第十二章 曲面几何连续性

- §1. 参数曲面间连续性概念
- (a) 背景知识

复杂曲面造型的需要: 多片曲面光滑拼接

参数连续性的局限性: 依赖于参数化, 限制条件过多

几何连续(geometric continuity): 可实现光滑拼接,不依赖于参数化

主要发展时期: 20 世纪 80 年代 90 年代

代表性人物: Barsky, deRose, 梁友栋, 刘鼎元, Jörg Peters,

- (b) 曲面 Cn 连续
- 定义

C⁰ 连续: 两张曲面具有公共连接线,也称位置连续。

 \mathbb{C}^n 连续: 当且仅当两曲面 P(s,t) 和 Q(u,v) 沿公共连接线 $P(\gamma) = Q(\gamma)$

处处具有直到 n 阶连续偏导矢,即有

$$\frac{\partial^{i+j} P(\gamma)}{\partial s^{i} \partial t^{j}} = \frac{\partial^{i+j} Q(\gamma)}{\partial u^{i} \partial v^{j}}, \quad i+j=1,2,...,n$$

则称曲面P(s,t)和Q(u,v)是 \mathbb{C}^n 连续的。

注:公共连接线 $P(\gamma)=Q(\gamma)$ 可以不是曲面参数线。

● 举例

 C^1 连续: $\frac{\partial P(\gamma)}{\partial s} = \frac{\partial Q(\gamma)}{\partial u}$, $\frac{\partial P(\gamma)}{\partial t} = \frac{\partial Q(\gamma)}{\partial v}$

C²连续: C¹连续,

$$\frac{\partial^2 P(\gamma)}{\partial s^2} = \frac{\partial^2 Q(\gamma)}{\partial u^2}, \quad \frac{\partial^2 P(\gamma)}{\partial s \partial t} = \frac{\partial^2 Q(\gamma)}{\partial u \partial v}, \quad \frac{\partial^2 P(\gamma)}{\partial t^2} = \frac{\partial^2 Q(\gamma)}{\partial v^2}$$

组合曲面的连续性:设曲面P(u,v)是定义在分割 $\Delta_u \times \Delta_v$,其中 $\Delta_u : u_0 < u_1$, $\Delta_v : v_0 < v_1 < v_2$,则该曲面在参数线 $v = v_1$ 处 \mathbb{C}^n 连续的

条件:
$$\frac{\partial^{i+j}P(u,v_1-)}{\partial u^i\partial v^j} = \frac{\partial^{i+j}P(u,v_1+)}{\partial u^i\partial v^j}$$
, $i+j=1,2,...,n$

例:双三次样条曲面是 C²连续的。

(c) 曲面 Gⁿ连续

 G^0 连续: 两张曲面位置连续,同 C^0 连续。

G¹ 连续: 两张曲面沿连接线处处具有公共切平面或公共曲面 法线。

设曲面 P(s,t)和 Q(u,v)有公共连接线 $P(\gamma)=Q(\gamma)$,则这两张曲面 G^1 连续的条件为:

$$(P_s \times P_t) \times (Q_u \times Q_v) = (P_s, P_t, Q_v)Q_u - (P_s, P_t, Q_u)Q_v = 0$$

公共连接线为曲面等参数线 $P(s_0,t)=Q(u_0,v)$, v=v(t),

则 $P_t \parallel Q_v$,

相应地, G^1 连续的条件: $(P_s, P_t, Q_u) = 0$

或:
$$Q_u = h(s)P_s + g(s)P_t$$

G²连续: 两张曲面沿连接线 G¹连续, 在连接线上任意一点沿任意方向具有相同法曲率。

或在连接线上处处具有相同主曲率与主方向。

 G^n 连续: 曲面 P(s,t)和 Q(u,v)有公共连接线 $P(\gamma)=Q(\gamma)$,其中一张 曲面被重新参数化 $Q(u,v)=\overline{Q}(\overline{u},\overline{v})$,使得 P(s,t)与 $\overline{Q}(\overline{u},\overline{v})$ 在连接线 处是 C^n 连续的。

$$\frac{\partial^{i+j} P(\gamma)}{\partial s^i \partial t^j} = \frac{\partial^{i+j} \overline{Q}(\gamma)}{\partial \overline{u}^i \partial \overline{v}^j}, \quad i+j=1,2,...,n$$

