REC'D 3 0 OCT 2003

VVIPO

PCT/JP03/11612

玉 **OFFICE** JAPAN PATENT

11.09.03

PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年 9月25日

出 願 Application Number: 特願2002-279833

[ST. 10/C]:

[J P 2 0 0 2 - 2 7 9 8 3 3]

人 出 願 Applicant(s):

大同特殊鋼株式会社 本田技研工業株式会社

特許庁長官 Commissioner, Japan Patent Office

PRIORITY

COMPLIANCE WITH RULE 17.1(a) OR (b)

2003年10月20日

【書類名】

特許願

【整理番号】

AX0209501D

【提出日】

平成14年 9月25日

【あて先】

特許庁長官 殿

【国際特許分類】

C23C 8/00

【発明者】

【住所又は居所】

愛知県名古屋市南区大同町二丁目30番地 大同特殊鋼

株式会社 技術開発研究所内

【氏名】

井上 幸一郎

【発明者】

【住所又は居所】

愛知県名古屋市南区大同町二丁目30番地 大同特殊鋼

株式会社 技術開発研究所内

【氏名】

紅林 豊

【発明者】

【住所又は居所】

愛知県名古屋市南区大同町二丁目30番地 大同特殊鋼

株式会社 技術開発研究所内

【氏名】

松村 康志

【発明者】

【住所又は居所】

埼玉県和光市中央一丁目4番1号 株式会社本田技術研

究所内

【氏名】

松田 英樹

【発明者】

【住所又は居所】

埼玉県和光市中央一丁目4番1号 株式会社本田技術研

究所内

【氏名】

高島 光男

【特許出願人】

【識別番号】

000003713

【氏名又は名称】 大同特殊鋼株式会社

ページ: 2/E

【特許出願人】

【識別番号】

000005326

【氏名又は名称】

本田技研工業株式会社

【代理人】

【識別番号】

100095751

【弁理士】

【氏名又は名称】

菅原 正倫

【電話番号】

052-212-1301

【手数料の表示】

【予納台帳番号】

003388

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9709416

【プルーフの要否】

要

【発明の名称】 機械部品およびその製造方法

【特許請求の範囲】

【請求項1】 鋼を素材とするとともに、窒化処理による表面硬化処理が施された機械部品であって、

該機械部品の部材表面から深さ 50μ mに対応した基準位置での表層部のビッカース硬さが $340\sim460\,\mathrm{HV}$ 、窒化の影響が及んでいない略一定硬さを示す内層部のビッカース硬さが $190\sim260\,\mathrm{HV}$ 、さらに、ビッカース硬さが $270\,\mathrm{HV}$ とされる部材表面からの有効硬化層深さが $190\,\mathrm{HV}$ とされる部材表面からの有効硬化層深さが $190\,\mathrm{HV}$ とされる機械部品。

【請求項2】 重量%で、それぞれクロム当量Cr [eq.]を、Cr [eq.] = 0.475×C+0.164×Si+0.241×Mn+Cr、炭素当量C [eq.]を、C [eq.]=C+0.07×Si+0.16×Mn+0.19×Cu+0.17×Ni+0.2×Crと定義したとき、それぞれCr [eq.]が0.72%以上1.0%以下、C [eq.]が0.65%以上0.86%以下となるように、各成分の組成が調整されてなり、

部材表面から深さ方向xに対して測定したビッカース硬さHの分布を、H-x 平面上にプロットしたとき、そのプロット点により与えられる硬さ分布プロファイルH(x)が、前記H-x平面上において、下記数式①:

【数1】

H'(x)=H'0+(H'1-H'0)×
$$\left[1-\text{erf}\left(\frac{x}{2\sqrt{\alpha \, \text{Dt}}}\right)\right]$$
 …① 但し、H'0=C[eq.]×254+33.8

 $H'1=Cr[eq.]\times 392+65.8$

Cr[eq.]:前記クロム当量

C[eq.]:前記炭素当量;

$$D=D_0 \times \exp\left(\frac{-Q}{R \times (T+273)}\right)$$

$$D_0:1. 13 \times 10^{-6}$$

Q:83× $\left(1-\frac{14.03}{T+273}\right)$

R:8. 314;

 $\alpha = \exp(-14.7 \times \text{Si} - 0.918 \times \text{Mn} + 0.998)$

Si:Siの含有率(重量%)

Mn: Mnの含有率(重量%);

式①にて、それぞれtを3. $6 \times 10^3 \sim 18 \times 10^3$ 、Tを $500 \sim 650$ の範囲にて変化させたときに、H'(x)が 前記H-x平面上にて $H'(0.3 \times 10^{-3}) \ge 270$ の 条件下で動き得る領域を領域Zとする。

にて表される領域Z内に存在することを特徴とする請求項1に記載の機械部品。

【請求項3】 重量%で、Feの含有率が90%以上とされるとともに、それぞれ、C:0.35~0.5%、Si:0.01~0.3%、Mn:0.6~1.8%、Cu:0.01~0.5%、Ni:0.01~0.5%、Cr:0.01~0.5%、Al:0.001~0.01%、N:0.005~0.025%とされる成分元素が含有されてなることを特徴とする請求項2に記載の機械部品

【請求項4】 重量%で、それぞれ、Pb:0.30%以下、S:0.20%

以下、Ca:0.01%以下、Bi:0.30%以下、Ti:0.02%以下、 Zr:0.02%以下、Mg:0.01%以下とされる成分元素のうち1種また は2種以上が含有されてなることを特徴とする請求項3記載の機械部品。

【請求項5】 前記機械部品は、クランクシャフトとされることを特徴とする 請求項1ないし4のいずれか1項に記載の機械部品。

【請求項6】 鋼を素材とするとともに、窒化処理にて表面硬化処理がなされる機械部品の製造方法であって、

前記窒化処理にて前記機械部品の表面から $50\mu m$ に対応した位置での表層部の硬さが $340\sim460 \, HV$ 、心部の硬さが $190\sim260 \, HV$ 、さらに、硬さが $270 \, HV$ とされる表面からの有効硬化層深さが $0.3 \, mm$ 以上となるように処理することを特徴とする機械部品の製造方法。

【請求項7】 重量%で、それぞれクロム当量Cr [eq.]を、Cr [eq.] き、Cr [eq.] = 0.475×C+0.164×Si+0.241×Mn+Cr、炭素当量C [eq.]をC [eq.] = C+0.07×Si+0.16×Mn+0.19×Cu+0.17×Ni+0.2×Crと定義したとき、それぞれCr [eq.]が0.72%以上1.0%以下、C [eq.]が0.65以上0.86以下となるように、各成分の組成を調整し、かつ、

前記窒化処理は、ガス軟窒化または塩浴窒化による処理において、その処理時間を3. $6 \times 10^3 \sim 1.8 \times 10^3$ 秒、処理温度を $5.00 \sim 6.50$ ℃とする条件にて行うことを特徴とする請求項6 記載の機械部品の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、窒化処理にて表面硬化処理がなされる鋼を素材とした機械部品およびその製造方法に関し、詳細には、該表面硬化処理がなされるとともに部品強度 および曲げ矯正性がともに付与される機械部品およびその製造方法に関する。

[0002]

