# MAC protocols for ad hoc networks

Lecturer: Dmitri A. Moltchanov

E-mail: moltchan@cs.tut.fi

http://www.cs.tut.fi/kurssit/TLT-2756/

#### **OUTLINE:**

- Problems for MAC to deal with;
- Design goals;
- Classification of MAC protocols
- Contention-based protocols
- Contention-based with reservation mechanism
- Contention-based with scheduling mechanism
- MAC protocols for directional antennas
- Power control MAC protocols

# 1. Problems for MAC to deal with

Aim of MAC: provide fair access to shared broadcast radio channel.

#### Issues to deal with:

- Bandwidth efficiency:
  - must be maximized.
- Real-time traffic support:
  - should be provided.
- Synchronization:
  - sometimes needed, e.g. TDMA.
- Shared broadcast medium:
  - collisions must be avoided/minimized.
- Lack of central coordination:
  - fully distributed MAC design.

- Hidden terminal problem:
  - collisions  $\rightarrow$  inefficient bandwidth utilization.



Figure 1: Illustration of the hidden terminal problems.

- Exposed terminal problem:
  - inability to transmit  $\rightarrow$  inefficient bandwidth utilization.



Figure 2: Illustration of the exposed terminal problem.

- Mobility of nodes:
  - loss of connectivity;
  - network partitioning;
  - bit errors.



Figure 3: Network partitioning is one of the biggest problem to deal with at MAC sublayer.

# 2. Design goals

#### What we want from MAC protocol:

- allow fair access to the shared radio medium;
- operation of the protocol should be distributed;
- should support real-time traffic;
- the access delay must be minimized;
- available bandwidth must be utilized efficiently;
- fair bandwidth allocation to competing nodes;
- control overhead must be minimized;
- the effects of hidden/exposed terminals must be minimized;
- must be scalable;
- should minimize power consumption;
- should provide synchronization between nodes.

# 3. Classification of MAC protocols

#### MAC protocol for ad-hoc networks must be classified into:

- Contention-based protocols without reservation/scheduling:
  - no reservation of the bandwidth is made;
  - guarantees are not possible.
- Contention-based protocols with reservation mechanisms:
  - bandwidth for transmission is reserved in advance.
  - guarantees are possible.
- Contention-based protocols with scheduling mechanisms:
  - distributed scheduling between nodes is used.
  - guarantees are possible.
- Protocols that do not fall to any of these categories:
  - implement several features of different protocol groups or
  - use completely different approach



Lecture: MAC protocols for ad hoc networks

# 4. Contention based protocols w/o reservation/scheduling

The basic idea: contention for the resource, winning node transmits.

# 4.1. MACA protocol

#### CSMA operates as follows:

- the sender sense the channel for the carrier signal;
- if the carrier is present it retries to sense the channel after some time (exp. back-off);
- if not, the sender transmits a packet.

### The following shortcomings are inherent to CSMA/CA:

- -: hidden terminal problem leading to frequent collisions;
- -: exposed terminal problem leading to worse bandwidth utilization.

#### To avoid it:

- virtual carrier sensing;
- RTS-CTS handshake before transmission.



Figure 4: Packet transmission in MACA.

Lecture: MAC protocols for ad hoc networks



Figure 5: Usage of virtual carrier sensing.

**NAV:** network allocation vector – implementation of virtual carrier sensing.

#### If the transmission fails:

- contention window: CW×2;
- retransmission.



Figure 6: Evolution of the contention window with increasing of transmission attempts.

#### Problem 1 of MACA: starvation of flows:

- both S1 and S2 have the high volume of traffic, S1 seizes the channel first;
- packets transmitted by S2 get collided and it doubles CW (CW = 2CW);
- the probability that the node S2 seizes the channel is decreasing.



Figure 7: Starvation of the flow from S2.

#### **Solution:**

- the packet header contains the field set to the current back-off value of the transmitting node;
- a node receiving this packet copies this value to its back-off counter (fairness);
- $CW = CW_{\min}$  after every successful transmission.

#### **Problem 2 of MACA:** fast adjustment of CW:

- when a node successfully transmits a packet;
- when a collisions is detected by a node.



Figure 8: Rapid adjustments of the CW.

Solution: multiplicative increase when collision, linear decrease when success.

