

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 024 635 A1

(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication: 02.08.2000 Bulletin 2000/31

(51) Int Cl.7; H04L 27/26

(21) Numéro de dépôt: 00410006.1

(22) Date de dépôt: 25.01.2000

(84) Etats contractants désignés:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Etats d'extension désignés:

AL LT LV MK ROSI

(30) Priorité: 27.01.1999 FR 9901062

(71) Demandeur: STMicroelectronics S.A. 94250 Gentilly (FR)

(72) Inventeurs:

- Mazzoni, Simone 38000 Grenoble (FR)
- Cambonie, Joel
 38190 La Combe de Lancey (FR)
- (74) Mandataire: de Beaumont, Michel 1, rue Champollion 38000 Grenoble (FR)

(54) Génération d'intervalle de garde dans une transmission en modulation DMT

(57) L'invention concerne un circuit de génération d'un préfixe cyclique d'un symbole composé d'une séquence d'échantillons dans le domaine temporel, ledit préfixe étant la reproduction des derniers échantillons du symbole en tête du symbole, le symbole étant obtenu par transformée de Fourier inverse de coefficients com-

plexes correspondant à des fréquences respectives, comprenant des moyens (22) pour déphaser chaque coefficient complexe d'une valeur proportionnelle à sa fréquence, une mémoire (24) pour stocker les échantillons du début du symbole, et des moyens (16) pour recopier à la fin du symbole les échantillons mémorisés.

20

Description

[0001] La présente invention concerne la modulation sur tonalités multiples discrètes (DMT), et plus particulierement la génération de préfixes cycliques dans une transmission en modulation DMT. La modulation DMT est par exemple utilisée par les normes ADSL et ADSL-lite.

1

[0002] Dans une modulation DMT, des données codées sous forme de coefficients complexes dans le domaine fréquentiel sont, du coté émetteur, traduites en échantillons dans le domaine temporel par transformée inverse rapide de Fourier (IFFT).

[0003] La figure 1 illustre la transformée IFFT d'un groupe de N coefficients complexes A_1 . $e^{j\phi_1}$ à A_N . $e^{j\phi_N}$. Chaque coefficient A_i . $e^{j\phi_i}$, où i est compris entre 1 et N, est associé à une fréquence ou tonalité respective f_i . La transformée d'un coefficient A_i . $e^{j\phi_i}$ est une séquence d'échantillons numériques dans le domaine temporel formant un tronçon de porteuse sinusoïdale de fréquence f_i , d'amplitude A_i , et de phase ϕ_i . Une première courbe représente un tronçon de sinusoïde d'amplitude A_1 , de période $1/f_1$ et de phase ϕ_1 , obtenu par transformée IFFT d'un coefficient A_1 . $e^{j\phi_1}$ associé à une fréquence f_1 . Une deuxième et une troisième courbes représentent des tronçons de sinusoïdes obtenus par transformée IFFT de coefficients A_2 . $e^{j\phi_2}$ et AN. $e^{j\phi_N}$ respectivement associés à des fréquences f_2 et f_N .

[0004] Une transformée IFFT du groupe de coefficients A_i . $e^{i\phi_i}$ est constituée par la somme des tronçons de porteuses sinusoïdales obtenus par transformée IFFT de chacun des coefficients A_i . $e^{i\phi_i}$ pour i compris entre 1 et N, cette somme étant appelée un "symbole". La transformée IFFT de N coefficients fournit un symbole Dt composé d'une succession de N échantillons numériques complexes S_1 à S_N . On notera que la forme du symbole D_t représenté n'est pas réaliste, mais a pour but de simplifier la compréhension de la présente description.

[0005] Les échantillons de domaine temporel obtenus par IFFT sont convertis en analogique pour être transmis, par exemple par une ligne téléphonique. Du coté récepteur, le signal analogique de la ligne est converti en numérique, et les échantillons qui en résultent sont convertis en coefficients complexes dans le domaine fréquentiel par transformée de Fourier rapide (FFT).

