

#### Warm measurements on cavities/HOMs

#### J. A. Mitchell 1,2

<sup>1</sup>Engineering Department, Lancaster University <sup>2</sup>BE-RF Section, CERN

> 6th HL-LHC Collaboration Meeting Espace St Martin, Paris, 14-16 November 2016







#### **Presentation outline**



- 1. HOM coupler test boxes
  - HiLumi HOM couplers
  - RFD single coupler
  - L-bend transmission
  - Coaxial chamber
- 2. HOM coupler conditioning
- 3. Longitudinal measurements (DQW)
  - On-axis bead-pull
  - Multipole measurements
  - Stretched wire measurements
- 4. References



#### **Higher Order Modes (HOMs)**



- Higher Order Modes (HOMs)
- Modes of operation which occur at frequencies higher than the operational mode.
- If excited by an external source, the HOMs can deviate from the desired crabbing operation.



- HOM couplers damp the higher order modes to a load but whilst acting as a stop-band filter for the crabbing mode at **400 MHz**.
- It is beneficial to know the spectral response of the HOM couplers **pre-installation**.



#### HiLumi crab cavity HOM couplers



- The two HiLumi crab cavities to be tested in the SPS in 2018 are the Double Quarter Wave (DQW) [1] and Radio Frequency Dipole (RFD) [2].
- Each has HOM couplers with associated spectral responses tailored at providing a path at the HOM frequencies but acting as a stop-band to the crabbing mode.



c) Spectral responses of the HOM couplers

 It is beneficial to know the spectral response of the HOM couplers pre-installation.







# **DQW** <u>L-bend transmission</u> test box











- **■** 2-port
  - Improves similarity of spectral response to that of the HOM coupler.
  - Allows the feasibility of high power conditioning to be investigated.





## DQW coaxial chamber test box







- Uses a procured coaxial line and connectors reduction to 7-16/N-type.
- Peak frequencies not as accurate as L-bend, however simpler manufacture using procured components with documented operational tollerences.
- 2-port
  - Improves similarity of spectral response to that of the HOM coupler.
  - Allows the feasibility of high power conditioning to be investigated.



James Mitchell

j.a.mitchell@lancaster.ac.uk - 15/11/16



#### **DQW** test box manufacture





Currently all manufacturing drawings have been produced and the parts are waiting to be machined and welded.















## **Coupler conditioning**



- As the HOM couplers for the DQW are 'on-cell' there are areas of high field on the coupler surfaces.
- These areas can cause breakdown and heating of the HOM couplers.
- Hence, a device which can pre-condition the couplers prior to installation would be very valuable.



- In both cases, high transmission occurs at the frequencies of the HOM coupler interaction points.
- Areas of high field (i.e. deflecting mode and low Q<sub>ext</sub> HOMs) should be investigated and the best conditioning configuration can be resulted.





#### RFD single coupler test box



- For the RFD HOM coupler, a single probe test box has been designed.
- The structure's aim is to accurately characterise the frequency of the stop-band filter.
- To provide an accurate reference for the frequency of the stop-band, mesh convergence was necessary.





| Peak    | Frequency [MHz]<br>(3dp) |  |
|---------|--------------------------|--|
| 1       | 255.840                  |  |
| 2 (B-S) | 396.487 ± 0.050          |  |
| 3       | 631.020                  |  |
| 4       | 759.220                  |  |
| 5       | 1189.000                 |  |



#### **RFD** single coupler test box



- Inductive connection to the wall of the waveguide is needed to diminish the  $TM_{010}$  waveguide mode and measure the response of the  $TE_{110}$  mode.
- The orientation of the pick-up also effects which waveguide mode is induced.







| Peak      | RFD HOM coupler frequency [MHz] (3dp) | Flange connected<br>[MHz] (3dp) | Flange connected rotated [MHz] (3dp) |
|-----------|---------------------------------------|---------------------------------|--------------------------------------|
| Stop-band | $396.487 \pm 0.050$                   | 396.567                         | 396.443                              |



#### RFD test box manufacture



• Manufacturing drawings have now been finalised following discussions with J. Delayen and S. de. Silva.





#### Longitudinal measurements





#### Bead-pull

- On axis measurements to result in electric and magnetic field profiles.
- Azimuthal measurements to try and quantify multipole components.

