ŒUVRES

COMPLÈTES

D'AUGUSTIN CAUCHY

PUBLIÉES SOUS LA DIRECTION SCIENTIFIQUE

DE L'ACADÉMIE DES SCIENCES

LT SOUS LIS AUSPICES

DE M. LE MINISTRE DE L'INSTRUCTION PUBLIQUE.

II SÉRIE. — TOME IX.

PARIS,

GAUTHIER-VILLARS ET FILS, IMPRIMEURS-LIBRAIRES
DU BUREAU DES LONGITUDES, DE L'ÉCOLE POLYTECHNIQUE,
. Quai des Augustins, 55.

M DCCC XCI

SECONDE SÉRIE.

- I. -- MÉMOIRES PUBLIÉS DANS DIVERS RECUEILS
 AUTRES QUE CEUX DE L'ACADEMIE.
 - H. OUVRAGES CLASSIQUES.
- HI. MÉMOIRES PUBLIÉS EN CORPS D'OUVRAGE.
 - IV. MÉMOIRES PUBLIÉS SÉPARÉMENT.

III.

MÉMOIRES PUBLIES EN CORPS D'OUVRAGE.

EXERCICES

DE

MATHÉMATIQUES

(ANCIENS EXERCICES).

ANNÉES 1829 ET 1830.

DEUXIÈME EDITION

REIMPROMES

D'APRÈS LA PREMIÈRE ÉDITION

EXERCICES

DE

MATHÉMATIQUES,

PAR M. AUGUSTIN-LOUIS CAUCHY,

INGÉNIEUR EN CHEF DES PONTS ET CHAUSSÉES, PROFESSEUR À L'ECOLE ROYALE POLYTECHNIQUE, PROFESSEUR ADJOINT À LA FACULTE DES SCIENCES, MEMBRE DE L'ACADEMIE DES SCIENCES, CHEVALIER DE LA LEGION D'HONNEUR.

QUATRIÈME ANNÉE.

A PARIS,

CHEZ DE BURE FRÈRES, LIBRAIRES DU ROI ET DE LA BIBLIOTHEQUE DU ROI, RUE SERPENTE, N.º 7.

1829.

EXERCICES

bi

MATHÉMATIQUES.

SUR L'ÉQUILIBRE

1.7 1.13

MOUVEMENT D'UNE PLAQUE ÉLASTIQUE

DONT L'ÉLASTICITÉ N'EST PAS LA MÊME DANS TOUS LES SENS.

Nous avons donné, dans le troisième Volume des Exercices mathématiques [p. 328 et suivantes (†)], les équations qui expriment l'équilibre on le mouvement d'une plaque solide élastique ou non élastique, d'épaisseur constante, ou d'épaisseur variable, mais en nous bornant à l'égard de la plaque élastique au cas où l'élasticité restait la même dans toutes les directions. Alors les projections algébriques sur les axes coordonnés des pressions p', p'', p''' supportées en un point quelconque (w, y, z) par trois plans perpendiculaires à ces mêmes axes, ou, en d'autres termes, les six quantités

$$A, B, C, D, E, F$$

se trouvaient liées aux déplacements ξ , η , ζ du point dont il s'agit par les formules (58) de la page 339 (2). Considérons maintenant une plaque élastique dont l'élasticité ne soit pas la même dans tous les sens. On devra aux formules que nous venous de rappeler substituer

⁽¹⁾ Okwerer da Cauchy, S. H. T. VIII, p. 38) of suiv-

^(*) *Ibid*., p. 394.

fes équations (36), (37) des pages 226, 227 ('), dans lesquelles m désigne une molécule d'un corps élastique, a, b, c les coordonnées primitives de cette molécule, c'est-à-dire celles qui se rapportent à l'état naturel du corps, r le rayon vecteur mené primitivement de la molécule m à une molécule voisine, α , β , γ les angles formés par le rayon r avec les demi-axes des coordonnées positives, f(r) une fonction qui dépend de la loi de l'attraction, et ρ la densité du corps au point (x, y, z). D'ailleurs, si, en supposant tonjours que les déplacements ξ , η , ζ restent très petits, on veut prendre pour variables indépendantes, au lieu des coordonnées primitives a, b, c, les coordonnées x, y, z relatives à l'état d'équilibre ou de mouvement du corps étastique, il suffira, comme on l'a prouvé à la page 207 du troisième Volume (2), d'écrire partout x au lieu de a, y au lieu de b, z au lieu de c. Donc, si l'on fait, pour abréger,

$$(1) \quad \mathbf{a} = \rho \mathbf{S} \left[\frac{mr}{\rho} \cos^{3}\alpha f(r) \right], \qquad \mathbf{b} = \rho \mathbf{S} \left[\frac{mr}{2} \cos^{3}\beta f(r) \right], \qquad \mathbf{c} = \rho \mathbf{S} \left[\frac{mr}{\rho} \cos^{3}\gamma f(r) \right],$$

$$(2) \quad \mathbf{d} = \rho \mathbf{S} \left[\frac{mr}{\rho} \cos^{2}\beta \cos^{2}\gamma f(r) \right], \qquad \mathbf{e} = \rho \mathbf{S} \left[\frac{mr}{\rho} \cos^{2}\alpha \cos^{2}\alpha f(r) \right], \qquad \mathbf{f} = \rho \mathbf{S} \left[\frac{mr}{\rho} \cos^{2}\alpha \cos^{2}\beta f(r) \right];$$

$$\mathbf{u} = \rho \mathbf{S} \left[\frac{mr}{\rho} \cos^{2}\alpha \cos\beta \cos\gamma f(r) \right], \qquad \mathbf{v} = \rho \mathbf{S} \left[\frac{mr}{\rho} \cos^{3}\alpha \cos\beta f(r) \right], \qquad \mathbf{w} = \rho \mathbf{S} \left[\frac{mr}{\rho} \cos^{3}\alpha \cos\beta f(r) \right],$$

$$\mathbf{u}' = \rho \mathbf{S} \left[\frac{mr}{\rho} \cos^{3}\beta \cos\gamma f(r) \right], \qquad \mathbf{v}' = \rho \mathbf{S} \left[\frac{mr}{\rho} \cos^{3}\alpha \cos\beta f(r) \right], \qquad \mathbf{v}' = \rho \mathbf{S} \left[\frac{mr}{\rho} \cos^{3}\alpha \cos\beta f(r) \right],$$

$$\mathbf{u}'' = \rho \mathbf{S} \left[\frac{mr}{\rho} \cos\beta \cos\gamma f(r) \right], \qquad \mathbf{v}'' = \rho \mathbf{S} \left[\frac{mr}{\rho} \cos\alpha \cos\beta f(r) \right], \qquad \mathbf{v}'' = \rho \mathbf{S} \left[\frac{mr}{\rho} \cos\alpha \cos\beta f(r) \right],$$

$$\mathbf{v}'' = \rho \mathbf{S} \left[\frac{mr}{\rho} \cos\beta \cos\gamma f(r) \right], \qquad \mathbf{v}'' = \rho \mathbf{S} \left[\frac{mr}{\rho} \cos\alpha \cos\beta f(r) \right], \qquad \mathbf{v}'' = \rho \mathbf{S} \left[\frac{mr}{\rho} \cos\alpha \cos\beta f(r) \right],$$

les valeurs de A, B, C, D, E, F relatives à un corps élastique dont l'élasticité n'est pas la même dans tous les sens deviendront

(5)
$$\begin{cases} A = a \frac{\partial \xi}{\partial x} + f \frac{\partial n}{\partial y} + e \frac{\partial \xi}{\partial z} + u \left(\frac{\partial n}{\partial z} + \frac{\partial \xi}{\partial y} \right) + v \left(\frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial z} \right) + w \left(\frac{\partial \xi}{\partial y} + \frac{\partial n}{\partial x} \right), \\ B = f \frac{\partial \xi}{\partial v} + b \frac{\partial n}{\partial y} + d \frac{\partial \xi}{\partial z} + u' \left(\frac{\partial n}{\partial z} + \frac{\partial \xi}{\partial y} \right) + v' \left(\frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial z} \right) + w' \left(\frac{\partial \xi}{\partial y} + \frac{\partial n}{\partial x} \right), \\ C = e \frac{\partial \xi}{\partial x} + d \frac{\partial n}{\partial y} + e \frac{\partial \xi}{\partial z} + u'' \left(\frac{\partial n}{\partial z} + \frac{\partial \xi}{\partial y} \right) + v'' \left(\frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial z} \right) + w'' \left(\frac{\partial \xi}{\partial y} + \frac{\partial n}{\partial x} \right); \end{cases}$$

⁽¹⁾ OEuvres de Cauchy, S. II, T. VIII, p. 267.

⁽²⁾ Ibid , p. 246.

$$(6) \begin{cases} D = u \frac{\partial \xi}{\partial x} + u^t \frac{\partial u}{\partial y} + u^u \frac{\partial \xi}{\partial z} + d \cdot \left(\frac{\partial u}{\partial z} + \frac{\partial \xi}{\partial y} \right) + w^u \left(\frac{\partial \xi}{\partial x} + \frac{\partial z}{\partial z} \right) + v^t \left(\frac{\partial \xi}{\partial y} + \frac{\partial u}{\partial x} \right), \\ E = v \frac{\partial \xi}{\partial x} + v^t \frac{\partial u}{\partial y} + v^u \frac{\partial \xi}{\partial z} + w^u \left(\frac{\partial u}{\partial z} + \frac{\partial \xi}{\partial y} \right) + e \cdot \left(\frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial z} \right) + u \cdot \left(\frac{\partial \xi}{\partial y} + \frac{\partial u}{\partial x} \right), \\ F = w \frac{\partial \xi}{\partial x} + w^u \frac{\partial u}{\partial y} + w^u \frac{\partial \xi}{\partial z} + v^t \cdot \left(\frac{\partial u}{\partial z} + \frac{\partial \xi}{\partial z} \right) + u \cdot \left(\frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial z} \right) + f \cdot \left(\frac{\partial \xi}{\partial y} + \frac{\partial u}{\partial x} \right), \end{cases}$$

Lorsque le corps élastique est homogène, les quinze coefficients

(7) a, b, c, d, e, f,
$$u_1$$
, v_2 , w_1 , u'_1 , v'_2 , w'_1 , u''_2 , w''_3

se réduisent à des quantités constantes, et l'on peut en dire autant de la densité ρ , qui, pour de très petits déplacements des molécules, ne diffère pas sensiblement de la densité primitive. Alors les valeurs de Λ , B, C, D, E, F, fournies par les équations (5), (6), dépendent des six quantités

(8)
$$\frac{\partial \xi}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial \zeta}{\partial z}, \frac{\partial u}{\partial z}, \frac{\partial u}{\partial z} + \frac{\partial \zeta}{\partial y}, \frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z}, \frac{\partial \xi}{\partial y} + \frac{\partial u}{\partial x},$$

qui varient seules dans ces mêmes équations avec les ordonnées x,y,z. On peut remarquer que ces six quantités sont aussi les seules fonctions de x,y,z qui enfrent dans la valeur générale de la délatation ou condensation linéaire mesurée suivant une droite menée par le point (x,y,z) de manière à former les angles z,β,γ avec les demi-axes des coordonnées positives. En effet, si l'on nomme z cette dilatation linéaire prise avec le signe z ou cette condensation linéaire prise avec le signe z, on aura, comme on l'a prouvé dans le deuxième Volume des Exercices (page 66) (†),

Dans le cas particulier où le corps élastique offre trois axes d'élas-

(1) Okwew de Cawler, S. H. T. VII, p. 89.

ticité rectangulaires entre eux et parallèles aux axes des x, y, z, les neuf coefficients

(10)
$$u_1 v_2 w_1 = u'_1 v'_1 w'_2 v''_1 v''_2 v''_3$$

s'évanouissent, et les formules (5), (6), réduites aux suivantes

(11)
$$\Lambda = a \frac{\partial \xi}{\partial x} + f \frac{\partial \eta}{\partial y} + c \frac{\partial \zeta}{\partial z}, \quad B = f \frac{\partial \xi}{\partial x} + b \frac{\partial \eta}{\partial y} + d \frac{\partial \zeta}{\partial z}, \quad C = c \frac{\partial \xi}{\partial x} + d \frac{\partial \eta}{\partial y} + c \frac{\partial \zeta}{\partial z},$$

(12)
$$B = d\left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y}\right), \qquad E = e\left(\frac{\partial \zeta}{\partial x} + \frac{\partial \zeta}{\partial z}\right), \qquad F = f\left(\frac{\partial \zeta}{\partial y} + \frac{\partial \eta}{\partial x}\right),$$

coincident avec les équations (63), (64) des pages 233, 234 du troisième Volume des Exercices (1).

Les formules (5) et (6) ou (11) et (12) étant une fois établies, il suffirait de les combiner avec les formules (2) ou (25) et (28) des pages 161 et 166 dû troisième Volume (2), pour obtenir les équations générales de l'équilibre ou du mouvement d'un corps élastique, dont les molécules s'écartent très peu des positions qu'elles occupaient dans l'état naturel. Done, si l'on désigne par φ la force accélératrice appliquée au point (x, y, z) de ce corps élastique, et par X, Y, Z les projections algébriques de la force φ sur les axes coordonnés, les équations propres à déterminer le mouvement de ce même corps seront généralement

$$\begin{cases} \rho \frac{\partial^2 \xi}{\partial t^2} = \rho \, \mathbf{X} + \mathbf{a} \frac{\partial^2 \xi}{\partial x^2} + \mathbf{f} \frac{\partial^2 \xi}{\partial z^2} + \mathbf{e} \frac{\partial^2 \xi}{\partial z^2} + \mathbf{w} \frac{\partial^2 \eta}{\partial z^2} + \mathbf{w}' \frac{\partial^2 \eta}{\partial z^2} + \mathbf{w}'' \frac{\partial^2 \eta}{\partial z^2} + \mathbf{v}'' \frac{\partial^2 \zeta}{\partial z^2} + \mathbf{v}' \frac{\partial^2 \zeta}{\partial z^2} + \mathbf{v}'' \frac{\partial^2 \zeta}{\partial z^2} \\ + 2 \left(\mathbf{u} \frac{\partial^2 \xi}{\partial y} + \mathbf{v} \frac{\partial^2 \xi}{\partial z} + \mathbf{w} \frac{\partial^2 \xi}{\partial z} + \mathbf{v} \frac{\partial^2 \xi}{\partial z} + \mathbf{v}' \frac{\partial^2 \eta}{\partial z} + \mathbf{v}' \frac{\partial^2 \eta}{\partial z} + \mathbf{u} \frac{\partial^2 \eta}{\partial z} + \mathbf{v}' \frac{\partial^2 \zeta}{\partial z} + \mathbf{v}'' \frac{\partial^2 \zeta}{\partial z} + \mathbf{u} \frac{\partial^2 \zeta}{\partial z} + \mathbf{u}' \frac{\partial^2$$

- (1) OEuores de Cauchy, S. II, T. VIII, p. 274.
- (2) Ibid., p. 196, 202 et 203.

Si le corps élastique offre trois axes d'élasticité rectangulaires et parallèles aux axes des x, y, z, les coefficients u, v, w; n', y', w'; u", y", w" s'évanouiront, et les équations (13), réduites aux suivantes

$$\begin{aligned} & \left(v_1' \right) = \begin{cases} -\mathbf{a} \frac{\partial^2 \xi}{\partial x^2} + \mathbf{f} \frac{\partial^2 \xi}{\partial y^2} + \mathbf{e} \frac{\partial^2 \xi}{\partial z^2} + \mathbf{a} \mathbf{f} \frac{\partial^2 \eta}{\partial x^2} + \mathbf{a} \mathbf{e} \frac{\partial^2 \xi}{\partial z^2} + \rho \mathbf{X} - \rho \frac{\partial^2 z}{\partial t^2}, \\ \mathbf{f} \frac{\partial^2 \eta}{\partial x^2} + \mathbf{b} \frac{\partial^2 \eta}{\partial y^2} + \mathbf{d} \frac{\partial^2 \eta}{\partial z^1} + \mathbf{a} \mathbf{d} \frac{\partial^2 \xi}{\partial y^2} + \mathbf{a} \mathbf{f} \frac{\partial^2 z}{\partial x^2} + \rho \mathbf{Y} - \rho \frac{\partial^2 \eta}{\partial t^2}, \\ \mathbf{e} \frac{\partial^2 \xi}{\partial x^2} + \mathbf{d} \frac{\partial^2 \xi}{\partial y^2} + \mathbf{e} \frac{\partial^2 \xi}{\partial z^2} + \mathbf{a} \mathbf{e} \frac{\partial^2 \xi}{\partial z^2} + \mathbf{a} \mathbf{d} \frac{\partial^2 \eta}{\partial y^2} + \mathbf{a} \mathbf{d} \frac{\partial^2 \eta}{\partial y^2} + \rho \mathbf{Z} - \rho \frac{\partial^2 \xi}{\partial t^2}, \end{aligned}$$

corneideront avec les formules (68) de la page 235 du troisième Vohame (4). Enfin, si des formules (43) et (44) on veut tirer celles qui expriment l'équilibre d'un corps élastique, il suffira d'annuler les trois expressions

$$\frac{\partial^2 \xi}{\partial t^2}, \frac{\partial^2 \eta}{\partial t^4}, \frac{\partial^2 \xi}{\partial t^7},$$

Concevous à présent que le corps élastique se réduise à une plaque élastique naturellement plane et d'une épaisseur constante. Désignons par zi l'épaisseur naturelle de la plaque, et prenons pour plan des x, y celui qui divisait primitivement cette épaisseur en deux parties égales. La surface moyenne, après avoir corneidé dans l'état naturel avec le plan des x, y, se courbera, en vertu du changement de forme de la plaque, mais son ordonnée restera très petite. Désignons par f(x,y) cette ordonnée, et faisons, de plus,

$$(16) s = z - f(x, y),$$

z étant l'ordonnée d'une molécule quelconque m prise au hasard dans l'épaisseur de la plaque. Enfin soient

(17) A
$$A_0 + A_1s + \ldots$$
 F $F_0 + F_1s + \ldots$ B $B_0 + B_1s + \ldots$

$$(18) \quad \xi = \xi_0 + \xi_1 s + \dots, \qquad \eta = \eta_0 + \eta_1 s + \dots, \qquad \xi = \xi_0 + \xi_1 s + \dots.$$

(1) OEucres do Cauchy, S. H. T. VIII, p. 275.

les développements de A, F, B; ξ , η , ζ ; X, Y, Z suivant les puissances ascendantes de s, dans le cas où l'on prend x, y et s pour variables indépendantes. En supposant que la plaque élastique se meuve et soit extérieurement soumise à une pression normale désignée par P, ou établira, comme nous l'avons fait dans le troisième Volume (pages 337 et 338) (1), les trois équations

(20)
$$\frac{\partial A_0}{\partial x} + \frac{\partial F_0}{\partial y} + \rho X_0 = \rho \frac{\partial^2 \xi_0}{\partial t^2}, \qquad \frac{\partial F_0}{\partial x} + \frac{\partial B_0}{\partial t} + \rho Y_0 = \rho \frac{\partial^2 \eta_0}{\partial t^2},$$

$$(21) \quad \frac{\partial^{1}}{\partial x} \left(\frac{\partial^{2} A_{1}}{\partial x^{2}} + 2 \frac{\partial^{2} F_{1}}{\partial x \partial y} + \frac{\partial^{2} B_{3}}{\partial y^{2}} \right) + \rho \left[Z_{0} + \frac{\partial^{2}}{\partial x} \left(Z_{2} + 2 \frac{\partial X_{3}}{\partial x} + 2 \frac{\partial Y_{1}}{\partial y} \right) \right] = \rho \frac{\partial^{2} \zeta_{0}}{\partial t^{2}},$$

Seulement, pour obtenir les valeurs des fonctions A_0 , F_0 , B_0 ; A_1 , F_1 , B_1 exprimées à l'aide des dérivées partielles de ξ_0 , η_0 , ζ_0 , il faudra combiner les équations (9) de la page 331 (2), c'est-à-dire les trois formules

(23)
$$E = 0, \quad D = 0, \quad C = -P,$$

qui subsisteront encore pour s = -i et pour s = i, non plus avec les équations (58) de la page 339 (*), mais avec les équations (5) et (6). On aura donc, pour s = -i et pour s = i,

$$\left\{ \begin{array}{l} v \frac{\partial \xi}{\partial x} + v' \frac{\partial \eta}{\partial y} + v'' \frac{\partial \xi}{\partial z} + w'' \left(\frac{\partial \eta}{\partial z} + \frac{\partial \xi}{\partial y} \right) + e \left(\frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial z} \right) + u \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial z} \right) & o, \\ u \frac{\partial \xi}{\partial x} + u' \frac{\partial \eta}{\partial y} + u'' \frac{\partial \xi}{\partial z} + d \left(\frac{\partial \eta}{\partial z} + \frac{\partial \xi}{\partial y} \right) + w'' \left(\frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial z} \right) + v' \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial z} \right) & o, \\ e \frac{\partial \xi}{\partial z} + d \frac{\partial \eta}{\partial y} + e \frac{\partial \xi}{\partial z} + u'' \left(\frac{\partial \eta}{\partial z} + \frac{\partial \xi}{\partial y} \right) + v'' \left(\frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial z} \right) + w'' \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial z} \right) & o, \\ \end{array} \right.$$

puis, en substituant les valeurs des fonctions

$$(24) \qquad \frac{\partial \zeta}{\partial x} + \frac{\partial \zeta}{\partial z}, \quad \frac{\partial \zeta}{\partial y} + \frac{\partial \eta}{\partial z}, \quad \frac{\partial \zeta}{\partial z},$$

- (1) OEuros de Cauch, S. II, T. VIII, p. 393.
- (2) Ibid, p. 385.
- (3) Ibid., p. 394.

tirées des formules (23), dans celles des équations (5), (6) qui déterminent les pressions A, F, B, on trouvera

(25)
$$\begin{cases}
A = \mathfrak{a} \frac{\partial \xi}{\partial x} + \mathfrak{f} \frac{\partial \eta}{\partial y} + \mathfrak{c} \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right) - P \mathfrak{u}, \\
B = \mathfrak{f} \frac{\partial \xi}{\partial x} + \mathfrak{b} \frac{\partial \eta}{\partial y} + \mathfrak{d} \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right) - P \mathfrak{v}, \\
F = \mathfrak{c} \frac{\partial \xi}{\partial x} + \mathfrak{d} \frac{\partial \eta}{\partial y} + \mathfrak{c} \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right) - P \mathfrak{w},
\end{cases}$$

a. b. c. d. e. f. u. v. w désignant de nouveaux coefficients dont les valeurs seront

$$(26) \quad n = a - \frac{v^2(de - u''^2) + u^2(ee - v''^2) + e^2(ed - w''^2) + 2ue(v''w'' - eu'') + 2ev(u''w'' - dv'') - 2vu(u'v' - ew'')}{ede - eu''^2 - dv''^2 - ew''^2 + 2u''v'''}$$

$$v'^{2}(de - u''^{2}) + u'^{2}(ee - v''^{2}) + d^{2}(ee - v''^{2}) + d^{2}(ee - v''^{2}) + 2u'd(v''w'' - eu'') + 2dv'(u'w'' - dv') - 2u'v'(u'v'' - ew'') + 2dv'(u'w'' - ew'') + 2dv'' + 2$$

$$\frac{1}{2} (100 - 10^{-1}) + \frac{1}{2} (100 - 1$$

$$\frac{V'(\mathrm{d} e - u''^2) + u'v'(\mathrm{d} e - v''^2) + dw''(\mathrm{d} - w''^2) + (u'v'' + dv')(v''w'' - \mathrm{e} u'') + (\mathrm{d} u + v'w'')(u''w'' - \mathrm{d} v'' - \mathrm{d} v'' - \mathrm{e} w'')}{\mathrm{e} \mathrm{d} e - \mathrm{e} u''^2 - \mathrm{e} w''^2 + 2\,u''v''w''},$$

$$\frac{vv'(dc-u''^2)+uu'(ec-v''^2)+cd(ed-w''^2)+(ud+cu')(v''w''-cu'')+(ev'+vd)(u''w''-dv')+(vu'+uv')(u'v'-cw'')}{edc-cu''^2-dv''^2-cw''^2+2u''v''w''}$$

$$(32) \qquad \begin{cases} u = \frac{v(u''w'' - dv'') + u(v''w'' - cu'') + e(ed - w''^2)}{ede - cu''^2 - dv''^2 - cw''^2 + 2u''v''w''}, \\ v = \frac{v'(u''w'' - dv'') + u'(v''w'' - cu'') + d(ed - w''^2)}{ede - eu''^2 - dv''^2 - cw''^2 + 2u''v''w''}, \\ w = \frac{u(u''w'' - dv'') + v'(v''w'' - eu'') + w''(ed - w''^2)}{ede - eu''^2 - dv''^2 - cw''^2 + 2u''v''w''}. \end{cases}$$

()r, si, après avoir développé les deux membres des formules (25) suivant les puissances ascendantes de s, on pose successivement dans resformules s=-i, s=i, on en conclura, en négligeant les termes pro-

(34)

portionnels au carré de i,

(33)
$$\begin{cases}
A_{0} = \mathfrak{a} \frac{\partial \xi_{0}}{\partial x} + \mathfrak{f} \frac{\partial n_{0}}{\partial y} + \mathfrak{e} \left(\frac{\partial \xi_{0}}{\partial y} + \frac{\partial n_{0}}{\partial x} \right) - P \mathfrak{u}, \\
B_{0} = \mathfrak{f} \frac{\partial \xi_{0}}{\partial x} + \mathfrak{b} \frac{\partial n_{0}}{\partial y} + \mathfrak{d} \left(\frac{\partial \xi_{0}}{\partial y} + \frac{\partial n_{0}}{\partial x} \right) - P \mathfrak{v}, \\
F_{0} = \mathfrak{e} \frac{\partial \xi_{0}}{\partial x} + \mathfrak{d} \frac{\partial n_{0}}{\partial y} + \mathfrak{e} \left(\frac{\partial \xi_{0}}{\partial y} + \frac{\partial n_{0}}{\partial x} \right) - P \mathfrak{w}; \\
\begin{cases}
A_{1} = \mathfrak{a} \frac{\partial \xi_{1}}{\partial x} + \mathfrak{f} \frac{\partial n_{1}}{\partial y} + \mathfrak{e} \left(\frac{\partial \xi_{1}}{\partial y} + \frac{\partial n_{1}}{\partial x} \right), \\
B_{1} = \mathfrak{f} \frac{\partial \xi_{1}}{\partial x} + \mathfrak{b} \frac{\partial n_{1}}{\partial y} + \mathfrak{d} \left(\frac{\partial \xi_{1}}{\partial y} + \frac{\partial n_{1}}{\partial x} \right), \\
F_{1} = \mathfrak{e} \frac{\partial \xi_{1}}{\partial x} + \mathfrak{d} \frac{\partial n_{1}}{\partial y} + \mathfrak{e} \left(\frac{\partial \xi_{1}}{\partial y} + \frac{\partial n_{1}}{\partial x} \right),
\end{cases}$$

D'autre part, si l'on nomme U, V, W des fonctions de x, y, z propres à vérifier les formules

(35)
$$\begin{cases} e U + w'' V + v'' W = -v \frac{\partial \xi}{\partial x} - v' \frac{\partial \eta}{\partial y} - u \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right), \\ w'' U + d V + u'' W = -u \frac{\partial \xi}{\partial x} - u' \frac{\partial \eta}{\partial y} - v' \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right), \\ v'' U + u'' V + e W = -e \frac{\partial \xi}{\partial x} - d \frac{\partial \eta}{\partial y} - w'' \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right) - P, \end{cases}$$

on aura, pour s = -i et pour s = i, en vertu des équations (23) et (35),

(36)
$$\frac{\partial \xi}{\partial z} + \frac{\partial \zeta}{\partial z} = U, \quad \frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} = V, \quad \frac{\partial \zeta}{\partial z} = W,$$

puis on en conclura, en prenant pour variables indépendantes x, y, s au lieu de $x, \gamma, z,$

(37)
$$\frac{\partial \xi}{\partial s} + \frac{\partial \zeta}{\partial x} = U, \qquad \frac{\partial \eta}{\partial s} + \frac{\partial \zeta}{\partial y} = V, \qquad \frac{\partial \zeta}{\partial s} = W.$$

Cela posé, soient

$$(38) U_0, V_0, W_0$$

les valeurs de U, V, W correspondantes à s = 0. On tirera des for-

mules (35) et (37), en développant les deux membres de chacune d'elles suivant les puissances ascendantes de s.

$$(30) \begin{cases} e \, U_0 + w'' \, V_0 + v'' \, W_0 = - \, v \, \frac{\partial \xi_0}{\partial x} - \, v' \, \frac{\partial \eta_0}{\partial y} - \, u \, \left(\frac{\partial \xi_0}{\partial y} + \frac{\partial \eta_0}{\partial x} \right), \\ w'' \, U_0 + d \, V_0 + u'' \, W_0 = - \, u \, \frac{\partial \xi_0}{\partial x} - \, u' \, \frac{\partial \eta_0}{\partial y} - \, v \, \left(\frac{\partial \xi_0}{\partial y} + \frac{\partial \eta_0}{\partial x} \right), \\ v'' \, U_0 + u'' \, V_0 + c \, W_0 = - \, e \, \frac{\partial \xi_0}{\partial x} - \, d \, \frac{\partial \eta_0}{\partial y} - \, w'' \left(\frac{\partial \xi_0}{\partial y} + \frac{\partial \eta_0}{\partial x} \right) - P, \end{cases}$$

ef

(40)
$$\xi_1 = U_0 - \frac{\partial \xi_0}{\partial x}, \qquad \eta_1 = V_0 - \frac{\partial \xi_0}{\partial y}, \qquad \xi_1 = W_0.$$

Par suite les équations (34) donneront

$$\begin{pmatrix} A_1 = \mathfrak{a} \frac{\partial U_0}{\partial x} + \mathfrak{t} \frac{\partial V_0}{\partial y} + \mathfrak{c} \left(\frac{\partial U_0}{\partial y} + \frac{\partial V_0}{\partial x^2} \right) - \mathfrak{a} \frac{\partial^2 \zeta_0}{\partial x^2} - \mathfrak{t} \frac{\partial^2 \zeta_0}{\partial y^2} - \mathfrak{r} \varepsilon \frac{\partial^2 \zeta_0}{\partial x \partial y},$$

$$\begin{pmatrix} B_1 = \mathfrak{t} \frac{\partial U_0}{\partial x} + \mathfrak{b} \frac{\partial V_0}{\partial y} + \mathfrak{d} \left(\frac{\partial U_0}{\partial y} + \frac{\partial V_0}{\partial x} \right) - \mathfrak{t} \frac{\partial^2 \zeta_0}{\partial x^2} - \mathfrak{b} \frac{\partial^2 \zeta_0}{\partial y^2} - \mathfrak{d} \varepsilon \frac{\partial^2 \zeta_0}{\partial x \partial y},$$

$$\begin{pmatrix} F_1 = \mathfrak{c} \frac{\partial U_0}{\partial x} + \mathfrak{d} \frac{\partial V_0}{\partial y} + \mathfrak{c} \left(\frac{\partial U_0}{\partial y} + \frac{\partial V_0}{\partial x} \right) - \mathfrak{c} \frac{\partial^2 \zeta_0}{\partial x^2} - \mathfrak{d} \frac{\partial^2 \zeta_0}{\partial y^2} - \mathfrak{d} \varepsilon \frac{\partial^2 \zeta_0}{\partial x \partial y},$$

Si maintenant on substitue, dans les formules (20) et (21), les valeurs de A_0 , B_0 , F_0 , A_1 , B_4 , F_1 , fournies par les équations (33) et (41), on trouvera

$$\begin{pmatrix} a \frac{\partial^2 \xi_0}{\partial x^2} + 2a \frac{\partial^2 \xi_0}{\partial x \partial y} + a \frac{\partial^2 \xi_0}{\partial y^2} + a \frac{\partial^2 \eta_0}{\partial x^2} + (f + e) \frac{\partial^2 \eta_0}{\partial x \partial y} + b \frac{\partial^2 \eta_0}{\partial y^2} + \rho X_0 - \rho \frac{\partial^2 \xi_0}{\partial t^2}, \\ - a \frac{\partial^2 \eta_0}{\partial x^2} + 2b \frac{\partial^2 \eta_0}{\partial x \partial y} + b \frac{\partial^2 \eta_0}{\partial y^2} + a \frac{\partial^2 \xi_0}{\partial x^2} + (f + e) \frac{\partial^2 \xi_0}{\partial x \partial y} + b \frac{\partial^2 \xi_0}{\partial y^2} + \rho Y_0 - \rho \frac{\partial^2 \eta_0}{\partial t^2}.$$

ef

$$\begin{pmatrix}
\frac{i^{2}}{3}\left[\mathfrak{a}\frac{\partial^{4}\zeta_{0}}{\partial x^{3}}+4\mathfrak{e}\frac{\partial^{4}\zeta_{0}}{\partial x^{3}}+(4\mathfrak{e}+2\mathfrak{f})\frac{\partial^{4}\zeta_{0}}{\partial x^{2}}+4\mathfrak{d}\frac{\partial^{3}\zeta_{0}}{\partial x^{2}}+4\mathfrak{d}\frac{\partial^{4}\zeta_{0}}{\partial x^{3}}+\mathfrak{b}\frac{\partial^{4}\zeta_{0}}{\partial y^{4}}\right]+\rho\frac{\partial^{2}\zeta_{0}}{\partial \ell^{2}} \\
&=\frac{i^{2}}{3}\left[\mathfrak{a}\frac{\partial^{3}U_{0}}{\partial x^{3}}+3\mathfrak{e}\frac{\partial^{3}U_{0}}{\partial x^{2}\partial y}+(2\mathfrak{e}+\mathfrak{f})\frac{\partial^{3}U_{0}}{\partial x^{3}\partial y^{2}}+\mathfrak{b}\frac{\partial^{3}U_{0}}{\partial y^{4}}\right] \\
&+\mathfrak{e}\frac{\partial^{3}V_{0}}{\partial x^{3}}+(2\mathfrak{e}+\mathfrak{f})\frac{\partial^{3}V_{0}}{\partial x^{2}\partial y}+3\mathfrak{d}\frac{\partial^{3}V_{0}}{\partial x^{2}\partial y^{2}}+\mathfrak{b}\frac{\partial^{3}V_{0}}{\partial y^{3}}\right] \\
&+\rho\left[Z_{0}+\frac{i^{2}}{6}\left(Z_{2}+2\frac{\partial X_{1}}{\partial x}+2\frac{\partial Y_{1}}{\partial y}\right)\right],$$
(43)

3

 W_0 , W_0 désignant des fonctions de x et γ déterminées par les formules (39).

Les équations (42) et (43) sont les seules qui subsistent, pendant le mouvement d'une plaque élastique naturellement plane et d'une épaisseur constante, pour tous les points de la surface moyenne. Supposons d'ailleurs cette plaque terminée dans son état naturel par des plans perpendiculaires au plan des x, y ou par une surface cylindrique dont les génératrices soient parallèles à l'axe des z. Si cette surface cylindrique est soumise à une pression normale $\mathfrak A$ différente de P, et si l'on désigne par

$$\alpha$$
, β et $\gamma = \frac{\pi}{9}$

les angles que forme avec les demi-axes des x, y et z positives la normale à la surface cylindrique, prolongée en dehors de la plaque, les conditions (34), (35) et (52) des pages 336 et 338 du III° Volume (1), savoir

(44)
$$(\Lambda_0 + \mathfrak{P})\cos\alpha + \Gamma_0\cos\beta = 0$$
, $\Gamma_0\cos\alpha + (B_0 + \mathfrak{P})\cos\beta = 0$,

(15)
$$\Lambda_1 \cos \alpha + F_1 \cos \beta = 0$$
, $F_1 \cos \alpha + B_1 \cos \beta = 0$,

(46)
$$\begin{cases} \left(\frac{\partial A_1}{\partial x} + \frac{\partial F_1}{\partial y} + \rho X_1\right) \cos \alpha + \left(\frac{\partial F_1}{\partial x} + \frac{\partial B_1}{\partial y} + \rho Y_1\right) \cos \beta \\ = \rho \left(\frac{\partial^3 \xi_1}{\partial t^2} \cos \alpha + \frac{\partial^2 \eta_1}{\partial t^2} \cos \beta\right), \end{cases}$$

devront être remplies pour tous les points de la surface moyenne situés sur des portions libres du contour de la plaque. Au contraire, les formules (40) et (41) des pages 336 et 337 du même Volume (2), savoir

(17)
$$\dot{\zeta}_0 = 0, \quad \eta_0 = 0, \quad \zeta_0 = 0,$$

$$\xi_1 = 0, \qquad \eta_1 = 0$$

devront être vérifiées pour les points de la surface moyenne situés sur des portions fixes du contour de la plaque. Il est bon d'observer :

⁽¹⁾ OEuvrer de Cauchy, S. II, T. VIII, p. 390 et 393.

⁽²⁾ Ibid., p. 391 et 392.

r° que, en vertu des équations (40), les formules (46) et (48) pourront être réduites aux suivantes

$$\begin{array}{l} \left(\frac{\partial X_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y}+\rho X_{3}\right) \cos \sigma+\left(\frac{\partial F_{1}}{\partial x}+\frac{\partial B_{1}}{\partial y}+\rho Y_{1}\right) \cos \beta+\rho\left(\frac{\partial^{3} \xi_{0}}{\partial x} \cos \alpha+\frac{\partial^{3} \zeta_{0}}{\partial y} \cos \beta\right)\\ =\rho\left(\frac{\partial^{3} U_{0}}{\partial t^{2}} \cos \sigma+\frac{\partial^{2} V_{0}}{\partial t^{2}} \cos \beta\right)\\ \text{et}\\ \left(50\right) \qquad \qquad \frac{\partial \xi_{0}}{\partial x}=U_{0}, \qquad \frac{\partial \xi_{0}}{\partial y}=V_{0}; \end{array}$$

2º que des formules (43) et (49) combinées entre elles on conclura, en négligeant les termes proportionnels au carré de i,

$$(51) \left[\frac{\partial A_1}{\partial x} + \frac{\partial F_1}{\partial y} + \rho \left(X_1 + \frac{\partial Z_0}{\partial x^2} + \frac{\partial^2 U_0}{\partial t^2} \right) \right] \cos x + \left[\frac{\partial F_1}{\partial x} + \frac{\partial B_1}{\partial y} + \rho \left(Y_1 + \frac{\partial Z_0}{\partial y} + \frac{\partial^2 V_0}{\partial t^2} \right) \right] \cos \beta = \alpha.$$

If no reste plus qu'à substituer, dans les formules (44), (45) et (49) ou (51), les valeurs de Λ_0 , F_0 , B_0 , Λ_1 , F_1 , B_1 fournies par les équations (33) et (41).

Si l'on voulait considérer une plaque élastique, non plus dans l'état de mouvement, mais dans l'état d'équilibre, il suffirait de supprimer, dans les équations (42), (43) et (49), tous les termes qui renferment des dérivées relatives à t.

Revenons au cas où la plaque élastique se meut. Alors les deux inconnues ξ_0 , η_0 , qui mesurent les déplacements parallèles aux axes des x et y pour un point quelconque de la surface moyenne, pourront être déterminées à l'aide des équations (42) réunies aux conditions (44) ou aux deux premières des conditions (47); en sorte que les valeurs générales de ces inconnues seront indépendantes de la valeur initiale de ζ_0 , et par conséquent de la forme de la surface moyenne à l'origine du mouvement. De plus, après avoir déterminé ξ_0 et η_0 , on déduira des formules (39) les valeurs de U_0 , V_0 , et de l'équation (43), réunie aux conditions (45) et (51), ou à la dernière des conditions (47) et aux formules (50), la valeur générale de ζ_0 . Si l'on suppose en particulier que, pendant la durée du mouvement, les déplacements ξ_0 , η_0 , mesu-

rés parallèlement au plan des x, y, restent très petits relativement à l'ordonnée ζ_0 de la surface moyenne, ce qui exige que les valeurs intiales de ξ_0 , η_0 soient elles-mêmes très petites relativement à la valeur mitiale de ζ_0 ; alors, en négligeant tous les termes qui renferment ξ_0 ou η_0 , on tirera des formules (39)

$$(5a) U_0 = 0, V_0 = 0.$$

Par suite, les équations (41), (43) deviendront respectivement

(53)
$$A_{1} = -\mathfrak{d}\frac{\partial^{2}\zeta_{0}}{\partial x^{2}} - \mathfrak{t}\frac{\partial^{2}\zeta_{0}}{\partial y^{2}} - 2\mathfrak{t}\frac{\partial^{2}\zeta_{0}}{\partial x\partial y},$$

$$B_{1} = -\mathfrak{t}\frac{\partial^{2}\zeta_{0}}{\partial x^{2}} - \mathfrak{b}\frac{\partial^{2}\zeta_{0}}{\partial y^{2}} - 2\mathfrak{d}\frac{\partial^{2}\zeta_{0}}{\partial x\partial y},$$

$$F_{1} = -\mathfrak{t}\frac{\partial^{2}\zeta_{0}}{\partial x^{2}} - \mathfrak{d}\frac{\partial^{2}\zeta_{0}}{\partial y^{2}} - \mathfrak{d}\mathfrak{t}\frac{\partial^{2}\zeta_{0}}{\partial x\partial y};$$

$$A^{1}\zeta_{1} = -\mathfrak{t}\frac{\partial^{2}\zeta_{0}}{\partial x^{2}} - \mathfrak{d}\frac{\partial^{2}\zeta_{0}}{\partial y^{2}} - \mathfrak{d}\mathfrak{t}\frac{\partial^{2}\zeta_{0}}{\partial x\partial y};$$

$$\begin{cases}
\frac{t^{2}}{3}\left[a\frac{\partial^{3}\zeta_{0}}{\partial x^{4}}+4\epsilon\frac{\partial^{3}\zeta_{0}}{\partial x^{3}}+(4\epsilon+2t)\frac{\partial^{3}\zeta_{0}}{\partial x^{2}}+4\delta\frac{\partial^{3}\zeta_{0}}{\partial x}+b\frac{\partial^{3}\zeta_{0}}{\partial y^{3}}+b\frac{\partial^{3}\zeta_{0}}{\partial y^{4}}\right]+\rho\frac{\partial^{2}\zeta_{0}}{\partial t^{2}}\\
=-\rho\left[Z_{0}+\frac{t^{2}}{6}\left(Z_{2}+2\frac{\partial X_{1}}{\partial x}+2\frac{\partial Y_{1}}{\partial y}\right)\right],
\end{cases}$$

et les équations (50), (5t) se réduiront aux suivantes :

(55)
$$\frac{\partial \zeta_0}{\partial x} = 0, \qquad \frac{\partial \zeta_0}{\partial y} = 0,$$

$$(56) \left[\frac{\partial \Lambda_1}{\partial x} + \frac{\partial F_1}{\partial y} + \rho \left(X_1 + \frac{\partial Z_0}{\partial x} \right) \right] \cos \alpha + \left[\frac{\partial F_1}{\partial x} + \frac{\partial B_1}{\partial y} + \rho \left(Y_1 + \frac{\partial Z_0}{\partial y} \right) \right] \cos \beta = 0.$$

Les diverses formules que nous venons d'établir se simplifient, lorsqu'on suppose la plaque élastique extraite d'un corps solide qui offrait trois axes d'élasticité rectangulaires et parallèles aux axes des x, y, z. Alors les coefficients u, v, w, u', v', w', u'', v'', w'' s'évanouissent, et les formules (26), (27), (28), (29), (30), (31), (32) se réduisent à

(57)
$$a=a-\frac{e^2}{c}$$
, $b=b-\frac{d^2}{c}$, $c=f$, $b=o$, $c=o$, $t=f-\frac{de}{c}$

Mors aussi on tire des formules (39)

(59)
$$U_0 = 0, \quad V_0 = 0, \quad W_0 = -\frac{c}{c} \frac{d\xi_0}{dx} - \frac{d}{c} \frac{d\eta_0}{dy} - \frac{P}{c}.$$

Par suite, les valeurs de A_0 , B_0 , F_0 , A_1 , B_1 , F_1 , déterminées à l'aide des équations (33), (41), deviennent

(60)
$$\begin{cases} A_0 = \frac{1}{c} \left[(ac - e^2) \frac{\partial \xi_0}{\partial x} + (fc - de) \frac{\partial \eta_0}{\partial y} - Pe \right], \\ B_0 = \frac{1}{c} \left[(fc - de) \frac{\partial \xi_0}{\partial x} + (bc - d^2) \frac{\partial \eta_0}{\partial y} - Pd \right], \\ F_0 = f \left(\frac{\partial \xi_0}{\partial y} + \frac{\partial \eta_0}{\partial x} \right); \end{cases}$$
$$\begin{cases} A_1 = -\frac{1}{c} \left[(ac - e^2) \frac{\partial^2 \xi_0}{\partial x^3} + (fc - de) \frac{\partial^2 \xi_0}{\partial y^2} \right], \\ B_1 = -\frac{1}{c} \left[(fc - de) \frac{\partial^2 \xi_0}{\partial x^2} + (bc - d^2) \frac{\partial^2 \xi_0}{\partial y^2} \right], \end{cases}$$
$$\begin{cases} F_1 = -2f \frac{\partial^2 \xi_0}{\partial x \partial y}; \end{cases}$$

et les formules (42), (43) donnent, pour un point quelconque de la plaque élastique,

(63)
$$\begin{cases} \frac{\operatorname{ac} - e^{2}}{\operatorname{c}} \frac{\partial^{2} \xi_{0}}{\partial x^{2}} + \operatorname{f} \frac{\partial^{2} \xi_{0}}{\partial y^{2}} + \frac{2 \operatorname{fc} - \operatorname{dc}}{\operatorname{c}} \frac{\partial^{2} \eta_{0}}{\partial x \partial y} + \rho X_{0} = \rho \frac{\partial^{2} \xi_{0}}{\partial t^{2}}, \\ \operatorname{f} \frac{\partial^{2} \eta_{0}}{\partial x^{2}} + \frac{\operatorname{bc} - \operatorname{dc}}{\operatorname{c}} \frac{\partial^{2} \eta_{0}}{\partial y^{2}} + \frac{2 \operatorname{fc} - \operatorname{dc}}{\operatorname{c}} \frac{\partial^{2} \xi_{0}}{\partial x \partial y} + \rho Y_{0} = \rho \frac{\partial^{2} \eta_{0}}{\partial t^{2}}; \\ \frac{i^{2}}{3 \operatorname{c}} \left[(\operatorname{ac} - \operatorname{e}^{2}) \frac{\partial^{4} \xi_{0}}{\partial x^{4}} + 2 \left(\operatorname{3} \operatorname{fc} - \operatorname{dc} \right) \frac{\partial^{4} \xi_{0}}{\partial x^{2} \partial y^{2}} + \left(\operatorname{bc} - \operatorname{d}^{2} \right) \frac{\partial^{4} \xi_{0}}{\partial y^{4}} \right] + \rho \frac{\partial^{2} \xi_{0}}{\partial t^{2}} \\ = \rho \left[Z_{0} + \frac{i^{2}}{6} \left(Z_{2} + 2 \frac{\partial X_{1}}{\partial x^{2}} + 2 \frac{\partial Y_{1}}{\partial y} \right) \right]. \end{cases}$$

Quant aux conditions qui devront être vérifiées, dans l'hypothèse admise, pour les points situés sur le contour de la surface moyenne, on les obtiendra immédiatement, si les bords de la plaque sont libres, en substituant les valeurs de A_0 , B_0 , F_0 , A_1 , B_1 , F_1 dans les formules (44), (45), (56), et elles coïncideront, si les bords de la plaque deviennent fixes, avec les formules (47) et (55).

On peut encore remarquer la forme que prennent les équations (42) et (54) dans le cas où l'on suppose la force accélératrice \(\phi \) et les pressions P, \(\Phi \) réduites à zéro. Alors ces équations deviennent respectivement

$$\left(a \frac{\partial^2 \xi_0}{\partial x^2} + 2 a \frac{\partial^2 \xi_0}{\partial x \partial y} + a \frac{\partial^2 \xi_0}{\partial y^2} + a \frac{\partial^2 \xi_0}{\partial y^2} + a \frac{\partial^2 \xi_0}{\partial x^2} + a \frac{\partial^2 \xi_0}{\partial y^2} + a \frac{\partial^2 \xi_0}$$

$$(65) \quad \frac{t^2}{3} \left[a \frac{\partial^3 \zeta_0}{\partial x^4} + 4 c \frac{\partial^3 \zeta_0}{\partial x^3 \partial y^2} + (4c + 2f) \frac{\partial^3 \zeta_0}{\partial x^2 \partial y^2} + 4 b \frac{\partial^3 \zeta_0}{\partial x \partial y^3} + b \frac{\partial^3 \zeta_0}{\partial y^4} \right] + \rho \frac{\partial^2 \zeta_0}{\partial t^2} = 0$$

On voit par ce qui précède comment les variations de l'élasticité influent sur la forme des équations qui déterminent les mouvements d'une plaque élastique. Les formules qu'on avait obtenues en supposant que l'élasticité restait la même dans tous les sens ne renfermaient qu'un seul coefficient dépendant de la nature de la plaque. Mais cette supposition ne s'accorde pas avec les phénomènes observés par les physiciens; et, pour obtenir des résultats comparables à l'expérience, il faudra généralement recourir aux formules (42), (54), (64), etc., après avoir déterminé les six coefficients qu'elles renferment, et qui tiennent la place des quinze coefficients compris dans les équations générales du mouvement d'un corps élastique.

SUR L'ÉQUILIBRE

Br LR

MOUVEMENT D'UNE VERGE RECTANGULAIRE

EXTRAITE D'UN CORPS SOLIDE

DONT L'ÉLASTICITE N'EST PAS LA MÈME EN TOUS SENS.

Quand une plaque élastique naturellement plane, et semblable à celle que nous avons considérée dans l'article précédent, se trouve latéralement terminée par deux surfaces cylindriques très rapprochées l'une de l'autre, elle devient ce que nous nommons une verge rectangulaire. L'axe de cette verge, qui en général est une courbe plane, se réduira simplement à une droite, si les deux surfaces cylindriques se transforment en deux plans parallèles. Supposons d'ailleurs que l'on choisisse pour plan des x, y celui qui divise l'épaisseur de la plaque, prise dans l'état naturel, en deux parties égales, et pour axe des x l'axe de la verge. Enfin soient 2i l'épaisseur primitive de la plaque, et 2h la distance comprise entre les plans parallèles qui la terminent latéralement, c'est-à-dire l'épaisseur de la verge mesurée dans le plan des a, y. Les épaisseurs 2h, 2i seront précisément les deux côtés du rectangle qu'on obtiendra en coupant la verge par un plan perpendiculaire à son axe. D'autre part, si l'on adopte les notations et les principes exposés dans l'article précédent, les déplacements ξ₀, η₀ relatifs à un point situé sur la surface moyenne de la plaque élastique, et mesurés parallèlement aux axes des x et y, devront, pendant le mouvement de la

plaque, acquérir des valeurs telles que les formules (20) de la page 14, savoir

$$\frac{\partial Y_0}{\partial x} + \frac{\partial F_0}{\partial y} + \rho X_0 = \rho \frac{\partial^2 \xi_0}{\partial t^2}, \qquad \frac{\partial F_0}{\partial x} + \frac{\partial B_0}{\partial y} + \rho Y_0 = \rho \frac{\partial^2 \eta_0}{\partial t^2},$$

et les formules (44) de la page 18, savoir

(1)
$$(t_0 + \mathfrak{P})\cos \sigma + F_0\cos \beta = 0$$
, $F_0\cos \sigma + (B_0 + \mathfrak{P})\cos \beta = 0$,

soient vérifiées, les deux premières pour tous les points de la surface moyenne, et les deux dernières pour tous les points situés sur le contour de cette surface, A_0 , F_0 , B_0 étant des fonctions de x, y déterminées par les équations (33) de la page 16, c'est-à-dire par les suivantes :

$$\begin{cases} A_0 = a \frac{\partial \xi_0}{\partial x} + t \frac{\partial a_0}{\partial y} + c \left(\frac{\partial \xi_0}{\partial y} + \frac{\partial a_0}{\partial x} \right) - Pu, \\ B_0 = t \frac{\partial \xi_0}{\partial x} + b \frac{\partial a_0}{\partial y} + b \left(\frac{\partial \xi_0}{\partial y} + \frac{\partial a_0}{\partial x} \right) - Pu, \\ F_0 = c \frac{\partial \xi_0}{\partial x} + b \frac{\partial a_0}{\partial y} + c \left(\frac{\partial \xi_0}{\partial y} + \frac{\partial a_0}{\partial x} \right) - Pw. \end{cases}$$

Il est essentiel de rappeler que, dans les équations (1), (2), (3), ρ désigne la densité de la plaque, regardée comme constante; P, α les pressions supportées : 1° par les plans qui terminent la plaque du côté des α positives et du côté des α négatives, 2° par les plans ou surfaces cylindriques qui la terminent latéralement; X_0 , Y_0 les projections algébriques sur les axes des α et γ de la force accélératrice appliquée à un point quelconque de la surface moyenne; et α , β les angles formés avec les demi-axes des α et γ positives par la normale élevée dans le plan des α , γ sur le contour de cette surface.

Concevons maintenant que, la plaque élastique étant réduite à une verge rectangulaire, on désigne, comme dans l'article précédent, par ξ , η , ζ les déplacements parallèles aux axes d'une molécule quel-conque m qui correspond, dans l'état de mouvement, aux coordonnées x, y, z; par X, Y, Z les projections algébriques de la force accélératrice appliquée à cette molécule; et par A, F, E; F, B, D; E, D, C

$$(4) \qquad \xi = \xi_{0,0} + \xi_{1,0}r + \xi_{0,1}r' + \frac{1}{2}(\xi_{2,0}r^2 + 2\xi_{1,1}rr' + \xi_{0,2}r'^2) + \dots$$

toutes celles qu'on en déduit quand on y remplace la lettre ξ par l'une des lettres η , ζ , X, Y, Z, A, B, C, D, E, F. Les fonctions de x et de y, désignées dans les formules (1), (2), (3) par ξ_0 , η_0 , χ_0 , $\chi_$

(5)
$$\xi_0 = \xi_{0,0} + \xi_{1,0} r + \xi_{2,0} \frac{r^3}{3} + \dots, \quad n_0 = n_{0,0} + n_{1,0} r + n_{2,0} \frac{r^2}{3} + \dots$$

Remarquons d'ailleurs que les deux quantités désignées par $\xi_{n,n}$, $\eta_{n,n}$ dans les équations (4) et (5) sont précisément les valeurs de ξ et de η correspondantes à un point situé sur l'axe de la verge.

En résumé, l'on voit que, pendant le mouvement d'une verge droite et rectangulaire, les déplacements ξ₀, η₀ d'une molécule primitivement renfermée dans le plan des x, y, et les déplacements ξ_{0,0}, η_{0,0} d'un point primitivement situé sur l'axe, se déduiront des formules (1), (2), (3), (5), dont la première et les deux dernières devront être vérifiées pour tous les points de la section faite dans la verge par le plan des x, y, tandis que la seconde devra être vérifiée pour tous les points situés sur le contour de cette même section. Or les formules (1), (2), (5) sont entièrement semblables aux formules (2), (4), (22) des

pages 246, 247, 250 du HI^e Volume ('); et, pour tirer les unes des autres, il suffit de remplacer A, F, B, X, V, ξ , η par A_0 , F_0 , B_0 , X_0 , Y_0 , ξ_0 , η_0 , P par \mathfrak{L} , $\mathfrak{L} = \frac{\partial^2 \xi}{\partial t^2}$ par $\frac{\partial^2 \xi_0}{\partial t^2}$, $\mathfrak{L} = \frac{\partial^2 \eta}{\partial t^2}$ par $\frac{\partial^2 \eta_0}{\partial t^2}$, enfin ξ_0 , ξ_1 , ξ_2 , ..., η_0 , η_1 , η_2 , ... par $\xi_{0,0}$, $\xi_{1,0}$, $\xi_{2,0}$, ..., $\eta_{0,0}$, $\eta_{1,0}$, $\eta_{2,0}$, Cela posé, on pourra immédiatement transformer les équations qui expriment le mouvement d'une lame élastique droite et d'épaisseur constante, c'està-dire les équations (46) de la page 255 du HI^e Volume (2), de manière à obtenir les équations du mouvement de la verge droite et rectangulaire qui, étant coupée par le plan des \mathfrak{L} , \mathfrak{L} , offrirait la même section que la lame élastique. En effet, pour opérer la transformation dont il s'agit, il suffira, dans les équations (46) de la page 255 du HI^e Volume (3), de substituer aux quantités

$$\xi_0, \quad \xi_1, \quad X_0, \quad X_1, \quad \eta_0, \quad \eta_2, \quad Y_0, \quad Y_3, \quad \Lambda_0, \quad \Lambda_1$$

les quantités

$$\xi_{0,0}, \quad \xi_{1,0}, \quad X_{0,0}, \quad X_{1,0}, \quad \eta_{0,0}, \quad \eta_{2,0}, \quad Y_{0,0}, \quad Y_{2,0}, \quad A_{0,0}, \quad A_{1,0};$$

et alors, en réduisant le polynôme

$$\frac{3}{h^2}\frac{\partial^2\eta_{0,0}}{\partial t^2}+\frac{1}{2}\frac{\partial^2\eta_{2,0}}{\partial t^2}+\frac{\partial^2\xi_{1,0}}{\partial t^2}$$

au scul terme $\frac{3}{h^2}\frac{\partial^2 \eta_{0,0}}{\partial t^2}$, vis-à-vis duquel les deux autres peuvent être négligés, on trouvera

(6)
$$\frac{d\Lambda_{0,0}}{dx} + \rho X_{0,0} = \rho \frac{\partial^2 \xi_{0,0}}{\partial t^2},$$

(7)
$$\frac{h^2}{3} \frac{d^2 \Lambda_{1,0}}{dx^2} + \rho \left[Y_{0,0} + \frac{h^2}{6} \left(Y_{2,0} + 2 \frac{d X_{1,0}}{dx} \right) \right] = \rho \frac{\partial^2 \eta_{0,0}}{\partial t^2}$$

Il ne reste plus qu'à exprimer les quantités $A_{0,0}$, $A_{1,0}$, produites par le développement de A_0 suivant les puissances ascendantes de r, à l'aide

⁽¹⁾ Okwers de Cauchy, S. H. T. VIII, p. 290 et 294.

⁽²⁾ Ibid., p. 299.

⁽³⁾ Ibid., p. 299.

des dérivées partielles de $\xi_{0,0}$, $\eta_{0,0}$. Pour y parvenir, on observera d'abord que la section primitivement faite dans la verge par le plan des x, y était comprise entre deux droites parallèles à l'axe des x et représentée par les équations

$$y = z - h, \quad y = h.$$

Or les deux courbes, dans lesquelles ces deux droites se transforment en vertu des déplacements infiniment petits des molécules, diffèrent infiniment peu de ces mêmes droites. Donc, si l'on désigne par α , β les angles que forme la trace du plan normal à l'une de ces courbes sur le plan des α , γ avec les demi-axes des α et γ positives, on aura sensiblement, c'est-à-dire en négligeant les quantités infiniment petites,

(9)
$$\cos \alpha = 0, \quad \cos \beta = \mp 1;$$

et les équations (2) donneront à très peu près, pour les points situés sur les courbes dont il s'agit,

$$F_0 = 0, \qquad B_0 = -\mathfrak{Q}.$$

De plus, comme une droite primitivement parallèle à l'axe des y, et propre à mesurer la demi-épaisseur h de la verge dans l'état naturel, changera très peu de longueur et de direction en raison des déplacements infiniment petits des molécules, il est clair que, pendant la durée du mouvement, -h, +h seront à très peu près les valeurs de r correspondantes aux deux courbes déjà mentionnées. Donc, en vertu des formules (10) réunies aux équations (3), on aura, sans erreur sensible, pour r=-h et pour r=h,

(11)
$$\begin{cases} f \frac{\partial \xi_0}{\partial x} + b \frac{\partial n_0}{\partial y} + b \left(\frac{\partial \xi_0}{\partial y} + \frac{\partial n_0}{\partial x} \right) - P v - \mathfrak{P}, \\ c \frac{\partial \xi_0}{\partial x} + b \frac{\partial n_0}{\partial y} + c \left(\frac{\partial \xi_0}{\partial y} + \frac{\partial n_0}{\partial x} \right) = P w; \end{cases}$$

puis en substituant, dans la première des équations (3), les valeurs

des fonctions

$$\frac{\partial \eta_0}{\partial y}, \frac{\partial \xi_0}{\partial y} + \frac{\partial \eta_0}{\partial x},$$

tirées des formules (11), savoir,

$$\begin{pmatrix}
\frac{\partial \xi_{0}}{\partial y} + \frac{\partial \eta_{0}}{\partial x} = \frac{(bw - bv) \mathbf{P} + b\Omega}{bv - b^{2}} + \frac{bt - bc}{bv - b^{2}} \frac{\partial \xi_{0}}{\partial x}, \\
\frac{\partial \eta_{0}}{\partial y} = \frac{(cv - bw) \mathbf{P} - c\Omega}{bc - b^{2}} + \frac{cb - ct}{bv - b^{2}} \frac{\partial \xi_{0}}{\partial x},$$

et faisant, pour abréger,

(14)
$$\frac{\delta f - bc}{bc - \delta^2} = k, \qquad \frac{c\delta - ct}{bc - \delta^2} = k,$$

(15)
$$\frac{ab_1 - ab^2 - bc^2 - ct^2 + 2 dcf}{bc - b^2} = \rho \Omega^2,$$

on trouvera

(17)
$$\Lambda_0 = \rho \Omega^2 \frac{\partial \xi_0}{\partial x} + \text{II}.$$

Concevons à présent que, en ayant égard à la première des équittions (5) et à l'équation analogue

(18)
$$\Lambda_0 = \Lambda_{0,0} + \Lambda_{1,0} = - \Lambda_{2,0} \frac{r^2}{r^2} + \dots,$$

on développe les deux membres de la formule (17) suivant les puissances ascendantes de r. Si l'on y pose ensuite successivement r . h, r = h, on en conclura, en négligeant les termes proportionnels attenté de h,

$$\Lambda_{0,0} = \rho \Omega^2 \frac{\partial \xi_{0,0}}{\partial x} + \Pi,$$

(30)
$$\Lambda_{1,0} = \rho \Omega^2 \frac{\partial \xi_{1,0}}{\partial x}.$$

D'autre part, en prenant x et r pour variables indépendantes au lieu

de x, y, et faisant

(21)
$$\frac{(bw - bv)P + b\Omega}{bc - b^2} = \Pi', \qquad \frac{(cv - bw)P - c\Omega}{bc - b^2} = \Pi'',$$

on tirera des équations (13) réunies aux formules (14)

(22)
$$\frac{\partial \xi_0}{\partial r} + \frac{\partial \eta_0}{\partial x} = \hbar \frac{\partial \xi_0}{\partial x} + \Pi', \quad \frac{\partial \eta_0}{\partial r} = \hbar \frac{\partial \xi_0}{\partial x} + \Pi'';$$

puis, en développant les deux membres suivant les puissances ascendantes de r, posant $r=\pm h$, et négligeant les termes de l'ordre de h, on trouvera

(23)
$$\xi_{1,0} + \frac{\partial n_{0,0}}{\partial x} = \mathbb{I} \frac{\partial \xi_{0,0}}{\partial x} + \Pi', \qquad n_{1,0} = \mathbb{I} \frac{\partial \xi_{0,0}}{\partial x} + \Pi''.$$

Par suite, l'équation (20) donnera

(24)
$$\Lambda_{1,0} = \rho \Omega^2 \left(\ln \frac{\partial^2 \xi_{0,0}}{\partial x^2} - \frac{\partial^2 \eta_{0,0}}{\partial x^2} \right).$$

Si maintenant on substitue dans les formules (6) et (7) les valeurs de $A_{0,0}$, $A_{1,0}$ fournies par les équations (19) et (24), on obtiendra les suivantes :

(25)
$$\Omega^2 \frac{\partial^2 \xi_{0,0}}{\partial x^2} + \mathbf{X}_{0,0} = \frac{\partial^2 \xi_{0,0}}{\partial t^2},$$

$$(26) \qquad \Omega^{2} \frac{h^{9}}{3} \left(\frac{\partial^{4} n_{0,0}}{\partial x^{4}} - h \frac{\partial^{4} \xi_{0,0}}{\partial x^{4}} \right) + \frac{\partial^{2} n_{0,0}}{\partial t^{2}} = Y_{0,0} + \frac{h^{2}}{6} \left(Y_{2_{1}0} + 2 \frac{dX_{1,0}}{dx} \right).$$

Les équations (25) et (26) sont les seules qui, pendant le mouvement d'une verge élastique naturellement droite, subsistent, pour tous les points de l'axe, entre les variables indépendantes x, t, et les déplacements $\xi_{0,0}$, $\eta_{0,0}$ mesurés parallèlement au plan des x, y. Ajoutons que, les fonctions $\xi_{0,0}$, $\eta_{0,0}$ étant supposées connues, on déterminera sans peine les valeurs approchées des pressions Λ_0 , F_0 , B_0 et des déplacements ξ_0 , η_0 relatifs à un point pris au hasard dans le plan des x, y. En effet, les équations

(27)
$$\xi_0 = \xi_{0,0} + \xi_{1,0} r, \qquad \eta_0 = \eta_{0,0} + \eta_{1,0} r,$$

(28)
$$\Lambda_0 = \Lambda_{0,0} + \Lambda_{1,0} r,$$

réunies aux formules (19), (23) et (24), fourniront les valeurs de ξ_0 , η_0 , A_0 , aux quantités près de l'ordre de h^2 . Quant aux valeurs approchées de F_0 , B_0 , elles seront déterminées par des équations semblables aux formules (47) de la page 255 du III° Volume (4), et que l'on déduira immédiatement de ces formules en écrivant

$$F_0$$
, B_0 , $\xi_{1,0}$, $\eta_{1,0}$, $X_{1,0}$, $Y_{1,0}$, $A_{1,0}$ et Φ

au lieu de

$$F_1$$
 B_2 ξ_1 , η_1 , X_1 , Y_1 , A_1 et P .

On trouvera ainsi, en négligeant les termes proportionnels au cube de h,

(29)
$$\begin{cases} F_0 = \frac{1}{2} \left[\frac{dA_{1,0}}{dx} + \rho \left(X_{1,0} - \frac{\partial^2 \xi_{1,0}}{\partial t^2} \right) \right] (h^2 - r^2), \\ B_0 = -\mathcal{Q} + \frac{1}{2} \rho \left(Y_{1,0} - \frac{\partial^2 \eta_{1,0}}{\partial t^2} \right) (h^2 - r^2). \end{cases}$$

Il est maintenant facile d'établir les conditions particulières auxquelles doivent satisfaire les deux fonctions $\xi_{\theta,\theta}$, $\eta_{\theta,\theta}$ pour les points situés aux extrémités de l'axe de la verge. Effectivement, si l'on suppose la verge terminée du côté des α positives et du côté des α négatives par des plans perpendiculaires à l'axe, et qui supportent en chacun de leurs points une nouvelle pression désignée par \mathfrak{P} , on aura, pour ces mêmes points.

$$A = -\mathfrak{P}, \quad F = 0:$$

puis, en posant dans les formules (3o) r' = 0, on trouvera

(31)
$$\Lambda_0 = -\mathfrak{p}, \quad F_0 = 0.$$

Enfin, après avoir substitué dans ces dernières les valeurs de Λ_0 , F_0 tirées des équations (28) et (29), on en conclura

$$\Lambda_{0,0} = -\mathfrak{P},$$

(33)
$$\Lambda_{1,0} = 0, \qquad \frac{d\Lambda_{1,0}}{dx} + \rho \left(X_{1,0} - \frac{\partial^2 \xi_{1,0}}{\partial t^2} \right) = 0$$

(1) OEurres de Cauchy, S. II, t. VIII, p. 299.

ou, ce qui revient au même, en égard aux formules (19), (23), (24), (25) et (26).

(34)
$$\Omega^2 \frac{\partial \mathcal{E}_{0,0}}{\partial x} + \frac{\Pi + \mathfrak{P}}{\rho} = 0,$$

$$(35) \qquad \frac{\partial^2 \eta_{0,0}}{\partial x^2} = k \frac{\partial^2 \zeta_{0,0}}{\partial x^2}, \qquad \Omega^* \frac{\partial^3 \eta_{0,0}}{\partial x^3} = \mathbf{X}_{1,0} + \frac{d \mathbf{Y}_{0,0}}{\partial x} = k \frac{d \mathbf{X}_{0,0}}{\partial x}.$$

Les conditions (34) et (35) devront être remplies pour chacune des deux extrémités de la verge élastique, si ces deux extrémités sont libres. Au contraire, si ces extrémités deviennent fixes, ou plutôt, si, les extrémités de l'axe étant fixes, les points renfermés dans les plans qui terminent la verge du côté des x positives ou négatives sont assujettis de manière à n'en point sortir, on aura, pour les abscisses correspondantes aux plans dont il s'agit, non seulement

$$(36)$$
 $\tilde{\xi}_{0,n} = 0$

$$(37) 7e, e = 0$$

mais encore

quelles que soient les valeurs de r, r', et par conséquent

ou, ce qui revient au même,

$$\frac{\partial u_{0,n}}{\partial x^n} = k \frac{\partial \xi_{0,n}}{\partial x^n} + W.$$

Si la verge élastique offrait une extrémité libre et une extrémité fixe, les conditions (34), (35) devraient être vérifiées pour la première extrémité, et les conditions (36), (37), (39) pour la seconde.

Les équations et conditions ci-dessus établies suffisent à la détermination complète des incommes $\xi_{0,0}$, $\eta_{0,0}$ qui représentent, pour un point quelconque situé sur l'axe de la verge, les déplacements mesurés parallèlement au plan des x, y. Si l'on voulait déterminer en outre le déplacement $\zeta_{0,0}$ de ce point dans le sens de la coordonnée z, on y parviendrait sans penne en echangeant entre elles, dans les cateurs qui précèdent, les quantites qui correspondent à l'axe des x et à l'axe des x. Alors on retrouverait toujours les equations (x_1, x_2) et (x_1) , ainsi que les conditions (x_1, x_2) , (x_2) , (x_3) , (x_4) , (x_4) , (x_5) serment remplacees par d'antre sequations de la forme

$$(30) \qquad \frac{|v|d^{2}\Lambda_{GV}}{3||dv|^{2}} = g\left[I_{AV} - \frac{|v|}{6}\left(I_{AV} - \frac{dN_{AV}}{dv}\right)\right] = \frac{d}{dv} = c$$

$$V := \langle \Omega, \frac{\partial}{\partial x} C \rangle$$

$$(\mathcal{G}) = \{ \begin{array}{ccc} \partial_{mn}^{n} & \partial_{mn}^{n} & \partial_{n}^{n} & \partial_{n}^{n} \\ \partial_{n} & \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} \end{array} \} \in \mathcal{H}_{n}, \quad \mathcal{G}_{n}^{n} = \{ \begin{array}{ccc} \partial_{mn}^{n} & \partial_{n}^{n} & \partial_{n}^{n} \\ \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} \end{array} \} = \{ \begin{array}{ccc} \partial_{mn}^{n} & \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} \\ \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} \\ \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} \\ \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} \\ \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} \\ \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} \\ \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} \\ \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} \\ \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} \\ \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} \\ \partial_{n}^{n} & \partial_{n}^{n} & \partial_{n}^{n} \\ \partial_{n}^{n} & \partial_{n}$$

$$\chi_{i,j} = \mu \Omega^{i} \left(n \frac{\partial^{i} \sigma}{\partial x^{i}} - \frac{\partial}{\partial x^{i}} \right)$$
 (3)

$$(\mathcal{H}) = \Omega_{ij}^{ij} \left(\frac{\partial \mathcal{H}_{ij}}{\partial x^{ij}} - \hat{\mathbf{u}} \frac{\partial \mathcal{H}_{ij}}{\partial x^{ij}} \right) = \frac{\partial \mathcal{H}_{ij}}{\partial t} = \mathbf{z} - \frac{i}{2i} \left(\mathbf{z} - \mathbf{z} \frac{\partial \mathbf{X}_{ij}}{\partial x^{ij}} \right),$$

A. E. II., II. désignant quatre nouveaux coefficient à dont les valeurs seraient données par des formules semblable à aux equations (14) on (21), et à l'épaissem de la verge mesuree paraflelement à l'aveche à l'arcillement, à la place des conditions (15), v (15), (16) on frouverait cellessei :

$$(5) = \frac{\partial \psi_{ij}}{\partial x^{ij}} \cdot \mathbf{a} \frac{\partial \psi_{ij}}{\partial x^{ij}} \cdot \mathbf{a} \cdot \mathbf{b} \frac{\partial \psi_{ij}}{\partial x^{ij}} \cdot \mathbf{b} \cdot \mathbf{a} \frac{\partial \mathbf{b}}{\partial x^{ij}} \cdot \mathbf{b} \frac{\partial \mathbf{b}}{\partial x^{ij}} \cdot \mathbf{b}$$

$$(f_0) \qquad \qquad \frac{\partial}{\partial t} = \eta \frac{\partial}{\partial t} = \Pi_t$$

En résumé, pour obtenu la valeur de l'incommue $z_{o,j}$, il suffica d'integrer l'equation (**) à de manière à remplir, pour «haque extremité libre de la verge, la combition (**), et pour chaque extremité lixe la condition (**36). De meme, on obtiendra la valeur de l'incommue $z_{o,j}$ à l'aide de l'équation (**65) rémuie aux conditions (**55), on bien aux conditions (**37) et (**36)), et la valeur de l'incomme "**

diffons (**37) et (**36)), et la valeur de l'incomme "**

non (**44) remuie aux conditions (**45), on aux conditions (**45). Ajontons que, les incommes $z_{o,j}$, $z_{o,j}$, $z_{o,j}$, étant une fois determinées, un

posses the first of the engine for the Color of Production formulas a street

on, equipment to be the of the delaterment

$$_{k}$$
 , $_{k}$, $_{k}$

I the two too of, at each of the equivariant of the remaine decipion the course of parts of the properties by the value generale design on leading a second of the properties of the properties

To be even destroy and recover on the information plus dans l'état d'equilibre, il ufficial de apprimer, the best of the experiment of the

atologic be concernate to the territoria for any part to beam

ogram, was an after the Langer Montes of the case of the different time permits l'experts

How across the second and a subject of a target to ment. So Pour supplies celler have no set extra effectively reconstructed and a set of great effectively reconstructed and a set of great effectively as a state effect of a construction of great effectively as a state effect of a construction of the second section of the second

s'évanouiront, et les constante au, le c. de c. f. u m au mées par les formules (57), co8 à du meins au to le 4 à constant les formules (14), (14), (14) et c condouncement

$$(49) \qquad \qquad k = 0, \qquad k = \frac{4}{16} = \frac{3}{16}$$

(50)
$$g\Omega^{*}$$
 about the ct. (5)

$$(5) \qquad \qquad \Pi' = \alpha, \qquad \Pi = \frac{\mathrm{d}}{\ln \epsilon} \left(\mathbf{P} - \frac{1}{4\epsilon} \right)^{-\epsilon} d\epsilon^{-\epsilon}$$

On trouvera, de meme, en substituant aux greacter E_0 I E_1 quantités A, B; H_1 , H_2 , et en changeaut entre elle $e^{-\frac{1}{2}}$ $e^{-\frac{1}{2}}$ $e^{-\frac{1}{2}}$ tres b et e, 2^n les deux lettrese et E_1 , E_2 be E_3 and E_4 $e^{-\frac{1}{2}}$

$$(54) \qquad \qquad \Pi_{1} = \sigma_{0} = \Pi = \frac{d}{\ln - d} = \frac{3}{3\sigma - \sigma^{2}} = \frac{4}{3\sigma^{2}} = \frac{$$

Cela posé, dans l'hypothèse admice, les opastros estres agrecies de la fournissent les valencs de $i_{0.00}$ l'elative de major de qua fina de la verge, deviendront respectivement.

(55)
$$\Omega^{1} \frac{h^{3}}{3} \frac{\partial^{3} \eta_{n,\alpha}}{\partial x^{3}} + \frac{\partial^{3} \eta_{n,\beta}}{\partial t^{3}} = \nabla_{\beta} - \frac{h}{\alpha} \left(\mathbf{Y} \right) = \frac{(\nabla_{\alpha})^{2}}{4}$$

(56)
$$\Omega^{\frac{1}{3}} \frac{\partial^{4} \mathcal{L}_{0,0}}{\partial x^{4}} + \frac{\partial^{4} \mathcal{L}_{0,0}}{\partial t^{4}} - \mathcal{L}_{0,0} - \frac{\epsilon}{\epsilon_{0}} \mathcal{A} \mathcal{L}_{0,0} + \frac{2\epsilon}{\epsilon_{0}}$$

tandis que l'on aura, pour une extrémite bloc.

