LEnsE / Institut d'Optique Graduate School

TD 1

TD 1 / DIODES ET SOURCES À LEDS

Mission 1 - Caractéristique d'une diode

On rappelle le symbole et le sens des courants et tensions aux bornes d'une diode :

On fournit la documentation technique d'une LED Rouge « classique » (Kingbright L-53HD).

- 1. Trouvez et relevez la caractéristique I(V) de cette LED (allure).
- 2. Relevez et commentez l'ensemble des paramètres électriques.
- 3. De quel(s) paramètre(s) dépend l'**intensité lumineuse** émise?

Mission 2 - Redressement à diodes

Soient les circuits suivants :

Donnez l'allure du signal de sortie $V_S(t)$ des circuits a et b suivants pour un signal d'entrée de forme sinusoïdale telle que $V_e(t) = A \cdot \sin(\omega t)$ dans le cas d'une diode idéale. Puis dans le cas d'une diode avec une tension de seuil V_d . On supposera que $A > V_d$.

Mission 3 - Générateurs de signaux

On considère à présent les deux montages suivants :

- 1. Dans le cas du montage de la figure (a) et d'utilisation de diodes parfaites et idéales, que doivent valoir R_1 et R_2 pour obtenir la caractéristique tracée dans le graphe I(V)?
- 2. Dans le cas du montage de la figure (b), les diodes ont pour seuil 0, 6 V. Que doivent valoir R_1, R_2 et R_3 et le nombre de diodes N (N=2 a été dessiné arbitrairement) pour obtenir la caractéristique tracée dans le graphe I(V)?

Mission 4 - Emetteur à LED

On souhaite réaliser un montage émetteur à l'aide de la diode rouge de l'exercice 1. On propose d'étudier le montage suivant :

- 1. Cas 1 : La source de tension V_P est une source continue. Elle délivre une différence de potentiel de $5\,\mathrm{V}$.
 - (a) Quelle est la valeur maximale du courant que la diode peut supporter dans ces conditions?
 - (b) Quelle est la valeur minimale que doit avoir R_{LED} pour respecter cette condition?
 - (c) Quel sera alors le courant moyen qui traversera la LED?
- 2. Cas 2 : La source de tension V_P est une source impulsionnelle. Elle délivre des impulsions de 5 V de durée 0.1 ms avec une fréquence de répétition de 1 kHz.
 - (a) Quelle est la valeur maximale du courant que la diode peut supporter dans ces conditions?
 - (b) Quelle est la valeur minimale que doit avoir R_{LED} pour respecter cette condition?
 - (c) Quel sera alors le courant moyen qui traversera la LED?

On s'intéresse maintenant à une LED infrarouge (IR) de type SFH415 (documentation fournie en annexe).

- 3. Cas 2bis : La source de tension V_P est une source impulsionnelle. Elle délivre des impulsions de $5\,\mathrm{V}$ de durée $0.1\,\mathrm{ms}$ avec une fréquence de répétition de $1\,\mathrm{kHz}$.
 - (a) Quelle est la valeur maximale du courant que la diode peut supporter dans ces conditions?
 - (b) Quelle est la valeur minimale que doit avoir R_{LED} pour respecter cette condition?
 - (c) Quel sera alors le courant moyen qui traversera la LED?
 - (d) Quelle sera la puissance dissipée dans la résistance R_{LED} ?

Selection Guide

Part No.	Dice	Lens Type	lv (mcd) @ 10mA		Viewing Angle
		,,	Min.	Тур.	201/2
L-53HD	BRIGHT RED(GaP)	RED DIFFUSED	1.8	5	60°

Electrical / Optical Characteristics at T_A=25°C

Symbol	Parameter	Device	Тур.	Max.	Units	Test Conditions	
λpeak	Peak Wavelength	Bright Red	700		nm	IF=20mA	
λD	Dominate Wavelength	Bright Red	660		nm	IF=20mA	
Δλ1/2	Spectral Line Half-width	Bright Red	45		nm	IF=20mA	
С	Capacitance	Bright Red	40		pF	V _F =0V;f=1MHz	
VF	Forward Voltage	Bright Red	2.25	2.5	V	I=20mA	
IR	Reverse Current	Bright Red		10	uA	V _R = 5V	

Absolute Maximum Ratings at T_A=25°C

Parameter	Bright Red		
Power dissipation	120	mW	
DC Forward Current	25	mA	
Peak Forward Current [1]	130	mA	
Reverse Voltage	5	V	
Operating/Storage Temperature	-40°C To +85°C		
Lead Solder Temperature [2]	260°C For 5 Seconds		

1. 1/10 Duty Cycle, 0.1ms Pulse Width.

2. 2mm below package base.

SPEC NO: DSAA4828 REV NO: V.3 DATE:JAN/16/2003 PAGE: 2 OF 3 DRAWN:L.ZHANG

APPROVED: J.LU CHECKED: Allen Liu

^{1.} θ 1/2 is the angle from optical centerline where the luminous intensity is 1/2 the optical centerline value.

