MATH 8510, Abstract Algebra I

Fall 2016

Exercises 13-1

Collbrators: Dazhou Zhu, Xiaoyuan Liu

Name: Shuai Wei

Exercise 1. Let R be a commutative ring with identity.

(a) Let $A, B \subseteq R$ and set I = (A)R and J = (B)R. Prove that I + J is generated by $A \cup B$.

Proof. (1) If $A = B = \emptyset$, we have $A \cup B = \emptyset$ and $I = J = \{0\}$.

$$I + J = \{0\} = (\emptyset)R = (A \cup B)R.$$

So I + J is generated by $A \cup B$.

(2) If $A = \emptyset$ and $B \neq \emptyset$, we have $A \cup B = B$ and

$$I + J = (\emptyset)R + (B)R = \{0\} + (B)R = (B)R = (A \cup B)R.$$

So I + J is generated by $A \cup B$.

(3) Assume $A \neq \emptyset$ and $b \neq \emptyset$. Since $(A)R = I \leq R$ and $(B)R = J \leq R$, we have

$$I+J \leq R$$
.

Since $A \subseteq A \cup B$,

$$I = (A)R \subseteq (A \cup B)R$$
.

Similarly,

$$J \subset (A \cup B)R$$
.

By the definition of I + J, we have

$$I + J \subseteq (A \cup B)R. \tag{1}$$

Since R is CRW1,

$$(A \cup B)R = \{ \sum_{i=1}^{\text{finite}} c_i r_i \mid c_i \in A \cup B, r_i \in R \}.$$

Let $x \in (A \cup B)R$, then $\exists N \in \mathbb{N}$ and $c_i \in A \cup B$ and $r_i \in R$ for $i = 1, 2, \dots, N$ such that

$$x = \sum_{i}^{N} c_i r_i.$$

Without loss of generality, assume $\exists c_i \in A$ for some integer i between 1 and N.

Rearrange $\{c_i r_i, i=1,\cdots,N\}$ such that $c_i \in A$ for $i=1,\cdots,M$ and $c_i \in B$ for $i=M+1,\cdots,N$, where $M \in \mathbb{N}$ and $1 \leq M \leq N$. Then

$$x = \sum_{i}^{M} c_i r_i + \sum_{i=M+1}^{N} c_i r_i$$
$$\in (A)R + (B)R$$
$$= I + J.$$

So

$$(A \cup B)R \subseteq I + J. \tag{2}$$

Thus, by (1) and (2), we have

$$I + J = (A \cup B)R$$
.

Therefore, I + J is generated by $A \cup B$.

(b) Prove that if I and J are finitely generated ideals of R, then I+J is also finitely generated.

Proof. Assume the ideal I of R is finitely generated by the set $A = \{a_1, a_2, \dots, a_m\}$, where $a_1, \dots, a_m \in R$,

and the ideal J of R is finitely generated by the set $B = \{b_1, b_2, \dots, b_n\}$, where $b_1, \dots, b_m \in R$.

Then

$$I = (a_1, \cdots, a_m)R = (A)R$$

and

$$J = (b_1, \cdots, b_n)R = (B)R.$$

By part (a), we have I+J is generated by $A \cup B$. Since $A \cup B$ is a finite set, I+J is finitely generated.

Exercise 2. Let R be a non-zero commutative ring with identity, and let $z \in R$. Assume that z is not nilpotent. Use the following steps to prove that there is a prime ideal of R that does not contain z.

(a) Set $\Sigma := \{I \leq R \mid 1, z, z^2, \dots \notin I\}$, partially ordered by inclusion. Prove that $\Sigma \neq \emptyset$ and that every chain in Σ has an upper bound in Σ . Use Zorn's Lemma to conclude that Σ has a maximal element K.

Proof. Let $I = \{0\}$, then $I \leq R$.

Since z is not nilpotent, $z^n \neq 0, \forall n \in \mathbb{Z}^{\geq 0}$.

So $z^n \notin I, \forall n \in \mathbb{Z}^{\geq 0}$.

Thus, $I \in \Sigma$ and then $\Sigma \neq \emptyset$.

Next we show every chain in Σ has an upper bound in Σ . Let \mathcal{C} be a chain in Σ .

Set

$$I = \bigcup_{J \in \mathcal{C}} J.$$

Since (Σ, \subseteq) is a poset,

$$I \leq R$$
.

Suppose there exists at least one $z^n \in I$ for some $n \in \mathbb{Z}^{\geq 0}$.

Then $z^n \in J$ for some $J \in \mathcal{C} \subseteq \Sigma$.

Since $J \in \Sigma$, $z^n \notin J$, $\forall n \in \mathbb{Z}^{\geq 0}$.

So there is a contradiction.

