WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C07K 7/06, 7/08, 7/10 C07K 15/12, C12N 7/00 C12Q 1/70, A61K 39/245 G01N 33/569

(11) International Publication Number:

WO 91/08224

(43) International Publication Date:

13 June 1991 (13.06.91)

(21) International Application Number:

PCT/AU90/00564

A1

(22) International Filing Date:

23 November 1990 (23.11.90)

(30) Priority data:

PJ 7584

24 November 1989 (24.11.89) AU

(71) Applicant (for all designated States except US): THE COUN-CIL OF THE QUEENSLAND INSTITUTE OF MEDI-CAL RESEARCH [AU/AU]; Bramston Terrace, Herston, QLD 4006 (AU).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SCULLEY, Tom, Brian [AU/AU]; 21 Dellwood Street, Nathan, QLD 4111 (AU). MOSS, Denis, James [AU/AU]; 29 Mitchell Street, Arana Hills, QLD 4054 (AU).

(74) Agent: GRANT ADAMS & COMPANY; 144 Edward Street, GPO Box 1413, Brisbane, QLD 4000 (AU).

(81) Designated States: AT, AT (European patent), AU, BB, BE designated States: AT, AT (European patent), AU, BB, BE (European patent), BF (OAPI patent), BG, BJ (OAPI patent), BR, CA, CF (OAPI patent), CG (OAPI patent), CH, CH (European patent), CM (OAPI patent), DE, DE (European patent), DK, DK (European patent), ES, ES (European patent), FI, FR (European patent), GA (OAPI patent), GB, GB (European patent), GR, GR (European patent), HU, IT (European patent), JP, KP, KR, LK, LU, LU (European patent), MC, MG, ML (OAPI patent), MR (OAPI patent), MW, NL, NL (European patent), NO, RO, SD, SE, SE (European patent). pean patent), NO, RO, SD, SE, SE (European patent), SN (OAPI patent), SU, TD (OAPI patent), TG (OAPI patent), US.

Published

With international search report.

(54) Title: IM PEPTIDES

(57) Abstract

The invention is directed to the diagnosis and treatment of herpes virus related diseases. By noting within the Epstein-Barr virus (EBV) open reading frames (ORFs) transcribed late in the viral cycle for which a translation product may or may not have been established, and synthesizing one or more polypeptides each of which includes at least one segment, each segment comprising at least part of the amino acid sequence identified in that ORF, a specific and reliable diagnostic test for, and treatment of, infectious mononucleosis and related diseases is possible. The preferred amino acid sequences for these segments include NSPKNG, KNGSNQ, SNQLVI, AHARDK, RDKAGA, VMAMIL, SEPRPR and PSRTPS. These sequences can be further combined to provide polypeptides with at least one segment comprising sequences selected from AHARDKAGAVMAMIL, ASLNSPKNGSNQLVI, ÉLESEPRPRPSRTPS, QAMKKIEDKVRKSVD, SRSRGREAKKVQISD, LIKASLRKDRKLYAE, VSFSKTRRAIRESRA, CNYSAGEEDDQYHAN, RPHRRPVSKRPTHKP, EITQEENRGEQRLGH, GALRARLDRPRP-TAO. NSPKNGSNOAHARDKSEPRPR. NSPKNGSNQRDKAGASEPRPR, NSPKNGSNQSEPRPRKNGSNQ, NSPKNGSNQRDKAGASEPRPR, NSPKNGSNQAHARDKSEPRPR, NSPKNGSNQLVISEPRPRPSRTPS, NSPKNGSNQLVIPSRTPS and NSPKNGSNQAHARDKAGASEPRPR.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

			Finland	ML	Maii
AT	Austria	P)			
AU	Australia	FR	France	MN	Mongolia
22	Barbados	GA	Gabon	MR	Mauritania
38	Belgium	GB	United Kingdom	MW	Malawi '
BP	Burkina Faso	GN	Guinea	NL	Netherlands
BG	Bulgaria	GR	Greece	NO	Norway
BJ.	Benin	HU	Hungary	PL	Poland
BR	Brazil	IT	italy	RO	Romania
CA	Canada	JP	Japan	SD	Sudan
CF	Central African Republic	KP	Democratic People's Republic	SE	Sweden
CG	Congo		of Korea	SN	Senegal
CH	Switzerland	KR	Republic of Korea	SU	Soviet Union
CI	Côte d'Ivoire	LI	Liechtenstein	TD	Chad
СМ	Cameroon -	LK	Sri Lanka	TG	Togo
DB	Germany	LU	Luxembourg	US	United States of America
DK	Denmark	MC	Monaco		
ES	Spain	MG	Madagascar		

1

TITLE: IM PEPTIDES

TECHNICAL FIELD

THIS INVENTION is directed to the diagnosis and treatment of herpes virus related diseases. In particular, it relates to the use of specific open reading frames (ORFs) within the Epstein-Barr virus (EBV) which encode antigens recognized by EBV-specific antibodies raised during infectious mononucleosis (IM) and related diseases and the use of synthetic peptides based on the amino acid sequences encoded by these ORFs in a specific and reliable diagnostic test for, and treatment of, IM and related diseases.

BACKGROUND ART

- Epstein-Barr virus (EBV) is a member of the herpes virus family and is present in all human populations. Primary infection usually occurs in early childhood and remains silent throughout a person's life. However, when uninfected adolescents and young adults are exposed to EBV, about 60% manifest infectious mononucleosis (IM).
- The predominant laboratory test used to establish the diagnosis of IM has been the demonstration of heterophil antibodies. The rapid slide tests have become the most widely used method to detect these heterophil antibodies. In contrast, quantitative agglutination tests, such as the Paul-Bunnell-Davidsohn method, are more accurate but are also more tedious and time consuming.

The use of tests to measure heterophil antibodies have limitations, namely, only between 80-95% of IM patients produce these antibodies, these antibodies are absent in

a large percentage of young children and the antibodies are produced in a variety of other diseases such as lymphoma, hepatitis and leukemia. The measurement of heterophil antibodies also does not give any indication of the severity of the disease and cannot be used to monitor the course of IM.

Immunofluoresence tests that measure antibodies to EBV can also be used in the diagnosis of heterophil-negative cases of IM, or patients with atypical manifestations.

These tests, however, are time consuming and require the use of trained personnel and specialized equipment which does not make them amenable to the routine analysis of large numbers of samples.

