2º Relatório referente a disciplina de Métodos Computacionais Inspirados na Natureza (MCIN) Autor: Larangeira, Vicente d'Orema Albuquerque

Propostas de melhorias ao algoritmo de Evolução Diferencial: um estudo comparativo

Resumo

Esse estudo tem como objetivo propor uma série de modificações ao algoritmo de otimização conhecido como Evolução Diferencial de modo a melhorar sua performance em um conjunto de sete problemas do CEC2014. Os resultados obtidos pelo algoritmo modificado são comparados com os obtidos por dois modelos clássicos de Evolução Diferencial e também pelo algoritmo conhecido como *Particle Swarm Optimization* (PSO).

1 Introdução

Ao longo das últimas décadas observou-se um crescimento significativo no ramo da computação evolutiva. Esse crescimento pode ser comprovado pela diversidade de métodos de otimização presentes na literatura. Como resumido em [1], o objetivo desses métodos é encontrar o máximo ou o mínimo que uma função ou um conjunto de funções podem assumir considerando um conjunto de variáveis $\boldsymbol{X} = (x_1, x_2, \cdots, x_D)$ num espaço de busca com D dimensões. Sendo assim, a qualidade de um algoritmo de otimização é demonstrada pela sua eficácia e eficiência em resolver a maior diversidade possível de problemas.

Grande parte dos estudos recentes envolvendo computação evolutiva consiste em propor modificações aos algoritmos de otimização clássicos de modo a aperfeiçoá-los. Seguindo essa linha, esse trabalho propõe uma série de modificações ao algoritmo conhecido como Evolução Diferencial considerando algumas das principais limitações desse algoritmo. Para avaliar o efeito das modificações na performance do algoritmo, em relação à dois modelos clássicos de Evolução Diferencial, foram selecionadas sete funções do desafio do *IEEE Congress on Evolutionary Computation (CEC) 2014*. As funções também são submetidas ao algoritmo conhecido como *Particle Swarm Optimization* (PSO).

Esse relatório está organizado da seguinte forma: a seção 2 apresenta os algoritmos de otimização avaliados, incluindo o algoritmo modificado, a seção 3 apresenta a metodologia de análise e as funções objetivo usadas, a seção 4 apresenta e discute os resultados obtidos e a seção 5 apresenta as conclusões.

2 Algoritmos avaliados

Nessa seção serão apresentados os modelos de *Particle Swarm Optimization* e Evolução Diferencial avaliados e os parâmetros adotados em cada um. Esses parâmetros foram escolhidos buscando gerar os melhores resultados tendo como base trabalhos anteriores e testes preliminares. Por último, são apresentadas e justificadas as modificações propostas a Evolução Diferencial.

2.1 Particle Swarm Optimization (PSO)

O modelo adotado para o *Particle Swarm Optimization* foi o mesmo usado em [1]. Os parâmetros necessários para esse algoritmo são o tamanho da população, a velocidade máxima permitida e os componentes que comandam os três componentes de velocidade de cada indivíduo.

Apesar de não ser o foco desse estudo, o algoritmo usado apresenta algumas modificações em relação ao originalmente proposto por Kennedy e Eberhart [2]. Foi adotado o coeficiente de constrição de Clerc [3] que multiplica todos os componentes de velocidade por 0,73 e limitou-se a velocidade máxima a 20% do espaço de busca como feito em [4]. Por último, foi adotado um decaimento linear para a componente que controla a velocidade de inércia como feito em [5].

Os valores adotados para cada um dos parâmetros mencionados estão apresentados na Tabela 1. O código utilizado é de implementação própria.

D : ~	PGO
Descrição	PSO
Tamanho da População (NP)	100
Inércia ($w = f(num_{iter})$)	(0,9-0,4)
C1 (termo cognitivo)	2,0
C2 (termo social)	2,0
Velocidade máxima	$0.2*(lim_{min} - lim_{max})$
Fator de Clerc ($\chi = 0.73$)	Sim

Tabela 1: Parâmetros adotados para o Partcile Swarm Optimization (PSO)

É importante ressaltar que o algoritmo de *Particle Swarm Optimization* (PSO) também apresenta um grande potencial em resolver problemas de otimização. Essa capacidade pode ser comprovada pela variedade de estudos relacionados ao algoritmo [6]. Além disso, este foi um dos algoritmos pioneiros em utilizar o conceito de inteligência de enxame presente em algoritmos desenvolvidos recentemente como o *Social Spider Algoritm* [7] e o *Artificial Bee Colony* [8].

