ภาคผนวก I

การทดลองที่ 9 การศึกษาและปรับแก้อินพุทและ เอาท์พุทต่างๆ

การทดลองในภาคผนวกนี้ จะช่วยอธิบายเนื้อหาในบทที่ 6 ซึ่งเกี่ยวข้องกับอุปกรณ์อินพุท/เอาท์พุทที่หลาก หลายบนเครื่องคอมพิวเตอร์ตั้งโต๊ะ โดยมีวัตถุประสงค์เหล่านี้

- เพื่อให้เข้าใจการปรับแก้อุปกรณ์อินพุทและเอาท์พุทชนิดต่างๆ บนระบบปฏิบัติการ Raspbian
- เพื่อให้เข้าใจความแตกต่างระหว่างอุปกรณ์อินพุทและเอาท์พุทชนิดต่างๆ บนบอร์ด Pi3
- เพื่อให้สามารถอ่านข้อความแสดงรายละเอียดของอุปกรณ์อินพุทและเอาท์พุทชนิดต่างๆ

หลักการและพื้นฐานความเข้าใจจะช่วยแนะแนวทางให้ผู้อ่านสามารถศึกษาค้นคว้า อินพุท/เอาท์พุทอื่นๆ ในชิพและบนบอร์ดได้เพิ่มเติม รวมไปถึงบนโทรศัพท์เคลื่อนที่ แท็บเล็ตคอมพิวเตอร์ และอุปกรณ์อินเทอร์เน็ต สรรพสิ่ง (Internet of Things)

I.1 จอแสดงผลผ่านพอร์ท HDMI

หน่วยความจำสำหรับจอแสดงผลหรือ GPU (Graphic Processing Unit) ถูกแบ่งพื้นที่ออกจาก หน่วยความ จำ DRAM บนบอร์ด เพื่อใช้งานร่วมกันทำให้ประหยัดต้นทุน แต่มีข้อเสียในด้านประสิทธิภาพจะลดลง เมื่อผู้ใช้ งานต้องการภาพที่มี อัตราการเปลี่ยนแปลง (Refresh Rate) หรืออัตราเฟรมเรท (Frame Rate) สูง เช่น ภาพ เคลื่อนไหว เกมส์ 3 มิติ

I.1.1 การปรับแก้ขนาดหน่วยความจำของ GPU

ความละเอียดของจอแสดงผลขึ้นตรงกับขนาดของหน่วยความจำของ GPU ผู้อ่านสามารถปรับแก้ขนาดหน่วย ความจำของ GPU ดังนี้

menu->Preferences->Raspberry Pi Configuration->Set Resolution->Performance

โดยหน้าต่างที่ปรากฏขึ้นมีลักษณะดังนี้ ผู้ใช้สามารถกำหนดขนาดที่ต้องการโดยขั้นต่ำคือ 64 MB เพื่อให้ ระบบสามารถแสดงผลได้ หากผู้ใช้กำหนดสูงเกินไป จะทำให้บอร์ดมีหน่วยความจำไม่เพียงพอ

ร**ูปที่** I.1: หน้าต่างกำหนดขนาดหน่วยความจำสำหรับ GPU ที่ 64 เมกะไบท์

I.1.2 การปรับแก้ความละเอียดของจอแสดงผล

เมื่อขนาดหน่วยความจำของ GPU มีเพียงพอ ผู้ใช้สามารถปรับเพิ่มหรือลดความละเอียดของจอแสดงผลได้โดย กดปุ่มบนเมนูดังนี้

menu->Preferences->Raspberry Pi Configuration->Set Resolution

รูปที่ I.2: หน้าต่าง Raspberry Pi Configuration แท็บ System สำหรับกำหนดความละเอียดหน้าจอแสดงผล (Resolution)

รูปที่ I.3: หน้าต่าง Set Resolution สำหรับกำหนดความละเอียดหน้าจอที่ต้องการ

กดปุ่ม Set Resolution สำหรับกำหนดความละเอียดหน้าจอที่ต้องการ ในรูปที่ ผู้เขียนต้องการแสดงผลที่ ความละเอียด CEA Mode 31 1920x1080 50Hz 16:9 หลังจากนั้นกดปุ่ม OK หน้าต่าง Reboot needed จะปรากฏขึ้น

รูปที่ I.4: หน้าต่าง Reboot needed กดปุ่ม Yes เมื่อต้องการรีบูท ณ เวลานั้น

I.2 ระบบเสียงดิจิทัล

อุปกรณ์ระบบเสียงดิจิทัลที่ติดตั้งมาบนบอร์ด Pi3 จากโรงงาน ผู้ใช้สามารถเพิ่มเติมได้ผ่านพอร์ท USB และปรับ แต่งระดับเสียงได้เช่นกัน

