Generalized Linear Models with the brms R Package

Ben Goodrich April 11, 2022

Scoring Rules

- \cdot The proportion of correct classifications is a classic example of an "improper" scoring rule due to the discontinuity at 0.5
- Bayesians (should, and typically do) use "strictly proper" scoring rules https://en.wikipedia.org/wiki/Scoring_rule , such as the ELPD, which are defined by the property that they are maximized / minimized by the truth
- If the model is correct, the posterior predictive distribution is expected to yield the best-calibrated predictions with respect to any strictly proper scoring rule
- Supervised learning presumes there is no truth, in which case, the justification for using a strictly proper scoring rule is less compelling. However, the choice of which improper scoring rule to use can determine which modeling procedure is best in the testing data

Data Science Venn Diagram

- · What do you get if you equate . . .
- Probability
- Priors, DAGs, and Model Building
- Markov Chain Monte Carlo
- Since at least 1990, Bayesian estimation has been what data science purported to be but isn't
- Data science came along later but largely ignored Bayesian approaches
- In reality, data science programs are asymmetric with more emphasis on hacking skills and less on the others

The brms Workflow (Figure 1 in Bürkner 2016)

The brms workflow

The Arguments to brm

```
library(brms)
args(brm)
## function (formula, data, family = gaussian(), prior = NULL, autocor = NULL,
       data2 = NULL, cov ranef = NULL, sample prior = "no", sparse = NULL,
##
##
       knots = NULL, stanvars = NULL, stan funs = NULL, fit = NA,
       save pars = NULL, save ranef = NULL, save mevars = NULL,
##
       save all pars = NULL, inits = "random", chains = 4, iter = 2000,
##
##
       warmup = floor(iter/2), thin = 1, cores = getOption("mc.cores",
           1), threads = NULL, normalize = getOption("brms.normalize",
##
##
           TRUE), control = NULL, algorithm = getOption("brms.algorithm",
##
           "sampling"), backend = getOption("brms.backend", "rstan"),
       future = getOption("future", FALSE), silent = 1, seed = NA,
##
       save model = NULL, stan model args = list(), file = NULL,
##
       file refit = "never", empty = FALSE, rename = TRUE, ...)
##
## NULL
```

The formula Argument to brm

- Everything to the right of the ~ is the same as in many other R functions
- · In many cases, the thing to the left of the ~ is simply the outcome variable
- However, brm introduces a new possibility for this syntax like y | fun(variable), where fun could be
 - cens() and trunc() to specify known censoring or truncation bounds
 - weights() and disp(), which should not be used with MCMC
 - se() to specify "known" standard errors in meta-analyses
 - trials(), which is used in binomial models only
 - cat() to specify the possible categories for ordinal models

The family Argument to brm

The family argument can be any of the following functions, which also have a link argument that can be a variety of things depending on the family

```
gaussian; student; binomial; bernoulli; poisson; negbinomial; geometric; Gamma; skew_normal; lognormal; shifted_lognormal; exgaussian; wiener; inverse.gaussian; exponential; weibull; frechet; Beta; dirichlet; von_mises; asym_laplace; gen_extreme_value; categorical; multinomial; cumulative; cratio; sratio; acat; hurdle_poisson; hurdle_negbinomial; hurdle_gamma; hurdle_lognormal; zero_inflated_binomial; zero_inflated_beta; zero_inflated_negbinomial; zero_inflated_beta
```

 The ones involving hurdle_, zero_inflated_ and / or negbinomial are of particular interest in the social sciences

Prior Predictive Distribution for Roach Study

Roach Model

The prior Argument to brm

```
args(set_prior) # or usually just prior()

## function (prior, class = "b", coef = "", group = "", resp = "",

## dpar = "", nlpar = "", lb = NA, ub = NA, check = TRUE)

## NULL
```

- prior is a character string (in the Stan language) such as "normal(0,5)" but you can omit the
 quotation marks if you instead call prior, which forwards to set_prior
- · class indicates what parameters the call to set_prior pertains to
- coef is the name of the parameter in question
- **group** is the name of the grouping factor (if applicable)
- resp is the name of the response variable in multivariate models
- dpar is the name of the distribution parameter (if applicable)
- nlpar is the name of the non-linear parameter (if applicable)
- **lb** is the lower bound of the parameter (default $-\infty$)
- **ub** is the upper bound of the parameter (default ∞)
- · check whether priors should be checked for validity

The get_prior Function

 Input the formula, data, and family and get back the possible prior choices (and defaults)

```
data(roaches, package = "rstanarm"); roaches <- roaches[roaches$roach1 > 0, ]
get prior(y ~ log(roach1) + treatment + senior + offset(log(exposure2)),
          data = roaches, family = negbinomial)
##
                     prior
                               class
                                           coef group resp dpar nlpar bound
                                                                                   source
                    (flat)
                                                                                  default
##
                                    b
##
                    (flat)
                                    b logroach1
                                                                             (vectorized)
                                         senior
##
                    (flat)
                                    b
                                                                             (vectorized)
##
                    (flat)
                                                                             (vectorized)
                                    b treatment
    student t(3, 1.9, 2.9) Intercept
                                                                                  default
##
                                                                                  default
##
         gamma(0.01, 0.01)
                                shape
```

