Vertex of the Quadratic

 $f_1 = -\frac{b}{2a}$ namely $d(f_1) = c - \frac{b^2}{4a}$ Now compute the same quadratic at $\mathsf{f}_{1^+}\mathsf{h}$, namely

Given a quadratic d(f)=af² + bf + c compute its value at

 $d(f_1+h) = -\frac{b^2}{4a} + a h^2 + c$ Compute $\triangle = d(f_1 + h) - d(f_1) = a h^2$

Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the global minimum!

Example 1.

 $d(f) = 4 f^2 - 8 f + 38$

