Contents

1	Lib	rary B_Unification.intro
	1.1	Introduction
	1.2	Unification
		1.2.1 Syntatic Unification
		1.2.2 Semantic Unification
		1.2.3 Boolean Unification
	1.3	Formal Verification
		1.3.1 Proof Assistance
		1.3.2 Verifying Systems
		1.3.3 Verifying Theories
	1.4	Importance
	1.5	Development
		1.5.1 Data Structures
		1.5.2 Algorithms
2	Lib	${ m rary}\ {\sf B_Unification.terms}$
	2.1	Introduction
	2.2	Terms
		2.2.1 Definitions
		2.2.2 Axioms
		2.2.3 Lemmas
	2.3	Variable Sets
		2.3.1 Definitions
		2.3.2 Examples
	2.4	Ground Terms
		2.4.1 Definitions
		2.4.2 Lemmas
		2.4.3 Examples
	2.5	Substitutions
		2.5.1 Definitions
		2.5.2 Lemmas
		2.5.3 Examples
	2.6	Unification

	2.7 2.8	Most General Unifier	$\frac{22}{23}$
3	Lib	rary B_Unification.lowenheim_formula	34
4	Lib	${f rary}\ {f B}_{f L}{f Unification.lowenheim}_{f proof}$	37
5	Libi	rary B_Unification.list_util	53
	5.1	Introduction	53
	5.2	Comparisons Between Lists	54
	5.3	Extensions to the Standard Library	56
	0.0	5.3.1 Facts about In	57
		5.3.2 Facts about incl	57
		5.3.3 Facts about <i>count_occ</i>	58
		5.3.4 Facts about concat	60
		5.3.5 Facts about Forall and existsb	61
		5.3.6 Facts about remove	63
		5.3.7 Facts about nodup and NoDup	65
		5.3.8 Facts about partition	68
	5.4	New Functions over Lists	72
	0.4	5.4.1 Distributing two Lists: distribute	72
		5.4.2 Cancelling out Repeated Elements: nodup_cancel	72
	5.5	Comparing Parity of Lists: parity_match	80
	5.6	Combining nodup_cancel and Other Functions	84
	0.0	5.6.1 Using nodup_cancel over map	84
	5.7	Using nodup_cancel over concat map	86
	0.1	Using nodup-cancer over concat map	00
6	Lib	rary B_Unification.poly	89
	6.1	Monomials and Polynomials	89
		6.1.1 Data Type Definitions	89
		6.1.2 Comparisons of monomials and polynomials	89
		6.1.3 Stronger Definitions	90
	6.2	Functions over Monomials and Polynomials	93
		v	
7	Lib	${f rary}$ B_Unification.poly_unif	132
	7.1	Introduction	132
	7.2	Substitution Definitions	132
	7.3	Distribution Over Arithmetic Operators	135
	7.4	Unifiable Definitions	141
8	Lib	$rary B_Unification.sve$	14 4
	8.1	Introduction	144
	8.2	Eliminating Variables	144
	8.3	Building Substitutions	151

8.4	Recursive Algorithm	155
8.5	Correctness	156

Chapter 1

Library B_Unification.intro

1.1 Introduction

1.2 Unification

Before defining what unification is, there is some terminology to understand. A term is either a variable or a function applied to terms. By this definition, a constant term is just a nullary function. A variable is a symbol capable of taking on the value of any term. An examples of a term is f(a, x), where f is a function of two arguments, a is a constant, and x is a variable. A term is ground if no variables occur in it. The last example is not a ground term but f(a, a) would be.

A substitution is a mapping from variables to terms. The domain of a substitution is the set of variables that do not get mapped to themselves. The range is the set of terms the are mapped to by the domain. It is common for substitutions to be referred to as mappings from terms to terms. A substitution s can be extended to this form by defining s'(u) for two cases of u. If u is a variable, then s'(u) = s(u). If u is a function f(u1, ..., un), then s'(u) = f(s'(u1), ..., s'(un)).

Unification is the process of solving a set of equations between two terms. The set of equations is referred to as a unification problem. The process of solving one of these problems can be classified by the set of terms considered and the equality of any two terms. The latter property is what distinguishes two broad groups of algorithms, namely syntactic and semantic unification. If two terms are only considered equal if they are identical, then the unification is syntactic. If two terms are equal with respect to an equational theory, then the unification is semantic.

The goal of unification is to solve equations, which means to produce a substitution that unifies those equations. A substitution s unifies an equation u = v if applying s to both sides makes them equal s(u) = s(v). In this case, we call s a solution or unifier.

The goal of a unification algorithm is not just to produce a unifier but to produce one that is most general. A substitution is a $most\ general\ unifier$ or mgu of a problem if it is more general than every other solution to the problem. A substitution s is more general

than s' if there exists a third substitution t such that s'(u) = t(s(u)) for any term u.

1.2.1 Syntatic Unification

This is the simpler version of unification. For two terms to be considered equal they must be identical. For example, the terms $x \times y$ and $y \times x$ are not syntactically equal, but would be equal modulo commutativity of multiplication. (more about solving these problems / why simpler...)

1.2.2 Semantic Unification

This kind of unification involves an equational theory. Given a set of identities E, we write that two terms u and v are equal with regards to E as u = E v. This means that identities of E can be applied to u as u' and v as v' in some way to make them syntactically equal, u' = v'. As an example, let C be the set $\{f(x, y) = f(y, x)\}$. This theory C axiomatizes the commutativity of the function f. It would then make sense to write f(a, x) = C f(x, a). In general, for an arbitrary E, the problem of E-unification is undecidable.

1.2.3 Boolean Unification

In this paper, we focus on unfication modulo Boolean ring theory, also referred to as B-unification. The allowed terms in this theory are the constants 0 and 1 and binary functions + and \times . The set of identities B is defined as the set $\{x + y = y + x, (x + y) + z = x + (y + z), x + x = 0, 0 + x = x, x \times (y + z) = (x \times y) + (x \times z), x \times y = y \times x, (x \times y) \times z = x \times (y \times z), x \times x = x, 0 \times x = 0, 1 \times x = x\}$. This set is equivalent to the theory of real numbers with the addition of x + x = 0 and $x \times x = x$.

Although a unification problem is a set of equations between two terms, we will now show informally that a B-unification problem can be viewed as a single equation t=0. Given a problem in its normal form $\{s1=t1,...,sn=t2\}$, we can transform it into $\{s1+t1=0,...,sn+tn=0\}$ using a simple fact. The equation s=t is equivalent to s+t=0 since adding t to both sides of the equation turns the right hand side into t+t which simplifies to 0. Then, given a problem $\{t1=0,...,tn=0\}$, we can transform it into $\{(t1+1)\times...\times(tn+1)=1\}$. Unifying both of these sets is equivalent because if any t1,...,tn is 1 the problem is not unifiable. Otherwise, if every t1,...,tn can be made to equal 0, then both problems will be solved.

1.3 Formal Verification

Formal verification is the term used to describe the act of verifying (or disproving) the correctness of software and hardware systems or theories. Formal verification consists of a set of techinques that perform static analysis on the behavior of a system, or the correctness

of a theory. It differs to dynamic analysis that uses simulation to evaluate the correctness of a system.

Formal verification is used because it does not have to evaluate every possible case or state to determine if a system or theory meets all the preset logical conditions and rerquirements. Moreover, as design and software systems sizes have increased (along with their simulation times), verification teams have been looking for alternative methods of proving or disproving the correctness of a system in order to reduce the required time to perform a correctness check or evaluation.

1.3.1 Proof Assistance

A proof assistant is a software tool that is used to formulate and prove or disprove theorems in computer science or mathematical logic. They are also be called interactive theorem provers and they may also involve some type of proof and text editor that the user can use to form and prove and define theorems, lemmas, functions, etc. They facilitate that process by allowing the user to search definitions, terms and even provide some kind of guidance during the formulation or proof of a theorem.

1.3.2 Verifying Systems

1.3.3 Verifying Theories

1.4 Importance

1.5 Development

There are many different approaches that one could take to go about formalizing a proof of Boolean Unification algorithms, each with their own challenges. For this development, we have opted to base our work largely off chapter 10, Equational Unification, in Term Rewriting and All That by Franz Baader and Tobias Nipkow. Specifically, section 10.4, titled Boolean Unification, details Boolean rings, data structures to represent them, and two algorithms to perform unification in Boolean rings.

We chose to implement two data structures for representing the terms of a Boolean unification problem, and two algorithms for performing unification. The two data structures chosen are an inductive Term type and lists of lists representing polynomial-form terms. The two algorithms are Lowenheim's formula and successive variable elimination.

1.5.1 Data Structures

The data structure used to represent a Boolean unification problem completely changes the shape of both the unification algorithm and the proof of correctness, and is therefore a very important decision. For this development, we have selected two different representations of

Boolean rings – first as a "Term" inductive type, and then as lists of lists representing terms in polynomial form.

The Term inductive type, used in the proof of Lowenheim's algorithm, is very simple and rather intuitive – a term in a Boolean ring is one of 5 things:

- The number 0
- The number 1
- A variable
- Two terms added together
- Two terms multiplied together

In our development, variables are represented as natural numbers.

After defining terms like this, it is necessary to define a new equality relation, referred to as term equivalence, for comparing terms. With the term equivalence relation defined, it is easy to define ten axioms enabling the ten identities that hold true over terms in Boolean rings.

The inductive representation of terms in a Boolean ring is defined in the file terms.v. Unification over these terms is defined in $term_unif.v.$

The second representation, used in the proof of successive variable elimination, uses lists of lists of variables to represent terms in polynomial form. A monomial is a list of distinct variables multiplied together. A polynomial, then, is a list of distinct monomials added together. Variables are represented the same way, as natural numbers. The terms 0 and 1 are represented as the empty polynomial and the polynomial containing only the empty monomial, respectively.

The interesting part of the polynomial representation is how the ten identities are implemented. Rather than writing axioms enabling these transformations, we chose to implement the addition and multiplication operations in such a way to ensure these rules hold true, as described in *Term Rewriting*.

Addition is performed by cancelling out all repeated occurrences of monomials in the result of appending the two lists together (ie, x+x=0). This is equivalent to the symmetric difference in set theory, keeping only the terms that are in either one list or the other (but not both). Multiplication is slightly more complicated. The product of two polynomials is the result of multiplying all combinations of monomials in the two polynomials and removing all repeated monomials. The product of two monomials is the result of keeping only one copy of each repeated variable after appending the two together.

By defining the functions like this, and maintaining that the lists are sorted with no duplicates, we ensure that all 10 rules hold over the standard coq equivalence function. This of course has its own benefits and drawbacks, but lent itself better to the nature of successive variable elimination.

The polynomial representation is defined in the file poly.v. Unification over these polynomials is defined in $poly_unif.v.$

1.5.2 Algorithms

For unification algorithms, we once again followed the work laid out in *Term Rewriting and All That* and implemented both Lowenheim's algorithm and successive variable elimination.

The first solution, Lowenheim's algorithm, is built on top of the term inductive type. Lowenheim's is based on the idea that the Lowenheim formula can take a ground unifier of a Boolean unification problem and turn it into a most general unifier. The algorithm then of course first requires finding a ground solution, accomplished through brute force, which is then passed through the formula to create a most general unifier. Lowenheim's algorithm is implemented in the file lowenheim.v, and the proof of correctness is in lowenheim_proof.v.

The second algorithm, successive variable elimination, is built on top of the list-of-list polynomial approach. Successive variable elimination is built on the idea that by factoring variables out of the equation one-by-one, we can eventually reach a ground unifier. This unifier can then be built up with the variables that were previously eliminated until a most general unifier for the original unification problem is achieved. Successive variable elimination and its proof of correctness are both in sve.v.

Chapter 2

Library B_Unification.terms

```
Require Import Bool.
Require Import Omega.
Require Import EqNat.
Require Import List.
Require Import Setoid.
Import ListNotations.
```

2.1 Introduction

In order for any proofs to be constructed in Coq, we need to formally define the logic and data across which said proofs will operate. Since the heart of our analysis is concerned with the unification of Boolean equations, it stands to reason that we should articulate precisely how algebra functions with respect to Boolean rings. To attain this, we shall formalize what an equation looks like, how it can be composed inductively, and also how substitutions behave when applied to equations.

2.2 Terms

2.2.1 Definitions

We shall now begin describing the rules of Boolean arithmetic as well as the nature of Boolean equations. For simplicity's sake, from now on we shall be referring to equations as terms.

```
Definition var := nat.
Definition var_eq_dec := Nat.eq_dec.
```

A term, as has already been previously described, is now inductively declared to hold either a constant value, a single variable, a sum of terms, or a product of terms.

```
Inductive term: Type :=
```

```
 | \ \mathsf{T0} : \mathsf{term} \\ | \ \mathsf{T1} : \mathsf{term} \\ | \ \mathsf{VAR} : \mathsf{var} \to \mathsf{term} \\ | \ \mathsf{SUM} : \mathsf{term} \to \mathsf{term} \to \mathsf{term} \\ | \ \mathsf{PRODUCT} : \mathsf{term} \to \mathsf{term} \to \mathsf{term}. \\ | \ \mathsf{For} \ \mathsf{convenience's} \ \mathsf{sake}, \ \mathsf{we} \ \mathsf{define} \ \mathsf{some} \ \mathsf{shorthanded} \ \mathsf{notation} \ \mathsf{for} \ \mathsf{readability}. \\ | \ \mathsf{Implicit} \ \mathsf{Types} \ x \ y \ z : \mathsf{term}. \\ | \ \mathsf{Implicit} \ \mathsf{Types} \ n \ m : \mathsf{var}. \\ | \ \mathsf{Notation} \ "x + y" := (\mathsf{SUM} \ x \ y) \ (\mathsf{at} \ \mathsf{level} \ 50, \ \mathsf{left} \ \mathsf{associativity}). \\ | \ \mathsf{Notation} \ "x \ * y" := (\mathsf{PRODUCT} \ x \ y) \ (\mathsf{at} \ \mathsf{level} \ 40, \ \mathsf{left} \ \mathsf{associativity}). \\ | \ \mathsf{Notation} \ "x \ * y" := (\mathsf{PRODUCT} \ x \ y) \ (\mathsf{at} \ \mathsf{level} \ 40, \ \mathsf{left} \ \mathsf{associativity}). \\ | \ \mathsf{Notation} \ "x \ * y" := (\mathsf{PRODUCT} \ x \ y) \ (\mathsf{at} \ \mathsf{level} \ 40, \ \mathsf{left} \ \mathsf{associativity}). \\ | \ \mathsf{Notation} \ "x \ * y" := (\mathsf{PRODUCT} \ x \ y) \ (\mathsf{at} \ \mathsf{level} \ 40, \ \mathsf{left} \ \mathsf{associativity}). \\ | \ \mathsf{Notation} \ "x \ * y" := (\mathsf{PRODUCT} \ x \ y) \ (\mathsf{at} \ \mathsf{level} \ 40, \ \mathsf{left} \ \mathsf{associativity}). \\ | \ \mathsf{Notation} \ "x \ * y" := (\mathsf{PRODUCT} \ x \ y) \ (\mathsf{at} \ \mathsf{level} \ 40, \ \mathsf{left} \ \mathsf{associativity}). \\ | \ \mathsf{Notation} \ "x \ * y" := (\mathsf{PRODUCT} \ x \ y) \ (\mathsf{at} \ \mathsf{level} \ 40, \ \mathsf{left} \ \mathsf{associativity}). \\ | \ \mathsf{Notation} \ "x \ * y" := (\mathsf{Notation} \ \mathsf{level} \ \mathsf{l
```

2.2.2 Axioms

Now that we have informed Coq on the nature of what a term is, it is now time to propose a set of axioms that will articulate exactly how algebra behaves across Boolean rings. This is a requirement since the very act of unifying an equation is intimately related to solving it algebraically. Each of the axioms proposed below describe the rules of Boolean algebra precisely and in an unambiguous manner. None of these should come as a surprise to the reader; however, if one is not familiar with this form of logic, the rules regarding the summation and multiplication of identical terms might pose as a source of confusion.

For reasons of keeping Coq's internal logic consistent, we roll our own custom equivalence relation as opposed to simply using '='. This will provide a surefire way to avoid any odd errors from later cropping up in our proofs. Of course, by doing this we introduce some implications that we will need to address later.

```
Parameter eqv: \mathbf{term} \to \mathbf{term} \to \mathbf{Prop}.

Infix " == " := eqv (at level 70).

Axiom sum\_comm : \forall x \ y, \ x + y == y + x.

Axiom sum\_assoc : \forall x \ y \ z, \ (x + y) + z == x + (y + z).

Axiom sum\_id : \forall x, \ \mathsf{T0} + x == x.

Axiom sum\_x\_x : \forall x, \ x + x == \mathsf{T0}.

Axiom mul\_comm : \forall x \ y, \ x \times y == y \times x.

Axiom mul\_assoc : \forall x \ y \ z, \ (x \times y) \times z == x \times (y \times z).

Axiom mul\_x\_x : \forall x, \ x \times x == x.

Axiom mul\_To\_x : \forall x, \ \mathsf{T0} \times x == \mathsf{T0}.

Axiom mul\_id : \forall x, \ \mathsf{T1} \times x == x.

Axiom mul\_id : \forall x, \ \mathsf{T1} \times x == x.

Axiom distr : \forall x \ y \ z, \ x \times (y + z) == (x \times y) + (x \times z).

Axiom term\_sum\_symmetric : \forall x \ y \ z, \ x == y \leftrightarrow x + z == y + z.
```

```
Axiom term_product_symmetric :
  \forall x \ y \ z, x == y \leftrightarrow x \times z == y \times z.
Axiom refl_comm :
  \forall t1 \ t2, t1 == t2 \rightarrow t2 == t1.
Axiom T1\_not\_equiv\_T0:
  ^{\sim}(T1 == T0).
Hint Resolve sum\_comm\ sum\_assoc\ sum\_x\_x\ sum\_id\ distr
                mul\_comm \ mul\_assoc \ mul\_x\_x \ mul\_T0\_x \ mul\_id.
   Now that the core axioms have been taken care of, we need to handle the implications
posed by our custom equivalence relation. Below we inform Coq of the behavior of our
equivalence relation with respect to rewrites during proofs.
Axiom eqv_ref: Reflexive eqv.
Axiom eqv_sym : Symmetric eqv.
Axiom eqv_trans : Transitive eqv.
Add Parametric Relation: term eqv
  reflexivity proved by @eqv_ref
  symmetry proved by @eqv_sym
  transitivity proved by @eqv_trans
  as eq\_set\_rel.
Axiom SUM_compat :
  \forall x x', x == x' \rightarrow
  \forall y y', y == y' \rightarrow
     (x + y) == (x' + y').
Axiom PRODUCT_compat:
  \forall x x', x == x' \rightarrow
  \forall y y', y == y' \rightarrow
     (x \times y) == (x' \times y').
Add Parametric Morphism: SUM with
  signature \ eqv \Longrightarrow eqv \Longrightarrow eqv \ as \ SUM\_mor.
Proof.
exact SUM_compat.
Qed.
Add Parametric Morphism: PRODUCT with
  signature \ eqv ==> eqv ==> eqv \ as \ PRODUCT\_mor.
Proof.
```

Hint Resolve eqv_ref eqv_sym eqv_trans SUM_compat PRODUCT_compat.

exact PRODUCT_compat.

Qed.

2.2.3 Lemmas

Since Coq now understands the basics of Boolean algebra, it serves as a good exercise for us to generate some further rules using Coq's proving systems. By doing this, not only do we gain some additional tools that will become handy later down the road, but we also test whether our axioms are behaving as we would like them to.

```
Lemma mul_x_x_plus_T1:
  \forall x, x \times (x + T1) == T0.
Proof.
intros. rewrite distr. rewrite mul_x_x. rewrite mul_comm.
rewrite mul_id. apply sum_xx.
Qed.
Lemma x_equal_y_x_plus_y:
  \forall x \ y, x == y \leftrightarrow x + y == \mathsf{T0}.
Proof.
intros. split.
- intros. rewrite H. rewrite sum_{-}x_{-}x. reflexivity.
- intros. rewrite term\_sum\_symmetric with (y := y) (z := y). rewrite sum\_x\_x.
  apply H.
Qed.
Hint Resolve mul_x_x_plus_T1.
Hint Resolve x_equal_y_x_plus_y.
```

These lemmas just serve to make certain rewrites regarding the core axioms less tedious to write. While one could certainly argue that they should be formulated as axioms and not lemmas due to their triviality, being pedantic is a good exercise.

```
Lemma sum_id_sym : \forall x, x + T0 == x. Proof. intros. rewrite sum\_comm. apply sum\_id. Qed. Lemma mul_id_sym : \forall x, x \times T1 == x. Proof. intros. rewrite mul\_comm. apply mul\_id. Qed. Lemma mul_T0_x_sym : \forall x, x \times T0 == T0. Proof. intros. rewrite mul\_comm. apply mul\_T0\_x. Qed. Lemma sum_assoc_opp :
```

```
\forall x\ y\ z,\ x+(y+z)==(x+y)+z. Proof.
  intros. rewrite sum\_assoc. reflexivity. Qed.

Lemma mul_assoc_opp:
  \forall x\ y\ z,\ x\times(y\times z)==(x\times y)\times z. Proof.
  intros. rewrite mul\_assoc. reflexivity. Qed.

Lemma distr_opp:
  \forall x\ y\ z,\ x\times y+x\times z==x\times(y+z). Proof.
  intros. rewrite distr. reflexivity. Qed.
```

2.3 Variable Sets

Now that the underlying behavior concerning Boolean algebra has been properly articulated to Coq, it is now time to begin formalizing the logic surrounding our meta reasoning of Boolean equations and systems. While there are certainly several approaches to begin this process, we thought it best to ease into things through formalizing the notion of a set of variables present in an equation.

2.3.1 Definitions

We now define a variable set to be precisely a list of variables; additionally, we include several functions for including and excluding variables from these variable sets. Furthermore, since uniqueness is not a property guaranteed by Coq lists and it has the potential to be desirable, we define a function that consumes a variable set and removes duplicate entries from it. For convenience, we also provide several examples to demonstrate the functionalities of these new definitions.

```
|n::n'\Rightarrow if (beq\_nat \ v \ n) then (var\_set\_remove\_var \ v \ n') else \ n:: (var\_set\_remove\_var)
v n'
  end.
Fixpoint var_set_create_unique (vars : var_set): var_set :=
  match vars with
     | ni | \Rightarrow ni |
     \mid n :: n' \Rightarrow
     if (var\_set\_includes\_var \ n \ n') then var\_set\_create\_unique \ n'
     else n :: var_set_create_unique n'
  end.
Fixpoint var_set_is_unique (vars : var_set): bool :=
  match vars with
     | ni | \Rightarrow true
     \mid n :: n' \Rightarrow
     if (var\_set\_includes\_var n n') then false
     else var\_set\_is\_unique n'
  end.
Fixpoint term_vars (t : \mathbf{term}) : \text{var\_set} :=
  match t with
     | T0 \Rightarrow ni|
      T1 \Rightarrow nil
      VAR x \Rightarrow x :: nil
      PRODUCT x \ y \Rightarrow (\text{term\_vars } x) ++ (\text{term\_vars } y)
      | SUM x y \Rightarrow (term_vars x) ++ (term_vars y)
  end.
Definition term_unique_vars (t : \mathbf{term}) : \text{var\_set} :=
  (var\_set\_create\_unique (term\_vars t)).
Lemma vs_includes_true : \forall (x : var) (lvar : list var),
  var\_set\_includes\_var \ x \ lvar = true \rightarrow ln \ x \ lvar.
 Proof.
 intros.
  induction lvar.
  - simpl; intros.
  discriminate.
  - simpl in H. remember (beq_nat x a) as H2. destruct H2.
  + simpl. left. symmetry in HeqH2. pose proof beq_nat_true as H7. specialize (H7
x \ a \ Heq H2).
     symmetry in H7. apply H7.
  + specialize (IHlvar\ H). simpl. right. apply IHlvar.
Lemma vs_includes_false : \forall (x : var) (lvar : list var),
```

```
var\_set\_includes\_var \ x \ lvar = false \rightarrow \neg ln \ x \ lvar.
 Proof.
 intros.
  induction lvar.
  - simpl; intros. unfold not. intros. destruct H0.
  - simpl in H. remember (beq_nat x a) as H2. destruct H2. inversion H.
    specialize (IHlvar\ H). firstorder. intuition. apply IHlvar. simpl in H0.
    destruct H0.
    { inversion HeqH2. symmetry in H2. pose proof beq_nat_false as H7. specialize
(H7 \ x \ a \ H2).
      rewrite H0 in H7. destruct H7. intuition. }
    \{ apply H\theta. \}
Qed.
Lemma in_dup_and_non_dup:
\forall (x: var) (lvar : list var),
 \ln x \ lvar \leftrightarrow \ln x \ (var\_set\_create\_unique \ lvar).
Proof.
 intros. split.
 - induction lvar.
  + intros. simpl in H. destruct H.
  + intros. simpl. remember(var\_set\_includes\_var \ a \ lvar) as C. destruct C.
   { symmetry in HeqC. pose proof vs_includes_true as H7. specialize (H7 a lvar HeqC).
      simpl in H. destruct H.
    { rewrite H in H?. specialize (IHlvar\ H?). apply IHlvar. }
    \{ \text{ specialize } (IHlvar \ H). \text{ apply } IHlvar. \}
   { symmetry in HeqC. pose proof vs_includes_false as H7. specialize (H7 a \ lvar \ HeqC).
      simpl in H. destruct H.
    \{ \text{ simpl. left. apply } H. \}
    { specialize (IHlvar\ H). simpl. right. apply IHlvar. }
 - induction lvar.
   + intros. simpl in H. destruct H.
   + intros. simpl in H. remember(var_set_includes_var a lvar) as C. destruct C.
      { symmetry in HeqC. pose proof vs_includes_true as H7. specialize (H7 a lvar
HeqC).
       specialize (IHlvar\ H). simpl. right. apply IHlvar.
      { symmetry in HeqC. pose proof vs_includes_false as H7. specialize (H7 a lvar
HeqC).
        simpl in H. destruct H.
       \{ \text{ simpl. left. apply } H. \}
       \{ \text{ specialize } (IHlvar\ H). \text{ simpl. right. apply } IHlvar. \} \}
```

2.3.2 Examples

```
Example var_set_create_unique_ex1 :
  var\_set\_create\_unique [0;5;2;1;1;2;2;9;5;3] = [0;1;2;9;5;3].
Proof.
simpl. reflexivity.
Qed.
Example var_set_is_unique_ex1 :
  var\_set\_is\_unique [0;2;2;2] = false.
Proof.
simpl. reflexivity.
Qed.
Example term_vars_ex1 :
  term_vars (VAR 0 + VAR 0 + VAR 1) = [0;0;1].
Proof.
simpl. reflexivity.
Qed.
Example term_vars_ex2 :
  ln 0 (term_vars (VAR 0 + VAR 0 + VAR 1)).
Proof.
simpl. left. reflexivity.
Qed.
```

2.4 Ground Terms

Seeing as we just outlined the definition of a variable set, it seems fair to now formalize the definition of a ground term, or in other words, a term that has no variables and whose variable set is the empty set.

2.4.1 Definitions

A ground term is a recursively defined proposition that is only True if and only if no variable appears in it; otherwise it will be a False proposition and no longer a ground term.

```
Fixpoint ground_term (t: \mathbf{term}): \mathsf{Prop} := \mathsf{match}\ t \ \mathsf{with}
\mid \mathsf{VAR}\ x \Rightarrow \mathsf{False}
\mid \mathsf{SUM}\ x\ y \Rightarrow (\mathsf{ground\_term}\ x) \land (\mathsf{ground\_term}\ y)
\mid \mathsf{PRODUCT}\ x\ y \Rightarrow (\mathsf{ground\_term}\ x) \land (\mathsf{ground\_term}\ y)
```

```
\mid _ \Rightarrow True end.
```

2.4.2 Lemmas

Our first real lemma (shown below), articulates an important property of ground terms: all ground terms are equivalent to either 0 or 1. This curious property is a direct result of the fact that these terms possess no variables and additioanly because of the axioms of Boolean algebra.

```
Lemma ground_term_equiv_T0_T1:
  \forall x, (ground_term x) \rightarrow (x == T0 \lor x == T1).
Proof.
intros. induction x.
- left. reflexivity.
- right. reflexivity.
- contradiction.
- inversion H. destruct IHx1; destruct IHx2; auto. rewrite H2. left. rewrite sum_id.
rewrite H2. rewrite H3. rewrite sum_id. right. reflexivity.
rewrite H2. rewrite H3. right. rewrite sum\_comm. rewrite sum\_id. reflexivity.
rewrite H2. rewrite H3. rewrite sum_xx. left. reflexivity.
- inversion H. destruct IHx1; destruct IHx2; auto. rewrite H2. left. rewrite
mul_{-}TO_{-}x. reflexivity.
rewrite H2. left. rewrite mul_{-}T0_{-}x. reflexivity.
rewrite H3. left. rewrite mul\_comm. rewrite mul\_T0\_x. reflexivity.
rewrite H2. rewrite H3. right. rewrite mul_id. reflexivity.
Qed.
```

This lemma, while intuitively obvious by definition, nonetheless provides a formal bridge between the world of ground terms and the world of variable sets.

```
Lemma ground_term_has_empty_var_set : \forall x, (ground_term x) \rightarrow (term_vars x) = []. Proof. intros. induction x.
- simpl. reflexivity.
- simpl. reflexivity.
- contradiction.
```

- firstorder. unfold term_vars. unfold term_vars in H2. rewrite H2. unfold term_vars in H1. rewrite H1. simpl. reflexivity.
- firstorder. unfold term_vars. unfold term_vars in H2. rewrite H2. unfold term_vars in H1. rewrite H1. simpl. reflexivity. Qed.

2.4.3 Examples

Here are some examples to show that our ground term definition is working appropriately.

```
Example ex_gt1:   (ground_term (T0 + T1)).  
Proof.  
simpl. split.  
- reflexivity.  
- reflexivity.  
Qed.  
Example ex_gt2:   (ground_term (VAR 0 \times T1)) \rightarrow False.  
Proof.  
simpl. intros. destruct H. apply H.  
Qed.
```

2.5 Substitutions

It is at this point in our Coq development that we begin to officially define the principal action around which the entirety of our efforts are centered: the act of substituting variables with other terms. While substitutions alone are not of great interest, their emergent properties as in the case of whether or not a given substitution unifies an equation are of substantial importance to our later research.

2.5.1 Definitions

Here we define a substitution to be a list of ordered pairs where each pair represents a variable being mapped to a term. For sake of clarity these ordered pairs shall be referred to as replacements from now on and as a result, substitutions should really be considered to be lists of replacements.

```
Definition replacement := (prod \ var \ term).
Definition subst := list replacement.
Implicit Type s : subst.
```

Our first function, find_replacement, is an auxilliary to apply_subst. This function will search through a substitution for a specific variable, and if found, returns the variable's associated term.

```
Fixpoint find_replacement (x : var) (s : subst) : term := match s with 
 <math>| ni| \Rightarrow VAR x
 | r :: r' \Rightarrow
```

```
if beq_nat (fst r) x then (snd r) else (find_replacement x r') end.
```

The apply_subst function will take a term and a substitution and will produce a new term reflecting the changes made to the original one.

```
Fixpoint apply_subst (t:\mathbf{term}) (s:\mathsf{subst}):\mathbf{term}:= match t with |\mathsf{T0}\Rightarrow\mathsf{T0}| |\mathsf{T1}\Rightarrow\mathsf{T1}| |\mathsf{VAR}\ x\Rightarrow(\mathsf{find\_replacement}\ x\ s) |\mathsf{PRODUCT}\ x\ y\Rightarrow\mathsf{PRODUCT}\ (\mathsf{apply\_subst}\ x\ s)\ (\mathsf{apply\_subst}\ y\ s) |\mathsf{SUM}\ x\ y\Rightarrow\mathsf{SUM}\ (\mathsf{apply\_subst}\ x\ s)\ (\mathsf{apply\_subst}\ y\ s) end.
```

For reasons of completeness, it is useful to be able to generate identity substitutions; namely, substitutions that map the variables of a term's variable set to themselves.

```
Fixpoint build_id_subst (lvar: var\_set): subst := match lvar with | \ nil \Rightarrow nil \ | \ v:: v' \Rightarrow (cons (v, (VAR v))  (build_id_subst v')) end.
```

Since we now have the ability to generate identity substitutions, we should now formalize a general proposition for testing whether or not a given substitution is an identity substitution of a given term.

```
Definition subst_equiv (s1 \ s2: \text{subst}): \text{Prop} := \forall t, \text{apply\_subst} \ t \ s1 == \text{apply\_subst} \ t \ s2.
Definition subst_is_id_subst} (t: \text{term}) \ (s: \text{subst}): \text{Prop} := (\text{apply\_subst} \ t \ s) == t.
```

2.5.2 Lemmas

Having now outlined the functionality of a substitution, let us now begin to analyze some implications of its form and composition by proving some lemmas.

Given that we have a definition for identity substitutions, we should prove that identity substitutions do not modify a term.

```
intros. induction t.
  simpl. reflexivity.
  simpl. reflexivity.
  simpl. induction l.
    simpl. reflexivity.
    simpl. destruct (beq_nat a \ v) eqn: e.
       apply beq_nat_true in e. rewrite e. reflexivity.
       apply IHl.
  simpl. rewrite IHt1. rewrite IHt2. reflexivity.
  simpl. rewrite IHt1. rewrite IHt2. reflexivity.
Qed.
Lemma apply_subst_compat : \forall (t \ t' : \mathbf{term}),
      t == t' \rightarrow \forall (sigma: subst), (apply_subst \ t \ sigma) == (apply_subst \ t' \ sigma).
Proof.
intros. induction t.
  - induction t.
    + simpl. reflexivity.
    + simpl. apply H.
    + simpl. rewrite H.
Admitted.
Add Parametric Morphism: apply_subst with
       signature \ eqv \Longrightarrow eqv \Longrightarrow eqv \ as \ apply\_subst\_mor.
Proof.
  exact apply_subst_compat.
```

Qed.

An easy thing to prove right off the bat is that ground terms, i.e. terms with no variables, cannot be modified by applying substitutions to them. This will later prove to be very relevant when we begin to talk about unification.

```
Lemma ground_term_cannot_subst :
  \forall x, (ground_term x) \rightarrow (\forall s, apply_subst x s == x).
Proof.
intros. induction s.
  - apply ground_term_equiv_T0_T1 in H. destruct H.
  + rewrite H. simpl. reflexivity.
  + rewrite H. simpl. reflexivity.
  - apply ground_term_equiv_T0_T1 in H. destruct H. rewrite H.
    + simpl. reflexivity.
    + rewrite H. simpl. reflexivity.
Qed.
   A fundamental property of substitutions is their distributivity and associativity across
the summation and multiplication of terms. Again the importance of these proofs will not
become apparent until we talk about unification.
Lemma subst_distribution:
  \forall s \ x \ y, apply_subst x \ s + apply_subst y \ s == apply_subst (x + y) \ s.
Proof.
intro. induction s. simpl. intros. reflexivity. intros. simpl. reflexivity.
Lemma subst_associative :
  \forall s \ x \ y, apply_subst x \ s \times \text{apply\_subst} \ y \ s == \text{apply\_subst} \ (x \times y) \ s.
intro. induction s. intros. reflexivity. intros. simpl. reflexivity.
Qed.
Lemma subst_sum_distr_opp:
  \forall s \ x \ y, apply_subst (x + y) \ s == apply_subst \ x \ s + apply_subst \ y \ s.
Proof.
  intros.
  apply refl_comm.
  apply subst_distribution.
Qed.
Lemma subst_mul_distr_opp:
  \forall s \ x \ y, apply_subst (x \times y) \ s == apply_subst \ x \ s \times apply_subst \ y \ s.
Proof.
  intros.
  apply refl_comm.
  apply subst_associative.
```

```
Qed.

Lemma var_subst:
\forall \ (v : \text{var}) \ (ts : \textbf{term}) \ ,
(apply\_subst \ (VAR \ v) \ (cons \ (v \ , \ ts) \ nil) \ ) == ts.

Proof.
intros. simpl. destruct (beq_nat v \ v) eqn: e. apply beq_nat_true in e.
```

2.5.3 Examples

Qed.

Here are some examples showcasing the nature of applying substitutions to terms.

```
Example subst_ex1:  
   (apply_subst (T0 + T1) []) == T0 + T1.  
Proof.  
intros. reflexivity.  
Qed.  
Example subst_ex2:  
   (apply_subst (VAR 0 \times VAR 1) [(0, T0)]) == T0.  
Proof.  
intros. simpl. apply mul_T T0_T x.  
Qed.
```

reflexivity. apply beq_nat_false in e. firstorder.

2.6 Unification

Now that we have established the concept of term substitutions in Coq, it is time for us to formally define the concept of Boolean unification. Unification, in its most literal sense, refers to the act of applying a substitution to terms in order to make them equivalent to each other. In other words, to say that two terms are unifiable is to really say that there exists a substitution such that the two terms are equal. Interestingly enough, we can abstract this concept further to simply saying that a single term is unifiable if there exists a substitution such that the term will be equivalent to 0. By doing this abstraction, we can prove that equation solving and unification are essentially the same fundamental problem.

Below is the initial definition for unification, namely that two terms can be unified to be equivalent to one another. By starting here we will show each step towards abstracting unification to refer to a single term.

```
Definition unifies (a \ b : \mathbf{term}) \ (s : \mathsf{subst}) : \mathsf{Prop} := (\mathsf{apply\_subst} \ a \ s) = (\mathsf{apply\_subst} \ b \ s).
```

Here is a simple example demonstrating the concept of testing whether two terms are unified by a substitution.

```
Example ex_unif1:
  unifies (VAR \ 0) \ (VAR \ 1) \ ((0, \ T1) \ :: \ (1, \ T1) \ :: \ nil).
Proof.
unfold unifies. simpl. reflexivity.
Qed.
   Now we are going to show that moving both terms to one side of the equivalence relation
through addition does not change the concept of unification.
Definition unifies_TO (a \ b : \mathbf{term}) \ (s : \mathsf{subst}) : \mathsf{Prop} :=
  (apply\_subst \ a \ s) + (apply\_subst \ b \ s) == T0.
Lemma unifies_T0_equiv:
  \forall x \ y \ s, unifies x \ y \ s \leftrightarrow \text{unifies\_T0} \ x \ y \ s.
Proof.
intros. split.
  intros. unfold unifies_\mathsf{T0}. unfold unifies in H. rewrite H.
  rewrite sum_{-}x_{-}x. reflexivity.
  intros. unfold unifies_TO in H. unfold unifies.
  rewrite term\_sum\_symmetric with (x := apply\_subst x s + apply\_subst y s)
  (z := \mathsf{apply\_subst}\ y\ s) in H. rewrite sum\_id in H.
  rewrite sum_{-}comm in H.
  rewrite sum\_comm with (y := apply\_subst y s) in H.
  rewrite \leftarrow sum_assoc in H.
  rewrite sum_{-}x_{-}x in H.
  rewrite sum_id in H.
  apply H.
}
Qed.
   Now we can define what it means for a substitution to be a unifier for a given term.
Definition unifier (t : \mathbf{term}) (s : \mathsf{subst}) : \mathsf{Prop} :=
  (apply\_subst t s) == T0.
Example unifier_ex1:
  (unifier (VAR 0) ((0, T0) :: nil)).
Proof.
unfold unifier. simpl. reflexivity.
Qed.
```

To ensure our efforts were not in vain, let us now prove that this last abstraction of the unification problem is still equivalent to the original.

