Vektorit

Juulia Lahdenperä ja Lotta Oinonen

 $5.~\mathrm{marraskuuta}~2015$

Sisältö

1	Vektor	i
	1.1	xy-koordinaatisto
	1.2	Vektorin muodostaminen
	1.3	Kahden pisteen välinen vektori
2	Vektor	ien laskutoimituksia
	2.1	Summa
	2.2	Vektorin kertominen reaaliluvulla
	2.3	Erotus
	2.4	Vektorin pituus
	2.5	Vektorien välinen kulma ja pistetulo

1 Vektori

1.1 xy-koordinaatisto

Kuvassa 1.1 on koordinaatisto, johon on piirretty x- ja y-akselit. Koordinaattiakselit jakavat tason neljään osaan. Osat nimetään yleensä järjestysnumeroilla I, II, III ja IV kuvan 1.1 mukaisesti. Koordinaattiakselien leikkauskohtaa kutsutaan $\mathbf{origoksi}$. Origoa merkitään yleensä kirjaimella O.

Kuva 1.1: Koordinaatiston neljännekset.

Tehtävä 1.1.1. Tutki alla olevaa kuvaa 1.2.

Kuva 1.2:

- (a) Kuinka monta askelta pitää siirtyä x-akselin suunnassa, jotta päästään origosta pisteeseen P?
- (b) Kuinka monta askelta pitää siirtyä y-akselin suunnassa, jotta päästään origosta pisteeseen P?

- (c) Kuinka monta askelta pitää siirtyä x-akselin suunnassa, jotta päästään origosta pisteeseen Q?
- (d) Kuinka monta askelta pitää siirtyä y-akselin suunnassa, jotta päästään origosta pisteeseen Q?

Tason piste ilmoitetaan lukuparina (x, y), missä ensimmäinen luku x ilmoittaa x-akselin suuntaisten ja toinen luku y ilmoittaa y-akselin suuntaisten askelten lukumäärän. Näitä lukuja kutsutaan **pisteen koordinaateiksi**. Kuvan 1.2 pisteeseen S päästään siirtymällä origosta kolme askelta x-akselin suuntaan ja kaksi askelta y-akselin suuntaan. Näin ollen pistettä S merkitään S = (3,2). Koordinaattien avulla kaikki tason pisteet voidaan määrittää yksikäsitteisesti.

Tehtävä 1.1.2. Valitse jokaiselta koordinaatiston neljänneksellä jokin piste ja ilmoita sen koordinaatit. Miten eri neljännekset vaikuttavat x- ja y-koordinaattien koordinaattien etumerkkeihin?

Tehtävä 1.1.3. ...

- (a) Piirrä koordinaatisto ja merkitse siihen pisteet (1,2), (1,-4) ja (1,3).
- (b) Merkitse piirtämääsi koordinaatistoon kolme uutta pistettä, jotka ovat muotoa (1, y) jollakin kokonaisluvulla y.
- (c) Merkitse piirtämääsi koordinaatistoon kaikki sellaiset tason pisteet, jotka ovat muotoa (1, y) jollakin kokonaisluvulla y.

Tehtävä 1.1.4. ...

- (a) Piirrä koordinaatisto ja merkitse siihen pisteet (2,2), (3,3) ja (-2,-2).
- (b) Merkitse piirtämääsi koordinaatistoon kolme uutta pistettä, jotka ovat muotoa (x, x) jollakin reaaliluvulla x.
- (c) Merkitse piirtämääsi koordinaatistoon kaikki sellaiset tason pisteet, jotka ovat muotoa (x, x) jollakin reaaliluvulla x.

Tehtävä 1.1.5. Piirrä koordinaatisto ja merkitse siihen kaikki sellaiset tason pisteet, jotka ovat muotoa (x, 2/3) jollakin raaliluvulla x.

1.2 Vektorin muodostaminen

Tarkastellaan seuraavaksi kuvaa 1.3. Kuvassa on nuolet \bar{u}, \bar{v} ja \bar{w} , yhden x-akselin suuntaisen askeleen pituinen nuoli $\bar{\imath}$, sekä yhden y-akselin suuntaisen askeleen pituinen nuoli $\bar{\jmath}$.

Kuva 1.3: ...

Huomataan, että nuolen \bar{u} päästä on sen kärkeen kaksi x-akselin suuntaista askelta negatiiviseen suuntaan ja neljä y-akselin suuntaista askelta positiiviseen suuntaan. Tällainen nuoli \bar{u} voidaan ilmoittaa nuolien $\bar{\imath}$ ja $\bar{\jmath}$ avulla muodossa $\bar{u}=-2\bar{\imath}+4\bar{\jmath}$.

Tehtävä 1.2.1. Ilmoita kuvassa 1.3 oleva nuoli \bar{v} nuolien $\bar{\imath}$ ja $\bar{\jmath}$ avulla.

