

Année 2017-2018 Logique mathématique Durée: 02 h

Examen 1

Exercice

1 . | 3 pts |

Donner la définition par induction du nombre d'occurrences de constantes dans une formule.

- 2. Soit σ une substitution. Donner la définition par induction de F σ l'application de la substitution σ sur la formule F.
- 3. Démontrer par induction la propriété de substitution suivante: Soit A une formule, v une assignation et σ une substitution.
 - On a: $[A\sigma]_v = [A]_w$ où pour toute variable $x, w(x) = [\sigma(x)]_v$.

1.

- Si F = x alors nb[F] = 0.
- Si $F = \bot$ ou $F = \top$ alors nb[F] = 1
- $nb[\neg F] = nb[F]$.
- $nb[(F\alpha G)] = nb[F] + nb[G]$.

2.

- Si F = x alors $F \sigma = \sigma(x)$.
- Si $F = \top$ ou $F = \bot$ alors $F\sigma = F$.
- Si $F = \neg G$ alors $F\sigma = \neg G\sigma$.
- Si $F = (G\alpha h)$ alors $F\sigma = (G\sigma \alpha H\sigma)$
 - **3.**

La propriété à démontrer pour toute formule est :

$$[A\sigma]_v = [A]_w \tag{*}$$

- Si A = x alors $[A\sigma]_v = [\sigma(x)]_v = w(x) = [x]_w = [A]_w$.
- Si $A = \bot$ alors $[A\sigma]_v = [\bot]_v = 0 = [A]_w$.
- Si $A = \top$ alors $[A\sigma]_v = [\top]_v = 1 = [A]_w$.
 - Soit $A = \neg G$ telle que $[G\sigma]_v = [G]_w$.

$$[A\sigma]_v = [\neg G\sigma]_v = 1 - [G\sigma]_v = 1 - [G]_w = [\neg G]_w = [A]_w.$$

• Soit $A = (G\alpha H)$ telle que $[G\sigma]_v = [G]_w$ et $[H\sigma]_v = [H]_w$.

$$[A\sigma]_v = [(G\sigma\alpha H\sigma)]_v = \alpha^*([G\sigma]_v, [H\sigma]_v) = \alpha^*([G]_w, [H]_w) = [G\alpha H]_w = [A]_w.$$

où α^* est le sens du connecteur α .

2 . ¶ 4 pts ¶ Soit la formule à priorité

$$\mathbf{F} = (\mathbf{x} \vee \mathbf{y} \Rightarrow \mathbf{z} \vee \mathbf{w}) \Rightarrow (\mathbf{x} \Rightarrow \mathbf{z}) \vee (\mathbf{y} \Rightarrow \mathbf{w}).$$

1. Donner la forme complètement parenthésée de F.

2. Donner l'arbre de structure de F.

 \mathcal{F} Transformer la formule F en une somme de monômes(FND).

4. La formule F est-elle satisfaisable? La formule F est-elle valide? Justifier.

1.

$$\mathbf{F} = \left(\left((\mathbf{x} \lor \mathbf{y}) \Rightarrow (\mathbf{z} \lor \mathbf{w}) \right) \Rightarrow \left((\mathbf{x} \Rightarrow \mathbf{z}) \lor (\mathbf{y} \Rightarrow \mathbf{w}) \right) \right).$$
 0.5 pt

2.

3.

$$F \equiv ((x+y) \Rightarrow (z+w)) \Rightarrow (x \Rightarrow z) + (y \Rightarrow w)$$

$$\equiv (x+y)\overline{z+w} + \overline{x} + z + \overline{y} + w$$

$$\equiv x\overline{z}\overline{w} + y\overline{z}\overline{w} + \overline{x} + z + \overline{y} + w$$
1.5 pt

4. Oui F est satisfaisable. Elle au moins un modèle. x = 1, z = 0, w = 0. $\overline{\text{Elle}}$ est valide. Car $\neg F$ est insatisfaisable. En effet:

$$\neg F \equiv (\bar{x} + z + w)(\bar{y} + z + w)x\bar{z}y\bar{w} \equiv 0. \quad \boxed{1 \text{ pt}}$$

Soient Γ et Δ deux ensembles de formules et A, B et C des formules. Montrer ou infirmer les assertions suivantes:

1. $Si \Gamma \cup \Delta \models C \ alors \Gamma \models C \ ou \ \Delta \models C$.

