COLLE 25 = Algèbre linéaire, espaces euclidiens, intégration et variables aléatoires

Exercices mixtes:

Exercice 1. (Concours communs Polytechniques 2017)

Une particule possède deux états possibles numérotés 1 et 2 et peut passer de son état à l'état 1 ou 2 de façon aléatoire. On considère un espace probabilisé (Ω, \mathcal{F}, P) sur lequel on définit pour tout $n \in \mathbb{N}$, la variable aléatoire X_n égale à l'état de la particule au temps n. L'état de la particule au temps n+1 dépend uniquement de son état au temps n selon les règles suivantes :

- Si au temps n la particule est dans l'état 1, au temps n+1 elle passe à l'état 2 avec une probabilité de $\frac{1}{2}$.
- Si au temps n la particule est dans l'état 2, au temps n+1 elle passe à l'état 1 avec une probabilité de $\frac{1}{4}$.

On suppose que $P(X_0 = 1) = P(X_0 = 2) = \frac{1}{2}$.

Questions:

- 1. Déterminer en justifiant la loi de X_1 . On pose $\mu_n=(P(X_n=1),P(X_n=2))$ le vecteur ligne de \mathbb{R}^2 caractérisant la loi de X_n .
- 2. Justifier la relation matricielle suivante :

$$\forall n \in \mathbb{N}, \ \mu_{n+1} = \mu_n A \text{ avec } A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix}.$$

- 3. En déduire la loi de X_3 .
- 4. (a) Temps de premier accès à l'état 1 : on note T la variable aléatoire égale au plus petit entier $n \in \mathbb{N}$ tel que $X_n = 1$. Déterminer P(T = 1), puis P(T = k) pour tout entier $k \geq 2$.
 - (b) En déduire E[T].

Exercice 2. (Concours communs Polytechniques 2018)

On note E l'espace vectoriel des applications continues sur le segment [-1,1] et à valeurs réelles.

1. Démontrer que l'on définit un produit scalaire sur E en posant pour f et g éléments de E :

$$(f|g) = \int_{-1}^{1} f(t)g(t)dt$$

- 2. On note $u:t\mapsto 1,\,v:t\mapsto t$ et $F=vect\{u,v\}$, déterminer une base orthonormée de F.
- 3. Déterminer le projeté orthogonal de la fonction $w:t\mapsto e^t$ sur le sous-espace F et en déduire la valeur du réel :

 $\inf_{(a,b)\in\mathbb{R}^2}\left[\int_{-1}^1\left(e^t-(a+bt)\right)^2dt\right]$

Exercice 3.

Soit E un $\mathbb R$ espace vectoriel de dimension finie. Soit $||\ ||$ une norme sur E vérifiant l'identité du parallèlogramme, c'est-à-dire : $\forall (x,y) \in E^2, \ ||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$. On se propose de démontrer que $||\ ||$ est associée à un produit scalaire. On définit sur E^2 une application f par : $\forall (x,y) \in E^2, \ f(x,y) = \frac{1}{4}(||x+y||^2 - ||x-y||^2)$.

- 1. Montrer que pour tout (x, y, z) de E^3 , on a : f(x + z, y) + f(x z, y) = 2f(x, y).
- 2. Montrer que pour tout (x, y) de E^2 , on a : f(2x, y) = 2f(x, y).
- 3. Montrer que pour tout (x,y) de E^2 et tout rationnel r, on a : f(rx,y) = rf(x,y). On admettra que pour tout réel λ et tout (x,y) de E^2 on a : $f(\lambda x,y) = \lambda f(x,y)$ (ce résultat provient de la continuité de f).

1

- 4. Montrer que pour tout (u, v, w) de E^3 , f(u, w) + f(v, w) = f(u + v, w).
- 5. Montrer que f est bilinéaire.
- 6. Montrer que || || est une norme euclidienne.

Niveau: Première année de PCSI

Exercice 4.

Pour toute matrice carrée A de dimension n, on appelle trace de A, et l'on note tr A, la somme des éléments diagonaux de A:

$$\operatorname{tr} A = \sum_{i=1}^{n} a_{i,i}$$

- 1. Montrer que si A, B sont deux matrices carrées d'ordre n, alors tr(AB) = tr(BA).
- 2. Montrer que si f est un endomorphisme d'un espace vectoriel E de dimension n, M sa matrice par rapport à une base e, M' sa matrice par rapport à une base e', alors tr $M = \operatorname{tr} M'$. On note tr f la valeur commune de ces quantités.
- 3. Montrer que si g est un autre endomorphisme de E, $\operatorname{tr}(f \circ g g \circ f) = 0$.

Exercice 5.

Soit E l'ensemble des fonctions continues strictement positives sur [a, b].

Soit
$$\varphi: E \to \mathbb{R}$$
 .
$$f \mapsto \left(\int_a^b f(t) dt\right) \left(\int_a^b \frac{1}{f(t)} dt\right).$$

- 1. Montrer que $\varphi(E)$ n'est pas majoré.
- 2. Montrer que $\varphi(E)$ est minoré. Trouver $m = \text{Inf}\{\varphi(f), f \in E\}$. Montrer que cette borne infèrieure est atteinte et trouver toutes les f de E telles que $\varphi(f) = m$.