Resolução: Ficha - Otimização sem restrições: condições de otimalidade

1.
$$F(w) = 15 - 12w - 25w^2 + 2w^3$$

(a)
$$1^{\underline{a}}$$
 derivada de F : $F'(w) = 6w^2 - 50w - 12$
 $2^{\underline{a}}$ derivada de F : $F''(w) = 12w - 50$

Pontos estacionários de F:

$$F'(w) = 0 \Leftrightarrow 6w^2 - 50w - 1 = 0 \Leftrightarrow w = \frac{25 - \sqrt{697}}{6} \simeq -0.2335$$
 ou $w = \frac{25 + \sqrt{697}}{6} \simeq 8.5668$

Cálculo de F'', em cada ponto estacionário:

como
$$F''\left(\frac{25-\sqrt{697}}{6}\right)=-2\sqrt{697}<0$$
, então $w^*=\frac{25-\sqrt{697}}{6}$ é um maximizante local de F e o máximo é $F(w^*)\simeq 16.4135$

como
$$F''\left(\frac{25+\sqrt{697}}{6}\right)=2\sqrt{697}>0$$
, então $w^*=\frac{25+\sqrt{697}}{6}$ é um minimizante local de F e o mínimo é $F(w^*)\simeq -665.1172$

(b) Esta função não tem mínimo global nem máximo global, uma vez que F é ilimitada quando $w \to \pm \infty$: $\lim_{w \to +\infty} F(w) = +\infty$ e $\lim_{w \to -\infty} F(w) = -\infty$

2.
$$F(w) = 3w^3 + 7w^2 - 15w - 3$$

$$1^{\underline{a}}$$
 derivada de $F: F'(w) = 9w^2 + 14w - 15$
 $2^{\underline{a}}$ derivada de $F: F''(w) = 18w + 14$

Pontos estacionários de F:

$$F'(w) = 0 \Leftrightarrow 9w^2 + 14w - 15 = 0 \Leftrightarrow w = \frac{-7 - 2\sqrt{46}}{9} \simeq -2.2850$$
 ou $w = \frac{-7 + 2\sqrt{46}}{9} \simeq 0.7294$

Cálculo de F'', em cada ponto estacionário:

como
$$F''\left(\frac{-7-2\sqrt{46}}{9}\right)=-4\sqrt{46}<0$$
, então $w^*=\frac{-7-2\sqrt{46}}{9}$ é um maximizante local de F e o máximo é $F(w^*)\simeq 32.0321$

como
$$F''\left(\frac{-7+2\sqrt{46}}{9}\right)=4\sqrt{46}>0$$
, então $w^*=\frac{-7+2\sqrt{46}}{9}$ é um m
nimizante local de F e o mínimo é $F(w^*)\simeq -9.0527$

Esta função não tem mínimo global nem máximo global, uma vez que F é ilimitada quando $w \to \pm \infty$: $\lim_{w \to +\infty} F(w) = +\infty$ e $\lim_{w \to -\infty} F(w) = -\infty$

3.
$$F(w_1, w_2) = \frac{1}{3}w_1^3 + \frac{1}{2}w_1^2 + 2w_1w_2 + \frac{1}{2}w_2^2 - w_2 + 9$$

gradiente de
$$F$$
: $\nabla F(w_1, w_2) = \begin{bmatrix} \frac{\partial F}{\partial w_1} \\ \frac{\partial F}{\partial w_2} \end{bmatrix} = \begin{bmatrix} w_1^2 + w_1 + 2w_2 \\ 2w_1 + w_2 - 1 \end{bmatrix}$

hessiana de
$$F: \nabla^2 F(w_1, w_2) = \begin{bmatrix} \frac{\partial^2 F}{\partial w_1^2} & \frac{\partial^2 F}{\partial w_2 w_1} \\ \\ \frac{\partial^2 F}{\partial w_1 w_2} & \frac{\partial^2 F}{\partial w_2^2} \end{bmatrix} = \begin{bmatrix} \frac{\partial^2 F}{\partial w_1^2} & \frac{\partial^2 F}{\partial w_2 w_1} \\ \\ \\ \frac{\partial^2 F}{\partial w_1 w_2} & \frac{\partial^2 F}{\partial w_2^2} \end{bmatrix} = \begin{bmatrix} 2w_1 + 1 & 2 \\ \\ 2 & 1 \end{bmatrix}$$