【従来の技術】

歯車、軸受、シャフト、クランクシャフト、コネクティングロッドなどの機械

部品は、耐磨耗性や疲れ特性が高い水準で要求される。そこで、一般的にこれら 機械部品を製造する際には、耐摩耗性や疲れ特性といった部品強度を高めるため に表面硬化処理がなされている。例えば、該表面硬化処理は、機械構造用炭素鋼 や合金鋼といった鋼よりなる鍛造素材を熱間鍛造し、焼きならし等の熱処理を施 し、さらに、種々の機械部品に求められる所望の形状に機械加工した後に行なわ れる。そして、この表面硬化処理を施した後に、曲げ矯正などの仕上げを行い、 機械部品として製品化される。

[0003]

上記した表面硬化処理は、塩浴窒化処理やガス軟窒化処理などの窒化処理等により行なわれている。一般的に、この窒化処理は、浸炭処理などによる表面硬化処理に比べて、処理後に発生する歪量が小さいことが知られており、特に有用な方法であることが認識されている。

[0004]

【特許文献1】

特開平09-324258号公報

[0005]

【発明が解決しようとする課題】

しかしながら、表面硬化処理を窒化処理にて行なった場合においても、発生する歪量が許容できないことがあり、結果として、この表面硬化処理後に、曲げ矯正を行なう必要が往々にして起こる。そこで、曲げ矯正にて製品として許容される範囲に曲げを矯正する処理を行なう訳だが、この処理のしやすさ、つまり曲げ矯正性は、表面硬化処理後の表面硬さに依存する。該表面硬さが軟らかいほど、曲げ矯正性は高まる。一方、この表面硬さが軟らかいほど、機械部品の耐摩耗性や疲れ特性といった部品強度は低下することになる。そのため、機械部品の部品強度を高めるためには、表面硬化処理後における表面硬さが高いほどよい。このように、機械部品の部品強度の観点から立てば、表面硬化処理にて表面硬さを十分に高めればよく、一方、該表面硬さが高まると、曲げ矯正性が低下し、その曲げ矯正時に表面に微小亀裂が誘起されやすくなるので、曲げ矯正性の観点から立てば、表面硬化処理による表面硬さは低いほどよいということになる。

上述のごとく、表面硬化処理を行なうとともに、機械部品に優れた部品強度および曲げ矯正性をともに付与することは、簡便には両立しがたいものとされる。しかしながら、製造される機械部品を良好なものとし、また、その製品歩留まりを高めるためには、表面硬化処理を行い、かつ、該処理後において製品として供される機械部品の部品強度および曲げ矯正性をともに優れたものとすることは重要な課題とされる。まさに、本発明はこの課題を鑑みてなされたものであって、即ち、本発明は窒化処理にて表面硬化処理を行なうものとするとともに、部品強度および曲げ矯正性をともに優れたものとすることを可能とする機械部品およびその製造方法を提供することを目的とする。

[0007]

【課題を解決するための手段および作用・効果】

上記課題を解決するための本発明の機械部品は、

鋼を素材とするとともに、窒化処理による表面硬化処理が施された機械部品で あって、

該機械部品の部材表面から深さ 50μ mに対応した基準位置での表層部のビッカース硬さが $340\sim460$ HV、窒化の影響が及んでいない略一定硬さを示す内層部のビッカース硬さが $190\sim260$ HV、さらに、ビッカース硬さが 270 HVとされる部材表面からの有効硬化層深さが 190 1

[0008]

また、上記課題を解決するための本発明の機械部品の製造方法は、 鋼を素材とするとともに、窒化処理にて表面硬化処理がなされる機械部品の製造 方法であって、

前記機械部品の部材表面から深さ 50μ mに対応した基準位置での表層部のビッカース硬さが $340\sim460$ HV、窒化の影響が及んでいない略一定硬さを示す内層部のビッカース硬さが $190\sim260$ HV、さらに、ビッカース硬さが 270 HVとされる部材表面からの有効硬化層深さが 270 HVとされる部材表面から深さ 270 HVとされる部材表面からの有効硬化層深さが 270 HVとされる部材表面からの有効

上記本発明の機械部品は、鋼を素材とし、表面硬化処理を窒化処理にて施すものを対象とする。該窒化処理とは、その処理時において、機械部品の部材表面から内層部に向けて窒素成分を拡散させ、該機械部品の表層部を窒化させることにより、部材表面を含めた表層部の表面硬さを高める処理である。そこで、本発明において問題とするのは、窒化処理にて表面硬さを高めるとともに、該処理後において製品として供される機械部品に対して優れた部品強度および曲げ矯正性をともに付与させることである。窒化処理にて機械部品の表層部の表面硬さが高められることを述べた。該表面硬さの増加に伴い、耐磨耗や疲れ特性といった機械部品の部品強度は高まる。一方、表面硬さの増加に伴い、窒化処理後に行なう曲げ矯正の処理容易度を示す曲げ矯正性は低下する。また、この曲げ矯正性の低下は、曲げ矯正の処理時に、部材表面に微小亀裂などの不具合を発生させ、ひいては、機械部品を良好なものとして製品化できず、製造上においても、製品歩留まりの低下を招く要因となる。

[0010]

上記のように、窒化処理を行なうとともに、機械部品の部品強度および曲げ矯正性をともに優れたものとすることは、該処理を行なう以上避けがたいジレンマのように見える。しかしながら、本発明者らは、種々の実験・考察を行い鋭意検討した結果、窒化処理にて付与すべき部材表面から深さ方向への硬さ分布を適正化する、つまりは、該窒化処理後において製品として供される機械部品の表層部の深さ方向への硬さ分布を適正化するとともに、窒化の影響が及んでいない略一定硬さを示す内層部の硬さを適正化することにより、窒化処理を施した場合においても、機械部品に対して優れた部品強度および曲げ矯正性をともに付与できることを導き出した。

[0011]

そこで、本発明の機械部品は、窒化処理にて表面硬化処理が施されたものであるとともに、その部材表面から深さ50µmに対応した基準位置での表層部(以下、表層部基準位置と称する)のビッカース硬さが340~460HV、窒化の影響が及んでいない略一定硬さを示す内層部(以下、単に内層部と称する)のビ

まず、表層部基準位置でのビッカース硬さが340HV未満であると、表面硬さが小さいものとされ、部品強度を優れた有用なものとすることができない。一方、表層部基準位置でのビッカース硬さが460HVを超えると、表面硬さが大きいものとされ、曲げ矯正処理時に微小亀裂などの不具合が誘起されやすくなり、曲げ矯正性を優れた有用なものとすることができない。次に、内層部のビッカース硬さが190HV未満であると、窒化処理を施し、表層部基準位置でのビッカース硬さを所望の範囲とした場合においても、窒化処理にて部材表面から十分な深さ位置まで所望の硬さが付与されず、結果として表面硬さが小さいものとされ、部品強度を優れた有用なものとすることができない場合がある。一方、内層部のビッカース硬さが260HVを超えると、窒化処理を施し、表層部基準位置でのビッカース硬さを所望の範囲とした場合においても、窒化処理にて付与される表層部の硬さ増加分が大きくなり過ぎ、結果として表面硬さが大きいものとされ、曲げ矯正性を優れた有用なものとすることができない場合がある。

[0012]

