

AutoEncoder / tsfresh / Clustering / Anomaly Detection

1. tsfresh

- General idea
- Example
- Example on Soufflet data

2. Handle different-length time series

3. AutoEncoder / Soufflet

- General idea
- Applied to find anomaly
- Approaches
- Basic AE on Soufflet data
- CNN & LSTM AE idea
- Some comments

4. Clustering / Soufflet

- General idea & examples
- Some basic results on Soufflet data
- Applied to recipe recommendation

1. tsfresh

- General idea
- Example
- Example on Soufflet data

2. Handle different-length time series

3. AutoEncoder / Soufflet

- General idea
- Applied to find anomaly
- Approaches
- Basic AE on Soufflet data
- CNN & LSTM AE idea
- Some comments

4. Clustering / Soufflet

- General idea & examples
- Some basic results on Soufflet data
- Applied to recipe recommendation

tsfresh → general idea

tsfresh → example

tsfresh → Soufflet

	id_couche	consigne_te	emperature_sur_plateau	mesure_temperature_sur_plateau		consigne_temperature_sous_plateau	mesure_temperature_sous_plateau	ouverture_volet_air_neuf	vitesse_v
date									
2013- 10-15 05:19:00	P13C1021	0.0		164.0		0.0	168.0	100.0 0.0	
2013- 10-15 05:20:00	P13C1021	0.0		166.0		0.0	168.0	100.0	0.0
2013- 10-15 05:21:00	P13C1021	0.0		166.0		0.0	168.0	100.0	0.0
2013- 10-15 05:22:00	P13C1021	0.0		166.0		0.0	168.0	100.0 0.0	
2013- 10-15 05:23:00			amperage_moteur_venti	lateur_abs_energy	amperage_moteu	r_ventilateur_absolute_sum_of_changes	amperage_moteur_ventilateurc3lag_1	amperage_moteur_ventilateu	urc3lag_2 a
	P13C1021	id_couche							
		P13C1021	71866667.0		8418.0		1.215348e+06	1.215078e+06	1
		P13C1041	68446441.0		8706.0		1.143089e+06	1.142621e+06	1
		P13C1051	69310664.0		9218.0		1.154612e+06 1.154382e+06		1
tsfre	<mark>esh</mark> →	P13C1061	71067848.0		9276.0		1.178115e+06	1.177775e+06	
		P14C1016	66632263.0 9648		9648.0		1.105785e+06 1.104900e+06 97		7 x 2390

1. tsfresh

- General idea
- Example
- Example on Soufflet data

2. Handle different-length time series

3. AutoEncoder / Soufflet

- General idea
- Applied to find anomaly
- Approaches
- Basic AE on Soufflet data
- CNN & LSTM AE idea
- Some comments

4. Clustering / Soufflet

- General idea & examples
- Some basic results on Soufflet data
- Applied to recipe recommendation

Handle different-length TS

Problem:

- They start / end at different timestamps
- Their lengths are different

Solution

- Resampling to "20-minute" bins + align TS
- Approaches:
 - Take the shortest
 - Filled by 0 / last / mean

Handle different-length TS → resampling to 20m

popai

1. tsfresh

- General idea
- Example
- Example on Soufflet data

2. Handle different-length time series

3. AutoEncoder / Soufflet

- General idea
- Applied to find anomaly
- Approaches
- Basic AE on Soufflet data
- CNN & LSTM AE idea
- Some comments

4. Clustering / Soufflet

- General idea & examples
- Some basic results on Soufflet data
- Applied to recipe recommendation

AutoEncoder → general idea

AutoEncoder → find anomaly?

AutoEncoder → approaches?

- TS → tsfresh → autoencoder: make the AE after feature extraction/selection
- TS autoencoder: make the AE directly on the time series data
- Basic AE: Linear/ReLU layers ⇒ Thi makes some tests/understanding
- CNN AE: usually used in image processing
- LSTM AE: usually used in forcasting TS
- **VAE** ⇒ not considered yet!

⇒ Alice takes in charge

AutoEncoder → Basic AE on Soufflet

Try: Basic AE on Soufflet (directly on TS data)

AutoEncoder → CNN / DeepConvLSTM idea

Image from: Martinez 2013

CNN

Image from: Ordonez 2016

DeepConvLSTM

Source: https://www.youtube.com/watch?v=9X_4i7zdSY8

AutoEncoder → some comments

- Choice of activations (type of layers)?
- Number of layers?
- Normalize or not? Type of normalization?
- Hyperparameters? (learning rate, regularization)
- Current working with Germoir_1/GLOBE-1385-1 → only 97 couches to train NN → so few
 - → Take more data (from other clients)
- Dimensional input (my problem of understanding):
 - batch_size x channel x height x width → CNN
 - samples x time_step x features → RNN/LSTM
- Problem with CUDA / PyTorch:

```
torch==1.2.0 ← torchvision==0.4.0 ← Pillow<7.0.0
```


1. tsfresh

- General idea
- Example
- Example on Soufflet data

2. Handle different-length time series

3. AutoEncoder / Soufflet

- General idea
- Applied to find anomaly
- Approaches
- Basic AE on Soufflet data
- CNN & LSTM AE idea
- Some comments

4. Clustering / Soufflet

- General idea & examples
- Some basic results on Soufflet data
- Applied to recipe recommendation

Clustering → general idea & examples

- Grouping similar objects into the same clusters
- Same clusters → similar properties

An example of clustering time series

Clustering → general idea & examples

Soufflet data: df_tsfresh + without normalize + DBSCAN + Silhouette + min_cluster_size=3

Clustering → Soufflet

df_tsfresh: Germoir_1 / GLOBE / cdc 1385-1

The results are not so exact and good (in visualization)

Result: The Silhouette Score with several clustering methods and dimensionality reduction methods.

