

Single-Shot Compression for Hypothesis Testing

Fabrizio Carpi, Siddharth Garg, Elza Erkip

Introduction

Motivation: a resource constrained *client* offloads costly task-related computations to remote a *server* (edge/cloud computing).

Open need: design task-aware source coding schemes which provides *effective* representations of the source data.

Assumptions:

- task: binary hypothesis testing;
- client: constrained device which cannot perform task locally, does not have memory and can only do simple scalar compression;
- > server: hypothesis testing on a block of compressed samples.

Our work: single-shot fixed-length compression for hypothesis testing.

- problem formulation;
- analyze the error performance;
- propose a task-oriented compression algorithm for hypothesis testing.

Source	Compressor	Hypothesis Testing
$x \in \mathcal{X} = \{1, \dots, \mathcal{X} \}$	$f: \mathcal{X} \to \mathcal{M} = \{1, \dots, M\}$	$\mathbb{L}(\hat{X}^n) \stackrel{\hat{ heta}=0}{\gtrless} \log T$
$X \sim P_{ heta}(x)$, $ heta \in \{0,1\}$	$\hat{X}=\mathrm{f}(X)$, $\hat{X}\sim\hat{P}_{ heta}(\hat{X})$	$\hat{ heta}=1$

Fixed rate compression $R = \log M$. We consider $M < |\mathcal{X}|$.

Task: binary hypothesis testing.

- ▶ if type-I error $< \epsilon$, then type-II error β_n^{ϵ} (accept H_0 when H_1 is true) decays exponentially in n as $\gamma = -\lim_{n\to\infty} \frac{1}{n} \log \beta_n^{\epsilon}$;
- **our performance metric:** type-II error exponent γ ;
- ► Chernoff-Stein [1]: optimal type-II error exponent is $\gamma^* = D(P_0||P_1)$ when there is no compression;
- with compression: error exponent depends on (f, R): $\gamma_f(R)$;
- ▶ compression penalty: $\Delta_{\rm f}(R) = D(P_0||P_1) \gamma_{\rm f}(R)$.

Hypothesis Testing under Single-shot Compression

Hypothesis test on $\hat{X} \sim \hat{P}_{\theta}$:

- ▶ log-likelihood ratio test on \hat{X}^n is optimal;
- optimal error exponent is $\gamma_f^*(R) = D(\hat{P}_0||\hat{P}_1)$.
- \implies Compression penalty: $\Delta_{\rm f}(R) = D(P_0||P_1) D(\hat{P}_0||\hat{P}_1)$

Proposition 1. Expression for $\Delta_f \geq 0$:

$$\Delta_{\mathrm{f}} = \sum_{\hat{x}=1}^{M} \hat{P}_0(\hat{x}) \, D\Big(P_0(x|\hat{x}) \Big| \Big| P_1(x|\hat{x})\Big)$$

 $P_{\theta}(X|\hat{X}) = \frac{P_{\theta}(X)}{\hat{P}_{\theta}(\hat{X})} \mathbb{1}\{\hat{X} = \mathrm{f}(X)\}$ is the posterior of X given $\hat{X} = \mathrm{f}(X)$.

Note that a good task-aware compression strategy combines X that have similar posteriors $P_{\theta}(X|\hat{X})$.

Optimal compressor:

- $ightharpoonup f^* = \operatorname{arg\,max}_f D(\hat{P}_0||\hat{P}_1) = \operatorname{arg\,min}_f \Delta_f \text{ s.t. } |f| \leq M;$
- ▶ optimization over each possible f, which induces a partition of M sets over \mathcal{X} (NP-hard).

Proposed Compressor Scheme

Optimal one-step compression from $|\mathcal{X}|$ to $|\mathcal{X}|-1$:

- ▶ f combines $\{a,b\} \subset \mathcal{X}$ and the others $x \in \mathcal{X} \setminus \{a,b\}$ are one-to-one;
- ▶ i.e., $f(a) = f(b) = m \in \mathcal{M}$, $f(i) = i \in \mathcal{M} \setminus \{m\}$;

Then,

$$f^* = \underset{\{a,b\} \subset \mathcal{X}: f(a) = f(b) = m}{\operatorname{arg \, min}} \left\{ \hat{P}_0(m) D\left(P_0(x|m) \middle| \middle| P_1(x|m)\right) \right\}. \tag{1}$$

Our "KL-greedy" compressor:

- ▶ iteratively reduce the alphabet size by 1 at each step, until the compressed alphabet has size *M*;
- ightharpoonup at each step, combine $\{a, b\}$ which minimize (1);
- note that this compressor can be determined in polynomial type.

Results

 P_{θ} are shifted binomial distributions with different parameters.

Compare compression penalty Δ_f and empirical type-II error rate for:

- ightharpoonup optimal compressor f^* when feasible to compute, i.e, small $|\mathcal{X}|$;
- our KL-greedy compressor;
- ▶ universal compressor from [2], which is designed for reconstruction under log-loss distortion.

For the empirical type-II error rate, consider equal priors and T=1.

Results: Distributions and Compressor for $|\mathcal{X}|=13$, M=4

Results: Compression penalty $\Delta_{\rm f}(R)$ for $|\mathcal{X}|=13$

Results: Type-II Error Rate for $|\mathcal{X}| = 256$, n = 5

Conclusions

- ► Formulation for the optimal compressor for hypothesis testing.
- ➤ Proposed the empirical "KL-greedy" compressor: it can be computed in polynomial time and preserves the *useful* information.
- ➤ Task-aware compression achieves error rate comparable to the uncompressed case for low rates.

References

- [1] T. M. Cover and J. A. Thomas, *Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing)*. USA: Wiley-Interscience, 2006.
- [2] Y. Shkel, M. Raginsky, and S. Verdú, "Universal lossy compression under logarithmic loss," in 2017 IEEE International Symposium on Information Theory (ISIT), 2017, pp. 1157–1161.
- [3] F. Carpi, S. Garg, and E. Erkip, "Single-shot compression for hypothesis testing," in *under review*. [Online]. Available: https://fabriziocarpi.github.io/