
NASA-GLENN CHEMICAL EQUILIBRIUM PROGRAM CEA2, MAY 21, 2004 BY BONNIE MCBRIDE AND SANFORD GORDON

REFS: NASA RP-1311, PART I, 1994 AND NASA RP-1311, PART II, 1996

problem case=9 o/f=5.55157,

rocket equilibrium frozen nfz=2 tcest,k=3800 p,bar=53.31725,65,75,85,95,120, sup,ae/at=25,35,45,55,75,

react

fuel=H2(L) wt=100. t,k=20.27 oxid=O2(L) wt=100. t,k=90.17

output

siunits

end

OPTIONS: TP=F HP=F SP=F TV=F UV=F SV=F DETN=F SHOCK=F REFL=F INCD=F RKT=T FROZ=T EQL=T IONS=F SIUNIT=T DEBUGF=F SHKDBG=F DETDBG=F TRNSPT=F

Pc,BAR = 53.317250 65.000000 75.000000 85.000000 95.000000 120.000000

Pc/P =

SUBSONIC AREA RATIOS =

SUPERSONIC AREA RATIOS = 25.0000 35.0000 45.0000 55.0000 75.0000

NFZ= 2 Mdot/Ac= 0.000000E+00 Ac/At= 0.000000E+00

REACTANT WT.FRAC (ENERGY/R),K TEMP,K DENSITY

EXPLODED FORMULA

F: H2(L) 1.000000 -0.108389E+04 20.27 0.0000

H 2.00000

O: O2(L) 1.000000 -0.156101E+04 90.17 0.0000

0 2.00000

SPECIES BEING CONSIDERED IN THIS SYSTEM

(CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES)

LAST thermo.inp UPDATE: 9/09/04

g 6/97 *H g 4/02 HO2 tpis78 *H2 g 8/89 H2O g 6/99 H2O2 g 5/97 *O g 4/02 *OH tpis89 *O2 g 8/01 O3 g11/99 H2O(cr) g 8/01 H2O(L) g 8/01 H2O(L)

O/F = 5.551570

EFFECTIVE FUEL EFFECTIVE OXIDANT MIXTURE ENTHALPY $h\left(2\right)/R \qquad h\left(1\right)/R \qquad h\left(1\right)/R \qquad h0/R$

(KG-M	OL) (K)	/KG	-0.53767500E+03	-0.48783267E+02	-0.12340534E+03
KG-FO *H *O	RM.WT.	./KG	bi(2) 0.99212255E+00 0.00000000E+00		b0i 0.15143279E+00 0.52962288E-01
POINT	ITN	Т	Н	0	
1	9	3383.845	-9.262	-16.577	
Pinf/	Pt = 1	L.737750			
2	4	3185.977	-9.430	-16.983	
Pinf/	Pt = 1	L.739241			
2	2	3185.673	-9.430	-16.983	
3	5	1441.980	-10.683	-26.970	
3	2	1468.156	-10.663	-26.627	
4	3	1368.363	-10.741	-28.008	
4	2	1343.488	-10.761	-28.385	
5	3	1231.875	-10.854	-30.275	
5	2	1255.346	-10.834	-29.848	
6	3	1210.791	-10.872	-30.672	
6	2	1187.901	-10.893	-31.120	
7	3	1067.484	-11.005	-33.805	
7	2	1088.644	-10.984	-33.289	

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 773.3 PSIA CASE = 9

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	H2(L)	1.0000000	-9012.000	20.270
OXIDANT	O2(L)	1.0000000	-12979.000	90.170

	CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT	EXIT
Pinf/P	1.0000	1.7392	260.19	407.24	568.90	742.97	1122.79
P, BAR	53.317	30.655	0.20491	0.13092	0.09372	0.07176	0.04749
T, K	3383.84	3185.67	1468.16	1343.49	1255.35	1187.90	1088.64
RHO, KG/CU M	2.4097 0	1.4864 0	2.2170-2	1.5479-2	1.1859-2	9.5960-3	6.9288-3
H, KJ/KG	-1026.05	-2208.65	-9531.45	-9927.75	-10201.1	-10406.4	-10702.2
U, KJ/KG	-3238.68	-4271.01	-10455.7	-10773.5	-10991.4	-11154.2	-11387.5
G, KJ/KG	-64163.7	-61648.7	-36925.1	-34995.3	-33624.1	-32570.9	-31014.7
S, KJ/(KG)(K)	18.6586	18.6586	18.6586	18.6586	18.6586	18.6586	18.6586
M, (1/n)	12.716	12.843	13.207	13.207	13.207	13.207	13.207
(dLV/dLP)t	-1.02010	-1.01475	-1.00000	-1.00000	-1.00000	-1.00000	-1.00000
(dLV/dLT)p	1.3658	1.2844	1.0001	1.0000	1.0000	1.0000	1.0000
Cp, $KJ/(KG)(K)$	8.3253	7.4796	3.2234	3.1342	3.0690	3.0179	2.9416
GAMMAs	1.1447	1.1468	1.2428	1.2514	1.2581	1.2636	1.2723
SON VEL, M/SEC	1591.5	1537.9	1071.8	1028.8	997.1	972.1	933.8

