Поверхностные интегралы I рода.

(ИНТЕГРАЛЫ ПО ПОВЕРХНОСТИ)

Основные формулы

Пусть дана функция f(x, y, z), непрерывная на некоторой гладкой

поверхности σ и рассмотрим поверхностный интегра 1 рода

$$\iint_{\sigma} f(x, y, z) d\sigma \tag{4.17}$$

Замечание1:

Поверхностный интеграл первого рода обладает свойствами, аналогичными свойствам криволинейных интегралов первого типа.

Замечание 2: (о физическом смысле поверхностного интеграла первого рода)

Если f(x,y,z)>0 и функцию f(x,y,z) рассматривать как поверхностную плотность массы материальной поверхности σ , то интеграл (4.17) определяет **массу** этой поверхности.

Вычисление поверхностного интеграла первого рода

$$\iint_{\sigma} f(x, y, z) d\sigma$$

Предположим, что поверхность σ однозначно проектируется на какую-либо координатную плоскость.

1)Пусть поверхность σ однозначно проектируется на плоскость Оху,

поверхность $\,\sigma\,$ задана уравнением ${f z}={f z}({f x},{f y})$ и область $S=\Pi{f p}_{xy}\sigma$

Тогда элемент поверхности

$$d\sigma = \frac{dxdy}{|cos\gamma(M)|},$$

где $\gamma(M)$ - угол между нормалью \vec{n} к поверхности в точке $\mathsf{M}(x,y,z)$ и осью Oz.

Так как

$$cos\gamma = \pm \frac{1}{\sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2}},$$

TO

$$d\sigma = \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} \, dx dy \tag{4.18}$$

и интеграл (4.17) вычисляется по формуле

$$\iint_{\sigma} f(x, y, z) d\sigma = \iint_{S} \frac{f(x, y, z(x, y))}{|\cos y|} dx dy =$$

$$= \iint_{S} f(x, y, z(x, y)) \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2}} dx dy.$$

Таким образом

$$\iint_{\sigma} f(x, y, z) d\sigma = \iint_{S} f(x, y, z(x, y)) \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2}} dx dy. \tag{4.19}$$

2) Пусть поверхность σ однозначно проектируется на плоскость Оуz и

поверхность $\,\sigma\,$ задана уравнением ${\it x}={\it x}({\it y},{\it z})$, то

$$\iint_{\sigma} f(x, y, z) d\sigma = \iint_{S_1} f(x(y, z), y, z) \sqrt{1 + \left(\frac{\partial x}{\partial y}\right)^2 + \left(\frac{\partial x}{\partial z}\right)^2} \ dy dz \tag{4.20}$$

где S_1 проекция поверхности σ на плоскость Оуz.

3) Пусть поверхность σ однозначно проектируется на плоскость Охг и поверхность σ задана уравнением y = y(x, z), то

$$\iint_{\sigma} f(x, y, z) d\sigma = \iint_{S_2} f(x, y(x, z), z) \sqrt{1 + \left(\frac{\partial y}{\partial x}\right)^2 + \left(\frac{\partial y}{\partial z}\right)^2} dx dz, \quad (4.21)$$

где S_2 проекция поверхности σ на плоскость Oxz.