- The diagnosis of an acute primary EBV infection can also be determined by an IgM response to EBV-viral capsid antigen (VCA). The VCA is composed of a large number of different antigens. Components of VCA are defined by the fact that they are expressed late in the replicative cycle of the virus. Many VCA components have been mapped to specific open reading frames (ORF's) within the EBV genome though there are many ORF's, known to be expressed late in replication, to which specific VCA antigens have not yet been identified.
- 25 Genetic engineering and synthetic polypeptide technologies now enable the manufacture of large quantities of protein and polypeptide antigens. However, these techniques are only effective if the amino acid residue sequence of the native protein is 30 known.

3

The amino acid residue sequence of a natural protein can be determined by sequencing of the protein itself.

Alternatively, the DNA sequence that codes for the protein may also reveal the protein's amino acid residue sequence.

Antibodies can be used to determine whether an ORF present in a DNA sequence codes for a protein. This involves manufacturing an array of protein fragments or synthetic polypeptides whose amino acid residue 10 sequences correspond to the hypothetical sequences obtained from the ORFs. The protein fragments or polypeptides to which naturally occurring antibodies immunoreact thereby identify the ORF as encoding a naturally occurring protein. The complete amino acid 15 sequence of this protein could then be deduced from the DNA sequence of the ORF.

DISCLOSURE OF THE INVENTION

It is a general object of the present invention to overcome, or at least ameliorate, one or more of the 20 above disadvantages, and to provide a specific and reliable test for the diagnosis for, and treatment of, IM and related diseases.

As the complete DNA sequence for EBV has been identified, including the start and stop codons which, prima facie, define potential ORFs for the transcription of the genetic code, the present inventors have synthesized peptides based on the predicted amino acid sequences encoded by these ORFs, even though the proteins to which these ORFs may relate were not first established as being produced by the virus, and have

demonstrated that EBV-specific antibodies raised during IM react with the synthesized peptides.

Thus, according to a first aspect of the present invention, there is provided a peptide comprising a sequence which includes at least one segment which codes for an antigen recognized by EBV-specific antibodies raised during IM or a related disease.

As a second aspect, the present invention also includes within its scope a method of identifying a polypeptide suitable for use in the diagnosis of IM and related diseases, said method comprising:

- (1) noting within EBV open reading frames transcribed late in the viral cycle for which a translation product may or may not have been established;
- (2) synthesising one or more polypeptides each of which includes at least one segment wherein each segment comprises at least part of the amino acid sequence identified in that open reading frame; and
 - (3) determining whether said polypeptide is effective in the diagnosis of IM and related diseases.
- 25 When sera from patients who exhibited clinical symptoms of IM and related diseases were assayed using the peptides of the invention, a positive reaction was noted with a high correlation between this assay and known assays for identifying IM and related diseases.

5

Therefore, according to a third aspect of the present invention, there is provided a method of diagnosis of infectious mononucleosis or a related disease, said method comprising assaying serum from a patient suspected of having infectious mononucleosis or a related disease with at least one peptide as hereinbefore defined.

The present invention also provides, as a fourth aspect, a kit for use in the diagnosis of IM or a 10 related disease, said kit comprising:

- (a) at least one peptide as hereinbefore defined; and
- (b) a means for indicating the presence of a reaction, particularly an immunoreaction, between said at least one peptide and another molecule(s), especially anti-EBV antibodies.

Since a patient with IM or a related disease contains antibodies to the peptides of the invention, it is likely that the peptides of the invention, when administered to the patient, would elicit anti-EBV antibodies.

Therefore, as a fifth aspect of the present invention, there is provided a vaccine that, when administered, is capable of inducing antibodies effective against EBV, said vaccine comprising:

- (a) at least one peptide as hereinbefore defined; and
- (b) a carrier and/or diluent and/or adjuvant.

As used throughout the specification, the term "carrier or diluent" denotes an organic or inorganic, natural or synthetic material with which the active ingredient is combined in order to facilitate the administration of the vaccine of the invention. This carrier or diluent is, therefore, generally inert and it must be pharmaceutically acceptable. Similarly, the term "adjuvant" has the usual meaning in the art to describe a material which aids the operation of the active ingredient.

According to a sixth aspect of the present invention, there are also provided antibodies and substantially whole antibodies raised to - or induced by - the peptides of the invention as hereinbefore defined.

15 These molecules are collectively referred to as receptors and can be raised in animal hosts using the vaccine as hereinbefore defined.

Preferably, the peptide of the invention comprises at least one segment selected from the following 20 sequences:

AHARDKAGAVMAMIL
ASLNSPKNGSNQLVI
ELESEPRPRPSRTPS

25 QAMKKIEDKVRKSVD
SRSRGREAKKVQISD
LIKASLRKDRKLYAE
VSFSKTRRAIRESRA
CNYSAGEEDDQYHAN

30 RPHRRPVSKRPTHKP
EITQEENRGEQRLGH
GALRARLDRPRPTAQ

7

More preferably, the peptide of the invention comprises at least one segment selected from the following sequences:

5 NSPKNG

KNGSNQ

SNQLVI

AHARDK

RDKAGA

10 VMAMIL

SEPRPR

PSRTPS

Most preferably, the peptide of the invention comprises at least one segment selected from the following 15 sequences:

NSPKNGSNQAHARDKSEPRPR

NSPKNGSNQRDKAGASEPRPR

NSPKNGSNQSEPRPRKNGSNQ

NSPKNGSNQLVISEPRPRPSRTPS

20 NSPKNGSNQLVIPSRTPS

NSPKNGSNQAHARDKAGASEPRPR

A particularly preferred peptide of the invention comprises at least one segment containing the sequence:

NSPKNGSNQLVIPSRTPS

25 All amino acid residues identified throughout the specification are in the natural or L-configuration. In

. .

keeping with standard polypeptide nomenclature, abbreviations for amino acid residues are as follows:

	SYMBOL	AMINO ACID
	Y	L-tyrosine
5	G	glycine
	F	L-phenylalanine
	M	L-methionine
	A	L-alanine
	S	L-serine
10	··	L-isoleucine
	L	L-leucine
	T	L-threonine
	V	L-valine
	P	L-proline
15	K	L-lysine
	Н	L-histidine
	Q	L-glutamine
	E	L-glutamic acid
	w	L-tryptophan
20	R	L-arginine
	מ	L-aspartic acid
	N	L-asparagine
	C .	L-cysteine

DETAILED DESCRIPTION OF EMBODIMENTS

25 SUBJECTS, MATERIALS AND METHODS

Preparation And Use Of Synthetic Peptides

Peptides (15 aa each) were synthesized by the Multiple Simultaneous Peptide technique (MSPS) of Houghton, R.A. (1985, Proc. Natl. Acad. Sci. USA 82, 5131-5135). The synthetic peptides were linked to bovine serum albumin (BSA) with glutaraldehyde as described by Bulinski et

al. (1983, Proc. Natl. Acad. Sci. USA 80, 1506-1510).

