Biological Report 82(11.95) February 1989

1025 TR/EL-82-4.95

Species Profiles: Life Histories and **Environmental Requirements of Coastal Fishes** and Invertebrates (Pacific Southwest)

PISMO CLAM

Fish and Wildlife Service

U.S. Department of the Interior

Coastal Ecology Group Waterways Experiment Station

U.S. Army Corps of Engineers

This document has been approved for public releases and saint ! distribution is sulimited,

Biological Report 82(11.95) TR EL-82-4 February 1989

Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Southwest)

PISMO CLAM

bу

William N. Shaw
Humboldt State University
Fred Telonicher Marine Laboratory
Trinidad, CA 95570
and

Thomas J. Hassler California Cooperative Fishery Research Unit Humboldt State University Arcata, CA 95521

Project Officer
David Moran
U.S. Fish and Wildlife Service
National Wetlands Research Center
1010 Gause Boulevard
Slidell, LA 70458

Performed for

Coastal Ecology Group Waterways Experiment Station U.S. Army Corps of Engineers Vicksburg, MS 39180

and

U.S. Department of the Interior Fish and Wi'dlife Service Research and Development National Wetlands Research Center Washington, DC 20240

This series should be referenced as follows:

U.S. Fish and Wildlife Service. 1983-19 . Species profiles: life histories and environmental requirements of coastal fishes and invertebrates. U.S. Fish Wildl. Serv. Biol. Rep. 82(11). U.S. Army Corps of Engineers, TR EL-82-4.

This profile may be cited as follows:

Shaw, W.N., and T.J. Hassler. 1989. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Pacific Southwest)--Pismo clam. U.S. Fish Wildl. Serv. Biol. Rep. 82(11.95). U.S. Army Corps of Engineers, TR EL-82-4. 12 pp.

PAGE Biological F	Report 82(11.95)*	3. Recipient's Accession No.
4. Thie and Subtitle Species Profiles: Li Requirements of Coastal Fishes an Southwest) Pismo Clam	5. Report Oute February 1989	
7. Author(s) William N. Shaw and Thomas J. Has	cclar	8. Performing Organization Rept. No
9. Performing Organization Name and Address	33101	10. Project/Task/Work Unit No.
Humboldt State University Fred Telonicher Marine Laboratory Trinidad, CA 95570	11. Contract(C) or Grant(G) No. (C)	
12. Sponsoring Organization Name and Address		(G) 13. Type of Report 4 Period Covere
National Wetlands Research Center Fish and Wildlife Service	r U.S. Army Corps of Engineers Waterways Experiment Station	13. Type of Report 2 verious cases
U.S. Department of the Interior Washington, D.C. 20240	P.O. Box 631 Vicksburg, MS 39180	14.
distribution, life history, and species. They are prepared to a Pismo clam (<u>Tivela stultorum</u>) su Southwest region, but has no pre	summaries of the taxonomy, morpholoenvironmental requirements of coas ssist in environmental impact assemports an important sport fishery sent commercial importance. This and larval stages, postlarvae and characteristics, former commercia	tal aquatic ssment. The in the Pacific review describes juveniles,
		,

Aquaculture Environmental requirements

(See ANSI-Z39.18)

Pismo clam

Tivela stultorum Ecological role

c. COSATI Field/Group

18. Availability Statement

Unlimited

OPTIONAL FORM 272 (4-77) (Formerly MTIS-33) Department of Commerce

21. No. of Pages

12

22. Price

19. Security Class (This Report)

Unclassified
20. Security Class (This Page)
Unclassified

PREFACE

This species profile is one of a series on coastal aquatic organisms, principally fish, of sport, commercial, or ecological importance. The profiles are designed to provide coastal managers, engineers, and biologists with a brief comprehensive sketch of the biological characteristics and environmental requirements of the species and to describe how populations of the species may be expected to react to environmental changes caused by coastal development. Each profile has sections on taxonomy, life history, ecological role, environmental requirements, and economic importance, if applicable. A three-ring binder is used for this series so that new profiles can be added as they are prepared. This project is jointly planned and financed by the U.S. Army Corps of Engineers and the U.S. Fish and Wildlife Service.

Suggestions or questions regarding this report should be directed to one of the following addresses.