MACH NUMBER	0.000	1.000	3.848	4.101	4.296	4.456	4.711
PERFORMANCE PARA	METERS						
Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC		1.0000 2332.3 0.6594 2878.9 1537.9	25.000 2332.3 1.7684 4348.5 4124.4	35.000 2332.3 1.8091 4419.9 4219.4	45.000 2332.3 1.8367 4468.2 4283.7	55.000 2332.3 1.8571 4504.0 4331.4	75.000 2332.3 1.8861 4554.9 4399.1
MOLE FRACTIONS							
*H	0.03350	0.02652	0.00001	0.00000	0.00000	0.00000	0.00000
HO2	0.00001	0.00001	0.00000	0.00000	0.00000	0.00000	0.00000
*H2	0.29479	0.29432	0.30051	0.30052	0.30052	0.30052	0.30052
H20	0.63456	0.65280	0.69948	0.69948	0.69948	0.69948	0.69948
H2O2	0.00001	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
*0	0.00207	0.00120	0.00000	0.00000	0.00000	0.00000	0.00000
*OH	0.03334	0.02409	0.00000	0.00000	0.00000	0.00000	0.00000
*02	0.00172	0.00104	0.00000	0.00000	0.00000	0.00000	0.00000

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

03 H2O(cr) H2O(L)

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION AFTER POINT 2

Pin = 773.3 PSIA CASE = 9

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	H2(L)	1.000000	-9012.000	20.270
OXIDANT	O2(L)	1.0000000	-12979.000	90.170

	CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT	EXIT
Pinf/P	1.0000	1.7392	294.17	463.40	650.68	853.37	1298.27
P, BAR	53.317	30.655	0.18124	0.11506	0.08194	0.06248	0.04107
T, K	3383.84	3185.67	1236.07	1121.67	1041.32	980.24	891.06
RHO, KG/CU M	2.4097 0	1.4864 0	2.2649-2	1.5845-2	1.2155-2	9.8454-3	7.1192-3
H, KJ/KG	-1026.05	-2208.65	-9175.50	-9522.11	-9759.68	-9937.09	-10191.1
U, KJ/KG	-3238.68	-4271.01	-9975.71	-10248.3	-10433.8	-10571.7	-10768.0
G, KJ/KG	-64163.7	-61648.7	-32238.9	-30450.9	-29189.3	-28226.9	-26816.9
S, KJ/(KG)(K)	18.6586	18.6586	18.6586	18.6586	18.6586	18.6586	18.6586

M, (1/n) Cp, KJ/(KG)(K) GAMMAS SON VEL,M/SEC MACH NUMBER	12.716 8.3253 1.1447 1591.5 0.000	12.843 7.4796 1.1468 1537.9 1.000	12.843 3.0723 1.2670 1006.9 4.010	12.843 2.9870 1.2767 962.9 4.281	12.843 2.9267 1.2840 930.4 4.492	12.843 2.8814 1.2898 904.7 4.666	12.843 2.8156 1.2986 865.5 4.947	
PERFORMANCE PARA	METERS							
Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC		1.0000 2332.3 0.6594 2878.9 1537.9	25.000 2332.3 1.7310 4235.4 4037.2	35.000 2332.3 1.7674 4298.3 4122.1	45.000 2332.3 1.7919 4340.7 4179.4	55.000 2332.3 1.8100 4371.9 4221.6	75.000 2332.3 1.8357 4416.1 4281.4	
MOLE FRACTIONS								
*H H2O *O2	0.02652 0.65280 0.00104	HO2 *O		.00001	*H2 *OH		29432 02409	

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

O3 H2O(cr) H2O(L)

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT	ITN	Т	Н	0
1	3	3402.909	-9.173	-16.535
Pinf/	Pt =	1.738671		
2	4	3200.565	-9.339	-16.946
Pinf/	Pt =	1.740289		
2	2	3200.229	-9.339	-16.947
3	5	1439.394	-10.582	-27.004
3	2	1464.797	-10.563	-26.670
4	3	1364.453	-10.641	-28.066
4	2	1340.325	-10.660	-28.434
5	3	1229.556	-10.753	-30.318
5	2	1252.327	-10.734	-29.902
6	3	1207.193	-10.773	-30.742
6	2	1184.994	-10.792	-31.179
7	3	1065.384	-10.904	-33.857
7	2	1085.907	-10.884	-33.354

