

# Individual differences in talker identification: Do musical experience and linguistic background matter?

Xin Xie<sup>1</sup> and Emily Myers<sup>1,2</sup>

<sup>1</sup>Department of Psychology; <sup>2</sup> Department of Speech, Language, and Hearing Sciences University of Connecticut



Language and Brain Lab

## INTRODUCTION

#### PITCH IN TALKER IDENTIFICATION

- > Pitch (f0) is an important dimension in talker identification.
- > Individuals also vary widely in their ability to identify talkers.
- > Musical training sharpens pitch acuity.
- Musicians outperform non-musicians in non-linguistic pitch processing [1] and linguistic use of pitch, such as in lexical tones [2] and sentence prosody [3].
- Tonal language experience improves pitch-related processing.
- Native tonal language users have advantages in a variety of tasks involving lexical tones (linguistic)[4] and in production/perception of musical pitch (nonlinguistic)[5].

**OVERARCHING HYPOTHESIS: Pitch processing abilities are related to talker** identification.









Enhanced talker identification

Q1. Do musicianship and tone language experience enhance talker identification by sharpening pitch perception skills in a domain-general manner?

Q2. Will experience-dependent advantages in talker identification exhibit different patterns in the native language vs. unfamiliar languages?

>Language Familiarity Effect: Talker identification is easier in one's native language than in unfamiliar languages [6].

## METHODS

## **EXPERIMENT 1**

#### **TASKS**

#### TALKER IDENTIFICATION TASK:

•Blocked by language condition: Mandarin, Spanish, or English; counterbalanced (5 native male speakers in each language condition)



#### **PARTICIPANTS**

26 native-English non-musicians

10 native-English musicians &

25 native-Mandarin non-musicians

### **EXPERIMENT 2**

#### **TASKS**

#### TALKER IDENTIFICATION TASK (see Exp 1):

Blocked by Language Condition (Mandarin or English)

First Sequence

**First Sequence** 

### PITCH PERCEPTION TASK

- •40 pairs of pure tone sequences (20 same, 20 different)
- Each sequence contained six pure tones
- •Local pitch task: changes in *height*
- •Global pitch task:
- changes in *contour*

## **PARTICIPANTS**



Definition:

## native-English

Global pitch task

#### Years of training Years of training 8.14 (1.91) 9.20 (2.86) 2.68 (1.61)

native-Mandarin

#### 3.08 (1.56) 23 32 NM: non-musicians

## RESULTS

#### **EXPERIMENT 1**

Do musicianship and tone language experience enhance talker identification? (Fig. 1)

- >YES!
- $\triangleright$  [English M & Mandarin NM] > English NM p < .01 $\triangleright$  English M = Mandarin NM p = .20
- $\triangleright$  Replicate language familiarity effect p < .001➤ English: English M = English NM > Mandarin NM p < .001
- $\triangleright$  Mandarin: Mandarin NM > English M p < .001
- > English musicians outperform non-musicians in non-native languages
- $\triangleright$  English M > English NM p < .01
- > Spanish: English M > English NM p < .005

#### **EXPERIMENT 2**

Do pitch processing abilities relate to talker identification skills?

#### Figure 2: Talker identification

- $\triangleright \label{eq:problem}$  Musicianship predicts better talker ID p < .005 $\rightarrow$  ME > NM p = .005; MM > NM p = .06; MM = ME n.s.
- Tone language experience enhances talker ID  $\triangleright$  Mandarin listeners > English listeners p < .05
- $\triangleright$  Language familiarity effect p < .001.

#### Figure.3: Pitch perception

- $\rightarrow$  Musical training enhances pitch skills p < .001 $\rightarrow$  ME > NM p < .001; MM > NM n.s; MM = ME n.s.
- Tone language experience enhances pitch skills  $\triangleright$  Mandarin listeners > English listeners p < .001
- ➤ Interaction: task differences larger in the English listeners overall p < .001

#### Figure.4: Mediation analysis

- Non-native language condition
- > Musical training predicted pitch perception. ➤ Indirect effect of musical training on talker ID, mediated by pitch perception p < .05.
- Tone language experience predicted pitch perception.

➤ Indirect effect of tone language experience on talker ID *p* < .05.

#### **Native language condition**

 $\triangleright$  No effect of musical training (p = .18) or tone language experience (p = .47) on talker ID

# DISCUSSION

#### **Talker Identification: The Role of Pitch Experience Musical training:**

Musicianship predicted pitch processing sensitivity. Musicians had a benefit over non-musicians when

#### identifying talkers in *unfamiliar* languages. Tone language experience:

- Tone language speakers (Mandarin listeners) had enhanced pitch perception compared to non-tone language speakers (English listeners).
- Mandarin listeners outperformed English listeners in talker identification in *unfamiliar* languages.
- → Taken together, these results suggest an interaction between language skills and pitch processing ability in talker identification.

#### **Shared Mechanisms: Music, Language and Voice** Perception

- Previously, bi-directional influences between musical and linguistic pitch use [7].
- Domain-specific training (musical training/lexical) tone use) heightens listeners' sensitivity to pitch, and transfers to voice identity perception.



Fig.2 Talker identification accuracy as a function of listener group for (A) English voices and (B) Mandarin voices



Musicians with extensive training Musicians with minimal training □ Non-musicians

## Fig.3 Pitch perception sensitivity as a function of listener group for (A) local pitch task and (B) global pitch task



Fig.4 The *mediating* effect of pitch perception on talker identification

### **Predictors:**

Musical experience (length of musical training in years)

Tone language experience (English = 0; Mandarin = 1)**Mediator:** 

#### Pitch perception sensitivity (average log-transformed d') across the two pitch tasks) Dependent variable:

Talker identification accuracy (non-native and native)



\*p < .05; \*\* p < .01; \*\*\* p < .001. Numbers in parentheses indicate the total effect of listener experience on talker identification, without controlling for pitch. The total effect of musicianship /tone language experience on talker ID in the native conditions did not reach significance (ps > .10).

### **WORKS CITED:**

1.Bidelman G. M., Hutka S., & Moreno, S. (2013). Tone language speakers and musicians share enhanced perceptual and cognitive abilities for musical pitch: evidence for bidirectionality between the domains of language and music. PLoS ONE 8:e60676. 2. Burnham, D., Brooker, R., & Reid, A. (In press, 2014) The effects of absolute pitch ability and musical training on lexical tone perception. Psychology of Music.

3. Marques C, Moreno S, Castro SL, Besson M. 2007. Musicians detect pitch violation in a foreign language better than nonmusicians: behavioural and electrophysiological evidence. J Cogn Neurosci. 19, 1453--1463.

4. Krishnan, A., Swaminathan, J., & Gandour, J. T. (2009). Experience-dependent enhancement of linguistic pitch representation in the brainstem Is not specific to a speech Context. Journal of Cognitive Neuroscience, 21(6), 1092-1105.

5. Pfordresher, P. Q., Brown, S., (2009). Enhanced production and perception of musical pitch in tone language speakers. Attention, Perception & Psychophysics, 71, 1385-1398.

6. Perrachione, T. K., Pierrehumbert, J. B., & Wong, P. M. (2009). Differential neural contributions to native- and foreign-language

talker identification. Journal of Experimental Psychology: Human Perception And Performance, 35(6), 1950-1960. 7. Patel A. D. (2011). Why would musical training benefit the neural encoding of speech? The OPERA hypothesis. Front. Psychol.2:142.10.3389/fpsyg.2011.00142.

ACKNOWLEDGEMENTS: This work was supported by NIH NIDCD R03 DC009495 (Myers, PI).