运筹学通论I

胡晓东

应用数学研究所

中国科学院数学与系统科学研究院

Http://www.amt.ac.cn/member/huxiaodong/

提纲

20世纪数学的五大指导理论 Five Golden Rules

叶其孝、刘宝光 Great Theories of 20th Century Math 上海教育出版社, 2000 -and Why They Matter

- 1. 线性规划 对偶定理
- 2. 博弈论 极大极小定理
- 3. 非线性规划 K-K-T 定理
- 4. 计算/算法理论 停机定理, 库克定理 拓扑学 不动点定理 奇点理论 莫尔斯定理
- 5. 组合最优化 算法设计技巧

运筹学

- 模型
- 理论
- 算法

参考书目

Nonlinear Programming - Theory and Algorithms

Mokhtar S. Bazaraa, C. M. Shetty John Wiley & Sons, Inc. 1979 (2nd Edition, 1993)

Linear and Nonlinear Programming

David G. Luenberger Addison-Wesley Publishing Company, 2nd Edition, 1984/2003...

Convex Analysis **

R. T. Rockafellar

Princeton Landmarks in Mathematics and Physics, 1996.

Optimization and Nonsmooth Analysis **

Frank H. Clarke SIAM, 1990.

3. 微分复习 - 单变量函数

考虑(单变量)函数 y = f(x)。当自变量 x 在点 x 有一改变量 Δx 时,函数 y 相应地有一改变量 $\Delta y = f(x + \Delta x) - f(x)$,那么当 Δx 趋于零时,若比值 $\Delta y / \Delta x$ 的极限存在,则称这个极限为函数 f(x) 在点 x 的导数,记

$$y'=f'(x) = \frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}$$

从几何直观的角度看,函数 f(x) 的导数 f'(x) 是函数 y = f(x) 表示的曲线在点 x 的切线的斜率,即 $f'(x) = \mathbf{tg}\alpha$,这里 α 是曲线在点 x 处的切线与X-轴的夹角。

3. 微分复习 - 多变量函数

考虑多变量函数 z = f(x, y)。当变量x 在点x 有一改变量 Δx ,而变量 y 保持不变时,函数z 相应地有一改变量 $\Delta z = f(x + \Delta x, y)$ —f(x, y),那么当 Δx 趋于零时,若比值 Δz / Δx 的极限存在,则称这个极限为函数 f(x, y) 在点(x, y) 关于变量 x 的偏导数,记

$$f_{x}'(x,y) = \frac{\partial f(x,y)}{\partial x} = \frac{\partial z}{\partial x} = \lim_{\Delta x \to 0} \frac{\Delta z}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x,y)}{\Delta x}$$

类似地,记多变量函数f(x,y)在点(x,y)关于变量y的偏导数为

$$f_{y}'(x,y) = \frac{\partial f(x,y)}{\partial y} = \frac{\partial z}{\partial y} = \lim_{\Delta y \to 0} \frac{\Delta z}{\Delta y} = \lim_{\Delta y \to 0} \frac{f(x,y + \Delta y) - f(x,y)}{\Delta y}$$

多变量函数的偏导数可以按照单变量函数的微分法则求出,只需要对所讨论变量求导数,其余的变量都看作常数即可。

3. 微分复习 - 多变量函数 (续一)

在几何上,二元函数f(x,y)表示一个曲线,通过曲面上一点(x,y,z)作一平行于OXZ平面的平面,与曲面有一条交线, $\partial z/\partial x$ 就是这条曲线在该点的切线与X-轴正向夹角 α 的正切,即 $\partial z/\partial x = \operatorname{tg} \alpha$ 。

3. 微分复习 - 多变量函数 (续二)

