## An introduction to Lattice Quantum Chromodynamics

Mathias M. Vege August 23, 2017

## Abstract

## 1 Introduction

The aim of this paper is to give a hand-on introduction to the how one can go from a rudimentary understanding of quantum mechanics and quantum field theory, to simulating quantum chromodynamics on the lattice. In order to kick this is of, let us begin by discussing our end-goal, Quanutm Quantum Chromodynamics(QCD).

QCD is the theory for interacting quarks and gluons.

- 2 Refreshing quantum mechanics
- 3 The path integral formalism

Wick rotation.

- 4 The Metropolis algorithm
- 5 Statistical analyses

What is autocorrelation? Autocorrelation versus correlation?

- 5.1 Bootstrapping
- 5.2 Jackknife method
- 5.3 Blocking
- 6 Quantum Field Theory and its fundamentals
- 6.1 Observables
- 6.2 Action
- 7 Lattice Quantum Chromodynamics
- 7.1 Making a theory gauge invariant
- 7.2 The Plaquette
- 7.3 The Wilson gauge action
- 7.4 Notes on a Lattice QCD simulation
- 7.4.1 Updating matrices
- 7.4.2 Generating random SU(3) matrices
- 7.4.3 Generating random SU(2) matrices