Alexandria University Faculty of Engineering Mechanical Department

Numerical Heat Transfer Technical Report

No (1): Consider a large plate of thickness 5 cm and thermal conductivity of 0.2 W/m. K, in which heat is generated uniformly at a constant rate of 10000 W/m³. The right side of the plate is well insulated, while the other side is subjected to convection to an environment at 25 °C with a heat transfer coefficient of 20 W/ m²

.K and incident radiation heat flux of 150 W/m².

Write the boundary conditions for the heat transfer process, and then estimate the temperature distribution and the rate of heat transfer per unit area (W/ m²) from both sides of the plate. Also define the value and position of maximum temperature.

Solve the problem:

- a) Analytical.
- b) Numerical (manual 10 iteration).
- c) Programming by MATLAB (error 0.0001).

And compare between the results by plot them on the same (T-x) diagram.

Firstly: Analytical Solution

$$T_{\infty} = 25$$

$$h = 20$$

$$q_{red}$$

$$T_{\infty} = 25$$

$$T_{\infty} = 25$$

$$q_{red}$$

$$T_{\infty} = 1$$

$$\frac{\partial^{2}T}{\partial x^{2}} + \frac{g}{k} = 0$$

$$\frac{\partial^{2}T}{\partial x^{2}} = -\frac{g}{k} \rightarrow \frac{\partial T}{\partial x} = -\frac{g}{k}x + C_{1}$$

$$T = -\frac{g}{2k}x^{2} + C_{1}x + C_{2}$$

- The boundary conditions:
 - 1. Insulated at x = L

2. at x = 0 (Convection and Radiation)

$$q_{cond} = q_{conv} + q_{rad}$$

$$\therefore -k \left(\frac{dT}{dx}\right)|_{x} = h(T_{\infty} - T_{0}) + q_{rad} \rightarrow \left(\frac{dT}{dx}\right)|_{x=0} = C_{1}, T(0) = C_{2}$$

$$\therefore -0.2 \times 25000 = 20(25 - C_{2}) + 150 \quad \therefore C_{2} = 57.5$$

: The temperature distribution is

$$T = -\frac{g}{2k}x^2 + C_1x + C_2 = \frac{-10000}{0.2}x^2 + 2500 x + 57.5$$

$$\therefore T = -25000 x^2 + 2500 x + 57.5$$

Secondly: Numerical Solution

 $Number\ of\ nodes=6$

$$\Delta x = \frac{L}{6-1} = \frac{0.05}{5} = 0.01 \, m$$

• Interior nodes (Equations) $(T_2 \rightarrow T_5)$

$$Q_{in} - Q_{out} = 0 : Q_{m-1,m} + -Q_{m,m+1} = 0$$

$$\frac{(-T_m)}{\left(\frac{\Delta x}{kA}\right)} + g(\Delta x \times A) - \frac{(T_m - T_{m+1})}{\left(\frac{\Delta x}{kA}\right)} = 0$$

$$\therefore T_{m-1} - 2T_m + T_{m+1} = -\frac{-g(\Delta x)^2}{k} = -5 \to (m = 2, m = 3, m = 4)$$

• Exterior nodes (Equations) (T_1, T_6) The Boundary Conditions:

1. At
$$x = L = 0.05 \, m \rightarrow (Insulated) : g\left(\frac{\Delta x}{2}\right) = -k \frac{(T_5 - T_6)}{\Delta x}$$

$$: 50 = \frac{0.2}{0.01}(-T_5 + T_6) \rightarrow \frac{50}{20} = -T_5 + T_6 : T_6 = T_5 + \frac{5}{2}$$

2. At x = 0 (Convection and Radiation):

$$q_{in} - q_{out} = 0$$

$$\therefore Ah (T_{\infty} - T_1) + q_{rad}A + g \left(\frac{\Delta x}{2}A\right) - \frac{T_1 - T_2}{\left(\frac{\Delta x}{kA}\right)} = 0$$

$$\therefore h (T_{\infty} - T_1) + q_{rad} + g \frac{\Delta x}{2} = \frac{T_1 - T_2}{\left(\frac{\Delta x}{kA}\right)}$$

