PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-096522

(43)Date of publication of application: 12.04.1996

(51)Int.Cl.

G11B 20/12 611B 20/12

G11B 20/10 G11B 20/14

(21)Application number: 06-250208 (22)Date of filing:

20.09.1994

(71)Applicant : SONY CORP

(72)Inventor: MAEDA YASUAKI

NAGASHIMA HIDEKI

(54) DATA ENCODER

(57)Abstract:

PURPOSE: To reduce the processing load on a microcomputer controlling recording operation. CONSTITUTION: Outputs of a synchronizing data generation part 51, a cluster counter 52, a sector counter 53, a recording data output part 56 and a zero data generation part 55 are selected by a selector 57 to be outputted. A selector control means 59 switch controls the selector 57 at the prescribed timing according to a Link signal based on the sector counter and a count value of a byte counter 60. Thus, a data group (cluster) becoming one recording unit respectively constituted of the number of prescribed sectors of a prescribed format is outputted from the selector 57.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-96522

(43)公開日 平成8年(1996)4月12日

(51) Int.Cl. ⁶ G 1 1 B 20/12 20/10 20/14	102 9 301 Z 7	宁内整理番号 9295-5D 9295-5D 9295-5D 9463-5D	FΙ	技術表示箇所
			審査請求	未請求 請求項の数4 FD (全 14 頁)
(21)出願番号	特願平6-250208		(71)出願人	000002185 ソニー株式会社
(22)出願日	平成6年(1994)9月2	10日		東京都品川区北品川6丁目7番35号
			(72)発明者	前田 保旭 東京都品川区北品川6丁目7番35号 ソニ 一株式会社内
			(72)発明者	東京都品川区北品川6丁目7番35号 ソニ
				一株式会社内
			(74)代理人	弁理士 脇 篤夫 (外1名)

(54)【発明の名称】 データエンコーダ

(57)【要約】

【目的】 記録動作を制御しているマイクロコンピュータの処理負担軽減。

【構成】 同期データ発生部51、クラスタカウンタ52、セクターカウンタ53、記録データ出力部56、ゼロデータ発生部55の出力をセレクタ57で選択して出力する。セレクタ制御手段59は、セクターカウンタに基づくLink信号及びパイトカウンタ60のカウント値に応じた所定タイミングでセレクタ57を切換制御することにより、セレクタ57から、それぞれ所定のフォーマットの所定数のセクターで構成される1記録単位となるデータ群(クラスタ)を出力させることができるように構成する。

1

【特許請求の範囲】

【請求項1】 1記録単位となるデータ群が、それぞれ 少なくとも同期データ、アドレスデータ、メインデータ を含む所定のフォーマットで形成される所定数のセクタ ーで構成される場合に、前記データ群を出力するデータ エンコーダとして、

同期データ発生手段と、

データ群アドレスカウンタ手段と、

セクターアドレスカウンタ手段と、

メインデータ出力手段と、

ダミーデータ発生手段と、

前記同期データ発生手段、前記データ群アドレスカウン タ手段、前記セクターアドレスカウンタ手段、前記メイ ンデータ出力手段、及び前記ダミーデータ発生手段の出 力を選択的に出力するセレクタ手段と、

セクター内でのパイトポジションをカウントするパイト カウンタ手段と、

前記セクターアドレスカウンタ手段及び前記パイトカウ ンタ手段のカウント値に応じた所定タイミングで前記セ レクタ手段を切換制御することにより、前記セレクタ手 20 段から、それぞれ所定のフォーマットの所定数のセクタ ーで構成される1記録単位となるデータ群を出力させる ことができるセレクタ制御手段と、

を有して構成されることを特徴とするデータエンコー

【請求項2】 エンコード出力開始制御信号に応じて、 前記データ群アドレスカウンタ手段にはデータ群アドレ スがセットされ、かつ、前記セクターアドレスカウンタ 手段には所定のセクターアドレス値がセットされた後、 前記セクターアドレスカウンタ手段は前記パイトカウン 30 くことになる。 夕手段のカウント値に応じてインクリメントされ、

また前記データ群アドレスカウンタ手段は、前記セクタ ーアドレスカウンタ手段のカウント値に応じてインクリ メントされるように構成されていることを特徴とする請 求項1に記載のデータエンコーダ。

【請求項3】 1記録単位となるデータ群を構成するセ クターのうち、所定のセクターがメインデータとしてダ ミーデータが配置されるセクターとされている場合に、 前記セレクタ制御手段は、前記セクターアドレスカウン タ手段のカウント値により、メインデータとしてダミー 40 データを配置するセクターの出力タイミングを検出し、 当該セクターのメインデータ出力タイミングの際に前記 ダミーデータ発生手段からのデータが出力されるように 前記セレクタ手段を制御するように構成されていること - を特徴とする請求項1又は請求項2に記載のデータエン コーダ。