The class Argument to set_prior

- Refers to a type of parameter in the model
- · Defaults to "b" which refers to (population-level) regression coefficients
- Other possible values are "Intercept", "sd", "cor", "sigma" and others we
 may talk about later

```
my_prior <- prior(normal(0, 2), class = "b") + prior(normal(0, 5), class = "Intercept") +
prior(exponential(1), class = "shape")</pre>
```

Example of brm

```
post <- brm(y ~ log(roach1) + treatment + senior + offset(log(exposure2)), data = roaches,</pre>
           family = negbinomial, prior = my prior) # from previous slide
post
            Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
##
                1.33
                         0.26
                                 0.84
                                          1.85 1.00
                                                        4624
                                                                3083
## Intercept
## logroach1
            0.70
                         0.06 0.57 0.82 1.00
                                                       4543
                                                                3167
## treatment -0.62
                        0.21 -1.04 -0.21 1.00
                                                       4918
                                                                3137
## senior
               -0.20
                         0.24
                                -0.65 0.28 1.00
                                                       4170
                                                                2915
##
## Family Specific Parameters:
        Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
##
## shape
            0.47
                     0.05
                              0.38
                                       0.58 1.00
                                                    4694
                                                            3334
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk ESS
## and Tail ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
. . .
```

Using the **loo** Function

- · McElreath cautions against using things like loo when λ_n is included
- If λ_n is integrated out of the posterior distribution by using a negative binomial likelihood, everything's fine (unless there are warnings, in which case reloo)

```
loo post <- loo(post, reloo = TRUE) # observation 85 has a Pareto k > 0.7
loo post
##
## Computed from 4000 by 202 log-likelihood matrix
##
          Estimate
##
                   SF
## elpd loo -759.2 28.3
## p_loo 5.2 1.5
## looic 1518.3 56.6
## ----
## Monte Carlo SE of elpd loo is 0.1.
##
## Pareto k diagnostic values:
                         Count Pct.
                                      Min. n eff
##
## (-Inf, 0.5] (good) 201 99.5%
                                      1035
   (0.5, 0.7] (ok) 1 0.5%
                                      380
```

Using the pp_check Function

pp_check(post, type = "loo_intervals") # type is the same as plotfun with rstanarm

Using the hypothesis Function

To do this with rstanarm, you would have to first call as.matrix

```
args(brms:::hypothesis.brmsfit)

## function (x, hypothesis, class = "b", group = "", scope = c("standard",

## "ranef", "coef"), alpha = 0.05, seed = NULL, ...)

## NULL
```

 Here x is the object produced by brm and hypothesis is a string, typically with an embedded < or >, such as

```
hypothesis(post, "treatment < 0")

## Hypothesis Tests for class b:

## Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio Post.Prob Star

## 1 (treatment) < 0 -0.62  0.21 -0.97 -0.27  443.44  1 *

## ---

## 'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.

## '*': For one-sided hypotheses, the posterior probability exceeds 95%;

## for two-sided hypotheses, the value tested against lies outside the 95%-CI.

## Posterior probabilities of point hypotheses assume equal prior probabilities.</pre>
```

Other Post-Estimation Methods

Many of the things you can do with an object produced by **brm** are analagous to **rstanarm**

```
##
         [,1]
                                [,2]
                                                           [,3]
                                "loo compare"
                                                           "posterior predict"
    [1,] "add criterion"
                                                           "posterior samples"
   [2,] "add ic"
                                "loo linpred"
   [3,] "as.array"
                                "loo model weights"
                                                           "posterior smooths"
   [4,] "as.data.frame"
                                "loo moment match"
                                                           "posterior summary"
                                                           "pp average"
  [5,] "as.matrix"
                                "loo predict"
   [6,] "as.mcmc"
                                "loo predictive interval"
                                                           "pp check"
   [7,] "autocor"
                                "loo R2"
                                                           "pp mixture"
                                "loo subsample"
   [8,] "bayes factor"
                                                           "predict"
                                "loo"
   [9,] "bayes R2"
                                                           "predictive error"
                                "L00"
                                                           "predictive interval"
## [10,] "bridge sampler"
                                                           "prepare predictions"
## [11,] "coef"
                                "marginal effects"
## [12,] "conditional effects" "marginal smooths"
                                                           "print"
## [13,] "conditional smooths"
                                "mcmc plot"
                                                           "prior samples"
                                "model weights"
## [14,] "control params"
                                                           "prior summary"
                                                           "ranef"
## [15,] "cv varsel"
                                "model.frame"
## [16,] "expose_functions"
                                "neff ratio"
                                                           "reloo"
## [17,] "family"
                                "ngrps"
                                                           "residuals"
## [18,] "fitted"
                                                           "rhat"
                                "nobs"
## [19,] "fixef"
                                "nsamples"
                                                           "stancode"
## [20,] "formula"
                                "nuts params"
                                                           "standata"
## [21,] "get refmodel"
                                "pairs"
                                                           "stanplot"
## [22,] "getCall"
                                                           "summary"
                                "parnames"
                                "plot"
## [23,] "hypothesis"
                                                           "update"
## [24,] "kfold"
                                "post prob"
                                                           "VarCorr"
                                "posterior average"
## [25,] "launch shinystan"
                                                           "varsel"
## [26,] "log lik"
                                "posterior epred"
                                                           "vcov"
## [27,] "log posterior"
                                "posterior interval"
                                                           "waic"
                                "posterior linpred"
## [28,] "logLik"
                                                           "WAIC"
```

