Intro to Financial Engineering IEOR W4700

Homework 6

Linan Qiu 1q2137

October 25, 2015

Problem 1.

Problem 1(a).

To find q,

```
1 q_prob = function(r, delta_t, sigma) {
2    u = exp(sigma*sqrt(delta_t))
3    d = exp(-sigma*sqrt(delta_t))
4
5    return((exp(r*delta_t) - d)/(u-d))
6 }
```

To build the stock tree,

```
build_stock_tree = function(S, sigma, delta_t, N) {
2
    tree = matrix(0, nrow=N+1, ncol=N+1)
3
4
    u = exp(sigma*sqrt(delta_t))
5
    d = exp(-sigma*sqrt(delta_t))
    for (i in 1:(N+1)) {
      for (j in 1:i) {
8
        tree[i,j] = S * u^(j-1) * d^((i-1)-(j-1))
9
10
11
12
    return(tree)
13 }
```

To value the binomial option using the stock tree generated,

```
1 value_binomial_option = function(tree, sigma, delta_t, r, X,
      type) {
2
    q = q prob(r, delta t, sigma)
3
4
    option_tree = matrix(0, nrow=nrow(tree), ncol=ncol(tree))
5
    if(type == 'put') {
6
      option_tree[nrow(option_tree),] = pmax(X - tree[nrow(
          tree),], 0)
 7
      option_tree[nrow(option_tree),] = pmax(tree[nrow(tree),]
8
           - X, O)
9
    }
10
    for (i in (nrow(tree)-1):1) {
11
12
      for(j in 1:i) {
         option_tree[i, j] = ((1-q)*option_tree[i+1,j] + q*
13
            option_tree[i+1,j+1])/exp(r*delta_t)
14
      }
15
16
    return(option_tree)
17 }
```

Putting this all together,

```
binomial_option = function(type, sigma, T, r, X, S, N) {
   q = q_prob(r=r, delta_t=T/N, sigma=sigma)
   tree = build_stock_tree(S=S, sigma=sigma, delta_t=T/N, N=N
    )

option = value_binomial_option(tree, sigma=sigma, delta_t=
    T/N, r=r, X=X, type=type)

delta = (option[2,2]-option[2,1])/(tree[2,2]-tree[2,1])

return(list(q=q, stock=tree, option=option, price=option
    [1,1], delta=delta))

7 }
```

I coded this manually because none of the R packages (fOption, m4fe) seem to work (and be able to replicate the numbers on the slides). They also don't show the entire tree. So I coded my own. This code for Binomial European Option Pricing is (I made it open source) at https://github.com/linanqiu/binomial-european-option-r.

Using the variables in the question,

```
1 > print(binomial_option(type='put', sigma=0.33, T=1/4, r =0.05, X=48, S=50, N=3), 3)
```

```
2 $q
3 [1] 0.498
4
5 $stock
6
   [,1] [,2] [,3] [,4]
7 [1,] 50.0 0.0 0.0
8 [2,] 45.5 55.0 0.0
                        0.0
9 [3,] 41.3 50.0 60.5
10 [4,] 37.6 45.5 55.0 66.5
11
12 $option
13
         [,1]
             [,2] [,3] [,4]
14 [1,]
       2.25 0.000
                       0
15 [2,] 3.87 0.635
                       0
16 [3,] 6.47 1.271
                       0
                            0
17 [4,] 10.43 2.543
18
19 $price
20 [1] 2.25
21
22 $delta
23 [1] -0.339
```

The option price is 2.247762

Problem 1(b).

Shortcut function to calculate Δ from the tree produced by binomial_option:

```
delta = function(binomial_option, row, col) {
   stock_tree = binomial_option$stock
   option_tree = binomial_option$option
4   return((option_tree[row+1, col+1] - option_tree[row+1, col
        ])/(stock_tree[row+1, col+1] - stock_tree[row+1, col]))
5 }
```

• At start, S=50, so $\Delta=\frac{C_U-C_D}{S_U-S_D}=\frac{0.6353901-3.866524}{54.99739-45.45670}=-0.3386687.$ However, this Δ is for buying a put. If we are selling (writing) a put, we use $-\Delta$ stocks, hence 0.3386687 stocks.

