Liczby p-adyczne

R. S.

 $8~\mathrm{marca}~2016$

Spis treści

1 Lemat Hensela 3

Definicja 0.0.1. Norma na ciele K to funkcja $|\cdot|: K \to \mathbb{R}_+$ spełniająca trzy warunki:

- 1. |x| = 0, wtedy i tylko wtedy gdy x = 0
- 2. $|xy| = |x| |y| dla \ wszystkich \ x, y \in \mathcal{K}$
- 3. $|x+y| \le |x| + |y|$ dla wszystkich $x, y \in \mathcal{K}$

Mówimy, że norma jest niearchimedesowa, jeżeli zachodzi dodatkowo

4.
$$|x+y| \le \max(|x|, |y|)$$
 dla wszystkich $x, y \in \mathcal{K}$,

w przeciwnym razie mamy do czynienia z normą archimedesową.

Definicja 0.0.2. Waluacja p-adyczna (dla ustalonej liczby pierwszej $p \in \mathbb{Z}$) to funkcja $v_p : \mathbb{Z} \setminus \{0\} \to \mathbb{R}$ określona w następujący sposób: $v_p(n)$ to jedyna dodatnia liczba całkowita, dla której zachodzi równość $n = p^{v_p(n)}n'$, przy czym p nie dzieli n'. Przedłuża się ją do całego ciała \mathbb{Q} wzorem

$$v_p\left(\frac{a}{b}\right) = v_p(a) - v_p(b),$$

 $z \ umowq, \ \dot{z}e \ v_p(0) = +\infty.$

Tak określona funkcja jest dobrze określona.

Lemat 0.0.3. Dla wszystkich x oraz $y \in \mathbb{Q}$ mamy

- 1. $v_p(xy) = v_p(x) + v_p(y)$
- 2. $v_p(x+y) \ge \min(v_p(x), v_p(y))$.

Definicja 0.0.4. Dla dowolnej liczby wymiernej $x \neq 0$ określamy jej normę p-adyczną przez wzór $|x|_p = p^{-v_p(x)}$. Dodatkowo $|0|_p = 0$.

Fakt 0.0.5. Tak określona norma jest niearchimedesowa.

Fakt 0.0.6. Norma na ciele jest niearchimedesowa, wtedy i tylko wtedy gdy $|a| \le 1$ dla wszystkich $a \in \mathbb{Z}$.

Fakt 0.0.7. W ciele z niearchimedesową normą " $x, y \in \mathcal{K}$, $|x| \neq |y|$ " pociąga " $|x + y| = \max(|x|, |y|)$ ".

Kule otwarte i domknięte – topologia. Równoważność dwóch norm na ciele. Klasyfikacja norm z twierdzenia Ostrowskiego. Ciała $\mathbb Q$ nie są zupełne – uzupełnianie. "Product formula" Lemat Hensela.

Rozdział 1

Lemat Hensela

Twierdzenie 1.0.1 (lemat Hensela). Niech \mathfrak{K} będzie ciałem zupelnym względem wartości bezwzględnej $|\cdot|$ i niech $f(X) \in \mathfrak{O}[X]$. Załóżmy, że $a_0 \in \mathfrak{O}$ spełnia nierówność $|f(a_0)| < |f'(a_0)|^2$, gdzie f'(X) jest (formalną) pochodną. Wtedy istnieje $a \in \mathfrak{O}$, taki że f(a) = 0.

Dowód. Niech wielomiany $f_i(X)$ (dla $j=1,2,\ldots$) będą zdefiniowane przez tożsamość

$$f(X + Y) = f(X) + \sum_{j>1} f_j(X)Y^j$$

dla niezależnych niewiadomych X, Y. Wtedy $f_1(X) = f'(X)$. Ponieważ $|f(a_0)| < |f'(a_0)|^2$, istnieje $b_0 \in \mathcal{D}$, takie że $f(a_0) + b_0 f_1(a_0) = 0$. Istotnie,

$$|b_0| = \left| \frac{-f(a_0)}{f_1(a_0)} \right| = \frac{|f(a_0)|}{|f_1(a_0)|} < \frac{|f'(a_0)|^2}{|f'(a_0)|} = |f'(a_0)| \le 1.$$

Zgodnie z definicją wielomianów f_j zachodzi relacja

$$|f(a_0 + b_0)| \le \max_{j \ge 2} |f_j(a_0)b_0^j|.$$

Jako że $f_j(X) \in \mathfrak{O}[X]$ i $a_0 \in \mathfrak{O}$, mamy $|f_j(a_0)| \leq 1$. Oznacza to, że

$$|f(a_0 + b_0)| \le |b_0^2| = \frac{|f(a_0)|^2}{|f'(a_0)|^2} < |f(a_0)|,$$

skorzystaliśmy tu ponownie z nierówności $|f(a_0)| < |f'(a_0)|^2$. Podobnie pokazuje się, że

$$|f_1(a_0 + b_0) - f_1(a_0)| \le |b_0| < |f_1(a_0)|,$$

a przez to

$$|f_1(a_0 + b_0)| = |f_1(a_0)|.$$

Kładziemy teraz $a_1 = a_0 + b_0$ i powtarzamy proces. Otrzymujemy w ten sposób ciąg $a_n = a_{n-1} + b_{n-1}$. Dla każdego n prawdziwa jest równość $|f_1(a_n)| = |f_1(a_0)|$, jednocześnie

$$|f(a_{n+1})| \le \frac{|f(a_n)|^2}{|f_1(a_n)|^2} = \frac{|f(a_n)|^2}{|f_1(a_0)|^2}$$

To uzasadnia zbieżność $f(\boldsymbol{a}_n)$ do zera. Co więcej,

$$|a_{n+1} - a_n| = |b_n| = \frac{|f(a_n)|}{|f_1(a_n)|} = \frac{|f(a_n)|}{|f_1(a_0)|} \to 0.$$

Ciąg $\{a_n\}$ jest fundamentalny, z zupełności ciała $\mathfrak K$ wynika istnienie jego granicy oraz f(a)=0. \square

Analiza?

- 1. Zbieżność szeregu \iff wyraz dąży do zera
- 2. Zbieżność jednostajna, zastosowanie do $\exp_2(2x^2-2x)$

Budowa rozszerzeń, $\mathbb{C}_p,\,\Omega_p.$