2.2 Evolução Diferencial clássico (ED)

Os parâmetros necessários para esse algoritmo são o tamanho da população, o tamanho do passo e a taxa de *crossover*. O número reduzido de parâmetros, sua fácil implementação e sua eficiência justificam o elevado interesse que esse algoritmo desperta.

Essas características também estimulam diversos estudos voltados não só a encontrar os melhores parâmetros para o algoritmo, mas também propostas de modificações como as que são apresentadas nesse trabalho.

Os modelos adotados para representar o "estado da arte" da Evolução Diferencial são: o modelo clássico ED/rand/1 [9] e a variação conhecida como ED/best/2 [10]. Esses modelos foram selecionados pois apresentam características diferentes em termos de velocidade de convergência e capacidades de exploração e explotação. Enquanto o primeiro é mais lento o segundo tem mais chance de ficar preso em mínimos locais (convergência prematura).

Os valores dos parâmetros adotados nesse estudo estão apresentados na Tabela 2 e foram selecionados por apresentar os melhores resultados durante análises preliminares. Os códigos utilizados são de implementação própria e foram desenvolvido baseados em [10].

Tabela 2: Parâmetros adotados para Evolução Diferencial clássica (ED)

Descrição	ED/rand/1	ED/best/2	
Tamanho da População NP	100	100	
Taxa de Crossover (%)	90%	90%	
Tamanho do passo (F)	0,50	0,55	

2.3 Evolução Diferencial modificada

Como qualquer algoritmo de otimização, a performance da Evolução Diferencial clássica varia de acordo com o problema, o que faz com que ela obtenha melhores resultados em algumas funções e piores em outras. O objetivo das modificações sugeridas nesse trabalho é melhorar o desempenho desse algoritmo no maior número de funções de otimização possível. Essa seção apresenta o conjunto de modificações propostas justificando o porquê de suas aplicações.

2.3.1 População Inicial

A população inicial em todas as análises é a mesma utilizada pela Evolução Diferencial clássica apresentada na Tabela 2 (NP = 100). Uma pequena modificação foi o posicionamento de dois indivíduos nos extremos no espaço de busca e um no centro. Essa modificação agilizaria a busca caso o ótimo esteja próximo a uma dessas regiões. Os demais 97 indivíduos são gerados aleatoriamente distribuídos pelo espaço de busca.

2.3.2 Mutação e *Crossover*

A principal modificação implementada nesse trabalho foi inspirada no algoritmo SaDE proposto por Qin e Suganthan [10]. Essa modificação consiste em aplicar à um quarto da população (25 indivíduos) a estratégia ED/rand/1 seguido do mesmo um quarto usando ED/best/2. Para a metade restante da população é aplicado a estratégia de mutação que tiver o maior número de sucessos no processo de seleção. No início desse processo a população é "embaralhada", de modo que os indivíduos da população tenham a mesma chance de ser comparados com indivíduos gerados pelas duas estratégias.

Em seguida, duas modificações adicionais foram incluídas a estratégia do ED/rand/1. A primeira é que os vetores sorteados são organizados em função dos seus valores de aptidão. Assim, o melhor vetor (aquele com maior aptidão) é o vetor com maior importância na criação do vetor tentativa. Considerando os vetores apresentados na Figura 1 em um problema de minimização, isso significa que $f(\mathbf{v_3}) < f(\mathbf{v_2}) < f(\mathbf{v_1})$.

Figura 1: Representação gráfica da estratégia ED/rand/1

A aplicação dessa modificação por si só já gerou uma melhora significativa nos testes preliminares.

