INFORME PROYECTO INVERNADERO IoT

Elaborado por:

Miguel Esteban Bravo Diaz

Oscar Arias

Nicolas Rios Florez

Universidad del Cauca

Facultad de Ingeniería Electrónica y Telecomunicaciones

Tecnología en Telemática

Laboratorio de Sistemas Digitales

Popayán, Cauca, Colombia

02-04-2024

Planteamiento del problema:

En un contexto donde se busca maximizar el crecimiento exitoso de frijoles, es fundamental contar con un sistema de monitoreo y control remoto que garantice un cuidado óptimo. Se desea específicamente supervisar el desarrollo de una planta de frijol y tomar acciones proactivas para su beneficio, como encender ventiladores para regular la temperatura cuando el sensor dht11 lo indique, activar sistemas de riego según la humedad del ambiente, encender un led con el umbral de una fotorresistencia, entre otras.

Sensores de monitoreo de planta: Se instalarán sensores de humedad del suelo, temperatura y luminosidad en la maceta de la planta de frijol. Estos dispositivos serán responsables de recopilar datos fundamentales sobre el entorno de crecimiento de la planta.

Conexión con ESP32: Se empleará un microcontrolador ESP32 para la recolección y procesamiento de los datos provenientes de los sensores. El ESP32 gestionará la lectura de los valores de los sensores y los preparará para su posterior transmisión.

Programación del ESP32: Se desarrollará un código en Arduino o en el entorno de desarrollo de ESP-IDF para el ESP32. Este código abarcará la configuración de los pines de los sensores, la lectura de los datos y la conexión a internet para el envío de mensajes a través de Telegram.

Envío de mensajes IoT a Telegram: Se configurará un bot utilizando la API de Telegram para enviar actualizaciones sobre el crecimiento de la planta a un grupo específico de usuarios. El ESP32 enviará los datos recopilados mediante solicitudes HTTP POST a la API del bot de Telegram.

Visualización de datos: Se podrán recibir mensajes en tiempo real en su aplicación de Telegram con información relevante sobre la humedad del suelo, temperatura, luminosidad y otros datos vitales para el desarrollo de la planta. Además, se considera la implementación de un tablero de control en línea para visualizar el historial de datos y tendencias de crecimiento de la planta de frijol.

Objetivo: El objetivo principal del proyecto es crear un sistema de germinación controlado para frijol en un invernadero, utilizando sensores para monitorear y mantener las condiciones ambientales óptimas (temperatura, humedad y luz) para el proceso de germinación.

Requerimientos del Sistema:

- 1. **Invernadero**: Diseñar y construir un invernadero adecuado para el cultivo de frijoles, con espacio suficiente para la germinación y crecimiento de las plantas.
- 2. **Sensor DHT11**: Integrar un sensor DHT11 para medir la temperatura y la humedad relativa dentro del invernadero.
- 3. **Control de Temperatura**: Establecer un límite de temperatura óptimo para el crecimiento del frijol (por ejemplo, 25°C). Si la temperatura excede este valor, activar un ventilador para reducir la temperatura.
- 4. **Control de Humedad**: Establecer un nivel de humedad relativa óptimo para el crecimiento del frijol (por ejemplo, 60%). Si la humedad es menor que este valor, activar una minibomba de agua para aumentar la humedad.
- 5. **Sensor de Fotorresistencia**: Integrar un sensor de fotorresistencia para medir la intensidad de la luz dentro del invernadero.
- 6. **Control de Luz**: Establecer un umbral de luz mínima requerida para el crecimiento del frijol (por ejemplo, 500 lux). Si la luz es insuficiente, activar un LED para proporcionar iluminación adicional.

Descripción del Proyecto: El proyecto consiste en la creación de un sistema de germinación controlado para frijoles en un invernadero. Se implementa un conjunto de sensores y actuadores para monitorear y

regular las condiciones ambientales dentro del invernadero, garantizando así un ambiente óptimo para el crecimiento de los frijoles.

El sensor DHT11 se utiliza para medir la temperatura y la humedad relativa del aire dentro del invernadero. Si la temperatura excede el límite establecido, se activa un ventilador para enfriar el ambiente. De manera similar, si la humedad es inferior al umbral deseado, se activa una minibomba de agua para aumentar la humedad.

Además, se emplea un sensor de fotorresistencia para medir la intensidad de la luz. Si la luz es insuficiente para el crecimiento adecuado de los frijoles, se enciende un LED para proporcionar iluminación suplementaria. El sistema proporciona un control preciso sobre las condiciones ambientales dentro del invernadero, lo que optimiza el proceso de germinación de los frijoles y maximiza su rendimiento.

Diagrama General del proyecto

Principales módulos que conforman el proyecto

ESP32: Es el microcontrolador o unidad de procesamiento principal del proyecto. Se encarga de controlar y coordinar las acciones de los diferentes dispositivos y sensores.

Telegram Bot: Este módulo permite la comunicación remota con el invernadero a través de la plataforma de mensajería Telegram. Puede recibir comandos y enviar notificaciones al usuario.

Ventilador y Bomba de Agua: Estos módulos son los dispositivos que controlan la ventilación y el riego del invernadero respectivamente. El ESP32 activará o desactivará estos dispositivos según las condiciones del entorno.