Hurdle Models with brm

There was an EdStem post about zero-inflated and hurdle models for count outcomes, which you can easily do with **brm**.

```
post_hurdle <- brm(brms::bf(y \sim log(roach1) + treatment + senior + offset(log(exposure2)), hu \sim I(roach1 == 0) + treatment + senior), data = roaches, family = hurdle_negbinomial, seed = 12345, prior = my_prior + prior(normal(0, 2), class = "b", dpar = "hu"))
```

Results of Hurdle Model

post hurdle

. . .

```
## Population-Level Effects:
##
                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk ESS Tail ESS
                        1.64
                                  0.28
                                          1.08
                                                  2.17 1.00
                                                               6921
                                                                       2888
## Intercept
## hu Intercept
                                 0.29
                                         -2.18 -1.03 1.00
                                                               7451
                                                                       3245
                       -1.58
## logroach1
                        0.61
                                 0.07 0.49 0.74 1.00
                                                               6875
                                                                       3046
                                         -0.93 -0.09 1.00
                                 0.21
                                                               6898
                                                                       3291
## treatment
                       -0.51
                                         -0.54 0.48 1.00
                                                               7020
## senior
                       -0.04
                                 0.26
                                                                       3009
                       0.01
## hu Iroach1EQEQ0TRUE
                                 2.00
                                         -3.85 4.06 1.00
                                                               7683
                                                                       2849
## hu treatment
                                 0.35
                                         -0.30 1.10 1.00
                                                                       3188
                        0.38
                                                               7712
## hu senior
                                         0.11
                        0.82
                                 0.36
                                                  1.50 1.00
                                                               7513
                                                                       3193
##
## Family Specific Parameters:
##
        Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
## shape
           0.64
                     0.11
                                     0.87 1.00
                                                  4764
                                                          2555
                             0.43
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk ESS
## and Tail ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
```

PSISLOOCV Comparison

Output of model 'post hurdle':

```
loo(post, post hurdle, reloo = TRUE)
                                                        ## Computed from 4000 by 202 log-likelihood matrix
                                                        ##
                                                        ##
                                                                     Estimate
## Output of model 'post':
                                                        ## elpd loo
                                                                       -772.9 28.0
##
                                                        ## p loo
                                                                          8.0 1.5
## Computed from 4000 by 202 log-likelihood matrix
                                                                       1545.7 55.9
                                                        ## looic
                                                        ## ----
##
            Estimate
                       SE
                                                        ## Monte Carlo SE of elpd loo is 0.1.
              -759.2 28.3
## elpd loo
## p loo
                 5.2 1.5
                                                        ## Pareto k diagnostic values:
## looic
              1518.3 56.6
                                                                                     Count Pct.
                                                                                                   Min. n eff
## ----
                                                                                                   2881
                                                        ## (-Inf, 0.5]
                                                                          (good)
                                                                                     201
                                                                                           99.5%
## Monte Carlo SE of elpd loo is 0.1.
                                                            (0.5, 0.7]
                                                                                                   184
                                                                         (ok)
                                                                                            0.5%
##
                                                              (0.7, 1]
                                                                                            0.0%
                                                                                                   <NA>
                                                                         (bad)
                                                                                       0
## Pareto k diagnostic values:
                                                                                            0.0%
                                                                                                   <NA>
                                                              (1, Inf)
                                                                          (very bad)
                            Count Pct.
                                          Min. n eff
                                                        ##
## (-Inf, 0.5]
                 (good)
                            201
                                 99.5%
                                          1035
                                                        ## All Pareto k estimates are ok (k < 0.7).
   (0.5, 0.7]
                 (ok)
                                   0.5%
                                           380
                                                        ## See help('pareto-k-diagnostic') for details.
      (0.7, 1]
                                   0.0%
                                          <NA>
##
                 (bad)
                                                        ##
                                   0.0%
      (1, Inf)
                 (very bad)
##
                                          <NA>
                                                        ## Model comparisons:
##
                                                                        elpd diff se diff
## All Pareto k estimates are ok (k < 0.7).
                                                                          0.0
                                                                                    0.0
                                                        ## post
## See help('pareto-k-diagnostic') for details.
                                                        ## post hurdle -13.7
                                                                                    4.9
##
```

Structured Nonlinear Model

- The stan_gamm4 package in rstanarm can estimate effects that are arbitrary smooth functions of predictors, as can brm
- brm can do that and estimate many more models with particular non-linear forms (that are just pasted into a Stan program)
- Examples from a brms vignette
- It is a good idea to put the outcome variable in reasonable units

Resulting Nonlinear Plot

plot(conditional_effects(fit_loss), points = TRUE)