**Problem 3 of MACA:** an exposed node is free to transmit.

- node S2 hears RTS but not CTS (exposed node);
- S2 initiates transfer to R2;
- DATA from S1 and CTS from R2 may collide, CW unnecessary increases at S2.



Figure 9: Problems with exposed node.

Solution: use of small data sending packet (DS) to update information.

#### **Problem 4 of MACA:** neighbor receivers problem:



Figure 10: Illustration of the neighbor receivers problem.

**Solution:** usage of request-for-request (RRTS) to send packets:

- if R1 had received RTS (S1) and did not respond due to R2-S2 it backs off sends RRTS;
- R2 hears RRTS waits for successive RTS-CTS between S1 and R1;
- S1 hears the RRTS, transmits regular RTS and RTS-CTS-DATA-ACK takes place.



Figure 11: Solution of the neighbor receivers problem.



Figure 12: Packets exchange in neighbor receivers problem.

# 4.2. Busy tone multiple access protocol (BTMA)

#### Multichannel protocol where the channel is separated into:

- control channel: used for data transmission;
- data channel: used for busy tone transmission.

#### BTMA works as follows:

- a node senses the control channel to check whether the busy tone is active;
- if not, it turns on the busy tone signal and starts data transmission;
- if yes, a node waits for a random period of time and repeats the procedure;
- any node that senses the carrier on the incoming data channel also transmits a busy tone.

### There are following advantages are shortcoming of the BTMA:

- +: simple enough;
- +: probability of collision is extremely low;
- -: bandwidth utilization is low (nodes are blocked in two-hop neighborhood).

# 4.3. MACA by invitation (MACA-BI)

Receiver-initiated MAC protocol providing the following extension to MACA:

- MACA: RTS-CTS-DATA-ACK;
- MACA-BI eliminates the need for CTS using the receiver's ready-to-receive (RTR) packet.



Figure 13: Transmission in MACA-BI.

- needs information about the traffic at neighboring nodes;
- this information is included into DATA packets.

# 4.4. Media access with reduced handshake (MARCH)

#### RTS packet is used only for the first DATA packet of the stream:

- nodes know about packet arrival at neighboring node listening to CTS signals;
- to relay packet, it sends a CTS packet to the concerned node.



Figure 14: Relaying using the MARCH.

#### The CTS packet in MARCH carries the following information:

- the MAC address of the sender and the receiver node;
- route identification number  $R_{id}$  to distinguish between routes.



### MARCH is characterized by the following advantages and shortcomings:

- +: very high throughput;
- +: very low control overhead;
- -: access to routing information is required  $\rightarrow$  cross-layering!

# 5. Contention-based protocols with reservations

Use bandwidth reservation techniques:

- contention occurs here **only** at resource reservation phase;
- once bandwidth is reserved a node gets an exclusive access to the media.

# 5.1. Distributed packet reservation multiple access protocol (D-PRMA)

D-PRMA is a TDMA based scheme where the channel is divided into frames.



Figure 15: Frame structure in D-PRMA.

#### Slot reservation and overcoming the hidden terminal problem:

• Request to send / busy indication (RTS/BI) and clear to send / busy indication (CTS/BI).

#### The protocol operates as follows:

- nodes having a packet for transmission contend in the first minislot of each slot;
- the remaining (m-1) minislots in the slot are granted to the node that wins the contention;
- the same slot in subsequent frames is reserved for the this terminal, until it ends transmission;
- if no node wins the first minislot, the remaining minislots subsequently used for contention;
- within a reserved slot communication is performed using TDD or FDD.

### Slot reservation mechanism performs as follows:

- a certain period in the beginning of each minislot is reserved for carrier-sensing;
- if a nodes detects a channel to be idle, it sends a RTS packet to destination using RTS/BI;
- receiver answers with CTS packets in the CTS/BI field of the same minislot;
- the sender upon receiving CTS, gets a reservation for current slot (all minislots).

#### To prioritize the voice traffic:

#### • Rule 1:

- voice nodes traffic are allowed to start contention from minislot 1 with probability 1.
- data nodes start contention from minislot 1 with probability < 1;
- for the remaining (m-1) minislots all nodes contend with probability 1.

#### • Rule 2:

- if the node winning the contention is the data node, only the current slot is reserved;
- if the node winning the contention is the voice node, subsequent slots are also reserved.