A segunda modificação foi o ajuste do valor do passo (F) em função da diferença dos valores de aptidão entre os dois vetores para qual o passo é aplicado. Esse ajuste é realizado pela seguinte relação:

$$F = 1.0 - \frac{\min(f(v_2), f(v_1))}{f(v_2) + f(v_1)}$$
 (1)

Esse ajuste faz com que o valor do passo diminua ao longo das iterações favorecendo uma busca global no início e uma busca local no final [11]. Além disso o valor de F é mantido entre [0,5; 1) estando dentro do intervalo normalmente adotado. Para a estratégia de mutação ED/best/2 foi adotado o mesmo valor de F apresentado na Tabela 2.

A taxa de *crossrate* foi mantido em 0,9 tanto para o ED/rand/1 quanto para ED/best/2. Em todo caso, é possível encontrar na literatura uma grande diversidade de trabalhos que propõem ajustes dinâmicos ou estratégias auto adaptativas para definir esse parâmetro. Eltaieib e Mahmodd [12] apresentam uma valiosa pesquisa sobre alguns desses trabalhos.

2.3.3 Convergência prematura

A convergência prematura ocorre quando o algoritmo fica preso em um mínimo local. A modificação implementada para tentar contornar esse problema foi reiniciar a população caso o algoritmo não encontre um resultado melhor em 50 gerações seguidas.

Entretanto o processo de inicialização adotado nesse trabalho faz uma consideração extra: a população só é reiniciada caso a relação apresentada na Eq. (2) for menor do que um erro préestabelecido. Nessa equação, f_{max} e f_{min} correspondem ao melhor e pior valores de aptidão e m_t corresponde ao valor médio. Para as análises realizadas nesse trabalho foi adotado o valor do critério de parada (10^{-8}).

$$Dif = \sqrt{\frac{(f_{max} - m_t)^2 + (f_{min} - m_t)^2}{2}}$$
 (2)

Somente após atingir as duas condições mencionadas acima a população é reiniciada. No algoritmo implementado essa reinicialização pode ser realizada das duas seguintes maneiras:

- A primeira é quando os indivíduos estão muito próximos uns dos outros (maior distância < 1,0). Nesse caso a população inteira está presa num mínimo local. Para essas situações, guarda-se somente o melhor indivíduo enquanto o resto da nova população é gerada aleatoriamente num espaço de busca reduzido. Esse espaço de busca é definido pela média entre os limites iniciais (extremos do espaço de busca) e os extremos ocupados pelos indivíduos. Essa modificação é condizente com problemas conhecidos de otimização como Ackley e Griewank.</p>
- A segunda é quando a maior distância entre os indivíduos é superior a 1,0. Nesse caso foi assumido que exista mais de um mínimo local e que a população está presa em regiões diferentes. Para essas situações, metade da população é mantida e a outra metade é substituída por novos indivíduos gerados aleatoriamente pelo espaço de busca. Essa modificação é condizente com problemas conhecidos de otimização como Rastrigin e Shaffer (F6).

3 Metodologia de análise e funções de avaliação

Como mencionado anteriormente, os aspectos mais importantes para determinar a qualidade de um algoritmo de otimização são a sua eficácia e eficiência em encontrar a melhor solução em um problema ou conjunto de problemas.

Nesse contexto, esse trabalho selecionou sete problemas de minimização para comparar o desempenho dos algoritmos avaliados. Cada um desses problemas corresponde a uma das funções propostas no desafio do CEC2014. A relação completa de funções pode ser encontrada em https://github.com/P-N-Suganthan/CEC2014. As Tabela 3 e 4 apresentam, respectivamente, as funções objetivo selecionadas e os critérios adotados nas análises.

Tabela 3: Lista de Funções objetivo avaliadas

Nome da função

ID	Nome da função	Mínimo global
F1	Rotated High Conditioned Elliptic Function	100,0
F2	Rotated Bent Cigar Function	200,0
F4	Shifted and Rotated Rosenbrock's Function	400,0
F6	Shifted and Rotated Weierstrass Function	600,0
<i>F7</i>	Shifted and Rotated Griewank's Function	700,0
F9	Shifted and Rotated Rastrigin's Function	900,0
F14	Shifted and Rotated HGBat Function	1400,0

