Acidimetria

metóda na stanovenie alkálií

• titračné činidlo:

o vodné ⊙ HCl, H₂SO₄, HNO₃, HClO₄ (0,1 – 1M)

• základná látka:

Na₂CO₃, KHCO₃, Na₂B₄O₇

použitie:

- o stanovenie alkality technických lúhov (NaOH, KOH)
- o stanovenie NH₃
- o stanovenie CO₃²⁻, HCO₃- podľa Winklera
- o stanovenie N v organických látkach (podľa Kjeldalha)
- o stanovenie prechodnej tvrdosti vody

Alkalimetria

• metóda na stanovenie kyselín

• titračné činidlo:

o vodné ⊙ NaOH, KOH, Ba(OH)₂ (0,5 – 1M)

• základná látka:

o (COOH)2.2H2O, kys. benzoová

použitie:

- o stanovenie slabých a silných kyselín
- o stanovenie aminokyselín, čísla kyslosti, čísla zmydlenia

Redox titrácie

• rýchle, jednoznačné, s kvantitatívnym priebehom

• <u>2 typy:</u>

- o oxidometria spotreba oxidačného činidla (manganometria, jodometria)
- o reduktometria spotreba redukčného činidla

priebeh:

- o titrácia roztoku SnCl₂ roztokom KMnO₄
 - čiastkové reakcie:

•
$$Sn^{2+} - 2e^- \rightarrow Sn^{4+}$$
 /.5

$$\bullet \quad MnO_4^- + 8H^+ + 5e^- \to Mn^{2+} + 4H_2O \ \ /.2$$

•
$$5Sn^{2+} + 2MnO_4^- + 16H^+ \rightarrow 5Sn^{4+} + 2Mn^{2+} + 8H_2O$$

o <u>na začiatku</u>

•
$$E = E^0 + \frac{R.T}{n.F} \ln \frac{[Ox]}{[Red]}$$

pri štandardných podmienkach: $E = E^0 + \frac{0,059}{n} \log \frac{[Ox]}{[Red]}$

- v roztoku:
 - len Sn²⁺

•
$$E = E_{Sn^{4+}/Sn^{2+}}^0 + \frac{0.059}{2} \log \frac{0}{[Sn^{2+}]} = -\infty$$
 $[Ox] = 0$ ($[Sn^{4+}] = 0$)

o pred ekvivalentným bodom

- v roztoku:
 - Sn²⁺, Sn⁴⁺, Mn²⁺

•
$$E = E_{Sn^{4+}/Sn^{2+}}^0 + \frac{0.059}{2} \log \frac{[Sn^{4+}]}{[Sn^{2+}]}$$

•
$$[Sn^{2+}] = \frac{(c.V)_{Sn} - \frac{5}{2}(c.V)_{Mn}}{V_{Sn} + V_{Mn}}$$

•
$$\frac{n_{Mn^{7+}}}{n_{Sn^{4+}}} = \frac{2}{5}$$
 $n_{Sn^{4+}} = \frac{5}{2}n_{Mn^{7+}}$ (vzniknuté množstvo Sn⁴⁺)

•
$$[Sn^{4+}] = \frac{5(c.V)_{Mn}}{2(V_{Sn} + V_{Mn})}$$

o <u>v ekvivalentnom bode</u>

- v roztoku
 - Sn⁴⁺, Mn²⁺

•
$$E_e = E_{Sn^{4+}/Sn^{2+}} = E_{MnO_4^-/Mn^{2+}}$$

•
$$E_e = E_{Sn^{4+}/Sn^{2+}}^0 + \frac{0.059}{2} \log \frac{[Sn^{4+}]}{[Sn^{2+}]}$$

•
$$E_e = E_{MnO_4^-/Mn^{2+}}^0 + \frac{0,059}{5} \log \frac{[MnO_4^-]}{[Mn^{2+}]}$$

z redox rovnice vyplýva:

•
$$\frac{[Sn^{2+}]}{[MnO_4^-]} = \frac{[Sn^{4+}]}{[Mn^{2+}]} = \frac{5}{2}$$
 \Longrightarrow $\frac{[Sn^{4+}]}{[Sn^{2+}]} = \frac{[Mn^{2+}]}{[MnO_4^-]}$

dosadením do vzťahu pre E_e a prenásobením 2 a 5:

•
$$2E_e = 2E_{Sn^{4+}/Sn^{2+}}^0 + 0.059 \log \frac{[Sn^{4+}]}{[Sn^{2+}]}$$

•
$$5E_e = 5E_{MnO_4^-/Mn^{2+}}^0 - 0.059 \log \frac{[Sn^{4+}]}{[Sn^{2+}]}$$

po sčítaní rovníc:

•
$$E_e = \frac{2E_{Sn^{4+}/Sn^{2+}}^0 + 5E_{MnO_4^-/Mn^{2+}}^0}{7}$$

všeobecne

•
$$A_{ox} + xe^- \rightarrow A_{red}$$
 E_A^0
 $B_{ox} + ye^- \rightarrow B_{red}$ E_B^0

$$\bullet \quad E_e = \frac{x.E_A^0 + y.E_B^0}{x + y}$$

o <u>za ekvivalentným bodom</u>

- v roztoku:
 - Mn⁷⁺, Mn²⁺
 - Sn⁴⁺ (pri výpočte zanedbávame)

$$\bullet \quad E = E_{MnO_4^-/Mn^{2+}}^0 + \frac{0,059}{5} \log \frac{[MnO_4^-]}{[Mn^{2+}]}$$

indikácia:

- objektívna
 - potenciometricky
 - polarometricky
 - ampérometricky
- subjektívna
 - indikátormi

nadbytok titračného činidla (KMnO₄)

Oxidimetria

- využíva sa odmerné činidlo s oxidačnými vlastnosťami
- dochádza k oxidácii analytu
- v prípade, že sa analyt nachádza v najvyššom oxidačnom stupni, je potrebné ho zredukovať
 - o na to sa využívajú *reduktory*:
 - sklenená trubica naplnená redukčným činidlom (SnCl₂, SO₂, H₂S, Zn, Ni, Fe, Pb...)
- môže sa jednať o:
 - o manganometria (KMnO₄)
 - o bichromatometria (K₂Cr₂O₇)
 - o jodometria (I₂)
 - bromatometria (KBrO₃)
 - cerimetria (Ce(SO₄)₂)

manganometria

- o **odmerné činidlo:** KMnO₄ (je zároveň indikátorom)
- o pH ovplyvňuje priebeh titrácie
 - kyslé prostredie

•
$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$

- slabo kyslé, neutrálne, slabo zásadité prostredie
 - $MnO_4^- + 2H_2O + 3e^- \rightarrow MnO_2 + 4OH^-$
- silne zásadité prostredie
 - $MnO_4^- + e^- \rightarrow MnO_4^{2-}$
- štandardizácia
 - základná látka šťavelan sodný (resp. kys. šťaveľová), As₂O₃
 - v prostredí H₂SO₄ zahriatím do max. 80°C
 (pri vyššej teplote sa kys. šťaveľová rozkladá na CO₂ a vodu)
 - $5(COO)_2^{2-} + 2MnO_4^{-} + 16H^+ \rightarrow Mn^{2+} + 8H_2O + 10CO_2$
- o typy:
 - priama
 - do ekvivalentného bodu
 - kys. mravčia, octová, askorbová
 - nepriama
 - titrovanie nadbytkom, nadbytok sa stanoví titráciou (COOH)₂, jodometricky
 - alkoholy a fenoly
- o použitie:
 - stanovenie Fe²⁺ solí (v prostredí H₂SO₄)

•
$$5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$$

stanovenie peroxidu vodíka

•
$$5H_2O_2 + 2MnO_4^- + 6H^+ \xrightarrow{Mn^{2+}} 8H_2O + 5O_2 + 2Mn^{2+}$$

- stanovenie železa podľa Reinhardt-Zimmermanna (v prítomnosti Cl⁻)
 - $2FeCl_3 + SnCl_2 \rightarrow SnCl_4 + 2FeCl_2$ (redukcia železitých katiónov)
 - $SnCl_2 + 2HgCl_2 \rightarrow Hg_2Cl_2 + SnCl_4$

