Functions of Several variables

Section 14.1-14.3

Outline

- Functions of Several Variables
 - Graphs
 - Level Curves
- Limits and Continuity
- Partial Derivatives
 - Definition
 - Geometric Interpretation
 - Higher Derivatives and Clairaut's Theorem

Functions of Several Variables

Definition A function f of two variables is a rule that assigns to each ordered pair of real numbers (x, y) in a set D a unique real number denoted by f(x, y). The set D is the **domain** of f and its **range** is the set of values that f takes on, that is, $\{f(x, y) \mid (x, y) \in D\}$.

A function of n variables is a rule that assigns a number $z=f(x_1,x_2,\ldots,x_n)$ to an n-tuple of real numbers (x_1,x_2,\ldots,x_n) .

Domains of Multivariable Functions

Ex: Find the domain of
$$f(x, y) = \frac{y-x^2+1}{\ln(y-x)}$$

Functions of Several Variables: Graphs

Definition If f is a function of two variables with domain D, then the **graph** of f is the set of all points (x, y, z) in \mathbb{R}^3 such that z = f(x, y) and (x, y) is in D.

Just like the graph of f(x) is a curve C satisfying equation y=f(x), the graph of a function f of two variables is a surface S with equation z=f(x,y).

The graph of a function $f(x_1, x_2, ..., x_n)$ is a hyper surface S in R^{n+1} space satisfying the equation $x_{n+1} = f(x_1, x_2, ..., x_n)$.

Graphs of Multivariable Functions.

f(x)

f(x), (x)

graph of fix) is a	graph of timy) is a	graph of fix, xn) is a
$\frac{1}{a} \xrightarrow{b} x$	Z D y	

Functions of Several Variables: Graphs

Ex: Sketch the graph of f(x,y)= 2+x-2y.

Ex: Sketch the graph of $f(x,y) = x^2 + ay^2$, where $a \in \mathbb{R}$ is a constant.

Functions of Several Variables: Level Curves

- Definition: A **level curve** f(x,y) = k is the set of all points **in the domain of** f at which f takes on a given value k.
- The level curves f(x,y)=k are just the traces of the graph of f in the horizontal plane z=k projected down to the xy-plane.

Functions of Several Variables: Level Curves

Examples of level curves:

Functions of Several Variables: Level Curves

For functions of n variables, $f(x_1, x_2, \ldots, x_n)$, we can examine its level surface, which are the (hyper) surfaces satisfying equations $f(x_1, x_2, \ldots, x_n) = k$, where k is a constant.

Level Curves

Ex: Find level curves for $f(x,y) = x^2 + 2y^2$.

Sol:

Ex: Describe the level surfaces of
$$f(x,y,z) = x+2y-z$$

 $Sol:$

Ex: Find level surfaces of $f(x,y,z) = x^2-y^2+4z^2$.