Pontos estacionários de F:

$$\nabla F(w_1, w_2) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} w_1^2 + w_1 + 2w_2 \\ 2w_1 + w_2 - 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{cases} w_1^2 + w_1 + 2w_2 = 0 \\ 2w_1 + w_2 - 1 = 0 \end{cases}$$
$$\Leftrightarrow \begin{cases} w_1^2 - 3w_1 + 2 = 0 \\ w_2 = 1 - 2w_1 \end{cases} \Leftrightarrow \begin{cases} w_1 = 1 \text{ ou } w_1 = 2 \\ w_2 = -1 \text{ ou } w_2 = -3 \end{cases}$$

Portanto, os pontos estacionários são: (1, -1) e (2, -3)

Calcular $\nabla^2 F(w_1, w_2)$ em cada ponto estacionário:

$$\nabla^2 F(1, -1) = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}$$

Como os determinantes das submatrizes principais de $\nabla^2 F(1, -1)$ são: 3, -1, a matriz é indefinida. Logo (1, -1) é um ponto sela de F.

$$\nabla^2 F(2, -3) = \left[\begin{array}{cc} 5 & 2 \\ \\ 2 & 1 \end{array} \right]$$

Como os determinantes das submatrizes principais de $\nabla^2 F(2,-3)$ são: 5, 1, a matriz é definida positiva. Logo (2,-3) é um minimizante local de F e o mínimo é $F(2,-3)=-\frac{53}{6}\simeq -8.8333$

Esta função não tem mínimo global, uma vez que F é ilimitada inferiormente.

Notar que, $\lim_{w_1 \to -\infty} F(w_1, -3) = -\infty$.

4.
$$F(w_1, w_2) = 8w_1^2 + 3w_1w_2 + 7w_2^2 - 25w_1 + 31w_2 - 29w_1 + 31w_2 - 20w_1 + 30w_1 +$$

gradiente de
$$F$$
: $\nabla F(w_1, w_2) = \begin{bmatrix} \frac{\partial F}{\partial w_1} \\ \frac{\partial F}{\partial w_2} \end{bmatrix} = \begin{bmatrix} 16w_1 + 3w_2 - 25 \\ 3w_1 + 14w_2 + 31 \end{bmatrix}$

hessiana de
$$F$$
: $\nabla^2 F(w_1, w_2) = \begin{bmatrix} \frac{\partial^2 F}{\partial w_1^2} & \frac{\partial^2 F}{\partial w_2 w_1} \\ & & \\ \frac{\partial^2 F}{\partial w_1 w_2} & \frac{\partial^2 F}{\partial w_2^2} \end{bmatrix} = \begin{bmatrix} 16 & 3 \\ 3 & 14 \end{bmatrix}$ (matriz constante)

Pontos estacionários de F:

$$\nabla F(w_1, w_2) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 16w_1 + 3w_2 - 25 \\ 3w_1 + 14w_2 + 31 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{cases} 16w_1 + 3w_2 - 25 = 0 \\ 3w_1 + 14w_2 + 31 = 0 \end{cases} \Leftrightarrow \begin{cases} 16w_1 + 3w_2 - 25 = 0 \\ 3w_1 + 14w_2 + 31 = 0 \end{cases} \Leftrightarrow \begin{cases} 16w_1 + 3w_2 - 25 = 0 \\ 3w_1 + 14w_2 + 31 = 0 \end{cases} \Leftrightarrow \begin{cases} w_1 = \frac{443}{215} \simeq 2.0605 \\ w_2 = -\frac{571}{215} \simeq -2.6558 \end{cases}$$

