta_{1}}{2} \right)^{2}}{\sigma^{3}}$ $\frac{\partial \cot L(\theta_{1}, \sigma^{2}) = -n + \frac{2}{2} \left(\frac{\pi i - \theta_{1}}{2} \right)^{2}}{\sigma^{3}}$ $\frac{\partial \cot L(\theta_{1}, \sigma^{2}) = 0}{\partial \sigma^{3}}$ $\frac{\partial \cot L(\theta_{1}, \sigma^{2}) = 0}{\partial \sigma^{3}}$ $\frac{\partial \cot L(\theta_{1}, \sigma^{2}) = 0}{\partial \sigma^{3}}$

 $\sigma^2 = \underbrace{\Xi(\chi - Q_1)^2}_{\chi}$

 $\theta_2 = \sum_{i} (y_i - \theta_i)^2$

Toking double devivative,

 $\frac{\partial^2}{\partial \theta_2} \ln L(\theta_1, \theta_2) = n - 3 \mathcal{E}(y_1, -\theta_1)^2$ $\frac{\partial^2}{\partial \theta_2} \ln L(\theta_1, \theta_2) = n - 3 \mathcal{E}(y_2, -\theta_1)^2$

 $\frac{-n - 3 n o_1}{\theta_2 \theta_2^2}$

 $\frac{-2\eta}{\theta_1}$

02 Let X, X2, ... Xn be Hondon sample from B(m,0) distalibution where 0 & 0 = (0,1) is unknown and m is known positive integers. Compute value of On using M.L.E. Four binomial disturibution, So/2 pmf = Cn O (1-0) m-xLikelihood function, $L(0) = \pi \Gamma^{m} (x_{i}, 0^{m})^{m-1} I^{i}$ (L(0) = 7 - [n] = 2 - [nIn 110) = - Enlor Maj + = E 1. 10 (0) + (nm - Exi) ln(1-0) Toking devivative wint 0 1 ln 1(0) = 2 ni-17 nm = Exi (-1) $\frac{\partial}{\partial \theta} = \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} = \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta}$

Since double derivative is <0 80, obtained value 1's maximum.

 $\frac{1}{2} \cdot \frac{1}{100} = \frac{1}{100} \times \frac{1}{100} = \frac{1}{1$

7.7