To make it real the following requirements must be satisfied:

### Requirements for nodes other than a winning one:

- hidden and exposed terminals should be avoided;
- no contention:
  - no contention in remaining minislots;
  - no contention in the subsequent slots.

Requirement 1: (no contention in other minislots)

Hidden terminal problem:

- RTS packet do not suffer a collision due to carrier sensing (winning node transmits);
- a node hearing the CTS is not allowed to transmit in the remaining period of the slot.

  Exposed terminal problem:
- A node hearing the RTS but not CTS is allowed to transmit.

Requirement 2: (no contention in other slots)

- the receiver and sender transmit a BI signal in minislot 1 of the reserved slot;
- when any node hears BI signal it does not contend in this slot;
- when the transmission is completed both sides stops transmission of BI signal.

#### Advantages and shortcomings:

- +: D-PRMA is best suited for voice applications;
- -: requires synchronization (TDMA).

# 5.2. Collision avoidance time allocation protocol (CATA)

#### The operation of CATA is based on the following principles:

- the receiver of a flow must inform the source nodes about the reserved slot;
- the source must inform destinations about interferences in the slot;
- usage of negative acknowledgements for reservation requests;
- control packet transmissions for distributing reservation information.



Figure 16: Frame structure of CATA.

• CMS – control minislot; DMS – data minislot.

#### The slot reservation is done as follows:

- the sender sense the channel to be idle in CMS 1, and transmits RTS in CMS 2;
- the receiver receives RTS in CMS 2 and responses with CTS in CMS 3;
- the sender transmits DATA in DMS part of the slot and in the subsequent slots;
- once the reservation is made the sender and receiver transmit NTS (not to send) in CMS 4.



Figure 17: Slot reservation in CATA.

# 5.3. Hop reservation multiple access protocol

### The following are the major features of this protocol:

- multichannel MAC protocol;
- half-duplex protocol;
- very slow FHSS (frequency hopping spread spectrum).

#### The channels are used as follows:

- there are L channels in the system;
- channel  $f_0$  is used for synchronization;
- (L-1) channels are divided into M frequency pairs  $(f_i, f_i^*), i = 1, 2, \ldots, M$ ;
- $\bullet$  in general, there are M hops in the system.

#### Frequencies in a pair are assigned different functions:

- $f_i$ : hop reservation packets (HP), RTS, CTS, and DATA packets;
- $f_i^*$ : transmitting and receiving ACKs for packets transmitted at  $f_i$ .



Figure 18: Frame structure of HRMA.

- $\bullet$  each slot is assigned a separate frequency hop, one of M available;
- each time slot is divided into four periods:
  - SYN period: synchronizing packet;
  - HR period: HR packet;
  - RTS period: RTS packet;
  - CTS period: CTS packet.

#### All idle nodes hop together exchanging synchronization information:

• in  $f_0$  and synchronization slot.

#### A node entering the network:

- to gather SYN and hopping information remains on  $f_0$  for a long time;
- if these information is not received, a node:
  - broadcasts its own SYN information;
  - forms a one node system.

#### When a node receives data to be transmitted it:

- listens on HR period of the following slot;
- if it hears HR packet, it backs off for a random period of time;
- if the channel is free, it transmits RTS packet to a destination in RTS period;
- receiver replies with CTS, and waits for a DATA packet;
- if the source receives the CTS correctly, the reservation of the hop is OK;
- if not, the source backs off for a random time and repeats the process later;
- both source and receiver stays on the same frequency during the whole transmission;
- when the DATA packet is sent, source hops to  $f_i^*$  and waits for ACK.

# 5.4. Soft reservation multiple access with priority assignment

### The following are two major objective of this protocol:

- support of real-time and non-real time applications;
- maximizing the multiplexing gain.

### The following are two basic principle of SRMA/PA:

- collision-avoidance handshake mechanism;
- soft reservation mechanism for time slot reservation.

### The following are the main features of SRMA/PA:

- unique frame structure;
- soft reservation capability for dynamic slot scheduling;
- dynamic and distributed priority assignment and update policies;
- time-constrained back-off algorithm.



SR – soft reservation (busy tone + priority), RR – reservation request, RC – reservation confirm.

Figure 19: Frame structure of SRMA/PA.