Information Transfer Specialist National Wetlands Research Center U.S. Fish and Wildlife Service NASA-Slidell Computer Complex 1010 Gause Boulevard Slidell, LA 70458

or

U.S. Army Engineer Waterways Experiment Station Attention: WESER-C Post Office Box 631 Vicksburg, MS 39180

CONVERSION TABLE

Metric to U.S. Customary

Multiply millimeters (mm) centimeters (cm) meters (m) meters (m) kilometers (km) kilometers (km)	By 0.03937 0.3937 3.281 0.5468 0.6214 0.5396	Io Obtain inches inches feet fathoms statute miles nautical miles
square meters (m²) square kilometers (km²) hectares (ha)	10.76 0.3861 2.471	square feet square miles acres
liters (1) cubic meters (m^3) cubic meters (m^3)	0.2642 35.31 0.0008110	gallons cubic feet acre-feet
milligrams (mg) grams (g) kilograms (kg) metric tons (t) metric tons (t)	0.00003527 0.03527 2.205 2205.0 1.102	ounces ounces pounds pounds short tons
kilocalories (kcal) Celsius degrees (°C)	3.968 1.8(°C) + 32	British thermal units Fahrenheit degrees
<u>u.s</u>	. Customary to Metric	
inches inches feet (ft) fathoms statute miles (mi) nautical miles (nmi)	25.40 2.54 0.3048 1.829 1.609 1.852	millimeters centimeters meters meters kilometers kilometers
square feet (ft ²) square miles (mi ²) acres	0.0929 2.590 0.4047	square meters square kilometers hectares
gallons (gal) cubic feet (ft ³) acre-feet	3.785 0.02831 1233.0	liters cubic meters cubic meters
ounces (oz) ounces (oz) pounds (1b) pounds (1b) short tons (ton)	28350.0 28.35 0.4536 0.00045	milligrams grams kilograms metric tons
	0.9072	metric tons

CONTENTS

The many that the control of the state of th	Page
PREFACE CONVERSION TABLE	iii . iv
ACKNOWLEDGMENTS	
NOMENCLATURE / TAXONOMY, RANGE	. 1
MORPHOLOGY ATTENTIFICATION AIDS REASON FOR INCLUSION IN SERIES	
LIFE HISTORY	
Spawning,	. 3
Fecundity and Eggs Larvae Post Harvae and Recruitment	. 3
Postlarvae and Recruitment	3
Maturity and Life Span	-
COMMERCIAL AND SPORT FISHERIES,	6
ECOLOGICAL ROLE	7 8
LITERATURE CITED	11
and the transfer of the same o	
The state of the s	

ACKNOWLEDGMENTS

We acknowledge the reviews by Fred Wendell, California Department of Fish and Game, Morro Bay, and Arthur Haseltine, California Department of Fish and Game, Monterey.

Figure 1. Pismo clam.

PISMO CLAM

NOMENCLATURE / TAXONOMY / RANGE

Scientific name	. Tivela
stultorum (Mawe 1823)	
Preferred common name	Pismo clam
(Figure 1)	
Other common name Gi	
Class	
Order	
Family	Veneridae

Geographic range: The Pismo clam is rare to common (in the low intertidal zone and offshore to a depth of 10-25 m) along the Pacific coast from Monterey Bay (Figure 2) to Bahia Magdalena, Baja, California (Fitch 1953).

MORPHOLOGY/IDENTIFICATION AIDS

The shell of the Pismo clam reaches lengths of 150 mm or more, is strong, heavy, and generally smooth though sculptured with fine concentric

growth lines; beak nearly central; ligament obvious, elongate, set in deep groove; periostracum shiny, greenish to brownish; shell pale buff to dark chocolate, occasionally marked with brown or purple-brown bands (Morris et al. 1980).

REASON FOR INCLUSION IN SERIES

The Pismo clam supports an important sport shellfishery. An estimated 150,000 people once sought the clams on Pismo Beach, California, during a single weekend (Frey 1971); however, sea otters have depleted the supply there since 1981, and as of 1986 there is no fishery (A.W. Haseltine, Calif. Fish and Game; pers. comm.).

