矩阵可对角化的充要条件

定理 6.4.2. n 阶方阵 A 相似于对角阵的充要条件是 A 有 n 个线性无关的特征向量.

证明. (1) 设 \boldsymbol{A} 可以对角化,即存在可逆矩阵 \boldsymbol{T} 使得 $\boldsymbol{T}^{-1}\boldsymbol{AT} = \boldsymbol{D}$ 为对角阵.设 $\boldsymbol{D} = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$,而 $\boldsymbol{x}_1, \dots, \boldsymbol{x}_n$ 为 \boldsymbol{T} 的各个列向量.此时 $\boldsymbol{AT} = \boldsymbol{TD}$,即有

$$m{A}(m{x}_1,\ldots,m{x}_n) = (m{x}_1,\ldots,m{x}_n) \left(egin{array}{cccc} \lambda_1 & & & & \ & \lambda_2 & & & \ & & \ddots & & \ & & & \lambda_n \end{array}
ight).$$

这说明 $\mathbf{A}\mathbf{x}_i = \lambda_i \mathbf{x}_i$, i = 1, 2, ..., n. 由于 \mathbf{T} 可逆, 向量组 $\mathbf{x}_1, ..., \mathbf{x}_n$ 线性无关. 特别地, 每个 \mathbf{x}_i 都非零, 从而是 \mathbf{A} 的属于特征值 λ_i 的特征向量.

(2) 反过来, 设 $Ax_i = \lambda_i x_i$, 满足 x_1, \ldots, x_n 线性无关. 此时, 用矩阵表示即有

$$m{A}(m{x}_1,\ldots,m{x}_n) = (m{x}_1,\ldots,m{x}_n) egin{pmatrix} \lambda_1 & & & & \ & \lambda_2 & & & \ & & \ddots & & \ & & & \lambda_n \end{pmatrix}.$$

将矩阵 $(x_1, ..., x_n)$ 记作 T. 由于 $x_1, ..., x_n$ 线性无关, 方阵 T 列满秩, 从而可逆. 此时, 对于上式左乘矩阵 T^{-1} , 即有 $T^{-1}AT = \operatorname{diag}(\lambda_1, ..., \lambda_n)$. 这说明方阵 A 可以对角化.

- 注 6.4.3. (1) 前面的证明说明, 若方阵 A 可对角化, 则将其对角化的矩阵 T 的列向量为 A 的特征向量, 而对角化后的对角阵上的主对角线上的元素为 A 的特征值.
 - (2) 前面的定理说明, 方阵 A 可对角化的充要条件是 A 有足够多的特征向量来形成 F^n 的基. 我们不妨称这样的基为特征向量基.
 - (3) 用来对角化的矩阵 T 若存在,并不是唯一的.例如,将 T 的各列重新排列,或者将它们分别乘以不同的非零标量,这样得到的新矩阵仍然可以将 A 对角化.

接下来讨论矩阵特征向量之间的线性相关性.

命题 **6.4.4.** 设 **A** 是数域 F 上的 n 阶方阵, $\lambda_1, \ldots, \lambda_m$ 为 **A** 的两两互不相等的特征值, $\{x_{i,j} \mid 1 \leq j \leq k_i\}$ 为属于 λ_i 的线性无关的特征向量,则 $\{x_{i,j} \mid 1 \leq i \leq m, 1 \leq j \leq k_i\}$ 线性无关.

证明. 设 $\mu_{i,j} \in F$ 使得

$$\sum_{i=1}^{m} \underbrace{\sum_{j=1}^{k_i} \mu_{i,j} oldsymbol{x}_{i,j}}_{ ext{idff } oldsymbol{x}_i} = oldsymbol{0},$$

从而有 $\sum_{i} \boldsymbol{x}_{i} = \boldsymbol{0}$. 由于 $\boldsymbol{A}\boldsymbol{x}_{i,j} = \lambda_{i}\boldsymbol{x}_{i,j}$,容易验证, $\boldsymbol{A}\boldsymbol{x}_{i} = \lambda_{i}\boldsymbol{x}_{i}$. 对于 $k = 1, 2, \dots, m-1$, 左乘 \boldsymbol{A}^{k} ,我们有

$$\mathbf{0} = oldsymbol{A}^k \sum_{i=1}^m oldsymbol{x}_i = \sum_{i=1}^m oldsymbol{A}^k oldsymbol{x}_i = \sum_{i=1}^m \lambda_i^k oldsymbol{x}_i.$$