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 942.7 PSIA CASE = 9

RE.	ACTANT	WT FRACTION		TEMP
DIET IIO	/T \	(SEE NOTE)		K
	(L)	1.0000000	-9012.000 -12979.000	20.270 90.170
OXIDANI 02	(L)	1.0000000	-12979.000	90.170
O/F= 5.5515	7 %FUEL= 15.263517	R,EQ.RATIO= 1.42	9629 PHI,EQ.RATI	0= 1.429629
	CHAMBER THROAT			EXIT
Pinf/P	1.0000 1.7403			
P, BAR		0.24874 0.15893		
T, K	3402.91 3200.23			9 1085.91
RHO, KG/CU M		2.6974-2 1.8835-2		
H, KJ/KG		-9542.30 -9937.66		
U, KJ/KG		-10464.5 -10781.5		
G, KJ/KG		-36683.7 -34772.7		
S, KJ/(KG)(K)	18.5291 18.5291	18.5291 18.5291	18.5291 18.529	1 18.5291
M, (1/n)	12.740 12.863	13.207 13.207	13.207 13.20	7 13.207
(dLV/dLP)t	-1.01907 -1.01389	-1.00000 -1.00000	-1.00000 -1.0000	0 -1.00000
(dLV/dLT)p	1.3454 1.2668	1.0001 1.0000	1.0000 1.000	0 1.0000
Cp, KJ/(KG)(K)	8.0569 7.2431	3.2207 3.1318	3.0667 3.015	7 2.9395
GAMMAs	1.1462 1.1485	1.2430 1.2516	1.2583 1.263	8 1.2725
SON VEL, M/SEC	1595.5 1541.4	1070.6 1027.7	996.0 971.	0 932.7
MACH NUMBER	0.000 1.000	3.855 4.108	4.303 4.46	3 4.718
PERFORMANCE PA	RAMETERS			
Ae/At	1.00000	25.000 35.000	45.000 55.00	0 75.000
CSTAR, M/SEC	2335.5	2335.5 2335.5	2335.5 2335.	5 2335.5
CF	0.6600	1.7671 1.8076	1.8351 1.855	4 1.8844
Ivac, M/SEC	2883.4	4350.5 4421.6	4469.8 4505.	5 4556.3
Isp, M/SEC	1541.4	4127.0 4221.8	4285.9 4333.	4 4400.9
MOLE FRACTIONS				
*H	0.03178 0.02501			
HO2	0.00002 0.00001			
*H2	0.29509 0.29466			
H2O	0.63755 0.65530			
H2O2	0.00001 0.00000			
*0	0.00188 0.00108			
*OH *O2	0.03210 0.02300			
~ UZ	0.00157 0.00094	0.00000 0.00000	0.00000 0.0000	0.00000
* THERMODYNAM	IC PROPERTIES FITTE	D TO 20000.K		
PRODUCTS WH	TCH WERE CONSIDERED	BUT WHOSE MOLE FR	ACTIONS	

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

O3 H2O(cr) H2O(L)

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION AFTER POINT 2

Pin = 942.7 PSIA CASE = 9

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	H2(L)	1.0000000	-9012.000	20.270
OXIDANT	O2(L)	1.0000000	-12979.000	90.170

O/F= 5.55157 %FUEL= 15.263517 R,EQ.RATIO= 1.429629 PHI,EQ.RATIO= 1.429629

	CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT	EXIT
Pinf/P	1.0000	1.7403	293.18	461.66	648.04	849.72	1292.25
P, BAR	65.000	37.350	0.22171	0.14080	0.10030	0.07650	0.05030
T, K	3402.91	3200.23	1246.18	1131.34	1050.64	989.27	899.63
RHO, KG/CU M	2.9267 0	1.8056 0	2.7524-2	1.9254-2	1.4770-2	1.1963-2	8.6502-3
H, KJ/KG	-1026.05	-2213.94	-9205.51	-9554.18	-9793.25	-9971.84	-10227.6
U, KJ/KG	-3246.96	-4282.46	-10011.0	-10285.4	-10472.4	-10611.3	-10809.1
G, KJ/KG	-64079.0	-61511.4	-32296.2	-30516.9	-29260.7	-28302.1	-26896.9
S, KJ/(KG)(K)	18.5291	18.5291	18.5291	18.5291	18.5291	18.5291	18.5291
M, (1/n)	12.740	12.863	12.863	12.863	12.863	12.863	12.863
Cp, $KJ/(KG)(K)$	8.0569	7.2431	3.0786	2.9931	2.9324	2.8869	2.8205
GAMMAs	1.1462	1.1485	1.2657	1.2754	1.2827	1.2885	1.2973
SON VEL, M/SEC	1595.5	1541.4	1009.7	965.8	933.3	907.7	868.5
MACH NUMBER	0.000	1.000	4.006	4.276	4.487	4.660	4.939
PERFORMANCE PAR	AMETERS						
Ae/At		1.00000	25.000	35.000	45.000	55.000	75.000
CSTAR, M/SEC		2335.5	2335.5	2335.5	2335.5	2335.5	2335.5
CF		0.6600	1.7318	1.7683	1.7929	1.8111	1.8368
Ivac, M/SEC		2883.4	4243.8	4307.0	4349.6	4381.0	4425.4
Isp, M/SEC		1541.4	4044.6	4129.9	4187.4	4229.8	4289.9

