Causal Explanation

Sargur N. Srihari srihari@buffalo.edu

Topics in Causal Explanation

- Three waves of Al
- Explainable Al
- Probabilistic Graphical Models
- Causal Modeling
- Most Probable Explanation
- Explaning Forensic Evidence

Role of probability in explanation

FIRST WAVE

SECOND WAVE

THIRD WAVE

Naturally suited for XAI

Most Probable Explanation

Explainability of Al Models

Probabilistic Models in Explanation

- Generative models are useful for
 - Querying
 - BNs, MRFs
 - Sampling
 - VAEs, GANs
- Inference methods useful as explanation
 - Most Probable Explanation (MPE)
 - Causal Inference
 - Explaining Away

Probabilistic Graphical Models (PGMs)

Bayesian Networks

- CPDs: $p(x_i \mid pa(x_i))$
- Joint Distribution $\boldsymbol{x} = \{x_1, ...x_n\}$

$$p(\boldsymbol{x}) = \prod_{i=1}^{N} p(x_i \mid pa(x_i))$$

$$P(D,I,G,S,L) =$$

$$P(D)P(I)P(G \mid D,I)P(S \mid I)P(L \mid G)$$

Markov Networks

$$p(a,b,c,d,e,f) = \frac{1}{Z} \phi_{a,b}(a,b) \phi_{b,c}(b,c) \phi_{a,d}(a,d) \phi_{b,e}(b,e) \phi_{e,f}(e,f)$$

Energy model $E(a,b,c,d,e,f) = E_{a,b}(a,b) + E_{b,c}(b,c) + E_{a,d}(a,d) + E_{b,e}(b,e) + E_{e,f}(e,f)$ $\phi_{a,b}(a,b) = \exp(-E(a,b))$

Restricted Boltzmann machine

XAI from Causal Model Induction

 Experiment with the learned model to learn an explainable, causal, probabilistic programming model

Causal Modeling

 For a G defining a causal directed PGM on variables $X=x_1,...,x_n$, the joint distribution is

$$P(x_1, ..., x_n) = \prod_i P(x_i | pa_i)$$

- $P(x_1,...,x_n) = \prod_i P(x_i|pa_i)$ where pa_i are the parents of x_i
- An intervention on G by setting $x_i = x'_i$, denoted as $do(x'_i)$, induces a modified graph G' where the edges from pa_i to x_i are removed, resulting in post intervention distribution

$$P(x_1,...,x_n|do(x_i')) = egin{cases} \prod\limits_{j
eq i} P(x_j|pa_j) & ext{if } x_i = x_i' \ 0 & ext{if } x_i
eq x_i' \end{cases}$$

 Semantics of causality are important for explaining DNNs, because explanations must be causal models

Explanation of DNN decision

- When one seeks an explanation of a network's decisions, one is equivalently asking "What changes can be made to the input for the output to change or stay the same?"
- Consider a causal model that defines the joint distribution $P(\mathbb{O},\mathbb{P},\mathbb{X})$ over a set of DNN outputs \mathbb{O} , inputs \mathbb{P} , & intermediate variables \mathbb{X}
- Explanation of an observed DNN output is formulated as intervention

Causal Representation in DNNs

- A user could ask counterfactual questions about the network, i.e. $P(\mathbb{O}, \mathbb{P}, \mathbb{X} | \text{do}(x_i'))$ for any input, output, or internal neuron in the network
- But it serves poorly as a model of explanation
 - due to the lack of human–level concepts that underlie any arbitrary neuron in the network:
 - saying neuron i caused the network to detect a pedestrian may be correct but does not satisfy human needing explanations
- Thus, a DNN causal model must be at a granularity meaningful to humans.