[0006] Pour supprimer un certain nombre de problèmes liés aux interférences intersymbole apparaissant lors de la transmission des symboles, on intercale entre chaque symbole un "préfixe cyclique" (ou intervalle de garde). Le préfixe cyclique est la reproduction en tête d'un symbole des derniers échantillons de ce symbole. [0007] La figure 2 représente un circuit classique 10 d'introduction d'un préfixe cyclique de τ échantillons. Les coefficients complexes A_i.eiφi pour i∈[1, N] sont fournis à un circuit 12 de transformée inverse de Fourier (IFFT). Le circuit IFFT 12 produit à partir du groupe de coefficients complexes un symbole D₁ composé de N

échantillons S_1 à S_N dans le domaine temporel. Le symbole D_t est fourni à une mémoire de type "premier-entrépremier-sorti" (FIFO) 14 et à une première entrée d'un multiplexeur 16. La sortie de la mémoire 14 est reliée à une deuxième entrée du multiplexeur 16.

[0008] A un instant t_1 , le circuit IFFT 12 fournit un premier échantillon S_1 du symbole D_t , et la mémoire 14 est commandée en écriture pour stocker cet échantillon et les suivants. Le multiplexeur 16 est commuté pour sélectionner la sortie de la mémoire 14 qui fournit un échantillon d'un symbole précédent. Cette configuration du circuit 10 reste inchangée jusqu'à un instant t_{N-t} .

[0009] A l'instant $\mathfrak{1}_{N-\tau}$, la mémoire 14 a terminé de fournir les échantillons du symbole précédent et elle contient les échantillons du symbole courant $D_{\mathfrak{t}}$, jusqu'au dernier échantillon précédant le prétixe cyclique. Le circuit IFFT 12 commence à fournir les échantillons du préfixe, lesquels échantillons, désignés $S_{\mathfrak{t}}$ à $S_{\mathfrak{t}}$, continuent à être stockés dans la mémoire 14. En même temps, le multiplexeur 16 est commuté de sorte qu'il transmet ces échantillons $S_{\mathfrak{t}}$ à $S_{\mathfrak{t}}$ du préfixe. Cette configuration du circuit 10 reste inchangée jusqu'à un instant $\mathfrak{t}_{\mathfrak{t}}$.

[0010] A l'instant t_{N+1} , le circuit IFFT 12 est arrêté, la mémoire 14 contient la totalité du symbole courant D_t et le préfixe vient d'être transmis. Le multiplexeur 16 est de nouveau commuté pour transmettre les échantillons S_1 à S_N fournis par la mémoire 14, c'est à dire le symbole D_t .

[0011] A un instant $t_{N+\tau+1}$ le circuit IFFT 12 est réactivé et il commence à fournir les échantillons du symbole suivant. L'instant $t_{N+\tau+1}$ correspond pour le symbole suivant à l'instant t_1 décrit précédemment.

[0012] Cette configuration du circuit 10 reste inchangée jusqu'à un instant $2t_N$ où on aura transmis le symbole D_t à la suite de son préfixe cyclique.

[0013] L'instant $2t_{N+1}$ correspond pour le symbole suivant à l'instant $t_{N-\tau}$ décrit précédemment.

[0014] Un inconvénient majeur du circuit 10 est que l'introduction du préfixe cyclique entraîne un retard t_N (de N échantillons) dans la transmission du symbole D_t. Dans certaines applications, telles que les communications téléphoniques ou d'autres communications en temps réel, l'introduction d'un tel retard n'est pas acceptable.

[0015] D'autre part, dans le circuit 10 selon l'art antérieur, le nombre N d'échantillons pouvant être élevé, la taille de la mémoire 14 peut être importante.

[0016] Un objet de la présente invention est de prévoir un circuit de génération de préfixe cyclique qui introduise un retard de transmission particulièrement faible.

[0017] Un autre objet de la présente invention est de prévoir un tel circuit qui utilise une dire de taille réduite. [0018] Pour atteindre ces objets, la présente invention prévoit un circuit de génération d'un préfixe cyclique d'un symbole composé d'une séquence d'échantillons dans le domaine temporel, ledit préfixe étant la reproduction des derniers échantillons du symbole en tête du symbole, le symbole étant obtenu par transformée de

Fourier inverse de coefficients complexes correspondant à des fréquences respectives, comprenant des moyens pour déphaser chaque coefficient complexe d'une valeur proportionnelle à sa fréquence, une mémoire pour stocker les échantillons du début du symbole, et des moyens pour recopier à la fin du symbole les échantillons mémorisés.

[0019] Selon un mode de réalisation de la présente invention, les moyens pour déphaser les coefficients complexes comprennent un multiplieur connecté pour multiplier chaque coefficient complexe par une valeur complexe de norme unitaire et de phase proportionnelle à la fréquence associée à chaque coefficient.