窒化処理にて部材表面から深さ方向に対して窒素成分を拡散させる際、該窒素成分の拡散濃度は、深さ方向に向かい減衰し、窒化の影響が及んでいない略一定硬さを示す内層部に至る時点で、窒素成分の拡散が止まることになる。つまり、窒化処理にて硬化される硬さの増加量は、部材表面から内層部への深さ方向に対して減衰することになる。また、この減衰の減衰率は、機械部品の素材とされる鋼の成分元素の種類・含有量や、窒化処理における処理温度・処理時間などにより任意に変化するものである。そのため、上記のように、表層部基準位置および内層部の硬さ範囲を規定しただけでは、窒化処理後の表層部の深さ方向への硬さ分布を適正化するには十分ではない。そこで、本発明の機械部品においては、さらに、ビッカース硬さが270HVとされる部材表面からの有効硬化深さ(以下、単に有効硬化深さとも称する)が0.3mm以上となるという条件が与えられている。この条件は、部材表面から内層部への深さ方向に対して減衰する、窒化処理にて硬化される硬さの増加量の減衰率を弱めることを意味し、結果として窒

化処理後の機械部品における表層部を、部材表面からより深い位置までより高い硬さを有したものとすることができる。具体的には、ビッカース硬さが270H Vとされる部材表面からの有効硬化深さが0.3mm未満であると、機械部品における表層部の深さ方向への硬さ分布が、深さ方向に急峻に減衰しすぎるものとなり、ひいては、部品強度を優れた有用なものとするための表面硬さが得られない場合が発生してしまう。

[0013]

上記のように、表層部基準位置の硬さ、内層部の硬さおよび有効硬化深さを規定し、機械部品の部材表面からの深さ方向への硬さ分布を適正化することで、機械部品を、部品強度および曲げ矯正性がともに優れたものとすることが可能となる。

機械部品は、適用分野により、その素材となる鋼の組成は種々のものが採用される。そこで、製造方法上においては、該素材となる鋼の組成に適宜対応する形で、窒化処理における、部材表面への窒素成分の時間あたりの流入量、処理温度、処理時間などを調整することにより、表層部基準位置、内層部および有効硬化深さを上記範囲に収めることができるとともに、機械部品を部品強度および曲げ矯正性がともに優れたものとすることが可能となる。

[0014]

次に本発明の機械部品においては、重量%で、それぞれクロム当量Cr [eq.]を、Cr [eq.]=0.475×C+0.164×Si+0.241×Mn+Cr、炭素当量C [eq.]を、C [eq.]=C+0.07×Si+0.16×Mn+0.19×Cu+0.17×Ni+0.2×Crと定義したとき、それぞれCr [eq.]が0.72%以上1.0%以下、C [eq.]が0.65%以上0.86%以下となるように、各成分の組成が調整されてなり、

部材表面から深さ方向xに対して測定したビッカース硬さHの分布を、H-x 平面上にプロットしたとき、そのプロット点により与えられる硬さ分布プロファイルH(x)が、前記H-x平面上において、下記数式: 【数1】

H'(x)=H'0+(H'1-H'0)×
$$\left[1-\text{erf}\left(\frac{x}{2\sqrt{\alpha Dt}}\right)\right]$$
 ···①

但し、H'0=C[eq.]×254+33.8

 $H'1=Cr[eq.]\times 392+65.8$

Cr[eq.]:前記クロム当量

C[eq.]:前記炭素当量;

$$D = D_0 \times \exp\left(\frac{-Q}{R \times (T + 273)}\right)$$

 $D_0:1.13\times10^{-6}$

$$Q:83 \times \left(1 - \frac{14.03}{T+273}\right)$$

R:8. 314;

 $\alpha = \exp(-14.7 \times \text{Si} - 0.918 \times \text{Mn} + 0.998)$

Si:Siの含有率(重量%)

Mn: Mnの含有率(重量%);

式①にて、それぞれtを3. $6 \times 10^3 \sim 18 \times 10^3$ 、Tを500 ~ 650 の範囲にて変化させたときに、H'(x)が前記H-x平面上にて $H'(0.3 \times 10^{-3}) \ge 270$ の条件下で動き得る領域を領域Zとする。

にて表される領域Z内に存在することを特徴とする。

[0015]

窒化処理を施す際、機械部品の素材となる鋼の組成により、窒化にて硬化される表層部の度合いは影響を受ける。そのため、上記規定した範囲に、表層部基準位置での硬さ、内層部での硬さ、有効硬化深さをより確実に収めるためには、窒化処理前における表層部の硬さに対応する内層部の硬さに有効に寄与する鋼の組成成分および、窒化処理にて有効に寄与する鋼の組成成分を適正化することが効果的な手段となる。そこで、まず、機械部品の素材である鋼におけるクロム当量

Cr [eq.]を、重量%で、Cr [eq.] = 0.475×C+0.164×Si+0.241×Mn+Crと定義したとき、Cr [eq.]は0.72%以上1.0%以下とされる。このCr [eq.]は、表層部基準位置での硬さを効果的に高める組成成分の指標とされる。窒化処理を施した後の機械部品における表層部基準位置での硬さを、効果的に高める組成成分が、その効果が顕著な順にCr、C、Mn、Siであることが分かった。また、その度合いを示す定数項は、詳細に測定した結果に基づく実測的な値である。このような意味を持つCr [eq.]であるが、その値が0.72%未満となると、窒化処理を施した場合においても、機械部品の表層部基準位置でのビッカース硬さを340HV以上にできない場合があり、一方、Cr [eq.]の値が1.0%を超えると、窒化処理時に過度に表層部が硬化してしまい、機械部品の表層部基準位置でのビッカース硬さを460HV以下にできない場合がある。

次に、機械部品の素材である鋼における炭素当量C [eq.]を、重量%で、C [eq.] = C+0.07×Si+0.16×Mn+0.19×Cu+0.17×Ni+0.2×Crと定義したとき、C [eq.]は0.65%以上0.86%以下とされる。このC [eq.]は、内層部での硬さを効果的に高める組成成分の指標とされる。機械部品における内層部の硬さを効果的に高める組成成分が、その効果が顕著な順に、C、Cr、Cu、Ni、Mn、Siであることが分かった。また、その度合いを示す定数項は、上記同様、測定結果に基づく実測的な値である。このような意味をもつC [eq.]であるが、その値が0.65%未満となると、機械部品の内層部でのビッカース硬さを190HV以上にできない場合があり、一方、C [eq.]の値が0.86%を超えると、内層部の硬さが過度に高まり、そのビッカース硬さを260HV以下にできない場合がある。

[0016]

さらに、部材表面から深さ方向xに対して測定したビッカース硬さHの分布を、H-x平面上にプロットしたとき、そのプロット点により与えられる硬さ分布プロファイルH(x)が、前記H-x平面上において、下記数式:

【数1】

$$H'(x) = H'0 + (H'1 - H'0) \times \left[1 - \text{erf}\left(\frac{x}{2\sqrt{\alpha \, \text{Dt}}}\right)\right]$$
 …① 但し、 $H'0 = C[\text{eq.}] \times 254 + 33.8$

 $H'1=Cr[eq.]\times 392+65.8$

Cr[eq.]:前記クロム当量

C[eq.]:前記炭素当量;

$$D = D_0 \times \exp\left(\frac{-Q}{R \times (T + 273)}\right)$$

 $D_0:1. 13\times 10^{-6}$

Q:83×
$$\left(1 - \frac{14.03}{T + 273}\right)$$

R:8. 314;

$$\alpha = \exp(-14.7 \times \text{Si} - 0.918 \times \text{Mn} + 0.998)$$

Si:Siの含有率(重量%)

Mn:Mnの含有率(重量%);