Portanto, o ponto estacionário é $\left(\frac{443}{215},-\frac{571}{215}\right)$

Calcular $\nabla^2 F(w_1, w_2)$ no ponto estacionário:

$$\nabla^2 F\left(\frac{443}{215}, -\frac{571}{215}\right) = \begin{bmatrix} 16 & 3\\ 3 & 14 \end{bmatrix}$$

Como os determinantes das submatrizes principais de $\nabla^2 F(w_1,w_2)$ são: 16 e 215, a matriz é definida positiva. Logo $\left(\frac{443}{215},-\frac{571}{215}\right)$ é um minimizante local de F e o mínimo é $F\left(\frac{443}{215},-\frac{571}{215}\right)=-\frac{20623}{215}\simeq -95.9209$

Como $\nabla^2 F(w_1, w_2)$ é definida positiva $\forall w \in \mathbb{R}^2$, então F é uma função convexa. Se F é convexa então o mínimo local é um mínimo global. Portanto, $\left(\frac{443}{215}, -\frac{571}{215}\right)$ é um minimizante global de F.

5.
$$F(w_1, w_2) = 4w_1^2 - 4w_1w_2 + w_2^2$$

gradiente de
$$F: \nabla F(w_1, w_2) = \begin{bmatrix} \frac{\partial F}{\partial w_1} \\ \frac{\partial F}{\partial w_2} \end{bmatrix} = \begin{bmatrix} 8w_1 - 4w_2 \\ 2w_2 - 4w_1 \end{bmatrix}$$
hessiana de $F: \nabla^2 F(w_1, w_2) = \begin{bmatrix} \frac{\partial^2 F}{\partial w_1^2} & \frac{\partial^2 F}{\partial w_2 w_1} \\ \frac{\partial^2 F}{\partial w_1 w_2} & \frac{\partial^2 F}{\partial w_2^2} \end{bmatrix} = \begin{bmatrix} 8 & -4 \\ -4 & 2 \end{bmatrix}$ (matriz constante)

Verificar que qualquer ponto da reta $w_2 - 2w_1 = 0 \Leftrightarrow w_2 = 2w1$, ou seja, $(w_1, 2w_1)$ é ponto estacionário de F:

$$\nabla F(w_1, 2w_1) \begin{bmatrix} 8w_1 - 8w_1 \\ 4w_1 - 4w_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Portanto, qualquer ponto da reta, $(w_1, 2w_1)$, é ponto estacionário de F.

Calcular $\nabla^2 F(w_1, w_2)$ no ponto estacionário:

$$\nabla^2 F(w_1, 2w_1) = \begin{bmatrix} 8 & -4 \\ -4 & 2 \end{bmatrix}$$

Como os determinantes das submatrizes principais de $\nabla^2 F(w_1, 2w_1)$ são: 8 e 0, a matriz é semi-definida positiva.

Como $\nabla^2 F(w_1, 2w_1)$ é semi-definida positiva $\forall w \in \mathbb{R}^2$, então F é uma função convexa. Se F é convexa então qualquer ponto da reta $(w_1, 2w_2)$ é um minimizante global de F e o mínimo global é $F(w_1, 2w_1) = 0$

6.
$$F(w_1, w_2) = w_1 + w_2 + \frac{1}{2} (w_1^2 + w_2^2) - \frac{w_1 + w_1^2 + w_1^3}{1 + w_1^4}$$

gradiente de
$$F$$
: $\nabla F(w_1, w_2) = \begin{bmatrix} \frac{\partial F}{\partial w_1} \\ \frac{\partial F}{\partial w_2} \end{bmatrix} = \begin{bmatrix} 1 + w_1 - \frac{1 + 2w_1 + 3w_1^2}{w_1^4 + 1} + \frac{4w_1^3(w_1^3 + w_1^2 + w_1)}{(w_1^4 + 1)^2} \\ 1 + w_2 \end{bmatrix}$

