CS5489 Lecture 6.2: Clustering

Kede Ma

City University of Hong Kong (Dongguan)

Slide template by courtesy of Benjamin M. Marlin

Outline

- 1 Introduction
- 2 Exhaustive Clustering
- 3 K-Means Clustering
- 4 Gaussian Mixture Models

Supervised vs Unsupervised Learning

- Supervised learning considers input-output pairs (\mathbf{x}, y)
 - \blacksquare Learn a mapping f from input to output
 - Classification: output $y \in \{-1, 1\}$
 - Regression: output $y \in \mathbb{R}$
 - "Supervised" here means that the algorithm is learning the mapping that we want
- Unsupervised learning only considers the input data x
 - There is no output value
 - Goal: try to discover inherent properties in the data
 - Density estimation
 - Clustering
 - Dimensionality reduction
 - Manifold embedding

Density Estimation

- From $\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^{M}$, estimate a probability distribution $p(\mathbf{x})$
 - Mother of all unsupervised learning problems
 - Key technique underpinning AIGC
 - Can be conditional, i.e., to estimate $p(\mathbf{x}|y)$. (Here, we don't learn a mapping to predict y from \mathbf{x} , we just use y as conditioning)

Clustering

- Find clusters of similar items in the data
- Find a representative item that "summarizes" all items in the cluster
- For example: group iris flowers by their measurements (sepal width and petal length)

Dimensionality Reduction

- Transform high-dimensional vectors into low-dimensional vectors
 - Dimensions in the low-dim data may have semantic meaning
- For example: document analysis
 - High-dim: bag-of-words vectors of documents
 - Low-dim: each dimension represents similarity to a topic

Manifold Embedding

- Project high-dimensional vectors into 2- or 3-dimensional space for visualization
 - Points in the low-dim space have similar pair-wise distances as in the high-dim space
- For example: visualize a collection of hand-written digits (images)

Outline

- 1 Introduction
- 2 Exhaustive Clustering
- 3 K-Means Clustering
- 4 Gaussian Mixture Models

Defining a Clustering

- Suppose we have M data points $\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^{M}$, where $\mathbf{x}^{(i)} \in \mathbb{R}^{N}$
- A clustering of the M points into K clusters is a partitioning of \mathcal{D} into K mutually disjoint groups $\mathcal{C} = \{C_1, \dots, C_K\}$ such that $C_1 \cup \ldots \cup C_K = \mathcal{D}$
 - Groups are also called clusters
 - K is the number of clusters
 - Each data point is assigned with a cluster index $(y \in \{1, ..., K\})$

Exhaustive Clustering

- Suppose we have a function $f(\mathcal{C})$ that takes a clustering \mathcal{C} of the data set \mathcal{D} as input, and returns a score with lower scores indicating better clustering
- \blacksquare The optimal clustering according to f is simply given by

$$\operatorname{arg\,min}_{\mathcal{C}} f(\mathcal{C})$$

Question: What is the complexity of exhaustive clustering?

Number of Clusterings

- The total number of clusterings of a data set with M elements is the Bell number B_M , where $B_0 = 1$ and $B_{M+1} = \sum_{k=0}^{M} {M \choose k} B_k$
- The first few Bell numbers are: 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899322, ...
- The complexity of exhaustive clustering scales with B_M and is thus computationally totally intractable for general scoring functions
- We will need either approximation algorithms or scoring functions with special properties

https://oeis.org/A000110

Outline

- 1 Introduction
- 2 Exhaustive Clustering
- 3 K-Means Clustering
- 4 Gaussian Mixture Models

K-Means Clustering

Idea:

- Assume *K* clusters
- Each cluster is represented by a **cluster center**
 - $\mathbf{c}_j \in \mathbb{R}^N, j \in \{1, \ldots, K\}$
- Assign each data point to the closest cluster center
 - According to Euclidean distance $\|\mathbf{x}^{(i)} \mathbf{c}_j\|_2$

