

ALGO QCM

1. Un sous-graphe G' de G=<S,A> est défini par?

(a) <S,A'> avec A' ⊆ A (b) <S',A> avec S' ⊆ S

(c) <A,S>

2. Dans un graphe non orienté, s'il existe une arête x-y pour tout couple de sommet $\{x,y\}$ le graphe est ?

(a) complet

- (b) partiel
- (c) parfait
- (d) connexe

- (a) il existe deux arcs les joignant
- (b) le graphe est complet
- (c) ils ont au moins une extrémité commune
- (d) s'il existe une arête les joignant

(a) complet

- (b) fortement connexe
- (c) parfait

5. Un chemin qui ne contient pas plusieurs fois un même sommet est?

- (a)élémentaire
- (b) optimal
- (c) plus court
- (d) une chaîne

- (a) un circuit
- (b) un cycle
- (c) connexe
- (d) fortement connexe
- (e) une chemin

- (a) Un sous-graphe
- (b) Un graphe partiel
- (c) Un graphe complet

- 8. Si *Pref[i]* retourne le Numéro d'ordre préfixe de rencontre d'un sommet, dans la forêt couvrante associée au parcours en profondeur d'un graphe orienté G, les arcs x →y tels que pref[y] est inférieur à Pref[x] dans la forêt sont appelés?
 - (a) Arcs couvrants
 - (b) Arcs croisés
 - (c) Arcs en Avant

- (a) Les graphes orientés évolutifs
- (b) Les graphes non orientés statiques
- (c) Les graphes non orientés évolutifs
- 10. Calculer la fermeture transitive d'un graphe sert à?
 - (a) Déterminer si un graphe est fortement connexe
 - (b) Déterminer les composantes connexes d'un graphe
 - (c) Déterminer si un graphe est complet

Info-Spé 10/11 EPITA

QCM N°6

lundi 17 janvier 2011

Question 11

c. $\forall \alpha \in \mathbb{R}, \ \int_0^1 \frac{\mathrm{d}t}{t^\alpha} \ \mathrm{diverge}$

d. $\forall \alpha \in \mathbb{R}, \ \int_0^1 \frac{\mathrm{d}t}{t^\alpha} \ \mathrm{converge}$

e. rien de ce qui précède

Question 12

$$\left(\begin{array}{c} a. \ \forall \alpha > 1, \ \int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}} \ \mathrm{converge} \end{array}\right)$$

b.
$$\forall \alpha < 1, \int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}}$$
 converge

c.
$$\forall \alpha \in \mathbb{R}, \ \int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}} \ \mathrm{diverge}$$

d.
$$\forall \alpha \in \mathbb{R}, \ \int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}} \ \mathrm{converge}$$

e. rien de ce qui précède

Question 13

a.
$$\forall \alpha > 1$$
, $\int_0^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}}$ converge

b.
$$\forall \alpha < 1, \int_0^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}}$$
 converge

d.
$$\forall \alpha \in \mathbb{R}, \ \int_0^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}} \ \text{converge}$$

e. rien de ce qui précède

Question 14

$$\int_{2}^{+\infty} \frac{\mathrm{d}t}{t \ln(t)} \text{ converge.}$$
b. faux

Question 15

Soit f continue et positive sur $[0, +\infty[$ quelconque telle que $t^2f(t) \to 0$ quand $t \to +\infty$. Alors

a.
$$\int_0^{+\infty} f(t) dt$$
 converge

b.
$$\int_0^{+\infty} f(t) dt$$
 diverge

c. on ne peut rien dire sur la nature de $\int_0^{+\infty} f(t) dt$

Question 16

Soit f continue et positive sur $[0, +\infty[$ quelconque telle que $tf(t) \to 0$ quand $t \to +\infty$. Alors

a.
$$\int_0^{+\infty} f(t) dt$$
 converge

b.
$$\int_0^{+\infty} f(t) dt$$
 diverge

c. on ne peut rien dire sur la nature de $\int_0^{+\infty} f(t) dt$

Question 17

Soit f continue et positive sur $[0, +\infty[$ quelconque telle que $tf(t) \to +\infty$ quand $t \to +\infty$. Alors

