ADB Sned 1 Sol.

· block harder · Sect time (to time (to read · Rotational Position head the block) brown delay (to on track) .btt = Breach block . Main delay CulPrit on track) . Often given as aug. ·tr is transfer rate = Ir + took · rd = 0.5 Truip on average

For K blocks:

- · different Places -> K(S+rd+btt) · Some Gulinder -> S+ K(rd+btt)
- . Consecutive blocks -> S+rd+K(btt)
 //logic

. Interblock gap

- Jep after each block (has Control info written during initial tation that helps identify blocks)
 - reading consecutive blocks use bulk transper rate (btr) rather than tr

 $b_{++} = \frac{B}{btr}$

- · double buffering
 - usually need to assume "it for reading constantive books
 - - . If that wasn't the Case then need to wait for CPU before transfering next block

13.23)

. Given disk where

B = 512 byks

G = 128 byte

track = 20 blocks

Surface = 400 tracks

disk Pack = 15 double-sided disks (30 surpages)

a) total orduseful caracity of trook

Track | = (512+128) x 20 = 12.8 KB

Trackluse = 512 x 20 = 10.24 KB

b) No. of Glinders = No. of tracks = 4∞

C) total and useful capacity of Glinder Cylindles. = $trackles \times 30 \text{ Kb} = 384 \text{ KB}$

Glindlussus = 10.24 x 30 Kb = 307.2 KB

d) total & useful Capacity of disk Pack

disk l_{tot} = Glindles. x # tracks

= 384 Kb x 400 = 153.6 MB

diskluser = Glindluser x# tracks = 122.88 MB
(307.2 Kb)

e) . disk rotates the disk Pack @ 2400 rPm

$$T_{R_{ii}} = \frac{1}{2400} \times (60\times1000) = 25 \text{ ms}$$

. Pind tr, btt, rd, btr

$$btt = \frac{B}{tr} = \frac{512}{512} = 1 \text{ ms}$$

$$btr = tr* (\frac{B}{B+G}) = 512*0.8 = 409.6$$
 by kins

F) given S=30 ms . Taxass to locale and transfer a single block

9) Find Taccess for transfer of

20 random blocks

20 Consecutive blocks (with double buff.)

.20x(S+rd+btt) = 870 ms

-30+12.5+20.512 -30+12.5+20.512 -409.6

 $=67.5 \, \text{ms}$

· a less accurate onswer would use blt=1

Selup

- . I is the no. of records
- . R 95 the record Site
- . blocking factor (bfr) is the no. of records. Per block $= \lfloor \frac{B}{R} \rfloor$ assuming unstained org i.e., no record on sen two blocks.
- . b is the no. of block's for the file = [F]
 (Stand or usend)
- · linear Search accesses by blocks on autiage (Stored Contiguously or not defends on 9° Pile is sorted)

 —> this assumes record will be fund & its Key attrib. of binary search accesses 1709267 blocks and records

a Sorted Pile.

13.24)

- · File has r= 20000 records of fixed length · Pieblo & their sizes are given (112 bytes Pora record)
- . an additional delete morker is used
- . Stored on disk from Previous Problem

a) record
$$Size$$
:
 $R = 112 + 1 = 113$ byte

b) bfr and b assuming an unstanded org.
$$bfr = L = L512/1131 = 4 \text{ records/brack}$$

- blocks are Sorted Consec.
 (+double buffer)
- · blocks Scattered over disk
- . In either Case, need 5000 block accesses