Tabela 4: Parâmetros das Análises

Dimensões (número de variáveis)	10 e 30
Execuções (Runs)	25
Número máximo de avaliações (MaxFES)	MaxFES = 10000*D = 100000 e 300000
Região de busca (Intervalos)	[-100,100] ^D
Geração da população	Uniforme na região de busca
Ótimo global	Igual a origem adotada
Critério de parada	MaxFES (sucesso ou não) ou Erro < 10 ⁻⁸
Taxa de sucesso	Número de Sucesso/25

Nesse estudo, os algoritmos são rodados 25 vezes para cada uma das funções objetivo tendo, em cada rodada, um limite de 100000 (10D) e 300000 (30D) avaliações da função objetivo (MaxFES) para encontrar o ótimo global (dentro do erro de 10-8). À cada rodada, uma série de resultados parciais (0*MaxFES, 0,001*MaxFES, 0,01*MaxFES, 0,1*MaxFES, 0.2*MaxFES, ..., 1*FES) é salva para avaliar o comportamento de convergência de cada algoritmo.

Ao final de cada rodada são retornados os valores dos melhores resultados encontrados, os resultados parciais e se o algoritmo teve sucesso em encontrar o ótimo global ou não. Ao final das 25 rodadas são determinados, o melhor, o pior, a média, a mediana e o desvio padrão desses 25 melhores resultados e a taxa de sucesso.

Por último, obtêm-se a média de cada um dos resultados parciais considerando os valores parciais obtidos nas 25 rodadas. São a partir dessas médias que os gráficos apresentados na seção de resultados são construídos.

4 Resultados

Nessa seção são apresentados os resultados obtidos nesse estudo. Esses resultados foram separados para cada uma das sete funções objetivo avaliadas permitindo a comparação das performances dos algoritmos caso a caso.

A Tabela 5 e a Tabela 6 apresentam, respectivamente, os principais resultados obtidos por cada algoritmo em 10 e 30 dimensões. Os valores de melhor, pior, mediana, média, desvio padrão e taxa de sucesso apresentados nessas tabelas são obtidos considerando as 25 rodadas que cada algoritmo executou conforme descrito na seção 3.

Os valores em negrito indicam o algoritmo que teve o melhor desempenho sendo o primeiro critério avaliado a taxa de sucesso. Caso dois ou mais algoritmos obtenham a mesma taxa de sucesso a velocidade de convergência pode ser usada como critério de desempate. Uma maneira simples de observar essa velocidade de convergência é analisando os gráficos para a F1 e F2 em 10 dimensões (Figura 2 e Figura 3).

Nos casos em que nenhum dos algoritmos obteve sucesso, o critério de desempate foi o melhor valor encontrado. Esse valor corresponde ao ponto com maior aptidão indicado nas tabelas como o menor valor de erro (Melhor).

Tabela 5: Resultados obtidos pelos algoritmos para as funções objetivos avaliadas (10D)