Koordinaatistossa olevia nuolia kutsutaan **vektoreiksi**. Edellisen kuvan nuoli \bar{v} on siis vektori \bar{v} , joka voidaan ilmaista vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla. Vektorit $\bar{\imath}$ ja $\bar{\jmath}$ ovat erityisiä, sillä ne ovat koordinaattiakselien suuntaisia ja yhden askeleen pituisia. Niiden avulla voidaan ilmaista kaikki mahdolliset xy-koordinaatiston vektorit.

Tehtävä 1.2.2. Tarkastellaan seuraavaa kuvaa 1.4.

Kuva 1.4: Vektoreita

Ilmoita kaikki kuvassa olevat vektorit vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla. Mitä huomaat?

Määritelmä 1.2.3. Kaksi vektoria ovat samat, jos ne voidaan esittää samalla tavalla vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla.

Samat vektorit

Vektorien samuus tarkoittaa siis sitä, että ne ovat saman pituisia ja osoittavat samaan suuntaan – niiden paikalla koordinaatistossa ei ole merkitystä.

Tehtävä 1.2.4. Tarkastellaan edelleen kuvaa 1.4. Vertaa origosta lähtevän vektorin komponenttiesitystä sen kärkipisteen koordinaatteihin. Mitä huomaat?

Paikkavektori

Määritelmä 1.2.5. Vektori, joka lähtee origosta ja jonka kärki on pisteessä P, on pisteen P paikkavektori.

Kuvassa 1.5 oleva vektori $\bar{v} = 4\bar{\imath} + 3\bar{\jmath}$ on siis pisteen (4,3) paikkavektori.

Kuva 1.5: Pisteen (4,3) paikkavektori \bar{v} .

Tehtävä 1.2.6. Ilmoita kuvan 1.5 vektori \bar{w} vektorien \bar{i} ja \bar{j} avulla. Minkä pisteen paikkavektori se on?

Tehtävä 1.2.7. Piirrä vektorit $\bar{\imath}$ ja $\bar{\jmath}$ koordinaatistoon siten, että ne lähtevät origosta.

- (a) Minkä pisteiden paikkavektoreita ne ovat?
- (b) Mieti, miksi kaikki tason vektorit on mahdollista ilmaista vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla.

1.3 Kahden pisteen välinen vektori

Tehtävä 1.3.1. ...

- (a) Piirrä kaksi pistettä koordinaatiston ensimmäiselle neljännekselle. Merkitse pisteiden koordinaatit.
- (b) Piirrä pisteiden väliin vektori \bar{v} .

(c) Ilmoita vektori \bar{v} vektorien \bar{i} ja \bar{j} avulla.

Tehtävä 1.3.2. ...

- (a) Piirrä kaksi pistettä koordinaatiston toiselle, kolmannelle tai neljännelle neljännekselle. Merkitse pisteiden koordinaatit.
- (b) Piirrä pisteiden väliin vektori \bar{v} .
- (c) Ilmoita vektori \bar{v} vektorien \bar{i} ja \bar{j} avulla.

Vektoria pisteestä A pisteeseen B kulkevaa vektoria merkitään \overline{AB} , ja pisteestä B pisteeseen A kulkevaa vektoria merkitään \overline{BA} .

Kuva 1.6: Kahden pisteen väliset vektorit.

Tehtävä 1.3.3. ...

- (a) Piirrä koordinaatistoon pisteet A ja B. Merkitse niiden koordinaatit.
- (b) Ilmoita vektori \overline{AB} vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla.
- (c) Ilmoita vektori \overline{BA} vektorien $\overline{\imath}$ ja $\overline{\jmath}$ avulla.
- (d) Vertaa b- ja c-kohdan tuloksia. Mitä huomaat?

Vektorit \overline{AB} ja \overline{BA} ovat eri vektorit, sillä niitä ei voida esittää samalla tavalla vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla. Vektorien suunnalla on siis merkitystä. Vektorien suuntiin palataan kappaleessa 2.2.

2 Vektorien laskutoimituksia

Edellisessä kappaleessa opittiin muodostamaan vektoreita x- ja y-akselien suuntaisten yhden askeleen pituisten vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla. Esimerkiksi kuvan 2.1 vektori \bar{v} saadaan laskemalla yhteen vektorit $2\bar{\imath}$ ja $4\bar{\jmath}$.

Kuva 2.1: Vektori $\bar{v} = 2\bar{\imath} + 4\bar{\jmath}$.

Vektoreita $\bar{\imath}$ ja $\bar{\jmath}$ sanotaan komponenttivektoreiksi, ja summattavia $2\bar{\imath}$ ja $4\bar{\jmath}$ vektorin \bar{v} komponenteiksi. Vektorin komponenttiesityksellä tarkoitetaan vektorin esittämistä vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla.