a.
$$\int_0^{+\infty} f(t) dt$$
 converge

c. on ne peut rien dire sur la nature de $\int_0^{+\infty} f(t) dt$

Question 18

Soient E un \mathbb{R} -ev, $u \in \mathcal{L}(E)$, λ une valeur propre de u. Alors $x \in E_{\lambda}$ signifie

a.
$$u(\lambda x) = \lambda u(x)$$

b.
$$u(x) = \lambda x$$

c.
$$u(x) - \lambda x \neq 0$$

d.
$$x \in Ker(u - \lambda id)$$

e. rien de ce qui précède

Question 19

Soient $A\in \mathcal{M}_n(\mathbb{R})$ et λ une valeur propre de A. Alors en notant I_n la matrice identité d'ordre n

a.
$$Ker(A - \lambda I_n) \neq \{0\}$$

c.
$$\exists X \in \mathcal{M}_{n,1}(\mathbb{R}), X \neq 0, \quad AX = \lambda X$$

d. rien de ce qui précède

Question 20

Soient E un \mathbb{R} -ev, $u \in \mathcal{L}(E)$, $P \in \mathbb{R}[X]$ et $x \in E$. Alors

c.
$$P(u)(x) \in \mathbb{R}$$

d.
$$P(u) \in \mathbb{R}[X]$$

e. rien de ce qui précède

21- On considère l'équation de propagation du champ magnétique dans le vide :

$$\Delta \vec{B} - \mu_0 . \varepsilon_0 \frac{\partial^2 \vec{B}}{\partial t^2} = g$$

Parmi les affirmations suivantes laquelle est vraie

a)
$$g = 0$$

a)
$$g = 0$$
; b) $g = -\mu_0 \overrightarrow{rot(j)}$

$$(c)$$
 $g = rot(j)$

$$d) g = 1$$

22- L'intensité lumineuse est <u>la valeur moyenne dans le temps</u>, de la densité surfacique de puissance de l'onde. Indiquez la vraie proposition pour une onde plane progressive qui se propage dans le vide avec une vitesse c e

(a)
$$I = \frac{1}{T} (\varepsilon_0 c E_0^2) \int_0^T \cos^2(k.x - \omega.t) dt$$

b)
$$I = \frac{1}{3T} (\varepsilon_0 c E_0^3) \int_0^T \cos^2(k.x - \omega.t) dt$$

c)
$$I = \frac{1}{2T} (\varepsilon_0 c E_0^2) \int_0^T \cos^2(kx - \omega t) dt$$

23- Expression de la densité d'énergie U. On sait que pour une onde électromagnétique quelconque on a $U=\omega_{e}+\omega_{m}$. Indiquez la vraie proposition:

a)
$$U = 2\omega_e = 2\omega_m = \varepsilon_0.E^2 = \frac{B^2}{\mu_0}$$

(b)
$$U = \frac{\omega_e}{2} = \frac{\omega_m}{2} = \varepsilon_0 . E = \frac{B}{\mu_0}$$

$$c) \quad U = E^2 = B^2$$

24- Indiquez la vraie proposition:

a) le vecteur de Poynting, qui véhicule la puissance surfacique est $\vec{S} = \varepsilon \frac{E \wedge B}{\mu}$

- b) le vecteur de Poynting, qui véhicule la puissance surfacique est $\vec{S} = \frac{\vec{E} \wedge \vec{B}}{\mu}$
 - c) le vecteur de Poynting, qui véhicule la puissance surfacique est $\vec{S} = \frac{\vec{E}.\vec{B}}{\prime\prime}$

25- L'opérateur grad ne s'applique qu'à des fonctions scalaires et le résultat donne :

- a) Un scalaire
- (b) Un vecteur

26- Pour un vecteur \vec{U} quelconque, $div(\vec{U}) = \vec{\nabla}.\vec{U}$ Parmi les affirmations suivantes laquelle est vraie

Mr M.KARKRI EPITA 2010 -2011 : QCM N 6 de Physique

b)
$$div(\vec{U}) = \vec{\nabla}.\vec{U} = \frac{\partial u_x}{\partial x} - \frac{\partial u_y}{\partial y} - \frac{\partial u_z}{\partial z}$$

