Meta-learning how to forecast time series

Thiyanga S. Talagala Rob J Hyndman George Athanasopoulos

Monash University, Australia

Large collections of time series

• Forecasting demand for thousands of products across multiple warehouses.

Objective

Develop a framework that automates the selection of the most appropriate forecasting model for a given time series by using an array of features computed from the time series.

Objective

Develop a framework that automates the selection of the most appropriate forecasting model for a given time series by using an array of features computed from the time series.

Basic idea:

Objective

Develop a framework that automates the selection of the most appropriate forecasting model for a given time series by using an array of features computed from the time series.

• Basic idea:

Transform a given time series $y = \{y_1, y_2, \dots, y_n\}$ to a feature vector $F = (f_1(y), f_2(y), \dots, f_p(y))'$.

Examples for time series features

Objective

Develop a framework that automates the selection of the most appropriate forecasting model for a given time series by using an array of features computed from the time series.

- Basic idea:
 - Transform a given time series $y = \{y_1, y_2, \dots, y_n\}$ to a feature vector $F = (f_1(y), f_2(y), \dots, f_p(y))'$.
- Examples for time series features
 - strength of trend

Objective

Develop a framework that automates the selection of the most appropriate forecasting model for a given time series by using an array of features computed from the time series.

• Basic idea:

- Examples for time series features
 - strength of trend
 - strength of seasonality

Objective

Develop a framework that automates the selection of the most appropriate forecasting model for a given time series by using an array of features computed from the time series.

• Basic idea:

- Examples for time series features
 - strength of trend
 - strength of seasonality
 - lag-1 autocorrelation

Objective

Develop a framework that automates the selection of the most appropriate forecasting model for a given time series by using an array of features computed from the time series.

• Basic idea:

- Examples for time series features
 - strength of trend
 - strength of seasonality
 - lag-1 autocorrelation
 - spectral entropy

Feature-space of time series

STL-decomposition

$$Y_t = T_t + S_t + R_t$$

- strength of trend: $1 \frac{Var(R_t)}{Var(Y_t S_t)}$
- ullet strength of seasonality: $1-rac{ extstyle ex$

Feature-space of time series

STL-decomposition

$$Y_t = T_t + S_t + R_t$$

- strength of trend: $1 \frac{Var(R_t)}{Var(Y_t S_t)}$
- ullet strength of seasonality: $1-rac{ extstyle Var(R_t)}{ extstyle Va(Y_t-T_t)}$

- length
- strength of seasonality
- strength of trend
- linearity
- curvature
- spikiness
- stability
- lumpiness
- first ACF value of remainder series
- parameter estimates of Holt's linear trend method

- spectral entropy
- Hurst exponent
- nonlinearity
- parameter estimates of Holt-Winters' additive method
- unit root test statistics
- first ACF value of residual series of linear trend model
- ACF and PACF based features - calculated on both the raw and differenced series

Methodology: FFORMS

FFORMS: Feature-based FORecast Model Selection

Offline: Classification algorithm is trained

Online: Use the classification algorithm to select appropriate

forecast-models for new time series

FFORMS: population

FFORMS: observed sample

FFORMS: simulated time series

FFORMS: reference set

FFORMS: Random-forest classifier

FFORMS: "online" part of the algorithm

FFORMS: "online" part of the algorithm

FFORMS: "online" part of the algorithm

Application to M competition data

- Proposed algorithm is applied to yearly, quarterly and monthly series separately
- We run two experiments for each case.

	Experiment 1				Experiment 2			
	Source	Y	Q	M	Source	Y	Q	М
Observed series	M1	181	203	617	М3	645	756	1428
Simulated series		362000	406000	123400		1290000	1512000	285600
New series	М3	645	756	1428	M1	181	203	617

Experiment 1: Distribution of time series in the PCA space

Experiment 2: Distribution of time series in the PCA space

Results: Yearly

Results: Quarterly

Results: Monthly

• Proposed a novel framework for forecast-model selection using meta-learning based on time series features.

- Proposed a novel framework for forecast-model selection using meta-learning based on time series features.
- Our method almost always performs better than common benchmark methods, and better than the best-performing methods from the M3 competition.

- Proposed a novel framework for forecast-model selection using meta-learning based on time series features.
- Our method almost always performs better than common benchmark methods, and better than the best-performing methods from the M3 competition.
- The framework is general and can be applied to any large collection of time series.

- Proposed a novel framework for forecast-model selection using meta-learning based on time series features.
- Our method almost always performs better than common benchmark methods, and better than the best-performing methods from the M3 competition.
- The framework is general and can be applied to any large collection of time series.
- Advantage: Not necessary to estimate several different models for the data and undertake an empirical evaluation of their forecast accuracy on a given time series.

R package: seer

available at:

https://github.com/thiyangt/seer

R package: seer

available at:

https://github.com/thiyangt/seer

Reference: Talagala, TS, RJ Hyndman & G Athanasopoulos (2018). Meta-learning how to forecast time series. Technical Report 6/18, Monash University.