[0020] Selon un mode de réalisation de la présente invention, la mémoire est de type "premier entré premier sorti".

[0021] Selon un mode de réalisation de la présente invention, les moyens pour recopier les échantillons mémorisés comprennent un multiplexeur dont une première entrée et une deuxième entrée sont respectivement connectées à l'entrée et à la sortie de la mémoire.

[0022] La présente invention vise en outre un procédé de génération d'un préfixe cyclique d'un symbole dans le domaine temporel, ledit préfixe étant la reproduction des derniers échantillons du symbole en tête du symbole, le symbole étant obtenu par transformée de Fourier inverse de coefficients complexes correspondant à des fréquences respectives, qui comprend les étapes consistant à déphaser chaque coefficient complexe d'une valeur proportionnelle à la fréquence à laquelle il est associé, à stocker les échantillons du début du symbole, et à recopier les échantillons mémorisés à la fin du symbole.

[0023] Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles :

La figure 1, décrite précédemment, illustre une transformée de Fourier rapide inverse (IFFT) d'un groupe de coefficients complexes;

la figure 2, décrite précédemment, illustre la génération d'un préfixe cyclique au moyen d'un circuit selon l'art antérieur;

la figure 3 illustre une transformée IFFT d'un groupe de coefficients complexes selon la présente invention el

la figure 4 illustre un mode de réalisation de circuit de génération de préfixe cyclique selon la présente invention.

[0024] La présente invention prévoit de décaler de manière circulaire les échantillons d'un symbole auquel on veut ajouter un préfixe cyclique, ceci de manière que les derniers échantillons composant le symbole avant décalage se retrouvent en tête du symbole après décalage, et forment ainsi directement le préfixe. En trans-

mettant le symbole ainsi décalé, on transmet d'abord le préfixe puis une partie du symbole qu'il suffit de compléter par le préfixe pour reconstituer le symbole. Ainsi, on introduit seulement un retard égal au préfixe dans la transmission et il suffit de ne stocker que le préfixe afin de pouvoir le retransmettre pour compléter le symbole. [0025] Le décalage circulaire du symbole doit correspondre à un même décalage circulaire de chacune des sinusoïdes qui composent le symbole. Pour cela, on multiplie chaque coefficient complexe dans le domaine fréquentiel par un facteur complexe provoquant un déphasage dans le domaine temporel, correspondant au décalage circulaire souhaité.

[0026] La figure 3 est destinée à illustrer plus en détail cette procédure. Elle illustre la transformée par IFFT d'un groupe de N coefficients complexes $A_1.e^{j\phi_1}$ à A_N . ejipn multipliés selon la présente invention par des coefficients de décalage eiKıt à eiKnt respectifs. Multiplier un coefficient A_i. e^{jφ_i} par un coefficient complexe e^{jΔφ} revient à modifier la phase ϕ_i d'une valeur $\Delta \phi$. Le déphasage Δφ provoque un décalage circulaire du tronçon de sinusoïde correspondant d'une valeur $\Delta\phi/2\pi f_i$, où fi est la fréquence du tronçon de sinusoïde. Ce décalage n'est donc pas constant, mais une fonction de la fréquence f_i. [0027] Selon la présente invention, on déphase les N coefficients complexes A₁.e^{jφ1} à A_N.e^{JφN} pour que les tronçons de sinusoïdes correspondants soient tous décalés circulairement d'une même valeur, ou du même nombre T d'échantillons. Pour cela, chaque coefficient A_i. e^{jφ}i est multiplié par un coefficient de la forme e^{jK_iτ} où K_i est 2πf_i. Ainsi, le symbole D_t' formé de la somme des tronçons de sinusoïdes correspondant aux coefficients A_i.e^{jφ}i.e^{jK}i^τ, où i varie de 1 à N, correspond au symbole D, précédent ayant subi un décalage circulaire de τ échantillons.

[0028] Les coefficients ei^{Kit} sont prédéterminés, et ils peuvent par exemple être stockés dans une mémoire morte.

[0029] La figure 4 représente un mode de réalisation de circuit 20 de génération d'un préfixe cyclique selon la présente invention. Ce circuit est similaire à celui de la figure 2, et des mêmes références désignent des mêmes éléments. Selon l'invention, les coefficients complexes A_i, e^{jop} pour i∈[1, N] sont fournis au circuit IFFT 12 par l'intermédiaire d'un multiplieur complexe 22 dont une deuxième entrée reçoit en correspondance les N coefficients e^{jK}r susmentionnés.