式①にて、それぞれtを3. $6 \times 10^3 \sim 18 \times 10^3$ 、Tを $500 \sim 650$ の範囲にて変化させたときに、H'(x)が 前記H-x平面上にて $H'(0.3 \times 10^{-3}) \ge 270$ の 条件下で動き得る領域を領域Zとする。

にて表される領域Z内に存在するものとする。

[0017]

窒化処理は部材表面より深さ方向に向けて窒素成分を拡散させる処理である。 そこで、窒素成分の拡散濃度Cの深さ方向xに対する、拡散方程式C(x)は、 一般的に下記数式②:

【数2】

$$C(x) = C0 + (C1 - C0) \times \left[1 - \operatorname{erf}\left(\frac{x}{2\sqrt{Dt}}\right)\right] \quad \dots \text{ }$$

但し、D:拡散係数

t:拡散開始時からの時間

により表すことができる。式②は、部材表面での時間 t=0 (窒化処理開始時間)におけるx>0 (部材表面をx=0とし、部材表面からの深さ方向xが正)の領域の窒素成分の濃度をC0(本窒化処理においてはC0=0)とし、x=0におけるC(0)は、常時一定の窒素成分濃度が部材表面に存在するとして、定数C1とされる場合における、部材表面(x=0)から深さ方向xに向けての窒素成分の拡散濃度の変化を表す式である。そこで、この式を近似的に使い、機械部品における表層部の深さ方向の硬さ分布をより適正化させたものが本発明である

[0018]

窒化処理とは、部材表面から深さ方向に向けて窒素成分を拡散させ、その表層部を窒化させることにより硬化させる処理である。よって、部材表面からのある深さ位置での窒素成分の拡散濃度は、該深さ位置での窒化にて硬化される硬さの大きさと密接に相関するとともに、近似的に置き換えが可能である。そこで、まず、式②におけるC(x)を、窒化処理後における部材表面からの深さ方向xに対する硬さ分布H'(x)に置き換える。そして、式②におけるC0を、機械部品の内層部での硬さを示すH'0とし、つまり、窒化処理開始時における表層部の硬さを内層部の硬さと仮定する。さらに、H'0をH'0=C[eq.]×254+33.8とし、H'0はC[eq.]とともに硬さ測定結果に基づく実測的な値を採用する。また、式②におけるC1を、機械部品の表層部基準位置での硬さを示すH'1とし、つまり、機械部品のまさに表面の硬さは測定できないので、H'1を機械部品の表層部基準位置での硬さを示す値にて仮定する。さらに、H'1を機械部品の表層部基準位置での硬さを示す値にて仮定する。さらに、H'1をH'1=Cr[eq.]×392+65.8とし、H'1はCr[eq.]とともに硬さ測定結果に基づく実測的な値を採用する。このようにして、式②を近似的に用いたのものが、式①となる。

そして、式①におけるDは金属や合金中の拡散係数であり、一般的に振動数項 D 0、活性化エネルギーQ、1 m o 1 の気体定数Rおよび摂氏温度Tにて、D=D 0×exp($-Q/(R\times(T+273))$)と表される。本発明においては、機械部品の素材が鋼であり、含有される主成分Feの含有量は少なくとも50重量%以上とさるので、拡散定数Dを、純Fe中をNが拡散元素として拡散する場合と仮定した。具体的な数値としは、文献(改訂3版金属データブック(丸善);p21)における、 $\alpha-\delta-F$ e中をNが拡散元素として拡散する場合の値を用い、振動数項D 0 = 1. 13×10 $^{-6}$ 、 $Q=83\times(1-14.03/(T+273))$ とし、また、Rの値は8. 314とされる。

[0020]

次に、式②中にはない式①中の α は、式①にて用いる拡散係数Dを補正するための補正拡散係数である。そこで、補正拡散係数 α を、 α = e x p (-14.7 × S i -0.918 × M n + 0.998)とした。この補正拡散係数 α は、鋼に含有されるF e 以外の成分元素がNの拡散に及ぼす影響を、H'(x)に取り込むためのものである。そして、この α も詳細に硬さ測定した結果に基づく実測的な値とされる。ここで注目することは、鋼に含有されるS i およびM n、特にS i は、Nの拡散を抑制する成分元素であることである。つまり、S i およびM n の含有量が増加するに従い、 α が急峻に減衰する。よって、機械部品における表層部の深さ方向への硬さ分布を確実に適正化するためには、S i の含有量を適正化することが一つの重要な点とされる。例えば、 α の範囲を 0.006 ~ 1.4 の範囲となるようにS i およびM n の含有量を調整するのがよい。

[0021]

H'(x)において、t は窒化処理の処理時間とするとともに、その値としては一般的に3. $6 \times 10^3 \sim 1.8 \times 10^3$ 秒の範囲である。また、T は窒化処理の処理温度とするとともに、その値としては一般的に $500 \sim 6.50$ での範囲である。

[0022]

上述のようにH'(x)を定める。このH'(x)は、機械部品の素材とされ

る鋼の組成を一意的に決定すると、窒化処理の処理条件に関する t およびTの値 を任意の変数とする関数である。そこで、機械部品の部材表面から深さ方向xに 対して測定したビッカース硬さHの分布を、H-x平面上にプロットしたとき、 そのプロット点により与えられる硬さプロファイルをH(x)とする。そして、 それぞれ t を 3 . 6×10³~18×10³の範囲、Tを500~650の範囲 にて任意に変化させ、かつ、ビッカース硬さが270HVとされる部材表面から の深さが0.3mm以上となる条件、つまりは、部材表面からの深さが0.3m mとされる位置での硬さが270HV以上となる条件を $H'(0.3\times10^{-3}$)≧270とする条件下で、H'(x)がH-x平面上に動きうる領域を領域2 とした場合、H(x)は、この領域Zにのみに存在することが許されるものとす る。このように、機械部品における部材表面からの硬さ分布H(x)の領域を設 定することで、機械部品における表層部の深さ方向への硬さ分布を確実に適正化 することを可能とし、機械部品に対して優れた部品強度および曲げ矯正性をとも に確実に付与することが可能となる。また、ここで、H(x)の領域を領域Z内 に定めたことは、H'(x)に含まれるCr[eq.]、C[eq.]やSi含 有量、Mn含有量といった機械部品の素材の鋼の組成に関する要件を、一般的な・ 窒化処理の処理条件の範囲にて適正化したことを意味する。このように、素材の 鋼組成に関して適正化を行うことで、より確実に優れた部品強度および曲げ矯正 性をともに機械部品に付与することができる訳である。

[0023]

また、製造方法上においては、機械部品の素材とされる鋼に含有されるCr [eq.]、C [eq.] の範囲を上記同様の範囲に調整するとともに、窒化条件を、次に定める範囲とすることで、より確実に優れた部品強度および曲げ矯正性をともに機械部品に付与することができる。その窒化条件としては、ガス軟窒化または塩浴窒化の処理において、その窒化処理時間を $3.6\times10^3\sim18\times10^3$ %、窒化処理温度を $500\sim650$ Cとする。また、ここでは、窒化条件として、一般的に用いられているガス軟窒化または塩浴窒化の処理における条件とする。ここで、窒化処理温度が、500 C未満となると、窒素成分の拡散が過度に弱められ、窒化処理にて所望の表面硬さの深さ方向へのプロファイルを機械部