I.2.1 รายชื่ออุปกรณ์ในระบบเสียง

ระบบเสียงในระบบปฏิบัติการ Linux ควบคุมการทำงานของเสียงผ่านระบบ ALSA (Advanced Linux Sound Architecture) ซึ่งจัดเตรียมไดรเวอร์ (Device Driver) สำหรับเสียงให้กับเคอร์เนล และอุปกรณ์ที่เกี่ยวข้องกับ เสียงผ่านพอร์ท USB เช่น ไมโครโฟน, หูฟังพร้อมไมโครโฟน, เว็บแคม เป็นต้น ผู้อ่านสามารถแสดงรายชื่อไฟล์ หรือไดเรคทอรีที่เกี่ยวข้องกับระบบเสียงดังนี้

\$ ls -1 /proc/asound

ผลลัพธ์คือ รายชื่ออุปกรณ์ที่เกี่ยวข้องกับเสียง โดยเฉพาะ ALSA ซึ่งได้แสดงไปก่อนหน้านี้ ผู้อ่านจะสังเกต ได้ว่าไดเรคทอรี /proc/asound/pcm จะเชื่อมโยงกับเนื้อหาในหัวข้อที่ 6.4 จะสังเกตเห็นว่ามีไดเรคทอรีชื่อ card0 อยู่สองตำแหน่งคือ ในแถวแรก และแถวที่มีชื่อ ALSA -> card0 สัญลักษณ์ -> เรียกว่าซิมบอลิคลิงค์ (Symbolic Link) หมายความว่า ไดเรคทอรีชื่อ ALSA คือไดเรคทอรี card0

1. ผู้อ่านสามารถทดสอบโดยพิมพ์คำสั่งต่อไปนี้

```
$ cat /proc/asound/ALSA
```

บันทึกผลลัพธ์ในพื้นที่ว่างต่อไปนี้

```
pi@raspberrypi:~ $ cat /proc/asound/b1
cat: /proc/asound/b1: Is a directory
```

- 2. ผู้อ่านสามารถทดสอบโดยพิมพ์คำสั่งต่อไปนี้
 - \$ cat /proc/asound/card0

1.2. ระบบเสียงดิจิทัล

บันทึกผลลัพธ์ในพื้นที่ว่างต่อไปนี้ และเปรียบเทียบกับผลลัพธ์ก่อนหน้าว่าแตกต่างกันหรือไม่

```
pi@raspberrypi:~ $ cat /proc/asound/card0
cat: /proc/asound/card0: Is a directory
```

ได้ผลลัพธ์เหมือนกันคือ Is a directory

3. ค้นคว้าเพิ่มเติมเพื่อหาความหมายของ Symbolic Link และจดบันทึก

Symbolic Link เป็นการสร้างตัวอ้างอิงจากไฟล์ที่มีอยู่แล้ว ทำให้เมื่อไฟล์ต้นฉบับถูกลบ ข้อมูลในส่วนนั้นก็จะไม่สามารถเข้าถึงได้จาก Link ที่สร้างไว้ได้ การสร้าง Symbolic Link สามารถสร้างบนระบบไฟล์ที่แตกต่างกันได้

4. พิมพ์คำสั่งนี้ในโปรแกรม Terminal

```
$ cat /proc/asound/cards
```

โดยคำสั่ง cat ซึ่งได้อธิบายแล้วในการทดลองที่ 4 ภาคผนวก D สามารถอ่านไฟล์และแสดงข้อมูลภายใน ไฟล์ผ่านทางหน้าจอแสดงผล บันทึกในที่ว่างต่อไปนี้

อภิปรายผลที่ได้ ดังนี้ ผลลัพธ์ได้จากบอร์ด Pi3 ใช้ชิพ BCM2835 แต่ยังใช้ไดรเวอร์เสียงเดียวกันกับ BCM2835 โดย หมายเลข 0 คือ หมายเลขของระบบเสียงที่ติดตั้งใช้งานเพียงระบบเดียว และตรงกับ อุปกรณ์ ชื่อ ____0 [b1]: bcm2835 hdmi 1

I.2.2 การควบคุมระดับเสียง

ผู้อ่านสามารถควบคุมระดับความดังของเสียงทั้งด้านอินพุทและเอาท์พุท โดยพิมพ์คำสั่งนี้

\$ alsamixer

หน้าต่างต่อไปนี้จะปรากฏขึ้น ผู้อ่านสามารถกดปุ่มลูกศรขึ้น/ ลง เพื่อเพิ่ม/ลด ระดับความดังได้