Essentially, 5mg of dry peptide were added to 0.5ml (4mg/ml) BSA in 100mM phosphate buffer, pH 7.3. To this were added 0.25ml of 0.25% (v/v) glutaraldehyde for each 5 mg of dry peptide. The solution was left in the dark over night at 21°C to conjugate, after which the solution was extensively dialyzed against PBS containing 50mM glycine, pH 7.3. The conjugated peptides were then stored at -20°C until needed. Peptide sequences, 10 deduced from 13 different ORFs transcribed late in viral replication, were synthesized. These peptides are identified in Table 1.

10

TABLE 1 VCA PEPTIDES

	ORF	PEPTIDES	NUMBER
	BCRF1	AENQDPEAKDHVNSL	1
5	BCRF1	FFQTKDEVDNLLLKE	7
	BDLF2	AKAEERTAEMDDTMA	3
	BDLF2	GGMKRKQCRVDRLTD	8
	BDLF3	AHARDKAGAVMAMIL	2
	BDLF3	PTVPDERQPSLSYGL	12
10	BKRF2	ASLNSPKNGSNQLVI	4
	BILF2	CNYSAGEEDDQYHAN	20
	BILF2	RPHRRPVSKRPTHKP	23
	BSRF1	EEPETFECPDRWRAE	. 5
	BGLF1	EITQEENRGEQRLGH	21
15	BGLF1	VSFSKTRRAIRESRA	. 18
	BALF1	LIKASLRKDRKLYAE	9
	BALF1	YAVFTRDEKDLPLPA	19
	BBRF3	ELESEPRPRPSRTPS	6
	BBRF3	RSSTSSSSSRSTRRQ	15
20	BXRF1	GALRARLDRPRPTAQ	22
	BXRF1	PRSARAGRAGGRKGQ	11
	BORF1	MKVQGSVDRRRLQRR	10
	BORF1	RGSEFTRDVRGLVEE	14
	BLRF2	QAMKKIEDKVRKSVD	13
25	BLRF2	SRSRGREAKKVQISD	16
	BMRF2	TSGLERRRSIFCARG	17

PCT/AU90/00564

ELISA assay

The stock peptide-BSA conjugate was diluted 1/100 with DD H₂O and 50 µl of the peptide-BSA conjugate were added to each well in 96 well microtiter plates (Flow 5 Laboratories) and the plates were left overnight at 37°C To block the wells $200\mu l$ of a solution containing 5% BSA, 0.5M carbonate buffer pH 9.0 were added and left for 30 minutes at ambient temperature. The wells were then washed four times with 200 µl of 10 0.1% BSA-PBS/1%Tween. Human sera (diluted 1 in 100 in 5%BSA/2xPBS/1%Tween) were added and incubated at 21°C The plates were then washed six times with 0.1%BSA/2xPBS/0.1%Tween and 100 µl of peroxidaselabelled anti-human IgM (Tago, µ fraction) (diluted 15 1/5000 in 5%BSA/2xPBS/0.1%Tween) were added and then the plates incubated at 37°C for 30 minutes. The plates were again washed six times as above. The plates were given a rinse with distilled water (neutral pH), and substrate (100 of 1 m M ABTS (2,2-azino-bis(3μl 20 ethlybenzthiazoline-6-sulphonic acid) diammonium salt (Sigma, St. Louis, USA) in 100mM phosphate-citrate buffer (pH 4.3) containing 0.004% (v/v) peroxide) were added and the plates incubated at 37°C for 30 minutes. Finally the plates were read at 410nm.

25 Subjects and sera

30

Samples of sera (26) were obtained from patients with IM. These patients were diagnosed as having clinical symptoms of IM and were confirmed by immunofluoresence assays for IgM and IgG antibodies to VCA and by immunoblotting for antibodies to early antigens (EA) and absence of antibodies to EBV nuclear antigen 1 (EBNA1). Sera (14 were EBV seropositive and 8 EBV seronegative) were also obtained from healthy controls and their EBV

status was determined by immunofluoresence assays to the EBV antigens. The normal controls were all negative for IgM antibodies to EBV. For the clinical trials, hundreds of samples of serum, from patients displaying IM-like symptoms, were collected.

Immunofluoresence assay for RBV antigens.

Anti-VCA titres were measured according to the method of Henle and Henle. (J Bacteriol. 91, 1248-1256).

Heterophil antibody assay

10 The Paul Bunnell test was used to measure heterophil antibody titres in serum.

RESULTS AND DISCUSSION

Screening of KBV peptides

The 23 synthetic peptides were initially screened against 26 samples of sera from confirmed IM patients, 8 EBV seronegative controls and 14 EBV seropositive controls. The results, presented in Fig. 1, illustrate that a number of peptides were reactive with IgM antibodies from IM patients while showing little reaction with the sera from either EBV seropositive or seronegative controls. Peptides # 2, 4, 6, 13, 16 and 18 were selected for further studies.

Reaction of IM and normal sera with selected KBV peptides.

25 Comparison of total Ig and IgM reactions with the peptides indicated that normal seropositive individuals lacked both IgM and IgG antibodies to these peptides

13

(Fig. 2). However, it appeared that IM patients contained only IgM antibodies to these peptides. Measurement of IgG antibodies to the peptides, in both IM sera and sera from normal controls, confirmed the absence of these antibodies (results not shown).

These results indicated that measurement of either IgM or total Ig could be useful in identifying serum samples from IM patients.

Since only IgM antibodies to the peptides appear to be present in IM patients, there should not be a problem with rheumatoid factor or interference from IgG antibodies, both of which are usually a problem with indirect ELISA assays.

Clinical study

In order to ascertain the viability of using the 15 peptides to identify cases of IM, sera were obtained from patients who showed clinical symptoms of These sera were assayed by ELISA, using the 6 selected synthetic peptides, by immunofluoresence for presence of IgM antibodies to VCA and for heterophil . 20 antibodies. Patients were considered to have IM if they were both heterophil positive (titres of 1/16 or higher) and IgM positive (titres of 1/40 or higher) immunofluorescence or heterophil negative but with atypical monnuclear cells and IgM positive immunofluoresence. The ELISA based IgM assay using the synthetic peptides was considered to be positive when a serum reacted with four or more of the peptides (A410 of 0.40 or above). The results of the assays, obtained 30 with all of the patients, are shown in Table 2.