品に付与させることができない場合がある。一方、窒化処理温度が、650℃を超えると、逆に窒素成分の拡散が過度に高まり、表面硬さが所望のものより硬くなりすぎる場合がある。次に窒化処理時間であるが、3.6×10³秒、つまり一時間未満となると、窒化処理にて所望の表面硬さの深さ方向へのプロファイルを機械部品に付与させることができない場合がある。一方、窒化処理時間が、18×10³秒、つまり5時間を超えると、表面硬さが所望のものより硬くなりすぎる場合がある。このような内容より、窒化処理時間および窒化処理温度の範囲は設定されるが、製造上における作業効率などの観点よりも、一般的な範囲と言える。このような理由を基に、本窒化処理条件は設定されるが、その結果、より確実に優れた部品強度および曲げ矯正性をともに機械部品に付与することができる。

[0024]

次に本発明の機械部品においては、重量%で、Feの含有率が90%以上とされるとともに、それぞれ、C:0.35~0.5%、Si:0.01~0.3%、Mn:0.6~1.8%、Cu:0.01~0.5%、Ni:0.01~0.5%、Cr:0.01~0.5%、Al:0.001~0.01%、N:0.005~0.025%とされる成分元素が含有されてなることを特徴とする。

[0025]

本発明の機械部品は、素材を鋼とするものである。そのため、上記したように Feを主成分とするが、具体的には、該Feの含有率は、重量%で90%以上と される。そこで、Fe以外の成分元素であるが、まず、Cが重量%で、0.35~0.5%含有される。Cは、機械部品の内層部および表層部基準位置での硬さを効果的に高めるための有効なものであり、0.35%以上含有させることで、その効果を顕著なものとすることができる。一方、その含有率が0.5%を超えると、その効果が過度になりすぎ、機械部品の表層部の硬さを所望のものとできない場合がある。また、機械部品の所望の形状に、例えば、鋼よりなる鍛造素材などを機械加工する際の被削性の低下を招く場合がある。続いて、Siが重量%で、0.01~0.3%含有される。Siは、鋼を溶製する際に脱酸元素として用いるために、その含有量は、少なくとも0.01%以上必要とされる。しかし

ながら、上述のごとく、Siは、窒化処理においてNの拡散を抑制する成分元素である。そのため、機械部品に所望の硬さプロファイルを確実に付与させるには、その含有率を0.3%以下とするのが本発明においては好適である。次に、Mnが重量%で、0.6~1.8%含有される。Mnは、機械部品の内層部および表層部基準位置での硬さを効果的に高めるための有効なものであり、0.6%以上含有させることで、その効果を顕著なものとすることができる。一方、その含有率が1.8%を超えると、窒化処理前における熱間鍛造や焼きならしといった作業時にベイナイトが発生する場合がある。また、MnもSiほどではないが、窒化処理においてNの拡散を抑制する成分元素である。そのような意味でも、Mnの含有量は、1.8%以下とするのが望ましい。

[0026]

さらに、Cu、Niともに、重量%で、0.01~0.5%含有される。Cu 、Niともに不可避的な不純物として、0.01%以上含有されるものであるが 、両元素ともに、機械部品の内層部の硬さを効果的に髙める有効なものである。 しかしながら、経済的な観点より、その含有量が0.5%を超えると不経済とな り、機械部品のコスト高ともなるので、それら含有量は0.5%以下とされる。 次に、Crが重量%で、0.01~0.5%含有される。Crは、機械部品の内 層部および表層部基準位置での硬さを効果的に高める有効なものである。そこで 、その含有率を0.01%以上とすることで、その効果を顕著なものとすること ができる。一方、その含有率が0.5%を超えると、その効果が過度になりすぎ 、機械部品の表層部の硬さを所望のものとできない場合がある。次に、Alが0 . 001~0. 01%含有される。Alは、Siと同様に鋼を溶製する際に脱酸 元素として用いるために、その含有量は、少なくと0.001%以上必要とされ る。しかしながら、Alは、機械部品の表面基準位置での硬さを過度に高める場 合があるので、その含有量は、0.01%以下とするのが望ましい。次に、Nが 重量%で、0.005~0.025%含有される。Nは、Alと窒化物を形成し 、熱間鍛造時などにおける鋼成分の結晶粒成長を効果的に抑制するものである。 よって、その含有量を0.005%以上含有させることがよいが、0.025% を超えるとその効果が飽和するので、0.025%を上限値とすれば十分である

次に、本発明の機械部品は、重量%で、それぞれ、Pb:0.30%以下、S:0.20%以下、Ca:0.01%以下、Bi:0.30%以下、Ti:0.02%以下、Zr:0.02%以下、Mg:0.01%以下とされる成分元素のうち1種または2種以上が含有されてなることを特徴とする。

[0028]

上記Pb、S、Ca、Biは、鋼よりなる鍛造素材などを機械部品の所望の形 状に機械加工する際の被削性を高めるのに有効な成分元素である。該被削性が確 保できないと、機械加工時に加工歪みなどが過度に部材表面に発生し、ひいては 、機械部品に所望の曲げ矯正性を確実に付与できない場合があるからである。そ こで、Pb、S、Ca、Biのそれぞれの含有量であるが、それぞれ上記上限値 の含有量を超えると、熱間加工性や、機械部品の疲れ特性といった部品強度を低 下させる場合があるので、それぞれ重量%で、Pbは0.30%以下、Sは0. 20%以下、Caは0.01%以下、Biは0.30%以下とするのが望ましい 。次に、Ti、Zr、Mgは、鋼を溶製する際に、それらが形成する酸化物によ りMnSなどを微細分散させる効果を有する元素とされる。また、この効果によ り、機械加工時の被削性が高められるとともに、例えば、熱間鍛造後に行う焼き ならし等の熱処理後において、鋼の結晶組織をより微細化することを可能とし、 ひいては、機械部品に部品強度および曲げ矯正性をより確実に付与することが可 能となる。そこで、Ti、Zr、Mgのそれぞれの含有量であるが、それぞれ上 記上限値の含有量を超えても、その効果は飽和するので、それぞれ重量%で、T i は 0. 0 2 %以下、 Z r は 0. 0 2 %以下、 M g は 0. 0 1 %以下とするのが 望ましい。

[0029]

ここまでに、部品強度および曲げ矯正性をともに付与させるための本発明の機械部品に関する要件を述べてきた。本発明が対象する機械部品としては、特に限定されるものではなく、歯車、軸受、シャフト、クランクシャフト、コネクティングロッドなどの公知の機械部品に適用可能である。その中でも、限定するなら

[0030]

【発明の実施の形態】

以下、本発明の機械部品に係わる一実施形態を図面を併用して説明する。

図1(a)は、機械部品の一実施形態であるクランクシャフトの一要部のフィ レット部を示す概略断面図である。また、図1(b)は、図1(a)におけるフ ィレット部の図面A-B線上にて断面をとった場合の概略断面図である。また、 ここでは図面上、フィレット部1を機械部品1とする。フィレット部も含めて、 構成部を個別に製造した後、それらを組み付けることによりクランクシャフトは 形成されるので、フィレット部を本発明の機械部品と見なしても本発明の趣旨か ら外れることはない。そこで、該フィレット部1であるが、鋼を素材とするとと もに、窒化処理が施されたものとされる。そして、図1(b)に示すように、窒 化処理による窒化にて表面の硬さが高められた表層部2と、窒化の影響が及んで いない略一定硬さを示す内層部3とからなる。この表層部2は、部材表面4から 内層部3への深さ方向に対して、硬さが減衰する形とされる。また、内層部3の 、ビッカース硬さが190~260HV、表層部2において、部材表面から深さ 50μmに対応した基準位置でのビッカース硬さが340~460HV、さらに 、ビッカース硬さが270HVとされる部材表面4からの有効硬化層深さが0. 3mm以上に調整されてなる。このように、表層部2における部材表面4から深 さ方向への硬さ分布を調整することで、機械部品1を、耐摩耗性や疲れ特性とい った部品強度に優れたものとすることができるとともに、窒化処理後に行う曲げ 矯正処理時における曲げ矯正性を優れたものとすることができる。

