تمرین سری چهارم اصول سیستمهای مخابراتی

رمان سیگنالهای میانگذر با طیف زیر، به ازای $f_c = 110kHz$ و $f_c = 110kHz$ و حوزه حوزه رمان سیگنال معادل باند پایه، و حوزه زمان سیگنال میانگذر داده شده را بیابید.

$$x(f) = \begin{cases} 1 & 80kHz < |f| < 90kHz \\ 1 & 130kHz < |f| < 140kHz : \quad x(f) = \begin{cases} 1 & 100kHz < |f| < 130kHz \\ 0 & O.W. \end{cases}$$

۲- فرض کنید قرار است سیگنالهای زیر به صورت Am استاندارد ارسال شوند. مطلوب است $f_c = 10kHz$ محاسبه و رسم طیف سیگنالهای Am مورد نظر در صورتی که Am

$$x(t) = \sin c^2(100t)\cos(100\pi t)$$
 : $x(t) = \sin c(20t) + \sin c^2(50t)\cos(150\pi t)$:

$$x(t) = \cos(50\pi t) + \sin c^2(100t)\cos(400\pi t)$$
 :

۳ – فرض کنید قرار است دو سیگنال $x_1(t) = \sin c(100t)$ و $x_1(t) = \sin c(100t)$ به صورت همزمان از طریق کانال با پاسخ فرکانسی H(f) ارسال شوند.

الف: طیف دو سیگنال و سیگنال

ب: با توجه به اینکه طیف دو سیگنال همپوشانی دارد، به صورت مستقیم نمی توان آنها را جمع نموده و ارسال کرد. برای ارسال، از یکی از دو روش زیر استفاده می کنیم

بابتدا سیگنال پیام می کنیم. سپس سیگنال پیام $z_1(t)=x_1(t)\cos(\omega_1\,t)$ را ایجاد می کنیم. سپس سیگنال پیام AM استاندارد به $x(t)=z_1(t)+x_2(t)$ را ایجاد می کنیم. اکنون سیگنال مدوله شده $x(t)=z_1(t)+x_2(t)$ صورت $x_c(t)=A_c\{1+\mu x(t)\}\cos(\omega_c t)$ را ایجاد می کنیم. با فرض $x_c(t)=a_c\{1+\mu x(t)\}\cos(\omega_c t)$ به ازای $x_c(t)$ طیف سیگنال $x_c(t)$ و $x_c(t$

 $x_c(t)$ است؟ به ازای $\omega_c = 50000$ ، مقدار $\omega_c = 50000$ ، مقدار باشد تا پهنای باند سیگنال $\omega_c = 50000$ حداقل گردد؟

با توان $S_x=1$ به $S_x=1$ استاندارد مدوله و ارسال می شود. برای اینکه $S_x=1$ به $S_x=1$ وات شود و $S_T=100$ وات شود و $S_T=$

 $S_T=100$ به صورت $S_T=100$ به حر آن $S_T=100$ به حر آن $S_T=100$ به حر آن $S_T=100$ به حر آن $S_T=100$ به صورت المالي صرف ارسال پيام شود و دامنه $S_T=100$ نسبت به حالت DSB تغيير نكند، توان ارسالي $S_T=100$ به صورت المالي صرف ارسال به صورت المالي صورت المالي علم شود و دامنه $S_T=100$ نسبت به حالت $S_T=100$ به صورت المالي ميانيد.

استاندارد ΔM استاندارد $z(t) = \cos(20\pi t) + \sin c^2(100t)\cos(200\pi t)$ استاندارد ارسال کنیم. برای این منظور از یک سیستم غیر خطی در سیستم کلی زیر استفاده می کنیم.

 $f_c=100kHz$ نوع، فرکانس مرکزی، و پهنای باند فیلتر و مقدار و مقدار ω_1 را برای داشتن فرکانس حامل $\mu=\frac{3}{4}$ و $A_c=10$ و به گونه تعیین کنید که داشته باشیم a_1 و a_2 ، a_3 و a_2 ، a_3 و a_4 را محاسبه و رسم نمایید.