Lemma unifier_distribution:

```
\forall x \ y \ s, (unifies_T0 x \ y \ s) \leftrightarrow (unifier (x + y) \ s).
Proof.
intros. split.
  intros. unfold unifies_TO in H. unfold unifier.
  rewrite \leftarrow H. symmetry. apply subst_distribution.
  intros. unfold unifies_T0. unfold unifier in H.
  rewrite \leftarrow H. apply subst_distribution.
Qed.
   Lastly let us define a term to be unifiable if there exists a substitution that unifies it.
Definition unifiable (t : term) : Prop :=
  \exists s, unifier t s.
Example unifiable_ex1:
  \exists x, unifiable (x + T1).
Proof.
\exists (T1). unfold unifiable. unfold unifier.
\exists nil. simpl. rewrite sum_x. reflexivity.
Qed.
```

2.7 Most General Unifier

```
Definition substitution_composition (s\ s'\ delta: subst)\ (t: term): Prop:= \ \forall\ (x: var), apply_subst\ (apply_subst\ (VAR\ x)\ s)\ delta == apply_subst\ (VAR\ x)\ s'\ . Definition more_general_substitution (s\ s': subst)\ (t: term): Prop:= \ \exists\ delta,\ substitution\_composition\ s\ s'\ delta\ t. Definition most_general_unifier (t: term)\ (s: subst): Prop:= \ (unifier\ t\ s) \to (\forall\ (s': subst),\ unifier\ t\ s' \to more\_general\_substitution\ s\ s'\ t\ ). Definition reproductive_unifier (t: term)\ (sig: subst): Prop:= \ unifier\ t\ sig \to \ \forall\ (tau: subst)\ (x: var),\ unifier\ t\ tau \to \ (apply\_subst\ (VAR\ x)\ sig\ )\ tau) == (apply\_subst\ (VAR\ x)\ tau). Lemma reproductive_is_mgu: \forall\ (t: term)\ (u: subst),\ reproductive_unifier\ t\ u \to \ most\_general\_unifier\ t\ u. Proof.
```

```
intros. unfold most_general_unifier. unfold reproductive_unifier in H. unfold more_general_substitution . unfold substitution_composition. intros. specialize (H \ H0). \exists \ s' . intros. specialize (H \ s' \ x). specialize (H \ H1). apply H. Qed. Lemma most_general_unifier_compat : \forall \ (t \ t' : \mathbf{term}), t == t' \to \forall \ (sigma: subst), (most_general_unifier \ t \ sigma) \leftrightarrow (most_general_unifier \ t' \ sigma). Proof. Admitted.
```

2.8 Auxilliary Computational Operations and Simplifications

These functions below will come in handy later during the Lowenheim formula proof.

```
Fixpoint identical (a \ b: \mathbf{term}) : \mathbf{bool} :=
  \mathtt{match}\ a , b with
       T0, T0 \Rightarrow true
       T0, \_ \Rightarrow false
       T1, T1 \Rightarrow true
       T1, \_\Rightarrow false
       VAR x, VAR y \Rightarrow \text{if beq\_nat } x \text{ } y \text{ then true else false}
       VAR x, \_ \Rightarrow \mathsf{false}
       PRODUCT x y, PRODUCT x1 y1 \Rightarrow if (identical x x1) && (identical y y1)) then
true
                                                      else false
       PRODUCT x y, \_ \Rightarrow \mathsf{false}
      | SUM x y, SUM x1 y1 \Rightarrow if ((identical x x1) && (identical y y1)) then true
                                                      else false
      | SUM x y, \rightarrow false
   end.
Definition plus_one_step (a b : term) : term :=
   match a, b with
       T0, T0 \Rightarrow T0
       T0, T1 \Rightarrow T1
       T1, T0 \Rightarrow T1
       T1, T1 \Rightarrow T0
       \_, \_ \Rightarrow \mathsf{SUM} \ a \ b
   end.
Definition mult_one_step (a \ b : term) : term :=
```

```
match a, b with
       T0, T0 \Rightarrow T0
       T0, T1 \Rightarrow T0
       T1, T0 \Rightarrow T0
       T1, T1 \Rightarrow T1
       \_ , \_ \Rightarrow PRODUCT a b
  end.
Fixpoint simplify (t : term) : term :=
  match t with
      T0 \Rightarrow T0
       T1 \Rightarrow T1
       VAR x \Rightarrow VAR x
       PRODUCT x \ y \Rightarrow \text{mult\_one\_step} (simplify x) (simplify y)
      | SUM x y \Rightarrow \text{plus\_one\_step} (simplify x) (simplify y)
  end.
Lemma pos_left_sum_compat : \forall (t \ t1 \ t2 : \mathbf{term}),
       t == t1 \rightarrow \text{plus\_one\_step } t1 \ t2 == \text{plus\_one\_step } t \ t2.
Proof.
  intros. induction t1.
  - induction t.
     + reflexivity.
     + apply T1\_not\_equiv\_T0 in H. inversion H.
     + induction t2.
         \{ \text{ simpl. rewrite } H. \text{ rewrite } sum\_x\_x. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } H. \text{ rewrite } sum\_id. \text{ reflexivity. } \}
        \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
     + induction t2.
         { simpl. rewrite H. rewrite sum_x_x. reflexivity. }
         { simpl. rewrite H. rewrite sum_id. reflexivity. }
        \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
        \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
     + induction t2.
         \{ \text{ simpl. rewrite } H. \text{ rewrite } sum\_x\_x. \text{ reflexivity. } \}
        { simpl. rewrite H. rewrite sum_id. reflexivity. }
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ simpl. rewrite H. reflexivity. \}
        \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
  - induction t.
     + induction t2.
```

```
\{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
   + induction t2.
      { simpl. reflexivity. }
      { simpl. reflexivity. }
      { simpl. reflexivity. }
      { simpl. reflexivity. }
      { simpl. reflexivity. }
   + induction t2.
      \{ \text{ simpl. rewrite } H. \text{ rewrite } sum\_comm. \text{ rewrite } sum\_id. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ rewrite } sum\_x\_x. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
   + induction t2.
      \{ simpl. rewrite H. rewrite sum\_comm. rewrite sum\_id. reflexivity. \}
      \{ \text{ simpl. rewrite } H. \text{ rewrite } sum\_x\_x. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
   + induction t2.
      \{ simpl. rewrite H. rewrite sum\_comm. rewrite sum\_id. reflexivity. \}
      { simpl. rewrite H. rewrite sum_x_x. reflexivity. }
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ simpl. rewrite H. reflexivity. \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
- induction t.
   + induction t2.
      \{ \text{ simpl. rewrite } H. \text{ rewrite } sum\_x\_x. \text{ rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } \leftarrow H. \text{ rewrite } sum\_id. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ simpl. rewrite H. reflexivity. \}
   + induction t2.
      \{ 	ext{ simpl. rewrite } \leftarrow H. 	ext{ rewrite } 	ext{sum\_comm. rewrite } 	ext{sum\_id. reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ rewrite } sum\_x\_x. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
```

```
+ induction t2.
       simpl. rewrite H. reflexivity. \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
        simpl. rewrite H. reflexivity. \}
        simpl. rewrite H. reflexivity. \}
      \{ simpl. rewrite H. reflexivity. \}
   + induction t2.
      \{ simpl. rewrite H. reflexivity. \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
        simpl. rewrite H. reflexivity. }
      \{ simpl. rewrite H. reflexivity. \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
   + induction t2.
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ simpl. rewrite H. reflexivity. \}
      \{ simpl. rewrite H. reflexivity. \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
- induction t.
   + induction t2.
      \{ \text{ simpl. rewrite } \leftarrow H. \text{ rewrite } sum\_x\_x. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } \leftarrow H. \text{ rewrite } \text{sum\_id. reflexivity. } \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
       simpl. rewrite \leftarrow H. reflexivity. \}
      \{ simpl. rewrite \leftarrow H. reflexivity. \}
   + induction t2.
      \{ 	ext{ simpl. rewrite } \leftarrow H. 	ext{ rewrite } 	ext{sum\_comm. rewrite } 	ext{sum\_id. reflexivity. } \}
      \{ simpl. rewrite H. rewrite sum_{-}x_{-}x. reflexivity. \}
        simpl. rewrite \leftarrow H. reflexivity. }
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
   + induction t2.
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ simpl. rewrite H. reflexivity. \}
      \{ simpl. rewrite H. reflexivity. \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
   + induction t2.
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
```

```
\{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
     + induction t2.
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
          simpl. rewrite H. reflexivity. }
         \{ simpl. rewrite H. reflexivity. \}
        \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
 - induction t.
     + induction t2.
          simpl. rewrite \leftarrow H. rewrite sum_{-}x_{-}x. reflexivity. }
          simpl. rewrite \leftarrow H. rewrite sum\_id. reflexivity. }
         \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
          simpl. rewrite \leftarrow H. reflexivity. }
         \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
     + induction t2.
         \{ \text{ simpl. rewrite } \leftarrow H. \text{ rewrite } sum\_comm. \text{ rewrite } sum\_id. \text{ reflexivity. } \}
         \{ simpl. rewrite H. rewrite sum\_x\_x. reflexivity. \}
         \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
         \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
         \{ 	ext{ simpl. rewrite} \leftarrow \textit{H}. 	ext{ reflexivity.} \}
     + induction t2.
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
          simpl. rewrite H. reflexivity. }
          simpl. rewrite H. reflexivity. \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
     + induction t2.
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ simpl. rewrite H. reflexivity. \}
          simpl. rewrite H. reflexivity. }
         \{ 	ext{ simpl. rewrite } H. 	ext{ reflexivity. } \}
     + induction t2.
        \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
          simpl. rewrite H. reflexivity. \}
          simpl. rewrite H. reflexivity. \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
Qed.
Lemma pos_right_sum_compat : \forall (t t1 t2 : term),
       t == t2 \rightarrow plus\_one\_step t1 t2 == plus\_one\_step t1 t.
Proof.
```

```
intros. induction t1.
  - induction t.
     + induction t2.
        { simpl. reflexivity. }
          simpl. rewrite H. reflexivity. }
        \{ simpl. rewrite H. rewrite sum\_x\_x. apply H. \}
        \{ \text{ simpl. rewrite } \leftarrow H. \text{ rewrite } sum\_x\_x. \text{ reflexivity. } \}
          simpl. rewrite \leftarrow H. rewrite sum_{-}x_{-}x. reflexivity. }
     + induction t2.
          simpl. rewrite H. reflexivity. }
        { simpl. reflexivity. }
        { simpl. rewrite H. rewrite sum_id. reflexivity. }
          simpl. rewrite H. rewrite sum_id. reflexivity. }
        \{ 	ext{ simpl. rewrite } \leftarrow H. 	ext{ rewrite } 	ext{sum\_id}. 	ext{ reflexivity. } \}
     + induction t2.
        \{ simpl. rewrite H. rewrite sum\_x\_x. reflexivity. \}
        \{ simpl. rewrite H. rewrite sum\_id. reflexivity. \}
        { simpl. rewrite H. rewrite sum_id. reflexivity. }
        \{ simpl. rewrite H. rewrite \mathit{sum\_id}. \mathsf{reflexivity}. \}
        \{ 	ext{ simpl. rewrite } \leftarrow \textit{H}. 	ext{ rewrite } \textit{sum\_id}. 	ext{ reflexivity. } \}
     + induction t2.
        \{ \text{ simpl. rewrite } H. \text{ rewrite } sum\_x\_x. \text{ reflexivity. } \}
        \{ \text{ simpl. rewrite } H. \text{ rewrite } sum\_id. \text{ reflexivity. } \}
         simpl. rewrite H. rewrite sum_id. reflexivity. }
          simpl. rewrite H. rewrite sum_id. reflexivity. }
        \{ \text{ simpl. rewrite } \leftarrow H. \text{ rewrite } sum\_id. \text{ reflexivity. } \}
     + induction t2.
        \{ simpl. rewrite H. rewrite sum_{-}x_{-}x. reflexivity. \}
        { simpl. rewrite H. rewrite sum_id. reflexivity. }
        \{ simpl. rewrite H. rewrite \mathit{sum\_id}. \mathsf{reflexivity}. \}
          simpl. rewrite H. rewrite sum_id. reflexivity. }
        \{ \text{ simpl. rewrite } \leftarrow H. \text{ rewrite } sum\_id. \text{ reflexivity. } \}
  - induction t.
     + induction t2.
        \{ simpl. reflexivity. \}
        \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
        \{ \text{ simpl. rewrite } \leftarrow H. \text{ rewrite } sum\_comm. \text{ rewrite } sum\_id. \text{ reflexivity. } \}
        \{ simpl. rewrite \leftarrow \mathit{H}. rewrite \mathit{sum\_comm}. rewrite \mathit{sum\_id}. \mathsf{reflexivity}. \}
        \{ \text{ simpl. rewrite } \leftarrow H. \text{ rewrite } sum\_comm. \text{ rewrite } sum\_id. \text{ reflexivity. } \}
     + induction t2.
        \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
        { simpl. reflexivity. }
```

```
\{ \text{ simpl. rewrite } H. \text{ rewrite } sum\_x\_x. \text{ reflexivity. } \}
      { simpl. rewrite H. rewrite sum_x_x. reflexivity. }
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ rewrite } sum\_x\_x. \text{ reflexivity. } \}
   + induction t2.
      { simpl. rewrite H. rewrite sum_comm. rewrite sum_id. reflexivity. }
      \{ simpl. rewrite H. rewrite sum_{-}x_{-}x. reflexivity. \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ simpl. rewrite \leftarrow H. reflexivity. \}
   + induction t2.
      \{ simpl. rewrite H. rewrite sum\_comm. rewrite sum\_id. reflexivity. \}
      { simpl. rewrite H. rewrite sum_{-}x_{-}x. reflexivity. }
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
   + induction t2.
      { simpl. rewrite H. rewrite sum_comm. rewrite sum_id. reflexivity. }
      \{ \text{ simpl. rewrite } H. \text{ rewrite } sum\_x\_x. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ simpl. rewrite H. reflexivity. \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
- induction t.
   + induction t2.
      { simpl. reflexivity. }
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
      \{ simpl. rewrite \leftarrow H. reflexivity. \}
   + induction t2.
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      { simpl. reflexivity. }
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
   + induction t2.
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
   + induction t2.
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
```

```
\{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
       simpl. rewrite H. reflexivity. \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
   + induction t2.
      \{ simpl. rewrite H. reflexivity. \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
       simpl. rewrite H. reflexivity. \}
       simpl. rewrite H. reflexivity. \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
- induction t.
   + induction t2.
      { simpl. reflexivity. }
       simpl. rewrite H. reflexivity. \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
       simpl. rewrite \leftarrow H. reflexivity. \}
      \{ simpl. rewrite \leftarrow H. reflexivity. \}
   + induction t2.
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      { simpl. reflexivity. }
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
       simpl. rewrite H. reflexivity. \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
   + induction t2.
      \{ simpl. rewrite H. reflexivity. \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ simpl. rewrite H. reflexivity. \}
       simpl. rewrite H. reflexivity. \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
   + induction t2.
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ simpl. rewrite H. reflexivity. \}
      \{ simpl. rewrite H. reflexivity. \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
   + induction t2.
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ simpl. rewrite H. reflexivity. \}
       simpl. rewrite H. reflexivity. \}
       simpl. rewrite H. reflexivity. \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
- induction t.
```

```
+ induction t2.
        { simpl. reflexivity. }
        \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
          simpl. rewrite \leftarrow H. reflexivity. }
          simpl. rewrite \leftarrow H. reflexivity. }
        \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
     + induction t2.
          simpl. rewrite H. reflexivity. \}
          simpl. reflexivity. }
          simpl. rewrite H. reflexivity. \}
          simpl. rewrite H. reflexivity. \}
        \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
     + induction t2.
        \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
        \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ simpl. rewrite H. reflexivity. \}
         \{ simpl. rewrite H. reflexivity. \}
        \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
     + induction t2.
        \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
          simpl. rewrite H. reflexivity. }
         \{ simpl. rewrite H. reflexivity. \}
          simpl. rewrite H. reflexivity. }
         \{ 	ext{ simpl. rewrite} \leftarrow \textit{H}. 	ext{ reflexivity.} \}
     + induction t2.
        \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
          simpl. rewrite H. reflexivity. \}
          simpl. rewrite H. reflexivity. \}
        \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
        \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
Qed.
Lemma pos_left_mul_compat : \forall (t \ t1 \ t2 : \mathbf{term}),
       t == t1 \rightarrow \text{mult\_one\_step} \ t1 \ t2 == \text{mult\_one\_step} \ t \ t2.
Proof.
Admitted.
Lemma pos_right_mul_compat : \forall (t t1 t2 : term),
       t == t2 \rightarrow \text{mult\_one\_step } t1 \ t2 == \text{mult\_one\_step } t1 \ t.
Proof.
Admitted.
Lemma simplify_eqv:
 \forall (t : \mathsf{term}),
 simplify t == t.
```

```
Proof.
 intros. induction t.
- simpl. reflexivity.
 - simpl. reflexivity.
- simpl. reflexivity.
 - simpl. pose proof pos_left_sum_compat. specialize (H\ t1\ (simplify\ t1)\ (simplify\ t2)).
   symmetry in IHt1. specialize (H\ IHt1). rewrite H.
  pose proof pos_right_sum_compat. specialize (H0 (simplify t2) t1 t2).
  specialize (H0\ IHt2). symmetry in H0. rewrite H0.
  induction t1.
  + induction t2.
    { simpl. rewrite sum_x. reflexivity. }
    { simpl. rewrite sum_id. reflexivity. }
    { simpl. reflexivity. }
    { simpl. reflexivity. }
    { simpl. reflexivity. }
  + induction t2.
    { simpl. rewrite sum_id_sym. reflexivity. }
    { simpl. rewrite sum_x_x. reflexivity. }
    { simpl. reflexivity. }
    { simpl. reflexivity. }
    { simpl. reflexivity. }
  + simpl. reflexivity.
  + simpl. reflexivity.
  + simpl. reflexivity.
 - simpl. pose proof pos_left_mul_compat. specialize (H\ t1\ (simplify\ t1)\ (simplify\ t2)).
   symmetry in IHt1. specialize (H\ IHt1). rewrite H.
  pose proof\ pos\_right\_mul\_compat. specialize (H0\ (simplify\ t2)\ t1\ t2).
  specialize (H0 \ IHt2). symmetry in H0. rewrite H0.
  induction t1.
  + induction t2.
    { simpl. rewrite mul_x. reflexivity. }
    { simpl. rewrite mul_{-}T0_{-}x. reflexivity. }
    { simpl. reflexivity. }
    { simpl. reflexivity. }
    { simpl. reflexivity. }
  + induction t2.
    { simpl. rewrite mul_T0_x_sym. reflexivity. }
    { simpl. rewrite mul_x. reflexivity. }
    { simpl. reflexivity. }
    { simpl. reflexivity. }
    { simpl. reflexivity. }
```

```
+ simpl. reflexivity.
+ simpl. reflexivity.
+ simpl. reflexivity.
Qed.
```

Chapter 3

Library

B_Unification.lowenheim_formula

```
Require Export terms.
Require Import List.
{\tt Import}\ ListNotations.
Fixpoint build_on_list_of_vars (list_var : var_set) (s : term) (sig1 : subst) (sig2 : subst) :
subst :=
  match list_{-}var with
   | ni| \Rightarrow ni|
   |v'::v\Rightarrow
       (cons (v', (s + T1) × (apply_subst (VAR v') sig1) + s × (apply_subst (VAR v')
siq2 ) )
               (build_on_list_of_vars v \ s \ sig1 \ sig2)
  end.
Definition build_lowenheim_subst (t : \mathbf{term}) (tau : \mathsf{subst}) : \mathsf{subst} :=
  build_on_list_of_vars (term_unique_vars t) t (build_id_subst (term_unique_vars t)) tau.
    2.2 Lowenheim's algorithm
Definition update_term (t : term) (s' : subst) : term :=
  (simplify (apply_subst t s')).
Definition term_is_T0 (t : term) : bool :=
  (identical t T0).
Inductive subst_option: Type :=
      Some_subst : subst → subst_option
      None_subst : subst_option.
Fixpoint rec_subst (t : \mathbf{term}) (vars : \mathsf{var\_set}) (s : \mathsf{subst}) : \mathsf{subst} :=
```

```
match vars with
    | \mathsf{nil} \Rightarrow s
     | v' :: v \Rightarrow
         if (term_is_T0
                 (update_term (update_term t (cons (v', T0) s))
                                  (rec\_subst (update\_term \ t \ (cons \ (v', T0) \ s))
                                             v (cons (v', T0) s))
              then
                      (rec\_subst (update\_term \ t (cons (v', T0) \ s))
                                                   v (cons (v', T0) s))
           else
              if (term_is_T0
                   (update_term (update_term t (cons (v', T1) s))
                                    (rec\_subst (update\_term \ t \ (cons \ (v', T1) \ s))
                                                v (cons (v', T1) s)))
              then
                      (rec\_subst (update\_term \ t \ (cons \ (v', T1) \ s))
                                                   v (cons (v', T1) s))
              else
                      (rec\_subst (update\_term \ t \ (cons \ (v', T0) \ s))
                                                   v \text{ (cons (}v'\text{ , T0) }s))
      end.
Compute (rec_subst ((VAR 0) × (VAR 1)) (cons 0 (cons 1 nil)) nil).
Fixpoint find_unifier (t : term) : subst_option :=
  match (update_term t (rec_subst t (term_unique_vars t) nil) ) with
     T0 \Rightarrow Some\_subst (rec\_subst t (term\_unique\_vars t) nil)
     | \_ \Rightarrow \mathsf{None\_subst}
  end.
Compute (find_unifier ((VAR 0) × (VAR 1))).
Compute (find_unifier ((VAR 0) + (VAR 1))).
Compute (find_unifier ((VAR 0) + (VAR 1) + (VAR 2) + T1 + (VAR 3) × ( (VAR 2) + (VAR
0)))).
Definition Lowenheim_Main (t : term) : subst_option :=
  match (find\_unifier t) with
      Some_subst s \Rightarrow Some_subst (build_lowenheim_subst t s)
     None\_subst \Rightarrow None\_subst
  end.
Compute (find_unifier ((VAR 0) × (VAR 1))).
Compute (Lowenheim_Main ((VAR 0) × (VAR 1))).
```

```
Compute (Lowenheim_Main ((VAR 0) + (VAR 1))).
Compute (Lowenheim_Main ((VAR 0) + (VAR 1) + (VAR 2) + T1 + (VAR 3) \times ( (VAR 2) +
(VAR 0))).
Compute (Lowenheim_Main (T1)).
Compute (Lowenheim_Main (( VAR 0) + (VAR 0) + T1)).
   2.3 Lowenheim testing
Definition Test_find_unifier (t : \mathbf{term}) : \mathbf{bool} :=
  match (find\_unifier t) with
    | Some_subst s \Rightarrow
      (term_is_T0 (update_term t s))
    | None_subst \Rightarrow true
  end.
Compute (Test_find_unifier (T1)).
Compute (Test_find_unifier ((VAR 0) × (VAR 1))).
Compute (Test_find_unifier ((VAR 0) + (VAR 1) + (VAR 2) + T1 + (VAR 3) × ( (VAR 2) +
(VAR 0)))).
Definition apply_lowenheim_main (t : term) : term :=
  match (Lowenheim_Main t) with
   Some_subst s \Rightarrow (apply\_subst \ t \ s)
  | None\_subst \Rightarrow T1
  end.
Compute (Lowenheim_Main ((VAR 0) × (VAR 1) )).
Compute (apply_lowenheim_main ((VAR 0) × (VAR 1) ).
Compute (Lowenheim_Main ((VAR 0) + (VAR 1) )).
Compute (apply_lowenheim_main ((VAR 0) + (VAR 1) )).
```

Chapter 4

Library B_Unification.lowenheim_proof

```
Require Export lowenheim_formula.
Require Export EqNat.
Require Import List.
Import ListNotations.
Import Coq. Init. Tactics.
Require Export Classical_Prop.
    3.1 Declarations and their lemmas useful for the proof
Definition sub_term (t : \mathbf{term}) (t' : \mathbf{term}) : \mathsf{Prop} :=
  \forall (x : \text{var}),
   (\ln x \text{ (term\_unique\_vars } t)) \rightarrow (\ln x \text{ (term\_unique\_vars } t')).
Lemma sub_term_id:
  \forall (t : \mathbf{term}),
  sub_term t t.
Proof.
 intros. firstorder.
Qed.
Lemma term_vars_distr :
\forall (t1 \ t2 : \mathbf{term}),
 (\text{term\_vars } (t1 + t2)) = (\text{term\_vars } t1) ++ (\text{term\_vars } t2).
Proof.
 intros.
 induction t2.
 - simpl. reflexivity.
 - simpl. reflexivity.
 - simpl. reflexivity.
 - simpl. reflexivity.
```

```
- simpl. reflexivity.
Qed.
Lemma tv_h1:
\forall (t1 \ t2 : \mathbf{term}),
\forall (x : \mathsf{var}),
 (\ln x \text{ (term\_vars } t1)) \rightarrow (\ln x \text{ (term\_vars } (t1 + t2))).
Proof.
intros. induction t2.
 - simpl. rewrite app_nil_r. apply H.
 - simpl. rewrite app_nil_r. apply H.
 - simpl. pose proof in_or_app as H1. specialize (H1 \text{ var (term\_vars } t1) \text{ } [v] \text{ } x).
firstorder.
 - rewrite term_vars_distr. apply in_or_app. left. apply H.
 - rewrite term_vars_distr. apply in_or_app. left. apply H.
Lemma tv_h2:
\forall (t1 \ t2 : \mathbf{term}),
\forall (x : var),
 (\ln x \text{ (term\_vars } t2)) \rightarrow (\ln x \text{ (term\_vars } (t1 + t2))).
Proof.
intros. induction t1.
 - simpl. apply H.
- simpl. apply H.
 - simpl. pose proof in_or_app as H1. right. apply H.
 - rewrite term_vars_distr. apply in_or_app. right. apply H.
 - rewrite term_vars_distr. apply in_or_app. right. apply H.
Qed.
Lemma helper_2a:
  \forall (t1 \ t2 \ t' : term),
  sub\_term (t1 + t2) t' \rightarrow sub\_term t1 t'.
Proof.
 intros. unfold sub_term in *. intros. specialize (H x).
 pose proof in_dup_and_non_dup as H10. unfold term_unique_vars. unfold term_unique_vars
in *.
 pose proof tv_h1 as H7. apply H. specialize (H7 \ t1 \ t2 \ x). specialize (H10 \ x)
(term_vars (t1 + t2))). destruct H10 .
 apply H1. apply H7. pose proof in_dup_and_non_dup as H10. specialize (H10 \ x)
(term_vars t1)). destruct H10.
 apply H4. apply H0.
Qed.
Lemma helper_2b:
```

```
\forall (t1 \ t2 \ t' : \mathbf{term}),
  sub\_term (t1 + t2) t' \rightarrow sub\_term t2 t'.
Proof.
intros. unfold sub_term in *. intros. specialize (H x).
pose proof in_dup_and_non_dup as H10. unfold term_unique_vars. unfold term_unique_vars
in *.
 pose proof tv_h2 as H7. apply H. specialize (H7 t1 t2 x). specialize (H10 x
(term_vars (t1 + t2))). destruct H10.
 apply H1. apply H7. pose proof in_dup_and_non_dup as H10. specialize (H10 x
(term_vars t2)). destruct H10.
 apply H4. apply H0.
Qed.
Lemma elt_in_list:
 \forall (x: \mathsf{var}) (a: \mathsf{var}) (l: \mathsf{list} \mathsf{var}),
  (\ln x (a::l)) \rightarrow
  x = a \vee (\ln x \ l).
Proof.
intros.
pose proof in_{inv} as H1.
specialize (H1 \text{ var } a \text{ } x \text{ } l \text{ } H).
destruct H1.
-left. symmetry in H\theta. apply H\theta.
 - right. apply H\theta.
Qed.
Lemma elt_not_in_list:
\forall (x: \mathsf{var}) (a: \mathsf{var}) (l: \mathsf{list} \mathsf{var}),
  \neg (ln x (a::l)) \rightarrow
  x \neq a \land \neg (\ln x \ l).
Proof.
intros.
pose proof not_in_cons. specialize (H0 \text{ var } x \text{ } a \text{ } l). destruct H0.
specialize (H\theta \ H). apply H\theta.
Qed.
Lemma in_list_of_var_term_of_var:
\forall (x : \mathsf{var}),
  In x (term_unique_vars (VAR x)).
Proof.
intros. simpl. left. intuition.
Qed.
Lemma var_in_out_list:
  \forall (x : \mathsf{var}) (\mathit{lvar} : \mathsf{list} \, \mathsf{var}),
```

```
(\ln x \ lvar) \lor \neg (\ln x \ lvar).
Proof.
 intros.
 pose proof classic as H1. specialize (H1 (ln x lvar)). apply H1.
Qed.
   3.2 Proof that Lownheim's algorithm unifes a given term
Lemma helper1_easy:
 \forall (x: var) (lvar : list var) (sig1 sig2 : subst) (s : term),
 (\ln x \ lvar) \rightarrow
  apply_subst (VAR x) (build_on_list_of_vars lvar \ s \ sig1 \ sig2)
  apply_subst (VAR x) (build_on_list_of_vars (cons x nil) s sig1 sig2).
Proof.
 intros.
 induction lvar.
 - simpl. simpl in H. destruct H.
 - apply elt_in_list in H. destruct H.
  + simpl. destruct (beq_nat a x) as [eqn:?].
    { apply beq_nat_true in Heqb. destruct (beq_nat x x) as [eqn:?].
     \{ \text{ rewrite } H. \text{ reflexivity. } \}
     { apply beq_nat_false in Heqb.
       \{ destruct Heqb. \}
       { rewrite Heqb. apply Heqb0. } }}
   \{ \text{ simpl in } IHlvar. \text{ apply } IHlvar. \text{ symmetry in } H. \text{ rewrite } H \text{ in } Heqb. \}
     apply beq_nat_false in Heqb. destruct Heqb. intuition.
  + destruct (beq_nat a x) as [eqn:?].
     \{ apply beg_nat_true in Heqb. symmetry in Heqb. rewrite Heqb in IHlvar. rewrite
Heqb.
          simpl in IHlvar. simpl. destruct (beq_nat a a) as [eqn:?].
      { reflexivity. }
      { apply IHlvar. rewrite Heqb in H. apply H. }}
     { apply beg_nat_false in Heqb. simpl. destruct (beg_nat a x) as [eqn:?].
      { apply beq_nat_true in Heqb\,\theta. rewrite Heqb\,\theta in Heqb. destruct Heqb. intuition.
      \{ \text{ simpl in } IHlvar. \text{ apply } IHlvar. \text{ apply } H. \} \}
Qed.
Lemma helper_1:
\forall (t' \ s : \mathbf{term}) \ (v : \mathsf{var}) \ (sig1 \ sig2 : \mathsf{subst}),
  sub\_term (VAR v) t' \rightarrow
  apply_subst (VAR v) (build_on_list_of_vars (term_unique_vars t') s siq1 siq2)
  apply_subst (VAR v) (build_on_list_of_vars (term_unique_vars (VAR v)) s \ sig1 \ sig2).
```

```
Proof.
 intros. unfold sub_term in H. specialize (H v). pose proof in_list_of_var_term_of_var
as H3.
 specialize (H3\ v). specialize (H\ H3). pose proof helper1_easy as H2.
 specialize (H2\ v (term_unique_vars t') sig1\ sig2\ s). apply H2. apply H.
Qed.
Lemma subs_distr_vars_ver2:
  \forall (t \ t' : \mathbf{term}) (s : \mathbf{term}) (sig1 \ sig2 : \mathbf{subst}),
  (sub_term t t') \rightarrow
  apply_subst t (build_on_list_of_vars (term_unique_vars t') s sig1 sig2)
  (s + T1) \times (apply\_subst \ t \ sig1) + s \times (apply\_subst \ t \ sig2).
Proof.
 intros. generalize dependent t'. induction t.
  - intros t'. repeat rewrite ground_term_cannot_subst.
    + rewrite mul\_comm with (x := s + T1). rewrite distr. repeat rewrite mul\_T0\_x.
rewrite mul\_comm with (x := s).
       rewrite mul_{-}T0_{-}x. repeat rewrite sum_{-}x_{-}x. reflexivity.
    + unfold ground_term. reflexivity.
    + unfold ground_term. reflexivity.
    + unfold ground_term. reflexivity.
  - intros t'. repeat rewrite ground_term_cannot_subst.
    + rewrite mul_{-}comm with (x := s + T1). rewrite mul_{-}id. rewrite mul_{-}comm with
(x := s). rewrite mul_id. rewrite sum_comm with (x := s).
      repeat rewrite sum_assoc. rewrite sum_x. rewrite sum_comm with (x := T1).
rewrite sum_id. reflexivity.
    + unfold ground_term. reflexivity.
    + unfold ground_term. reflexivity.
    + unfold ground_term. reflexivity.
  - intros. rewrite helper_1.
    + unfold term_unique_vars. unfold term_vars. unfold var_set_create_unique. unfold
var_set_includes_var. unfold build_on_list_of_vars.
    rewrite var_subst. reflexivity.
    + apply H.
  - intros. specialize (IHt1\ t'). specialize (IHt2\ t'). repeat rewrite subst_sum_distr_opp.
      rewrite IHt1. rewrite IHt2.
    + rewrite distr. rewrite distr. repeat rewrite sum_assoc. rewrite sum_comm with
(x := (s + T1) \times apply\_subst \ t2 \ sig1)
       (y := (s \times \mathsf{apply\_subst}\ t1\ sig2 + s \times \mathsf{apply\_subst}\ t2\ sig2)). repeat rewrite sum_assoc.
      rewrite sum\_comm with (x := s \times apply\_subst \ t2 \ sig2) (y := (s + T1) \times apply\_subst
t2 \ sig1).
```

repeat rewrite *sum_assoc*. reflexivity.

```
+ pose helper_2b as H2. specialize (H2\ t1\ t2\ t'). apply H2. apply H. + pose helper_2a as H2. specialize (H2\ t1\ t2\ t'). apply H2. apply H3.
```

- intros. specialize ($IHt1\ t'$). specialize ($IHt2\ t'$). repeat rewrite subst_mul_distr_opp. rewrite IHt1. rewrite IHt2.

+ rewrite distr. rewrite mul_comm with $(y:=((s+T1)\times apply_subst\ t2\ sig1)).$ rewrite distr. rewrite mul_comm with $(y:=(s\times apply_subst\ t2\ sig2)).$ rewrite str

repeat rewrite mul_assoc . repeat rewrite mul_comm with $(x := apply_subst t2 siq1)$.

repeat rewrite *mul_assoc*.

rewrite mul_assoc_opp with $(x:=(s+\mathsf{T}1))$ $(y:=(s+\mathsf{T}1))$. rewrite mul_x_x . rewrite mul_assoc_opp with $(x:=(s+\mathsf{T}1))$ (y:=s). rewrite mul_comm with $(x:=(s+\mathsf{T}1))$ (y:=s).

rewrite distr. rewrite mul_x_x . rewrite mul_id_sym . rewrite sum_x_x . rewrite mul_T0_x .

repeat rewrite mul_assoc . rewrite mul_comm with $(x := apply_subst \ t2 \ sig2)$. repeat rewrite mul_assoc . rewrite mul_assoc_opp with (x := s) (y := (s + T1)).

rewrite distr. rewrite mul_x_x . rewrite $mul_id_sym.$ rewrite sum_x_x . rewrite mul_T0_x .

repeat rewrite sum_assoc . rewrite sum_assoc_opp with (x := T0) (y := T0). rewrite sum_x_x . rewrite sum_id .

repeat rewrite mul_assoc . rewrite mul_comm with $(x := apply_subst \ t2 \ sig2)$ $(y := s \times apply_subst \ t1 \ sig2)$.

repeat rewrite mul_assoc . rewrite mul_assoc_opp with (x:=s). rewrite mul_x_x . reflexivity.

- + pose helper_2b as H2. specialize ($H2\ t1\ t2\ t'$). apply H2. apply H.
- + pose helper_2a as $\it H2$. specialize ($\it H2\ t1\ t2\ t'$). apply $\it H2$. apply $\it H.$ Qed.

Lemma specific_sigmas_unify:

```
\forall (t : \mathbf{term}) (tau : \mathsf{subst}), (unifier t \ tau) \rightarrow
```

(apply_subst t (build_on_list_of_vars (term_unique_vars t) t (build_id_subst (term_unique_vars t)) tau)

) == T0.

Proof.

intros.

rewrite subs_distr_vars_ver2.

- rewrite id_subst. rewrite mul_comm with (x := t + T1). rewrite distr. rewrite mul_x_x . rewrite mul_id_sym . rewrite sum_x_x .

rewrite *sum_id*.

unfold unifier in *H*. rewrite *H*. rewrite mul_T0_x_sym. reflexivity.

apply sub_term_id.

```
Qed.
Lemma lownheim_unifies:
  \forall (t : \mathbf{term}) (tau : \mathsf{subst}),
  (unifier t \ tau) \rightarrow
  (apply\_subst\ t\ (build\_lowenheim\_subst\ t\ tau)) == T0.
Proof.
intros. unfold build_lowenheim_subst. apply specific_sigmas_unify. apply H.
Qed.
   3.3 Proof that Lownheim's algorithm produces a most general unifier
   3.3.a Proof that Lownheim's algorithm produces a reproductive unifier
Lemma lowenheim_rephrase1_easy:
  \forall (l : \mathsf{list} \; \mathsf{var}) \; (x : \mathsf{var}) \; (sig1 : \mathsf{subst}) \; (sig2 : \mathsf{subst}) \; (s : \mathsf{term}),
  (\ln x \ l) \rightarrow
  (apply\_subst (VAR x) (build\_on\_list\_of\_vars l s sig1 sig2)) ==
  (s + T1) \times (apply\_subst (VAR x) sig1) + s \times (apply\_subst (VAR x) sig2).
Proof.
intros.
induction l.
- simpl. unfold \ln in H. destruct H.
- apply elt_in_list in H. destruct H.
  + simpl. destruct (beq_nat a x) as [eqn:?].
     \{ \text{ rewrite } H. \text{ reflexivity. } \}
     { pose proof beq_nat_false as } H2. specialize (H2 \ a \ x).
       specialize (H2 \ Heqb). intuition. symmetry in H. specialize (H2 \ H). inversion
H2. }
  + simpl. destruct (beq_nat a x) as [eqn:?].
     { symmetry in Heqb. pose proof beq_nat_eq as H2. specialize (H2\ a\ x). specialize
(H2 \ Heqb). rewrite H2.
       reflexivity. }
     { apply IHl. apply H. }
Qed.
Lemma helper_3a:
\forall (x: var) (l: list var),
\ln x \ l \rightarrow
  apply_subst (VAR x) (build_id_subst l) == VAR x.
Proof.
intros. induction l.
 - unfold build_id_subst. simpl. reflexivity.
 - apply elt_in_list in H. destruct H.
   + simpl. destruct (beq_nat a x) as [eqn:?].
     { rewrite H. reflexivity. }
```

```
{ pose proof beq_nat_false as H2. specialize (H2 \ a \ x).
        specialize (H2 \ Heqb). intuition. symmetry in H. specialize (H2 \ H). inversion
H2. }
   + simpl. destruct (beq_nat a x) as [eqn:?].
     { symmetry in Heqb. pose proof beq_nat_eq as H2. specialize (H2\ a\ x). specialize
(H2 \ Heqb). rewrite H2.
       reflexivity. }
     { apply IHl. apply H. }
Qed.
Lemma lowenheim_rephrase1:
  \forall (t : \mathbf{term}) (tau : \mathsf{subst}) (x : \mathsf{var}),
  (unifier t tau) \rightarrow
  (\ln x \text{ (term\_unique\_vars } t)) \rightarrow
  (apply\_subst (VAR x) (build\_lowenheim\_subst t tau)) ==
  (t + T1) \times (VAR x) + t \times (apply\_subst (VAR x) tau).
  Proof.
 intros.
  unfold build_lowenheim_subst. pose proof lowenheim_rephrase1_easy as H1.
  specialize (H1 (term_unique_vars t) x (build_id_subst (term_unique_vars t)) tau t).
  rewrite helper_3a in H1.
 - apply H1. apply H0.
 - apply H\theta.
Qed.
Lemma lowenheim_rephrase2_easy:
  \forall (l : list var) (x : var) (sig1 : subst) (sig2 : subst) (s : term),
  \neg (ln x l) \rightarrow
  (apply_subst (VAR x) (build_on_list_of_vars l \ s \ sig1 \ sig2)) ==
  (VAR x).
Proof.
intros. unfold not in H.
induction l.
- simpl. reflexivity.
- simpl. pose proof elt_not_in_list as H2. specialize (H2 \ x \ a \ l). unfold not in H2.
  specialize (H2 \ H). destruct H2.
  destruct (beq_nat a x) as [eqn:?].
  + symmetry in Heqb. apply beq_nat_eq in Heqb. symmetry in Heqb. specialize (H0
Heqb). destruct H\theta.
  + simpl in IHl. apply IHl. apply H1.
Qed.
Lemma lowenheim_rephrase2:
  \forall (t : \mathbf{term}) (tau : \mathsf{subst}) (x : \mathsf{var}),
```

```
(unifier t tau) \rightarrow
  \neg (ln x (term_unique_vars t)) \rightarrow
  (apply\_subst (VAR x) (build\_lowenheim\_subst t tau)) ==
  (VAR x).
Proof.
intros. unfold build_lowenheim_subst. pose proof lowenheim_rephrase2_easy as H2.
specialize (H2 (term_unique_vars t) x (build_id_subst (term_unique_vars t)) tau\ t).
specialize (H2 \ H0). apply H2.
Qed.
Lemma lowenheim_reproductive:
  \forall (t : \mathbf{term}) (tau : \mathsf{subst}),
  (unifier t tau) \rightarrow
  reproductive_unifier t (build_lowenheim_subst t tau).
Proof.
 intros. unfold reproductive_unifier. intros.
  pose proof var_in_out_list. specialize (H2 \ x (term_unique_vars t)). destruct H2.
  rewrite lowenheim_rephrase1.
  - rewrite subst_sum_distr_opp. rewrite subst_mul_distr_opp. rewrite subst_mul_distr_opp.
    unfold unifier in H1. rewrite H1. rewrite mul_T0_x. rewrite subst_sum_distr_opp.
    rewrite H1. rewrite ground_term_cannot_subst.
    + rewrite sum_id. rewrite mul_id. rewrite sum_comm. rewrite sum_id. reflexivity.
    + unfold ground_term. intuition.
  - apply H.
  - apply H2.
  { rewrite lowenheim_rephrase2.
    - reflexivity.
    - apply H.
    - apply H2.
Qed.
   3.3.b lowenheim builder gives a most general unifier
Lemma lowenheim_most_general_unifier:
  \forall (t : \mathbf{term}) (tau : \mathsf{subst}),
  (unifier t tau) \rightarrow
  most\_general\_unifier \ t \ (build\_lowenheim\_subst \ t \ tau).
intros. apply reproductive_is_mgu. apply lowenheim_reproductive. apply H.
   3.4 extension to include Main function and subst_option
```

