

TCS

Dr. Jürgen Koslowski

Einführung in die Logik, Übungsklausur 2023-07-17

Aufgabe 1 [12 PUNKTE]

- (a) [6 PUNKTE] Geben Sie eine induktive Definition für die Menge @(A) der Atome, die in einer aussagenlogischen Formel A auftreten.
- (b) [6 PUNKTE] Zeigen Sie, dass gebundene Umbenennung Äquivalenz erhält, d.h.,

$$Qx A \bowtie Qy A\{x/y\}$$
 sofern $y \notin FV(A)$

Aufgabe 2 [12 PUNKTE]

1. [6 PUNKTE] Wandeln Sie die Formel

$$A = \neg \Big(\neg s \to \big((p \lor q) \land r \big) \Big)$$

in eine möglichst kleine erfüllungsäquivalente KNF in Mengenschreibweise um, indem Sie geschickt(!) eine Tseitin-Transformation einsetzen.

2. [6 PUNKTE] Zeigen Sie mit Hilfe der graphischen Resolutionsmethode (mit Streichung von Klauseln), bei der pro Schritt alle Resolventen mit einer bestimmten Variablen gebildet werden, die Unerfüllbarkeit von

$$\Gamma = \{ p \lor q \lor r, \neg q, \neg p \lor q \lor r \lor s, q \lor r \lor \neg s, q \lor \neg r \}$$

Verwenden Sie zwecks leichterer Korrektur die Reihenfolge q, r, p, s.

Aufgabe 3 [12 PUNKTE]

Anwendung des Davis-Putnam-Verfahrens: Wenden Sie nach Möglichkeit die Unit- oder die Pure-Literal-Regel an, bevor sie zur Splitting-Regel greifen:

- (a) [6 PUNKTE] $\{p \land q, q \rightarrow r\} \models r$
- (b) [6 PUNKTE] Die Klauselmenge $\{\{p,q,\neg t,s\}, \{\neg p,\neg q,\neg r,s\}, \{\neg p,\neg q,\neg r\}\}$ ist erfüllbar; wieviele Möglichkeiten gibt es, mit Davis-Putnam zum Ziel zu kommen?

Aufgabe 4 [12 PUNKTE]

Wir betrachten die Signatur $S_{\text{arith}} = \{0_{/0}, 1_{/0}, +_{/2}, *_{/2}; <_{/2}\}$ der Arithmetik und die Struktur $Q = \langle \mathbb{Q}, I \rangle$ mit den rationalen Zahlen als Wertebereich und der üblichen Interpretation der Operatoren und Prädikate.

Für jedes $n \in \mathbb{N}$ setze $B_n := 0 < x \land (\underbrace{1 + \dots + 1}_{n \text{ mal}}) * x < 1$ mit freiem x und definiere

$$\Gamma := \{ A \in FO(S) : A \text{ geschlossen, und } \models_{\mathcal{Q}} A \} \cup \{ B_n : n\mathbb{N} \}$$

- (a) [6 Punkte] Zeigen Sie, dass Γ erfüllbar ist.
- (b) [6 PUNKTE] Zeigen Sie, dass es keine Belegung $\sigma \in \mathbb{Q}^{\mathcal{V}}$ gibt mit $\hat{\sigma}(G) = \mathcal{M}[\![G]\!](\sigma) = 1$ für alle $G \in \Gamma$, d.h., jedes Modell für Γ ist ein Nichtstandardmodell für die abgeschlossenen Formeln in Γ .

Aufgabe 5 [12 PUNKTE]

Zeigen Sie mit Hilfe eines Tableaus die Unerfüllbarkeit von

$$\neg \Big(\forall x \big[P(x) \to P(f(x)) \big] \to \forall x \big[P(x) \to P(f(f(x))) \big] \Big)$$

Aufgabe 6 [12 PUNKTE]

(a) [6 PUNKTE] Berechnen Sie einen allgemeinsten Unifikator für folgende Menge an Literalen:

$${Q(x,z), Q(h(y,z), f(a)), Q(h(f(b),z), z)}$$

(b) [6 PUNKTE] Zeigen Sie $\{ \forall x \exists y. L(x,y), \forall x \forall y (L(x,y) \rightarrow H(x)) \} \models \forall x. H(x)$

