

Departamento de Teoría de la Señal, Telemática y Comunicaciones Universidad de Granada

FUNDAMENTOS DE REDES

3er. curso del Grado de Ingeniería Informática – Examen de teoría - Febrero 2015

Apellidos y nombre:
PROFFSOR
Gru

Conteste a cada una de las preguntas en el espacio reservado para ello

<u>00:</u>

1. (I pto.: $10\times0,1$) Marque como verdaderas (V) o falsas (F) las siguientes afirmaciones:

(Nota: una respuesta errónea anula una correcta)

	×	j) Todas las direcciones IP públicas son únicas	<u>J</u>	
X		El protocolo IP incluye control de flujo	Ξ:	
	×	La conmutación de circuitos garantiza la recepción ordenada de la información	h)	
×		UDP incluye piggybacking	8)	
X		ventana		
		f) El control de flujo de TCP se basa en el parámetro número ACK para ajustar la	Ð	
	×	DHCP es un protocolo que permite la asignación dinámica de direcciones IP	e	1
X		d) ICMP es un protocolo seguro de capa de sesión	d)	
	×	cabeceras de protocolos		1
		El formato TLV hace referencia a la organización Tipo-Longitud-Valor en las	င	
X		Las entidades pares son entidades en distintas capas de un mismo dispositivo	ত	
×		La capa de transporte, en OSI, incluye el control de congestión	a)	
Ŧ	<			

- 2. (1.5 ptos: 1+0.5)
- a) Defina las características fundamentales a considerar en el diseño de aplicaciones en red y discuta su relación con el uso del correspondiente protocolo de capa de transporte
- b) Discuta la naturaleza de los siguientes tipos de protocolos en función de dichas características: transferencia de ficheros, navegación web, video/audio almacenado, video/audio interactivo y
- 3. (1,25 ptos: 1+0,25) Teniendo en cuenta el efecto del inicio lento, en una LAN sin congestión con distancia de 100 m entre dispositivos, 100 Mbps de velocidad de transmisión y un MSS de 2KB,
- ¿cuánto tiempo se emplea en enviar 1 GB? Describa el diagrama (resumido) de tiempos

¿y si la ventana de control de flujo es de 4 KB? Nota: Considere 2·10⁸m/s la velocidad de propagación de la onda en el medio

(1,25 ptos: 1+0,25) Un mensaje de 100 kB se transmite a lo largo de dos saltos de una red. Esta líneas de transmisión de la red no presentan errores y tienen las siguientes características: limita la longitud máxima de los paquetes a 1 kB y cada paquete tiene una cabecera de 80 bytes. Las

50Mbps	100m
10Mbps	1000Km

a) ¿Qué tiempo se emplea en la transmisión completa del mensaje mediante datagramas?

b) ¿Qué tiempo adicional se emplearía, para mismo tamaño de cabeceras, usando circuitos virtuales? correspondiente confirmación. datos y se realizan enviando un único paquete de control de extremo a extremo y su Considere que tanto el establecimiento como la desconexión se inician por parte del emisor de los

Transperencies del teme 2, características de aplicaciones & introducción a TCP/UDP

- Pérdide de d-tos

- Regulates temperales

- Randimiento

- Segurided

lables associades.

Inicio Lento

LAN sin congestion => sin retransmisiones

d = 100 m => tprep = d = 0,5 µseg

 $Vt = 100 \, \mu \text{bps}$ $Vt = 100 \, \mu \text{bps}$ $Vt = 2 \times 1024 \times 8 \text{ b} = 164 \, \mu \text{ses}$ $Vt = 100 \, \mu \text{bps}$ $Vt = 2 \times 1024 \times 8 \text{ b} = 164 \, \mu \text{ses}$ $Vt = 100 \, \mu \text{bps}$ $Vt = 100 \, \mu \text{bps}$

Nota: Si se considera el tack despreciable, podemos /debemos considerer el tprop tembién des preciable, ya que pera 60B de cabeceras tack = 4,8 uses > tprop.

a) Tpo en envier 16B (con tprop 20 & tack 20)

De forme teorica, el tiempo es: troe= N. Ter Sooms + 4 tprop + 2 tack Con les apreximecienes, de acuerde al gréfice, tetaNT++Sorms $\mathcal{N} = \left[\frac{16B}{2kB} \right] = \left[\frac{2^{30}(4)}{2 \cdot 2^{10}} \right] = 2^{49}$

tet 2 210 (164 µ seg) + SCO ms = 86,5 seg

b) si asumines torop 20 & tach 20, el resultade es el mismo. De forme teórice:

tree = Tt + 2 Tprep + toch + SOOms + (N-2). (2Tt + 2 tprep + tock) ttoe = 1 (2T++ ZTprop+ tack) + SOOms+Tprop de todos los

(*) En la asignatura, hemes considerade unidades de alnacenamiente como potencies de 2. Cabria interpretaciones alternativas.

$$t_t = \frac{\Delta kB}{50 \text{ Mbps}} = 0,164 \text{ ns}$$
 $t_p = \frac{100 \text{ m}}{2.108 \text{ m/s}} = 0,5 \mu \text{s}$ (node intermedia)

$$t_t^2 = \frac{3kB}{10 \text{ Mbps}} = 0,819 \text{ ms}$$
 $t_p^2 = \frac{106m}{2.108m/s} = 6 \text{ ms}$

Con estes valares se poede hacer un diagrama de tpes realista:

a) El tpo de transmission complete seré: (asomiende padding)
$$T_{tet}^{a} = A + B = (t_p^{i} + t_t^{i} + t_{proc}^{i} + t_p^{i}) + (109. t_t^{2})$$

$$T_{tot}^{a} = 94,4 \text{ ms}$$

- 3. (1,25 ptos: 1+0,25) Teniendo en cuenta el efecto del inicio lento, en una LAN sin congestión con distancia de 100 m entre dispositivos, 100 Mbps de velocidad de transmisión y un MSS de 2KB,
 - a) ¿cuánto tiempo se emplea en enviar 1 GB? Describa el diagrama (resumido) de tiempos
 - b) ¿y si la ventana de control de flujo es de 4 KB? Nota: Considere 2 108 m/s la velocidad de propagación de la onda en el medio

a)
$$\frac{10^6 \text{ kB}}{2 \text{ kB}} = 500000 \text{ segments}$$

 $\frac{10^6 \text{ kB}}{2 \text{ kB}} = 0.0005 \quad \text{Tr} = \frac{2.4024}{400.40}$

a)
$$\frac{10^6 \text{ kB}}{2 \text{ kB}} = 500000 \text{ segmentos}$$

 $\frac{10^6 \text{ kB}}{2 \text{ kB}} = 0.0005$ $T_t = \frac{2.1024.8}{100.10^6} = 0.164 \text{ us}$