Near Surface Geophysical methods for site characterization 3. Electrical Resistivity

- 1. Playing with magnetics
- 2. Introduction into ERT
- 3. Electrical resistivity
- 4. Potential & current
- 5. Electrode arrays
- 6. Sounding & Mapping
- 7. A case study from Borkum

Gravity and magnetics: wrap-up

- Size of anomaly depends on size and density contrast
- Width of anomaly indicates depth of body
- Difference between 2D (cylinder) and 3D (sphere)
- Real data need modelling
- Large ambiguity of subsurface models
- Data are overlain by much stronger regional field
- Separation techniques necessary to extract local field
- Shape of magnetic (total field) anomaly depending on location

Electrical resistivity tomography

Maxwells equations

$$\nabla \times \mathbf{H} = \mathbf{j} + \frac{\partial}{\partial t} \mathbf{D}$$

$$\nabla \times \mathbf{E} = -\frac{\partial}{\partial t} \mathbf{B}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \cdot \mathbf{D} = q$$

Ohm's law

$$\mathbf{j} = \sigma \mathbf{E}$$

No temporal changes: stationary

Electrical resistivity methods (direct current)

Maxwells equations

$$abla imes \mathbf{H} = \mathbf{j}$$

$$\nabla \times \mathbf{E} = 0$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \cdot \mathbf{D} = q$$

Ohm's law

$$\mathbf{j} = \sigma \mathbf{E}$$

Fields of application

- Engineering geology (bedrock detection, void search, tree tomography)
- Hydrogeology (aquifer system architecture, contaminants)
- Saltwater intrusion into freshwater
- Geological investigation (faults)
- Archaeology (foundations, slag heaps)
- Agriculture and precision farming (water and clay content)
- Geohazards (landslides)
- Process monitoring (water and solute transport,

3D Investigation of a mining heap

Large-scale geology

Nickschick et al. (2019)

m a.s.l

?

400

300

200

Tree tomography

Fig. 2 Left: sketch of the field measurement set-up. BU—base unit of the system, C_1 , C_2 —shifting current electrodes, P_1 , P_2 —shifting potential electrodes for a dipol-dipol-ring configuration. Right: field test

4 m Irrigation area Tensiometer ! Electrode

Infiltration monitoring

-15 -20 -25 -30 -35 -40 -45 -50

Resistance and resistivity

$$R = \frac{V}{I} = \rho \left(\frac{L}{A}\right) \left[\Omega\right]$$

$$\rho = \frac{V}{I} \left(\frac{A}{I} \right) \left[\Omega \cdot \text{cm} \right]$$

V: voltage (V)

p: resistivity (Ω -cm)

I : current (A)

A: cross-sectional area (cm²)

R: Resistance (Ω)

L: length (cm)

- Constant electric field E = V/L
- Current I distributes on area A
 J = I / A
- **Ohms law**: current density proportional to electric field $E = \rho J$ or $J = \sigma E$ with $\sigma = 1/\rho$

$$\rightarrow \rho = E/J = (V/L)/(I/A)$$

$$\rightarrow \rho = V/I * A/L = R * G$$

Resistivity is a material property

Unit: Ω m=Vm/A.

G.. Geometric factor (m)

Conductivity

 $\sigma = 1 / \rho$ in S/m=A/Vm

Resistivity

- From diamond (1e18 Ω m) to metal (1e-7 Ω m)
- Ionic conduction: water content ion content
- surface conduction (clay minerals)

Material	Resistivity (in Ωm)		
Materiai	minimum	maximum	
gravel	50 (water saturated)	>10 ⁴ (dry)	
sand	50 (water saturated)	>10 ⁴ (dry)	
silt	20	50	
loam	30	100	
clay (wet)	5	30	
clay (dry)		>1000	
peat, humus, sludge	15	25	
sandstone	<50 (wet, jointed)	>10 ⁵ (compact)	
limestone	100 (wet, jointed)	>10 ⁵ (compact)	
schist	50 (wet, jointed)	>10 ⁵ (compact)	
igneous and metamorphic rock	<100 (weathered, wet)	>10 ⁶ (compact)	
rock salt	30 (wet)	>10 ⁶ (compact)	
domestic and industrial waste	<1	>1000 (plastic)	
natural water	10	300	
sea water (35% NaCl)	0.25		
saline water (brine)	<0.15		

Knödel et al. 2007

	Material	Minimum	Maximum in Ωm
Resistivity	Sand	50 (wassergesättigt)	$>10^4$ (trocken)
	Schluff	20	50
	Geschiebemergel	30	70
	Lößlehm	30	100
 Ionische 	Ton (erdfeucht)	3	30
Leitfähigkeit:	Ton (trocken)		> 1000
Wassergehalt Ionengehalt Grenzflächen-	Torf, Humus, Schlick	15	25
	Moorböden	10	150
	Braunkohle	10	150
	Erdöl	10^{9}	10^{12}
Leitfähigkeit	Sandstein	< 50 (klüftig, feucht)	$>10^5$ (kompakt)
(Tonminerale)	Kalkstein	100 (klüftig, feucht)	$>10^5$ (kompakt)
	Tonschiefer	50 (klüftig, feucht)	$>10^5$ (kompakt)
	Magmatite, Metamorphite	150 (verwittert, feucht)	$>10^6$ (kompakt)
	Schwarzschiefer	< 1	50
	Steinsalz	30 (feucht)	$>10^6$ (trocken)
	Destilliertes Wasser		$> 10^3$
Knödel et al. 1995	Schneefirn		$> 10^5$

Conductivity in porous media

Archie Gleichung

$$\sigma = \sigma_w \phi^m$$

 σ : elektrische Leitfähigkeit des Gesteins

 σ_w : elektrische Leitfähigkeit

des Porenfluids

 ϕ : Porosität

m: Zementationsfaktor

Continuity equation

$$abla imes \mathbf{H} = \mathbf{j}$$

$$\nabla \cdot (\nabla \times \mathbf{H}) = \nabla \cdot \mathbf{j} = 0$$

$$abla \cdot (\sigma \mathbf{E}) = 0$$

$$abla \cdot (-\sigma \nabla V) = 0$$
I (in) = I (out)

Current density at boundary

$$E_1 = E_2 \rightarrow \rho_1 j_{1x} = \rho_2 j_{2x}$$

 $j_{z1} = j_{z2}$

Point source potential and geometric factor

$$\nabla \cdot (\sigma \nabla \varphi) = -I\delta(\vec{r} - \vec{r}_s)$$

Integration over surface Current spreads over the surface of a sphere with radius *r*

$$j = I / A = I / (4\pi r^2)$$

$$U = \rho I / (4\pi r)$$

$$\rightarrow \rho = U / I * 4\pi r = R * k \rightarrow k=4\pi r$$

 \rightarrow At the surface $k=2\pi r$

$$V_{MN} = V_M - V_N = V_{AM} - V_{BM} - (V_{AN} - V_{BN})$$
$$= \frac{\rho I}{2 \cdot \pi} \left(\frac{1}{r_{AM}} - \frac{1}{r_{BM}} - \frac{1}{r_{AN}} + \frac{1}{r_{BN}} \right)$$

$$k = \frac{2\pi}{\left(\frac{1}{r_{AP}} - \frac{1}{r_{BP}} - \frac{1}{r_{AQ}} + \frac{1}{r_{BQ}}\right)}$$