#### Stretched wire

- Allows the electrical centre to be established.
- This data could then be referenced to the flange geometry for initial calibration.



b) Multi-axis bead-pull set-up



b) Stretched wire set-up at JLAB



#### On-axis bead-pull



- 3-axis bead-pull set-up.
- Currently an aluminium machined DQW PoP prototype is being used to establish techniques before analysing the Niobium cavities.
- Metallic and dielectric beads allow electric and magnetic field profiles to be calculated.





## **Multipoles**



- Multipole components can be calculated using a discrete number of longitudinal electric field profiles over an azimuth.
- Lorentz force field decomposition can be used to calculate the multipole coefficients [3].

$$a_n = \frac{jn}{\omega\pi} \int_{-\pi}^{\pi} \frac{1}{r^n} sin(n\theta) \int_{-l/2}^{l/2} e^{\left(\frac{j\omega z}{c}\right)} E_z(r,\theta,z) \, dz d\theta \quad (1)$$

$$b_n = \frac{jn}{\omega\pi} \int_{-\pi}^{\pi} \frac{1}{r^n} cos(n\theta) \int_{-l/2}^{l/2} e^{\left(\frac{j\omega z}{c}\right)} E_z(r,\theta,z) \, dz d\theta \quad (2)$$

- Where n is the multipole number, i.e. n = 0 is the monopole, 1 is the dipole and 2 the quadrupole etc.
- r represents the radius at which the azimuthal integration takes place, z is the position along the longitudinal axis and Ez is the longitudinal electric field.



#### **Multipole simulations**



- In order to calculate the multipoles from simulation, a discrete number of longitudinal electric field profiles are taken over an azimuth at a specific radii.
- For visualisation of the multipole kicks, the field can be decomposed into E<sub>acc</sub> for each of the multipole components.

$$E_{acc} = e^{\left(\frac{j\omega z}{c}\right)} E_z(r,\theta,z)$$

$$E_{acc}^{(n)} = j \int_{-\pi}^{\pi} \frac{1}{r^n} cos(n\theta) E_{acc} \ d\theta$$







Normalised to 1J of stored energy in the cavity.

James Mitchell – j.a.mitchell@lancaster.ac.uk – 15/11/16



# **Multipole simulations**









(d)  $r = 15 \, \text{mm}$ 



(b)  $r = 20 \, \text{mm}$ 



(e)  $r = 20 \, \text{mm}$ 



(c) 
$$r = 25 \,\mathrm{mm}$$



(f)  $r = 25 \, \text{mm}$ 

|                     | $\mathbf{b}_0$      | b <sub>1</sub>                        | <b>b</b> <sub>2</sub>    | <b>b</b> <sub>3</sub>    |
|---------------------|---------------------|---------------------------------------|--------------------------|--------------------------|
| Re{b <sub>n</sub> } | $0.00E+00 \pm 0.00$ | $-3.33E+01 \pm 1.74E-03$              | $1.77E-01 \pm 6.53E-02$  | $-1.04E+03 \pm 2.27E-01$ |
| Im{b <sub>n</sub> } | $0.00E+00\pm0.00$   | $1.01\text{E-}08 \pm 3.26\text{E-}08$ | $-1.41E-06 \pm 4.47E-06$ | -1.89E-04 ± 1.76E-04     |



## Multipole measurements





• By using a metallic needle the electric field on axis can be determined via bead-pull measurements.

- R0.60 R0.25
- Following this, the same mathematics can be applied for multipole analysis.
- Initially this was trialled with a 30 mm needle at three radii with 8 points along the azimuth.



(a)  $r = 15 \, \text{mm}$ 





(b)  $r = 20 \, \text{mm}$ 



(e)  $r = 20 \, \text{mm}$ 



(c)  $r = 25 \,\mathrm{mm}$ 



(f)  $r = 25 \, \text{mm}$ 

- Imaginary points gave a close representation of the simulated.
- However, difference due to the S/N ratio was too large for meaningful and repeatable multipole coefficients.

# Improving the multipole measurements





• Rama/Graeme – this is WIP for Friday. If I get better results from my new data I will put it here. If not, I will put a plan.



#### Stretched wire measurements





- For DQW-NWV-002, stretched wire measurements were preformed.
- The measurements allow the electrical centre of the cavity to be established [4].
- Using the deflecting mode it is only possible to see the centre in the y-direction another mode should be used for the x-direction.







- This technique could be a powerful starting point for calibration to the electrical centre and lends itself well to the multi-axis set-up at CERN.
- To achieve this, sensitive measurement equipment should be installed, i.e. opto-couplers, which would allow reference to the geometric map.



# References