Mapping Neurons to Concepts

- A causal model for DNNs should be represented by joint distribution over O,P, and a set of concepts C
- The process for deriving $\mathbb C$ is described by a function $f_{\mathbb R} \colon \mathbb R \to \mathbb C$ over a specific DNN that transforms the representation of neurons and their activations into a set of concept variables
- Ideally, $f_{\mathbb{R}}$ would have the following properties:

$$\begin{split} \int_R P(\mathbb{O}, \mathbb{P}, \mathbb{R}) &= \int_C P(\mathbb{O}, \mathbb{P}, \mathbb{C}) \\ P(\mathbb{O}, \mathbb{P}|R, do(p_i')) &= P(\mathbb{O}, \mathbb{P}|C, do(p_i')) \end{split}$$

Concept Extraction

- One way to construct concepts that satisfy the semantics is to consider network activations
- But concepts needn't be restricted to those
 - 1. Concepts should be few to minimize amount of investigation a human would need to employ
 - 2. Concepts should be interpretable
 - in the case of images, we would like activations to be restricted to contiguous areas containing consistent, interpretable visual features
 - 3. Concepts should contain all relevent information needed for achieving network task

Auxiliary neural network

- Network constructs concept representations satisfying above properties
- Using an autoencoder with two loss functions
 - Shallow reconstruction loss: L_1 norm between input and output activations $\begin{bmatrix} L_{shallow}(\theta; a_i) = |d_{\theta}(c_{\theta}(a_i)) a_i|_1 \\ L_{deep}(\theta; a_i) = KL(r(a_i)||r(d_{\theta}(c_{\theta}(a_i)))) \end{bmatrix}$
 - Deep reconstruction loss: reconstructed activations result in same classification output after being passed through the rest of network
 - Total autoencoder loss

```
L(\theta; x_i) = \lambda_{shallow} L_{shallow}(\theta; x_i) + \lambda_{deep} L_{deep}(\theta; x_i) + \lambda_{interpretability} L_{interpretability}(\theta; x_i)
```

Autoencoder for a single layer

Learned causal Bayes Net

For Inria pedestrian data set

Crossed boxes indicate that all nodes of a given level have edges incident on each of the nodes of the subsequent level.

Summary of Causal Learning XAI

- Approach to explain predictions to relate output prediction to concepts represented within
 - Series of autoencoders encouraging interpretable properties to construct concepts in activations throughout network
 - Pool features and intervene on autoencoded network to construct variables used to build a causal BN
 - Use network to identify features of causal relevance to individual classifications which are then visualized

Most Probable Explanation (MPE)

Observe evidence: student has received a job offer $J=j^{-1}$. We want an explanation for each of the following two queries

- 1. Most probable (MAP) setting for all variables I,D,G,S,L,A
- 2. Most probable setting for a particular variable *I*

Query 1: Inferring all variables

Conditioning with Job with J=j 1

Conditional Probability:

$$P(I, D, G, S, L, A | J = j^1) = \frac{P(I, D, G, S, L, A, J = j^1)}{P(J = j^1)}$$

Numerator:

$$P(I, D, G, S, L, A, J = j^1) = P(I)P(D)P(G|D, I)P(L|G)P(S|I)P(A)P(J = j^1|A, S, L)$$

Denominator requires Marginal Inference

$$P(J = j^1) = \sum_{I} \sum_{D} \sum_{G} \sum_{S} \sum_{L} \sum_{A} P(I, D, G, S, L, A, J = j^1) = 0.3679$$

MPE for all variables

$$P(I, D, G, S, L, A \mid J = j^1) = \frac{P(I, D, G, S, L, A, J = j^1)}{P(J = j^1)}$$

Exhaustive listing of 96 Combinations of numerator with probabilities

Sr. No. ▼	Difficult ▼	Intelliger 🔻	Grade ▼	Letter ▼	SAT 🔻	Apply =	Job ⊸™	Joint Probabil 🔻
3	0	1	0	1	1	1	1	0.0629856
5	0	0	0	1	0	1	1	0.0387828
10	0	0	1	1	0	1	1	0.0344736
13	1	1	0	1	1	1	1	0.023328
16	1	0	2	0	0	0	1	0.01474704
18	1	0	1	1	0	1	1	0.014364
21	1	0	2	0	0	1	1	0.01106028
22	0	1	0	1	0	1	1	0.0104976
23	1	1	2	0	1	1	1	0.01026432
25	0	0	2	0	0	0	1	0.00948024
27	0	1	0	1	1	0	1	0.0093312
28	1	1	1	1	1	1	1	0.0093312
29	0	0	0	1	0	0	1	0.0086184
31	0	0	1	1	0	0	1	0.0076608
32	0	0	2	0	0	1	1	0.00711018
33	0	1	0	0	1	1	1	0.0069984
37	1	1	1	0	1	1	1	0.0062208

