线性时不变系统 (LTI) 和卷积 (章节预备知识)

Contents

Discrete-Time LTI Systems

- The representation of discrete-time signals in terms of impulse (以脉冲信号表示离散时间信号)
- The discrete-time unit impulse response and the convolution sum representation of LTI systems (以脉冲响应卷积和表示离散信号通过LTI系统的响应)

Continuous-Time LTI Systems

- The representation of continuous-time signals in terms of impulse
- The continuous-Time unit impulse response and the convolution integral representation

脉冲函数的定义: 也叫δ函数

$$\delta (t - t_0) = 0 \quad t \neq t_0$$
$$\int_{-\infty}^{\infty} \delta (t - t_0) dt = 1$$

脉冲函数的极限定义: 脉冲函数可以看成是一系列函数的极限, 这些函数的振幅逐渐增大, 持续时间逐渐减少, 而保持面积不变。

线性系统(Linear System)

假设
$$H(f_1(t)) = g_1(t)$$
 $H(f_2(t)) = g_2(t)$

H(·)为线性系统:

$$H(\alpha \cdot f_1(t) + \beta \cdot f_2(t)) = \alpha \cdot g_1(t) + \beta \cdot g_2(t)$$

时不变系统(Time-invariant system):

$$H(f(t-\tau)) = g(t-\tau)$$

单位冲激响应(Unit Impulse Response)

1. Discrete-Time LTI Systems: The Convolution Sum

- The representation of discrete-time signals in terms of impulse
 - According to the sampling property of impulse signal, discrete-time signals can be represented in terms of

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$

1. Discrete-Time LTI Systems: The Convolution Sum

- The representation of discrete-time signals in terms of impulse weight, 或x(t)在k的抽样
 - According to the sampling property of impulse signal, discrete-time signals can be represented in terms of

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$
 location

 Regard a discrete-time signal as a sequence of individual impulses.

Do you remember the property of unit impulse?

$$x[n]\delta[n-k] = x[k]\delta[n-k]$$

Any discrete-time signal can be represented as the sum of several weighted impulse.

$$x[n] = \cdots + x[-2]\delta[n+2] + x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + x[2]\delta[n-2] + \cdots$$

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$

$$x[n] * \delta[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$

卷积和定义

 $x{1}\delta[n-1]$

x{2] 8[n-·2]

$$x(-1) \delta[n + 1]$$

$$x[n] = \dots + x[-3]\delta[n+3] + x[-2]\delta[n+2] + x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + x[2]\delta[n-2] + x[3]\delta[n-3] + \dots$$

The Discrete-Time unit Impulse Response and the Convolution-sum Representation of LTI Systems

- The shifting property (shift v. 筛选)
 - it represents x[n] as a superposition (叠加) of scaled versions of a very simple of elementary functions, shifted unit impulses.
- The response of a linear system to x[n]
 - *the superposition of the scaled responses* of the system to each of these shifted impulses.

- From the property of time invariance
 - the responses of a time-invariant system to the timeshifted unit impulses are simply *time-shifted versions* of one another.
- The convolution-sum(卷积和) representation for a LTI discrete-time system results from putting the above two basic facts together.

Denote $h_k[n]$

the response of the linear system to the shifted unit impulse $\delta[n-k]$ 如果 $h_k[n] = h_0[n]$, 则为线性时不变系统,否则为线性时变系统

Consider an input:

The response of the above system to this input can be expressed as

It is correct for either time-variant or timeinvariant system

Explanation for $y[n] = \sum_{k=-\infty}^{\infty} x[k]h_k[n]$

If we restrict our consideration onto TIME-INVARIANT systems

 $h_k[n] = h_0[n-k]$

DO YOU REMEMBER THE TIME INVARIANCE PROPERTY INTRODUCED IN CHAPTER ONE?

$$e(t) \longrightarrow r(t)$$

$$e(t-t_0) \longrightarrow r(t-t_0)$$

What would happen if the system is a Linear Time Invariant one?

Denote the input to an LTI system as

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$

Define the unit impulse response

$$h[n] = h_0[n]$$

The response of this LTI system to the input can be expressed as

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$
 时不变

THIS IS REFERRED TO AS THE *CONVOLUTION SUM* OR SUPERPOSITION SUM. (卷积和)

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Always be represented symbolically as

$$y[n] = x[n] * h[n]$$

Now, let's call back the definition of LTI system ...

Time Invariant

Unit Impulse Response

Remember, it is correct for the case when the system is an LTI one.

Example

Consider an LTI system with impulse response h[n] and input x[n], as illustrated in below. What will the response of this system be with input x[n]?

