Reinforcement Learning – COMS4047A

Hierarchical RL

Prof. Benjamin Rosman

Benjamin.Rosman1@wits.ac.za / benjros@gmail.com

Outline so far

- We started with dynamic programming
 - But want to solve problems when we don't know a model
- So we used Monte Carlo methods
 - But this needs full episode returns
- So we moved to tabular temporal difference methods
 - But these don't scale to large problems
- So we introduced function approximation
 - So we're good, right?

Some really hard problems!

Soft actor-critic, Haaronoja et al 2018

Why is RL hard?

- Sparse
 - Most actions give no reward feedback
- Delayed
 - Rewards may come after executing whole trajectories

How does RL work?

Solves a "flat" problem!

Want a robot to make coffee?

• +1 for making coffee, -1 otherwise

- Find a set of actions to achieve this
 - What are those actions? Motor commands? Complex programs?

The most important task

How do you make coffee?

Hierarchical decomposition

Decompose the problem into smaller ones

- Solve each of those smaller problems
 - Maybe recursively decompose the subproblems?

- Exploits structure in problems
 - Maybe we can reuse these subproblems elsewhere?

Some questions

$$M = (S, A, T, R, \gamma)$$

What is the best way of building a hierarchy?

Can we learn it?

- What kind of hierarchies can we construct?
 - State and action abstraction

Hierarchical RL

RL typically solves a single problem monolithically

- Hierarchical RL:
 - Create and use higher-level macro-actions (skills)
 - Problem now contains subproblems
 - Each subproblem is also an RL problem

Hierarchies of abstract machines (HAMs), MAXQ,
 Options

Skill hierarchies

- Hierarchical RL: base hierarchical control on skills
 - Component of behaviour
 - Performs continuous, low-level control
 - Can treat as discrete action

- Behaviour is modular and compositional
 - Like functions in a program!

```
def kick_ball(self, dest):
    # bunch of low level actions here
```


Options [Sutton, et al 2000]

- Theoretical basis for skill acquisition,
 - learning and planning using higher-level actions (options)

- An option is a temporally-extended action
 - An action executed over many timesteps

Intuitively

Formally

- A (Markov) option o is defined by
 - Initiation set: $I_o \subseteq S$
 - Policy: π_o : $S \times A \rightarrow [0, 1]$
 - Termination condition: $\beta_o: S \to [0, 1]$
- Can have non-Markov options
 - Functions not solely of state, but also execution history
 - Run for at most n steps, repeat n times, etc
 - Not often used, but can be useful

What about actions?

Primitive action a can be represented by an option:

•
$$I_a = S$$

•
$$\pi_a(s,b) = \begin{cases} 1, a = b \\ 0, a \neq b \end{cases}$$

•
$$\beta_a(s) = 1 \ \forall s \in S$$

• A primitive action can be executed anywhere, lasts exactly one timestep, and always chooses action a

Options as actions

Set of decisions available

Questions...

- Given an MDP (S, A, R, T, γ)
 - Replace A with set of options O (some may be primitive actions)
- How do we characterise the resulting problem?
- How do we plan with options?
- How do we learn with options?
- How do we characterise resulting policies?

SMDPs

- Resulting problem is Semi-Markov Decision Process
 - (S, O, T, R, γ)
- S is the set of states
- *O* is the set of options
- $T = Pr(s', t \mid o, s)$ is the transition model
- R(s, o, s', t) is the reward function
- γ is the per-step discount factor

SMDPs

- Note
 - All times are integers
 - "Semi" means transitions can last t>1 timesteps
 - Transition and reward functions involve time taken for option to execute

Planning with options

Regular Bellman equation:

$$Q_{\pi}(s,a) = \sum_{s'} p(s'|s,a)[r(s,a,s') + \gamma Q_{\pi}(s',\pi(s'))]$$

• Bellman equation with options:

$$Q_{\pi}(s,o) = \sum_{s',t} p(s',t|s,o) [r(s,o,s',t) + \gamma^{t}Q_{\pi}(s',\pi(s'))]$$
Value of o in s

Expected future value

Learning and Planning

- For learning:
 - Collect stochastic samples
 - Use SMDP Bellman equation
- For planning:
 - Synchronous Value Iteration
 - Value Iteration using the SMDP Bellman Equation

$$Q(S_t, A_t) = Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t)]$$

$$Q(S_t, O_t) = Q(S_t, O_t) + \alpha \left[\sum_{i=1}^{k} \gamma^{i-1} R_{t+i} + \gamma^k \max_{o} Q(S_{t+k}, o) - Q(S_t, O_t) \right]$$

8 multi-step options (to each room's 2 hallways)

Target Hallway

(Sutton, Precup and Singh, AIJ 1999)

A note on policies

 A policy over an MDP with primitive actions is a Markov policy:

$$\pi: S \times A \rightarrow [0, 1]$$

 A policy over an SMDP with options could also be Markov:

$$\pi: S \times O \rightarrow [0,1]$$

- But the policy in the original MDP may not be
 - The probability of taking an action at a state depends on the option currently running.

