(19) World Intellectual Property Organization International Bureau

! **##**### 181**04**# H BL### 91#1# 114 ; 3 90 7### BJ## 414 51## 51## 61# 11### 41# 61# 61#

(43) International Publication Date 5 June 2003 (05.06.2003)

PCT

(10) International Publication Number WO 03/046124 A2

(51) International Patent Classification7:

C12N

(21) International Application Number: PCT/US02/33645

(22) International Filing Date:

20 November 2002 (20.11.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: US 21 November 2001 (21.11.2001) 60/331,951 22 March 2002 (22.03.2002) US 60/366,798

(71) Applicant (for all designated States except US): THE TRUSTEES OF THE UNIVERSITY OF PENN-SYLVANIA [US/US]; 3160 Chestnut Street, Suite 200, Philadelphia, PA 19104 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WILSON, James, M. [US/US]; 1350 N. Avignon Drive, Gladwyne, PA 19035 (US). GAO, Guangping [US/US]; 408 Yorkshire Road, Rosemont, PA 19010 (US). ROY, Soumitra [US/US]; 240 Pugh Road, Wayne, PA 19087 (US).

(74) Agents: Kodroff, Cathy, A. et al.; Howson and Howson, Spring House Corporate Center, P.O. Box 457, Spring House, PA 19477 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: SIMIAN ADENOVIRUS NUCLEIC ACID AND AMINO ACID SEQUENCES, VECTORS CONTAINING SAME, AND METHODS OF USE

(57) Abstract: A recombinant vector comprises simian adenovirus sequences and a heterologous gene under the control of regulatory sequences. A cell line which expresses simian adenovirus gene(s) is also disclosed. Methods of using the vectors and cell lines are provided.

BEST AVAILABLE COPY

SIMIAN ADENOVIRUS NUCLEIC ACID AND AMINO ACID SEQUENCES, VECTORS CONTAINING SAME, AND METHODS OF USE

5 BACKGROUND OF THE INVENTION

10

15

20

25 .

30

Adenovirus is a double-stranded DNA virus with a genome size of about 36 kilobases (kb), which has been widely used for gene transfer applications due to its ability to achieve highly efficient gene transfer in a variety of target tissues and large transgene capacity. Conventionally, E1 genes of adenovirus are deleted and replaced with a transgene cassette consisting of the promoter of choice, cDNA sequence of the gene of interest and a poly A signal, resulting in a replication defective recombinant virus.

Adenoviruses have a characteristic morphology with an icosahedral capsid consisting of three major proteins, hexon (II), penton base (III) and a knobbed fibre (IV), along with a number of other minor proteins, VI, VIII, IX, IIIa and IVa2 [W.C. Russell, J. Gen Virol., 81:2573-2604 (Nov 2000)]. The virus genome is a linear, double-stranded DNA with a terminal protein attached covalently to the 5' termini, which have inverted terminal repeats (ITRs). The virus DNA is intimately associated with the highly basic protein VII and a small peptide termed mu. Another protein, V, is packaged with this DNA-protein complex and provides a structural link to the capsid via protein VI. The virus also contains a virus-encoded protease, which is necessary for processing of some of the structural proteins to produce mature infectious virus.

Recombinant adenoviruses have been described for delivery of molecules to host cells. See, US Patent 6,083,716, which describes the genome of two chimpanzee adenoviruses.

What is needed in the art are more effective vectors which avoid the effect of preexisting immunity to selected adenovirus serotypes in the population and/or which are useful for repeat administration and for titer boosting by second vaccination, if required.

Summary of the Invention

The present invention provides the isolated nucleic acid sequences and amino acid sequences of six simian adenoviruses, vectors containing these sequences, and cell lines expressing simian adenovirus genes. Also provided are a number of methods for using the vectors and cells of the invention.

The methods of the invention involve delivering one or more selected heterologous gene(s) to a mammalian patient by administering a vector of the invention. Because the various vector constructs are derived from simian rather than from human adenoviruses, the immune system of the non-simian human or veterinary patient is not primed to respond immediately to the vector as a foreign antigen. Use of the compositions of this invention thus permits a more stable expression of the selected transgene when administered to a non-simian patient. Use of the compositions of this invention for vaccination permits presentation of a selected antigen for the elicitation of protective immune responses. Without wishing to be bound by theory, the ability of the adenoviruses of the invention to transduce human dendritic cells is at least partially responsible for the ability of the recombinant constructs of the invention to induce an immune response. The recombinant simian adenoviruses of this invention may also be used for producing heterologous gene products in vitro. Such gene products are themselves useful in a variety for a variety of purposes such as are described herein.

These and other embodiments and advantages of the invention are described in more detail below.

Brief Description of the Drawings

10

15

20

25

30

Fig. 1 provides an alignment of the amino acid sequences of the L1 and a portion of the L2 loops of the capsid protein hexon of the chimpanzee adenovirus C1 [SEQ ID NO:13], chimpanzee adenovirus C68 (Pan-9) [SEQ ID NO:14], and the novel Pan5 [SEQ ID NO:15], Pan6 [SEQ ID NO: 16] and Pan7 [SEQ ID NO: 17] chimpanzee adenovirus sequences of the invention. The intervening conserved region is part of the pedestal domain conserved between adenovirus serotypes.

Fig. 2 provides an alignment of the amino acid sequences of the fiber knob domains of chimpanzee C68 (Pan-9) [SEQ ID NO:18], Pan-6 [SEQ ID NO:19], Pan-7 [SEQ ID NO:20], and Pan-5 [SEQ ID NO:21] and the human adenoviruses serotypes 2 [SEQ ID NO:22] and 5 [SEQ ID NO:23].

DETAILED DESCRIPTION OF THE INVENTION

The invention provides novel nucleic acid and amino acid sequences from Ad Pan5 [SEQ ID NO:1-4, 15 and 21], Ad Pan6 [SEQ ID NO: 5-8, 16, 19], and Ad serotype

Pan7 [SEQ ID NO: 9-12, 17, 20], which were originally isolated from chimpanzee lymph nodes. In several instances throughout the specification, these adenoviruses are alternatively termed herein C5, C6 and C7, respectively. Also provided are sequences from adenovirus SV1 [SEQ ID NO: 24-28], which was originally isolated from the kidney cells of cynomolgus monkey. The invention also provides sequences of adenoviruses SV-25 [SEQ ID NO:29-33] and SV-39 [SEQ ID NO: 34-37], which were originally isolated from rhesus monkey kidney cells.

5

10

15

20

25

30

The present invention provides novel adenovirus vectors and packaging cell lines to produce those vectors for use in the *in vitro* production of recombinant proteins or fragments or other reagents. The invention further provides compositions for use in delivering a heterologous molecule for therapeutic or vaccine purposes. Such therapeutic or vaccine compositions contain the adenoviral vectors carrying an inserted heterologous molecule. In addition, novel sequences of the invention are useful in providing the essential helper functions required for production of recombinant adeno-associated viral (AAV) vectors. Thus, the invention provides helper constructs, methods and cell lines which use these sequences in such production methods.

The term "substantial homology" or "substantial similarity," when referring to a nucleic acid or fragment thereof, indicates that, when optimally aligned with appropriate nucleotide insertions or deletions with another nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 95 to 99% of the aligned sequences.

The term "substantial homology" or "substantial similarity," when referring to amino acids or fragments thereof, indicates that, when optimally aligned with appropriate amino acid insertions or deletions with another amino acid (or its complementary strand), there is amino acid sequence identity in at least about 95 to 99% of the aligned sequences. Preferably, the homology is over full-length sequence, or a protein thereof, or a fragment thereof which is at least 8 amino acids, or more desirably, at least 15 amino acids in length. Examples of suitable fragments are described herein.

The term "percent sequence identity" or "identical" in the context of nucleic acid sequences refers to the residues in the two sequences that are the same when aligned for maximum correspondence. The length of sequence identity comparison may be over the full-length of the genome (e.g., about 36 kbp), the full-length of an open reading frame of a gene, protein, subunit, or enzyme [see, e.g., the tables providing the adenoviral coding

regions], or a fragment of at least about 500 to 5000 nucleotides, is desired. However, identity among smaller fragments, e.g. of at least about nine nucleotides, usually at least about 20 to 24 nucleotides, at least about 28 to 32 nucleotides, at least about 36 or more nucleotides, may also be desired. Similarly, "percent sequence identity" may be readily determined for amino acid sequences, over the full-length of a protein, or a fragment thereof. Suitably, a fragment is at least about 8 amino acids in length, and may be up to about 700 amino acids. Examples of suitable fragments are described herein.

5

10

15

20

25

30

Identity is readily determined using such algorithms and computer programs as are defined herein at default settings. Preferably, such identity is over the full length of the protein, enzyme, subunit, or over a fragment of at least about 8 amino acids in length. However, identity may be based upon shorter regions, where suited to the use to which the identical gene product is being put.

As described herein, alignments are performed using any of a variety of publicly or commercially available Multiple Sequence Alignment Programs, such as "Clustal W", accessible through Web Servers on the internet. Alternatively, Vector NTI utilities are also used. There are also a number of algorithms known in the art that can be used to measure nucleotide sequence identity, including those contained in the programs described above. As another example, polynucleotide sequences can be compared using Fasta, a program in GCG Version 6.1. Fasta provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences. For instance, percent sequence identity between nucleic acid sequences can be determined using Fasta with its default parameters (a word size of 6 and the NOPAM factor for the scoring matrix) as provided in GCG Version 6.1, herein incorporated by reference. Similarly programs are available for performing amino acid alignments. Generally, these programs are used at default settings, although one of skill in the art can alter these settings as needed. Alternatively, one of skill in the art can utilize another algorithm or computer program that provides at least the level of identity or alignment as that provided by the referenced algorithms and programs.

As used throughout this specification and the claims, the term "comprise" and its variants including, "comprises", "comprising", among other variants, is inclusive of other components, elements, integers, steps and the like. The term "consists of" or "consisting of" are exclusive of other components, elements, integers, steps and the like.

I. The Simian Adenovirus Sequences

5

10

15

20

25

30

The invention provides nucleic acid sequences and amino acid sequences of Pan5, Pan6, Pan7, SV1, SV25 and SV39, which are isolated from the other viral material with which they are associated in nature.

A. Nucleic Acid Sequences

The Pan5 nucleic acid sequences of the invention include nucleotides 1 to 36462 of SEQ ID NO:1. The Pan6 nucleic acid sequences of the invention include nucleotides 1 to 36604 of SEQ ID NO: 5. The Pan7 nucleic acid sequences of the invention include nucleotides 1 to 36535 of SEQ ID NO: 9. The SV1 nucleic acid sequences of the invention include nucleotides 1 to 34264 of SEQ ID NO: 24. The SV25 nucleic acid sequences of the invention include nucleotides 1 to 31044 of SEQ ID NO: 29. The SV39 nucleic acid sequences of the invention include nucleotides 1 to 34115 of SEQ ID NO: 34. See, Sequence Listing, which is incorporated by reference herein.

The nucleic acid sequences of the invention further encompass the strand which is complementary to the sequences of SEQ ID NO: 5, 9, 24, 29 and 34, as well as the RNA and cDNA sequences corresponding to the sequences of these sequences figures and their complementary strands. Further included in this invention are nucleic acid sequences which are greater than 95 to 98%, and more preferably about 99 to 99.9% homologous or identical to the Sequence Listing. Also included in the nucleic acid sequences of the invention are natural variants and engineered modifications of the sequences provided in SEQ ID NO: 5, 9, 24, 29 and 34 and their complementary strands. Such modifications include, for example, labels that are known in the art, methylation, and substitution of one or more of the naturally occurring nucleotides with a degenerate nucleotide.

The invention further encompasses fragments of the sequences of Pan5, Pan6, Pan7, SV1, SV25 and SV39, their complementary strand, cDNA and RNA complementary thereto. Suitable fragments are at least 15 nucleotides in length, and encompass functional fragments, i.e., fragments which are of biological interest. For example, a functional fragment can express a desired adenoviral product or may

be useful in production of recombinant viral vectors. Such fragments include the gene sequences and fragments listed in the tables below.

The following tables provide the transcript regions and open reading frames in the simian adenovirus sequences of the invention. For certain genes, the transcripts and open reading frames (ORFs) are located on the strand complementary to that presented in SEQ ID NO: 5, 9, 24, 29 and 34. See, e.g., E2b, E4 and E2a. The calculated molecular weights of the encoded proteins are also shown. Note that the E1a open reading frame Pan5 [nt 576-1436 of SEQ ID NO:1], Pan6 [nt 576 to 1437 of SEQ ID NO: 5] and Pan7 [nt 576 to 1437 of SEQ ID NO: 9] contain internal splice sites. These splice sites are noted in the following tables.

5

10

Ad Pan-5 [SEQ ID NO:1]							
Regions		Start	End	M.W.			
			(nt)	(Daltons)			
ITR	ITR		120	-			
Ela	Transcript	478					
1	13S	576-664,	1233-	28120			
	1		1436				
	12S	576-1046	, 1233-	24389			
•		1436					
ĺ	98	576-644,	1233-	9962			
			1436				
	Transcript		1516	-			
Elb	Transcript	1552		_			
1	Small T	1599	2171	22317			
ĺ	Large T	1904	3412	55595			
	IX	3492	3920	14427			
	Transcript		3959	-			
E2b	Transcript	10349		•			
[PTP	10349	8451	72930			
	Polymerase	8448	5083	127237			
	IVa2	5604	3980	50466			
	Transcript		3960				
28.1 k	D	5155	5979	28141			
Agnor	rotein	7864	8580	25755			
Ll	Transcript	10849					
	52/55D	10851	12025				
	IIIa	12050	13819	65669			
	Transcript		13832				
	Transcript	13894					
L2	Penton	13898	15490	59292			
	VII	15494	16078	21478			
	V	16123	17166	39568			
	Mu	17189	17422	8524			
	transcript		17442	-			
	Transcript	17488					
L3	VI	17491	18222	26192			
	Hexon	18315	21116	104874			
	Endoprotease	20989	21783	28304			
	transcript		21811	_			

	Ad Pan-5 (cont'd) [SEQ ID NO:1]							
Region	ns	Start	End	M.W.				
		(nt)	(nt)	(Daltons)				
E2a	Transcript	26782		-				
Ì	DBP	23386	21845	57358				
	transcript		21788	-				
LA	Transcript	23406		-				
{	100kD	23412	25805	88223				
1	33 kD homolog	25525	26356	24538				
	VIII	26428	27111	24768				
	transcript		27421	-				
E3	Transcript	26788		-				
1	Orf#1	27112	27432	12098				
	Orf#2	27386	28012	23040				
	Orf#3	27994	28527	19525				
1	Orf#4	28557	29156	22567				
	Orf#5	29169	29783	22267				
ĺ	Orf#6	29798	30673	31458				
1	Orf #7	30681	30956	10477				
	Orf#8	30962	31396	16523				
	Orf #9	31389	31796	15236				
1	transcript		31837					
L5	Transcript	32032		-				
1	Fiber	32035	33372	47670				
<u></u>	transcript		33443	-				
E4	Transcript	36135		-				
}	Orf 7	33710	33462	9191				
	Orf 6	34615	33710	35005				
}	Orf 4	34886	34521	13878				
}	Orf 3	35249	34896	13641				
}	Orf 2	35635	35246	14584				
•	Orf 1	36050	35676	13772				
	Transcript		33437					
ITR		36343	36462	-				

	Ad Pan-6	S [SEQ ID	NO: 5]	•
Regio	Regions		End	M.W.
			(nt)	(Daltons)
	TR		123	
Ela	transcript	478		
	138	576-1143 1437	, 1229-	28291
	128	576-1050 1437	, 1229-	24634
<u> </u> 	9S	576 – 645 1437	5, 1229-	10102
	transcript		1516	-
Elb	transcript	1553		-
[Small T	1600	2172	22315
1	LargeT	1905	3413	55594
	ΙΧ	3498	3926	14427
	transcript ·		3965	- !
E2b	transcript	10341	,	
	PTP	10340	8451	72570
	Polymerase	8445	5089	126907
	IVa2	5610	3986	50452
	transcript		3966	-
Ll	transcript	10838		-
	52/55 kD	10840	12012	. 44205
	Illa	12036	13799	65460
	Transcript		13812	-
28.1 k	d	5161	5985	28012
Agnor	protein	7870	8580	25382
L2	transcript	13874		
	Penton	13878	15467	59314
	VII .	15471	16055	21508
	V	16100	17137	39388
	Mu	17160	17393	8506
	transcript		17415	-
L3	transcript	17466		
	VI	17469	18188	25860
	Нехоп	18284	21112	106132
	Endoprotease	21134	21754	23445
	transcript		21803	-
E2a	transcript	26780		-
	DBP	23375	21837	57299
	transcript		21780	-

Ad Pan-6 (cont'd) [SEQ ID NO:5]					
Region	S	Start (nt)	End (nt)	M.W. (Daltons)	
L4	Transcript	23398		-	
	100kD	23404	25806	88577	
	33 kD homolog	25523	26357	24609	
	VIII	26426	27109	24749	
	transcript		27419	-	
E3	transcript .	26786		-	
1	Orf#1	27110	27430	12098	
1	Orf #2	27384	28007	22880	
ļ	Orf #3	27989	28519	19460	
	Orf#4	28553	29236	25403	
j	Orf #5	29249	29860	22350	
1	Orf#6	29875	30741	31028	
	Orf#7	30749	31024	10469	
}	Orf#8	31030	31464	16540	
1	Orf#9	31457	31864	15264	
	transcript		31907		
L5	transcript	32159			
	Fiber	32162	33493	47364	
<u></u>	transcript		33574	-	
E4	transcript	36276		-	
1	Orf 7	33841	33593	9177	
	Orf 6	34746	33841	35094	
	Orf 4	35017	34652	13937	
}	Orf 3	35380	35027	13627	
	Orf 2	35766	35377	14727	
	Orf 1	36181	35807	13739	
	transcript		33558	-	
ITR		36482	36604	<u> </u>	

	Ad Pa	n-7 [SEQI	D NO:9]	
Region	ns	Start (nt)	End (nt)	M.W. (Daltons)
		1	132	-
ITR				
Ela	transcript	478		-
	138	576 – 1143,	1229-1437	28218
	128	576 – 1050,	1229- 1437	24561
	9S	576 – 645,		10102
		1229 - 1437		
	transcript		1516	-
Elb	transcript	1553		
	Small T	1600	2178	22559
	LargeT	1905	3419	<i>55698</i>
	IVa2	3992	5616	50210
	transcript		3971	
E2b	transcript	10341		
	PTP	10340	8457	72297
	Polymerase	8451	5095	126994
	IX	3504	3932	14441
	transcript		3972	-
28.1k	D	5167	5991	280 28
Agnor	orotein	7876	8586	25424
L1	transcript	10834		
	52/55 kD	10836	12011	44302
	IIIa	12035	13795	65339
	transcript		13808	•
L2	transcript	13870		-
	Penton	13874	15469	59494
	VII	15473	16057	21339
	V	16102	17139	39414
i	Mu	17167	17400	8506
ļ	transcript		17420	•
L3	transcript	17467		-
	VI	17470	18198	26105
	Hexon	18288	21086	104763
	Endoprotease	21106	21732	23620
	transcript		21781	-
E2a	transcript	26764		_
	DBP	23353	21815	57199
	transcript		21755	` -

Ad Pan-7 (cont'd) [SEQ ID NO: 9]						
Region	ns	Start (nt)	End (nt)	M.W. (Daltons)		
L4	transcript	23370	-			
	100kD	23376	25781	88520		
	33 kD	25489	26338	25155		
	homolog					
	VIII	26410	27093	24749		
	transcript		27403			
E3	transcript	26770		-		
}	Orf#1	27094	27414	12056		
1	Orf#2	27368	27988	22667		
	Orf#3	27970	28500	19462		
<u> </u>	Orf#4	28530	29150	22999		
İ	Orf #5	29163	29777	22224		
]	Orf#6	29792	30679	32153		
	Orf#7	30687	30962	10511		
	Orf#8	30968	31399	16388		
Ì	Orf#9	31392	31799	15205		
	transcript		31842			
L5	transcript	32091				
	Fiber	32094	33425	47344		
	transcript		33517	•		
E4	transcript	36208		-		
	Orf 7	33784	33536	9191		
	Orf 6	34689	33784	35063		
	Orf 4	34960	34595	13879		
	Orf 3	35323	34970	13641		
	Orf 2	35709	35320	14644		
1	Orf 1	36123	35749	13746		
	transcript		33501	-		
ITR		36404	36535	-		

	Ad SV-1		Ad SV	7-25	Ad SV	-39
	[SEQ ID NO:24)	[SEQ ID 1	NO:29]	[SEQ ID N	O: 34]
Region	Start	End	Start	End	Start	End
ITR	1	106	1	133	1	150
E1a	352	1120	-	-	404	1409
E1b	1301	2891	359	2273	1518	3877
E2b	9257	2882	9087	2754	· 10143	3868
E2a	24415	20281	24034	20086	25381	21228
E3	24974	27886	24791	25792	25790	29335
E4	33498	30881	30696	28163	33896	31157
ITR	34145	34264	30912	31044	33966	34115

	Ad SV-1	Ad SV-1		Ad SV-25		Ad SV-39	
	[SEQ ID N	IO:24]	[SEQ ID]	[SEQ ID NO:29]		NO: 34]	
Region	Start	End	Start	End	Start	End	
ITR	1	106	1	133	1	150	
L1	9513	12376	9343	12206	10416	13383	
L2	12453	15858	12283	15696	13444	16877	
L3	15910	20270	15748	20080	17783	21192	
L4	21715	25603	21526	25420	22659	26427	
L5	28059	30899	25320	28172	29513	31170	
ITR	34145	34264	30912	31044	33966	34115	

	protein	Ad SV-1, SEQ ID NO: 24				
		Start	End	M.W.		
ITR		1	106	-		
Ela	138	459	953	18039		
	128					
Elb	Small T					
	LargeT	1301	2413	42293		
	IX	2391	2885	16882		
E2b	IVa2	4354	2924	54087		
	Polymerase	6750	4027	102883		
	PTP	9257	7371	72413		
	Agno-protein	6850	7455	20984		
Ll	52/55 kD	9515	10642	42675		
	IIIa	10663	12372	636568		
L2	Penton	12454	13965	56725		
	VII	13968	14531	20397		
	V	14588	15625	39374		
	Mu	15645	15857	7568		
L3	VI .	15911	16753	30418		
	Hexon	16841	19636	104494		
	Endoprotease	19645	20262	23407		
2a	DBP	21700	20312	52107		
L4	100kD	21721	24009	85508		
	VIII	24591	25292	25390		

	protein	Ad SV-1 (cont'd)					
		SEQ ID NO	D: 24				
		Start	End	M.W.			
E3	Orf#1	25292	25609	11950			
	Orf #2	25563	26081	18940			
	Orf#3	26084	26893	30452			
:	Orf#4	26908	27180	10232			
	Orf#5	27177	17512	12640			
	Orf#6	27505	27873	13639			
L5	Fiber #2	28059	29150	39472			
	Fiber #1	29183	30867	61128			
E4	Orf 7	31098	30892	7837			
	Orf 6	31982	31122	33921			
	Orf 4	32277	31915	14338			
	Orf 3	32629	32279	13386			
	Orf 2	33018	32626	14753			
	Orf 1	33423	33043	14301			
ITR		34145	34264				

	protein	Ad SV-25, SEQ ID NO:29			Ad SV-3	Ad SV-39, SEQ ID NO:34		
		Start	End	M.W.	Start	End	M.W.	
ITR		1	133	-	1	150	-	
Ela	13S				492	1355	28585	
	12S				492	1355	25003	
Elb	Small T	478	1030	20274	1518	2075	21652	
	Large T	829	2244	52310	1823	3349	55534	
	ΙΧ	2306	2716	13854	3434	3844	14075	
E2b	IVa2	4208	2755	54675	3912	5141	46164	
	Poly- merase	6581	3858	102839	7753	5033	103988	
	PTP	9087	7207	71326	10143	8335	69274	
	Agno-	6681	7139	16025	-	-	-	
L1	52/55 kD	9345	10472	42703	10418	11608	44232	
	IIIa	10493	12202	63598	11574	13364	66078	
L2	Penton	12284	13801	56949	13448	14959	56292	
	VII	13806	14369	20369	14960	15517	20374	
	V	14426	. 15463	39289	15567	16628	39676	
	Mu	15483	15695	7598	16650	16871	7497	
L3	VI	15749	16591	30347	16925	17695	28043	
1	Hexon	16681	19446	104035	17785	20538	102579	
	Endo- protease	19455	20072	23338	20573	21181	22716	
2a	DBP	21511	20123	52189	22631	21231	53160	
L4	100kD	21532	23829	85970	22659	25355	100362	
	VIII	24408	25109	25347	25410	26108	25229	

	protein	Ad SV-2	25, SEQ II	NO:29	Ad SV-	Ad SV-39, SEQ ID NO:34,			
		(cont'd)			(cont'd)	(cont'd)			
		Start .	End	M.W.	Start	End	M.W.		
E3	Orf#1	25109	25426	11890	26375	27484	42257		
	Orf#2				27580	28357	29785		
	Orf#3				28370	28645	10514		
	Orf#4				28863	29333	18835		
<u> </u> 	Orf #5					1			
	Orf#6								
L5	Fiber #2	25380	26423	37529					
	Fiber #1	26457	28136	60707	29515	31116	56382		
E4	Orf 7				31441	31118	11856		
	Orf 6	29255	28395	33905	32292	31438	33437		
}	Orf 4	29550	29188	14399	32587	32222	13997		
	Orf 3	29902	29552	13284	32954	32607	13353		
	Orf 2	30291	29899	14853	33348	32959	14821		
	Orf 1	30316	30696	14301	33764	33378	14235		
ITR		30912	31044		33966	34115			

The Pan5, Pan6, Pan7, SV1, SV25 and SV39 adenoviral nucleic acid
sequences are useful as therapeutic agents and in construction of a variety of vector
systems and host cells. As used herein, a vector includes any suitable nucleic acid
molecule including, naked DNA, a plasmid, a virus, a cosmid, or an episome. These
sequences and products may be used alone or in combination with other adenoviral
sequences or fragments, or in combination with elements from other adenoviral or nonadenoviral sequences. The adenoviral sequences of the invention are also useful as
antisense delivery vectors, gene therapy vectors, or vaccine vectors. Thus, the invention
further provides nucleic acid molecules, gene delivery vectors, and host cells which
contain the Ad sequences of the invention.

PCT/US02/33645 WO 03/046124

For example, the invention encompasses a nucleic acid molecule containing simian Ad ITR sequences of the invention. In another example, the invention provides a nucleic acid molecule containing simian Ad sequences of the invention encoding a desired Ad gene product. Still other nucleic acid molecule constructed using the sequences of the invention will be readily apparent to one of skill in the art, in view of the information provided herein.

5

10

15

25

30

In one embodiment, the simian Ad gene regions identified herein may be used in a variety of vectors for delivery of a heterologous molecule to a cell. For example, vectors are generated for expression of an adenoviral capsid protein (or fragment thereof) for purposes of generating a viral vector in a packaging host cell. Such vectors may be designed for expression in trans. Alternatively, such vectors are designed to provide cells which stably contain sequences which express desired adenoviral functions, e.g., one or more of E1a, E1b, the terminal repeat sequences, E2a, E2b, E4, E4ORF6 region.

In addition, the adenoviral gene sequences and fragments thereof are useful for providing the helper functions necessary for production of helper-dependent viruses (e.g., adenoviral vectors deleted of essential functions or adeno-associated viruses (AAV)). For such production methods, the simian adenoviral sequences of the invention are utilized in such a method in a manner similar to those described for the human Ad. However, due to the differences in sequences between the simian adenoviral sequences of 20 the invention and those of human Ad, the use of the sequences of the invention essentially eliminate the possibility of homologous recombination with helper functions in a host cell carrying human Ad E1 functions, e.g., 293 cells, which may produce infectious adenoviral contaminants during rAAV production.

Methods of producing rAAV using adenoviral helper functions have been described at length in the literature with human adenoviral serotypes. See, e.g., US Patent 6.258,595 and the references cited therein. See, also, US Patent 5,871,982; WO 99/14354; WO 99/15685; WO 99/47691. These methods may also be used in production of non-human serotype AAV, including non-human primate AAV serotypes. The simian adenoviral gene sequences of the invention which provide the necessary helper functions (e.g., E1a, E1b, E2a and/or E4 ORF6) can be particularly useful in providing the necessary adenoviral function while minimizing or eliminating the possibility of

recombination with any other adenoviruses present in the rAAV-packaging cell which are typically of human origin. Thus, selected genes or open reading frames of the adenoviral sequences of the invention may be utilized in these rAAV production methods.

Alternatively, recombinant adenoviral simian vectors of the invention may be utilized in these methods. Such recombinant adenoviral simian vectors may include, e.g., a hybrid chimp Ad/AAV in which chimp Ad sequences flank a rAAV expression cassette composed of, e.g., AAV 3' and/or 5' ITRs and a transgene under the control of regulatory sequences which control its expression. One of skill in the art will recognize that still other simian adenoviral vectors and/or gene sequences of the invention will be useful for production of rAAV and other viruses dependent upon adenoviral helper.

5

10

15

20

25

30

In still another embodiment, nucleic acid molecules are designed for delivery and expression of selected adenoviral gene products in a host cell to achieve a desired physiologic effect. For example, a nucleic acid molecule containing sequences encoding an adenovirus E1a protein of the invention may be delivered to a subject for use as a cancer therapeutic. Optionally, such a molecule is formulated in a lipid-based carrier and preferentially targets cancer cells. Such a formulation may be combined with other cancer therapeutics (e.g., cisplatin, taxol, or the like). Still other uses for the adenoviral sequences provided herein will be readily apparent to one of skill in the art.

In addition, one of skill in the art will readily understand that the Ad sequences of the invention can be readily adapted for use for a variety of viral and non-viral vector systems for in vitro, ex vivo or in vivo delivery of therapeutic and immunogenic molecules. For example, the Pan5, Pan6, Pan7, SV1, SV25 and/or SV39 simian Ad genomes of the invention can be utilized in a variety of rAd and non-rAd vector systems. Such vectors systems may include, e.g., plasmids, lentiviruses, retroviruses, poxviruses, vaccinia viruses, and adeno-associated viral systems, among others. Selection of these vector systems is not a limitation of the present invention.

The invention further provides molecules useful for production of the simian and simian-derived proteins of the invention. Such molecules which carry polynucleotides including the simian Ad DNA sequences of the invention can be in the form of naked DNA, a plasmid, a virus or any other genetic element.

B. Simian Adenoviral Proteins of the Invention

5

10

15

20

25

30

The invention further provides gene products of the above adenoviruses, such as proteins, enzymes, and fragments thereof, which are encoded by the adenoviral nucleic acids of the invention. The invention further encompasses Pan5, Pan6 and Pan7, SV1, SV25 and SV39 proteins, enzymes, and fragments thereof, having the amino acid sequences encoded by these nucleic acid sequences which are generated by other methods. Such proteins include those encoded by the open reading frames identified in the tables above, in Figs. 1 and 2, and fragments thereof.

Thus, in one aspect, the invention provides unique simian adenoviral proteins which are substantially pure, i.e., are free of other viral and proteinaceous proteins. Preferably, these proteins are at least 10% homogeneous, more preferably 60% homogeneous, and most preferably 95% homogeneous.

In one embodiment, the invention provides unique simian-derived capsid proteins. As used herein, a simian-derived capsid protein includes any adenoviral capsid protein that contains a Pan5, Pan6, Pan7, SV1, SV25 or SV39 capsid protein or a fragment thereof, as defined above, including, without limitation, chimeric capsid proteins, fusion proteins, artificial capsid proteins, synthetic capsid proteins, and recombinantly capsid proteins, without limitation to means of generating these proteins.

Suitably, these simian-derived capsid proteins contain one or more Pan5, Pan6, Pan7, SV1, SV25 or SV39 regions or fragments thereof (e.g., a hexon, penton, fiber or fragment thereof) in combination with capsid regions or fragments thereof of different adenoviral serotypes, or modified simian capsid proteins or fragments, as described herein. A "modification of a capsid protein associated with altered tropism" as used herein includes an altered capsid protein, i.e, a penton, hexon or fiber protein region, or fragment thereof, such as the knob domain of the fiber region, or a polynucleotide encoding same, such that specificity is altered. The simian-derived capsid may be constructed with one or more of the simian Ad of the invention or another Ad serotypes which may be of human or non-human origin. Such Ad may be obtained from a variety of sources including the ATCC, commercial and academic sources, or the sequences of the Ad may be obtained from GenBank or other suitable sources.

The amino acid sequences of the simian adenoviruses penton proteins of the invention are provided herein. The AdPan5 penton protein is provided in SEQ ID

NO:2. The AdPan7 penton is provided in SEQ ID NO:6. The AdPan6 penton is provided in SEQ ID NO:10. The SV1 penton is provided in SEQ ID NO:25. The SV25 penton protein is provided in SEQ ID NO:30. The SV39 penton is provided in SEQ ID NO:35. Suitably, any of these penton proteins, or unique fragments thereof, may be utilized for a variety of purposes. Examples of suitable fragments include the penton having N-terminal and/or C-terminal truncations of about 50, 100, 150, or 200 amino acids, based upon the amino acid numbering provided above and in SEQ ID NO:2; SEQ ID NO:6; SEQ ID NO:25; SEQ ID NO:30, or SEQ ID NO:35. Other suitable fragments include shorter internal, C-terminal, or N-terminal fragments. Further, the penton protein may be modified for a variety of purposes known to those of skill in the art.

5

10

15

20

25

30

The invention further provides the amino acid sequences of the hexon protein of Pan5 [SEQ ID NO:3], Pan6 [SEQ ID NO:7], Pan 7 [SEQ ID NO:11], SV1 [SEO ID NO:26], SV25 [SEO ID NO:31], and/or SV39 [SEO ID NO:36]. Suitably, this hexon protein, or unique fragments thereof, may be utilized for a variety of purposes. Examples of suitable fragments include the hexon having N-terminal and/or C-terminal truncations of about 50, 100, 150, 200, 300, 400, or 500 amino acids, based upon the amino acid numbering provided above and in SEQ ID NO: 3, 7, 11, 26, 31 and 36. Other suitable fragments include shorter internal, C-terminal, or N-terminal fragments. For example, one suitable fragment the loop region (domain) of the hexon protein, designated DE1 and FG1, or a hypervariable region thereof. Such fragments include the regions spanning amino acid residues about 125 to 443; about 138 to 441, or smaller fragments, such as those spanning about residue 138 to residue 163; about 170 to about 176; about 195 to about 203; about 233 to about 246; about 253 to about 264; about 287 to about 297; and about 404 to about 430 of the simian hexon proteins, with reference to SEQ ID NO: 3, 7, 11, 26, 31 or 36. Other suitable fragments may be readily identified by one of skill in the art. Further, the hexon protein may be modified for a variety of purposes known to those of skill in the art. Because the hexon protein is the determinant for serotype of an adenovirus, such artificial hexon proteins would result in adenoviruses having artificial serotypes. Other artificial capsid proteins can also be constructed using the chimp Ad penton sequences and/or fiber sequences of the invention and/or fragments thereof.

In one example, it may be desirable to generate an adenovirus having an altered hexon protein utilizing the sequences of a hexon protein of the invention. One suitable method for altering hexon proteins is described in US Patent 5,922,315, which is incorporated by reference. In this method, at least one loop region of the adenovirus hexon is changed with at least one loop region of another adenovirus serotype. Thus, at least one loop region of such an altered adenovirus hexon protein is a simian Ad hexon loop region of the invention (e.g. Pan7). In one embodiment, a loop region of the Pan7 hexon protein is replaced by a loop region from another adenovirus serotype. In another embodiment, the loop region of the Pan7 hexon is used to replace a loop region from another adenovirus serotype. Suitable adenovirus serotypes may be readily selected from among human and non-human serotypes, as described herein. Pan7 is selected for purposes of illustration only; the other simian Ad hexon proteins of the invention may be similarly altered, or used to alter another Ad hexon. The selection of a suitable serotype is not a limitation of the present invention. Still other uses for the hexon protein sequences of the invention will be readily apparent to those of skill in the art.

The invention further encompasses the fiber proteins of the simian adenoviruses of the invention. The fiber protein of AdPan 5 has the amino acid sequence of SEQ ID NO:4. The fiber protein AdPan6 has the amino acid sequence of SEQ ID NO: 8. The fiber protein of AdPan7 has the amino acid sequence of SEQ ID NO: 12. SV-1 has two fiber proteins; fiber 2 has the amino acid sequence of SEQ ID NO:27 and fiber 1 has the amino acid sequence of SEQ ID NO:28. SV-25 also has two fiber proteins; fiber 2 has the amino acid sequence of SEQ ID NO:32 and fiber 1 has the amino acid sequence of SEQ ID NO:33. The fiber protein of SV-39 has the amino acid sequence of SEQ ID NO:37.

Suitably, this fiber protein, or unique fragments thereof, may be utilized for a variety of purposes. One suitable fragment is the fiber knob, which spans about amino acids 247 to 425 of SEQ ID NO: 4, 8, 12, 28, 32, 33 and 37. See Fig. 2. Examples of other suitable fragments include the fiber having N-terminal and/or C-terminal truncations of about 50, 100, 150, or 200 amino acids, based upon the amino acid numbering provided above and in SEQ ID NO: 4, 8, 12, 28, 32, 33 and 37. Still other suitable fragments include internal fragments. Further, the fiber protein may be modified using a variety of techniques known to those of skill in the art.

The invention further encompasses unique fragments of the proteins of the invention which are at least 8 amino acids in length. However, fragments of other desired lengths can be readily utilized. In addition, the invention encompasses such modifications as may be introduced to enhance yield and/or expression of a Pan5, Pan6, Pan7, SV1, SV25 or SV39 gene product, e.g., construction of a fusion molecule in which all or a fragment of the Pan5, Pan6, Pan7, SV1, SV25 or SV39 gene product is fused (either directly or via a linker) with a fusion partner to enhance. Other suitable modifications include, without limitation, truncation of a coding region (e.g., a protein or enzyme) to eliminate a pre- or pro-protein ordinarily cleaved and to provide the mature protein or enzyme and/or mutation of a coding region to provide a secretable gene product. Still other modifications will be readily apparent to one of skill in the art. The invention further encompasses proteins having at least about 95% to 99% identity to the Pan5, Pan6, Pan7, SV1, SV25 or SV39 proteins provided herein.

5

10

15

20

25

30

As described herein, vectors of the invention containing the adenoviral capsid proteins of the invention are particularly well suited for use in applications in which the neutralizing antibodies diminish the effectiveness of other Ad serotype based vectors, as well as other viral vectors. The rAd vectors of the invention are particularly advantageous in readministration for repeat gene therapy or for boosting immune response (vaccine titers).

Under certain circumstances, it may be desirable to use one or more of the Pan5, Pan6, Pan7, SV1, SV25 and/or SV39 gene products (e.g., a capsid protein or a fragment thereof) to generate an antibody. The term "an antibody," as used herein, refers to an immunoglobulin molecule which is able to specifically bind to an epitope. Thus, the antibodies of the invention bind, preferably specifically and without cross-reactivity, to a Pan5, Pan6, Pan7, SV1, SV25 or SV39 epitope. The antibodies in the present invention exist in a variety of forms including, for example, high affinity polyclonal antibodies, monoclonal antibodies, synthetic antibodies, chimeric antibodies, recombinant antibodies and humanized antibodies. Such antibodies originate from immunoglobulin classes IgG, IgM, IgA, IgD and IgE.

Such antibodies may be generated using any of a number of methods know in the art. Suitable antibodies may be generated by well-known conventional techniques, e.g. Kohler and Milstein and the many known modifications thereof.

Similarly desirable high titer antibodies are generated by applying known recombinant techniques to the monoclonal or polyclonal antibodies developed to these antigens [see, e.g., PCT Patent Application No. PCT/GB85/00392; British Patent Application Publication No. GB2188638A; Amit et al., 1986 Science, 233:747-753; Queen et al., 1989 Proc. Nat'l. Acad. Sci. USA, 86:10029-10033; PCT Patent Application No. 5 PCT/WO9007861; and Riechmann et al., Nature, 332:323-327 (1988); Huse et al, 1988a Science, 246:1275-1281]. Alternatively, antibodies can be produced by manipulating the complementarity determining regions of animal or human antibodies to the antigen of this invention. See, e.g., E. Mark and Padlin, "Humanization of Monoclonal Antibodies", Chapter 4, The Handbook of Experimental Pharmacology, Vol. 113, The Pharmacology 10 of Monoclonal Antibodies, Springer-Verlag (June, 1994); Harlow et al., 1999, Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, NY; Harlow et al., 1989, Antibodies: A Laboratory Manual, Cold Spring Harbor, New York; Houston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883; and Bird et al., 1988, Science 242:423-426. Further provided by the present invention are anti-idiotype antibodies 15 (Ab2) and anti-anti-idiotype antibodies (Ab3). See, e.g., M. Wettendorff et al., "Modulation of anti-tumor immunity by anti-idiotypic antibodies." In Idiotypic Network and Diseases, ed. by J. Cerny and J. Hiernaux, 1990 J. Am. Soc. Microbiol., Washington DC: pp. 203-229]. These anti-idiotype and anti-anti-idiotype antibodies are produced using techniques well known to those of skill in the art. These antibodies may be used for 20 a variety of purposes, including diagnostic and clinical methods and kits.

Under certain circumstances, it may be desirable to introduce a detectable label or a tag onto a Pan5, Pan6, Pan7, SV1, SV25 or SV39 gene product, antibody or other construct of the invention. As used herein, a detectable label is a molecule which is capable, alone or upon interaction with another molecule, of providing a detectable signal. Most desirably, the label is detectable visually, e.g. by fluorescence, for ready use in immunohistochemical analyses or immunofluorescent microscopy. For example, suitable labels include fluorescein isothiocyanate (FITC), phycoerythrin (PE), allophycocyanin (APC), coriphosphine-O (CPO) or tandem dyes, PE-cyanin-5 (PC5), and PE-Texas Red (ECD). All of these fluorescent dyes are commercially available, and their uses known to the art. Other useful labels include a colloidal gold label. Still other useful labels include radioactive compounds or elements. Additionally, labels include a variety of enzyme

25

30

systems that operate to reveal a colorimetric signal in an assay, e.g., glucose oxidase (which uses glucose as a substrate) releases peroxide as a product which in the presence of peroxidase and a hydrogen donor such as tetramethyl benzidine (TMB) produces an oxidized TMB that is seen as a blue color. Other examples include horseradish peroxidase (HRP) or alkaline phosphatase (AP), and hexokinase in conjunction with glucose-6-phosphate dehydrogenase which reacts with ATP, glucose, and NAD+ to yield, among other products, NADH that is detected as increased absorbance at 340 nm wavelength.

5

10

15

20

25

30

Other label systems that are utilized in the methods of this invention are detectable by other means, e.g., colored latex microparticles [Bangs Laboratories, Indiana] in which a dye is embedded are used in place of enzymes to form conjugates with the target sequences provide a visual signal indicative of the presence of the resulting complex in applicable assays.

Methods for coupling or associating the label with a desired molecule are similarly conventional and known to those of skill in the art. Known methods of label attachment are described [see, for example, Handbook of Fluorescent probes and Research Chemicals, 6th Ed., R. P. M. Haugland, Molecular Probes, Inc., Eugene, OR, 1996; Pierce Catalog and Handbook, Life Science and Analytical Research Products, Pierce Chemical Company, Rockford, IL, 1994/1995]. Thus, selection of the label and coupling methods do not limit this invention.

The sequences, proteins, and fragments of the invention may be produced by any suitable means, including recombinant production, chemical synthesis, or other synthetic means. Suitable production techniques are well known to those of skill in the art. See, e.g., Sambrook et al, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press (Cold Spring Harbor, NY). Alternatively, peptides can also be synthesized by the well known solid phase peptide synthesis methods (Merrifield, *J. Am. Chem. Soc.*, 85:2149 (1962); Stewart and Young, Solid Phase Peptide Synthesis (Freeman, San Francisco, 1969) pp. 27-62). These and other suitable production methods are within the knowledge of those of skill in the art and are not a limitation of the present invention.

In addition, one of skill in the art will readily understand that the Ad sequences of the invention can be readily adapted for use for a variety of viral and non-viral vector systems for *in vitro*, ex vivo or in vivo delivery of therapeutic and

immunogenic molecules. For example, in one embodiment, the simian Ad capsid proteins and other simian adenovirus proteins described herein are used for non-viral, protein-based delivery of genes, proteins, and other desirable diagnostic, therapeutic and immunogenic molecules. In one such embodiment, a protein of the invention is linked, directly or indirectly, to a molecule for targeting to cells with a receptor for adenoviruses. Preferably, a capsid protein such as a hexon, penton, fiber or a fragment thereof having a ligand for a cell surface receptor is selected for such targeting. Suitable molecules for delivery are selected from among the therapeutic molecules described herein and their gene products. A variety of linkers including, lipids, polyLys, and the like may be utilized as linkers. For example, the simian penton protein may be readily utilized for such a purpose by production of a fusion protein using the simian penton sequences in a manner analogous to that described in Medina-Kauwe LK, et al, Gene Ther. 2001 May; 8(10):795-803 and Medina-Kauwe LK, et al, Gene Ther. 2001 Dec; 8(23): 1753-1761. Alternatively, the amino acid sequences of simian Ad protein IX may be utilized for targeting vectors to a cell surface receptor, as described in US Patent Appln 20010047081. Suitable ligands include a CD40 antigen, an RGD-containing or polylysine-containing sequence, and the like. Still other simian Ad proteins, including, e.g., the hexon protein and/or the fiber protein, may be used for used for these and similar purposes.

Still other adenoviral proteins of the invention may be used as alone, or in combination with other adenoviral protein, for a variety of purposes which will be readily apparent to one of skill in the art. In addition, still other uses for the adenoviral proteins of the invention will be readily apparent to one of skill in the art.

25 II. Recombinant Adenoviral Vectors

5

10

15

20

30

The compositions of this invention include vectors that deliver a heterologous molecule to cells, either for therapeutic or vaccine purposes. As used herein, a vector may include any genetic element including, without limitation, naked DNA, a phage, transposon, cosmid, episome, plasmid, or a virus. Such vectors contain simian adenovirus DNA of Pan5, Pan6, Pan7, SV1, SV25 and/or SV39 and a minigene. By "minigene" is meant the combination of a selected heterologous gene and the other

5

10

15

20

25

30

regulatory elements necessary to drive translation, transcription and/or expression of the gene product in a host cell.

Typically, an adenoviral vector of the invention is designed such that the minigene is located in a nucleic acid molecule which contains other adenoviral sequences in the region native to a selected adenoviral gene. The minigene may be inserted into an existing gene region to disrupt the function of that region, if desired. Alternatively, the minigene may be inserted into the site of a partially or fully deleted adenoviral gene. For example, the minigene may be located in the site of such as the site of a functional E1 deletion or functional E3 deletion, among others that may be selected. The term "functionally deleted" or "functional deletion" means that a sufficient amount of the gene region is removed or otherwise damaged, e.g., by mutation or modification, so that the gene region is no longer capable of producing functional products of gene expression. If desired, the entire gene region may be removed. Other suitable sites for gene disruption or deletion are discussed elsewhere in the application.

For example, for a production vector useful for generation of a recombinant virus, the vector may contain the minigene and either the 5' end of the adenoviral genome or the 3' end of the adenoviral genome, or both the 5' and 3' ends of the adenoviral genome. The 5' end of the adenoviral genome contains the 5' cis-elements necessary for packaging and replication; i.e., the 5' inverted terminal repeat (ITR) sequences (which functions as origins of replication) and the native 5' packaging enhancer domains (that contain sequences necessary for packaging linear Ad genomes and enhancer elements for the E1 promoter). The 3' end of the adenoviral genome includes the 3' cis-elements (including the ITRs) necessary for packaging and encapsidation. Suitably, a recombinant adenovirus contains both 5' and 3' adenoviral cis-elements and the minigene is located between the 5' and 3' adenoviral sequences. Any adenoviral vector of the invention may also contain additional adenoviral sequences.

Suitably, these adenoviral vectors of the invention contain one or more adenoviral elements derived from an adenoviral genome of the invention. In one embodiment, the vectors contain adenoviral ITRs from Pan5, Pan6, Pan7, SV1, SV25 or SV39 and additional adenoviral sequences from the same adenoviral serotype. In another embodiment, the vectors contain adenoviral sequences that are derived from a different

adenoviral serotype than that which provides the ITRs. As defined herein, a pseudotyped adenovirus refers to an adenovirus in which the capsid protein of the adenovirus is from a different serotype than the serotype which provides the ITRs. The selection of the serotype of the ITRs and the serotype of any other adenoviral sequences present in vector is not a limitation of the present invention. A variety of adenovirus strains are available from the American Type Culture Collection, Manassas, Virginia, or available by request from a variety of commercial and institutional sources. Further, the sequences of many such strains are available from a variety of databases including, e.g., PubMed and GenBank. Homologous adenovirus vectors prepared from other simian or from human adenoviruses are described in the published literature [see, for example, US Patent No. 5,240,846]. The DNA sequences of a number of adenovirus types are available from GenBank, including type Ad5 [GenBank Accession No. M73260]. The adenovirus sequences may be obtained from any known adenovirus serotype, such as serotypes 2, 3, 4, 7, 12 and 40, and further including any of the presently identified human types. Similarly adenoviruses known to infect non-human animals (e.g., simians) may also be employed in the vector constructs of this invention. See, e.g., US Patent No. 6,083,716.

The viral sequences, helper viruses, if needed, and recombinant viral particles, and other vector components and sequences employed in the construction of the vectors described herein are obtained as described above. The DNA sequences of the Pán5, Pan6, Pan7, SV1, SV25 and/or SV39 simian adenovirus sequences of the invention are employed to construct vectors and cell lines useful in the preparation of such vectors.

Modifications of the nucleic acid sequences forming the vectors of this invention, including sequence deletions, insertions, and other mutations may be generated using standard molecular biological techniques and are within the scope of this invention.

A. The "Minigene"

10

15

20

25

30

The methods employed for the selection of the transgene, the cloning and construction of the "minigene" and its insertion into the viral vector are within the skill in the art given the teachings provided herein.

1. The transgene

The transgene is a nucleic acid sequence, heterologous to the vector sequences flanking the transgene, which encodes a polypeptide, protein, or other product, of interest. The nucleic acid coding sequence is operatively linked to regulatory

components in a manner which permits transgene transcription, translation, and/or expression in a host cell.

5

10

15

20

25

30

The composition of the transgene sequence will depend upon the use to which the resulting vector will be put. For example, one type of transgene sequence includes a reporter sequence, which upon expression produces a detectable signal. Such reporter sequences include, without limitation, DNA sequences encoding βlactamase, \(\beta\)-galactosidase (LacZ), alkaline phosphatase, thymidine kinase, green fluorescent protein (GFP), chloramphenicol acetyltransferase (CAT), luciferase, membrane bound proteins including, for example, CD2, CD4, CD8, the influenza hemagglutinin protein, and others well known in the art, to which high affinity antibodies directed thereto exist or can be produced by conventional means, and fusion proteins comprising a membrane bound protein appropriately fused to an antigen tag domain from, among others, hemagglutinin or Myc. These coding sequences, when associated with regulatory elements which drive their expression, provide signals detectable by conventional means, including enzymatic, radiographic, colorimetric, fluorescence or other spectrographic assays, fluorescent activating cell sorting assays and immunological assays, including enzyme linked immunosorbent assay (ELISA), radioimmunoassay (RIA) and immunohistochemistry. For example, where the marker sequence is the LacZ gene, the presence of the vector carrying the signal is detected by assays for betagalactosidase activity. Where the transgene is GFP or luciferase, the vector carrying the signal may be measured visually by color or light production in a luminometer.

However, desirably, the transgene is a non-marker sequence encoding a product which is useful in biology and medicine, such as proteins, peptides, RNA, enzymes, or catalytic RNAs. Desirable RNA molecules include tRNA, dsRNA, ribosomal RNA, catalytic RNAs, and antisense RNAs. One example of a useful RNA sequence is a sequence which extinguishes expression of a targeted nucleic acid sequence in the treated animal.

The transgene may be used for treatment, e.g., of genetic deficiencies, as a cancer therapeutic or vaccine, for induction of an immune response, and/or for prophylactic vaccine purposes. As used herein, induction of an immune response refers to the ability of a molecule (e.g., a gene product) to induce a T cell and/or a humoral immune response to the molecule. The invention further includes using multiple

transgenes, e.g., to correct or ameliorate a condition caused by a multi-subunit protein. In certain situations, a different transgene may be used to encode each subunit of a protein. or to encode different peptides or proteins. This is desirable when the size of the DNA encoding the protein subunit is large, e.g., for an immunoglobulin, the platelet-derived growth factor, or a dystrophin protein. In order for the cell to produce the multi-subunit protein, a cell is infected with the recombinant virus containing each of the different subunits. Alternatively, different subunits of a protein may be encoded by the same transgene. In this case, a single transgene includes the DNA encoding each of the subunits, with the DNA for each subunit separated by an internal ribozyme entry site (IRES). This is desirable when the size of the DNA encoding each of the subunits is small, e.g., the total size of the DNA encoding the subunits and the IRES is less than five kilobases. As an alternative to an IRES, the DNA may be separated by sequences encoding a 2A peptide, which self-cleaves in a post-translational event. See, e.g., M.L. Donnelly, et al, J. Gen. Virol., 78(Pt 1):13-21 (Jan 1997); Furler, S., et al, Gene Ther., 8(11):864-873 (June 2001); Klump H., et al., Gene Ther., 8(10):811-817 (May 2001). This 2A peptide is significantly smaller than an IRES, making it well suited for use when space is a limiting factor. However, the selected transgene may encode any biologically active product or other product, e.g., a product desirable for study.

Suitable transgenes may be readily selected by one of skill in the art. The selection of the transgene is not considered to be a limitation of this invention.

2. Regulatory Elements

5

10

15

20

25

30

In addition to the major elements identified above for the minigene, the vector also includes conventional control elements necessary which are operably linked to the transgene in a manner that permits its transcription, translation and/or expression in a cell transfected with the plasmid vector or infected with the virus produced by the invention. As used herein, "operably linked" sequences include both expression control sequences that are contiguous with the gene of interest and expression control sequences that act in *trans* or at a distance to control the gene of interest.

Expression control sequences include appropriate transcription initiation, termination, promoter and enhancer sequences; efficient RNA processing signals such as splicing and polyadenylation (polyA) signals; sequences that stabilize cytoplasmic mRNA; sequences that enhance translation efficiency (i.e., Kozak consensus

sequence); sequences that enhance protein stability; and when desired, sequences that enhance secretion of the encoded product. A great number of expression control sequences, including promoters which are native, constitutive, inducible and/or tissue-specific, are known in the art and may be utilized.

5

10

15

20

25

30

Examples of constitutive promoters include, without limitation, the retroviral Rous sarcoma virus (RSV) LTR promoter (optionally with the RSV enhancer), the cytomegalovirus (CMV) promoter (optionally with the CMV enhancer) [see, e.g., Boshart *et al*, Cell, 41:521-530 (1985)], the SV40 promoter, the dihydrofolate reductase promoter, the β-actin promoter, the phosphoglycerol kinase (PGK) promoter, and the EF1α promoter [Invitrogen].

Inducible promoters allow regulation of gene expression and can be regulated by exogenously supplied compounds, environmental factors such as temperature, or the presence of a specific physiological state, e.g., acute phase, a particular differentiation state of the cell, or in replicating cells only. Inducible promoters and inducible systems are available from a variety of commercial sources, including, without limitation, Invitrogen, Clontech and Ariad. Many other systems have been described and can be readily selected by one of skill in the art. For example, inducible promoters include the zinc-inducible sheep metallothionine (MT) promoter and the dexamethasone (Dex)-inducible mouse mammary tumor virus (MMTV) promoter. Other inducible systems include the T7 polymerase promoter system [WO 98/10088]; the ecdysone insect promoter [No et al, Proc. Natl. Acad. Sci. USA, 93:3346-3351 (1996)], the tetracycline-repressible system [Gossen et al, Proc. Natl. Acad. Sci. USA, 89:5547-5551 (1992)], the tetracycline-inducible system [Gossen et al, Science, 268:1766-1769 (1995), see also Harvey et al, Curr. Opin. Chem. Biol., 2:512-518 (1998)]. Other systems include the FK506 dimer, VP16 or p65 using castradiol, diphenol murislerone, the RU486-inducible system [Wang et al, Nat. Biotech., 15:239-243 (1997) and Wang et al, Gene Ther., 4:432-441 (1997)] and the rapamycin-inducible system [Magari et al, J. Clin. Invest., 100:2865-2872 (1997)]. The effectiveness of some inducible promoters increases over time. In such cases one can enhance the effectiveness of such systems by inserting multiple repressors in tandem, e.g., TetR linked to a TetR by an IRES. Alternatively, one can wait at least 3 days before screening for the desired function. One can enhance expression of desired proteins by known means to enhance the effectiveness

of this system. For example, using the Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element (WPRE).

In another embodiment, the native promoter for the transgene will be used. The native promoter may be preferred when it is desired that expression of the transgene should mimic the native expression. The native promoter may be used when expression of the transgene must be regulated temporally or developmentally, or in a tissue-specific manner, or in response to specific transcriptional stimuli. In a further embodiment, other native expression control elements, such as enhancer elements, polyadenylation sites or Kozak consensus sequences may also be used to mimic the native expression.

5

10

15

20

25

30

Another embodiment of the transgene includes a transgene operably linked to a tissue-specific promoter. For instance, if expression in skeletal muscle is desired, a promoter active in muscle should be used. These include the promoters from genes encoding skeletal β-actin, myosin light chain 2A, dystrophin, muscle creatine kinase, as well as synthetic muscle promoters with activities higher than naturally occurring promoters (see Li et al., Nat. Biotech., 17:241-245 (1999)). Examples of promoters that are tissue-specific are known for liver (albumin, Miyatake et al., J. Virol., 71:5124-32 (1997); hepatitis B virus core promoter, Sandig et al., Gene Ther., 3:1002-9 (1996); alpha-fetoprotein (AFP), Arbuthnot et al., Hum. Gene Ther., 7:1503-14 (1996)), bone osteocalcin (Stein et al., Mol. Biol. Rep., 24:185-96 (1997)); bone sialoprotein (Chen et al., J. Bone Miner. Res., 11:654-64 (1996)), lymphocytes (CD2, Hansal et al., J. Immunol., 161:1063-8 (1998); immunoglobulin heavy chain; T cell receptor chain), neuronal such as neuron-specific enolase (NSE) promoter (Andersen et al., Cell. Mol. Neurobiol., 13:503-15 (1993)), neurofilament light-chain gene (Piccioli et al., Proc. Natl. Acad. Sci. USA, 88:5611-5 (1991)), and the neuron-specific vgf gene (Piccioli et al., Neuron; 15:373-84 (1995)), among others.

Optionally, vectors carrying transgenes encoding therapeutically useful or immunogenic products may also include selectable markers or reporter genes may include sequences encoding geneticin, hygromicin or purimycin resistance, among others. Such selectable reporters or marker genes (preferably located outside the viral genome to be packaged into a viral particle) can be used to signal the presence of the plasmids in bacterial cells, such as ampicillin resistance. Other components of the vector may include

an origin of replication. Selection of these and other promoters and vector elements are conventional and many such sequences are available [see, e.g., Sambrook et al, and references cited therein].

These vectors are generated using the techniques and sequences provided herein, in conjunction with techniques known to those of skill in the art.

Such techniques include conventional cloning techniques of cDNA such as those described in texts [Sambrook et al, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, NY], use of overlapping oligonucleotide sequences of the adenovirus genomes, polymerase chain reaction, and any suitable method which provides the desired nucleotide sequence.

III. Production of the Recombinant Viral Particle

5

10

15

20

25

30

In one embodiment, the simian adenoviral plasmids (or other vectors) are used to produce recombinant adenoviral particles. In one embodiment, the recombinant adenoviruses are functionally deleted in the E1a or E1b genes, and optionally bearing other mutations, e.g., temperature-sensitive mutations or deletions in other genes. In other embodiments, it is desirable to retain an intact E1a and/or E1b region in the recombinant adenoviruses. Such an intact E1 region may be located in its native location in the adenoviral genome or placed in the site of a deletion in the native adenoviral genome (e.g., in the E3 region).

In the construction of useful simian adenovirus vectors for delivery of a gene to the human (or other mammalian) cell, a range of adenovirus nucleic acid sequences can be employed in the vectors. For example, all or a portion of the adenovirus delayed early gene E3 may be eliminated from the simian adenovirus sequence which forms a part of the recombinant virus. The function of simian E3 is believed to be irrelevant to the function and production of the recombinant virus particle. Simian adenovirus vectors may also be constructed having a deletion of at least the ORF6 region of the E4 gene, and more desirably because of the redundancy in the function of this region, the entire E4 region. Still another vector of this invention contains a deletion in the delayed early gene E2a. Deletions may also be made in any of the late genes L1 through L5 of the simian adenovirus genome. Similarly, deletions in the intermediate genes IX and IVa₂ may be useful for some purposes. Other deletions may be made in the other structural or non-

structural adenovirus genes. The above discussed deletions may be used individually, i.e., an adenovirus sequence for use in the present invention may contain deletions in only a single region. Alternatively, deletions of entire genes or portions thereof effective to destroy their biological activity may be used in any combination. For example, in one exemplary vector, the adenovirus sequence may have deletions of the E1 genes and the E4 gene, or of the E1, E2a and E3 genes, or of the E1 and E3 genes, or of E1, E2a and E4 genes, with or without deletion of E3, and so on. As discussed above, such deletions may be used in combination with other mutations, such as temperature-sensitive mutations, to achieve a desired result.

An adenoviral vector lacking any essential adenoviral sequences (e.g., E1a, E1b, E2a, E2b, E4 ORF6, L1, L2, L3, L4 and L5) may be cultured in the presence of the missing adenoviral gene products which are required for viral infectivity and propagation of an adenoviral particle. These helper functions may be provided by culturing the adenoviral vector in the presence of one or more helper constructs (e.g., a plasmid or virus) or a packaging host cell. See, for example, the techniques described for preparation of a "minimal" human Ad vector in International Patent Application WO96/13597. published May 9, 1996, and incorporated herein by reference.

1. Helper Viruses

5

10

15

20

25

30

Thus, depending upon the simian adenovirus gene content of the viral vectors employed to carry the minigene, a helper adenovirus or non-replicating virus fragment may be necessary to provide sufficient simian adenovirus gene sequences necessary to produce an infective recombinant viral particle containing the minigene.

Useful helper viruses contain selected adenovirus gene sequences not present in the adenovirus vector construct and/or not expressed by the packaging cell line in which the vector is transfected. In one embodiment, the helper virus is replication-defective and contains a variety of adenovirus genes in addition to the sequences described above.

Such a helper virus is desirably used in combination with an E1-expressing cell line.

Helper viruses may also be formed into poly-cation conjugates as described in Wu et al, J. Biol. Chem., 264:16985-16987 (1989); K. J. Fisher and J. M. Wilson, Biochem. J., 299:49 (April 1, 1994). Helper virus may optionally contain a second reporter minigene. A number of such reporter genes are known to the art. The presence of a reporter gene on the helper virus which is different from the transgene on

the adenovirus vector allows both the Ad vector and the helper virus to be independently monitored. This second reporter is used to enable separation between the resulting recombinant virus and the helper virus upon purification.

2. Complementation Cell Lines

5

10

15

20

25

30

To generate recombinant simian adenoviruses (Ad) deleted in any of the genes described above, the function of the deleted gene region, if essential to the replication and infectivity of the virus, must be supplied to the recombinant virus by a helper virus or cell line, i.e., a complementation or packaging cell line. In many circumstances, a cell line expressing the human E1 can be used to transcomplement the chimp Ad vector. This is particularly advantageous because, due to the diversity between the chimp Ad sequences of the invention and the human AdE1 sequences found in currently available packaging cells, the use of the current human E1-containing cells prevents the generation of replication-competent adenoviruses during the replication and production process. However, in certain circumstances, it will be desirable to utilize a cell line which expresses the E1 gene products can be utilized for production of an E1-deleted simian adenovirus. Such cell lines have been described. See, e.g., US Patent 6,083,716.

If desired, one may utilize the sequences provided herein to generate a packaging cell or cell line that expresses, at a minimum, the adenovirus El gene from Pan5, Pan6, Pan7, SV1, SV25 or SV39 under the transcriptional control of a promoter for expression in a selected parent cell line. Inducible or constitutive promoters may be employed for this purpose. Examples of such promoters are described in detail elsewhere in this specification. A parent cell is selected for the generation of a novel cell line expressing any desired AdPan5, Pan6, Pan7, SV1, SV25 or SV39 gene. Without limitation, such a parent cell line may be HeLa [ATCC Accession No. CCL 2], A549 [ATCC Accession No. CCL 185], HEK 293, KB [CCL 17], Detroit [e.g., Detroit 510, CCL 72] and WI-38 [CCL 75] cells, among others. These cell lines are all available from the American Type Culture Collection, 10801 University Boulevard, Manassas, Virginia 20110-2209. Other suitable parent cell lines may be obtained from other sources.

Such E1-expressing cell lines are useful in the generation of recombinant simian adenovirus E1 deleted vectors. Additionally, or alternatively, the invention provides cell lines that express one or more simian adenoviral gene products,

e.g., E1a, E1b, E2a, and/or E4 ORF6, can be constructed using essentially the same procedures for use in the generation of recombinant simian viral vectors. Such cell lines can be utilized to transcomplement adenovirus vectors deleted in the essential genes that encode those products, or to provide helper functions necessary for packaging of a helper-dependent virus (e.g., adeno-associated virus). The preparation of a host cell according to this invention involves techniques such as assembly of selected DNA sequences. This assembly may be accomplished utilizing conventional techniques. Such techniques include cDNA and genomic cloning, which are well known and are described in Sambrook et al., cited above, use of overlapping oligonucleotide sequences of the adenovirus genomes, combined with polymerase chain reaction, synthetic methods, and any other suitable methods which provide the desired nucleotide sequence.

5

10

15

20

In still another alternative, the essential adenoviral gene products are provided in *trans* by the adenoviral vector and/or helper virus. In such an instance, a suitable host cell can be selected from any biological organism, including prokaryotic (e.g., bacterial) cells, and eukaryotic cells, including, insect cells, yeast cells and mammalian cells. Particularly desirable host cells are selected from among any mammalian species, including, without limitation, cells such as A549, WEHI, 3T3, 10T1/2, HEK 293 cells or PERC6 (both of which express functional adenoviral E1) [Fallaux, FJ *et al.*, (1998), *Hum Gene Ther*, 9:1909-1917], Saos, C2C12, L cells, HT1080, HepG2 and primary fibroblast, hepatocyte and myoblast cells derived from mammals including human, monkey, mouse, rat, rabbit, and hamster. The selection of the mammalian species providing the cells is not a limitation of this invention; nor is the type of mammalian cell, i.e., fibroblast, hepatocyte, tumor cell, etc.

3. Assembly of Viral Particle and Transfection of a Cell Line

Generally, when delivering the vector comprising the minigene by transfection, the vector is delivered in an amount from about 5 μg to about 100 μg DNA, and preferably about 10 to about 50 μg DNA to about 1 x 10⁴ cells to about 1 x 10¹³ cells, and preferably about 10⁵ cells. However, the relative amounts of vector DNA to host cells may be adjusted, taking into consideration such factors as the selected vector, the delivery method and the host cells selected.

The vector may be any vector known in the art or disclosed above, including naked DNA, a plasmid, phage, transposon, cosmids, episomes, viruses, etc.

Introduction into the host cell of the vector may be achieved by any means known in the art or as disclosed above, including transfection, and infection. One or more of the adenoviral genes may be stably integrated into the genome of the host cell, stably expressed as episomes, or expressed transiently. The gene products may all be expressed transiently, on an episome or stably integrated, or some of the gene products may be expressed stably while others are expressed transiently. Furthermore, the promoters for each of the adenoviral genes may be selected independently from a constitutive promoter, an inducible promoter or a native adenoviral promoter. The promoters may be regulated by a specific physiological state of the organism or cell (i.e., by the differentiation state or in replicating or quiescent cells) or by exogenously-added factors, for example.

5

10

15

20

25

30

Introduction of the molecules (as plasmids or viruses) into the host cell may also be accomplished using techniques known to the skilled artisan and as discussed throughout the specification. In preferred embodiment, standard transfection techniques are used, e.g., CaPO₄ transfection or electroporation.

Assembly of the selected DNA sequences of the adenovirus (as well as the transgene and other vector elements into various intermediate plasmids, and the use of the plasmids and vectors to produce a recombinant viral particle are all achieved using conventional techniques. Such techniques include conventional cloning techniques of cDNA such as those described in texts [Sambrook et al, cited above], use of overlapping oligonucleotide sequences of the adenovirus genomes, polymerase chain reaction, and any suitable method which provides the desired nucleotide sequence. Standard transfection and co-transfection techniques are employed, e.g., CaPO₄ precipitation techniques. Other conventional methods employed include homologous recombination of the viral genomes, plaquing of viruses in agar overlay, methods of measuring signal generation, and the like.

For example, following the construction and assembly of the desired minigene-containing viral vector, the vector is transfected *in vitro* in the presence of a helper virus into the packaging cell line. Homologous recombination occurs between the helper and the vector sequences, which permits the adenovirus-transgene sequences in the vector to be replicated and packaged into virion capsids, resulting in the recombinant viral vector particles. The current method for producing such virus particles is transfection-based. However, the invention is not limited to such methods.

The resulting recombinant simian adenoviruses are useful in transferring a selected transgene to a selected cell. In *in vivo* experiments with the recombinant virus grown in the packaging cell lines, the E1-deleted recombinant simian adenoviral vectors of the invention demonstrate utility in transferring a transgene to a non-simian, preferably a human, cell.

IV. Use of the Recombinant Adenovirus Vectors

5

10

15

20

25

30

The recombinant simian adenovirus vectors of the invention are useful for gene transfer to a human or non-simian veterinary patient in vitro, ex vivo, and in vivo.

The recombinant adenovirus vectors described herein can be used as expression vectors for the production of the products encoded by the heterologous genes *in vitro*. For example, the recombinant adenoviruses containing a gene inserted into the location of an E1 deletion may be transfected into an E1-expressing cell line as described above. Alternatively, replication-competent adenoviruses may be used in another selected cell line. The transfected cells are then cultured in the conventional manner, allowing the recombinant adenovirus to express the gene product from the promoter. The gene product may then be recovered from the culture medium by known conventional methods of protein isolation and recovery from culture.

A Pan5, Pan6, Pan7, SV1, SV25 or SV39-derived recombinant simian adenoviral vector of the invention provides an efficient gene transfer vehicle that can deliver a selected transgene to a selected host cell in vivo or ex vivo even where the organism has neutralizing antibodies to one or more AAV serotypes. In one embodiment, the rAAV and the cells are mixed ex vivo; the infected cells are cultured using conventional methodologies; and the transduced cells are re-infused into the patient. These compositions are particularly well suited to gene delivery for therapeutic purposes and for immunization, including inducing protective immunity.

More commonly, the Pan 5, Pan6, Pan7, SV1, SV25, or SV39 recombinant adenoviral vectors of the invention will be utilized for delivery of therapeutic or immunogenic molecules, as described below. It will be readily understood for both applications, that the recombinant adenoviral vectors of the invention are particularly well suited for use in regimens involving repeat delivery of recombinant adenoviral vectors. Such regimens typically involve delivery of a series of viral vectors in which the viral

capsids are alternated. The viral capsids may be changed for each subsequent administration, or after a pre-selected number of administrations of a particular serotype capsid (e.g., one, two, three, four or more). Thus, a regimen may involve delivery of a rAd with a first simian capsid, delivery with a rAd with a second simian capsid, and delivery with a third simian capsid. A variety of other regimens which use the Ad capsids of the invention alone, in combination with one another, or in combination with other Ad serotypes will be apparent to those of skill in the art. Optionally, such a regimen may involve administration of rAd with capsids of other non-human primate adenoviruses, human adenoviruses, or artificial serotypes such as are described herein. Each phase of the regimen may involve administration of a series of injections (or other delivery routes) with a single Ad serotype capsid followed by a series with another Ad serotype capsid. Alternatively, the recombinant Ad vectors of the invention may be utilized in regimens involving other non-adenoviral-mediated delivery systems, including other viral systems, non-viral delivery systems, protein, peptides, and other biologically active molecules.

5

10

15

20

25

30

The following sections will focus on exemplary molecules which may be delivered via the adenoviral vectors of the invention.

A. Ad-Mediated Delivery of Therapeutic Molecules

In one embodiment, the above-described recombinant vectors are administered to humans according to published methods for gene therapy. A simian viral vector bearing the selected transgene may be administered to a patient, preferably suspended in a biologically compatible solution or pharmaceutically acceptable delivery vehicle. A suitable vehicle includes sterile saline. Other aqueous and non-aqueous isotonic sterile injection solutions and aqueous and non-aqueous sterile suspensions known to be pharmaceutically acceptable carriers and well known to those of skill in the art may be employed for this purpose.

The simian adenoviral vectors are administered in sufficient amounts to transduce the target cells and to provide sufficient levels of gene transfer and expression to provide a therapeutic benefit without undue adverse or with medically acceptable physiological effects, which can be determined by those skilled in the medical arts. Conventional and pharmaceutically acceptable routes of administration include, but are not limited to, direct delivery to the retina and other intraocular delivery methods, direct delivery to the liver, inhalation, intranasal, intravenous, intramuscular, intratracheal.

subcutaneous, intradermal, rectal, oral and other parenteral routes of administration.

Routes of administration may be combined, if desired, or adjusted depending upon the transgene or the condition. The route of administration primarily will depend on the nature of the condition being treated.

5

10

15

20

25

30

Dosages of the viral vector will depend primarily on factors such as the condition being treated, the age, weight and health of the patient, and may thus vary among patients. For example, a therapeutically effective adult human or veterinary dosage of the viral vector is generally in the range of from about 100 µL to about 100 mL of a carrier containing concentrations of from about 1 x 10⁶ to about 1 x 10¹⁵ particles, about 1×10^{11} to 1×10^{13} particles, or about 1×10^9 to 1×10^{12} particles virus. Dosages will range depending upon the size of the animal and the route of administration. For example, a suitable human or veterinary dosage (for about an 80 kg animal) for intramuscular injection is in the range of about 1 x 109 to about 5 x 1012 particles per mL, for a single site. Optionally, multiple sites of administration may be delivered. In another example, a suitable human or veterinary dosage may be in the range of about 1 x 1011 to about 1 x 10¹⁵ particles for an oral formulation. One of skill in the art may adjust these doses, depending the route of administration, and the therapeutic or vaccinal application for which the recombinant vector is employed. The levels of expression of the transgene. or for an immunogen, the level of circulating antibody, can be monitored to determine the frequency of dosage administration. Yet other methods for determining the timing of frequency of administration will be readily apparent to one of skill in the art.

An optional method step involves the co-administration to the patient, either concurrently with, or before or after administration of the viral vector, of a suitable amount of a short acting immune modulator. The selected immune modulator is defined herein as an agent capable of inhibiting the formation of neutralizing antibodies directed against the recombinant vector of this invention or capable of inhibiting cytolytic T lymphocyte (CTL) elimination of the vector. The immune modulator may interfere with the interactions between the T helper subsets (T_{H1} or T_{H2}) and B cells to inhibit neutralizing antibody formation. Alternatively, the immune modulator may inhibit the interaction between T_{H1} cells and CTLs to reduce the occurrence of CTL elimination of the vector. A variety of useful immune modulators and dosages for use of same are disclosed, for example, in Yang et al., J. Virol., 70(9) (Sept., 1996); International Patent

Application No. WO96/12406, published May 2, 1996; and International Patent Application No.PCT/US96/03035, all incorporated herein by reference.

1. Therapeutic Transgenes

5

10

15

20

25

30

Useful therapeutic products encoded by the transgene include hormones and growth and differentiation factors including, without limitation, insulin, glucagon, growth hormone (GH), parathyroid hormone (PTH), growth hormone releasing factor (GRF), follicle stimulating hormone (FSH), luteinizing hormone (LH), human chorionic gonadotropin (hCG), vascular endothelial growth factor (VEGF), angiopoietins, angiostatin, granulocyte colony stimulating factor (GCSF), erythropoietin (EPO), connective tissue growth factor (CTGF), basic fibroblast growth factor (bFGF), acidic fibroblast growth factor (aFGF), epidermal growth factor (EGF), transforming growth factor (TGF), platelet-derived growth factor (PDGF), insulin growth factors I and II (IGF-I and IGF-II), any one of the transforming growth factor superfamily, including TGF, activins, inhibins, or any of the bone morphogenic proteins (BMP) BMPs 1-15, any one of the heregluin/neuregulin/ARIA/neu differentiation factor (NDF) family of growth factors, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophins NT-3 and NT-4/5, ciliary neurotrophic factor (CNTF), glial cell line derived neurotrophic factor (GDNF), neurturin, agrin, any one of the family of semaphorins/collapsins, netrin-1 and netrin-2, hepatocyte growth factor (HGF), ephrins, noggin, sonic hedgehog and tyrosine hydroxylase.

Other useful transgene products include proteins that regulate the immune system including, without limitation, cytokines and lymphokines such as thrombopoietin (TPO), interleukins (IL) IL-1 through IL-25 (including, e.g., IL-2, IL-4, IL-12 and IL-18), monocyte chemoattractant protein, leukemia inhibitory factor, granulocyte-macrophage colony stimulating factor, Fas ligand, tumor necrosis factors and, interferons, and, stem cell factor, flk-2/flt3 ligand. Gene products produced by the immune system are also useful in the invention. These include, without limitation, immunoglobulins IgG, IgM, IgA, IgD and IgE, chimeric immunoglobulins, humanized antibodies, single chain antibodies, T cell receptors, chimeric T cell receptors, single chain T cell receptors, class I and class II MHC molecules, as well as engineered immunoglobulins and MHC molecules. Useful gene products also include complement

regulatory proteins such as complement regulatory proteins, membrane cofactor protein (MCP), decay accelerating factor (DAF), CR1, CF2 and CD59.

Still other useful gene products include any one of the receptors for the hormones, growth factors, cytokines, lymphokines, regulatory proteins and 5 immune system proteins. The invention encompasses receptors for cholesterol regulation, including the low density lipoprotein (LDL) receptor, high density lipoprotein (HDL) receptor, the very low density lipoprotein (VLDL) receptor, and the scavenger receptor. The invention also encompasses gene products such as members of the steroid hormone receptor superfamily including glucocorticoid receptors and estrogen receptors, Vitamin D receptors and other nuclear receptors. In addition, useful gene products include 10 transcription factors such as jun, fos, max, mad, serum response factor (SRF), AP-1, AP2, myb, MyoD and myogenin, ETS-box containing proteins, TFE3, E2F, ATF1, ATF2, ATF3, ATF4, ZF5, NFAT, CREB, HNF-4, C/EBP, SP1, CCAAT-box binding proteins, interferon regulation factor (IRF-1), Wilms tumor protein, ETS-binding protein, STAT, GATA-box binding proteins, e.g., GATA-3, and the forkhead family of winged helix 15 proteins.

Other useful gene products include, carbamoyl synthetase I, ornithine transcarbamylase, arginosuccinate synthetase, arginosuccinate lyase, arginase, fumarylacetacetate hydrolase, phenylalanine hydroxylase, alpha-1 antitrypsin, glucose-6-phosphatase, porphobilinogen deaminase, factor VIII, factor IX, cystathione betasynthase, branched chain ketoacid decarboxylase, albumin, isovaleryl-coA dehydrogenase, propionyl CoA carboxylase, methyl malonyl CoA mutase, glutaryl CoA dehydrogenase, insulin, beta-glucosidase, pyruvate carboxylate, hepatic phosphorylase, phosphorylase kinase, glycine decarboxylase, H-protein, T-protein, a cystic fibrosis transmembrane regulator (CFTR) sequence, and a dystrophin cDNA sequence.

20

25

30

Other useful gene products include non-naturally occurring polypeptides, such as chimeric or hybrid polypeptides having a non-naturally occurring amino acid sequence containing insertions, deletions or amino acid substitutions. For example, single-chain engineered immunoglobulins could be useful in certain immunocompromised patients. Other types of non-naturally occurring gene sequences include antisense molecules and catalytic nucleic acids, such as ribozymes, which could be used to reduce overexpression of a target.

Reduction and/or modulation of expression of a gene are particularly desirable for treatment of hyperproliferative conditions characterized by hyperproliferating cells, as are cancers and psoriasis. Target polypeptides include those polypeptides which are produced exclusively or at higher levels in hyperproliferative cells as compared to normal cells. Target antigens include polypeptides encoded by oncogenes such as myb, myc, fyn, and the translocation gene bcr/abl, ras, src, P53, neu, trk and EGRF. In addition to oncogene products as target antigens, target polypeptides for anti-cancer treatments and protective regimens include variable regions of antibodies made by B cell lymphomas and variable regions of T cell receptors of T cell lymphomas which, in some embodiments, are also used as target antigens for autoimmune disease. Other tumor-associated polypeptides can be used as target polypeptides such as polypeptides which are found at higher levels in tumor cells including the polypeptide recognized by monoclonal antibody 17-1A and folate binding polypeptides.

Other suitable therapeutic polypeptides and proteins include those which may be useful for treating individuals suffering from autoimmune diseases and disorders by conferring a broad based protective immune response against targets that are associated with autoimmunity including cell receptors and cells which produce self-directed antibodies. T cell mediated autoimmune diseases include Rheumatoid arthritis (RA), multiple sclerosis (MS), Sjögren's syndrome, sarcoidosis, insulin dependent diabetes mellitus (IDDM), autoimmune thyroiditis, reactive arthritis, ankylosing spondylitis, scleroderma, polymyositis, dermatomyositis, psoriasis, vasculitis, Wegener's granulomatosis, Crohn's disease and ulcerative colitis. Each of these diseases is characterized by T cell receptors (TCRs) that bind to endogenous antigens and initiate the inflammatory cascade associated with autoimmune diseases.

The simian adenoviral vectors of the invention are particularly well suited for therapeutic regimens in which multiple adenoviral-mediated deliveries of transgenes is desired, e.g., in regimens involving redelivery of the same transgene or in combination regimens involving delivery of other transgenes. Such regimens may involve administration of a Pan5, Pan6, Pan7, SV1, SV25 or SV39 simian adenoviral vector, followed by re-administration with a vector from the same serotype adenovirus.

Particularly desirable regimens involve administration of a Pan5, Pan6, Pan7, SV1, SV25 or SV39 simian adenoviral vector of the invention, in which the serotype of the viral

5

10

15

20

25

30

vector delivered in the first administration differs from the serotype of the viral vector utilized in one or more of the subsequent administrations. For example, a therapeutic regimen involves administration of a Pan5, Pan6, Pan7, SV1, SV25 or SV39 vector and repeat administration with one or more adenoviral vectors of the same or different serotypes. In another example, a therapeutic regimen involves administration of an adenoviral vector followed by repeat administration with a Pan5, Pan6, Pan7, SV1, SV25 or SV39 vector of the invention which differs from the serotype of the first delivered adenoviral vector, and optionally further administration with another vector which is the same or, preferably, differs from the serotype of the vector in the prior administration steps. These regimens are not limited to delivery of adenoviral vectors constructed using the Pan5, Pan6, Pan7, SV1, SV25 or SV39 simian serotypes of the invention. Rather, these regimens can readily utilize vectors other adenoviral serotypes, including, without limitation, other simian adenoviral serotypes (e.g., Pan9 or C68, C1, etc), other nonhuman primate adenoviral serotypes, or human adenoviral serotypes, in combination with one or more of the Pan5, Pan6, Pan7, SV1, SV25 or SV39 vectors of the invention. Examples of such simian, other non-human primate and human adenoviral serotypes are discussed elsewhere in this document. Further, these therapeutic regimens may involve either simultaneous or sequential delivery of Pan 5, Pan6, Pan7, SV1, SV25, and/or SV39 adenoviral vectors of the invention in combination with non-adenoviral vectors, non-viral vectors, and/or a variety of other therapeutically useful compounds or molecules. The present invention is not limited to these therapeutic regimens, a variety of which will be readily apparent to one of skill in the art.

B. Ad-Mediated Delivery of Immunogenic Transgenes

The recombinant simian adenoviruses may also be employed as immunogenic compositions. As used herein, an immunogenic composition is a composition to which a humoral (e.g., antibody) or cellular (e.g., a cytotoxic T cell) response is mounted to a transgene product delivered by the immunogenic composition following delivery to a mammal, and preferably a primate. The present invention provides a recombinant simian Ad that can contain in any of its adenovirus sequence deletions a gene encoding a desired immunogen. The simian adenovirus is likely to be better suited for use as a live recombinant virus vaccine in different animal species compared to an adenovirus of human origin, but is not limited to such a use. The

recombinant adenoviruses can be used as prophylactic or therapeutic vaccines against any pathogen for which the antigen(s) crucial for induction of an immune response and able to limit the spread of the pathogen has been identified and for which the cDNA is available.

Such vaccinal (or other immunogenic) compositions are formulated in a suitable delivery vehicle, as described above. Generally, doses for the immunogenic compositions are in the range defined above for therapeutic compositions. The levels of immunity of the selected gene can be monitored to determine the need, if any, for boosters. Following an assessment of antibody titers in the serum, optional booster immunizations may be desired.

5

10

15

20

25

30

Optionally, a vaccinal composition of the invention may be formulated to contain other components, including, e.g. adjuvants, stabilizers, pH adjusters, preservatives and the like. Such components are well known to those of skill in the vaccine art. Examples of suitable adjuvants include, without limitation, liposomes, alum, monophosphoryl lipid A, and any biologically active factor, such as cytokine, an interleukin, a chemokine, a ligands, and optimally combinations thereof. Certain of these biologically active factors can be expressed *in vivo*, e.g., via a plasmid or viral vector. For example, such an adjuvant can be administered with a priming DNA vaccine encoding an antigen to enhance the antigen-specific immune response compared with the immune response generated upon priming with a DNA vaccine encoding the antigen only.

The recombinant adenoviruses are administered in a "an immunogenic amount", that is, an amount of recombinant adenovirus that is effective in a route of administration to transfect the desired cells and provide sufficient levels of expression of the selected gene to induce an immune response. Where protective immunity is provided, the recombinant adenoviruses are considered to be vaccine compositions useful in preventing infection and/or recurrent disease.

Alternatively, or in addition, the vectors of the invention may contain a transgene encoding a peptide, polypeptide or protein which induces an immune response to a selected immunogen. The recombinant adenoviruses of this invention are expected to be highly efficacious at inducing cytolytic T cells and antibodies to the inserted heterologous antigenic protein expressed by the vector.

5

10

15

20

25

30

For example, immunogens may be selected from a variety of viral families. Example of desirable viral families against which an immune response would be desirable include, the picornavirus family, which includes the genera rhinoviruses, which are responsible for about 50% of cases of the common cold; the genera enteroviruses, which include polioviruses, coxsackieviruses, echoviruses, and human enteroviruses such as hepatitis A virus; and the genera apthoviruses, which are responsible for foot and mouth diseases, primarily in non-human animals. Within the picornavirus family of viruses, target antigens include the VP1, VP2, VP3, VP4, and VPG. Another viral family includes the calcivirus family, which encompasses the Norwalk group of viruses, which are an important causative agent of epidemic gastroenteritis. Still another viral family desirable for use in targeting antigens for inducing immune responses in humans and non-human animals is the togavirus family, which includes the genera alphavirus, which include Sindbis viruses, RossRiver virus, and Venezuelan, Eastern & Western Equine encephalitis, and rubivirus, including Rubella virus. The flaviviridae family includes dengue, yellow fever, Japanese encephalitis, St. Louis encephalitis and tick borne encephalitis viruses. Other target antigens may be generated from the Hepatitis C or the coronavirus family, which includes a number of non-human viruses such as infectious bronchitis virus (poultry), porcine transmissible gastroenteric virus (pig), porcine hemagglutinating encephalomyelitis virus (pig), feline infectious peritonitis virus (cats), feline enteric coronavirus (cat), canine coronavirus (dog), and human respiratory coronaviruses, which may cause the common cold and/or non-A, B or C hepatitis. Within the coronavirus family, target antigens include the E1 (also called M or matrix protein), E2 (also called S or Spike protein), E3 (also called HE or hemagglutin-elterose) glycoprotein (not present in all coronaviruses), or N (nucleocapsid). Still other antigens may be targeted against the rhabdovirus family, which includes the genera vesiculovirus (e.g., Vesicular Stomatitis Virus), and the general lyssavirus (e.g., rabies). Within the rhabdovirus family, suitable antigens may be derived from the G protein or the N protein. The family filoviridae, which includes hemorrhagic fever viruses such as Marburg and Ebola virus, may be a suitable source of antigens. The paramyxovirus family includes parainfluenza Virus Type 1, parainfluenza Virus Type 3. bovine parainfluenza Virus Type 3, rubulavirus (mumps virus), parainfluenza Virus Type 2, parainfluenza virus Type 4, Newcastle disease virus (chickens), rinderpest,

morbillivirus, which includes measles and canine distemper, and pneumovirus, which includes respiratory syncytial virus. The influenza virus is classified within the family orthomyxovirus and is a suitable source of antigen (e.g., the HA protein, the N1 protein). The bunyavirus family includes the genera bunyavirus (California encephalitis, La Crosse), phlebovirus (Rift Valley Fever), hantavirus (puremala is a hemahagin fever virus), nairovirus (Nairobi sheep disease) and various unassigned bungaviruses. The arenavirus family provides a source of antigens against LCM and Lassa fever virus. The reovirus family includes the genera reovirus, rotavirus (which causes acute gastroenteritis in children), orbiviruses, and cultivirus (Colorado Tick fever, Lebombo (humans), equine encephalosis, blue tongue).

5

10

15

20

25

30

The retrovirus family includes the sub-family oncorivirinal which encompasses such human and veterinary diseases as feline leukemia virus, HTLVI and HTLVII, lentivirinal (which includes human immunodeficiency virus (HIV), simian immunodeficiency virus (SIV), feline immunodeficiency virus (FIV), equine infectious anemia virus, and spumavirinal). Among the lentiviruses, many suitable antigens have been described and can readily be selected. Examples of suitable HIV and SIV antigens include, without limitation the gag, pol, Vif, Vpx, VPR, Env, Tat, Nef, and Rev proteins, as well as various fragments thereof. For example, suitable fragments of the Env protein may include any of its subunits such as the gp120, gp160, gp41, or smaller fragments thereof, e.g., of at least about 8 amino acids in length. Similarly, fragments of the tat protein may be selected. [See, US Patent 5,891,994 and US Patent 6,193,981.] See, also, the HIV and SIV proteins described in D.H. Barouch et al, J. Virol., 75(5):2462-2467 (March 2001), and R.R. Amara, et al, Science, 292:69-74 (6 April 2001). In another example, the HIV and/or SIV immunogenic proteins or peptides may be used to form fusion proteins or other immunogenic molecules. See, e.g., the HIV-1 Tat and/or Nef fusion proteins and immunization regimens described in WO 01/54719, published August 2, 2001, and WO 99/16884, published April 8, 1999. The invention is not limited to the HIV and/or SIV immunogenic proteins or peptides described herein. In addition, a variety of modifications to these proteins have been described or could readily be made by one of skill in the art. See, e.g., the modified gag protein that is described in US Patent 5,972,596. Further, any desired HIV and/or SIV immunogens may be delivered alone or in combination. Such combinations may include expression from a single vector or from

5

10

15

20

25

30

multiple vectors. Optionally, another combination may involve delivery of one or more expressed immunogens with delivery of one or more of the immunogens in protein form. Such combinations are discussed in more detail below.

The papovavirus family includes the sub-family polyomaviruses (BKU and JCU viruses) and the sub-family papillomavirus (associated with cancers or malignant progression of papilloma). The adenovirus family includes viruses (EX, AD7, ARD, O.B.) which cause respiratory disease and/or enteritis. The parvovirus family feline parvovirus (feline enteritis), feline panleucopeniavirus, canine parvovirus, and porcine parvovirus. The herpesvirus family includes the sub-family alphaherpesvirinae, which encompasses the genera simplexvirus (HSVI, HSVII), varicellovirus (pseudorabies, varicella zoster) and the sub-family betaherpesvirinae, which includes the genera cytomegalovirus (HCMV, muromegalovirus) and the sub-family gammaherpesvirinae, which includes the genera lymphocryptovirus, EBV (Burkitts lymphoma), infectious rhinotracheitis, Marek's disease virus, and rhadinovirus. The poxvirus family includes the sub-family chordopoxvirinae, which encompasses the genera orthopoxvirus (Variola (Smallpox) and Vaccinia (Cowpox)), parapoxvirus, avipoxvirus, capripoxvirus, leporipoxvirus, suipoxvirus, and the sub-family entomopoxvirinae. The hepadnavirus family includes the Hepatitis B virus. One unclassified virus which may be suitable source of antigens is the Hepatitis delta virus. Still other viral sources may include avian infectious bursal disease virus and porcine respiratory and reproductive syndrome virus. The alphavirus family includes equine arteritis virus and various Encephalitis viruses.

The present invention may also encompass immunogens which are useful to immunize a human or non-human animal against other pathogens including bacteria, fungi, parasitic microorganisms or multicellular parasites which infect human and non-human vertebrates, or from a cancer cell or tumor cell. Examples of bacterial pathogens include pathogenic gram-positive cocci include pneumococci; staphylococci; and streptococci. Pathogenic gram-negative cocci include meningococcus; gonococcus. Pathogenic enteric gram-negative bacilli include enterobacteriaceae; pseudomonas, acinetobacteria and eikenella; melioidosis; salmonella; shigella; haemophilus; moraxella; H. ducreyi (which causes chancroid); brucella; Franisella tularensis (which causes tularemia); yersinia (pasteurella); streptobacillus moniliformis and spirillum; Gram-

5

10

15

positive bacilli include listeria monocytogenes; erysipelothrix rhusiopathiae; Corynebacterium diphtheria (diphtheria); cholera; B. anthracis (anthrax); donovanosis (granuloma inguinale); and bartonellosis. Diseases caused by pathogenic anaerobic bacteria include tetanus; botulism; other clostridia; tuberculosis; leprosy; and other mycobacteria. Pathogenic spirochetal diseases include syphilis; treponematoses: yaws, pinta and endemic syphilis; and leptospirosis. Other infections caused by higher pathogen bacteria and pathogenic fungi include actinomycosis; nocardiosis; cryptococcosis, blastomycosis, histoplasmosis and coccidioidomycosis; candidiasis, aspergillosis, and mucormycosis; sporotrichosis; paracoccidiodomycosis, petriellidiosis, torulopsosis, mycetoma and chromomycosis; and dermatophytosis. Rickettsial infections include Typhus fever, Rocky Mountain spotted fever, Q fever, and Rickettsialpox. Examples of mycoplasma and chlamydial infections include: mycoplasma pneumoniae; lymphogranuloma venereum; psittacosis; and perinatal chlamydial infections. Pathogenic eukaryotes encompass pathogenic protozoans and helminths and infections produced thereby include: amebiasis; malaria; leishmaniasis; trypanosomiasis; toxoplasmosis; Pneumocystis carinii; Trichans; Toxoplasma gondii; babesiosis; giardiasis; trichinosis; filariasis; schistosomiasis; nematodes; trematodes or flukes; and cestode (tapeworm) infections.

Many of these organisms and/or toxins produced thereby have been identified by the Centers for Disease Control [(CDC), Department of Heath and 20 Human Services, USA], as agents which have potential for use in biological attacks. For example, some of these biological agents, include, Bacillus anthracis (anthrax), Clostridium botulinum and its toxin (botulism), Yersinia pestis (plague), variola major (smallpox), Francisella tularensis (tularemia), and viral hemorrhagic fevers [filoviruses (e.g., Ebola, Marburg], and arenaviruses [e.g., Lassa, Machupo]), all of which are 25 currently classified as Category A agents; Coxiella burnetti (Q fever); Brucella species (brucellosis), Burkholderia mallei (glanders), Burkholderia pseudomallei (meloidosis), Ricinus communis and its toxin (ricin toxin), Clostridium perfringens and its toxin (epsilon toxin), Staphylococcus species and their toxins (enterotoxin B), Chlamydia psittaci (psittacosis), water safety threats (e.g., Vibrio cholerae, Crytosporidium parvum). 30 Typhus fever (Richettsia powazekii), and viral encephalitis (alphaviruses, e.g., Venezuelan equine encephalitis; eastern equine encephalitis; western equine

encephalitis); all of which are currently classified as Category B agents; and Nipan virus and hantaviruses, which are currently classified as Category C agents. In addition, other organisms, which are so classified or differently classified, may be identified and/or used for such a purpose in the future. It will be readily understood that the viral vectors and other constructs described herein are useful to deliver antigens from these organisms, viruses, their toxins or other by-products, which will prevent and/or treat infection or other adverse reactions with these biological agents.

Administration of the vectors of the invention to deliver immunogens against the variable region of the T cells elicit an immune response including CTLs to eliminate those T cells. In RA, several specific variable regions of TCRs which are involved in the disease have been characterized. These TCRs include V-3, V-14, V-17 and Vα-17. Thus, delivery of a nucleic acid sequence that encodes at least one of these polypeptides will elicit an immune response that will target T cells involved in RA. In MS, several specific variable regions of TCRs which are involved in the disease have been characterized. These TCRs include V-7 and Vα-10. Thus, delivery of a nucleic acid sequence that encodes at least one of these polypeptides will elicit an immune response that will target T cells involved in MS. In scleroderma, several specific variable regions of TCRs which are involved in the disease have been characterized. These TCRs include V-6, V-8, V-14 and Vα-16, Vα-3C, Vα-7, Vα-14, Vα-15, Vα-16, Vα-28 and Vα-12. Thus, delivery of a recombinant simian adenovirus that encodes at least one of these polypeptides will elicit an immune response that will target T cells involved in scleroderma.

C. Ad-Mediated Delivery Methods

5

10

15

20

The therapeutic levels, or levels of immunity, of the selected gene can be
monitored to determine the need, if any, for boosters. Following an assessment of CD8+
T cell response, or optionally, antibody titers, in the serum, optional booster
immunizations may be desired. Optionally, the recombinant simian adenoviral vectors of
the invention may be delivered in a single administration or in various combination
regimens, e.g., in combination with a regimen or course of treatment involving other
active ingredients or in a prime-boost regimen. A variety of such regimens have been
described in the art and may be readily selected.