	PCA	UMAP	Note
K-Means	0.2202	0.5604	PCA (35 clusters), UMAP (9 clusters)
HDBSCAN	0.2767	0.744	min_cluster_size=3

Calinski-Harabasz Index with HDBSCAN:

PCA data: 12.7616UMAP data: 258.08

Notebook: soufflet/blob/master/notebooks/models/2020-01-09-Thi-clustering-tsfresh.ipynb

Clustering

If someone needs?

dataframe

Dimensional reduction?

Normalization?

Clustering

Show clusters?

```
def clustering_couches(df, dim_reduction={}, normalize=None,
                       clustering={}, show_clusters={}):
    """Clustering the couches with several options.
    Input: df
    Output: - id of couches with their clusters
            - plot the clusters w.r.t. df's variables
    Parameters
    _ _ _ _ _ _ _ _ _ _
    df: DataFrame
        DataFrame to be used in the clustering.
    dim reduction: dict
        The parameters to apply to dimensionality reduction model.
        They have keys:
            - 'type': type of dim_reduc model. It can be 'UMAP' or 'PCA'
            - other key parameters of the chosen model (eg. 'n_components')
    normalize: str
        The name of normalisation model. E.g. 'normalize', 'minmax_scale', 'quantile_transform', 'standard_scaler'
    clustering: str
        The parameters to apply to clustering model.
        They have keys:
            - 'key_cluster': type of clustering. It can be 'kmeans', 'hdbscan'.
            - 'range nb clusters': (used for 'kmeans') range of number of clusters to be tested,
            - 'random state': default None.
            - if 'key_cluster' is 'hdbscan', you can use its custom parameters.
    show clusters: dict
        Option to make/show the clusters w.r.t. variables.
        They have keys:
            - 'show': bool, show the plot or not?
            - 'df': The original dataframe of couches.
    0.00
```

Notebook: /soufflet/blob/master/notebooks/eda/2020-02-03-Thi-trempe-recette_logic-voisins-recette_de_germination-IM.ipynb

Clustering → Soufflet : recipe recommendation

df_clean: Germoir_1 / GLOBE / cdc 1385-1

id_couche: P18C1325

```
recette_germination
26-6rh_2017x2-1714_40-2
                           96.155
26 - 40-2
                           84.620
31 - 40-2
                           76.920
40-2
                           73.080
27 - 30-2
                           69.230
27-6rh 2017x2-1714 30-2
                           69.230
26 - 40-1
                           69.230
Name: im, dtype: float64
```

Notebook: /soufflet/blob/master/notebooks/eda/2020-02-03-Thi-trempe-recette_logic-voisins-recette_de_germination-IM.ipynb

1. tsfresh

- General idea
- Example
- Example on Soufflet data

2. Handle different-length time series

3. AutoEncoder / Soufflet

- General idea
- Applied to find anomaly
- Approaches
- Basic AE on Soufflet data
- CNN & LSTM AE idea
- Some comments

4. Clustering / Soufflet

- General idea & examples
- Some basic results on Soufflet data
- Applied to recipe recommendation

Define a type? → need more discussion

which cluster / number of clusters / percentange of elements in that cluster

	f_count	f_percent
clusters		
1	1356	67.295285
6	187	9.280397
2	122	6.054591
8	78	3.870968
3	67	3.325062
9	54	2.679901
7	53	2.630273
0	52	2.580645
10	33	1.637717
4	7	0.347395
5	6	0.297767

	id_anomalie	id_customer	ts_start	ts_end	ssii_type	id_ssii	author	type
0	0	1	1550279100000	1550279400000	sensor	1	PowerOP	5.0/11/0.298
1	1	1	1550287500000	1550287800000	sensor	1	PowerOP	4.0/11/0.347
2	2	1	1550322000000	1550322300000	sensor	1	PowerOP	4.0/11/0.347
3	3	1	1550361000000	1550361300000	sensor	1	PowerOP	5.0/11/0.298
4	4	1	1550433300000	1550433600000	sensor	1	PowerOP	5.0/11/0.298
5	5	1	1550442000000	1550442300000	sensor	1	PowerOP	4.0/11/0.347
6	6	1	1550457600000	1550457900000	sensor	1	PowerOP	5.0/11/0.298
7	7	1	1550481600000	1550481900000	sensor	1	PowerOP	4.0/11/0.347
8	8	1	1550507760000	1550508060000	sensor	1	PowerOP	5.0/11/0.298
9	9	1	1550516160000	1550516460000	sensor	1	PowerOP	5.0/11/0.298
10	10	1	1550523960000	1550524260000	sensor	1	PowerOP	4.0/11/0.347
11	11	1	1550540460000	1550540760000	sensor	1	PowerOP	4.0/11/0.347
12	12	1	1550757060000	1550757360000	sensor	1	PowerOP	4.0/11/0.347

The end!

Thank you for your attention!