AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior listings of claims in the application:

(CURRENTLY AMENDED) A composition comprising a pharmaceutically acceptable formulation of formula 1

$$R_6$$
 R_7
 N_1
 N_1
 N_2
 N_3
 N_4
 N_4
 N_4
 N_4

Formula 1

wherein

R₃ is C₁-C₁₀ alkyl;

 $R_4 \text{ to } R_7 \text{ are independently selected from the group consisting of -H, C1-C10 alkoxyl, C1-C10 polyalkoxyalkyl, C1-C20 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, saccharides, amino, cyano, nitro, halogen, hydrophilic peptides, arylpolysulfonates, C1-C10 alkyl, C1-C10 aryl, -S0_3T, -C0_17, -OH, -(CH_2)_8O_3T, -(CH_2)_8NHSO_3T, -(CH_2)_8C0_2(CH_2)_8SO_3T, -(CH_2)_8C0_2(CH_2)_8SO_3T, -(CH_2)_8NHCO_2(CH_2)_8SO_3T, -(CH_2)_8C0_3T, -(CH_2)_$

 $\label{eq:constraint} Y_1 \text{ is selected from the group consisting of C-C20-polyhydroxyaryl, hydrophilic peptides, arylpolysulfonates, $(CH_2)_nOSO_3T, -(CH_2)_nNHSO_3T, -(CH_2)_nCO_2(CH_2)_nSO_3T, -(CH_2)_nCOS_3T, -(CH_2)_nNHCONH(CH_2)_nSO_3T, -(CH_2)_nNHCONH(CH_2)_nSO_3T, -(CH_2)_nNHCONH(CH_2)_nSO_3T, -(CH_2)_nNHCONH(CH_2)_nSO_3T, -(CH_2)_nNHCONH(CH_2)_nSO_3T, -(CH_2)_nNHCONH(CH_2)_nSO_3T, -(CH_2)_nNHCONH(CH_2)_nSO_3T, -(CH_2)_nNHCONH(CH_2)_nSO_3T, -(CH_2)_nNHCONH(CH_2)_nNHSO_3T, -(CH_2)_nNHSO_3T, -(CH_2)$

 $\begin{array}{l} -(CH_2)_{a}OCO(CH_2)_{b}PO_3T_2, -(CH_2)_{a}CONH(CH_2)_{b}PO_3HT, -(CH_2)_{a}CONH(CH_2)_{b}PO_5T_2, \\ -(CH_2)_{a}NHCO(CH_2)_{b}PO_3HT, -(CH_2)_{a}NHCO(CH_2)_{b}PO_3T_2, -(CH_2)_{a}NHCONH(CH_2)_{b}PO_3HT, \\ -(CH_2)_{a}NHCONH(CH_2)_{b}PO_3T_2, -(CH_2)_{a}NHCSNH(CH_2)_{b}PO_3HT, -(CH_2)_{a}NHCSNH(CH_2)_{b}PO_3T_2, \\ -(CH_2)_{a}OCONH(CH_2)_{b}PO_3HT, -(CH_2)_{a}OCONH(CH_2)_{b}PO_3T_2, \end{array}$

W₁ is -CR_cR_d;

a. b. d. f. h. i. and i independently vary from 1-10;

c, e, g, and k independently vary from 1-100;

 R_{a_1} , R_{b_1} , R_{c_1} and R_{d} are defined in the same manner as Y_1 ; and T is either H or a negative charge.

2-16 (CANCELED)

- 17. (PREVIOUSLY PRESENTED) The composition of claim 1 wherein R₃ is C₁ alkyl.
- 18. (CANCELED)
- 19. (PREVIOUSLY PRESENTED) The composition of claim 17 wherein each of R_4 to R_7 is independently -H or -SO₃T.
- 20-22. (CANCELED)
- 23. (PREVIOUSLY PRESENTED) The composition of claim 1 wherein each of R_4 to R_7 is independently -H or -SO₄T.
- 24-26. (CANCELED)
- 27. (WITHDRAWN CURRENTLY AMENDED) A method for performing a diagnostic or therapeutic procedure which comprises

administering to an individual an effective amount of a composition comprising at least one biocompatible excipient and the compound of formula 1

$$R_5$$
 R_6
 N_1
 N_1
 N_2
 N_3
 N_4
 N_4
 N_4
 N_4
 N_4
 N_4
 N_5
 N_5

Formula 1

wherein

R₃ is C₁-C₁₀ alkyl;

