FECIOOITOI-VI.O

zrtech

FPGA/CPLD 开发套件实验教程
---仿真,调试,设计篇

WWW.ZR-TECH.COM

实验一、初识 modelsim

实验目的:

通过这个基础实验,使用户了解 modelsim 中常用的基本概念,安装并配置好 modelsim 软件

实验原理:

1.Modelsim简介

仿真验证是 CPLD/FPGA 设计中的重要一环, Quartus II 软件本身带有仿真功能, 但是无法使用 testbench, 而且功能相对简单, 对于复杂的设计, 画波形图显然不是明智的选择, 一般选择 Mentor Graphics Corporation 的 modelsim 作为仿真工具。它支持 Verilog、VHDL 以及他们的混合仿真, 它可以将整个程序分步执行, 使设计者直接看到他的程序下一步要执行的语句, 而且 在程序执行的任何步骤任何时刻都可以查看任意变量的当前值,可以在 Dataflow 窗口查看某一单元或模块的输入输出的连续变化等,比 quartus 自带的仿真器功能强大的多,是目前业界最通用的仿真器之一。

仿真一般分为功能仿真,前仿真与后仿真。根据设计需要,编写完代码(Verilog hdl,Vhdl,system Verilog)后,首先进行功能仿真,验证所写代码是否能完成设计功能;前仿真又称为综合后仿真,即在 QuartusII 完成综合后,验证设计的功能;后仿真又称为时序仿真活布局布线后仿真,是加入延时后的仿真。对于编译时间较短的小规模设计,一般只进行功能仿真与后仿真。

modelsim 有很多版本, ae, pe, le, xe, se 等, 其中 se 功能最为强大, 见下表。其中 ae 版本是 altera 的定制版本,已经包含了 altera 元器件的编译库,对于 altera 公司的器件仿真,使用比较简单。但值得注意的是 se 版本的仿真效率要比 ae 版本高的多,且可以 VHDL 与 verilog 混合仿真,这是 ae 版本不可比拟的。但是 se 版本需要自行添加 altera 元器件的库,有些不便。在本节课程里,我们会帮助大家以最简单的方式添加 altera 的仿真库,使 ae 版本用起来和 ae 版本一样方便。具体的软件安装详细见软件压缩包里的安装说明,一般情况下 ae 与 se 选择其一安装即可,安装 se 的用户需要按照后面所介绍的方法添加 altera 的仿真库。

Product Feature	ModelSim SE	ModelSim PE	ModelSim-Altera	ModelSim-Altera Web Edition
100% VHDL, Verilog, mixed-HDL support	Optional	Optional	Supports only single-HDL simulation	Supports only single-HDL simulation
Complete HDL debugging environment	~	~	~	~
Optimized direct compile architecture	~	~	~	~
Industry-standard scripting	✓	~	~	~
Flexible licensing	✓	Optional	~	_
Verilog PLI support. Interfaces Verilog HDL designs to customer C code and third-party software	~	~	~	~
VHDL FLI support. Interfaces VHDL designs to customer C code and third-party software	~	_	_	_
Standard Delay Format File annotation	~	~	√ (1)	✓ (1)
Advanced debugging features and language-neutral licensing	~	_	_	_
Customizable, user- expandable graphical user interface GUI and integrated simulation performance analyzer	~	_	_	_
Integrated code coverage analysis and SWIFT support	~	_	_	_
Accelerated VITAL and Verilog HDL primitives (3 times faster), and register transfer level (RTL) acceleration (5 times faster)	~	_	_	_
Platform support	PC, UNIX, Linux	PC only	PC, UNIX, Linux	PC only
Precompiled Libraries	No	No	Yes	Yes

2.Modelsim中常用的基本概念

1、什么是库(Library)?