(57)
$$\frac{\partial^{3} u_{0,0}}{\partial x^{2}} = \alpha_{s} = \Omega^{4} \frac{\partial^{3} u_{0,0}}{\partial x^{2}} = \chi_{r_{0}} = \frac{2 \chi_{r_{0}}}{\partial x^{2}}.$$

(58)
$$\frac{\partial^{4}\xi_{0,0}}{\partial x^{4}} = \alpha_{i} = \Omega^{4} \frac{\partial^{4}\xi_{0,0}}{\partial x^{4}} = \chi_{i,j} = \frac{\partial}{\partial x^{i}}.$$

et, pour une e decunte lice,

$$\frac{\partial \mathcal{L}}{\partial x} = \frac{\partial \mathcal{L}}{\partial x} = \frac{\partial$$

An is to, it a's the more are dericoning a hispothese dout it s'agit pour objective le copartion acces, extra avec le conditione (°,), (°8), e or, ever, et fou a trouver a encore er adivirses formules, or l'on appois le vois une de a, Normatamment milles, pendant le monvene at de la verse de la topic, ama que le deux pressons exterieures P.

than a vone a part on opine la busco der deratance ; de vienne constante es constante accident accident memo. Admettono, en outre, que les tras pre son a constante. P. C. \$100 examours ant. Mortun auto.

$$\chi = \chi_{i_1} \cdot \chi_{i_2} = \chi_{i_1} \cdot \chi_{i_2} \cdot \chi_{i_3} = \chi_{i_4} \cdot \chi_{i_4} \cdot \chi_{i_4} \cdot \chi_{i_5} \cdot \chi_{i_5} = 0$$

Parante, Songration Sugar Carter devolumental

time to memory, he constituence iterations described and extend of the rempton of the series of the

Enfin, si l'on suppose que la force acceleratione $\frac{1}{2}$ d'evanour se, les équations (64), (69), (63) deviendront respectivement

(68)
$$\Omega = \frac{h}{e} \frac{\partial \gamma}{\partial x} + \frac{\partial \gamma}{\partial t} = \frac{\partial \gamma}{\partial t}$$

$$(69) \qquad \qquad \Omega = \frac{e^{-i\theta_{+}}}{4e^{-i\theta_{+}}} + \frac{\partial^{2}}{\partial x^{i}} \qquad 0$$

La constante Ω , comprise dans la plupart de l'formules que nonsavons obtennes, représente évolemment la vitez se du son dans une verge élastique droite, d'une longueur indefinire. C'est du momes e que l'on pronyera saies penne, a l'aide de l'equation. C'est du momes e que comme nons l'avons fait à la page doi du 114° Volume C'es. D'antispart, si l'on nomme e la dilatation line uve de la verge elastoque me surée en un point que leonque x, y, z, z mixant une droite parallele a l'axe des x_i il suffira, poin determiner z_i , de reduire, d'une la tormule (g) de l'article precedent, l'angle z à z exo, et à ha un de sangle z, γ ù $\frac{\pi}{a}$; en sorte que l'on fronvera

$$t = \frac{it}{it} + \frac{it}{it}$$

Done l'équation

$$(71) \qquad \qquad V = \Omega \frac{\partial}{\partial x} = W,$$

qui subsistera, en vertu de la formule e 193, pour chacune des extre mités de l'axe de la verge clastique, pour la l'extre comme il suit

Ajoutous que les quantites Q et H, dont Le première est déterminé par la formule tales, pourront être la dement experimées en touction des pressions P, %, et des quanzes cettés ents a. h, c, d, e, f, u, v, w,

⁽¹⁾ Obliveres de Camela, S. H. A. VIII, p. 1416.

ii., v., w., ii., v., w. renbernice dans les cynations (°C), (°C) de l'article precedent. Fu effet, l'equation (°C) etant le resultat de l'elimination des expres ion (°C) (entre les formules (°C) et (°C), et les formules (°C) au confondant avec les formules (°C) on v. 13 °C le l'article precedent, c'est a dire avec celles que produit l'elimination des quantités.

entre les equations ess, étéret es es du meme article, il est élair que l'equation es es pour la etre minodistenent bourne par l'elimination de cinq quantités.

contacting of the respect of contacting and entire contacting and

$$e^{-\frac{1}{2}}e^{-\frac{1}{2}}$$
 $e^{-\frac{1}{2}}$ $e^{-\frac{1}{2}}$ $e^{-\frac{1}{2}}$ $e^{-\frac{1}{2}}$ $e^{-\frac{1}{2}}$ $e^{-\frac{1}{2}}$ $e^{-\frac{1}{2}}$

Thursdood particular on les pressons P, 25 Sevanoni sent, la formule e 14, reduite a

$$\chi = 2V \frac{it}{it}$$
 ,

est celle que l'on trouve quand on channe le sexpression ex strentie.

of less quations and season factories provident. Also causes on the defactorism by the

Done, point obtain the earlie de la vite se du sou dans mie verze i lass tique qui a pour ave l'ave des contritt des liers herbes que deviennent la quantite Après de la dux la proportion algebrique sur l'ave des rede la pression on tension ve supportée par un plan perpendiculaire à cert axe, et la condensation ou dilatation — nor unce paralli lemont au même axe, fandis que les deux autre compo anticole la presiony, et les pressions p, p supportées par des plans perpendiculaire aux axes des pet sa'evanous cent; pur de diviser la quantité X — p par la condensation ou dilatation — et par la deux et e, a tette proposition subsistant d'ailleurs, quel que aut l'axe des x, pent etre remplace par le théorème suivant :

Thrown. In very elastique cant extraite d'un saps solun home gêne qui n'offre pas la même elasticite deins tous les seus, pour obtenu le carré de la vitesse du son dans cette e rese instrinument prodon see, d'savet de chercher ce que desament, en une print que le oughe sin corps solul , la dilatation on condensation lineare.

In vaire parabelence? A l'une de la verge, et la pression ou tension pe supporte, par nor plen perfente mane à cet avec tandis que les pressions ou tensions parabeles se re lais vet l'une ap', les deux unities u ever, pour she divis releviblement or ou candense tion le spar le facteur pet par la d'usité.

Le rapport qui existe pour une verge i lastique et restrigulance, dont les laces laterales out auminoscable posseaux existence milles, et dont l'epasseur ou les épais cui sout tres petites, intre la present ou tension supportée par un plan perpendo ulaure à Kaxy et l'exsenden sation ou dilatation me auree sury int cet axe, est ce que non momme rous de ormais l'élasticue de la rest, est et poses, il resulte du theoreme precedent que, dans une verse est a rique, extraite d'un corpe, houve gêne, et indefinment prolongée, la vites à de propagation du son est proportionnelle à la racine extres de l'est dieste.

Nons terminerons set article on unliquint quelque \circ qqdications deformules qu'il renferme.

Observous d'abord que, a la foire accebratione, et le par courextériences P, 9, \$\forance exact, beradeur à de mommu. \(\tilde{\chi} \), \(\ti that entrol Don is a valuation differential pasale celles qu'on obtions direct en considérant nue vers a la dique extrate d'un corps solule dont fiele teste de terat la nome dans tous les consect elles seront ambields. Provide pour de du Hr Volume (2) aux valeurs de 500 qui teleure in américa els toque droite Unibot en conclure que les relations, trouver al a le Hr Volume (provide auvantes (2) entre la via a C. 3 bon escur en l'épon au d'une lanc élastique, et les sous product par le viin troit lon atminales on transversales de cette lance, outrons cout de la le cta pour une verge élastique homogène, lon memor que l'electron de cette verce deviendra variable avec la discretion de la cette de la cette verce deviendra variable de la cette de la cette verce deviendra variable avec la discretion de la cette de la cette verce de la cette de la cet

In place, he monday the value from them ver the executive purchamine very provided consists of two deex, on parallelement a laxy deex, what limites the value of processes per l'equation except provided life to demand on what the l'epinoseur vertices and the value of the quiescent debut, quand on what the l'epinoseur vertices are to the provided less of the vertices and the value of the value of the provided less of the vertices and the value of the value of the provided less of the vertices and the value of the value of the provided less of the vertices and the value of the value of the provided less of the vertices of the of the ver

Commence of the Commence of th

a de la deservação

En considérant, dans cet actuée et deux le provident, des pluque on des verges elastiques extraites de compe collide equi n'officia at per la même élasticité en ton cue, par apport que completina ver e étaient naturellement plane con notus de me ut diante est donce e d'une epaisseur constante. Mai ou ponti of, per de le deal ofu un un genre, Mahlir be equation d'equilibre ou de mouvement de plaque con de verges naturellement combes on dans spars can so a dds, at loor obtiendrait alms des formule audiences celle que j'actionnes dans les derniers articles du HP Volume 📑 🦠

(1) Obugio de Cancio S II A ABL que la casa

SUR LUS PRESSIONS OF TENSIONS

TPCOMILE

EN UN POINT BONNE D'UN CORPS SOLIDE

PAR TROOP PLANS PERPENDICHARRIS ENTRE EDA.

Reprocess to position d'un corpe adule à trois axes rectangulaires des correspondents confidentes (a. 5, 5). Suppos on spin par be point d'un voire spind aux conclounces (a. 5, 5). Suppos on spin par be point d'un voire et l'étrois plans paralléles aux plans sector d'un voire et l'étrois autre plans perpendiculaires entre eux.

- The property of the state of the property of the sample of the same of the demical of the same of the
- p_s, p_s, p_s by p_s comes on tensions approximate an point O par les faces de l'incine s plus qui resordent les trois demisires OL, OM, ON;
- $x_1, x_2, x_3, x_4, x_5, x_5, x_6, x_6, x_6, x_6$ by angles formes aver les demisaxes the amondomax appearing spar les pressons on tensions p_1, p_2, p_3 :
- $p_{\alpha}, p_{\alpha}, p_{\beta}$ by a paramonal tensions supporters an point O parales plans perpendicularity and axes coordinates:
- A, A, B, A, B, D, B, A, Cherpropertion calpebration despressions on tension (p., p., p.).
- (1) (2) (3) (6) (6) (7) (6) (7) (6) compared exterment les projections algébriques des barces p₁₀ (2) (2), quand ou prend pour demisaxes des coordons new pocations les trois demisaxes Ob. OM, ON.

Officeration & Hit IX

On aura, en vertu des formules (3) de la page 162 du IIIº Volume (1).

(1)
$$\begin{cases} p_1 \cos \lambda_1 = \Lambda \cos \alpha_1 + F \cos \beta_1 + E \cos \gamma_1, \\ p_1 \cos \mu_1 = F \cos \alpha_1 + B \cos \beta_1 + D \cos \gamma_1, \\ p_2 \cos \nu_1 = E \cos \alpha_1 + D \cos \beta_1 + C \cos \gamma_1; \end{cases}$$

(2)
$$\begin{cases} p_2 \cos \lambda_2 = A \cos \alpha_2 + F \cos \beta_2 + E \cos \gamma_2, \\ p_2 \cos \mu_2 = F \cos \alpha_2 + B \cos \beta_2 + D \cos \gamma_2, \\ p_2 \cos \nu_2 = E \cos \alpha_2 + D \cos \beta_2 + C \cos \gamma_2; \end{cases}$$

(3)
$$\begin{cases} p_3 \cos \lambda_3 = A \cos \alpha_3 + F \cos \beta_3 + E \cos \gamma_3, \\ p_3 \cos \mu_3 = F \cos \alpha_3 + B \cos \beta_3 + D \cos \gamma_3, \\ p_3 \cos \nu_3 = E \cos \alpha_3 + D \cos \beta_3 + C \cos \gamma_3. \end{cases}$$

De plus, comme la direction de la force p_i formera évidemment avec les demi-axes OL, OM, ON des angles qui auront pour cosinus les trois expressions

$$\cos \lambda_1 \cos \alpha_1 + \cos \mu_1 \cos \beta_1 + \cos \nu_1 \cos \gamma_1$$
,
 $\cos \lambda_1 \cos \alpha_2 + \cos \mu_1 \cos \beta_2 + \cos \nu_1 \cos \gamma_2$,
 $\cos \lambda_1 \cos \alpha_3 + \cos \mu_1 \cos \beta_3 + \cos \nu_1 \cos \gamma_3$,

on trouvera

$$\begin{cases} \mathcal{L} = p_1(\cos \lambda_1 \cos \alpha_1 + \cos \mu_1 \cos \beta_1 + \cos \nu_1 \cos \gamma_1), \\ \mathcal{S} = p_1(\cos \lambda_1 \cos \alpha_2 + \cos \mu_1 \cos \beta_2 + \cos \nu_1 \cos \gamma_2), \\ \mathcal{E} = p_1(\cos \lambda_1 \cos \alpha_3 + \cos \mu_1 \cos \beta_3 + \cos \nu_1 \cos \gamma_3). \end{cases}$$

On trouvera de même

(5)
$$\begin{cases} \mathcal{F} = p_2(\cos\lambda_2\cos\alpha_1 + \cos\mu_2\cos\beta_1 + \cos\nu_2\cos\gamma_1), \\ \forall b = p_2(\cos\lambda_2\cos\alpha_2 + \cos\mu_2\cos\beta_2 + \cos\nu_2\cos\gamma_2), \\ \Theta = p_2(\cos\lambda_2\cos\alpha_3 + \cos\mu_2\cos\beta_3 + \cos\nu_2\cos\gamma_3) \end{cases}$$
et
$$\begin{cases} \mathcal{E} = p_3(\cos\lambda_2\cos\alpha_1 + \cos\mu_2\cos\beta_1 + \cos\nu_2\cos\gamma_1), \\ \Theta = p_3(\cos\lambda_3\cos\alpha_1 + \cos\mu_3\cos\beta_1 + \cos\nu_3\cos\gamma_1), \\ \Theta = p_3(\cos\lambda_3\cos\alpha_2 + \cos\mu_3\cos\beta_2 + \cos\nu_3\cos\gamma_2), \\ \Theta = p_3(\cos\lambda_3\cos\alpha_3 + \cos\mu_3\cos\beta_3 + \cos\nu_3\cos\gamma_3). \end{cases}$$

(1) OEueres de Cauchy, S. II, T. VIII, p. 197.

Si maintenant on substitue, dans les équations (4), (5), (6), les valeurs de $p_1\cos\lambda_1$, $p_1\cos\mu_1$, ..., tirées des équations (1), (2), (3), on obtiendra les six formules

```
e^{A_0} = A \cos^2 \alpha_1 + B \cos^2 \beta_1 + C \cos^2 \gamma_1
                            + 3 \operatorname{D} \cos \beta_1 \cos \gamma_1 + 2 \operatorname{E} \cos \gamma_1 \cos \alpha_1 + 2 \operatorname{F} \cos \alpha_1 \cos \beta_1,
+ 3 \operatorname{D} \cos \beta_1 \cos \gamma_1 + 2 \operatorname{E} \cos \gamma_1 \cos \alpha_1 + 2 \operatorname{F} \cos \alpha_1 \cos \beta_1,
+ 3 \operatorname{D} \cos^2 \alpha_2 + \operatorname{B} \cos^2 \beta_2 + \operatorname{C} \cos^2 \gamma_2
+ 3 \operatorname{D} \cos \beta_2 \cos \gamma_2 + 2 \operatorname{E} \cos \gamma_2 \cos \alpha_2 + 2 \operatorname{F} \cos \alpha_2 \cos \beta_2,
= \operatorname{A} \cos^2 \alpha_3 + \operatorname{B} \cos^2 \beta_3 + \operatorname{C} \cos^2 \gamma_3
(7)
                                             +2 \operatorname{D} \cos \beta_3 \cos \gamma_3 + 2 \operatorname{E} \cos \gamma_3 \cos \alpha_3 + 2 \operatorname{F} \cos \alpha_3 \cos \beta_3;
                              \omega = A \cos \alpha_2 \cos \alpha_3 + B \cos \beta_2 \cos \beta_3 + C \cos \gamma_2 \cos \gamma_3
                                            + D(\cos\beta_1\cos\gamma_2 + \cos\beta_3\cos\gamma_2)
                                            + E(\cos \gamma_2 \cos \alpha_3 + \cos \gamma_3 \cos \alpha_2)
                                            +F(\cos\alpha_2\cos\beta_3+\cos\alpha_3\cos\beta_2),
                              \mathcal{E} = A \cos \alpha_3 \cos \alpha_1 + B \cos \beta_3 \cos \beta_1 + C \cos \gamma_3 \cos \gamma_1
                                           -1-D(\cos\beta_a\cos\gamma_1+\cos\beta_1\cos\gamma_a)
(8)
                                            + \mathbb{E} (\cos \gamma_3 \cos \alpha_1 + \cos \gamma_1 \cos \alpha_3)
                                           + F (\cos \alpha_3 \cos \beta_1 + \cos \alpha_1 \cos \beta_3),
                              \vec{s} = A \cos \alpha_1 \cos \alpha_2 + B \cos \beta_1 \cos \beta_2 + C \cos \gamma_1 \cos \gamma_2
                                             +-D(\cos\beta_1\cos\gamma_2 + \cos\beta_2\cos\gamma_1)
                                             + E (cosy<sub>1</sub> cos\alpha_2 + cosy<sub>2</sub> cos\alpha_1)
                                             -1-F(\cos\alpha_1\cos\beta_2+\cos\alpha_2\cos\beta_1).
```

Ces six formules fournissent le moyen de calculer les projections algébriques des pressions p_1 , p_2 , p_3 , supportées par trois plans perpendiculaires entre eux, sur trois demi-axes perpendiculaires à ces mêmes plans, quand on connaît les projections algébriques des pressions supportées par trois plans parallèles aux plans coordonnés sur les axes des x, y, z.

Observons encore que, les demi-axes OL, OM, ON étant perpendiculaires l'un à l'autre, on aura, en vertu de formules connues,

```
 \begin{cases} \cos^2\alpha_1 + \cos^2\alpha_2 + \cos^2\alpha_3 = 1, & \cos\beta_1\cos\gamma_1 + \cos\beta_2\cos\gamma_2 + \cos\beta_3\cos\gamma_3 = 0, \\ \cos^2\beta_1 + \cos^2\beta_2 + \cos^2\beta_3 = 1, & \cos\gamma_1\cos\alpha_1 + \cos\gamma_2\cos\alpha_2 + \cos\gamma_3\cos\alpha_3 = 0, \\ \cos^2\gamma_1 + \cos^2\gamma_2 + \cos^2\gamma_3 = 1, & \cos\alpha_1\cos\beta_1 + \cos\alpha_2\cos\beta_2 + \cos\alpha_3\cos\beta_3 = 0. \end{cases}
```

Par suite, on tirera des équations (4), (5), (6)

$$\begin{cases} A \cos \alpha_1 + \hat{f} \cos \alpha_2 + \mathcal{E} \cos \alpha_3 = p_1 \cos \lambda_1 = A \cos \alpha_1 + F \cos \beta_1 + E \cos \gamma_1, \\ \hat{f} \cos \alpha_1 + b \cos \alpha_2 + \omega \cos \alpha_3 = p_2 \cos \lambda_2 = A \cos \alpha_2 + F \cos \beta_2 + E \cos \gamma_2, \\ \mathcal{E} \cos \alpha_1 + \omega \cos \alpha_2 + \omega \cos \alpha_3 = p_3 \cos \lambda_3 = A \cos \alpha_3 + F \cos \beta_3 + E \cos \gamma_3; \end{cases}$$

$$\begin{cases} \mathcal{L} \cos\beta_1 + \mathcal{I} \cos\beta_2 + \mathcal{E} \cos\beta_3 = p_1 \cos\mu_1 = F \cos\alpha_1 + B \cos\beta_1 + D \cos\gamma_1, \\ \mathcal{I} \cos\beta_1 + \mathbf{V} \cos\beta_2 + \mathbf{D} \cos\beta_3 = p_2 \cos\mu_2 = F \cos\alpha_2 + B \cos\beta_2 + D \cos\gamma_2, \\ \mathcal{E} \cos\beta_1 + \mathbf{D} \cos\beta_2 + \mathbf{C} \cos\beta_3 = p_3 \cos\mu_3 = F \cos\alpha_3 + B \cos\beta_3 + D \cos\gamma_3; \end{cases}$$

(12)
$$\begin{cases} \varepsilon \log \gamma_1 + \mathcal{F} \cos \gamma_2 + \mathcal{E} \cos \gamma_3 = p_1 \cos \nu_1 = \mathbf{E} \cos \alpha_1 + \mathbf{D} \cos \beta_1 + \mathbf{C} \cos \gamma_1, \\ \mathcal{F} \cos \gamma_1 + \mathbf{D} \cos \gamma_2 + \mathbf{D} \cos \gamma_3 = p_2 \cos \nu_2 = \mathbf{E} \cos \alpha_2 + \mathbf{D} \cos \beta_2 + \mathbf{C} \cos \gamma_2, \\ \mathcal{E} \cos \gamma_1 + \mathbf{D} \cos \gamma_2 + \mathbf{C} \cos \gamma_3 = p_3 \cos \nu_3 = \mathbf{E} \cos \alpha_3 + \mathbf{D} \cos \beta_3 + \mathbf{C} \cos \gamma_3; \end{cases}$$

puis on conclura des formules (10), (11), (12)

(13)
$$A = \delta \cos^2 \alpha_1 + \theta \cos^2 \alpha_2 + \cos^2 \alpha_3$$

$$+ 2\theta \cos \alpha_2 \cos \alpha_3 + 2\theta \cos \alpha_1 \cos \alpha_1 + 2\theta \cos \alpha_1 \cos \alpha_2,$$

$$B = \delta \cos^2 \beta_1 + \theta \cos^2 \beta_2 + \cos^2 \beta_3$$

$$+ 2\theta \cos \beta_2 \cos \beta_3 + 2\theta \cos \beta_1 \cos \beta_1 + 2\theta \cos \beta_1 \cos \beta_2,$$

$$C = \delta \cos^2 \gamma_1 + \theta \cos^2 \gamma_2 + 2\cos^2 \gamma_3$$

$$+ 2\theta \cos \gamma_2 \cos \gamma_3 + 2\theta \cos \gamma_1 \cos \gamma_1 + 2\theta \cos \gamma_1 \cos \gamma_2;$$

$$D = \delta \cos \beta_1 \cos \gamma_1 + \theta \cos \beta_2 \cos \gamma_2 + 2\cos \beta_3 \cos \gamma_2$$

$$+ \theta (\cos \beta_2 \cos \gamma_3 + \cos \beta_1 \cos \gamma_2)$$

$$+ \theta (\cos \beta_2 \cos \gamma_3 + \cos \beta_1 \cos \gamma_3)$$

$$+ \theta (\cos \beta_1 \cos \gamma_1 + \cos \beta_1 \cos \gamma_3)$$

$$+ \theta (\cos \beta_1 \cos \gamma_2 + \cos \beta_2 \cos \gamma_1),$$

$$E = \delta \cos \gamma_1 \cos \alpha_1 + \theta \cos \gamma_2 \cos \alpha_2 + 2\cos \gamma_3 \cos \alpha_3$$

$$+ \theta (\cos \gamma_2 \cos \alpha_3 + \cos \gamma_3 \cos \alpha_2)$$

$$+ \theta (\cos \gamma_2 \cos \alpha_3 + \cos \gamma_3 \cos \alpha_2)$$

$$+ \theta (\cos \gamma_1 \cos \alpha_2 + \cos \gamma_1 \cos \alpha_3)$$

$$+ \theta (\cos \gamma_1 \cos \alpha_2 + \cos \gamma_1 \cos \alpha_3)$$

$$+ \theta (\cos \gamma_1 \cos \alpha_2 + \cos \gamma_2 \cos \alpha_1),$$

$$F = \delta \cos \alpha_1 \cos \beta_1 + \theta \cos \alpha_2 \cos \beta_2 + 2\cos \alpha_3 \cos \beta_3$$

$$+ \theta (\cos \alpha_2 \cos \beta_1 + \cos \alpha_1 \cos \beta_2)$$

$$+ \theta (\cos \alpha_2 \cos \beta_1 + \cos \alpha_1 \cos \beta_3)$$

On pourrait, au reste, déduire les équations (13) et (14) des équa-

+ $\hat{\mathcal{I}}$ (cos α_1 cos β_2 + cos α_2 cos β_1).

tions (7) et (8) à l'aide d'un échange opéré entre le système des demiaxes des x, y, z positives et le système des demi-axes OL, ON, ON.

Concevons, à présent, que les pressions ou tensions principales soient précisément celles qui ont été désignées par p_1 , p_2 , p_3 , et que, de ces trois pressions ou tensions, les deux dernières s'évanouissent. On aura

(15)
$$\mathbb{A} = \pm p_1$$
, $\mathbb{A} = 0$, $\mathbb{C} = 0$,

Par suite, les formules (13) et (14) donneront

(16)
$$\begin{cases} A = A \cos^2 \alpha_1, & B = A \cos^2 \beta_1, & C = A \cos^2 \gamma_1, \\ D = A \cos \beta_1 \cos \gamma_1, & E = A \cos \gamma_1 \cos \alpha_1, & F = A \cos \alpha_1 \cos \beta_1. \end{cases}$$

De même, si, en attribuant des valeurs nulles à deux des pressions ou tensions principales qui correspondent au point (α, γ, z) , on supposait la troisième pression ou tension principale dirigée suivant la droite qui forme avec les demi-axes des coordonnées positives, non plus les angles α_i , β_i , γ_i , mais les angles α , β , γ , on trouverait, en désignant par A cette pression prise avec le signe -, ou cette tension prise avec le signe +,

(17)
$$\begin{cases} A = A \cos^2 \alpha, & B = A \cos^2 \beta, & C = A \cos^2 \gamma, \\ D = A \cos \beta \cos \gamma, & E = A \cos \gamma \cos \alpha, & F = A \cos \alpha \cos \beta. \end{cases}$$

D'autre part, si l'on nomme ρ la densité naturelle du corps solide supposé élastique et homogène, ε la dilatation linéaire mesurée au point (x, y, z) suivant la droite dont il s'agit, et Ω la vitesse de propagation du son dans une verge rectangulaire infiniment mince, qui aurait pour axe cette même droite, on trouvera, en vertu de la formule (77) de l'article précédent,

$$\Omega^2 = \frac{\Lambda_0}{\rho \varepsilon}.$$

Enfin, si l'on désigne par ξ , η , ζ les déplacements infiniment petits du point (x, y, z) mesurés parallèlement aux axes coordonnés, on aura

[voir la formule (9) de la page 11]

(19)
$$\begin{cases} \varepsilon = \frac{\partial \xi}{\partial x} \cos^2 \alpha + \frac{\partial \eta}{\partial y} \cos^2 \beta + \frac{\partial \zeta}{\partial z} \cos^2 \gamma \\ + \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y}\right) \cos \beta \cos \gamma + \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z}\right) \cos \gamma \cos \alpha + \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x}\right) \cos \alpha \cos \beta; \end{cases}$$

puis on conclura des équations (17) et (18), combinées avec les formules (5) et (6) des pages 10 et 11,

$$(20) \begin{cases} a \frac{\partial \xi}{\partial x} + f \frac{\partial \eta}{\partial y} + e \frac{\partial \xi}{\partial z} + u \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + v \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right) + w \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right) = \rho \Omega^2 \varepsilon \cos^2 \alpha, \\ f \frac{\partial \xi}{\partial x} + b \frac{\partial \eta}{\partial y} + d \frac{\partial \zeta}{\partial z} + u' \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + v' \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right) + w' \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right) = \rho \Omega^2 \varepsilon \cos^2 \beta, \\ e \frac{\partial \xi}{\partial x} + d \frac{\partial \eta}{\partial y} + e \frac{\partial \zeta}{\partial z} + u'' \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + v'' \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right) + w'' \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right) = \rho \Omega^2 \varepsilon \cos^2 \gamma; \\ e \frac{\partial \xi}{\partial x} + u' \frac{\partial \eta}{\partial y} + u'' \frac{\partial \zeta}{\partial z} + d \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + w'' \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right) + v' \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right) = \rho \Omega^2 \varepsilon \cos \beta \cos \gamma, \\ e \frac{\partial \xi}{\partial x} + v' \frac{\partial \eta}{\partial y} + v'' \frac{\partial \zeta}{\partial z} + w'' \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + e \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right) + u \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right) = \rho \Omega^2 \varepsilon \cos \beta \cos \gamma. \\ e \frac{\partial \xi}{\partial x} + w' \frac{\partial \eta}{\partial y} + w'' \frac{\partial \zeta}{\partial z} + v' \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + u \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right) + f \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right) = \rho \Omega^2 \varepsilon \cos \alpha \cos \beta. \end{cases}$$

Cela posé, l'élimination des six quantités

(22)
$$\frac{\partial \xi}{\partial x}, \quad \frac{\partial \eta}{\partial y}, \quad \frac{\partial \zeta}{\partial z}, \quad \frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y}, \quad \frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z}, \quad \frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x}$$

entre les équations (19), (20) et (21) produira évidemment une autre équation de la forme

$$\begin{cases} \frac{1}{\rho\Omega^{2}} = 2\cos^{4}\alpha + 0\cos^{4}\beta + 4\cos^{4}\gamma \\ + 2\cos^{2}\beta\cos^{2}\beta\cos^{2}\gamma + 24\cos^{2}\gamma\cos^{2}\alpha + 24\cos^{2}\alpha\cos^{2}\beta \\ + 24\cos^{2}\alpha\cos\beta\cos\gamma + 24\cos^{3}\alpha\cos\gamma + 24\cos\alpha\cos\beta \\ + 24\cos^{2}\beta\cos\gamma + 24\cos\alpha\cos^{2}\beta\cos\gamma + 24\cos\alpha\cos\beta \\ + 24\cos\alpha\cos\beta\cos\gamma + 24\cos\alpha\cos\gamma + 24\cos\alpha\cos\gamma$$

A, O, C, D, E, E, u, v, w, u', v', w', u", v", w" désignant de nouvelles

constantes qui seront exprimées à l'aide des quinze coefficients a, b, c, d, e, f, u, v, w, u', v', w', u'', v'', w''. L'équation (23) fait voir comment la vitesse de propagation du son, dans une verge rectangulaire infiniment mince, extraite d'un corps élastique, varie avec les angles α , β , γ qui déterminent la direction que prenait dans ce même corps l'axe de la verge.

Concevons maintenant que, à partir du point (x, y, z), on porte sur la droite qui forme avec les demi-axes des coordonnées positives les angles α , β , γ , une longueur dont le carré représente le produit $\Omega \sqrt{\rho}$, et désignons par x + x, y + y, z + z les coordonnées de l'extrémité de cette longueur. On aura

(24)
$$\frac{x}{\cos\alpha} = \frac{y}{\cos\beta} = \frac{z}{\cos\gamma} = \pm \rho^{\frac{1}{3}}\Omega^{\frac{1}{2}},$$

et l'on tirera de la formule (23)

(25)
$$\begin{cases} \exists x^{1} + \emptyset y^{1} + \mathbb{C}z^{1} + 2\mathbb{D}y^{2}z^{2} + 2\mathbb{C}z^{2}x^{2} + 2\mathbb{E}x^{2}y^{2} \\ + 2x^{2}(\mathbb{U}yz + \mathbb{V}zx + \mathbb{W}xy) \\ + 2y^{2}(\mathbb{U}'yz + \mathbb{V}'zx + \mathbb{W}'xy) \\ + 2z^{2}(\mathbb{U}'yz + \mathbb{V}'zx + \mathbb{W}'xy) = 1. \end{cases}$$

Cette dernière équation appartient à une surface du quatrième degré qui a pour centre le point (x, y, z); et, comme le rayon vecteur mené de ce centre à un point de la surface est d'autant plus grand que la vitesse Ω est plus petite, on peut affirmer que la vitesse Ω acquiert une valeur minimum quand ce rayon vecteur devient un maximum, et une valeur maximum quand ce rayon vecteur devient un minimum. Dans l'un et l'autre cas, les coordonnées x, y, z de l'extrémité du rayon vecteur vérifient la formule

$$\begin{array}{l} \exists \, x^2 + \, \Im \, y^2 + \, \operatorname{\mathfrak{C}} \, z^2 + \, \operatorname{\mathfrak{U}} \, yz \, + \, \operatorname{\mathfrak{U}} \, zx \, + \, \operatorname{\mathfrak{U}} \, xy \, + \, \frac{y}{2x} (\operatorname{\mathfrak{U}} \, x^2 + \operatorname{\mathfrak{U}}' \, y^2 + \operatorname{\mathfrak{U}}'' \, z^2) \, + \, \frac{z}{2x} (\operatorname{\mathfrak{U}} \, x^2 + \operatorname{\mathfrak{U}}' \, y^2 + \operatorname{\mathfrak{U}}'' \, z^2) \\ = \, \operatorname{\mathfrak{L}} \, x^2 + \, \operatorname{\mathfrak{U}} \, y^2 + \, \operatorname{\mathfrak{U}} \, z^2 + \, \operatorname{\mathfrak{U}}' \, yz \, + \, \operatorname{\mathfrak{U}}' \, xy \, + \, \frac{z}{2y} (\operatorname{\mathfrak{U}} \, x^2 + \operatorname{\mathfrak{U}}' \, y^2 + \operatorname{\mathfrak{U}}'' \, z^2) \, + \, \frac{x}{2y} (\operatorname{\mathfrak{U}} \, x^2 + \operatorname{\mathfrak{U}}' \, y^2 + \operatorname{\mathfrak{U}}'' \, z^2) \\ = \, \operatorname{\mathfrak{C}} \, x^2 + \, \operatorname{\mathfrak{D}} \, y^2 + \, \operatorname{\mathfrak{U}} \, z^2 + \, \operatorname{\mathfrak{U}}'' \, yz \, + \, \operatorname{\mathfrak{U}}'' \, xy \, + \, \frac{x}{2z} (\operatorname{\mathfrak{U}} \, x^2 + \operatorname{\mathfrak{U}}' \, y^2 + \, \operatorname{\mathfrak{U}}'' \, z^2) \, + \, \frac{y}{2z} (\operatorname{\mathfrak{U}} \, x^2 + \, \operatorname{\mathfrak{U}}' \, y^2 + \, \operatorname{\mathfrak{U}}'' \, z^2). \end{array}$$

Donc par suite, lorsque la vitesse \(\Omega \) deviendra un maximum ou un minimum, on aura

$$\frac{2\cos^{2}\alpha + 2\cos^{2}\beta + \cos^{2}\gamma + 4\cos^{2}\cos\gamma + v\cos\beta \cos\gamma + v\cos\gamma \cos\alpha + w\cos\alpha \cos\beta}{+\frac{\cos\beta}{2\cos\alpha}(v\cos^{2}\alpha + w'\cos^{2}\beta + w'\cos^{2}\gamma) + \frac{\cos\gamma}{2\cos\alpha}(v\cos^{2}\alpha + v'\cos^{2}\beta + w'\cos^{2}\gamma)} \\
= 2\cos^{2}\alpha + \cos^{2}\beta + \cos^{2}\beta + v\cos\beta \cos\gamma + v'\cos\gamma \cos\alpha + w'\cos\alpha \cos\beta \\
+\frac{\cos\gamma}{2\cos\beta}(v\cos^{2}\alpha + w'\cos^{2}\beta + w'\cos^{2}\gamma) + \frac{\cos\alpha}{2\cos\beta}(v\cos^{2}\alpha + w'\cos^{2}\beta + w'\cos^{2}\gamma) \\
= \cos^{2}\alpha + \cos^{2}\beta + \cos^{2}\beta + v'\cos^{2}\gamma + w'\cos\beta \cos\gamma + v'\cos\gamma \cos\alpha + w'\cos\alpha \cos\beta \\
+\frac{\cos\alpha}{2\cos\gamma}(v\cos^{2}\alpha + w'\cos^{2}\beta + v'\cos^{2}\gamma) + \frac{\cos\beta}{2\cos\gamma}(v\cos^{2}\alpha + w'\cos^{2}\beta + w'\cos^{2}\gamma) \\
= \frac{1}{\rho\Omega^{2}}.$$

Si le corps solide que l'on considère offre trois axes d'élasticité rectangulaires entre eux et parallèles aux axes des x, y, z, les neuf coefficients

s'évanouiront; et les formules (20), réduites aux suivantes

(28)
$$\begin{cases} a \frac{\partial \xi}{\partial x} + f \frac{\partial n}{\partial y} + c \frac{\partial \zeta}{\partial z} = \rho \Omega^2 \varepsilon \cos^2 \alpha, \\ f \frac{\partial \xi}{\partial x} + b \frac{\partial n}{\partial y} + d \frac{\partial \zeta}{\partial z} = \rho \Omega^2 \varepsilon \cos^2 \beta, \\ e \frac{\partial \xi}{\partial x} + d \frac{\partial n}{\partial y} + c \frac{\partial \zeta}{\partial z} = \rho \Omega^2 \varepsilon \cos^2 \gamma, \end{cases}$$

donneront

$$\frac{\partial \xi}{\partial x} = \rho \Omega^2 \varepsilon \frac{(\operatorname{bc} - \operatorname{d}^2) \cos^2 \alpha + (\operatorname{dc} - \operatorname{cf}) \cos^2 \beta + (\operatorname{fd} - \operatorname{be}) \cos^2 \gamma}{\operatorname{abc} - \operatorname{ad}^2 - \operatorname{be}^2 - \operatorname{cf}^2 + 2 \operatorname{def}},$$

$$\frac{\partial \eta}{\partial y} = \rho \Omega^2 \varepsilon \frac{(\operatorname{dc} - \operatorname{cf}) \cos^2 \alpha + (\operatorname{ca} - \operatorname{c}^2) \cos^2 \beta + (\operatorname{cf} - \operatorname{ad}) \cos^2 \gamma}{\operatorname{abc} - \operatorname{ad}^2 - \operatorname{be}^2 - \operatorname{cf}^2 + 2 \operatorname{def}},$$

$$\frac{\partial \zeta}{\partial z} = \rho \Omega^2 \varepsilon \frac{(\operatorname{fd} - \operatorname{be}) \cos^2 \alpha + (\operatorname{cf} - \operatorname{ad}) \cos^2 \beta + (\operatorname{ab} - \operatorname{f}^2) \cos^2 \gamma}{\operatorname{abc} - \operatorname{ad}^2 - \operatorname{be}^2 - \operatorname{cf}^2 + 2 \operatorname{def}};$$

tandis que l'on tirera des formules (21)

(30)
$$\begin{cases} \frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} = \rho \Omega^2 \varepsilon \frac{\cos \beta \cos \gamma}{d}, \\ \frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} = \rho \Omega^2 \varepsilon \frac{\cos \gamma \cos \alpha}{e}, \\ \frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} = \rho \Omega^2 \varepsilon \frac{\cos \alpha \cos \beta}{l}. \end{cases}$$

Par suite, l'équation (23) deviendra

(31)
$$\begin{cases} \frac{1}{\rho \Omega^2} = \Im \cos^3 \alpha + \Im \cos^3 \beta + \mathfrak{C} \cos^3 \gamma \\ + 2 \Im \cos^2 \beta \cos^2 \gamma + 2 \mathfrak{C} \cos^2 \gamma \cos^2 \alpha + 2 \mathfrak{L} \cos^2 \alpha \cos^2 \beta, \end{cases}$$

les valeurs de A, B, C, D, E, f étant respectivement

(32)
$$\begin{cases} 3 = \frac{bc - d^2}{abc - ad^2 - bc^2 - cl^2 + 3del}, \\ 0 = \frac{ca - c^2}{abc - ad^2 - bc^2 - cl^2 + 2del}, \\ c = \frac{ab - l^2}{abc - ad^2 - bc^2 - cl^2 + 2del}; \end{cases}$$

et les diverses valeurs du produit $\Omega \sqrt{\rho}$ auront pour mesure les divers rayons vecteurs monés du point (x, y, z) à la surface représentée par l'équation

(34)
$$\Re x^4 + \Im y^4 + \mathbb{C} x^4 + 2 \Im y^2 x^2 + 2 \mathbb{C} x^2 x^2 + 2 \mathbb{F} x^2 y^2 = 1.$$

Alors aussi, en désignant par Ω' , Ω'' , Ω'' et par Ω_1 , Ω_2 , Ω_3 les valeurs de Ω correspondantes à des verges dont les axes seraient parallèles aux

nxes empedannés, un divisionament कि . काम्यू कर का विकास का प्राप्त है । axes on parties exales, on transcription

A l'aide des équations : l'es et « les presses que est face et le contract de la fleients 3, 0, C, 0, E, r. baroquisen a deidig a ". vilennen 12', 12 , 12', 12,, 12,, 12, 14, Agaers commo ogicio

la fornide (3) denuera

el, par consèquent,

Tollic est la relation क्या शहरबंध अध्यक्ष अध्यक्ष विकास कार्य : ५५८ ५ ५५ , ६५ , ६५ , ५५ , ५५ , ५५ of in vitorio 18 rolative à mos resignatione for a forme decoration of a constitue of the constitue of the constituents of the aver les trois aves des v_s y et z.

tribuées de la mémo manière par suppossit usas decres generales en la grante de la I'une d'entre elles et paralloles aux plants caux descrite elles et paralloles aux plants caux acces acces acces

april general en et en etter etter de la langual emmune

Abrilla de la company de la company de la grapa de la grapa de la franche de la franche de la franche de la company de la compan

· 是 · 養白水子 、 1849年 1848 - 184

Bauffrie, and alluste ett ifin inngen und fin und gebrungen utlichen ben aberten. In beiteilen

min na angraffeger ng ge . gind ponedigu, o g f g t ngabnagan Radabf

g Y git Bonn sta . I a, ilet i Tgentelte it fil n Baftefalen, if y gan. Mit ffittagen, et

ou, ce qui revient au même, à

(47)
$$\Omega = \left(\frac{5R}{3}\right)^{\frac{1}{2}} = \left(\frac{5R}{3\rho}\right)^{\frac{1}{2}}.$$

Cette dernière formule coïncide, comme on devait s'y attendre, avec l'équation (53) de la page 365 du IIIº Volume des *Exercices* (†).

(4) Okucrev do Cauchy, S. H. T. VIII, p. 493.

SUR LA RELATION

OUT EXPLO

ENTRE LES PRESSIONS OU TENSIONS

nt rymays ex

PAR DELY PLANS QUELLONGERS IN UN POINT DONNÉ D'EN COMPS SOLIDE.

THE SECOND SECOND

Nous avons prouve, dans le II Volume des Exercices (p. 48) (¹) que, si par un point donné d'un corps solide on mêne deux axes qui se conpent à angles droits, la projection sur le premier axe de la pression on tension supportée par un plan perpendiculaire au second sera équivalente à la projection sur ce second axe de la pression on tension supportée par un plan perpendiculaire au premier. Nous allons maintement faire voir que la même proposition s'étend au cas où les deux axes forment entre eux un angle quelconque. Effectivement, soient OL, OM deux axes ou plutôt deux demi-axes menés arbitrairement par un point donné d'un corps solide. Rapportons d'ailleurs tons les points du corps à trois axes rectangulaires des x, y, z; et nommons

les augles formés par les demi-axes OL, OM avec ceux des coordonnées positives.

Salent calla

 p_i, p_j les pressions on tensions supportées au point O, et du côté des demi-axes OL, OM, par des plans perpendiculaires à ces demi-axes :

(1) Officerex de Canchy, S. H. T. VII, p. 65.

 λ_1 , μ_4 , ν_4 ; λ_2 , μ_2 , ν_2 les angles formés avec les demi-axes des coordonnées positives par les pressions ou tensions p_4 , p_2 ;

 ϖ_1 l'angle formé par la direction de la force p_1 avec le demi-axe OM; ϖ_2 l'angle formé par la direction de la force p_2 avec le demi-axe OL;

A, F, E; F, B, D; E, D, C les projections algébriques des pressions on tensions supportées au point O, et du côté des coordonnées positives par trois plans perpendiculaires aux axes des x, y, z.

On fronvera

(1)
$$\begin{cases} p_1 \cos \lambda_1 = A \cos \alpha_1 + F \cos \beta_1 + E \cos \gamma_1, \\ p_1 \cos \mu_1 = F \cos \alpha_1 + B \cos \beta_1 + C \cos \gamma_1, \\ p_2 \cos \gamma_1 = E \cos \alpha_1 + D \cos \beta_1 + C \cos \gamma_1, \end{cases}$$

(3)
$$\cos \omega_1 = \cos \lambda_1 \cos \alpha_2 + \cos \mu_1 \cos \beta_2 + \cos \nu_1 \cos \gamma_2,$$

et, par suite,

$$(3) \begin{cases} P_1 \cos \varpi_1 & -A \cos \alpha_1 \cos \alpha_2 + B \cos \beta_1 \cos \beta_2 + C \cos \gamma_1 \cos \gamma_2 \\ & + D(\cos \beta_1 \cos \gamma_2 + \cos \beta_2 \cos \gamma_1) \\ & + E(\cos \gamma_1 \cos \alpha_2 + \cos \gamma_2 \cos \alpha_1) \\ & + F(\cos \alpha_1 \cos \beta_2 + \cos \alpha_2 \cos \beta_1). \end{cases}$$

Cefa posé, conceyons que l'on vienne à échanger entre eux les demiaxes OL, OM. En vertu de cet échange, le premier membre de l'équation (3) se transformera dans le produit $p_1 \cos w_2$, tandis que le second membre restera invariable. On aura, en conséquence,

$$(4) p_2 \cos \overline{w}_2 = p_1 \cos \overline{w}_1.$$

Or les produits $p_1 \cos \omega_1$, $p_2 \cos \omega_2$ représenteront, au signe près, les projections de la force p_1 sur la droite OM, et de la force p_2 sur la droite OL. On pourra donc énoncer la proposition suivante :

THEOREME. — Si, par un point donné d'un corps solide, on mêne deux axes qui forment entre eux un angle quelconque, la projection sur le premier axe de la pression ou tension supportée par un plan perpendiculaire

au second sera équivalente à la projection sur ce second axe de la pression ou tension supportée par un plan perpendiculaire au premier.

Hest bon d'observer que de ce théorème, ou de l'équation (3) qui le renferme, on peut immédiatement déduire les formules (7), (8), (14), (14), (13) et (14) de l'article précèdent.

SUR LES VIBRATIONS LONGITUDINALES

D'UNE

VERGE CYLINDRIQUE OU PRISMATIQUE

A BASE QUELCONQUE.

Considérons une verge élastique qui se confonde, dans l'état naturel, avec un prisme ou un cylindre droit, dont la base, renfermée dans un contour de forme arbitraire, offre des dimensions très petites. Rapportons tous les points de l'espace à trois axes rectangulaires des w, y, z, en prenant pour axe des w une droite comprise dans l'épaisseur de la verge et parallèle aux arêtes du prisme ou aux génératrices du cylindre dont il s'agit. Supposons d'ailleurs la verge soumise à une pression extérieure, mais constante, désignée par P; et soient, pendant le mouvement de la verge,

les projections algébriques des pressions ou tensions que les plans, menés par le point (x, y, z) parallèlement aux plans des y, z, des z, x et des x, y, supportent du côté des coordonnées positives. Soient enfin Q et R deux points correspondants à la même abscisse x, et situés, l'un sur l'axe des x, l'autre sur la surface latérale de la verge élastique. Si l'on nomme x, y, y les angles formés par la normale à cette surface avec les demi-axes des coordonnées positives, on aura

(2)
$$\cos \alpha = 0$$
, $\cos^2 \beta + \cos^2 \gamma = 1$,

ot, par suito,

(3)
$$\cos \gamma = \pm \sin \beta;$$

pure, on lar and councider by point (e.g. v. v) aver to point R, on tirera, destrounders () at la page 3-9 du HP Valume (!).

If y a plus, comme les valeurs de A, B, C, D, E, F ne varient pas sensiblement bu squ'on de place le point (x, y, z) d'une quantité très petite, les formules e processes at round en one a très peu pres exactes, si l'on substitue au point B le point Q. Apontons que cette conclusion restera venie, quelle que soit la position du point B sur le contour de la section faite dans la verge par un plan perpendiculaire à l'uxe des r et correspondant à l'abores et. Done, si ce contour présente une courbe continue, et dans la quelle la du extron de la normale varie d'un point à un autre par degre « morne tide», un point à considerer les formules (4) comme devant « tre verifice», pour un point Q clousi arbitrairement sur l'ave des r, quel que out l'augle y, ou, ce qui revient au meme, quel que out le rapport de coe y a cosy du anna donc alors, pour tous les points de la verge située sur l'ave des r,

Hest d'adhens stacthe de s'assurer, a proteziori, que les valeurs de B. C. D. E. T. toman a par les equations (G), vérifient les formules (G), quels que souent les auxles fet y.

So be contour de la section faite dans la verge par un plan perpendisulaire à l'axe des à offrait un polygone rectifique on curviligue, alors aux diverses positions, que pourrait prendre le point R, correspondraient au moins deux valeurs differentes du rapport $\frac{\cos \beta}{\cos \beta}$; d'où il est

N

aisé de conclure que les formules (4) entraîneraient toujours les formules (6).

Soient maintenant

φ la force accélératrice appliquée au point (x, y, z);

 ξ le déplacement de ce point dans le sens des x positives;

X la projection algébrique de la force φ sur l'axe des abscisses; ϱ la densité naturelle de la verge élastique.

On aura [voir les formules (25) et (28) de la page 166 du IIIe Volume (1)]

(7)
$$\frac{\partial \mathbf{A}}{\partial x} + \frac{\partial \mathbf{F}}{\partial y} + \frac{\partial \mathbf{E}}{\partial z} + \rho \mathbf{X} = \rho \frac{\partial^2 \zeta}{\partial t^2}.$$

D'ailleurs, quand on réduira les deux coordonnées y et z à zéro, les valeurs de B, C, D, E, F seront celles que déterminent les formules (6). Donc alors l'équation (7) donnera

(8)
$$\frac{\partial \Lambda}{\partial v} + \rho \mathbf{X} = \rho \frac{\partial^2 \xi}{\partial t^2}.$$

De plus, comme les formules (6) coïncident avec les formules (71) de la page 37, quand on suppose dans ces dernières $\mathfrak{C} = P$, les équations (5), (6) des pages 10 et 11, réunies aux formules (6) de la page 57, fourniront une valeur de A semblable à celle que nous avons précédemment obtenue (p. 36), en sorte qu'on aura encore

(9)
$$\Lambda = \rho \Omega^2 \frac{\partial \xi}{\partial x} + \Pi.$$

Seulement on devra remplacer x par P dans la seconde des formules (15) et (16) de la page 28, à l'aide desquelles on pourra toujours déterminer les deux coefficients Ω et II. Cela posé, on trouvera, pour tous les points de la verge situés sur l'axe des x,

(10)
$$\Omega^{2} \frac{\partial^{1} \xi}{\partial x^{2}} + X = \frac{\partial^{2} \xi}{\partial \ell^{2}}.$$

Ajoutons que, si la verge est terminée par deux plans perpendiculaires

(1) OEuwres de Cauchy, S. II, T. VIII, p. 202 et 203.

D'UNE VERGE CYLINDRIQUE OU PRISMATIQUE ETC. 59 à l'ave des le et dont chacun supporte une pression extérieure **p** différente de P, on aura, pour les deux extrémités de cette verge, supposées libres.

$$\Lambda = \emptyset$$
,

ou, ce qui revient au même,

(121)
$$\Omega^{4} \frac{\partial \xi}{\partial x} + \frac{\Pi + \mathfrak{p}}{\rho} = 0.$$

Au contraire, si l'une des extrémités devient fixe, il faudra, pour cette extrémité, remplacer la condition (12) par la suivante

$$(43) \qquad \qquad \xi = 0.$$

Dans le cas particulier où la force accélératrice \(\phi \) et les pressions extérieures P, \(\mathbf{p} \) s'évanouissent, l'équation (10) se réduit simplement à

$$\Omega^{1} \frac{\partial^{2} \xi}{\partial x^{3}} = \frac{\partial^{2} \xi}{\partial t^{3}},$$

et la condition (12) à

$$\frac{\partial \xi}{\partial x} \le \alpha,$$

L'équation (10) ou (14), réunie aux conditions (12), (13) ou (15), suffit évidenment pour déterminer le déplacement \(\xi\) d'un point quelconque de la verge élastique dans le sens de l'abscisso \(\xi\), et, par conséquent, les vibrations longitudinales de cette verge. Or ces équations
et conditions sont absolument indépendantes de la forme de la section
faite dans la verge élastique par un plan perpendiculaire à l'axe des \(\xi\),
et entièrement semblables aux formules qui déterminent les vibrations longitudinales d'une verge rectangulaire, c'est-\(\xi\)-dire aux formules (25), (67), (34), (36), (64) des pages 29, 31, 35 et 36. Donc
les vibrations longitudinales d'une verge prismatique ou cylindrique \(\xi\)
base quelconque seront les m\(\xi\) mes que celles d'une verge rectangulaire. Ainsi, en d\(\xi\) signant par \(\alpha\) la longueur d'une verge prismatique

ou cylindrique, et par N le plus petit nombre de vibrations longitudinales que cette verge, supposée libre, puisse exécuter pendant l'unite de temps, on aura toujours [voir la formule (78) de la page 39]

$$N = \frac{\Omega}{2\alpha}.$$

De plus, quelle que soit la forme de la section transversale, Ω représentera la vitesse de propagation du son dans la verge indéfiniment prolongée, et $\rho\Omega^2$ le rapport qui existe entre la pression Λ supporter par la section transversale et la dilatation longitudinale $\frac{\partial}{\partial x}$, dans le casoù les pressions extérieures s'évanonissent. Donc, en prenant ce rapport pour mesure de l'élasticité de la verge, on pourra encore affirmer que la vitesse de propagation du son dans la verge est proportionnelle à la racine carrée de son élasticité.

Les résultats que nous venons d'exposer subsistent, de quelque manière que l'élasticité du corps, d'où l'on suppose la verge extraite, varie quand on passe d'une direction à une autre. Ils coincident d'ait leurs avec ceux que M. Poisson a obtenus, en considerant une verge extraite d'un corps solide dont l'élasticité reste la même en tous sens. Seulement, dans ce cas particulier, le coefficient Ω devient indépendant de la direction que présentait, avant l'extraction, l'ave de la verge élastique.

SUR LA TORSION

TT LES

VIBRATIONS TOURNANTES D'UNE VERGE RECTANGULAIRE.

Considérons, comme ci-dessus (p. 23), une verge rectangulaire qui, dans l'état naturel, ait pour axe l'axe des.x, pour densité la constante ρ , et pour section transversale un rectangle dont les côtés 2h, 2i soient respectivement parallèles aux axes des y et z. Supposons d'ailleurs que, cette verge venant à se mouvoir, on désigne, au bout du temps t, par x, y, z les coordonnées de l'un de ses points, par X, Y, Z les projections algébriques de la force accélératrice appliquée au point (x,y,z), et par A, F, E; F, B, D; E, D, C les projections algébriques des pressions que supportent au même point, du côté des coordonnées positives, trois plans perpendiculaires aux axes des x, y, z. Soient encore x, ξ , y, η , z, ζ les coordonnées initiales du point (x,y,z), et concevons que les faces latérales de la verge, primitivement parallèles aux plans des x, y et des x, z, soient soumises aux pressions extérieures et constantes P, x. Enfin, désignons par

les valeurs des déplacements ξ , η , ζ , relatives au point qui, étant situé sur l'axe de la verge, correspond à l'abscisse w; et posons généralement

$$\gamma::\eta_{0,0}+r,\qquad z\sim \zeta_{0,0}+r',$$

Si l'on prend w, y, z pour variables indépendantes, les formules (8)

aisó de conclure que les formules (μ) entranceracent tempore : h < tm mules (6).

Soient maintenant

φ la force accélératrice appliquee au point (x, x, · · · ;

Ele déplacement de ce point dans le sensoles a positive :

X la projection algébrique de la force y sur l'axe des afectations p la densité naturelle de la verge élastopie

On aura [voir les formules (v)) et ϵ (8) de Le page avec du $Me(V_0)$ [uma (1)]

(7)
$$\frac{dX}{dx} + \frac{dF}{dy} + \frac{dV}{dz} = X - \frac{dz}{dz^2}$$

D'ailleurs, quand on réduira les deux coordinances a set a la general le valours de B. C. D. E. F seront celles que determement les benevables en pour donners l'équation (7) donners

(8)
$$\frac{d\Lambda}{dx} + p\Lambda = \frac{d^3}{dx^3}$$

De plus, comme les formules et i rennentent avec les terracrites et a politic la page 37, quand on suppose dans ever derniseres et . P. Les espirations (5), (6) des pages en et erre rennies aux lerraristes en en la page 37, fourniront une valeur de Assantiable a celle apar assant assant précédemment obtenue (p. 36), en soute qu'our aux rassars.

$$A = 642^{\circ} \frac{d\zeta}{dz} + 41.$$

Settlement on devra remplacer of par P dates la secuniale also has mules (13) et (16) de la page est, a l'aide de equivilles aca passiona festi jours déterminer les deux coefficients la et II, tarta passe, seu trasseras, pour tous les points de la verge situes sur l'axiolisme,

$$4D\frac{d^3}{dx^2} = \sqrt{-\frac{d^2\xi}{dt^2}}.$$

Ajoutons que, si la verge est terminée par deux plans perpenduculaires

(1) Okuerov de Cauchy, S. II, T. VIII, p. wes et 163

BINE VERSE EXECUTED OF PRESENTING LIFE, on

Nem violente errici. I filonico otro i chila e ariada i otrada e trada el lettelese peretri coellos unatra peretri coellos

g Ì

Ran arm v 👫 🥻 e u m and o no society. The english manders of the society of the

L'a equa abunca and come come in a c. de annage and a considerant of call a factor of possibility of the point quelle rendered and action can be accessed as a considerant of the point quelle rendered and action and call and call

on cylimbrique, et par N by plus perister sort and a second and a second and a makes que cette verge, employee fisher appearance of the second determine, an arms temperated as for the second as

$$X = \frac{12}{2}$$

De plus, quelle que sont la torre de lle contrate de la contrate de viles en de propagations du contrate de propagations du contrate de la contrate de contr

SUR LA TORSION

3 & R /

AHBRAHRAS TOURNAMES D'UNE VERGE RECTANGULARDE

the Perstantine I, of pour est l'exches e, pour densite la constante per pour des tentes et, of pour est l'exches e, pour densite la constante per pour de stroit de constante per pour de stroit de constante per distribute de la constante per distribute de la constante de l'entre de la constante de l'entre de la constante de l'entre de l'en

how a charge of a subplacement of the following an point qui, clant situe our l'axe de la xerge, a arrespond a l'abscisse et; et posons generale ment

THE MAN AND THE TAX

5) From present x, y, z pour variables independentes, les formules (8)

62 SUR LA TORSION ET LES VIBRATIONS TOURNANTES et (9) de la page 331 du IIIº Volume (1), savoir

$$\begin{cases} \frac{\partial \mathbf{A}}{\partial x} + \frac{\partial \mathbf{F}}{\partial y} + \frac{\partial \mathbf{E}}{\partial z} + \rho \mathbf{X} = \rho \frac{\partial^2 \xi}{\partial \ell^2}, \\ \frac{\partial \mathbf{F}}{\partial x} + \frac{\partial \mathbf{B}}{\partial y} + \frac{\partial \mathbf{D}}{\partial z} + \rho \mathbf{Y} = \rho \frac{\partial^2 \eta}{\partial \ell^2}, \\ \frac{\partial \mathbf{E}}{\partial x} + \frac{\partial \mathbf{D}}{\partial y} + \frac{\partial \mathbf{C}}{\partial z} + \rho \mathbf{Z} = \rho \frac{\partial^2 \zeta}{\partial \ell^2}, \end{cases}$$

(3) $E = 0, \quad D = 0, \quad C = -P,$

subsisteront, les trois premières pour un point quelconque de la verge en mouvement, les trois dernières pour r'=-i, r'=i, tandis que l'on aura, pour r=-h et pour r=h,

(4)
$$F = 0, \quad B = -\mathfrak{D}, \quad D = 0.$$

Quant aux pressions A, B, C, D, E, F, elles soront déterminées par les formules (11) et (12) de la page 12, si la verge élastique est extraite d'un corps solide qui offre trois axes d'élasticité parallèles aux axes coordonnés, et, dans le cas contraire, par les formules (5), (6) des pages 10 et 11. De plus, on prouvera, par des raisonnements semblables à ceux dont nous avons fait usage à la page 248 du III° Volume (3), que, si l'on veut prendre pour variables indépendantes r et r' à la place des deux coordonnées y, z, il suffira d'écrire partout r au lieu de y, et r' au lieu de z, dans les formules dont il s'agit et dans les équations (2). On aura donc alors, pour tous les points de la verge élastique,

(5)
$$\begin{cases} \frac{\partial \mathbf{A}}{\partial x} + \frac{\partial \mathbf{F}}{\partial r} + \frac{\partial \mathbf{E}}{\partial r'} + \rho \, \mathbf{X} = \rho \, \frac{\partial^2 \xi}{\partial \ell^2}, \\ \frac{\partial \mathbf{F}}{\partial x} + \frac{\partial \mathbf{B}}{\partial r} + \frac{\partial \mathbf{D}}{\partial r'} + \rho \, \mathbf{Y} = \rho \, \frac{\partial^2 \eta}{\partial \ell^2}, \\ \frac{\partial \mathbf{E}}{\partial x} + \frac{\partial \mathbf{D}}{\partial r} + \frac{\partial \mathbf{C}}{\partial r'} + \rho \, \mathbf{Z} = \rho \, \frac{\partial^2 \xi}{\partial \ell^2}. \end{cases}$$

(1) OEuvres de Cauchy, S. II, T. VIII, p. 385.

(2) Ibid., p. 292.

Ajoutons que, pour tout point situé sur l'axe de la verge, on aura évidemment

$$y' - \eta = y - \eta_{0,0} = 0, \quad z - \zeta = z - \zeta_{0,0} = 0,$$

et, par suite.

$$r=0, \quad r'=0.$$

Cela posé, si l'on développe les quantités

$$\xi$$
, q , ξ ; X, Y, Z; A, B, C; D, E, F,

considérées comme fonctions de x, r, r' et t, suivant les puissances ascendantes de r, r', et si l'on joint, en conséquence, à la formule

(6)
$$\xi = \xi_{0,0} + \xi_{1,0}r + \xi_{0,1}r' + \frac{1}{2}(\xi_{2,0}r^2 + 2\xi_{1,1}rr' + \xi_{0,2}r'^2) + \dots$$

toutes celles qu'on en tire quand on y remplace la lettre ξ par l'une des lettres η , ζ ; X, Y, Z; A, B, C, D, E, F, on déduira sans peine des équations (5), réunies aux conditions (3) et (4), celles qui serviront à déterminer, pendant le mouvement de la verge élastique, les valeurs des fonctions

c'est-à-dire les déplacements d'un point de l'axe mesurés dans le sens des coordonnées x, y, z. En opérant de cette manière, on se trouvera immédiatement ramené aux formules (25), (26) et (44) des pages 29 et 32. De plus, lorsqu'on connaîtra les valeurs des fonctions $\xi_{0,0}$, $\eta_{0,0}$, $\zeta_{0,0}$, on pourra fixer les valeurs correspondantes de

à l'aide des formules (23) et (42) des pages 29 et 32, et la valeur approchée de ξ à l'aide de l'équation

(7)
$$\xi := \xi_{0,0} + \xi_{1,0} r + \xi_{0,1} r',$$

Quant aux valeurs approchées des déplacements η , ζ , que l'on peut considérer comme devant être fournies par les équations

(8)
$$\eta = \eta_{0,0} + \eta_{1,0}r + \eta_{0,1}r', \qquad \zeta = \zeta_{0,0} + \zeta_{1,0}r + \zeta_{0,1}r',$$

64 SUR LA TORSION ET LES VIBRATIONS TOURNANTES elles dépendront non seulement des quantités $\eta_{0,0}, \zeta_{0,0}, \eta_{1,0}, \zeta_{0,1}, \ldots$ mais encore des suivantes :

$$(0)$$
 $\eta_{0,1}, \zeta_{1,0}$

Il est important d'observer que, si, les pressions P, & étant nulles, la verge élastique se meut de manière que chaque point de son axe demeure immobile, les trois fonctions

$$\xi_{0,0}, \quad \gamma_{0,0}, \quad \xi_{0,0}$$

s'évanouiront, ainsi que les valeurs de $\xi_{1,0}$, $\eta_{1,0}$, $\xi_{0,1}$, $\zeta_{0,1}$ déterminées par les formules (23) et (42) des pages 29 et 32. Alors les vibrations de la verge seront du genre de celles que l'on nomme tournantes; et la valeur approchée de ξ sera nulle, tandis que les valeurs approchées de η , ζ , réduites à

(10)
$$\eta = \eta_{0,1} r', \qquad \zeta = \zeta_{1,0} r,$$

dépendront des quantités (9). Il y a plus, si l'on désigne généralement par ι le rayon vecteur mené, au bout du temps ι , du point $(x, \gamma_{n,0}, \zeta_{n,0}, \zeta_{n,0})$ au point (x, γ, z) , et par π l'angle que forme ce rayon vecteur avec le demi-axe des γ positives, on aura

(11).
$$y = \eta_{0,0} := r = i \cos \overline{w}, \quad z = \zeta_{0,0} := r' = i \sin \overline{w};$$

tandis que, en nommant $v-\delta$ la perpendiculaire primitivement abaissée du point $(x-\xi, y-\eta, z-\zeta)$ sur l'axe de la verge, et $w-\psi$ l'un des angles formés par cette perpendiculaire avec l'axe des y, on trouvera

(12)
$$y - \eta = (z - \delta)\cos(\varpi - \psi), \quad z - \zeta = (z - \delta)\sin(\varpi - \psi).$$

D'ailleurs on tirera, des formules (8), (11) et (12) combinées entre elles,

(13)
$$\begin{cases} \left(1-\frac{\delta}{\varepsilon}\right)\cos(\varpi-\psi) = (1-\eta_{1,0})\cos\varpi - \eta_{0,1}\sin\varpi, \\ \left(1-\frac{\delta}{\varepsilon}\right)\sin(\varpi-\psi) = -\zeta_{1,0}\cos\varpi + (1-\zeta_{0,1})\sin\varpi; \end{cases}$$

puis, on en conclura, en considérant les quantités $\frac{\partial}{\partial x}$, ψ comme infiniment petites du premier ordre, et négligeant les termes du second ordre,

(14)
$$\begin{cases} \frac{\partial}{\nu} \cos \varpi - \psi \sin \varpi = \eta_{1,0} \cos \varpi + \eta_{0,1} \sin \varpi, \\ \frac{\partial}{\nu} \sin \varpi + \psi \cos \varpi = \zeta_{1,0} \cos \varpi + \zeta_{0,1} \sin \varpi, \end{cases}$$

ou, ce qui revient au même,

(15)
$$\begin{cases} \frac{\partial}{\nu} = \frac{\eta_{1,0} + \zeta_{0,1}}{2} + \frac{\eta_{1,0} - \zeta_{0,1}}{2} \cos 2\varpi + \frac{\eta_{0,1} + \zeta_{1,0}}{2} \sin 2\varpi, \\ \psi = \frac{\zeta_{1,0} - \eta_{0,1}}{2} + \frac{\zeta_{1,0} + \eta_{0,1}}{2} \cos 2\varpi + \frac{\zeta_{0,1} - \eta_{1,0}}{2} \sin 2\varpi. \end{cases}$$

Done, lorsque la fonction $\xi_{0,0}$ et, par suite, les quantités $\eta_{1,0}$, $\zeta_{0,1}$ s'évanouiront, on aura simplement

(16)
$$\frac{\partial}{t} = \frac{\eta_{0,1} + \zeta_{1,0}}{2} \sin 2\pi, \quad \psi = \frac{\zeta_{1,0} - \eta_{0,1}}{2} + \frac{\zeta_{1,0} + \eta_{0,1}}{2} \cos 2\pi.$$

Enfin, si δ s'évanouit, les équations (16) donneront

$$\eta_{0,1} + \zeta_{1,0} = 0$$

et

(18)
$$\psi = \frac{\zeta_{1,0} - \eta_{0,1}}{2} = \zeta_{1,0} = -\eta_{0,1}.$$

D'autre part, il est facile de reconnaître que, dans les diverses formules qui précèdent, $\frac{\delta}{\tau}$ et ψ représentent à très peu près la dilatation linéaire mesurée suivant le rayon v, et l'angle de torsion de la verge élastique autour du point situé sur l'axe des x à la distance x de l'origine. Donc, pour évaluer cet angle, ainsi que pour découvrir les lois des vibrations tournantes, il est nécessaire de fixer les valeurs des quantités $\eta_{0,1}$, $\zeta_{1,0}$ que renferment les formules (10) et (18). Tel est l'objet dont nous allons nous occuper.

Considérons d'abord le cas où l'on suppose la verge élastique extraite OBurros de C. - S. II, t. IX.

66 SUR LA TORSION ET LES VIBRATIONS TOURNANTES

Done alors, parmi les fonctions

(22)
$$A_{0,0}, B_{0,0}, C_{0,0}, B_{0,0}, E_{0,0}, F_{0,0}$$

$$\begin{cases} A_{1,0}, & B_{1,0}, & C_{1,0}, & D_{1,0}, & E_{1,0}, & F_{1,0}; \\ A_{0,1}, & B_{0,1}, & C_{0,1}, & D_{0,1}, & E_{0,1}, & F_{0,1}, \end{cases}$$

les trois suivantes

(24)
$$D_{0,0} = d(\eta_{0,1} + \zeta_{1,0}),$$

(25)
$$\mathbf{E}_{1,0} = e\left(\frac{\partial \xi_{1,0}}{\partial x} + \xi_{1,1}\right), \qquad \mathbf{F}_{0,1} = f\left(\frac{\partial \eta_{0,1}}{\partial w} + \xi_{1,1}\right)$$

seront celles qui dépendrent des quantités

70.19 \$1.00

D'ailleurs, si l'on développe, suivant les puissances ascendantes de r, r', les deux membres de chacune des formules (3) et (4), en observant que les formules (4) subsistent pour $r=\pm h$, et les formules (3) pour $r'=\pm i$, on trouvera : τ^o quel que soit r',

$$\left(\begin{array}{c} F_{0,0} + F_{0,1} r' + F_{0,2} \frac{r'^2}{2} + \ldots + \frac{\hbar^2}{2} \left(F_{2,0} + F_{2,1} r' + F_{2,2} \frac{r'^2}{2} + \ldots \right) + \ldots = 0, \\ B_{0,0} + B_{0,1} r' + B_{0,2} \frac{r'^2}{2} + \ldots + \frac{\hbar^2}{2} \left(B_{2,0} + B_{2,1} r' + B_{2,2} \frac{r'^2}{2} + \ldots \right) + \ldots = 0, \\ D_{0,0} + D_{0,1} r' + D_{0,2} \frac{r'^2}{2} + \ldots + \frac{\hbar^2}{2} \left(D_{2,0} + D_{2,1} r' + D_{2,2} \frac{r'^2}{2} + \ldots \right) + \ldots = 0, \end{array} \right)$$

et

(27)
$$\begin{cases} F_{1,0} + F_{1,1}r' + \dots + \frac{h^2}{6} (F_{3,0} + F_{3,1}r' + \dots) + \dots = 0, \\ B_{1,0} + B_{1,1}r' + \dots + \frac{h^2}{6} (B_{3,0} + B_{3,1}r' + \dots) + \dots = 0, \\ D_{1,0} + D_{1,1}r' + \dots + \frac{h^2}{6} (D_{3,0} + D_{3,1}r' + \dots) + \dots = 0; \end{cases}$$

2º quel que soit r,

(28)
$$\begin{cases} E_{0,0} + E_{1,0} r + E_{2,0} \frac{r^2}{2} + \ldots + \frac{t^2}{2} \left(E_{0,2} + E_{1,2} r + E_{2,2} \frac{r^2}{2} + \ldots \right) + \ldots = 0, \\ D_{0,0} + D_{1,0} r + D_{2,0} \frac{r^2}{2} + \ldots + \frac{t^2}{2} \left(D_{0,2} + D_{1,2} r + D_{2,2} \frac{r^2}{2} + \ldots \right) + \ldots = 0, \\ C_{0,0} + C_{1,0} r + C_{2,0} \frac{r^2}{2} + \ldots + \frac{t^2}{2} \left(C_{0,2} + C_{1,2} r + C_{2,2} \frac{r^2}{2} + \ldots \right) + \ldots = -P, \end{cases}$$

et

$$\begin{cases} E_{0,1} + E_{1,1} r + \dots + \frac{i^2}{6} (E_{0,3} + E_{1,3} r + \dots + \dots + \dots = 0, \\ D_{0,1} + D_{1,1} r + \dots + \frac{i^2}{6} (D_{0,3} + D_{1,3} r + \dots + \dots = 0, \\ C_{0,1} + C_{1,1} r + \dots + \frac{i^2}{6} (C_{0,3} + C_{1,2} r + \dots + \dots = 0. \end{cases}$$

68 SUR LA TORSION ET LES VIBRATIONS TOURNANTES

Done, par suite, en regardant les épaisseurs 2h, 2i comme des quantités très petites du premier ordre, et négligeant, dans les formules (26), (27), (28), (29), les termes du quatrième ordre, ou aura, non seulement

(30)
$$\begin{cases} F_{0,0} + \frac{\hbar^2}{2} F_{2,0} = 0, & B_{0,0} + \frac{\hbar^2}{2} B_{2,0} = -\mathfrak{D}, & D_{0,0} + \frac{\hbar^2}{2} D_{2,0} = 0, \\ E_{0,0} + \frac{t^2}{2} E_{0,2} = 0, & D_{0,0} + \frac{t^2}{2} D_{0,2} = 0, & C_{0,0} + \frac{t^2}{2} C_{0,2} = P, \end{cases}$$

$$\begin{cases} F_{0,1} + \frac{h^2}{2} F_{3,1} = 0, & B_{0,1} + \frac{h^2}{2} B_{2,1} = 0, & D_{0,1} + \frac{h^2}{2} D_{2,1} = 0, \\ E_{0,1} + \frac{i^2}{6} E_{0,3} = 0, & D_{0,1} + \frac{i^3}{6} D_{0,3} = 0, & C_{0,1} + \frac{i^2}{6} C_{0,3} = 0, \end{cases}$$

$$(32) \begin{cases} F_{1,0} + \frac{h^2}{6} F_{3,0} = 0, & B_{1,0} + \frac{h^2}{6} B_{3,0} = 0, & D_{1,0} + \frac{h^2}{6} D_{4,0} = 0, \\ E_{1,0} + \frac{i^2}{2} E_{1,2} = 0, & D_{1,0} + \frac{i^2}{3} D_{1,2} = 0, & C_{1,0} + \frac{i^2}{3} C_{1,2} = 0, \end{cases}$$

mais encore

(33)
$$D_{0,2} + \frac{h^2}{2}D_{2,2} = 0, \quad D_{2,0} + \frac{i^2}{2}D_{2,2} = 0,$$

et

(34)
$$B_{1,1} + \frac{\hbar^2}{6}B_{3,1} = 0, \qquad C_{1,1} + \frac{\hbar^2}{6}C_{1,3} = 0;$$

puis on tirera des équations (30) et (33)

(35)
$$D_{0,0} = -\frac{h^2}{2}D_{2,0} = -\frac{\ell^2}{2}D_{0,2} = \frac{h^2 \ell^2}{4}D_{2,2}.$$

On aura donc, aux quantités près du quatrième ordre,

(36)
$$D_{0,0} = 0$$
,

ou, ce qui revient au même,

(37)
$$\eta_{0,1} + \zeta_{1,0} = 0;$$

puis, en posant comme ci-dessus

$$(38) \qquad \qquad \psi = \zeta_{1,0} = -\eta_{0,1},$$

on en conclum

$$(\beta_{1,1}) = -\sigma \Big(\xi_{1,1} + \frac{\partial \psi}{\partial v}\Big), \qquad \xi_{0,1} = f\Big(\xi_{1,1} - \frac{\partial \psi}{\partial v}\Big).$$

Il reste à former deux équations qui soient propres à déterminer les valeurs des deux incommes ψ et $\xi_{1,1}$, ou, ce qui revient au même, les valeurs des deux fonctions $E_{1,0}$, $F_{0,1}$. Or on a déjà, en vertu des formules (31) et (32),

$$F_{0,4} = -\frac{f^2}{2} \, F_{0,4}, \qquad E_{1,0} = -\frac{f^2}{2} \, E_{1,0},$$

De plus, si l'on développe, suivant les puissances ascendantes de $r,\,r$, les premiers et seconds membres des équations (5), on en tirera

(11)
$$\frac{dX_{t,1}}{dx^{2}} + F_{t,1} + E_{t,2} + \rho X_{t,1} - \rho \frac{\partial^{2} \tilde{z}_{t,1}}{\partial t^{2}};$$

$$\begin{cases} \frac{\partial F_{0,1}}{\partial x} + B_{1,1} + B_{0,2} + \rho Y_{0,1} - \rho \frac{\partial^2 q_{0,1}}{\partial t^2}, \\ \frac{\partial F_{2,3}}{\partial x} + B_{3,1} + B_{3,2} + \rho Y_{2,1} - \rho \frac{\partial^2 q_{2,1}}{\partial t^2}; \end{cases}$$

$$\begin{cases} \frac{d \mathbf{E}_{1,0}}{dx} + \mathbf{D}_{2,0} + \mathbf{C}_{1,1} + \rho \mathbf{Z}_{1,0} - \rho \frac{\partial^{3} \zeta_{1,0}}{\partial \mathcal{E}^{3}}, \\ \frac{d \mathbf{E}_{1,0}}{dx} + \mathbf{D}_{2,0} + \mathbf{C}_{1,0} + \rho \mathbf{Z}_{1,0} - \rho \frac{\partial^{3} \zeta_{1,0}}{\partial \mathcal{I}^{2}}; \end{cases}$$

et, en éliminant $B_{1,\alpha},\,G_{1,\alpha}$ entre ces dernières, après y avoir substitué les valeurs de

$$(44) \hspace{35pt} B_{x_{i1}}, \hspace{35pt} C_{t_{i1}x}, \hspace{35pt} D_{\theta_{i}x}, \hspace{35pt} D_{x_{i0}}, \hspace{35pt} D_{x_{i2}}, \hspace{35pt} F_{x_{i1}}, \hspace{35pt} E_{t_{i3}}$$

déduites des formules (34), (35) et (40), on trouvern

(45)
$$\frac{dA_{1,1}}{dv} = 2\left(\frac{F_{0,1}}{h^2} + \frac{F_{0,0}}{t^2}\right) + \rho X_{1,1} - \rho \frac{\partial^4 \xi_{0,0}}{\partial t^2},$$

$$46) = \frac{a}{3} \frac{dF_{0,1}}{dx} = \frac{h}{3} \frac{D_{0,0}}{dx} + \rho \left(Y_{0,1} + \frac{h^2}{6} Y_{0,1} \right) - \rho \left(\frac{d^2 \eta_{0,1}}{dt^2} + \frac{h^2}{6} \frac{d^2 \eta_{0,1}}{dt^2} \right),$$

$$(47) = \frac{4}{3}\frac{dE_{1,0}}{dt^{0}} + \frac{4}{3}\frac{D_{0,0}}{\partial t^{2}} + \rho\left(Z_{1,0} + \frac{t^{2}}{6}Z_{1,2}\right) - \rho\left(\frac{\partial^{2}\zeta_{1,0}}{\partial t^{2}} + \frac{t^{2}}{6}\frac{\partial^{2}\zeta_{1,2}}{\partial t^{2}}\right).$$

70 SUR LA TORSION ET LES VIBRATIONS TOURNANTES

Enfin, si l'on néglige les termes du quatrième ordre par rapport aux épaisseurs 2h et 2i: 1° dans l'équation (45) multipliée par h^2i^2 ; 2° dans celle que produit l'élimination de $D_{0,0}$ entre les formules (46) et (47), on obtiendra les deux suivantes :

(48)
$$h^2 \mathbf{E}_{1,0} + i^2 \mathbf{F}_{0,1} = 0,$$

$$(49) \quad \frac{2}{3} \frac{d(h^2 \mathbf{E}_{1,0} - i^2 \mathbf{F}_{0,1})}{dx} + \rho(h^2 \mathbf{Z}_{1,0} - i^2 \mathbf{Y}_{0,1}) - \rho \frac{\partial^2 (h^2 \zeta_{1,0} - i^2 \gamma_{0,1})}{\partial t^2}.$$

Les équations (48) et (49), étant réunies aux formules (38) et (39), fourniront évidemment le moyen de déterminer, avec la fonction de α désignée par $\xi_{i,i}$, l'angle ψ , et, par conséquent, les inconnues $\eta_{\theta,i}$, $\zeta_{i,\theta}$. En effet, on tirera des formules (38), (39) et (48)

(50)
$$h^2 \zeta_{1,0} - i^2 \eta_{0,1} = (h^2 - i^2) \psi,$$

(51)
$$\frac{\mathbf{E}_{1,0}}{i^{2}} = \frac{-\mathbf{F}_{0,1}}{h^{2}} = \frac{\mathbf{E}_{1,0}}{\frac{e}{e}} = \frac{\mathbf{F}_{0,1}}{\frac{f}{e}} = \frac{2}{\frac{e^{2}}{e^{2}}} \frac{\partial \psi}{\partial x},$$

(52)
$$h^{2}\mathbf{E}_{1,0} - i^{2}\mathbf{F}_{0,1} = h^{2}i^{2}\left(\frac{\mathbf{E}_{1,0}}{i^{2}} - \frac{\mathbf{F}_{0,1}}{h^{2}}\right) = \frac{h^{2}i^{2}}{\frac{i^{2}}{h} + \frac{h^{2}}{h}}\frac{\partial\psi}{\partial x}.$$

Done l'équation (49) pourra être réduite à

(53)
$$\frac{8}{3} \frac{h^2 \ell^2}{\frac{i^2}{6} + \frac{\hbar^2}{6}} \frac{\partial^2 \psi}{\partial x^2} + \rho (h^2 Z_{1,0} - i^2 Y_{0,1}) - \rho (h^2 + i^2) \frac{\partial^2 \psi}{\partial \ell^2},$$

ou, ce qui revient au même, à

$$\frac{8}{3} \frac{1}{\frac{i^2}{c} + \frac{h^2}{l}} \frac{\partial^2 \psi}{\partial x^2} + \rho \left(\frac{Z_{l_1 \rho}}{l^2} - \frac{Y_{\theta, l}}{h^2} \right) - \rho \left(\frac{1}{l^2} + \frac{1}{h^2} \right) \frac{\partial^2 \psi}{\partial l^2}.$$

Ajoutons que, après avoir fixé la valeur de ψ à l'aide de l'équation (54), on conclura des formules (39) et (48)

(55)
$$\xi_{1,1} = \frac{\frac{l^2}{c} - \frac{h^2}{l}}{\frac{l^2}{c} + \frac{h^2}{l}} \frac{\partial \psi}{\partial \omega}.$$

Concevons à présent que la verge élastique soit extraite d'un corps solide qui cesse d'offrir trois axes d'élasticité rectangulaires et paral·lèles aux axes des x, y, z. En raisonnant comme ci-dessus, on établira encore les équations (36), (48), (49). Seulement les valeurs de $D_{q,0}$, E_{130} , $F_{q,1}$ ne seront plus fournies par les équations (24) et (25), auxquelles on devra substituer de nouvelles formules que nous allons indiquer.