Vektorin komponenttiesitys

Määritelmä 2.0.4. Vektorin ilmaisemista komponenttivektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla sanotaan vektorin komponenttiesitykseksi.

Seuraavaksi tutkitaan, miten lasketaan yhteen mitä tahansa vektoreita.

2.1 Summa

Tarkastellaan seuraavan kuvan 2.2 vektoreita $\bar{v} = \bar{\imath} + 2\bar{\jmath}$ ja $\bar{w} = 2\bar{\imath} - 3\bar{\jmath}$. Niiden summa $\bar{v} + \bar{w}$ saadaan laskemalla vektorit komponenteittain yhteen:

$$\bar{v} + \bar{w} = (\bar{\imath} + 2\bar{\jmath}) + (2\bar{\imath} - 3\bar{\jmath})$$

$$= \bar{\imath} + 2\bar{\jmath} + 2\bar{\imath} - 3\bar{\jmath}$$

$$= \bar{\imath} + 2\bar{\imath} + 2\bar{\jmath} - 3\bar{\jmath}$$

$$= 3\bar{\imath} - \bar{\jmath}.$$

Kuva 2.2: Vektorit \bar{v} , \bar{w} ja $\bar{v} + \bar{w}$.

Määritelmä 2.1.1. Vektorien \bar{v} ja \bar{w} summavektori $\bar{v} + \bar{w}$ saadaan laskemalla vektorit komponenteittain yhteen.

Summavektori

Vektorien $\bar{v}=x_1\bar{\imath}+y_1\bar{\jmath}$ ja $\bar{w}=x_2\bar{\imath}+y_2\bar{\jmath}$ summavektori on siis vektori

$$\bar{v} + \bar{w} = (x_1 + x_2)\bar{\imath} + (y_1 + y_2)\bar{\jmath}.$$

Tehtävä 2.1.2. Tutkitaan vektoreita $\bar{v} = 2i + 2j$ ja $\bar{w} = i + 3j$.

- (a) Piirrä vektori \bar{v} koordinaatistoon.
- (b) Piirrä vektori \bar{w} koordinaatistoon siten, että se alkaa vektorin \bar{v} kärkipisteestä.
- (c) Laske summavektori $\bar{v} + \bar{w}$, eli ilmoita se vektorien \bar{i} ja \bar{j} avulla.
- (d) Piirrä vektori $\bar{v} + \bar{w}$ koordinaatistoon siten, että se alkaa vektorin \bar{v} alkupisteestä. Mitä huomaat?

Edellisen tehtävän havaintosi pätee yleisesti: vektorien \bar{v} ja \bar{w} summa on vektori $\bar{v}+\bar{w}$, joka alkaa vektorin \bar{v} alkupisteestä ja päättyy vektorin \bar{w} kärkipisteeseen. Esimerkiksi kuvan 2.3 vektorien $\bar{a}=3\bar{\imath}+5\bar{\jmath}$ ja $\bar{b}=4\bar{\imath}-2\bar{\jmath}$ summa on

$$\bar{a} + \bar{b} = (3\bar{\imath} + 5\bar{\jmath}) + (4\bar{\imath} - 2\bar{\jmath})$$

$$= (3+4)\bar{\imath} + (5+(-2))\bar{\jmath}$$

$$= 7\bar{\imath} + 3\bar{\jmath}$$

$$= \bar{c}.$$

Kuva 2.3: Vektorien \bar{a} ja \bar{b} summa on vektori \bar{c} .

Tehtävä 2.1.3. Tutkitaan vektoreita $\bar{v} = -2i + j$ ja $\bar{w} = 4i + 4j$.

- (a) Piirrä summavektori $\bar{v}+\bar{w}$ koordinaatistoon vektorien \bar{v} ja \bar{w} avulla.
- (b) Ilmoita vektori $\bar{v} + \bar{w}$ vektorien \bar{i} ja \bar{j} avulla.
- (c) Tarkista tuloksesi laskemalla yhteen vektorit \bar{v} ja \bar{w} komponenteittain.

Tehtävä 2.1.4. Tutkitaan vektoreita $\bar{u} = i + 2\bar{\jmath}, \ \bar{v} = -3i + j$ ja $\bar{w} = 3i + -5j$.

- (a) Piirrä vektori $\bar{u} + \bar{v} + \bar{w}$ koordinaatistoon vektorien \bar{u}, \bar{v} ja \bar{w} avulla.
- (b) Piirrä vektori $\bar{v} + \bar{u} + \bar{w}$ koordinaatistoon vektorien \bar{u}, \bar{v} ja \bar{w} avulla.
- (c) Piirrä vektori $\bar{w} + \bar{u} + \bar{v}$ koordinaatistoon vektorien \bar{u}, \bar{v} ja \bar{w} avulla.
- (d) Mitä huomaat?