3.4.a utilities

```
Definition convert_to_subst (so: subst_option): subst :=
  match so with
   | Some_subst s \Rightarrow s
  | None_subst \Rightarrow nil
Lemma empty_subst_on_term:
 \forall (t : \mathbf{term}),
  apply_subst t = t.
Proof.
 intros. induction t.
 - reflexivity.
 - simpl. reflexivity.
 - simpl. reflexivity.
 - simpl. rewrite IHt1. rewrite IHt2. reflexivity.
 - simpl. rewrite IHt1. rewrite IHt2. reflexivity.
Qed.
Lemma app_subst_T0:
 \forall (t : \mathbf{term}),
 apply_subst t = T0 \rightarrow t = T0.
Proof.
intros. rewrite empty_subst_on_term in H. apply H.
Lemma T0_or_not_T0:
 \forall (t : \mathbf{term}),
 t == \mathsf{T0} \lor \neg (t == \mathsf{T0}).
Proof.
 intros. pose proof classic. specialize (H (t == T0)). apply H.
Qed.
Lemma exists_subst:
 \forall (t : \mathbf{term}) (sig : \mathsf{subst}),
 apply_subst t \ sig == \mathsf{T0} \to \exists \ s, apply_subst t \ s == \mathsf{T0}.
Proof.
 intros. \exists sig. apply H.
Qed.
Lemma t_id_eqv:
 \forall (t : \mathbf{term}),
 t == t.
Proof.
 intros. reflexivity.
Qed.
```

```
Lemma eq_some_eq_subst (s1 \ s2: subst):
   (Some_subst s1 = Some_subst s2) \rightarrow s1 = s2.
Proof.
  intros. congruence.
Qed.
Lemma None_is_not_Some (t: term):
   (find_unifier t) = None_subst \rightarrow (\forall (sig: subst), \neg (find_unifier t) = Some_subst sig).
Proof.
  intros.
  congruence.
Lemma Some_is_not_None (sig: subst) (t: term):
   (find_unifier t) = Some_subst sig \rightarrow \neg (find_unifier t = None_subst).
Proof.
  intros.
  congruence.
Qed.
Lemma not_None_is_Some (t: term):
  \neg (find_unifier t = \text{None\_subst}) \rightarrow \exists sig : \text{subst}, (find_unifier t) = Some_subst sig.
Proof.
  intros H.
  destruct (find_unifier t) as [ti \mid].
  - \exists ti. firstorder.
  - congruence.
Qed.
Lemma contrapositive_opposite:
  \forall p \ q, (\neg p \rightarrow \neg q) \rightarrow q \rightarrow p.
Proof.
  intros.
  apply NNPP. firstorder.
Qed.
Lemma contrapositive:
\forall (p \ q : Prop), (p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p).
Proof.
  intros.
  firstorder.
Qed.
    3.4.b actual final proof extension
Lemma some_subst_unifiable:
 \forall (t : \mathsf{term}),
```

```
(\exists sig, (find\_unifier t) = Some\_subst sig) \rightarrow (unifiable t).
Proof.
 intros.
 destruct H as [sig1 \ H1].
 induction t.
 - unfold unifiable . ∃ []. unfold unifier. simpl. reflexivity.
 - simpl in H1. inversion H1.
 - unfold unifiable. \exists sig1. unfold find_unifier in H1.
    remember (update_term (VAR v) (rec_subst (VAR v) (term_unique_vars (VAR v)) []))
in H1.
    destruct t.
    + unfold update_term in Heqt. pose proof simplify_eqv.
       specialize (H (apply_subst (VAR v) (rec_subst (VAR v) (term_unique_vars (VAR v))
[]))).
       symmetry in Heqt. apply eq_some_eq_subst in H1.
      rewrite H1 in H. rewrite H1 in Heqt.
     rewrite Heqt in H. symmetry in H. apply H.
    + simpl in H1. inversion H1.
    + inversion H1.
    + inversion H1.
    + inversion H1.
 - unfold unifiable. \exists sig1. unfold find_unifier in H1.
   remember (update_term (t1 + t2) (rec_subst (t1 + t2) (term_unique_vars (t1 + t2)) [] ))
in H1.
  destruct t.
  + unfold update_term in Heqt. pose proof simplify_eqv.
    specialize (H (apply_subst (t1 + t2) (rec_subst (t1 + t2) (term_unique_vars (t1 + t2))
[]))).
       symmetry in Heqt. apply eq_some_eq_subst in H1.
      rewrite H1 in H. rewrite H1 in Heqt.
     rewrite Heqt in H. symmetry in H. apply H.
   + inversion H1.
   + inversion H1.
   + inversion H1.
   + inversion H1.
 - unfold unifiable. \exists sig1. unfold find_unifier in H1.
   remember (update_term (t1 \times t2) (rec_subst (t1 \times t2) (term_unique_vars (t1 \times t2)) []))
in H1.
  destruct t.
  + unfold update_term in Heqt. pose proof simplify_eqv.
    specialize (H (apply_subst (t1 \times t2) (rec_subst (t1 \times t2) (term_unique_vars (t1 \times t2)
t2)) []))).
```

```
symmetry in Heqt. apply eq_some_eq_subst in H1.
       rewrite H1 in H. rewrite H1 in Heqt.
      rewrite Heqt in H. symmetry in H. apply H.
   + inversion H1.
   + inversion H1.
   + inversion H1.
   + inversion H1.
Qed.
Lemma not_Some_is_None (t: term):
 (\neg \exists (sig : subst), (find\_unifier t) = Some\_subst sig) \rightarrow (find\_unifier t) = None\_subst.
  apply contrapositive_opposite.
  intros H.
  apply not_None_is_Some in H.
  tauto.
Qed.
Lemma not_unifiable_find_unifier_none_subst :
\forall (t : \mathbf{term}),
   \neg (unifiable t) \rightarrow (find_unifier t) = None_subst.
Proof.
intros.
 pose proof some_subst_unifiable.
 specialize (H\theta \ t).
 pose proof contrapositive.
 specialize (H1 ((\exists sig : subst, find\_unifier t = Some\_subst <math>sig)) ((unifiable t))).
 specialize (H1 \ H0). specialize (H1 \ H).
 pose proof not_Some_is_None.
 specialize (H2 \ t \ H1).
 apply H2.
Qed.
Lemma Some_subst_unifiable:
\forall (t : \mathbf{term}) (sig : \mathsf{subst}),
   (find_unifier t) = Some_subst sig \rightarrow (unifier t sig).
Proof.
intros.
 induction t.
 - simpl in H. apply eq_some_eq_subst in H. symmetry in H. rewrite H.
  unfold unifier. simpl. reflexivity.
 - simpl in H. inversion H.
 - unfold find_unifier in H. remember (update_term (VAR v) (rec_subst (VAR v) (term_unique_vars
(VAR \ v)) \ [])) in H.
```

```
destruct t.
  + unfold update_term in Heqt. pose proof simplify_eqv.
       specialize (H\theta (apply_subst (VAR v) (rec_subst (VAR v) (term_unique_vars (VAR v))
[]))).
          symmetry in Heqt. apply eq_some_eq_subst in H.
      rewrite H in H0. rewrite H in Heqt.
     rewrite Heqt in H0. symmetry in H0. apply H0.
  + inversion H.
  + inversion H.
  + inversion H.
  + inversion H.
 - unfold find_unifier in H.\ remember (update_term (t1+t2) (rec_subst (t1+t2) (term_unique_vars
(t1 + t2)) [])) in H.
    destruct t.
  + unfold update_term in Heqt. pose proof simplify_eqv.
       specialize (H0 (apply_subst (t1 + t2) (rec_subst (t1 + t2) (term_unique_vars (t1 + t2)
t2)) []))).
       symmetry in Heqt. apply eq_some_eq_subst in H.
      rewrite H in H0. rewrite H in Heqt.
     rewrite Heqt in H\theta. symmetry in H\theta. apply H\theta.
  + inversion H.
  + inversion H.
  + inversion H.
  + inversion H.
 - unfold find_unifier in H. remember (update_term (t1 \times t2) (rec_subst (t1 \times t2) (term_unique_vars
(t1 \times t2)) [])) in H.
    destruct t.
  + unfold update_term in Heqt. pose proof simplify_eqv.
       specialize (H0 (apply_subst (t1 \times t2) (rec_subst (t1 \times t2) (term_unique_vars (t1 \times t2))
t2)) []))).
       symmetry in Heqt. apply eq_some_eq_subst in H.
      rewrite H in H0. rewrite H in Heqt.
     rewrite Heqt in H0. symmetry in H0. apply H0.
  + inversion H.
  + inversion H.
  + inversion H.
  + inversion H.
Qed.
Lemma unif_some_subst :
 \forall (t: term),
 (\exists sig1, (unifier t sig1)) \rightarrow
 (\exists siq2, (find\_unifier t) = Some\_subst siq2).
```

```
Proof.
 intros.
 destruct H as [sig1 \ H].
Admitted.
Lemma not_Some_not_unifiable (t: term):
 (\neg \exists (sig : subst), (find\_unifier t) = Some\_subst sig) \rightarrow \neg (unifiable t).
Proof.
 intros.
 pose proof not_Some_is_None.
 specialize (H0 \ t \ H).
 unfold unifiable.
 intro.
  unfold not in H.
 pose proof unif_some_subst.
 specialize (H2 \ t \ H1).
 specialize (H H2).
 apply H.
Qed.
Lemma unifiable_find_unifier_some_subst :
\forall (t : \mathsf{term}),
    (unifiable t) \rightarrow (\exists (sig: subst), (find_unifier t) = Some_subst sig).
Proof.
intros.
 pose proof contrapositive.
 specialize (H0 (\neg \exists (sig: subst), (find_unifier t) = Some_subst sig) (\neg (unifiable t))).
 pose proof not_Some_not_unifiable.
 specialize (H1\ t). specialize (H0\ H1). apply NNPP in H0.
 - apply H\theta.
 - firstorder.
Qed.
Lemma find_unifier_is_unifier:
 \forall (t : \mathsf{term}),
  (unifiable t) \rightarrow (unifier t (convert_to_subst (find_unifier t))).
Proof.
intros.
 pose proof unifiable_find_unifier_some_subst.
 specialize (H0 \ t \ H).
 unfold unifier. unfold unifiable in H. simpl. unfold convert_to_subst.
 destruct H\theta as [sig\ H\theta]. rewrite H\theta.
 pose proof Some_subst_unifiable.
 specialize (H1 \ t \ sig). specialize (H1 \ H0).
```

```
unfold unifier in H1.
 apply H1.
Qed.
Lemma builder_to_main:
\forall (t: term),
(unifiable t) \rightarrow most_general_unifier t (build_lowenheim_subst t (convert_to_subst (find_unifier
(t))) \rightarrow
 most\_general\_unifier \ t \ (convert\_to\_subst \ (Lowenheim\_Main \ t)) .
Proof.
intros.
pose proof lowenheim_most_general_unifier as H1. pose proof find_unifier_is_unifier as H2.
specialize (H2\ t\ H). specialize (H1\ t\ (convert\_to\_subst\ (find\_unifier\ t))).
specialize (H1 H2). unfold Lowenheim_Main. destruct (find_unifier t).
- simpl. simpl in H1. apply H1.
 - simpl in H2. unfold unifier in H2. apply app_subst_T0 in H2. simpl.
   repeat simpl in H1. pose proof most_general_unifier_compat.
   specialize (H3 \ t \ \mathsf{T0} \ H2). specialize (H3 \ []).
   rewrite H3. unfold most_general_unifier. intros.
   unfold more_general_substitution. \exists s'. unfold substitution_composition.
   intros. simpl. reflexivity.
Qed.
Lemma lowenheim_main_most_general_unifier:
 \forall (t: term),
 ((unifiable t) \rightarrow most_general_unifier t (convert_to_subst (Lowenheim_Main t)))
 (``(unifiable\ t) \rightarrow (Lowenheim\_Main\ t) = None\_subst\ ).
Proof.
 intros.
 split.
 - intros. apply builder_to_main.
  + apply H.
  + apply lowenheim_most_general_unifier. apply find_unifier_is_unifier. apply H.
 - intros. pose proof not_unifiable_find_unifier_none_subst.
   specialize (H0\ t\ H). unfold Lowenheim_Main. rewrite H0. reflexivity.
Qed.
```

Chapter 5

Library B_Unification.list_util

Require Import List.

Import ListNotations.

Require Import Arith.

Import Nat.

Require Import Sorting.

Require Import Permutation.

Require Import Omega.

5.1 Introduction

The second half of the project revolves around the successive variable elimination algorithm for solving unification problems. While we could implement this algorithm with the same data structures used for Lowenheim's, this algorithm lends itself well to a new representation of terms as polynomials.

A polynomial is a list of monomials being added together, where a monomial is a list of variables being multiplied together. Since one of the rules is that x * x = x, we can guarantee that there are no repeated variables in any given monomial. Similarly, because x + x = 0, we can guarantee that there are no repeated monomials in a polynomial.

Because of these properties, as well as the commutativity of addition and multiplication, we can represent both monomials and polynomials as unordered sets of variables and monomials, respectively. For simplicity when implementing and comparing these polynomials in Coq, we have opted to use the standard list structure, instead maintaining that the lists are maintained in our polynomial form after each stage.

In order to effectively implement polynomial lists in this way, a set of utilities are needed to allow us to easily perform operations on these lists. This file serves to implement and prove facts about these functions, as well as to expand upon the standard library when necessary.

5.2 Comparisons Between Lists

Checking if a list of natural numbers is sorted is easy enough. Comparing lists of lists of nats is slightly harder, and requires the use of a new function, called *lex. lex* simply takes in a comparison and applies the comparison across the list until it finds a point where the elements are not equal.

In all cases throughout this project, the comparator used will be the standard nat compare function.

```
For example, [1;2;3] is less than [1;2;4], and [1;2] is greater than [1].
```

```
Fixpoint lex {T : Type} (cmp : T \rightarrow T \rightarrow comparison) (l1 l2 : list T) : comparison := match l1, l2 with  | \ | \ | \ | \ | \ | \Rightarrow Eq  | \ | \ | \ | \ \Rightarrow Et  | \ | \ | \ | \ \Rightarrow Gt  | \ | \ | \ l1 :: t1, l2 :: t2 \Rightarrow match cmp l1 l2 with  | \ | \ Eq \Rightarrow lex cmp l1 l2 with  | \ | \ c \Rightarrow c end end.
```

There are some important but relatively straightforward properties of this function that are useful to prove. First, reflexivity:

```
Lemma lex\_nat\_refl: \forall \ (l: list\ nat),\ lex\ compare\ l\ l=Eq. Proof. intros. induction l. - simpl. reflexivity. - simpl. rewrite compare\_refl. apply IHl. Qed.
```

Next, antisymmetry. This allows us to take a predicate or hypothesis about the comparison of two polynomials and reverse it.

```
For example, a < b implies b > a.

Lemma lex\_nat\_antisym : \forall (l1 \ l2 : list \ nat),
lex \ compare \ l1 \ l2 = CompOpp \ (lex \ compare \ l2 \ l1).

Proof.
intros l1.
induction l1.
- intros. simpl. destruct l2; reflexivity.
- intros. simpl. destruct l2.
+ \text{ simpl. reflexivity}.
```

```
+ simpl. destruct (a ?= n) eqn:H;
       rewrite compare\_antisym in H;
      rewrite CompOpp_{-}iff in H; simpl in H;
      rewrite H; simpl.
       \times apply IHl1.
       \times reflexivity.
       \times reflexivity.
Qed.
   It is also useful to convert from the result of lex compare to a hypothesis about equality
in Coq. Clearly, if lex compare returns Eq, the lists are exactly equal, and if it returns Lt or
Gt they are not.
Lemma lex_-eq: \forall n m,
  lex compare n m = Eq \leftrightarrow n = m.
Proof.
  intros n. induction n; induction m; intros.
  - split; reflexivity.
  - split; intros; inversion H.
  - split; intros; inversion H.
  - split; intros; simpl in H.
    + destruct (a ?= a\theta) eqn:Hcomp; try inversion H. f_equal.
       \times apply compare\_eq\_iff in Hcomp; auto.
       \times apply IHn. auto.
    + inversion H. simpl. rewrite compare\_reft.
       rewrite \leftarrow H2. apply IHn. reflexivity.
Qed.
Lemma lex_neq: \forall n m,
  lex compare n m = Lt \lor lex compare n m = Gt \leftrightarrow n \ne m.
Proof.
  intros n. induction n; induction m.
  - simpl. split; intro. inversion H; inversion H0. contradiction.
  - simpl. split; intro. intro. inversion H\theta. auto.
  - simpl. split; intro. intro. inversion H0. auto.
  - clear IHm. split; intros.
    + destruct H; intro; apply lex_-eq in H\theta; rewrite H in H\theta; inversion H\theta.
    + destruct (a ?= a\theta) eqn:Hcomp.
       \times simpl. rewrite Hcomp. apply IHn. apply compare\_eq\_iff in Hcomp.
         rewrite Hcomp in H. intro. apply H. rewrite H\theta. reflexivity.
       \times left. simpl. rewrite Hcomp. reflexivity.
       \times right. simpl. rewrite Hcomp. reflexivity.
Qed.
Lemma lex_neq': \forall n m,
```

```
(lex\ compare\ n\ m=Lt \rightarrow n \neq m) \land
  (lex compare n \ m = Gt \rightarrow n \neq m).
Proof.
  intros n m. split.
  - intros. apply lex_neq. auto.
  - intros. apply lex_neq. auto.
Qed.
   It is also useful to be able to flip the arguments of a call to lex compare, since these two
comparisons impact each other directly.
   If lex returns that n=m, then this also means that m=n. More interesting is that if
n < m, then m > n.
Lemma lex_rev_eq : \forall n m,
  lex compare n m = Eq \leftrightarrow lex compare m n = Eq.
Proof.
  intros n m. split; intro; rewrite lex_nat_natisym in H; unfold CompOpp in H.
  - destruct (lex compare m n) eqn:H\theta; inversion H. reflexivity.
  - destruct (lex \ compare \ n \ m) eqn:H0; inversion H. reflexivity.
Qed.
Lemma lex_rev_lt_gt: \forall n m,
  lex compare n m = Lt \leftrightarrow lex compare m n = Gt.
Proof.
  intros n m. split; intro; rewrite lex_nat_natisym in H; unfold CompOpp in H.
  - destruct (lex \ compare \ m \ n) eqn:H0; inversion H. reflexivity.
  - destruct (lex \ compare \ n \ m) eqn:H0; inversion H. reflexivity.
```

Lastly is a property over lists. The comparison of two lists stays the same if the same new element is added onto the front of each list. Similarly, if the item at the front of two lists is equal, removing it from both does not chance the lists' comparison.

```
Lemma lex\_nat\_cons : \forall (l1 \ l2 : list \ nat) \ n,
lex \ compare \ l1 \ l2 = lex \ compare \ (n::l1) \ (n::l2).
Proof.
intros. simpl. rewrite compare\_refl. reflexivity.
Qed.
Hint Resolve lex\_nat\_refl \ lex\_nat\_antisym \ lex\_nat\_cons.
```

Qed.

5.3 Extensions to the Standard Library

There were some facts about the standard library list functions that we found useful to prove, as they repeatedly came up in proofs of our more complex custom list functions.

Specifically, because we are comparing sorted lists, it is often easier to disregard the sortedness of the lists and instead compare them as Permutations of one another. As a result, many of the lemmas in the rest of this file revolve around proving that two lists are Permutations of one another.

5.3.1 Facts about In

First, a very simple fact about In. This mostly follows from the standard library lemma $Permutation_in$, but is more convenient for some of our proofs when formalized like this.

```
Lemma Permutation\_not\_In : \forall (A:Type) \ a \ (l \ l':list \ A),
Permutation \ l \ l' \rightarrow
\neg \ In \ a \ l \rightarrow
\neg \ In \ a \ l'.
Proof.
intros \ A \ a \ l \ l' \ H \ H0. \ intro. \ apply \ H0. \ apply \ Permutation\_sym \ in \ H.
apply \ (Permutation\_in \ a) \ in \ H; \ auto.
Qed.
```

Something else that seems simple but proves very useful to know is that if there are no elements in a list, that list must be empty.

```
 \begin{tabular}{ll} Lemma & nothing\_in\_empty: $\forall $\{A\}$ ($l$:list $A$), \\ & (\forall a, \neg In \ a \ l) \rightarrow \\ & l = []. \\ \hline Proof. \\ & intros $A \ l \ H$. destruct $l$; auto. pose $(H \ a)$. simpl in $n$. $exfalso$. apply $n$. auto. \\ \hline Qed. \\ \hline \end{tabular}
```

5.3.2 Facts about incl

Next are some useful lemmas about incl. First is that if one list is included in another, but one element of the second list is not in the first, then the first list is still included in the second with that element removed.

```
Lemma incl\_not\_in: \forall \ A\ a\ (l\ m: list\ A), incl\ l\ (a::m) \rightarrow \\ \neg\ In\ a\ l \rightarrow \\ incl\ l\ m. Proof. intros A\ a\ l\ m\ Hincl\ Hnin. unfold incl\ in\ ^*. intros a\theta\ Hin. simpl in Hincl. destruct (Hincl\ a\theta); auto. rewrite H in Hnin.\ contradiction. Qed.
```

We also found it useful to relate Permutation to incl; if two lists are permutations of each other, then they must be set equivalent, or contain all of the same elements.

```
Lemma Permutation\_incl: \forall \{A\} \ (l\ m: list\ A), Permutation\ l\ m \to incl\ l\ m \land incl\ m\ l. Proof. intros A\ l\ m\ H. apply Permutation\_sym in H as H0. split. + unfold incl. intros a. apply (Permutation\_in\ _H). + unfold incl. intros a. apply (Permutation\_in\ _H0). Qed.
```

Unfortunately, the definition above cannot be changed into an iff relation, as incl proves nothing about the counts in the lists. We can, however, prove that if some m includes all the elements of a list, then it also includes all the elements of all permutations of that list.

```
 \begin{array}{l} \text{Lemma } incl\_Permutation: \forall \ \{A\text{:Type}\} \ (l\ l'\ m\text{:}list\ A), \\ Permutation\ l\ l' \rightarrow \\ incl\ l\ m \rightarrow \\ incl\ l'\ m. \\ \\ \text{Proof.} \\ \text{intros}\ A\ l\ l'\ m\ H\ H0.\ apply\ Permutation\_incl\ in\ H\ as\ []. \\ \text{apply}\ incl\_tran\ \text{with}\ (m\text{:}=l);\ \text{auto.} \\ \\ \text{Qed.} \end{array}
```

A really simple lemma is that if some l is included in the empty list, then that list must also be empty.

```
 \begin{array}{l} \operatorname{Lemma} \ incl\_nil : \ \forall \ \{X : \mathtt{Type}\} \ (l : list \ X), \\ incl \ l \ [] \leftrightarrow l = []. \\ \\ \operatorname{Proof.} \\ \text{intros} \ X \ l. \ \operatorname{unfold} \ incl. \ \operatorname{split}; \ \operatorname{intro} \ H. \\ \text{- destruct} \ l; \ [\operatorname{auto} \mid \operatorname{destruct} \ (H \ x); \ \operatorname{intuition}]. \\ \text{- intros} \ a \ Hin. \ \operatorname{destruct} \ l; \ [\operatorname{auto} \mid \operatorname{rewrite} \ H \ \operatorname{in} \ Hin; \ \operatorname{auto}]. \\ \\ \operatorname{Qed.} \\ \end{array}
```

The last fact about incl is simply a new way of formalizing the definition that is convenient for some proofs.

```
Lemma incl\_cons\_inv: \forall (A:\mathsf{Type})\ (a:A)\ (l\ m: list\ A), incl\ (a::l)\ m \to In\ a\ m \land incl\ l\ m. Proof.

intros A\ a\ l\ m\ H. split.

- unfold incl\ in\ H. apply H. intuition.

- unfold incl\ in\ ^*. intros b\ Hin. apply H. intuition. Qed.
```

5.3.3 Facts about $count_occ$

Next is some facts about *count_occ*. Firstly, if two lists are permutations of each other, than every element in the first list has the same number of occurences in the second list.

```
Lemma count\_occ\_Permutation : \forall (A:Type) Aeq\_dec \ a \ (l \ l':list \ A),
  Permutation \ l \ l' \rightarrow
  count\_occ\ Aeq\_dec\ l\ a=count\_occ\ Aeq\_dec\ l'\ a.
Proof.
  intros A Aeg\_dec a l l' H. induction H.
  - auto.
  - simpl. destruct (Aeq\_dec \ x \ a); auto.
  - simpl. destruct (Aeq\_dec\ y\ a); destruct (Aeq\_dec\ x\ a); auto.
  - rewrite \leftarrow IHPermutation2. rewrite IHPermutation1. auto.
Qed.
    count_occ also distributes over app, instead becoming addition, which is useful especially
when dealing with count occurrences of concatenated lists during induction.
Lemma count\_occ\_app : \forall (A:Type) \ a \ (l \ m:list \ A) \ Aeq\_dec,
  count\_occ \ Aeq\_dec \ (l++m) \ a = add \ (count\_occ \ Aeq\_dec \ l \ a) \ (count\_occ \ Aeq\_dec \ m \ a).
Proof.
  intros A a l m Aeq_{-}dec. induction l.
  - simpl. auto.
  - simpl. destruct (Aeq\_dec\ a\theta\ a); simpl; auto.
Qed.
   It is also convenient to reason about the relation between count_occ and remove. If the
element being removed is the same as the one being counted, then the count is obviously 0;
if the elements are different, then the count is the same with or without the remove.
Lemma count\_occ\_remove : \forall \{A\} \ Aeq\_dec \ (a:A) \ p,
  count\_occ\ Aeq\_dec\ (remove\ Aeq\_dec\ a\ p)\ a=0.
Proof.
  intros A Aeq_{-} dec \ a \ p. induction p.
  - simpl. auto.
  - simpl. destruct (Aeq\_dec\ a\ a\theta)\ eqn:Haa\theta.
     + apply IHp.
     + simpl. destruct (Aeq\_dec\ a\theta\ a); try (symmetry in e; contradiction).
       apply IHp.
Qed.
Lemma count\_occ\_neq\_remove : \forall \{A\} Aeq\_dec (a:A) b p,
  count\_occ \ Aeq\_dec \ (remove \ Aeq\_dec \ a \ p) \ b =
  count\_occ \ Aeg\_dec \ p \ b.
Proof.
  intros A A eq_{-} dec \ a \ b \ p \ H. induction p; simpl; auto. destruct (A eq_{-} dec \ a \ a\theta).
  - destruct (Aeq\_dec \ a\theta \ b).
     + rewrite \leftarrow e\theta in H. rewrite e in H. contradiction.
     + apply IHp.
```

```
- simpl. destruct (Aeq\_dec\ a0\ b); auto. Qed.
```

5.3.4 Facts about concat

Similarly to the lemma Permutation_map, Permutation_concat shows that if two lists are permutations of each other then the concatenation of each list are also permutations.

```
Lemma Permutation\_concat: \forall \{A\} \ (l \ m:list \ (list \ A)),
Permutation \ l \ m \rightarrow Permutation \ (concat \ l) \ (concat \ m).
Proof.
intros \ A \ l \ m \ H. \ induction \ H.
- \ auto.
- \ simpl. \ apply \ Permutation\_app\_head. \ auto.
- \ simpl. \ apply \ Permutation\_trans \ with \ (l':=(concat \ l \ ++ \ y \ ++ \ x)).
+ \ rewrite \ app\_assoc. \ apply \ Permutation\_app\_comm.
+ \ apply \ Permutation\_trans \ with \ (l':=(concat \ l \ ++ \ x \ ++ \ y)).
\times \ apply \ Permutation\_app\_head. \ apply \ Permutation\_app\_comm.
\times \ rewrite \ (app\_assoc \ x \ y). \ apply \ Permutation\_app\_comm.
- \ apply \ Permutation\_trans \ with \ (l':=(concat \ l')); \ auto.
Qed.
```

Before the creation of this lemma, it was relatively hard to reason about whether elements are in the concatenation of a list of lists. This lemma states that if there is a list in the list of lists that contains the desired element, then that element will be in the concatenated version.

```
Lemma In\_concat\_exists: \forall (A:\mathsf{Type})\ ll\ (a:A), (\exists\ l,\ In\ l\ ll \land In\ a\ l) \leftrightarrow In\ a\ (concat\ ll). Proof.

intros A\ ll\ a. split; intros H.

- destruct H as [l[]]. apply In\_split in H. destruct H as [l1\ l2\ H]]. rewrite H. apply Permutation\_in with (l:=(concat\ (l::l1\ ++\ l2))).

+ apply Permutation\_concat. apply Permutation\_middle.

+ simpl. apply in\_app\_iff. auto.

- induction ll.

+ inversion H.

+ simpl in H. apply in\_app\_iff in H. destruct H.

\times \exists\ a0. split; intuition.

\times destruct IHll; auto. \exists\ x. intuition.
```

This particular lemma is useful if the function being mapped returns a list of its input type. If the resulting lists are concatenated after, then the result is the same as mapping the function without converting the output to lists.

```
Lemma concat\_map : \forall \{A \ B : \mathtt{Type}\} \ (f : A \rightarrow B) \ (l : list \ A), concat \ (map \ (\mathtt{fun} \ a \Rightarrow [f \ a]) \ l) = map \ f \ l. Proof. intros A \ B \ f \ l. induction l. - auto. - simpl. f_equal. apply IHl. Qed.
```

Lastly, if you map a function that converts every element of a list to nil, and then concat the list of nils, you end with nil.

```
Lemma concat\_map\_nil : \forall \{A\} \ (p:list \ A), concat \ (map \ (fun \ x \Rightarrow []) \ p) = (@nil \ A). Proof. induction p; auto. Qed.
```

5.3.5 Facts about Forall and existsb

This is similar to the inverse of *Forall*; any element in the list must hold the specified relation if *Forall Rel* is true of the list.

```
Lemma Forall\_In: \forall (A: \mathsf{Type}) \ (l: list\ A) \ a\ Rel, In a\ l \to Forall\ Rel\ l \to Rel\ a. Proof.

intros A\ l\ a\ Rel\ Hin\ Hfor. apply (Forall\_forall\ Rel\ l); auto. Qed.
```

In Coq, exists is effectively the "or" to Forall's "and" when reasoning about lists. If there does not exist a single element in the list where f is true, then $(f \ a)$ must be false for all elements of the list.

```
Lemma existsb\_false\_forall: \forall \{A\}\ f\ (l:list\ A), existsb\ f\ l=false\to (\forall\ a,\ In\ a\ l\to (f\ a)=false). Proof.

intros A\ f\ l\ H\ a\ Hin.\ destruct\ (f\ a)\ eqn:Hfa.
-exfalso.\ rewrite\ \leftarrow Bool.negb\_true\_iff\ in\ H.\ apply\ (Bool.eq\_true\_false\_abs\ \_\ H). rewrite\ Bool.negb\_false\_iff.\ apply\ existsb\_exists.\ \exists\ a.\ split;\ auto.
-auto. Qed.
```

Similarly to Forall_In, this lemma is just another way of formalizing the definition of Forall that proves useful when dealing with *StronglySorted* lists.

```
Lemma Forall\_cons\_iff: \forall (A:Type) \ Rel \ a \ (l:list \ A),
Forall \ Rel \ (a::l) \leftrightarrow Forall \ Rel \ l \land Rel \ a.
Proof.
```

If a relation holds for all elements of a list l, then the relation still holds if some elements are removed from the list.

```
Lemma Forall\_remove: \forall (A: \texttt{Type}) \ Aeq\_dec \ Rel \ a \ (l: list \ A), Forall \ Rel \ l \rightarrow Forall \ Rel \ (remove \ Aeq\_dec \ a \ l). Proof.

intros A \ Aeq\_dec \ Rel \ a \ l \ H. induction l.
- simpl. auto.
- simpl. apply Forall\_cons\_iff in H. destruct (Aeq\_dec \ a \ a0).
+ apply IHl. apply H.
+ apply Forall\_cons\_iff. split.
\times \text{ apply } IHl. \text{ apply } H.
\times \text{ apply } IH. Apply H.
\otimes \text{ Apply } IH. Apply H.
```

This next lemma is particularly useful for relating StronglySorted lists to Sorted lists; if some comparator holds for all elements of p, then this can be converted to the HdRel proposition used by Sorted.

```
Lemma Forall\_HdRel: \forall \{X: \mathtt{Type}\}\ c\ a\ (p:list\ X), Forall\ (c\ a)\ p \to HdRel\ c\ a\ p. Proof. intros X\ c\ a\ p\ H. destruct p. - apply HdRel\_nil. - apply HdRel\_cons. apply Forall\_inv in H. auto. Qed.
```

Lastly, if some property $(c \ a)$ is true for all elements in a list p, and the elements of a second list g are all included in p, then the property is also true for the elements in g.

```
Lemma Forall\_incl: \forall \{X: \texttt{Type}\}\ (c: X \rightarrow X \rightarrow \texttt{Prop})\ a\ (p\ g: list\ X), Forall\ (c\ a)\ p \rightarrow incl\ g\ p \rightarrow Forall\ (c\ a)\ g. Proof. intros X\ c\ a\ p\ g\ H\ H0. induction g. - apply Forall\_nil. - rewrite Forall\_forall\ in\ H. apply Forall\_forall. intros x\ Hin. apply H. unfold incl\ in\ H0. apply H0. intuition. Qed.
```

5.3.6 Facts about remove

There are surprisingly few lemmas about remove in the standard library, so in addition to those proven in other places, we opted to add quite a few simple facts about remove. First is that if an element is in a list after something has been removed, then clearly it was in the list before as well.

```
Lemma In\_remove : \forall \{A: \mathsf{Type}\} \ Aeq\_dec \ a \ b \ (l:list \ A),
  In a (remove Aeq\_dec\ b\ l) \rightarrow In a l.
Proof.
  intros A Aeq_dec \ a \ b \ l \ H. induction l as [|c| \ l \ Hl].
  - contradiction.
  - destruct (Aeq\_dec\ b\ c)\ eqn: Heq; simpl in H; rewrite Heq in H.
     + right. auto.
    + destruct H; [rewrite H; intuition | right; auto].
Qed.
   Similarly to Forall_remove, if a list was StronglySorted before something was removed
then it is also StronglySorted after.
Lemma StronglySorted\_remove : \forall \{A:Type\} Aeq\_dec Rel a (l:list A),
  StronglySorted\ Rel\ l \rightarrow StronglySorted\ Rel\ (remove\ Aeq\_dec\ a\ l).
Proof.
  intros A Aeg\_dec Rel a l H. induction l.
  - simpl. auto.
  - simpl. apply StronglySorted\_inv in H. destruct (Aeq\_dec\ a\ a\theta).
    + apply IHl. apply H.
    + apply SSorted\_cons.
       \times apply IHl. apply H.
       \times apply Forall\_remove. apply H.
Qed.
   If the item being removed from a list isn't in the list, then the list is equal with or without
the remove.
Lemma not\_In\_remove : \forall (A:Type) Aeq\_dec \ a \ (l : list \ A),
  \neg In a l \rightarrow (remove Aeq_dec a l) = l.
Proof.
  intros A Aeq_{-}dec a l H. induction l.
  - simpl. reflexivity.
  - simpl. destruct (Aeq_{-}dec \ a \ a\theta).
     + simpl. rewrite e in H. exfalso. apply H. intuition.
    + rewrite IHl. reflexivity. intro Hin. apply H. intuition.
Qed.
   remove also distributes over append.
```

Lemma $remove_distr_app : \forall (A:Type) Aeq_dec \ x (l \ l':list \ A),$

```
remove\ Aeq\_dec\ x\ (l\ ++\ l') = remove\ Aeq\_dec\ x\ l\ ++\ remove\ Aeq\_dec\ x\ l'.
Proof.
  intros A Aeq_dec x l l'. induction l; intros.
  - simpl. auto.
  - simpl. destruct (Aeq_{-}dec \ x \ a).
    + apply IHl.
    + simpl. f_equal. apply IHl.
Qed.
   More interestingly, if two lists were permutations before, they are also permutations after
the same element has been removed from both lists.
Lemma remove\_Permutation : \forall (A:Type) Aeq\_dec \ a \ (l \ l':list \ A),
  Permutation \ l \ l' \rightarrow
  Permutation (remove Aeq_dec a l) (remove Aeq_dec a l').
Proof.
  intros A Aeq_{-}dec \ a \ l \ l' \ H. induction H.
  - auto.
  - simpl. destruct (Aeq_{-}dec \ a \ x); auto.
  - simpl. destruct (Aeq\_dec\ a\ y); destruct (Aeq\_dec\ a\ x); auto.
     apply perm\_swap.
  - apply Permutation\_trans with (l':=(remove\ Aeq\_dec\ a\ l')); auto.
Qed.
   remove is also commutative with itself.
Lemma remove\_remove : \forall \{A: \mathsf{Type}\} \ Aeq\_dec \ (a \ b:A) \ p,
  remove \ Aeq\_dec \ a \ (remove \ Aeq\_dec \ b \ p) =
  remove \ Aeq\_dec \ b \ (remove \ Aeq\_dec \ a \ p).
Proof.
  intros A A eq_{-} dec \ a \ b \ p. induction p as [c]; simpl; auto.
  destruct (Aeq\_dec\ a\ b); destruct (Aeq\_dec\ b\ c); destruct (Aeq\_dec\ a\ c).
  - auto.
  - rewrite \leftarrow e\theta in n. rewrite e in n. contradiction.
  - rewrite \leftarrow e in n. rewrite e\theta in n. contradiction.
  - simpl. destruct (Aeq_dec a c); try contradiction.
    destruct (Aeq\_dec\ b\ c); try contradiction. rewrite IHp. auto.
  - rewrite e in n. rewrite e\theta in n. contradiction.
  - simpl. destruct (Aeq\_dec\ b\ c); try contradiction. auto.
  - simpl. destruct (Aeq\_dec\ a\ c); try contradiction. auto.
  - simpl. destruct (Aeq_dec a c); try contradiction.
    destruct (Aeq\_dec\ b\ c); try contradiction. rewrite IHp. auto.
Qed.
```

Lastly, if an element is being removed from a particular list twice, the inner remove is redundant and can be removed.

```
Lemma remove\_pointless: \forall \{A \ Aeq\_dec\} \ (a:A) \ p \ q, remove \ Aeq\_dec \ a \ (remove \ Aeq\_dec \ a \ p \ ++ \ q) = remove \ Aeq\_dec \ a \ (p \ ++ \ q). Proof. intros A \ Aeq\_dec \ a \ p \ q. induction p; auto. simpl. destruct (Aeq\_dec \ a \ a0) \ eqn:Heq. - apply IHp. - simpl. rewrite Heq. f_equal. apply IHp. Qed.
```

5.3.7 Facts about nodup and NoDup

Next up - the NoDup proposition and the closely related nodup function. The first lemma states that if there are no duplicates in a list, then two items in that list must not be equal.

```
 \begin{array}{l} \text{Lemma } NoDup\_neq: \forall \; \{X\text{:Type}\} \; (m: \mathit{list}\; X) \; a \; b, \\ NoDup \; (a::b::m) \to \\ a \neq b. \\ \text{Proof.} \\ \text{intros} \; X \; m \; a \; b \; Hdup. \; \text{apply } NoDup\_cons\_iff \; \text{in } Hdup \; \text{as } []. \\ \text{apply } NoDup\_cons\_iff \; \text{in } H0 \; \text{as } []. \; \text{intro. apply } H. \; \text{simpl. auto.} \\ \text{Qed.} \\ \end{array}
```

In a similar vein as many of the other remove lemmas, if there were no duplicates in a list before the remove then there are still none after.

```
Lemma NoDup\_remove: \forall (A:Type) \ Aeq\_dec \ a \ (l:list \ A), NoDup \ l \rightarrow NoDup \ (remove \ Aeq\_dec \ a \ l). Proof.

intros A \ Aeq\_dec \ a \ l \ H. induction l.
- simpl. auto.
- simpl. destruct (Aeq\_dec \ a \ a\theta).
+ apply IHl. apply NoDup\_cons\_iff in H. intuition.
+ apply NoDup\_cons.
\times \text{ apply } NoDup\_cons\_iff \ in \ H \ as \ []. \ intro. \ apply \ H.
\text{ apply } (In\_remove \ Aeq\_dec \ a\theta \ a \ l \ H1).
\times \text{ apply } IHl. \ \text{ apply } NoDup\_cons\_iff \ in \ H; \ \text{ intuition.}
Qed.
```

Another lemma similar to $NoDup_neq$ is $NoDup_forall_neq$; if every element in a list is not equal to a certain a, and the list has no duplicates as is, then it is safe to add a to the list without creating duplicates.

```
Lemma NoDup\_forall\_neq : \forall (A:Type) \ a \ (l:list \ A),
Forall \ (fun \ b \Rightarrow a \neq b) \ l \rightarrow
NoDup \ l \rightarrow
NoDup \ (a :: l).
```

```
Proof.
```

```
intros A a l Hf Hn. apply NoDup_cons.
- intro. induction l.
  + inversion H.
  + apply Forall\_cons\_iff in Hf as []. apply IHl.
    \times apply H0.
    \times apply NoDup\_cons\_iff in Hn. apply Hn.
     \times simpl in H. destruct H; auto. rewrite H in H1. contradiction.
- auto.
```

Qed.

This lemma is really just a reformalization of $NoDup_remove_2$, which allows us to easily prove that some x is not in the preceding elements l1 or the following elements l2 when the whole list l has no duplicates.

```
Lemma NoDup\_In\_split : \forall \{A: \mathsf{Type}\}\ (x:A) \ l \ l1 \ l2,
   l = l1 ++ x :: l2 \rightarrow
   NoDup \ l \rightarrow
   \neg In \ x \ l1 \land \neg In \ x \ l2.
Proof.
   intros A \times l \ l1 \ l2 \ H \ H0. rewrite H in H0.
   apply NoDup\_remove\_2 in H0. split; intro; intuition.
Qed.
```

Now some facts about the function nodup; if the NoDup predicate is already true about a certain list, then calling nodup on it changes nothing.

```
Lemma no\_nodup\_NoDup : \forall (A:Type) Aeq\_dec (l:list A),
  NoDup \ l \rightarrow
  nodup \ Aeq\_dec \ l = l.
Proof.
  intros A Aeq_{-}dec l H. induction l.
  - simpl. apply NoDup\_cons\_iff in H as []. destruct (in\_dec\ Aeq\_dec\ a\ l).
     contradiction. f_equal. auto.
Qed.
```

If a list is sorted (with a transitive relation) before calling nodup on it, the list is also sorted after.

```
Lemma Sorted\_nodup : \forall (A:Type) Aeg\_dec Rel (l:list A),
  Relations\_1.Transitive\ Rel \rightarrow
  Sorted Rel l \rightarrow
  Sorted Rel (nodup Aeq\_dec \ l).
Proof.
  intros A Aeq_dec Rel l Ht H. apply Sorted_StronglySorted in H; auto.
  apply StronglySorted\_Sorted. induction l.
```

```
- auto.
- simpl. apply StronglySorted\_inv in H as []. destruct (in\_dec\ Aeq\_dec\ a\ l).
+ apply IHl. apply H.
+ apply SSorted\_cons.
× apply IHl. apply H.
× rewrite Forall\_forall in H0. apply Forall\_forall. intros x\ Hin. apply H0. apply nodup\_In in Hin. auto.

Qed.
```

And lastly, similarly to our other Permutation lemmas this far, if two lists were permutations of each other before nodup they are also permutations after.

This lemma was slightly more complex than previous Permutation lemmas, but the proof is still very similar. It is solved by induction on the Permutation hypothesis. The first and last cases are trivial, and the second case (where we must prove Permutation (x::l) (x::l')) becomes simple with the use of Permutation_in.