รูปที่ I.5: โปรแกรม ALSA Mixer สำหรับควบคุมระดับเสียงบนบอร์ด Pi3

หมายเหตุ ผู้อ่านสามารถติดตั้งอุปกรณ์เสียงผ่านพอร์ท USB และใช้คำสั่งเหล่านี้เพื่อตรวจสอบและควบคุม การทำงาน

I.3 พอร์ทเชื่อมต่ออุปกรณ์ USB

I.3.1 รายชื่ออุปกรณ์กับพอร์ท USB

1. ในการทดลองนี้ ขอผู้อ่านให้ดึงหัวเชื่อมต่อ USB ของเมาส์ที่ใช้อยู่ออก แล้วพิมพ์คำสั่งนี้ใน โปรแกรมTerminal

\$ lsusb

เพื่อแสดงรายชื่ออุปกรณ์ USB ที่เชื่อมต่ออยู่ทั้งหมดในบอร์ด ดังตัวอย่างต่อไปนี้

```
Bus 001 Device 005: ID 413c:2003 Dell Computer Corp. Keyboard

Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.

SMSC9512/9514 Fast Ethernet Adapter

Bus 001 Device 002: ID 0424:9514 Standard Microsystems Corp. SMC9514 Hub

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
```

ผู้อ่านจะเห็นรายชื่ออุปกรณ์ที่เชื่อมต่อกับพอร์ท USB เรียงลำดับย้อนกลับ จาก Device 005 - Device 001 โดย

- Device 005 คือ คีย์บอร์ดมีหมายเลข ID = 413c:2003 ผลิตโดย บริษัท Dell Computer Corp. ซึ่งคีย์บอร์ดของผู้อ่านอาจจะแตกต่าง
- Device 003 คือ วงจร Ethernet สำหรับเชื่อมต่อเครือข่ายชนิดสาย มีหมายเลข ID = 0424:ec00 ผลิตโดย บริษัท Standard Microsystems Corp. รุ่น SMSC9512/9514

- Device 002 คือ วงจร USB Hub สำหรับเชื่อมต่อพอร์ท USB เพิ่มเติม มีหมายเลข ID = 0424:9514 ผลิตโดย บริษัท Standard Microsystems Corp. รุ่น SMSC9514
- Device 001 คือ วงจร Root Hub เป็นวงจรภายในชิพ BCM2837 สำหรับเชื่อมต่อพอร์ท USB เพิ่มเติม มีหมายเลข ID = 1d6b:0002
- 2. บันทึกผลลัพธ์ของผู้อ่าน

```
pi@raspberrypi:~ $ lsusb
Bus 001 Device 005: ID 04d9:a0cd Holtek Semiconductor, Inc.
Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp. SMSC9512/9514 Fast
Ethernet Adapter
Bus 001 Device 002: ID 0424:9514 Standard Microsystems Corp. SMC9514 Hub
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
```

```
Bus 001 Device 00\underline{5}: ID = \underline{0} \underline{4} \underline{d} \underline{9}: \underline{a} \underline{0} \underline{c} \underline{d}

Bus 001 Device 00\underline{3}: ID = \underline{0} \underline{4} \underline{2} \underline{4}: \underline{e} \underline{c} \underline{0} \underline{0}

Bus 001 Device 00\underline{2}: ID = \underline{0} \underline{4} \underline{2} \underline{4}: \underline{9} \underline{5} \underline{1} \underline{4}

Bus 001 Device 00\underline{1}: ID = \underline{1} \underline{d} \underline{6} \underline{b}: \underline{0} \underline{0} \underline{0} \underline{2}
```

3. ผู้อ่านเสียบเมาส์กลับเข้าไปที่พอร์ท USB ใหม่อีกครั้ง แล้วแสดงรายชื่ออุปกรณ์ USB ด้วยคำสั่ง

```
Bus 001 Device 005: ID 04d9:a0cd Holtek Semiconductor, Inc.
Bus 001 Device 006: ID 046d:c077 Logitech, Inc. M105 Optical Mouse
Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp. SMSC9512/9514 Fast
Ethernet Adapter
Bus 001 Device 002: ID 0424:9514 Standard Microsystems Corp. SMC9514 Hub
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
```

เช่นเดิม บันทึกผลลงในพื้นที่จัดเตรียมไว้ให้ โปรดสังเกตการเปลี่ยนแปลง

```
Bus 001 Device 00\underline{5} : ID = \underline{0} \underline{4} \underline{d} \underline{9}; \underline{a} \underline{0} \underline{c} \underline{d}

Bus 001 Device 00\underline{6} : ID = \underline{0} \underline{4} \underline{6} \underline{d}; \underline{c} \underline{0} \underline{7} \underline{7}

Bus 001 Device 00\underline{3} : ID = \underline{0} \underline{4} \underline{2} \underline{4}; \underline{e} \underline{c} \underline{0} \underline{0}

Bus 001 Device 00\underline{2} : ID = \underline{0} \underline{4} \underline{2} \underline{4}; \underline{9} \underline{5} \underline{1} \underline{4}

Bus 001 Device 001 : ID = \underline{1} \underline{1} \underline{0} \underline{0} \underline{0} \underline{0}
```