【請求項4】 前記セレクタ制御手段は、前記メインデ 一夕出力手段からのデータ出力がなくなることを検出し たら、以降のセクター出力については、メインデータ出 カタイミングの際に前記ダミーデータ発生手段からのデ 50 ーマット自体はメインデータセクターと同様である。た

ータが出力されるように前記セレクタ手段を制御するよ うに構成されていることを特徴とする請求項1、請求項 2、又は請求項3に記載のデータエンコーダ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は例えば光磁気ディスクな どの記録媒体に所定のフォーマットでデータを記録する 記録方式において、その記録するデータ群を生成するデ ータエンコーダに関するものである。

10 [0002]

【従来の技術】近年、各種のデジタルデータ記録媒体が 実用化され、例えばコンパクトディスクシステムのよう に光ディスクを用いた再生専用のシステムや、光磁気デ ィスクを記録媒体としてユーザーが音声データを記録/ 再生することができるミニディスクシステムが知られて いる。

【0003】ミニディスクシステムにおいては、光磁気 ディスクに対する記録動作は、クラスタという単位で行 なわれる。つまりクラスタが記録時の最小単位である。 図6(a)(b)のように、1つのクラスタは36セク ターで構成される。このセクターのうち示す『\$00』 ~ 『\$1F』までの32セクターはメインデータセクタ ーとされ、実際の音声データや管理情報などは、このセ クターに記録される。残りの『SFC』~『SFF』の 4セクターはサブデータセクターとされているが、実際 にはダミーデータによるリンキング領域とされている。 クラスタ単位の記録動作はリンキング領域におけるセク ター『\$FD』の中央位置から開始され、『\$00』~ 『\$1F』までの32セクターにデータが記録されてい

【0004】『\$00』~『\$1F』までのメインデー タセクターは、セクターフォーマットが図6 (c) のよ うに構成される。1セクターは0パイトから2351パ イトまでの2352パイトで構成される。そしてパイト 0~パイト11までの12パイトが同期パターンとなる 所定のデータが記録される。次にバイト12、13がク ラスタアドレス、パイト14がセクターアドレスとされ る。このように各セクターには3パイトでアドレスが記 録されることになる。 つづいてパイト15は1パイトで モードデータが記録される。このバイト12~15の4 パイトはセクターのヘッダとされている。

【0005】そしてバイト16からバイト19までの4 パイトはサブヘッダとされているが、実際にはこの4パ イトは全てゼロデータ (Null) が記録される。サブ ヘッダに続いて、パイト20からパイト2351までの 2332パイトはデータエリアとされ、実際の音声デー 夕や管理情報などが記録されることになる。

【0006】リンキング領域とされる『\$FC』~『\$ FF』のサブデータセクターについても、セクターフォ

3

だし、サブデータセクターでは、図6(d)のようにバイト20からパイト2351までのデータエリアとなる2332パイトは、全てダミーデータとしてゼロデータ(Null)とされている。

[0007]

【発明が解決しようとする課題】ミニディスクシステムにおいて記録のための音声データが入力された場合は、その音声データはデータ圧縮処理が施された後、1セクター分に相当するデータ量単位で順次、パッファRAMに取り込まれていく。そしてパッファRAMから順次院 10 み出されて、図6に示したように同期パターン、クラスタアドレス、セクターアドレス、モードデータ、サブヘッダが付加され、セクターフォーマットのデータストリームが形成される。このように生成されたセクターデータは、さらにCIRC及びEFMエンコードが施された後、記録ヘッドに供給されて光磁気ディスクに記録されていくことになる。

【0008】ここで、音声データなどのメインデータに同期パターン等を加えたセクターデータを生成するために、記録動作を制御するマイクロコンピュータは、セク20ターデータの転送タイミング毎にクラスタ及びセクターアドレスの設定のためのコマンドを送信していた。また、上述のようにサブデータセクターではメインデータエリアがNullデータとされるが、このようなサブデータセクターの生成のためにも、マイクロコンピュータはデータエリアをNullデータとするためのコマンドを発していた。さらに、これらの制御はセクターデータをCIRC及びEFMエンコードのために転送する前に行なわなければならず、従ってマイクロコンピュータは常に1つ先のセクターについての情報も管理していなけ30ればならない。

【0009】これらのことからマイクロコンピュータの 処理負担が増大してしまうという問題が生じており、また場合によってはセクターアドレスの設定ミスなども発生するという問題があった。

[0-010]

【課題を解決するための手段】本発明ばこのような問題 点に鑑みてなされたもので、マイクロコンピュータの処 理負担を軽減することを目的とする。

【0011】このため、1記録単位となるデータ群(ク 40 ラスタ)が、それぞれ少なくとも同期データ、アドレスデータ、メインデータを含む所定のフォーマットで形成される所定数のセクターで構成される場合に、このようなデータ群を出力することができるデータエンコーダを構成する。このデータエンコーダとしては、同期データ発生手段と、データ群アドレスカウンタ手段と、セクターアドレスカウンタ手段と、メインデータ出力手段と、ダミーデータ発生手段と、パイトカウンタ手段と、セレクタ手段と、セレクタ制御手段とを設ける。セレクタ手段は、同期データ発生手段、データ群アドレスカウンタ 50