For example, prime-boost regimens may involve the administration of a DNA (e.g., plasmid) based vector to prime the immune system to second, booster, administration with a traditional antigen, such as a protein or a recombinant virus carrying the sequences encoding such an antigen. See, e.g., WO 00/11140, published March 2, 2000, incorporated by reference. Alternatively, an immunization regimen may involve the administration of a recombinant simian adenoviral vector of the invention to boost the immune response to a vector (either viral or DNA-based) carrying an antigen, or a protein. In still another alternative, an immunization regimen involves administration of a protein followed by booster with a vector encoding the antigen.

5

10

15

20

25

30

In one embodiment, the invention provides a method of priming and boosting an immune response to a selected antigen by delivering a plasmid DNA vector carrying said antigen, followed by boosting with a recombinant simian adenoviral vector of the invention. In one embodiment, the prime-boost regimen involves the expression of multiproteins from the prime and/or the boost vehicle. See, e.g., R.R. Amara, *Science*, 292:69-74 (6 April 2001) which describes a multiprotein regimen for expression of protein subunits useful for generating an immune response against HIV and SIV. For example, a DNA prime may deliver the Gag, Pol, Vif, VPX and Vpr and Env, Tat, and Rev from a single transcript. Alternatively, the SIV Gag, Pol and HIV-1 Env is delivered in a recombinant adenovirus construct of the invention. Still other regimens are described in WO 99/16884 and WO 01/54719.

However, the prime-boost regimens are not limited to immunization for HIV or to delivery of these antigens. For example, priming may involve delivering with a first chimp vector of the invention followed by boosting with a second chimp vector, or with a composition containing the antigen itself in protein form. In one example, the prime-boost regimen can provide a protective immune response to the virus, bacteria or other organism from which the antigen is derived. In another desired embodiment, the prime-boost regimen provides a therapeutic effect that can be measured using convention assays for detection of the presence of the condition for which therapy is being administered.

The priming composition may be administered at various sites in the body in a dose dependent manner, which depends on the antigen to which the desired immune response is being targeted. The invention is not limited to the amount or situs of

injection(s) or to the pharmaceutical carrier. Rather, the regimen may involve a priming and/or boosting step, each of which may include a single dose or dosage that is administered hourly, daily, weekly or monthly, or yearly. As an example, the mammals may receive one or two doses containing between about 10 µg to about 50 µg of plasmid in carrier. A desirable amount of a DNA composition ranges between about 1 µg to about 10,000 µg of the DNA vector. Dosages may vary from about 1 µg to 1000 µg DNA per kg of subject body weight. The amount or site of delivery is desirably selected based upon the identity and condition of the mammal.

The dosage unit of the vector suitable for delivery of the antigen to the mammal is described herein. The vector is prepared for administration by being suspended or dissolved in a pharmaceutically or physiologically acceptable carrier such as isotonic saline; isotonic salts solution or other formulations that will be apparent to those skilled in such administration. The appropriate carrier will be evident to those skilled in the art and will depend in large part upon the route of administration. The compositions of the invention may be administered to a mammal according to the routes described above, in a sustained release formulation using a biodegradable biocompatible polymer, or by on-site delivery using micelles, gels and liposomes. Optionally, the priming step of this invention also includes administering with the priming composition, a suitable amount of an adjuvant, such as are defined herein.

Preferably, a boosting composition is administered about 2 to about 27 weeks after administering the priming composition to the mammalian subject. The administration of the boosting composition is accomplished using an effective amount of a boosting composition containing or capable of delivering the same antigen as administered by the priming DNA vaccine. The boosting composition may be composed of a recombinant viral vector derived from the same viral source (e.g., adenoviral sequences of the invention) or from another source. Alternatively, the "boosting composition" can be a composition containing the same antigen as encoded in the priming DNA vaccine, but in the form of a protein or peptide, which composition induces an immune response in the host. In another embodiment, the boosting composition contains a DNA sequence encoding the antigen under the control of a regulatory sequence directing its expression in a mammalian cell, e.g., vectors such as well-known bacterial or viral vectors. The primary requirements of the boosting composition are that the antigen

of the composition is the same antigen, or a cross-reactive antigen, as that encoded by the priming composition.

In another embodiment, the simian adenoviral vectors of the invention are also well suited for use in a variety of other immunization and therapeutic regimens. Such regimens may involve delivery of simian adenoviral vectors of the invention simultaneously or sequentially with Ad vectors of different serotype capsids, regimens in which adenoviral vectors of the invention are delivered simultaneously or sequentially with non-Ad vectors, regimens in which the adenoviral vectors of the invention are delivered simultaneously or sequentially with proteins, peptides, and/or other biologically useful therapeutic or immunogenic compounds. Such uses will be readily apparent to one of skill in the art.

The following examples illustrate the cloning of the simian adenoviruses and the construction of exemplary recombinant adenovirus vectors of the present invention. These examples are illustrative only, and do not limit the scope of the present invention.

Example 1 - Viral Propagation

5

10

15

20

25

30

The Pan5 [ATCC Accession No. VR-591], Pan6 [ATCC Accession No. VR-592], and Pan7 [ATCC Accession No. VR-593] viruses, originally isolated from lymph nodes from chimpanzees, were propagated in 293 cells [ATCC CRL1573].

Typically, these cells are cultured in Dulbecco's Modified Eagles Medium (DMEM; Sigma, St. Louis, MO.) supplemented with 10% fetal calf serum (FCS) [Sigma or Hyclone, Logan, UT] and 1 % Penicillin-Streptomycin (Sigma). Infection of 293 cells is carried out in DMEM supplemented with 2% FCS for the first 24 hours, after which FCS is added to bring the final concentration to 10%. Infected cells are harvested when 100% of the cells exhibit virus-induced cytopathic effect (CPE), and are then collected, and concentrated by centrifugation. Cell pellets are resuspended in 10 mM Tris (pH 8.0), and lysed by 3 cycles of freezing and thawing. Virus preparations are obtained following two ultra centrifugation steps on cesium chloride density gradients and stocks of virus are diluted to 1 to 5 x 10¹² particles/ml in 10 mM Tris/100 mM NaCl/50% glycerol and stored at -70°C.

The ability of 293 cells to propagate these adenoviruses exceeded expectations which were based on knowledge of other non-human adenovirus serotypes.

	<u>Virus</u>	Yield (virus particles produced in 8x10 ⁸ cells)
	Pan5	8.8×10^{13}
5	Pan6	1.6×10^{14}
	Pan7	8.8×10^{13}

Example 2 – Characterization of Viral Genomic DNA

10

15

20

25

30

Genomic DNA was isolated from the purified virus preparations of Example 1 and digested with HindIII or BamHI restriction enzymes following the manufacturers' recommendations. The results (not shown) revealed that that the Pan5, Pan6, Pan7 genomes of the invention and the published Pan 9 (C68) genome show different restriction patterns, and thus, are distinct from each other.

The nucleotide sequences of Pan5, Pan6 and Pan7 were determined. The nucleotide sequence of the top strand of Pan5 DNA is reported in SEQ ID NO: 1. The nucleotide sequence of the top strand of Pan6 DNA is reported in SEQ ID NO: 5. The nucleotide sequence of the top strand of Pan7 DNA is reported in SEQ ID NO: 9.

Regulatory and coding regions in the viral DNA sequences were identified by homology to known adenoviral sequences using the "Clustal W" program described above at conventional settings. See the tables above providing the adenoviral sequences. Open reading frames were translated and the predicted amino acid sequences examined for homology to previously described adenoviral protein sequences, Ad4, Ad5, Ad7, Ad12, and Ad40.

Analysis of the sequence revealed a genome organization that is similar to that present in human adenoviruses, with the greatest similarity to human Ad4. However, substantial differences in the hexon hypervariable regions were noted between the chimpanzee adenoviruses and other known adenoviruses, including AdHu4. These differences fit well with the serological cross-reactivity data that has been obtained (see below).

An alignment of a portion of the hexon sequences is shown in Fig. 1. The portion shown is from the region of the hexon that corresponds to the outwardly disposed extended loops DE1 and FG1 where the most variability between serotypes is observed.

An intervening portion that contributes to the base of the hexon (corresponding to residues 308-368 of the published AdC68 sequence; US Patent 6,083,716), and is highly conserved between serotypes, is also present. The following table summarizes the pairwise comparisons of the amino acids in the hexon proteins.

5

10

Comp	arison	Hexon amino-acid
		Similarity (%)
#1	#2	
AdC5	AdC7	99.0
AdC5	AdC68	98.3
AdC5	AdC6	88.0
AdC5	AdC1	84.9
AdC6	AdC7	87.7
AdC6	AdC68	87.3
AdC6	AdC1	84.9
AdC7	AdC68	97.5
AdC7	AdC1	84.8
AdC68	AdCI	84.9

Analysis of the fiber knob domain (which is responsible for receptor binding) of the chimpanzee adenoviruses shows an overall similarity in structure (Fig. 2).

The degree of sequence similarity between the E1 proteins of huAd5 and C68 (see Tables below) is similar to that between huAd5 and Pan-5, Pan-6, and Pan-7.

Con	parison	Ela (13S) amino-acid	
		identity (%)	
#1	#2		
Adl·lu5	AdC5	36.6	
AdHu5	AdC6	28.5	
AdHu5	AdC7	34.9	
AdHu5	AdC68	35.6	
AdHu5	AdC1	35.6	
AdC5	AdC6	68.3	
AdC5	AdC7	96.9	
AdC5	AdC68	80.4	
AdC5	AdC1	51.3	
AdC6	AdC7	69.3	
AdC6	AdC68	59.4	
AdC6	AdC1	37.7	
AdC7	AdC68	81.5	
AdC7	AdC1	51.0	
AdC68	AdC1	54.9	

	Sequence Ident Ad5	Sequence Identity with human Ad5		
	E1b Small T	E1b Small T E1b Large T		
	Protein Protein			
C68	47.3%	55.8%		
Pan-5	43.2%	54.5%		
Рап-6	45.3%	54.5%		
Pan-7	46.4%	53.8%		

Replication-defective versions of AdC5, AdC6 and AdC7 were created by molecular cloning methods described in the following examples in which minigene cassettes were inserted into the place of the E1a and E1b genes. The molecular clones of the recombinant viruses were rescued and grown up in 293 cells for large-scale purification using the published CsCl sedimentation method [K. Fisher *et al.*, J. Virol., 70:520 (1996)]. Vector yields were based on 50 plate (150 mm) preps in which approximately 1 x 10⁹ 293 cells were infected with the corresponding viruses. Yields were determined by measuring viral particle concentrations spectrophotometrically. After having constructed E1-deleted vectors, it was determined that HEK 293 cells (which express human adenovirus serotype 5 E1 functions) trans-complement the E1 deletions of the novel viral vectors and allow for the production of high titer stocks. Examples of virus yields for a few of these recombinant viruses are shown in the table below.

5

10

15

The transgenes for these vectors, β -galactosidase (LacZ), green fluorescent protein (GFP), alpha-1-anti-trypsin (A1AT), ebola glycoprotein (ebo), a soluble ebola glycoprotein variant lacking the transmembrane and cytoplasmic domains (sEbo), and three deletion mutants of the ebola glycoprotein (Ebo Δ 2, Ebo Δ 3, and Ebo Δ 4), were expressed by the cytomegalovirus promoter (CMV). In the following table, ND indicates that the study has not yet been done.

Transgene	Viral backbone/Vector yield (Viral particles x 10 ¹³)				
	AdHu5	AdC7	AdC68	AdC6	
CMVLacZ	1.5	1.4	3.3	6.1	
CMVGFP	2.5	3.6	8	10	
CMVA1AT	3.7	6	10	ND	
CMVEbo	1.1	4.3	ND	ND	
CMVsEbo	4.9	5.4	ND	ND	
CMVEbo∆2	1	9.3	ND	ND	
CMVEbo∆3	0.8	9.5	ND	ND	
CMVEbo∆4	1.4	6.2	ND	ND	

The ability of human adenovirus E1 to trans-complement the E1-deleted chimpanzee viruses of the invention is highly advantageous, as it permits the production of E1-deleted chimpanzee adenoviral vectors of the invention, while reducing or eliminating the risk of homologous recombination due to the differences in sequences between human Ad and the chimpanzee adenoviruses described herein.

Example 3 – Serological Studies of Pan 5, 6, and 7 Viruses

5

10

15

20

Because of the differences in the hexon hypervariable region, it was anticipated that the C5, C6, and C7 viruses would be serologically distinct from human adenoviruses, including AdHu4.

1. Cross-Reactivity of Wild-type Viruses

For screening of wild-type viruses in order to make a determination of antibody cross-reactivity, the replication competent viruses were used and inhibition of cytopathic effects (CPE) was measured. Briefly, preparations of adenoviruses (Adhu5, Pan-5, Pan-6, Pan-7 and AdC68) stored at 5×10^{12} particles/ml were diluted 1/600 for the assays. This concentration of virus was selected since it results in 100% CPE within 48 hours in the absence of neutralization. Prior to adding the virus to 293 cells (4×10^4 cells/well in a 96 well dish), 1:20 dilutions of sera were added. The assay is read as the presence or absence of CPE; full neutralization would read as no cytopathic effect. The results are summarized in the Table below. The fact that 9/36 human sera neutralized Adhu5 induced CPE is consistent with previous estimates of neutralizing antibodies in the human population. The numbers indicate the total individuals who showed neutralization (numerator) versus the total number screened (denominator). ND = not determined.

	Neutralization by 1/20 diln of serum		
	Human	Rhesus	Chimpanzee
	(N=36)	(N=52)	(N=20)
Adhu5	9/36	ND	ND
AdC68	1/36	0/52	12/20
Pan 5	0/36`	0/52	10/20
Pan 6	0/36	0/52	9/20
Pan 7	0/36	0/52	12/20

Of all human sera screened, 35/36 were negative for neutralization to AdC68 while 36/36 were negative for neutralization to Pan-5, Pan-6 and Pan-7. Of 52 rhesus monkeys screened, none showed neutralization to any chimpanzee adenovirus; rhesus monkey is the preferred pre-clinical model for evaluating HIV vaccines. Between 9 to 12 out of 20 chimpanzees had substantial neutralization to one or another of the chimpanzee adenoviruses consistent with the fact these are indeed endemic chimpanzee-specific pathogens. Interestingly, there are chimpanzees with neutralizing antibodies only to Pan-5, Pan-6 or AdC68 supporting the hypothesis that several of these chimpanzee adenoviral vectors will not cross neutralize each other and are distinct serotypes.

The same assay was carried out for 20 chimpanzee serum samples. Fifty percent (50%) of the samples reacted serologically, in different degrees to Pan5; 40% to Pan6; 55% to Pan7 and 60% to C68. Among the positive serum samples, one of them had strong neutralizing activity to all four chimp viruses.

2. Cross-neutralization with Recombinant Viruses

High-titer polyclonal antibodies were obtained to each of the simian adenoviruses in order to more precisely gauge the degree of cross-neutralization among the different serotypes. This was done by intramuscular immunization of rabbits using a recombinant virus containing GFP based on previously the described C68 chimpanzee adenovirus as an adjuvant. The serum was then used to assay for neutralizing activity against each of the three chimpanzee adenoviruses of the invention, AdC5, AdC6 and AdC7. A rabbit was injected with 5×10^{12} viral particle per kg of C68CMVGFP vector intramuscularly and boosted 5 weeks later using the same dose. A bleed collected at the 9 week time point revealed extremely potent neutralizing activity against C68 as well as Pan-5 and Pan-7 but not against Pan-6 (see Table below), indicating that the administration of a C68 (or Pan-5 and Pan-7) based vaccine could be effectively followed by a boost using a vector based on Pan-6. However, it has been found that this level of inter-relatedness does not necessarily prevent with re-administration in a setting where antiviral antibody titers were not as high as was achieved in this rabbit. In the following table, + indicates 33% CPE; +++ indicates 66% CPE; +++ indicates 100% CPE.

30

5

10

15

20

25

Infection on 293 cells with virus:					
Pan5	Pan6	Pan7	Pan9(C68)	C68	Serum
			}	GFP	Dilution
_	+++	-	-	-	1/20
-	+++			-	1/40
_	+++		-	-	1/80
_	+++	-	-	-	1/160
-	+++	-	_	-	1/320
-	+++	_	-	-	1/640
_	+++	-		-	1/1,280
_	+++	-	-	-	1/2,560
-	+++	-	-	-	1/5,120
+	+++	-	-	-	1/10,240
+	+++	++	-	-	1/20,480
++	+++	+++	-	-	1/40,960
++	+++	1++	÷	+	1/81,920
+++	+++	+++	++	++	1/163,840
+++	+++	+++	+++	1++	1/327,680
+++	+++	1++	+++	+++	1/665,360
+++	+++	+++	+++	+++	1/1,310,720
+++	+++	+++	+++	1-1-1-	1/2,621,440

3. Quantitative Assay for Detection of Neutralizing Antibody

The result was validated by a more quantitative-based assay for detecting neutralizing antibody, which is based on transduction of a GFP vector. Briefly, groups of C57BL/6 mice were immunized intramuscularly or intravenously with 5.0 x 10¹⁰ particles/ml Pan5, Pan6, Pan7 or C68. Sera from day 28 bleeds were tested for crossneutralizing activity against C68CMVEGFP at dilutions of 1/20 and 1/80. In summary, when a pharmaceutical preparation of human immunoglobulin was tested for serological reactions to Pan 5, 6, and 7, and C68, some low levels of neutralizing activities against Pan 7 and C68 were detected. No neutralizing activity against Pan5 or Pan6 was detected. Serum samples from 36 human subjects were run for the same assay. Serum samples were tested at a 1/20 dilution. The results indicated that only one individual has clear neutralizing activity to C68. No neutralizing activity to Pan5, Pan6 or Pan7 was detected.

4. In Vitro Cross-Neutralization

Cross-neutralization of the simian adenoviruses by high-titer rabbit polyclonal antibodies raised against each of the adenoviruses Pan-5, Pan-6, Pan-7, and C68 was tested.

Rabbits were immunized with intra-muscular injections of 10¹³ particles of each of the chimpanzee adenoviruses and boosted 40 days later with the same dose with incomplete Freund's adjuvant. Sera were analyzed or the presence of neutralizing antibodies by incubating serial two-fold dilutions with 10⁹ genome copies of each of the appropriate chimpanzee adenovirus vector expressing GFP and testing for the attenuation of GFP expression when applied to 293 cells. The serum dilution which produced a 50% reduction of GFP expression was scored as the neutralizing antibody titer against that particular virus.

The results are shown in the Table. The data are consistent with the expectation from sequence analysis of the hexon amino-acid sequences, which indicated that Ad Pan-6 was likely to be the most serologically distinct compared to the other chimpanzee adenoviruses.

5

10

15

20

25

	Infection of 293 cells with 10 ⁹ genome copies of				
Serum from rabbit immunized with:	Ad Pan-5	Ad Pan-6	Ad Pan-7	Ad C68	
Ad Pan-5	1/5120	<1/20	1/2560	1/2560	
Ad Pan-6	No neutralization	1/20,480	<1/20	<1/20	
Ad Pan-7	1/2560	1/160	1/163,840	1/2560	
Ad C68	No neutralization	<1/20	<1/20	1/5120	

In order to determine whether antibodies cross-reacting with the simian adenoviruses were likely to be of low prevalence in humans, simian adenoviruses SV1, SV39, and SV25 were tested for their ability to withstand neutralization when incubated with commercially available pooled human immunoglobulins (Ig). The same assay was also performed with Adhu5 and the chimpanzee adenoviruses Pan-5, Pan-6, Pan-7, and C68. In a further study, sera from mice has been immunized with one of the chimpanzee adenoviruses C5, C6, C7, and C68 and their ability to cross-neutralize the simian adenoviruses SV-15, SV-23, SA-17, and Baboon Adenovirus has been tested. No cross-reactivity was observed in any case.

Example 4 - Generation of Recombinant E1-Deleted Pan5 Vector

5

10

15

20

A modified pX plasmid was prepared by destroying the FspI site in the bla gene region of pX (Clontech) by site-directed mutagenesis. The resulting modified plasmid, termed pX', is a circular plasmid of 3000 bp which contains an f1 ori and an ampicillin resistance gene (AmpR-cds).

A. Production of Pan-5 Adenovirus Plasmid

A polylinker for sequential cloning of the Pan5 DNA fragments into pX' is created. The polylinker is substituted for the existing pX' polylinker following digestion with *MluI* and *EcoRI*. The blunt-*FseI* fragment of the Pan 5 is inserted into the *SmaI* and *FseI* sites of the polylinker. This fragment contains the 5' end

of the adenoviral genome (bp 1 to 3606, SEQ ID NO:1). The SnaBI-FspI fragment of Pan 5 (bp 455 to 3484, SEQ ID NO:1) is replaced with a short sequence flanked by I-Ceu and PI-Sce sites from pShuttle (Clontech), to eliminate the E1 region of the adenoviral genome. The EcoRI-blunt fragment of Pan5 (bp 28658 to 36462, SEQ ID NO:1) is inserted into the EcoRI and EcoRV sites of the polylinker (to provide the 3' end of the adenoviral genome); the FseI-MluI fragment (bp 3606 to 15135, SEQ ID NO:1) is inserted into the polylinker; and the MluI-EcoRI fragment is inserted into the polylinker (bp 15135 to 28658, SEQ ID NO:1). Optionally, a desired transgene is inserted into I-CeuI and PI-SceI sites of the newly created pX'Pan5ΔE1 vector.

5

10

15

20

25

30

B. Alternative Method of Generating $pX'Pan5\Delta E1$.

The initial plasmid pX is derived from pAdX adenovirus plasmid available from Clontech, as described above. Thereafter, a *PacI-XhoI* region of pX' was deleted and the blunt-ended Pan5 polylinker was inserted into the *FspI* site to generate pX'PLNK (2994 bp). The 5'end-*FseI* region of Pan 5 (bp 1-3607, SEQ ID NO:1) was inserted into *SmaI* and *FseI* sites of pX'LNK to generate the pX'Pan5-5' plasmid (6591 bp). The *SnaBi-NdeI* region of pX'Pan5-5' was excised and replaced with the *Ceu/Sce* cassette, which had been PCR amplified from pRCS to create pX'Pan5-5' \Delta E1 (4374 bp). Briefly, a sequence containing *I-CeuI* and *PI-SceI* rare cutter sites was PCR amplified from pRCS (3113bp). The 3' PCR primer was introduced an *NdeI* site into the PCR product.

To extend the Pan5 DNA in pX'Pan5-5'ΔE1 (4374 bp), the FseI-MluI region of Pan 5 (bp 3607-15135, SEQ ID NO:1) is added, to create pX'Pan5-5'Mlu (15900 bp). The remaining MluI-3' end of the Pan5 sequence (bp 15135-36462, SEQ ID NO:1) is added to the vector between the MluI and EcoRV sites of the vector polylinker to form pX'Pan5ΔE1 which contains the full-length Pan5 sequence containing a deletion in the E1 region.

C. Generation of Recombinant Viruses

To generate the recombinant adenoviruses from pX'Pan5 Δ E1, the plasmid is co-transfected with a helper expressing E1, or from an E1-expressing packaging cell line, such as 293 cell line or a cell line prepared as described herein. The expression of E1 in the packaging cell permits the replication and packaging of

the Pan5 Δ E1 into a virion capsid. In another embodiment, the packaging cell transfected with pX'Pan5 Δ E1 is transfected with an adenovirus vector as described above bearing the transgene of interest. Homologous recombination occurs between the helper and the plasmid, which permits the adenovirus-transgene sequences in the vector to be replicated and packaged into virion capsids, resulting in the recombinant adenovirus.

Transfection is followed by an agar overlay for 2 weeks, after which the viruses are plaqued, expanded and screened for expression of the transgene. Several additional rounds of plaque purification are followed by another expansion of the cultures. Finally the cells are harvested, a virus extract prepared and the recombinant chimpanzee adenovirus containing the desired transgene is purified by buoyant density ultracentrifugation in a CsCl gradient or by alternative means known to those of skill in the art.

- Example 5 Generation of Recombinant E1-Deleted Pan6 Vector
 - A. Strategy for Construction of Pan-6 Adenoviral Plasmid
 - 1. Cloning of terminal fragments

Pan 6 virus is deproteinated by pronase and proteanase K treatment and phenol extraction. Synthetic 12 bp Pme I linkers are ligated onto the viral DNA as described by Berkner and Sharp, *Nucleic Acids Research*, 11: 6003 (1983). The viral DNA is then digested with Xba I to isolate a 5' terminal fragment (6043 bp). The Ad6 XbaI 5' fragment is then ligated into pX link at Sma I and Xba I sites to form pX-AdPan6-0-16.5. The viral DNA with Pme I linkers is also digested with Pac I to isolate the 6475 bp 3' terminal fragment and cloned into pX link at Pac I and Sma I sites, resulting in pXAdPan6-82-100.

2. Deletion of El from the 5' clone

To delete E1 (m.u.1.2-9), the BsiWi-Xba I fragment in pX-AdPan6-0-16.5 is replaced with a PCR fragment spanning m.u.9-16.7 fragment treated with BsiWi and Xba I, leading to pX-Ad-Pan6 m.u.0-1, 9-16.5.

30

25

20

5

10

3. Fusion of 5' and 3' clones and to create an anchor site to accept the middle Hind III fragment

First, the 5' clone, pX-Ad-Pan6 m.u.0-1, 9-16.5, is further expanded by inserting the 2nd Xba I fragment (4350 bp, m.u.16.5 – 28) from Pan 6 genome into the Xba I site in the pX-Ad-Pan6 m.u.0-1, 9-16.5. This construct is named pXAd-Pan6-mu 0-1, 9-28.

Second, the 3' clone is also expanded by inserting the 15026 bp Mlu I/Pac I fragment covering m.u.41-82 from Pan 6 genome into the Mlu I/Pac I sites of pXAdPan6-82-100, generating pXAdPan6-m.u.41-100.

Then, a 8167 bp Hind III/Eco 47III Pan 6 fragment is isolated from pXAd-Pan6-mu 0-1, 9-28 and subcloned into pXAdPan6-m.u.41-100 at Hind III and Xba I blunt sites. This 5' and 3' fusion clone is called pXAdPan6mu0-1, 9-19.5, 64-100.

4. Drop of the middle fragment of the genome into the fusion

15 clone

25

30

5

10

A 16335 bp Hind III fragment (m.u.19.5 – 64) from Pan 6 is inserted into Hind III site of pXAdPan6mu0-1, 9-19.5, 64-100 to form pXAdPan6-0-1, 9-100.

5. Introduction of a PKGFP selective marker into the final construct for direct cloning the gene of interest and green/white selection of recombinant transformants.

A minigene cassette that expresses GFP under a lac promoter and is flanked with recognition sites of rare intron encoding restriction enzymes, PI-Sce I and I-Ceu I, was isolated from pShuttle-pkGFP (bare) by Sap I and Dra III digestions followed by filling-in reaction. The pShuttle-pkGFP (bare) plasmid is 4126 bp in length, and contains a ColE1-Ori, a kanamycin resistance gene, plac, a LacZ promoter-GFPmut3-1 cds (Clontech), and a GFPmut3-1 cds (Clontech). This cassette is subcloned into Srf I cut and blunted pXAdPan6-0-1, 9-100. This final construct is called pX-Pan6-pkGFP mu.0-1, 9-100, which is useful for generating recombinant E1-deleted Pan 6 molecular clones carrying genes of interest by direct ligation and green/white selection in combination with the generic pShuttlepkGFP vectors.

B. Alternative Strategy for Generation of Pan-6 Plasmid

The Pan 6 virus is deproteinated by pronase and proteanase K treatment and phenol extraction as described above and synthetic 12 bp Pme I linkers are ligated onto the viral DNA as described. The AdPan6 5' XbaI fragment is isolated and ligated into pX to form pX-AdPan6-0-16.5 (9022 bp) as described in Part A above.

5

15

20

25

30

2. Deletion of E1 from the 5' clone

To delete E1 (m.u. 1.2-9), pX-AdPan6-0-16.5 is digested
with SnaBI and NdeI to remove the regions encoding the E1a and E1b proteins (3442-6310 bp). This vector is subsequently digested with BsiWI in preparation for blunting with the minigene cassette carrying a selective marker.

3. Introduction of a selective marker

A minigene cassette that expressed GFP under a lac
promoter and which is flanked with recognition sites of rare intron encoding restriction
enzymes, PI-XceI and I-CeuI, was isolated from pShuttle-pkGFP as described above.
The DraIII-SapI fragment is then ligated with the digested pX-AdPan6-0-16.5 to form
pX-AdPan6 MU 0-16.5ΔEI (7749 bp).

4. Extension of Pan-6 Adenoviral Sequences
pX-AdPan6 MU 0-16.5ΔE1 was subjected to XbaI
digestion to permit insertion of an XbaI-RsrII linker. An XbaI/RsrII digestion fragment
from the AdPan6 genome was isolated (mu 28-100, 26240 bp) and ligated into the
Xba/RsrII-digested pX-AdPan6 MU 0-16.5ΔE1 to provide pX-AdPan6 MU 0-1, 9-16.5,
28-100. A second XbaI fragment from the Pan6 genome (mu 16.5-28, 4350 bp) is then
ligated into this plasmid to form pX-AdPan6 MU 0-1, 9-100 (38551 bp).

C. Generation of Recombinant Adenoviruses

To generate the recombinant adenoviruses from a E1-deleted Pan6 plasmid prepared as described in Parts A or b, the plasmid is co-transfected with a helper expressing E1, or from an E1-expressing packaging cell line, such as 293 cell line or a cell line prepared as described herein. The expression of E1 in the packaging cell permits the replication and packaging of the Pan6-pkGFP mu.0-1, 9-100 into a virion capsid. Alternatively, the packaging cell transfected with pX-Pan6-pkGFP mu.0-1, 9-100 is

transfected with an adenovirus vector as described above bearing another transgene of interest.

Example 6 – Generation of Recombinant E1-Deleted Pan7 Vector

5

10

15

20

25

A. Generation of Pan7 Plasmids

A synthetic linker containing the restriction sites PacI-SmaI-FseI-MluI-EcoRV-PacI was cloned into pBR322 that was cut with EcoRI and NdeI. The left end (bp1 to 3618) of Ad Pan7 was cloned into the linker between the SmaI and FseI sites. The adenovirus E1 was then excised from the cloned left end by cutting with SnaBI and NdeI and inserting an I-CeuI-GFP-PI-SceI cassette from pShuttle (Clontech) in its place. The resulting plasmid was cut with FseI and MluI and Ad Pan7 fragment FseI (bp 3618) to MluI (bp 155114 was inserted to extend the left end. The construct (pPan7pGFP) was completed by inserting the 21421 bp Ad Pan7 right end fragment from the MluI site (bp 15114) into the above plasmid between MluI and EcoRV to generate a complete molecular clone of E1 deleted adenovirus Pan7 suitable for the generation of recombinant adenoviruses. Optionally, a desired transgene is inserted into the I-CeuI and PI-SceI sites of the newly created pPan7 vector plasmid.

B. Construction of E1-Deleted Pan7 Viral Vectors

To generate the recombinant adenoviruses from pPan7ΔE1, the plasmid is co-transfected with a helper expressing E1, or from an E1-expressing packaging cell line, such as 293 cell line or a cell line prepared as described herein. The expression of E1 in the packaging cell permits the replication and packaging of the Pan7ΔE1 into a virion capsid. In another embodiment, the packaging cell transfected with pX'Pan7 ΔE1 is transfected with an adenovirus vector as described above bearing the transgene of interest. Homologous recombination occurs between the helper and the plasmid, which permits the adenovirus-transgene sequences in the vector to be replicated and packaged into virion capsids, resulting in the recombinant adenovirus. Transfection and purification is as described above.

Example 7 - Generation of Plasmid Vectors Expressing the E1 Genes

Plasmid vectors are constructed which encode the Pan5 E1 region gene, and these plasmids are used to generate stable cell lines expressing viral E1 proteins.

The E1 region of Pan5 is cloned into pX', essentially as described in Example 4 above, prior to replacement of this region with the fragment from pShuttle (Clontech). The expression plasmid contains the Pan5 adenoviral genome sequence spanning at least bp 1 to 3959 in the Pan5 genomic sequence. Thus, the expression plasmid contains the sequence encoding F1a and E1b of chimpanzee Ad Pan5 under the control of a heterologous promoter. Similar expression plasmids can be generated using the Ad Pan6 and AdPan 7 E1 regions, identified in the tables above.

Example 8 - Generation of Cell Lines Expressing Chimpanzee Adenovirus E1 Proteins

Cell lines expressing viral E1 proteins are generated by transfecting HeLa (ATCC Acc. No. CCL2) with the plasmid of Example 6. These cell lines are useful for the production of E1-deleted recombinant chimpanzee adenoviruses by co-transfection of genomic viral DNA and the expression plasmids described above. Transfection of these cell lines, as well as isolation and purification of recombinant chimpanzee adenoviruses therefrom are performed by methods conventional for other adenoviruses, i.e., human adenoviruses [see, e.g., Horwitz, cited above and other standard texts].

A. Cell lines expressing Pan5 E1 proteins

5

10

15

20

25

30

HeLa cells in 10cm dishes are transfected with 10 μg of pX-Pan51-E1 DNA using a CellphectTM kit (Pharmacia, Uppsala, Sweden) and following the manufacturer's protocol. 22 hours post-transfection, the cells are subjected to a three minute glycerol shock (15% glycerol in Hepes Buffered Saline, pH 7.5) washed once in DMEM (HeLa) or F12K (A549; Life Technologies, Inc., Grand Island, NY) media supplemented with 10% FCS, 1% Pen-Strep, then incubated for six hours at 37°C in the above described media. The transfected cells are then split into duplicate 15cm plates at ratios of 1:20, 1:40, 1:80, 1:160, and 1:320. Following incubation at 37°C overnight, the media is supplemented with G418 (Life Technologies, Inc.) at a concentration of 1 μg/ml. The media is replaced every 5 days and clones are isolated 20 days post-transfection.

HeLa E1 cell clones are isolated and assayed for their ability to augment adeno-associated virus (AAV) infection and expression of recombinant LacZ protein as described below.

5

10

15

20

25

30

B. AAV Augmentation Assay for Screening E1 Expressing Cell Lines

AAV requires adenovirus-encoded proteins in order to complete its life cycle. The adenoviral E1 proteins as well as the E4 region-encoded ORF6 protein are necessary for the augmentation of AAV infection. An assay for E1 expression based on AAV augmentation is used. Briefly, the method for identifying adenoviral E1-expressing cells comprises the steps of infecting in separate cultures a putative adenovirus E1-expressing cell and a cell containing no adenovirus sequence, with both an adeno-associated virus (AAV) expressing a marker gene and an AAV expressing the ORF6 of the E4 gene of human adenovirus, for a suitable time. The marker gene activity in the resulting cells is measured and those cells with significantly greater measurable marker activity than the control cells are selected as confirmed E1-expressing cells. In the following experiment, the marker gene is a lacZ gene and the marker activity is the appearance of blue stain.

For example, the cell lines described above, as well as untransfected control cells (HeLa) are infected with 100 genomes per cell of an AAV vector bearing a marker gene, e.g., AV.LacZ [K. Fisher et al., J. Virol., 70:520 (1996)] and an AAV vector expressing the ORF6 region of human 5 (AV.orf6). The DNA sequence of the plasmid generates a novel recombinant adeno-associated virus (rAAV) containing the LacZ transgene and the Ad E4 ORF 6, which is an open reading frame whose expression product facilitates single-stranded (ss) to double-stranded (ds) conversion of rAAV genomic DNA. These vectors are incubated in medium containing 2% FCS and 1% Pen-Strep at 37°C for 4 hours, at which point an equal volume of medium containing 10% FCS is added. It should be understood by one of skill in the art that any marker gene (or reporter gene) may be employed in the first AAV vector of this assay, e.g., alkaline phosphatase, luciferase, and others. An antibody-enzyme assay can also be used to quantitate levels of antigen, where the marker expresses an antigen. The assay is not limited by the identity of the marker gene. Twenty to twenty-four hours post-infection, the cells are stained for LacZ activity using standard methods. After 4 hours the cells are observed microscopically and cell lines with significantly more blue cells than the A549 or HeLa cell controls are scored as positive.

Example 9 - Delivery of Transgene to Host Cell

5

10

15

20

25

30

The resulting recombinant chimpanzee adenovirus described in Example 4, 5 or 6 above is then employed to deliver the transgene to a mammalian, preferably human, cell. For example, following purification of the recombinant virus, human embryonic kidney 293 cells are infected at an MOI of 50 particles per cell. GFP expression was documented 24 hours post-infection.

A. Gene Transfer in Mouse Models via Pan-6, Pan-7, and Pan-9 vectors

Gene transfer efficiencies and toxicological profile of recombinant

chimpanzee adenoviruses were compared in mouse liver directed gene transfer, mouse

lung directed gene transfer, and mouse muscle directed gene transfer.

E1-deleted adenoviral vectors containing LacZ under the control of the CMV promoter were constructed using the techniques herein for human Ad5, chimpanzee Pan 6, chimpanzee Pan 7 and chimpanzee Pan 9 (C68). The vectors were delivered to immune-deficient NCR nude mice (80 for each study) as follows. For the liver study, 100 μl (1 x10¹¹ particles) were injected into the tail vein. For the lung study, 50 μl (5 x10¹⁰ particles) were delivered intratracheally. For the muscle study, 25 μl (5 x10¹⁰ particles) were injected into tibialis anterior. The mice were sacrificed on days 3, 7, 14 and 28 post-vector injection (5 animals per group at each time point). At each necropsy, the liver/lung/muscle tissue was harvested and prepared for cryoblocks and paraffin embedding. The cryoblocks were sectioned for X-gal staining and the paraffin sections are H&E stained for histopathic analysis. At each time point, terminal bleeding was performed. Serum samples were subjected to liver function tests.

It was observed in this experiment the chimpanzee adenoviruses Pan-6, Pan-7, and Pan-9 were less efficient than huAd5 in gene transfer to the liver and to the lung. However, this may be desirable in certain circumstances, to reduce liver toxicity observed for huAd5. The gene transfer efficiency in muscle varied less between serotypes.

B. Mouse study to feasibility of re-administration of adenovirus vectors by serotype switching between Adhu5, Pan-6, Pan-7, and Pan-9 vectors

Mice were administered (C57/Bl6; 4/group) LacZ vectors based on huAd5, Pan-6, Pan-7, and Pan-9 (H5.040CMVLacZ, Pan6.000CMVLacZ, Pan7.000CMVLacZ, Pan9.000CMVLacZ; 10¹¹ particles/injection) by tail vein. Thirty days later the mice were re-administered adenovirus vectors expressing a1-antitrypsin

(H5.040CMVhA1AT, Pan6.000CMVhA1AT, 1x10¹¹ particles, Pan7.000CMVhA1AT, Pan9.000CMVhA1AT, 10¹¹ particles/injection). Successful transduction by the readministered vector is monitored by measuring serum α1-antitrypsin on days 3 and 7, following re-administration.

The ability of adenovirus vectors based on huAd5, Pan-6, Pan-7, and Pan-9 respectively to transduce the livers of mice in the presence of neutralizing antibodies to the other serotypes was determined. The results are tabulated here.

5

1 st injection	2 nd injection	Cross-neutralization
Adhu5	Adhu5	Yes (+ve control)
	Pan-6	No
	Pan-7	No
	Pan-9 (C68)	No
Pan-6	Adhu5	No
	Pan-6	Yes (+ve control)
	Pan-7	Yes
	Pan-9 (C68)	No
Pan-7	Adhu5	No
	Pan-6	Yes
	Pan-7	Yes (+ve control)
	Pan-9 (C68)	Yes

5

10

20

25

1 st injection	2 nd injection	Cross-neutralization
Pan-9 (C68)	Adhu5	No
	Pan-6	No
	Pan-7	Yes
	Pan-9 (C68)	Yes (+ve control)

Ability of vectors to transduce murine liver in the presence of neutralizing antibodies to other serotypes.

Thus, immunization with huAd5 does not prevent re-administration with either of the chimpanzee adenovirus vectors Pan-6, Pan-7, or Pan-9 (C68). This experiment also appears to indicate that Pan-7 is between Pan-6 and Pan-9 in the spectrum of antigenic relatedness and cross-reacts with both; however Pan-6 and Pan-9 do not neutralize each other. This is a surprising result based on homology comparisons, which indicates that Pan-6 is quite distinct from Pan-7 and Pan-9. Evaluation of antisera generated against Pan-9 indicated no cross-neutralization against Pan-6 but some neutralization against Pan-7, arguing that Pan-6 is distinct from the others.

Example 10 - Generation of Recombinant E1-Deleted SV-25 Vector

A plasmid was constructed containing the complete SV-25 genome except for an engineered E1 deletion. At the site of the E1 deletion recognition sites for the restriction enzymes I-CeuI and PI-SceI which would allow insertion of transgene from a shuttle plasmid where the transgene expression cassette is flanked by these two enzyme recognition sites were inserted.

A synthetic linker containing the restriction sites SwaI-SnaBI-SpeI-AfiII-EcoRV-SwaI was cloned into pBR322 that was cut with EcoRI and NdeI. This was done by annealing together two synthetic oligomers SV25T (5'-AAT TTA AAT ACG TAG CGC ACT AGT CGC GCT AAG CGC GGA TAT CAT TTA AA-3', SEQ ID NO: 38) and SV25B (5'-TAT TTA AAT GAT ATC CGC GCT TAA GCG CGA CTA GTG CGC

TAC GTA TTT A-3', SEQ ID NO:39) and inserting it into pBR322 digested with EcoRI and NdeI. The left end (bp1 to 1057, SEQ ID NO:29) of Ad SV25 was cloned into the above linker between the SnaBI and SpeI sites. The right end (bp28059 to 31042, SEQ ID NO: 29) of Ad SV25 was cloned into the linker between the AfIII and EcoRV sites. The adenovirus E1 was then excised between the EcoRI site (bp 547) to XhoI (bp 2031) from the cloned left end as follows. A PCR generated I-CeuI-PI-SceI cassette from pShuttle (Clontech) was inserted between the EcoRI and SpeI sites. The 10154 bp XhoI fragment of Ad SV-25 (bp2031 to 12185, SEQ ID NO:29) was then inserted into the SpeI site. The resulting plasmid was digested with HindIII and the construct (pSV25) was completed by inserting the 18344 bp Ad SV-25 HindIII fragment (bp11984 to 30328, SEQ ID NO:29) to generate a complete molecular clone of E1 deleted adenovirus SV25 suitable for the generation of recombinant adenoviruses. Optionally, a desired transgene is inserted into the I-CeuI and PI-SceI sites of the newly created pSV25 vector plasmid.

To generate an AdSV25 carrying a marker gene, a GFP (green fluorescent protein) expression cassette previously cloned in the plasmid pShuttle (Clontech) was excised with the restriction enzymes I-CeuI and PI-SceI and ligated into pSV25 (or another of the Ad chimp plasmids described herein) digested with the same enzymes. The resulting plasmid (pSV25GFP) was digested with SwaI to separate the bacterial plasmid backbone and transfected into the E1 complementing cell line HEK 293. About 10 days later, a cytopathic effect was observed indicating the presence of replicative virus. The successful generation of an Ad SV25 based adenoviral vector expressing GFP was confirmed by applying the supernatant from the transfected culture on to fresh cell cultures. The presence of secondarily infected cells was determined by observation of green fluorescence in a population of the cells.

Example 11 - Construction of E3 deleted Pan-5, Pan-6, Pan-7 and C68 vectors

In order to enhance the cloning capacity of the adenoviral vectors, the E3 region
can be deleted because this region encodes genes that are not required for the propagation
of the virus in culture. Towards this end, E3-deleted versions of Pan-5, Pan-6, Pan-7, and
C68 have been made (a 3.5 kb Nru-AvrII fragment containing E31-9 is deleted).

A. E3 deleted Pan5 based vector

5

10

15

20

25

30

E1-deleted pPan5-pkGFP plasmid was treated with Avr II endonuclease to isolate a 5.8 kb fragment containing the E3 region and re-circulate pPan5-pkGFP with Avr II deletion to form construct pPan5-pkGFP-E3-Avr II. Subsequently, the 5.8 kb Avr II fragment was subcloned into pSL-Pan5-E3-Avr II for a further deletion of E3 region by Nru I digestion. This led to a plasmid pSL-Pan5-E3-deletion. The final construct pPan5-E3-pkGFP was produced by removing a 4.3 kb Avr II/Spe I fragment from pSL-Pan5-E3-deletion plasmid and inserting into pPan5-pkGFP-E3-Avr II at Avr II site. In this final construct, a 3.1 kb deletion in E3 region was accomplished.

B. E3 deletion in Pan6 based vector

E1-deleted pPan6- pkGFP molecular clone was digested with Sbf I and Not I to isolate 19.3 kb fragment and ligated back at Sbf I site. The resulting construct pPan6-Sbf I-E3 was treated with Eco 47 III and Swa I, generating pPan6-E3. Finally, 21 kb Sbf I fragment from Sbf I digestion of pPan6- pkGFP was subcloned into pPan6-E3 to create pPan6-E3-pkGFP with a 4 kb deletion in E3.

C. E3 deleted Pan7 and Pan9 vectors

The same strategy was used to achieve E3 deletions in both vectors. First, a 5.8 kb Avr II fragment spanning the E3 region was subcloned pSL-1180, followed by deletion of E3 by Nru I digestion. The resulting plasmids were treated with Spe I and Avr II to obtain 4.4 kb fragments and clone into pPan7- pkGFP and pPan9-pkGFP at Avr II sites to replace the original E3 containing Avr II fragments, respectively. The final pPan7-E3- pkGFP and pPan9-E3- pkGFP constructs have 3.5 kb E3-deletions.

Example 12 - Construction of E3- and E4-deleted Pan-7 vector

Although the deletion of the E1 region of adenoviruses (first generation adenovirus vectors) renders them replication-incompetent, expression of the adenoviral vector backbone genes is not fully abolished. Deletion of the E4 region considerably attenuates this residual gene expression and may confer a safety advantage. An E4-deleted Pan-7 vector containing a 2.5 kb deletion (a PvuII-AgeI fragment containing E4ORF1-ORF7 is deleted) has been constructed. High titer stocks of this virus were generated using a HEK 293-based cell line, which in addition to E1, expresses an essential E4 gene (orf 6).

1. E4 deletion in the molecular clone of Pan7

5

30

A 19 kb Xba I fragment was deleted from pPan7- pkGFP to create pPan7-Xba I from which a 2.5 kb E4 fragment was deleted by Age I and Pvu II partial digestion, resulting in pPan7-Xba I-E4. pPan7-E4- pkGFP plasmid was generated from pPan7-Xba I-E4 in two sequential cloning steps, adding 19 kb Xba I and 15 kb I-Ceu I/Mlu I fragments, both of which came from pPan7- pkGFP construct.

- 2. Introduction of E3 and E4 deletions in Pan9 vector
- A 11 kb plasmid, pPan9-EcoRI, containing E4 region was created by retrieving 11 kb EcoRI fragment from pPan9 pkGFP after EcoRI digestion and self-ligation. E4 region was deleted from this construct by Age I digestion/filled in and Pvu II partial digestion and slef-ligation to generate pPan9-EcoR I-E4. A 23 kb EcoR I fragment was isolated from pPan9-pkGFP and inserted into pPan9-EcoR I-E4 at EcoR I site, followed by adding 5.8 kb Avr II fragment from pPan9-pkGFP, to form the final product pPan9-E3-E4- pkGF. Compared to the genome size of wild type Pan9, this E1-E3-E4-deleted vector could have a transgene capacity up to 8 kb.
 - 3. Introduction of minigene cassettes with genes of interest including reporter genes, glyco- and nuclear proteins of Ebo into molecular clones of Pan vectors
- A highly efficient direct cloning and green/white selection procedure was employed for creating molecular clones of recombinant viruses. Briefly, genes of interest were cloned into pShuttlepkGFP by screening white colonies for recombinants. Subsequently, the minigene cassettes were transferred into chimpanzee adenovirus backbone plasmids, pPanX-pkGFP with various deletions, easily by swapping with pkGFP cassette at I-Ceu I and PI-Sce I sites and screening a few white colonies for correct recombinants.
 - 4. Rescue of molecular clones of Pan vectors with multiple deletions in early regions and virus propagation
 - For rescue of E1-E3-deleted molecular clones of chimpanzee adenovirus vectors, the clones were linearized with appropriate restriction enzymes and transfected into regular 293 cells. Once a full cytopathic effect (CPE) observed in the transfected

cells, crude lysate was harvested and expanded in 293 cells to large-scale infections. The viruses were purified by CsCl sedimentation method.

For E1-E4 and E1-E3-E4-deleted Pan vectors, 10-3 cells, a 293-based E1-E4-complementing cell line, were used for rescue and propagation of vectors. E4 ORF6 gene expression in 10-3 cells was induced by addition of 150 μ M ZnSO⁴ to the culture medium.

5

Example 13 - Vaccination with adenovirus vectors expressing wild type and variant EboZ GP.

AdHu5 or AdC7 vectors expressing Ebola envelope chimeras were 10 produced for in vivo immunization experiments in C57BL/6 mice. Recombinant viruses with different viral backbones were created by molecular cloning method in which the minigene cassettes were inserted into the place of E1-deletions. The molecular clones of all recombinant viruses were rescued and grown up in 293 cells for large-scale purification using CsCl sedimentation method. 15 Five EboZ variants encoded by AdHu5 or AdPan7 (C7) were selected and produced to evaluate their relative immunogenicity following an intramuscular Ad injection. The wt Ebo, a soluble Ebo variant, $Ebo\Delta 1$, $Ebo\Delta 2$, $Ebo\Delta 3$, $Ebo\Delta 4$, EboΔ5S, EboΔ6S, EboΔ7S and EboΔ8S were evaluated in the initial vaccine studies. For the data summarized in the following table, the number of viral 20 particles (per ml or total) produced and amplified from infected 293 cells was established by spectrophotometry reading.

Table: Production of Adhu5 or AdC7 Adenoviral vector encoding EboZ variant.

	HuAd5		AdC7			
Gene	Titer (VP x 10 ¹² /ml)	Total yield (VP x 10 ¹²)	Titer (VP x 10 ¹² /ml)	Total yield (VP x 10 ¹²)		
Ebo wt	2.6	12	4.3	43		
EboS	4.9 .	49	4.6	55		
ΕδοΔ2	2.1	9	5.8	93		
ΕbοΔ3	1.7	8	5.3	95		
Ebo∆4	3	12	4.1	62		

Vector was administered intramuscularly (10¹¹ genome copies/cell) in C57BL/6 mice and the presence of virus neutralizing antibody (VNA0 was evaluated 28 days later as a first measure of an immune response generated against the Ebola envelope glycoprotein. VNA is defined here as serum antibody able to inhibit transduction of HeLa cells mediated by HIV-based vector pseudotyped with the wild-type Ebola envelope.

VNA to the EboZ pseudotypes was detected with AdPan7 (C7) yielding higher titers than AdHu5. The EboZΔ3 elicited the highest VNA in terms of the transgene targets. For the data summarized in the following table, neutralizing antibody titers to HIV-EboZ-GFP pseudotypes (reciprocal dilution) are provided (N=5 animals/group).

	VNA Titers		. <u> </u>
	EboZ wildtype	EboZs	_EboZΔ3
AdHu5	12	16	12
AdC7	44	12	140

5

10

Example 14 - Pan7-mediated Expression of Ebola Proteins

5

30

Mouse studies to evaluate Pan-7 vectors expressing Ebola envelope proteins and the Ebola nuclear antigen have been initiated. These are directed towards evaluation of neutralizing antibodies in C57Bl/6 mice injected intramuscularly (IM) with Adhu5 or Pan-7 expressing each of 4 Ebola env constructs.

A. Evaluation of CTL from C57Bl/6 mice injected IM with Adhu5 or Pan-7 expressing the Ebola env constructs.

1. Challenge experiment in mice with Ebola virus.

Neutralizing antibody (NAB) responses to the Ebola envelope were analyzed by looking at immunized mouse sera mediated neutralization of a lentiviral 10 (HIV) vector pseudotyped with the several constructs (eEbo, NTD2, NTD3, NTD4) of the Ebola envelope glycoprotein. C57BL/6 or BALB/c mice received a single intramuscular injection of 5 x 10¹⁰ particles per mouse of C7 (Ad Pan-7) encoding Ebola envelope variant. Neutralizing antibody was evaluated 30 days post-vaccination. Briefly, Ebola Zaire pseudotyped HIV vector encoding for \(\beta\)-galactosidase (EboZ-HIV-LacZ) was 15 incubated for 2 hr at 37°C with different dilution of heat inactivated mouse serum. Following the incubation with serum, EboZ-HIV-LacZ was then used to infect HeLa cells for 16 hr at 37°C. Infectivity was revealed by X-gal staining of transduced HeLa cells positive for \(\beta \)-galactosidase. Neutralizing titer represent the serum reciprocal dilution where a 50% decrease in the number of B-galactosidase positive blue cells was observed. 20 Sera were collected 30 days post-immunization, which consisted in a single intramuscular (I.M.) administration of 5 x 10^{10} particles/animal. Neutralizing antibody to Ebola pseudotyped HIV could be detected from all groups with antibody titers ranging from 20 for Ad-EboZ (Adhu5 expressing EboZ), Ad-NTD3 (Adhu5 expressing NTD3) and C7sEbo (Ad Pan-7 expressing soluble EboZ) to over 130 for C7-NTD3 (Ad Pan-7 25 expressing soluble NTD3) and C7-NTD4 (Ad Pan-7 expressing soluble NTD3). The same immunization strategy in BALB/c mice resulted in lower neutralizing antibody titers for Ad- and C7-NTD2, and NTD4.

B. Cellular Immune Response

The cellular immune response to the Ebola envelope in C57BL/6 mice was evaluated 8 days after a single I.M. administration of 5×10^{10} particles of C7-LacZ or C7-Ebola envelope variant per animal. Mice were vaccinated I.M. with 5×10^{10} particles

of C7 encoding LacZ or Ebola envelope variant. Splenic lymphocytes from immunized mice were collected 8 days post vaccination and stimulated in vitro with feeder cells (splenic lymphocytes from untreated mice infected with human Adenovirus serotype 5 encoding for the wild-type Ebola envelope and irradiated). Standard 5-hr CTL assays were performed using ⁵¹Cr-labeled syngenic C57 cells transfected with an expressor of EboZ.

A positive MHC-restricted cytotoxic T lymphocyte (CTL) response was observed from all AdPan-7 encoding for Ebola envelope variants with a higher response from NTD2, NTD3 or NTD4 immunized mice. Indeed, effector cells from C7 encoding Ebola envelope variant immunized mice recognized EboZ transfected target cells and gave recall CTL responses up to 30% specific lysis. Less than 5% lysis was seen with effector cells from naïve or LacZ immunized control mice confirming that lysis was specific for Ebola envelope antigens.

C. Protection Studies

The most direct means of evaluating C7 (Ad Pan-7) encoding for the EboZ variants as a successful vaccine in mice was to assess protection against weight loss and death following lethal challenge with mouse adapted Ebola Zaire virus. BALB/c mice were immunized with a single dose of 5 x 10¹⁰ particles per animal as performed previously and vaccinated animals were challenged with 200 LD₅₀ of mouse adapted Ebola Zaire 21 days later. All control mice (vehicle and C7-LacZ) died between day 5 to day 9 post-challenge. In contrast, all vaccinated mice but one, (from the C7-sEbo group), survived the challenge with Ebola Zaire.

Weight loss was observed from mice vaccinated with C7-sEbo from day 4 to day 7. Signs of illness such as pilo-erection and from light to severe lethargy were also noted from mice vaccinated with C7-sEbo, NTD2 and NTD3 between day 4 to day 7. Mice immunized with C7-EboZ and C7-NTD4 did not show sign of illness. Overall, a single dose of C7-EboZ and C7-NTD4 completely protected immunized mice from illness and death possibly due to a significant T cell mediated immunity.

5

10

15

20

25

All documents recited above are incorporated herein by reference. Numerous modifications and variations of the present invention are included in the scope of the above-identified specification and are expected to be obvious to one of skill in the art.

Such modifications and alterations to the compositions and processes of the present invention, such as selections of different minigenes or selection or dosage of the vectors or immune modulators are believed to be within the scope of the claims appended hereto.

WHAT IS CLAIMED IS:

- 1. An isolated simian adenovirus nucleic acid sequence selected from the group consisting of:
 - (a) Pan5 having the sequence of nucleic acids 1 to 36462 of SEQ ID

NO:1;

(b) Pan6 having the sequence of nucleic acids 1 to 36604 of SEQ ID

NO:5;

(c) Pan7 having the sequence of nucleic acids 1 to 36535 of SEQ ID

NO:9;

(d) SV1 having the sequence of nucleic acids 1 to 34264 of SEQ ID NO:

24;

(e) SV25 having the sequence of nucleic acids 1 to 31044 of SEQ ID NO:

29;

(f) SV39 having the sequence of to nucleic acids 1 to 34115 of SEQ ID

NO: 34, and

- (g) a nucleic acid sequence complementary to the sequence of any of (a) to (f).
- 2. An isolated simian adenovirus serotype nucleic acid sequence selected from one or more of the group consisting of:
 - (a) 5' inverted terminal repeat (ITR) sequences;
- (b) the adenovirus E1a region, or a fragment thereof selected from among the 13S, 12S and 9S regions;
- (c) the adenovirus E1b region, or a fragment thereof selected from among the group consisting of the small T, large T, IX, and IVa2 regions;
 - (d) the E2b region;
- (e) the L1 region, or a fragment thereof selected from among the group consisting of the 28.1 kD protein, polymerase, agnoprotein, 52/55 kD protein, and IIIa protein;

(f) the L2 region, or a fragment thereof selected from the group consisting of the penton, VII, VI, and Mu proteins;

- (g) the L3 region, or a fragment thereof selected from the group consisting of the VI, hexon, or endoprotease;
 - (h) the 2a protein;
- (i) the L4 region, or a fragment thereof selected from the group consisting of the 100 kD protein, the 33 kD homolog, and VIII;
- (j) the E3 region, or a fragment thereof selected from the group consisting of E3 ORF1, E3 ORF2, E3 ORF3, E3 ORF4, E3 ORF5, E3 ORF6, E3 ORF7, E3 ORF8, and E3 ORF9;
- (k) the L5 region, or a fragment thereof selected from a fiber protein;
- (1) the E4 region, or a fragment thereof selected from the group consisting of E4 ORF7, E4 ORF6, E4 ORF4, E4 ORF3, E4 ORF2, and E4 ORF1; and (m) the 3' ITR,

of any of Pan5 SEQ ID NO:1; Pan6 SEQ ID NO:5; Pan7 SEQ ID NO:9; SV1 SEQ ID NO: 24; SV25 SEQ ID NO: 29; and SV39 SEQ ID NO: 34, or sequence complementary to any of (a) to (m).

- 3. A simian adenovirus protein encoded by the nucleic acid sequence according to claim 2.
- 4. A nucleic acid molecule comprising a heterologous simian adenoviral sequence according to claim 2.
- 5. The nucleic acid molecule according to claim 4, wherein said simian adenoviral sequence encodes an adenoviral gene product and is operatively linked to regulatory control sequences which direct expression of the adenoviral gene product in a host cells.

6. The nucleic acid molecule according to claim 4 or 5, wherein said simian adenoviral sequence comprises the E1a region of Pan5 SEQ ID NO:1; Pan6 SEQ ID NO:5; Pan7 SEQ ID NO:9; SV1 SEQ ID NO: 24; SV25 SEQ ID NO: 29; and SV39 SEQ ID NO: 34.

- 7. A pharmaceutical composition comprising the nucleic acid molecule according to claim 6 and a physiologically compatible carrier.
- 8. An isolated simian adenoviral capsid protein selected from the group consisting of:
- (a) a hexon protein of Pan5 SEQ ID NO:3, Pan6 SEQ ID NO:7, Pan7 SEQ ID NO:11, SV1 SEQ ID NO:26, SV25 SEQ ID NO:31or SV39 SEQ ID NO:36, or fragment thereof;
- (b) a penton protein of Pan5 SEQ ID NO:2, Pan6 SEQ ID NO:6, Pan7 SEQ ID NO:10, SV1 SEQ ID NO:25, SV25 SEQ ID NO: 30 or SV39 SEQ ID NO:35;
- (c) a fiber protein of Pan5 SEQ ID NO:4, Pan6 SEQ ID NO:8, Pan7 SEQ ID NO:12, SV1 SEQ ID NO: 27 and SEQ ID NO:28, SV25 SEQ ID NO: 32 and SEQ ID NO:33 or SV39 SEQ ID NO: 37, or a fragment thereof.
- 9. An artificial adenovirus serotype comprising a capsid protein according to claim 8 or a fragment thereof.
- 10. The artificial adenovirus serotype according to claim 9, wherein said capsid comprises a fragment of the hexon protein selected from the group consisting of Pan5 SEQ ID NO: 15, Pan6 SEQ ID NO:16 and Pan7 SEQ ID NO:17.
- 11. The artificial adenovirus serotype according to claim 9 or 10, wherein said capsid comprises a fragment of the fiber protein selected from the group consisting of Pan6 SEQ ID NO: 19, Pan7 SEQ ID NO:20 and Pan5 SEQ ID NO:21.

12. A nucleic acid molecule comprising a heterologous sequence encoding a protein according to claims 3 or 8 or an artificial adenovirus serotype according to any of claims 9 to 11.

- 13. A recombinant vector comprising a simian adenovirus sequence according to claim 2 or a nucleic acid molecule according to claim 4 or 12 and a heterologous gene operatively linked to sequences which direct expression of said gene in a host cell.
- 14. The recombinant vector according to claim 13, further comprising 5' and 3' adenovirus cis-elements necessary for replication and encapsidation.
- 15. The recombinant vector according to claim 13 or claim 14, wherein said vector is a virus.
- 16. The recombinant vector according to any of claims 13 to 15 wherein said vector lacks all or a part of the E1 gene.
- 17. A recombinant virus comprising a simian capsid protein according to claim 3 or an artificial adenovirus serotype according to any of claims 9 to 11.
- 18. A host cell comprising a nucleic acid molecule according to any of claims 4 to 6 or 12, a recombinant vector according to any of claims 13 to 16, or a recombinant virus according to claim 17.
- 19. The host cell according to claim 18, wherein said host cell is stably transformed with the nucleic acid molecule or the recombinant vector.

20. The host cell according to claim 18 or claim 19, wherein said host cell expresses one or more adenoviral gene products from said nucleic acid molecule or recombinant vector, said adenoviral gene products selected from the group consisting of E1a, E1b, E2a, and E4 ORF6.

- 21. The host cell according to any of claims 18 to 20, wherein said host cell is stably transformed with a nucleic acid molecule comprising the simian adenovirus inverted terminal repeats.
- 22. A composition comprising a recombinant vector in a pharmaceutically acceptable carrier, said vector comprising a similar adenovirus sequence according to any of claims 1 or 2 and a selected heterologous gene operatively linked to regulatory sequences which direct expression of said gene in a host cell.
- 23. A method for delivering a heterologous gene to a mammalian cell comprising introducing into said cell an effective amount of the vector of any of claims 13 to 16 or a virus according to claim 17.
- 24. A method for repeat administration of a heterologous gene to a mammal comprising the steps of:
- (a) introducing into said mammal a first vector which comprises the heterologous gene and
- (b) introducing into said mammal a second vector which comprises the heterologous gene;

wherein at least the first virus or the second vector is a virus according to claim 17 and wherein the first and second recombinant vector are different.

25. A method for producing a selected gene product comprising infecting a mammalian cell with the vector of any of claims 13 to 16 or a virus according to claim 17, culturing said cell under suitable conditions and recovering from said cell culture the expressed gene product.

26. A method for eliciting an immune response in a mammalian host against an infective agent comprising administering to said host an effective amount of the recombinant adenovirus of claim 17, wherein said heterologous gene encodes an antigen of the infective agent.

- 27. The method according to claim 26, comprising the step of priming the host with a DNA vaccine comprising the heterologous gene prior to administering the recombinant adenovirus.
- 28. A composition comprising a simian adenovirus capsid protein according to claim 8 linked to a heterologous molecule for delivery to a selected host cell.
- 29. A method for targeting a cell having an adenoviral receptor comprising delivering to a subject a composition according to claim 28.

FIGURE 1

Hu5	APKGAPNPCEWDEAATALEINLEEEDDDNEDEVDEQAEQQKTHVFGQAPYSGINITKEGIQIGVEGQT
Pan-6	apkgapnssqweqaktg
Pan-5	APKGAPNTCOMTYKADGDIGTEKTYTYGNAPVQGISITKDGIQLGIDIDD
Pan-7	APKGAPNTCQWTYKAGDIDTEKTYTYGNAPVQGISITKDGIQLGTDSDG
Pan-9	APKGAPNTCOWTYKADGETATEKTYTYGNAPVQGINITKDGIQLGTDTDD
;	D - MOONT 44 TO THE MORNING TO THE CONTRACT OF
cny	FAIANAIE QEEFULGES WILLIE LIN- IITAKON VALUETI EFIKECIGS EANE INNSEGULGANAN VALUETI EFIKECIGS EANE INNSEGULGANAN VALUETI EFIKECIGS EANE INNSEGULGANAN VALUETINE EN SAMENAN VALU
Pan-6	NKPIYADKIFOPEPOVGEKNWOETENFYGGKALKKUTNMKECYGSIAKFINENGGQANLANGUFOFF
Fan-5	-QYIYQYKIYQYGDASWHDIYGIDENIGGRADNFUINGNYCIGSEANFINAGGQANVALEIGG >>+++>>amaxonaanagaanagaanagaanagaanagaanagaanaga
Pan-/	-QAIXADETIQEEPQVGDAEWHDITGTDEKIGGRADREDTRWRFCIGSFARFINAEGGGANVRIEIGG
Pan-9	-QPIYADKTYQPEPQVGDAEWHDITGTDEKYGGRALKPDTKWKPCYGSFAKPTNKEGGQANVKTGTGT
Hu5	Klesqvemoffstteatagngdnltprvvlysedvdietpdthisymptikegnsrelmgqqsmpny
Pan-6	tkefdidlaffdipggtvngodeykadivmytentyletpdthvvykpgkodasseinivgosmpnrpny
Pan-5	TKEYDIDMAFFDNRSAAAGLAPEIVLYTENVDLETPDTHIVYKAGTDDSSSSINLGQQSMPNRPNY
Pan-7	TKEYDIDMAFFDNRSAAAGLAPEIVLYTENVDLETPDTHIVYKAGTDDSSSSINLGQQSMPNRPNY
Pan-9	TKEYDIDMAFFDNRSAAAGLAPEIVLYTENVDLETPDTHIVYKAGTDDSSSSINLGQQAMPNRPNY
Hu5	Iafrdneiglmyynstgnmgvlaggasolnavvdlodrntelsyollidsigdrtryfsmmvgavdsydp
Pan-6	igfrdnfiglmyynstgnmgvlagoasolnavydlodrntelsyollidslgdrtryfsmmoavdsydp
Pan-5	IGERDNEIGLMYYNSTGNMGVLAGQASQLNAVVDLQDRNTELSYQLLLDSLGDRTRYFSMWNQAVDSYDP
Pan-7	IGFRDNFIGLMYYNSTGNMGVLAGQASQLNAVVDLQDRNTELSYQLLLDSLGDRTRYFSMMNQAVDSYDP
Pan-9	igfrdnfiglmyynstgnmgvlaggasglnavvdlodrntelsyglildsigdrtryfsmmvgavdsydp
Hu5	DVRIIBNHGTEDBLPNYCFELGGVINTETLTKVKPKTGQENGWEKDATEF9DKNEIRVGNNFAMEI
Pan-6	DVRIIENHGVEDELPNYCFPLDGSGTNAAYQGVKVKDGQDGDVESEWENDDTVA-ARNQLCKGNIFAMEI
Pan-5	DVRIIBNHGVEDELPNYCFPLDAVGRIDTYQGIKANGADQTIWTKDDTVN-DANELGKGNPFAMEI
Pan-7	DVRIIBNHGVEDELPNYCFPLDAVGRTDTYQGIKANGDNQTTWTKDDTVN-DANELGKGNPFAMEI
Pan-9	DVRIIENHGVEDELPNYCFPLDAVGRTDTYQGIKANGTDQTTWTKDDSVN-DANEIGKGNPFAMEI

(1) THE PERFORMANCE OF THE CAREST OF THE SYLV GSG-NAMP (1) THE PERFORMANCE OF THE CAREST OF THE SYLV GSG-NAMP (1) THE PERFORMENT OF THE SYLV THE SOLUTION OF THE SYLV THE S	(50) ITCENSSAQVELRE ANGVELTEHSTLKKWAGYRONDSIDGTPENRAVER (51) INDETKSALVELRE SDETMENSSAVGD NNFFEGOTTGSVATTAVER (49) MTCENSSVSIFLRE ONE MENSSLKKH NNF NGNSTNANPENVOR (49) ISCENOSAHLIIRE ENSKELDNE NNSFLDPENNF NEDLTEGTATTHAVER (50) ITMETSTALVSLKE BANGY OSSSTLDSDE NFFKGDVTPAEPENVILLE (50) ITCENTALVSLKE BANGY OSSSTLDSDE NFFKGDVTPAEPENVILLE	(100) KENLKA FKSQSSTTANNI GO DANDOVSKAMITTELL GDDS (101) KENIGA FKSQSSTTANNI GO KLIETTANATITE FKG DEK-DITP (99) KENIGA FKIQSQTAKNNI SOK LINGDKIKANI TELLO SESTETSE (99) KENIGA FKSHGKIA SNI SOK LINGDKIKANI TELLO OET-GDIT (100) KENIKA FKNISAASKSHI SOK LINGDEAKELMI FKE EDAT (100) KENIKA FKNISGAARSHI GKA ELHOTGKELD I FKE EDAT	(145) NST SMS SYTYT-NGSYVGATFGAN YT S LOE (150) VST SMT TWOWTGDYKDKNITFAIN FS LOO (149) VST SMS TWSWE-SGKYTTETFAIN YT SA LOE (148) PSA SMS SWD S-GHNY INEIFAIS YT S LOO (146) -CT SIT QWKWD-STKYTGETLATS FT SE LOE (146) -CT CIN QWGWG-ADQYKNETLAYS FT
knob knob knob knob knob	knob knob knob knob knob	knob knob knob knob knob	knob knob knob knob knob
fiber fiber fiber fiber fiber	fiber fiber fiber fiber fiber	fiber fiber fiber fiber fiber	fiber fiber fiber fiber fiber
Pan-9 Pan-6 Ad 2 Ad 5 Pan-7	Pan-9 Pan-6 Ad 2 Ad 5 Pan-7	Pan-9 Pan-6 Ad 2 Ad 5 Pan-7 Pan-5	Pan-9 Pan-6 Ad 2 Ad 5 Pan-7
	- A	_	

SEQUENCE LISTING

<110> The Trustees of the University of Pennsylvania Wilson, James M. Gao, Guangping Roy, Soumitra <120> Simian Adenovirus Nucleic Acid and Amino Acid Sequences, Vectors Containing Same, and Methods of Use <130> UPN-02677PCT <150> US 60/331,951 <151> 2001-11-21 <150> US 60/366,798 <151> 2002-03-22 <160> 39 <170> PatentIn version 3.1 <210> 1 <211> 36462 <212> DNA <213> chimpanzee adenovirus serotype Pan5 <220> <221> CDS <222> (13898)..(15490) <223> L2 Penton <220> <221> CDS <222> (18315)..(21116) <223> L3 Hexon <220> <221> CDS <222> (32035)..(33372) <223> L5 Fiber <400> 1 catcatcaat aatatacctc aaacttttgg tgcgcgttaa tatgcaaatg aggtatttga 60 120 tgacgttttg atgacgtggc cgtgaggcgg agccggtttg caagttctcg tgggaaaagt 180 gacgtcaaac gaggtgtggt ttgaacacgg aaatactcaa ttttcccgcg ctctctgaca 240 ggaaatgagg tgtttctggg cggatgcaag tgaaaacggg ccattttcgc gcgaaaactg 300 aatgaggaag tgaaaatctg agtaattccg cgtttatggc agggaggagt atttgccgag 360 ggccgagtag actitgaccg attacgtggg ggtttcgatt accgtatttt tcacctaaat 420

ttccgcgtac ggtgtcaaag tccggtgttt ttacgtaggt gtcagctgat cgccagggta 480 tttaaacctg cgctctctag tcaagaggcc actcttgagt gccagcgagt agagttttct 540 cctccgcgcc gcgagtcaga tctacacttt gaaagatgag gcacctgaga gacctgcccg 600 gtaatgtttt cctggctact gggaacgaga ttctggaact ggtggtggac gccatgatgg 660 gtgacgaccc tccggagccc cctaccccat ttgaagcgcc ttcgctgtac gatttgtatg 720 atctggaggt ggatgtgccc gagaacgacc ccaacgagga ggcggtgaat gatttgttta 780 gcgatgccgc gctgctggct gccgagcagg ctaatacgga ctctggctca gacagcgatt 840 cctctctcca taccccgaga cccggcagag gtgagaaaaa gatccccgag cttaaagggg . 900 aagagetega eetgegetge tatgaggaat gettgeetee gagegatgat gaggaggaeg 960 aggaggcgat tcgagctgca gcgaaccagg gagtgaaaac agcgagcgag ggctttagcc 1020 tggactgtcc tactctgccc ggacacggct gtaagtcttg tgaatttcat cgcatgaata 1080 ctggagataa gaatgtgatg tgtgccctgt gctatatgag agcttacaac cattgtgttt 1140 acagtaagtg tgattaactt tagctgggga ggcagagggt gactgggtgc tgactggttt 1200 atttatgtat atgtttttta tgtgtaggtc ccgtctctga cgtagatgag acccccacta 1260 cagagtgcat ttcatcaccc ccagaaattg gcgaggaacc gcccgaagat attattcata 1320 gaccagttgc agtgagagtc accgggcgta gagcagctgt ggagagtttg gatgacttgc 1380 tacagggtgg ggatgaacct ttggacttgt gtacccggaa acgccccagg cactaagtgc 1440 cacacatgtg tgtttactta aggtgatgtc agtatttata gggtgtggag tgcaataaaa 1500 tccgtgttga ctttaagtgc gtggtttatg actcaggggt ggggactgtg ggtatataag 1560 caggtgcaga cctgtgtggt cagttcagag caggactcat ggagatctgg acagtcttgg 1620 aagactttca ccagactaga cagctgctag agaactcatc ggagggagtc tcttacctgt 1680 ggagattctg cttcggtggg cctctagcta agctagtcta tagggccaag caggattata 1740 aggatcaatt tgaggatatt ttgagagagt gtcctggtat ttttgactct ctcaacttgg 1800 gccatcagtc tcactttaac cagagtattc tgagagccct tgacttttct actcctggca 1860 gaactaccgc cgcggtagcc ttttttgcct ttatccttga caaatggagt caagaaaccc 1920 atttcagcag ggattaccgt ctggactgct tagcagtagc tttgtggaga acatggaggt 1980 gccagcgcct gaatgcaatc tccggctact tgccagtaca gccggtagac acgctgagga 2040 tectgagtet ceagteacee caggaacace aacgeegeca geageegeag caggageage 2100

agcaagagga ggaccgagaa gagaacctga gagccggtct ggaccctccg gtggcggagg 2160 aggaggagta gctgacttgt ttcccgagct gcgccgggtg ctgactaggt cttccagtgg 2220 acgggagagg gggattaagc gggagaggca tgaggagact agccacagaa ctgaactgac 2280 2340 tgtcagtctg atgagtcgca ggcgcccaga atcggtgtgg tggcatgagg tgcagtcgca ggggatagat gaggtctcag tgatgcatga gaaatattcc ctagaacaag tcaagacttg 2400 ttggttggag cccgaggatg attgggaggt agccatcagg aattatgcca agctggctct 2460 gaggccagac aagaagtaca agattaccaa actgattaat atcagaaatt cctgctacat 2520 2580 ttcagggaat ggggccgagg tggagatcag tacccaggag agggtggcct tcagatgctg 2640 catgatgaat atgtacccgg gggtggtggg catggaggga gtcaccttta tgaacgcgag 2700 gttcaggggt gatgggtata atggggtggt ctttatggcc aacaccaagc tgacagtgca 2760 cggatgctcc ttctttggct tcaataacat gtgcattgag gcctggggca gtgtttcagt 2820 gaggggatgc agtttttcag ccaactggat gggggtcgtg ggcagaacca agagcatggt 2880 gtcagtgaag aaatgcctgt tcgagaggtg ccacctgggg gtgatgagcg agggcgaagc caaagtcaaa cactgcgcct ctaccgagac gggctgcttt gtactgatca agggcaatgc 2940 3000 caaagtcaag cataatatga tctgtggggc ctcggatgag cgcggctacc agatgctgac 3060 ctgcgccggt gggaacagcc atatgctagc caccgtgcat gtggcctcgc acccccgcaa 3120 gacatggccc gagttcgagc acaacgtcat gacccgctgc aatgtgcacc tggggtcccg 3180 cegaggeatg tteatgeeet accagtgeaa catgeaattt gtgaaggtge tgetggagee 3240 cgatgccatg tccagagtga gcctgacggg ggtgtttgac atgaatgtgg agctgtggaa 3300 aattctgaga tatgatgaat ccaagaccag gtgccgggcc tgcgaatgcg gaggcaagca 3360 egecaggett cagecegtgt gtgtggaggt gaeggaggae etgegaeeeg ateatttggt 3420 gttgtcctgc aacgggacgg agttcggctc cagcggggaa gaatctgact agagtgagta 3480 gtgtttggga ctgggtggga gcctgcatga tgggcagaat gactaaaatc tgtgtttttc tgcgcagcag catgagcgga agcgcctcct ttgagggagg ggtattcagc ccttatctga 3540 eggggegtet ceceteetgg gegggagtge gteagaatgt gatgggatee aeggtggaeg 3600 3660 geoggeoegt geageoegeg aactetteaa coetgaceta egegaceetg ageteetegt ccgtggacgc agctgccgc gcagctgctg cttccgccgc cagcgccgtg cgcggaatgg 3720 ccctgggcgc cggctactac agctctctgg tggccaactc gagttccacc aataatcccg 3780 ccagcctgaa cgaggagaag ctgctgctgc tgatggccca gctcgaggcc ctgacccagc 3840 gcctgggcga gctgacccag caggtggctc agctgcaggc ggagacgcgg gccgcggttg 3900 ccacggtgaa aaccaaataa aaaatgaatc aataaataaa cggagacggt tgttgatttt 3960 4020 aacacagagt cttgaatctt tatttgattt ttcgcgcgcg gtaggccctg gaccaccggt 4080 ctcgatcatt gagcacccgg tggatctttt ccaggacccg gtagaggtgg gcttggatgt 4140 tgaggtacat gggcatgagc ccgtcccggg ggtggaggta gctccattgc agggcctcgt 4200 gctcgggggt ggtgttgtaa atcacccagt catagcaggg gcgcagggcg tggtgctgca cgatgtcctt gaggaggaga ctgatggcca cgggcagccc cttggtgtag gtgttgacga 4260 4320 acctgttgag ctgggaggga tgcatgcggg gggagatgag atgcatcttg gcctggatct 4380 tgagattggc gatgttcccg cccagatccc gccgggggtt catgttgtgc aggaccacca 4440 gcacggtgta tccggtgcac ttggggaatt tgtcatgcaa cttggaaggg aaggcgtgaa 4500 agaatttgga gacgcccttg tgaccgccca ggttttccat gcactcatcc atgatgatgg cgatgggccc gtgggcggcg gcttgggcaa agacgtttcg ggggtcggac acatcgtagt 4560 4620 tgtggtcctg ggtgagctcg tcataggcca ttttaatgaa tttggggcgg agggtgcccg actgggggac gaaggtgccc tcgatcccgg gggcgtagtt gccctcgcag atctgcatct 4680 4740 cccaggcctt gagctcggag ggggggatca tgtccacctg cggggcgatg aaaaaaacgg 4800 tttccggggc gggggagatg agctgggccg aaagcaggtt ccggagcagc tgggacttgc cgcagccggt ggggccgtag atgaccccga tgaccggctg caggtggtag ttgagggaga 4860 4920 gacagetgee gteetegegg aggagggggg ceacetegtt cateateteg egeacatgea 4980 tgttctcgcg cacgagttcc gccaggaggc gctcgcccc aagcgagagg agctcttgca 5040 gcgaggcgaa gtttttcagc ggcttgagcc cgtcggccat gggcattttg gagagggtct gttgcaagag ttccagacgg tcccagagct cggtgatgtg ctctagggca tctcgatcca 5100 gcagacetec tegittegeg ggitgggggg actgegggag tagggeacea ggegatggge 5160 gtecagegag gecagggtee ggteetteea ggggegeagg gteegegtea gegtggtete 5220 cgtcacggtg aaggggtgcg cgccgggctg ggcgcttgcg agggtgcgct tcaggctcat 5280 ccggctggtc gagaaccgct cccggtcggc gccctgcgcg tcggccaggt agcaattgag 5340 catgagttcg tagttgagcg cctcggccgc gtggcccttg gcgcggagct tacctttgga 5400 agtgtgtccg cagacgggac agaggaggga cttgagggcg tagagcttgg gggcgaggaa 5460 gacggactcg ggggcgtagg cgtccgcgcc gcagctggcg cagacggtct cgcactccac 5520

5580 gagccaggtg aggtctggcc ggtcggggtc aaaaacgagg tttcctccgt gctttttgat 5640 gcgtttctta cctctggtct ccatgagctc gtgtccccgc tgggtgacaa agaggctgtc 5700 cgtgtccccg tagaccgact ttatgggccg gtcctcgagc ggggtgccgc ggtcctcgtc 5760 gtagaggaac cccgcccact ccgagacgaa ggcccgggtc caggccagca cgaaggaggc 5820 cacgtgggag gggtagcggt cgttgtccac cagcgggtcc accttctcca gggtatgcaa 5880 gcacatgtcc ccctcgtcca catccaggaa ggtgattggc ttgtaagtgt aggccacgtg accgggggtc ccggccgggg gggtataaaa gggggcgggc ccctgctcgt cctcactgtc 5940 6000 ttccggatcg ctgtccagga gcgccagctg ttggggtagg tattccctct cgaaggcggg 6060 catgaceteg geacteaggt tgteagttte tagaaacgag gaggatttga tattgaeggt 6120 geogttggag acgeetttea tgageecete gteeatetgg teagaaaaga egatetttt 6180 gttgtcgagc ttggtggcga aggagccgta gagggcgttg gagagcagct tggcgatgga 6240 gegeatggte tggttetttt cettgtegge gegeteettg geggegatgt tgagetgeac 6300 gtactcgcgc gccacgcact tccattcggg gaagacggtg gtgagcttgt cgggcacgat 6360 totgaccege cageegegt tgtgeagggt gatgaggtee aegetggtgg ecacetegee gcgcaggggc tcgttggtcc agcagaggcg cccgcccttg cgcgagcaga aggggggcag 6420 6480 cgggtccagc atgagctcgt cgggggggtc ggcgtccacg gtgaagatgc cgggcaggag ctcggggtcg aagtagctga tgcaggtgcc cagatcgtcc agcgccgctt gccagtcgcg ·6540 6600 cacggccagc gcgcgctcgt aggggctgag gggcgtgccc cagggcatgg ggtgcgtgag cgcggaggcg tacatgccgc agatgtcgta gacgtagagg ggctcctcga ggacgccgat 6660 6720 gtaggtgggg tagcagcgcc ccccgcggat gctggcgcgc acgtagtcgt acagctcgtg 6780 cgagggcgcg aggagcccgg tgccgaggtt ggagcgctgc ggcttttcgg cgcggtagac gatctggcgg aagatggcgt gggagttgga ggagatggtg ggcctctgga agatgttgaa 6840 6900 gtgggcgtgg ggcagtccga ccgagtccct gatgaagtgg gcgtaggagt cctgcagctt ggcgacgage tcggcggtga cgaggacgte cagggcgcag tagtcgaggg tetettggat 6960 gatgtcgtac ttgagctggc ccttctgctt ccacagctcg cggttgagaa ggaactcttc 7020 gcggtccttc cagtactctt cgagggggaa cccgtcctga tcggcacggt aagagcccac 7080 7140 catgtagaac tggttgacgg ccttgtaggc gcagcagccc ttctccacgg ggagggcgta agettgegeg geettgegea gggaggtgtg ggtgagggeg aaggtgtege geaccatgae 7200 cttgaggaac tggtgcttga agtcgaggtc gtcgcagccg ccctgctccc agagctggaa 7260

gtccgtgcgc	ttcttgtagg	cggggttggg	caaagcgaaa	gtaacatcgt	tgaagaggat	7320
cttgcccgcg	cggggcatga	agttgcgagt	gatgcggaaa	ggctggggca	cctcggcccg	7380
gttgttgatg	acctgggcgg	cgaggacgat	ctcgtcgaag	ccgttgatgt	tgtgcccgac	7440
gatgtagagt	tccacgaatc	gegggeggee	cttgacgtgg	ggcagcttct	tgagctcgtc	7500
gtaggtgagc	tcggcggggt	cgctgaggcc	gtgctgctcg	agggcccagt	cggcgaggtg	7 560
ggggttggcg	ccgaggaagg	aagtccagag	atccacggcc	agggcggtct	gcaagcggtc	7620
ccggtactga	cggaactgct	ggcccacggc	cattttttcg	ggggtgacgc	agtagaaggt	7680
gcgggggtcg	ccgtgccagc	ggtcccactt	gagctggagg	gcgaggtcgt	gggcgagctc	7740
gacgagcggc	gggtccccgg	agagtttcat	gaccagcatg	aaggggacga	gctgcttgcc	7800
gaaggacccc	atccaggtgt	aggtttccac	gtcgtaggtg	aggaagagcc	tttcggtgcg	7860
aggatgcgag	ccgatgggga	agaactggat	ctcctgccac	cagttggagg	aatggctgtt '	7920
gatgtgatgg	aagtagaaat	gccgacggcg	cgccgagcac	tcgtgcttgt	gtttatacaa	7980
gcgtccgcag	tgctcgcaac	gctgcacggg	atgcacgtgc	tgcacgagct	gtacctgggt	8040
tcctttgacg	aggaatttca	gtgggcagtg	gagcgctggc	ggctgcatct	ggtgctgtac	8100
tacgtcctgg	ccatcggcgt	ggccatcgtc	tgcctcgatg	gtggtcatgc	tgacgaggcc	8160
gcgcgggagg	caggtccaga	cctcggctcg	gacgggtcgg	agagcgagga	cgagggcgcg _.	8220
caggccggag	ctgtccaggg	tcctgagacg	ctgcggagtc	aggtcag t gg	gcagcggcgg	8280
cgcgcggttg	acttgcagga	gcttttccag	ggcgcgcggg	aggtccagat	ggtacttgat	8340
ctccacggcg	ccgttggtgg	cgacgtccac	ggcttgcagg	gtcccgtgcc	cctggggcgc	8400
caccaccgtg	ccccgtttct	tcttgggtgc	tggcggcggc	ggctccatgc	ttagaagcgg	8460
cggcgaggac	gcgcgccggg	cggcaggggc	ggctcggggc	ccggaggcag	gggcggcagg	8520
ggcacgtcgg	cgccgcgcgc	gggcaggttc	tggtactgcg	cccggagaag	actggcgtga	8580
gcgacgacgc	gacggttgac	gtcctggatc	tgacgcctct	gggtgaaggc	cacgggaccc	8640
gtgagtttga	acctgaaaga	gagttcgaca	gaatcaatct	cggtatcgtt	gacggcggcc	8700
tgccgcagga	tctcttgcac	gtcgcccgag	ttgtcctggt	aggcgatctc	ggtcatgaac	8760
tgctcgatct	cctcctcctg	aaggtctccg	cgaccggcgc	gctcgacggt	ggccgcgagg	8820
tcgttggaga	tgcggcccat	gagctgcgag	aaggcgttca	tgccggcctc	gttccagacg	8880
cggctgtaga	ccacggctcc	gteggggteg	cgcgcgcgca	tgaccacctg	ggcgaggttg	8940

agctcgacgt	ggcgcgtgaa	gaccgcgtag	ttgcagaggc	gctggtagag	gtagttgagc	9000
gtggtggcga	tgtgctcggt	gacgaagaag	tacatgatcc	agcggcggag	cggcatctcg	9060
ctgacgtcgc	ccagggcttc	caagcgctcc	atggcctcgt	agaagtccac	ggcgaagttg	9120
aaaaactggg	agttgcgcgc	cgagacggtc	aactcctcct	ccagaagacg	gatgagctcg	9180
gcgatggtgg	cgcgcacctc	gcgctcgaag	gcccggggg	gctcctcttc	ttccatctcc	9240
tcctcctct	ccatctcctc	cactaacatc	tcttctactt	cctcctcagg	aggcggcggc	9300
ggggga gggg	ccctgcgtcg	ccggcggcgc	acgggcagac	ggtcgatgaa	gcgctcgatg	9360
gtctccccgc	gccggcgacg	catggtctcg	gtgacggcgc	gcccgtcctc	geggggeege	9420
agcgtgaaga	cgccgccgcg	catctccagg	tggccgccgg	gggggtetee	gttgggcagg	9480
gagagggcgc	tgacgatgca	tcttatcaat	tggcccgtag	ggactccgcg	caaggacctg	9540
agcgtctcga	gatccacggg	atccgaaaac	cgctgaacga	aggcttcgag	ccagtcgcag	9600
tcgcaaggta	ggctgagccc	ggtttcttgt	tcttcgggta	tttggtcggg	aggcggg c gg	9660
gcgatgctgc	tggtgatgaa	gttgaagtag	gcggtcctga	gacggcggat	ggtggcgagg	9720
agcaccaggt	ccttgggccc	ggcttgctgg	atgcgcagac	ggtcggccat	gccccaggcg	9780
tggtcctgac	acctggcgag	gtccttgtag	tagtcctgca	tgagccgctc	cacgggcacc	9840
tactactaga	ccgcgcggcc	gtgcatgcgc	gtgagcccga	accegegetg	cggctggacg	9900
agcgccaggt	cggcgacgac	gcgctcggcg	aggatggcct	gctggatctg	ggtgagggtg	9960
gtctggaagt	cgtcgaagtc	gacgaagcgg	tggtaggctc	cggtgttgat	ggtgtaggag	10020
cagttggcca	tgacggacca	gttgacggtc	tggtggccgg	ggcgcacgag	ctcgtggtac	10080
ttgaggcgcg	agtaggcgcg	cgtgtcgaag	atgtagtcgt	tgcaggtgcg	cacgaggtac	10140
tggtatccga	cgaggaagtg	cggcggcggc	tggcggtaga	geggeeateg	ctcggtggcg	10200
ggggcgccgg	gcgcgaggtc	ctcgagcatg	aggcggtggt	agccgtagat	gtacctggac	10260
atccaggtga	tgccggcggc	ggtggtggag	gcgcgcggga	actcgcggac	geggttecag	10320
atgttgcgca	gcggcaggaa	gtagttcatg	gtggccgcgg	tetggecegt	gaggcgcgcg	10380
cagtcgtgga	tgctctagac	atacgggcaa	aaacgaaagc	ggtcagcggc	tcgactccgt	10440
ggcctggagg	ctaagcgaac	gggttgggct	gcgcgtgtac	: cccggttcga	gtccctgctc	10500
gaatcaggct	ggagccgcag	ctaacgtggt	actggcacto	ccgtctcgac	: ccaagcctgc	10560
taacgaaaco	: tccaggatac	ggaggcgggt	cgttttggcc	: attttcgtca	ggccggaaat	10620
gaaactagta	agcgcggaaa	geggeegtee	gcgatggcto	gctgccgtag	r tctggagaaa	10680

gaategecag ggttgegttg eggtgtgece eggttegage eteagegete ggegeeggee 10740 ggattccgcg gctaacgtgg gcgtggctgc cccgtcgttt ccaagacccc ttagccagcc 10800 10860 gacttotoca gttacggago gagoccotot ttttottgtg tttttgccag atgcatcccg 10920 tactgcggca gatgcgcccc caccctccac cacaaccgcc cctaccgcag cagcagcaac 10980 ageoggeget tetgececeg ecceageage ageagecage caetacegeg geggeegeeg 11040 tgagcggagc cggcgttcag tatgacctgg ccttggaaga gggcgagggg ctggcgcgc tgggggggtc .gtcgccggag cggcacccgc gcgtgcagat gaaaagggac gctcgcgagg 11100 11160 cctacgtgcc caagcagaac ctgttcagag acaggagcgg cgaggagccc gaggagatgc 11220 gegeeteeg ettecaegeg gggegggage tgeggeggg cetggaeega aagegggtge 11280 tgagggacga ggatttcgag gcggacgagc tgacggggat cagccccgcg cgcgcacg 11340 tggccgcggc caacctggtc acggcgtacg agcagaccgt gaaggaggag agcaacttcc 11400 aaaaatcctt caacaaccac gtgcgcacgc tgatcgcgcg cgaggaggtg accctgggcc 11460 tgatgcacct gtgggacctg ctggaggcca tcgtgcagaa ccccacgagc aagccgctga cggcgcagct gtttctggtg gtgcagcaca gtcgggacaa cgagacgttc agggaggcgc 11520 tgctgaatat caccgagccc gagggccgct ggctcctgga cctggtgaac attctgcaga 11580 gcatcgtggt gcaggagcgc gggctgccgc tgtccgagaa gctggcggcc atcaacttct 11640 cggtgctgag cctgggcaag tactacgcta ggaagatcta caagaccccg tacgtgccca 11700 tagacaagga ggtgaagatc gacgggtttt acatgcgcat gaccctgaaa gtgctgaccc 11760 tgagcgacga tctgggggtg taccgcaacg acaggatgca ccgcgcggtg agcgccagcc 11820 geoggegega getgagegae caggagetga tgeacageet geagegggee etgacegggg 11880 ccgggaccga gggggagagc tactttgaca tgggcgcgga cctgcgctgg cagcctagcc 11940 12000 geegggeett ggaagetgee ggeggtteee eetaegtgga ggaggtggae gatgaggagg aggagggcga gtacctggaa gactgatggc gcgaccgtat ttttgctaga tgcagcaaca 12060 12120 gccaccgccg cctcctgatc ccgcgatgcg ggcggcgctg cagagccagc cgtccggcat taactcctcg gacgattgga cccaggccat gcaacgcatc atggcgctga cgacccgcaa 12180 12240 tecegaagee tttagacage ageeteagge caacegaete teggeeatee tggaggeegt 12300 ggtgccctcg cgctcgaacc ccacgcacga gaaggtgctg gccatcgtga acgcgctggt ggagaacaag gccatccgcg gcgacgaggc cgggctggtg tacaacgcgc tgctggagcg 12360

cgtggcccgc tacaacagca ccaacgtgca gacgaacctg gaccgcatgg tgaccgacgt	12420
gegegaggeg gtgtegeage gegageggtt ccaeegegag tegaacetgg getecatggt	12480
	10540
ggcgctgaac gccttcctga gcacgcagcc cgccaacgtg ccccggggcc aggaggacta	12540
caccaacttc atcagegege tgeggetgat ggtggeegag gtgeeceaga gegaggtgta	12600
ccagtcgggg ccggactact tcttccagac cagtcgccag ggcttgcaga ccgtgaacct	12660
gagccagget ttcaagaact tgcagggact gtggggcgtg caggccccgg tcggggaccg	12720
cgcgacggtg tcgagcctgc tgacgccgaa ctcgcgcctg ctgctgctgc tggtggcgcc	12780
cttcacggac agcggcagcg tgagccgcga ctcgtacctg ggctacctgc ttaacctgta	12840
ccgcgaggcc atcgggcagg cgcacgtgga cgagcagacc taccaggaga tcacccacgt	12900
gageegegeg etgggeeagg aggaceeggg caacetggag geeaceetga acttectget	12960
gaccaaccgg togcagaaga toccgcccca gtacgcgctg agcaccgagg aggagcgcat	13020
cctgcgctac gtgcagcaga gcgtggggct gttcctgatg caggaggggg ccacgcccag	13080
cgccgcgctc gacatgaccg cgcgcaacat ggagcccagc atgtacgccc gcaaccgccc	13140
gttcatcaat aagctgatgg actacttgca tcgggcggcc gccatgaact cggactactt	13200
taccaacgcc atcttgaacc cgcactggct cccgccgccc gggttctaca cgggcgagta	13260
cgacatgccc gaccccaacg acgggttcct gtgggacgac gtggacagca gcgtgttctc	13320
geogegeece accaecacea cegtgtggaa gaaagaggge ggggacegge ggccgteete	13380
ggcgctgtcc ggtcgcgcgg gtgctgccgc ggcggtgccc gaggccgcca gccccttccc	13440
gagectgeee ttttegetga acagegtgeg cageagegag etgggtegge tgaegeggee	13500
gegeetgetg ggegaggagg agtacetgaa egaeteettg etteggeeeg agegegagaa	13560
gaacttcccc aataacggga tagagagcct ggtggacaag atgagccgct ggaagacgta	13620
cgcgcacgag cacagggacg agccccgagc tagcagcagc accggcgcca cccgtagacg	13680
ccagcggcac gacaggcagc ggggtctggt gtgggacgat gaggattccg ccgacgacag	13740
cagegtgttg gacttgggtg ggagtggtgg tggtaacccg ttcgctcacc tgcgcccccg	13800
tatcgggcgc ctgatgtaag aatctgaaaa aataaaagac ggtactcacc aaggccatgg	13860
cgaccagcgt gcgttcttct ctgttgtttg tagtagt atg atg agg cgc gtg tac Met Met Arg Arg Val Tyr 1 5	13915
ccg gag ggt cct cct ccc tcg tac gag agc gtg atg cag cag gcg gtg Pro Glu Gly Pro Pro Pro Ser Tyr Glu Ser Val Met Gln Gln Ala Val 10 15 20	13963