TABLE 2

Patient Reterophil						
5 2 64 13 + 160 3 <10 0 - <10 5 <10 0 - <10 6 <10 0 - <10 8 <10 0 - <10 9 <10 0 - <10 10 <10 0 - <10 10 <10 0 - <10 10 <10 0 - <10 10 <10 0 - <10 11 <10 0 - <10 13 <10 0 - <10 14 <10 0 - <10 15 <10 0 - <10 20 <17 <10 0 - <10 20 <17 <10 0 - <10 21 <10 0 - <th></th> <th>Patient</th> <th>Heterophil</th> <th>ATLs (%)</th> <th></th> <th></th>		Patient	Heterophil	ATLs (%)		
5 2 64 13 + 160 3 <10 0 - <10 5 <10 0 - <10 6 <10 0 - <10 8 <10 0 - <10 9 <10 0 - <10 10 <10 0 - <10 10 <10 0 - <10 10 <10 0 - <10 10 <10 0 - <10 11 <10 0 - <10 13 <10 0 - <10 14 <10 0 - <10 15 <10 0 - <10 20 <17 <10 0 - <10 20 <17 <10 0 - <10 21 <10 0 - <th></th> <th>1</th> <th><10</th> <th>0</th> <th>_</th> <th>~10</th>		1	<10	0	_	~10
3	5	2				
4					· -	
5		4			_	
9				Ŏ	_	
9		6		Õ	_	
9	10	7 .		Ö	_	
10		8		Ö	_	
10		9		Ö	+	
11		10		Ö	-	
15 12				Ö	_	
13	15		<10	Ö	_	
14 <10 0 - <10 15 <10 0 - <10 16 <10 0 - <10 20 17 <10 0 - <10 18 <10 0 - <10 19 <10 0 - <10 20 <10 0 - <10 21 <10 0 - <10 21 <10 0 - <10 23 <10 0 - <10 <t< th=""><th></th><td></td><td><10</td><td>0</td><td>-</td><td></td></t<>			<10	0	-	
15			<10	0	_	
16 <10 0 - <10 20 17 <10 0 - <10 18 <10 0 - <10 19 <10 0 - <10 20 <10 0 - <10 20 <10 0 - <10 21 <10 0 - <10 22 <10 15 + 160 23 <10 0 - <10 24 <256 21 + 160 25 <10 0 - <10 26 <10 0 - <10 28 <10 0 - <10 29 <10 14 - <10 30 <10 3 - <10 31 <10 0 - <10 32 <10 0 - <10 <th></th> <td>15</td> <td></td> <td>0</td> <td>_</td> <td></td>		15		0	_	
20 17 <10 0 - <10 18 <10 0 - <10 19 <10 0 - <10 20 <10 0 - <10 21 <10 0 - <10 21 <10 0 - <10 23 <10 0 - <10 24 <256 21 + 160 25 <10 0 - <10 26 <10 0 - <10 26 <10 0 - <10 26 <10 0 - <10 28 <10 0 - <10 28 <10 0 - <10 30 <10 14 - <10 31 <10 0 - <10 33 <0 0 - <10 34 <10 0 - <10 35 <10		16		0	-	
18 <10 0 - <10 19 <10 0 - <10 20 <10 0 - <10 21 <10 0 - <10 21 <10 0 - <10 23 <10 0 - <10 24 <256 <21 + 160 25 <10 0 - <10 26 <10 0 - <10 28 <10 0 - <10 29 <10 14 - <10 30 <10 3 - <10 30 <10 3 - <10 31 <10 0 - <10 33 <10 0 - <10 33 <10 0 - <10 33 <0 - <10 34 <10 0 - <10 35<	20				_	
19 <10 0 - <10 20 <10 0 - <10 21 <10 0 - <10 25 <22 <10 15 + 160 23 <10 0 - <10 - <10 24 <256 <21 + 160 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10				0	-	<10
20				0	-	<10 .
25 22 <10 15 + 160 23 <10 0 - <10 24 256 21 + 160 25 <10 0 - <10 26 <10 0 - <10 26 <10 0 - <10 28 <10 0 - <10 29 <10 14 - <10 30 <10 3 - <10 31 <10 0 - <10 31 <10 0 - <10 33 10 0 - <10 34 <10 0 - <10 35 <10 0 - <10 36 <10 0 - <10 40 <0 - <10 - <10 40 <0 0 - <10 - <10 40 <0 0 - <10				0	-	<10
23		21			-	
24 256 21 + 160 25 <10 0 - <10 26 <10 0 - <10 30 <27 <10 0 - <10 28 <10 0 - <10 29 <10 14 - <10 30 <10 3 - <10 31 <10 0 - <10 31 <10 0 - <10 33 <10 0 - <10 34 <10 0 - <10 35 <10 0 - <10 35 <10 0 - <10 36 <10 0 - <10 40 <10 0 - <10 40 <10 0 - <10 40 <10 0 - <10 41 <10 0 - <10	25				+	
25				0		
26 <10 0 - <10 28 <10 0 - <10 29 <10 14 - <10 30 <10 3 - <10 31 <10 0 - <10 35 <2 <10 0 - <10 34 <10 0 - <10 35 <10 0 - <10 36 <10 0 - <10 40 <0 - <10 0 - <10 40 <0 - <10 0 - <10 0 - <10 0 - <10 0 - <10 0 - <10 0 - <10 0 - <10 0 - <10 0 - <10 0 - <10 0 - <10 0 - <10 0 - <10 0 - <10 0 - <10 0 <th></th> <td></td> <td></td> <td></td> <td>+</td> <td></td>					+	
30 27 <10 0 - <10 28 <10 0 - <10 29 <10 14 - <10 30 <10 3 - <10 31 <10 0 - <10 31 <10 0 - <10 33 10 0 - <10 34 <10 0 - <10 35 <10 0 - <10 36 <10 0 - <10 36 <10 0 - <10 40 37 <10 0 - <10 40 37 <10 0 - <10 40 <10 0 - <10 40 <10 0 - <10 40 <10 0 - <10 41 <10 0 - <10 45 <10 0 - <10 <td< th=""><th></th><td>25 26</td><td></td><td>0</td><td>-</td><td></td></td<>		25 26		0	-	
28 <10 0 - <10 29 <10 14 - <10 30 <10 3 - <10 31 <10 0 - <10 32 <10 0 - <10 33 10 0 - <10 34 <10 0 - <10 35 <10 0 - <10 36 <10 0 - <10 40 <10 0 - <10 40 <10 0 - <10 40 <10 0 - <10 41 <10 0 - <10 45 <10 0 - <10 45 <10 0 - <10 45 <10 0 - <10 45 <10 0 - <10 45 <10 0 - <10 46 <0 -	20	26		0	-	
29 <10 14 - <10 30 <10 3 - <10 31 <10 0 - <10 35 32 <10 0 - <10 33 10 0 - <10 34 <10 0 - <10 35 <10 0 - <10 36 <10 0 - <10 40 37 <10 0 - <10 38 <10 0 - <10 40 <10 0 - <10 40 <10 0 - <10 41 <10 0 - <10 45 <10 0 - <10 45 <10 0 - <10 45 <10 0 - <10 45 <10 0 - <10 46 <64 <24 + 360 50 <	30			0	-	
35 32 <10 0 - <10 33 10 0 - <10 34 <10 0 - <10 35 <10 0 - <10 36 <10 0 - <10 40 37 <10 0 - <10 39 <10 0 - <10 40 <10 24 - <10 41 <10 0 - <10 45 42 <10 0 - <10 43 <10 0 - <10 44 <10 16 - <10 45 <10 0 - <10 46 64 24 + 360 50 47 <10 0 - <10 48 16 0 - <10 49 <10 2 - <10				1.4		
35 32 <10 0 - <10 33 10 0 - <10 34 <10 0 - <10 35 <10 0 - <10 36 <10 0 - <10 40 37 <10 0 - <10 39 <10 0 - <10 40 <10 24 - <10 41 <10 0 - <10 45 42 <10 0 - <10 43 <10 0 - <10 44 <10 16 - <10 45 <10 0 - <10 46 64 24 + 360 50 47 <10 0 - <10 48 16 0 - <10 49 <10 2 - <10				14	-	
35 32 <10 0 - <10 33 10 0 - 160 34 <10 0 - <10 35 <10 0 - <10 36 <10 0 - <10 40 37 <10 0 - <10 38 <10 0 - <10 39 <10 0 - <10 40 <10 24 - <10 41 <10 0 - <10 45 <10 0 - <10 43 <10 0 - <10 44 <10 16 - <10 45 <10 0 - <10 46 <0 0 - <10 46 <0 0 - <10 46 <0 0 - <10 46 <0 0 - <10 46 <0				3	***	
33	35			0	-	
34 <10 0 - <10 35 <10 0 - <10 36 <10 0 - <10 40 37 <10 0 - <10 38 <10 0 - <10 39 <10 0 - <10 40 <10 24 - <10 41 <10 0 - <10 45 42 <10 0 - <10 45 42 <10 0 - <10 45 <10 0 - <10 45 <10 0 - <10 46 <0 <0 - <10 46 <0 <0 <0 - <10 46 <0 <0 <0 <0 <0 <0 46 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0<	7.5	33 .		0	_	
35					_	
36 <10 0 - <10 40 37 <10 0 - <10 38 <10 0 - <10 39 <10 0 - <10 40 <10 24 - <10 41 <10 0 - <10 45 42 <10 0 - <10 43 <10 0 - <10 44 <10 16 - <10 45 <10 0 - <10 46 64 24 + 360 50 47 <10 0 - <10 48 16 0 - <10 49 <10 2 - <10	•			0	_	
40 37 <10 0 - <10 38 <10 0 - <10 39 <10 0 - <10 40 <10 24 - <10 41 <10 0 - <10 45 42 <10 0 - <10 43 <10 0 - <10 44 <10 16 - <10 45 <10 0 - <10 46 64 24 + 360 50 47 <10 0 - <10 48 16 0 - <10 49 <10 2 - <10		36			_	
38	40	37	<10	Ŏ	-	<10
39 <10 0 - <10 40 <10 24 - <10 41 <10 0 - <10 45 42 <10 0 - <10 43 <10 0 - <10 44 <10 16 - <10 45 <10 0 - <10 46 64 24 + 360 50 47 <10 0 - <10 48 16 0 - <10 49 <10 2 - <10		38		Ŏ	_	
40 <10 24 - <10 41 <10 0 - <10 45 42 <10 0 - <10 43 <10 0 - <10 44 <10 16 - <10 45 <10 0 - <10 46 64 24 + 360 50 47 <10 0 - <10 48 16 0 - <10 49 <10 2 - <10				Ŏ	-	
41 <10 0 - <10 45 42 <10 0 - <10 43 <10 0 - <10 44 <10 16 - <10 45 <10 0 - <10 46 64 24 + 360 50 47 <10 0 - <10 48 16 0 - <10 49 <10 2 - <10				24	_	
45 42 <10 0 - <10 43 <10 0 - <10 44 <10 16 - <10 45 <10 0 - <10 46 64 24 + 360 50 47 <10 0 - <10 48 16 0 - <10 49 <10 2 - <10				0	_	
43	45	42		Ö	_	
44 <10 16 - <10 45 <10 0 - <10 46 64 · 24 + 360 50 47 <10 0 - <10 48 16 0 - <10 49 <10 2 - <10				Õ	-	
45			<10		-	
46 64 · 24 + 360 50 47 <10 0 - <10 48 16 0 - <10 49 <10 2 - <10					_	
50 47 <10 0 - <10 48 16 0 - <10 49 <10 2 - <10		46	64 .		+	
48 16 0 - <10 49 <10 2 - <10	50	47		0	-	
49 <10 2 - <10				0	-	
				2	-	
		50	<10	0	-	