Gⁿ连续等价定义:存在 n(n+3)个形状函数满足 beta 约束

$$\frac{\partial^{i+j} P(\gamma)}{\partial s^{i} \partial t^{j}} = \mathbf{cr}_{i,j} \left(\frac{\partial^{k+l} Q(\gamma)}{\partial u^{k} \partial v^{l}}, \frac{\partial^{k+l} u(\gamma)}{\partial \overline{u}^{k} \partial \overline{v}^{l}}, \frac{\partial^{k+l} v(\gamma)}{\partial \overline{u}^{k} \partial \overline{v}^{l}} \right), \quad k+l=i+j \; ; \quad i+j=1,2,...,n$$

例:对于 G^1 连续,存在4个形状函数,可由Q(u,v)重新参数为 $Q(u,v) = \overline{Q}(u(\overline{u},\overline{v}),v(\overline{u},\overline{v}))$ 分别对 \overline{u} , \overline{v} 求偏导得到。

- §2. 两张参数曲面间 G¹ 连续拼接
- (a) 张量积 Bézier 曲面 G¹ 拼接

设有 Bézier 曲面

$$S_{m \times n}^1$$
: $P(s,t) = \sum_{i=0}^m \sum_{j=0}^n P_{ij} B_{i,m}(s) B_{j,n}(t)$

$$S_{l\times q}^2$$
: $Q(u,v) = \sum_{h=0}^{l} \sum_{k=0}^{q} Q_{hk} B_{h,l}(u) B_{k,q}(v)$

● 位置连续: P(1,t) = Q(0,v(t)),

实用上:
$$v(t)=t$$
, $P(1,t)=Q(0,t)$

$$\sum_{i=0}^{n} P_{mj} B_{j,n}(t) = \sum_{k=0}^{q} Q_{0k} B_{k,q}(t)$$

● 一阶几何连续

设 $P_s \times P_t \neq 0$, $Q_u \times Q_v \neq 0$ 以及m = l, n = q

由定义知:存在 $\alpha(t)>0$, $\beta(t)$,使得

$$Q_{u}(0,t) = \alpha(t)P_{s}(1,t) + \beta(t)P_{t}(1,t)$$

● 一个简单条件

设 $\alpha(t) = \alpha$, $\beta(t) = \beta$ 都是常数,则有

$$m\sum_{k=0}^{n}(Q_{1k}-Q_{0k})B_{k,n}(t) = \alpha m\sum_{j=0}^{n}(P_{mj}-P_{m-1,j})B_{j,n}(t) + \beta n\sum_{j=0}^{n-1}(P_{m,j+1}-P_{mj})B_{j,n-1}(t)$$

$$\vec{l} \vec{l} \vec{l} \, ec{e}_j = P_{m,j+1} - P_{mj}$$
 , $\vec{a}_j = P_{m,j} - P_{m-1,j}$, $\vec{b}_j = Q_{1,j} - Q_{0j}$

经整理,上式可写为

$$\sum_{j=0}^{n} \vec{b}_{j} B_{j,n}(t) = \sum_{j=0}^{n} \left\{ \alpha \vec{a}_{j} + \beta \frac{n}{m} \left[\frac{j}{n} \vec{e}_{j-1} + \left(1 - \frac{j}{n} \right) \vec{e}_{j} \right] \right\} B_{j,n}(t)$$

命题: 若两张 $m \times n$ 次 Bézier 曲面的控制顶点满足: 存在 $\alpha > 0$, β 使得

$$\begin{cases} P_{mj} = Q_{0j} \\ \vec{b}_j = \alpha \vec{a}_j + \beta \left[\frac{j}{n} \vec{e}_{j-1} + \left(1 - \frac{j}{n} \right) \vec{e}_j \right], & j = 0,1,...,n \end{cases}$$

则它们在公共边界处 G¹ 拼接。(此仅为充分条件)

