Problems from Hartshorne Chapter II Section 1

Isaac Martin

Last compiled October 9, 2023

EXERCISE 1. Let A be an abelian group and defined the *constant presheaf* associated to A on the topological space X to be the presheaf $U \mapsto A$ for all $U \neq \emptyset$, with restriction maps the identity. Show that the constant sheaf A defined in the text is the sheaf associated to this presheaf.

Proof: Let \mathcal{C} be the constant sheaf on X, i.e. the sheaf defined as follows: for any open $U \subseteq X$, $\mathcal{C}(U)$ is the group of all continuous maps of U into A (where A is endowed with the discrete topology). Let \mathcal{G} be any other sheaf on X.

Define $\theta: \mathcal{F} \to \mathcal{C}$ as follows. For an open set U, let $\theta(U): \mathcal{F}(U) = A \to \mathcal{C}(U)A$ send a point $a \in A$ to the constant map $(x \mapsto a) \in \mathcal{C}(U)$.

Now suppose we have some morphism $\alpha: \mathcal{F} \to \mathcal{G}$. We would like to define $\beta: \mathcal{C} \to \mathcal{G}$ such that $\beta \circ \theta = \alpha$.

Fix an open subset $U \subseteq X$ and a section $f: U \to A$ of $\mathcal{C}(U)$. Notice that $\{f^{-1}(a)\}_{a \in A}$ is an open cover of U and $f|_{f^{-1}(a)} = (x \mapsto a) = \theta(U)(a)$ for all $a \in A$. Consider the collection $\{\alpha(U)(a)\}_{a \in A}$ of sections in $\mathcal{G}(U)$. These satisfy the gluing compatibility condition, namely

$$\alpha(U)(a)|_{f^{-1}(a)\cap f^{-1}(b)} = \alpha(U)(b)|_{f^{-1}(a)\cap f^{-1}(b)}$$

and hence there is some element $g_f \in \mathcal{G}(U)$ such that $g_f|_{f^{-1}(a)} = \alpha(U)(a)|_{f^{-1}(a)}$ for all $a \in A$. We simply define $\beta(U)(f) = g_f$ to obtain a map $\beta(U) : \mathcal{C}(U) \to \mathcal{G}(U)$. This satisfies the restriction requirements and hence β is a map of schemes. Furthermore, if $f = \theta(U)(a)$ for some $a \in A$, then f is the constant map $x \mapsto a$ and hence $f^{-1}(a) = U$, so $\beta(f) = \alpha(U)(a)$. This shows that $\alpha = \beta \circ \theta$, meaning $\mathcal C$ satisfies the universal property of the sheaf associated to $\mathcal F$.

Exercise 2.

- (a) For any morphism of sheaves $\varphi: \mathcal{F} \to \mathcal{G}$ show that for each point P, $(\ker \varphi)_P = \ker(\varphi_P)$ and $(\operatorname{im} \varphi)_P = \operatorname{im}(\varphi_P)$
- (b) Show that φ is injective (respectively, surjective) if and only if the induced map on the stalks φ_P is injective (respectively, surjective) for all P.
- (c) Show that a sequence ... $\to \mathcal{F}^{i-1} \xrightarrow{\varphi^{i-1}} \mathcal{F}^i \xrightarrow{\varphi^i} \mathcal{F}^{i+1} \to ...$ of sheaves and morphisms is exact if and only if for each $P \in X$ the corresponding sequence of stalks is exact as a sequence of abelian groups.

Proof:

(a) Recall that for any $V \subseteq X$ containing a point P we have the diagram

$$\mathcal{F}(V) \xrightarrow{\varphi(V)} \mathcal{G}(V)
\downarrow^{\pi} \qquad \downarrow^{\pi}
\mathcal{F}_{P} \xrightarrow{\varphi_{P}} \mathcal{G}_{P}$$

Start with an element $(t,V) \in \ker(\varphi_P)$. Then t is a section of $\mathcal{F}(V)$ by definition and by commutativity of the diagram we have that $\pi(\varphi(V)(t)) = (\varphi(V)(t),V) = 0$ in \mathcal{G}_P . This means that there is some open neighborhood $W \subset V$ of P such that $\varphi(U)(t)|_W = 0$ by the equivalence relation on \mathcal{G}_P , and since $\varphi(U)(t)|_W = \varphi(W)(t)$ we have that $\varphi(W)(t|_W) = 0$. Hence $t|_W = 0$ and so $t \in \ker \varphi(W)$. Hence $(t|_W, W) \in (\ker \varphi)_P$, and because $(t|_W, W)$ and (t, V) represent the same element in $\ker(\varphi_P)$, this shows the inclusion $\ker(\varphi_P) \subseteq (\ker \varphi)_P$.