Iterations	1	2	3	4	5	6
Initial Guess	60	70	80	90	100	110
1	52.5	72.5	82.5	92.5	102.5	102.5
2	53.75	70	85	95	100	105
3	52.5	71.875	85	95	102.5	102.5
4	53.437	71.25	85.937	96.25	101.25	105
5	53.25	72.1875	86.25	96.093	103.125	103.75
3	53.593	72.1875	86.61	97.187	102.42	105.62
7	53.593	72.6172	87.187	97.0321	103.706	104.92
8	53.808	72.8906	87.324	98.016	103.478	106.406
9	53.945	73.0664	87.968	97.9001	104.726	105.97
10	54.033	73.157	87.983	98.84	104.438	107.226

For the maximum Temperature $\therefore \frac{dT}{dx} = 0$

$$\therefore -\frac{g}{k}x + C_1 = 0 \quad \therefore x = (-C_1)\left(\frac{-k}{g}\right) = \left(\frac{g}{k}L\right)\left(\frac{k}{g}\right) = L = 0.05$$

 \therefore the maximum Temperature at x = 0.05

$$T_{max} = -2500 (0.05)^2 + 2500 x + 57.5 = 120 \,^{\circ}C$$

For the heat transfer per unit area $\left(\frac{W}{m^2}\right)$

$$q|_{x=0} = -k \frac{dT}{dx}|_{x=0} = -k C_1 = -k \times 2500 = -500 W/m^2$$

Thirdly: MATLAB Solution

```
%%prep work space%%
                                                                                         Temperature Distribution in A Plate
clc, clear
                                                                      120
%% Givens %%
                                                                                                                                    Numerical
L = 0.05; %in m%
                                                                                                                                    Analytical
K = 0.2; %in W/m.k%
                                                                      110
g = 10000; %in W/m^3%
T_inf = 25; %in C%
h = 20; %W/m2.k%
                                                                      100
q rad = 150; %W/m2%
                                                                   Temperature (°C)
% Nodes and Element Length %
M = 100;
                                                                       90
dx = L/(M-1);
% Initial Guess %
                                                                       80
T = ones(M,1) * T_inf;
% Iteration Settings %
error = 1;
                                                                       70
iter = 0;
% Calculations %
while error > 0.0001
                                                                       60
    T old = T;
    % Interior Nodes %
                                                                       50
    for i = 2:M-1
                                                                              0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
        T(i) = 0.5 * (T(i+1) + T(i-1) + (g * dx^2)/K);
    end
                                                                                                     Position x (m)
    T(1) = (2*T(2) + 2*dx*(h*T inf + q rad)/K) / (2 + 2*dx*h/K);
    % Right Boundry: insulated (dT/dx = 0) %
    T(M) = T(M-1);
    % Error Check %
    error = max(abs(T - T old));
    iter = iter + 1;
% Analytical Solution %
x = linspace(0, L, M);
T anal = -g/(2*K) * x.^2 + g*L/K * x + 57.5;
\% Maximum Temperature and Position \%
[T \max, idx] = \max(T);
x \max = x(idx);
T_max_anal = max(T_anal);
% Heat Transfer Rate%
q_left = g*L/K * -K;
q right = 0;
fprintf(\mbox{'Maximum Temperature from Numerical Solution: $2f \mbox{°C at $x = $.4f m\n', T max,} \label{eq:first}
x max);
fprintf('Maximum Temperature from Analytical Solution: %2f °C\n', T max anal);
fprintf('Heat Transfer Rate at x = 0: %.2f W/m^2\n', q_left); fprintf('Heat Transfer Rate at x = L: %.2f W/m^2\n', q_right);
%% Plotting Results %%
plot(x, T, '-b', 'DisplayName', 'Numerical');
hold on;
plot(x, T_anal, '-r', 'DisplayName', 'Analytical')
xlabel('Position x (m)');
ylabel('Temperature (°C)');
title('Temperature Distribution in A Plate');
legend('show');
arid on;
```

```
Maximum Temperature from Numerical Solution: 118.548454 °C at x = 0.0495 m Maximum Temperature from Analytical Solution: 120.000000 °C Heat Transfer Rate at x = 0: -500.00 W/m^2 Heat Transfer Rate at x = L: 0.00 W/m^2
```

- **No (2):** A large flat plate of thickness 12 cm has a thermal conductivity of 50 W/m·K and a thermal diffusivity of 3.94×10^{-5} m²/s. The plate is initially at a uniform temperature of 20°C. At time t = 0, the right surface of the plate is subjected to a constant heat flux of 100 kW/m², while the left surface is exposed to a fresh water at 30°C, with a convective heat transfer coefficient of 700 W/m²·K.
- a) Use the explicit finite difference method (for a non-lumped system) to determine the temperature distribution across the plate thickness at 5, 10, 15, 20, 25, and 30 minutes after the start of heating.
- b) Plot the minimum temperature in the plate as a function of time.
- c) Estimate the total amount of heat stored in the plate after 30 minutes, in kJ. Solve the problem using MATLAB programming.

