Les questions de cours portent sur ce qui est entre accolades et en gras. On attend une maîtrise de l'intégralité des notions sur l'intégrale.

Cours: Intégration

a et b sont deux réels tels que a < b. \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

Approximation uniforme

Subdivision d'un segment. Pas d'une subdivision. Subdivision plus fine, décroissance du pas pour l'inclusion. Fonction en escallier de [a,b] dans \mathbb{K} . Subdivision adaptée. $\mathcal{E}([a,b],\mathbb{K})$ est un sous-espace vectoriel et un sous-anneau de l'espace des fonctions bornées de [a,b] dans \mathbb{K} . Stabilité par passage au module. Fonction continue par morceaux. Toute fonction en escalier est continue par morceaux. Subdivision adaptée. $C_{pm}([a,b],\mathbb{K})$ est un sous-espace vectoriel et un sous-anneau de l'espace des fonctions bornées de [a,b] dans \mathbb{K} . Stabilité par pasage au module. Continuité uniforme. [Théorème de Heine]. [Approximation d'une fonction continue par morceaux par des fonctions en escalier dans le cas réel]. Extension au cas complexe.

Intégrale de Riemann

Intégrale d'une fonction en escalier. Indépendance vis-à-vis de la subdivision adaptée. Linéarité, relation de Chasles, croissance et inégalité triangulaire. Intégrale d'une fonction continue par morceaux à valeurs dans $\mathbb R$ définie par

$$\int_{a}^{b} f = \sup \left\{ \int_{a}^{b} \varphi \, | \, \varphi \in \mathcal{E}([a, b], \mathbb{R}), \varphi \leq f \right\}$$

[Intégrale comme borne inférieure : $\int_a^b f = \inf \left\{ \int_a^b \psi || \psi \in \mathcal{E}([a,b],\mathbb{R}), \psi \geq f \right\}$] Compatibilité avec le signe. [Linéarité de l'intégrale]. Croissance, relation de Chasles. Inégalité triangulaire. Extension de la notation $\int_a^b f dt$

lorsque $a \ge b$. Valeur moyenne. [Théorème de séparation : soit $f \in C([a,b],\mathbb{R})$ telle que $f \ge 0$ et $\int_a^b f = 0$. Alors f = 0.] Cas d'égalité de l'inégalité triangulaire pour des fonctions continues. Extension aux fonctions continues par morceaux à valeurs dans \mathbb{C} .

Somme de Riemann $S(f,\sigma,\xi)$ associée à une subdivision pointée. Cas des subdivisions régulières gauche et droite. [Théorème des sommes de Riemann : Soit $f \in C_{pm}([a,b],\mathbb{K})$. Alors pour tout $\varepsilon > 0$, il existe un réel $\delta > 0$ tel que pour toute subdivision pointée (σ,ξ) de pas inférieur à δ , $|S(f,\sigma,\xi) - \int_a^b f| \le \varepsilon$]. Démonstration dans le cas f continue. Majoration de l'erreur de la méthode des rectangles dans le cas f L-Lipschitzienne.

Exercices

Les exercices porteront sur l'intégration et peuvent exploiter en outre tous les outils connus de Terminale, y compris le théorème fondamental du calcul intégral, les intégrations par parties, les changements de variables. Des calculs de primitives ne feront pas de mal.

* * * *