K-Means Clustering Problem

- How to pick the cluster centers?
 - \blacksquare Assume there are K clusters
 - Pick the cluster centers that minimize the squared distance to all its cluster members

$$\min_{\mathbf{c}_1,...,\mathbf{c}_K} \sum_{i=1}^M \|\mathbf{x}^{(i)} - \mathbf{c}_{z^{(i)}}\|_2^2,$$

where $z^{(i)}$ is the index of the closest cluster center to $\mathbf{x}^{(i)}$

- $z^{(i)} = \operatorname{argmin}_{i=\{1,...,K\}} \|\mathbf{x}^{(i)} \mathbf{c}_j\|_2^2$
- I.e., the assignment of point to its closest cluster
- Solution:
 - If the assignments $\{z^{(i)}\}$ are known...
 - Let C_j be the set of points assigned to Cluster j: $C_i = \{\mathbf{x}^{(i)} | z^{(i)} = j\}$
 - Cluster center is the mean of the points in that cluster:

$$\mathbf{c}_j = \frac{1}{|C_j|} \sum_{\mathbf{x}^{(i)} \in C_j} \mathbf{x}^{(i)}$$

Chicken and Egg Problem

- Cluster assignment of each point depends on the cluster centers
- Location of cluster center depends on which points are assigned to it
- **Question:** How to resolve this issue?

K-Means Algorithm

- Pick initial cluster centers
- Repeat:
 - **I** Assignment step: calculate assignment $z^{(i)}$ for each point $\mathbf{x}^{(i)}$: closest cluster center using Euclidean distance

$$z^{(i)} = \underset{j=\{1,...,K\}}{\arg\min} \|\mathbf{x}^{(i)} - \mathbf{c}_j\|_2^2$$

2 **Update step**: Calculate cluster center as average of points assigned to Cluster *j*

$$\mathbf{c}_{j} = \frac{\sum_{i=1}^{M} \mathbb{I}[z^{(i)} = j] \mathbf{x}^{(i)}}{\sum_{i=1}^{M} \mathbb{I}[z^{(i)} = j]}$$

■ This procedure will converge eventually

Example: Iris Dataset

The K-Means Objective

K-means attempts to minimize the sum of within-cluster variation over all clusters (also called the within-cluster sum of squares):

$$\min \ell(\mathbf{z}, \{\mathbf{c}_j\}_{j=1}^K) = \min_{\mathbf{z}, \{\mathbf{c}_j\}_{j=1}^K} \sum_{i=1}^M \|\mathbf{x}^{(i)} - \mathbf{c}_{z^{(i)}}\|_2^2,$$

where
$$\mathbf{z} = [z^{(1)}, z^{(2)}, \dots, z^{(M)}]^T$$

- *K*-means is exactly **coordinate descent** on ℓ , where Assignment step minimizes ℓ w.r.t. **z** while holding $\{\mathbf{c}_j\}$ fixed, and Update step minimizes ℓ w.r.t. $\{\mathbf{c}_j\}$ while holding **z** fixed
- Thus, ℓ is monotonically decreasing. As ℓ is also lower bounded by 0, the value of ℓ must converge

Important Note

- Note that *K*-means has many local optima in general, each corresponding to a different clustering of the data. Finding the global optimum is not computationally tractable
- Thus, the final results can be highly sensitive to initialization
 - Some bad initial cluster centers will yield poor clustering results!

Solution to Initialization

- It is common to perform multiple random re-starts of the algorithm, and take the clustering with the best result
- Common initializations include 1) setting the initial centers to be randomly selected data points, 2) setting the initial partition to a random partition, and 3) selecting centers using a "furthest first"-style heuristic (more formally known as *K*-means++)
- It often helps to initially to run with $K \log(K)$ clusters, then merge clusters to get down to K and run the algorithm from that initialization

For Different *K*

 \blacksquare We need to choose the appropriate K

Choosing *K*

- \blacksquare Clustering results depend on the number of clusters K used
- We don't typically know this information beforehand
- The elbow method
 - Simple, only requires one fit per value of *K*

Circular Clusters

- One problem with K-means is that it assumes that each cluster has a circular shape
 - Based on Euclidean distance to each center
 - *K*-means cannot handle skewed (elliptical) clusters

- 2 Exhaustive Clustering
- 3 K-Means Clustering
- 4 Gaussian Mixture Models

Gaussian Mixture Model (GMM)

- A multivariate Gaussian can model a cluster with an elliptical shape
 - The ellipse shape is controlled by the covariance matrix of the Gaussian
 - The location of the cluster is controlled by the mean
- Gaussian mixture model is a weighted sum of Gaussians

$$p(\mathbf{x}) = \sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$$

- Each Gaussian represents one elliptical cluster
 - μ_i is mean of the *j*-th Gaussian (the location)
 - **\Sigma_j** is covariance matrix of the *j*-th Gaussian (the ellipse shape)
 - \blacksquare π_j is prior weight of the *j*-th Gaussian (how likely is this cluster)

1-D Example of GMM

■ Each Gaussian is a "mountain"