手段、セクターアドレスカウンタ手段、メインデータ出 カ手段、及びダミーデータ発生手段の出力を選択的に出 力することができるようにする。パイトカウンタ手段は セクター内でのパイトポジションをカウントする。そし てセレクタ制御手段は、セクターアドレスカウンタ手段 及びパイトカウンタ手段のカウント値に応じた所定タイ ミングでセレクタ手段を切換制御することにより、セレ クタ手段から、それぞれ所定のフォーマットの所定数の

クタ手段から、それぞれ所定のフォーマットの所定数の セクターで構成される1記録単位となるデータ群を出力 させることができるように構成する。

【0012】また、エンコード出力開始制御信号に応じて、データ群アドレスカウンタ手段にはデータ群アドレスがセットされ、かつ、セクターアドレスカウンタ手段には所定のセクターアドレス値がセットされるようにする。そしてその後は、セクターアドレスカウンタ手段はパイトカウンタ手段のカウント値に応じてインクリメントされ、またデータ群アドレスカウンタ手段は、セクターアドレスカウンタ手段のカウント値に応じてインクリメントされるように構成する。

【0013】また、1記録単位となるデータ群を構成するセクターのうち、所定のセクターがメインデータとしてダミーデータが配置されるセクターとされている場合に、セレクタ制御手段は、セクターアドレスカウンタ手段のカウント値により、メインデータがダミーデータとされるセクターの出力タイミングを検出し、そのセクターのメインデータ出力タイミングの際には、ダミーデータ発生手段からのデータが出力されるようにセレクタ手段を制御するように構成する。

【0014】またセレクタ制御手段は、メインデータ出力手段からのデータ出力がなくなることを検出したら、 以降のセクター出力については、メインデータ出力タイミングの際にダミーデータ発生手段からのデータが出力されるようにセレクタ手段を制御するように構成する。

[0015]

【作用】上記構成のデータエンコーダを形成することにより、記録動作を制御しているマイクロコンピュータが、音声データなどのメインデータに同期信号やアドレスなどを付加してセクターデータを生成する処理を行なう必要はなくなる。またアドレスは、データ群アドレスカウンタ手段と、セクターアドレスカウンタ手段のカウント動作により設定されていくため、アドレス設定ミスは殆どなくすことができる。

[0016]

【実施例】以下、本発明の実施例となるデータエンコーダを備えた記録再生装置を説明する。図2は記録再生装置(ミニディスク記録再生装置)のプロック図である。図2において、1は光磁気ディスクであり、ディスク1はスピンドルモータ2により回転駆動される。3はディスク1に対して記録/再生時にレーザ光を照射する光学へッドであり、光磁気ディスクに対して記録時には記録

.5

トラックをキュリー温度まで加熱するための高レベルのレーザ出力をなし、また再生時には磁気カー効果により反射光からデータを検出するための比較的低レベルのレーザ出力を実行する。

【0017】ディスク1からのデータ読出動作を行なうため、光学ヘッド3はレーザ出力手段としてのレーザダイオードや、偏向ピームスプリッタや対物レンズ等からなる光学系、及び反射光を検出するためのディテクタが搭載されている。対物レンズ3 aは2 軸機構4によってディスク半径方向及びディスクに接離する方向に変位可 10能に保持されており、また、光学ヘッド3全体はスレッド機構5によりディスク半径方向に移動可能とされている。

【0018】また、6 a は供給されたデータによって変調された磁界を光磁気ディスクに印加する磁気ヘッドを示し、ディスク1を挟んで光学ヘッド3と対向する位置に配置されている。磁気ヘッド6 a は光学ヘッド3とともにスレッド機構5によってディスク半径方向に移動される。

【0019】再生動作によって、光学ヘッド3によりデ 20 ィスク1から検出された情報はRFアンプ7に供給される。RFアンプ7は供給された情報の演算処理により、再生RF信号、トラッキングエラー信号、フォーカスエラー信号、グループ情報(光磁気ディスク1上のウォブリンググループの情報)等を抽出する。そして、抽出された再生RF信号はエンコーダ/デコーダ部8に供給される。また、トラッキングエラー信号、フォーカスエラー信号はサーボ回路9に供給される。

【0020】サーボ回路9は供給されたトラッキングエラー信号、フォーカスエラー信号や、システムコントロ 30 ーラ11からのトラックジャンブ指令、アクセス指令により各種サーボ駆動信号を発生させ、2軸機構4及びスレッド機構5を制御してフォーカス及びトラッキング制御をなす。またグルーブ情報及びグループ情報からデコードされたグループアドレスのクロックを用いて、スピンドルモータ2を一定線速度(CLV)に制御する。また、システムコントローラ11からのスピンドルキック、スピンドルブレーキなどの制御信号により、スピンドルモータ2の駆動、停止などの制御を行なう。