- If stock went up, we are at S=54.99739 and C=0.6353901. Then, $\Delta=\frac{0-1.2712151}{60.49427-50.00000}=-0.1211343$. Again, We use $-\Delta$ stocks, hence need 0.1211343 stocks.
- Now that stock went down, we are at S=50,~C=1.2712151. Then $\Delta=\frac{0-2.5433006}{54.99739-45.45670}=-0.266574.$ We use $-\Delta$ stocks, hence need 0.266574 stocks.

Problem 2.

Problem 2(a).

```
1 > print(binomial_option(type='call', sigma=0.33, T=1, r=0.1,
      X=100, S=100, N=6), 3)
2 $q
3 [1] 0.529
4
5 $stock
6
         [,1]
                [,2]
                       [,3] [,4] [,5] [,6] [,7]
7 [1,] 100.0
                 0.0
                        0.0
                                0
                                      0
                                           0
         87.4 114.4
                        0.0
                                0
8 [2,]
                                      0
                                           0
                                                 0
         76.4 100.0 130.9
9 [3,]
                                0
                                      0
                                           0
                                                 0
10 [4,]
         66.8
                87.4 114.4
                              150
                                     0
                                           0
                                                 0
11 [5,]
         58.3
                76.4 100.0
                              131
                                   171
                                           0
                                                 0
12 [6,]
         51.0
                66.8
                       87.4
                              114
                                   150
                                         196
13 [7,]
         44.6
                58.3
                       76.4
                              100
                                    131
                                         171
                                               224
14
15 $option
16
         [,1]
                       [,3] [,4] [,5] [,6]
                [,2]
17 [1,] 17.28
                       0.00
                0.00
                              0.0
                                   0.0
                                         0.0
18 [2,]
         7.94 26.15
                       0.00
                              0.0
                                   0.0
                                         0.0
19 [3,]
         2.26 13.27 38.46
                              0.0
                                   0.0
                                         0.0
                                                 0
20 [4,]
         0.00
                4.34 21.65 54.7
                                   0.0
                                         0.0
                                                 0
21 [5,]
         0.00
                0.00
                       8.36 34.2 74.7
                                         0.0
                                                 0
22 [6,]
         0.00
                0.00
                       0.00 16.1 51.5 97.8
                                                 0
23 [7,]
         0.00
                0.00
                      0.00 0.0 30.9 71.4
24
25 $price
26 [1] 17.3
27
28 $delta
29 [1] 0.674
```

Problem 2(b).

```
1 > print(binomial_option(type='put', sigma=0.33, T=1, r=0.1,
      X=100, S=100, N=6), digits=3)
 2 $q
 3 [1] 0.529
 4
 5 $stock
          [,1]
 6
                 [,2]
                        [,3]
                              [, 4]
                                    [,5]
                                          [,6]
 7
  [1,]
        100.0
                  0.0
                         0.0
                                 0
                                       0
                                             0
                                                   0
                                 0
                                             0
8 [2,]
          87.4 114.4
                         0.0
                                       0
                                                   0
9 [3,]
                      130.9
          76.4 100.0
                                 0
                                       0
                                             0
                                                   0
                                             0
10 [4,]
          66.8
                 87.4 114.4
                               150
                                       0
                                                   0
11 [5,]
          58.3
                 76.4
                       100.0
                               131
                                     171
                                             0
                                                   0
                        87.4
12 [6,]
          51.0
                 66.8
                               114
                                     150
                                           196
                                                   0
13 [7,]
          44.6
                 58.3
                        76.4
                               100
                                     131
                                           171
                                                 224
14
15 $option
16
          [,1]
                        [,3]
                                        [,5]
                 [,2]
                                   [,4]
                                               [,6]
17 [1,]
          7.76
                 0.00
                        0.00 0.00e+00
                                            0
                                                  0
                                                        0
18 [2,] 12.55
                                            0
                                                  0
                                                        0
                 3.73
                        0.00 \ 0.00e+00
19 [3,] 19.43
                 6.82
                        1.09 0.00e+00
                                            0
                                                  0
                                                        0
20 [4,] 28.37 12.07
                        2.35 1.42e-15
                                            0
                                                  0
                                                        0
                                                  0
                                                        0
21 [5,] 38.38
               20.34
                        5.08 3.05e-15
                                            0
                                                  0
                                                        0
22 [6,] 47.36 31.59 10.95 6.59e-15
                                            0
23 [7,] 55.44 41.66 23.62 1.42e-14
                                            0
                                                  0
                                                        0
24
25 $price
26 [1] 7.76
27
28 $delta
29 [1] -0.326
```

Problem 2(c).