多元函数y = f(x) 在 $x^* \in \text{int}(S)$ 处是可微的,如果存在梯度 $\nabla f(x^*)$ 和一个函数 $\alpha(x)$ 满足:对任意 $x \in S$

$$f(x) = f(x^*) + \nabla f(x^*)^T(x - x^*) + ||x - x^*|| \alpha(x^*; x^* - x),$$

这里 $\lim_{x\to x^*} \alpha(x^*; x^*-x)=0$ 。事实上 $\nabla f(x)$ 的每一个分量就是相应的偏导数,即 $\nabla f(x)=(\partial f/\partial x_1, \partial f/\partial x_2, \dots, \partial f/\partial x_n)$

多元函数y = f(x) 在 $x^* \in \text{int}(S)$ 处是二阶可微的,如果存在梯度 $\nabla f(x^*)$ 及一个海森矩阵 $H(x^*)$,和一个函数 $\alpha(x)$ 满足: $\forall x \in S$

$$f(x) = f(x^*) + \nabla f(x^*)(x - x^*) + \frac{1}{2} (x - x^*) H(x^*)(x - x^*) + ||x - x^*||^2 \alpha(x^*; x^* - x),$$

这里 $\lim_{x\to x^*} \alpha(x^*; x^*-x)=0$ 。事实上矩阵H(x)在第 i 行第 j 列的元素为 $\partial^2 f/\partial x_i \partial x_j$

3. 凸分析

定义 1.称定义于凸集 S 上的函数 f(x) 是凸函数如果对于任意 $x_1, x_2 \in S$ 和 $\lambda \in (0, 1)$,都有

$$f(\lambda x_1 + (1-\lambda) x_2) \le \lambda f(x_1) + (1-\lambda) f(x_2) \circ$$

称其为严格凸的如果不等式取严格小于号。另外,称函数f(x)是一个 (严格) 凹函数 如果 -f(x) 是一个 (严格) 凸函数。

3. 凸分析 - 凸函数性质

练习. 根据凸集和凸函数的定义,证明下述两个引理。

引理 1. 设 f(x) 是定义于凸集 S 上的一个凸函数。则其水平集 $S_{\alpha} = \{x \in S \mid f(x) \leq \alpha\}$ 是一个凸集,其中 α 是任意一个实数。

凸函数

3. 凸分析 - 凸函数性质 (续一)

引理 2. 设 S 是n-维欧氏空间 E^n 上的一个凸集。则 f(x) 是一个凸函数当且仅当其上图 epi $f = \{(x,y) \mid x \in S, y \in E^1, y \geq f(x)\}$ 是一个凸集。

3. 凸分析 - 凸函数性质 (续二)

定理 1. 设 f(x) 是定义于凸集 S 上的一个凸函数。则f(x) 在集合 S 的内点集上是连续的。

证明(练习***). 首先证明一维的情形, 然后再化成一维情形。

注意,凸函数和凹函数 不一定在定义域上处处 连续。 然而,根据上述 定理,不连续性只可能 发生在集合 S 的边界上。 例如, $f(x)=x^2$ 当 |x|<1, 且 f(x)=2 当 |x|=1, 其中 $S=\{x \mid |x| \le 1\}$ 。

3. 凸分析 - 凸函数方向导数

定义 2. 设 f(x) 是定义于集合 S 上的一个函数,另设 $x^* \in S$,d 是一个非零向量,且对足够小的 $\lambda > 0$ 有 $x^* + \lambda d \in S$ 。函数 f(x) 在 x^* 处沿 d 的方向导数为(如果极限存在)

$$f'(x^*, d) = \lim_{\lambda \to 0+} \frac{f(x^* + \lambda d) - f(x^*)}{\lambda}$$

若函数f(x) 在 x^* 处可微, 则其在该点沿 d 的方向导数 为 $f'(x^*, d) = \nabla f(x^*)^T d$ 。

3. 凸分析 - 凸函数方向导数 (续一)

引理 3. 设 f(x) 定义在凸集 S 上的一个凸函数,另设 $x^* \in S$,d 是一个非零向量,且满足对足够小的 $\lambda > 0$,有 $x^* + \lambda d \in S$ 。则函数 f(x) 的方向导数存在。