gcg Ala	gcg Ala	gcg Ala 25	atg Met	cag Gln	ccc Pro	ccg Pro	ctg Leu 30	gag Glu	gcg Ala	cct Pro	tac Tyr	gtg Val 35	ccc Pro	ccg Pro	cgg Arg	14011
tac Tyr	ctg Leu 40	gcg Ala	cct Pro	acg Thr	gag Glu	ggg Gly 45	cgg Arg	aac Asn	agc Ser	att Ile	cgt Arg 50	tac Tyr	tcg Ser	gag Glu	ctg Leu	14059
					acc Thr 60											14107
					ctg Leu											14155
					aac Asn											14203
					gac Asp											14251
					aac Asn											14299
aac Asn 135	aag Lys	ttc Phe	aag Lys	gcg Ala	cgg Arg 140	gtg Val	atg Met	gtc Val	tcg Ser	cgc Arg 145	aag Lys	acc Thr	ccc Pro	aac Asn	ggg Gly 150	14347
gtc Val	aca Thr	gta Val	aca Thr	gat Asp 155	ggt Gly	agt Ser	cag Gln	gac Asp	gag Glu 160	ctg Leu	acc Thr	tac Tyr	gag Glu	tgg Trp 165	gtg Val	14395
gag Glu	ttt Phe	gag Glu	ctg Leu 170	ccc	gag Glu	Gly	aac Asn	ttc Phe 175	tcg Ser	gtg Val	acc Thr	atg Met	acc Thr 180	atc Ile	gat Asp	14443
ctg Leu	atg Met	aac Asn 185	Asn	gcc Ala	atc Ile	atc	gac Asp 190	aac Asn	tac Tyr	ttg Leu	gcg Ala	gtg Val 195	ej A aaa	cgg Arg	cag Gln	14491
aac Asn	ggg Gly 200	Val	ctg Leu	gag Glu	agc Ser	gac Asp 205	atc Ile	ggc	gtg Val	aag Lys	ttc Phe 210	gac Asp	acg Thr	cgc Arg	aac Asn	14539
ttc Phe 215	cgg	ctg Leu	ggc Gly	tgg Trp	gac Asp 220	ÇCÇ Pro	gtg Val	acc Thr	gag Glu	ctg Leu 225	gtg Val	atg Met	ccg Pro	ggc	gtg Val 230	14587
					ttc Phe											14635

	gtg Val															14683
	cgg Arg															14731
	Gly 280															14779
	aag Lys															14827
	acc Thr															14875
	gcc Ala															14923
g ag Glu	aag Lys	gac Asp 345	agc Ser	aag Lys	gag Glu	agg Arg	agc Ser 350	tac Tyr	aac Asn	gtg Val	ctc Leu	gcg Ala 355	gac Asp	aag Lys	aaa Lys	14971
	acc Thr 360															15019
	aag Lys															15067
	Gly															15115
ccg Pro	gtc Val	acc Thr	ttc Phe 410	cgc Arg	tcc Ser	acg Thr	cgt Arg	caa Gln 415	gtt Val	agc Ser	aac Asn	tac Tyr	ccg Pro 420	gtg Val	gtg Val	15163
	gcc															15211
gcc Ala	gtc Val 440	tac Tyr	tcg Ser	cag Gln	cag Gln	ctg Leu 445	cgc Arg	gcc Ala	ttc Phe	acc Thr	tcg Ser 450	ctc Leu	acg Thr	cac His	gtc Val	15259
ttc Phe 455	aac Asn	cgc Arg	ttc Phe	ccc Pro	gag Glu 460	Asn	cag Gln	atc Ile	ctc Leu	gtt Val 465	cgc Arg	ccg Pro	ccc	gcg Ala	ccc Pro 470	15307

acc att acc Thr Ile Thr	acc gtc ag Thr Val Se 475	t gaa aac r Glu Asn	gtt cct gct Val Pro Ala 480	ctc aca gat cac Leu Thr Asp His 485	ggg 15355 Gly
acc ctg ccg Thr Leu Pro	ctg cgc ag Leu Arg Se 490	c agt atc r Ser Ile	cgg gga gtc Arg Gly Val 495	cag cgc gtg acc Gln Arg Val Thr 500	gtc 15403 Val
act gac gcc Thr Asp Ala 505	Arg Arg Ar	c acc tgc g Thr Cys 510	Pro Tyr Val	tac aag gcc ctg Tyr Lys Ala Leu 515	ggc 15451 Gly
gta gtc gcg Val Val Ala 520	g ccg cgc gt A Pro Arg Va	c ctc tcg l Leu Ser 525	age ege ace Ser Arg Thr	ttc taa aaaatgto Phe 530	cca 15500
ttctcatctc	gcccagtaat	aacaccggt	t ggggcctgcg	cgcgcccagc aaga	tgtacg 15560
gaggcgctcg	ccaacgctcc	acgcaacac	c ccgtgcgcgt	gegegggeae ttee	gegete 15620
cctggggcgc	cctcaagggc	cgcgtgcgc	t cgcgcaccac	cgtcgacgac gtga	tcgacc 15680
aggtggtggc	cgacgcgcgc	aactacacg	re cegeegeege	geeegtetee accg	tggacg 15740
				ccgcgccaag agcc	
ggcgcatcgc	ccggcggcac	cggagcaco	c ccgccatgcg	cgcggcgcga gcct	tgctgc 15860
gcagggccag	gcgcacggga	cgcagggc	a tgctcagggc	ggccagacgc gcgg	cctccg 15920
		·		: ggcggcggcg gcgg	
				gegegaegee geea	
				g atgetgaett egeg	
				aaggaagaga tgct	
		•		g gaaagaaagc cccg	
				g gacggactgg tgga	
				g cggaaagtga aacc	_
				t taaggataag aata	
				g caggeggeeg aacg	
		•		g aaagaggagg cggt	
				g gtgaccctgc agca	
				c ggcgaggatc tgta	
				c gtgctggagc acat	
				c aagcaggtgg ccc	
		-			

gggcgtgcag	accgtggaca	tcaagatccc	cacggagccc	atggaaacgc	agaccgagcc	16820
cgtgaagccc	agcaccagca	ccatggaggt	gcagacggat	ccctggatgc	cggcaccggc	16880
ttccaccacc	cgccgaagac	gcaagtacgg	cgcggccagc	ctgctgatgc	ccaactacgc	16940
gctgcatcct	tccatcatcc	ccacgccggg	ctaccgcggc	acgcgcttct	accgcggcta	17000
caccagcagc	cgccgccgca	agaccaccac	ccgccgccgc	cgtcgtcgca	cccgccgcag	17060
cagcaccgcg	acttccgccg	ccgccctggt	gcggagagtg	taccgcagcg	ggcgcgagcc	17120
tctgaccctg	ccgcgcgcgc	gctaccaccc	gagcatcgcc	atttaactac	cgcctcctac	17180
ttgcagatat	ggccctcaca	tgccgcctcc	gcgtccccat	tacgggctac	cgaggaagaa	17240
agccgcgccg	tagaaggctg	acggggaacg	ggctgcgtcg	ccatcaccac	cggcggcggc	17300
gcgccatcag	caagcggttg	gggġgaggct	tcctgcccgc	gctgatgccc	atcatcgccg	17360
cggcgatcgg	ggcgatcccc	ggcatagctt	ccgtggcggt	gcaggcctct	cagcgccact	17420
gagacacagc	ttggaaaatt	tgtaataaaa	aatggactga	cgctcctggt	cctgtgatgt	17480
gtgtttttag	atggaagaca	tcaatttttc	gtccctggca	ccgcgacacg	gcacgcggcc	17540
gtttatgggc	acctggagcg	acatcggcaa	cagccaactg	aacgggggcg	ccttcaattg	17600
gagcagtctc	tggagcgggc	ttaagaattt	cgggtccacg	ctcaaaacct	atggcaacaa	17660
ggcgtggaac	agcagcacag	ggcaggcgct	gagggaaaag	ctgaaagagc	agaacttcca	17720
gcagaaggtg	gtcgatggcc	tggcctcggg	catcaacggg	gtggtggacc	tggccaacca	17780
ggccgtgcag	aaacagatca	acageegeet	ggacgcggtc	ccgcccgcgg	ggtccgtgga	17840
gatgccccag	gtggaggagg	agctgcctcc	cctggacaag	cgcggcgaca	agcgaccgcg	17900
tcccgacgcg	gaggagacgc	tgctgacgca	cacggacgag	ccgcccccgt	acgaggaggc	17960
ggtgaaactg	ggtctgccca	ccacgcggcc	cgtggcgcct	ctggccaccg	gggtgctgaa	18020
acccagcagc	agcagcagcc	agcccgcgac	cctggacttg	cctccgcctg	cttcccgccc	18080
ctccacagtg	gctaagcccc	tgccgccggt	ggccgtcgcg	tegegegeee	cccgaggccg	18140
ccccaggcg	aactggcaga	gcactctgaa	cagcatcgtg	ggtctgggag	tgcagagtgt	18200
gaagcgccgc	cgctgctatt	aaaagacact	gtagcgctta	acttgcttgt	ctgtgtgtat	18260
atgtatgtcc	gccgaccaga	aggaggagga	agaggcgcgt	cgccgagttg	caag atg Met	18317

gcc Ala	acc Thr	cca Pro	tcg Ser 535	atg Met	ctg Leu	ccc Pro	cag Gln	tgg Trp 540	gcg Ala	tac Tyr	atg Met	cac His	atc Ile 545	gcc Ala	gga Gly	18365
cag Gln	gac Asp	gct Ala 550	tcg Ser	gag Glu	tac Tyr	ctg Leu	agt Ser 555	ccg Pro	ggt Gly	ctg Leu	gtg Val	cag Gln 560	ttc Phe	gcc Ala	cgc Arg	18413
gcc Ala	aca Thr 565	gac Asp	acc Thr	tac Tyr	ttc Phe	agt Ser 570	ctg Leu	GJ y ggg	aac Asn	aag Lys	ttt Phe 575	agg Arg	aac Asn	ccc Pro	acg Thr	18461
gtg Val 580	gcg Ala	ccc Pro	acg Thr	cac His	gat Asp 585	gtg Val	acc Thr	acc Thr	gac Asp	cgc Arg 590	agc Ser	cag Gln	cgg Arg	ctg Leu	acg Thr 595	18509
ctg Leu	cgc Arg	ttc Phe	gtg Val	ccc Pro 600	gtg Val	ġac Asp	cgc Arg	gag Glu	gac Asp 605	aac Asn	acc Thr	tac Tyr	tcg Ser	tac Tyr 610	aaa Lys	18557
gtg Val	cgc Arg	tac Tyr	acg Thr 615	ctg Leu	gcc Ala	gtg Val	ggc	gac Asp 620	aac Asn	cgc Arg	gtg Val	ctg Leu	gac Asp 625	atg Met	gcc Ala	18605
agc Ser	acc Thr	tac Tyr 630	ttt Phe	gac Asp	atc Ile	cgc Arg	ggc Gly 635	gtg Val	ctg Leu	gat Asp	cgg Arg	ggc Gly 640	cct Pro	agc Ser	ttc Phe	18653
aaa Lys	ccc Pro 645	tac Tyr	tcc Ser	ej A aac	acc Thr	gct Ala 650	tac Tyr	aac Asn	agc Ser	ctg Leu	gct Ala 655	ccc Pro	aag Lys	gga Gly	gcg Ala	18701
ccc Pro 660	aac Asn	act Thr	tgc Cys	cag Gln	tgg Trp 665	aca Thr	tat Tyr	aaa Lys	gct Ala	gat Asp 670	Gly	gat Asp	act Thr	ggt Gly	aca Thr 675	18749
gaa Glu	aaa Lys	acc Thr	tat Tyr	aca Thr 680	Tyr	gga Gly	aat Asn	gcg Ala	cct Pro 685	Val	caa Gln	ggc	att Ile	agt Ser 690	Ile	18797
aca Thr	aaa Lys	gat Asp	ggt Gly 695	Ile	caa Gln	ctt Leu	gga Gly	act Thr 700	Asp	act Thr	gat Asp	gat Asp	cag Gln 705	Pro	att Ile	18845
tat Tyr	gca Ala	gat Asp 710	Lys	act Thr	tat Tyr	caa Gln	cca Pro 715	Glu	cct Pro	caa Gln	gtg Val	ggt Gly 720	Asp	gct Ala	gaa Glu	18893
tgg Trp	cat His 725	Asp	atc	act	ggt	act Thr 730	Asp	gaa Glu	aaa Lys	tat Tyr	gga Gly 735	Gly	aga Arg	gct Ala	ctc Leu	18941
aag Lys 740	Pro	gac Asp	acc Thr	aaa Lys	Met 745	Lys	Pro	tgc Cys	tat Tyr	ggt Gly 750	/ Ser	ttt Phe	gcc Ala	aag Lys	Pro 755	18989

acc Thr	aat Asn	aaa Lys	gaa Glu	gga Gly 760	ggt Gly	cag Gln	gca Ala	aat Asn	gtg Val 765	aaa Lys	acc Thr	gaa Glu	aca Thr	ggc Gly 770	ggt Gl y	19037
acc Thr	aaa Lys	gaa Glu	tat Tyr 775	gac Asp	att Ile	gac Asp	atg Met	gca Ala 780	ttc Phe	ttc Phe	gat Asp	aat Asn	cga Arg 785	agt Ser	gca Ala	19085
gct Ala	gcg Ala	gct Ala 790	ggc Gly	ctg Leu	gcc Ala	cca Pro	gaa Glu 795	att Ile	gtt Val	ttg Leu	tat Tyr	act Thr 800	gag Glu	aat Asn	gtg Val	19133
gat Asp	ctg Leu 805	gaa Glu	act Thr	cca Pro	gat Asp	act Thr 810	cat His	att Ile	gta Val	tac Tyr	aag Lys 815	gcg	ggc Gly	aca Thr	gat Asp	19181
gac Asp 820	agc Ser	agc Ser	tct Ser	tct Ser	atc Ile 825	aat Asn	ttg Leu	ggt Gly	cag Gln	cag Gln 830	tcc Ser	atg Met	ccc Pro	aac Asn	aga Arg 835	19229
ccc Pro	aac Asn	tac Tyr	att Ile	ggc Gly 840	ttt Phe	aga Arg	gac Asp	aac Asn	ttt Phe 845	atc Ile	Gly ggg	ctc Leu	atg Met	tac Tyr 850	tac Tyr	19277
aac Asn	agc Ser	act Thr	ggc Gly 855	aac Asn	atg Met	ggc	gtg Val	ctg Leu 860	gct Ala	ggt Gly	cag Gln	gcc Ala	tcc Ser 865	cag Gln	ctg Leu	19325
aat Asn	gct Ala	gtg Val 870	gtg Val	gac Asp	ttg Leu	cag Gln	gac Asp 875	aga Arg	aac Asn	act Thr	gaa Glu	ctg Leu 880	tcc Ser	tac Tyr	cag Gln	19373
Leu	Leu 885	Leu	Asp	Ser	Leu	890	Asp	Arg	Thr	agg Arg	Tyr 895	Phe	Ser	Met	Trp	19421
aat Asn 900	cag Gln	gcg Ala	gtg Val	gac Asp	agc Ser 905	tàt Tyr	gac Asp	ccc Pro	gat Asp	gtg Val 910	cgc Arg	att Ile	att Ile	gaa Glu	aat Asn 915	19469
cac His	ggt Gly	gtg Val	gag Glu	gat Asp 920	gaa Glu	ctc Leu	cct Pro	aac Asn	tat Tyr 925	tgc Cys	ttc Phe	ccc Pro	ctg Leu	gat Asp 930	gct Ala	19517
gtg Val	ggt Gly	aga Arg	act Thr 935	gat Asp	act Thr	tac Tyr	cag Gln	gga Gly 940	att Ile	aag Lys	gcc Ala	aat Asn	ggt Gly 945	gct Ala	gat Asp	19565
caa Gln	acc Thr	acc Thr 950	tgg Trp	acc Thr	aaa Lys	gat Asp	gat Asp 955	act Thr	gtt Val	aat Asn	gat Asp	gct Ala 960	aat Asn	gaa Glu	ttg Leu	19613
G] À Gàc	aag Lys 965	ggc Gly	aat Asn	cct Pro	ttc Phe	gcc Ala 970	atg Met	gag Glu	atc Ile	aac Asn	atc Ile 975	cag Gln	gcc Ala	aac Asn	ctg Leu	19661

tgg cgg aac ttc Trp Arg Asn Phe 980	ctc tac gcg aa Leu Tyr Ala As 985	ac gtg gcg ct sn Val Ala Le 99	g tac ctg ccc gac tcc u Tyr Leu Pro Asp Ser 0 995	19709
tac aag tac acg Tyr Lys Tyr Thr	ccg gcc aac a Pro Ala Asn I 1000	atc acg ctg Ile Thr Leu 1005	ccg acc aac acc aac Pro Thr Asn Thr Asn 1010	19754
acc tac gat tac Thr Tyr Asp Tyr	atg aac ggc o Met Awn Gly P 1015	cgc gtg gtg Arg Val Val 1020	gcg ccc tcg ctg gtg Ala Pro Ser Leu Val 1025	19799
gac gcc tac atc Asp Ala Tyr Ile	aac atc ggg (Asn Ile Gly i 1030	geg ege tgg Ala Arg Trp 1035	tcg ctg gac ccc atg Ser Leu Asp Pro Met 1040	19844
gac aac gtc aac Asp Asn Val Asn	Pro Phe Asn 1	cac cac cgc His His Arg 1050	aac gcg ggc ctg cgc Asn Ala Gly Leu Arg 1055	19889
tac cgc tcc atg Tyr Arg Ser Met	ctc ctg ggc i Leu Leu Gly i 1060	aac ggg cgc Asn Gly Arg 1065	tac gtg ccc ttc cac Tyr Val Pro Phe His 1070	19934
	Gln Lys Phe 1075	Phe Ala Ile 1080	aag agc ctc ctg ctc Lys Ser Leu Leu Leu 1085	19979
Leu Pro Gly Ser	Tyr Thr Tyr 1090	Glu Trp Asn 1095	ttc cgc aag gac gtc Phe Arg Lys Asp Val 1100	20024
Asn Met Ile Lev	Gln Ser Ser 1105	Leu Gly Asn 1110	gac ctg cgc acg gac Asp Leu Arg Thr Asp 1115	20069
Gly Ala Ser Ile	Ala Phe Thr	Ser Ile Asn 1125	1130	20114
Phe Pro Met Ala	His Asn Thr 1135	Ala Ser Thr 1140		20159
Arg Asn Asp Th	Asn Asp Gln 1150	Ser Phe Asn 1155		
Ala Asn Met Le	1 Tyr Pro Ile 1165	Pro Ala Asn 1170		
atc tcc atc cc Ile Ser Ile Pr	tcg cgc aac Ser Arg Asn 1180	tgg gcc gcc Trp Ala Ala 1185	ttc cgc gga tgg tcc Phe Arg Gly Trp Ser 1190	20294

		aag Lys 1195						20339
		ttc Phe 1210						20384
		ctc Leu 1225						20429
		gtc Val 1240						20474
		gaa Glu 1255						20519
		tgc Cys 1270						20564
		tac Tyr 1285						20609
		gac Asp 1300						20654
		cag Gln 1315						·20699
		ctg Leu 1330						20744
		ccc Pro 1345						20789
		ccg Pro 1360						20834
		ttc Phe 1375						20879
	_	ttc Phe 1390			gcg Ala 1395			20924

Cag aac atg ctc tac gcc aac tcc gcc cac gcg cta gac atg aat Gln Asn Met Leu Tyr Ala Asn Ser Ala His Ala Leu Asp Met Asn 1405 1410 1415	20969
ttc gaa gtc gac ccc atg gat gag tcc acc ctt ctc tat gtt gtc Phe Glu Val Asp Pro Met Asp Glu Ser Thr Leu Leu Tyr Val Val 1420 1425 1430	21014
ttc gaa gtc ttc gac gtc gtc cga gtg cac cag ccc cac cgc ggc Phe Glu Val Phe Asp Val Val Arg Val His Gln Pro His Arg Gly 1435 1440 1445	21059
gtc atc gag gcc gtc tac ctg cgc acg ccc ttc tcg gcc ggc aac Val Ile Glu Ala Val Tyr Leu Arg Thr Pro Phe Ser Ala Gly Asn 1450 1455 1460	21104
gcc acc acc taa gccccgctct tgcttcttgc aagatgacgg cctgtgcggg Ala Thr Thr	21156
ctccggcgag caggagetca gggccatect ccgcgacetg ggctgcgggc cctgcttcct	21216
gggcaccttc gacaagcgct tcccgggatt catggccccg cacaagctgg cctgcgccat	21276
cgtcaacacg gccggccgcg agaccggggg cgagcactgg ctggccttcg cctggaaccc	21336
gegeteceae acetgetace tettegacee ettegggtte teggacgage geeteaagea	21396
gatctaccag ttcgagtacg agggcctgct gcgccgcagc gccctggcca ccgaggaccg	21456
ctgcgtcacc ctggaaaagt ccacccagac cgtgcagggt ccgcgctcgg ccgcctgcgg	21516
getettetge tgeatgttee tgeacgeett egtgeactgg ecegacegee ceatggacaa	21576
gaaccccacc atgaacttgc tgacgggggt gcccaacggc atgctccagt cgccccaggt	21636
ggaacccacc ctgcgccgca accaggaggc gctctaccgc ttcctcaacg cccactccgc	21696
ctactttcgc tcccaccgcg cgcgcatcga gaaggccacc gccttcgacc gcatgaatca	21756
agacatgtaa accgtgtgtg tatgtgaatg ctttattcat aataaacagc acatgtttat	21816
gecacetttt etgaggetet gaetttattt agaaategaa ggggttetge eggetetegg	21876
cgtgccccgc gggcagggat acgttgcgga actggtactt gggcagccac ttgaactcgg	21936
ggatcagcag cttcggcacg gggaggtcgg ggaacgagtc gctccacagc ttgcgcgtga	21996
gttgcagggc gcccagcagg tcgggcgcgg agatcttgaa atcgcagttg ggacccgcgt	22056
tetgegegeg ggagttgegg tacaeggggt tgeagcactg gaacaccate agggeegggt	22116
getteacget egecageace gtegegtegg tgatgeeete caegtecaga teeteggegt	22176
tggccatccc gaagggggtc atcttgcagg tctgccgccc catgctgggc acgcagccgg	22236
gcttgtggtt gcaatcgcag tgcaggggga tcagcatcat ctgggcctgc tcggagctca	22296

tgcccgggta	catggccttc	atgaaagcct	ccagctggcg	gaaggcctgc	tgcgccttgc	22356
cgccctcggt	gaagaagacc	ccgcaggact	tgctagagaa	ctggttggtg	gcgcagccgg	22416
cgtcgtgcac	gcagcagcgc	gcgtcgttgt	tggccagctg	caccacgctg	cgccccagc	22476
ggttctgggt	gatcttggcc	cggtcggggt	tctccttcag	cgcgcgctgc	ccgttctcgc	22536
tcgccacatc	catctcgatc	gtgtgctcct	tctggatcat	cacggtcccg	tgcaggcatc	22596
gcagcttgcc	ctcggcctcg	gtgcacccgt	gcagccacag	cgcgcagccg	gtgcactccc	22656
agttcttgtg	ggcgatctgg	gagtgcgagt	gcacgaagcc	ctgcaggaag	cggcccatca	22716
tcgtggtcag	ggtcttgttg	ctggtgaagg	tcagcgggat	gccgcggtgc	tectegttea	22776
catacaggtg	gcagatgcgg	cggṭacacct	cgccctgctc	gggcatcagc	tggaaggcgg	22836
acttcaggtc	gctctccacg	cggtaccggt	ccatcagcag	cgtcatgact	tccatgccct	22896
tctcccaggc	cgagacgatc	ggcaggctca	gggggttctt	caccgccgtt	gtcatcttag	22956
tcgccgccgc	tgaggtcagg	gggtcgttct	cgtccagggt	ctcaaacact	cgcttgccgt	23016
ccttctcggt	gatgcgcacg	gggggaaagc	tgaagcccac	ggccgccagc	tcctcctcgg	23076
cctgcctttc	gtcctcgctg	tcctggctga	tgtcttgcaa	aggcacatgc	ttggtcttgc	23136
ggggtttctt	tttgggcggc	agaggcggcg	gcggagacgt	gctgggcgag	cgcgagttct	23196
cgctcaccac	gactatttct	tettettgge	cgtcgtccga	gaccacgcgg	cggtaggcat	23256
gcctcttctg	gggcagaggc	ggaggcgacg	ggctctcgcg	gttcggcggg	cggctggcag	23316
ageceettee	gcgttcgggg	gtgcgctcct	ggcggcgctg	ctctgactga	cttcctccgc	23376
ggccggccat	tgtgttctcc	tagggagcaa	caagcatgga	gactcagcca	tcgtcgccaa	23436
catcgccatc	tgcccccgcc	gccgccgacg	agaaccagca	gcagaatgaa	agcttaaccg	23496
ccccgccgcc	cagccccacc	tccgacgccg	ccgcggcccc	agacatgcaa	gagatggagg	23556
aatccatcga	gattgacctg	ggctacgtga	cgcccgcgga	gcacgaggag	gagctggcag	23616
cgcgcttttc	agccccggaa	gagaaccacc	aagagcagcc	agagcaggaa	gcagagageg	23676
agcagcagca	ggctgggctc	gagcatggcg	actacctgag	cggggcagag	gacgtgctca	23736
tcaagcatct	ggcccgccaa	tgcatcatcg	tcaaggacgc	gctgctcgac	cgcgccgagg	23796
tgcccctcag	cgtggcggag	ctcagccgcg	cctacgagcg	caacctcttc	tegeegegeg	23856
tgccccccaa	gcgccagccc	aacggcacct	gcgagcccaa	cccgcgcctc	aacttctacc	23916
cggtcttcgc	ggtgcccgag	gccctggcca	cctaccacct	ctttttcaag	aaccaaagga	23976

tccccgtctc	ctgccgcgcc	aaccgcaccc	gcgccgacgc	cctgctcaac	ctgggtcccg	24036
gegeeegeet	acctgatatc	gcctccttgg	aagaggttcc	caagatcttc	gagggtctgg	24096
gcagcgacga	gactcgggcc	gcgaacgctc	tgcaaggaag	cggagaggag	catgagcacc	24156
acagcgccct	ggtggagttg	gaaggcgaca	acgcgcgcct	ggcggtgctc	aagcgcacgg	24216
tcgagctgac	ccacttcgcc	tacccggcgc	tcaacctgcc	ccccaaggtc	atgagcgccg	24276
tcatggacca	ggtgctcatc	aagcgcgcct	cgccctctc	ggatgaggac	atgcaggacc	24336
ccgagagctc	ggacgagggc	aagcccgtgg	tcagcgacga	gcagctggcg	cgctggctgg	24396
gagcgagtag	caccccccag	agcttggaag	agcggcgcaa	gctcatgatg	gccgtggtcc	24456
tggtgaccgt	ggagctggag	tgtctgcgcc	gcttcttcgc	cgacgcagag	accctgcgca	24516
aggtcgagga	gaacctgcac	tacctcttca	ggcacgggtt	tgtgcgccag	gcctgcaaga	24576
tctccaacgt	ggagctgacc	aacctggtct	cctacatggg	catcctgcac	gagaaccgcc	24636
tggggcagaa	cgtgctgcac	accaccctgc	gcggggaggc	ccgccgcgac	tacatccgcg	24696
actgcgtcta	cctgtacctc	tgccacacct	ggcagacggg	catgggcgtg	tggcagcagt	24756
gcctggagga	gcagaacctg	aaagagctct	gcaagctcct	gcagaagaac	ctgaaggccc	24816
tgtggaccgg	gttcgacgag	cgcaccaccg	cctcggacct	ggccgacctc	atcttccccg	24876
agcgcctgcg	gctgacgctg	cgcaacggac	tgcccgactt	tatgagtcaa	agcatgttgc	24936
aaaactttcg	ctctttcatc	ctcgaacgct	ccgggatcct	gcccgccacc	tgctccgcgc	24996
tgccctcgga	cttcgtgccg	ctgaccttcc	gcgagtgccc	cccgccgctc	tggagccact	25056
gctacctgct	gcgcctggcc	aactacctgg	cctaccactc	ggacgtgatc	gaggacgtca	25116
geggegaggg	tctgctcgag	tgccactgcc	gctgcaacct	ctgcacgccg	caccgctccc	25176
tggcctgcaa	ccccagctg	ctgagcgaga	cccagatcat	cggcaccttc	gagttgcaag	25236
gccccggcga	gggcaagggg	ggtctgaaac	tcaccccggg	gctgtggacc	teggeetact	25296
tgcgcaagtt	cgtgcccgag	gactaccatc	ccttcgagat	caggttctac	gaggaccaat	25356
cccagccgcc	caaggccgaa	ctgtcggcct	gcgtcatcac	ccagggggcc	atcctggccc	25416
aattgcaagc	catccagaaa	tcccgccaag	aatttctgct	gaaaaagggc	cacggggtct	25476
acctggaccc	ccagaccgga	gaggagctca	accccagctt	ccccaggat	gccccgagga	25536
agcagcaaga	agctgaaagt	ggagctgccg	ccgccggagg	atttggagga	agactgggag	25596
agcagtcagg	cagaggagga	ggagatggaa	gactgggaca	gcactcaggc	agaggaggac	25656
agcctgcaag	acagtctgga	agacgaggtg	gaggaggagg	cagaggaaga	agcagccgcc	25716

gccagaccgt	cgtcctcggc	ggagaaagca	agcagcacgg	ataccatctc	cgctccgggt	25776
	gcgaccgggc					25836
accacccaga	ccggtaagaa	ggaqcggcag	ggatacaagt	cctggcgggg	gcacaaaaac	25896
gccatcgtct	cctgcttgca	agcctgcggg	ggcaacatct	cettcacccg	ccgctacctg	25956
ctcttccacc	gcggggtgaa	cttcccccgc	aacatcttgc	attactaccg	tcacctccac	26016
agcccctact	actgtttcca	agaagaggca	gaaacccagc	agcagcagaa	aaccagcggc	26076
agcagcagct	agaaaatcca	cagcggcggc	aggtggactg	aggatcgcag	cgaacgagee	26136
ggcgcagacc	cgggagctga	ggaaccggat	ctttcccacc	ctctatgcca	tcttccagca	26196
gagtcggggg	caggagcagg	aactgaaagt	caagaaccgt	tctctgcgct	cgctcacccg	26256
cagttgtctg	tatcacaaga	gcgaagacca	acttcagcgc	actctcgagg	acgccgaggc	26316
tctcttcaac	aagtactgcg	cgctcactct	taaagagtag	cccgcgcccg	cccacacacg	26376
gaaaaaggcg	ggaattacgt	caccacctgc	gcccttcgcc	cgaccatcat	catgagcaaa	26436
gagattccca	cgccttacat	gtggagctac	cagccccaga	tgggcctggc	cgccggcgcc	26496
gcccaggact	actccacccg	catgaactgg	ctcagcgccg	ggcccgcgat	gatctcacgg	26556
gtgaatgaca	teegegeeeg	ccgaaaccag	atactcctag	aacagtcagc	gatcaccgcc	26616
acgccccgcc	atcaccttaa	tccgcgtaat	tggcccgccg	ccctggtgta	ccaggaaatt	26676
ccccagccca	cgaccgtact	acttccgcga	gacgcccagg	ccgaagtcca	gctgactaac	26736
tcaggtgtc	agctggccgg	cggcgccgcc	ctgtgtcgtc	accgccccgc	tcagggtata	26796
aagcggctgg	tgatccgagg	cagaggcaca	cagctcaacg	acgaggtggt	gagctcttcg	26856
ctgggtctgd	gacctgacgg	agtcttccaa	ctcgccggat	cggggagatc	ttccttcacg	26916
cctcgtcagg	cegtectgae	tttggagagt	tcgtcctcgc	ageceegete	gggtggcatc	26976
ggcactctcc	agttcgtgga	ggagttcact	ccctcggtct	acttcaaccc	cttctccggc	27036
teceeegge	actacccgga	cgagttcatc	ccgaacttcg	acgccatcag	cgagtcggtg	27096
gacggctac	g attgaatgtc	ccatggtggc	gcagctgacc	tagctcggct	tcgacacctg	27156
gaccactgc	geegetteeg	ctgcttcgct	cgggatctcg	ccgagtttgc	ctactttgag	27216
ctgcccgag	g agcaccctca	gggcccggcc	cacggagtgc	ggatcatcgt	cgaagggggc	27276
ctcgactcc	acctgcttcg	gatcttcagc	cagcgaccga	tcctggtcga	gcgcgagcaa	27336
ggacagacco	ttctgaccct	gtactgcatc	tgcaaccacc	ccggcctgca	tgaaagtctt	27396

tgttgtctgc tgtgtactga gtataataaa agctgagatc agcgactact ccggactcga 27456 ttgtggtgtt cctgctatca accggtccct gttcttcacc gggaacgaga ccgagctcca 27516 getteagtgt aageceeaca agaagtaeet cacetggetg ttecaggget eecegatege 27576 27636 cqttqtcaac cactqcqaca acgacqqagt cctqctqaqc ggccccqcca accttacttt ttccacccgc agaagcaagc tccagetett ccaaccette etccccggga cctatcagtg 27696 cgtctcggga ccctgccatc acaccttcca cctgatcccg aataccacag cgccgctccc 27756 cgctactaac aaccaaacta cccaccatcg ccaccgtcgc gacctttctg aatctaacac 27816 taccacccac accggaggtg ageteegagg tegaccaacc tetgggattt actaeggeec 27876 27936 ctgggaggtg gtggggttaa tagcgctagg cctagttgtg ggtgggcttt tggctctctg ctacctatac ctcccttgct gttcgtactt agtggtgctg tgttgctggt ttaagaaatg 27996 gggaagatca ccctagtgag ctgcggtgcg ctggtggcgg tggtggtgtt ttcgattgtg 28056 ggactgggcg gcgcggctgt agtgaaggag aaggccgatc cctgcttgca tttcaatccc 28116 gacaattgcc agctgagttt tcagcccgat ggcaatcggt gcgcggtgct gatcaagtgc 28176 ggatgggaat gcgagaacgt gagaatcgag tacaataaca agactcggaa caatactctc 28236 gcgtccgtgt ggcagcccgg ggaccccgag tggtacaccg tctctgtccc cggtgctgac 28296 28356 ggctccccgc gcaccgtgaa caatactttc atttttgcgc acatgtgcga cacggtcatg tggatgagca agcagtacga tatgtggccc cccacgaagg agaacatcgt ggtcttctcc 28416 28476 atcgcttaca gcgcgtgcac ggcgctaatc accgctatcg tgtgcctgag cattcacatg ctcatcgcta ttcgccccag aaataatgcc gaaaaagaga aacagccata acacgttttt 28536 tcacacacct ttttcagacc atggcctctg ttaaattttt gcttttattt gccagtctca 28596 ttactgttat aagtaatgag aaactcacta tttacattgg cactaaccac actttagacg 28656 gaattocaaa atootoatgg tattgotatt ttgatcaaga tocagactta actatagaac 28716 tgtgtggtaa caagggaaaa aatacaagca ttcatttaat taactttaat tgcggagaca 28776 atttgaaatt aattaatatc actaaagagt atggaggtat gtattactat gttgcagaaa 28836 ataacaacat gcagttttat gaagttactg taactaatcc caccacacct agaacaacaa 28896 caaccaccac cacaaaaact acacctgtta ccactatgca gctcactacc aataacattt ttgccatgcg tcaaatggtc aacaatagca ctcaacccac cccacccagt gaggaaattc 29016 ccaaatccat gattggcatt attgttgctg tagtggtgtg catgttgatc atcgccttgt 29076 gcatggtgta ctatgccttc tgctacagaa agcacagact gaacgacaag ctggaacact 29136

tactaagtgt	tgaattttaa	ttttttagaa	ccatgaagat	cctaggcctt	ttaatttttt	29196
ctatcattac	ctctgctcta	tgcaattctg	acaatgagga	cgttactgtc	gttgtcggaa	29256
ccaattatac	actgaaaggt	ccagcgaagg	gtatgctttc	gtggtattgc	tggtttggaa	29316
ctgacgagca	acagacagag	ctctgcaatg	ctcaaaaagg	caaaacctca	aattctaaaa	29376
tctctaatta	tcaatgcaat	ggcactgact	tagtactgct	caatgtcacg	aaagcatatg	29436
ctggcagcta	cacctgccct	ggagatgata	ctgagaacat	gattttttac	aaagtggaag	29496
tggttgatcc	cactactcca	cctccaccca	ccacaactac	tcacaccaca	cacacagaac	29556
aaaccacagc	agaggaggca	gcaaagttag	ccttgcaggt	ccaagacagt	tcatttgttg	29616
gcattacccc	tacacctgat	cagcggtgtc	cggggctgct	cgtcagcggc	attgtcggtg	29676
tgctttcggg	attagcagtc	ataatcatct	gcatgttcat	ttttgcttgc	tgctatagaa	29736
ggctttaccg	acaaaaatca	gacccactgc	tgaacctcta	tgtttaattt	tttccagagc	29796
catgaaggca	gttagcactc	tagttttttg	ttctttgatt	ggcactgttt	ttagtgttag	29856
ctttttgaaa	caaatcaatg	ttactgaggg	ggaaaatgtg	acactggtag	gcgtagaggg	29916
tgctcaaaat	accacctgga	caaaattcca	tctagatggg	tggaaagaaa	tttgcacctg	29976
gaatgtcagt	acttatacat	gtgaaggagt	taatcttacc	attgtcaatg	tcagccaaat	30036
tcaaaagggt	tggattaaag	ggcaatctgt	tagtgttagc	aatagtgggt	actataccca	30096
gcatactctt	atctatgaca	ttatagttat	accactgcct	acacctagcc	cacctagcac	30156
taccacacag	acaacccaca	ctacacaaac	aaccacatac	agtacatcaa	atcagcctac	30216
caccactaca	acagcagagg	ttgccagctc	gtctggggtc	cgagtggcat	ttttgatgtt	30276
ggccccatct	agcagtccca	ctgctagtac	caatgagcag	actactgaat	ttttgtccac	30336
tgtcgagagc	cacaccacag	ctacctcgag	tgccttctct	agcaccgcca	atctatcctc	30396
gctttcctct	acaccaatca	gtcccgctac	tactcctacc	cccgctattc	tecceaetee	30456
cctgaagcaa	acagacggcg	acatgcaatg	gcagatcacc	ctgctcattg	tgatcgggtt	30516
ggtcatcctg	gccgtgttgc	tctactacat	cttctgccgc	cgcattccca	acgcgcaccg	30576
caagccggcc	tacaagccca	tcgttgtcgg	gcagccggag	ccgcttcagg	tggaaggggg	30636
tctaaggaat	cttctcttct	cttttacagt	atggtgattg	aattatgatt	cctagacaaa	30696
tcttgatcac	tattcttatc	tgcctcctcc	aagtctgtgc	caccctcgct	ctggtggcca	30756
acgccagtcc	agactgtatt	gggcccttcg	cctcctacgt	gctctttgcc	ttcatcacct	30816

gcatctgctg ctgtagcata gtctgcctgc ttatcacctt cttccagttc attgactgga	30876
tetttgtgcg categoctae etgegeeace acceecagta eegegaecag egagtggege	30936
ggctgctcag gatcctctga taagcatgcg ggctctgcta cttctcgcgc ttctgctgtt	30996
agtgctcccc cgtcccgtcg acccccggac ccccacccag tcccccgagg aggtccgcaa	31056
atgcaaattc caagaaccct ggaaattcct caaatgctac cgccaaaaat cagacatgca	31116
toccagetgg atcatgatea ttgggategt gaacattetg geetgeacce teateteett	31176
tgtgatttac ccctgctttg actttggttg gaactcgcca gaggcgctct atctcccgcc	31236
tgaacctgac acaccaccac agcaacctca ggcacacgca ctaccaccac caccacagcc	31296
taggccacaa tacatgccca tattagacta tgaggccgag ccacagcgac ccatgctccc	31356
cgctattagt tacttcaatc taaccggcgg agatgactga cccactggcc aacaacaacg	31416
tcaacgacct tctcctggac atggacggcc gcgcctcgga gcagcgactc gcccaacttc	31476
gcattegeca geageaggag agageegtea aggagetgea ggaeggeata gecatecaee	31536
agtgcaagaa aggcatette tgcctggtga aacaggccaa gateteetae gaggtcaece	31596
agaccgacca tegectetee tacgagetee tgcageageg ccagaagtte acetgeetgg	31656
toggagtoaa coccatogto atcaccoago agtogggoga taccaagggg tgcatcoact	31716
getectgega eteccegae tgegtecaea etetgateaa gaccetetge ggeeteegeg	31776
acctcctccc catgaactaa tcaccccctt atccagtgaa ataaagatca tattgatgat	31836
ttgagtttaa taaaaataaa gaatcactta cttgaaatct gataccaggt ctctgtccat	31896
gttttctgcc aacaccactt cactcccctc ttcccagctc tggtactgca ggccccggcg	31956
ggctgcaaac ttcctccaca ccctgaaggg gatgtcaaat tcctcctgtc cctcaatctt	32016
cattttatct tctatcag atg tcc aaa aag cgc gtc cgg gtg gat gat gac Met Ser Lys Lys Arg Val Arg Val Asp Asp Asp 1465 1470	32067
ttc gac cee gtc tac cee tac gat gca gac aac gca ceg ace gtg Phe Asp Pro Val Tyr Pro Tyr Asp Ala Asp Asn Ala Pro Thr Val 1475 1480 1485	32112
ccc ttc atc aac ccc ccc ttc gtc tct tca gat gga ttc caa gag Pro Phe Ile Asn Pro Pro Phe Val Ser Ser Asp Gly Phe Gln Glu 1490 1495 1500	32157
aag ccc ctg ggg gtg ctg tcc ctg cgt ctg gcc gat ccc gtc acc Lys Pro Leu Gly Val Leu Ser Leu Arg Leu Ala Asp Pro Val Thr 1505 1510 1515	32202

acc Thr 1520	Lys			Thr		gga Gly 1530				32247
ctc Leu 1535	Asp					acg Thr 1545				32292
	Åla					att Ile 1560			atg Met	32337
	Thr					tta Leu 1575			gtc Val	32382
	Ala					ttg Leu 1590			ctt Leu	32427
	Val			Gly		aac Asn 1605	Thr		gcc Ala	32472
	Val					ttt Phe 1620				32517
aaa Lys 1625	Ile			Gly		ttg Leu 1635			gca Ala	32562
	Arg					ctc Leu 1650			acc Thr	32607
	Lys			Åla		tgg Trp 1665			atg Met	32652
	Phe			Met		att Ile 1680	Asp			32697
	Leu					gca Ala 1695				32742
gct Ala 1700	Tyr			Lys		ggt Gly 1710	Leu			32787
agc Ser 1715	Thr			Ala		gat Asp 1725	Asp			32832

aca Thr 1730					gcc Ala 1735										32877
tct Ser 1745					aag Lys 1750	Leu									32922
agt Ser 1760	cag Gln	att Ile	ctg Leu	ggc	act Thr 1765	gtt Val	tcc Ser	ctc Leu	ata Ile	gct Ala 1770	gtt Val	gat Asp	act Thr	Gl y ggc	32967
agt Ser 1775					aca Thr 1780	Gly								tca Ser	33012
ctt Leu 1790					aat Asn 1795	Gly					Ser				33057
	Ser				aat Asn 1810	Phe					Val				33102
	Ala				gct Ala 1825	Ile					Asn				33147
tac Tyr 1835	Pro	aaa Lys	aac Asn	aca Thr	agt Ser 1840	Gly	gct Ala	gca Ala	aaa Lys	agt Ser 1845	His	att Ile	gtt Val	ej aaa	33192
	Val				ggg Gly 1855	Asp					Leu				33237
att Ile 1865	Thr				aca Thr 1870	Ser					Thr			att Ile	33282
aac Asn 1880	Phe	caa Gln	tgg Trp	cag Gln	tgg Trp 1885	Gly	gct Ala	gat Asp	caa Gln	tat Tyr 1890	Lys	aat Asn	gaa Glu	aca Thr	33327
	Ála				ttc Phe 1900	Thr					Ala				33372
accc	cact	ct g	tacc	ccat	c tct	gtct	atg	gaaa	aaac	tc tg	aaac	acaa	aat	aaaataa	33432
agtt	caag	tg t	ttta	ttga	t tca	acag	ttt	taca	ggat	tc ga	gcag	ttat	ttt	tcctcca	33492
ccct	ссса	ıgg a	catg	gaat	a cac	cacc	ctc	tccc	cccg	ca ca	gcct	tgaa	cat	ctgaatg	33552
ccat	tggt	ga t	ggac	atgc	t ttț	ggtc	tcc	acgt	tcca	ca ca	gttt	caga	gcg	agccagt	33612
ctcg	ggto	gg t	cagg	gaga	t gaa	acco	tcc	gggc	acto	cc go	atct	gcac	ctc	acagete	33672

aacagctgag	gattgtcctc	ggtggtcggg	atcacggtta	tctggaagaa	gcagaagagc	33732
ggcggtggga	atcatagtcc	gcgaacggga	teggeeggtg	gtgtcgcatc	aggccccgca	33792
gcagtcgctg	tcgccgccgc	tccgtcaagc	tgctgctcag	ggggtccggg	tccagggact	33852
ccctcagcat	gatgcccacg	gccctcagca	tcagtcgtct	ggtgcggcgg	gcgcagcagc	33912
gcatgcggat	ctcgctcagg	tcgctgcagt	acgtgcaaca	caggaccacc	aggttgttca	33972
acagtccata	gttcaacacg	ctccagccga	aactcatcgc	gggaaggatg	ctacccacgt	34032
ggccgtcgta	ccagatcctc	aggtaaatca	agtggcgccc	cctccagaac	acgctgccca	34092
tgtacatgat	ctccttgggc	atgtggcggt	tcaccacctc	ccggtaccac	atcaccctct	34152
ggttgaacat	gcagccccgg	atgatectge	ggaaccacag	ggccagcacc	gccccgcccg	34212
ccatgcagcg	aagagacccc	gggtcccgac	aatggcaatg	gaggacccac	cgctcgtacc	34272
cgtggatcat	ctgggagctg	aacaagtcta	tgttggcaca	gcacaggcat	atgctcatgc	34332
atctcttcag	cactctcage	teeteggggg	tcaaaaccat	atcccagggc	acggggaact	34392
cttgcaggac	agcgaacccc	gcagaacagg	gcaatceteg	cacataactt	acattgtgca	34452
tggacagggt	atcgcaatca	ggcagcaccg	ggtgatcctc	caccagagaa	gcgcgggtct	34512
cggtctcctc	acagcgtggt	aagggggccg	gccgatacgg	gtgatggċgg	gacgcggctg	34572
atcgtgttcg	cgaccgtgtt	atgatgcagt	tgctttcgga	cattttcgta	cttgctgtag	34632
cagaacctgg	tccgggcgct	gcacaccgat	cgccggcggc	ggtcccggcg	cttggaacgc	34692
tcggtgttga	agttgtaaaa	cagccactct	ctcagaccgt	gcagcagatc	tagggcctca	34752
ggagtgatga	agatcccatc	atgcctgatg	gctctaatca	catcgaccac	cgtggaatgg	34812
gccagaccca	gccagatgat	gcaattttgt	tgggtttcgg	tgacggcggg	ggagggaaga	34872
acaggaagaa	ccatgattaa	cttttaatcc	aaacggtctc	ggagcacttc	aaaatgaaga	34932
tcgcggagat	ggcacctctc	gcccccgctg	tgttggtgga	aaataacagc	caggtcaaag	34992
gtgatacggt	tctcgagatg	ttccacggtg	gcttccagca	aagcctccac	gcgcacatcc	35052
agaaacaaga	caatagcgaa	agcgggaggg	ttctctaatt	cctcaatcat	catgttacac	35112
tcctgcacca	tccccagata	attttcattt	ttccagcctt	gaatgattcg	aactagttcc	35172
tgaggtaaat	ccaagccagc	catgataaag	agctcgcgca	gagcgccctc	caccggcatt	35232
cttaagcaca	ccctcataat	tccaagatat	tctgctcctg	gttcacctgc	agcagattga	35292
caagcggaat	atcaaaatct	ctgccgcgat	ccctaagctc	ctccctcagc	aataactgta	35352

agtactcttt	catatcctct	ccgaaatttt	tagccatagg	accaccagga	ataagattag	35412
ggcaagccac	agtacagata	aaccgaagtc	ctccccagtg	agcattgcca	aatgcaagac	35472
tgctataagc	atgctggcta	gaçccggtga	tatcttccag	ataactggac	agaaaatcgc	35532
ccaggcaatt	tttaagaaaa	tcaacaaaag	aaaaatcctc	caggtgcacg	tttagagcct	35592
cgggaacaac	gatggagtaa	atgcaagcgg	tgcgttccag	catggttagt	tagctgatct	35652
gtagaaaaaa	acaaaaatga	acattaaacc	atgctagcct	ggcgaacagg	tgggtaaatc	35712
gttctctcca	gcaccaggca	ggccacgggg	tctccggcac	gaccctcgta	aaaattgtcg	35772
ctatgattga	aaaccatcac	agagagacgt	teceggtgge	cggcgtgaat	gattcgacaa	35832
gatgaataca	cccccggaac	attggcgtcc	gcgagtgaaa	aaaagcgccc	aaggaagcaa	35892
taaggcacta	caatgctcag	tctcaagtcc	agcaaagcga	tgccatgcgg	atgaagcaca	35952
aaattctcag	gtgcgtacaa	aatgtaatta	ctcccctcct	gcacaggcag	caaagccccc	36012
gatccctcca	ggtacacata	caaagcctca	gcgtccatag	cttaccgage	agcagcacac	36072
aacaggcgca	agagtcagag	aaaggctgag	ctctaacctg	tccacccgct	ctctgctcaa	36132
tatatagccc	agatctacac	tgacgtaaag	gccaaagtct	aaaaataccc	gccaaataat	36192
cacacacgcc	cagcacacgc	ccagaaaccg	gtgacacact	caaaaaaata	cgcgcacttc	36252
ctcaaacgcc	caaactgccg	tcatttccgg	gttcccacgc	tacgtcatca	aaattcgact	36312
ttcaaattcc	gtcgaccgtt	aaaaacgtcg	cccgccccgc	ccctaacggt	cgccgctccc	36372
gcagccaatc	accgccccgc	atccccaaat	tcaaatacct	catttgcata	ttaacgcgca	36432
ccaaaagttt	gaggtatatt	attgatgatg				36462

<210> 2

<400> 2

Met Met Arg Arg Val Tyr Pro Glu Gly Pro Pro Pro Ser Tyr Glu Ser 1 5 10 15

Val Met Gln Gln Ala Val Ala Ala Ala Met Gln Pro Pro Leu Glu Ala 20 25 30

Pro Tyr Val Pro Pro Arg Tyr Leu Ala Pro Thr Glu Gly Arg Asn Ser 35 40 45

Ile Arg Tyr Ser Glu Leu Ala Pro Leu Tyr Asp Thr Thr Arg Leu Tyr 50 55 60

<211> 530

<212> PRT

<213> chimpanzee adenovirus serotype Pan5

Leu 65	Val	Asp	Asn	Lys	Ser 70	Ala	Asp	Ile	Ala	Ser 75	Leu	Asn	Tyr	Gln	Asn 80
Asp	His	Ser	Asn	Phe 85	Leu	Tḥr	Thr	Val	Val 90	Gln	Asn	Asn	Asp	Phe 95	Thr
Pro	Thr	Glu	Ala 100	Ser	Thr	Gln	Thr	Ile 105	Asn	Phe	Asp	Glu	Arg 110	Ser	Arg
Trp	Gly	Gly 115	Gln	Ĺeu	Lys	Thr	11e 120	Met	His	Thr	Asn	Met 125	Pro	Asn	Val
Asn	Glu 130	Phe	Met	Tyr	Ser	Asn 135	Ьys	Phe	Lys	Ala	Arg 140	Val	Met	Val	Ser
Arg 145	Lys	Thr	Pro	Asn	Gly 150	Val	Thr	Val	Thr	Asp 155	Gly	Ser	Gln	Asp	Glu 160
Leu	Thr	Tyr	Glu	Trp 165	Val	Glu	Phe	Glu	Leu 170	Pro	Glu	GЉ	Asn	Phe 175	Ser
Val	Thr	Met	Thr 180	Ile	Asp	Leu	Met	Asn 185	Asn	Ala	Ile	Ile	Asp 190	Asn	Tyr
Leu	Ala	Val 195	Gly	Arg	Gln	Asn	Gly 200	Val	Leu	Glu	Ser	Asp 205	Ile	Gly	Val
Lys	Phe 210	Asp	Thr	Arg	Asn	Phe 215	Arg	Leu	Gly	Trp	Asp 220	Pro	Val	Thr	Glu
Leu 225	Val	Met	Pro	Gly	Val 230	Tyr	Thr	Asn	Glu	Ala 235	Phe	His	Pro	Asp	Ile 240
Val	Leu	Leu	Pro	Gly 245	Cys	Gly	Val	Asp	Phe 250	Thr	Glu	Ser	Arg	Leu 255	Ser
Asn	Leu	Leu	Gly 260	Ile	Arg	Lys.	Arg	Gln 265	Pro	Phe	Gln	Glu	Gly 270	Phe	Gln
Ile	Leu	Tyr 275	Glu	Asp	Leu	Glu	Gly 280	Gly	Asn	Ile	Pro	Ala 285	Leu	Leu	Asp
Val	Asp 290	Ala	Tyr	Glu	Lys	Ser 295	Lys	Glu	Asp	Ser	Ala 300	Ala	Ala	Ala	Thr
Ala 305	Ala	Val	Ala	Thr	Ala 310	Ser	Thr	Glu	Val	Arg 315	Gly	Asp	Asn	Phe	Ala 320
Ser	Ala	Ala	Thr	Leu 325	Ala	Ala	Ala	Glu	Ala 330	Ala	Glu	Thr	Glu	Ser 335	Lys
Ile	Val	Ile	Gln 340	Pro	Val	Glu	Lys	Asp 345	Ser	Lys	Glu	Arg	Ser 350	Tyr	Asn

Val Leu Ala Asp Lys Lys Asn Thr Ala Tyr Arg Ser Trp Tyr Leu Ala Tyr Asn Tyr Gly Asp Pro Glu Lys Gly Val Arg Ser Trp Thr Leu Leu Thr Thr Ser Asp Val Thr Cys Gly Val Glu Gln Val Tyr Trp Ser Leu 385 390 Pro Asp Met Met Gln Asp Pro Val Thr Phe Arg Ser Thr Arg Gln Val Ser Asn Tyr Pro Val Val Gly Ala Glu Leu Leu Pro Val Tyr Ser Lys 425 Ser Phe Phe Asn Glu Gln Ala Val Tyr Ser Gln Gln Leu Arg Ala Phe 435 Thr Ser Leu Thr His Val Phe Asn Arg Phe Pro Glu Asn Gln Ile Leu 455 460 Val Arg Pro Pro Ala Pro Thr Ile Thr Thr Val Ser Glu Asn Val Pro 470 Ala Leu Thr Asp His Gly Thr Leu Pro Leu Arg Ser Ser Ile Arg Gly Val Gln Arg Val Thr Val Thr Asp Ala Arg Arg Arg Thr Cys Pro Tyr 505 Val Tyr Lys Ala Leu Gly Val Val Ala Pro Arg Val Leu Ser Ser Arg 520 Thr Phe 530 <210> 3 <211> 933 <212> PRT <213> chimpanzee adenovirus serotype Pan5 <400> 3 Met Ala Thr Pro Ser Met Leu Pro Gln Trp Ala Tyr Met His Ile Ala Gly Gln Asp Ala Ser Glu Tyr Leu Ser Pro Gly Leu Val Gln Phe Ala 20 Arg Ala Thr Asp Thr Tyr Phe Ser Leu Gly Asn Lys Phe Arg Asn Pro

Thr Val Ala Pro Thr His Asp Val Thr Thr Asp Arg Ser Gln Arg Leu

Thr 65	Leu	Arg	Phe	Val	Pro 70	Val	Asp	Arg	Glu	Asp 75	Asn	Thr	Tyr	Ser	Tyr 80
Lys	Val	Arg	Tyr	Thr 85	Leu	Ala	Val	Gly	Asp 90	Asn	Arg	Val	Leu	Asp 95	Met
Ala	Ser	Thr	Tyr 100	Phe	Asp	Ile	Arg	Gly 105	Val	Leu	Asp	Arg	Gly 110	Pro	Ser
Phe	Lys	Pro 115	Tyr	Ser	Gly	Thr	Ala 120	Tyr	Asn	Ser	Leu	Ala 125	Pro	Lys	Gly
Ala	Pro 130	Asn	Thr	Сув	Gln	Trp 135	Thr	Tyr	Lys	Ala	Asp 140	Gly	Asp	Thr	Gly
Thr 145	Glu	Lys	Thr	Tyr	Thr 150	Tyr	Gly	Asn	Ala	Pro 155	Val	Gln	Gly	Ile	Ser 160
Ile	Thr	Lys	Asp	Gly 165	Ile	Gln	Leu	Gly	Thr 170	Asp	Thr	Asp	qzA	Gln 175	Pro
Ile	Tyr	Ala	Asp 180	Lys	Thr	Tyr	Gln	Pro 185	Glu	Pro	Gln	Val	Gly 190	Asp	Ala
Glu	Trp	His 195	Asp	Ile	Thr	Gly	Thr 200	Asp	Glu	ГÀЗ	Tyr	Gly 205	Gly	Arg	Ala
Leu	Lys 210	Pro	Asp	Thr	Lys	Met 215	ГÀЗ	Pro	Cys	Tyr	Gly 220	Ser	Phe	Ala	Lys
Pro 225	Thr	Asn	Lys	Glu	Gly 230	СŢЪ	Gln	Ala	Asn	Val 235	Lys	Thr	Glu	Thr	Gly 240
Gly	Thr	Lys	Glu	Tyr 245	Asp	Ile	Asp	Met	Ala 250	Phe	Phe	Asp	Asn	Arg 255	Ser
Ala	Ala	Ala	Ala 260	Gly	Leu	Ala	Pro	Glu 265	Ile	Val	Leu	Tyr	Thr 270	Glu	Asn
Val	Asp	Leu 275	Glu	Thr	Pro	Asp	Thr 280	His	Ile	Val	Tyr	Lys 285	Ala	Gly	Thr
Asp	Asp 290	Ser	Ser	Ser	Ser	Ile 295	Asn	Leu	Gly	Gln	Gln 300	Ser	Met	Pro	Asn
Arg 305	Pro	Asn	Tyr	Ile	Gly 310	Phe	Arg	Asp	Asn	Phe 315	Ile	Gly	Leu	Met	Tyr 320
Tyr	Asn	Ser	Thr	Gly 325	Asn	Met	Gly	Val	Leu 330	Ala	Gly	Gln	Ala	Ser 335	Gln
Leu	Asn	Ala	Val 340	Val	Asp	Leu	Gln	Asp 345	Arg	Asn	Thr	Glu	Leu 350	Ser	Tyr
Gln	Leu	Leu 355	Leu	Asp	Ser	Leu	Gly 360	Asp	Arg	Thr	Arg	Tyr 365	Phe	Ser	Met

Trp Asn Gln Ala Val Asp Ser Tyr Asp Pro Asp Val Arg Ile Ile Glu 375 Asn His Gly Val Glu Asp Glu Leu Pro Asn Tyr Cys Phe Pro Leu Asp Ala Val Gly Arg Thr Asp Thr Tyr Gln Gly Ile Lys Ala Asn Gly Ala 405 Asp Gln Thr Trp Thr Lys Asp Asp Thr Val Asn Asp Ala Asn Glu Leu Gly Lys Gly Asn Pro Phe Ala Met Glu Ile Asn Ile Gln Ala Asn 440 Leu Trp Arg Asn Phe Leu Tyr Ala Asn Val Ala Leu Tyr Leu Pro Asp 450 Ser Tyr Lys Tyr Thr Pro Ala Asn Ile Thr Leu Pro Thr Asn Thr Asn Thr Tyr Asp Tyr Met Asn Gly Arg Val Val Ala Pro Ser Leu Val Asp 485 490 Ala Tyr Ile Asn Ile Gly Ala Arg Trp Ser Leu Asp Pro Met Asp Asn Val Asn Pro Phe Asn His His Arg Asn Ala Gly Leu Arg Tyr Arg Ser Met Leu Leu Gly Asn Gly Arg Tyr Val Pro Phe His Ile Gln Val Pro Gln Lys Phe Phe Ala Ile Lys Ser Leu Leu Leu Pro Gly Ser Tyr Thr Tyr Glu Trp Asn Phe Arg Lys Asp Val Asn Met Ile Leu Gln Ser 570 Ser Leu Gly Asn Asp Leu Arg Thr Asp Gly Ala Ser Ile Ala Phe Thr Ser Ile Asn Leu Tyr Ala Thr Phe Phe Pro Met Ala His Asn Thr Ala 600 Ser Thr Leu Glu Ala Met Leu Arg Asn Asp Thr Asn Asp Gln Ser Phe Asn Asp Tyr Leu Ser Ala Ala Asn Met Leu Tyr Pro Ile Pro Ala Asn 630 Ala Thr Asn Val Pro Ile Ser Ile Pro Ser Arg Asn Trp Ala Ala Phe Arg Gly Trp Ser Phe Thr Arg Leu Lys Thr Arg Glu Thr Pro Ser Leu 660 665

Gly Ser Gly Phe Asp Pro Tyr Phe Val Tyr Ser Gly Ser Ile Pro Tyr 675 680 685

Leu Asp Gly Thr Phe Tyr Leu Asn His Thr Phe Lys Lys Val Ser Ile 690 695 700

Thr Phe Asp Ser Ser Val Ser Trp Pro Gly Asn Asp Arg Leu Leu Thr 705 710 715 720

Pro Asn Glu Phe Glu Ile Lys Arg Thr Val Asp Gly Glu Gly Tyr Asn 725 730 735

Val Ala Gln Cys Asn Met Thr Lys Asp Trp Phe Leu Val Gln Met Leu 740 745 750

Ala His Tyr Asn Ile Gly Tyr Gln Gly Phe Tyr Val Pro Glu Gly Tyr 755 760 765

Lys Asp Arg Met Tyr Ser Phe Phe Arg Asn Phe Gln Pro Met Ser Arg 770 780

Gln Val Val Asp Glu Val Asn Tyr Lys Asp Tyr Gln Ala Val Thr Leu 785 790 795 800

Ala Tyr Gln His Asn Asn Ser Gly Phe Val Gly Tyr Leu Ala Pro Thr 805 810 815

Met Arg Gln Gly Gln Pro Tyr Pro Ala Asn Tyr Pro Tyr Pro Leu Ile 820 825 830

Gly Lys Ser Ala Val Ala Ser Val Thr Gln Lys Lys Phe Leu Cys Asp 835 840 845

Arg Val Met Trp Arg Ile Pro Phe Ser Ser Asn Phe Met Ser Met Gly 850 855

Ala Leu Thr Asp Leu Gly Gln Asn Met Leu Tyr Ala Asn Ser Ala His 865 870 875 880

Ala Leu Asp Met Asn Phe Glu Val Asp Pro Met Asp Glu Ser Thr Leu 885 890 895

Leu Tyr Val Val Phe Glu Val Phe Asp Val Val Arg Val His Gln Pro 900 905 910

His Arg Gly Val Ile Glu Ala Val Tyr Leu Arg Thr Pro Phe Ser Ala 915 920 925

Gly Asn Ala Thr Thr 930

<210> 4

<211> 445

<212> PRT

<213> chimpanzee adenovirus serotype Pan5

<400> 4

Met	Ser	Lys	Lys	Arg	Val	Arg	Val	Asp	Asp	Asp	Phe	Asp	Pro	Val	Tyr
1				5					10					15	

- Pro Tyr Asp Ala Asp Asn Ala Pro Thr Val Pro Phe Ile Asn Pro Pro 20 25 30
- Phe Val Ser Ser Asp Gly Phe Gln Glu Lys Pro Leu Gly Val Leu Ser 35 40 45
- Leu Arg Leu Ala Asp Pro Val Thr Thr Lys Asn Gly Glu Ile Thr Leu 50 55 60
- Lys Leu Gly Asp Gly Val Asp Leu Asp Ser Ser Gly Lys Leu Ile Ser 65 70 75 80
- Asn Thr Ala Thr Lys Ala Ala Ala Pro Leu Ser Phe Ser Asn Asn Thr 85 90 95
- Ile Ser Leu Asn Met Asp Thr Pro Phe Tyr Asn Asn Asn Gly Lys Leu 100 105 110
- Gly Met Lys Val Thr Ala Pro Leu Lys Ile Leu Asp Thr Asp Leu Leu 115 120 125
- Lys Thr Leu Val Val Ala Tyr Gly Gln Gly Leu Gly Thr Asn Thr Thr 130 135 140
- Gly Ala Leu Val Ala Gln Leu Ala Ser Pro Leu Ala Phe Asp Ser Asn 145 150 155 160
- Ser Lys Ile Ala Leu Asn Leu Gly Asn Gly Pro Leu Lys Val Asp Ala 165 170 175
- Asn Arg Leu Asn Ile Asn Cys Asn Arg Gly Leu Tyr Val Thr Thr Thr 180 185 190
- Lys Asp Ala Leu Glu Ala Asn Ile Ser Trp Ala Asn Ala Met Thr Phe 195 200 205
- Ile Gly Asn Ala Met Gly Val Asn Ile Asp Thr Gln Lys Gly Leu Gln 210 215 220
- Phe Gly Thr Thr Ser Thr Val Ala Asp Val Lys Asn Ala Tyr Pro Ile 225 230 . 235 240
- Gln Ile Lys Leu Gly Ala Gly Leu Thr Phe Asp Ser Thr Gly Ala Ile 245 250 255
- Val Ala Trp Asn Lys Asp Asp Asp Lys Leu Thr Leu Trp Thr Thr Ala
 260 265 270
- Asp Pro Ser Pro Asn Cys His Ile Tyr Ser Glu Lys Asp Ala Lys Leu 275 280 285

Thr Leu Cys Leu Thr Lys Cys Gly Ser Gln Ile Leu Gly Thr Val Ser 295 Leu Ile Ala Val Asp Thr Gly Ser Leu Asn Pro Ile Thr Gly Thr Val 310 Thr Thr Ala Leu Val Ser Leu Lys Phe Asp Ala Asn Gly Val Leu Gln 330 Ser Ser Ser Thr Leu Asp Ser Asp Tyr Trp Asn Phe Arg Gln Gly Asp Val Thr Pro Ala Glu Ala Tyr Thr Asn Ala Ile Gly Phe Met Pro Asn Leu Lys Ala Tyr Pro Lys Asn Thr Ser Gly Ala Ala Lys Ser His Ile 375 Val Gly Lys Val Tyr Leu His Gly Asp Thr Gly Lys Pro Leu Asp Leu Ile Ile Thr Phe Asn Glu Thr Ser Asp Glu Ser Cys Thr Tyr Cys Ile 405 Asn Phe Gln Trp Gln Trp Gly Ala Asp Gln Tyr Lys Asn Glu Thr Leu Ala Val Ser Ser Phe Thr Phe Ser Tyr Ile Ala Lys Glu 440 <210> 5 <211> 36604 <212> DNA <213> chimpanzee adenovirus serotype Pan6 <220> <221> CDS <222> (13878)..(15467) <223> L2 Penton <220> <221> CDS <222> (18284)..(21112) <223> L3 Hexon <220> <221> CDS <222> (32162)..(33493) <223> L5 Fiber <400> 5 catcatcaat aatatacctc aaacttttgg tgcgcgttaa tatgcaaatg agctgtttga 60 120

tgacgttttg atgacgtggc tatgaggcgg agccggtttg caagttctcg tgggaaaagt 180 gacgtcaaac gaggtgtggt ttgaacacgg aaatactcaa ttttcccgcg ctctctgaca 240 ggaaatgagg tgtttctggg cggatgcaag tgaaaacggg ccattttcgc gcgaaaactg 300 aatgaggaag tgaaaatctg agtaatttcg cgtttatggc agggaggagt atttgccgag 360 ggccgagtag actttgaccg attacgtggg ggtttcgatt accgtatttt tcacctaaat 420 ttccgcgtac ggtgtcaaag tccggtgttt ttacgtaggc gtcagctgat cgccagggta 480 tttaaacctg cgctctctag tcaagaggcc actcttgagt gccagcgagt agagttttct 540 ecteegegee gegagteaga tetacaettt gaaagatgag geacetgaga gacetgeeeg 600 gtaatgtttt cctggctact gggaacgaga ttctggaatt ggtggtggac qccatqatqq 660 gtgacgaccc tccagagccc cctaccccat ttgaggcgcc ttcgctgtac gatttgtatg 720 atctggaggt ggatgtgccc gagagcgacc ctaacgagga ggcggtgaat gatttgttta 780 gcgatgccgc gctgctggct gccgagcagg ctaatacgga ctctggctca gacagcgatt 840 cctctctcca taccccgaga cccggcagag gtgagaaaaa gatccccgag cttaaagggg 900 aagagctcga cctgcgctgc tatgaggaat gcttgcctcc gagcgatgat gaggaggacg 960 aggaggcgat tcgagctgcg gtgaaccagg gagtgaaaac tgcgggcgag agctttagcc 1020 tggactgtcc tactctgccc ggacacggct gtaagtcttg tgaatttcat cgcatgaata 1080 ctggagataa gaatgtgatg tgtgccctgt gctatatgag agcttacaac cattgtgttt 1140 acagtaagtg tgattaactt tagttgggaa ggcagagggt gactgggtgc tgactggttt 1200 atttatgtat atgttttttt atgtgtaggt cccgtctctg acgtagatga gacccccact 1260 tcagagtgca tttcatcacc cccagaaatt ggcgaggaac cgcccgaaga tattattcat 1320 agaccagttg cagtgagagt caccgggcgg agagcagctg tggagagttt ggatgacttg 1380 ctacagggtg gggatgaacc tttggacttg tgtacccgga aacgccccag gcactaagtg 1440 ccacacatgt gtgtttactt aaggtgatgt cagtatttat agggtgtgga gtgcaataaa 1500 atccgtgttg actttaagtg cgtgttttat gactcagggg tggggactgt gggtatataa 1560 gcaggtgcag acctgtgtgg tcagttcaga gcaggactca tggagatctg gactgtcttg 1620 gaagactttc accagactag acagttgcta gagaactcat cggagggagt ctcttacctg 1680 tggagattct gcttcggtgg gcctctagct aagctagtct atagggccaa acaggattat 1740 aaggaacaat ttgaggatat tttgagagag tgtcctggta tttttgactc tctcaacttg 1800 ggccatcagt ctcactttaa ccagagtatt ctgagagccc ttgacttttc tactcctggc 1860

agaactaccg	ccgcggtagc	cttttttgcc	tttattcttg	acaaatggag	tcaagaaacc	1920
catttcagca	gggattaccg	tctggactgc	ttagcagtag	ctttgtggag	aacatggagg	1980
tgccagcgcc	tgaatgcaat	ctccggctac	ttgccagtac	agccggtaga	cacgctgagg	2040
atcctgagtc	tccagtcacc	ccaggaacac	caacgccgcc	agcagccgca	gcaggagcag	2100
cagcaagagg	aggaccgaga	agagaacccg	agagccggtc	tggaccctcc	ggtggcggag	2160
gaggaggagt	agctgacttg	tttcccgagc	tgcgccgggt	gctgactagg	tcttccagtg	2220
gacgggagag	ggggattaag	cgggagaggc	atgaggagac	tagccacaga	actgaactga	2280
ctgtcagtct	gatgagccgc	aggcgcccag	aatcggtgtg	gtggcatgag	gtgcagtcgc	2340
aggggataga	tgaggtctcg	gtgatgcatg	agaaatattc	cctagaacaa	gtcaagactt	2400
gttggttg ga	gcccgaggat	gattgggagg	tagccatcag	gaattatgcc	aagctggctc	2460
tgaagccaga	caagaagtac	aagattacca	aactgattaa	tatcagaaat	tectgetaca	2520
tttcagggaa	tggggccgag	gtggagatca	gtacccagga	gagggtggcc	ttcagatgtt	2580
gtatgatgaa	tatgtacccg	ggggtggtgg	gcatggaggg	agtcaccttt	atgaacacga	2640
ggttcagggg	tgatgggtat	aatggggtgg	tctttatggc	caacaccaag	ctgacagtgc	2700
acggatgctc	cttctttggc	ttcaataaca	tgtgcatcga	ggcctggggc	agtgtttcag	2760
tgaggggatg	cagcttttca	gccaactgga	tgggggtcgt	gggcagaacc	aagagcaagg	2820
tgtcagtgaa	gaaatgcctg	ttcgagaggt	gccacctggg	ggtgatgagc	gagggcgaag	2880
ccaaagtcaa	acactgcgcc	tctaccgaga	cgggctgctt	tgtgctgatc	aagggcaatg	2940
cccaagtcaa	gcataacatg	atctgtgggg	cctcggatga	gcgcggctac	cagatgctga	3000
cctgcgccgg	tgggaacagc	catatgctgg	ccaccgtgca	tgtggcctcg	caccccccca	3060
agacatggcc	cgagttcgag	cacaacgtca	tgacccgctg	caatgtgcac	ctgggctccc	3120
gccgaggcat	gttcatgccc	taccagtgca	acatgcaatt	tgtgaaggtg	ctgctggagc	3180
ccgatgccat	gtccagagtg	agcctgacgg	gggtgtttga	catgaatgtg	gagctgtgga	3240
aaattctgag	atatgatgaa	tccaagacca	ggtgccgggc	ctgcgaatgc	ggaggcaagc	3300
acgccaggct	tcagcccgtg	tgtgtggagg	tgacggagga	cctgcgaccc	gatcatttgg	3360
tgttgtcctg	caacgggacg	gagttcggct	ccagcgggga	agaatctgac	tagagtgagt	3420
agtgtttggg	gctgggtgtg	agcctgcatg	aggggcagaa	tgactaaaat	ctgtggtttt	3480
ctgtgtgttg	cagcagcatg	agcggaagcg	cctcctttga	gggaggggta	ttcagccctt	3540

atctgacggg gcgtctcccc tcctgggcgg	gagtgcgtca	gaatgtgatg	ggatccacgg	3600
tggacggccg gcccgtgcag cccgcgaact	cttcaaccct	gacctacgcg	accctgagct	3660
cctcgtccgt ggacgcagct gccgccgcag	ctgctgcttc	cgccgccagc	gccgtgcgcg	3720
gaatggccct gggcgccggc tactacagct	ctctggtggc	caactcgagt	tccaccaata	3780
atcccgccag cctgaacgag gagaagctgc	tgctgctgat	ggcccagctc	gaggccctga	3840
cccagcgcct gggcgagctg acccagcagg	tggctcagct	gcaggcggag	acgcgggccg	3900
cggttgccac ggtgaaaacc aaataaaaa	tgaatcaata	aataaacgga	gacggttgtt	3960
gattttaaca cagagtcttg aatctttatt	tgatttttcg	cgcgcggtag	gccctggacc	4020
accggtctcg atcattgagc acccggtgga	tcttttccag	gacccggtag	aggtgggctt	4080
ggatgttgag gtacatgggc atgagcccgt	cccgggggtg	gaggtagctc	cattgcaggg	4140
cctcgtgctc ggggatggtg ttgtaaatca	cccagtcata	gcaggggcgc	agggcgtggt	4200
gctgcacgat gtccttgagg aggagactga	tggccacggg	cagccccttg	gtgtaggtgt	4260
tgacgaacct gttgagctgg gagggatgca	tgcgggggga	gatgagatgc	atcttggcct	4320
ggatettgag attggegatg tteeegeeca	gatcccgccg	ggggttcatg	ttgtgcagga	4380
ccaccagcac ggtgtatccg gtgcacttgg	ggaatttgtc	atgcaacttg	gaagggaagg	4440
cgtgaaagaa tttggagacg cccttgtgac	cgcccaggtt	ttccatgcac	tcatccatga	4500
tgatggcgat gggcccgtgg gcggcggcct	gggcaaagac	gtttcggggg	tcggacacat	4560
cgtagttgtg gtcctgggtg agctcgtcat	aggccatttt	aatgaatttg	gggcggaggg	4620
tgcccgactg ggggacgaag gtgccctcga	tcccgggggc	gtagttgccc	tcgcagatct	4680
gcatctccca ggccttgagc tcggaggggg	ggatcatgtc	cacctgcggg	gcgatgaaaa	4740
aaacggtttc cggggcgggg gagatgagct	gggccgaaag	caggttccgg	agcagctggg	4800
acttgccgca accggtgggg ccgtagatga	ccccgatgac	cggctgcagg	tggtagttga	4860
gggagagaca gctgccgtcc tcgcggagga	ggggggccac	ctcgttcatc	atctcgcgca	4920
catgcatgtt ctcgcgcacg agttccgcca	ggaggcgctc	gcccccagc	gagaggagct	4980
cttgcagcga ggcgaagttt ttcagcggct	tgagtccgtc	ggccatgggc	attttggaga	5040
gggtctgttg caagagttcc agacggtccc	agagctcggt	gatgtgctct	agggcatctc	5100
gatecageag acctectegt ttegegggtt	ggggcgactg	cgggagtagg	gcaccaggcg	5160
atgggcgtcc agcgaggcca gggtccggtc	cttccagggc	cgcagggtcc	gcgtcagcgt	5220
ggtctccgtc acggtgaagg ggtgcgcgcc	gggctgggcg	cttgcgaggg	tgcgcttcag	5280

geteateegg etggtegaga accgeteeeg gteggegeee tgegegtegg eeaggtagea	5340
attgagcatg agttcgtagt tgagcgcctc ggccgcgtgg cccttggcgc ggagcttacc	5400
tttggaagtg tgtccgcaga cgggacagag gagggacttg agggcgtaga gcttgggggc	5460
gaggaagacg gactcggggg cgtaggcgtc cgcgccgcag ctggcgcaga cggtctcgca	5520
ctccacgagc caggtgaggt cggggcggtt ggggtcaaaa acgaggtttc ctccgtgctt	5580
tttgatgcgt ttcttacctc tggtctccat gagctcgtgt ccccgctggg tgacaaagag	5640
gctgtccgtg tccccgtaga ccgactttat gggccggtcc tcgagcgggg tgccggtc	5700
ctcgtcgtag aggaaccccg cccactccga gacgaaggcc cgggtccagg ccagcacgaa	5760
ggaggccacg tgggaggggt agcggtcgtt gtccaccagc gggtccacct tctccagggt	5820
atgcaagcac atgtccccct cgtccacatc caggaaggtg attggcttgt aagtgtaggc	5880
cacgtgaccg ggggtcccgg ccggggggt ataaaagggg gcgggcccct gctcgtcctc	5940
actgtcttcc ggatcgctgt ccaggagcgc cagctgttgg ggtaggtatt ccctctcgaa	6000
ggcgggcatg acctcggcac tcaggttgtc agtttctaga aacgaggagg atttgatatt	6060
gacggtgccg ttggagacgc ctttcatgag cccctcgtcc atttggtcag aaaagacgat	6120
ctttttgttg tcgagcttgg tggcgaagga gccgtagagg gcgttggaga gcagcttggc	6180
gatggagege atggtetggt tetttteett gteggegege teettggegg egatgttgag	6240
ctgcacgtac tcgcgcgcca cgcacttcca ttcggggaag acggtggtga gctcgtcggg	6300
cacgattetg accegecage egeggttgtg cagggtgatg aggtecaege tggtggccae	6360
ctcgccgcgc aggggctcgt tggtccagca gaggcgcccg cccttgcgcg agcagaaggg	6420
gggcagcggg tecagcatga getegteggg ggggteggeg tecaeggtga agatgeeggg	6480
caggageteg gggtegaagt agetgatgea ggtgeecaga ttgteeageg eegettgeea	6540
gtcgcgcacg gccagcgcgc gctcgtaggg gctgaggggc gtgccccagg gcatggggtg	6600
cgtgagcgcg gaggcgtaca tgccgcagat gtcgtagacg tagaggggct cctcgaggac	6660
gccgatgtag gtggggtagc agcgcccccc gcggatgctg gcgcgcacgt agtcgtacag	6720
ctcgtgcgag ggcgcgagga gccccgtgcc gaggttggag cgttgcggct tttcggcgcg	6780
gtagacgatc tggcggaaga tggcgtggga gttggaggag atggtgggcc tttggaagat	6840
gttgaagtgg gcgtggggca ggccgaccga gtccctgatg aagtgggcgt aggagtcctg	6900
cagettggeg acgagetegg eggtgaegag gaegteeagg gegeagtagt egagggtete	6960

ttggatgatg	, tcatacttga	gctggccctt	ctgcttccac	agctcgcggt	tgagaaggaa	7020
ctcttcgcgg	tccttccagt	actettegag	ggggaacccg	tcctgatcgg	cacggtaaga	7080
gcccaccatg	tagaactggt	tgacggcctt	gtaggcgcag	cagcccttct	ccacggggag	7140
ggcgtaagct	tgcgcggcct	tgcgcaggga	ggtgtgggtg	agggcgaagg	tgtcgcgcac	7200
catgacettg	aggaactggt	gcttgaagtc	gaggtcgtcg	cagccgccct	gctcccagag	7260
ttggaagtco	gtgcgcttct	tgtaggcggg	gttaggcaaa	gcgaaagtaa	catcgttgaa	7320
gaggatcttg	cccdcdcddd	gcatgaagtt	gcgagtgatg	cggaaaggct	ggggcacctc	7380
ggcccggttg	ttgatgacct	gggcggcgag	gacgatctcg	tcgaagccgt	tgatgttgtg	7440
cccgacgatg	tagagttcca	cgaatcgcgg	gcggcccttg	acgtggggca	gcttcttgag	7500
ctcgtcgtag	gtgagctcgg	cggggtcgct	gagcccgtgc	tgctcgaggg	cccagtcggc	7560
gacgtggggg	ttggcgctga	ggaaggaagt	ccagagatcc	acggccaggg	cggtctgcaa	7620
gcggtcccgg	tactgacgga	actgttggcc	cacggccatt	ttttcggggg	tgacgcagta	7680
gaaggtgcgg	gggtcgccgt	gccagcggtc	ccacttgagc	tggagggcga	ggtcgtgggc	7740
gagctcgacg	agcggcgggt	ccccggagag	tttcatgacc	agcatgaagg	ggacgagetg	7800
cttgccgaag	gaccccatcc	aggtgtaggt	ttccacatcg	taggtgagga	agageettte	7860
ggtgcgagga	tgcgagccga	tggggaagaa	ctggatctcc	tgccaccagt	tggaggaatg	7920
gctgttgatg	tgatggaagt	agaaatgccg	acggcgcgcc	gagcactcgt	gcttgtgttt	7980
atacaagcgt	ccgcagtgct	cgcaacgctg	cacgggatgc	acgtgctgca	cgagctgtac	8040
ctgggttcct	ttggcgagga	atttcagtgg	gcagtggagc	gctggcggct	gcatctcgtg	8100
ctgtactacg	tettggccat	cggcgtggcc	atcgtctgcc	tcgatggtgg	tcatgctgac	8160
gagcccgcgc	gggaggcagg	tccagacctc	ggctcggacg	ggtcggagag	cgaggacgag	8220
ggcgcgcagg	ccggagctgt	ccagggtcct	gagacgctgc	ggagtcaggt	cagtgggcag	8280
cggcggcgcg	cggttgactt	gcaggagctt	ttccagggcg	cgcgggaggt	ccagatggta	8340
cttgatctcc	acggcgccgt	tggtggctac	gtccacggct	tgcagggtgc	cgtgcccctg	8400
gggcgccacc	accgtgcccc	gtttcttctt	gggcgctgct	tccatgtcgg	tcagaagcgg	8460
cggcgaggac	gcgcgccggg	cggcaggggc	ggctcggggc	ccggaggcag	gggcggcagg	8520
ggcacgtcgg	cgccgcgcgc	gggcaggttc	tggtactgcg	cccggagaag	actggcgtga	8580
gcgacgacgc	gacggttgac	gtcctggatc	tgacgcctct	gggtgaaggc	cacgggaccc	8640
gtgagtttga	acctgaaaga	gagttcgaca	gaatcaatct	cggtatcgtt	gacggcggcc	8700

tgccgcagga t	ctcttgcac	gtcgcccgag	ttgtcctggt	aggcgatctc	ggtcatgaac	8760
tgctcgatct c	ctcctcctg	aaggtctccg	cggccggcgc	gctcgacggt	ggccgcgagg	8820
tcgttggaga t	geggeecat	gagctgcgag	aaggcgttca	tgccggcctc	gttccagacg	8880
cggctgtaga c	cacggctcc	gtcggggtcg	cgcgcgcgca	tgaccacctg	ggcgaggttg	8940
agctcgacgt g	gcgcgtgaa	gaccgcgtag	ttgcagaggc	gctggtagag	gtagttgagc	9000
gtggtggcga t	gtgctcggt	gacgaagaag	tacatgatcc	agcggcggag	cggcatctcg	9060
ctgacgtcgc c	cagggcttc	caagcgttcc	atggcctcgt	agaagtccac	ggcgaagttg	9120
aaaaactggg a	gttgcgcgc	cgagacggtc	aactcctcct	ccagaagacg	gatgagctcg	9180
gcgatggtgg c	gcgcacctc	gcgctcgaag	gccccggggg	gctcctcttc	catctcctcc	9240
tetteeteet e	cactaacat	ctcttctact	tcctcctcag	gaggcggtgg	cgggggaggg	9300
gccctgcgtc g	ccggcggcg	cacgggcaga	cggtcgatga	agcgctcgat	ggtctccccg	9360
cgccggcgac g	catggtctc	ggtgacggcg	cgcccgtcct	cgcggggccg	cagcatgaag	9420
acgccgccgc g	catctccag	gtggccgccg	ggggggtctc	cgttgggcag	ggagagggcg	9480
ctgacgatgc a	tcttatcaa	ttgacccgta	gggactccgc	gcaaggacct	gagcgtctcg	9540
agatccacgg g	yatccgaaaa	ccgctgaacg	aaggcttcga	gccagtcgca	gtcgcaaggt	9600
aggctgagcc c	ggtttcttg	ttcttcgggt	atttggtcgg	gaggcgggcg	ggcgatgctg	9660
ctggtgatga a	gttgaagta	ggcggtcctg	agacggcgga	tggtggcgag	gagcaccagg	9720
teettgggee e	ggcttgctg	gatgcgcaga	cggtcggcca	tgccccaggc	gtggtcctga	9780
cacctggcga g	gtccttgta	gtagtcctgc	atgageeget	ccacgggcac	ctcctcctcg	9840
cccgcgcggc c	gtgcatgcg	cgtgagcccg	aacccgcgct	gcggctggac	gagcgccagg	9900
teggegaega e	gegeteggt	gaggatggcc	tgctggatct	gggtgagggt	ggtctggaag	9960
tcgtcgaagt c	gacgaagcg	gtggtaggct	ccggtgttga	tggtgtagga	gcagttggcc	10020
atgacggacc a	gttgacggt	ctggtggccg	ggtcgcacga	gctcgtggta	cttgaggcgc	10080
gagtaggcgc g	cgtgtcgaa	gatgtagtcg	ttgcaggcgc	gcacgaggta	ctggtatccg	10140
acgaggaagt g	cggcggcgg	ctggcggtag	agcggccatc	gctcggtggc	gggggcgccg	10200
ggcgcgaggt c	ctcgagcat	gaggcggtgg	tagccgtaga	tgtacctgga	catccaggtg	10260
atgccggcgg c	ggtggtgga	ggcgcgcggg	aactcgcgga	cgcggttcca	gatgttgcgc	10320
agcggcagga a	gtagttcat	ggtggccgcg	gtctggcccg	tgaggcgcgc	gcagtcgtgg	10380

atgctctaga	catacgggca	aaaacgaaag	cggtcagcgg	ctcgactccg	tggcctggag	10440
gctaagcgaa	cgggttgggc	tgcgcgtgta	ccccggttcg	aatctcgaat	caggctggag	10500
ccgcagctaa	cgtggtactg	gcactcccgt	ctcgacccaa	gcctgctaac	gaaacctcca	10560
ggatacggag	gcgggtcgtt	ttttggcctt	ggtcgctggt	catgaaaaac	tagtaagcgc	10620
ggaaagcggc	cgcccgcgat	ggctcgctgc	cgtagtctgg	agaaagaatc	gccagggttg	10680
cgttgcggtg	tgccccggtt	cgagcctcag	cgctcggcgc	cggccggatt	ccgcggctaa	10740
cgtgggcgtg	gctgccccgt	cgtttccaag	accccttagc	cagccgactt	ctccagttac	10800
ggagcgagcc	cctcttttt	tttcttgtgt	ttttgccaga	tgcatcccgt	actgcggcag	10860
atgcgccccc	accetecace	acaaccgccc	ctaccgcagc	agcagcaaca	gccggcgctt	10920
ctgccccgc	cccagcagca	gccagccact	accgcggcgg	ccgccgtgag	cggagccggc	10980
gttcagtatg	acctggcctt	ggaagaggc	gaggggctgg	cgcggctggg	ggcgtcgtcg	11040
ccggagcggc	acccgcgcgt	gcagatgaaa	agggacgctc	gcgaggccta	cgtgcccaag	11100
cagaacctgt	tcagagacag	gagcggcgag	gagcccgagg	agatgcgcgc	ctcccgcttc	11160
cacgcggggc	gggagctgcg	gcgcggcctg	gaccgaaagc	gggtgctgag	ggacgaggat	11220
ttcgaggcgg	acgagctgac	ggggatcagc	cccgcgcgcg	cgcacgtggc	cgcggccaac	11280
ctggtcacgg	cgtacgagca	gaccgtgaag	gaggagagca	acttccaaaa	atccttcaac	11340
aaccacgtgc	gcacgctgat	cgcgcgcgag	gaggtgaccc	tgggcctgat	gcacctgtgg	11400
gacctgctgg	aggccatcgt	gcagaacccc	acgagcaagc	cgctgacggc	gcagctgttt	11460
ctggtggtgc	agcacagtcg	ggacaacgag ·	acgttcaggg	aggcgctgct	gaatatcacc	11520
gagcccgagg	gccgctggct	cctggacctg	gtgaacattt	tgcagagcat	cgtggtgcag	11580
gagcgcgggc	tgccgctgtc	cgagaagctg	gcggccatca	acttctcggt	gctgagtctg	11640
ggcaagtact	acgctaggaa	gatctacaag	accccgtacg	tgcccataga	caaggaggtg	11700
aagatcgacg	ggttttacat	gcgcatgacc	ctgaaagtgc	tgaccctgag	cgacgatctg	11760
ggggtgtacc	gcaacgacag	gatgcaccgc	gcggtgagcg	ccagccgccg	gcgcgagctg	11820
agcgaccagg	agctgatgca	cagcctgcag	cgggccctga	ccggggccgg	gaccgagggg	11880
gagagctact	ttgacatggg	cgcggacctg	cgctggcagc	ccagccgccg	ggccttggaa	11940
gctgccggcg	gttcccccta	cgtggaggag	gtggacgatg	aggaggagga	gggcgagtac	12000
ctggaagact	gatggcgcga	ccgtattttt	gctagatgca	gcaacagcca	ccgccgccgc	12060
ctcctgatcc	cgcgatgcgg	gcggcgctgc	agagccagcc	gtccggcatt	aactcctcgg	12120

acgattggac	ccaggccatg	caacgcatca	tggcgctgac	gacccgcaat	cccgaagcct	12180
ttagacagca	gcctcaggcc	aaccggctct	cggccatcct	ggaggccgtg	gtgccctcgc	12240
gctcgaaccc	cacgcacgag	aaggtgctgg	ccatcgtgaa	cgcgctggtg	gagaacaagg	12300
ccatccgcgg	tgacgaggcc	gggctggtgt	acaacgcgct	gctggagcgc	gtggcccgct	12360
acaacagcac	caacgtgcag	acgaacctgg	accgcatggt	gaccgacgtg	cgcgaggcgg	12420
tgtcgcagcg	cgagcggttc	caccgcgagt	cgaacctggg	ctccatggtg	gcgctgaacg	12480
ccttcctgag	cacgcagccc	gccaacgtgc	cccggggcca	ggaggactac	accaacttca	12540
tcagcgcgct	gcggctgatg	gtggccgagg	tgccccagag	cgaggtgtac	cagtcggggc	12600
cggactactt	cttccagacc	agtcgccagg	gcttgcagac	cgtgaacctg	agccaggctt	12660
tcaagaactt	gcagggactg	tggggcgtgc	aggccccggt	cggggaccgc	gcgacggtgt	12720
cgagcetgct	gacgccgaac	tegegeetge	tgctgctgct	ggtggcgccc	ttcacggaca	12780
gcggcagcgt	gagccgcgac	tegtacetgg	gctacctgct	taacctgtac	cgcgaggcca	12840
tcggacaggc	gcacgtggac	gagcagacct	accaggagat	cacccacgtg	agccgcgcgc	12900
tgggccagga	ggacccgggc	aacctggagg	ccaccctgaa	cttcctgctg	accaaccggt	12960
cgcagaagat	cccgccccag	tacgcgctga	gcaccgagga	ggagcgcatc	ctgcgctacg	13020
tgcagcagag	cgtggggctg	ttcctgatgc	aggaggggc	cacgcccagc	gcggcgctcg	13080
acatgaccgc	gcgcaacatg	gagcccagca	tgtacgcccg	caaccgcccg	ttcatcaata	13140
agctgatgga	ctacttgcat	cgggcggccg	ccatgaactc	ggactacttt	accaacgcca	13200
tcttgaaccc	gcactggctc	ccgccgcccg	ggttctacac	gggcgagtac	gacatgcccg	13260
accccaacga	cgggttcctg	tgggacgacg	tggacagcag	cgtgttctcg	ccgcgtccag	13320
gaaccaatgc	cgtgtggaag	aaagagggcg	gggaccggcg	gccgtcctcg	gcgctgtccg	13380
gtcgcgcggg	tgctgccgcg	gcggtgcccg	aggccgccag	ccccttcccg	agcctgccct	13440
tttcgctgaa	cagcgtgcgc	agcagcgagc	tgggtcggct	gacgcgaccg	cgcctgctgg	13500
gcgaggagga	gtacctgaac	gactccttgt	tgaggcccga	gcgcgagaag	aacttcccca	13560
ataacgggat	agagagcctg	gtggacaaga	tgagecgetg	gaagacgtac	gcgcacgagc	13620
acagggacga	gccccgagct	agcagcgcag	gcacccgtag	acgccagcgg	cacgacaggc	13680
agcggggact	ggtgtgggac	gatgaggatt	ccgccgacga	cagcagcgtg	ttggacttgg	13740
gtgggagtgg	tggtaacccg	ttcgctcacc	tgcgcccccg	tatcgggcgc	ctgatgtaag	13800

aatc	tgaa	aa a	ataa	aaga	c gg	tact	cacc	aag	gcca	tgg	cgaċ	cagc	gt g	cgtt	cttct	13860
ctgt	tgtt	tg t	agta	gt a M 1	let M	tg a et A	gg c rg A	gc g rg V 5	al T	ac c yr P	cg g ro G	gag g Slu G	gt c ly P l	ro P	ct ro	13910
ccc Pro	tcg Ser	tac Tyr	gag Glu 15	agc Ser	gtg Val	atg Mẹt	cag Gln	cag Gln 20	gcg Ala	gtg Val	gcg Ala	Ala	gcg Ala 25	atg Met	cag Gln	13958
ccc Pro	ccg Pro	ctg Leu 30	gag Glu	gcg Ala	cct Pro	tac Tyr	gtg Val 35	ccc Pro	ccg Pro	cgg Arg	tac Tyr	ctg Leu 40	gcg Ala	cct Pro	acg Thr	14006
gag Glu	ggg Gly 45	cgg Arg	aac Asn	agc Ser	att Ile	cgt Arg 50	tac Tyr	tcg Ser	gag Glu	ctg Leu	gca Ala 55	ccc Pro	ttg Leu	ta <i>c</i> Tyr	gat Asp	14054
acc Thr 60	acc Thr	cgg Arg	ttg Leu	tac Tyr	ctg Leu 65	gtg Val	gac Asp	aac Asn	aag Lys	tcg Ser 70	gca Ala	gac Asp	atc Ile	gcc Ala	tcg Ser 75	14102
ctg Leu	aac Asn	tac Tyr	cag Gln	aac Asn 80	gac Asp	cac His	agc Ser	aac Asn	ttc Phe 85	ctg Leu	acc Thr	acc Thr	gtg Val	gtg Val 90	cag Gln	14150
aac Asn	aac Asn	gat Asp	ttc Phe 95	acc Thr	ccc Pro	acg Thr	gag Glu	gcc Ala 100	agc Ser	acc Thr	cag Gln	acc Thr	atc Ile 105	aac Asn	ttt Phe	14198
gac Asp	gag Glu	cgc Arg 110	tcg Ser	cgg Arg	tgg Trp	ggc Gly	ggc Gly 115	cag Gln	ctg Leu	aaa Lys	acc Thr	atc Ile 120	atg Met	cac His	acc Thr	14246
aac Asn	atg Met 125	ccc Pro	aac Asn	gtg Val	aac Asn	gag Glu 130	ttc Phe	atg Met	tac Tyr	agc Ser	aac Asn 135	Lys	ttc Phe	aag Lys	gcg Ala	14294
cgg Arg 140	Val	atg Met	gtc Val	tcg Ser	cgc Arg 145	aag Lys	acc Thr	ecc	aac Asn	ggg Gly 150	gtg Val	gat Asp	gat Asp	gat Asp	tat Tyr 155	14342
gat Asp	ggt Gly	agt Ser	cag Gln	gac Asp 160	Glu	ctg Leu	acc Thr	tac Tyr	gag Glu 165	Trp	gtg Val	gag Glu	ttt Phe	gag Glu 170	ctg Leu	14390
ccc	gag Glu	ggc	aac Asn 175	Phe	tcg Ser	gtg Val	acc Thr	atg Met 180	Thr	atc Ile	gat Asp	ctg Leu	atg Met 185	aac Asn	aac Asn	14438
gcc Ala	atc Ile	ato Ile 190	gac Asp	aac Asn	tac Tyr	ttg Leu	gcg Ala 195	Val	ggg Gly	cgg Arg	cag Gln	aac Asn 200	GTA	gtg Val	ctg Leu	14486
gag Glu	ago Ser 205	Asp	ato Ile	ggc	gtg Val	aag Lys 210	Phe	gac Asp	acg Thr	cgc Arg	aac Asn 215	ı Phe	cgg Arg	ctg Leu	ggc Gly	14534

tgg Trp 220	Asp	ccc Pro	gtg Val	acc Thr	gag Glu 225	Leu	gtg Val	atg Met	ccg	ggc Gly 230	Val	tac Tyr	acc Thr	aac Asn	gag Glu 235	14582
gcc Ala	tto Phe	cac His	Pro	gac Asp 240	Ile	gtc Val	ctg Leu	ctg Leu	Pro 245	Gly	tgc Cys	ggc Gly	gtg Val	gac Asp 250	ttc Phe	14630
acc Thr	gag Glu	agc Ser	cgc Arg 255	Leu	agc Ser	aàc Asn	ctg Leu	ctg Leu 260	ggc Gly	atc Ile	cgc Arg	aag Lys	cgg Arg 265	cag Gln	ccc Pro	14678
ttc Phe	cag Gln	gag Glu 270	Gly	ttc Phe	cag Gln	atc Ile	ctg Leu 275	tac Tyr	gag Glu	gac Asp	ctg Le u	gag Glu 280	Gly	ggc	aac Asn	14726
atc Ile	Pro 285	Ala	ctc Leu	ttg Leu	gat Asp	gtc Val 290	gaa Glu	gcc Ala	tac Tyr	gag Glu	aaa Lys 295	agc Ser	aag Lys	gag Glu	gat Asp	14774
agc Ser 300	Thr	gcc Ala	gcg Ala	gcg Ala	acc Thr 305	gca Ala	gcc Ala	gtg Val	gcc Ala	acc Thr 310	gcc Ala	tct Ser	acc Thr	gag Glu	gtg Val 315	14822
cgg	Gly Gly	gat Asp	aat Asn	ttt Phe 320	gct Ala	agc Ser	gct Ala	gcg Ala	gca Ala 325	gcg Ala	gcc Ala	gag Glu	gcg Ala	gct Ala 330	gaa Glu	14870
acc Thr	gaa Glu	agt Ser	aag Lys 335	ata Ile	gtc Val	atc Ile	cag Gln	ccg Pro 340	gtg Val	gag Glu	aag Lys	gac Asp	agc Ser 345	aag Lys	gac Asp	14918
agg Arg	agc S er	tac Tyr 350	aac Asn	gtg Val	ctc Leu	gcg Ala	gac Asp 355	aag Lys	aaa Lys	aac Asn	acc Thr	gcc Ala 360	tac Tyr	cgc Arg	agc Ser	14966
tgg Trp	tac Tyr 365	ctg Leu	gcc Ala	tac Tyr	aac Asn	tac Tyr 370	ggc Gly	gac Asp	ccc Pro	gag Glu	aag Lys 375	ggc Gly	gtg Val	cgc Arg	tcc Ser	15014
tgg Trp 380	acg Thr	ctg Leu	ctc Leu	acc Thr	acc Thr 385	tcg Ser	gac Asp	gtc Val	acc Thr	tgc Cys 390	ggc Gly	gtg Val	gag Glu	caa Gln	gtc Val 395	15062
tac Tyr	tgg Trp	tcg Ser	ctg Leu	ccc Pro 400	gac Asp	atg Met	atg Met	caa Gln	gac Asp 405	ccg Pro	gtc Val	acc Thr	ttc Phe	cgc Arg 410	tcc Ser	15110
acg Thr	cgt Arg	GIN	gtt Val 415	agc Ser	aac Asn	tac Tyr	Pro	gtg Val 420	gtg Val	ggc Gly	gcc Ala	gag Glu	ctc Leu 425	ctg Leu	ccc Pro	15158
gtc Val	Tyr	tcc Ser 430	aag Lys	agc Ser	ttc Phe	Phe	aac Asn 435	gag Glu	cag Gln	gcc Ala	gtc Val	tac Tyr 440	tcg Ser	cag Gln	cag Gln	15206

ctg cgc gcc ttc acc tcg ctc acg cac gtc ttc aac cgc ttc ccc gag Leu Arg Ala Phe Thr Ser Leu Thr His Val Phe Asn Arg Phe Pro Glu 445 450 455	15254
aac cag atc ctc gtc cgc ccg ccc gcg ccc acc att acc acc gtc agt Asn Gln Ile Leu Val Arg Pro Pro Ala Pro Thr Ile Thr Thr Val Ser 460 475	15302
gaa aac gtt cct gct ctc aca gat cac ggg acc ctg ccg ctg cgc agc Glu Asn Val Pro Ala Leu Thr Asp His Gly Thr Leu Pro Leu Arg Ser 480 485 490	15350
agt atc cgg gga gtc cag cgc gtg acc gtc act gac gcc aga cgc cgc Ser Ile Arg Gly Val Gln Arg Val Thr Val Thr Asp Ala Arg Arg Arg 495 500 505	15398
acc tgc ccc tac gtc tac aag gcc ctg ggc gta gtc gcg ccg cgc gtc Thr Cys Pro Tyr Val Tyr Lys Ala Leu Gly Val Val Ala Pro Arg Val 510 515 520	15446
ctc tcg agc cgc acc ttc taa aaaatgtcca ttctcatctc gcccagtaat Leu Ser Ser Arg Thr Phe 525	15497
aacaceggtt ggggcctgcg cgcgcccagc aagatgtacg gaggcgctcg ccaacgctcc	15557
acgcaacace eegtgegegt gegegggeac tteegegete eetggggege eeteaaggge	15617
cgcgtgcgct cgcgcaccac cgtcgacgac gtgatcgacc aggtggtggc cgacgcgc	15677
aactacacgc ccgccgccgc gcccgtctcc accgtggacg ccgtcatcga cagcgtggtg	15737
geegaegege geeggtaege eegeaeeaag ageeggegge ggegeatege eeggeggeae	15797
eggageacee eegecatgeg egeggegega geettgetge geagggeeag gegeaeggga	15857
cgcagggcca tgctcagggc ggccagacgc gcggcctccg gcagcagcag cgccggcagg	15917
accegcagae gegeggecae ggeggeggeg geggeeateg ceageatgte eegeeegegg	15977
cgcggcaacg tgtactgggt gcgcgacgcc gccaccggtg tgcgcgtgcc cgtgcgcacc	16037
cgccccctc gcacttgaag atgctgactt cgcgatgttg atgtgtccca gcggcgagga	16097
ggatgtccaa gcgcaaatac aaggaagaga tgctccaggt catcgcgcct gagatctacg	16157
gccccgcggc ggcggtgaag gaggaaagaa agccccgcaa actgaagcgg gtcaaaaagg	16217
acaaaaagga ggaggaagat gacggactgg tggagtttgt gcgcgagttc gcccccggc	16277
ggegegtgea gtggegeggg eggaaagtga aaceggtget geggeeegge aceaeggtgg	16337
tettcaegee eggegagegt teeggeteeg cetecaageg etectaegae gaggtgtaeg	16397
gggacgagga catcctcgag caggcggtcg agcgtctggg cgagtttgcg tacggcaagc	16457
gcagccgccc cgcgcccttg aaagaggagg cggtgtccat cccgctggac cacggcaacc	16517

ccacgccgag	cctgaagccg	gtgaccctgc	agcaggtgct	accgagcgcg	gcgccgcgcc	16577
ggggcttcaa	gegegaggge	ggcgaggatc	tgtacccgac	: catgcagctg	atggtgccca	16637
agcgccagaa	gctggaggac	gtgctggagc	acatgaaggt	ggaccccgag	gtgcagcccg	16697
aggtcaaggt	geggeecate	aagcaggtgg	ccccgggcct	gggcgtgcag	accgtggaca	16757
tcaagatcco	cacggagccc	atggaaacgc	agaccgagcc	cgtgaagccc	agcaccagca	16817
ccatggaggt	gcagacggat	ccctggatgc	cagcaccagc	ttccaccago	actcgccgaa	16877
gacgcaagta	cggcgcggcc	agcctgctga	tgcccaacta	cgcgctgcat	ccttccatca	16937
tecceaegee	gggctaccgc	ggcacgcgct	tctaccgcgg	ctacaccage	agccgccgcc	16997
gcaagaccac	cacccgccgc	cgtcgtcgca	gccgccgcag	cagcaccgcg	acttccgcct	17057
tggtgcggag	agtgtatcgc	agcgggcgcg	agcctctgac	cctgccgcgc	gcgcgctacc	17117
acccgagcat	cgccatttaa	ctaccgcctc	ctacttgcag	atatggccct	cacatgccgc	17177
ctccgcgtcc	ccattacggg	ctaccgagga	agaaagccgc	gccgtagaag	gctgacgggg	17237
aacgggctgc	gtcgccatca	ccaccggcgg	cggcgcgcca	tcagcaagcg	gttgggggga	17297
ggcttcctgc	ccgcgctgat	ccceatcatc	gccgcggcga	tcggggcgat	ccccggcata	17357
gcttccgtgg	cggtgcaggc	ctctcagcgc	cactgagaca	caaaaaagca	tggatttgta	17417
ataaaaaaaa	aaatggactg	acgctcctgg	tcctgtgatg	tgtgttttta	gatggaagac	17477
atcaattttt	cgtccctggc	accgcgacac	ggcacgcggc	cgtttatggg	cacctggage	17537
gacatcggca	acagccaact	gaacgggggc	gccttcaatt	ggagcagtct	ctggagcggg	17597
cttaagaatt	tcgggtccac	gctcaaaacc	tatggcaaca	aggcgtggaa	cagcagcaca	17657
gggcaggcgc	tgagggaaaa	gctgaaagaa	cagaacttcc	agcagaaggt	ggttgatggc	17717
ctggcctcag	gcatcaacgg	ggtggttgac	ctggccaacc	aggccgtgca	gaaacagatc	17777
aacagccgcc	tggacgcggt	cccgcccgcg	gggtccgtgg	agatgcccca	ggtggaggag	17837
gagctgcctc	ccctggacaa	gcgcggcgac	aagcgaccgc	gtcccgacgc	ggaggagacg	17897
ctgctgacgc	acacggacga	gccgcccccg	tacgaggagg	cggtgaaact	gggcctgccc	17957
accacgegge	ccgtggcgcc	tctggccacc	ggagtgctga	aacccagcag	cagccagccc	18017
gcgaccctgg	acttgcctcc	gcctcgcccc	tccacagtgg	ctaagcccct	gccgccggtg	18077
gccgtcgcgt	cgcgcgcccc	ccgaggccgc	ccccaggcga	actggcagag	cactctgaac	18137
agcatcgtgg	gtctgggagt	gcagagtgtg	aagcgccgcc	gctgctatta	aaaqacactq	18197

tagcgcttaa cttgcttgt	c tgtgtgtata tg	tatgtccg ccgaccagaa	ggaggagtgt 18257
gaagaggcgc gtcgccgag		c acc cca tcg atg ct a Thr Pro Ser Met Le 535	
tgg gcg tac atg cac Trp Ala Tyr Met His			
ccg ggt ctg gtg cag Pro Gly Leu Val Gln 555		_	<u> </u>
ggg aac aag ttt agg Gly Asn Lys Phe Arg 575			
acc gac cgc agc cag Thr Asp Arg Ser Gln . 590			Asp Arg
gag gac aac acc tac Glu Asp Asn Thr Tyr 605			· ·
gac aac cgc gtg ctg Asp Asn Arg Val Leu . 620			
gtg ctg gac cgg ggc Val Leu Asp Arg Gly 635			
aac agc cta gct ccc Asn Ser Leu Ala Pro 655			
gca aaa aca ggc aat Ala Lys Thr Gly Asn 670			Gly Val
gcc cca atg ggc gga Ala Pro Met Gly Gly 685			
act gac gtt aca gcg Thr Asp Val Thr Ala . 700			
ttt caa cca gaa ccg Phe Gln Pro Glu Pro 715			
aac ttt tat ggc ggt Asn Phe Tyr Gly Gly . 735			

	tat Tyr															18982
	ctt Leu															19030
	ctg Leu 780															19078
	tat Tyr															19126
act Thr	cca Pro	gac Asp	acg Thr	cat His 815	gtg Val	gta Val	tac Tyr	aaa Lys	cca Pro 820	ggc	aag Lys	gat Asp	gat Asp	gca Ala 825	agt Ser	19174
	gaa Glu															19222
	GJÀ ààà			-						_				-		19270
	aat Asn 860															19318
	gat Asp															19366
Val 875 gac	gat	Leu	Gln ggt	Asp	Arg 880 aga	Asn acc	Thr	Glu tat	Leu	Ser 885 agt	Tyr atg	Gln tgg	Leu aac	Leu	Leu 890 gcg	19366 19414
Val 875 gac Asp	gat Asp tct	Leu ttg Leu agt	Gln ggt Gly tat	gac Asp 895	Arg 880 aga Arg	Asn acc Thr	Thr cgg Arg	Glu tat Tyr	ttc Phe 900	Ser 885 agt Ser	Tyr atg Met gaa	Gln tgg Trp	Leu aac Asn	cag Gln 905	Leu 890 gcg Ala gtg	
Val 875 gac Asp gtg Val	gat Asp tct Ser	ttg Leu agt ser	ggt Gly tat Tyr 910	gac Asp 895 gac Asp	Arg 880 aga Arg ccc Pro	Asn . acc Thr gat Asp	Thr cgg Arg gtg Val	Glu tat Tyr cgc Arg 915	ttc Phe 900 atc Ile	Ser 885 agt Ser atc Ile	Tyr atg Met gaa Glu gac	Gln tgg Trp aac Asn	Leu aac Asn cat His 920 tct	cag Gln 905 ggt Gly	Leu 890 gcg Ala gtg Val	19414
Val 875 gac Asp gtg Val gag Glu	gat Asp tet Ser gac Asp	ttg Leu agt Ser gaa Glu 925 gca	ggt Gly tat Tyr 910 ttg Leu	Asp gac Asp 895 gac Asp cca Pro	Arg 880 aga Arg ccc Pro aac Asn	Asn . acc Thr gat Asp tat Tyr	Thr cgg Arg gtg Val tgc Cys 930 aaa	Glu tat Tyr cgc Arg 915 ttc Phe	ttc Phe 900 atc Ile ccc Pro	Ser 885 agt ser atc Ile ttg Leu	Tyr atg Met gaa Glu gac Asp	tgg Trp aac Asn ggc Gly 935	Leu aac Asn cat His 920 tct ser	cag Gln 905 ggt Gly ggc	Leu 890 gcg Ala gtg Val act Thr	19414 19462