MOLE FRACTIONS

* H	0.02501	HO2	0.00001	*H2	0.29466
H2O	0.65530	*0	0.00108	*OH	0.02300
*02	0.00094				

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

03 H2O(cr) H2O(L)

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT	ITN	T	H	0
1	3	3416.423	-9.108	-16.505
Pinf/I	Pt =	1.739339		
2	4	3210.819	-9.273	-16.920
Pinf/	Pt =	1.741049		
2	2	3210.458	-9.273	-16.921
3	5	1437.594	-10.509	-27.028
3	2	1462.478	-10.490	-26.700
4	3	1361.768	-10.569	-28.106
4	2	1338.142	-10.588	-28.468
5	3	1227.942	-10.681	-30.348
5	2	1250.243	-10.661	-29.940
6	3	1204.723	-10.701	-30.789
6	2	1182.988	-10.720	-31.219
7	3	1063.923	-10.832	-33.894
7	2	1084.019	-10.812	-33.400

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 1087.8 PSIA CASE = 9

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	H2(L)	1.0000000	-9012.000	20.270
OXIDANT	O2(L)	1.0000000	-12979.000	90.170

	CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT	EXIT
Pinf/P	1.0000	1.7410	262.09	410.20	573.02	748.36	1130.98
P, BAR	75.000	43.077	0.28616	0.18284	0.13088	0.10022	0.06631
T, K	3416.42	3210.46	1462.48	1338.14	1250.24	1182.99	1084.02
RHO, KG/CU M	3.3681 0	2.0782 0	3.1081-2	2.1704-2	1.6629-2	1.3457-2	9.7172-3
H, KJ/KG	-1026.05	-2217.68	-9549.78	-9944.50	-10216.8	-10421.2	-10715.8
U, KJ/KG	-3252.81	-4290.53	-10470.5	-10786.9	-11003.9	-11166.0	-11398.2
G, KJ/KG	-64010.6	-61405.1	-36511.7	-34614.2	-33266.0	-32230.6	-30700.5
S, $KJ/(KG)(K)$	18.4358	18.4358	18.4358	18.4358	18.4358	18.4358	18.4358
$M_{,}$ (1/n)	12.757	12.878	13.207	13.207	13.207	13.207	13.207
(dLV/dLP)t	-1.01834	-1.01329	-1.00000	-1.00000	-1.00000	-1.00000	-1.00000
(dLV/dLT)p	1.3310	1.2546	1.0001	1.0000	1.0000	1.0000	1.0000
Cp, $KJ/(KG)(K)$	7.8703	7.0795	3.2189	3.1302	3.0651	3.0141	2.9381
GAMMAs	1.1473	1.1498	1.2432	1.2518	1.2585	1.2640	1.2727

SON VEL,M/SEC MACH NUMBER	1598.4	1543.8 1.000	1069.9 3.859	1026.9 4.113	995.3 4.308	970.2 4.468	932.0 4.724
PERFORMANCE PARA	AMETERS						
Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC		1.0000 2337.7 0.6604 2886.5 1543.8	25.000 2337.7 1.7662 4351.8 4128.9	35.000 2337.7 1.8066 4422.8 4223.4	45.000 2337.7 1.8340 4470.9 4287.4	55.000 2337.7 1.8543 4506.6 4334.8	75.000 2337.7 1.8831 4557.2 4402.2
MOLE FRACTIONS							
*H HO2 *H2 H2O H2O2 *O *OH	0.03057 0.00002 0.29530 0.63969 0.00001 0.00176 0.03119 0.00147	0.02395 0.00001 0.29490 0.65707 0.00000 0.00100 0.02221 0.00087	0.00001 0.00000 0.30051 0.69948 0.00000 0.00000 0.00000	0.00000 0.00000 0.30052 0.69948 0.00000 0.00000 0.00000	0.00000 0.00000 0.30052 0.69948 0.00000 0.00000 0.00000	0.00000 0.00000 0.30052 0.69948 0.00000 0.00000 0.00000	0.00000 0.00000 0.30052 0.69948 0.00000 0.00000 0.00000

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

O3 H2O(cr) H2O(L)

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION AFTER POINT 2

Pin = 1087.8 PSIA

CASE = 9

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	H2(L)	1.000000	-9012.000	20.270
OXIDANT	O2(L)	1.0000000	-12979.000	90.170

	CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT	EXIT
Pinf/P	1.0000	1.7410	292.49	460.44	646.20	847.16	1288.03
P, BAR	75.000	43.077	0.25642	0.16289	0.11606	0.08853	0.05823
T, K	3416.42	3210.46	1253.31	1138.15	1057.22	995.64	905.68
RHO, KG/CU M	3.3681 0	2.0782 0	3.1688-2	2.2166-2	1.7003-2	1.3772-2	9.9577-3
H, KJ/KG	-1026.05	-2217.68	-9226.56	-9576.68	-9816.80	-9996.21	-10253.2
U, KJ/KG	-3252.81	-4290.53	-10035.8	-10311.5	-10499.4	-10639.1	-10838.0
G, KJ/KG	-64010.6	-61405.1	-32332.2	-30559.4	-29307.5	-28351.6	-26950.2

