华东理工大学 2016 - 2017 学年第二学期

《复变函数与积分变换》课程期终考试试卷 A 2017.6

开课学院:理学院,考试形式:闭卷,所需时间:120分钟

考生姓名:		学号:		班级:		任课教师 :		
题序			三	四	五	六	七	总分
得分								
评卷								
附: 常用积分变换: $\mathcal{F}[\delta(t)]=1$, $\mathcal{F}[t]=2\pi i\delta'(\omega)$, $\mathcal{L}[1]=\frac{1}{s}$, $\mathcal{L}[\sin kt]=\frac{k}{s^2+k^2}$,								
$\mathcal{L}[\delta(t)] = 1, \mathcal{L}[\cos kt] = \frac{s}{s^2 + k^2}, \mathcal{L}[e^{kt}] = \frac{1}{s - k}, \mathcal{L}[t^m] = \frac{1}{s^{m+1}},$								
一、 填空(每小题 4 分, 共 24 分)								
1.复数 $z = (1 + i)^6$ 的值为								
2.设 $f(z) = a \ln(x^2 + y^2) + i \arctan \frac{y}{x}$ 在 $x > 0$ 解析,则 $a = $								
3.设函数 $f(z) = \int_0^z 3te^t dt$,则 $f(z)$ 等于								
4.映射 $f(z) = \ln(z-1)$ 在点 $z = -1 + 2i$ 处的旋转角为								
5. 将单位圆 $ z < 1$ 内共形映射到单位圆 $ w < 1$ 内,且满足 $f(\frac{1}{2}) = 0$, $\arg f'(\frac{1}{2}) = \frac{\pi}{2}$ 的								
分式线性映射为								
6、设 $f(t) = \int_0^t t \sin 2t dt$,则 $f(t)$ 的拉氏变换等于								
二、选择题(每题4分,共16分)								
1. 在复平面上,下列命题中,错误的是()								
A. $\cos z$ 是周期函数 B. e^z 是解析函数 C. $e^{iz} = \cos z + i \sin z$ D. $\sqrt{z^2} = z $								

- 2. 洛朗级数 $\sum_{1}^{\infty} \frac{2^n}{(z-4)^n} + \sum_{n=0}^{\infty} (-1)^n (1-\frac{z}{4})^n$ 的收敛圆环为(
 - A. 2 < |z-4| < 4 B. 1 < |z-2| < 4 C. 2 < |z-3| < 3 D. 2 < |z-4| < 6
 - 3. z = 0 是函数 $\frac{e^z}{z \sin z}$ 的 ()

- A.本性奇点 B.一级极点 C. 二级极点 D. 可去奇点
- 4. $\delta(t-t_0)$ 的 Fourier 变换为(

 - A. 1 B. t_0
- C. $e^{-i\omega t_0}$
- D. $e^{i\omega t_0}$

- 三. 计算以下积分 (每题 6 分, 共 30 分)
- 1. 求 $\oint_C \frac{\sin z}{z(z-1)} dz$,其中C为| $z \models 2$.

2. $\Rightarrow \oint_{|z|=\frac{3}{2}} \frac{e^z}{(z+3)^2(z-1)} dz$

$$3.$$
计算
$$\int_0^{2\pi} \frac{d\theta}{5+3\cos\theta},$$

$$4. \int_{-\infty}^{+\infty} \frac{\cos x}{\left(x^2 + 4x + 5\right)^2} dx$$

5.
$$\oint_{|z|=2} \frac{z^{13}}{(z^2-1)(z^8+1)} dz.$$

四. (8 分) 已知 $u(x, y) = x^2 - y^2 + 2x$, 求解析函数 f(z) = u(x, y) + iv(x, y), 并使 f(0) = 2i.

五. (8 分) 分别在圆环(1)0 < |z| < 1,(2)0 < |z-1| < 1内将函数 $f(z) = \frac{1}{z(1-z)^2}$ 展为罗朗级数。

六. (3+6分) (1)设
$$\mathcal{F}[f(t)] = \frac{1}{\beta + i\omega}$$
, 求 $\mathcal{F}[f(t-2)]$

(2) 求方程
$$y'' + 2y' - 3y = e^{-t}$$
, 满足初始条件 $y'|_{t=0} = 1$, $y|_{t=0} = 0$ 的解。

七、(5分) 计算
$$\int_{|z|=1}^{\pi} \frac{1}{z-2} dz$$
 的值,并由此证明 $\int_{0}^{\pi} \frac{1+2\cos\theta}{5+4\cos\theta} d\theta = 0$