1. Динамические характеристики биполярных транзисторов.

Конечное время движения носителей через базу создает эффект запаздывания. Что эквивалентно

эффекту выходной емкости.

Возьмем схему с ОЭ. Puc 4

Пустай входное напряжение отрицательно. Тогда закрытый переход подобен заряженному конденсатору.

Если в некоторый момент напряжение станет положительным, то в общем случае через сопротивление базы потечет ток (через прямо смещенный переход). При этом потребуется время на перезарядку емкостей эмиттера и коллектора, они образуют апериодические звенья.

Аналогично при обратном процессе. Емкости будут создавать эффект запаздывания.

Для оценки запаздывания используют формулу: tpac = $19*\tau/16$

19*т — заряд на эмиттере

т – время жизни зарядов

Частота входного сигнала оказывает действие на h21э и определяется конечным временем жизни ностителей.

Может быть оценено формулой.

h21 \ni (jw) = h21 \ni (0)*(e^(-j*w* \taus)/(1+j*w* \tau)

 $\tau s = \tau / h219(0)$

Выводы – чем больше частота, тем больше уменшится h21э.

Частоту при которой этот коеф. уменшается в sqr(2) раз называется предельной частотой усиления. Для схемы с ОБ.

Для схемы с ОЭ часто используют граничную частоту, значение, когда h21Э = 1.

2. РАСЧЕТ НЕЛИНЕЙНЫХ ЦЕПЕЙ ПОСТОЯННОГО ТОКА

Метод пересечения характеристик (метод опрокинутой характеристики) используется для анализа цепей, которые методами эквивалентных преобразований могут быть сведены к последовательному включению двух элементов. В основу метода положено предположение о том, что суммарное напряжение на последовательно включенных элементах определяется внешним источником и не зависит от тока, протекающего в цепи. В соответствии со сказанным

для цепи из двух элементов (рис. 4.10, а) справедливы выражения:

$$I = I_{R1} = I_{R2}, U_1(I) + U_2(I) = U_n.$$
(4.5)

При известных ВАХ элементов (рис. 4.10, 6) ток, удовлетворяющий системе (4.5), может быть легко найден графически. Для этого исходную характеристику одного из элементов зеркально отражают относительно оси токов (опрокидывают) и ее начало сдвигают по оси напряжений на величину, пропорциональную

Рис 410 Схема цепи (а). ВАХ петинейных этементов (б) и решение методом пересече иля характеристик (в)

входному напряжению цепи (отсюда и второе название метода — метод опрокинутой характеристики). Точка пересечения исходной характеристики одного и преобразованной характеристики второго элементов даст искомые ток I' и падения напряжений $U_1(I)$ и $U_2(I)$ (рис. $4.10, \mathfrak{o}$).

Используя описанный метод, легьо исследовать процессы в целях как при изменении параметров элементов $R_1(I)$ и $R_2(I)$, так и при изменении внешнего напряжения U_n .

3. Транзисторные Т-триггеры

Электронные схемы, имеющие 2 равноценных варианта устойчивых состояний, называются бистабильными ячейками или триггерами.

Бистабильные ячейки, предназначенные для работы в режиме общего входа, называют **Т-триггерами.**

Для этого режима характерна подача управляющих сигналов одновременно на оба соединенных между собой входа БЯ, причем каждый очередной сигнал вызывает переход БЯ в состояние, противоположное предыдущему. Для того чтобы устойчивые состояния БЯ менялись регулярно после каждого входного импульса схема должна иметь внутреннюю память. Функция этой памяти состоит в том, чтобы хранить информацию о предыдущем состоянии триггера в течение всего времени действия очередного управляющего сигнала, a после окончания обеспечить принудительный переход схемы состояние, противоположное предыдущему.

Для реализации внутренней памяти используют запоминающие емкости.

Пусть в исходном состоянии T1 заперт, а T2 открыт и насыщен. Тогда

 $I_{61} = 0$

 $I_{62} = (E_{\kappa} - U^*)/(R + R_{k})$

Соответственно напряжение на конденсаторах C1 и C2 будет

 $Uc_1 = I_{62} * R = (E_{\kappa} - U^*) * R/(R + R_{\kappa})$

 $Uc_2 = I_{61} * 1 = 0$

Коллекторный потенциал Т1 будет

$$U_{k1}=U^*+I_{B\kappa}*R$$

При поступлении управляющего сигнала ключи Т3 и Т4 отпираются до насыщения. Тогда потенциал U_{k1} падает практически до нуля, а потенциал U_{62} оказывается отрицательным

 $U_{62}\!\!=U_{k1}\!\!-U_{c1}\!\!=U_{c1}$

Опа транзистора Т1 и Т2 остаются запертіми до окончания входного сигнала.

В овремя действия сигнала C1 разряжается через резистор R

С постоянной времени au_c =C1*R. Если длительность сигнала достаточно мала ($t_{\rm Bx}$ =< au_c), то разряд незначителен и напряжение $U_{\rm c1}$ сохраняет свое исходное значение.

По окончании сигнала в базы транзисторов поступают отпирающие токи, которые имеют существенно разные значения

$$I_{61}^{+}=(E_{\kappa}-Uc_{2}-U^{*})/R_{k}=(Ek-U^{*})/R_{k}$$

Очевидно ток ${\rm I_{61}}^{^+}$ больше тока ${\rm I_{62}}^{^+}$

Соответственно скорость нарастания коллекторного тока в T1 больше, чем вT2. Быстро нарастающий ток в T1 ответвляясь в базу T2 подавляет начальное значение ${\rm I_{62}}^+$. В результате T2 заперт, а T1 через некоторое время входит в режим насыщения.

Тем самым триггер изменил свое первоначальное состояние. В промежутке между входными сигналами С1 успеет разрядиться, а С2 – зарядиться (до того же напряжение которое в исходном состоянии было на С1). Поэтому при поступлении очередного входного сигнала процессы будут развиваться аналогично и БЯ вернется в исходное состояние.

Таким образов конденсаторы сохраняют те напряжения, которые свойственны предыдущему состоянию триггера. Обеспечивают однозначную искусственную асимметрию отпирающих токов в момент окончания входного сигнала и тем самым переход БЯ в начальное состояние.

Для работы Т-триггера достаточно выделить два условия:

$$t_{\rm BX} = < \tau_{\rm C}$$

тут τ_c — постоянная времени емкости. Это условие обеспечивает сохранения напряжение на запоминающем конденсаторе во время действия входного импульса

2)T>3*
$$\tau_c$$

(T- период повторения импульсов) Это условие обеспечивает разряд конденсатора в промежутке между входными импульсами.

Все это в целом ограничивает быстродействие системы