S, KJ/(KG)(K)	18.4358	18.4358	18.4358	18.4358	18.4358	18.4358	18.4358
M, (1/n)	12.757	12.878	12.878	12.878	12.878	12.878	12.878
Cp, KJ/(KG)(K)	7.8703	7.0795	3.0831	2.9974	2.9365	2.8908	2.8239
GAMMAs	1.1473	1.1498	1.2649	1.2745	1.2818	1.2876	1.2964
SON VEL, M/SEC	1598.4	1543.8	1011.7	967.8	935.4	909.8	870.7
MACH NUMBER	0.000	1.000	4.003	4.273	4.483	4.656	4.934
PERFORMANCE PARA	AMETERS						
Ae/At		1.0000	25.000	35.000	45.000	55.000	75.000
CSTAR, M/SEC		2337.7	2337.7	2337.7	2337.7	2337.7	2337.7
CF		0.6604	1.7324	1.7690	1.7936	1.8119	1.8376
Ivac, M/SEC		2886.5	4249.6	4313.1	4355.8	4387.4	4432.0
Isp, M/SEC		1543.8	4049.8	4135.4	4193.0	4235.6	4295.9
MOLE FRACTIONS							
*H	0.02395	HO2	0	.00001	*H2	0.	29490
H2O *O2	0.65707 0.00087	*0	0	.00100	*OH	0.	02221

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

O3 H2O(cr) H2O(L)

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT	ITN	T	Н	0
1	3	3428.058	-9.052	-16.479
Pinf/	Pt =	1.739924		
2	4	3219.587	-9.215	-16.898
Pinf/	Pt =	1.741713		
2	2	3219.204	-9.215	-16.899
3	5	1436.066	-10.446	-27.049
3	2	1460.522	-10.427	-26.725
4	3	1359.514	-10.506	-28.140
4	2	1336.301	-10.525	-28.497
5	3	1226.573	-10.617	-30.373
5	2	1248.486	-10.598	-29.971
6	3	1202.649	-10.638	-30.830
6	2	1181.296	-10.657	-31.253
7	3	1062.683	-10.768	-33.925
7	2	1082.426	-10.749	-33.438

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 1232.8 PSIA CASE = 9

011012				
REA	CTANT	WT FRACTIO	N ENERGY	TEMP
11111	C1111V1	(SEE NOTE		K
FUEL H2(T.)	1.0000000		20.270
OXIDANT O2(1.0000000		90.170
OXIDANI OZ (11)	1.0000000	12373.000	30.170
O/F= 5.55157	%FUEL= 15.263517	R,EQ.RATIO= 1.4	29629 PHI,EQ.RATI	0= 1.429629
	CHAMBER THROAT	EXIT EXIT	EXIT EXIT	EXIT
Pinf/P	1.0000 1.7417	262.75 411.2	2 574.46 750.2	4 1133.83
P, BAR	85.000 48.803		0 0.14797 0.1133	
Т, К	3428.06 3219.20	1460.52 1336.3	0 1248.49 1181.3	0 1082.43
RHO, KG/CU M	3.8086 0 2.3502 0	3.5184-2 2.4570-	2 1.8826-2 1.5235-	2 1.1001-2
H, KJ/KG	-1026.05 -2220.91	-9556.09 -9950.2	7 -10222.2 -10426.	3 -10720.5
U, KJ/KG	-3257.82 -4297.43	-10475.6 -10791.	5 -11008.2 -11170.	0 -11401.9
G, KJ/KG			1 -33137.2 -32108.	
S, KJ/(KG)(K)	18.3543 18.3543	18.3543 18.354	3 18.3543 18.354	3 18.3543
M, (1/n)	12.771 12.890	13.207 13.20	7 13.207 13.20	7 13.207
(dLV/dLP)t	-1.01771 -1.01277	-1.00000 -1.0000	0 -1.00000 -1.0000	0 -1.00000
(dLV/dLT)p	1.3188 1.2441	1.0001 1.000	0 1.0000 1.000	0 1.0000
Cp, $KJ/(KG)(K)$	7.7120 6.9413	3.2174 3.128	8 3.0638 3.012	8 2.9368
GAMMAs	1.1482 1.1508	1.2433 1.251	9 1.2586 1.264	2 1.2728
SON VEL, M/SEC	1600.8 1545.9	1069.2 1026.	2 994.6 969.	6 931.3
MACH NUMBER	0.000 1.000	3.863 4.11	7 4.312 4.47	2 4. 728
PERFORMANCE PAR	AMETERS			
Ae/At	1.0000	25.000 35.00	0 45.000 55.00	0 75.000
CSTAR, M/SEC	2339.6			
CF	0.6607			
Ivac, M/SEC	2889.1			
Isp, M/SEC	1545.9			
1,				
MOLE FRACTIONS				
*H	0.02952 0.02304	0.00001 0.0000	0 0.00000 0.0000	0 0.00000
HO2	0.00002 0.00001			
*H2	0.29548 0.29510			
H2O	0.64155 0.65859			
H2O2	0.00001 0.00000			
*0	0.00165 0.00093			
*OH	0.03039 0.02153			