			Gly .					et G						t aac a Asn 5	19654
		Arg					Ser A						ı P	cc gac ro Asp	19702
			Tyr				aac Asn 1010	Val							19747
			Asp				ggc Gly 1025	Arg							19792
			Tyr				ggg Gly 1040								19837
							aac Asn 1055	His							19882
							ggc Gly 1070								19927
							ttt Phe 1085								19972
							tac Tyr 1100							-	20017
gtc . Val .	aac Asn	atg Met 1110	atc Ile	ctg Leu	cag Gln	agc Ser	tcc Ser 1115	cta Leu	Gly	aac Asn	gac Asp	ctg Leu 1120	cgc Arg	acg Thr	20062
			Ser				acc Thr 1130	Ser							20107
							acc Thr 1145								20152
			Asp				cag Gln 1160								20197
gcg (Ala	gcc Ala	aac Asn 1170	atg Met	ctc Leu	tac Tyr	ccc	atc Ile 1175	ccg Pro	gcc Ala	aac Asn	gcc Ala	acc Thr 1180	aac Asn	gtg Val	20242

	c tcc e Ser 1185	Ile								20287
	c acg ne Thr 1200	Arg							tcc Ser	20332
	c gac le Asp 1215	Pro								20377
	gc acc y Thr 1230	Phe								20422
	c gac ne Asp 1245	Ser								20467
_	c aac o Asn 1260	Glu	_	_	_	_	_		 	20512
	nc gtg sn Val 1275	Āla								20557
	g ctg t Leu 1290	Ala							gtg Val	20602
	ng ggc .u Gly 1305	Tyr						cgc Arg 1315		20647
	c atg o Met 1320	Ser						tac Tyr 1330		20692
	ng gcc .n Ala 1335	Val								20737
	gc tac y Tyr 1350	Leu								20782
	nc tac sn Tyr 1365	Pro								20827
_		Lys						tgg Trp 1390		20872

ccc ttc tcc agc aac ttc atg tcc atg ggc gcg ctc acc gac ctc Pro Phe Ser Ser Asn Phe Met Ser Met Gly Ala Leu Thr Asp Leu 1395 1400 1405	20917
ggc cag aac atg ctc tac gcc aac tcc gcc cac gcg cta gac atg Gly Gln Asn Met Leu Tyr Ala Asn Ser Ala His Ala Leu Asp Met 1410 1415 1420	20962
aat ttc gaa gtc gac ccc atg gat gag tcc acc ctt ctc tat gtt Asn Phe Glu Val Asp Pro Met Asp Glu Ser Thr Leu Leu Tyr Val 1425 1430 1435	21007
gtc ttc gaa gtc ttc gac gtc gtc cga gtg cac cag ccc cac cgc Val Phe Glu Val Phe Asp Val Val Arg Val His Gln Pro His Arg 1440 1445 1450	21052
ggc gtc atc gaa gcc gtc tac ctg cgc acg ccc ttc tcg gcc ggc Gly Val Ile Glu Ala Val Tyr Leu Arg Thr Pro Phe Ser Ala Gly 1455 1460 1465	21097
aac gcc acc acc taa gccgctcttg cttcttgcaa gatgacggcg ggctccggcg Asn Ala Thr Thr 1470	21152
agcaggaget cagggecate etecgegace tgggetgegg gecetgette etgggeacet	21212
togacaagog ottocotgga ttoatggood ogcacaagot ggootgogod atogtgaaca	21272
cggccggccg cgagaccggg ggcgagcact ggctggcctt cgcctggaac.ccgcgctccc	21332
acacatgeta cetettegae ecettegggt teteggaega gegeeteaag cagatetace	21392
agttcgagta cgagggcctg ctgcgtcgca gcgccctggc caccgaggac cgctgcgtca	21452
ccctggaaaa gtccacccag accgtgcagg gtccgcgctc ggccgcctgc gggctcttct	21512
getgcatgtt cetgcacgce ttegtgcact ggcccgaccg ceccatggac aagaacccca	21572
ccatgaactt actgacgggg gtgcccaacg gcatgetcca gtcgccccag gtggaaccca	21632
ceetgegeeg caaccaggaa gegetetace getteeteaa tgeceactee geetaettte	21692
geteceaceg egegegeate gagaaggeea eegeettega eegeatgaat caagacatgt	21752
aaaaaaccgg tgtgtgtatg tgaatgcttt attcataata aacagcacat gtttatgcca	21812
ccttctctga ggctctgact ttatttagaa atcgaagggg ttctgccggc tctcggcatg	21872
gcccgcgggc agggatacgt tgcggaactg gtacttgggc agccacttga actcggggat	21932
cagcagettg ggeacgggga ggtcggggaa cgagtcgetc cacagettge gegtgagttg	21992
cagggegeee ageaggtegg gegeggagat ettgaaateg cagttgggae eegegttetg	22052
cgcgcgagag ttgcggtaca cggggttgca gcactggaac accatcaggg ccgggtgctt	22112
cacgettgec ageaccgteg egteggtgat gecetecacg tecagateet eggegttgge	22172

catcccgaag	ggggtcatct	tgcaggtctg	ccgccccatg	ctgggcacgc	agccgggctt	22232
gtggttgcaa	tcgcagtgca	gggggatcag	catcatctgg	gcctgctcgg	agctcatgcc	22292
cgggtacatg	gccttcatga	aagcctccag	ctggcggaag	gcctgctgcg	ccttgccgcc	22352
ctcggtgaag	aagaccccgc	aggacttgct	agagaactgg	ttggtggcgc	agccggcgtc	22412
gtgcacgcag	cagcgcgcgt	cgttgttggc	cagctgcacc	acgctgcgcc	cccagcggtt	22472
ctgggtgatc	ttggcccggt	tggggttctc	cttcagcgcg	cgctgcccgt	tetegetege	22532
cacatccatc	tcgatagtgt	gctccttctg	gatcatcacg	gtcccgtgca	ggcaccgcag	22592
cttgccctcg	gcttcggtgc	agccgtgcag	ccacagcgcg	cagccggtgc	actcccagtt	22652
cttgtgggcg	atctgggagt	gcgagtgcac	gaagccctgc	aggaagcggc	ccatcatcgc	22712
ggtcagggtc	ttgttgctgg	tgaaggtcag	cgggatgccg	cggtgctcct	cgttcacata	22772
caggtggcag	atgeggeggt	acacctcgcc	ctgctcgggc	atcagctgga	aggcggactt	22832
caggtcgctc	tccacgcggt	accggtccat	cagcagcgtc	atcacttcca	tgcccttctc	22892
ccaggccgaa	acgatcggca	ggctcagggg	gttcttcacc	gccattgtca	tcttagtcgc	22952
cgccgccgag	gtcagggggt	cgttctcgtc	cagggtctca	aacactcgct	tgccgtcctt	23012
ctcgatgatg	cgcacggggg	gaaagctgaa	gcccacggcc	gccagctcct	cctcggcctg	23072
cctttcgtcc	tegetgteet	ggctgatgtc	ttgcaaaggc	acatgcttgg	tcttgcgggg	23132
tttctttttg	ggcggcagag	gcggcggcga	tgtgctggga	gagcgcgagt	tctcgttcac	23192
cacgactatt	tettettett	ggccgtcgtc	cgagaccacg	cggcggtagg	catgcctctt	23252
ctggggcaga	ggcggaggcg	acgggctctc	gcggttcggc	gggcggctgg	cagagcccct [.]	23312
teegegtteg	ggggtgcgct	cctggcggcg	ctgctctgac	tgacttcctc	cgcggccggc	23372
cattgtgttc	tcctagggag	caacaacaag	catggagact	cagccatcgt	cgccaacatc	23432
gccatctgcc	cccgccgcca	ccgccgacga	gaaccagcag	cagaatgaaa	gcttaaccgc	23492
cccgccgccc	agccccacct	ccgacgccgc	ggccccagac	atgcaagaga	tggaggaatc	23552
catcgagatt	gacctgggct	acgtgacgcc	cgcggagcac	gaggaggagc	tggcagcgcg	23612
cttttcagcc	ccggaagaga	accaccaaga	gcagccagag	caggaagcag	agaacgagca	23672
gaaccaggct	gggcacgagc	atggcgacta	cctgagcggg	gcagaggacg	tgctcatcaa	23732
gcatctggcc	cgccaatgca	tcatcgtcaa	ggacgcgctg	ctcgaccgcg	ccgaggtgcc	23792
cctcagcgtg	gcggagctca	gccgcgccta	cgagcgcaac	ctcttctcgc	cgcgcgtgcc	23852

ccccaagcgc	cagcccaacg	gcacctgtga	gcccaacccg	cgcctcaact	tctacccggt	23912
cttcgcggtg	cccgaggccc	tggccaccta	ccacctcttt	ttcaagaacc	aaaggatccc	23972
cgtctcctgc	cgcgccaacc	gcacccgcgc	cgacgccctg	ctcaacctgg	gccccggcgc	24032
ccgcctacct	gatatcacct	ccttggaaga	ggttcccaag	atcttcgagg	gtctgggcag	24092
cgacgagact	cgggccgcga	acgctctgca	aggaagcgga	gaggagcatg	agcaccacag	24152
cgccctggtg	gagttggaag	gcgacaacgc	gcgcctggcg	gtcctcaagc	gcacggtcga	24212
gctgacccac	ttcgcctacc	cggcgctcaa	cctgccccc	aaggtcatga	gcgccgtcat	24272
ggaccaggtg	ctcatcaagc	gcgcctcgcc	cctctcggag	gaggagatgc	aggaccccga	24332
gagttcggac	gagggcaagc	ccgtggtcag	cgacgagcag	ctggcgcgct	ggctgggagc	24392
gagtagcacc	ccccagagcc	tggaagagcg	gcgcaagctc	atgatggccg	tggtcctggt	24452
gaccgtggag	ctggagtgtc	tgcgccgctt	ctttgccgac	gcggagaccc	tgcgcaaggt	24512
cgaggagaac	ctgcactacc	tcttcaggca	cgggttcgtg	cgccaggcct	gcaagatctc	24572
caacgtggag	ctgaccaacc	tggtctccta	catgggcatc	ctgcacgaga	accgcctggg	24632
gcaaaacgtg	ctgcacacca	ccctgcgcgg	ggaggcccgc	cgcgactaca	tccgcgactg	24692
cgtctacctg	tacctctgcc	acacctggca	gacgggcatg	ggcgtgtggc	agcagtgcct	24752
ggaggagcag	aacctgaaag	agctctgcaa	gctcctgcag	aagaacctca	aggccctgtg	24812
gaccgggttc	gacgagcgta	ccaccgcctc	ggacctggcc	gacctcatct	tccccgagcg	24872
cctgcggctg	acgctgcgca	acgggctgcc	cgactttatg	agccaaagca	tgttgcaaaa	24932
ctttcgctct	ttcatcctcg	aacgctccgg	gatcctgccc	gccacctgct	ccgcgctgcc	24992
ctcggacttc	gtgccgctga	ccttccgcga	gtgccccccg	ccgctctgga	gccactgcta	25052
cttgctgcgc	ctggccaact	acctggccta	ccactcggac	gtgatcgagg	acgtcagcgg	25112
cgagggtctg	ctggagtgcc	actgccgctg	caacctctgc	acgccgcacc	gctccctggc	25172
ctgcaacccc	cagctgctga	gcgagaccca	gatcatcggc	accttcgagt	tgcaaggccc	25232
cggcgacggc	gagggcaagg	ggggtctgaa	actcaccccg	gggctgtgga	cctcggccta	25292
cttgcgcaag	ttcgtgcccg	aggactacca	tecettegag	atcaggttct	acgaggacca	25352
atcccagccg	cccaaggccg	agctgtcggc	ctgcgtcatc	acccaggggg	ccatcctggc	25412
ccaattgcaa	gccatccaga	aatcccgcca	agaatttctg	ctgaaaaagg	gccacggggt	25472
ctacttggac	ccccagaccg	gagaggagct	caaccccagc	ttcccccagg	atgccccgag	25532
gaagcagcaa	gaagctgaaa	gtggagctgc	cgccgccgga	ggatttggag	gaagactggg	25592

agagcagtca	ggcagaggag	gaggagatgg	aagactggga	cagcactcag	gcagaggagg	25652
acagcctgca	agacagtctg	gaggaggaag	acgaggtgga	ggaggcagag	gaagaagcag	25712
ccgccgccag	accgtcgtcc	tcggcggaga	aagcaagcag	cacggatacc	atctccgctc	25772
cgggtcgggg	tegeggegge	cgggcccaca	gtaggtggga	cgagaccggg	cgcttcccga	25832
accccaccac	ccagaccggt	aagaaggagc	ggcagggata	caagtcctgg	cgggggcaca	25892
aaaacgccat	cgtctcctgc	ttgcaagcct	gcgggggcaa	catctccttc	acceggeget	25952
acctgctctt	ccaccgcggg	gtgaacttcc	cccgcaacat	cttgcattac	taccgtcacc	26012
tccacagccc	ctactactgt	ttccaagaag	aggcagaaac	ccagcagcag	cagaaaacca	26072
gcggcagcag	cagctagaaa	atccacagcg	gcggcaggtg	gactgaggat	cgcggcgaac	26132
gagccggcgc	agacccggga	gctgaggaac	cggatctttc	ccaccctcta	tgccatcttc	26192
cagcagagtc	gggggcagga	gcaggaactg	aaagtcaaga	accgttctct	gcgctcgctc	26252
acccgcagtt	gtctgtatca	caagagcgaa	gaccaacttc	agcgcactct	cgaggacgcc	26312
gaggctctct	tcaacaagta	ctgcgcgctc	actcttaaag	agtagecege	gcccgcccac	26372
acacggaaaa	aggcgggaat	tacgtcacca	cctgcgccct	togocogaco	atcatgagca	26432
aagagattcc	cacgccttac	atgtggagct	accagcccca	gatgggcctg	gccgccggcg	26492
ccgcccagga	ctactccacc	cgcatgaact	ggctcagtgc	cgggcccgcg	atgatctcac	26552
gggtgaatga	cateegegee	caccgaaacc	agatactcct	agaacagtca	gcgatcaccg	26612
ccacgccccg	ccatcacctt	aatccgcgta	attggcccgc	cgccctggtg	taccaggaaa	26672
ttccccagcc	cacgaccgta	ctacttccgc	gagacgccca	ggccgaagtc	cagctgacta	26732
actcaggtgt	ccagctggcc	ggcggcgccg	ccctgtgtcg	tcaccgcccc	gctcagggta	26792
taaagcggct	ggtgatccga	ggcagaggca	cacageteaa	cgacgaggtg	gtgagctctt	26852
cgctgggtct	gcgacctgac	ggagtcttcc	aactcgccgg	atcggggaga	tcttccttca	26912
cgcctcgtca	ggccgtcctg	actttggaga	gttcgtcctc	gcagccccgc	tcgggcggca	26972
toggcactct	ccagttcgtg	gaggagttca	ctccctcggt	ctacttcaac	cccttctccg	27032
gctcccccgg	ccactacccg	gacgagttca	tcccgaactt	cgacgccatc	agcgagtcgg	27092
tggacggcta	cgattgaatg	tcccatggtg	gcgcagctga	cctagctcgg	cttcgacacc	27152
tggaccactg	ccgccgcttc	cgctgcttcg	ctcgggatct	cgccgagttt	gcctactttg	27212
agctgcccga	ggagcaccet	cagggcccag	cccacggagt	gcggatcatc	gtcgaagggg	27272

gcctcgactc	ccacctgctt	cggatcttca	gccagcgacc	gatcctggtc	gagcgcgaac	27332
aaggacagac	ccttcttact	ttgtactgca	tctgcaacca	ccccggcctg	catgaaagtc	27392
tttgttgtct	gctgtgtact	gagtataata	aaagctgaga	tcagcgacta	ctccggactc	27452
gattgtggtg	ttcctgctat	caaccggtcc	ctgttcttca	ccgggaacga	gaccgagete	27512
cagctccagt	gtaagcccca	caagaagtac	ctcacctggc	tgttccaggg	ctccccgatc	27572
gccgttgtca	accactgcga	caacgacgga	gtcctgctga	gcggccctgc	caaccttact	27632
ttttccaccc	gcagaagcaa	gctccagctc	ttccaaccct	tecteceegg	gacctatcag	27692
tgcgtctcag	gaccctgcca	tcacaccttc	cacctgatcc	cgaataccac	agcgccgctc	27752
cccgctacta	acaaccaaac	tacccaccaa	cgccaccgtc	gcgacctttc	ctctgaatct	27812
aataccacta	ccggaggtga	gctccgaggt	cgaccaacct	ctgggattta	ctacggcccc	27872
tgggaggtgg	tggggttaat	agcgctaggc	ctagttgcgg	gtgggctttt	ggttctctgc	27932
tacctatacc	tcccttgctg	ttcgtactta	gtggtgctgt	gttgctggtt	taagaaatgg	27992
ggaagatcac	cctagtgagc	tgcggtgcgc	tggtggcggt	gttgctttcg	attgtgggac	28052
tgggcggcgc	ggctgtagtg	aaggagaagg	ccgatccctg	cttgcatttc	aatcccaaca	28112
aatgccagct	gagttttcag	cccgatggca	atcggtgcgc	ggtactgatc	aagtgcggat	28172
gggaatgcga	gaacgtgaga	atcgagtaca	ataacaagac	tcggaacaat	actctcgcgt	28232
ccgtgtggca	gcccggggac	cccgagtggt	acaccgtctc	tgtccccggt	gctgacggct	28292
ccccgcgcac	cgtgaataat	actttcattt	ttgcgcacat	gtgcaacacg	gtcatgtgga	28352
tgagcaagca	gtacgatatg	tggcccccca	cgaaggagaa	catcgtggtc	ttctccatcg	28412
cttacagcct	gtgcacggcg	ctaatcaccg	ctatcgtgtg	cctgagcatt	cacatgctca	28472
togotattog	ccccagaaat	aatgccgaga	aagagaaaca	gccataacac	gttttttcac	28532
acaccttgtt	tttacagaca	atgcgtctgt	taaattttt	aaacattgtg	ctcagtattg	28592
cttatgcctc	tggttatgca	aacatacaga	aaacccttta	tgtaggatct	gatggtacac	28652
tagagggtac	ccaatcacaa	gccaaggttg	catggtattt	ttatagaacc	aacactgatc	28712
cagttaaact	ttgtaagggt	gaattgccgc	gtacacataa	aactccactt	acatttagtt	28772
gcagcaataa	taatcttaca	cttttttcaa	ttacaaaaca	atatactggt	acttattaca	28832
gtacaaactt	tcatacagga	caagataaat	attatactgt	taaggtagaa	aatcctacca	28892
ctcctagaac	taccaccacc	accactactg	caaagcccac	tgtgaaaact	acaactagga	28952
ccaccacaac	tacagaaacc	accaccagca	caacacttgc	tgcaactaca	cacacacaca	29012

ctaagctaac	cttacagacc	actaatgatt	tgatcgccct	gctgcaaaag	ggggataaca	29072
gcaccacttc	caatgaggag	atacccaaat	ccatgattgg	cattattgtt	gctgtagtgg	29132
tgtgcatgtt	gatcatcgcc	ttgtgcatgg	tgtactatgc	cttctgctac	agaaagcaca	29192
gactgaacga	caagctggaa	cacttactaa	gtgttgaatt	ttaatttttt	agaaccatga	29252
agatcctagg	cctttttagt	ttttctatca	ttacctctgc	tctttgtgaa	tcagtggata	29312
gagatgttac	tattaccact	ygttctaatt	atacactgaa	agggccaccc	tcaggtatgc	29372
tttcgtggta	ttgctatttt	ggaactgaca	ctgatcaaac	tgaattatgc	aattttcaaa	29432
aaggcaaaac	ctcaaactct	aaaatctcta	attatcaatg	caatggcact	gatctgatac	29492
tactcaatgt	cacgaaagca	tatggtggca	gttattattg	ccctggacaa	aacactgaag	29552
aaatgatttt	ttacaaagtg	gaagtggttg	atcccactac	accacccacc	accacaacta	29612
ttcataccac	acacacagaa	caaacaccag	aggcaacaga	agcagagttg	gccttccagg	29672
ttcacggaga	ttcctttgct	gtcaataccc	ctacacccga	tcagcggtgt	ccggggccgc	29732
tagtcagcgg	cattgtcggt	gtgctttcgg	gattagcagt	cataatcatc	tgcatgttca	29792
tttttgcttg	ctgctataga	aggctttacc	gacaaaaatc	agacccactg	ctgaacctct	29852
atgtttaatt	ttttccagag	ccatgaaggc	agttagcgct	ctagttttt	gttctttgat	29912
tggcattgtt	tttaatagta	aaattaccag	agttagcttt	attaaacatg	ttaatgtaac	29972
tgaaggagat	aacatcacac	tagcaggtgt	agaaggtgct	caaaacacca	cctggacaaa	30032
ataccatcta	ggatggagag	atatttgcac	ctggaatgta	acttattatt	gcataggagt	30092
taatcttacc	attgttaacg	ctaaccaatc	tcagaatggg	ttaattaaag	gacagagtgt	30152
tagtgtgacc	agtgatgggt	actataccca	gcatagtttt	aactacaaca	ttactgtcat	30212
accactgcct	acgcctagcc	cacctagcac	taccacacag	acaaccacat	acagtacatc	30272
aaatcagcct	accaccacta	cagcagcaga	ggttgccagc	tcgtctgggg	tccgagtggc	30332
atttttgatg	ttggccccat	ctagcagtcc	cactgctagt	accaatgagc	agactactga	30392
atttttgtcc	actgtcgaga	gccacaccac	agctacctcc	agtgccttct	ctagcaccgc	30452
caatctctcc	tegettteet	ctacaccaat	cagccccgct	actactccta	gccccgctcc	30512
tetteccact	cccctgaagc	aaacagacgg	cggcatgcaa	tggcagatca	ccctgctcat	30572
tgtgatcggg	ttggtcatcc	tggccgtgtt	gctctactac	atcttctgcc	gccgcattcc	30632
caacgcgcac	cgcaagccgg	cctacaagcc	catcgttatc	gggcagccgg	agccgcttca	30692

ggtggaaggg ggtctaagga atcttctctt ctctttaca gtatggtgat tgaactatga	30752
ttectagaca attettgate actattetta tetgeeteet ccaagtetgt gecaceeteg	30812
ctctggtggc caacgccagt ccagactgta ttgggccctt cgcctcctac gtgctctttg	30872
cottogtoac otgoatotgo tgotgtagoa tagtotgoot gottatoaco ttottocagt	30932
tcattgactg gatctttgtg cgcatcgcct acctgcgcca ccacccccag taccgcgacc	30992
agegagtgge geagetgete aggeteetet gataageatg egggetetge taettetege	31052
gettetgetg ttagtgetee eccgtecegt egaceeeegg teecceacte agteeeeega	31112
ggaggttcgc aaatgcaaat tocaagaacc ctggaaattc ctcaaatgct accgccaaaa	31172
atcagacatg catcccaget ggatcatgat cattgggatc gtgaacattc tggcctgcac	31232
ceteatetee titgtgatti acceetgett tgaettiggt tggaactege cagaggeget	31292
ctateteceg cetgaacetg acacaccace acageageaa ceteaggeae acgeaetace	31352
accaccacag cctaggccac aatacatgcc catattagac tatgaggccg agccacagcg	31412
acccatgctc cccgctatta gttacttcaa tctaaccggc ggagatgact gacccactgg	31472
ccaataacaa cgtcaacgac etteteetgg acatggaegg cegegeeteg gageagegae	31532
togoccaact togoattogt cagcagcagg agagagcogt caaggagctg caggacggca	31592
tagccatcca ccagtgcaag agaggcatct tctgcctggt gaaacaggcc aagatctcct	31652
acgaggteac ceagacegae categeetet cetaegaget cetgeageag egecagaagt	31712
teacetgeet ggteggagte aaceceateg teateaceca geagteggge gataceaagg	31772
ggtgcatcca ctgctcctgc gactcccccg actgcgtcca cactctgatc aagaccctct	31832
geggeeteeg egaceteete eccatgaact aateaceee ttatecagtg aaataaagat	31892
catattgatg atgatttaaa taaaaaaaat aatcatttga tttgaaataa agatacaatc	31952
atattgatga tttgagttta acaaaaataa agaatcactt acttgaaatc tgataccagg	32012
tetetgteca tgttttetge caacaccace teacteceet etteccaget etggtactge	32072
aggccccggc gggctgcaaa cttcctccac acgctgaagg ggatgtcaaa ttcctcctgt	32132
ccctcaatct tcattttatc ttctatcag atg tcc aaa aag cgc gtc cgg gtg Met Ser Lys Lys Arg Val Arg Val 1475	32185
gat gat gac ttc gac ccc gtc tac ccc tac gat gca gac aac gca Asp Asp Asp Phe Asp Pro Val Tyr Pro Tyr Asp Ala Asp Asn Ala 1480 1485 1490	32230

ccg Pro 1495	acc Thr	gtg Val	Pro	tto Phe	atc Ile 1500	Asn	Pro	Pro	tto Phe	gtc Val 1505	Sei	tca Ser	gat Asp	gga Gly	32275
ttc Phe 1510	caa Gln	gag Glu	Lys	Pro	Leu 1515	Gly	gtg Val	ttg Leu	tcc Ser	ctg Leu 1520	Arç	t ctg	gct Ala	gac Asp	32320
ccc Pro 1525	gtc Val	acc Thr	acc	aag Lys	aac Asn 1530	Gly	gaa Glu	atc Ile	acc	ctc Leu 1535	Lys	rctg Leu	gga	gag Glu	32365
ggg Gly 1540	gtg Val	gac Asp	ctc Leu	gac Asp	tcg Ser 1545	Ser	gga Gly	aaa Lys	ctc Leu	atc Ile 1550	Ser	aac Asn	acg Thr	gcc Ala	32410
acc Thr 1555	aag Lys	gcc Ala	gcc Ala	gcc Ala	cct Pro 1560	Leu	agt Ser	att Ile	tca Ser	aac Asn 1565	Asn	acc Thr	att Ile	tcc Ser	32455
ctt Leu 1570	aaa Lys	act Thr	gct Ala	gcc Ala	cct Pro 1575	Phe	tac Tyr	aac Asn	aac Asn	aat Asn 1580	Gly	act Thr	tta Leu	agc Ser	32500
ctc Leu 1585	aat Asn	gtc Val	tcc Ser	aca Thr	cca Pro 1590	Leu	gca Ala	gta Val	ttt Phe	ccc Pro 1595	Thr	ttt Phe	aac Asn	act Thr	32545
tta Leu 1600	ggc	ata Ile	agt Ser	ctt Leu	gga Gly 1605	aac Asn	ggt Gly	ctt Leu	cag Gln	act Thr 1610	tca Ser	aat Asn	aag Lys	ttg Leu	32590
ttg a Leu : 1615	act Thr	gta Val	caa Gln	cta Leu	act Thr 1620	cat His	cct Pro	ctt Leu	aca Thr	ttc Phe 1625	agc Ser	tca Ser	aat Asn	agc Ser	32635
atc a Ile 1 1630	aca Thr	gta Val	aaa Lys	aca Thr	gac Asp 1635	aaa Lys	G1 Y ggg	cta Leu	tat Tyr	att Ile 1640	aac Asn	tcc Ser	agt Ser	gga Gly	32680
aac a Asn A 1645	aga Arg	gga Gly	ctt Leu	gag Glu	gct Ala 1650	aat Asn	ata Ile	agc Ser	cta Leu	aaa Lys 1655	aga Arg	gga Gly			32725
ttt g Phe A 1660	Asp (ggt Gly	aat Asn	Ala	att Ile 1665	gca Ala	aca Thr	tat Tyr	att Ile	gga Gly 1670	aat Asn	ggc Gly	tta Leu	gac Asp	32770
tat g Tyr G 1675	gga t	tc t Ser	tat Tyr	Asp	agt Ser 1680	gat Asp	gga Gly	aaa Lys	Thr	aga Arg 1685	ccc Pro	gta Val	att Ile	acc Thr	32815
aaa a Lys I 1690	itt q	gga Sly .	gca Ala	Gly	tta Leu 1695	aat Asn	ttt Phe .	gat Asp	Ala			gca Ala			32860

gtc a Val L 1705		a ggo au Gly			Leu									32905
aca go Thr A 1720		ga aad Ly Asr			Asp					Leu				32950
cct gr Pro A 1735														32995
aaa t Lys P 1750														33040
act g Thr V 1765					Val									33085
att a Ile A 1780					Ser									33130
tcc g Ser A 1795														33175
tgg a Trp A 1810														33220
aat g Asn A 1825														33265
		aa aca /s Thi												33310
act grant Thr G					Pro									33355
ggc a Gly T 1870														33400
act t Thr P 1885	tt ache Ti	a tgo nr Trp	cag Gln	tgg Trp 1890	act Thr	gga Gly	gac Asp	tat Tyr	aag Lys 1895	gac Asp	aaa Lys	aat Asn	att Ile	33445
acc t Thr P 1900														33490
taa tc	ccac	ccag (aagc	caacc	cct	tttc	cca (ccac	ctttg	t cta	atat	ggaa		33543

actotgaaac agaaaaataa agttcaagtg ttttattgaa tcaacagttt tacaggactc 33603 33663 gagcagttat ttttcctcca ccctcccagg acatggaata caccaccctc tccccccgca 33723 cagcettgaa catetgaatg ceattggtga tggacatget tttggtetee aegtteeaca 33783 cagtttcaga gcgagccagt ctcggatcgg tcagggagat gaaaccctcc gggcactccc 33843 gcatctgcac ctcacagctc aacagctgag gattgtcctc ggtggtcggg atcacggtta 33903 tetggaagaa geagaagage ggeggtggga atcatagtee gegaaeggga teggeeggtg 33963 gtgtcgcatc aggccccgca gcagtcgctg ccgccgccgc tccgtcaagc tgctgctcag 34023 ggggttcggg tecagggact cectcagcat gatgeecacg gecetcagca teagtegtet 34083 ggtgcggcgg gcgcagcagc gcatgcgaat ctcgctcagg tcactgcagt acgtgcaaca caggaccacc aggttgttca acagtccata gttcaacacg ctccagccga aactcatcgc 34143 gggaaggatg ctacccacgt ggccgtcgta ccagatcctc aggtaaatca agtggcgctc 34203 34263 cctccagaag acgctgccca tgtacatgat ctccttgggc atgtggcggt tcaccacctc ccggtaccac atcaccctct ggttgaacat gcagccccgg atgatcctgc ggaaccacag 34323 34383 ggccagcacc gccccgcccg ccatgcagcg aagagacccc ggatcccggc aatgacaatg gaggacccac cgctcgtacc cgtggatcat ctgggagctg aacaagtcta tgttggcaca 34443 34503 gcacaggcat atgetcatge atetetteag cacteteage teeteggggg teaaaaceat 34563 atcccagggc acggggaact cttgcaggac agcgaacccc gcagaacagg gcaatcctcg cacataactt acattgtgca tggacagggt atcgcaatca ggcagcaccg ggtgatcctc 34623 34683 caccagagaa gegegggtet eggteteete acagegtggt aagggggeeg geegataegg 34743 gtgatggcgg gacgcggctg atcgtgttct cgaccgtgtc atgatgcagt tgctttcgga 34803 cattttcgta cttgctgtag cagaacctgg tccgggcgct gcacaccgat cgccggcggc 34863 ggtctcggcg cttggaacgc tcggtgttaa agttgtaaaa cagccactct ctcagaccgt 34923 gcagcagate tagggeetea ggagtgatga agateceate atgeetgata getetgatea catcgaccac cgtggaatgg gccaggccca gccagatgat gcaattttgt tgggtttcgg 34983 tgacggcggg ggagggaaga acaggaagaa ccatgattaa cttttaatcc aaacggtctc 35043 ggagcacttc aaaatgaagg tcacggagat ggcacctctc gcccccgctg tgttggtgga 35103 aaataacagc caggtcaaag gtgatacggt tctcgagatg ttccacggtg gcttccagca 35163 aagcctccac gcgcacatcc agaaacaaga caatagcgaa agcgggaggg ttctctaatt 35223

PCT/US02/33645 WO 03/046124

cctcaaccat	catgttacac	tcctgcacca	tccccagata	attttcattt	ttccagcctt	35283
gaatgattcg	aactagttcc	tgaggtaaat	ccaagccagc	catgataaaa	agctcgcgca	35343
gagcaccctc	caccggcatt	cttaagcaca	ccctcataat	tccaagatat	tetgeteetg	35403
gttcacctgc	agcagattga	caagcggaat	atcaaaatct	ctgccgcgat	ccctgagctc	35463
ctccctcagc	aataactgta	agtactcttt	catatcgtct	ccgaaatttt	tagccatagg	35523
acccccagga	ataagagaag	ggcaagccac	attacagata	aaccgaagtc	cccccagtg	35583
agcattgcca	aatgtaagat	tgaaataagc	atgctggcta	gacccggtga	tatcttccag	35643
ataactggac	agaaaatcgg	gtaagcaatt	tttaagaaaa	tcaacaaaag	aaaaatcttc	35703
caggtgcacg	tttagggcct	cgggaacaac	gatggagtaa	gtgcaagggg	tgcgttccag	35763
catggttagt	tagctgatct	gtaaaaaaac	aaaaaataaa	acattaaacc	atgctagcct	35823
ggcgaacagg	tgggtaaatc	gttctctcca	gcaccaggca	ggccacgggg	teteeggege	35883
gaccctcgta	aaaattgtcg	ctatgattga	aaaccatcac	agagagacgt	tcccggtggc	35943
cggcgtgaa t	gattcgagaa	gaagcataca	ccccggaac	attggagtcc	gtgagtgaaa	36003
aaaagcggcc	gaggaagcaa	tgaggcacta	caacgctcac	tctcaagtcc	agcaaagcga	36063
tgccatgcgg	atgaagcaca	aaattttcag	gtgcgtaaaa	aatgtaatta	ctcccctcct	36123
gcacaggcag	cgaagctccc	gatccctcca	gatacacata	caaagcctca	gcgtccatag	36183
cttaccgago	ggcagcagca	gcggcacaca	acaggcgcaa	gagtcagaga	aaagactgag	36243
ctctaacctg	teegeeeget	ctctgctcaa	tatatagccc	cagatctaca	ctgacgtaaa	36303
ggccaaagtc	: taaaaatacc	cgccaaataa	tcacacacgo	ccagcacacg	cccagaaacc	36363
ggtgacacac	: tcagaaaaat	acgegeaett	cctcaaacgg	ccaaactgcc	gtcatttccg	36423
ggttcccacg	ctacgtcato	aaaacacgac	tttcaaattc	: cgtcgaccgt	taaaaacatc	36483
accegeeeeg	ccctaacgg	tegeegetee	: cgcagccaat	caccttcctc	cctccccaaa	36543
ttcaaacago	: tcatttgcat	attaacgcgc	: accaaaagtt	: tgaggtatat	tattgatgat	36603
g						36604

<210> 6
<211> 529
<212> PRT
<213> chimpanzee adenovirus serotype Pan6

<400> 6

Met Met Arg Arg Val Tyr Pro Glu Gly Pro Pro Pro Ser Tyr Giu Ser 1 5 10 15

Val Met Gln Gln Ala Val Ala Ala Met Gln Pro Pro Leu Glu Ala 20 25 30

Pro Tyr Val Pro Pro Arg Tyr Leu Ala Pro Thr Glu Gly Arg Asn Ser 35 40 45

Ile Arg Tyr Ser Glu Leu Ala Pro Leu Tyr Asp Thr Thr Arg Leu Tyr 50 55 60

Leu Val Asp Asn Lys Ser Ala Asp Ile Ala Ser Leu Asn Tyr Gln Asn 65 70 75 80

Asp His Ser Asn Phe Leu Thr Thr Val Val Gln Asn Asn Asp Phe Thr 85 90 95

Pro Thr Glu Ala Ser Thr Gln Thr Ile Asn Phe Asp Glu Arg Ser Arg
100 105 110

Trp Gly Gly Gln Leu Lys Thr Ile Met His Thr Asn Met Pro Asn Val 115 120 125

Asn Glu Phe Met Tyr Ser Asn Lys Phe Lys Ala Arg Val Met Val Ser 130 135 140

Arg Lys Thr Pro Asn Gly Val Asp Asp Asp Tyr Asp Gly Ser Gln Asp 145 150 155 160

Glu Leu Thr Tyr Glu Trp Val Glu Phe Glu Leu Pro Glu Gly Asn Phe 165 170 175

Ser Val Thr Met Thr Ile Asp Leu Met Asn Asn Ala Ile Ile Asp Asn 180 185 190

Tyr Leu Ala Val Gly Arg Gln Asn Gly Val Leu Glu Ser Asp Ile Gly 195 200 205

Val Lys Phe Asp Thr Arg Asn Phe Arg Leu Gly Trp Asp Pro Val Thr 210 215 220

Glu Leu Val Met Pro Gly Val Tyr Thr Asn Glu Ala Phe His Pro Asp 225 230 235 240

Ile Val Leu Leu Pro Gly Cys Gly Val Asp Phe Thr Glu Ser Arg Leu 245 250 255

Ser Asn Leu Gly Ile Arg Lys Arg Gln Pro Phe Gln Glu Gly Phe 260 265 270

Gln Ile Leu Tyr Glu Asp Leu Glu Gly Gly Asn Ile Pro Ala Leu Leu 275 280 285

Asp Val Glu Ala Tyr Glu Lys Ser Lys Glu Asp Ser Thr Ala Ala Ala 295 Thr Ala Ala Val Ala Thr Ala Ser Thr Glu Val Arg Gly Asp Asn Phe 315 Ala Ser Ala Ala Ala Ala Glu Ala Ala Glu Thr Glu Ser Lys Ile Val Ile Gln Pro Val Glu Lys Asp Ser Lys Asp Arg Ser Tyr Asn Val Leu Ala Asp Lys Lys Asn Thr Ala Tyr Arg Ser Trp Tyr Leu Ala Tyr Asn Tyr Gly Asp Pro Glu Lys Gly Val Arg Ser Trp Thr Leu Leu Thr 380 Thr Ser Asp Val Thr Cys Gly Val Glu Gln Val Tyr Trp Ser Leu Pro 395 Asp Met Met Gln Asp Pro Val Thr Phe Arg Ser Thr Arg Gln Val Ser 410 Asn Tyr Pro Val Val Gly Ala Glu Leu Leu Pro Val Tyr Ser Lys Ser 420 Phe Phe Asn Glu Gln Ala Val Tyr Ser Gln Gln Leu Arg Ala Phe Thr Ser Leu Thr His Val Phe Asn Arg Phe Pro Glu Asn Gln Ile Leu Val 450 455 Arg Pro Pro Ala Pro Thr Ile Thr Thr Val Ser Glu Asn Val Pro Ala 475 470 Leu Thr Asp His Gly Thr Leu Pro Leu Arg Ser Ser Ile Arg Gly Val 490 Gln Arg Val Thr Val Thr Asp Ala Arg Arg Thr Cys Pro Tyr Val 505 Tyr Lys Ala Leu Gly Val Val Ala Pro Arg Val Leu Ser Ser Arg Thr 520 Phe <210> 7 <211> 942

<210> 7
<211> 942
<212> PRT
<213> chimpanzee adenovirus serotype Pan6
<400> 7

Met Ala Thr Pro Ser Met Leu Pro Gln Trp Ala Tyr Met His Ile Ala
1 5 10 15

Gly Gln Asp Ala Ser Glu Tyr Leu Ser Pro Gly Leu Val Gln Phe Ala Arg Ala Thr Asp Thr Tyr Phe Ser Leu Gly Asn Lys Phe Arg Asn Pro 40 Thr Val Ala Pro Thr His Asp Val Thr Thr Asp Arg Ser Gln Arg Leu 50 Thr Leu Arg Phe Val Pro Val Asp Arg Glu Asp Asn Thr Tyr Ser Tyr Lys Val Arg Tyr Thr Leu Ala Val Gly Asp Asn Arg Val Leu Asp Met Ala Ser Thr Tyr Phe Asp Ile Arg Gly Val Leu Asp Arg Gly Pro Ser Phe Lys Pro Tyr Ser Gly Thr Ala Tyr Asn Ser Leu Ala Pro Lys Gly Ala Pro Asn Ser Ser Gln Trp Glu Gln Ala Lys Thr Gly Asn Gly Gly Thr Met Glu Thr His Thr Tyr Gly Val Ala Pro Met Gly Gly Glu Asn 150 Ile Thr Lys Asp Gly Leu Gln Ile Gly Thr Asp Val Thr Ala Asn Gln Asn Lys Pro Ile Tyr Ala Asp Lys Thr Phe Gln Pro Glu Pro Gln Val Gly Glu Glu Asn Trp Gln Glu Thr Glu Asn Phe Tyr Gly Gly Arg Ala 200 Leu Lys Lys Asp Thr Asn Met Lys Pro Cys Tyr Gly Ser Tyr Ala Arg Pro Thr Asn Glu Lys Gly Gly Gln Ala Lys Leu Lys Val Gly Asp Asp Gly Val Pro Thr Lys Glu Phe Asp Ile Asp Leu Ala Phe Phe Asp Thr Pro Gly Gly Thr Val Asn Gly Gln Asp Glu Tyr Lys Ala Asp Ile Val Met Tyr Thr Glu Asn Thr Tyr Leu Glu Thr Pro Asp Thr His Val Val Tyr Lys Pro Gly Lys Asp Asp Ala Ser Ser Glu Ile Asn Leu Val Gln 290 295 Gln Ser Met Pro Asn Arg Pro Asn Tyr Ile Gly Phe Arg Asp Asn Phe 315 310

Ile Gly Leu Met Tyr Tyr Asn Ser Thr Gly Asn Met Gly Val Leu Ala 325 330 335

- Gly Gln Ala Ser Gln Leu Asn Ala Val Val Asp Leu Gln Asp Arg Asn 340 345 350
- Thr Glu Leu Ser Tyr Gln Leu Leu Leu Asp Ser Leu Gly Asp Arg Thr 355 360 365
- Arg Tyr Phe Ser Met Trp Asn Gln Ala Val Asp Ser Tyr Asp Pro Asp 370 375 380
- Val Arg Ile Ile Glu Asn His Gly Val Glu Asp Glu Leu Pro Asn Tyr 385 390 395 400
- Cys Phe Pro Leu Asp Gly Ser Gly Thr Asn Ala Ala Tyr Gln Gly Val 405 410 415
- Lys Val Lys Asp Gly Gln Asp Gly Asp Val Glu Ser Glu Trp Glu Asn 420 425 430
- Asp Asp Thr Val Ala Ala Arg Asn Gln Leu Cys Lys Gly Asn Ile Phe 435 440 445
- Ala Met Glu Ile Asn Leu Gln Ala Asn Leu Trp Arg Ser Phe Leu Tyr 450 455 460
- Ser Asn Val Ala Leu Tyr Leu Pro Asp Ser Tyr Lys Tyr Thr Pro Thr 465 470 475 480
- Asn Val Thr Leu Pro Thr Asn Thr Asn Thr Tyr Asp Tyr Met Asn Gly
 485 490 495
- Arg Val Thr Pro Pro Ser Leu Val Asp Ala Tyr Leu Asn Ile Gly Ala 500 505 510
- Arg Trp Ser Leu Asp Pro Met Asp Asn Val Asn Pro Phe Asn His His 515 520 525
- Arg Asn Ala Gly Leu Arg Tyr Arg Ser Met Leu Leu Gly Asn Gly Arg 530 535 540
- Tyr Val Pro Phe His Ile Gln Val Pro Gln Lys Phe Phe Ala Ile Lys 545 550 555 560
- Ser Leu Leu Leu Pro Gly Ser Tyr Thr Tyr Glu Trp Asn Phe Arg 565 570 575
- Lys Asp Val Asn Met Ile Leu Gln Ser Ser Leu Gly Asn Asp Leu Arg 580 585 590
- Thr Asp Gly Ala Ser Ile Ala Phe Thr Ser Ile Asn Leu Tyr Ala Thr 595 600 605
- Phe Phe Pro Met Ala His Asn Thr Ala Ser Thr Leu Glu Ala Met Leu 610 615 620

Ar 62	g As 5	n As	p Th	r As	n Ası 630	p G1:	n Se	r Ph	e As	n As 63		r Le	u Se	r Al	a Ala 640
As	n Me	t Le	u Ty	r Pro 64.	0 Ile 5	e Pro	o Ala	a Ası	n Al 65	a Th O	r As	n Va	l Pr	65	e Ser 5
Il	e Pr	o Se	r Ar 66	g Ası 0	n Trp	Al:	a Ala	e Pho 665	e Ar	g Gl	y Tr	p Se	r Pho 670		r Ar g
Le	u Ly:	5 Th 67	r Ar 5	g Glı	1 Thr	Pro	Se. 680	t Let	ı Gl	y Sei	r Gl	y Pho 68:		Pro	туг
Pho	e Val 690	L Ty)	r Se	r Gl	, Ser	: Ile 695	e Pro	Ту	Let	u Asp	700	y Thi	r Phe	⊋ Тул	Leu
Asr 705	n His	5 Th	r Ph	e Lys	710	Val	. Ser	Tle	Thi	r Phe 715	e Asp	Se:	s Ser	: Val	. Ser 720
Trp	Pro	Gl;	y Ası	n Asp 725	Arg	Leu	Leu	Thr	730		Glu	ı Phe	e Glu	11e	Lys
Arg	Thr	Va:	74(o Gly	Gl u	Gly	Tyr	745	Val	. Ala	Gln	Cys	750		Thr
Lys	Asp	755	Phe	e Leu	Val	Gln	Met 760	Leu	Ala	His	туг	765		Gly	Tyr
Gln	Gly 770	Phe	Э Туг	. Val	Pro	Glu 775	Gly	Tyr	Lys	Asp	Arg 780	Met	Tyr	Ser	Phe
Phe 785	Arg	Asr	Phe	Gln	Pro 790	Met	Ser	Arg	Gln	Val 795	Val	Asp	Glu	Val	Asn 800
Tyr	Lys	Asp	Tyr	61n 805	Ala	Val	Thr	Leu	Ala 810	Tyr	Gln	His	Asn	Asn 815	Ser
Gly	Phe	Val	Gly 820	Tyr	Leu	Ala	Pro	Thr 825	Met	Arg	Gln	Gly	Gln 830	Pro	Tyr
Pro	Ala	Asn 835	Tyr	Pro	Tyr	Pro	Leu 840	Ile	Gly	Lys	Ser	Ala 845	Val	Ala	Ser
Val	Thr 850	Gln	Lys	Lys	Phe	Leu 855	Cys	Asp	Arg	Val	Met 860	Trp	Arg	Ile	Pro
Phe 865	Ser	Ser	Asn	Phe	Met 870	Ser	Met	Gly	Ala	Leu 875	Thr	Asp	Leu	Gly	Gln 880
Asn	Met	Leu	Tyr	Ala 885	Asn	Ser	Ala	His	Ala 890	Leu	qaA	Met	Asn	Phe 895	Glu
Val	Asp	Pro	Met 900	Asp	Glu	Ser	Thr	Le u 905	Leu	Tyr	Val	Val	Phe 910	Glu	Val
Phe	Asp	Val 915	Val	Arg	Val	His	Gln 920	Pro	His	Arg	Gly	Val 925	Ile	Glu	Ala

Val Tyr Leu Arg Thr Pro Phe Ser Ala Gly Asn Ala Thr Thr 930 935 940

<210> 8

<211> 443

<212> PRT

<213> chimpanzee adenovirus serotype Pan6

<400> 8

Met Ser Lys Lys Arg Val Arg Val Asp Asp Phe Asp Pro Val Tyr. 1 5 10 15

Pro Tyr Asp Ala Asp Asn Ala Pro Thr Val Pro Phe Ile Asn Pro Pro 20 25 30

Phe Val Ser Ser Asp Gly Phe Gln Glu Lys Pro Leu Gly Val Leu Ser 35 40 45

Leu Arg Leu Ala Asp Pro Val Thr Thr Lys Asn Gly Glu Ile Thr Leu 50 55 60

Lys Leu Gly Glu Gly Val Asp Leu Asp Ser Ser Gly Lys Leu Ile Ser 65 70 75 80

Asn Thr Ala Thr Lys Ala Ala Ala Pro Leu Ser Ile Ser Asn Asn Thr 85 90 95

Ile Ser Leu Lys Thr Ala Ala Pro Phe Tyr Asn Asn Gly Thr Leu
100 105 110

Ser Leu Asn Val Ser Thr Pro Leu Ala Val Phe Pro Thr Phe Asn Thr 115 . 120 . 125

Leu Gly Ile Ser Leu Gly Asn Gly Leu Gln Thr Ser Asn Lys Leu Leu 130 135 140

Thr Val Gln Leu Thr His Pro Leu Thr Phe Ser Ser Asn Ser Ile Thr 145 150 155 160

Val Lys Thr Asp Lys Gly Leu Tyr Ile Asn Ser Ser Gly Asn Arg Gly
165 170 175

Leu Glu Ala Asn Ile Ser Leu Lys Arg Gly Leu Val Phe Asp Gly Asn 180 185 190

Ala Ile Ala Thr Tyr Ile Gly Asn Gly Leu Asp Tyr Gly Ser Tyr Asp 195 200 205

Ser Asp Gly Lys Thr Arg Pro Val Ile Thr Lys Ile Gly Ala Gly Leu 210 215 220

Asn Phe Asp Ala Asn Lys Ala Ile Ala Val Lys Leu Gly Thr Gly Leu 225 230 235 240

Ser Phe Asp Ser Ala Gly Ala Leu Thr Ala Gly Asn Lys Gln Asp Asp 245

Lys Leu Thr Leu Trp Thr Thr Pro Asp Pro Ser Pro Asn Cys Gln Leu 265

Leu Ser Asp Arg Asp Ala Lys Phe Thr Leu Cys Leu Thr Lys Cys Gly

Ser Gln Ile Leu Gly Thr Val Ala Val Ala Val Thr Val Gly Ser 295

Ala Leu Asn Pro Ile Asn Asp Thr Val Lys Ser Ala Ile Val Phe Leu

Arg Phe Asp Ser Asp Gly Val Leu Met Ser Asn Ser Ser Met Val Gly 330

Asp Tyr Trp Asn Phe Arg Glu Gly Gln Thr Thr Gln Ser Val Ala Tyr 345

Thr Asn Ala Val Gly Phe Met Pro Asn Ile Gly Ala Tyr Pro Lys Thr

Gln Ser Lys Thr Pro Lys Asn Ser Ile Val Ser Gln Val Tyr Leu Thr

Gly Glu Thr Thr Met Pro Met Thr Leu Thr Ile Thr Phe Asn Gly Thr 395 385 390

Asp Glu Lys Asp Thr Thr Pro Val Ser Thr Tyr Ser Met Thr Phe Thr 405

Trp Gln Trp Thr Gly Asp Tyr Lys Asp Lys Asn Ile Thr Phe Ala Thr 425

Asn Ser Phe Ser Phe Ser Tyr Ile Ala Gln Glu 440 435

<210> 9

<211> 36535

<212> DNA

<213> chimpanzee adenovirus serotype Pan7

<220>

<221> CDS

<222> (13874)..(15469) <223> L2 Penton

<220>

<221> CDS

<222> (18288)..(21086)

<223> L3 Hexon

<220> <221> CDS

<222> (32094)..(33425)

<223> L5 Fiber

<400> 9

catcatcaat aatatacctc aaacttttgg tgcgcgttaa tatgcaaatg agctgtttga 60 120 atttggggag ggaggaaggt gattggccga gagacgggcg accgttaggg gcgggggggg 180 tqacqttttt aatacqtqqc cqtqaqqcqq aqccqqtttq caaqttctcq tqqqaaaaqt 240 qacqtcaaac qaqqtqtqqt ttqaacacqq aaatactcaa ttttcccqcq ctctctqaca 300 ggaaatgagg tgtttctggg cggatgcaag tgaaaacggg ccattttcgc gcgaaaactg 360 aatqaqqaaq tqaaaatctq aqtaatttcg cgtttatggc agggaggagt atttgccgag ggccgagtag actttgaccg attacgtggg ggtttcgatt accgtatttt tcacctaaat 420 ttccgcgtac ggtgtcaaag tccggtgttt ttacgtaggc gtcagctgat cgccagggta 480 tttaaacctg cgctctctag tcaagaggcc actcttgagt gccagcgagt agagttttct 540 600 cctccgcgcc gcgagtcaga tctacacttt gaaagatgag gcacctgaga gacctgcccg gtaatgtttt cctggctact gggaacgaga ttctggaatt ggtggtggac gccatgatgg 660 720 gtggcgaccc tcctgagccc cctaccccat ttgaggcgcc ttcgctgtac gatttgtatg 780 atctgqaggt ggatgtgccc gagaacgacc ccaacgagga ggcggtgaat gatttgttta 840 gcgatgccgc gctgctggct gccgagcagg ctaatacgga ctctggctca gacagcgatt 900 cctctctcca taccccgaga cccggcagag gtgagaaaaa gatccccgag cttaaagggg 960 aagagetega eetgegetge tatgaggaat gettgeetee gagegatgat gaggaggaeg aggaggegat tegagetgea tegaaceagg gagtgaaage tgegggegaa agetttagee 1020 1080 tqqactqtcc tactctqccc qqacacqqct qtaagtcttg tgaatttcat cgcatgaata 1140 ctqqaqataa gaatqtgatg tgtgccctgt gctatatgag agcttacaac cattgtgttt 1200 acagtaagtg tgattaactt tagttgggaa ggcagagggt gactgggtgc tgactggttt atttatgtat atgttttttt atgtgtaggt cccgtctctg acgtagatga gacccccact 1260 tcagagtgca tttcatcacc cccagaaatt ggcgaggaac cgcccgaaga tattattcat 1320 1380 agaccagttg cagtgagagt caccgggcgg agagcagctg tggagagttt ggatgacttg ctacagggtg gggatgaacc tttggacttg tgtacccgga aacgccccag gcactaagtg 1440 1500 ccacacatgt gtgtttactt aaggtgatgt cagtatttat agggtgtgga gtgcaataaa

atccgtgttg	actttaagtg	cgtggtttat	gactcagggg	tggggactgt	gggtatataa	1560
gcaggtącag	acctgtgtgg	tcagttcaga	gcaggactca	tggagatctg	gacggtcttg	1620
gaagactttc	accagactag	acagetgeta	gagaactcat	cggaggggt	ctcttacctg	1680
tggagattct	gcttcggtgg	gcctctagct	aagctagtct	atagggccaa	acaggattat	1740
aaggatcaat	ttgaggatat	tttgagagag	tgtcctggta	tttttgactc	tctcaacttg	1800
ggccatcagt	ctcactttaa	ccagagtatt	ctgagagccc	ttgacttttc	tactcctggc	1860
agaactaccg	ccgcggtagc	cttttttgcc	tttatccttg	acaaatggag	tcaagaaacc	1920
catttcagca	gggattaccg	tctggactgc	ttagcagtag	ctttgtggag	aacatggagg	1980
tgccagcgcc	tgaatgcaat	ctccggctac	ttgccagtac	agccggtaga	cacgctgagg	2040
atcctgagtc	tccagtcacc	ccaggaacac	caacgccgcc	agcagccgca	gcaggagcag	2100
cagcaagagg	aggaggagga	tcgagaagag	aacccgagag	ccggtctgga	ccctccggtg	2160
gcggaggagg	aggagtagct	gacttgtttc	ccgagctgcg	ccgggtgctg	actaggtctt	2220
ccagtggacg	ggagaggggg	attaagcggg	agaggcatga	ggagactagc	cacagaactg	2280
aactgactgt	cagtctgatg	agccgcaggc	gcccagaatc	ggtgtggtgg	catgaggttc	2340
agtcgcaggg	gatagatgag	gtctcggtga	tgcatgagaa	atattccctg	gaacaagtca	2400
agacttgttg	gttggagcct	gaggatgatt	gggaggtagc	catcaggaat	tatgccaagc	2460
tggctctgaa	gccagacaag	aagtacaaga	ttaccaaact	gattaatatc	agaaattcct	2520
gctacatttc	agggaatggg	gccgaggtgg	agatcagtac	ccaggagagg	gtggccttca	2580
gatgttgtat	gatgaatatg	tacccggggg	tggtgggcat	ggagggagtc	acctttatga	2640
acgcgaggtt	caggggtgat	gggtataatg	gggtggtctt	tatggccaac	accaagctga	2700
cagtgcacgg	atgctccttc	tttgggttca	ataacatgtg	catcgaggcc	tggggcagtg	2760
tttcagtgag	gggatgcagc	ttttcagcca	actggatggg	ggtcgtgggc	agaaccaaga	2820
gcaaggtgtc	agtgaagaaa	tgcctgttcg	agaggtgcca	cctgggggtg	atgagcgagg	2880
gcgaagccaa	agtcaaacac	tgcgcctcta	ctgagacggg	ctgctttgtg	ctgatcaagg	2940
gcaatgccca	agtcaagcat	aacatgatct	gtggggcctc	ggatgagcgc	ggctaccaga	3000
tgctgacctg	cgccggtggg	aacagccata	tgctggccac	cgtgcatgtg	acctcgcacc	3060
cccgcaagac	atggcccgag	ttcgagcaca	acgtcatgac	ccgatgcaat	gtgcacctgg	3120
ggtcccgccg	aggcatgttc	atgccctacc	agtgcaacat	gcaatttgtg	aaggtgctgc	3180
tggagcccga	tgccatgtcc	agagtgagcc	tgacgggggt	gtttgacatg	aatgtggagc	3240

tgtggaaaat tctgagatat gatgaatcca agaccaggtg ccgggcctgc gaatgcggag 3300 gcaagcacgc caggcttcag cccgtgtgtg tggaggtgac ggaggacctg cgacccgatc 3360 atttggtgtt gtcctgcaac gggacggagt tcggctccag cggggaagaa tctgactaga 3420 gtgagtagtg tttgggggag gtggagggct tgtatgaggg gcagaatgac taaaatctgt 3480 gtttttctgt gtgttgcagc agcatgagcg gaagcgcctc ctttgaggga ggggtattca 3540 gcccttatct gacggggcgt ctcccctcct gggcgggagt gcgtcagaat gtgatgggat 3600 ccacggtgga cggccggccc gtgcagcccg cgaactettc aaccetgacc tacgcgacce 3660 tgagetecte gteegtggae geagetgeeg eegeagetge tgetteegee geeagegeeg 3720 3780 tgcgcggaat ggccctgggc gccggctact acagctctct ggtggccaac tcgacttcca ccaataatcc cgccagcctg aacgaggaga agctgctgct gctgatggcc cagctcgagg 3840 3900 cectgaceca gegeetggge gagetgacec ageaggtgge teagetgeag geggagaege gggccgcggt tgccacggtg aaaaccaaat aaaaaatgaa tcaataaata aacggagacg 3960 gttgttgatt ttaacacaga gtcttgaatc tttatttgat ttttcgcgcg cggtaggccc 4020 tggaccaccg gtctcgatca ttgagcaccc ggtggatttt ttccaggacc cggtagaggt 4080 gggcttggat gttgaggtac atgggcatga gcccgtcccg ggggtggagg tagctccatt 4140 gcagggcctc gtgctcgggg gtggtgttgt aaatcaccca gtcatagcag gggcgcaggg 4200 cgtggtgctg cacgatgtcc ttgaggagga gactgatggc cacgggcagc cccttggtgt 4260 4320 aggtgtttgac gaacctgttg agctgggagg gatgcatgcg gggggagatg agatgcatct 4380 tygcctggat cttgagattg gcgatgttcc cgcccagatc ccgccggggg ttcatgttgt gcaggaccac cagcacggtg tatccggtgc acttggggaa tttgtcatgc aacttggaag 4440 4500 ggaaggcgtg aaagaatttg gagacgccct tgtgaccgcc caggttttcc atgcactcat ccatgatgat ggcgatgggc ccgtgggcgg cggcctgggc aaagacgttt cgggggtcgg 4560 acacategta gttgtggtcc tgggtgaget egteatagge cattttaatg aatttgggge 4620 4680 ggagggtgcc cgactggggg acgaaggtgc cctcgatccc gggggcgtag ttgccctcgc agatetgeat eteccaggee ttgagetegg agggggggat catgtecace tgeggggega 4740 tgaaaaaaac ggtttccggg gcgggggaga tgagctgggc cgaaagcagg ttccggagca 4800 getgggaett geegeageeg gtggggeegt agatgaeeee gatgaeegge tgeaggtggt 4860 agttgaggga gagacagctg ccgtcctcgc ggaggagggg ggccacctcg ttcatcatct 4920

cgcgcacatg catgttctcg	cgcacgagtt	ccgccaggag	gcgctcgccc	cccagcgaga	4980
ggagctcttg cagcgaggcg	aagtttttca	gcggcttgag	yccgtcggcc	atgggcattt	5040
tggagagggt ctgttgcaag	agttccagac	ggtcccagag	ctcggtgatg	tgctctaggg	5100
catctcgatc cagcagacct	cctcgtttcg	cgggttgggg	cgactgcggg	agtagggcac	5160
caggcgatgg gcgtccagcg	aggccagggt	ccggtccttc	cagggtcgca	gggtccgcgt	5220
cagegtggtc teegtcaegg	tgaaggggtg	cgcgccgggc	tgggcgcttg	cgagggtgcg	5280
cttcaggctc atccggctgg	tcgagaaccg	ctcccggtcg	gcgccctgcg	cgtcggccag	5340
gtagcaattg agcatgagtt	cgtagttgag	cgcctcggcc	gcgtggccct	tggcgcggag	5400
cttacctttg gaagtgtgtc	cgcagacggg	acagaggagg	gacttgaggg	cgtagagctt	5460
gggggcgagg aagacggact	cgggggcgta	ggcgtccgcg	ccgcagctgg	cgcagacggt	5520
ctcgcactcc acgagccagg	tgaggtcggg	ccggttgggg	tcaaaaacga	ggtttcctcc	5580
gtgctttttg atgcgtttct	tacctctggt	ctccatgagc	tcgtgtcccc	gctgggtgac	5640
aaagaggctg tccgtgtccc	cgtagaccga	ctttatgggc	cggtcctcga	gcggggtgcc	5700
gcggtcctcg tcgtagagga	accccgccca	ctccgagacg	aaggcccggg	tccaggccag	5760
cacgaaggag gccacgtggg	aggggtagcg	gtcgttgtcc	accagcgggt	ccaccttctc	5820
cagggtatgc aagcacatgt	cccctcgtc	cacatccagg	aaggtgattg	gcttgtaagt	5880
gtaggccacg tgaccggggg	tcccggccgg	gggggtataa	aagggggcgg	gcccctgctc	5940
gtcctcactg tcttccggat	cgctgtccag	gagcgccagc	tgttggggta	ggtattccct	6000
ctcgaaggct ggcataacct	cggcactcag	gttgtcagtt	tctagaaacg	aggaggattt	6060
gatattgacg gtgccgttgg	agacgccttt	catgagcccc	tcgtccatct	ggtcagaaaa	6120
gacgatettt ttgttgtega	gcttggtggc	gaaggagccg	tagagggcgt	tggagaggag	6180
cttggcgatg gagcgcatgg	tctggttctt	ttccttgtcg	gcgcgctcct	tggcggcgat	6240
gttgagctgc acgtactcgc	gcgccacgca	cttccattcg	gggaagacgg	tggtgagctc	6300
gtcgggcacg attctgaccc	gccagccgcg	gttgtgcagg	gtgatgaggt	ccacgctggt	6360
ggccacctcg ccgcgcaggg	gctcgttggt	ccagcagagg	cgcccgccct	tgcgcgagca	6420
gaaggggggc agcgggtcca	gcatgagctc	gtcgggggg	tcggcgtcca	cggtgaagat	6480
gccgggcaga agctcggggt	cgaagtagct	gatgcaggtg	tccagatcgt	ccagcgccgc	6540
ttgccagtcg cgcacggcca	gcgcgcgctc	gtaggggctg	aggggcgtgc	cccagggcat	6600
ggggtgcgtg agcgcggagg	cgtacatgcc	gcagatgtcg	tagacgtaga	ggggctcctc	6660

6720 gaggacgccg atgtaggtgg ggtagcagcg ccccccgcgg atgctggcgc gcacgtagtc 6780 gtacageteg tgegagggeg egaggageee egtgeegagg ttggagegtt geggetttte ggcgcggtag acgatctggc ggaagatggc gtgggagttg gaggagatgg tgggcctctg 6840 6900 gaagatgttg aagtgggcgt ggggcaggcc gaccgagtcc ctgatgaagt gggcgtagga 6960 gtcctgcagc ttggcgacga gctcggcggt gacgaggacg tccagggcgc agtagtcgag 7020 ggtctcttgg atgatgtcgt acttgagctg gcccttctgc ttccacagct cgcggttgag 7080 aaggaactet tegeggteet teeagtacte ttegaggggg aaccegteet gateggeacg 7140 gtaagageee accatgtaga actggttgae ggeettgtag gegeageage eetteteeae 7200 ggggagggcg taagcttgtg cggccttgcg cagggaggtg tgggtgaggg cgaaggtgtc 7260 gegeaceatg accttgagga actggtgett gaagtegagg tegtegeage egeectgete 7320 ccagagetgg aagteegtge gettettgta ggeggggttg ggeaaagega aagtaacate 7380 gttgaagagg atcttgcccg cgcggggcat gaagttgcga gtgatgcgga aaggctgggg 7440 caccteggee eggttgttga tgacctggge ggcgaggaeg atctegtega agcegttgat 7500 gttgtgcccg acgatgtaga gttccacgaa tcgcgggcgg cccttaacgt ggggcagctt 7560 cttgagctcg tcgtaggtga gctcggcggg gtcgctgagc ccgtgctgct cgagggccca gtcggcgacg tgggggttgg cgctgaggaa ggaagtccag agatccacgg ccagggcggt 7620 7680 ctgcaagcgg tcccggtact gacggaactg ctggcccacg gccatttttt cgggggtgac 7740 gcagtagaag gtgcgggggt cgccgtgcca gcggtcccac ttgagctgga gggcgaggtc 7800 gtgggcgagc tcgacgagcg gcgggtcccc ggagagtttc atgaccagca tgaaggggac 7860 gagetgettg cegaaggace ceatecaggt gtaggtttee acategtagg tgaggaagag 7920 cettteggtg egaggatgeg ageegatggg gaagaactgg atetectgee accagttgga 7980 ggaatggctg ttgatgtgat ggaagtagaa atgccgacgg cgcgccgagc actcgtgctt 8040 gtgtttatac aagcgtccgc agtgctcgca acgctgcacg ggatgcacgt gctgcacgag 8100 ctgtacctgg gttcctttga cgaggaattt cagtgggcag tggagcgctg gcggctgcat 8160 ctggtgctgt actacgtcct ggccatcggc gtggccatcg tctgcctcga tggtggtcat gctgacgagc ccgcgcggga ggcaggtcca gacttcggct cggacgggtc ggagagcgag 8220 8280 gacgagggcg cgcaggccgg agctgtccag ggtcctgaga cgctgcggag tcaggtcagt 8340 gggcagcggc ggcgcgcgt tgacttgcag gagcttttcc agggcgcgcg ggaggtccag

atggtacttg	atctccacgg	cgccgttggt	ggcgacgtcc	acggcttgca	gggtcccgtg	8400
cccctggggc	gccaccaccg	tgccccgttt	cttcttgggc	gctgcttcca	tgccggtcag	8460
aagcggcggc	gaggacgcgc	gccgggcggc	aggggcggct	cgggacccgg	aggcaggggc	8520
ggcaggggca	cgtcggcgcc	gcgcgcgggc	aggttctggt	actgcgcccg	gagaagactg	8580
gcgtgagcga	cgacgcgacg	gttgacgtcc	tggatctgac	gcctctgggt	gaaggccacg	8640
ggacccgtga	gtttgaacct	gaaagagagt	tcgacagaat	caatctcggt	atcgttgacg	8700
gcggcctgcc	gcaggatctc	ttgcacgtcg	cccgagttgt	cctggtaggc	gatctcggtc	8760
atgaactgct	cgatctcctc	ctcctgaagg	teteegegge	cggcgcgctc	gacggtggcc	8820
gcgaggtcgt	tggagatgcg	gcccatgagc	tgcgagaagg	cgttcatgcc	ggcctcgttc	8880
cagacgcggc	tgtagaccac	ggctccgtcg	gggtcgcgcg	cgcgcatgac	cacctgggcg	8940
aggttgagct	cgacgtggcg	cgtgaagacc	gcgtagttgc	agaggcgctg	gtagaggtag	9000
ttgagcgtgg	tggcgatgtg	ctcggtgacg	aagaagtaca	tgatccagcg	gcggagcggc	9060
atctcgctga	cgtcgcccag	ggcttccaag	cgctccatgg	cctcgtagaa	gtccacggcg	9120
aagttgaaaa	actgggagtt	gcgcgccgag	acggtcaact	cctcctccag	aagacggatg	9180
agctcagcga	tggtggcgcg	cacctcgcgc	tcgaaggccc	cggggggctc	ctcttcttcc	9240
atctcttcct	cctccactaa	catctcttct	acttcctcct	caggaggcgg	cggcggggga	9300
ggggccctgc	gtcgccggcg	gcgcacgggc	agacggtcga	tgaagcgctc	gatggtctcc	9360
ccgcgccggc	gacgcatggt	ctcggtgacg	gcgcgcccgt	cctcgcgggg	ccgcagcgtg	9420
aagacgccgc	cgcgcatete	caggtggccg	ccgggggggt	ctccgttggg	cagggagagg	9480
gcgctgacga	tgcatcttat	caattggccc	gtagggactc	cgcgcaagga	cctgagcgtc	9540
tcgagatcca	cgggatccga	aaaccgctga	acgaaggctt	cgagccagtc	gcagtcgcaa	9600
ggtaggctga	gcccggtttc	ttgttcttcg	gggatttcgg	gaggcgggcg	ggcgatgctg	9660
ctggtgatga	agttgaagta	ggcggtcctg	agacggcgga	tggtggcgag	gagcaccagg	9720
tccttgggcc	cggcttgctg	gatącgcaga	cggtcggcca	tgccccaggc	gtggtcctga	9780
cacctggcga	ggtccttgta	gtagtcctgc	atgagccgct	ccacgggcac	ctcctcctcg	9840
cccgcgcggc	cgtgcatgcg	cgtgagcccg	aacccgcgct	ggggctggac	gagcgccagg	9900
tcggcgacga	cgcgctcggc	gaggatggcc	tgctgtatct	gggtgagggt	ggtctggaag	9960
tcgtcgaagt	cgacgaagcg	gtggtaggct	ccggtgttga	tggtatagga	gcagttggcc	10020
atgacggacc	agttgacggt	ctggtggccg	gqtcgcacga	gctcgtggta	cttgaggcgc	10080

gagtaggcgc gcgtgtcgaa gatgtagtcg ttgcaggtgc gcacgaggta ctggtatccg 10140 10200 acgaggaagt gcggcggcgg ctggcggtag agcggccatc gctcggtggc gggggcgccg ggcgcgaggt cctcgagcat gaggcggtgg tagccgtaga tgtacctgga catccaggtg 10260 10320 atgccggcgg cggtggtgga ggcgcgcggg aactcgcgga cgcggttcca gatgttgcgc 10380 ageggeagga agtagtteat ggtggeegeg gtetggeeeg tgaggegege geagtegtgg 10440 atgctctaga catacgggca aaaacgaaag cggtcagcgg ctcgactccg tggcctggag 10500 gctaagcgaa cgggttgggc tgcgcgtgta ccccggttcg aatctcgaat caggctggag 10560 ccgcagctaa cgtggtactg gcactcccgt ctcgacccaa gcctgctaac gaaacctcca 10620 ggatacggag gcgggtcgtt ttttggcctt ggtcgctggt catgaaaaac tagtaagcgc 10680 ggaaagcgac cgcccgcgat ggctcgctgc cgtagtctgg agaaagaatc gccagggttg 10740 cgttgcggtg tgccccggtt cgagcctcag cgctcggcgc cggccggatt ccgcggctaa 10800 cgtgggcgtg gctgccccgt cgtttccaag accccttagc cagccgactt ctccagttac 10860 ggagcgagcc cctcttttc ttgtgttttt gccagatgca tcccgtactg cggcagatgc 10920 geoceacce tecaceteaa ecgeceetae egeogeagea geageaacag eeggegette 10980 tgecccegee ccagcageag ccagccaeta ccgeggegge egeegtgage ggageeggeg 11040 ttcagtatga cctggccttg gaagagggcg aggggctggc gcggctgggg gcgtcgtcgc 11100 cggagcggca cccgcgcgtg cagatgaaaa gggacgctcg cgaggcctac gtgcccaagc 11160 agaacctgtt cagagacagg agcggcgagg agcccgagga gatgcgcgcc tcccgcttcc 11220 acgcggggcg ggagctgcgg cgcggcctgg accgaaagcg ggtgctgagg gacgaggatt 11280 tcgaggcgga cgagctgacg gggatcagcc ccgcgcgcgc gcacgtggcc gcggccaacc 11340 tggtcacggc gtacgagcag accgtgaagg aggagagcaa cttccaaaaa tccttcaaca accacgtgcg cacgctgatc gcgcgcgagg aggtgaccct gggcctgatg cacctgtggg 11400 acctgctgga ggccatcgtg cagaacccca cgagcaagcc gctgacggcg cagctgtttc 11460 11520 tggtggtgca gcacagtcgg gacaacgaga cgttcaggga ggcgctgctg aatatcaccg 11580 agcccgaggg ccgctggctc ctggacctgg tgaacattct gcagagcatc gtggtgcagg 11640 agegeggget geogetytee gagaagetyg eggetateaa etteteggty etgageetyg gcaagtacta cgctaggaag atctacaaga ccccgtacgt gcccatagac aaggaggtga 11700 11760 agatcgacgg gttttacatg cgcatgaccc tgaaagtgct gaccctgagc gacgatctgg

gggtgtaccg	caacgacagg	atgcaccgcg	cggtgagcgc	cageegeegg	cgcgagctga	11820
gcgaccagga	gctgatgcac	agcctgcagc	gggccctgac	cggggccggg	accgagggg	11880
agagctactt	tgacatgggc	gcggacctgc	gctggcagcc	cageegeegg	gccttggaag	11940
ctgccggcgg	ttccccctac	gtggaggagg	tggacgatga	ggaggaggag	ggcgagtacc	12000
tggaagactg	atggcgcgac	cgtatttttg	ctagatgcag	caacagccac	cgcctcctga	12060
tcccgcgatg	cgggcggcgc	tgcagagcca	gccgtccggc	attaactcct	cggacgattg	12120
gacccaggcc	atgcaacgca	tcatggcgct	gacgacccgc	aatcccgaag	cctttagaca	12180
gcagcctcag	gccaaccggc	tctcggccat	cctggaggcc	gtggtgccct	cgcgctcgaa	12240
ccccacgcac	gagaaggtgc	tggccatcgt	gaacgcgctg	gtggagaaca	aggccatccg	12300
cggcgacgag	gccgggctgg	tgtacaacgc	gctgctggag	cgcgtggccc	gctacaacag	12360
caccaacgtg	cagacgaacc	tggaccgcat	ggtgaccgac	gtgcgcgagg	cggtgtcgca	12420
gcgcgagcgg	ttccaccgcg	agtcgaacct	gggctccatg	gtggcgctga	acgccttcct	12480
gagcacgcag	cccgccaacg	tgccccgggg	ccaggaggac	tacaccaact	tcatcagcgc	12540
gctgcggctg	atggtggccg	aggtgcccca	gagcgaggtg	taccagtcgg	ggccggacta	12600
cttcttccag	accagtcgcc	agggcttgca	gaccgtgaac	ctgagccagg	ctttcaagaa	12660
cttgcaggga	ctgtggggcg	tgcaggcccc	ggtcggggac	cgcgcgacgg	tgtcgagcct	12720
gctgacgccg	aactcgcgcc	tgctgctgct	gctggtggcg	cccttcacgg	acagcggcag	12780
cgtgagccgc	gactcgtacc	tgggctacct	gcttaacctg	taccgcgagg	ccatcgggca	12840
ggcgcacgtg	gacgagcaga	cctaccagga	gatcacccac	gtgagccgcg	cgctgggcca	12900
ggaggacccg	ggcaacctgg	aggccaccct	gaacttcctg	ctgaccaacc	ggtcgcagaa	12960
gatcccgccc	cagtacgcgc	tgagcaccga	ggaggagcgc	atcctgcgct	acgtgcagca	13020
gagcgtgggg	ctgttcctga	tgcaggaggg	ggccacgccc	agcgccgcgc	tcgacatgac	13080
cgcgcgcaac	atggagccca	gcatgtacgc	togcaaccgc	ccgttcatca	ataagctgat	13140
ggactacttg	catcgggcgg	ccgccatgaa	ctcggactac	tttaccaacg	ccatcttgaa	13200
cccgcactgg	ctcccgccgc	ccgggttcta	cacgggcgag	tacgacatgc	ccgaccccaa	13260
cgacgggttc	ctgtgggacg	acgtggacag	cagcgtgttc	tcgccgcgcc	ccgccaccac	13320
cgtgtggaag	aaagagggcg	gggaccggcg	gccgtcctcg	gcgctgtccg	gtcgcgcggg	13380
tgctgccgcg	gcggtgcctg	aggccgccag	ccccttcccg	agcctgccct	tttcgctgaa	13440
cagegtgege	agcagcgagc	tgggtcggct	gacgcggccg	cgcctgctgg	gcgaggagga	13500

