WHAT IS CLA MED IS

1	Then Mer 1. A microfabridated fluidic amplifier device, comprising:
2	an elastomer block formed with an input chamber and an output chamber, that
3	amplifies the pressure in the output chamber relative to the input chamber, wherein fluid in
4	the input chamber is isolated from fluid in the output chamber.
1	2. The microfabricated fluidic amplifier device of claim 1 wherein the
2	input chamber is formed in a first elastomer layer and the output chamber is formed in a
3	second elastomer layer.
1	3. The microfabricated fluidic amplifier device of claim 2 wherein the
2 3 1 1 2	second elastomer layer further comprises a third chamber at least partially surrounding the
	output chamber.
W 1	4. The microfabricated fluidic amplifier device of claim 3 wherein the
<u>L</u> 2	third chamber is filled with a fluid at ambient pressure.
1	5. The microfabricated fluidic amplifier device of claim 2 wherein the
2	first elastomer layer comprises a rigid material/in the input chamber above the output
3	chamber.
1	6. The microfabricated fluidic amplifier device of claim 1 wherein the
2	amplifier device is configured to perform/integration.
1	7. The microfabricated fluidic amplifier device of claim 1 wherein the
2	amplifier device is configured to perform differentiation.
1	8. A microfabricated fluidic switch, comprising:
2	an elastomer block formed with a gate channel and a drain-to-source channe
3	that closes and opens the drain-to-source channel in response to pressure changes in the gat
4	channel,
5	wherein pressure in the gate channel does not need to be increased above, or
6	decreased below pressure in the drain-to-source channel.

1	9. The microfabricated fluidic switch of claim 8 wherein the gate channel
2	is formed in a first elastomer layer and the drain-to-source channel is formed in a second
3	elastomer layer.
1	10. The microfabricated fluidic switch of claim 9 wherein a rigid material
2	is formed on the second elastomer layer in the gate channel.
1	11. The microfabricated fluidic switch of claim 9 wherein a first chamber
2	is formed in the second elastomer layer adjacent to the drain-to-source channel.
1	12. The microfabricated fluidic switch of claim 11 wherein a second
2	chamber is formed in the second elastomer layer adjacent to the drain-to-source channel.
1	13. The microfabricated fluidic switch of claim 9 wherein a first chamber
2	is formed in the first elastomer layer adjacent to the gate channel.
1 2 1 2 2	14. The microfabricated fluidic switch of claim 13 wherein a second
4 2	chamber is formed in the second elastomer layer adjacent to the drain-to-source channel.
1 1	15. The microfluidic switch of claim 8 wherein the switch is a pressure
12 12 12 14	actuated normally open switch.
1	16. The microfluidic switch of claim 8 wherein the switch is a pressure
2	actuated normally closed switch.
1	17. The microfluidic switch of claim 8 wherein the switch is a vacuum
2	actuated normally open switch.
1	18. The microfluidic switch of claim 8 wherein the switch is a vacuum
2	actuated normally closed switch.
1	19. A microfabricated fluidic logic device, comprising:
2	an input channel and an output channel; and
3	a first microfabricated fluidic switch, wherein the microfabricated fluidic logic
4	device performs a logic function on an input signal in the input channel to provide an output
5	signal in the output channel.

1	20.	The microfabricated fluidic logic device of claim 19 wherein the		
2 output signal is the inverse of the input signal.				
1	21.	The microfabricated fluidic logic device of claim 19 wherein the		
2	microfabricated flui	dic logic device is an OR gate.		
1	22.	The microfabricated fluidic logic device of claim 19 wherein the		
2	microfabricated flui	idic logic device is a NOR gate.		
1	23.	The microfabricated fluidic logic device of claim 19 wherein the		
2		idic logic device is a AND gate.		
_ 1	24.	The microfabricated fluidic logic device of claim 19 wherein the		
		idic logic device is a NAND gate.		
<i>9</i>	25.	The microfabricated fluidic logic device of claim 19 wherein the		
2		idic logic device is a flip-flip.		
iii. Yaj				
1	26.	The microfabricated fluidic logic device of claim 25 wherein the flip-		
1 2	flop comprises first	and second cross-coupled NAND gates.		
1 2	27.	The microfabricated fluidic logic device of claim 26 wherein each of		
<u>1</u> 2	the two NAND gate	es comprises two pressure actuated normally open switches coupled in		
3	parallel.			
1	28.	The microfabricated fluidic logic device of claim 25 wherein the flip-		
2	flop comprises first	and second cross-coupled NOR gates.		
. 1	29.	The microfabricated fluidic logic device of claim 28 wherein the two		
2	NOR gates compris	se two pressure actuated normally open switches coupled in series.		
1	30.	The microfabricated fluidic logic device of claim 28 further		
2	comprising:	•		
3	first	and second step pressure sources coupled to the flip-flop;		
4	a se	cond microfabricated fluidic switch coupled between the first step pressure		
5	source and the first	NOR gate:		