The Pismo clam lives in the sandy beaches along the Central and Southern California coast -- a lubitat that is highly vulnerable to degradation from

Figure 2. Distribution of the Pismo clam along the California coast. The clam only occurs on broad sandy beaches exposed to strong surf within the range indicated on the map. Also, the clam sometimes occurs in entrances to bays, sloughs, and estuaries.

dredging and oil pollution (oil spills). Substantial losses of clam populations resulting from man's manipulation of the coastal zone could be expected to cause an economic loss to the sport fishery.

In many areas, recruitment of Pismo clams has been very low and the population has declined almost steadily over years. Exact causes for recruitment are not fully lack of known. Further losses of parent and/or stocks from degradation overfishing could be expected to reduce this important further recreational shellfishery.

LIFE HISTORY

Spawning

The sexes of the Pismo clam are separate (Fitch 1961) although early investigators believed the clam to be hermaphroditic (Weymouth 1923). Most clams become sexually mature after their first winter, at shell length as 17-20 mm (Coe as Gametogenesis begins in March or April and ripe gametes first appear in April and May. Gonadal development proceeds rapidly in June and July; spawning begins in late July or early August and continues to the end of November (Coe 1947). Nybakken and Stephenson (1975) found that the main spawning of clams at Pismo Beach and Monterey occurred during September and October with some occurrence from June to August. Coe (1947) found a similar spawning cycle for clams from San Diego.

Discharge of gametes appears to take place when there is a fair rise in water temperature (Fitch 1961). As in most bivalves, males usually spawn first and their release of gametes stimulates the females to spawn. Spawning may occur several times during the season since only a portion of the gametes ripen at one time. Hermaphrodites are rare. Out of 289

clams examined, only three hermaphrodites were found (Nybakken and Stephenson 1975).

Fecundity and Eggs

The eggs of Pismo clams are very small, 0.074-0.081 mm in diameter (Coe and Fitch 1950). The number of eggs per female increases with shell size, ranging from 10 to 20 million and averaging 15 million (Coe 1953; Fitch 1957; Fitch 1961). Earlier, Weymouth (1923) estimated the number of eggs per female to be 47 to 98 million.

Larvae

Little is known about the Pismo clam from the time eggs are spawned until the clams appear on the beach. The free swimming larval life is estimated to last for 3 weeks (Coe 1947) during which the larvae can be swept alongshore for 40 to 100 miles. Larvae and postlarvae less than 2.3 mm have never been found drifting in the findings at Recent Marine California Fish and Game, Resources Laboratory, Granite Canyon, California, indicate that the larvae have a high weight/volume ratio and may remain on or near the bottom most of the time and move very little.

Postlarvae and Recruitment

metamorphosis the develops a foot and attaches to sand grains with a byssus. This attachment helps the clam to maintain itself in the constantly moving sand of a wavebeaten coast (Weymouth 1923). length of a byssus can range from 45 to 92 mm or as much as five times the length of the clam. As the clam the increases in size disappears. The clam's increasing weight and burrowing power then helps to maintain it on the beach.

Recruitment was examined in the Pismo Beach area beginning in 1919, and a survey was conducted annually from 1925 to 1965 except for during

1942-45 (Weymouth 1923; Herrington 1929; Alpin 1947a; Bureau of Marine Fisheries 1948; Collyer 1951; Fitch 1952, 1954, 1955; Baxter 1961, 1962; Carlisle 1966). Young-of-the-year and adults of all ages were sampled during the surveys (Table 1).

Pismo clams were sampled at three locations: 100 yd north of the pier at Pismo Beach; 1.1 mi south of the pier (Oceano section); and 0.5 mi south of the north boundary of the clam refuge (Le Grande section). The sampling sections or transects were

Table 1. Number of clams, by age groups, taken in three sections on Pismo Beach surveyed each year, 1925-65.