【0021】再生RF信号はエンコーダ/デコーダ部8でEFM復調、CIRC等のデコード処理され、メモリコントローラ12によって一旦パッファRAM13に書き込まれる。なお、光学ヘッド3による光磁気ディスク1からのデータの読み取り及び光学ヘッド3からパッファRAM13までの再生データの転送は1.41Mbit/secで(間欠的に)行なわれる。

【0022】パッファRAM1-3に書き込まれたデータは、再生データの転送が0.3Mbit/sec となるタイミングで読み出され、エンコーダ/デコーダ部14に供給される。そして、音声圧縮処理に対するデコード処理等の再 50

生信号処理を施され、D/A変換器15によってアナログ信号とされ、端子16から所定の増幅回路部へ供給されて再生出力される。例えばL, Rオーディオ信号として出力される。

6

【0023】このようにディスク1から読み出されたデータを一旦バッファRAM13に高速レートで間欠的に 書き込み、さらに低速レートで読み出して音声出力する ことで、例えば一時的にトラッキングサーボが外れてディスク1からのデータ読出が不能になっても音声出力は そのままとぎれることなく継続されるという、いわゆる ショックプルーフ機能が実現される。

【0024】アドレスデコーダ10は、RFアンプ7から供給されたグループ情報に対してFM復調及びバイフェーズデコードを行なってグループアドレスを出力する。このグループアドレスや、エンコーダ/デコーダ部8でデコードされたアドレス情報はエンコーダ/デコーダ部8を介してシステムコントローラ11に供給され、各種の制御動作に用いられる。

【0025】ディスク(光磁気ディスク)1に対して記録が実行される際には、端子17に供給された記録信号(アナログオーディオ信号)は、A/D変換器18によってデジタルデータとされた後、エンコーダ/デューダ部14に供給され、音声圧縮エンコード処理を施される。エンコーダ/デコーダ部14によって圧縮された記録データはメモリコントローラ12によって一旦バッファRAM13に書き込まれ、また所定タイミングで読み出されてエンコーダ/デコーダ部8でCIRCエンコード、EFM変調等のエンコード処理された後、磁気ヘッド駆動回路6に供給される。

【0026】磁気ヘッド駆動回路6はエンコード処理された記録データに応じて、磁気ヘッド6aに磁気ヘッド 駆動信号を供給する。つまり、光磁気ディスク1に対して磁気ヘッド6aによるN又はSの磁界印加を実行させる。また、このときシステムコントローラ11は光学ヘッド3に対して、記録レベルのレーザ光を出力するように制御信号を供給する。

【0027】システムコントローラ11はマイクロコンピュータにより構成され、ユーザー操作や内部のプログラムに従って、上述のように各部の動作制御を行なうものである。19はユーザー操作に供されるキーが設けられた操作入力部、20は例えば液晶ディスプレイによって構成される表示部を示す。

【0028】このような記録再生装置では上記したように記録動作時に音声圧縮エンコードを施された音声データがメモリコントローラ12によって一旦パッファRAM13に記憶される。そしてパッファRAM13からは1セクター分に相当するデータ量単位(2332バイト)で類次読み出され、図6に示したように同期パターン、クラスタアドレス、セクターアドレス、モードデー

タ、サブヘッダが付加され、セクターフォーマットのデ ータストリームが形成される。そしてエンコーダ/デコ ーダ部8でCIRC及びEFMエンコードが施された 後、磁気ヘッド駆動回路6に供給されて光磁気ディスク に記録されていくことになる。ここで本実施例の場合、 このようなセクターデータを生成するためのデータエン コーダがメモリコントローラ1つ内に形成されている。 【0029】図1に、メモリコントローラ12内に形成 される実施例のデータエンコーダを示す。なお、メモリ コントローラ12内には、データエンコーダ以外に、エ 10 ンコーダノデコーダ部14との間のインターフェース 部、パッファRAM13との間のインターフェース部、 書込/読出アドレス発生部などの回路部位が存在する が、これらの図示は省略し、データエンコーダとしての

【0030】51はシンクパターン発生部であり、12 パイトとなる特定の同期パターンを発生する。52はケ ラスタカウンタであり、クラスタアドレスを発生するた めのカウンタである。クラスタカウンタ52のカウント 初期値はシステムコントローラ11がSet信号により _20 任意の値を設定できる。またクラスタカウンタ52はC 1 s UP 信号によりカウント値をインクリメントしてい