0.00138 0.00081 0.00000 0.00000 0.00000 0.00000

*02

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

O3 H2O(cr) H2O(L)

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION AFTER POINT 2

Pin = 1232.8 PSIA CASE = 9

REA FUEL H2(OXIDANT O2(•		(: 1	FRACTION SEE NOTE) .0000000	KJ/K0	G-MOL .000	TEMP K 20.270 90.170
O/F= 5.55157	%FUEL= 1	5.263517	R,EQ.RA	rio= 1.42	9629 PHI,	,EQ.RATIO	= 1.429629
Pinf/P P, BAR T, K RHO, KG/CU M H, KJ/KG U, KJ/KG G, KJ/KG S, KJ/(KG) (K)		2.3502 0 -2220.91 -4297.43 -61307.1	0.29120 1259.41 3.5845-2 -9244.53 -10056.9 -32360.1	459.41 0.18502 1144.00 2.5073-2 -9595.88 -10333.8 -30593.1	-9836.91 -10522.5 -29344.9	844.99 0.10059 1001.11 1.5578-2 -10017.0 -10662.8 -28391.6	1284.45 0.06618 910.88 1.1263-2 -10275.1 -10862.7 -26993.6
M, (1/n) Cp, KJ/(KG)(K) GAMMAS SON VEL,M/SEC MACH NUMBER PERFORMANCE PAR	12.771 7.7120 1.1482 1600.8 0.000	12.890 6.9413 1.1508 1545.9 1.000	12.890 3.0870 1.2642 1013.4 4.001	3.0011 1.2738 969.5	2.9400 1.2811 937.2	2.8942 1.2868	2.8269 1.2956 872.5
Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC MOLE FRACTIONS		1.0000 2339.6 0.6607 2889.1 1545.9	25.000 2339.6 1.7329 4254.6 4054.3	2339.6 1.7695 4318.2	2339.6 1.7943 4361.1	2339.6 1.8125 4392.8	2339.6 1.8383 4437.6
*H H2O *O2	0.02304 0.65859 0.00081	HO2 *O		0.00001	*H2 *OH		.29510 .02153

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

O3 H2O(cr) H2O(L)

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT	ITN	T	H	0
1	3	3438.247	-9.001	-16.457
Pinf/	Pt =	1.740446		
2	4	3227.217	-9.163	-16.879
Pinf/	Pt =	1.742304		
2	2	3226.815	-9.164	-16.880
3	5	1434.743	-10.389	-27.067
3	2	1458.840	-10.371	-26.747
4	3	1357.584	-10.450	-28.169
4	2	1334.718	-10.469	-28.522
5	3	1225.387	-10.561	-30.396
5	2	1246.975	-10.542	-29.999
6	3	1200.873	-10.582	-30.864
6	2	1179.842	-10.601	-31.282
7	3	1061.610	-10.712	-33.952
7	2	1081.057	-10.693	-33.471

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 1377.9 PSIA CASE = 9

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	H2(L)	1.000000	-9012.000	20.270
OXIDANT	02(L)	1.000000	-12979.000	90.170

	CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT	EXIT
Pinf/P	1.0000	1.7423	263.32	412.11	575.70	751.86	1136.29
P, BAR	95.000	54.526	0.36078	0.23052	0.16502	0.12635	0.08361
T, K	3438.25	3226.82	1458.84	1334.72	1246.98	1179.84	1081.06
RHO, KG/CU M	4.2484 0	2.6218 0	3.9283-2	2.7434-2	2.1021-2	1.7011-2	1.2285-2
H, KJ/KG	-1026.05	-2223.74	-9561.51	-9955.22	-10226.8	-10430.7	-10724.5
U, KJ/KG	-3262.20	-4303.46	-10479.9	-10795.5	-11011.8	-11173.5	-11405.0
G, KJ/KG	-63883.7	-61216.1	-36231.9	-34356.4	-33023.9	-32000.5	-30488.2
S, KJ/(KG)(K)	18.2819	18.2819	18.2819	18.2819	18.2819	18.2819	18.2819
M, (1/n)	12.784	12.901	13.207	13.207	13.207	13.207	13.207
(dLV/dLP)t	-1.01716	-1.01232	-1.00000	-1.00000	-1.00000	-1.00000	-1.00000
(dLV/dLT)p	1.3081	1.2351	1.0001	1.0000	1.0000	1.0000	1.0000
Cp, KJ/(KG)(K)	7.5752	6.8224	3.2160	3.1276	3.0626	3.0117	2.9358