#### When a node has a packet to transmit:

- it determines whether slot is free using SR field;
- if SR is idle, a node transmits RR packet in the RR field;
- if SR is not idle, it carries a priority:
  - priority of a node is higher than the priority in SR: node takes control;
  - priority of a node is lower than the priority in SR: node backs off.
- Exchange of information: RR-RC-DS-ACK is similar to RTS-CTS-DATA-ACK of MACAW.

## According to SRMA/PA a sender can be in the following modes:

- idle state: a node does not have any data to transmit;
- active state that can be classified into following:
  - access state: node is trying to reserve a slot for transmission;
  - reserved state: node has already reserved a slot for transmission.

#### Priority levels:

- are initially assigned based on two service classes:
  - voice (real-time, v);
  - data (non-real-time, d).
- when a node is in access state it is assigned priorities  $p_d(n)$  and  $p_v(n)$ ;
- when a node is in reserved state it is assigned priorities  $p_d^R$  and  $p_v^R$ ;

#### A voice node can take over a slot if:

$$p_v(n) > p_d^R, \tag{1}$$

where  $p_v(n)$  is the access priority level of voice node after n reservation attempts.

#### Priorities of the terminals is updated following the algorithm:

- when a node enters the active state it is assigned a priority value  $p_v(0)$  or  $p_d(0)$ ;
- if the access attempt (sending of RR packet) is failed priorities are updated:

$$p_v(n+1) = p_v(n) + \Delta p_v, \qquad p_d(n+1) = p_d(n) + \Delta p_d,$$
 (2)

where  $\Delta p_v$  and  $\Delta p_d$  are priority increments for voice and data services.

•  $\Delta p_v$  and  $\Delta p_d$  is determined as follows:

$$\Delta p_v = \frac{\Delta p_v^R \tau_S}{\tau_r}, \qquad \Delta p_d = \alpha l_Q, \tag{3}$$

- $\tau_S$  is the slot duration;
- $-\tau_r$  is the residual lifetime for voice service;
- $-l_Q$  is the queue length;
- $-\alpha$  is the scaling coefficient.

The following constraint ensures that the voice source always may get access:

$$p_d(0) < p_d(n) < p_d^R = p_d^{\text{max}} < p_v(0) < p_v(n) < p_v^R = p_v^{\text{max}}. \tag{4}$$

#### Collisions may still occur in RR field among nodes with the same priority. To avoid:

- binary exponential back off algorithm: it doubles back off window every time a collusion occurs.
- modified binary exponential back off algorithm: it divides the window into two regions of lengths:
  - $-N_{b1}$  to use for real time traffic;
  - $-N_{b2}$  to use for non-real-time traffic.

#### If the difference between maximum delay and the residual lifetime of the HOL packet:

- increases the limit  $T_l$  one of  $N_{b1}$  slots are chosen for back off;
- does not increase the limit  $T_l$  one of  $N_{b2}$  slots are chosen for back off.



Figure 20: Back off window in SRMA/PA.

# 6. Contention-based protocols with scheduling mechanisms

Aim is on transmission scheduling at nodes considering metrics:

- delay targets of packets;
- traffic load at nodes;
- remaining battery power at nodes, etc.

## 6.1. Distributed priority scheduling (DPS)

This protocols is primarily based on IEEE 802.11 DCF using RTS-CTS-DATA-ACK mechanism.

#### The communication is as follows:

- RTS packet transmitted by a node carries priority index of the packet (delay, etc.);
- the receiver responds with CTS containing the priority tag and source ID copied from RTS;
- neighbors retrieve this information from RTS and CTS and make entry in scheduling tables;
- source sends DATA and receiver responds with ACK;
- after DATA and ACK is transmitted neighbor updates their scheduling tables.



Figure 21: Packet exchange and scheduling tables update in DPS.

## 6.2. Distributed wireless ordering protocol (DWOP)

### This protocol consists of two parts:

- MAC protocol;
- scheduling mechanism.

## The scheduling mechanisms ensures that packets access medium according to:

- First Come First Served (FCFS) scheduling discipline;
- virtual clock scheduling discipline;
- earliest deadline first scheduling discipline.

### The basis is almost similar to DPS:

- control packets distribute information about the head-of-line packets at nodes;
- each node builds up a scheduling table;
- ST is built up according to arrival times of packets as in DPS.

