Градиентный бустинг

Харинаев Артём

316 MC BMK MГУ

29.11.2021

Booking.com ЯНДЕКС NETFLIX

Интуитивные соображения

 $Y=\mathbb{R},\,X^\ell$ -обучающая выборка

- $oldsymbol{0}$ y целевой признак, $b_1(x)$ решающее дерево, настроенное на него
- $y b_1(x)$ целевой признак, $b_2(X)$ решающее дерево, настроенное на него
- $y b_1(x) b_2(x)$ целевой признак, $b_3(X)$ решающее дерево, настроенное на него и т.д.

$$a_T(x)=\sum_{t=1}^T b_t(x)$$
 - композиция алгоритмов $\mathcal{L}(y,a(x))=rac{1}{2}\|y-a(x)\|^2$ $abla \mathcal{L}(y,a(x))=y-a(x)$

Алгоритм

X - пространство объектов, Y - пространство ответов, $X^\ell = \{x_i, y_i\}_{i=1}^\ell$ - обучающая выборка, $\mathcal L$ - дифференцируемая функция потерь, $\mathfrak B$ - пространство базовых алгоритмов

$$a_{\mathcal{T}}(x) = \sum_{t=1}^{\mathcal{T}} b_t(x), \quad x \in X, \quad b_t : X \mapsto Y, \quad b_t \in \mathfrak{B}$$

$$a_{\mathcal{T}}(x) = a_{\mathcal{T}-1}(x) + b_{\mathcal{T}}(x)$$

$$b_{\mathcal{T}}(x) = \underset{b \in \mathfrak{B}}{\operatorname{argmin}} \sum_{i=1}^{\ell} \mathcal{L}(y_i, a_{\mathcal{T}-1}(x_i) + b(x_i))$$

$$b_1(x) = \underset{b \in \mathfrak{B}}{\operatorname{argmin}} \sum_{i=1}^{\ell} \mathcal{L}(y_i, b(x_i))$$

Алгоритм

Разложение Тейлора функции потерь до первого члена в окрестности $(y_i, a_{T-1}(x_i))$:

$$\mathcal{L}(y_{i}, a_{T-1}(x_{i}) + b(x_{i})) \approx \mathcal{L}(y_{i}, a_{T-1}(x_{i})) + b(x_{i}) \frac{\partial \mathcal{L}(y_{i}, z)}{\partial z} \Big|_{z=a_{T-1}(x_{i})} =$$

$$= \mathcal{L}(y_{i}, a_{T-1}(x_{i})) + b(x_{i})g_{i}^{T-1}$$

Получается следующая оптимизационная задача:

$$b_T \approx \operatorname*{argmin}_{b \in \mathcal{B}} \sum_{i=1}^{\ell} b(x_i) g_i^{T-1}$$

решением которой является антиградиент $-g^{T-1}$.

На каждой итерации базовые алгоритмы обучаются предсказывать значения антиградиента функции потерь по текущим предсказаниям композиции

Постановка задачи

- Сравнить качество алгоритма градиентного бустинга с линейными моделями на задачах
 - классификации
 - регрессии
- Исследовать зависимости в данных "Ценообразование недвижимости" (www.kaggle.com/c/house-prices-advanced-regression-techniques)

Описание данных

Классификация "Болезни сердца"

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1
298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0

https://www.kaggle.com/ronitf/heart-disease-uci

Описание данных

Регрессия "Ценообразование недвижимости"

	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	 MiscVal	MoSold	YrSold	SaleType	SaleCondition	SalePrice
ld												
1	60	RL	65.0	8450	Pave	NaN	 0	2	2008	WD	Normal	208500
2	20	RL	80.0	9600	Pave	NaN	 0	5	2007	WD	Normal	181500
3	60	RL	68.0	11250	Pave	NaN	 0	9	2008	WD	Normal	223500
4	70	RL	60.0	9550	Pave	NaN	 0	2	2006	WD	Abnorml	140000
5	60	RL	84.0	14260	Pave	NaN	 0	12	2008	WD	Normal	250000
1456	60	RL	62.0	7917	Pave	NaN	 0	8	2007	WD	Normal	175000
1457	20	RL	85.0	13175	Pave	NaN	 0	2	2010	WD	Normal	210000
1458	70	RL	66.0	9042	Pave	NaN	 2500	5	2010	WD	Normal	266500
1459	20	RL	68.0	9717	Pave	NaN	 0	4	2010	WD	Normal	142125
1460	20	RL	75.0	9937	Pave	NaN	 0	6	2008	WD	Normal	147500

1460 rows × 80 columns

https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data

Предобработка данных

Для обучения линейный моделей необходимо проделать достаточно большую работу по предобработке данных:

- Обработать недостающие значения (заполнить или удалить строки, содержащие их)
- Преобразовать текстовые данные в числовые
- Закодировать категорильные данные (one-hot-encoding, target mean, label encoder)
- Для лучшей сходимости нужно масштабировать данные (к $\mathcal{N}(0,1)$, min-max)
- Выявить и удалить выбросы

Для многих реализаций градиентного бустинга, таких как XGBoost, LightGBM, CatBoost, не обязательно выполнять все эти шаги.

Классификация

Логистическая регрессия: Recall = 0.814

	Болен	Здоров
Болен	23	10
Здоров	8	35

Таблица: Матрица ошибок

CatBoost: Recall = 0.860

	Болен	Здоров
Болен	25	8
Здоров	6	37

Таблица: Матрица ошибок

Регрессия

Ridge-регрессия

 $\mathsf{RMSLE} = 0.13748$

CatBoost "из коробки"

RMSLE = 0.12948

CatBoost с оптимальными параметрами

RMSLE = 0.12420

Важность признаков

Важность признаков

Важность признаков

Вывод

Преимущества градиентного бустинга в сравнении с линейными моделями

- Более высокая точность
- Гибкая настройка гиперпараметров
- Более адекватная оценка важности признаков
- Меньшая зависимость от преобработки данных

Недостатки градиентного бустинга в сравнении с линейными моделями

• Скорость обучения