Firstly: Question a)

Givens:

L = 0.12,
$$\alpha = 3.9x10^5$$
, $h = 700$, $T_{\infty} = 30$, $q_{in} = 100 \times 10^3$, $T_{initial} = 20$

$$\Delta x = \frac{0.12}{5} = 0.024$$

$$\tau = \frac{\alpha \Delta t}{\Delta x^2} \le 0.5$$
, $Take \Delta t = 5s$, $\tau = 0.342$

• Interior nodes

$$T_2^{i+1} = \tau T_1^i + (1 - 2\tau)T_2^i + \tau T_3^i$$

$$T_3^{i+1} = \tau T_2^i + (1 - 2\tau)T_3^i + \tau T_4^i$$

$$T_4^{i+1} = \tau T_3^i + (1 - 2\tau)T_4^i + \tau T_5^i$$

$$T_5^{i+1} = \tau T_4^i + (1 - 2\tau)T_5^i + \tau T_6^i$$

• Exterior nodes

1)
$$At x = 0$$
:

$$\begin{split} E_{in} - E_{out} &= \frac{dE_{sys}}{dt} \\ h \big(T_{\infty} - T_1^i \big) - k \frac{T_1^i - T_2^i}{\Delta x^2} &= \frac{k}{\alpha} \times \frac{\Delta t}{2} \times \frac{T_1^{i+1} - T_1^i}{\Delta t} \\ &\frac{2h\alpha\Delta t}{k\Delta x} \big(T_{\infty} - T_1^i \big) + \frac{2\alpha\Delta t}{\Delta x^2} \big(T_2^i - T_1^i \big) + T_1^i &= T_1^{i+1} \\ T_1^{i+1} &= \bigg(1 - 2\tau - \frac{2\tau h\Delta x}{k} \bigg) T_1^i + 2\tau T_2^i + \frac{2\tau h\Delta x}{k} T_{\infty} \end{split}$$

2)
$$At x = L$$
:

$$\begin{split} E_{in} - E_{out} &= \frac{dE_{sys}}{dt} \\ k\frac{T_5^i - T_6^i}{\Delta x} + q_{in} &= \frac{k}{\alpha} \frac{\Delta x}{2} \frac{T_6^{i+1} - T_6^i}{\Delta t} \\ &\therefore \frac{2\alpha \Delta t}{\Delta x^2} \left(T_5^i - T_6^i \right) + \frac{2\alpha \Delta t}{k\Delta x} q_{in} + T_6^i &= T_6^{i+1} \\ &\therefore T_6^{i+1} &= 2\tau \, T_5^i + (1 - 2\tau) T_6^i + \frac{2\tau \Delta x}{k} q_{in} \end{split}$$

	node 1	node 2	node 3	node 4	node 5	node 6
time 5 min	100.3757	125.5418	154.7052	188.6561	227.9837	273.0518
time 10 min	142.3957	180.7994	220.8831	262.9789	307.3344	354.1023
time 15 min	160.0553	204.0223	248.6954	294.2141	340.6824	388.1646
time 20 min	167.4770	213.7821	260.3839	307.3411	354.6974	402.4798
time 25 min	170.5961	217.9264	265.2962	312.8578	360.5874	408.4959
time 30 min	171.9069	219.6075	267.3606	315.1764	363.0627	411.0242

Secondly: Question b)

Thirdly: Question c)

Total Heat Stored = $(T - T_{initial})\Delta x \frac{k}{\alpha} = 49655.71 \, Kj/m^2$

