同伦论笔记

Lin Wangyang

January 12, 2023

Contents

Contents		1
1	同伦群	2
	1.1 预备	2

Chapter 1

同伦群

1.1 预备

设 X 与 Y 是拓扑空间,连续函数 $f: X \to Y$ 在后文中都称为**映射**. 设 X', X'' 是 X 的子空间,Y', Y'' 是 Y 的子空间,如果映射 $f: X \to Y$ 满足 $f(X') \subset Y', f(X'') \subset Y''$,则记 $f: (X, X', X'') \to (Y, Y', Y'')$. 记 I = [0, 1].

Definition 1.1.1 设 $f, f': (X, X', X'') \to (Y, Y', Y'')$ 是两个映射. 如果存在映射 $F: (X \times I, X' \times I, X'' \times I) \to (Y, Y', Y'')$,使得

$$F(x,0) = f(x),$$

$$F(x,1) = f'(x), \forall x \in X$$

则称 f, f' 相对于 (X', X''), (Y', Y'') 是同伦的, 并记作

$$f \simeq f' : (X, X', X'') \to (Y, Y', Y'').$$

简记 $f \simeq f'$.

Remark 1.1.2 当 X', X'', Y', Y'' 都是空集的时候,就是通常我们说的(绝对)同伦,记为 $f \simeq f': X \to Y$.

当 X'' = X', Y'' = Y' 时,记为 $f \simeq f' : (X, X') \to (Y, Y')$. 特别地,当 $F(x, t) = f(x), \forall x \in X, t \in I$ 时,记 $f \simeq f' \operatorname{rel} X'$.

Remark 1.1.3 映射 f 与 f' 之间的同伦可以用直观的方式理解,即连接 f 和 f' 之间的连续形变.对于 $(x,t) \in X \times I$ 可以把 t 理解为时间,可以将 $f_t(x) = F(x,t)$ 视为映射族 $f_t: X \to Y$. 这种记号后面也经常使用.在定义 1.1.1 中对于任意 $t \in I$ 有 $f_t(X') \subset Y', f_t(X'') \subset Y''$.

Example 1.1.4 设