- v dôsledku oxidácie Cl⁻ vzrastá spotreba KMnO₄:
 - \circ $Fe^{2+} + Mn^{7+} \rightarrow Mn^{6+} + Fe^{3+}$
 - \circ $Fe^{2+} + Mn^{6+} \rightarrow Mn^{4+} + Fe^{4+}$
 - \circ $Fe^{4+} + 2Cl^{-} \rightarrow Cl_{2}^{-} + Fe^{3+}$
 - $\circ \quad 2Cl_2^- \to \uparrow Cl_2 + 2Cl^-$
- táto nežiaduca oxidácia sa inhibuje pomocou R-Z roztoku
 - \circ zmes Mn²⁺, H₃PO₄, H₂SO₄
 - \circ $Mn^{6+} + Mn^{2+} \rightarrow 2Mn^{4+}$
 - $\circ Mn^{4+} + Mn^{2+} \rightarrow 2Mn^{3+}$
 - Mn³+ vytvára s H₃PO₄ pevné komplexy
 - o Fe³⁺ vytvára s H₃PO₄ bezfarebné komplexy

• jodometria

- o založená na reverzibilnej reakcii: $I_2 + 2e^- \rightleftharpoons 2I^-$
- o roztok nesmie byť alkalický, aby nedošlo k oxidácii jódu na jódnan
- o môže byť:
 - priamo
 - pre látky s $E^0 > E^0_{I_2/I^-}$ t.j. jódom sa oxidujú
 - odmerné činidlo I₂
 - zle rozpustný vo vode, preto sa rozpúšťa v koncentrovanom roztoku KI

 - $I_3^- + 2e^- \rightleftharpoons 3I^-$
 - nepriama
 - pre látky s $E^0 < E^0_{I_2/I^-}$ t.j. oxidujú l $^-$ na l $_2$
 - pridá sa nadbytok I⁻ a titráciou sa stanovuje množstvo I₂ pomocou Na₂S₂O₃
- o štandardizácia
 - základné látky
 - resublimovaný I₂, As₂O₃, K₂Cr₂O₇, KBrO₃ (pre Na₂S₂O₃), KIO₃,
 Na₂S₂O₃ (nie je základná látka, ale používa sa na štandardizáciu)
 - Na₂S₂O₃ na KBrO₃:
 - $KBrO_3 + 6KI + 6HCl \rightarrow 3I_2 + KBr + 3H_2O + 6KCl$ $3I_2 + 6Na_2S_2O_3 \rightarrow 6NaI + 3Na_2S_4O_6$
 - I₂ na Na₂S₂O₃
 - $I_2 + 2Na_2S_2O_3 \rightarrow 3NaI + Na_2S_4O_6$
 - ako indikátor sa používa škrobový maz (0,2% ⊙), ktorý sa v prítomnosti jódu sfarbuje do fialovomodra
- o použitie
 - nepriamo:
 - stanovenie Cu

$$\circ$$
 $2Cu^{2+} + 2I^{-} \rightarrow 2Cu^{+} + I_{2}$

$$0 I_2 + 2Na_2S_2O_3 \rightarrow 3NaI + Na_2S_4O_6$$

- stanovenie Cl₂, Br₂, Fe³⁺
- stanovenie H₂O₂

$$\circ \quad H_2O_2 + 2I^- + 2H^+ \to I_2 + 2H_2O$$

priamo:

- stanovenie As, Sb, Sn
- <u>stanovenie H₂O Fischerovým činidlom</u> (I₂, SO₂, MeOH, pyridín)

$$\circ \quad SO_2 + I_2 + H_2O \rightarrow 2HI + SO_3$$

$$\circ \quad 2HI + 2C_5H_5N \rightarrow 2C_5H_5N.HI$$

Reduktometria

- využíva sa odmerné činidlo s redukčnými vlastnosťami
- je menej častá ako oxidimetria
- typy:
 - o titanometria (TiCl₃)
 - o chromometria (CrSO₄)
 - o titrácia roztokom SnCl₂, FeSO₄, kys. askorbová
- základná látka: K₂Cr₂O₇
- použitie:
 - o stanovenie Fe³⁺, Cu²⁺, NO₃⁻
- $Ti^{3+} e^- \rightleftharpoons Ti^{4+}$
- $Cr^{2+} e^- \rightleftharpoons Cr^{3+}$