27- Indiquez la vraie proposition

- a) L'équation de dispersion est la relation entre k et w
- b) L'équation de dispersion est la relation entre k et w2
- c) L'équation de dispersion est la relation entre k^2 et w^2

28- Indiquez la vraie proposition

- a) La notation complexe de l'Opérateur $\vec{\nabla}$ Dans les équations de Maxwell est donnée par i^2k
- c) La notation complexe de l'Opérateur $\ \vec{
 abla}\$ Dans les équations de Maxwell est donnée par $iar{k}$

29- Indiquez la vraie proposition

- a) L'équation de dispersion dans le vide est donnée par l'équation suivante k = w * c
- b) L'équation de dispersion dans le vide est donnée par l'équation suivante $k=w^2/c$
- c) L'équation de dispersion dans le vide est donnée par l'équation suivante $k^2 = w^2/c^2$

30- Indiquez la vraie proposition

a) La vitesse de phase dans un milieu dispersif est donnée par l'expression : $V_g = dw^2 / dk^2$

b) La vitesse de phase dans un milieu dispersif est donnée par l'expression : $V_{\rm g} = w / k$

annul c) La vitesse de phase dans un milieu dispersif est donnée par l'expression : $V_g = dw / dk$

bonne reporte: B

38. He should try a different word document program if he wants it to be able to check
spelling and grammar.
Q. using
b. used
A c. uses
d. use
39. The staff volleyball team is going out to eat tomorrow after they in the semifinals
39. The staff volleyball tealth is going out to
tournament. a. Will compete
b. Will have competed
c. Are competing
d. compete
40 Dylan's complex use of language, we are confident that we'll be able to understand his
songs. a. In spite
b. Since
c. Despite
d. Even though

14

QCM Electronique - InfoSPE

Amplificateurs et transistors bipolaires

- Q1. Un amplificateur est un circuit destiné à amplifier :
 - a- le courant uniquement
 - b- la tension uniquement
 - (la puissance d'un signal
 - d- aucune des réponses précédentes.
- Q2. Soit le schéma suivant :

où A_{v_1} , A_{v_2} et A_{v_3} sont trois amplificateurs mis en cascade : L'amplification en tension totale

A_v du montage ci-dessus vaut alors :

$$a_{\nu} = A_{\nu_1} + A_{\nu_2} + A_{\nu_3}$$

$$b-\ A_{v}=A_{v_{1}}-A_{v_{2}}-A_{v_{3}}$$

$$\begin{array}{ccc} \text{c-} & A_v = A_{v_1}.A_{v_2}.A_{v_3} \\ \text{d-} & A_v = \frac{1}{A_{v_1}} + \frac{1}{A_{v_2}} + \frac{1}{A_{v_3}} \end{array}$$

- Q3. Un amplificateur doit être une fonction linéaire car :
 - a- sinon, il ne pourra pas amplifier le courant
 - b- sinon, il ne pourra pas amplifier la tension du signal
 - sinon, il y aura distorsion de l'information portée par le signal
 - d- il n'y a pas de raison physique à ce choix

Soit l'amplificateur à transistor suivant :

Q4. Les condensateurs sont :

- a- Des condensateurs de découplage
- b- Des condensateurs de liaison.
- Des condensateurs de covalence
- d- Des condensateurs de recombination.

Q5. Rôle des condensateurs :

- a- Ils ne servent à rien.
- b- Ils permettent de couper les composantes variables, car ils sont équivalents à des interrupteurs ouverts en régime variable.
- c- Ils bloquent tout type de signal.
- d-Ils permettent de couper les composantes continues, car ils sont équivalents à des interrupteurs ouverts en régime continu.
- Q6. A quoi sont équivalents les condensateurs?
 - a- A des interrupteurs ouverts, quelque soit le signal
 - b- A des fils, quelque soit le signal
 - c- A des interrupteurs ouverts pour les petits signaux et à des fils pour les signaux continus.
 - d-A des interrupteurs ouverts pour les signaux continus et à des fils pour les petits signaux