[0031]

上記のように機械部品に対して、優れた部品強度および曲げ矯正性をともに付 与することで、曲げ矯正処理時において微少亀裂などの発生を効果的に抑制する

[0032]

次に、図1に示すフィレット部も含めて、本発明の機械部品の製造方法の一例を説明する。まず、機械部品の素材とされる鋼の組成となるように、所定の組成に調整した鋼を溶製し、熱間鍛造にて鍛造素材とする。そして、この鋼からなる鍛造素材を、焼きならしや、焼き入れ・焼き戻しなどの熱処理にて調質した後、所望の機械部品の形状に合わせて機械加工を行う。この機械加工の後に、窒化処理による表面硬化処理を行い、部品強度の向上を図る。次に、該窒化処理にて発生した歪みに起因する曲がりもふくめて、所望の許容範囲に曲がりを矯正するために、曲がり矯正処理を行う。このような製造の流れの後に、機械部品は製品として供される。また、機械部品が2種以上の構成部よりなるとともに、それらが個別に製造されるものは、それぞれの構成部を機械部品と見なして、上述の製造の流れにて製造した後、それらを組み込むことにより所望の形状の機械部品となる。その意味で、本発明の機械部品は、歯車、軸受、シャフト、クランクシャフト、コネクティングロッドなどの公知の機械部品を対象とするが、2種以上の構成部よりなるものは、それらを個別に本発明の機械部品と見なしてもよい。

[0033]

上記の製造方法は一例であって、熱間鍛造後に行う熱処理による調質を省略した非調質なものとしてもよい。重要なことは、少なくとも窒化処理にて表面硬化処理を行うとともに、その後、曲げ矯正処理にて仕上げを行い、機械部品を製品とする製造方法であれば、本発明の製造方法として適用されうるものである。また、窒化処理としては、塩浴窒化処理やガス軟窒化処理などの公知のものを用いることができる。そして、この窒化処理の処理条件である、処理温度、処理時間、部材表面に流入させる窒素の単位時間あたりの流入量などを、適宜調整することで、機械部品における表層部の深さ方向への硬さ分布を所望のものとすることが可能となる。

[0034]

本発明の効果を確認するために行った実施例を以下に示す。

ページ: 20/

(実施例)

表1に示す化学組成(単位:重量%)の鋼を溶製し、熱間鍛造にて、 ϕ 40 m mとなる棒状の鍛造素材を形成した。そして、該鍛造素材に対して880℃で60分間加熱保持した後、室温まで放冷する焼きならし処理を施した。その後、該鍛造素材を、図1(a)に示すクランクシャフトのフィレット部の形状となるように機械加工した。そして、機械加工したフィレット部に対して、ガス軟窒化処理により窒化処理を行なった。ここでは、窒化処理における処理時間を2時間(7.2×10³秒)、処理温度を600℃と、一般的な範囲内とした。このように作製した実施品1~10および比較品1~12の試験品に対して以下に示す測定を行なった。なお、表1には、各試験品の素材とされる鋼におけるクロム当量Cr[eq.]および炭素当量C[eq.]も合わせて示してある。また、これらCr[eq.]および炭素当量C[eq.]の値を用いて、上記した式①における理論式H'(x)における、部材表面からの深さxが0.3mmにおけるビッカース硬さ(HV)の値、つまり、H'(0.3×10-3)の計算結果も合わせて表1に示す。

[0036]

$H'(0.3 \times 10^{-3})$	273	312	282	330	772	275	279	279	278	278	254	309	260	290	383	279	329	295	273	271	278	255
C[eq.] H	69.0	0.73	0.85	0.78	0.72	0.72	0.73	0.73	0.73	0.73	0.62	0.86	0.76	0.81	0.87	0.73	0.85	0.59	0.71	0.71	0.72	0.67
Cr[eq.]	0.75	0.85	0.72	0.97	0.76	0.74	0.77	0.77	0.77	92'0	0.72	0.82	98'0	6.0	1.34	77.0	1.06	0.83	0.75	0.73	0.77	0.61
そのも					0.005 Pb:0.18,S:0.062	0.003 S:0.121,Ca:0.0025	0.004 Bi:0.1,S:0.052,Ca:0.0042	0.006 S:0.065,Ca:0.0026,Ti:0.006	0.003 S:0.068,Ca:0.0031,Zr:0.005	0.005 S:0.055,Mg:0.0025	•								0.021 Pb:0.32,S:0.21	0.023 S:0.215,Ca:0.032	0.021 Bi:0.31,S:0.051,Ca:0.0021	
z	0.023	0.012	800'0	0.02						1	0.021	0.022	0.021	0.018	0.023	0.02	0.021	0.022	0.021	0.023	0.021	0.008
¥	0.005	0.002	0.008	0.002	0.005	0.003	0.004	900.0	0.003	0.005	0.004	0.005	0.004	0.004	0.003	0.015	0.003	0.004	0.005	0.004	0.005	0.004
ර්	0.2	0.48	0.04	0.45	0.2	0.18	0.21	0.19	0.21	0.2	0.2	0.21	0.2	0.2	0.75	0.21	0.45	0.45	0.19	0.18	0.21	0.15
ï	0.05	0.45	0.15	0.1	0.1	0.08	0.1	0.08	0.15	0.12	0.	0.1	0'0	0.	0.15	0.1	0.22	0.05	0.1	0.09	0.1	0.05
3	0.05	0.45	0.15	0.1	0.1	0.08	0.1	0.07	0.14	0.11	0.1	0.11	0.08	0.1	0.15	0.12	0.23	0.05	0.1	0.09	0.1	0.05
Ma	1.45	0.65	1.75	1.2	1.48	1.44	1.45	1.51	1.49	1,45	1.5	1.43	1.42	2	1.5	1.43	1.53	0.8	1.45	1.4	1.48	0.8
is	0.05	0.28	0.12	0.1	0.08	0.1	0.12	0.09	0.12	0.11	5	0.11	0.75	0.12	0.15	0.12	0.25	0.1	0.11	0.0	0.1	0.25
0	0.4	0.35	0.5	0.45	0.4	0.42	0.41	0.42	0.39	0.41	0.3	0.54	0.41	0.41	0.42	0.41	0.42	0.35	0.4	0.41	0.4	0.48
	東施品1	実施品2	東施品3	実施品4	実施品5	実施品6	東施品7	争陈品8	年 新品9	車施品10	上數品1	上數品2	上數品3	上數品4	比較品5	上數品6	比較品7	上數品8	上數品9	比較品10	比較品11	比較品12

[0037]

(断面硬度) 試験品の部材表面から深さ1mmまで、深さ方向に対して内層部

(疲れ特性) 試験品に対して、小野式回転曲げ疲れ試験機により回転曲げ疲労 試験を行ない、その疲労強度 (MPa) を測定することで、部品強度としての疲れ特性の指標とした。