Relé: El relé es un componente que actúa como interruptor controlado por el ESP32. Se utiliza para activar o desactivar dispositivos de alto voltaje como el ventilador o la bomba de agua.

LED: Este módulo puede utilizarse para indicar el estado del sistema o para proporcionar retroalimentación visual sobre diferentes condiciones del invernadero, como la temperatura o la humedad.

Sensor DHT11: Este sensor se utiliza para medir la temperatura y la humedad del entorno del invernadero. Proporciona datos al ESP32, que luego puede utilizar para tomar decisiones sobre el control del clima dentro del invernadero.

Diagrama de flujo del software de manera general

Herramientas de desarrollo

Para el desarrollo del proyecto las herramientas que se están usando son:

Arduino IDE. Se utiliza como entorno de desarrollo	+ ARDUINO
Repositorio en github. Manejo de versiones de código fuente.	
Telegram BotFather. Es una herramienta fundamental para los desarrolladores que desean crear sus propios bots y añadir funcionalidades específicas a la aplicación de mensajería Telegram.	The Botfather
ESP32. el ESP32 es un microcontrolador potente y versátil que ofrece capacidades avanzadas de conectividad y procesamiento, lo que lo convierte en una opción ideal para proyectos de loT	RESET EN 2 0 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WiFi 802.11. El Wi-Fi se refiere a la tecnología de comunicación inalámbrica que permitirá la conexión del ESP32 a Internet.	802.11 Wi Fina

Componentes software

Interfaz gráfica de usuario (GUI)

LIBRERÍA	FUNCIONES	DESCRIPCIÓN	ESTADO	
Keypad WiFi	Comprobar credenciales Verifica si las credenciales para la conexión inalámbrica son correctas		Implementado	
			Probado Habilitado	
dht	Temperatura	Analiza la temperatura en grados centígrados Impleme Proba		
	Humedad	Analiza la humedad en % de la tierra	Habilitado edad en %	
UniversalTelegra mBot	Conexión IOT	Permite crear una conexión por medio de un token api	Implementado Probado Habilitado	

en la parte de test quita lo de lcd y keypad agrega los sensores de aqui

Sensores

Librería	Funciones	Descripción	Estado	
Fotorresistencia	Medir intensidad lumínica	Mide la intensidad de luz que hay en el invernadero para así poder encender el sistema de iluminación si está oscuro		
DHT11	Obtener humedad	Obtiene análogamente la humedad del ambiente	Implementado Probado Habilitado	

Obtener temperatura	Obtiene análogamente la temperatura del ambiente	
---------------------	---	--

Actuadores

Librería	Funciones	Descripción	Estado
Ventilador	Encender	Se enciende para enfriar el ambiente	Implementado Probado Habilitado
Bombade Agua	Bombear agua	Bombea agua cuando la humedad del ambiente esté por debajo del esperado	
Led calentar ambiente		cuando la temperatura esté baja se encenderá el led para dar calor a la zona	
	lluminación	Se enciende al haber poca luz en el invernadero	

Alarmas

Se contará con un sistema de notificaciones, el cual avisará al usuario de lo que suceda en su invernadero, le brindara datos en tiempo real, por ejemplo, al tener una temperatura baja, se le notificará al usuario, al igual que se notificara las acciones consecuentes a los estados del invernadero.

Proceso de pruebas

La sección de pruebas del proyecto sigue el cuadrante que se muestra a continuación. En el cuadrante 1 tenemos: las pruebas unitarias que se realizan al momento de implementar un nuevo módulo de software. Las pruebas de componentes nos ayudan a dar más funcionalidad y después las pruebas de integración de componentes reúne varios componentes para dar una funcionalidad específica.

En el cuadrante 2 ya pertenece al dominio del negocio, en este caso el funcionamiento del ventilador usando un prototipo.

En el cuadrante 3. Nos muestra el prototipo evaluado por un experto en el área. a partir de sus observaciones se configuran nuevos escenarios y mejoras en el proyecto a nivel de usabilidad, funcionalidad y desempeño.

En el cuadrante 4. las pruebas de desempeño, carga y confiabilidad nos ayuda a orientar el proyecto a ser robusto ante cualquier falla y uso prolongado por horas y días.

Todas las pruebas están documentadas en la siguiente tabla llamada Test BackLog, el cual busca describir la prueba, conocer si pasó o no la prueba y dejar algunos comentarios u observaciones

Test Backlog

	1000 20011108			
#	PRUEBA	DESCRIPCIÓN	PASÓ PRUEBA (SI/NO)	OBSERVACIONES
1	Fotorresistencia	Bloquear la luz que pueda llegar a la fotoresistencia, esto con el fin de encender el led	Si	N

2	DHT11	Aumentar el nivel de agua en el ambiente y ver que aumente el % de humedad	SI	N
3	DHT11	Aumentar la temperatura de el ambiente y ver que aumente los grados centígrados	SI	N
4	Ventilador	Aumentar la temperatura y ver que el ventilador sea encendido	SI	N
5	Bomba de agua	Verificar su correcto funcionamiento al ser activado cuando el % de humedad baje	SI	N
6				
7				
8				
9				

Link github •

https://github.com/StebanSzs/proyectol nvernadero