写成矩阵形式后, 我们有

$$(oldsymbol{x}_1,\ldots,oldsymbol{x}_m)egin{pmatrix} \lambda_1^k\ dots\ \lambda_m^k \end{pmatrix}=oldsymbol{0},$$

从而进一步有

$$(oldsymbol{x}_1,oldsymbol{x}_2,\ldots,oldsymbol{x}_m) egin{pmatrix} 1 & \lambda_1 & \lambda_1^2 & \cdots & \lambda_1^{m-1} \ 1 & \lambda_2 & \lambda_2^2 & \cdots & \lambda_2^{m-1} \ dots & dots & dots & dots \ 1 & \lambda_m & \lambda_m^2 & \cdots & \lambda_m^{m-1} \end{pmatrix} = oldsymbol{O}.$$

由于 $\lambda_1, \ldots, \lambda_m$ 互不相等, 其中的 Vandermonde 矩阵可逆, 这说明

$$(\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_m) = \boldsymbol{O}.$$

从而每个 x_i 都是零向量,即 $\sum_j \mu_{ij} x_{ij} = \mathbf{0}$. 对于这个 i,由于向量组 $\{x_{i,j} \mid 1 \leq j \leq k_i\}$ 线性无关,故每个 $\mu_{i,j} = 0$. 这说明 $\{x_{i,j} \mid 1 \leq i \leq m, 1 \leq j \leq k_i\}$ 线性无关.

- 例 6.4.5. (1) 在考察 Fibonacci 数列时, 我们遇到了矩阵 $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$. 不难求得, A 有特征值 $\lambda_{1,2} = \frac{1 \pm \sqrt{5}}{2}$, 相应地有特征向量 $x_{1,2} = (\frac{1 \pm \sqrt{5}}{2}, 1)^{\mathsf{T}}$. 基于此, 若取 $T = \begin{pmatrix} \frac{1 + \sqrt{5}}{2} & \frac{1 \sqrt{5}}{2} \\ 1 & 1 \end{pmatrix}$, 则必有 $T^{-1}AT = \operatorname{diag}(\frac{1 + \sqrt{5}}{2}, \frac{1 \sqrt{5}}{2})$.
- (2) 在例 6.3.10 中,对于矩阵 $\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$,我们求出了对于特征值 $\lambda_1 = 5$ 的一个特征向量 $\mathbf{x}_1 = (1,1,1)^\mathsf{T}$,和对于特征值 $\lambda_2 = \lambda_3 = -1$ 的两个线性无关的特征向量 $\mathbf{x}_2 = (-1,1,0)^\mathsf{T}$ 和 $\mathbf{x}_3 = (-1,0,1)^\mathsf{T}$. 由命题 6.4.4 可知, $\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3$ 线

性无关, 从而矩阵 $T=(x_1,x_2,x_3)$ 是可逆矩阵. 由前面的讨论可知, $T^{-1}AT=$ $\operatorname{diag}(\lambda_1, \lambda_2, \lambda_3) = \operatorname{diag}(5, -1, -1).$

习题 6.4.6. 设 \mathscr{A} 是 \mathbb{R}^2 上的线性变换, 由 $x \mapsto Ax$ 给出, 其中 $A = \begin{pmatrix} 7 & 2 \\ -4 & 1 \end{pmatrix}$. 求 \mathbb{R}^2 的一组基, 使得 ♂ 在这组基下的矩阵是对角阵.

习题 6.4.7. 对于 n 阶实方阵 A, 我们定义

$$\sin(\mathbf{A}) := \mathbf{A} - \frac{1}{3!}\mathbf{A}^3 + \frac{1}{5!}\mathbf{A}^5 - \cdots$$

对于

$$\mathbf{A} = \frac{\pi}{4} \begin{pmatrix} 7 & -3 \\ -3 & 7 \end{pmatrix},$$

证明 $\sin(\mathbf{A})$ 收敛, 并给出计算结果.

