A variant of the Perceptron Algorithm:

proof of lower bound Sophia Kolak - sdk2147

Problem: One is often interested in learning a disjunction model. That is, given binary observations from a d feature space (i.e. each datapoint $x \in \{0,1\}^d$, the output is an 'OR' of few of these features (e.g. $y = x_1 \lor x_{20} \lor x_{33}$). It turns out that the following variant of the perceptron algorithm can learn such disjunctions well.

Perceptron OR variant

```
learning:
```

- $Initialize\ w := 1$
- for each datapoint (x, y) in the training dataset
 - $\begin{array}{l} -\hat{y}:=1[w\cdot x>d]\\ -if\ y\neq \hat{y}\ \ and\ \ y=1 \end{array}$
 - $-ij \ y \neq y \quad ana \quad y = 1$
 - $-w_i \leftarrow 2w_i \quad (\forall i : x_i = 1)$
 - if $y \neq \hat{y}$ and y = 0- $w_i \leftarrow w_i/2$ $(\forall i : x_i = 1)$

Classification:

$$f(x) := 1[w \cdot x > d]$$

Prove that the Perceptron OR variant makes at most $2+3r(1+\log d)$ mistakes when the target concept is an OR of r variables

Solution:

Let $i \in r$ represent the indices in our d dimensional vector that we take the disjunction of to determine the true label of our samples. Let TW(t) denote the total weight of w at iteration t, let M_+ denote the total number of positive mistakes, and let M_- denote the total number of negative mistakes

(Claim 1:) $w_i : i \in r$ is strictly increasing:

The only way for any dimension of the weight vector to decrease is in the case where we mis-classify a true negative sample, and execute the statement $w_i \leftarrow w_i/2$ (for $\forall i: x_i = 1$). But for x to be a true negative, it must be the case that all $i \in r$ are equal to 0 in that sample. Thus, the weight at the indices $i \in r$ can never decrease.

(Claim 2:) Once all $w_i : i \in r$ are > d, it is impossible for any positive sample to be mis-classified:

By definition, positive samples have some $x_i = 1$ such that $i \in r$, thus if all $w_i : i \in r > d$, then the dot product $w \cdot x$ must be $x_i = 1$ and the sample will be correctly classified.

The question now is simply how many positive mistakes it will it take for each $i \in r$ to become > d.

(Claim 3:) We double the value of some $w_i : i \in r$ on each positive mistake: On each positive mistake, there must be some x_i such that $i \in r$ and x_i has value 1, therefore, we are doubling the value of some $w_i : i \in r$ on each positive

mistake. If w_i starts at 1 and is strictly increasing, it will take $log_2(d)$ positive mistakes for a given $i \in r$ to equal d, and $1 + log_2(d)$ for the dot product $w \cdot x$ to be greater than d.

We have already shown that we can no longer make mistakes when $i \in r$ is > d for each $i \in r$, which means that after $r \times (1 + log_2(d))$ positive mistakes, each value $w_i : i \in r$ will be > d. Thus, we have proved the upper bound on positive mistakes of

$$r(1 + log_2(d))$$

A mistake is made on a negative sample when $\hat{y} = 1$, but y = 0. That is to say, for every mistake made on a negative sample, the algorithm will execute the statement

$$w_i \leftarrow w_i/2 \ (for \ \forall i : x_i = 1)$$

Let $S_0 = \sum_i w_i$ before we update the weight vector on the current iteration. On each negative mis-classification, S_0 will decrease by $w_i/2$ when $x_i = 1$, and stay the same otherwise. But since x is a binary vector, this is equivalent to subtracting:

$$\frac{1}{2}(w\cdot x)$$

From S_0 . Thus the sum after re-weighting can be written as:

$$S_1 = \sum_{i} w_i - \frac{1}{2}(w \cdot x)$$

Since this is a negative mistake, the the algorithm must have classified the sample as 1, which means that $(w \cdot x) > d$, and

$$\frac{1}{2}(w\cdot x) > \frac{1}{2}(d)$$

But $\frac{1}{2}(w \cdot x)$ is precisely the quantity we are subtracting from S_0 , or the total weight sum. Thus, each mistake made on a negative sample must decrease the total weight $\sum_i w_i$ by at least $\frac{1}{2}(d)$

(1)
$$0 < TW(t)$$

We initialize each i in our weight vector to 1. Suppose for any $i \in d$, we reweight on positive mistakes x times, and on negative mistakes y times. Then w_i could only equal zero when the following equation is true:

$$\frac{1 \cdot 2^x}{2^y} = 0$$

This equation clearly has no solutions. Since each w_i is always greater than 0, we can safely conclude that the total weight of our vector is always greater than zero, 0 < TW(t)

(2)
$$TW(t) < TW(0) + d(M_+) - (d/2)M_-$$

The only time TW(t) changes after its initialization is on either a positive or negative mistake. We already showed that each M_- will decrease TW(t) by at

least d/2. Now we must show that each M_+ increases the weight of the vector by at most d.

Claim: each M_{+} increases TW(t) by at most d

Adopting the terminology used in the previous problem, we can write:

$$S_1 = \sum_{i} w_i + (w \cdot x)$$

Since this is a positive mistake, it must be the case that $w \cdot x \leq d$, thus our added term is never more than d.

We have now proved that

$$0 < TW(t) \le TW(0) + d(M_{+}) - (d/2)M_{-}$$

(3) Observe that TW(0) = d, since we initialize the weight vector to all ones. This allows us to write:

$$0 < TW(t) \le d(1 + M_+ - 1/2M_-)$$

$$0 < 1 + M_+ - 1/2M_-$$

$$M_- < 2 + 2M_+$$

Now substituting, we can write our final expression $M_{-} + M_{+}$ as:

$$M_{-} + M_{+} < 2 + 2r(1 + \log d) + r(1 + \log d)$$

 $M_{-} + M_{+} < 2 + 3r(1 + \log d)$

Hence, we have proven that the total number of mistakes is at most $2 + 3r(1 + \log d)$