What does h[n] mean?

$$\delta[n] \to h[n]$$

$$\delta[n-1] \to h[n-1]$$
:

What does x[n] tell us?

$$x[n] = x[0]\delta[n-0] + x[1]\delta[n-1]$$

= 0.5\delta[n-0] + 2\delta[n-1]

$$x[n] = x[0]\delta[n-0] + x[1]\delta[n-1]$$

= 0.5\delta[n-0] + 2\delta[n-1]

$$y[n] = x[0]h[n-0] + x[1]h[n-1]$$
$$= 0.5h[n] + 2h[n-1]$$

Example: Calculation of convolution

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$x[n] \longrightarrow y[n]$$

$$h[n]$$

$$x[n] \xrightarrow{} x[n]$$

$$* h[n]$$

h[k]

2. Continuous-Time LTI Systems: The Convolution Integral

- Consider the unit impulse as the idealization of a pulse which is so short that its duration is inconsequential for any real, physical system.
- A representation for arbitrary continuous-time signals in terms of these idealized pulse with vanishingly small duration.

- How do you accurately represent an arbitrary signal by a series 'simple' signals?
 - Simple???
 - 'Small' duration ————————— accurate
 - Easy to deal with _____ easy

The Representation of Continuous-Time Signals in Terms of Impulse

Represent x(t) as a series of weighted rectangular pulse

$$x(t) = \lim_{\Delta \to 0} \sum_{k=-\infty}^{\infty} x(k\Delta) \delta_{\Delta}(t - k\Delta) \Delta$$

What does it mean?

Define

$$\delta_{\Delta}(t) = \begin{cases} \frac{1}{\Delta} & 0 \le t < \Delta \\ 0 & others \end{cases}$$

$$\Delta \cdot \delta_{\Delta}(t) = \begin{cases} 1 & 0 \le t < \Delta \\ 0 & others \end{cases}$$

Then

$$\hat{x}(t) = \sum_{k=-\infty}^{\infty} x(k\Delta) \delta_{\Delta}(t - k\Delta) \Delta$$

The approximation becomes better and better as Δ approaches 0, and the limit equals x(t).

$$x(t) = \lim_{\Delta \to 0} \sum_{k=-\infty}^{\infty} x(k\Delta) \delta_{\Delta}(t - k\Delta) \Delta$$

From another perspective ...

$$x(t) = \lim_{\Delta \to 0} \sum_{k=-\infty}^{\infty} x(k\Delta) \left[u(t-k\Delta) - u(t-k\Delta - \Delta) \right]$$

$$= \lim_{\Delta \to 0} \sum_{k=-\infty}^{\infty} x(k\Delta) \frac{\left[u(t-k\Delta) - u(t-k\Delta - \Delta)\right]}{\Delta} \Delta$$

$$= \lim_{\Delta \to 0} \sum_{k=-\infty}^{\infty} x(k\Delta) \delta_{\Delta}(t - k\Delta) \Delta$$

2个阶跃函数相减形成一 个宽度为 Δ 的矩形脉冲

As A approach 0

$$k\Delta \to \tau$$

$$x(k\Delta) \to x(\tau)$$

$$\delta_{\Delta}(t - k\Delta) \to \delta(t - \tau)$$

$$\Delta \to d\tau$$

$$\sum \to \int$$
So, $x(t) = \lim_{\Delta \to 0} \sum_{k = -\infty}^{\infty} x(k\Delta) \delta_{\Delta}(t - k\Delta) \Delta$

It can be expressed as

$$x(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t - \tau) d\tau$$
 Shifting Property

It is easy to represent *unit step function* in terms of integral of impulse function.

$$u(t) = \int_{-\infty}^{\infty} u(\tau) \delta(t - \tau) d\tau = \int_{0}^{\infty} \delta(t - \tau) d\tau$$

As for *an arbitrary signal* x(t)

$$\int_{-\infty}^{\infty} x(\tau) \delta(t - \tau) d\tau = \int_{-\infty}^{\infty} x(t) \delta(t - \tau) d\tau$$
$$= x(t) \int_{-\infty}^{\infty} \delta(t - \tau) d\tau = x(t)$$

The Continuous-Time Unit Impulse Response and the Convolution Integral Representation of LTI System

- An arbitrary continuous-time signal can be viewed as the superposition of scaled and shifted pulses.
- The response of a linear system to this signal will be the superposition of the response to the scaled and shifted versions of pulses.

$$x(t) = \lim_{\Delta \to 0} \sum_{k=-\infty}^{\infty} x(k\Delta) \delta_{\Delta}(t - k\Delta) \Delta$$