The last case (where we must show Permutation (x::y::l) (y::x::l)) was slightly complicated by the fact that destructing in_dec gives us a hypothesis like $\ln x$ (y::l), which seems useless in reasoning about the other list at first. However, by also destructing whether or not x and y are equal, we can easily prove this case as well

```
Lemma Permutation\_nodup : \forall A Aeq\_dec (l m:list A),
  Permutation l m \rightarrow Permutation (nodup Aeg_dec l) (nodup Aeg_dec m).
Proof.
  intros. induction H.
  - auto.
  - simpl. destruct (in\_dec \ Aeq\_dec \ x \ l).
    + apply Permutation_in with (l':=l') in i; auto. destruct in_idec; try contradiction.
       auto.
    + assert (\tilde{l} In x l'). intro. apply n. apply Permutation_in with (l':=l) in H0;
auto.
       apply Permutation\_sym; auto. destruct in\_dec; try contradiction.
       apply perm\_skip. auto.
  - destruct (in\_dec\ Aeq\_dec\ y\ (x::l)). destruct i.
    + rewrite H. simpl. destruct (Aeq\_dec\ y\ y); try contradiction. destruct in\_dec.
       auto. apply perm_-skip. auto.
    + simpl. destruct (Aeq\_dec\ x\ y). destruct in\_dec; destruct (Aeq\_dec\ y\ x);
       try (symmetry in e; contradiction). rewrite e in i. destruct in_{-}dec; try contradiction.
       auto. assert (\tilde{l} In y l). intro; apply n; rewrite e; auto.
       destruct in_dec; try contradiction. destruct in_dec; try contradiction.
       destruct in_{-}dec; destruct (Aeq_{-}dec\ y\ x); try (symmetry in e; contradiction).
       auto. apply perm_-skip. auto.
    + simpl. destruct (Aeq\_dec\ x\ y). destruct in\_dec. destruct (Aeq\_dec\ y\ x);
       try (symmetry in e; contradiction). rewrite e\theta. destruct in\_dec; try contradiction.
```

auto. destruct $(Aeq_dec\ y\ x)$; try (symmetry in e; contradiction).

```
assert (~ In y l). intro; apply n\theta; rewrite e; auto. destruct in\_dec; try contradiction.

rewrite e\theta. apply perm\_skip; auto. assert (~ In y l). intro; apply n; intuition. destruct in\_dec; try contradiction. destruct in\_dec; destruct (Aeq\_dec\ y\ x); try (symmetry in e; contradiction). auto. apply perm\_swap.

- apply Permutation\_trans with (l':=(nodup\ Aeq\_dec\ l')); auto. Qed.
```

5.3.8 Facts about partition

The final function in the standard library we found it useful to prove facts about is partition. First, we show the relation between partition and *filter*: filtering a list gives you a result that is equal to the first list partition would return. This lemma is proven one way, and then reformalized to be more useful in later proofs.

```
Lemma partition\_filter\_fst {X} p l :
  fst (partition p l) = @filter X p l.
Proof.
  induction l; simpl.
  - trivial.
  - rewrite \leftarrow IHl.
     destruct (partition \ p \ l); simpl.
     destruct (p \ a); now \ \text{simpl}.
Qed.
Lemma partition\_filter\_fst': \forall \{X\} \ p \ (l \ t \ f : list \ X),
     partition p \mid l = (t, f) \rightarrow
     t = @filter X p l.
Proof.
  intros X p l t f H.
  rewrite \leftarrow partition\_filter\_fst.
  now rewrite H.
Qed.
```

We would like to be able to state a similar fact about the second list returned by partition, but clearly these are all the elements "thrown out" by *filter*. Instead, we first create a simple definition for negating a function, and prove two quick facts about the relation between some p and $neg\ p$.

```
Definition neg \{X: \texttt{Type}\} := \texttt{fun} \ (f: X \rightarrow bool) \Rightarrow \texttt{fun} \ (a: X) \Rightarrow (negb \ (f \ a)). Lemma neg\_true\_false : \forall \{X\} \ (p: X \rightarrow bool) \ (a: X),  (p \ a) = true \leftrightarrow neg \ p \ a = false. Proof.  \texttt{intros} \ X \ p \ a. \ \texttt{unfold} \ neg. \ \texttt{split}; \ \texttt{intro}.   - \texttt{rewrite} \ H. \ \texttt{auto}.
```

```
- destruct (p\ a); intuition. Qed. Lemma neg\_false\_true: \forall\ \{X\}\ (p:X {\rightarrow} bool)\ (a:X), (p\ a) = false \leftrightarrow neg\ p\ a = true. Proof. intros X\ p\ a. unfold neg. split; intro. - rewrite H. auto. - destruct (p\ a); intuition. Qed.
```

With the addition of this *neg* proposition, we can now prove two lemmas relating the second partition list and *filter* in the same way we proved the lemmas about the first partition list.

```
Lemma partition\_filter\_snd \{X\} p l:
  snd (partition p l) = @filter X (neq p) l.
Proof.
  induction l; simpl.
  - reflexivity.
  - rewrite \leftarrow IHl.
     destruct (partition \ p \ l); simpl.
     destruct (p \ a) \ eqn:Hp.
     + simpl. apply neg\_true\_false in Hp. rewrite Hp; auto.
     + simpl. apply neg\_false\_true in Hp. rewrite Hp; auto.
Qed.
Lemma partition\_filter\_snd': \forall \{X\} \ p \ (l \ t \ f : list \ X),
  partition p \mid l = (t, f) \rightarrow
  f = @filter X (neg p) l.
Proof.
  intros X p l t f H.
  rewrite \leftarrow partition\_filter\_snd.
  now rewrite H.
Qed.
```

These lemmas about partition and filter are now put to use in two important lemmas about partition. If some list l is partitioned into two lists (t, f), then every element in t must return true for the filtering predicate and every element in f must return false.

```
Lemma part\_fst\_true : \forall X \ p \ (l \ t \ f : list \ X), partition \ p \ l = (t, f) \rightarrow (\forall \ a, In \ a \ t \rightarrow p \ a = true). Proof.

intros X \ p \ l \ t \ f \ Hpart \ a \ Hin. assert (Hf: \ t = filter \ p \ l). - now apply partition\_filter\_fst' with f.
```

```
- assert (Hass := filter\_In \ p \ a \ l).
     apply Hass.
     now rewrite \leftarrow Hf.
Qed.
Lemma part\_snd\_false : \forall X \ p \ (x \ t \ f : list \ X),
  partition p x = (t, f) \rightarrow
  (\forall a, In \ a \ f \rightarrow p \ a = false).
Proof.
  intros X p l t f Hpart a Hin.
  assert (Hf: f = filter (neg p) l).
  - now apply partition_filter_snd' with t.
  - assert (Hass := filter\_In (neg p) a l).
     rewrite \leftarrow neg\_false\_true in Hass.
     apply Hass.
     now rewrite \leftarrow Hf.
Qed.
```

Next is a rather obvious but useful lemma, which states that if a list p was split into (l, r) then appending these lists back together results in a list that is a permutation of the original.

```
Lemma partition_Permutation : \forall {A:Type} f (p l r: list A), partition f p = (l, r) \rightarrow Permutation p (l++r). Proof.

intros A f p. induction p; intros.

- simpl in H. inversion H. auto.

- simpl in H. destruct (partition f p). destruct (f a); inversion H.

+ simpl. apply perm_skip. apply IHp. f_equal. auto.

+ apply Permutation\_trans with (l':=(a::l1 ++ l)). apply Perm_skip. apply Permutation\_trans with (l':=(l++l1)). apply IHp. f_equal. auto. apply Permutation\_app\_comm. apply Permutation\_app\_comm with (l:=(a::l1)). Qed.
```

The last and hardest fact about partition states that if the list being partitioned was already sorted, then the resulting two lists will also be sorted. This seems simple, as partition iterates through the elements in order and maintains the order in its children, but was surprisingly difficult to prove.

After performing induction, the next step was to destruct $(f \ a)$, to see which of the two lists the induction element would end up in. In both cases, the list that doesn't receive the new element is already clearly sorted by the induction hypothesis, but proving the other one is sorted is slightly harder.

By using $Forall_HdRel$ (defined earlier), we reduced the problem in both cases to only having to show that the new element holds the relation c on all elements of the list it was

consed onto. After some manipulation and the use of partition_Permutation and $Forall_incl$, this follows from the fact that we know the new element holds the relation on all elements of the original list p, and therefore also holds it on the elements of the partitioned list.

```
Lemma part\_Sorted : \forall \{X: Type\} (c: X \rightarrow X \rightarrow Prop) f p
  Relations\_1.Transitive c \rightarrow
  Sorted c p \rightarrow
  \forall l \ r, \ partition \ f \ p = (l, r) \rightarrow
  Sorted c \mid l \land Sorted \mid c \mid r.
Proof.
  intros X c f p Htran Hsort. induction p; intros.
  - simpl in H. inversion H. auto.
  - assert (H\theta := H); auto. simpl in H. destruct (partition \ f \ p) as [g \ d].
    destruct (f \ a); inversion H.
    + assert (Forall (c a) g \land Sorted \ c \ g \land Sorted \ c \ r \rightarrow Sorted \ c \ (a::g) \land Sorted \ c \ r).
       \times intros H4. split. apply Sorted\_cons. apply H4. apply Forall\_HdRel. apply
H_4. apply H_4.
       \times apply H1. split.
         - apply Sorted\_StronglySorted in Hsort; auto. apply StronglySorted\_inv in Hsort
as [].
             apply (Forall_incl _ _ _ H5). apply partition_Permutation in H0.
             rewrite \leftarrow H2 in H0. simpl in H0. apply Permutation\_cons\_inv in H0.
             apply Permutation\_incl in H0 as ||. unfold incl. unfold incl in H6.
             intros a\theta Hin. apply H6. intuition.
         - apply IHp. apply Sorted\_inv in Hsort; apply Hsort. f_equal. auto.
    + assert (Forall (c a) d \land Sorted c l \land Sorted c d \rightarrow Sorted c l \land Sorted c (a::d)).
       \times intros H4. split. apply H4. apply Sorted\_cons. apply H4. apply Forall\_HdRel.
apply H_4.
       \times apply H1. split.
         - apply Sorted\_StronglySorted in Hsort; auto. apply StronglySorted\_inv in Hsort
as ||.
             apply (Forall_incl _ _ _ H5). apply partition_Permutation in H0.
             rewrite \leftarrow H3 in H0. simpl in H0. apply Permutation\_trans with (l'':=(a::d++l))
in H0.
             apply Permutation\_cons\_inv in H0. apply Permutation\_trans with (l":=(l++d))
in H\theta.
             apply Permutation\_incl in H0 as []. unfold incl. unfold incl in H6.
             intros a\theta Hin. apply H6. intuition. apply Permutation\_app\_comm.
             apply Permutation\_app\_comm with (l':=(a::d)).
         - apply IHp. apply Sorted\_inv in Hsort; apply Hsort. f_equal. auto.
Qed.
```

5.4 New Functions over Lists

In order to easily perform the operations we need on lists, we defined three major list functions of our own, each with their own proofs. These generalized list functions all help to make it much easier to deal with our polynomial and monomial lists later in the development.

5.4.1 Distributing two Lists: distribute

The first and most basic of the three is *distribute*. Similarly to the "FOIL" technique learned in middle school for multiplying two polynomials, this function serves to create every combination of one element from each list. It is done concisely with the use of higher order functions below.

```
Definition distribute \{A\} (l \ m : list \ (list \ A)) : list \ (list \ A) := concat \ (map \ (fun \ a:(list \ A) \Rightarrow (map \ (app \ a) \ l)) \ m).
```

The distribute function will play a larger role later, mostly as a part of our polynomial multiplication function. For now, however, there are only two very simple lemmas to be proven, both stating that distributing nil over a list results in nil.

```
Lemma distribute\_nil: \forall \{A: \texttt{Type}\}\ (p: list\ (list\ A)), distribute\ []\ p = [].

Proof.
  intros A\ p. induction p.
  - auto.
  - unfold distribute in *. simpl in *. auto.

Qed.

Lemma distribute\_nil\_r: \forall \{A: \texttt{Type}\}\ (p: list\ (list\ A)), distribute\ p\ [] = [].

Proof.
  intros A\ p. induction p.
  - auto.
  - unfold distribute in *. simpl in *. auto.

Qed.
```

5.4.2 Cancelling out Repeated Elements: nodup_cancel

The next list function, and possibly the most prolific function in our entire development, is nodup_cancel. Similarly to the standard library nodup function, nodup_cancel takes a list that may or may not have duplicates in it and returns a list without duplicates.

The difference between ours and the standard function is that rather than just removing all duplicates and leaving one of each element, the elements in a nodup_cancel list cancel out in pairs. For example, the list [1;1;1] would become [1], whereas [1;1;1;1] would become [].

This is implemented with the $count_occ$ function and remove, and is largely the reason for needing so many lemmas about those two functions. If there is an even number of occurences

of an element a in the original list (a::l), which implies there is an odd number of occurences of this element in l, then all instances are removed. On the other hand, if there is an odd number of occurences in the original list, one occurence is kept, and the rest are removed.

By calling $nodup_cancel$ recursively on xs before calling remove, Coq is easily able to determine that xs is the decreasing argument, removing the need for a more complicated definition with "fuel".

```
Fixpoint nodup\_cancel~\{A\} Aeq\_dec~(l:list~A):list~A:= match l with |~||~\Rightarrow~|| |~x::xs~\Rightarrow let count:=(count\_occ~Aeq\_dec~xs~x) in let xs':=(remove~Aeq\_dec~x~(nodup\_cancel~Aeq\_dec~xs)) in if (even~count) then x::xs' else xs' end.
```

Now onto lemmas. To begin with, there are a few facts true of nodup that are also true of nodup_cancel, which are useful in many proofs. nodup_cancel_in is the same as the standard library's $nodup_in$, with one important difference: this implication is not bidirectional. Because even parity elements are removed completely, not all elements in l are guaranteed to be in nodup_cancel l.

NoDup_nodup_cancel is much simpler, and effectively exactly the same as NoDup_nodup. In these proofs, and most others from this point on, the shape will be very similar to the proof of the corresponding nodup proof. The main difference is that, instead of destructing in_dec like one would for nodup, we destruct the evenness of count_occ, as that is what drives the main if statement of the function.

```
Lemma nodup\_cancel\_in : \forall (A:Type) Aeq\_dec \ a \ (l:list \ A),
  In a (nodup\_cancel\ Aeq\_dec\ l) \rightarrow In\ a\ l.
Proof.
  intros A Aeq\_dec a l H. induction l as [|b|l]Hl|.
  - contradiction.
  - simpl in H. destruct (Aeq\_dec \ a \ b).
    + rewrite e. intuition.
    + right. apply IHl. destruct (even (count_occ Aeq_dec l b)).
       \times simpl in H. destruct H. rewrite H in n. contradiction.
         apply In\_remove in H. auto.
       \times apply In\_remove in H. auto.
Qed.
Lemma NoDup\_nodup\_cancel: \forall (A:Type) Aeq\_dec (l:list A),
NoDup \ (nodup\_cancel \ Aeq\_dec \ l).
Proof.
  induction l as [|a|l'|Hrec]; simpl.
  - constructor.
```

```
- destruct (even\ (count\_occ\ Aeq\_dec\ l'\ a)); simpl. 
+ apply NoDup\_cons; [apply remove\_In\ |\ apply\ NoDup\_remove; auto]. 
+ apply NoDup\_remove; auto. 
Qed.
```

Although not standard library lemmas, the no_nodup_NoDup and *Sorted_nodup* facts we proved earlier in this file are also both true of nodup_cancel, and proven in almost the same way.

```
Lemma no\_nodup\_cancel\_NoDup : \forall (A:Type) Aeq\_dec (l:list A),
  NoDup \ l \rightarrow
  nodup\_cancel \ Aeq\_dec \ l = l.
Proof.
  intros A Aeq_-dec l H. induction l.
  - auto.
  - simpl. apply NoDup\_cons\_iff in H as []. assert (count\_occ\ Aeq\_dec\ l\ a=0).
    + apply count\_occ\_not\_In. auto.
    + rewrite H1. simpl. f_equal. rewrite not_I In_remove. auto. intro.
       apply nodup\_cancel\_in in H2. apply H. auto.
Qed.
Lemma Sorted\_nodup\_cancel : \forall (A:Type) Aeq\_dec Rel (l:list A),
  Relations\_1.Transitive Rel \rightarrow
  Sorted Rel l \rightarrow
  Sorted Rel (nodup_cancel Aeq_dec l).
Proof.
  intros A Aeq_dec Rel l Ht H. apply Sorted_StronglySorted in H; auto.
  apply StronglySorted\_Sorted. induction l.
  - auto.
  - simpl. apply StronglySorted\_inv in H as []. destruct (even\ (count\_occ\ Aeg\_dec\ l\ a)).
    + apply SSorted\_cons.
       \times apply StronglySorted\_remove. apply IHl. apply H.
       \times apply Forall\_remove. apply Forall\_forall. rewrite Forall\_forall in H0.
         intros x Hin. apply H0. apply nodup\_cancel\_in in Hin. auto.
    + apply StronglySorted\_remove. apply IHl. apply H.
Qed.
```

An interesting side effect of the "cancelling" behavior of this function is that while the number of occurences of an item may change after calling nodup_cancel, the evenness of the count never will. If an element was odd before there will be one occurence, and if it was even before there will be none.

```
Lemma count\_occ\_nodup\_cancel: \forall \{A \ Aeq\_dec\} \ p \ (a:A), even \ (count\_occ \ Aeq\_dec \ (nodup\_cancel \ Aeq\_dec \ p) \ a) = even \ (count\_occ \ Aeq\_dec \ p \ a). Proof.
```

```
intros A Aeq_dec p a induction p as [b]; auto. simpl.
  destruct (even (count\_occ Aeg\_dec p b)) eqn:Hb.
  - simpl. destruct (Aeq_{-}dec \ b \ a).
    + rewrite e. rewrite count\_occ\_remove. rewrite e in Hb. repeat rewrite even\_succ.
      rewrite \leftarrow negb\_odd in Hb. rewrite Bool.neqb\_true\_iff in Hb. rewrite Hb. auto.
    + rewrite count_occ_neg_remove; auto.
  - simpl. destruct (Aeq_{-}dec \ b \ a).
    + rewrite e. rewrite count\_occ\_remove. rewrite e in Hb. repeat rewrite even\_succ.
      rewrite \leftarrow negb\_odd in Hb. rewrite Bool.negb\_false\_iff in Hb. rewrite Hb. auto.
    + rewrite count\_occ\_neg\_remove; auto.
Qed.
   Permutation_nodup was challenging to prove before, and this version for nodup_cancel
faces the same problems. The first and fourth cases are easy, and the second isn't too bad
after using count_occ_Permutation. The third case faces the same problems as before, but
requires some extra work when transitioning from reasoning about count\_occ\ (x::l)\ y) to
count\_occ\ (y::l)\ x.
   This is accomplished by using even_succ, negb_odd, and negb_true_iff. In this way, we
can convert something saying even (S \ n) = \text{true to } even \ n = \text{false}.
Lemma nodup\_cancel\_Permutation : \forall (A:Type) Aeq\_dec (l l':list A),
  Permutation \ l \ l' \rightarrow
  Permutation \ (nodup\_cancel \ Aeq\_dec \ l) \ (nodup\_cancel \ Aeq\_dec \ l').
  intros A Aeg_{-}dec l l H. induction H.
  - auto.
  - simpl. destruct even eqn:Hevn.
    + rewrite (count\_occ\_Permutation \_ \_ \_ \_ \_ H) in Hevn. rewrite Hevn.
       apply perm_skip. apply remove_Permutation. apply IHPermutation.
    + rewrite (count_occ_Permutation _ _ _ _ H) in Hevn. rewrite Hevn.
       apply remove_Permutation. apply IHPermutation.
  - simpl. destruct (even (count_occ Aeg_dec l x)) eqn:Hevx;
    destruct (even\ (count\_occ\ Aeq\_dec\ l\ y)) eqn:Hevy; destruct (Aeq\_dec\ x\ y).
    + rewrite even\_succ. rewrite \leftarrow negb\_odd in Hevy. rewrite Bool.negb\_true\_iff in
Hevy.
      rewrite Hevy. destruct (Aeq\_dec\ y\ x); try (rewrite e in n; contradiction).
       rewrite even\_succ. rewrite \leftarrow negb\_odd in Hevx. rewrite Bool.negb\_true\_iff in
Hevx.
      rewrite Hevx. simpl. destruct (Aeq\_dec\ y\ x); try contradiction.
      destruct (Aeq\_dec\ x\ y); try contradiction. rewrite remove\_remove. auto.
```

destruct $(Aeq_dec\ x\ y)$; try contradiction. rewrite Hevx.

rewrite remove_remove. apply perm_swap.

+ rewrite Hevy. simpl. destruct $(Aeq_-dec\ y\ x)$; try (symmetry in e; contradiction).

```
+ rewrite Hevy. simpl. destruct (Aeq\_dec\ y\ x); try (symmetry in e; contradiction).
      rewrite Hevx. apply perm_skip. rewrite remove_remove. auto.
    + rewrite e in Hevx. rewrite Hevx in Hevy. inversion Hevy.
    + rewrite Hevy. destruct (Aeq_{-}dec\ y\ x); try (symmetry in e; contradiction).
      rewrite Hevx. simpl. destruct (Aeq\_dec \ x \ y); try contradiction.
      apply perm_skip. rewrite remove_remove. auto.
    + rewrite even\_succ. rewrite \leftarrow negb\_odd in Hevy. rewrite Bool.negb\_false\_iff in
Hevy.
      rewrite Hevy. symmetry in e. destruct (Aeq_{-}dec\ y\ x); try contradiction.
      rewrite even\_succ. rewrite \leftarrow negb\_odd in Hevx. rewrite Bool.negb\_false\_iff in
Hevx.
      rewrite Hevx. rewrite e. auto.
    + rewrite Hevy. destruct (Aeq\_dec\ y\ x); try (symmetry in e; contradiction).
      rewrite Hevx. rewrite remove_remove. auto.
  - apply Permutation\_trans with (l':=(nodup\_cancel\ Aeq\_dec\ l')); auto.
Qed.
```

As mentioned earlier, in the original definition of the function, it was helpful to reverse the order of remove and the recursive call to nodup_cancel. This is possible because these operations are associative, which is proven below.

```
Lemma nodup\_cancel\_remove\_assoc: \forall \{A\} Aeq\_dec (a:A) p,
  remove \ Aeq\_dec \ a \ (nodup\_cancel \ Aeq\_dec \ p) =
  nodup_cancel Aeq_dec (remove Aeq_dec a p).
Proof.
  intros A Aeq_{-} dec \ a \ p. induction p.
  - simpl. auto.
  - simpl. destruct even eqn:Hevn.
     + simpl. destruct (Aeq\_dec \ a \ a\theta).
       \times rewrite \leftarrow e. rewrite not\_In\_remove; auto. apply remove\_In.
       \times simpl. rewrite count\_occ\_neq\_remove; auto. rewrite Hevn.
          f_{equal.} rewrite \leftarrow IHp. rewrite remove_{equal.} rewrote. auto.
     + destruct (Aeq_-dec\ a\ a\theta).
       \times rewrite \leftarrow e. rewrite not\_In\_remove; auto. apply remove\_In.
       \times simpl. rewrite count\_occ\_neq\_remove; auto. rewrite Hevn.
          rewrite remove\_remove. rewrite \leftarrow IHp. auto.
Qed.
```

The entire point of defining nodup_cancel was so that repeated elements in a list cancel out; clearly then, if an entire list appears twice it will cancel itself out. This proof would be much easier if the order of remove and nodup_cancel was swapped, but the above proof of the two being associative makes it easier to manage.

```
Lemma nodup\_cancel\_self: \forall \{A\} \ Aeq\_dec \ (l:list \ A), \ nodup\_cancel \ Aeq\_dec \ (l++l) = [].
```

```
- simpl. destruct even eqn:Hevn.
    + rewrite count_occ_app in Hevn. destruct (count_occ Aeq_dec p a) eqn:Hx.
       \times simpl in Hevn. destruct (Aeq_dec a a); try contradiction.
         rewrite Hx in Hevn. inversion Hevn.
       \times simpl in Hevn. destruct (Aeq_dec a a); try contradiction.
         rewrite Hx in Hevn. rewrite add\_comm in Hevn.
         simpl in Hevn. destruct (plus \ n \ n) \ eqn: Help. inversion Hevn.
         replace (plus \ n \ n) with (plus \ 0 \ (2*n)) in Help.
         pose (even\_add\_mul\_2\ 0\ n). pose (even\_succ\ n\theta). rewrite \leftarrow Help in e1.
         rewrite e\theta in e1. simpl in e1. apply even\_spec in Hevn. symmetry in e1.
         apply odd\_spec in e1. apply (Even\_Odd\_False\_Hevn) in e1. inversion e1.
         simpl. auto.
    + clear Hevn. rewrite nodup\_cancel\_remove\_assoc. rewrite remove\_distr\_app.
       simpl. destruct (Aeq\_dec\ a\ a); try contradiction.
       rewrite \leftarrow remove\_distr\_app. rewrite \leftarrow nodup\_cancel\_remove\_assoc.
      rewrite IHp. auto.
Qed.
   Next up is a useful fact about In that results from nodup_cancel. Because when there's
an even number of an element they all get removed, we can say that there will not be any
in the resulting list.
Lemma not\_in\_nodup\_cancel : \forall \{A \ Aeq\_dec\} \ (m:A) \ p,
  even (count\_occ \ Aeq\_dec \ p \ m) = true \rightarrow
  \neg In m (nodup_cancel Aeq_dec p).
Proof.
  intros A Aeq_{-}dec m p H. induction p.
  - simpl. auto.
  - intro. simpl in H. destruct (Aeq\_dec\ a\ m).
    + simpl in H0. rewrite even\_succ in H. rewrite \leftarrow negb\_even in H.
      rewrite Bool.negb\_true\_iff in H. rewrite \leftarrow e in H. rewrite H in H0.
      rewrite e in H0. apply remove_{-}In in H0. inversion H0.
    + apply IHp; auto. simpl in H0. destruct (even (count_occ Aeq_dec p a)).
       \times destruct H0; try contradiction. apply In\_remove in H0. auto.
       \times apply In\_remove in H\theta. auto.
Qed.
   Similarly to the above lemma, because a will already be removed from p by nodup\_cancel,
```

Proof.

- auto.

intros $A Aeg_dec p$, induction p.

whether or not a remove is added doesn't make a difference.

Lemma $nodup_extra_remove : \forall \{A \ Aeq_dec\} \ (a:A) \ p,$

 $even (count_occ \ Aeq_dec \ p \ a) = true \rightarrow$

```
nodup\_cancel \ Aeg\_dec \ p =
  nodup\_cancel\ Aeg\_dec\ (remove\ Aeg\_dec\ a\ p).
Proof.
  intros A Aeq_dec \ a \ p \ H. induction p as ||b|; auto. simpl.
  destruct (Aeq\_dec \ a \ b).
  - rewrite e in H. simpl in H. destruct (Aeq\_dec\ b\ b); try contradiction.
    rewrite even\_succ in H. rewrite \leftarrow negb\_even in H. rewrite Bool.negb\_true\_iff in
Н.
    rewrite H. rewrite nodup_cancel_remove_assoc. rewrite e. auto.
  - simpl. destruct (even (count_occ Aeq_dec p b)) eqn:Hev.
    + rewrite count\_occ\_neq\_remove; auto. rewrite Hev. f_equal.
      rewrite IHp. auto. simpl in H. destruct (Aeq_-dec);
      try (symmetry in e; contradiction). auto.
    + rewrite count\_occ\_neq\_remove; auto. rewrite Hev. f_equal.
       apply IHp. simpl in H. destruct (Aeq\_dec\ b\ a);
      try (symmetry in e; contradiction). auto.
Qed.
```

Lastly, one of the toughest nodup_cancel lemmas. Similarly to remove_pointless, if nodup_cancel is going to be applied later, there is no need for it to be applied twice. This lemma proves to be very useful when proving that two different polynomials are equal, because, as we will see later, there are often repeated calls to nodup_cancel inside one another. This lemma makes it significantly easier to deal with, as we can remove the redundant nodup_cancels.

This proof proved to be challenging, mostly because it is hard to reason about the parity of the same element in two different lists. In the proof, we begin with induction over p, and then move to destructing the count of a in each list. The first case follows easily from the two even hypotheses, $count_occ_app$, and a couple other lemmas. The second case is almost exactly the same, except a is removed by nodup_cancel and never makes it out front, so the call to $perm_skip$ is removed.

The third case, where a appears and odd number of times in p and an even number of times in q, is slightly different, but still solved relatively easily with the use of $nodup_extra_remove$. The fourth case is by far the hardest. We begin by asserting that, since the count of a in q is odd, there must be at least one, and therefore we can rewrite with In_split to get q into the form of l1++a++l2. We then assert that, since the count of a in q is odd, the count in l1++l2, or q with one a removed, must surely be even. These facts, combined with $remove_distr_app$, $count_occ_app$, and $nodup_cancel_remove_assoc$, allow us to slowly but surely work a out to the front and eliminate it with $perm_skip$. All that is left to do at that point is to perform similar steps in the induction hypothesis, so that both IHp and our goal are in terms of l1 and l2. IHp is then used to finish the proof.

```
Lemma nodup\_cancel\_pointless: \forall \{A \ Aeq\_dec\} \ (p \ q:list \ A),
Permutation \ (nodup\_cancel \ Aeq\_dec \ (nodup\_cancel \ Aeq\_dec \ p \ ++ \ q))
(nodup\_cancel \ Aeq\_dec \ (p \ ++ \ q)).
```

```
Proof.
  intros A A eq_{-} dec p q, induction p; auto. destruct (even (count_occ Aeq_dec p a))
eqn:Hevp;
  destruct (even (count\_occ Aeq\_dec q a)) eqn:Hevq.
  - simpl. rewrite Hevp. simpl. rewrite count_occ_app, count_occ_remove. simpl.
    rewrite count_occ_app, even_add, Hevp, Hevq. simpl. apply perm_skip.
    rewrite nodup_cancel_remove_assoc. rewrite remove_pointless.
    rewrite \leftarrow nodup\_cancel\_remove\_assoc. apply remove\_Permutation. apply IHp.
  - simpl. rewrite Hevp. simpl. rewrite count_occ_app, count_occ_remove. simpl.
    rewrite count_occ_app, even_add, Hevp, Hevq. simpl.
    rewrite nodup_cancel_remove_assoc. rewrite remove_pointless.
    rewrite \leftarrow nodup\_cancel\_remove\_assoc. apply remove\_Permutation. apply IHp.
  - simpl. rewrite Hevp. rewrite count_occ_app, even_add, Hevp, Hevq. simpl.
    rewrite (nodup\_extra\_remove\ a).
    + rewrite remove\_pointless. rewrite \leftarrow nodup\_cancel\_remove\_assoc.
      apply remove\_Permutation. apply IHp.
    + rewrite count\_occ\_app. rewrite even\_add. rewrite count\_occ\_remove.
      rewrite Hevq. auto.
  - assert (count\_occ \ Aeq\_dec \ q \ a > 0). destruct (count\_occ \ \_ q \ \_).
    inversion Hevq. apply gt\_Sn\_O. apply count\_occ\_In in H.
    apply in\_split in H as [l1 | l2 | H]], rewrite H, simpl nodup\_cancel at 2.
    rewrite Hevp. simpl app. rewrite H in IHp. simpl nodup\_cancel at 3.
    rewrite count\_occ\_app. rewrite even\_add. rewrite Hevp. rewrite \leftarrow H at 2.
    rewrite Hevq. simpl. apply Permutation\_trans with (l':=(nodup\_cancel
       Aeq\_dec\ (a:: remove\ Aeq\_dec\ a\ (nodup\_cancel\ Aeq\_dec\ p)\ ++\ l1\ ++\ l2))).
    + apply nodup_cancel_Permutation. rewrite app_assoc. apply Permutation_sym.
      rewrite app\_assoc. apply Permutation\_middle with (l2:=l2) (l1:=(remove
         Aeq\_dec \ a \ (nodup\_cancel \ Aeq\_dec \ p) ++ l1)).
    + assert (even (count_occ Aeq_dec (l1++l2) a) = true).
         rewrite H in Hevq. rewrite count\_occ\_app in Hevq. simpl in Hevq.
         destruct (Aeq_dec a a); try contradiction. rewrite plus_comm in Hevq.
         rewrite plus\_Sn\_m in Hevq. rewrite even\_succ in Hevq.
         rewrite \leftarrow negb\_even in Hevq. rewrite Bool.negb\_false\_iff in Hevq.
         rewrite count\_occ\_app. symmetry. rewrite plus\_comm. auto.
```

repeat rewrite $remove_distr_app$. simpl; destruct $(Aeq_dec\ a\ a)$; try contradiction. rewrite $nodup_cancel_remove_assoc$. rewrite $remove_pointless$. repeat rewrite \leftarrow $remove_distr_app$. repeat rewrite \leftarrow $nodup_cancel_remove_assoc$. apply $Permutation_trans$ with $(l'':=(nodup_cancel\ Aeq_dec\ (a::p++l1+l2)))$ in IHp.

simpl. rewrite $count_occ_app$. rewrite $count_occ_remove$. simpl.

rewrite $(nodup_cancel_remove_assoc__(p++l1++a::l2))$.

replace (even _) with true. apply perm_skip.

```
apply Permutation\_sym in IHp.
                 apply Permutation_trans with (l'':=(nodup_cancel Aeq_dec (a :: nodup_cancel
                      Aeq\_dec p ++ l1 ++ l2)) in IHp.
                simpl in IHp. rewrite count_occ_app, even_add, Hevp in IHp.
                rewrite H\theta in IHp, simpl in IHp.
                rewrite count_occ_app, even_add, count_occ_nodup_cancel, Hevp, H0 in IHp.
                simpl in IHp. apply Permutation_sym. apply IHp.
                 \times apply nodup\_cancel\_Permutation. rewrite app\_assoc. apply Permutation\_sym.
                      rewrite app\_assoc. apply Permutation\_middle with
                           (l1 := (nodup\_cancel Aeq\_dec p) ++ l1).
                 \times apply nodup\_cancel\_Permutation. rewrite app\_assoc. apply Permutation\_sym.
                      rewrite app\_assoc. apply Permutation\_middle with (l1:=(p ++ l1)).
Qed.
        This lemma is simply a reformalization of the above for convenience, which follows simply
because of Permutation_app_comm.
Lemma nodup\_cancel\_pointless\_r : \forall \{A \ Aeq\_dec\} \ (p \ q:list \ A),
     Permutation
           (nodup\_cancel\ Aeq\_dec\ (p\ ++\ nodup\_cancel\ Aeq\_dec\ q))
           (nodup\_cancel\ Aeq\_dec\ (p\ ++\ q)).
Proof.
     intros A A eq_{-} dec p q, apply Permutation\_trans with (l':=(nodup\_cancel Aeq_{-} dec (nodup\_cancel Aeq_{-} dec (no
           nodup\_cancel\ Aeq\_dec\ q\ ++\ p))).\ apply\ nodup\_cancel\_Permutation.
           apply Permutation\_app\_comm.
     apply Permutation_sym. apply Permutation_trans with (l':=(nodup_cancel
           Aeq\_dec\ (q++p)). apply nodup\_cancel\_Permutation.
           apply Permutation\_app\_comm. apply Permutation\_sym.
     apply nodup_cancel_pointless.
Qed.
```

5.5 Comparing Parity of Lists: $parity_match$

```
Definition parity\_match \{A\} Aeq\_dec (l \ m:list \ A): Prop := \  \  \, \forall \ x, \ even \ (count\_occ \ Aeq\_dec \ l \ x) = even \ (count\_occ \ Aeq\_dec \ m \ x).

Lemma even\_nodup\_cancel: \  \, \forall \ \{A \ Aeq\_dec\} \ (p:list \ A), \  \  \, (\forall \ x, \ even \ (count\_occ \ Aeq\_dec \ p \ x) = true) \rightarrow \  \  \, (\forall \ x, \ \neg \ In \ x \ (nodup\_cancel \ Aeq\_dec \ p)).

Proof.

intros A \ Aeq\_dec \ p \ H \ m. intro. induction p.
- inversion H0.
- simpl in *. pose (H \ m) as H1. symmetry in H1. destruct (Aeq\_dec \ a \ m).
```

```
+ symmetry in H1. rewrite \leftarrow e in H1. rewrite even\_succ in H1. rewrite \leftarrow
neqb\_even in H1.
       rewrite Bool.negb\_true\_iff in H1. rewrite H1 in H0. rewrite e in H0.
       apply remove\_In in H0. inversion H0.
     + destruct (even (count_occ Aeq_dec p a)).
       \times destruct H\theta; try contradiction. apply In\_remove in H\theta. symmetry in H1.
          apply not\_in\_nodup\_cancel in H1. contradiction.
        \times apply In\_remove in H0. symmetry in H1. apply not\_in\_nodup\_cancel in H1.
          contradiction.
Qed.
Lemma parity\_match\_empty : \forall \{A \ Aeq\_dec\} \ (q:list \ A),
  parity\_match \ Aeg\_dec \ [] \ g \rightarrow
  Permutation \parallel (nodup\_cancel Aeq\_dec q).
Proof.
  intros A Aeg_dec \ q \ H. unfold parity_match in H. simpl in H.
  symmetry in H. pose (even\_nodup\_cancel\ q\ H). apply nothing\_in\_empty in n.
  rewrite n. auto.
Qed.
Lemma parity\_match\_refl : \forall \{A \ Aeq\_dec\} \ (l:list \ A),
  parity\_match \ Aeq\_dec \ l \ l.
Proof.
  intros A Aeq_dec l. unfold parity_match. auto.
Qed.
Lemma parity\_match\_sym : \forall \{A \ Aeq\_dec\} \ (l \ m:list \ A),
  parity\_match \ Aeq\_dec \ l \ m \leftrightarrow parity\_match \ Aeq\_dec \ m \ l.
Proof.
  intros l m. unfold parity\_match. split; intros H x; auto.
Qed.
Lemma parity\_match\_trans : \forall \{A \ Aeq\_dec\} \ (p \ q \ r:list \ A),
  parity\_match \ Aeq\_dec \ p \ q \rightarrow
  parity\_match \ Aeq\_dec \ q \ r \rightarrow
  parity\_match \ Aeq\_dec \ p \ r.
Proof.
  intros A Aeq\_dec p q r H H0. unfold parity\_match in *. intros x.
  rewrite H. rewrite H\theta. auto.
Qed.
Hint Resolve parity_match_reft parity_match_sym parity_match_trans.
Lemma parity\_match\_cons : \forall \{A \ Aeq\_dec\} \ (a:A) \ l1 \ l2,
  parity\_match \ Aeq\_dec \ (a::l1) \ (a::l2) \leftrightarrow
  parity_match Aeq_dec l1 l2.
Proof.
```

```
intros A Aeq_dec a l1 l2. unfold parity_match. split; intros H x.
  - pose (H \ x). symmetry in e. simpl in e. destruct (Aeq\_dec \ a \ x); auto.
    repeat rewrite even\_succ in e. repeat rewrite \leftarrow negb\_even in e.
     apply Bool.negb\_sym in e. rewrite Bool.negb\_involutive in e. auto.
  - simpl. destruct (Aeq_{-}dec \ a \ x); auto.
    repeat rewrite even\_succ. repeat rewrite \leftarrow negb\_even.
     apply Bool.negb_sym. rewrite Bool.negb_involutive. auto.
Qed.
Lemma parity\_match\_double : \forall \{A \ Aeq\_dec\} \ (a:A) \ l,
  parity\_match \ Aeq\_dec \ (a::a::l) \ l.
  intros A Aeq_dec \ a \ l. unfold parity_match. intros x. simpl.
  destruct (Aeq_-dec \ a \ x).
  - rewrite even_succ. rewrite odd_succ. auto.
  - auto.
Qed.
Lemma parity\_match\_cons\_swap : \forall \{A \ Aeq\_dec\} \ (a:A) \ l1 \ l2,
  parity\_match \ Aeq\_dec \ (a::l1) \ l2 \rightarrow
  parity\_match Aeq\_dec l1 (a::l2).
Proof.
  intros A Aeq_dec a l1 l2 H. apply (parity_match_cons a) in H.
  apply parity\_match\_sym in H. apply parity\_match\_trans with (r:=l1) in H.
  apply parity\_match\_sym in H. auto. apply parity\_match\_double.
Qed.
Lemma parity\_match\_In : \forall \{A \ Aeq\_dec\} \ (a:A) \ l1 \ l2,
  even (count\_occ \ Aeq\_dec \ l1 \ a) = true \rightarrow
  parity\_match \ Aeg\_dec \ (a::l1) \ l2 \rightarrow
  In a l2.
Proof.
  intros A Aeq_dec a l1 l2 H H0. apply parity_match_cons_swap in H0.
  rewrite H0 in H. simpl in H. destruct (Aeq\_dec\ a\ a); try contradiction.
  rewrite even\_succ in H. rewrite \leftarrow negb\_even in H. rewrite Bool.negb\_true\_iff in H.
  assert (count\_occ \ Aeq\_dec \ l2 \ a > 0). destruct count\_occ. inversion H.
  apply gt_-Sn_-O. apply count_-occ_-In in H1. auto.
Qed.
Lemma Permutation\_parity\_match : \forall \{A \ Aeq\_dec\} \ (p \ q:list \ A),
  Permutation p \ q \rightarrow parity\_match \ Aeq\_dec \ p \ q.
Proof.
  intros A Aeq_{-}dec p q H. induction H.
  - auto.
  - apply parity_match_cons. auto.
```

```
simpl. destruct Aeq_dec; destruct Aeq_dec;
    repeat (rewrite even\_succ; rewrite odd\_succ); auto.
  - apply parity\_match\_trans with (q:=l'); auto.
Qed.
Lemma parity\_nodup\_cancel\_Permutation : \forall \{A \ Aeq\_dec\} \ (p \ q:list \ A),
  parity\_match \ Aeq\_dec \ p \ q \rightarrow
  Permutation \ (nodup\_cancel \ Aeq\_dec \ p) \ (nodup\_cancel \ Aeq\_dec \ q).
Proof.
  intros A Aeq_dec p q H, generalize dependent q, induction p; induction q; intros.
  - simpl nodup_cancel at 1. apply parity_match_empty. auto.
  - simpl nodup_cancel at 2. apply Permutation_sym. apply parity_match_empty.
    apply parity\_match\_sym. auto.
  - clear IHq. destruct (Aeq\_dec \ a \ a\theta).
    + rewrite e. simpl. rewrite e in H. apply parity\_match\_cons in H.
      destruct even \ eqn:Hev; rewrite H in Hev; rewrite Hev.
       \times apply perm\_skip. apply remove\_Permutation. auto.
       \times apply remove\_Permutation. auto.
    + simpl nodup\_cancel at 1. destruct even \ eqn:Hev.
       \times assert (Hev':=Hev). apply parity\_match\_In with (l2:=(a0::q)) in Hev; auto.
         destruct Hev. symmetry in H0. contradiction. apply In\_split in H0 as [l1] [l2]
H\theta]].
         rewrite H0. apply Permutation\_sym. apply Permutation\_trans with (l':=(
           nodup\_cancel\ Aeq\_dec\ (a::l2++a0::l1))). apply nodup\_cancel\_Permutation.
           rewrite app\_comm\_cons. apply (Permutation\_app\_comm).
         simpl. rewrite H0 in H. apply parity\_match\_trans with (r:=(a::l2++a0::l1))
in H.
         apply parity\_match\_cons in H. rewrite H in Hev'. rewrite Hev'.
         apply perm_skip. apply remove_Permutation. apply Permutation_sym.
         apply IHp. auto. rewrite app\_comm\_cons. apply Permutation\_parity\_match.
         apply Permutation_app_comm.
       \times apply parity\_match\_cons\_swap in H. rewrite H in Hev. assert (Hev2:=Hev).
         rewrite count\_occ\_Permutation with (l':=(a::q++[a0])) in Hev. simpl in Hev.
         destruct (Aeq\_dec\ a\ a); try contradiction. rewrite even\_succ in Hev.
         rewrite \leftarrow negb\_even in Hev. rewrite Bool.negb\_false\_iff in Hev.
         rewrite \leftarrow (not\_In\_remove \_ Aeq\_dec \ a).
         assert (\forall l, remove Aeq_dec \ a \ (nodup_cancel Aeq_dec \ (l)) =
           remove \ Aeq\_dec \ a \ (nodup\_cancel \ Aeq\_dec \ (a::l))).
           intros l. simpl. destruct (even (count_occ  l a )).
           simpl. destruct (Aeq\_dec\ a\ a); try contradiction.
           rewrite (not\_In\_remove\_\_\_\_(remove\_\_\_\_)). auto. apply remove\_In.
```

- repeat apply $parity_match_cons_swap$. unfold $parity_match$. intros $x\theta$.

```
rewrite (not\_In\_remove\_\_\_\_(remove\_\_\_\_)). auto. apply remove\_In. rewrite (H0\ (a0::q)). apply remove\_Permutation. apply IHp. auto. apply not\_in\_nodup\_cancel. rewrite count\_occ\_Permutation with (l':=(a0::q)) in Hev. auto. replace (a0::q) with ([a0]++q); auto. apply Permutation\_app\_comm. apply perm\_skip. replace (a0::q) with ([a0]++q); auto. apply Permutation\_app\_comm. Qed.
```

5.6 Combining nodup_cancel and Other Functions

5.6.1 Using nodup_cancel over map

```
Lemma count\_occ\_map\_lt : \forall \{A \ Aeq\_dec\} \ p \ (a:A) \ f,
  count\_occ \ Aeq\_dec \ p \ a \leq count\_occ \ Aeq\_dec \ (map \ f \ p) \ (f \ a).
Proof.
  intros A Aeq_{-}dec p a f. induction p. auto. simpl. destruct Aeq_{-}dec.
  - rewrite e. destruct Aeq_-dec; try contradiction. simpl. apply le_-n_-S. auto.
  - destruct Aeq_{-}dec; auto.
Qed.
Lemma count\_occ\_map\_sub : \forall \{A \ Aeq\_dec\} \ f \ (a:A) \ p,
  count\_occ \ Aeq\_dec \ (map \ f \ (remove \ Aeq\_dec \ a \ p)) \ (f \ a) =
  count\_occ\ Aeq\_dec\ (map\ f\ p)\ (f\ a) - count\_occ\ Aeq\_dec\ p\ a.
Proof.
  intros A A eq_{-} dec f a p. induction p; auto. simpl. destruct A eq_{-} dec.
  - rewrite e. destruct Aeq_dec; try contradiction. destruct Aeq_dec;
     try contradiction. simpl. rewrite \leftarrow e. auto.
  - simpl. destruct Aeq_-dec.
     + destruct Aeq\_dec. symmetry in e\theta; contradiction. rewrite IHp.
       rewrite sub\_succ\_l. auto. apply count\_occ\_map\_lt.
     + destruct Aeq_{-}dec. symmetry in e; contradiction. auto.
Qed.
Lemma count\_occ\_map\_neg\_remove : \forall \{A \ Aeg\_dec\} \ f \ (a:A) \ p \ x,
  x \neq (f \ a) \rightarrow
  count\_occ \ Aeq\_dec \ (map \ f \ (remove \ Aeq\_dec \ a \ p)) \ x =
  count\_occ \ Aeq\_dec \ (map \ f \ p) \ x.
  intros. induction p as [b]; auto. simpl. destruct (Aeq\_dec\ a\ b).
  - destruct Aeq_{-}dec. rewrite \leftarrow e in e\theta. symmetry in e\theta. contradiction.
  - simpl. destruct Aeq_-dec; auto.
Qed.
```

```
Lemma f_{-equal\_sum\_lt}: \forall \{A \ Aeq_{-dec}\} \ f \ (a:A) \ b \ p,
  b \neq a \rightarrow (f \ a) = (f \ b) \rightarrow
  count\_occ \ Aeq\_dec \ p \ b \ +
  count\_occ \ Aeq\_dec \ p \ a <
  count\_occ \ Aeq\_dec \ (map \ f \ p) \ (f \ a).
Proof.
  intros A A eq_{-} dec f \ a \ b \ p \ Hne \ Hfe. induction p as [|c|]; auto. simpl. destruct A eq_{-} dec.
  - rewrite e. destruct Aeq_-dec; try contradiction. rewrite Hfe.
    destruct Aeq\_dec; try contradiction. simpl. apply le\_n\_S.
    rewrite \leftarrow Hfe. auto.
  - destruct Aeq_{-}dec.
    + rewrite e. destruct Aeq_dec; try contradiction. rewrite plus_comm.
       simpl. rewrite plus\_comm. apply le\_n\_S. auto.
    + destruct Aeq_-dec.
       \times apply le_-S. auto.
       \times auto.
Qed.
Lemma count\_occ\_nodup\_map\_lt: \forall \{A \ Aeq\_dec\} \ p \ f \ (a:A),
  count\_occ \ Aeq\_dec \ (nodup\_cancel \ Aeq\_dec \ p) \ a \leq
  count\_occ\ Aeq\_dec\ (map\ f\ (nodup\_cancel\ Aeq\_dec\ p))\ (f\ a).
Proof.
  intros A Aeq_{-}dec p f a. induction p as [b]; auto. simpl. destruct even eqn: Hev.
  - simpl. destruct Aeg\_dec.
    + rewrite e. destruct Aeq_dec; try contradiction. apply le_nS. auto.
       rewrite count\_occ\_remove. apply le\_0\_l.
    + rewrite count\_occ\_neg\_remove; auto. rewrite not\_In\_remove.
       destruct Aeq\_dec; firstorder. apply not\_in\_nodup\_cancel; auto.
  - destruct (Aeq\_dec\ b\ a)\ eqn:Hba.
    + rewrite e. rewrite count\_occ\_remove. apply le\_O\_l.
    + rewrite count\_occ\_neg\_remove; auto. destruct (Aeg\_dec\ (f\ b)\ (f\ a))\ egn:Hfba.
       \times rewrite \leftarrow e. rewrite count\_occ\_map\_sub. rewrite e. apply le\_add\_le\_sub\_l.
          apply f_{-}equal_{-}sum_{-}lt; auto.
       \times rewrite count\_occ\_map\_neq\_remove; auto.
Lemma nodup\_cancel\_map : \forall \{A \ Aeq\_dec\} \ (p:list \ A) \ f,
  Permutation
     (nodup\_cancel\ Aeq\_dec\ (map\ f\ (nodup\_cancel\ Aeq\_dec\ p)))
     (nodup\_cancel\ Aeq\_dec\ (map\ f\ p)).
Proof.
  intros A Aeq_dec p f. apply parity_nodup_cancel_Permutation. unfold parity_match.
  intros x. induction p; auto. simpl. destruct (even\ (count\_occ\ \_p\ a)) eqn:Hev.
  - simpl. destruct Aeq_-dec.
```

```
+ repeat rewrite even\_succ. repeat rewrite \leftarrow negb\_even. rewrite not\_In\_remove. rewrite IHp. auto. apply not\_in\_nodup\_cancel. auto.
```

+ rewrite not_In_remove . apply IHp. apply $not_in_nodup_cancel$. auto.