Max of numerator (a joint probability):

$$P(I,D,G,S,L,A,J=j^1) = 0.9 * 0.6 * 0.8 * 0.9 * 0.9 * 0.3 * 0.6 = 0.0629856$$

Max Conditional Probability (MAP):

$$P(I,D,G,S,L,A|J=1) = 0.0629856/0.3679 = 0.1712$$

MPE is:

- $I = i^{1}$: Is Intelligent
- $D = d^0$: course is Difficult
- G = g 0: Grade is A
- $S = s^{-1}$: high SAT
- $L = l^{1}$: strong Letter
- $A = a^{-1}$: Apply for Job

Query 2: Marginal for I given $J = j^{1}$

The most probable explanation of Intelligence given $Job: J=j^1$

Answer: $I = i^{-1}$: Is Intelligent

Formula:

$$P(I|J=1) = P(I,J)/P(J=1)$$

$$P(I,J) = P(I)P(J|A,S,L)P(A)P(S|I)P(L|G)P(G|D,I)P(D)$$

$$P(I = 0, J = 1) = 0.9 * 0.6 * 0.8 * 0.9 * 0.9 * 0.3 * 0.6 = 0.0629$$

$$P(I = 1, J = 1) = 0.6 * 0.7 * 0.3 * 0.9 * 0.95 * 0.6 * 0.6 = 0.0387$$

$$P(I = 0|J = 1) = 0.0387/(0.0629 + 0.0387) = 0.381$$

$$P(I=1|J=1) = 0.0629/(0.0629 + 0.0387) = 0.619$$

MAP of Student Intelligence

+	+
intel_0	0.381
+	++
intel_1	0.619
+	++

Compare to Prior of Student Intelligence

MPE is NP-Hard

- BN is an MRF whose factors are conditional probabilities and $Z\!\!=\!\!1$
- MAP inference is simpler than Marginal Inference since we can ignore Z

Marginal
$$p(y=1) = \sum_{x_1} \sum_{x_2} \cdots \sum_{x_n} p(y=1,x_1,x_2,\ldots,x_n)$$
 — Needs Partition function

MAP $\max_{x_1,\ldots,x_n} p(y=1,x_1,\ldots,x_n)$ — Can ignore Partition function

- However MAP inference is still not easy
 - Both Marginal and MAP inference are NP-hard

Sampling from Student BN

Algorithm 12.1 Forward Sampling in a Bayesian network

```
Procedure Forward-Sample ( \mathcal{B} // Bayesian network over \mathcal{X} )

Let X_1,\ldots,X_n be a topological ordering of \mathcal{X} for i=1,\ldots,n

u_i \leftarrow x\langle \operatorname{Pa}_{X_i} \rangle // Assignment to \operatorname{Pa}_{X_i} in x_1,\ldots,x_{i-1}
Sample x_i from P(X_i \mid u_i)

return (x_1,\ldots,x_n)
```

PGMPY:

```
from pgmpy.sampling import BayesianModelSampling
forward_sampler = BayesianModelSampling(student)
samples = forward_sampler.forward_sample(size=1000)
```

	_						
	apply	intel	sat	diff	grade	letter	job
0	1	1	1	1	0	1	1
1	0	0	0	0	0	1	0
2	1	1	1	1	1	1	1
3	1	0	0	1	2	0	0
4	1	1	1	0	2	0	1
5	0	0	0	1	2	0	1
6	1	0	0	0	0	1	0
7	1	0	1	0	1	1	1
8	1	0	0	0	1	1	1
9	1	0	0	1	1	0	0
• •	•				• • •		
993	0	0	1	1	1	1	0
994	1	1	1	0	0	1	1
995	1	0	0	0	2	0	0
996	0	0	0	0	0	1	0
997	1	0	0	1	2	0	0
998	0	0	0	0	0	0	1
999	1	0	0	0	2	0	0