To satisfy put call parity, let C_C be price of call option and C_P be price of put option. Then, buying a call and selling a put should give us the same cash flow as a forward on the underlier.

$$C_C - C_P = S - \frac{X}{e^r}$$

$$17.27535 - 7.759088 = 100 - \frac{100}{e^{0.1}}$$

$$9.516258 = 9.516258$$

Problem 3.

Program written in above sections. Code is available at https://github.com/linanqiu/binomial-european-option-r.

Figure 1: Plot of call option value calculated using the function above against periods (from 100 to 120)

Why do 100 to 120 when one can do more!

Figure 2: Plot of call option value calculated using the function above against periods (from 100 to 500). Also this is pretty pretty. After 500 the code becomes a little slow since I'm generating N^2 matrices.

Okay I managed to speed it up by parallelizing it. Let's try a 1000 periods now (this took a minute on 8 CPU cores). The code is

9

Figure 3: Plot of call option value calculated using the function above against periods (from 100 to 1000). This is almost beautiful.

Problem 4.

Build the tree manually. Let's find q the risk neutral "probability" first.

$$S = 50 = \frac{qS_U + (1 - q)S_D}{R} = \frac{q55 + (1 - q)45}{e^{0.1*0.5}}$$

Solving for q, q = 0.7563555

Then,

$$P = \frac{qP_U + (1-q)P_D}{R} = \frac{0 + (1 - 0.7563555)(50 - 45)}{e^{0.1 * 0.5}} = 1.158809$$

To verify this (since I'm revising for the midterm anyway), let's replicate the riskless bond. Consider a portfolio with Δ stocks and 1 put.

- When $S_U = 55$, $P_U = 0$. Portfolio is worth $\Delta 55$.
- When $S_D = 45$, $P_D = 5$. Portfolio is worth $\Delta 45 + 5$.

$$\Delta 55 = \Delta 45 + 5$$

Then, $\Delta = 0.5$, ie. we must long 0.5 stocks. The value of both portfolios are

- When $S_U = 55$, $P_U = 0$. Portfolio is worth $\Delta 55 = 27.5$.
- When $S_D = 45$, $P_D = 5$. Portfolio is worth $\Delta 45 + 5 = 27.5$.

That means the portfolio must be worth $\frac{27.5}{e^{0.1*0.5}} = 26.15881$ presently. That means

$$P + \Delta S = 26.15881 = P + 0.5(50)$$

 $P = 1.158809$

The value of the put option is 1.158809 which verifies the answer from using binomial trees.

Problem 5.

Let D be the value of the derivative.

$$S = 50 = \frac{qS_U + (1 - q)S_D}{R} = \frac{q27 + (1 - q)23}{e^{0.1/6}}$$

Solving for q, q = 0.6050396

Then,

$$D = \frac{qD_U + (1 - q)D_D}{R} = \frac{(0.6050396)27^2 + (1 - 0.6050396)23^2}{e^{0.1/6}} = 639.2642$$

Can be verified via portfolio replication method.

Suppose portfolio comprises Δ stocks and 1 D.

- When $S_U = 27$, $D_U = 27^2$. Portfolio is worth $\Delta 27 + D_U$
- When $S_D=23,\, D_D=23^2.$ Portfolio is worth $\Delta 23+D_D$

$$\Delta 27 + D_U = \Delta 23 + D_D$$
$$\Delta 27 + 27^2 = \Delta 23 + 23^2$$
$$\Delta = -50$$

We short 50 stocks. Then in both states, portfolio is worth $\Delta 27 + 27^2 = -621 = \Delta 23 + 23^2$ Then the value of both portfolios before two months is $\frac{\Delta 27 + 27^2}{e^{0.1/6}} = -610.7358$.

$$D + \Delta S = D - 50(25) = -610.7358$$

 $D = 639.2642$

Verifies the answer above.