证明 (练习*). 设 $\lambda_2 > \lambda_1 > 0$ 。根据函数 f(x) 的凸性,我们有

$$f(x^* + \lambda_1 d) = f\left[\frac{\lambda_1}{\lambda_2} (x^* + \lambda_2 d) + (1 - \frac{\lambda_1}{\lambda_2})x^*\right]$$

$$\leq \frac{\lambda_1}{\lambda_2} f(x^* + \lambda_2 d) + (1 - \frac{\lambda_1}{\lambda_2}) f(x^*),$$

由此可得

$$\frac{f(x^*+\lambda_1d)-f(x^*)}{\lambda_1} \leq \frac{f(x^*+\lambda_2d)-f(x^*)}{\lambda_2}$$

因而差商 $(f(x^* + \lambda d) - f(x^*))/\lambda$ 关于 $\lambda > 0$ 是一个单调非减的函数, 故它有极限(其值可为 ∞)。

3. 凸分析 - 凸函数次梯度

定义 3. 设 f(x) 是定义于凸集 S 上的一个凸函数,另设 $x^* \in S$ 。称向量 ξ 为 f(x) 在点 x^* 处的次梯度如果

 $f(x) \ge f(x^*) + \xi^T(x-x^*)$,对所有 $x \in S$ 。

类似地,对于凹函数f(x),称 ξ 为f(x)在点 x^* 处的**次梯度**如果 $f(x) \leq f(x^*) + \xi^T(x-x^*)$,对所有 $x \in S$ 。

3. 凸分析 - 凸函数次梯度(续一)

定理 2. 设 f(x) 是定义于凸集 S上的一个凸函数,则 f(x) 在任意一个内点 $x^* \in \text{int}(S)$ 都存在次梯度。

证明 (练习**). 根据引理 2, epi f 是一个凸集。注意, $(x^*, f(x^*))$ 位于 epi f 的边界上,因而根据**支撑定理**,存在一个非零向量 (ξ_0, μ) 使得对所有 $(x, y) \in \text{epi } f$ 都有

$$(\xi_0, \mu)^T (x - x^*, y - f(x^*)) \le 0$$

$$\xi_0^T (x - x^*) + \mu (y - f(x^*)) \le 0$$

再注意,我们有 $\mu \leq 0$ (否则我们可以取任意大的 y,.....); 事实上, $\mu < 0$ (否则有 $\xi_0^T(x-x^*) \leq 0$,然而我们可以取充分 小的 $\lambda > 0$ 使得 $x^* + \lambda \xi_0 \in \text{int}(S)$,.....)

3. 凸分析 - 凸函数次梯度(续二)

定理 3. 设 $S \in E^n$ 上的一个凸集,函数 f(x): $S \to E^1$ 。若对每一个内点 $x^* \in \text{int}(S)$ 都存在一个次梯度向量 ξ 使得,对所有 $x \in S$,都有 $f(x) \geq f(x^*) + \xi(x - x^*)$ 。 则函数 f(x) 在内点集 int(S) 上是凸的。

证明 (练习*). 分别取 $x = x_1$, x_2 , $x^* = \lambda x_1 + (1-\lambda) x_2$, 则有

$$f(x_1) \ge f(\lambda x_1 + (1 - \lambda) x_2) + (1 - \lambda) \xi(x_1 - x_2), \quad \text{fl}$$

$$f(x_2) \ge f(\lambda x_1 + (1 - \lambda) x_2) + \lambda \xi(x_2 - x_1).$$

将上述两个不等式分别乘以 λ 和 $(1-\lambda)$,再相加,即可得 $\lambda f(x_1) + (1-\lambda)f(x_2) \ge f(\lambda x_1 + (1-\lambda)x_2)$.

