Unit 5

Functions

Albert Sung

Outline of Unit 5

- □ 5.1 Basic Concepts
- 5.2 Compositions of Functions
- □ 5.3 One-to-One and Onto
- 5.4 Permutation Functions

- 1. Put the 6 cards in a 2×3 matrix in row-major order.
- 2. Take them out in column-major order.
- 3. Put them back in row-major order.

Row-major order

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Column-major order

If you repeat the procedure, will the cards be eventually in the original positions?

Unit 5.1

Basic Concepts

Definition of Functions

- □ A function f from X to Y, denoted by $f: X \to Y$, (or f maps X to Y) is an assignment of each element of X to exactly one element of Y.
 - *X* and *Y* are nonempty sets.

Example: Power Functions

☐ The power function with exponent *a* is defined as

$$p_a(x) = x^a$$

- For many application, we are concerned with cases where *x* and *a* are nonnegative.
- Given any input x, there is one and only one corresponding output y.

Graphs of some power functions

Example without Numbers

- ☐ It is important to note that the inputs or outputs of a function are *not* necessarily numbers.
- □ Consider the Grade
 Assignment Function f
 which maps a set of students to a set of grades.
 - of assigns each student exactly one grade.

No student is assigned more than one grade.

No student has no grade assigned.

Arrow Diagrams

- □ A function $f: X \to Y$ can be represented by an arrow diagram.
- □ An arrow is drawn from each element in X to its corresponding unique element in Y under f.
 - Every element in X
 points to a unique
 element in Y.
 - No element of X has two arrows coming out of it.

Are They Functions?

Domain, Co-Domain, and Range

Consider a function $f: X \rightarrow Y$.

- *X* is called the **domain** of *f* while *Y* is called the **co-domain** of *f*.
- □ The **range** of f is the set of images of all elements in X.
- Co-domain and range are often confusing.
 - \bigcirc Note: range \subseteq co-domain.

<u>Inverse Image</u>

- □ Given $y \in Y$, the inverse image of y is the set of all elements $x \in X$ such that f(x) = y.
- Example:
 - Inverse image of $1 = \{a\}$
 - Inverse image of $2 = \{b, c\}$
 - Inverse image of $3 = \{c\}$
 - \bigcirc Inverse image of $4 = \Phi$

■ Note: Image of x is an element. Inverse image of y is a set.

Classwork

Consider $f: \mathbb{Z} \to \mathbb{Z}$, where f(x) = 2x.

- a) What is the domain of f?
- b) What is the co-domain of f?

c) What is the range of *f*?

Classwork

a) What are the domain, co-domain and range of f?

- b) What is the image of a under f?
- c) What is the inverse image of 2 under f?
- d) What is the inverse image of 3 under f?

Unit 5.2

Composition of Functions

Functions

 \square Consider a function $f: X \rightarrow Y$.

Composition of Functions

□ If we link two function machines f and g in series, the resultant function is called their composition, denoted by $g \circ f$.

What if we change the order of these two machines? Will we get the same output?

Example

Let f(n) = n + 1 and $g(n) = n^2$, where the domains and co-domains of both functions are \mathbb{Z} .

- a) Find $g \circ f$ and $f \circ g$.
- b) Are they equal?

Solution:

- a) $(g \circ f)(n) = g(f(n)) = g(n+1) = (n+1)^2$ $(f \circ g)(n) = f(g(n)) = f(n^2) = n^2 + 1$
- b) No, they are not equal: $g \circ f \neq f \circ g$ (function composition is not *commutative*)

Is Composition always Possible?

- □ Not any two functions can be composed.
 - $f(x) = -|x|, \ g(x) = \sqrt{x}$ (domains and codomains \mathbb{R}).
 - $(g \circ f)(x) = g(f(x)) = g(-|x|) = \sqrt{-|x|}$ (undefined!)
- \square $g \circ f$ is well defined only if the range of f is a subset of the domain of g.

Definition

Let $f: X \to Y'$ and $g: Y \to Z$ be functions with the property that the range of f is a subset of the domain of g. Define a new function $g \circ f: X \to Z$ as follows:

$$(g \circ f)(x) = g(f(x))$$
 for all $x \in X$,

where $g \circ f$ is read "g circle f" and g(f(x)) is read "g of f of x." The function $g \circ f$ is called the **composition of** f and g.