[0030] Comme on l'a vu en relation avec la figure 3, le symbole D_t' fourni par le circuit IFFT de la figure 4 correspond au symbole D_t de la figure 2 ayant subi un décalage circulaire de τ échantillons. Ainsi, les échantillons S_1' à S_J' des τ premiers instants du symbole D_t' sont les échantillons S_1 à S_N des τ derniers instants du symbole D_t . Les échantillons S_1' à S_J' du symbole D_t constituent le préfixe cyclique du symbole D_t , et les échantillons suivants du symbole D_t constituent les T_{τ} premiers échantillons du symbole D_t . Pour compléter le symbole D_t , il suffit de recopier les échantillons S_1' à S_J'

50

10

20

30

40

45

à la suite du symbole $D_1^{\,\prime}$. Pour cela, les échantillons $S_1^{\,\prime}$ à $S_J^{\,\prime}$ auront été stockés dans la mémoire 24, laquelle mémoire ne doit stocker que τ échantillons au lieu de N- τ

[0031] A un instant t_1 , le circuit IFFT 12 fournit le premier échantillon S_1 ' du symbole D_t , et la mémoire 24 est commandée en écriture pour stocker les échantillons produits par le circuit IFFT. Le multiplexeur 16 est commuté pour sélectionner la sortie du circuit IFFT 12. Cette configuration du circuit 10 reste inchangée jusqu'à un instant t_r ; elle permet de stocker les échantillons S_1 ' à S_J ' dans la mémoire 24 et de produire en sortie du multiplexeur 16 le préfixe cyclique, formé par les échantillons S_1 ' à S_J '.

[0032] A l'instant $t_{\tau+1}$, la mémoire 24, qui vient de stocker les échantillons S_1 ' à S_J ', est inactivée. La position du multiplexeur 16 n'est pas modifiée, et cette configuration du circuit 10 est maintenue jusqu'à un instant t_N . Le multiplexeur 16 produit dans cet intervalle les échantillons S_{J+1} ' à S_N ' du symbole D_t ', qui correspondent aux échantillons S_1 à S_1 décrits précédemment.

[0033] A l'instant t_{N+1} , le circuit IFFT 12 est arrêté, la mémoire 24 est commandée en lecture pour produire le premier échantillon S_1 ' qu'elle contient, et le multiplexeur 16 est commuté pour sélectionner la sortie de la mémoire 24. Cette configuration du circuit 10 reste inchangée jusqu'à un instant $t_{N+\tau}$. Dans cet intervalle, le multiplexeur 16 produit successivement les échantillons S_1 ' à S_J ' lus dans la mémoire 24, qui correspondent aux échantillons susmentionnés S_{l+1} à S_N .

[0034] A l'instant $t_{N+\tau+1}$, le circuit IFFT 12 est réactivé pour fournir les échantillons du symbole suivant et le cycle qui vient d'être décrit recommence comme à l'instant t.

[0035] La présente invention permet de générer le préfixe cyclique d'un symbole en ne retardant le symbole que de la durée τ du préfixe. Cela représente un gain de temps de $t_{N-\tau}$ par rapport à l'art antérieur, ce qui s'avère particulièrement intéressant dans le cas de transmissions en temps réel.

[0036] D'autre part, la mémoire 24 utilisée selon la présente invention est de taille réduite, car elle ne sert à mémoriser que les échantillons composant le préfixe.

Revendications

1. Circuit de génération d'un préfixe cyclique d'un symbole composé d'une séquence d'échantillons dans le domaine temporel, ledit préfixe étant la reproduction des derniers échantillons du symbole en tête du symbole, le symbole étant obtenu par transformée de Fourier inverse de coefficients complexes correspondant à des fréquences respectives, caractérisé en ce qu'il comprend :

des moyens (22) pour déphaser chaque coefficient complexe d'une valeur proportionnelle à sa fréquence de manière que lesdits derniers échantillons du symbole soient décalés en tête du symbole selon une permutation circulaire, une dire (24) pour iriser lesdits échantillons décalés, et

des moyens (16) pour recopier à la fin du symbole les échantillons mémorisés.