Si, dans les équations (30) et dans celles des équations (31), (32) qui ne renferment pas les fonctions $E_{i,0}$, $F_{0,1}$, on néglige les termes proportionnels au carré de h ou de i, on obtiendra non sculement la formule (36), mais encore les suivantes :

(56)
$$B_{0,0} = -\mathfrak{C}, \quad C_{0,0} = -P, \quad E_{0,0} = 0, \quad F_{0,0} = 0;$$

(57)
$$B_{0,1} = 0$$
, $C_{0,1} = 0$, $D_{0,1} = 0$, $E_{0,1} = 0$

(58)
$$B_{1,0} = 0$$
, $C_{1,0} = 0$, $D_{1,0} = 0$, $F_{1,0} = 0$

$$A_{0,0} = a \frac{\partial \xi_{0,0}}{\partial x} + i \eta_{1,0} + c \zeta_{0,1} + u (\eta_{0,1} + \zeta_{1,0}) + v \left(\frac{\partial \zeta_{0,0}}{\partial x} + \xi_{0,1} \right) + w \left(\frac{\partial \eta_{0,0}}{\partial x} + \xi_{1,0} \right),$$

$$B_{0,0} = i \frac{\partial \xi_{0,0}}{\partial x} + b \eta_{1,0} + d \zeta_{0,1} + u' (\eta_{0,1} + \zeta_{1,0}) + v' \left(\frac{\partial \zeta_{0,0}}{\partial x} + \xi_{0,1} \right) + w' \left(\frac{\partial \eta_{0,0}}{\partial x} + \xi_{1,0} \right),$$

$$C_{0,0} = e \frac{\partial \xi_{0,0}}{\partial x} + d \eta_{1,0} + c \zeta_{0,1} + u'' (\eta_{0,1} + \zeta_{1,0}) + v'' \left(\frac{\partial \zeta_{0,0}}{\partial x} + \xi_{0,1} \right) + w'' \left(\frac{\partial \eta_{0,0}}{\partial x} + \xi_{1,0} \right),$$

$$B_{0,0} = u \frac{\partial \xi_{0,0}}{\partial x} + u' \eta_{1,0} + u'' \zeta_{0,1} + d (\eta_{0,1} + \zeta_{1,0}) + w'' \left(\frac{\partial \zeta_{0,0}}{\partial x} + \xi_{0,1} \right) + v' \left(\frac{\partial \eta_{0,0}}{\partial x} + \xi_{1,0} \right),$$

$$E_{0,0} = v \frac{\partial \xi_{0,0}}{\partial x} + v' \eta_{1,0} + v'' \zeta_{0,1} + w'' (\eta_{0,1} + \zeta_{1,0}) + e \left(\frac{\partial \zeta_{0,0}}{\partial x} + \xi_{0,1} \right) + u \left(\frac{\partial \eta_{0,0}}{\partial x} + \xi_{1,0} \right),$$

$$F_{0,0} = w \frac{\partial \xi_{0,0}}{\partial x} + w' \eta_{1,0} + w'' \zeta_{0,1} + v' (\eta_{0,1} + \zeta_{1,0}) + u \left(\frac{\partial \zeta_{0,0}}{\partial x} + \xi_{0,1} \right) + f \left(\frac{\partial \eta_{0,0}}{\partial x} + \xi_{1,0} \right);$$

72 SUR LA TORSION ET LES VIBRATIONS TOURNANTES

$$\begin{array}{l} A_{0,1} = a \, \frac{\partial \xi_{0,1}}{\partial x} + f \eta_{1,1} \, + e \, \xi_{0,2} \, + \, u \, (\eta_{0,2} + \zeta_{1,1}) + v \, \left(\frac{\partial \xi_{0,1}}{\partial x} + \xi_{0,2} \right) + w \, \left(\frac{\partial \eta_{0,1}}{\partial x} + \xi_{1,1} \right), \\ B_{0,1} = f \, \frac{\partial \xi_{0,1}}{\partial x} + b \, \eta_{1,1} \, + d \, \zeta_{0,2} \, + \, u' \, (\eta_{0,2} + \zeta_{1,1}) + v' \, \left(\frac{\partial \xi_{0,1}}{\partial x} + \xi_{0,2} \right) + w' \, \left(\frac{\partial \eta_{0,1}}{\partial x} + \xi_{1,1} \right), \\ C_{0,1} = e \, \frac{\partial \xi_{0,1}}{\partial x} + d \, \eta_{1,1} \, + e \, \zeta_{0,2} \, + u'' \, (\eta_{0,2} + \zeta_{1,1}) + v'' \, \left(\frac{\partial \xi_{0,1}}{\partial x} + \xi_{0,2} \right) + w'' \, \left(\frac{\partial \eta_{0,1}}{\partial x} + \xi_{1,1} \right), \\ D_{0,1} = u \, \frac{\partial \xi_{0,1}}{\partial x} + u' \, \eta_{1,1} + u'' \, \xi_{0,2} \, + \, d \, (\eta_{0,2} + \zeta_{1,1}) + w'' \, \left(\frac{\partial \xi_{0,1}}{\partial x} + \xi_{0,2} \right) + v' \, \left(\frac{\partial \eta_{0,1}}{\partial x} + \xi_{1,1} \right), \\ E_{0,1} = v \, \frac{\partial \xi_{0,1}}{\partial x} + v' \, \eta_{1,1} + v'' \, \xi_{0,2} \, + w'' \, (\eta_{0,2} + \zeta_{1,1}) + e \, \left(\frac{\partial \xi_{0,1}}{\partial x} + \xi_{0,2} \right) + v \, \left(\frac{\partial \eta_{0,1}}{\partial x} + \xi_{1,1} \right), \\ F_{0,1} = w \, \frac{\partial \xi_{0,1}}{\partial x} + w' \, \eta_{1,1} + w'' \, \xi_{0,2} + v' \, (\eta_{0,2} + \zeta_{1,1}) + u \, \left(\frac{\partial \xi_{0,1}}{\partial x} + \xi_{0,2} \right) + f \, \left(\frac{\partial \eta_{0,1}}{\partial x} + \xi_{1,1} \right), \\ A_{1,0} = a \, \frac{\partial \xi_{1,0}}{\partial x} + f \, \eta_{2,0} + e \, \xi_{1,1} + u \, (\eta_{1,1} + \xi_{2,0}) + v \, \left(\frac{\partial \xi_{1,0}}{\partial x} + \xi_{1,1} \right) + w \, \left(\frac{\partial \eta_{1,0}}{\partial x} + \xi_{2,0} \right), \\ B_{1,0} = f \, \frac{\partial \xi_{1,0}}{\partial x} + b \, \eta_{3,0} + d \, \xi_{1,1} + u' \, (\eta_{1,1} + \xi_{2,0}) + v' \, \left(\frac{\partial \xi_{1,0}}{\partial x} + \xi_{1,1} \right) + w' \, \left(\frac{\partial \eta_{1,0}}{\partial x} + \xi_{2,0} \right), \\ C_{1,0} = e \, \frac{\partial \xi_{1,0}}{\partial x} + d \, \eta_{3,0} + e \, \xi_{1,1} + u'' \, (\eta_{1,1} + \xi_{2,0}) + v'' \, \left(\frac{\partial \xi_{1,0}}{\partial x} + \xi_{1,1} \right) + w'' \, \left(\frac{\partial \eta_{1,0}}{\partial x} + \xi_{2,0} \right), \\ D_{1,0} = u \, \frac{\partial \xi_{1,0}}{\partial x} + u' \, \eta_{2,0} + u'' \, \xi_{1,1} + u'' \, (\eta_{1,1} + \xi_{2,0}) + w'' \, \left(\frac{\partial \xi_{1,0}}{\partial x} + \xi_{1,1} \right) + v' \, \left(\frac{\partial \eta_{1,0}}{\partial x} + \xi_{2,0} \right), \\ E_{1,0} = v \, \frac{\partial \xi_{1,0}}{\partial x} + v' \, \eta_{3,0} + v'' \, \xi_{1,1} + w'' \, (\eta_{1,1} + \xi_{2,0}) + e \, \left(\frac{\partial \xi_{1,0}}{\partial x} + \xi_{1,1} \right) + f \, \left(\frac{\partial \eta_{1,0}}{\partial x} + \xi_{2,0} \right), \\ F_{1,0} = w \, \frac{\partial \xi_{1,0}}{\partial x} + w' \, \eta_{2,0} + w'' \, \xi_{1,1} + w'' \, (\eta_{1,1} + \xi_{2,0}) + e \, \left(\frac{\partial \xi_{1,0}}{$$

'Cela posé, admettons que l'on substitue les valeurs des fonctions

(62)
$$B_{0,0}, C_{0,0}, D_{0,0}, E_{0,0}, F_{0,0}$$

tirées des formules (59) dans les cinq équations (36) et (56). On pourra de ces cinq équations déduire les yaleurs des cinq quantités

(63)
$$\eta_{1,0}, \zeta_{0,1}, \eta_{0,1} + \zeta_{1,0}, \frac{\partial \zeta_{0,0}}{\partial x} + \xi_{0,1}, \frac{\partial \eta_{0,0}}{\partial x} + \xi_{1,0},$$

exprimées en fonction de

(64)
$$\frac{\partial \xi_{0,0}}{\partial x}, \quad \mathbf{P} \quad \text{et} \quad \mathfrak{P}.$$

En opérant de cette manière, on retrouvera nécessairement les formules (23) et (42) des pages 29 et 32, savoir,

(65)
$$\xi_{1,0} + \frac{\partial \eta_{0,0}}{\partial x} = h \frac{\partial \xi_{0,0}}{\partial x} + \Pi', \qquad \eta_{1,0} = l \frac{\partial \xi_{0,0}}{\partial x} + \Pi',$$

(66)
$$\dot{\xi}_{0,1} + \frac{\partial \zeta_{0,0}}{\partial x} = A \frac{\partial \dot{\xi}_{0,0}}{\partial x} + \Pi_1, \quad \zeta_{0,1} = \mathcal{L} \frac{\partial \dot{\xi}_{0,0}}{\partial x} + \Pi_2;$$

II', II", II, II2 étant des fonctions linéaires de P et de & déterminées par des équations semblables aux formules (21) de la page 29; et, pour fixer ensuite la valeur de

$$\eta_{0,1} + \zeta_{1,0}$$

il sussira de combiner les équations (65), (66) avec l'équation (36) présentée sous la forme

(67)
$$\begin{cases} u \frac{\partial \xi_{0,0}}{\partial x} + u' \eta_{1,0} + u'' \zeta_{0,1} + d (\eta_{0,1} + \zeta_{1,0}) \\ + w'' \left(\frac{\partial \zeta_{0,0}}{\partial x} + \xi_{0,1} \right) + v' \left(\frac{\partial \eta_{0,0}}{\partial x} + \xi_{1,0} \right) = 0, \end{cases}$$

en sorte qu'on aura

(68)
$$\begin{cases} n_{0,1} + \zeta_{1,0} = -\frac{\mathbf{u} + \mathbf{u}'\mathbf{1} + \mathbf{u}''\mathbf{L} + \mathbf{v}'\mathbf{k} + \mathbf{w}''\mathbf{A}}{\mathrm{d}} \frac{\partial \zeta_{0,0}}{\partial x} \\ -\frac{\mathbf{u}'\mathbf{H}'' + \mathbf{u}''\mathbf{H}_2 + \mathbf{v}'\mathbf{H}' + \mathbf{w}''\mathbf{H}_1}{\mathrm{d}}. \end{cases}$$

L'équation (68) est celle qui, dans l'hypothèse admise, devra remplacer le système des formules (24) et (36). D'autre part, si, après avoir substitué les valeurs de

(69)
$$B_{0,1}, C_{0,1}, D_{0,1}, E_{0,1}$$

tirées des équations (60), dans les formules (57), on déduit de cesformules les valeurs de

(70)
$$\eta_{1,1}, \zeta_{0,2}, \eta_{0,2} + \zeta_{1,1}, \frac{\partial \zeta_{0,1}}{\partial x} + \xi_{0,2},$$

pour les substituer à leur tour dans la dernière des équations (60), on OEures de C. — 5. II, t. IX.

74 SUR LA TORSION ET LES VIBRATIONS TOURNANTES obtiendra un résultat de la forme

(71)
$$\mathbf{F}_{0,1} = \mathbf{g} \frac{\partial \xi_{0,1}}{\partial x} + \mathbf{h} \left(\frac{\partial \eta_{0,1}}{\partial x} + \xi_{1,1} \right),$$

g, h désignant des coefficients qui dépendront des constantes a, b, c, d, c, f, u, v, w, u', v', w', u", v", w". Pareillement les formules (58) et (61) donneront

(73)
$$E_{1,0} = j \frac{\partial \xi_{1,0}}{\partial x} + i \left(\frac{\partial \xi_{1,0}}{\partial x} + \xi_{1,1} \right),$$

j, i désignant de nouveaux coefficients analogues à ceux que renferme l'équation (71). Si maintenant on combine les formules (71), (72) avec les formules (48) et (49), on trouvera successivement

(73)
$$\frac{\mathbf{E}_{1,0}}{t^2} = \frac{-\mathbf{F}_{0,1}}{h^2} = \frac{\frac{\mathbf{E}_{1,0}}{\mathbf{i}} - \frac{\mathbf{F}_{0,1}}{\mathbf{i}}}{\frac{t^2}{\mathbf{i}} + \frac{h^2}{\mathbf{h}}} - \frac{\frac{\mathbf{j}}{\mathbf{i}} \frac{\partial \xi_{1,0}}{\partial x}}{\frac{t^2}{\mathbf{i}} \frac{\partial \xi_{0,1}}{\partial x} + \frac{\partial (\xi_{1,0} - \eta_{0,1})}{\partial x}}{\frac{t^2}{\mathbf{i}} \frac{h^2}{\mathbf{h}}},$$

(74)
$$h^{2}\mathbf{E}_{1,0} - i^{2}\mathbf{F}_{0,1} = \frac{2h^{2}t^{2}}{\frac{i^{2}}{1} + \frac{h^{2}}{h}} \begin{bmatrix} \frac{1}{1} \frac{\partial \xi_{1,0}}{\partial .v} - \frac{\mathbf{g}}{h} \frac{\partial \xi_{0,1}}{\partial .v} + \frac{\partial (\xi_{1,0} - \eta_{0,1})}{\partial .v} \end{bmatrix},$$

$$\begin{pmatrix}
\frac{4}{3} \frac{h^{2} \dot{t^{2}}}{\frac{i^{2}}{1} + \frac{h^{2}}{h}} \left[\frac{\partial^{2}(\zeta_{1,0} - \eta_{0,1})}{\partial x^{2}} + \frac{j}{i} \frac{\partial^{2} \xi_{1,0}}{\partial x^{2}} - \frac{g}{h} \frac{\partial^{2} \xi_{0,1}}{\partial x^{2}} \right] + \rho(h^{2} Z_{1,0} - i^{2} Y_{0,1}) \\
= \rho \frac{\partial^{2}(h^{2} \zeta_{1,0} - i^{2} \eta_{0,1})}{\partial t^{2}};$$

puis on en conclura, en ayant égard à la première des équations (65) et à la première des équations (66)

$$\begin{pmatrix} \frac{4}{3} \frac{h^{2} t^{2}}{t^{2} + h^{2}} \left[\frac{\partial^{2} (\zeta_{1,0} - \eta_{0,1})}{\partial x^{2}} + \left(\frac{1}{1} k - \frac{g}{h} A \right) \frac{\partial^{3} \xi_{0,0}}{\partial x^{3}} - \frac{1}{1} \frac{\partial^{3} \eta_{0,0}}{\partial x^{3}} + \frac{g}{h} \frac{\partial^{3} \zeta_{0,0}}{\partial x^{3}} \right] + \rho (h^{2} Z_{1,0} - t^{2} Y_{0,1})$$

$$= \rho \frac{\partial^{2} (h^{2} \zeta_{1,0} - t^{2} \eta_{0,1})}{\partial t^{2}}.$$

Les formules (68) et (76) serviront à déterminer les deux inconnues $\eta_{0,1},\,\zeta_{1,0},\,$ quand on aura fixé, à l'aide des méthodes exposées dans l'un

des derniers articles, les valeurs de $\xi_{0,0}$, $\gamma_{0,01}$, $\zeta_{0,0}$, c'est-à-dire les déplacements d'un point situé sur l'axe de la verge élastique. Ajoutons que l'on tirera des formules (48), (71) et (72)

$$(77) \qquad \xi_{1,1} = -\frac{1}{\frac{h^2}{h} + \frac{t^2}{i}} \left[\frac{h^2}{h} \left(\frac{\partial \xi_{1,0}}{\partial x} + \frac{j}{i} \frac{\partial \xi_{1,0}}{\partial x} \right) + \frac{t^2}{i} \left(\frac{\partial \eta_{0,1}}{\partial x} + \frac{g}{h} \frac{\partial \xi_{0,1}}{\partial x} \right) \right],$$

ou, ce qui revient au môme,

翳

$$(78) \quad \xi_{1,1} = -\frac{\frac{h^2}{\ln} \left(\frac{\partial \zeta_{1,0}}{\partial x} - \frac{\mathbf{j}}{\mathbf{i}} \frac{\partial^2 \eta_{0,0}}{\partial x^2} \right) + \frac{\iota^2}{\mathbf{i}} \left(\frac{\partial \eta_{0,1}}{\partial x} - \frac{\mathbf{g}}{\mathbf{h}} \frac{\partial^2 \zeta_{0,0}}{\partial x^2} \right) + \left(\frac{\mathbf{j}}{\mathbf{i}} \frac{h^2}{\mathbf{h}} \mathbf{h} - \frac{\mathbf{g}}{\mathbf{h}} \frac{i^2}{\mathbf{i}} \mathbf{A} \right) \frac{\partial^2 \xi_{0,0}}{\partial x^2}}{\frac{h^2}{\ln} + \frac{i^2}{\mathbf{i}}},$$

 et que l'équation (78), étant jointe aux formules (68), (76), fournira le moyen de déterminer l'inconnue ξ_{1,1}.

Les formules (68), (76), (78) se simplifient lorsqu'on suppose chaque point de l'axe des x immobile pendant la durée du mouvement, et les pressions P, x réduites à zéro. Alors, en effet, les quantités

$$\xi_{0,0}$$
, $\eta_{0,0}$, $\zeta_{0,0}$, Π' , Π'' , Π_1 , Π_2

étant nulles aussi bien que les pressions P, Q, l'équation (68) se réduira simplement à la formule (37); et, en posant de nouveau

$$\psi = \zeta_{1,0} = -\eta_{0,1}$$

on tirera: 1º de la formule (76)

(79)
$$\frac{8}{3} \frac{h^2 i^2}{\frac{i^2}{1} + \frac{h^2}{1!}} \frac{\partial^2 \psi}{\partial x^2} + \rho (h^2 Z_{1,0} - i^2 Y_{0,1}) = \rho (h^2 + i^2) \frac{\partial^2 \psi}{\partial t^2},$$

ou, ce qui revient au même,

(80)
$$\frac{8}{3} \frac{1}{\frac{i^2}{1} + \frac{h^2}{h}} \frac{\partial^2 \psi}{\partial x^2} + \rho \left(\frac{Z_{1,0}}{t^2} - \frac{Y_{0,1}}{h^2} \right) = \rho \left(\frac{1}{t^2} + \frac{1}{h^2} \right) \frac{\partial^2 \psi}{\partial t^2};$$

76 SUR LA TORSION ET LES VIBRATIONS TOURNANTES

2º de la formule (78)

(81)
$$\xi_{1,1} = \frac{i^2}{\frac{1}{i^2} - \frac{h^2}{h}} \frac{\partial \psi}{\partial x}.$$

Dans la même hypothèse, on aura encore

(82)
$$\xi_{0,1} = 0$$
, $\xi_{1,0} = 0$, $\eta_{1,0} = 0$, $\zeta_{0,1} = 0$.

Par suite, les formules (71), (72) donneront

(83)
$$F_{0,1} = h\left(\xi_{1,1} - \frac{\partial \psi}{\partial x}\right), \qquad E_{1,0} = i\left(\xi_{1,1} + \frac{\partial \psi}{\partial x}\right),$$

et les formules (8) se réduiront aux formules (10).

Il est maintenant facile d'apprécier le motif qui nous a déterminés à conserver les termes proportionnels au carré de h ou de i, dans les formules (40), c'est-à-dire dans celles des formules (31), (32) qui renferment les fonctions $E_{1,0}$, $F_{0,1}$. Effectivement, si l'on négligeait sans exception tous les termes dépendants de h et de i dans les formules (31), (32), on en déduirait, non-seulement les équations (57), (58), mais encore les deux suivantes

$$F_{0,1}=0, E_{1,0}=0;$$

et l'on conclurait de ces dernières, combinées avec les formules (83),

$$\xi_{1,1} = 0$$
, $\frac{\partial \psi}{\partial x} = 0$.

Or l'équation

$$\frac{\partial \Psi}{\partial x} = 0$$

exprime que l'angle ψ est indépendant de l'abscisse ω , et cette circonstance ne peut s'accorder avec le mouvement d'une verge tordue, mais seulement avec le mouvement d'une verge qui tourne sur elle-même. Donc, pour découvrir, dans tous les cas, les phénomènes qui résultent de la torsion d'une verge élastique, il est nécessaire de conserver les termes proportionnels au carré de h ou de i dans les formules (40); ce

qui revient à supposer que les fonctions

$$F_{2,1}, E_{1,2}$$

acquièrent des valeurs numériques très considérables relativement à celles des quantités

$$\ddot{\zeta}_{1,1}, \quad \frac{\partial \psi}{\partial x}$$

que renferment les fonctions Fo,,, E,,o.

Lorsque les forces accélératrices Y, Z deviennent constantes, les quantités $Y_{0,1}$, $Z_{1,0}$ s'évanouissent; et alors, en faisant, pour abréger,

(84)
$$\frac{1}{\rho\Omega^2} = \frac{3}{8} \left(\frac{l^2}{1} + \frac{h^3}{h} \right) \left(\frac{1}{l^2} + \frac{t}{h^2} \right),$$

on tire de la formule (80)

(85)
$$\Omega^2 \frac{\partial^2 \psi}{\partial x^2} = \frac{\partial^2 \psi}{\partial t^2}.$$

Dans le cas particulier où la verge est extraite d'un corps solide qui offre trois axes d'élasticité rectangulaires et parallèles aux axes des x, y, z, les formules (71), (72) se réduisent aux formules (25), et l'on a, par suite,

$$(86) i = e, h = f,$$

(87)
$$\frac{1}{\rho \Omega^2} = \frac{3}{8} \left(\frac{t^2}{c} + \frac{h^2}{f} \right) \left(\frac{1}{t^2} + \frac{1}{h^2} \right).$$

Enfin, si l'élasticité du corps solide est la même dans tous les sens, on trouvera

$$c = f,$$

et la formule (87) donnera simplement

(89)
$$\frac{1}{\rho \Omega^{2}} = \frac{3}{81} \frac{(i^{2} + h^{2})^{2}}{i^{2}h^{2}}.$$

Les équations (68), (76), (80), etc., subsistent pour une valeur quelconque de l'abscisse x. Mais, lorsqu'on veut effectuer la détermi-

78 SUR LA TORSION ET LES VIBRATIONS TOURNANTES

nation complète des inconnues $\eta_{0,1}$, $\zeta_{1,0}$, ψ , il faut à ces équations en joindre d'autres qui se rapportent aux deux extrémités de la verge élastique. Concevons, pour fixer les idées, cette verge terminée, dans son état naturel, par deux plans perpendiculaires à l'axe des \boldsymbol{x} , et qui supportent en chacun de leurs points une nouvelle pression désignée par \boldsymbol{y} . On aura, pour ces mêmes points,

$$(90) A = -\mathfrak{V}, F = 0, E = 0.$$

quelles que soient les valours de r, r'; et, par suite,

(91)
$$F_{0,1} = 0, \quad E_{1,0} = 0;$$

puis on tirera des formules (91) combinées avec l'équation (74)

(92)
$$\frac{\mathrm{j}}{1} \frac{\partial \xi_{1,0}}{\partial x} - \frac{\mathrm{g}}{\mathrm{h}} \frac{\partial \xi_{0,1}}{\partial x} + \frac{\partial (\zeta_{1,0} - \eta_{0,1})}{\partial x} = \mathrm{o}.$$

Ajoutons que, si, les pressions extérieures étant nulles, l'axe de la verge reste immobile, la condition (92) pourra être, en vertu des formules (38) et (82), réduite à la condition plus simple

(93)
$$\frac{\partial \psi}{\partial x} = 0.$$

Les formules (92) et (93) sont relatives au cas où l'on suppose libres les deux extrémités de la verge élastique. Si ces deux extrémités devenaient fixes, ou plutôt si, les extrémités de l'axe étant fixes, chacun des points renfermés dans les plans qui terminent la verge était assujetti de manière à rester toujours placé sur une même droite parallèle à l'axe, on aurait, pour les abscisses correspondantes aux plans dont il s'agit, non seulement

(94)
$$\xi_{0,0} = 0, \quad \eta_{0,0} = 0, \quad \zeta_{0,0} = 0,$$

mais encore

$$\eta = 0, \quad \zeta = 0,$$

quelles que fussent les valeurs de r, r', et par conséquent

(96)
$$\eta_{0,1} = 0, \quad \zeta_{1,0} = 0.$$

Donc, en supposant l'axe immobile et les pressions extérieures nulles, on trouverait, pour les deux extrémités de la verge,

$$(97) \qquad \qquad \psi = 0$$

Si l'on voulait découvrir les phénomènes produits par la torsion d'une verge élastique, non plus dans l'état de mouvement, mais dans l'état d'équilibre, il suffirait de supprimer les dérivées relatives à t, savoir

$$\frac{\partial^2 (h^2 \zeta_{1,0} - i^2 \eta_{0,1})}{\partial t^2} \quad \text{et} \quad \frac{\partial^2 \psi}{\partial t^2},$$

dans les équations (76), (80), (85), dont la dernière se réduirait à

$$\frac{\partial^2 \psi}{\partial x^2} = 0.$$

Nous ajouterons ici une remarque importante. Si, après avoir coupé la verge, prise dans l'état d'équilibre ou de mouvement, par un plan perpendiculaire à l'axe des x, et correspondant à l'abscisse x, on considère le système des pressions ou tensions supportées par les divers éléments de la section ainsi formée, à ce système correspondra une force principale dont les projections algébriques sur les axes des x, y, z seront évidemment représentées par les intégrales

et un moment linéaire principal dont la projection algébrique sur l'axe des x sera exprimée par l'intégrale

(100)
$$\int_{-h}^{h} \int_{-t}^{t} (r \mathbf{E} - r' \mathbf{F}) dr dr',$$

pourvu que l'on fasse coïncider le centre des moments avec le point où le plan sécant rencontrera l'axe de la verge. En d'autres termes, l'expression (100) représentera, au signe près, ce qu'on peut nommer le moment du système des pressions ou tensions ci-dessus mentionnées par rapport à l'axe de la verge; le moment d'une force par rapport à un

80 SUR LA TORSION ET LES VIBRATIONS TOURNANTES

axe (') n'étant autre chose que le produit de cette force projetée sur un plan perpendiculaire à l'axe par la plus courte distance entre l'axe et la droite suivant laquelle elle agit. D'autre part, si, dans les intégrales (99) et (100), on substitue, pour A, F, E, leurs valeurs approchées fournies par les équations

(101)
$$\begin{cases} A = A_{0,0} + A_{1,0}r + A_{0,1}r', \\ F = F_{0,0} + F_{1,0}r + F_{0,1}r', \\ E = E_{0,0} + E_{1,0}r + E_{0,1}r', \end{cases}$$

ces intégrales deviendront respectivement

(102)
$$4\Lambda_{0,0}hi, 4F_{0,0}hi, 4E_{0,0}hi$$

et

(103)
$$\int_{-h}^{h} \int_{-l}^{l} (r^{2} \mathbf{E}_{1,0} - r^{2} \mathbf{F}_{0,1}) dr dr' = \frac{4}{3} (h^{2} \mathbf{E}_{1,0} - l^{2} \mathbf{F}_{0,1}) hi.$$

Donc, en vertu de la formule (74), l'expression (100) pourra être remplacée par le produit

(104)
$$\frac{\frac{8}{8}h^3i^3}{\frac{i^2}{i} + \frac{h^2}{h}} \left[\frac{j}{i} \frac{\partial \xi_{1,0}}{\partial x} - \frac{g}{h} \frac{\partial \xi_{0,1}}{\partial x} + \frac{\partial (\zeta_{1,0} - \eta_{0,1})}{\partial x} \right].$$

Dans le cas particulier où les déplacements des points situés sur l'axe de la verge sont nuls, ainsi que les pressions extérieures, le produit (104) se réduit à

$$\frac{\frac{16}{3}h^3t^3}{\frac{t^2}{1}+\frac{h^2}{h}}\frac{\partial\psi}{\partial x}.$$

Dans le même cas, si l'on applique à une extrémité libre de la verge une force dont la direction soit comprise dans un plan perpendiculaire

(1) La définition de ce moment, placée au bas de la page 256 du IIIº Volume (a), convient seulement au cas où la force est comprise dans un plan perpendiculaire à l'anc.

(a) Dennes de Parelo C 11 m terre e s..

à l'axe, et dont le moment, par rapport à cet axe, soit désigné par ex, si d'ailleurs on suppose le point d'application de la force lié invariablement avec les autres points du plan, ou du moins avec ceux qui se trouvent placés sur la base de la verge élastique, on aura, pour l'extrémité dont il s'agit,

(106)
$$\frac{\frac{16}{3}h^3i^3}{\frac{l^2}{1}+\frac{h^1}{h}}\frac{\partial \psi}{\partial x} = \Im C.$$

Pour montrer une application des formules précédentes, considérons d'abord l'équilibre d'une verge rectangulaire qui, dans l'état naturel, ait pour axe l'axe des x, et qui offre une extrémité fixe, l'autre extrémité étant sollicitée, comme on vient de le dire, par une force comprise dans un plan perpendiculaire à l'axe. Si l'on suppose les pressions extérieures nulles, ainsi que la valeur de x correspondante à l'extrémité fixe, et les déplacements d'un point quelconque de l'axe, si de plus on nomme x la longueur de cet axe, on devra intégrer l'équation (98) de manière à vérifier pour x o la condition (97), et pour x a la condition (106). Or on tirera de l'équation (98) réunie à la condition (106)

(107)
$$\frac{\partial \psi}{\partial x} = \frac{3}{16} \frac{\partial \ell}{h^3 i^3} \left(\frac{i^2}{\mathbf{i}} + \frac{h^2}{h} \right),$$

et de l'équation (107) réunie à la condition (97)

$$\psi = \frac{3}{16} \frac{\partial \ell}{h^3 i^3} \left(\frac{i^2}{1} + \frac{h^2}{h} \right) x.$$

Il suit de cette dernière formule: 1° que l'inconnue \(\psi\), ou l'angle de torsion de la verge roctangulaire, mesuré dans un plan quelconque perpendiculaire à l'axe, est en raison directe, non seulement de la distance qui sépare ce plan de l'extrémité fixe, mais encore du moment de la force appliquée à l'extrémité libre; 2° que, si la section transversale de la verge varie en demeurant semblable à elle-même, l'angle \(\psi\) variera en raison inverse du carré de l'aire de cette section, ou, ce qui

82 SUR LA TORSION ET LES VIBRATIONS TOURNANTES

revient au même, en raison inverse de la quatrième puissance de l'épaisseur 2h ou 2i. Ces résultats, semblables à ceux que M. Poisson a obtenus, en considérant la torsion d'une verge cylindrique à base circulaire, subsisteraient pareillement pour une verge cylindrique ou prismatique à base quelconque. Lorsque les épaisseurs 2h, 2i deviennent égales entre elles, la formule (108) se réduit à

(109)
$$\psi = \frac{3 \, \text{M}}{(2 \, h)^3} \left(\frac{1}{1} + \frac{1}{1} \right) x.$$

Ajoutons que, si l'épaisseur 2i devient très petite relativement à l'épaisseur 2h, on aura sensiblement

$$\psi = \frac{3}{10} \frac{\partial V}{h} \frac{v}{h^2},$$

Donc alors l'angle de torsion sera en raison inverse de la plus grande épaisseur et du cube de la plus petite.

Concevons à présent qu'après avoir tordu la verge élastique, en laissant à sa place chaque point de l'axe, on abandonne cette verge à ellemème sans lui appliquer aucune force. Les variables $\xi_{0,0}$, $\eta_{0,0}$, $\zeta_{0,0}$ conserveront des valeurs nulles pendant toute la durée du mouvement, et la verge exécutera des vibrations tournantes dont les lois se trouveront exprimées par l'intégrale de l'équation (85). De plus, les vitesses initiales des différents points de la verge étant supposées nulles, les valeurs de $\frac{\partial a}{\partial t}$ et de $\frac{\partial \zeta}{\partial t}$, tirées des formules (10) et (38), savoir

$$r'\frac{d\eta_{0,1}}{dt} = -r'\frac{\partial\psi}{\partial t}, \qquad r\frac{\partial\zeta_{1,0}}{\partial t} = r\frac{\partial\psi}{\partial t},$$

devront s'évanouir à l'origine du mouvement, quels que soient r et r'. Par conséquent, la valeur initiale de $\frac{\partial \psi}{\partial t}$ devra se réduire à zéro. Soit d'ailleurs f(w) la valeur initiale de l'angle ψ . Si les deux extrémités de la verge élastique restent libres, l'équation (85), intégrée de manière que la condition (93) soit remplie pour w = 0 et pour w = a, donnera

| voir, dans le IIIº Volume, la formule (118) de la page 268] (')

(111)
$$\psi = \frac{1}{a} \sum_{n} \cos \frac{n\pi\Omega t}{a} \cos \frac{n\pi\alpha}{a} \int_{0}^{a} \cos \frac{n\pi\mu}{a} f(\mu) d\mu,$$

le signe S s'étendant à toutes les valeurs entières positives, nulles ou négatives de n. Si, au contraire, les deux extrémités de la verge deviennent fixes, il faudra substituer la condition (97) à la condition (93), et, par suite, la valeur générale de ψ sera semblable à la valeur de ξ_0 fournie par l'équation (114) de la page 268 du III Volume (2), en sorte qu'on aura

(112)
$$\psi = \frac{1}{a} \sum_{\alpha} \cos \frac{n\pi \Omega t}{a} \sin \frac{n\pi x}{a} \int_{0}^{a} \sin \frac{n\pi \mu}{a} f(\mu) d\mu.$$

Il est facile d'assigner la nature de la fonction f(x) qui réduit la valeur de ψ fournie par l'équation (111) à un seul terme de la forme

(113)
$$\psi = \frac{e}{a} \cos \frac{n \pi \Omega t}{a} \cos \frac{n \pi x}{a},$$

n désignant une valeur particulière de n, et \otimes une quantité constante. En effet, pour y parvenir, il suffit de poser t=o dans l'équation (113), qui donne alors

(114)
$$f(x) = \frac{\mathcal{Q}}{a} \cos \frac{n \pi x}{a};$$

et l'on peut d'ailleurs s'assurer a posteriori que, si l'on substitue dans l'équation (111) la valeur de f(μ) tirée de la formule (114), savoir

$$\frac{\mathfrak{S}}{a}\cos\frac{\mathfrak{n}\pi p}{a}$$
,

on retrouvera précisément l'équation (113). Ajoutons que l'équation (113) exprime un mouvement régulier de la verge élastique, dans lequel les mêmes vibrations tournantes se reproduisent périodique-

⁽¹⁾ OEuros de Cauchy, S. II, T. VIII, p. 315.

⁽²⁾ Ibid., p. 314.

84 SUR LA TORSION ET LES VIBRATIONS TOURNANTES

ment, la durée d'une vibration étant la valeur de t donnée par la formule

$$\frac{u\pi\Omega t}{a}=2\pi.$$

Le son correspondant à un mouvement de cette espèce a pour mesure le nombre \mathfrak{R} des vibrations exécutées pendant l'unité de temps, ou, ce qui revient au même, la valeur de $\frac{1}{t}$ déduite de la formule (115). Or on tirera de cette formule, en écrivant n au lieu de n.

(116)
$$\mathfrak{N} = \frac{1}{t} = \frac{n\Omega}{2a}.$$

Si l'on veut maintenant déterminer les nombres de vibrations tournantes correspondants aux sons les plus graves que la verge élastique puisse rendre, il suffira de prendre successivement n-1, n-2, $n=3,\ldots$; et l'on trouvera en conséquence

(117)
$$\mathfrak{I} = \frac{\Omega}{2a}, \qquad \mathfrak{I} = \frac{\Omega}{a}, \qquad \mathfrak{I} = \frac{3\Omega}{3a}, \qquad \dots$$

On arriverait encore aux mêmes résultats en partant de l'équation (112), c'est-à-dire en considérant les vibrations tournantes d'une verge dont les deux extrémités seraient fixes.

Si, dans la première des formules (117), on substitue la valeur de Ω tirée de l'équation (84), on trouvera, pour le nombre des vibrations tournantes qui correspondent au son le plus grave,

(118)
$$\mathfrak{I} = \left(\frac{2}{3\rho}\right)^{\frac{1}{2}} \frac{1}{u\left(\frac{i^2}{1} + \frac{h^2}{|1|}\right)^2 \left(\frac{1}{i^2} + \frac{1}{h^2}\right)^2}.$$

Donc le son dont il s'agit est réciproquement proportionnel à la longueur de la verge élastique, et il ne change pas, lorsque les épaisseurs 2h, 2i croissent ou diminuent dans le même rapport, c'est-à-dire lorsque la section transversale de la verge varie en demourant semblable à elle-même. Ces conclusions se trouvent confirmées par des

expériences de M. Savart. Lorsque les épaisseurs 2h, 2i deviennent égales entre elles, la formule (118) se réduit à

(119)
$$\mathfrak{R} = \left[\frac{\text{hi}}{3\rho(h+1)}\right]^{\frac{1}{2}}\frac{1}{a}.$$

D'autre part, si l'on suppose la verge extraite d'un corps solide dont l'élasticité soit la même en tous sens, on aura

$$h = i = e = f;$$

et par conséquent les formules (118), (119) donneront respectivement

(120)
$$\mathfrak{I} = \left(\frac{2f}{3\rho}\right)^{\frac{1}{2}} \frac{hi}{a(h^2 + i^2)},$$

(121)
$$\Im \zeta = \left(\frac{f}{6\rho}\right)^{\frac{1}{2}} \frac{1}{\alpha}.$$

D'ailleurs, si, dans la même hypothèse, on fait vibrer la verge élastique longitudinalement, et de manière que le son produit soit le plus grave possible, le nombre N des vibrations longitudinales sera déterminé par la formule (78) de la page 52 et la formule (47) de la page 39, c'est-à-dire que l'on aura

$$N = \left(\frac{5f}{2\rho}\right)^{\frac{1}{2}} \frac{1}{2\alpha}.$$

Done, par suite, on trouvera, en prenant h = i,

(123)
$$\frac{N}{36} = \frac{1}{2}\sqrt{15} = 1,9364...$$

Enfin, si l'épaisseur 2i devient très petite relativement à l'épaisseur 2h, l'équation (118) donnera sensiblement

$$\mathfrak{I} = \left(\frac{2h}{3\rho}\right)^{\frac{1}{2}} \frac{i}{ah},$$

et l'on en conclura, en supposant que l'élasticité du corps reste la

même en tous sens,

(125)
$$\mathfrak{I} = \left(\frac{2f}{3\rho}\right)^{\frac{1}{2}} \frac{i}{ah}.$$

Donc le son le plus grave produit par les vibrations tournantes d'une verge plate et rectangulaire, ou, en d'autres termes, d'une plaque dont la largeur est peu considérable, varie en raison directe de l'épaisseur de cette plaque, et en raison inverse du produit de deux autres dimensions, ou, ce qui revient au même, en raison inverse de la superficie de la plaque. La loi que nous venons d'énoncer est précisément celle que M. Savart a découverte, et à laquelle il a été conduit par l'expérience, ainsi qu'on peut le voir dans le tome XXV des Annales de Physique et de Chimie.

RÉSOLUTION DES ÉQUATIONS NUMÉRIQUES

ET SUR LA

THÉORIE DE L'ÉLIMINATION.

CONSIDERATIONS GÉNÉRALES.

On a beaucoup écrit sur la résolution des équations numériques et sur l'élimination. On sait en particulier que la première de ces deux questions est l'objet spécial d'un Ouvrage de Lagrange, dans lequel cet illustre géomètre a présenté, pour la détermination des racines réelles d'une équation de degré quelconque, une méthode fondée sur la considération d'une équation auxiliaire, dont le degré est généralement plus élevé, et dont l'inconnue a pour valeurs les carrés des différences entre les diverses racines de la proposée. On se sert de cette équation auxiliaire pour calculer une limite inférieure à la plus petite différence entre deux racines réelles. J'ai fait voir dans l'Analyse algébrique [Note III (')] qu'on pouvait arriver au même but, en considérant seulement le produit de toutes les dissérences des racines. Mais, pour tirer un parti avantageux de cette remarque, il restait à indiquer un moyen sacile de sormer le même produit. Au reste, dès que l'on connaît une limite inférieure à la plus petite dissérence entre deux racines réelles, on parvient sans peine, non seulement à calculer le nombre de ces racines, mais encore à en obtenir des valeurs de plus en plus approchées.

⁽¹⁾ OEurres de Cauchy, S. II, T. III.

88 SUR LA RESOLUTION DES ÉQUATIONS NUMÉRIQUES

Une autre méthode, également applicable à l'évaluation des racines réclles et des racines imaginaires, a été donnée par M. Legendre, dans la seconde édition de la Théorie des nombres. En suivant cette dernière méthode, on réduit la recherche de l'une des racines de l'équation proposée à la résolution d'une équation binôme, résolution que l'on opère à l'aide des propriétés bien connues des fonctions trigonométriques. D'ailleurs, en s'appuyant sur la même méthode, on prouve directement que l'on peut satisfaire à une équation de degré quelconque par une valeur réelle ou imaginaire de la variable. A la vérité, la démonstration que M. Legendre a donnée de cette proposition, et qu'il considère comme s'étendant à toutes sortes d'équations algébriques ou transcendantes, paraît sujette à quelques difficultés; mais on peut les surmonter, lorsque l'équation est algébrique, dans tous les cas possibles, et. lorsqu'elle devient transcendante, en apportant quelques restrictions à la proposition dont il s'agit, comme je l'ai fait voir dans les Leçons sur le Calcul différentiel (1).

On pourrait citer encore diverses méthodes relatives à la résolution des équations numériques et développées ou seulement indiquées dans les Ouvrages de Newton, de Hallé, d'Euler, de Lagrange, de M. Budan, de M. Legendre, de M. Fourier, etc. Mais ces méthodes, dont quelques-unes supposent déjà connue la valeur approchée d'une racine de l'équation que l'on veut résoudre, ou sont appuyées sur des théories étrangères aux éléments d'Algèbre, par exemple, sur la considération des séries récurrentes, n'offrent pas de règles certaines pour la détermination a priori du nombre des racines réelles. On doit toutefois excepter les méthodes qui ont été annoncées par M. Fourier, dans le Tome VII des Mémoires de l'Académie des Sciences, et que le nom de l'auteur recommande à l'attention des géomètres, mais dont on ne pourra se former une idée précise qu'au moment où il aura publié l'Ouvrage qu'il prépare sur cette matière.

Quoi qu'il en soit, j'ai pensé qu'il serait utile, pour ceux qui se pro-

⁽¹⁾ OEuros de Cauchy, S. II, T. IV.

posent de cultiver les sciences mathématiques, d'offrir ici des méthodes simples et générales, à l'aide desquelles on puisse déterminer le nombre des racines, soit réelles, soit imaginaires, d'une équation de degré quelconque, et les calculer approximativement, sans recourir à l'équation auxiliaire dont l'inconnue a pour valeurs les carrés des différences entre ces racines, et sans employer des notations étrangères à ceux qui ne possèdent que les premiers principes de l'Algèbre. Ces méthodes, qui seront développées dans les paragraphes suivants, fourniront en même temps les moyens de simplifier la théorie de l'élimination, et de lever les difficultés qu'elle présente.

§ 1. — Sur la résolution des équations du premier et du second degré à coefficients réels, et sur les expressions imaginaires.

Considérons l'équation du premier degré

$$a_0 x + a_1 = 0,$$

dans laquelle a_0 , a_i désignent deux constantes réelles. Si l'on fait, pour abréger,

$$\Lambda = \frac{a_1}{a_2},$$

l'équation (1), divisée par a_0 , deviendra

$$(3) x + \Lambda = 0,$$

et l'on en tirera

$$\omega = -\Lambda.$$

Considérons maintenant l'équation du second degré

$$(5) a_0 x^2 + a_1 x + a_2 = 0,$$

 a_0 , a_1 , a_2 désignant trois constantes réelles. Si l'on fait, pour abréger,

(6)
$$\Lambda = \frac{a_1}{a_0}, \quad B = \frac{a_2}{a_0},$$
OEuvies de C. — S. II, t. IX.

90 SUR LA RÉSOLUTION DES ÉQUATIONS NUMÉRIQUES

l'équation (5), divisée par a_0 , deviendra

$$(7) x^2 + \mathbf{A}x + \mathbf{B} = 0.$$

Avant de résoudre généralement cette dernière, examinous d'abord le cas particulier où l'on aurait

$$A=0.$$

Dans ce cas, l'équation (7), ou plutôt l'équation binôme

$$(9) x^2 + B = 0$$

donnera

$$(10) x^2 = -B,$$

et on la vérifiera, si B est négatif, on prenant

$$(11) x = \pm \sqrt{-B}.$$

Donc alors l'équation (9) admettra deux racines réelles, savoir

$$(12) x = -\sqrt{-B},$$

$$(13) x = \sqrt{-B}.$$

Ainsi, par exemple, l'équation binôme

$$(14) x^2 - 1 = 0$$

offrira les deux racines réelles

$$x = -1,$$

$$(16) x=1.$$

Mais, si B devient positif, si l'on suppose, par exemple, $B=\tau$, l'équation (9), réduite à

(17)
$$x^2 + 1 = 0$$
,

ne sera plus vérifiée par aucune valeur réelle de α , puisqu'une semblable valeur rendra toujours la somme $\alpha^2 + 1$ égale ou supérieure à l'unité, et par conséquent positive. Dans le même cas, les valeurs de α ,

 $\beta^{(i)} \mid g_{i}$

données par les formules (12) et (13), savoir

$$(18) x = -\sqrt{-1},$$

$$(19) \qquad \qquad \varepsilon = \sqrt{-1},$$

ne seront plus que des expressions algébriques qui ne significant rien par elles-mêmes, et qui, pour cette raison, sembleraient devoir être exclues de l'Algèbre. Néanmoins, il peut être utile de les conserver dans le calcul. C'est en effet ce qui résulte des observations suivantes.

En Analyse, on appelle expression symbolique ou symbole toute combinaison de signes algébriques qui ne signifie rien par elle-même, ou à laquelle on attribue une valeur différente de celle qu'elle doit naturellement avoir. On nomme de même équations symboliques toutes celles qui, prises à la lettre et interprétées d'après les conventions généralement établies, sont inexactes ou n'ont pas de sens, mais desquelles on peut déduire des résultats exacts en modifiant et altérant, selon des règles fixes, ou ces équations elles-mêmes, ou les symboles qu'elles renferment. L'emploi de ces symboles ou de ces équations est souvent un moyen de simplifier les calculs, et d'écrire sous forme abrégée des résultats assez compliqués en apparence. Or, parmi les expressions ou équations symboliques dont la considération est de quelque importance en Analyse, on doit surtout distinguer celles que l'on a nommées imaginaires. Nous allons montrer comment l'on peut être conduit à en faire usage.

Soient

$$\alpha$$
, α' , α'' , ..., β , β' , β'' , ...

plusieurs quantités réelles positives ou négatives. Si l'on multiplie les unes par les autres les expressions symboliques

(20)
$$\alpha + \beta \sqrt{-1}, \quad \alpha' + \beta' \sqrt{-1}, \quad \alpha'' + \beta'' \sqrt{-1}, \quad \ldots,$$

en opérant d'après les règles connues de la multiplication algébrique, comme si $\sqrt{-1}$ était une quantité réelle dont le carré fût égal à -1, le produit obtenu se composera de deux parties, l'une toute réelle,

92 SUR LA RÉSOLUTION DES ÉQUATIONS NUMERIQUES

l'autre ayant pour coefficient $\sqrt{-\tau}$, et restera le même, quel que soit l'ordre dans lequel on aura effectué les diverses multiplications. Or cette simple remarque peut être employée fort utilement dans la recherche des propriétés générales des nombres ou des quantités réelles, et fournit, par exemple, le moyen d'établir la proposition suivante :

Théorème I. — Si l'on multiplie l'un par l'autre deux nombres entiers dont chacun soit la somme de deux carrés, le produit sera encore la somme de deux carrés.

Démonstration. - Soient

$$\alpha^2 + \beta^2, \quad \gamma^2 + \bar{\sigma}^2$$

les deux nombres entiers dont il s'agit, α^2 , β^2 , γ^2 , δ^2 désignant des carrés parfaits. Ces deux nombres pourront être considérés comme résultants, le premier de la multiplication des facteurs symboliques

(22)
$$\alpha + \beta \sqrt{-1}, \quad \alpha - \beta \sqrt{-1},$$

le second de la multiplication des facteurs symboliques

(23)
$$\gamma + \delta \sqrt{-1}, \quad \gamma - \delta \sqrt{-1}.$$

Done le produit

$$(24) \qquad (\alpha^2 + \beta^2)(\gamma^2 + \delta^2)$$

pourra être considéré comme résultant de la multiplication des quatre facteurs symboliques

(25)
$$\alpha + \beta \sqrt{-1}, \quad \alpha - \beta \sqrt{-1}, \quad \gamma + \delta \sqrt{-1}, \quad \gamma - \delta \sqrt{-1}.$$

D'ailleurs, si l'on multiplie : 1° le premier facteur par le troisième ; 2° le deuxième par le quatrième, les produits ainsi formés seront respectivement

(26)
$$\alpha \gamma - \beta \delta + (\alpha \delta + \beta \gamma) \sqrt{-1}, \quad \alpha \gamma - \beta \delta - (\alpha \delta + \beta \gamma) \sqrt{-1};$$

puis, en multipliant l'une par l'autre les expressions (26), on trouvera pour résultat définitif la quantité positive

$$(\gamma\gamma - \beta\delta)^2 + (\gamma\delta + \beta\gamma)^2$$
.

On aura donc

$$(\alpha \gamma - \beta \delta)^2 + (\alpha \delta + \beta \gamma)^2 = (\alpha^2 + \beta^2)(\gamma^2 + \delta^2).$$

Or cette dernière formule comprend évidemment le théorème 1.

Corollaire I. — Si, dans la formule (27), on échange entre elles les lettres δ et γ , on en tirera

$$(\alpha \gamma + \beta \hat{\sigma})^2 + (\alpha \hat{\sigma} - \beta \gamma)^2 = (\alpha^2 + \beta^2)(\gamma^2 + \hat{\sigma}^2).$$

Il y a donc en général deux manières de décomposer en deux carrés le produit de deux nombres entiers dont chacun est la somme de deux carrés. Ainsi, par exemple, on tire des équations (27) et (28)

$$(2^2+1)(3^2+2^2)=4^2+7^2=1^2+8^2$$

Corollaire II. — Les formules (27), (28) subsistent évidemment dans le cas même où les lettres α , β , γ , δ cessent de représenter des nombres entiers, et désignent des quantités réelles quelconques, positives ou négatives.

On voit, par ce qui précède, qu'il peut être utile, dans la recherche des propriétés générales des quantités réelles, de considérer des expressions symboliques de la forme

(29)
$$\alpha + \beta \sqrt{-1}$$
.

Une semblable expression, dans laquelle α , β désignent deux quantités réelles, est ce qu'on nomme une expression imaginaire; et l'on dit que deux expressions imaginaires

$$\alpha + \beta \sqrt{-1}$$
, $\gamma + \delta \sqrt{-1}$

sont égales entre elles, lorsqu'il y a égalité de part et d'autre : 1° entre les parties réelles α et γ ; 2° entre les coefficients de $\sqrt{-1}$, savoir β et δ . L'égalité de deux expressions imaginaires s'indique comme celle de

94 SUR LA RÉSOLUTION DES EQUATIONS NUMERIQUES

deux quantités réelles par le signe — ; et il en resulte ce qu'on appelle une équation imaginaire. Cela posé, toute équation imaginaire n'est que la représentation symbolique de deux équations entre quantité : réelles. Par exemple, l'équation symbolique

équivant seule aux deux équations réelles

Lorsque, dans l'expression imaginaire

' le coefficient β de y' - a s'évanouit, le terme β y - a est ceuse reduit à zéro, et l'expression elle-même à la quantité reelle τ. En vertu de vette convention, les expressions imaginaires comprennent comme vas particuliers les quantités réelles.

Les expressions imaginaires penvent etre soumises, años focu que les quantités réelles, aux diverses opérations de l'Algebre Si l'on effectue, en particulier, l'addition, la soustraction on la multiplication de deux ou de plusieurs expressions imaginaires, on obta malia pour résultat une nouvelle expression imaginaire qui sera ce qu'on appelle la somme, la différence, on le produit des expressions données; et l'on se servira des notations ordinaires pour indiquer cette somme, cette différence ou ce produit. Par exemple, si l'on donné sentement deux expressions imaginaires

$$\alpha + \beta \sqrt{-\epsilon_1} + \gamma + \hat{a} \sqrt{-\epsilon_2}$$

on trouvera

$$(30) \qquad (\alpha + \beta \sqrt{-1}) + (\gamma + \delta \sqrt{-1}) \qquad \alpha \rightarrow \gamma + (\beta - \alpha) \qquad \alpha_{11} = \epsilon_{\alpha}$$

(32)
$$(\alpha + \beta \sqrt{-i}) \approx (\gamma + \delta \sqrt{-i}) \approx \alpha \gamma - \beta \delta \approx (\alpha \delta + \beta \gamma) \sqrt{-i}$$

Diviser une première expression imaginaire par une deuxième, c'est trouver une troisième expression imaginaire qui, multiplice par la deuxième, reproduise la première. Le résultat de cette opération est le quotient des deux expressions données. On se sert, pour l'indiquer, du signe ordinaire de la division. Ainsi

$$\frac{\alpha + \beta \sqrt{-1}}{\gamma + \delta \sqrt{-1}}$$

représente le quotient des deux expressions imaginaires

$$\alpha + \beta \sqrt{-1}$$
, $\gamma + \delta \sqrt{-1}$.

Élever une expression imaginaire à la puissance du degré m (m désignant un nombre entier), c'est former le produit de m facteurs égaux à cette expression. On indique la puissance $m^{ième}$ de $\alpha + \beta \sqrt{-1}$ par la notation

$$(\alpha + \beta \sqrt{-1})^{nt}$$
.

Ainsi, en particulier, la notation

$$(\alpha + \beta \sqrt{-1})^2$$

représente le produit de l'expression $\alpha+\beta\sqrt{-\tau}$ par elle-même.

On dit que deux expressions imaginaires sont conjuguées l'une à l'autre, lorsque ces deux expressions ne diffèrent entre elles que par le signe du coefficient de $\sqrt{-1}$. La somme de deux semblables expressions est toujours réelle, ainsi que leur produit. En effet, les deux expressions imaginaires conjuguées

(22)
$$\alpha + \beta \sqrt{-1}, \quad \alpha - \beta \sqrt{-1}$$

donnent pour somme 2α , et pour produit $\alpha^2 + \beta^2$. La racine carrée de ce produit, ou

$$\sqrt{\alpha^2 + \beta^2},$$

est ce qu'on nomme le *module* de chacune des expressions (22). Pour que le module (33) s'évanouisse, il est nécessaire et il suffit que l'on ait en même temps $\alpha = 0$, $\beta = 0$, c'est-à-dire, en d'autres termes, que les expressions (22) se réduisent l'une et l'autre à zéro.

96 SUR LA RÉSOLUTION DES ÉQUATIONS NUMÉRIQUES

Remarquons encore que, en vertu des principes ci-dessus établis, l'égalité de deux expressions imaginaires entraîne toujours l'égalité de leurs modules.

Quelquefois on représente une expression imaginaire par une scule lettre. Cela posé, soit

$$(34) x = p + q\sqrt{-1}$$

une semblable expression, p et q étant deux quantités réelles quelconques. On pourra se proposer d'assigner à ces deux quantités des
valeurs telles que la valeur correspondante de x vérifie une équation
donnée du second degré, par exemple, l'équation (7) ou (9). Alors
la valeur de x deviendra ce qu'on nomme une racine imaginaire de l'équation (7) ou (9). Ajoutons que cette racine imaginaire se transformera en une racine réelle, dans les cas où la valeur de q sera nulle. Si
l'on suppose en particulier l'équation (9) réduite à l'équation (14)
ou (17), on la vérifiera évidemment en attribuant à x l'une des valeurs réelles (15), (16), ou l'une des valeurs imaginaires (18), (19).
Donc ces valeurs représentent des racines réelles de l'équation (14) et
des racines imaginaires de l'équation (17).

Revenons maintenant à l'équation (9) ou (10). Pour la résoudre généralement, c'est-à-dire pour trouver toutes les valeurs réelles ou imaginaires de x qui peuvent la vérifier, posons comme ci-dessus $x = p + q\sqrt{-1}$. Elle donnera

(35)
$$p^{2}-q^{3}+2pq\sqrt{-1}=-B,$$

et se partagera en deux équations réelles, savoir

(36)
$$p^2 - q^2 = -B, \quad 2pq = 0.$$

Or on ne peut satisfaire aux équations (36), par des valeurs réelles de p et de q, qu'en supposant

(37)
$$q = 0, p^2 = -B$$

ou

(38)
$$p = 0, q^2 = B.$$

La première supposition n'est admissible que dans le cas où l'on a

$$(39) B < 0,$$

et l'on tire alors des formules (37)

(40)
$$q = 0, \quad p = \pm \sqrt{-B},$$

$$x = p + q\sqrt{-1} = \pm \sqrt{-B}.$$

Au contraire, la seconde supposition n'est admissible que dans le cas où l'on a

$$(1t)$$
 $B > 0$

et l'on tire alors des formules (38)

(42)
$$p = 0, \quad q = \pm B^{\frac{1}{2}},$$

$$w = p + q\sqrt{-1} = \pm B^{\frac{1}{2}}\sqrt{-1}.$$

Donc, dans tous les cas possibles, l'équation (10) admettra seulement deux racines, savoir, deux racines réelles fournies par les formules (12) et (13), si B est négatif, et deux racines imaginaires, mais conjuguées, fournies par les formules

$$(43) x = -B^{\frac{1}{2}}\sqrt{-1},$$

$$(44) x = B^{\frac{1}{2}} \sqrt{-1},$$

si B devient positif. Si la quantité B s'évanouissait, les deux racines de l'équation (10) seraient égales entre elles, et chacune des formules (12), (13), (43), (44) donnerait

$$(45) x = 0.$$

Passons maintenant à l'équation (7). Cette équation pouvant s'écrire comme il suit

(46)
$$\left(x + \frac{A}{2}\right)^2 + B - \frac{A^2}{4} = 0,$$

on en tirera

$$\left(47\right) \qquad \left(x + \frac{\Lambda}{2}\right)^2 = \frac{\Lambda^2}{4} - B.$$

ORuvres de C. - S. II, t. IX.

98 SUR LA RÉSOLUTION DES ÉQUATIONS NUMÉRIQUES

Cette dernière, étant semblable à l'équation (10), se résoudra de la même manière; et d'abord, si l'on suppose

(48)
$$\frac{A^2}{4} = ou > B,$$

elle donnera

$$x + \frac{\Lambda}{2} = \pm \sqrt{\frac{\Lambda^2}{4} - B},$$

et par conséquent

(50)
$$v = -\frac{\Lambda}{3} \pm \sqrt{\frac{\Lambda^3}{4} - B}.$$

Donc alors l'équation (7) admettra deux racines réelles, savoir

$$(51) a = -\frac{\Lambda}{2} - \sqrt{\frac{\Lambda^2}{4}} B,$$

(52)
$$x = -\frac{\Lambda}{2} + \sqrt{\frac{\Lambda^2}{4} - B}$$

Si l'on suppose, au contraire,

$$\frac{\Lambda^2}{4} < B,$$

la formule (47) donnera

(54)
$$v + \frac{\Lambda}{2} = \pm \left(B - \frac{\Lambda^2}{\Lambda}\right)^{\frac{1}{2}} \sqrt{1 - 1},$$

et par conséquent

(55)
$$x = -\frac{\Lambda}{2} \pm \left(B - \frac{\Lambda^2}{4}\right)^{\frac{1}{2}} \sqrt{-1}.$$

Donc alors l'équation (7) admettra deux racines imaginaires, mais conjuguées l'une à l'autre, savoir

(56)
$$x = -\frac{\Lambda}{2} - \left(B - \frac{\Lambda^2}{4}\right)^{\frac{1}{2}} \sqrt{-1},$$

(5₇)
$$\alpha = -\frac{\Lambda}{2} + \left(B - \frac{\Lambda^2}{4}\right)^{\frac{1}{2}} \sqrt{-1}$$
.

Nous terminerons co paragrapho en indiquant quelques propriétés

des expressions imaginaires. Ces propriétés sont comprises dans les théorèmes que nous allons énoncer.

THEOREME II. — La somme de deux expressions imaginaires offre, ainsi que leur différence, un module compris entre la somme et la différence de leurs modules.

Démonstration. - En effet, soient

(58)
$$\alpha + \beta \sqrt{-1}, \quad \gamma + \delta \sqrt{-1}$$

les expressions imaginaires proposées. Leur somme et leur différence

(59)
$$\alpha + \gamma + (\beta + \delta)\sqrt{-1}, \quad \alpha - \gamma + (\beta - \delta)\sqrt{-1}$$

offriront pour modules les deux quantités

(60)
$$|\alpha^2 + \beta^2 + 2(\alpha y + \beta \delta) + y^2 + \delta^2|^{\frac{1}{2}}, \quad |\alpha^2 + \beta^2 - 2(\alpha y + \beta \delta) + y^2 + \delta^2|^{\frac{1}{2}}.$$

Comme on aura d'ailleurs, en vertu de la formule (28),

(61)
$$(\alpha \gamma + \beta \delta)^2 = \text{ou} < (\alpha^2 + \beta^2) (\gamma^2 + \delta^2),$$

il est clair que la valeur numérique de la somme

(6a)
$$\alpha \gamma + \beta \delta$$

sera inférieure ou tout au plus égale au produit

$$(\alpha^2 + \beta^2)^{\frac{1}{2}} (\gamma^2 + \delta^2)^{\frac{1}{2}}$$

Donc cette somme sera renfermée entre les deux limites

(63)
$$-(\alpha^2 + \beta^2)^{\frac{1}{2}} (\gamma^2 + \delta^2)^{\frac{1}{2}}, - +(\alpha^2 + \beta^2)^{\frac{1}{2}} (\gamma^2 + \delta^2)^{\frac{1}{2}}.$$

Done, par suite, chacune des quantités (60) sera comprise entre les deux limites

(64)
$$\begin{cases} \left(\alpha^{2} + \beta^{2} - 2\sqrt{\alpha^{2} + \beta^{2}}\sqrt{\gamma^{2} + \delta^{2}} + \gamma^{2} + \delta^{2}\right)^{\frac{1}{2}} = \pm\left(\sqrt{\alpha^{2} + \beta^{2}} - \sqrt{\gamma^{2} + \delta^{2}}\right), \\ \left(\alpha^{2} + \beta^{2} + 2\sqrt{\alpha^{2} + \beta^{2}}\sqrt{\gamma^{2} + \delta^{2}} + \gamma^{2} + \delta^{2}\right)^{\frac{1}{2}} = \sqrt{\alpha^{2} + \beta^{2}} + \sqrt{\gamma^{2} + \delta^{2}}, \end{cases}$$

100 SUR LA RÉSOLUTION DES ÉQUATIONS NUMÉRIQUES c'est-à-dire entre la somme et la différence des modules des expressions (58).

Corollaire. — La somme de plusieurs expressions imaginaires offre un module inférieur à la somme de leurs modules.

THEORÈME III. — Le produit de deux expressions imaginaires a pour module le produit de leurs modules.

Démonstration. -- En effet, le produit des expressions imaginaires

(58)
$$\alpha + \beta \sqrt{-1}, \quad \gamma + \delta \sqrt{-1}$$

étant lui-même une expression imaginaire conjuguée à celle qui représente le produit des deux suivantes

(65)
$$\alpha - \beta \sqrt{-1}, \quad \gamma - \delta \sqrt{-1},$$

chacun des produits en question aura pour module la racine carrée de la quantité

 $(\alpha^2 + \beta^2)(\gamma^2 + \hat{\sigma}^2),$

qui résulte de la multiplication des quatre facteurs (58) et (65). Donc ce module sera équivalent à

(66)
$$(\alpha^2 + \beta^2)^{\frac{1}{2}} (\gamma^2 + \delta^2)^{\frac{1}{2}},$$

c'est-à-dire au produit des modules des expressions (58).

Corollaire I. - Le produit de plusieurs facteurs imaginaires

$$\alpha + \beta \sqrt{-1}$$
, $\alpha' + \beta' \sqrt{-1}$, $\alpha'' + \beta'' \sqrt{-1}$, ...

a pour module le produit de leurs modules.

Corollaire II. — Si, dans le corollaire qui précède, on suppose les divers facteurs imaginaires égaux entre eux, et leur nombre égal à m, on reconnaîtra que la m^{teme} puissance d'une expression imaginaire a pour module la m^{teme} puissance de son module.

Corollaire III. — Comme le produit de plusieurs modules ne peut devenir nul, sans que l'un de ces modules s'évanouisse, et qu'une ex-

pression imaginaire dont le module s'évanouit se réduit nécessairement à zéro, il est clair que le corollaire I entraînera encore la proposition suivante :

THÉORÈME IV. — Le produit de plusieurs facteurs imaginaires ne peut s'évanouir avec son module qu'autant que l'un des facteurs se réduit à zéro.

On établit encore sans difficulté les théorèmes suivants :

Théorème V. — Pour diviser une expression imaginaire par une quantité réelle, il suffit de diviser par cette quantité, dans l'expression dont il s'agit, la partie réelle et le coefficient de $\sqrt{-1}$.

Démonstration. — En effet, diviser l'expression imaginaire

$$\alpha + \beta \sqrt{-1}$$

par une quantité réelle γ, c'est chercher une seconde expression imaginaire

$$x = p + q\sqrt{-1}$$

qui, étant multipliée par γ , reproduise la première, en sorte que l'on ait

(67)
$$\gamma(p+q\sqrt{-1}) = \alpha + \beta\sqrt{-1}.$$

Or l'équation symbolique (67) équivaut aux deux équations réelles

$$\gamma p = \alpha, \quad \gamma q = \beta,$$

desquelles on tire

$$p = \frac{\alpha}{\gamma}, \qquad q = \frac{\beta}{\gamma}$$

et, par suite,

(68)
$$x = p + q\sqrt{-1} = \frac{\alpha}{\gamma} + \frac{\beta}{\gamma}\sqrt{-1}.$$

Donc, pour obtenir le quotient de l'expression imaginaire $\alpha + \beta \sqrt{-1}$ par la quantité réelle γ , il sussit, dans cette expression, de diviser par γ la partie réelle et le coessicient de $\sqrt{-1}$.

102 SUR LA RÉSOLUTION DES ÉQUATIONS NUMÉRIQUES

Theorems VI. — Pour diviser une expression imaginaire $\alpha + \beta \sqrt{-\tau}$ par une expression semblable $\gamma + \delta \sqrt{-1}$, il suffit de multiplier la première par une troisième expression imaginaire $\gamma - \delta \sqrt{-1}$ qui soit conjuguée à la seconde, et de diviser le produit obtenu par le carré du module de $\gamma + \delta \sqrt{-1}$.

Démonstration. — En effet, diviser $\alpha + \beta \sqrt{-1}$ par $\gamma + \delta \sqrt{-1}$, c'est chercher une expression imaginaire

$$x = p + q\sqrt{-1}$$

qui soit propre à vérifier la formule

(69)
$$(\gamma + \delta \sqrt{-1})x = \alpha + \beta \sqrt{-1}.$$

D'ailleurs, si l'on multiplie par $\gamma - \delta \sqrt{-\tau}$ les deux membres de l'équation (69), elle deviendra

(70)
$$(\gamma^2 + \delta^2) x = (\alpha + \beta \sqrt{-1}) (\gamma - \delta \sqrt{-1}),$$

et l'on en tirera

(71)
$$x = \frac{(\alpha + \beta \sqrt{-1})(\gamma - \delta \sqrt{-1})}{\gamma^2 + \delta^2}.$$

Or cette dernière formule comprend évidemment le théorème VI.

Scolie. — Si l'on développe le second membre de la formule (71), en ayant égard au théorème V, on trouvera

(72)
$$x = \frac{\alpha \gamma + \beta \delta}{\gamma^2 + \delta^2} + \frac{\beta \gamma - \alpha \delta}{\gamma^2 + \delta^2} \sqrt{-1}.$$

Théorème VII. — Les deux polynômes

(73)
$$\begin{cases} a_0 x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n, \\ c_0 x^n + c_1 x^{n-1} + \ldots + c_{n-1} x + c_n, \end{cases}$$

dans lesquels $a_0, a_1, \ldots, a_{n-1}, a_n; c_0, c_1, \ldots, c_{n-1}, c_n$ désignent des coefficients réels ou imaginaires, ne peuvent rester égaux entre eux, quelle que soit la valeur réelle ou imaginaire de x, à moins que l'on n'ait

$$(74) a_0 = c_0, a_1 = c_1, \ldots, a_{n-1} = c_{n-1}, a_n = c_n.$$

Demonstration. — En effet, si deux polynômes (73) restent égaux. quel que soit n, leur différence sera toujours nulle, et l'on aura constamment

$$(75) (a_0 - c_0)x^n + (a_1 - c_1)x^{n-1} + \ldots + (a_{n-1} - c_{n-1})x + a_n - c_n = 0.$$

Or on tirera de l'équation (75): τ° en posant x = 0,

$$a_n-c_n=0, \quad a_n=c_n;$$

2° en divisant le premier membre par x, et posant de nouveau x = 0,

$$a_{n-1}-c_{n-1}=0, \quad a_{n-1}=c_{n-1},$$

et ainsi de suite.

Nous remarquerons encore que, étant donnée l'équation algébrique

$$(76) a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_{n-1} x + a_n = 0,$$

dans laquelle n désigne un nombre entier quelconque, et $a_0, a_1, \ldots, a_{n-1}, a_n$ des coefficients constants réels ou imaginaires, on peut toujours réduire à l'unité le coefficient du premier terme. En effet, si l'on pose

(77)
$$\frac{a_1}{a_0} = \Lambda, \quad \frac{a_2}{a_0} = B, \quad \dots, \quad \frac{a_{n-1}}{a_0} = I, \quad \frac{a_n}{a_0} = K$$

ou, ce qui revient au même,

(78)
$$a_1 = a_0 \Lambda$$
, $a_2 = a_0 B$, ..., $a_{n-1} = a_0 I$, $a_n = a_0 K$,

l'équation (76) pourra s'écrire ainsi qu'il suit

(79)
$$a_0(x^n + \Lambda x^{n-1} + 1) x^{n-2} + \ldots + 1x + K) = 0;$$

et, comme a_0 dissère nécessairement de zéro, lorsque a_0x^n est le premier terme de l'équation (76), on tirera de la formule (79), réunie au théorème IV,

(80)
$$x^{n} + \Lambda x^{n-1} + B x^{n-2} + \ldots + J x + K = 0.$$

Dans le cas particulier où l'équation (76) est binôme ou du second

104 SUR LA RÉSOLUTION DES ÉQUATIONS NUMÉRIQUES degré, c'est-à-dire de l'une des formes

$$a_0 x^n + a_n = 0,$$

$$(83) a_0 x^2 + a_1 x + a_2 = 0,$$

alors, après la réduction du coefficient de son premier terme à l'unité, elle devient

$$(\$3) x^n + \mathbf{K} = \mathbf{0}$$

011

$$(84) x^2 + \Lambda x + B = 0.$$

§ II. — Sur la résolution des équations du premier et du second degré à coefficients quelconques, réels ou imaginaires.

Considérons d'abord une équation du premier degré à coefficients récls ou imaginaires. Si l'on réduit à l'unité le coefficient du premier terme, cette équation se présentera sous la forme

$$(1) x + \Lambda = 0,$$

A désignant une constante réelle ou imaginaire, et l'on en tirera

$$x = -\Lambda$$
.

Considérons maintenant une équation quelconque du second degré. Si l'on réduit à l'unité le coefficient du premier terme, cette équation se présentera sous la forme

$$x^3 + \Lambda x + B = 0$$

A, B désignant deux constantes réelles ou imaginaires. Si, de plus, la constante A s'évanouit, l'équation (3) deviendra

$$(4) x^9 + B = 0$$

 \mathfrak{ou}

$$x^2 = -B.$$

Done alors, en écrivant, au lieu de -B, $\alpha + \beta \sqrt{-1}$, et attribuant aux

lettres α , β des valeurs réelles, on aura simplement à résoudre l'équation binôme

$$\alpha^2 = \alpha + \beta \sqrt{-1}.$$

Or, on y parviendra sans peine, en opérant comme il suit. Désignons par p, q deux quantités réelles tellement choisies que

$$(7) x = p + q\sqrt{-1}$$

soit une valeur de w propre à vérifier l'équation (6). Cette équation donnera

(8)
$$p^{2}-q^{2}+2pq\sqrt{-1}=\sigma+\beta\sqrt{-1}$$

et, par conséquent,

$$(9) p^2 - q^2 = \sigma$$

$$(10) 2pq = \beta;$$

puis on tirera des formules (7) et (10)

$$(11) x = p + \frac{\beta}{2p} \sqrt{-1}$$

ou, ce qui revient au même,

$$(12) x = \frac{\beta}{2q} + q\sqrt{-1},$$

D'ailleurs les formules (9) et (10) entraineront la suivante

(13)
$$p^2 + q^2 = (\alpha^2 + \beta^2)^{\frac{1}{2}},$$

que l'on peut aussi déduire immédiatement de l'équation (6) jointe au corollaire II du théorème III. Enfin l'on conclura des formules (9) et (13)

(14)
$$p^{2} = \frac{(\alpha^{2} + \beta^{2})^{\frac{1}{2}} + \alpha}{2},$$

(15)
$$q^{2} = \frac{(\alpha^{2} + \beta^{2})^{\frac{1}{2}} - \sigma}{2}$$

OEuvres de C. - S. II, t. IX.

106 SUR LA RESOLUTION DES LOCATIONS NUMERIOLES et, par suite,

$$P = \{Y^{(i)}\}$$

puis, ou substituant la valour de palano la formation en la casta de m de q dans la formule (194, on fronvera

$$(18) \qquad \qquad * \qquad \left[\begin{array}{cccc} \left(\chi_{-} x^{2} - y^{2} + x^{2} \right)^{2} & & \\ & & & \\ & & & & \\ \end{array} \right].$$

ou, ce qui revient au méme.

Done l'equation (6) admettra deux par une se desat fe . Late etc. la conset ga . pectivement

$$\frac{1}{1^{\frac{1}{2}}} \left(\frac{1}{1^{\frac{1}{2}}} + \frac{1}{2^{\frac{1}{2}}} + \frac{1$$

(40)
$$(4x^{2} + 2x^{2} + x)^{\frac{1}{2}}$$

$$(41) \qquad (4x^{2} + 2x^{2} + x)^{\frac{1}{2}}$$

$$(41) \qquad (5x^{2} + 2x^{2} + x)^{\frac{1}{2}}$$

$$(41) \qquad (5x^{2} + 2x^{2} + x)^{\frac{1}{2}}$$

ott, ce qui revient au même,

Dans le cus où 3 s'évamont, l'equation ets con sortesit :

Dans le même cas, on tire de la formule (18), en supposant a positif,

$$(25) x = \pm \alpha^{\frac{1}{2}},$$

et de la formule (19), en supposant a négatif,

$$(26) x = \pm (-\alpha)^{\frac{1}{2}} \sqrt{-1}.$$

Ces dernières s'accordent, comme on devait s'y attendre, avec les formules (40) et (42) du § I.