2-D Example of GMM

- Each Gaussian defines a "mountain"
 - Contours are ellipses

Clustering with GMMs

■ Given a data set $\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^{M}$, learn a GMM using maximum likelihood estimation:

$$\max_{\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}} \sum_{i=1}^{M} \log \sum_{j=1}^{K} \pi_{j} N(\mathbf{x}^{(i)}; \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})$$

 While we can do this directly using gradient-based optimization, it's often faster to use a special algorithm called Expectation Maximization

Expectation Maximization (EM) for GMM

- EM results in an algorithm similar to *K*-means
 - E-Step: Calculate cluster membership with "soft" assignment a data point can have a fractional contribution to different clusters
 - Contribution of Point i to Cluster j is defined by the posterior probability that $\mathbf{x}^{(i)}$ belongs to Cluster j using the Bayes' rule

$$\begin{aligned} z_{j}^{(i)} &= p(z^{(i)} = j | \mathbf{x}^{(i)}) = \frac{p(\mathbf{x}^{(i)}, z^{(i)} = j)}{p(\mathbf{x}^{(i)})} \\ &= \frac{p(\mathbf{x}^{(i)} | z^{(i)} = j) p(z^{(i)} = j)}{\sum_{k=1}^{K} p(\mathbf{x}^{(i)} | z^{(i)} = k) p(z^{(i)} = k)} \\ &= \frac{\pi_{j} \mathcal{N}(\mathbf{x}^{(i)}; \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})}{\sum_{k=1}^{K} \pi_{k} \mathcal{N}(\mathbf{x}^{(i)}; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})} \end{aligned}$$

Expectation Maximization (EM) for GMM

- EM results in an algorithm similar to *K*-means
 - M-Step: Update each Gaussian cluster (mean, covariance, and weight) using "soft" weighting
 - "Soft" count of points in Cluster *j*:

$$M_j = \sum_{i=1}^M z_j^{(i)}$$

Weight:

$$\pi_j = \frac{M_j}{M}$$

Mean:

$$\boldsymbol{\mu}_j = \frac{1}{M_j} \sum_{i=1}^M z_j^{(i)} \mathbf{x}^{(i)}$$

Covariance:

$$\mathbf{\Sigma}_j = \frac{1}{M_j} \sum_{i=1}^{M} z_j^{(i)} (\mathbf{x}^{(i)} - \boldsymbol{\mu}_j) (\mathbf{x}^{(i)} - \boldsymbol{\mu}_j)^T$$

GMM: A Special Case

■ Suppose we fix $\pi_j = 1/K$ and $\Sigma_j = \mathbf{I}$. In this case we have

$$p(\mathbf{x}^{(i)}|z=j) = \mathcal{N}(\mathbf{x}^{(i)}; \boldsymbol{\mu}_j, \mathbf{I}) = \frac{1}{\sqrt{(2\pi)^N}} \exp(-\frac{1}{2}||\mathbf{x}^{(i)} - \boldsymbol{\mu}_j||_2^2)$$

■ We obtain a special case of the EM algorithm for GMM:

$$z_j^{(i)} = \frac{\exp(-\frac{1}{2} \|\mathbf{x}^{(i)} - \boldsymbol{\mu}_j\|_2^2)}{\sum_{k=1}^K \exp(-\frac{1}{2} \|\mathbf{x}^{(i)} - \boldsymbol{\mu}_k\|_2^2)},$$
$$\boldsymbol{\mu}_j = \frac{1}{M_j} \sum_{i=1}^M z_j^{(i)} \mathbf{x}^{(i)}$$

This is often referred to as **soft** K-means

GMM Clustering Example

Covariance Matrix

■ The covariance matrix is an $N \times N$ matrix

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

- For high-dimensional data, it can be very large
 - Requires a lot of data to learn effectively
- Solution:
 - Use diagonal covariance matrices (N parameters) or spherical covariance matrices (1 parameter)

$$\begin{bmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{bmatrix} \quad \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$$

- Diagonal: axes of ellipses will be aligned with the coordinate axes
- Spherical: clusters will be circular (similar to *K*-means)

GMM Clustering Example

Trade-Offs

- The original *K*-means algorithm performs hard assignments during clustering, and implicitly assumes all clusters will have an equal number of points assigned as well as a unit covariance matrix
- GMM for clustering relaxes all of these assumptions. The objective still has multiple local optima
- EM can also be used with any component densities/distributions to customize the model to a given data set
- As with *K*-means, initialization is important for GMM