推论 6.4.8. 设 A 是数域 F 上的 n 阶方阵, $\lambda_1, \ldots, \lambda_m$ 为 A 的两两互不相等的特征值, x_i 为属于 λ_i 的特征向量, 则 x_1, \ldots, x_m 线性无关.

证明. 对于每个 i $(1 \le i \le m)$, 由一个非零向量 x_i 构成的向量组显然是线性无关的, 从 而可以使用命题 6.4.4 中的结果.

另外, 如下的推论给出了一个常用的矩阵可对角化的充分条件.

推论 6.4.9. 如果 n 阶方阵 A 的 n 个特征值两两不同, 则 A 可以对角化.

证明. 对于 **A** 的每个特征值 λ_i , $i=1,2,\ldots,n$, 由定义知至少存在一个属于 λ_i 的特征 向量 x_i . 推论 6.4.8 保证了 x_1, \ldots, x_n 是线性无关的. 再利用定理 6.4.2, 由此可以推出 A 可以对角化.

注 6.4.10. 若 A 为 n 阶对角阵, 其对角线上的元素各不相等. 那么我们可以证明: 同 阶方阵 B 与 A 乘法可交换的充要条件是 B 为对角阵. 教材习题 P192#22 给出了与 之等价的形式, 留作课后作业.

例 6.4.11. 设 **A** 为数域 F 上的 n 阶方阵, 有 n 个互不相等的特征值 $\lambda_1, \ldots, \lambda_n$, 对 应分别有特征向量 x_1,\ldots,x_n . 记 $T=(x_1,\ldots,x_n)$, 则 T 是一个可逆方阵, 并且 $T^{-1}AT = \operatorname{diag}(\lambda_1, \dots, \lambda_n) \stackrel{\text{id th}}{=\!=\!=\!=} B.$

容易验证 $V=\{\,m{C}\in F^{n imes n}\,|\,m{C}m{A}=m{A}m{C}\,\}$ 是 $F^{n imes n}$ 的一个子空间. 同样地, 易验证 $_{m{\Psi}m{\emptyset}}$ #48 $C \in V$ 当且仅当 $TBT^{-1}C = CTBT^{-1}$, 当且仅当 $B(T^{-1}CT) = (T^{-1}CT)B$. 由于

B 是主对角线上元素互不相等的对角阵, 这等价于说 $T^{-1}CT$ 是一个 F 上的对角阵. 由此, 我们看出 $\dim(V) = n$, 而 V 有一组基 { $TE_{ii}T^{-1} | 1 \le i \le n$ }.

接下来, 我们给出 V 的另外一组基. 若记之前提到的对角阵 $T^{-1}CT = \operatorname{diag}(\mu_1, \ldots, \mu_n)$, 由 Lagrange 插值公式 (教材 P115#32) 可知, 存在 $f(x) \in F_{n-1}[x]$, 使得 $f(\lambda_i) = \mu_i$, 1 < i < n. 这说明矩阵的多项式 $f(B) = T^{-1}CT$, 即

$$C = Tf(B)T^{-1} = f(TBT^{-1}) = f(A).$$

这说明 C 可由 $\{I, A, A^2, \ldots, A^{n-1}\}$ 生成. 由于这组向量显然在 V 中, 它们构成了 V的一组生成元. 又由于已知 $\dim(V) = n$, 这足以说明 $\{I, A, A^2, \dots, A^{n-1}\}$ 也构成了 V 的一组基.

若更一般地. A 不可对角化. 我们也有相应的结果: 请参考习题 6.5.3.

特征值的代数重数与几何重数 (*) 对于复数域 \mathbb{C} 上的 n 阶矩阵 A, 设其特征多项式 为

$$p_{\mathbf{A}}(\lambda) = (\lambda - \lambda_1)^{n_1} \cdots (\lambda - \lambda_s)^{n_s},$$

其中 $\lambda_1, \ldots, \lambda_s$ 是 **A** 的所有两两不同的特征值 (不计重数). $n_i \ge 1$ 称为 λ_i 的**代数重数** (algebraic multiplicity). 对于 λ_i , 考察特征子空间

$$V_{\mathbf{A}}(\lambda_i) = \{ \mathbf{x} \in F^n \mid \mathbf{A}\mathbf{x} = \lambda_i \mathbf{x} \}.$$

则向量空间维数 $m_i = \dim(V_A(\lambda_i)) \ge 1$ 称为 λ_i 的**几何重数** (geometric multiplicity).