4. รายการที่เพิ่มขึ้น คือ

```
Device 00\underline{6} : ID = \underline{0} \underline{4} \underline{6} \underline{d}: \underline{c} \underline{0} \underline{7} \underline{7}
```

คือ เมาส์หมายเลขลำดับที่ Device 006 ที่เพิ่งถูกเสียบกลับเข้าไปยังบอร์ด

\$ dmesq

I.3.2 รายละเอียดการเชื่อมต่ออุปกรณ์กับพอร์ท USB

คำสั่งต่อไป คือ **dmesg** สามารถแสดงรายการทำงาน หรือ Log ของระบบปฏิบัติการว่าตั้งแต่เริ่มเปิดเครื่อง โดยคำว่า **dmesg** ย่อมาจากคำสั่ง "display message or display driver" ซึ่งเคอร์เนลได้บันทึกไว้ใน บัฟเฟอร์ชนิดวงแหวน (Ring Buffer) ซึ่งข้อความตอนต้นจะถูกเขียนทับเมื่อบัฟเฟอร์เต็ม

```
[0.000000] Booting Linux on physical CPU 0x0
[0.000000] Linux version 4.14.71-v7+ (dc4@dc4-XPS13-9333)
           (gcc version 4.9.3 (crosstool-NG crosstool-ng-1.22.0-88-g8460611))
          #1145 SMP Fri Sep 21 15:38:35 BST 2018
[0.000000] CPU: ARMv7 Processor [410fd034] revision 4 (ARMv7), cr=10c5383d
[0.000000] CPU: div instructions available: patching division code
[0.000000] CPU: PIPT / VIPT nonaliasing data cache,
          VIPT aliasing instruction cache
[0.000000] OF: fdt: Machine model: Raspberry Pi 3 Model B Rev 1.2
[0.000000] Memory policy: Data cache writealloc
[0.000000] cma: Reserved 8 MiB at 0x3ac00000
[0.000000] On node 0 totalpages: 242688
[0.000000] Memory: 940232K/970752K available (7168K kernel code, 576K rwdata,
          2076K rodata, 1024K init, 698K bss, 22328K reserved,
          8192K cma-reserved)
[0.000000] Virtual kernel memory layout:
              vector : 0xffff0000 - 0xffff1000
                                                       4 kB)
              fixmap : 0xffc00000 - 0xfff00000
                                                   (3072 kB)
              vmalloc : 0xbb800000 - 0xff800000
                                                   (1088 MB)
              lowmem : 0x80000000 - 0xbb400000
                                                   (948 MB)
              modules : 0x7f000000 - 0x80000000
                                                   ( 16 MB)
                  .bss : 0x80c97f10 - 0x80d468b0
                                                  (699 kB)
                 .data : 0x80c00000 - 0x80c9017c
                                                   (577 kB)
                 .init : 0x80b00000 - 0x80c00000
                                                   (1024 kB)
                 .text : 0x80008000 - 0x80800000
                                                   (8160 kB)
```

ผู้เขียนสามารถอธิบายผลลัพธ์ได้ดังต่อไปนี้ โดยเรียงลำดับตามเหตุการณ์ ซึ่งมีสัญลักษณ์ [xxxx.yyyyyy] แสดงลำดับที่เกิดขึ้นตามเวลา โดย xxxx คือเลขวินาทีตั้งแต่เคอร์เนลเริ่มทำงาน และ yyyyyy คือเศษวินาที ข้อความที่แสดงเป็น 0.000000 เนื่องจากเคอร์เนลอยู่ระหว่างการเริ่มต้น

- เริ่มต้นการบูทระบบปฏิบัติการด้วยซีพียูคอร์หมายเลข 0
- แสดงรายละเอียดหมายเลขเวอร์ชันของลีนุกซ์

