Deep Learning for Computer Vision

Recent CNN Architectures

Vineeth N Balasubramanian

Department of Computer Science and Engineering Indian Institute of Technology, Hyderabad

Recent CNN Architectures

We have already seen some deep convolutional architectures, including a very deep network that uses residual connections. Here we consider some other recent CNN architectures:

- Wide Residual Networks (WideResNet)
- Aggregated Residual Transformations for Deep Neural Networks (ResNeXt)
- Deep Networks with Stochastic Depth
- Densely Connected Convolutional Networks (DenseNets)
- More recent: MobileNet, EfficientNet, SENet

Identity Mappings in Deep Residual Networks¹

- Improved ResNet block design from creators of ResNet
- Switches up order of activations in the residual block
- Creates a more direct path for propagating information through the network
- Gives better performance

Credit: Fei-Fei Li, CS231n, Stanford Univ

Vineeth N B (IIT-H)

¹He et al, Identity Mappings in Deep Residual Networks, ECCV 2016

Wide Residual Networks²

- Builds on ResNets
- Argues that residuals are the important factor and not depth
- Uses wider residual blocks ($F \times k$ filters instead of F filters in each layer)
- 50-layer WideResNet outperforms
 152-layer original ResNet
- Increasing width instead of depth computationally more efficient (parallelizable)

B<mark>asic res</mark>idual block

Wide residual block

Credit: Fei-Fei Li, CS231n, Stanford Univ

²Zagoruyko and Komodakis, Wide Residual Networks, BMVC 2016

Aggregated Residual Transformations (ResNeXt)³

- Also from creators of ResNet
- Increases width of residual block through multiple parallel pathways (called cardinality)
- Parallel pathways similar in spirit to Inception module

Credit: Fei-Fei Li, CS231n, Stanford Univ

³Xie et al, Aggregated Residual Transformations for Deep Neural Networks, CVPR 2017

Deep Networks with Stochastic Depth⁴

- Think DropOut of residual blocks!
- Randomly drop a subset of layers during each training pass
- Bypass with identity function
- Motivation: Reduce vanishing gradients and training time through added regularizer

Credit: Fei-Fei Li. CS231n. Stanford Univ

Vineeth N B (IIT-H)

short networks during training, also an Use full deep network at test time

⁴Huang et al, Deep Networks with Stochastic Depth, ECCV 2016

Densely Connected Convolutional Networks (DenseNets)⁵

- Dense blocks where each layer is connected to every other layer in feedforward fashion
- Alleviates vanishing gradient, strengthens feature propagation, encourages feature reuse
- Showed that shallow 50-layer network can outperform deeper 152-layer ResNet
- Quite popularly in use today for image classification problems

 $^{^5 \}text{Huang et al, Densely Connected Convolutional Networks, CVPR 2017}$

Vineeth N B (IIT-H)

MobileNets: Efficient Convolutional Neural Networks for Mobile Applications⁶

- A class of efficient models for mobile and embedded vision applications
- What are desirable properties of a network for use in small devices?

NPTEL

Vineeth N B (IIT-H) §5.4 Recent CNN Architectures

⁶Howard et al, MobileNets: Efficient Convolutional Neural Networks for Mobile Applications, 2017

MobileNets: Efficient Convolutional Neural Networks for Mobile Applications⁶

- A class of efficient models for mobile and embedded vision applications
- What are desirable properties of a network for use in small devices?
 - Low latency
 - Low power consumption
 - Small model size (devices are low memory)
 - Sufficiently high accuracy
- MobileNets are small, low latency networks which are trained directly. A complementary
 approach to building efficient networks is compressing pre-trained networks.

Vineeth N B (IIT-H) §5.4 Recent CNN Architectures

⁶Howard et al, MobileNets: Efficient Convolutional Neural Networks for Mobile Applications, 2017

Key Ingredient: Depthwise Separable Convolutions

- MobileNets primarily built using depthwise separable convolutions (DSC)
- DSC replaces standard convolutions with depthwise convolution and 1×1 convolution
- DSC applies a single filter to each input channel; how does this help over normal convolution?

