FYMM/MMP IIIb 2020 Solutions to Problem Set 1

Jake Muff 28/10/20

1. Check whether the following (X,τ) is a topological space or not: $X=\{0,1,2\}$ and $\tau=\{\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\}\}$?

 $\underline{\mathbf{Answer}}$.

T1: $\emptyset \in \tau, X \in \tau$

X is in τ but \emptyset is not in τ (as \emptyset is the empty set it is $\emptyset = \{\}$)so this is not a topological space and we stop here ignoring **T2**, **T3**

2. $X_1 = (\mathbb{R}, \tau_{disc}), X_2 = (\mathbb{R}, \tau_{triv})$. Show that the identity map

$$id: X_1 \to X_2, x \mapsto x$$

Is not a homeomorphism.

 $f: X \to y$ is a homeomorphism if f is continuous and has inverse $f: y \to X$. If we have a subset of \mathbb{R} e.g $a \subseteq \mathbb{R}$ and $a \neq \emptyset$ then a is not closed (i.e open) in the discrete topology so

$$X_1 \to X_2$$

Is continuous. But in the trivial topology a is closed because $\neq \emptyset$ so the map

$$X_2 \rightarrow X_1$$

Is not continuous. $X_2 \to X_1$ is the inverse map, which is not continuous so the identity map id is not a homeomorphism.

3. Show that \mathbb{R}^n with the usual topology is Hausdorff All spaces X with metric topology are Hausdorff. From the definition of metric suppose we have

$$x, y \in \mathbb{R}^n, x \neq y$$

Following from M2:

$$a = d(x, y) \ge 0$$

Which represents an open ball with radius a/2 centered around x. We have 2 disjoint neighbourhoods

$$N_x(x,a/2)$$

Which is a neighbour consisting of x. And

$$N_y(y, a/2)$$

Which is a neighbourhood consisting of y. These are clearly disjoint (I couldn't come up with a clear rigorous mathematical way to show this). The neighbour being disjoint means that \mathbb{R}^n is hausdorff.

N.B: I think a better proof lies in proving \mathbb{R}^n has metric topology equivalent to the usual topology but I understood this method better.

4. Well defined meaning: $gH' = g'H \rightarrow g = g'h, h \in H$. In this question for well definedness the map looks similar to a homotopy group with γ as a loop. Following the lecture notes we need to find an equivalence relation such that

$$f \circ \gamma \sim f \circ \gamma'$$

In N.

$$\gamma \sim \gamma'$$

In M.

So, if we have F as a homotopy between γ and γ' then $f \circ F$ needs to be continuous. From the lecture notes there are 3 to check

$$f \circ F(s,0) = f \circ \gamma(s)$$
$$f \circ F(0,t) = f \circ F(1,t) = f(x_0)$$
$$f \circ F(s,1) = f \cdot \gamma'(s)$$

As f is continuous then $f \circ \gamma$ must be as well. With $f \circ \gamma$ being continuous and a homotopy then it is well defined.

To be an isomorphism f_* needs to be a homomorphism and bijective. For homomorphism we need

$$f_*(\gamma\gamma') = f_*(\gamma)f_*(\gamma')$$

$$f_*(\gamma\gamma') = [f \circ (\gamma\gamma')]$$

$$f_*(\gamma)f_*(\gamma') = (f \circ \gamma)(f \circ \gamma')$$

$$f \circ (\gamma\gamma') = (f \circ \gamma)(f \circ \gamma')$$

And there is a homomorphism.

For a bijection we need to show injectiveness and surjectiveness. For injectiveness: We have

$$f \circ \gamma = f \circ \gamma'$$

Which is a homotopy between two loops. As f is a homeomorphism and continuous then f^{-1} is continuous as well. As I showed before there is an equivalence relation between the loops so we can apply

$$f^{-1} \circ F$$

Where F is the homotopy between γ and γ' . $f^{-1} \circ F$ is also a homotopy between γ and γ' so

$$(\gamma) = (\gamma')$$

For surjectiveness (pulling from 4.2.3 in Lecture notes): If we have a loop in the topological invariant such that

$$\alpha \in \pi_1(M, f(x_0))$$

Then, since f^{-1} is a homeomorphism we can take $f^{-1} \circ \alpha$ like before where we defined well definedness and see that in itself $f^{-1} \circ \alpha$ is a loop in N. Following previous work we would also have

$$f_*(f^{-1} \circ \alpha) = \alpha$$

I think this proves that the function maps onto. So f_* is a bijection and thus, an isomorphism.

5. Examples of Homotopy groups.

(a) Suppose $M = \mathbb{R}^3 \setminus \{\text{point}\}$. Identify $\pi_1(M)$. M is a 3D space with a point cut out such that any loop in M can be deformed. So, the fundamental group must be $\{e\}$

$$\pi_1(M) = \{e\}$$

- (b) Didn't answer
- (c) Didn't answer