Define $\hat{h}_{k\Delta}(t)$

as the response of an linear system to the input $\delta_{\Delta}(t-k\Delta)$

Then, we can see
$$\hat{y}(t) = \sum_{k=-\infty}^{\infty} x(k\Delta) \hat{h}_{k\Delta}(t) \Delta$$

As \triangle approaches 0,

$$y(t) = \lim_{\Delta \to 0} \hat{y}(t) = \lim_{\Delta \to 0} \sum_{k=-\infty}^{\infty} x(k\Delta) \hat{h}_{k\Delta}(t) \Delta$$
$$y(t) = \int_{-\infty}^{+\infty} x(\tau) h_{\tau}(t) d\tau$$

What is the time invariant property???

Consider the time invariant property of LTI system

Define
$$h(t) = h_0(t), h_{\tau}(t) = h(t - \tau)$$

Then
$$y(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau$$

线性时不变

THE CONVOLUTION INTEGRAL (巻积积分)
OR THE SUPERPOSITION ITEGRAL

$$y(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau$$

Always be represented symbolically as

$$y(t) = x(t) * h(t)$$

Example

Let x(t) be the input to an LTI system with unit impulse response h(t), where $x(t) = e^{-at}u(t)$, a > 0

$$h(t) = u(t)$$

What is the response of this system in such condition?

Since
$$x(t) = e^{-at}u(t), a > 0$$

 $h(t) = u(t)$

We can see
$$x(\tau)h(t-\tau) = \begin{cases} e^{-a\tau}, & 0 < \tau < t \\ 0, & otherwise \end{cases}$$
Then, for $t > 0$

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = \int_{-\infty}^{\infty} e^{-a\tau}u(\tau)u(t-\tau)d\tau$$

$$= \int_{0}^{t} e^{-a\tau}d\tau = -\frac{1}{a}e^{-a\tau} \Big|_{0}^{t} = \frac{1}{a}(1-e^{-at})$$

Then, for all t,

$$y(t) = \frac{1}{a}(1 - e^{-at})u(t)$$

Graphical Interpretation

Calculation of the convolution integral

Response of the system

How to Calculate Convolution Integral and Convolution Sum?

Step One: Replace the independent variable 't' with 'τ'

Step Two: Reverse one signal

Step Three: Shifting with t

Step Four: Multiply

Step Five: Integral or Add

Example

Determine and sketch e(t) * h(t)

Example

Determine and sketch e(t) * h(t)

Example Determine and sketch e(t)*h(t)

t [- ,], 但要 考虑2个函数交集

(4)Multiply

(a)
$$-\infty t \leq \frac{1}{2}$$

e(t) * h(t) = 0

$$h(t-\tau)$$

$$-\frac{1}{2}$$

$$-\frac{1}{2}$$

$$0$$

$$1$$

$$(a) -\infty < t \le \frac{1}{2}$$

(b)
$$-\frac{1}{2} \le t \le 1$$

$$h(t-\tau) = \begin{pmatrix} e(\tau) \\ t \end{pmatrix} \begin{pmatrix} \tau & \text{if } \\ -\frac{1}{2} \end{pmatrix}$$

$$au$$
 的变化范围:
$$-\frac{1}{2} \le \tau \le t$$

$$e(t) * h(t) = \int_{-\frac{1}{2}}^{t} 1 \times \frac{1}{2} (t - \tau) d\tau$$

$$= \frac{t^2}{4} + \frac{t}{4} + \frac{1}{16}$$

$$(b) \frac{1}{2} \le t \le 1$$

$$(t - \tau) 1 e(\tau)$$

$$c$$
 的变化范围: $-\frac{1}{2} \le \tau \le 1$ c $1 \le t \le \frac{3}{2}$

$$e(t) * h(t) = \int_{-\frac{1}{2}}^{1} 1 \times \frac{1}{2} (t - \tau) d\tau$$

$$=\frac{3}{4}t-\frac{3}{16}$$

$$(c) \quad 1 \le t \le \frac{3}{2}$$

$$(d) \quad \frac{3}{2} \le t \le 3$$

$$e(t) * h(t) = \int_{t-2}^{1} 1 \times \frac{1}{2} (t - \tau) d\tau$$
$$= -\frac{t^{2}}{4} + \frac{t}{2} + \frac{3}{4}$$

(e)
$$3 < t \le \infty$$

$$e(t) * h(t) = 0$$

(5) Integral

Example

Convolution of a square pulse with the impulse response of an RC circuit to obtain the output signal waveform

Convolution of two square pulses

Applications of convolution

- Electrical engineering
 - Digital signal processing
 - Image processing
- Statistics
 - Moving average model...
- Probability theory
 - E.g. Pdf of X+Y

• ...