## The following is the major distinguished feature of DWOP is that a node:

• contends for channel only if its packet has smaller arrival time compared to all those in ST.



#### **Initial conditions:**

- Flow 2 has higher priority that flow 1;
- B and C are not within direct cov. of A;
- A is not aware that B has a higher priority.

#### **Problem:**

- A tries to get access;
- flow 2 receives an unfair share.

Figure 22: Asymmetry information problem in DWOP.

The **receiver participation** mechanisms is used to overcome this problem:

- if the receiver finds that the sender is transmitting out of order:
  - violates the FCFS scheduling and sends the **out of order** notification in CTS/ACK packet.
- on receiving out of order notification the sender completes ongoing transmission and backs off.

### Another problem: stale entries in ST:

- entry is deleted when DATA or ACK packets are received;
- if these packets get collided entry cannot be deleted.



Figure 23: Problem of stale entries in ST.

### **Solution:**

If packets with lower priority, than the node has, are transmitted it removes the oldest entry.

## 7. MAC protocols for directional antennas

The following advantages can be achieved using the directional antennas:

- reduced signal interference;
- increase in system throughput;
- improved channel reuse.

### 7.1. MACA for directional antennas

For this protocol the following assumptions are used:

- each node has only one radio transceiver;
- $\bullet$  transceiver is equipped with M directional antennas;
- each antenna covers angle  $2\pi/M$ ;
- transmissions by adjacent antennas never overlap;
- MAC layer is able to switch antennas individually or all antennas together.

Packet transmission is made using RTS-CTS-DATA-ACK.



Figure 24: Packet transmission using directional antennas.

### The main problem is to determine the direction of each other:

- idle node listens on all antennas;
- the sender transmits RTS using omnidirectional transmission;
- the receiver responses with CTS using omnidirectional transmission;
- both determines the antennas with the highest quality of the signal and switch them up.

## 7.2. Directional busy tone based MAC protocol

## The major features of this protocol are as follows:

- $\bullet$  it uses directional antenna consisting of N elements;
- for broadcast all elements are used;
- for unicast only one element is used;
- when a node is idle all elements sensing the channel;
- while receiving only one element receives the signal.

### It operates as follows:

- a node senses the channel for presence of receiver busy tone  $(BT_r)$ ;
- if  $BT_t$  is not active, it sends RTS on all antennas elements;
- the receiver receives RTS and makes sure that  $BT_t$  is not present;
- then, the receiver transmits CTS directionally to the sender and turn on the  $BT_r$ ;
- the sender turns on the  $BT_t$  and sends the DATA packet.

### 7.3. Directional MAC for ad-hoc networks

There are two protocols in this group:

- DMAC-1;
- DMAC-2.

These protocols assumes that node knows about its own location and location of its neighbors.



Figure 25: Operation of DMAC-1 protocol.

DMAC-1 protocol allows transmissions that are not possible using omnidirectional antennas.

DMAC-1 protocol may increase the probability of control packet collisions.



Figure 26: Problems with DRTS.

## In DMAC-2 the sender may send either ORTS or DRTS based on the following:

- if none of directional antennas of the node are blocked, ORTS is sent;
- otherwise, DRTS packet is sent (if that antenna element is not blocked).

The problem in Fig. 26 is resolved e.g., node G is aware of transmission between A and B.

# 8. Power control MAC protocol

This protocol allows to vary a transmission range of nodes on a per-packet basis.

### There are two modes of operation:

- BASIC protocol;
- PCM protocol.

### The BASIC protocol operates as follows:

- RTS and CTS packets are transmitted using the maximum power  $p_{\text{max}}$ ;
- RTS-CTS packets are used to decide necessary transmission power for DATA and ACK packets:
  - Method 1: The receiver send CTS with estimated transmitted level  $p_d < p_{\text{max}}$ ;
  - Method 2: CTS is sent back using  $p_{\text{max}}$  and the source calculates  $p_d$  based on  $p_{\text{max}}$ :

$$p_d = \frac{p_{\text{max}}}{p_r} R x_{th} c, \tag{5}$$

where

- \*  $Rx_{th}$  is the minimum required power and c is a constant
- \*  $p_r$  is the received signal strength.



Figure 27: The major problem associated with BASIC protocol.

**Lecture:** MAC protocols for ad hoc networks