● 一般性 G¹ 拼接条件

设有两张 $m \times n$ 次 Bézier 曲面 P = P(u,v), Q = Q(u,v)

G¹拼接充要条件:

$$P(1,v) = Q(0,v)$$
, $Q_u = \alpha(v)P_u + \beta(v)P_v$

等价条件: $(Q_u, P_u, P_v) = 0$

$$\iff \sum_{i=0}^{n} \sum_{j=0}^{n-1} \sum_{k=0}^{n} (\vec{a}_i, \vec{e}_j, \vec{b}_k) B_{i,n}(v) B_{j,n-1}(v) B_{k,n}(v) \equiv 0$$

$$\Leftrightarrow \sum_{\lambda=0}^{3n-1} \left[\sum_{\substack{0 \leq i \leq n \\ 0 \leq k \leq n \\ \lambda+1-n \leq i+k \leq \lambda}} \left(\vec{a}_i, \vec{e}_{\lambda-i-k}, \vec{b}_k \right) \frac{C_n^i C_{n-1}^{\lambda-i-k} C_i^k}{C_{3n-1}^{\lambda}} \right] B_{\lambda, 3n-1}(v) \equiv 0$$

定理: 两张 $m \times n$ 次 Bézier 曲面 G^1 拼接充要条件:

$$\begin{cases} P_{mj} = Q_{0j} & j = 0,1,...,n \\ \sum_{\substack{0 \le i \le n \\ 0 \le k \le n \\ \lambda + 1 - n \le j + k \le \lambda}} \left(\vec{a}_i, \vec{e}_{\lambda - i - k}, \vec{b}_k \right) \frac{C_n^i C_{n-1}^{\lambda - i - k} C_i^k}{C_{3n-1}^{\lambda}} = 0 \\ & \lambda = 0,1,...,3n - 1 \end{cases}$$

(b) 两张 Bézier 三角片 G¹ 拼接

● 问题假设

设有 Bézier 三角片

$$S_0: B_n^{(0)}(P) = \sum_{i+j+k=n} Q_{i,j,k}^{(0)} J_{i,j,k}(P)$$

● 位置连续(G⁰连续)

记
$$P(t) = P_1^{(0)} + t(P_2^{(0)} - P_1^{(0)}), \quad \overline{P}(t) = P_1^{(1)} + t(P_2^{(1)} - P_1^{(1)})$$
有 $B_n^{(0)}(P)|_{P=P(t)} = B_n^{(1)}(\overline{P})|_{\overline{P}=\overline{P}(t)}$
 $\Leftrightarrow Q_{0,r,s}^{(0)} = Q_{0,r,s}^{(1)}, \quad \forall r+s=n$

● G¹拼接条件

$$\vec{\mathsf{V}} \vec{\mathsf{L}} \, \vec{z}_0 = \overline{P_0^{(0)} P_1^{(0)}} \, , \quad \vec{a} = \overline{P_1^{(1)} P_2^{(1)}} \, , \quad \vec{b} = \overline{P_0^{(1)} P_1^{(1)}}$$

条件:
$$D_{\bar{z}_0}B_n^{(0)}(P(t)) = \alpha(t)D_{\bar{a}}B_n^{(1)}(\overline{P}(t)) + \beta(t)D_{\bar{b}}B_n^{(1)}(\overline{P}(t))$$
, 其中 $\beta(t) < 0$

例:
$$\alpha(t) = \alpha$$
, $\beta(t) = \beta < 0$ 均为常数

则两张 Bézier 三角片 G¹ 拼接条件(已知位置连续):

$$Q_{0,j+1,k}^{(0)} - Q_{1,j,k}^{(0)} = \alpha \left(Q_{0,j,k+1}^{(1)} - Q_{0,j+1,k}^{(1)} \right) + \beta \left(Q_{0,j+1,k}^{(1)} - Q_{1,j,k}^{(1)} \right), \quad j+k=n-1$$

有公共边的相邻三角形共面!