Função	Método	Melhor	Pior	Mediana	Média	Dev.	Taxa de Sucesso
F1	PSO	2.147E-02	1.486E+03	1.459E+02	2.725E+02	3.498E+02	0.00%
	ED/rand1	4.986E-09	9.908E-09	7.996E-09	8.028E-09	1.404E-09	100.00%
	ED/best2	5.535E-09	9.986E-09	8.275E-09	8.120E-09	1.326E-09	100.00%
	ED/mod	4.792E-09	9.999E-09	8.647E-09	8.426E-09	1.286E-09	100.00%
F2	PSO	3.706E-01	3.055E+02	5.832E+01	7.987E+01	8.230E+01	0.00%
	ED/rand1	3.348E-09	9.875E-09	7.336E-09	7.254E-09	1.984E-09	100.00%
ΓZ	ED/best2	2.562E-09	9.849E-09	7.474E-09	7.358E-09	1.962E-09	100.00%
	ED/mod	4.212E-09	9.951E-09	8.437E-09	8.008E-09	1.659E-09	100.00%
	PSO	2.922E-06	3.478E+01	3.478E+01	2.139E+01	1.679E+01	0.00%
F4	ED/rand1	5.497E-09	3.478E+01	3.478E+01	2.522E+01	1.568E+01	24.00%
Г4	ED/best2	9.071E-09	3.478E+01	3.478E+01	2.574E+01	1.485E+01	12.00%
	ED/mod	8.138E-09	3.478E+01	3.478E+01	2.713E+01	1.394E+01	8.00%
F6	PSO	9.656E-09	2.626E+00	1.735E-01	7.939E-01	8.541E-01	4.00%
	ED/rand1	5.836E-09	2.774E+00	1.210E-08	6.023E-01	7.584E-01	48.00%
го	ED/best2	4.432E-09	3.899E+00	8.945E-01	1.269E+00	1.389E+00	36.00%
	ED/mod	3.807E-09	3.671E+00	8.308E-09	3.510E-01	8.490E-01	80.00%
	PSO	1.724E-02	1.451E-01	6.889E-02	7.354E-02	3.511E-02	0.00%
F7	ED/rand1	2.097E-02	4.499E-01	2.821E-01	2.561E-01	9.696E-02	0.00%
Г/	ED/best2	2.704E-02	6.399E-01	3.372E-01	3.172E-01	1.795E-01	0.00%
	ED/mod	6.859E-09	3.201E-02	1.232E-02	1.448E-02	8.143E-03	4.00%
	PSO	1.990E+00	2.089E+01	1.293E+01	1.126E+01	4.778E+00	0.00%
F9	ED/rand1	1.506E+01	3.138E+01	2.468E+01	2.466E+01	4.474E+00	0.00%
	ED/best2	1.249E+01	3.917E+01	2.763E+01	2.734E+01	6.881E+00	0.00%
	ED/mod	9.950E-01	6.965E+00	2.985E+00	3.741E+00	1.500E+00	0.00%
F14	PSO	7.862E-02	3.291E-01	2.306E-01	2.073E-01	7.910E-02	0.00%
	ED/rand1	1.175E-01	2.687E-01	1.794E-01	1.780E-01	4.145E-02	0.00%
	ED/best2	6.864E-02	2.316E-01	1.252E-01	1.387E-01	4.442E-02	0.00%
	ED/mod	6.168E-02	4.061E-01	1.432E-01	1.594E-01	7.256E-02	0.00%

Figura 2: Convergência dos algoritmos para a função objetivo F1 (10D)

Figura 3: Convergência dos algoritmos para a função objetivo F2 (10D)

Figura 4: Convergência dos algoritmos para a função objetivo F4 (10D)

Figura 5: Convergência dos algoritmos para a função objetivo F6 (10D)

Figura 6: Convergência dos algoritmos para a função objetivo F7 (10D)

Figura 7: Convergência dos algoritmos para a função objetivo F9 (10D)

Figura 8: Convergência dos algoritmos para a função objetivo F14 (10D)

Tabela 6: Resultados obtidos pelos algoritmos para as funções objetivos avaliadas (30D)