库就是用来存放已编译好的设计单元(Design Units)的文件夹。库有两种类型——工作库(Work)与资源库(Resource)

工作库(Work)

- 存放当前设计文件编译后产生的设计单元
- 编译前必须先创建好工作库
- 每次编译只允许有一个工作库
- 默认的工作库名是 work

资源库 (Resource)

● 存放着所有可以被当前编译操作调用的已经编译过的设计单元

- 每次编译允许同时调用多个资源库
- ALTERA 的仿真库也属于资源库的一种
- VHDL 的库可以直接通过 LIBRARY 和 USE 语句直接调用,

工作库和资源库其实从图中可以直接分辨出来:

2、什么是设计单元 (Design Units)?

HDL 文件经过编译后,会以设计单元的形式存放在库中,设计单元可以是以下模块:

VHDL

- Entity
- Package Declaration
- Configuration
- Architecture(次级设计单元,一个库中可以有多个同名的次级设计单元,仅 VHDL 有次级设计单元)Package body(次级设计单元,一个库中可以有多个同名的次级设计单元,仅 VHDL 有次级设计单元)

例如:

Verilog

- Module
- User Defined Primitive

例如:

实验结果:

配置好 modelsim 仿真环境。

具体步骤:

- 1、 安装Modelsim se或者ae版本
- 略,详细步骤见安装说明。安装完毕后运行 modelsim ae 或者 se, 查看是否功能可以正常使用。
- 2. 为Modelsim se版本添加ALTERA的仿真库

对于初学者来说,在 ModelSim Se 中自己编译 FPGA 库是一件又费时间又费精力的事情。默认安装完毕后的 ModelSim Se 中是没用任何 altera 的仿真资源库的,如下图:

下面我们要直接将 ModelSim AE (Altera)中的库连在其它版本的 ModelSim 上,不用手动编译的方法。如下:将 ModelSim AE 下的 altera 子目录(包含 vhdl 和 verilog 两个子目录)拷贝到 ModelSim SE 安装目录下。这里我们在配套光盘里

已经提供了 ModelSim AE 下的 altera 子目录里的所有文件,如下图

╟ verilog	2011/1/1 15:46	文件夹	
 whdl	2011/1/1 15:52	文件夹	
version.txt	2009/2/26 11:59	文本文档	1 KB

所以可以将 altera 文件夹直接拷贝到 SE 安装的根目录下即可。

下一步,在 ModelSim SE 安装下的 modelsim.ini 文件(先去掉这个文件的只读属性)中的[Library]到[vcom]之间加入如下代码:

;Altera

apex20k = \$MODEL_TECH/../altera/vhdl/apex20k

apex20ke = \$MODEL_TECH/../altera/vhdl/apex20ke

apexii = \$MODEL_TECH/../altera/vhdl/apexii

altera_mf = \$MODEL_TECH/../altera/vhdl/altera_mf

altera = \$MODEL_TECH/../altera/vhdl/altera

lpm = \$MODEL_TECH/../altera/vhdl/220model

220model = \$MODEL_TECH/../altera/vhdl/220model

alt_vtl = \$MODEL_TECH/../altera/vhdl/alt_vtl

flex6000 = \$MODEL_TECH/../altera/vhdl/flex6000

flex10ke = \$MODEL_TECH/../altera/vhdl/flex10ke

max = \$MODEL_TECH/../altera/vhdl/max

maxii = \$MODEL_TECH/../altera/vhdl/maxii

stratix = \$MODEL_TECH/../altera/vhdl/stratix

stratixii = \$MODEL_TECH/../altera/vhdl/stratixii

stratixiigx = \$MODEL_TECH/../altera/vhdl/stratixiigx

hardcopyii = \$MODEL_TECH/../altera/vhdl/hardcopyii

hardcopyiii = \$MODEL_TECH/../altera/vhdl/hardcopyiii

hardcopyiv = \$MODEL_TECH/../altera/vhdl/hardcopyiv

hcstratix = \$MODEL_TECH/../altera/vhdl/hcstratix

cyclone = \$MODEL_TECH/../altera/vhdl/cyclone

cycloneii = \$MODEL_TECH/../altera/vhdl/cycloneii

cycloneiii = \$MODEL_TECH/../altera/vhdl/cycloneiii

cycloneiiils = \$MODEL_TECH/../altera/vhdl/cycloneiiils

sgate = \$MODEL_TECH/../altera/vhdl/sgate

 $stratixgx = $MODEL_TECH/../altera/vhdl/stratixgx$

altgxb = \$MODEL_TECH/../altera/vhdl/altgxb

stratixgx_gxb = \$MODEL_TECH/../altera/vhdl/stratixgx_gxb

stratixiigx_hssi = \$MODEL_TECH/../altera/vhdl/stratixiigx_hssi

arriagx_hssi = \$MODEL_TECH/../altera/vhdl/arriagx_hssi

arriaii = \$MODEL_TECH/../altera/vhdl/arriaii

arriaii_hssi = \$MODEL_TECH/../altera/vhdl/arriaii_hssi

arriaii_pcie_hip = \$MODEL_TECH/../altera/vhdl/arriaii_pcie_hip

arriagx = \$MODEL_TECH/../altera/vhdl/arriagx

altgxb_lib = \$MODEL_TECH/../altera/vhdl/altgxb

stratixiv = \$MODEL_TECH/../altera/vhdl/stratixiv

stratixiv_hssi = \$MODEL_TECH/../altera/vhdl/stratixiv_hssi

stratixiv_pcie_hip = \$MODEL_TECH/../altera/vhdl/stratixiv_pcie_hip

apex20k_ver = \$MODEL_TECH/../altera/verilog/apex20k

apex20ke_ver = \$MODEL_TECH/../altera/verilog/apex20ke

apexii_ver = \$MODEL_TECH/../altera/verilog/apexii

altera_mf_ver = \$MODEL_TECH/../altera/verilog/altera_mf

altera_ver = \$MODEL_TECH/../altera/verilog/altera

lpm_ver = \$MODEL_TECH/../altera/verilog/220model

220model_ver = \$MODEL_TECH/../altera/verilog/220model

alt_ver = \$MODEL_TECH/../altera/verilog/alt_vtl

flex6000_ver = \$MODEL_TECH/../altera/verilog/flex6000

flex10ke_ver = \$MODEL_TECH/../altera/verilog/flex10ke

max_ver = \$MODEL_TECH/../altera/verilog/max

maxii_ver = \$MODEL_TECH/../altera/verilog/maxii

stratix_ver = \$MODEL_TECH/../altera/verilog/stratix

stratixii_ver = \$MODEL_TECH/../altera/verilog/stratixii

stratixiigx_ver = \$MODEL_TECH/../altera/verilog/stratixiigx

arriagx_ver = \$MODEL_TECH/../altera/verilog/arriagx

hardcopyii_ver = \$MODEL_TECH/../altera/verilog/hardcopyii

hardcopyiii_ver = \$MODEL_TECH/../altera/verilog/hardcopyiii

hardcopyiv_ver = \$MODEL_TECH/../altera/verilog/hardcopyiv

hcstratix_ver = \$MODEL_TECH/../altera/verilog/hcstratix

