ЛАБОРАТОРНАЯ РАБОТА №4 ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ

Критерий Стьюдента

Теория

Напомним суть проблемы.

В случае одновыборочного теста мы будем исходить из того, что выборка $X_1, X_2, ..., X_n$ распределена нормально. Необходимо оценить параметр нормального распределения μ — его математическое ожидание, а именно, проверить гипотезу $H_0: \mu = \text{mu}$. В случае двухвыборочного теста мы имеем две нормально распределенные выборки $X_1, X_2, ..., X_n$ и $Y_1, Y_2, ..., Y_m$. Необходимо проверить гипотезу о равенстве математических ожиданий этих распределений, а именно, $H_0: \mu_x = \mu_y$ или $H_0: \text{mu} = \mu_x - \mu_y = 0$

Синтаксис команды (разложен на строки для удобства описания):

```
t.test(
          x,
          y = NULL,
          alternative=c("two.sided","less","greater"),
          mu = 0,
          paired = FALSE,
          var.equal = FALSE,
          conf.level = 0.95,
...)
```

- **х** вектор-выборка, распределённая по нормальному закону; если **у** отсутствует, то мы имеем дело с одновыборочным критерием Стьюдента; в противном случае имеем двухвыборочный критерий Стьюдента.
- у вектор-выборка, распределённая по нормальному закону; при её наличии имеем двухвыборочный критерий Стьюдента.

```
alternative=c("two.sided", "less", "greater") вид альтернативной гипотезы: двусторонняя "two.sided" H_1: \mu_x \neq \text{mu} или H_1: \mu_x \neq \mu_y, односторонняя "less" H_1: \mu_x < \text{mu} или H_1: \mu_x < \mu_y, односторонняя "greater" H_1: \mu_x > \text{mu} или H_1: \mu_x > \mu_y; мы можем выбрать один из вариантов или не выбирать никакой (в последнем случае это эквивалентно выбору варианта "two.sided".
```

mu проверяемое значение математического ожидания или разность между математическими ожиданиями двух выборок.

paired логический параметр; если равен TRUE, то имеем связанные выборки x и y; в противном случае имеем независимые выборки x и y.

var.equal логический параметр; если равен TRUE, то подразумевается, что истинные дисперсии выборок неизвестны, но равны, в противном случае — неизвестны и не равны. Заметим, что до сих пор не найдено точное решение задачи сравнения средних двух выборок в том случае, когда дисперсии выборок неизвестны и не равны (проблема Беренса-Фишера). Поэтому на практике используются различные приближенные решения, два из которых — критерий Крамера-Уэлча и критерий Саттервайта. Именно они и применяются в R. В случае одновыборочного теста этот параметр отдельно не указывается. Судя по всему, полагается, что нам дисперсия не известна.

conf.level уровень достоверности, равный $1-\alpha$, где α — уровень значимости (по умолчанию полагаемый 0.05).

Задания

Задание 1. Проверьте гипотезы $H_0: \mu = 8$ и $H_0: \mu = 6$ при всех возможных видах конкурирующих гипотез, используя выборку на листе Стьюдент1 из файла данные.xlsx. Напишите скрипт, который это выполняет.

Задание 2. Проверьте гипотезу $H_0: \mu_x = \mu_y$ при всех возможных видах конкурирующих гипотез, используя выборку на листе Стьюдент4 из файла данные.xlsx. Положить, что среднеквадратические отклонения не известны, но равны. Напишите скрипт, который это выполняет.

Задание 3. Проверьте гипотезу $H_0: \mu_x = \mu_y$ при всех возможных видах конкурирующих гипотез, используя выборку на листе Стьюдент3 из файла данные.xlsx. Положить, что среднеквадратические отклонения не известны и не равны. Напишите скрипт, который это выполняет.