15
TABLE 2 (cont)

	Patient	Heterophil	ATLs (%)	ELISA (IgM)	IFA (IgM)
5	51 52 53	<10 <10 <10	0 0 3 0	- -	<10 <10 10
	54 55 56	<10 <10 64	65	-	<10 <10 320
10	57 58 59	<10 <10 <10	0 0	- -	<10 <10 <10
15	60 61 62 63	<10 <10 <10 16	0 0 1 0	- -	<10 <10 <10
	64 65 66	256 <10 <10	39 9 0	+ - -	<10 160 <10 <10
20	67 68 69	<10 <10 <10	0	- -	<10 <10 <10
25	70 71 72	<10 <10 256	0 0 23	- + +	<10 <10 320
	73 74 75	<10 <10 <10	0 0 9	- - +	<10 <10 40
30	76 77 78	<10 <10 <10	0 0 0	- -	<10 <10 <10
25	79 80 81	<10 <10 <10	0	<u>-</u> -	<10 <10 <10
35	82 83 84 85	<10 <10 <10 <10	0 0 0	<u>.</u> _	<10 <10 <10 <10
40	86 87 88	64 <10 64	19 . 0 4	+ - +	160 <10 160
	89 90 91	<10 <10 64	0 0 45	_ _ +	<10 <10 160
45	92 93 94	<10 <10 <10	0 0 0	- - -	<10 <10 <10
50	95 96 97	256 <10 <10	32 0 0	+ - -	160 <10 <10
	98 99	<10 <10	0 2	-	<10 <10

16

TABLE 2 (cont)

	Patient	Heterophil	ATLs (%)	ELISA (IgM)	IFA (Igm)
	100	<10	3	_	<10
5	101	<10	Ö	-	<10
	102	<10	0	-	<10
	103	<10	0	-	<10
	104	16	30	+	160

The results of the statistical analysis of the 10 correlation between the three assays systems are presented in Table 3.

