Distributed System Models & Architecture

Module A2

Distributed & Cloud Computing Sheheryar Malik, Ph.D.

1

Distributed & Cloud Computing

Difficulties for Distributed Systems

- · Widely varying models of use
 - wide variations in workload
 - connectivity problems
 - o latency & bandwidth requirements
- · Wide range of operating environments
 - o heterogeneity: H/W, OS, network
 - widely differing scales
- Distribution related inherent problems
 - non-synchronized clocks
 - conflicting data/state updates
 - many modes of failures (H/W + S/W)
- External threats
 - o attacks on data integrity & secrecy
 - denial of service

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

Distributed System Types

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

3

3

Distributed & Cloud Computing

Architecture Models

- Placement of components
 - o patterns for distribution
 - data & processing
 - o interplay of performance, reliability, security and cost
- Interrelationships between components
 - o functional roles
 - o patterns of communication
- Classification of processes
 - Servers & Clients
 - Peers

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

More Dynamic Systems

- Mobile code
 - o delegation of tasks to a process
 - e.g. download code, execute locally
- Spontaneous networking
 - enable computers & other mobile devices to be added/removed transparently
 - discover available services
 - publish interfaces to services

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

5

5

Distributed & Cloud Computing

Hardware Concept

- Multiprocessor architecture
 - o Tightly coupled systems
 - o Connected through shared memory
- Multicomputer architecture
 - Loosely coupled systems
 - also called Cluster of Workstations
 - Connected through network cables/ wireless
- Bus based or switch based

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

Basic Organization

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

7

7

Distributed & Cloud Computing

Multiprocessor Architecture (Bus based)

• A bus-based multiprocessor

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

Multiprocessor Architecture (Switch based)

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

9

9

Multicomputer Systems

Distributed & Cloud Computing

Hypercube

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

10

Software Concepts

System	Description	Main Goal
DOS	Tightly-coupled operating system for multi- processors and homogeneous multicomputers	Hide and manage hardware resources
NOS	Loosely-coupled operating system for heterogeneous multicomputers (LAN and WAN)	Offer local services to remote clients
Middleware	Additional layer atop of NOS implementing general-purpose services	Provide distribution transparency

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

11

11

Distributed & Cloud Computing

Layers in Distributed System Model

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

Uniprocessor Operating Systems

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

13

13

Distributed & Cloud Computing

Distributed Operating Systems

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

Network Operating System

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

15

15

Positioning Middleware

Distributed & Cloud Computing

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

Middleware

- It is the fundamental building block of a distributed system
 - o in the form of processes or objects
- It provides the distribution transparencies
- Provides abstractions
 - o remote method invocation
 - o group of processes
 - o notification of events
 - o replication of shared data
 - o real-time transmission of multimedia streams

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

17

17

Distributed & Cloud Computing

Middleware and Openness

In an open middleware-based distributed system, the protocols used by each middleware layer should be the same, as well as the interfaces they offer to applications

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

Comparison between Systems

lkom	Distributed OS		Natural OC	Middleware-
Item	Multiproc.	Multicomp.	Network OS	based OS
Degree of transparency	Very High	High	Low	High
Same OS on all nodes	Yes	Yes	No	No
Number of copies of OS	1	N	N	N
Basis for communication	Shared memory	Messages	Files	Model specific
Resource management	Global, central	Global, distributed	Per node	Per node
Scalability	No	Moderately	Yes	High
Openness	Closed	Less-open	Open	Open

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

19

19

Distributed & Cloud Computing

Distributed Service Model

Centralized Architecture

Client/Server

model

Decentralized Architecture

Peer to Peer model

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

Client/Server Model

- There are processes offering services (servers)
- There are processes that use services (clients)
- Clients and servers can be on different machines
- · Clients follow request/reply model w.r.t. to using services

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

21

21

Distributed & Cloud Computing

Client/Server Model

22

Peer-to-peer Model

23

23

Distributed & Cloud Computing

A Service Provided by Multiple Servers

24

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

Web Proxy Server

25

25

Distributed & Cloud Computing

Architectural Styles

- · A style is formulated in terms of
 - o (replaceable) components with well-defined interfaces
 - o the way that components are connected to each other
 - $_{\circ}$ the data exchanged between components
 - o how these components and connectors are jointly configured into a system
- Connector
 - A mechanism that mediates communication, coordination, or cooperation among components
 - Example: facilities for (remote) procedure call, messaging, or streaming

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

26/

Architectural Styles

- Layered architectures
- Object-based architectures
- Resource-centered architectures
- Event-based architectures

