MAT 473: Intermediate Real Analysis II

Trey Manuszak Arizona State University January 31, 2020 **Problem 5.** Let $f: M_{m \times n} \to M_n$ be given by $f(A) = A^t A$. Prove that f is differentiable, and find a formula for f'(A). (Hint: use facts about the operator norm and the transpose of a matrix.)

Proof. Let $f: M_{m \times n} \to M_n$ be given by $f(A) = A^t A$. Let $A \in M_{m \times n}$. Define $T \in B(M_{m \times n}, M_n)$ by $T(h) = A^t h + h^t A$. Also, define $\|\cdot\|_E$ as the Euclidean norm and $\|\cdot\|_O$ as the operator norm. Then

$$\lim_{h \to 0} \frac{\|f(A+h) - f(A) - T(h)\|_{\mathcal{O}}}{\|h\|_{\mathcal{O}}} = \lim_{h \to 0} \frac{\|(A+h)^t(A+h) - A^tA - A^th - h^tA\|_{\mathcal{O}}}{\|h\|_{\mathcal{O}}}$$
 (Definition of f and T)
$$= \lim_{h \to 0} \frac{\|(A+h)^tA + (A+h)^th - A^tA - A^th - h^tA\|_{\mathcal{O}}}{\|h\|_{\mathcal{O}}}$$
 (By distribution)
$$= \lim_{h \to 0} \frac{\|(A^t + h^t)A + (A^t + h^t)h - A^tA - A^th - h^tA\|_{\mathcal{O}}}{\|h\|_{\mathcal{O}}}$$
 (Property of transpose)
$$= \lim_{h \to 0} \frac{\|A^tA + h^tA + A^th + h^th - A^tA - A^th - h^tA\|_{\mathcal{O}}}{\|h\|_{\mathcal{O}}}$$
 (By distribution)
$$= \lim_{h \to 0} \frac{\|h^th\|_{\mathcal{O}}}{\|h\|_{\mathcal{O}}}$$
 (By subtraction)
$$\leq \frac{\|h^t\|_{\mathcal{O}} \cdot \|h\|_{\mathcal{O}}}{\|h\|_{\mathcal{O}}}$$
 (Property of operator norm)
$$= \lim_{h \to 0} \frac{\|h\|_{\mathcal{O}}^2}{\|h\|_{\mathcal{O}}}$$
 (Property of operator norm)
$$= \lim_{h \to 0} \frac{\|h\|_{\mathcal{O}}}{\|h\|_{\mathcal{O}}}$$
 (Property of operator norm)
$$= \lim_{h \to 0} \|h\|_{\mathcal{O}}$$
 (Property of operator norm)
$$= \lim_{h \to 0} \|h\|_{\mathcal{O}}$$
 (Property of operator norm)
$$= \lim_{h \to 0} \|h\|_{\mathcal{O}}$$
 (Property of operator norm)

Since $0 \leq \lim_{h \to 0} \frac{\|f(A+h)-f(A)-T(h)\|_O}{\|h\|_O}$, then by squeeze theorem, $\lim_{h \to 0} \frac{\|f(A+h)-f(A)-T(h)\|_O}{\|h\|_O} = 0$. Also, we know that, $\lim_{h \to 0} \frac{f(A+h)-f(A)-T(h)}{\|h\|_E} = 0 \iff \lim_{h \to 0} \frac{\|f(A+h)-f(A)-T(h)\|_E}{\|h\|_E} = 0$. Thus, since $A \in M_{m \times n} = \mathbb{R}^{mn}$, then any two norms are comparable by Corollary 2.11, which implies there exists $k_1, k_2 \in \mathbb{R}$ such that for all $x \in \mathbb{R}$, $\|x\|_0 \leq k_1 \cdot \|x\|_E$ and $\|x\|_E \leq k_2 \cdot \|x\|_O$.

Then, we get

$$\lim_{h \to 0} \frac{\|f(A+h) - f(A) - T(h)\|_{E}}{\|h\|_{E}} \le \lim_{h \to 0} \frac{k_{2} \|f(A+h) - f(A) - T(h)\|_{O}}{\frac{1}{k_{1}} \|h\|_{O}}$$
(By comparability of $\|\cdot\|_{E}$ and $\|\cdot\|_{O}$)
$$= k_{1}k_{2} \lim_{h \to 0} \frac{\|f(A+h) - f(A) - T(h)\|_{O}}{\|h\|_{O}}$$
(Property of limits)
$$= k_{1}k_{2} \cdot 0$$

$$= 0.$$

Since, $0 \le \lim_{h\to 0} \frac{\|f(A+h)-f(A)-T(h)\|_E}{\|h\|_E}$, then by squeeze theorem, $\lim_{h\to 0} \frac{\|f(A+h)-f(A)-T(h)\|_E}{\|h\|_E} = 0$. This implies, $\lim_{h\to 0} \frac{f(A+h)-f(A)-T(h)}{\|h\|_E} = 0$. Thus, f is differentiable at A. However, since A was arbitrary, then f is differentiable for all $A \in M_{m\times n}$. Therefore, $f'(A)(h) = A^th + h^tA$.