Year of survey	Age (years)									
	0	1	2	3	4	5	6	7	<u>></u> 8	Total
1925	23	265	6	17	5	5	7			328
1926	53	15	87	3	5	1		1		165
1927	38	61	27	23		1				150
1922	6	32	40	24	15					117
1929	472	5	23	23	7					545
1930	360	188	5	4	6	4	3			570
1931	385	157	58	2	3	3	1			1,109
1932	44	277	125	99	28	3	2			578
1933	199	38	122	99	110	52	25	2		647
1934	1	70	23	81	81	31	8	4	1	300
1935	770	6	57	15	69	41	23	6	2	989
1936	144	368	3	45	9	56	28	17	12	682
1937	747	102	247	8	19	7	32	15	2	1,179
1933	9	233	96	175	7	11	9	6	2	² 548
1939	24	4	54	75	143	2	5	4	7	318
1940	25	34	11	19	29	85	11	8	30	252
1941	19	6	7	1	2	6	23	3	13	80
1946	607	167	57	204	220	51	21	8	13	1,348
1947	32	295	101	67	149	90	25	5	8	772
1949	1	7	53	191	65	73	52	13	15	470
1951			3	2	31	72	41	23	17	189
1953		77	_		1	12	15	65	61	231
1954	3	1	40	8	_		8	11	92	163
1955	3 3	10	5	19	2	1	2	1	80	123
1956		2	5	2	42				31	82
1957	653	_	-	6	10	16	1		20	706
1958	8	79		•	3		7		2	99
1959	206	55	63		•		•	9	12	345
1960	49	66	34	32		1		,	6	188
1961	11	25	38	27	9	•			2	112
1962	71	31	16	25	26	6			1	176
1963	79	25	36	15	16	64				179
1964	382	53	45	17	12	6	2		2 1	518
1965	241	279	73	36	3	5	۲.			637

16 cm wide and 20 cm deep, and extended across the beach from high tide line to as low as it is possible to dig during one of the lowest tides of the year.

Sets of clams at Pismo Beach, as indicated by the number of young-ofthe-year collected (Table 1), were good in 1929-31, 1935, 1937, 1946, 1957, 1959, 1964, and 1965, and poor in 1928, 1934, 1938, 1949, 1951, 1953, 1955, 1956, and 1961. In later years (after 1965), setting in the Pismo Beach area was extremely poor (James Hardwick, Calif. Fish and Game; Pers. Causes for these erratic comm.). setting patterns are not known. (1953) speculated that the variable recruitment was due to the vagaries of the ocean currents that bring larvae to the beach at the end of the pelagic stage.

Maturity and Life Span

Pismo clams mature during the first full summer of life at La Jolla, California, and during the second summer of life in the northern euge of their range. They are 17 mm to 31 mm long at first maturity (Coe and Fitch 1950). Morris et al. (1980) wrote that females spawn for the first time in the second or third summer after hatching.

The age of the Pismo clam can be determined by rings on the shell (Figure 1). The rings used in age determination are usually formed in fall or winter, or when the clam is subjected to the most prolonged period of disturbances. The longest clam on record at Pismo Beach was seven and three-eighths inches long and was at out 26 years old, but the ages of a number of clams from Baja California have exceeded 35 years. Gillilan (1964) recorded a 53-year-old clam at Zuma Beach, California, that measured only five and one-quarter inches long.

GROWTH CHARACTERISTICS

The Pismo clam grows continuously throughout its life (Fitch 1950). Increase in shell growth is greatest in spring, summer, and early fall. The average yearly increase in length during the first 4 years of life is slightly more than 20 mm. At age 10 the annual increase is usually not more than 5 mm. Minimum legal length on most beaches (4.5 inches) is first reached in 5 years but may not be reached until 8 or 9 years. At Pismo Beach, clams reach legal minimum length between ages 7 and 8 (Figure 3).

Growth rates apparently vary among beaches. Herrington (1929), who constructed growth curves for clams from four beaches between Morro and Monterey Bays (Figure 4), reported that clams from Turtle Bay grew fastest and those from Morro Bay slowest.

Figure 3. Growth of Pismo clams at Pismo Beach. These averages have been determined from the results of the annual census for the years 1923 through 1949, excluding 1942 through 1945 (Fitch 1950).

Figure 4. Growth curves for Pismo clams from Pismo-Oceano Beach, Morro Beach, Monterey Bay, and Turtle Bay (Herrington 1929).

COMMERCIAL AND SPORT FISHERIES

Pismo clams have been gathered and used over the past 2,000 years, as judged by the occurrence of their shells in Indian kitchen middens (heaps of shells and other refuse) along the California coast. Initially these clams were eaten and shells were used as ornaments or as household aids for digging or scraping (Frey 1971).

In the early 1900's, teams of horses pulling plows were used to collect clams commercially from Pismo Beach to Imperial Beach. The clams were loaded in wagons and later fed to hogs and chickens (Frey 1971).

