MTH1002 Calculus

A table of values of sin, cos and tan is overleaf

1. Write the following complex numbers in exponential form:

(a)
$$-i$$
 (b) $-\frac{1}{2} - \frac{i}{2}$ (c) $-\sqrt{3} + i$ (d) $3 - \sqrt{3}i$ (e) $-\frac{1}{\sqrt{3}} - i$

2. Find all the roots of the following equations and plot them on an Argand diagram:

(a)
$$z^3 = -i$$
 (b) $z^3 = 8$ (c) $z^2 = i$ (d) $z^4 = 8\sqrt{2}(1-i)$

- 3. Use de Moivre's theorem $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$, to find expressions for $\sin 3\theta$ and $\cos 3\theta$ in terms of powers of $\sin \theta$ and $\cos \theta$.
- 4. Given that $\sqrt{3} i = 2e^{11\pi/6}$, express the complex number $(\sqrt{3} i)^{10}$ in standard form. *Hint*: make use of the fact that adding integer multiples of 2π to the argument of a complex number leaves that complex number unchanged.
- 5. By writing 1 i in exponential form, show that

$$(1-i)^{99} = 2^{99/2} \left(-\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}} \right).$$

- 6. The cube roots of unity (i.e., the solutions to the equation $z^3=1$) are given by 1, $\exp(2\pi i/3)$ and $\exp(4\pi i/3)$. These three roots are often denoted by 1, ω and ω^2 respectively. Show that $\omega^3=1$ and that $1+\omega+\omega^2=0$.
- 7. Writing $z = \exp(i\theta)$, show that

$$z^n + \frac{1}{z^n} = 2\cos n\theta$$
 and $z^n - \frac{1}{z^n} = 2i\sin n\theta$.

Set n=1 in the formula involving $\cos \theta$, and use this result to find an expression for $\cos^3 \theta$ in terms of $\cos 3\theta$ and $\cos \theta$.

8. By considering the real and imaginary parts of the product $\exp(i\alpha)$ and $\exp(i\beta)$, show that

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

and

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta.$$

	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
sin	0	1/2	$1/\sqrt{2}$	$\sqrt{3}/2$	1
cos	1	$\sqrt{3}/2$	$1/\sqrt{2}$	1/2	0
tan	0	$1/\sqrt{3}$	1	$\sqrt{3}$	*