(曲げ矯正性) 試験品対して、万能材料試験器により3点曲げ試験を行ない、 部材表面に亀裂が発生するまでの押し込み量(mm)を測定することで、曲げ矯 正性の指標とした。

上記のような測定を行なうことで得た、表層部基準位置(部材表面から深さ 5 0 μmの位置)のビッカース硬さ、内層部(部材表面から深さ 1 mmの位置)のビッカース硬さ、部材表面から深さ 0.3 mmの位置(以下、有効硬化深さ位置という)でのビッカース硬さ、および、疲れ特性の指標の疲労強度、曲げ矯正性の指標の押込み量を表 2 に示す。なお、ここで、行なったそれぞれ断面硬度測定、疲れ特性測定、曲げ矯正性測定は、同様の条件にて作製したそれぞれ個別の試験品を用いて行なったものである。

また、試験品を作製する際の機械加工などにおける被削性の評価を行なった。この被削性の評価は、次のように行なった。上記同様に表1に示す化学組成の鋼を溶製し、熱間鍛造にて作製した ∮ 4 0 mmとなる棒状の鍛造素材に対して8 8 0 ℃で6 0 分間加熱保持した後、室温まで放冷する焼きならし処理を施した焼きならし材を用意した。そして、この焼きならし材に対して、超硬工具を用いた切削試験を行なうことで、被削性の評価とした。切削試験は、切削速度200 m/分、送り速度2 mm/回転、切削幅2 mmで、超硬工具の横逃げ面の磨耗幅が0.2 mmになるまでの切削時間を測定するものとした。また、測定した実施品1に対応する焼きならし材の切削時間を100として、この値にて他の試験品に対応する焼きならし材の切削時間を規格化したものを表2に、切削性を表す加工能率として示す。

[0038]

表層部基準位置内層部有効硬化深支355211271407212306350249283344221274347221271369225277369225275369225275369226278369226278360224278361224264402224264402224264471212273482249337364211273365220271375221271375221271	7次イレイザ 1.工		2000
355 211 407 212 350 249 448 231 364 225 375 220 369 225 365 224 367 220 367 220 388 252 402 224	振れ強度(MPa)	押し込み量(mm)	加工能率
212 249 221 225 220 220 224 226 226 227 227 228 229 229 212 249 249 249 212 220 221 220 221 222 223 224 225 227 227 227 227 227 227 227 227 227	1 432	5.7	100
249 231 225 221 220 224 220 252 254 265 212 249 185 211 220	16 504	3.8	100
231 225 220 220 224 220 188 252 252 249 212 249 249 249 212 249 249 249 252 249 211	3 431	5.9	87
225 220 227 227 228 229 252 252 265 212 249 249 249 249 212 211	4 539	2.6	94
220 220 224 224 220 188 252 252 249 212 249 185 211 220	4 462	4.8	120
225 224 220 188 252 252 —————————————————————————————	1 450	5.7	853
224 224 220 188 252 224 ———————————————————————————————	2 445	4.5	723
224 220 188 252 224 ———————————————————————————————	7 448	5.2	1065
220 188 252 224 ———————————————————————————————	5 433	5.2	1002
188 252 224 ———————————————————————————————	8 434	5.3	913
252 224 ————————————————————————————————	900	5.1	125
224 ———————————————————————————————————	5 491	4.2	68
265 212 249 185 211 210 220	4 398	3.8	92
265 212 249 185 211 220		1	
212 249 185 211 220 221	1 617	0.5	78
249 185 211 220 221	3 447	1.5	100
185 211 220 221	7 551	0.8	86
211 220 221	988	3.8	145
220	3 413	5.1	212
221	1 415	4.7	1680
	8 421	4.1	1129
296 206 249	9 358	6.3	103

[0039]

[0040]

一方、比較品1のものは、内層部の硬さが190HV未満となり、表層部基準位置での硬さは355HVであるが、有効硬化深さ位置での硬さも270HV未満となった。その結果、表層部における表面硬さが十分に確保できず、疲労強度が実施品のものに比べて格段と低下したものとなり、つまりは部品強度が十分に確保できないものとなった。さらに、比較品1の鋼組成の観点から言えば、C[eq.]がCの含有率に起因して、実施品のものより低い。本実施例は、窒化処理の処理条件(処理温度、処理時間)を一般的な範囲内としているが、その意味で、表層部基準位置での硬さおよび有効硬化深さ位置での硬さを所望のものとし、部品強度を十分に確保するために必要とされる内層部の硬さを、確実に高めるためには、C[eq.]を0.65以上とするのが望ましいと言える。また、さらに、Cの含有率に関して言えば、その含有率を例えば、0.35重量%以上(実施品2参照)とするのが望ましい。

[0041]

次に、比較品8のものは、内層部の硬さが190HV未満となり、表層部基準位置および有効硬化深さ位置での硬さは所望のものとなったが、比較品1と同様の現象として、内層部に向かい硬さの減衰率が高いものなり、結果として、表層部における表面硬さが十分に確保できず、疲労強度が実施品のものに比べて格段と低下したものになっている。さらに、比較品8の鋼組成の観点から言えば、比較品1と同様の理由にて、部品強度を十分に確保するために必要とされる内層部の硬さを確実に高めるためには、C[eq.]を0.65以上とするのが望まし

[0042]

比較品3のものは、表層部基準位置および内層部の硬さは所望のものとなったが、有効硬化深さ位置での硬さは、270HV未満となり、内層部に向かい硬さの減衰率が高いものとなり、結果として、表層部における表面硬さが十分に確保できず、疲労強度が実施品のものに比べて格段と低下したものとなっている。さらに、比較品3の鋼組成の観点から言えば、Siの含有率が実施品のものに比べて、過度に大きいものとなっているために、内層部に向かう硬さの減衰率が過度に大きくなったと言える。そこで、部品強度を十分に確保するために必要とされる有効硬化深さ位置での硬さを確実に高めるためには、Siの含有率を、例えば0.3重量%以下(実施品2参照)とするのが望ましい。

[0043]

比較品12のものは、内層部での硬さは所望のものとなったが、表層部基準位置および有効硬化深さ位置での硬さが所望のものより小さいものとなった。その結果、表層部における表面硬さが十分に確保できず、疲労強度が実施品のものに比べて一段と低いものとなっている。さらに、比較品12の鋼組成の観点から言えば、部品強度を十分に確保するために必要とされる表面硬さを確実に高めるためには、Cr [eq.]を0.72以上とするのが望ましい。

[0044]

比較品 5 のものは、内層部での硬さが 2 6 0 H V を超え、有効硬化深さ位置での硬さは 2 7 0 H V 以上と所望のものとなったが、表層部基準位置での硬さも 4 6 0 H V を超えたものとなった。その結果、表層部における表面硬さが高められすぎ、押し込む量が実施品に比べて格段と低下したものとなり、つまりは曲げ矯正性が十分に確保できないものとなった。さらに、比較品 5 の鋼組成の観点から言えば、C r [e q.] がC r の含有率に起因して、実施品のものより大きいために、表層部における表面硬さが高められすぎたと言える。そこで、曲げ矯正性を十分に確保するために確実に所望の表層部基準位置での硬さを得るためには、C r [e q.] を 1.0以下とすることが望ましい。また、C r の含有率が高いためにC [e q.] も大きくなり、内層部の硬さが所望のより大きくなり、表面