MATLAB Code

% Parameters

```
L = 0.12; % thickness (m)
 k = 50; % thermal conductivity (W/m·K)
 alpha = 3.94e-5; % thermal diffusivity (m^2/s)
 h = 700; % convection coefficient (W/m<sup>2</sup>·K)
 T_inf = 30; % water temperature (°C)
 q_flux = 100e3; % heat flux (W/m<sup>2</sup>)
 T_initial = 20; % initial temperature (°C)
  % Discretization
 dx = 0.024; % spatial step (m)
 dt = 5; % time step (s)
 x = 0:dx:L; % spatial nodes (6 nodes total)
 N = length(x); % number of nodes = 6
 % Stability check
  Fo = alpha*dt/dx^2;
  if Fo > 0.5
      error('Stability criterion not satisfied! Reduce time step.');
  fprintf('Fourier number Fo = %.3f (stable)\n', Fo);
  % Simulation time setup
  sim_time = 30*60; % 30 minutes in seconds
 output_times = [5, 10, 15, 20, 25, 30] *60; % in seconds
 % Initialize temperature array
 T = ones(1,N)*T_initial;
 T_record = zeros(length(output_times), N);
 time_indices = zeros(1, length(output_times));
 % Time stepping
 current_time = 0;
 output_counter = 1;
 min_temp_history = [];
while current_time <= sim_time</pre>
     % Store current temperature for time stepping
     T_old = T;
      % Interior nodes (i=2 to N-1)
     for i = 2:N-1
          T(i) = T_old(i) + Fo*(T_old(i+1) - 2*T_old(i) + T_old(i-1));
```

```
T(1) = (k*T_old(2)/dx + h*T_inf)/(k/dx + h);
     % Right boundary (node N, constant heat flux)
     T(N) = T_old(N-1) + q_flux*dx/k;
     % Record minimum temperature
     min_temp_history = [min_temp_history, min(T)];
     % Check if current time matches output times
     if output_counter <= length(output_times) && current_time >= output_times(output_counter)
         T_record(output_counter,:) = T;
         time_indices(output_counter) = current_time;
         fprintf('Time = %d min:\n', current_time/60);
         fprintf('Node positions (m): %s\n', sprintf('%.3f ', x));
         fprintf('Temperatures (°C): %s\n\n', sprintf('%.1f ', T));
         output_counter = output_counter + 1;
     current_time = current_time + dt;
 % Plotting temperature distributions
 figure;
 hold on;
 colors = lines(length(output_times));
for i = 1:size(T_record, 1)
    plot(x, T_record(i,:), 'o-', 'Color', colors(i,:), 'DisplayName', sprintf('%d min', output_times(i)/60));
 xlabel('Position (m)');
 ylabel('Temperature (°C)');
 title('Temperature Distribution Across Plate (6 nodes, \Delta t=5s)');
 legend('Location', 'northwest');
 grid on;
 % Plotting minimum temperature vs time
 figure;
 plot((1:length(min temp history))*dt/60, min temp history, 'b-');
 xlabel('Time (minutes)');
 ylabel('Minimum Temperature (°C)');
 title('Minimum Temperature in Plate vs Time');
 grid on;
  % Calculate total heat stored after 30 minutes
  rho cp = k/alpha; % \rho*c p (J/m^3 \cdot K)
```

end

% Left boundary (node 1, convection)

fprintf('\nTotal heat stored after 30 minutes: %.2f kJ/m²\n', total heat kJ);

total heat = sum(T - T initial)*dx*rho cp; % J/m2

total_heat_kJ = total_heat/1000; % kJ/m²

Fourier number Fo = 0.342 (stable)

Time = 5 min:

Node positions (m): 0.000 0.024 0.048 0.072 0.096 0.120 Temperatures (°C): 104.8 131.2 161.7 196.8 237.3 283.3

Time = 10 min:

Node positions (m): 0.000 0.024 0.048 0.072 0.096 0.120 Temperatures (°C): 145.4 184.8 225.7 268.6 313.5 360.7

Time = 15 min:

Node positions (m): 0.000 0.024 0.048 0.072 0.096 0.120 Temperatures (°C): 161.8 206.3 251.5 297.4 344.2 391.9

Time = 20 min:

Node positions (m): 0.000 0.024 0.048 0.072 0.096 0.120 Temperatures (°C): 168.4 215.0 261.9 309.0 356.5 404.4

Time = 25 min:

Node positions (m): 0.000 0.024 0.048 0.072 0.096 0.120 Temperatures (°C): 171.1 218.5 266.0 313.7 361.5 409.5

Time = 30 min:

Node positions (m): 0.000 0.024 0.048 0.072 0.096 0.120 Temperatures (°C): 172.1 219.9 267.7 315.6 363.5 411.5

Total heat stored after 30 minutes: 49655.71 kJ/m²