Kingbright

SPEC NO: DSAA4828 APPROVED: J.LU REV NO: V.3 CHECKED: Allen Liu DATE:JAN/16/2003 DRAWN:L.ZHANG PAGE: 3 OF 3

GaAs-IR-Lumineszenzdioden GaAs Infrared Emitters Lead (Pb) Free Product - RoHS Compliant

SFH 415

Wesentliche Merkmale

- GaAs-LED mit sehr hohem Wirkungsgrad
- Hohe Zuverlässigkeit
- UL Version erhältlich
- Gute spektrale Anpassung an Si-Fotoempfänger
- SFH 415: Gehäusegleich mit SFH 300, SFH 203

Anwendungen

- IR-Fernsteuerung von Fernseh- und Rundfunkgeräten, Videorecordern, Lichtdimmern
- Gerätefernsteuerungen für Gleich- und Wechsellichtbetrieb
- Rauchmelder
- Sensorik
- Diskrete Lichtschranken

Features

- · Very highly efficient GaAs-LED
- High reliability
- UL version available
- · Spectral match with silicon photodetectors
- SFH 415: Same package as SFH 300, SFH 203

Applications

- IR remote control of hi-fi and TV-sets, video tape recorders, dimmers
- · Remote control for steady and varying intensity
- · Smoke detectors
- Sensor technology
- Discrete interrupters

Тур Туре	Bestellnummer Ordering Code	Strahlstärkegruppierung ¹⁾ ($I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms) Radiant Intensity Grouping ¹⁾ $I_{\rm e}$ (mW/sr)
SFH 415	Q62702-P0296	> 25
SFH 415-U	Q62702-P1137	> 40

¹⁾ gemessen bei einem Raumwinkel Ω = 0.01 sr / measured at a solid angle of Ω = 0.01 sr

Grenzwerte ($T_{\rm A}$ = 25 °C) **Maximum Ratings**

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Betriebs- und Lagertemperatur Operating and storage temperature range	$T_{\sf op};T_{\sf stg}$	- 40 + 100	°C
Sperrspannung Reverse voltage	V_{R}	5	V
Durchlassstrom Forward current	I_{F}	100	mA
Stoßstrom, $t_p = 10 \mu s$, $D = 0$ Surge current	I_{FSM}	3	A
Verlustleistung Power dissipation	P_{tot}	165	mW
Wärmewiderstand Thermal resistance	R_{thJA}	450	K/W

Kennwerte ($T_A = 25$ °C) **Characteristics**

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Wellenlänge der Strahlung Wavelength at peak emission $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms	λ_{peak}	950	nm
Spektrale Bandbreite bei 50% von $I_{\rm max}$ Spectral bandwidth at 50% of $I_{\rm max}$ $I_{\rm F}$ = 100 mA	Δλ	55	nm
Abstrahlwinkel Half angle SFH 415	φ	± 17	Grad
Aktive Chipfläche Active chip area	A	0.09	mm ²
Abmessungen der aktiven Chipfläche Dimensions of the active chip area	$L \times B$ $L \times W$	0.3 × 0.3	mm ²
Abstand Chipoberfläche bis Linsenscheitel Distance chip front to lens top	Н	4.2 4.8	mm

Kennwerte (T_A = 25 °C) Characteristics (cont'd)

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Schaltzeiten, $\rm I_e$ von 10% auf 90% und von 90% auf 10%, bei $I_{\rm F}$ = 100 mA, $R_{\rm L}$ = 50 Ω Switching times, $\rm I_e$ from 10% to 90% and from 90% to 10%, $I_{\rm F}$ = 100 mA, $R_{\rm L}$ = 50 Ω	t_{r},t_{f}	0.5	μs
Kapazität Capacitance $V_{\rm R}$ = 0 V, f = 1 MHz	C_{o}	25	pF
Durchlassspannung Forward voltage $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms $I_{\rm F}$ = 1 A, $t_{\rm p}$ = 100 μ s	$egin{array}{c} V_{F} \ V_{F} \end{array}$	1.3 (≤ 1.5) 2.3 (≤ 2.8)	V V
Sperrstrom Reverse current $V_{\rm R} = 5 \text{ V}$	I_{R}	0.01 (≤ 1)	μΑ
Gesamtstrahlungsfluss Total radiant flux $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms	Φ_{e}	22	mW
Temperaturkoeffizient von $\rm I_e$ bzw. $\rm \Phi_e$, $\rm \it I_F$ = 100 mA Temperature coefficient of $\rm I_e$ or $\rm \Phi_e$, $\rm \it I_F$ = 100 mA	TC ₁	- 0.5	%/K
Temperaturkoeffizient von $V_{\rm F},I_{\rm F}$ = 100 mA Temperature coefficient of $V_{\rm F},I_{\rm F}$ = 100 mA	TC_{V}	- 2	mV/K
Temperaturkoeffizient von λ , $I_{\rm F}$ = 100 mA Temperature coefficient of λ , $I_{\rm F}$ = 100 mA	TC_{λ}	+ 0.3	nm/K

Relative Spectral Emission $I_{rel} = f(\lambda)$

Forward Current

 $I_{\rm F}$ = $f(V_{\rm F})$, single pulse, $t_{\rm p}$ = 20 $\mu {\rm s}$

Permissible Pulse Handling Capability $I_{\rm F}$ = f (τ), $T_{\rm A}$ = 25 °C duty cycle D = parameter

Radiant Intensity $\frac{I_{\rm e}}{I_{\rm e}\,{\rm 100~mA}}$ = $f\left(I_{\rm F}\right)$

Single pulse, $t_p = 20 \mu s$

Max. Permissible Forward Current $I_{\rm F} = f\left(T_{\rm A}\right)$

Radiation Characteristics,

 $I_{rel} = f(\varphi)$

