Практическое рукоВводство по дифференциальным уравнениям

Латыпов Владимир (конспектор)
t.me/donRumata03, github.com/donRumata03, donrumata03@gmail.com

20 декабря 2022 г.

Содержание

•	1	Введение, постановка задачи, визуальные представления	3
	2	Уравнения, интегрируемые в квадратурах	4
		2.1 С разделёнными переменными	4
		2.2 С разделЯЮЩИМИСЯ переменными	4
		2.3 Однородные	5
		2.4 Линейное первого порядка	5
		2.5 Бернулли	5
		2.6 Рикатти	5
		2.7 В полных дифференциалах	6
		2.7.1 Интегрирующий множитель	6
	3	Ненормальные уравнения	6
		3.1 Разрешимое	6
		3.2 Параметризация	6
	4	Уравнения высшего порядка, методы понижения порядка	7
	5	Системы уравнений, теоремы о единственности и существова-	
		нии	7
	6	Линейные системы и уравнения	7
•	7	Теория истойчивости	7

Состоит из разобранных в курсе методов решения (и определения границ применимости) и комментариев-концептуализаций.

1. Введение, постановка задачи, визуальные представления

Дифференциальное уравнение — условие на функцию, записанное с использованием дифференциальных операторов. Возможно, ещё дана кастомная область, в которой уравнение рассматривается и точка, через которую требуется проходить.

Решить дифференциальное уравнение — описать класс всех функций, удовлеторяющих уравнению. Рго tip: мы в основном рассматриваем уравнения, для которых «в большей части точек» выполняются условия Коши о единственности, так что решения обычно параметризуются n константами (где n — подядок уравнения).

Также в курсе рассматриваются системы уравнений (которые фактически диффуры для векторной переменной). Теория в основном выводится сначала для них, а потом переносится на уравнения высшего порядка через сведение их к системе.

В общем случае диффуры формулируются как F(...)=0, где ... — все символы, которые нам разрешено использовать

Важный тип уравнений: нормальные (для систем и для уравнений первого порядка) и (с той же сутью, но для уравнений высшего порядка) канонический — когда уравнение разрешено относительно производных (самого высокого порядка для УВП). Тогда запись будет $y^{(n)} = f(...)$, где «...» — всё остальное.

Для них мы как бы в каждой точке знаем, в какую сторону надо идти. Направление, в котором надо двигаться (вектор-значение функции f), можно изобразить в виде векторного поля (на плоскости или в пространстве $\mathbb{R}_{t,r}$).

Мы можем построить ломанную Эйлера.

Но тупо проинтегрировать мы не можем (так как есть зависимость от самого y, не только x).

А этот «метод решения диффуров» — вычислительно нестабильный (то есть малая погрешность в начале накапливается и может приве-

сти к очень сильно отличающемуся результату в итоге) — в отличие от интегрирования. ...так что решать диффуры (даже в нормальной форме) хочется по-честному...

Иногда предоставить решение в явном виде (т.е. y(x) или r(t)) не получается, тогда можно предъявить в параметрическом виде или в виде т.н. «общего интеграла» — неявного отображения.

Иногда записывают уравнения в диффернциалах: $P(x,y)\,\mathrm{d}x + Q(x,y)\,\mathrm{d}y = 0$ — это позволяет удобного говорить о решениях как y(x), так и x(y)

— и даже
$$egin{cases} x(t), \\ y(t) \end{cases}$$

Причём если изобразить векторное поле формы $\omega = P \, \mathrm{d} x + Q \, \mathrm{d} y$, получится, что в каждой точке решение ($\stackrel{\mathrm{def}}{=}$ вектор — его дифференциал) должно быть перпенликулярно вектору (P,Q), потому что требование — равенство скалярного произведения нулю.

2. Уравнения, интегрируемые в квадратурах

Для узкого класса уравнений, можем через элементарные функции и операции интегрирования неявно выразить ответ. Иногда даже получается явно.

2.1. С разделёнными переменными

 $P(x)\,\mathrm{d} x + Q(y)\,\mathrm{d} y = 0$ — коэффициенты формы зависят только от «своей» переменной.

Общий интеграл: $\int P(x) dx + \int Q(y) dy = C$, $C \in \mathbb{R}$.

