11/09/2020 Relation – IN310

Relation

Une relation entre deux ensembles A et B est une loi qui associe à chaque élément de A zéro, un ou plusieurs éléments de B. Dans ce sens, c'est une généralisation du concept de Fonction.

Définition et notation

Formellement, une relation \mathcal{R} entre deux ensembles A et B est un sous-ensemble du produit cartésien $A \times B$. Pour des ensembles finis, une relation peut être représentée à l'aide de diagrammes de Venn en reliant les éléments en relation, comme dans la figure.

Si $\mathcal{R} \subset A \times B$ est une relation et si $a \in A$ et $b \in B$ sont deux éléments, on écrit $a\mathcal{R}b$ si a et b sont en relation, c'est à dire si $(a,b) \in \mathcal{R}$.

Lorsque pour tout $a \in A$ il existe *au plus* un $b \in B$ tel que $a\mathcal{R}b$, la relation correspond au graphe d'une fonction partielle; lorsque pour tout $a \in A$ il existe *exactement* un $b \in B$ tel que $a\mathcal{R}b$, la relation correspond au graphe d'une fonction (totale). Dans ce cas on dit que \mathcal{R} **est fonctionnelle** ou simplement qu'elle **est une fonction**.

Réciproque

La **réciproque** (parfois appelée **inverse**) d'une relation $\mathcal{R} \subset A \times B$ est la relation

$$\mathcal{R}^c = \{(b,a) \in B \times A \mid (a,b) \in \mathcal{R}\}.$$

Lorsque \mathcal{R} est le graphe d'une fonction, sa réciproque est le graphe de la fonction inverse.

Relations sur un ensemble

Une relation $\mathcal{R} \subset A \times A$ est aussi appelée une *relation sur A*. On classifie les relations sur un ensemble d'après leurs propriétés. Une relation $\mathcal{R} \subset A \times A$ est dite:

Réflexive

si pour tout $a \in A$ on a $a\mathcal{R}a$;

Symétrique

si pour tout $a, b \in A$ on a $a\mathcal{R}b \Leftrightarrow b\mathcal{R}a$;

Transitive

si pour tout $a,b,c\in A$ on a $(a\mathcal{R}b\wedge b\mathcal{R}c)\Rightarrow a\mathcal{R}c$;

Totale

si pour tout $a, b \in A$ on a $aRb \vee bRa$;

Asymétrique

si pour tout $a, b \in A$ on a $\neg(a\mathcal{R}b \land b\mathcal{R}a)$;

Antisymétrique

si pour tout $a,b\in A$ on a $(a\mathcal{R}b\wedge b\mathcal{R}a)\Rightarrow a=b$.

Une relation qui est à la fois réflexive, symétrique et transitive est appelée une Équivalence.

Une relation qui est à la fois réflexive, antisymétrique et transitive est appelée un Ordre (partiel); lorsque elle est aussi totale elle est appelée un ordre total.

Une relation qui est à la fois transitive et asymétrique est appelée un ordre strict.

defeo.lu/in310/poly/relation/

11/09/2020 Relation – IN310

Excercice: montrer qu'une relation transitive et non réflexive est nécessairement asymétrique.

Exemples

- La relation "est ami de" de Facebook est une relation symétrique.
- La relation d'égalité a=b (aussi dite *relation idéntité*) est refléxive, symétrique et transitive. Elle est le graphe de la fonction identité.
- La relation sur les naturels a|b (a divise b) est réflexive, transitive et antisymètrique, mais pas totale. Elle forme donc un ordre partiel.
- La relation sur les entiers a < b est transitive et asymétrique, elle forme donc un ordre strict.
- La relation sur les entiers $a \le b$ est un ordre total.
- La relation sur les entiers $a = b \mod n$ (i.e. le reste de la division Euclidienne de a et de b par n est le même) est une équivalence.
- ullet La relation $A\subset B$ sur les sous-ensembles d'un univers U est un ordre partiel.

Exercice: vérifier les propriétés susmentionnées.

2011-2020 Mélanie Boudard http://christina-boura.info/en/content/home, Luca De Feo http://creativecommons.org/licenses/by-sa/4.0/.

defeo.lu/in310/poly/relation/