hessiana de
$$F: \nabla^2 F(w_1, w_2) = \begin{bmatrix} \frac{\partial^2 F}{\partial w_1^2} & \frac{\partial^2 F}{\partial w_2 w_1} \\ \frac{\partial^2 F}{\partial w_1 w_2} & \frac{\partial^2 F}{\partial w_2^2} \end{bmatrix} = \begin{bmatrix} \frac{\partial^2 F}{\partial w_1^2} & 0 \\ 0 & 1 \end{bmatrix}$$

onde

$$\frac{\partial^2 F}{\partial w_1^2} = 1 + \frac{8w_1^3(3w_1^2 + 2w_1 + 1)}{(w_1^4 + 1)^2} - \frac{6w_1 + 2}{w_1^4 + 1} + \frac{12w_1^2(w_1^3 + w_1^2 + w_1)}{(w_1^4 + 1)^2} - \frac{32w_1^6(w_1^3 + w_1^2 + w_1)}{(w_1^4 + 1)^3}$$

Verificar se (0,-1) é ponto estacionário:

Como
$$\nabla F(0,-1)=\left[\begin{array}{c} 0\\ 0 \end{array}\right]$$
 então (0,-1) é ponto estacionário.

Calcular $\nabla^2 F(w_1, w_2)$ no ponto estacionário:

$$\nabla^2 F\left(0, -1\right) = \left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array} \right]$$

Como os determinantes das submatrizes principais de $\nabla^2 F(0, -1)$ são: -1 e -1, a matriz é indefinida. Logo, o ponto (0, -1) é um ponto sela de F.

7.
$$F(w_1, w_2) = (w_2 - w_1^2) (w_2 - 2w_1^2)$$

(a) gradiente de
$$F: \nabla F(w_1, w_2) = \begin{bmatrix} \frac{\partial F}{\partial w_1} \\ \frac{\partial F}{\partial w_2} \end{bmatrix} = \begin{bmatrix} -4w_1(-w_1^2 + w_2) - 2w_1(-2w_1^2 + w_2) \\ -3w_1^2 + 2w_2 \end{bmatrix}$$

hessiana de
$$F$$
: $\nabla^2 F(w_1, w_2) = \begin{bmatrix} \frac{\partial^2 F}{\partial w_1^2} & \frac{\partial^2 F}{\partial w_2 w_1} \\ & & \\ \frac{\partial^2 F}{\partial w_1 w_2} & \frac{\partial^2 F}{\partial w_2^2} \end{bmatrix} = \begin{bmatrix} 24w_1^2 - 6w_2 & -6w_2 \\ & -6w_2 & 2 \end{bmatrix}$

Verificar se (0,0) é ponto estacionário:

Como
$$\nabla F(0,0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 então $(0,0)$ é ponto estacionário.

Calcular $\nabla^2 F(w_1, w_2)$ no ponto estacionário:

$$\nabla^2 F\left(0,0\right) = \left[\begin{array}{cc} 0 & 0\\ 0 & 2 \end{array} \right]$$

Como os determinantes das submatrizes principais de $\nabla^2 F(0,0)$ são: 0 e 0, a matriz ou é semi-definida positiva ou é semi-definida negativa. Mas como os valores próprios de $\nabla^2 F(0,0)$ são: 0, 2 a matriz é semi-definida positiva. Portanto, (0,0) ou é um minimizante local ou é um ponto sela de F.

(b) Verificar que (0,0) é um minimizante local de F para qualquer qualquer reta que passa na origem, ou seja, $w_2 = mw_1$, $m \in \mathbb{R} \setminus \{0\}$:

Fazendo
$$w_2 = mw_1$$
 em F , obtém-se: $F(w_1, 2w_1) = (mw_1 - w_1^2)(mw_1 - 2w_1^2)$

1ª derivada de
$$F: F'(w_1) = (m-2w_1)(mw_1-2w_1^2) + (mw_1-w_1^2)(m-4w_1)$$

4

2ª derivada de F:
$$F''(w_1) = 2(m-2w_1)(m-4w_1) - 6mw_1 + 8w_1^2$$

Verificar que $F'(w_1) = 0$ para $w_1 = 0$ ($w_2 = mw_1 = 0$): como F'(0) = 0, $w_1 = 0$ é ponto estacionário de F.

