KADI SARVA VISHWAVIDHYALAYA

B.E. Semester V- Examination- April-2025

Subject Code:- IT503-N

Subject Name:- Formal Language & Automata Theory

Date: - 11/04/2025

Time:-12:30 PM to 3:30 PM

Total Marks:-70

Instructions:

- 1. Answer each section in separate Answer sheet.
- 2. Use of scientific calculator is permitted.
- 3. All questions are Compulsory.
- 4. Indicate clearly, the options you attempt along with its respective question number.
- 5. Use the last page of main supplementary of rough work.

Section - I

- Q-1. (A) Let $A = \{p,q,r,s\}$, Construct or find out Relations like Equivalence, Reflexivity, [5] Symmetry, Transitivity with notation.
 - (B) Construct DFA for the regular expression :

[5]

- 1. (0+1)*
- 2. (a+b)*.ab
- (\dot{C}) Prove for every n>=1 by mathematical induction:

[5]

$$\sum_{i=1}^{n} i = n(n+1)/2$$

OR

(C) Explain mathematical induction with any example.

[5]

Q-2. (A) Covert Following Grammer in Chomsky Normal form.

[5]

- $S \rightarrow AACD$
- $A \rightarrow aAb \mid ^{\wedge}$
- $C \rightarrow aC \mid a$
- $D \rightarrow aDa \mid bDb \mid^{\wedge}$
- (B) Minimize following Finite Automata

[5]

Q-2. (A) Define regular language and regular expressions.

[5]

Describe the following by regular expression and construct DFA

- a. L1 = the set of all strings of 0's and 1's ending in 00.
- b. L2 = the set of all strings of 0's and 1's beginning with 0 and ending with 1.
- (B) Find L1 U L2 and L1 \cap L2.

[5]

L1 = the set of all strings of 0's and 1's ending in 00.

L2 = the set of all strings of 0's and 1's beginning with 0 and ending with 1.

Q-3. (A) Define Non Deterministic Finite Automata? Compare its ability with Deterministic Finite Automata in accepting languages.

[5]

(B) Convert the following NFA to it's equivalent DFA

[5]

	0	1
р	{p,q}	{p}
q	{ r }	{r}
ľ	{\$}	ф
*s	{s}	{s}

OR

(A) Explain kleene's theorem part 1 with example of converting regular expression to equivalent NFA-null.

[5]

(B) Convert following NFA (Nondeterministic finite automata) to DFA(Deterministic Finite automata)

[5]

For $M=(Q,\Sigma,q_0,A,\delta)$ where $Q=\left\{q_0,q_1,q_2,q_3\right\}$, $\Sigma=\left\{0,1\right\}$, $A=\left\{q_3\right\}$ and δ is given by following table: Where q_0 is starting State. Where A is accepting states.

q	$\delta(q,0)$	$\delta(q,1)$
q_0	$\{q_0\}$	$\{q_0,q_1\}$
q_1	$\{q_2\}$	$\{q_2\}$
q_2	$\{q_3\}$	$\{q_3\}$
q_3	Ø	Ø

Section - II

Q-4.			
	(D)	machine simulate other Turing machines?	
	(B)	What is a recursive language and Recursive Enumerable Languages? Give	[5]
		an example.	
	· (C)	Enlist and explain the operations performed by tape in Turing machine.	[5]
		OR	
	(C)	What is the difference between NPDA and DPDA?	[5]
Q-5.	(A)	Design a Push Down Automata for the language L= { a n b n n>0}	[5]
,	(B)	What is a derivation tree? Is the grammar {E→E+E E-E id } ambiguous?	[5]
	•	Why?	
		OR	
	(A)	Design Turing machine to accept language L={an b n n >=1}	[5]
	(B)	Design a CFG for the following language. $L = \{ a^i b^j c^k \mid i, j, k \ge 0, \text{ and } i = j \text{ or } i = k \}$	[5]
Q-6.	(A)	Using Pumping lemma Show that the language L={ a n b n c n n>=1}	[5]
		is not a Context Free Grammar	
	(B)	Design Turing machine to compute palindrome over {a,b}.	. [5]
		OR	***
	(A)	Design a PDA to accept L = $\{xcy \mid x, y \in (a,b)^* \text{ and } x = y \}.$	[5]
	(B)	Definition of Context Sensitive languages and explain Linear Bounded	[5]
	(ロ)	Automata.	ارا
	٠	All the Best	
		P(II LITE DEST	