编译原理 作业 - 4

姓名: 刘建东 学号: 201700130011

班级: 2017 级菁英班 日期: 2020 年 3 月 19 日

题目 1

考虑下面的文法 G_1 :

$$S \to \alpha |\Lambda|(T)$$

 $T \to T, S|S$

- (1) 消去 G_1 的左递归。然后,对每个非终结符,写出不带回溯的递归子程序。
- (2) 经改写后的文法是否是 LL(1) 的? 给出它的预测分析表。

解答:

(1) G_1 消去左递归后如下所示:

$$S \to \alpha |\Lambda|(T)$$
$$T \to ST'$$
$$T' \to ST'|\varepsilon$$

非终结符 S 递归子程序如下所示:

```
procedure S;
begin

if sym = 'a' or sym = 'A' then advance;

else if sym = '(' then

begin

advance;

T;

if sym = ')' then advance;

else error;

end

else error;

and
```

非终结符 T 递归子程序如下所示:

```
procedure T;
begin
S;
T';
end
```

非终结符 T' 递归子程序如下所示:

```
1 procedure T';
```

```
2 begin
3     if sym = ',' then
4     begin
5         advance;
6         S;
7         T';
8      end
9     else if sym != ')' then error;
10 end
```

(2) FIRST(S)= $\{\alpha, \Lambda, (\}$

FIRST(T)={
$$\alpha$$
 , Λ , (}

$$FIRST(T')=\{,, \varepsilon\}$$

$$FOLLOW(S){=}\{)\ ,\ ,\ ,\ \#\}$$

$$FOLLOW(T)=\{\}$$

$$FOLLOW(T')=\{\}$$

不难发现, 上述文法符合 LL(1) 要求, 下述即为该文法的预测分析表。

	α	Λ	()	,	#
S	$S \to \alpha$	$S \to \Lambda$	$S \to (T)$			
Т	$T \to ST'$	$T \to ST'$	$T \to ST'$			
T'				$T' \to \varepsilon$	$T' \rightarrow , ST'$	

题目 2

对下面的文法 G:

$$\begin{split} E &\to TE' \\ E' &\to +E | \varepsilon \\ T &\to FT' \\ T' &\to T | \varepsilon \\ F &\to PF' \\ F' &\to *F' | \varepsilon \\ P &\to (E) |a|b| \Lambda \end{split}$$

- (1) 计算这个文法的每个非终结符的 FIRST 和 FOLLOW
- (2) 证明这个文法是 LL(1) 的
- (3) 构造它的预测分析表
- (4) 构造它的递归下降分析程序

解答:

(1) 上述每个非终结符的 FIRST、FOLLOW 集如下:

	FIRST	FOLLOW
Е	$\{(,a,b,\Lambda\}$	{),#}
E'	$\{+, \varepsilon\}$	{),#}
T'	$\{(,a,b,\Lambda,arepsilon\}$	{+,),#}
Т	$\{(,a,b,\Lambda\}$	{+,),#}
F'	$\{*, arepsilon\}$	$\{(,a,b,\Lambda,+,),\#\}$
F	$\{(,a,b,\Lambda\}$	$\{(,a,b,\Lambda,+,),\#\}$
P	$\{(,a,b,\Lambda\}$	$\{*, (,a,b,\Lambda,+,),\#\}$

(2) LL(1) 文法需要满足三个条件,第一个条件文法不含左递归。不难发现,上述文法中的确没有左递归, 因此条件一符合。

第二个条件是每个非终结符各产生式的 FIRST 集不相交, 判断过程如下所示:

$$\begin{split} FIRST(+E) \cap FIRST(\varepsilon) &= \phi \\ FIRST(T) \cap FIRST(\varepsilon) &= \phi \\ FIRST(*F') \cap FIRST(\varepsilon) &= \phi \\ FIRST((E)) \cap FIRST(a) \cap FIRST(b) \cap FIRST(\Lambda) &= \phi \end{split}$$

