Reactive Scheduling of Computational Resources in Control Systems

Hodai Goldman

Ben-Gurion University of the Negev Department of Computer Science

January 1, 2018

- 1 Automata-based Scheduling
 - Motivation
 - Component-based Architecture
 - Büchi Games Interface
- 2 Integration with Kalman
 - Guiding Concept
 - Guided Tour Simulation
- 3 Experiment with real-life case-study
 - The Mission
 - Simplifying the Kalman filter with complementary filter
 - Results
- Conclusion
 - Conclusion
 - Related Work

An control problem example

Robot navigation

An control problem example

The Objectives

- The robot need to reach the target point fast and safely
- The robot have on-board camera for obstacle-avoidance
- The robot use GPS for navigating

The Traditional Solution

Constant time steps + periodic tasks

time steps				
figure+	Task	Period	Deadline	
	Check for obstacles	10ms	1.5ms	
	Check GPS position	10ms	0.5ms	
	Control Law	2ms	0ms	

The Main Software Design Problems

Task	Period	Deadline		
Check for obstacles	10ms	1.5ms		
Check GPS position	10ms	0.5ms		
Control Law	2ms	0ms		
•••				

The design problems from our point of view

- All the tasks are highly coupled: any change or addition of some task require to consider all other tasks requirements
- Static and inefficient scheduling: the table is defined for the worst case talk about related work on this direction
- No consideration of the environmental conditions: it is a cyber-physical system after all

The Goal

In this thesis we design an **reactive** scheduling framework for real-time systems

Required features:

- Independent and composable requirements
- Control objective based requirement interface
- Environment adoptive scheduler

Explain that the scheduler is involve in the control loops

Scheduler Kalman Filter Experiment Conclusion Motivation Architecture Büchi Games

Automata-Based Specification Interface

The Proposed Architecture

maybe add a word about RTcomposer and GameComposer

Why Automata

- Lite: minimal resource consumption at run-time
- Composable: easy to compose independent components
- Automata theory built in: allows for tools such GOAL
- Expressiveness

The Proposed Architecture

Simplifying the Guarded Automata The Proposed Architecture

Mode-based guarded automata (for good intuition)

1

The automata in practice (best match ω -word theory)

Q: How to create the guarded automata? By wining Büchi

Büchi game remainder

Büchi game remainder

A Component in the System

Component Definition $(\langle T, G \rangle)$

- A set of subroutines (functions code)
- A Generalize Büchi Game

Scheduler Kalman Filter Experiment Conclusion Motivation Architecture Büchi Games

A Component in the System

The Büchi game $(G = \langle A, \langle P_{sched}, P_{env} \rangle \rangle)$

- Is played in turns by the environment and the scheduler
- Represent the interaction between the scheduler and the environment reaction

Scheduling Büchi Game

A Component in the System

Scheduling Büchi Game

- Alternating turns
- Scheduler alphabet is $\Sigma_{schd} = 2^T$
- ullet Environment alphabet is $\Sigma_{env}=\mathbb{R}^n$ (scheduler feedback variables)
- There is an Edge for any possible environmental outcome
- The scheduler feedback variables can be any environment-depended value
- Environment player plays first

A Component in the System

The Büchi Game of the obstacles avoidance component:

- The objectives of the component is to avoid obstacles
- The scheduler win \Leftrightarrow the corresponding word $\omega \in \mathcal{L}(A) \Leftrightarrow$ the component achieved his objectives

Component Composition

Component Composition

Requirements

- A game $(G = \langle A, \langle P_s, P_e \rangle)$ correspond to all the components
- The game of Component is $G_i = \langle A_i, \langle P_s^i, P_e^i \rangle \rangle$
- $\omega \in \mathcal{L}(A) \Leftrightarrow \forall i : \omega(i) \in \mathcal{L}(A_i)$

TODO: how to present the composition details?

TODO: show the scheduler work: 1. find wining strategy 2. simultaneously walk through the strategy automata

Explain the concept of estimate the errors the simulation 1. mission definition 2. scheduling objectives 3. how we review the results (the x axis)4. add a video 1. why not Kalman 2. how we use complementary filter 3. the linearize model in x / roll axis 4. update state (equations) the automata and their results instead of with Related Work review of similar papers: A table with few papers

Thanks