GAMMAs SON VEL,M/SEC MACH NUMBER	1.1491 1603.0 0.000	1.1518 1547.7 1.000	1.2435 1068.6 3.866	1.2520 1025.7 4.120	1.2587 994.1 4.315	1.2643 969.0 4.475	1.2730 930.8 4.732
PERFORMANCE PARA	METERS						
Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC		1.0000 2341.2 0.6611 2891.4 1547.7	25.000 2341.2 1.7648 4354.0 4131.7	35.000 2341.2 1.8050 4424.7 4225.9	45.000 2341.2 1.8323 4472.7 4289.7	55.000 2341.2 1.8524 4508.2 4337.0	75.000 2341.2 1.8812 4558.7 4404.2
MOLE FRACTIONS							
*H HO2 *H2 H2O H2O2 *O *OH	0.02861 0.00002 0.29564 0.64318 0.00001 0.00156 0.02968 0.00131	0.02225 0.00001 0.29527 0.65991 0.00000 0.00087 0.02092 0.00076	0.00001 0.00000 0.30051 0.69948 0.00000 0.00000 0.00000	0.00000 0.00000 0.30052 0.69948 0.00000 0.00000 0.00000	0.00000 0.00000 0.30052 0.69948 0.00000 0.00000 0.00000	0.00000 0.00000 0.30052 0.69948 0.00000 0.00000 0.00000	0.00000 0.00000 0.30052 0.69948 0.00000 0.00000 0.00000

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

O3 H2O(cr) H2O(L)

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

Pin = 1377.9 PSIA CASE = 9

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	H2(L)	1.000000	-9012.000	20.270
OXIDANT	O2 (I ₁)	1.0000000	-12979.000	90.170

	CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT	EXIT
Pinf/P	1.0000	1.7423	291.39	458.51	643.28	843.11	1281.34
P, BAR	95.000	54.526	0.32602	0.20719	0.14768	0.11268	0.07414
T, K	3438.25	3226.82	1264.74	1149.09	1067.78	1005.88	915.42
RHO, KG/CU M	4.2484 0	2.6218 0	3.9996-2	2.7976-2	2.1459-2	1.7381-2	1.2566-2
H, KJ/KG	-1026.05	-2223.74	-9260.15	-9612.58	-9854.39	-10035.1	-10294.1
U, KJ/KG	-3262.20	-4303.46	-10075.3	-10353.2	-10542.6	-10683.4	-10884.1

G, KJ/KG S, KJ/(KG)(K)			-32382.0 18.2819			-28424.5 18.2819	
M, (1/n) Cp, KJ/(KG)(K) GAMMAS SON VEL,M/SEC MACH NUMBER PERFORMANCE PAF	12.784 7.5752 1.1491 1603.0 0.000	12.901 6.8224 1.1518 1547.7 1.000	3.0903 1.2635 1014.9	12.901 3.0044 1.2731 971.0 4.268	12.901 2.9431 1.2804 938.7 4.476	12.901 2.8970 1.2861 913.1 4.649	12.901 2.8295 1.2950 874.1 4.926
Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC MOLE FRACTIONS		1.0000 2341.2 0.6611 2891.4 1547.7	2341.2 1.7333	35.000 2341.2 1.7700 4322.8 4144.0	45.000 2341.2 1.7948 4365.8 4202.0	55.000 2341.2 1.8131 4397.5 4244.8	75.000 2341.2 1.8389 4442.4 4305.4
*H H2O *O2	0.02225 0.65991 0.00076	HO2 *O		0.00001	*H2 *OH		.29527 .02092

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

O3 H2O(cr) H2O(L)

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT	ITN	T	H	0
1	3	3459.163	-8.895	-16.412
Pinf/	Pt =	1.741542		
2	4	3242.739	-9.055	-16.841
Pinf/	Pt =	1.743542		
2	2	3242.297	-9.055	-16.842
3	5	1432.074	-10.271	-27.103
3	2	1455.474	-10.253	-26.791
4	3	1353.745	-10.333	-28.228
4	2	1331.551	-10.351	-28.572
5	3	1222.995	-10.442	-30.440
5	2	1243.953	-10.424	-30.053
6	3	1197.343	-10.465	-30.933
6	2	1176.932	-10.483	-31.342
7	3	1059.444	-10.593	-34.006
7	2	1078.318	-10.575	-33.538