Verificar que o $w_1 = 0(w_2 = mw_1 = 0)$ é um ponto minimizante de F: como $F''(0) = 2m^2 > 0$, $w_1 = 0$ ($w_2 = mw_1 = 0$) é um minimizante local de F para qualquer reta que passe na origem, e o mínimo é F(0,0) = 0.

(c) Verificar que (0,0) não é um minimizante local de F (considere, por exemplo as curvas da forma $w_2 = kw_1^2$):

Fazendo
$$w_2 = kw_1^2$$
 em F , obtém-se: $F(w_1, kw_1^2) = (kw_1^2 - w_1^2)(kw_1^2 - 2w_1^2) = (k-1)(k-2)w_1^4$

$$1^{\underline{a}}$$
 derivada de F : $F'(w_1) = 4(k-1)(k-2)w_1^3$
 $2^{\underline{a}}$ derivada de F : $F''(w_1) = 12(k-1)(k-2)w_1^2$

Verificar que
$$F'(w_1) = 0$$
 para $w_1 = 0$ ($w_2 = kw_1^2 = 0$):
como $F'(0) = 0$, $w_1 = 0$ ($w_2 = kw_1^2 = 0$) é ponto estacionário de F .

Vamos agora verificar que $w_1 = 0$ ($w_2 = kw_1^2 = 0$) não é um ponto minimizante de F:

Notar que, a função é negativa para $w_1^2 < w_2 < 2w_1^2$, ou seja, para qualquer curva $w_2 = kw_1^2$ com $k \in]1,2[$. Por exemplo, para $w_2 = \frac{3}{2}w_1^2$ tem-se $F(w_1,\frac{3}{2}w_1^2) = -\frac{1}{4}w_1^4 < 0$, para $w_1 \neq 0$. Donde se conclui que, para valores de w_1 na vizinhança de 0, $F(w_1,\frac{3}{2}w_1^2) < F(0,0) = 0$, pelo que $(0,0)^T$ não é um minimizante local de F e sim ponto sela de F.

8.
$$F(w_1, w_2) = (w_1 - 2w_2)^2 + w_1^4$$

gradiente de $F: \nabla F(w_1, w_2) = \begin{bmatrix} \frac{\partial F}{\partial w_1} \\ \frac{\partial F}{\partial w_2} \end{bmatrix} = \begin{bmatrix} 4w_1^3 + 2w_1 - 4w_2 \\ 8w_2 - 4w_1 \end{bmatrix}$

hessiana de
$$F$$
: $\nabla^2 F(w_1, w_2) = \begin{bmatrix} \frac{\partial^2 F}{\partial w_1^2} & \frac{\partial^2 F}{\partial w_2 w_1} \\ \\ \frac{\partial^2 F}{\partial w_1 w_2} & \frac{\partial^2 F}{\partial w_2^2} \end{bmatrix} = \begin{bmatrix} 12w_1^2 + 2 & -4 \\ \\ -4 & 8 \end{bmatrix}$

Pontos estacionários de F:

$$\nabla F(w_1, w_2) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 4w_1^3 + 2w_1 - 4w_2 \\ 8w_2 - 4w_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow \begin{cases} 4w_1^3 + 2w_1 - 4w_2 = 0 \\ 8w_2 - 4w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 2w_1 - 4w_2 = 0 \\ w_2 = \frac{1}{2}w_1 \end{cases} \Leftrightarrow \begin{cases} w_1 = 0 \\ w_2 = 0 \end{cases}$$

Portanto, o ponto estacionário é (0,0).