For the other inclusion, take an element $(t,V) \in (\ker \varphi)_P$. This means that $t \in (\ker \varphi)(V) = \ker(\varphi(V))$ and hence $\varphi(V)(t) = 0$ in $\mathcal{G}(V)$. Composing with π gives $\pi(\varphi(V)(t)) = (\varphi(V)(t),V) = 0$ in \mathcal{G}_P . By commutativity, $\pi((t,V)) = (t,V) \in \mathcal{F}_P$ maps to 0 under φ_P , so $(t,V) \in \ker(\varphi_P)$. This gives us the other inclusion.

Now let's consider $im(\varphi)$.

Exercise 3.

(a) Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves on X. Show that φ is surjective if and only if the following condition holds: for every open set $U \subseteq X$, and for every $s \in \mathcal{G}(U)$, there is a covering $\{U_i\}$ of U and there are elements $t_i \in \mathcal{F}(U_i)$ such that $\varphi(t_i) = s|_{U_i}$ for all i.

(b) Give an example of a surjective morphism of sheaves $\varphi: \mathcal{F} \to \mathcal{G}$ and an open set U such that $\varphi(U): \mathcal{F}(U) \to \mathcal{G}(U)$ is not surjective.

EXERCISE 14. Let \mathcal{F} be a sheaf on X, and let $s \in \mathcal{F}(U)$ be a section over an open set U. The *support* of s, denote Supp s is defined to be $\{P \in U \mid s_P \neq 0\}$, where s_P denotes the germ of s in the stalk of \mathcal{F}_P . Show that Supp s is a closed subset of U. We define the *support* of \mathcal{F} Supp \mathcal{F} , to be $\{P \in X \mid \mathcal{F}_P \neq 0\}$. It need not be a closed subset.

Proof: Consider the set $V = \{P \in U \mid s_P = 0\}$. For each $P \in V$ there then exists some W_P containing P and open in V such that $s_P = (s|_{W_P}, W_P) = 0$, i.e. so that $s|_{W_P} = 0$. We then have that $V = \bigcup_{P \in V} W_P$, and hence V is open. Because $Supp\ s$ is the complement of V it is closed.

An example of a sheaf whose support is not a closed set in U is $j_!\mathbb{Z}$. Here $j:U\to X$ is the inclusion and $j_!:\operatorname{Sh}(U,\mathbb{Z})\to\operatorname{Sh}(X,\mathbb{Z})$ is the functor where $j_!\mathcal{F}$ is the sheaf associated to the presheaf

$$V \mapsto \begin{cases} \mathcal{F}(V) & \text{if } V \subseteq U \\ 0 & \text{otherwise} \end{cases}.$$

The sheaf $j_!\mathcal{F}$ has the property that $(j_!\mathcal{F})_x = \mathcal{F}_x$ if $x \in U$ and is 0 otherwise. Hence, the support of $j_!\mathbb{Z}$ is simply U, which is open, not necessarily closed.

EXERCISE 15. Sheaf $\mathcal{H}om$. Let \mathcal{F} and \mathcal{G} be sheaves of abelian groups on X. For any open set $U \subseteq X$ show that the set $\mathrm{Hom}(\mathcal{F}|_U,\mathcal{G}|_U)$ of morphisms of the restricted sheaes has a natural structure of an abelian group. Show that the presheaf $U \mapsto \mathrm{Hom}(\mathcal{F}_U,\mathcal{G}|_U)$ is a sheaf. It is called the *sheaf of local morphisms* of \mathcal{F} into \mathcal{G} , "sheaf hom" for short, and is denoted $\mathcal{H}om(\mathcal{F},\mathcal{G})$.