						•										
gtac	ctga	ac g	actc	cttg	t tg	aggc	ccga	gcg	cgag	aag	aact	tccc	ca a	taac	gggat	13560
agaga	agcc	tg g	tgga	caag	a tg	agcc	gctg	gaa	gacg	tac	gcgc	acga	gc a	cagg	gacga	13620
gccc	cgag	ct a	gcag	cagc	g ca	ggca	cccg	tag	acgc	cag	cgac	acga	ca g	gcag	cdāāā	13680
tctg	gtgt	gg g	acga	tgag	g at	tccg	ccga	. cga	cagc	agc	gtgt	tgga	ct t	gggt	gggag	13740
tggt	ggtg	gt a	accc	gttc	g ct	çact	tgcg	ccc	ccgt	atc	gggc	gcct	ga t	gtaa	gaatc	13800
tgaa	aaaa	ta a	aaaa	cggt	a ct	cacc	aagg	cca	tggc	gac	cagc	gtgc	gt t	cttc	tctgt	13860
tgtt	tgta	gt a	gt a M 1	et M	tg a let A	gg c rg A	gc g rg V 5	al T	ac c 'yr P	ro G	ag g lu G	ly P	ct c ro P .0	ct c ro P	ro	13909
tcg Ser	tac Tyr	gag Glu 15	agc Ser	gtg Val	atg Met	Gln	cag Gln 20	gcg Ala	gtg Val	gcg Ala	gcg Ala	gcg Ala 25	atg Met	cag Gln	ccc Pro	13957
Pro	ctg Leu 30	gag Glu	gcg Ala	cct Pro	tac Tyr	gtg Val 35	ccc Pro	ccg Pro	Arg Cgg	tac Tyr	ctg Leu 40	gcg Ala	cct Pro	acg Thr	gag Glu	14005
ggg Gly 45	cgg Arg	aac Asn	agc Ser	att Ile	cgt Arg 50	tac Tyr	tcg Ser	gag Glu	ctg Leu	gca Ala 55	ccc Pro	ttg Leu	tac Tyr	gat Asp	acc Thr 60	14053
acc Thr	cgg Arg	ttg Leu	tac Tyr	ctg Leu 65	gtg Val	ġac Asp	aac Asn	aag Lys	tcg Ser 70	gcg Ala	gac Asp	atc Ile	gcc Ala	tcg Ser 75	ctg Leu	14101
aac Asn	tac Tyr	cag Gln	aac Asn 80	gac Asp	cac His	agc Ser	aac Asn	ttc Phe 85	ctg Leu	acc Thr	acc Thr	gtg Val	gtg Val 90	cag Gln	aac Asn	14149
aac Asn	gat As p	ttc Phe 95	acc Thr	ccc Pro	acg Thr	gag Glu	gcc Ala 100	agc Ser	acc Thr	cag Gln	acc Thr	atc Ile 105	aac Asn	ttt Phe	gac Asp	14197
gag Glu	cgc Arg 110	tcg Ser	cgg Arg	tgg Trp	ggc	ggc Gly 115	cag Gln	ctg Leu	aaa Lys	acc Thr	atc Ile 120	atg Met	cac His	acc Thr	aac Asn	14245
atg Met 125	ccc Pro	aac Asn	gtg Val	aac Asn	gag Glu 130	ttc Phe	atg Met	tac Tyr	agc Ser	aac Asn 135	aag Lys	ttc Phe	aag Lys	gcg Ala	cgg Arg 140	14293
gtg Val	atg Met	gtc Val	tcg Ser	cgc Arg 145	aag Lys	acc Thr	ccc Pro	aat Asn	ggg Gly 150	gtc Val	gcg Ala	gtg Val	gat Asp	gag Glu 155	aat Asn	14341
tat Tyr	gat Asp	ggt Gly	agt Ser 160	cag Gln	gac Asp	gag Glu	ctg Leu	act Thr 165	tac Tyr	gag Glu	tgg Trp	gtg Val	gag Glu 170	ttt Phe	gag Glu	14389

										acc Thr						14437
										ej aaa						14485
										acg Thr 215						14533
										ccg Pro						14581
										ccc Pro						14629
										ggc Gly						14677
										gag Glu						14725
										tat Tyr 295						14773
										gcc Ala						14821
										gca Ala						14869
										gtg Val						14917
										aaa Lys						14965
agc Ser 365	tgg Trp	tac Tyr	ctg Leu	gcc Ala	tac Tyr 370	aac Asn	tac Tyr	ggc Gly	gac Asp	ccc Pro 375	gag Glu	aag Lys	ggc Gly	gtg Val	cgc Arg 380	15013
tcc Ser	tgg	acg	ctg	ctc	acc	acc	tcg			acc	tgc				caa	15061

gtc tac tgg tcg ctg ccc gac atg atg caa gac ccg gtc acc ttc cgc Val Tyr Trp Ser Leu Pro Asp Met Met Gln Asp Pro Val Thr Phe Arg 400 405 410	15109
tcc acg cgt caa gtt agc aac tac ccg gtg gtg ggc gcc gag ctc ctg Ser Thr Arg Gln Val Ser Asn Tyr Pro Val Val Gly Ala Glu Leu Leu 415 420 425	15157
Pro Val Tyr Ser Lys Ser Phe Phe Asn Glu Gln Ala Val Tyr Ser Gln 430 435 440	15205
cag ctg cgc gcc ttc acc tcg ctc acg cac gtc ttc aac cgc ttc ccc Gln Leu Arg Ala Phe Thr Ser Leu Thr His Val Phe Asn Arg Phe Pro 455 450 460	15253
gag aac cag atc ctc gtc cgc ccg ccc gcg ccc acc att acc acc gtc Glu Asn Gln Ile Leu Val Arg Pro Pro Ala Pro Thr Ile Thr Thr Val 465 470 475	15301
agt gaa aac gtt cct gct ctc aca gat cac ggg acc ctg ccg ctg cgc Ser Glu Asn Val Pro Ala Leu Thr Asp His Gly Thr Leu Pro Leu Arg 480 485 490	15349
agc agt atc cgg gga gtc cag cgc gtg acc gtc act gac gcc aga cgc Ser Ser Ile Arg Gly Val Gln Arg Val Thr Val Thr Asp Ala Arg Arg 495 500 505	15397
cgc acc tgc ccc tac gtc tac aag gcc ctg ggc gta gtc gcg ccg cgc Arg Thr Cys Pro Tyr Val Tyr Lys Ala Leu Gly Val Val Ala Pro Arg 510 515 520	15445
gtc ctc tcg agc cgc acc ttc taa aaaatgtcca ttctcatctc gcccagtaat Val Leu Ser Ser Arg Thr Phe 525 530	15499
aacaccggtt ggggcctgcg cgcgcccagc aagatgtacg gaggcgctcg ccaacgctcc	15559
acgcaacacc ccgtgcgcgt gcgcgggcac ttccgcgctc cctggggcgc cctcaagggc	15619
cgcgtgcgct cgcgcaccac cgtcgacgac gtgatcgacc aggtggtggc cgacgcgc	15679
aactacacge cegeegeege geeegeetee accgtggaeg eegteatega cagegtggtg	15739
geogatgege geoggtaege ecgegecaag ageoggegge ggegeatege ecggeggeae	15799
cggagcaccc ccgccatgcg cgcggcgcga gccttgctgc gcagggccag gcgcacggga	15859
cgcagggcca tgctcagggc ggccagacgc gcggcctccg gcagcagcag cgccggcagg	15919
accegcagae gegeggeeae ggeggeggeg geggeeateg ceageatgte eegeeegegg	15979
cgcggcaacg tgtactgggt gcgcgacgcc gccaccggtg tgcgcgtgcc cgtgcgcacc	16039
cgccccctc gcacttgaag atgctgactt cgcgatgttg atgtgtccca gcggcgagga	16099
ggatgtccaa gcgcaaatac aaggaagaga tgctccaggt catcgcgcct gagatctacg	16159

gccccgcggt gaaggaggaa agaaagcccc gcaaactgaa gcgggtcaaa aaggacaaaa 16219 16279 aggaggagga agatgtggac ggactggtgg agtttgtgcg cgagttcgcc ccccggcggc 16339 gcgtgcagtg gcgcgggcgg aaagtgaaac cggtgctgcg gcccggcacc acggtggtct 16399 teacgecegg egagegttee ggeteegeet ceaagegete etacgaegag gtgtaegggg 16459 acgaggacat cctcgagcag gcggtcgagc gtctgggcga gtttgcttac ggcaagcgca 16519 geogeologic geoettgaaa gaggaggegg tgtecateec getggaccae ggcaaceeca 16579 cgccgagcct gaagccggtg accctgcagc aggtgctgcc gagcgcggcg ccgccggg 16639 getteaageg egagggegge gaggatetgt accegaceat geagetgatg gtgeecaage 16699 gccagaagct ggaggacgtg ctggagcaca tgaaggtgga ccccgaggtg cagcccgagg 16759 tcaaggtgcg gcccatcaag caggtggccc cgggcctggg cgtgcagacc gtggacatca 16819 agatececae ggageceatg gaaaegeaga eegageeegt gaageeeage accageacea 16879 tggaggtgca gacggatece tggatgcegg cgeeggette caccactege egaagaegea 16939 agtacggcgc ggccagcctg ctgatgccca actacgcgct gcatccttcc atcatcccca cgccgggcta ccgcggcacg cgcttctacc gcggctacac cagcagccgc cgcaagacca 16999 ccaccegeeg eegeegtegt egeaccegee geageageae egegaettee geegeegeee 17059 17119 tggtgcggag agtgtaccgc agcgggcgcg agcctctgac cctgccgcgc gcgcgctacc 17179 accogageat egecatttaa etetgeegte geeteetaet tgeagatatg geeeteaeat 17239 geogecteeg egtececatt aegggetace gaggaagaaa geegeegt agaaggetga 17299 cggggaacgg gctgcgtcgc catcaccacc ggcggcggcg cgccatcagc aagcggttgg 17359 ggggaggett cetgeeegeg etgateeeca teategeege ggegateggg gegateeeeg 17419 gcatagette egtggeggtg caggeetete agegeeactg agacacaget tggaaaattt 17479 gtaataaaaa aatggactga cgctcctggt cctgtgatgt gtgtttttag atggaagaca 17539 tcaatttttc gtccctggca ccgcgacacg gcacgcggcc gtttatgggc acctggagcg 17599 acateggeaa cagecaactg aacgggggeg cetteaattg gageagtete tggageggge 17659 ttaagaattt cgggtccacg ctcaaaacct atggcaacaa ggcgtggaac agcagcacag 17719 ggcaggcgct gagggaaaag ctgaaagagc agaacttcca gcagaaggtg gtcgatggcc 17779 tggcctcggg catcaacggg gtggtggacc tggccaacca ggccgtgcag aaacagatca 17839 acageegeet ggaegeggte eegeeegegg ggteegtgga gatgeeeeag gtggaggagg

agetgeetee cetggacaag egeggegaca agegacegeg teeegacgeg gaggagaege	17899
tgctgacgca cacggacgag ccgccccgt acgaggaggc ggtgaaactg ggtctgccca	17959
ccacgcggcc cgtggcgcct ctggccaccg gggtgctgaa acccagcagc agcagccagc	18019
ccgcgaccet ggaettgeet eegeetgett eccgecette cacagtgget aageeeetge	18079
cgccggtggc cgtcgcgtcg cgcgccccc gaggccgccc ccaggcgaac tggcagagca	18139
ctctgaacag catcgtgggt ctgggagtgc agagtgtgaa gcgccgccgc tgctattaaa	18199
agacactgta gcgcttaact tgcttgtctg tgtgtatatg tatgtccgcc gaccagaagg	18259
aggaagaggc gcgtcgccga gttgcaag atg gcc acc cca tcg atg ctg ccc Met Ala Thr Pro Ser Met Leu Pro 535	18311
cag tgg gcg tac atg cac atc gcc gga cag gac gct tcg gag tac ctg Gln Trp Ala Tyr Met His Ile Ala Gly Gln Asp Ala Ser Glu Tyr Leu 540 545 550 555	18359
agt ccg ggt ctg gtg cag ttc gcc cgc gcc aca gac acc tac ttc agt Ser Pro Gly Leu Val Gln Phe Ala Arg Ala Thr Asp Thr Tyr Phe Ser 560 565 570	18407
ctg ggg aac aag ttt agg aac ccc acg gtg gcg ccc acg cac gat gtg Leu Gly Asn Lys Phe Arg Asn Pro Thr Val Ala Pro Thr His Asp Val 575 580 585	18455
acc acc gac cgc agc cag cgg ctg acg ctg cgc ttc gtg ccc gtg gac Thr Thr Asp Arg Ser Gln Arg Leu Thr Leu Arg Phe Val Pro Val Asp 590 595 600	18503
cgc gag gac aac acc tac tcg tac aaa gtg cgc tac acg ctg gcc gtg Arg Glu Asp Asn Thr Tyr Ser Tyr Lys Val Arg Tyr Thr Leu Ala Val 605 610 615	18551
ggc gac aac cgc gtg ctg gac atg gcc agc acc tac ttt gac atc cgc Gly Asp Asn Arg Val Leu Asp Met Ala Ser Thr Tyr Phe Asp Ile Arg 620 635	18599
ggc gtg ctg gat cgg ggg ccc agc ttc aaa ccc tac tcc ggc acc gcc Gly Val Leu Asp Arg Gly Pro Ser Phe Lys Pro Tyr Ser Gly Thr Ala 640 645 650	18647
tac aac age ctg gct ccc aag gga gcg ccc aac act tgc cag tgg aca Tyr Asn Ser Leu Ala Pro Lys Gly Ala Pro Asn Thr Cys Gln Trp Thr 655 660 665	18695
tat aaa gct ggt gat act gat aca gaa aaa acc tat aca tat gga aat Tyr Lys Ala Gly Asp Thr Asp Thr Glu Lys Thr Tyr Thr Tyr Gly Asn 670 675 680	18743
gca cct gtg caa ggc att agc att aca aag gat ggt att caa ctt gga Ala Pro Val Gln Gly Ile Ser Ile Thr Lys Asp Gly Ile Gln Leu Gly 685 690 695	18791

act Thr 700	gac Asp	agc Ser	gat Asp	ggt Gly	cag Gln 705	gca Ala	atc Ile	tat Tyr	gca Ala	gac Asp 710	gaa Glu	act Thr	tat Tyr	caa Gln	cca Pro 715	18839
			gtg Val													18887
			gga Gly 735													18935
			tct Ser													18983
			acc Thr													19031
			gat Asp													19079
			tat Tyr													19127
	_		aag Lys 815	_			_	-	_	_					_	19175
			tcc Ser													19223
			ggt Gly													19271
			cag Gln													19319
			gaa Glu													19367
			tat Tyr 895													19415
			cgc Arg													19463

aac Asn	tat t Tyr C 925	egc t Cys I	ttc Phe	ccc Pro	Leu A	gat gc Asp Al 930	t gto a Vai	g ggt L Gly	aga Y Arg	act Thi	r Asp	act Thr	tac Tyr	cag Gln	19511
gga Gly 940	att a Ile I	raa (gcc Ala	aat Asn	ggt (Gly) 945	yat aa Asp As	t caa n Gl	a aco	acc Thr 950	Tr	g acc p Thr	aaa Lys	gat Asp	gat Asp 955	19559
act Thr	gtt a Val A	aat (Asn)	Asp .	gct Ala 960	aat (Asn (gaa tt Glu Le	g gg u Gl	c aaq y Ly: 96!	s Gly	: aa¹	t cct n Pro	ttc Phe	gcc Ala 970	Met	19607
gag Glu	atc a Ile A	Asn :	atc Ile 975	cag Gln	gcc a	aac ct Asn Le	g tg u Tr 98	p Ar	g aac g Asn	tt:	c ctc e Leu	tac Tyr 985	gcg Ala	aac Asn	19655
gtg Val	Ala 1	ctg i Leu ! 990	tac Tyr	ctg Leu	ccc (gac to Asp Se 99	r Ty	c aag	g tac s Tyr	c ac	g ccg r Pro 100	Al	c aa a As	c atc n Ile	19703
-	ctg Leu 1005	ccc	acc Thr	aac Asr	acc Thr	aac Asn 1010	acc Thr	tac (Tyr /	gat t Asp T	'yr i	atg Met 1015	aac Asn	ggc Gly	cgc Arg	19748
	gtg Val 1020	gcg Ala	Pro	Sei	g ctg c Leu	gtg Val 1025	gac Asp	gcc Ala '	tac a Tyr 1	lle.	aac Asn 1030	atc Ile	ej A aaa	gcg Ala	19793
•	tgg Trp 1035	tcg Ser	ctg Lev	gaq Asp	c ccc Pro	atg Met 1040	gac Asp	aac Asn	gtc a Val <i>l</i>	Asn	ccc Pro 1045	ttc Phe	aac Asn		19838
	cgc Arg 1050	aac Asn	gcg	gg Gl	c ctg y Leu	cga Arg 1055	tac Tyr	cgc Arg	tcc a Ser 1	Met	ctc Leu 1060		Gly ggc		19883
	cgc Arg 1065					cac His 1070				Pro	caa Gln 1075	aag Lys	ttt Phe	ttc Phe	19928
-	atc Ile 1080	Lys	ago Sei	c ct	c ctg u Leu	ctc Leu 1085	ctg Leu	ccc Pro	ggg (tcc Ser	tac Tyr 1090	acc Thr	tac Tyr	gag Glu	19973
	aac Asn 1095	Phe	cgo Arg	aa g Ly	g gac s Asp	gtc Val 1100	aac Asn	atg Met	atc (Ile :	ctg Leu	cag Gln 1105	agc Ser	tcc Ser	ctc Leu	20018
Gly	aac Asn 1110	Asp	ctç Le:	g cg 1 Ar	c acg g Thr	gac Asp 1115	GJ À ààà	gcc Ala	tcc (Ser)	atc Ile	gcc Ala 1120	ttc Phe	acc Thr	agc Ser	20063
atc Ile	aac Asn 1125	Leu	tao Ty	c gc	c acc a Thr	ttc Phe 1130	ttc Phe	ccc Pro	atg (Met)	gcg Ala	cac His 1135	aac Asn	acc Thr	gcc Ala	20108

tcc Ser	acg Thr 1140	ctc Leu	gag Glu	gcc Ala	atg Met	ctg Leu 1145	cgc Arg	aac Asn	gac Asp	acc Thr	aac Asn 1150	gac Asp	cag Gln	tcc Ser	20153
ttc Phe	aac Asn 1155	gac Asp	tac Tyr	ctc Leu	tcg Ser	gcg Ala 1160	gcc Ala	aac Asn	atg Met	ctc Leu	tac Tyr 1165	ccc Pro	atc Ile	ccg Pro	20198
gcc Ala	aac Asn 1170	gcc Ala	acc Thr	aac Asn	gtg Val	ccc Pro 1175	atc Ile	tcc Ser	atc Ile	ccc Pro	tcg Ser 1180	Arg	aac Asn	tgg Trp	20243
gcc Ala	gcc Ala 1185	ttc Phe	cgc Arg	ggc Gly	tgg Trp	tcc Ser 1190	ttc Phe	acg Thr	cgc Arg	ctc Leu	aag Lys 1195	acc Thr	cgc Arg	gag Glu	20288
acg Thr	ccc Pro 1200	tcg Ser	ctc Leu	ggc Gly	tcc Ser	ggg Gly 1205	ttc Phe	gac Asp	ccc Pro	tac Tyr	ttc Phe 1210	gtc Val	tac Tyr	tcg Ser	20333
ggc Gly	tcc Ser 1215	Ile	ccc Pro	tac Tyr	ctc Leu	gac Asp 1220	Gly ggc	acc Thr	ttc Phe	tac Tyr	ctc Leu 1225	aac Asn	cac His	acc Thr	20378
ttc Phe	aag Lys 1230	Lys	gtc Val	tcc Ser	atc Ile	acc Thr 1235	ttc Phe	gac Asp	tcc Ser	tcc Ser	gtc Val 1240	Ser	tgg Trp	ccc Pro	20423
ggc	aac Asn 1245	Asp	cgc Arg	ctc Leu	ctg Leu	acg Thr 1250	ccc Pro	aac Asn	gag Glu	ttc Phe	gaa Glu 1255	Ile	aag Lys	cgc Arg	20468
acc Thr	gtc Val 1260	Asp	Gly	gag Glu	ej À gaa	tac Tyr 1265	aac Asn	gtg Val	gcc Ala	cag Gln	tgc Cys 1270	Asn	atg Met	acc Thr	20513
aag Lys	gac Asp 1275	Trp	ttc Phe	ctg Leu	gtc Val	cag Gln 1280	Met	ctg Leu	gcc Ala	cac	tac Tyr 1285	Asn		ggc Gly	20558
tac Tyr	cag Gln 1290	Gly	ttc Phe	tac Tyr	gtg Val	ccc Pro 1295	Glu	ggc Gly	tac Tyr	aag Lys	gac Asp 1300	Arg	atg Met	tac Tyr	20603
tcc Ser	ttc Phe 1305	Phe	ege Arg	aac Asn	ttc Phe	cag Gln 1310	Pro	atg Met	agc Ser	cgc Arg	cag Gln 1315	Val	gtg Val	gac Asp	20648
gag Glu	gtc Val 1320	Asn	tac Tyr	aag Lys	gac Asp	tac Tyr 1325	Gln	gcc	gtc Val	Thr	ctg Leu 1330	Ala	tac Tyr	cag Gln	20693
	aac Asn 1335	Asn	tcg Ser	Gly	ttc Phe	gtc Val 1340	Gly	tac Tyr	ctc Leu	gcg	ccc Pro 1345	Thr	atg Met	cgc Arg	20738

cag ggc cag ccc tac ccc gcc aac tac ccc tac ccg ctc atc ggc Gln Gly Gln Pro Tyr Pro Ala Asn Tyr Pro Tyr Pro Leu Ile Gly 1350 1355 1360	20783
aag agc gcc gcc agc gtc acc cag aaa aag ttc ctc tgc gac Lys Ser Ala Val Ala Ser Val Thr Gln Lys Lys Phe Leu Cys Asp 1365 1370 1375	20828
cgg gtc atg tgg cgc atc ccc ttc tcc agc aac ttc atg tcc atg Arg Val Met Trp Arg Ile Pro Phe Ser Ser Asn Phe Met Ser Met 1380 1385 1390	20873
ggc gcg ctc acc gac ctc ggc cag aac atg ctc tac gcc aac tcc Gly Ala Leu Thr Asp Leu Gly Gln Asn Met Leu Tyr Ala Asn Ser 1395 1400 1405	20918
gcc cac gcg cta gac atg aat ttc gaa gtc gac ccc atg gat gag Ala His Ala Leu Asp Met Asn Phe Glu Val Asp Pro Met Asp Glu 1410 1415 1420	20963
tcc acc ctt ctc tat gtt gtc ttc gaa gtc ttc gac gtc gtc cga Ser Thr Leu Leu Tyr Val Val Phe Glu Val Phe Asp Val Val Arg 1425 1430 1435	21008
gtg cac cag ccc cac cgc ggc gtc atc gag gcc gtc tac ctg cgc Val His Gln Pro His Arg Gly Val Ile Glu Ala Val Tyr Leu Arg 1440 1445 1450	21053
acg ccc ttc tcg gcc ggc aac gcc acc acc taa gcctcttgct Thr Pro Phe Ser Ala Gly Asn Ala Thr Thr 1455 1460	21096
tottgcaaga tgacggcctg cgcgggctcc ggcgagcagg agctcagggc catcctccgc	21156
gacctgggct gcgggccctg cttcctgggc accttcgaca agcgcttccc gggattcatg	21216
gccccgcaca agctggcctg cgccatcgtc aacacggccg gccgcgagac cgggggcgag	21276
cactggctgg cettegeetg gaaccegege teccaeacet getacetett egacceette	21336
gggttctcgg acgagcgcct caagcagate taccagttcg agtacgaggg cctgctgcgt	21396
cgcagcgccc tggccaccga ggaccgctgc gtcaccctgg aaaagtccac ccagaccgtg	21456
cagggteege geteggeege etgegggete ttetgetgea tgtteetgea egeettegtg	21516
cactggcccg accgcccat ggacaagaac cccaccatga acttgctgac gggggtgccc	21576
aacggcatgc tccagtcgcc ccaggtggaa cccaccctgc gccgcaacca ggaggcgctc	21636
taccgcttcc tcaacgccca ctccgcctac tttcgctccc accgcgcgcg catcgagaag	21696
gccaccgcct tcgaccgcat gaatcaagac atgtaatccg gtgtgtgtat gtgaatgctt	21756
tattcatcat aataaacagc acatgtttat gccaccttct ctgaggctct gactttattt	21816
agaaatcgaa ggggttctgc cggctctcgg catggcccgc gggcagggat acgttgcgga	21876

actggtactt	gggcagccac	ttgaactcgg	ggatcagcag	cttcggcacg	gggaggtcgg	21936
ggaacgagtc	gctccacagc	ttgcgcgtga	gttgcagggc	gcccagcagg	tcgggcgcgg	21996
agatcttgaa	atcgcagttg	ggacccgcgt	tetgegegeg	agagttacgg	tacacggggt	22056
tgcagcactg	gaacaccatc	agggccgggt	gcttcacgct	cgccagcacc	gtcgcgtcgg	22116
tgatgccctc	cacgtccaga	tcctcggcgt	tggccatccc	gaagggggtc	atcttgcagg	22176
tetgeegeee	catgctgggc	acgcagccgg	gcttgtggtt	gcaatcgcag	tgcaggggga	22236
tcagcatcat	ctgggcctgc	toggagotca	tgcccgggta	catggccttc	atgaaagcct	22296
ccagctggcg	gaaggcctgc	tgcgccttgc	cgccctcggt	gaagaagacc	ccgcaggact	22356
tgctagagaa	ctggttggtg	gcgcagccag	cgtcgtgcac	gcagcagcgc	gcgtcgttgt	22416
tggccagctg	caccacgctg	cgcccccagc	ggttctgggt	gatcttggcc	cggtcggggt	22476
tctccttcag	cgcgcgctgc	ccgttctcgc	tcgccacatc	catctcgatc	gtgtgctcct	22536
tctggatcat	cacggtcccg	tgcaggcacc	gcagcttgcc	ctcggcctcg	gtgcacccgt	22596
gcagccacag	cgcgcagccg	gtgctctccc	agttcttgtg	ggcgatctgg	gagtgcgagt	22656
gcacgaagcc	ctgcaggaag	cggcccatca	tcgtggtcag	ggtcttgttg	ctggtgaagg	22716
tcagcggaat	gccgcggtgc	tcctcgttca	catacaggtg	gcagatacgg	cggtacacct	22776
cgccctgctc	gggcatcagc	tggaaggcgg	acttcaggtc	gctctccacg	cggtaccggt	22836
ccatcagcag	cgtcatcact	tccatgccct	tctcccaggc	cgaaacgatc	ggcaggctca	22896
gggggttctt	caccgttgtc	atcttagtcg	ccgccgccga	agtcaggggg	tcgttctcgt	22956
ccagggtctc	aaacactcgc	ttgccgtcct	tctcggtgat	gcgcacgggg	ggaaagctga	23016
agcccacggc	cgccagctcc	tecteggeet	gcctttcgtc	ctcgctgtcc	tggctgatgt	23076
cttgcaaagg	cacatgcttg	gtcttgcggg	gtttctttt	gggcggcaga	ggcggcggcg	23136
gagacgtgct	gggcgagcgc	gagttctcgc	tcaccacgac	tatttcttct	ccttggccgt	23196
cgtccgagac	cacgcggcgg	taggcatgcc	tcttctgggg	cagaggcgga	ggcgacgggc	23256
tctcgcggtt	cggcgggcgg	ctggcagagc	cccttccgcg	ttcgggggtg	cgctcctggc	23316
ggcgctgctc	tgactgactt	cetecgegge	cggccattgt	gttctcctag	ggagcaagca	23376
tggagactca	gccatcgtcg	ccaacatcgc	catctgcccc	cgccgccgcc	gacgagaacc	23436
agcagcagca	gaatgaaagc	ttaaccgccc	cgccgcccag	cccacctcc	gacgccgcag	23496
ccccagacat	gcaagagatg	gaggaatcca	tcgagattga	cctgggctac	gtgacgcccg	23556

cggagcacga ggaggagctg gcagcgcgct tttcagcccc ggaagagaac caccaagagc agccagagca ggaagcagag agcgagcaga accaggctgg gctcgagcat ggcgactacc 23676 tgagcggggc agaggacgtg ctcatcaagc atctggcccg ccaatgcatc atcgtcaagg 23736 acgcgctgct cgaccgcgcc gaggtgcccc tcagcgtggc ggagctcagc cgcgcctacg 23796 agegeaacet ettetegeeg egegtgeece ceaagegeea geecaacgge acetgegage 23856 23916 ccaacccgcg cctcaacttc tacccggtct tcgcggtgcc cgaggccctg gccacctacc 23976 acctetttt caagaaccaa aggateeeeg teteetgeeg egecaacege accegegeeg 24036 acgccctgct caacctgggc cccggcgccc gcctacctga tatcgcctcc ttggaagagg 24096 ttcccaagat cttcgagggt ctgggcagcg acgagactcg ggccgcgaac gctctgcaag 24156 gaagcggaga ggagcatgag caccacagcg ccctggtgga gttggaaggc gacaacgcgc 24216 gcctggcggt cctcaagcgc acggtcgagc tgacccactt cgcctacccg gcgctcaacc 24276 tgcccccaa ggtcatgage gccgtcatgg accaggtgct catcaagcgc gcctcgcccc tctcggagga ggagatgcag gaccccgaga gctcggacga gggcaagccc gtggtcagcg 24336 24396 acgagcaget ggegegetgg etgggagega gtageacece ceagageetg gaagagegge gcaagctcat gatggccgtg gtcctggtga ccgtggagct ggagtgtctg cgccgcttct 24456 tcgccgacgc ggagaccctg cgcaaggtcg aggagaacct gcactacctc ttcagacacg 24516 24576 ggttcgtgcg ccaggcctgc aagatctcca acgtggagct gaccaacctg gtctcctaca 24636 tgggcatcct gcacgagaac cgcctggggc agaacgtgct gcacaccacc ctgcgcgggg 24696 aggcccgccg cgactacatc cgcgactgcg tctacctgta cctctgccac acctggcaga 24756 cgggcatggg cgtgtggcag cagtgcctgg aggagcagaa cctgaaagag ctctgcaagc tectgeagaa gaaceteaag geeetgtgga eegggttega egagegeace aeegeeggg 24816 24876 acctggccga cctcatcttc cccgagcgcc tgcggctgac gctgcgcaac gggctgcccg 24936 actttatgag ccaaagcatg ttgcaaaact ttcgctcttt catcctcgaa cgctccggga 24996 tectgecege cacetgetee gegetgeeet eggacttegt geogetgaee tteegegagt gcccccgcc gctctggagc cactgctacc tgctgcgcct ggccaactac ctggcctacc 25056 25116 actoggacgt gatogaggac gtoagoggcg agggootgot cgagtgocac tgccgctgca acctctgcac gccgcaccgc tccctggcct gcaaccccca gctgctgagc gagacccaga 25176 tcatcggcac cttcgagttg caaggccccg gcgagggcaa ggggggtctg aaactcaccc 25236 cggggctgtg gacctcggcc tacttgcgca agttcgtgcc cgaggactac catcccttcg 25296

agatcaggtt	ctacgaggac	caatcccagc	cgcccaaggc	cgagctgtcg	gcctgcgtca	25356
tcacccaggg	ggccatcctg	gcccaattgc	aagccatcca	gaaatcccgc	caagaatttc	25416
tgctgaaaaa	gggccacggg	gtctacttgg	accccagac	cggagaggag	ctcaacccca	25476
gcttccccca	ggatgccccg	aggaagcagc	aagaagctga	aagtggagct	geegeegeeg	25536
ccggaggatt	tggaggaaga	ctgggagagc	agtcaggcag	aggaggagga	gatggaagac	25596
tgggacagca	ctcaggcaga	ggaggacagc	ctgcaagaca	gtctggagga	ggaagacgag	25656
gtggaggagg	cagaggaaga	agcagccgcc	gccagaccgt	cgtcctcggc	ggaggaggag	25716
aaagcaagca	gcacggatac	catctccgct	ccgggtcggg	gtcgcggcgg	ccgggcccac	25776
agtagatggg	acgagaccgg	gcgcttcccg	aaccccacca	cccagaccgg	taagaaggag	25836
cggcagggat	acaagtcctg	gcgggggcac	aaaaacgcca	tcgtctcctg	cttgcaagcc	25896
tgcgggggca	acatctcctt	cacccggcgc	tacctgctct	tccaccgcgg	ggtgaacttc	25956
ccccgcaaca	tcttgcatta	ctaccgtcac	ctccacagcc	cctactactg	tttccaagaa	26016
gaggcagaaa	cccagcagca	gcagcagcag	cagaaaacca	gcggcagcag	ctagaaaatc	26076
cacageggeg	gcaggtggac	tgaggatcgc	ggcgaacgag	ccggcgcaga	cccgggagct	26136
gaggaaccgg	atctttccca	ccctctatgc	catcttccag	cagagtcggg	ggcaagagca	26196
ggaactgaaa	gtcaagaacc	gttctctgcg	ctcgctcacc	cgcagttgtc	tgtatcacaa	26256
gagcgaagac	caacttcagc	gcactctcga	ggacgccgag	gctctcttca	acaagtactg	26316
cgcgctcact	cttaaagagt	agcccgcgcc	cgcccacaca	cggaaaaagg	cgggaattac	26376
gtcaccacct	gcgcccttcg	cccgaccatc	atcatgagca	aagagattcc	cacgccttac	26436
atgtggagct	accagececa	gatgggcctg	gccgccggcg	ccgcccagga	ctactccacc	26496
cgcatgaact	ggctcagtgc	cgggcccgcg	atgatctcac	gggtgaatga	catccgcgcc	26556
caccgaaacc	agatactcct	agaacagtca	gcgatcaccg	ccacgccccg	ccatcacctt	26616
aatccgcgta	attggcccgc	cgccctggtg	taccaggaaa	ttccccagcc	cacgaccgta	26676
ctacttccgc	gagacgccca	ggccgaagtc	cagetgaeta	actcaggtgt	ccagctggcc	26736
ggeggegeeg	ccctgtgtcg	tcaccgcccc	gctcagggta	taaagcggct	ggtgatccga	26796
ggcagaggca	cacagctcaa	cgacgaggtg	gtgagctctt	cgctgggtct	gcgacctgac	26856
ggagtettee	: aactcgccgg	atcggggaga	tetteettea	cgcctcgtca	ggccgtcctg	26916
actttggaga	gttcgtcctc	gcagccccgc	tegggtggea	teggeactet	ccagttcgtg	26976

gaggagttea eteceteggt etaetteaac ecetteteeg geteeceegg ecaetaceeg 27036 gacgagttca tcccgaactt cgacgccatc agcgagtcgg tggacggcta cgattgaatg 27096 teccatggtg gegeggetga cetagetegg ettegacace tggaccactg eegeegette 27156 cgctgcttcg ctcgggatct cgccgagttt gcctactttg agctgcccga ggagcaccct 27216 cagggcccgg cccacggagt gcggatcgtc gtcgaagggg gtctcgactc ccacctgctt 27276 27336 cggatettea gecagegtee gateetggee gagegegage aaggacagae eettetgaee 27396 ctgtactgca tctgcaacca ccccggcctg catgaaagtc tttgttgtct gctgtgtact gagtataata aaagctgaga tcagcgacta ctccggactt ccgtgtgttc ctgctatcaa 27456 27516 ccagtccctg ttcttcaccg ggaacgagac cgagctccag ctccagtgta agccccacaa gaagtacctc acctggctgt tecagggctc tecgategec gttgtcaacc actgegacaa 27576 cgacggagtc ctgctgagcg gccctgccaa ccttactttt tccacccgca gaagcaagct 27636 ccagctette caaccettee teccegggae etateagtge gtetegggae cetgecatea 27696 caccttccac ctgatcccga ataccacage gtegetecce getactaaca accaaactae 27756 27816 ccaccaacgc caccgtcgcg acctttcctc tgggtctaat accactaccg gaggtgagct ccgaggtcga ccaacctctg ggatttacta cggcccctgg gaggtggtag ggttaatagc 27876 gctaggccta gttgcgggtg ggcttttggc tctctgctac ctatacctcc cttgctgttc 27936 27996 gtacttagtg gtgctgtgtt gctggtttaa gaaatgggga agatcaccct agtgagctgc 28056 gagaaggccg atccctgctt gcatttcaat cccgacaaat gccagctgag ttttcagccc 28116 28176 gatggcaatc ggtgcgcggt gctgatcaag tgcggatggg aatgcgagaa cgtgagaatc gagtacaata acaagactcg gaacaatact ctcgcgtccg tgtggcagcc cggggacccc 28236 gagtggtaca ccgtctctgt ccccggtgct gacggctccc cgcgcaccgt gaataatact 28296 ttcatttttg cgcacatgtg cgacacggtc atgtggatga gcaagcagta cgatatgtgg 28356 cccccacga aggagaacat cgtggtcttc tccatcgctt acagcgtgtg cacggcgcta 28416 atcaccycta tcgtgtgcct gagcattcac atgctcatcg ctattcgccc cagaaataat 28476 geegaaaaag aaaaacagee ataacaegtt tttteacaea cettttteag accatggeet 28536 28596 ctgttaaatt tttgctttta tttgccagtc tcattgccgt cattcatgga atgagtaatg agaaaattac tatttacact ggcactaatc acacattgaa aggtccagaa aaagccacag 28656 28716 aagtttcatg gtattgttat tttaatgaat cagatgtatc tactgaactc tgtggaaaca

ataacaaaaa aaatgagagc attactctca tcaagtttca atgtggatct gacttaaccc 28776 taattaacat cactagagac tatgtaggta tgtattatgg aactacagca ggcatttcgg 28836 acatggaatt ttatcaagtt tctgtgtctg aacccaccac gcctagaatg accacaacca 28896 28956 caaaaactac acctgttacc actatacagc tcactaccaa tggctttctt gccatgcttc aagtggctga aaatagcacc agcattcaac ccacccacc cagtgaggaa attcccagat 29016 29076 ccatgattgg cattattgtt gctgtagtgg tgtgcatgtt gatcatcgcc ttgtgcatgg tgtactatgc cttctgctac agaaagcaca gactgaacga caagctggaa cacttactaa 29136 gtgttgaatt ttaatttttt agaaccatga agatcctagg ccttttagtt ttttctatca 29196 29256 ttacctctgc tctatgcaat tctgacaatg aggacgttac tgtcgttgtc ggatcaaatt 29316 atacactaaa aggtccagca aaaggtatgc tttcgtggta ttgttggttc ggaactgacg 29376 agcaacagac agaactttgc aatgctcaaa aaggcaaaac ctcaaattct aaaatctcta attatcaatg caatggcact gacttagtat tgctcaatgt cacgaaagca tatgctggca 29436 gttacacctg ccctggagat gatgccgaca atatgatttt ttacaaagtg gaagtggttg 29496 atoccactac tocacogoco accaccacaa ctactoatac cacacacaca gaacaaacac 29556 cagaggcagc agaagcagag ttggccttcc aggttcacgg agattccttt gctgtcaata 29616 29676 cccctacacc cqatcagcqq tgtccggggc tgctcgtcag cggcattgtc ggtgtgcttt 29736 cgggattagc agtcataatc atctgcatgt tcatttttgc ttgctgctat agaaggcttt accgacaaaa atcagaccca ctgctgaacc tctatgttta atttttcca gagccatgaa 29796 29856 ggcagttagc gctctagttt tttgttcttt gattggcatt gtttttagtg ctgggttttt gaaaaatctt accatttatg aaggtgagaa tgccactcta gtgggcatca gtggtcaaaa 29916 tgtcagctgg ctaaaatacc atctagatgg gtggaaagac atttgcgatt ggaatgtcac 29976 tgtgtataca tgtaatggag ttaacctcac cattactaat gccacccaag atcagaatgg 30036 30096 taggtttaag ggccagagtt tcactagaaa taatgggtat gaatcccata acatgtttat ctatgacgtc actgtcatca gaaatgagac tgccaccacc acacagatgc ccactacaca 30156 cagttetace actactacea tgeaaaceae acagacaace actacateaa eteageatat 30216 gaccaccact acagcagcaa agccaagtag tgcagcgcct cagccccagg ctttggcttt 30276 gaaagctgca caacctagta caactactag gaccaatgag cagactactg aatttttgtc 30336 cactgtcgag agccacacca cagctacctc cagtgccttc tctagcaccg ccaatctctc 30396

ctegetttee tetacaceaa teagteeege tactacteec accecagete ttetececae 30456 30516 teccetqaaq caaactgagg acageggeat geaatggeag ateaccetge teattgtgat cgggttggtc atcetggccg tgttgctcta ctacatette tgccgccgca ttcccaacge 30576 gcaccgcaaa ccggcctaca agcccatcgt tatcgggcag ccggagccgc ttcaggtgga 30636 agggggtcta aggaatette tettetettt tacagtatgg tgattgaact atgatteeta 30696 gacaattott gatcactatt ottatotgoc tootocaagt otgtgocaco ctogototgg 30756 tggccaacgc cagtccagac tgtattgggc ccttcgcctc ctacgtgctc tttgccttca 30816 tcacctgcat ctgctgctgt agcatagtct gcctgcttat caccttcttc cagttcattg 30876 actggatett tgtgcgcate gectacetge gecaccacee ceagtacege gaccagegag 30936 30996 tggcgcggct gctcaggctc ctctgataag catgcgggct ctgctacttc tcgcgcttct getgttagtg eteccegee eegtegacee eeggteeece acteagteee eegaagaggt 31056 31116 ccgcaaatgc aaattccaag aaccctggaa attcctcaaa tgctaccgcc aaaaatcaga catgcttccc agctggatca tgatcattgg gatcgtgaac attctggcct gcaccctcat 31176 31236 ctcctttgtg atttacccct gctttgactt tggttggaac tcgccagagg cgctctatct cccgcctgaa cctgacacac caccacagca acctcaggca cacgcactac caccaccaca 31296 31356 gcctaggcca caatacatgc ccatattaga ctatgaggcc gagccacagc gacccatgct ccccgctatt agttacttca atctaaccgg cggagatgac tgacccactg gccaacaaca 31416 31476 acgtcaacga cettetectg gacatggacg geegegeete ggageagega etegeceaac ttcgcattcg ccagcagcag gagagagccg tcaaggagct gcaggacggc atagccatcc 31536 31596 accagtgcaa gaaaggcatc ttctgcctgg tgaaacaggc caagatctcc tacgaggtca cecegacega ecategeete tectaegage teetgeagea gegecagaag tteaectgee 31656 tggtcggagt caaccccatc gtcatcaccc agcagtcggg cgataccaag gggtgcatcc 31716 actgetectg egactecee gaetgegtee acaetetgat caagaceete tgeggeetee 31776 gcgacctcct ccccatgaac taatcacccc cttatccagt gaaataaata tcatattgat 31836 gatgatttaa ataaaaaata atcatttgat ttgaaataaa gatacaatca tattgatgat 31896 ttgagtttta aaaaataaag aatcacttac ttgaaatctg ataccaggtc tctgtccatg 31956 ttttctgcca acaccacctc actcccctct tcccagctct ggtactgcag accccggcgg 32016 32076 getgcaaact tectecacae getgaagggg atgteaaatt ceteetgtee etcaatette

attttatctt ctatcag	atg tcc aa Met Ser Ly 1465	aa aag cgc gt ys Lys Arg Va	cc cgg gtg gat gat ga al Arg Val Asp Asp As 1470	c 32126 p
ttc gac ccc gtc ta Phe Asp Pro Val Ty 1475	c ccc tac r Pro Tyr 1480	gat gca gac Asp Ala Asp	aac gca ccg acc gtg Asn Ala Pro Thr Val 1485	32171
			gat gga ttc caa gag Asp Gly Phe Gln Glu 1500	32216
			gct gac ccc gtc acc Ala Asp Pro Val Thr 1515	32261
			gga gag ggg gtg gac Gly Glu Gly Val Asp 1530	32306
ctc gac tcc tcg go Leu Asp Ser Ser Gi 1535	a aaa ·ctc y Lys Leu 1540	atc tcc aac Ile Ser Asn	acg gcc acc aag gcc Thr Ala Thr Lys Ala 1545	32351
			att tcc ctt aac atg Ile Ser Leu Asn Met 1560	32396
			tta tcc tta caa gtt Leu Ser Leu Gln Val 1575	32441
			att ctg aac aca tta Ile Leu Asn Thr Leu 1590	32486
			agt ggt ggc act gct Ser Gly Gly Thr Ala 1605	
			ttt gat gaa aaa gga Phe Asp Glu Lys Gly 1620	32576
			tta aca gtt gat gca Leu Thr Val Asp Ala 1635	32621
			gtc act gtc act acc Val Thr Val Thr Thr 1650	32666
			tgg cct aaa ggt ata Trp Pro Lys Gly Ile 1665	32711

aga Arg 1670	ttt Phe	gaa Glu	ggt Gly	aat Asn	ggc Gly 1675	Ile	gct Ala	gca Ala	aac Asn	att Ile 1680	ggc Gly	aga Arg	gga Gly	ttg Leu	32756
					agt Ser 1690										32801
cca Pro 1700					ttg Leu 1705										32846
					tgg Trp 1720										32891
tgg Trp 1730					ccc Pro 1735										32936
aaa Lys 1745	Āsp				aca Thr 1750										32981
att Ile 1760					act Thr 1765									ctc Leu	33026
aac Asn 1775					aca Thr 1780										33071
ttt Phe 1790					gtt Val 1795						Thr				33116
gaa Glu 1805					aga Arg 1810	Lys					Pro				33161
tat Tyr 1820	Thr	aat Asn	gct Ala	ata Ile	ggt Gly 1825	ttt Phe	atg Met	cct Pro	aac Asn	ata Ile 1830	ГЛЗ	gcc Ala	tat Tyr	cct Pro	33206
	Asn				gct Ala 1840						Val				33251
tat Tyr 1850	Leu	aat Asn	GJ Å aaa	gat Asp	gag Glu 1855	gcc Ala	aaa Lys	cca Pro	ctg Leu	atg Met 1860	Leu	att Ile	att Ile	act Thr	33296
	Asn				gat Asp 1870	Ala					Ser				33341

caa tgg aaa tgg gat agt act aag tac aca ggt gaa aca ctt gct Gln Trp Lys Trp Asp Ser Thr Lys Tyr Thr Gly Glu Thr Leu Ala 1880 1885 1890	33386
acc agc tcc ttc acc ttc tcc tac atc gcc caa gaa tga acactgtatc Thr Ser Ser Phe Thr Phe Ser Tyr Ile Ala Gln Glu 1895 1900 1905	33435
ccaccetgca tgccaaccet teccaececa etetgtetat ggaaaaaact etgaagcaca	33495
aaataaaata aagttcaagt gttttattga ttcaacagtt ttacaggatt cgagcagtta	33555
tttttcctcc acceteccag gacatggaat acaceaecet etececege acageettga	33615
acatctgaat gccattggtg atggacatgc ttttggtctc cacgttccac acagtttcag	33675
agegagecag tetegggteg gteagggaga tgaaaceete egggeaetee egcatetgea	33735
cctcacaget caacagetga ggattgteet eggtggtegg gatcaeggtt atetggaaga	33795
agcagaagag cggcggtggg aatcatagtc cgcgaacggg atcggccggt ggtgtcgcat	33855
caggeceege ageagteget geegeegeeg eteegteaag etgetgetea gggggteegg	33915
gtccagggac tccctcagca tgatgcccac ggccctcagc atcagtcgtc tggtgcggcg	33975
ggcgcagcag cgcatgcgga tctcgctcag gtcgctgcag tacgtgcaac acaggaccac	34035
caggttgttc aacagtccat agttcaacac gctccagccg aaactcatcg cgggaaggat	34095
gctacccacg tggccgtcgt accagatect caggtaaate aagtggcget ccctccagaa	34155
cacgctgccc acgtacatga tctccttggg catgtggcgg ttcaccacct cccggtacca	34215
catcacccte tggttgaaca tgcagccccg gatgatcctg cggaaccaca gggccagcac	34275
cgccccgccc gccatgcagc gaagagaccc cgggtcccgg caatggcaat ggaggaccca	34335
cogotogtac cogtggatoa totgggagot gaacaagtot atgttggcac agcacaggca	34395
tatgeteatg catetettea geacteteag etectegggg gteaaaacea tateceaggg	34455
cacggggaac tettgcagga cagcgaacec cgcagaacag ggcaatectc gcacataact	34515
tacattgtgc atggacaggg tatcgcaatc aggcagcacc gggtgatcct ccaccagaga	34575
aggagagate tegatotest anongerter be-	34635
ggacggggt gatcgtgtte gggacgetst antonio	34695
acttoctota ocapaceto oteconome tono	34755
gcttggaacg ctcggtgttg asattgtass serves by	34815
ctadggcctc aggartgatg abgatggat gatacht.	34875
ccatagaata gaccagacac agggaatan tasaatta	34935

gggagggaag	aacaggaaga	accatgatta	acttttaatc	caaacggtct	cggagcactt	34995
caaaatgaag	gtcgcggaga	tggcacctct	egeeeeeget	gtgttggtgg	aaaataacag	35055
ccaggtcaaa	ggtgatacgg	ttctcgagat	gttccacggt	ggcttccagc	aaagcctcca	35115
cgcgcacatc	cagaaacaag	acaatagcga	aagcgggagg	gttctctaat	tcctcaatca	35175
tcatgttaca	ctcctgcacc	atccccagat	aattttcatt	tttccagcct	tgaatgattc	35235
gaactagttc	ctgaggtaaa	tccaagccag	ccatgataaa	gagetegege	agagegeeet	35295
ccaccggcat	tcttaagcac	accctcataa	ttccaagata	ttctgctcct	ggttcacctg	35355
cagcagattg	acaagcggaa	tatcaaaatc	tctgccgcga	tccctaagct	cctccctcag	35415
caataactgt	aagtactctt	tcatatcctc	tccgaaattt	ttagccatag	gaccaccagg	35475
aataagatta	gggcaagcca	cagtacagat	aaaccgaagt	cctccccagt	gagcattgcc	35535
aaatgcaaga	ctgctataag	catgctggct	agacccggtg	atatetteca	gataactgga	35595
cagaaaatca	cccaggcaat	ttttaagaaa	atcaacaaaa	gaaaaatcct	ccaggtgcac	35655
gtttagagcc	tcgggaacaa	cgatgaagta	aatgcaagcg	gtgcgttcca	gcatggttag	35715
ttagctgatc	tgtaaaaaac	aaaaaataaa	acattaaacc	atgctagcct	ggcgaacagg	35775
tgggtaaatc	gttctctcca	gcaccaggca	ggccacgggg	tctccggcgc	gaccctcgta	35835
aaaattgtcg	ctatgattga	aaaccatcac	agagagacgt	tcccggtggc	cggcgtgaat	35895
gattcgacaa	gatgaataca	ccccggaac	attggcgtcc	gcgagtgaaa	aaaagcgccc	35955
gaggaagcaa	taaggcacta	caatgctcag	tctcaagtcc	agcaaagcga	tgccatgcgg	36015
atgaagcaca	aaatcctcag	gtgcgtacaa	aatgtaatta	ctccctcct	gcacaggcag	36075
cgaagccccc	gatccctcca	gatacacata	caaagcctca	gcgtccatag	cttaccgagc	36135
agcagcacac	aacaggcgca	agagtcagag	aaaggctgag	ctctaacctg	tccacccgct	36195
ctctgctcaa	tatatagccc	agatctacac	tgacgtaaag	gccaaagtct	aaaaataccc	36255
gccaaataat	cacacacgcc	cagcacacgc	ccagaaaccg	gtgacacact	caaaaaaata	36315
cgcgcacttc	ctcaaacgcc	caaactgccg	tcatttccgg	gttcccacgc	tacgtcatcg	36375
gaattcgact	ttcaaattcc	gtcgaccgtt	aaaaacgtca	cccgccccgc	ccctaacggt	36435
cgcccgtctc	tcggccaatc	accttcctcc	ctccccaaat	tcaaacagct	catttgcata	36495
ttaacgcgca	ccaaaagttt	gaggtatatt	attgatgatg			36535

<210> 10

<211> 531

<212> PRT

<213> chimpanzee adenovirus serotype Pan7

<400> 10

Met Met Arg Arg Val Tyr Pro Glu Gly Pro Pro Pro Ser Tyr Glu Ser 1 5 10 15

Val Met Gln Gln Ala Val Ala Ala Ala Met Gln Pro Pro Leu Glu Ala 20 25 30

Pro Tyr Val Pro Pro Arg Tyr Leu Ala Pro Thr Glu Gly Arg Asn Ser 35 40 45

Ile Arg Tyr Ser Glu Leu Ala Pro Leu Tyr Asp Thr Thr Arg Leu Tyr 50 55 60

Leu Val Asp Asn Lys Ser Ala Asp Ile Ala Ser Leu Asn Tyr Gln Asn 65 70 75 80

Asp His Ser Asn Phe Leu Thr Thr Val Val Gln Asn Asn Asp Phe Thr 85 90 95

Pro Thr Glu Ala Ser Thr Gln Thr Ile Asn Phe Asp Glu Arg Ser Arg

Trp Gly Gly Gln Leu Lys Thr Ile Met His Thr Asn Met Pro Asn Val

Asn Glu Phe Met Tyr Ser Asn Lys Phe Lys Ala Arg Val Met Val Ser 130 135 140

Arg Lys Thr Pro Asn Gly Val Ala Val Asp Glu Asn Tyr Asp Gly Ser 145 150 155 160

Gln Asp Glu Leu Thr Tyr Glu Trp Val Glu Phe Glu Leu Pro Glu Gly
165 170 175

Asn Phe Ser Val Thr Met Thr Ile Asp Leu Met Asn Asn Ala Ile Ile 180 185 190

Asp Asn Tyr Leu Ala Val Gly Arg Gln Asn Gly Val Leu Glu Ser Asp 195 200 205

Ile Gly Val Lys Phe Asp Thr Arg Asn Phe Arg Leu Gly Trp Asp Pro 210 215 220

Val Thr Glu Leu Val Met Pro Gly Val Tyr Thr Asn Glu Ala Phe His 225 230 235 240

Pro Asp Ile Val Leu Leu Pro Gly Cys Gly Val Asp Phe Thr Glu Ser 245

Arg Leu Ser Asn Leu Leu Gly Ile Arg Lys Arg Gln Pro Phe Gln Glu 260 265 270

Gly Phe Gln Ile Leu Tyr Glu Asp Leu Glu Gly Gly Asn Ile Pro Ala 275 · 280 285

Leu Leu Asp Val Glu Ala Tyr Glu Lys Ser Lys Glu Glu Ala Ala Ala 290 295 300

Ala Ala Thr Ala Ala Val Ala Thr Ala Ser Thr Glu Val Arg Gly Asp 305 310 315 320

Asn Phe Ala Ser Ala Ala Ala Val Ala Glu Ala Glu Thr Glu Ser 325 330 335

Lys Ile Val Ile Gln Pro Val Glu Lys Asp Ser Lys Asp Arg Ser Tyr 340 345 350

Asn Val Leu Ala Asp Lys Lys Asn Thr Ala Tyr Arg Ser Trp Tyr Leu 355 360 365

Ala Tyr Asn Tyr Gly Asp Pro Glu Lys Gly Val Arg Ser Trp Thr Leu 370 375 380

Leu Thr Thr Ser Asp Val Thr Cys Gly Val Glu Gln Val Tyr Trp Ser 385 390 395 400

Leu Pro Asp Met Met Gln Asp Pro Val Thr Phe Arg Ser Thr Arg Gln 405 410 415

Val Ser Asn Tyr Pro Val Val Gly Ala Glu Leu Leu Pro Val Tyr Ser 420 425 430

Lys Ser Phe Phe Asn Glu Gln Ala Val Tyr Ser Gln Gln Leu Arg Ala
435
440
445

Phe Thr Ser Leu Thr His Val Phe Asn Arg Phe Pro Glu Asn Gln Ile 450 455 460

Leu Val Arg Pro Pro Ala Pro Thr Ile Thr Thr Val Ser Glu Asn Val
465 470 475 480

Pro Ala Leu Thr Asp His Gly Thr Leu Pro Leu Arg Ser Ser Ile Arg 485 490 495

Gly Val Gln Arg Val Thr Val Thr Asp Ala Arg Arg Arg Thr Cys Pro
500 505 510

Tyr Val Tyr Lys Ala Leu Gly Val Val Ala Pro Arg Val Leu Ser Ser 515 520 525

Arg Thr Phe 530

<210> 11

<211> 932

<212> PRT

<213> chimpanzee adenovirus serotype Pan7

<400> 11

Met Ala Thr Pro Ser Met Leu Pro Gln Trp Ala Tyr Met His Ile Ala 1 5 10 15

Gly Gln Asp Ala Ser Glu Tyr Leu Ser Pro Gly Leu Val Gln Phe Ala 20 25 30

Arg Ala Thr Asp Thr Tyr Phe Ser Leu Gly Asn Lys Phe Arg Asn Pro 35 40 45

Thr Val Ala Pro Thr His Asp Val Thr Thr Asp Arg Ser Gln Arg Leu 50 55 60

Thr Leu Arg Phe Val Pro Val Asp Arg Glu Asp Asn Thr Tyr Ser Tyr 65 70 75 80

Lys Val Arg Tyr Thr Leu Ala Val Gly Asp Asn Arg Val Leu Asp Met 85 90 95

Ala Ser Thr Tyr Phe Asp Ile Arg Gly Val Leu Asp Arg Gly Pro Ser 100 105 110

Phe Lys Pro Tyr Ser Gly Thr Ala Tyr Asn Ser Leu Ala Pro Lys Gly
115 120 125

Ala Pro Asn Thr Cys Gln Trp Thr Tyr Lys Ala Gly Asp Thr Asp Thr 130 135 140

Glu Lys Thr Tyr Thr Tyr Gly Asn Ala Pro Val Gln Gly Ile Ser Ile 145 150 155 160

Thr Lys Asp Gly Ile Gln Leu Gly Thr Asp Ser Asp Gly Gln Ala Ile 165 : 170 175

Tyr Ala Asp Glu Thr Tyr Gln Pro Glu Pro Gln Val Gly Asp Ala Glu 180 185 190

Trp His Asp Ile Thr Gly Thr Asp Glu Lys Tyr Gly Gly Arg Ala Leu 195 200 205

Lys Pro Asp Thr Lys Met Lys Pro Cys Tyr Gly Ser Phe Ala Lys Pro 210 215 220

Thr Asn Lys Glu Gly Gln Ala Asn Val Lys Thr Glu Thr Gly Gly 225 230 235 240

Thr Lys Glu Tyr Asp Ile Asp Met Ala Phe Phe Asp Asn Arg Ser Ala 245 250 255

Ala Ala Gly Leu Ala Pro Glu Ile Val Leu Tyr Thr Glu Asn Val 260 265 270

Asp Leu Glu Thr Pro Asp Thr His Ile Val Tyr Lys Ala Gly Thr Asp 275 280 285

Asp Ser Ser Ser Ile Asn Leu Gly Gln Gln Ser Met Pro Asn Arg 295 Pro Asn Tyr Ile Gly Phe Arg Asp Asn Phe Ile Gly Leu Met Tyr Tyr Asn Ser Thr Gly Asn Met Gly Val Leu Ala Gly Gln Ala Ser Gln Leu Asn Ala Val Val Asp Leu Gln Asp Arg Asn Thr Glu Leu Ser Tyr Gln Leu Leu Leu Asp Ser Leu Gly Asp Arg Thr Arg Tyr Phe Ser Met Trp Asn Gln Ala Val Asp Ser Tyr Asp Pro Asp Val Arg Ile Ile Glu Asn His Gly Val Glu Asp Glu Leu Pro Asn Tyr Cys Phe Pro Leu Asp Ala Val Gly Arg Thr Asp Thr Tyr Gln Gly Ile Lys Ala Asn Gly Asp Asn Gln Thr Thr Trp Thr Lys Asp Asp Thr Val Asn Asp Ala Asn Glu Leu Gly Lys Gly Asn Pro Phe Ala Met Glu Ile Asn Ile Gln Ala Asn Leu Trp Arg Asn Phe Leu Tyr Ala Asn Val Ala Leu Tyr Leu Pro Asp Ser 460 Tyr Lys Tyr Thr Pro Ala Asn Ile Thr Leu Pro Thr Asn Thr Asn Thr Tyr Asp Tyr Met Asn Gly Arg Val Val Ala Pro Ser Leu Val Asp Ala 490 Tyr Ile Asn Ile Gly Ala Arg Trp Ser Leu Asp Pro Met Asp Asn Val Asn Pro Phe Asn His His Arg Asn Ala Gly Leu Arg Tyr Arg Ser Met Leu Leu Gly Asn Gly Arg Tyr Val Pro Phe His Ile Gln Val Pro Gln 535 Lys Phe Phe Ala Ile Lys Ser Leu Leu Leu Pro Gly Ser Tyr Thr 545 Tyr Glu Trp Asn Phe Arg Lys Asp Val Asn Met Ile Leu Gln Ser Ser 570 Leu Gly Asn Asp Leu Arg Thr Asp Gly Ala Ser Ile Ala Phe Thr Ser 580 585

Ile Asn Leu Tyr Ala Thr Phe Phe Pro Met Ala His Asn Thr Ala Ser Thr Leu Glu Ala Met Leu Arg Asn Asp Thr Asn Asp Gln Ser Phe Asn Asp Tyr Leu Ser Ala Ala Asn Met Leu Tyr Pro Ile Pro Ala Asn Ala Thr Asn Val Pro Ile Ser Ile Pro Ser Arg Asn Trp Ala Ala Phe Arg 645 650 Gly Trp Ser Phe Thr Arg Leu Lys Thr Arg Glu Thr Pro Ser Leu Gly Ser Gly Phe Asp Pro Tyr Phe Val Tyr Ser Gly Ser Ile Pro Tyr Leu Asp Gly Thr Phe Tyr Leu Asn His Thr Phe Lys Lys Val Ser Ile Thr 695 Phe Asp Ser Ser Val Ser Trp Pro Gly Asn Asp Arg Leu Leu Thr Pro 715 Asn Glu Phe Glu Ile Lys Arg Thr Val Asp Gly Glu Gly Tyr Asn Val Ala Gln Cys Asn Met Thr Lys Asp Trp Phe Leu Val Gln Met Leu Ala 745 His Tyr Asn Ile Gly Tyr Gln Gly Phe Tyr Val Pro Glu Gly Tyr Lys Asp Arg Met Tyr Ser Phe Phe Arg Asn Phe Gln Pro Met Ser Arg Gln Val Val Asp Glu Val Asn Tyr Lys Asp Tyr Gln Ala Val Thr Leu Ala 795 Tyr Gln His Asn Asn Ser Gly Phe Val Gly Tyr Leu Ala Pro Thr Met 805 Arg Gln Gly Gln Pro Tyr Pro Ala Asn Tyr Pro Tyr Pro Leu Ile Gly 825 Lys Ser Ala Val Ala Ser Val Thr Gln Lys Lys Phe Leu Cys Asp Arg Val Met Trp Arg Ile Pro Phe Ser Ser Asn Phe Met Ser Met Gly Ala Leu Thr Asp Leu Gly Gln Asn Met Leu Tyr Ala Asn Ser Ala His Ala 870 875 Leu Asp Met Asn Phe Glu Val Asp Pro Met Asp Glu Ser Thr Leu Leu 885

5

Tyr Val Val Phe Glu Val Phe Asp Val Val Arg Val His Gln Pro His 900 905 910

Arg Gly Val Ile Glu Ala Val Tyr Leu Arg Thr Pro Phe Ser Ala Gly 915 920 925

Asn Ala Thr Thr 930

<210> 12

<211> 443

<212> PRT

<213> chimpanzee adenovirus serotype Pan7

<400> 12

Met Ser Lys Lys Arg Val Arg Val Asp Asp Asp Phe Asp Pro Val Tyr
1 5 10 15

Pro Tyr Asp Ala Asp Asn Ala Pro Thr Val Pro Phe Ile Asn Pro Pro 20 25 30

Phe Val Ser Ser Asp Gly Phe Gln Glu Lys Pro Leu Gly Val Leu Ser 35 40 45

Leu Arg Leu Ala Asp Pro Val Thr Thr Lys Asn Gly Glu Ile Thr Leu 50 55 60

Lys Leu Gly Glu Gly Val Asp Leu Asp Ser Ser Gly Lys Leu Ile Ser 65 70 75 80

Asn Thr Ala Thr Lys Ala Ala Ala Pro Leu Ser Phe Ser Asn Asn Thr 85 90 95

Ile Ser Leu Asn Met Asp Thr Pro Leu Tyr Thr Lys Asp Gly Lys Leu 100 105 110

Ser Leu Gln Val Ser Pro Pro Leu Asn Ile Leu Lys Ser Thr Ile Leu 115 · 120 125

Asn Thr Leu Ala Val Ala Tyr Gly Ser Gly Leu Gly Leu Ser Gly Gly 130 135 140

Thr Ala Leu Ala Val Gln Leu Ala Ser Pro Leu Thr Phe Asp Glu Lys 145 150 155 160

Gly Asn Ile Lys Ile Asn Leu Ala Ser Gly Pro Leu Thr Val Asp Ala 165 170 175

Ser Arg Leu Ser Ile Asn Cys Lys Arg Gly Val Thr Val Thr Thr Ser 180 185 190

Gly Asp Ala Ile Glu Ser Asn Ile Ser Trp Pro Lys Gly Ile Arg Phe 195 200 205

Glu Gly Asn Gly Ile Ala Ala Asn Ile Gly Arg Gly Leu Glu Phe Gly 215 Thr Thr Ser Thr Glu Thr Asp Val Thr Asp Ala Tyr Pro Ile Gln Val 230 235 Lys Leu Gly Thr Gly Leu Thr Phe Asp Ser Thr Gly Ala Ile Val Ala 245 Trp Asn Lys Glu Asp Asp Lys Leu Thr Leu Trp Thr Thr Ala Asp Pro 265 Ser Pro Asn Cys Lys Ile Tyr Ser Glu Lys Asp Ala Lys Leu Thr Leu Cys Leu Thr Lys Cys Gly Ser Gln Ile Leu Gly Thr Val Thr Val Leu Ala Val Asn Asn Gly Ser Leu Asn Pro Ile Thr Asn Thr Val Ser Thr 315 Ala Leu Val Ser Leu Lys Phe Asp Ala Ser Gly Val Leu Leu Ser Ser Ser Thr Leu Asp Lys Glu Tyr Trp Asn Phe Arg Lys Gly Asp Val Thr Pro Ala Glu Pro Tyr Thr Asn Ala Ile Gly Phe Met Pro Asn Ile Lys Ala Tyr Pro Lys Asn Thr Ser Ala Ala Ser Lys Ser His Ile Val Ser Gln Val Tyr Leu Asn Gly Asp Glu Ala Lys Pro Leu Met Leu Ile Ile 395 Thr Phe Asn Glu Thr Glu Asp Ala Thr Cys Thr Tyr Ser Ile Thr Phe 405 Gln Trp Lys Trp Asp Ser Thr Lys Tyr Thr Gly Glu Thr Leu Ala Thr Ser Ser Phe Thr Phe Ser Tyr Ile Ala Gln Glu 435 <210> 13 <211> 338 <212> PRT <213> simian serotype C1 <400> 13

Ala Pro Lys Gly Ala Pro Asn Thr Ser Gln Trp Leu Asp Lys Gly Val 1 5 10 15

Thr Thr Thr Asp Asn Asn Thr Glu Asn Gly Asp Glu Glu Asp Glu Val 20 25 30

- Ala Glu Glu Glu Glu Glu Lys Gln Ala Thr Tyr Thr Phe Gly Asn 35 40 45
- Ala Pro Val Lys Ala Glu Ala Glu Ile Thr Lys Glu Gly Leu Pro Ile 50 55 60
- Gly Leu Glu Val Pro Ser Glu Gly Asp Pro Lys Pro Ile Tyr Ala Asp 65 70 75 80
- Lys Leu Tyr Gln Pro Glu Pro Gln Val Gly Glu Glu Ser Trp Thr Asp 85 90 95
- Thr Asp Gly Thr Asp Glu Lys Tyr Gly Gly Arg Ala Leu Lys Pro Glu 100 105 110
- Thr Lys Met Lys Pro Cys Tyr Gly Ser Phe Ala Lys Pro Thr Asn Val 115 120 125
- Lys Gly Gly Gln Ala Lys Val Lys Lys Val Glu Glu Gly Lys Val Glu 130 135 140
- Tyr Asp Ile Asp Met Asn Phe Phe Asp Leu Arg Ser Gln Lys Thr Gly 145 150 155 160
- Leu Lys Pro Lys Ile Val Met Tyr Ala Glu Asn Val Asp Leu Glu Thr 165 170 175
- Pro Asp Thr His Val Val Tyr Lys Pro Gly Ala Ser Asp Ala Ser Ser 180 185 190
- His Ala Asn Leu Gly Gln Gln Ser Met Pro Asn Arg Pro Asn Tyr Ile 195 200 205
- Gly Phe Arg Asp Asn Phe Ile Gly Leu Met Tyr Tyr Asn Ser Thr Gly 210 215 220
- Asn Met Gly Val Leu Ala Gly Gln Ala Ser Gln Leu Asn Ala Val Val 225 230 235 240
- Asp Leu Gln Asp Arg Asn Thr Glu Leu Ser Tyr Gln Leu Leu Leu Asp 245 250 255
- Ser Leu Gly Asp Arg Thr Arg Tyr Phe Ser Met Trp Asn Gln Ala Val 260 265 270
- Asp Ser Tyr Asp Pro Asp Val Arg Val Ile Glu Asn His Gly Val Glu 275 280 285
- Asp Glu Leu Pro Asn Tyr Cys Phe Pro Leu Asp Gly Val Gly Pro Arg 290 295 300
- Thr Asp Ser Tyr Lys Gly Ile Glu Thr Asn Gly Asp Glu Asn Thr Thr 305 310 315 320

Trp Lys Asp Leu Asp Pro Asn Gly Ile Ser Glu Leu Ala Lys Gly Asn 325 330 335

Pro Phe

<210> 14

<211> 315

<212> PRT

<213> chimpanzee adenovirus Pan-9

<400> 14

Ala Pro Lys Gly Ala Pro Asn Thr Cys Gln Trp Thr Tyr Lys Ala Asp

10 15

Gly Glu Thr Ala Thr Glu Lys Thr Tyr Thr Tyr Gly Asn Ala Pro Val 20 25 30

Gln Gly Ile Asn Ile Thr Lys Asp Gly Ile Gln Leu Gly Thr Asp Thr 35 40 45

Asp Asp Gln Pro Ile Tyr Ala Asp Lys Thr Tyr Gln Pro Glu Pro Gln 50 55 60

Val Gly Asp Ala Glu Trp His Asp Ile Thr Gly Thr Asp Glu Lys Tyr 65 70 75 80

Gly Gly Arg Ala Leu Lys Pro Asp Thr Lys Met Lys Pro Cys Tyr Gly 85 90 95

Ser Phe Ala Lys Pro Thr Asn Lys Glu Gly Gln Ala Asn Val Lys 100 105 110

Thr Gly Thr Gly Thr Thr Lys Glu Tyr Asp Ile Asp Met Ala Phe Phe 115 120 125

Asp Asn Arg Ser Ala Ala Ala Ala Gly Leu Ala Pro Glu Ile Val Leu 130 135 140

Tyr Thr Glu Asn Val Asp Leu Glu Thr Pro Asp Thr His Ile Val Tyr
145 150 155 160

Lys Ala Gly Thr Asp Asp Ser Ser Ser Ser Ile Asn Leu Gly Gln Gln
165 170 175

Ala Met Pro Asn Arg Pro Asn Tyr Ile Gly Phe Arg Asp Asn Phe Ile 180 185 190

Gly Leu Met Tyr Tyr Asn Ser Thr Gly Asn Met Gly Val Leu Ala Gly
195 200 205

Gln Ala Ser Gln Leu Asn Ala Val Val Asp Leu Gln Asp Arg Asn Thr 210 215 220

Glu Leu Ser Tyr Gln Leu Leu Leu Asp Ser Leu Gly Asp Arg Thr Arg 225 230 235 240

Tyr Phe Ser Met Trp Asn Gln Ala Val Asp Ser Tyr Asp Pro Asp Val 245 250 255

Arg Ile Ile Glu Asn His Gly Val Glu Asp Glu Leu Pro Asn Tyr Cys 260 265 270

Phe Pro Leu Asp Ala Val Gly Arg Thr Asp Thr Tyr Gln Gly Ile Lys 275 280 285

Ala Asn Gly Thr Asp Gln Thr Thr Trp Thr Lys Asp Asp Ser Val Asn 290 295 300

Asp Ala Asn Glu Ile Gly Lys Gly Asn Pro Phe 305 310 315

<210> 15

<211> 315

<212> PRT

<213> chimpanzee adenovirus Pan-5

<400> 15

Ala Pro Lys Gly Ala Pro Asn Thr Cys Gln Trp Thr Tyr Lys Ala Asp 1 5 10 15

Gly Asp Thr Gly Thr Glu Lys Thr Tyr Thr Tyr Gly Asn Ala Pro Val 20 25 30

Gln Gly Ile Ser Ile Thr Lys Asp Gly Ile Gln Leu Gly Thr Asp Thr 35 40 45

Asp Asp Gln Pro Ile Tyr Ala Asp Lys Thr Tyr Gln Pro Glu Pro Gln 50 55 60

Val Gly Asp Ala Glu Trp His Asp Ile Thr Gly Thr Asp Glu Lys Tyr 65 70 75 80

Gly Gly Arg Ala Leu Lys Pro Asp Thr Lys Met Lys Pro Cys Tyr Gly 85 90 95

Ser Phe Ala Lys Pro Thr Asn Lys Glu Gly Gly Gln Ala Asn Val Lys 100 105 110

Thr Glu Thr Gly Gly Thr Lys Glu Tyr Asp Ile Asp Met Ala Phe Phe 115 120 125

Asp Asn Arg Ser Ala Ala Ala Ala Gly Leu Ala Pro Glu Ile Val Leu 130 135 140

Tyr Thr Glu Asn Val Asp Leu Glu Thr Pro Asp Thr His Ile Val Tyr 145 150 155 160

Lys Ala Gly Thr Asp Asp Ser Ser Ser Ser Ile Asn Leu Gly Gln Gln 165 170 175

Ser Met Pro Asn Arg Pro Asn Tyr Ile Gly Phe Arg Asp Asn Phe Ile 180 185 190

Gly Leu Met Tyr Tyr Asn Ser Thr Gly Asn Met Gly Val Leu Ala Gly 195 200 205

Gln Ala Ser Gln Leu Asn Ala Val Val Asp Leu Gln Asp Arg Asn Thr 210 215 220

Glu Leu Ser Tyr Gln Leu Leu Leu Asp Ser Leu Gly Asp Arg Thr Arg 225 230 235 240

Tyr Phe Ser Met Trp Asn Gln Ala Val Asp Ser Tyr Asp Pro Asp Val 245 250 255

Arg Ile Ile Glu Asn His Gly Val Glu Asp Glu Leu Pro Asn Tyr Cys 260 265 270

Phe Pro Leu Asp Ala Val Gly Arg Thr Asp Thr Tyr Gln Gly Ile Lys 275 280 285

Ala Asn Gly Ala Asp Gln Thr Thr Trp Thr Lys Asp Asp Thr Val Asn 290 295 300

Asp Ala Asn Glu Leu Gly Lys Gly Asn Pro Phe 305 310 315

<210> 16

<211> 324

<212> PRT

<213> chimpanzee adenovirus Pan-6

<400> 16

Ala Pro Lys Gly Ala Pro Asn Ser Ser Gln Trp Glu Gln Ala Lys Thr 1 5 10 15

Gly Asn Gly Gly Thr Met Glu Thr His Thr Tyr Gly Val Ala Pro Met 20 25 30

Gly Glu Asn Ile Thr Lys Asp Gly Leu Gln Ile Gly Thr Asp Val 35 40 45

Thr Ala Asn Gln Asn Lys Pro Ile Tyr Ala Asp Lys Thr Phe Gln Pro 50 55 60

Glu Pro Gln Val Gly Glu Glu Asn Trp Gln Glu Thr Glu Asn Phe Tyr 65 70 75 80

Gly Gly Arg Ala Leu Lys Lys Asp Thr Lys Met Lys Pro Cys Tyr Gly 85 90 95

Ser Tyr Ala Arg Pro Thr Asn Glu Lys Gly Gln Ala Lys Leu Lys 100 105 110

Val Gly Asp Asp Gly Val Pro Thr Lys Glu Phe Asp Ile Asp Leu Ala 115 120 125

Phe Phe Asp Thr Pro Gly Gly Thr Val Asn Gly Gln Asp Glu Tyr Lys 130 135 140

Ala Asp Ile Val Met Tyr Thr Glu Asn Thr Tyr Leu Glu Thr Pro Asp 145 150 155 160

Thr His Val Val Tyr Lys Pro Gly Lys Asp Asp Ala Ser Ser Glu Ile 165 170 175

Asn Leu Val Gln Gln Ser Met Pro Asn Arg Pro Asn Tyr Ile Gly Phe 180 185 190

Arg Asp Asn Phe Ile Gly Leu Met Tyr Tyr Asn Ser Thr Gly Asn Met 195 200 205

Gly Val Leu Ala Gly Gln Ala Ser Gln Leu Asn Ala Val Val Asp Leu 210 215 220

Gln Asp Arg Asn Thr Glu Leu Ser Tyr Gln Leu Leu Leu Asp Ser Leu 225 230 235 240

Gly Asp Arg Thr Arg Tyr Phe Ser Met Trp Asn Gln Ala Val Asp Ser 245 250 255

Tyr Asp Pro Asp Val Arg Ile Ile Glu Asn His Gly Val Glu Asp Glu 260 265 270

Leu Pro Asn Tyr Cys Phe Pro Leu Asp Gly Ser Gly Thr Asn Ala Ala 275 280 285

Tyr Gln Gly Val Lys Val Lys Asp Gly Gln Asp Gly Asp Val Glu Ser 290 295 300

Glu Trp Glu Asn Asp Asp Thr Val Ala Ala Arg Asn Gln Leu Cys Lys 305 310 315 320

Gly Asn Ile Phe

<210> 17

<211> 314

<212> PRT

<213> chimpanzee adenovirus Pan-7

<400> 17

Ala Pro Lys Gly Ala Pro Asn Thr Cys Gln Trp Thr Tyr Lys Ala Gly
1 5 10 15

Asp Thr Asp Thr Glu Lys Thr Tyr Thr Tyr Gly Asn Ala Pro Val Gln
20 25 30

Gly Ile Ser Ile Thr Lys Asp Gly Ile Gln Leu Gly Thr Asp Ser Asp Gly Gln Ala Ile Tyr Ala Asp Glu Thr Tyr Gln Pro Glu Pro Gln Val Gly Asp Ala Glu Trp His Asp Ile Thr Gly Thr Asp Glu Lys Tyr Gly Gly Arg Ala Leu Lys Pro Asp Thr Lys Met Lys Pro Cys Tyr Gly Ser Phe Ala Lys Pro Thr Asn Lys Glu Gly Gln Ala Asn Val Lys Thr 105 Glu Thr Gly Gly Thr Lys Glu Tyr Asp Ile Asp Met Ala Phe Phe Asp Asn Arg Ser Ala Ala Ala Ala Gly Leu Ala Pro Glu Ile Val Leu Tyr Thr Glu Asn Val Asp Leu Glu Thr Pro Asp Thr His Ile Val Tyr Lys 145 Ala Gly Thr Asp Asp Ser Ser Ser Ile Asn Leu Gly Gln Gln Ser Met Pro Asn Arg Pro Asn Tyr Ile Gly Phe Arg Asp Asn Phe Ile Gly 180 185 Leu Met Tyr Tyr Asn Ser Thr Gly Asn Met Gly Val Leu Ala Gly Gln Ala Ser Gln Leu Asn Ala Val Val Asp Leu Gln Asp Arg Asn Thr Glu 215 Leu Ser Tyr Gln Leu Leu Leu Asp Ser Leu Gly Asp Arg Thr Arg Tyr Phe Ser Met Trp Asn Gln Ala Val Asp Ser Tyr Asp Pro Asp Val Arg 250 Ile Ile Glu Asn His Gly Val Glu Asp Glu Leu Pro Asn Tyr Cys Phe 260 265 Pro Leu Asp Ala Val Gly Arg Thr Asp Thr Tyr Gln Gly Ile Lys Ala Asn Gly Asp Asn Gln Thr Thr Trp Thr Lys Asp Asp Thr Val Asn Asp Ala Asn Glu Leu Gly Lys Gly Asn Pro Phe 305 310

<210> 18 <211> 179 <212> PRT

<212> PRT
<213> chimpanzee adenovirus Pan9

<400> 18

Thr Leu Trp Thr Thr Pro Asp Pro Ser Pro Asn Cys Gln Ile Leu Ala 1 5 10 15

Glu Asn Asp Ala Lys Leu Thr Leu Cys Leu Thr Lys Cys Gly Ser Gln
20 25 30

Ile Leu Ala Thr Val Ser Val Leu Val Val Gly Ser Gly Asn Leu Asn 35 40 45

Pro Ile Thr Gly Thr Val Ser Ser Ala Gln Val Phe Leu Arg Phe Asp 50 55 60

Ala Asn Gly Val Leu Leu Thr Glu His Ser Thr Leu Lys Lys Tyr Trp 65 70 75 80

Gly Tyr Arg Gln Gly Asp Ser Ile Asp Gly Thr Pro Tyr Thr Asn Ala 85 90 95

Val Gly Phe Met Pro Asn Leu Lys Ala Tyr Pro Lys Ser Gln Ser Ser 100 105 110

Thr Thr Lys Asn Asn Ile Val Gly Gln Val Tyr Met Asn Gly Asp Val 115 120 125

Ser Lys Pro Met Leu Leu Thr Ile Thr Leu Asn Gly Thr Asp Asp Ser 130 135 140

Asn Ser Thr Tyr Ser Met Ser Phe Ser Tyr Thr Trp Thr Asn Gly Ser

Tyr Val Gly Ala Thr Phe Gly Ala Asn Ser Tyr Thr Phe Ser Tyr Ile 165 170 175

Ala Gln Glu

<210> 19

<211> 185

<212> PRT

<213> chimpanzee adenovirus Pan6

<400> 19

Thr Leu Trp Thr Thr Pro Asp Pro Ser Pro Asn Cys Gln Leu Leu Ser

Asp Arg Asp Ala Lys Phe Thr Leu Cys Leu Thr Lys Cys Gly Ser Gln 20 25 30

Ile Leu Gly Thr Val Ala Val Ala Ala Val Thr Val Gly Ser Ala Leu 35 40 45

Asn Pro Ile Asn Asp Thr Val Lys Ser Ala Ile Val Phe Leu Arg Phe 50 55 60

Asp Ser Asp Gly Val Leu Met Ser Asn Ser Ser Met Val Gly Asp Tyr 65 70 75 80

Trp Asn Phe Arg Glu Gly Gln Thr Thr Gln Ser Val Ala Tyr Thr Asn 85 90 95

Ala Val Gly Phe Met Pro Asn Ile Gly Ala Tyr Pro Lys Thr Gln Ser 100 105 110

Lys Thr Pro Lys Asn Ser Ile Val Ser Gln Val Tyr Leu Thr Gly Glu 115 120 125

Thr Thr Met Pro Met Thr Leu Thr Ile Thr Phe Asn Gly Thr Asp Glu 130 135 140

Lys Asp Thr Thr Pro Val Ser Thr Tyr Ser Met Thr Phe Thr Trp Gln 145 155 160

Trp Thr Gly Asp Tyr Lys Asp Lys Asn Ile Thr Phe Ala Thr Asn Ser 165 170 175

Phe Ser Phe Ser Tyr Ile Ala Gln Glu 180 185

<210> 20

<211> 179

<212> PRT

<213> chimpanzee adenovirus Pan7

<400> 20

Thr Leu Trp Thr Thr Ala Asp Pro Ser Pro Asn Cys Lys Ile Tyr Ser 1 10 15

Glu Lys Asp Ala Lys Leu Thr Leu Cys Leu Thr Lys Cys Gly Ser Gln
20 25 30

Ile Leu Gly Thr Val Thr Val Leu Ala Val Asn Asn Gly Ser Leu Asn 35 40 45

Pro Ile Thr Asn Thr Val Ser Thr Ala Leu Val Ser Leu Lys Phe Asp 50 55 60

Ala Ser Gly Val Leu Leu Ser Ser Ser Thr Leu Asp Lys Glu Tyr Trp 65 70 75 80

Asn Phe Arg Lys Gly Asp Val Thr Pro Ala Glu Pro Tyr Thr Asn Ala 85 90 95

Ile Gly Phe Met Pro Asn Ile Lys Ala Tyr Pro Lys Asn Thr Ser Ala 100 105 110

- Ala Ser Lys Ser His Ile Val Ser Gln Val Tyr Leu Asn Gly Asp Glu 115 120 125
- Ala Lys Pro Leu Met Leu Ile Ile Thr Phe Asn Glu Thr Glu Asp Ala 130 135 140
- Thr Cys Thr Tyr Ser Ile Thr Phe Gln Trp Lys Trp Asp Ser Thr Lys 145 150 155 160
- Tyr Thr Gly Glu Thr Leu Ala Thr Ser Ser Phe Thr Phe Ser Tyr Ile 165 170 175

Ala Gln Glu

<210> 21

<211> 179

<212> PRT

<213> chimpanzee adenovirus Pan5

<400> 21

- Thr Leu Trp Thr Thr Ala Asp Pro Ser Pro Asn Cys His Ile Tyr Ser 1 5 10 15
- Glu Lys Asp Ala Lys Leu Thr Leu Cys Leu Thr Lys Cys Gly Ser Gln 20 25 30
- Ile Leu Gly Thr Val Ser Leu Ile Ala Val Asp Thr Gly Ser Leu Asn 35 40 45
- Pro Ile Thr Gly Thr Val Thr Thr Ala Leu Val Ser Leu Lys Phe Asp 50 55 60
- Ala Asn Gly Val Leu Gln Ser Ser Ser Thr Leu Asp Ser Asp Tyr Trp
 65 70 75 80
- Asn Phe Arg Gln Gly Asp Val Thr Pro Ala Glu Ala Tyr Thr Asn Ala 85 90 95
- Ile Gly Phe Met Pro Asn Leu Lys Ala Tyr Pro Lys Asn Thr Ser Gly
 100 105 110
- Ala Ala Lys Ser His Ile Val Gly Lys Val Tyr Leu His Gly Asp Thr 115 120 125
- Gly Lys Pro Leu Asp Leu Ile Ile Thr Phe Asn Glu Thr Ser Asp Glu 130 135 140
- Ser Cys Thr Tyr Cys Ile Asn Phe Gln Trp Gln Trp Gly Ala Asp Gln 145 150 155 160
- Tyr Lys Asn Glu Thr Leu Ala Val Ser Ser Phe Thr Phe Ser Tyr Ile 165 170 175

Ala Lys Glu

<210> 22

<211> 183 <212> PRT

<213> human adenovirus Ad 2

<400> 22

Thr Leu Trp Thr Thr Pro Asp Pro Ser Pro Asn Cys Arg Ile His Ser 5 10

Asp Asn Asp Cys Lys Phe Thr Leu Val Leu Thr Lys Cys Gly Ser Gln 25

Val Leu Ala Thr Val Ala Ala Leu Ala Val Ser Gly Asp Leu Ser Ser

Met Thr Gly Thr Val Ala Ser Val Ser Ile Phe Leu Arg Phe Asp Gln

Asn Gly Val Leu Met Glu Asn Ser Ser Leu Lys Lys His Tyr Trp Asn

Phe Arg Asn Gly Asn Ser Thr Asn Ala Asn Pro Tyr Thr Asn Ala Val

Gly Phe Met Pro Asn Leu Leu Ala Tyr Pro Lys Thr Gln Ser Gln Thr

Ala Lys Asn Asn Ile Val Ser Gln Val Tyr Leu His Gly Asp Lys Thr

Lys Pro Met Ile Leu Thr Ile Thr Leu Asn Gly Thr Ser Glu Ser Thr 135

Glu Thr Ser Glu Val Ser Thr Tyr Ser Met Ser Phe Thr Trp Ser Trp

Glu Ser Gly Lys Tyr Thr Thr Glu Thr Phe Ala Thr Asn Ser Tyr Thr 165 170

Phe Ser Tyr Ile Ala Gln Glu 180

<210> 23

<211> 182 <212> PRT

<213> human adenovirus Ad 5

<400> 23

Thr Leu Trp Thr Thr Pro Ala Pro Ser Pro Asn Cys Arg Leu Asn Ala 5 10

PCT/US02/33645 WO 03/046124

Glu Lys Asp Ala Lys Leu Thr Leu Val Leu Thr Lys Cys Gly Ser Gln

Ile Leu Ala Thr Val Ser Val Leu Ala Val Lys Gly Ser Leu Ala Pro

Ile Ser Gly Thr Val Gln Ser Ala His Leu Ile Ile Arg Phe Asp Glu

Asn Gly Val Leu Ile Asn Asn Ser Phe Leu Asp Pro Glu Tyr Trp Asn 70

Phe Arg Asn Gly Asp Leu Thr Glu Gly Thr Ala Tyr Thr Asn Ala Val

Gly Phe Met Pro Asn Leu Ser Ala Tyr Pro Lys Ser His Gly Lys Thr

Ala Lys Ser Asn Ile Val Ser Gln Val Tyr Leu Asn Gly Asp Lys Thr 120

Lys Pro Val Thr Leu Thr Ile Thr Leu Asn Gly Thr Gln Glu Thr Gly

Asp Thr Thr Pro Ser Ala Tyr Ser Met Ser Phe Ser Trp Asp Trp Ser 150

Gly His Asn Tyr Ile Asn Glu Ile Phe Ala Thr Ser Ser Tyr Thr Glu 170

Ser Tyr Ile Ala Gln Glu 180

<210> 24 <211> 34264

<212> DNA

<213> simian adenovirus SV-1

<220>

<221> CDS

<222> (12454)..(13965) <223> L2 Penton

<220>

<221> CDS

<222> (16841)..(19636)

<223> L3 Hexon

<220>

<221> CDS

<222> (28059)..(29150)

<223> L5 Fiber #2

<220>
<221> CDS
<222> (29183)..(30865)
<223> L5 Fiber #1

<400> 24

tccttattct ggaaacgtgc caatatgata atgagcgggg aggagcgagg cggggccggg 60 120 gcgcttagtt tttacgtatg cggaaggagg ttttataccg gaagttgggt aatttgggcg 180 tatacttgta agttttgtgt aatttggcgc gaaaaccggg taatgaggaa gttgaggtta 240 atatgtactt tttatgactg ggcggaattt ctgctgatca gcagtgaact ttgggcgctg 300 acggggaggt ttcgctacgt ggcagtacca cgagaaggct caaaggtccc atttattgta 360 ctcctcagcg ttttcgctgg gtatttaaac gctgtcagat catcaagagg ccactcttga 420 gtgccggcga gtagagtttt ctcctccgcg ctgccgcgat gaggctggtt cccgagatgt 480 acggtgtttt ctgcagcgag acggcccgga actcagatga gctgcttaat acagatctgc 540 tggatgttcc caactcgcct gtggcttcgc ctccgtcgct tcatgatctt ttcgatgtgg 600 aagtggatee accgcaagat cccaacgagg acgcggtaaa cagtatgtte cctgaatgte 660 tgtttgaggc ggctgaggag ggttctcaca gcagtgaaga gagcagacgg ggagaggaac 720 tggacttgaa atgctacgag gaatgtctgc cttctagcga ttctgaaacg gaacagacag 780 ggggagacgg ctgtgagtcg gcaatgaaaa atgaacttgt attagactgt ccagaacatc 840 ctggtcatgg ctgccgtgcc tgtgcttttc atagaaatgc cagcggaaat cctgagactc 900 tatgtgctct gtgttatctg cgccttacca gcgattttgt atacagtaag taaagtgttt 960 tcattggcgt acggtagggg attcgttgaa gtgctttgtg acttattatg tgtcattatt 1020 tctaggtgac gtgtccgacg tggaagggga aggagataga tcaggggctg ctaattctcc 1080 ttgcactttg ggggctgtgg ttccagttgg catttttaaa ccgagtggtg gaggagaacg 1140 agccggagga gaccgagaat ctgagagccg gcctggaccc tccagtggaa gactaggtgc 1200 tgaggatgat cctgaagagg ggactagtgg gggtgctagg aaaaagcaaa aaactgagcc 1260 tgaacctaga aactttttga atgagttgac tgtaagccta atgaatcggc agcgtcctga 1320 gacggtgttt tggactgagt tggaggatga gttcaagaag ggggaattaa acctcttgta 1380 caagtatggg tttgagcagt tgaaaactca ctggttggag ccgtgggagg atatggaaat 1440 ggctctagac acctttgcta aagtggctct gcggccggat aaagtttaca ctattcgccg 1500

cactgttaat ataaaaaaga gtgtttatgt tatcggccat ggagctctgg tgcaggtgca 1560 gaccccagac cgggtggctt tcaattgcgg catgcagagt ttgggccccg gggtgatagg 1620 tttgaatgga gttacatttc aaaatgtcag gtttactggt gatgatttta atggctctgt 1680 1740 gtttgtgact agcacccagc taaccctcca cggtgtttac ttttttaact ttaacaatac 1800 atgtgtggag tcatggggta gggtgtctct gaggggctgc agttttcatg gttgctggaa ggcggtggtg ggaagaatta aaagtgtcat gtctgtgaag aaatgcatat ttgaacgctg 1860 1920 tgtgatagct ctagcagtag aggggtacgg acggatcagg aataacgccg catctgagaa 1980 tggatgtttt cttttgctga aaggtacggc cagcgttaag cataatatga tttgcggcag 2040 cggcctgtgc ccctcgcagc tcttaacttg cgcagatgga aactgtcaca ccttgcgcac. 2100 cgtgcacata gtgtcccact cgcgccgcac ctggccaaca tttgagcaca atatgctcat 2160 gcgttgcgcc gttcacctag gtgctagacg cggcgtgttt atgccttatc aatgtaactt 2220 tagtcatact aagattttgc tggaaactga ttccttccct cgagtatgtt tcaatggggt gtttgacatg tcaatggaac tttttaaagt gataagatat gatgaaacca agtctcgttg 2280 tcgctcatgt gaatgcggag ctaatcattt gaggttgtat cctgtaaccc tgaacgttac 2340 cgaggagetg aggacggace accaeatget gtettgeetg egtacegaet atgaateeag 2400 2460 cgatgaggag tgaggtgagg ggcggagcca caaagggtat aaaggggcat gaggggtggg cgcggtgttt caaaatgagc gggacgacgg acggcaatgc gtttgagggg ggagtgttca 2520 2580 gcccatatct gacatctcgt cttccttcct gggcaggagt tcgtcagaat gtagtgggct 2640 ccaccgtgga cggacggccg gtcgcccctg caaattccgc caccctcacc tatgccaccg 2700 tgggatcatc gttggacact gccgcggcag ctgccgcttc tgctgccgct tctactgctc 2760 geggeatgge ggetgatttt ggaetatata accaactgge cactgeaget gtggegtete 2820 ggtctctggt tcaagaagat gccctgaatg tgatcttgac tcgcctggag atcatgtcac 2880 gtcgcctgga cgaactggct gcgcagatat cccaagctaa ccccgatacc gcttcagaat 2940 cttaaaataa agacaaacaa atttgttgaa aagtaaaatg gctttatttg tttttttgg 3000 ctcggtaggc tcgggtccac ctgtctcggt cgttaaggac tttgtgtatg ttttccaaaa 3060 cacggtacag atgggcttgg atgttcaagt acatgggcat gaggccatct ttggggtgga 3120 gataggacca ctgaagagcg tcatgttccg gggtggtatt gtaaatcacc cagtcgtagc 3180 agggtttttg agcgtggaac tggaatatgt ccttcaggag caggctaatg gccaagggta gaccettagt gtaggtgttt acaaagcggt tgagctggga gggatgcatg cggggggaga 3240

tgatatgcat cttggcttgg attttgaggt tagctatgtt accacccagg tctctgcggg 3300 3360 ggttcatgtt atgaaggacc accagcacgg tatagccagt gcatttgggg aacttgtcat 3420 gcagtttgga ggggaaggcg tggaagaatt tagatacccc cttgtgcccc cctaggtttt 3480 ccatgcactc atccataata atggcaatgg gacccctggc ggccgcttta gcaaacacgt 3540 tttgggggtt ggaaacatca tagttttgct ctagagtgag ctcatcatag gccatcttta 3600 caaagcgggg taggagggtg cccgactggg ggatgatagt tccatctggg cctggagcgt 3660 agttgccctc acagatctgc atctcccagg ccttaatttc cgaggggggg atcatgtcca 3720 cctggggggc gataaaaac acggtttctg gcggggggtt aatgagctgg gtggaaagca 3780 agttacgcaa cagctgggat ttgccgcaac cggtgggacc gtagatgacc ccgatgacgg 3840 gttgcagctg gtagttcaga gaggaacagc tgccgtcggg gcgcaggagg ggagctacct 3900 cattcatcat gettetgaca tgtttatttt cactcactaa gttttgcaag ageeteteee cacccaggga taagagttct tccaggctgt tgaagtgttt cagcggtttc aggccgtcgg 3960 4020 ccatgggcat cttttcaagc gactgacgaa gcaagtacag tcggtcccag agctcggtga 4080 cgtgctctat ggaatctcga tccagcagac ttcttggttt cgggggttgg gccgactttc gctgtagggc accagecggt gggcgtecag ggccgcgagg gttctgtcct tecagggtct 4140 4200 cagcgttcgg gtgagggtgg tctcggtgac ggtgaaggga tgagccccgg gctgggcgct 4260 tgcgagggtg cgcttcaggc tcatcctgct ggtgctgaag cgggcgtcgt ctccctgtga 4320 gteggecaga tageaacgaa geatgaggte gtagetgagg gaeteggeeg egtgteeett 4380 ggegegeage tttecettgg aaaegtgetg acatttggtg cagtgcagae acttgaggge 4440 gtagagtttt ggggccagga agaccgactc gggcgagtag gcgtcggctc cgcactgagc gcagacggtc tcgcactcca ccagccacgt gagctcgggt ttagcgggat caaaaaccaa 4500 4560 gttgcctcca ttttttttga tgcgtttctt accttgcgtc tccatgagtc tgtgtcccgc 4620 ttccgtgaca aaaaggctgt cggtatcccc gtagaccgac ttgagggggc gatcttccaa 4680 aggtgttccg aggtcttccg cgtacaggaa ctgggaccac tccgagacaa aggctcgggt ccaggctaac acgaaggagg cgatctgcga ggggtatctg tcgttttcaa tgagggggtc 4740 4800 caccttttcc agggtgtgca gacacaggtc gtcctcctcc gcgtccacga aggtgattgg cttgtaagtg taggtcacgt gacccgcacc cccccaaggg gtataaaagg gggcgtgccc 4860 actotococg toactttott cogcatogot gtggaccaga gccagctgtt cgggtgagta 4920

4980 ggccctctca aaagccggca tgatttcggc gctcaagttg tcagtttcta caaacgaggt 5040 ggatttgata ttcacgtgcc ccgcggcgat gcttttgatg gtggaggggt ccatctgatc 5100 agaaaacacg atcttttat tgtcaagttt ggtggcgaaa gacccgtaga gggcgttgga 5160 aagcaacttg gcgatggagc gcagggtctg atttttctcc cgatcggccc tctccttggc ggcgatgttg agttgcacgt actcgcgggc cacgcaccgc cactcgggga acacggcggt 5220 5280 gcgctcgtcg ggcaggatgc gcacgcgcca gccgcggttg tgcagggtga tgaggtccac getggtggcc acctecege ggaggggete gttggtecaa cacaategee eccettttet 5340 ggagcagaac ggaggcaggg gatctagcaa gttggcgggc ggggggtcgg cgtcgatggt 5400 5460 aaatatgccg ggtagcagaa ttttattaaa ataatcgatt tcggtgtccg tgtcttgcaa cgcgtcttcc cacttcttca ccgccagggc cctttcgtag ggattcaggg gcggtcccca 5520 gggcatgggg tgggtcaggg ccgaggcgta catgccgcag atgtcgtaca cgtacagggg 5580 5640 ctccctcaac accccgatgt aagtggggta acagcgcccc ccgcggatgc tggctcgcac 5700 gtagtcgtac atctcgtgag agggagccat gagcccgtct cccaagtggg tcttgtgggg 5760 tttttcggcc cggtagagga tctgcctgaa gatggcgtgg gagttggaag agatagtggg gcgttggaag acgttaaagt tggctccggg cagtcccacg gagtcttgga tgaactgggc 5820 gtaggattcc cggagcttgt ccaccagggc tgcggttacc agcacgtcga gagcgcagta 5880 gtccaacgtc tcgcggacca ggttgtaggc cgtctcttgt tttttctccc acagttcgcg 5940 attgaggagg tattcctcgc ggtctttcca gtactcttcg gcgggaaatc ctttttcgtc 6000 cgctcggtaa gaacctaaca tgtaaaattc gttcacggct ttgtatggac aacagccttt 6060 6120 ttctaccggc agggcgtacg cttgagcggc ctttctgaga gaggtgtggg tgagggcgaa ggtgtcccgc accatcactt tcaggtactg atgtttgaag tccgtgtcgt cgcaggcgcc 6180 ctgttcccac agcgtgaagt cggtgcgctt tttctgcctg ggattgggga gggcgaatgt 6240 gacgtcgtta aagaggattt tcccggcgcg gggcatgaag ttgcgagaga tcctgaaggg 6300 6360 teegggeacg teegageggt tgttgatgae ttgegeegee aggaegatet egtegaagee gttgatgttg tggcccacga tgtaaagttc gataaagcgc ggctgtccct tgagggccgg 6420 cgcttttttc aactcctcgt aggtgagaca gtccggcgag gagagaccca gctccgcccg 6480 6540 ggcccagtcg gagagctgag ggttagccgc gaggaaagag ctccacaggt caagggctag cagagtttgc aagcggtcgc ggaactcgcg aaactttttc cccacggcca ttttctccgg 6600 6660 cgtcaccacg tagaaagtgc aggggcggtc gttccagacg tcccatcgga gctctagggc

cagctcgcag	gcttgacgaa	cgagggtctc	ctcgcccgag	acgtgcatga	ccagcatgaa	6720
gggtaccaac	tgtttcccga	acgageceat	ccatgtgtag	gtttctacgt	cgtaggtgac	6780
aaagagccgc	tgggtgcgcg	cgtgggagcc	gatcgggaag	aagctgatct	cctgccacca	6840
gttggaggaa	tgggtgttga	tgtggtgaaa	gtagaagtcc	cgccggcgca	cagagcattc	6900
gtgctgatgt	ttgtaaaagc	gaccgcagta	gtcgcagcgc	tgcacgctct	gtatctcctg	6960
aatgagatgc	gcttttcgcc	cgcgcaccag	aaaccggagg	gggaagttga	gacgggggct	7020
tggtggggcg	gcatcccctt	cgccttggcg	gtgggagtct	gcgtctgcgc	cctccttctc	7080
tgggtggacg	acggtgggga	cgacgacgcc	ccgggtgccg	caagtccaga	tctccgccac	7140
ggaggggcgc	aggcgttgca	ggaggggacg	cagetgeeeg	ctgtccaggg	agtcgagggc	7200
ggccgcgctg	aggtcggcgg	gaagcgtttg	caagttcact	ttcagaagac	cggtaagagc	7260
gtgagccagg	tgcacatggt	acttgatttc	caggggggtg	ttggaagagg	cgtccacggc	7320
gtagaggagg	ccgtgtccgc	gcggggccac	caccgtgccc	cgaggaggtt	ttatctcact	7380
cgtcgagggc	gagcgccggg	gggtagaggc	ggctctgcgc	cggggggcag	cggaggcagt	7440
ggcacgtttt	cgtgaggatt	cggcagcggt	tgatgacgag	cccggagact	gctggcgtgg	7500
gcgacgacgc	ggcggttgag	gtcctggatg	tgccgtctct	gcgtgaagac	caccggcccc	7560
cgggtcctga	acctgaaaga	gagttccaca	gaatcaatgt	ctgcatcgtt	aacggcggcc	7620
tgcctgagga	tctcctgtac	gtcgcccgag	ttgtcttgat	aggegatete	ggccatgaac	7680
tgctccactt	cttcctcgcg	gaggtcgccg	tggcccgctc	gctccacggt	ggcggccagg	7740
tcgttggaga	tgcgacgcat	gagttgagag	aaggcgttga	ggccgttctc	gttccacacg	7800
cggctgtaca	ccacgtttcc	gaaggagtcg	cgcgctcgca	tgaccacctg	ggccacgttg	7860
agttccacgt	ggcgggcgaa	gacggcgtag	tttctgaggc	gctggaagag	gtagttgagc	7920
gtggtggcga	tgtgctcgca	gacgaagaag	tacatgatcc	agcgccgcag	ggtcatctcg	7980
ttgatgtctc	cgatggcttc	gagacgctcc	atggcctcgt	agaagtcgac	ggcgaagttg	8040
aaaaattggg	agttgcgggc	ggccaccgtg	agttcttctt	gcaggaggcg	gatgagatcg	8100
gcgaccgtgt	cgcgcacctc	ctgctcgaaa	gcgccccgag	gcgcctctgc	ttcttcctcc	8160
ggctcctcct	cttccagggg	cacġggttcc	tccggcagct	ctgcgacggg	gacggggcgg	8220
cgacgtcgtc	gtctgaccgg	caggeggtee	acgaagcgct	cgatcatttc	gccgcgccgg	8280
cgacgcatgg	tctcggtgac	ggcgcgtccg	ttttcgcgag	gtcgcagttc	gaagacgccg	8340