構成部分のみを示している。

【0031】53はセクターカウンタであり、セクター アドレスを発生するためのカウンタである。セクターカ ウンタ53には、クラスタカウンタ52からのLoad 信号により所定値がロードされる。またセクターカウン 夕53はSctUP信号によりカウント値をインクリメ ントしていく。 クラスタカウンタ 5 2 からのLoad信 号によりロードされる値は『\$FD』となる。つまりク ラスタカウンタ52がシステムコントローラ11からの Set信号により或る値がロードされた際には、クラス タカウンタ52がLoad信号によりセクターカウンタ 53に『\$FD』をロードする。また、クラスタカウン タ52がC1sUP信号によりカウント値をインクリメ ントしていく際には、同時にそのC1gUP信号がセク ターカウンタ53に供給され、このときセクターカウン 夕53に『\$FC』がロードされる。これは、図6 (b) に示したようにクラスタ内のセクターアドレスは 『\$ F C』~『\$ 1 F』であることに応じて、クラスタ 40 アドレスが変化するときに、セクターアドレスを『\$1 F』から『\$FC』とするためである。

【0032】54はモードデータ発生部であり、セクタ 一内の1パイトのモードバイト (パイト15) のための 固定値『\$02』を発生する。55はNullデータ発 生部であり、ダミーデーダとなる『\$00』データを発 生させる。56はメモリデータ出力部であり、バッファ RAM13に取り込まれていたデータを読み出して出力 する。

はシンクパターン発生部51、入力Sbにはクラスタカ ウンタ52、入力Scにはセクターカウンタ52、入力 Sdにはモードデータ発生部、入力SeにはNullデ ータ発生部、入力Sfにはメモリデータ出力部、のそれ ぞれの出力が供給される。セレクタ57の出力は図6に 示したフォーマットのセクターデータとなり、これはC

カSa~Sfから1つを選択して出力する。入力Saに

D-ROMスクランプラ58で処理が行なわれた後、エ ンコーダ/デコーダ部8に転送される。59はセレクタ コントローラであり、セクターデータを生成するために セレクタ57の入力Sa~Sfを所定タイミングで切り 換える制御を行なう。

【0034】60はパイトカウンタ、61はパイトカウ ンタデコーダである。パイトカウンタ60はシステムコ ントローラ11からのTX信号をトリガとしてバイトカ ウントを行なうもので、セクター内の転送パイト数をカ ウントするカウンタである。バイトカウントデコーダ6 1はパイトカウンタ60のカウント値をデコードしてい る。そして、1セクターは2352パイトであるため、 パイトカウンタ60によるカウント値が2351となっ たらセクターカウンタ53に対してSctUP信号を出 カし、セクターカウンタ53をインクリメントさせる。 また同時にバイトカウンタ60に対してCLR信号を出 力して、カウント値を『0』にリセットさせる。

【0035】またパイトカウントデコーダ61はSct UP信号と同時にIRQ信号(転送終了割込信号)をシ ステムコントローラ11に対して出力している。システ ムコントローラ11内にはIRQ信号をカウントするカ ウンタが設けられていることで、システムコントローラ 11は現在のセクターアドレスを把握することができ る。さらに、パイトカウントデコーダ61は、パイト情 報をセレクタコントローラ59に供給しており、セレク タコントローラ59はこれに基づいてセクター内でのセ レクタ57の切換制御を行なうようにしている。

【0036】62はセクターデコーダであり、セクター カウンタ53のカウント値から現在のセクターアドレス (『\$FC』~『\$1F』) をデコードする。そして、 セクターアドレスが『\$1F』となったら、ClsUP 信号を出力することで、クラスタカウンタ52をインク リメントさせ、またセクターカウンタに『\$FC』をロ ードさせる。また、セクターデコーダ62は、セクター アドレスが『\$FC』~『\$FF』となっているタイミ ングでLink信号を出力し、セレクタコントローラ5 9に供給する。これは現在リンキング領域とされるサブ データセクターの転送中であることを示す信号となる。 セレクタコントローラ59は、このLink信号によ り、サブデータセクタに対応するセレクタ57の切換制 御を行なう。

【0037】なお、セレクタコントローラ59には、パ 【0033】57はセレクタである。セレクタ57は入 50 ッファRAM13内に読み出すデータが無くなったこと

を検出された際にEmpty信号が供給される。このEmpty信号は、エンコーダ/デコーダ部14からメモリコントローラ12への入力カウンタ値と、バッファRAM13からの読出カウンタ値が一致した際に発生される。つまり、メインデータが入力されてがバッファRAM13へ書き込まれていくことがなくなり、その後バッファRAM13から蓄積したデータを読み出してしまっ

た時点でEmp t y信号が発生される。

【0038】このデータエンコーダの動作を図3、図4、図5で説明する。図3に1クラスタの記録時の動作タイミングを示す。まず、図3(a)(b)に示すようにSet信号によりシステムコントローラ11がクラスタカウンタ52に或るクラスタ番号(クラスタアドレス)をセットする。例えばクラスタ番号=『\$100』とされたとする。このとき、図3(d)(e)のようにクラスタカウンタ52からセクダーカウンタ53にLoad信号が発され、セクターカウンタ53のカウント値として『\$FD』がロードされる。