TABLE 3
CORRELATIONS AND POLYCHORIC TEST STATISTICS

		ELISA	IF(IgM)	HETEROPHIL
15	ELISA IF(IgM) HETEROPHIL	1.000	0.988 1.000	0.901 0.964 1.000

ASYMPTOTIC VARIANCES OF ESTIMATED CORRELATIONS

	ELISA-IF(IgM)	=	0.00020
20	ELISA-HETEROPHIL	=	0.00407
	IF(IgM)-HETEROPHIL	==	0.00094

The results obtained from the statistical analysis demonstrate a 96% correlation between the IF-IgM assay and the heterophil antibody assay which better the reported data. However, the correlation between the ELISA assay and IF-IgM was 99% indicating that this assay was more accurate at predicting patients with IM. There was one serum which was ELISA positive but IF-IgM negative and it is possible that this patient may have not as yet developed a high enough titre of IgM antibodies to be detected by the IF-IgM test. Two sera samples were positive by IF-IgM and negative by the ELISA assay.

17

Peptides # 2,4 and 6 were selected for further clinical trials, whereby 510 samples of serum, from patients displaying IM-like symptoms, were assayed for heterophil antibody using the Paul Bunnell test and for the presence of IgM antibodies to EBV by immunofluoresence as described above. These results were then correlated with the results obtained using the ELISA assay with the three synthetic EBV peptides and with the Monolert assay as marketed by Johnson and Johnson. The statistical analysis of these results are shown below.

CORRELATIONS AND TEST STATISTICS (PC=POLYCHORIC)

			TEST OF	, WODET	TEST OF	ZERO CORR.
	Corr	elat.	Chi-squ.DF	P-VALUE	CHI-SQU.	P-VALUE
	IFA VS. PB	.868	(PC) .000 0	1.000	889.303	.000
15	ELISA VS. PB	.882	(PC) .000 0	1.000	969.017	.000
	ELISA VS. IFA	.897	(PC) .000 0	1.000	1073.819	.000
	MONO VS. PB	.718	(PC) .000 0	1.000	413.573	.000
	MONO VS. IFA	. 595	(PC) .000 0	1.000	238.506	.000
	MONO VS. ELISA	.614	(PC) .000 0	1.000	259.295	.000

20 ESTIMATED CORRELATION MATRIX

		PB	IFA	ELISA	MONO
	PB	1.000			•
	IFA	0.868	1.000		
25	ELISA	0.882	0.897	1.000	
	MONO	0.718	0.595	0.614	1.000

PB - Paul Bunnell

IFA - Immunofluoresence assay for EBV-specific IgM

ELISA assay using the synthetic EBV peptides of the invention

30 MONO - Monolert assay as marketed by Johnson and Johnson

These results show a much higher correlation between the synthetic peptides of the invention and the IFA assay than did the PB test or the Monolert assay.

Rather than use three independent peptides in the assay system, longer peptides containing combinations of B-cell epitopes (ie the epitopes to which the antibodies bind) from each of the 15 amino acid peptides were constructed. To define the B-cell epitopes in each of the three peptides overlapping 6 amino acid synthetic peptides were prepared and assayed by ELISA using a pooled IM positive sera and a pooled normal sera.

19

ORIGINAL 15-mers PEPTIDES

#4 ASLNSPKNGSNQLVI

#2 AHARDKAGAVMAMIL

#6 ELESEPRPRPSRTPS

5

SYNTHETIC OVERLAPPING PEPTIDES

		PEPTIDE	POSITIVE SERA	NEGATIVE SERA
10		ASLNSPKNGSNQLV	I	
		ASLNSP	0.287	0.110
	**	NSPKNG	0.555	0.143
	**	KNGSNQ	0.537	0.141
	**	SNQLVI	0.437	0.133
15		AHARDKAGAVMAMII	Ğ	
	**	AHARDK	0.639	0.215
	**	RDKAGA	0.496	0.122
		AGAVMA	0.324	0.099
	**	VMAMIL	0.505	0.170
20		KLKSKPRPRPSRTPS	· · · · · · · · · · · · · · · · · · ·	
		ELESEP	0.150	0.063
	**	SEPRPR	0.623	0.228
		RPRPSR	0.407	0.131
	**	PSRTPS	0.546	0.185
				•

^{25 ** -} INDICATES THE PEPTIDES CONTAINING B-CELL EPITOPES.

. .

Having defined the B-cell epitopes contained within the original 15 aa peptides, different combinations of these epitopes were used in the synthesis of larger synthetic peptides. Examples of some of these combinations are shown below:

EPITOPE COMBINATIONS:

PEPTIDE A. NSPKNGSNQAHARDKSEPRPR
PEPTIDE B. NSPKNGSNQRDKAGASEPRPR
PEPTIDE C. NSPKNGSNQSEPRPRKNGSNQ

10 PEPTIDE D. NSPKNGSNQLVISEPRPRPSRTPS
PEPTIDE E. NSPKNGSNQLVIPSRTPS
PEPTIDE F. NSPKNGSNQAHARDKAGASEPRPR

These 6 peptides were then tested for their reaction with sera from known IM patients and with sera from 15 normal controls. The sera were all well characterized for the presence/absence of IgM antibodies to EBV by immunofluoresence. The results of that testing are presented in Table 4.

TABLE 4

Peptide	A *	B **	IMI	IM2	IM3	IM4	TMS	NOB1	MOD	ra Ott			
								11011	NOINE	NORS	NOR4	NORE	NOR6
А	1.58	0.25	1.34	1.34	1.34	1.52	1.53	0 63	21.0				
\$								00.0	07.70	0.31	0.13	0.25	0.47
В	1.64	0.19	1.20	1.35	1.24	1.63	1.15 0.48	0 48	0 10	200	;		
(,							22:5	0.13	0.23	0.11	07.0	0.38
ن	1.04	0.12	0.81	1.11	0.93	1.47	0,85	0 91	7 2	6	6		
-								7,7	7.70	0.02	0.12	0.14	0.24
a	1.31	0.17	0.97	1.14	1.05	1.49	0 87	36	9	•			
1								3	0.10	D. 24	0.12	0.14	0.21
भ	1.20	0.12	0.64	1.07	0.88	1 46	0 67	76 0			7		
							5	0.63	OT-O	0.17	0.11	0.13	0.21
균.	1.55	0.09	1.15	1.22	.22 1.19	1.60	1.12	1.60 1.12 0.37	0.21	0 39	71	70 0	1
									- 1	00.0	21.5	#7.0	J. 5.