Proof: We first show that $\operatorname{Hom}(\mathcal{F}|_U,\mathcal{G}_U)$ is an abelian group. This is easy; we simply define $(f+g)(U)=f(U)+g(U)\in \operatorname{Hom}_{\operatorname{Ab}}(\mathcal{F}(U),\mathcal{G}(U))$. The zero morphism $0:\mathcal{F}\to\mathcal{G}$ defined 0(U)(s)=0 is the identity and the inverse of a map $f:\mathcal{F}\to\mathcal{G}$ is the morphism $-f:\mathcal{F}\to\mathcal{G}$ defined on sections by (-f)(U)(s)=-f(U)(s). This addition is compatible with restrictions.

Note that $\mathcal{H}om(\mathcal{F},\mathcal{G})$ is indeed a presheaf – it associates an abelian group to every $U\subseteq X$ and for every inclusion $V\subseteq U$ we get a restriction $\mathrm{Hom}(\mathcal{F}|_U,\mathcal{G}|_U)\to\mathrm{Hom}(\mathcal{F}|_V,\mathcal{G}_V)$ given by restriction a morphism $f:\mathcal{F}|_U\to\mathcal{G}|_U$ to $\mathcal{F}|_V\to\mathcal{G}|_V$ (here we are technically using the fact that $(\mathcal{F}|_U)|_V\cong\mathcal{F}|_V$). We therefore need only show the two locality conditions hold for $\mathcal{H}om(\mathcal{F},\mathcal{G})$.

Identity Axiom: Suppose f is a section of $\operatorname{Hom}(\mathcal{F}|_U,\mathcal{G}|_U)$, i.e. that it is a map $f:\mathcal{F}|_U\to\mathcal{G}|_U$, such that $f|_{V_i}=0$ on some open cover $\{V_i\}$ of U. Take some other open set $W\subseteq U$ and let $W_i=W\cap V_i$. Take some section $s\in\mathcal{F}(W)$. For each i, the diagram

$$\mathcal{F}(W) \xrightarrow{f(W)} \mathcal{G}(W)
\downarrow^{\rho} \qquad \downarrow^{\rho}
\mathcal{F}(W_i) \xrightarrow{f(W_i)} \mathcal{G}(W_i)$$

commutes and $f|_{W_i}=f(W_i)$ by definition, so we get that $f(W_i)(s|_{W_i})=0$ for each i. The commutativity of the diagram paired with the fact that $\mathcal G$ is a sheaf gives us that f(W)(s)=0, since the $\mathcal G$ section f(W)(s) restricts to zero on W_i for each i. Because s was chosen to be an arbitrary section f(W) must be zero and because W was chosen to be an arbitrary open subset of U the morphism $f:\mathcal F|_U\to\mathcal G|_U$ must be zero. This proves the first sheaf axiom.

Gluing Axiom: Suppose now that we have morphisms $f_i: \mathcal{F}|_{V_i} \to \mathcal{G}|_{V_i}$ on some open cover $\{V_i\}$ of an open set $W \subseteq U$ such that $f_i(V_i \cap V_j) = f_j(V_i \cap V_j)$. We can define a morphism $f: \mathcal{F}|_W \to \mathcal{G}|_W$ which restricts to f_i on V_i as follows.

Fix an arbitrary section $s \in \mathcal{F}(W)$, restrict it to V_i and map it to $\mathcal{G}|_{V_i}$. This is $f_i(V_i)(s|_{V_i})$. The restriction of this $\mathcal{G}(V_i)$ section to $V_i \cap V_j$ is $f_i(V_i)(s|_{V_i})|_{V_j} = f_i(V_i)(s|_{V_i \cap V_j})$ by the commutativity requirement satisfied by $f_i(V_i)$ and furthermore $f_i(V_i)(s|_{V_i \cap V_j}) = f_j(V_j)(s|_{V_i \cap V_j}) = f_j(V_j)(s|_{V_j})|_{V_i}$ since f_i and f_j agree on overlaps. Hence $\{f_i(V_i)(s|_{V_i})\}_i$ form a collection of sections in $\mathcal{G}(V_i)$ which agree on overlaps, so there is some unique $x \in \mathcal{G}(W)$ which restricts to $f_i(V_i)(s|_{V_i})$ on V_i . Now define f(W)(s) = x. This is the only thing we could possibly do, since x is the unique element which satisfies $x|_{V_i} = f(V_i)(s|_{V_i})$ for all i. One can see that f is compatible with restrictions by definition (we definted it by lifting restrictions on a cover) and that f(W') is a homomorphism of abelian groups by tracing a sum s + t of sections in $\mathcal{F}(W')$ through the same restriction diagrams and lifting to $\mathcal{G}(W')$.