【0039】次に、図3(h)のようにシステムコントローラ11がトリガとしてTX信号を出力することでバ20イトカウンタ60がカウント動作を開始する。バイトカウンタ60のカウント値に応じて、バイトカウンタデコーダ61はセレクタコントローラ59にバイト情報を供給する。図5(b)(d)に示すように、バイトカウント値が『0』、つまりパイトカウントがスタートした時点では、セレクタコントローラ59はセレクタ57を入力Saに設定する。これにより、転送バイト0~12までの間に、シンクパターン発生部51からの同期パターンデータが出力される。

【0040】図6に示したようにセクターのバイト12,13はクラスタアドレスである。従って図5(b)(d)に示すように、セレクタコントローラ59はバイトカウント値が『11』となった後、セレクタ57を入力Sbに切り換える。これによりバイト12,13の転送タイミングでクラスタカウンタ52のカウント値『\$100』がクラスタアドレスとして出力される。

【0041】セクターのパイト14はセクターアドレスである。従って、セレクタコントローラ59はパイトカウント値が『13』となった後、セレクタ57を入力Scに切り換える。これによりパイト14の転送タイミングでセクターカウンタ52のカウント値『\$FD』がセクターアドレスとして出力される。セクターのパイト15はモードデータである。従ってセレクタコントローラ59はパイトカウント値が『14』となった後、セレクタ57を入力Sdに切り換える。これによりパイト15の転送タイミングでモードデータ発生部54からのデータ『\$02』がモードデータとして出力される。

【0042】セクターのバイト16~20はNu11データによるサブヘッダである。従ってセレクタコントローラ59はバイトカウント値が『15』となった後、セ 50

10 11n 始ラス アわけ

レクタ57を入力Seに切り換える。これにより各バイト $16\sim20$ の転送タイミングでMullデータ発生部55からのデータ『\$00』が出力される。

【0043】さらに、セクターのパイト21~2351 はデータエリアである。ただし、セクターがサブデータ セクターである場合はデータエリアはNullデータと される。最初にセクターカウンタ53に『\$FD』がロ ードされているときの転送タイミングでは、サブデータ セクターであることからセクターデコーダ62からLi nk信号が出力されている(図3(g))。これによ り、セレクタコントローラ59はパイト21~2351 のデータエリアの転送タイミングでセレクタ57を入力 Sfに設定し、各バイトをNullデータとして出力す る。つまり、最初のセクター『\$FD』の転送期間で は、パイトカウンタ60のカウント値に応じて図5 (d) のようにセレクタ57を切り換えることになる。 【0044】パイトカウンタ60が『2351』となっ たら、パイトカウンタデコーダ61によって、次にパイ トカウンタ60が『O』にリセットされるとともに、S c t U P 信号が出力される(図 5 (e)及び図 3 (f))。これにより、セクターカウンタ53の値は 『\$FE』となる。このときセクター『\$FE』がサブ データセクターであるためLink信号は継続して出力 される。従って、セクター『\$FE』の転送期間は図5

データセクターであるためLink信号は継続して出力される。従って、セクター『\$FE』の転送期間は図5(d)のようにセレクタ57が切り換えられる。つまり、同期パターン、クラスタアドレス『\$100』、セクターアドレス『\$FE』、モードデータ『\$02』、Nullデータによるサブヘッダ及びメインデータが出力される。さらに、セクター『\$FE』の転送が終了してセクターカウンタ53が『\$FF』となった後のセクター『\$FF』の転送期間も、同様に図5(d)のようにセレクタ57が切り換えられてセクターデータが出力される。

【0045】次に、セクター『\$FF』の転送が終了し TSctUP信号によりセクターカウンタ53が『\$0 0』となると、図3(g)に示すようにLink信号出 力が停止される。このセクター『\$00』の転送期間に おいては、セレクタ 5-7 は図 5 (c) のように制御され る。つまり、入力Saが選択されて同期パターンが出力 された後、入力Sbが選択されてクラスタアドレス『\$ 100』、入力Scが選択されてセクターアドレス『\$ 00』、入力Sdが選択されてモードデータ『\$0 2』、入力Seが選択されてNu11データによるサブ ヘッダが、それぞれ出力される。続いてバイト20~2 351までの転送タイミングでは、セレクタコントロー ラ59は、Link信号が無いため、セレクタ57を入 カSfに接続し、メモリデータ出力部56からのデータ を出力する。つまりパッファRAM13から読み出した 音声などのデータである。

50 【0046】以降、セクターカウンタ53が『\$01』

~『\$1F』となっている間は、図3(d)(g)からわかるようにLink信号が出力されていないため、各セクター『\$01』~『<math>\$1F』の転送タイミングではセレクタ57は図5(c)のように制御されて、メインデータセクターとして転送される。