- แสดงรายละเอียดของ CPU ซึ่งใช้คำสั่งภาษาแอสเซมบลีเวอร์ชัน 7 (ARMv7)
- แสดงผลการตรวจจับว่าซีพียูรองรับคำสั่ง DIV
- รายงานว่า แคชข้อมูล ทำงานแบบ nonaliasing PIPT (Physically Indexed, Physically Tagged) หรือ VIPT (Virtually Indexed, Physically Tagged) อย่างใดอย่างหนึ่ง และแคชคำสั่ง ทำงานแบบ aliasing VIPT แคชข้อมูลไม่สามารถแชร์ข้ามโพรเซสได้เนื่องจากทำงานแบบ nonaliasing ในขณะที่ แคชคำสั่งสามารถแชร์ข้ามโพรเซสได้ เนื่องจากทำงานแบบ aliasing ข้อมูลเพิ่มเติม
- แสดงผลการตรวจจับว่าเป็นบอร์ด Raspberry Pi 3 Model B Rev 1.2
- การทำงานของแคชข้อมูลเป็นชนิด writealloc ย่อมาจาก Write Allocation ซึ่งซีพียูจะเขียนข้อมูลทั้ง ในแคชก่อน เมื่อแคชจะต้องถูกย้ายออกจึงค่อยเขียนในหน่วยความจำหลักภายหลัง ข้อมูลเพิ่มเติม
- cma (Contiguous Memory Allocator) สำหรับขบวนการ DMA เริ่มต้นที่แอดเดรส 0x3AC00000 ขนาด 8 เมกะไบท์

• ...

- พื้นที่การจัดวางหน่วยความจำเสมือนของเคอร์เนล (Virtual kernel memory layout) ผู้เขียนได้ ทำการจัดเรียงใหม่ตามหมายเลขแอดเดรสที่ตำแหน่งมาก ไล่ลงมาจนถึงหมายเลขน้อย เพื่อให้ผู้อ่านมอง เห็นภาพและเข้าใจง่ายขึ้น โดยแบ่งเป็นพื้นที่สำคัญๆ ตามลำดับดังนี้
 - จัดเก็บเว็คเตอร์สำหรับการขัดจังหวะ (Interrupt Vector) ขนาด 4 กิโลไบท์ จากหมายเลข 0xFFFF 0000 ถึง 0xFFFF 1000
 - พื้นที่สำหรับจองหน่วยความจำเสมือน (vmalloc) ขนาด 1088 เมกะไบท์ จากหมายเลข 0xBB80 0000 ถึง 0xFF80 0000
 - bss เซ็กเมนท์ (.bss) ขนาด 699 กิโลไบท์ จากหมายเลข 0x80C9_7F10 ถึง 0x80D4_68B0
 - ดาตาเซ็กเมนท์ (.data) ขนาด 577 กิโลไบท์ จากหมายเลข 0x80C0_0000 ถึง 0x80C9_017C
 - init เซ็กเมนท์ (.init) ขนาด 1024 กิโลไบท์ จากหมายเลข 0x80B0_8000 ถึง 0x80C0_0000
 - เท็กซ์เซ็กเมนท์ (.text) ขนาด 8160 กิโลไบท์ จากหมายเลข 0x8000_8000 ถึง 0x8080_0000

ในการทดลองนี้ ระบบสามารถตรวจจับอุปกรณ์ USB และติดตั้งไดรเวอร์ได้อย่างถูกต้องปราศจากข้อผิดพลาด

1. ผู้อ่านสามารถล้างบัฟเฟอร์โดยใช้คำสั่ง ต่อไปนี้

\$ sudo dmesg -C

โดย -C คือ Clear เป็นคำสั่งเพิ่มเติมให้ dmesg ล้างข้อความในบัฟเฟอร์ออก โปรดสังเกต ตัว C ใหญ่ หลังจากนั้น ผู้อ่านทดสอบโดยการถอดเมาส์ออก แล้วเสียบกลับเข้าไปใหม่

- 2. ผู้อ่านจะต้องถอดและเสียบเมาส์กลับเข้าไปใหม่อีกรอบ
- 3. ผู้อ่านสามารถแสดงข้อความที่เพิ่มเข้ามาในบัฟเฟอร์ได้อีก โดยเรียกคำสั่ง

\$ sudo dmesq

4. จดบันทึก

```
pi@raspberrypi:~ $ sudo dmesg
[ 1002.368984] usb 1-1.2: USB disconnect, device number 6
[ 1003.428265] usb 1-1.2: new low-speed USB device number 7 using dwc_otg
[ 1003.563238] usb 1-1.2: New USB device found, idVendor=046d, idProduct=c077, bcdDevice=72.00
[ 1003.563263] usb 1-1.2: New USB device strings: Mfr=1, Product=2, SerialNumber=0
[ 1003.563278] usb 1-1.2: Product: USB Optical Mouse
[ 1003.563293] usb 1-1.2: Manufacturer: Logitech
[ 1003.563293] input: Logitech USB Optical Mouse as /devices/platform/soc/3f980000.usb/usb1/1-1/
1-1.2/1-1.2:1.0/0003:046D:C077.0006/input/input7
[ 1003.569880] hid-generic 0003:046D:C077.0006: input,hidraw0: USB HID v1.11 Mouse [Logitech USB Optical Mouse] on usb-3f980000.usb-1.2/input0
```