Pooled control IM serum Pooled control normal serum Infectious mononucleosis Normal IM NOR

These results demonstrate that any of these epitope combinations could be used to identify serum from IM patients. However some of the peptides gave reasonably strong reactions with sera from normal individuals (peptides A,B and F in particular). Of those peptides which had low reactions with the normal sera peptide E gave the lowest values and so was chosen for further studies.

Peptide E was assayed with a larger contingent of sera from patients with IM and normal controls. Control wells, containing only BSA, were also included in the assay to check for sera which may react with the carrier protein. The results of that assay are presented in Table 5.

23

TABLE 5
ELISA ASSAY OF PEPTIDE E.

	SERA	DIAGNOSIS PEPT	IDE WELL BLA	NK WELL (BSA)
	A	Positive control	0.993	0.066
5	В	Negative control	0.116	0.068
	1	IM	1.050	0.077
	2	IM	1.133	0.072
	3	IM	0.689	0.056
	4	IM	0.780	0.064
10	5	IM	0.852	0.085
	6	IM	0.598	0.051
	7	IM	0.813	0.053
	8	IM	0.953	0.062
	9	IM	1.093	0.051
15	10	IM	0.739	0.054
	11	IM	1.128	0.043
	12	IM	0.933	0.056
	13	IM	0.795	0.058
	14	IM	0.556	0.051
20	15	IM	0.717	0.047
	16	IM	1.454	0.065
	17	Normal	0.101	0.049
	18	Normal	0.187	0.055
	19	Normal	0.098	0.051
25	20	Normal	0.072	0.052
	21	Normal	0.149	0.045
	22	Normal	0.061	0.050
	23	Normal	0.073	0.044
	24	Normal	0.080	0.045
30	25	Normal	0.120	0.047
	26	Normal	0.159	0.052
	27	Normal	0.142	0.057
	28	Normal	0.054	0.046
	29	Normal	0.270	0.076
35	30	Normal	0.336	0.045
	31	Normal	0.280	0.051
	32	Normal	0.337	0.041
	33	Normal	0.136	0.042

These results demonstrate that peptide E could be used to reliably detect cases of IM while showing little reaction with sera from normal individuals.

- The clinical and other data obtained indicates that the 5 ELISA assay using the peptides of the present invention is a specific and reliable test for the diagnosis of infectious mononucleosis and related diseases. The present invention should also find use in the treatment of such diseases.
- Those skilled in the art will appreciate that the above embodiments are given by way of exemplification of the invention only, and that changes may be made to the details set out therein without departing from the scope of the invention as defined in the following claims.

CLAIMS

5

- 1. A peptide comprising a sequence which includes at least one segment which codes for an antigen recognized by EBV-specific antibodies raised during IM or a related disease.
 - 2. A peptide as defined in Claim 1, wherein said at least one segment comprises the sequence AHARDKAGAVMAMIL.
- 3. A peptide as defined in Claim 1, wherein said at least one segment comprises the sequence ASLNSPKNGSNQLVI.
 - 4. A peptide as defined in Claim 1, wherein said at least one segment comprises the sequence ELESEPRPRPSRTPS.
- 15 5. A peptide as defined in Claim 1, wherein said at least one segment comprises the sequence QAMKKIEDKVRKSVD.
- 6. A peptide as defined in Claim 1, wherein said at least one segment comprises the sequence LIKASLRKDRKLYAE.
 - 7. A peptide as defined in Claim 1, wherein said at least one segment comprises the sequence VSFSKTRAIRESRA.
- 8. A peptide as defined in Claim 1, wherein said at least one segment comprises the sequence CNYSAGEEDDQYHAN.
 - 9. A peptide as defined in Claim 1, wherein said at least one segment comprises the sequence RPHRRPVSKRPTHKP.

- 10. A peptide as defined in Claim 1, wherein said at least one segment comprises the sequence EITQEENRGEORLGH.
- 11. A peptide as defined in Claim 1, wherein said at least one segment comprises the sequence GALRARLDRPRPTAQ.
 - 12. A peptide as defined in Claim 1, wherein said at least one segment comprises the sequence SRSRGREAKKVQISD.
- 10 13. A peptide as defined in Claim 1, wherein said at least one segment comprises the sequence NSPKNG.
 - 14. A peptide as defined in Claim 1, wherein said at least one segment comprises the sequence KNGSNO.
- 15. A peptide as defined in Claim 1, wherein said at least one segment comprises the sequence SNOLVI.
 - 16. A peptide as defined in Claim 1, wherein said at least one segment comprises the sequence AHARDK.
 - 17. A peptide as defined in Claim 1, wherein said at least one segment comprises the sequence RDKAGA.
- 20 18. A peptide as defined in Claim 1, wherein said at least one segment comprises the sequence VMAMIL.
 - 19. A peptide as defined in Claim 1, wherein said at least one segment comprises the sequence SEPRPR.
- 20. A peptide as defined in Claim 1, wherein said at least one segment comprises the sequence PSRTPS.

WO 91/08224

- 21. A peptide as defined in Claim 1, wherein said at least one segment comprises the sequence NSPKNGSNOAHARDKSEPRPR.
- 22. A peptide as defined in Claim 1, wherein said at least one segment comprises the sequence NSPKNGSNQRDKAGASEPRPR.
 - 23. A peptide as defined in Claim 1, wherein said at least one segment comprises the sequence NSPKNGSNQSEPRPRKNGSNQ.
- 10 24. A peptide as defined in Claim 1, wherein said at least one segment comprises the sequence NSPKNGSNOLVISEPRPRPSRTPS.
- 25. A peptide as defined in Claim 1, wherein said at least one segment comprises the sequence 15 NSPKNGSNQLVIPSRTPS.
 - 26. A peptide as defined in Claim 1, wherein said at least one segment comprises the sequence NSPKNGSNQAHARDKAGASEPRPR.
- 27. A peptide as defined in any one of Claims 1 to 26 20 in association with any suitable carrier and/or diluent and/or adjuvant.
 - 28. A method of identifying a polypeptide suitable for use in the diagnosis of IM and related diseases, said method comprising:
- 25 (1) noting within EBV open reading frames transcribed late in the viral cycle for which a translation product may or may not have been established;