Edellisen tehtävän tulos tarkoittaa sitä, että vektorien yhteenlaskun järjestyksellä ei ole merkitystä. Vektorien yhteenlasku on siis **vaihdannainen** operaatio. Tämä näkyy selvästi kuvasta 2.4: vektori $4\bar{\jmath} + 2\bar{\imath}$ on sama kuin vektori $2\bar{\imath} + 4\bar{\jmath}$.

Kuva 2.4: Vektori
$$\bar{v} = 2\bar{\imath} + 4\bar{\jmath} = 4\bar{\jmath} + 2\bar{\imath}$$
.

2.2 Vektorin kertominen reaaliluvulla

Tarkastellaan seuraavaa kuvaa 2.5. Kuvassa oleva vektori \bar{a} voidaan ilmaista vektorin $\bar{\jmath}$ avulla muodossa $5\bar{\jmath}$. Vektori \bar{a} saadaan siis kertomalla vektoria $\bar{\jmath}$ luvulla 5.

Kuva 2.5: Vektori $\bar{a} = 5\bar{\jmath}$.

Tehtävä 2.2.1. ...

- (a) Piirrä koordinaatistoon vektorit $\bar{a} = \bar{\imath} + \bar{\jmath}$ ja $3\bar{a}$.
- (b) Ilmoita vektori $3\bar{a}$ vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla.
- (c) Vertaa vektorien \bar{a} ja $3\bar{a}$ komponenttiesityksiä toisiinsa. Mitä huomaat?

Edellisessä tehtävässä havaittiin, että MITÄ HUOMATTIIN?. Kun esimerkiksi vektoria $\bar{v}=-4\bar{\imath}+3\bar{\jmath}$ kerrotaan luvulla 2, saadaan vektori

$$2\overline{v} = 2 \cdot (-4\overline{\imath} + 3\overline{\jmath})$$

$$= 2 \cdot (-4)\overline{\imath} + 2 \cdot 3\overline{\jmath}$$

$$= -8\overline{\imath} + 6\overline{\jmath}.$$

Kuva 2.6: Vektorin $\bar{v} = -4\bar{\imath} + 3\bar{\jmath}$ kertominen luvulla 2.

Vektorin kertominen reaaliluvulla

Määritelmä 2.2.2. Vektorin \bar{v} skalaarimonikerta $r\bar{v}$ saadaan kertomalla vektorin \bar{v} komponentit reaaliluvulla r.

Kun vektoria $\bar{v} = x\bar{\imath} + y\bar{\jmath}$ kerrotaan reaaliluvulla r, saadaan siis vektori

$$r\bar{v} = r(x\bar{\imath} + y\bar{\jmath}) = (rx)\bar{\imath} + (ry)\bar{\jmath}.$$

Tehtävä 2.2.3. Tutkitaan vektoria $\bar{a} = -\bar{\imath} + 2\bar{\jmath}$.

- (a) Piirrä vektorit $2\bar{a}$, $3\bar{a}$ ja $5\bar{a}$ koordinaatistoon vektorin \bar{a} avulla.
- (b) Ilmoita vektorit $2\bar{a}$, $3\bar{a}$ ja $5\bar{a}$ vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla.
- (c) Tarkista tuloksesi kertomalla vektoria \bar{v} komponenteittain.

Tehtävä 2.2.4. ...

- (a) Piirrä koordinaatistoon vektorit $\bar{a} = \bar{\imath} + 2\bar{\jmath}$ ja $\bar{b} = 2\bar{\imath} + 4\bar{\jmath}$.
- (b) Miten voisit ilmaista vektorin \bar{b} vektorin \bar{a} avulla?

Tehtävä 2.2.5. Tutkitaan vektoria $\bar{a} = -3\bar{\imath} + 2\bar{\jmath}$.

- (a) Piirrä vektori \bar{a} koordinaatistoon.
- (b) Laske vektorin $-1 \cdot \bar{a}$ komponenttiesitys ja piirrä se koordinaatistoon.
- (c) Vertaa piirtämiäsi vektoreita sekä niiden komponenttiesityksiä keskenään. Mitä huomaat?

Vastavektorit

Määritelmä 2.2.6. Vektori $-1\cdot \bar{v}$ on vektorin \bar{v} vastavektori, ja sitä merkitään $-\bar{v}.$

Kuva 2.7: Vektori \bar{v} ja sen vastavektori $-\bar{v}$.

Tehtävä 2.2.7. Tarkastellaan alla olevaa kuvaa 2.8.

Kuva 2.8: Vektoreita

- (a) Ilmoita kaikki kuvan vektori
t vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla.
- (b) Mitkä vektoreista ovat toistensa vastavektoreita?