Then

$$z^n \notin I, \forall n \in \mathbb{Z}^{\geq 0}$$
.

So

$$I \in \Sigma$$
.

Also

$$\forall J \in \mathcal{C}, J \subseteq I.$$

Thus, I is an upper bound for C in Σ .

By Zorn's lemma, Σ has a maximal element K.

- (b) Prove that K is prime as follows.
 - (1) Suppose that $r, s \in R K$ are such that $rs \in K$. Show that $K \subsetneq K + rR \leq R$ and $K \subsetneq K + sR \leq R$.

Proof. Since $0_R \in R$,

$$K = K + r0_R \subseteq K + rR.$$

Assume K = K + rR.

Since $1_R \in R$,

$$K + r = K + r1_R \subseteq K + rR = K.$$

By part (a), we already have $K \leq R$, so $r \in K$.

As a result, there is a contradiction since $r \in R - K$ by assumption. Therefore,

 $K \subsetneq K + rR. \tag{3}$

Since R is CRW1, $rR = (r)R \le R$.

Also, $K \leq R$.

So

$$K + rR \le R. \tag{4}$$

By (3) and (4),

$$K \subsetneq K + rR \leq R.$$

Similarly,

$$K \subsetneq K + sR \le R$$
.

(2) Conclude that there are $m,n\in\mathbb{Z}^{\geq 0}$ such that $z^m\in K+rR$ and $z^n\in K+sR$.

Proof. Assume $z^m \notin K + rR, \forall m \in \mathbb{Z}^{\geq 0}$. Since $K + rR \leq R$, we have

$$K + rR \in \Sigma$$
.

Since K is the maximal element of Σ , $K + rR \subseteq K$.

So there is a contradiction since $K \subseteq K + rR$.

Thus, $\exists m \in \mathbb{Z}^{\geq 0}$ such that $z^m \in K + rR$.

Similarly, $\exists n \in \mathbb{Z}^{\geq 0}$ such that $z^n \in K + sR$.

(3) Deduce that $z^{m+n} \in K$, derive a contradiction, and conclude that K is prime.

Proof. Since $z^m \in K + rR$ and $z^n \in K + sR$, there exists $k_1, k_2 \in K$ and $p_1, p_2 \in R$ such that $z^m = k_1 + rp_1$ and $z^n = k_2 + sp_2$. Since R is CRW1,

$$z^{m+n} = (z^m)(z^n)$$

$$= (k_1 + rp_1)(k_2 + sp_2)$$

$$= k_1k_2 + k_1(sp_2) + k_2(rp_1) + rs(p_1p_2)$$

Since $r, s, p_1, p_2 \in R$, we have

$$sp_2, rp_1, p_1p_2 \in R$$
.

Since $K \leq R$ and $k_1, k_2, rs \in K$, we have

$$k_1k_2, k_1(sp_2), k_2(rp_1), rs(p_1p_2) \in K.$$

Then

$$k_1k_2 + k_1(sp_2) + k_2(rp_1) + rs(p_1p_2) \in K.$$

So for $m, n \in \mathbb{Z}^{\geq 0}$, we have

$$z^{m+n} \in K$$
.

Since $K \in \Sigma$, we have $z^n \notin K, \forall n \in \mathbb{Z}^{\geq 0}$, which is contradicted by $z^{m+n} \in K$.

So our assumption does not holds.

Thus, $\forall r, s \in R - K, rs \notin K$.

Henceforth, K is prime.

As a result, there is a prime ideal K of R that does not contain z. \square

Exercises 13-2

Exercise 3. Let $i = \sqrt{-1} \in \mathbb{C}$, and consider the following subrings of \mathbb{C} .

$$\mathbb{Z}[i] := \{ a + bi \mid a, b \in \mathbb{Z} \}$$

$$\mathbb{Q}[i] := \{ a + bi \mid a, b \in \mathbb{Q} \}$$

Prove that $\mathbb{Q}[i]$ is isomorphic to the field of fractions of $\mathbb{Z}[i]$.

Proof. Let $R = \mathbb{Z}[i]$ and $S = \mathbb{Q}[i]$.

By the Theorem 7.5.9, there exists well-defined ring monomorphsim

$$\rho:R\to D^{-1}R$$

$$r\mapsto \frac{rd}{d},\;d\in D$$

We know S is a field in Chapter 1, so S is an integral domain.

By the subring test, we have R is a subring of S.

Also $1_S = 1_{\mathbb{R}} \in R$, we have R is an integral domain.

Let $D = R \setminus 0$, then $D^{-1}S$ is the field of fractions of R.

Define

$$\phi:R\to S$$
$$r\mapsto r$$

Since ϕ is an identity map from integral domain R to integral domain S and $R\subseteq S,\,\phi$ is well-defined.