##Setup
· Uariable-length
U 2
- Some fields can have Wariable length assuming they all exist (not optional) then need
a Saferator of her each ubriable field to know it ended
(e.g. \$)
. Otherwise, can assign a type code for each field ond
Store record as a sequence of (type-cool, value) instead
of just (whee)
. In this case, we may need a marker to terminate the
recod
· Sparmed Ogenitation
- unspanned wastes B-(blr*B) bytes each
block
- Can make use of Such Stage by Storing Part of
the record there and the Other Part 9n the next block
(generally need a block Pointer in this case)
To a second which and the her
. If we use unstarned + which records then by
= $\frac{B^*}{R_{avg}}$. represents no. of records Stored on avg. $B^* = B - Ptr.$ bytes
Kang.
> b=[r] Still holds
13 75) 30 BK 9B 40B 9B 8B 4B 4B 4B 4B 3B 1B
13.25) 30 Byk 9B LOB 9B BB LB LB LB LB 3B LB None SSN Addr. Prov. Bdate Sex Harr Hing Coss Degree Const.
7 7 7
80x of the 85x. 15x. 90x.
time exists (Ubriable len)
-> each record has a 1 byte type Coods for
each field occurring and a 1 bykend of
record marker.
-> Starred Org. with 5-byte block Rinter
7 3 4 3 3 3 3 3 3 3 3 3

a) Calculate average record length R:

$$R_{avg} = ((30+1)+(9+1)+(40+1)+0.8*(9+1) + (8+1)+(1+1)+0.85*(4+1)+0.15(4+1) + (4+1)+0.9*(3+1)+1+1) + (4+1)+0.9*(3+1)+1+1)$$

$$del. \ \ end \ \ \ record$$

=\$6.6 byks · total Pile Sichun = Rr= 2332 Kb

b) no. of block's needed for file

$$bPr = \frac{B-5}{R} = \frac{512-5}{116.6} = 4.348$$
 (ecods/bbcK

-> Savings of 400 blocks Compared to last Problem

13.26)

- . DISK Un'It where
- · S=20 ms, id=10 ms, btt=1 ms
- · B = 2400 byte, G = 600 byte

- · r = 30x103 records
- . Pixed length, unsparmed blocking

$$R = (9 + 20 + 20 + 1 + 10 + 35 + 12 + 9 + 4 + 4 + 1)$$

= 125 byk

$$bR = \lfloor \frac{B}{R} \rfloor = \lfloor \frac{2400}{125} \rfloor = 19 \text{ feard/block}$$

 $b = \lceil \frac{r}{bR} \rceil = 1579 \text{ bboxs}$

b) wasked space in each disk block (due to unspansed)

$$wask = B - (bfr)xR = 2400 - 19x125$$

= 25 byks

c) tr, btr

$$tr = \frac{trackSig}{Teul}$$
 . We have but and $btt = \frac{B}{tr}$

$$tr = B = 2400 = 2400$$
 bytelms

$$btr = tr * \left(\frac{B}{B+G}\right) = 2\mu \infty * 2\mu \infty + 600 = 1920$$

$$2\mu \infty + 600 \quad by \text{ by elms}$$

d) aug. no. of blocks accessed for linear search

$$\frac{b}{2} = 789.5 \text{ blocks}$$
 $b = 1579 \text{ blocks}$

· Search on Key attr. that exists . Search on non-Key attr. or not Round e) time to search for an arbitrary file if the blocks are sorted consecutively— (+double buffering)

$$T = S + rd + b \left(\frac{B}{btr} \right)$$
 (assuming lase 1)
= 1.017 Sec

P) Scattered all over the disk

$$T = \frac{b}{2} (S + id + ble)$$
 (assuming ase 1)
= 24.475 Sec

9) Ordered Via a Key Field Find avg. na of block access and avg. time \rightarrow $\Gamma\log_215797$ block accesses

$$T = \Gamma \log_2 15797 (S + rd + btt) = 341 msec$$

13.27)

- . File with Part # as hash Key has records with the Pollowing Part numbers [2369.3760.4692, 4871, 5659, 1821, 1074, 7115, 1620, 2428, 3943, 4750, 6975, 4981, 9208]
- . Pile Uses 8 buckets (0-7)
- . each bucket is a disk block that holds 2.
- . Use $h(K) = K \mod 8$ to load the records into the file at the given order