- (c) 张量积 Bézier 曲面与 Bézier 三角片 G¹拼接
 - 问题假设

$$S_0: B_n(u,v,w) = \sum_{i+j+k=n} Q_{i,j,k} J_{i,j,k}(u,v,w)$$

$$S_1: P(s,t) = \sum_{i=0}^{m} \sum_{j=0}^{n} P_{ij} B_{i,m}(s) B_{j,n}(t)$$

● 位置连续

$$P(1,t) = B_n(0,t,1-t)$$

$$\Leftrightarrow P_{m,j} = Q_{0,j,n-j}, \quad j = 0,1,...,n$$

● G¹连续拼接

$$\vec{l} \vec{c} \vec{c} \vec{c}_0 = \overrightarrow{P_0 P_1}$$
, $\vec{e} = \overrightarrow{P_1 P_2}$

条件 1:
$$D_{\bar{z}}B_n(0,t,1-t) = \overline{\alpha}(t)\frac{\partial P(1,t)}{\partial s} + \overline{\beta}(t)\frac{\partial P(1,t)}{\partial t}$$
, 且 $\overline{\alpha}(t) < 0$

条件 2:
$$\frac{\partial P(1,t)}{\partial s} = \alpha(t)D_{\bar{z}}B_n(0,t,1-t) + \beta(t)D_{\bar{e}}B_n(0,t,1-t)$$
, 且 $\alpha(t) < 0$

例: 设
$$\alpha(t)=\alpha<0$$
, $\beta(t)=\beta$ 均为常数,则有

$$m\sum_{i=0}^{n} (P_{m,j} - P_{m-1,j}) B_{j,n}(t)$$

$$=n\sum_{i=0}^{n-1}\left\{\alpha\left[Q_{0,j+1,n-j-1}-Q_{1,j,n-j-1}\right]+\beta\left[Q_{0,j,n-j}-Q_{0,j+1,n-j-1}\right]\right\}B_{j,n-1}(t)$$

$$\text{TT} E_{j} = \frac{n}{m} \left\{ \alpha \left[Q_{0,j+1,n-j-1} - Q_{1,j,n-j-1} \right] + \beta \left[Q_{0,j,n-j} - Q_{0,j+1,n-j-1} \right] \right\}$$

则上述等式变换为

$$\sum_{j=0}^{n} \left(P_{m,j} - P_{m-1,j} \right) B_{j,n}(t) = \sum_{j=0}^{n-1} E_{j} B_{j,n-1}(t)$$

对等式右端升阶, 可得

$$P_{m,j} - P_{m-1,j} = \frac{1}{n} [jE_j + (n-j)E_{j+1}], \quad j = 0,1,...,n$$

思考题:

1. 设函数 $\alpha(t)$, $\beta(t)$ 都为线性函数,推导出两张张量积 Bézier 曲面 G^1 拼接控制顶点需要满足的条件。

- 2. 设函数 $\alpha(t)$, $\beta(t)$ 都为线性函数,推导出两张 Bézier 三角形 G^1 拼接控制顶点满足的条件。
- 3. 己知两张双 n 次 Bézier 曲面实物模型,用测量方法检查两张 曲面是否 G⁰ 连续至少需要测量几个点?如果检测 G¹ 连续 呢?

§3. 伞形曲面间 G1 连续拼接

(a) 问题

将多张参数曲面绕一点进行光滑拼接,常用于倒角、补洞等曲面造型。

记号: 设 n 张曲面 S_i : $Q_i = Q_i(u,v)$, $(u,v) \in D$, i = 1,2,...,n 设相邻曲面以下述方式联接

$$Q_i(0,t) = Q_{i+1}(t,0), \quad t \in [0,1]$$

- (b) G¹拼接的基本理论
 - i) 一般方程

$$(\Delta) \qquad \frac{\partial Q_{i+1}(t,0)}{\partial v} = a_i(t) \frac{\partial Q_i(0,t)}{\partial v} + b_i(t) \frac{\partial Q_i(0,t)}{\partial u},$$

其中
$$b_i(t) < 0$$

$$i = 1, 2, ..., n$$

ii) Q点关系方程

(*)
$$\frac{\partial Q_{i+1}(0,0)}{\partial v} = a_i(0) \frac{\partial Q_i(0,0)}{\partial v} + b_i(0) \frac{\partial Q_i(0,0)}{\partial u}, \quad i = 1,2,...,n$$