 $\forall r, s \in R$,

$$\phi(r+s) = r+s = \phi(r) + \phi(s)$$

$$\phi(rs) = rs = \phi(r)\phi(s),$$

it is a ring homomorphism.

Also S is CRW1 since it is an integral domain.

Since S is a field, it is a division ring and then $S^{\times} = S \setminus 0$.

Since $R \subseteq S$,

$$\phi(D) = D = R \setminus 0 \subseteq S \setminus 0 = S^{\times}.$$

By the Universal Mapping Proerty, there exists a unque well-defined ring homomorphism

$$\begin{split} \Phi: D^{-1}R &\to S \\ \frac{r}{d} &\mapsto \frac{\phi(r)}{\phi(d)} = \frac{r}{d}, \ d \in D, r \in R. \end{split}$$

such that $\Phi \circ \rho = \phi$.

Let $\frac{r}{d} \in D^{-1}R$, where $r \in R$ and $d \in D$.

$$\frac{r}{d} \in \operatorname{Ker}(\Phi) \Longleftrightarrow \frac{r}{d} = 0.$$

So Φ is 1-1.

Let $a + bi \in S$, where $a, b \in \mathbb{Q}$.

Then $\exists \ s,t,p,q\in\mathbb{Z}$ and $t,q\neq 0$ such that $\frac{s}{t}=a$ and $\frac{p}{q}=b$. Since $sq,pt\in\mathbb{Z},$

$$sq+pti\in R$$

Since $tq \in \mathbb{Z}$ and $tq \neq 0$, we have $tq \in \mathbb{Z} \setminus 0 = D$.

$$\frac{sq + pti}{tq} \in D^{-1}R$$

Since

$$\phi\left(\frac{sq+pti}{tq}\right) = \frac{sq+pti}{tq} = \frac{s}{t} + \frac{p}{q}i = a+bi,$$

 ϕ is onto.

Thus, ϕ is an isomomorphism.

Therefore,

$$\mathbb{Q}[i] = S \cong D^{-1}R.$$

Since $R = \mathbb{Z}[i]$, we have

 $\mathbb{Q}[i]$ is isomorphic to the field of fractions of $\mathbb{Z}[i]$.

Exercise 4. Let R be an integral domain and consider the ring homomorphism $\psi \colon \mathbb{Z} \to R$ given by $\psi(n) = n \cdot 1_R$. (You do not need to show that this is a well-defined ring homomorphism.)

(a) Prove that $Ker(\psi) = 0$ or $Ker(\psi) = p\mathbb{Z}$ for some prime number $p \in \mathbb{Z}$.

Proof. (1) Let
$$|R| = \infty$$
.
Let $n \in \mathbb{Z}$.

$$n \in \text{Ker}(\psi) \iff n \cdot 1_R = 0_R$$

 $\iff n = 0.$

since R is an integral domain.

So $Ker(\psi) = 0$.

(2) Let $1 < |R| < \infty$.

Since ψ is a ring homomorphism, by the First Isomorphism Theorem,

$$\mathbb{Z}/\operatorname{Ker}(\psi) \cong \operatorname{Im}(\psi).$$

Since $\psi(1) = 1 \cdot 1_R = 1_R, 1_R \in \text{Im}(\psi)$.

Also R is an integral domain, so $\text{Im}(\psi)$ is an integral domain.

As a result, $\mathbb{Z}/\operatorname{Ker}(\psi)$ is also a field. Then, obviously, $\mathbb{Z}/\operatorname{Ker}(\psi)$ is an integral domain. Since ψ is a ring homomorphsim, $Ker(\psi) \leq \mathbb{Z}$. So $Ker(\psi)$ is prime ideal of \mathbb{Z} . Thus, $Ker(\psi) = p\mathbb{Z}$ for some prime $p \in \mathbb{Z}$ or $Ker(\psi) = 0$. In summary, $Ker(\psi) = 0$ or $Ker(\psi) = p\mathbb{Z}$ for some prime $p \in \mathbb{Z}$. (b) Prove that if p is a prime number such that $Ker(\psi) = p\mathbb{Z}$, then R contains a finite field as a subring. *Proof.* Since $|\mathbb{Z}/\operatorname{Ker}(\phi)| = |\mathbb{Z}/p\mathbb{Z}| = p,$ and by part (a), $\mathbb{Z}/\operatorname{Ker}(\phi) \cong \operatorname{Im}(\psi),$ we have $\left| \operatorname{Im}(\psi) \right| = p.$ Also by part (a), (c) Prove that if R is a field and $Ker(\psi) = 0$, then R has a subring $Q \cong \mathbb{Q}$. Proof.

Also $|\operatorname{Im}(\psi)| \leq |R| < \infty$, $\operatorname{Im}(\psi)$ is a field.