Problem 6. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} \frac{x_1^2 x_2}{\|x\|^2}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$$

Prove that all directional derivatives of f exist at 0, and that $D_v f(0)$ is not a linear function of v.

Proof. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} \frac{x_1^2 x_2}{\|x\|^2}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$$

Let $v \in \mathbb{R}^2 \setminus (0,0)$. Then,

$$D_{v}f(0) = \lim_{t \to 0} \frac{f(0+tv) - f(0)}{t}$$
 (Definition of $D_{v}f(x)$ in \mathbb{R}^{2})
$$= \lim_{t \to 0} \frac{\frac{(tv_{1})^{2}(tv_{2})}{\|tv\|^{2}} - 0}{t}$$
 (Definition of f)
$$= \lim_{t \to 0} \frac{t^{2}v_{1}^{2}tv_{2}}{t\sqrt{(tv_{1})^{2} + (tv_{2})^{2}}^{2}}$$
 (Definition of Euclidean norm)
$$= \lim_{t \to 0} \frac{t^{2}v_{1}^{2}v_{2}}{t^{2}v_{1}^{2} + t^{2}v_{2}^{2}}$$

$$= \lim_{t \to 0} \frac{t^{2}v_{1}^{2}v_{2}}{t^{2}(v_{1}^{2} + v_{2}^{2})}$$
 (by factoring t^{2})
$$= \lim_{t \to 0} \frac{v_{1}^{2}v_{2}}{v_{1}^{2} + v_{2}^{2}}.$$

Also, we have

$$D_{(0,0)}f(0) = \lim_{t \to 0} \frac{f(0+t \cdot 0) - f(0)}{t}$$
$$= \lim_{t \to 0} \frac{0}{t}$$
$$= 0.$$

So, we have $D_v f(0) : \mathbb{R}^2 \to \mathbb{R}$ defined by

$$D_v f(0) = \begin{cases} \frac{v_1^2 v_2}{v_1^2 + v_2^2}, & \text{if } v \neq 0\\ 0, & \text{if } v = 0. \end{cases}$$

Consider p = (1,0) and q = (0,1). Then, $D_p f(0) = \frac{1^2 \cdot 0}{1^2 + 0^2} = 0$ and $D_q f(0) = \frac{0^2 \cdot 1}{0^2 + 1^2} = 0$, and $D_{p+q} f(0) = \frac{1^2 \cdot 1}{1^2 + 1^2} = \frac{1}{2}$. Therefore, $D_v f(0)$ is not linear since $D_{p+q} f(0) = \frac{1}{2} \neq 0 = 0 + 0 = D_p f(0) + D_q f(0)$.

Problem 7. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} \frac{x_1 x_2^3}{x_1^2 + x_2^4}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$$

Prove that all directional derivatives of f exist at 0, that $D_v f(0)$ is a linear function of v, and that f is not differentiable at 0.

Proof. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} \frac{x_1 x_2^3}{x_1^2 + x_2^4}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$$

Let $v \in \mathbb{R}^2 \setminus (0,0)$. Then, we have

$$D_{v}f(0) = \lim_{t \to 0} \frac{f(0+tv) - f(0)}{t}$$

$$= \lim_{t \to 0} \frac{\frac{tv_{1}(tv_{2})^{3} - 0}{(tv_{1})^{2} + (tv_{2})^{4}}}{t} \qquad \text{(Definition of } f)$$

$$= \lim_{t \to 0} \frac{t^{3}v_{1}v_{2}}{t^{2}v_{1}^{2} + t^{4}v_{2}^{4}}$$

$$= \lim_{t \to 0} \frac{tv_{1}v_{2}}{v_{1}^{2} + t^{2}v_{2}^{4}}$$

$$= \frac{0}{v_{1}^{2}}$$

$$= 0.$$

Also note that

$$D_0 f(0) = \lim_{t \to 0} \frac{f(0 + t \cdot 0) - f(0)}{t} = \lim_{t \to 0} \frac{0}{t} = 0.$$

Thus, $D_v f(0) : \mathbb{R}^2 \to \mathbb{R}$ is defined by $D_v f(0) = 0$, which is linear since it is the zero map. Also, the Jacobian matrix of f evaluated at 0 is (0,0). To see if f is differentiable at 0, we have that

$$\lim_{h \to 0} \frac{f(0+h) - f(0) - (0,0) \cdot h}{\|h\|} = \lim_{h \to 0} \frac{\frac{h_1 h_2^3}{h_1^2 + h_2^4}}{\sqrt{h_1^2 + h_2^2}}.$$

Consider $Z_1 = \{(t^2, t) : t \in \mathbb{R}^+\}$. Then,

$$\lim_{h \to 0} \frac{h_1 h_2^3}{(h_1^2 + h_2^4) \sqrt{h_1^2 + h_2^2}} \bigg|_{Z_1} = \lim_{t \to 0^+} \frac{t^2 t^3}{(t^4 + t^4) \sqrt{t^4 + t^2}}$$

$$= \lim_{t \to 0^+} \frac{t}{2\sqrt{t^4 + t^2}}$$

$$= \lim_{t \to 0} \sqrt{\frac{t^2}{4t^4 t^2}}$$

$$= \sqrt{\frac{1}{4t^2 + 4}}$$

$$= \frac{1}{2}.$$

This means that the limit is $\frac{1}{2}$ or does not exist. However, since it is not equal to 0 either way, the derivative does not exist at 0.