3. 凸分析 - 凸函数梯度

定理 4. 设S 是 E^n 上的一个非空凸的开集,函数 f(x): $S \to E^1$ 。 若 f(x) 在 点 x^* 处可微,则 f(x) 在点 x^* 处的次梯度向量集合恰好含有一个向量 $\nabla f(x^*)$ 。

证明. 设 ξ 是函数 f(x) 在点 x^* 处的一个次梯度向量。则有

$$f(x^* + \lambda d) \ge f(x^*) + \lambda \xi^T d,$$

$$f(x^* + \lambda d) = f(x^*) + \lambda \nabla f(x^*) d + \lambda / d / \alpha(x^*; \lambda d),$$

将上述等式带入不等式, 即得

$$0 \ge \lambda (\xi - \nabla f(x^*))^T d - \lambda /\!/ d /\!/ \alpha(x^*; \lambda d).$$

如果将上述不等式两边同除以 $\lambda > 0$,并让 $\lambda \to 0$,那么即可得到 $0 \ge (\xi - \nabla f(x^*))^T d$ 。现取 $d = \xi - \nabla f(x^*)$,即得 $\xi = \nabla f(x^*)$ 。

3. 凸分析 - 凸函数梯度(续一)

定理 5. 设 S 是 E^n 上的一个非空凸的开集,函数 f(x): $S \to E^1$ 是可微的。则 f(x) 是一个凸函数当且仅当对任意 $x^* \in S$,都有 $f(x) \ge f(x^*) + \nabla f(x^*) (x - x^*)$,所有 $x \in S$ 。

类似地,f(x) 是一个严格凸的当且仅当对每一个 $x^* \in S$,都有 $f(x) > f(x^*) + \nabla f(x^*) (x - x^*), \text{ 所有 } x \in S.$

定理 6.设 S 是 E^n 上的一个非空凸的开集,函数 f(x): $S \to E^1$ 是可微的。则 f(x) 是一个凸函数当且仅当对任意 $x_1, x_2 \in S$,都有 $(\nabla f(x_2) - \nabla f(x_1))^T (x_2 - x_1) \ge 0$ 。

类似地,函数f(x) 是严格凸的当且仅当对任意不同的两个向量 $x_1, x_2 \in S$,都有

$$(\nabla f(x_2) - \nabla f(x_1))^T (x_2 - x_1) > 0_{\circ}$$

3. 凸分析 - 凸函数梯度(续二)

证明."当":根据定理 5,对任意 $x_1, x_2 \in S$,都有。

$$f(x_1) \ge f(x_2) + \nabla f(x_2) (x_1 - x_2)$$
 和
 $f(x_2) \ge f(x_1) + \nabla f(x_1) (x_2 - x_1)_{\circ}$

将上述两个不等式相加,即得 $(\nabla f(x_2) - \nabla f(x_1))(x_2 - x_1) \ge 0$ 。

"仅当":根据中值定理,可得

再由假设 $(\nabla f(x) - \nabla f(x_1))^T(x - x_1) \ge 0$, 可得

$$(1 - \lambda)(\nabla f(x) - \nabla f(x_1))^T(x_2 - x_1) \ge 0$$

因而有 $\nabla f(x) (x_2 - x_1) \ge \nabla f(x_1)(x_2 - x_1)$, 由此可得

$$f(x_2) \ge f(x_1) + \nabla f(x_1) (x_2 - x_1).$$

再根据**定理 5**,即知f(x)是一个凸函数。

3. 凸分析 - 凸函数二阶微分

定理 7. 设 $S \neq E^n$ 上的一个非空凸的开集, $f(x): S \rightarrow E^1$ 是一个二次可微函数。 则 f(x) 是一个凸函数当且仅当 S 中的每一个点处的海森矩阵都是半正定的。

证明 (练习**). ⇒ 根据定理 5 和二次可微函数的定义,我们有

 $f(x^* + \lambda x) \ge f(x^*) + \lambda \nabla f(x^*) (x)$

 $f(x^* + \lambda x) = f(x^*) + \lambda \nabla f(x^*) x + 0.5 \lambda^2 x^T H(x^*) x + \lambda^2 /|x||^2 \alpha(x^*; \lambda x)$