Dans le cas où a s'évanouit, l'équation (6) se réduit à

$$(27) x^2 = \beta \sqrt{-1},$$

et l'on tire de la formule (18) ou (19) : 1° en supposant β positif,

(28)
$$x = \pm \left[\left(\frac{\beta}{2} \right)^{\frac{1}{2}} + \left(\frac{\beta}{2} \right)^{\frac{1}{2}} \sqrt{-1} \right];$$

2º en supposant β négatif,

(39)
$$c = \pm \left[\left(-\frac{\beta}{2} \right)^{\frac{1}{2}} - \left(-\frac{\beta}{2} \right)^{\frac{1}{2}} \sqrt{-1} \right].$$

Ainsi, en particulier, les deux racines de l'équation

$$(30) x^2 = \sqrt{-1}$$

seront données par la formule

(31)
$$x = \pm \frac{1 + \sqrt{-1}}{\sqrt{2}} = \pm \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sqrt{-1}\right),$$

et celles de l'équation

$$(32) x^2 = -\sqrt{-1}$$

-par la formule

(33)
$$x = \pm \frac{1 - \sqrt{-1}}{\sqrt{2}} = \pm \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\sqrt{-1}\right).$$

Rovenons maintenant à l'équation (3), et supposons que le coeffi-

108 SUR LA RÉSOLUTION DES ÉQUATIONS NUMÉRIQUES cient A cesse de s'évanouir. Cette équation pouvant s'écrire comme il suit

(34)
$$\left(x+\frac{\Lambda}{2}\right)^2 + B - \frac{\Lambda^2}{4} = 0,$$

on en tirera

(35)
$$\left(x + \frac{\Lambda}{2}\right)^2 = \frac{\Lambda^2}{4} - B.$$

Or l'équation (35), étant de la même forme que l'équation (6), se résoudra de la même manière, et fournira pour $\omega + \frac{\Lambda}{2}$ des valeurs semblables aux valeurs de ω déterminées par la formule (18) ou (19).

Exemple. - Soit donnée l'équation du second degré

(36)
$$x^2 - (5 + 4\sqrt{-1})x + 6 + 8\sqrt{-1} = 0.$$

On en tirera

(37)
$$\begin{cases} \left[x - \left(\frac{5}{2} + 2\sqrt{-1}\right)\right]^2 \\ = \left(\frac{5}{2} + 2\sqrt{-1}\right)^2 - (6 + 8\sqrt{-1}) = -\frac{15}{4} + 2\sqrt{-1}. \end{cases}$$

D'ailleurs, si l'on remplace α par $\alpha = \left(\frac{5}{2} + 2\sqrt{-7}\right)$ dans le premier membre de la formule (18), et si l'on pose en outre $\alpha = -\frac{15}{4}$, $\beta = 2$, on tirera de cette formule

(38)
$$x - \left(\frac{5}{2} + 2\sqrt{-1}\right) = \pm \left(\frac{1}{2} + 2\sqrt{-1}\right)$$

et, par suite,

(39)
$$x = \frac{5}{2} + 2\sqrt{-1} \pm \left(\frac{1}{2} + 2\sqrt{-1}\right).$$

Donc, les deux racines de l'équation (36) seront respectivement

(40)
$$\begin{cases} x = \frac{5}{2} + 2\sqrt{-1} - \left(\frac{1}{2} + 2\sqrt{-1}\right) = 2, \\ x = \frac{5}{2} + 2\sqrt{-1} + \left(\frac{1}{2} + 2\sqrt{-1}\right) = 3 + 4\sqrt{-1}. \end{cases}$$

§ III. — Sur la résolution des équations binômes.

Considérons une équation binôme du degré n, la lettre n désignant un nombre entier quelconque. Si l'on réduit le coefficient du premier terme à l'unité, cette équation se présentera sous la forme

$$(1) x^n + K = 0,$$

K étant une constante réelle ou imaginaire, et l'on en tirera

$$(2) x^n = -\mathbf{K}.$$

Done, en écrivant, au lieu de -K, $\alpha + \beta \sqrt{-1}$, et attribuant aux lettres α , β des valeurs réelles, on ramènera l'équation (1) à la forme

$$(3) x'' = \alpha + \beta \sqrt{-1}.$$

Or on prouvera facilement que cette dernière peut toujours être résolue par des valeurs réclles ou imaginaires de la variable \boldsymbol{x} . C'est, en effet, ce qui résulte des principes que nous allons établir.

Supposons d'abord que le degré n se réduise à une puissance de 2, c'est-à-dire à l'un des nombres 2, 4, 8, 16, Alors l'équation (3) se trouvera réduite à l'une des suivantes :

$$(4) x^2 = \alpha + \beta \sqrt{-1},$$

$$(5) x^{\flat} = \alpha + \beta \sqrt{-1},$$

$$(6) x^8 = \alpha + \beta \sqrt{-1},$$

(7)
$$x^{16} = \alpha + \beta \sqrt{-1},$$

Or l'équation (4) a déjà été résolue dans le paragraphe précédent, où l'on a fait voir qu'elle admet deux racines de la forme $p+q\sqrt{-\tau}$. De plus, il suffira de poser

$$x^2 = y$$
, $y^2 = z$, $z^2 = u$, ...

110 SUR LA RÉSOLUTION DES ÉQUATIONS NUMÉRIQUES pour obtenir, à la place de la formule (5), le système des équations binômes

(8)
$$x^2 = y, \quad y^2 = \alpha + \beta \sqrt{-1};$$

à la place de la formule (6), le système des trois équations binômes

(9)
$$x^2=y$$
, $y^2=z$, $z^2=\alpha+\beta\sqrt{-1}$;

à la place de la formule (7), le système des quatre équations binômes

(10)
$$x^2 = y$$
, $y^2 = z$, $z^2 = u$, $u^2 = \alpha + \beta \sqrt{-1}$;

etc.

D'ailleurs, la dernière des formules (8) étant semblable à l'équation (4), on en tirera deux valeurs réelles ou imaginaires de y; et, après avoir substitué successivement ces deux valeurs dans le second membre de l'équation $x^2 = y$, on déduira de celle-ci quatre valeurs réelles ou imaginaires de x qui seront propres à vérifier l'équation (5). Pareillement, on tirera des formules (9) deux valeurs de x, quatre valeurs de y, et, en définitive, huit valeurs de x propres à vérifier l'équation (6). De même encore, on tirera des formules (10) seize valeurs de x propres à vérifier l'équation (7), etc. Donc, chacune des équations (4), (5), (6), etc. offrira autant de racines que son degré renferme d'unités. On voit, en outre, que la détermination exacte de ces racines ne présentera aucune difficulté.

Supposons maintenant que le degré n soit un nombre impair. Dans cette hypothèse, l'équation (3) admettra certainement une ou plusieurs racines réelles ou imaginaires, si l'une des quantités α , β s'évanouit. En effet, soit 2m+1 une valeur impaire de n. On vérifiera évidemment l'équation

$$(11) x^n = \alpha$$

ou

$$(12) x^{2m+1} = \alpha,$$

en prenant

$$(13) v = \alpha^{\frac{1}{2m+1}}$$

ou bien

$$(1.1) x = -(-\alpha)^{\frac{1}{2m+1}},$$

suivant que α sera positif ou négatif; et l'équation

$$x^n = \beta \sqrt{-1}$$

ou

$$(16) x^{2m+1} = \beta \sqrt{-1},$$

en prenant

(17)
$$c = (-1)^m \beta^{\frac{1}{2^{m+1}}} \sqrt{-1}$$

ou bien

suivant que β sera positif ou négatif. L'ajoute que, si, n étant impair, les quantités α et β ne s'évanouissent ni l'une ni l'autre, on pourra encore trouver une valeur réelle ou imaginaire de α propre à vérifier l'équation (3) ou

$$(19) x^n - (\alpha + \beta \sqrt{-1}) = 0.$$

C'est ce que l'on démontrera sans peine en raisonnant comme il suit. Représentons par $p+q\sqrt{-1}$ une valeur imaginaire quelconque attribuée à la variable x; par

(30)
$$P + Q\sqrt{-1} = (p + q\sqrt{-1})^n - (\alpha + \beta\sqrt{-1})$$

la valeur correspondante du binôme

$$(21) x^n - (\alpha + \beta \sqrt{-1}),$$

112 SUR LA RÉSOLUTION DES ÉQUATIONS NUMERIQUES et par r, ρ , R les modules des trois expressions imaginaires

$$p+q\sqrt{-1}$$
, $\alpha+\beta\sqrt{-1}$, $P+Q\sqrt{-1}$,

en sorte qu'on ait

$$(22) t = (p^2 + q^2)^{\frac{1}{2}},$$

(23)
$$\rho = (\sigma^2 + \beta^2)^{\frac{1}{2}},$$

(34)
$$R = (P^2 + Q^2)^{\frac{1}{2}}.$$

Le module R de l'expression (20) deviendra, en vertu du théorème II, supérieur à la différence

$$r^n - \rho$$

si l'on suppose $r^n > \rho$, $r > \rho^{\frac{1}{n}}$; et, par conséquent, il surpassera le module ρ , si l'on a

$$(26) r > (2\rho)^{\frac{1}{n}}.$$

Au contraire, R sera équivalent à la valeur numérique de β ou de α et, par conséquent, inférieur à ρ , si l'on suppose

$$(27) q = 0, x^n = p^n = \alpha$$

ou bien

(28)
$$p = 0, \quad x^n = (q\sqrt{-1})^n = \beta\sqrt{-1}.$$

Donc, la plus petite valeur que puisse acquérir le module R de l'expression (20) ou (21), tandis que α varie, est inférieure au module ρ de $\alpha + \beta \sqrt{-1}$, et correspond à une valeur de α différente de zéro, mais dont le module r ne surpasse pas $(2\rho)^{\frac{1}{n}}$. D'ailleurs, si l'on attribue à la variable α une valeur distincte de $p+q\sqrt{-1}$, et représentée par

$$p+q\sqrt{-1}+z,$$

le binôme (21) se transformera en une fonction entière de z du degré n, savoir

(29) (1)
$$\begin{cases} (p+q\sqrt{-1}+z)^{n} - (\alpha+\beta\sqrt{-1}) \\ = P + Q\sqrt{-1} + n(p+q\sqrt{-1})^{n-1}z + \dots \\ + n(p+q\sqrt{-1})z^{n-1} + z^{n}. \end{cases}$$

Or, dans la formule (29), la somme des deux premiers termes du second membre s'évanouira si l'on prend

(30)
$$z = -\frac{P + Q\sqrt{-1}}{n(p + q\sqrt{-1})^{n-1}}.$$

Mais si l'on prend

(31)
$$z = -\varepsilon \frac{P + Q\sqrt{-1}}{n(p+q\sqrt{-1})^{n-1}},$$

ε désignant une quantité positive très peu différente de zéro, ce second membre deviendra une fonction entière de ε qui offrira pour premiers termes les deux expressions imaginaires

$$P + Q\sqrt{-1}, -\varepsilon(P + Q\sqrt{-1}).$$

Donc, si l'on divise cette fonction de ε par $P + Q\sqrt{-1}$, le quotient sera de la forme

$$(32) 1 - \varepsilon + c_1 \varepsilon^2 + c_2 \varepsilon^3 + \ldots + c_{n-1} \varepsilon_n,$$

(1) La formule (29) se déduit immédiatement de l'équation (20) jointe à celle qu'en obtient en remplaçant y par $p \mapsto q \sqrt{-1}$ dans l'équation connue

(a)
$$(y + z)^n = y^n + ny^{n-1}z + \ldots + nyz^{n-1} + z^n.$$

Au reste, l'emploi que nous faisons ici de la formule (21) n'exige pas que l'en détermine les coefficients de toutes les puissances de z qui entrent dans le second membre de cette formule ou de la formule (a). On peut même, à la rigueur, calculer seulement le coefficient de z. Or, pour s'assurer que ce coefficient se réduit, dans la formule (a), à ny^{n-1} , il suffit d'observer que l'en a généralement

(b)
$$(y+z_1)(y+z_2)...(y+z_n)=y^n+(z_1^*+z_2+...+z_n)y^{n-1}+...+z_1z_2...z_n$$

et, par suito, en supposant $z_1 = z_2 = \ldots = z_n = z_1$

$$(y+z)^n = y^n + ny^{n-1}z + \ldots + z^n.$$
 Of the proof of C. — S. II. t. IX.

 $c_i, c_2, \ldots, c_{n-1}$ désignant des coefficients réels ou imaginaires, et l'on trouvera, en supposant la variable z déterminée par l'équation (31),

(33)
$$\begin{cases} (p+q\sqrt{-1}+z)^n - (\alpha+\beta_i\sqrt{-1}) \\ = (P+Q\sqrt{-1})(1-\varepsilon+c_1\varepsilon^2+c_2\varepsilon^3+\ldots+c_{n-1}\varepsilon^n). \end{cases}$$

Observons maintenant que, si R n'est pas nul, le second membre de l'équation (33) offrira, pour de très petites valeurs de s, un module inférieur à R. En effet, si l'on nomme

$$\lambda_1, \quad \lambda_2, \quad \dots, \quad \lambda_{n-1}$$

les modules des expressions imaginaires

$$c_1, c_2, \ldots, c_{n-1},$$

la somme des expressions

$$1-\varepsilon$$
, $c_1\varepsilon^2$, $c_2\varepsilon^3$, ..., $c_{n-1}\varepsilon^n$,

ou le polynôme (32), aura pour module (en vertu des théorèmes II, III et de leurs corollaires) un nombre 0 inférieur à la somme des quantités

$$1-\varepsilon$$
, $x_1\varepsilon^2$, $x_2\varepsilon^3$, ..., $x_{n-1}\varepsilon^n$,

en sorte qu'on trouvera

(34)
$$\theta < 1 - \varepsilon (1 - \varkappa_1 \varepsilon - \varkappa_2 \varepsilon^2 - \ldots - \varkappa_{n-1} \varepsilon^{n-1}),$$

D'ailleurs, pour de très petites valeurs de e, le polynôme

$$(35) 1 - \varkappa_1 \varepsilon - \varkappa_2 \varepsilon^2 - \ldots - \varkappa_{n-1} \varepsilon^{n-1}$$

étant très peu différent de l'unité, en conclura de la formule (34)

$$\theta < 1,$$

$$\theta R < R.$$

Donc, lorsque R ne sera pas nul, on pourra choisir & de manière que le module 0R de l'expression (33) devienne inférieur à R. Il suit évidemment de cette remarque que le plus petit module de l'expres-

۲

sion (21) ne saurait différer de zéro. Donc, puisque ce plus petit module correspond à une valeur de r inférieure à $(2\rho)^{\frac{1}{n}}$, et que l'expression (21) s'évanouit avec son module, l'équation (19) ou (3) admet une ou plusieurs racines dont les modules sont renfermés entre les limites o, $(2\rho)^{\frac{1}{n}}$.

Les principes que nous venons d'exposer ne servent pas seulement à prouver que, dans le cas où n est impair, l'équation (3) admet une ou plusieurs racines réelles ou imaginaires; ils fournissent encore le moyen de déterminer numériquement au moins l'une de ces racines. En effet, supposons que, n étant égal à 2m + 1, on désigne par x_1 la valeur de x donnée par l'une des équations (13), (14), (17), (18). Après avoir calculé les valeurs correspondantes des nombres $x_1, x_2, \ldots, x_{n-1}$, on trouvera sans peine une valeur de ε propre à rendre positive la quantité (35), c'est-à-dire à vérifier la condition

$$(38) \quad x_1 \varepsilon + x_2 \varepsilon^2 + \ldots + x_{n-1} \varepsilon^{n-1} < 1.$$

Car il suffira, pour y parvenir, d'attribuer à « des valeurs décroissantes, par exemple

$$1, \frac{1}{10}, \frac{1}{100}, \frac{1}{1000}, \dots,$$

jusqu'à ce que le polynôme

$$(39) \qquad x_1 \varepsilon + x_2 \varepsilon^2 + \ldots + x_{n-1} \varepsilon^{n-1},$$

qui décroît constamment et indéfiniment avec ε , devienne inférieur à l'unité. Or, ε étant choisi de manière à vérifier la condition (38), il suffira d'ajouter à x_1 le second membre de la formule (31), pour obtenir une nouvelle valeur de x, à laquelle réponde une valeur de R plus petite que le module de l'expression $x_1'' + \alpha + \beta \sqrt{-1}$. Soit x_2 cette nouvelle valeur de x. L'opération par laquelle on a déduit x_2 de x_1 , étant plusieurs fois répétée, fournira une suite de valeurs de x, auxquelles correspondront des valeurs de plus en plus petites de la quantité positive R, qui représente le module de l'expression

$$x^{n} + \alpha + \beta \sqrt{-1}.$$

116 SUR LA RÉSOLUTION DES ÉQUATIONS NUMÉRIQUES Cela posé, soit

$$(40)$$
 $x_1, x_2, x_3, x_4, \ldots$

la suite des valeurs de x dont il est ici question. Tandis que les modules des expressions

(41)
$$x_1^n + \sigma + \beta \sqrt{-1}$$
, $x_2^n + \alpha + \beta \sqrt{-1}$, $x_3^n + \alpha + \beta \sqrt{-1}$, $x_4^n + \alpha + \beta \sqrt{-1}$, ...

deviendront de plus en plus petits, les termes de la série (40) convergeront vers une certaine limite qui sera nécessairement une valeur de x propre à vérifier l'équation (3).

Il reste à examiner le cas où le degré n de l'équation (3) no se réduit ni à un nombre impair ni à une puissance de 2. Soit, dans cette hypothèse, 2^l la plus haute puissance de 2 qui puisse diviser le degré n. Ce degré sera le produit de 2^l par un nombre impair $2m + \tau$, et l'équation (3) ou

(42)
$$x^{2^{1}(2m+1)} = \alpha + \beta \sqrt{-1}$$

pourra être remplacée par le système des deux formules

(43)
$$x^{2l} = y, \quad y^{2m+1} = \alpha + \beta \sqrt{-1}.$$

Or la seconde des équations (43), étant semblable à l'équation (3), mais d'un degré impair, pourra toujours être vérifiée, d'après ce qu'on vient de dire, par des valeurs réelles ou imaginaires de y; et, pour chacune de ces valeurs de y, l'équation

$$x^{2l} = y$$
,

dont le degré se réduit à une puissance du nombre 2, fournira autant de valeurs de α que son degré renferme d'unités.

On peut donc affirmer que, dans tous les cas, une équation binôme admet des racines réelles ou imaginaires.

Au reste, on s'assurera facilement que le module de chacune des racines de l'équation (3) se réduit toujours à $\rho^{\frac{1}{n}}$. Car, si l'on nomme r

le module d'une de ces racines, en aura, en vertu de ce qui a été dit ei-dessus (p. 96),

$$(44) r^n - \rho$$

ct, par suite,

$$(45) \qquad r = \rho^n$$

§ IV. - Sur la résolution des équations de degré quelconque à coefficients réels.

Si, dans une équation du degré n, on réduit à l'unité le coefficient du premier terme, elle se présentera sons la forme

(i)
$$w^{n+1} \wedge \lambda e^{n-1} + \mathbf{B} \cdot e^{n-2} + \ldots + \mathbf{L}r + \mathbf{K} = 0.$$

Si d'ailleurs les coefficients A, B, ..., I, K sont réels et donnés en nombres, on pourra, lorsque certaines conditions seront remplies, affirmer que l'équation (1) admet des racines réelles, et l'on établira sans peine les propositions suivantes :

Theorem: VIII. Si, en substituant l'une après l'autre, dans le premier membre de l'équation (t), deux valeurs réelles et finies de x, par exemple x = a, x = b, on obtient deux résultats de signes contraires, on pourra en conclure que l'équation admet au moins une racine réelle comprise entre a et b.

Démonstration. En effet, concevons que l'on fasse varier x par degrés insensibles depuis la limite x-a jusqu'à la limite x-b. Le premier membre de l'équation (1), on le polynôme

(a)
$$w^n + \Lambda x^{n-1} + Bx^{n-2} + ... + Lx + K$$

variera lui-même par degrés insensibles, en conservant une valeur finie, mais de manière à changer de signe; et il est clair qu'il s'évanouira au moment où il passera du positif au négatif, ou du négatif au positif.

Corollaire I. — Il est bon d'observer que le polynôme (2) peut être considéré comme le produit des deux facteurs

$$(3)$$
 x^n

et

(4)
$$1 + \frac{A}{x} + \frac{B}{x^2} + \ldots + \frac{I}{x^{n-1}} + \frac{K}{x^n},$$

dont le second diffère très peu de l'unité, et par suite reste positif, quand on attribue à la variable x une très grande valeur numérique. Cela posé, comme l'autre facteur x'' change de signe avec x, dans le cas où le degré n est un nombre impair, il suffira évidemment, dans ce cas, d'attribuer à la variable x deux valeurs de la forme

$$x = -a$$
, $x = a$,

a désignant une quantité positive très considérable, pour que les valeurs correspondantes du polynôme (2) soient affectées de signes contraires. Donc alors l'équation (1) admettra au moins une racine réelle.

Corollaire II. — Si, le degré n étant un nombre pair, on désigne toujours par a une quantité positive très considérable, le polynôme (2), ou le produit des facteurs (3) et (4), sera évidemment positif pour x = -a. Si d'ailleurs la quantité K est négative, le polynôme (2) deviendra positif pour x = 0. Donc alors ce polynôme changera de signe tandis que l'on fera varier x, soit entre les limites x = -a, x = 0, soit entre les limites x = -a, x = 0, soit entre les limites x = 0, x = 0, soit entre les limites x = 0, x = 0, soit entre les limites x = 0, x = 0, soit entre les limites x = 0, x = 0, soit entre les limites x = 0, x = 0, soit entre les limites x = 0, x = 0, soit entre les limites x = 0, x = 0, soit entre les limites x = 0, x = 0, soit entre les limites x = 0, x = 0, soit entre les limites x = 0, x = 0, soit entre les limites x = 0, soit entre les limites x = 0, x = 0, soit entre les limites entre les

Theoreme IX. — Supposons que, dans le polynôme (2), le dernier terme étant négatif, les termes positifs, s'il en existe, suivent immédiatement le premier terme. L'équation (1) admettra une racine réelle et positive, et n'en aura qu'une de cette espèce.

Démonstration. - Soient

$$\rho_1, \quad \rho_2, \quad \ldots, \quad \rho_{n-1}, \quad \rho_n$$

les valeurs numériques des coefficients

En vertu de l'hypothèse admise, l'équation (1) sera de la forme

- (5) $x^n + \rho_1 x^{n-1} + \rho_2 x^{n-2} + \ldots + \rho_m x^{n-m} \rho_{m+1} x^{n-m-1} \ldots \rho_{n-1} x \rho_n = 0,$ m étant un nombre entier inférieur à n. D'ailleurs le polynôme
- (6) $x^n + \rho_1 x^{n-1} + \rho_2 x^{n-2} + \ldots + \rho_m x^{n-m} \rho_{m+1} x^{n-m+1} \ldots \rho_{n-1} x \rho_n$ est le produit des deux facteurs

$$(7) x^{n-m},$$

(8)
$$x^m + \rho_1 x^{m-1} + \ldots + \rho_m - \left(\frac{\rho_{m+1}}{x} + \ldots + \frac{\rho_{n-1}}{x^{n-m-1}} + \frac{\rho_n}{x^{n-m}}\right);$$

et il est clair que, si l'on fait croître x par degrés insensibles, mais indéfiniment, à partir de x = 0, l'expression

$$(9) x^m + \rho_1 x^{m-1} + \ldots + \rho_m$$

eroitra en passant de la limite ρ_m à l'infini positif, tandis que l'expression

$$\frac{\rho^{m+1}}{x} + \ldots + \frac{\rho_{n-1}}{x^{n-m-1}} + \frac{\rho_n}{x^{n-m}}$$

décroîtra en passant de l'infini positif à zéro. Donc alors la différence (8) croîtra sans cesse, en passant de l'infini positif à l'infini négatif. Donc cette différence s'évanouira, mais une fois seulement, pour une valeur positive de x, et l'on pourra en dire autant du polynôme (6) qui forme le premier membre de l'équation (5).

Corollaire. — Lorsqu'on suppose m = 0, l'équation (5) se réduit à

(11)
$$x^{n} - \rho_{1} x^{n-1} - \rho_{2} x^{n-2} - \ldots - \rho_{n-1} x - \rho_{n} = 0.$$

Donc cette dernière admet une racine réelle positive, et n'en a qu'une de cette espèce.

Lorsque les coefficients de l'équation (5) ou (11) sont donnés en

nombres, on peut aisément déterminer la racine positive de cette équation, avec une approximation aussi grande qu'on le juge convenable, à l'aide de procédés semblables à ceux auxquels on a recours dans l'extraction des racines carrées et cubiques. Il est d'ailleurs facile de trouver une limite supérioure à la racine dont il s'agit. On y parviendra en particulier pour l'équation (11), en suivant l'une des méthodes que nous allons exposer.

Soient ρ le plus grand des coefficients $\rho_1, \rho_2, \ldots, \rho_{n-1}, \rho_n$, et χ la racine positive de l'équation (11). On aura

(12)
$$v^{n} = \rho_{1}v^{n-1} + \rho_{2}v^{n-2} + \ldots + \rho_{n-1}v^{-1} \cdot \rho_{n},$$

et, par suite,

(13)

$$z^{n} < \rho(z^{n-1} + z^{n-2} - | -1 - z | -1), \qquad z^{n} \cdot \rho^{1^{n}} = 1$$

ou, ce qui revient au même,

$$z - 1 < \rho - \frac{t^n}{t^n} - 1 < \rho,$$

$$t < \rho + 1.$$

Donc la racine positive de l'équation (11) sora inférieure au plus grand des nombres

(14)
$$\rho_1 + 1, \quad \rho_2 + 1, \quad \dots, \quad \rho_{n-1} + 1, \quad \rho_n + 1.$$

De l'équation (12), présentée sous la forme

on conclut encore que les rapports

(16)
$$\frac{\rho_1}{\tau}, \quad \frac{\rho_2}{\tau^2}, \quad \cdots, \quad \frac{\rho_{n-1}}{\tau^{n-1}}, \quad \frac{\rho_n}{\tau^n}$$

doivent être ou égaux entre oux et à $\frac{1}{n}$, ou les uns supérieurs, les autres inférieurs à $\frac{1}{n}$. Donc, par suite, les rapports

$$(17) \qquad \frac{n\rho_1}{\varepsilon}, \quad \frac{n\rho_2}{\varepsilon^2}, \quad \cdots, \quad \frac{n\rho_{n-1}}{\varepsilon^{n-1}}, \quad \frac{n\rho_n}{\varepsilon^n}$$

doivent être, ou égaux, ou les uns supériours, les autres inférieurs à l'unité; et l'on pourra en dire autant des expressions

$$\frac{n\rho_1}{\mathfrak{r}}, \qquad \left(\frac{n\rho_2}{\mathfrak{r}^2}\right)^{\frac{1}{2}} = \frac{(n\rho_2)^{\frac{1}{2}}}{\mathfrak{r}}, \qquad \dots,$$

$$\left(\frac{n\rho_{n-1}}{\mathfrak{r}^{n-1}}\right)^{\frac{1}{n-1}} = \frac{(n\rho_{n-1})^{\frac{1}{n-1}}}{\mathfrak{r}}, \qquad \left(\frac{n\rho_n}{\mathfrak{r}^n}\right)^{\frac{1}{n}} = \frac{(n\rho_n)^{\frac{1}{n}}}{\mathfrak{r}}.$$

Or il en résulte évidemment que la racine τ sera comprise entre le plus petit et le plus grand des nombres

(18)
$$n\rho_1, (n\rho_2)^{\frac{1}{2}}, \ldots, (n\rho_{n-1})^{\frac{1}{n-1}}, (n\rho_n)^{\frac{1}{n}}.$$

Observons maintenant que, si, dans le premier membre de l'équation (11), on attribue à la variable x une valeur positive quelconque désignée par r, la valeur correspondante de ce premier membre sera

(19)
$$r^{n} - \rho_{1} r^{n+1} - \rho_{2} r^{n+2} - \ldots - \rho_{n-1} r - \rho_{n}$$

ou, ce qui revient au mème,

(30)
$$r^{n} \left(1 - \frac{\rho_{1}}{r} - \frac{\rho_{2}}{r^{2}} - \dots - \frac{\rho_{n-1}}{r^{n-1}} - \frac{\rho_{n}}{r^{n}} \right).$$

Or le produit (20) est composé de deux factours qui, pour des valeurs croissantes de r, croissent l'un et l'autre, et convergent, le premier vers la limite ∞ , le second vers la limite 1. Donc ce produit, qui s'évanouit pour $r=\epsilon$, deviendra positif dès que l'on aura $r>\epsilon$, par exemple, lorsqu'on supposera $r=\rho+1$, ou lorsqu'on prendra pour r le plus grand des nombres (18); de plus, le produit dont il s'agit ou le polynôme (19) deviendra infini pour des valeurs infinies de r.

§ V. — Sur la résolution des équations de degré quelconque à coefficients imaginaires.

Considérons, comme dans le \S IV, une équation du degré n, mais à coefficients imaginaires. En réduisant le coefficient du premier terme

à l'unité, on ramènera encore cette équation à la forme

(1)
$$x^n + \Lambda x^{n-1} + B x^{n-2} + \ldots + L x^n + K = 0.$$

Sculement les constantes A, B, ..., I, K et les valeurs de x propres à vérifier l'équation (1) pourront être imaginaires. D'ailleurs, si l'on désigne par $p+q\sqrt{-1}$ une valeur imaginaire quelconque attribuée à la variable x, et par

$$\rho_1, \quad \rho_2, \quad \ldots, \quad \rho_{n-1}, \quad \rho_n, \quad r$$

les modules des expressions imaginaires

A, B, ..., I, K,
$$p+q\sqrt{-1}$$
,

le module du polynôme

(2)
$$\Lambda x^{n-1} + B x^{n-2} + \ldots + I x + K$$

sera (en vertu des théorèmes II et III) égal ou inférieur à la somme

(3)
$$\rho_1 r^{n-1} + \rho_2 r^{n-2} + \ldots + \rho_{n-1} r + \rho_n,$$

et, par suite, le module du polynôme

(4)
$$x^{n} + \Lambda x^{n-1} + B x^{n-2} + \ldots + I x + K$$

(voir encore le théorème II) sera égal ou supérieur à la différence

(5)
$$r^{n} - \rho_{1}r^{n-1} - \rho_{2}r^{n-2} - \dots - \rho_{n-1}r - \rho_{n},$$

lorsqu'elle sera positive, c'est-à-dire lorsque le module r'' de x'' surpassera celui du polynôme (2). Or l'expression (5) acquerra une valeur positive et différente de zéro (voir le § IV), dès que le module r deviendra supérieur à la quantité positive z qui vérifie l'équation

(6)
$$v^{n} = \rho_{1}v^{n-1} + \rho_{2}v^{n-2} + \ldots + \rho_{n-1}v + \rho_{n},$$

par exemple, lorsqu'on prendra pour r le plus grand des nombres

(7)
$$\rho_1+1, \quad \rho_2+1, \quad \ldots, \quad \rho_{n-1}+1, \quad \rho_n+1$$

ou le plus grand terme de la suite

(8)
$$n\rho_1, (n\rho_2)^{\frac{1}{2}}, \ldots, (n\rho_{n-1})^{\frac{1}{n-1}}, (n\rho_n)^{\frac{1}{n}}$$

Donc alors le module du polynôme (4), étant égal ou supérieur à l'expression (5), acquerra lui-même une valeur différente de zéro. Donc l'équation (1) ne peut être vérifiée par aucune valeur de x dont le module surpasse la quantité x. Ajoutons que, si le module r, devenant supérieur à x, croît au delà de toute limite, on pourra en dire autant de l'expression (5), et, à plus forte raison, du module du polynôme (4).

Concevons maintenant que l'on désigne par $P+Q\sqrt{-\tau}$ la valeur du polynôme (4) correspondante à $x=p+q\sqrt{-\tau}$, et par R le module de l'expression imaginaire $P+Q\sqrt{-\tau}$. D'après ce qu'on vient de dire, le module R croîtra indéfiniment avec r. Donc les plus petites valeurs de ce module correspondront, non à des valeurs infinies, mais à des valeurs finies de r et de x. D'ailleurs, si l'on attribue à la variable x une valeur distincte de $p+q\sqrt{-\tau}$, et représentée par

$$p+q\sqrt{-1}+z$$

le polynôme (4) se transformera en une fonction entière de z du degré n, savoir

(9)
$$\begin{cases} (p+q\sqrt{-1}+z)^{n} + \Lambda(p+q\sqrt{-1}+z)^{n-1} \\ + B(p+q\sqrt{-1}+z)^{n-2} + \ldots + J(p+q\sqrt{-1}+z) + h, \end{cases}$$

qui pourra être présentée sous la forme

(10)
$$\begin{cases} P + Q\sqrt{-1} + (P_1 + Q_1\sqrt{-1})z \\ + (P_2 + Q_2\sqrt{-1})z^2 + \dots + (P_{n-1} + Q_{n-1}\sqrt{-1})z^{n-1} + z^n, \end{cases}$$

 $P_1, P_2, \ldots, P_{n-1}; Q_1, Q_2, \ldots, Q_{n-1}$ désignant encore des quantités réelles. Cela posé, admettons d'abord que l'expression imaginaire $P_1 + Q_1 \sqrt{-1}$ ne soit pas nulle. Alors, dans le polynôme (10), la somme des deux premiers termes s'évanouira, si l'on prend

$$z = -\frac{b^{1} + 0^{1}\sqrt{-1}}{b^{1} + 0^{1}\sqrt{-1}}$$

Mais, și l'on prend

(12)
$$z = -\varepsilon \frac{P + Q\sqrt{-\tau}}{P_1 + Q_1\sqrt{-\tau}},$$

ε désignant une quantité positive très peu différente de zéro, la même expression deviendra une fonction entière de ε qui offrira pour premiers termes les deux expressions imaginaires

$$P + Q\sqrt{-1}, -\varepsilon(P + Q\sqrt{-1}).$$

Done, si l'on divise cette fonction de ε par $P+Q\sqrt{-\tau}$, le quotient sera de la forme

$$1-\varepsilon+c_1\varepsilon^2+c_2\varepsilon^3+\ldots+c_{n-1}\varepsilon^n$$
,

 $c_1, c_2, \ldots, c_{n-1}$ désignant des coefficients réels ou imaginaires, et l'on trouvera, en supposant la variable z déterminée par la formule (12),

(13)
$$\begin{cases} (p+q\sqrt{-1}+z)^{n} + \Lambda(p+q\sqrt{-1}+z)^{n-1} + B(p+q\sqrt{-1}+z)^{n-2} + \dots \\ + I(p+q\sqrt{-1}+z) + K \\ = (P+Q\sqrt{-1})(1-\varepsilon+c_{1}\varepsilon^{2}+c_{2}\varepsilon^{3}+\dots+c_{n-1}\varepsilon^{n}). \end{cases}$$

D'autre part, si l'on nomme

$$x_1, x_2, \dots, x_{n-1}$$

les modules des expressions imaginaires

$$c_1, c_2, \ldots, c_{n-1},$$

on prouvera, en raisonnant comme ci-dessus (p. 114), que le module 0 du polynôme

$$(14) \qquad 1 - \varepsilon + c_1 \varepsilon^2 + c_2 \varepsilon^3 + \ldots + c_{n-1} \varepsilon^n$$

est inférieur à la somme

$$1 - \varepsilon + \varkappa_1 \varepsilon^2 + \varkappa_2 \varepsilon^3 + \ldots + \varkappa_{n-1} \varepsilon^n$$

et vérifie, en conséquence, la formule

(15)
$$0 < 1 - \varepsilon (1 - \chi_1 \varepsilon - \chi_2 \varepsilon^2 - \dots - \chi_{n-1} \varepsilon^{n-1}),$$

dès que l'on suppose $\varepsilon < \tau$. Enfin la formule (15) donnera évidemment, pour de très petites valeurs de ε ,

$$(16) 0 < 1,$$

$$\theta R < R.$$

Par conséquent, lorsque R ne sera pas nul, on pourra choisir ε de manière que le module 0R de l'expression (13) demoure inférieur à R. Done, si l'expression imaginaire $P_1 + Q_1 \sqrt{-1}$ ne s'évanouit pas, la plus petite valeur de R ou le plus petit module du polynôme (4) ne pourra différer de zéro.

Admettons à présent que $P_1+Q_1\sqrt{-\tau}$ s'évanouisse, et supposons que, parmi les expressions imaginaires

$$P_1 \cdot i \ Q_1 \sqrt{-1}, \ P_2 + Q_2 \sqrt{-1}, \ \dots, \ P_{n-1} + Q_{n-1} \sqrt{-1}, \ P_n + Q_n \sqrt{-1} = 1$$

la première de celles qui ne sont pas nulles corresponde à l'indice m. Alors, dans le polynôme (10) réduit à la forme

(18)
$$\begin{cases} P + Q \sqrt{-1} + (P_{m-1}, Q_m \sqrt{-1}) z^m \\ + (P_{m+1} + Q_{m+1} \sqrt{-1}) z^{m+1} + \dots + (P_{n-1} + Q_{n-1} \sqrt{-1}) z^{n-1} + z^n, \end{cases}$$

la somme des deux premiers termes s'évanouira, si l'on prend

$$\mathfrak{s}=\zeta,$$

 ζ désignant une valeur de z propre à vérifier l'équation binôme

$$z^{m} = -\frac{P + Q\sqrt{-1}}{P_{m} + Q_{m}\sqrt{-1}}.$$

Mais, si l'on prend

$$s=\varepsilon\zeta,$$

ε étant une quantité positive différente de zéro, le polynôme (18) deviendra une fonction entière de ε, qui offrira pour premiers termes les deux expressions imaginaires

$$P+Q\sqrt{-1}, -\varepsilon^m(P+Q\sqrt{-1}).$$

Done, si l'on divise cette fonction de ϵ par $P+Q\sqrt{-\tau}$, le quotient sora de la forme

(32)
$$1 - \varepsilon^{m} + c_{1}\varepsilon^{m+1} + c_{2}\varepsilon^{m+2} + \dots + c_{n-m}\varepsilon^{n},$$

 $c_1, c_2, \ldots, c_{n-m}$ désignant des coefficients réels ou imaginaires, et l'on

trouvera, en supposant la variable z déterminée par l'équation (21),

(23)
$$\begin{cases} (p+q\sqrt{-1}+z)^{n} + \Lambda(p+q\sqrt{-1}+z)^{n-1} + B(p+q\sqrt{-1}+z)^{n-2} + \dots \\ + I(p+q\sqrt{-1}+z) + K \end{cases}$$

$$= (P+Q\sqrt{-1})(1-\varepsilon^{m}+c_{1}\varepsilon^{m+1}+c_{2}\varepsilon^{m+2}+\dots+c_{n-m}\varepsilon^{n}).$$

D'autre part, si l'on nomme

$$x_1, x_2, \ldots, x_{n-m}$$

les modules des expressions imaginaires

$$c_1, c_2, \ldots, c_{n-m},$$

on s'assurera, en raisonnant comme à la page 114, que le module 0 du polynôme

$$(24) \qquad 1 - \varepsilon^m + c_1 \varepsilon^{m+1} + c_2 \varepsilon^{m+2} + \ldots + c_{n-m} \varepsilon^m$$

vérific la formule

(25)
$$\theta < 1 - \varepsilon^m (1 - \varkappa_1 \varepsilon - \varkappa_2 \varepsilon^2 - \ldots - \varkappa_{n-m} \varepsilon^{n-m}),$$

lorsqu'on suppose ε<1, et devient par suite inférieur à l'unité, lorsque ε diffère très peu de zéro. Donc, si R n'est pas nul, le module θR de l'expression (23) sera, pour de très petites valeurs de ε, inférieur à R. Par conséquent, dans l'hypothèse admise, la plus petite valeur de R ou le plus petit module du polynôme (4) se réduira encore à zéro.

Il est donc prouvé que, dans tous les cas, les valeurs finies de r et de x, pour lesquelles le module R devient le plus petit possible, font évanouir ce module et, par suite, le polynôme (4). Donc il existe une ou plusieurs valeurs finies de x propres à vérifier l'équation (1). En d'autres termes, cette équation admet nécessairement une ou plusieurs racines soit réelles, soit imaginaires.

La méthode par laquelle on vient d'établir l'existence des racines réelles ou imaginaires des équations de degré quelconque peut encore servir au calcul numérique de ces racines. En effet, nommons x_1 , x_2 les deux valeurs de x ci-dessus désignées par $p+q\sqrt{-1}$ et $p+q\sqrt{-1}+z$. Pour que le module du polynôme (4) diminue tandis que la variable x passera de la valeur $x=x_1$ à la valeur $x=x_2$, il suffira de choisir le nombre z de manière que le second membre de la formule (15) ou (25) devienne inférieur à l'unité, et par conséquent de manière que l'on ait

$$(26) x_1 \varepsilon + x_2 \varepsilon^2 + \ldots + x_{n-1} \varepsilon^{n-1} < 1$$

ou

Or la condition (26) sera remplie, si l'on prend pour & un nombre inférieur à la racine positive unique de l'équation

(28)
$$x_1 \varepsilon + x_2 \varepsilon^2 + \ldots + x_{n-1} \varepsilon^{n-1} = 1.$$

D'ailleurs cette équation, pouvant s'écrire comme il suit

(29)
$$\left(\frac{1}{\varepsilon}\right)^{n-1} = \varkappa_1 \left(\frac{1}{\varepsilon}\right)^{n-2} + \varkappa_2 \left(\frac{1}{\varepsilon}\right)^{n-3} + \ldots + \varkappa_{n-1},$$

fournira une valeur positive de $\frac{1}{\epsilon}$ inférieure au plus grand des nombres

$$x_1 + 1$$
, $x_2 + 1$, ..., $x_{n-1} + 1$,

ainsi qu'à la plus grande des quantités

$$(n-1)x_1, [(n-1)x_2]^{\frac{1}{2}}, \ldots, [(n-1)x_{n-1}]^{\frac{1}{n-1}}$$

(voir le § IV), et par conséquent une valeur positive de ϵ inférieure au plus petit des rapports

$$(3o) \qquad \frac{1}{x_1+1}, \quad \frac{1}{x_2+1}, \quad \cdots, \quad \frac{1}{x_{n-1}+1},$$

ainsi qu'à la plus petite des quantités

(31)
$$\frac{1}{(n-1)\varkappa_1}, \quad \left[\frac{1}{(n-1)\varkappa_2}\right]^{\frac{1}{2}}, \quad \dots, \quad \left[\frac{1}{(n-1)\varkappa_{n-1}}\right]^{\frac{1}{n-1}}.$$

Donc le plus petit terme de la suite (30) ou (31), étant pris pour \(\epsilon\), vérifiera la condition (26). De même, on vérifiera la condition (27) en prenant pour \(\epsilon\) un nombre inférieur à la racine positive unique de l'équation binême

$$\lambda_1 \varepsilon + \lambda_2 \varepsilon^2 + \ldots + \lambda_{n-m} \varepsilon^{n-m} = 1,$$

ou le plus petit terme de l'une quelconque des deux suites

$$\frac{1}{\lambda_1+1}, \quad \frac{1}{\lambda_2+1}, \quad \cdots, \quad \frac{1}{\lambda_{n-m-1-1}},$$

$$(3'_1)$$
 $\frac{1}{(n-m)\varkappa_1}$, $\left[\frac{1}{(n-m)\varkappa_2}\right]^{\frac{1}{2}}$, ..., $\left[\frac{1}{(n-m)\varkappa_{n-m}}\right]^{\frac{1}{n-m}}$.

Ainsi, dans tous les cas, après avoir choisi arbitrairement la valeur de x ci-dessus représentée par x_1 ou $p+q\sqrt{-1}$, on pourra, de cette première valeur, en déduire une seconde x_2 qui fournisse un moindre module du polynôme (4). Cela posé, si l'ou répète plusieurs fois de suite l'opération par laquelle on déduit x_2 de x_1 , on obtiendra évidemment une série de valeurs finies de x_1 , auxquelles correspondront des modules de plus en plus petits du même polynôme, et, si l'ou désigne ces valeurs par

$$(35) x_1, x_2, x_3, x_4, \ldots,$$

la limite vers laquelle elles convergeront, tandis que le polynôme (4) s'approchera indéfiniment de zéro, sera certainement une racine de l'équation (1).

Soit maintenant a une racine réelle ou imaginaire de l'équation (1). On aura identiquement

(36)
$$a^n + A a^{n-1} + B a^{n-2} + \dots + I a + K = 0$$

ou, ce qui revient au même,

$$K = -a^n - Aa^{n-1} - Ba^{n-2} - \dots - Ia$$

et, par suite,

$$(37) \begin{cases} x^{n} + Ax^{n-1} + Bx^{n-2} + \dots + Ix + K \\ = x^{n} - a^{n} + A(x^{n-1} - a^{n-1}) + B(x^{n-2} - a^{n-2}) + \dots + I(x - a). \end{cases}$$

Comme on a d'ailleurs, en désignant par m un nombre entier quelconque,

(38)
$$x^m = a^{m-1} (x - a) (x^{m-1} + ax^{m-2} + ... + a^{m-2} x + a^{m-1}).$$

la formule (37) donnera évidemment

(39)
$$\begin{cases} x^{n} + \Lambda x^{n-1} + B x^{n-2} + \dots + Ix + K \\ = (x - a) \left[x^{n-1} + (a + \Lambda) x^{n-2} + (a^{2} + \Lambda a + B) x^{n-3} + \dots + (a^{n-1} + \Lambda a^{n-2} + B a^{n-3} + \dots + I) \right]. \end{cases}$$

Donc le polynôme (4), qui est du degré n par rapport à x, peut toujours être décomposé en deux facteurs, dont l'un soit linéaire et de la forme

$$(40)$$
 $x - a$

l'autre étant un nouveau polynôme du degré n-1 et de la forme

(41)
$$\begin{cases} x^{n-1} + (a + \Lambda) \cdot x^{n-2} + (a^2 + \Lambda a + B) \cdot x^{n-3} + \dots \\ + (a^{n-1} + \Lambda a^{n-2} + B \cdot a^{n-3} + \dots + I). \end{cases}$$

De plus, en désignant par b une racine réelle ou imaginaire de l'équation

$$\begin{cases} x^{n+1} + (a + \Lambda) \cdot x^{n-2} + (a^2 + \Lambda a + B) \cdot x^{n-3} + \dots \\ + (a^{n-1} + \Lambda a^{n-2} + B a^{n-3} + \dots + 1) = 0, \end{cases}$$

on prouvera encore que le polynôme (41) peut être décomposé en deux facteurs dont l'un soit x-b, l'autre étant un polynôme du degré n-2 et de la forme

(43)
$$x^{n-2} + (b + a + \Lambda)x^{n-3} + |b^2 + ab + a^2 + \Lambda(b+a) + B|x^{n-4} + \dots$$

Donc le polynôme (4) sera le produit des facteurs linéaires x-a, x-b par un polynôme du degré n-2. En continuant de la même manière, on prouvera définitivement que le polynôme (4) est le produit de n facteurs linéaires et de la forme

$$(14) x-a, x-b, \ldots, x-i, x-k$$

par un polynôme du degré zéro, c'est-à-dire par une constante; et, OEuvres de C. - S. U. t. IX.

130 SUR LA RÉSOLUTION DES ÉQUATIONS NUMÉRIQUES comme cette constante devra se réduire au coefficient de xⁿ dans le polynôme (4), par conséquent à l'unité, on trouvera

(5)
$$x^n + \Lambda x^{n-1} + B x^{n-2} + \ldots + 1x + K = (x - u)(x - b) \ldots (x - i)(x - k).$$

Done l'équation (1) pourra toujours être présentée sous la forme

(i6)
$$(x-a)(x-b)...(x-i)(x-k) = 0,$$

 a,b,\ldots,i,k désignant n constantes réclies ou imaginaires. Mais on a démontré (voir le théorème IV) que le produit de plusieurs facteurs imaginaires ne peut s'évanouir qu'autant que l'un de ces facteurs se réduit à zéro. Donc toute valeur réelle ou imaginaire de x, propre à vérifier l'équation (46), coincidera nécessairement avec l'une des valeurs de x déterminées par les formules

$$(47)$$
 $x-a=0, x-b=0, \dots, x-i=0, x-h=0,$

c'est-à-dire avec l'une des constantes a, b, \ldots, i, k ; et, comme chacunc de ces constantes est évidemment racine de l'équation (56), ou pourra énoncer la proposition suivante :

Theorem X. — Quelles que soient les valeurs réclles on les raleurs imaginaires des coefficients A, B, ..., I, K, l'équation (1) a toujours n racines réelles ou imaginaires, et n'en saurait avoir un plus grand nombre.

De plus, on déduira immédiatement de la formule (15) cet autre théorème :

Theorème XI. — Si l'on désigne par a, b, c, ..., i, k les n ravines de l'équation (1), le premier membre de cette équation ou le polynôme (4) sera le produit des facteurs linéaires

(48)
$$x-a, x-b, \ldots, x-i, x-h$$

Observons encore que, si l'on développe le second membre de l'équation (45), elle deviendra

٠,,

et que l'on tirera de la formule (49), en ayant égard au théorème VII,

(50)
$$\begin{cases} a+b+c+\ldots+i+k=-\Lambda, \\ ab+ac+\ldots+ai+ak+bc+\ldots+bi+bk+\ldots+ik=B, \\ \ldots, \\ abc\ldots i+abc\ldots k+\ldots+bc\ldots ik=\mp I, \\ abc\ldots ik=\pm K. \end{cases}$$

 Or ces dernières équations comprennent évidemment un théorème que l'on peut énoncer comme il suit :

THEOREME XII. — Lorsque, dans une équation du degré n, le coefficient du premier terme est réduit à l'unité, les coefficients du deuxième, du troisième, du quatrième, ..., du dernier terme, étant pris alternativement avec le signe — et avec le signe +, sont respectivement égaux à la somme des racines, ou aux sommes des produits qu'on obtient en multipliant ces racines deux à deux, trois à trois, etc., ou enfin au produit de toutes les racines.

Lorsque deux ou plusieurs des constantes a, b, c, ... sont égales entre elles, les facteurs linéaires correspondants deviennent égaux, el l'on dit que l'équation (1) a des racines égales.

Lorsque, dans le polynôme (4), les coefficients A, B, ..., I, K sont réels, alors, en substituant successivement dans ce polynôme deux valeurs de x imaginaires, mais conjuguées l'une à l'autre, par exemple,

$$(51) x = p + q\sqrt{-1}, x = p - q\sqrt{-1},$$

on obtient évidemment pour résultats deux nouvelles expressions imaginaires, qui sont encore conjuguées l'une à l'autre ou de la forme

(52)
$$\mathbf{P} + \mathbf{Q}\sqrt{-1}, \quad \mathbf{P} - \mathbf{Q}\sqrt{-1},$$

P. Q étant des quantités réelles. D'ailleurs, pour que chacune des expressions (52) s'évanouisse, il sera nécessaire et il suffira que l'on ait

$$(53) P = 0, Q = 0.$$

Donc ces deux expressions ne pourront s'évanouir l'une sans l'autre, et si l'équation (1) offre, dans l'hypothèse admise, une racine imaginaire de la forme $p+q\sqrt{-1}$, elle en offrira une seconde conjuguér à la première ou de la forme $p-q\sqrt{-1}$. Dans le même cas, ceux des farteurs linéaires x-a, x-b, ..., qui correspondront à deux racines imaginaires conjuguées, seront eux-mêmes conjugués entre cux ou de la forme

$$(54) x-p-q\sqrt{-1}, x-p+q\sqrt{-1},$$

et donneront pour produit un facteur réel du second degré, savoir

$$(55) \qquad (x-p)^2 + q^2.$$

Ces remarques fournissent les propositions suivantes :

THEORÈME XIII. — Si, dans l'équation (1), les coefficients A. B. ..., I, K sont tous réels, cette équation n'admettra qu'un nombre pair de racines imaginaires qui, prises deux à deux, seront conjuguées l'une à l'autre.

Theonème XIV. — Si, dans le polynôme (4), les coefficients A. B. 1, K sont tous réels, ce polynôme sera décomposable en facteurs réels du premier ou du second degré.

Les deux théorèmes qui précèdent s'étendent évidemment à l'équation (76) du § I et au polynôme qui forme le premier membre de cette équation, c'est-à-dire à tous les polynômes dont les coefficients sont réels, et aux équations qu'on obtient en égalant ces polynômes à zéro.

§ VI. — Sur la détermination des fonctions symétriques des racines d'une équation donnée

(1)
$$x^n + Ax^{n-1} + Bx^{n-2} + \dots + Ix + K = 0,$$

dans laquelle A, B, ..., I, K désignent des constantes réelles ou imaginaires. Si l'on nomme a, b, c, \ldots, h , i, k les racines de cette équa-

tion, l'on aura, comme on l'a prouvé dans le § V,

$$\begin{pmatrix} a+b+c+\ldots+i+k=-\Lambda, \\ ab+ac+\ldots+ai+ak+bc+\ldots+bi+bk+\ldots+ik=B, \\ \cdots \\ abc\ldots i+abc\ldots k+\ldots+bc\ldots ik=\mp I, \\ abc\ldots ik=\pm K, \end{pmatrix}$$

Soit maintenant U une fonction entière de chacune des racines a, b, c, ..., i, k, qui, comme les premiers membres des équations (2), ne change pas de valeur, quand on échange entre elles ces mêmes racines. U sera ce qu'on appelle une fonction symétrique des racines de l'équation (1), et l'on pourra, sans résoudre cette équation, déduire la valeur de U des valeurs supposées connues des coefficients A, B, C, ..., I, K. On y parviendra en effet très aisément à l'aide de la proposition suivante:

THÉORÈME XV. — Soient a, b, c, ... les racines supposées inégales de l'équation (1). Concevons de plus que U représente une fonction symétrique de ces racines, et que, par un moyen quelconque, on ait transformé U en une fonction entière de a, du degré m, savoir

(3)
$$\xi a^m + \Im \mathbb{V} a^{m-1} + \ldots + \$ a + 6 = \mathbb{U},$$

£, M, ..., 8, & étant de nouveaux coefficients dont les valeurs se déduisent de celles des coefficients A, B, ..., I, K. Si l'équation (3) subsiste tandis qu'on y remplace la racine a par l'une quelconque des racines b, c, d, ..., le polynôme

$$(1) \qquad \qquad \xi a^m + \Im \mathbb{L} a^{m-1} + \ldots + \$a + \mathfrak{E},$$

divisé par la fonction

(5)
$$a^n + \Lambda a^{n-1} + B a^{n-2} + \ldots + I a + K$$
,

fournira un reste indépendant de a, et ce reste sera précisément la valeur de U.

Démonstration. - En effet, dans l'hypothèse admise, chacune des

134 SUR LA RÉSOLUTION DES ÉQUATIONS NUMÉRIQUES racines a, b, c, d, \ldots de l'équation (1) vérifiera encore la formule

D'ailleurs, si l'on désigne par

$$\lambda x^{n-1} + p x^{n-2} + \ldots + \varsigma x + \tau$$

le reste de la division du premier membre de la formule (6) par le premier membre de l'équation (1), la formule (6) se réduira simplement à la suivante

(8)
$$\lambda x^{n-1} + \mu x^{n-2} + \ldots + \varsigma x + \tau = U.$$

Or cette dernière ne pourra être qu'une équation identique, en sorte qu'on aura nécessairement

$$(9) \qquad \lambda = 0, \quad \mu = 0, \quad \dots, \quad \varsigma = 0$$

et

$$\tau = U.$$

Car, s'il en était autrement, la formule (8) serait une équation d'un degré inférieur à n, et pourtant elle admettrait n racines a, b, c, d, ..., ce qui serait contraire au théorème X. Donc, en divisant le premier membre de l'équation (6) par le premier membre de l'équation (1) et, par conséquent, le polynôme (4) par le polynôme (5), on obtiendra un reste τ indépendant de x ou de a, et ce reste, en vertu de la formule (10), sera précisément la valeur de U.

Pour montrer le parti qu'on peut tirer du théorème XV, concevons d'abord que l'équation (1) soit du second degré, et se réduise à

$$(11) x^2 + Ax + B = 0.$$

Les deux racines a et b de cette équation vérifieront la formule

$$(13) a+b=-\Lambda;$$

ct, si l'on désigne par U une fonction symétrique de ces racines, il

suffira de substituer à la racine b sa valeur (irée de la formule (12), savoir

$$(13) b = -a - \Lambda,$$

pour changer U en une fonction entière de la seule racine a. Soit

$$(3) \qquad \qquad (a^m + 3) \cup a^{m-1} + \ldots + 8a + 6 = U$$

la fonction entière dont il s'agit. L'équation (3) continuera évidemment de subsister, ainsi que la formule (12), tandis que l'on échangera entre elles les racines a et b. Done, si ces racines sont inégales, le polynôme (4), divisé par le trinôme

$$(14) a^2 + p\alpha + q,$$

fournira (en vertu du théorème XV) un reste indépendant de a, et ce reste sera précisément la valeur de U.

Il est bon d'observer que, en substituant dans U la valeur de b tirée de la formule (12), on obtient pour résultat le reste auquel on parviendrait en divisant U considéré comme fonction de b par le trinôme

$$(15) b + a + p.$$

Donc, pour calculer la valour d'une fonction symétrique U des racines a, b de l'équation (11), supposées inégales, il suffit de diviser : 1° U considéré comme fonction de b par le trinôme (15); 2° le reste de la division considéré comme fonction de a par le trinôme (14). Le nouveau reste, ainsi déterminé, sera précisément la valeur cherchée de U.

Concevons maintenant que l'équation (1), étant du troisième degré, se réduise à

(16)
$$x^3 + \Lambda x^2 + B x + C = 0;$$

et soient a, b, c les trois racines de cette équation supposées inégales entre elles. On aura identiquement

(17)
$$a^3 + A a^2 + B a + C = 0$$

ou, ce qui revient au même,

$$C = -a^3 - Aa^3 - Ba$$

136 SUR LA RÉSOLUTION DES ÉQUATIONS NUMÉRIQUES et, par suite,

$$x^{3} + \Lambda x^{2} + Bx + C = x^{3} - a^{3} + \Lambda (x^{2} - a^{2}) + B(x - a)$$

$$= (x - a) [x^{2} + (a + \Lambda)x + (a^{2} + \Lambda a + B)].$$

Donc, l'équation (16) pourra être présentée sous la forme

(18)
$$(x-a)[x^2 + (a+\Lambda)x + (a^2 + \Lambda a + B)] = 0,$$

et celle qu'on obtiendra en la divisant par x-a, savoir

(19)
$$x^{2} + (a + \Lambda)x + (a^{2} + \Lambda a + B) = 0,$$

aura pour racines b et c. Cela posé, soit U une fonction symétrique des racines a, b, c de l'équation (16). Puisque l'équation (19) est du second degré seulement, on déterminera sans peine la valeur de U considéré comme fonction symétrique des racines b et c, par la méthode que nous avons appliquée à la détermination des fonctions symétriques des racines de l'équation (11). On y parviendra, en effet, en divisant U considéré comme fonction de c par le polynôme

$$(30) c+b+a+\Lambda,$$

puis le reste considéré comme fonction de b par le polynôme

(21)
$$b^2 + (a + A)b + a^2 + Aa + B$$
.

Le reste de la nouvelle division sera une fonction entière de a, qui, divisée elle-même par le polynôme

$$(22) a3 + A a2 + B a + C,$$

fournira un troisième reste indépendant de a; et ce troisième reste sera la valeur cherchée de U.

Il est important d'observer que, pour obtenir les polynômes (22), (21), (20), il suffit : 1° de poser x = a dans le premier membre de l'équation proposée, c'est-à-dire dans la fonction

$$(23) x^3 + \Lambda x^2 + B x + C;$$

2º de retrancher le résultat ou le polynôme (22) de la fonction (23),

de diviser le reste par x-a, et de remplacer, dans le quotient ainsi formé, savoir

$$(24) x^2 + (\alpha + \Lambda)x + \alpha^2 + \Lambda\alpha + B,$$

la variable x par la lettre b; 3° de retrancher le nouveau résultat ou le polynôme (21) de la fonction (24), de diviser le reste par x - b, et de remplacer, dans le quotient ainsi formé, savoir

$$(25) x+b+a+\Lambda,$$

la variable & par la lettre c.

Concevons encore que l'équation (1), étant du quatrième degré, se réduise à

(a6)
$$x^4 + Ax^3 + Bx^2 + Cx + D = 0$$

et soient a, b, c, d les quatre racines de cette équation, supposées inégales entre elles. On aura identiquement

(37)
$$a^{3} + \Lambda a^{3} + B a^{2} + C a + D = 0$$

ou, ce qui revient au même,

$$D = -a^1 - Aa^1 - Ba^2 - Ca,$$

et, par suite,

$$x^{4} + Ax^{3} + Bx^{2} + Cx + D$$

$$= x^{4} + A(x^{3} + Bx^{2} + Cx + D) + B(x^{2} - a^{2}) + C(x - a)$$

$$= (x - a) [x^{3} + (a + A)x^{2} + (a^{2} + Aa + B)x + (a^{3} + Aa^{2} + Ba + C)].$$

Done l'équation (26) pourra être présentée sous la forme

(28)
$$(x-a)[x^3+(a+\Lambda)x^2+(a^2+\Lambda a+B)x+(a^3+\Lambda a^2+Ba+C)]=0$$
,

et celle qu'on obtiendra, en la divisant par x-a, savoir

(29)
$$x^3 + (a + A)x^2 + (a^2 + Aa + B)x + (a^3 + Aa^2 + Ba + C) = 0$$
,

aura pour racines b, c et d. Cela posé, soit U une fonction symétrique des racines a, b, c, d de l'équation (26). Puisque l'équation (29) est du troisième degré seulement, on déterminera sans peine les valeurs

de U considéré comme fonction symétrique des racines b, c, d par la méthode que nous avons appliquée à la détermination des fonctions symétriques des racines de l'équation (16). On y parviendra, en effet, en divisant U considéré comme fonction de d par le polynôme

$$(30) d+c+b+a+\Lambda,$$

puis le reste considéré comme fonction de c par le polynôme

(31)
$$c^2 + (b + a + \Lambda)c + b^2 + ab + a^2 + \Lambda(b + a) + B$$
,

puis le nouveau reste considéré comme fonction de b par le polynôme

(32)
$$b^3 + (a + \Lambda)b^2 + (a^2 + \Lambda a + B)b + (a^3 + \Lambda a^2 + Ba + C)$$
.

Le troisième reste, que l'on trouvera en opérant comme on vient de le dire, sera une fonction entière de a, qui, divisée elle-même par le polynôme

(33)
$$a^4 + A a^3 + B a^2 + (a + D),$$

fournira un quatrième reste indépendant de a; et ce quatrième reste sera la valeur cherchée de U.

Il est important d'observer que, pour obtenir les polynômes (33), (32), (31), (30), il suffit : 1° de poser x = a dans le premier membre de l'équation proposée, c'est-à-dire dans la fonction

(34)
$$x^3 + Ax^3 + Bx^2 + Cx + D;$$

2º de retrancher le résultat ou le polynôme (33) de la fonction (34), de diviser le reste par x-a, et de remplacer, dans le quotient ainsi formé, savoir

(35)
$$x^3 + (a + A)x^2 + (a^3 + Aa + B)x + (a^3 + Aa^2 + Ba + C),$$

la variable \vec{x} par la lettre b; 3° de retrancher le nouveau résultat ou le polynôme (32) de la fonction (35), de diviser le reste par x - b, et de remplacer dans le quotient ainsi formé, savoir

(36)
$$x^2 + (b+a+A)x + b^2 + ab + a^2 + A(a+b) + B$$
,

la variable x par la lettre c; A^a de retrancher le dernier résultat on le polynôme (31) de la fonction (36), de diviser le reste par x = c, et de remplacer, dans le quotient ainsi formé, savoir

$$(3y) \qquad \qquad x + c + b + a + \lambda,$$

la variable x par la lettre d.

En continuant de la même manière, on parviendra généralement à déterminer les fonctions symétriques des racines d'une équation de degré quelconque, et l'on établira sans peine, à ce sujet, le théorème que nous allons énoncer :

The order XVI. Soient $a, b, c, d, \ldots, h, i, k$ les ravines de l'équation (3),

$$P = x^{n+1} | Xx^{n+1} + Bx^{n+2} + \dots + Lx + K$$

le premier membre de cette équation, et V une fonction symétrique des racines a, b, c, . . . , h, i, k. Soient de plus

$$(3g) \qquad A_{\alpha} = \mathfrak{m}_{\alpha} = \mathfrak{J}_{\alpha} = \mathfrak{J}_{\alpha} = \mathfrak{J}_{\alpha} = \mathfrak{J}_{\alpha} = \mathfrak{J}_{\alpha}$$

les polynòmes dans lesquels se transforment : v^* la fonction V quand on pose $x^* = a \left(\left(\frac{w^*}{2} \right) \right)$ la fonction

$$Q = \frac{P}{a} \cdot \frac{A_0}{a}$$

quand on pose w b; 30 la fonction

$$R = \frac{Q}{w} + h$$

quand on pose w v: 4º la fonction

quand on pose $x \ll d$, etc. Pour déterminer la valeur de la fonction symétrique V, il suffira de diviser : x^{μ} V considéré comme fonction de k par le polynôme

140 SUR LA RÉSOLUTION DES ÉQUATIONS NUMÉRIQUES 2º le reste considéré comme fonction de i par le polynôme

$$\begin{cases} 5 = i^2 + (h + \ldots + b + a)i + h^2 + \ldots + b^2 + a^2 + \cdots \\ + hb + ha + \ldots + ba + \Lambda(i + h + \ldots + b + a) + B; \end{cases}$$

3º le nouveau reste considéré comme fonction de h par le polynôme

$$\beta = h^3 + \dots$$

etc. Les différents restes ainsi obtenus seront indépendants, le premier de la racine k, le second de la racine i, le troisième de la racine h, etc., et le dernier de tous sera précisément la valeur cherchée de [].

D'après ce qui a été dit ci-dessus, il semble, au premier abord, qu'on devrait restreindre le théorème XVI au cas où les racines de l'équation (1) sont inégales entre elles. Mais on doit observer que, en dernière analyse, la valeur de U, déduite de ce théorème, sera une fonction des coefficients A, B, ..., I, K; et même une fonction entière, puisque, dans chacun des polynômes et, z, z, ..., le premier terme a pour coefficient l'unité. Désignons par v cette fonction entière. La formule

$$U = v$$

subsistera lorsque les racines a, b, c, ..., h, i, k seront inégales, quelque petites que soient d'ailleurs les différences de ces racines. D'autre part, on pourra faire varier les coefficients A, B, ..., I, K par degrés insensibles, et de telle manière que deux ou plusieurs de ces différences s'approchent indéfiniment de la limite zéro; et, comme la formule U = v continuera de subsister dans cette hypothèse, il est clair qu'elle sera encore vraie au moment où les différences dont il s'agit s'évanouiront, c'est-à-dire au moment où des racines de l'équation (1) deviendront égales entre elles. Donc le théorème XVI s'étend au cas même où cette équation offre des racines égales.

Il est bon d'observer encore que les polynômes et, 5, 8, ..., e, 16, 18 sont précisément ce que deviennent les premiers membres des

équations (2) présentées sous les formes

1

(45)
$$\begin{cases} A + a + b + c + \ldots + i + k = 0, \\ B - ab - ac + \ldots - ai - ak - bc - \ldots - bi - bk - \ldots - ik = 0, \\ \vdots \\ L \pm (abc \ldots i + abc \ldots k + \ldots + bc \ldots ik) = 0, \\ K \mp abc \ldots ik = 0, \end{cases}$$

quand on substitue dans la seconde la valeur de k tirée de la première, dans la troisième les valeurs de k et de i tirées des deux premières, dans la quatrième les valeurs de k, i, h tirées des trois premières, etc. Ainsi, en particulier, si l'on suppose x=4, les équations (45) deviendront

(46)
$$\begin{cases} A + a + b + c + d = 0, \\ B - (ab + ac + ad + bc + bd + cd) = 0, \\ C + abc + abd + acd + bcd = 0, \\ C - abcd = 0; \end{cases}$$

et l'on tirora de ces équations, en opérant comme on vient de le dire,

(47)
$$\begin{cases} A + a + b + c + d = 0, \\ B + A(a + b + c) + a^{2} + b^{2} + c^{2} + ab + ac + bc = 0, \\ C + B(a + b) + A(a^{2} + ab + b^{2}) + a^{3} + a^{2}b + ab^{2} + b^{3} = 0, \\ D + Ca + Ba^{2} + Aa^{3} + a^{4} = 0. \end{cases}$$

Or les premiers membres des formules (47) se réduisent évidemment aux polynômes (30), (31), (32) et (33). Ajoutons que, au lieu de diviser successivement la fonction symétrique U par les polynômes

on peut éliminer l'une après l'autre les lettres k, i, h, ..., c, b, a de cette même fonction à l'aide des formules

(48)
$$\Re = 0$$
, $\Im = 0$, $\Im = 0$, \ldots , $\Theta = 0$, $\Im = 0$, $\Im = 0$,

ou, ce qui revient au même, à l'aide des formules (45).

Pour montrer une application des principes que nous venons d'établir, prenons

$$U = b^2c + bc^2 + c^2a + ca^2 + a^2b + ab^2,$$

a, b, c étant les trois racines de l'équation (16) que nous réduirons à

$$(50) x^3 + Bx + C = 0,$$

en supposant, pour abréger, A=0. Alors, pour déterminer la valeur de la fonction symétrique U, il faudra diviser successivement le second membre de l'équation (49) par les polynômes (20), (21), (22), ou plutôt par les suivants

(51)
$$c + b + a$$
, $b^2 + ab + a^2 + B$, $a^3 + B \alpha + C$

considérés, le premier comme fonction de c, le second comme fonction de b, le troisième comme fonction de a. En d'autres termes, il faudra poser, dans l'équation (49): 1°

$$(52) c = -b - a;$$

20

(53)
$$b^2 + ab = -a^2 - B;$$

30

(54)
$$a^3 + B a = -C$$
.

Or, en opérant de cette manière, on trouvera

(55)
$$U = 3ab(a+b) = -3a(a^2 + B) = 3C.$$

On aura donc

(56)
$$b^2c + bc^2 + c^2a + ca^2 + a^2b + ab^2 = 3 \text{ C},$$

ce qui est exact.

Prenons encore

(57)
$$U = (a+b)(a+c)(a+d)(b+c)(b+d)(c+d),$$

 $a,\,b,\,c,\,d$ étant les quatre vacines de l'équation (26) que nous réduirons à

$$(38) \qquad i^4 + Bx^2 + Cx + D = 0,$$

en supposant, pour abréger, A = 0. Alors, pour déterminer la valeur de la fonction symétrique U, il fandra diviser successivement le second membre de l'équation (57) par les polynômes (30), (31), (32), (33), on plutôt par les suivants

$$(a_1) = \frac{1}{1} \frac{d + c + b + a_1}{d + a_1} \frac{c^2 + (b + a)c + b^2 + ab + a^2 + B}{1 + a^2 + a^2 + a^2 + a^2 + B}$$

consideres, le premier comme fonction de d_i le second comme fonction de c_i le troisième comme fonction de b_i le quatrième comme fonction de a_i . En d'autres termes, il fandra éliminer successivement de l'équation (57) les quatre lettres d_i c_i b_i a_i à l'aide des formules

$$\frac{d + e + b + a - o_t}{\int e^{2} + b^{3} + a^{2} + be + ca + ab + B - o_t}$$

$$= \frac{(b + a) + b^{3} + a^{3} + B + C - o_t}{a^{3} + Ba^{3} + Ca + D - o_t}$$

Or, en operant ainsi, on fronvera

$$(6) \quad V = \{(a+b)(a+c)(b+c)\}^2 \rightarrow \{(a+b)(a^2+b^2+B)\}^2 = \{C\}$$

On aura done

$$(64) = -(a+b)(a+c)(a+d)(b+c)(b+d)(c+d) - \cdots (3)$$

ce qui est exact. Nous remarquerons que, dans cet exemple, l'opération se termine après la troisième division, en sorte qu'on est dispensé de recourir à la dernière des formules (6a). Des simplifications du même genre se présentent dans un grand nombre de cas, et il peut même arriver que l'opération se termine après la première on la seconde division. Ainsi, en particulier, si l'on suppose

SUR LA RÉSOLUTION DES ÉQUATIONS NUMÉRIQUES

, c, ..., h, i, k étant les racines de l'équation (1), il suffira de dir successivement U par les polynômes (43) et (44), ou, ce qui ent au même, d'éliminer les deux lettres k et i de la fonction U à le des deux formules

$$\mathfrak{A} = 0, \quad \mathfrak{I} = 0,$$

r obtenir la valeur de cette fonction. On trouvera, en effet,

$$U = a^{2} + b^{2} + c^{2} + \ldots + h^{2} + i^{2} + (\Lambda + a + b + c + \ldots + h + i)^{2}$$

= $\Lambda^{2} + 2(3 - B) = \Lambda^{2} - 2B$,

par conséquent,

(65)
$$a^2 + b^2 + c^2 + \ldots + h^2 + i^2 + h^2 = \Lambda^2 - 2B;$$

ce qui est exact.

Le produit des carrés des différences entre les racines de l'équation (1), combinées deux à deux de toutes les manières possibles, est évidemment une fonction symétrique de ces racines. Or il est facile de déterminer la valeur de cette fonction par les méthodes ci-dessus développées. En effet, supposons d'abord n=2, et

$$U = (\alpha - b)^2,$$

a, b étant les deux racines de l'équation (11). Alors, pour déterminer U, il suffira d'éliminer successivement de la formule (66) les deux lettres a et b à l'aide des deux équations

(67)
$$b + a + \Lambda = 0, \quad a^2 + \Lambda a + B = 0.$$

Or on trouvera ainsi

(68)
$$U = (2a + \Lambda)^2 = \Lambda^2 + 4(a^2 + \Lambda a) = \Lambda^2 - 4B.$$

On aura donc

(69)
$$(a-b)^2 = A^2 - 4B;$$

ce qui est exact.

Supposons, en second lieu, n = 3 et

$$(2n) 11 (a - b)^{3}(a - c)^{2}(b + c)^{2}.$$

Comme *b* et *c* seront les deux racines de l'équation (19), on aura identiquement

$$(24) \qquad (x - h)(x - v) - x^4 + (a + \Lambda)v + a^9 + \Lambda a + B$$

et, par suite.

$$(a > b)(a = c) = 3a^{2} + a\lambda a + B;$$

puis on conclura de la formule (69), en y remplaçant : x^a a et b par b et c_1 a^a λ et B par a + λ et a^2 + λa β B.

(24)
$$(B + i2)^{2} + (a + \lambda)^{2} + i(a^{2} + \lambda a + B) + \lambda^{2} + iB + iBAa + 3a^{2}$$
.

Cela posé, la formule (50) donnera

$$(\mathbb{P}_1^{k_1}) = (\mathbb{P}_1 \cup \mathbb{P}_1 \cup \mathbb{P}_2) \times (\mathbb{P}_1 \cup \mathbb{P}_2 \cup \mathbb{P}_2) \times (\mathbb{P}_1 \cup \mathbb{P}_2 \cup \mathbb{P}_2 \cup \mathbb{P}_2) \times (\mathbb{P}_1 \cup \mathbb{P}_2 \cup \mathbb{P}$$

Si, maintenant, on divise le second membre de l'équation (74) par le polynôme $u^{\epsilon_0} \cdot X u^{\epsilon_0} + Ru + C,$

le veste sera indépendant de a et offrira la valeur cherchée de U. On peut aussi obtenir cette valeur, en éliminant la lettre a de la formule C_2 Y_3 , à l'aide de l'équation

$$(17) u^3 + \lambda u^3 + \mathbf{B}u + \mathbf{C} \leq 0.$$

Or, en ayant égard à l'équation (17), on trouvera

$$(3u^{2}+4\Delta u+B)^{2}-(\Delta^{2}-3B)u^{2}+(\Delta B-9C)u+B^{2}-3\Delta C$$

et, par suite.

$$(75) \ \mathbb{L} = [\Pi^p - 3\Lambda\mathbb{G} + (\Lambda\mathbb{B} - 9\mathbb{G})n + (\Lambda^p - 3\mathbb{B})n^p](\Lambda^p - 4\mathbb{B} + 9\Lambda n - 3n^p);$$

puis, en développant le second membre de la formule (75), et remplagant a^a par $\sim Aa^a > Ba > C$, a^a par

$$\frac{-\infty}{C} A a^2 \rightarrow B a^2 \sim Ca \simeq (A^2 \rightarrow B) a^2 + (AB \rightarrow C) a + AC$$
Observe de C, \sim 5, H, v.1X.

146 SUR LA RÉSOLUTION DES ÉQUATIONS NUMÉRIQUES ou, ce qui revient au même, a' par AC, a' par — C, α'' et α par zéro, on aura

(76)
$$\begin{cases} U = (B^2 + 3AC)(A^2 + 4B) + (AB + 9C)3C + AC(A^2 + 3B) \\ = A^2B^2 + 4A^3C + 4B^2 + 27C^2 + 18ABC. \end{cases}$$

On trouvera donc définitivement

$$(27) \quad (a-b)^2 (a-c)^2 (b-c)^2 = \Lambda^2 B^2 - 4\Lambda^3 C - 4B^3 - 27C^2 + 18ABC$$

Dans le cas particulier où l'on a A = 0, l'équation (75) se réduit à

$$U = (3Ba^2 + 9Ca - B^2)(3a^2 + 4B)$$
:

puis on en tire, en développant le second membre, et remplaçant a^3 par - C, a, a^2 et a^4 par zéro,

$$U = -4B^3 - 27C^2$$

ou, ce qui revient au même,

$$(79) \qquad (a-b)^2 (a-c)^2 (b-c)^2 = -4B^3 - 37C^2.$$

Cette dernière équation détermine le produit du carré des dissernces entre les racines de l'équation (50). On peut d'ailleurs très aisément revenir de la formule (79) à la formule (77). En effet, si, dans l'équation (16), on pose

$$x = z - \frac{\Lambda}{3},$$

elle deviendra

(81)
$$z^{3} + \left(B - \frac{\Lambda^{2}}{3}\right)z + C - \frac{B\Lambda}{3} + \frac{2\Lambda^{3}}{27} = 0.$$

Or, les racines de cette dernière étant évidemment $a+\frac{\Lambda}{3}$, $b+\frac{\Lambda}{3}$, $c+\frac{\Lambda}{3}$, le produit des carrés des différences entre ces racines sera toujours

$$(a-b)^2(a-c)^2(b-c)^2$$
;

et, comme l'équation (81) est semblable à l'équation (50), on tirera

.

de la formule (79), en remplaçant dans le second membre B par $B = \frac{A^2}{3}$, et C par $C = \frac{BA}{3} + \frac{2A^3}{27}$,

(82)
$$(a-b)^2(a-c)^2(b-c)^2 = -4\left(B-\frac{\Lambda^2}{3}\right)^3 - 27\left(C-\frac{B\Lambda}{3} + \frac{2\Lambda^2}{27}\right)^2$$

Il est d'ailleurs facile de s'assurer que les formules (77) et (82) sont identiques.