- 2. Circuit de génération d'un préfixe cyclique selon la revendication 1, caractérisé en ce que les moyens pour déphaser les coefficients complexes comprennent un multiplieur (22) connecté pour multiplier chaque coefficient complexe par une valeur complexe de norme unitaire et de phase proportionnelle à la fréquence associée à chaque coefficient.
- Circuit de génération d'un préfixe cyclique selon la revendication 1, caractérisé en ce que la mémoire (24) est de type "premier entré premier sorti" (FI-FO).
- 4. Circuit de génération d'un préfixe cyclique selon la revendication 1, caractérisé en ce que les moyens pour recopier les échantillons mémorisés comprennent un multiplexeur (16) dont une première entrée et une deuxième entrée sont respectivement connectées à l'entrée et à la sortie de la mémoire.
- 5. Procédé de génération d'un préfixe cyclique d'un symbole dans le domaine temporel, ledit préfixe étant la reproduction des derniers échantillons du symbole en tête du symbole, le symbole étant obtenu par transformée de Fourier inverse de coefficients complexes correspondant à des fréquences respectives, caractérisé en ce qu'il comprend les étapes consistant à :

déphaser chaque coefficient complexe d'une valeur proportionnelle à la fréquence à laquelle il est associé,

stocker les échantillons du début du symbole, et

recopier les échantillons mémorisés à la fin du symbole.

55

Office européen RAPPORT DE RECHERCHE EUROPEENNE

EP 00 41 0006

Catégorie	Citation du document avec in des parties pertine		Revendication concernée	CLASSEMENT DE LA DEMANDE (Int.Cl.7)
X	EP 0 719 004 A (MATS LTD) 26 juin 1996 (19 * colonne 14, ligne 12 * * colonne 15, ligne 15	JSHITA ELECTRIC I 996-06-26) 34 - colonne 15,	ligne	H04L27/26
A	3; figures 1,9 *		1-4	
X	EP 0 820 171 A (ALCA 21 janvier 1998 (199 * abrégé * * colonne 4, ligne 3 * colonne 10, ligne	8-01-21) 4 - ligne 55 *	5	
Α	+ colonne 10, right	10 Tighe LL	1-4	
A	DE 44 25 713 C (INST 20 avril 1995 (1995- * colonne 2, ligne 2 *	04-20)		
A	EP 0 682 426 A (VICT 15 novembre 1995 (19 * colonne 8, ligne 5	95-11-15)		DOMAINES TECHNIQUES RECHERCHES (Int.Cl.7)
len	résent rapport a été établi pour tout	es les revendications		
-	Lieu de la recherche	Date d'achèvement de la rec	horene	Examinateur
	LA HAYE	29 mars 20	00 C	rozco Roura, C
X:pa Y:pa au A:an	CATEGORIE DES DOCUMENTS CITES criticulièrement pertinent à lui seul rticulièrement pertinent en combinaison tre document de la même catégorie tère-plan technologique vugation non-dorite	de l'Invention r, mais publié à la date document correspondant		

9

BNSDOC# (EP_____1024635A1_I_>

ANNEXE AU RAPPORT DE RECHERCHE EUROPEENNE RELATIF A LA DEMANDE DE BREVET EUROPEEN NO.

EP 00 41 0006

La présente annexe indique les membres de la tamille de brevets relatifs aux documents brevets cités dans le rapport de recherche européenne visé ci-dessus. Lesdits members sont contenus au fichier informatique de l'Office européen des brevets à la date du Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

29-03-2000

	Document brevet cilé au rapport de recherche		Date de publication	Membre(s) de la famille de brevet(s)		Date de publication
E	P 0719004	A	26-06-1996	JP US	8321820 A 5682376 A	03-12-1996 28-10-1997
E	P 0820171	A	21-01-1998	AU	2840597 A	22-01-1998
D	E 4425713	С	20-04-1995	AT AU AU CZ DE WO EP ES FI HU JP JP PL	170685 T 681806 B 3162795 A 9603697 A 59503453 D 9602989 A 0771497 A 2121410 T 970204 A 77417 A,B 2901018 B 9512156 T 318348 A	15-09-1998 04-09-1997 16-02-1996 16-04-1997 08-10-1998 01-02-1996 07-05-1997 16-11-1998 17-01-1997 28-04-1998 02-06-1999 02-12-1997 09-06-1997
E	P 0682426	A	15-11-1995	JP JP EP JP JP US	2790239 B 7327023 A 0982907 A 0982908 A 2874729 B 8032546 A 5732068 A 5657313 A	27-08-1998 12-12-1995 01-03-2000 01-03-2000 24-03-1999 02-02-1996 24-03-1998 12-08-1997
Dear March Dear						

Pour tout renselgnement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82