% Example of the application of convolution in image processing

```
Im in = imread('E:\standard picture\gray image\baboon.bmp','bmp');
figure;
imshow(Im_in);
LD = [0 -1 0;
  -1 4 -1;
  0 - 1 \ 0;
Im_out = conv2(double(Im_in), LD, 'same');
figure;
imshow(Im_out);
Im out2 = edge(Im in, 'sobel');
figure;
imshow(Im_out2);
```

Matlab

Original

After convolution

Edge

Some useful properties of Convolution Integral

(1)
$$f_1(t) * f_2(t) = f_2(t) * f_1(t)$$

(2)
$$f_1(t) * [f_2(t) + f_3(t)] = f_1(t) * f_2(t) + f_1(t) * f_3(t)$$

(3)
$$f_1(t) * f_2(t) * f_3(t) = f_1(t) * f_3(t) * f_2(t)$$

(4)
$$\frac{d[f_1(t) * f_2(t)]}{dt} = f_1(t) * \frac{df_2(t)}{dt} = \frac{df_1(t)}{dt} * f_2(t)$$

$$(5) \int_{-\infty}^{t} [f_1(\tau) * f_2(\tau)] d\tau = f_1(t) * \int_{-\infty}^{t} f_2(\tau) d\tau = \int_{-\infty}^{t} f_1(\tau) d\tau * f_2(t)$$

- (6) if $f(t) = f_1(t) * f_2(t)$ then $f^{(i)}(t) = f_1^{(j)}(t) * f_2^{(i-j)}(t)$
- (7) $f(t) * \delta(t) = f(t)$ $f(t) * \delta(t t_0) = f(t t_0)$
- (8) $f(t) * u(t) = f^{(-1)}(t) = \int_{-\infty}^{t} f(\tau) d\tau$

Example

Suppose that
$$f_1(t) = (1+t)[u(t)-u(t-1)],$$

$$f_2(t) = u(t-1)$$

Determine

$$f_1(t) * f_2(t)$$

$$f_1^{(-1)}(t) = \int_{-\infty}^t f_1(\tau) d\tau$$

$$f_{2}(t) = u(t-1)$$
 利用前页卷积性质 (6)
$$f_{1}(t) * f_{2}(t)$$

$$f_{1}^{(-1)}(t) = \int_{-\infty}^{t} f_{1}(\tau) d\tau$$

$$f_{2}^{(1)}(t) = \frac{df_{2}(t)}{dt}, 注意: (-1) + 1 = 0$$

$$f_1(t) * f_2(t) = \int_{-\infty}^{t} f_1(\tau) d\tau * \frac{df_2(t)}{dt}$$

构造成f(t)* (t)的形式

$$= \int_{-\infty}^{t} (1+\tau) \left[u(\tau) - u(\tau-1) \right] d\tau * \delta(t-1)$$

$$= \left[\int_{-\infty}^{t} (1+\tau)u(\tau)d\tau - \int_{-\infty}^{t} (1+\tau)u(\tau-1)d\tau \right] * \delta(t-1)$$

$$= \left[\int_0^t (1+\tau)d\tau u(t) - \int_1^t (1+\tau)d\tau u(t-1) \right] * \delta(t-1)$$

$$f_1(t) * f_2(t) = \left[\int_0^t (1+\tau) d\tau u(t) - \int_1^t (1+\tau) d\tau u(t-1) \right] * \delta(t-1)$$

$$= \left[\tau + \frac{\tau^2}{2} \Big|_0^t u(t) - \tau + \frac{\tau^2}{2} \Big|_1^t u(t-1) \right] * \delta(t-1)$$

$$= \left[\left(t + \frac{t^2}{2} \right) u(t) - \left(t - 1 + \frac{t^2 - 1}{2} \right) u(t - 1) \right] * \delta(t - 1)$$

$$f_{1}(t) * f_{2}(t) = \left[t - 1 + \frac{(t - 1)^{2}}{2}\right] u(t - 1)$$

$$-\left[t - 2 + \frac{(t - 1)^{2} - 1}{2}\right] u(t - 2)$$

$$=\frac{t^2-1}{2}u(t-1)-\frac{t^2-4}{2}u(t-2)$$

Exercise. Determine the convolution of e(t) and h(t).