定理 6.4.12. 用上面的记号, 则对于每个 i, 我们总有 $1 < m_i < n_i$. 而 A 可以对角化的 充要条件是对于每个 i, 等号成立: $m_i = n_i$.

6.4.3, 定 理 6.4.2

证明. 我们先证明 $1 \le m_i \le n_i$. 不妨设 i=1. 由于 λ_1 为 \boldsymbol{A} 的特征值, 矩阵 $\lambda_1 \boldsymbol{I} - \boldsymbol{A}$ 定理的证 的行列式为 0, 从而该矩阵不可逆, 这意味着特征子空间 $V_A(\lambda_1)$ 不是零空间, 从而 $m_1 > 1$ 1. 此时, 可以找到 $V_A(\lambda_1)$ 的一组基 x_1, \ldots, x_m . 我们可以将其扩充为 F^n 的一组基 $x_1,\ldots,x_{m_1},\ldots,x_n$. 记 $T=(x_1,\ldots,x_n)$ 为由这些列向量按行排列构成的方阵. 由于 $\mathbf{A}\mathbf{x}_i = \lambda_1\mathbf{x}_i$ $(i = 1, 2, \dots, m_1)$,我们有 $\mathbf{A}\mathbf{T} = (\lambda_1\mathbf{x}_1, \lambda_1\mathbf{x}_2, \dots, \lambda_1\mathbf{x}_{m_1}, *, \dots, *)$,这说明 $m{T}^{-1}m{A}m{T} = egin{pmatrix} \lambda_1m{I}_{m_1} & m{B}_{12} \ m{O} & m{B}_{22} \end{pmatrix}$. 我们将这个矩阵记作 $m{B}$,于是 $m{A}$ 和 $m{B}$ 通过 $m{T}$ 相似,从而 有相等的特征多项式, 即 $p_A(\lambda) = p_B(\lambda) = (\lambda - \lambda_1)^{m_1} p_{B_{22}}(\lambda)$. 这说明 λ_1 作为 A 的特征

后阅读.

我们接下来证明: \mathbf{A} 可以对角化的充要条件是对于每个 i, 都有 $m_i = n_i$. 先假设几 何重数为代数重数这一条件得到满足,于是,我们在特征子空间 $V_A(\lambda_i)$ 中我们可以找到

值的重数至少为 m_1 , 从而 $m_1 < n_1$.

一组基 $\mathbf{x}_{i,1}, \mathbf{x}_{i,2}, \dots, \mathbf{x}_{i,n_i}$. 由于 $\sum_i n_i = n$, 若将这些向量组合在一起, 我们得到 F^n 的一组基 { $\mathbf{x}_{i,j}: 1 \le i \le s, 1 \le j \le n_i$ }. 这说明 \mathbf{A} 可以相似对角化.

反之,设 A 可以相似对角化. 于是,存在 T 使得 $T^{-1}AT = \operatorname{diag}(\mu_1, \dots, \mu_n)$ 为对角阵. 设 T 的列向量为 x_1, \dots, x_n . 由于 λ_1 的代数重数为 n_1 , $\{i: \mu_i = \lambda_1\} = \{i_1 < i_2 < \dots < i_{n_1}\}$ 是一个 n_1 元集合. 此时, $x_{i_1}, x_{i_2}, \dots, x_{i_{n_1}}$ 是属于 λ_1 的特征向量. 由于 T 可逆,这是特征子空间 $V_A(\lambda_1)$ 中线性无关的向量组,从而 $n_1 \leq m_1$. 但是在一开始的位置我们已经证明了 $m_1 \leq n_1$,从而 $m_1 = n_1$. 当然,对于其它特征值的证明也是类似的. □ 注 6.4.13. 综合之前的讨论,我们总结一下求相似对角阵的方法. 设 A 是给定的 n 阶方阵.

