EXERCISE AND SOLUTION (ARC CONSISTENCY)

Consider a map coloring problem that can be modelled via a CSP with

- □ Variables: e1, e2, e3, e4, e5, e6, e7
- □ Domains:
 - \square Domain of e1, e3, e4, e5, e6 is $\{ \mathbb{R}^{\square}, \mathbb{G}^{\square}, \mathbb{B}^{\square} \}$

 - \square Domain of e7 = { \square }
- Constraints: specified by the following constraint graph

- Constraints: specified by this constraint graph.
 - There is an <u>arc</u> between two <u>variables</u> if they must <u>have different colors</u>

 Apply arc-consistency and show how the domains change

Review: Arc consistency

A variable is arc-consistent if every value in its domain satisfies the variable's binary constraints

Formally:

Assume there is a binary constraint between X_i and X_i ,

 X_i is arc consistent with respect to X_i iff

for every value x for X_i , there is some allowed y for X_i that satisfies the binary constraint between X_i and X_i

Domain of e1,e3,e4,e5,e6

 $D=\{R,G,B\}$

Domain of $e2 = \{R\}$ Domain of $e7 = \{B\}$

e1	e2	e3	e4	e5	e6	e 7
R G B	R	R G B	R G B	R G B	R G B	В

e1	e2	e3	e4	e5	e6	e 7
G B	R	G	R G B	RG	G	В

e1	e2	e3	e4	e5	e6	e 7
-C-B	R	G	R G B	R G	G	В

G

e1

В

G

В

G

В

e1