[0045]

比較品6、7のものは、内層部での硬さ、および有効硬化深さ位置での硬さは所望のものとなったが、表層部基準位置での硬さが、460HVを超えるものとなった。その結果、表面硬さが大きくなりすぎ、押し込む量が実施品に比べて格段と低下したものとなり、つまりは曲げ矯正性が十分に確保できないものとなった。さらに、鋼組成の観点から言えば、比較品7のものは、Cr [eq.] が実施品のものより大きいために、表層部における表面硬さが高められすぎたと言える。そこで、曲げ矯正性を十分に確保するために確実に所望の表層部基準位置での硬さを得るためには、Cr [eq.] を1.0以下とすることが望ましい。また、さらに、比較品6のものは、A1の含有率が過度に大きいために、表面硬さが大きくなりすぎたと言える。そこで、確実に曲げ矯正性を十分に確保するためには、そのA1の含有率を、例えば、0.01重量%以下(実施品3参照)とするのが望ましい。

[0046]

次に、被削性に関して述べる。比較品2のものは、実施品と同様に、部品強度および曲げ矯正性についてはともに優れたものとなっている。しかしながら、含有されるCの含有率が高いために、被削性が抑制されたものとなっている。そこで、被削性を高めることで、さらに、部品強度および曲げ矯正性をともに優れたものとする必要がある場合は、Cの含有率を、例えば0.5重量%以下(実施品3参照)とするのが望ましい。また、実施品5から10においては、被削性を高める元素として、Pb、S、Ca、Bi、Ti、ZrおよびMgの一種以上が鋼組成として含有されている。その結果、実施品5~10のものは、他のものより被削性が高められたものとなっている。被削性が抑制された場合、部品強度が低下してしまうことがあるので、このように被削性を高める元素を鋼組成に含有させることは有効な手段と言える。例えば、実施品1と6と比べた場合において、

両者とも押し込み量の結果は同じであるが、確かに、被削性を高める元素を含有 させた実施品5の方が、疲れ限度がより高まったものとなっていると言える。

[0047]

比較品9~11のものも、実施品と同様に、部品強度および曲げ矯正性につい てはともに優れたものとなっている。また、上記した快削性を高める元素を鋼組 成に含有させている。しかしながら、これら快削性元素の含有率が多いために、 逆に、部品強度の指標とした疲れ限度が、他の実施品に比べて低下したものとな っている。そのために快削性元素を含有させる場合、例えば、Pbは0. 30重 量%以下、Sは0.20重量%以下、Caは0.01重量%以下、Biは0.3 0重量%以下、Tiは0.02重量%以下、Zrは0.02重量%以下、Mgは 0.01重量%以下とそれぞれするのが望ましい。

[0048]

比較品 4 のものは、鋼組成に含有されるM n の含有量が過度に大きいために、 ベイナイトが過度に発生してしまった。そのため、比較品4のものは、鍛造素材 とした段階で、製品とできないものとなってしまった。そこで、Mnを含有させ る際には、その含有率を、例えば1.8軍量%以下とするのが望ましい。

[0049]

ここまでに、表1および表2を併用して、部品強度および曲げ矯正性をともに 優れたものとするためには、第一に、本発明にて適正化させた範囲に収まるよう に、それぞれ表層部基準位置、有効硬化深さ位置および内層部でのビッカース硬 さを調整するのが効果的であることが確認された。次に、請求項2に付随して上 述した数式①に関するデータを図2に示す。

[0050]

図2におけるそれぞれデータ点は、それぞれ試験品に対して行なった断面硬度 測定の内、代表的な試験品の測定結果を示すものである。また、各データ点に概 ね沿う形で示されている各曲線(破線)は、数式①に従うものである。このよう に、数式①が、断面硬度の実測値をよりよく反映した近似式であることが分かる 。図から分かるように、断面硬度は、部材表面から内層部に向かい減衰するとと もに、該内層部において硬さが略一定となる。なお、ここでは、部材表面からの

[0051]

図2において、黒色のデータ点が実施品、白色のデータ点が比較品に対応する 。また、実施品におけるデータ点がなす領域(図中の縦線領域)は、数式①を用 いて定義した領域2内に含まれるものである。つまり、例えば、実施品1のもの に対する窒化処理温度や窒化処理時間をさらに増加させた場合、その断面硬度は 、実施品4のものに近づく形で増加し、他方、実施品4のもの対する窒化処理温 度や窒化処理時間を低下させた場合、その断面硬度は、実施品1のものに近づく 形で低下するものとなる。このように、実測される硬さ分布プロファイルを、数 式①を用いて定義した領域2内に存在するようにすることで、機械部品は、確実 に部品強度および曲げ矯正性をともに優れたものとなることが分かる。また、数 式①に含まれる、表層部基準位置での硬さを表すH'1の数値範囲は、Cr 「e q.] に基づくものであり、その定義されるビッカース硬さの範囲は、348H V以上458HV以下とされ、一方、内層部での硬さを表すH'0の数値範囲は 、C[ea.]に基づくものであり、その定義されるビッカース硬さの範囲は、 199HV以上252HV以下とされる。つまり、数式①を用いて定義した領域 2内に、実測される硬さ分布プロファイルを存在させることにより、さらに、部 品強度および曲げ矯正性をともに優れたものとすることが可能となる訳である。 また、領域2内において、適宜、硬さ分布プロファイルを変化させることにより 、所望の部品強度および曲げ矯正性を得ることが可能となる。

[0052]

上記本実施例の結果より、本発明がなす効果とともに、所期の目的が達成できることが示された。なお、本実施形態および実施例は、あくまで例示的なものであり、これらに本発明は限定されるものではなく、請求項の記載に基づく記載範囲を逸脱しない限りは、本発明に概念的に内包されるものである。

【図面の簡単な説明】

【図1】

【図2】

本実施例の測定結果を理論式に基づく硬さプロファイルとともに示す図。

【符号の説明】

- 1 機械部品
- 2 表層部
- 3 内層部
- 4 部材表面

【書類名】

図面

【図1】

(a)

(b)

【書類名】

要約書

【要約】

【課題】 窒化処理にて表面硬化処理がなされる鋼を素材とする機械部品において、部品強度および曲がり矯正性とともに優れたものとすることを可能とする機械部品およびその製造方法を提供することを目的とする。

【解決手段】 鋼の素材とする機械部品 1 は、窒化処理にて表面硬化処理がなされたものであるとともに、該窒化処理による窒化にて表面硬さが高められた表層部 2 と、窒化の影響が及んでいない略一定硬さを示す内層部 3 とを有する。そして、内層部 3 のビッカース硬さを 1 90~260 HV、表層部 2 において、部材表面から深さ 5 0 μ mに対応した基準位置でのビッカース硬さを 3 40~460 HV、さらに、ビッカース硬さが 2 70 HV とされる部材表面 4 からの有効硬化層深さを 0 0 3 mm以上とする。

【選択図】

図 1

特願2002-279833

出願人履歴情報

識別番号

[000003713]

1. 変更年月日

1990年 8月27日

[変更理由]

新規登録

住 所

愛知県名古屋市中区錦一丁目11番18号

氏 名 大同特殊鋼株式会社

特願2002-279833

出願人履歴情報

識別番号

[000005326]

1. 変更年月日

1990年 9月 6日

[変更理由]

新規登録

住所

東京都港区南青山二丁目1番1号

氏 名

本田技研工業株式会社