- 5. อภิปรายผลลัพธ์ที่บันทึกได้ในพื้นที่ว่างต่อไปนี้
 - ตัดการเชื่อมต่อ USB อุปกรณ์หมายเลข 6
 - low-speed USBใหม่ อุปกรณ์หมายเลข 7ใช้ dwc_otg
 - พบ usb ใหม่ idVendor = 046d, idProduct = c077, bcdDevice = 72.00
 - อุปกรณใหม่ : Mfr=1, Product=2, SerialNumber=0
 - ผลิตภัณฑ์ : USB optical Logitech
 - ผู้ผลิต : Logitech

ในการเชื่อมต่อพอร์ท USB หากระบบแจ้งชื่ออุปกรณ์โดยไม่มีข้อความผิดพลาด แต่อุปกรณ์นั้นยังไม่ สามารถทำงานได้ แสดงว่าอุปกรณ์ขาดซอฟท์แวร์ซึ่งทำหน้าที่เป็นดีไวซ์ไดรเวอร์ ขอให้ผู้อ่านค้นหาจาก หมายเลขประจำตัวของผู้ผลิต (idVendor) หากผู้ผลิตมิได้เปิดเผยซอฟท์แวร์ ผู้อ่านจำเป็นต้องดาวน์โหลดหรือ คอมไพล์เองจากนักพัฒนารายอื่นแทน

I.4 พอร์ทเชื่อมต่อเครือข่าย WiFi และ Ethernet

I.4.1 รายชื่ออุปกรณ์เครือข่าย

1. ผู้อ่านสามารถตรวจสอบรายชื่ออุปกรณ์สำหรับเชื่อมต่อเครือข่ายได้จากคำสั่ง ifconfig ทางโปรแกรม Terminal ตัวอย่างผลลัพธ์เป็นดังนี้

```
$ ifconfig
```

2. เติมข้อมูลหรือตัวเลขในช่องว่าง _ ที่เตรียมไว้ให้จากผลลัพธ์ที่ได้ต่อไปนี้ ซึ่งลำดับรายการอาจแตกต่าง กัน

```
eth0: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu <u>_1500</u> _
inet ___.__.__.

netmask ___....... ไม่มี เนื่องจากเชื่อมต่อผ่าน WiFi
broadcast ___......
```

. . .

```
ether b8:27:eb:be:78:e0 txqueuelen _1000 _ (Ethernet)
lo: flags=73<UP, LOOPBACK, RUNNING> mtu 65536 __
        inet 127 . 0 . 0 . 1
        netmask 255 . 0 . 0 . 0
        inet6 ::1 prefixlen 128 scopeid 0x10<host>
        loop txqueuelen 1000 (Local Loopback)
wlan0: flags=4099<UP, BROADCAST, MULTICAST> mtu _1500 _
        inet <u>192</u>. <u>168</u>. 0 . 10
        netmask 255.255.25.0
        broadcast 192.168.0 . 255
         ether b8: 27: eb: eb: 2d: b5
```

- 3. โปรดสังเกตคำเริ่มต้นในแต่ละรายการ ค้นคว้า และกรอกรายละเอียดเพิ่มเติม ดังนี้
 - eth0 หมายถึง ชื่อที่ใช้ในการเชื่อมต่อผ่านสาย LAN
 - เ_{00 หมายถึง} loopback
 - wlan() หมายถึง ชื่อที่ใช้ในการเชื่อมต่อผ่าน WiFi

การเปิด/ปิดอุปกรณ์เครือข่าย 1.4.2

1. ผู้อ่านสามารถเปิดอุปกรณ์ eth0 ได้ตามต้องการแล้วทำการตรวจสอบ ดังนี้

```
$ sudo ifconfig eth0 down
$ ifconfig
จดว่าข้อความใดที่บ่งบอกว่า eth0 ไม่ทำงานแล้ว ใม่แสดง etho
```

2. ผู้อ่านสามารถเปิดอุปกรณ์ eth0 ได้ตามต้องการแล้วทำการตรวจสอบ ดังนี้

```
$ sudo ifconfig eth0 up
$ ifconfig
```

จดว่าข้อความใดที่บ่งบอกว่า eth0 ทำงานแล้ว แสดง etho

3. ผู้อ่านสามารถใช้คำสั่ง ifconfig สำหรับปิด อุปกรณ์ wlan0 ดังนี้

```
$ sudo ifconfig wlan0 down
```

```
$ ifconfig
```