Calcular a $\nabla^2 F(w_1, w_2)$ no ponto estacionário:

$$\nabla^2 F(0,0) = \begin{bmatrix} 2 & -4 \\ -4 & 8 \end{bmatrix}$$

Como os determinantes das submatrizes principais de $\nabla^2 F(0,0)$ são: 2 e 0, a matriz é semi-definida positiva. Mas como os determinantes das submatrizes principais de $\nabla^2 F(w_1, w_2)$ são não negativos: $12w_1^2 + 2 > 0$ e $96w_1^2 \ge 0 \ \forall w \in \mathbb{R}^2$, então F é uma função convexa e portanto o ponto (0,0) é um minimizante global de F e o mínimo global é F(0,0) = 0.

9.
$$F(w_1, w_2) = 2w_1^2 + w_2^2 - 2w_1w_2 + 2w_1^3 + w_1^4$$

gradiente de
$$F$$
: $\nabla F(w_1, w_2) = \begin{bmatrix} \frac{\partial F}{\partial w_1} \\ \frac{\partial F}{\partial w_2} \end{bmatrix} = \begin{bmatrix} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 \\ 2w_2 - 2w_1 \end{bmatrix}$

hessiana de
$$F: \nabla^2 F(w_1, w_2) = \begin{bmatrix} \frac{\partial^2 F}{\partial w_1^2} & \frac{\partial^2 F}{\partial w_2 w_1} \\ \frac{\partial^2 F}{\partial w_1 w_2} & \frac{\partial^2 F}{\partial w_2^2} \end{bmatrix} = \begin{bmatrix} 12w_1^2 + 12w_1 + 4 & -2 \\ -2 & 2 \end{bmatrix} = 2 \begin{bmatrix} 6w_1^2 + 6w_1 + 2 & -1 \\ -1 & 1 \end{bmatrix}$$

Pontos estacionários de F:

$$\nabla F(w_1, w_2) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 \\ 2w_2 - 2w_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 = 0 \\ 2w_2 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 = 0 \\ 2w_2 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 = 0 \\ 2w_2 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 = 0 \\ 2w_2 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 = 0 \\ 2w_2 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 = 0 \\ 2w_2 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 = 0 \\ 2w_2 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 = 0 \\ 2w_2 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 = 0 \\ 2w_2 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 = 0 \\ 2w_2 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 = 0 \\ 2w_2 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 = 0 \\ 2w_2 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 = 0 \\ 2w_2 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 = 0 \\ 2w_2 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 = 0 \\ 2w_2 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 = 0 \\ 2w_2 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 = 0 \\ 2w_2 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 = 0 \\ 2w_1 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 = 0 \\ 2w_1 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 = 0 \\ 2w_1 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 = 0 \\ 2w_1 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 = 0 \\ 2w_1 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 = 0 \\ 2w_1 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 = 0 \\ 2w_1 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 = 0 \\ 2w_1 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 = 0 \\ 2w_1 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_2 = 0 \\ 2w_1 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_1 = 0 \\ 2w_1 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_1 = 0 \\ 2w_1 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_1 = 0 \\ 2w_1 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_1 = 0 \\ 2w_1 - 2w_1 - 2w_1 = 0 \end{cases} \Leftrightarrow \begin{cases} 4w_1^3 + 6w_1^2 + 4w_1 - 2w_1 + 2w_$$

Portanto, os pontos estacionários são: (0,0), (-1,-1), (-0.5,-0.5).