$$3. \quad Si \ \Gamma \vDash A \ et \ \Delta \vDash B \ et \vDash (A \land B) \Rightarrow C \ alors \ \Gamma \cup \Delta \vDash C.$$

1. Faux. Donnons un contre exemple.

$$\Gamma = \{a\}; \Delta = \{b\}; C = (a \land b).$$

$$\{a,b\} \vDash \{a \land b\}$$
 mais on a ni $\{a\} \vDash \{a \land b\}$ ni $\{b\} \vDash \{a \land b\}$

2. Soit v modèle de $\Gamma \cup \Delta$. Donc v est modèle de Γ et modèle de Δ .

De $\Gamma \vDash A$ on déduit que $[A]_v = 1$ et de $\Delta \vDash B$ que $[B]_v = 1$. Il s'ensuit que $[A \land B]_v = 1$.

Comme $(A \wedge B) \Rightarrow C$ est valide, alors on a aussi $[(A \wedge B) \Rightarrow C]_v = 1$. De la définition du sens de l'implication on conclut que $[C]_v = 1$.

2 pt

$$ightharpoonup$$
 Exercice 4. [6 pts]

1. Transformer ¬F en forme normale conjonctive où

$$\mathbf{F} = (\mathbf{x} \Rightarrow \neg(\mathbf{y} \land \mathbf{z})) \land (\mathbf{w} \Rightarrow \mathbf{x} \lor \neg\mathbf{z}) \Rightarrow \mathbf{w} \land \mathbf{z} \Rightarrow \mathbf{x} \land \neg\mathbf{y}$$

Attention: Vous n'avez pas le droit de distribuer le produit par rapport à la somme.

- 2. En utilisant l'arbre sémantique, étudier la validité de F.
- 8. En utilisant la résolution retrouver le résultat sur la validité de F.

1. En utilisant l'équivalence remarquable $\overline{(A \Rightarrow B)} \equiv A\overline{B}$ on obtient:

$$\neg F \equiv (\bar{x} + \bar{y} + \bar{z})(\bar{w} + x + \bar{z})wz(\bar{x} + y)$$
 2 pt

2 Arbre sémantique Soit Γ l'ensemble des clauses équivalent à $\neg F$:

$$\Gamma = \{\bar{x} + \bar{y} + \bar{z}, \bar{w} + x + \bar{z}, w, z, \bar{x} + y\}$$

Faisons le selon l'énumération w, z, x, y.

Figure 1: Arbre sémantique selon l'énumération: w, z, x, y.

L'arbre est fermé. Donc l'ensemble Γ est contradictoire. Alors F est valide.

3. Résolution.

(1)
$$\bar{x} + \bar{y} + \bar{z}$$
 Hyp
(2) $\bar{w} + x + \bar{z}$ Hyp
(3) w Hyp
(4) z Hyp
(5) $\bar{x} + y$ Hyp
(6) $\bar{x} + \bar{y}$ Res (1,4)
(7) $\bar{w} + x$ Res (2,4)
(8) \bar{x} Res (5,6)
(9) \bar{w} Res (7,8)

On a montré

$$\left\{\bar{a}+d,\bar{b}+e,f+\bar{c},a+b+c,\bar{d},\bar{e},\bar{f}\right\}\vdash\bot$$

Res(3,9)

Par le théorème de correction de la résolution on conclut que $\neg F$ est contradictoire.

Exercice 5. [3 pts] On rappelle que le système $\{\neg, \land, \lor\}$ est complet. On définit les connecteurs ternaires * et α par

(10) \perp

$$*(x,y,z) \equiv x\bar{y} + \bar{z} \ et \ \alpha(x,y,z) \equiv x\bar{y} + z.$$

- 1. Le système $\{\alpha\}$ est-il complet? Montrer le.
- 2. Le système {*} est-il complet? Montrer le.

1. $\alpha(0,0,0) \equiv 0$. Donc pour l'assignation constante donnant 0 à toutes les variables, toute formule écrite avec $\{\alpha\}$ aura comme valeur 0. Donc on ne peut pas exprimer 1 par exemple. Donc $\{\alpha\}$ est incomplet.

- **2.** On note que $\{\neg, \lor\}$ est complet. Car $x \lor y \equiv \neg(\neg x \lor \neg y)$.
- $\bullet \ \neg x \equiv *(x, x, x)$
- $x \lor y \equiv *(x, *(x, x, x), *(y, y, y)).$

Alors {*} est complet. 2 pt