- simpl. destruct Aeq_-dec .

+ rewrite $\leftarrow e$. rewrite $count_occ_map_sub$. rewrite $even_sub$. rewrite $\leftarrow e$ in IHp.

rewrite IHp. rewrite $count_occ_nodup_cancel$. rewrite Hev. rewrite $even_succ$. rewrite $\leftarrow negb_even$. destruct $(even\ (count_occ_\ (map\ f\ p)\ _))$; auto. apply $count_occ_nodup_map_lt$.

+ rewrite $count_occ_map_neq_remove;$ auto.

Qed.

5.7 Using nodup_cancel over concat map

```
Lemma n_{-}le_{-}1: \forall n,
  n < 1 \to n = 0 \lor n = 1.
Proof.
  intros n H. induction n; firstorder.
Qed.
Lemma count\_occ\_map\_sub\_not\_in : \forall \{A \ Aeq\_dec\} \ f \ (a:A) \ p,
  \forall x, count\_occ \ Aeg\_dec \ (f \ a) \ x = 0 \rightarrow
  count\_occ \ Aeq\_dec \ (concat \ (map \ f \ (remove \ Aeq\_dec \ a \ p))) \ x =
  count\_occ \ Aeq\_dec \ (concat \ (map \ f \ p)) \ x.
Proof.
  intros A \ Aeq_{-} dec \ f \ a \ p \ x \ H. induction p as [b]; auto. simpl.
  rewrite count\_occ\_app. destruct Aeq\_dec.
  - rewrite e in H. rewrite H. firstorder.
  - simpl. rewrite count\_occ\_app. auto.
Qed.
Lemma count\_occ\_concat\_map\_lt : \forall \{A \ Aeq\_dec\} \ p \ (a:A) \ f \ x,
  count\_occ\ Aeg\_dec\ (f\ a)\ x=1 \rightarrow
  count\_occ \ Aeq\_dec \ p \ a \le count\_occ \ Aeq\_dec \ (concat \ (map \ f \ p)) \ x.
Proof.
  intros A \ Aeq_{-} dec \ p \ a \ f \ x \ H. induction p. auto. simpl. destruct Aeq_{-} dec.
  - rewrite e. rewrite count_occ_app. rewrite H. simpl. firstorder.
  - rewrite count\_occ\_app. induction (count\_occ\ Aeq\_dec\ (f\ a\theta)\ x); firstorder.
Lemma count\_occ\_map\_sub\_in : \forall \{A \ Aeq\_dec\} \ f \ (a:A) \ p,
  \forall x, count\_occ \ Aeq\_dec \ (f \ a) \ x = 1 \rightarrow
  count\_occ \ Aeq\_dec \ (concat \ (map \ f \ (remove \ Aeq\_dec \ a \ p))) \ x =
  count\_occ\ Aeq\_dec\ (concat\ (map\ f\ p))\ x - count\_occ\ Aeq\_dec\ p\ a.
```

```
Proof.
```

```
intros A A eq_{-} dec f a p x H. induction p as [b]; auto. simpl. destruct A eq_{-} dec.
  - rewrite e. destruct Aeq_dec; try contradiction. rewrite count_occ_app.
    rewrite e in H. rewrite H. simpl. rewrite \leftarrow e. auto.
  - simpl. destruct Aeg\_dec. symmetry in e. contradiction.
    repeat rewrite count\_occ\_app. rewrite IHp. rewrite add\_sub\_assoc. auto.
     apply count\_occ\_concat\_map\_lt; auto.
Qed.
Lemma f_{-equal\_concat\_sum\_lt}: \forall \{A \ Aeq\_dec\} \ f \ (a:A) \ b \ p \ x,
  b \neq a \rightarrow
  (\forall x, NoDup (f x)) \rightarrow
  count\_occ \ Aeq\_dec \ (f \ a) \ x = 1 \rightarrow
  count\_occ\ Aeq\_dec\ (f\ b)\ x=1 \rightarrow
  count\_occ \ Aeg\_dec \ p \ b \ +
  count\_occ \ Aeq\_dec \ p \ a \le
  count\_occ \ Aeq\_dec \ (concat \ (map \ f \ p)) \ x.
Proof.
  intros A A eq_{-} dec f \ a \ b \ p \ x \ Hne \ Hnd \ Hfb. induction p as [|c|]; auto. simpl.
  destruct Aeq_{-}dec.
  - rewrite e. destruct Aeq_dec; try contradiction. rewrite count_occ_app.
    firstorder.
  - destruct Aeq_{-}dec.
    + rewrite e. rewrite count\_occ\_app. firstorder.
    + rewrite count\_occ\_app. pose (Hnd\ c). rewrite (NoDup\_count\_occ\ Aeq\_dec) in n1.
       pose (n1 \ x). apply n_{-}le_{-}1 in l. clear n1. destruct l; firstorder.
Qed.
Lemma count\_occ\_nodup\_concat\_map\_lt : \forall \{A \ Aeq\_dec\} \ p \ f \ (a:A) \ x,
  (\forall x, NoDup (f x)) \rightarrow
  count\_occ\ Aeq\_dec\ (f\ a)\ x=1 \rightarrow
  count\_occ \ Aeg\_dec \ (nodup\_cancel \ Aeg\_dec \ p) \ a <
  count\_occ\ Aeq\_dec\ (concat\ (map\ f\ (nodup\_cancel\ Aeq\_dec\ p)))\ x.
Proof.
  intros A Aeq_{-}dec p f a x Hn H. induction p as [b]; auto. simpl. destruct even
eqn: Hev.
  - simpl. destruct Aeq_-dec.
    + rewrite e. rewrite count_occ_remove, count_occ_app. rewrite H. firstorder.
    + rewrite count\_occ\_neq\_remove; auto. rewrite not\_In\_remove.
       rewrite count\_occ\_app. firstorder. apply not\_in\_nodup\_cancel. auto.
  - destruct (Aeq\_dec\ b\ a)\ eqn:Hba.
    + rewrite e. rewrite count_occ_remove. firstorder.
    + rewrite count\_occ\_neg\_remove; auto. assert (Hn1:=(Hn\ b)).
       rewrite (NoDup\_count\_occ\ Aeq\_dec) in Hn1. assert (Hn2:=(Hn1\ x)).
```

```
clear Hn1. apply n_{-}le_{-}1 in Hn2. destruct Hn2.
       \times rewrite count\_occ\_map\_sub\_not\_in; auto.
       \times apply (count\_occ\_map\_sub\_in\_\_ (nodup\_cancel\ Aeq\_dec\ p)) in H0 as H1.
         rewrite H1. apply le\_add\_le\_sub\_l. apply f\_equal\_concat\_sum\_lt; auto.
Qed.
Lemma nodup\_cancel\_concat\_map : \forall \{A \ Aeq\_dec\} \ (p:list \ A) \ f,
  (\forall x, NoDup (f x)) \rightarrow
  Permutation
     (nodup\_cancel\ Aeq\_dec\ (concat\ (map\ f\ (nodup\_cancel\ Aeq\_dec\ p))))
     (nodup\_cancel\ Aeq\_dec\ (concat\ (map\ f\ p))).
Proof.
  intros A Aeq_dec p f H. apply parity_nodup_cancel_Permutation. unfold parity_match.
  intros x. induction p; auto. simpl. destruct (even\ (count\_occ\ \_p\ a))\ eqn:Hev.
  - simpl. repeat rewrite count\_occ\_app. repeat rewrite even\_add. rewrite not\_In\_remove.
    rewrite IHp. auto. apply not\_in\_nodup\_cancel. auto.
  - assert (H0:=(H\ a)). rewrite (NoDup\_count\_occ\ Aeq\_dec) in H0.
     assert (H1 := (H0 \ x)). clear H0. apply n_{-}le_{-}1 in H1. rewrite count_{-}occ_{-}app.
    rewrite even\_add. destruct H1.
    + apply (count\_occ\_map\_sub\_not\_in\_\_ (nodup\_cancel\ Aeq\_dec\ p)) in H0 as H1.
       rewrite H0, H1, IHp. simpl.
       destruct (even (count\_occ \_ (concat (map f p)) x)); auto.
    + apply (count\_occ\_map\_sub\_in\_\_(nodup\_cancel\ Aeq\_dec\ p)) in H0 as H1.
       rewrite H0, H1, even_sub, IHp. simpl. rewrite count_occ_nodup_cancel. rewrite
Hev.
       destruct (even (count_occ \_ (concat (map f p)) x)); auto.
       apply count\_occ\_nodup\_concat\_map\_lt; auto.
Qed.
Lemma nodup\_cancel\_app\_Permutation: \forall \{A \ Aeq\_dec\} \ (a \ b \ c \ d:list \ A),
  Permutation \ (nodup\_cancel \ Aeq\_dec \ a) \ (nodup\_cancel \ Aeq\_dec \ b) \rightarrow
  Permutation (nodup\_cancel Aeg\_dec c) (nodup\_cancel Aeg\_dec d) \rightarrow
  Permutation (nodup\_cancel Aeq\_dec (a ++ c)) (nodup\_cancel Aeq\_dec (b ++ d)).
Proof.
  intros A \ Aeq_{-} dec \ a \ b \ c \ d \ H \ H0. rewrite \leftarrow (nodup_{-} cancel_{-} pointless \ a),
  \leftarrow (nodup\_cancel\_pointless\ b), \leftarrow (nodup\_cancel\_pointless\_r\ \_\ c),
  \leftarrow (nodup_cancel_pointless_r _ d). apply nodup_cancel_Permutation.
  apply Permutation\_app; auto.
Qed.
```

Chapter 6

Library B_Unification.poly

```
Require Import Arith.
Require Import List.
Import ListNotations.
Require Import FunctionalExtensionality.
Require Import Sorting.
Require Import Permutation.
Import Nat.
Require Export list\_util.
Require Export terms.
```

6.1 Monomials and Polynomials

6.1.1 Data Type Definitions

```
A monomial is simply a list of variables, with variables as defined in terms.v. Definition mono:=list\ var. Definition mono\_eq\_dec:=(list\_eq\_dec\ Nat.eq\_dec). A polynomial, then, is a list of monomials. Definition poly:=list\ mono.
```

6.1.2 Comparisons of monomials and polynomials

```
Definition mono\_cmp := lex \ compare.
Definition mono\_lt \ m \ n := mono\_cmp \ m \ n = Lt.
```

6.1.3 Stronger Definitions

Because as far as Coq is concerned any list of natural numbers is a monomial, it is necessary to define a few more predicates about monomials and polynomials to ensure our desired properties hold. Using these in proofs will prevent any random list from being used as a monomial or polynomial.

Monomials are simply sorted lists of natural numbers.

```
Definition is\_mono\ (m:mono): Prop := Sorted\ lt\ m.
```

Polynomials are sorted lists of lists, where all of the lists in the polynomial are monomials.

```
Definition is_poly(p:poly): Prop :=
  Sorted mono_lt p \land \forall m, In m \ p \rightarrow is\_mono \ m.
Hint Unfold is_mono is_poly.
Hint Resolve NoDup_cons NoDup_nil Sorted_cons.
Definition vars (p : poly) : list var :=
  nodup\ var\_eq\_dec\ (concat\ p).
Hint Unfold vars.
Lemma NoDup\_vars : \forall (p : poly),
  NoDup \ (vars \ p).
Proof.
  intros p. unfold vars. apply NoDup\_nodup.
Qed.
Lemma in\_mono\_in\_vars : \forall x p,
  (\forall m : mono, In \ m \ p \rightarrow \neg \ In \ x \ m) \leftrightarrow \neg \ In \ x \ (vars \ p).
Proof.
  intros x p. split.
  - intros H. induction p.
    + simpl. auto.
    + unfold not in *. intro. apply IHp.
       \times intros m Hin. apply H. intuition.
       \times unfold vars in *. apply nodup\_In in H\theta. apply nodup\_In. simpl in H\theta.
          apply in_{-}app_{-}or in H\theta. destruct H\theta.
          - exfalso. apply (H \ a). intuition. auto.
  - intros H m Hin Hin. apply H. clear H. induction p.
    + inversion Hin.
    + unfold vars in *. rewrite nodup\_In. rewrite nodup\_In in IHp. simpl.
       apply in_{-}or_{-}app. destruct Hin.
       \times left. rewrite H. auto.
       \times auto.
Qed.
```

There are a few userful things we can prove about these definitions too. First, every element in a monomial is guaranteed to be less than the elements after it.

```
Lemma mono\_order : \forall x y m,
  is\_mono(x :: y :: m) \rightarrow
  x < y.
Proof.
  unfold is_mono.
  intros x \ y \ m \ H.
  apply Sorted_{-}inv in H as [].
  apply HdRel_{-}inv in H\theta.
  apply H\theta.
Qed.
   Similarly, if x :: m is a monomial, then m is also a monomial.
Lemma mono\_cons : \forall x m,
  is\_mono(x :: m) \rightarrow
  is\_mono\ m.
Proof.
  unfold is_mono.
  intros x \ m \ H. apply Sorted_inv in H as []. apply H.
Qed.
    The same properties hold for is_poly as well; any list in a polynomial is guaranteed to
be less than the lists after it.
Lemma poly\_order : \forall m \ n \ p,
  is\_poly\ (m :: n :: p) \rightarrow
  mono\_lt m n.
Proof.
  unfold is_{-}poly.
  intros.
  destruct H.
  apply Sorted_{-}inv in H as [].
  apply HdRel_{-}inv in H1.
  apply H1.
Qed.
   And if m:: p is a polynomial, we know both that p is a polynomial and that m is a
monomial.
Lemma poly\_cons : \forall m p,
  is\_poly\ (m::p) \rightarrow
  is\_poly p \land is\_mono m.
Proof.
  unfold is_poly.
  intros.
```

```
destruct H.
  apply Sorted_inv in H as [].
  split.
  - split.
    + apply H.
    + intros. apply H\theta,\ in\_cons,\ H2.
  - apply H\theta, in_-eq.
Qed.
   Lastly, for completeness, nil is both a polynomial and monomial.
Lemma nil\_is\_mono:
  is\_mono [].
Proof.
  unfold is\_mono. auto.
Qed.
Lemma nil_is_poly:
  is\_poly [].
Proof.
  unfold is_{-}poly. split.
  - auto.
  - intro; contradiction.
Qed.
Lemma one\_is\_poly:
  is\_poly [[]].
Proof.
  unfold is_{-}poly. split.
  - auto.
  - intro. intro. simpl in H. destruct H.
    + rewrite \leftarrow H. apply nil\_is\_mono.
    + inversion H.
Qed.
Lemma var_is_poly: \forall x,
  is\_poly [[x]].
Proof.
  intros x. unfold is_{-}poly. split.
  - apply Sorted_cons; auto.
  - intros m H. simpl in H; destruct H; inversion H.
    unfold is\_mono. auto.
Qed.
Lemma no\_vars\_is\_ground : \forall p,
  is\_poly p \rightarrow
  vars p = [] \rightarrow
```

```
p = [] \lor p = []].
Proof.
intros \ p \ H \ H0. \ induction \ p.
- \ auto.
- \ induction \ a.
+ \ destruct \ IHp.
\times \ apply \ poly\_cons \ in \ H. \ apply \ H.
\times \ unfold \ vars \ in \ H0. \ simpl \ in \ H0. \ apply \ H0.
\times \ rewrite \ H1. \ auto.
\times \ rewrite \ H1 \ in \ H. \ unfold \ is\_poly \ in \ H. \ destruct \ H. \ inversion \ H.
inversion \ H6. \ inversion \ H8.
+ \ unfold \ vars \ in \ H0. \ simpl \ in \ H0. \ destruct \ in\_dec \ in \ H0.
\times \ rewrite \ \leftarrow \ nodup\_In \ in \ i. \ rewrite \ H0 \ in \ i. \ inversion \ i.
\times \ inversion \ H0.
Qed.
```

Hint Resolve mono_order mono_cons poly_order poly_cons nil_is_mono nil_is_poly var_is_poly one_is_poly.

6.2 Functions over Monomials and Polynomials

```
Module Import VarSort := NatSort.
Require Import Orders.
Module MonoOrder <: TotalLeBool.
  Definition t := mono.
  Definition leb m n :=
     match mono\_cmp m n with
     \mid Lt \Rightarrow true
     \mid Eq \Rightarrow true
     \mid Gt \Rightarrow false
     end.
  Infix "\leq m" := leb (at level 35).
  Lemma leb\_total : \forall m \ n, (m \le m \ n = true) \lor (n \le m \ m = true).
     intros n m. unfold "\leq m". destruct (mono\_cmp \ n \ m) eqn:Hcomp; auto.
     unfold mono\_cmp in *. apply lex\_rev\_lt\_qt in Hcomp. rewrite Hcomp. auto.
  Qed.
End MonoOrder.
\texttt{Module Import } MonoSort := \texttt{Sort } MonoOrder.
Lemma Permutation\_MonoSort\_r : \forall p q,
  Permutation p \ q \leftrightarrow Permutation \ p \ (sort \ q).
Proof.
```

```
intros p q. split; intro H.
  - apply Permutation\_trans with (l':=q). apply H. apply Permuted\_sort.
  - apply Permutation\_trans with (l':=(sort\ q)). apply H. apply Permutation\_sym.
    apply Permuted_sort.
Qed.
Lemma Permutation\_MonoSort\_l: \forall p q,
  Permutation p \ q \leftrightarrow Permutation (sort p) \ q.
Proof.
  intros p q. split; intro H.
  - apply Permutation\_sym. rewrite \leftarrow Permutation\_MonoSort\_r.
    apply Permutation\_sym. auto.
  - apply Permutation\_sym. rewrite Permutation\_MonoSort\_r.
    apply Permutation\_sym. auto.
Qed.
Lemma lt\_Transitive:
  Relations_1. Transitive lt.
Proof.
  unfold Relations_1.Transitive. intros. apply lt_trans with (m:=y); auto.
Lemma VarOrder\_Transitive:
  Relations\_1.Transitive (fun x y : nat \Rightarrow is\_true (NatOrder.leb x y)).
Proof.
  unfold Relations_1. Transitive, is_true.
  induction x, y, z; intros; try reflexivity; simpl in *.
  - inversion H.
  - inversion H.
  - inversion H0.
  - apply IHx with (y=y); auto.
Lemma MonoOrder\_Transitive:
  Relations\_1.Transitive (fun \ x \ y : list \ nat \Rightarrow is\_true \ (MonoOrder.leb \ x \ y)).
Proof.
  unfold Relations_1. Transitive, is_true, MonoOrder.leb, mono_cmp.
  induction x, y, z; intros; try reflexivity; simpl in *.
  - inversion H.
  - inversion H.
  - inversion H\theta.
  - destruct (a ?= n) eqn:Han.
    + apply compare\_eq\_iff in Han. rewrite Han. destruct (n ?= n\theta) eqn: Hn\theta.
       \times apply (IHx - HH0).
       \times reflexivity.
```

```
\times inversion H\theta.
     + destruct (n ?= n\theta) eqn:Hn\theta.
        \times apply compare\_eq\_iff in Hn\theta. rewrite \leftarrow Hn\theta. rewrite Han. reflexivity.
        \times apply compare\_lt\_iff in Han. apply compare\_lt\_iff in Hn\theta.
          apply (lt\_trans\ a\ n\ n\theta\ Han) in Hn\theta. apply compare\_lt\_iff in Hn\theta.
          rewrite Hn\theta. reflexivity.
       \times inversion H\theta.
     + inversion H.
Qed.
unfold Relations_1. Transitive, is_true, mono_lt, mono_cmp.
  induction x, y, z; intros; try reflexivity; simpl in *.
  - inversion H.
  - inversion H\theta.
  - inversion H\theta.
  - inversion H.
  - inversion H\theta.
  - destruct (a ?= n\theta) eqn: Han\theta.
     + apply compare\_eq\_iff in Han\theta. rewrite Han\theta in H. destruct (n ?= n\theta) eqn: Hn\theta.
       \times rewrite compare\_antisym in Hn\theta. unfold CompOpp in Hn\theta.
          destruct (n\theta?=n); try inversion Hn\theta. apply (IHx \_ \_H H\theta).
       \times rewrite compare\_antisym in Hn\theta. unfold CompOpp in Hn\theta.
          destruct (n\theta?=n); try inversion Hn\theta. inversion H.
        \times inversion H\theta.
     + auto.
     + destruct (n ?= n\theta) eqn:Hnn\theta.
       \times apply compare\_eq\_iff in Hnn\theta. rewrite Hnn\theta in H. rewrite Han\theta in H.
          inversion H.
       \times apply compare_{-}lt_{-}iff in Hnn\theta. apply compare_{-}gt_{-}iff in Han\theta.
          apply lt\_trans with (n:=n) in Han\theta; auto. apply compare\_lt\_iff in Han\theta.
          rewrite compare\_antisym in Han0. unfold CompOpp in Han0.
          destruct (a?=n); try inversion Han\theta. inversion H.
        \times inversion H0.
Qed.
Lemma HdRel_le_lt: \forall a m,
  HdRel \text{ (fun } n \text{ } m \Rightarrow is\_true \text{ (leb } n \text{ } m)) \text{ } a \text{ } m \land NoDup \text{ } (a::m) \rightarrow HdRel \text{ } lt \text{ } a \text{ } m.
Proof.
  intros a m []. remember (fun n m \Rightarrow is\_true (leb n m)) as le.
  destruct m.
  - apply HdRel_nil.
  - apply HdRel\_cons. apply HdRel\_inv in H.
```

```
apply (NoDup\_neq\_a\ n) in H\theta; intuition, rewrite Heqle in H.
    unfold is\_true in H. apply leb\_le in H. destruct (a ?= n) eqn:Hcomp.
    + apply compare\_eq\_iff in Hcomp. contradiction.
    + apply compare\_lt\_iff in Hcomp. apply Hcomp.
    + apply compare\_gt\_iff in Hcomp. apply leb\_correct\_conv in Hcomp.
       apply leb\_correct in H. rewrite H in Hcomp. inversion Hcomp.
Qed.
Lemma VarSort_{-}Sorted : \forall (m : mono),
  Sorted (fun n \implies is\_true (leb \ n \ m)) \ m \land NoDup \ m \rightarrow Sorted \ lt \ m.
Proof.
  intros m []. remember (fun n m \Rightarrow is_{true} (leb n m)) as le.
  induction m.
  - apply Sorted_nil.
  - apply Sorted\_inv in H. apply Sorted\_cons.
    + apply IHm.
       \times apply H.
       \times apply NoDup\_cons\_iff in H\theta. apply H\theta.
    + apply HdRel_le_lt. split.
       \times rewrite \leftarrow Hegle. apply H.
       \times apply H\theta.
Qed.
Lemma Sorted\_VarSorted : \forall (m : mono),
  Sorted lt m \rightarrow
  Sorted (fun n \Rightarrow is\_true (leb \ n \ m)) \ m.
Proof.
  intros m H. induction H.
  - apply Sorted_nil.
  - apply Sorted_cons.
    + apply IHSorted.
    + destruct l.
       \times apply HdRel_nil.
       \times apply HdRel\_cons. apply HdRel\_inv in H0. apply lt\_le\_incl in H0.
          apply leb_{-}le in H\theta. apply H\theta.
Qed.
Lemma In\_sorted : \forall a l,
  In a l \leftrightarrow In a (sort l).
Proof.
  intros a l. pose (MonoSort.Permuted_sort l). split; intros Hin.
  - apply (Permutation_in _ p Hin).
  - apply (Permutation_in' (Logic.eq_refl \ a) \ p). auto.
Qed.
```

```
Lemma HdRel\_mono\_le\_lt : \forall a p,
  HdRel (fun n \implies is\_true (MonoOrder.leb \ n \ m)) <math>a \ p \land NoDup \ (a::p) \rightarrow
  HdRel\ mono\_lt\ a\ p.
Proof.
  intros a p []. remember (fun n \Rightarrow is_t true (MonoOrder.leb n m)) as le.
  destruct p.
  - apply HdRel_nil.
  - apply HdRel\_cons. apply HdRel\_inv in H.
     apply (NoDup\_neq\_a\ l) in H\theta; intuition. rewrite Heqle in H.
     unfold is_true in H. unfold MonoOrder.leb in H. unfold mono_lt.
     destruct (mono\_cmp \ a \ l) \ eqn:Hcomp.
     + apply lex_eq in Hcomp. contradiction.
     + reflexivity.
     + inversion H.
Qed.
Lemma MonoSort\_Sorted : \forall (p : poly),
  Sorted (fun n \implies is\_true (MonoOrder.leb \ n \ m)) p \land NoDup p \rightarrow
  Sorted mono_lt p.
Proof.
  intros p []. remember (fun n \implies is\_true (MonoOrder.leb \ n \ m)) as le.
  induction p.
  - apply Sorted_nil.
  - apply Sorted\_inv in H. apply Sorted\_cons.
     + apply IHp.
       \times apply H.
       \times apply NoDup\_cons\_iff in H\theta. apply H\theta.
     + apply HdRel\_mono\_le\_lt. split.
       \times rewrite \leftarrow Hegle. apply H.
       \times apply H\theta.
Qed.
Lemma Sorted\_MonoSorted : \forall (p : poly),
  Sorted mono_lt p \rightarrow
  Sorted (fun n \implies is\_true (MonoOrder.leb \ n \ m)) p.
Proof.
  intros p H. induction H.
  - apply Sorted_nil.
  - apply Sorted_cons.
     + apply IHSorted.
     + destruct \it l.
       \times apply HdRel_nil.
       \times apply HdRel\_cons. apply HdRel\_inv in H0. unfold MonoOrder.leb.
          rewrite H\theta. auto.
```

```
Qed.
Lemma NoDup\_MonoSorted : \forall (p : poly),
  Sorted mono_lt p \rightarrow
  NoDup p.
Proof.
  intros p H. apply Sorted_StronglySorted in H.
  - induction p.
    + auto.
    + apply StronglySorted\_inv in H as []. apply NoDup\_forall\_neq.
       \times apply Forall_forall. intros x Hin. rewrite Forall_forall in H0.
         pose (lex_neq' \ a \ x). destruct a\theta. apply H1 in H\theta; auto.
       \times apply IHp. apply H.
  - apply mono\_lt\_Transitive.
Qed.
Lemma NoDup\_VarSorted : \forall (m : mono),
  Sorted lt m \to NoDup m.
Proof.
  intros p H. apply Sorted_StronglySorted in H.
  - induction p.
    + auto.
    + apply StronglySorted\_inv in H as []. apply NoDup\_forall\_neq.
       \times apply Forall_forall. intros x Hin. rewrite Forall_forall in H0.
         apply lt_neq. apply H\theta. apply Hin.
       \times apply IHp. apply H.
  - apply lt_Transitive.
Qed.
Lemma NoDup\_VarSort : \forall (m : mono),
  NoDup \ m \rightarrow NoDup \ (VarSort.sort \ m).
  intros m Hdup. pose (VarSort.Permuted\_sort m).
  apply (Permutation_NoDup p Hdup).
Qed.
Lemma NoDup\_MonoSort : \forall (p : poly),
  NoDup \ p \rightarrow NoDup \ (MonoSort.sort \ p).
Proof.
  intros p Hdup. pose (MonoSort.Permuted\_sort p).
  apply (Permutation\_NoDup \ p0 \ Hdup).
Qed.
Definition make\_mono\ (l:list\ nat):mono:=
  VarSort.sort (nodup \ var\_eq\_dec \ l).
Definition make\_poly (l: list mono): poly :=
```

```
MonoSort.sort (nodup\_cancel mono\_eq\_dec (map make\_mono l)).
Lemma make\_mono\_is\_mono : \forall m,
  is\_mono \ (make\_mono \ m).
Proof.
  intros m. unfold is_mono, make_mono. apply VarSort_Sorted. split.
  + apply VarSort.LocallySorted_sort.
  + apply NoDup_-VarSort. apply NoDup_-nodup.
Qed.
Lemma make\_poly\_is\_poly : \forall p,
  is\_poly (make\_poly p).
Proof.
  intros p. unfold is_poly, make_poly. split.
  - apply MonoSort\_Sorted. split.
    + apply MonoSort.LocallySorted_sort.
    + apply NoDup_MonoSort. apply NoDup_nodup_cancel.
  - intros m Hm. apply In_sorted in Hm. apply nodup_cancel_in in Hm.
    apply in\_map\_iff in Hm. destruct Hm. destruct H. rewrite \leftarrow H.
    apply make\_mono\_is\_mono.
Qed.
\label{limit_resolve} \mbox{ Hint Resolve } make\_poly\_is\_poly \ make\_mono\_is\_mono.
Lemma make\_mono\_In : \forall x m,
  In \ x \ (make\_mono \ m) \leftrightarrow In \ x \ m.
Proof.
  intros x m. split; intro H.
  - unfold make\_mono in H. pose (VarSort.Permuted\_sort (nodup var\_eq\_dec m)).
    apply Permutation\_sym in p. apply (Permutation\_in \_ p) in H. apply nodup\_In in
H. auto.
  - unfold make\_mono. pose (VarSort.Permuted\_sort (nodup var\_eq\_dec m)).
    apply Permutation_in with (l:=(nodup\ var_eq_dec\ m)); auto. apply nodup_in. auto.
Qed.
Lemma remove\_is\_mono: \forall x m,
  is\_mono m \rightarrow
  is\_mono (remove \ var\_eq\_dec \ x \ m).
Proof.
  intros x m H. unfold is_mono in *. apply StronglySorted_Sorted.
  apply StronglySorted\_remove. apply Sorted\_StronglySorted in H. auto.
  apply lt_{-}Transitive.
Qed.
{\tt Definition}\ addPP\ (p\ q:\ poly):\ poly:=
  make\_poly (p ++ q).
Lemma In\_distribute : \forall (l \ m:poly) \ a,
```

```
In a (vars (distribute l m)) \rightarrow
  In a (vars \ l) \lor In \ a \ (vars \ m).
Proof.
  intros l m a H. unfold distribute, vars in H. apply nodup_In in H.
  apply In\_concat\_exists in H. destruct H as [ll].
  apply In\_concat\_exists in H. destruct H as [ll1].
  apply in\_map\_iff in H. destruct H as [x]. rewrite \leftarrow H in H1.
  apply in_{-}map_{-}iff in H1. destruct H1 as [x\theta]. rewrite \leftarrow H1 in H0.
  apply in\_app\_iff in H\theta. destruct H\theta.
  - right. apply nodup_{-}In. apply In\_concat\_exists. \exists x. auto.
  - left. apply nodup\_In. apply In\_concat\_exists. \exists x\theta. auto.
Qed.
Definition mulPP(p \mid q : poly) : poly :=
  make\_poly (distribute p q).
map (app m) p.
Definition mulPP'(p \mid q : poly) : poly :=
  make\_poly (concat (map (mulMP p) q)).
Definition mulMP'(p:poly)(m:mono):poly:=
  map \ make\_mono \ (map \ (app \ m) \ p).
Definition mulPP''(p \ q : poly) : poly :=
  make\_poly (concat (map (mulMP' p) q)).
Definition mulMP''(p:poly)(m:mono):poly:=
  make\_poly (map (app m) p).
Definition mulPP''' (p \ q : poly) : poly :=
  make\_poly (concat (map (mulMP'', p) q)).
Lemma mulPP_{-}mulPP' : \forall (p \ q : poly),
  mulPP p q = mulPP' p q.
Proof.
  intros p q. unfold mulPP, mulPP'. induction q.
  - auto.
  - simpl. unfold distribute. simpl. unfold mulMP. auto.
Qed.
\texttt{Lemma} \ mulPP""\_refold: \forall \ p \ q,
  make\_poly (concat (map (mulMP'' p) q)) =
  mulPP''' p q.
Proof.
  auto.
Qed.
Lemma mulPP"_refold : \forall p \ q,
```

```
make\_poly (concat (map (mulMP' p) q)) =
  mulPP'', p, q.
Proof.
  auto.
Qed.
Lemma mulPP'\_refold : \forall p q,
  make\_poly (concat (map (mulMP p) q)) =
  mulPP' p q.
Proof.
  auto.
Qed.
Lemma addPP\_refold : \forall p \ q,
  make\_poly (p ++ q) = addPP p q.
Proof.
  auto.
Qed.
Lemma addPP_{-}is_{-}poly: \forall p q,
  is\_poly (addPP \ p \ q).
Proof.
  intros p q. apply make\_poly\_is\_poly.
Qed.
Lemma leb\_both\_eq : \forall x y,
  is\_true\ (MonoOrder.leb\ x\ y) \rightarrow
  is\_true\ (MonoOrder.leb\ y\ x) \rightarrow
  x = y.
Proof.
  intros x y H H0. unfold is_true, MonoOrder.leb in *.
  destruct (mono\_cmp \ y \ x) \ eqn:Hyx; \ destruct (mono\_cmp \ x \ y) \ eqn:Hxy;
  unfold mono_cmp in *;
  try (apply lex_rev_lt_gt in Hxy; rewrite Hxy in Hyx; inversion Hyx);
  try (apply lex_rev_lt_gt in Hyx; rewrite Hxy in Hyx; inversion Hyx);
  try inversion H; try inversion H\theta.
  apply lex_{-}eq in Hxy; auto.
Qed.
Lemma Permutation\_Sorted\_mono\_eq : \forall (m \ n : mono),
  Permutation m n \rightarrow
  Sorted (fun n \rightarrow is_true (leb \ n \ m)) \ m \rightarrow
  Sorted (fun n \Rightarrow is\_true (leb \ n \ m)) \ n \rightarrow
  m = n.
Proof.
  intros m n Hp Hsl Hsm. generalize dependent n.
```

```
induction m; induction n; intros.
  - reflexivity.
  - apply Permutation\_nil in Hp. auto.
  - apply Permutation\_sym, Permutation\_nil in Hp. auto.
  - clear IHn. apply Permutation\_incl in Hp as Hp. destruct Hp.
    destruct (a ?= a\theta) eqn:Hcomp.
    + apply compare\_eq\_iff in Hcomp. rewrite Hcomp in *.
       apply Permutation\_cons\_inv in Hp. f_equal; auto.
       apply IHm.
       \times apply Sorted_{-}inv in Hsl. apply Hsl.
       \times apply Hp.
       \times apply Sorted_inv in Hsm. apply Hsm.
    + apply compare\_lt\_iff in Hcomp as Hneq. apply incl\_cons\_inv in H. destruct H.
       apply Sorted\_StronglySorted in Hsm. apply StronglySorted\_inv in Hsm as [].
       \times simpl in H. destruct H; try (rewrite H in Hneq; apply lt\_irrefl in Hneq;
contradiction).
         pose (Forall\_In \_ \_ \_ \_ H H3). simpl in i. unfold is\_true in i.
         apply leb_{-}le in i. apply lt_{-}not_{-}le in Hneq. contradiction.
       \times apply VarOrder\_Transitive.
    + apply compare\_gt\_iff in Hcomp as Hneq. apply incl\_cons\_inv in H0. destruct
H0.
       apply Sorted\_StronglySorted in Hsl. apply StronglySorted\_inv in Hsl as [].
       \times simpl in H0. destruct H0; try (rewrite H0 in Hneq; apply qt\_irreft in Hneq;
contradiction).
         pose (Forall\_In \_ \_ \_ \_ H0 H3). simpl in i. unfold is\_true in i.
         apply leb_{-}le in i. apply lt_{-}not_{-}le in Hneq. contradiction.
       \times apply VarOrder\_Transitive.
Qed.
Lemma Permutation\_sort\_mono\_eq : \forall (l m:mono),
  Permutation \ l \ m \leftrightarrow VarSort.sort \ l = VarSort.sort \ m.
Proof.
  intros l m. split; intros H.
  - assert (H0: Permutation (VarSort.sort l) (VarSort.sort m)).
    + apply Permutation\_trans with (l:=(VarSort.sort\ l)) (l':=m) (l'':=(VarSort.sort\ l))
m)).
       \times apply Permutation\_sym. apply Permutation\_sym in H.
         apply (Permutation_trans H (VarSort.Permuted_sort l)).
       \times apply VarSort.Permuted\_sort.
    + apply (Permutation_Sorted_mono_eq _ _ H0 (VarSort.LocallySorted_sort l) (Var-
Sort.LocallySorted\_sort\ m)).
  - assert (Permutation (VarSort.sort l) (VarSort.sort m)).
    + rewrite H. apply Permutation_refl.
```

```
+ pose (VarSort.Permuted\_sort\ l). pose (VarSort.Permuted\_sort\ m).
       apply (Permutation\_trans \ p) in H0. apply Permutation\_sym in p0.
       apply (Permutation\_trans\ H\theta) in p\theta. apply p\theta.
Qed.
Lemma no\_sort\_VarSorted : \forall m,
  Sorted lt m \rightarrow
  VarSort.sort m = m.
Proof.
  intros m H. apply Permutation_Sorted_mono_eq.
  - apply Permutation_sym. apply VarSort.Permuted_sort.
  - apply VarSort.LocallySorted_sort.
  - apply Sorted_VarSorted. auto.
Qed.
Lemma no\_make\_mono: \forall m,
  is\_mono\ m \rightarrow
  make\_mono \ m = m.
Proof.
  unfold make\_mono, is\_mono. intros m H. rewrite no\_sort\_VarSorted.
  - apply no\_nodup\_NoDup. apply NoDup\_VarSorted in H. auto.
  - apply Sorted\_nodup.
    + apply lt_{-}Transitive.
    + auto.
Qed.
Lemma no\_map\_make\_mono: \forall p,
  (\forall m, In \ m \ p \rightarrow is\_mono \ m) \rightarrow
  map \ make\_mono \ p = p.
Proof.
  intros p H. induction p.
  - simpl. rewrite no\_make\_mono.
    + f_equal. apply IHp. intros m Hin. apply H. intuition.
    + apply H. intuition.
Qed.
Lemma map\_make\_mono\_pointless: \forall p q,
  make\_poly \ (map \ make\_mono \ p \ ++ \ q) =
  make\_poly (p ++ q).
Proof.
  intros p q. destruct p.
  - auto.
  - simpl. unfold make\_poly. simpl map. rewrite (no\_make\_mono\ (make\_mono\ l));
```