Aufgabe 7 [12 PUNKTE]

Bestimmen sie explizite hybride Ableitungen im Kalkül \mathcal{K}_0 von

- 1. [4 PUNKTE] $(A \rightarrow B) \rightarrow C \vdash B \rightarrow C$
- 2. [8 PUNKTE] $A \rightarrow (B \rightarrow C) \vdash \neg C \rightarrow (B \rightarrow \neg A)$

Aufgabe 8 [12 PUNKTE]

Wir betrachten nur endlich viele Variablen $V = \{p_0, p_{n-1}\}$. Eine Menge Σ aussagenlogischer Formen über V (alle Variablen stammen aus V) nennen wir folgerungsmaximal, wenn sie erfüllbar ist und für alle Formeln A über V gilt: Falls $A \notin \Sigma$, dann ist $\Sigma \cup \{A\}$ unerfüllbar.

1. Zeigen Sie: Für n=2 Variablen ist die Formelmenge

$$\{p_0 \vee p_1, p_0 \vee \neg p_1, \neg p_0 \vee p_1, p_0, p_1\}$$

nicht folgerungsmaximal.

- 2. Konstruieren Sie für eine Formelmenge Γ über V eine folgerungsmaximale Formelmenge Σ mit $\Gamma \subseteq \Sigma$.
- 3. Zeigen oder widerlegen Sie: Jede folgerungsmaximale Formelmenge ist unendlich.

Aufgabe 9 [12 PUNKTE]

Wir betrachten Strukturen $\mathcal{M} = \langle D, \mathcal{I} \rangle$ für die Signatur \mathcal{S} mit dem binären Prädikat \leq und dem unären Funktionssymbol f.

- 1. Konstruieren Sie eine Formel F_{\leq} , sodass \mathcal{M} genau dann ein Modell ist, wenn $\leq^{\mathcal{M}}$ eine partielle Ordnung auf D ist.
- 2. Geben Sie eine unendliche Struktur \mathcal{M} an, die Modell ist für

$$F = F_{\leq} \land \exists x \, \forall y \, \forall z. \, ((y \leq z) \rightarrow (y = x \lor y = z))$$

3. Geben Sie eine unendliche Struktur \mathcal{M} an, die Modell ist von F_{\leqslant} sowie

$$F_0 = \forall x \forall y. (x \leq y \to f(x) \leq f(y))$$

$$F_1 = \exists x \forall y. (f(x) \leq x \land (f(y) \leq y \to x \leq y))$$

$$F_2 = \exists z. \neg (f(z) \leq z)$$

Aufgabe 10 [12 PUNKTE]

Quiz:

Beantworten/Bewerten Sie die folgenden Fragen/Aussagen. Begründen Sie Ihre Antwort mit einem kurzen Beweis oder einem Gegenbeispiel.

- 1. Eine aussagenlogische Formelmenge Σ heißt doppelt erfüllbar, falls es mindestens zwei unterschiedliche Belegungen gibt, die Σ erfüllen. Wenn sowohl Γ als auch Δ jeweils doppelt erfüllbar sind, ist $\Gamma \cup \Delta$ dann erfüllbar?
- 2. Gegeben sei eine prädikatenlogische Formel F mit freien Variablen x und y, ein Term t und eine Konstante c. Stimmen die Formeln

$$F[x/t][y/c]$$
 und $F[y/c][x/t]$

syntaktisch überein?

- 3. Gegeben seien zwei aussagenlogische Formelmengen Σ und Γ , sodass $\Sigma \cup \Gamma$ nicht erfüllbar ist. Gibt es eine Formel F, sodass $\Sigma \models F$ und $\Gamma \models \neg F$?
- 4. Zwei binäre Junktoren \sqcap und \sqcup mögen für alle aussagenlogischen Formen A und B die Bedingung

$$\neg A \sqcap \neg B \models \neg (A \sqcup B)$$

erfüllen. Behauptung: $\{\neg, \neg\}$ ist genau dann eine vollständige Junktorenmenge, wenn dies für $\{\bot, \neg\}$ gilt.