6	a third microrabnicated fluidic switch coupled between the second step		
7	pressure source and the second NOR gate.		
1	31. The microfabricated fluidic logic device of claim 28 further		
2	comprising:		
3	a step pressure source comprising an output coupled to the flip-flop through		
4	second and third microfabricated fluidic switches; and		
5	fourth and fifth microfabricated fluidic switches, each coupled between the		
6	output of the step pressure source and ambient exhaust.		
1	32. The microfabricated fluidic logic device of claim 31 further		
2	comprising:		
□ 3	a first microfabricated fluidic capacitor coupled to an input of the first NOR		
D 4	gate and the gate of the fourth switch;		
3 4 5 6	a second microfabricated fluidic capacitor coupled to an input of the second		
<u>u</u> 6	NOR gate and the gate of the fifth switch;		
7	a first fluidic resistor coupled to the first capacitor; and		
E 8	a second fluidic resistor coupled to the second capacitor.		
1 2	33. The microfabricated fluidic logic device of claim 28 further		
2 2	comprising:		
int in 3	a step pressure source comprising an output coupled to the flip-flop through		
4	second and third microfabricated fluidic switches; and		
5	a fourth microfabricated fluidic switch coupled between the output of the step		
6	pressure source and ambient exhaust, wherein the gate of the fourth switch is coupled to a		
7	clock signal.		
1	34. The microfabricated fluidic logic device of claim 19 wherein the		
2	switch comprises a pressure actuated normally open switch.		
1	35. A microfabricated fluidic pressure source, comprising:		
2	a fluidic pump;		
3	microfabricated fluidic first and second unidirectional valves, each coupled to		
4	the pump; and		
5	a microfabricated fluidic reservoir doupled to the second unidirectional valve		

3	a first interoffundic capacitor coupled between the pump and the third			
6	unidirectional valve; and			
7	a second microfluidic capacitor coupled between the third and the fourth			
8	unidirectional valves.			
1	46. The microfluidic pressure source of claim 35 wherein at least one of			
2	the unidirectional valves comprises:			
3	first and second elastomer layers with a first channel there between;			
4	an elastomer spacer in the first channel that is sealed to the first elastomer			
5	layer; and			
6	an elastomer flap sealed to the spacer, but not sealed to the second elastomer			
7	7 layer which covers a feed through channel in the second elastomer layer.			
	47 A minus Calminated Stuiding manufature and annihilan			
	47. A microfabricated fluidic switching regulator, comprising:			
132	a microfabricated fluidic pressure multiplier; and			
1 3	a microfabricated fluidic switch coupled to an output of the pressure			
	multiplier.			
 =1: 1	48. The microfabricated fluidic switching regulator of claim 47 wherein the			
	switch is a pressure actuated normally closed switch.			
1 1 2				
	49. The microfabricated fluidic switching regulator of claim 47 wherein			
2	the pressure multiplier has a first input terminal coupled to a high pressure source, and a			
3	second input terminal coupled to ambient exhaust.			
1	50. A microfabricated fluidic capacitor comprising:			
2	a first elastomer layer comprising a first chamber,			
3	a second elastomer layer comprising a second chamber adjacent to the first			
4	chamber, and wherein the first and second chambers there is no fluid flow between the first			
5	and second chambers.			
•				
1	51. A microfabricated fluidic unidirectional valve, comprising:			
2	a microfabricated fluidic pressure amplifier coupled between an input terminal			
3	and an output terminal; and			
4	a microfabricated fluidic switch coupled to an output of the pressure			
5	multiplier.			

A microfabricated fluidic unidirectional valve, comprising:

52.

1