2.2. С разделЯЮЩИМИСЯ переменными

 $p_1(x)q_1(y)\,\mathrm{d} x+p_2(x)q_2(y)\,\mathrm{d} y=0$ — коэффициенты формы предствавимы в виде произведения функций, зависящих только от одной переменной.

Метод решения: разделяем область задания на прямоугольники, в которых функции q_1,p_2 принимают ноль, рассматриваем в каждой отдельно, поделив на них $\frac{p_1(x)}{p_2(x)}\,\mathrm{d}x+\frac{q_2(y)}{q_1(y)}\,\mathrm{d}y=0$, затем — склеиваем решения, чтобы они получились гладкими (то есть совпадать в месте склейки должны пределы самих y и пределы y').

2.3. Однородные

 $P(x,y)\,\mathrm{d}x+Q(x,y)\,\mathrm{d}y=0$, где коэффициенты — однородные функции $\mathbb{R}^2 o\mathbb{R}$ степени p, то есть $f(\alpha x,\alpha y)=\alpha^p f(x,y)$.

Тогда замена

$$\begin{cases} x = x, \\ z = \frac{y}{x} \end{cases} \tag{1}$$

...приводит к УРП.

Обычно замена производится тривиально.

2.4. Линейное первого порядка

$$y' = p(x)y + q(x).$$

Решения такие и только такие (покрывают всю область + теорема о единственности):

$$y = \left(C + \int qe^{-\int p}\right)e^{\int p}, \quad C \in \mathbb{R}$$
 (2)

(Здесь и далее интеграл будет значить «какая-нибудь первообразная» (причём здесь, кажись, должна быть одна и та же в $\pm \int p$) — константу дописываем при необходимости)

2.5. Бернулли

$$y' = p(x)y + q(x)y^{\alpha}, \quad \alpha \neq 0, 1.$$

Сводится делением на y^{α} и переходу к переменной $z(x)=y^{1-\alpha}.$

2.6. Рикатти

$$y'=p(x)y^2+q(x)y+r(x). \\$$

В общем случае в квадратурах не интегрируется, но, если известно какое-нибудь решение φ , подстановкой $y=z+\varphi$ к Бернулли.

2.7. В полных дифференциалах

Если форма $\omega P\,\mathrm{d} x+Q\,\mathrm{d} y$ интегрируема, то есть $du=\omega$, называется «в полных дифференциалах». (То есть u — такая, что $u_x'=P,u_y'=Q$)

Обший интеграл: $u(x,y) = C, \quad C \in \mathbb{R}.$

Если живём в односвязной области, точность формы проверяется через $P_y' \mathrel{?=} Q_x'$.

Получать u можно зафиксировав и проинтегрировав от неё по пути.

А можно сначала зафиксировать y, найти поведение вдоль прямой через частную производную u_x' , а потом — учесть изменение вдоль y. C(y) находится через уравнение для u_y' .

2.7.1. Интегрирующий множитель

Если условие $P_y'=Q_x'$ не выполнено, можно попробовать угадать такое μ , чтобы уравнение $\mu(x,y)\omega=0$ было в полных дифференциалах.

Для этого необходимо $\mu_y' P + \mu_x' Q = (Q_x' - P_y') \mu.$

3. Ненормальные уравнения

3.1. Разрешимое

Если можно разрешить локально, делаем это потом склеваем.

3.2. Параметризация

Если какого-то символа из x,y,y' нет — можно параметризовать кривую решения уравнения F(...,...) как для независимых переменных, а потом — воспользоваться основным соотношением: $\mathrm{d}y=y_x'\,\mathrm{d}x$ (неизвестны всегда разные штуки).

Если все символы есть, параметризуем поверхность (двумя параметрами u,v) F(x,y,y')=0 как для независимых переменных. Запишем то же соотношение и получим диффуру на u,v. Если смогли решить в виде $v=\phi(u,C)$, выражам через один параметр параметрически x,y.

- 4. Уравнения высшего порядка, методы понижения порядка
- 5. Системы уравнений, теоремы о единственности и существовании
- 6. Линейные системы и уравнения
- 7. Теория устойчивости

//TODO