

Monocular Camera Localization in 3D LiDAR Maps

Speaker: Yunxiang Lu and Keyue Zhang

Supervisor: Simon Klenk

Vision-based Navigation

Garching b. München, 24. July 2023

Introduction

Goal: Localize the monocular camera in a 3D LiDAR Map

- Input: Image stream + 3D point cloud map
- Output: Estimated camera pose trajectory

Method: Align the reconstructed point to 3D LiDAR Map

- Alignment by matching geometry
- Eliminate the accumulated drift

Figure 1: Caselitz, et al. "Monocular Camera Localization in 3D LiDAR Maps."

Visual Odometry

Alignment-Data Association

Find correspondences between reconstructed points and points in Lidar map iteratively

- d_i : reconstructed local landmarks
- $lacktriangleright m_i$: points in Lidar map

Alignment-Data Association

Find correspondences between reconstructed points and points in Lidar map iteratively

Drawback:

the set of reconstructed points overlaps **only partially** with the LiDAR map

Yunxiang Lu and Keyue Zhang | Vision-based Navigation | Monocular Camera Localization in 3D LiDAR Maps

Alignment-Local Point Distribution

Preprocessing

- Voxelize the point cloud map
- Use PCA to determine the local point distribution in each voxel

Alignment-Filter out bad correspondence

Good Conditions:

 The amount of LiDAR points in a voxel is sufficient

$$N \geq N_{min}$$

 The reconstructed local landmark lies inside a multiple standard deviation along the voxel's principle component axes

$$Td_i \leq N_{\sigma}\sigma$$

Or any neighboring voxel fulfills above criteria

- reconstructed local landmarks
- points in Lidar map

Given a set of correspondences $C'_k = \{(d_1, m_1), (d_2, m_2), \dots \}$ Estimate similarity transformation S_k^* from local reconstruction to LiDAR map

Perform with an ICP scheme

- Update the correspondence set C'_k based on current S_k^* over K iterations.
- Reduce the distance threshold τ_k over K iterations.

$$\tau_k = -\frac{\tau_{max} - \tau_{min}}{K}k + \tau_{max}.$$

Error function is squared Euclidean distance between corresponding points

$$\mathbf{e}_{Data}(\mathbf{S}, \mathbf{d}_i, \mathbf{m}_j) = \xi(\mathbf{S}\tilde{\mathbf{d}}_i) - \mathbf{m}_j.$$

ICP scheme

k=1

Data Association:

$$C'_{k} = \{(d_{1}, m_{1}), (d_{3}, m_{4})\}$$

Optimization:

Estimate S₁*

- reconstructed local landmarks
- points in Lidar map

ICP scheme

k=2

Data Association:

$$C'_{k} = \{(d_{1}, m_{1}), (d_{2}, m_{2}), (d_{3}, m_{4})\}$$

Optimization:

Estimate S₂*

- reconstructed local landmarks
- points in Lidar map

ICP scheme

k=3

Data Association:

$$C'_{k} = \{(d_{1}, m_{1}), (d_{2}, m_{2}), (d_{3}, m_{3}), (d_{4}, m_{4})\}$$

Optimization:

Estimate S_3^*

Alignment-Update landmarks and poses

reconstructed local landmarks

points in Lidar map

After K iterations

$$C'_{k} = \{(d_{1}, m_{1}), (d_{2}, m_{2}), (d_{3}, m_{3}), (d_{4}, m_{4})\}$$

From origin landmarks to optimized landmarks:

$$S^* = \prod_{k=0}^{K-1} S_{K-k}^*$$

Transform all point positions d_i and keyframe poses T_i

$$D' = \{d_i' = S^*d_i, \forall d_i \in D\}$$

$$T' = \{T_i' = S^*T_i , \forall T_i \in T\}$$

Keyframe pose T_i

Result-Stereo Camera for Euroc V1_01_easy

Stereo without alignment 1 min 23 s (~30Hz)

Stereo with alignment 3 min 53 s (~12Hz)

Result-Monocular Camera for Euroc V1_01_easy

Monocular without alignment 1 min 09 s (~40Hz)

Monocular with alignment 2 min 57 s (~15Hz)

Result for V1_01_easy

Result for V2_01_easy

Other good results

Result

APE w.r.t translational part (best in 5 eval)

Ablation Study-Frequency of alignment

- More alignments leads to better performance
- Also leads to more running time!

Ablation Study-Voxel Size

APE w.r.t translational part (best in 5 eval) Using Monocular Camera

- Voxel size is highly scene-specific
- Trade-off between voxel size and running time

KITTI Attempt

Euroc: LiDAR map of the whole scene (~100 Mb/scene)

KITTI: Each frame has a LiDAR map (.bin file) (~10 Gb/scene)

Using downsample to preprocess a map for whole scene

data.ply for one Euroc Scene

000000.bin in KITTI Sequence (~130k points)

Our LiDAR Map for whole scene

KITTI Attempt-Result

Stereo

Stereo + whole LiDAR map

Summary

Contribution

- Alignment with LiDAR map can eliminate the accumulated drift
- Matching based on geometry is robust to light changes
- The alignment performance is still **restricted by the based VO performance**

Improvement potential

- Powerful CPU
- Accurate LiDAR Map
- Powerful based VO

Thanks for your attention!

Additional Materials

KITTI-Attempt

Paper's method

- Use a LIDAR-based SLAM system to get GT trajectory (for loop closure)
- Build a map at resolution of 20 cm

Our method

- Preprocess a LiDAR map for whole scene
 - Put point clouds for all frames together
 - Downsample
 - Build a map at resolution of 50cm

Paper's LiDAR Map for whole scene

Our LiDAR Map for whole scene