 $对(\Delta)$ 两边关于 t 求导,可得

(**)
$$Q_{i+1}^{(1,1)}(0,0) = a_i(0)Q_i^{(0,2)}(0,0) + b_i(0)Q_i^{(1,1)}(0,0) + a_i'(0)Q_i^{(0,1)}(0,0) + b_i'(0)Q_i^{(1,0)}(0,0), \qquad i = 1,2,...,n$$

$$(***)$$
 $Q_{i+1}^{(1,0)}(0,0) = Q_{i}^{(0,1)}(0,0)$

iii) Q点方程的求解

则有

(*)
$$Q_{i+1}^{(0,1)} = \alpha_i Q_i^{(0,1)} + \beta_i Q_i^{(1,0)}, \quad i = 1,2,...,n$$

(**)
$$Q_{i+1}^{(1,1)} = \alpha_i Q_i^{(0,2)} + \beta_i Q_i^{(1,1)} + \lambda_i Q_i^{(0,1)} + \mu_i Q_i^{(1,0)}, \quad i = 1,2,...,n$$

将(*)写成矩阵形式,有

$$\begin{pmatrix} \alpha_{1} & -1 & 0 & \cdots & \beta_{1} \\ \beta_{2} & \alpha_{2} & -1 & \cdots & 0 \\ & & \ddots & & \\ & & & \ddots & \\ -1 & 0 & \cdots & \beta_{n} & \alpha_{n} \end{pmatrix} \begin{pmatrix} Q_{1}^{(0,1)} \\ Q_{2}^{(0,1)} \\ \vdots \\ Q_{n}^{(0,1)} \end{pmatrix} = 0$$

考虑(**),有

$$Q_{i+1}^{(1,1)} = \left(\prod_{j=1}^{i} \beta_{j}\right) Q_{1}^{(1,1)} + \sum_{j=1}^{i} \beta_{i} \dots \beta_{j+1} \left[\alpha_{j} Q_{j}^{(0,2)} + \lambda_{j} Q_{j}^{(0,1)} + \mu_{j} Q_{j}^{(1,0)}\right]$$

相容性方程

$$\left(1 - \prod_{j=1}^{n} \beta_{j}\right) Q_{1}^{(1,1)} = \sum_{j=1}^{n} \beta_{i} \dots \beta_{j+1} \left[\alpha_{j} Q_{j}^{(0,2)} + \lambda_{j} Q_{j}^{(0,1)} + \mu_{j} Q_{j}^{(1,0)}\right]$$

(c) 几何分析

i) α_i , β_i 的几何意义

$$\overrightarrow{\mathsf{1}} \Box \left| Q_i^{(0,1)} \right| = r_i$$
 , $\varphi_i = \left\langle Q_{i-1}^{(0,1)}, Q_i^{(0,1)} \right\rangle$

则(*)式变成

$$\vec{r}_{i+1} = \alpha_i \vec{r}_i + \beta_i \vec{r}_{i-1}$$

从而有

 $Q_{i-1}^{(0,1)}$

ii) 扭矢方程的解分析

$$\coprod \prod_{i=1}^{n} \beta_{i} = (-1)^{n}$$

相容性方程为

$$\left[1-(-1)^n\right]Q_1^{(1,1)} = \sum_{j=1}^n \beta_n \dots \beta_{j+1} \left[\alpha_j Q_j^{(0,2)} + \lambda_j Q_j^{(0,1)} + \mu_j Q_j^{(1,0)}\right]$$

考虑n的奇偶性

1. n 为奇数

自由量 $\{Q_i^{(0,1)},Q_i^{(0,2)}\}_{i=1}^n$

自由量确定后可唯一确定{Q(1,1)}**

由相容性方程求出 2[1,1]

其它 ②[1,1] 可由下面方程求出

$$Q_{i+1}^{(1,1)} = \left(\prod_{j=1}^{i} \beta_{j}\right) Q_{1}^{(1,1)} + \sum_{j=1}^{i} \beta_{i} \dots \beta_{j+1} \left[\alpha_{j} Q_{j}^{(0,2)} + \lambda_{j} Q_{j}^{(0,1)} + \mu_{j} Q_{j}^{(1,0)}\right]$$