On the basis of the records maintained from 1916 to 1947 (Table 2), it was estimated that 6.25 million 1b of clams were harvested by commercial diggers during this period (Fitch 1954). The average annual

Table 2. Yearly landings of Pismo clam in thousands of pounds (round weight).

Year	Calif.	Shipments ^a	Total pounds
1916 1917	220.6 502.1		220.6 502.1
1918 1919	665.7 417.5		665.7 417.5
1920	299.0		299.0
1921	219.5		219.5
1922 1923	193.5 237.9		193.5 237.9
1924	293.1		293.1
1925	323.2		323.2
1926	274.3		274.3
1927 1928	133.0 125.8		133.0 125.8
1929	109.7		109.7
1930	108.9		108.9
1931 1932	104.7 110.3		104.7 110.3
1933	106.2		106.2
1934	140.7	14.0	140.7
1935 1936	181.9 209.8	14.2	196.1 209.8
1937	224.0		224.0
1938	214.6		214.6
1939 1940	192.7 167.5		192.7 167.5
1940	168.8	86.7	255.5
1942	93.6	727.8	821.4
1943	45.9	4,526.1	4,572.0
1944 1945	34.5 26.1	11,719.8 53,414.2	11,754.3 53,440.3
1946	69.2	11,408.5	11,477.7
1947	60.6	1,279.7	1,340.3

^aFrom south of the international boundary. Cleaned weights reported on fish receipts have been multiplied by 8 to supply round weights given here (Bureau of Marine Fisheries 1949).

catch was nearly 100,000 lb, and the highest was 665,684 lb in 1918.

Commercial digging has not been allowed in California since 1948.

Clam meats were imported from Mexico beginning in 1935. One of the main sources was San Quintin, 220 miles south of Tijuana (Alpin 1947b). Clams were collected by forks, placed in burlap bags, loaded in wheelbarrows, moved to shore, and shucked; the meats were then washed and placed in 5-gallon cans. From 86.7 thousand pounds to 53.4 million pounds were shipped annually to California from 1941 to 1947 (Table 2). Imports then ended because it became too costly to transport them to the cannery (Bureau of Marine Fisheries 1949).

Clams are collected by a variety of methods. The most common digging tool is a six-tined potato fork. Clams are placed in a sack attached to the waist. Some fishermen use a rake made of a pitch fork with an extended handle. A rope attaches the rake to the waist. In deeper water, fishing is done by towing a long-handled rake from a skiff. When a clam is struck. a diver recovers it. Using another method, skin divers wearing face masks and lying on paddle boards collect clams by locating them individually. When a siphon hole is seen, the clam is dug out of the sand with a short Clams are sometimes digging bar. located when the siphon holes are encountered by the bare feet of a wading fisherman. Fishermen also locate clams by looking for hydroid colonies, which occasionally grow on the edge of the shell of some clams.

The daily bag limit of clams has been reduced over the years from 200 in 1911 to 10 in 1985. As of 1986, they must be 4.5 inches or greater in length in San Luis Obispo County and south, and 5.0 inches or greater in Monterey County and north. All undersize clams must be returned to a hole (dug while looking for clams). The number of clam diggers in California is not known. An estimated 150,000 diggers were seen and over

75,000 lb of clams were caught on Pismo Beach on one weekend. In a 10-week period, 4 million pounds were taken from a 4-mile stretch of Pismo Beach (Frey 1971). As of 1986, sea otter predation has put an end to the fishery there.

ECOLOGICAL ROLE

The Pismo clam is a filter feeder on detritus, although living, onecelled organisms form a considerable portion of the diet (Frey 1971). Water taken in through the incurrent siphon passes over the gills where food particles are removed. The types of food utilized include phytoplankton as diatoms), bacteria, zooplankton, eggs and sperm, and detritus from disintegration of plants and animals. Half of the stomach contents is sand (Fitch 1950). feeding a clam 3 inches long filters as much as 60 l of water per day. Intracellular digestion is done by phagocytic cells of the digestive diverticulum, aided by migratory phagocytes in the lumen of the alimentary canal (Coe 1947).