Semi-Markov policies

 A Markov policy for an SMDP may result in a semi-Markov policy for the underlying MDP

(Even if the options are Markov options!)

 Here, semi-Markov means that the probability of taking a primitive action at each step depends on more than the current state

Summary

- Original problem: MDP
- MDP + Options = SMDP
- Options framework allows us to both express a lowlevel policy, and plan and learn using the higherlevel SMDP
- Additionally, the ability to:
 - Create new options
 - Update option policies
 - Learn with options
 - Interrupt them ...

What are skills for?

- Adding an option changes the connectivity of the MDP
- This affects:
 - Learning and planning
 - Exploration
 - State-visit distribution
 - Branching factor
 - Diameter!

(Sutton, Precup and Singh, AIJ 1999)

Where do options come from?

- Good question!
- Locate bottleneck states
 - Learn options to reach these subgoals [Simsek and Barto, 2008]
- Could be extracted from solution to existing tasks
 - NPBRS [Ranchod, Rosman, Konidaris, 2015]
- Options that minimise planning are NP-hard [Jinnai, et al, 2019]

Hierarchies of Abstract Machines (Parr, 1998)

- Policies of core MDP are defined as programs
- These execute based on state of MDP, as well as own internal state
- Programs modelled as finite state machines (FSMs)
- There are four machine states:
 - Action states: execute action in environment
 - Call states: execute another FSM as a subroutine
 - Choice states: stochastically select a next machine state
 - Stop states: halt execution and return control to previous machine

Maze Navigation

Environment

Example of a HAM

HAMs

- Action, call, choice, stop states
- New state space is HAM states × MDP state space
 - $\mathcal{H} \times S$ state space
- Action, call and stop states are predefined!
 - So learning happens only for the choice states!
- Can apply Q-learning to learn choice states for FSMs

Discussion

- Restrict the set of possible policies
- Good way of injecting prior knowledge
- HAMs + MDP = SMDP
- Link between programming and control (Programmable HAMS, Stuart and Russell 2001)

No large scale applications to date

MAXQ value function decomposition [Dietterich, 2000]

- Taxi domain
 - 5x5 grid. Taxi can move N/S/E/W
 - Collect passenger at one of the colours
 - Drop off at one of the colours
 - -1 for each step, +10 for correct drop-off, -2 for invalid pickup, -5 for wrong dropoff

Formalising

- Let original base MDP be M = (S, A, T, R)
- Break down into subtasks: $M_0, M_1, ..., M_k$
- For each subtask, define $M_i = \{S_i, A_i, \overline{R}_i\}$
 - S_i : set of states where subtask is active
 - Terminal states are all states not in S_i
 - A_i : set of actions available
 - Primitive actions, and subtasks specified by DAG
 - \bar{R}_i : pseudo-reward associated with subtask
 - E.g. for Navigate(G), get reward for reaching G

 Even if the optimal policy was not to go to G!

Subtasks are SMDPs

- Each M_i is an SMDP with
 - State space S_i
 - Action space A_i
- Augment state space with K, a stack containing names and params of calling subtasks
 - Like call stack in programming languages
- Subtask's policy is Markov w.r.t. augmented state
- Transition probabilities are well-defined given policies of lower-level subtasks

MAXQ Discussion

- Real hierarchical decomposition of a task
- Easy reuse of sub-policies
- Very complex structure
- Learns recursively optimal policy
 - Policy for a parent task is optimal given the learnt policies of its children
 - Context-free!
- Recursively optimal policies may be highly suboptimal policies

Summary

- RL suffers from curse of dimensionality
- HRL seeks to decompose problems
- Can abstract states/actions
- Transfer between tasks
- Focus on general problem solving
 - Long lived agents
- Strong AI?!?!?!?!

Homework

- Complete assignments
- Get 100% on everything
- Apply for MSc and/or PhD
- Publish paper on RL topic ©
- Build all the Als!