2. n 为偶数

此时相容性方程为

$$0 = \sum_{j=1}^{n} \beta_{n} \dots \beta_{j+1} \left[\alpha_{j} Q_{j}^{(0,2)} + \lambda_{j} Q_{j}^{(0,1)} + \mu_{j} Q_{j}^{(1,0)} \right]$$

自由量 $\{Q_i^{(0,1)},Q_j^{(0,2)},Q_l^{(1,1)};i=1,2,...,n,j=1,2,...,n,j\neq l\}$

 $Q^{(0,2)}$ 由相容性方程求出(设 $\alpha_l \neq 0$)

不妨取l=1,此时 $Q^{(l,1)}$ 是自由变量

其它扭矢可由下面方程求出

$$Q_{i+1}^{(1,1)} = \left(\prod_{j=1}^{i} \beta_{j}\right) Q_{1}^{(1,1)} + \sum_{j=1}^{i} \beta_{i} \dots \beta_{j+1} \left[\alpha_{j} Q_{j}^{(0,2)} + \lambda_{j} Q_{j}^{(0,1)} + \mu_{j} Q_{j}^{(1,0)}\right]$$

- (d) 张量积 Bézier 与三角 Bézier 曲面的伞形拼接
 - i) 记号

Bézier 曲面

$$Q_i(u,v) = \sum_{r=0}^{n} \sum_{s=0}^{n} Q_{r,s}^{(i)} B_{r,n}(u) B_{s,n}(v)$$

Bézier 三角片

$$Q_{i}(u,v) = \sum_{r+s+k=n} R_{r,s,k}^{(i)} J_{r,s,k}^{n} (u,v,1-u-v)$$

ii) 边界曲线

$$C_i(t) = Q_i(0,t) = Q_{i+1}(t,0) = \sum_{s=0}^n C_s^{(i)} B_{s,n}(t)$$

$$C_s^{(i)} = egin{cases} Q_{0,s}^{(i)} & S_i$$
为Bezier曲面 $R_{0,s,n-s}^{(i)} & S_i$ 为Bezier三角片

或

$$C_s^{(i)} = \begin{cases} Q_{s,0}^{(i+1)} & S_{i+1}$$
为Bezier曲面 $R_{s,0,n-s}^{(i+1)} & S_{i+1}$ 为Bezier三角片

$$Q_{i+1}^{(1,0)}(0,0) = Q_{i}^{(0,1)}(0,0) = n(C_{1}^{(i)} - C_{0}^{(i)}), \quad \sharp \vdash C_{0}^{(i)} = Q$$

$$C_1^{(i)} = \frac{1}{n} Q_i^{(0,1)} (0,0) + Q$$

$$Q_{i+1}^{(2,0)}(0,0) = Q_i^{(0,2)}(0,0) = n(n-1)(C_2^{(i)} - 2C_1^{(i)} + Q)$$

$$Q_i^{(1,1)}(0,0) = n^2 \left[Q_{1,1}^{(i)} - Q_{1,0}^{(i)} - Q_{0,1}^{(i)} + Q \right]$$

Bézier 曲面

$$Q_i^{(1,1)}(0,0) = n(n-1) \left[R_{1,1,n-2}^{(i)} - R_{1,0,n-1}^{(i)} - R_{0,1,n-1}^{(i)} + Q \right]$$

