، f(n+1) = f(n)f(n-1) و برای هر $n \ge 1$ داشته باشیم $f(\circ) = f(1) = f(1)$ ، f(n) مطلوب است ضابطهٔ f(n) بر حسب

جمله عمومی دنبالههای بازگشتی زیر را به دست آورید:

(1)
$$a_n = a_{n-1} + \beta a_{n-1}$$
 $(n \ge 7), a_0 = 7, a_1 = \beta$

$$(7) a_n = Ya_{n-1} - 1 \circ a_{n-1} \quad (n \ge 7), a_0 = 7, a_1 = 1$$

$$(\Upsilon) a_n = \mathcal{F} a_{n-1} - \lambda a_{n-1} \quad (n \ge \Upsilon), a_0 = \Upsilon, a_1 = \Upsilon_0$$

$$(f) a_n = fa_{n-1} - a_{n-1} \quad (n \ge f), a_1 = f, a_2 = 1$$

مى دانيم جمله عمومى دنبالهٔ $\{a_n\}$ به فرم $\{a_n\}$ به فرم $\{a_n\}$ است. رابطهاى

بازگشتی برای a_n بنویسید.

جملات دنبالههای $\{a_n\}$ و $\{b_n\}$ در روابط زیر صدق می کنند:

$$a_n = a_{n-1} + b_{n-1}, a_0 = 1$$

 $b_n = a_{n-1} - b_{n-1}, b_0 = 1$

جمله عمومی این دنبالهها را پیدا کنید.

۱. فرض کنید p(n,k) تعداد افرازهای عدد n به صورت جمع k عدد طبیعی باشد.

$$p(\Delta, T) = Y$$
 و $p(\Delta, T) = p(\Delta, T)$ چون به عنوان مثال $p(\Delta, T) = p(\Delta, T)$

$$p(n,k) = p(n-1,k-1) + p(n-k,k)$$
 ثابت کنید

برای دنباله بل $\{B_n\}$ ثابت کنید $\{B_n\}$ ثابت کنید $\{B_n\}$ که

در آن $B_{\circ}=B_{\circ}$. یادآوری میکنیم که B_n برابر است با تعداد $S_{\circ}=B_{\circ}=B_{\circ}$ افرازهای یک مجموعه $S_{\circ}=B_{\circ}$ عضوی به یک یا چند زیرمجموعه.

عدد استرلینک نوع اول که آن را با s(n,k) نمایش می دهیم برابر است با تعداد روشهای توزیع n شیء متمایز روی k دایره نامتمایز به طوری که روی هر دایره جایگشت دوری اشیاء لحاظ شود. به $s(\mathsf{T},\mathsf{T})=\mathsf{T}$ و $s(\mathsf{T},\mathsf{T})=\mathsf{T}$ عنوان مثال، $s(\mathsf{T},\mathsf{T})=\mathsf{T}$

(الف) مقدار s(n,n-1) و s(n,n) را بدست آورید.

(ب) ثابت کنید

$$s(n,k) = s(n-1,k-1) + (n-1)s(n-1,k).$$