4. ผู้อ่านสามารถใช้คำสั่ง ifconfig สำหรับเปิด อุปกรณ์ wlan0 ดังนี้

```
$ sudo ifconfig wlan0 up
$ ifconfig
จดว่าข้อความใดที่บ่งบอกว่า eth0 ทำงานแล้ว แสดง wlano
```


5. นอกเหนือจากการเปิดปิดอุปกรณ์เครือข่าย ผู้อ่านสามารถตรวจสอบรายชื่อเครือข่าย WiFi ที่บอร์ดเคย เชื่อมต่อสำเร็จได้จากไฟล์ wpa_supplicant.conf ซึ่งจะบันทึกรายละเอียดต่างๆ ของการเชื่อมต่อนั้นๆ รวมถึงพาสเวิร์ด (password) โดยพิมพ์คำสั่งต่อไปนี้ในโปรแกรม Terminal

```
$ cat /etc/wpa_supplicant/wpa_supplicant.conf
บันทึกผลที่ได้โดยกรอกในช่อง _ เท่านั้น

network={
ssid="__pjpure__"
psk="******"
key_mgmt=WPA-PSK
}

• ssid หมายถึง ชื่อ network ที่ตั้งขึ้น
• ssid ย่อมาจาก Service Set Identifier
• psk ย่อมาจาก Pre-Shared Key
```

I.4.3 การตรวจสอบการเชื่อมต่อกับเครือข่ายเบื้องต้น

key mgmt คือ ชนิดของการเข้ารหัส

เมื่อผู้อ่านเปิดและทำการเชื่อมต่อสำเร็จ แล้วจึงสามารถตรวจสอบการเชื่อมต่อในระดับชั้นเครือข่าย โดยใช้คำ สั่ง ping ใน Terminal ดังนี้

```
$ ping <ip address or host name>
```

การตรวจสอบการเชื่อมต่อเบื้องต้น คือ การ ping ไปหาเราเตอร์ฝั่งต้นทางที่บอร์ดเชื่อมต่อ ผู้อ่านสามารถ สืบค้นหมายเลขไอพีของเราเตอร์ที่ต้นทาง โดยสังเกตที่ inet ของ eth0 หรือ wlan0 ว่าเริ่มต้นด้วยหมายเลข 192.168.x.y ซึ่งเราเตอร์ต้นทางมักจะมีหมายเลข 192.168.x.1 หรือ 192.168.x.254

นี่เป็นตัวอย่างผลลัพธ์ที่ได้ของคำสั่ง ping 192.168.1.1 ที่ผู้อ่านจะต้องเติมหมายเลขลงใน __ที่เตรียมไว้ให้

```
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
64 bytes from 192.168.1.1: icmp_seq=<u>1</u>_ttl=<u>64</u>time=2.03 ms
64 bytes from 192.168.1.1: icmp_seq=<u>2</u>_ttl=<u>64</u>time=1.98 ms
```

```
64 bytes from 192.168.1.1: icmp_seq=<u>3</u> ttl=<u>64</u> time=25.3 ms
64 bytes from 192.168.1.1: icmp_seq=<u>4</u> ttl=<u>64</u> time=38.2 ms
64 bytes from 192.168.1.1: icmp_seq=<u>5</u> ttl=<u>64</u> time=53.3 ms
64 bytes from 192.168.1.1: icmp_seq=<u>6</u> ttl=<u>64</u> time=37.6 ms
64 bytes from 192.168.1.1: icmp_seq=<u>7</u> ttl=<u>64</u> time=18.9 ms
64 bytes from 192.168.1.1: icmp_seq=<u>8</u> ttl=<u>64</u> time=17.4 ms
64 bytes from 192.168.1.1: icmp_seq=<u>9</u> ttl=<u>64</u> time=6.99 ms
```

โดย 192.168.1.1 คือหมายเลขไอพีแอดเดรสของอุปกรณ์ที่คำสั่งจะส่งแพ็กเก็ต ICMP (Internet Control Message Protocol) ความยาว 64 ไบท์ไป แล้วรออุปกรณ์หมายเลขนี้ตอบกลับมายังบอร์ด Pi3 โดย จับเวลาตั้งแต่ส่งไปและรอตอบกลับมา ของแพ็กเก็ตลำดับที่ __ (icmp_seq=__) เป็นระยะเวลา 2.03 มิลลิ วินาที ส่วน ttl=__ ย่อมาจากคำว่า time to live หมายถึง เลขจำนวนเต็มที่ผู้ส่งกำหนดค่าอายุของแพ็คเก็ต ที่สามารถเดินทางผ่านเครือข่าย หากตั้งไว้น้อยจะทำให้แพ็คเก็ตข้อมูลนี้อายุสั้นและอาจเดินทางไปไม่ถึงปลาย ทางเนื่องจากหมดอายุก่อน โดย ttl=64 เป็นค่าปกติ

