Recau that if it. v=0, Projection of a vector i onto i il and i are Orthogonal to Suppose $\vec{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$ & $\vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ each other. <u>v</u>IV u porting of the $\cos Q = \overrightarrow{u} \cdot \overrightarrow{v}$ ||นี|| ||ป||

Proj of \vec{u} onto \vec{v} is that multiple of \vec{v} , $t\vec{v}$ 8.t $(\vec{u}-t\vec{v})$ is orthog to \vec{v}

$$\Rightarrow \quad \mathsf{t} = \underbrace{\vec{u} \cdot \vec{v}}_{\vec{v} \cdot \vec{v}}$$

Proj of il onto is

$$= P(\vec{u}) = \frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{u}$$

This is the multiple of it that best approximates it

Projection of a given vector \vec{z} onto a plane passing through the Origin.

Let $\vec{u} : \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$ be a non zero vector and let $\vec{P}_{\vec{x}}$ be the plane passing through the origin a orthogonal to \vec{u}

Let $\vec{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$ be a vector in the plane P_{π} .

Since \vec{y} is in the plane $P_{\pi} \times P_{\pi}$ is orthogonal to \vec{u} , we have $\vec{u} \cdot \vec{y} = 0$

Egn of the plane Pr.

> | y, u, + y2 u2+ y3 u3 = 0

Let \vec{z} be a vector. Let $Q(\vec{z})$ be the proj of \vec{z} onto $P_{\vec{z}}$.

foot of the Lar from \vec{z} to $P_{\vec{z}}$

Since the line segment joining I and Q(I) is Lar to Br and we know that if I ar to Pi, we have

2-9(2) is parallel to it

⇒ \(\frac{1}{2} - \(\frac{1}{2} \) = t \(\frac{1}{2} \)

> \(\frac{7}{2} - t \(\vec{u} = \mathre{G}(\bar{z}) \)

Q(Z) is in Pr. : Z-tů is Larto il

⇒ từ is the proj. of i onto ii

 $\vec{\chi} - Q(\vec{z}) = P(\vec{\chi})$, where $P(\vec{\chi})$ is the project of $\vec{\chi}$ onto \vec{u}

Thus we see that

 $Q(\vec{z}) = \vec{x} - P(\vec{z})$ is the project \vec{x} onto the plane Px, passing this the origin and orthogonal to \vec{u}

Question: What is the distance from the point \vec{x} to the plane Px?

The distance b/w \vec{x} and Px is precisely the length of $P(\vec{z})$

Area of a parallelogram with Rides along $\vec{z} \times \vec{u}$ $= b \times h.$ $b = ||\vec{u}||$ $h = |\vec{x} \cdot \vec{z}|(\vec{u} \cdot \vec{u}) - |\vec{x} \cdot \vec{u}|^2$ $\vdots \quad \text{Area} = \sqrt{(\vec{x} \cdot \vec{x})(\vec{u} \cdot \vec{u}) - |\vec{x} \cdot \vec{u}|^2}.$