1000 rows x 7 columns

PGM classification over 1000 samples

```
from pgmpy.models import BayesianModel
from pgmpy.factors.discrete import TabularCPD
from pgmpy.inference import VariableElimination
student = BayesianModel()
student.add nodes from(['diff', 'intel', 'grade', 'sat', 'letter', 'apply', 'job'])
student.add_edges_from([('diff', 'grade'),
                        ('intel', 'grade'),
                        ('intel', 'sat'),
                        ('grade', 'letter'),
                        ('apply', 'job'),
                        ('letter', 'job'),
                        ('sat', 'job')])
student.fit(train)
inference = VariableElimination(student)
counter = 0
for index, row in test.iterrows():
   mlel = inference.map_query(variables={'sat','letter'},
                          evidence={'job': row['job']})
    mle2 = inference.map query(variables={'intel'},
                          evidence={'sat': mlel['sat'],
                                     'letter': mlel['letter']})
    if(mle2['intel'] == row['intel']):
        counter += 1
print('Accuracy is: ' + str(counter/test.shape[0]*100))
Accuracy is: 88.125
```

Results:

- Training Accuracy: 92%
- Testing Accuracy: 88%

Figure 5.3 The Student example augmented with a Job variable

Logistic Regression for Intelligence

Logistic Regression output:

Intelligence = 0 Intelligence = 1

0.962

0.038

Training Hyperparameters:

• Number of Epochs: 100

• Batch Size: 100

• Number of samples: 1000

Number of Training samples: 800

Number of Validation samples: 200

R	es	u	lts	:

Training Accuracy: 94.62%

• Training Loss: 0.1580

Testing Accuracy: 96%

Testing Loss: 0.1534

Explanation:

Job = 1

MPE

evidence: student **gets job** explanation: 96% probability that student is **intelligent**;

Formula:

$$P(I = 0|J = 1) = 0.498$$

 $P(I = 1|J = 1) = 0.502$

Explainability vs Performance

Figure 5.3 The Student example augmented with a Job variable

Explainable System Results:

- Training Accuracy: 92%
- Testing Accuracy: 88%

High Performance System Results:

- Training Accuracy: 95%
- Testing Accuracy: 96%

Forensic Comparison

- Impression Evidence: materials with characteristics of impressed objects
 - Footwear impressions

latent fingerprints

Handwriting samples

Expert Features

Image 1: Human observed features mapped to image

Handwriting comparison— expert features

PGM for human observed 'and' dataset

PGM for Writer Verification

Finding LLR

A simple **Distance based LLR** approach defines scalar distance between known and questioned samples defining loglikelihood ratio as follows:

$$LLR_D = \ln \left(\frac{P(d(k,q) \mid h = 0)}{P(d(k,q) \mid h = 1)} \right)$$

Disadvantage: Distribution of N variables is mapped into a scalar thereby incurring severe loss of information (many pairs of k and q can have the same distance).

Rarity with Distance based

LLR approach uses strength of the features between the known and the questioned samples defining loglikelihood ratio as

Disadvantage: Not always computationally tractable

Feature extraction architecture/performance

Comparison performance

Explainability:

 Compare corresponding 'SoftMax_x' (x : {1 to 15}) of two images using cosine similarity to obtain feature wise explanation

Performance based on Overall Similarity

Metric	Seen	Unseen	Shuffled
Intra Writer Accuracy	88%	71%	81%
Inter Writer Accuracy	96%	93%	95%
Average Accuracy	96%	94%	95%

Explanation of Comparison

Image 6: Graph of Similarity Score of Left & Right Image Features

*Different Writer Samples**

Image 7: Graph of Similarity Score of Left & Right Image Features

Same Writer Samples

Classes

Future of XAI

Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8466590

Summary and Conclusion

- Deep Learning models are often blackboxes
- Ante-hoc XAI models are new learning models with an explanatory interface
- Post-hoc models retain high performance
- Several new ideas developing: Bayesian
 Teaching, Causal learning of deep neural nets
- Probabilistic AI is useful for deep learning
- XAI may be an inflection point in AI