 $R_4 \ to \ R_7 \ are independently selected from the group consisting of -H, C1-C10 alkoxyl, C1-C10 polylakoxyalkyl, C1-C20 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, saccharides, amino, cyano, nitro, halogen, hydrophilic peptides, arylpolysulfonates, C1-C10 alkyl, C1-C10 aryl, -S0<math>_3$ T, -CO $_3$ T, -OH, -(CH $_2$) $_8$ SO $_3$ T, -(CH $_2$) $_8$ SOS $_3$ T, -(CH $_2$) $_8$ SOS $_3$ T, -(CH $_2$) $_8$ CO2(CH $_2$) $_8$ SO $_3$ T, -(CH $_2$) $_8$ DHCONH(CH $_2$) $_8$ SO $_3$ T, -(CH $_2$) $_8$ NHCOCH(CH $_2$) $_8$ SO $_3$ T, -(CH $_2$) $_8$ NHCONH(CH $_2$) $_8$ SO $_3$ T, -(CH $_2$) $_8$ NHCONH(CH $_2$) $_8$ SO $_3$ T, -(CH $_2$) $_8$ NHCONH(CH $_2$) $_8$ SO $_3$ T, -(CH $_2$) $_8$ NHCONH(CH $_2$) $_8$ SO $_3$ T, -(CH $_2$) $_8$ NHCONH(CH $_2$) $_8$ SO $_3$ T, -(CH $_2$) $_8$ DOS $_3$ T, -(CH $_2$) $_8$ DOSO(CH $_2$) $_8$ POS $_3$ T, -(CH $_2$) $_8$ DOSO(CH $_2$) $_8$ POS $_3$ T, -(CH $_2$) $_8$ DOSO(CH $_2$) $_8$ POS $_3$ T, -(CH $_2$) $_8$ DOSO(CH $_2$) $_8$ POS $_3$ T, -(CH $_2$) $_8$ DHCONH(CH $_2$) $_8$ POS $_3$ T, -(CH $_2$) $_8$ DHCONH(CH $_2$) $_8$ POS $_3$ T, -(CH $_2$) $_8$ DOSONH(CH $_2$) $_8$ POS $_3$ T, -(CH $_2$) $_8$ DOSONH(CH $_2$) $_8$ POS $_3$ T, -(CH $_2$) $_8$ DOSONH(CH $_2$) $_8$ POS $_3$ T, -(CH $_2$) $_8$ DOSONH(CH $_2$) $_8$ POS $_3$ T, -(CH $_2$) $_8$ DOSONH(CH $_2$) $_8$ POS $_3$ T, -(CH $_2$) $_8$ DOSONH(CH $_2$) $_8$ POS $_3$ T, -(CH $_2$) $_8$ DOSONH(CH $_2$) $_8$ POS $_3$ T, -(CH $_2$) $_8$ DOSONH(CH $_2$) $_8$ POS $_3$ T, -(CH $_2$) $_8$ DOSONH(CH $_2$) $_8$ POS $_3$ T, -(CH $_2$) $_8$ DOSONH(CH $_2$) $_8$ POS $_3$ T, -(CH $_2$) $_8$ DOSONH(CH $_2$) $_8$ POS $_3$ T, -(CH $_2$) $_8$ DOSONH(CH $_2$) $_8$ POS $_3$ T, -(CH $_2$) $_8$ DOSONH(CH $_2$) $_8$ POS $_3$ T, -(CH $_2$) $_8$ DOSONH(CH $_2$) $_8$ POS $_3$ T, -(CH $_2$) $_8$ DOSONH(CH $_2$) $_8$ POS $_3$ T, -(CH $_2$) $_8$ DOSONH(CH $_2$) $_8$ POS $_3$ T, -(CH $_2$) $_8$ DOSONH(CH $_2$) $_8$ POSONH(CH $_2$) $_$