将上述等式带入不等式,即得 $0.5\lambda^2x^TH(x^*)x + \lambda^2 /|x||^2\alpha(x^*;\lambda x)$ 。 现令 $\lambda \to 0$,既有 $x^TH(x^*)x \ge 0$ 。

 \leftarrow 根据**中值定理**,即可知,存在 $x' = \lambda x^* + (1 - \lambda)x$ 使得

$$f(x) = f(x^*) + \nabla f(x^*)(x - x^*) + 0.5(x - x^*)^T H(x')(x - x^*)$$

又因 H(x') 是半正定矩阵,故有 $f(x) \ge f(x^*) + \nabla f(x^*)(x - x^*), \dots$

3. 凸分析 - 凸函数最优条件

定义 5. 考虑求最小值问题 $\min \{f(x) | x \in S \subset E^n\}$ 。设 $x^* \in E^n$ 。 若对所有 $x \in S$ 都有 $f(x^*) \leq f(x)$,则称 $x^* \in S$ 是一个全局最小解或者全局最优解。 若存在 x^* 的一个邻域 $N_{\varepsilon}(x^*)$,使得对任意 $x \in S \cap N_{\varepsilon}(x^*)$,都有 $f(x^*) \leq f(x)$,则称 x^* 为一个局部最小解或者局部最优解。

3. 凸分析 - 凸函数最优条件

定理 8. 设 $S \in E^n$ 上的一个非空凸集,函数 f(x): $S \to E^1$ 。 另设 $x^* \in S$ 是求最小值问题 $\min \{ f(x) \mid x \in S \}$ 的一个局部最优解。

- i) 若 f(x) 是一个凸函数,则 x^* 是一个全局最优解。
- ii) 若f(x) 是一个严格凸函数,则x*是惟一一个全局最优解。

证明. (**练习**) (i) 采用反证法。假设 $f(x^*) > f(x')$,其中 $x' \in S$ 。则根据函数f(x) 的凸性可知,对任意一个 $\lambda \in (0, 1)$,都有

$$f(\lambda x' + (1 - \lambda) x^*) \le \lambda f(x') + (1 - \lambda) f(x^*)$$

<\lambde f(x^*) + (1 - \lambda) f(x^*) = f(x^*), \ldots

(ii) 还是采用反证法。假设存在另外一个全局最优解 $x' \neq x^*$, $f(x') = f(x^*)$ 。根据函数f(x)的严格凸性,我们有

$$f(x'/2+x*/2) < f(x')/2 + f(x*)/2 = f(x*), \dots$$

3. 凸分析 - 凸函数最优条件(续一)

定理 9. 设函数 f(x): $S \rightarrow E^1$ 是一个凸函数,其中S 是一个非空凸集。则 $x^* \in S$ 是求最小值问题 $\min\{f(x) \mid x \in S\}$ 的全局最优解当且仅当 f(x) 在 x^* 处的一个次梯度 ξ 满足,对任意 $x \in S$,都有 $\xi^T(x-x^*) \geq 0$ 。

证明. (**练习****) \leftarrow 根据函数 f(x) 的凸性和次梯度的性质,… \Rightarrow 根据在 x^* 处次梯度 ξ 的定义。定义 E^{n+1} 中的两个集合:

$$S_1 = \{(x - x^*, y) \mid x \in E^n, y > f(x) - f(x^*)\},$$

$$S_2 = \{(x - x^*, y) \mid x \in S, y \leq 0\}$$

因为x*是一个最优解,则有 $S_1 \cap S_2 = \emptyset$ 。再根据**分离定理**,可得 $\inf\{px \mid x \in S_1\} \ge \sup\{px \mid x \in S_2\}$ 。因此存在一个非零向量 (ξ_0, μ) 和一个实数 α 满足

$$\xi_0(x-x^*) + \mu y \le \alpha, \ x \in E^n, \ y > f(x) - f(x^*),$$

 $\xi_0(x-x^*) + \mu y \ge \alpha, \ x \in S, \ y \le 0.$

3. 凸分析 - 凸函数最优条件(续二)