Problem 8. Let $E = \{x \in \mathbb{R}^2 : x_1 > 0 \text{ and } 0 < x_2 < x_1^2\}$. Define $f : \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x) = \begin{cases} 1, & \text{if } x \in E \\ 0, & \text{if } x \notin E. \end{cases}$$

(f is called the *characteristic function* of the set E.) Prove that all directional derivatives of f exist at 0, and equal 0, but that f is not differentiable at 0.

Proof. Let $E = \{x \in \mathbb{R}^2 : x_1 > 0 \text{ and } 0 < x_2 < x_1^2\}$. Define $f : \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x) = \begin{cases} 1, & \text{if } x \in E \\ 0, & \text{if } x \notin E. \end{cases}$$

Define $A = \{x \in \mathbb{R}^2 : x_1 > 0 \text{ and } x_2 > 0 \text{ or } x_1 < 0 \text{ and } x_2 < 0\}$. Let $v \in A$ be arbitrary.

Case 1: Suppose $v_1 > 0$ and $v_2 > 0$.

Since $(tv_1) < 0$ for all t < 0, which implies $tv \notin E$, we have,

$$\lim_{t \to 0^{-}} \frac{f(0+tv) - f(0)}{t} = \lim_{t \to 0^{-}} \frac{f(tv)}{t} = \lim_{t \to 0^{-}} \frac{0}{t} = 0,$$

which implies f(tv) = 0. Let $\delta \in \mathbb{R}$ such that $0 < \delta < \frac{v_2}{v_1^2}$. By multiplication of $\delta v_1^2 > 0$, $0 < (\delta v_1)^2 < \delta v_2$. This means, $\delta v \notin E$. Thus, for all $0 < t \le \frac{v_2}{v_1^2}$,

$$\lim_{t \to 0^+} \frac{f(0+tv) - f(0)}{t} = \lim_{t \to 0^+} \frac{f(tv)}{t} = \lim_{t \to 0^+} \frac{0}{t} = 0,$$

which implies f(tv) = 0.

Case 2: Suppose $v_1 < 0$ and $v_2 < 0$.

Since $(tv_1) < 0$ for all t > 0, which implies $tv \notin E$, we have,

$$\lim_{t\to 0^+}\frac{f(0+tv)-f(0)}{t}=\lim_{t\to 0^+}\frac{f(tv)}{t}=\lim_{t\to 0^+}\frac{0}{t}=0,$$

which implies f(tv) = 0. Let $\phi \in \mathbb{R}$ such that $\frac{v_2}{v_1^2} < \phi < 0$. By multiplication of $\phi v_1^2 < 0$, $\phi v_2 > (\phi v_1)^2 > 0$, which implies $\phi v \notin E$. Then, for all $\frac{v_2}{v_1^2} \le t < 0$, we have

$$\lim_{t \to 0^{-}} \frac{f(0+tv) - f(0)}{t} = \lim_{t \to 0^{-}} \frac{f(tv)}{t} = \lim_{t \to 0^{-}} \frac{0}{t} = 0,$$

which implies f(tv) = 0.

Therefore, since in all cases we have $\lim_{t\to 0^-} \frac{f(0+tv)-f(0)}{t} = \lim_{t\to 0^+} \frac{f(0+tv)-f(0)}{t}$, that implies $D_v f(0) = \lim_{t\to 0} \frac{f(0+tv)-f(0)}{t} = 0$.

Now, let $u \notin A$. Then, we have that $u_1 \geq 0$ and $u_2 \leq 0$ or $u_1 \leq 0$ and $u_2 \geq 0$. This implies that $u \notin E$. Moreover, for all $t \in \mathbb{R}$, we have $tu \notin E$ since we would still have the property mentioned. Thus, f(tu) = 0 for all $t \in \mathbb{R}$. This means that we have

$$D_u f(0) = \lim_{t \to 0} \frac{f(0 + tu) - f(0)}{t}$$
$$= \lim_{t \to 0} \frac{f(tu)}{t}$$
$$= \lim_{t \to 0} \frac{0}{t}$$
$$= 0.$$

Thus, for all $w \in \mathbb{R}^2$, $D_w f(0) = 0$. So, the Jacobian matrix of f evaluated at 0 is (0,0). Consider $Z_1 = \{(t,t^3) : 0 < t < 1\}$. Then for all $x \in Z_1$, x is of the form (k,k^3) and $x_1 = k > 0$ and $x_1^2 = k^2 > k^3 = x_2 > 0$. This implies $x \in E$. Hence, for all $x \in Z_1$, f(x) = 1. Thus,

$$\lim_{h \to 0} \frac{f(0+h) - f(0) - (0,0)h}{\|h\|} \bigg|_{Z_1} = \lim_{t \to 0^+} \frac{1}{\|(t,t^3)\|} = \infty.$$

Therefore, the derivative of f at 0 does not exist.