Bézier 三角片

iii) 算法步骤

考虑 m 片曲面组成的伞形曲面

1. m 为奇数

step 1. 首先确定 $C_i(t)$, i=1,2,...,m 满足条件 $\{Q,C_1^{(i)}; i=1,2,...,m\}$ 共面

step 2. 计算 $\{\alpha_i, \beta_i; i = 1, 2, ..., m\}$

step 3. 确定 $a_i(t)$, $b_i(t)$, i = 1,2,...,m 满足条件 $a_i(0) = \alpha_i$, $b_i(0) = \beta_i$ 计算 $\lambda_i = a_i'(0)$, $\mu_i = b_i'(0)$, i = 1,2,...,m

step 4. 确定 $Q_{1,1}^{(i)}$ 或 $R_{1,1,n-2}^{(i)}$,i=1,2,...,m

由相容性条件以及曲面在角点的导矢公式

step 5. 利用 $a_i(t)$, $b_i(t)$ 确定

$$\{Q_{1s}^{(i)}, Q_{s1}^{(i)}; \quad s = 2,...,n\}, \quad i = 1,2,...,m$$

或

$$\left\{R_{1,s,n-s-1}^{(i)}, R_{s,1,n-s-1}^{(i)}; \quad s=2,...,n-1\right\}, \quad i=1,2,...,m$$

step 6. 其余控制顶点由用户确定。

2. m 为偶数

step 1. 首先确定 $C_i(t)$, i=1,2,...,m 除 $C_2^{(i)}$ 的所有控制顶点 满足条件 $\{O,C_2^{(i)};i=1,2,...,m\}$ 共面

step 2. 计算 $\{\alpha_i, \beta_i; i = 1, 2, ..., m\}$

step 3. 确定
$$a_i(t)$$
, $b_i(t)$, $i = 1,2,...,m$ 满足条件 $a_i(0) = \alpha_i$, $b_i(0) = \beta_i$ 计算 $\lambda_i = a_i'(0)$, $\mu_i = b_i'(0)$, $i = 1,2,...,m$

step 4. 计算 $C_2^{(1)}$

根据
$$Q_1^{(0,2)} = -\frac{1}{\alpha_1 \beta_m \cdots \beta_2} \left(\sum_{j=2}^m \beta_m \cdots \beta_{j+1} \left[\alpha_j Q_j^{(0,2)} + \lambda_j Q_j^{(0,1)} + \mu_j Q_j^{(1,0)} \right] + \beta_m \cdots \beta_2 \left[\lambda_1 Q_1^{(0,1)} + \mu_1 Q_1^{(1,0)} \right] \right)$$

以及在Q(0,0)处,有

$$Q_1^{(0,2)}(0,0) = n(n-1)(C_2^{(1)} - 2C_1^{(1)} + Q)$$

step 5. 任意给定 $Q_{1,1}^{(k)}$ 或 $R_{1,1,n-2}^{(k)}$,其中k为某一确定常数 计算 $\{Q_{1,1}^{(i)}$ 或 $R_{1,1,n-2}^{(i)}$; $i=1,2,...,m,i\neq k\}$

step 6,7. 同奇数情况的 step5,6。

§4. Bézier 曲面 G²连续拼接

(a) 一阶光滑条件

设曲面P(s,t)和Q(u,v), $(s,t,u,v \in [0,1])$

两曲面在边界处连接:

$$P(1,t) = Q(0,v), \quad 0 \le t = v \le 1$$

两曲面在边界处 G1 连续条件:

$$(P_s(1,t),P_t(1,t),Q_u(0,t))=0$$

或存在函数 $\alpha(t)>0$, $\beta(t)$ 使得

$$Q_{u}(0,t) = \alpha(t)P_{s}(1,t) + \beta(t)P_{t}(1,t)$$

特别地, $\alpha(t)=1$, $\beta(t)=0$,则曲面为 \mathbb{C}^1 连续。

(b) Dupin indicatrix(标型)

考虑参数曲面 X(u,v),

曲面法向:
$$N = \frac{X_u \times X_v}{\|X_u \times X_v\|}$$

曲面曲线X(u(s),v(s))的切向 $T=X_u\dot{u}+X_v\dot{v}$

曲面X(u,v)沿T方向的法曲率

$$k_n = \frac{L_{11}\dot{u}^2 + 2L_{12}\dot{u}\dot{v} + L_{22}\dot{v}^2}{g_{11}\dot{u}^2 + 2g_{12}\dot{u}\dot{v} + g_{22}\dot{v}^2}$$