第三个条件是对于文法中每个非终结符,若其 FIRST 集中含 ε ,则其 FIRST 集与 FOLLOW 集不相交。

$$FIRST(E') \cap FOLLOW(E') = \phi$$

 $FIRST(T') \cap FOLLOW(T') = \phi$
 $FIRST(F') \cap FOLLOW(F') = \phi$

由此可知,上述三个条件均符合,因此该文法是 LL(1)的。

(3) 上述文法预测分析表如下。

	+	()	*	a	b	Λ	#
E		$E \to TE'$			$E \to TE'$	$E \to TE'$	$E \to TE'$	
Ε'	$E' \rightarrow +E$		$E' \to \varepsilon$					$E' \to \varepsilon$
T'	$T' \to \varepsilon$	$T' \to T$	$T' \to \varepsilon$		$T' \to T$	$T' \to T$	$T' \to T$	$T' o \varepsilon$
Т		$T \to FT'$			$T \to FT'$	$T \to FT'$	$T \to FT'$	
F'	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to *F'$	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to \varepsilon$
F		$F \to PF'$			$F \to PF'$	$F \to PF'$	$F \to PF'$	
Р		$P \to (E)$			$P \rightarrow a$	$P \rightarrow b$	$P o \Lambda$	

(4) 非终结符 E 递归子程序如下所示:

- 1 procedure E;
- 2 begin
- 3 T;

```
5 end
  非终结符 E' 递归子程序如下所示:
procedure E';
2 begin
   if \text{ sym} = '+' \text{ then}
        begin
            advance;
            E;
         end
     else if sym != ')' or sym != '#' then error;
9 end
  非终结符 T 递归子程序如下所示:
1 procedure T;
2 begin
з F;
4 T';
5 end
  非终结符 T' 递归子程序如下所示:
procedure T';
2 begin
    if sym = '(' or sym = 'a' or sym = 'b' or sym = '\Lambda' then T;
     else if sym != '+' or sym != ')' or sym != '#' then error;
5 end
  非终结符 F 递归子程序如下所示:
1 procedure F;
2 begin
   Ρ;
4 F';
5 end
  非终结符 F' 递归子程序如下所示:
procedure F';
2 begin
if sym = '*' then
        begin
            advance;
            F';
```

4 E';

```
\begin{array}{ccc} 7 & & \text{end} \\ 8 & \text{end} & & \end{array}
```

非终结符 P 递归子程序如下所示:

```
procedure P;
begin

if sym = '(' then
begin

advance;

E;

if sym = ')' then advance;

else error;

end

else if sym = 'a' or sym = 'b' or sym = 'Λ' then advance;

else error;

end
else error;

end
```

```
题目 3
     下面文法中, 哪些是 LL(1) 的, 说明理由。
 (1)
                                                             S \to Abc
                                                             A \to a|\varepsilon
                                                             B\to b|\varepsilon
 (2)
                                                            S \to Ab
                                                            A \to a|B|\varepsilon
                                                           B \to b|\varepsilon
 (3)
                                                           S \to ABBA
                                                           A \to a|\varepsilon
                                                           B \to b|\varepsilon
 (4)
                                                           S \to aSe|B
                                                           B \to bBe|C
                                                           C \to cCe|d
```

解答:

(1) 该文法中非终结符对应的 FIRST 集与 FOLLOW 集如下所示,不难发现该文法符合 LL(1)。

	FIRST	FOLLOW
S	$\{a,b\}$	{#}
A	$\{a,\varepsilon\}$	$\{b\}$
В	$\{b, \varepsilon\}$	ϕ

(2) 该文法中非终结符对应的 FIRST 集与 FOLLOW 集如下所示:

	FIRST	FOLLOW
S	$\{a,b\}$	{#}
A	$\{a,b,\varepsilon\}$	$\{b\}$
В	$\{b, \varepsilon\}$	$\{b\}$

由上述 FIRST 集与 FOLLOW 集可知,非终结符 A、B 均不符合条件三,因此该文法不符合 LL(1)。

(3) 该文法中非终结符对应的 FIRST 集与 FOLLOW 集如下所示:

	FIRST	FOLLOW
S	$\{a,b,\epsilon\}$	{#}
A	$\{a,\varepsilon\}$	$\{a,b,\#\}$
В	$\{b,\varepsilon\}$	$\{a,b,\#\}$

由上述 FIRST 集与 FOLLOW 集可知, 非终结符 A、B 均不符合条件三, 因此该文法不符合 LL(1)。

(4) 该文法中非终结符对应的 FIRST 集与 FOLLOW 集如下所示,不难发现该文法符合 LL(1)。

	FIRST	FOLLOW
S	$\{a,b,c,d\}$	$\{e,\#\}$
В	$\{b,c,d\}$	$\{e,\#\}$
С	$\{c,d\}$	$\{e,\#\}$

题目 4

对下面文法:

$$Expr \rightarrow -Expr$$

$$Expr \rightarrow (Expr)|Var\ ExprTail$$

$$ExprTail \rightarrow -Expr|\varepsilon$$

$$Var \rightarrow id \ Var Tail$$

$$VarTail \rightarrow (Expr)|\varepsilon$$

- (1) 构造 LL(1) 分析表
- (2) 给出对句子 id -id((id)) 的分析过程

解答:

(1) 该文法中非终结符对应的 FIRST 集与 FOLLOW 集如下所示:

	FIRST	FOLLOW
Expr	$\{-,(,id\}$	{),#}
ExprTail	$\{-, \varepsilon\}$	{),#}
Var	$\{id\}$	$\{-,),\#\}$
VarTail	$\{(, \varepsilon\}$	$\{-,),\#\}$

由上述 FIRST 集与 FOLLOW 集,根据 LL(1) 定义可知,该文法符合 LL(1) 要求,下述为该文法对应的预测分析表。

	-	id	()	#
Expr	Expr o -Expr	$Expr o Var\ ExprTail$	Expr o (Expr)		
ExprTail	$ExprTail \rightarrow -Expr$			$ExprTail \rightarrow \varepsilon$	$ExprTail \rightarrow \varepsilon$
Var		$Var \rightarrow id \ VarTail$			
VarTail	$VarTail \rightarrow \varepsilon$		$VarTail \rightarrow (Expr)$	$VarTail \rightarrow \varepsilon$	$VarTail \rightarrow \varepsilon$

(2) id - -id((id)) 的分析过程如下所示:

步骤	符号栈	輸入串	所用产生式
少派			別用)主共
	#Expr	idid((id))#	
1	#ExprTail Var	idid((id))#	$Expr o Var\ ExprTail$
2	#ExprTail VarTail id	idid((id))#	$Var \rightarrow id \ VarTail$
3	#ExprTail VarTail	id((id))#	
4	#ExprTail	id((id))#	$VarTail \rightarrow \varepsilon$
5	#Expr-	id((id))#	$ExprTail \rightarrow -Expr$
6	#Expr	-id((id))#	
7	#Expr-	-id((id))#	Expr o -Expr
8	#Expr	id((id))#	
9	#ExprTail Var	id((id))#	$Expr o Var\ ExprTail$
10	#ExprTail VarTail id	id((id))#	$Var \rightarrow id \ VarTail$
11	#ExprTail VarTail	((id))#	
12	#ExprTail)Expr(((id))#	$VarTail \rightarrow (Expr)$
13	#ExprTail)Expr	(id))#	
14	#ExprTail)) $Expr($	(<i>id</i>))#	Expr o (Expr)
15	$\#ExprTail\))Expr$	<i>id</i>))#	
16	#ExprTail))ExprTail Var	<i>id</i>))#	$Expr o Var\ ExprTail$
17	#ExprTail))ExprTail VarTail id	<i>id</i>))#	$Var \rightarrow id \ VarTail$
18	#ExprTail))ExprTail VarTail))#	
19	#ExprTail)) $ExprTail$))#	$VarTail \rightarrow \epsilon$
20	#ExprTail))))#	$ExprTail \rightarrow \epsilon$
21	#ExprTail))#	
22	#ExprTail	#	
23	#	#	$ExprTail \rightarrow \epsilon$