Graph-CSPNet

Artyom Matveev

Moscow Institute of Physics and Technology matveev.as@phystech.edu

November 11, 2023

Model's structure¹

- SPDNet². A neural network that operates on SPD matrices.
 - BiMap layer. It transforms the input SPD matrices to new SPD matrices by a bilinear mapping.
 - ReEig layer. It rectifies the SPD matrices by tuning up their small positive eigenvalues.
 - ► LOG layer. It maps an SPD matrix **S** onto its tangent space at identity matrix **I**.
- ② Riemannian Batch Normalization³.

Artyom Matveev (MIPT) Week 7 November 11, 2023

2/5

¹Ju, C., & Guan, C. Graph Neural Networks on SPD Manifolds for Motor Imagery Classification: A Perspective From the Time-Frequency Analysis. IEEE Transactions on Neural Networks and Learning System. 2023

²Huang, Z., & Van Gool, L. A Riemannian Network for SPD Matrix Learning. AAAI-2017

³Brooks, D., Schwander, O., et al. Riemannian batch normalization for SPD neural networks. NeurIPS 2019

Graph construction

- ① $\mathbf{X} \in \mathbb{R}^{n_C \times n_T}$ an EEG signals trial
- ② $S = XX^{\top} \in \mathcal{S}_{++}$ an SPD matrix
- ④ $d_{g^{AIRM}}(\mathbf{S}_1, \mathbf{S}_2) = d_{g^{AIRM}}(\mathbf{W}\mathbf{S}_1\mathbf{W}^\top, \mathbf{W}\mathbf{S}_2\mathbf{W}^\top)$, where **W** is weight matrix of BiMap transformation with the full-row rank
- $\mathfrak{G} = (\mathcal{V}, \mathcal{E})$ a time-frequency graph:
 - ▶ $V(G) := \{S_i = S(\Delta t_i \times \Delta f_i)\}$, where $\{S(\Delta t_i \times \Delta f_i)\}_{i \in \mathcal{I}}$ is the set of SPD matrices under the specific time and frequency constraints.

$$\mathcal{E}(\mathcal{G}) \coloneqq \mathbf{A} = egin{cases} e^{-d_{g^{\mathsf{AIRM}}}^2(\mathbf{S}_i,\mathbf{S}_j)/t}, & \mathsf{if} \; \mathbf{S}_i \; \mathsf{and} \; \mathbf{S}_j \; \mathsf{are} \; \mathsf{adjacent} \\ 0, & \mathsf{others} \end{cases}$$

where $e^{(\cdot)}$ is the RBF kernel and preset Gaussian kernel width t>0.

Graph BiMap Layer

Each GNN layer updates the following way:

$$\textit{H}^{(\textit{l}+1)} \leftarrow \mathsf{RBN}\left(\mathsf{ReEig}\left(\mathbf{W}^{(\textit{l})}(\mathbf{\bar{D}}^{-1}\mathbf{\bar{A}}^{(\textit{l})})\textit{H}^{(\textit{l})}\mathbf{W}^{(\textit{l})^{\top}}\right)\right),$$

where $\bar{\mathbf{A}}^{(I)} := \mathbf{A}^{(I)} + \mathbf{I}_N$, $\bar{\mathbf{D}}_{ii} := \sum_j \bar{\mathbf{A}}_{ij}^{(I)}$, $H^{(I)} \in \mathbb{R}^{|\mathcal{V}| \times n_C^2}$, $\bar{\mathbf{A}}^{(0)}$ is the adjacency matrix of the time-frequency graph, and $\bar{\mathbf{A}}^{(I)} := \mathbf{I}_N$, for $I \ge 1$.

ReEig layer

This layer performs $\mathbf{U} \max(\epsilon \mathbf{I}, \mathbf{\Sigma}) \mathbf{U}^{\top}$, where ϵ is a rectification threshold, and \mathbf{I} denotes an identity matrix.

LOG laver

This layer maps matrix S onto its tangent space at identity matrix I using $U \log(\Sigma)U^{\top}$

SPDNet and GraphCSP-Net illustrations

