Informe Comparativo de Modelos de Clasificación de Mensajes de Soporte

1. Introducción

En este informe se comparan tres enfoques diferentes para la clasificación automática de mensajes de soporte técnico:

- un modelo clásico basado en TF-IDF con regresión logística,
- un modelo con BERT sin fine-tuning, y
- un modelo con BERT fine-tuned, es decir, ajustado específicamente sobre los datos del dominio.

El objetivo principal del análisis es determinar cuál de estos modelos se desempeña mejor en términos de precisión, capacidad de generalización y manejo de clases difíciles, especialmente en contextos de atención al cliente donde una clasificación errónea puede impactar negativamente en los tiempos de respuesta y en la experiencia del usuario.

2. Resultados Generales

Los tres modelos fueron evaluados sobre el mismo conjunto de test, compuesto por 5600 ejemplos balanceados entre las clases: **Change**, **Incident**, **Problem** y **Request**. Las métricas utilizadas incluyen *accuracy*, *precision*, *recall* y *F1-score* macro y por clase.

El desempeño global fue el siguiente:

- TF-IDF + Regresión Logística: Accuracy = 0.90 | F1-score macro = 0.90
- BERT sin fine-tuning: Accuracy = 0.85 | F1-score macro = 0.85
- BERT con fine-tuning:
 Accuracy = 0.97 | F1-score macro = 0.97

Este resumen deja en claro que **el fine-tuning sobre BERT genera una mejora significativa en el rendimiento general del modelo**, superando no solo al modelo clásico sino también a la versión de BERT sin ajustes.

3. Análisis por Clase

Un análisis más detallado por clase muestra diferencias clave:

- Change: Todos los modelos obtuvieron F1-scores cercanos a 1.00. Se trata de una clase con frases muy específicas y repetitivas (como "I want to change..." o "Please update..."), lo que facilita su detección incluso por modelos simples como TF-IDF.
- Request: También se desempeñó muy bien en los tres modelos. El lenguaje formal, estructurado y directo de esta clase ("Can you send me...", "I need confirmation...") parece generar embeddings distintivos incluso sin contexto.
- **Incident** y **Problem**: Son las clases más difíciles de diferenciar. Aquí se observaron las mayores diferencias entre los modelos:
 - Con TF-IDF, los errores entre Incident y Problem fueron frecuentes. Muchos mensajes de Incident fueron mal clasificados como Problem (307 casos), y viceversa (257 casos).
 - Con BERT sin fine-tuning, estos errores incluso aumentaron (405 y 399 respectivamente), lo que sugiere que usar BERT sin entrenamiento específico no solo no mejora el modelo, sino que puede empeorar el desempeño.
 - Con BERT fine-tuned, los errores se redujeron a solo 93
 (Incident→Problem) y 62 (Problem→Incident), logrando una mejora crítica.
 Esto demuestra la importancia del fine-tuning para aprovechar el contexto semántico de los mensajes.

4. Análisis de Errores

Los errores más comunes se produjeron entre clases que comparten palabras clave pero tienen intenciones diferentes. Por ejemplo, una frase como *"I'm unable to access my account"* podría ser interpretada como un **Incident** o un **Problem**, dependiendo del historial del usuario o del contexto del sistema. Modelos como TF-IDF, que no consideran el orden ni la relación entre palabras, tienden a confundirse en estos casos.

Además, se observó que **BERT sin fine-tuning** no logró aprovechar su arquitectura para reducir estas confusiones. Aunque el embedding de BERT contiene información contextual, si no se ajusta a la tarea específica, los vectores generados no capturan las diferencias sutiles entre clases. En cambio, al hacer fine-tuning, el modelo aprende patrones

específicos de cómo se expresan los problemas técnicos vs. los incidentes reales, lo que resulta en una clasificación mucho más precisa.

5. Conclusión

El análisis comparativo muestra de forma concluyente que **el modelo BERT con fine-tuning es el más adecuado para la clasificación automática de mensajes de soporte**. No solo logra un *accuracy* general del 97%, sino que **reduce significativamente los errores críticos entre clases ambigüas**, como *Incident y Problem*. Además, mantiene un rendimiento perfecto en las clases más simples como *Change* y *Request*.

Si bien requiere mayor capacidad computacional para el entrenamiento, este modelo es el más recomendable para su implementación en producción, especialmente en entornos donde los tiempos de respuesta, la derivación automática y la priorización de tickets son fundamentales para mejorar la atención al cliente.

Por lo tanto, se concluye que **el fine-tuning no es opcional sino esencial cuando se trabaja con modelos de lenguaje en dominios específicos** como el soporte técnico. Su impacto en la calidad de la clasificación justifica ampliamente el esfuerzo adicional requerido.