auto.

```
rewrite map\_app. rewrite map\_app. rewrite (no\_map\_make\_mono\ (map\_\_)).
    auto. intros m Hin. apply in\_map\_iff in Hin. destruct Hin as [x].
    rewrite \leftarrow H. auto.
Qed.
Lemma unsorted\_poly : \forall p,
  NoDup p \rightarrow
  (\forall m, In \ m \ p \rightarrow is\_mono \ m) \rightarrow
  nodup\_cancel\ mono\_eq\_dec\ (map\ make\_mono\ p) = p.
Proof.
  intros p Hdup Hin. rewrite no_map_make_mono; auto.
  apply no\_nodup\_cancel\_NoDup; auto.
Qed.
Lemma mono\_middle: \forall x l1 l2,
  is\_mono (l1 ++ x :: l2) \rightarrow
  is\_mono (l1 ++ l2).
Proof.
  intros x l1 l2 H. unfold is_mono in *. apply Sorted_StronglySorted in H.
  apply StronglySorted\_Sorted. induction l1.
  - rewrite app_nil_l in *. apply StronglySorted_linv in H as []; auto.
  - simpl in *. apply StronglySorted_inv in H as []. apply SSorted_cons; auto.
    apply Forall\_forall. rewrite Forall\_forall in H0. intros x0 Hin.
     apply H0. apply in\_app\_iff in Hin as []; intuition.
  - apply lt_{-}Transitive.
Qed.
Lemma remove\_Sorted\_eq : \forall x (l \ l':mono),
  is\_mono\ l \rightarrow is\_mono\ l' \rightarrow
  In x \ l \leftrightarrow In \ x \ l' \rightarrow
  remove\ var\_eq\_dec\ x\ l=remove\ var\_eq\_dec\ x\ l'\to
  l = l'.
Proof.
  intros x l l' Hl Hl' Hx Hrem.
  generalize dependent l'; induction l; induction l'; intros.
  - auto.
  - destruct (var_{-}eq_{-}dec \ x \ a) \ eqn:Heq.
    + rewrite e in Hx. exfalso. apply Hx. intuition.
    + simpl in Hrem. rewrite Heq in Hrem. inversion Hrem.
  - destruct (var_-eq_-dec \ x \ a) \ eqn:Heq.
    + rewrite e in Hx. exfalso. apply Hx. intuition.
    + simpl in Hrem. rewrite Heq in Hrem. inversion Hrem.
  - clear IHl'. destruct (var\_eq\_dec \ a \ a\theta).
    + rewrite e. f_equal. rewrite e in Hrem. simpl in Hrem.
       apply mono\_cons in Hl as Hl1. apply mono\_cons in Hl' as Hl'1.
```

```
destruct (var_{-}eq_{-}dec \ x \ a\theta).
       \times apply IHl; auto. apply NoDup\_VarSorted in Hl. apply NoDup\_cons\_iff in Hl.
         rewrite e in Hl. rewrite \leftarrow e0 in Hl. destruct Hl. split; intro. contradiction.
         apply NoDup_VarSorted in Hl'. apply NoDup_cons_iff in Hl'.
         rewrite \leftarrow e\theta in Hl'. destruct Hl'. contradiction.
       \times inversion Hrem. apply IHl; auto. destruct Hx. split; intro. simpl in H.
         rewrite e in H. destruct H; auto. rewrite H in n. contradiction.
         simpl in H1. rewrite e in H1. destruct H1; auto. rewrite H1 in n.
contradiction.
    + destruct (in\_dec\ var\_eq\_dec\ x\ (a::l)).
       \times apply Hx in i as i'. apply in\_split in i. apply in\_split in i'.
         destruct i as [l1 \ [l2 \ i]]. destruct i as [l1' \ [l2' \ i']].
         pose (NoDup\_VarSorted \_Hl). pose (NoDup\_VarSorted \_Hl').
         apply (NoDup\_In\_split\_\_\_\_i) in n\theta as []. apply (NoDup\_In\_split\_\_\_\_i')
in n1 as ||.
         rewrite i in Hrem. rewrite i' in Hrem. repeat rewrite remove\_distr\_app in
Hrem.
         simpl in Hrem. destruct (var\_eq\_dec \ x \ x); try contradiction.
         rewrite not\_In\_remove in Hrem; auto. rewrite not\_In\_remove in Hrem; auto.
         rewrite not\_In\_remove in Hrem; auto. rewrite not\_In\_remove in Hrem; auto.
         destruct l1; destruct l1'; simpl in i; simpl in i'; simpl in Hrem;
         inversion i; inversion i.
         - rewrite H4 in n. rewrite H6 in n. contradiction.
         - rewrite H7 in Hl'. rewrite i in Hl. rewrite Hrem in Hl.
            rewrite H6 in Hl'. assert (x < v). apply Sorted_inv in Hl as [].
             apply HdRel\_inv in H8. auto. assert (v < x). apply Sorted\_StronglySorted
in Hl'.
             apply StronglySorted\_inv in Hl' as []. rewrite Forall\_forall in H9.
             apply H9. intuition. apply lt_Transitive. apply lt_asymm in H8. contradiction.
         - rewrite H7 in Hl'. rewrite i in Hl. rewrite \leftarrow Hrem in Hl'.
            rewrite H6 in Hl' assert (n0 < x) apply Sorted\_StronglySorted in Hl.
             apply StronglySorted\_inv in Hl as []. rewrite Forall\_forall in H8.
             apply H8. intuition. apply lt_{-}Transitive. assert (x < n\theta).
             apply Sorted_{-}inv in Hl' as []. apply HdRel_{-}inv in H9; auto.
             apply lt_asymm in H8. contradiction.
         - inversion Hrem. rewrite \leftarrow H4 in H8. rewrite \leftarrow H6 in H8. contradiction.
       \times assert (^{\sim}In \ x \ (a\theta::l')). intro. apply n\theta. apply Hx. auto.
         rewrite not\_In\_remove in Hrem; auto. rewrite not\_In\_remove in Hrem; auto.
Qed.
Lemma NoDup\_map\_remove : \forall x p,
  is\_poly p \rightarrow
  (\forall m, In \ m \ p \rightarrow In \ x \ m) \rightarrow
```

```
NoDup \ (map \ (remove \ var\_eq\_dec \ x) \ p).
Proof.
  intros x p Hp Hx. induction p.
  - simpl. auto.
  - simpl. apply NoDup_cons.
    + intro. apply in_{-}map_{-}iff in H. destruct H as [y \parallel]. assert (y = a).
       \times apply poly\_cons in Hp. destruct Hp. unfold is\_poly in H1. destruct H1.
         apply H3 in H0 as H4. apply (remove\_Sorted\_eq\ x); auto. split; intro.
         apply Hx. intuition. apply Hx. intuition.
       \times rewrite H1 in H0. unfold is\_poly in Hp. destruct Hp.
         apply NoDup\_MonoSorted in H2 as H4. apply NoDup\_cons\_iff in H4 as [].
         contradiction.
    + apply IHp.
       \times apply poly\_cons in Hp. apply Hp.
       \times intros m H. apply Hx. intuition.
Qed.
Lemma NoDup_map_app : \forall x l,
  is\_poly l \rightarrow
  (\forall m, In \ m \ l \rightarrow \neg In \ x \ m) \rightarrow
  NoDup \ (map \ make\_mono \ (map \ (fun \ a : list \ var \Rightarrow a ++ [x]) \ l)).
  intros x \ l \ Hp \ Hin. induction l.
  - simpl. auto.
  - simpl. apply NoDup\_cons.
    + intros H. rewrite map\_map in H. apply in\_map\_iff in H as [m]. assert (a=m).
       \times apply poly\_cons in Hp as []. apply Permutation\_Sorted\_mono\_eq.
         - apply Permutation\_sort\_mono\_eq in H. rewrite no\_nodup\_NoDup in H.
            rewrite no\_nodup\_NoDup in H.
            ++ pose (Permutation\_cons\_append\ m\ x). pose (Permutation\_cons\_append\ a
x).
                apply (Permutation\_trans \ p) in H. apply Permutation\_sym in p\theta.
                apply (Permutation\_trans\ H) in p\theta. apply Permutation\_cons\_inv in p\theta.
                apply Permutation\_sym. auto.
             ++ apply Permutation\_NoDup with (l:=(x::a)). apply Permutation\_cons\_append.
                apply NoDup\_cons. apply Hin. intuition. unfold is\_mono in H2.
                apply NoDup_{-}VarSorted in H2. auto.
             ++ apply Permutation\_NoDup with (l:=(x::m)). apply Permutation\_cons\_append.
                apply NoDup\_cons. apply Hin. intuition. unfold is\_poly in H1.
                destruct H1. apply H3 in H0. unfold is\_mono in H0.
                apply NoDup_{-}VarSorted in H0. auto.
         - unfold is\_mono in H2. apply Sorted\_VarSorted. auto.
         - unfold is_{-}poly in H1. destruct H1. apply H3 in H0. apply Sorted_{-}VarSorted.
```

```
auto.
       \times rewrite \leftarrow H1 in H0. unfold is\_poly in Hp. destruct Hp.
          apply NoDup\_MonoSorted in H2. apply NoDup\_cons\_iff in H2 as []. contradiction.
     + apply \mathit{IHl}. apply \mathit{poly\_cons} in \mathit{Hp}. apply \mathit{Hp}. intros m \mathit{H}. apply \mathit{Hin}. intuition.
Qed.
Lemma mulPP_{-}Permutation : \forall x \ a0 \ l,
  is\_poly (a0::l) \rightarrow
  (\forall m, In \ m \ (a0::l) \rightarrow \neg \ In \ x \ m) \rightarrow
  Permutation \ (mulPP \ [[x]] \ (a0 :: l)) \ ((make\_mono \ (a0++[x]))::(mulPP \ [[x]] \ l)).
Proof.
  intros x \ a\theta \ l \ Hp \ Hx. unfold mulPP, distribute. simpl. unfold make\_poly.
  pose (MonoSort.Permuted_sort (nodup_cancel mono_eq_dec
          (map\ make\_mono\ ((a0\ ++\ [x])::\ concat\ (map\ (fun\ a:\ list\ var\ \Rightarrow\ [a\ ++\ [x]])
l)))))).
  apply Permutation\_sym in p. apply (Permutation\_trans\ p). simpl map.
  rewrite no\_nodup\_cancel\_NoDup; clear p.
  - apply perm\_skip. apply Permutation\_trans with (l':=(nodup\_cancel\ mono\_eq\_dec\ (map
make\_mono\ (concat\ (map\ (fun\ a: list\ var \Rightarrow [a++[x]])\ l)))).
     + rewrite no\_nodup\_cancel\_NoDup; auto. rewrite concat\_map. apply NoDup\_map\_app.
       apply poly\_cons in Hp. apply Hp. intros m H. apply Hx. intuition.
     + apply MonoSort.Permuted_sort.
  - rewrite \leftarrow map\_cons. rewrite concat\_map.
     rewrite \leftarrow map\_cons with (f := (\text{fun } a : list \ var \Rightarrow a ++ \lceil x \rceil)).
     apply NoDup_map_app; auto.
Qed.
Lemma mulPP\_map\_app\_permutation : \forall (x:var) (l l':poly),
  is\_poly \ l \rightarrow
  (\forall m, In \ m \ l \rightarrow \neg \ In \ x \ m) \rightarrow
  Permutation \ l \ l' \rightarrow
  Permutation (mulPP [[x]] l) (map (fun a \Rightarrow (make\_mono(a ++ [x]))) l').
Proof.
  intros x \ l \ l' \ Hp \ H \ H0. generalize dependent l'. induction l; induction l'.
  - intros. unfold mulPP, distribute, make_poly, MonoSort.sort. simpl. auto.
  - intros. apply Permutation\_nil\_cons in H0. contradiction.
  - intros. apply Permutation_sym in H0. apply Permutation_nil_cons in H0. contradiction.
  - intros. clear IHl'. destruct (mono\_eq\_dec\ a\ a\theta).
     + rewrite e in *. pose (mulPP\_Permutation \ x \ a0 \ l \ Hp \ H). apply (Permutation\_trans
p). simpl.
       apply perm_-skip. apply IHl.
       \times clear p. apply poly\_cons in Hp. apply Hp.
        \times intros m Hin. apply H. intuition.
        \times apply Permutation\_cons\_inv in H0. auto.
```

```
+ apply Permutation\_incl in H0 as H1. destruct H1. apply incl\_cons\_inv in H1 as
[].
       destruct H1; try (rewrite H1 in n; contradiction). apply in\_split in H1.
       destruct H1 as [l1 \ [l2]]. rewrite H1 in H0.
       pose (Permutation_middle (a0::l1) l2 a). apply Permutation_sym in p.
       simpl in p. apply (Permutation\_trans\ H\theta) in p.
       apply Permutation\_cons\_inv in p. rewrite H1. simpl. rewrite map\_app. simpl.
       pose (Permutation\_middle ((make\_mono (a0 ++ [x]) :: map))
          (fun \ a1 : list \ var \Rightarrow make\_mono \ (a1 ++ [x])) \ l1)) \ (map)
          (fun a1: list \ var \Rightarrow make\_mono \ (a1 ++ [x])) \ l2) \ (make\_mono \ (a++[x])).
       simpl in p\theta. simpl. apply Permutation\_trans with (l':=(make\_mono\ (a\ ++\ [x])
       :: make\_mono (a\theta ++ [x])
           :: map (fun \ a1 : list \ var \Rightarrow make\_mono (a1 ++ [x])) \ l1 ++
               map \ (fun \ a1 : list \ var \Rightarrow make\_mono \ (a1 \ ++ \ [x])) \ l2)); \ auto. \ clear \ p0.
       rewrite \leftarrow map\_app. rewrite \leftarrow (map\_cons \text{ (fun } a1 : list } var \Rightarrow make\_mono \text{ (} a1
++ [x]) \ a\theta \ (@app \ (list \ var) \ l1 \ l2)).
       pose (mulPP\_Permutation \ x \ a \ l \ Hp \ H). apply (Permutation\_trans \ p\theta). apply
perm\_skip.
       apply IHl.
       \times clear p\theta. apply poly\_cons in Hp. apply Hp.
       \times intros m Hin. apply H. intuition.
       \times apply p.
Qed.
Lemma p_map_Permutation : \forall p x,
  is\_poly p \rightarrow
  (\forall m, In \ m \ p \rightarrow In \ x \ m) \rightarrow
  Permutation p (map (fun a \Rightarrow (make\_mono(a ++ [x]))) (map (remove var\_eq\_dec x)
p)).
Proof.
  intros p \ x \ H \ H\theta. rewrite map\_map. induction p.
  - simpl. assert (make\_mono\ (@app\ var\ (remove\ var\_eq\_dec\ x\ a)\ [x]) = a).
     + unfold make\_mono. rewrite no\_nodup\_NoDup.
       \times apply Permutation\_Sorted\_mono\_eg.
          - apply Permutation\_trans with (l':=(remove\ var\_eq\_dec\ x\ a\ ++\ [x])).
              apply Permutation_sym. apply VarSort.Permuted_sort.
             pose (in\_split \ x \ a). destruct e as [l1\ [l2\ e]]. apply H0. intuition.
             rewrite e. apply Permutation\_trans with (l':=(x::remove\ var\_eq\_dec\ x\ (l1++x::l2))).
              apply Permutation_sym. apply Permutation_cons_append.
              apply Permutation\_trans with (l':=(x::l1++l2)). apply perm\_skip.
             rewrite remove\_distr\_app. replace (x::l2) with ([x]++l2); auto.
             rewrite remove\_distr\_app. simpl. destruct (var\_eq\_dec \ x \ x); try contradiction.
```

```
rewrite app_nil_l. repeat rewrite not_l In_remove; try apply Permutation_refl;
            try (apply poly\_cons in H as []; unfold is\_mono in H1;
            apply NoDup\_VarSorted in H1; rewrite e in H1; apply NoDup\_remove\_2
in H1).
            intros x2. apply H1. intuition. intros x1. apply H1. intuition.
            apply Permutation_middle.
         - apply VarSort.LocallySorted_sort.
         - apply poly\_cons in H as []. unfold is\_mono in H1.
            apply Sorted\_VarSorted. auto.
       \times apply Permutation\_NoDup with (l:=(x::remove\ var\_eq\_dec\ x\ a)).
         apply Permutation\_cons\_append. apply NoDup\_cons.
         apply remove\_In. apply NoDup\_remove. apply poly\_cons in H as [].
         unfold is\_mono in H1. apply NoDup\_VarSorted. auto.
    + rewrite H1. apply perm\_skip. apply IHp.
       \times apply poly\_cons in H. apply H.
       \times intros m Hin. apply H\theta. intuition.
Qed.
Lemma Permutation\_Sorted\_eq : \forall (l \ m : list \ mono),
  Permutation \ l \ m \rightarrow
  Sorted (fun x y \Rightarrow is\_true (MonoOrder.leb x y)) l \rightarrow
  Sorted (fun x y \Rightarrow is\_true (MonoOrder.leb x y)) m \rightarrow
  l=m.
Proof.
  intros l m Hp Hsl Hsm. generalize dependent m.
  induction l; induction m; intros.
  - reflexivity.
  - apply Permutation\_nil in Hp. auto.
  - apply Permutation\_sym, Permutation\_nil in Hp. auto.
  - clear IHm. apply Permutation\_incl in Hp as Hp.' destruct Hp.'
    destruct (mono\_cmp \ a \ a\theta) eqn:Hcomp.
    + apply lex_{-}eq in Hcomp. rewrite Hcomp in *.
       apply Permutation\_cons\_inv in Hp. f_equal; auto.
       apply IHl.
       \times apply Sorted_{-}inv in Hsl. apply Hsl.
       \times apply Hp.
       \times apply Sorted_inv in Hsm. apply Hsm.
    + apply lex_neq' in Hcomp as Hneq. apply incl_ncons_ninv in H. destruct H.
       apply Sorted\_StronglySorted in Hsm. apply StronglySorted\_inv in Hsm as [].
       \times simpl in H. destruct H; try (rewrite H in Hneq; contradiction).
         pose (Forall_{-}In \_ \_ \_ \_ H H3). simpl in i. unfold is_{-}true,
         MonoOrder.leb, mono\_cmp in i. apply <math>lex\_rev\_lt\_gt in Hcomp.
         rewrite Hcomp in i. inversion i.
```

```
\times apply MonoOrder\_Transitive.
    + apply lex\_neq' in Hcomp as Hneq. apply incl\_cons\_inv in H0. destruct H0.
       apply Sorted\_StronglySorted in Hsl. apply StronglySorted\_inv in Hsl as [].
       \times simpl in H0. destruct H0; try (rewrite H0 in Hneq; contradiction).
         pose (Forall\_In \_ \_ \_ \_ H0 H3). simpl in i. unfold is\_true in i.
         unfold MonoOrder.leb in i. rewrite Hcomp in i. inversion i.
       \times apply MonoOrder\_Transitive.
Qed.
Lemma Permutation\_sort\_eq : \forall l m,
  Permutation l \ m \leftrightarrow sort \ l = sort \ m.
Proof.
  intros l m. split; intros H.
  - assert (H0 : Permutation (sort l) (sort m)).
    + apply Permutation\_trans with (l:=(sort\ l))\ (l':=m)\ (l'':=(sort\ m)).
       \times apply Permutation\_sym. apply Permutation\_sym in H.
         apply (Permutation\_trans\ H\ (Permuted\_sort\ l)).
       \times apply Permuted\_sort.
    + apply (Permutation_Sorted_eq _ _ H0 (LocallySorted_sort l) (LocallySorted_sort m)).
  - assert (Permutation (sort \ l) (sort \ m)).
    + rewrite H. apply Permutation\_reft.
    + pose (Permuted_sort 1). pose (Permuted_sort m).
       apply (Permutation\_trans \ p) in H0. apply Permutation\_sym in p0.
       apply (Permutation\_trans\ H0) in p\theta. apply p\theta.
Qed.
Lemma make\_poly\_Permutation : \forall p q,
  Permutation p \ q \rightarrow make\_poly \ p = make\_poly \ q.
Proof.
  intros. unfold make\_poly.
  apply Permutation\_sort\_eq, nodup\_cancel\_Permutation, Permutation\_map.
  auto.
Qed.
Lemma no\_sort\_MonoSorted : \forall p,
  Sorted mono_lt p \rightarrow
  MonoSort.sort p = p.
Proof.
  intros p H. unfold make_poly. apply Permutation_Sorted_eq.
  - apply Permutation_sym. apply Permuted_sort.
  - apply LocallySorted_sort.
  - apply Sorted\_MonoSorted. auto.
Qed.
Lemma make\_poly\_app\_comm : \forall p q,
```

```
make\_poly (p ++ q) = make\_poly (q ++ p).
Proof.
  intros p q. apply Permutation\_sort\_eq.
  apply nodup_cancel_Permutation. apply Permutation_map.
  apply Permutation_app_comm.
Qed.
Lemma no\_make\_poly : \forall p,
  is\_poly p \rightarrow
  make\_poly p = p.
Proof.
  unfold make\_poly, is\_poly. intros m \parallel. rewrite no\_sort\_MonoSorted.
  - rewrite no\_nodup\_cancel\_NoDup.
    + apply no\_map\_make\_mono. intros m\theta Hin. apply H\theta. auto.
    + apply NoDup\_MonoSorted in H. rewrite no\_map\_make\_mono; auto.
  - apply Sorted_nodup_cancel.
    + apply mono\_lt\_Transitive.
    + rewrite no\_map\_make\_mono; auto.
Qed.
Lemma sort\_app\_comm : \forall l m,
  sort (l ++ m) = sort (m ++ l).
Proof.
  intros l m. pose (Permutation.Permutation\_app\_comm\ l\ m).
  apply Permutation\_sort\_eq. auto.
Qed.
Lemma sort\_nodup\_cancel\_assoc: \forall l,
  sort\ (nodup\_cancel\ mono\_eq\_dec\ l) = nodup\_cancel\ mono\_eq\_dec\ (sort\ l).
Proof.
  intros l. apply Permutation_Sorted_eq.
  - pose (Permuted_sort (nodup_cancel mono_eq_dec l)). apply Permutation_sym in p.
    apply (Permutation\_trans p). clear p. apply NoDup\_Permutation.
    + apply NoDup\_nodup\_cancel.
    + apply NoDup\_nodup\_cancel.
    + intros x. split.
       \times intros H. apply Permutation_i with (l:=(nodup\_cancel\ mono\_eq\_dec\ l)).
         apply nodup\_cancel\_Permutation. apply Permuted\_sort. auto.
       \times intros H. apply Permutation_in with (l := (nodup\_cancel\ mono\_eq\_dec\ (sort\ l))).
         apply nodup_cancel_Permutation. apply Permutation_sym. apply Permuted_sort.
auto.
  - apply LocallySorted_sort.
  - apply Sorted_nodup_cancel.
    + apply MonoOrder_Transitive.
    + apply LocallySorted\_sort.
```

```
Qed.
\texttt{Lemma}\ addPP\_comm\ :\ \forall\ p\ q,
  addPP p q = addPP q p.
Proof.
  intros p q. unfold addPP, make\_poly. repeat rewrite map\_app.
  repeat rewrite sort\_nodup\_cancel\_assoc. rewrite sort\_app\_comm.
  reflexivity.
Qed.
Hint Unfold addPP mulPP.
Lemma mulPP_{-}\theta: \forall p,
  mulPP [] p = [].
Proof.
  intros p. unfold mulPP. rewrite (@distribute\_nil\ var). auto.
Lemma mulPP_{-}\theta r: \forall p,
  mulPP p [] = [].
  intros p. unfold mulPP. rewrite (@distribute_nil_r var). auto.
Qed.
Lemma addPP_{-}\theta: \forall p,
  is\_poly p \rightarrow
  addPP [] p = p.
Proof.
  intros p Hpoly. unfold addPP. simpl. apply no\_make\_poly. auto.
Qed.
Lemma addPP_-\theta r: \forall p,
  is\_poly p \rightarrow
  addPP p [] = p.
Proof.
  intros p Hpoly. unfold addPP. rewrite app\_nil\_r. apply no\_make\_poly. auto.
Qed.
Lemma addPP_{-}p_{-}p : \forall p,
  is\_poly p \rightarrow
  addPP p p = [].
  intros p Hp. unfold addPP. unfold make\_poly. rewrite no\_map\_make\_mono.
  - rewrite nodup\_cancel\_self. auto.
  - intros m Hin. apply Hp. apply in\_app\_iff in Hin. intuition.
Qed.
Lemma sort\_pointless : \forall p \ q,
```

```
sort (sort p ++ q) =
  sort (p ++ q).
Proof.
  intros p q. apply Permutation_sort_eq.
  apply Permutation\_app\_tail. apply Permutation\_sym.
  apply Permuted_sort.
Qed.
Lemma make\_poly\_pointless\_weak : \forall p q,
  (\forall m, In \ m \ p \rightarrow is\_mono \ m) \rightarrow
  (\forall m, In \ m \ q \rightarrow is\_mono \ m) \rightarrow
  make\_poly \; (make\_poly \; p \; ++ \; q) =
  make\_poly (p ++ q).
Proof.
  intros p \ q \ Hmp \ Hmq. induction p; auto.
  unfold make\_poly. repeat rewrite no\_map\_make\_mono; intuition.
  apply Permutation_sort_eq. rewrite sort_nodup_cancel_assoc.
  rewrite nodup_cancel_pointless. apply nodup_cancel_Permutation.
  apply Permutation_sym. apply Permutation_app_tail. apply Permuted_sort.
  - simpl in H. rewrite in\_app\_iff in H. destruct H as [H|H|H]; intuition.
    rewrite H in Hmp; intuition.
  - rewrite in_{-}app_{-}iff in H. destruct H; intuition.
    apply In\_sorted in H. apply nodup\_cancel\_in in H. intuition.
Qed.
Lemma mono\_in\_map\_make\_mono: \forall p m,
  In m \ (map \ make\_mono \ p) \rightarrow is\_mono \ m.
Proof.
  intros. apply in_{-}map_{-}iff in H as [x \parallel]. rewrite \leftarrow H. auto.
Qed.
Lemma make\_poly\_pointless: \forall p q,
  make\_poly \ (make\_poly \ p \ ++ \ q) =
  make\_poly (p ++ q).
Proof.
  intros p q. rewrite make\_poly\_app\_comm.
  rewrite \leftarrow map\_make\_mono\_pointless. rewrite make\_poly\_app\_comm.
  rewrite \leftarrow (map\_make\_mono\_pointless\ p). rewrite (make\_poly\_app\_comm\ \_\ q).
  rewrite \leftarrow (map\_make\_mono\_pointless\ q). rewrite (make\_poly\_app\_comm\_(map\ make\_mono
p)).
  rewrite \leftarrow (make\_poly\_pointless\_weak \ (map \ make\_mono \ p)). unfold make\_poly.
  rewrite (no\_map\_make\_mono\ (map\ make\_mono\ p)). auto.
  apply mono\_in\_map\_make\_mono. apply mono\_in\_map\_make\_mono.
  apply mono\_in\_map\_make\_mono.
Qed.
```

```
Lemma make\_poly\_pointless\_r : \forall p q,
  make\_poly (p ++ make\_poly q) =
  make\_poly (p ++ q).
Proof.
  intros p q. rewrite make\_poly\_app\_comm. rewrite make\_poly\_pointless.
  apply make\_poly\_app\_comm.
Qed.
Lemma concat\_map\_map : \forall A B C l (f:B \rightarrow C) (g:A \rightarrow list B),
  concat (map (fun \ a \Rightarrow map \ f \ (g \ a)) \ l) =
  map \ f \ (concat \ (map \ g \ l)).
Proof.
  intros. induction l; auto.
  simpl. rewrite map_-app. f_equal. auto.
Qed.
Lemma mulPP'_-mulPP'': \forall p \ q
  mulPP' p q = mulPP'' p q.
Proof.
  intros p q. unfold mulPP', mulPP'', mulMP, mulMP', make_poly.
  rewrite concat\_map\_map.
  rewrite (no\_map\_make\_mono\ (map\_\_)); auto.
  intros. apply in_{-}map_{-}iff in H as [n].
  rewrite \leftarrow H.
  auto.
Qed.
Lemma mulMP'_-mulMP'' : \forall m \ p \ q,
  make\_poly \ (mulMP' \ p \ m \ ++ \ q) = make\_poly \ (mulMP'' \ p \ m \ ++ \ q).
Proof.
  intros m \ p \ q. unfold mulMP', mulMP''. rewrite make\_poly\_app\_comm.
  rewrite \leftarrow map\_make\_mono\_pointless. rewrite make\_poly\_app\_comm.
  rewrite \leftarrow make\_poly\_pointless. unfold make\_poly at 2. rewrite (no\_map\_make\_mono
(map \ make\_mono \ \_)).
  unfold make\_poly at 3. rewrite (make\_poly\_app\_comm\_q).
  rewrite \leftarrow (map\_make\_mono\_pointless\ q). rewrite make\_poly\_app\_comm. auto.
  apply mono\_in\_map\_make\_mono.
Qed.
Lemma mulPP''_-mulPP''': \forall p q,
  mulPP'' p q = mulPP''' p q.
Proof.
  intros p q. induction q. auto. unfold mulPP'', mulPP'''. simpl.
  rewrite mulMP'_mulMP''. repeat rewrite \leftarrow (make\_poly\_pointless\_r\_(concat\_)).
  f_{equal}. f_{equal}. apply IHq.
```

```
Qed.
Lemma mulPP_{-}mulPP^{"}: \forall p q,
  mulPP \ p \ q = mulPP " \ p \ q.
Proof.
  intros. rewrite mulPP\_mulPP', mulPP'\_mulPP''. auto.
Qed.
Lemma mulPP_{-}mulPP''': \forall p q
  mulPP \ p \ q = mulPP''' \ p \ q.
Proof.
  intros. rewrite mulPP\_mulPP", mulPP" auto.
Qed.
Lemma addPP\_assoc: \forall p \ q \ r,
  addPP \ (addPP \ p \ q) \ r = addPP \ p \ (addPP \ q \ r).
Proof.
  intros p \neq r. rewrite (addPP\_comm\_(addPP\_\_)). unfold addPP.
  repeat rewrite make\_poly\_pointless. repeat rewrite \leftarrow app\_assoc.
  apply Permutation\_sort\_eq. apply nodup\_cancel\_Permutation. apply Permutation\_map.
  rewrite (app\_assoc\ q). apply Permutation\_app\_comm with (l':=(q++r)).
Qed.
Lemma mulPP_{-}1r : \forall p,
  is\_poly p \rightarrow
  mulPP \ p \ [[]] = p.
  intros p H. unfold mulPP, distribute. simpl. rewrite app\_nil\_r.
  rewrite map_id. apply no_make_poly. auto.
Qed.
Lemma make\_mono\_app\_comm : \forall m n,
  make\_mono \ (m \ ++ \ n) = make\_mono \ (n \ ++ \ m).
Proof.
  intros m n. apply Permutation_sort_mono_eq. apply Permutation_nodup.
  apply Permutation\_app\_comm.
Qed.
Lemma mulPP\_comm : \forall p \ q,
  mulPP p q = mulPP q p.
Proof.
  intros p q. repeat rewrite mulPP\_mulPP.
  generalize dependent q. induction p; induction q as [m].
  - auto.
  - unfold mulPP'', mulMP'. simpl. rewrite (@concat\_map\_nil\ mono). auto.
  - unfold mulPP'', mulMP'. simpl. rewrite (@concat\_map\_nil\ mono). auto.
  - unfold mulPP''. simpl. rewrite (app\_comm\_cons\_\_ (make\_mono (a++m))).
```

```
rewrite \leftarrow make\_poly\_pointless\_r. rewrite mulPP''\_refold. rewrite \leftarrow IHp.
          unfold mulPP''. rewrite make\_poly\_pointless\_r. simpl. unfold mulMP' at 2.
          rewrite app\_comm\_cons. rewrite \leftarrow make\_poly\_pointless\_r. rewrite mulPP''\_refold.
          rewrite IHq. unfold mulPP''. rewrite make_poly_pointless_r. simpl.
          unfold mulMP' at 1. rewrite app\_comm\_cons. rewrite app\_assoc.
          \texttt{rewrite} \leftarrow \textit{make\_poly\_pointless\_r}. \ \texttt{rewrite} \ \textit{mulPP''\_refold}. \ \texttt{rewrite} \leftarrow \textit{IHp}.
          unfold mulPP''. rewrite make\_poly\_pointless\_r. simpl. rewrite (app\_assoc\ (map\_assoc\ (map\_assoc\
(map = q)).
           apply Permutation\_sort\_eq. apply nodup\_cancel\_Permutation.
           apply Permutation\_map. rewrite make\_mono\_app\_comm. apply perm\_skip.
           apply Permutation_app_tail. apply Permutation_app_comm.
Qed.
Lemma make\_poly\_nil:
     make\_poly [] = [].
Proof.
     unfold make\_poly, sort. auto.
Qed.
Lemma mulPP''\_cons : \forall q \ a \ p,
     make\_poly (mulMP' \ q \ a ++ \ mulPP'' \ q \ p) =
     mulPP", q(a::p).
Proof.
     intros q a p. unfold mulPP". rewrite make_poly_pointless_r. auto.
Qed.
Lemma Permutation\_VarSort\_l: \forall m n,
     Permutation m \ n \leftrightarrow Permutation \ (VarSort.sort \ m) \ n.
Proof.
     intros m n. split; intro.
     - apply Permutation\_trans with (l':=m). apply Permutation\_sym.
           apply VarSort.Permuted\_sort. apply H.
     - apply Permutation\_trans with (l':=(VarSort.sort\ m)).
           apply VarSort.Permuted\_sort. apply H.
Qed.
Lemma Permutation\_VarSort\_r : \forall m n,
     Permutation m \ n \leftrightarrow Permutation \ m \ (VarSort.sort \ n).
Proof.
     intros m n. split; intro.
     - apply Permutation\_sym. rewrite \leftarrow Permutation\_VarSort\_l.
           apply Permutation\_sym; auto.
     - apply Permutation\_sym. rewrite \rightarrow Permutation\_VarSort\_l.
           apply Permutation\_sym; auto.
Qed.
```

```
Lemma make\_mono\_pointless : \forall m \ a,
  make\_mono \ (m \ ++ \ make\_mono \ a) = make\_mono \ (m \ ++ \ a).
Proof.
  intros m a. apply Permutation_sort_mono_eq.
  apply Permutation\_trans with (l':=(nodup\ var\_eq\_dec\ (m ++ nodup\ var\_eq\_dec\ a))).
    apply Permutation\_nodup. apply Permutation\_app\_head. unfold make\_mono.
    rewrite \leftarrow Permutation_{-}VarSort_{-}l, auto.
  induction a; auto. simpl. destruct in_{-}dec.
  - apply Permutation\_sym. apply Permutation\_trans with (l':=(nodup\ var\_eq\_dec\ (a::
m ++ a\theta))).
       apply Permutation\_nodup. apply Permutation\_sym. apply Permutation\_middle.
    simpl. destruct in_{-}dec.
    + apply Permutation_sym. apply IHa.
    + exfalso. apply n. intuition.
  - apply Permutation\_trans with (l':=(nodup\ var\_eq\_dec\ (a::m++nodup\ var\_eq\_dec\ a\theta))).
       apply Permutation\_nodup. apply Permutation\_sym. apply Permutation\_middle.
    apply Permutation\_sym. apply Permutation\_trans with (l':=(nodup\ var\_eq\_dec
       (a::m++a\theta))). apply Permutation\_nodup. apply Permutation\_sym. apply Permutation\_sym.
tation\_middle.
    simpl. destruct (in\_dec\ var\_eq\_dec\ a\ m).
    + assert (In\ a\ (m++a\theta)). intuition. destruct in\_dec; try contradiction.
       assert (In\ a\ (m++nodup\ var\_eq\_dec\ a\theta)). intuition. destruct in\_dec;
       try contradiction. apply Permutation_sym. apply IHa.
    + assert (\tilde{I} n \ a \ (m++a\theta)). intuition. apply in_{-}app_{-}iff in H. destruct H; auto.
       assert (\tilde{l} In a (m++nodup\ var_eq_dec\ a\theta)). intuition, apply in_app_iff in H\theta.
       destruct H\theta; auto. apply nodup_{-}In in H\theta. auto. repeat destruct in_{-}dec; try
contradiction.
       apply perm_skip. apply Permutation_sym. apply IHa.
Qed.
Lemma make\_mono\_self : \forall m,
  is\_mono m \rightarrow
  make\_mono\ (m\ ++\ m)=m.
Proof.
  intros m H. apply Permutation_Sorted_mono_eq.
  - induction m; auto. unfold make\_mono. rewrite \leftarrow Permutation\_VarSort\_l. simpl.
    assert (In\ a\ (m++a::m)).
       intuition. destruct in\_dec; try contradiction.
    apply Permutation\_trans with (l':=(nodup\ var\_eq\_dec\ (a::m++m))).
        apply Permutation_nodup. apply Permutation_app_comm.
    simpl. assert (\tilde{} In a (m++m)).
       apply NoDup\_VarSorted in H as H1. apply NoDup\_cons\_iff in H1.
    intro. apply H1. apply in\_app\_iff in H2; intuition.
```

```
destruct in\_dec; try contradiction. apply perm\_skip.
    apply Permutation\_VarSort\_l in IHm. auto. apply (mono\_cons\_\_H).
  - apply VarSort.LocallySorted_sort.
  - apply Sorted\_VarSorted. apply H.
Qed.
Lemma make\_poly\_refold : \forall p,
  sort (nodup_cancel mono_eq_dec (map make_mono p)) =
  make\_poly p.
Proof. auto. Qed.
Lemma mulPP_{-}p_{-}p: \forall p,
  is\_poly p \rightarrow
  mulPP p p = p.
Proof.
  intros p H. rewrite mulPP\_mulPP'. rewrite mulPP\_mulPP''. apply Permutation\_Sorted\_eq.
  - induction p; auto. unfold mulPP'', make\_poly. rewrite \leftarrow Permutation\_MonoSort\_l.
    simpl map at 1. apply poly\_cons in H as H1. destruct H1. rewrite make\_mono\_self;
auto.
    rewrite no\_make\_mono; auto. rewrite map\_app. apply Permutation\_trans with
      (l':=(nodup\_cancel\ mono\_eq\_dec\ (map\ make\_mono\ (concat\ (map\ (mulMP'\ (a::
      (p)(p)(p) + a :: map \ make\_mono \ (map \ make\_mono \ (map \ (app \ a) \ p))))).
      apply nodup\_cancel\_Permutation. rewrite app\_comm\_cons. apply Permutation\_app\_comm.
    rewrite \leftarrow nodup\_cancel\_pointless. apply Permutation\_trans with (l':=(nodup\_cancel
mono\_eg\_dec
      ((nodup\_cancel\ mono\_eq\_dec\ (map\ make\_mono\ (concat\ (map\ (mulMP'\ p)\ (a::\ p)))))
      ++ (a :: map make\_mono (map make\_mono (map (app a) p))))).
      apply nodup_cancel_Permutation. apply Permutation_app_tail. apply Permuta-
tion\_sort\_eq.
      repeat rewrite make\_poly\_refold. repeat rewrite mulPP''\_refold.
      repeat rewrite \leftarrow mulPP'\_mulPP''. repeat rewrite \leftarrow mulPP\_mulPP'. apply
mulPP\_comm.
    rewrite nodup\_cancel\_pointless. apply Permutation\_trans with (l':=
      (nodup\_cancel\ mono\_eq\_dec\ (a\ ::\ map\ make\_mono\ (map\ make\_mono\ (map\ (app\ a)
p))
      ++ (map \ make\_mono (concat (map (mulMP' p) (a :: p)))))).
      apply nodup_cancel_Permutation. apply Permutation_app_comm.
    simpl map. rewrite map\_app. unfold mulMP at 1. repeat rewrite (no\_map\_make\_mono
    (map make_mono _)); try apply mono_in_map_make_mono. rewrite (app_assoc
(map \_ \_)).
    apply Permutation\_trans with (l':=(nodup\_cancel\ mono\_eq\_dec\ ((map\ make\_mono
(map)
      (app\ a)\ p)\ ++\ map\ make\_mono\ (map\ (app\ a)\ p))\ ++\ a\ ::\ map\ make\_mono\ (concat
```

```
(map (mulMP' p) p)))). apply nodup\_cancel\_Permutation. apply Permutation\_middle.
    rewrite \leftarrow nodup\_cancel\_pointless. rewrite nodup\_cancel\_self. simpl app.
     apply Permutation\_trans with (l':=(nodup\_cancel\ mono\_eq\_dec\ (map\ make\_mono
       (concat (map (mulMP' p) p)) ++ [a])). apply nodup\_cancel\_Permutation.
       	ext{replace } (a::map \; make\_mono \; (concat \; (map \; (mulMP' \; p) \; p))) \; 	ext{with} \; ([a] \; ++ \; map \; p)
       make_mono (concat (map (mulMP' p) p))); auto. apply Permutation_app_comm.
    rewrite \leftarrow nodup\_cancel\_pointless. apply Permutation\_trans with (l':=(nodup\_cancel
       mono\_eq\_dec\ (p\ ++\ [a])). apply nodup\_cancel\_Permutation.
       apply Permutation\_app\_tail. unfold mulPP'', make\_poly in IHp.
       rewrite \leftarrow Permutation\_MonoSort\_l in IHp. apply IHp; auto.
    replace (a::p) with ([a]++p); auto. rewrite no\_nodup\_cancel\_NoDup.
    apply Permutation\_app\_comm. apply Permutation\_NoDup with (l:=(a::p)).
    replace (a::p) with ([a]++p); auto. apply Permutation\_app\_comm.
    destruct H. apply NoDup\_MonoSorted in H. auto.
  - unfold make\_poly. apply LocallySorted\_sort.
  - apply Sorted\_MonoSorted. apply H.
Qed.
Lemma mono\_in\_concat\_mulMP': \forall p \neq m,
  In m \ (concat \ (map \ (mulMP' \ p) \ q)) \rightarrow is\_mono \ m.
Proof.
  intros. unfold mulMP' in H. rewrite concat\_map\_map in H.
  apply in\_map\_iff in H as [x]. rewrite \leftarrow H. auto.
Qed.
Lemma mono\_in\_mulMP': \forall p n m,
  In m \ (mulMP', p \ n) \rightarrow is\_mono \ m.
Proof.
  intros. unfold mulMP' in H. apply (mono_in_map_make_mono _ _ H).
Qed.
Lemma mono\_in\_make\_poly : \forall p m,
  In m (make\_poly p) \rightarrow is\_mono m.
Proof.
  intros. unfold make\_poly in H. apply In\_sorted in H.
  apply nodup\_cancel\_in in H. apply (mono\_in\_map\_make\_mono\_\_H).
Qed.
Lemma mono\_in\_mulPP'': \forall p \ q \ m,
  In m \ (mulPP'', p \ q) \rightarrow is\_mono \ m.
 intros. unfold mulPP" in H. apply (mono\_in\_make\_poly \_ \_ H).
Qed.
```

```
Lemma mulMP'\_refold : \forall p m,
  map\ make\_mono\ (map\ (app\ m)\ p) = mulMP'\ p\ m.
Proof.
  auto.
Qed.
Lemma mulMP_{-}mulMP': \forall p \ q \ m,
  make\_poly \ (mulMP \ p \ m \ ++ \ q) = make\_poly \ (mulMP' \ p \ m \ ++ \ q).
Proof.
  intros. unfold make\_poly, mulMP. rewrite map\_app, mulMP'\_refold.
  rewrite map\_app. rewrite (no\_map\_make\_mono\ (mulMP'\_\_)); auto.
  apply mono_in_mulMP.
Qed.
Lemma mulMP_{-}1: \forall p,
  mulMP p || = p.
Proof.
  intros. unfold mulMP. simpl.
  rewrite map_{-}id. auto.
Qed.
Lemma mulMP''_{-1}: \forall p,
  is\_poly p \rightarrow
  mulMP'' p [] = p.
Proof.
  intros. unfold mulMP". simpl.
  rewrite map_{-}id. rewrite no_{-}make_{-}poly; auto.
Qed.
Definition parity\_match (l \ m:poly) : Prop :=
  \forall x, even (count\_occ mono\_eq\_dec l x) = even (count\_occ mono\_eq\_dec m x).
Lemma even\_nodup\_cancel : \forall p,
  (\forall x, even (count\_occ mono\_eq\_dec p x) = true) \rightarrow
  (\forall x, \neg In \ x \ (nodup\_cancel \ mono\_eq\_dec \ p)).
Proof.
  intros p H m. intro. induction p.
  - inversion H\theta.
  - simpl in *. pose (H \ m) as H1. symmetry in H1. destruct (mono\_eq\_dec \ a \ m).
    + symmetry in H1. rewrite \leftarrow e in H1. rewrite even\_succ in H1. rewrite \leftarrow
negb\_even in H1.
       rewrite Bool.negb_true_iff in H1. rewrite H1 in H0. rewrite e in H0.
       apply remove\_In in H\theta. inversion H\theta.
    + destruct (even (count_occ mono_eq_dec p a)).
       \times destruct H\theta; try contradiction, apply In\_remove in H\theta, symmetry in H1.
         apply not\_in\_nodup\_cancel in H1. contradiction.
```

```
\times apply In\_remove in H0. symmetry in H1. apply not\_in\_nodup\_cancel in H1.
          contradiction.
Qed.
Lemma parity_match_empty: \forall q,
  parity\_match \parallel q \rightarrow
  Permutation [] (nodup\_cancel mono\_eq\_dec q).
Proof.
  intros q H. unfold parity\_match in H. simpl in H.
  symmetry in H. pose (even\_nodup\_cancel\ q\ H). apply nothing\_in\_empty in n.
  rewrite n. auto.
Lemma parity\_match\_refl: \forall l,
  parity\_match \ l \ l.
Proof.
  intros l. unfold parity_match. auto.
Lemma parity\_match\_sym : \forall l m,
  parity\_match\ l\ m \leftrightarrow parity\_match\ m\ l.
Proof.
  intros l m. unfold parity\_match. split; intros H x; auto.
Qed.
Lemma parity\_match\_trans : \forall p \ q \ r,
  parity\_match \ p \ q \rightarrow
  parity\_match \ q \ r \rightarrow
  parity\_match p r.
Proof.
  intros p q r H H0. unfold parity_match in *. intros x.
  rewrite H. rewrite H\theta. auto.
Qed.
Hint Resolve parity_match_reft parity_match_sym parity_match_trans.
Lemma parity\_match\_cons: \forall a l1 l2,
  parity\_match (a::l1) (a::l2) \leftrightarrow
  parity_match l1 l2.
Proof.
  intros a l1 l2. unfold parity_match. split; intros H x.
  - pose (H \ x). symmetry in e. simpl in e. destruct (mono\_eq\_dec \ a \ x); auto.
    repeat rewrite even\_succ in e. repeat rewrite \leftarrow negb\_even in e.
     apply Bool.negb\_sym in e. rewrite Bool.negb\_involutive in e. auto.
  - simpl. destruct (mono\_eq\_dec\ a\ x); auto.
    repeat rewrite even\_succ. repeat rewrite \leftarrow negb\_even.
```

