Recharge des voitures électriques

Barka Najoua

Sommaire:

<u>I – Présentation du système :</u>

<u>II-étude théorique</u>:

- deux bobines identiques faiblement couplées
- deux bobines de diamètre différent faiblement couplées.

III-étude expérimentale :

- deux bobines identiques.
- deux bobines de diamètre diffèrent.
- Montage complet de la charge de la batterie.

IV-conclusion

<u>I – Présentation du système :</u>

1. Introduction:

Le système se compose de :

- **❖** Source alternative
- **\diamonda** la bobine primaire
- **\diamondaire** la bobine secondaire
- convertisseurd'énergie/ EMS : redresseur
- Batterie

II-Etude théorique :

➤ Bobines identiques :

a. schéma équivalent :

$$V_{eq} = \frac{jkLw}{R + jLw} \ \underline{U}_1$$

$$Z_{eq} = \frac{jkLw(R + (1-k)jLw)}{R + jLw} + R^2 + jLw(1-k)$$

$$- V eq = \left(Zeq + \frac{1}{jm^2 cw} \right) I$$

$$\frac{V eq}{I} = \frac{jkLw(R^2 + (Lw)^2 - k(Lw)^2) + R(kLw)^2}{R^2 + (Lw)^2} + R^2 + jLw(1 - k) - j\frac{1}{cw}$$

$$- Im \left(\frac{V eq}{I} \right) = kLw - \frac{k^2(Lw)^3}{R^2 + (Lw)^2} + Lw(1 - k) - \frac{1}{cw} = 0$$

$$- Alors:$$

$$w = \frac{1}{\sqrt{LC}} \rightarrow f = \frac{1}{2\pi\sqrt{LC}}$$

§ Remarque:

➤ Bobines differentes :

a- schéma équivalent :

- V
$$eq = \frac{jLmw}{R1 + jw(Lf1 + Lm)} \underline{U1}$$

-
$$Zeq = \frac{jwLm(R1+jwLf1)}{R1+jw(Lf1+Lm)} + \frac{R2}{m^2} + j\frac{Lf2w}{m^2}$$

$$-\frac{Veq}{I} = \frac{jwLm[R1^2 + w^2(Lf1 + Lm)^2 - w^2(LmLf1 + Lm)] + w^2Lm^2R1}{R1^2 + (Lf1 + Lm)^2w^2} + \frac{R2}{m^2} + j\frac{Lf2w}{m^2} + \frac{1}{jm^2Cw}$$

- Im
$$\left(\frac{V eq}{I}\right) = Lmw - \frac{(wLm)^3R1}{R1^2 + (Lf1 + Lm)^2w^2} + \frac{Lf2w}{m^2} - \frac{1}{m^2Cw} = 0$$

Alors:

$$w_0 = \frac{1}{\sqrt{[m^2Lm + Lf2]C}}$$

$$w_0 = \frac{1}{\sqrt{Lf2C}}$$

§ <u>Remarque</u>

III-Etude expérimentale :

a- Le cas de deux bobines identiques :

✓ Résultats d'expérience :

- Le courant et tension d'entrée de la bobine et la puissance du transformateur :

V1=88.1V

Distance en cm	Courant en mA	La puissance en w		
0	95	12.5		
1	82	6.25		
2	78	5		
3	75	2.5		
5	74	1.25		
6	73	0.25		

- La tension de sortie en fonction de la distance :

Distance	A VIDE		EN CHARGE			PUISSANCE	
						UTILE	
D	V2	V3	V2	V3	I3	<u>P</u>	
0	322	5.86	289	5.22	74	0.38	
1	250	4.60	222	4.05	57	0.23	
2	202	3.72	180	3.30	47	0.15	
3	176	3.31	156	2.86	41	0.11	
4	145	2.72	129	2.44	35	0.08	
5	124	2.25	110	2	30	0.06	
6	100	1.91	91	1.66	25	0.04	
7	92	1.7	81	1.57	22	0.03	
8	77	1.45	68	1.36	19	0.025	
9	70	1.41	61	1.26	18	0.022	
10	60	1.22	53	1	15	0.015	
15	35	0.78	31	0.68	10	$6.8*10^{-3}$	
20	22	0.51	19	0.45	6	$2.7*10^{-3}$	
25	13	0.34	11	0.30	4	$1.2*10^{-3}$	
35	7	0.17	4	0.17	2	$3.4*10^{-4}$	
46	1	0.12	1	0.10	1	1*10 ⁻⁴	

III. b- Le cas de deux bobines différentes :

✓ <u>La bobine à grand diamètre en secondaire :</u>

<u>Conclusion:</u>

✓ La bobine à grand diamètre en primaire :

- La puissance transmise en fonction de la distance :

distance	A vide		A charge			PUISSANCE
<u>D</u>	<u>V2</u>	<u>V3</u>	<u>V2</u>	<u>V3</u>	<u>I3</u>	<u>P3</u>
0	552	10	548	10	43	0.43
1	540	9.45	500	9	40	0.36
5	439	8.01	390	7.10	31	0.22
7	328	6.04	300	5.63	24	0.13
8	314	5.8	266	4.91	21	0.10
10	264	4.9	226	4.15	18	0.07
15	165	3.08	146	2.75	12	0.033
20	110	2.05	94	1.8	9	0.0162
25	75	1.42	63	1.33	5	$6.6*10^{-3}$
35	50	0.97	32	0.95	2	1.9*10 ⁻³

• II. c- Montage complet de la charge de la batterie :

On remplace la charge inductive par :

- un pont mixte redresseur commandé
- -une bobine de lissage
- -une batterie de 12v

IV-conclusion

On conclut qu'afin de charger une batterie il faut coupler une bobine de grand diamètre au primaire avec une bobine de plus petit diamètre au secondaire pour avoir une meilleure transmission de puissance. La puissance est maximale lorsque le secondaire est en résonnance. Dans cette configuration on peut charger une batterie même si les bobines sont distantes de plusieurs centimètres.