Calcular a $\nabla^2 F(w_1, w_2)$ em cada ponto estacionário:

$$\nabla^2 F(0,0) = \begin{bmatrix} 4 & -2 \\ -2 & 2 \end{bmatrix}$$

Como os determinantes das submatrizes principais de $\nabla^2 F(0,0)$ são: 4 e 4, a matriz é definida positiva, e portanto (0,0) é um minimizante local de F e o mínimo local é F(0,0)=0

$$\nabla^2 F(-1, -1) = \begin{bmatrix} 4 & -2 \\ -2 & 2 \end{bmatrix}$$

Como os determinantes das submatrizes principais de $\nabla^2 F(-1, -1)$ são: 4 e 4, a matriz é definida positiva, e portanto (-1, -1) é um minimizante local de F e o mínimo local é F(-1, -1) = 0

$$\nabla^2 F(-0.5, -0.5) = \begin{bmatrix} 1 & -2 \\ -2 & 2 \end{bmatrix}$$

Como os determinantes das submatrizes principais de $\nabla^2 F(-0.5, -0.5)$ são: 1 e -2, a matriz é indefinida, e portanto (-0.5,-0.5) é um ponto sela de F.

Vamos agora mostrar que F não é uma função convexa. Com efeito, se F fosse convexa, então pelo Teorema da desigualdade do gradiente teríamos:

$$F(w_1, w_2) - F(y_1, y_2) \le \nabla F(w_1, w_2)^T \left(\begin{bmatrix} w_1 \\ w2 \end{bmatrix} - \begin{bmatrix} y_1 \\ y2 \end{bmatrix} \right) \ \forall w, y \in \mathbb{R}^2$$

Porém, esta desigualdade não é válida, por exemplo, ela é falsa para $w_1 = w_2 = -0.5$, $y_1 = y_2 = -0.6$: $F(-0.5, -0.5) = \frac{1}{16} \simeq 0.0625$; $F(-0.6, -0.6) = \frac{36}{625} \simeq 0.0576$, $\nabla F(-0.5, -0.5) = [0, 0]^T$, e portanto temos: $0.0625 - 0.0576 \le 0 \Leftrightarrow 0.0049 \le 0$ (falso).

Como a função não é convexa não é possível concluir que os pontos (0,0) e (-1,-1) são minimizantes globais de F.

10.
$$F(w_1, w_2) = cw_1^2 + w_2^2 - 2w_1w_2 - 2w_2$$

gradiente de
$$F$$
: $\nabla F(w_1, w_2) = \begin{bmatrix} \frac{\partial F}{\partial w_1} \\ \frac{\partial F}{\partial w_2} \end{bmatrix} = \begin{bmatrix} 2cw_1 - 2w_2 \\ 2w_2 - 2w_1 - 2 \end{bmatrix}$

hessiana de
$$F$$
:

$$\nabla^2 F(w_1, w_2) = \begin{bmatrix} \frac{\partial^2 F}{\partial w_1^2} & \frac{\partial^2 F}{\partial w_2 w_1} \\ \\ \frac{\partial^2 F}{\partial w_1 w_2} & \frac{\partial^2 F}{\partial w_2^2} \end{bmatrix} = \begin{bmatrix} 2c & -2 \\ \\ -2 & 2 \end{bmatrix}$$
(matriz constante)

Pontos estacionários de F:

$$\nabla F(w_1, w_2) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2cw_1 - 2w_2 \\ 2w_2 - 2w_1 - 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{cases} 2cw_1 - 2w_2 = 0 \\ 2w_2 - 2w_1 - 2 = 0 \end{cases} \Leftrightarrow \begin{cases} 2cw_1 - 2w_2 = 0 \\ w_2 = w_1 + 1 \end{cases}$$
$$\Leftrightarrow \begin{cases} 2cw_1 - 2w_1 - 2 = \frac{1}{c-1} \\ w_2 = \frac{c}{c-1} \end{cases}$$

Portanto, os pontos estacionários são os pontos: $\left(\frac{1}{c-1}, \frac{c}{c-1}\right)$, para $c \neq 1$.

Calcular a
$$\nabla^2 F(w_1,w_2)$$
 no ponto estacionário:
$$\nabla^2 F\left(\frac{1}{c-1},\frac{c}{c-1}\right) = \begin{bmatrix} 2c & -2 \\ -2 & 2 \end{bmatrix}$$

Os determinantes das submatrizes principais de $\nabla^2 F\left(\frac{1}{c-1}, \frac{c}{c-1}\right)$ são: 2c e 4c-4.

