Seonah Lee Gyeongsang National University

보안성 (Security) 아키텍처 전술

- ▶ 보안성 (Security)
- ▶ 품질 속성 시나리오: 보안성 정의
- ▶ 품질 속성 시나리오: 보안성 시나리오 예제
- ▶ 보안성 (Security) 아키텍처 전술
- ▶ 보안성에 대한 설계 체크리스트
- ▶ 생각해 볼 문제

Security

- ▶ 보안성 (Security)
 - ▶ 승인 받지 않은 접근으로 부터 데이터와 정보를 보호하는 능력
 - ▶ 승인 받은 사람과 시스템으로 부터의 접근을 허용하는 능력
- ▶ 공격 (Attack)
 - ▶ 위해를 가하고자 하는 의도로 컴퓨터 시스템에 취해지는 조치
 - ▶ 승인 받지 않은 채 데이터와 서비스에 접근하는 행위
 - ▶ 데이터를 수정하는 행위
 - ▶ 적법한 사용자가 서비스를 사용하지 못하도록 하는 행위

Security

- ▶ 보안성 (Security)의 특징
 - ▶ 기밀성(Confidentiality): 인가 받지 않은 접근에서 데이터와 서비스를 보호
 - ▶ 예: 해커는 정부의 컴퓨터에 저장된 당신의 세금 정보에 접근할 수 없다
 - ▶ 무결성(Integrity): 인가 받지 않은 접근에서 데이터와 서비스가 조작되지 않음
 - ▶ 예: 학교에서 교사가 학점을 부여한 후 임의로 변경하지 않는다.
 - ▶ 가용성(Availability): 합법적인 사용에 가용함
 - ▶ 예: 서비스 거부 공격이 온라인 서점에서 책을 주문하는 것을 방해하지 않는다

Security

- ▶ 보안성 (Security)의 추가적인 특징
 - ▶ 인증(Authentication): 트랙잭션의 상대가 실제로 그 상대인지를 인증
 - ▶ 예: 만약 은행에서 왔다는 이메일을 받을 경우 인증이 실제 은행에서 왔는지 보증
 - ▶ 부인봉쇄(Nonrepudiation): 메시지의 송신자가 메시지 송신을 부인하거나 수신 자가 메시지 수신을 부인하지 못하도록 개런티 함
 - ▶ 예: 인터넷 주문에서 주문자이 주문한 사실을 부인할 수 없거나 판매자가 주문을 받았다는 사실을 부인할 수 없음
 - ▶ 인가(Authorization): 사용자가 작업을 수행할 수 있도록 권한을 부여함
 - ▶ 예: 온라인 은행 시스템이 합법적인 사용자가 본인 계정에 접근 가능하도록 함

Quality Attribute Scenario for Security

보안성: 권한 없는 접근으로부터 데이터를 보호하지만, 권한을 갖는 사람과 시스템은 접근할 수 있게 하는 시스템의 능력

Quality Attribute Scenario for Security

Component	Description
자극의 근원 (Source)	공격을 하는 주체로서 사람이나 시스템
자극 (Stimulus)	시스템에 대한 공격이나 보안을 깨려는 시도로서 인증되지 않은 사람이나 시스템의 다음과 같은 행위: 정보를 디스플레이 하려 함 정보를 변경하거나 삭제하려 함 시스템 서비스에 접근하려함 서비스의 사용성을 감소시키려 함
환경 (Environment)	공격받는 시스템의 상태 온라인/오프라인 네트워크에 연결/연결되지 않음 방화벽 내에 존재함/공개
대상 (Artifact)	공격의 대상 I 시스템 서비스 I 시스템 내부의 데이터 I 시스템에서 생산하거나 소비하는 데이터 I 공격에 취약한 특정 시스템의 컴포넌트

Quality Attribute Scenario for Security

Component	Description
응답 (Response)	 트랜잭션 실행 ● 승인되지 않은 접근으로부터 데이터와 서비스 보호 ● 권한이 없이 데이터와 서비스가 조작이 되지 않도록 함 ● 트랜잭션에 참여하는 상대의 식별 ● 트랜잭션에 참여하는 상대가 부인을 못함 ● 합리적인 사용에 사용할 수 있는 데이터, 자원, 그리고 시스템 시스템 추적 활동 ● 시스템을 접근하거나 수정하는 기록 ● 데이터, 자원, 서비스에 접근하려는 시도 ● 공격이 발생했을 때 적절한 개체(사람 혹은 시스템)에 통지
응답 측정 (Response Measure)	 컴포넌트나 데이터 손상 시 손상되는 시스템의 정도 공격 발견 전에 소요한 시간 견딜 수 있는 공격 수 공격이 성공하게 되면 복구하기까지의 시간 특정 공격에 손상이 쉬운 데이터의 양