- (2) synthesising one or more polypeptides each of which includes at least one segment wherein each segment comprises at least part of the amino acid sequence identified in that open reading frame; and
 - (3) determining whether said polypeptide is effective in the diagnosis of IM and related diseases.
- 10 29. A method of diagnosis of infectious mononucleosis or a related disease, said method comprising assaying serum from a patient suspected of having infectious mononucleosis or a related disease with at least one peptide as defined in any one of Claims 1 to 27.
 - 30. A kit for use in the diagnosis of IM or a related disease, said kit comprising:
 - (a) at least one peptide as defined in any one of Claims 1 to 27; and
- 20 (b) a means for indicating the presence of an immunoreaction between said peptide and anti-EBV antibodies.
 - 31. A kit for use in the diagnosis of IM or a related disease, said kit comprising:
- 25 (a) at least one peptide as defined in any one of Claims 1 to 27; and
 - (b) a means for indicating the presence of a reaction between said peptide and another molecule.

- 32. A vaccine that, when administered, is capable of inducing antibodies effective against infection by EBV, said vaccine comprising:
- (a) at least one peptide as defined in any one of Claims 1 to 26; and
 - (b) a carrier and/or diluent and/or adjuvant.
 - 33. Antibodies and substantially whole antibodies raised to or induced by at least one peptide as defined in any one of Claims 1 to 27.
- 10 34. A peptide as defined in Claim 1 substantially as described with reference to the Examples.
 - 35. A method as defined in Claim 28 substantially as described with reference to the Examples.

FIGURE 1

FIGURE 2

INTERNATIONAL SEARCH REPORT

International Application No. PCT/AU 90/00564

I. CL	ASSIFICATION OF SUBJECT MATTER (if several cl	assification symbols apply,	indicate all) 6	
Accordin	ng to International Patent Classification (IP	C) or to both National Clas	sification and IPC	
	.5 CO7K 7/06, 7/08, 7/10, 15/12, C12N 7/00,	C12Q 1/70, A61K 39/245, G01	N 33/569	
II. FI	ILDS SEARCHED			
	Hinia	um Documentation Searched 7		
Classific	ation System Classificat	tion Symbols	·	
AU: IPO	C07K 7/06, 7/08, 7/10, C07K	C 103/52, GO1N 33/569		
	Documentation Searched other than to the Extent that such Documents are Incl		d 8	
	abs. KEYWORDS: Epstein () Barr () Virus OR El I PIR databases for Int. searching of seqs. or		onucleosis.	
III. DOO	LIMENTS CONSIDERED TO BE RELEVANT 9			
Category*	Citation of Document, with indication of the relevant passages		Relevant to Claim No 13	
Х	AU,A, 82073/87 (SCRIPPS CLINIC AND RESEARCE (09.06.88) see pages 5,6 and claims	FOUNDATION) 9 June 1988	1 only	
X,P	AU,A, 44000/89 (SCRIPPS CLINIC AND RESEARCE 1990 (22.02.90) see page 13 and claims	1 only		
x	US 4707358 (KIEFF et al) 17 November 1987 (and claims	(17.11.87) see example 4	1 only	
x	Nature, Volume 310, issued 1984 July, (Lond "DNA sequence and expression of the B95-8 B see whole document	don) R. Baer et al, Opstein-Barr virus genome	1 only	
		(continued)		
* Spec	 cial categories of cited documents: 10 °T°			
	ument defining the general state of the which is not considered to be of	international filing date and not in conflict with cited to understand the p	the application but	
	ticular relevance Lier document but published on or "X"	underlying the invention document of particular relevance; the		
after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or "Y" document of particular relevance; the			be considered novel to involve an	
other special reason (as specified) claimed invention cannot be considered "O" document referring to an oral disclosure, use, exhibition or other means is combined with one or more other such				
"P" document published prior to the international filing date but later than the priority date claimed documents, such combination being obvious a person skilled in the art. "2" document member of the same patent family				
IV. CER	TIFICATION			
Date of th	ne Actual Completion of the	Date of Mailing of thi	s International	
	onal Search cy 1991 (27.02.91)	Search Report 1 March 1991		
	onal Searching Authority		d Officer	
Australia	Patent Office	- the late of the	CEDRIC SCHAFFER	

X	Towns of Virginianian Vethods Valum 21 January 2000 (The	[1 onles
Α	Journal of Virological Methods, Volume 21, issued 1988 (The Netherlands) J. Middeldorp and P. Herbrink "Epstein-Barr virus specific marker molecules for early diagnosis of infectious mononucleosis", see whole document	1 cally
x	Nucleic Acids Research, Volume 16 no.7, issued 1988 (TRL Press Limited, Oxford, England) D. Walls et al "The analysis of EBV proteins which are antigenic in vivo", see whole document	1 only
A	EP,A, 0316170 (G GENE GALWAY LIMITED) 17 May 1989 (17.05.89)	
V. [1	OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE 1	

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

- 1.[] Claim numbers ..., because they relate to subject matter not required to be searched by this Authority, namely:
- 2.[] Claim numbers , because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
- 3.[] Claim numbers ..., because they are dependent claims and are not drafted in accordance with the second and third sentences of PCT Rule 6.4 (a):

VI. [] OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING 2

This International Searching Authority found multiple inventions in this international application

- 1.[] As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims of the international application.
- 2.[] As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the international application for which fees were paid, specifically claims:
- [3.[] No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:
- | 4. [] As all searchable claims could be searched without effort justifying an additional fee, the International Searching Authority did not invite payment of any additional fee.

| Remark on Protest

- [] The additional search fees were accompanied by applicant's protest.
- [] No protest accompanied the payment of additional search fees.

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL APPLICATION NO. PCT/AU 90/00564

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent Document Cited in Search Report				Paten	t Family Mem	bers		
US	4707358	EP	151079	JP	60232094	·	·	
EP	316170	JP	2002399					
AU	44000/89	WO	9001495					
AU	82073/87	DK JP ZA	6388/87 63225398 8709025	EP NZ	280813 22279 4	IL US	84690 4879213	

END OF ANNEX

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS	
☐ IMAGE CUT OFF A	T TOP, BOTTOM OR SIDES
FADED TEXT OR D	PRAWING
BLURRED OR ILLE	EGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTEI) IMAGES
☐ COLOR OR BLACK	AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOC	UMENTS
☐ LINES OR MARKS	ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR	EXHIBIT(S) SUBMITTED ARE POOR QUALITY
☐ OTHER:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.