8995 CAPSTONE PROJECT PRESENTATION

Shop Customer Dataset

Jacinda Zou / U3145190 TUTORIAL GROUP – WEEK 13, 2 May 2023/16:30

Table of Contents

- 1. Introduction / Problem Statement
- 2. Dataset Details
- 3. EDA (Exploratory Data Analysis) Outcomes
- 4. PDA (Predictive Data Analytics) Outcomes
- 5. Implementation and Deployment (TkInter/Flask/Streamlit) Plan and Status Update
- 6. References/Bibliography

1. Introduction / Problem Statement

- Problem:
- To determine whether a customer is a potential value customer (spending score more than 50) based on the data of the Shop.
- The Objective:
- To help the shop owner understand their customers and make business decisions.

2. Dataset Details

- An in-depth investigation of the customers in a shop [1].
- It helps the business learn more about its customers.
- First 5 rows of Dataset

	CustomerID	Gender	Age	Annual Income (\$)	Spending Score (1-100)	Profession	Work Experience	Family Size
0	1	Male	19	15000	39	Healthcare	1	4
1	2	Male	21	35000	81	Engineer	3	3
2	3	Female	20	86000	6	Engineer	1	1
3	4	Female	23	59000	77	Lawyer	0	2
4	5	Female	31	38000	40	Entertainment	2	6

3. EDA (Exploratory Data Analysis) Outcomes

Extreme values

100

47

EDA Report – Spending Score

Spending Score (1-100)

Real number (R)

Statistics

Maximum

Interquartile range (IQR)

Range

101
5.1%
0
0.0%
0
0.0%
50.9625

Histogram

Minimum	0
Maximum	100
Zeros	2
Zeros (%)	0.1%
Negative	0
Negative (%)	0.0%
Memory size	15.8 KiB

Quantile statistics				
Minimum	0			
5-th percentile	6			
Q1	28			
median	50			
Q3	75			
95-th percentile	95			

Common values

Descriptive statistics	
Standard deviation	27.934661
Coefficient of variation (CV)	0.54814149
Kurtosis	-1.1007316
Mean	50.9625
Median Absolute Deviation (MAD)	24
Skewness	0.0045552482
Sum	101925
Variance	780.34527
Monotonicity	Not monotonic

3. EDA (Exploratory Data Analysis) Outcomes

Customer Spending Score Classes

4. PDA (Predictive Data Analysis) Outcomes

- Added a new column named 'value customer' based on spending score
- 1 = Spending score > 50
- 0 = Spending Score < 50

```
class_label = df['Spending Score (1-100)']
df = df.drop(['Spending Score (1-100)'], axis =1)
df = (df-df.min())/(df.max()-df.min())
df['Spending Score (1-100)'] = class_label
df['Value Customer'] = (df['Spending Score (1-100)'] > 50).astype(int)
df
```

4. PDA (Predictive Data Analysis) Outcomes

Algorithm Comparison

 Choose RF (Random Forest Classifier) for the model performance evaluation

4. PDA (Predictive Data Analysis) Outcomes

Model Performance Evaluation

Classification report

Confusion matrix

}	precision	recall	f1-score	support
0	0.51	0.54	0.53	204
1	0.49	0.46	0.47	196
accuracy			0.50	400
macro avg	0.50	0.50	0.50	400
weighted avg	0.50	0.50	0.50	400

5. Implementation and Deployment (TkInter) Plan and Status Update

Implementation: TkInter

Deployment plan: GitHub

 Current Status: Write a Gui program by using TkInter

References / Bibilography

Open Database, *Shop Customer Data*, [Online]. Available:

https://www.kaggle.com/datasets/datascientista nna/customers-dataset (accessed: May 2, 2023)