ผู้อ่านจะสังเกตเห็นว่า ระยะเวลามีค่าตั้งแต่ 1.98-53.3 มิลลิวินาที ขึ้นอยู่กับคุณภาพ ของสาย Ethernet หรือความแรงของสัญญาณ WiFi คุณภาพดีจะทำให้ระยะเวลาสั้นกว่า หลังจากตรวจสอบว่าบอร์ดสามารถเชื่อม ต่อกับเราเตอร์ต้นทางได้ตามตัวอย่างก่อนหน้า ผู้อ่านสามารถใช้ตรวจสอบการเชื่อมต่อได้ว่า เราเตอร์ต้นทาง สามารถเชื่อมต่อกับเครือข่ายอินเทอร์เน็ตได้สำเร็จหรือไม่ โดย Host name คือ ชื่อเชิร์ฟเวอร์ปลายทางที่จด ทะเบียนโดเมนเนม (Domain Name) เรียบร้อยแล้ว เช่น ping www.google.com

I.5 กิจกรรมท้ายการทดลอง

- 1. จงค้นหาว่าความละเอียดของการแสดงผลผ่านพอร์ท HDMI ในหัวข้อที่ 1.1.2 เก็บบันทึกลงในไฟล์ชื่อ อะไร ชื่อ config.txt
- 2. จงอธิบายความสัมพันธ์ระหว่าง แอดเดรสบัส 0xC000_0000 และ แอดเดรสกายภาพที่มีชื่อว่า VC SDRAM ในรูปที่ 6.16 และเหตุใดจึงอยู่ในพื้นที่ Direct Uncached
- 3. ใช้คำสั่ง ifconfig ปิดอุปกรณ์ loo แล้วใช้คำสั่ง ping 127.0.0.1 ว่ามีการตอบสนองกลับมาหรือไม่ เปิด อุปกรณ์ loo แล้ว ping อีกรอบ จงอธิบายว่า 127.0.0.1 คือ อะไร เมื่อปิดไม่มีการตอบสนอง เมื่อเปิดมีการตอบสนอง 127.0.0.1 คือ localhost
- 4. ใช้คำสั่ง ping เพื่อทดสอบเราเตอร์ที่อยู่ตันทางของผู้อ่าน เช่น ping 192.168.x.1 หรือ 192.168.x.254 โดย x มีค่าเท่ากับ 0, 1, 2, ... จนกว่าจะมีการตอบสนองกลับมา คำตอบอยู่ด้านล่าง
- 5. ใช้คำสั่ง ping เพื่อตรวจสอบการเชื่อมต่อไปยัง www.google.com

```
pi@raspberrypi:~ $ ping www.google.com
PING www.google.com (172.217.24.164) 56(84) bytes of data.
64 bytes from kul08s01-in-f4.1e100.net (172.217.24.164): icmp_seq=1 ttl=52 time=90.6 ms
64 bytes from kul08s01-in-f4.1e100.net (172.217.24.164): icmp_seq=2 ttl=52 time=74.2 ms
64 bytes from kul08s01-in-f4.1e100.net (172.217.24.164): icmp_seq=3 ttl=52 time=71.2 ms
64 bytes from kul08s01-in-f4.1e100.net (172.217.24.164): icmp_seq=4 ttl=52 time=72.7 ms
64 bytes from kul08s01-in-f4.1e100.net (172.217.24.164): icmp_seq=5 ttl=52 time=72.2 ms
```

มีการตอบสนองจาก www.google.com

1.ข้อมูลในไฟล์ config.txt

```
GNU nano 3.2

#overscan_right=16
#overscan_top=16
#overscan_bottom=16
# uncomment to force a console size. By default it will be display's size minus
# overscan.

#framebuffer_width=1280
#framebuffer_height=720
# uncomment if hdmi display is not detected and composite is being output
#hdmi_force_hotplug=1
# uncomment to force a specific HDMI mode (this will force VGA)
#hdmi_group=1
#hdmi_mode=1
#hdmi_mode=1
#hdmi_mode=83

# uncomment to force a HDMI mode rather than DVI. This can make audio work in
# DMT (computer monitor) modes
#hdmi_drive=2
# uncomment to increase signal to HDMI, if you have interference, blanking, or
# no display
#config_hdmi_boost=4
```

4. ใช้คำสั่ง ping 192.168.0.1 แล้วมีการตอบสนองกลับมา

```
pi@raspberrypi:~ $ ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=3.74 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=16.7 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=6.16 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=6.81 ms
```