- (1) 求 \mathbf{A} 的特征值, 得到 $p_{\mathbf{A}}(\lambda) = \det(\lambda \mathbf{I}_n \mathbf{A}) = \prod_{i=1}^s (\lambda \lambda_i)^{n_i}$, 其中 $\lambda_1, \lambda_2, \dots, \lambda_s$ 是 \mathbf{A} 的所有两两不同的特征值.
- (2) 若对每个 i 都有 $n \text{rank}(\lambda_i \mathbf{I}_n \mathbf{A}) = n_i$, 则 \mathbf{A} 可对角化; 否则, \mathbf{A} 不可对角化.
- (3) 在可对角化的前提下, 对每个 λ_i , 求出方程组 $(\lambda_i I_n A)X = 0$ 的一组基础解系 $x_{i1}, x_{i2}, \ldots, x_{in_i}$.
- (4) 令 $T = (x_{11}, x_{12}, \dots, x_{1n_1}, x_{21}, x_{22}, \dots, x_{in_2}, \dots, x_{s1}, x_{s2}, \dots, x_{sn_s})$,则 T 是可逆方阵,并满足

$$T^{-1}AT = \operatorname{diag}(\underbrace{\lambda_1, \dots, \lambda_1}_{n_1 \uparrow}, \underbrace{\lambda_2, \dots, \lambda_2}_{n_2 \uparrow}, \dots, \underbrace{\lambda_s, \dots, \lambda_s}_{n_s \uparrow}).$$

例 6.4.14. 重新考察矩阵 $m{A}=egin{pmatrix}2&1&0\\0&2&1\\0&0&2\end{pmatrix}$. 则 $p_{m{A}}(\lambda)=(\lambda-2)^3$, 故 $m{A}$ 的特征值 2 的

代数重数为 3. 另一方面, 相应的特征子空间为

$$V_{\boldsymbol{A}}(2) = \left\{ \ \boldsymbol{x} \in F^3 \mid \boldsymbol{A}\boldsymbol{x} = 2\boldsymbol{x} \ \right\},$$

即线性方程组 (2I - A)x = 0 的解空间. 由于

rank
$$(2\mathbf{I} - \mathbf{A}) = \text{rank} \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} = 2,$$

故解空间的维数为 3-2=1, 即特征值 2 的几何重数为 1. 由于 1<3, 故原矩阵 A 不可对角化.

例 6.4.15. 对于下三角方阵
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ a & 1 & 0 & 0 \\ 2 & b & 2 & 0 \\ 3 & 2 & c & 2 \end{pmatrix}$$
, 问 a,b,c 各为何值时, \mathbf{A} 可以相似对

角化?

解. 容易看出, 特征多项式 $p_A(\lambda) = (\lambda - 1)^2 (\lambda - 2)^2$, 从而特征值为 $\lambda_1 = 1$, $\lambda_2 = 2$, 皆为两重. 此时, A 可以相似对角化的充要条件是 $\lambda_1 = 1$ 与 $\lambda_2 = 2$ 的几何重数皆为 2.

(1) 当
$$\lambda = 1$$
, $\lambda \mathbf{I} - \mathbf{A} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ -a & 0 & 0 & 0 \\ -2 & -b & \boxed{-1} & 0 \\ -3 & -2 & -c & \boxed{-1} \end{pmatrix}$. 则 $\lambda_1 = 1$ 的几何重数为 2, 当且仅

当 $2 = 4 - \text{rank}(\boldsymbol{I} - \boldsymbol{A})$,当且仅当 $\text{rank}(\boldsymbol{A}) = 2$. 运用初等列变换,我们可以用标记的 -1 把矩阵的第三行和第四行的其它数消去. 由于初等变化不改变矩阵的秩,我们可以由此推出 a = 0,此时对于 b 和 c 没有限制.

(2) 类似地, 考虑 $\lambda = 2$. 可以推出 c = 0, 对于 a 和 b 没有限制.

综上,
$$a=c=0$$
, 而 b 任意.

例 6.4.16. 已知
$$A_t = \begin{pmatrix} t & t-2 & 4-2t \\ 3 & -1 & 0 \\ 1+t & t-2 & 3-2t \end{pmatrix}$$
. 若 A_t 可对角化, 描述此时的 t , 并求出

 \mathbf{F} ,仅付 \mathbf{F} $\mathbf{A}_t\mathbf{F}$ 及 $\mathbf{A}_t\mathbf{F}$.