Example

- \square Draw the arrow diagram for $g \circ f$.
- What is the range of $g \circ f$?

Solution:

Its range is $\{y, z\}$.

Unit 5.3

One-to-One and Onto

One-to-One Function (Injection)

Definition

Let F be a function from a set X to a set Y. F is **one-to-one** (or **injective**) if, and only if, for all elements x_1 and x_2 in X,

Useful for proof.

if
$$F(x_1) = F(x_2)$$
, then $x_1 = x_2$,

or, equivalently,

if
$$x_1 \neq x_2$$
, then $F(x_1) \neq F(x_2)$.

Symbolically,

$$F: X \to Y \text{ is one-to-one} \Leftrightarrow \forall x_1, x_2 \in X, \text{ if } F(x_1) = F(x_2) \text{ then } x_1 = x_2.$$

It looks complicated. It's easier (for understanding and for memorization) to use an informal one...

What is an Injection?

- A 1-to-1 function maps distinct elements in its domain to distinct elements in its co-domain.
- Are they injections?

Example: Injection

Let $f:[0,\infty)\to\mathbb{R}$, $f(x)=x^2$. Prove f is injective.

Definition: $\forall a, b \in X, f(a) = f(b) \Rightarrow a = b$.

It means equal output must be from equal input *Proof:*

For arbitrary $a, b \in [0, \infty)$, suppose f(a) = f(b). Therefore, $a^2 = b^2$.

Since both $a \ge 0$ and $b \ge 0$, we must have a = b. Hence, f is injective.

Q.E.D.

Classwork

- ☐ Is it injective? Prove or disprove it.
 - (To disprove it, you can simply give a counter-example.)
 - a) $f: \mathbb{R} \to \mathbb{R}$ such that f(x) = 4x 1 for all $x \in \mathbb{R}$.

b) $g: \mathbb{Z} \to \mathbb{Z}$ such that $g(n) = n^2$ for all $n \in \mathbb{Z}$.

Onto Function (Surjection)

Definition

Let F be a function from a set X to a set Y. F is **onto** (or **surjective**) if, and only if, given any element y in Y, it is possible to find an element x in X with the property that y = F(x).

Symbolically:

Useful for proof.

$$F: X \to Y \text{ is onto } \Leftrightarrow \forall y \in Y, \exists x \in X \text{ such that } F(x) = y.$$

Again we also consider an informal one, in the next slide...

What is a Surjection?

- An onto function has its range equal to its codomain.
 - i.e., every element in its co-domain has one or more inverse images in its domain.
- ☐ Are they surjections?

Example: Surjection

Let $f: \mathbb{R} \to \mathbb{R}$, f(x) = mx + c, where m and c are real numbers. Prove f is surjective.

Definition: $\forall y \in Y, \exists x \in X \text{ such that } f(x) = y.$

Proof:

Consider an arbitrary value $y \in Y$. We want to check if we can find x such that mx + c = y.

If
$$x = \frac{y-c}{m}$$
, then $f(x) = f\left(\frac{y-c}{m}\right) = m\left(\frac{y-c}{m}\right) + c = y$.

Hence, *f* is surjective.

Q.E.D.

Classwork

- ☐ Is it surjective? Prove or disprove it.
 - a) $f: \mathbb{R} \to \mathbb{R}$ such that f(x) = x + 10 for all $x \in \mathbb{R}$.

b) $g: \mathbb{Z} \to \mathbb{Z}$ such that $g(n) = n^2$ for all $n \in \mathbb{Z}$.

What is a Bijection?

- A function is a one-to-one correspondence (or bijection) iff it is both 1-to-1 and onto.
- Are they bijections?

Example: Identity Function

□ The identity function I_X on a set X is defined as $I_X(x) = x$ for all $x \in X$.

Any identity function is a bijection.

Example

- \square Let $\mathcal{D}(\{a,b\})$ be the power set of $\{a,b\}$.
- Let S be the set of all binary strings of length 2, i.e., $S = \{00, 01, 10, 11\}$.
- \square Let $h: \mathcal{D}(\{a,b\}) \to S$ be defined as follows:

Subset A of $\{a, b\}$	Status of a in A	Status of b in A	String $h(A)$ in S
Ø	not in	not in	00
{ <i>a</i> }	in	not in	10
$\{b\}$	not in	in	01
$\{a,b\}$	in	in	11

 \square Is h a bijection?

