Terminologie 1 (Racines d'un trinôme)

Soit $f(x) = ax^2 + bx + c$ un trinôme du second degré et son graphe $\mathcal{P} : y = f(x)$.

- Si \mathcal{P} coupe l'axe des abscisses en deux points $A_1(x_1,0)$ et $A_2(x_2,0)$, on dit que x_1 et x_2 sont les deux racines du trinôme du second degré f(x).
- Si une parabole \mathcal{P} : $y = ax^2 + bx + c$ coupe l'axe des abscisses en un seul point $A_0(x_0, 0)$, on dit que x_0 est la **racine double** du trinôme du second degré f(x).

Autrement dit, x est une racine de f(x) si et seulement si f(x) = 0.

Exemple 1

Soit $f(x) = 3(x+1)(x-2) = 3x^2 - 3x - 6$. -1 et 2 sont les deux racines de f(x). En effet, $f(-1) = 3(-1+1)(-1-2) = 3 \times 0 \times -3 = 0$ et $f(2) = 3(2+1)(2-2) = 3 \times 3 \times 0 = 0$. Soit $g(x) = 2(x-3)^2 = 2(x^3 - 6x + 9) = 2x^2 - 12x + 18$. 3 est racine double. En effet, $g(3) = 2 \times 0^2 = 0$ et pour tout $x \ne 3, x - 3 \ne 0$ par suite $(x-3)^2 \ne 0$ et en définitive $g(x) = 2(x-3)^2 \ne 0$.

Définition 1 (Discriminant)

Soit f(x) un trinôme du second degré dont la forme développée réduite est $f(x) = ax^2 + bx + c$. On appelle **discriminant** de ce trinôme le nombre $\Delta = b^2 - 4ac$.

Remarque 1

On admet que $\Delta = -4a\beta$. Ce que l'on peut reformuler en $\beta = -\frac{\Delta}{4a}$.