【0047】セクターカウンタが『\$1F』となり、セクター『\$1F』の転送が行なわれ、バイトカウンタ60が『2351』となると、図3(c)のようにセクターデコーダ62からC1sUP信号が出力される。これによりクラスタカウンタ52がインクリメントされ、カ10ウント値が『\$101』となる(図3(b))。また、C1sUP信号によりセクターカウンタ53に『\$FC』がロードされる(図3(d))。セクター『\$FC』はリンキング領域(サブデータセクター)であるため、セクターデコーダ62はLink信号を出力する。従ってセクター『\$FC』の転送期間においては、セレクタコントローラ59はセレクタ57を図5(d)のように制御することになる。

【0048】次のセクター『\$FD』~『\$FF』も同様にセレクタコントローラ59はセレクタ57を図5 20 (d) のように制御する。そして、セクター『\$00』からは、セレクタコントローラ59はセレクタ57を図5 (c) のように制御することになる。

【0049】なお、クラスタ単位の記録の終了は、セクター『\$FD』で終了することになる。従って記録終了時には、システムコントローラ11はセクター『\$FD』の転送が終了した時点でTX信号によるパイトカウンタ60のトリガを解除する(図3(h))。このためにシステムコントローラ11は転送中のセクター番号を把握していなければならないが、このためには上述した30ようにIRQ信号をカウントしておくか、もしくはセクターカウンタ53のカウント値を取り込むなどの手段が講じられればよい。

【0050】ところで、記録はクラスタ単位で行なわれるため、或るクラスタの記録途中で音声データなどの入力データが無くなることが多い。つまりパッファRAM13に新たにデータが取り込まれず、クラスタ内の途中の或る時点で蓄積データを全て読み出してしまった状態となった場合である。記録動作自体はそのクラスタが終了するセクター『\$FD』まで継続され、その終了に至40までのセクターについては、メインデータが全てNullデータとされる。

【0051】例えば図4(j)に示すように、セクター『\$01』の転送終了に応じてバッファRAM13内にデータが無くなり、セレクタコントローラ59にEmpty信号が入力されたとする。すると、セクター『\$02』以降のセクターについては、セレクタコントローラ59はバイト20~2351のメインデータの転送タイミングでセレクタ57を入力Seを選択させ、Nullデータ発生部55の出力を転送させる。つまりセレクタ57

12 コントローラ59はセレクタ57を図5(d)のように 切換制御することになる。

【0052】以上のようにメモリコントローラ12内に本実施例のデータエンコーダが構成されていることにより、システムコントローラ11は、セクターデータの転送タイミング毎にクラスタ及びセクターアドレスの設定のためのコマンドの送信や、サブデータセクターやサブへッダバイトでのNullデータ、及びEmpty信号発生後のNullデータの設定コマンドの送信は不要となる。また、常に1つ先のセクターについての情報を管理するということも不要となる。これにより、システムコントローラ11の処理負担は大幅に軽減されることになる。

【0053】なお、実施例ではミニディスクシステムに 搭載した例で説明したが、本発明のデータエンコーダは これ以外の各種システムにおいても採用することができ る。また、データエンコーダの構成は図1のものに限定 されるものではなく、各種変形例が考えられる。

[0054]

【発明の効果】以上説明したように本発明のデータエンコーダにより、記録動作を制御しているマイクロコンピュータが、音声データなどのメインデータに同期信号やアドレスなどを付加してセクターデータを生成する処理を行なう必要はなくなり、その処理負担を大幅に軽減することができるという効果がある。またアドレスは、データ群アドレスカウンタ手段と、セクターアドレスカウンタ手段のカウント動作により設定されていくため、アドレス設定ミスを殆どなくすことができるという効果もある。

30 【図面の簡単な説明】

【図1】本発明の実施例のデータエンコーダのプロック 図である。

【図2】実施例のデータエンコーダが搭載される記録再 生装置のブロック図である。

【図3】実施例のデータエンコーダの動作タイミングの 説明図である。

【図4】実施例のデータエンコーダの動作タイミングの 説明図である。

【図5】実施例のデータエンコーダの動作タイミングの 説明図である。

【図6】ミニディスクのセクター構造の説明図である。 【符号の説明】

- 1 ディスク
- 3 光学ヘッド
- 7 RFアンプ
- 8 エンコーダ/デコーダ部
- 11 システムコントローラ
- 12 メモリコントローラ
- 13 NyzrRAM
- 50 14 エンコーダノデコーダ部

13

- 51 シンクパターン発生部
- 52 クラスタカウンタ
- 53 セクターカウンタ
- 54 モードデータ発生部
- 55 Nullデータ発生部
- 56 メモリデータ出力部

- 57 セレクタ
- 58 CD-ROMスクランプラ

14

- 59 セレクタコントローラ
- 60 バイトカウンタ
- 61 バイトカウンタデコーダ
- 62 セクターデコーダ

【図1】

【図2】

[図3]

【図4】

[図5]

