I) Simpson's 12d Rule:

If the curve y=f(x) passes through the points. (x_i, y_i) , i=1,2,---,m (such that m is an odd integer) and $x_{i+1}-x_{i}=h$ Since m is odd, n=m-1 should be an even integer.

$$I = \int_{Y} dz = \frac{h}{3} \left[Y_1 + Y_m + 4(Y_2 + Y_4 + Y_6 + \cdots) + 2(Y_3 + Y_5 + Y_7 + \cdots) \right]$$

* Examples

1) Find area bounded by the curve y=f(x), x-axis between x=0 and x=1. If the curve passes through the following points:

æ	0	1/8	2/8	3/8	4/8	5/8	6/8	7/8	
7	0	1.0001	1.1001	1.0098	1.0307	1.0735	1-1473	1.2514	1.4142
	 7,	72	73	74	75	76	77	78	79

Azea bdd by
$$Y=f(x)$$
, $X-axis$ $f = \begin{cases} y dx = ? \\ x=0, x=1 \end{cases}$

Here we have, $h = \frac{1}{8}$, m = 9 (odd), n = 8 (even)

.. By using Simpson's 1/3td sule

$$\int_{0}^{1} dx = \frac{h}{3} \left[\frac{1}{1+1} + \frac{1}{4} + \frac{4}{12+14+16+18} + \frac{2}{12} + \frac{1}{12} + \frac{1}{1$$

$$=\frac{1}{24}\left[1.4142+4(4.3428)+2(3.2781)\right]$$

$$= \frac{1}{24} \left[1.4142 + 17.3712 + 6.5562 \right]$$

$$\int_0^1 y dz = 1.0559 \text{ units.}$$

2) Evaluate using Simpson's
$$\frac{1}{3}^{2d}$$
 rule: $\int \frac{1}{1+x} dx$ by dividing the interval into six subintervals.

Given:

$$y = f(x) = 1/(1+x)$$
 — integrand fun.
 $2 = 0$ — Lower limit
 $2 = 1$ — upper limit
 $n = 6$ — no. of intervals.

$$\frac{1}{h} = \frac{2m-2l}{n} = \frac{1-0}{6} = \frac{1}{6} = \frac{1-0}{6} = \frac{1}{6}$$
— step size.

Tabulated data points

7 1 6/7 6/8 6/9 6/10 6/11 1/2 11 12 13 14 15 16 17	æ	0	1/6	2/6	3/6	4/6	5/6	
71 72 73 74 75 76 77	7	1	6/7	6/8	6/9	6/10	6/11	1/2
		71	72	73	74	75	76	7,7

: Using Simpson's
$$l_3$$
 sule
$$0 = \frac{h}{3} \left[\frac{1}{1+2} + 4(\frac{1}{2} + \frac{1}{4} + \frac{1}{6}) + 2(\frac{1}{3} + \frac{1}{5}) \right]$$

$$\frac{dx}{1+2} = 0.6931$$

$$\frac{dx}{1+2} = 0.6931$$

$$\frac{dx}{1+2} = 0.6931$$

III) Simpson's 3th Rule:

In this zule, we approximate Sydre by considering n

(multiples of three) intervals.

$$\mathcal{Z}$$
 \mathcal{Z}_1 \mathcal{Z}_2 - - - · \mathcal{Z}_m , $\mathcal{Z}_{j+1} - \mathcal{Z}_j = h$, n is multiple of 3 γ γ_1 γ_2 — · γ_m γ_m

$$J = \begin{cases} y d = \frac{3h}{8} \left[y_1 + y_m + 3(y_2 + y_3 + y_5 + y_6 + \dots) + 2(y_4 + y_7 + y_6 + \dots) \right]$$

* Examples:

1) Evaluate using simpson's 3/8 rule: $\int \frac{1}{1+2e} dz$, by dividing

interval into 6 equal parts.

data points.

(Same as Q.2 in Simpson's 13 rule)

By using Simpson's
$$\frac{3}{8}$$
 sule $\left(\frac{1}{1+4}\right)$ dx = $\frac{3h}{8}\left[Y_1+Y_7+3(Y_2+Y_3+Y_5+Y_6)+2(Y_4)\right]$

$$\int \frac{1}{1+x} dx = \frac{3h}{8} \left[Y_1 + Y_7 + 3 \left(Y_2 + Y_3 + Y_5 + Y_6 \right) + 2 \left(Y_4 \right) \right]$$

$$\int \frac{1}{1+x} dx = 0.6931$$
ded.

$$\int_{0}^{1} \frac{1}{1+x} dx = 0.6931$$

2) Find 57 dæ it the curve passes through

X I	12	3	4	5	6	7	I
81	75	80	83	78	70	60	Γ
71	12	13	74	45	96	77	

$$\int_{1}^{7} 1 dx = \frac{3h}{8} \left[\gamma_{1} + \gamma_{7} + 3(\gamma_{2} + \gamma_{3} + \gamma_{5} + \gamma_{6}) + 2(\gamma_{4}) \right]$$

* Examples: Teaperoidal/Simpsonis 1/3/Simpsonis 3/8 eules.

Q. Evaluate 57 dæ for the following cover

1) If the curve passes through

22!	0	5	10	15	20	25
7:	7	11	14	18	24	32

Since m=6, n=5 : n=5 is neither an even integer nor multiple of 3

By using Traperoidal sule
$$\int Y dx = \frac{h}{2} \left[\frac{1}{1} + \frac{1}{6} + 2 \left(\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} \right) \right]$$

$$\int_{0}^{25} 432.5$$

2) A zocket is launched from the ground. It's accell is registered during the first 80 sec. and is given in the table below.

Find the velocity of the rocket at t=80 sec.

					40				
a (cm/sec2)	30	31-63	33-34	35.47	37.75	40.33	43.25	46.69	50.67
	7,	42	45	74	75-	76	77	78	77

Velocity of the rocket at $t=80 \, \text{sec} = \int_{0}^{80} a \, dt$

Here $m=9 \Rightarrow n=8$ not multiple of $3 \Rightarrow 3/8$ rule not applicable

n=8 is an even -> Use Simpson's 1/3 rule.

Velocity at t=80 sec is 3086.1 cm/sec.

3) Frandate ($\sin^2 \theta$ do by taking $h = \pi$.

3) Evaluate
$$\int_{0}^{\pi} \frac{\sin^2 \theta}{5 + 4\cos \theta} d\theta$$
 by taking $h = \frac{\pi}{6}$.

Given:
$$f(x) = \frac{\sin^2 x}{5 + 4\cos x}$$

$$x_1 = 0$$

$$x_m = \pi$$

$$h = \pi/6$$

$$\therefore n = \frac{2m - 2_1}{h} = \frac{17 - 0}{11/6} = 6 \quad \text{it is multiple of 3}$$

.. By using 30 th rule

R	0	π/6	211/6	311/6	411/6	511/6	Π	7
7	0						0	
	7,	42	73	74	75	76	77	•

$$\int_{0}^{\pi} \frac{\sin^{2} 0}{5+4\cos 0} d0 = \frac{3h}{8} \left[7_{1}+7_{7}+3(7_{2}+7_{3}+7_{5}+7_{6})+27_{4} \right]$$