Tutkitaan seuraavaksi vektorien suuntia. Esimerkiksi kuvasta 2.6 huomataan, että vektori $2\bar{v}$ kulkee samaan suuntaan vektorin \bar{v} kanssa. Nämä vektorit ovat siis samansuuntaisia. Lisäksi kuvasta 2.7 huomataan, että vektori $-\bar{a}$ kulkee vastakkaiseen suuntaan kuin vektori \bar{a} . Tällaisia vektoreita kutsutaan vastakkaissuuntaisiksi vektoreiksi.

Tehtävä 2.2.8. ...

- (a) Millaisella luvulla vektoria tulee kertoa, jotta sen suunta muuttuu vastakkaiseksi?
- (b) Millaisella luvulla kertominen säilyttää vektorin suunnan?

Yhdensuuntaisuus

Määritelmä 2.2.9. Vektorit \bar{v} ja \bar{w} ovat yhdensuuntaiset, jos $\bar{v}=r\bar{w}$ jollakin reaaliluvulla r.

Toisin sanoen vektorit ovat yhdensuuntaiset, jos ne ovat joko saman- tai vastakkaisuuntaiset.

Tehtävä 2.2.10. Tarkastellaan alla olevaa kuvaa 2.9

Kuva 2.9: Vektoreita.

- (a) Mitkä kuvan vektoreista ovat samansuuntaisia?
- (b) Mitkä kuvan vektoreista ovat vastakkaissuuntaisia?
- (c) Mitkä kuvan vektoreista ei ole yhdensuuntainen minkään muun kuvan vektorin kanssa?

Tehtävä 2.2.11. Tutkitaan vektoreita $\bar{a}=2\bar{\imath}+3\bar{\jmath},\,\bar{b}=-3\bar{\imath}+\bar{\jmath}$ ja $\bar{c}=\bar{\imath}-4\bar{\jmath}.$

(a) Piirrä koordinaatistoon vektori $\bar{a} + \bar{b} + \bar{c}$.

(b) Mitä huomaat?

Vektoria, joka alkaa ja päättyy samaan pisteeseen, sanotaan **nollavektoriksi**. Sen komponenttiesitys on muotoa $0 \cdot \bar{\imath} + 0 \cdot \bar{\jmath}$. Jos mitä tahansa vektoria $\bar{v} = x\bar{\imath} + y\bar{\jmath}$ kerrotaan luvulla nolla, saadaan nollavektori, sillä

$$0 \cdot \bar{v} = 0 \cdot (x\bar{\imath} + y\bar{\jmath})$$

$$= (0 \cdot x)\bar{\imath} + (0 \cdot y)\bar{\jmath}$$

$$= 0 \cdot \bar{\imath} + 0 \cdot \bar{\jmath}$$

$$= \bar{0}.$$

Määritelmä 2.2.12. Vektoria $0 \cdot \bar{\imath} + 0 \cdot \bar{\jmath} = \bar{0}$ sanotaan nollavektoriksi.

Nollavektori

2.3 Erotus

Tehtävä 2.3.1. Tutkitaan vektoreita $\bar{v} = -2\bar{\imath} + 3\bar{\jmath}$ ja $\bar{w} = 2\bar{\imath} - 3\bar{\jmath}$.

- (a) Määritä summavektori $\bar{v}+\bar{w}$ laskemalla yhteen vektorit \bar{v} ja \bar{w} komponenteittain.
- (b) Piirrä vektori $\bar{v} + \bar{w}$ koordinaatistoon vektorien \bar{v} ja \bar{w} avulla.

Edellisen tehtävän vektorit \bar{v} ja \bar{w} ovat toistensa vastavektoreita. Näin ollen voidaan merkitä $\bar{w} = -\bar{v}$, ja summavektori $\bar{v} + \bar{w}$ saadaan muotoon $\bar{v} + \bar{w} = \bar{v} + (-\bar{v}) = \bar{v} - \bar{v} = \bar{0}$. Tämä pätee kaikille vektoreille: vektori $\bar{v} + (-\bar{w}) = \bar{v} - \bar{w}$. Vektorien \bar{v} ja \bar{w} erotusvektori $\bar{v} - \bar{w}$ saadaan siis lisäämällä vektoriin \bar{v} vektorin \bar{w} vastavektori. Vektoreiden erotusta havainnollistetaan kuvassa 2.10.

Kuva 2.10: Vektorit $\bar{v} + \bar{w}$ ja $\bar{v} - \bar{w}$.

Erotusvektori

Määritelmä 2.3.2. Vektorien \bar{v} ja \bar{w} erotusvektori $\bar{v} - \bar{w}$ saadaan lisäämällä vektoriin \bar{v} vektorin \bar{w} vastavektori $-\bar{w}$, eli $\bar{v} - \bar{w} = \bar{v} + (-\bar{w})$.