证明.(续前)

$$\xi_0^T(x-x^*) + \mu y \le \alpha, \ x \in E^n, \ y > f(x) - f(x^*),$$
 (i)

$$\xi_0^T(x - x^*) + \mu y \ge \alpha, \ x \in S, \quad y \le 0.$$
 (ii)

在 (ii) 中令 $x = x^*$, y = 0, 即得 $\alpha \le 0$ 。再在(i) 中令 $x = x^*$, 既有 $\mu \le 0$ 和 $\alpha \ge 0$ (因为 y 可取任意大或小)。因此有 $\alpha = 0$ 。

当 $\mu = 0$ 时,在 (i)中令 $x = x^* + \xi_0$,则有 $\xi_0^T (x - x^*) = ||\xi_0||^2 \le 0$ 。然而, $(\xi_0, \mu) \ne 0$,故有 $\mu < 0$ 。现用 $-\mu$ 同除 (i) 和 (ii),即得

$$\xi^{T}(x-x^{*}) \le y, \ x \in E^{n}, \ y > f(x) - f(x^{*}),$$
 (iii)

$$\xi^{T}(x-x^{*})-y\geq 0, \quad x\in S, \quad y\leq 0 \quad . \tag{iv}$$

在 (iv)式中,令 y = 0,即得 $\xi^T(x - x^*) \ge 0$ 。再根据 (iii)式,且令 $y \to f(x) - f(x^*)$,即得 $f(x) \ge f(x^*) + \xi^T(x - x^*)$ 。

3. 凸分析 - 凸函数最优条件(续三)

定理 10. 设函数 f(x): $S \rightarrow E^1$ 是一个凸函数,其中S是一个非空凸集。若 S 是开集,则 $x^* \in S$ 是求最小值问题 $\min\{f(x) \mid x \in S\}$ 的一个最优解当且仅当 f(x) 在 x^* 处 0 向量是其次梯度。

证明. (练习) 由定理 9 可知,对任意 $x \in S$ 都有 $\xi^T(x - x^*) \ge 0$ 。 令 $x = x^* - \lambda \xi \in S$,其中 $\lambda > 0$ 。则有

定理 11. 设函数 f(x): $S \rightarrow E^1$ 是一个凸函数,其中S是一个非空凸集。 若 f(x) 是可微的,则 $x^* \in S$ 是求最小值问题 $\min\{f(x)|x \in S\}$ 的一个最优解当且仅当,对所有 $x \in S$,都有 $\nabla f(x^*)(x-x^*) \geq 0$ 。而且,若 S 是开集,则 $x^* \in S$ 是一个最优解当且仅当 $\nabla f(x^*) = 0$ 。

3. 凸分析 - 凸函数最优条件 (续四)

下面我们考虑求定义在凸集上的凸函数的最大值问题。与求最小值问题不同,我们不能根据一个解的某些局部信息,找到一个更好的解。因此,求凸函数的最大值问题通常要比求凸函数的最小值问题困难得多。

定理 12. 设函数 f(x): $S \rightarrow E^1$ 是一个凸函数,其中S 是一个非空凸集。若 $x^* \in S$ 是求最大值问题 $\max\{f(x) \mid x \in S\}$ 的一个局部最优解,则对所有 $x \in S$, 都有 $\xi^T(x-x^*) \leq 0$,其中 ξ 是 f(x) 在点 x^* 处的任一次梯度。

证明. (练习) 当 $\lambda > 0$ 充分小时,有 $x^* + \lambda(x - x^*) \in S$,且有 $f(x^* + \lambda(x - x^*)) \leq f(x^*)$ 。对函数 f(x) 在点 x^* 处的任一次梯度 ξ ,都有 $f(x^* + \lambda(x - x^*)) - f(x^*) \geq \lambda \xi^T(x - x^*)$ 。因而