Des calculs semblables à ceux qu'on vient de faire fourniraient généralement la valeur de la fonction symétrique

(83)
$$U = (a-b)^2 (a-c)^2 ... (a-i)^2 (a-k)^2 (b-c)^2 ... (b-i)^2 (b-k)^2 ... (i-k)^2$$

c'est-à-dire le produit des carrés des différences entre les racines a, b, c, ..., h, i, k de l'équation (1). On doit même remarquer que ce produit pourra être immédiatement exprimé en fonction de a, si l'on sait déjà former le produit des carrés des différences entre les racines d'une équation du degré n-1. En effet, comme, en divisant par x-a l'équation (1) présentée sous la forme

$$(8/1) \quad x^n - a^n + \Lambda(x^{n-1} - a^{n-1}) + B(x^{n-2} + a^{n-2}) + \ldots + I(x - a) = 0,$$

on obtient la suivante

(85)
$$\begin{cases} x^{n-1} + (a+\Lambda)x^{n-2} + (a^2 + \Lambda a + B)x^{n-3} + \dots \\ + a^{n-1} + \Lambda a^{n-2} + Ba^{n-3} + \dots + I = 0, \end{cases}$$

dont les racines sont b, c, ..., i, k, on aura identiquement

(86)
$$\begin{cases} (x-b)(x-c)\dots(x-i)(x-k) \\ = x^{n-1} + (a+\Lambda)x^{n-2} + (a^2 + \Lambda a + B)x^{n-3} + \dots + a^{n-1} + \Lambda a^{n-2} + B a^{n-3} + \dots + 1 \end{cases}$$

et, par suite,

(87)
$$\begin{cases} (a-b)(a-c)...(a-i)(a-k) \\ = na^{n-1} + (n-1)Aa^{n-2} + (n-2)Ba^{n-3} + ... + I. \end{cases}$$

D'autre part, si, étant donnée une équation du degré n-1, on sait calculer la fonction entière des coefficients qui représente le produit

148 SUR LA RÉSOLUTION DES ÉQUATIONS NUMÉRIQUES du carré des différences entre les racines, on aura encore

(88) $(b-c)^2 \dots (b-i)^2 (b-k)^2 \dots (i-k)^2 = V,$

V désignant une fonction entière des coefficients que renferme l'équation (85), et par conséquent une fonction entière de a. Cela posé, l'équation (83) donnera

(89)
$$U = V[na^{n-1} + (n-1)\Lambda a^{n-2} + (n-2)Ba^{n-3} + \dots + 2Ha + 1]^{2}.$$

Si maintenant on divise le second membre de la formule (89) par le polynôme

(5)
$$a^n + Aa^{n-1} + Ba^{n-2} + \ldots + IIa^2 + Ia + K$$
,

le reste sera indépendant de a et offrira la valeur cherchée de U. On peut aussi obtenir cette valeur en éliminant la lettre a de la formule (89) à l'aide de l'équation

(90)
$$a^n + A a^{n-1} + B a^{n-2} + \ldots + H a^2 + I a + K = 0$$

Hest bon d'observer que le produit des carrés des dissérences entre les racines de l'équation (t) ne peut s'évanouir à moins que cette équation n'admette des racines égales. Dans le cas contraire, ce produit se réduira toujours à une sonction entière des coefficients Å, B, C, ..., l, K; par conséquent, si ces coefficients offrent des valeurs numériques entières, celle du produit en question sera elle-même un nombre entier, et, si on la désigne par \mathfrak{R}^2 , \mathfrak{R} étant une quantité positive, on aura

On peut encore, à l'aide des principes que nous venons d'exposer, calculer aisément le premier membre d'une équation qui aurait pour racines les diverses valeurs d'une fonction entière des racines a, b, c, ..., i, k de l'équation (1), puisque ce premier membre sera toujours une fonction symétrique de a, b, c, ..., i, k. Cela posé, si l'équation (1) est du troisième ou du quatrième degré, on ramènera facilement sa résolution, dans le premier cas, à celle d'une équation

du troisième degré, dans le second cas, à la résolution d'une équation binôme du même degré. Supposons, par exemple, que l'équation (1), étant du quatrième degré, se réduise à la formule (58). Pour la résoudre, il suffira, comme l'on sait, de déterminer les trois valeurs que peut acquérir la fonction $(a+b-c-d)^2$ lorsqu'on échange entre elles les quatre lettres a, b, c, d. Or ces trois valeurs, savoir

(92)
$$(a+b-c-d)^2$$
, $(a-b-c-d)^2$, $(a-b-c+d)^2$,

seront les trois racines de l'équation auxiliaire

(93)
$$[s - (a + b - c - d)^2][s - (a - b + c - d)^2][s - (a - b - c + d)^2] = 0$$

qui offrira pour premier membre une fonction symétrique de a, b, c, d. Désignons par

$$(94) z^3 + Uz^2 + Vz + W$$

le polynôme que l'on obtient en développant ce premier membre. Le polynôme (94) et, par suite, ses trois coefficients U, V, W seront des fonctions symétriques de a, b, c, d. On trouvera d'ailleurs, en ayant égard aux formules (60),

$$(95) \begin{cases} z^3 + Uz^2 + Vz + W \\ = [z - (a+b-c-d)^2][z - (a-b+c-d)^2][z - (a-b-c+d)^2] \\ = [z - ((a+b)^2)[z - ((a+c)^2)][z - ((b+c)^2)], \end{cases}$$

puis on en conclura

(96)
$$\begin{cases} U = -4 \left[(a+b)^2 + (a+c)^2 + (b+c)^2 \right] \\ = -8 \left(c^2 + b^2 + a^2 + bc + ca + ab \right) = 8 B, \end{cases}$$

(97)
$$\begin{cases} V = 16 \left[(a+b)^2 \left[(a+c)^2 + (b+c)^2 \right] + \left[(a+c)(b+c) \right]^2 \right] \\ = 16 \left[-(a+b)^2 \left[(a+b)^2 + 2B \right] + (a_s^2 + b^2 + B)^2 \right] \\ = 16 \left[B^2 - 4ab(b^2 + ab + a^2 + B) \right] \\ = 16 \left[B^2 + 4(a^4 + Ba^2 + Ca) \right] = 16(B^2 - 4D), \end{cases}$$

(98)
$$\begin{cases} W = -64[(a+b)(a+c)(b+c)]^{2} \\ = -64[(a+b)(a^{2}+b^{2}+B)]^{2} = -64C^{2}. \end{cases}$$

Donc l'équation auxiliaire deviendra

(99)
$$z^3 + 8Bz^2 + 16(B^2 - 4D)z - 64C^2 = 0.$$

130 SUR LA RÉSOLUTION DES ÉQUATIONS NUMÉRIQUES

Supposons cette dernière équation résolue, et désignons par z_1 , z_2 , z_3 ses trois racines. Soient de plus u, v, ω trois expressions propres à vérifier, non seulement les formules

$$(100) u^2 = z_1$$

$$(101) t^2 = z_2,$$

$$(102) w2 = z3,$$

desquelles on tire $u^2v^2w^2 = z_1z_2z_3 = 64C^2$, $uvv = \pm 8C$, mais encore la condition

$$uvw = 8C.$$

Alors, si l'on prend

$$(104) a+b-c-d=u,$$

$$(105) a-b+c-d=c,$$

on devra prendre aussi

$$(106) a-b-c+d=w,$$

attendu que l'on aura

$$(107) \left\{ \begin{array}{l} (a+b-c-d)(a-b+c-d)(a-b-c+d) \\ = 8(a+b)(a+c)(b+c) = -8(a+b)(a^2+b^2+B) = 8C, \end{array} \right.$$

et, par conséquent,

(108)
$$(a+b-c-d)(a-b+c-d)(a-b-c+d) = uvw.$$

Si maintenant on combine les formules (104), (105), (106) avec l première des formules (60), on en déduira

(109)
$$a = \frac{u + v + w}{4}$$
, $b = \frac{u - v - w}{4}$, $c = \frac{v - w - u}{4}$, $d = \frac{w - u - v}{4}$

Observons, au reste: 1° que des valeurs de u, v, w, tirées des équations (100), (101) et (103), satisferont toujours à l'équation (102) 2° que ces quatre équations continueraient d'être vérifiées, si deux de valeurs dont il s'agit venaient à changer de signe. Mais alors les valeurs

des racines a, b, c, d, déterminées par les formules (109), seraient simplement échangées entre elles.

§ VII. — Sur la détermination des racines réelles d'une équation de degré quelconque.

On a vu, dans le cinquième paragraphe, comment on pouvait constater l'existence, et même déterminer les valeurs des racines réclles ou imaginaires d'une équation de degré quelconque. Toutefois, lorsqu'on calculera l'une après l'autre ces diverses racines, à l'aide de la méthode indiquée dans le paragraphe dont il s'agit, il arrivera souvent que les racines imaginaires se présenteront les premières; et comme, dans beaucoup de questions, il importe surtout de connaître les racines réelles d'équations à coefficients réels, il ne sera pas inutile d'exposer ici une méthode simple à l'aide de laquelle on puisse évaluer directement ces mêmes racines. Tel est l'objet dont nous allons maintenant nous occuper.

Soit toujours

(1)
$$x^{n} + \Lambda x^{n-1} + B \cdot x^{n-2} + \ldots + I \cdot x + K = 0$$

l'équation proposée du degré n, A, B, ..., I, K désignant des coefficients réels.

Soient encore a, b, c, ..., h, i, k les racines de cette équation, et

$$\rho_1, \quad \rho_2, \quad \dots, \quad \rho_{n-1}, \quad \rho_n$$

les valeurs numériques des coefficients

D'après ce qui a été dit dans le \S V, le module de chacune des racines a, b, c, \ldots, h, i, k ne pourra surpasser la racine positive ι de l'équation

ni le plus grand des nombres

(3)
$$\rho_1 + 1, \quad \rho_2 + 1, \quad \dots, \quad \rho_{n-1} + 1, \quad \rho_n + 1,$$

152 SUR LA RÉSOLUTION DES ÉQUATIONS NUMÉRIQUES ni le plus grand terme de la suite

(1)
$$n\rho_1, (n\rho_2)^{\frac{1}{2}}, \ldots, (n\rho_{n-1})^{\frac{1}{n-1}}, (n\rho_n)^{\frac{1}{n}}$$

Il sera donc très facile de trouver un nombre supérieur aux modules de toutes les racines réelles de l'équation (1). Désignons par r ce même nombre. Le module de chacune des différences

(5)
$$a-b$$
, $a-c$, ..., $a-i$, $a-k$, $b-c$, ..., $b-i$, $b-k$, ..., $i-k$

sera, en vertu du théorème II, inférieur à 2r; et comme leur nombre est précisément égal au nombre de combinaisons que l'on peut former avec n lettres prises deux à deux, c'est-à-dire à

$$\frac{n(n-1)}{2}$$

si l'on met de côté l'une de ces différences, par exemple a-b, le produit de toutes les autres offrira, en vertu du théorème III (corollaire I), un module inférieur à l'expression

(6)
$$(2r)^{\frac{n(n-1)}{2}-1}.$$

D'ailleurs, on pourra aisément déterminer, par les méthodes exposées dans le \S VI, le produit des carrés de toutes les différences dont il s'agit. Soit \mathfrak{m}^2 la valeur numérique de ce produit, \mathfrak{m} désignant une quantité positive. Cette quantité sera évidemment égale au produit des modules de toutes les différences; et par suite le module ou la valeur numérique d'une seule différence a-b surpassera le quotient qu'on obtient en divisant le nombre \mathfrak{m} par l'expression (6). Done, si l'on pose

$$\Delta = \frac{\Im \zeta}{(2r)^{\frac{n(n-1)}{2}-1}},$$

 Δ sera un nombre inférieur à la plus petite différence entre les racines réelles de l'équation (1).

Il est bon d'observer que le nombre A, déterminé par la formule (7).

ne pourrait s'évanouir que dans le cas où l'équation proposée admettrait des racines égales. Nous exclurons dorénavant ce dernier cas; ce qui sera sans inconvénient, attendu qu'on peut toujours débarrasser une équation des racines égales qui la vérifient.

Lorsque les coefficients A, B, ..., I, K de l'équation (1) se réduisent à des nombres entiers, on a, comme nous l'avons déjà remarqué,

et par conséquent la plus petite différence entre deux racines réelles est supérieure au nombre Δ déterminé par la formule

$$\Delta = \frac{1}{(2r)^{\frac{n(n-1)}{2}-1}}.$$

Lorsque, à l'aide de la formule (7) ou (9), on a calculé un nombre Δ inférieur à la plus petite différence entre deux quelconques des racines de l'équation (1), il devient facile de constater l'existence de toutes les racines de cette espèce, et d'évaluer chacune d'elles avec une approximation aussi grande qu'on le juge convenable. En effet, soit m le nombre entier immédiatement supérieur au rapport $\frac{r}{\Delta}$. Il est clair que toutes les racines réelles de l'équation (1) seront renfermées entre les limites $-m\Delta$, $+m\Delta$, et que deux termes consécutifs de la progression arithmétique

(10)
$$\begin{cases} -m\Delta, & -(m-1)\Delta, & \dots, & -3\Delta, & -2\Delta, & -\Delta, \\ 0, & \Delta, & 2\Delta, & 3\Delta, & \dots, & (m-1)\Delta, & m\Delta \end{cases}$$

ne comprendront jamais entre eux plus d'une racine réelle. D'ailleurs, lorsque, dans le polynôme

$$(11) x^n + \Lambda x^{n-1} + B x^{n-2} + \ldots + I x - K,$$

on substitue successivement, à la place de x, deux quantités entre lesquelles une soule racine réelle au plus se trouve renfermée, les résultats obtenus sont de même signe ou de signes contraires; pour parler autrement, la comparaison de ces deux résultats offre une permanence de signe ou une variation de signe, suivant qu'il n'existe pas de racine

154 SUR LA RÉSOLUTION DES ÉQUATIONS NUMÉRIQUES

réelle ou qu'il en existe une entre les deux quantités dont il s'agit. Par conséquent, si l'on prend les termes de la progression (10) pour des valeurs successives de la variable x, et que l'on forme la suite des valeurs correspondantes du polynôme (11), cette nouvelle suite offrira précisément autant de variations de signe que l'équation (1) a de racines réelles, et chacune de ces racines sera comprise entre deux valeurs consécutives de x qui, substituées dans le polynôme (11), donneront des résultats de signes contraires. Soient x_1 et $x_2 = x_1 + \Delta$ deux semblables valeurs, et supposons

(12)
$$\xi = \frac{x_1 + x_2}{2} = x_1 + \frac{1}{3}\Delta.$$

La racine réelle comprise entre w_1 et w_2 sera évidemment renfermée entre w_i et ξ , si la substitution de ξ au lieu de w, dans le polynôme (11), fournit un résultat de même signe que la substitution de w_2 ; mais elle sera renfermée entre ξ et w_2 dans le cas contraire. On pourra donc remplacer les limites w_1 , w_2 , qui différent entre elles de la quantité Δ , par les limites w_1 et ξ ou ξ et w_2 , qui différeront entre elles de la quantité $\frac{1}{2}\Delta$. En continuant de la même manière, on finira par resserrer une quelconque des racines réelles entre deux limites dont la différence, représentée par un terme de la progression géométrique

(13)
$$\Delta, \quad \frac{1}{2}\Delta, \quad \frac{1}{6}\Delta, \quad \frac{1}{8}\Delta, \quad \ldots,$$

sera aussi petite qu'on le voudra; et par conséquent on pourra calculer cette racine avec une approximation aussi grande qu'on le jugera convenable.

Il est bon d'observer que, dans la progression (10), on pourrait sans inconvénient remplacer la valeur de Δ , tirée de la formule (7) ou (9), par une valeur plus petite.

Pour montrer une application de la méthode que nous venons d'exposer, considérons l'équation

$$(14) x^3 - 2x - 5 + 6,$$

traitée par Lagrange et plus anciennement par Newton. On aura, dans ce cas,

$$n=3, \qquad \frac{n(n-1)}{2}=3,$$

et l'équation (2), réduite à

(15)
$$v^3 - 2v - 5 = 0,$$

offrira une racine positive v inférieure à $\sqrt{5}$, puisque, en supposant $v<\sqrt{5}$, on trouverait

$$t^2 > 5 > 2 + \frac{5}{\sqrt{5}} > 2 + \frac{5}{t}$$

Donc chacune des racines de l'équation (14) aura pour module ou pour valeur numérique un nombre inférieur à

(16)
$$r = \sqrt{5} = 2,236...$$

D'autre part, si l'on désigne par U le produit des carrés des dissérences entre les racines de l'équation (14), et par 35² la valeur numérique de ce produit, on aura, en vertu de la formule (78) du sixième paragraphe,

$$U = 4.8 - 27.25 = -643,$$

(18)
$$\partial G^2 = 643.$$

Par suite, on tirera de l'équation (7), en prenant n=3 et $r=\sqrt{5}$,

(19)
$$\Delta = \frac{\sqrt{643}}{4.5} > \frac{25}{20} > 1.$$

Donc, si l'équation (14) a plusieurs racines réelles, la différence entre deux de ces racines ne pourra être inférieure à l'unité. D'ailleurs, si l'on remplace Δ par l'unité, les différents termes de la progression (10) deviendront respectivement

$$(20)$$
 $-3, -2, -1, 0, 1, 2, 3;$

et, comme les valeurs correspondantes du premier membre de l'équation (14) seront

$$(21)$$
 $-26, -9, -4, -5, -6, -1, +16,$

156 SUR LA RESOLUTION DES ÉQUATIONS NUMÉRIQUES

il est clair que l'équation (14) offrira une scule racine réelle comprise entre les limites 2 et 3. Ajoutons que, d'après ce qui a été dit plus haut, on peut, à la limite 3, substituer le nombre 2,236.... Si maintenant on resserre de plus en plus les limites entre lesquelles la racine réelle de l'équation (14) est comprise, on trouvera

(22)
$$x = 2.0945514...$$

Il ne sera pas inutile de remarquer que, dans heaucoup de cas, on peut, à l'aide de diverses considérations, faciliter la recherche des racines réelles d'une équation donnée. Ainsi, en particulier, on conclut immédiatement des principes établis dans le paragraphe IV que l'équation (14) admet une racine positive, mais une seule, inférieure à $\sqrt{5}$. D'ailleurs, en remplaçant x par -x, on tire de l'équation (14)

$$(23) x^3 - 2x + 5 = 0,$$

et, comme les deux binômes

$$x^3 - 2x$$
, $5 - 2x$

sont toujours positifs pour des valeurs positives de x, savoir, le premier tant que l'on a $x > \sqrt{2} > 1,414$, et le second tant que l'on a x < 2,5, il est clair que le premier membre de l'équation (23) ne pourra jamais devenir nul pour des valeurs positives de x. Done, par suite, l'équation (14) n'admettra point de racines négatives et n'offrira qu'une seule racine réelle.

§ VIII. - Sur la théorie de l'élimination.

Soient

(1)
$$x^{n} + A x^{n-1} + B x^{n-2} + \ldots + I x + K = 0$$

et

(2)
$$x^m + Px^{m-1} + Qx^{m-2} + \dots + Sx + T = 0$$

deux équations algébriques, la promière du dogré n, la seconde du

egrè m_t Si l'on élimine entre elles la variable x_t l'équation résultante - l'elimination exprimera la condition à laquelle les coefficients

$$t_1, \ldots, t_i = B_i, \ldots, t_i = B_i, \ldots, t_i = B_i = B_i, \ldots, t_i = B_i = B_i$$

nivent satisfaire, pour qu'une seule et même valeur de « vérifie tout la fois les équations (1) et (2). Soient d'ailleurs

$$a_1 \quad b_1 \quad \dots \quad i_r \quad b_r$$

 \sim valeurs distinctes de x qui sont propres à vérifier l'équation (1). Soient, de même,

$$(7) \qquad \qquad p_1, q_2, \ldots, q_n, t$$

les valeurs distinctes de 2 qui sont propres à vérifier l'équation (2), et faisons

Pour que les equations (1) et (2) subsistent simultanément, il sera nécessaire et il suffira que l'un des facteurs du produit U s'évanouisse, on, en d'antres termes, que ce produit lui-même se réduise à zéro. Donc l'equation de condition

pourra être substitues a celle que produirait l'élimination de æ entre les équations (1) et (2). L'ajoute que, si chacune de ces dernières offre sentement des racines inégales, il sera facile de transformer le produit U en une fonction entière des coefficients A, B, ..., I, K; P, Q, ..., S, L. C'est ce que l'on demontrera sans peine à l'aide des considérations suivantes.

Les racines de l'equation (2) étant inégales entre elles et représentées par p, q, \dots, s, t , on aura identiquement

(8)
$$(x \mapsto p)(x \mapsto q) = (x \mapsto x)(x \mapsto t) - x^m + Px^{m+1} + Qx^{m-1} + \cdots + Sx + T$$

158 SUR LA RÉSOLUTION DES ÉQUATIONS NUMÉRIQUES et, par suite,

(9)
$$\begin{cases} (a-p)(a-q)\dots(a-s)(a-t) = a^{m} + P a^{m-1} + Q a^{m-2} + \dots + S a + T, \\ (b-p)(b-q)\dots(b-s)(b-t) = b^{m} + P b^{m-1} + Q b^{m-2} + \dots + S b + T, \\ \dots & \dots & \dots \\ (k-p)(k-q)\dots(k-s)(k-t) = k^{m} + P k^{m-1} + Q k^{m-2} + \dots + S k + T. \end{cases}$$

Cela posé, la formule (6) donnera

(10)
$$\begin{cases} U = (a^{m} + Pa^{m-1} + Qa^{m-2} + \ldots + Sa + T) \\ \times (b^{m} + Pb^{m-1} + Qb^{m-2} + \ldots + Sb + T) \\ \times \ldots \\ \times (k^{m} + Pk^{m-1} + Qk^{m-2} + \ldots + Sk + T). \end{cases}$$

D'ailleurs, les racines de l'équation (1) étant supposées inégales, le second membre de la formule (10) sera évidemment une fonction symétrique de ces racines, qui pourra être transformée par la méthode exposée dans le paragraphe précédent en une fonction entière des coefficients A, B, ..., I, K et P, Q, ..., S, T.

On arriverait encore aux mêmes conclusions en observant que la valeur de U, donnée par l'équation (6), peut s'écrire comme il suit :

(11)
$$\begin{cases} U = (-1)^{mn} (p-a) (p-b) \dots (p-t) (p-k) \\ \times (q-a) (q-b) \dots (q-t) (q-k) \\ \times \dots \\ \times (t-a) (t-b) \dots (t-t) (t-k). \end{cases}$$

Or, si chacune des équations (1) et (2) n'ossre que des racines inégales, on aura identiquement

(12)
$$(x-a)(x-b)...(x-i)(x-k) = x^n + \Lambda x^{n-1} + B x^{n-2} + ... + I x + K$$
, puis on en conclura

$$(13) \begin{cases} (p-a)(p-b)\dots(p-i)(p-k) = p^{n} + \Lambda p^{n-1} + B p^{n-2} + \dots + I p + K, \\ (q-a)(q-b)\dots(q-i)(q-k) = q^{n} + \Lambda q^{n-1} + B q^{n-2} + \dots + I q + K, \\ \dots & \dots & \dots \\ (t-a)(t-b)\dots(t-i)(t-k) = t^{n} + \Lambda t^{n-1} + B t^{n-2} + \dots + I t + K; \end{cases}$$

et la valeur de U, réduite à

(14)
$$\begin{cases} U = (-1)^{mn} (p^{n} + \Lambda p^{n-1} + B p^{n-2} + \ldots + Ip + K) \\ \times (q^{n} + \Lambda q^{n-1} + B q^{n-2} + \ldots + Iq + K) \\ \times \ldots \\ \times (t^{n} + \Lambda t^{n-1} + B t^{n-2} + \ldots + It + K), \end{cases}$$

pourra être facilement transformée par la méthode ci-dessus mentionnée en une fonction entière des coefficients A, B, ..., I, K; P, Q, ..., S, T.

Considérons maintenant deux équations algébriques dont les premiers membres soient des fonctions entières des deux variables x et y, et supposons que la somme des exposants de ces variables soit égale ou inférieure au nombre n dans chaque terme de la première fonction, au nombre m dans chaque terme de la seconde. n et m seront les degrés des deux fonctions, et si chacune d'elles renferme tous les termes qu'elle peut contenir, les équations proposées seront ce qu'on nomme des équations complètes du degré n et du degré m. Cela posé, si l'on divise la première équation par le coefficient constant de x^m , et la seconde par le coefficient constant de x^m , elles se présenteront sous

160 SUR LA RESOLUTION DES ÉQUATIONS NUMÉRIQUES les formes

(1)
$$x^n + A x^{n-1} + B x^{n-2} + ... + I x + K = 0$$
,

(2)
$$x^{m} + P x^{m-1} + Q x^{m-2} + \ldots + S x + T = 0,$$

A, B, ..., I, K désignant des fonctions entières de y dont les degrés seront respectivement égaux aux nombres $1, 2, \ldots, n-1, n$, et P, Q, ..., S, T d'autres fonctions entières de y dont les degrés seront respectivement égaux aux nombres $1, 2, \ldots, m-1, m$. Concevons à présent que l'on cherche les divers systèmes de valeurs de x et de y propres à vérifier simultanément les équations (1) et (2). Il est clair que, dans chacun de ces systèmes, la valeur de y sera nécessairement une racine de l'équation (7), U désignant une fonction entière des coefficients A, B, ..., I, K; P, Q, ..., S, T, et par conséquent une fonction entière de y, savoir celle dans laquelle peut se transformer le second membre de la formule (10), quand on représente par a, b, \ldots , i, k les racines égales ou inégales de l'équation (1). D'ailleurs, pour opérer la transformation dont il s'agit, il suffira, conformément au théorème XVI, de diviser successivement le second membre de la formule (10), considéré comme fonction de k, par le polynòme

$$k+i+\ldots+b+a+\Lambda$$
;

puis le reste, considéré comme fonction de i, par le polynôme

$$i^{2} + (h + \ldots + b + a)i + h^{2} + \ldots + b^{2} + a^{2} + hb + ha + \ldots + ba + A(i + h + \ldots + b + a) + B,$$

La fonction U étant ainsi déterminée, toutes les valeurs de y qui permettront de vérifier simultanément les équations (1) et (2) devront satisfaire à l'équation (7).

Il est facile de s'assurer que la fonction entière de y, désignée par U, est d'un degré inférieur ou tout au plus égal à mn. En effet, comme les degrés des fonctions

A, B, ..., I, K; P, Q, ..., S,
$$\mathbf{T}$$

sont représentés par les nombres

$$1, 2, \ldots, n-1, n; 1, 2, \ldots, m-1, m,$$

les valeurs des rapports

$$\frac{A}{y}$$
, $\frac{B}{y^2}$, ..., $\frac{I}{y^{m-1}}$, $\frac{K}{y^n}$; $\frac{P}{y}$, $\frac{Q}{y^2}$, ..., $\frac{S}{y^{m-1}}$, $\frac{T}{y^m}$

resteront linies pour des valeurs infinies de y, et l'on pourra en dire autant des valeurs de z propres à vérifier les doux équations

(15)
$$z^{n} + \frac{\Lambda}{y} z^{n-1} + \frac{B}{y^{2}} z^{n-2} + \ldots + \frac{I}{y^{n-1}} z + \frac{K}{y^{n}} = 0,$$

(16)
$$z^{m} + \frac{P}{y} z^{m-1} + \frac{Q}{y^{2}} z^{m-2} + \ldots + \frac{S}{y^{m-1}} z^{m} + \frac{T}{y^{m}} = 0,$$

c'est-à-dire des rapports

$$(17) \qquad \frac{a}{y}, \quad \frac{b}{y}, \quad \cdots, \quad \frac{i}{y}, \quad \frac{k}{y}; \qquad \frac{p}{y}, \quad \frac{q}{y}, \quad \cdots, \quad \frac{s}{y}, \quad \frac{t}{y}.$$

Done le produit

(18)
$$\begin{cases} \left(\frac{\alpha}{y} - \frac{p}{y}\right) \left(\frac{\alpha}{y} - \frac{q}{y}\right) \cdots \left(\frac{a}{y} - \frac{t}{y}\right) \times \left(\frac{b}{y} - \frac{p}{y}\right) \left(\frac{b}{y} - \frac{q}{y}\right) \cdots \left(\frac{b}{y} - \frac{t}{y}\right) \times \cdots \times \left(\frac{k}{y} - \frac{p}{y}\right) \left(\frac{k}{y} - \frac{q}{y}\right) \cdots \left(\frac{k}{y} - \frac{t}{y}\right), \end{cases}$$

qui, en vertu de la formule (6), sera équivalent au rapport

$$\frac{U}{J^{\prime mn}}$$

conservera lui-même une valeur finie pour des valeurs infinies de γ ; ce qui exige que le degré de la fonction de γ , désignée par U, ne surpasse pas mn. On se trouve ainsi ramené à un théorème connu, et que l'on peut énoncer comme il suit :

THEOREME XVII. — Étant données deux équations algébriques en x et y, l'une du degré n, l'autre du degré m, on peut en déduire, par l'élimination de x, une équation en y dont le degré soit tout au plus égal au produit mn.

ÉQUATIONS DIFFÉRENTIELLES D'ÉQUILIBRE

01

DE MOUVEMENT POUR UN SYSTÈME DE POINTS MATÉRIELS

SOLLICITÉS

PAR DES FORCES D'ATTRACTION OU DE RÉPULSION MUTURLLE.

l'ai fait voir, dans le troisième Volume des Exercices de Mathématiques [p. 188 et suiv. (')], comment on pouvait établir les équations d'équilibre ou de mouvement d'un système de molécules qui s'attirent ou se repoussent, en supposant ces molécules très peu écartées des positions qu'elles occupaient dans l'état naturel du système. Pour obtenir les équations dont il s'agit, il suffit de substituer, dans les formules (32) ou (34) des pages 197 et 198 (2), les valeurs de \mathcal{X} , \mathcal{Y} , 3 déduites der formules (25), (26), (30) et (31). Ces valeurs se simplifient et se réduisent aux quantités \mathcal{X}_2 , \mathcal{Y}_2 , \mathcal{Y}_2 , 3 déterminées par les formules (31), toutes les fois que les seconds membres des équations (26) et (30) s'évanouissent. C'est ce qui arrivera, par exemple, si les masses m, m', m'', ... des diverses molécules sont deux à deux égales entre elles, et distribuées symétriquement de part et d'autre d'une molécule quelconque m, sur des droites menées par le point avec lequel cette molécule coïncide. Cela posé, soient, dans l'état naturel du système,

- a, b, c les coordonnées d'une molécule quelconque m, rapportées à trois axes rectangulaires des x, y, z;
 - (1) Œuvres de Cauchy, S. II, T. VIII, p. 227 et suiv.
 - (2) Ibid., p. 236 et 237.

r le rayon vecteur mené de cette molécule à une autre molécule m très voisine;

- α , β , γ les angles formés par le rayon vecteur r avec les demi-axes des coordonnées positives;
- $\mathbf{r}(r)$ la force accélératrice qui mesure l'action de m sur \mathbf{m} ;
- $\pm mm_f(r)$ la force motrice correspondante, prise avec le signe + ou le signe -, suivant que cette force est attractive ou répulsive;
- f(r) une fonction de r, distincte de f(r), et déterminée par l'équation

$$f(r) = \pm |r|'(r) - \lceil (r) \rceil.$$

Soient de plus

(a)
$$x = a + \xi$$
, $y = b + \eta$, $z = c + \zeta$

les coordonnées de la molécule m, relatives à un état d'équilibre ou de mouvement dans lequel on suppose appliquée à cette molécule une force accélératrice φ dont les projections algébriques sur les axes coordonnées sont désignées par X, Y, Z. Les quantités ξ , η , ζ représenteront les déplacements très potits de la molécule m mesurés parallèlement aux axes des x, y, z, et, si, en réduisant les valeurs de x, y, z à celles de x, y, y, on fait, pour abréger,

(3)
$$\begin{cases} 2 = S \left[\pm \frac{mr}{3} \cos^2 \alpha f(r) \right], \\ 0 = S \left[\pm \frac{mr}{3} \cos^2 \beta f(r) \right], \\ 0 = S \left[\pm \frac{mr}{3} \cos^2 \gamma f(r) \right]; \end{cases}$$

(4)
$$\begin{cases} \mathfrak{D} = \mathbf{S} \left[\pm \frac{mr}{2} \cos \beta \cos \gamma f(r) \right], \\ \mathfrak{E} = \mathbf{S} \left[\pm \frac{mr}{2} \cos \gamma \cos \alpha f(r) \right], \\ \mathfrak{E} = \mathbf{S} \left[\pm \frac{mr}{2} \cos \alpha \cos \beta f(r) \right]; \end{cases}$$

(7)

(5)
$$\begin{cases} L = S \left[\frac{mr}{2} \cos^{4} \alpha f(r) \right], \\ M = S \left[\frac{mr}{2} \cos^{4} \beta f(r) \right], \\ N = S \left[\frac{mr}{2} \cos^{4} \gamma f(r) \right]; \end{cases}$$

(6)
$$P = S \left[\frac{mr}{2} \cos^2 \beta \cos^2 \gamma f(r) \right],$$

$$Q = S \left[\frac{mr}{2} \cos^2 \gamma \cos^2 \alpha f(r) \right],$$

$$R = S \left[\frac{mr}{2} \cos^2 \alpha \cos^2 \beta f(r) \right];$$

$$\begin{aligned} \mathbf{U} &= \mathbf{S} \left[\frac{mr}{2} \cos^2 \alpha \cos \beta \cos \gamma f(r) \right], \\ \mathbf{U}' &= \mathbf{S} \left[\frac{mr}{2} \cos^3 \beta \cos \gamma f(r) \right], \\ \mathbf{U}'' &= \mathbf{S} \left[\frac{mr}{2} \cos \beta \cos^3 \gamma f(r) \right], \\ \mathbf{V} &= \mathbf{S} \left[\frac{mr}{2} \cos^3 \alpha \cos \gamma f(r) \right], \end{aligned}$$

$$\mathbf{U}'' = \mathbf{S} \left[\frac{mr}{2} \cos \beta \, \cos^3 \gamma \, f(r) \right]$$

$$V = S\left[\frac{mr}{2}\cos^3\alpha\cos\gamma f(r)\right]$$

$$\left\langle V' = \sum_{n=1}^{\infty} \left[\frac{mr}{2} \cos \alpha \cos^2 \beta \cos \gamma f(r) \right] \right\rangle$$

$$V'' = S\left[\frac{mr}{2}\cos\alpha\cos^3\gamma f(r)\right],$$

$$V'' = S\left[\frac{mr}{2}\cos\alpha\cos^3\gamma f(r)\right],$$

$$W = S\left[\frac{mr}{2}\cos\alpha\cos\beta f(r)\right],$$

$$W' = S\left[\frac{mr}{2}\cos\alpha\cos^3\beta f(r)\right],$$

$$W'' = S\left[\frac{mr}{2}\cos\alpha\cos\beta\cos^3\beta f(r)\right],$$

$$W'' = S\left[\frac{mr}{2}\cos\alpha\cos\beta\cos^2\gamma f(r)\right],$$

$$W' = S\left[\frac{mr}{2}\cos\alpha\cos^3\beta f(r)\right]$$

$$W'' = S \left[\frac{mr}{2} \cos \alpha \cos \beta \cos^2 \gamma f(r) \right]$$

on aura, en vertu de la formule (31) de la page 196 du troisième Volume (1),

$$(8) \begin{cases} \mathcal{X} = \mathfrak{I} \frac{\partial^{2} \xi}{\partial a^{2}} + \mathfrak{I} \frac{\partial^{2} \xi}{\partial b^{2}} + \mathfrak{E} \frac{\partial^{2} \xi}{\partial c^{2}} + \mathfrak{I} \frac{\partial^{2} \xi}{\partial b \partial c} + \mathfrak{I} \frac{\partial^{2} \xi}{\partial c \partial a} + \mathfrak{I} \frac{\partial^{2} \xi}{\partial a \partial b} \\ + L \frac{\partial^{2} \xi}{\partial a^{2}} + R \frac{\partial^{2} \xi}{\partial b^{2}} + Q \frac{\partial^{2} \xi}{\partial c^{2}} + W \frac{\partial^{2} \eta}{\partial a^{2}} + W'' \frac{\partial^{2} \eta}{\partial b^{2}} + W'' \frac{\partial^{2} \eta}{\partial c^{2}} + V \frac{\partial^{2} \zeta}{\partial a^{2}} + V' \frac{\partial^{2} \zeta}{\partial b^{2}} + V'' \frac{\partial^{2} \zeta}{\partial c^{2}} \\ + \mathfrak{I} \left(U \frac{\partial^{2} \xi}{\partial b \partial c} + V \frac{\partial^{2} \xi}{\partial c \partial a} + W \frac{\partial^{2} \xi}{\partial a \partial b} + V' \frac{\partial^{2} \eta}{\partial b \partial c} + U \frac{\partial^{2} \eta}{\partial c \partial a} + R \frac{\partial^{2} \eta}{\partial a \partial b} + W'' \frac{\partial^{2} \zeta}{\partial b \partial c} + Q \frac{\partial^{2} \zeta}{\partial c \partial a} + U \frac{\partial^{2} \zeta}{\partial a \partial b} \right), \\ \mathfrak{I} \mathcal{I} = 0.$$

Dans les équations (8), les coordonnées primitives a, b, c sont considérées comme variables indépendantes. Si l'on voulait prendre pour variables indépendantes x, y, z au lieu de a, b, c, il suffirait, comme on l'a prouvé à la page 207 du troisième Volume (2), d'écrire partout x au lieu de a, y au lieu de b, z au lieu de c. On aurait donc alors

$$\begin{array}{l}
\left(\ddot{X} = 2 \frac{\partial^{2} \xi}{\partial x^{2}} + \Omega \frac{\partial^{2} \xi}{\partial y^{2}} + \Omega \frac{\partial^{2} \xi}{\partial z^{2}} + 2 \Omega \frac{\partial^{2} \xi}{\partial y \partial z} + 2 \Omega \frac{\partial^{2} \xi}{\partial z \partial x} + 2 \Omega \frac{\partial^{2} \xi}{\partial x \partial y} \right) \\
+ L \frac{\partial^{2} \xi}{\partial x^{2}} + R \frac{\partial^{2} \xi}{\partial y^{2}} + Q \frac{\partial^{2} \xi}{\partial z^{2}} + W \frac{\partial^{2} \eta}{\partial x^{2}} + W' \frac{\partial^{2} \eta}{\partial y^{2}} + W'' \frac{\partial^{2} \eta}{\partial z^{2}} + V \frac{\partial^{2} \zeta}{\partial x^{2}} + V' \frac{\partial^{2} \zeta}{\partial y^{2}} + V'' \frac{\partial^{2} \zeta}{\partial z \partial x} + V'' \frac{\partial^{2} \eta}{\partial y \partial z} + Q \frac{\partial^{2} \zeta}{\partial x \partial y} + V'' \frac{\partial^{2} \eta}{\partial y \partial z} + Q \frac{\partial^{2} \eta}{\partial z \partial x} + Q \frac{\partial^{2} \zeta}{\partial y \partial z} + Q \frac{\partial^{2} \zeta}{\partial z \partial x} + Q \frac{\partial^{2} \zeta}{\partial x \partial y} \right), \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\
0 = 0. \\$$

En substituant ces dernières valeurs de X, V, 3 dans les formules (34) de la page 198 (1), savoir

(10)
$$\mathfrak{X} + X = \frac{\partial^2 \xi}{\partial t^2}, \quad \mathfrak{V} + Y = \frac{\partial^2 \gamma}{\partial t^2}, \quad \mathfrak{F} + Z = \frac{\partial^2 \zeta}{\partial t^2},$$

on obtiendra les équations différentielles propres à représenter le

- (1) OEurres de Cauchy, S. II, T. VIII, p. 235.
- (2) Ibid., p. 246.
- (3) *Ibid.*, p. 237.

mouvement du système des molécules m, m', m'', \ldots , et l'on trouvera

$$\frac{\partial^{2}\xi}{\partial t^{2}} = X + 3 \frac{\partial^{2}\xi}{\partial x^{2}} + 4 \frac{\partial^{2}\xi}{\partial y^{2}} + 4 \frac{\partial^{2}\xi}{\partial z^{2}} + 2 \frac{\partial^{2}\xi}{\partial y^{2}} + 2 \frac{\partial^{2}\xi}{\partial z \partial x} + 2 \frac{\partial^{2}\xi}{\partial x \partial y}$$

$$+ L \frac{\partial^{2}\xi}{\partial x^{2}} + R \frac{\partial^{2}\xi}{\partial y^{2}} + Q \frac{\partial^{2}\xi}{\partial z^{2}} + W \frac{\partial^{2}\eta}{\partial x^{2}} + W' \frac{\partial^{2}\eta}{\partial y^{2}} + W' \frac{\partial^{2}\eta}{\partial z^{2}} + V \frac{\partial^{2}\zeta}{\partial x^{2}} + V' \frac{\partial^{2}\zeta}{\partial z^{2}} + V' \frac{\partial^{2}\zeta}$$

Si le système n'était pas en mouvement, mais en équilibre, il faudrait réduire à zéro les premiers membres des formules (11).

Soient maintenant

- Δ la densité du système au point (a, b, c), dans l'état naturel;
- ρ la densité au point (x, y, z), dans l'état de mouvement;
- o la quantité positive ou négative qui mesure la dilatation ou la condensation du volume autour de la molécule m, dans le passage du premier état au second;
- p', p'', p''' les pressions ou tensions supportées au point (x, y, z) dans l'état de mouvement, et du côté des coordonnées positives, par trois plans perpendiculaires aux axes des x, des y et des z;
- A, F, E; F, B, D; E, D, C les projections algébriques des pressions ou tensions p, p', p''. On aura, en vertu des formules (17) et (59) des

pages 219 et 233 du troisième Volume des Exercices (1),

$$\rho = (\mathbf{I} - \mathbf{v})\Delta,$$

(13)
$$v = \frac{\partial \xi}{\partial x} + \frac{\partial n}{\partial y} + \frac{\partial \zeta}{\partial z}$$

De plus, en prenant x, y, z pour variables indépendantes, et joignant les équations (25), (26), (27), (28), (29), (30), des pages 222 et suivantes (2), aux formules (3), (4), (5), (6), (7) du présent article, on trouvera

$$A := \rho \left[\mathcal{A} \left(1 + 2 \frac{\partial \xi}{\partial x} \right) + 2 \mathcal{L} \frac{\partial \xi}{\partial y} + 2 \mathcal{L} \frac{\partial \xi}{\partial z} \right]$$

$$+ \rho \left[L \frac{\partial \xi}{\partial w} + R \frac{\partial n}{\partial y} + Q \frac{\partial \zeta}{\partial z} + U \left(\frac{\partial n}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + V \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right) + W \left(\frac{\partial \xi}{\partial y} + \frac{\partial n}{\partial x} \right) \right],$$

$$B := \rho \left[2 \mathcal{L} \frac{\partial n}{\partial x} + \mathcal{A} \left(1 + 2 \frac{\partial n}{\partial y} \right) + 2 \mathcal{D} \frac{\partial n}{\partial z} \right]$$

$$+ \rho \left[R \frac{\partial \xi}{\partial x} + M \frac{\partial n}{\partial y} + P \frac{\partial \zeta}{\partial z} + U' \left(\frac{\partial n}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + V' \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right) + W' \left(\frac{\partial \xi}{\partial y} + \frac{\partial n}{\partial x} \right) \right],$$

$$C := \rho \left[2 \mathcal{L} \frac{\partial \zeta}{\partial x} + 2 \mathcal{D} \frac{\partial \zeta}{\partial y} + \mathcal{L} \left(1 + 2 \frac{\partial \zeta}{\partial z} \right) \right]$$

$$+ \rho \left[Q \frac{\partial \zeta}{\partial x} + P \frac{\partial n}{\partial y} + N \frac{\partial \zeta}{\partial z} + U' \left(\frac{\partial n}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + V'' \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right) + W'' \left(\frac{\partial \xi}{\partial y} + \frac{\partial n}{\partial x} \right) \right],$$

$$D := \rho \left(\mathcal{D} + \mathcal{L} \frac{\partial n}{\partial x} + \mathcal{D} \frac{\partial n}{\partial y} + \mathcal{L} \frac{\partial n}{\partial z} + \mathcal{L} \frac{\partial \zeta}{\partial x} + \mathcal{L} \frac{\partial \zeta}{\partial y} + \mathcal{D} \frac{\partial \zeta}{\partial z} \right)$$

$$+ \rho \left[U \frac{\partial \xi}{\partial x} + U' \frac{\partial n}{\partial y} + U'' \frac{\partial \zeta}{\partial z} + P \left(\frac{\partial n}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + W'' \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right) + V' \left(\frac{\partial \zeta}{\partial y} + \frac{\partial n}{\partial x} \right) \right],$$

$$E := \rho \left(\mathcal{L} + \mathcal{L} \frac{\partial \zeta}{\partial x} + \mathcal{L} \frac{\partial \zeta}{\partial y} + \mathcal{L} \frac{\partial \zeta}{\partial z} + W'' \left(\frac{\partial n}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + Q \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \zeta}{\partial z} \right) + U \left(\frac{\partial \zeta}{\partial y} + \frac{\partial n}{\partial x} \right) \right],$$

$$F := \rho \left(\mathcal{L} + \mathcal{L} \frac{\partial \zeta}{\partial x} + \mathcal{L} \frac{\partial \zeta}{\partial y} + \mathcal{L} \frac{\partial \zeta}{\partial z} + \mathcal{L} \frac{\partial \eta}{\partial z} + \mathcal{L} \frac{\partial \eta}{\partial y} + \mathcal{L} \frac{\partial \eta}{\partial z} \right) + U \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \zeta}{\partial z} \right) + R \left(\frac{\partial \zeta}{\partial y} + \frac{\partial \eta}{\partial x} \right) \right],$$

$$P := \rho \left(\mathcal{L} + \mathcal{L} \frac{\partial \zeta}{\partial x} + \mathcal{L} \frac{\partial \zeta}{\partial y} + \mathcal{L} \frac{\partial \zeta}{\partial z} + \mathcal{L} \frac{\partial \eta}{\partial z} + \mathcal{L} \frac{\partial \zeta}{\partial y} \right) + U \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \zeta}{\partial z} \right) + R \left(\frac{\partial \zeta}{\partial y} + \frac{\partial \eta}{\partial x} \right) \right],$$

$$P := \rho \left(\mathcal{L} + \mathcal{L} \frac{\partial \zeta}{\partial x} + \mathcal{L} \frac{\partial \zeta}{\partial y} + \mathcal{L} \frac{\partial \zeta}{\partial z} + \mathcal{L} \frac{\partial \eta}{\partial z} + \mathcal{L} \frac{\partial \zeta}{\partial y} \right) + U \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \zeta}{\partial z} \right) + R \left(\frac{\partial \zeta}{\partial y} + \frac{\partial \eta}{\partial x} \right) \right].$$

- (1) OEuores de Cauchy, S. II, T. VIII, p. 260 et 273.
- (2) *Ibid.*, p. 263 et suiv.

Enfin, si l'on substitue, dans les équations (14), la valeur de ρ tirée des formules (12) et (13), savoir

(16)
$$\rho = \left(1 - \frac{\partial \xi}{\partial x} - \frac{\partial n}{\partial y} - \frac{\partial \zeta}{\partial z}\right) \Delta,$$

on en tirera, en regardant les déplacements ξ, η, ζ comme infiniment petits, et négligeant les infiniment petits du second ordre,

petits, et négligeant les infiniment petits du second drate,

$$A = \left[\pi \left(1 + \frac{\partial \xi}{\partial x} - \frac{\partial n}{\partial y} - \frac{\partial \xi}{\partial z} \right) + 2 \cdot \frac{g}{\partial y} + 2 \cdot \frac{g}{\partial z} \right] \Delta$$

$$+ \left[L \frac{\partial \xi}{\partial x} + R \frac{\partial n}{\partial y} + Q \frac{\partial \xi}{\partial z} + U \left(\frac{\partial n}{\partial z} + \frac{\partial \xi}{\partial y} \right) + V \left(\frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial z} \right) - W \left(\frac{\partial \xi}{\partial y} + \frac{\partial n}{\partial x} \right) \right] \Delta,$$

$$B = \left[2 \cdot \frac{g}{\partial x} + R \frac{\partial n}{\partial y} + Q \frac{\partial \xi}{\partial z} + U' \left(\frac{\partial n}{\partial z} + \frac{\partial \xi}{\partial y} \right) + V' \left(\frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial z} \right) - W' \left(\frac{\partial \xi}{\partial y} + \frac{\partial n}{\partial x} \right) \right] \Delta,$$

$$C = \left[2 \cdot \frac{g}{\partial x} + R \frac{\partial n}{\partial y} + R \frac{\partial \xi}{\partial z} + U' \left(\frac{\partial n}{\partial z} + \frac{\partial \xi}{\partial y} \right) + V' \left(\frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial z} \right) - W' \left(\frac{\partial \xi}{\partial y} + \frac{\partial n}{\partial x} \right) \right] \Delta,$$

$$C = \left[2 \cdot \frac{g}{\partial x} + R \frac{\partial \xi}{\partial y} + C \left(1 - \frac{\partial \xi}{\partial x} - \frac{\partial n}{\partial y} + \frac{\partial \xi}{\partial z} \right) \right] \Delta$$

$$+ \left[Q \cdot \frac{\partial \xi}{\partial x} + P \cdot \frac{\partial \eta}{\partial y} + R \cdot \frac{\partial \xi}{\partial z} + U' \left(\frac{\partial n}{\partial z} + \frac{\partial \xi}{\partial y} \right) + V'' \left(\frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial z} \right) - W'' \left(\frac{\partial \xi}{\partial y} + \frac{\partial n}{\partial x} \right) \right] \Delta;$$

$$D = \left[\pi \left(1 - \frac{\partial \xi}{\partial x} \right) + C \cdot \frac{\partial \eta}{\partial x} + F \cdot \frac{\partial \xi}{\partial x} + C \cdot \frac{\partial \xi}{\partial y} \right) + W'' \left(\frac{\partial \xi}{\partial x} - \frac{\partial \eta}{\partial z} \right) - V' \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right) \right] \Delta,$$

$$E = \left[\pi \frac{\partial \xi}{\partial x} + C \cdot \frac{\partial n}{\partial y} + V'' \frac{\partial \xi}{\partial z} + W'' \left(\frac{\partial n}{\partial z} + \frac{\partial \xi}{\partial y} \right) + Q \cdot \left(\frac{\partial \xi}{\partial x} - \frac{\partial \xi}{\partial z} \right) - V' \left(\frac{\partial \xi}{\partial y} + \frac{\partial n}{\partial x} \right) \right] \Delta,$$

$$F = \left[\pi \frac{\partial \xi}{\partial x} + C \cdot \frac{\partial n}{\partial x} + F \cdot \left(1 - \frac{\partial \xi}{\partial x} \right) + R \cdot \left(\frac{\partial n}{\partial x} - \frac{\partial \xi}{\partial y} \right) + Q \cdot \left(\frac{\partial \xi}{\partial x} - \frac{\partial \xi}{\partial z} \right) - R \cdot \left(\frac{\partial \xi}{\partial y} - \frac{\partial n}{\partial x} \right) \right] \Delta.$$

$$+ \left[W \cdot \frac{\partial \xi}{\partial x} + W' \cdot \frac{\partial n}{\partial y} + W'' \cdot \frac{\partial \xi}{\partial z} + W'' \cdot \frac{\partial n}{\partial x} + R \cdot \frac{\partial \xi}{\partial y} \right) + Q \cdot \left(\frac{\partial \xi}{\partial x} - \frac{\partial \xi}{\partial z} \right) - R \cdot \left(\frac{\partial \xi}{\partial y} - \frac{\partial n}{\partial x} \right) \right] \Delta.$$

$$+ \left[W \cdot \frac{\partial \xi}{\partial x} + W' \cdot \frac{\partial n}{\partial y} + W'' \cdot \frac{\partial \xi}{\partial z} + V' \cdot \left(\frac{\partial n}{\partial x} - \frac{\partial \xi}{\partial y} \right) + Q \cdot \left(\frac{\partial \xi}{\partial x} - \frac{\partial \xi}{\partial z} \right) - R \cdot \left(\frac{\partial \xi}{\partial y} - \frac{\partial n}{\partial x} \right) \right] \Delta.$$

$$+ \left[W \cdot \frac{\partial \xi}{\partial x} + W' \cdot \frac{\partial n}{\partial y} + W'' \cdot \frac{\partial \xi}{\partial z} + V' \cdot \frac{\partial n}{\partial z} + V' \cdot \frac{\partial n}{\partial z} \right) + Q \cdot \left(\frac{\partial \xi}{\partial x} - \frac{\partial n}{\partial z} \right) - R \cdot \left(\frac{\partial \xi}{\partial y} - \frac{\partial n}{\partial z} \right) \right] \Delta.$$

On peut, en supposant constantes la densité Δ relative à l'état naturel du système et les quantités

revenir facilement des équations (17) et (18) aux formules (11). En effet, on tire des équations (25) et (28) de la page 166 du IIIº Volume (1)

(19)
$$\begin{cases} \rho \frac{\partial^2 \xi}{\partial t^2} = \rho X + \frac{\partial A}{\partial x} + \frac{\partial F}{\partial y} + \frac{\partial E}{\partial z}, \\ \rho \frac{\partial^2 \eta}{\partial t^2} = \rho Y + \frac{\partial F}{\partial x} + \frac{\partial B}{\partial y} + \frac{\partial D}{\partial z}, \\ \rho \frac{\partial^2 \zeta}{\partial t^2} = \rho Z + \frac{\partial E}{\partial x} + \frac{\partial D}{\partial y} + \frac{\partial C}{\partial z}; \end{cases}$$

puis on en conclut, en divisant les deux membres de chaque équation par $\rho = (\tau - \upsilon)\Delta$,

(20)
$$\begin{cases} \frac{\partial^2 \zeta}{\partial t^2} = X + \frac{1}{(1-\upsilon)\Delta} \left(\frac{\partial A}{\partial x} + \frac{\partial F}{\partial y} + \frac{\partial E}{\partial z} \right), \\ \frac{\partial^2 \eta}{\partial t^2} = Y + \frac{1}{(1-\upsilon)\Delta} \left(\frac{\partial F}{\partial x} + \frac{\partial B}{\partial y} + \frac{\partial D}{\partial z} \right), \\ \frac{\partial^2 \zeta}{\partial t^2} = Z + \frac{1}{(1-\upsilon)\Delta} \left(\frac{\partial E}{\partial x} + \frac{\partial D}{\partial y} + \frac{\partial C}{\partial z} \right). \end{cases}$$

Or, si, dans les formules (19), on remplace les pressions A, B, C, D, E, F par leurs valeurs tirées des équations (17), (18), alors, en négligeant les infiniment petits du second ordre et réduisant en conséquence le binôme 1 — v à l'unité, on retrouvera précisément les formules (11).

Lorsque, parmi les sommes comprises dans les équations (3), (4), (5), (6), (7), celles qui renferment des puissances impaires de $\cos \alpha$, de $\cos \beta$ ou de $\cos \gamma$ se réduisent à zéro, c'est-à-dire, en d'autres termes, lorsque les quantités

s'évanouissent, le système des molécules m, m', m'', \ldots peut être considéré comme offrant trois axes d'élasticité rectangulaires et parallèles aux axes des x, y, z. Si, dans le même cas, on désigne par G, H, I les

valeurs des coefficients A, &, &, en sorte qu'on ait identiquement

$$\mathfrak{A} = \mathfrak{G}, \quad \mathfrak{A} = \mathfrak{II}, \quad \mathfrak{C} = \mathfrak{I},$$

les formules (11) coincideront avec les équations (68) de la page 208 du III^e Volume (1), et deviendront respectivement

$$(13) \begin{cases} (L+G)\frac{\partial^2 \zeta}{\partial x^2} + (R+H)\frac{\partial^2 \zeta}{\partial y^2} + (Q+I)\frac{\partial^2 \zeta}{\partial z^2} + 2R\frac{\partial^2 \eta}{\partial x^2} + 2Q\frac{\partial^2 \zeta}{\partial z\partial x} + X - \frac{\partial^2 \zeta}{\partial t^2}, \\ (R+G)\frac{\partial^2 \eta}{\partial x^2} + (M+H)\frac{\partial^2 \eta}{\partial y^2} + (P+I)\frac{\partial^2 \eta}{\partial z^2} + 2P\frac{\partial^2 \zeta}{\partial y\partial z} + 2R\frac{\partial^2 \zeta}{\partial x\partial y} + Y - \frac{\partial^2 \eta}{\partial t^2}, \\ (Q+G)\frac{\partial^2 \zeta}{\partial x^2} + (P+H)\frac{\partial^2 \zeta}{\partial y^2} + (N+I)\frac{\partial^2 \zeta}{\partial z^2} + 2Q\frac{\partial^2 \zeta}{\partial z\partial x} + 2P\frac{\partial^2 \eta}{\partial y\partial z} + X = \frac{\partial^2 \zeta}{\partial t^2}. \end{cases}$$

Alors aussi les formules (17), (18) s'accorderont avec les équations (49), (50) de la page 230 du IIIº Volume (2), et se réduiront à

$$A = \left[(L+G) \frac{\partial \xi}{\partial x} + (R-G) \frac{\partial \eta}{\partial y} + (Q-G) \frac{\partial \zeta}{\partial z} + G \right] \Delta,$$

$$B = \left[(R-H) \frac{\partial \xi}{\partial x} + (M+H) \frac{\partial \eta}{\partial y} + (P-H) \frac{\partial \zeta}{\partial z} + H \right] \Delta,$$

$$C = \left[(Q-I) \frac{\partial \xi}{\partial x} + (P-I) \frac{\partial \eta}{\partial y} + (N+I) \frac{\partial \zeta}{\partial z} + I \right] \Delta;$$

$$D = \left[(P+I) \frac{\partial \eta}{\partial z} + (P+H) \frac{\partial \zeta}{\partial y} \right] \Delta,$$

$$E = \left[(Q+G) \frac{\partial \zeta}{\partial y} + (Q+I) \frac{\partial \zeta}{\partial z} \right] \Delta,$$

$$F = \left[(R+H) \frac{\partial \xi}{\partial y} + (R+G) \frac{\partial \eta}{\partial x} \right] \Delta.$$

Dans le cas particulier où l'élasticité du système que l'on considère reste la même en tous sens autour de chaque point, les conditions (41) et (45) des pages 199 et 201 du III° Volume (3) se trouvent remplies, en sorte qu'on a

(26)
$$G = H = I$$
, $L = M = N = 3R$, $P = Q = R$;

⁽¹⁾ OEuvres de Cauchy, S. II, t. VIII, p. 247.

⁽²⁾ Ibid., p. 271.

⁽³⁾ Ibid., p. 239 et 2/1.

ct les formules (23), (24), (25) donnent

$$(37) \qquad \begin{cases} (R+G)\left(\frac{\partial^{2}\xi}{\partial x^{2}} + \frac{\partial^{2}\xi}{\partial y^{2}} + \frac{\partial^{2}\xi}{\partial z^{2}}\right) + 2R\frac{\partial x}{\partial x} + X = \frac{\partial^{2}\xi}{\partial t^{2}}, \\ (R+G)\left(\frac{\partial^{2}\eta}{\partial x^{2}} + \frac{\partial^{2}\eta}{\partial y^{2}} + \frac{\partial^{2}\eta}{\partial z^{2}}\right) + 2R\frac{\partial x}{\partial y} + Y = \frac{\partial^{2}\eta}{\partial t^{2}}, \\ (R+G)\left(\frac{\partial^{2}\zeta}{\partial x^{2}} + \frac{\partial^{2}\zeta}{\partial y^{2}} + \frac{\partial^{2}\zeta}{\partial z^{2}}\right) + 2R\frac{\partial x}{\partial z} + Z = \frac{\partial^{2}\zeta}{\partial t^{2}}; \\ A = \left[2(R+G)\frac{\partial \xi}{\partial x} + (R-G)x + G\right]\Delta, \\ B = \left[2(R+G)\frac{\partial \eta}{\partial y} + (R-G)x + G\right]\Delta, \\ C = \left[2(R+G)\frac{\partial \zeta}{\partial z} + (R-G)x + G\right]\Delta; \end{cases}$$

$$(29) \begin{cases} D = (R + G) \left(\frac{\partial \eta}{\partial z} + \frac{\partial \xi}{\partial y} \right) \Delta, \\ E = (R + G) \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right) \Delta, \\ F = (R + G) \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right) \Delta. \end{cases}$$

Enfin, si le système est constitué de manière que l'élasticité reste la même en tous sens autour d'une droite parallèle à l'axe des z, on aura simplement

(30) G: H,
$$L = M = 3R$$
, $P = Q$,

et les formules (23), (24), (25) donneront

$$(31) \begin{cases} (3R+G)\frac{\partial^2 \zeta}{\partial x^2} + (R+G)\frac{\partial^2 \zeta}{\partial y^2} + (Q+I)\frac{\partial^2 \zeta}{\partial z^2} + 2R\frac{\partial^2 \eta}{\partial x\partial y} + 2Q\frac{\partial^2 \zeta}{\partial z\partial x} + X = \frac{\partial t^2}{\partial z^2}, \\ (R+G)\frac{\partial^2 \eta}{\partial x^2} + (3R+G)\frac{\partial^2 \eta}{\partial y^2} + (Q+I)\frac{\partial^2 \eta}{\partial z^2} + 2Q\frac{\partial^2 \zeta}{\partial y\partial z} + 2R\frac{\partial^2 \zeta}{\partial x\partial y} + Y = \frac{\partial^2 \eta}{\partial t^2}, \\ (Q+G)\left(\frac{\partial^2 \zeta}{\partial x^2} + \frac{\partial^2 \zeta}{\partial y^2}\right) + (N+I)\frac{\partial^2 \zeta}{\partial z^2} + 2Q\left(\frac{\partial^2 \zeta}{\partial z\partial x} + \frac{\partial^2 \eta}{\partial y\partial z}\right) + Z = \frac{\partial^2 \zeta}{\partial t^2}; \end{cases}$$

$$A = \left[(3R + G) \frac{\partial \xi}{\partial x} + (R - G) \frac{\partial \eta}{\partial y} + (Q - G) \frac{\partial \zeta}{\partial z} + G \right] \Delta,$$

$$B = \left[(R - G) \frac{\partial \xi}{\partial x} + (3R + G) \frac{\partial \eta}{\partial y} + (Q - G) \frac{\partial \zeta}{\partial z} + G \right] \Delta,$$

$$C = \left[(Q - I) \left(\frac{\partial \xi}{\partial x} + \frac{\partial \eta}{\partial y} \right) + (N + I) \frac{\partial \zeta}{\partial z} + I \right] \Delta;$$

$$D = \left[(Q + I) \frac{\partial \eta}{\partial x} + (Q + G) \frac{\partial \zeta}{\partial z} \right] \Delta,$$

(33)
$$\begin{cases}
D = \left[(Q + I) \frac{\partial \eta}{\partial z} + (Q + G) \frac{\partial \zeta}{\partial y} \right] \Delta, \\
E = \left[(Q + G) \frac{\partial \zeta}{\partial x} + (Q + I) \frac{\partial \xi}{\partial z} \right] \Delta, \\
F = (R + G) \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right) \Delta.
\end{cases}$$

Lorsque, dans les équations (17), (18), on pose, pour abréger,

(34)
$$\exists \Delta = \alpha$$
, $\emptyset \Delta = \emptyset$,

elles deviennent respectivement

(36)
$$A = a\left(1 + \frac{\partial\xi}{\partial x} - \frac{\partial\eta}{\partial y} - \frac{\partial\zeta}{\partial z}\right) + 2i\frac{\partial\xi}{\partial y} + 2i\frac{\partial\xi}{\partial z} + 4i\frac{\partial\xi}{\partial z} + 4i\frac{\partial\xi}$$

$$(37) \begin{cases} D = \delta \left(1 - \frac{\partial \xi}{\partial x} \right) + \epsilon \frac{\partial \eta}{\partial x} + \epsilon \frac{\partial \zeta}{\partial x} + b \frac{\partial \zeta}{\partial y} + \epsilon \frac{\partial \eta}{\partial z} \\ + u \frac{\partial \xi}{\partial x} + u' \frac{\partial \eta}{\partial y} + u'' \frac{\partial \zeta}{\partial z} + d \left(\frac{\partial \eta}{\partial z} + \frac{\partial \xi}{\partial y} \right) + w'' \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right) + v' \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right), \\ E = \delta \frac{\partial \xi}{\partial y} + \epsilon \left(1 - \frac{\partial \eta}{\partial y} \right) + \epsilon \frac{\partial \zeta}{\partial y} + \epsilon \frac{\partial \xi}{\partial z} + a \frac{\partial \zeta}{\partial x} \\ + v \frac{\partial \xi}{\partial x} + v' \frac{\partial \eta}{\partial y} + v'' \frac{\partial \zeta}{\partial z} + w'' \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + e \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \zeta}{\partial z} \right) + u \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right), \\ F = \delta \frac{\partial \xi}{\partial z} + \epsilon \frac{\partial \eta}{\partial z} + \epsilon \left(1 - \frac{\partial \zeta}{\partial z} \right) + a \frac{\partial \eta}{\partial x} + b \frac{\partial \xi}{\partial y} \\ + w \frac{\partial \xi}{\partial x} + w' \frac{\partial \eta}{\partial y} + w'' \frac{\partial \zeta}{\partial z} + v' \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + u \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \zeta}{\partial z} \right) + \epsilon \left(\frac{\partial \zeta}{\partial y} + \frac{\partial \eta}{\partial x} \right). \end{cases}$$

Si l'on admet que, dans l'état naturel du système des molécules m, m', m'', ..., les pressions p', p'', p''' et, par suite, leurs composantes ou les six fonctions A, B, C, D, E, F s'évanouissent, les coefficients désignés par les lettres

dans les formules (11), (17), (18), ou par les lettres G, H, I dans les équations (23), (24), (25), se réduiront à zéro, ainsi que les constantes représentées par

dans les formules (36), (37). Alors les équations (24), (25) et (23) coïncideront avec les équations (63), (64) et (68) des pages 233, 234 et 235 du IIIº Volume des *Exercices* (1); tandis que les formules (36), (37) reproduiront les valeurs de A, B, C, D, E, F que nous avons précédemment obtenues à la page 2.

(1) OEurres de Cauch), S. II, T. VIII, p. 274 et 275.

SUR L'ÉQUATION

A L'AIDE DE LAQUELLE ON DÉTERMINE LES INÉGALITÉS SÉCULAIRES

DES MOUVEMENTS DES PLANÈTES.

Soit s = f(x, y, z, ...)

une fonction réelle homogène et du second degré. Soient de plus

$$(2) \qquad \varphi(x,y,z,\ldots), \qquad \chi(x,y,z,\ldots), \qquad \psi(x,y,z,\ldots), \qquad \ldots$$

les dérivées partielles de f(x, y, z, ...) prises par rapport aux variables x, y, z, ... Si l'on assujettit ces variables à l'équation de condition

$$(.1) x^2 + y^2 + z^2 + \ldots = 1,$$

les maxima et minima de la fonction s seront déterminés (voir les Leçons sur le Calcul infinitésimal, p. 252) par la formule

$$\frac{\varphi(x,y,z,\ldots)}{x} = \frac{\chi(x,y,z,\ldots)}{y} = \frac{\psi(x,y,z,\ldots)}{z} = \ldots$$

D'ailleurs, les diverses fractions que renferme la formule (4), étant égales entre elles, seront égales au rapport

$$\frac{x \varphi(x, y, z, \ldots) + y \chi(x, y, z, \ldots) + z \psi(x, y, z, \ldots)}{x^2 + y^2 + z^2 + \ldots},$$

qui, en vertu de la condition (3) et du théorème des fonctions homogènes, se réduira simplement à

$$2f(x, y, z, \ldots) = 2s$$
.

∍n aura done encore

5)
$$\frac{\varphi(x, \gamma, z, \ldots)}{x} = \frac{\chi(x, y, z, \ldots)}{y} = \frac{\psi(x, y, z, \ldots)}{z} = \ldots = 2s,$$

u, ce qui revient au même,

6)
$$\frac{1}{2}\varphi(x, y, z, ...) = sx, \frac{1}{2}\chi(x, y, z, ...) = sy, \frac{1}{2}\psi(x, y, z, ...) = sz,$$

Soit maintenant

$$S = 0$$

équation que fournira l'élimination des variables α , γ , z, ... entre les production (6). Les maxima et les minima de la fonction

$$s = f(x, y, z, \ldots)$$

e pourront être que des racines de l'équation (7). D'ailleurs cette quation sera semblable à celle que l'on rencontre dans la théorie des régalités séculaires des mouvements des planètes, et dont les racines, outes réelles, jouissent de propriétés dignes de remarque. Quelquesnes de ces propriétés étaient déjà connues : nous allons les rappeler i, et en indiquer de nouvelles.

Soit n le nombre des variables x, y, z, Désignons d'ailleurs, our plus de commodité, par

$$\Lambda_{xx}$$
, Λ_{xx} , Λ_{xz} , \dots

es coefficients des carrés

$$x^2$$
, y^2 , z^2 , ...

ans la fonction homogène s = f(x, y, z, ...), et par

$$\Lambda_{xy} = \Lambda_{yx}, \quad \Lambda_{xz} = \Lambda_{zx}, \quad \dots, \quad \Lambda_{yz} = \Lambda_{zy}, \quad \dots$$

es coefficients des doubles produits

$$2xy$$
, $2xz$, ..., $2yz$, ...,

n sorte qu'on ait

3)
$$s = \Lambda_{xx}x^2 + \Lambda_{yy}y^2 + \Lambda_{zz}z^2 + \ldots + 2\Lambda_{xy}zy + 2\Lambda_{xz}zz + \ldots + 2\Lambda_{yz}yz + \ldots$$

Les équations (6) deviendront

(9)
$$\begin{cases} A_{xx}x + A_{x}y + A_{xz}z + \dots = sx, \\ A_{xy}x + A_{yy}y + A_{yz}z + \dots = sy, \\ A_{xz}x + A_{z}y + A_{zz}z + \dots = sz, \\ \dots & \dots & \dots \end{cases}$$

et pourront s'écrire comme il suit :

$$\begin{pmatrix}
(A_{xx} - s)x + A_{xy}y + A_{xz}z + \dots = 0, \\
A_{xy}x + (A_{yy} - s)y + A_{yz}z + \dots = 0, \\
A_{xz}x + A_{yz}y + (A_{zz} - s)z + \dots = 0, \\
\dots$$

Cela posé, il résulte des principes établis dans le Chapitre III de l'Analyse algébrique (§ 2) (') que le premier membre de l'équation (8), ou S, sera une fonction alternée des quantités comprises dans le Tableau:

$$\begin{pmatrix}
A_{xx} - s, & A_{xy}, & A_{xz}, & \dots, \\
A_{xy}, & A_{yy} - s, & A_{zz}, & \dots, \\
A_{xz}, & A_{yz}, & A_{zz} - s, & \dots, \\
\dots, & \dots, & \dots, & \dots,
\end{pmatrix}$$

savoir celle dont les différents termes sont représentés, aux signes près, par les produits qu'on obtient, lorsqu'on multiplie ces quantités, n à n, de toutes les manières possibles, en ayant soin de faire entrer dans chaque produit un facteur pris dans chacune des lignes horizontales du Tableau et un facteur pris dans chacune des lignes verticales. En opérant ainsi, on trouvera, par exemple, pour n=2,

(12)
$$S = (A_{xx} - s)(A_{yy} - s) - A_{xy}^{2};$$

pour n=3,

(13)
$$\begin{cases} S = (\Lambda_{xx} - s) (\Lambda_{yy} - s) (\Lambda_{zz} - s) \\ -\Lambda_{yz}^{2} (\Lambda_{xx} - s) - \Lambda_{zz}^{2} (\Lambda_{yy} - s) - \Lambda_{xy}^{2} (\Lambda_{zz} - s) + 2 \Lambda_{xy} \Lambda_{xz} \Lambda_{yz}; \end{cases}$$

(1) OEuvres de Cauchy, S. II, T. III.

ON DÉTERMINE LES INÉGALITÉS SECULAIRES ETC. 177

pour n=4,

$$\begin{cases}
S = (\Lambda_{xx} - s) (\Lambda_{yy} - s) (\Lambda_{zz} - s) (\Lambda_{uu} - s) \\
- \begin{bmatrix} \Lambda_{zu}^{2} (\Lambda_{xx} - s) (\Lambda_{yy} - s) + \Lambda_{yu}^{2} (\Lambda_{xx} - s) (\Lambda_{zz} - s) + \Lambda_{yz}^{2} (\Lambda_{xx} - s) (\Lambda_{uu} - s) \\
+ \Lambda_{xu}^{2} (\Lambda_{yy} - s) (\Lambda_{zz} - s) + \Lambda_{xz}^{2} (\Lambda_{yy} - s) (\Lambda_{uu} - s) + \Lambda_{vy}^{2} (\Lambda_{zz} - s) (\Lambda_{uu} - s) \end{bmatrix} \\
+ 2 \begin{bmatrix} \Lambda_{yz} \Lambda_{yu} \Lambda_{zu} (\Lambda_{xx} - s) + \Lambda_{xz} \Lambda_{xu} \Lambda_{zu} (\Lambda_{yy} - s) \\
+ \Lambda_{xy} \Lambda_{xu} \Lambda_{yu} (\Lambda_{zz} - s) + \Lambda_{xy} \Lambda_{xz} \Lambda_{yz} (\Lambda_{uu} - s) \end{bmatrix} \\
+ \Lambda_{xy}^{2} \Lambda_{zu}^{2} + \Lambda_{xz}^{2} \Lambda_{yu}^{2} + \Lambda_{xu}^{2} \Lambda_{yz}^{2} - 2 [\Lambda_{xy} \Lambda_{xz} \Lambda_{yu} \Lambda_{zu} + \Lambda_{xy} \Lambda_{xu} \Lambda_{yz} \Lambda_{zu} + \Lambda_{xz} \Lambda_{xu} \Lambda_{yz} \Lambda_{yu}];
\end{cases}$$

et, généralement, on obtiendra pour S une fonction de s, qui sera entière et du degré n.

Concevons à présent que l'on désigne par

$$(15) s_1, s_2, \ldots, s_n$$

les n racines réelles ou imaginaires de l'équation (7). Soient, de plus,

$$(16) x_1, y_1, z_1; x_2, y_2, z_2; \ldots; x_n, y_n, z_n$$

des systèmes de valeurs de x, y, z, ... correspondants à ces mêmes valeurs de s, et choisis de manière à vérifier les formules (3) et (10). La première des formules (10) donnera

et
$$(\Lambda_{xx}-s_1)x_1+\Lambda_{xy}y_1+\Lambda_{xz}z_1+\ldots=0$$

$$(\Lambda_{xx}-s_2)x_2+\Lambda_{xy}y_2+\Lambda_{xz}z_3+\ldots=0;$$

puis l'on en conclura, en éliminant le coefficient A

$$(17) \quad (s_2-s_1)x_1x_2+\Lambda_{xy}(x_2y_1-x_1y_2)+\Lambda_{xz}(x_2z_1-x_1z_2)+\ldots=0.$$

En raisonnant de la même manière, on tirera de la deuxième des formules (10)

(18)
$$\Lambda_{x_1}(y_2x_1-y_1x_2)+(s_2-s_1)y_1y_2+\Lambda_{y_2}(y_2x_1-y_1x_2)+\ldots=0$$

de la troisième

$$(19) \qquad \Lambda_{xz}(z_2x_1-z_1x_2)+\Lambda_{zy}(z_2y_1-z_1y_2)+(s_2-s_1)z_1z_2+\ldots=0,$$

etc. Enfin, si l'on ajoute membre à membre les équations (17), (18).

OEuvres de G. — S. II, t. IX.

(19), etc., on trouvera

$$(20) (x_1x_2+y_1y_2+z_1z_2+\ldots)(s_2-s_1)=0.$$

Donc, toutes les fois que les racines s_1 , s_2 seront inégales entre elles, on aura

$$(21) x_1x_2 + y_1y_2 + z_1z_2 + \ldots = 0;$$

et, si l'équation (7) n'offre pas de racines égales, les valeurs de x, y, z, ... correspondantes à ces racines vérifierent toutes les formules comprises dans le Tableau suivant :

$$(22) \begin{cases} x_1^2 + y_1^2 + z_1^2 + \dots = 1, & x_1 x_2 + y_1 y_2 + z_1 z_2 + \dots = 0, & \dots, & x_1 x_n + y_1 y_n + z_1 z_n + \dots = 0, \\ x_2 x_1 + y_2 y_1 + z_2 z_1 + \dots = 0, & x_2^2 + y_2^2 + z_2^2 + \dots = 1, & \dots, & x_2 x_n + y_2 y_n + z_2 z_n + \dots = 0, \\ \dots & \dots & \dots & \dots & \dots & \dots \\ x_n x_1 + y_n y_1 + z_n z_1 + \dots = 0, & x_n x_2 + y_n y_2 + z_n z_2 + \dots = 0, & \dots, & x_n^2 + y_n^2 + z_n^2 + \dots = 1. \end{cases}$$

Soit maintenant R ce que devient la fonction S, lorsque, dans le Tableau (11), on supprime tous les termes appartenant à la première colonne horizontale, ainsi qu'à la première colonne verticale; et Q ce que devient la même fonction, quand on supprime, en outre, les termes renfermés dans les deuxièmes colonnes horizontale et verticale. Enfin, désignons par P_{uv} ce que devient S, lorsqu'on supprime dans le Tableau (11) les termes qui appartiennent à la même colonne horizontale que le binôme $A_{uu} - s$, avec ceux qui appartiennent à la même colonne verticale que $A_{vv} - s$, ou bien encore les termes compris dans la même colonne verticale que $A_{uu} - s$, et ceux qui sont renfermés dans la même colonne horizontale que $A_{vv} - s$. Les polynòmes R, Q; P_{xv} , P_{xj} , P_{xz} , ...; P_{yj} , P_{yz} , ..., P_{zz} seront, ainsi que S, des fonctions entières de s. De plus, on aura évidemment

$$R = P_{xx},$$

et l'on conclura des équations (10), en saisant abstraction de la première,

100

$$\frac{x}{P_{xx}} = -\frac{y}{P_{xy}} = -\frac{z}{P_{xz}} = -\dots$$

ON DÉTERMINE LES INÉGALITES SECULAIRES ETC. 179 Posons d'ailleurs, pour abréger,

(25)
$$X = P_{xx} = R$$
, $Y = -P_{xy}$, $Z = -P_{xz}$, ...