Vektorien $\bar{v} = x_1\bar{\imath} + y_1\bar{\jmath}$ ja $\bar{w} = x_2\bar{\imath} + y_2\bar{\jmath}$ erotusvektori on siis vektori

$$\bar{v} - \bar{w} = (x_1 - x_2)\bar{\imath} + (y_1 - y_2)\bar{\jmath}.$$

Tehtävä 2.3.3. Tutkitaan vektoreita $\bar{a} = -3\bar{\imath} + 4\bar{\jmath}$ ja $\bar{b} = 5\bar{\imath} + 2\bar{\jmath}$.

- (a) Määritä vektorin \bar{b} vastavektori $-\bar{b}$.
- (b) Piirrä vektori $\bar{a} \bar{b}$ koordinaatistoon vektorien \bar{a} ja $-\bar{b}$ avulla.
- (c) Ilmoita vektori $\bar{a} \bar{b}$ vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla.
- (d) Tarkista tuloksesi laskemalla yhteen vektorit \bar{a} ja $-\bar{b}$ komponenteittain.

2.4 Vektorin pituus

Vektorin pituus saadaan laskettua Pythagoraan lauseen avulla. Esimerkiksi kuvan 2.11 vektorin $\bar{a} = -2\bar{\imath} + 3\bar{\jmath}$ pituus saadaan yhtälöstä

$$|\bar{a}|^2 = 2^2 + 3^2.$$

Vektorin \bar{a} pituudeksi saadaan siis

$$|\bar{a}| = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13}.$$

Kuva 2.11: Vektori \bar{a} .

Vektorin pituus

Määritelmä 2.4.1. Vektorin $\bar{v} = x\bar{\imath} + y\bar{\jmath}$ pituus $|\bar{a}|$ saadaan yhtälöstä

$$|\bar{a}| = \sqrt{|x|^2 + |y|^2}.$$

Huomaa, että merkintä $|\bar{a}|$ tarkoittaa vektorin \bar{a} pituutta, kun taas merkinnällä |x| tarkoitetaan luvun x itseisarvoa.

Tehtävä 2.4.2. Tutkitaan vektoria $\bar{b} = 3\bar{\imath} - 4\bar{\jmath}$.

- (a) Piirrä vektori \bar{b} koordinaatistoon.
- (b) Laske vektorin \bar{b} pituus $|\bar{b}|$ Pythagoraan lauseen avulla.
- (c) Kuinka moneen osaan vektori \bar{b} pitäisi jakaa, jotta yhden osan pituus olisi 1?

Tehtävä 2.4.3. Tutkitaan vektoria $\bar{v} = 6\bar{\imath} + 3\bar{\jmath}$.

- (a) Muodosta vektorit $5\bar{v}$, $-2\bar{v}$ ja $1/3\bar{v}$.
- (b) Laske vektorien \bar{v} , $5\bar{v}$, $-2\bar{v}$ ja $1/3\bar{v}$ pituudet.
- (c) Vertaa vektorien \bar{v} ja $5\bar{v}$ pituuksia toisiinsa. Mitä huomaat?

Tarkastellaan kuvassa 2.12 olevien vektorien $\bar{a} = 2\bar{\imath} + \bar{\jmath}$ ja $4\bar{a} = 4(2\bar{\imath} + \bar{\jmath}) = 8\bar{\imath} + 4\bar{\jmath}$ pituuksia. Huomataan, että vektorin \bar{a} pituus on

$$|\bar{a}| = \sqrt{2^2 + 1^2} = \sqrt{4 + 1} = \sqrt{5}$$

ja vektorin $4\bar{a}$ pituus on

$$|4\bar{a}| = \sqrt{8^2 + 4^2} = \sqrt{64 + 16} = \sqrt{80} = \sqrt{16 \cdot 5} = 4\sqrt{5} = 4 \cdot |\bar{a}|.$$

Kuva 2.12: Vektorit \bar{a} ja $4\bar{a}$.

Tämä pätee kaikille vektoreille. Vektorin $t\bar{v}$ pituus $|t\bar{v}|$ saadaan siis kertomalla vektorin \bar{v} pituutta luvulla t. Näin ollen $|t\bar{v}| = t \cdot |\bar{v}|$.

Tehtävä 2.4.4. Millaisella luvulla vektoria tulee kertoa, jotta sen pituus kasvaa? Entä lyhenee?

Tehtävä 2.4.5. Laske vektorien $\bar{\imath}$ ja $\bar{\jmath}$ pituudet.

Yksikkövektori

Määritelmä 2.4.6. Vektoria, jonka pituus on 1, sanotaan yksikkövektoriksi.

Komponenttivektorit $\bar{\imath}$ ja $\bar{\jmath}$ ovat siis yksikkövektoreita.