3. 凸分析 - 凸函数最优条件 (续五)

定理 13. 设函数 f(x): $S \rightarrow E^1$ 是一个可微的凸函数,其中 $S \subset E^n$ 是一个非空凸集。若 $x^* \in S$ 是求最大值问题 $\max\{f(x) \mid x \in S\}$ 的一个局部最优解,则对所有 $x \in S$,都有 $\nabla f(x^*)(x-x^*) \leq 0$ 。

定理 14. 设函数 f(x): $S \rightarrow E^1$ 是一个凸函数,其中 $S \subset E^n$ 是一个非空的紧的多面体。则求最大值问题 $\max\{f(x) \mid x \in S\}$ 存在一个最优解 x^* ,它是 S 的一个极点。

证明 (练习). 在定理的假设条件下, f(x)有一个最优解 $x^* \in S$ 。根据多面体的表示定理,我们有

$$x^* = \sum \lambda_i x_i, \ldots$$

3. 凸分析 - 凸函数的推广

Definition 6. Let f(x) be a function defined on a nonempty convex set S. It is called a **quasiconvex function** if for each pair of $x_1 \in S$, $x_2 \in S$, $f(\lambda x_1 + (1-\lambda)x_2) \le \max\{f(x_1), f(x_2)\}$ for each $\lambda \in (0, 1)$. The function f(x) is said to be **quasiconcave** if -f(x) is quasiconvex.

quasiconvex

quasiconcave

neither quasiconvex nor quasiconcave

3. 凸分析 - 凸函数的推广(续一)

Lemma 4. Let f(x) be a function defined on a nonempty convex set S in E^n . Then f(x) is quasiconvex if and only if for each real number α , $S_{\alpha} = \{x \in S \mid f(x) \leq \alpha\}$ is a convex set.

Proof. (Exercise). By definitions of convexity and quasiconvexity.

Theorem 15. Let f(x) be a quasiconvex function defined on a nonempty compact polyhedral set S in E^n . If f is continuous on S. Then there exists an optimal solution x^* to the problem of maximizing f(x) subject to $x \in S$ that is an extreme point of S.

Proof (Exercise). Under the assumptions, f(x) has a maximum at $x^* \in S$. By Representation Theorem, we have $x^* = \sum \lambda_i x_i$. By contradiction argument, consider $S_{\alpha} = \{x \in S \mid f(x) \leq \alpha\}$, where $\alpha = \max f(x_i)$

3. 凸分析 - 凸函数的推广(续二)

Definition 7. Let f(x) be a function defined on a nonempty convex set S. It is called a **strictly quasiconvex function** if for each pair of $x_1, x_2 \in S$ with $f(x_1) \neq f(x_2)$, $f(\lambda x_1 + (1 - \lambda)x_2) < \max\{f(x_1), f(x_2)\}$ for each $\lambda \in (0, 1)$. The f(x) is said to be **strictly quasiconcave** if -f(x) is strictly quasiconvex.

Strictly quasiconvex

Strictly quasiconvex

Quasiconvex but not strictly quasiconvex

3. 凸分析 - 凸函数的推广(续三)

Exercise. Every strictly convex function is a convex function. But some strictly quasiconvex functions are not quasiconvex. Here is a simple example: f(x)=1 if x=0, and f(x)=0 if $x\neq 0$.

Definition 8. Let f(x) be a function defined on a nonempty set S. It is called a **lower semicontinuous function** at $x^* \in S$ if for any $\varepsilon > 0$, there exists a $\delta > 0$ such that $x \in S$ and $||x - x^*|| < 0$ imply $f(x) - f(x^*) > -\varepsilon$. Similarly, f(x) is called a **upper semicontinuous function** at $x^* \in S$ if for each $\varepsilon > 0$, there exists a $\delta > 0$ such that $x \in S$ and $||x - x^*|| < 0$ imply $f(x) - f(x^*) < \varepsilon$.