$$e(t) = u\left(t + \frac{1}{2}\right) - u(t-1)$$
 $h(t) = \frac{1}{2}t[u(t) - u(t-2)]$

$$e(t) * h(t) = \frac{de(t)}{dt} * \int_{-\infty}^{t} h(\tau) d\tau$$
 性质6: 0 = 1 + (-1)
$$\therefore \frac{de(t)}{dt} = \delta \left(t + \frac{1}{2} \right) - \delta (t - 1)$$

$$\int_{-\infty}^{t} h(\tau) d\tau = \frac{1}{2} \int_{-\infty}^{t} \tau \left[u(\tau) - u(\tau - 2) \right] d\tau$$

$$= \frac{1}{2} \left(\int_{0}^{t} \tau d\tau u(t) - \int_{2}^{t} \tau d\tau u(t - 2) \right)$$

$$= \frac{1}{4} t^{2} \left[u(t) - u(t - 2) \right] + u(t - 2)$$

$$\therefore e(t) * h(t) = \left[\delta \left(t + \frac{1}{2} \right) - \delta(t-1) \right] *$$

$$\left\{ \frac{1}{4} t^2 \left[u(t) - u(t-2) \right] + u(t-2) \right\}$$

$$= \delta \left(t + \frac{1}{2} \right) * \left\{ \frac{1}{4} t^2 \left[u(t) - u(t-2) \right] \right\}$$

$$+ \delta \left(t + \frac{1}{2} \right) * u(t-2)$$

$$- \delta(t-1) * \left\{ \frac{1}{4} t^2 \left[u(t) - u(t-2) \right] \right\}$$

$$- \delta(t-1) * u(t-2)$$

利用性质(7):函数和脉冲函数的卷积

$$e(t)*h(t) = \left\{ \frac{1}{4}t^{2}[u(t) - u(t-2)] \right\} * \delta\left(t + \frac{1}{2}\right)$$

$$+ u(t-2)* \delta\left(t + \frac{1}{2}\right)$$

$$- \left\{ \frac{1}{4}t^{2}[u(t) - u(t-2)] \right\} * \delta(t-1)$$

$$- u(t-2)* \delta(t-1)$$

$$e(t) * h(t) = \frac{1}{4} \left(t + \frac{1}{2} \right)^2 \left[u \left(t + \frac{1}{2} \right) - u \left(t - \frac{3}{2} \right) \right] + u \left(t - \frac{3}{2} \right)$$
$$- \frac{1}{4} (t - 1)^2 \left[u(t - 1) - u(t - 3) \right] - u(t - 3)$$

$$\therefore r_{zs}(t) = e(t) * h(t) = \begin{cases} \frac{1}{4} \left(t + \frac{1}{2}\right)^2 & -\frac{1}{2} \le t < 1\\ \frac{3}{4} \left(t - \frac{1}{4}\right) & 1 \le t < \frac{3}{2}\\ 1 - \frac{1}{4} \left(t - 1\right)^2 & \frac{3}{2} \le t < 3 \end{cases}$$

Example

Let
$$\delta_T(t) = \sum_{m=-\infty}^{\infty} \delta(t - mT)$$
,

 $f_0(t)$ is shown in the figure below. Compute $\delta_T(t) * f_0(t)$.

$$\delta_T(t) * f_0(t) = f_0(t) * \delta_T(t)$$

$$= f_0(t) * \left[\sum_{m=-\infty}^{\infty} \delta(t - mT)\right] = \sum_{m=-\infty}^{\infty} \left[f_0(t) * \delta(t - mT)\right]$$

$$=\sum_{m=-\infty}^{\infty}f_0(t-mT)$$

以B的中点5为中心顺时针旋转 180度,滑动B逐点相乘和相加

$$A = [1/2/3]$$

$$B = A;$$

$$C = conv2(A,B,'same');$$

2-D Convolution

$$C(n_1, n_2) = \sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = -\infty}^{\infty} a(k_1, k_2) b(n_1 - k_1, n_2 - k_2)$$

Note that matrix indices in MATLAB always start at 1 rather than 0.

Therefore, matrix elements A(1,1), B(1,1), and C(1,1) correspond to mathematical quantities a (0,0), b (0,0), and c (0,0).

$$C(1,1) = 1 \times 5 + 2 \times 4 + 4 \times 2 + 5 \times 1 = 26$$
 B旋转后的中心点 $5 -$ 对齐A(1,1) $C(1,2) = 1 \times 6 + 2 \times 5 + 3 \times 4 + 4 \times 3 + 2 \times 5 + 6 \times 1 = 56$ $C(1,3) = 2 \times 6 + 3 \times 5 + 5 \times 3 + 6 \times 2 = 54$:

Summary

- Represent an arbitrary signal by means of unit impulse signal
- Convolution
 - Properties of convolution
 - Properties of unit impulse signal