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

27

27

Distributed & Cloud Computing

Layered Architecture

Different layered organizations Request/Response

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

Example: Communication Protocols

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

29

29

Distributed & Cloud Computing

Application Layering

- Layer architecture delegates the responsibilities to different layers
- This layering is found in many distributed information systems, using traditional database technology and accompanying applications
- Traditional three-layered view
 - o Application-interface layer
 - contains units for interfacing to users or external applications
 - Processing layer
 - contains the functions of an application, i.e., without specific data
 - Data layer
 - contains the data that a client wants to manipulate through the application components

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

Application Layering

The general organization of an Internet search engine into three different layers

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

31

31

Distributed & Cloud Computing

Multitiered Architectures

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

Multi-tiered Physical Architectures

- Single-tiered
 - o dumb terminal/mainframe configuration
- Two-tiered
 - o client/single server configuration
- Three-tiered
 - o each layer on separate machine

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

33

33

Distributed & Cloud Computing

Multi-tiered Architectures

Alternative client-server organizations (a) - (e)

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

Modern Architectures

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

35

35

Distributed & Cloud Computing

Object-based Architectures

- Components are objects, connected to each other through procedure calls
- Objects may be placed on different machines; calls can thus execute across a network
- Encapsulation
 - Objects are said to encapsulate data and offer methods on that data without revealing the internal implementation

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

Resource-centered Architectures (RESTful)

- View a distributed system as a collection of resources, individually managed by components
- Resources may be added, removed, retrieved, and modified by (remote) applications
 - o Resources are identified through a single naming scheme
 - o All services offer the same interface
 - o Messages sent to or from a service are fully self-described
 - o After executing an operation at a service, that component forgets everything about the caller

Basic operations

Operation	Description
PUT	Create a new resource
GET	Retrieve the state of a resource in some representation
DELETE	Delete a resource
POST	Modify a resource by transferring a new state

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

37

37

Distributed & Cloud Computing

Example: Amazon's Simple Storage Service

- Objects (i.e., files) are placed into buckets (i.e., directories)
 - o Buckets cannot be placed into buckets
- Operations on ObjectName in bucket
- BucketName require the following identifier:

http://BucketName.s3.amazonaws.com/ObjectName

Typical operations

All operations are carried out by sending HTTP requests:

Create a bucket/object: PUT, along with the URI

Listing objects: GET on a bucket nameReading an object: GET on a full URI

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

Resource-centered Architectures

- Many people like RESTful approaches because the interface to a service is so simple
- The catch is that much needs to be done in the parameter space

Amazon S3 SOAP interface

Bucket operations	Object operations		
ListAllMyBuckets	PutObjectInline		
CreateBucket	PutObject		
DeleteBucket	CopyObject		
ListBucket	GetObject		
GetBucketAccessControlPolicy	GetObjectExtended		
SetBucketAccessControlPolicy	DeleteObject		
GetBucketLoggingStatus	GetObjectAccessControlPolicy		
SetBucketLoggingStatus	SetObjectAccessControlPolicy		

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

39

39

Distributed & Cloud Computing

Resource-centered Architectures

- Assume an interface bucket offering an operation create, requiring an input string such as mybucket, for creating a bucket "mybucket."
- SOAP

```
import bucket bucket.create("mybucket")
```

RESTful

PUT "http://mybucket.s3.amazonsws.com/"

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

12/36

Event-based Architectures (Publish-subscribe)

Coordination: Temporal and referential coupling

	Temporally	Temporally	
	coupled	decoupled	
Referentially coupled	Direct	Mailbox	
Referentially	Event-	Shared	
decoupled	based	data space	

Event-based and Shared data space

Sheheryar Malik, Ph.D.

41

Distributed System Models & Architecture

.

41

Using legacy to build middleware

Distributed & Cloud Computing

- Problem
 - The interfaces offered by a legacy component are most likely not suitable for all applications
- Solution
 - A wrapper or adapter offers an interface acceptable to a client application. Its functions are transformed into those available at the component

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

Organizing Wrappers

Two solutions:

1-on-1

through a broker

Complexity with N applications

1-on-1: requires $N \times (N-1) = O(N^2)$ wrappers

broker: requires 2N = O(N) wrappers

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.

45

45

Distributed & Cloud Computing

Alternative Organizations

- Vertical distribution
 - Comes from dividing distributed applications into three logical layers, and running the components from each layer on a different server (machine)
- Horizontal distribution
 - A client or server may be physically split up into logically equivalent parts, but each part is operating on its own share of the complete data set
- · Peer-to-peer architectures
 - Processes are all equal: the functions that need to be carried out are represented by every process ⇒ each process will act as a client and a server at the same time (i.e., acting as a servant)

Distributed System Models & Architecture

Sheheryar Malik, Ph.D.