セクター内での出力切裂タイミング

[図6]

【手続補正書】

【提出日】平成6年11月22日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】 0 0 0 7

【補正方法】変更

【補正内容】

[0007]

【発明が解決しようとする課題】ミニディスクシステムにおいて記録のための音声データが入力された場合は、その音声データはデータ圧縮処理が施された後、1セクター分に相当するデータ量単位で順次、バッファRAMに取り込まれていく。そしてバッファRAMから順次読み出されて、図6に示したように同期パターン、クラスタアドレス、セクターアドレス、モードデータ、サブヘッダが付加され、セクターフォーマットのデータストリームが形成される。このように生成されたセクターデータは、さらにACIRC及びEFMエンコードが施された後、記録ヘッドに供給されて光磁気ディスクに記録されていくことになる。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0008

【補正方法】変更

【補正内容】

【0008】ここで、音声データなどのメインデータに同期パターン等を加えたセクターデータを生成するために、記録動作を制御するマイクロコンピュータは、セクターデータの転送タイミング毎にクラスタ及びセクター

アドレスの設定のためのコマンドを送信していた。また、上述のようにサブデータセクターではメインデータエリアがNullデータとされるが、このようなサブデータセクターの生成のためにも、マイクロコンピュータはデータエリアをNullデータとするためのコマンドを発していた。さらに、これらの制御はセクターデータをACIRC及びEFMエンコードのために転送する前に行なわなければならず、従ってマイクロコンピュータは常に1つ先のセクターについての情報も管理していなければならない。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0021

【補正方法】変更

【補正内容】

【0021】再生RF信号はエンコーダ/デコーダ部8でEFM復調、ACIRC等のデコード処理され、メモリコントローラ12によって一旦パッファRAM13に書き込まれる。なお、光学ヘッド3による光磁気ディスク1からのデータの読み取り及び光学ヘッド3からパッファRAM13までの再生データの転送は1.41Mbit/secで(間欠的に)行なわれる。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0025

【補正方法】変更

【補正内容】

【0025】ディスク(光磁気ディスク)1に対して記

録動作が実行される際には、端子17に供給された記録信号(アナログオーディオ信号)は、A/D変換器18によってデジタルデータとされた後、エンコーダ/デコーダ部14に供給され、音声圧縮エンコード処理を施される。エンコーダ/デコーダ部14によって圧縮された記録データはメモリコントローラ12によって一旦パッファRAM13に書き込まれ、また所定タイミングで読み出されてエンコーダ/デコーダ部8に送られる。そしてエンコーダ/デコーダ部8でACIRCエンコード、EFM変調等のエンコード処理された後、磁気ヘッド駆動回路6に供給される。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0028

【補正方法】変更

【補正内容】

【0028】このような記録再生装置では上記したように記録動作時に音声圧縮エンコードを施された音声データがメモリコントローラ12によって一旦バッファRAM13に記憶される。そしてバッファRAM13からは1セクター分に相当するデータ量単位(2332パイト)で順次読み出され、図6に示したように同期パターン、クラスタアドレス、セクターアドレス、モードデータ、サブヘッダが付加され、セクターフォーマットのデータストリームが形成される。そしてエンコーダ/デコーダ部8でACIRC及びEFMエンコードが施された後、磁気ヘッド駆動回路6に供給されて光磁気ディスクに記録されていくことになる。ここで本実施例の場合、このようなセクターデータを生成するためのデータエンコーダがメモリコントローラ12内に形成されている。

【手続補正6】

【補正対象書類名】明細書 【補正対象項目名】0042 【補正方法】変更

【補正内容】

【0042】セクターのパイト $16\sim19$ はNullデータによるサブヘッダである。従ってセレクタコントローラ59はパイトカウント値が『15』となった後、セレクタ57を入力Seに切り換える。これにより各パイト $16\sim19$ の転送タイミングでNullデータ発生部55からのデータ『<math>\$00』が出力される。

【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】 0 0 4 3

【補正方法】変更

【補正内容】

【0043】さらに、セクターのパイト20~2351はデータエリアである。ただし、セクターがサブデータセクターである場合はデータエリアはNullデータとされる。最初にセクターカウンタ53に『\$FD』がロードされているときの転送タイミングでは、サブデータセクターであることからセクターデコーダ62からLink信号が出力されている(図3(g))。これにより、セレクタコントローラ59はパイト20~2351のデータエリアの転送タイミングでセレクタ57を入力Sfに設定し、各パイトをNullデータとして出力する。つまり、最初のセクター『\$FD』の転送期間では、パイトカウンタ60のカウント値に応じて図5(d)のようにセレクタ57を切り換えることになる。

【手続補正8】

【補正対象書類名】図面

【補正対象項目名】図1

【補正方法】変更

【補正内容】

[図1]

【手続補正9】

【補正対象書類名】図面

【補正対象項目名】図2

【補正方法】変更

【補正内容】

【図2】