La formule (24), combinée avec la formule (3), donnera

$$\frac{x}{X} = \frac{y}{Y} = \frac{z}{Z} = \dots = \pm \frac{1}{\sqrt{X^2 + Y^2 + Z^2 + \dots}};$$

et, si l'on désigne par

$$(27)$$
 $X_1, Y_1, Z_1, \ldots; X_2, Y_2, Z_2, \ldots; X_n, Y_n, Z_n, \ldots$

les systèmes de valeurs de X, Y, Z, ... correspondants aux racines s_1 , s_2 , ..., s_n de l'équation (7), on tirera de la formule (26)

$$\begin{pmatrix} \frac{x_{1}}{X_{1}} = \frac{y_{1}}{Y_{1}} = \frac{z_{1}}{Z_{1}} = \dots = \pm \frac{1}{\sqrt{X_{1}^{2} + Y_{1}^{2} + Z_{1}^{2} + \dots}}, \\ \frac{x_{2}}{X_{2}} = \frac{y_{2}}{Y_{2}} = \frac{z_{2}}{Z_{2}} = \dots = \pm \frac{1}{\sqrt{X_{1}^{2} + Y_{2}^{2} + Z_{1}^{2} + \dots}}, \\ \dots \\ \frac{x_{n}}{X_{n}} = \frac{y_{n}}{Y_{n}} = \frac{z_{n}}{Z_{n}} = \dots = \pm \frac{1}{\sqrt{X_{n}^{2} + Y_{n}^{2} + Z_{n}^{2} + \dots}}.$$

Les valeurs de x_1, y_1, z_1, \ldots seront complètement déterminées, aux signes près, par la première des formules (28), à moins que la supposition $s = s_1$ ne fasse évanouir simultanément les fonctions X = R, Y, Z, ...; et, comme on peut faire un semblable raisonnement à l'égard de $x_2, y_2, z_2, \ldots; \ldots; x_n, y_n, z_n, \ldots$, il est clair que les expressions (16) seront, aux signes près, complètement déterminées par les formules (28), à moins que des racines de l'équation (7) ne vérifient en même temps la formule

$$(29) R = 0.$$

Ajoutons que, si les racines s_1 , s_2 sont inégales, on tirera de la formule (21), combinée avec les deux premières des formules (28),

(30)
$$X_1 X_2 + Y_1 Y_2 + Z_1 Z_2 + \ldots = 0.$$

En partant de la formule (30), on prouve facilement que l'équa-

tion (7) ne saurait admettre de racines imaginaires, tant que les coefficients A_{xx} , A_{xy} , A_{xz} , ...; A_{yy} , A_{yz} , ...; A_{zz} , ... restent récls. En effet, si l'équation (7) offrait alors une racine imaginaire de la forme $\lambda + \mu \sqrt{-1}$, elle en admettrait une seconde conjuguée à la première ou de la forme $\lambda - \mu \sqrt{-1}$; et, en prenant ces racines pour s_1 et s_2 , on obtiendrait pour s_1 et s_2 des valeurs de la forme

$$(31) X_1 = \Im \mathcal{L} + \Im \mathcal{L} \sqrt{-1}, X_2 = \Im \mathcal{L} - \Im \mathcal{L} \sqrt{-1},$$

on, or étant des quantités réelles. Par suite, le produit

$$(32) X_1 X_2 = \mathfrak{I} \mathcal{C}^2 + \mathfrak{I} \mathcal{C}^2$$

serait nécessairement positif ou nul; et, comme on pourrait en dire autant des produits Y₁Y₂, Z₁Z₂, ..., il est clair que la condition (30) ne saurait être remplie, excepté dans le cas où l'on aurait

(33)
$$X_1 = X_2 = 0$$
, $Y_1 = Y_2 = 0$, $Z_1 = Z_2 = 0$, ...

c'est-à-dire dans le cas où chacune des racines s_1 , s_2 vérificrait les équations

$$(34) P_{xx}=0, P_{xy}=0, P_{xz}=0, \ldots$$

Donc, si l'équation (7), du degré n, admettait des racines imaginaires, ces racines seraient propres à vérifier en même temps l'équation $P_{xx} = 0$, ou

$$(29) R = 0,$$

qui est de même forme, mais du degré $n-\tau$. En raisonnant de la même manière, on fera voir que, si l'équation (29) admet des racines imaginaires, ces racines seront propres à vérifier en même temps l'équation

$$Q = 0,$$

qui est de même forme, mais du degré n-2; et ainsi de suite. Donc, si l'équation (7) offrait des racines imaginaires, ces racines devraient

ON DÉTERMINE LES INÉGALITÉS SÉCULAIRES ETC. 181 satisfaire à chacune des équations de la forme

$$(36) S=0, R=0, Q=0, \ldots$$

D'ailleurs, en prolongeant la série des équations (36), on parvient facilement à une équation du premier degré, qui coïncide avec la dernière des suivantes

(37)
$$\Lambda_{xx} - s = 0, \quad \Lambda_{yy} - s = 0, \quad \Lambda_{zz} - s = 0, \quad \dots$$

ot cette équation du premier degré n'admet pas de racines imaginaires, mais une seule racine réelle. Donc l'équation (7) n'a pas de racines imaginaires.

Concevous à présent que l'on combine la première des équations (10) avec la formule (24). On obtiendra la suivante

$$(38) \qquad (\Lambda_{xx} - s) P_{xx} - \Lambda_{xy} P_{xy} - \Lambda_{xz} P_{xz} - \ldots = 0,$$

qui devra coïncider avec l'équation (7); et, en effet, il suffit d'observer de quelle manière les polynômes S, P_{xx} , P_{xy} , P_{xy} , ... se forment à l'aide des quantités renfermées dans le Tableau (11), pour reconnaître que l'on a identiquement, c'est-à-dire quel que soit s,

$$(39) \qquad (\Lambda_{xx}-s)P_{xx}-\Lambda_{xy}P_{xy}-\Lambda_{xz}P_{xz}-\ldots=S.$$

Ajoutons que, en combinant la seconde, la troisième, etc. des équations (10) avec la formule (24), on obtiendra encore des équations identiques, savoir:

Cola posé, imaginons que l'on prenne pour s une quelconque des racines de l'équation $P_{xx} = 0$, ou

$$(29) R = 0.$$

Les formules (39) et (40) donneront alors

(41)
$$\begin{cases} A_{xy} P_{yy} + A_{xz} P_{xz} + \ldots = -8, \\ (A_{yy} - s) P_{xy} + A_{yz} P_{xz} + \ldots = 0, \\ A_{yz} P_{yy} + (A_{zz} - s) P_{xz} + \ldots = 0, \\ \ldots \end{cases}$$

Le nombre des formules (41) étant égal à n, si l'on efface l'une de celles qui offrent zéro pour second membre, les autres suffirent pour déterminer, dans l'hypothèse admise, les valeurs des n-1 quantités

$$P_{xy}$$
, P_{xz} , ...

en fonction de S et des coefficients A_{xy} , A_{xz} , ..., $A_{yy} - s$, A_{yz} , ..., $A_{xz} - s$, Si, pour fixer les idées, on supprime la seconde des formules (41), la valeur de P_{xy} , tirée des autres, deviendra, en égard aux notations adoptées,

$$P_{xy} = -\frac{QS}{P_{xy}}$$
.

Donc, pour chacune des valeurs de s propres à vérifier l'équation (29), on aura

(42)
$$QS = -P_{x_0}^2 = -Y^2,$$

et, par conséquent, les quantités Q, S seront affectées de signes contraires, si l'une et l'autre diffèrent de zéro. Cette remarque fournit une nouvelle démonstration de la réalité des racines de l'équation (7), et permet, en outre, de fixer des limites entre lesquelles ces racines se trouvent comprises, ainsi qu'on va le faire voir.

Supposons d'abord, pour plus de simplicité, que le nombre des variables x, y, z, \ldots soit égal à 3. Les équations (10) deviendront

(43)
$$\begin{cases} (\Lambda_{xx} - s)x + \Lambda_{xy}y + \Lambda_{xz}z = 0, \\ \Lambda_{xy}x + (\Lambda_{yy} - s)y + \Lambda_{yz}z = 0, \\ \Lambda_{xz}x + \Lambda_{yz}y + (\Lambda_{zz} - s)z = 0; \end{cases}$$

ON DÉTERMINE LES INEGALITÉS SÉCULAIRES ETC. 183 et l'on tirera des deux dernières

(44)
$$x = \frac{P_{xx}}{S}, \quad y = -\frac{P_{xy}}{S}, \quad z = -\frac{P_{xz}}{S},$$

les valeurs de P_{xy} ou R, P_{xy} , P_{xz} et S étant respectivement

(45)
$$R = P_{z,z} = (\Lambda_{yy} - s)(\Lambda_{zz} - s) - \Lambda_{zz}^{2},$$

(46)
$$\begin{cases} P_{xy} = \Lambda_{xy} (\Lambda_{zz} - s) - \Lambda_{xz} \Lambda_{yz}, \\ P_{xz} = \Lambda_{xz} (\Lambda_{yy} - s) - \Lambda_{xy} \Lambda_{yz}, \end{cases}$$

$$(47) \begin{cases} S = (\Lambda_{xx} - s) (\Lambda_{yy} - s) (\Lambda_{zz} - s) \\ - \Lambda_{yz}^{2} (\Lambda_{xx} - s) - \Lambda_{xz}^{2} (\Lambda_{yy} - s) - \Lambda_{xy}^{2} (\Lambda_{zz} - s) + 2\Lambda_{xy} \Lambda_{zz} \Lambda_{yz}. \end{cases}$$

Cela posé, on aura identiquement

(48)
$$\begin{cases} (\Lambda_{xx} - s)R - \Lambda_{xy} P_{xy} - \Lambda_{xz} P_{xz} = S, \\ \Lambda_{xy} R - (\Lambda_{yy} - s) P_{xy} - \Lambda_{yz} P_{xz} = o, \\ \Lambda_{xz} R - \Lambda_{yz} P_{xy} - (\Lambda_{zz} - s) P_{xz} = o; \end{cases}$$

et, si l'on prend pour s une quelconque des racines de l'équation (29), les formules (48) donneront

(49)
$$\begin{cases} A_{xy} P_{xy} + A_{xz} P_{xz} = -S, \\ (A_{yy} - s) P_{xy} + A_{yz} P_{xz} = 0, \\ A_{yz} P_{xy} + (A_{zz} - s) P_{yz} = 0. \end{cases}$$

Enfin, si l'on combine la première des formules (49) avec la troisième, on en tirera

(50)
$$P_{xy} = -\frac{(\Lambda_{zz} - s)S}{\Lambda_{xy}(\Lambda_{zz} - s) - \Lambda_{xz}\Lambda_{yz}} = -\frac{(\Lambda_{zz} - s)S}{P_{xy}},$$

ou, ce qui revient au même,

$$QS = -P_{xx}^2$$

la valeur de Q étant

$$Q = \Lambda_{zz} - s.$$

Donc, à chacune des racines de l'équation (7) correspondrent des

184

valeurs de Q et de S propres à vérifier la formule (42) et, par conséquent, affectées de signes contraires. En résumé, les valeurs des polynômes

$$\mathbf{A}_{zz} - s$$

et

(53)
$$\begin{cases} (\Lambda_{xx} - s) (\Lambda_{yy} - s) (\Lambda_{zz} - s) \\ -\Lambda_{yz}^2 (\Lambda_{xx} - s) -\Lambda_{vz}^2 (\Lambda_{yy} - s) -\Lambda_{xy}^2 (\Lambda_{zz} - s) + 2\Lambda_{xy}\Lambda_{xz}\Lambda_{yz}, \end{cases}$$

correspondantes à l'une quelconque des racines de l'équation

$$(54) \qquad (\Lambda_{yy}-s)(\Lambda_{zz}-s)-\Lambda_{yz}^2=0,$$

seront affectées, si elles ne s'évanouissent ni l'une ni l'autre, de signes différents.

Soient maintenant s', s' les deux racines réelles de l'équation (54), rangées dans leur ordre de grandeur, en sorte qu'on ait

$$(55) s' < s''.$$

Ces racines, qui sont toutes deux réelles, puisqu'elles se réduisent aux deux valeurs de s données par la formule

$$(56) s = \frac{\Lambda_{yy} + \Lambda_{zz}}{2} \pm \sqrt{\left(\frac{\Lambda_{yy} - \Lambda_{zz}}{2}\right)^2 + \Lambda_{yz}^2},$$

vérifieront la condition

$$(57) s' + s'' = \Lambda_{yy} + \Lambda_{zz},$$

de laquelle on tirera, en ayant égard à l'équation (54),

$$\Lambda_{zz} - s' = -(\Lambda_{yy} - s'') = -\frac{\Lambda_{yz}^2}{\Lambda_{zz} - s''}$$

ou, ce qui revient au même,

(58)
$$(A_{zz} - s') (A_{zz} - s'') = -A_{yz}^{2},$$

Donc les deux valeurs du binôme A_{zz} — s, correspondantes aux deux racines de l'équation (54), seront affectées de signes différents, si

ON DÉTERMINE LES INÉGALITÉS SÉCULAIRES ETC. 183 aucune d'elles ne s'évanouit; et, par suite, la racine unique A_{zz} de l'équation

$$\Lambda_{ss} - s = 0$$

ou

sera renfermée entre les deux racines de l'équation (54) ou

$$(29) R = 0,$$

à moins qu'elle ne se réduise à l'une d'entre elles. Donc, attendu que la condition (55) entraîne la suivante

$$\Lambda_{zz} - s' > \Lambda_{zz} - s'',$$

on aura

(62)
$$\mathbf{A}_{zz} - s' = \mathbf{0} \quad \text{et} \quad \mathbf{A}_{zz} - s'' = \mathbf{0},$$

Cela posé, soient S', S'' les deux valeurs du polynôme (53) ou de S correspondantes aux valeurs s', s'' de la variable s. Si aucune des deux racines s', s'' ne vérific l'équation (60) ou l'équation (7), S' sera une quantité affectée d'un signe contraire à celui de $\Lambda_{zz} - s'$, et S'' une quantité affectée d'un signe contraire à celui de $\Lambda_{zz} - s''$. On aura donc

$$\mathbf{S}' \in \mathbf{O}, \quad \mathbf{S}'' \in \mathbf{O}.$$

D'autre part, le polynôme (53) ou S se réduit pour $s=-\infty$ à l'infini positif, et pour $s=\infty$ à l'infini négatif. Donc, si dans ce polynôme on substitue successivement, au lieu de s, les quatre valeurs

$$(64) s = -\infty, s = s', s = s'', s = \infty,$$

les résultats des substitutions seront généralement affectés des signes

ct, par conséquent, l'équation (7) ou

(66)
$$\begin{cases} (\Lambda_{xx} - s) (\Lambda_{yy} - s) (\Lambda_{zz} - s) \\ -\Lambda_{yz}^{2} (\Lambda_{xx} - s) - \Lambda_{xz}^{2} (\Lambda_{yy} - s) - \Lambda_{xy}^{2} (\Lambda_{zz} - s) + 2\Lambda_{xy} \Lambda_{xz} \Lambda_{yz} = 0 \end{cases}$$

$$OEuvros do C. = S. II, t. IX.$$

admettra trois racines réelles, savoir une raçine inférieure à s', une autre comprise entre les limites s', s'', et une troisième supérieure à s''.

Supposons maintenant que la fonction (τ) renferme quatre variables x, y, z, u. Dans ce cas, la fonction S sera déterminée par la formule $(\tau 4)$, et les fonctions R, Q par les deux suivantes :

(67)
$$\begin{cases} R = (\Lambda_{j,y} - s) (\Lambda_{zz} - s) (\Lambda_{uu} - s) \\ -\Lambda_{zu}^{2} (\Lambda_{j,y} - s) - \Lambda_{ju}^{2} (\Lambda_{zz} - s) - \Lambda_{jz}^{2} (\Lambda_{uu} - s) + 2\Lambda_{yz} \Lambda_{yu} \Lambda_{zu}, \\ Q = (\Lambda_{zz} - s) (\Lambda_{uu} - s) - \Lambda_{zu}^{2}. \end{cases}$$

D'ailleurs, les fonctions (67) et (68) étant semblables, la première à la fonction (53), la seconde à la fonction (45), on prouvera, en raisonnant comme dans le cas précédent, que l'équation R=0 a généralement trois racines réelles, dont l'une est comprise entre les valeurs réelles de s propres à vérifier l'équation du second degré

(69)
$$(\Lambda_{zz}-s)(\Lambda_{uu}-s)-\Lambda_{zu}^2=0,$$

tandis que les deux autres racines sont l'une inférieure et l'autre supérieure aux valeurs dont il s'agit. Cela posé, soient s', s'', s''' les trois racines de l'équation

(70)
$$\begin{cases} (\Lambda_{jj} - s)(\Lambda_{zz} - s)(\Lambda_{uu} - s) \\ -\Lambda_{zu}^2(\Lambda_{yj} - s) - \Lambda_{ju}^2(\Lambda_{zz} - s) - \Lambda_{jz}^2(\Lambda_{uu} - s) + 2\Lambda_{jz}\Lambda_{yu}\Lambda_{zu} = 0, \end{cases}$$

rangées par ordre de grandeur, et désignons par

les valeurs de Q et de S correspondantes à ces mêmes racines. Q sera une quantité affectée du même signe que la valeur de Q correspondante à $s=-\infty$, c'est-à-dire une quantité positive, et l'on aura, par suite,

(71)
$$Q' > 0$$
, $Q'' < 0$, $Q''' > 0$.

Donc, en ayant égard à la formule (42), on trouvera généralement

(72)
$$S' < 0$$
, $S'' > 0$, $S''' < 0$.

ON DÉTERMINE LES INÉGALITÉS SECULAIRES ETC. 187

D'autre part, le polynôme (14) se réduit, pour $s = -\infty$, ainsi que pour $s = \infty$, à l'infini positif. Donc, si dans ce polynôme on substitue successivement, au lieu de s, les cinq valeurs

$$(73) s = -\infty, s = s', s = s'', s = \infty,$$

les résultats des substitutions seront généralement affectés des signes

Donc l'équation (7), dans le cas dont il s'agit, admettra quatre racines réelles respectivement comprises entre les limites

$$(75) -\infty, s', s'', s''', +\infty.$$

Les mêmes raisonnements, successivement étendus au cas où la fonction s renfermerait cinq, six, ... variables, fourniront évidemment la proposition suivante :

Théorème I. — Quel que soit le nombre n des variables x, y, z, \ldots , l'équation

$$S = 0$$

et les équations de même forme

$$(76) R = 0, Q = 0, \dots$$

auront toutes leurs racines réelles. De plus, si l'on nomme

(77)
$$s', s'', s''', \ldots, s^{(n-1)}$$

les racines de l'équation

$$(29) R = 0$$

rangées par ordre de grandeur, les racines réelles de l'équation (7) seront respectivement comprises entre les limites

(78)
$$-\infty$$
, s' , s'' , s''' , ..., $s^{(n-1)}$, ∞ .

D'après ce qui a été dit ci-dessus, il ne peut rester de doutes sur l'exactitude du théorème I, si ce n'est dans le cas où quelques valeurs de s vérifieraient à la fois deux des équations

$$(36) S = 0, R = 0, Q = 0, \dots$$

prises consécutivement. Observons d'ailleurs que, si l'on nomme

$$S', S'', S''', \ldots, S^{(n-1)}$$

les valeurs du polynôme S correspondantes aux racines s', s'', s''', ..., s^{n-1} de l'équation (29), et

(80)
$$K = S'S'' \dots S^{(n-1)}$$

le produit de toutes ces valeurs, K sera une fonction symétrique des racines s', s'', s''', ..., $s^{(n-1)}$, qui pourra être transformée en une fonction entière des coefficients A_{xx} , A_{xy} , A_{xz} , ..., A_{yy} , A_{yz} , ..., A_{zz} , ..., et s'évanouira toutes les fois que les équations (7) et (29) auront des racines communes.

Il est facile de vérifier le théorème I dans le cas où les quantités A_{xx} , A_{xy} , A_{xz} , ..., A_{yy} , A_{yz} , ..., A_{zz} , ... s'évanouissent toutes à l'exception de celles qui, dans le second membre de la formule (8), sont multipliées par la variable x ou par le carré de l'une des variables x, y, z, Alors, en effet, l'équation (29), réduite à

(81)
$$(\Lambda_{yy}-s)(\Lambda_{zz}-s)(\Lambda_{uu}-s)...=0,$$

aura pour racines A_{jj} , A_{zz} , A_{uu} , Done, si, pour fixer les idées, on suppose

on pourra prendre

(83)
$$s' = \Lambda_{jj}, \quad s'' = \Lambda_{zz}, \quad s'' = \Lambda_{nn}, \quad \dots$$

D'un autre côté, comme, dans l'hypothèse admise, le Tableau (11) se réduira au suivant

(84)
$$\begin{cases}
A_{xx} - s, & A_{xy}, & A_{xz}, & A_{xu}, & \dots, \\
A_{xy}, & A_{yy} - s, & o, & o, & \dots, \\
A_{xz}, & o, & A_{zz} - s, & o, & \dots, \\
A_{xu}, & o, & o, & A_{uu} - s, & \dots, \\
\dots, & \dots, & \dots, & \dots, & \dots
\end{cases}$$

ON DÉTERMINE LES INÉGALITÉS SÉCULAIRES ETC. 189 on aura évidemment

(85)
$$\begin{cases} S = (\Lambda_{j,j} - s) (\Lambda_{zz} - s) (\Lambda_{uu} - s) \dots \left(\Lambda_{uw} - s - \frac{\Lambda_{vv}^2}{\Lambda_{j,j} - s} - \frac{\Lambda_{zz}^2}{\Lambda_{zz} - s} - \frac{\Lambda_{vu}^2}{\Lambda_{uu} - s} - \dots \right) \\ = (\Lambda_{xu} - s) (\Lambda_{yy} - s) (\Lambda_{zz} - s) (\Lambda_{uu} - s) \dots \\ - \Lambda_{v,j}^2 (\Lambda_{zz} - s) (\Lambda_{uu} - s) \dots - \Lambda_{uz}^2 (\Lambda_{j,j} - s) (\Lambda_{uu} - s) \dots - \Lambda_{zu}^2 (\Lambda_{j,j} - s) (\Lambda_{zz} - s) \dots; \end{cases}$$

puis on en conclura, en désignant par S', S", S", ... les valeurs de S correspondantes aux valeurs $s' = \Lambda_{j,j}$, $s'' = \Lambda_{zz}$, $s''' = \Lambda_{uu}$ de la variable s,

(86)
$$\begin{cases} S' = -\Lambda_{xy}^{2} (\Lambda_{zz} - \Lambda_{yy}) (\Lambda_{nn} - \Lambda_{yy}) \dots < 0, \\ S'' = +\Lambda_{zz}^{2} (\Lambda_{zz} - \Lambda_{yy}) (\Lambda_{nn} - \Lambda_{zz}) \dots > 0, \\ S''' = -\Lambda_{xn}^{2} (\Lambda_{nn} - \Lambda_{yy}) (\Lambda_{nn} - \Lambda_{zz}) \dots < 0, \end{cases}$$

Enfin, il est clair que S se réduira, pour $s = -\infty$, à l'infini positif, et pour $s = \infty$, à $(-1)^n$. Donc, si dans le polynôme S on substitue successivement, au lieu de s, les n + 1 valeurs

$$(87) \quad -\infty, \quad s' = \Lambda_{rr}, \quad s'' = \Lambda_{zz}, \quad s'' = \Lambda_{nn}, \quad \ldots, \quad +\infty$$

les résultats des substitutions seront alternativement positifs et négatifs. Donc l'équation (7) offrira, dans l'hypothèse admise, n racines réclles qui, prises consécutivement et deux à deux, renfermeront entre elles les racines de l'équation (29).

Dans le cas que nous venons de considérer, les quantités S', S'', S''', ... ne s'évanouiront jamais et, par conséquent, une même valeur de s ne pourra vérisser simultanément les équations (7) et (81), à moins que l'un des coefficients A_{xy} , A_{xz} , A_{xu} , ... ne se réduise à zéro. Donc la fonction entière de ces coefficients, désignée par K et déterminée par l'équation (80), offrira ordinairement, dans le cas dont il s'agit, une valeur distincte de zéro. Il en scrait de même, à plus forte raison, si aucun des coefficients A_{xx} , A_{xy} , A_{xz} , ..., A_{yy} , A_{yz} , ..., A_{yz}

$$\mathbf{K} = \mathbf{0},$$

quelles que soient les valeurs attribuées aux coefficients $A_{z,v}$, $A_{z,v}$, A_{xz} , ..., A_{yz} , A_{yz} , ..., A_{yz} , ..., A_{zz} ,

Il est maintenant facile d'étendre le théorème I au cas où quelques valeurs de la variable s vérifieraient à la fois deux des équations (36) prises consécutivement. Admettons, pour fixer les idées, que, parmi ces équations, les deux premières, savoir S = 0, R = 0, soient les seules qui offrent des racines communes. La condition (88) sera remplie; mais elle cessera de l'être généralement si l'on attribue à l'un des coefficients renfermés dans la fonction K un accroissement infiniment petit ε. Soient ΔS, ΔR les accroissements correspondants des fonctions S et R. Les équations

$$(89) S + \Delta S = 0,$$

$$(90) R + \Delta R = 0$$

n'offriront pas de racines communes, et les racines de la dernière, rangées par ordre de grandeur, seront de la forme

(91)
$$s' + \Delta s', \quad s'' + \Delta s'', \quad s''' + \Delta s''', \quad \ldots, \quad s^{(n-1)} + \Delta s^{(n-1)},$$

 $\Delta s'$, $\Delta s''$, $\Delta s'''$, ..., $\Delta s^{(n-1)}$ désignant des quantités infiniment petites qui s'évanouiront avec ε . D'ailleurs, on conclura du théorème I que l'équation (89) admet n racines réelles, respectivement comprises entre les limites

(92)
$$-\infty$$
, $s' + \Delta s'$, $s'' + \Delta s''$, $s'' + \Delta s'''$, ..., $s^{(n-1)} + \Delta s^{(n-1)}$, ∞ ;

et cette conclusion subsistera pour des valeurs de ε aussi rapprochées de zéro qu'on le jugera convenable. Donc elle subsistera encore pour $\varepsilon = 0$, c'est-à-dire que les n racines de l'équation (7) seront réelles, et renfermées entre les limites (78). Seulement, dans le cas particulier dont il s'agit, quelques-unes des racines de l'équation (7) pourront se réduire à quelques-unes des quantités s', s'', s''', ..., $s^{(n-1)}$, qui généra-lement leur servent de limites.

On pourrait raisonner de la même manière, quelles que sussent, parmi les équations (36), celles qui, prises consécutivement, offri-

ON DÉTERMINE LES INÉGALITÉS SÉCULAIRES ETC. 191 raient des racines communes; car cela ne peut arriver que dans le cas où les coefficients A_{xx} , A_{xy} , A_{xz} , ...; A_{yy} , A_{yz} , ...; A_{zz} , ... vérifient une ou plusieurs des conditions

$$(93) K=0, L=0, M=0, \ldots$$

L. M. ... désignant les polynômes dans lesquels se transforme K, lorsque, du système des variables x, y, z, ..., on retranche la variable x, ou les deux variables x, y, ou les trois variables x, y, z, etc. Or, pour que les conditions (93) cessent d'être vérifiées, il suffira d'attribuer à un ou à plusieurs des coefficients qu'elles renferment des accroissements infiniment petits ε , ε' , ε'' , Soient ΔR , ΔS , ΔQ , ... les accroissements correspondants et infiniment petits des fonctions S, R, Q, Le théorème I subsistera pour les équations

$$(94) S + \Delta S = 0$$

et

(95)
$$R + \Delta R = 0$$
, $Q + \Delta Q = 0$, ...

tandis que ε , ε' , ε'' , ... s'approcheront indéfiniment de zéro; et, par conséquent, il continuera de subsister pour les équations (7) et (76), au moment où ε , ε' , ε'' , ... s'évanouiront. Sculement alors deux des équations (36), prises consécutivement, pourront avoir des racines communes.

Si, comme on l'a déjà fait, on nomme

$$(15) s_1, s_2, s_3, \ldots, s_{n-1}, s_n$$

les racines de l'équation (7), et si on les suppose rangées par ordre de grandeur, deux de ces racines, prises consécutivement, par exemple s_m et s_{m+1} , ne pourront devenir égales entre elles sans coïncider avec la racine $s^{(m)}$ de l'équation R = 0 ou $P_{xx} = 0$. Donc, si l'équation (7) admet des racines égales, chacune d'elles vérifiera encore la formule $P_{xx} = 0$ que l'on obtient à la place de l'équation (7), lorsque du système des variables x, y, z, \ldots on retranche la variable x. Pareillement,

chacune des racines égales vérifiera les formules

$$P_{yy} = 0$$
, $P_{zz} = 0$, ...,

que l'on obtient en retranchant du système x, y, z, \ldots la variable y, on la variable z, etc. En général, si deux, trois, quatre, etc. racines de l'équation (7) deviennent égales entre elles, chacune de ces racines fournira évidemment une valeur de s propre à vérifier, non seulement l'équation (7), mais encore toutes celles qu'on en déduit, lorsque du système x, y, z, \ldots on retranche une, deux, trois, etc. variables arbitrairement choisies. Alors aussi les coefficients $A_{xx}, A_{xy}, A_{xz}, \ldots; A_{yy}, A_{yz}, \ldots; A_{zz}, \ldots$ satisferont à une ou à plusieurs des conditions (93). Mais ces conditions cesseront d'être vérifiées et, par conséquent, les racines de l'équation (7) deviendront toutes inégales, si l'on attribue aux coefficients renfermés dans les premiers membres des formules (93) des accroissements infiniment petits.

Scient encore

(16)
$$x_1, y_1, z_1, \ldots; x_2, y_2, z_2, \ldots; \ldots; x_n, y_n, z_n, \ldots$$

des systèmes de valeurs de x, y, z, \ldots correspondants aux valeurs s_1, s_2, \ldots, s_n de la variable s, et choisis de manière à vérifier les formules (3) et (10), en sorte qu'on ait

(96)
$$\begin{cases} (\Lambda_{xx} - s_1) x_1 + \Lambda_{xy} y_1 + \Lambda_{xz} z_1 + \dots = 0, \\ \Lambda_{xy} x_1 + (\Lambda_{yy} - s_1) y_1 + \Lambda_{yz} z_1 + \dots = 0, \\ \Lambda_{xz} x_1 + \Lambda_{yz} y_1 + (\Lambda_{zz} - s_1) z_1 + \dots = 0, \\ \dots & \vdots \end{cases}$$

(96)
$$\begin{cases} (\Lambda_{xx} - s_2) x_2 + \Lambda_{xy} y_2 + \Lambda_{xz} z_2 + \dots = 0, \\ \Lambda_{xy} x_2 + (\Lambda_{yy} - s_2) y_2 + \Lambda_{yz} z_2 + \dots = 0, \\ \Lambda_{xz} x_2 + \Lambda_{yz} y_2 + (\Lambda_{zz} - s_2) z_2 + \dots = 0, \\ \dots & \dots & \dots \end{cases}$$

(96)
$$\begin{cases} (\Lambda_{xx} - s_n) x_n + \Lambda_{xy} y_n + \Lambda_{xz} z_n + \ldots = 0, \\ \Lambda_{xy} x_n + (\Lambda_{yy} - s_n) y_n + \Lambda_{xz} z_n + \ldots = 0, \\ \Lambda_{xz} x_n + \Lambda_{yz} y_n + (\Lambda_{zz} - s_n) z_n + \ldots = 0, \\ \ldots & \ldots & \ldots \end{cases}$$

ON DÉTERMINE LES INÉGALITÉS SÉCULAIRES ETC. 193 et, de plus,

$$\begin{cases} x_1^2 + y_1^2 + z_1^2 + \dots = 1, \\ x_2^2 + y_2^2 + z_2^2 + \dots = 1, \\ \dots \\ x_n^2 + y_n^2 + z_n^2 + \dots = 1. \end{cases}$$

Si la fonction de A_{xx} , A_{xy} , A_{xz} , ...; A_{yy} , A_{yz} , ...; A_{zz} , ..., ei-dessus désignée par K, ne se réduit pas à zéro, des racines de l'équation (7) ne pourront être, ni égales entre elles, ni propres à vérifier l'équation (29); et les quantités (16), ainsi que nous l'avons fait voir, se trouveront, aux signes près, complètement déterminées par les formules (28). Ajoutons que ces quantités satisferont à toutes les équations comprises dans le Tableau (22). Cela posé, si, en désignant par

de nouvelles variables dont le nombre soit n, on attribue à x, y, z, ... les valeurs que déterminent les formules

(98)
$$\begin{cases} x = x_1 \xi + x_2 \eta + x_3 \zeta + \dots, \\ y = y_1 \xi + y_2 \eta + y_3 \zeta + \dots, \\ z = z_1 \xi + z_2 \eta + z_3 \zeta + \dots, \\ \dots \end{cases}$$

on aura, en vertu des équations (22),

(99)
$$x^2 + y^2 + z^2 + \dots = \xi^2 + \eta^2 + \zeta^2 + \dots;$$

puis, en vertu des équations (96), respectivement multipliées par ξ , les autres par η , les autres par ζ , ..., et ajoutées entre elles,

(100)
$$\begin{cases} A_{xx}x + A_{xy}y + A_{xz}z + \dots = s_1x_1\xi + s_2x_2\eta + s_3x_3\xi + \dots, \\ A_{xy}x + A_{yy}y + A_{yz}z + \dots = s_1y_1\xi + s_2y_2\eta + s_3y_3\xi + \dots, \\ A_{xz}x + A_{yz}y + A_{zz}z + \dots = s_1z_1\xi + s_2z_2\eta + s_3z_3\xi + \dots, \end{cases}$$

Enfin, en ayant égard aux formules (22), on tirera : 1° des formules (98) respectivement multipliées par x_1, y_1, z_1, \ldots , ou par x_2 , OEucres de c. — S. II, t. IX.

19%

 y_2, z_2, \ldots , ou par x_3, y_3, z_9, \ldots , et ajoutées entre elles,

(101)
$$\begin{cases} \xi = x_1 x + y_1 y + z_1 z + \dots, \\ 0 = x_2 x + y_2 y + z_2 z + \dots, \\ \xi = x_3 x + y_3 y + z_3 z + \dots, \\ \dots & \dots & \dots \end{cases}$$

 2° des équations (100) respectivement multipliées pour x, y, z, . . . , et ajoutées entre elles,

(102)
$$\begin{cases} A_{xx}x^2 + A_{yy}y^2 + A_{zz}z^2 + \dots + 2A_{xy}xy + 2A_{xz}xz + \dots + 2A_{yz}yz + \dots \\ = s_1\xi^2 + s_2\eta^2 + s_4\xi^2 + \dots \end{cases}$$

Il suffira donc généralement de lier les variables x, y, z, \ldots aux variables ξ, η, ζ, \ldots par les formules (98), pour que les équations (99) et (102) soient simultanément vérifiées. Cette remarque entraîne évidemment la proposition suivante, que j'ai donnée dans le dernier Volume des Mémoires de l'Académie des Sciences (1).

Theoreme II. — Étant donnée une fonction homogène et du second degré de plusieurs variables x, y, z, \ldots , on peut toujours leur substituer d'autres variables ξ, η, ζ, \ldots liées à x, y, z, \ldots par des équations linéaires tellement choisies que la somme des carrés de x, y, z, \ldots soit équivalente à la somme des carrés de ξ, η, ζ, \ldots , et que la fonction donnée de x, y, z, \ldots se transforme en une fonction de ξ, η, ζ, \ldots homogène et du second degré, mais qui renferme seulement les currés de ξ, η, ζ, \ldots

La démonstration du théorème II, ci-dessus indiquée, suppose à la vérité que, dans la fonction donnée, les coefficients

$$A_{xx}$$
, A_{xy} , A_{xz} , ...; A_{yy} , A_{yz} , ...; A_{zz} , ...

ne satisfont pas à la condition (88). Mais, si cette condition était vérifiée, il suffirait, pour qu'elle cessat de l'être, d'attribuer à l'un des coefficients dont il s'agit un accroissement infiniment petit s; et, comme on pourrait faire converger s vers la limite zéro, sans que le

ON DÉTERMINE LES INÉGALITÉS SÉCULAIRES ETC. 195 théorème II cessât de subsister, il est clair qu'il subsisterait encore au moment où & s'évanouirait.

Dans le cas particulier où les variables x, y, z sont au nombre de trois seulement, l'équation (7) se réduit à celle qui se représente dans diverses questions de Géométrie et de Mécanique, par exemple, dans la théorie des moments d'inertie; et le théorème I fournit les règles que j'ai données dans le III° Volume des Exercices (1) comme propres à déterminer les limites des racines de cette équation. Alors aussi les équations (22) sont semblables à celles qui existent entre les cosinus des angles que forment trois axes rectangulaires quelconques avec les axes coordonnés, supposés eux-mêmes rectangulaires, et le théorème II correspond à une proposition de Géométrie, savoir que, par le centre d'une surface du second degré, on peut mener trois plans perpendiculaires l'un à l'autre, et dont chacun la divise en deux parties symétriques.

J'observerai, en terminant cet article, que, au moment où je n'en avais encore écrit qu'une partie, M. Sturm m'a dit être parvenu à démontrer fort simplement les théorèmes let H. Il se propose de publier incessamment le Mémoire qu'il a composé à ce sujet, et qui a été offert à l'Académie des Sciences le même jour que le présent article.

(1) Oknores de Cauchy, S. H. T. VIII, p. 103 et suiv.

DÉTERMINATION DU RÉSIDU INTÉGRAL

DE

QUELQUES FONCTIONS.

Soit f(z) une fonction qui s'évanouisse, lorsqu'on attribue à la variable z des valeurs infinies réelles ou imaginaires. On pourra, dans un grand nombre de cas, déterminer le résidu intégral

ou plutôt la valeur principale de ce résidu, à l'aide des théorèmes 1, II, III, IV des pages 255, 258, 274 et 276 du II Volume (1). Toutefois, les démonstrations que nous avons données de ces théorèmes supposent implicitement que, parmi les racines de l'équation

$$\frac{1}{f(z)} = 0,$$

celles dont les modules ne surpassent pas un nombre donné R sont en nombre fini [voir les pages 247 et 248 du II Volume (2)]. Or cette condition n'est pas toujours satisfaite, et il peut arriver, par exemple, que l'équation (2) offre une infinité de racines très peu différentes de zéro. Nous allons maintenant nous occuper d'étendre les théorèmes cidessus mentionnés au cas dont il s'agit.

Concevons que l'équation (2) offre, non seulement une infinité de

⁽¹⁾ OEurres de Cauchy, S. II, T. VII, p. 302, 305, 320, 322.

⁽²⁾ Ibid., p. 294, 295.

SUR LA DÉTERMINATION DU RÉSIDU INTÉGRAL ETC. 197

racines dont les modules soient très considérables, mais encore une infinité de racines dont les modules soient très petits. Supposons d'ailleurs que, en attribuant au module r de la variable

(3)
$$z = r(\cos p + \sqrt{-1}\sin p)$$

des valeurs infiniment petites

$$(4)$$
 ρ , ρ_1 , ρ_2 , ...,

on puisse les choisir de manière que le produit

devienne sensiblement égal à zéro, quel que soit d'ailleurs l'angle p, ou du moins de manière que ce produit reste toujours fini ou infiniment petit, et ne cesse d'être infiniment petit, en demeurant fini, que dans le voisinage de certaines valeurs particulières de p. La somme des résidus de f(z) correspondants à celles des racines de l'équation (2) qui offriront des modules renfermés entre deux nombres finis r_0 , R se trouvera représentée par la notation

(6)
$$\frac{\binom{(\mathfrak{K})}{(\mathfrak{p}_{\mathfrak{s}})} \mathcal{L}_{(-\pi)}^{(\pi)} ((f(\mathfrak{s}))), }{(\mathfrak{p}_{\mathfrak{s}})}$$

et pourra converger vers une limite déterminée, tandis que ces deux nombres s'approcheront sans cesse, le premier de zéro, le second de l'infini positif. Or cette limite sera, dans l'hypothèse admise, ce que nous appellerons la valeur principale du résidu intégral $\mathcal{L}((f(z)))$. D'autre part, la formule (64) de la page 212 du I^{ev} Volume (4) donnera

(7)
$$\frac{{}^{(\mathrm{R})}}{{}^{(\nu_0)}} \mathcal{L}_{(-\pi)}^{(\pi)} ((f(z))) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathrm{R}e^{p\sqrt{-1}} f(\mathrm{R}e^{p\sqrt{-1}}) dp = \frac{1}{2\pi} \int_{-\pi}^{\pi} r_0 e^{p\sqrt{-1}} f(r_0 e^{p\sqrt{-1}}) dp.$$

Si, dans cette dernière équation, on prend successivement pour r_0 les différents termes de la série (4), l'intégrale

(8)
$$\int_{-\pi}^{\pi} r_0 e^{p\sqrt{-1}} f(r_0 e^{p\sqrt{-1}}) dp$$

(1) OEurres de Canchy, S. H, T. VI, p. 265.

convergera évidemment vers une limite nulle, et l'expression (6) vers une limite correspondante, déterminée par la formule

(9)
$$\frac{{}^{(\mathbf{R})}}{{}^{(\mathbf{o})}} \underbrace{\int_{-\pi}^{(\pi)} ((f(z))) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathbf{R} e^{p\sqrt{-1}} f(\mathbf{R} e^{p\sqrt{-1}}) dp},$$

qui est semblable à l'équation (16) de la page 249 du H° Volume (¹). Cela posé, il ne restera plus qu'à faire converger R vers la limite ∞ pour obtenir, dans l'hypothèse admise, le théorème I de la page 255 du H° Volume (²).

Supposons maintenant

(10)
$$f(z) = \frac{\Lambda_0}{z^m} + \frac{\Lambda_1}{z^{m-1}} + \ldots + \frac{\Lambda_{m-1}}{z} + \varpi(z),$$

et admettous que, en attribuant au module r de la variable z les valeurs infiniment petites

$$(4)$$
 $\rho_1, \rho_2, \ldots,$

on puisse les choisir de manière que le produit

$$z \varpi(z)$$

devienne sensiblement égal à zéro, quel que soit d'ailleurs le rapport $\frac{\pi}{r}$, ou du moins de manière que le produit reste toujours fini ou infiniment petit, et ne cesse d'être infiniment petit, en demeurant fini, que dans le voisinage de certaines valeurs particulières du rapport $\frac{\pi}{r}$. Alors, au lieu de la formule (9), on obtiendra la suivante

(12)
$$\frac{{}^{(R)} \int_{1-\pi}^{(\pi)} ((\varpi(z))) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \operatorname{R} e^{p\sqrt{-1}} \varpi(\operatorname{R} e^{p\sqrt{-1}}) dp;$$

puis, en substituant à la fonction ω(z) sa valeur tirée de l'équation (το), et raisonnant comme on l'a fait à la page 250 du H° Volume (*), on retrouvera encore la formule (9) et le théorème ci-dessus

⁽¹⁾ OEurres de Cauchy, S. II, T. VII, p. 296.

⁽²⁾ Ibid., p. 302.

⁽³⁾ Ibid., p. 297.

mentionné. Seulement le résidu de f(z), relatif à z = 0, devra être considéré comme faisant partie de la somme désignée par la notation $\mathcal{L}((f(z)))$, et comme équivalent à la constante Λ_{m-1} , dans le cas même où la fonction $\varpi(z)$ deviendrait infinie pour une valeur nulle de z. Par conséquent, dans l'hypothèse admise, il faudra, pour obtenir la valeur principale du résidu intégral $\mathcal{L}((f(z)))$, ajouter la constante Λ_{m-1} à la limite vers laquelle convergera l'expression (6), tandis que les nombres r_0 , R s'approcheront indéfiniment, le premier de zéro, le second de l'infini positif.

On étendrait avec la même facilité les théorèmes II, III, IV des pages 258, 274 et 276 du II° Volume (1) au cas où, la fonction f(z) étant déterminée par la formule (10), le produit z variable z, les conditions précédemment énoncées.

Pour vérifier sur une valeur particulière de la fonction f(z) les remarques que l'on vient de faire, supposons

(13)
$$f(z) = \frac{1}{z} \frac{e^{az} - e^{-az}}{e^{az} + e^{-az}} \frac{\sin \frac{b}{z}}{\cos \frac{b}{z}},$$

a et b désignant deux constantes. L'équation (2) aura pour racines les valeurs de z comprises dans les deux séries

$$\pm \frac{\pi}{2a}\sqrt{-1}, \pm \frac{3\pi}{2a}\sqrt{-1}, \pm \frac{5\pi}{2a}\sqrt{-1}, \dots,$$

$$\pm \frac{ab}{\pi}, \qquad \pm \frac{ab}{3\pi}, \qquad \pm \frac{ab}{5\pi}, \qquad \cdots$$

De plus, le produit (5), ou

(16)
$$z f(z) := \frac{e^{az} - e^{-az}}{e^{az} + e^{-az}} \frac{\sin \frac{b}{z}}{\cos \frac{b}{z}},$$

deviendra infiniment petit: 1° pour les valeurs infiniment grandes

(1) OEucres de Cauchy, S. II, T. VII, p. 305, 320, 322.

de z, dont les modules différeront sensiblement de ceux des expressions (14); 2° pour des valeurs infiniment petites de z, choisies de manière que les modules correspondants de \(\frac{1}{z} \) différent sensiblement de ceux des expressions (15). Cela posé, il suit de ce qu'on a dit plus haut que le théorème I de la page 255 ou plutôt le théorème II de la page 258 du II° Volume (1) subsistera pour la fonction (13). On aura donc

(17)
$$\mathcal{E}\left(\left(\frac{1}{z}\frac{e^{az}-e^{-az}}{e^{az}+e^{-az}}\frac{\sin\frac{b}{z}}{\cos\frac{b}{z}}\right)\right)=0,$$

pourvu que l'on considère le résidu intégral

$$\mathcal{E}\left(\left(\frac{1}{z}\frac{e^{az}-e^{-az}}{e^{az}+e^{-az}}\frac{\sin\frac{b}{z}}{\cos\frac{b}{z}}\right)\right)$$

comme représentant la limite vers laquelle converge l'expression

$$\underbrace{\left(\frac{1}{r_0}\right)}_{(r_0)} \underbrace{\left(\frac{1}{z} \frac{e^{az} - e^{-az}}{e^{az} + e^{-az}} \frac{\sin \frac{b}{z}}{\cos \frac{b}{z}}\right)}_{(cos \frac{b}{z})},$$

tandis que les nombres r_0 , R s'approchent, le premier de zéro, le second de l'infini positif. Il est d'ailleurs facile de constater l'exactitude de la formule (17); car on a

(18)
$$\int \frac{\sin \frac{b}{z}}{\cos \frac{b}{z}} \frac{e^{az} - e^{-az}}{((z(e^{az} + e^{-az})))} = -\frac{1}{\pi} \left(\frac{e^{\frac{2ab}{\pi}} - e^{-\frac{2ab}{\pi}}}{e^{\frac{2ab}{\pi}} + e^{\frac{2ab}{\pi}}} + \frac{1}{3} \frac{e^{\frac{2ab}{3\pi}} - e^{-\frac{2ab}{3\pi}}}{e^{\frac{2ab}{3\pi}} + e^{\frac{2ab}{3\pi}}} + \dots \right),$$

(19)
$$\int \frac{e^{az} - e^{-az}}{z(e^{az} + e^{-az})} \frac{\sin \frac{b}{z}}{\left(\left(\cos \frac{b}{z}\right)\right)} = \frac{4}{\pi} \left(\frac{e^{\frac{2ab}{\pi}} - e^{-\frac{2ab}{\pi}}}{e^{\frac{2ab}{\pi}} + e^{\frac{2ab}{\pi}}} + \frac{1}{3} \frac{e^{\frac{2ab}{3\pi}} - e^{\frac{2ab}{3\pi}}}{e^{3\pi} + e^{\frac{2ab}{3\pi}}} + \dots\right),$$

et, en combinant entre elles par voie d'addition les deux équations qui précèdent, on reproduit évidemment la formule (17).

(1) OEucres de Cauchy, S. II, T. VII, p. 302 et 305.

Supposons maintenant

(20)
$$f(z) = \frac{e^{az} - e^{-az}}{e^{az} + e^{-az}} \frac{\sin \frac{b}{z}}{\cos \frac{b}{z}}.$$

Le produit

(31)
$$z f(z) = \frac{e^{az} - e^{-az}}{e^{az} + e^{-az}} \frac{z \sin \frac{b}{z}}{\cos \frac{b}{z}}$$

sera encore infiniment petit pour des valeurs infiniment petites de z, choisies de manière que les modules correspondants de $\frac{1}{z}$ différent sensiblement de ceux des expressions (15). Mais ce même produit cessera de s'évanouir et deviendra généralement égal à $\pm b$ pour des valeurs infiniment grandes de z, savoir à +b, si la partie réelle de l'exposant az est positive, et à -b, si la partie réelle de l'exposant az est négative. Ajoutons que le produit

$$z\frac{f(z)-f(-z)}{2}$$

se réduira évidemment à zéro. Cela posé, le théorème III de la page 274 du II Volume (1) donnera

(33)
$$\mathcal{E}\left(\left(\frac{e^{az}-e^{-az}}{e^{az}+e^{-az}}\frac{\sin\frac{b}{z}}{\cos\frac{b}{z}}\right)\right)=0.$$

Pour constator l'exactitude de cette dernière formule, il su'fit d'observer que les résidus partiels compris dans le résidu intégral

(24)
$$\mathcal{E}\left(\left(\frac{e^{az}-e^{-az}}{e^{az}+e^{-az}}\frac{\sin\frac{b}{z}}{\cos\frac{b}{z}}\right)\right)$$

sont, deux à deux, égaux, mais affectés de signes contraires.

(1) OEuvres de Cauchy, S. II, T. VII, p. 320.
OEuvres de C. — S. II, t. IX.

Supposons enfin

(35)
$$f(z) = \frac{1}{z} \frac{e^{az} - e^{-az}}{e^{az} + e^{-az}} \left(\frac{\cos\frac{b}{z}}{\sin\frac{b}{z}} - \frac{z}{b} \right).$$

L'équation (2) aura pour racines les valeurs de z comprises dans la série (14) et dans la suivante :

$$\pm \frac{b}{\pi}, \quad \pm \frac{b}{2\pi}, \quad \pm \frac{b}{3\pi}, \quad \cdots$$

De plus, le produit

(37)
$$z f(z) = \frac{e^{az} - e^{-az}}{e^{az} + e^{-az}} \left(\frac{\cos \frac{b}{z}}{\sin \frac{b}{z}} - \frac{z}{b} \right)$$

deviendra infiniment petit : 1° pour les valeurs infiniment grandes de z dont les modules différeront sensiblement de ceux des expressions (14); 2° pour des valeurs infiniment petites de z, choisies de manière que les modules de $\frac{1}{z}$ diffèrent sensiblement de ceux des expressions (26). Cela posé, le théorème II de la page 258 du H° Volume (1) subsistera pour la fonction (25), en sorte qu'on aura

(28)
$$\mathcal{L}\left(\left(\frac{1}{z}\frac{e^{az}-e^{-az}}{e^{az}+e^{-az}}\left(\frac{\cos\frac{b}{z}}{\sin\frac{b}{z}}-\frac{z}{b}\right)\right)\right)=0,$$

et, par suite,

$$\begin{pmatrix}
\frac{1}{2} \frac{e^{\frac{ab}{\pi}} - e^{-\frac{ab}{\pi}}}{e^{\frac{ab}{\pi}} + e^{-\frac{ab}{\pi}}} + \frac{1}{4} \frac{e^{\frac{ab}{2\pi}} - e^{-\frac{ab}{2\pi}}}{e^{\frac{ab}{2\pi}} + e^{-\frac{ab}{2\pi}}} + \frac{1}{6} \frac{e^{\frac{ab}{3\pi}} - e^{-\frac{ab}{3\pi}}}{e^{\frac{ab}{3\pi}} + e^{-\frac{ab}{3\pi}}} + \dots \\
= \left(\frac{e^{\frac{ab}{\pi}} + e^{-\frac{2ab}{\pi}}}{\frac{2ab}{e^{\frac{ab}{\pi}} - e^{\frac{2ab}{\pi}}}} - \frac{\pi}{2ab}\right) + \frac{1}{3} \left(\frac{e^{\frac{2ab}{3\pi}} + e^{-\frac{2ab}{3\pi}}}{e^{\frac{2ab}{3\pi}} - e^{\frac{2ab}{3\pi}}} - \frac{3\pi}{2ab}\right) \\
+ \frac{1}{5} \left(\frac{e^{\frac{2ab}{6\pi}} + e^{-\frac{2ab}{6\pi}}}{e^{\frac{2ab}{6\pi}} - e^{-\frac{2ab}{6\pi}}} - \frac{5\pi}{2ab}\right) + \dots
\end{pmatrix}$$

(1) OEuvres de Cauchy, S. II, T. VII, p. 305.

Si, pour abréger, on fait $2ab = \pi x$, la formule (29) deviendra simplement

$$\begin{pmatrix}
\frac{1}{2} \frac{e^{\frac{1}{2}v} - e^{-\frac{1}{2}w}}{e^{\frac{1}{2}w} + e^{-\frac{1}{2}v}} + \frac{1}{4} \frac{e^{\frac{1}{4}w} - e^{-\frac{1}{4}v}}{e^{\frac{1}{4}v} + e^{-\frac{1}{4}w}} + \frac{1}{6} \frac{e^{\frac{1}{6}u} - e^{-\frac{1}{6}v}}{e^{\frac{1}{6}v} + e^{-\frac{1}{6}w}} + \dots \\
= \left(\frac{e^{w} + e^{-w}}{e^{w} - e^{-w}} - \frac{1}{w}\right) + \frac{1}{3} \left(\frac{e^{\frac{1}{3}v} + e^{-\frac{1}{3}v}}{e^{\frac{1}{3}v} - e^{-\frac{1}{3}w}} - \frac{3}{w}\right) + \frac{1}{5} \left(\frac{e^{\frac{1}{5}v} + e^{-\frac{1}{6}v}}{e^{\frac{1}{3}v} - e^{-\frac{1}{6}v}} - \frac{5}{w}\right) + \dots
\end{pmatrix}$$

En remplaçant dans cette dernière x par $x\sqrt{-1}$, on en tirera

(31)
$$\begin{cases} \frac{1}{2} \tan \frac{x}{3} + \frac{1}{4} \tan \frac{x}{4} + \frac{1}{6} \tan \frac{x}{6} + \dots \\ -\left(\frac{1}{x} - \cot x\right) + \frac{1}{3} \left(\frac{3}{x} - \cot \frac{x}{3}\right) + \frac{1}{5} \left(\frac{5}{x} - \cot \frac{x}{5}\right) + \dots \end{cases}$$

Il est bon d'observer que, pour établir directement la formule (31), il suffirait de prendre

(32)
$$f(z) = \frac{1}{z} \frac{\sin z}{\cos z} \left(\frac{\cos \frac{\pi x}{2z}}{\sin \frac{\pi x}{2z}} - \frac{2z}{\pi x} \right),$$

ou bien encore

(33)
$$f(z) = \frac{1}{z} \frac{\sin(z)^{\frac{1}{2}}}{\cos(z)^{\frac{1}{2}}} \begin{cases} \cos(\frac{1}{2}\pi x) & (z)^{\frac{1}{2}} \\ \frac{(z)^{\frac{1}{2}}}{\sin(\frac{1}{2}\pi x)} & \frac{2}{\pi x} (z)^{\frac{1}{2}} \end{cases},$$

 $\left(z\right)^{\frac{1}{2}}$ désignant l'une que leonque des deux valeurs de \prime propres à vérifier l'équation

$$(3'_1) t^2 - z = 0.$$

En effet, dans l'un et l'autre cas, le théorème II de la page 258 du II° Volume (1) entraînera la formule

(1) OEuvres de Cauchy, S. II, T. VII, p. 305.

204 SUR LA DÉTERMINATION DU RÉSIDU INTÉGRAL

qui se réduira simplement à l'équation (31). Remarquons d'ailleurs que, dans le cas où la fonction f(z) est déterminée par la formule (33), cette fonction devient généralement infinie pour une valeur nulle de z. Mais comme, dans le même cas, le produit z f(z) s'évanouit avec z, la constante précédemment désignée par A_{m-1} et, par suite, le résidu de f(z), relatif à z=0, doivent être censés nuls.

On pourrait faire beaucoup d'autres applications des principes eidessus exposés. Si, pour fixer les idées, on prenait successivement

(36)
$$f(z) = \frac{f(z)}{F(z)} \frac{\sin az}{\cos az} \frac{\sin \frac{b}{z}}{\cos \frac{b}{z}},$$

(37)
$$f(z) = \frac{f(z)}{F(z)} \frac{\cos az}{\sin az} \frac{\cos \frac{b}{z}}{\sin \frac{b}{z}},$$

f(z), F(z) désignant deux fonctions entières de z, et la fraction $\frac{f(z)}{F(z)}$ étant irréductible, on trouverait : 1° en supposant le degré de f(z) inférieur au degré de F(z), et la fonction F(z) non divisible, ou divisible une fois seulement par z,

(38)
$$\mathcal{L}\left(\left(\frac{f(z)}{F(z)}\frac{\sin az}{\cos az}\frac{\sin\frac{b}{z}}{\cos\frac{b}{z}}\right)\right) = o;$$

2º en supposant le degré du produit z^2 f(z) inférieur au degré de F(z), et la fonction f(z) divisible par z,

(39)
$$\mathcal{E}\left(\left(\frac{f(z)}{F(z)}\frac{\cos az}{\sin az}\frac{\cos\frac{b}{z}}{\sin\frac{b}{z}}\right)\right) = o.$$

On trouverait de même : 1° en supposant le degré du produit z f(z)

inférieur au degré de F(z), et la fonction F(z) non divisible par z,

(40)
$$\mathcal{L}\left(\left(\frac{f(z)}{F(z)} \frac{1}{\cos az \cos \frac{b}{z}}\right)\right) = o;$$

2º en supposant le degré du produit $z^2 f(z)$ inférieur à celui de F(z), et la fonction f(z) divisible par z,

(41)
$$\mathcal{L}\left(\left(\frac{f(z)}{F(z)} \frac{1}{\sin az \sin \frac{b}{z}}\right)\right) = 0.$$

On obtient des résultats dignes de remarque en développant les formules (38), (39), (40), (41). Si, pour plus de simplicité, on prend

$$\frac{f(z)}{F(z)} = \frac{f(z^2)}{z},$$

 $f(z^2)$ désignant une fonction rationnelle de z, les formules dont il s'agit deviendront

(43)
$$\mathcal{E}\left(\left(\frac{\sin az}{\cos az}\frac{\sin \frac{b}{z}}{\cos \frac{b}{z}}\frac{|'(z^2)|}{z}\right)\right) = o,$$

(44)
$$\mathcal{E}\left(\left(\frac{\cos az}{\sin az} \frac{\cos \frac{b}{z}}{\sin \frac{b}{z}} \frac{f(z^2)}{z}\right)\right) = 0,$$

(45)
$$\mathcal{L}\left(\left(\frac{1}{\cos az\cos\frac{b}{z}},\frac{f(z^2)}{z}\right)\right) = 0,$$

(46)
$$\mathcal{L}\left(\left(\frac{1}{\sin az \sin \frac{b}{z}} \frac{f(z^2)}{z}\right)\right) = 0,$$

et, en les développant, on trouvera

$$(47) \begin{cases} \frac{\int \left(\frac{\pi^2}{4a^3}\right) - \int \left(\frac{4b^2}{\pi^2}\right)^2}{1} \tan \frac{2ab}{\pi} + \frac{\int \left(\frac{9\pi^2}{4a^2}\right) - \int \left(\frac{4b^2}{9\pi^2}\right)}{3} \tan \frac{2ab}{3\pi} + \frac{\int \left(\frac{25\pi^2}{4a^2}\right) - \int \left(\frac{4b^2}{25\pi^2}\right)}{5} \tan \frac{2ab}{5\pi} + \dots \\ = \frac{\pi}{4} \int \tan az \tan \frac{b}{z} \frac{\left(\left(\int (z^2)\right)\right)}{z}, \end{cases}$$

206 SUR LA DÉTERMINATION DU RÉSIDU INTÉGRAL

$$\left\{
\frac{\int \left(\frac{\pi^{2}}{a^{3}}\right) - \int \left(\frac{b^{2}}{\pi^{2}}\right)}{1} \cot \frac{ab}{\pi} + \frac{\int \left(\frac{4\pi^{2}}{a^{2}}\right) - \int \left(\frac{b^{2}}{4\pi^{2}}\right)}{2} \cot \frac{ab}{2\pi} + \frac{\int \left(\frac{9\pi^{2}}{a^{3}}\right) - \int \left(\frac{b^{2}}{9\pi^{2}}\right)}{3} \cot \frac{ab}{3\pi} + \dots \right\} \\
= -\frac{\pi}{2} \int \cot az \cot \frac{b}{\pi} \frac{\left(\int \left(\int \left(z^{2}\right)\right)\right)}{z},$$

$$(49) \begin{cases} \frac{\int \left(\frac{\pi^2}{4a^3}\right) - \int \left(\frac{4b^2}{\pi^2}\right)}{1} \sec \frac{2ab}{\pi} - \frac{\int \left(\frac{9\pi^2}{4a^2}\right) - \int \left(\frac{4b^2}{9\pi^2}\right)}{3} \sec \frac{2ab}{3\pi} + \frac{\int \left(\frac{25\pi^2}{4a^2}\right) - \int \left(\frac{4b^2}{25\pi^2}\right)}{5} \sec \frac{2ab}{5\pi} - \dots \\ = \frac{\pi}{4} \int \sec az \sec \frac{b}{z} \frac{\left(\left(\int (z^2)\right)\right)}{z}, \end{cases}$$

(50)
$$\begin{cases} \frac{\int \left(\frac{\pi^2}{a^2}\right) - \int \left(\frac{b^2}{\pi^2}\right)}{1} \cos \acute{e} \frac{ab}{\pi} - \frac{\int \left(\frac{4\pi^2}{a^2}\right) - \int \left(\frac{b^2}{4\pi^2}\right)}{2} \cos \acute{e} \frac{ab}{2\pi} + \frac{\int \left(\frac{9\pi^2}{a^2}\right) - \int \left(\frac{b^2}{9\pi^2}\right)}{3} \cos \acute{e} \frac{ab}{3\pi} + \dots \\ = \frac{\pi}{2} \int \cos \acute{e} az \cos \acute{e} \frac{b}{z} \frac{\left(\left(\int (z^2)\right)\right)}{z}.$$

Si l'on pose dans les formules (47), (49) $a=b=\frac{\pi x}{2}$, et dans les formules (48), (50) $a=b=\pi x$, ces quatre formules donneront

(51)
$$\begin{cases} \frac{\int (x^2) - \int \left(\frac{1}{x^2}\right)}{1} \tan \frac{\pi x^2}{2} + \frac{\int \left(\frac{x^2}{9}\right) - \int \left(\frac{9}{x^2}\right)}{3} \tan \frac{\pi x^2}{6} + \frac{\int \left(\frac{x^2}{25}\right) - \int \left(\frac{25}{x^2}\right)}{5} \tan \frac{\pi x^2}{10} + \dots \\ = -\frac{\pi}{4} \int \tan \frac{\pi xz}{2} \tan \frac{\pi x}{2z} \frac{\left(\left(\int (z^2)\right)\right)}{z}, \end{cases}$$

(52)
$$\begin{cases} \frac{\lceil (x^2) - \lceil \left(\frac{1}{x^2}\right)}{1} \cot \pi x^2 + \frac{\lceil \left(\frac{x^2}{4}\right) - \lceil \left(\frac{4}{x^2}\right)}{2} \cot \frac{\pi x^2}{2} - \frac{\lceil \left(\frac{x^2}{9}\right) - \lceil \left(\frac{9}{x^2}\right)}{3} \cot \frac{\pi x^2}{3} + \dots \\ = \frac{\pi}{2} \int \cot \pi xz \cot \frac{\pi x}{z} \frac{\left(\left(\lceil (z^2)\right)\right)}{z}, \end{cases}$$

(53)
$$\begin{cases} \frac{\int (x^2) - \int \left(\frac{1}{x^2}\right)}{1} \operatorname{s\acute{e}c} \frac{\pi x^2}{2} - \frac{\int \left(\frac{x^2}{9}\right) - \int \left(\frac{9}{x^2}\right)}{3} \operatorname{s\acute{e}c} \frac{\pi x^2}{6} + \frac{\int \left(\frac{x^2}{25}\right) - \int \left(\frac{25}{x^3}\right)}{5} \operatorname{s\acute{e}c} \frac{\pi x^2}{10} - \dots \\ = -\frac{\pi}{4} \int \operatorname{s\acute{e}c} \frac{\pi xz}{2} \operatorname{s\acute{e}c} \frac{\pi x}{2z} \frac{\left(\left(\int (z^2)\right)\right)}{z}, \end{cases}$$

$$\begin{cases}
\frac{f'(x^2) - f'\left(\frac{1}{x^2}\right)}{1} \cos \cot x^2 - \frac{f'\left(\frac{x^2}{4}\right) - f\left(\frac{4}{x^2}\right)}{2} \cos \cot \frac{\pi x^2}{2} + \frac{f'\left(\frac{x^2}{9}\right) - f'\left(\frac{9}{x^2}\right)}{3} \csc \frac{\pi x^2}{3} - \dots \\
= -\frac{\pi}{2} \int \cos \cot \pi x \cos \cot \frac{\pi x}{z} \frac{\left(\left(f'(z^2\right)\right)\right)}{z}.
\end{cases}$$

Il importe d'observer que, dans les formules (44), (45), (46), et par conséquent dans les formules (48), (49), (50), (52), (53), (54), la fonction rationnelle et paire $f(z^2)$ doit être divisible par z^2 . Ajoutons que les seconds membres des équations (47), (48), (49), (50), (51), (52), (53), (54) s'exprimeront en termes finis. Donc les séries que renferment les premiers membres de ces diverses équations pourront toujours être sommées à l'aide du calcul des résidus.

Pour appliquer la formule (51) à des valeurs particulières de la fonction $f(z^2)$, faisons successivement

$$l_1(z_5) = \frac{1-z_5}{1}, \qquad l_1(z_5) = \frac{1+z_5}{1}.$$

On trouvera, dans le premier cas,

$$(55) \quad \frac{1+x^2}{1-x^2} \tan g \frac{\pi x^2}{2} + \frac{1}{3} \frac{9+x^2}{9-x^2} \tan g \frac{\pi x^2}{6} + \frac{1}{5} \frac{25+x^2}{25-x^2} \tan g \frac{\pi x^2}{10} + \ldots = \frac{\pi}{4} \tan g^2 \frac{\pi x}{2}$$

et, dans le second cas,

$$(56) \quad \frac{1-x^2}{1+x^2} \tan g \frac{\pi x^2}{2} + \frac{1}{3} \frac{9-x^2}{9+x^2} \tan g \frac{\pi x^2}{6} + \frac{1}{5} \frac{25-x^2}{25+x^2} \tan g \frac{\pi x^2}{10} + \dots = \frac{\pi}{4} \left(\frac{e^{\frac{\pi x}{2}} - e^{-\frac{\pi x^2}{2}}}{e^{\frac{\pi x}{2}} + e^{-\frac{\pi x^2}{2}}} \right)^2,$$

Au reste, on déduirait immédiatement la formule (56) de la formule (55) en substituant à la variable x le produit $x\sqrt{-1}$. Ajoutons que, si, dans ces formules, on pose x=1 ou $x=\frac{1}{2}$, on en tirera

$$(57) \quad \frac{1}{\pi} + \frac{1}{3} \frac{4}{5} \tan \frac{\pi}{6} + \frac{1}{5} \frac{12}{13} \tan \frac{\pi}{10} + \frac{1}{7} \frac{24}{25} \tan \frac{\pi}{14} + \ldots = \frac{\pi}{4} \left(\frac{e^{\frac{\pi}{2}} - e^{-\frac{\pi}{2}}}{e^{\frac{\pi}{2}} + e^{-\frac{\pi}{2}}} \right)^2,$$

(58)
$$\frac{5}{3} \tan \frac{\pi}{8} + \frac{1}{3} \frac{37}{35} \tan \frac{\pi}{24} + \frac{1}{5} \frac{101}{99} \tan \frac{\pi}{40} + \frac{1}{7} \frac{197}{195} \tan \frac{\pi}{56} + \ldots = \frac{\pi}{4}$$

$$(59) \quad \frac{3}{5} \tan g \frac{\pi}{8} + \frac{1}{3} \frac{35}{37} \tan g \frac{\pi}{24} + \frac{1}{5} \frac{99}{101} \tan g \frac{\pi}{40} + \frac{1}{7} \frac{195}{197} \tan g \frac{\pi}{56} + \ldots = \frac{\pi}{4} \left(\frac{e^{\frac{\pi}{4}} - e^{-\frac{\pi}{4}}}{e^{\frac{\pi}{4}} + e^{-\frac{\pi}{4}}} \right)^{2}.$$

Supposons encore

$$l_{i}(z_{5}) = \frac{z_{7} - \frac{z_{5}}{1}}{z_{5}} = \frac{z_{5} - \frac{z_{5}}{1}}{1}.$$

On conclura des formules (51), (52), (53), (54)

(6o)
$$\frac{1}{x^2 - \frac{1}{x^2}} \tan g \frac{\pi x^2}{2} + \frac{\frac{1}{3}}{\frac{x^2}{9} - \frac{9}{x^2}} \tan g \frac{\pi x^2}{6} + \frac{\frac{1}{5}}{\frac{x^2}{25} - \frac{25}{x^2}} \tan g \frac{\pi x^2}{10} + \dots = \frac{\pi}{10} \left[\left(\frac{\frac{\pi x}{e^2} - e^{-\frac{\pi x}{2}}}{\frac{\pi x}{e^2} - \frac{\pi x}{2}} \right)^2 - \tan g^2 \frac{\pi x^2}{4} \right],$$

(61)
$$\frac{1}{x^2 - \frac{1}{x^2}} \cot \pi x^2 + \frac{\frac{1}{2}}{\frac{x^2}{4} - \frac{1}{x^2}} \cot \frac{\pi x^2}{2} + \frac{\frac{1}{3}}{\frac{x^2}{9} - \frac{9}{x^2}} \cot \frac{\pi x^2}{3} + \dots = \frac{\pi}{8} \left[\cot^2 \pi x - \left(\frac{e^{\pi x} + e^{-\pi x}}{e^{\pi x} - e^{-\pi x}} \right)^2 \right],$$

$$(62) \frac{1}{x^2 - \frac{1}{x^2}} \operatorname{s\acute{e}c} \frac{\pi x^2}{2} - \frac{\frac{1}{3}}{\frac{x^2}{9} - \frac{9}{x^2}} \operatorname{s\acute{e}c} \frac{\pi x^2}{6} + \frac{\frac{1}{5}}{\frac{x^2}{35} - \frac{25}{x^2}} \operatorname{s\acute{e}c} \frac{\pi x^2}{10} - \dots - \frac{\pi}{16} \left[\left(\frac{\pi}{e^{\frac{1}{2}} + e^{-\frac{\pi}{2}}} \right)^2 - \operatorname{s\acute{e}c}^2 \frac{\pi x^2}{2} \right],$$

$$(63) \frac{1}{x^2 - \frac{1}{x^2}} \cos \acute{e} c \pi x^2 - \frac{\frac{1}{9}}{\frac{x^2}{4} - \frac{f_1}{x^2}} \cos \acute{e} c \frac{\pi x^2}{2} + \frac{\frac{1}{3}}{\frac{x^2}{9} - \frac{g}{x^2}} \cos \acute{e} c \frac{\pi x^2}{3} - \dots = \frac{\pi}{8} \left[\left(\frac{2}{e^{\pi x} - e^{-\pi x}} \right)^2 - \cos \acute{e} c^2 \pi x^2 \right].$$

Si, dans ces dernières équations, on remplace x^2 par $x^2\sqrt{-1}$, on obtiendra les suivantes :

$$\begin{pmatrix}
\frac{1}{x^{2} + \frac{1}{x^{2}}} \frac{e^{\frac{\pi x^{2}}{2}} - e^{-\frac{\pi x^{2}}{2}}}{\frac{\pi x^{2}}{2} + e^{-\frac{\pi x^{2}}{2}}} + \frac{1}{3} \frac{e^{\frac{\pi x^{2}}{6}} - e^{-\frac{\pi x^{2}}{6}}}{\frac{\pi x^{2}}{6} + e^{-\frac{\pi x^{2}}{6}}} + \frac{1}{5} \frac{e^{\frac{\pi x^{2}}{10}} - e^{-\frac{\pi x^{2}}{10}}}{\frac{\pi x^{2}}{10} - e^{-\frac{\pi x^{2}}{10}}} \\
= \frac{\pi}{8} \frac{\left(e^{\frac{\pi x}{\sqrt{2}}} - e^{-\frac{\pi x}{\sqrt{2}}}\right)^{2}}{\left(e^{\frac{\pi x}{\sqrt{2}}} + e^{-\frac{\pi x}{\sqrt{2}}}\right)^{2}} - 4 \sin^{2} \frac{\pi x}{\sqrt{2}}}{\left(e^{\frac{\pi x}{\sqrt{2}}} + e^{-\frac{\pi x}{\sqrt{2}}} + 2 \cos \frac{\pi x}{\sqrt{2}}\right)^{2}},$$

$$(65) \begin{cases} 1 & e^{\pi r^2} + e^{-\pi r^4} & 0 & e^{rA} + e^{-2} & 3 & e^{rA} + e^{-1} \\ e^{\pi r^2} + e^{\pi r^4} & e^{-\pi r^2} + e^{r} & 4 & \pi r^2 + \pi^2 & \pi^{12} & 1 \\ e^{\pi r^2} + \frac{1}{e^{rA}} & e^{\pi r^2} + e^{-r} & 4 & \pi^{12} + e^{-2} & \pi^2 & 9 & \pi^2 & \pi^{12} + e^{-3} \\ & 4 & -\frac{1}{e^{rA}} e^{rA} & e^{-r} & e^{rA} & -\frac{1}{e^{rA}} e^{rA} & -\frac{1}{e^{rA}$$

$$\begin{pmatrix}
1 & 1 & 3 & 1 & 5 & 1 \\
e^{2} + \frac{1}{e^{2}} \frac{\pi^{3}}{e^{2}} + e^{-\frac{\pi}{2}} + e^{-\frac{\pi}{2}} \frac{r^{2}}{9} + \frac{9}{e^{2}} \frac{\pi^{3}}{e^{-\frac{\pi}{2}}} + e^{-\frac{\pi}{2}} \frac{\pi^{3}}{e^{\frac{\pi}{2}}} \frac{\pi^{3}}{e^{-\frac{\pi}{2}}} + e^{-\frac{\pi}{2}} \frac{\pi^{3}}{e^{\frac{\pi}{2}}} \frac{\pi^{3}}{e^{-\frac{\pi}{2}}} + \frac{\pi^{3}}{e^{\frac{\pi}{2}}} \frac{\pi^{3}}{e^{\frac{\pi}{2}}} \frac{\pi^{3}}{e^{\frac{\pi}{2}}} \\
& - \frac{\pi}{4} \left(\frac{\pi^{3}}{e^{\sqrt{4}} + e^{-\sqrt{4}}} + 3\cos\frac{\pi^{3}}{\sqrt{2}} \right)^{\frac{\pi}{4}}
\end{pmatrix}$$

$$(67) = \begin{cases} \frac{1}{4^{2} + \frac{1}{e^{\pi i^{2}}}} \frac{e^{\pi i^{2}}}{e^{-\pi i^{2}}} \frac{1}{e^{\pi i^{2}}} \frac{3}{e^{\pi i^{2}}} \frac{1}{e^{\pi i^$$

Lorsque dans l'équation (67) on écrit \sqrt{s} au lieu de x, on retrouve la formule (17) de la page 273 du second Volume (1). Par conséquent, cette formule, que nous avions établie par un calcul contre lequel on aurait pu élever quelques objections, est parfaitement exacte; et il ne doit rester là-dessus aucun doute.

(1) OEucres de Canchy, S. H. T. VII, p. 319.

USAGE DU CALCUL DES RÉSIDUS

POUR

L'ÉVALUATION OU LA TRANSFORMATION DES PRODUITS

COMPOSI 8

D'UN NOMBRE FINI OU INFINI DE FACTEURS.