8400 ccgcgcagag cgcccccgtg cagggagggt aagtggttag ggccgtcggg cagggacacg 8460 gcgctgacga tgcattttat caattgctgc gtaggcactc cgtgcaggga tctgagaacg 8520 tegaggtega egggateega gaacttetet aggaaagegt etateeaate geagtegeaa 8580 ggtaagctga ggacggtggg ccgctggggg gcgtccgcgg gcagttggga ggtgatgctg 8640 ctgatgatgt aattaaagta ggcggtcttc aggcggcgga tggtggcgag gaggaccacg 8700 tetttgggee eggeetgttg aatgegeagg egeteggeea tgeeceagge etegetetga 8760 cagcgacgca ggtctttgta gtagtcttgc atcagtctct ccaccggaac ctctgcttct 8820 cccctgtctg ccatgcgagt cgagccgaac ccccgcaggg gctgcagcaa cgctaggtcg 8880 gccacgaccc tctcggccag cacggcctgt tggatctgcg tgagggtggt ctggaagtcg tccaggtcca cgaagcggtg ataggcccc gtgttgatgg tgtaggtgca gttggccatg 8940 9000 acggaccagt tgacgacttg catgccgggt tgggtgatct ccgtgtactt gaggcgcgag 9060 taggogogog actogaacac gtagtogttg catgtgogta ccagatactg gtagccaacc 9120 aggaagtggg gaggcggttc tcggtacagg ggccagccga ctgtggcggg ggcgccgggg 9180 qacaqqtcqt ccaqcatqaq qcqatqqtaq tggtagatqt agcgggagag ccaggtgatq 9240 ccqqccqaqq tqqtcqcqqc cctqqtqaat tcqcqqacqc qqttccaqat qttqcqcaqq 9300 gggcgaaagc gctccatggt gggcacgctc tgccccgtga ggcgggcgca atcttgtacg 9360 ctctagatgg aaaaaagaca gggcggtcat cgactccctt ccgtagctcg gggggtaaag 9420 tegeaagggt geggeggegg ggaacecegg ttegagaceg geeggateeg eegeteeega 9480 tgegeetgge eeegcateca egacgteege gtegagacee ageegegaeg eteegeeeea 9540 atacggaggg gagtcttttg gtgttttttc gtagatgcat ccggtgctgc ggcagatgcg 9600 acctcagacg cccaccacca ccgccgcggc ggcagtaaac ctgagcggag gcggtgacag 9660 ggaggaggag gagctggctt tagacctgga agagggagag gggctggccc ggctgggagc 9720 gccgtcccca gagagacacc ctagggttca gctcgtgagg gacgccaggc aggcttttgt gccgaagcag aacctgttta gggaccgcag cggtcaggag gcggaggaga tgcgcgattg 9780 9840 caggtttcgg gcgggtagag agctgagggc gggcttcgat cgggagcggc tcctgagggc 9900 ggaggattte gageeegaeg agegttetgg ggtgageeeg geeegegete aegtetegge 9960 ggccaacctg gtgagcgcgt acgagcagac ggtgaacgag gagcgcaact tccaaaagag 10020 ctttaacaat cacgtgagga ccctgatcgc gagggaggag gtgaccatcg ggctgatgca 10080 totgtgggac ttcgtggagg cctacgtgca gaacccggcc agcaaacctc tgacggccca

gctgttcctg	atcgtgcagc	acageegega	caacgagacg	ttccgcgacg	ccatgttgaa	10140
catcgcggag	cccgagggtc	gctggctctt	ggatctgatt	aacatcctgc	agagcatcgt	10200
ggtgcaggag	aggggcctca	gcttagcgga	caaggtggcg	gccattaact	attcgatgca	10260
gagcctgggg	aagttctacg	ctcgcaagat	ctacaagagc	ccttacgtgc	ccatagacaa	10320
ggaggtgaag	atagacagct	tttacatgcg	catggcgctg	aaggtgctga	cgctgagcga	10380
cgacctcggc	gtgtaccgta	acgacaagat	ccacaaggcg	gtgagcgcca	gccgccggcg	10440
ggagctgagc	gacagggagc	tgatgcacag	cctgcagagg	gcgctggcgg	gcgccgggga	10500
cgaggagcgc	gaggcttact	tcgacatggg	agccgatctg	cagtggcgtc	ccagcgcgcg	10560
cgccttggag	gcggcggct	accccgacga	ggaggatcgg	gacgatttgg	aggaggcagg	10620
cgagtacgag	gacgaagcct	gaccgggcag	gtgttgtttt	agatgcagcg	gccggcggac	10680
ggggccaccg	cggatcccgc	acttttggca	tccatgcaga	gtcaaccttc	gggcgtgacc	10740
gcctccgatg	actgggcggc	ggccatggac	cgcattatgg	cgctgactac	ccgcaacccc	10800
gaggctttta	gacagcaacc	ccaggccaac	cgtttttcgg	ccatcttgga	agcggtggtg	10860
ccctcccgca	ccaaccccac	acacgagaaa	gtcctgacta	tcgtgaacgc	cctggtagac	10920
agcaaggcca	tccgccgcga	cgaggcgggc	ttgatttaca	acgctctgct	ggaacgggtg	10980
gcgcgctaca	acagcactaa	cgttcagacc	aatctggatc	gcctcaccac	cgacgtgaag	11040
gaggcgctgg	ctcagaagga	geggtttetg	agggacagca	atctgggctc	tetggtggca	11100
ctcaacgcct	tcctgagcac	gcagccggcc	aacgtgcccc	gcgggcagga	ggactacgtg	11160
agcttcatca	gcgctctgag	gctgctggtg	teegaggtge	cccagagcga	ggtgtatcag	11220
tctgggccgg	attacttctt	ccagacgtcc	cgacagggct	tgcaaacggt	gaacctgact	11280
caggccttta	aaaacttgca	aggcatgtgg	ggcgttaagg	ccccggtggg	cgatcgagcc	11340
accatctcca	gtctgctgac	ccccaacact	cgcctgctgc	tgctcttgat	cgcgccgttc	11400
accaacagta	gcactatcag	ccgtgactcg	tacctgggtc	atctcatcac	tttgtaccgc	11460
gaggccatcg	gtcaggctca	gatcgacgag	cacacatatc	aggagatcac	taacgtgagc	11520
cgggccctgg	gtcaggaaga	taccggcagc	ctggaagcca	cgttgaactt	tttgctaacc	11580
aaccggaggc	aaaaaatacc	ctcccagttt	acgttaagcg	ccgaggagga	gaggattctg	11640
cgatacgtgc	agcagtccgt	gagtctgtac	ttgatgcggg	agggcgccac	cgcttccacg	11700
gctttagaca	tgacggctcg	gaacatggaa	ccgtcctttt	actccgccca	ccggccgttc	11760

attaaccgtc tgatggacta	cttccatcgc	gcggccgcca	tgaacgggga gtact	tcacc 11820
aatgccatcc tgaatccgca	ttggatgccc	ccgtccggct	tctacaccgg cgagt	ttgac 11880
ctgcccgaag ccgacgacgg	ctttctttgg	gacgacgtgt	ccgacagcat tttca	cgccg 11940
ggcaatcgcc gattccagaa	gaaggagggc	ggagacgagc	tecectete cageg	tggag 12000
gcggcctcta ggggagagag	tecetttece	agtctgtctt	ccgccagcag tggtc	gggta 12060
acgegeeege ggttgeeggg	ggagagcgac	tacctgaacg	acccettget gegge	cggct 12120
aggaagaaaa atttccccaa	caacggggtg	gaaagcttgg	tggataaaat gaatc	gttgg 12180
aagacctacg cccaggagca	gcgggagtgg	gaggacagtc	agccgcgacc gctgg	ttccg 122 4 0
ccgcactggc gtcgtcagag	agaagacccg	gacgactccg	cagacgatag tagcg	tgttg 12300
gacctgggag ggagcggagc	caaccccttt	gctcacttgc	aacccaaggg gcgtt	ccagt 12360
cgcctctact aataaaaaag	acgcggaaac	ttaccagagc	catggccaca gcgtg	tgtcc 12420
tttcttcctc tctttcttcc	: tcggcgcggc	aga atg aga Met Arg 1	a aga gcg gtg aga g Arg Ala Val Arg 5	gtc 12474 Val
acg ccg gcg gcg tat g Thr Pro Ala Ala Tyr G 10	gag ggt ccg Glu Gly Pro 1 15	ccc cct tct Pro Pro Ser	tac gaa agc gtg Tyr Glu Ser Val 20	atg 12522 Met
gga tca gcg aac gtg c Gly Ser Ala Asn Val E 25	ecg gcc acg Pro Ala Thr : 30	ctg gag gcg Leu Glu Ala	cct tac gtt cct Pro Tyr Val Pro 35	ccc 12570 Pro
aga tac ctg gga cct a Arg Tyr Leu Gly Pro 1	acg gag ggc Thr Glu Gly . 15	aga aac agc Arg Asn Ser 50	atc cgt tac tcc Ile Arg Tyr Ser	gag 12618 Glu 55
ctg gca ccc ctg tac c Leu Ala Pro Leu Tyr A 60	gat acc acc Asp Thr Thr	aag gtg tac Lys Val Tyr 65	ctg gtg gac aac Leu Val Asp Asn 70	aag 12666 Lys
tcg gcg gac atc gcc t Ser Ala Asp Ile Ala S 75	cc ctg aat Ser Leu Asn	tat caa aac Tyr Gln Asn 80	gat cac agc aat Asp His Ser Asn 85	ttt 12714 Phe
ctg act acc gtg gtg (Leu Thr Thr Val Val (90	cag aac aat Gln Asn Asn 95	gac ttc acc Asp Phe Thr	ccg acg gag gcg Pro Thr Glu Ala 100	ggc 12762 Gly
acg cag acc att aac t Thr Gln Thr Ile Asn 1 105	ttt gac gag Phe Asp Glu 110	cgt tcc cgc Arg Ser Arg	tgg ggc ggt cag Trp Gly Gly Gln 115	ctg 12810 Leu
aaa acc atc ctg cac Lys Thr Ile Leu His ' 120	acc aac atg Thr Asn Met 125	ccc aac atc Pro Asn Ile 130	Asn Glu Phe Met	tcc 12858 Ser 135

acc Thr	aac Asn	aag Lys	ttc Phe	agg Arg 140	gcc Ala	agg Arg	ctg Leu	atg Met	gtt Val 145	aaa Lys	aag Lys	gct Ala	gaa Glu	aac Asn 150	cag Gln	12906
cct Pro																12954
tcc Ser																13002
tac Tyr																13050
gta Val 200																13098
aag Lys																13146
atc Ile				ccg Pro												13194
				ej À aaa												13242
cag Gln																13290
gac Asp 280																13338
cga Arg				ggc Gly 300												13386
				gaa Glu												13434
				aat Asn												13482
tac Tyr	aga	gat	ccc	gaa	aag	gga									acc	13530

acg gac gtg acc tgc ggc tcg cag caa gtg tac tgg tcc ctg ccg gat Thr Asp Val Thr Cys Gly Ser Gln Gln Val Tyr Trp Ser Leu Pro Asp 360 365 370 375	13578
atg atg caa gac eeg gte ace tte ege eec tee ace caa gte age aac Met Met Gln Asp Pro Val Thr Phe Arg Pro Ser Thr Gln Val Ser Asn 380 385 390	13626
ttc ccg gtg gtg ggc acc gag ctg ctg ccc gtc cat gcc aag agc ttc Phe Pro Val Val Gly Thr Glu Leu Leu Pro Val His Ala Lys Ser Phe 395 400 405	13674
tac aac gaa cag gcc gtc tac tcg caa ctc att cgc cag tcc acc gcg Tyr Asn Glu Gln Ala Val Tyr Ser Gln Leu Ile Arg Gln Ser Thr Ala 410 415 420	13722
ctt acc cac gtg ttc aat cgc ttt ccc gag aac cag att ctg gtg cgc Leu Thr His Val Phe Asn Arg Phe Pro Glu Asn Gln Ile Leu Val Arg 425 430 435	13770
cct ccc gct cct acc att acc acc gtc agt gaa aac gtt ccc gcc ctc Pro Pro Ala Pro Thr Ile Thr Thr Val Ser Glu Asn Val Pro Ala Leu 440 45 450 455	13818
aca gat cac gga acc ctg ccg ctg cgc agc agt atc agt gga gtt cag Thr Asp His Gly Thr Leu Pro Leu Arg Ser Ser Ile Ser Gly Val Gln 460 465 470	13866
cgc gtg acc atc acc gac gcc aga cgt cga acc tgt ccc tac gtt tac Arg Val Thr Ile Thr Asp Ala Arg Arg Arg Thr Cys Pro Tyr Val Tyr 475 480 485	13914
aaa gct ctt ggc gta gtg gct cct aaa gtg ctc tct agt cgc acc ttc Lys Ala Leu Gly Val Val Ala Pro Lys Val Leu Ser Ser Arg Thr Phe 490 495 500	13962
taa acatgtecat ceteatetet eeegataaca acaceggetg gggaetggge	14015
tccggcaaga tgtacggcgg agccaaaagg cgctccagtc agcacccagt tcgagttcgg	14075
ggccacttcc gtgctccctg gggagcttac aagcgaggac tctcgggccg aacggcggta	14135
gacgatacca tagatgccgt gattgccgac gcccgccggt acaaccccgg accggtcgct	14195
agegeegeet ceaeegtgga tteegtgate gacagegtgg tagetggege tegggeetat	14255
getegeegea agaggegget geateggaga egtegeecea cegeegeeat getggeagee	14315
agggccgtgc tgaggcgggc ccggagggta ggcagaaggg ctatgcgccg cgctgccgcc	14375
aacgccgccg ccgggagggc ccgccgacag gctgcccgcc aggctgctgc cgccatcgct	14435
agcatggcca gacccaggag agggaacgtg tactgggtgc gcgattctgt gacgggagtc	14495
cgagtgccgg tgcgcagccg acctccccga agttagaaga tccaagctgc gaagacggcg	14555
gtactgagtc tccctgttgt tatcagccca acatgagcaa gcgcaagttt aaagaagaac	14615

tgctgcagac gctggtgcct gagatctatg gccctccgga cgtgaagcct gacattaagc 14675 14735 cccgcgatat caagcgtgtt aaaaagcggg aaaagaaaga ggaactcgcg gtggtagacg atggcggagt ggaatttatt aggagtttcg ccccgcgacg cagggttcaa tggaaagggc 14795 14855 ggcgggtaca acgcgttttg aggccgggca ccgcggtagt ttttaccccg ggagagcggt 14915 cggccgttag gggtttcaaa aggcagtacg acgaggtgta cggcgacgag gacatattgg 14975 aacaggegge teaacagate ggagaatttg eetaeggaaa gegttegegt egegaagace 15035 tggccatcgc tttagacagc ggcaacccca cgcccagcct caaacctgtg acgctgcagc 15095 aggtgctccc cgtgagcgcc agcacggaca gcaagagggg aataaaaaga gaaatggaag 15155 atotgoagoo caccatocag otcatggtoo otaaacggca gaggotggaa gaggtootgg agaaaatgaa agtggaccca agcatagagc cggacgtcaa agtcaggccg atcaaagaag 15215 tggcccctgg tctcggggtg cagacggtgg atatccagat ccccgtcacg tcagcttcga 15275 ccgccgtgga agccatggaa acgcaaacgg aaacccctgc cgcgatcggt accagggaag 15335 15395 tggcgttgca aaccgacccc tggtacgaat acgccgcccc tcggcgtcag aggcgacccg 15455 ctcgttacgg ccccgccaac gccatcatgc cagaatatgc gctgcatccg tctatcctgc 15515 ccaccccgg ctaccgggga gtgacgtatc gcccgtcagg aacccgccgc cgaacccgtc 15575 geogeogeog etceogtogt getetggece ecgtgtoggt gegeogegta acacgeoggg 15635 gaaagacagt taccattccc aaccegeget accaecetag catcettaa tgactetgce gttttgcaga tggctctgac ttgccgcgtg cgccttcccg ttccgcacta tcgaggaaga 15695 15755 tetegtegta ggagaggeat ggegggtagt ggtegeegge gggetttgeg eaggegeatg 15815 aaaggeggaa ttttaceege tetgatacee ataategeeg eegecategg tgeeatacee 15875 ggcgtcgctt cagtggcctt gcaagcagct cgtaataaat aaacgaaggc ttttgcactt 15935 atgtcctggt cctgactatt ttatgcagaa agagcatgga agacatcaat tttacgtcgc 15995 tggctccgcg gcacggctcg cggccgctca tgggcacctg gaacgacatc ggcaccagtc 16055 ageteaacgg gggcgettte aattggggga geetttggag eggeattaaa aactttgget 16115 ccacgattaa atcctacggc agcaaagcct ggaacagtag tgctggtcag atgctccgag 16175 ataaactgaa ggacaccaac ttccaagaaa aagtggtcaa tggggtggtg accggcatcc acggcgcggt agatctcgcc aaccaagcgg tgcagaaaga gattgacagg cgtttggaaa 16235 16295 gctcgcggt gccgccgcag agaggggatg aggtggaggt cgaggaagta gaagtagagg

aaaagctgcc cccgctggag aaagttcccg gtgcgcctcc gagaccgcag a	agcgaccca	16355
ggccagaact agaagaaact ctggtgacgg agagcaagga gcctccctcg t	tacgagcaag	16415
ccttgaaaga gggcgcctct ccaccctacc caatgacaaa accgatcgcg	cctatggctc	16475
ggccggtgta cgggaaggac tacaagcctg tcacgctaga gctccccccg	ccgccaccgc	16535
cgcccccac gcgcccgacc gttccccccc ccctgccggc tccgtcggcg	ggacccgtgt	16595
cogcaccogt cgccgtgcct ctgccagccg cccgcccagt ggccgtggcc a	actgccagaa	16655
accccagagg ccagagagga gccaactggc aaagcacgct gaacagcatc	gtgggcctgg	16715
gagtgaaaag cctgaaacgc cgccgttgct attattaaaa gtgtagctaa	aaatttccc	16775
gttgtatacg cctcctatgt taccgccaga gacgcgtgac tgtcgccgcg	agegeegett	16835
tcaag atg gcc acc cca tcg atg atg ccg cag tgg tct tac at Met Ala Thr Pro Ser Met Met Pro Gln Trp Ser Tyr Me 505 510 515	J	16885
gcc ggg cag gac gcc tcg gag tac ctg agc ccc ggt ctc gtg Ala Gly Gln Asp Ala Ser Glu Tyr Leu Ser Pro Gly Leu Val 520 525 530	_	16933
gcc cgc gcc acc gac acc tac ttc agc ttg gga aac aag ttt Ala Arg Ala Thr Asp Thr Tyr Phe Ser Leu Gly Asn Lys Phe 535 540 545		16981
ccc acc gtg gcc ccc acc cac gat gta acc acg gac cgc tcg Pro Thr Val Ala Pro Thr His Asp Val Thr Thr Asp Arg Ser 555 560		17029
ctg acc ctg cgt ttt gtg ccc gta gac cgg gag gac acc gcg Leu Thr Leu Arg Phe Val Pro Val Asp Arg Glu Asp Thr Ala 570 575 580		17077
tac aaa gtg cgc tac acg ctg gcc gta ggg gac aac cga gtg Tyr Lys Val Arg Tyr Thr Leu Ala Val Gly Asp Asn Arg Val 585 590 595		17125
atg gcc agc acc tac ttt gac atc cgg gga gtg ctg gat cgc Met Ala Ser Thr Tyr Phe Asp Ile Arg Gly Val Leu Asp Arg 600 605 610	99-	17173
agt ttt aag ccc tac tcg ggt acc gcg tac aat tcc ctg gct Ser Phe Lys Pro Tyr Ser Gly Thr Ala Tyr Asn Ser Leu Ala 615 620 625		17221
ggc gct ccc aac cct gca gaa tgg acg aat tca gac agc aaa Gly Ala Pro Asn Pro Ala Glu Trp Thr Asn Ser Asp Ser Lys 635 640		17269
gtg agg gca cag gcg cct ttt gtt agc tcg tat ggt gct aca Val Arg Ala Gln Ala Pro Phe Val Ser Ser Tyr Gly Ala Thr 650 655 660		17317

aca Thr	aas Lys	gag Glu 665	ιGly	att Ile	cag Gln	gtg Val	gga Gly 670	Val	acc Thr	tta Leu	aca Thr	gac Asp 675	Ser	gga Gly	tca Ser	17365
aca Thr	CCa Pro 680	Gln	tat Tyr	gca Ala	gat Asp	aaa Lys 685	acg Thr	tat Tyr	cag Gln	cct Pro	gag Glu 690	Pro	caa Gln	att Ile	Gly	17413
gaa Glu 695	Leu	cag Gln	tgg Trp	aac Asn	agc Ser 700	gat Asp	gtt Val	gga Gly	acc Thr	gat Asp 705	gac Asp	aaa Lys	ata Ile	gca Ala	gga Gly 710	17461
aga Arg	gtg Val	cta Leu	aag Lys	aaa Lys 715	aca Thr	acg Thr	ccc Pro	atg Met	ttc Phe 720	cct Pro	tgt Cys	tac Tyr	Gly	tca Ser 725	tat Tyr	17509
gcc Ala	agg Arg	Pro	act Thr 730	aat Asn	gaa Glu	aaa Lys	gga Gly	gga Gly 735	cag Gln	gca Ala	aca Thr	ccg Pro	tcc Ser 740	get Ala	agt Ser	17557
caa Gln	gac Asp	gtg Val 745	caa Gln	aat Asn	ccc Pro	gaa Glu	tta Leu 750	caa Gln	ttt Phe	ttt Phe	gcc Ala	tct Ser 755	act Thr	aat Asn	gtc Val	17605
gcc Ala	aat Asn 760	aca Thr	cca Pro	aaa Lys	gca Ala	gtt Val 765	cta Leu	tat Tyr	gcg Ala	gag Glu	gac Asp 770	gtg Val	tca Ser	att Ile	gaa Glu	17653
gcg Ala 775	cca Pro	gac Asp	act Thr	cac His	ttg Leu 780	gtg Val	ttc Phe	aaa Lys	cca Pro	aca Thr 785	gtc Val	act Thr	gaa Glu	Gly ggc	att Ile 790	17701
aca Thr	agt Ser	tca Ser	gag Glu	gct Ala 795	cta Leu	ctg Leu	acc Thr	caa Gln	caa Gln 800	gct Ala	gct Ala	ccc Pro	aac Asn	cgt Arg 805	cca Pro	17749
aac Asn	tac Tyr	ata Ile	gcc Ala 810	ttt Phe	aga Arg	gat Asp	aat Asn	ttt Phe 815	att Ile	ggt Gly	ctc Leu	atg Met	tac Tyr 820	tac Tyr	aat Asn	17797
agc Ser	aca Thr	ggt Gly 825	aac Asn	atg Met	gga Gly	gta Val	ctg Leu 830	gca Ala	Gly ggc	cag Gln	gct Ala	tct Ser 835	cag Gln	cta Leu	aat Asn	17845
gca Ala	gtt Val 840	gtt Val	gac Asp	ctg Leu	caa Gln	gac Asp 845	aga Arg	aat Asn	act Thr	gag Glu	ctg Leu 850	tcc Ser	tac Tyr	caa Gln	ctc Leu	17893
atg Met 855	ttg Leu	gac Asp	gcc Ala	ctc Leu	gga Gly 860	gac Asp	cgc Arg	agt Ser	cgg Arg	tac Tyr 865	ttt Phe	tct Ser	atg Met	Trp	aac Asn 870	17941
caa Gln	gct Ala	gtg Val	Asp	agt Ser 875	tac Tyr	gat As p	cct Pro	gat Asp	gta Val 880	aga Arg	atc Ile	ata Ile	Glu	aac Asn 885	cat His	17989

	ı gat gaa ttg ı Asp Glu Leu 890		Cys Phe Pro		
	gac acc tac Asp Thr Tyr		Lys Val Asn		
	gcc aat aac Ala Asn Asn				
	aac atg ttt Asn Met Phe 940				
	ttt ctg tac Phe Leu Tyr 955				
	e act cct gac Thr Pro Asp 970				
	atg aac ggt Met Asn Gly		Pro Pro Gly		
	ic gtg ggc gcg in Val Gly Ala			L Met Asp	-
	t ttt aat cac o Phe Asn His			ı Arg Tyr i	
	c ctg gga aac u Leu Gly Asr			His Ile	
gtg ccc ca Val Pro Gl 1045	ng aaa ttc ttt .n Lys Phe Phe	gca atta Ala Ile L 1050	aa aac ctg ct ys Asn Leu Le 10	Leu Leu	ccc 18505 Pro
Gly Ser Ty	c acc tac gag				
1060	- III 171 020	1065	10		
atc ttg ca	ng agc tcg ctg nn Ser Ser Lev	1065 rggc aat g	10° ac ctg cga gt	70 g gac ggg (L Asp Gly)	gec 18595

gcc Ala 1105									18685
acc Thr 1120				ttc Phe 1125					18730
ctg Leu 1135									18775
ccc Pro 1150				.gca Ala 1155					18820
ctc Leu 1165									18865
tac Tyr 1180			Ser						18910
tac Tyr 1195									18955
tcc Ser 1210									19000
ttc Phe 1225									19045
cag Gln 1240									19090
cac His 1255									19135
aag Lys 1270									19180
cgc Arg 1285									19225
 aaa Lys 1300	Leu			cat His 1305					19270

atg gga ccc acc atg cga gag ggg cag gcc tac ccg gcc aac tat 19 Met Gly Pro Thr Met Arg Glu Gly Gln Ala Tyr Pro Ala Asn Tyr 1315 1320 1325	9315
ccc tat ccc ctg att ggg gcc acc gcc gtg ccc agc ctc acg cag 19 Pro Tyr Pro Leu Ile Gly Ala Thr Ala Val Pro Ser Leu Thr Gln 1330 1335 1340	9360
aaa aag ttc ctc tgc gac cgg gtg atg tgg agg atc ccc ttc tct 19 Lys Lys Phe Leu Cys Asp Arg Val Met Trp Arg Ile Pro Phe Ser 1345 1350 1355	9405
agc aac ttc atg tct atg ggc tcc ctc acc gac ctg ggg cag aac le Ser Asn Phe Met Ser Met Gly Ser Leu Thr Asp Leu Gly Gln Asn 1360 1365 1370	9450
atg ctg tac gcc aac tcc gct cac gcc ttg gat atg acc ttt gag Met Leu Tyr Ala Asn Ser Ala His Ala Leu Asp Met Thr Phe Glu 1375 1380 1385	9495
gtg gat ccc atg gat gag ccc acg ctt ctc tat gtt ctg ttt gaa 19 Val Asp Pro Met Asp Glu Pro Thr Leu Leu Tyr Val Leu Phe Glu 1390 1395 1400	9540
gtc ttc gac gtg gtg cgc atc cac cag ccg cac cgc ggc gtc atc 19 Val Phe Asp Val Val Arg Ile His Gln Pro His Arg Gly Val Ile 1405 1410 1415	9585
gag gcc gtc tac ctg cgc aca cct ttc tct gcc ggt aac gcc acc 1 Glu Ala Val Tyr Leu Arg Thr Pro Phe Ser Ala Gly Asn Ala Thr 1420 1425 1430	.9630
acc taa agaagccgat gggctccagc gaacaggagc tgcaggccat tgttcgcgac 1	.9686
ctgggctgcg ggccctactt tttgggcacc ttcgacaagc gttttcccgg cttcatgtcc 1	L9746
ccccacaagc cggcctgtgc catcgttaac acggccggac gggagaccgg gggggtccac 1	L9806
tggctcgcct tcgcctggaa cccgcgtaac cgcacctgct acctgttcga cccttttggt 1	L9866
	L9926
	19986
	20046
	20106
·	20166
tategettte tggggaaaca etetgeetat tttegeegee aceggeageg categaacgg 2	20226
gccacggcct tcgaaagcat gagccaaaga gtgtaatcaa taaaaaacat ttttatttga 2	20286
catgatacgc gcttctggcg ttttattaaa aatcgaaggg ttcgagggag gggtcctcgt 2	20346

gcccgctggg	gagggacacg	ttgcgatact	ggaaacgggc	gctccaacga	aactcgggga	20406
tcaccagccg	cggcaggggc	acgtcttcta	ggttctgctt	ccaaaactgc	cgçaccagct	20466
gcagggctcc	catgacgtcg	ggcgccgata	tcttgaagtc	gcagttaggg	ccggagctcc	20526
cgcggctgtt	gcggaacacg	gggttggcac	actggaacac	cagcacgccg	gggttgtgga	20586
tactggccag	ggccgtcggg	tcggtcacct	ccgacgcatc	cagatcctcg	gcgttgctca	20646
gggcaaacgg	ggtcagcttg	cacatctgcc	gcccaatctg	gggtactagg	tcgcgcttgt	20706
tgaggcagtc	gcagcgcaga	gggatcagga	tgcgtcgctg	cccgcgttgc	atgatagggt	20766
aactcgccgc	caggaactcc	tccatttgac	ggaaggccat	ctgggctttg	ccgccctcgg	20826
tgtagaatag	cccgcaggac	ttgctagaga	atacgttatg	accgcagttg	acgtcctccg	20886
cgcagcagcg	ggcgtcttcg	ttcttcagct	gaaccacgtt	gcggccccaa	cggttctgga	20946
ccaccttggc	tctagtgggg	tgctccttca	gegeeegetg	tccgttctcg	ctggttacat	21006
ccatttccaa	cacgtgctcc	ttgcagacca	tctccactcc	gtggaagcaa	aacaggacgc	21066
cctcctgctg	ggtactgcga	tgctcccata	cggcgcatcc	ggtgggctcc	cagctcttgt	21126
gttttacccc	cgcgtaggct	tccatgtaag	ccataaggaa	tctgcccatc	agctcggtga	21186
aggtcttctg	gttggtgaag	gttagcggca	ggccgcggtg	ctcctcgttc	aaccaagttt	21246
gacagatett	gcggtacacc	gctccctggt	cgggcagaaa	cttaaaagcc	gctctgctgt	21306
cgttgtctac	gtggaacttc	tccattaaca	tcatcatggt	ttccataccc	ttctcccacg	21366
ctgtcaccag	tggtttgctg	tcggggttct	tcaccaacac	ggcggtagag	gggccctcgc	21426
cggccccgac	gtccttcatg	gtcattcttt	gaaactccac	ggagccgtcc	gcgcgacgta	21486
ctctgcgcac	cggagggtag	ctgaagccca	cctccaccac	ggtgccttcg	ccctcgctgt	21546
cggagacaat	ctccggggat	ggcggcggcg	cgggtgtcgc	cttgcgagcc	ttcttcttgg	21606
gagggagctg	aggcgcctcc	tgctcgcgct	cggggctcat	ctcccgcaag	tagggggtaa	21666
tggagctgcc	tgcttggttc	tgacggttgg	ccattgtatc	ctaggcagaa	agacatggag	21726
cttatgcgcg	aggaaacttt	aaccgccccg	tcccccgtca	gcgacgaaga	tgtcatcgtc	21786
gaacaggacc	cgggctacgt	tacgccgccc	gaggatctgg	aggggcctga	ccggcgcgac	21846
gctagtgagc	ggcaggaaaa	tgagaaagag	gaggcctgct	acctcctgga	aggcgacgtt	21906
ttgctaaagc	atttcgccag	gcagagcacc	atagttaagg	aggccttgca	agaccgctcc	21966
gaggtgccct	tggacgtcgc	cgcgctctcc	caggcctacg	aggcgaacct	tttctcgcct	22026

cgagtgcctc	cgaagagaca	gcccaacggc	acctgcgagc	ccaacccgcg	actcaacttc	22086
taccccgtgt	tcgccgtacc	agaggcgctg	gccacctatc	acatttttt	caaaaaccaa	22146
cgcatcccc	tatcgtgccg	ggccaaccgc	accgcggccg	ataggaatct	caggcttaaa	22206
aacggagcca	acatacctga	tatcacgtcg	ctggaggaag	tgcccaagat	tttcgagggt	22266
ctgggtcgag	atgagaagcg	ggcggcgaac	gctctgcaga	aagaacagaa	agagagtcag	22326
aacgtgctgg	tggagctgga	gggggacaac	gcgcgtctgg	ccgtcctcaa	acgctgcata	22386
gaagtctccc	acttcgccta	ccccgccctc	aacttgccac	ccaaagttat	gaaatcggtc	22446
atggatcagc	tgctcatcaa	gagagctgag	cccctggatc	ccgaccaccc	cgaggcggaa	22506
aactcagagg	acggaaagcc	cgtcgtcagc	gacgaggagc	tcgagcggtg	gctggaaacc	22566
agggaccccc	aacagttgca	agagaggcgc	aagatgatga	tggcggccgt	gctggtcacc	22626
gtggagctgg	aatgcctgca	acggttttc	agcgacgtgg	agacgctacg	caaaatcggg	22686
gaatccctgc	actacacctt	ccgccagggc	tacgtccgcc	aggcctgcaa	gatctccaac	22746
gtggagctca	gcaacctggt	ctcctacatg	ggcatcctcc	acgagaaccg	gctggggcag	22806
agcgtgctgc	actgcacctt	gcaaggcgag	gcgcggcggg	actacgtgcg	agactgcatc	22866
tacctcttcc	tcaccctcac	ctggcagacc	gccatgggcg	tctggcagca	gtgcttggaa	22926
gagagaaacc	tcaaagagct	agacaaactc	ctctgccgcc	agcggcgcgc	cctgtggtcc	22986
ggtttcagcg	agcgcacggt	cgccagcgct	ctggcggaca	tcatcttccc	ggagcgcctg	23046
atgaaaacct	tgcaaaacgg	cctgccggat	ttcatcagtc	aaagcatttt	gcaaaacttc	23106
cgctcttttg	tcctggaacg	ctccgggatc	ttgcccgcca	tgagctgcgc	gctaccttct	23166
gactttgtcc	ccctctccta	ccgcgagtgc	cctcccccac	tgtggagcca	ctgctacctc	23226
ttccaactgg	ccaactttct	ggcctaccac	tccgacctca	tggaagacgt	aagcggagag	23286
ggtttactgg	agtgccactg	ccgctgcaac	ctgtgcaccc	cccacagatc	gctggcctgc	23346
aacaccgagc	tactcagcga	aacccaggtc	ataggtacct	tcgagatcca	ggggccccag	23406
cagcaagagg	gtgcttccgg	cttgaagctc	actccggcgc	tgtggacctc	ggcttactta	23466
cgcaaatttg	tagccgagga	ctaccacgcc	cacaaaattc	agttttacga	agaccaatct	23526
cgaccaccga	aagccccct	cacggcctgc	gtcatcaccc	agagcaagat	cctggcccaa	23586
ttgcaatcca	tcaaccaagc	gcgccgcgat	ttccttttga	aaaagggtcg	gggggtgtac	23646
ctggaccccc	agaccggcga	ggaactcaac	ccgtccacac	tctccgtcga	agcagccccc	23706
ccgagacatg	ccgcccaagg	gaaccgccaa	gcagctgatc	gctcggcaga	gagcgaagaa	23766

gcaagagctg	ctccagcagc	aggtggagga	cgaggaagag	atgtgggaca	gccaggcaga	23826
ggaggtgtca	gaggacgagg	aggagatgga	aagctgggac	agcctagacg	aggaggagga	23886
cgagctttca	gaggaagagg	cgaccgaaga	aaaaccacct	gcatccagcg	cgccttctct	23946
gagccgacag	ccgaagcccc	ggcccccgac	gcccccggcc	ggctcactca	aagccagccg	24006
taggtgggac	gccaccgaat	ctccagcggc	agcggcaacg	gcagcgggta	aggccaaacg	24066
cgagcggcgg	gggtattgct	cctggcgggc	ccacaaaagc	agtattgtga	actgcttgca	24126
acactgcggg	ggaaacatct	cctttgcccg	acgctacctc	ctcttccatc	acggtgtggc	24186
cttccctcgc	aacgttctct	attattaccg	tcatctctac	agcccctacg	aaacgctcgg	24246
agaaaaaagc	taaggcctcc	tccgccgcga	ggaaaaactc	cgccgccgct	gccgccgcca	24306
aggatecace	ggccaccgaa	gagctgagaa	agcgcatctt	tcccactctg	tatgctatct	24366
ttcagcaaag	ccgcgggcag	caccctcagc	gcgaactgaa	aataaaaac	cgctccttcc	24426
gctcgctcac	ccgcagctgt	ctgtaccaca	agagagaaga	ccagctgcag	cgcaccctgg	24486
acgacgccga	agcactgttc	agcaaatact	gctcagcgtc	tcttaaagac	taaaagaccc	24546
gcgcttttc	cccctcggcc	gccaaaaccc	acgtcatcgc	cagcatgagc	aaggagattc	24606
ccaccccta	catgtggagc	tatcagcccc	agatgggcct	ggccgcgggg	gccgcccagg	24666
actactccag	caagatgaac	tggctcagcg	ccggccccca	catgatetea	cgagttaacg	24726
gcatccgagc	ccaccgaaac	cagattctct	tagaacaggc	ggcaatcacc	gccacacccc	24786
ggcgccaact	caacccgcct	agttggcccg	ccgcccaggt	gtatcaggaa	aatccccgcc	24846
cgaccacagt	cctcctgcca	cgcgacgcgg	aggccgaagt	cctcatgact	aactctgggg	24906
tacaattagc	gggcgggtcc	aggtacgcca	ggtacagagg	tcgggccgct	ccttactctc	24966
ccgggagtat	aaagagggtg	atcattcgag	gccgaggtat	ccagctcaac	gacgagacgg	25026
tgagctcctc	aaccggtctc	agacctgacg	gagtcttcca	gctcggagga	gcgggccgct	25086
cttccttcac	cactcgccag	gcctacctga	ccctgcagag	ctcttcctcg	cagccgcgct	25146
ccgggggaat	cggcactctc	cagttcgtgg	aagagttcgt	teceteegte	tacttcaacc	25206
ccttctccgg	ctcgcctgga	cgctacccgg	acgccttcat	tcccaacttt	gacgcagtga	25266
gtgaatccgt	ggacggctac	gactgatgac	agatggtgcg	gccgtgagag	ctcggctgcg	25326
acatctgcat	cactgccgtc	agcctcgctg	ctacgctcgg	gaggcgatcg	tcttcagcta	25386
ctttgagctg	ccggacgagc	accetcaggg	tccggctcac	gggttgaaac	tcgagatcga	25446

gaacgcgctc	gagtctcgcc	tcatcgacac	cttcaccgcc	cgacctctcc	tggtagaaat	25506
ccaacggggg	atcactacca	tcaccctgtt	ctgcatctgc	cccacgcccg	gattacatga	25566
agatctgtgt	tgtcatcttt	gcgctcagtt	taataaaaac	tgaacttttt	gccgcacctt	25626
caacgccatc	tgtgatttct	acaacaaaa	gttcttctgg	caaaggtaca	caaactgtat	25686
tttattctaa	ttctacctca	tctatcgtgc	tgaactgcgc	ctgcactaac	gaacttatcc	25746
agtggattgc	aaacggtagt	gtgtgcaagt	acttttgggg	gaacgatata	gttagtagaa	25806
ataacagcct	ttgcgagcac	tgcaactcct	ccacactaat	cctttatccc	ccatttgtta	25866
ctggatggta	tatgtgcgtt	ggctccggtt	taaatcctag	ttgctttcat	aagtggtttc	25926
tacaaaaaga	gacccttccc	aacaattctg	tttcttttt	cgccctatcc	tactgctgtt	25986
ctccctctgg	ttactctttc	aaacctctaa	ttggtatttt	agctttgata	ctcataatct	26046
ttattaactt	tataataatt	aacaacttac	agtaaacatg	cttgttctac	tgctcgccac	26106
atctttcgct	ctctctcacg	ccagaacaag	tattgttggc	gcaggttaca	atgcaactct	26166
tcaatctgct	tacatgccag	attccgacca	gataccccat	attacgtggt	acttacaaac	26226
ctccaaacct	aattcttcat	tttatgaagg	aaacaaactc	tgcgatgact	ccgacaacag	26286
aacgcacaca	tttccccacc	cttcactaca	attcgaatgc	gtaaacaaaa	gcttgaagct	26346
ttacaactta	aagccttcag	attctggctt	gtaccatgct	gtagttgaaa	aaagtaattt	26406
agaagtccac	agtgattaca	ttgaattgac	ggttgtggac	ctgccacctc	caaaatgtga	26466
ggtttcctcc	tcttaccttg	aagttcaagg	cgtggatgcc	tactgcctca	tacacattaa	26526
ctgcagcaac	tctaaatatc	cagctagaat	ttactataat	ggacaggaaa	gtaatctttt	26586
ttattattta	acaacaagcg	ctggtaacgg	taaacagtta	cctgactatt	ttactgctgt	26646
tgttgaattt	tccacctaca	gagaaacgta	tgccaagcgg	ccttacaatt	tctcataccc	26706
gtttaacgac	ctttgcaatg	aaatacaagc	gctcgaaact	ggaactgatt	ttactccaat	26766
tttcattgct	gccattgttg	taagcttaat	taccattatt	gtcagcctag	cattttactg	26826
cttttacaag	cccaaaaacc	ctaagtttga	aaaacttaaa	ctaaaacctg	tcattcaaca	26886
agtgtgattt	tgttttccag	catggtagct	gcatttctac	ttctcctctg	tctacccatc	26946
attttcgtct	cttcaacttt	cgccgcagtt	tcccacctgg	aaccagagtg	cctaccgcct	27006
tttgacgtgt	atctgattct	cacctttgtt	tgttgtatat	ccatttgcag	tatagcctgc	27066
tttttataa	caatctttca	ageegeegae	tatttttacg	tgcgaattgc	ttactttaga	27126
caccatcctg	aatacagaaa	tcaaaacgtt	gcctccttac	tttgtttggc	atgattaagt	27186

tat																
	tgct	gat	actta	atta	t tt	accc	ctaa	tcaa	ctgt	aa t	tgtc	catt	c acc	aaac	cct	27246
ggt	catt	cta	cacct	gtta	t ga	taaa	atcc	ccga	cact	cc t	gttg	cttg	g ctt	tacg	cag	27306
cca	ccgc	cgc	tttgg	tatt	t at	atct	actt	gcct	tgga	gt a	aaat	tgta	t ttt	attt	tac	27366
aca	ctgg	gtg	gctac	atcc	c ag	agaa	gatt	tacc	taga	ta t	cctc	ttgt	a aac	gctt	ttc	27426
aati	taca	gcc	tctgc	ctcci	t cc	tgat	cttc	ttcc	tcga	gc t	ccct	ctat	t gtg	agct	act	27486
ttc	aact	cac	cggtg	gagat	t ga	ctga	ctct	cagg	acat	ta a	tatt	agtg	t gga	aaga	ata	27546
gct	gctca	agc	gtcag	cgaga	a aa	cgcg	agtg	ttgg	aata	cc t	ggaa	ctac	a gca	actt	aaa	27606
gagt	tccca	act	ggtgt	gagaa	a ag	gagt	gctg	tgcc	atgt	ta a	gcag	gcag	c cct	ttcc	tac	27666
gate	gtcag	geg	ttcag	ggaca	a tga	aact	gtct	taca	cttt	gc c	tttg	caga	a aca	aacc	ttc	27726
tgca	accat	tga '	tgggc	tctac	e ct	cçat	caca	atca	ccca	ac a	agcc	gggc	c tgt	agag	ggg	27786
gcta	atcct	tct (gtcac	tgtca	a cg	cacci	tgat	tgca	tgtc	ca a	acta	atca	a aac	tete	tgt	27846
gcti	tago	gtg :	atatt	tttaa	a ggt	tgta	aatc	aata	ataa	ac t	tacc	ttaa	a ttt	gaca	aca	27906
aatt	tct	ggt	gacat	catto	ago	cagc	acca	cttt	accc	tc t	tccc	agct	c tcg	tatg	gga	27966
tgcg	gataç	gtg (ggtgg	caaac	tt.	cctc	caaa	ccct	aaaa	ga a	atat	tggt	a tcc	actt	cct	28026
tgto	ctca	acc (cacaa	tttt	ato	cttti	tcat	M	_				aga g Arg V 1		gat Asp	28079
gaa	gac	ttc		ccc	gtc	tac	ccc	M	et 1 435 gac	Lys . acc	Arg '	Thr A	Arg V 1 act	al	_	28079
gaa Glu	gac Asp gtt	ttc Phe ccc	aac Asn 1445 ttt	ccc Pro	gtc Val tca	tac Tyr ccc	ccc Pro	tat Tyr	et 1 435 gac Asp	acc Thr	Arg ' aca Thr	acc Thr	act Thr 1455	al 1 440 cct	_	
gaa Glu gca Ala	gac Asp gtt Val	ttc Phe ccc Pro	aac Asn 1445 ttt Phe	ccc Pro ata Ile	gtc Val tca Ser	tac Tyr ccc Pro	ccc Pro	tat Tyr 1450 ttt Phe 1465	gac Asp gta Val	acc Thr aac Asn	aca Thr agc Ser	acc Thr gat Asp	act Thr 1455 ggt Gly 1470	al 2440 cct Pro	_	28124
gaa Glu gca Ala cag Gln	gac Asp gtt Val gaa Glu	ttc Phe ccc Pro aac Asn	aac Asn 1445 ttt Phe 1460 ccc Pro	ccc Pro ata Ile cca Pro	gtc Val tca Ser ggt Gly	tac Tyr ccc Pro gtt Val	ccc Pro ccc Pro tta Leu	tat Tyr 1450 ttt Phe 1465 agt 1480 cta	et 1435 gac Asp gta Val ctg Leu	acc Thr aac Asn cga Arg	aca Thr agc ser ata Ile	acc Thr gat Asp gct Ala	act Thr 1455 ggt Gly 1470 aaa Lys 1485	al 440 cct Pro ctt Leu ccc Pro	_	28124 28169
gaa Glu gca Ala cag Gln cta Leu	gac Asp gtt Val gaa Glu tat Tyr	ttc Phe ccc Pro aac Asn ttc Phe	aac Asn 1445 ttt Phe 1460 ccc Pro 1475 gac Asp	ccc Pro ata Ile cca Pro atg Met	gtc Val tca Ser ggt Gly gag Glu	tac Tyr ccc Pro gtt Val aga Arg	ccc Pro ccc Pro tta Leu aaa Lys	tat Tyr 1450 ttt Phe 1465 agt Ser 1480 cta Leu 1495	et 1435 435 gac Asp gta Val ctg Leu gcc Ala	acc Thr aac Asn cga Arg	aca Thr age Ser ata Ile tca Ser	Thr acc Thr gat Asp gct Ala ctt Leu	act Thr 1455 ggt Gly 1470 aaa Lys 1485 gga Gly 1500	al 2440 cct Pro ctt Leu ccc Pro aga Arg	_	28124 28169 28214

acc Thr	cta Leu	cgt Arg	cat His 1535	tct Ser	ccc Pro	ccc Pro	tta Leu	aac Asn 1540	cta Leu	act Thr	gac Asp	aat Asn	agc Ser 1545	tta Leu	28394
gtg Val	cta Leu	ggc Gly	tac Tyr 1550	tcg Ser	agt Ser	cct Pro	ctc Leu	ege Arg 1555	gtc Val	aca Thr	gac Asp	aac Asn	aaa Lys 1560	ctt Leu	28439
aca Thr	ttt Phe	aac Asn	ttc Phe 1565	aca Thr	tca Ser	cca Pro	ctc Leu	cgt Arg 1570	tat Tyr	gaa Glu	aat Asn	gaa Glu	aac Asn 1575	ctt Leu	28484
act Thr	ttt Phe	aac Asn	tat Tyr 1580	aca Thr	gag Glu	cct	ctt Leu	aaa Lys 1585	ctt Leu	ata Ile	aat Asn	aac Asn	agc Ser 1590	ctt Leu	28529
gcc Ala	att Ile	gac Asp	atc Ile 1595	aat Asn	tcc Ser	tca Ser	aaa Lys	ggc Gly 1600	ctt Leu	agt Ser	agc Ser	gtc Val	gga Gly 1605	ggc Gly	28574
tca Ser	cta Leu	gct Ala	gta Val 1610	aac Asn	ctg Leu	agt 'Ser	tca Ser	gac Asp 1615	Leu	aag Lys	ttt Phe	gac Asp	agc Ser 1620	aac Asn	28619
gga Gly	tcc Ser	ata Ile	gct Ala 1625	ttt Phe	G] y	ata Ile	caa Gln	acc Thr 1630	ctg Leu	tgg Trp	acc Thr	gct Ala	ccg Pro 1635	acc Thr	28664
tcg Ser	act Thr	Gly	aac Asn 1640	tgc Cys	acc Thr	gtc Val	tac Tyr	agc Ser 1645	Glu	ggc Gly	gat Asp	tcc Ser	cta Leu 1650	ctt Leu	28709
agt Ser	ctc Leu	tgt Cys	tta Leu 1655	acc Thr	aaa Lys	tgc Cys	gga Gly	gct Ala 1660	His	gtc Val	tta Leu	gga Gly	agt Ser 1665	gta Val	28754
agt Ser	tta Leu	acc Thr	ggt Gly 1670	Leu	aca Thr	gga Gly	acc Thr	ata Ile 1675	Thr	caa Gln	atg Met	act Thr	gat Asp 1680	att Ile	28799
tct Ser	gtc Val	acc Thr	att Ile 1685	Gln	ttt Phe	. aca Thr	ttt Phe	gac Asp 1690	Asn	aat Asn	ggt Gly	aag Lys	cta Leu 1695	Leu	28844
agc Ser	tct Ser	cca Pro	ctt Leu 1700	Ile	aac Asn	aac Asn	gcc	ttt Phe 1705	Ser	att	cga Arg	cag Gln	aat Asn 1710	Asp	28889
agt Ser	acg Thr	gcc	tca Ser 1715	Asn	cct Pro	acc Thr	tac Tyr	aac Asn 1720	Ala	ctg Lev	gcg Ala	ttt Phe	atg Met 1725	Pro	28934
aac Asn	agt Ser	acc Thr	ata Ile 1730	Tyr	gca Ala	aga Arg	Gly Ggg	gga Gly 1735	Gly	ggt Gly	gaa Glu	cca Pro	cga Arg 1740	Asn	28979

aac Asn	tac Tyr	tac Tyr	gtc Val 1745	caa Gln	acg Thr	tat Tyr	ctt Leu	agg Arg 1750	gga Gly	aat Asn	gtt Val	caa Gln	aaa Lys 1755	cca Pro	29024
			act Thr 1760	gta Val	acc Thr	tac Tyr	aac Asn	tca Ser 1765	gtc Val	gcc Ala	aca Thr	gga Gly	tat Tyr 1770	tcc Ser	29069
tta Leu	tct Ser	ttt Phe	aag Lys 1775	tgg Trp	act Thr	gct Ala	ctt Leu	gca Ala 1780	cgt Arg	gaa Glu	aag Lys	ttt Phe	gca Ala 1785	acc Thr	29114
			tcg Ser 1790								taa	aac	cgtgt	ac	29160
ccca	accgt	itt (egttt	tttt	c ag								gaa Glu 1805		29209
ttc Phe	aac Asn	cca Pro	gtg Val 1810	tac Tyr	cct Pro	tat Tyr	gac Asp	ccc Pro 1815	cca Pro	cat His	gct Ala	cct Pro	gtt Val 1820	atg Met	29254
ccc Pro	ttc Phe	att Ile	act Thr 1825	cca Pro	cct Pro	ttt Phe	acc Thr	tcc Ser 1830	tcg Ser	gat Asp	Gly ggg	ttg Leu	cag Gln 1835	gaa Glu	29299
			gga Gly 1840											act Thr	29344
acg Thr	caa Gln	aat Asn	gag Glu 1855	tct Ser	ctt Leu	aca Thr	att Ile	aaa Lys 1860	Leu	gga Gly	aac Asn	Gly ggc	ctc Leu 1865	act Thr	29389
cta Leu	gac Asp	aac Asn	cag Gln 1870	gga Gly	caa Gln	cta Leu	aca Thr	tca Ser 1875		gct Ala				gaa Glu	29434
cct Pro	cca Pro	ctc Leu	act Thr 1885	aac Asn	gct Ala	aac Asn	aac Asn	aaa Lys 1890	ctt Leu	gca Ala	ctg Leu	gtc Val	tat Tyr 1895	agc Ser	29479
gat Asp	cct Pro	tta Leu	gca Ala 1900	gta Val	aag Lys	cgc Arg	aac Asn	agc Ser 1905	cta Leu	acc Thr	tta Leu	tcg Ser	cac His 1910	acc Thr	29524
gct Ala	ccc Pro	ctt Leu	gtt Val 1915	att Ile	gct Ala	gat Asp	aac Asn	tct Ser 1920	tta Leu	gca Ala	ttg Leu	caa Gln	gtt Val 1925	tca Ser	29569
gag Glu			ttt Phe 1930	ata Ile	aat Asn	gac Asp	aag Lys	gac Asp 1935	aaa Lys	cta Leu	gcc Ala	ctg Leu	caa Gln 1940	aca Thr	29614

gcc Ala	gcg Ala	ccc Pro	ctt Leu 1945	gta Val	act Thr	aac Asn	gct Ala	ggc Gly 1950	acc Thr	ctt Leu	cgc Arg	tta Leu	caa Gln 1955	agc Ser	29659
gcc Ala	gcc Ala	cct Pro	tta Leu 1960	ggc Gly	att Ile	gca Ala	gac Asp	caa Gln 1965	acc Thr	cta Leu	aaa Lys	ctc Leu	ctg Leu 1970	ttt Phe	29704
acc Thr	aac Asn	cct Pro	ttg Leu 1975	tac Tyr	ttg Leu	cag Gln	aat Asn	aac Asn 1980	ttt Phe	ctc Leu	acg Thr	tta Leu	gcc Ala 1985	att Ile	29749
gaa Glu	cga Arg	ccc Pro	ctt Leu 1990	·gcc Ala	att Ile	acc Thr	aat Asn	act Thr 1995	gga Gly	aag Lys	ctg Leu	gct Ala	cta Leu 2000	cag Gln	29794
ctc Leu	tcc Ser	cca Pro	ccg Pro 2005	cta Leu	caa Gln	aca Thr	gca Ala	gac Asp 2010	aca Thr	Gly Ggc	ttg Leu	act Thr	ttg Leu 2015	caa Gln	29839
acc Thr	aac Asn	gtg Val	cca Pro 2020	Leu	act Thr	gta Val	agc Ser	aac Asn 2025	Gly ggg	acc Thr	cta Leu	ggc Gly	tta Leu 2030	gcc Ala	29884
ata Ile	aag Lys	arg Arg	cca Pro 2035	Leu	att Ile	att Ile	cag Gln	gac Asp 2040	Asn	aac Asn	ttg Leu	ttt Phe	ttg Leu 2045	gac Asp	29929
ttc Phe	aga Arg	gct Ala	ccc Pro 2050	Leu	cgt Arg	ctt Leu	ttc Phe	aac Asn 2055	Ser	gac Asp	cca Pro	gta Val	cta Leu 2060	Gly	29974
ctt Leu	aac Asn	ttt Phe	tac Tyr 2065	Thr	cct Pro	ctt Leu	gcg Ala	gta Val 2070	Arg	gat Asp	gag Glu	gcg Ala	ctc Leu 2075	Thr	30019
gtt Val	aac Asn	aca Thr	ggc Gly 2080	Arg	ggc	cto Leu	aca Thr	gtg Val 2085	Ser	tac Tyr	gat Asp	ggt Gly	tta Leu 2090	Ile	30064
tta Lev	aat Asn	ctt Lev	ggt Gly 2095	Lys	gat Asp	Leu	cgc Arg	ttt Phe 2100	Asp	aac Asn	aac Asn	acc Thr	gtt Val 2105	ser	30109
gto Val	gct Ala	ctt Leu	agt Ser 2110	Ala	gct Ala	tto Lev	g cct 1 Pro	tta Leu 2115	Gln	tac Tyr	act Thr	gat Asp	cag Gln 2120	ctt Leu	30154
cg(ctt J Lev	aac 1 Asi	gtg Val 2125	Gl	gct Ala	Gly Gly	g cto y Lev	cgt Arg 2130	Tyı	aat Asr	cca Pro	gtg Val	agt Ser 2135	тЛа	30199
aaa Lys	a ttg s Lei	g gad ı Ası	gtg Val 2140	Ası	e ccc	aat Asi	caa n Glr	a aac n Asn 2145	Lys	g ggt s Gly	tta / Le:	a acc	tgg Trp 2150	ĢĮU	30244

	_		ctc Leu 2155	att Ile	gta Val	aag Lys	Leu	gga Gly 2160	aat Asn	gga Gly	tta Leu	ggt Gly	ttt Phe 2165	gat Asp	30289
			aac Asn 2170	ata Ile	gct Ala	gtt Val	tct Ser	cct Pro 2175	caa Gln	gtt Val	aca Thr	tcg Ser	cct Pro 2180	gac Asp	30334
		tgg Trp	acc Thr 2185	act Thr	gcc Ala	gac Asp	cca Pro	tcc Ser 2190	ccc Pro	aat Asn	tgt Cys	tcc Ser	atc Ile 2195	tac Tyr	30379
act Thr	gat Asp	tta Leu	gat Asp 2200	gcc Ala	aaa Lys	atg Met	tgg Trp	ctc Leu 2205	tcg Ser	ttg Leu	gta Val	aaa Lys	caa Gln 2210	ej aaa	30424
			cac His 2215		tct Ser	gtt Val	gct Ala	tta Leu 2220	aaa Lys	gca Ala	ttg Leu	aaa Lys	gga Gly 2225	acc Thr	30469
			cct Pro 2230	acg Thr	gaa Glu	agc Ser	gcc Ala	att Ile 2235	gtt Val	att Ile	ata Ile	cta Leu	cat His 2240	ttt Phe	30514
gac Asp	aat Asn	tat Tyr	gga Gly 2245	gtg Val	cga Arg	att Ile	ctc Leu	aat Asn 2250	tat Tyr	ccc Pro	act Thr	ttg Leu	ggc Gly 2255	act Thr	30559
caa Gln	ggc Gly	acg Thr	ttg Leu 2260	gga Gly	aat Asn	aat Asn	gca Ala	act Thr 2265	tgg Trp	ggt Gly	tat Tyr	agg Arg	cag Gln 2270	gga Gly	30604
gaa Glu	tct Ser	gca Ala	gac Asp 2275	act Thr	aat Asn	gta Val	ctc Leu	aat Asn 2280	gca Ala	cta Leu	gca Ala	ttt Phe	atg Met 2285	ccc Pro	30649
			agg Arg 2290	Tyr	cca Pro	aga Arg	Gly	cgt Arg 2295	gga Gly	agc Ser	gaa Glu	gtt Val	cag Gln 2300	aat Asn	30694
caa Gln	act Thr	gtg Val	ggc Gly 2305	Tyr	act Thr	tgt Cys	ata Ile	cag Gln 2310	Gly	gac Asp	ttt Phe	tct Ser	atg Met 2315	Pro	30739
gta Val	ccg Pro	tac Tyr	caa Gln 2320	Ile	cag Gln	tac Tyr	aac Asn	tat Tyr 2325	Gly	CCa Pro	act Thr	ggc	tac Tyr 2330	Ser	30784
ttt Phe	aaa Lys	ttt Phe	att Ile 2335	Trp	aga Arg	act	gtt Val	tca Ser 2340	Arg	caa Gln	cca Pro	ttt Phe	gac Asp 2345	atc Ile	30829
cca Pro	tgc Cys	tgt Cys	ttt Phe 2350	Phe	tct Ser	tac Tyr	att Ile	acg Thr 2355	Glu	gaa Glu	taa	aac	aactt	tt	30875
tct	tttt	att	ttctt	ttta	t tt	taca	cgca	cagt	aagg	jct t	cctc	caco	c tto	catctca	30935

cagcatacac cagcetetee ceetteatgg cagtaaactg ttgtgagtea gteeggtatt 31055 tgggagttaa gatccaaaca gtctctttgg tgatgaaaca tggatccgtg atggacacaa 31115 atccctggga caggttctcc aacgtttcgg taaaaaactg catgccgccc tacaaaacaa 31175 acaggttcag gctctccacg ggttatctcc ccgatcaaac tcagacagag taaaggtgcg 31235 atgatgttcc actaaaccac gcaggtggcg ctgtctgaac ctctcggtgc gactcctgtg 31295 aggctggtaa gaagttagat tgtccagcag cctcacagca tggatcatca gtctacgagt 31355 gcgtctggcg cagcagcgca tctgaatctc actgagattc cggcaagaat cgcacaccat 31415 cacaatcagg ttgttcatga tcccatagct gaacacgctc cagccaaagc tcattcgctc caacagegee acegegtgte egtecaacet taetttaaca taaatcaggt gtetgeegeg 31475 31535 tacaaacatg ctacccgcat acagaacete ceggggeaaa eceetgttea ceacetgeet gtaccaggga aacctcacat ttatcaggga gccatagata gccattttaa accaattagc 31595 31655 taacaccgcc ccaccagete tacactgaag agaaccggga gagttacaat gacagtgaat 31715 aatccatctc tcataacccc taatggtctg atggaaatcc agatctaacg tggcacagca 31775 gatacacact ttcatataca ttttcatcac atgtttttcc caggccgtta aaatacaatc 31835 ccaatacacg ggccactcct gcagtacaat aaagctaata caagatggta tactcctcac ctcactaaca ttgtgcatgt tcatattttc acattctaag taccgagagt tctcctctac 31895 aacagcactg ccgcggtcct cacaaggtgg tagctggtga cgattgtaag gagccagtct 31955 gcagcgatac cgtctgtcgc gttgcatcgt agaccaggga ccgacgcact tcctcgtact 32015 tgtagtagca gaaccacgtc cgctgccagc acgtctccaa gtaacgccgg tccctgcgtc 32075 32135 getcacgete cetecteac geaaagtgea accaetettg taatecacae agatecetet eggeeteegg ggegatgeac aceteaaace tacagatgte teggtacagt tecaaacacg 32195 32255 tagtgagggc gagttccaac caagacagac agcctgatct atcccgacac actggaggtg 32315 qaqqaaqaca cqqaaqaqqc atqttattcc aaqcqattca ccaacqqqtc qaaatqaaqa 32375 tecegaagat gacaaeggte geeteeggag eeetgatgga atttaacage cagateaaac attatgcgat tttccaggct atcaatcgcg gcctccaaaa gagcctggac ccgcacttcc 32435 acaaacacca gcaaagcaaa agcgttatta tcaaactctt cgatcatcaa gctgcaggac 32495 tgtacaatgc ccaagtaatt ttcatttctc cactcgcgaa tgatgtcgcg gcaaatagtc 32555 tgaaggttca tgccgtgcat attaaaaagc tccgaaaggg cgccctctat agccatgcgt

agacacacca tcatgactgc aagatatcgg gctcctgaga cacctgcagc agatttaaca 32675 gauccaggto aggttgctct cogogatogo gaatotocat cogoaaagto atttgcaaat 32735 aattaaatag atctgcgccg actaaatctg ttaactccgc gctaggaact aaatcaggtg 32795 tggctacgca gcacaaaagt tccagggatg gcgccaaact cactagaacc gctcccgagt 32855 agcaaaactg atgaatggga gtaacacagt gtaaaatgtt cagccaaaaa tcactaagct 32915 gctcctttaa aaagtccagt acttctatat tcagttcgtg caagtactga agcaactgtg 32975 33035 agaatcatta aactaaagaa geetggegaa eggtgggata tatgacaege teeageagea 33095 ggcaagcaac cggctgtccc cgggaaccgc ggtaaaattc atccgaatga ttaaaaagaa 33155 33215 caacagagac ttcccaccat gtactcggtt ggatctcctg agcacagagc aatacccccc tcacattcat atccgctaca gaaaaaaaac gtcccagata cccagcggga atatccaacg 33275 acagetgeaa agacageaaa acaateeete tgggageaat cacaaaatee teeggtgaaa 33335 aaagcacata catattagaa taaccctgtt gctggggcaa aaaggcccgt cgtcccagca 33395 33455 aatgcacata aatatgttca tcagccattg ccccgtctta ccgcgtaaac agccacgaaa aaatcgagct aaaatccacc caacagccta tagctatata tacactccac ccaatgacgc 33515 taataccgca ccacccacga ccaaagttca cccacaccca caaaacccgc gaaaatccag 33575 33635 egeegteage actteegeaa ttteagtete acaacgteae tteegegege etttteaett teccacacae geoettegee egeoegeeet egegeeacee egegteacee caegteaceg 33695 cacqtcaccc cggccccqcc tcgctcctcc ccgctcatta tcatattggc acgtttccag 33755 aataaggtat attattgatg cagcaaaaca atccctctgg gagcaatcac aaaatcctcc 33815 ggtgaaaaaa gcacatacat attagaataa ccctgttgct ggggcaaaaa ggcccgtcgt 33875 cccagcaaat gcacataaat atgttcatca gccattgccc cgtcttaccg cgtaaacagc 33935 cacqaaaaaa tcqaqctaaa atccacccaa caqcctatag ctatatatac actccaccca 33995 atgacqctaa tacegcacca cccacgacca aagttcaccc acacccacaa aacccgcgaa 34055 aatccagege egteageact teegeaattt cagteteaca aegteactte egegegeett 34115 ttcactttcc cacacacgcc cttcgcccgc ccgccctcgc gccaccccgc gtcaccccac 34175 gteacegeae gteacecegg eccegecteg etecteeceg eteattatea tattggeaeg 34235 34264 tttccagaat aaggtatatt attgatgca

<210> 25

<211> 503

<212> PRT

<213> simian adenovirus SV-1

<400> 25

Met Arg Arg Ala Val Arg Val Thr Pro Ala Ala Tyr Glu Gly Pro Pro 1 5 10 15

Pro Ser Tyr Glu Ser Val Met Gly Ser Ala Asn Val Pro Ala Thr Leu 20 25 30

Glu Ala Pro Tyr Val Pro Pro Arg Tyr Leu Gly Pro Thr Glu Gly Arg
35 40 45

Asn Ser Ile Arg Tyr Ser Glu Leu Ala Pro Leu Tyr Asp Thr Thr Lys 50 55 60

Val Tyr Leu Val Asp Asn Lys Ser Ala Asp Ile Ala Ser Leu Asn Tyr 65 70 75 80

Gln Asn Asp His Ser Asn Phe Leu Thr Thr Val Val Gln Asn Asn Asp 85 90 95

Phe Thr Pro Thr Glu Ala Gly Thr Gln Thr Ile Asn Phe Asp Glu Arg
100 105 110

Ser Arg Trp Gly Gly Gln Leu Lys Thr Ile Leu His Thr Asn Met Pro 115 120 125

Asn Ile Asn Glu Phe Met Ser Thr Asn Lys Phe Arg Ala Arg Leu Met 130 135 140

Val Lys Lys Ala Glu Asn Gln Pro Pro Glu Tyr Glu Trp Phe Glu Phe 145 150 155 160

Thr Ile Pro Glu Gly Asn Tyr Ser Glu Thr Met Thr Ile Asp Leu Met 165 170 175

Asn Asn Ala Ile Val Asp Asn Tyr Leu Gln Val Gly Arg Gln Asn Gly 180 185 190

Val Leu Glu Ser Asp Ile Gly Val Lys Phe Asp Thr Arg Asn Phe Arg 195 200 205

Leu Gly Trp Asp Pro Val Thr Lys Leu Val Met Pro Gly Val Tyr Thr 210 215 220

Asn Glu Ala Phe His Pro Asp Ile Val Leu Pro Gly Cys Gly Val 225 230 235 240

Asp Phe Thr Gln Ser Arg Leu Ser Asn Leu Leu Gly Ile Arg Lys Arg 245 250 255

Arg Pro Phe Gln Glu Gly Phe Gln Ile Met Tyr Glu Asp Leu Glu Gly 260 265 270

Gly Asn Ile Pro Gly Leu Leu Asp Val Pro Ala Tyr Glu Glu Ser Val 275 280 285

Lys Gln Ala Glu Ala Gln Gly Arg Glu Ile Arg Gly Asp Thr Phe Ala 290 295 300

Thr Glu Pro His Glu Leu Val Ile Lys Pro Leu Glu Gln Asp Ser Lys 305 310 315 320

Lys Arg Ser Tyr Asn Lie Ile Ser Gly Thr Met Asn Thr Leu Tyr Arg 325 330 335

Ser Trp Phe Leu Ala Tyr Asn Tyr Gly Asp Pro Glu Lys Gly Val Arg 340 345 350

Ser Trp Thr Ile Leu Thr Thr Thr Asp Val Thr Cys Gly Ser Gln Gln 355 360 365

Val Tyr Trp Ser Leu Pro Asp Met Met Gln Asp Pro Val Thr Phe Arg 370 375 380

Pro Ser Thr Gln Val Ser Asn Phe Pro Val Val Gly Thr Glu Leu Leu 385 390 395 400

Pro Val His Ala Lys Ser Phe Tyr Asn Glu Gln Ala Val Tyr Ser Gln 405 410 415

Leu Ile Arg Gln Ser Thr Ala Leu Thr His Val Phe Asn Arg Phe Pro 420 425 430

Glu Asn Gln Ile Leu Val Arg Pro Pro Ala Pro Thr Ile Thr Thr Val

Ser Glu Asn Val Pro Ala Leu Thr Asp His Gly Thr Leu Pro Leu Arg 450 455 460

Ser Ser Ile Ser Gly Val Gln Arg Val Thr Ile Thr Asp Ala Arg Arg 465 470 475 480

Arg Thr Cys Pro Tyr Val Tyr Lys Ala Leu Gly Val Val Ala Pro Lys 485 490 495

Val Leu Ser Ser Arg Thr Phe 500

<210> 26

<211> 931

<212> PRT

<213> simian adenovirus SV-1

<400> 26

Met Ala Thr Pro Ser Met Met Pro Gln Trp Ser Tyr Met His Ile Ala 1 5 10 15 Gly Gln Asp Ala Ser Glu Tyr Leu Ser Pro Gly Leu Val Gln Phe Ala Arg Ala Thr Asp Thr Tyr Phe Ser Leu Gly Asn Lys Phe Arg Asn Pro Thr Val Ala Pro Thr His Asp Val Thr Thr Asp Arg Ser Gln Arg Leu Thr Leu Arg Phe Val Pro Val Asp Arg Glu Asp Thr Ala Tyr Ser Tyr Lys Val Arg Tyr Thr Leu Ala Val Gly Asp Asn Arg Val Leu Asp Met Ala Ser Thr Tyr Phe Asp Ile Arg Gly Val Leu Asp Arg Gly Pro Ser Phe Lys Pro Tyr Ser Gly Thr Ala Tyr Asn Ser Leu Ala Pro Lys Gly 120 Ala Pro Asn Pro Ala Glu Trp Thr Asn Ser Asp Ser Lys Val Lys Val 135 Arg Ala Gln Ala Pro Phe Val Ser Ser Tyr Gly Ala Thr Ala Ile Thr 155 150 Lys Glu Gly Ile Gln Val Gly Val Thr Leu Thr Asp Ser Gly Ser Thr 165 Pro Gln Tyr Ala Asp Lys Thr Tyr Gln Pro Glu Pro Gln Ile Gly Glu 185 Leu Gln Trp Asn Ser Asp Val Gly Thr Asp Asp Lys Ile Ala Gly Arg

Val Leu Lys Lys Thr Thr Pro Met Phe Pro Cys Tyr Gly Ser Tyr Ala 215 210

Arg Pro Thr Asn Glu Lys Gly Gly Gln Ala Thr Pro Ser Ala Ser Gln 235

Asp Val Gln Asn Pro Glu Leu Gln Phe Phe Ala Ser Thr Asn Val Ala

Asn Thr Pro Lys Ala Val Leu Tyr Ala Glu Asp Val Ser Ile Glu Ala . 265 260

Pro Asp Thr His Leu Val Phe Lys Pro Thr Val Thr Glu Gly Ile Thr 280

Ser Ser Glu Ala Leu Leu Thr Gln Gln Ala Ala Pro Asn Arg Pro Asn

Tyr Ile Ala Phe Arg Asp Asn Phe Ile Gly Leu Met Tyr Tyr Asn Ser 310 315

Thr Gly Asn Met Gly Val Leu Ala Gly Gln Ala Ser Gln Leu Asn Ala 325 330 335

- Val Val Asp Leu Gln Asp Arg Asn Thr Glu Leu Ser Tyr Gln Leu Met 340 345 350
- Leu Asp Ala Leu Gly Asp Arg Ser Arg Tyr Phe Ser Met Trp Asn Gln 355 360 365
- Ala Val Asp Ser Tyr Asp Pro Asp Val Arg Ile Ile Glu Asn His Gly 370 375 380
- Val Glu Asp Glu Leu Pro Asn Tyr Cys Phe Pro Leu Gly Gly Met Ala 385 390 395 400
- Val Thr Asp Thr Tyr Ser Pro Ile Lys Val Asn Gly Gly Gly Asn Gly 410 415
- Trp Glu Ala Asn Asn Gly Val Phe Thr Glu Arg Gly Val Glu Ile Gly
 420 425 430
- Ser Gly Asn Met Phe Ala Met Glu Ile Asn Leu Gln Ala Asn Leu Trp
 435 440 445
- Arg Ser Phe Leu Tyr Ser Asn Ile Gly Leu Tyr Leu Pro Asp Ser Leu 450 455 460
- Lys Ile Thr Pro Asp Asn Ile Thr Leu Pro Glu Asn Lys Asn Thr Tyr 465 470 475 480
- Gln Tyr Met Asn Gly Arg Val Thr Pro Pro Gly Leu Val Asp Thr Tyr 485 490 495
- Val Asn Val Gly Ala Arg Trp Ser Pro Asp Val Met Asp Ser Ile Asn 500 505 510
- Pro Phe Asn His His Arg Asn Ala Gly Leu Arg Tyr Arg Ser Met Leu 515 520 525
- Leu Gly Asn Gly Arg Tyr Val Pro Phe His Ile Gln Val Pro Gln Lys 530 540
- Phe Phe Ala Ile Lys Asn Leu Leu Leu Leu Pro Gly Ser Tyr Thr Tyr 545 550 555 555
- Glu Trp Asn Phe Arg Lys Asp Val Asn Met Ile Leu Gln Ser Ser Leu 565 570 575
- Gly Asn Asp Leu Arg Val Asp Gly Ala Ser Ile Arg Phe Asp Ser Ile 580 585 590
- Asn Leu Tyr Ala Asn Phe Phe Pro Met Ala His Asn Thr Ala Ser Thr 595 600 605
- Leu Glu Ala Met Leu Arg Asn Asp Thr Asn Asp Gln Ser Phe Asn Asp 610 615 620

Tyr 625	Leu	Cys	Ala	Ala	Asn 630	Met	Leu	Tyr	Pro	Ile 635	Pro	Ala	Asn	Ala	Thr 640
Ser	Val	Pro	Ile	Ser 645	Ile	Pro	Ser	Arg	Asn 650	Trp	Ala	Ala	Phe	Arg 655	Gly
Trp	Ser	Phe	Thr 660	Arg	Leu	Lys	Thr	Lys 665	Glu	Thr	Pro	Ser	Leu 670	Gly	Ser
Gly	Phe	Asp 675	Pro	Tyr	Phe	Val	Tyr 680	Ser	Gly	Ser	Ile	Pro 685	Tyr	Leu	Asp
Gly	Thr 690	Phe	Tyr	Leu	Asn	His 695	Thr	Phe	Lys	Lys	Val 700	Ser	Ile	Met	Phe
Asp 705	Ser	Ser	Val	Ser	Trp 710	Pro	Gly	Asn	Asp	Arg 715	Leu	Leu	Thr	Pro	Asn 720
Glu	Phe	Glu	Ile	Lys 725		Ser	Val	Asp	Gly 730	Glu	Gly	Tyr	Asn	Val 735	Ala
Gln	Ser	Asn	Met 740	Thr	Lys	Asp	Trp	Phe 745	Leu	Ile	Gln	Met	Leu 750	Ser	His
Tyr	Asn	Ile 755	Gly	Tyr	Gln	Gly	Phe 760	Tyr	Val	Pro	Glu	Asn 765	Tyr	Lys	Asp
Arg	Met 770		Ser	Phe	Phe	Arg 775	Asn	Phe	Gln	Pro	Met 780	Ser	Arg	Gln	Ile
Val 785		Ser	Thr	Ala	Tyr 790		Asn	Tyr	Gln	Asp 795	Val	Lys	Leu	Pro	Tyr 800
Gln	His	Asr	Asn	Ser 805		Phe	· Val	Gly	Tyr 810	: Met	Gly	Pro	Thr	Met 815	Arg
Glu	Gly	Glr	820		Pro	Ala	Asn	Tyr 825	Pro	туг	Pro	Leu	830	Gly	Ala
Thr	: Ala	Val 835	l Pro	Sei	: Le	ı Thı	61n 840	Lys	Lys	s Ph∈	e Lev	845	a Asp	Arg	Val
Met	850		g Ile	Pro	Phe	855		: Ası	Phe	e Met	Se: 860	r Met	t Gly	, Ser	Leu
Th:		Let	u Gl <u>y</u>	/ Gli	a As ı 870		t Let	туі	: Ala	a Asr 875	Sei	r Ala	a His	s Ala	880
Asp) Met	t Th	r Phe	e Gl: 88		l Asp	p Pro) Met	890	p Gli	ı Pro	o Th	r Let	2 Lev 895	Tyr
Va.	l Le	a Ph	e Gl		l Ph	e As	o Val	Va:		g Ile	e Hi:	s Gl	n Pro	o His O	Arg

Gly Val Ile Glu Ala Val Tyr Leu Arg Thr Pro Phe Ser Ala Gly Asn 915 . 920 925

Ala Thr Thr 930

<210> 27

<211> 363

<212> PRT

<213> simian adenovirus SV-1

<400> 27

Met Lys Arg Thr Arg Val Asp Glu Asp Phe Asn Pro Val Tyr Pro Tyr 1 5 10 15

Asp Thr Thr Thr Pro Ala Val Pro Phe Ile Ser Pro Pro Phe Val 20 25 30

Asn Ser Asp Gly Leu Gln Glu Asn Pro Pro Gly Val Leu Ser Leu Arg
35 40 45

Ile Ala Lys Pro Leu Tyr Phe Asp Met Glu Arg Lys Leu Ala Leu Ser 50 55 60

Leu Gly Arg Gly Leu Thr Ile Thr Ala Ala Gly Gln Leu Glu Ser Thr 65 70 75 80

Gln Ser Val Gln Thr Asn Pro Pro Leu Ile Ile Thr Asn Asn Asn Thr 85 90 95

Leu Thr Leu Arg His Ser Pro Pro Leu Asn Leu Thr Asp Asn Ser Leu 100 105 110

Val Leu Gly Tyr Ser Ser Pro Leu Arg Val Thr Asp Asn Lys Leu Thr 115 120 125

Phe Asn Phe Thr Ser Pro Leu Arg Tyr Glu Asn Glu Asn Leu Thr Phe 130 135 140

Asn Tyr Thr Glu Pro Leu Lys Leu Ile Asn Asn Ser Leu Ala Ile Asp 145 150 155 160

Ile Asn Ser Ser Lys Gly Leu Ser Ser Val Gly Gly Ser Leu Ala Val 165 170 175

Asn Leu Ser Ser Asp Leu Lys Phe Asp Ser Asn Gly Ser Ile Ala Phe 180 185 190

Gly Ile Gln Thr Leu Trp Thr Ala Pro Thr Ser Thr Gly Asn Cys Thr 195 200 205

Val Tyr Ser Glu Gly Asp Ser Leu Leu Ser Leu Cys Leu Thr Lys Cys 210 215 220

Gly Ala His Val Leu Gly Ser Val Ser Leu Thr Gly Leu Thr Gly Thr 225 230 235

Ile Thr Gln Met Thr Asp Ile Ser Val Thr Ile Gln Phe Thr Phe Asp 245 250 255

Asn Asn Gly Lys Leu Leu Ser Ser Pro Leu Ile Asn Asn Ala Phe Ser 260 265 270

Ile Arg Gln Asn Asp Ser Thr Ala Ser Asn Pro Thr Tyr Asn Ala Leu 275 280 285

Ala Phe Met Pro Asn Ser Thr Ile Tyr Ala Arg Gly Gly Gly Glu 290 295 300

Pro Arg Asn Asn Tyr Tyr Val Gln Thr Tyr Leu Arg Gly Asn Val Gln 305 310 315

Lys Pro Ile Ile Leu Thr Val Thr Tyr Asn Ser Val Ala Thr Gly Tyr 325 330 335

Ser Leu Ser Phe Lys Trp Thr Ala Leu Ala Arg Glu Lys Phe Ala Thr 340 345 350

Pro Thr Thr Ser Phe Cys Tyr Ile Thr Glu Gln 355 360

<210> 28

<211> 560

<212> PRT

<213> simian adenovirus SV-1

<400> 28

Met Lys Arg Ala Arg Val Asp Glu Asp Phe Asn Pro Val Tyr Pro Tyr 1 5 10 15

Asp Pro Pro His Ala Pro Val Met Pro Phe Ile Thr Pro Pro Phe Thr 20 25 30

Ser Ser Asp Gly Leu Gln Glu Lys Pro Leu Gly Val Leu Ser Leu Asn 45

Tyr Arg Asp Pro Ile Thr Thr Gln Asn Glu Ser Leu Thr Ile Lys Leu
50 55 60

Gly Asn Gly Leu Thr Leu Asp Asn Gln Gly Gln Leu Thr Ser Thr Ala
65 70 75 80

Gly Glu Val Glu Pro Pro Leu Thr Asn Ala Asn Asn Lys Leu Ala Leu 85 90 95

Val Tyr Ser Asp Pro Leu Ala Val Lys Arg Asn Ser Leu Thr Leu Ser 100 105 110

His Thr Ala Pro Leu Val Ile Ala Asp Asn Ser Leu Ala Leu Gln Val 115 Ser Glu Pro Ile Phe Ile Asn Asp Lys Asp Lys Leu Ala Leu Gln Thr Ala Ala Pro Leu Val Thr Asn Ala Gly Thr Leu Arg Leu Gln Ser Ala 150 Ala Pro Leu Gly Ile Ala Asp Gln Thr Leu Lys Leu Leu Phe Thr Asn 165 Pro Leu Tyr Leu Gln Asn Asn Phe Leu Thr Leu Ala Ile Glu Arg Pro Leu Ala Ile Thr Asn Thr Gly Lys Leu Ala Leu Gln Leu Ser Pro Pro 200 Leu Gln Thr Ala Asp Thr Gly Leu Thr Leu Gln Thr Asn Val Pro Leu Thr Val Ser Asn Gly Thr Leu Gly Leu Ala Ile Lys Arg Pro Leu Ile 235 Ile Gln Asp Asn Asn Leu Phe Leu Asp Phe Arg Ala Pro Leu Arg Leu Phe Asn Ser Asp Pro Val Leu Gly Leu Asn Phe Tyr Thr Pro Leu Ala 265 Val Arg Asp Glu Ala Leu Thr Val Asn Thr Gly Arg Gly Leu Thr Val 285 Ser Tyr Asp Gly Leu Ile Leu Asn Leu Gly Lys Asp Leu Arg Phe Asp Asn Asn Thr Val Ser Val Ala Leu Ser Ala Ala Leu Pro Leu Gln Tyr 315 310 Thr Asp Gln Leu Arg Leu Asn Val Gly Ala Gly Leu Arg Tyr Asn Pro 325 Val Ser Lys Leu Asp Val Asn Pro Asn Gln Asn Lys Gly Leu Thr Trp Glu Asn Asp Tyr Leu Ile Val Lys Leu Gly Asn Gly Leu Gly Phe 360 Asp Gly Asp Gly Asn Ile Ala Val Ser Pro Gln Val Thr Ser Pro Asp Thr Leu Trp Thr Thr Ala Asp Pro Ser Pro Asn Cys Ser Ile Tyr Thr 390 Asp Leu Asp Ala Lys Met Trp Leu Ser Leu Val Lys Gln Gly Gly Val 415 410 405

Val His Gly Ser Val Ala Leu Lys Ala Leu Lys Gly Thr Leu Leu Ser 425 420 Pro Thr Glu Ser Ala Ile Val Ile Ile Leu His Phe Asp Asn Tyr Gly 440 Val Arg Ile Leu Asn Tyr Pro Thr Leu Gly Thr Gln Gly Thr Leu Gly 455 450 Asn Asn Ala Thr Trp Gly Tyr Arg Gln Gly Glu Ser Ala Asp Thr Asn 470 Val Leu Asn Ala Leu Ala Phe Met Pro Ser Ser Lys Arg Tyr Pro Arg 490 Gly Arg Gly Ser Glu Val Gln Asn Gln Thr Val Gly Tyr Thr Cys Ile 505 Gln Gly Asp Phe Ser Met Pro Val Pro Tyr Gln Ile Gln Tyr Asn Tyr 520 Gly Pro Thr Gly Tyr Ser Phe Lys Phe Ile Trp Arg Thr Val Ser Arg 530 Gln Pro Phe Asp Ile Pro Cys Cys Phe Phe Ser Tyr Ile Thr Glu Glu 550 <210> 29 <211> 31044 <212> DNA <213> simian adenovirus SV-25 <220> <221> CDS <222> (12284)..(13801) <223> Penton <220> <221> CDS <222> (16681)..(19446) <223> Hexon <220> <221> CDS <222> (25380)..(26423) <223> Fiber #2

<221> CDS <222> (26457)..(28136) <223> Fiber #1

<400> 29

<220>

catcatcaat aatatacctt attctggaaa cgtgccaata tgataatgag cggggaggag

120 cgaggcgggg ccggggtgac gtgcggtgac gcggggtggc gcgagggcgg ggcgaagggc 180 gcgggtgtgt gtgtgggagg cgcttagttt ttacgtatgc ggaaggaggt tttataccgg 240 aagatgggta atttgggcgt atacttgtaa gttttgtgta atttggcgcg aaaactgggt 300 aatgaggaag ttgaggttaa tatgtacttt ttatgactgg gcggaatttc tgctgatcag 360 cagtgaactt tgggcgctga cggggaggtt tcgctacgtg acagtaccac gagaaggctc 420 aaaggtccca tttattgtac tcttcagcgt tttcgctggg tatttaaacg ctgtcagatc 480 atcaagagge cactettgag tgetggegag aagagtttte teeteegtge tgecaegatg aggetggtee ecgagatgta eggtgttttt agegaegaga eggtgegtaa eteagatgae 540 600 ctgctgaatt cagacgcgct ggaaatttcc aattcgcctg tgctttcgcc gccgtcactt 660 cacgacctgt ttgtgttttg gctcaacgct tagcaacgtg ttatataggg tcaagaagga 720 gcaggagacg cagtttgcta ggctgttggc cgatactcct ggagtttttg tggctctgga 780 totaggocat cactotottt tocaagagaa aattatoaaa aacttaactt ttacgtotoo 840 tggtcgcacg gttgcttccg ctgcctttat tacctatatt ttggatcaat ggagcaacag 900 cgacagecae etgtegtggg agtacatget ggattacatg tegatggege tgtggaggge 960 catgctgcgg aggagggttt gcatttactt gcgggcgcag cctccgcggc tggaccgagt 1020 ggaggaggag gacgagccgg gggagaccga gaacctgagg gccgggctgg accctccaac 1080 ggaggactag gtgctgagga tgatcccgaa gaggggacta gtggggctag gaagaagcaa 1140 aagactgagt ctgaacctcg aaactttttg aatgagttga ctgtgagttt gatgaatcgt 1200 cagcgtccgg agacaatttt ctggtctgaa ttggaggagg aattcaggag gggggaactg 1260 aacctgctat acaagtatgg gtttgaacag ttaaaaactc actggttgga gccgtgggag 1320 gattttgaaa ccgccttgga cacttttgct aaagtggctc tgcggccgga taaggtttac 1380 actatecgee geactgttaa cataaagaag agtgtttatg ttataggeea tggagetetg 1440 gtgcaggtgc aaaccgtcga ccgggtggcc tttagttgcg gtatgcaaaa tctgggcccc 1500 ggggtgatag gcttaaatgg tgtaacattt cacaatgtaa ggtttactgg tgaaagtttt 1560 aacggctctg tgtttgcaaa taacacacag ctgacgctcc acggcgttta cttttttaac 1620 tttaataaca catgtgtgga gtcgtggggc agggtgtctt tgaggggctg ctgttttcac 1680 ggctgctgga aggcggtggt gggaagactt aaaagtgtaa catctgtaaa aaaatgcgtg 1740 tttgagcggt gtgtgttggc tttaactgtg gagggctgtg gacgcattag gaataatgcg

gcgtctgaga atggatgttt tcttttgcta aaaggcacgg ctagtattaa gcataacatg	1800
atatgcggca gcggtctgta cccttcacag ctgttaactt gcgcggatgg aaactgtcag	1860
accttgcgca ccgtgcacat agcgtcccac cagcgccgcg cctggccaac attcgagcac	1920
aatatgetta tgegttgtge egteeacttg ggeectagge gaggegtgtt tgtgeettae	1980
cagtgtaact ttagccatac caagatttta ctagaacctg ataccttctc tcgagtgtgt	2040
ttcaatgggg tgtttgacat gtcaatggaa ctgtttaaag tgataagata tgatgaatcc	2100
aagtotogtt gtogoccatg tgaatgogga gotaatcato tgaggttgta tootgtaaco	2160
ctaaacgtta ccgaggagct gaggacggat caccacatgt tgtcctgcct gcgcaccgac	2220
tatgaatcca gcgacgagga gtgaggtgag gggcggagcc acaaagggta taaaggggcg	2280
tgaggggtgg gtgtgatgat tcaaaatgag cgggacgacg gacggcaacg cgtttgaggg	2340
tggagtgttc agcccttatc tgacatctcg tcttccttcc tgggcaggag tgcgtcagaa	2400
tgtagtgggc tccaccgtgg acggacgacc ggtcgcccct gcaaattccg ccaccctcac	2460
ctatgccacc gtgggatcat cgttggacac tgccgcggca gctgccgctt ctgctgccgc	2520
ttctactgct cgcggcatgg cggctgattt tggactgtat aaccaactgg ccactgcagc	2580
tgtggcgtct cggtctctgg ttcaagaaga tgccctgaat gtgatcctga ctcgcctgga	2640
gatcatgtca cgtcgcttgg acgaactggc tgcgcagata tcccaagcta accccgatac	2700
cacttcagaa tcctaaaata aagacaaaca aatatgttga aaagtaaaat ggctttattt	2760
gttttttttg geteggtagg etegggteea eetgtetegg tegttaagaa etttgtgtat	2820
gttttccaaa acacggtaca gatgggcttg gatgttcaag tacatgggca tgaggccatc	2880
tttggggtga agataggacc attgaagagc gtcatgctcc ggggtggtgt tgtaaattac	2940
ccagtcgtag cagggtttct gggcgtggaa ctggaagatg tcctttagga gtaggctgat	3000
ggccaagggc aggcccttag tgtaggtgtt tacaaagcgg ttaagctggg agggatgcat	3060
gcggggggag atgatatgca tcttggcttg gatcttgagg ttagctatgt taccacccag	3120
gtctctgcgg gggttcatgt tatgaaggac caccagcacg gtgtagccgg tgcatttggg	3180
gaacttgtca tgcagtttgg aggggaaggc gtggaagaat ttagagaccc ccttgtggcc	3240
ccctaggttt tccatgcact catccataat gatggcaatg ggacccctgg cggccgcttt	3300
ggcaaacacg ttttgggggt tggaaacatc atagttttgc tctagagtga gctcatcata	3360
ggccatctta acaaagcggg gtaggagggt gcccgactgg gggatgatag ttccatctgg	3420
gectggggeg tagttacect cacagatetg cateteccag geettaattt eegaggggg	3480