Quality Attribute Scenario Example for Security

- ▶ 보안성 (Security)의 시나리오 예
 - ▶ 불만을 품은 직원이 임금률을 외부 지역에서 변경하려고 시도한다. 시스템은 감사 추적을 시작하여 하루 이내에 현재의 데이터를 복구하고 부당 변경자를 식별한다.

▶ 공격이 발생했을 때, 막아내거나, 공격을 탐지하거나, 공격에서 회복하는 능력에 대한 고려이다.

- ▶ 공격 감지 (Detect Attacks)
 - ▶ 침입 감지 (Detect intrusion)
 - 요청된 네트워크 트래픽/서비스를 시그너처 혹은 데이터베이스에 등록된 악의적인 행위 패턴 과 비교
 - ▶ 프로토콜, TCP 플래그, Payload 크기, 애플리케이션, Source/Destination 주소, 포트 번호 등
 - ▶ 서비스 부인/거부 감지 (Detect service denial)
 - ▶ 네트워크 트래픽의 패턴 혹은 시그너처를 알려진 서비스 부인/거부 공격 프로파일과 비교

- ▶ 공격 감지 (Detect Attacks)
 - ▶ 메시지 무결성 검증 (Verify message integrity)
 - ▶ 메시지, 리소스 파일, 배포 파일, 환경 파일 등의 무결성을 검증
 - ▶ 체크섬이나 해시값 등을 활용
 - ▶ 메시지 지연 감지 (Detect message delivery anomalies)
 - ▶ 메시지를 중간에 가로채는지 혹은 중간에 변경하는지를 발견하고자 함.
 - ▶ 메시지를 전달받는 시간을 검토하여 의심스러운 시간적 행위를 탐지할 수 있음
 - ▶ 비 정상적인 연결 및 단절 횟수로 공격을 감지할 수 있음

- ▶ 공격 저지 (Resist Attacks)
 - ▶ 사용자 식별 (Identify actors)
 - 시스템의 외부 입력하는 사람/시스템 식별
 - ▶ 사용자는 아이디로 식별
 - ▶ 시스템은 접근 코드, **IP**주소, 프로토콜, 포트 등으로 식별
 - ▶ 사용자 인증 (Authenticate actors)
 - ▶ 사용자가 실제로 그 사용자인지 확인
 - ▶ 비밀번호, 일회용비밀번호, 디지털 인증, 생체 인증으로 인증
 - ▶ 사용자 인가 (Authorize actors)
 - ▶ 인증 받은 사용자가 데이터나 서비스에 접근하기 위한 권한을 가지고 있는지 확인
 - ▶ 이는 주로 시스템 내부의 접근 제어 메커니즘으로 <mark>구현(사용자 그<mark>룹, 혹은 역할)</mark></mark>

- ▶ 공격 저지 (Resist Attacks)
 - ▶ 접근 제한 (Limit access)
 - ▶ 컴퓨팅 리소스로의 접근을 제한하는 것
 - ▶ 메모리, 네트워크 연결, 접근 포인트로의 접근을 제한
 - ▶ 메모리 보호, 호스트 블록킹, 포트 닫음, 프로토콜 거부 등을 수행
 - ▶ 노출 제한 (Limit exposure)
 - ▶ 적대적인 행위(Action)에 대한 피해를 최소화함, 수동적인 방어임
 - ▶ 하나의 접근 포인트로부터 접근할 수 있는 데이터 혹은 서비스의 양을 줄임
 - 하나의 공격의 피해를 완화시킴
 - ▶ 데이타 암호화 (Encrypt data)
 - ▶ 기밀성은 데이터와 통신의 암호화를 통해 성취됨
 - ▶ 암호화는 인가로 사용가능한 데이터를 추가적으로 보호, 공개적으로 접근 가능한 통신 보호