Désignons par f(z) une fonction entière de la variable z, et par

(1)
$$\sigma$$
, β , γ , ...

les racines réelles ou imaginaires de l'équation

$$f(z) = 0.$$

La fonction f(z) pourra être présentée sous la forme

(3)
$$f(z) = k(z - \alpha)(z - \beta)(z - \gamma)...$$

Soit d'ailleurs x une seconde variable distincte de z. Si, dans l'équation (3), on pose successivement z = 0, z = x, on en tirera

(4)
$$f(0) = \lambda(-\alpha)(-\beta)(-\gamma)...,$$

(5)
$$f(x) = k(x - \alpha)(x - \beta)(x - \gamma)...;$$

puis, en divisant la formule (5) par la formule (4), et admettant qu'aucune des racines α , β , γ , ... ne soit égale à zéro, on trouvera

(6)
$$\frac{f(x)}{f(0)} = \left(1 - \frac{x}{\alpha}\right) \left(1 - \frac{x}{\beta}\right) \left(1 - \frac{x}{\gamma}\right) \dots$$

Soient maintenant F(z) une nouvelle l'onction entière de z, et

$$\lambda_i = \mu_i - \nu_i + \dots$$

les racines de l'équation

(8)
$$F(z) = 0.$$

En supposant qu'aucune de ces racines ne s'évanouisse, on trouvera encore

$$\frac{F(x)}{F(x)} = \left(1 - \frac{x}{k}\right) \left(1 - \frac{x}{\mu}\right) \left(1 - \frac{x}{\nu}\right) \cdots$$

If y a plus : si, dans la formule (6), on remplace successivement la variable x par les rapports $\frac{r}{k}, \frac{r}{p}, \frac{r}{p}, \cdots$ on en tirera

$$\begin{cases}
\Gamma\left(\frac{x}{I}\right) \\
\Gamma(\alpha) \\
\Gamma\left(\frac{x}{I}\right) \\
\Gamma\left(\frac{x}{I$$

et, par suite,

$$\begin{pmatrix}
\mathbf{f}\begin{pmatrix} v \\ \lambda \end{pmatrix} & \mathbf{f}\begin{pmatrix} u \\ \mu \end{pmatrix} & \mathbf{f}\begin{pmatrix} v \\ \nu \end{pmatrix} \\
\mathbf{f}(u) & \mathbf{f}(u) & \mathbf{f}(u)
\end{pmatrix} \cdots \\
\begin{pmatrix}
\mathbf{i} & v \\ -iv \end{pmatrix} & \begin{pmatrix} \mathbf{i} & iv \\ -iv \end{pmatrix} & \begin{pmatrix}$$

De même, si, dans la formule (9), on remplace successivement la va-

riable x par les rapports $\frac{x}{\sigma}, \frac{x}{\beta}, \frac{x}{\gamma}, \dots$, on en tirera

(12)
$$\begin{cases}
\frac{F\left(\frac{x}{\sigma}\right)}{F(o)} = \left(1 - \frac{x}{\sigma\lambda}\right)\left(1 - \frac{x}{\sigma\mu}\right)\left(1 - \frac{x}{\sigma\nu}\right) \cdots, \\
\frac{F\left(\frac{x}{\beta}\right)}{F(o)} = \left(1 - \frac{x}{\beta\lambda}\right)\left(1 - \frac{x}{\beta\mu}\right)\left(1 - \frac{x}{\beta\nu}\right) \cdots, \\
\frac{F\left(\frac{x}{\gamma}\right)}{F(o)} = \left(1 - \frac{x}{\gamma\lambda}\right)\left(1 - \frac{x}{\gamma\nu}\right)\left(1 - \frac{x}{\gamma\nu}\right) \cdots, \\
\vdots$$

et, par suite,

$$\begin{cases}
\frac{F\left(\frac{x}{\sigma}\right)}{F(o)} \frac{F\left(\frac{x}{\beta}\right)}{F(o)} \frac{F\left(\frac{x}{\gamma}\right)}{F(o)} \cdots \\
= \left(1 - \frac{x}{x\overline{\lambda}}\right) \left(1 - \frac{x}{\sigma \mu}\right) \left(1 - \frac{x}{\sigma \nu}\right) \cdots \left(1 - \frac{x}{\beta \overline{\lambda}}\right) \left(1 - \frac{x}{\beta \mu}\right) \left(1 - \frac{x}{\beta \nu}\right) \cdots \\
\times \left(1 - \frac{x}{\gamma \overline{\lambda}}\right) \left(1 - \frac{x}{\gamma \mu}\right) \left(1 - \frac{x}{\gamma \nu}\right) \cdots
\end{cases}$$

Donc, attendu que les seconds membres des formules (11) et (13) sont composés des mêmes facteurs, on aura définitivement

(14)
$$\frac{f\left(\frac{x}{\lambda}\right)}{f(o)} \frac{f\left(\frac{x}{\mu}\right)}{f(o)} \frac{f\left(\frac{x}{\nu}\right)}{f(o)} \dots = \frac{F\left(\frac{x}{\alpha}\right)}{F(o)} \frac{F\left(\frac{x}{\beta}\right)}{F(o)} \frac{F\left(\frac{x}{\gamma}\right)}{F(o)} \dots$$

Cette dernière formule, de laquelle il résulte que les deux produits

$$\frac{f\left(\frac{x}{\lambda}\right)}{f(o)} \frac{f\left(\frac{x}{\mu}\right)}{f(o)} \frac{f\left(\frac{x}{\nu}\right)}{f(o)} \dots, \quad \frac{F\left(\frac{x}{\alpha}\right)}{F(o)} \frac{F\left(\frac{x}{\beta}\right)}{F(o)} \frac{F\left(\frac{x}{\gamma}\right)}{F(o)} \dots$$

peuvent être transformés l'un dans l'autre, se déduit aisément du calcul des résidus, ainsi que nous allons le faire voir.

Supposons d'abord, pour plus de commodité, qu'aucune des équa-

ď

tions (2) et (8) n'offre de racines égales. Faisons d'ailleurs

$$P = \frac{f\left(\frac{x}{\lambda}\right) f\left(\frac{x}{\mu}\right) f\left(\frac{x}{\nu}\right)}{f(\alpha) - f(\alpha)} \cdots$$

et

$$Q = \frac{\mathbf{F}\left(\frac{\nu}{\epsilon}\right) \mathbf{F}\left(\frac{\tau}{\beta}\right) \mathbf{F}\left(\frac{\sigma}{\gamma}\right)}{\mathbf{F}(\alpha) - \mathbf{F}(\alpha) - \mathbf{F}(\alpha)} \cdot \cdots$$

Si la valeur de x est assez rapprochée de zéro pour que la partie réelle de chacun des rapports

$$f\left(\frac{r}{\lambda}\right), f\left(\frac{s}{\rho}\right), f\left(\frac{s}{\gamma}\right), \dots$$

reste positive, et que les coefficients de $\sqrt{-1}$, dans les logarithmes de ces rapports, fournissent une somme renfermée entre les limites $-\frac{\pi}{2}$.

 $\pm rac{n}{2}$, on tirera de la formule (+5)

$$\frac{f\left(\frac{x}{\lambda}\right) - f\left(\frac{x}{\mu}\right) - f\left(\frac{x}{\mu}\right)}{f(\alpha)} + 1 \frac{f\left(\frac{x}{\mu}\right)}{f(\alpha)} + \dots$$

Ajoutons que, dans tous les cas possibles, on trouvera

le double signe + devant être réduit, dans chaque logarithme, au signe + ou au signe - suivant que la fonction, placée à la suite de ce double signe, offrira pour partie réelle une quantité positive ou négative, et + i désignant une quantité entière convenablement choisie. Si maintenant on différentie, par rapport à x, les deux membres de la

⁽¹⁾ On etablit soms peine la formule (18) à l'aide des principes exposés dans l'Indexte n'gebrique, Chap. IX (σ).

^(*) Of nervy de Canchy, S. M. J. 1111

214

formule (17) ou (18), on en conclura

(19)
$$\frac{1}{P}\frac{dP}{dx} = \frac{1}{\lambda}\frac{f'\left(\frac{x}{\lambda}\right)}{f\left(\frac{x}{\lambda}\right)} + \frac{1}{\mu}\frac{f'\left(\frac{x}{\mu}\right)}{f\left(\frac{x}{\mu}\right)} + \frac{1}{\nu}\frac{f'\left(\frac{x}{\nu}\right)}{f\left(\frac{x}{\nu}\right)} + \dots$$

On trouvera de même

(20)
$$\frac{1}{Q}\frac{dQ}{dx} = \frac{1}{\sigma}\frac{\mathbf{F}'\left(\frac{x}{\alpha}\right)}{\mathbf{F}\left(\frac{x}{\alpha}\right)} + \frac{1}{\beta}\frac{\mathbf{F}'\left(\frac{x}{\beta}\right)}{\mathbf{F}\left(\frac{x}{\beta}\right)} + \frac{1}{\gamma}\frac{\mathbf{F}'\left(\frac{x}{\gamma}\right)}{\mathbf{F}\left(\frac{x}{\gamma}\right)} + \dots$$

D'ailleurs le second membre de la formule (19) peut être représenté par l'une quelconque des deux expressions équivalentes

$$\mathcal{E}_{\frac{1}{z}} \frac{f'\left(\frac{x}{z}\right)}{f\left(\frac{x}{z}\right)} \frac{F'(z)}{((F(z)))}, \quad -\mathcal{E}_{\frac{1}{z}} \frac{f'(z)}{f(z)} \frac{F'\left(\frac{x}{z}\right)}{\left(\left(F\left(\frac{x}{z}\right)\right)\right)},$$

dont on obtient la dernière en remplaçant dans la première z par z,

et multipliant la fonction sous le signe \mathcal{E} par $\frac{d\left(\frac{x}{z}\right)}{dz} = -\frac{x}{z^2}$, conformément aux règles tracées dans le premier Volume (p. 167 et suiv.) (¹) pour le changement de variable indépendante dans le calcul des résidus. De même, le second membre de la formule (20) peut être représenté par l'une quelconque des deux expressions équivalentes

(22)
$$\mathcal{E}^{\frac{1}{z}} \frac{F'\left(\frac{x}{z}\right)}{F\left(\frac{x}{z}\right)} \frac{f'(z)}{((f(z)))}, \quad -\mathcal{E}^{\frac{1}{z}} \frac{F'(z)}{F(z)} \frac{f'\left(\frac{x}{z}\right)}{\left(\left(f\left(\frac{x}{z}\right)\right)\right)}.$$

Cela posé, on tirera des formules (19) et (20)

(23)
$$\frac{1}{P}\frac{dP}{dx} - \frac{1}{Q}\frac{dQ}{dx} = \mathcal{E}\frac{1}{z}\frac{f'\left(\frac{x}{z}\right)}{f\left(\frac{x}{z}\right)}\frac{F'(z)}{((F(z)))} + \mathcal{E}\frac{1}{z}\frac{F'(z)}{F(z)}\frac{f'\left(\frac{x}{z}\right)}{\left(\left(f\left(\frac{x}{z}\right)\right)\right)}$$

(1) OEurres de Cauchy, S. II, T. VI, p. 210 et suiv.

on, plus simplement,

$$\begin{array}{cccc} & \frac{d\mathbf{P}}{\mathbf{P}} & \frac{1}{dx} & \frac{d\mathbf{Q}}{\mathbf{Q}} & \mathcal{L}\left(\left(\frac{\mathbf{f}\left(\frac{x}{3}\right)\mathbf{F}\left(z\right)}{z\mathbf{f}\left(\frac{x}{z}\right)\mathbf{F}\left(z\right)}\right)\right), \end{array}$$

attendu que la fraction

$$\Gamma'\left(\begin{array}{c} i\\ \end{array}\right) \Gamma'\left(\begin{array}{c} i\\ \end{array}\right) \Gamma'\left(\begin{array}{c} i\\ \end{array}\right) \Gamma\left(\begin{array}{c} z\\ \end{array}\right)$$

ne deviendra pas infinie pour une valeur nulle de z. Effectivement, si l'on nomme m le degre de la fonction entière f(z), la fraction (25)pourra être considérée comme le produit des deux rapports

$$\frac{1}{\varepsilon} \frac{\mathbb{P}\left(\frac{F}{\varepsilon}\right)}{\mathbb{P}\left(\frac{\varepsilon}{\varepsilon}\right)}, \quad \frac{\mathbb{P}'(\varepsilon)}{\mathbb{P}(\varepsilon)},$$

qui, pour des valeurs nulles de z_i ou des valeurs infinies de $\frac{1}{z_i}$ se réduiront, le premier à $\frac{mk}{k} - m_i$ le second à la constante finie $\frac{F'(\alpha)}{F(\alpha)}$. D'un antre côté, comme des valeurs infinies de z réduiront le rapport

$$\frac{\Gamma\left(\frac{d}{d}\right)}{\Gamma\left(\frac{d}{d}\right)}$$

a la constante finie $\frac{V(\alpha)}{V(\alpha)}$, et les expressions (96) ainsi que le produit

(93)
$$\frac{\Gamma\left(\frac{r}{2}\right)}{\Gamma\left(\frac{r}{2}\right)} \frac{F'(z)}{F'(z)}$$

de la fonction (95) et de la variable s'à zéro, on aura, en vertu de la

216

formule (64) de la page 23 du Iº Volume (1),

(29)
$$\mathcal{E}\left(\left(\frac{f'\left(\frac{x}{z}\right)F'(z)}{zf\left(\frac{x}{z}\right)F(z)}\right)\right) = o,$$

et, par suite, l'équation (24) donnera

(30)
$$\frac{1}{P}\frac{dP}{dx} - \frac{1}{Q}\frac{dQ}{dx} = 0.$$

Or cette dernière, multipliée par $\frac{\mathrm{P}}{\mathrm{Q}}dx$, devient

$$d\left(\frac{\mathbf{P}}{\mathbf{Q}}\right) = \mathbf{0};$$

puis, en l'intégrant à partir de x = 0, et observant que chacune des fonctions P, Q se réduit à l'unité pour une valeur nulle de x, on trouve

(32)
$$\frac{P}{Q} - 1 = 0, \quad P = Q$$

ou, ce qui revient au même,

(14)
$$\frac{f\left(\frac{x}{\lambda}\right)}{f(o)} \frac{f\left(\frac{x}{\mu}\right)}{f(o)} \frac{f\left(\frac{x}{\nu}\right)}{f(o)} \dots = \frac{F\left(\frac{x}{\alpha}\right)}{F(o)} \frac{F\left(\frac{x}{\beta}\right)}{F(o)} \frac{F\left(\frac{x}{\gamma}\right)}{F(o)} \dots$$

La formule (14) ainsi établie, dans le cas où les racines

$$\alpha$$
, β , γ , ...; λ , μ , ν , ...

sont toutes distinctes les unes des autres, subsistera évidemment quelque petites que soient les différences de ces mêmes racines, et par conséquent elle continuera de subsister dans le cas même ou plusieurs de ces racines deviendraient égales entre elles.

Si l'on désignait par & une valeur particulière de la variable x, on

(1) CEuvres de Cauchy, S. II, T. VI, p. 36.

tirerait de la formule (14), en posant & - \$,

$$(33) \qquad \begin{array}{c} f\left(\frac{5}{\lambda}\right) f\left(\frac{5}{p}\right) f\left(\frac{7}{\nu}\right) & F\left(\frac{5}{2}\right) F\left(\frac{5}{\beta}\right) F\left(\frac{5}{\gamma}\right) \\ f(\alpha) - f(\alpha) - f(\alpha) & F(\alpha) - F(\alpha) - F(\alpha) \end{array}$$

puis, en divisant la formule (14) par la formule (33), on (rouveratt

$$\frac{\Gamma\left(\frac{x}{\lambda}\right)\Gamma\left(\frac{x}{\mu}\right)\Gamma\left(\frac{x}{\lambda}\right)}{\Gamma\left(\frac{x}{\lambda}\right)\Gamma\left(\frac{x}{\mu}\right)\Gamma\left(\frac{x}{\lambda}\right)}\dots\frac{F\left(\frac{x}{\mu}\right)F\left(\frac{x}{\mu}\right)F\left(\frac{x}{\mu}\right)}{F\left(\frac{x}{\lambda}\right)F\left(\frac{x}{\lambda}\right)F\left(\frac{x}{\lambda}\right)}\dots$$

Concevons à présent que les fonctions f(z), F(z) cessent d'être entières. Mais admettons qu'elles restent finies et continues, ainsi que leurs dérivées des divers ordres pour toutes les valeurs finies de z. Supposons d'ailleurs : v que, pour chacune des deux équations

(35)
$$f(s) = 0.$$

$$\mathbf{F}(z) = 0,$$

les racines différentes de zéro soient inégales entre elles; 2º que, parmi les mêmes racines, celles qui offrent des modules inférieurs à une limite finie R soient en nombre fini, et représentées, pour l'équation (35), par

$$(\beta\gamma)$$
 $\beta, \gamma, \ldots,$

pour Péquation (36), par

$$\lambda_i = p_i - p_i$$
 ...

Si Pon prend

$$\frac{\Gamma'\left(\frac{x}{\lambda}\right)}{\lambda f\left(\frac{x}{\lambda}\right)} + \frac{\Gamma'\left(\frac{x}{\mu}\right)}{\mu \Gamma\left(\frac{x}{\mu}\right)} + \frac{\Gamma'\left(\frac{x}{\mu}\right)}{\nu \Gamma\left(\frac{x}{\mu}\right)} + \dots + \frac{\Gamma'\left(\frac{x}{\mu}\right)}{\nu + \frac{\Gamma'\left$$

la fonction $\varphi(x)$ restera évidemment finie et continue pour toutes les valeurs réelles ou imaginaires de x qui offriront des modules infé-

rieurs à R. En effet, parmi ces valeurs de x, celles que renferme la suite

(40)
$$\begin{cases} x = \beta \lambda, & x = \alpha \mu, & x = \alpha \nu, & \dots \\ x = \beta \lambda, & x = \beta \mu, & x = \beta \nu, & \dots, \\ x = \gamma \lambda, & x = \gamma \mu, & x = \gamma \nu, & \dots \end{cases}$$

seront les seules qui puissent rendre infinies quelques-unes des fractions comprises dans le second membre de la formule (39), en faisant évanouir leurs dénominateurs. D'ailleurs, pour chacune de ces valeurs, deux fractions deviendront infinies simultanément, mais leur différence restera finie. Ainsi, par exemple, pour $\alpha = \alpha \lambda$, les deux fractions

(41)
$$\frac{f'\left(\frac{x}{\lambda}\right)}{\lambda f\left(\frac{x}{\lambda}\right)}, \quad \frac{F'\left(\frac{x'}{\sigma}\right)}{\sigma F\left(\frac{x'}{\sigma}\right)}$$

deviendront infinies en même temps. Mais leur différence ou le rapport

$$\frac{\frac{1}{\lambda} f'\left(\frac{x}{\lambda}\right) F\left(\frac{x}{\sigma}\right) - \frac{1}{\sigma} F'\left(\frac{x}{\alpha}\right) f\left(\frac{x}{\lambda}\right)}{f\left(\frac{x}{\lambda}\right) F\left(\frac{x}{\sigma}\right)}$$

conservera une valeur finie, qui, en vertu d'un théorème connu de Calcul infinitésimal, sera la même que celle du rapport

$$\frac{\frac{1}{\lambda}f''\left(\frac{x}{\lambda}\right)F'\left(\frac{x}{\sigma}\right)-\frac{1}{\sigma}F''\left(\frac{x}{\alpha}\right)f'\left(\frac{x}{\lambda}\right)}{2f'\left(\frac{x}{\lambda}\right)F'\left(\frac{x}{\sigma}\right)},$$

et, par conséquent, égale à

(44)
$$\frac{1}{2} \left[\frac{1}{\lambda} \frac{f''(\alpha)}{f'(\alpha)} - \frac{1}{\alpha} \frac{F''(\lambda)}{F'(\lambda)} \right].$$

Cela posé, faisons

(45)
$$y = \psi(x) = e^{\int_{\xi}^{x} \varphi(v) dv},$$

 ξ désignant une valeur particulière de la variable x. La fonction $\psi(x)$, ainsi que $\varphi(x)$, restera finie et continue pour toutes les valeurs de x dont le module sera inférieur à l'unité; et l'on aura, pour $x = \xi$,

$$\phi(\mathfrak{I}) = \phi(\mathfrak{E}).$$

De plus, la formule (45) donnera généralement

(17)
$$\frac{dy}{dx} = \psi'(x) = \varphi(x) e^{\int_{\xi}^{x} \varphi(x) dx} = y \cdot \varphi(x)$$

ou, ce qui revient au même,

$$(38) \frac{dv}{dx} = \begin{bmatrix} \frac{\Gamma'\left(\frac{x}{\lambda}\right)}{\lambda} + \frac{\Gamma'\left(\frac{x}{\mu}\right)}{\nu} + \frac{\Gamma'\left(\frac{x}{\mu}\right)}{\nu} + \frac{\Gamma'\left(\frac{x}{\nu}\right)}{\nu} + \dots - \frac{\Gamma'\left(\frac{x}{\sigma}\right)}{\alpha} + \frac{\Gamma'\left(\frac{x}{\beta}\right)}{\sigma} - \frac{\Gamma'\left(\frac{x}{\beta}\right)}{\beta} - \frac{\Gamma'\left(\frac{x}{\gamma}\right)}{\nu} \end{bmatrix} y$$

Ainsi, la fonction de x, représentée par y ou $\psi(x)$, devra remplir la double condition de se réduire à l'unité pour $x=\xi$, et de vérifier, quel que soit x, l'équation différentielle linéaire (47) ou (48). Or, cette équation n'admettant pas d'intégrale singulière, la double condition dont il s'agit sera remplie tant que les modules de ξ et de x resteront inférieurs à R. Done, puisqu'on vérifie encore cette double condition en prenant

$$(40) \qquad r = \frac{f\left(\frac{x'}{\lambda}\right)}{f\left(\frac{\xi}{\lambda}\right)} \frac{f\left(\frac{x'}{\mu}\right)}{f\left(\frac{\xi}{\mu}\right)} \frac{f\left(\frac{x}{\lambda}\right)}{f\left(\frac{\xi}{\lambda}\right)} \cdots \frac{F\left(\frac{\xi}{\alpha}\right)}{F\left(\frac{x'}{\alpha}\right)} \frac{F\left(\frac{\xi}{\beta}\right)}{F\left(\frac{x'}{\beta}\right)} \frac{F\left(\frac{\xi}{\gamma}\right)}{F\left(\frac{x'}{\beta}\right)} \cdots,$$

les valeurs de y, fournies par les équations (45) et (49), seront nécessairement identiques, en sorte qu'on aura, pour toutes les valeurs de x et de ξ dont le module ne surpassera pas R,

$$(50) \qquad \frac{f\left(\frac{v}{\lambda}\right)}{f\left(\frac{\xi}{\lambda}\right)} \frac{f\left(\frac{v}{\mu}\right)}{f\left(\frac{\xi}{\mu}\right)} \frac{f\left(\frac{x}{\nu}\right)}{f\left(\frac{\xi}{\nu}\right)} \cdots \frac{F\left(\frac{\xi}{\sigma}\right)}{F\left(\frac{x}{\sigma}\right)} \frac{F\left(\frac{\xi}{\beta}\right)}{F\left(\frac{x}{\gamma}\right)} \cdots = e^{\int_{\xi}^{\xi} \varphi(x) dx} e^{\int_{\xi}^{\xi$$

220

ou, ce qui revient au même,

$$(5i) \quad \frac{f\left(\frac{x}{\lambda}\right)}{f\left(\frac{\xi}{\lambda}\right)} \frac{f\left(\frac{x}{\rho}\right)}{f\left(\frac{\xi}{\mu}\right)} \frac{f\left(\frac{x}{\gamma}\right)}{f\left(\frac{\xi}{\gamma}\right)} \cdots = \frac{F\left(\frac{x}{\sigma}\right)}{F\left(\frac{\xi}{\alpha}\right)} \frac{F\left(\frac{x}{\beta}\right)}{F\left(\frac{\xi}{\beta}\right)} \frac{F\left(\frac{x}{\gamma}\right)}{F\left(\frac{\xi}{\gamma}\right)} \cdots e^{\int_{\xi}^{x} \varphi(x) dx},$$

Si, dans la dernière formule, on pose $\xi = 0$, elle donnera

$$(52) \quad \frac{f\left(\frac{x}{\lambda}\right)}{f(o)} \frac{f\left(\frac{x}{\nu}\right)}{f(o)} \frac{f\left(\frac{x}{\nu}\right)}{f(o)} \cdots = \frac{F\left(\frac{x}{\sigma}\right)}{F(o)} \frac{F\left(\frac{x}{\beta}\right)}{F(o)} \frac{F\left(\frac{x}{\gamma}\right)}{F(o)} \cdots e^{\int_{0}^{x} \varphi(v) dv}.$$

Désignous maintenant par f(z) une fonction semblable à celle qui est renfermée sous le signe \mathcal{E} dans la formule (29), en sorte que l'on ait

(53)
$$f(z) = \frac{f'\left(\frac{x}{z}\right)F'(z)}{z f\left(\frac{x'}{z}\right)F(z)}.$$

Supposons, de plus, que la fonction (53) ou f(z) puisse être décomposée en deux parties, dont la première soit la somme de plusieurs termes réciproquement proportionnels à des puissances entières de z, et dont la seconde, multipliée par z, fournisse un produit qui s'évanouisse pour certaines valeurs infiniment petites de z. Si, en attribuant au module r de la variable z des valeurs infiniment grandes, on peut les choisir de manière que l'une des fonctions

(54)
$$zf(z) = \frac{\Gamma'\left(\frac{x}{z}\right)\Gamma'(z)}{f\left(\frac{x}{z}\right)\Gamma(z)},$$

(55)
$$z \frac{f(z) - f(-z)}{2} = \frac{1}{2} \left[\frac{f'\left(\frac{x}{z}\right) F'(z)}{f\left(\frac{x}{z}\right) F(z)} + \frac{f'\left(-\frac{x}{z}\right) F'(-z)}{f\left(-\frac{x}{z}\right) F(-z)} \right]$$

' devienne sensiblement égale à une expression déterminée f, quel que soit d'ailleurs le rapport $\frac{\pi}{r}$, ou du moins de manière que l'une des dif-

férences

(56)
$$\frac{f'\left(\frac{\partial}{\partial}\right)F'(z)}{f\left(\frac{\partial}{\partial}\right)F(z)} = \frac{\delta}{\delta},$$

$$\frac{1}{\beta} \left[\frac{f'\left(\frac{\partial}{\partial}\right)F'(z) - f'\left(-\frac{\partial}{\partial}\right)F'(-z)}{f\left(\frac{\partial}{\partial}\right)F(z) - f\left(-\frac{\partial}{\partial}\right)F(-z)}\right] = \delta$$

reste toujours finie ou infiniment petite, et ne cesse d'etre infiniment petite, en demeurant finie, que dans le voisinage de certaines valeurs particulières du rapport $\frac{3}{7}$; alors, en vertu du théorème énoncé à la page 274 du IIⁿ Volume (1), et des principes établis dans l'article précédent, on aura

(58)
$$\mathcal{E}\left(\left(f(z)\right)\right) = \mathcal{F}$$

ou, ce qui revient au même,

$$\mathcal{E}\left(\left(\frac{f'\left(\frac{r}{s}\right)F(s)}{sf\left(\frac{r}{s}\right)F(s)}\right)\right) = \delta_{s}$$

pourvu que l'on réduise le résidu intégral compris dans l'équation (58) ou (59) à sa valeur principale. Si d'ailleurs on attribue au nombre ci-dessus désigné par R une valeur infinie, les séries (37) et (38) renfermeront toutes les racines des équations (35), (36), ou du moins toutes celles qui ne se réduiront pas à zéro. Alors, en supposant ces memes racines rangées d'après l'ordre de grandeur de leurs modules, et désignant par

(60)
$$\sum_{i} \frac{\Gamma\left(\frac{x_{i}}{z}\right) \Gamma\left(z\right)}{\Gamma\left(\frac{x_{i}}{z}\right) \Gamma\left(z\right)} \frac{1}{\Gamma(z)}$$

le résidu partiel de f(z) relatif à $z=\alpha$, en sorte que \sum représente le

(4) Okuvev do Cauchy, S. II, T. VII. p. 3.0.

terme réciproquement proportionnel à z dans la fonction f(z), on trouvera

(61)
$$\left(\underbrace{\mathcal{E}\left(\left(\frac{f'\left(\frac{x}{z}\right)F'(z)}{z f\left(\frac{x}{z}\right)F(z)} \right) \right)}_{z f\left(\frac{x}{z}\right)} = X + \frac{f'\left(\frac{x}{z}\right)}{\lambda f\left(\frac{x}{z}\right)} + \frac{f'\left(\frac{x}{p}\right)}{p f\left(\frac{x}{p}\right)} + \frac{f'\left(\frac{x}{p}\right)}{v f\left(\frac{x}{p}\right)} + \dots - \frac{F'\left(\frac{x}{p}\right)}{\alpha F\left(\frac{x}{p}\right)} - \frac{F'\left(\frac{x}{p}\right)}{\beta F\left(\frac{x}{p}\right)} - \frac{F'\left(\frac{x}{p}\right)}{\gamma F\left(\frac{x}{p}\right)} - \dots \right)$$

ou, ce qui revient au même,

(62)
$$\mathcal{E}\left(\left(\frac{f\left(\frac{x}{z}\right)F'(z)}{zf\left(\frac{x}{z}\right)F(z)}\right)\right) = X + \varphi(x);$$

puis, en combinant l'équation (62) avec les formules (59) et (50), on en conclura

(63)
$$\varphi(x) = \hat{\pi} - X,$$

$$(64) \quad \frac{f\left(\frac{x}{\lambda}\right)}{f\left(\frac{\xi}{\lambda}\right)} \frac{f\left(\frac{x}{\nu}\right)}{f\left(\frac{\xi}{\mu}\right)} \frac{f\left(\frac{x}{\nu}\right)}{f\left(\frac{\xi}{\nu}\right)} \cdots \frac{F\left(\frac{\xi}{\alpha}\right)}{F\left(\frac{x}{\alpha}\right)} \frac{F\left(\frac{\xi}{\beta}\right)}{F\left(\frac{x}{\gamma}\right)} \frac{F\left(\frac{\xi}{\gamma}\right)}{F\left(\frac{x}{\gamma}\right)} \cdots - e^{\int_{\xi}^{x} (\tilde{\mathcal{A}} - x) dx}}{e^{\int_{\xi}^{x} (\tilde{\mathcal{A}} - x) dx}}.$$

Done, si, dans le produit

(65)
$$\frac{f\left(\frac{x}{\lambda}\right)}{f\left(\frac{\xi}{\gamma}\right)} \frac{f\left(\frac{x}{\mu}\right)}{f\left(\frac{\xi}{\mu}\right)} \frac{f\left(\frac{x}{\gamma}\right)}{f\left(\frac{\xi}{\gamma}\right)} \cdots \frac{F\left(\frac{\xi}{\sigma}\right)}{F\left(\frac{x}{\sigma}\right)} \frac{F\left(\frac{\xi}{\beta}\right)}{F\left(\frac{x}{\gamma}\right)} \frac{F\left(\frac{\xi}{\gamma}\right)}{F\left(\frac{x}{\gamma}\right)} \cdots,$$

on fait entrer toutes les fractions de la forme

$$\frac{f\left(\frac{x}{\lambda}\right)}{f\left(\frac{\xi}{\lambda}\right)} \quad \text{ou} \quad \frac{F\left(\frac{\xi}{\alpha}\right)}{F\left(\frac{x}{\alpha}\right)},$$

et correspondantes à celles des racines $\alpha, \beta, \gamma, \ldots, \lambda, \mu, \nu, \ldots$ qui

offrent des modules inférieurs au nombre R, il suffira d'attribuer à R des valeurs de plus en plus grandes, pour que le produit (65) con verge vers une limite finie équivalente à l'expression

$$\int_{0}^{\infty} (\tilde{x} - x) dx$$
(106.)

et l'on obtiendra la formule (64), en considérant le premier membre de cette formule comme composé d'une infinité de facteurs. On aura par suite

$$(6) = \frac{\mathsf{I}\left(\frac{\beta}{\lambda}\right) \, \mathsf{I}\left(\frac{\beta}{\mu}\right) \, \mathsf{I}\left(\frac{\beta}{\nu}\right)}{\mathsf{I}\left(\frac{\beta}{\lambda}\right) \, \mathsf{I}\left(\frac{\beta}{\nu}\right) \, \mathsf{I}\left(\frac{\beta}{\nu}\right)} \cdots \frac{\mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right)}{\mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right)} \cdots \frac{f^{(\beta)} \, (\beta + \alpha) \, d\beta}{\mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right)} \cdots \frac{f^{(\beta)} \, (\beta + \alpha) \, d\beta}{\mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right)} \cdots \frac{f^{(\beta)} \, (\beta + \alpha) \, d\beta}{\mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right)} \cdots \frac{f^{(\beta)} \, (\beta + \alpha) \, d\beta}{\mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right)} \cdots \frac{f^{(\beta)} \, (\beta + \alpha) \, d\beta}{\mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right)} \cdots \frac{f^{(\beta)} \, (\beta + \alpha) \, d\beta}{\mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right)} \cdots \frac{f^{(\beta)} \, (\beta + \alpha) \, d\beta}{\mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right)} \cdots \frac{f^{(\beta)} \, (\beta + \alpha) \, d\beta}{\mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right)} \cdots \frac{f^{(\beta)} \, (\beta + \alpha) \, d\beta}{\mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right)} \cdots \frac{f^{(\beta)} \, (\beta + \alpha) \, d\beta}{\mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right)} \cdots \frac{f^{(\beta)} \, (\beta + \alpha) \, d\beta}{\mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right)} \cdots \frac{f^{(\beta)} \, (\beta + \alpha) \, d\beta}{\mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right)} \cdots \frac{f^{(\beta)} \, (\beta + \alpha) \, d\beta}{\mathsf{F}\left(\frac{\beta}{\lambda}\right) \, \mathsf{F}\left(\frac{\beta}{\lambda}\right)} \cdots \frac{f^{(\beta)} \, (\beta + \alpha) \, d\beta}{\mathsf{F}\left(\frac{\beta}{\lambda}\right)} \cdots \frac{f^{(\beta)} \, (\beta + \alpha) \, d\beta}{\mathsf{F}\left(\frac{\beta}$$

Ansqu'ici nous avons suppose que, pour chacune des équations (35), (36), les racines différentes de zéro étaient inegales entre elles. Mais la démonstration que nous avons donnée de la formule (64) ou (67) peut être facilement étendue au cas meme où les équations dont il s'agit offriraient des racines égales qui ne seraient pas nulles. Supposons, par exemple, que n racines de l'équation (36) deviennent égales à \(\lambda\), en sorte qu'on ait, non seulement

$$(08) F(\lambda) = 0,$$

mats encore

(fig)
$$F'(\lambda) = 0$$
, $F'(\lambda) = 0$, \cdots , $F^{(n-1)}(\lambda) = 0$.

La somme des fractions correspondantes à ces racines dans le second membre de la formule (39) sera

$$\frac{\Gamma\left(\frac{\lambda}{\lambda}\right)}{\lambda \left(\frac{\lambda^{\nu}}{\lambda}\right)},$$

et la somme des termes qui, dans ce second membre, deviendront

infinis pour $x = \alpha \lambda$ se réduira simplement à

(71)
$$n \frac{f'\left(\frac{x}{\lambda}\right)}{\lambda f\left(\frac{x}{\lambda}\right)} - \frac{f'\left(\frac{x}{\alpha}\right)}{\alpha F\left(\frac{x}{\alpha}\right)}.$$

D'ailleurs, si l'on pose

$$(72) x = \sigma \lambda + \varepsilon,$$

ε désignant une variable infiniment petite, et si l'on développe les deux expressions

(73)
$$n \frac{f'\left(\frac{x}{\lambda}\right)}{\lambda f\left(\frac{x}{\lambda}\right)} = n \frac{f'\left(\alpha + \frac{\varepsilon}{\lambda}\right)}{\lambda f\left(\alpha + \frac{\varepsilon}{\lambda}\right)}, \qquad \frac{F'\left(\frac{x}{\alpha}\right)}{\alpha F\left(\frac{x}{\alpha}\right)} = \frac{F'\left(\lambda + \frac{\varepsilon}{\alpha}\right)}{\alpha F\left(\lambda + \frac{\varepsilon}{\alpha}\right)},$$

suivant les puissances ascendantes de ε, en ayant égard aux équations (68), (69), il suffira de négliger dans les développements obtenus les termes infiniment petits pour réduire ces développements aux deux binômes

$$(7.1) \qquad \frac{n}{\varepsilon} + \frac{n}{1.2} \frac{\Gamma'(\sigma)}{\lambda \Gamma'(\sigma)}, \qquad \frac{n}{\varepsilon} + \frac{n}{n(n+1)} \frac{\Gamma^{(n+1)}(\lambda)}{\sigma \Gamma^{(n)}(\lambda)}.$$

Done, pour $\varepsilon = 0$, ou, ce qui revient au même, pour $x = \alpha \lambda$, l'expression (71) sera équivalente à la différence des binômes (74), c'està-dire à

(75)
$$n\left[\frac{1}{1\cdot 2}\frac{f'(\sigma)}{\lambda f'(\sigma)} - \frac{1}{n(n+1)}\frac{F^{(n+1)}(\lambda)}{\sigma F^{(n)}(\lambda)}\right].$$

Il est aisé d'en conclure que la fonction $\varphi(x)$, déterminée par la formule (39), restera encore finie et continue pour toutes les valeurs réelles ou imaginaires de x qui offriront des modules inférieurs à R. D'un autre côté, il suit des principes établis à la page 340 du \mathbb{I}^{er} Volume (†)

⁽¹⁾ Œucres de Cauchy, S. H. T. VI, p. 409.

que, dans le cas où n racines de l'équation (36) deviennent égales à λ , le résidu partiel de la fonction

(76)
$$\frac{f'\left(\frac{x}{z}\right)F'(z)}{z\left(\frac{x'}{z}\right)F(z)},$$

correspondant à la valeur λ de ε , est précisément l'expression (70). Donc l'équation (61), ou plutôt celle qui la remplacera, se réduira encore à l'équation (62), et, en la combinant avec les formules (50), (59), (62), on retrouvera les équations (63), (64), (67). Seulement, dans le premier membre de l'équation (64) ou (67), n fractions égales correspondront aux racines dont λ désignera la valeur commune, et le produit de ces n fractions sera

(77)
$$\left[\frac{\Gamma\left(\frac{x}{\lambda}\right)}{\Gamma\left(\frac{\xi}{\lambda}\right)} \right]^{n}.$$

En résumé, l'on peut énoncer la proposition suivante :

Théorème I. — Soient f(z), F(z) deux fonctions de z qui restent finies et continues, ainsi que leurs dérivées des divers ordres, pour toutes les valeurs finies de z. Supposons d'ailleurs que l'on ait

$$f(z) = 0,$$

$$(36) F(z) = 0,$$

et que celles de ces racines qui différent de zéro, étant rangées d'après l'ordre de grandeur de leurs modules, soient représentées par

$$(37)$$
 α , β , γ , ...

pour l'équation (35), par

(38)
$$\lambda, \mu, \nu, \ldots$$

pour l'équation (36). Admettons encore que, parmi les mêmes rucines, celles dont le module reste inférieur à une limite finie ${\bf R}$ soient en nombre

fini. Enfin, désignons par x une nouvelle variable distincte de z. Si, en attribuant au module r de la variable z des valeurs infiniment grandes, on peut les choisir de manière que l'une des expressions

(5'1)
$$\frac{f'\left(\frac{x}{z}\right)F'(z)}{f\left(\frac{x}{z}\right)F(z)},$$

(55)
$$\frac{1}{2} \left[\frac{f'\left(\frac{x}{z}\right)F'(z)}{f\left(\frac{x}{z}\right)F(z)} + \frac{f'\left(-\frac{x}{z}\right)F'(-z)}{f\left(-\frac{x}{z}\right)F(-z)} \right]$$

devienne sensiblement égale à une expression déterminée \vec{s} , quel que soit le rapport $\frac{z}{r}$, ou du moins de manière que l'une des différences

(56)
$$\frac{f'\left(\frac{x}{z}\right)F'(z)}{f\left(\frac{x'}{z}\right)F(z)} - \vec{s},$$

(57)
$$\frac{1}{2} \left[\frac{f'\left(\frac{x}{z}\right) F'(z)}{f\left(\frac{x}{z}\right) F(z)} + \frac{f'\left(-\frac{x}{z}\right) F'(-z)}{f\left(-\frac{x}{z}\right) F(-z)} \right] - \mathcal{F}$$

reste toujours finie ou infiniment petite, et ne cesse d'être infiniment petite en demeurant finie que dans le voisinage de certaines valeurs particulières du rapport $\frac{z}{r}$; si, de plus, lu fonction

(53)
$$f(z) = \frac{f'\left(\frac{x}{z}\right)F'(z)}{zf\left(\frac{x}{z}\right)F(z)}$$

peut se décomposer en deux parties dont l'une soit la somme de plusieurs termes réciproquement proportionnels à des puissances entières de z, et dont l'autre s'évanouisse pour certaines valeurs infiniment petites de z; alors, en désignant par X le résidu de f(z) relatif à z=0, en sorte

qu'on ait

(60)
$$= \sum_{i} \frac{f'\left(\frac{d}{d}\right) F'(z)}{f\left(\frac{d}{d}\right) F(z)} \frac{1}{f(z,z)},$$

et par '; une valeur particulière de x, on trouvera

$$f(\theta_{2}^{n}) = \frac{f\left(\frac{r}{r}\right)^{n}f\left(\frac{r}{p}\right)^{n}f\left(\frac{r}{p}\right)^{n}}{f\left(\frac{r}{p}\right)^{n}f\left(\frac{r}{p}\right)^{n}f\left(\frac{r}{p}\right)^{n}} \cdots \frac{F\left(\frac{r}{p}\right)^{n}F\left(\frac{r}{p}\right)^{n}F\left(\frac{r}{p}\right)^{n}}{F\left(\frac{r}{p}\right)^{n}F\left(\frac{r}{p}\right)^{n}F\left(\frac{r}{p}\right)^{n}} \cdots \frac{F\left(\frac{r}{p}\right)^{n}F\left(\frac{r}{p}\right)^{n}F\left(\frac{r}{p}\right)^{n}F\left(\frac{r}{p}\right)^{n}}{F\left(\frac{r}{p}\right)^{n}F\left(\frac{r}{p}\right)^{n}F\left(\frac{r}{p}\right)^{n}F\left(\frac{r}{p}\right)^{n}} \cdots \frac{F\left(\frac{r}{p}\right)^{n}F\left($$

poureu que l'on considère chacun des produits que renferme l'équation (67) comme composé d'une infinité de facteurs.

Corollaire I.—Si, dans la formule (67), on prend $\xi=\alpha_s$ elle donnera simplement

$$\frac{1\binom{2}{k}}{1(0)} \cdot \frac{1\binom{2}{k}}{1(0)} \cdot \frac{1\binom{2}{k}}{1(0)} \cdot \cdots \cdot \frac{F\binom{2}{k}}{F\binom{2}{k}} \cdot F\binom{2}{k} \cdot F\binom{2}{k} \cdot \cdots \cdot F\binom{2}{k} \cdot$$

- Corollaire II. — Si x et X s'évanouissent, les formules (67) et (78) deviendront respectivement

$$\frac{\mathbf{f}\left(\frac{x}{\lambda}\right)\mathbf{f}\left(\frac{x}{\mu}\right)\mathbf{f}\left(\frac{x}{\lambda}\right)}{\mathbf{f}\left(\frac{x}{\mu}\right)\mathbf{f}\left(\frac{x}{\lambda}\right)}\cdots - \frac{\mathbf{F}\left(\frac{x}{\lambda}\right)\mathbf{F}\left(\frac{x}{\lambda}\right)\mathbf{F}\left(\frac{x}{\lambda}\right)}{\mathbf{F}\left(\frac{x}{\lambda}\right)\mathbf{F}\left(\frac{x}{\lambda}\right)}\cdots$$

el

$$(8\alpha) = \frac{f\left(\frac{x}{\lambda}\right) \cdot f\left(\frac{x}{\mu}\right) \cdot f\left(\frac{x}{\nu}\right)}{f(\alpha) - f(\alpha)} \cdot \dots \cdot \frac{F\left(\frac{x}{\lambda}\right) \cdot F\left(\frac{x}{\beta}\right) \cdot F\left(\frac{x}{\gamma}\right)}{F(\alpha) - F(\alpha)} \cdot \dots$$

Si, de plus, f(o) et f(o) se réduisent à l'unité, on aura simplement

(8t)
$$\mathbf{I}\left(\frac{r}{\lambda}\right)\mathbf{F}\left(\frac{x}{\mu}\right)\mathbf{f}\left(\frac{x}{\mu}\right)\cdots \mathbf{F}\left(\frac{x}{\lambda}\right)\mathbf{F}\left(\frac{r}{\lambda}\right)\mathbf{F}\left(\frac{x}{\mu}\right)\cdots$$

Observons, d'ailleurs, que X devra être censé rédnit à zéro, toutes les

fois que l'expression (54) s'évanouira pour certaines valeurs infiniment petites de la variable z.

L'un des produits compris dans les deux membres de la formule (67) cesse de renfermer une infinité de facteurs, dès que l'une des fonctions f(z), F(z) devient entière. Supposons, pour fixer les idées, que la fonction f(z) soit, non seulement entière, mais du premier degré et de la forme

(82)
$$f(z) = t - z.$$

Alors les racines α , β , γ , ... se réduiront à une seule, savoir $\alpha = 1$. De plus, les fonctions (54), (55) deviendront respectivement

(83)
$$-\frac{1}{1-\frac{x}{z}}\frac{F'(z)}{F(z)},$$

$$-\frac{1}{2\left(1-\frac{x^2}{z^2}\right)}\left[\left(1+\frac{x}{z}\right)\frac{F'(z)}{F(z)}+\left(1-\frac{x}{z}\right)\frac{F'(-z)}{F(-z)}\right];$$

et si elles conservent des valeurs finies, z étant infinie, ces valeurs seront les mêmes que celles des fonctions suivantes :

$$-\frac{\mathrm{F}'(z)}{\mathrm{F}(z)},$$

(86)
$$-\frac{1}{2} \left[\left(1 + \frac{x}{z} \right) \frac{F'(z)}{F(z)} + \left(1 - \frac{x}{z} \right) \frac{F'(-z)}{F(-z)} \right].$$

Donc l'expression, représentée par 3 dans le théorème 1, sera de la forme

$$\hat{\mathcal{F}} = -\hat{\mathcal{F}}_{\sigma}$$

θU

 \vec{x}_o désignant la limite vers laquelle convergera la fonction

(89)
$$\frac{F'(z)}{F(z)}$$

011

(90)
$$\frac{1}{2} \left[\frac{F'(z)}{F(z)} + \frac{F'(-z)}{F(-z)} \right],$$

tandis que a deviendra infinie, et & désignant la limite de la fonction

(91)
$$\frac{1}{2z} \left[\frac{\mathbf{F}'(z)}{\mathbf{F}(z)} - \frac{\mathbf{F}'(-z)}{\mathbf{F}(-z)} \right].$$

Enfin, dans la formule (60), la fonction sous le signe & sera

(92)
$$\frac{\mathbf{F}'(z)}{(x-z)\mathbf{F}(z)},$$

et ne deviendra infinie, pour des valeurs infiniment petites de z, que dans le cas où la fonction F(z) s'évanouira pour z=o. Mais, dans ce dernier cas, si l'on désigne par n le nombre des racines de l'équation (36) qui se réduiront à zéro, on aura, pour des valeurs infiniment petites de z [voir les Leçons sur le Calcul infinitésimal, p. 55 (1)],

$$\frac{z \, F'(z)}{F(z)} = n.$$

Done la formule (60) donnera

(91)
$$X = \mathcal{L} \frac{z F'(z)}{(x-z) F(z)} \frac{1}{((z))} = \frac{n}{x},$$

et l'on aura

$$X - \hat{\mathcal{J}} = \frac{n}{x} + \hat{\mathcal{J}}_0$$

θU

(96)
$$\mathbf{X} - \mathbf{f} = \frac{n}{v} + \mathbf{f}_0 + v \, \mathbf{f}_1;$$

puis on en conclura

(97)
$$e^{\int_{\xi}^{t^{n}} (X - \tilde{\mathcal{T}}) du} = \left(\frac{x}{\xi}\right)^{n} e^{(v - \tilde{\xi})\tilde{\mathcal{T}}_{\xi}}$$

(1) OEuvres de Cauchy, S. II, T. IV.

$$(98) \qquad e^{i\int_{\xi}^{\epsilon} (X-i\tilde{f}) dx} = \left(\frac{ir}{\tilde{\xi}}\right)^{n} e^{(\tau-\xi)\left(\tilde{f}_{0}^{\epsilon} + \frac{\tau+\xi}{2}i\tilde{f}_{1}\right)}.$$

Cela posé, on obtiendra évidenment, à la place du théorème 1, l'une des propositions que je vais énoncer.

Theoreme II. — Soit F(z) une fonction de z qui reste finie et continue, ainsi que ses dérwées des divers ordres, pour toutes les valeurs finies de z. Supposons d'ailleurs que l'on ait résolu l'équation

$$(36) F(z) = 0,$$

et que ses racines, rangées d'après l'ordre de grandeur de leurs modules, soient représentées par

$$\lambda, \mu, \nu, \ldots$$

Soit enfin x une nouvelle variable distincte de z. Si, en attribuant au module r de la variable z des valeurs infiniment grandes, on peut les choisir de manière que l'expression

$$\frac{F'(z)}{F(z)}$$

devienne sensiblement égale à une constante déterminée \mathcal{I}_0 , quel que soit le rapport $\frac{z}{r}$, ou du moins de manière que la différence

$$\frac{\mathbf{F}'(z)}{\mathbf{F}(z)} - \hat{\mathbf{f}}_0$$

reste toujours finie ou infiniment petite, et ne cesse d'être infiniment petite, en demeurant finie, que dans le voisinage de certaines valeurs particulières du rapport $\frac{z}{i}$; alors, en désignant par n le nombre des racines de l'équation (36) qui se réduiront à zéro, on trouvera

(100)
$$\frac{\mathbf{F}(x)}{\mathbf{F}(\xi)} = \frac{1 - \frac{x}{\lambda}}{1 - \frac{\xi}{\lambda}} \frac{1 - \frac{x}{\mu}}{1 - \frac{\xi}{\nu}} \frac{1 - \frac{x}{\nu}}{1 - \frac{\xi}{\nu}} \cdots \left(\frac{x}{\xi}\right)^n e^{(x - \xi) \cdot \hat{F}_{0}}.$$

•

Corollaire 1. — Si, après avoir multiplié par $F(\xi)$ les deux membres de la formule (100), on suppose ξ infiniment petit, on aura sensiblement, dans le second membre,

(101)
$$\frac{\dot{\mathbf{F}}(\xi)}{\xi^n} = \frac{\mathbf{F}^{(n)}(\mathbf{o})}{\mathbf{F}^{(n)}(\mathbf{o})}, \quad \mathbf{f}^{(n)}(\mathbf{o}) = \mathbf{F}^{(n)}(\mathbf{o})$$

Par suite, en prenant $\xi = 0$, on tirera de la formule (100)

(102)
$$\mathbf{F}(x) = x^n \left(1 - \frac{x}{\lambda} \right) \left(1 - \frac{x}{\mu} \right) \left(1 - \frac{x}{\nu} \right) \cdots e^{x \hat{\mathbf{f}}_0} \frac{\mathbf{F}^{(n)}(\mathbf{0})}{1, 2, 3 \dots n}.$$

Si n se réduit à zéro ou à l'unité, l'équation (102) donnera simplement

(103)
$$\mathbf{F}(x) = \left(1 - \frac{x}{\lambda}\right) \left(1 - \frac{x}{\mu}\right) \left(1 - \frac{x}{\nu}\right) \cdots e^{x\tilde{q}_{0}} \mathbf{F}(0)$$

ou

(104)
$$F(x) = x \left(1 - \frac{x}{\lambda}\right) \left(1 - \frac{x}{y}\right) \left(1 - \frac{x^2}{y}\right) \cdots e^{x\sqrt{y}} F'(y).$$

Corollaire 11. — Si \hat{s}_0 s'évanouit, les formules (100), (102), (103) et (104) donneront respectivement.

(105)
$$\frac{F(x)}{F(\xi)} = \left(\frac{x}{\xi}\right)^n \frac{\lambda - x}{\lambda - \xi} \frac{y - x}{y - \zeta} \frac{y - x}{y - \xi} \cdots,$$

(106)
$$F(x) = x^n \left(1 - \frac{x}{\lambda}\right) \left(1 - \frac{x}{\mu}\right) \left(1 - \frac{x}{\nu}\right) \cdots \frac{F(n)(\alpha)}{1 \cdot 2 \cdot 3 \cdot \dots n},$$

(107)
$$\mathbf{F}(x) = \left(1 - \frac{x}{\lambda}\right) \left(1 - \frac{x}{\nu}\right) \left(1 - \frac{x}{\nu}\right) \cdots \mathbf{F}(0),$$

(108)
$$\mathbf{F}(x) = x \left(\mathbf{I} - \frac{x}{\lambda} \right) \left(\mathbf{I} - \frac{x}{\mu} \right) \left(\mathbf{I} - \frac{x}{\nu} \right) \cdots \mathbf{F}'(\mathbf{0}).$$

THÉORÈME III. — Les mêmes choses étant posées que dans le théorème II, si l'on peut attribuer au module r de la variable z des valeurs infiniment grandes, choisies de manière que les expressions

(90)
$$\frac{1}{2} \left[\frac{F'(z)}{F(z)} + \frac{F'(-z)}{F(-z)} \right],$$

(9t)
$$\frac{1}{2z} \left[\frac{F'(z)}{F(z)} - \frac{F'(-z)}{F(-z)} \right]$$

deviennent sensiblement égales à des constantes déterminées $\tilde{\pi}_{\theta}$, $\tilde{\pi}_{t}$, quel que soit le rapport $\frac{\tilde{\pi}_{t}}{r}$, ou du moins de manière que les différences

(100)
$$\frac{1}{2} \left\lceil \frac{F'(z)}{F(z)} + \frac{F'(-z)}{F(-z)} \right\rceil - \tilde{s}_0,$$

(110)
$$\frac{1}{2z} \left[\frac{\mathrm{F}'(z)}{\mathrm{F}(z)} - \frac{\mathrm{F}'(-z)}{\mathrm{F}(-z)} \right] - \tilde{\mathfrak{f}}_1$$

restent toujours finies ou infiniment petites, et ne cessent d'être infiniment petites, en demeurant finies, que dans le voisinage de certaines valeurs particulières du rapport $\frac{z}{r}$; alors, en désignant par n le nombre des racines de l'équation (36) qui se réduiront à zèro, on trouvera

$$(111) \qquad \frac{F(x)}{F(\xi)} = \frac{1 - \frac{x}{\lambda}}{1 - \frac{\xi}{\lambda}} \frac{1 - \frac{x}{\mu}}{1 - \frac{\xi}{\mu}} \cdots \left(\frac{x}{\xi}\right)^{u} e^{(x - \xi)\left(\sqrt[3]{\xi}_{0} + \frac{x + \xi}{\lambda}\sqrt{\xi}_{1}\right)}.$$

Corollaire I. — Si, après avoir multiplié par $F(\xi)$ les deux membres de la formule (111), on attribue à ξ une valeur infiniment petite, on trouvera

$$(112) \quad \mathbf{F}(x) = \frac{\mathbf{F}^{(n)}(\mathbf{0})}{1 \cdot 2 \cdot 3 \cdot \dots \cdot n} x^n \left(1 - \frac{x}{\lambda}\right) \left(1 - \frac{x}{\mu}\right) \left(1 - \frac{x}{\nu}\right) \cdots e^{\lambda \cdot \tilde{\mathcal{F}}_0 + \frac{1}{2} \cdot \nu \cdot \tilde{\mathcal{F}}_0},$$

Lorsque n se réduit à zéro ou à l'unité, c'est-à-dire lorsque l'équation (36) n'admet pas de racines nulles, ou en admet une soulement, on tire de l'équation (112)

(113)
$$\mathbf{F}(x) = \left(\mathbf{I} - \frac{x}{\lambda}\right) \left(\mathbf{I} - \frac{x}{\mu}\right) \left(\mathbf{I} - \frac{x}{\nu}\right) \cdots e^{x \cdot \vec{\mathbf{f}}_{0} + \frac{1}{4}\lambda^{2} \cdot \vec{\mathbf{f}}_{1}} \mathbf{F}(\mathbf{0})$$

ou

(114)
$$F(x) = x \left(1 - \frac{x}{\lambda} \right) \left(1 - \frac{x}{\nu} \right) \left(1 - \frac{x}{\nu} \right) \cdots e^{x \int_{0}^{x} d^{2}x d^{2}y} F'(0).$$

Corollaire II. — Si \mathcal{I}_0 et \mathcal{I}_1 s'évanouissent, les équations (111), (112), (113), (114) se réduiront aux formules (105), (106), (107), (108).

Appliquons maintenant les diverses formules ci-dessus établies à quelques exemples.

Exemple 1. - Supposons d'abord

$$(115) F(z) = \sin z.$$

Alors l'équation (36), ou

$$\sin z = 0,$$

offrira une scule racine nulle et une infinité de racines réelles, les unes positives, les autres négatives, savoir

(117)
$$\begin{cases} z = \pi, & z = 2\pi, & s = 3\pi, & \dots, \\ z = -\pi, & z = -2\pi, & z = -3\pi, & \dots; \end{cases}$$

mais elle n'admettra point de racines imaginaires [voir le le Volume, p. 297 (')]. De plus, l'expression (90) s'évanouira, et l'expression (91), réduite à

$$\frac{\cos z}{z \sin z}$$

deviendra infiniment petite, si l'on attribue au module r de la variable z des valeurs de la forme

$$(119) r = \frac{(2n+1)\pi}{2},$$

n désignant un nombre entier infiniment grand. Cela posé, le théorème III sera évidemment applicable à la fonction $F(z) = \sin z$; et la formule (114), réduite à l'équation (108), attendu que les constantes f_0 , f_4 s'évanouiront, donnera

$$(120) \quad \sin x = x \left(1 - \frac{x}{\pi}\right) \left(1 + \frac{x}{\pi}\right) \left(1 - \frac{x}{2\pi}\right) \left(1 + \frac{x}{2\pi}\right) \left(1 - \frac{x}{3\pi}\right) \left(1 + \frac{x}{3\pi}\right) \cdots$$

ou, ce qui revient au mème,

(121)
$$\sin x = x \left(1 - \frac{x^2}{\pi^2}\right) \left(1 - \frac{x^2}{4\pi^2}\right) \left(1 - \frac{x^2}{9\pi^2}\right) \cdots$$

(1) OEuvres de Cauchy, S. II, T. VI, p. 354. OEuvres de C. - S. II, t. IX.

Il est bon d'observer que l'on pourrait encore déduire la formule (120) ou (121) du théorème II et de l'équation (107), en prenant $F(z) = \frac{\sin z}{z}$.

Exemple II. - Supposons en second lieu

$$(122) F(z) = \cos z.$$

Alors l'équation (36), ou

$$\cos z = 0,$$

admettra une infinité de racines toutes réelles et différentes de zéro, les unes positives, les autres négatives, savoir

(124)
$$\begin{cases} s = \frac{\pi}{2}, & s = \frac{3\pi}{2}, & s = \frac{5\pi}{2}, & \cdots, \\ s = -\frac{\pi}{2}, & s = -\frac{3\pi}{2}, & s = -\frac{5\pi}{2}, & \cdots \end{cases}$$

De plus, l'expression (90) s'évanouira, et l'expression (91), réduite à

$$-\frac{\sin z}{z\cos z},$$

deviendra infiniment petite, si l'on attribue au module r de la variable z des valeurs de la forme

$$(126) r = n\pi,$$

n désignant un nombre entier infiniment grand. Cela posé, de théorème III sera évidemment applicable à la fonction $F(z) = \cos z$; et la formule (113), réduite à l'équation (107), attendu que les constantes $\hat{x_0}$, $\hat{x_i}$ s'évanouiront, donnera

$$(127) \quad \cos x = \left(1 - \frac{2x}{\pi}\right) \left(1 + \frac{2x}{\pi}\right) \left(1 - \frac{2x}{3\pi}\right) \left(1 + \frac{2x}{3\pi}\right) \left(1 - \frac{2x}{5\pi}\right) \left(1 + \frac{2x}{5\pi}\right) \dots$$

ou, ce qui revient au même,

(128)
$$\cos x = \left(1 - \frac{4x^2}{\pi^2}\right) \left(1 - \frac{4x^2}{9\pi^2}\right) \left(1 - \frac{4x^2}{25\pi^2}\right) \dots$$

On peut, au reste, déduire la formule (127) ou (128) de la formule (120) ou (121), en remplaçant x par $\frac{\pi}{2} - x$.

Exemple III. - Soit

(129)
$$F(z) = \sin z - \sin a,$$

a désignant une constante arbitrairement choisie. L'équation (36), ou

(130)
$$\sin z = \sin a,$$

admettra une infinité de racines réelles, savoir

(131)
$$\begin{cases} z = a, & z = -a + \pi, & z = a + 2\pi, & z = -a + 3\pi, \dots, \\ z = -a - \pi, & z = a - 2\pi, & z = -a - 3\pi, \dots. \end{cases}$$

De plus, si l'on attribue au module r de la variable z des valeurs infiniment grandes, mais sensiblement distinctes de celles qui correspondent aux racines dont il s'agit, les expressions (90), (91), ou

(139)
$$\frac{\sin a \cos z}{(\sin z - \sin a)(\sin z + \sin a)},$$

(133)
$$\frac{\sin z \cos z}{z(\sin z - \sin a)(\sin z - \sin a)}$$

resteront toujours finies ou infiniment petites, et la première ne cessera d'être infiniment petite, en demeurant finie, que dans le cas où le coefficient de $\sqrt{-\tau}$ dans z sera sensiblement nul, et le rapport $\frac{z}{r}$ sensiblement égal à $\pm \tau$. Cela posé, le théorème III sera évidemment applicable à la fonction $F(z) = \sin z - \sin a$; et la formule (113), réduite à l'équation (107), attendu que les constantes \hat{x}_0 , \hat{x}_t s'évanouiront, donnera

$$(134) \quad 1 - \frac{\sin x}{\sin a} - \left(1 - \frac{x}{a}\right)\left(1 + \frac{x}{\pi + a}\right)\left(1 - \frac{x}{\pi - a}\right)\left(1 - \frac{x}{2\pi + a}\right)\left(1 + \frac{x}{2\pi - a}\right)\left(1 + \frac{x}{3\pi + a}\right)\left(1 - \frac{x}{3\pi - a}\right)\cdots$$

ou, ce qui revient au même,

$$(135) \frac{\sin a - \sin x}{\sin a} = \frac{a - x}{a} \frac{\pi^2 - (x + a)^2}{\pi^2 - a^2} \frac{4\pi^2 - (x - a)^2}{4\pi^2 - a^2} \frac{9\pi^2 - (x + a)^2}{9\pi^2 - a^2} \dots$$

Comme on aura d'ailleurs, en vertu de la formule (121),

(136)
$$\sin a = a \frac{\pi^2 - a^2}{\pi^2} \frac{4\pi^2 - a^2}{4\pi^2} \frac{9\pi^2 - a^2}{9\pi^2} \cdots,$$

on tirera des équations (135) et (136), multipliées l'une par l'autre,

(137)
$$\frac{\sin x - \sin a}{x - a} = \frac{\pi^2 - (x + a)^2}{\pi^2} \frac{4\pi^2 - (x - a)^2}{4\pi^2} \frac{9\pi^2 - (x + a)^2}{9\pi^2} \frac{25\pi^2 - (x - a)^2}{25\pi^2} \dots$$

On pourrait, au reste, déduire la formule (137) des équations (121) et (127) réunies à la suivante :

(138)
$$\sin x - \sin a = 2 \sin \frac{x-a}{2} \cos \frac{x+a}{2}.$$

Exemple IV. - Soit encore

(13g)
$$F(z) = \cos z - \cos a.$$

L'équation (36), ou

$$\cos z = \cos a,$$

admettra une infinité de racines, savoir

(141)
$$\begin{vmatrix} z = a, & z = a + 2\pi, & z = a + 4\pi, & z = a + 6\pi, & \dots, \\ z = a - 2\pi, & z = a - 4\pi, & z = a - 6\pi, & \dots, \\ z = -a, & z = -a + 2\pi, & z = -a + 4\pi, & z = -a + 6\pi, & \dots, \\ z = -a - 2\pi, & z = -a - 4\pi, & z = -a - 6\pi, & \dots. \end{aligned}$$

De plus, l'expression (90) s'évanouira, et l'expression (91), réduite à

$$\frac{\sin z}{z(\cos z - \cos a)},$$

deviendra infiniment petite, si l'on attribue au module r de la variable z des valeurs infiniment grandes, mais sensiblement distinctes de celles qui correspondent aux racines de l'équation (140). Cela posé, le théorème III sera évidemment applicable à la fonction $F(z) = \cos z - \cos a$; et la formule (113), réduite à l'équation (107).

attendu que les constantes \$\mathscr{s}_0\$, \$\varepsilon_i\$ s'évanouiront, donnera

$$(143) \quad \frac{\cos a - \cos x}{\cos a - 1} = \left(1 - \frac{x^2}{a^2}\right) \left[1 - \frac{x^2}{(2\pi - a)^2}\right] \left[1 - \frac{x^2}{(2\pi + a)^2}\right] \left[1 - \frac{x^2}{(4\pi - a)^2}\right] \left[1 - \frac{x^2}{(4\pi - a)^2}\right] \dots$$

ou, ce qui revient au même,

$$(144) \frac{\cos x - \cos a}{2\sin^2\frac{a}{2}} = \frac{a^2 - x^2}{a^2} \frac{(2\pi - a)^2 - x^2}{(2\pi - a)^2} \frac{(2\pi + a)^2 - x^2}{(2\pi + a)^2} \frac{(4\pi - a)^2 - x^2}{(4\pi - a)^2} \frac{(4\pi + a)^2 - x^2}{(4\pi + a)^2} \dots$$

Comme on aura d'ailleurs, en vertu de la formule (120),

(145)
$$\sin \frac{a}{3} = \frac{a}{3} \frac{3\pi - a}{2\pi} \frac{2\pi + a}{2\pi} \frac{4\pi - a}{4\pi} \frac{4\pi + a}{4\pi} \dots,$$

on tirera des équations (144) et (145)

$$(146) \quad \cos x - \cos a = \frac{a^2 - x^2}{2} \frac{(2\pi - a)^2 - x^2}{(2\pi)^2} \frac{(2\pi + a)^2 - x^2}{(2\pi)^2} \frac{(4\pi - a)^2 - x^2}{(4\pi)^2} \frac{(4\pi + a)^2 - x^2}{(4\pi)^2} \dots$$

On pourrait, au reste, déduire la formule (146) de l'équation (121) réunie à la suivante :

$$\cos a - \cos x = 2\sin\frac{x-a}{2}\sin\frac{x+a}{2}.$$

Les formules (120), (127), (137), (146) subsistent pour des valeurs quelconques réelles ou imaginaires de la variable x et de la constante a.

Si, dans l'équation (121), on pose successivement $x = \frac{\pi}{2}$, $x = \frac{\pi}{4}$, on obtiendra les deux formules

(148)
$$\frac{\pi}{3} = \frac{2.3}{1.3} \frac{4.4}{3.5} \frac{6.6}{5.7} \frac{8.8}{7.9} \frac{10.10}{9.11} \frac{12.13}{11.13} \dots,$$

$$\frac{\pi}{2\sqrt{2}} = \frac{4.4}{3.5} \frac{8.8}{7.0} \frac{12.12}{11.13} \dots,$$

dont la première a été donnée par Wallis, et l'on en conclura

(150)
$$\sqrt{2} = \frac{1.3}{2.2} \frac{5.7}{6.0} \frac{9.11}{10.10} \dots$$

Si, dans les formules (121), (128), (146), on remplace x par $x \vee -1$, on en tirera

(151)
$$e^{z} - e^{-z} = 2x \left(1 + \frac{x^2}{\pi^2}\right) \left(1 + \frac{x^2}{4\pi^2}\right) \left(1 + \frac{x^2}{9\pi^2}\right) \cdots,$$

(15)
$$e^{x} + e^{-y} = 2\left(1 + \frac{4x^{2}}{\pi^{2}}\right)\left(1 + \frac{4x^{2}}{9\pi^{2}}\right)\left(1 + \frac{4x^{2}}{25\pi^{2}}\right)\cdots,$$

$$(155) \quad v' - 2\cos a + e^{-x} = (a^2 + x^2) \frac{(2\pi - a)^2 + x^2}{(2\pi)^2} \frac{(2\pi + a)^2 + x^2}{(2\pi)^2} \frac{(4\pi - a)^2 + x^2}{(4\pi)^2} \frac{(4\pi - a)^2 + x^2}{(4\pi)^2} \cdots$$

Si, dans l'équation (120), on remplace la lettre $x:1^{\circ}$ par $x+y\sqrt{-1}$; 2° par $x-y\sqrt{-1}$, y désignant une nouvelle variable indépendante de x, les deux formules qu'on obtiendra, étant multipliées l'une par l'autre, donneront

(15')
$$\frac{e^{2y} - 2\cos 2x + e^{-2y}}{4} = (x^2 + y^2) \frac{(\pi - x)^2 + y^2}{\pi^2} \frac{(\pi + x)^2 + y^2}{\pi^2} \frac{(2\pi - x)^2 + y^2}{(2\pi)^2} \frac{(2\pi + x)^2 + y^2}{(2\pi)^2} \cdots$$

En opérant de la même manière, on tirera de l'équation (127)

$$\frac{e^{iy} + 2\cos 2x + e^{-2y}}{4} = \frac{(\pi - 2x)^2 + (2y)^2}{\pi^2} \frac{(\pi + 2x)^2 + (2y)^2}{\pi^2} \frac{(3\pi - 2x)^2 + (2y)^2}{(3\pi)^2} \frac{(3\pi - 2x)^2 + (2y)^2}{(3\pi)^2} \cdots$$

Au reste, les formules (154) et (155) peuvent être aisément déduites de l'équation (153).

Si, dans l'équation (137), on remplace : 1° x par $x + y\sqrt{-1}$ et a par $a + b\sqrt{-1}$; 2° x par $x - y\sqrt{-1}$ et a par $a - b\sqrt{-1}$, les deux formules qu'on obtiendra, étant multipliées l'une par l'autre, donneront

$$\begin{cases} \frac{\left[(e^{y}+e^{-y})^{2}\sin v - (e^{b}+e^{-b})\sin a\right]^{2} + \left[(e^{y}-e^{-y})\cos x - (e^{b}-e^{-b})\cos a\right]^{2}}{4\left[(x-a)^{2} + (y-b)\right]^{2}} \\ = \frac{(\tau-x-a)^{2} + (y+b)^{2}}{\pi^{2}} \frac{(\tau+x+a)^{2} + (y+b)^{2}}{\pi^{2}} \frac{(2\pi-x+a)^{2} + (y-b)^{2}}{(2\pi)^{2}} \frac{(2\pi-x+a)^{2} + (y-b)^{2}}{(2\pi-x+a)^{2}} \frac{(2\pi-x+a)^{2}}{(2\pi-x+a)^{2}} \frac{(2\pi-x+a)^{2}}{(2\pi-x+a$$

En opérant de la même manière, on tirera de l'équation (146)

$$\begin{cases}
\frac{\left[(e^{3}+e^{-3})\cos(x-(e^{b}+e^{-b})\cos a\right]^{2}+\left[(e^{3}-e^{-3})\sin x-(e^{b}-e^{-b})\sin a\right]^{2}}{\left[(x-a)^{2}+(y-b)^{2}\right]\left[(x+a)^{2}+(y+b)^{2}\right]} \\
=\frac{(2\pi+x-a)^{2}+(y-b)^{2}}{(2\pi)^{2}}\frac{(2\pi-x+a)^{2}+(y+b)^{2}}{(2\pi)^{2}}\frac{(2\pi-x+a)^{2}+(y-b)^{2}}{(2\pi)^{2}}\frac{(2\pi-x+a)^{2}+(y-b)^{2}}{(2\pi)^{2}}
\end{cases}$$

Dans les applications que nous venons de faire des théorèmes II et III, les constantes, précédemment désignées par \mathcal{F}_0 , \mathcal{F}_1 , s'évanouissent, et les racines de l'équation (36) sont inégales entre elles. Ces mêmes racines deviendraient égales deux à deux, de manière à coincider avec l'une des valeurs de z comprises dans les séries

(158)
$$\begin{cases} z = 0, & z = 2\pi, & z = 4\pi, & z = 6\pi, \dots, \\ z = -2\pi, & z = -4\pi, & z = -6\pi, \dots, \end{cases}$$

si l'on supposait

(159)
$$F(z) = 1 - \cos z;$$

et alors on tirerait de la formule (106)

$$(160) \quad 1 - \cos x = \frac{x^2}{3} \left(1 - \frac{x}{2\pi} \right)^2 \left(1 + \frac{x}{2\pi} \right)^2 \left(1 - \frac{x}{4\pi} \right)^2 \left(1 + \frac{v}{4\pi} \right)^2 \cdots$$

ou, ce qui revient au même,

(161)
$$1 - \cos x = \frac{x^2}{2} \left(1 - \frac{x^2}{4\pi^2} \right)^2 \left(1 - \frac{x^2}{16\pi^2} \right)^2 \cdots$$

Au reste, on déduit immédiatement l'équation (161) de la formule (146) en faisant évanouir la constante a.

Si l'on prenait

$$F(z) = e^{z} - 1,$$

l'équation (36), réduite à

(163)
$$e^z = 1$$
 ou $z = l(1)$,

offrirait pour racines les divers logarithmes népériens de l'unité, savoir

(164)
$$\begin{cases} s = 0, & s = 2\pi\sqrt{-1}, & s = 4\pi\sqrt{-1}, & s = 6\pi\sqrt{-1}, \dots, \\ s = -2\pi\sqrt{-1}, & s = -4\pi\sqrt{-1}, & s = -6\pi\sqrt{-1}, \dots. \end{cases}$$

Alors aussi l'expression (90) deviendrait

(165)
$$\frac{1}{2} \left(\frac{e^{3}}{e^{2} - 1} + \frac{e^{-2}}{e^{-2} - 1} \right) = \frac{1}{2};$$

et, pour faire évanouir l'expression (91), ou

(166)
$$\frac{1}{2z} \left(\frac{e^z}{e^z - 1} - \frac{e^{-z}}{e^{-z} - 1} \right) = \frac{1}{2z} \frac{1 + e^{-z}}{1 - e^{-z}},$$

il suffirait d'attribuer au module r de la variable z des valeurs de la forme

$$(167) r = \frac{(2n+1)\pi}{2},$$

n étant un nombre entier infiniment grand. On trouverait done, par suite,

$$(168) \qquad \qquad \tilde{\mathcal{I}}_0 = \frac{1}{2}, \qquad \tilde{\mathcal{I}}_1 = 0;$$

et l'on tirerait de la formule (114)

(169)
$$e^{x} - 1 = x \left(1 + \frac{x^{2}}{4\pi^{2}} \right) \left(1 + \frac{x^{2}}{16\pi^{2}} \right)' \left(1 + \frac{x^{2}}{36\pi^{2}} \right) \cdots e^{\frac{1}{2}^{2}}.$$

Au reste, on déduit immédiatement l'équation (169) de la formule (151), en remplaçant x par $\frac{1}{2}x$.

Si l'on prenait

(170)
$$F(z) = e^{(z+a)^2} - e^{(z-a)^2}.$$

a désignant une constante réelle, l'équation (36), réduite à

(171)
$$e^{(z+a)^3} - e^{(z-a)^3} = 0.$$

serait vérifiée toutes les fois que l'on poserait

$$(z+a)^2 = (z-a)^2 \pm 2n\pi\sqrt{-1}$$

ou, ce qui revient au mème,

$$z = \pm \frac{n\pi}{2a} \sqrt{-1}$$

n étant un nombre entier quelconque. Par conséquent, cette équation offrirait une racine nulle et une infinité de racines imaginaires com-

prises dans les séries

$$\left\{ \begin{array}{ll} z = \frac{\pi}{2a}\sqrt{-1}, & z = \frac{2\pi}{2a}\sqrt{-1}, & z = \frac{3\pi}{2a}\sqrt{-1}, & \dots, \\ z = -\frac{\pi}{2a}\sqrt{-1}, & z = -\frac{2\pi}{2a}\sqrt{-1}, & z = -\frac{3\pi}{2a}\sqrt{-1}, & \dots \end{array} \right.$$

De plus, l'expression (90) s'évanouirait, et l'expression (91), ou

$$\frac{2}{z} \frac{(z-a)e^{(z+a)^2} - (z-a)e^{(z-a)^2}}{e^{(z+a)^2} - e^{-(z-a)^2}} = z + \frac{2}{z} \frac{1+e^{-1az}}{1-e^{-4az}},$$

se réduirait sensiblement à 2 pour les valeurs de z dont les modules seraient de la forme

$$(174) r = \frac{(2n+1)\pi}{4u},$$

n désignant un nombre entier infiniment grand. On trouverait, par suite,

$$\mathfrak{I}_0 = 0, \qquad \mathfrak{I}_1 = 2,$$

et l'on tirerait de la formule (114)

$$(176) \quad e^{(x+a)^2} - e^{(x-a)^4} = 4ax \left(1 - \frac{2ax}{\pi\sqrt{-1}}\right) \left(1 + \frac{2ax}{\pi\sqrt{-1}}\right) \left(1 - \frac{2ax}{2\pi\sqrt{-1}}\right) \left(1 + \frac{2ax}{2\pi\sqrt{-1}}\right) \cdots e^{x^2+a^2}$$

ou, ce qui revient au même,

$$(177) \quad e^{(x+a)^2} - e^{(x+a)^2} = 4ax\left(1 + \frac{4a^2x^2}{\pi^2}\right)\left(1 + \frac{4a^2x^2}{4\pi^2}\right)\left(1 + \frac{4a^2x^2}{9\pi^2}\right)\cdots e^{x^2+a^2}.$$

Il suffit, au reste, pour obtenir l'équation (177), de remplacer, dans la formule (151), ω par $2u\omega$, et de multiplier ensuite les deux membres de cette formule par $e^{x^3+a^3}$.

