## Block diagram of ROM chip



# To construct a 2 KB RAM chip How many 128 B RAM chips are required?

Big RAM chip size =  $2 \text{ KB} = 2^{1} \times 2^{10} \text{ B} = 2^{11} \text{ B}$ 

Available small RAM chip size =  $128 B = 2^7 B$ 

Number of 128 B RAM chips require =

= 
$$\frac{\text{Big RAM chip size}}{\text{Available small RAM chip size}}$$
$$\frac{2^{11} \text{ B}}{2^{7}}$$
$$= 2^{4} \text{ B}$$
$$= 16$$

#### Design a big RAM chip using small RAM chips

To construct a 256 B RAM chip How many 128 B RAM chips are required?

Big RAM chip size = 256 B Available small RAM chip size = 128 B

Number of 128 B RAM chips =

= 2

Number of Address bits for small RAM chip =  $7 (A_6 - A_0)$ Number of Address bits for big RAM chip =  $8 (A_7 - A_0)$  Click here Number of Data bits for big RAM chip and small RAM chip are same and is equal to  $8 (D_7 - D_0)$ 

### Memory connection to the CPU



## Memory Read operation from RAM 1



### Memory Write operation into RAM 2



## Memory Address Map

| Component | Hexadecimal<br>Address | A <sub>7</sub> | $A_6$ | ddre<br>A <sub>5</sub> |   |   | A <sub>2</sub> | A <sub>1</sub> | A <sub>0</sub> |
|-----------|------------------------|----------------|-------|------------------------|---|---|----------------|----------------|----------------|
| RAM 1     | 00 – 7F                | 0              | ×     | ×                      | × | × | ×              | ×              | ×              |
| RAM 2     | 80 – FF                | 1              | ×     | ×                      | × | × | ×              | ×              | ×              |
|           |                        |                |       |                        |   |   |                |                |                |

Click here

# Design a big RAM chip using small RAM chips contd.

To construct a 1 KB RAM chip How many 256 B RAM chips are required?

Big RAM chip size = 1 KB = 1024 B Available small RAM chip size = 256 B

Number of 256 B RAM chips require =

= 4

Number of Address bits for small RAM chip =  $8 (A_7 - A_0)$ Number of Address bits for big RAM chip =  $10 (A_9 - A_0)$ Number of Data bits for big RAM chip and small RAM chip are same and is equal to  $8 (D_7 - D_0)$ 

## Memory Address Map

| Component | Hexadecimal | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                |                |       |       |       |       |       |                       |       |
|-----------|-------------|--------------------------------------------------------|----------------|----------------|-------|-------|-------|-------|-------|-----------------------|-------|
|           | Address     | $A_9$                                                  | A <sub>8</sub> | A <sub>7</sub> | $A_6$ | $A_5$ | $A_4$ | $A_3$ | $A_2$ | <b>A</b> <sub>1</sub> | $A_0$ |
| RAM 1     | 0000 – 00FF | 0                                                      | 0              | ×              | ×     | ×     | ×     | ×     | ×     | ×                     | ×     |
| RAM 2     | 0100 – 01FF | 0                                                      | 1              | ×              | ×     | ×     | ×     | ×     | ×     | ×                     | ×     |
| RAM 3     | 0200 – 02FF | 1                                                      | 0              | ×              | ×     | ×     | ×     | ×     | ×     | ×                     | ×     |
| RAM 4     | 0300 – 03FF | 1                                                      | 1              | ×              | ×     | ×     | ×     | ×     | ×     | ×                     | ×     |

Click here

#### Memory connection



## Thank You





Address bus



### **Decoder Specification**

- N: 2<sup>N</sup> Decoder => N inputs and 2<sup>N</sup> outputs
- 2:4 Decoder => 2 inputs and 4 outputs
- 3:8 Decoder => 3 inputs and 8 outputs
- 4:16 Decoder => 4 inputs and 16 outputs

### Decoder