解. 特征多项式 $p_{A_t}(\lambda) = (\lambda - 2)(\lambda + 1)(\lambda - 1 + t)$, 故特征值为 2, -1, 1 - t.

(1) 若
$$t \neq -1, 2$$
, 则 \mathbf{A}_t 有三个不同的特征值, 可以对角化. 容易求得 $\mathbf{P} = \begin{pmatrix} 1 & 0 & t-2 \\ 1 & 2 & -3 \\ 1 & 1 & t-2 \end{pmatrix}$, 使得 $\mathbf{P}^{-1}\mathbf{A}_t\mathbf{P} = \mathrm{diag}(2, -1, 1-t)$.

(2) 若
$$t = 2$$
, 容易求得 $\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & -3 \\ 1 & 1 & 0 \end{pmatrix}$, 使得 $\mathbf{P}^{-1}\mathbf{A}_t\mathbf{P} = \text{diag}(2, -1, -1)$.

(3) 若 t = -1, 则特征值 2 的几何重数为 1, 小于代数重数, 从而矩阵不可对角化. \Box **例 6.4.17.** 设方阵 A 为幂等矩阵: $A^2 = A$. 证明:

- (1) A 的特征值只有 0 和 1;
- (2) \boldsymbol{A} 相似于其相抵标准形 $\begin{pmatrix} \boldsymbol{I_r} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{O} \end{pmatrix}$, 其中 $r = \operatorname{rank}(\boldsymbol{A})$;
- (3) $tr(\mathbf{A}) = rank(\mathbf{A})$. (教材第六章作业题 #27)
- 证明. (1) 设 x 是 A 的属于特征值 λ 的特征向量: $Ax = \lambda x$. 同时左乘 A, 我们有 $A^2x = A(\lambda x) = \lambda Ax = \lambda^2 x$. 另一方面, 利用幂等性质, $A^2x = Ax = \lambda x$. 由于 x 不是零向量, 这说明 $\lambda^2 = \lambda$, 从而 $\lambda = 0$ 或 1.
 - (2) 对于 (可能的) 特征值 $\lambda_1 = 0$, 其几何重数为

$$m_1 = \dim \{ x \mid (0I - A)x = 0 \} = n - \text{rank}(A).$$

类似地, 对于 (可能的) 特征值 $\lambda_2 = 1$, 其几何重数为 $m_2 = n - \text{rank}(\boldsymbol{I} - \boldsymbol{A})$. 以前, 我们已经推导过, 对于幂等矩阵 \boldsymbol{A} , 有

$$rank(\mathbf{A}) + rank(\mathbf{I} - \mathbf{A}) = n.$$

这说明 $m_1+m_2=n$. 但是, 我们知道特征值的代数重数不小于几何重数: $n_1\geq m_1$, $n_2\geq m_2$. 另一方面, 我们总有 $n_1+n_2=n$. 这说明 $n_1=m_1$, $n_2=m_2$. 从而对于 \boldsymbol{A} 的所有特征值, 其相应的代数重数总是等于几何重数. 从而 \boldsymbol{A} 可以相似对角化. 由定理 6.4.2 的证明, 我们可以假设这些 1 都在对角形的左上角. (注: 若 λ 不是真正的特征值, 则相应的"代数重数"与"几何重数"皆为零, 不实质影响这儿的讨论.) 从而此时, 有 $\boldsymbol{A}\sim \boldsymbol{D}\coloneqq\begin{pmatrix}\boldsymbol{I}_r & \boldsymbol{O}\\ \boldsymbol{O} & \boldsymbol{O}\end{pmatrix}$. 由于矩阵的秩是相似不变量, 我们有 $r=\mathrm{rank}(\boldsymbol{D})=\mathrm{rank}(\boldsymbol{A})$.

(3) 从前一问的讨论来看, 这是显然的. 另外, 在例 4.5.19 中, 我们给出了另外一个证明. 除此之外, 也可以看看教材上用若尔当标准形的方法重新考虑这道例题 (P188 例 6.5.6).