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 1740.5 PSIA CASE = 9

REACTANT				FRACTION	ENEF		TEMP	
		- \			SEE NOTE)		G-MOL	K
FUEL	H2 (1				.0000000	-9012.		20.270
OXIDANT	02 (1	۱)		1.	.0000000	-12979.	.000	90.170
O/F=	5.55157	%FUEL= 1	15.263517	R,EQ.RA	rio= 1.42	9629 PHI,	,EQ.RATIO	= 1.429629
		CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT	EXIT
Pinf/P		1.0000	1.7435	264.46	413.90	578.19	755.12	1141.24
P, BAR		120.00	68.825	0.45375				0.10515
T, K		3459.16	3242.30	1455.47			1176.93	1078.32
RHO, KG/			3.2991 0					
H, KJ/KG			-2229.55					
U, KJ/KG			-4315.73					
G, KJ/KG			-61012.8					
S, KJ/(K	G) (K)	18.1301	18.1301	18.1301	18.1301	18.1301	18.1301	18.1301
M, (1/n)		12.811	12.922	13.207	13.207	13.207	13.207	13.207
(dLV/dLP) t		-1.01141	-1.00000	-1.00000	-1.00000	-1.00000	-1.00000
(dLV/dLT		1.2864	1.2168	1.0001	1.0000	1.0000	1.0000	1.0000
Cp, KJ/(7.2995	6.5841	3.2134	3.1252	3.0603	3.0095	2.9337
GAMMAs		1.1509	1.1538	1.2437	1.2523	1.2590	1.2645	1.2732
SON VEL,	M/SEC	1607.4	1551.5	1067.5	1024.6	992.9	967.9	929.7
MACH NUM		0.000	1.000	3.873			4.483	4.739
PERFORMA	NCE PARA	AMETERS						
Ae/At			1.0000	25.000	35.000	45.000	55.000	75.000
CSTAR, M	/SEC		2344.5	2344.5	2344.5	2344.5	2344.5	2344.5
CF			0.6617	1.7634	1.8035	1.8306	1.8507	1.8793
Ivac, M/	SEC		2896.1	4355.9	4426.5	4474.3	4509.7	4560.1
Isp, M/S	EC		1551.4	4134.3	4228.3	4291.9	4339.0	4406.0
MOLE FRA	CTIONS							
MODE TRA	CIIONS							
* H		0.02674	0.02065	0.00001	0.00000	0.00000	0.00000	0.00000
HO2		0.00002	0.00001	0.00000	0.00000	0.00000	0.00000	0.00000
*H2		0.29596	0.29563	0.30051	0.30052	0.30052	0.30052	0.30052
H20		0.64655	0.66263	0.69948	0.69948	0.69948	0.69948	0.69948
H2O2		0.00001	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
*0		0.00138	0.00076	0.00000	0.00000	0.00000	0.00000	0.00000
*OH		0.02818	0.01966	0.00000	0.00000	0.00000	0.00000	0.00000
*02		0.00116	0.00066	0.00000	0.00000	0.00000	0.00000	0.00000

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

03 H2O(cr) H2O(L)

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION AFTER POINT 2

Pin = 1740.5 PSIA CASE = 9

*H H2O *O2

*02

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	H2(L)	1.000000	-9012.000	20.270
OXIDANT	02(L)	1.0000000	-12979.000	90.170

29

O/F= 5.55157	%FUEL=	15.263517	R,EQ.RA	rio= 1.429	9629 PHI	,EQ.RATIO=	1.429629
	CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT	EXIT
Pinf/P	1.0000	1.7435	290.35	456.69	640.53	839.29	1275.05
P, BAR	120.00	68.825	0.41329	0.26276	0.18735	0.14298	0.09411
T, K	3459.16	3242.30	1275.60	1159.50	1077.82	1015.63	924.69
RHO, KG/CU M	5.3450 0	3.2991 0	5.0354-2	3.5220-2	2.7014-2	2.1879-2	1.5818-2
H, KJ/KG	-1026.05	-2229.55	-9291.86	-9646.48	-9889.89	-10071.9	-10332.8
U, KJ/KG	-3271.14	-4315.73	-10112.6	-10392.5	-10583.4	-10725.4	-10927.7
G, KJ/KG	-63741.1	-61012.8	-32418.7	-30668.4	-29431.0	-28485.4	-27097.5
S, $KJ/(KG)(K)$	18.1301	18.1301	18.1301	18.1301	18.1301	18.1301	18.1301
M, (1/n)					12.922		
Cp, $KJ/(KG)(K)$					2.9493		
	1.1509						
SON VEL, M/SEC	1607.4	1551.5	1017.8	974.1	941.8	916.3	877.3
MACH NUMBER	0.000	1.000	3.995	4.263	4.471	4.642	4.918
PERFORMANCE PAF	RAMETERS						
Ae/At		1.0000				55.000	
CSTAR, M/SEC		2344.5		2344.5			
CF		0.6617					
Ivac, M/SEC						4407.1	
Isp, M/SEC		1551.4	4065.9	4152.2	4210.4	4253.4	4314.3
MOLE FRACTIONS							

0.02065 HO2 0.00001 *H2 0.66263 *O 0.00076 *OH

0.00066

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

0.29563 0.01966

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

03 H2O(cr) H2O(L)

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS