Teaching an old dog new tricks? Learning rates, aging, and language change

Ellis Cain

May 2, 2023

Section 1

Background literature

Collective patterns of language usage

- N-gram corpus analysis of Google Books corpus¹
- Diachronic changes in language usage and meaning²

¹(Michel et al., 2011)

²(Bybee, 2015; Bynon et al., 1977)

Collective patterns of language

Emergence of collective-level trends from individual usage

Mechanisms of language acquisition

- Statistical learning³
- Propose but verify (hypothesis testing)⁴
- Structural inference⁵

³(Smith & Yu, 2008; Yu & Smith, 2007)

⁴(Trueswell et al., 2013)

⁵(Kim et al., 2019)

0000

- Initially rely on associative / bottom-up learning
- Later shift to inferential / top-down learning

Section 2

Formal model

Overview

- Language change as interaction between individual and collective level dynamics
- Aim to explore how individual learning rates, aging, and group membership impact overall population-level patterns of language change

Background literature

- Language change as interaction between individual and collective level dynamics
- Aim to explore how individual learning rates, aging, and group membership impact overall population-level patterns of language change
- Model of the usage and spread of a grammatical variant throughout a population
 - Past tense ending can be "-t" or "-ed", such as in "burnt" or "burned"

- Language learning is based on imitating others, though this may change over the lifespan
 - E.g., individuals may learn quickly early on, but slow down as they age

Model assumptions⁶

- Language learning is based on imitating others, though this may change over the lifespan
 - E.g., individuals may learn quickly early on, but slow down as they age
- There are variations in preference between individuals
 - E.g., some individuals learn more quickly than others

- Language learning is based on imitating others, though this may change over the lifespan
 - E.g., individuals may learn quickly early on, but slow down as they age
- There are variations in preference between individuals
 - E.g., some individuals learn more quickly than others
- - E.g., more willing to learn from in-group members

- **S-shaped curve in usage patterns**: Change happens slowly, then proceeds rapidly before slowing down again.
- 2 Intra-speaker variation: Change is gradual and there is a period of intra-speaker variation.
- Categorical norms: With competition, speakers move toward categorically using just one of the competing variants.
- Multi-stability: Language change can have multiple stable outcomes. May result in dialect subgroups
- **Threshold problem**: Initially rare variants may manage to spread through entire speech communities.

⁷(Troutman et al., 2008)

Initialization: network

- Generates preferential attachment network
- Distributes grammar according to specified percentage of grammar 1

Formal model

00000000000

• Two grammar variants, 0 or 1 (burnt or burned)

Initialization: nodes

Represent language users

- State: node's current grammar preference, initialized as 0 or 1
- Age

Background literature

- Probablistic or deterministic
- Cohort: "Age group", either 1 or 2
- Gamma: learning rate of a given node
 - Probablistic, deterministic, or based on age

- Number of cohorts (max 2) based on specified percentage
- Cohort ages can be specified
- Option for cohort-based grammar, such that the cohorts start with different percentages of grammar 1
- Willingness to listen to out-group members

Dynamics

- Communication
 - Speaking (asynchronous)
 - Neighboring agents listen
- Aging

Dynamics: speaking

- Nodes will generate an 'utterance', which is either 0 or 1 (burnt or burned)
- Nodes 'prefer' a discrete grammar
- Logistic curve is used when nodes produce an utterance

- Neighboring nodes will pick a grammar that will be used to interpret heard utterance
- If it matches the heard utterance
 - Update listener's state towards the heard state
 - Otherwise, it will update listener's state away from the heard state
 - Learning rate: Gamma parameter modifies the step size
- Chance to ignore out-group

7.6...8

- Nodes age with each tick
- Gamma changes with age: either constant or decreasing with age

- Nodes age with each tick
- Gamma changes with age: either constant or decreasing with age
- Perseverance: how slowly gamma decays
 - Basic power law: $y = -0.05(x^a) + 0.005$

Section 3

Results

Impact of learning rate

Results

Impact of learning rate

Variation of learning rate amongst individual

Faceted by Gamma SD; 50 runs per configuration, 1000 steps total per run

Checkpoint

 Increased gamma decrease time to equilibrium, but not (systematically) affect the final outcome

Decrease in learning rate with age

Decrease in learning rate with age

Variation of speed of decrease (perseverance)

Variation of speed of decrease (perseverance)

Checkpoint

- Gamma impacts time to equilibrium (TTE)
- ullet No difference in TTE when perseverance is >0.5

Two age cohorts

Two age cohorts

Two age cohorts: group equilibria

50 runs per configuration, 1000 steps total per run

Two age cohorts: group equilibria

Checkpoint

- Gamma impacts time to equilibrium (TTE)
- ullet No difference in TTE when perseverance is > 0.5
- Older cohort slows down TTE
- As the age gap increases, the impact on TTE increases as well

Cohort-based grammar: Only Cohort 2 has grammar 1

Gamma decreases at constant rate; Cohort 1 does not have grammar 1; 50% Cohort 2; 50 runs per configuration, 1000 steps total per run

Cohort-based grammar: Only Cohort 1 has grammar 1

Gamma decreases at constant rate; Cohort 2 does not have grammar 1; 50% Cohort 2; 50 runs per configuration, 1000 steps total per run

Checkpoint

- Gamma impacts time to equilibrium (TTE)
- No difference in TTE when perseverance is > 0.5
- Older cohort slows down TTE, exacerbated by increased age gap
- Reservoir? When grammar varies only in the older cohort, their initial starting percentage will draw the younger cohort
- Innovator: when grammar varies only in the younger cohort, However, when cohort 2 does not use grammar 1, cohort 1 starts with increasingly higher percentages of using grammar 1, they themselves may end up with using grammar 1 more, but it does not drive the overall group usage.

Formal model

Cohort preference

Checkpoint

- Increased gamma speeds up when equilibrium is reached, but not the final outcome; modulated by perseverance
- Older cohort delays equilibrium
- "Innovator" and "Reservoir" groups
- Group preference will delay the equilibrium, and slightly impact equilibrium value

- Beeksma, M., Vos, H. de, Claassen, T., Dijkstra, A., & Kemenade, A. van. (2017). A probabilistic agent-based simulation for community level language change in different scenarios
- Bybee, J. (2015). Language change. Cambridge University Press.
- Bynon, T. et al. (1977). Historical linguistics. Cambridge University Press.
- Kim, J. S., Elli, G. V., & Bedny, M. (2019). Knowledge of animal appearance among sighted and blind adults. Proceedings of the National Academy of Sciences, *116*(23), 11213–11222.
- Michel, J.-B., Shen, Y. K., Aiden, A. P., Veres, A., Gray, M. K., The Google Books Team, Pickett, J. P., Hoiberg, D., Clancy, D., Norvig, P., Orwant, J., Pinker, S., Nowak, M. A., & Aiden, E. L. (2011). Quantitative Analysis of Culture Using Millions of Digitized Books. Science, 331(6014), 176-182. https://doi.org/10.1126/science.1199644
- Smith, L., & Yu, C. (2008). Infants rapidly learn word-referent mappings via cross-situational statistics. Cognition, 106(3), 1558–1568.
- Troutman, C., Clark, B., & Goldrick, M. (2008). Social networks and intraspeaker