• Let input have size $D_f \times D_f \times M$ and output feature map (after passing input through conv layer) has $D_f \times D_f \times N$ size. Assume padded convolution. Let width of the square kernel in conv layer be k

- Let input have size $D_f \times D_f \times M$ and output feature map (after passing input through conv layer) has $D_f \times D_f \times N$ size. Assume padded convolution. Let width of the square kernel in conv layer be k
- A standard convolutional layer would have $k \times k \times M \times N$ parameters and a computational cost of $k \cdot k \cdot M \cdot N \cdot D_f \cdot D_f$

- Let input have size $D_f \times D_f \times M$ and output feature map (after passing input through conv layer) has $D_f \times D_f \times N$ size. Assume padded convolution. Let width of the square kernel in conv layer be k
- A standard convolutional layer would have $k \times k \times M \times N$ parameters and a computational cost of $k \cdot k \cdot M \cdot N \cdot D_f \cdot D_f$
- A depthwise separable conv layer factorizes the above into:
 - **Depthwise convolutions**, having $k \times k \times M$ parameters and a cost of $k \cdot k \cdot M \cdot D_f \cdot D_f$.
 - **Pointwise convolutions**, having $1 \times 1 \times M \times N$ parameters and cost of $M \cdot N \cdot D_f \cdot D_f$.
- By what fraction is computation reduced when DSC is used?

- Let input have size $D_f \times D_f \times M$ and output feature map (after passing input through conv layer) has $D_f \times D_f \times N$ size. Assume padded convolution. Let width of the square kernel in conv layer be k
- A standard convolutional layer would have $k \times k \times M \times N$ parameters and a computational cost of $k \cdot k \cdot M \cdot N \cdot D_f \cdot D_f$
- A depthwise separable conv layer factorizes the above into:
 - **Depthwise convolutions**, having $k \times k \times M$ parameters and a cost of $k \cdot k \cdot M \cdot D_f \cdot D_f$.
 - **Pointwise convolutions**, having $1 \times 1 \times M \times N$ parameters and cost of $M \cdot N \cdot D_f \cdot D_f$.
- By what fraction is computation reduced when DSC is used? Homework!
- Depthwise convolutions filter feature maps channelwise, and pointwise convolutions combine feature maps across channels; standard convolutions do these operations together

MobileNet: Architecture and Hyperparameters

- MobileNet built of many depthwise convolutions and pointwise convolutions, each of which is followed by BatchNorm and ReLU
- To obtain faster and smaller models, two more hyperparameters are considered:
 - Width multiplier, α , controls number of channels, making the number of input channels as αM and number of output channels as αN for all layers
 - Resolution multiplier, ρ , scales input image to a fraction of its size

Left: Standard conv layer with batchnorm and ReLU. Right: Depthwise Separable convolutions with

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks⁷

Scaling up a Baseline model with different network width (**w**), depth (**d**) and input resolution (**r**). Bigged networks with larger width, height and input resolution perform better but accuracy gain saturates.

- Conventional wisdom suggests that scaling up CNN architectures would lead to better accuracy i.e deeper and wider networks perform better in general
- Explores a principled way to scale up a CNN to obtain better accuracy and efficiency

⁷Tan and Le, EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, ICML 2019

- Makes two observations:
 - Scaling up any dimension (w,d,r) independently improves accuracy, but return diminishes for bigger models
 - For better accuracy, critical to balance all dimensions during scaling; Intuitively, does it make sense to have deeper and wider models for larger input dimensions?

- Makes two observations:
 - Scaling up any dimension (w,d,r) independently improves accuracy, but return diminishes for bigger models
 - For better accuracy, critical to balance all dimensions during scaling; Intuitively, does it make sense to have deeper and wider models for larger input dimensions?
- Based on these observations, a new compound scaling method is proposed
- A compound coefficient ϕ uniformly scales network width, depth and resolution

depth:
$$d=\alpha^{\phi}$$
 width: $w=\beta^{\phi}$ resolution: $r=\gamma^{\phi}$ s.t $\alpha\cdot\beta^2\cdot\gamma^2\approx 2$ $\alpha\geq 1, \beta\geq 1, \gamma\geq 1$

where α,β,γ are constants determined by a small grid search

FLOPS vs. ImageNet Accuracy

For any new compound coefficient ϕ , total FLOPS will approximately increase by 2^{ϕ} . Why?

FLOPS vs. ImageNet Accuracy

- For any new compound coefficient ϕ , total FLOPS will approximately increase by 2^{ϕ} . Why?
- Fixing $\phi = 1$ and assuming double the amount of resources, a grid search is performed on α, β, γ for chosen baseline network
- ullet For every available computational budget, ϕ is calculated and model is scaled accordingly

FLOPS vs. ImageNet Accuracy

- For any new compound coefficient ϕ , total FLOPS will approximately increase by 2^{ϕ} . Why? Homework!
- Fixing $\phi = 1$ and assuming double the amount of resources, a grid search is performed on α, β, γ for chosen baseline network
- ullet For every available computational budget, ϕ is calculated and model is scaled accordingly
- Baseline model is obtained by performing Neural Architecture Search (an advanced topic we will see later in this course); scaling up this baseline leads to a family of models called EfficientNets