cyclone_ver = \$MODEL_TECH/../altera/verilog/cyclone

cycloneii_ver = \$MODEL_TECH/../altera/verilog/cycloneii

cycloneiii_ver = \$MODEL_TECH/../altera/verilog/cycloneiii

cycloneiiils_ver = \$MODEL_TECH/../altera/verilog/cycloneiiils

sgate_ver = \$MODEL_TECH/../altera/verilog/sgate

stratixgx_ver = \$MODEL_TECH/../altera/verilog/stratixgx

altgxb_ver = \$MODEL_TECH/../altera/verilog/altgxb

stratixgx_gxb_ver = \$MODEL_TECH/../altera/verilog/stratixgx_gxb

stratixiigx_hssi_ver = \$MODEL_TECH/../altera/verilog/stratixiigx_hssi

arriagx_hssi_ver = \$MODEL_TECH/../altera/verilog/arriagx_hssi

arriaii ver = \$MODEL_TECH/../altera/verilog/arriaii

arriaii_hssi_ver = \$MODEL_TECH/../altera/verilog/arriaii_hssi

arriaii_pcie_hip_ver = \$MODEL_TECH/../altera/verilog/arriaii_pcie_hip

stratixiii_ver = \$MODEL_TECH/../altera/verilog/stratixiii

stratixiii = \$MODEL_TECH/../altera/vhdl/stratixiii

stratixiv_ver = \$MODEL_TECH/../altera/verilog/stratixiv

stratixiv_hssi_ver = \$MODEL_TECH/../altera/verilog/stratixiv_hssi

stratixiv_pcie_hip_ver = \$MODEL_TECH/../altera/verilog/stratixiv_pcie_hip

注释:上面的代码是从 ModelSim AE 的 modelsim.ini 文件中拷贝的。

上面的这个过程,我们也帮各位搞定了。大家直接把我们提供的 modelsim.ini 拷贝到 SE 安装根目录下即可,如果您不放心,可以先备份一份原来的。

搞定之后重新启动 ModelSim,看看这下所有的 altera 的库都加上来了吧!以后再也不用为库而烦神了。

🖺 Library ===================================				
₹ Name	Type	Path		
± ⊣ ∭ work	Library	C:/modeltech_6.5/examples/work		
+ → 220model	Library	\$MODEL_TECH//altera/vhdl/220model		
→ 220model_ver	Library	\$MODEL_TECH//altera/verilog/220m		
 alt_ver	Library	\$MODEL_TECH//altera/verilog/alt_vtl		
 alt_vtl	Library	\$MODEL_TECH//altera/vhdl/alt_vtl		
⊥ ⊢ ∏ altera	Library	\$MODEL_TECH//altera/vhdl/altera		
- I altera_mf	Library	\$MODEL_TECH//altera/vhdl/altera_mf		
→ altera_mf_ver	Library	\$MODEL_TECH//altera/verilog/altera		
 III altera_ver	Library	\$MODEL_TECH//altera/verilog/altera		
 altgxb	Library	\$MODEL_TECH//altera/vhdl/altgxb		
 altgxb_lib	Library	\$MODEL_TECH//altera/vhdl/altgxb		
 altgxb_ver	Library	\$MODEL_TECH//altera/verilog/altgxb		
- ⊢ II apex20k	Library	\$MODEL_TECH//altera/vhdl/apex20k		
- ⊢ _ apex20k_ver	Library	\$MODEL_TECH//altera/verilog/apex20k		
 → apex20ke	Library	\$MODEL_TECH//altera/vhdl/apex20ke		
- ⊢ _ apex20ke_ver	Library	\$MODEL_TECH//altera/verilog/apex		
- ⊢ _ apexii	Library	\$MODEL_TECH//altera/vhdl/apexii		
+ ⊢ ∭ apexii_ver	Library	\$MODEL_TECH//altera/verilog/apexii		
+ ⊢ / arriagx	Library	\$MODEL_TECH//altera/vhdl/arriagx		
→ arriagx_hssi	Library	\$MODEL_TECH//altera/vhdl/arriagx		
→ arriagx_hssi_ver	Library	\$MODEL_TECH//altera/verilog/arriag		
- - II arriagx_ver	Library	\$MODEL_TECH//altera/verilog/arriagx		
□ dd secisii	Liberess	AMODEL TECH / Jaltana Jubal Janviaii		

相关信息

关于其他的相关信息,请访问以下网站

■购买本教程配套的开发套件,子卡或下载线缆:

http://www.zr-tech.com

■ 心得交流与问题互助:

http://www.zr-tech.com/bbs

版权信息

- ■本文档手册为ZRtech(www.zr-tech.com)原创资源,享有完全版权。
- ■任何收存和保管本文档各版本的单位和个人,未经本公司同意,不得随意复制、 抄录、修改本文档的部分或者全部内容。
- ■转载本文档时请务必保证此文档的完整性。文档必须包含本版权信息。不得将 转载作品以任何形式谋取商业利益,也不得向任何第三方提供,否则视为侵权。