Os pontos $\left(\frac{1}{c-1}, \frac{c}{c-1}\right)$, com $c \neq 1$, são minimizantes locais de F se: $\left\{ \begin{array}{l} 2c \geq 0 \\ 4c-4 \geq 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} c \geq 0 \\ c \geq 1 \end{array} \right. .$

$$\begin{cases} 2c \ge 0 \\ 4c - 4 \ge 0 \end{cases} \Leftrightarrow \begin{cases} c \ge 0 \\ c \ge 1 \end{cases}$$

Para c > 1, $det(\nabla^2 F(w_1, w_2)) > 0$, $\forall w \in D_F$, e portanto a matriz $\nabla^2 F(w_1, w_2)$ é definida positiva. Portanto, todos os pontos $\left(\frac{1}{c-1}, \frac{c}{c-1}\right)$, com $c \neq 1$, são minimizantes globais.

Os pontos $\left(\frac{1}{c-1},\frac{c}{c-1}\right)$, com $c\neq 1$, são maximizantes locais de F se: $\left\{ \begin{array}{l} 2c\leq 0 \\ \Leftrightarrow \\ 4c-4\geq 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} c\leq 0 \\ c\geq 1 \\ \text{Portanto o sistema \'e impossível.} \end{array} \right.$

$$\begin{cases} 2c \le 0 \\ 4c - 4 \ge 0 \end{cases} \Leftrightarrow \begin{cases} c \le 0 \\ c \ge 1 \end{cases}$$

Portanto, não existe nenhum valor de c para o qual os pontos $\left(\frac{1}{c-1}, \frac{c}{c-1}\right)$, com $c \neq 1$, sejam maximizantes

11.
$$F(w_1, w_2) = w_1^2 + w_2^2 + cw_1w_2 + w_1 + 2w_2$$

gradiente de
$$F: \nabla F(w_1, w_2) = \begin{bmatrix} \frac{\partial F}{\partial w_1} \\ \frac{\partial F}{\partial w_2} \end{bmatrix} = \begin{bmatrix} 2w_1 + cw_2 + 1 \\ 2w_2 + cw_1 + 2 \end{bmatrix}$$

Pontos estacionários de F:

$$\nabla F(w_1, w_2) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2w_1 + cw_2 + 1 \\ 2w_2 + cw_1 + 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{cases} 2w_1 + cw_2 + 1 &= 0 \\ 2w_2 + cw_1 + 2 &= 0 \end{cases} \Leftrightarrow \begin{cases} 2w_1 + cw_2 + 1 &= 0 \\ 2w_2 + cw_1 + 2 &= 0 \end{cases} \Leftrightarrow \begin{cases} w_1 = \frac{2 - 2c}{c^2 - 4} \\ w_2 = \frac{4 - c}{c^2 - 4} \end{cases}$$

Portanto, os ponto estacionários são: $\left(\frac{2-2c}{c^2-4}, \frac{4-c}{c^2-4}\right)$.

hessiana de
$$F: \nabla^2 F(w_1, w_2) = \begin{bmatrix} \frac{\partial^2 F}{\partial w_1^2} & \frac{\partial^2 F}{\partial w_1 w_2} \\ \frac{\partial^2 F}{\partial w_2 w_1} & \frac{\partial^2 F}{\partial w_2^2} \end{bmatrix} = \begin{bmatrix} 2 & c \\ c & 2 \end{bmatrix}$$

Para os pontos estacionários serem minimizantes globais, a matriz $\nabla^2 F(w_1,w_2)$ tem de ser semi-definida positiva. Neste caso, det $\left(\left[\begin{array}{cc} 2 & c \\ c & 2 \end{array} \right] \right) > 0$, ou seja, $4-c^2 > 0$. Resolvendo a inequação, o conjunto solução é $c \in]-2,2[$.