Since Pismo clams live buried in the sand, epizoic growth on the shell is rare--tufts of the hydroid <u>Clytia bakeri</u> occasionally live on the tip of the clam's exposed shell.

clam Pismo The has including gulls, sharks, predators rays, and some surf fishes such as the California corbina (Menticirrhus undulatus). Rays use their wings to create a suction that pulls the clams from the sand. The rays then mouth the exposed clams and crush and shallow them (Frey 1971).

The moon snail, <u>Polinices</u> sp., eats clams up to 2 years old. It drills a hole in the shell with its rasping tongue and then inserts the tongue through the hole and eats the soft body of the clam. Cancer crabs, Cancer, have been observed to

crack the shell of clams up to 2.5 cm long with their front pincers.

At Sunset Beach, Santa Cruz County, Hawbecker (1939) watched gulls pirk up sublegal size clams discarded by diggers, climb to an altitude of 9 to 12 m, and then drop the clams on the hard packed sand. The fall broke the shells and enabled the gulls to eat the clam.

areas where sea otters In lutris) clam (Enhydra forage, populations decreased significantly. A sea otter has been observed to eat 24 Pismo clams in 2.5 h (Stephenson 1977). Wendell et al. (1986) reported that a sea otter can consume 80 clams per day. Clams decreased from 6.5 to 0.5/m² at Moss Landing and from 0.55- $0.80 \text{ clams/m}^2 \text{ to } 0.15 \text{ clams/m}^2 \text{ at}$ Zmudowski Beach from 1972 to 1974 (Stephenson 1977). Miller et al. (1975) estimated that otters ate 520,000 to 700,000 Pismo clams in one year at Monterey Bay.

Sea otters are directly responsible for the loss of the clam sport fishery in the Pismo Beach area (Wendell et al. 1986). The sport catch declined from 343,000 clams in 1978 to 0 in 1983.

Larval cestodes have been found in Pismo clams (Warner and Katkansky 1969). They occur as yellowish-white cysts, 3.2-3.8 mm in diameter. The cestodes have been identified as the larval stage of tapeworms in stingrays and skates. The parasites can stop the clam's sexual development but are not harmful to man if eaten (Frey 1971). Commensal pea crabs, occasionally found in the mantle cavity, feed on food particles collected by the clam's gills (Frey 1971).

ENVIRONMENTAL REQUIREMENTS

Little is known about the environmental requirements of the larval stage of Pismo clams. Fitch (1950) reported that only a small fraction of 1% of spawned eggs become mature clams. Causes for the mortality are unknown, but may include sudden changes in temperature and salinity.

Post larvae are known to die during heavy runoffs from rivers (Fitch 1950). 0il and other pollutants affect mortality. Red tide caused by a dinoflagellate bloom, as well as extremely cold weather, can young clams (Fitch 1950). Mortality rates for Pismo clams at Pismo Beach (Frey 1971), indicate that of 1,000 clams 0.5 year old, only 5 were still alive at age 7.5 (Table 3).

Pismo clams usually live in the intertidal zone on flat beaches of the open coast, but are sometimes found in entrance channels to bays, sloughs, and estuaries. Their normal depth in the sand is 5.2 to 15.6 cm (Armstrong 1965). They live in an environment of rapid, severe and forceful interaction of water and sand. They are slow found diagers and are characteristic position on the open coasts related to the waves: the front hinge and excurrent siphon face the ocean and the mantle edge and incurrent siphon face land. Clams in bays are oriented at random. bury themselves by jetting water from the anterior of the shell while they bury the foot. The weight of the shell helps to carry the clam downward (Morris et al. 1980). The most productive areas for Pismo clams have extensive upwelling of cool oceanic water that brings with it inorganic nutrients essential for phytoplankton blooms (Coe and Fitch 1950).

Table 3. Pismo clam mortality rates (percentage of losses at Pismo Beach; Frey 1971).