Exercise 16. A sheaf \mathcal{F} on a topological space X is *flasque* if for every inclusion $V \subseteq U$ of open sets, the restriction map $\mathcal{F}(U) \to \mathcal{F}(V)$ is surjective.

- (a) Show that a constant sheaf on an irreducible topological space is flasque.
- (b) If $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ is an exact sequence of sheaves, and if \mathcal{F}' is flasque, then for any open set U, the sequence $o \to \mathcal{F}'(U) \to \mathcal{F}(U) \to \mathcal{F}''(U) \to 0$ of abelian groups is also exact.
- (c) If $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ is an exact sequence of sheaves and if \mathcal{F}' and \mathcal{F} are flasque, then \mathcal{F}'' is

flasque.

Proof:

(a) If $U \subseteq X$ then U is also irreducible, indeed, if $U = (X \cap F_1) \cup (X \cap F_2)$ for some closed sets $F_1, F_2 \subseteq X$, then $X = U^c \cup F_1 \cup F_2$. It therefore suffices to consider the inclusion $U \subseteq X$ of an open set U. Let $f \in A(U)$ be a section of C(U) where A is the constant sheaf on X (see the definition in exercise II.1.1) and let $a \in \operatorname{img} f$. The sets $\{a\}$ and $\operatorname{img} f \setminus \{a\}$ are both open and closed because A is endowed with the discrete topology, hence $f^{-1}(a) \cup f^{-1}(\operatorname{img} f \setminus \{a\}) = U$ is a decomposition of U into closed subsets. As U is irreducible, one of these must be empty, and it must be $f^{-1}(\operatorname{img} f \setminus \{a\})$ since we chose $a \in \operatorname{img} f$. This implies f is the constant function $x \mapsto a$, and is the restriction of the same function on X to U.

(b)

EXERCISE 17. Let X be a topological space, let P be a point, and let A be an abelian group. Define a sheaf $i_P(A)$ as follows: $i_P(A)(U) = A$ if $P \in U$, 0 otherwise. Verify that the stalk of $i_P(A)$ is A at every point $Q \in \{P\}^-$ in the closure of P, and 0 elsewhere. Hence the name "skyscraper sheaf". Show that this sheaf could also be described as $i_*(A)$ where A denotes the constant sheaf A on the closed subspace $\{P\}^-$ and $i\{P\}^- \to X$ is the inclusion.

Proof: Suppose $Q \in \{P\}^-$ so that every open set V containing Q also contains P. Then $i_P(A)(V) = A$ for every such set by definition, and the restriction map $i_P(A)(V) \to i_P(A)(V')$ for $Q \in V' \subseteq V$ is the identity. Hence the stalk at $i_P(A)(V)$ is indeed A. If Q is not in the closure of $\{P\}$ then there is some open set V containing Q which avoids P. Hence $i_P(A)(V) = 0$ and the stalk at Q must necessarily be zero.

Suppose now that $i_*(A)$ is the pushforward of the constant sheaf on $\{P\}^-$ via the inclusion $i:\{P\}^- \to X$. Any open subset of $\{P\}^-$ is given by the intersection of $\{P\}^-$ with $V\subseteq X$ open. If this intersection contains a point Q, then V necessarily contains P as well, since Q is in the closure of $\{P\}$. This means every nonempty open subset of $\{P\}^-$ contains P, and in particular, any two open subsets meet. This implies that $\{P\}^-$ is connected and thus the constant sheaf A on $\{P\}^-$ is simply the constant presheaf. The pushforward i_*A is then

$$i_*A(V) = A(i^{-1}(V)) = \begin{cases} A & i^{-1}(V) \text{ nonempty} \iff P \in V \\ 0 & i^{-1}(V) = \iff P \not \in V \end{cases}.$$

This is exactly the skyscraper sheaf.