Exercise**. (1) If f(x) is lower (upper) semicontinuous, then it achieves a minimum (maximum) over a nonempty compact set. (2) A continuous function is both lower and upper semicontinuous.

3. 凸分析 - 凸函数的推广(续四)

Lemma 3. Let f(x) be a strictly quasiconvex function defined on a nonempty convex set S in E^n . If f(x) is lower semicontinuous, then f(x) is quasiconvex.

Theorem 16. Let f(x) be a strictly quasiconvex function defined on a nonempty convex set S in E^n . If x^* is a local optimal solution to the problem of minimizing f(x) subject to $x \in S$, then it is also a global optimal solution.

Proof (Exercise). Suppose, by contradiction, that $f(x') < f(x^*)$. Since x^* is a local optimal solution, $f(x^*) \le f(\lambda x' + (1 - \lambda) x^*)$ for sufficiently small $\lambda > 0$, and f(x) is a strictly quasiconvex function, $f(\lambda x' + (1 - \lambda)x^*) < \max\{f(x'), f(x^*)\} = f(x^*)$.

3. 凸分析 - 凸函数的推广(续五)

Definition 9. Let f(x) be a function defined on a nonempty convex set S. It is called a **strongly quasiconvex function** if for each distinct $x_1, x_2 \in S$, $f(\lambda x_1 + (1 - \lambda)x_2) < \max\{f(x_1), f(x_2)\}$ for $\lambda \in (0, 1)$. The function f(x) is said to be **strongly quasiconcave** if -f(x) is strongly quasiconvex.

strictly and strong quasiconvex

strictly but not strong quasiconvex

3. 凸分析 - 凸函数的推广(续六)

Exercise* Prove the following three statements:

- (i) Every strictly convex function is strongly quasiconvex.
- (ii) Every strongly quasiconvex function is strictly quasiconvex.
- (iii) Every strongly quasiconvex function is quasiconvex.

Theorem 17. Let f(x) be a strongly quasiconvex function defined on a nonempty convex set S in E^n . If x^* is a local optimal solution to the problem of minimizing f(x) subject to $x \in S$, then it is the unique global optimal solution.

Proof (Exercise). Suppose, by contradiction, that $f(x') \le f(x^*)$ and $x' \ne x^*$. Since x^* is a local optimal solution, $f(x^*) \le f(\lambda x' + (1-\lambda)x^*)$ for sufficiently small $\lambda > 0$, and f is a strongly quasiconvex function, $f(\lambda x' + (1-\lambda)x^*) < \max\{f(x'), f(x^*)\} = f(x^*)$.

3. 凸分析 - 凸函数的推广(续七)

Definition 10. Let f(x) be a differentiable function defined on a nonempty open set S. It is called **pseudoconvex** if for each pair of $x_1 \in S$, $x_2 \in S$ with $\nabla f(x_1)(x_2 - x_1) \ge 0$, we have $f(x_2) \ge f(x_1)$. The function f(x) is said to be **pseudoconcave** if -f(x) is pseudoconvex.

pseudoconvex

not pseudoconvex but strictly quasiconvex

3. 凸分析 - 凸函数的推广(续八)

Exercise. Suppose that function f(x) is pseudoconvex. If $\nabla f(x^*)=0$, then x^* is a global minimum of f(x).

Theorem 18. Suppose that f(x) is a differentiable pseudoconvex function defined on a nonempty open convex set S in E^n . Then f(x) is both strictly quasiconvex and quasiconvex.

Definition 11. Let f(x) be a differentiable function defined on a nonempty open set S. It is called **strictly pseudoconvex** if for each distinct $x_1 \in S$, $x_2 \in S$ with $\nabla f(x_1)$ $(x_2 - x_1) \ge 0$, we have $f(x_2) > f(x_1)$.

Theorem 19. Suppose that f(x) is a differentiable strictly pseudoconvex function defined on a nonempty open convex set S in E^n . Then f(x) is strongly quasiconvex.

3. 凸分析 - 凸函数的推广(续九)