apply $Bool.negb_sym$. rewrite $Bool.negb_involutive$. auto.

```
Qed.
Lemma parity\_match\_double : \forall a l,
  parity\_match (a::a::l) l.
Proof.
  intros a l. unfold parity_match. intros x. simpl.
  destruct (mono\_eq\_dec \ a \ x).
  - rewrite even_succ. rewrite odd_succ. auto.
  - auto.
Qed.
Lemma parity\_match\_cons\_swap: \forall a l1 l2,
  parity\_match (a::l1) l2 \rightarrow
  parity\_match \ l1 \ (a::l2).
Proof.
  intros a l1 l2 H. apply (parity_match_cons a) in H.
  apply parity\_match\_sym in H. apply parity\_match\_trans with (r:=l1) in H.
  apply parity\_match\_sym in H. auto. apply parity\_match\_double.
Qed.
Lemma parity\_match\_In : \forall a l1 l2,
  even (count\_occ mono\_eq\_dec l1 a) = true \rightarrow
  parity\_match (a::l1) l2 \rightarrow
  In a l2.
Proof.
  intros a l1 l2 H H0. apply parity_match_cons_swap in H0.
  rewrite H0 in H. simpl in H. destruct (mono\_eq\_dec\ a\ a); try contradiction.
  rewrite even\_succ in H. rewrite \leftarrow negb\_even in H. rewrite Bool.negb\_true\_iff in H.
  assert (count\_occ\ mono\_eq\_dec\ l2\ a>0). destruct count\_occ. inversion H.
  apply gt_-Sn_-O. apply count_-occ_-In in H1. auto.
Qed.
Lemma Permutation\_parity\_match: \forall p q
  Permutation p \ q \rightarrow parity\_match \ p \ q.
Proof.
  intros p \ q \ H. induction H.
  - auto.
  - apply parity\_match\_cons. auto.
  - repeat apply parity\_match\_cons\_swap. unfold parity\_match. intros x\theta.
     simpl. destruct mono_eq_dec; destruct mono_eq_dec;
    repeat (rewrite even\_succ; rewrite odd\_succ); auto.
  - apply parity\_match\_trans with (q:=l'); auto.
Qed.
Lemma parity\_nodup\_cancel\_Permutation : \forall p q
  parity\_match \ p \ q \rightarrow
```

```
Permutation \ (nodup\_cancel \ mono\_eq\_dec \ p) \ (nodup\_cancel \ mono\_eq\_dec \ q).
Proof.
  intros p \ q \ H. generalize dependent q. induction p; induction q; intros.
  - simpl nodup_cancel at 1. apply parity_match_empty. auto.
  - simpl nodup_cancel at 2. apply Permutation_sym. apply parity_match_empty.
    apply parity\_match\_sym. auto.
  - clear IHq. destruct (mono\_eq\_dec \ a \ a\theta).
    + rewrite e. simpl. rewrite e in H. apply parity\_match\_cons in H.
      destruct even \ egn: Hev; rewrite H in Hev; rewrite Hev.
       \times apply perm\_skip. apply remove\_Permutation. auto.
       \times apply remove\_Permutation. auto.
    + simpl nodup\_cancel at 1. destruct even\ eqn:Hev.
       \times assert (Hev' := Hev). apply parity\_match\_In with (l2 := (a0 :: q)) in Hev; auto.
         destruct Hev. symmetry in H0. contradiction. apply In\_split in H0 as \lfloor l1 \rfloor l2
H\theta]].
         rewrite H0. apply Permutation\_sym. apply Permutation\_trans with (l':=(
           nodup\_cancel\ mono\_eq\_dec\ (a::l2++a0::l1))).\ apply\ nodup\_cancel\_Permutation.
           rewrite app_comm_cons. apply (Permutation_app_comm).
         simpl. rewrite H0 in H. apply parity\_match\_trans with (r:=(a::l2++a0::l1))
in H.
         apply parity\_match\_cons in H. rewrite H in Hev'. rewrite Hev'.
         apply perm_skip. apply remove_Permutation. apply Permutation_sym.
         apply IHp. auto. rewrite app\_comm\_cons. apply Permutation\_parity\_match.
         apply Permutation\_app\_comm.
       \times apply parity\_match\_cons\_swap in H. rewrite H in Hev. assert (Hev2:=Hev).
         rewrite count\_occ\_Permutation with (l':=(a::q++[a\theta])) in Hev. simpl in Hev.
         destruct (mono_eq_dec a a); try contradiction. rewrite even_succ in Hev.
         rewrite \leftarrow negb\_even in Hev. rewrite Bool.negb\_false\_iff in Hev.
         rewrite \leftarrow (not\_In\_remove \_ mono\_eq\_dec \ a).
         assert (\forall l, remove mono\_eg\_dec \ a \ (nodup\_cancel mono\_eg\_dec \ (l)) =
           remove\ mono\_eq\_dec\ a\ (nodup\_cancel\ mono\_eq\_dec\ (a::l))).
           intros l. simpl. destruct (even (count_occ  l a )).
           simpl. destruct (mono\_eq\_dec\ a\ a); try contradiction.
           rewrite (not\_In\_remove \_ \_ \_ (remove \_ \_ \_)). auto. apply remove\_In.
           rewrite (not_In_remove _ _ _(remove _ _ _)). auto. apply remove_In.
         rewrite (H0\ (a0::q)). apply remove\_Permutation. apply IHp. auto.
         apply not\_in\_nodup\_cancel. rewrite count\_occ\_Permutation with (l':=(a\theta::q))
in Hev.
         auto. replace (a\theta::q) with ([a\theta]++q); auto. apply Permutation\_app\_comm.
         apply perm\_skip. replace (a\theta::q) with ([a\theta]++q); auto. apply Permutation\_app\_comm.
Qed.
```

```
Lemma count\_occ\_map\_lt : \forall p \ a \ f,
  count\_occ\ mono\_eq\_dec\ p\ a \le count\_occ\ mono\_eq\_dec\ (map\ f\ p)\ (f\ a).
Proof.
  intros p a f. induction p. auto. simpl. destruct mono\_eq\_dec.
  - rewrite e. destruct mono\_eq\_dec; try contradiction. simpl. apply le\_n\_S. auto.
  - destruct mono\_eq\_dec; auto.
Qed.
Lemma count\_occ\_map\_sub : \forall f \ a \ p,
  count\_occ\ mono\_eq\_dec\ (map\ f\ (remove\ mono\_eq\_dec\ a\ p))\ (f\ a) =
  count\_occ\ mono\_eq\_dec\ (map\ f\ p)\ (f\ a) - count\_occ\ mono\_eq\_dec\ p\ a.
Proof.
  intros f a p. induction p; auto. simpl. destruct mono\_eq\_dec.
  - rewrite e. destruct mono_eq_dec; try contradiction. destruct mono_eq_dec;
    try contradiction. simpl. rewrite \leftarrow e. auto.
  - simpl. destruct mono\_eq\_dec.
    + destruct mono\_eq\_dec. symmetry in e\theta; contradiction. rewrite IHp.
       rewrite sub\_succ\_l. auto. apply count\_occ\_map\_lt.
    + destruct mono\_eq\_dec. symmetry in e; contradiction. auto.
Qed.
Lemma count\_occ\_map\_neg\_remove : \forall f \ a \ p \ x,
  x \neq (f \ a) \rightarrow
  count\_occ\ mono\_eq\_dec\ (map\ f\ (remove\ mono\_eq\_dec\ a\ p))\ x =
  count\_occ\ mono\_eq\_dec\ (map\ f\ p)\ x.
Proof.
  intros. induction p as [b]; auto. simpl. destruct (mono\_eq\_dec\ a\ b).
  - destruct mono\_eq\_dec. rewrite \leftarrow e in e\theta. symmetry in e\theta. contradiction.
     auto.
  - simpl. destruct mono\_eq\_dec; auto.
Lemma f_{-}equal_{-}sum_{-}lt: \forall f \ a \ b \ p,
  b \neq a \rightarrow (f \ a) = (f \ b) \rightarrow
  count\_occ\ mono\_eq\_dec\ p\ b\ +
  count\_occ\ mono\_eq\_dec\ p\ a <
  count\_occ\ mono\_eq\_dec\ (map\ f\ p)\ (f\ a).
Proof.
  intros f a b p Hne Hfe. induction p as [c]; auto. simpl. destruct mono\_eq\_dec.
  - rewrite e. destruct mono\_eq\_dec; try contradiction. rewrite Hfe.
    destruct mono\_eq\_dec; try contradiction. simpl. apply le\_n\_S.
    rewrite \leftarrow Hfe. auto.
  - destruct mono\_eq\_dec.
    + rewrite e. destruct mono_eq_dec; try contradiction. rewrite plus_comm.
```

simpl. rewrite $plus_comm$. apply le_n_S . auto.

```
+ destruct mono\_eq\_dec.
       \times apply le_-S. auto.
       \times auto.
Qed.
Lemma count\_occ\_nodup\_map\_lt: \forall p f a,
  count\_occ\ mono\_eq\_dec\ (nodup\_cancel\ mono\_eq\_dec\ p)\ a <
  count\_occ\ mono\_eq\_dec\ (map\ f\ (nodup\_cancel\ mono\_eq\_dec\ p))\ (f\ a).
Proof.
  intros p f a induction p as [b]; auto. simpl. destruct even eqn: Hev.
  - simpl. destruct mono\_eq\_dec.
    + rewrite e. destruct mono\_eq\_dec; try contradiction. apply le\_n\_S. auto.
       rewrite count\_occ\_remove. apply le\_0\_l.
    + rewrite count\_occ\_neq\_remove; auto. rewrite not\_In\_remove.
       destruct mono\_eq\_dec; firstorder. apply not\_in\_nodup\_cancel; auto.
  - destruct (mono_eq_dec b a) eqn:Hba.
    + rewrite e. rewrite count\_occ\_remove. apply le\_0\_l.
    + rewrite count\_occ\_neq\_remove; auto. destruct (mono\_eq\_dec\ (f\ b)\ (f\ a))\ eqn: Hfba.
       \times rewrite \leftarrow e. rewrite count\_occ\_map\_sub. rewrite e. apply le\_add\_le\_sub\_l.
         apply f_{-}equal_{-}sum_{-}lt; auto.
       \times rewrite count\_occ\_map\_neg\_remove; auto.
Qed.
Lemma nodup\_cancel\_map : \forall p f,
  Permutation
    (nodup\_cancel\ mono\_eq\_dec\ (map\ f\ (nodup\_cancel\ mono\_eq\_dec\ p)))
    (nodup\_cancel\ mono\_eq\_dec\ (map\ f\ p)).
Proof.
  intros p f. apply parity\_nodup\_cancel\_Permutation. unfold parity\_match.
  intros x. induction p; auto. simpl. destruct (even (count\_occ \_ p \ a)) \ eqn: Hev.
  - simpl. destruct mono\_eq\_dec.
    + repeat rewrite even\_succ. repeat rewrite \leftarrow negb\_even. rewrite not\_In\_remove.
       rewrite IHp. auto. apply not_in_nodup_cancel. auto.
    + rewrite not_In_remove. apply IHp. apply not_in_nodup_cancel. auto.
  - simpl. destruct mono\_eq\_dec.
    + rewrite \leftarrow e. rewrite count\_occ\_map\_sub. rewrite even\_sub. rewrite \leftarrow e in
IHv.
       rewrite IHp. rewrite count_occ_nodup_cancel. rewrite Hev. rewrite even_succ.
       rewrite \leftarrow negb\_even. destruct (even\ (count\_occ\ \_\ (map\ f\ p)\ \_)); auto.
       apply count\_occ\_nodup\_map\_lt.
    + rewrite count\_occ\_map\_neq\_remove; auto.
Qed.
Lemma map\_app\_make\_poly : \forall m p,
  (\forall a, In \ a \ p \rightarrow is\_mono \ a) \rightarrow
```

```
make\_poly\ (map\ (app\ m)\ (make\_poly\ p)) = make\_poly\ (map\ (app\ m)\ p).
Proof.
  intros m p Hm. apply Permutation_sort_eq.
  apply Permutation\_trans with (l':=(nodup\_cancel\ mono\_eq\_dec\ (map\ make\_mono
    (map\ (app\ m)\ (nodup\_cancel\ mono\_eq\_dec\ (map\ make\_mono\ p)))))).
    apply nodup_cancel_Permutation. repeat apply Permutation_map.
    unfold make\_poly. rewrite \leftarrow Permutation\_MonoSort\_l. auto.
  rewrite (no\_map\_make\_mono\ p); auto. repeat rewrite map\_map. apply nodup\_cancel\_map.
Qed.
Lemma mulMP''_-make_-poly: \forall p m,
  (\forall a, In \ a \ p \rightarrow is\_mono \ a) \rightarrow
  mulMP'' (make\_poly p) m =
  mulMP", p m.
Proof.
  intros p m. unfold mulMP" apply map\_app\_make\_poly.
Qed.
Lemma mulMP'\_app : \forall p \ q \ m,
  \mathit{mulMP}' (p \ ++ \ q) \ m =
  mulMP' p m ++ mulMP' q m.
Proof.
  intros p \neq m. unfold mulMP'. repeat rewrite map\_app. auto.
Lemma mulMP'\_assoc: \forall q \ a \ m,
  mulMP'(mulMP' q a) m =
  mulMP' (mulMP' q m) a.
Proof.
  intros q a m. unfold mulMP'. induction q.
  - auto.
  - simpl. repeat rewrite make\_mono\_pointless. f_equal.
    + apply Permutation_sort_mono_eq. apply Permutation_nodup.
      repeat rewrite app\_assoc. apply Permutation\_app\_tail.
       apply Permutation\_app\_comm.
    + apply IHq.
Qed.
Lemma mulPP\_assoc: \forall p \ q \ r,
  mulPP \ (mulPP \ p \ q) \ r = mulPP \ p \ (mulPP \ q \ r).
Proof.
  intros p \neq r. rewrite (mulPP\_comm\_(mulPP\_q\_)). rewrite (mulPP\_comm\_p\_).
  generalize dependent r. induction p; induction r as [m];
  repeat rewrite mulPP_{-}\theta; repeat rewrite mulPP_{-}\theta r; auto.
  repeat rewrite mulPP\_mulPP'' in *. unfold mulPP''. simpl.
```

```
repeat rewrite \leftarrow (make\_poly\_pointless\_r\_(concat\_)).
  repeat rewrite mulPP''\_refold. repeat rewrite (mulPP''\_cons \ q).
  pose (IHp\ (m::r)). repeat rewrite mulPP\_mulPP" in e. rewrite \leftarrow e.
  rewrite IHr. unfold mulPP'' at 2, mulPP'' at 4. simpl.
  repeat rewrite make\_poly\_pointless\_r. repeat rewrite app\_assoc.
  repeat rewrite \leftarrow (make\_poly\_pointless\_r\_(concat\_)).
  repeat rewrite mulPP''_refold. pose (IHp\ r). repeat rewrite mulPP_rulPP'' in e0.
  rewrite \leftarrow e\theta. repeat rewrite \leftarrow app\_assoc. repeat rewrite mulMP'\_mulMP''.
  repeat rewrite \leftarrow mulPP''\_cons. repeat rewrite mulMP''\_make\_poly.
  repeat rewrite \leftarrow mulMP'\_mulMP''. repeat rewrite app\_assoc.
  apply Permutation\_sort\_eq. apply nodup\_cancel\_Permutation. apply Permutation\_map.
  apply Permutation\_app\_tail. repeat rewrite mulMP'\_app. rewrite mulMP'\_assoc.
  repeat rewrite \leftarrow app\_assoc. apply Permutation\_app\_head. apply Permutation\_app\_comm.
  intros a\theta Hin. apply in\_app\_iff in Hin as ||. unfold mulMP' in H.
  apply in\_map\_iff in H as [x]. rewrite \leftarrow H; auto.
  apply (make_poly_is_poly (concat (map (mulMP' q) r))). auto.
  intros a\theta Hin. apply in\_app\_iff in Hin as []. unfold mulMP' in H.
  apply in\_map\_iff in H as [x] rewrite \leftarrow H; auto.
  apply (make_poly_is_poly (concat (map (mulMP' q) p))). auto.
Qed.
Lemma mulMP''\_distr\_addPP : \forall m p q,
  is\_poly p \rightarrow is\_poly q \rightarrow
  mulMP''(addPP \ p \ q) \ m = addPP \ (mulMP'' \ p \ m) \ (mulMP'' \ q \ m).
Proof.
  intros m p q Hp Hq. unfold mulMP'', addPP. rewrite map_app_make_poly.
  rewrite make\_poly\_pointless. rewrite make\_poly\_app\_comm.
  rewrite make\_poly\_pointless. rewrite make\_poly\_app\_comm.
  rewrite map\_app. auto. intros a Hin. apply in\_app\_iff in Hin as [].
  apply Hp. auto. apply Hq. auto.
Qed.
Lemma mulPP\_distr\_addPP : \forall p \ q \ r,
  is\_poly p \rightarrow is\_poly q \rightarrow
  mulPP \ (addPP \ p \ q) \ r = addPP \ (mulPP \ p \ r) \ (mulPP \ q \ r).
Proof.
  intros p \ q \ r \ Hp \ Hq. induction r; auto. rewrite mulPP\_mulPP". unfold mulPP".
  simpl. rewrite mulPP\_mulPP'', (mulPP\_mulPP'' q), make\_poly\_app\_comm.
  rewrite \leftarrow make\_poly\_pointless. rewrite make\_poly\_app\_comm.
  rewrite mulPP"_refold.
  rewrite addPP\_refold. repeat unfold mulPP" at 2. simpl. unfold addPP at 4.
  rewrite make\_poly\_pointless. rewrite addPP\_refold.
  rewrite (addPP_comm _ (make_poly _)).
  unfold addPP at 4. rewrite make\_poly\_pointless. rewrite \leftarrow app\_assoc.
```

```
rewrite make\_poly\_app\_comm. rewrite \leftarrow app\_assoc.
  rewrite \leftarrow make\_poly\_pointless.
  rewrite mulPP''\_refold. rewrite \leftarrow app\_assoc. rewrite app\_assoc.
  rewrite make\_poly\_app\_comm.
  rewrite \leftarrow app\_assoc. rewrite \leftarrow make\_poly\_pointless. rewrite mulPP''\_refold.
  \texttt{replace} \ (\textit{make\_poly} \ (\textit{mulPP''} \ \textit{p} \ r \ ++ \ \textit{mulMP'} \ \textit{q} \ \textit{a} \ ++ \ \textit{mulPP''} \ \textit{q} \ r \ ++ \ \textit{mulMP'} \ \textit{p} \ \textit{a}))
     with (make\_poly\ ((mulPP"\ p\ r\ ++\ mulPP"\ q\ r)\ ++\ mulMP'\ p\ a\ ++\ mulMP'\ q\ a)).
  rewrite \leftarrow make\_poly\_pointless. rewrite (addPP\_refold\ (mulPP''\_\_)).
  rewrite make\_poly\_app\_comm. rewrite addPP\_refold.
  rewrite mulPP_{-}mulPP'', (mulPP_{-}mulPP'' p), (mulPP_{-}mulPP'' q) in IHr.
  rewrite \leftarrow IHr. unfold addPP at 4.
  rewrite \leftarrow make\_poly\_pointless. unfold addPP. repeat rewrite mulMP'\_mulMP''.
  rewrite (make_poly_app_comm (mulMP''__) (mulMP'__)).
  rewrite mulMP' rewrite (make\_poly\_app\_comm\ (mulMP''\_\_)\ (mulMP''\_
_)).
  repeat rewrite addPP\_refold. f_equal. apply mulMP''\_distr\_addPP; auto.
  apply make\_poly\_Permutation. rewrite \leftarrow app\_assoc.
  apply Permutation\_app\_head. rewrite app\_assoc.
  apply Permutation_trans with
     (l':=mulMP' \ q \ a ++ \ mulPP'' \ q \ r ++ \ mulMP' \ p \ a).
  apply Permutation_app_comm.
  auto.
Qed.
Lemma mulPP\_distr\_addPPr: \forall p \ q \ r,
  is\_poly p \rightarrow is\_poly q \rightarrow
  mulPP \ r \ (addPP \ p \ q) = addPP \ (mulPP \ r \ p) \ (mulPP \ r \ q).
Proof.
  intros p \ q \ r \ Hp \ Hq. rewrite mulPP\_comm. rewrite (mulPP\_comm \ r \ p).
  rewrite (mulPP\_comm \ r \ q). apply mulPP\_distr\_addPP; auto.
Qed.
Lemma mulPP_{-}is_{-}poly : \forall p q,
  is\_poly (mulPP \ p \ q).
Proof.
  intros p q. apply make\_poly\_is\_poly.
Lemma mulPP\_mono\_cons : \forall x m,
  is\_mono(x :: m) \rightarrow
  mulPP[[x]][m] = [x :: m].
Proof.
  intros x m H. unfold mulPP, distribute. simpl. apply Permutation_Sorted_eq.
  - apply Permutation\_trans with (l':=(nodup\_cancel\ mono\_eq\_dec\ (map\ make\_mono\ [m++[x]])).
     apply Permutation\_sym. apply Permuted\_sort. rewrite no\_nodup\_cancel\_NoDup.
```

```
simpl. assert (make\_mono\ (m++[x]) = x::m).
    + rewrite \leftarrow no\_make\_mono; auto. apply Permutation\_sort\_mono\_eq.
      repeat rewrite no\_nodup\_NoDup. replace (x::m) with ([x]++m); auto; apply
Permutation\_app\_comm.
      apply NoDup\_VarSorted; apply H. apply Permutation\_NoDup with (l:=(x::m)).
      replace (x::m) with ([x]++m); auto; apply Permutation\_app\_comm.
       apply NoDup_{-}VarSorted; apply H.
    + rewrite H\theta. auto.
    + apply NoDup\_cons; auto.
  - apply LocallySorted_sort.
  - apply Sorted_cons; auto.
Qed.
Lemma addPP_poly_cons : \forall m p,
  is\_poly\ (m :: p) \rightarrow
  addPP[m] p = m :: p.
Proof.
  intros m p H. unfold addPP. simpl. rewrite no_make_poly; auto.
Qed.
Hint Resolve addPP\_is\_poly mulPP\_is\_poly.
Lemma mulPP_{-}addPP_{-}1: \forall p \ q \ r,
  is\_poly p \rightarrow is\_poly q \rightarrow is\_poly r \rightarrow
  mulPP (addPP (mulPP p q) r) (addPP [[]] q) =
  mulPP (addPP [[]] q) r.
Proof.
  intros p q r Hp Hq Hr. rewrite mulPP_distr_addPP; auto.
  rewrite mulPP\_distr\_addPPr; auto. rewrite mulPP\_1r; auto.
  rewrite mulPP\_assoc. rewrite mulPP\_p\_p; auto. rewrite addPP\_p\_p; auto.
  rewrite addPP_{-}\theta; auto. rewrite mulPP_{-}comm. auto.
Lemma make\_poly\_rem\_vars : \forall p x,
  In x (vars (make_poly p)) \rightarrow
  In x (vars p).
Proof.
  intros p \times H. induction p.
  - inversion H.
  - unfold vars. simpl. apply nodup_{-}In. apply in_{-}app_{-}iff.
    unfold vars, make\_poly in H. apply nodup\_In in H.
    apply In\_concat\_exists in H as [m].
    apply In\_sorted in H. apply nodup\_cancel\_in in H.
    apply in_{-}map_{-}iff in H as [n] destruct H1.
    + left. apply make\_mono\_In. rewrite H1. rewrite H. auto.
```

```
+ right. apply In\_concat\_exists. \exists n. split; auto. apply make\_mono\_In.
       rewrite H. auto.
Qed.
Lemma incl\_vars\_addPP : \forall p \ q \ xs,
  incl\ (vars\ p)\ xs\ \land\ incl\ (vars\ q)\ xs\ \rightarrow
  incl\ (vars\ (addPP\ p\ q))\ xs.
Proof.
  unfold incl, addPP.
  intros p \ q \ xs \ [HinP \ HinQ] \ x \ HinPQ.
  apply make\_poly\_rem\_vars in HinPQ.
  unfold vars in HinPQ.
  apply nodup_In in HinPQ.
  rewrite concat\_app in HinPQ.
  apply in\_app\_or in HinPQ as [Hin \mid Hin].
  - apply HinP. apply nodup_{-}In. auto.
  - apply HinQ. apply nodup\_In. auto.
Qed.
Lemma incl\_vars\_mulPP : \forall p \ q \ xs,
  incl\ (vars\ p)\ xs\ \land\ incl\ (vars\ q)\ xs\ \rightarrow
  incl (vars (mulPP p q)) xs.
Proof.
  unfold incl, mulPP.
  intros p \ q \ xs \ [HinP \ HinQ] \ x \ HinPQ.
  apply make\_poly\_rem\_vars in HinPQ.
  apply In\_distribute in HinPQ. destruct HinPQ.
  - apply HinP. auto.
  - apply HinQ. auto.
Qed.
Lemma part_{-}add_{-}eq : \forall f \ p \ l \ r,
  is\_poly p \rightarrow
  partition f p = (l, r) \rightarrow
  p = addPP l r.
Proof.
  intros f p l r H H0. apply Permutation_Sorted_eq.
  - generalize dependent l; generalize dependent r. induction p; intros.
     + simpl in H\theta. inversion H\theta. auto.
     + assert (H1:=H0); auto. apply partition\_Permutation in H1. simpl in H0.
       destruct (partition \ f \ p) as [g \ d]. unfold addPP, make\_poly.
       rewrite \leftarrow Permutation\_MonoSort\_r. rewrite unsorted\_poly. destruct (f \ a);
inversion H0.
       \times rewrite \leftarrow H3 in H1. apply H1.
       \times rewrite \leftarrow H4 in H1. apply H1.
```

```
\times destruct H. apply NoDup_MonoSorted in H. apply (Permutation_NoDup H1
H).
       \times intros m Hin. apply H. apply Permutation_sym in H1. apply (Permutation_in
_ H1 Hin).
  - apply Sorted\_MonoSorted. apply H.
  - apply Sorted\_MonoSorted. apply make\_poly\_is\_poly.
Qed.
Lemma part\_is\_poly : \forall f \ p \ l \ r,
  is\_poly p \rightarrow
  partition f p = (l, r) \rightarrow
  is\_poly \ l \land is\_poly \ r.
Proof.
  intros f p l r Hpoly Hpart. destruct Hpoly. split; split.
  - apply (part_Sorted _ _ _ mono_lt_Transitive H _ _ Hpart).
  - intros m Hin. apply H0. apply elements\_in\_partition with (x:=m) in Hpart.
    apply Hpart; auto.
  - apply (part_Sorted _ _ _ mono_lt_Transitive H _ _ Hpart).
  - intros m Hin. apply H0. apply elements\_in\_partition with (x:=m) in Hpart.
    apply Hpart; auto.
Qed.
```

Chapter 7

Library B_Unification.poly_unif

```
Require Import List.

Import ListNotations.

Require Import Arith.

Import Nat.

Require Import Permutation.

Require Export poly.
```

7.1 Introduction

This section deals with defining substitutions and their properties using a polynomial representation. As with the inductive term representation, substitutions are just list of replacements, where variables are swapped with polynomials instead of terms. Crucial to the proof of correctness in the following chapter, substitution is proven to distribute over polynomial addition and multiplication. Definitions are provided for unifier, unifiable, and properties relating multiple substitutions such as more general and composition.

7.2 Substitution Definitions

A *substitution* is defined as a list of replacements. A *replacement* is just a tuple of a variable and a polynomial.

```
Definition repl := prod var poly.

Definition subst := list repl.
```

Since the *poly* data type doesn't enforce the properties of actual polynomials, the *is_poly* predicate is used to check if a term is in polynomial form. Likewise, the *is_poly_subst* predicate below verifies that every term in the range of the substitution is a polynomial.

```
Definition is_poly_subst (s : subst) : Prop := \forall x \ p, \ln (x, p) \ s \rightarrow is_poly \ p.
```

The next three functions implement how substitutions are applied to terms. At the top level, substP applies a substitution to a polynomial by calling substM on each monomial. From there, substV is called on each variable. Because variables and monomials are converted to polynomials, the process isn't simplying mapping application across the lists. substM and substP must multiply and add each polynomial together respectively.

```
Fixpoint substV (s : subst) (x : var) : poly :=
  {\tt match}\ s\ {\tt with}
  |[] \Rightarrow [[x]]
   (y, p) :: s' \Rightarrow if (x =? y) then p else (substV s' x)
  end.
Fixpoint substM (s : subst) (m : mono) : poly :=
  match m with
  | [] \Rightarrow [[]]
   |x :: m \Rightarrow mu|PP (substV s x) (substM s m)
  end.
Definition substP (s : subst) (p : poly) : poly :=
  make\_poly (concat (map (substM s) p)).
   Useful in later proofs is the ability to rewrite the unfolded definition of substP as just
the function call.
Lemma substP_refold : \forall s p,
  make\_poly (concat (map (substM s) p)) = substP s p.
Proof. auto. Qed.
   The following lemmas state that substitution applications always produce polynomials.
This fact is necessary for proving distribution and other properties of substitutions.
Lemma substV_is_poly : \forall x s,
  is_poly_subst s \rightarrow
  is_poly (substV s x).
Proof.
  intros x s H. unfold is_poly_subst in H. induction s; simpl; auto.
  destruct a \ eqn:Ha. destruct (x = ? \ v).
  - apply (H \ v). intuition.
  - apply IHs. intros x\theta p\theta H\theta. apply (H x\theta). intuition.
Qed.
Lemma substM_is_poly : \forall s \ m,
  is_poly (substM s m).
Proof.
  intros s m. unfold substM; destruct m; auto.
Qed.
```

Lemma substP_is_poly : $\forall s \ p$, is_poly (substP $s \ p$).

```
Proof. intros. unfold substP. auto. Qed. Hint Resolve substP\_is\_poly substM\_is\_poly.
```

The lemma below states that a substitution applied to a variable in polynomial form is equivalent to the substitution applied to just the variable. This fact only holds when the substitution's domain consists of polynomials.

```
Lemma subst_var_eq : \forall x \ s, is_poly_subst s \rightarrow substP s [[x]] = substV s x.

Proof. intros. simpl. apply (substV_is_poly x \ s) in H. unfold substP. simpl. rewrite app_nil_r. rewrite mulPP_1r; auto. rewrite no_make_poly; auto.

Qed.
```

The next two lemmas deal with simplifying substitutions where the first replacement tuple is useless for the given term. This is the case when the variable being replaced is not present in the term. It allows the replacement to be dropped from the substitution without changing the result.

```
Lemma substM_cons : \forall x m,
  \neg \ln x \ m \rightarrow
  \forall p \ s, substM ((x, p) :: s) m = \text{substM } s \ m.
Proof.
  intros. induction m; auto. simpl. f_equal.
  - destruct (a = ? x) eqn:H0; auto.
     symmetry in H\theta. apply beq_nat_eq in H\theta. exfals o.
     simpl in H. apply H. left. auto.
  - apply IHm. intro. apply H. right. auto.
Qed.
Lemma substP_cons : \forall x p,
  (\forall m, \ln m \ p \rightarrow \neg \ln x \ m) \rightarrow
  \forall q \ s, substP ((x, q) :: s) \ p = \text{substP} \ s \ p.
Proof.
  intros. induction p; auto. unfold substP. simpl.
  repeat rewrite ← (make_poly_pointless_r _ (concat _)). f_equal. f_equal.
  - apply substM_cons. apply H. left. auto.
  - apply IHp. intros. apply H. right. auto.
Qed.
    Substitutions applied to constants have no effect.
Lemma substP_1: \forall s,
```

```
substP s [[]] = [[]].
Proof.
  intros. unfold substP. simpl. auto.
Qed.
Lemma substP_0: \forall s,
  substP s [] = [].
Proof.
  intros. unfold substP. simpl. auto.
Qed.
   The identity substitution—the empty list—has no effect when applied to a term.
Lemma empty_substM : \forall m,
  is_mono m \rightarrow
  substM \lceil \rceil m = \lceil m \rceil.
Proof.
  intros. induction m; auto. simpl.
  apply mono_cons in H as H\theta.
  rewrite IHm; auto.
  apply mulPP_mono_cons; auto.
\texttt{Lemma empty\_substP}: \forall \ p,
  is_poly p \rightarrow
  substP [] p = p.
Proof.
  intros. induction p; auto. unfold substP. simpl.
  apply poly_cons in H as H\theta. destruct H\theta.
  rewrite ← make_poly_pointless_r. rewrite substP_refold.
  rewrite IHp; auto. rewrite empty_substM; auto.
  apply addPP_poly_cons; auto.
Qed.
```

7.3 Distribution Over Arithmetic Operators

Below is the statement and proof that substitution distributes over polynomial addition. Given a substitution s and two terms in polynomial form p and q, it is shown that s(p+q) = s(p) + s(q). The proof relies heavily on facts about permutations proven in the $list_util$ library.

```
Lemma substP_distr_addPP : \forall \ p \ q \ s, is_poly p \rightarrow is_poly q \rightarrow substP s (addPP p q) = addPP (substP s p) (substP s q). Proof.
```

```
intros p \neq s Hp Hq. unfold substP, addPP.
  apply Permutation_sort_eq. apply Permutation_trans with (l':=
    (nodup\_cancel mono\_eq\_dec (map make\_mono (concat (map (substM <math>s))
    (nodup\_cancel mono\_eq\_dec (map make\_mono (p ++ q))))))).
    apply nodup_cancel_Permutation. apply Permutation_map.
    apply Permutation_concat. apply Permutation_map. unfold make_poly.
    rewrite ← Permutation_MonoSort_I. auto.
  apply Permutation_sym. apply Permutation_trans with (l':=(nodup\_cancel
    mono_eq_dec (map make_mono (nodup_cancel mono_eq_dec (map make_mono (concat
    (\mathsf{map}\ (\mathsf{substM}\ s)\ (p)))) ++ (\mathsf{nodup\_cancel}\ \mathsf{mono\_eq\_dec}\ (\mathsf{map}\ \mathsf{make\_mono}\ (\mathsf{concat}\ \mathsf{mono\_eq}\ \mathsf{mono}))
    (map (substM s) q))))))))))) apply nodup_cancel_Permutation.
    apply Permutation_map. apply Permutation_app; unfold make_poly;
    rewrite ← Permutation_MonoSort_l; auto.
  rewrite (no_map_make_mono ((nodup_cancel _ _) ++ (nodup_cancel _ _))).
  rewrite nodup_cancel_pointless. apply Permutation_trans with (l':=
    (nodup_cancel mono_eq_dec (nodup_cancel mono_eq_dec (map make_mono (concat
    (map (substM s) q))) ++ map make_mono (concat (map (substM s) p)))).
    apply nodup_cancel_Permutation. apply Permutation_app_comm.
  rewrite nodup_cancel_pointless. rewrite \leftarrow map_app. rewrite \leftarrow concat_app.
  rewrite \leftarrow map_app. rewrite (no_map_make_mono (p++q)).
  apply Permutation_trans with (l':=(nodup\_cancel mono\_eq\_dec (map make\_mono
    (concat (map (substM s) (p \leftrightarrow q))))). apply nodup_cancel_Permutation.
    apply Permutation_map. apply Permutation_concat. apply Permutation_map.
    apply Permutation_app_comm.
  apply Permutation_sym. repeat rewrite List.concat_map.
  repeat rewrite map_map. apply nodup_cancel_concat_map.
  intros x. rewrite no_map_make_mono. apply NoDup_MonoSorted;
    apply substM_is_poly.
  intros m Hin. apply (substM_is_poly s x); auto.
  intros m Hin. apply in_app_iff in Hin as []; destruct Hp; destruct Hq; auto.
  intros m Hin. apply in_app_iff in Hin as []; apply nodup_cancel_in in H;
    apply mono_in_map_make_mono in H; auto.
Qed.
```

The next six lemmas deal with proving that substitution distributes over polynomial multiplication. Given a substitution s and two terms in polynomial form p and q, it is shown that $s(p \times q) = s(p) \times s(q)$. The proof turns out to be much more difficult than the one for addition because the underlying arithmetic operation is more complex.

