Examenul de bacalaureat 2011 Proba E. c) Proba scrisă la MATEMATICĂ

Varianta 10

Filiera teoretică, profilul real, specializarea științele naturii.

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale.

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul efectiv de lucru este de 3 ore.
- La toate subiectele se cer rezolvări complete.

SUBIECTUL I (30 de puncte)

- **5p 1.** Calculați $\log_7(3+\sqrt{2}) + \log_7(3-\sqrt{2})$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + ax + b$. Determinați numerele reale a și b pentru care graficul funcției f conține punctele A(2,3) și B(-1,0).
- **5p 3.** Rezolvați, în mulțimea numerelor reale, ecuația $3^x + 3^{x+1} = 36$.
- **5p 4.** Calculați probabilitatea ca, alegând la întâmplare un număr din mulțimea {10,11,12,...,99}, acesta să fie divizibil cu 4.
- **5p 5.** În reperul cartezian xOy se consideră punctele M(2,-1) și N(-1,3). Determinați coordonatele vectorului $\overrightarrow{OM} + \overrightarrow{ON}$.
- $\mathbf{5p} \mid \mathbf{6}$. Determinați lungimea laturii unui triunghi echilateral, care are aria egală cu $4\sqrt{3}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră punctele $A_n(2^n, 3^n)$, unde $n \in \mathbb{N}$.
- **5p a)** Scrieți ecuația dreptei A_0A_1 .
- **5p** | **b**) Demonstrați că punctele A_1, A_2, A_3 nu sunt coliniare.
- **5p** c) Determinați numărul natural *n* pentru care aria triunghiului $A_n A_{n+1} A_{n+2}$ este egală cu 216.
 - **2.** Pe mulțimea \mathbb{R} se definește legea de compoziție asociativă $x \circ y = \frac{1}{2}(xy x y + 3)$.
- **5p** a) Verificați dacă elementul neutru al legii " \circ " este e = 3.
- **5p b)** Determinați simetricul elementului 2 în raport cu legea " °".
- **5p** c) Arătați că mulțimea $H = \{2k+1 | k \in \mathbb{Z}\}$ este parte stabilă a lui \mathbb{R} în raport cu legea de compoziție "°".

SUBIECTUL al III-lea (30 de puncte)

- 1. Se consideră funcția $f:(0,+\infty)\to\mathbb{R}, f(x)=\ln x+e^x$
- **5p** a) Arătați că $xf'(x) = 1 + xe^x$, pentru orice $x \in (0, +\infty)$.
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul A(1,e).
- **5p** c) Calculați $\lim_{x \to +\infty} \frac{f(x)}{x}$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3x^2 + 2x + 1$.
- **5p** a) Calculați aria suprafeței cuprinse între graficul funcției f, axa Ox și dreptele de ecuații x = 0 și x = 1.
- **5p b)** Arătați că orice primitivă a funcției f este concavă pe intervalul $\left(-\infty, -\frac{1}{3}\right)$.
- **5p** c) Demonstrați că, oricare ar fi $a \ge 2$, are loc inegalitatea $\int_{0}^{a} f(x)dx \ge 3a^2 + 2$.

Probă scrisă la Matematică

Varianta 10