3540 tatcatgtcc acctgggggg caataaagaa cacggtttct ggcgggggat tgatgagctg 3600 ggtggaaagc aagttacgca gcagttgaga tttgccacag ccggtggggc cgtagatgac 3660 cccgatgacg ggttgcagct ggtagttgag agaggaacag ctgccgtcgg ggcgcaggag 3720 gggggctacc tcattcatca tgcttctaac atgtttattt tcactcacta agttttgcaa 3780 gagectetee ceacceaggg ataagagtte ttecaggetg ttgaagtgtt teageggttt 3840 taggeogteg gecatgggea tettttegag egactgaega ageaagtaea gteggteeca 3900 gageteggtg acgtgeteta tggaateteg atccageaga ettettggtt gegggggttg 3960 ggtcgacttt cgctgtaggg caccagccgg tgggcgtcca gggccgcgag ggttctgtcc 4020 ttccagggtc tcagcgtccg ggtgagggtg gtctcggtga cggtgaaggg atgagccccg 4080 ggetgggege ttgegagggt gegetteagg eteateetge tggtgetgaa geggaegteg 4140 tctccctgtg agtcggccag atagcaacga agcatgaggt cgtagctgag ggactcggcc 4200 gegtgteect tggegegeag ettteeettg gaaacgtget gacatttggt geagtgeaga 4260 cattggaggg cgtagagttt gggggccagg aagaccgact cgggcgagta ggcgtcggct 4320 ccgcactgag cgcagacggt ctcgcactcc actagccacg tgagctcggg tttagcggga 4380 tcaaaaacca agttgcctcc attttttttg atgcgtttct taccttgcgt ttccatgagt 4440 ttgtggcccg cttccgtgac aaaaaggctg tcggtgtctc cgtagacaga cttgaggggg 4500 cgatcttcca aaggtgttcc gaggtcttcc gcgtacagga actgggacca ctccgagacg aaggetetgg tecaggetaa cacgaaggag geaatetgeg aggggtatet gtegttttea 4560 4620 atgagggggt ccaccttttc cagggtgtgc agacacaggt cgtcctcctc cgcgtccacg 4680 aaggtgattg gcttgtaagt gtaggtcacg tgatctgcac cccccaaagg ggtataaaag 4740 ggggcgtgcc caccetetee gteaetttet teegeatege tgtggaccag agceagetgt 4800 togggtgagt aggoodtoto aaaagooggo atgatotogg ogotoaagtt gtoagtttot 4860 acaaacgagg tggatttgat attcacgtgc cccgcggcga tgcttttgat ggtggagggg 4920 tocatotgat cagaaaacac gatotttttg ttgtcaagtt tggtggcgaa agacccgtag 4980 agggcgttgg aaagcaactt ggcgatggag cgcagggtct gatttttctc ccgatcggcc 5040 ctctccttgg cggcgatgtt gagttgcacg tactcccggg ccgcgcaccg ccactcgggg 5100 aacacggcgg tgcgctcgtc gggcaggatg cgcacgcgcc agccgcgatt gtgcagggtg 5160 atgaggtcca cgctggtagc cacctccccg cggaggggct cgttggtcca acacaatcgc

ccccttttc tggagcagaa cggaggcagg ggatctagca agttggcggg cggggggtcg 5220 gcgtcgatgg tgaagatacc gggtagcagg atcttattaa aataatcgat ttcggtgtcc 5280 5340 gtgtcttgca acgcgtcttc ccacttcttc accgccaggg ccctttcgta gggattcagg 5400 ggcggtcccc agggcatggg gtgggtcagg gccgaggcgt acatgccgca gatgtcatac 5460 acgtacaggg gttccctcaa caccccgatg taagtggggt aacagcgccc cccgcggatg ctggctcgca cgtagtcgta catctcgcgc gagggagcca tgaggccgtc tcccaagtgg 5520 5580 gtcttgtggg gtttttcggc ccggtagagg atctgtctga agatggcgtg ggagttggaa 5640 gagatggtgg ggcgttggaa gacgttaaag ttggccccgg gtagtcccac ggagtcttgg 5700 atgaactggg cgtaggattc ccggagtttg tccaccaggg cggcggtcac cagcacgtcg agagcgcagt agtccaacgt ctcgcggacc aggttgtagg ccgtctcttg tttttctcc 5760 cacagttege ggttgaggag gtatteeteg eggtetttee agtaetette ggegggaaat 5820 5880 cetttttegt cegeteggta agaacetaac atgtaaaatt egtteacege tttgtatgga caacageett tttetacegg cagggegtae gettgagegg cetttetgag agaggtgtgg 5940 gtgaggggga aggtgtcccg caccatcact ttcaggtact gatgtttgaa gtccgtgtcg 6000 tegeaggege cetgttecca cagegtgaag teggtgeget ttttetgeet gggattgggg 6060 agggcgaagg tgacatcgtt aaagagtatt ttcccggcgc ggggcatgaa gttgcgagag 6120 atcetgaagg geeegggeae gteegagegg ttgttgatga eetgegeege eaggaegate 6180 tegtegaage egttgatgtt gtgacccacg atgtaaagtt egatgaageg eggetgteee 6240 ttgagggccg gcgctttttt caactcctcg taggtgagac agtccggcga ggagagaccc 6300 ageteagece gggeceagte ggagagttga ggattageeg caaggaagga getecataga 6360 tecaaggeca ggagagtttg caageggteg eggaactege ggaacttttt eeccaeggee 6420 attttctccg gtgtcactac gtaaaaggtg ttggggcggt tgttccacac gtcccatcgg 6480 agctctaggg ccagctcgca ggcttggcga acgagggtct cctcgccaga gacgtgcatg 6540 accagcataa agggtaccaa ctgtttcccg aacgagccca tccatgtgta ggtttctacg 6600 tegtaggtga caaagageeg etgggtgege gegtgggage egateggaaa gaagetgate 6660 tectgecace agetggagga atgggtgtta atgtggtgga agtagaagte eegeeggege 6720 acagagcatt cgtgctgatg tttgtaaaag cgaccgcagt agtcgcagcg ctgcacgctc 6780 6840 tgtatctcct gaacgagatg cgcttttcgc ccgcgcacca gaaaccggag ggggaagttg 6900 agacgggggg ctggtggggc gacatcccct tcgccttggc ggtgggagtc tgcgtctgcg

tectecttet	ctgggtggac	gacggtgggg	acgacgacgc	cccgggtgcc	gcaagtccag	6960
atctccgcca	cggaggggtg	caggcgctgc	aggaggggac	gcagctgccc	gctgtccagg	7020
gagtcgaggg	aagtcgcgct	gaggtcggcg	ggaagcgttt	gcaagttcac	tttcagaaga	7080
ccggtaagag	cgtgagccag	gtgcagatgg	tacttgattt	ccaggggggt	gttggatgaa	7140
gcgtccacgg	cgtagaggag	teegtgteeg	cgcggggcca	ccaccgtgcc	ccgaggaggt	7200
tttatctcac	tcgtcgaggg	cgaġcgccgg	ggggtagagg	cggctctgcg	ccggggggca	7260
gcggaggcag	aggcacgttt	tegtgaggat	tcggcagcgg	ttgatgacga	gcccggagac	7320
tgctggcgtg	ggcgacgacg	cggcggttga	ggtcctggat	gtgccgtctc	tgcgtgaaga	7380
ccaccggccc	ccgggtcctg	aacctaaaga	gagttccaca	gaatcaatgt	ctgcatcgtt	7440
aacggcggcc	tgcctgagga	tctcctgcac	gtcgcccgag	ttgtcctgat	aggcgatctc	7500
ggccatgaac	tgttccactt	cttcctcgcg	gaggtcaccg	tggcccgctc	gctccacggt	7560
ggcggccagg	tcgttggaga	tgcggcgcat	gagttgagag	aaggcgttga	ggccgttctc	7620
gttccacacg	cggctgtaca	ccacgtttcc	gaaggagtcg	cgcgctcgca	tgaccacctg	7680
ggccacgttg	agttccacgt	ggcgggcgaa	gacggcgtag	tttctgaggc	gctggaagag	7740
gtagttgagc	gtggtggcga	tgtgctcgca	gacgaagaag	tacataatcc	agcgccgcag	7800
ggtcatctcg	ttgatgtctc	cgatggcttc	gagacgctcc	atggcctcgt	agaagtcgac	7860
ggcgaagttg	aaaaattggg	agttgcgggc	ggccaccgtg	agttcttctt	gcaggaggcg	7920
gatgagatcg	gcgaccgtgt	cgcgcacctc	ctgttcgaaa	gcgccccgag	gcgcctctgc	7980
ttetteetee	ggctcctcct	cttccagggg	ctcgggttcc	tccggcagct	ctgcgacggg	8040
gacggggcgg	cgacgtcgtc	gtctgaccgg	caggcggtcc	acgaagcgct	cgatcatttc	8100
gccgcgccgg	cgacgcatgg	tctcggtgac	ggcgcgtccg	ttttcgcgag	gtcgcagttc	8160
gaagacgccg	ccgcgcagag	cgcccccgtg	cagggagggt	aagtggttag	ggccgtcggg	8220
cagggacacg	gcgctgacga	tgcattttat	caattgctgc	gtaggcacto	cgtgcaggga	8280
tctgagaacg	tcgaggtcga	cgggatccga	gaacttctct	aggaaagcgt	ctatccaatc	8340
gcaatcgcaa	ggtaagctga	gaacggtggg	tegetggggg	gcgttcgcgg	gcagttggga	8400
ggtgatgctg	ı ctgatgatgt	aattaaagta	ggcggtcttc	: aggcggcgga	tggtggcgag	8460
gaggaccac	tctttgggc	: cggcctgttg	aatgcgcagg	cgctcggcca	tgccccaggc	8520
ctcgctctga	a cagcgacgca	ggtctttgta	gaagtettge	atcagtctct	ccaccggaac	8580

		•				
ctctgcttct	cccctgtctg	ccatgcgagt	cgagccgaac	ccccgcaggg	gctgcagcaa	8640
cgctaggtcg	gccacgaccc	tttcggccag	cacggcctgt	tgaatctgcg	tgagggtggc	8700
ctggaagtcg	tccaggtcca	cgaagcggtg	ataggccccc	gtgttgatgg	tgtaggtgca	8760
gttggccatg	acggaccagt	tgacgacttg	catgccgggt	tgggtgatct	ccgtgtactt	8820
gaggcgcgag	taggccctgg	actcgaacac	gtagtcgttg	catgtgcgca	ccagatactg	8880
gtagccgacc	aggaagtgag	gaggcggctc	tcggtacagg	ggccagccaa	cggtggcggg	8940
ggcgccgggg	gacaggtcgt	ccagcatgag	gcggtggtag	tggtagatgt	agcgggagag	9000
ccaggtgatg	ccggccgagg	tggttgcggc	cctggtgaat	tcgcggacgc	ggttccagat	9060
gttgcgcagg	ggaccaaagc	gctccatggt	gggcacgctc	tgccccgtga	ggcgggcgca	9120
atcttgtacg	ctctagatgg	aaaaaagaca	gggcggtcat	cgactccttt	ccgtagcttg	9180
gggggtaaag	tcgcaagggt	gcggcggcgg	ggaaccccgg	ttcgagaccg	gccggatccg	9240
ccgctcccga	tgcgcctggc	cccgcatcca	cgacgtccgc	gccgagaccc	agccgcgacg	9300
ctccgcccca	atacggaggg	gagtcttttg	gtgtttttc	gtagatgcat	ccggtgctgc	9360
ggcagatgcg	accccagacg	cccactacca	ccgccgtggc	ggcagtaaac	ctgagcggag	9420
gcggtgacag	ggaggaggaa	gagctggctt	tagacctgga	agagggagag	gggctggccc	9480
ggctgggagc	gccatcccca	gagagacacc	ctagggttca	gctcgtgagg	gacgccaggc	9540
aggcttttgt	gccgaagcag	aacctgttta	gggaccgcag	cggtcaggag	gcggaggaga	9600
tgcgcgattg	caggtttcgg	gcgggcagag	agctcagggc	gggcttcgat	cgggagcggc	9660
tcctgagggc	ggaggatttc	gagecegaeg	agcgttctgg	ggtgagcccg	gcccgcgctc	9720
acgtatcggc	ggccaacctg	gtgagegegt	acgagcagac	ggtgaacgag	gagcgcaact	9780
tccaaaagag	ctttaacaat	cacgtgagga	ccctgatcgc	gagggaggag	gtgaccatcg	9840
ggctgatgca	tctgtgggac	ttcgtggagg	cctacgtgca	gaacccggct	agcaaacccc	9900
tgacggccca	gctgttcctg	atcgtgcago	acageegega	caacgagacg	ttccgcgacg	9960
ccatgttgaa	catcgcggag	cccgagggtc	gctggctctt	ggatctgatt	aacatcctgc	10020
agagcatcgt	ggtgcaggag	aggggcctga	gtttagcgga	caaggtggcg	gccattaact	10080
attcgatgca	gagcctgggg	aagttctacg	ctcgcaagat	: ctacaagago	ccttacgtgc	10140
ccatagacaa	a ggaggtgaag	atagacagct	tttacatgcg	catggcgcte	g aaggtgctga	10200
cgctgagcga	e cgacctcggc	: gtgtaccgta	acgacaagat	ccacaaggc	g gtgagcgcca	10260
accaccaac	g ggagctgagc	gacagggag	tgatgcacaç	g cctgcagage	g gegetggegg	10320
		•				

gcgccgggga	cgaggagcgc	gaggcttact	tcgacatggg	agccgatctg	cagtggcgtc	10380
ccagcgcgcg	cgccttggag	gcggcgggtt	atcccgacga	ggaggatcgg	gacgatttgg	10440
aggaggcagg	cgagtacgag	gacgaagcct	gaccgggcag	gtgttgttt	agatgcagcg	10500
gccggcggac	gggaccaccg	cggatecege	acttttggca	tccatgcaga	gtcaaccttc	10560
gggcgtgacc	gcctccgatg	actgggcggc	ggccatggac	cgcatcatgg	cgctgaccac	10620
ccgcaacccc	gaggctttta	ggcagcaacc	ccaggccaac	cgtttttcgg	ccatcttgga	10680
agcggtggtg	ccgtcgcgca	ccaacccgac	gcacgagaaa	gtcctgacta	tcgtgaacgc	10740
cctggtagac	agcaaggcca	teegeegtga	cgaggcgggc	ttgatttaca	acgctctttt	10800
ggaacgcgtg	gcgcgctaca	acagcactaa	cgtgcagacc	aatctggacc	gcctcaccac	10860
cgacgtgaag	gaggcgctgg	cgċagaagga	gcggtttctg	agggacagta	atctgggctc	10920
tctggtggca	ctgaacgcct	tcctgagctc	acagccggcc	aacgtgcccc	gcgggcagga	10980
ggattacgtg	agcttcatca	gcgctctgag	actgctggtg	tccgaggtgc	cccagagcga	11040
ggtgtaccag	tctgggccgg	attacttttt	ccagacgtcc	cgacagggct	tgcaaacggt	11100
gaacctgact	caggccttta	aaaacttgca	aggcatgtgg	ggggtcaagg	ccccggtggg	11160
cgatcgcgcc	actatctcca	gtctgctgac	ccccaacact	cgcctgctgc	tgctcttgat	11220
cgcaccgttt	accaacagta	gcactatcag	ccgtgactcg	tacctgggtc	atctcatcac	11280
tctgtaccgc	gaggccatcg	gccaggctca	gatcgacgag	catacgtatc	aggagattac	11340
taacgtgagc	cgtgccctgg	gtcaggaaga	taccggcagc	ctggaagcca	cgttgaactt	11400
tttgctaacc	aaccggaggc	aaaaaatacc	ctcccagttc	acgttaagcg	ccgaggagga	11460
gaggattctg	cgatacgtgc	agcagtccgt	gagcctgtac	ttgatgcgcg	agggcgccac	11520
cgcttccacg	gctttagaca	tgacggctcg	gaacatggaa	ccgtcctttt	actccgccca	11580
ccggccgttc	attaaccgtc	tgatggacta	cttccatcgc	gcggccgcca	tgaacgggga	11640
gtacttcacc	aatgccatcc	tgaatccgca	ttggatgccc	ccgtccggct	tctacaccgg	11700
ggagtttgac	ctgcccgaag	ccgacgacgg	ctttctgtgg	gacgacgtgt	ccgatagcat	11760
tttcacgccg	gctaatcgcc	gattccagaa	gaaggagggc	ggagacgagc	teccette	11820
cagcgtggaa	gcggcctcaa	ggggagagag	tccctttcca	agtctgtctt	ccgccagtag	11880
cggtcgggta	acgcgtccac	ggttgccggg	ggagagcgac	tacctgaacg	accccttgct	11940
gcgaccggct	agaaagaaaa	attttcccaa	taacggggtg	gaaagcttgg	tggataaaat	12000

gaatcgt	tgg aag	gacgtac	g cccagg	agca	gcgg	jgagt	tgg	gagg	acag	tc a	gccg	eggee	12060
			c gtcgcc										12120
			g ggagcg										12180
			t aataaa										12240
			c tcttto					aga		aga	aga	gcg	12295
gtg aga Val Arc	gtc a y Val T	cg ccg hr Pro	gcg gcg Ala Ala 10	tat o	gag (Slu (Gly :	ccg Pro 15	ccc Pro	cct Pro	tct Ser	Tyr	gaa Glu 20	12343
agc gte Ser Va	g atg g L Met G	ga tca ly Ser 25	gcg aac Ala Asn	gtg d Val I	Pro 1	gcc : Ala ' 30	acg Thr	ctg Leu	gag Glu	gcg Ala	cct Pro 35	tac Tyr	12391 .
gtt cc Val Pr	o Pro A	ga tac rg Tyr 0	ctg gga Leu Gly	Pro ?	acg (Thr (45	gag Glu	Gly ggc	aga Arg	aac Asn	agc Ser 50	atc Ile	egt Arg	12439
tac tc Tyr Se	c gag c r Glu L 55	tg gcg eu Ala	ccc ctg Pro Leu	tac (Tyr 2 60	gat Asp	acc Thr	acc Thr	aag Lys	gtg Val 65	tac Tyr	ctg Leu	gtg Val	12487
gac aa Asp As 70	c aag t n Lys S	cg gcg er Ala	gac atc Asp Ile 75	gcc (tcc Ser	ctg Leu	aat Asn	tac Tyr 80	caa Gln	aac Asn	gat Asp	cac His	12535
agt aa Ser As 85	c ttt c n Phe I	tg act eu Thr	acc gtg Thr Val 90	gtg Val	cag Gln	aac Asn	aat Asn 95	gac Asp	ttc Phe	acc Thr	ccg Pro	acg Thr 100	12583
gag go Glu Al	g ggc a a Gly T	cg cag hr Gln 105	acc att Thr Ile	aac Asn	Phe	gac Asp 110	gag Glu	cgt Arg	tcc Ser	cgc Arg	tgg Trp 115	ggc Gly	12631
ggt ca Gly Gl	n Leu I	aaa acc Lys Thr 120	atc ctg Ile Leu	His	acc Thr 125	aac Asn	atg Met	ccc Pro	aac Asn	atc Ile 130	aac Asn	gag Glu	12679
ttc at Phe Me	g tcc a t Ser 7 135	acc aac Thr Asn	aag tto Lys Phe	agg Arg 140	gct Ala	aag Lys	ctg Leu	atg Met	gta Val 145	gaa Glu	aaa Lys	agt Ser	12727
aat go Asn Al	a Glu I	act cgg Thr Arg	cag ccc Gln Pro 155	Arg	tac Tyr	gag Glu	tgg Trp	ttc Phe 160	gag Glu	ttt Phe	acc Thr	att Ile	12775
cca ga Pro Gl 165	g ggc a u Gly A	aac tat Asn Tyr	tcc gaa Ser Glu 170	act Thr	atg Met	act Thr	atc Ile 175	Asp	ctc Leu	atg Met	aat Asn	aac Asn 180	12823

					tac Tyr											12871
					gtg Val											12919
					aag Lys											12967
gct Ala	ttt Phe 230	cac His	ccg Pro	gac Asp	atc Ile	gtg Val 235	ctg Leu	ctg Leu	ccg Pro	e T Å ååå	tgc Cys 240	ggt Gly	gtg Val	gac Asp	ttc Phe	13015
					agt Ser 250											13063
ttc Phe	caa Gln	gag Glu	ggc Gly	ttt Phe 265	caa Gln	atc Ile	atg Met	tat Tyr	gag Glu 270	gac Asp	ctg Leu	gag Glu	gga Gly	ggt Gly 275	aat Asn	13111
					gac Asp											13159
					aga Arg											13207
					ata Ile											13255
					aac Asn 330											13303
ttt Phe	ctg Leu	gct Ala	tac Tyr	aac Asn 345	tac Tyr	gga Gly	gac As p	ccc Pro	gag Glu 350	aaa Lys	gga Gly	gtg Val	aga Arg	tca Ser 355	tgg Trp	13351
					acg Thr											13399
					atg Met											13447
acc Thr	caa Gln 390	gtc Val	agc Ser	aac Asn	ttc Phe	ccg Pro 395	gtg Val	gtg Val	ggc Gly	acc Thr	gag Glu 400	ctg Leu	ctg Leu	ccc Pro	gtc Val	13495

cat gcc aag agc ttc tac aac gag cag gcc gtc tac tcg caa ctt att His Ala Lys Ser Phe Tyr Asn Glu Gln Ala Val Tyr Ser Gln Leu Ile 405 410 420	13543
cgc cag tcc acc gcg ctt acc cac gtg ttc aat cgc ttt ccc gag aac Arg Gln Ser Thr Ala Leu Thr His Val Phe Asn Arg Phe Pro Glu Asn 425 430 435	13591
cag att ctg gtg cgc cct ccc gct cct acc att acc acc gtc agt gaa Gln Ile Leu Val Arg Pro Pro Ala Pro Thr Ile Thr Thr Val Ser Glu 440 445 450	13639
aac gtt ccc gcc ctc aca gat cac gga acc ctg ccg ctg cgc agc agt Asn Val Pro Ala Leu Thr Asp His Gly Thr Leu Pro Leu Arg Ser Ser 455 460 465	13687
atc agt gga gtt cag cgc gtg acc atc acc gac gcc aga cgt cga acc Ile Ser Gly Val Gln Arg Val Thr Ile Thr Asp Ala Arg Arg Arg Thr 470 475 480	13735
tgc ccc tac gtt tac aaa gcg ctt ggc gtg gtg gct cct aaa gtt ctt Cys Pro Tyr Val Tyr Lys Ala Leu Gly Val Val Ala Pro Lys Val Leu 485 490 495 500	13783
tet agt ege ace tte taa aaacatgtee ateeteatet eteeegataa Ser Ser Arg Thr Phe 505	13831
caacaccggc tggggactgg gctccggcaa gatgtacggc ggagccaaaa ggcgctccag	13891
tcagcaccca gttcgagttc ggggccactt ccgcgctcct tggggagctt acaagcgagg	13951
actotogggt ogaacggotg tagacgatac catagatgcc gtgattgccg acgooogccg	14011
gtacaacccc ggaccggtcg ctagcgccgc ctccaccgtg gattccgtga tcgacagcgt	14071
ggtagccggc gctcgggcct atgctcgccg caagaggcgg ctgcatcgga gacgtcgccc	14131
caccgccgcc atgctggcag ccagggccgt gctgaggcgg gcccggaggg caggcagaag	14191
ggctatgcgc cgcgctgccg ccaacgccgc cgccgggagg gcccgccgac aggctgcccg	14251
ccaggctgcc gctgccatcg ctagcatggc cagacccagg agagggaacg tgtactgggt	14311
gcgtgattct gtgacgggag tccgagtgcc ggtgcgcagc cgacctcccc gaagttagaa	14371
gatccaagct gcgaagacgg cggtactgag tctccctgtt gttatcagcc caacatgagc	14431
aagcgcaagt ttaaagaaga actgctgcag acgctggtgc ctgagatcta tggccctccg	14491
gacgtgaagc cagacattaa gccccgcgat atcaagcgtg ttaaaaagcg ggaaaagaaa	14551
gaggaactcg cggtggtaga cgatggcgga gtggaattta ttaggagttt cgccccgcga	14611
cgcagggttc aatggaaagg gcggcgggta caacgcgttt tgaggccggg caccgcggta	14671

tacggcgacg	aggacatatt	ggaacaggcg	gctcaacaga	tcggagaatt	tgcctacgga	14791
aagcgttcgc	gtcgcgaaga	cctggccatc	gccttagaca	gcggcaaccc	cacgcccagc	14851
ctcaaacccg	tgacgctgca	gcaggtgctt	cccgtgagcg	ccagcacgga	cagcaagagg	14911
gggattaaga	gagaaatgga	agatctgcat	cccaccatcc	aactcatggt	ccctaaacgg	14971
cagaggctgg	aagaggtcct	ggagaagatg	aaagtggacc	ccagcataga	gccggatgta	15031
aaagtcagac	ctattaagga	agtągccccc	ggtcttgggg	tgcaaacggt	ggacattcaa	15091
atccccgtca	ccaccgcttc	aaccgccgtg	gaagctatgg	aaacgcaaac	ggagacccct	15151
gccgcgatcg	gtaccaggga	agtggcgttg	casacggagc	cttggtacga	atacgcagcc	15211
cctcggcgtc	agaggcgttc	cgctcgttac	ggeceegeca	acgccatcat	gccagaatat	15271
gcgctgcatc	cgtctattct	gcccactccc	ggataccggg	gtgtgacgta	tegecegtet	15331
ggaacccgcc	gccgaacccg	tegeegeege	cgctcccgtc	gegetetgge	ccccgtgtcg	15391
gtgcggcgtg	tgacccgccg	gggaaagaca	gtcgtcattc	ccaacccgcg	ttaccaccct	15451
agcatccttt	aataactctg	ccgttttgca	gatggctctg	acttgccgcg	tgcgccttcc	15511
cgttccgcac	tatcgaggaa	gatctcgtcg	taggagaggc	atgacgggca	gtggtcgccg	15571
gcgggctttg	cgcaggcgca	tgaaaggcgg	aattttaccc	gccctgatac	ccataattgc	15631
cgccgccatc	ggtgccatac	ccggcgttgc	ttcagtggcg	ttgcaagcag	ctcgtaataa	15691
ataaacaaag	gcttttgcac	ttatgacctg	gtcctgacta	ttttatgcag	aaagagcatg	15751
gaagacatca	attttacgtc	gctggctccg	cggcacggct	cgcggccgct	catgggcacc	15811
tggaacgaca	teggcaccag	tcagctcaac	gggggcgctt	tcaattgggg	gageetttgg	15871
agcggcatta	aaaactttgg	ctccacgatt	aaatcctacg	gcagcaaagc	ctggaacagt	15931
agtgctggtc	agatgctccg	agataaactg	aaggacacca	acttccaaga	aaaagtggtc	15991
aatggggtgg	tgaccggcat	ccacggcgcg	gtagatctcg	ccaaccaagc	ggtgcagaaa	16051
gagattgaca	ggcgtttgga	aagctcgcgg	gtgccgccgc	agagaggga	tgaggtggag	16111
gtcgaggaag	tagaagtaga	ggaaaagctg	cccccgctgg	agaaagttcc	cggtgcgcct	16171
ccgagaccgc	agaagcggcc	caggccagaa	ctagaagaga	ctctggtgac	ggagagcaag	16231
gagectecet	cgtacgagca	agccttgaaa	gagggcgcct	ctccaccctc	ctacccgatg	16291
actaagccga	tegeacceat	ggctcgaccg	gtgtacggca	aggattacaa	gcccgtcacg	16351
ctagagctgc	cccaccgcc	ccccacgcgc	ccgaccgtcc	ccccctgcc	gactccgtcg	16411

gegge	ccgc	gg cg	ggad	ccgt	t gto	ccgca	acca	tcc	gctgi	tgc :	ctct	gccaq	ac c	gccc	gtcca	16471
															gcacg	16531
															attaa	16591
															acgag	16651
tgac	tgtc	gc c	gcga	gcgc	c gc	tțte	aag	atg Met	gcc Ala	acc Thr	Pro	tcg Ser 1 510	atg Met :	atg Met	ccg Pro	16704
Gln	tgg Trp 515	tct Ser'	tac : Tyr 1	atg Met 1	His	atc o Ile 2 520	gcc Ala	ggc Gly	cag Gln	gac Asp	gcc Ala 525	tcg Ser	gag Glu	tac Tyr	ctg Leu	16752
agt Ser 530	ccc Pro	ggc Gly	ctc Leu	Val	cag Gln 535	ttt Phe	gcc Ala	cgc Arg	gcc Ala	acc Thr 540	gac Asp	acc Thr	tac Tyr	ttc Phe	agc Ser 545	16800
ttg Leu	gga Gly	aac Asn	aag Lys	ttt Phe 550	aga Arg	aac Asn	ccc Pro	acc Thr	gtg Val 555	gcc Ala	ccc Pro	acc Thr	cac His	gat Asp 560	gtg Val	16848
acc Thr	acg Thr	gac Asp	cgc Arg 565	tcg Ser	cag Gln	agg Arg	ctg Leu	acc Thr 570	ctg Leu	cgc Arg	ttt Phe	gtg Val	ccc Pro 575	gta Val	gac Asp	16896
cgg Arg	gag Glu	gac Asp 580	acc Thr	gcg Ala	tac Tyr	tct Ser	tac Tyr 585	aaa Lys	gtg Val	cgc Arg	tac Tyr	acg Thr 590	ttg Leu	gcc Ala	gta Val	16944
G] À GGÀ	gac Asp 595	aac Asn	cga Arg	gtg Val	ctg Leu	gac Asp 600	atg Met	gcc Ala	agc Ser	acc Thr	tac Tyr 605	ttt Phe	gac Asp	atc Ile	Arg	16992
ggg Gly 610	gtg Val	ctg Leu	gat Asp	cgg Arg	ggt Gly 615	ccc Pro	agc Ser	ttc Phe	aag Lys	ccc Pro 620	tat Tyr	tcc Ser	Gly	acc Thr	gct Ala 625	17040
tac Tyr	aac Asn	tcc Ser	ctg Leu	gcc Ala 630	ccc Pro	aag Lys	gga Gly	gct Ala	ccc Pro 635	Asn	Pro	tcg Ser	gaa Glu	tgg Trp 640	TITE	17088
gac Asp	act Thr	tcc Ser	gac Asp 645	aac Asn	aaa Lys	ctt Leu	aaa Lys	gca Ala 650	Tyr	gct Ala	cag Gln	gct Ala	Pro 655	TÄT	cag Gln	17136
agt Ser	caa Gln	gga Gly 660	Leu	aca Thr	aag Lys	gat Asp	ggt Gly 665	, Ile	cag Gln	gtt Val	. ggg	cta Leu 670	Val	gtg Val	aca Thr	17184
gag Glu	tca Ser 675	Gly	caa Gln	aca Thr	ccc Pro	caa Gln 680	Туз	gca Ala	aac Asn	aaa Lye	gtg Val	Tyt	caa Gln	cco Pro	gag Glu	17232

cca	caa	att	ggg	gaa	aac	caa	tgg	aat	tta	gaa	caa	gaa Glu	gat Asn	aaa Tus	gcg	17280
690	GIN	TTE	GΤĀ	GIU	695	GIII	TTP	Veli	nea	700	0111	GIU	1.00	-1.	705	
gcg Ala	gga Gly	aga Arg	gtc Val	cta Leu 710	aag Lys	aaa Lys	gat Asp	acc Thr	cct Pro 715	atg Met	ttt Phe	ecc Pro	tgc Cys	tat Tyr 720	GJÀ āāā	17328
tca Ser	tat Tyr	gcc Ala	agg Arg 725	ccc Pro	aca Thr	aac Asn	gaa Glu	caa Gln 730	gga Gly	ejà aaa	cag Gln	gca Ala	aaa Lys 735	aac Asn	caa Gln	17376
gaa Glu	gta Val	gat Asp 740	tta Leu	cag Gln	ttt Phe	ttt Phe	gcc Ala 745	act Thr	ccg Pro	ggc Gly	gac Asp	acc Thr 750	cag Gln	aac Asn	acg Thr	17424
gct Ala	aaa Lys 755	gtg Val	gta Val	ctt Leu	tat Tyr	gct Ala 760	gaa Glu	aat Asn	gtc Val	aac Asn	ctg Leu 765	gaa Glu	act Thr	cca Pro	gat Asp	17472
act Thr 770	cac His	tta Leu	gtg Val	ttt Phe	aaa Lys 775	ccc Pro	gat Asp	gac Asp	gac Asp	agc Ser 780	acc Thr	agt Ser	tca Ser	aaa Lys	ctt Leu 785	17520
ctt Leu	ctt Le u	ggg Gly	cag Gln	cag Gln 790	gct Ala	gca Ala	cct Pro	aac Asn	aga Arg 795	ccc Pro	aac Asn	tac Tyr	ata Ile	ggt Gly 800	ttt Phe	17568
aga Arg	gat Asp	aat Asn	ttt Phe 805	att Ile	ggt Gly	tta Leu	atg Met	tac Tyr 810	tac Tyr	aat Asn	agc Ser	act Thr	gga Gly 815	aac Asn	atg Met	17616
ggc	gtg Val	ctg Leu 820	Ala	gga Gly	cag Gln	gct Ala	tct Ser 825	caa Gln	ttg Leu	aat Asn	gcc Ala	gta Val 830	gtc Val	gac Asp	ttg Leu	17664
cag Gln	gac Asp 835	aga Arg	aac Asn	acc Thr	gag Glu	ttg Leu 840	tcc Ser	tac Tyr	cag Gln	ctg Leu	atg Met 845	ctg Leu	gac Asp	gca Ala	ctg Leu	17712
820 813 838	gat Asp	c gc A rg	agc Ser	cga Arg	tat Tyr 855	ttt Phe	tca Ser	atg Met	tgg Trp	aat Asn 860	cag Gln	gca Ala	gta Val	gac Asp	agc Ser 865	17760
tat Tyr	gac Asp	cca Pro	gac Asp	gtt Val 870	Arg	att Ile	ata Ile	gaa Glu	aac Asn 875	cac His	gga Gly	gtg Val	gaa Glu	gac Asp 880	Glu	17808
ctg Leu	cca Pro	aac Asn	tat Tyr 885	Cys	ttt Phe	cct Pro	ctg Leu	gga Gly 890	Gly	atg Met	gtg Val	gtg Val	act Thr 895	gac Asp	aat Asn	17856
tac Tyr	aac Asn	tct Ser 900	Val	acg Thr	cct	caa Gln	aat Asn 905	gga Gly	Gly	agt Ser	gga Gly	aat Asn 910	Thr	tgg Trp	cag Gln	17904

Ala A	gac a Asp A 915	at a sn T	ct ac	ca tti nr Phe	agt Ser 920	caa Gln	aga Arg	gga Gly	gcg	cag Gln 925	att Ile	ggc Gly	tcc Ser	gga Gly	17952
aac a Asn I 930	atg t Met P	tt g he A	cc ct	ig gaa eu Gli 93!	ı Ile	aac Asn	cta Leu	cag Gln	gcc Ala 940	Asn	ctc Leu	tgg Trp	cgc Arg	ggc Gly 945	18000
ttc Phe	ttg t Leu I	at t Yr S	er A	at at sn Il	t ggg e Gly	ttg Leu	tat Tyr	ctt Leu 955	Pro	gac Asp	tct Ser	ctg Leu	aaa Lys 960	atc Ile	18048
acc Thr	ccc ç Pro <i>P</i>	Asp A	lac a Asn I 1865	tc ac le Th	g ctg r Leu	cca Pro	gaa Glu 970	Asn	aaa Lys	aac Asn	act Thr	tat Tyr 975	cag Gln	tac Tyr	18096
atg Met	Asn (ggt o Gly <i>P</i> 980	ege g Arg V	ta ac al Th	g cca r Pro	Pro 985	Gl3	g cto y Lev	ata 1 Ile	gac Asp	acc Thr 990	tat Tyr	gta Val	aac Asn	18144
gtg Val	ggc (Gly 1 995	gcg (Ala)	ege t Arg T	gg tc rp Se	c ccc r Pro 100	As	it gi sp Va	cc at	et A	ac ag sp Se 10	r I	tt a le A	ac c sn P	cc ttc ro Phe	18192
aac Asn 1010	His	cac His	cgt Arg	aac g Asn A	cg g la 0	gc t	tg (Leu i	ege i Arg :	Tyr 1	ege Arg 1020	tcc Ser	atg Met	ctc Leu	ttg Leu	18237
ggc Gly 1025	Asn	ggc Gly	cgt Arg	tat g Tyr V	tg (al I	ect 1 Pro 1	ttt Phe	cac a	Ile	cag Gln 1035	gtg Val	ccc Pro	caa Gln	aaa Lys	18282
ttc Phe 1040	Phe	gcc Ala	att Ile	aaa a Lys A	ac d sn 1	etg (Leu 1	ctg Leu	ctt Leu :	Leu	ccc Pro 1050	ggt Gly	tcc Ser	tat Tyr	acc Thr	18327
tat Tyr 105	Glu			ttc o		aag (Lys)	gat Asp	gtc Val .	Asn	atg Met 1065	atc Ile	ctg Leu	cag Gln	agc Ser	18372
tcg Ser 107	Leu	ggt Gly	aat Asn	gac (etg Leu : L075	cga Arg	gtg Val	gac Asp	Gly	gcc Ala 1080	agc Ser	ata Ile	cgc Arg	ttt Phe	18417
gac Asp 108	Ser	att : Ile	aac Asn	ctg '	tat Tyr 1090	gcc Ala	aac Asn	ttt Phe	ttt Phe	ccc Pro 1095	atg Met	gcc Ala	cac His	aac Asn	18462
acg Thr 110	Ala	c tct a Ser	acc Thr	ctg Leu	gaa Glu 1105	gcc Ala	atg Met	ctg Leu	cgc Arg	aac Asn 1110	gac Asp	acc Thr	aat Asn	gac Asp	18507
cag Gln 111	Sei	tto Phe	c aac e Asn	gac Asp	tac Tyr 1120	ctg Leu	tgc Cys	gcg Ala	gct Ala	aac Asn 1125	atg Me t	ctg Leu	tac Tyr	ccc Pro	18552

atc Ile 1130	ccc Pro	gcc Ala	aac Asn	gcc Ala	acc Thr 1135	agc Ser	gtg Val	ccc Pro	att Ile	tct Ser 1140	att Ile	cc t Pro	tct Ser	cgg Arg	18597
aac Asn 1145	tgg Trp	gct Ala	gcc Ala	ttc Phe	agg Arg 1150	ggc Gly	tgg Trp	agt Ser	ttt Phe	act Thr 1155	cgc Arg	ctc Leu	aaa Lys	acc Thr	18642
aag Lys 1160	Glu	act Thr	ccc Pro	tcg Ser	ctg Leu 1165	ggc	tcc Ser	ggt Gly	ttt Phe	gac Asp 1170	ccc Pro	tac Tyr	ttt Phe	gtt Val	18687
tac Tyr 1175	Ser	ggc	tcc Ser	att Ile	ccc Pro 1180	tac Tyr	cta Leu	gat Asp	ggc Gly	acc Thr 1185	ttt Phe	tac Tyr	ctc Leu	aac Asn	18732
cac His 1190	Thr	ttc Phe	aaa Lys	aag Lys	gtg Val 1195	Ser	att Ile	atg Met	ttt Phe	gac Asp 1200	tcc Ser	tcg Ser	gtt Val	agc Ser	18777
tgg Trp 1205	Pro	ggc Gly	aac Asn	gac Asp	cgc Arg 1210	Leu	cta Leu	acg Thr	ccc Pro	aac Asn 1215	gag Glu	ttc Phe	gaa Glu	att Ile	18822
aag Lys 1220	Arg	tcc Ser	gtg Val	gac Asp	ggt Gly 1225	gaa Glu	ggg Gly	tac Tyr	aac Asn	gtg Val 1230	gcc Ala	cag Gln	agc Ser	aac Asn	18867
atg Met 1235	Thr	aag Lys	gac Asp	tgg Trp	ttt Phe 1240	Leu	att Ile	caa Gln	atg Met	ctc Leu 1245	Ser	cac His	tat Tyr	aat Asn	18912
ata Ile 1250	Gly	tac Tyr	cag Gln	ggc	ttc Phe 1255	Tyr	gtg Val	ccc Pro	gag Glu	aac Asn 1260	Tyr	aag Lys	gac Asp	ege Arg	18957
atg Met 1265	Tyr	tcc Ser	ttc Phe	ttc Phe	cgc Arg 1270	Asn	ttc Phe	caa Gln	cca Pro	atg Met 1275	Ser	cgg Arg	cag Gln	gtg Val	19002
gta Val 1280	Asp	acc Thr	gtg Val	act Thr	tat Tyr 1285	Thr	gac Asp	tac Tyr	aaa Lys	gat Asp 1290	Val	aag Lys	ctc Leu	ccc Pro	19047
tac Tyr 1295	Glr	cac His	aac Asn	aac Asn	tca Ser 1300	Gly	ttc Phe	gtg Val	ggc Gly	tac Tyr 1305	Met	gga Gly	Pro	acc Thr	19092
atg Met 1310	Arg	gag Glu	gga Gly	cag Gln	gcc Ala 1315	Tyr	Pro	gcc Ala	aac Asn	tat Tyr 1320	Pro	tac Tyr	Pro	ctg Leu	19137
atc Ile 1325	Gly	gag Glu	act Thr	gec Ala	gta Val 1330	Pro	agc Ser	cto Lev	acg Thr	cag Gln 1335	Lys	aag Lys	tto Phe	: ctc : Leu	19182

tgc Cys 1340	gac Asp	cgg Arg	gtg Val	atg Met	tgg Trp 1345	agg Arg	ata Ile	ccc Pro	ttc Phe	tct Ser 1350		aac Asn			19227
tcg Ser 1355	atg Met	Gly ggc	tcc Ser	ctc Leu	acc Thr 1360	gac Asp	ctg Leu	GJÀ Gàà	cag Gln	aac Asn 1365	atg Met	ctg Leu	tac Tyr	gcc Ala	19272
aac Asn 1370	tcc Ser	gct Ala	cac His	gcc Ala	ttg Leu 1375	qzA	atg Met	act Thr	ttt Phe	gag Glu 1380	gtg Val	gat Asp	ccc Pro	atg Met	19317
gat Asp 1385	Glu	ccc Pro	acg Thr	ctt Leu	ctc Leu 1390	tat Tyr	gtt Val	ctg Leu	ttt Phe	gaa Glu 1395	gtc Val	ttc Phe	gac Asp	gtg Val	19362
gtg Val 1400	Arg	atc Ile	cac His	cag Gln	ccg Pro 1405	His	cg c Arg	ggc	gtc Val	atc Ile 1410	Glu	gcc Ala	gtc Val	tac Tyr	19407
ctg Leu 1415	Arg	aca Thr	cct Pro	ttc Phe	tct Ser 1420	Ala	ggt Gly	aac Asn	gcc Ala	acc Thr 1425	Thr		aga	agctgat	19456
gggt	tcca	gc g	aaca	ggag	t tgc	aggc	cat	tgtt	cgcg	ac ct	gggc	tgcg	ggc	cctgctt	19516
tttg	ggca	cc t	tcga	caag	c gtt	ttcc	cgg	atto	atgt	cc cc	ccac	aagc	cgg	cctgcgc	19576
cato	gtta	ac a	cggc	cgga	c ggg	agac	agg	gggg	gtgc	ac tg	gctc	gcct	tcg	cctggaa	19636
														ggctgaa	19696
gcag	atct	ac c	aatt	cgag	t acg	laggg	gct	cctc	aago	gc ag	ıcgct	ctgg	cct	ccacgcc	19756
cgad	cact	gc g	rtcac	cctg	g aaa	agto	cac	ccag	acgg	rtc ca	gggg	cccc	tct	eggeege	19816
ctgo	gggc	tt t	tctg	ttgc	a tgt	tttt	gca	cgcc	ttcg	jtg ca	ctgg	rccto	aca	ccccat	19876
ggaç	gegea	ac c	ccac	cato	g ato	tgct	cac	cgga	gtgo	cc a	cago	atgo	: tto	acagtcc	19936
cca	ggteg	jcc (ccac	ccto	rc gto	:gcaa	tca	ggad	ccaco	etg ta	atcgo	ettte	tg:	ggaaaca	19996
														gaaagcat	20056
														tctggcg	20116
														agggacac	20176
														ggcagggc	20236
						-								atcacgtc	20296
														cggaacac	20356
														gccgtcgg	20416
gtc	ggtc	acc	tccg	atgc	at cc	agat	cctc	ggc	attg	ctc a	gggc	gaac	g gg	gtcagctt	20476

gcacatctgc	cgcccgatct	ggggtaccag	gtcgcgcttg	ttgaggcagt	cgcagcgcag	20536
agggatgagg	atgcgacgct	gcccgcgttg	catgatgggg	taactcgccg	ccaggaactc	20596
ctctatctga	cggaaggcca	tctgggcctt	gacgccctcg	gtgaaaaata	gcccacagga	20656
cttgctggaa	aacacgttat	tgccacagtt	gatgtcttcc	gcgcagcagc	gcgcatcttc	20716
gttcttcagc	tgaaccacgt	tgcgacccca	gcggttctga	accaccttgg	ctttcgtggg	20776
atgeteette	agcgcccgct	gteegttete	gctggtcaca	tccatttcca	ccacgtgctc	20836
cttgcagacc	atctccactc	cgtggaaaca	gaacagaatg	ccctcctgtt	gggtattgcg	20896
atgctcccac	acggcgcacc	cggtggactc	ccagctcttg	tgtttcaccc	ccgcgtaggc	20956
ttccatgtaa	gccattagaa	atctgcccat	cagctcagtg	aaggtcttct	ggttggtgaa	21016
ggttagcggc	aggccgcggt	gttcctcgtt	caaccaagtt	tgacagatct	tgcggtacac	21076
ggctccctgg	tcgggcagaa	acttaaaagt	cgttctgctc	togttgtcca	cgtggaactt	21136
ctccatcaac	atcgtcatga	cttccatgcc	cttctcccag	gcagtcacca	geggegeget	21196
ctcggggttc	ttcaccaaca	cggcggtgga	ggggccctcg	ccggccccga	cgtccttcat	21256
ggacattttt	tgaaactcca	cggtgccgtc	cgcgcggcgt	actctgcgca	tcggagggta	21316
gctgaagccc	acctccatga	cggtgctttc	geectegetg	tcggagacga	tctccgggga	21376
gggcggcgga	acgggggcag	acttgcgagc	cttcttcttg	ggagggagcg	gaggcacctc	21436
ctgctcgcgc	tcgggactca	tctcccgcaa	gtagggggtg	atggagcttc	ctggttggtt	21496
ctgacggttg	gccattgtat	cctaggcaga	aagacatgga	gcttatgcgc	gaggaaactt	21556
taaccgcccc	gtcccccgtc	agcgacgaag	aggtcatcgt	cgaacaggac	ccgggctacg	21616
ttacgccgcc	cgaggatctg	gaggggccct	tagacgaccg	gcgcgacgct	agtgagcgg c	21676
aggaaaatga	gaaagaggag	gaggagggct	gctacctcct	ggaaggcgac	gttttgctaa	21736
agcatttcgc	caggcagagc	accatactca	aggaggcctt	gcaagaccgc	tccgaggtgc	21796
ccttggacgt	cgccgcgctc	tcccaggcct	acgaggcgaa	ccttttctcg	ccccgagtgc	21856
ctccgaagag	acagcccaac	ggcacctgcg	agcccaaccc	gcgactcaac	ttctaccccg	21916
tgttcgccgt	gcccgaggcg	ctggccacct	accacatctt	tttcaaaaac	cagcgcattc	21976
ccctttcctg	ccgggccaac	cgcaccgcgg	ccgataggaa	gctaacactc	agaaacggag	22036
tcagcatacc	tgatatcacg	tcactggagg	aagtgcctaa	gatcttcgag	ggtctgggtc	22096
gagatgagaa	gcgggcggcg	aacgctctgc	agaaagaaca	gaaagagagt	cagaacgtgc	22156

tggtggagct ggaggggac aacgcgcgtc tgaccgtcct caaacgttgc atagaagttt cccacttcgc ctacccggcc ctcaacctgc cgcccaaagt tatgaaatcg gtcatggacc 22276 agctactcat caagagaget gageeeetga ateeegaeea eeetgaggeg gaaaaeteag 22336 aggacggaaa gcccgtcgtc agcgacgagg agctcgagcg gtggctggaa accagggacc 22396 cccagcagtt gcaagaggg cgcaagatga tgatggcggc cgtgctggtc acggtggagc 22456 22516 tagaatgcct gcaacggttt ttcagcgacg tggagacgct acgcaaaatc ggggagtccc tgcactacac cttccgccag ggctacgttc gccaggcctg caaaatctcc aacgtagagc 22576 teageaacet ggttteetae atgggeatee teeacgagaa ceggetgggg cagagegtge 22636 tgcactgcac cttgcaagge gaggegegaa gggactaegt ccgagactge gtctacctct 22696 tecteacet cacetggeag acceceatgg gegtgtggea geagtgettg gaagagagaa 22756 acctcaaaga gctggacaaa ctcctctgcc gccagcggcg ggccctctgg accggcttca 22816 gegagegeae ggtegeetge geeetggeag acateatttt ceeagaaege etgatgaaaa 22876 cettgcagaa eggeetgeeg gattteatea gteagageat ettgcaaaae tteegeteet 22936 tegteetgga gegeteeggg atettgeeeg ccatgagetg egegetgeet tetgaetttg 22996 tececette etacegegag tgeeeteece caetgtggag ceaetgetae etettecaae 23056 23116 tggccaactt tctggcctac cactccgacc tcatggaaga cgtgagcgga gaggggctgc tegagtgeca etgeegetge aacetetgea ecceecacag ategetggee tgeaacaceg 23176 agctgetcag cgaaacccag gtcataggta ccttcgagat ccaggggccc cagcagcaag 23236 agggtgette eggettgaag etcaeteegg egetgtggae eteggettae ttaegeaaat 23296 ttgtagccga ggactaccac gcccacaaaa ttcagtttta cgaagaccaa tctcgaccac 23356 cgaaagcccc cctcacggcc tgcgtcatca cccagagcaa aatcctggcc caattgcaat 23416 ccatcaacca agcgcgccga gatttccttt tgaaaaaggg tcggggggtg tacctggacc 23476 cccagaccgg cgaggaactc aacccgtcca cactttccgt cgaagcagcc cccccgagac 23536 atgccaccca agggaaccgc caagcagctg atcgctcggc agagagcgaa gaagcaagag 23596 ctgctccagc agcaggtgga ggacgaggaa gagctgtggg acagccaggc agaggaggtg 23656 tcagaggacg aggaggagat ggaaagctgg gacagcctag acgaggagga cgagctttca 23716 gaggaagagg cgaccgaaga aaaaccacct gcatccagcg cgccttctct gagccgacag 23776 ccgaagcccc ggcccccgac gcccccggcc ggctcactca aagccagccg taggtgggac 23836 gccaccggat ctccagcggc agcggcaacg gcagcgggta aggccaaacg cgagcggcgg 23896

					a ca ct acaaa	23956
gggtattgct	cctggcggac	ccacaaaagc	agtategtga	actgettyca	acaccgcggg	
ggaaacatct	cctttgcccg	acgctacctc	ctcttccatc	acggtgtggc	cttccctcgc	24016
aacgttctct	attattaccg	tcatctctac	agcccctacg	aaacgctcgg	agaaaaagc	24076
taaggcctcc	tctgccgcga	ggaaaaactc	cgccgccgct	gccgccaagg	atccgccggc	24136
caccgaggag	ctgagaaagc	gcatctttcc	cactctgtat	gctatctttc	agcaaagccg	24196
cgggcagcac	cctcagcgcg	aactgaaaat	aaaaaaccgc	teetteeget	cactcacccg	24256
cagctgtctg	taccacaaga	gagaagacca	gctgcagcgc	accctggacg	acgccgaagc	24316
actgttcagc	aaatactgct	cagcgtctct	taaagactaa	aagacccgcg	ctttttcccc	24376
ctcgggcgcc	aaaacccacg	tcatcgccag	catgagcaag	gagattccca	ccccttacat	24436
gtggagctat	cagccccaga	tgggcctggc	cgcgggggcc	gcccaggact	actccagcaa	24496
aatgaactgg	ctcagcgccg	gccccacat	gatctcacga	gttaacggca	tecgagecca	24556
ccgaaaccag	atcctcttag	aacaggcggc	aatcaccgcc	acaccccggc	gccaactcaa	24616
cccgcccagt	tggcccgccg	cccaggtgta	tcaggaaact	ccccgcccga	ccacagtcct	24676
cctgccacgc	gacgcggagg	ccgaagtcct	catgactaac	tctggggtac	aattagcggg	24736
	tacgccaggt					24796
	attcgaggcc				•	24856
cggtctcaga	cctgacggag	tcttccagct	cggaggagcg	ggccgctctt	ccttcaccac	24916
tegecagge	: tacctgacco	tgcagagctc	ttcctcgcag	cegegeteeg	ggggaatcgg	24976
cactctccag	ttcgtggaag	agttcgtccc	ctccgtctac	ttcaacccgt	tttccggctc	25036
acctggacgo	tacccggacg	ccttcattcc	caactttgac	gcagtgagtg	aatccgtgga	25096
cggctacgad	tgatgacaga	tggtgcggcc	gtgagagctc	ggctgcgaca	tetgeateac	25156
tgccgccago	: ctcgctgcta	cgctcgggag	gcgatcgtgt	tcagctactt	tgagctgccg	25216
gacgagcaco	ctcagggaco	ggctcacggg	ttgaaactcg	agattgagaa	cgcgcttgag	25276
teteacetea	tcgacgcctt	caccgcccgg	cctctcctgg	tagaaaccga	acgcgggatc	25336
actaccatca	a ccctgttctq	g catctgcccc	e acgcccggat	tac atg aa Met Ly	ng atc tgt ys Ile Cys 1430	25391
gtt gtc at Val Val I	tc ttt gcg le Phe Ala 1435	ctc agt tta Leu Ser Leu	a ata aaa a n Ile Lys T 1440	ect gaa ctt Thr Glu Leu	ttt gcc Phe Ala 1445	25436

gta Val	cct Pro	tca Ser	acg Thr	cca Pro 1450	cgc Arg	gtt Val	gtt Val	tct Ser	cct Pro 1455	tgt Cys	gaa Glu	aaa Lys	acc Thr	cca Pro 1460	25481
gga Gly	gtc Val	ctt Leu	aac Asn	tta Leu 1465	cac His	ata Ile	gca Ala	aaa Lys	ccc Pro 1470	ttg Leu	tat Tyr	ttt Phe	acc Thr	ata Ile 1475	25526
gaa Glu	aaa Lys	caa Gln	cta Leu	gcc Ala 1480	ctt Leu	tca Ser	att Ile	gga Gly	aaa Lys 1485	Gly ggg	tta Leu	aca Thr	att Ile	tct Ser 1490	25571
gct Ala	aca Thr	gga Gly	cag Gln	ttg Leu 1495	gaa Glu	agc Ser	aca Thr	gca Ala	agc Ser 1500	gta Val	cag Gln	gac Asp	agc Ser	gct Ala 1505	25616
aca Thr	cca Pro	ccc Pro	cta Leu	cgt Arg 1510	ggt Gly	att Ile	tcc Ser	cct Pro	tta Leu 1515	aag Lys	ctg Leu	aca Thr	gac Asp	aac Asn 1520	25661
ggt Gly	tta Leu	aca Thr	tta Leu	agc Ser 1525	tat Tyr	tca Ser	gat Asp	ccc Pro	ctg Leu 1530	cgt Arg	gtg Val	gta Val	ggt Gly	gac Asp 1535	25706
caa Gln	ctt Leu	acg Thr	ttt Phe	aat Asn 1540	Phe	act Thr	tct Ser	cca Pro	cta Leu 1545	Arg	tac Tyr	gaa Glu	aat Asn	ggc Gly 1550	25751
agt Ser	ctt Leu	aca Thr	ttc Phe	aac Asn 1555	Tyr	act Thr	tct Ser	ccc Pro	atg Met 1560	Thr	cta Leu	ata Ile	aac Asn	aac Asn 1565	25796
agt Ser	ctt Leu	gct Ala	att Ile	aac Asn 1570	Val	aat Asn	acc Thr	tcc Ser	aaa Lys 1575	Gly	ctc Leu	agt Ser	agt Ser	gac Asp 1580	25841
aac Asn	ggc Gly	aca Thr	cto Leu	gct Ala 1585	Val	aat Asn	gtt Val	act Thr	cca Pro 1590	Asp	ttt Phe	aga Arg	ttt Phe	aac Asn 1595	25886
ago Sei	tct Ser	ggt	gcc Ala	tta Leu 1600	Thr	ttt Phe	ggc Gly	ata Ile	caa Gln 1605	Ser	cta Leu	tgg Trp	act Thr	ttt Phe 1610	25931
Pro	acc Thr	: aaa : Lys	act Thr	cct Pro 1615	Asn	tgt Cys	acc Thr	gto Val	ttt Phe 1620	Thi	gaa Glu	agt Ser	gac : gac	tcc Ser 1625	25976
cto Lei	g ctg 1 Leu	g agt i Sei	ctt Lev	tgc Cys 1630	Lev	act Thi	aaa Lys	tgo Cys	gga Gly 1635	Ala	cac His	gta Val	ctt . Leu	gga Gly 1640	26021
age Se:	gto Val	g agi . Se:	t tta r Lei	a agc 1 Ser 1645	Gl	gtg Val	g gca	a gga a Gly	a acc y Thr 1650	Met	g cta Lev	a aas 1 Lys	a atg Met	acc Thr 1655	26066

cac His	act Thr	tct Ser	gtt Val	acc Thr 1660	gtt Val	cag Gln	ttt Phe	tcg Ser	ttt Phe 1665	gat Asp	gac Asp	agt Ser	ggt Gly	aaa Lys 1670	26111
cta Leu	ata Ile	ttc Phe	tct Ser	cca Pro 1675	ctt Leu	gcg Ala	aac Asn	aac Asn	act Thr 1680	tgg Trp	ggt Gly	gtt Val	cga Arg	caa Gln 1685	26156
agc Ser	gag Glu	agt Ser	ccg Pro	ttg Leu 1690	ccc Pro	aac Asn	cca Pro	tcc Ser	ttc Phe 1695	aac Asn	gct Ala	ctc Le u	acg Thr	ttt Phe 1700	26201
atg Met	cca Pro	aac Asn	agt Ser	acc Thr 1705	att Ile	tat Tyr	tct Ser	aga Arg	gga Gly 1710	gca Ala	agt Ser	aac Asn	gaa Glu	cct Pro 1715	26246
caa Gln	aac Asn	aat Asn	tat Tyr	tat Tyr 1720	gtc Val	cag Gln	acg Thr	tat Tyr	ctt Leu 1725	Arg	ggc Gly	aac Asn	gtg Val	cga Arg 1730	26291
aag Lys	cca Pro	att Ile	cta Leu	cta Leu 1735	act Thr	gtt Val	acc Thr	tac Tyr	aac Asn 1740	Ser	gtt Val	aat Asn	tca Ser	gga Gly 1745	26336
tat Tyr	tcc Ser	tta Leu	act Thr	ttt Phe 1750	Lys	tgg Trp	gat Asp	gct Ala	gtc Val 1755	Ala	aat Asn	gaa Glu	aaa Lys	ttt Phe 1760	26381
gcc Ala	act Thr	cct Pro	aca Thr	tct Ser 1765	Ser	ttt Phe	tgc Cys	tat Tyr	gtt Val 1770	Ala	gag Glu	caa Gln	taa		26423
aac	cctg	tta	ccc	accgt	c tc	gttt	tttt	cag	atg Met		Arg	gcg	aga Arg	gtt Val	26474
gat Asp 178	Gl	a ga u As	c tt p Ph	c aac e Asn	cca Pro 178	Va	g ta l Ty	c cc r Pr	t tat o Tyr	gac Asp 179	Pr	c cc	a ta o Ty	c gct r Ala	26519
ccc Pro 179	Va	c at l Me	g co t Pr	c ttc o Phe	att Ile 180	Th	t co r Pr	g co	t ttt o Phe	acc Thr 180	: Se	r Se	g ga r As	t ggg p Gly	26564
ttg Leu 181	Gl	g ga n Gl	ia aa .u Ly	a cca 's Pro	ctt Leu 181	Gl	a gt y Va	g tt	a agt u Ser	tta Lev 182	ı As	c ta n Ty	r Ar	g gat g Asp	26609
ccc Pro 182	Il	t ac	t ac	a caa ar Glr	aat Asn 183	G1	g to y Se	t ct r Le	c acg	tta Lev 183	ı Ly	a ct 's Le	a gg u Gl	a aac y Asn	26654
ggc Gl ₃ 184	⁄ L∈	c ac	et ct ar Le	a aac eu Asr	aac Asr 184	G3	ig gg In Gl	ga ca .y Gl	ig tta .n Lei	a aca ı Thi 18!	c Se	a ac r Th	et go ar Al	ct ggc la Gly	26699

			ctc Leu 1860							26744
	Tyr		tta Leu 1875							26789
tca Ser 1885			ctt Leu 1890							26834
caa Gln 1900			att Ile 1905							26879
ctg Leu 1915	Gln		ccc Pro· 1920							26924
tta Leu 1930	Gln		cct Pro 1935							26969
ctg Leu 1945			ccc Pro 1950							27014
tta Leu 1960	Ala		ccc Pro 1965						ctg Leu	27059
acc Thr 1975	Leu		cct Pro 1980	Pro					cta Leu	27104
aca Thr 1990	Leu		gag Glu 1995	Pro						27149
	Leu		cgc Arg 2010	Pro			Asn			27194
	Leu		ccc Pro 2025	Pro						27239
gtt Val 2035	Leu		ttc Phe 2040	Thr						27284
ctc Leu 2050	Leu		atg Met 2055	Gly			Leu			27329

aaa Lys 2065	Leu				ttg Leu 2070	Gly					Phe			ggt Gly	27374
gcg Ala 2080	Ile	gcc Ala	gta Val	acg Thr	ctt Leu 2085	act	gcc Ala	gaa Glu	tta Leu	cct Pro 2090	ttg Leu	caa Gln	tac Tyr	act Thr	27419
aac Asn 2095	Lys				aat Asn 2100	Ile									27464
gcc Ala 2110	Ser				gat Asp 2115										27509
act Thr 2125	Trp				gca Ala 2130	Val									27554
caa Gln 2140					ggc Gly 2145										27599
aag Lys 2155	Pro				tgg Trp 2160										27644
tca Ser 2170					ttg Leu 2175										27689
aaa Lys 2185	Ser				gtg Val 2190										27734
aaa Lys 2200					aat Asn 2205								att Ile		27779
ata Ile 2215					aac Asn 2220	Gly									27824
ttt Phe 2230	gac Asp	aac Asn	gaa Glu	ej À aàc	acc Thr 2235	tta Leu	gct Ala	aac Asn	agc Ser	gcc Ala 2240	act Thr	tgg Trp	gga Gly	tac Tyr	27869
	Gln				gct Ala 2250										27914
ttt Phe 2260					agc Ser 2265	Arg									27959

att caa aat Ile Gln Ass 2275	caa tct Gln Ser	ttt tca Phe Ser 2280	tac a	acc tgt Thr Cys	att aa Ile Ly 2285	aa gga ys Gly	gat ttt Asp Phe	28004
gct atg cct Ala Met Pro 2290	gtc ccg Val Pro	ttc cgt Phe Arg 2295	gta a Val 1	aca tat Thr Tyr	aat ca Asn H 2300	ac gcc is Ala	ctg gaa Leu Glu	28049
ggg tat to Gly Tyr Se 2305	c ctt aag r Leu Lys	ttc acc Phe Thi 2310	tgg	cgc gtt Arg Val	gta go Val A 2315	cc aat la Asn	cag gcc Gln Ala	28094
ttt gat at Phe Asp Il 2320	t cct tgc e Pro Cys	tgt tca Cys Sei 2325	ttt Phe	tca tac Ser Tyr	atc a Ile T 2330	ca gaa hr Glu	taa	28136
aaaaccactt	tttcatttt	a atttct	ttt a	ttttacad	cg aaca	gtgaga	cttcctccac	28196
ccttccattt	gacagcata	c accage	etct c	cccttc	at agca	gtaaac	tgttgtgaat	28256
cagtccggta	tttgggagt	t aaaatc	caaa c	agtotot	tt ggtg	atgaaa	cgtcgatcag	28316
taatggacac	aaatccctg	g gacagg	tttt c	caacgtt	tc ggtg	aaaaac	tgcacaccgc	28376
cctacaaaac		-						28436
							acctctcggt	28496
							catgtatcat	28556
							tccggcaaga	28616
							tccagccaaa	28676
gctcattcgc	tccaacag	eg ccaccg	cgtg t	tccgtcca	ac ctta	actttaa	cataaatcag	28736
							ggcccctgtt	28796
							tggccatttt	28856
							gagagttaca	28916
							ctagatctaa	28976
							. cccaggccgt	29036
							tacaagatgg	29096
							a agtaccgaga	29156
							gatgattgta	
							g aaccgacgca	
							c acgtaacgcc	
							t tgtaatccac	

acagatecet eteggeetee gggg	tgatgc acacctcaas	a cotacagatg to	tcggtaca 29456
gttccaaaca cgtagtgagg gcga	gttcca accaagacag	g acageetgat et	atcccgac 29516
acactggagg tggaggaaga cacg	gaagag gcatgttat	t ccaagcgatt ca	ccaacggg 29576
tcgaaatgaa gatcccgaag atga	caacgg tcgcctccg	g agccctgatg ga	atttaaca 29636
gccagatcaa acgttatgcg attc	tccaag ctatcgatc	g ccgcttccaa aa	gagcctgg 29696
accegeactt ccacaaacac cage	aaagca aaagcacta	t tatcaaactc tt	caatcatc 29756
aagctgcagg actgtacaat gcct	aagtaa ttttcgttt	c tocactogog as	tgatgtcg 29816
cggcagatag tctgaaggtt catc	ccgtgc agggtaaaa	a gctccgaaag g	gegeeetet 29876
acagecatge gtagacacae cate	atgact gcaagatat	c gggctcctga ga	cacctgca 29936
gcagatttaa cagatcaagg tcag	gttgct ctccgcgat	c acgaatctcc at	ccgcaagg 29996
tcatttgcaa aaaattaaat aaat	ctatgc cgactagat	c tgtcaactcc go	cattaggaa 30056
ccaaatcagg tgtggctacg cago	acaaaa gttccaggg	a tggtgccaaa c	cactagaa 30116
ccgctcccga gtaacaaaac tgat	gaatgg gagtaacac	a gtgtaaaatg t	gcaaccaaa 30176
aatcactaag gtgctccttt aaaa	agteca gtactteta	t attcagtccg to	gcaagtact 30236
gaagcaactg tgcgggaata tgca	ıcaacaa aaaaaatag	g gcggctcaga t	acatgttga 30296
cctaaaataa aaagaatcat taaa	actaaag aagcttggc	g aacggtggga t	aaatgacac 30356
getecageag cagacaggea acco	ggetgte eeegggaac	c gcggtaaaat t	catccgaat 30416
gattaaaaag aacaacagaa actt	cccacc atgtactcg	g ttggatctcc t	gagcacaca 30476
gcaatacccc cctcacattc atgt	ccgcca cagaaaaaa	a acgtcccaga t	acccagcgg 30536
ggatatecaa egacagetge aaag	gacagca aaacaatco	c tctgggagcg a	tcacaaaat 30596
cctccggtga aaaaagcaca taca	atattag aataaccct	g ttgctggggc a	aaaaggccc 30656
ggcgtcccag caaatgcaca taaa	atatgtt catcagcca	it tgccccgtct t	accgcgtaa 30716
tcagccacga aaaaatcgag ctaa	aaattca cccaacago	c tatagetata t	atacactcc 30776
gcccaatgac gctaataccg cac	cacccac gaccaaagt	t cacccacace c	acaaaaccc 30836
gcgaaaatcc agcgccgtca gca	cttccgc aatttcagt	c tcacaacgtc a	cttccgcgc 30896
gccttttcac attcccacac acac	cccgcgc ccttcgcc	ce gee <mark>etege</mark> ge e	accccgcgt 30956
caccgcacgt caccccggcc ccg	ceteget ceteceego	ct cattatcata t	tggcacgtt 31016
tccagaataa ggtatattat tga	tgatg		31044

<210> 30 <211> 505

<212> PRT

<213> simian adenovirus SV-25

<400> 30

Met Arg Arg Ala Val Arg Val Thr Pro Ala Ala Tyr Glu Gly Pro Pro 1 5 10 15

Pro Ser Tyr Glu Ser Val Met Gly Ser Ala Asn Val Pro Ala Thr Leu 20 . 25 30

Glu Ala Pro Tyr Val Pro Pro Arg Tyr Leu Gly Pro Thr Glu Gly Arg
35 40 45

Asn Ser Ile Arg Tyr Ser Glu Leu Ala Pro Leu Tyr Asp Thr Thr Lys
50 55 60

Val Tyr Leu Val Asp Asn Lys Ser Ala Asp Ile Ala Ser Leu Asn Tyr 65 70 75 80

Gln Asn Asp His Ser Asn Phe Leu Thr Thr Val Val Gln Asn Asn Asp 85 90 95

Phe Thr Pro Thr Glu Ala Gly Thr Gln Thr Ile Asn Phe Asp Glu Arg

Ser Arg Trp Gly Gly Gln Leu Lys Thr Ile Leu His Thr Asn Met Pro 115 120 125

Asn Ile Asn Glu Phe Met Ser Thr Asn Lys Phe Arg Ala Lys Leu Met 130 135 140

Val Glu Lys Ser Asn Ala Glu Thr Arg Gln Pro Arg Tyr Glu Trp Phe 145 150 155 160

Glu Phe Thr Ile Pro Glu Gly Asn Tyr Ser Glu Thr Met Thr Ile Asp 165 170 175

Leu Met Asn Asn Ala Ile Val Asp Asn Tyr Leu Gln Val Gly Arg Gln 180 185 190

Asn Gly Val Leu Glu Ser Asp Ile Gly Val Lys Phe Asp Thr Arg Asn 195 200 205

Phe Arg Leu Gly Trp Asp Pro Val Thr Lys Leu Val Met Pro Gly Val 210 215 220

Tyr Thr Asn Glu Ala Phe His Pro Asp Ile Val Leu Leu Pro Gly Cys 225 230 235 240

Gly Val Asp Phe Thr Gln Ser Arg Leu Ser Asn Leu Leu Gly Ile Arg 245 250 255

Lys Arg Arg Pro Phe Gln Glu Gly Phe Gln Ile Met Tyr Glu Asp Leu 260 265 270

Glu Gly Gly Asn Ile Pro Ala Leu Leu Asp Val Ser Lys Tyr Glu Ala 275 280 285

Ser Ile Gln Arg Ala Lys Ala Glu Gly Arg Glu Ile Arg Gly Asp Thr 290 295 300

Phe Ala Val Ala Pro Gln Asp Leu Glu Ile Val Pro Leu Thr Lys Asp 305 310 315 320

Ser Lys Asp Arg Ser Tyr Asn Ile Ile Asn Asn Thr Thr Asp Thr Leu 325 330 335

Tyr Arg Ser Trp Phe Leu Ala Tyr Asn Tyr Gly Asp Pro Glu Lys Gly 340 345 350

Val Arg Ser Trp Thr Ile Leu Thr Thr Thr Asp Val Thr Cys Gly Ser 355 360 365

Gln Gln Val Tyr Trp Ser Leu Pro Asp Met Met Gln Asp Pro Val Thr 370 375 380

Phe Arg Pro Ser Thr Gln Val Ser Asn Phe Pro Val Val Gly Thr Glu 385 390 395 400

Leu Leu Pro Val His Ala Lys Ser Phe Tyr Asn Glu Gln Ala Val Tyr 405 410 415

Ser Gln Leu Ile Arg Gln Ser Thr Ala Leu Thr His Val Phe Asn Arg 420 425 430

Phe Pro Glu Asn Gln Ile Leu Val Arg Pro Pro Ala Pro Thr Ile Thr 435 440 445

Thr Val Ser Glu Asn Val Pro Ala Leu Thr Asp His Gly Thr Leu Pro 450 455 460

Leu Arg Ser Ser Ile Ser Gly Val Gln Arg Val Thr Ile Thr Asp Ala 465 470 475 480

Arg Arg Arg Thr Cys Pro Tyr Val Tyr Lys Ala Leu Gly Val Val Ala 485 490 495

Pro Lys Val Leu Ser Ser Arg Thr Phe 500 505

<210> 31

<211> 921

<212> PRT

<213> simian adenovirus SV-25

<400> 31

Met Ala Thr Pro Ser Met Met Pro Gln Trp Ser Tyr Met His Ile Ala 1 5 10 15

- Gly Gln Asp Ala Ser Glu Tyr Leu Ser Pro Gly Leu Val Gln Phe Ala 20 25 30
- Arg Ala Thr Asp Thr Tyr Phe Ser Leu Gly Asn Lys Phe Arg Asn Pro 35 40 45
- Thr Val Ala Pro Thr His Asp Val Thr Thr Asp Arg Ser Gln Arg Leu 50 55 60
- Thr Leu Arg Phe Val Pro Val Asp Arg Glu Asp Thr Ala Tyr Ser Tyr 65 70 75 80
- Lys Val Arg Tyr Thr Leu Ala Val Gly Asp Asn Arg Val Leu Asp Met 85 90 95
- Ala Ser Thr Tyr Phe Asp Ile Arg Gly Val Leu Asp Arg Gly Pro Ser 100 105 110
- Phe Lys Pro Tyr Ser Gly Thr Ala Tyr Asn Ser Leu Ala Pro Lys Gly 115 120 125
- Ala Pro Asn Pro Ser Glu Trp Thr Asp Thr Ser Asp Asn Lys Leu Lys 130 135 140
- Ala Tyr Ala Gln Ala Pro Tyr Gln Ser Gln Gly Leu Thr Lys Asp Gly 145 150 . 155 160
- Ile Gln Val Gly Leu Val Val Thr Glu Ser Gly Gln Thr Pro Gln Tyr 165 170 175
- Ala Asn Lys Val Tyr Gln Pro Glu Pro Gln Ile Gly Glu Asn Gln Trp
- Asn Leu Glu Gln Glu Asp Lys Ala Ala Gly Arg Val Leu Lys Lys Asp 195 200 205
- Thr Pro Met Phe Pro Cys Tyr Gly Ser Tyr Ala Arg Pro Thr Asn Glu 210 215 220
- Gln Gly Gly Gln Ala Lys Asn Gln Glu Val Asp Leu Gln Phe Phe Ala 225 230 235 240
- Thr Pro Gly Asp Thr Gln Asn Thr Ala Lys Val Val Leu Tyr Ala Glu 245 250 255
- Asn Val Asn Leu Glu Thr Pro Asp Thr His Leu Val Phe Lys Pro Asp 260 265 270
- Asp Asp Ser Thr Ser Ser Lys Leu Leu Gly Gln Gln Ala Ala Pro 275 280 285
- Asn Arg Pro Asn Tyr Ile Gly Phe Arg Asp Asn Phe Ile Gly Leu Met 290 295 300

Tyr Tyr Asn Ser Thr Gly Asn Met Gly Val Leu Ala Gly Gln Ala Ser 310 Gln Leu Asn Ala Val Val Asp Leu Gln Asp Arg Asn Thr Glu Leu Ser 330 Tyr Gln Leu Met Leu Asp Ala Leu Gly Asp Arg Ser Arg Tyr Phe Ser Met Trp Asn Gln Ala Val Asp Ser Tyr Asp Pro Asp Val Arg Ile Ile Glu Asn His Gly Val Glu Asp Glu Leu Pro Asn Tyr Cys Phe Pro Leu Gly Gly Met Val Val Thr Asp Asn Tyr Asn Ser Val Thr Pro Gln Asn Gly Gly Ser Gly Asn Thr Trp Gln Ala Asp Asn Thr Thr Phe Ser Gln Arg Gly Ala Gln Ile Gly Ser Gly Asn Met Phe Ala Leu Glu Ile Asn 425 Leu Gln Ala Asn Leu Trp Arg Gly Phe Leu Tyr Ser Asn Ile Gly Leu Tyr Leu Pro Asp Ser Leu Lys Ile Thr Pro Asp Asn Ile Thr Leu Pro Glu Asn Lys Asn Thr Tyr Gln Tyr Met Asn Gly Arg Val Thr Pro Pro 475 470 Gly Leu Ile Asp Thr Tyr Val Asn Val Gly Ala Arg Trp Ser Pro Asp 490 Val Met Asp Ser Ile Asn Pro Phe Asn His His Arg Asn Ala Gly Leu 505 Arg Tyr Arg Ser Met Leu Leu Gly Asn Gly Arg Tyr Val Pro Phe His 515 Ile Gln Val Pro Gln Lys Phe Phe Ala Ile Lys Asn Leu Leu Leu Pro Gly Ser Tyr Thr Tyr Glu Trp Asn Phe Arg Lys Asp Val Asn Met 550 545 Ile Leu Gln Ser Ser Leu Gly Asn Asp Leu Arg Val Asp Gly Ala Ser 570 Ile Arg Phe Asp Ser Ile Asn Leu Tyr Ala Asn Phe Phe Pro Met Ala 585 His Asn Thr Ala Ser Thr Leu Glu Ala Met Leu Arg Asn Asp Thr Asn 600 595

Asp Gln Ser Phe Asn Asp Tyr Leu Cys Ala Ala Asn Met Leu Tyr Pro Ile Pro Ala Asn Ala Thr Ser Val Pro Ile Ser Ile Pro Ser Arg Asn 630 635 Trp Ala Ala Phe Arg Gly Trp Ser Phe Thr Arg Leu Lys Thr Lys Glu Thr Pro Ser Leu Gly Ser Gly Phe Asp Pro Tyr Phe Val Tyr Ser Gly 665 Ser Ile Pro Tyr Leu Asp Gly Thr Phe Tyr Leu Asn His Thr Phe Lys 675 Lys Val Ser Ile Met Phe Asp Ser Ser Val Ser Trp Pro Gly Asn Asp Arg Leu Leu Thr Pro Asn Glu Phe Glu Ile Lys Arg Ser Val Asp Gly Glu Gly Tyr Asn Val Ala Gln Ser Asn Met Thr Lys Asp Trp Phe Leu 730 Ile Gln Met Leu Ser His Tyr Asn Ile Gly Tyr Gln Gly Phe Tyr Val 745 Pro Glu Asn Tyr Lys Asp Arg Met Tyr Ser Phe Phe Arg Asn Phe Gln 760 Pro Met Ser Arg Gln Val Val Asp Thr Val Thr Tyr Thr Asp Tyr Lys 775 Asp Val Lys Leu Pro Tyr Gln His Asn Asn Ser Gly Phe Val Gly Tyr 795 Met Gly Pro Thr Met Arg Glu Gly Gln Ala Tyr Pro Ala Asn Tyr Pro 805 Tyr Pro Leu Ile Gly Glu Thr Ala Val Pro Ser Leu Thr Gln Lys Lys 825 Phe Leu Cys Asp Arg Val Met Trp Arg Ile Pro Phe Ser Ser Asn Phe 835 Met Ser Met Gly Ser Leu Thr Asp Leu Gly Gln Asn Met Leu Tyr Ala 855 Asn Ser Ala His Ala Leu Asp Met Thr Phe Glu Val Asp Pro Met Asp 875 870 Glu Pro Thr Leu Leu Tyr Val Leu Phe Glu Val Phe Asp Val Val Arg 885 Ile His Gln Pro His Arg Gly Val Ile Glu Ala Val Tyr Leu Arg Thr 905

Pro Phe Ser Ala Gly Asn Ala Thr Thr 915 920

<210> 32

<211> 347

<212> PRT

<213> simian adenovirus SV-25

<400> 32

Met Lys Ile Cys Val Val Ile Phe Ala Leu Ser Leu Ile Lys Thr Glu
1 10 15

Leu Phe Ala Val Pro Ser Thr Pro Arg Val Val Ser Pro Cys Glu Lys
20 25 30

Thr Pro Gly Val Leu Asn Leu His Ile Ala Lys Pro Leu Tyr Phe Thr 35 40 45

Ile Glu Lys Gln Leu Ala Leu Ser Ile Gly Lys Gly Leu Thr Ile Ser 50 55 60

Ala Thr Gly Gln Leu Glu Ser Thr Ala Ser Val Gln Asp Ser Ala Thr 65 70 75 80

Pro Pro Leu Arg Gly Ile Ser Pro Leu Lys Leu Thr Asp Asn Gly Leu 85 90 95

Thr Leu Ser Tyr Ser Asp Pro Leu Arg Val Val Gly Asp Gln Leu Thr

Phe Asn Phe Thr Ser Pro Leu Arg Tyr Glu Asn Gly Ser Leu Thr Phe 115 120 125

Asn Tyr Thr Ser Pro Met Thr Leu Ile Asn Asn Ser Leu Ala Ile Asn 130 135 140

Val Asn Thr Ser Lys Gly Leu Ser Ser Asp Asn Gly Thr Leu Ala Val 145 150 155 160

Asn Val Thr Pro Asp Phe Arg Phe Asn Ser Ser Gly Ala Leu Thr Phe 165 170 175

Gly Ile Gln Ser Leu Trp Thr Phe Pro Thr Lys Thr Pro Asn Cys Thr 180 185 190

Val Phe Thr Glu Ser Asp Ser Leu Leu Ser Leu Cys Leu Thr Lys Cys 195 200 205

Gly Ala His Val Leu Gly Ser Val Ser Leu Ser Gly Val Ala Gly Thr 210 215 220

Met Leu Lys Met Thr His Thr Ser Val Thr Val Gln Phe Ser Phe Asp 225 230 235 240 Asp Ser Gly Lys Leu Ile Phe Ser Pro Leu Ala Asn Asn Thr Trp Gly 245 250 255

- Val Arg Gln Ser Glu Ser Pro Leu Pro Asn Pro Ser Phe Asn Ala Leu 260 265 270
- Thr Phe Met Pro Asn Ser Thr Ile Tyr Ser Arg Gly Ala Ser Asn Glu 275 280 285
- Pro Gln Asn Asn Tyr Tyr Val Gln Thr Tyr Leu Arg Gly Asn Val Arg 290 295 300
- Lys Pro Ile Leu Leu Thr Val Thr Tyr Asn Ser Val Asn Ser Gly Tyr 305 310 315
- Ser Leu Thr Phe Lys Trp Asp Ala Val Ala Asn Glu Lys Phe Ala Thr 325 . 330 335
- Pro Thr Ser Ser Phe Cys Tyr Val Ala Glu Gln 340 345

<210> 33

7

<211> 559

<212> PRT

<213> simian adenovirus SV-25

<400> 33

- Met Lys Arg Ala Arg Val Asp Glu Asp Phe Asn Pro Val Tyr Pro Tyr 1 5 10 15
- Asp Pro Pro Tyr Ala Pro Val Met Pro Phe Ile Thr Pro Pro Phe Thr 20 25 30
- Ser Ser Asp Gly Leu Gln Glu Lys Pro Leu Gly Val Leu Ser Leu Asn 35 40 45
- Tyr Arg Asp Pro Ile Thr Thr Gln Asn Gly Ser Leu Thr Leu Lys Leu 50 55 60
- Gly Asn Gly Leu Thr Leu Asn Asn Gln Gly Gln Leu Thr Ser Thr Ala
 65 70 75 80
- Gly Glu Val Glu Pro Pro Leu Thr Asn Ala Asn Asn Lys Leu Ala Leu 85 . 90 95
- Ala Tyr Ser Glu Pro Leu Ala Val Lys Ser Asn Arg Leu Thr Leu Ser 100 105 110
- His Thr Ala Pro Leu Val Ile Ala Asn Asn Ser Leu Ala Leu Gln Val 115 120 125
- Ser Glu Pro Ile Phe Val Asn Asp Asp Asp Lys Leu Ala Leu Gln Thr 130 135 140

Ala Ala Pro Leu Val Thr Asn Ala Gly Thr Leu Arg Leu Gln Ser Ala 150 Ala Pro Leu Gly Leu Val Glu Asn Thr Leu Lys Leu Leu Phe Ser Lys 170 Pro Leu Tyr Leu Gln Asn Asp Phe Leu Ala Leu Ala Ile Glu Arg Pro 185 Leu Ala Val Ala Ala Ala Gly Thr Leu Thr Leu Gln Leu Thr Pro Pro 200 Leu Lys Thr Asn Asp Asp Gly Leu Thr Leu Ser Thr Val Glu Pro Leu Thr Val Lys Asn Gly Asn Leu Gly Leu Gln Ile Ser Arg Pro Leu Val Val Gln Asn Asn Gly Leu Ser Leu Ala Ile Thr Pro Pro Leu Arg Leu 250 Phe Asn Ser Asp Pro Val Leu Gly Leu Gly Phe Thr Phe Pro Leu Ala Val Thr Asn Asn Leu Leu Ser Leu Asn Met Gly Asp Gly Val Lys Leu 280 Thr Tyr Asn Lys Leu Thr Ala Asn Leu Gly Arg Asp Leu Gln Phe Glu 290 Asn Gly Ala Ile Ala Val Thr Leu Thr Ala Glu Leu Pro Leu Gln Tyr Thr Asn Lys Leu Gln Leu Asn Ile Gly Ala Gly Leu Arg Tyr Asn Gly Ala Ser Arg Lys Leu Asp Val Asn Ile Asn Gln Asn Lys Gly Leu Thr 345 340 Trp Asp Asn Asp Ala Val Ile Pro Lys Leu Gly Ser Gly Leu Gln Phe Asp Pro Asn Gly Asn Ile Ala Val Ile Pro Glu Thr Val Lys Pro Gln 370 Thr Leu Trp Thr Thr Ala Asp Pro Ser Pro Asn Cys Ser Val Tyr Gln 390 Asp Leu Asp Ala Arg Leu Trp Leu Ala Leu Val Lys Ser Gly Asp Met Val His Gly Ser Ile Ala Leu Lys Ala Leu Lys Gly Thr Leu Leu Asn 420 Pro Thr Ala Ser Tyr Ile Ser Ile Val Ile Tyr Phe Tyr Ser Asn Gly 440

Val Arg Arg Thr Asn Tyr Pro Thr Phe Asp Asn Glu Gly Thr Leu Ala Asn Ser Ala Thr Trp Gly Tyr Arg Gln Gly Gln Ser Ala Asn Thr Asn 475 470 Val Thr Asn Ala Thr Glu Phe Met Pro Ser Ser Arg Tyr Pro Val 490 Asn Lys Gly Asp Asn Ile Gln Asn Gln Ser Phe Ser Tyr Thr Cys Ile 500 Lys Gly Asp Phe Ala Met Pro Val Pro Phe Arg Val Thr Tyr Asn His 525 520 Ala Leu Glu Gly Tyr Ser Leu Lys Phe Thr Trp Arg Val Val Ala Asn 535 Gln Ala Phe Asp Ile Pro Cys Cys Ser Phe Ser Tyr Ile Thr Glu <210> 34 <211> 34115 <212> DNA <213> simian adenovirus SV-39 <220> <221> CDS <222> (13448)..(14959) <223> L2 Penton <220> <221> CDS <222> (17785)..(20538) <223> L3 Hexon <220> <221> CDS <222> (29515)..(31116) <223> L5 Fiber #1 <400> 34 catcatcaat ataacaccgc aagatggcga ccgagttaac atgcaaatga ggtgggcgga 60 gttacgcgac ctttgtcttg ggaacgcgga agtgggcgcg gcgggtttcg gggaggagcg 120 cggggcgggg cgggcgtgtc gcgcggcggt gacgcgcgg ggacccggaa attgagtagt 180 ttttattcat tttgcaagtt tttctgtaca ttttggcgcg aaaactgaaa cgaggaagtg 240 aaaagtgaaa aatgccgagg tagtcaccgg gtggagatct gacctttgcc gtgtggagtt 300 tacccgctga cgtgtgggtt tcggtctcta ttttttcact gtggttttcc gggtacggtc 360

420 aaaggtcccc attttatgac tccacgtcag ctgatcgcta gggtatttaa tgcgcctcag 480 accytcaaga ggccactett gagtgeegge gagaagagtt tteteeteeg egtteegeea 540 actgtgaaaa aatgaggaac ttcttgctat ctccggggct gccagcgacc gtagccgccg agetgttgga ggacattgtt accggagete tgggagaega teetcaggtg attteteact 600 660 tttgtgaaga ttttagtctt catgatctct atgatattga tccgggtgtt gaggggcaag 720 aggatgaatg gctggagtct gtggatgggt tttttccgga cgctatgctg ctagaggctg atttgccacc acctcacaac tctcacactg agcccgagtc agctgctatt cctgaattgt 780 catcaggtga acttgacttg gcttgttacg agactatgcc tccggagtcg gatgaggagg 840 acagegggat cagegatece aeggetttta tggtetetaa ggegattget ataetaaaag 900 aagatgatga tggcgatgat ggatttcgac tggacgctcc ggcggtgccg gggagagact 960 1020 gtaagteetg tgaataccac cgggategta ceggagaece gtetatgttg tgttetetgt 1080 gttatctccg tcttaacgct gcttttgtct acagtaagtg ttttgtgctt ttttaccctg 1140 tggctttgtt gagtttattt ttttctgtgt ctcatagggt gttgtttatt ataggtcctg 1200 tttcagatgt ggaggaacct gatagtacta ctggaaatga ggaggaaaag ccctccccgc cgaaactaac tcagcgctgc agacctaata ttttgagacc ctcggcccag cgtgtgtcat 1260 eceggaaacg tgctgctgtt aattgcatag aagatttatt ggaagagccc actgaacett 1320 1380 tggacttgtc cttaaagcga ccccgcccgc agtagggcgc ggtgccagtt ttttctctct 1440 agetteeggg tgacteagtg caataaaaat tttettggca acaggtgtat gtgtttaett tacgggcggg aagggattag gggagtataa agctggaggg gaaaaatctg aggctgtcag 1500 1560 atcgagtgag aagttccatg gacttgtacg agagcctaga gaatctaagt tctttgcgac 1620 gtttgctgga ggaggcctcc gacagaacct cttacatttg gaggtttctg ttcggttccc 1680 ctctgagtcg ctttttgcac cgggtgaagc gagagcacct gacggaattt gatgggcttt tagagcaget geetggactg tttgattett tgaatetegg ceaceggacg etgetagagg 1740 1800 agaggetttt tecacaattg gaetttteet etecaggeeg tetgtgttea gegettgett 1860 ttgctgtaca tctgttggac agatggaacg agcagacgca gctcagcccg ggttacactc 1920 tggacttcct gacgctatgc ctatggaagt tcggaatcag gagggggagg aagctgtacg 1980 ggcgcttggt ggagaggcat ccgtctctgc gccagcagcg tctgcaagct caagtgctgc 2040 tgaggcggga ggatctggaa gccatttcgg aggaggagag cggcatggaa gagaagaatc 2100 cgagagcggg gctggaccct ccggcggagg agtagggggg ataccggacc cttttcctga

gttggctttg ggggcggtgg ggggcgcttc tgtggtacgt gaggatgaag aggggcgcca 2160 acgcggtcag aagagggagc attttgagtc ctcgactttc ttggctgatg taaccgtggc 2220 cctgatggcg aaaaacaggc tggaggtggt gtggtacccg gaagtatggg aggactttga 2280 2340 gaagggggac ttgcacctgc tggaaaaata taactttgag caggtgaaaa catactggat gaacccggat gaggactggg aggtggtttt gaaccgatac ggcaaggtag ctctgcgtcc 2400 2460 cgactgtcgc taccaggttc gcgacaaggt ggtcctgcga cgcaacgtgt acctgttggg 2520 caacggcgcc accgtggaga tggtggaccc cagaaggggt ggttttgtgg ccaatatgca agaaatgtgc cctggggtgg tgggcttgtc tggggtgact tttcatagtg tgaggtttag 2580 cggtagcaat tttgggggtg tggttattac cgcgaacact cctgtggtcc tgcataattg 2640 ctactttttt ggcttcagca acacctgtgt ggaaatgagg gtgggaggca aagtgcgcgg 2700 gtgttccttt tacgcttgct ggaagggggt ggtgagccag ggtaaggcta aagtgtctgt 2760 tcacaagtgt atgttggaga gatgcacctt gggcatttcc agtgagggct tectecacge 2820 cagcgacaac gtggcttctg acaacggctg cgcctttctt atcaagggag ggggtcgcat 2880 ctgtcacaac atgatatgcg gccctgggga tgtcccccca aagccttacc agatggttac 2940 ctgcacagat ggcaaggtgc gcatgctcaa gcctgtgcac attgtgggcc accggcgcca 3000 ccgctggcca gagtttgaac acaatgtgat gacccgctgt agcttgtacc tgggaggcag 3060 gegaggagtt ttettgeeca gacagtgtaa eetggeecae tgeaaegtga teatggaaca 3120 atccgccgct acccaggttt gctttggagg aatatttgat ataagcatgg tggtgtataa 3180 gatectgege tacgaegact gtegggeteg tactegaace tgegaetgeg gageetetea 3240 cctgtgtaac ctgactgtga tggggatggt gactgaggag gtgcgactgg accaetgtca 3300 gcactcttgc ctgcgggagg agttttcttc ctcggacgag gaggactagg taggtggttg 3360 gggcgtggcc agcgagaggg tgggctataa aggggaggtg tcggctgacg ctgtcttctg 3420 tttttcaggt accatgagcg gatcaagcag ccagaccgcg ctgagcttcg acggggccgt 3480 gtacagecee tttetgacgg ggcgettgee tgeetgggee ggagtgegte agaatgttae 3540 cggttcgacc gtggacggac gtcccgtgga tccatctaac gctgcttcta tgcgctacgc 3600 3660 tactatcago acatotacto tggacagogo cgotgoogoo gcagoogooa cotcagoogo teteteegee gecaagatea tggetattaa cecaageett tacageeetg tateegtgga 3720 3780 cacctcagcc ctggagcttt accggcgaga tctagctcaa gtggtggacc aactcgcagc

cgtgagccaa cagttgcagc tggtgtcgac ccgagtgga	ag caacttteee geeeteeca 3840	
gtaaccgcaa aaattcaata aacagaattt aataaacag)
tgtggttgac tttattcctg gatagctggg gggagggaa)
gtocatogtt cooggtogtt gagaacacgg tggatttt)
gtotgaacgt tgagatacat gggcatgago cogtotogg		0
agggcctcgt tttcaggggt ggtgttgtaa atgatccag		0
tggtgctgga agatgtcctt cagcagcaag ctgatggca		0
gtgttgacaa agcggttgag ttgggagggg tgcatgcg	gg gactgatgag gtgcattttg 426	0
gcctggatct tgaggttggc tatgttgccg cccagatc	gc gcctgggatt catgttatgc 4320	0
aagaccacca gcaccgagta accggtgcag cgggggaa	tt tgtcgtgcag cttggaaggg 438	0
aaagcgtgga agaatttgga gacccctcgg tgcccgcc	ta ggttttccat gcactcatcc 444	q
atgatgatgg cgatgggccc ccgggaggca gcctgggc	aa aaacgttgcg ggggtccgtg 450	0
acatcgtagt tgtggtcctg ggtgagttca tcatagga	ca ttttgacaaa gcgcgggcag 456	0
agggtcccag actggggaat gatggttcca tccggtcc	gg gggcgtagtt gccctcgcag 462	0
atttgcattt cccaggcttt gatttcagag ggagggat	ca tgtcaacctg gggggcgatg 468	0
aaaaaaatgg tototggggc gggggtgatg agotgggt	gg aaagcaggtt gcgcaagagc 474	0
tgtgacttgc cgcagccggt gggcccgtag atgacagc	eta tgacgggttg cagggtgtag 480	0
tttagagage tacaactgcc atcatcette aaaagegg	ggg ccacactgtt taaaagttct 486	50
ctaacatgta agttttcccg cactaagtcc tgcaggag	gac gtgaccctcc tagggagaga 492	20
agttcaggaa gcgaagcaaa gtttttaagt ggcttgag	ggc catcggccaa gggcaagttc 498	30
ctgagagttt gactgagcag ttccagccgg tcccagag	get eggttaegtg etetaeggea 504	10
totogatoca goagacotoc togtttoggg ggttgggg	gcg gctctggctg tagggaatga 510	00
ggcggtgggc gtccagctgg gccatggtgc ggtccctc	cca tgggcgcagg gttctcttca 516	60
gggtggtctc ggtcacggtg aatgggtggg ccccgggg	ctg ggcgctggcc agggtgcgct 522	20
tgaggctgag gcggctggtg gcgaaccgtt gcttttcg	gtc tccctgcaag tcagccaaat 528	80
agcaacggac catgagctca tagtccaggc tctctgc	gge atgtectttg gegegaaget 534	40
tgcctttgga aacgtgcccg cagtttgagc agagcaa	gca ttttagcgcg tagagttttg 540	00
gcgccaagaa cacggattcc ggggaataag catcccc		
cgcattccac cagccaggtc agctgaggat cttttgg	gtc aaaaaccaag cgcccgccgt 55	20

tttttttgat gcgcttccta cctcgggtct ccatgaggcg gtgcccgcgt tcggtgacga 5580 agaggetgte ggtgteteeg tagaeggagg teagggegeg eteeteeagg ggggteeege 5640 ggtcctcggc gtagagaaac tcgcaccact ctgacataaa cgcccgggtc caggctagga 5700 cgaatgaggc gatgtgggaa gggtaccggt cgttatcgat gagggggtcg gttttttcca 5760 aggtgtgcag gcacatgtcc cectcgtccg cttccaaaaa tgtgattggc ttgtaggtgt 5820 5880 aagtcacgtg atcctgtcct teegeggggg tataaaaggg ggegttteee eecteetegt cactetette eggttegetg tegecaaagg ceagetgttg gggtaegtaa aegegggtga 5940 aggogggcat gacotgtgcg otgaggttgt cagtttctat atacgaggaa gatttgatgg 6000 cgagcgcccc cgtggagatg cccttgaggt gctcggggcc catttggtca gaaaacacaa 6060 tetgteggtt atcaagettg gtggcaaaag accegtagag ggegttggag agcaacttgg 6120 cgatggagcg ctgggtttgg ttttttccc ggtcggcttt ttccttggcc gcgatgttga 6180 getggacgta ctccctggcc acgcacttcc agccgggaaa aacggccgtg cgctcgtccg 6240 gcaccagect caegetecat eegeggttgt gcagggtgat gaegtegatg etggtggeca 6300 ceteteegeg caggggeteg ttggteeage agaggegaee gecettgega gageagaagg 6360 ggggcagggg gtcaagcagg cgctcgtccg gggggtcggc gtcgatggta aagatggcgg 6420 gcagcaggtg tttgtcaaag taatcgatct gatgcccggg gcaacgcagg gcggtttccc 6480 agtocogcac ogccaaggog ogctogtatg gactgagggg ggcgccccag ggcatgggat 6540 gcgtcagggc cgaggcgtac atgccgcaga tgtcatagac gtaaaggggc tcctccagga 6600 cgccgaggta ggtggggtag cagcgcccc cgcggatgct ggcccgtacg tagtcgtaga 6660 gctcgtgcga gggggccaga aggtggcggc tgaggtgagc gcgctggggc ttttcatctc 6720 ggaagaggat ctgcctgaag atggcgtggg agttggagga gatggtgggc cgctgaaaaa 6780 tgttgaageg ggegteggge agacceaegg cetegeegat aaagtgggeg taggaetett 6840 geagetttte caccagggag geggtgacca geaegtecag agegeagtag tecagggttt 6900 6960 cccgcacgat gtcataatgc tetteetttt ttteetteca gaggtetegg ttgaagagat actettegeg gtettteeag tactettgga gaggaaacce gttttegtet ecaeggtaag 7020 agcccaacat gtaaaactgg ttgacggcct gatagggaca gcatcccttc tccacgggca 7080 gcgagtaggc cagggcggcc ttgcgcaggg aggtgtgagt cagggcaaag gtgtcgcgga 7140 ccataacttt tacaaactgg tacttaaagt cccggtcgtc gcacatgcct cgctcccagt 7200

ctgagtagtc tgtgcgcttt ttgtgcttgg ggttaggcag ggagtaggtg acgtcgttaa	7260
agaggatttt gccacatctg ggcataaagt tgcgagagat tctgaagggg ccgggcacct	7320
ccgagcggtt gttgatgact tgggcagcca ggagaatttc gtcgaagccg ttgatgttgt	7380
gececaegae gtagaaetet atgaaaegeg gagegeegeg eageaggggg caetttteaa	7440
gttgctggaa agtaagttcc cgcggctcga cgccgtgttc cgtgcggctc cagtcctcca	7500
ccgggtttcg ctccacaaaa tcctgccaga tgtggtcgac tagcaagagc tgcagtcggt	7560
cgcgaaattc gcggaatttt ctgccgatgg cttgcttctg ggggttcaag caaaaaagg	7620
tgtctgcgtg gtcgcgccag gcgtcccagc cgagctcgcg agccagattc agggccagca	7680
gcaccagage eggeteaceg gtgattttea tgacgaggag aaagggeace agetgtttte	7740
cgaacgcgcc catccaggtg taggtctcca cgtcgtaggt gagaaacaga cgttcggtcc	7800
gcgggtgcga tcccaggggg aaaaacttga tgggctgcca ccattgggag ctctgggcgt	7860
ggatgtgatg gaagtaaaag tcccggcggc gcgtggaaca ttcgtgctgg tttttgtaaa	7920
agcggccgca gtggtcgcag cgcgagacgg agtgaaggct gtgaatcagg tgaatcttgc	7980
gtcgctgagg gggccccaga gccaaaaagc ggagcgggaa cgaccgcgcg gccacttcgg	8040
cgtccgcagg caagatggat gagggttcca ccgttccccg cccgcggacc gaccagactt	8100
ccgccagctg cggcttcagt tcttgcacca gctctcgcag cgtttcgtcg ctgggcgaat	8160
cgtgaatacg gaagttgtcg ggtagaggcg ggaggcggtg gacttccagg aggtgtgtga	8220
gggccggcag gagatgcagg tggtacttga tttcccacgg atgacggtcg cgggcgtcca	8280
aggogaagag atgacogtgg ggcogoggcg coaccagogt toogoggggg gtotttatog	8340
gcggcgggga cgggctcccg gcggcagcgg cggctcggga cccgcgggca agtcgggcag	8400
cggcacgtcg gcgtggagct cgggcagggg ctggtgctgc gcgcggagct gactggcaaa	8460
ggctatcacc cggcgattga cgtcctggat ccggcggcgc tgcgtgaaga ccaccggacc	8520
cgtggtcttg aacctgaaag agagttcgac agaatcaatc tcggcatcgt taaccgcggc	8580
ctggcgcagg atttcggcca cgtccccgga gttgtcttga tacgcgattt ctgccatgaa	8640
ctggtcgatt tectetteet geaagtetee gtgaceggeg egttegaegg tggeegegag	8700
atcgttggag atgcggccca tgagctggga aaaggcattg atgccgacct cgttccacac	8760
teggetgtae accaectete egtgaaegte gegggegege ateaecaeet gggegagatt	8820
gagttccacg tggcgggcga aaaccggata gtttcggagg cgctgataca gatagttgag	8880
ggtggtggcg gcgtgctcgg ccacaaaaaa atacatgatc cagcggcgga gggtcagctc	8940