- Q7. A quoi sert la source de tension continue V_{cc} ?
 - (a-) A polariser le transistor dans sa zone linéaire.
 - b- A rien.
 - c- A bloquer le transistor.
 - d- A saturer le transistor.
- Q8. Pour déterminer le schéma équivalent petits signaux de l'amplificateur :
 - a- On annule la source de tension variable v_g et on remplace les condensateurs par des fils
 - b- On annule la source de tension variable v_g et on remplace les condensateurs par des interrupteurs ouverts.
 - On annule la source de tension continue V_{cc} et on remplace les condensateurs par des fils.
 - d- On annule la source de tension continue V_{cc} et on remplace les condensateurs par des interrupteurs ouverts.

Soit le circuit ci-contre :

La tension V₁ peut prendre 2 valeurs : 0 ou 5 V.

On donne $\beta = 100$.

- Q9. Choisir l'affirmation correcte.
 - a- Le transistor est polarisé dans sa zone linéaire.
 - b- Le transistor est toujours bloqué.
 - c- Le transistor est toujours saturé.
 - d-Si V_1 passe alternativement de 0 à 5V, alors le transistor fonctionne en commutation.

- a- Est une porte NON-ET.
- b- Est une porte NON.
- c- Est une porte NON-OU.
- d- Est une porte ET.

QCM Architecture

Les microprocesseurs

Q11. Le microprocesseur 68000 est un microprocesseur 16 bits. Cela signifie :

- a- que la taille de son bus d'adresse est de 16 bits
- b- que la taille de son bus d'adresse est un multiple de 16 bits
- c que la taille de son bus de données est de 16 bits
 - d- rien du tout.

Q12. Les registres du 68000

- b- Les registres sont des registres 16 bits.
- c- Tous les registres sont adressables
- d- Tous les registres sont sur 32 bit.

Q13. Choisir l'affirmation correcte:

a- On ne peut manipuler qu'un seul type de données.

- b-L'utilisation optimale d'un microprocesseur passe par l'utilisation intensive des registres adressables
- c- L'utilisation optimale d'un microprocesseur passe par l'utilisation intensive des registres non-adressables
- d- L'adresse un mot est toujours impaire.

Q14. Le registre d'état : Choisir l'affirmation correcte :

- b- Il est codé sur 32 bits.
- c- Il contient les flags dans son octet de poids faible.
- d- Il n'y a pas de registre d'état dans le 68000.

On suppose que l'espace mémoire est organisé de la façon suivante :

\$3000	\$4C	\$AB
\$3002	\$5A	\$12
\$3004	\$34	\$55
\$3006	\$1A	\$2B
\$3008	\$C9	\$F1
\$300A	\$D2	\$E6

Le registre D0 contient la valeur \$2CD1FFFF et le registre A1 contient la valeur \$00003004 Rq: Mémoire et registres sont réinitialisés pour chaque question

Q15. Quel est le résultat obtenu suite à l'instruction suivante : MOVE.W (A1),D0

- a- D0 = \$3455 1A2B
- b- D0 = \$2CD1 3455
- c- D0 = \$3455 FFFF
- d- Cette instruction n'est pas autorisée.

Q16. Quel est le résultat obtenu suite à l'instruction suivante : MOVE.B D0,A1

- a- A1 = \$0000 30FF
- b- A1 = \$0000 302C
- c- A1 = \$2C00 3004
- d- Cette instruction n'est pas autorisée.

Q17. Quel est le résultat obtenu suite à l'instruction suivante : MOVE.L (A1)+,D0

- a- D0 = \$3455 1A2B et A1 = \$0000 3004
- b- D0 = \$3455 1A2B et A1 = \$0000 3008
- c- D0 = \$0000 3004 et A1 = \$0000 3008
- d- Cette instruction n'est pas autorisée.

Q18. Quel est le résultat obtenu suite à l'instruction suivante : MOVE.L -(A1),D0

- a- D0 = \$4CAB 5A12 et A1 = \$0000 3003
- b- D0 = \$4CAB 5A12 et A1 = \$0000 3000
- c- D0 = \$3455 1A2B et A1 = \$0000 3000
- d- Cette instruction n'est pas autorisée.