其中
$$g_{11} = X_u \cdot X_u$$
, $g_{12} = X_u \cdot X_v$, $g_{22} = X_v \cdot X_v$

$$L_{11} = N \cdot X_{uu}$$
, $L_{12} = N \cdot X_{uv}$, $L_{22} = N \cdot X_{vv}$

主曲率、主方向: k_1 , k_2 , T_1 , T_2

欧拉公式: $k_n = k_1 \cos^2 \theta + k_2 \sin^2 \theta$, 其中 θ 为T与 T_1 夹角。

设
$$k_n = \frac{1}{\rho}$$
,并令 $y_1 = \sqrt{\rho}\cos\theta$, $y_2 = \sqrt{\rho}\sin\theta$

则欧拉方程可改写为

$$k_1 y_1^2 + k_2 y_2^2 = 1$$

此方程定义的二次曲线称为 Dupin 标型。

渐进方向:
$$L_{11}\dot{u}^2 + 2L_{12}\dot{u}\dot{v} + L_{22}\dot{v}^2 = 0$$

Dupin标型可由渐进方向再加一第三方向的法曲率唯一确定。

(c) 二阶光滑条件

两相邻曲面在连接线处切平面和 Dupin 标型均一致。

曲面P(s,t)和Q(u,v)的渐进方向分别由下式得到:

$$L_{11}^{P}\dot{s}^{2} + 2L_{12}^{P}\dot{s}\dot{t} + L_{22}^{P}\dot{t}^{2} = 0$$

$$L_{11}^{Q}\dot{u}^{2} + 2L_{12}^{Q}\dot{u}\dot{v} + L_{22}^{Q}\dot{v}^{2} = 0$$

在边界处的渐进方向满足

$$T = P_s \dot{s} + P_t \dot{t} = Q_u \dot{u} + Q_v \dot{v}$$

由
$$G^1$$
条件知 $Q_u = \alpha P_s + \beta P_t$, $Q_v = P_t$

解得
$$\dot{s} = \alpha \dot{u}$$
, $\dot{t} = \beta \dot{u} + \dot{v}$

代入到
$$L_{11}^P \dot{s}^2 + 2L_{12}^P \dot{s}\dot{t} + L_{22}^P \dot{t}^2 = 0$$

并与式
$$L_1^Q \dot{u}^2 + 2L_2^Q \dot{u}\dot{v} + L_{22}^Q \dot{v}^2 = 0$$
比较系数

计算后可得

$$\det[P_s, P_t, Q_{uu} - (\alpha^2 P_{ss} + 2\alpha\beta P_{st} + \beta^2 P_{tt})] = 0$$

上述方程等价于

$$Q_{uu} = \alpha^2 P_{ss} + 2\alpha\beta P_{st} + \beta^2 P_{tt} + pP_s + qP_t$$

特别地,当 $\alpha \equiv 1$, $\beta = p = q = 0$, 曲面 P(s,t)和 Q(u,v)在公共边界处 \mathbb{C}^2 连续。

(d) Bézier 曲面 G²拼接

已知一张 Bézier 曲面 P(s,t),设计一个算法给出 Q(u,v) 的构造方法,使得这两张曲面在公共边界处 G^2 连续。

- §5. 有理曲线曲面的几何连续拼接
- (a) 有理曲线几何连续性条件:

设有理曲线
$$R(t) = \frac{P(t)}{\omega(t)}$$
, $\overline{R}(t) = \frac{\overline{P}(t)}{\overline{\omega}(t)}$

齐次坐标表示形式:

$$Q(t) = (P(t), \omega(t)), \quad \overline{Q}(t) = (\overline{P}(t), \overline{\omega}(t))$$

曲线在连接点 $R(t_0) = \overline{R}(t_0)$ 处为 G^n 的充要条件:

存在参数变换 $\bar{t} = \bar{t}(t)$ 和数量函数e(t), 使得

$$\frac{d^k \overline{Q}(t)}{dt^k}\bigg|_{t=t_0} = \frac{d^k (e(t)Q(t))}{dt^k}\bigg|_{t=t_0}, \quad k = 0,1,2...,n$$

(b) 有理曲面几何连续性条件:

有理曲面可表示成齐次坐标,采用与有理曲线类似的方法可 得连续性条件。