gttgatgtcg cccagcgcct ccaggcgttc catggcctcg taaaagtcca cggcaaagtt 9000 gaaaaattgg ctgttcctgg ccgagaccgt gagctcttct tccaagagcc gaatgagatc 9060 egecaeggtg geeetgaett egegttegaa ageceegggt geeteeteea eetetteete 9120 ctcgacttct tcgaccgctt cgggcacctc ctcttcctcg accaccacct caggcggggc 9180 teggeggege eggeggegga egggeaggeg gtegaegaaa egetegatea ttteceeeet 9240 ccgtcgacgc atggtctcgg tgacggcgcg accctgttcg cgaggacgca gggtgaaggc 9300 gecgeegeeg ageggaggta acagggagat eggggggegg tegtggggga gaetgaegge 9360 gctaactatg catctgatca atgtttgcgt agtgacctcg ggtcggagcg agctcagcgc 9420 9480 ttgaaaatcc acgggatcgg aaaaccgttc caggaacgcg tctagccaat cacagtcgca aggtaagetg aggacegtet egggggettg tetgttetgt etteeegegg tggtgetget 9540 9600 gatgaggtag ttgaagtagg cgctcttgag gcggcggatg gtggacagga gaaccacgtc tttgcgccca gcttgctgta tccgcaggcg gtcggccatg ccccacactt ctccttgaca 9660 geggeggagg teettgtagt attettgeat cageetttee aegggeaeet egtettette 9720 ttccgctcgg ccggacgaga gccgcgtcag gccgtacccg cgctgcccct gtggttggag 9780 cagggccagg tcggccacga cgcgctcggc cagcacggcc tgctggatgc gggtgagggt 9840 gtcctgaaag tcgtcgagat ccacaaagcg gtggtacgcg ccagtgttga tggtgtaggt 9900 geagttgete atgaeggace agtttaeggt etgggtgeea tggeecaegg tttecaggta 9960 gcggagacgc gagtaggccc gcgtctcgaa gatgtagtcg ttgcaggtcc gcagcaggta 10020 ctggtagccc accagcagat gcggcggcgg ctggcggtag aggggccacc gctgggtggc 10080 gggggcgttg ggggcgagat cttccaacat gaggcggtga tagccgtaga tgtagcgcga 10140 catccaagtg atgccgctgg ccgtggtgct ggcgcgggcg tagtcgcgaa cgcggttcca 10200 gatgtttege ageggetgga agtactegat ggtggggega etetgeeeeg tgaggeggge 10260 geagteggeg atgetetacg gggaaaaaga agggecagtg aacaacegee tteegtagee 10320 ggaggagaac gcaagggggt caaagaccac cgaggctcgg gttcgaaacc cgggtggcgg 10380 cocgaatacg gagggggtt ttttgctttt ttctcagatg catcccgtgc tgcggcagat 10440 gegteegaac geggggteec agteecegge ggtgeetgeg geegtgaegg eggettetae 10500 ggccacgtcg cgctccaccc cgcctaccac ggcccaggcg gcggtggctc tgcgcggcgc 10560 aggggaaccc gaagcagagg cggtgttgga cgtggaggag ggccaggggt tggctcggct 10620

gggggccctg	agtcccgagc	ggcacccgcg	cgtggctctg	aagcgcgacg	cggcggaggc	10680
gtacgtgccg	cggagcaatc	tgtttcgcga	ccgcagcggc	gaggaggccg	aggagatgcg	10740
agacttgcgt	tttcgggcgg	ggagggagtt	gcgtcacggg	ctggaccggc	agagggttct	10800
gagagaggag	gactttgagg	cggacgagcg	cacgggggtg	agtcccgcgc	gggctcacgt	10860
ggcggccgcc	aacctggtga	gcgcgtacga	gcagacggtc	aaggaggaga	tgaacttcca	10920
gaagagcttc	aatcatcacg	tgcgcacgct	gattgcgcgc	gaagaggtgg	ccatcggcct	10980
catgcatctg	tgggattttg	tggaggcgta	cgttcagaac	cccagcagca	agccgctgac	11040
ggctcagctg	ttcctcatcg	tgcaacatag	tcgagacaac	gaaacgttca	gggaggccat	11100
gctgaacatt	gcagagcctg	aggggcgctg	gctcttggat	ctcattaaca	tcttgcagag	11160
tatcgtagtg	caggagcgct	cgctgagcct	ggccgacaag	gtggctgcca	tcaactacag	11220
catgctgtcg	ctgggcaaat	tttacgcccg	caagatctac	aagtctccgt	tegtececat	11280
agacaaggag	gtgaagatag	acagetttta	catgcgcatg	gcgctcaagg	tgctgactct	11340
aagcgacgac	ctgggggtgt	accgcaacga	ccgcatacac	aaggcggtga	gcgccagccg	11400
ccggcgcgag	ctgagcgacc	gcgagctttt	gcacagcctg	catcgggcgt	tgactggtgc	11460
cggcagcgcc	gaggcggccg	agtactttga	cgccggagcg	gacttgcgct	ggcagccatc	11520
ccgacgcgcg	ctggaggcgg	ctggcgtcgg	ggagtacggg	gtcgaggacg	acgatgaagc	11580
ggacgacgag	ttgggcattg	acttgtagco	gtttttcgtt	: agatatgtcg	gcgaacgagc	11640
cgtctgcggc	cgccatggtg	acggcggcgg	gegegeeeea	ggacccggcc	acgcgcgcgg	11700
cgctgcagag	teageettee	ggagtgacgc	ccgcggacga	ctggtccgag	gccatgcgtc	11760
gcatcctggc	gctgacggcg	g cgcaaccccg	aggetttteg	g gcagcagccg	caggcaaacc	11820
ggtttgcggc	: cattttggaa	geggtggtge	cctccagaco	caaccccacc	: cacgaaaagg	11880
tgctggccat	. cgtcaacgcc	ctggcggaga	ccaaggccat	cegeccagae	gaggccgggc	11940
aggtttacaa	cgcgctgcta	a gaaagggtgg	gacgctacaa	a cagetecaac	gtgcagacca	12000
atctggaccg	, cttggtgacq	g gacgtgaagg	g aggccgtage	c ccagcgagag	g cggtttttca	12060
aggaagccaa	ı tetgggeteç	g ctggtggccd	tcaacgcct1	t cctgagcac	g ctgccggcga	12120
acgtgcccc	; cggtcagga	g gactacgtga	a actttctgaq	g egeceteege	ctgatggtgg	12180
ccgaggtgc	; gcagagcga	g gtgtaccagt	ctggcccca	a ctactactt	c cagacetece	12240
ggcagggcct	: gcagacggt:	a aacctgacg	e aggeettte	a gaacctgcaq	g ggcctttggg	12300
gggtgcgcg	tccgctggg	c gaccgcagc	a cggtgtcca	g cctgctgac	c cccaatgccc	12360

ggctgctctt gcttctcatt gctccgttca ccgacagcgg ttccatcagc cgcgactctt	12420
acctgggaca cctgctcacc ctgtaccggg aggccatcgg gcaggcgcgg gtggacgagc	12480
agacgtacca ggaaatcacc agcgtgagcc gcgcgctggg gcaggaggac acgggcagct	12540
tggaggcgac tctgaacttc ctgctgacca accggcggca gcgcctacct ccccagtacg	12600
egetgaaege ggaggaggag egeateetge gtttegtgea geagageaee gegetgtaet	12660
tgatgcggga aggcgcctct cccagcgctt cgctggacat gacggcggcc aacatggagc	12720
categiteta egeegeeaac egiceetieg teaacegget aaiggaetat tigeateggg	12780
cggcggccct gaacccggaa tactttacta acgtcatcct gaacgaccgt tggctgccac	12840
ctcccggctt ctacacgggg gagttcgacc tcccggaggc caacgacggt ttcatgtggg	12900
acgacgtgga cagcgtgttc ctgcccggca agaaggaggc gggtgactct cagagccacc	12960
gegegageet egeagaeetg ggggegaeeg ggeeegegte teegetgeet egeetgeega	13020
gegecageag egecagegtg gggegggtga geegteegeg eeteageggt gaggaggaet	13080
ggtggaacga tccgctgctc cgtccggccc gcaacaaaaa cttccccaac aacgggatag	13140
aggatttggt agacaaaatg aaccgttgga agacgtatgc ccaggagcat cgggagtggc	13200
aggogaggoa accoatgggo cotgttotgo ogcoototog gogocogogo agggaogaag	13260
acgeegaega tteageegat gaeageageg tgttggatet gggegggage gggaaceeet	13320
ttgcccacct gcaacctcgc ggcgtgggtc ggcggtggcg ctaggaaaaa aaattattaa	13380
aagcacttac cagagccatg gtaagaagag caacaaaggt gtgtcctgct ttcttcccgg	13440
tagcaaa atg cgt cgg gcg gtg gca gtt ccc tcc gcg gca atg gcg tta Met Arg Arg Ala Val Ala Val Pro Ser Ala Ala Met Ala Leu 1 5 10	13489
ggc ccg ccc cct tct tac gaa agc gtg atg gca gcg gcc acc ctg caa Gly Pro Pro Pro Ser Tyr Glu Ser Val Met Ala Ala Thr Leu Gln 15 20 . 25 30	13537
gcg ccg ttg gag aat cct tac gtg ccg ccg cga tac ctg gag cct acg Ala Pro Leu Glu Asn Pro Tyr Val Pro Pro Arg Tyr Leu Glu Pro Thr 35 40 45	13585
ggc ggg aga aac agc att cgt tac tcg gag ctg acg ccc ctg tac gac Gly Gly Arg Asn Ser Ile Arg Tyr Ser Glu Leu Thr Pro Leu Tyr Asp 50 55 60	13633
acc acc cgc ctg tac ctg gtg gac aac aag tca gca gat atc gcc acc Thr Thr Arg Leu Tyr Leu Val Asp Asn Lys Ser Ala Asp Ile Ala Thr 65 70 75	13681

ttg Leu	aac Asn 80	tac Tyr	cag Gln	aac Asn	gac Asp	cac His 85	agc Ser	aac Asn	ttt Phe	ctc Leu	acg Thr 90	tcc Ser	gtg Val	gtg Val	cag Gln	13729
aac Asn 95	agc Ser	gac Asp	tac Tyr	acg Thr	ccc Pro 100	gcc Ala	gaa Glu	gcg Ala	agc Ser	acg Thr 105	cag Gln	acc Thr	att Ile	aac Asn	ttg Leu 110	13777
gac Asp	gac Asp	cgc Arg	tcg Ser	cgc Arg 115	tgg Trp	ggc Gly	Gly ggg	gac Asp	ttg Leu 120	aaa Lys	acc Thr	att Ile	ctg Leu	cac His 125	act Thr	13825
aac 'Asn	atg Met	ccc Pro	aac Asn 130	gtg Val	aac Asn	gag Glu	ttc Phe	atg Met 135	ttt Phe	acc Thr	aac Asn	tcg Ser	ttc Phe 140	agg Arg	gct Ala	13873
aaa Lys	ctt Leu	atg Met 145	gtg Val	gcg Ala	cac His	gag Glu	gcc Ala 150	gac Asp	aag Lys	gac Asp	ccg Pro	gtt Val 155	tat Tyr	gag Glu	tgg Trp	13921
gtg Val	cag Gln 160	ctg Leu	acg Thr	ctg Leu	ccg Pro	gag Glu 165	ej A âââ	aac Asn	ttt Phe	tca Ser	gag Glu 170	att Ile	atg Met	acc	ata Ile	13969
gac Asp 175	Leu	atg Met	aac Asn	aac Asn	gcc Ala 180	att Ile	atc Ile	gac Asp	cac His	tac Tyr 185	ctg Le u	gcg Ala	gta Val	gcc Ala	aga Arg 190	14017
cag Gln	cag Gln	Gly	gtg Val	aaa Lys 195	Glu	agc Ser	gag Glu	atc Ile	ggc Gly 200	gtc Val	aag Lys	ttt Phe	gac Asp	acg Thr 205	cgc Arg	14065
Asn	Phe	Arg	Leu 210	Gly	Trp	Asp	Pro	Glu 215	Thr	Gly	Leu	. Val	220	PIO	GJÀ GGG	14113
gtg Val	tac Tyr	acg Thr 225	Asn	gaa Glu	gct Ala	ttc Phe	cat His 230	Pro	gac Asp	gtg Val	gto Val	ctc Leu 235	Leu	ccg Pro	Gly	14161
Cys	3 Gly 240	v Val	. Asp	Phe	Thr	Tyr 245	Ser	: Arg	, Leu	Asn	250	ı Leu)	Leu	. ст	: ata [,] Ile	14209
Arg 255	y Lys	Arç	Met	Pro	260	Gln	Glu	ı Gly	, Phe	265	i Ile	e Lev	тух	. GI	gac Asp 270	14257
Let	ı Glı	ı Gl	, Gl?	7 Asr 275	lle 5	Pro	Ala	a Let	1 Let 280	ı Asp)	Va.	l Pro) Ala	285		14305
gaç Gl:	g ago 1 Se:	e ato	gcc Ala 290	a Asr	gca n Ala	agg Arg	gaq Glu	g gcg 1 Ala 29	a Ala	g ato	age Are	g Gly	gat Asp 300	Ası	ttc n Phe	14353

gcg Ala	Ala	cag Gln 305	ccc Pro	cag Gln	gcg Ala	gct Ala	cca Pro 310	acc Thr	ata Ile	aaa Lys	ccc Pro	gtt Val 315	ttg Leu	gaa Glu	gac Asp	14401
tcc Ser	aaa Lys 320	Gly ggg	cgg Arg	agc Ser	tac Tyr	aac Asn 325	gta Val	ata Ile	gcc Ala	aac Asn	acc Thr 330	aac Asn	aac Asn	acg Thr	gct Ala	14449
tac Tyr 335	agg Arg	agc Ser	tgg Trp	tat Tyr	ctg Leu 340	gct Ala	tat Tyr	aac Asn	tac Tyr	ggc Gly 345	gac Asp	ccg	gag Glu	aag Lys	ggg Gly 350	14497
gtt Val	agg Arg	gcc Ala	tgg Trp	acc Thr 355	ctg Leu	ctc Leu	acc Thr	act Thr	ccg Pro 360	gac Asp	gtg Val	acg Thr	tgc Cys	ggt Gly 365	tca Ser	14545
gag Glu	cag Gln	gtc Val	tac Tyr 370	tgg Trp	tcg Ser	ctg Leu	cct Pro	gac Asp 375	atg Met	tac Tyr	gtg Val	gac Asp	cct Pro 380	gtg Val	acg Thr	14593
ttt Phe	cgc Arg	tcc Ser 385	Thr	cag Gln	caa Gln	gtt Val	agc Ser 390	Asn	tac Tyr	cca Pro	gtg Val	gtg Val 395	GTĀ	gcg Ala	gag Glu	14641
ctt Leu	atg Met 400	Pro	att Ile	cac His	agc Ser	aag Lys 405	Ser	ttt Phe	tac Tyr	aac Asn	gag Glu 410	cag Gln	gcc Ala	gtc Val	tac Tyr	14689
tca Ser 415	Gln	ctc	att Ile	cgt Arg	cag Gln 420	Thr	acc	gcc Ala	cta Leu	acg Thr 425	HIE	gtt Val	ttc Phe	aac Asn	cgc Arg 430	14737
ttc Phe	ccc Pro	gag Glu	aac Asn	caa Gln 435	Ile	cta Leu	gtç Val	g ega . Arg	cct Pro 440	Pro	gco Ala	g ccc	acc Thr	atc Ile 445	THE	14785
acc Thr	gto Val	ago Ser	gag Glu 450	ı Asr	gto Val	r ccc	gct Ala	cta Leu 455	ı Thr	gat Asp	cac His	s Gly	acg Thr 460	ьеи	cct Pro	14833
ttg Lev	g cag a Glr	aad Asi 465	ı Sei	ato	c cgc	gga g Gl	gti Va: 47	L Gli	n Arq	a gtt g Val	z acc	r Ile 475	e Thi	gac Asp	gcc Ala	14881
cgt Arç	cgt Are	y Ar	g aco	tgi Cy:	cco s Pro	tac Ty:	r Va.	c tac l Ty:	c aaa r Ly:	a gce s Ala	c tt a Le 49	n GT	a ato y Ile	gtg Val	g gcc L Ala	14929
ecq Pro 495	Ar	g ya.	c cto	g to u Se:	g agt r Se: 50	r Ar	c ac g Th	t tt r Ph	c ta e	g at	gtcc	atcc	tcai	ctc	ccc	14979
ca	gcaa	caat	acc	ggtt	ggg ·	gtct	gggc	gt g	acca	aaạt	g ta	cgga	ggcg	cca	aacgacg	15039
gtoccoacaa catocogtgo gagtgogogg goactttaga gooccatggg ggtogcacac]													15099			
gc	gcgg	gege	acc	ggcc	gaa	ccac	cgtc	ga c	gacg	tgat	c ga	tage	gtgg	tgg	ccgacgo	15159

ccccaactac	cagcccgctc	gaticcacggt	ggacgaagtc	atcgacggcg	tggtggccga	15219
						15279
	tacgcccgca					
cacggccgcc	atgaaagccg	ctcgctctct	gctgcgtcgc	gcacgtatcg	tgggtcgccg	15339
cgccgccaga	cgcgcagccg	ccaacgccgc	cgccggccga	gtgcgccgcc	gggccgccca	15399
gcaggccgcc	gccgccatct	ccagtctatc	cgccccccga	cgcgggaatg	tgtactgggt	15459
cagggactcg	gccaccggcg	tgcgagttcc	cgtgagaacc	cgtcctcctc	gtccctgaat	15519
aaaaagttct	aagcccaatc	ggtgttccgt	tgtgtgttca	gctcgtcatg	accaaacgca	15579
agtttaaaga	ggagctgctg	caagcgctgg	tccccgaaat	ctatgcgccg	gcgccggacg	15639
tgaaaccgcg	tcgcgtgaaa	cgcgtgaaga	agcaggaaaa	gctagagaca	aaagaggagg	15699
cggtggcgtt	gggagacggg	gaggtggagt	ttgtgcgctc	gttcgcgccg	cgtcggcgag	15759
tgaattggaa	ggggcgcaag	gtgcaacggg	tgctgcgtcc	cggcacggtg	gtgtctttca	15819
ccccgggtga	aaaatccgcc	tggaagggca	taaagcgcgt	gtacgatgag	gtgtacgggg	15879
acgaagacat	tctggagcag	gcgctggata	gaagcgggga	gtttgcttac	ggcaagaggg	15939
cgaggacggg	cgagatcgcc	atcccgctgg	acacttccaa	cccacccc	agtctgaaac	15999
ccgtgacgct	gcaacaggtg	ttgccggtga	gcgccccctc	gcgacgcggc	ataaaacgcg	16059
agggcggcga	getgeageee	accatgcagc	tcctggttcc	caagaggcag	aaactagagg	16119
acgtactgga	catgataaaa	atggageceg	acgtgcagcc	cgatattaaa	atccgtccca	16179
tcaaagaagt	ggcgccggga	atgggcgtgc	agaccgtgga	catccagatt	cccatgacca	16239
gcgccgcaca	ggcggtagag	gccatgcaga	ccgacgtggg	gatgatgacg	gacctgcccg	16299
cagctgctgc	: cgccgtggcc	agegeegega	cgcaaacgga	agccggcatg	cagaccgacc	16359
cgtggacgga	ggcgcccgtg	cagccggcca	gaagacgcgt	cagacggacg	tacggccccg	16419
tttctggcat	aatgccggag	tacgcgctgc	atccttccat	catccccacc	cccggctacc	16479
gggggcgcac	ctaccgtccg	cgacgcagca	ccactcgccg	ccgtcgccgc	acggcacgag	16539
tcgccaccg	c cagagtgaga	cgcgtaacga	cacgtcgcgg	ccgccgcttg	accetgeeeg	16599
tggtgcgcta	a ccatcccago	attcttaaa	aaaccgctcc	: tacgttgcag	atgggcaagc	16659
ttacttgtcg	g actccgtatg	gccgtgcccg	gctaccgagg	aagatcccgc	: cgacgacgga	16719
ctttgggagg	g cagcggtttg	cgccgccgtc	gggcggttca	ccggcgcctc	: aagggaggca	16779
ttctgccgg	c cctgatccc	: ataatcgccg	cagccatcgg	ggccattccc	ggaatcgcca	16839

gcgtagcggt gcaggctagc cagcgccact gattttacta accetgtcgg tcgcgccgtc	16899
totttoggca gactoaacgo coagoatgga agacatoaat ttotoctoto tggcocogog	16959
gcacggcacg cggccgtata tggggacgtg gagcgagatc ggcacgaacc agatgaacgg	17019
gggcgctttc aattggagcg gtgtgtggag cggcttgaaa aatttcggtt ccactctgaa	17079
aacttacggc aaccgggtgt ggaactccag cacggggcag atgctgaggg acaagctaaa	17139
ggacacgcag tttcagcaaa aggtggtgga cggcatcgct tcgggcctca acggcgccgt	17199
cgacctggcc aaccaggcca ttcaaaagga aattaacagc cgcctggagc cgcggccgca	17259
ggtggaggag aacctgcccc ctctggaggc gctgcccccc aagggagaga agcgcccgcg	17319
gcccgacatg gaggagacgc tagttactaa gagcgaggag ccgccatcat acgaggaggc	17379
ggtgggtage tegeagetge egteceteae getgaageee accacetate ecatgaceaa	17439
geceategee tecatggege geceegtggg agtegaceeg eccategacg eggtggeeae	17499
tttggacctg ccgcgccccg aacccggcaa ccgcgtgcct cccgtcccca tcgctccgcc	17559
ggtttetege ecegecatee geceegtege egtggecaet eceegetate egageegeaa	17619
cgccaactgg cagaccaccc tcaacagtat tgtcggactg ggggtgaagt ctctgaagcg	17679
ccgtcgctgt ttttaaagca caatttatta aacgagtagc cctgtcttaa tccatcgttg	17739
tatgtgtgcc tatatcacgc gttcagagcc tgaccgtccg tcaag atg gcc act ccg Met Ala Thr Pro 505	17796
tcg atg atg ccg cag tgg tcg tac atg cac atc gcc ggg cag gac gcc Ser Met Met Pro Gln Trp Ser Tyr Met His Ile Ala Gly Gln Asp Ala 510 . 515 520	17844
tcg gag tac ctg agc ccg ggt ctg gtg cag ttt gcc cgt gcg acg gaa Ser Glu Tyr Leu Ser Pro Gly Leu Val Gln Phe Ala Arg Ala Thr Glu 525 530 535	17892
acc tac ttc tca ctg ggc aac aag ttc agg aac ccc acc gtg gcg ccc Thr Tyr Phe Ser Leu Gly Asn Lys Phe Arg Asn Pro Thr Val Ala Pro 540 545 550	17940
acc cac gac gtc acc acc gat cgg tcc cag cga ctg aca atc cgc ttc Thr His Asp Val Thr Thr Asp Arg Ser Gln Arg Leu Thr Ile Arg Phe 560 565 570	17988
acc cac gac gtc acc acc gat cgg tcc cag cga ctg aca atc cgc ttc Thr His Asp Val Thr Thr Asp Arg Ser Gln Arg Leu Thr Ile Arg Phe	17988 18036

ttt Phe	gac Asp 605	atc Ile	ege Arg	ggc Gly	Val	atc Ile 610	gac Asp	cgc Arg	gga Gly	Pro	agc Ser 615	ttc Phe	aag Lys	cct Pro	tac Tyr	18132
tcc Ser 620	Gly	acg Thr	gct Ala	tac Tyr	aac Asn 625	tca Ser	ctg Leu	gct Ala	ccc Pro	aaa Lys 630	ej gaa	gcg Ala	ccc Pro	aac Asn	aac Asn 635	18180
agc Ser	caa Gln	tgg Trp	aac Asn	gcc Ala 640	aca Thr	gat Asp	aac Asn	GJ À āāā	aac Asn 645	aag Lys	cca Pro	gtg Val	tgt Cys	ttt Phe 650	gct Ala	18228
cag Gln	gca Ala	gct Ala	ttt Phe 655	ata Ile	ggt Gly	caa Gln	agc Ser	att Ile 660	aca Thr	aaa Lys	gac Asp	gga Gly	gtg Val 665	caa Gln	ata Ile	18276
cag Gln	aac Asn	tca Ser 670	gaa Glu	aat Asn	caa Gln	cag Gln	gct Ala 675	gct Ala	gcc Ala	gac Asp	aaa Lys	act Thr 680	tac Tyr	caa Gln	cca Pro	18324
gag Glu	cct Pro 685	caa Gln	att Ile	gga Gly	gtt Val	tcc Ser 690	acc Thr	tgg Trp	gat Asp	acc Thr	aac Asn 695	gtt Val	acc Thr	agt Ser	aac Asn	18372
gct Ala 700	Ala	gga Gly	cga Arg	gtg Val	tta Leu 705	aaa Lys	gcc Ala	acc Thr	act Thr	ccc Pro 710	atg Met	ctg Leu	cca Pro	tgt Cys	tac Tyr 715	18420
ggt Gly	tca Ser	tat Tyr	gcc Ala	aat Asn 720	ccc Pro	act Thr	aat Asn	cca Pro	aac Asn 725	ej gaa	ggt Gly	cag Gln	gca Ala	aaa Lys 730	Thr	18468
gaa Glu	gga Gly	gac Asp	att Ile 735	Ser	cta Leu	aac Asn	ttt Phe	tto Phe 740	Thr	aca Thr	act Thr	gcg Ala	gca Ala 745	gca Ala	gac Asp	18516
aat Asn	aat Asn	Pro 750	Lys	gtg Val	gtt Val	ctt Leu	Tyr 755	Ser	gaa Glu	gat Asp	gta Val	aac Asn 760	Leu	caa Gln	gcc Ala	18564
Pro	gat Asp 765	Thr	cac His	tta Leu	gta Val	tat Tyr 770	Lys	cca Pro	acg Thr	gtg Val	gga Gly 775	, Glu	aac Asn	gtt Val	atc Ile	18612
gcc Ala 780	Ala	gaa Glu	gco Ala	cto Leu	cta Leu 785	Thr	caç Glr	g caç n Glr	g gcg	tgt Cys 790	Pro	aac Asn	aga Arg	gca Ala	aac Asn 795	18660
tac Tyr	ata Ile	ggt Gly	tto Phe	cga Arg 800	Asp	aac Asn	ttt Phe	ato E Ile	ggt Gly 805	/ Leu	at <u>c</u> Met	g tat	tat Tyr	aac Asr 810	agc Ser	18708
aca Thi	ggç Gl	g aad 7 Asi	ato Met 815	: Gly	a gtt 7 Val	: ctç Lev	g gca L Ala	a ggt a Gly 820	y Gli	g gcc n Ala	tco Se	g cag r Glr	tta Lev 825	ı Ası	gca Ala	18756

gtt Val	gta Val	gac Asp 830	ctg Leu	caa Gln	gat Asp	cga Arg	aac Asn 835	acg Thr	gaa Glu	ctg Leu	tcc Ser	tat Tyr 840	cag Gln	cta Leu	atg Met	18804
cta Leu	gat Asp 845	gct Ala	ctg Leu	ggt Gly	gac Asp	aga Arg 850	act Thr	cga Arg	tat Tyr	ttc Phe	tca Ser 855	atg Met	tgg Trp	aat Asn	c a g Gln	18852
gcc Ala 860	gtg Val	gac Asp	agc Ser	tac Tyr	gat Asp 865	cca Pro	gac Asp	gtt Val	agg Arg	att Ile 870	atc Ile	gag Glu	aac Asn	cat His	ggg Gly 875	18900
gtg Val	gaa Glu	gac Asp	gag Glu	ctg Leu 880	ccc Pro	aat Asn	tac Tyr	tgt Cys	ttt Phe 885	cca Pro	ctc Leu	cca Pro	ej À dàc	atg Met 890	ggt Gly	18948
att Ile	ttt Phe	aac Asn	tcc Ser 895	tac Tyr	aag Lys	ggg ggg	gta Val	aaa Lys 900	Pro	caa Gln	aat Asn	ggc	ggt Gly 905	aat Asn	ggt Gly	18996
aac Asn	tgg Trp	gaa Glu 910	Ala	aac Asn	ej A aaa	gac As p	cta Leu 915	Ser	aat Asn	gcc Ala	aat Asn	gag Glu 920	atc Ile	gct Ala	tta Leu	19044
gga Gly	aac Asn 925	Ile	ttt Phe	gcc	atg Met	gaa Glu 930	Ile	aac Asn	ctc Leu	cac His	gca Ala 935	Asn	ctg Leu	tgg Trp	cgc Arg	19092
agc Ser 940	Phe	ttg Leu	tac Tyr	agc Ser	aat Asn 945	Val	gcg	ctg Lev	tac Tyr	ctg Leu 950	Pro	gac Asp	agc Ser	tat Tyr	aaa Lys 955	19140
ttc Phe	act Thr	ecc Pro	gct Ala	aac Asn 960	lle	act Thr	ctg : Leu	r ccc	gco Ala 965	. Asr	caa Glr	a aac n Asn	acc Thr	tac Tyr 970	gag Glu	19188
tat Tyr	ato Ile	aac Asr	ggg Gly 975	/ Arg	gto y Val	act Thi	tct Sei	980	Thi	c cto C Lev	g gto 1 Val	g gad L Asp	acc Thr 985	: Phe	gtt Val	19236
aac Asn	att Ile	gga Gly 990	y Ala	c cga	tgg Trp	tco Sei	995	c Asy	t cco	c ato Met	g gad E Asj	c aac p Asr 100) Vā	c aa al As	nc ccc sn Pro	19284
ttt Phe	aa o Asr 100	n H	at ca is Hi	ac co Ls Ai	gg aa rg As	sn A	eg 9 La 0 010	ggc (Gly)	ctc (Leu)	cgt (Arg :	ryr .	cgc Arg 1015	tcc Ser	atg Met	ctg Leu	19329
cto Lev	g gga 1 Gly 102	y A	at ge sn G	ga co ly A	gc gt rg Va	al V	tg (al :	cct Pro	ttc Phe	cac :	Ile	caa Gln 1030	gtg Val	ccg Pro	caa Gln	19374
aaa Ly:	a tti s Pho 103	e P	tc g he A	cg a la I	tt aa le Ly	ys A	ac sn 040	ctc Leu	ctg Leu	ctt Leu	Leu	ccc Pro 1045	ggc Gly	tcc Ser	tac Tyr	19419

Thr	tac Tyr 1050	gag Glu	tgg Trp	agc Ser	Phe	aga Arg 1055	aaa Lys	gac Asp	gtg Val	aac Asn	atg Met 1060	att Ile	ctg Leu	cag Gln	19464
agc Ser	acc Thr 1065	ctg Leu	ggc Gly	aat Asn	gat Asp	ctt Leu 1070	cga Arg	gtg Val	gac Asp	ggg	gcc Ala 1075	agc Ser	gtc Val	cgc Arg	19509
att Ile	gac Asp 1080	agc Ser	gtc Val	aac Asn	ttg Leu	tac Tyr 1085	gcc Ala	aac Asn	ttt Phe	ttc Phe	ccc Pro 1090	atg Met			19554
aac Asn	acc Thr 1095	gct Ala	tct Ser	acc Thr	ttg Leu	gaa Glu 1100	gcc Ala	atg Met	ctg Leu	cga Arg	aac Asn 1105	gac Asp	acc Thr	aac Asn	19599
	cag Gln 1110	tcg Ser	ttt Phe	aac Asn	gac Asp	tac Tyr 1115	ctc Leu	agc Ser	gcg Ala	gcc Ala	aac Asn 1120	atg Met	ctt Leu	tat Tyr	19644
ccc Pro	att Ile 1125	ccg Pro	gcc Ala	aac Asn	gcc Ala	acc Thr 1130	Asn	gtt Val	ccc Pro	att Ile	tcc Ser 1135	att Ile	ccc Pro	tcc Ser	19689
	aac Asn 1140	Trp	gcg Ala	gcc Ala	ttc Phe	cgg Arg 1145	Gly	tgg Trp	agc Ser	ttc Phe	acc Thr 1150	Arg	ctt Leu	aaa Lys	19734
	aag Lys 1155	Glu	acg Thr	cct Pro	tcc Ser	ttg Leu 1160	Gly	tcc Ser	Gly	ttt Phe	gac Asp 1165	Pro	tac Tyr	ttt Phe	19779
	tac Tyr 1170	Ser	ggc	acc	att Ile	cct Pro 1175	Tyr	: ctg : Lev	gac Asp	Gly	agc Ser 1180	Phe	tac Tyr	ctc Leu	19824
	cac His 1185	Thr	ttc Phe	aaa Lys	cgt Arg	ctg Leu 1190	Sei	ato Ile	ato Met	tto Phe	gat Asp 1195	Ser	tcc Ser	gta Val	19869
	tgg Trp 1200	Pro	Gl ⁷	aac Asn	gac Asp	cgc Arg 1205	Let	c cto 1 Lev	acq Thi	g cco	y aac Asn 1210	GIU	ttc Phe	gaa Glu	19914
att Ile	aag Lys 1215	Arg	: att	gtg Val	gac . Asp	ggg Gly 1220	Gl	a ggo	tac Tyl	c aac c Asr	gtg Val 1225	Ala	caa Glr	agt Ser	19959
	: atg 1 Met 1230	Thi	aaa Lys	a gad s Asp	tgg Tr	ttt Phe 123	Le	a ati u Ilo	t caa e Gli	a atq n Mei	g ctc t Leu 1240	Ser	cac His	tac Tyr	20004
	atc Ile 124	Gly	tac Y Ty:	c caa	r Gl	ttc y Phe 125	Ту	t gt r Va	t cc	c gae	g ggc u Gly 125	Tyı	aaq Ly:	g gat 3 Asp	20049

Arg	atg Met 1260	tat Tyr	tct Ser	t t c Phe	ttc Phe	cga Arg 1265	aac Asn	ttt Phe	cag Gln	ccc Pro	atg Met 1270	agc Ser	cgc Arg	cag Gln	20094
gtg Val	ccg Pro 1275	qzA	ccc Pro	acc Thr	gct Ala	gcc Ala 1280	GŢĀ	tat Tyr	caa Gln	gcc Ala	gtt Val 1285	ccc Pro	ctg Leu	ccc Pro	20139
aga Arg	caa Gln 1290	His	aac Asn	aac Asn	tcg Ser	ggc Gly 1295	ttt Phe	gtg Val	ggg Gly	tac Tyr	atg Met 1300	ggc Gly	ccg Pro	acc Thr	20184
atg Met	cgc Arg 1305	Glu	gga Gly	cag Gln	cca Pro	tac Tyr 1310	Pro	gcc Ala	aac Asn	tac Tyr	ccc Pro 1315	Tyr	CCC Pro	ctg Leu	20229
atc Ile	ggc Gly 1320	Ala	acc Thr	gcc Ala	gtc Val	ccc Pro 1325	ALa	att Ile	acc Thr	cag Gln	aaa Lys 1330	гÃа	ttt Phe	ttg Leu	20274
tgc Cys	gac Asp 1335	Arg	gtc Val	atg Met	tgg Trp	cgc Arg 1340	Ile	cct Pro	ttt Phe	tcc Ser	agc Ser 1345	ASII	ttt Phe	atg Met	20319
tca Ser	atg Met 1350	Gly	gcc Ala	ctg Leu	acc Thr	gac Asp 1355	Leu	gga Gly	cag Gln	aac Asn	: atg Met 1360	ьeu	tac Tyr	gct Ala	20364
aac Asn	tcc Ser 1365	Ala	cat His	gcc	ctg Leu	gat Asp 1370	Met	act Thr	ttt Phe	gag Glu	gtg Val 1375	ASD	Pro	atg Met	20409
aac Asn	gag Glu 1380	Pro	acg Thr	ttg Leu	ctg Lev	tac Tyr 1385	Met	ctt Lev	ttt Phe	gag Glu	g gtg 1 Val 1390	Pne	gac Asp	gtg Val	20454
gto Val	aga Arg 139	Va]	g cac L His	cag Glr	r ccg	cac His	Arg	ggt gGl	att / Ile	ato	gag Glu 140	WI	gto Val	g tac L Tyr	20499
-	g cgc 1 Arg 141	Th	c cc	tto Phe	tct Sei	gcg Ala 141	Gl	c aat y Asi	gco n Ala	a ac	c aca r Thr 142		a gc	eg ctgaa c	20548
tag	gctgg	ttt '	ttac	ccca	ga to	ccat	gggc	tcc	acgg	aag	acgaa	ctgc	g gg	ccattgtg	20608
cga	agacc	tgg	gctg	cgga	cc c1	tactt	cctg	ggc	acct	ttg	acaag	cggt	t to	ccgggttc	20668
gt	gtctc	ctc	gcaa	actc	ac a	tgcgc	gatc	gtg	aata	ccg	ccggc	cgag	a ga	ccggagga	20728
ga	gcatt	ggc	tagc	tc t g	gg c	tggaa	cccc	cgc	tcgt	cca	cgttt	ttcc	t gt	tegaecce	20788
tt	tggct	ttt	caga	ccaa	cg C	ttgaa	gcag	ato	tatg	cat	ttgaa	tatg	a gg	gtctactc	20848
aa	gcgaa	gcg	cgct	ggcc	tc c	tccgc	cgat	cac	tgtc	taa	ccctg	gtaa	a ga	gcactcag	20908
ac	ggtto	agg	gccc	tcac	ag c	gccgc	ctgt	ggc	cttt	ttt	gttgc	atgt	t tt	tgcacgco	20968

tttgtgaact ggccggacac ccccatggaa aacaacccca ccatggacct cctgactggc 21028 gttcccaact ccatgctcca aagccccagc gtgcagacca ccctcctcca aaaccagaaa 21088 aatctgtacg cotttctgca caagcactct coctactttc gccgccatcg ggaacaaata 21148 gaaaatgcaa ccgcgtttaa caaaactctg taacgtttaa taaatgaact ttttattgaa 21208 ctggaaaacg ggtttgtgat ttttaaaaat caaaggggtt gagctggaca tccatgtggg 21268 21328 aggccggaag ggtggtgttc ttgtactggt acttgggcag ccacttaaac tctggaatca caaacttggg cagcggtatt tctgggaagt tgtcgtgcca cagctggcgg gtcagctgaa 21388 gtgcctgcag aacatcgggg gcggagatct tgaagtcgca gtttatctgg ttcacggcac 21448 gegegttgeg gtacatggga ttggcacact gaaacaccag caggetggga ttettgatge 21508 tagccaggge cacggegteg gtcacgtcac eggtgtette tatgttggac agegaaaag 21568 gegtgaettt gcaaagetgg egteeegege gaggeaegea ateteeeagg tagttgeaet 21628 cacagoggat gggcagaaga agatgottgt ggccgcgggt catgtaggga taggccgctg 21688 ccataaaagc ttcgatctgc ctgaaagcct gcttggcctt gtgcccttcg gtataaaaaa 21748 caccgcagga ettgttggaa aaggtattac tggcgcaagc ggcatcgtga aagcaagcgc 21808 gtgcgtcttc gtttcgtaac tgcaccacgc tgcggcccca ccggttctga atcaccttgg 21868 ecetgeeggg gtttteettg agagegeget ggeeggette getgeecaca tecattteca 21928 cgacatgete ettgttaate atggccagae egtggaggea gegeagetee tegteategt 21988 cggtgcagtg atgctcccac acgacgcagc cagtgggctc ccacttgggc ttggaggcct 22048 cggcaatgcc agaatacagg agaacgtagt ggtgcagaaa acgtcccatc atggtgccaa 22108 22168 aggttttctg gctgctgaag gtcatcgggc agtacctcca gtcctcgtta agccaagtgt tgcagatctt cctgaagacc gtgtactgat cgggcataaa gtggaactca ttgcgctcgg 22228 22288 tettgtegat ettataettt tecateagae tatgeataat etceatgeee tttteecagg cgcaaacaat cttggtgcta cacgggttag gtatggccaa agtggttggc ctctgaggcg 22348 22408 gcgcttgttc ttcctcttga gccctctccc gactgacggg ggttgaaaga gggtgcccct tggggaacgg cttgaacacg gtctggcccg aggcgtcccg aagaatctgc atcgggggat 22468 tgctggccgt catggcgatg atctgacccc ggggctcctc cacttcgtcc tcctcgggac 22528 22588 tttcctcgtg cttttcgggg gacggtacgg gagtaggggg aagagcgcgg cgcgccttct tettgggegg cagtteegga geetgetett gaegaetgge cattgtette teetaggeaa 22648

gaaaaacaag atggaagact ctttctcctc ctcctcgtca acgtcagaaa gcgagtcttc 22708 caccttaagc gccgagaact cccagcgcat agaatccgat gtgggctacg agactccccc 22768 cgcgaacttt tcgccgcccc ccataaacac taacgggtgg acggactacc tggccctagg 22828 agacgtactg ctgaagcaca tcaggcggca gagcgttatc gtgcaagatg ctctcaccga 22888 gcgactcgcg gttccgctgg aagtggcgga acttagcgcc gcctacgagc gaaccctctt 22948 ctccccaaag actccccca agaggcagge taacggcacc tgcgagccta accctcgact 23008 caacttctac cctgcctttg ccgtgccaga ggtactggct acgtaccaca ttttttcca 23068 aaaccacaaa atccetetet cgtgccgcgc caaccgcacc aaagccgatc gcgtgctgcg 23128 actggaggaa ggggctcgca tacctgagat tgcgtgtctg gaggaagtcc caaaaatctt 23188 tgaaggtetg ggccgcgacg aaaagcgagc agcaaacgct ctggaagaga acgcagagag 23248 tcacaacagc gccttggtag aactcgaggg cgacaacgcc agactggccg tcctcaaacg 23308 gtccatagaa gtcacgcact tegectacee egeegttaae etecetecaa aagttatgae 23368 ageggteatg gactegetge teataaageg egeteageee ttagaceeag ageaegaaaa 23428 caacagtgac gaaggaaaac cggtggtttc tgatgaggag ttgagcaagt ggctgtcctc 23488 caacgacccc gccacgttgg aggaacgaag aaaaaccatg atggccgtgg tgctagttac 23548 23608 cgtgcaatta gaatgtctgc agaggttctt ttcccaccca gagaccctga gaaaagtgga ggaaacgctg cactacacat ttaggcacgg ctacgtgaag caagcctgca agatttccaa 23668 cgtagaactt agcaacctca tetectacet ggggatettg cacgaaaacc geeteggaca 23728 anacytycty cacagcacac tyaaayyaya aycceyccya yactatytyc yayactycyt 23788 gttcctagcg ctagtgtaca cctggcagag cggaatggga gtctggcagc agtgcctgga 23848 ggacgaaaac ctcaaagagc ttgaaaagct getggtgcgc tccagaaggg cactgtggac 23908 cagttttgac gagcgcaccg ccgcgcgaga cctagctgat attattttc ctcccaagct 23968 ggtgcagact ctccgggaag gactgccaga ttttatgagt caaagcatct tgcaaaactt 24028 ccgctctttc atcttggaac gctcgggaat cttgcccgcc actagctgcg ccctacccac 24088 agattttgtg cetetecaet accgegaatg eccaeegeeg etgtggeegt acaettaett 24148 gcttaaactg gccaactttc taatgttcca ctctgacctg gcagaagacg ttagcggcga 24208 ggggctgcta gaatgccact gccgctgcaa cctgtgcacc ccccaccgct ctctagtatg 24268 caacactccc ctgctcaatg agacccagat catcggtacc tttgaaatcc agggaccctc 24328 cgacgcggaa aacggcaagc aggggtctgg gctaaaactc acagccggac tgtggacctc 24388

				gaggaatta	aattttacga	24448
	cgcaaatttg					
aaaccaatca	aaaccaccca	aaagcgagtt	aacggcttgc	gtcattacgc	agagcagcat	24508
agttgggcag	ttgcaagcca	ttaacaaagc	gcggcaagag	tttctcctaa	aaaaaggaaa	24568
aggggtctac	ttggaccccc	agaccggcga	ggaactcaac	ggaccctcct	cagtcgcagg	24628
	catgccgccc					24688
	gagcagtgtg					24748
	agaggacacg					24808
	cccagccggc					24868
	aaaagccggg					24928
	aaaactgcat					24988
	acttgctttt					25048
					tgccggcggg	25108
	ctcagcgccc					25168
					: tgaaaataaa	25228
					g aagagcagct	25288
					a ccaccctaaa	25348
					c cgcgcgccaa	25408
					a tgggattagc	
					g ggccccacat	
					g aacaggctgc	
					g ccctggtgta	
					g cggaagtcca	
					a gagttcacgg	
					g gtgtccagct	
					t tecagetege	
					c agagetetge	
ctctcagc	et egeteggga	g gaatcggad	cc ccttcagtt	t gtggaggag	t ttgtgccct	
ggtctact	tt cagcctttc	t ccągatcgo	cc cggccagta	c ccggacga	gt tcatcccca	a 26068

cttcgacgcg gtgagtgact ctgtggacgg ttatgactga tgtcgagccc gcttcagtgc 26128 tagtggaaca agegeggete aateaectgg ttegttgeeg eegeegetge tgegtggete gcgacttgag cttagctctc aagtttgtaa aaaacccgtc cgaaaccggg agcgctgtgc 26248 acgggttgga gctagtgggt cctgagaagg ccaccatcca cgttctcaga aactttgtgg 26308 aaaaacccat tttggttaaa cgagatcagg ggccttttgt aatcagctta ctctgcacct 26368 gtaaccatgt tgaccttcac gactatttta tggatcattt gtgcgctgaa ttcaataagt 26428 aaagcgaatt cttaccaaga ttatgatgtc catgactgtt cctcgccact atacgatgtt 26488 gtgccagtaa actetettgt egacatetat etgaactgtt cettttggte egeacagett 26548 acttggtact acggtgacac cgtcctttct ggctcactgg gcagctcaca cggaataaca 26608 cttcacctct tttcgccgtt tcgatacgga aactacagct gtcgtgccgg tacctgcctc 26668 cacgttttca atcttcagcc ctgtccaccg accaaacttg tatttgtcga ctctaagcac ttacagetea actgcageat tetaggeece agtatettgt ggacatacaa taaaateagg 26788 ttggtggaat ttgtctacta cccacccagc gcccgcggtt ttggggaaat tcctttccag 26848 atctactaca actatcttgc cacacattat gcaagtcaac agcaactaaa cttgcaagca 26908 cccttcacgc caggagagta ctcctgtcac gtaggctcct gcacagaaac ttttattctc 26968 ttcaacagat cttctgccat tgaacgcttc actactaact actttagaaa ccaagttgtg 27028 cttttcactg acgaaacccc taacgtcacc ctggactgtg catgtttttc tcatgacacc 27088 gtaacttgga ctcttaacaa tactctctgg ctcgcgttcg ataaccaaag cttgattgtt 27148 aaaaattttg atttaacctt tactaaaccc tctcctcgcg aaatagttat ctttgctcct 27208 tttaatccaa aaactacctt agcctgtcag gttttgttta agccttgcca aacaaacttt 27268 aagtttgttt atttgcctcc gcaatctgtc aaactcatag aaaaatacaa caaagcgccc 27328 gtottggctc ctaaaacctt ctaccactgg ctaacctaca cggggctgtt tgcactaatt 27388 gtttttttcc taattaacat ttttatatgt ttcttgcctt cctccttctt ttcgcgaaca 27448 cegttgccgc agaaagacct ctccttatta ctgtagcgct tgctatacaa aaccaagagt 27508 ggtcaaccgt gctctcaatc tattttcaat ttttcatttt gtccttaata ctttctctta 27568 ttgtcgttaa caatgatctg gagcattggt ctcgcctttt tttggctgct tagtgcaaaa 27628 gccactattt ttcacaggta tgtggaagaa ggaactagca ccctctttac gatacctgaa 27688 acaattaagg cggctgatga agtttcttgg tacaaaggct cgctctcaga cggcaaccac 27748 tcattctcag gacagaccct ttgcatccaa gaaacttatt ttaaatcaga actacaatac 27808

agctgcataa aaaacttttt ccatctctac aacatctcaa aaccctatga gggtatttac aatgccaagg tttcagacaa ctccagcaca cggaactttt actttaatct gacagttatt aaagcaattt ccattectat etgtgagttt ageteccagt ttetttetga aacetaetgt 27988 ttaattacta taaactgcac taaaaatcgc cttcacacca ccataatcta caatcacaca 28048 caatcacctt gggttttaaa cctaaaattt tctccacaca tgccttcgca atttctcacg 28108 caagttaccg tototaacat aagcaagcag tttggotttt actatoottt coacgaactg 28168 tgcgaaataa ttgaagccga atatgaacca gactacttta cttacattgc cattggtgta 28228 atcgttgttt gcctttgctt tgttattggg gggtgtgttt atttgtacat tcagagaaaa 28288 atattgetet egetgtgete etgeggttac aaagcagaag aaagaattaa aatetetaca 28348 ctttattaat gttttccaga aatggcaaaa ctaacgctcc tacttttgct tctcacgccg 28408 gtgacgcttt ttaccatcac tttttctgcc gccgccacac tcgaacctca atgtttgcca 28468 ccggttgaag tctactttgt ctacgtgttg ctgtgctgcg ttagcgtttg cagtataaca 28528 tgttttacct ttgtttttct tcagtgcatt gactacttct gggtcagact ctactaccgc 28588 agacacgcgc ctcagtatca aaatcaacaa attgccagac tactcggtct gccatgattg 28648 tettgtattt taccetgatt ttttttcace ttacttgege ttgtgatttt cacttcacte 28708 aattttggaa aacgcaatgc ttcgacccgc gcctctccaa cgactggatg atggctcttg 28768 caattgccac gcttggggcg tttggacttt ttagtggttt tgctttgcat tacaaattta 28828 agactecatg gacacatgge tttettteag attttecagt tacacetact eegeegeete 28888 ccccggccat cgacgtgcct caggttccct caccttctcc atctgtctgc agctactttc 28948 atctgtaatg gccgacctag aatttgacgg agtgcaatct gagcaaaggg ctatacactt 29008 ccaacgccag teggacegeg aacgcaaaaa cagagagetg caaaccatae aaaacaceca 29068 ccaatgtaaa cgcgggatat tttgtattgt aaaacaagct aagctccact acgagcttct 29128 atctggcaac gaccacgage tccaatacgt ggtcgatcag cagcgtcaaa cctgtgtatt 29188 cttaattgga gtttccccca ttaaagttac tcaaaccaag ggtgaaacca agggaaccat 29248 aaggtgctca tgtcacctgt cagaatgcct ttacactcta gttaaaaccc tatgtggctt 29308 acatgattct atccccttta attaaataaa cttactttaa atctgcaatc acttcttcgt 29368 cettgttttt gtegecatee ageageacea cetteceete tteceaactt teatageata 29428 ttttccgaaa agaggegtae tttcgccaca ccttaaaggg aacgtttact tcgctttcaa

gctctcccac gattttcatt gcagat atg aaa cgc gcc aaa gtg gaa gaa gga Met Lys Arg Ala Lys Val Glu Glu Gly 1425	29541
ttt aac ccc gtt tat ccc tat gga tat tct act ccg act gac gtg Phe Asn Pro Val Tyr Pro Tyr Gly Tyr Ser Thr Pro Thr Asp Val 1430 1435 1440	29586
gct cct ccc ttt gta gcc tct gac ggt ctt caa gaa aac cca cct Ala Pro Pro Phe Val Ala Ser Asp Gly Leu Gln Glu Asn Pro Pro 1445 1450 1455	29631
ggg gtc ttg tcc cta aaa ata tcc aaa cct tta act ttt aat gcc Gly Val Leu Ser Leu Lys Ile Ser Lys Pro Leu Thr Phe Asn Ala 1460 1465 1470	29676
tcc aag gct cta agc ctg gct att ggt cca gga tta aaa att caa Ser Lys Ala Leu Ser Leu Ala Ile Gly Pro Gly Leu Lys Ile Gln 1475 1480 1485	29721
gat ggt aaa cta gtg ggg gag gga caa gca att ctt gca aac ctg Asp Gly Lys Leu Val Gly Glu Gly Gln Ala Ile Leu Ala Asn Leu 1490 1495 1500	29766
ccg ctt caa atc acc aac aac aca att tca cta cgt ttt ggg aac Pro Leu Gln Ile Thr Asn Asn Thr Ile Ser Leu Arg Phe Gly Asn 1505 1510 1515	29811
aca ctt gcc ttg aat gac aat aat gaa ctc caa acc aca cta aaa Thr Leu Ala Leu Asn Asp Asn Asn Glu Leu Gln Thr Thr Leu Lys 1520 1525 1530	29856
tet tea teg eec ett aaa ate aca gae eag act etg tee ett aac Ser Ser Ser Pro Leu Lys Ile Thr Asp Gln Thr Leu Ser Leu Asn 1535 1540 1545	29901
ata ggg gac agc ctt gca att aaa gat gac aaa cta gaa agc gct Ile Gly Asp Ser Leu Ala Ile Lys Asp Asp Lys Leu Glu Ser Ala 1550 1555 1560	29946
ctt caa gcg acc ctc cca ctc tcc att agc aac aac acc atc agc Leu Gln Ala Thr Leu Pro Leu Ser Ile Ser Asn Asn Thr Ile Ser 1565 1570 1575	29991
ctc aac gtg ggc acc gga ctc acc ata aat gga aac gtt tta caa Leu Asn Val Gly Thr Gly Leu Thr Ile Asn Gly Asn Val Leu Gln 1580 1585 1590	30036
gct gtt ccc tta aat gct cta agt ccc cta act att tcc aac aat Ala Val Pro Leu Asn Ala Leu Ser Pro Leu Thr Ile Ser Asn Asn 1595 1600 1605	30081
aac atc agc ctg cgc tat ggc agt tcc ctg acg gtg ctt aac aat Asn Ile Ser Leu Arg Tyr Gly Ser Ser Leu Thr Val Leu Asn Asn 1610 1615 1620	30126

gaa Glu 1625	ctg Leu	caa Gln	agc Ser	aac Asn	ctc Leu 1630	aca Thr	gtt Val	cac His	tcc Ser	cct Pro 1635	tta Leu	aaa Lys	ctc Leu	aac Asn	30171
										tct Ser 1650					30216
										aca Thr 1665				ttg Leu	30261
cta Leu 1670	gtt Val	caa Gln	aac Asn	agt Ser	ggc Gly 1675	Leu	aaa Lys	gtt Val	caa Gln	gcg Ala 1680	ggc	tac Tyr	ggc Gly	ctg Leu	30306
caa Gln 1685	Val	aca Thr	gac Asp	acc Thr	aat Asn 1690	Ala	ctc Leu	aca Thr	tta Leu	aga Arg 1695	tat Tyr	ctc Leu	gct Ala	cca Pro	30351
ctg Leu 1700	Thr	att Ile	cca Pro	gac Asp	tcg Ser 1705	Gly	tca Ser	gaa Glu	caa Gln	ggc Gly 1710	att Ile	ctt Leu	aaa Lys	gta Val	30396
aac Asn 1715	act Thr	gga Gly	cag Gln	ggc Gly	cta Leu 1720	Ser	gtg Val	aac Asn	caa Gln	gct Ala 1725	gga Gly	gcg Ala	ctt Leu	gaa Glu	30441
aca Thr 1730	Ser	cta Leu	gga Gly	ggt Gly	gga Gly 1735	Leu	aaa Lys	tat Tyr	gct Ala	gat Asp 1740	aac Asn	aaa Lys	ata Ile	acc Thr	30486
ttt Phe 1745	Asp	aca Thr	gga Gly	aac Asn	gga Gly 1750	Leu	aca Thr	tta Leu	tct Ser	gaa Glu 1755	Asn	aaa Lys	ctt Leu	gca Ala	30531
gta Val 1760	Ala	gca Ala	ggt Gly	agt Ser	ggt Gly 1765	Leu	act Thr	ttt Phe	aga Arg	gat Asp 1770	Gly	gcc Ala	ttg Leu	gta Val	30576
gcc Ala 1775	Thr	Gly	acc Thr	gca Ala	ttt Phe 1780	Thr	caa Gln	aca Thr	ctg Leu	tgg Trp 1785	Thr	acg Thr	gct Ala	gat Asp	30621
ccg Pro 1790	Ser	ccc Pro	aac Asn	tgc Cys	aca Thr 1795	Ile	ata Ile	cag Gln	gac Asp	cgc Arg 1800	Asp	aca Thr	aaa Lys	ttt Phe	30666
act Thr 1805	Leu					Ser				gtg Val 1815	Leu				30711
tcc Ser 1820	Ile	att Ile	gga Gly	gta Val	aaa Lys 1825	Gly	Pro	ctt Leu	tca Ser	agt Ser 1830	Ser	ata Ile	ccg	tca Ser	30756

gct Ala 1835	acc Thr	gtt Val	aca Thr	gta Val	caa Gln 1840	ctt Leu	aac Asn	ttt Phe	gat Asp	tcc Ser 1845	aac Asn	gga Gly	gcc Ala	cta Leu	30801
ttg Leu 1850	Ser	tcc Ser	tct Ser	tca Ser	ctt Leu 1855	aaa .Lys	ggt Gly	tac Tyr	tgg Trp	999 Gly 1860	tat Tyr	cgc Arg	caa Gln	ggt Gly	30846
ccc Pro 1865	tca Ser	att Ile	gac Asp	cct Pro	tac Tyr 1870	ccc Pro	ata Ile	att Ile	aat Asn	gcc Ala 1875	Leu	aac Asn	ttt Phe	atg Met	30891
cca Pro 1880	Asn	tca Ser	ctg Leu	gct Ala	tat Tyr 1885	Pro	ccg Pro	gga Gly	caa Gln	gaa Glu 1890	Ile	caa Gln	gca Ala	aaa Lys	30936
tgt Cys 1895	Asn	atg Met	tac Tyr	gtt Val	tct Ser 1900	Thr	ttt Phe	tta Leu	cga Arg	gga Gly 1905	Asn	cca Pro	caa Gln	aga Arg	30981
cca Pro 1910	Ile	gtt Val	tta Leu	aac Asn	atc Ile 1915	Thr	ttt Phe	aat Asn	aat Asn	caa Gln 1920	Thr	agc Ser	ej A aaa	ttt Phe	31026
tcc Ser 1925	Ile	aga Arg	ttt Phe	aca Thr	tgg Trp 1930	Thr	aat Asn	tta Leu	acc Thr	aca Thr 1935	Gly	gaa Glu	gca Ala	ttt Phe	31071
gca Ala 1940	Met	ccc Pro	cca Pro	tgc Cys	act Thr 1945	Phe	tcc Ser	tac Tyr	att	gct Ala 1950	Glu	caa Gln	caa Gln	taa	31116
acta	tgta	ac c	ctca	ccgt	t aac	ccgc	ctc	cgcc	cttc	ca tt	ttat	ttta	taa	accacco	31176
gato	cacc	tt t	tcag	cagt	a aac	aatt	gca	tgtc	agta	gg gg	gcagt	aaaa	ctt	ttgggag	31236
ttaa	aatc	ca c	acag	gttc	t tca	caag	cta	agcg	aaaa	tc ag	ttac	actt	ata	aaaccat	31296
cgct	aaca	tc g	gaca	aaga	c aag	catg	agt	ccaa	agct	te eg	gttc	tgga	tca	gatttt	31356
gtto	atta	ac a	gcgg	gaga	a aca	gctt	ctg	gagg	attt	tc ca	atcto	cato	tcc	ttcatca	31416
gtto	cacc	at g	tcca	ccgt	g gtc	atct	ggg	acga	gaac	ga ca	agtto	ıtcat	aca	cctcata	31476
agto	accg	gt c	gatg	acga	a cgt	acag	atc	tcga	agaa	tg to	ectgt	cgcc	gcc	tttcggc	31536
agca	ctgg	igc c	gaag	gcga	a ago	gaac	atg	ttta	ıacaa	itg go	ccago	cacco	600	gcttcat	31596
cag	gegee	eta g	rttct	ttte	g cg	aaca	gcg	cato	gegea	igo to	cgcta	agad	tgc	gegeaaga	31656
aaca	acago	ac a	gaac	caco	a gat	tgtt	cat	gato	ccat	aa go	cgtgo	ctgad	acc	ageccat	31716
acta	acaa	at t	gttt	cact	a tto	ctago	atg	aatq	gtcat	at ci	tgat	gttca	a agt	aaattaa	31776
atg	gege	ecc o	ttat	gtaa	a cad	ittco	cac	gtad	caaca	acc to	cctti	ggca	a tct	gataatt	31836
aac	cacct	cc o	cgata	ccae	ıa tad	catct	ctg	atta	aataq	gtc g	cccc	gtaca	a cta	acccgatt	31896

31956 aaaccaagtt gccaacataa tcccccctgc catacactgc aaagaacctg gacggctaca atgacagtgc aaagtccaca cctcgttgcc atggataact gaggaacgcc ttaagtcaat 32016 32076 agtggcacaa ctaatacaaa catgtaaata gtgtttcaac aagtgccact cgtatgaggt 32136 gagtatcatg toccagggaa cgggccacto cataaacact gcaaaaccaa cacatoctac 32196 catcccccgc acggcactca catcgtgcat ggtgttcata tcacagtccg gaagctgagg acaaggaaaa gtctcgggag cattttcata gggcggtagt gggtactcct tgtaggggtt 32256 cagtoggcac oggtatotoc toacottotg ggccataaca cacaagttga gatotgattt 32316 caaggtactt totgaatgaa aaccaagtgo tttoccaaca atgtatocga tgtottoggt 32376 32436 ccccgcgtcg gtagcgctcc ttgcagtaca cacggaacaa ccactcacgc aggcccagaa 32496 gacagttttc cgcggacggt gacaagttaa tccccctcag tctcagagcc aatatagttt 32556 cttccacagt agcataggcc aaacccaacc aggaaacaca agctggcacg tcccgttcaa 32616 cgggaggaca aggaagcaga ggcagaggca taggcaaagc aacagaattt ttattccaac 32676 tggtcacgta gcacttcaaa caccaggtca cgtaaatggc agcgatcttg ggtttcctga 32736 tggaacataa cagcaagatc aaacatgaga cgattctcaa ggtgattaac cacagctgga 32796 attaaatcct ccacgcgcac atttagaaac accagcaata caaaagcccg gttttctccg 32856 ggatctatca tagcagcaca gtcatcaatt agtcccaagt aattttcccg tttccaatct gttataattt gcagaataat gccctgtaaa tccaagccgg ccatggcgaa aagctcagat 32916 aatgcacttt ccacgtgcat tcgtaaacac accctcatct tgtcaatcca aaaagtcttc 32976 ttcttgagaa acctgtagta aattaagaat cgccaggtta ggctcgatgc ctacatcccg 33036 33096 · gagetteatt eteageatge actgeaaatg atceageaga teagaacage aattageage cageteatee ceggttteca gtteeggagt teccaeggea attateacte gaaacgtggg 33156 33216 acaaatcgaa ataacatgag ctcccacgtg agcaaaagcc gtagggccag tgcaataatc 33276 acagaaccag cggaaaaaag attgcagctc atgtttcaaa aagctctgca gatcaaaatt 33336 cagetcatge aaataacaca gtaaagtttg eggtatagta aeegaaaace aeaegggteg acgttcaaac atctcggctt acctaaaaaa gaagcacatt tttaaaccac agtcgcttcc 33396 tgaacaggag gaaatatggt gcggcgtaaa accagacgcg ccaccggatc tccggcagag 33456 ccctgataat acagccagct gtggttaaac agcaaaacct ttaattcggc aacggttgag 33516 gtetecacat aateagegee cacaaaaate ecatetegaa ettgetegeg tagggageta 33576

aaatggccag tatagccca tggcacccga acgctaatct gcaagtatat gagagccacc 33636
ccattcggcg ggatcacaaa atcagtcgga gaaaacaacg tatacacccc ggactgcaaa 33696
agctgttcag gcaaacgccc ctgcggtccc tctcggtaca ccagcaaagc ctcgggtaaa 33756
gcagccatgc caagcgctta ccgtgccaag agcgactcag acgaaaagt gtactgaggc 33816
gctcagagca gcggctatat actctacctg tgacgtcaag aaccgaaagt caaaagttca 33876
cccggcgcgc ccgaaaaaac ccgcgaaaat ccaccaaaa agcccgcaa aaacacttcc 33936
gtataaaatt tccgggttac cggcggtca ccgccgcg acacgccgc cccgcccgc 33996
gctcctcccc gaaacccgcc gcgcccactt ccgcgttccc aagacaaagg tcgcgtaact 34056
ccgcccacct catttgcatg ttaactcggt cgccatcttg cggtgttata ttgatgatg 34115

<210> 35

<211> 503

<212> PRT

<213> simian adenovirus SV-39

<400> 35

Met Arg Arg Ala Val Ala Val Pro Ser Ala Ala Met Ala Leu Gly Pro
1 5 10 15

Pro Pro Ser Tyr Glu Ser Val Met Ala Ala Ala Thr Leu Gln Ala Pro 20 25 30

Leu Glu Asn Pro Tyr Val Pro Pro Arg Tyr Leu Glu Pro Thr Gly Gly

Arg Asn Ser Ile Arg Tyr Ser Glu Leu Thr Pro Leu Tyr Asp Thr Thr 50 55 60

Arg Leu Tyr Leu Val Asp Asn Lys Ser Ala Asp Ile Ala Thr Leu Asn 65 70 75 80

Tyr Gln Asn Asp His Ser Asn Phe Leu Thr Ser Val Val Gln Asn Ser 85 90 95

Asp Tyr Thr Pro Ala Glu Ala Ser Thr Gln Thr Ile Asn Leu Asp Asp 100 105 110

Arg Ser Arg Trp Gly Gly Asp Leu Lys Thr Ile Leu His Thr Asn Met 115 120 125

Pro Asn Val Asn Glu Phe Met Phe Thr Asn Ser Phe Arg Ala Lys Leu 130 135 140

Met Val Ala His Glu Ala Asp Lys Asp Pro Val Tyr Glu Trp Val Gln 145 150 155 160

Leu	Thr	Leu	Pro	Glu 165	Gly	Asn	Phe	Ser	Glu 170	Ile	Met	Thr	Ile	Asp 175	Leu
Met	Asn	Asn	Ala 180	Ile	Ile	Asp	His	Tyr 185	Leu	Ala	Val	Ala	Arg 190	Gln	Gln
Gly	Val	Lys 195	Glu	Ser	Glu	Ile	Gly 200	Val	Lys	Phe	Asp	Thr 205	Arg	Asn	Phe
Arg	Leu 210	Gly	Trp	Asp	Pro	Glu 215	Thr	Gly	Leu	Val	Met 220	Pro	Gly	Val	Tyr
Thr 225	Asn	Glu	Ala	Phe	His 230	Pro	Asp	Val	Val	Leu 235	Leu	Pro	Gly	Cys	Gly 240
Val	Asp	Phe	Thr	Tyr 245	Ser	Arg	Leu	Asn	Asn 250	Leu	Leu	Gly	Ile	Arg 255	Lys
Arg	Met	Pro	Phe 260	Gln	Glu	Gly	Phe	Gln 265	Ile	Leu	Tyr	Glu	Asp 270	Leu	Glu
Gly	Gly	Asn 275	Ile	Pro	Ala	Leu	Leu 280	Asp	Val	Pro	Ala	Tyr 285	Glu	Glu	Ser
Ile	Ala 290	Asn	Ala	Arg	Glu	Ala 295	Ala	Ile	Arg	Gly	300	Asn	Phe	Ala	Ala
Gln 305	Pro	Gln	Ala	Ala	Pro 310	Thr	Ile	Lys	Pro	Val 315	Leu	Glu	Asp	Ser	Lys 320
Gly	Arg	Ser	Tyr	Asn 325	Val	Ile	Ala	Asn	Thr 330	Asn	Asn	Thr	Ala	Tyr 335	Arg
Ser	Trp	Tyr	Leu 340	Ala	Tyr	Ąsn	Tyr	Gly 345	Asp	Pro	Glu	Lys	Gly 350	Val	Arg
Ala	Trp	Thr 355		Leu	Thr	Thr	Pro 360		Val	Thr	Cys	Gly 365		Glu	Gln
Val	Tyr 370		Ser	Leu	Pro	Asp 375	Met	Tyr	Val	Asp	Pro 380		Thr	Phe	Arg
Ser 385		Gln	Gln	Val	Ser 390		Tyr	Pro	Val	Val 395	Gly	Ala	Glu	Leu	Met 400
Pro	Ile	His	Ser	Lys 405		Phe	Tyr	Asn	Glu 410		Ala	Val	Tyr	Ser 415	
Leu	Ile	Arg	Gln 420		Thr	Ala	Leu	Thr 425		Val	Phe	Asn	Arg 430		Pro
Glu	Asn	Gln 435		Leu	Val	Arg	Pro 440		Ala	Pro	Thr	1le 445		Thr	Val
Ser	Glu 450		Val	Pro	Ala	Leu 455			His		Thr 460		Pro	Leu	Glr

Asn Ser Ile Arg Gly Val Gln Arg Val Thr Ile Thr Asp Ala Arg Arg 465 470 475 480

Arg Thr Cys Pro Tyr Val Tyr Lys Ala Leu Gly Ile Val Ala Pro Arg 485 490 495

Val Leu Ser Ser Arg Thr Phe 500

<210> 36

<211> 917

<212> PRT

<213> simian adenovirus SV-39

<400> 36

Met Ala Thr Pro Ser Met Met Pro Gln Trp Ser Tyr Met His Ile Ala 1 5 10 15

Gly Gln Asp Ala Ser Glu Tyr Leu Ser Pro Gly Leu Val Gln Phe Ala 20 . 25 30

Arg Ala Thr Glu Thr Tyr Phe Ser Leu Gly Asn Lys Phe Arg Asn Pro 35 40 45

Thr Val Ala Pro Thr His Asp Val Thr Thr Asp Arg Ser Gln Arg Leu 50 55 60

Thr Ile Arg Phe Val Pro Val Asp Lys Glu Asp Thr Ala Tyr Ser Tyr 65 70 75 80

Lys Thr Arg Phe Thr Leu Ala Val Gly Asp Asn Arg Val Leu Asp Met 85 90 95

Ala Ser Thr Tyr Phe Asp Ile Arg Gly Val Ile Asp Arg Gly Pro Ser 100 105 110

Phe Lys Pro Tyr Ser Gly Thr Ala Tyr Asn Ser Leu Ala Pro Lys Gly 115 120 125

Ala Pro Asn Asn Ser Gln Trp Asn Ala Thr Asp Asn Gly Asn Lys Pro 130 135 140

Val Cys Phe Ala Gln Ala Ala Phe Ile Gly Gln Ser Ile Thr Lys Asp 145 150 155 160

Gly Val Gln Ile Gln Asn Ser Glu Asn Gln Gln Ala Ala Ala Asp Lys 165 170 175

Thr Tyr Gln Pro Glu Pro Gln Ile Gly Val Ser Thr Trp Asp Thr Asn 180 185 190

Val Thr Ser Asn Ala Ala Gly Arg Val Leu Lys Ala Thr Thr Pro Met 195 200 205 .

Leu Pro Cys Tyr Gly Ser Tyr Ala Asn Pro Thr Asn Pro Asn Gly Gly Gln Ala Lys Thr Glu Gly Asp Ile Ser Leu Asn Phe Phe Thr Thr 235 Ala Ala Asp Asn Asn Pro Lys Val Val Leu Tyr Ser Glu Asp Val Asn Leu Gln Ala Pro Asp Thr His Leu Val Tyr Lys Pro Thr Val Gly Glu Asn Val Ile Ala Ala Glu Ala Leu Leu Thr Gln Gln Ala Cys Pro 280 Asn Arg Ala Asn Tyr Ile Gly Phe Arg Asp Asn Phe Ile Gly Leu Met Tyr Tyr Asn Ser Thr Gly Asn Met Gly Val Leu Ala Gly Gln Ala Ser 310 Gln Leu Asn Ala Val Val Asp Leu Gln Asp Arg Asn Thr Glu Leu Ser 330 Tyr Gln Leu Met Leu Asp Ala Leu Gly Asp Arg Thr Arg Tyr Phe Ser Met Trp Asn Gln Ala Val Asp Ser Tyr Asp Pro Asp Val Arg Ile Ile 360 Glu Asn His Gly Val Glu Asp Glu Leu Pro Asn Tyr Cys Phe Pro Leu 380 375 Pro Gly Met Gly Ile Phe Asn Ser Tyr Lys Gly Val Lys Pro Gln Asn 395 Gly Gly Asn Gly Asn Trp Glu Ala Asn Gly Asp Leu Ser Asn Ala Asn Glu Ile Ala Leu Gly Asn Ile Phe Ala Met Glu Ile Asn Leu His Ala Asn Leu Trp Arg Ser Phe Leu Tyr Ser Asn Val Ala Leu Tyr Leu Pro 435 Asp Ser Tyr Lys Phe Thr Pro Ala Asn Ile Thr Leu Pro Ala Asn Gln Asn Thr Tyr Glu Tyr Ile Asn Gly Arg Val Thr Ser Pro Thr Leu Val 470 Asp Thr Phe Val Asn Ile Gly Ala Arg Trp Ser Pro Asp Pro Met Asp 485 Asn Val Asn Pro Phe Asn His His Arg Asn Ala Gly Leu Arg Tyr Arg 500 505

Ser Met Leu Leu Gly Asn Gly Arg Val Val Pro Phe His Ile Gln Val 515 520 525

- Pro Gln Lys Phe Phe Ala Ile Lys Asn Leu Leu Leu Pro Gly Ser 530 535
- Tyr Thr Tyr Glu Trp Ser Phe Arg Lys Asp Val Asn Met Ile Leu Gln 545 550 555
- Ser Thr Leu Gly Asn Asp Leu Arg Val Asp Gly Ala Ser Val Arg Ile 565 570 575
- Asp Ser Val Asn Leu Tyr Ala Asn Phe Phe Pro Met Ala His Asn Thr 580 585 590
- Ala Ser Thr Leu Glu Ala Met Leu Arg Asn Asp Thr Asn Asp Gln Ser 595 600 605
- Phe Asn Asp Tyr Leu Ser Ala Ala Asn Met Leu Tyr Pro Ile Pro Ala 610 620
- Asn Ala Thr Asn Val Pro Ile Ser Ile Pro Ser Arg Asn Trp Ala Ala 625 630 635 640
- Phe Arg Gly Trp Ser Phe Thr Arg Leu Lys Ala Lys Glu Thr Pro Ser 645 650 655
- Leu Gly Ser Gly Phe Asp Pro Tyr Phe Val Tyr Ser Gly Thr Ile Pro 660 665 670
- Tyr Leu Asp Gly Ser Phe Tyr Leu Asn His Thr Phe Lys Arg Leu Ser 675 680 685
- Ile Met Phe Asp Ser Ser Val Ser Trp Pro Gly Asn Asp Arg Leu Leu 690 695 700
- Thr Pro Asn Glu Phe Glu Ile Lys Arg Ile Val Asp Gly Glu Gly Tyr 705 710 715 720
- Asn Val Ala Gln Ser Asn Met Thr Lys Asp Trp Phe Leu Ile Gln Met 725 730 735
- Leu Ser His Tyr Asn Ile Gly Tyr Gln Gly Phe Tyr Val Pro Glu Gly 740 745 750
- Tyr Lys Asp Arg Met Tyr Ser Phe Phe Arg Asn Phe Gln Pro Met Ser 755 760 765
- Arg Gln Val Pro Asp Pro Thr Ala Ala Gly Tyr Gln Ala Val Pro Leu 770 775 780
- Pro Arg Gln His Asn Asn Ser Gly Phe Val Gly Tyr Met Gly Pro Thr 785 790 795 800
- Met Arg Glu Gly Gln Pro Tyr Pro Ala Asn Tyr Pro Tyr Pro Leu Ile 805 810 815

Gly Ala Thr Ala Val Pro Ala Ile Thr Gln Lys Lys Phe Leu Cys Asp 820 825 830

Arg Val Met Trp Arg Ile Pro Phe Ser Ser Asn Phe Met Ser Met Gly 835 840 845

Ala Leu Thr Asp Leu Gly Gln Asn Met Leu Tyr Ala Asn Ser Ala His 850 855 860

Ala Leu Asp Met Thr Phe Glu Val Asp Pro Met Asn Glu Pro Thr Leu 865 870 875 880

Leu Tyr Met Leu Phe Glu Val Phe Asp Val Val Arg Val His Gln Pro 885 890 895

His Arg Gly Ile Ile Glu Ala Val Tyr Leu Arg Thr Pro Phe Ser Ala 900 905 910

Gly Asn Ala Thr Thr 915

<210> 37

<211> 533

<212> PRT

<213> simian adenovirus SV-39

<400> 37

Met Lys Arg Ala Lys Val Glu Glu Gly Phe Asn Pro Val Tyr Pro Tyr 1 5 10 15

Gly Tyr Ser Thr Pro Thr Asp Val Ala Pro Pro Phe Val Ala Ser Asp 20 25 30

Gly Leu Gln Glu Asn Pro Pro Gly Val Leu Ser Leu Lys Ile Ser Lys 35 40 45

Pro Leu Thr Phe Asn Ala Ser Lys Ala Leu Ser Leu Ala Ile Gly Pro 50 55 60

Gly Leu Lys Ile Gln Asp Gly Lys Leu Val Gly Glu Gly Gln Ala Ile
65 70 75 80

Leu Ala Asn Leu Pro Leu Gln Ile Thr Asn Asn Thr Ile Ser Leu Arg 85 90 95

Phe Gly Asn Thr Leu Ala Leu Asn Asp Asn Asn Glu Leu Gln Thr Thr 100 105 110

Leu Lys Ser Ser Ser Pro Leu Lys Ile Thr Asp Gln Thr Leu Ser Leu 115 120 125

Asn Ile Gly Asp Ser Leu Ala Ile Lys Asp Asp Lys Leu Glu Ser Ala 130 135 140

Leu Gln Ala Thr Leu Pro Leu Ser Ile Ser Asn Asn Thr Ile Ser Leu 150 155 Asn Val Gly Thr Gly Leu Thr Ile Asn Gly Asn Val Leu Gln Ala Val 170 Pro Leu Asn Ala Leu Ser Pro Leu Thr Ile Ser Asn Asn Asn Ile Ser 185 Leu Arg Tyr Gly Ser Ser Leu Thr Val Leu Asn Asn Glu Leu Gln Ser Asn Leu Thr Val His Ser Pro Leu Lys Leu Asn Ser Asn Asn Ser Ile 210 215 Ser Leu Asn Thr Leu Ser Pro Phe Arg Ile Glu Asn Gly Phe Leu Thr Leu Tyr Leu Gly Thr Lys Ser Gly Leu Leu Val Gln Asn Ser Gly Leu 250 245 Lys Val Gln Ala Gly Tyr Gly Leu Gln Val Thr Asp Thr Asn Ala Leu Thr Leu Arg Tyr Leu Ala Pro Leu Thr Ile Pro Asp Ser Gly Ser Glu Gln Gly Ile Leu Lys Val Asn Thr Gly Gln Gly Leu Ser Val Asn Gln 290 295 Ala Gly Ala Leu Glu Thr Ser Leu Gly Gly Gly Leu Lys Tyr Ala Asp Asn Lys Ile Thr Phe Asp Thr Gly Asn Gly Leu Thr Leu Ser Glu Asn Lys Leu Ala Val Ala Ala Gly Ser Gly Leu Thr Phe Arg Asp Gly Ala Leu Val Ala Thr Gly Thr Ala Phe Thr Gln Thr Leu Trp Thr Thr Ala Asp Pro Ser Pro Asn Cys Thr Ile Ile Gln Asp Arg Asp Thr Lys Phe 370 375 Thr Leu Ala Leu Thr Ile Ser Gly Ser Gln Val Leu Gly Thr Val Ser Ile Ile Gly Val Lys Gly Pro Leu Ser Ser Ser Ile Pro Ser Ala Thr 410 Val Thr Val Gln Leu Asn Phe Asp Ser Asn Gly Ala Leu Leu Ser Ser 425 420 Ser Ser Leu Lys Gly Tyr Trp Gly Tyr Arg Gln Gly Pro Ser Ile Asp 440

	Tyr 450	Pro	Ile	Ile	Asn	Ala 455	Leu	Asn	Phe	Met	Pro 460	Asn	Ser	Leu	Ala		
Tyr 465	Pro	Pro	Gly	Gl n	Glu 470	Ile	Gln	Ala	Lys	Cys 475		Met	Tyr	Val	Ser 480		
Thr	Phe	Leu	Arg	Gly 485	Asn	Pro	Gln	Arg	Pro 490	Ile	Val	Leu	Asn	Ile 495	Thr		
Phe	Asn	Asn	Gln 500	Thr	Ser	Gly	Phe	Ser 505	Ιļe	Arg	Phe	Thr	Trp 510	Thr	Asn		
Leu	Thr	Thr 515	Gly	Glu	Ala	Phe	Ala 520	Met	Pro	Pro	Cys	Thr 525	Phe	Ser	Tyr		
Ile	Ala 530	Glu	Gln	Gln		٠										•	
<210	> 3	38															
<211	.> !	50															
<212	!> 1	ANC															
<213	3> 1	Artii	ficia	al s	equei	ıce											
4000																	
<220 <223		.1:44	omer	6113	5 m												
\ZZ 3	, ,)11g	mer	SVZ.	31	•											
<400)> :	38															
		ata d	cgtag	gege	ac ta	agtc	geget	t aa	gcgc	ggat	atc	attt	aaa				50
4010																	
<210 <211		39 49															
<212																	
			ficia	al s	eque	nce											
<220				_	_	•											
<223	3> (olig	omer	SV2	5B												
<400)> :	39															
			atat	ccqc	gc t	taag	cgcq	a ct	agtq	cgct	acg	tatt	ta				49
		-		-	-	•				-	_						

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 5 June 2003 (05.06.2003)

PCT

(10) International Publication Number WO 03/046124 A3

- A61K 47/42. (51) International Patent Classification?: C07H 21/00, C07K 14/075, C12N 7/00, 15/33, 15/861
- (21) International Application Number: PCT/US02/33645
- (22) International Filing Date:

20 November 2002 (20.11.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

21 November 2001 (21.11.2001) US 60/331,951 22 March 2002 (22.03.2002) 60/366,798

- (71) Applicant (for all designated States except US): THE TRUSTEES OF THE UNIVERSITY OF PENN-SYLVANIA [US/US]; 3160 Chestnut Street, Suite 200, Philadelphia, PA 19104 (US).
- (72) Inventors; and
 - (75) Inventors/Applicants (for US only): WILSON, James, M. [US/US]; 1350 N. Avignon Drive, Gladwyne, PA 19035 (US). GAO, Guangping [US/US]; 408 Yorkshire Road, Rosemont, PA 19010 (US). ROY, Soumitra [US/US]; 240 Pugh Road, Wayne, PA 19087 (US).
 - (74) Agents: Kodroff, Cathy, A. et al.; Howson and Howson, Spring House Corporate Center, P.O. Box 457, Spring House, PA 19477 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report: 20 November 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: SIMIAN ADENOVIRUS NUCLEIC ACID AND AMINO ACID SEQUENCES, VECTORS CONTAINING SAME, AND METHODS OF USE

(57) Abstract: A recombinant vector comprises simian adenovirus sequences and a heterologous gene under the control of regulatory sequences. A cell line which expresses simian adenovirus gene(s) is also disclosed. Methods of using the vectors and cell lines are provided.

International application No.

PCT/US02/33645

	SIFICATION OF SUBJECT MATTER	T100 1500 -51051			
IPC(7) US CL	: A61K 47/42; C07H 21/00; C07K 14/075; C12N 435/235.1, 320.1; 514/773; 530/350; 536/23.1,		<u> </u>		
	International Patent Classification (IPC) or to both nat				
	DS SEARCHED				
Minimum dos	numeroring generated (alongification mustage followed by	u alongification membals)			
	numentation searched (classification system followed b 15/235.1, 320.1; 514/773; 530/350; 536/23.1, 23.7, 2				
		·			
Documentatio	n searched other than minimum documentation to the	extent that such documents are included in	the fields searched		
C1		of day have and subsequently asset	ah aaa wadi		
	a base consulted during the international search (name	or data base and, where practicable, sean	car territis asou)		
Titose sac oc	Authoritori Siron		İ		
C. DOCT	JMENTS CONSIDERED TO BE RELEVANT	······································			
Category *	Citation of document, with indication, where an	propriete of the relevant passages	Relevant to claim No.		
A	US 6,083,716 A (WILSON et al.) 04 July 2000 (04.)		1, 2, 4-7, 22		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
P, A	FARINA et al. Replication-defective vector based on		1-10, 22		
x	Virology. December 2001, Vol. 75, No. 23, pages 1 US 6,127,525 A (CRYSTAL et al.) 03 October 2000	•	9		
	especially col. 3-11.	(03.10.2000), see chuie document,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
A			3, 8-10, 22		
A	CRAWFORD-MIKSZA et al. Analysis of 15 adenov	irus hevon proteins reveals the location	3, 8		
^	and structure of seven hypervariable regions containing	•	3,0		
	of Virology. March 1996, Vol. 70, No. 3, pages 183				
		·			
	•				
Further	documents are listed in the continuation of Box C.	See patent family annex.			
• s	pecial extegories of cited documents:	"T" later document published after the inte date and not in conflict with the applic	mational filing date or priority		
	defining the general state of the art which is not considered to be	principle or theory underlying the inve	ention		
of particu	lar relevance	"X" document of particular relevance; the	claimed invention cannot be		
"E" cartier ap	plication or patent published on or after the international filing date	considered novel or cannot be conside when the document is taken alone	red to involve an inventive step		
	which may throw doubts on priority claim(s) or which is cited to	<u></u>	-1-1 4:1		
establish specified)	the publication date of another citation or other special reason (as	"Y" document of particular relevance; the considered to involve an inventive size	o when the document is		
"O" document	referring to an oral disclosure, use, exhibition or other means	combined with one or more other such being obvious to a person skilled in th			
	•	-			
	s published prior to the international filing date but later than the late claimed	"&" document member of the same patent	18muy		
Date of the a	ctual completion of the international search	Days of mediting of the hill-mational sear	ch report		
22 August 20	003 (22.08.2003)	30 31 2000	ļ		
	ailing address of the ISA/US	Authorized office			
Ma	il Stop PCT, Attn: ISA/US	Luchia Jaw	hence for		
	mmissioner for Patents D. Box 1450		70		
Alc	xandria, Virginia 22313-1450	Telephone No. (703) 308-0196			
Facsimile No	o. (703)305-3230				

Form PCT/ISA/210 (second sheet) (July 1998)

International application No.

PCT/US02/33645

Box	Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)											
This	internati	onal report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:										
1.		Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:										
2.		Claim Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:										
3.	\boxtimes	Claim Nos.: 12-21, 23-27 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).										
Bo	хП О	eservations where unity of invention is lacking (Continuation of Item 2 of first sheet)										
Thi	s Interna	tional Searching Authority found multiple inventions in this international application, as follows: Continuation Sheet										
1.		As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.										
2.		As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite										
3.	\boxtimes	payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: Please See Continuation Sheet										
4.		No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:										
Re	emark ou	Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.										

1	PCT/US02/33645				
1					

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Groups 1-5, claim(s) 1, 2, 4-7, and 22, each group drawn to the nucleic acid sequences of Ad Pan-5, Ad Pan-6, Ad Pan-7, Ad SV-1, Ad SV-25 and Ad SV-39, respectively.

Groups 6-17, 19-22, 24-37, 39-55, 57-60, 62-75, 77-93, 95-98, 100-113, 115-129, 131-134, 136-145, 148-162, 164-167, 169-173, 176-189, 191-194, 196-203, 205-210, claim(s) 3, each drawn to in order:

an Ad Pan-5 E1a protein, the Ad Pan-5 Small T protein, the Ad Pan-5 Large T protein, the Ad Pan-5 protein IX, the Ad Pan-5 PTP, the Ad Pan-5 Polymerase, the Ad Pan-5 IVa2 protein, the Ad Pan-5 28.1 kD protein, the Ad Pan-5 agnoprotein, the Ad Pan-5 52/55D protein, the Ad Pan-5 Illa protein, the Ad Pan-5 protein VII, the Ad Pan-5 Mu protein, the Ad Pan-5 protein VI, the Ad Pan-5 Gan-5 and protein, the Ad Pan-5 Ban-5 protein, the Ad Pan-5 Ban-5 Ban

an Ad Pan-6 E1a protein, the Ad Pan-6 Small T protein, the Ad Pan-6 Large T protein, the Ad Pan-6 protein IX, the Ad Pan-6 PTP, the Ad Pan-6 Polymerase, the Ad Pan-6 IVa2 protein, the Ad Pan-6 28.1 kD protein, the Ad Pan-6 agnoprotein, the Ad Pan-6 52/55D protein, the Ad Pan-6 IIIa protein, the Ad Pan-6 protein VII, the Ad Pan-6 Mu protein, the Ad Pan-6 Protein VI, the Ad Pan-6 endoprotease, the Ad Pan-6 DBP, the Ad Pan-6 100kD protein, the Ad Pan-6 33kD homolog, the Ad Pan-6 protein VIII, the Ad Pan-6 E3 ORF1 protein, the Ad Pan-6 E3 ORF2 protein, the Ad Pan-6 E3 ORF3 protein, the Ad Pan-6 E3 ORF4 protein, the Ad Pan-6 E3 ORF5 protein, the Ad Pan-6 E3 ORF6 protein, the Ad Pan-6 E3 ORF8 protein, the Ad Pan-6 E3 ORF9 protein, the Ad Pan-6 E4 ORF7 protein, the Ad Pan-6 E4 ORF4 protein, the Ad Pan-6 E4 ORF3 protein, the Ad Pan-6 E4 ORF4 protein, the Ad Pan-6 E4 ORF3 protein, the Ad Pan-6 E4 ORF1 protein,

an Ad Pan-7 E1a protein, the Ad Pan-7 Small T protein, the Ad Pan-7 Large T protein, the Ad Pan-7 protein IX, the Ad Pan-7 PTP, the Ad Pan-7 Polymerase, the Ad Pan-7 IVa2 protein, the Ad Pan-7 28.1 kD protein, the Ad Pan-7 agnoprotein, the Ad Pan-7 52/55D protein, the Ad Pan-7 IIIa protein, the Ad Pan-7 protein VII, the Ad Pan-7 protein V, the Ad Pan-7 Mu protein, the Ad Pan-7 protein VI, the Ad Pan-7 endoprotease, the Ad Pan-7 DBP, the Ad Pan-7 100kD protein, the Ad Pan-7 33kD homolog, the Ad Pan-7 protein VIII, the Ad Pan-7 E3 ORF1 protein, the Ad Pan-7 E3 ORF2 protein, the Ad Pan-7 E3 ORF3 protein, the Ad Pan-7 E3 ORF4 protein, the Ad Pan-7 E3 ORF5 protein, the Ad Pan-7 E3 ORF8 protein, the Ad Pan-7 E3 ORF9 protein, the Ad Pan-7 E4 ORF9 protein, the Ad Pan-7 E4 ORF4 protein, the Ad Pan-7 E4 ORF3 protein, the Ad Pan-7 E4 ORF4 protein, the Ad Pan-7 E4 ORF3 protein, the Ad Pan-7 E4 ORF4 protein, the Ad Pan-7 E4 ORF5 protein, the Ad Pan-7 E4 ORF4 protein, the Ad Pan-7 E4 ORF5 protein, the Ad Pan-7 E4 ORF4 protein, the Ad Pan-7 E4 ORF5 protein, the Ad Pan-7 E4 ORF4 protein, the Ad Pan-7 E4 ORF5 protein, the Ad Pan-7 E4 ORF4 protein, the Ad Pan-7 E4 ORF5 protein, the Ad Pan-7 E4 ORF5 protein, the Ad Pan-7 E4 ORF4 protein, the Ad Pan-7 E4 ORF5 protein, the Ad Pan-7 E4 ORF5 protein, the Ad Pan-7 E4 ORF4 protein, the Ad Pan-7 E4 ORF5 protei

an Ad SV-1 E1a protein, the Ad SV-1 Large T protein, the Ad SV-1 protein IX, the Ad SV-1 PTP, the Ad SV-1 Polymerase, the Ad SV-1 IVa2 protein, the Ad SV-1 agnoprotein, the Ad SV-1 52/55D protein, the Ad SV-1 IIIa protein, the Ad SV-1 protein VII, the Ad SV-1 protein V. the Ad SV-1 Mu protein, the Ad SV-1 protein VI, the Ad SV-1 endoprotease, the Ad SV-1 DBP, the Ad SV-1 100kD protein, the Ad SV-1 protein VIII, the Ad SV-1 E3 ORF1 protein, the Ad SV-1 E3 ORF2 protein, the Ad SV-1 E3 ORF3 protein, the Ad SV-1 E3 ORF4 protein, the Ad SV-1 E3 ORF5 protein, the Ad SV-1 E3 ORF6 protein, the Ad SV-1 E4 ORF7 protein, the Ad SV-1 E4 ORF7 protein, the Ad SV-1 E4 ORF1 protein, the Ad SV-1 E4 ORF2 protein, the Ad SV-1 E4 ORF3 protein, the Ad SV-1 E4 ORF3 protein, the Ad SV-1 E4 ORF3 protein, the Ad SV-1 E4 ORF3 protein, the Ad SV-1 E4 ORF3 protein, the Ad SV-1 E4 ORF3 protein, the Ad SV-1 E4 ORF3 protein, the Ad SV-1 E4 ORF3 protein, the Ad SV-1 E4 ORF4 protein, the Ad SV-1 E4 ORF4 protein, the Ad SV-1 E4 ORF4 protein, the Ad SV-1 E4 ORF4 protein, the Ad SV-1 E4 ORF4 protein, the Ad SV-1 E4 ORF4 protein, the Ad SV-1 E4 ORF4 protein, the Ad SV-1 E4 ORF4 protein, the Ad SV-1 E4 ORF4 protein, the Ad

the Ad SV-25 Small T protein, the Ad SV-25 Large T protein, the Ad SV-25 protein IX, the Ad SV-25 PTP, the Ad SV-25 Polymerase, the Ad SV-25 IVa2 protein, the Ad SV-25 agnoprotein, the Ad SV-25 52/55D protein, the Ad SV-25 IIIa protein, the Ad SV-25 protein VII, the Ad SV-25 protein VII, the Ad SV-25 endoprotease, the Ad SV-25 DBP, the Ad SV-25 100kD protein, the Ad SV-25 protein VIII, the Ad SV-25 E3 ORF1 protein, the Ad SV-25 E4 ORF6 protein, the Ad SV-25 E4 ORF3 protein, the Ad SV-25 E4 ORF2 protein, the Ad SV-25 E4 ORF1 protein,

an Ad SV-39 E1a protein, the Ad SV-39 Small T protein, the Ad SV-39 Large T protein, the Ad SV-39 protein IX, the Ad SV-39 PTP, the Ad SV-39 Polymerase, the Ad SV-39 IVa2 protein, the Ad SV-39 52/55D protein, the Ad SV-39 IIIa protein, the Ad SV-39 protein VII, the Ad SV-39 protein VII, the Ad SV-39 protein VI, the Ad SV-39 endoprotease, the Ad SV-39 DBP, the Ad SV-39 100kD protein, the Ad SV-39 protein VIII, the Ad SV-39 E3 ORF1 protein, the Ad SV-39 E3 ORF2 protein, the Ad SV-39 E3 ORF3 protein, the Ad SV-39 E4 ORF7 protein, the Ad SV-39 E4 ORF6 protein, the Ad SV-39 E4 ORF4 protein, the Ad SV-39 E4 ORF1 protein.

Groups 18, 56, 94, 130, 163, and 190, claim(s) 3, 8, 9, 28 and 29, each drawn to the penton protein of Ad Pan-5, Ad Pan-6, Ad Pan-7, Ad SV-1, Ad SV-25 and Ad SV-39, respectively.

PCT/US02/33645

Groups 23, 61, 99, 135, 168, and 195, claim(s) 3, 8-10, 28 and 29, each drawn to the hexon protein of Ad Pan-5, Ad Pan-6, Ad Pan-7, Ad SV-1, Ad SV-25 and Ad SV-39, respectively.

Groups 38, 76, 114, 146, 147, 174, 175, and 204, claim(s) 3, 8, 9, 11, 28 and 29, each drawn to the Ad Pan-5 fiber protein, the Ad Pan-6 fiber protein, the Ad SV-1 fiber1 protein, the Ad SV-25 fiber1 protein, the Ad SV-25 fiber2 protein and the Ad SV-39 fiber protein, respectively.

The inventions listed as Groups 1-210 do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

Each of groups 1-5 is directed to the genomic nucleic acid (or part thereof) of a different adenovirus, with no special technical feature linking them since adenoviruses, including simian adenoviruses, were known in the art as indicated in the disclosure (page 1, lines 22-24). Each of groups 6-210 is directed to the different proteins produced by one of five different adenoviruses. For proteins of one adenovirus, these proteins are materially different proteins with different functions, and thus share no special technical feature with one another. The proteins of groups 6-210 are materially different compounds from the nucleic acids which encode them. Inventions directed to different products are not recognized as sharing a special technical feature under 37 CFR 1.475(b).

Continuation of Box II Item 3:

1, 2, 4-7, 22 (directed to Ad-Pan5); 3, 8 (part a), 9, 10, 28, 29 (directed to hexon protein)

Continuation of B. FIELDS SEARCHED Item 3:

USPT, PGPB, DERWENT, GENBANK, PIR, SPTREMBL, SWISSPROT, GENESEQ search terms: SEQ ID NO: 1 (at least 100 nucleotides identical, GenBank only); SEQ ID NOs: 3, 7, 11, 15, 16, 17, 26, 31, 36; adenovir?, chimpanzee, simian, Pan

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

☐ OTHER: