Rover Models

December 1, 2017

1 Model

The input channels for the controller will be denoted $u_1 \in [-\pi, \pi]$ and $u_0 \in [-\pi, \pi]$ for steering and throttle, respectively

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\psi} \\ \dot{\psi} \\ \dot{\delta} \end{bmatrix} = \begin{bmatrix} v_x(\cos\psi - \frac{l_r}{l}\sin\psi\tan\delta) \\ v_x(\sin\psi + \frac{l_r}{l}\cos\psi\tan\delta) \\ \frac{v_x}{l}\tan\delta \\ \frac{F_{rx} - m_o \frac{\tan\delta}{\cos^2\delta} \delta v_x}{m + m_o \tan^2\delta} \\ k_{st}(\delta_{des} - \delta) \end{bmatrix}$$
(1)

where:

$$\delta_{des} = f(u_1)$$
$$F_{rx} = f(u_0, v_x)$$

2 Vehicle Parameters

Param	Value	Unit		
m	7.780	kg		
m_o	2.972	kg		
I_z	0.2120	$kg m^2$		
l	0.3302	m		
l_r	0.12	m		
12 . 1				

$$m_O = \frac{m l_r^2 + I}{l^2}$$

3 Steering Input

The map from wheel angle to input can be approximated by a line:

$$\delta_{des} = 0.224314009055080u_1 - 0.008867066788855 \tag{2}$$

The control gain on the wheel angle is modeled as proportional:

$$k_{st} = 4.300730919846748 \tag{3}$$

4 Throttle Input

4.1 Throttle Channel The channel inputs can be mapped to a velocity setpoints with the following approximation:

$$v_{des} = -10.445339156721717u_0 - 3.584452482313747 (4)$$

This map seems to be a good fit for input values in the interval $u_0 \in [-0.525, -0.4] \mapsto v_{des} \in [1.899, 0.594]$ m/s. Note that it is not good for commands greater than -0.4. There is a dead-zone in the motor for the rover. And this approximation is not the steady state equlibrium of the model for driving force (see below)

4.2 Driving Force (acceleration) This was fit with throttle inputs greater than -0.4 when the vehicle was driving in a straight line

$$F_{rx} = c_{m1} + c_{m2}u_0 + c_{m3}v_x + c_{m4}v_xu_0 + c_{m5}v_x^2 + c_{m6}u_0^2 + c_{m7}v_xu_0^2 + c_{m8}\omega^2$$
where: $\omega = \dot{\psi}$ (5)

Const	Value	Unit
c_{m1}	-12.5810995587748	N
c_{m2}	-33.0170773577599	N
c_{m3}	4.33920832891501	$\frac{Ns}{m}$
c_{m4}	20.3041178298046	$\frac{\frac{m}{N s}}{m}$
c_{m5}	0.156420898500981	$\frac{m}{N s^2}$
c_{m6}	4.20678380627274	N N
c_{m7}	10.2828808092518	$\frac{Ns}{m}$
c_{m8}	-0.610920415224012	$\frac{rad^2}{s^2}$

4.3 Driving Force (braking) For throttle inputs of $u_0 \ge 0.0$

$$F_{rx} = c_{b1} + c_{b2} v_x + c_{b3} v_x^2 \tag{6}$$

Const	Value	Unit
c_{b1}	-4.11177295309464	N
c_{b2}	-15.1817204116634	$\frac{Ns}{m}$
c_{b3}	5.22364002070909	$\frac{N s^2}{m^2}$

4.4 Driving Force (coasting) This was fit with a throttle input of $-0.35 \ge u_0 > 0.0$

$$F_{rx} = c_{c1} + c_{c2}u_0 + c_{c3}v_x + c_{c4}v_x^2$$
 (7)

Const	Value	Unit
c_{c1}	-5.55660998280113	N
c_{c2}	-13.8953541919073	N
c_{c3}	-2.47286920126272	$\frac{Ns}{m}$
c_{c4}	0.480990612787014	$\frac{Ns^2}{m^2}$