Solution

☐ The arrow diagram is shown below:

Clearly, it is a bijection.

Inverse Functions

□ Given a bijection f, we can "undo" the action of f by defining an inverse function f^{-1} .

 f^{-1} is also a bijection.

Example

- □ Consider $f : \mathbb{R} \to \mathbb{R}$ such that f(x) = 4x 1. Find the inverse function of f.
 - Note: its inverse function exists because *f* is bijective.
- □ Solution:

$$f(x) = y$$

$$4x - 1 = y$$
 by definition of f

$$x = \frac{y+1}{4}$$
 by algebra.
$$f^{-1}(y) = \frac{y+1}{4}$$

Unit 5.4

Permutation Functions

Permutation Functions

- \Box Let $A = \{1, 2, 3, 4, 5\}.$
- □ The permutation $12345 \rightarrow 24135$ can be represented by the bijection $f: A \rightarrow A$ shown below:

All Permutations on $\{1, 2, ..., n\}$

- □ The set of all permutations on $\{1, 2, ..., n\}$ is denoted by S_n .
- Each member of S_n is a bijection which maps from $\{1, 2, ..., n\}$ to $\{1, 2, ..., n\}$.
- \square S_n contains n! members, which are all possible bijections.
- One of them is the identity function, usually denoted by the Greek letter ι.
 - opronounced as i-o-ta.

Array Representation

- \square One common way to express a permutation is to use a 2 \times n array of integers.
 - The permutation is shown in the second row.
- Example:

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 3 & 5 \end{pmatrix}$$

$$\pi(1) = 2, \pi(2) = 4, \pi(3) = 1,$$

 $\pi(4) = 3, \pi(5) = 5.$

Cycle Notation

□ The permutation $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 3 & 5 \end{pmatrix}$ is represented by

$$\pi = (1, 2, 4, 3)(5).$$

- \square The two lists (1, 2, 4, 3) and (5) are called cycles.
- \square (1, 2, 4, 3) means that $1 \mapsto 2 \mapsto 4 \mapsto 3 \mapsto 1$.
 - i.e., $\pi(1) = 2$, $\pi(2) = 4$, $\pi(4) = 3$, $\pi(3) = 1$.
- \square (5) means 5 \mapsto 5
 - i.e., $\pi(5) = 5$.

Cycle notation is not unique. For example, (1, 2, 4, 3)(5) can also be expressed as (2, 4, 3, 1)(5).

Inverse of a Permutation

- Since any permutation is a bijection, its inverse exists, and is easy to find.
- \square If π maps a to b, then π^{-1} maps b to a.

- Example:
 - Let $\pi = (1, 2, 7, 9, 8)(5, 6, 3)(4) \in S_9$.
 - Then $\pi^{-1} = (8, 9, 7, 2, 1)(3, 6, 5)(4)$.

Composition of Permutations

 $\square \sigma \circ \pi$ means we permute a sequence first by π and then by σ .

□ In cycle notation, $\sigma \circ \pi = (1, 4, 3, 5)(2)$.

- □ The permutation is given by $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 4 & 2 & 5 & 3 & 6 \end{pmatrix}$.
- □ Since 1 and 6 always in the same position, we only need to consider the other four cards.

$$π = \begin{pmatrix} 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 3 \end{pmatrix}$$

$$π ∘ π = \begin{pmatrix} 4 & 2 & 5 & 3 \\ 5 & 4 & 3 & 2 \end{pmatrix} \begin{pmatrix} 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 5 & 4 & 3 & 2 \\ 3 & 5 & 2 & 4 \end{pmatrix} \begin{pmatrix} 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 4 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 \end{pmatrix} = \iota$$
The columns of the first matrix have been re-arranged.

$$\pi ∘ \pi ∘ \pi ∘ \pi = \begin{pmatrix} 5 & 4 & 3 & 2 \\ 3 & 5 & 2 & 4 \end{pmatrix} \begin{pmatrix} 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 \end{pmatrix} = \iota$$

Recommended Reading

□ Chapter 7, S. S. Epp, *Discrete Mathematics with Applications*,

4th ed., Brooks Cole, 2010.

□ Chapter 5, E. R. Scheinerman, *Mathematics: A Discrete Introduction*, 3rd ed., Brooks/Cole,
2013.