Função	Método	Melhor	Pior	Mediana	Média	Dev.	Taxa de Sucesso
F1	PSO	1.281E+04	4.487E+05	6.599E+04	9.690E+04	9.569E+04	0.00%
	ED/rand1	4.918E+03	1.146E+05	3.954E+04	3.835E+04	2.360E+04	0.00%
	ED/best2	8.967E+03	1.861E+05	6.078E+04	7.597E+04	4.947E+04	0.00%
	ED/mod	4.740E+03	4.344E+04	1.440E+04	2.049E+04	1.282E+04	0.00%
F2	PSO	1.718E-06	3.855E+01	1.871E-01	4.380E+00	8.882E+00	0.00%
	ED/rand1	3.840E-09	9.977E-09	8.517E-09	8.472E-09	1.320E-09	100.00%
	ED/best2	7.618E-09	9.955E-09	8.991E-09	9.023E-09	6.755E-10	100.00%
	ED/mod	7.678E-09	9.909E-09	9.239E-09	9.104E-09	6.695E-10	100.00%
	PSO	2.139E-05	7.443E+01	3.101E-02	3.170E+00	1.487E+01	0.00%
F4	ED/rand1	2.617E-02	6.340E+01	1.453E-01	5.205E+00	1.751E+01	0.00%
	ED/best2	9.519E-09	6.340E+01	6.399E-05	1.046E+01	2.360E+01	8.00%
	ED/mod	8.503E-09	4.424E+00	9.757E-09	1.239E+00	2.027E+00	72.00%
	PSO	3.369E+00	1.422E+01	6.619E+00	7.064E+00	3.113E+00	0.00%
F6	ED/rand1	7.690E-09	9.017E+00	4.007E+00	4.180E+00	2.202E+00	4.00%
	ED/best2	3.498E+00	1.714E+01	9.113E+00	8.956E+00	3.567E+00	0.00%
	ED/mod	4.962E-01	1.257E+01	5.338E+00	5.479E+00	2.339E+00	0.00%
	PSO	2.762E-09	1.620E-01	1.477E-02	2.355E-02	3.724E-02	32.00%
F7	ED/rand1	6.506E-09	9.986E-09	9.139E-09	8.762E-09	1.015E-09	100.00%
F/	ED/best2	8.507E-09	3.936E-02	9.857E-03	9.555E-03	1.020E-02	40.00%
	ED/mod	8.350E-09	2.461E-02	9.771E-09	5.910E-03	7.946E-03	60.00%
	PSO	4.378E+01	1.264E+02	7.661E+01	7.868E+01	2.010E+01	0.00%
F9	ED/rand1	1.473E+02	1.944E+02	1.737E+02	1.744E+02	1.246E+01	0.00%
	ED/best2	1.791E+02	2.267E+02	2.106E+02	2.078E+02	1.430E+01	0.00%
	ED/mod	9.950E+00	5.074E+01	2.487E+01	2.551E+01	8.847E+00	0.00%
F14	PSO	1.651E-01	9.514E-01	2.738E-01	2.824E-01	1.481E-01	0.00%
	ED/rand1	2.177E-01	3.068E-01	2.705E-01	2.716E-01	2.456E-02	0.00%
	ED/best2	1.795E-01	9.391E-01	6.610E-01	5.507E-01	2.641E-01	0.00%
	ED/mod	1.821E-01	6.122E-01	2.796E-01	3.049E-01	9.294E-02	0.00%

Figura 9: Convergência dos algoritmos para a função objetivo F1 (30D)

Figura 10: Convergência dos algoritmos para a função objetivo F2 (30D)

Figura 11: Convergência dos algoritmos para a função objetivo F4 (30D)

Figura 12: Convergência dos algoritmos para a função objetivo F6 (30D)

Figura 13: Convergência dos algoritmos para a função objetivo F7 (30D)

Figura 14: Convergência dos algoritmos para a função objetivo F9 (30D)

Figura 15: Convergência dos algoritmos para a função objetivo F14 (30D)

Avaliando os resultados apresentados por cada algoritmo, pode-se destacar que:

- O Particle Swarm Optimization (PSO) obteve sucessos em 10D (F6) e em 30D (F7). Foi o melhor algoritmo somente na F14 (30D). Considerando as demais funções, seus resultados sãos, em geral, piores comparados aos dos algoritmos clássicos ED/rand/1 e ED/best/2, com exceção para F7 (10D) e F9 (10D e 30D). Quando comparado ao algoritmo ED modificado, seus resultados são piores em todos as demais funções.
- A Evolução Diferencial clássica ED/rand/1 obteve sucessos em 10D (F1, F2, F4 e F6) e 30D (F2, F6 e F7). Foi o melhor algoritmo em F4 (10D), F6 (30D) e F7 (30D). Destaque para o caso da F7 (30D) onde foi o único dos algoritmos a obter 100% de sucesso enquanto o segundo colocado (ED modificado) obteve 60%.
- A Evolução Diferencial clássica ED/best/2 obteve sucessos em 10D (F1, F2, F4 e F6) e 30D (F2, F4 e F7). Foi o melhor algoritmo em F1 (10D) e F2 (10D). Como esperado, sua convergência foi muito mais rápida do que o DE/rand/1 nesses dois casos.
- A Evolução Diferencial modificada obteve sucessos em 10D (F1, F2, F4, F6 e F7) e em 30D (F2, F4 e F7). Foi o melhor dos algoritmos para F1 (30D), F2 (30D), F4 (30D), F6 (10D), F7 (10D), F9 (10D e 30D) e F14 (10D). Destaque na F6 (10D) e F4 (30D) pelo aumento significativo na taxa de sucesso e na F7 (10D) e F9 (10D e 30D) por superar o *Particle Swarm Optimization* onde os algoritmos clássicos ED/rand/1 e ED/best/2 são inferiores. Importante ressaltar que na F1 e F2 (10D) o algoritmo modificado apresentou resultados praticamente idênticos ao melhor algoritmo para essas funções (ED/best/2).