Tarkastellaan sitten kuvassa 2.4 olevaa vektoria $\bar{v} = 8\bar{\imath} + 6\bar{\jmath}$. Sen pituudeksi saadaan $|\bar{v}| = \sqrt{8^2 + 6^2} = \sqrt{100} = 10$. Vektorin \bar{v} kanssa samansuuntainen yksikkövektori saadaan ottamalla siitä kymmenesosa, eli

$$\frac{1}{10}\bar{v} = \frac{1}{10}(8\bar{\imath} + 6\bar{\jmath}) = 0.8\bar{\imath} + 0.6\bar{\jmath}$$

Kuva 2.13: Vektorin \bar{v} ja sen kanssa samansuuntainen yksikkövektori.

Tehtävä 2.4.7. Jatkoa tehtävään 2.4.2. Tutkitaan edelleen vektoria $\bar{b} = 3\bar{\imath} - 4\bar{\jmath}$.

- (a) Määritä vektorin \bar{b} kanssa samansuuntainen yksikkövektori eli vektori, joka pituus on 1. Piirrä se koordinaatistoon.
- (b) Määritä vektorin \bar{b} kanssa samansuuntainen vektori, jonka pituus on 10. Piirrä se koordinaatistoon.
- (c) Määritä vektorin \bar{b} kanssa vastakkaissuuntainen yksikkövektori. Piirrä se koordinaatistoon.

Teoreema 2.4.8. Kaksi vektoria ovat samat, jos ne ovat saman suuntaiset ja yhtä pitkät.

Todistus. Määritelmän 1.2.3 mukaan vektorit ovat samat, jos ne voidaan esittää samalla tavalla vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla. Jos vektorit voidaan esittää samalla tavalla vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla, ne ovat välttämättä saman suuntaiset ja yhtä pitkät. Jos vektorit ovat saman suuntaiset ja yhtä pitkät, ne voidaan ilmaista samalla tavalla vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla, jolloin ne määritelmän mukaan ovat samat vektorit.

2.5 Vektorien välinen kulma ja pistetulo

Vektorien välisiä kulmia voidaan tarkastella, kun vektorien lähtöpisteet ovat samat. Vektorien välisellä kulmalla tarkoitetaan muodostuvista kulmista pienempää. Esimerkiksi kuvan 2.14 vektorien \bar{v} ja \bar{w} välisellä kulmalla tarkoitetaan kulmaa α .

Kuva 2.14: Vektorien \bar{v} ja \bar{w} välinen kulma α .

Tehtävä 2.5.1. ...

- (a) Kuinka suuri on vektorien \bar{v} ja $3\bar{v}$ välinen kulma?
- (b) Päteekö a-kohdan tulos kaikille samansuuntaisille vektoreille?
- (c) Kuinka suuri on vektorien \bar{v} ja $-\bar{v}$ välinen kulma?
- (d) Päteekö c-kohdan tulos kaikille vastakkaissuuntaisille vektoreille?

Tarkastellaan seuraavaksi vektorien **pistetuloa**. Pistetulon avulla voidaan laskea vektorien välisiä kulmia. Esimerkiksi vektorien $\bar{v}=-2\bar{\imath}+4\bar{\jmath}$ ja $\bar{w}=3\bar{\imath}-\bar{\jmath}$ pistetulo on

$$\bar{v} \cdot \bar{w} = (-2\bar{\imath} + 4\bar{\jmath}) \cdot (3\bar{\imath} - \bar{\jmath}) = (-2) \cdot 3 + 4 \cdot (-1) = -6 - 4 = -10.$$

Määritelmä 2.5.2. Vektorien välinen pistetulo saadaan laskemalla yhteen vektorien $\bar{\imath}$ ja $\bar{\jmath}$ kertoimien tulot.

Pistetulo

Vektorien $\bar{v} = x_1\bar{\imath} + y_1\bar{\jmath}$ ja $\bar{w} = x_2\bar{\imath} + y_2\bar{\jmath}$ pistetulo on siis $\bar{v} \cdot \bar{w} = x_1x_2 + y_1y_2$.

Huomaa, että merkintä $\bar{v} \cdot \bar{w}$ tarkoittaa vektorien \bar{v} ja \bar{w} pistetuloa, kun taas merkintä 3.5 tarkoittaa lukujen 3 ja 5 tuloa. Vektorien pistetulo on aina reaaliluku, joten sitä kutsutaan joskus myös **skalaarituloksi**.

Tehtävä 2.5.3. Tarkastellaan vektoreita $\bar{a} = 7\bar{\imath} + 2\bar{\jmath}, \ \bar{b} = 3\bar{\imath} - 5\bar{\jmath}$ ja $\bar{c} = -4\bar{\imath} - 6\bar{\jmath}$.

- (a) Laske vektoreiden \bar{a} ja \bar{b} välinen pistetulo $\bar{a} \cdot \bar{b}$.
- (b) Laske vektoreiden \bar{a} ja \bar{c} välinen pistetulo $\bar{a} \cdot \bar{c}$.
- (c) Laske vektoreiden \bar{b} ja \bar{c} välinen pistetulo $\bar{a} \cdot \bar{b}$.