Age of clams (years)	Number of clams	Percent loss	Number clams lost	Number clams remaining
0.5	1,000	55	550	450
1.5	450	45	202	248
2.5	248	29	72	176
3.5	176	34	60	116
4.5	116	52	60	56
5.5	56	68	38	18
6.5	18	72	13	5
7.5	5			

LITERATURE CITED

- Alpin, J.A. 1947a. Pismo clam increase. Calif. Fish Game 33(3):129-131.
- Alpin, J.A. 1947b. Pismo clams of San Quintin, Lower California. Calif. Fish Game 23(1):31-33.
- Armstrong, L.R. 1965. Burrowing limitations in Pelecypoda. Veliger 7(3):195-200.
- Baxter, J.L. 1961. Results of the 1955 to 1959 pismo clam censuses. Calif. Fish Game 47(2):153-162.
- Baxter, J.L. 1962. The pismo clam in 1960. Calif. Fish Game 48(1):35-37.
- Bureau of Marine Fisheries. 1948. 1947 pismo clam census. Calif. Fish Game 34(2):82.
- Bureau of Marine Fisheries. 1949. The commercial fish catch of California for the year 1947 with an historical review 1916-1947. Calif. Fish Bull. 74:267 pp.
- Carlisle, J.G., Jr. 1966. Results of the 1961 to 1965 pismo clam censuses. Calif. Fish Game 52(3):157-160.
- Coe, W.R. 1947. Nutrition, growth and sexuality of the pismo clam (Tivela stultorum). J. Exp. Zool. 104(1):1-24.
- Coe, W.R. 1953. Resurgent populations of littoral marine invertebrates and their dependence on ocean currents and tidal currents. Ecology 34(1):225-229.

- Coe, W.R., and J.E. Fitch. 1950. Population studies, local growth rates and reproduction of the pismo clam (Tivela stultorum). J. Mar. Res. 9(3):188-210.
- Collyer, R.D. 1951. Results of the pismo clam censuses, 1948, 1949 and 1950. Calif. Fish Game 37(3):331-334.
- Fitch, J.E. 1950. The pismo clam. Calif. Fish Game 36(3):285-312.
- Fitch, J.E. 1952. The pismo clam in 1951. Calif. Fish Game 38(4):541-547.
- Fitch, J.E. 1953. Common marine bivalves of California. Calif. Fish Game Fish Bull. 90. 102 pp.
- Fitch, J.E. 1954. The pismo clam in 1952 and 1953. Calif. Fish Game 40(2):199-201.
- Fitch, J.E. 1955. Results of the 1954 pismo clam census. Calif. Fish Game 41(3):209-211.
- Fitch, J.E. 1957. The plight of the pismo clam. Outdoor Calif. 18(1):3-4.
- Fitch, J.E. 1961. The pismo clam. State of California, Dep. Fish and Game, Mar. Res. Leaf. 1. 23 pp.
- Frey, H.W. 1971. California's living marine resources and their utilization. Calif. Dep. Fish Game, The Resources Agency. 148 pp.
- Gillilan, W. 1964. Pismo clam survey. Outdoor Calif. 25(2):10-11.

- Hawbecker, A.C. 1939. Feeding of gulls on pismo clams. Condor 41(3):120.
- Herrington, W.C. 1929. The Pismo clam: further studies of the life history and depletion. Calif. Fish Game, Fish Bull. 18. 58 pp.
- Miller, D.J., J.E. Hardwick, and W.A. Dahlstrom. 1975. Pismo clams and sea otters. Calif. Fish Game, Mar. Resour. Tech. Rep., 31:49 pp.
- Morris, R.H., D.P. Abbot, and E.C. Haderlie. 1980. Intertidal invertebrates of California. Stanford University Press, Stanford, Calif. 690 pp.
- Nybakken, J., and M. Stephenson. 1975. Effects of engineering activities on the ecology of Pismo

- clams. Corps of Eng. Misc. Paper No. 8-75. 65 pp.
- Stephenson, M.D. 1977. Sea otter predation on pismo clams in Monterey Bay. Calif. Fish Game 63(2):117-120.
- Warner, R.W., and S.C. Katkansky. 1969. A larval cestode from the pismo clam, <u>Tivela stultorum</u>. Calif. Fish Game 55:248-251.
- Wendell, F., R. Hardy, J. Ames, and R. Burge. 1986. Temporal and spacial patterns in sea otter (Enhydra lutris) range expansion and in the loss of Pismo clam fisheries. Calif. Fish Game 72(4):197-212.
- Weymouth, F.W. 1923. The lifehistory and growth of the pismo clam (<u>Tivela stultorum Mawe</u>). Calif. Fish Game, Fish Bull. 7. 103 pp.