5 Conclusão

Esse relatório apresenta uma série de modificações propostas ao algoritmo conhecido como Evolução Diferencial. O efeito dessas modificações foi avaliado comparando a performance do algoritmo desenvolvido em relação ao modelo clássico ED/rand/1, a variação ED/best/2 e a outro tipo de algoritmo de otimização conhecido como *Particle Swarm Optimization* (PSO). A capacidade desses algoritmos em encontrar o mínimo global foi analisado em sete problemas de otimização conhecidos na literatura (*benchmark functions*).

Considerando os resultados obtidos, o algoritmo modificado foi o que obteve a melhor performance dentre os avaliados. Além de ser o algoritmo que mais superou os concorrentes, em apenas 1 dos 14 casos avaliados foi, ligeiramente, inferior aos dois modelos clássicos de Evolução Diferencial. Tendo isso em mente, conclui-se que a ideia de aproveitar a eficiência do ED/best/2 e a capacidade de exploração do ED/rand/1 em um mesmo algoritmo, assim como a proposta de reinicializar a população em casos de convergência prematura, foram bem sucedidas.

É importante ressaltar que os resultados apresentados aqui abrangem uma pequena gama de funções objetivo sendo recomendável que novos testes sejam realizados com uma maior diversidade de funções.

Referências

- [1] Larangeira, V. d. A, 2020, "Um estudo sobre a performance de diferentes algoritmos de computação evolutiva", 1º Relatório referente a disciplina de Métodos Computacionais Inspirados na Natureza (MCIN)
- [2] Kennedy, J., Eberhart, R. C., 1995, "Particle swarm optimization", Proceedings of the EEE international Conference on neural networks IV (pp. 1942–1948)
- [3] Clerc, M., 1999, "The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization", Congress on Evolutionary Computation, Washington DC (pp. 1951–1955)
- [4] Liang, J. J., Suganthan, P. N., 2005, "Dynamic Multi-Swarm Particle Swarm Optimizer with Local Search", Proceedings for CEC2005 (web page: https://github.com/P-N-Suganthan/CEC2005/blob/master/papers-with-results.zip)
- [5] Tasgetiren, M. F., Liang, Y., Gencyilmaz, G., Eker, I., 2005, "Global Optimization of Continuous Functions using Particle Swarm Optimization", Proceedings for CEC2005 (web page: https://github.com/P-N-Suganthan/CEC2005/blob/master/papers-with-results.zip)
- [6] Wang, D, Tan, D., Liu, L., 2018, "Particle swarm optimization algorithm: an overview", Soft Comput (2018) 22 (pp: 87–408)
- [7] Cuevas, E., Cienfuegos, M., Zaldívar, D., Pérez-Cisneros, M., 2013, "A swarm optimization algorithm inspired in the behavior of the social-spider", Expert Systems with Applications 40 (pp. 6374–6384).
- [8] Karaboga, D., Basturk, B., 2007, "A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm", J Glob Optim 39 (pp: 459–471)
- [9] Storn, R. e Price, K., 1995, "Differential Evolution a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces", Technical Report TR-95-012, ICSI
- [10] Qin, A. K., Suganthan, P. N., 2005, "Self-adaptive Differential Evolution Algorithm for Numerical Optimization", Proceedings for CEC2005 (web page: https://github.com/P-N-Suganthan/CEC2005/blob/master/papers-with-results.zip)
- [11] Pan, Q., Suganthan, P. N., Wang, L., Gao, L., Mallipeddi, R., 2011, "A differential evolution algorithm with self-adapting strategy and control parameters", Computers & Operations Research 38 (pp: 394–408)
- [12] Eltaieb, T, Mahmood, A, 2018, "Differential Evolution: A Survey and Analysis", Applied Sciences