Tehtävä 2.5.4. Tarkastellaan vektoreita $\bar{a} = -2\bar{\imath} + 3\bar{\jmath}$ ja $\bar{b} = 6\bar{\imath} + 4\bar{\jmath}$.

- (a) Laske vektoreiden \bar{a} ja \bar{b} välinen pistetulo $\bar{a} \cdot \bar{b}$.
- (b) Piirrä vektorit \bar{a} ja \bar{b} koordinaatistoon siten, että niillä on sama lähtöpiste.
- (c) Mitä huomaat vektorien välisestä kulmasta?

Teoreema 2.5.5. Vektorit \bar{a} ja \bar{b} ovat toisiaan vastaan kohtisuorassa, jos ja vain jos $\bar{a} \cdot \bar{b} = 0$.

Todistus. ...

Tehtävä 2.5.6. Tutkitaan vektoreita ...

- (a) Laske pistetulot ...
- (b) Mitkä vektoreista ovat kohtisuorassa toisiaan vasten?
- (c) Tarkista edellisen kohdan vastauksesi tarkastelemalla vektorien välisiä kulmia koordinaatistossa.

Tehtävä 2.5.7. Tutkitaan vektoreita $\bar{a} = -2\bar{\imath} + 3\bar{\jmath}$ ja $\bar{b} = t\bar{\imath} + 3\bar{\jmath}$, missä t on jokin reaaliluku.

- (a) Muodosta vektorien \bar{a} ja \bar{b} välisen pistetulon $\bar{a} \cdot \bar{b}$ yhtälö.
- (b) Millä muuttujan t arvolla vektorit \bar{a} ja \bar{b} ovat kohtisuorassa toisiaan vasten?

TÄHÄN TEHTÄVÄ, JOSSA TARVITAAN PISTETULON LASKUSÄÄNTÖJÄ. KTS. ESIM. PITKÄ SIGMA S.76

Vektorien välinen kulma voidaan laskea Geometria-kurssista tutun **kosinilauseen** avulla. Kosinilause on Pythagoraan lauseen yleistys. Pythagoraan lausehan pätee ainoastaan suorakulmaisille kolmioille, mutta kosinilausetta voi käyttää kaikille kolmioille.

Kosinilauseen mukaan

$$a^2 = b^2 + c^2 - 2bc\cos\alpha.$$

KUVA

Teoreema 2.5.8. $\bar{a} \cdot \bar{b} = |\bar{a}||\bar{b}|\cos(\bar{a},\bar{b})$.

Todistus. KUVA

Pistetulon ominaisuuksia hyväksi käyttäen

$$\begin{split} |\bar{a} - \bar{b}|^2 &= (\bar{a} - \bar{b}) \cdot (\bar{a} - \bar{b}) \\ &= \bar{a} \cdot (\bar{a} - \bar{b}) - \bar{b} \cdot (\bar{a} - \bar{b}) \\ &= \bar{a} \cdot \bar{a} - \bar{a} \cdot \bar{b} - \bar{b} \cdot \bar{a} + \bar{b} \cdot \bar{b} \\ &= \bar{a} \cdot \bar{a} - \bar{a} \cdot \bar{b} - \bar{a} \cdot \bar{b} + \bar{b} \cdot \bar{b} \\ &= |\bar{a}|^2 - 2(\bar{a} \cdot \bar{b}) + |\bar{b}|^2 \\ &= |\bar{a}|^2 + |\bar{b}|^2 - 2(\bar{a} \cdot \bar{b}). \end{split}$$

Toisaalta kosinilauseen mukaan

$$|\bar{a} - \bar{b}|^2 = |\bar{a}|^2 + |\bar{b}|^2 - 2|\bar{a}||\bar{b}|\cos(\bar{a}, \bar{b}).$$

Näin ollen tiedetään, että

$$\begin{split} |\bar{a} - \bar{b}|^2 &= |\bar{a}|^2 + |\bar{b}|^2 - 2(\bar{a} \cdot \bar{b}) \\ &= |\bar{a}|^2 + |\bar{b}|^2 - 2|\bar{a}||\bar{b}|\cos(\bar{a}, \bar{b}), \end{split}$$

joten välttämättä on oltava

$$(\bar{a} \cdot \bar{b}) = |\bar{a}||\bar{b}|\cos(\bar{a}, \bar{b}).$$

Teoreemasta 2.5.8 saadaan johdettua kaava myös vektorien väliselle kulmalle.

Teoreema 2.5.9. Vektorien \bar{a} ja \bar{b} välinen kulma saadaan kaavasta

$$\cos(\bar{a}, \bar{b}) = \frac{\bar{a} \cdot \bar{b}}{|\bar{a}||\bar{b}|}.$$