Y₁ is selected from the group consisting of C8-C20_polyhydroxyaryl,-saccharides, hydrophilic peptides, arylpolysulfonates, -(CH₂)_aOSO₃T, -(CH₂)_aNHSO₃T, -(CH₂)_aCO₂(CH₂)_bSO₃T, -(CH₂)_aOCO(CH₂)_bSO₃T, -(CH₂)_aONH(CH₂)_bSO₃T, -(CH₂)_aNHCOOH(CH₂)_bSO₃T, -(CH₂)_aNHCOOH(CH₂)_bSO₃T, -(CH₂)_aNHCOOH(CH₂)_bSO₃T, -(CH₂)_aOCONH(CH₂)_bSO₃T, -(CH₂)_aOCONH(CH₂)_bSO₃T, -(CH₂)_aOCO(CH₂)_bPO₃T₂, -(CH₂)_aCO₂(CH₂)_bPO₃T₂, -(CH₂)_aCO(CH₂)_bPO₃T₂, -(CH₂)_aCO(CH₂)_bPO₃T₃, -(CH₂)_aCOO(CH₂)_bPO₃T₂, -(CH₂)_aCOO(CH₂COO(CH₂CH₂COO(CH₂C

W₁ is -CR_cR_d;

a, b, d, f, h, i, and j independently vary from 1-10; c, e, g, and k independently vary from 1-100; $R_a, R_b, R_o, \text{ and } R_d \text{ are defined in the same manner as } Y_1; \text{ and } T \text{ is either H or a negative charge; and performing the diagnostic or therapeutic procedure.}$

28. (WITHDRAWN - CURRENTLY AMENDED) The method of claim 27 wherein
R3 is C4-C40 alkyl:

 R_4 to R_7 are independently selected from the group consisting of C1-C5 alkoxyl, C1-C5 polyalkoxyalkyl, C1-C10 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, mono- and disacharides, amino, nitro, hydrophilic peptides, arylpolysulfonates, C1-C10 aryl, -SO₃T, -CO₂T, -OH, -(CH₂)₈CO₃T, -(CH₂)₈OS₃T, -(CH₂)₈NHSO₃T, -(CH₂)₈CO₂(CH₂)₈SO₃T, -(CH₂)₈CO(CH₂)₈SO₃T, -(CH₂)₈CO(CH₂)₈SO₃T, -(CH₂)₈CO₂CO₂T, -CH₂(CH₂-O-CH₂)₈-CH₂-CO₂T, -(CH₂)₇NH₂ -CH₂-CO₂T, -(CH₂)₇-CH₂-CO₂T, -(CH₂)₇-NH₂-CO₂T, -(CH₂)₇-CH₂-CO₂T, -(CH₂)₇-CO₂T, -(CH₂

 Y_1 is selected from the group consisting of C5-C20-polyhydroxyaryl, mono- and disaccharides, hydrophilic peptides, arylpolysulfonates, -(CH₂)₈OSO₃T, -(CH₂)₈NHSO₃T, -(CH₂)₈OC₂(CH₂)₈SO₃T, -(CH₂)₈OCO(CH₂)₈SO₃T, -(CH₂)₈SO₃T, -(CH

W₁ is -CR_cR_d:

c, e, g, and k independently vary from 1-5;
c, e, g, and k independently vary from 1-20;
R_a, R_b, R_c, and R_d are defined in the same manner as Y₁; and

- 29. (WTHDRAWN) The method of claim 27 wherein each R_4 , R_6 and R_7 is H, R_5 is SO₃T, Y_1 is -(CH₂)₃SO₃T; W_1 is -C(CH₃)₂; and T is a negative charge.
- 30. (MTHDRAWN) The method of claim 27 wherein the procedure uses light of wavelength in the region of 350 nm -1300 nm.
- 31. (WITHDRAWN) The method of claim 27 wherein the procedure comprises monitoring a blood clearance profile by fluorescence using light of wavelength in the region of 350 nm to 1300 nm.

- 32. (WITHDRAWN) The method of claim 27 wherein the procedure comprises monitoring a blood clearance profile by absorption using light of wavelength in the region of 350 nm to 1300 nm.
- 33. (WITHDRAWN) The method of claim 27 wherein the procedure is for physiological function monitoring.
- 34. (WITHDRAWN) The method of claim 33 wherein the procedure is for renal function monitoring.
- 35. (WITHDRAWN) The method of claim 33 wherein the procedure is for cardiac function monitoring.
- 36. (WITHDRAWN) The method of claim 33 wherein the procedure is for determining organ perfusion in vivo.