- ▶ 공격 저지 (Resist Attacks)
 - ▶ 개체 분리 (Separate entities)
 - ▶ 서로 다른 개체들을 분리하여 공격의 범위를 제약함
 - 서로 다른 네트워크에 접속하는 서버들의 물리적 분리
 - ▶ 가상머신사용,혹은시스템의서로다른부분연결안함(air gap)
 - ▶ 민감한데이터의 분리
 - ▶ 입력 확인 (Validate input)
 - ▶ 입력을 필터링하거나 깨끗하도록 하는 처리를 수행
 - ▶ SQL injection 등 적대적 코드의 공격에서 강건하도록 함
 - ▶ 기본설정 변경 (Change credential settings)
 - ▶ 사용자가 기본 설정을 바꾸도록 함 → 공격자가 공개되어 있는 설정으로 시스템에 접근하지 못함

- ▶ 공격 대응 (React to Attacks)
 - ▶ 접근 철회 (Revoke access)
 - ▶ 공격이 감지되면, 민감한 자원에 대한 접근을 모두 차단
 - ▶ 예: 데스크탑이 바이러스에 감염 시, 데스크탑 주인 조차 바이러스 제거까지 일정 리소스 접근 차단
 - ▶ 컴퓨터 잠금 (Restrict login)
 - ▶ 반복되는 로그인 실패를 공격으로 간주, 컴퓨터를 일정 시간 잠금
 - ▶ 사용자 알림 (Inform actors)
 - ▶ 관련 사용자들이 시스템이 공격을 받고 있음에 대한 정보를 받도록 하여 조치를 취하도록 함

- ▶ 공격 복구 (Recover from Attacks)
 - ▶ 식별 (Audit)
 - ▶ 감사 추적을 위한 흔적을 기록함
 - ▶ 사용자와 시스템 행위, 그리고 행위 결과(effects)에 대해 기록
 - ▶ 기록을 참조하여 공격자를 찾아내거나 어떤 행위(actions)을 했는지 추적 가능
 - ▶ 공격자를 적발하거나, 향후의 더 나은 방어를 계획할 수 있음
 - ▶ 부인방지 (Nonrepudiation)
 - ▶ 신뢰할 만한 제 3자(third parties)에 의한 디지털 서명과 인가의 결합을 통해 성취
 - ▶ 복구 (Recover)
 - ▶ 비밀 번호, 제어 목록, 사용자 프로파일 등의 중복 관리,
 - ▶ 데이터에 적용된 일련의 트랜잭션의 복사본 관리

- Q1. 미국에서 페이스북(Facebook)은 해당 주에 모든 인터넷 트래픽의 5 퍼센트 이상에 대한 책임이 있다.
 - ▶ 페이스북닷컴에 서비스 거부 공격이 들어올 경우 어떻게 인식할 수 있는가?
- Q2. 보안과 사용성은 보통 서로 충돌하는 것처럼 보인다.
 - ▶ 일반적으로 보안을 일반적인 사용자에게 필요 없는 오버헤드처럼 보이는 절차와 프로세스를 부과한다.
 - 그러나 누군가 보안과 사용성은 서로 관련되어야 한다고 하며, 시스템을 안전하게 사용하기 쉽도록 만드는 것이 사용자에게 보안을 촉진시키는 가장 좋은 방법이라 고 주장하였다.
 - ▶ 이 주장에 대해서 논의하자.

Electronic Voting System

000

▶ 미국 켄터키 주에서 2010년 전자 투표 기계 조작에 대한 사건

Electronic Voting System

000

- ▶ 설계 결함으로 인해 허용된 낮은 기술의 "해킹"
 - ▶ 큰 빨간색 "기계 상단에 있는 VOTE" 버튼(오른쪽 사진 참조), 버튼을 눌러도 실제로 투표 과정이 완료되지는 않음
 - ▶ 유권자들은 이론적으로 투표가 내부적으로 캐스트로 기록 되기 전에 "투표 확인"을 위해 터치 스크린에서 또 다른 선택을 눌러야 함
 - ▶ 유권자들에게 빨간색 "VOTE" 버튼을 누른 후에 투표가 이루어졌다고 알림
 - ▶ 투표 심사위원은 기계로 가서 투표를 변경

Electronic Voting System

Voting Machine

Question?

Seonah Lee saleese@gmail.com