14.332.435/16.332.530 Introduction to Deep Learning

Lecture 4 Backpropagation

Yuqian Zhang

Department of Electrical and Computer Engineering

Recall Last Time

Computational Graph

CE: Cross Entropy

Example
$$f(x,y,z) = (x + y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

 $\frac{\partial f}{\partial x'}, \frac{\partial f}{\partial y'}, \frac{\partial f}{\partial z}$ Want:

$$f(x, y, z) = (x + y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

Solution:
$$q = x + y$$

$$f = qz$$

$$\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

$$f(x, y, z) = (x + y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

Want: $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

Solution:
$$q = x + y$$

$$f = qz$$

$$\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

Chain Rule: for
$$f(q(x))$$
, $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} = z \times 1 = -4$$

Upstream Local gradient gradient

$$f(x, y, z) = (x + y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

Solution:
$$q = x + y$$

$$f = qz$$

$$\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

Chain Rule: for
$$f(q(y))$$
, $\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y} = z \times 1 = -4$$

Upstream Local gradient

$$f(x, y, z) = (x + y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Solution:
$$q = x + y$$

$$f = qz$$

$$\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

Chain Rule: for
$$f(z)$$
, $\frac{\partial f}{\partial z} = \frac{\partial f}{\partial f} \frac{\partial f}{\partial z}$

$$\frac{\partial f}{\partial z} = \frac{\partial f}{\partial f} \frac{\partial f}{\partial z} = 1 \times 3 = 3$$

Upstream Local gradient gradient

$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$

$$f(x) = e^x \qquad \frac{df}{dx} = e^x$$

$$f_a(x) = ax$$
 $\frac{df}{dx} = a$

$$f(x) = \frac{1}{x} \qquad \qquad \frac{df}{dx} = \frac{-1}{x^2}$$

$$f_c(x) = c + x \qquad \frac{df}{dx} = 1$$

$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$

$$f(x) = e^x \qquad \frac{df}{dx} = e^x$$

$$f_a(x) = ax \qquad \qquad \frac{df}{dx} = a$$

$$f(x) = \frac{1}{x} \qquad \qquad \frac{df}{dx} = \frac{-1}{x^2}$$

$$f_c(x) = c + x \qquad \frac{df}{dx} = 1$$

$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$

$$f(x) = e^x \qquad \frac{df}{dx} = e^x$$

$$f_a(x) = ax \qquad \qquad \frac{df}{dx} = a$$

$$f(x) = \frac{1}{x} \qquad \qquad \frac{df}{dx} = \frac{-1}{x^2}$$

$$f_c(x) = c + x \qquad \frac{df}{dx} = 1$$

$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$

$$f(x) = e^x \qquad \frac{df}{dx} = e^x$$

$$f_a(x) = ax \quad \Longrightarrow \quad \frac{df}{dx} = a$$

$$f(x) = \frac{1}{x} \qquad \qquad \frac{df}{dx} = \frac{-1}{x^2}$$

$$f_c(x) = c + x \qquad \qquad \frac{df}{dx} = 1$$

$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$

$$f(x) = e^x \qquad \frac{df}{dx} = e^x$$

$$f_a(x) = ax$$
 $\frac{df}{dx} = a$

$$f(x) = \frac{1}{x} \qquad \frac{df}{dx} = \frac{-1}{x^2}$$

$$f_c(x) = c + x \qquad \frac{df}{dx} = 1$$

MUL acts as switcher
$$\frac{\partial f}{\partial x} = y$$
 $f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$ $\frac{\partial f}{\partial y} = x$ Upstream Local gradient $f(x) = 0.20$ $f(x) = 0.$

Simplificatio

Sigmoid function

Matrix Calculus Primer

Scalar-by-Vector

Vector-by-Vector

Scalar-by-Matrix

$$\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} & \frac{\partial y}{\partial x_2} \dots \frac{\partial y}{\partial x_n} \end{bmatrix}$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \dots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \dots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}$$

$$\frac{\partial y}{\partial A} = \begin{bmatrix} \frac{\partial y}{\partial A_{11}} & \frac{\partial y}{\partial A_{12}} & \dots & \frac{\partial y}{\partial A_{1n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial A_{m1}} & \frac{\partial y}{\partial A_{m2}} & \dots & \frac{\partial y}{\partial A_{mn}} \end{bmatrix}$$

$$f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^{n} (W \cdot x)_i^2$$

$$f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^{n} (W \cdot x)_i^2$$

Vectorized

$$f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^{n} (W \cdot x)_i^2$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

Vectorized

$$f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^{n} (W \cdot x)_i^2$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

Vectorized

 $f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^{n} (W \cdot x)_i^2$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

$$rac{\partial f}{\partial q_i} = 2q_i$$
 $\nabla_q f = 2q$

$$f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^{n} (W \cdot x)_i^2$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$

$$egin{aligned} rac{\partial f}{\partial q_i} &= 2q_i \ & rac{\partial q_k}{\partial W_{i,j}} &= \mathbf{1}_{k=i} x_j \end{aligned}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

$$f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^{n} (W \cdot x)_i^2$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix} \qquad \frac{\partial q_k}{\partial W_{i,j}} = \mathbf{1}_{k=i}x_j$$

$$\frac{\partial f}{\partial W_{i,j}} = \sum_k \frac{\partial f}{\partial q_k} \frac{\partial q_k}{\partial W_{i,j}}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

$$egin{aligned} rac{\partial f}{\partial q_i} &= 2q_i &
abla_{q_k} \ rac{\partial q_k}{\partial W_{i,j}} &= \mathbf{1}_{k=i} x_j \ rac{\partial f}{\partial W_{i,j}} &= \sum_k rac{\partial f}{\partial q_k} rac{\partial q_k}{\partial W_{i,j}} \ &= \sum_k (2q_k) (\mathbf{1}_{k=i} x_j) \ &= 2q_i x_j &
abla_W f = 2q \cdot x^T \end{aligned}$$

$$f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^{n} (W \cdot x)_i^2$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$

$$rac{\partial f}{\partial q_i} = 2q_i$$
 $\nabla_q f = 2q$ $rac{\partial q_k}{\partial x_i} = W_{k,i}$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

$$f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^{n} (W \cdot x)_i^2$$

Acknowledgement

Many materials of the slides of this course are adopted and re-produced from several deep learning courses and tutorials.

- Prof. Fei-fei Li, Stanford, CS231n: Convolutional Neural Networks for Visual Recognition (online available)
- Prof. Andrew Ng, Stanford, CS230: Deep learning (online available)
- Prof. Yanzhi Wang, Northeastern, EECE7390: Advance in deep learning
- Prof. Jianting Zhang, CUNY, CSc G0815 High-Performance Machine Learning:
 Systems and Applications
- Prof. Vivienne Sze, MIT, "Tutorial on Hardware Architectures for Deep Neural Networks"
- Pytorch official tutorial https://pytorch.org/tutorials/