If two monomials are permutations (obviously not in monomial form), then applying any substitution to either will produce the same result. A weaker form that follows from this is that the results are permutations as well.

```
Lemma substM_Permutation_eq : \forall \ s \ m \ n,
Permutation m \ n \rightarrow
```

```
substM s m = substM s n.
Proof.
  intros s m n H. induction H; auto.
  - simpl. rewrite IHPermutation. auto.
  - simpl. rewrite mulPP_comm. rewrite mulPP_assoc.
    rewrite (mulPP_comm (substM s l)). auto.
  - rewrite IHPermutation1. rewrite IHPermutation2. auto.
Lemma substM_Permutation : \forall s m n,
  Permutation m n \rightarrow
  Permutation (substM s m) (substM s n).
Proof.
  intros s \ m \ n \ H. rewrite (substM_Permutation_eq s \ m \ n); auto.
Qed.
   Adding duplicate variables to a monomial doesn't change the result of applying a substi-
tution. This is only true if the substitution's domain only has polynomials.
Lemma substM_nodup_pointless : \forall s m,
  is_poly_subst s \rightarrow
  substM s (nodup var_eq_dec m) = substM s m.
Proof.
  intros s \ m \ Hps. induction m; auto. simpl. destruct in_dec.
  - apply in_split in i. destruct i as [l1 \ [l2 \ H]].
    assert (Permutation m (a :: l1 ++ l2)). rewrite H. apply Permutation_sym.
       apply Permutation_middle.
    apply substM_Permutation_eq with (s:=s) in H\theta. rewrite H\theta. simpl.
    rewrite (mulPP_comm _ (substM _ _)). rewrite mulPP_comm.
    rewrite mulPP_assoc. rewrite mulPP_p_p. rewrite mulPP_comm. rewrite IHm.
    rewrite H0. simpl. auto. apply substV_is_poly. auto.
  - simpl. rewrite IHm. auto.
Qed.
   The idea behind the following two lemmas is that substitutions distribute over multi-
plication of a monomial and polynomial. The specifics of both are convoluted yet easier to
prove than distribution over two polynomials.
Lemma substM_distr_mulMP : \forall m \ n \ s,
  is_poly_subst s \rightarrow
  is_mono n \rightarrow
  Permutation
    (nodup\_cancel\ mono\_eq\_dec\ (map\ make\_mono\ (substM\ s\ (make\_mono\ substM\ s))
      (\mathsf{make\_mono}\ (m ++ n)))))
    (nodup_cancel mono_eq_dec (map make_mono (concat (map (mulMP')
```

 $(map\ make_mono\ (substM\ s\ m)))\ (map\ make_mono\ (substM\ s\ n))))).$

```
Proof.
  intros m n s Hps H. rewrite (no_make_mono (make_mono (m ++ n))); auto.
  repeat rewrite (no_map_make_mono (substM s _)); auto. apply Permutation_trans
    with (l':=(nodup\_cancel mono\_eq\_dec (substM s (nodup var\_eq\_dec
    (m ++ n)))), apply nodup_cancel_Permutation, apply substM_Permutation.
    unfold make_mono. rewrite ← Permutation_VarSort_I. auto.
  induction m.
  - simpl. pose (mulPP_1r (substM s n)). rewrite mulPP_comm in e.
    pose (substM_is_poly s n). apply e in i. rewrite mulPP_mulPP'' in i.
    unfold mulPP''' in i. rewrite \leftarrow no_make_poly in i; auto.
    apply Permutation_sort_eq in i. rewrite i. rewrite no_nodup_NoDup.
    rewrite no_map_make_mono. auto. intros m \ Hin. apply (substM_is_poly s \ n);
    auto. apply NoDup_VarSorted. auto.
  - simpl substM at 2. apply Permutation_sort_eq. rewrite make_poly_refold.
    rewrite mulPP'''_refold. rewrite ← mulPP_mulPP'''. rewrite mulPP_assoc.
    repeat rewrite mulPP_mulPP'''. apply Permutation_sort_eq.
    rewrite substM_nodup_pointless; auto. simpl. rewrite mulPP_mulPP'''.
    unfold mulPP'" at 1. apply Permutation_sort_eq in IHm.
    rewrite make_poly_refold in IHm. rewrite mulPP'"_refold in IHm.
    rewrite no_nodup_cancel_NoDup in IHm. rewrite no_sort_MonoSorted in IHm.
    rewrite \( \simes \text{substM_nodup_pointless}; \text{ auto. rewrite } IHm. \text{ unfold make_poly.} \)
    apply Permutation_trans with (l':=(nodup_cancel mono_eq_dec (nodup_cancel
      mono_{eq} = dec (map make_{mono} (concat (map (mulMP'' (substV <math>s \ a)))
      (mulPP''' (substM s m) (substM s n)))))).
      apply nodup_cancel_Permutation. rewrite \( - \text{Permutation_MonoSort_l. auto.} \)
      rewrite no_nodup_cancel_NoDup; auto.
    apply NoDup_nodup_cancel. apply substM_is_poly. apply NoDup_MonoSorted.
    apply substM_is_poly.
  - intros m\theta Hin. apply (substM_is_poly s n). auto.
  - intros m\theta Hin. apply (substM_is_poly s m). auto.
  - intros m\theta Hin. apply (substM_is_poly s (make_mono (m ++ n))). auto.
Qed.
Lemma map_substM_distr_map_mulMP : \forall m p s,
  is_poly_subst s \rightarrow
  is_poly p \rightarrow
  Permutation
    (nodup\_cancel\ mono\_eq\_dec\ (map\ make\_mono\ (concat\ (map\ (substM\ s)\ (map\ substM\ s))
      make_mono (mulMP'' p m)))))
    (nodup_cancel mono_eq_dec (map make_mono (concat (map (mulMP'' (map
      make\_mono (concat (map (substM <math>s) p)))) (map make\_mono (substM <math>s m))))).
Proof.
  intros m p s Hps H. unfold mulMP'' at 1. apply Permutation_trans with (l':=
```

```
(nodup\_cancel\ mono\_eq\_dec\ (map\ make\_mono\ (concat\ (map\ (substM\ s)\ (map\ substM\ s))
    make\_mono (nodup\_cancel mono\_eq\_dec (map make\_mono (map (app m) p))))))))
    apply nodup_cancel_Permutation, Permutation_map, Permutation_concat,
    Permutation_map, Permutation_map. unfold make_poly.
    rewrite ← Permutation_MonoSort_I. auto.
  apply Permutation_trans with (l':=(nodup\_cancel mono\_eq\_dec (map make\_mono
    (concat (map (substM s) (map make_mono (map make_mono (map (app m)
    (p)))))))). repeat rewrite List.concat_map. rewrite map_map.
    rewrite map_map. rewrite (map_map _ (map make_mono)).
    rewrite (map_map make_mono). rewrite nodup_cancel_concat_map. auto.
    intros x. rewrite no_map_make_mono. apply NoDup_MonoSorted.
    apply (substM_is_poly s (make_mono x)). intros m\theta Hin.
    pose (substM_is_poly s (make_mono x)). apply i. auto.
  induction p; simpl.
  - induction (map make_mono (substM s m)); auto.
 - rewrite map_app. apply Permutation_sym. apply Permutation_trans with (l':=
      (nodup_cancel mono_eq_dec (map make_mono (concat (map (mulMP'' (map
      make_mono (substM s m))) (map make_mono (substM s a ++ concat (map
      (substM \ s) \ p))))))) apply Permutation_sort_eq. repeat (rewrite
      make\_poly\_refold, mulPP'''\_refold, \leftarrow mulPP\_mulPP'''). apply mulPP\_comm.
    repeat rewrite map_app, rewrite concat_app, map_app, apply Permutation_sym.
    apply nodup_cancel_app_Permutation. apply substM_distr_mulMP; auto. apply H.
    intuition, apply Permutation_sym, apply Permutation_trans with (l':=
      (nodup_cancel mono_eq_dec (map make_mono (concat (map (mulMP'' (map
      make\_mono (concat (map (substM <math>s) p)))) (map make\_mono (substM <math>s m)))))).
      apply Permutation_sort_eq. repeat (rewrite make_poly_refold,
      mulPP'''_refold, ← mulPP_mulPP'''). apply mulPP_comm.
    apply Permutation_sym. apply IHp. apply poly_cons in H. apply H.
Qed.
```

Here is the formulation of substitution distributing over polynomial multiplication. Similar to the proof for addition, it is very dense and makes common use of permutation facts. Where it differs from that proof is that it relies on the commutativity of multiplication. The proof of distribution over addition didn't need any properties of addition.

```
Lemma substP_distr_mulPP: \forall p \ q \ s, is_poly_subst s \rightarrow is_poly p \rightarrow substP s (mulPP p \ q) = mulPP (substP s \ p) (substP s \ q). Proof.

intros p \ q \ s \ Hps \ H. repeat rewrite mulPP_mulPP'''. unfold substP, mulPP'''. apply Permutation_sort_eq. apply Permutation_trans with (l':=(nodup\_cancel mono\_eq\_dec (map make\_mono (concat (map (substM <math>s) (nodup\_cancel mono\_eq\_dec (map make\_mono (concat (map (mulMP'' p) q)))))))).
```

```
apply nodup_cancel_Permutation. apply Permutation_map.
    apply Permutation_concat. apply Permutation_map. unfold make_poly.
   rewrite ← Permutation_MonoSort_I. auto.
apply Permutation_sym. apply Permutation_trans with (l':=(nodup\_cancel
    mono_eq_dec (map_make_mono (concat (map_(mulMP'' (make_poly (concat (map
    (substM\ s)\ p))))\ (nodup_cancel\ mono_eq_dec\ (map\ make_mono\ (concat\ (map\ mono\ (concat\ (map\ make_mono\ (concat\ (map\ mono\ (conc
   (substM s) q)))))))), apply nodup_cancel_Permutation.
    apply Permutation_map. apply Permutation_concat. apply Permutation_map.
   unfold make_poly. rewrite ← Permutation_MonoSort_l. auto.
apply Permutation_trans with (l':=(nodup\_cancel mono\_eq\_dec (map make\_mono
   (concat (map (mulMP'' (make_poly (concat (map (substM s) p)))) (map (substM <math>s) p))))
   make\_mono(concat (map (substM <math>s) q))))))) repeat rewrite (List.concat\_map)
   make_mono (map (mulMP'' _) _)). repeat rewrite (map_map _ (map make_mono)).
   apply nodup_cancel_concat_map. intros x. rewrite no_map_make_mono.
   unfold mulMP''. apply NoDup_MonoSorted. apply make_poly_is_poly.
    intros m Hin. apply mono_in_make_poly in Hin; auto.
apply Permutation_sort_eq. rewrite make_poly_refold. rewrite mulPP'''_refold.
rewrite ← mulPP_mulPP'''. rewrite mulPP_comm. rewrite mulPP_mulPP'''.
apply Permutation_sort_eq. apply Permutation_trans with (l':=(nodup_cancel
   mono_eq_dec (map make_mono (concat (map (mulMP'' (map make_mono (concat (map
    (substM \ s) \ q)))) (nodup_cancel mono_eq_dec (map make_mono (concat (map
   (substM s(p))))))))), apply nodup_cancel_Permutation.
    apply Permutation_map. apply Permutation_concat. apply Permutation_map.
   unfold make_poly. rewrite ← Permutation_MonoSort_l. auto.
apply Permutation_trans with (l':=(nodup\_cancel mono\_eq\_dec (map make\_mono))
   (concat (map (mulMP'' (map make_mono (concat (map (substM <math>s) q)))) (map make_mono (concat (map (substM <math>s) q))))
   make\_mono\ (concat\ (map\ (substM\ s)\ p))))))). repeat rewrite (List.concat\_map)
   {\sf make\_mono} \ ({\sf map} \ ({\sf mulMP''}\ \_)\ \_)). \ {\sf repeat} \ {\sf rewrite} \ ({\sf map\_map}\ \_\ ({\sf map}\ {\sf make\_mono})).
   apply nodup_cancel_concat_map. intros x. rewrite no_map_make_mono.
   unfold mulMP'. apply NoDup_MonoSorted. apply make_poly_is_poly.
   intros m Hin. apply mono_in_make_poly in Hin; auto.
apply Permutation_sort_eq. rewrite make_poly_refold. rewrite mulPP'''_refold.
rewrite ← mulPP_mulPP'''. rewrite mulPP_comm. rewrite mulPP_mulPP'''.
apply Permutation_sort_eq. apply Permutation_sym.
apply Permutation_trans with (l':=(nodup\_cancel mono\_eq\_dec (map make\_mono))
   (concat (map (substM s) (map make_mono (concat (map (mulMP'' p) q))))))).
   repeat rewrite (List.concat_map make_mono (map _ _)).
   repeat rewrite map_map. rewrite nodup_cancel_concat_map. auto. intros x.
   rewrite no_map_make_mono. apply NoDup_MonoSorted; apply substM_is_poly.
   intros m Hin; apply (substM_is_poly s x); auto.
induction q; auto. simpl. repeat rewrite map_app. repeat rewrite concat_app.
repeat rewrite map_app. repeat rewrite \leftarrow (nodup_cancel_pointless (map__)).
```

```
repeat rewrite \leftarrow (nodup_cancel_pointless_r _ (map _ _)). apply nodup_cancel_Permutation. apply Permutation_app. apply map_substM_distr_map_mulMP; auto. apply IHq. Qed.
```

7.4 Unifiable Definitions

The following six definitions are all predicate functions that verify some property about substitutions or polynomials.

A unifier for a given polynomial p is a substitution s such that s(p) = 0. This definition also includes that the domain of the substitution only contain terms in polynomial form.

```
Definition unifier (s: \mathsf{subst})\ (p: \mathsf{poly}): \mathsf{Prop} := \mathsf{is\_poly\_subst}\ s \land \mathsf{substP}\ s\ p = \texttt{[]}.
A polynomial p is \mathit{unifiable} if there exists a unifier for p.
```

```
Definition unifiable (p : poly) : Prop := \exists s, unifier s p.
```

A substitution u is a composition of two substitutions s and t if u(x) = t(s(x)) for every variable x. The lemma $subst_comp_poly$ below extends this definition from variables to polynomials.

```
Definition subst_comp (s \ t \ u : subst) : Prop := \forall \ x, substP t (substP s [[x]]) = substP u [[x]].
```

A substitution s is more general than a substitution t if there exists a third substitution u such that t is a composition of u and s.

```
Definition more_general (s \ t : subst) : Prop := \exists u, subst_comp s \ u \ t.
```

Given a polynomial p, a substitution s is the most general unifier of p if s is more general than every unifier of p.

```
\begin{array}{l} \text{Definition mgu } (s: \text{subst}) \; (p: \text{poly}) : \; \text{Prop} := \\ \text{unifier } s \; p \; \land \\ \forall \; t, \\ \text{unifier } t \; p \; \rightarrow \\ \text{more\_general } s \; t. \end{array}
```

Given a polynomial p, a substitution s is a reproductive unifier of p if t is a composition of itself and s for every unifier t of p. This property is similar but stronger than most general because the substitution that composes with s is restricted to t, whereas in most general it can be any substitution.

```
\forall t, unifier t p \rightarrow subst_comp s t t.
```

Because the notion of most general is weaker than reproductive, it can be proven to logically follow as shown below. Any unifier that is reproductive is also most general.

```
Lemma reprod_is_mgu : \forall \ p \ s, reprod_unif s \ p \rightarrow mgu s \ p.

Proof.

unfold mgu, reprod_unif, more_general, subst_comp. intros p \ s []. split; auto. intros. \exists \ t\theta. intros. apply H\theta; auto. Qed.
```

As stated earlier, substitution composition can be extended to polynomials. This comes from the implicit fact that if two substitutions agree on all variables then they agree on all terms.

```
Lemma subst_comp_poly : \forall s \ t \ u,
  is_poly_subst s \rightarrow
  is_poly_subst t \rightarrow
  is_poly_subst u \rightarrow
  (\forall x, \mathsf{substP}\ t\ (\mathsf{substP}\ s\ [[x]]) = \mathsf{substP}\ u\ [[x]]) \rightarrow
  substP \ t \ (substP \ s \ p) = substP \ u \ p.
Proof.
  intros. induction p; auto. simpl. unfold substP at 2. simpl.
  rewrite ← make_poly_pointless_r. rewrite addPP_refold.
  rewrite substP_distr_addPP; auto. unfold substP at 3. simpl.
  rewrite \( \tau \) make_poly_pointless_r. rewrite addPP_refold. f_equal.
  - induction a; auto. simpl. rewrite substP_distr_mulPP; auto. f_equal; auto.
     + rewrite ← subst_var_eq; auto. rewrite ← subst_var_eq; auto.
     + apply substV_is_poly; auto.
  - rewrite substP_refold. apply IHp.
Qed.
```

The last lemmas of this section state that the identity substitution is a reproductive unifier of the constant zero. Therefore it is also most general.

```
Lemma empty_unifier : unifier [] [].
Proof.
```

```
unfold unifier, is_poly_subst. split; auto. intros. inversion H.

Qed.

Lemma empty_reprod_unif : reprod_unif [] [].

Proof.
  unfold reprod_unif, more_general, subst_comp.
  split; auto. apply empty_unifier.

Qed.

Lemma empty_mgu : mgu [] [].

Proof.
  apply reprod_is_mgu. apply empty_reprod_unif.

Qed.
```

Chapter 8

Library B_Unification.sve

```
Require Import List.
Import ListNotations.
Require Import Arith.
Require Import Permutation.
Require Export poly_unif.
```

8.1 Introduction

Here we implement the algorithm for successive variable elimination. The basic idea is to remove a variable from the problem, solve that simpler problem, and build a solution from the simpler solution. The algorithm is recursive, so variables are removed and problems generated until we are left with either of two problems; $1 = B \ 0$ or $0 = B \ 0$. In the former case, the whole original problem is not unifiable. In the latter case, the problem is solved without any need to substitute since there are no variables. From here, we begin the process of building up substitutions until we reach the original problem.

8.2 Eliminating Variables

This section deals with the problem of removing a variable x from a term t. The first thing to notice is that t can be written in polynomial form p. This polynomial is just a set of monomials, and each monomial a set of variables. We can now seperate the polynomials into two sets qx and r. The term qx will be the set of monomials in p that contain the variable x. The term q, or the quotient, is qx with the x removed from each monomial. The term r, or the remainder, will be the monomials that do not contain x. The original term can then be written as $x \times q + r$.

Implementing this procedure is pretty straightforward. We define a function div_bv_v that produces two polynomials given a polynomial p and a variable x to eliminate from it. The first step is dividing p into qx and r which is performed using a partition over p with

the predicate has_var. The second step is to remove x from qx using the helper elim_var which just maps over the given polynomial removing the given variable.

```
Definition has_var (x : var) := existsb (beq_nat x).

Definition elim_var (x : var) (p : poly) : poly := make_poly (map (remove var_eq_dec <math>x) p).

Definition div_by_var (x : var) (p : poly) : prod poly poly := let <math>(qx, r) := partition (has_var x) p in (elim_var <math>x qx, r).
```

We would also like to prove some lemmas about variable elimination that will be helpful in proving the full algorithm correct later. The main lemma below is $\mathsf{div_eq}$, which just asserts that after eliminating x from p into q and r the term can be put back together as in $p = x \times q + r$. This fact turns out to be rather hard to prove and needs the help of 10 or so other sudsidiary lemmas.

```
Lemma elim_var_not_in_rem : \forall x p r,
  elim_var x p = r \rightarrow
  (\forall m, \ln m \ r \rightarrow \neg \ln x \ m).
Proof.
  intros.
  unfold elim_var in H.
  unfold make_poly in H.
  rewrite \leftarrow H in H\theta.
  apply ln_sorted in H\theta.
  apply nodup_cancel_in in H\theta.
  rewrite map_map in H\theta.
  apply in_map_iff in H\theta as [n].
  rewrite \leftarrow H0.
  intro.
  rewrite make_mono_ln in H2.
  apply remove_\ln in H2.
  auto.
Qed.
Lemma elim_var_poly : \forall x p,
  is_poly (elim_var x p).
Proof.
  intros.
  unfold elim_var.
  apply make_poly_is_poly.
Qed.
Lemma elim_var_map_remove_Permutation : \forall p x,
  is_poly p \rightarrow
  (\forall m, \ln m \ p \rightarrow \ln x \ m) \rightarrow
```

```
Permutation (elim_var x p) (map (remove var_eq_dec x) p).
Proof.
  intros p \times H H\theta. destruct p as [|a|p].
  - simpl. unfold elim_var, make_poly, MonoSort.sort. auto.
  - simpl. unfold elim_var. simpl. unfold make_poly.
     rewrite ← Permutation_MonoSort_l. rewrite unsorted_poly; auto.
     + rewrite ← map_cons. apply NoDup_map_remove; auto.
     + apply poly_cons in H. intros m Hin. destruct Hin.
       \times rewrite \leftarrow H1. apply remove_is_mono. apply H.
       \times apply in_map_iff in H1 as [y] | rewrite \leftarrow H1. apply remove_is_mono.
          destruct H. unfold is_poly in H. destruct H. apply H4. auto.
Qed.
Lemma rebuild_map_permutation : \forall p x,
  is_poly p \rightarrow
  (\forall m, \ln m \ p \rightarrow \ln x \ m) \rightarrow
  Permutation (mulPP [[x]] (elim_var x p))
                 (map (fun \ a \Rightarrow make\_mono (a ++ [x]))
                        (map (remove var_eq_dec x) p)).
Proof.
  intros p \times H H\theta. apply mulPP_map_app_permutation.
  - apply elim_var_poly.
  - apply (elim_var_not_in_rem x p); auto.
  - apply elim_var_map_remove_Permutation; auto.
Qed.
Lemma elim_var_permutation : \forall p x,
  is_poly p \rightarrow
  (\forall m, \ln m \ p \rightarrow \ln x \ m) \rightarrow
  Permutation p (mulPP [[x]] (elim_var x p)).
Proof.
  intros p \times H H\theta, pose (rebuild_map_permutation p \times H H\theta).
  apply Permutation_sym in p\theta. pose (p_map_Permutation p \ x \ H \ H\theta).
  apply (Permutation_trans p1 p0).
Qed.
Lemma elim_var_mul : \forall x p,
  is_poly p \rightarrow
  (\forall m, \ln m \ p \rightarrow \ln x \ m) \rightarrow
  p = \text{mulPP} [[x]] (\text{elim\_var } x \ p).
Proof.
  intros. apply Permutation_Sorted_eq.
  - apply elim_var_permutation; auto.
  - unfold is_poly in H. apply Sorted_MonoSorted. apply H.
  - pose (mulPP_is_poly [[x]] (elim_var x p)). unfold is_poly in i.
```

```
apply Sorted_MonoSorted. apply i.
Qed.
Lemma has_var_eq_in : \forall x m,
  has_var x m = true \leftrightarrow ln x m.
Proof.
  intros.
  unfold has_var.
  rewrite existsb_exists.
  split; intros.
  - destruct H as [x\theta \ ]].
     apply Nat.eqb_eq in H\theta.
     rewrite H\theta. apply H.
  -\exists x. \text{ rewrite } \text{Nat.eqb\_eq. auto.}
Qed.
Lemma part_var_eq_in : \forall x \ p \ i \ o,
  partition (has_var x) p = (i, o) \rightarrow
  ((\forall m, \ln m \ i \rightarrow \ln x \ m) \land
    (\forall m, \ln m \ o \rightarrow \neg \ln x \ m)).
Proof.
  intros.
  split; intros.
  - apply part_fst_true with (a := m) in H.
     + apply has_var_eq_in. apply H.
     + apply H\theta.
  - apply part_snd_false with (a := m) in H.
     + rewrite \leftarrow has_var_eq_in. rewrite H. auto.
     + apply H\theta.
Qed.
Lemma div_is_poly : \forall x p q r,
  is_poly p \rightarrow
  div_by_var x p = (q, r) \rightarrow
  is_poly q \land is_poly r.
Proof.
  intros.
  unfold div_by_var in H\theta.
  destruct (partition (has_var x) p) eqn:Hpart.
  apply (part_is_poly \_ \_ \_ \_ H) in Hpart as Hp.
  destruct Hp as [Hpl Hpr].
  injection H\theta. intros Hr Hq.
  rewrite Hr in Hpr.
  apply part_var_eq_in in Hpart as [Hin Hout].
  split.
```

```
- rewrite \leftarrow Hq. apply elim_var_poly.
  - apply Hpr.
Qed.
    As explained earlier, given a polynomial p decomposed into a variable x, a quotient q,
and a remainder r, div_eq asserts that p = x \times q + r.
Lemma div_eq : \forall x p q r,
  is_poly p \rightarrow
  div_by_var x p = (q, r) \rightarrow
  p = \text{addPP (mulPP [[x]] } q) r.
Proof.
  intros x p q r HP HD.
  assert (HE := HD).
  unfold div_by_var in HE.
  destruct ((partition (has_var x) p)) as [qx \ r\theta] \ eqn:Hqr.
  injection HE. intros Hr Hq.
  assert (HIH: \forall m, \ln m \ qx \rightarrow \ln x \ m). intros.
  apply has_var_eq_in.
  apply (part_fst_true \_ \_ \_ \_ \_ Hqr \_ H).
  assert (is_poly q \land is_poly r) as [HPq \ HPr].
  apply (div_is_poly_i - I_i - HP HD).
  assert (is_poly qx \wedge is_poly r\theta) as [HPqx HPr\theta].
  apply (part_is_poly \_ \_ \_ \_ HP Hqr).
  rewrite \leftarrow Hq.
  rewrite \leftarrow (elim_var_mul x \ qx \ HPqx \ HIH).
  apply (part_add_eq (has_var x) _ _ _ HP).
  rewrite \leftarrow Hr.
  apply Hqr.
Qed.
Lemma has_var_in : \forall x m,
  \ln x \ m \to \text{has\_var} \ x \ m = \text{true}.
Proof.
  intros.
  unfold has_var.
  apply existsb_exists.
  \exists x.
  split; auto.
  symmetry.
  apply beq_nat_refl.
Qed.
Lemma div_var_not_in_qr : \forall x p q r,
  div_by_var x p = (q, r) \rightarrow
```

```
((\forall m, \ln m \ q \rightarrow \neg \ln x \ m) \land 
    (\forall m, \ln m \ r \rightarrow \neg \ln x \ m)).
Proof.
  intros.
  unfold div_by_var in H.
  assert (\exists qxr, qxr = partition (has_var x) p) as [[qx r\theta] Hqxr]. eauto.
  rewrite \leftarrow Hqxr in H.
  injection H. intros Hr Hq.
  split.
  - apply (elim_var_not_in_rem_u = Hq).
  - rewrite Hr in Hqxr.
     symmetry in Hqxr.
     intros. intro.
     apply has_var_in in H1.
     apply Bool.negb_false_iff in H1.
     revert H1.
     apply Bool.eq_true_false_abs.
     apply Bool.negb_true_iff.
     revert m H0.
     apply (part_snd_false \_ \_ \_ \_ \_ Hqxr).
Qed.
```

The second main lemma about variable elimination is below. Given that a term p has been decomposed into the form $x \times q + r$, we can define $p' = (q + 1) \times r$. The lemma div_build_unif states that any unifier of p = B 0 is also a unifier of p' = B 0. Much of this proof relies on the axioms of polynomial arithmetic.

This helper function build_poly is used to construct $p' = (q + 1) \times r$ given the quotient and remainder as inputs.

```
Definition build_poly (q\ r: poly): poly:= mulPP\ (addPP\ [[]]\ q)\ r.
Lemma build_poly_is_poly: \forall\ q\ r, is_poly (build_poly\ q\ r).
Proof.
unfold build_poly. auto.
Qed.
Hint Resolve build_poly_is_poly.
Lemma div_build_unif: \forall\ x\ p\ q\ r\ s, is_poly\ p\ \rightarrow div_by_var\ x\ p\ = (q,\ r)\ \rightarrow unifier\ s\ p\ \rightarrow unifier\ s\ (build_poly\ q\ r).
Proof.
```

```
unfold build_poly, unifier.
  intros x p q r s HPp HD [Hps Hsp0].
  apply (div_eq_{-} - HPp) in HD as Hp.
  assert (\exists q1, q1 = addPP [[]] q) as [q1 \ Hq1]. eauto.
  assert (\exists sp, sp = substP s p) as [sp Hsp]. eauto.
  assert (\exists sq1, sq1 = substP \ s \ q1) as [sq1 \ Hsq1]. eauto.
  rewrite \leftarrow (mulPP_0 (substP s \ q1)).
  rewrite \leftarrow Hsp\theta.
  rewrite Hp, Hq1.
  rewrite ← substP_distr_mulPP; auto.
  f_equal.
  apply (div_is_poly x p q r HPp) in HD.
  destruct HD as [HPq HPr].
  rewrite mulPP_addPP_1; auto.
Qed.
Lemma incl_div : \forall x p q r xs,
  is_poly p \rightarrow
  div_by_var x p = (q, r) \rightarrow
  incl (vars p) (x :: xs) \rightarrow
  incl (vars q) xs \wedge incl (vars r) xs.
Proof.
  intros. assert (Hdiv := H\theta). unfold div_by_var in H\theta.
  destruct partition as [qx \ r\theta] \ eqn: Hpart. apply partition_Permutation in Hpart.
  apply Permutation_incl in Hpart as []. inversion H0. clear H2.
  assert (incl (vars q) (vars p)). unfold incl, vars in *. intros a Hin.
     apply nodup_{ln}. apply nodup_{ln} in Hin. apply ln_{concat_{ln}} in Hin.
     destruct Hin as [m]. rewrite \leftarrow H5 in H2. unfold elim_var in H2.
     apply \ln_{\text{sorted}} in H2. apply \text{nodup\_cancel\_in} in H2. rewrite \text{map\_map} in H2.
     apply \operatorname{\mathsf{in\_map\_iff}} in H2. destruct H2 as [mx]. rewrite \leftarrow H2 in H4.
     rewrite make_mono_ln in H_4. apply ln_remove in H_4. apply ln_remove in H_4. apply ln_remove in H_4.
     \exists mx. split; auto. apply H3. intuition.
  assert (incl (vars r) (vars p)). rewrite H6 in H3. unfold incl, vars in *.
     intros a Hin. apply nodup_ln. apply nodup_ln in Hin.
     apply \mathsf{In}_concat_exists in Hin. \mathsf{destruct}\ Hin as [l\ ]].
     apply \mathsf{In\_concat\_exists.} \ \exists \ \mathit{l.} \ \mathsf{split}; \ \mathsf{auto.} \ \mathsf{apply} \ \mathit{H3}. \ \mathsf{intuition.}
  split.
  - rewrite H5. apply incl_tran with (n:=(x::xs)) in H2; auto.
     apply incl_not_in in H2; auto. apply div_var_not_in_qr in Hdiv as [Hq_{-}].
     apply in_{mono_{in_{vars}}} in Hq. auto.
  - apply incl_tran with (n:=(x::xs)) in H_4; auto.
     apply incl_not_in in H_4; auto. apply div_var_not_in_qr in Hdiv as |H_7|.
     apply in_{mono_{in_{vars}}} in Hr. auto.
```

```
Qed.
Lemma div_vars : \forall x xs p q r,
  is_poly p \rightarrow
  incl (vars p) (x :: xs) \rightarrow
  div_by_var x p = (q, r) \rightarrow
  incl (vars (build_poly q(r)) xs.
Proof.
  intros x xs p q r H Hincl Hdiv. unfold build_poly.
  apply div_var_not_in_gr in Hdiv as Hin. destruct Hin as [Hing\ Hinr].
  apply in_mono_in_vars in Hinq. apply in_mono_in_vars in Hinr.
  apply incl_vars_mulPP. apply (incl_div _ _ _ _ H Hdiv) in Hincl. split.
  - apply incl_vars_addPP; auto. apply div_is_poly in Hdiv as []; auto. split.
    + unfold vars. simpl. unfold incl. intros a [].
    + apply Hincl.
  - apply Hincl.
Qed.
Hint Resolve div_{-}vars.
```

8.3 Building Substitutions

This section handles how a solution is built from subproblem solutions. Given that a term p has been decomposed into the form $x \times q + r$, we can define $p' = (q+1) \times r$. The lemma reprod_build_subst states that if some substitution s is a reproductive unifier of p' = B 0, then we can build a substitution s' which is a reproductive unifier of p = B 0. The way s' is built from s is defined in build_subst. Another replacement is added to s of the form $s \to s$ is defined in build_subst. Another replacement is added to s of the form $s \to s$ is defined in build_subst.

```
Definition build_subst (s: \text{subst}) (x: \text{var}) (q \ r: \text{poly}): \text{subst} := \text{let } q1 := \text{addPP [[]]} \ q \text{ in} let q1s := \text{substP} \ s \ q1 \text{ in} let rs := \text{substP} \ s \ r \text{ in} let xs := (x, \text{addPP (mulPP [[x]]} \ q1s) \ rs) \text{ in} xs :: s.

Lemma build_subst_is_poly: \forall \ s \ x \ q \ r, is_poly_subst s \rightarrow \text{is_poly_subst} (build_subst s \ x \ q \ r).

Proof.

unfold build_subst.

unfold is_poly_subst.

intros.

destruct H0.
- inversion H0. auto.
```

```
- apply (H x\theta). auto.
Qed.
Lemma build_subst_is_unif : \forall x p q r s,
  is_poly p \rightarrow
  div_by_var x p = (q, r) \rightarrow
  reprod_unif s (build_poly q r) \rightarrow
  unifier (build_subst s x q r) p.
Proof.
  unfold reprod_unif, unifier.
  intros x p q r s Hpoly Hdiv [[Hps Hunif] Hreprod].
  assert (is_poly_subst (build_subst s \times q \cdot r)).
    apply build_subst_is_poly; auto.
  split; auto.
  unfold build_poly in Hunif.
  assert (Hngr := Hdiv).
  apply div_{var_not_in_qr} in Hnqr.
  destruct Hnqr as [Hnq Hnr].
  assert (HpolyQR := Hdiv).
  apply div_is_poly in HpolyQR as [HpolyQ\ HpolyR]; auto.
  apply div_eq in Hdiv; auto.
  rewrite Hdiv.
  rewrite substP_distr_addPP; auto.
  rewrite substP_distr_mulPP; auto.
  unfold build_subst.
  rewrite (substP_cons _ _ Hnq).
  rewrite (substP_cons _ _ Hnr).
  assert (Hsx: (substP
         ((x,
          addPP
            (mulPP [[x]]
   (substP s (addPP [[]] q)))
             (substP s r) :: s
         [[x]]) = (addPP
          (mulPP [[x]]
   (substP s (addPP [[]] q)))
          (substP s r)).
    unfold substP. simpl.
    rewrite \leftarrow beg_nat_refl.
    rewrite mulPP_1r; auto. rewrite app_nil_r.
    rewrite no_make_poly; auto.
  rewrite Hsx.
  rewrite substP_distr_addPP; auto.
```

```
rewrite substP_1.
  rewrite mulPP_distr_addPPr; auto.
  rewrite mulPP_1r; auto.
  rewrite mulPP_distr_addPP; auto.
  rewrite mulPP_distr_addPP; auto.
  rewrite mulPP_assoc.
  rewrite mulPP_p_p; auto.
  rewrite addPP_p_p; auto.
  rewrite addPP_0; auto.
  rewrite ← substP_distr_mulPP; auto.
  rewrite ← substP_distr_addPP; auto.
  rewrite \leftarrow (mulPP_1r r) at 2; auto.
  rewrite mulPP_comm; auto.
  rewrite (mulPP_comm r [[]]); auto.
  rewrite ← mulPP_distr_addPP; auto.
  rewrite addPP_comm; auto.
Qed.
Lemma build_subst_is_reprod : \forall x \ p \ q \ r \ s,
  is_poly p \rightarrow
  div_by_var x p = (q, r) \rightarrow
  reprod_unif s (build_poly q r) \rightarrow
  \forall t, unifier t p \rightarrow
             subst\_comp (build_subst s x q r) t t.
Proof.
  unfold reprod_unif.
  intros x p q r s HpolyP Hdiv [[HpsS HunifS] Hsub_comp] t HunifT.
  assert (HunifT' := HunifT).
  destruct HunifT as [HpsT \ HunifT].
  apply (div\_build\_unif\_\_\_\_\_HpolyP\ Hdiv) in HunifT'.
  unfold subst_comp in *.
  intros y.
  destruct (y = ? x) eqn:Hyx.
  unfold build_subst.
    assert (H: (substP((x, addPP(mulPP[[x]](substPs(addPP[[]]q))))
                                       (\operatorname{substP} s \ r)) :: s) [[y]]) =
                 (addPP (mulPP [[x]] (substP s (addPP [[]] q))) (substP s r))).
      unfold substP. simpl.
      rewrite Hyx.
      rewrite mulPP_1r; auto. rewrite app_nil_r.
      rewrite no_make_poly; auto.
    rewrite H.
    rewrite substP_distr_addPP; auto.
```

```
rewrite substP_distr_mulPP; auto.
    pose (div_is_poly _ _ _ _ HpolyP Hdiv); destruct a.
    rewrite substP_distr_addPP; auto.
    rewrite substP_distr_addPP; auto.
    rewrite substP_1.
    assert (Hdiv2 := Hdiv).
    apply div_eq in Hdiv; auto.
    apply div_is_poly in Hdiv2 as [HpolyQ \ HpolyR]; auto.
    rewrite (subst_comp_poly s \ t \ t); auto.
    rewrite (subst_comp_poly s t t); auto.
    rewrite mulPP_comm; auto.
    rewrite mulPP_distr_addPP; auto.
    rewrite mulPP_comm; auto.
    rewrite mulPP_1r; auto.
    rewrite (addPP_comm (substP t [[x]]) _); auto.
    rewrite addPP_assoc; auto.
    rewrite (addPP_comm (substP t [[x]]) _ ); auto.
    rewrite \leftarrow addPP_assoc; auto.
    rewrite ← substP_distr_mulPP; auto.
    rewrite ← substP_distr_addPP; auto.
    rewrite mulPP_comm; auto.
    rewrite \leftarrow Hdiv.
    unfold unifier in HunifT.
    rewrite HunifT.
    rewrite addPP_0; auto.
    apply beq_nat_true in Hyx.
    rewrite Hyx.
    reflexivity.
  unfold build_subst.
    rewrite substP_cons; auto.
    intros.
    inversion H; auto.
    rewrite \leftarrow H0.
    simpl. intro.
    destruct H1; auto.
    apply Nat.eqb_eq in H1.
    rewrite Hyx in H1.
    inversion H1.
Qed.
Lemma reprod_build_subst : \forall x p q r s,
  is_poly p \rightarrow
  div_by_var x p = (q, r) \rightarrow
```

```
reprod_unif s (build_poly q r) \rightarrow reprod_unif (build_subst s x q r) p. Proof.
intros. unfold reprod_unif.
split.
- apply build_subst_is_unif; auto.
- apply build_subst_is_reprod; auto.
Qed.
```

8.4 Recursive Algorithm

Now we define the actual algorithm of successive variable elimination. Built using five helper functions, the definition is not too difficult to construct or understand. The general idea, as mentioned before, is to remove one variable at a time, creating simpler problems. Once the simplest problem has been reached, to which the solution is already known, every solution to each subproblem can be built from the solution to the successive subproblem. Formally, given the polynomials $p = x \times q + r$ and $p' = (q + 1) \times r$, the solution to p = B 0 is built from the solution to p' = B 0. If s solves p' = B 0, then s' = s U $(x \to x \times (s(q) + 1) + s(r))$ solves p = B 0.

The function sve is the final result, but it is sveVars which actually has all of the meat. Due to Coq's rigid type system, every recursive function must be obviously terminating. This means that one of the arguments must decrease with each nested call. It turns out that Coq's type checker is unable to deduce that continually building polynomials from the quotient and remainder of previous ones will eventually result in 0 or 1. So instead we add a fuel argument that explicitly decreases per recursive call. We use the set of variables in the polynomial for this purpose, since each subsequent call has one less variable.

```
Fixpoint sveVars (varlist : list \ var) \ (p : poly) : option \ subst := match \ varlist \ with
| [] \Rightarrow match \ p \ with
| [] \Rightarrow Some []
| \_ \Rightarrow None
end
| x :: xs \Rightarrow
let \ (q, \ r) := div\_by\_var \ x \ p \ in
let \ p' := (build\_poly \ q \ r) \ in
match \ sveVars \ xs \ p' \ with
| \ None \Rightarrow None
| \ Some \ s \Rightarrow Some \ (build\_subst \ s \ x \ q \ r)
end
end.
```

8.5 Correctness

Finally, we must show that this algorithm is correct. As discussed in the beginning, the correctness of a unification algorithm is proven for two cases. If the algorithm produces a solution for a problem, then the solution must be most general. If the algorithm produces no solution, then the problem must not be unifiable. These statements have been formalized in the theorem sve_correct with the help of the predicates mgu and unifiable as defined in the library poly_unif.v. The two cases of the proof are handled seperately by the lemmas sveVars_some and sveVars_none.

```
Lemma sveVars_poly_subst : \forall xs p,
  incl (vars p) xs \rightarrow
  is_poly p \rightarrow
  \forall s, sveVars xs p = Some s \rightarrow
  is_poly_subst s.
Proof.
  induction xs as [|x|xs]; intros.
  - simpl in H1. destruct p; inversion H1. unfold is_poly_subst.
     intros x p \parallel.
  - intros.
     assert (\exists qr, div\_by\_var x p = qr) as [[q r] Hqr]. eauto.
     simpl in H1.
    rewrite Hqr in H1.
     destruct (sveVars xs (build_poly q(r)) eqn:Hs\theta; inversion H1.
     apply IHxs in Hs\theta; eauto.
     apply build_subst_is_poly; auto.
Qed.
Lemma sveVars_some : \forall (xs : list var) (p : poly),
  NoDup xs \rightarrow
  incl (vars p) xs \rightarrow
  is_poly p \rightarrow
  \forall s, sveVars xs p = Some s \rightarrow
               mgu s p.
Proof.
  intros xs p Hdup H H0 s H1.
  apply reprod_is_mgu.
  revert xs p Hdup H H0 s H1.
  induction xs as ||x|xs||.
  - intros. simpl in H1. destruct p; inversion H1.
     apply empty_reprod_unif.
```

```
- intros.
    assert (\exists qr, div\_by\_var x p = qr) as [[q r] Hqr]. eauto.
    simpl in H1.
    rewrite Hqr in H1.
    destruct (sveVars xs (build_poly q(r)) eqn:Hs\theta; inversion H1.
    apply NoDup_cons_iff in Hdup as Hnin destruct Hnin as [Hnin Hdup0].
    apply sveVars_poly_subst in Hs\theta as HpsS\theta; eauto.
     apply IHxs in Hs\theta; eauto.
    apply reprod_build_subst; auto.
Qed.
Lemma sveVars_none : \forall (xs : list var) (p : poly),
  NoDup xs \rightarrow
  incl (vars p) xs \rightarrow
  is_poly p \rightarrow
  sveVars xs p = None \rightarrow
  \neg unifiable p.
Proof.
  induction xs as [|x|xs].
  - intros p \ Hdup \ H \ H0 \ H1. simpl in H1. destruct p; inversion H1. intro.
    unfold unifiable in H2. destruct H2. unfold unifier in H2.
    apply incl_nil in H. apply no_vars_is_ground in H; auto.
    destruct H; inversion H.
    rewrite H4 in H2.
    rewrite H5 in H2.
    rewrite substP_1 in H2.
    inversion H2. inversion H6.
  - intros p Hdup H H0 H1.
    assert (\exists qr, div\_by\_var x p = qr) as [[q r] Hqr]. eauto.
    simpl in H1.
    rewrite Hqr in H1.
    destruct (sveVars xs (build_poly q(r)) eqn:Hs\theta; inversion H1.
    apply NoDup_cons_iff in Hdup as Hnin. destruct Hnin as [Hnin Hdup0].
    apply IHxs in Hs\theta; eauto.
    unfold not, unifiable in *.
    intros.
    apply Hs\theta.
    destruct H2 as [s Hu].
    \exists s.
    apply (div_build_unif x p); auto.
Qed.
Hint Resolve NoDup\_vars\ incl\_reft.
Lemma sveVars_correct : \forall (p : poly),
```

```
is_poly p \rightarrow
  match sveVars (vars p) p with
   | Some s \Rightarrow mgu s p
  None \Rightarrow \neg unifiable p
   end.
Proof.
   intros.
  \verb"destruct" (sveVars" (vars" p) p) eqn: Hsve.
  - apply (sveVars_some (vars p)); auto.
  - apply (sveVars_none (vars p)); auto.
Qed.
Theorem sve_correct : \forall (p : poly),
  is_poly p \rightarrow
  match sve p with
  \mid \mathsf{Some}\; s \, \Rightarrow \, \mathsf{mgu}\; s \; \, p
  | None \Rightarrow \neg unifiable p
  end.
Proof.
   intros.
  apply sveVars_correct.
  auto.
Qed.
```