Squeeze-and-Excitation Networks (SENet)⁸

- **Motivation:** Improve quality of representations produced by network by explicitly modeling interdependencies between channels of its convolutional features
- Proposes a novel architectural unit termed Squeeze-and-Excitation (SE) block:
 - Squeeze operation embeds global information
 - Excitation operation re-calibrates feature maps channel-wise

Vineeth N B (IIT-H)

⁸Hu et al, Squeeze-and-Excitation Networks, CVPR 2018

Squeeze-and-Excitation Networks (SENet)⁸

- **Motivation:** Improve quality of representations produced by network by explicitly modeling interdependencies between channels of its convolutional features
- Proposes a novel architectural unit termed Squeeze-and-Excitation (SE) block:
 - Squeeze operation embeds global information
 - Excitation operation re-calibrates feature maps channel-wise
- If F_{tr} is a transformation mapping input $X \in \mathbb{R}^{H' \times W' \times C'}$ to output feature maps $U \in \mathbb{R}^{H \times W \times C}$, e.g. a convolution, then SE block squeezes and recalibrates U

Vineeth N B (IIT-H)

⁸Hu et al, Squeeze-and-Excitation Networks, CVPR 2018

SENet: Squeeze-and-Excitation Block

- Learns to reweigh feature maps (using global information) in a way that emphasises informative features and inhibits less useful ones.
- \bullet F_{sq} , the squeeze function, is channel-wise global average pooling globally aggregate feature maps spatially

SENet: Squeeze-and-Excitation Block

- Learns to reweigh feature maps (using global information) in a way that emphasises informative features and inhibits less useful ones.
- \bullet F_{sq} , the squeeze function, is channel-wise global average pooling globally aggregate feature maps spatially
- \bullet F_{ex} , the **excitation function**, learns the relationships between channels, and outputs channelwise activations

SENet: Squeeze-and-Excitation Block

- Learns to reweigh feature maps (using global information) in a way that emphasises informative features and inhibits less useful ones.
- F_{sq} , the squeeze function, is channel-wise global average pooling globally aggregate feature maps spatially
- \bullet F_{ex} , the **excitation function**, learns the relationships between channels, and outputs channelwise activations
- \bullet F_{scale} performs channelwise multiplication of feature maps U with learned activations

Squeeze-and-Excitation Block in ResNet

Squeeze-and-Excitation Block in ResNet

- r is a hyperparameter that controls size of hidden layer
- Output of F_{ex} is a set of C numbers between (0,1), each detailing how much attention each channel receives

Squeeze-and-Excitation Block in ResNet

SF-ResNet Module

- r is a hyperparameter that controls size of hidden layer
- Output of F_{ex} is a set of C numbers between (0,1), each detailing how much attention each channel receives
- SE block is a cheap way to increase model depth
- Can be added to a wide variety of conv architectures, not just ResNet - to bring improvements to performance at minor additional computation cost

Homework

Readings

- Lecture 9 of CS231n, Stanford Univ.
- Google Al Blog on MobileNet
- (Optional) Lecture 4 of Svetlana Lazebnik CS598 course, UIUC

Exercises

- By what fraction is computation reduced when DSC is used over standard convolution?
 (Slide 10)
- For a compound coefficient ϕ , total FLOPS will approximately increase by 2^{ϕ} . Why? (Slide 14)

References I

Kaiming He et al. "Identity Mappings in Deep Residual Networks". In: ArXiv abs/1603.05027 (2016).

Gao Huang et al. "Deep Networks with Stochastic Depth". In: ECCV. 2016.

Sergey Zagoruyko and Nikos Komodakis. "Wide Residual Networks". In: ArXiv abs/1605.07146 (2016).

A. Howard et al. "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications". In: *ArXiv* abs/1704.04861 (2017).

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. "Densely Connected Convolutional Networks". In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 2261–2269.

Saining Xie et al. "Aggregated Residual Transformations for Deep Neural Networks". In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 5987–5995.

Barret Zoph and Quoc V. Le. "Neural Architecture Search with Reinforcement Learning". In: *ArXiv* abs/1611.01578 (2017).

References II

Mark Sandler et al. "MobileNetV2: Inverted Residuals and Linear Bottlenecks". In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018), pp. 4510–4520.

Barret Zoph et al. "Learning Transferable Architectures for Scalable Image Recognition". In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018), pp. 8697–8710.

M. Tan and Quoc V. Le. "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks". In: ArXiv abs/1905.11946 (2019).

Jie Hu et al. "Squeeze-and-Excitation Networks". In: *IEEE Transactions on Pattern Analysis and Machine Intelligence* 42 (2020), pp. 2011–2023.

Lilian Weng. "Neural Architecture Search". In: lilianweng.github.io/lil-log (2020).