Les diverses formules que nous avons tirées des équations (100) et suivantes coïncident avec des formules déjà connues, ou s'en déduisent facilement. Pour obtenir des formules nouvelles, supposons maintenant

(178)
$$F(z) = \sin z - az \cos z,$$
OEures de C. - S. II, t. IX.

a désignant une constante réelle. L'équation (36), réduite à

$$\tan z = az,$$

offrira une racine nulle et une infinité de racines réelles, deux à deux égales, mais affectées de signes contraires (voir le I^{or} Volume, p. 300) ('). De plus, l'expression (90) s'évanouira, et, pour faire évanouir l'expression (91), ou

(180)
$$\frac{1}{\pi} \frac{(1-a)\cos z + az\sin z}{\sin z - az\cos z},$$

il suffira d'attribuer au module r de la variable z des valeurs infiniment grandes, mais sensiblement distinctes de celles qui correspondent aux racines de l'équation (179). Cela posé, si l'on désigne par $\pm \lambda$, $\pm \mu$, $\pm \nu$, ... les racines de cette équation, on aura, on vertu du théorème III et de la formule (108),

(181)
$$\sin x - ax \cos x = (1-a)\left(1-\frac{x^2}{\lambda^2}\right)\left(1-\frac{x^2}{p^2}\right)\left(1-\frac{x^2}{p^2}\right)\dots$$

Supposons encore

(182)
$$F(z) = (z^2 + b)\sin z - az\cos z,$$

a, b désignant deux constantes positives, et ces constantes étant choisies de manière que l'on ait

$$(183) b < a.$$

L'équation (36), réduite à

$$\tan z = \frac{az}{z^2 + b},$$

offrira une racine nulle et une infinité de racines réelles, deux à deux égales, mais affectées de signes contraires (voir le 1er Volume, p. 306) (2). De plus, l'expression (90) s'évanouira, et, pour faire évanouir l'expression (91), ou

(185)
$$\frac{1}{z} \frac{(a+2)z\sin z + (z^2 + b - a)\cos z}{(z^2 + b)\sin z - az\cos z},$$

- (1) OEuvres de Cauchy, S. II, T. VI, p. 358.
- (3) Ibid., p. 364.

il suffira d'attribuer au module r de la variable z des valeurs infiniment grandes, mais sensiblement distinctes de celles qui correspondent aux racines de l'équation (184). Cela posé, si l'on désigne par $\pm \lambda$, $\pm \nu$, $\pm \nu$, ... les racines de cette équation, l'on aura, en vertu du théorème III et de la formule (108),

$$(186) \ (x^2+b)\sin x - ax\cos x = (b-a)x\left(1-\frac{x^2}{\lambda^2}\right)\left(1-\frac{x^2}{\mu^2}\right)\left(1-\frac{x^2}{\mu^2}\right)\cdots$$

Supposons enfin

(187)
$$F(z) = (e^z + e^{-z})\cos z - 2,$$

L'équation (36), réduite à

$$(e^z + e^{-z})\cos z = 2,$$

offrira quatre racines nulles. De plus, comme on tircra de cette équation

(189)
$$\tan g \frac{z}{2} = \pm \left(\frac{1 - \cos z}{1 + \cos z}\right)^{\frac{1}{2}} = \pm \frac{e^{\frac{z}{2}} - e^{-\frac{z}{2}}}{e^{\frac{z}{2}} + e^{-\frac{z}{2}}},$$

elle admettra encore, en vertu des principes établis dans le le Volume (p. 309 et 310) (1), une infinité de racines réelles qui, prises quatre à quatre, seront de la forme

$$(190) \qquad s = \zeta, \qquad s = -\zeta, \qquad s = \zeta\sqrt{-1}, \qquad s = -\zeta\sqrt{-1},$$

ζ désignant une quantité réelle. D'autre part, l'expression (90) s'évanouira, et, pour faire évanouir l'expression (91), ou

(191)
$$\frac{1}{5} \frac{(e^z - e^{-z})\cos z - (e^z + e^{-z})\sin z}{(e^z - e^{-z})\cos z - 2},$$

il suffira d'attribuer au module r de la variable z des valeurs infiniment grandes, mais sensiblement distinctes de celles qui correspondent aux racines de l'équation (188). Cela posé, si l'on désigne par $\pm \lambda$, $\pm \mu$, ... les racines réelles de cette équation, on conclura de la formule (106),

(1) OEucres de Cauchy, S. II, T. VI, p. 367, 368.

en posant n=4,

$$(192) 2 - (e^{x} + e^{-x})\cos x = \frac{x^{4}}{3} \left(1 + \frac{x^{4}}{\lambda^{4}}\right) \left(1 + \frac{x^{4}}{\mu^{4}}\right) \left(1 + \frac{x^{4}}{\nu^{4}}\right) \cdots$$

Revenons maintenant à la formule (67), et prenons pour f(z) une fonction entière du degré m, qui ne s'évanouisse pas avec la variable z; en sorte qu'on ait

$$f(z) = a_0 z^m + a_1 z^{m-1} + a_2 z^{m-2} + \dots + a_{m-1} z + a_m,$$

 $a_0, a_1, \ldots, a_{m-1}, a_m$ désignant des coefficients dont le premier et le dernier diffèrent de zéro. On trouvera

$$\frac{\int \left(\frac{x'}{z}\right)}{\int \left(\frac{x'}{z}\right)} = \frac{ma_0 x^{m-1} z + (m-1)a_1 x^{m-2} z^2 + \dots + 2a_{m-2} x z^{m-1} + a_{m-1} z^m}{a_0 x^m + a_1 x^{m-1} z + \dots + a_{m-1} x z^{m-1} + a_m z^m} = \frac{a_{m-1}}{a_m} \left(1 + 2\frac{a_{m-2}}{a_{m-1}} \frac{x}{z} + \dots\right) \left(1 + \frac{a_{m-1}}{a_m} \frac{x}{z} + \dots\right)^{-1};$$

puis on en conclura, en attribuant à z des valeurs très considérables,

(195)
$$\frac{f'(\frac{v}{z})}{f(\frac{x}{z})} = \frac{a_{m-1}}{a_m} + \frac{2 a_{m-2} a_m - a_{m-1}^2}{a_m^2} \frac{v}{z} + \dots$$

Cela posé, les fonctions (54), (55) deviendront respectivement

(196)
$$\left(\frac{a_{m-1}}{a_m} + \frac{2a_{m-2}a_m - a_{m-1}^2}{a_m^2} \frac{x}{z} + \ldots \right) \frac{F'(z)}{F(z)},$$

(197)
$$\begin{cases} \frac{1}{2} \left(\frac{a_{m-1}}{a_m} + \ldots \right) \left[\frac{\dot{F}'(z)}{F(z)} + \frac{F'(-z)}{F(-z)} \right] \\ + \frac{1}{2} \left(\frac{2a_{m-2}}{a_m^2} \frac{a_m - a_{m-1}^2}{a_m^2} + \ldots \right) \frac{v}{z} \left[\frac{F'(z)}{F(z)} - \frac{F'(-z)}{F(-z)} \right]; \end{cases}$$

et, si elles conservent des valeurs finies, z étant infini, ces valeurs seront les mêmes que celles des fonctions suivantes:

$$\frac{a_{m-1}}{a_m} \frac{F'(z)}{F(z)},$$

$$(199) \quad \frac{a_{m-1}}{2 a_m} \left[\frac{\mathbf{F}'(z)}{\mathbf{F}(z)} + \frac{\mathbf{F}'(-z)}{\mathbf{F}(-z)} \right] + \frac{2 a_{m-2} a_m - a_{m-1}^2}{2 a_m^2 z} \left[\frac{\mathbf{F}'(z)}{\mathbf{F}(z)} - \frac{\mathbf{F}'(-z)}{\mathbf{F}(-z)} \right] x.$$

Donc l'expression, représentée par 3 dans le théorème I, sera de la forme

$$(8)$$
 $A = x_0$

011

(88)
$$v = \tilde{x}_0 - v \cdot \tilde{r}_1$$

 τ_{α} désignant la limite vers laquelle convergera généralement la fonction

$$\frac{a_{m-1}}{a_m} \frac{\mathbf{F}'(z)}{\mathbf{F}(z)}$$

00

$$\frac{u_{m-1}}{2\pi a_m} \begin{bmatrix} F'(z) & F'(-z) \\ F(z) & F(-z) \end{bmatrix},$$

tandis que a deviendra infini, et 3, désignant la limite de la fonction

$$(101) \qquad \frac{a_{m-1}^4 - (a_{m-2}, a_m)}{2a_{m-2}^4} \left[\frac{F(z)}{F(z)} - \frac{F(-z)}{F(-z)} \right].$$

Enfin, dans la formule (60), la fonction sons le signe 🐔 deviendra

$$(404) \qquad \frac{1 + \left(1 - \frac{1}{m}\right) \frac{a_1 - 3}{a_0 - x} + \dots + \frac{m}{m} F'(z)}{1 + \frac{a_1 - 3}{a_0 - x} + \dots} \qquad x \cdot F(z),$$

et ne pourra s'évanouir, pour z = 0, qu'autant que la fonction F(z) s'évanouira elle-même. Mais, dans ce dornier cas, si l'on désigne par n le nombre des racines de l'equation (36) qui se réduiront à zèro, on aura, pour des valeurs influiment petites de z.

$$\frac{z \, \mathbb{P}'(z)}{\mathbb{P}(z)} = n.$$

Done, la formule (61) douners

$$(304) \qquad \qquad \gamma = \frac{m}{x} \int_{\mathbb{R}^{n}} (1+\ldots) \frac{z \, \mathbb{F}'(z)}{\mathbb{F}(z) - ((z))} \frac{mn}{\epsilon};$$

et l'on aura

$$X - \mathcal{I} = \frac{mn}{x} + \mathcal{I}_0$$

0H

(206)
$$\mathbf{X} - \hat{\mathbf{f}} = \frac{mn}{x} + \hat{\mathbf{f}}_0 + x\hat{\mathbf{f}}_1,$$

puis on en conclura

(207)
$$e^{\int_{\xi}^{x} (\mathbf{X} - \hat{\mathcal{F}}) dx} = \left(\frac{x}{\xi}\right)^{mn} e^{(x-\xi)\hat{\mathcal{F}}_{0}}$$

ou

(208)
$$e^{\int_{\xi}^{x} (X - \tilde{\mathcal{F}}) dx} = \left(\frac{x}{\xi}\right)^{mn} e^{(x - \xi) \left(\tilde{\mathcal{F}}_{0} + \frac{\tau + \xi}{2} \tilde{\mathcal{F}}_{1}\right)}.$$

Si, pour des valeurs infiniment grandes, mais convenablement chorsies, du module r de la variable z, les expressions

(90)
$$\frac{1}{2} \left[\frac{F'(z)}{F(z)} + \frac{F'(-z)}{F(-z)} \right],$$

(91)
$$\frac{1}{2z} \left[\frac{F'(z)}{F(z)} - \frac{F'(-z)}{F(-z)} \right]$$

s'évanouissent, on pourra en dire autant des expressions (201), (202). Alors, les coefficients f_0 , f_4 étant réduits à zéro, on tirera de la formule (208)

(209)
$$e^{\int_{\xi}^{x} (X - \vec{\mathcal{F}}) dx} = \left(\frac{x}{\xi}\right)^{mn},$$

et l'équation (67) donnera

$$(210) \qquad \frac{f\left(\frac{x}{\lambda}\right)}{f\left(\frac{\xi}{\lambda}\right)} \frac{f\left(\frac{x}{\mu}\right)}{f\left(\frac{\xi}{\nu}\right)} \frac{f\left(\frac{x}{\nu}\right)}{f\left(\frac{\xi}{\nu}\right)} \cdots = \left(\frac{\xi}{x}\right)^{mn} \frac{F\left(\frac{x}{\sigma}\right)}{F\left(\frac{\xi}{\alpha}\right)} \frac{F\left(\frac{x}{\beta}\right)}{F\left(\frac{\xi}{\beta}\right)} \frac{F\left(\frac{x}{\gamma}\right)}{F\left(\frac{\xi}{\gamma}\right)} \cdots$$

Si maintenant on attribue à ξ une valeur infiniment petite, on aura

sensiblement

et, par suite, l'équation (210) deviendra

$$(111) = \frac{1\left(\frac{x}{y}\right) \cdot 1\left(\frac{x}{y}\right) \cdot 1\left(\frac{x}{y}\right)}{1\left(111\right) \cdot 1\left(111\right) \cdot 1\left(111\right) \cdot 1\left(111\right)} \cdots = \frac{1 \cdot \left(\frac{x}{y}\right) \cdot \frac{y}{y}}{1 \cdot \left(\frac{x}{y}\right) \cdot 1} \left[\frac{1 \cdot \left(\frac{y}{y}\right) \cdot \dots \cdot n}{1 \cdot \left(\frac{y}{y}\right) \cdot 1}\right]^{m} \mathbb{F}\left(\frac{x}{y}\right) \mathbb{F}\left(\frac{x}{y}\right) \mathbb{F}\left(\frac{x}{y}\right) \mathbb{F}\left(\frac{x}{y}\right) \cdot \dots \cdot \frac{1 \cdot \left(\frac{y}{y}\right) \cdot \dots \cdot 1}{1 \cdot \left(\frac{y}{y}\right) \cdot \dots \cdot 1} \mathbb{F}\left(\frac{x}{y}\right) \mathbb{F$$

Lorsque la fonction $F(\beta)$ ne s'evanouit pas avec β_i la formule (61) donne simplement $X=\alpha_i$ et l'equation (213) doit être remplacée par la suivante :

$$(\binom{7}{2})\binom{7}{2}\binom{7}{2}\binom{7}{2} = \binom{7}{2}\binom{7}{2}\binom{7}{2}\binom{7}{2}\binom{7}{2}$$

$$(\binom{7}{2})\binom{7}{2}\binom{7}\binom{7}{2}\binom{7}{2}\binom{7}{2}\binom{7}{2}\binom{7}{2}\binom{7}{2}\binom{7}{2}\binom{7}{2}\binom{7}{2}$$

Si, au contraire, la fonction Fra) s'évanouit avec 5, mais de manière que l'equation (36) offre une seule racine égale à zèro, la formule (203) donnera

$$\frac{1\binom{r}{r}}{100}\frac{1\binom{r}{g}}{1001}\frac{1\binom{r}{g}}{1001}\frac{1\binom{r}{g}}{1001}\frac{F\binom{r}{r}}{1001}\frac{F\binom{r}{g}}{1001}\frac{F\binom{$$

Les diverses formules que nous venons d'obtenir supposent que la fonction entière for a ne devient pas nulle pour 3 — o, c'est-à-dire, en d'antres termes, que la constante

différe de zèra. Si cette constante s'evanouissait, les expressions (200) (2014, (200) deviendraient infinies, ainsi que les coefficients σ_0, \mathcal{F}_0 et les fractions comprises dans les premiers membres des formules (214), (2144, (2154, Observoirs d'ailleurs que, &, β, γ, \ldots etant les racines

de l'équation (35), on tirera de la formule (193)

(217)
$$f(z) = a_m \left(1 - \frac{z}{\alpha} \right) \left(1 - \frac{z}{\beta} \right) \left(1 - \frac{z}{\gamma} \right) \cdots$$

et, par conséquent,

(318)
$$\frac{I(s)}{I(s)} = \left(1 - \frac{s}{s}\right) \left(1 - \frac{s}{s}\right) \left(1 - \frac{s}{s}\right) \cdots$$

Pour montrer une application des formules qui précèdent, prenons

$$(115) F(z) = \sin z.$$

Alors, ainsi qu'on l'a déjà remarqué, l'expression (90) s'évanouira, et l'expression (91) deviendra infiniment petite, si l'on attribue au module r de la variable z des valeurs de la forme $r=n\pi$, n désignant un nombre entier infiniment grand. Cela posé, on tirera de la formule (215)

(219)
$$\frac{f\left(\frac{x}{\pi}\right)}{f(0)} \frac{f\left(-\frac{x}{\pi}\right)}{f(0)} \frac{f\left(\frac{x}{2\pi}\right)}{f(0)} \frac{f\left(-\frac{x}{2\pi}\right)}{f(0)} \dots = \frac{\alpha\beta\gamma\dots}{x^m} \sin\frac{x}{\alpha} \sin\frac{x}{\beta} \sin\frac{x}{\gamma}\dots$$

ou, ce qui revient au même,

(220)
$$\sin \frac{x}{\sigma} \sin \frac{x}{\beta} \sin \frac{x}{\gamma} \dots = \frac{x^m}{\sigma \beta \gamma \dots} \frac{f\left(\frac{x}{\pi}\right) f\left(-\frac{x}{\pi}\right)}{[f(\sigma)]^2} \frac{f\left(\frac{x}{2\pi}\right) f\left(-\frac{x}{2\pi}\right)}{[f(\sigma)]^2} \frac{f\left(\frac{x}{3\pi}\right) f\left(-\frac{x}{3\pi}\right)}{[f(\sigma)]^2} \dots$$

Au reste, on peut encore déduire la formule (220) : 1° de l'équation (214), en prenant $F(z) = \frac{\sin z}{z}$; 2° de l'équation (120) combinée avec la formule (217).

Dans le cas particulier où la fonction entière f(z) a pour dernier terme l'unité, on trouve

(221)
$$f(0) = 1$$
.

(322)
$$f(z) = \left(1 - \frac{z}{\alpha}\right) \left(1 - \frac{z}{\beta}\right) \left(1 - \frac{z}{\gamma}\right) \cdots;$$

et la formule (220) donne simplement

(323)
$$\sin \frac{x}{\alpha} \sin \frac{x}{\beta} \sin \frac{x}{\gamma} \dots = \frac{x^m}{\alpha \beta \gamma \dots} f\left(\frac{x}{\pi}\right) f\left(-\frac{x}{\alpha \pi}\right) f\left(-\frac{x}{\alpha \pi}\right) f\left(-\frac{x}{\alpha \pi}\right) f\left(-\frac{x}{3\pi}\right) f\left(-\frac{x}{3\pi}\right) \dots$$

Si, dans les formules (220) et (223), on remplace α par $\pi\alpha$, on en tirera

(224)
$$\frac{f(x) f(-x)}{|f(0)|^2} \frac{f\left(\frac{x}{2}\right) f\left(-\frac{x}{2}\right)}{|f(0)|^2} \frac{f\left(\frac{x}{3}\right) f\left(-\frac{x}{3}\right)}{|f(0)|^2} \dots = \frac{\alpha\beta\gamma\dots}{\pi^m, r^m} \sin\frac{\pi x}{\alpha} \sin\frac{\pi x}{\beta} \sin\frac{\pi x}{\gamma}\dots$$

$$(225) \quad f(x) \ f(-x) \ f\left(\frac{x}{3}\right) f\left(-\frac{x}{3}\right) f\left(\frac{x}{3}\right) f\left(-\frac{x}{3}\right) \cdots = \frac{\sigma \beta \gamma \dots}{\pi^m x^m} \sin \frac{\pi x}{\alpha} \sin \frac{\pi x}{\beta} \sin \frac{\pi x}{\gamma} \cdots$$

Si, pour fixer les idées, on suppose

(336)
$$f(x) = x^2 - 3x \cos \theta + 1,$$

on pourra prendre

(327)
$$\alpha = \cos \theta + \sqrt{-1} \sin \theta, \quad \beta = \cos \theta - \sqrt{-1} \sin \theta,$$

et l'équation (225) donnera

$$\left\{ (1 - 2x^2\cos \theta + x^4) \left[1 - 2\left(\frac{x}{2}\right)^2\cos \theta + \left(\frac{x}{3}\right)^4 \right] \left[1 - 2\left(\frac{x}{3}\right)^2\cos \theta + \left(\frac{x}{3}\right)^4 \right] \cdots \right.$$

$$\left\{ e^{2\pi x \sin \theta} - \frac{2\cos(2\pi x \cos \theta) + e^{-2\pi x \sin \theta}}{4\pi^2 x^2} \right.$$

Supposons encore

$$(329) F(z) = \cos z.$$

Alors on tirera de la formule (214)

(330)
$$\frac{f\left(\frac{2x'}{\pi}\right)}{f(0)} \frac{f\left(-\frac{2x'}{\pi}\right)}{f(0)} \frac{f\left(\frac{2x'}{3\pi}\right)}{f(0)} \frac{f\left(-\frac{2x}{3\pi}\right)}{f(0)} \dots = \cos\frac{x}{\alpha}\cos\frac{x}{\beta}\cos\frac{x'}{\gamma} \dots$$

Si l'on a, en particulier, f(o) = 1, on conclura de l'équation (230), en y remplaçant ω par $\frac{\pi x}{2}$,

(231)
$$f(x) f(-x) f\left(\frac{x}{3}\right) f\left(-\frac{x}{3}\right) f\left(\frac{x}{5}\right) f\left(-\frac{x}{5}\right) \cdots = \cos \frac{\pi x}{2\alpha} \cos \frac{\pi x}{2\beta} \cos \frac{\pi x}{2\gamma} \cdots$$

Ainsi, par exemple, si la fonction f(x) est déterminée par la for-OEnvres de C. — S. II, t. IX. 32 mule (226), on aura

$$\left\{ (1-2x^2\cos 2\theta + x^4) \left[1-2\left(\frac{x}{3}\right)^2\cos 2\theta + \left(\frac{x}{3}\right)^4 \right] \left[1-2\left(\frac{x}{5}\right)^2\cos 2\theta + \left(\frac{x}{5}\right)^4 \right] \right]$$

$$= \frac{e^{\pi x\sin \theta} + x\cos(\pi x\cos\theta) + e^{-\pi x\sin\theta}}{4}.$$

Supposons encore

(233)
$$F(z) = \frac{\sin(z)^{\frac{1}{2}}}{(z)^{\frac{1}{2}}} = 1 - \frac{z}{1 \cdot 2 \cdot 3} + \frac{z^2}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} - \dots,$$

 $(z)^{\frac{1}{2}}$ désignant une quelconque des deux valeurs de t propres à vérifier la formule

$$(23'_1) t^2 - z = 0$$

Les racines λ, μ, ν, ... de l'équation (36) seront évidemment

(235)
$$z = \pi^2$$
, $z = 4\pi^2$, $z = 9\pi^2$, $z = 25\pi^2$, ...

et, par suite, la formule (214) donnera

$$(236) \quad \frac{f\left(\frac{x}{\pi^{2}}\right)}{f(o)} \frac{f\left(\frac{x}{4\pi^{2}}\right)}{f(o)} \frac{f\left(\frac{x}{9\pi^{2}}\right)}{f(o)} \cdots = \frac{\sin\left(\frac{x}{\sigma}\right)^{\frac{1}{2}}}{\left(\frac{x}{\sigma}\right)^{\frac{1}{2}}} \frac{\sin\left(\frac{x}{\beta}\right)^{\frac{1}{2}}}{\left(\frac{x}{\beta}\right)^{\frac{1}{2}}} \frac{\sin\left(\frac{x}{\gamma}\right)^{\frac{1}{2}}}{\left(\frac{x}{\gamma}\right)^{\frac{1}{2}}} \cdots$$

Si, dans cette dernière, on remplace x par $\pi^2 x$, on en tirera

$$(237) \quad \frac{f(x)}{f(0)} \frac{f\left(\frac{x}{4}\right)}{f(0)} \frac{f\left(\frac{x}{9}\right)}{f(0)} \dots = \frac{\sin \pi \left(\frac{x}{\varphi}\right)^{\frac{1}{2}}}{\pi \left(\frac{x}{\varphi}\right)^{\frac{1}{2}}} \frac{\sin \pi \left(\frac{x}{\beta}\right)^{\frac{1}{2}}}{\pi \left(\frac{x}{\beta}\right)^{\frac{1}{2}}} \frac{\sin \pi \left(\frac{x}{\varphi}\right)^{\frac{1}{2}}}{\pi \left(\frac{x}{\varphi}\right)^{\frac{1}{2}}} \dots$$

Si d'ailleurs f(o) se réduit à l'unité, on aura simplement

(238)
$$f(x) f\left(\frac{x}{4}\right) f\left(\frac{x}{9}\right) \dots = \frac{\sin \pi \left(\frac{x}{\varphi}\right)^{\frac{1}{2}}}{\pi \left(\frac{x}{\varphi}\right)^{\frac{1}{2}}} \frac{\sin \pi \left(\frac{x}{\varphi}\right)^{\frac{1}{2}}}{\pi \left(\frac{x}{\varphi}\right)^{\frac{1}{2}}} \frac{\sin \pi \left(\frac{x}{\varphi}\right)^{\frac{1}{2}}}{\pi \left(\frac{x}{\varphi}\right)^{\frac{1}{2}}} \dots$$

Ainsi, par exemple, en prenant successivement

$$f(x) = 1 + x, \quad f(x) = 1 + x^{q}, \dots, \dots$$

an frouvera

(ide)
$$(r + r) \left(r + \frac{r}{3}\right) \left(r + \frac{r}{9}\right) \cdots = \frac{\sin \kappa (r)^{\frac{1}{2}} \sqrt{r}}{\kappa (r)^{\frac{1}{2}} \sqrt{r}},$$

$$\sin \left\{ \frac{(x)^{2}\sqrt{-1}}{\sqrt{1-(x)^{2}}} \sin \left[\frac{x^{3}-\sqrt{-3}}{x^{3}} (x)^{\frac{1}{2}} \right] \sin \left[\frac{x^{3}-\sqrt{-3}}{x^{3}} (x)^{\frac{1}{2}} \right],$$

puis on en conclura, en remplagant a par es,

$$(+)(+) = (+) \left(+ + \frac{e^2}{92} \right) \left(+ \frac{e^2}{34} \right) ... = \frac{e^{24}}{9364} ...$$

$$(v_1^2 \cdot v_1 - v_1) \cdot (v_1 - v_2) \cdot (v_1 - v_3) \cdot (v_1 - v_3) \cdot (v_1 - v_2) \cdot (v_2 - v_3) \cdot (v_1 - v_3) \cdot (v_2 - v_3) \cdot (v_3 - v_3) \cdot (v_1 - v_3) \cdot (v_2 - v_3) \cdot (v_3 -$$

La tormule (+4) s'accorde evidemment avec la première des équations (++0).

Supposons entin

Les racines 🛵 p. 🧓 . . de l'équation (36) scront évidemment

et, par suite, la formule (+14) donners

$$\frac{1\left(\frac{1}{x}\right)1\left(\frac{1}{x}\right)1\left(\frac{1}{x}\right)}{1+x}\left(\frac{1}{x}\right)\frac{1}{x}\cdots + \cos\left(\frac{x}{x}\right)\cos\left(\frac{x}{x}\right)^{\frac{1}{x}}\cos\left(\frac{x}{x}\right)^{\frac{1}{x}}\cdots$$

Si, dans cette derniere, on remplace æ par $\frac{a^{*}}{4}$, on en tirera

$$\operatorname{cop}_{G} = \frac{\operatorname{tr}(x)}{\operatorname{tr}(x)} \frac{\operatorname{f}\left(\frac{x}{G}\right) \operatorname{f}\left(\frac{x}{G}\right)}{\operatorname{tr}(x)} \cdot \cdots = \operatorname{ros}_{\frac{M}{M}} \left(\frac{x}{x}\right)^{\frac{1}{2}} \operatorname{cos}_{\frac{M}{M}} \left(\frac{x}{X}\right)^{\frac{1}{2}} \operatorname{cos}_{\frac{M}{M}} \left(\frac{x}{X}\right)^{\frac{1}{2}} \cdot \cdots$$

Si d'ailleurs f(o) se réduit à l'unité, on aura simplement

$$(247) \quad f(x) f\left(\frac{x}{9}\right) f\left(\frac{x}{23}\right) \cdots = \cos \frac{\pi}{2} \left(\frac{x}{\alpha}\right)^{\frac{1}{2}} \cos \frac{\pi}{2} \left(\frac{x}{\beta}\right)^{\frac{1}{2}} \cos \frac{\pi}{2} \left(\frac{x}{\gamma}\right)^{\frac{1}{2}} \cdots$$

Ainsi, par exemple, en prenant successivement

$$f(x) = 1 + x$$
, $f(x) = 1 + x^2$, ...

on trouvera

$$(2/8) \qquad (1+x)\left(1+\frac{x}{9}\right)\left(1+\frac{x}{25}\right)\cdots = \cos\left(\frac{\pi}{2}(x)^{\frac{1}{2}}\sqrt{-1}\right),$$

$$(2'9) \quad (1+x^2)\left(1+\frac{x^2}{9^2}\right)\left(1+\frac{x^2}{25^2}\right)\cdots = \cos\left[\frac{\pi}{2}\frac{1+\sqrt{-1}}{\sqrt{2}}\left(x\right)^{\frac{1}{2}}\right]\cos\left[\frac{\pi}{2}\frac{1-\sqrt{-1}}{\sqrt{2}}\left(x\right)^{\frac{1}{2}}\right],$$

puis on en conclura, en remplaçant x par x^2 ,

$$(250) (1+x^2)\left(1+\frac{x^2}{3^2}\right)\left(1+\frac{x^2}{5^1}\right)\cdots = \frac{e^{\frac{1}{2}\pi \iota}+e^{-\frac{1}{2}\pi x}}{2},$$

$$(251) \quad (1+x^5)\left(1+\frac{x^5}{3^4}\right)\left(1+\frac{x^5}{5^4}\right)\cdots = \frac{e^{\frac{1}{2}\pi c\sqrt{2}}+2\cos\left(\frac{1}{2}\pi x\sqrt{2}\right)+e^{-\frac{1}{2}\pi c\sqrt{2}}}{4},$$

Concevons maintenant que les fonctions f(z), F(z), cessant l'une et l'autre d'être entières, soient déterminées par les formules

$$(252) f(z) = \cos(z)^{\frac{1}{2}},$$

(253)
$$F(z) = \frac{\sin(z)^{\frac{1}{2}}}{(z)^{\frac{1}{2}}}.$$

Alors les racines α , β , γ , ...; λ , μ , ν , ... des équations (35) et (36) coincideront avec les valeurs de ε comprises dans les séries (244), (235). De plus, l'expression

$$(254) \qquad \frac{f'\left(\frac{x}{z}\right)F'(z)}{f\left(\frac{x}{z}\right)F(z)} = -\frac{\sin\left(\frac{x}{z}\right)^{\frac{1}{2}}}{4\left(\frac{x}{z}\right)^{\frac{1}{2}}\cos\left(\frac{x}{z}\right)^{\frac{1}{2}}} \left[\frac{\cos(z)^{\frac{1}{2}}}{\left(z\right)^{\frac{1}{2}}\sin(z)^{\frac{1}{2}}} - \frac{1}{z}\right]$$

s'évanouira généralement, si l'on attribue au module r de la variable z

des valeurs infiniment grandes, mais sensiblement distinctes des racines de l'équation $\sin(z)^{\frac{1}{2}} = 0$. On pourra donc prendre, dans le théorème I, $\beta = 0$. Enfin, comme l'expression (254) s'évanouira encore, pour des valeurs infiniment petites de z tellement choisies que les valeurs correspondantes du rapport $\frac{x}{z}$ différent sensiblement de celles qui vérifient l'équation $\cos\left(\frac{x}{z}\right)^{\frac{1}{2}} = 0$, on aura, d'après ce qui a été dit ci-dessus (voir le corollaire II du théorème I), X = 0; et, par suite, l'équation (78), réduite à la formule (81), donnera

(255)
$$\cos\frac{x}{\pi}\cos\frac{x}{2\pi}\cos\frac{x}{3\pi}\cdots = \frac{\sin\frac{2x}{\pi}}{\frac{2x}{\pi}}\frac{\sin\frac{2x}{3\pi}}{\frac{2x}{3\pi}}\frac{\sin\frac{2x}{5\pi}}{\frac{2x}{5\pi}}\dots$$

Si, dans la formule (255), on remplace x par $\frac{\pi x}{3}$, on en tirera

(256)
$$\cos \frac{x}{2} \cos \frac{x}{4} \cos \frac{x}{6} \cdots = \frac{\sin x}{x} \frac{3 \sin \frac{x}{3}}{x} \frac{5 \sin \frac{x}{3}}{x} \cdots;$$

puis, en écrivant $x\sqrt{-1}$ au lieu de x, on trouvera

$$(357) \quad \frac{e^{\frac{1}{2}v} + e^{-\frac{1}{2}v}}{3} \frac{e^{\frac{1}{5}v} + e^{-\frac{1}{5}v}}{2} \frac{e^{\frac{1}{6}v} + e^{-\frac{1}{6}v}}{2} \cdots = \frac{e^{v} + e^{-x}}{2x} \frac{e^{\frac{1}{3}v} + e^{-\frac{1}{3}v}}{\frac{2}{3}x} \frac{e^{\frac{1}{5}v} - e^{-\frac{1}{5}v}}{\frac{2}{5}x}.$$

Ajoutons que, si l'on pose x=1, on conclura des formules (256) et (257)

(258)
$$\cos \frac{1}{2} \cos \frac{1}{6} \cos \frac{1}{6} \cdots = \sin \tau . 3 \sin \frac{1}{3} . 5 \sin \frac{1}{5} \cdots$$

et

$$(259) \quad \frac{e^{\frac{1}{2}} - e^{-\frac{1}{2}}}{2} \cdot \frac{e^{\frac{1}{4}} + e^{-\frac{1}{4}}}{2} \cdot \frac{e^{\frac{1}{6}} - e^{-\frac{1}{6}}}{2} \cdots = \frac{e^{1} - e^{-1}}{2} \cdot 3 \cdot \frac{e^{\frac{1}{3}} - e^{-\frac{1}{3}}}{2} \cdot 5 \cdot \frac{e^{\frac{1}{6}} - e^{-\frac{1}{5}}}{2} \cdots$$

Si l'on différentiait, par rapport à x, les deux membres de l'équation (256), ou plutôt leurs logarithmes, on serait immédiatement ramené à la formule (31) du précédent article.

Si d'ailleurs f(o) se réduit à l'unité, on aura simplement

(2)7)
$$f(x) f\left(\frac{x}{9}\right) f\left(\frac{x}{25}\right) \dots = \cos \frac{\pi}{2} \left(\frac{x}{\alpha}\right)^{\frac{1}{2}} \cos \frac{\pi}{2} \left(\frac{x}{\beta}\right)^{\frac{1}{2}} \cos \frac{\pi}{2} \left(\frac{x}{\gamma}\right)^{\frac{1}{2}} \dots$$

Amsi, par exemple, en prenant successivement

$$f(x) = 1 + x$$
, $f'(x) = 1 + x^2$, ...,

on trouvera

$$(248) (1+x)\left(1+\frac{x}{9}\right)\left(1+\frac{x}{25}\right)\cdots = \cos\left[\frac{\pi}{2}(x)^{\frac{1}{2}}\sqrt{-1}\right],$$

$$(249) \quad (1+x^2)\left(1+\frac{x^2}{9^2}\right)\left(1+\frac{x^2}{25^2}\right)\dots = \cos\left[\frac{\pi}{2}\frac{1+\sqrt{-1}}{\sqrt{2}}\left(x\right)^{\frac{1}{2}}\right]\cos\left[\frac{\pi}{2}\frac{1-\sqrt{-1}}{\sqrt{2}}\left(x\right)^{\frac{1}{2}}\right],$$

puis on en conclura, en remplaçant x par x^2 ,

(250)
$$(1+x^2)\left(1+\frac{x^2}{3^1}\right)\left(1+\frac{x^2}{5^2}\right)\cdots = \frac{e^{\frac{1}{2}\pi x}+e^{-\frac{1}{2}\pi x}}{2},$$

$$(251) \quad (1+x^4)\left(1+\frac{x^4}{3^4}\right)\left(1+\frac{x^4}{5^4}\right)\cdots = \frac{e^{\frac{1}{2}\pi e\sqrt{2}}+2\cos\left(\frac{1}{2}\pi x\sqrt{2}\right)+e^{-\frac{1}{2}\pi e\sqrt{4}}}{\sqrt{4}},$$

Concevons maintenant que les fonctions f(z), F(z), cessant l'une et l'autre d'être entières, soient déterminées par les formules

(352)
$$f(z) = \cos(z)^{\frac{1}{2}},$$

(253)
$$F(z) = \frac{\sin(z)^{\frac{1}{2}}}{(z)^{\frac{1}{2}}}.$$

Alors les racines α , β , γ , ...; λ , μ , ν , ... des équations (35) et (36) coïncideront avec les valeurs de z comprises dans les séries (244), (235). De plus, l'expression

$$(254) \qquad \frac{f'\left(\frac{x}{z}\right)F'(z)}{f\left(\frac{x}{z}\right)F(z)} = -\frac{\sin\left(\frac{x}{z}\right)^{\frac{1}{2}}}{4\left(\frac{x}{z}\right)^{\frac{1}{2}}\cos\left(\frac{x}{z}\right)^{\frac{1}{2}}} \left[\frac{\cos(z)^{\frac{1}{2}}}{(z)^{\frac{1}{2}}\sin(z)^{\frac{1}{2}}} - \frac{1}{z}\right]$$

s'évanouira généralement, si l'on attribue au module r de la variable z

des valeurs infiniment grandes, mais sensiblement distinctes des racines de l'équation $\sin(z)^{\frac{1}{2}} = 0$. On pourra donc prendre, dans le théorème I, $\beta = 0$. Enfin, comme l'expression (254) s'évanouira encore, pour des valeurs infiniment petites de z tellement choisies que les valeurs correspondantes du rapport $\frac{x}{z}$ différent sensiblement de celles qui vérifient l'équation $\cos\left(\frac{x}{z}\right)^{\frac{1}{2}} = 0$, on aura, d'après ce qui a été dit ci-dessus (roir le corollaire II du théorème I), X = 0; et, par suite, l'équation (78), réduite à la formule (81), donnera

(255)
$$\cos \frac{x}{\pi} \cos \frac{x}{3\pi} \cos \frac{x}{3\pi} \cdots = \frac{\sin \frac{2x}{\pi}}{\frac{3x}{\pi}} \frac{\sin \frac{2x}{3\pi}}{\frac{2x}{3\pi}} \frac{\sin \frac{2x}{5\pi}}{\frac{2x}{5\pi}} \cdots$$

Si, dans la formule (255), on remplace α par $\frac{\pi x}{2}$, on en tirera

(256)
$$\cos \frac{x}{3} \cos \frac{x}{4} \cos \frac{x}{6} \cdots = \frac{\sin x}{x} \frac{3 \sin \frac{x}{3}}{x} \frac{5 \sin \frac{x}{5}}{x} \cdots;$$

puis, en écrivant $x\sqrt{-1}$ au lieu de x, on trouvera

$$(257) \quad \frac{e^{\frac{1}{2}} - e^{-\frac{1}{2}}}{2} \quad \frac{e^{\frac{1}{5}} e^{-\frac{1}{5}} e^{-\frac{1}{5}} e^{-\frac{1}{5}}}{2} \quad \frac{e^{\frac{1}{5}} e^{-\frac{1}{5}} e^{-\frac{1}{5}}}{2} \cdots = \frac{e^{x} - e^{-x}}{2 \cdot x} \quad \frac{e^{\frac{1}{5}} e^{-\frac{1}{5}} e^{-\frac{1}{5}}}{\frac{2}{3} \cdot x} \cdot \frac{e^{\frac{1}{5}} e^{-\frac{1}{5}}}{\frac{2}{5} \cdot x}.$$

Ajoutons que, si l'on pose x=1, on conclura des formules (256) et (257)

(258)
$$\cos \frac{1}{2} \cos \frac{1}{4} \cos \frac{1}{6} \cdots = \sin \tau . 3 \sin \frac{1}{3} . 5 \sin \frac{1}{5} \cdots$$

et

$$(259) \quad \frac{e^{\frac{1}{2}} + e^{-\frac{1}{2}}}{3} \quad \frac{e^{\frac{1}{3}} - e^{-\frac{1}{b}}}{3} \quad \frac{e^{\frac{1}{0}} + e^{-\frac{1}{0}}}{3} \cdots = \frac{e^{1} - e^{-1}}{3} \quad 3 \quad \frac{e^{\frac{1}{3}} - e^{-\frac{1}{3}}}{3} \quad 5 \quad \frac{e^{\frac{1}{b}} - e^{-\frac{1}{b}}}{3} \cdots$$

Si l'on différentiait, par rapport à x, les deux membres de l'équation (256), ou plutôt leurs logarithmes, on serait immédiatement ramené à la formule (3 τ) du précédent article.

CORPS SOLIDES OU FLUIDES

DANS LESQUELS

LA CONDENSATION OU DILATATION LINEAIRE EST LA MÊME EN TOUS SENS

AUTOUR DE CHAQUE POINT.

Concevons qu'un corps solide ou fluide vienne à changer de forme, et que par l'effet d'une cause quelconque il passe d'un premier état naturel ou artificiel à un second état distinct du premier. Rapportons tous les points de l'espace à trois axes rectangulaires, et supposons que le point matériel correspondant aux coordonnées x, y, \(\tau\) dans le second état du corps soit précisément celui qui, dans le premier état, avait pour coordonnées les trois différences

$$x-\xi$$
, $y-\eta$, $z-\xi$.

Si l'on prend x, y, z pour variables indépendantes, ξ, η, ζ seront des fonctions de x, y, z qui serviront à mesurer les déplacements du point que l'on considère parallèlement aux axes des coordonnées. Soient d'ailleurs r le rayon vecteur mené dans le second état du corps d'une molécule m à une autre molécule très voisine m', et α, β, γ les angles formés par le rayon vecteur r avec les demi-axes des coordonnées positives. Si l'on désigne par

la distance primitive des deux molécules m, m', la valeur numérique de ε sera la mesure de ce que nous avons nommé la dilatation ou condensation *linéaire* du corps suivant la direction du rayon vecteur r, sa-

voir, de la dilatation linéaire si ε est une quantité positive, et de la condensation ou contraction linéaire dans le cas contraire. Cela posé, on aura, en vertu des principes exposés dans le H° Volume [p. 60 et suiv. (¹)],

$$\left(\frac{1}{1+\varepsilon}\right)^{2} = \left(\cos\alpha - \frac{\partial\xi}{\partial x}\cos\alpha - \frac{\partial\xi}{\partial y}\cos\beta - \frac{\partial\xi}{\partial z}\cos\gamma\right)^{2}$$

$$+ \left(\cos\beta - \frac{\partial\eta}{\partial x}\cos\alpha - \frac{\partial\eta}{\partial y}\cos\beta - \frac{\partial\eta}{\partial z}\cos\gamma\right)^{2}$$

$$+ \left(\cos\gamma - \frac{\partial\xi}{\partial x}\cos\alpha - \frac{\partial\zeta}{\partial y}\cos\beta - \frac{\partial\zeta}{\partial z}\cos\gamma\right)^{2},$$

puis on en conclura, en admettant que les déplacements ξ , η , ζ soient très petits,

$$\begin{cases} \varepsilon = \frac{\partial \xi}{\partial x} \cos^2 \alpha + \frac{\partial \eta}{\partial y} \cos^2 \beta + \frac{\partial \zeta}{\partial z} \cos^2 \gamma \\ + \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} \right) \cos \beta \cos \gamma + \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right) \cos \gamma \cos \alpha + \left(\frac{\partial \zeta}{\partial y} + \frac{\partial \eta}{\partial x} \right) \cos \alpha \cos \beta. \end{cases}$$

Or on peut demander quelles conditions doivent remplir ξ , η , ζ , considérés comme fonctions de x, y, z, pour que la condensation ou dilatation linéaire du corps reste la même en tous sens autour de chaque point. Tel est l'objet dont nous allons maintenant nous occuper.

Soient ε' , ε'' , ε''' les dilatations linéaires mesurées parallèlement aux axes des ω , γ , z. On aura, en vertu de la formule (2),

$$\varepsilon' = \frac{\partial \zeta}{\partial \cdot v}, \qquad \varepsilon'' = \frac{\partial \eta}{\partial y}, \qquad \varepsilon''' = \frac{\partial \zeta}{\partial z}.$$

En supposant ces dilatations linéaires égales entre elles, on obtiendra la condition

(3)
$$\frac{\partial \xi}{\partial x} = \frac{\partial \eta}{\partial y} = \frac{\partial \zeta}{\partial z},$$

et par suite l'équation (2) donnera

(1)
$$\varepsilon = \varepsilon' + \left(\frac{\partial n}{\partial z} + \frac{\partial \zeta}{\partial y}\right) \cos\beta \cos\gamma + \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z}\right) \cos\gamma \cos\gamma + \left(\frac{\partial \zeta}{\partial y} + \frac{\partial n}{\partial x}\right) \cos\alpha \cos\beta.$$

(1) OEurres de Cauchy, S. II, T. VII, p. 82 of suiv.

Done, si la dilatation linéaire ε reste constamment égale à ε' , on aura, pour des valeurs quelconques de α , β , γ ,

$$(5) \quad \left(\frac{\partial n}{\partial z} + \frac{\partial \zeta}{\partial y}\right) \cos \beta \cos \gamma + \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \zeta}{\partial z}\right) \cos \gamma \cos \alpha + \left(\frac{\partial \zeta}{\partial y} + \frac{\partial n}{\partial x}\right) \cos \alpha \cos \beta = 0.$$

En posant successivement, dans la formule (5), $\alpha = \frac{\pi}{2}$, $\beta = \frac{\pi}{2}$, $\gamma = \frac{\pi}{2}$, on en tire

(6)
$$\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} = 0, \quad \frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} = 0, \quad \frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} = 0.$$

Ainsi, pour que la valeur de ε devienne indépendante des angles α , β , γ , il est nécessaire que les déplacements ξ , η , ζ , considérés comme fonctions de α , γ , z, vérifient les conditions (3) et (6). Réciproquement, si ces conditions sont vérifiées, ε sera indépendant des angles α , β , γ , et l'on tirera de la formule (2)

(7)
$$\varepsilon = \frac{\partial \xi}{\partial x} = \frac{\partial \eta}{\partial y} = \frac{\partial \zeta}{\partial z}.$$

Il est facile de s'assurer que, dans le cas où les conditions (3) et (6) sont vérifiées, la distance ε so réduit à une fonction linéaire de x, y, z. En effet, concevons que l'on différentie la première des équations (6) par rapport à x, la deuxième par rapport à y, la troisième par rapport à z, on trouvera

(8)
$$\frac{\partial^2 a}{\partial z \partial x} + \frac{\partial^2 \zeta}{\partial x \partial y} = 0$$
, $\frac{\partial^2 \zeta}{\partial x \partial y} + \frac{\partial^2 \zeta}{\partial y \partial z} = 0$, $\frac{\partial^2 \xi}{\partial y \partial z} + \frac{\partial^2 a}{\partial z \partial x} = 0$

et, par conséquent,

(9)
$$\frac{\partial^2 \xi}{\partial y \partial z} = 0, \quad \frac{\partial^2 \eta}{\partial z \partial x} = 0, \quad \frac{\partial^2 \zeta}{\partial x \partial y} = 0;$$

puis, en différentiant la première des équations (9) par rapport à x, la deuxième par rapport à y, la troisième par rapport à z, et ayant égard à la formule (7), on obtiendra les suivantes :

(10)
$$\frac{\partial^2 \varepsilon}{\partial y \, \partial z} = 0, \quad \frac{\partial^2 \varepsilon}{\partial z \, \partial x} = 0, \quad \frac{\partial^2 \varepsilon}{\partial x \, \partial y} = 0.$$

Au contraire, si l'on différentie deux fois de suite la première des équations (6) par rapport aux variables y et z, la deuxième par rapport aux variables z et x, la troisième par rapport aux variables x et y, et si l'on a toujours égard à la formule (7), on trouvera

(11)
$$\frac{\partial^2 \varepsilon}{\partial z^2} + \frac{\partial^2 \varepsilon}{\partial t^2} = 0, \qquad \frac{\partial^2 \varepsilon}{\partial t^2} + \frac{\partial^2 \varepsilon}{\partial z^2} = 0, \qquad \frac{\partial^2 \varepsilon}{\partial t^2} + \frac{\partial^2 \varepsilon}{\partial t^2} = 0;$$

puis on en conclura

(13)
$$\frac{\partial^2 \varepsilon}{\partial x^2} = 0, \quad \frac{\partial^2 \varepsilon}{\partial y^2} = 0, \quad \frac{\partial^2 \varepsilon}{\partial z^2} = 0.$$

Or on tire des formules (10) et (12)

(13)
$$d\left(\frac{\partial \varepsilon}{\partial x}\right) = 0, \quad d\left(\frac{\partial \varepsilon}{\partial y}\right) = 0, \quad d\left(\frac{\partial \varepsilon}{\partial z}\right) = 0,$$

et, par conséquent,

(14)
$$\frac{\partial \varepsilon}{\partial x} = a, \quad \frac{\partial \varepsilon}{\partial y} = b, \quad \frac{\partial \varepsilon}{\partial z} = c,$$

$$(15) d\varepsilon = a dx + b dy + c dz,$$

$$\varepsilon = ax + by + cz + h,$$

 a, b, c, k désignant des quantités constantes. On peut donc énoncer la proposition suivante ;

Theorem. — Si un corps solide ou fluide vient à changer de forme, de manière que la condensation ou dilatation linéaire reste très petite et soit la même en tous sens autour de chaque point, cette dilatation ou condensation ne pourra être qu'une fonction linéaire des coordonnées x, y, z.

La valeur de ε étant déterminée par l'équation (16), on déduira sans peine les valeurs de ξ , η et ζ de la formule (7) combinée avec les équations (6); et, comme celles-ci donneront

(17)
$$\frac{\partial^2 \xi}{\partial y^2} = \frac{\partial^2 \xi}{\partial z^2} = -\frac{\partial z}{\partial x} = -\alpha, \qquad \frac{\partial^2 \xi}{\partial y \partial z} = 0, \qquad \dots,$$
Obvious de C.—S.II, t.IX.

on trouvera

(18)
$$\begin{cases} \xi = (ax + by + cz + h)x - \frac{1}{2}a(x^2 + y^2 + z^2) + hy - gz + l, \\ a = (ax + by + cz + k)y - \frac{1}{2}b(x^2 + y^2 + z^2) + fz - hx + m, \\ \zeta = (ax + by + cz + k)z - \frac{1}{2}c(x^2 + y^2 + z^2) + gx - fy + n, \end{cases}$$

f, g, h, l, m, n désignant encore des quantités constantes.

SUR DIVERSES PROPOSITIONS

RELATIVES

A L'ALGÈBRE ET A LA THÉORIE DES NOMBRES.

Des recherches entreprises sur la résolution des équations binômes m'ent conduit à reconnaître qu'il existe des relations dignes de remarque entre les quantités désignées dans la théorie des nombres sous le nom de racines primitiees et d'autres quantités que renferment les produits de certaines expressions algébriques. D'ailleurs, l'analyse par laquelle je suis parvenu à découvrir ces relations m'a effert le moyen de résoudre facilement certaines équations indéterminées, et m'a fourni des théorèmes qui paraissent mériter l'attention des géomètres. Je consacrerai plusieurs articles au développement des principes sur lesquels repose cette analyse; mais, comme ce développement exige la consaissance préliminaire de diverses propositions relatives à l'Algèbre et à la théorie des nombres, je commencerai par établir les propositions dont il s'agit. J'indiquerai en même temps plusieurs conséquences nouvelles que l'on peut en déduire.

Soit m un nombre entier quelconque. Je dirai que les quantités entières, positives ou négatives, h et k sont équivalentes suivant le module n, lors que la différence h-k ou k-h sera divisible par n, et j'indiquerai cette équivalence, nommée congruence par M. Gauss, à l'aide de la notation

$$h \equiv k \pmod{n}$$
,

employée par ce géomètre. Cela posé, si l'on vérifie la formule

(1)
$$\alpha_0 x^m + a_1 x^{m-1} + a_2 x^{m-2} + \ldots + a_{m-1} x + a_m = 0$$
 (mod.n),

dans laquelle m désigne un nombre entrer et $a_0, a_1, \ldots, a_{n-1}, n$ des quantités entières, en attribuant à a les valeurs entreres

$$(t) = (t_{11}, \dots, t_{n-1}, t_{n-1}, \dots, t_{n-1})$$

on la vérifiera encore en preuant

i, j désignant des nombres entiers, ou, ce qui revient au meme, en prenant

$$\langle r - r_{11} \rangle = r - r_{11} = \cdots$$

et x_1, x_2, \ldots seront des racines de la formule (1). Mais deux quel conques de ces racines, par exemple, x_1, x_2 ne seront considerces comme distinctes que dans le cas où elles ne seront pas èquivalentes suivant le module n. Ajoutons que les notations

$$\frac{h}{k}$$
, $h^{i}k^{-m}$, ...

représenteront les valeurs de 2 propres à verifier les formules

$$Lx = h$$
, $L^m x = h^t$,

Soit maintenant p un nombre premier quelconque. Je duso, avec M. Poinsot, que ρ est une racine primitive de l'equation

$$x^n = 1,$$

et z une racine primitive de l'équivalence

$$x^n = e^{-\epsilon t} \pmod{p},$$

lorsque p^n sera la plus petite puissance de p qui se reduise a l'unite, et p^n la plus petite puissance de p équivalente à l'unite sanvant le p^n dule p. Ces définitions étant admises, on etablica sans perne, on p^n racines des équations et des équivalences, les propositions envents dont la plupart étaient dejà connues p^n :

⁽¹⁾ On pout consultor, à co oupet, diver (Mémoires d'Luber et de Lacina (c. 1967) (1967) (1968). M. Gauss, intitulé : Disquisitiones arithmetica ; la Theorie des nombres de M. La (c. 2008). Un travail de M. Poinsot, inséré dans le tome V de Memoir et de l'Eridenie (f. 888). (1968). et les Mémoires de Mathématiques publiés par M. Guillaume 1849.

Soient m un nombre entier, p un nombre premier, et a_{ns} a., a., ... a., des quantités entières. La formule

$$(i)$$
 $a_i x^{ij} + a_i x^{ij-1}$ \cdots $a_{j+1}x + a_i = 0$ (mod. p)

n'admettra jumais plus de maiaemes distinctes.

En effet, soient v_1, x_2, \ldots, v_m, m racines dis tinetes de la formule (4). On aura identiquement

$$(u_0, v_1^{\alpha_1}, u_2, v_1^{\alpha_2}, v_3, \dots, u_{\alpha_{n-1}}, v_1 + u_{\alpha_1}, \dots, \dots)$$
 (mod. p).

En substituant la valeur de a_m , tirée de cette dernière équivalence, dans la formule (j.), on trouvers

$$\{a\} = \frac{\sqrt{a_a x^{a_1} - a_1 x^{a_1-1} - \dots - a_{n-1} x - a_{n-1} x - a_{n-1}}}{(a_1 x^{a_1} - a_1 x^{a_1} - a_1 x^{a_1} - a_1 x^{a_1} + \dots - a_{n-1} x^{n-1}) + \dots + a_{n-1} (x - a_1) - P_1(x - a_1)_1}$$

P, designant un polynome qui aura pour premier terme le produit $u_{\alpha}v^{\alpha-1}$, et qui sera equivalent a zéro pour $x=x_{\alpha}$ pour $x=x_{\alpha}$ etc. On trouvera de même

$$\{\mu_1, P_1, \mu_2, \dots, \mu_n\} = \{\mu_1, \mu_2, \dots, \mu_n\} = \{\mu_1, \dots, \mu_n\}$$

P., P., . . . P., P., de ágnant des polynômes dont les premiers Termes seront $u_n x = \frac{1}{2}, u_n x^{n-1}, \dots, u_n x_n u_n$ en sorte qu'on aura simplement

$$\Phi_{ij} = \theta_{ij}$$

D'ailleur , en vertu de c'formules (5), (6), (7), on aura, quel que जाती व्यक्त

$$(u_1, u_2, v_3) = a_1 \, r^{-1/4} \, , \qquad (u_{n-1} x - u_n) \, , \qquad (u_n + v_n) \, (v_n - v_1) \, (v_n - v_2) \, , \quad (x_m) \, (v_n + v_2) \, , \quad (x_m) \, , \quad (x_m) \, (v_n + v_2) \, , \quad (x_m) \, (v_n + v_2) \, , \quad (x_m) \, , \quad (x_m) \, (v_n + v_2) \, , \quad (x_m) \, (v_n + v_2) \, , \quad (x_m) \, , \quad (x_m) \, (v_n + v_2) \, , \quad (x_m) \, (v_n + v_2) \, , \quad (x_m) \, , \quad (x_m) \, (v_n + v_2) \, , \quad (x_m) \, (v_n + v_2) \, , \quad (x_m) \, , \quad (x_m) \, (v_n + v_2) \, , \quad (x_m) \, (v_n + v_2) \, , \quad (x_m) \, , \quad (x_m) \, (v_n + v_2) \, , \quad (x_m) \, (v_n + v_2) \, , \quad (x_m) \, , \quad (x_m) \, (v_n + v_2) \, , \quad (x_m) \, (v_n + v_2) \, , \quad (x_m) \, , \quad ($$

Done l'equivalence (5) pourra d'ecrire comme il suit :

The state
$$t_1((x-\epsilon_1)(x-\epsilon_1),\ldots(x-\epsilon_m)=0$$

Or cette dernière ne peut être verifiée qu'antant que l'on prend

262

Corollaire. La formule (8) devant substater, quel que soit 4, en traîne évidenment les suivantes

$$\frac{a_1 - a_0(x_1 + x_2 + \ldots + x_m) - (\text{nnd}, p)_*}{a_2 - a_0(x_1x_2 + x_1x_3 + \ldots + x_1x_m) - v_2x_1 + \dots + v_nx_n + \dots + v_{n-1}x_n)_*}{a_m - (a_0x_1x_2 + \ldots + x_m)_*}$$

lorsque le nombre m ne surpasse pas le module p. Afors, en effet, si les conditions (10) n'étaient pas remplies, la formule (8), dans laquelle le second membre, développé suivant les puissances descendantes de la variable x, a pour premier terme a_nx^m , se réduirait à une équivalence d'un degré inférieur à p, et pourtant cette équivalence devrait admettre antant de racines que la division d'un nombre entier par p peut fournir de restes différents, c'est-à-dire p racines distinctes. Or cette conclusion ne s'accorderait pas avec le théoreme 1.

Scolle. Lorsque l'équation (1) est du premier degre on de la forme

$$(t) \qquad a_0 v + a_1 \quad 0 \quad (\bmod, n),$$

elle ne peut admettre qu'une seule racine, et elle en admet toujours une, représentée par la notation

$$t = \frac{\epsilon t_1}{\epsilon t_0}$$

excepté dans le cas où la fraction $\frac{u_t}{u_0}$ réduite à sa plus sample expression, conserverait un dénominateur qui ne serant pas premier a n. En effet, l'on pourra toujours trouver des nombres entrers v et v proposs à vérifier la formule

$$(13) u_0 x + u_1 - u_1,$$

à moins que a_0 et n ne soient simultanément divisibles par un nombre qui ne diviserait pas a_0 .

Thronism, II. Supposons que la formule (4) admette m racines des-

tinctes. Soit d'ailleurs P un polynôme qui divise exactement le premier membre de cette formule. Le nombre des racines distinctes de l'équiva-lence

$$(14) \qquad \qquad P \equiv 0 \pmod{p}$$

sera précisément égal au degré du polynôme P.

Démonstration. — Soit Q la quantité qu'on obtient en divisant par P le premier membre de la formule (4). Cette formule pourra s'écrire comme il suit

(15)
$$PQ = o \pmod{p},$$

et, par conséquent, chacune des racines $x=x_1,\ x=x_2,\ \ldots,\ x=x_m$ vérifiera l'une des équivalences

(16)
$$P \equiv 0$$
, $Q \equiv 0 \pmod{p}$.

Soit d'ailleurs μ le degré du polynôme P. $m-\mu$ sora le degré du polynôme Q, et, comme le nombre de celles des quantités x_1, x_2, \ldots, x_m qui satisferont à la seconde des formules (16) ne pourra surpasser $m-\mu$, le nombre de celles qui satisferont à la première ne pourra devenir inférieur à μ . Donc ce dernier nombre sera nécessairement égal au degré μ du polynôme P.

Theorème III. - Soit p un nombre premier quelconque. La formule

$$(17) w^{p-1} \equiv 1 (mod. p)$$

admettra $p \rightarrow 1$ racines distinctes, respectivement equivalentes aux nombres entiers

(18)
$$1, 2, 3, \ldots, p-1$$

Démonstration. — En effet, si l'on prend pour x un quelconque de ces nombres entiers, on trouvers

$$x^{p} \equiv (1 + \overline{x - 1})^{p} \equiv 1 + (x - 1)^{p} \pmod{p}$$

et, par conséquent,

ţ

$$x^{p}-x=(x-1)^{p}-(x-1)=(x-2)^{p}-(x-2)=\ldots = 2^{p}-2=1^{p}-1=0,$$

on, ce qui revient au meme,

et, comme a ne sera pas divisible par p_s on en constituc

$$(ig) \qquad \qquad i^{p-1} = 1 \quad 0 \quad \text{(mod. } p).$$

Le théorème compris dans la formule (17) on (19) est du a Fernat

Corollaire. Comme, pour faire coincider la formule $(\frac{1}{4})$ avec l'equivalence $(\frac{1}{4})$, il suffit de prendre

$$m=p-1, \quad u_0-1, \quad u_1-u_1-u_1-u_1-u_1-u_1-\dots- u_{r-1}-u_{r-1}$$

on aura, en vertu des formules (10) et du théorème III.

(30)
$$\begin{cases} 1 + n + 3 + \dots + (p-1) & 0 = 0 \text{ mod. } p \text{ s} \\ 1 + n + 1 + 3 + \dots + (p-1) + n + 3 = 0 \\ & + n (p-1) + \dots + (p-1) (p-1) & 0 \end{cases}$$

$$\begin{cases} 1 + n + 3 + \dots + (p-1) + n + 3 + \dots + (p-1) + n + 3 \\ & + n + 1 + n + 1 + \dots + (p-1) + n + 1 + \dots + (p-1) + n + 1 \end{cases}$$

La dernière des formules (20) peut encore s'ecrite aux aqu'id suit

$$(21) \qquad 1.2.3, \ \beta(p-1)(p-1) = 1 \quad 0 \quad \text{smod}, p \in$$

et comprend le théorème de Wilson.

Timonem IV. Soient p un nombre première et n un dicisem de present La formule

$$(3) \qquad \qquad e^{x_{i}} = 0 \quad \text{(insid. } p_{i}$$

admettra n racines distinctes

Démonstration. Soit

$$(2a) p = 1 - nuc,$$

Le binôme

$$(2d) \qquad \qquad (p+1) \qquad (n+1)$$

.

265

sera divisible par le binôme

$$x^n - 1$$
.

Done, puisque la formule (19) admet p-1 racines distinctes, l'équivalence

$$(24) \qquad \qquad x^n - 1 = 0 \pmod{p}$$

ou la formule (3) admettra n racines distinctes, en vertu du théorème 111.

THEOREME V. — Soient m, n deux nombres entiers quelconques, ω leur plus grand commun diviseur, et q un nombre premier ou non premier. Toute racine commune des deux équations

$$(25) x^m = 1, x^n = 1$$

vérifiera encore l'équation

$$(26) w^{\omega} =: \mathfrak{t};$$

et toute racine commune aux deux équivalences

$$(27) x^m \equiv 1, x^n \equiv 1 (mod. q)$$

vérifiera encore la formule

$$x^{\omega} = 1 \pmod{q}.$$

Démonstration. — ω étant le plus grand commun diviseur de m et de n, on pourra trouver des quantités entières u et v propres à vérifier la condition

$$(29) mu - nv = \omega.$$

Cela posé, on tirera des équations (25)

$$x^{mu} =: 1 =: x^{nv}$$

 n_0

$$x^{mn}-x^{n\nu}=x^{n\nu}(x^{\omega}-1)=0,$$

par conséquent

$$(3e) v^{\omega} - i = 0;$$

34

 $\theta \Pi$

et des formilles (22)

$$r^{mn}=r^{mn}=r^{mn}$$
 (mod. q) $r^{mn}=r^{mn}+r^{mn}+r^{mn}$ (c.) $r^{mn}=r^{mn}+r^{mn}$

par conséquent

$$(\beta_1) \qquad \qquad r^{m-1} = 0 \qquad \text{smad.} \ q_{\beta_1}$$

Or l'equation (30) coincide avec l'équation (40), et la formule (44) avec la formule (98).

Corollaire. Comme toute racine non-primitive de l'equation $e^{\pm ij}$ on de l'équivalence (3), dans laquelle p designe un nombre premier, vérifiera une autre équation de la forme

ou une équivalence de la forme

$$e^m = e \pmod{p}$$

m étant $\exists n$, il suit du théorème V qu'une semblable radiue devia encore vérifier l'équation

$$(3*)$$
 $t^{6} - t$

on Pequivalence

$$(33) \qquad r^{n} + (\text{mod}, p),$$

océtant un nombre entier, diviseur de n, mai interieur en Done, sa l'équation (2) ou l'equivalence (3) admet de vacine enco permitives, autres que l'unité, n ne pourra etre un nombre prenuer.

Throwfur VI. Soit a un nombre entier que le orique. Le quaixon

$$r^{q} = r$$

admettra autant de raeures primítives qu'il y a de nombres ento respressiore à n, mais inférieurs à ny et, si l'on suppos

$$(34) \qquad n = a^{\alpha}h^{\alpha}e^{\alpha} \quad ,$$

267

a, b, c — etant les facteurs premiers de n, chacune des racines primitives de l'équation e es sera le produit de plusieurs facteurs u, v, w, ..., qui serviront de racines primitives aux equations

$$H^{(1)} = 1, \quad C = 1, \quad \Omega^{(1)} = 1,$$

Démonstration — Si n est un nombre premier, toutes les racines de l'equation (+), autres que l'unite, seront primitives, en vertu du corollaire qui precede. Le nombre de ces racines primitives sera évi demment n=+.

Si n est une puis since d'un nombre premier a_i c'est-à-dire de la torme

$$(40) n - n^2.$$

alors toute sacine non primitive de l'equation (+) on

verifiera l'equation

pursque font nombre divisent de a', mars inférieur à a', divisera nécessairement a'. Donc les racines non primitives de l'équation (3) secont alors en nombre egal à a'. Les racines restantes, dont le nombre aura pour me aire la différence.

$$(0)$$
 $u^{1/2} = u^{1/2} = u^{1/2} (u - v) = u(v - \frac{1}{u}),$

seron) toute openinhyes.

St n n'est pas un nombre premier, ni une puissance d'un nombre premier, on pourra decomposer n en deux facteurs h, k premiers entre eux, et, pour verifier l'equation (\cdot,\cdot) on

$$V^{\mu\nu} = V$$

it suffira de prendre

y, z étant des racines des deux équations

$$y^h = 1,$$

$$z^{\lambda} = 1,$$

J'ajonte que, si, dans la formule (41), on substitue successivement à y toutes les racines de l'équation (42), et à z toutes les racines de l'équation (40). En effet, le nombre des racines de l'équation (42) étant égal à h, et le nombre des racines de l'équation (43) égal à k, le nombre des valeurs de x, déduites de la formule (41), sera égal au produit hk, e'est-à-dire au nombre des racines de l'équation (2) ou (40); et d'ailleurs il est facile de s'assurer que ces valeurs seront toutes distinctes les unes des autres Car, si l'on désigne par y_1 , y_2 deux racines de l'équation (42), par z_1 , z_2 deux racines de l'équation (43), et si l'on suppose

$$y_1 z_1 = y_2 z_2,$$

on en conclura

$$\frac{y_2}{y_1} = \frac{z_1}{z_2},$$

$$\left(\frac{y_2}{y_1}\right)^{\lambda} = \left(\frac{z_1}{z_2}\right)^{\lambda} = \frac{z_1^{\lambda}}{z_2^{\lambda}} = 1;$$

et, comme on aura d'autre part

$$\left(\frac{y_2}{y_1}\right)^h = \frac{y_2^h}{y_1^h} = 1,$$

il est clair que le rapport $\frac{\mathcal{Y}_2}{\mathcal{Y}_1}$ sera une racine commune des deux équations

$$x^h = 1, \quad x^k = 1;$$

par conséquent, la racine unique de l'équation

$$x = 1$$

puisque h et k n'ont d'autre commun diviseur que l'unité. On trouverait donc alors

$$y_2 = y_1$$

et de même

$$z_2 = z_1$$
.

Donc les valeurs de x fournies par l'équation (41), et correspondantes à des systèmes divers de valeurs de y et de z, seront toutes distinctes les unes des autres, et respectivement égales aux diverses racines de l'équation (40).

Enfin il est clair que le produit yz sera une racine primitive de l'équation (40), lorsque y, z seront des racines primitives des équations (41), (42). En effet, soit m le degré de la plus petite puissance de yz qui soit équivalente à l'unité. Comme le nombre m devra diviser le produit hk, on aura nécessairement

$$m = st$$

s désignant un diviseur de h et ι un diviseur de k. De plus, en élevant chaque membre de la formule

$$(44) \qquad \qquad (yz)^{st} = 1$$

à la puissance entière du degré $\frac{k}{L}$, en en tirera

$$(yz)^{sk} = 1$$

et, par conséquent,

$$y^{sh} = 1.$$

Or les formules (42), (45) devant subsister simultanément, et s'étant le plus grand commun diviseur des nombres h et sk, on en conclura

$$y^{s}=1.$$

On trouvera de même

$$z' = \iota.$$

Done la formule (4/4) entraîne les formules (46) et (47). D'ailleurs, si y et z sont des racines primitives des équations (42) et (43), les exposants s, t, dans les formules (46), (47), ne pourront devenir inférieurs, le premier au nombre k, le second au nombre k. Done alors la plus

petite valeur que l'on puisse attribuer à m sera m = hk, et, par conséquent, x sera une racine primitive de l'équation (40). Ajoutons que, si les facteurs y, z ne sont pas tous deux des racines primitives des équations qu'ils vérifient, le produit yz ne sera pas non plus une racine primitive de l'équation (40), puisqu'en supposant remplies les deux conditions s < h, t < k, ou l'une d'entre elles, on pourra des formules, (46), (47) déduire immédiatement la formule (44), dans laquelle on aura st < hk.

Soient maintenant a, b, c, \ldots les facteurs premiers de n, en sorte qu'on ait

$$n = a^{\alpha} b^{\beta} c^{\gamma} \dots$$

D'après ce qu'on vient de dire, on obtiendra les racines primitives de l'équation (1) en multipliant celles de l'équation (37), qui sont en nombre égal à $a^{\alpha-1}(a-1)$, par celles de l'équation

$$x^{b^{\beta}c^{l}}=1.$$

De même, on obtiendra ces dernières en multipliant celles de l'équation

$$x^{h^{\theta}} = 1$$
,

qui sont en nombre égal à $b^{\beta-1}(b-1)$, par les racines primitives de l'équation

$$x^{e^{l}} = 1$$
.

En continuant de la même manière, on finira par reconnaître que chaque racine primitive de l'équation (2) est le produit de plusieurs facteurs u, c, w, ..., qui servent de racines primitives aux équations (35); et, comme les produits de cette espèce seront tous distincts les uns des autres, il est clair que le nombre de ces produits ou l'expression

148)
$$N = a^{\alpha-1}b^{\beta-1}c^{\gamma-1}...(a-1)(b-1)(c-1)... = n\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)\left(1-\frac{1}{c}\right)...$$

indiquera précisément le nombre des racines primitives de l'équation (2).

Si dans le produit u, e, ω, \ldots on faisait entrer successivement toutes les racines primitives ou non primitives des équations (35), on obtiendrait évidemment pour résultats toutes les racines primitives ou non primitives de l'équation (2).

Scolie 1. — Soit ρ une racine primitive de l'équation (2). Les diverses puissances de ρ , d'un degré inférieur à n, savoir

(19)
$$\rho^0 = 1, \quad \rho, \quad \rho^2, \quad \rho^3, \quad \dots, \quad \rho^{n-1},$$

seront évidemment des racines de la même équation. De plus, ces racines seront distinctes les unes des autres. Car, si l'on suppose

$$\rho' = \rho'''$$

m étant inférieur à n, et l'égal ou inférieur à m, on en conclura

$$\rho^{m-l}=1$$
;

par conséquent, m-l=0 ou m=l, puisque, ρ étant racine primitive, aucune puissance de ρ , d'un degré différent de zéro, et inférieur à n, n'aura pour valeur l'unité. Donc la suite (49) comprendra foutes les racines de l'équation (2). De plus, si les nombres n et m < n ont un commun diviseur $\omega > 1$, alors, en prenant

$$x=\rho^m$$

on vérifiera, non seulement l'équation (2), mais encore la suivante

$$x^{\frac{n}{m}} = 1$$
,

et, par conséquent, $w = \rho^m$ ne sera pas une racine primitive. Donc les seules puissances de ρ qui pourront servir de racines primitives à l'équation (2) seront celles qui offriront des exposants premiers à n. Il est d'ailleurs facile de s'assurer que, si m est premier à n, $w = \rho^m$ sera une racine primitive. Alors, en effet, si l'on désigne par

$$x^s = \rho^{ms}$$

la plus petite puissance de α qui se réduise à l'unité, le plus grand

commun diviseur de ms et de n sera le même que celui de s et de n. Or, en vertu du théorème V, la puissance de ρ , dont l'exposant sera égal à ce plus grand commun diviseur, aura pour valeur l'unité; et, puisque ρ est une racine primitive, l'exposant dont il s'agit ne pourra offrir un exposant inférieur à n. Donc la plus petite valeur qu'on puisse attribuer à s doit être divisible par n, et ne saurait différer de s=n; d'où il résulte que $x=\rho^m$ sera, dans l'hypothèse admise, une racine primitive de l'équation (2).

Scolie II. — Puisque les diverses racines primitives de l'équation (2) sont respectivement égales aux diverses puissances de ρ dont les exposants sont premiers à p, mais inférieurs à n, l'expression (48) indique certainement combien il y a de nombres entiers premiers à n, et plus petits que n. C'est, au reste, ce qu'il scrait facile de prouver directement.

Théorème VII. — Soient p un nombre premier quelconque et n un nombre entier diviseur de p-1. L'équivalence

$$x^n \equiv 1 \pmod{p}$$

admettra autant de racines primitives qu'il y a de nombres entiers premiers à n, mais inférieurs à n; et, si l'on suppose

$$(37) n = a^{\alpha}b^{\beta}c^{\gamma}...$$

 a, b, c, \ldots étant les facteurs premiers de n, chacune des racines primitives de l'équivalence (3) sera le produit de plusieurs facteurs u, v, w, \ldots qui serviront de racines primitives aux équivalences

(50)
$$u^{a^2} \equiv 1$$
, $v^{b^{\beta}} \equiv 1$, $w^{c^{\ell}} \equiv 1$, ... (mod. p).

Démonstration. — Pour établir le théorème VII, il suffit de remplacer, dans la démonstration que nous avons donnée du théorème VI, le signe = par le signe \equiv , en prenant le nombre p pour module.

Scolie I. — Soit r une racine primitive de l'équivalence (3). Les diverses puissances de r d'un degré inférieur à n, savoir

(51)
$$r^0 = 1, r, r^2, r^3, \ldots, r^{n-1},$$

seront évidemment des racines de la même équivalence. De plus, ces racines seront distinctes les unes des autres. Car, si l'on suppose

$$r^l \equiv r^m \pmod{p}$$
,

m étant inférieur à n, et l'égal ou inférieur à m, on en conclura

$$r^{m-l} = 1$$
 (mod. p),

par conséquent m = l. Donc la suite (51) comprendra toutes les racines de la formule (3). De plus, si les nombres n et m < n ont un commun diviseur $\omega > 1$, alors, en prenant

$$x \neq r^m \pmod{p}$$
,

on vérifiera, non seulement la formule (3), mais la suivante

$$x^{\frac{n}{10}}$$
. $\tau \pmod{p}$,

et, par conséquent, $x = r^m$ ne sera pas une racine primitive. Donc les seules puissances de r qui pourront servir de racines primitives à la formule (3) seront celles qui offriront des exposants premiers à n. Enfin, comme le nombre N des racines primitives est précisément égal au nombre des puissances de r qui offrent des exposants premiers à n, mais plus petits que n, on peut affirmer que chacune de ces puissances sera une racine primitive. C'est d'ailleurs ce qu'il serait facile de prouver directement.

Scolte II. — Lorsque n devient égal à $p-\tau$, les racines primitives de l'équivalence (3) réduite à la forme

$$x^{p-1}z=1 \pmod{p}$$

sont ce qu'on appelle les racines primitives du nombre premier p. Cela posé, on trouvera toujours, pour un nombre premier p, autant de racines primitives qu'il y aura de nombres premiers à p, mais inférieurs à p.

THEORÈME VIII. — Soient p une racine primitive de l'équation (2), r une Officeres de G. — S. H. U.IX.

racine primitive de l'équivalence (3), et ω un diviseur entier de n. Les deux formules

$$(52) v^{\frac{n}{\overline{\omega}}} = 1,$$

$$(53) x^{\frac{n}{\overline{\omega}}} \equiv 1 (\text{mod.} p)$$

auront pour racines les puissances de $\hat{\rho}$ et de r dont les exposants scront multiples de ω , et pour racines primitives celles des mêmes puissances dont les exposants, divisés par ω , donneront pour quotients des nombres qui seront premiers à $\frac{n}{\omega}$.

Démonstration. — En effet, dans l'hypothèse admise, les différents termes compris dans la suite

(54)
$$\rho^0 = 1, \ \rho^{\omega}, \ \rho^{2\omega}, \ldots, \qquad \rho^{\binom{n}{\omega}-1}{}^{\omega} = \rho^{n-\omega},$$

et dont le nombre est $\frac{n}{\omega}$, seront autant de racines distinctes de l'équation (52), tandis que les différents termes compris dans la suite

(55)
$$r^0 = 1, r^{\omega}, r^{2\omega}, \dots, r^{\left(\frac{n}{\omega}-1\right)\omega} = r^{n-\omega}$$

seront autant de racines distinctes de l'équivalence (53). De plus, m désignant un des nombres entiers $0, 1, 2, \ldots, \frac{n}{6} - 1, \rho^{m\omega}$ deviendra une racine primitive de l'équation (52), et $r^{m\omega}$ une racine primitive de l'équivalence (53), si mn est le plus petit multiple de $m\omega$ qui soit divisible par n, par conséquent si m est premier à $\frac{n}{\omega}$.

Theorème IX. — Les mêmes choses étant posées que dans les théorèmes VI et VII, désignons par

$$n, n', n'', \ldots$$

les termes positifs, et par

$$-n_1, -n_2, \ldots$$

les termes négatifs que présente le développement du produit

(56)
$$N = n\left(1 - \frac{1}{a}\right)\left(1 - \frac{1}{b}\right)\left(1 - \frac{1}{c}\right)\dots$$

Faisons d'ailleurs

(57)
$$X = \frac{(x^n - 1)(x^{n'} - 1)(x^{n''} - 1)\dots}{(x^n - 1)(x^{n'} - 1)\dots}.$$

X sera une fonction entière de x, et les deux formules

$$\mathbf{X} = \mathbf{0},$$

$$(59) \lambda = 0 (mod.p)$$

auront pour racines, la première, les racines primitives de l'equation (2). la seconde, les racines primitives de l'équivalence (3).

Démonstration. -- Comme, en développant le produit N, on trouvera

(60)
$$N=n-\frac{n}{a}-\frac{n}{b}-\frac{n}{c}-\ldots+\frac{n}{ab}+\frac{n}{ac}+\ldots+\frac{n}{bc}+\ldots-\frac{n}{abc}-\ldots$$

on en conclura

(61)
$$X = \frac{\left(\frac{x^n-1}{a^{\frac{n}{a}}-1}\right)\left(\frac{x^{\frac{n}{ab}}-1}{x^{\frac{n}{b}}-1}\right) \dots \left(\frac{x^{\frac{n}{bc}}-1}{x^{\frac{n}{b}}-1}\right) \dots \left(\frac{x^{\frac{n}{bc}}-1}{x^{\frac{n}{bc}}-1}\right) \dots }{\left(\frac{x^{\frac{n}{ab}}-1}{x^{\frac{n}{bc}}-1}\right) \dots \left(\frac{x^{\frac{n}{abc}}-1}{x^{\frac{n}{abc}}-1}\right) \dots }$$

Cela posé, soit ρ une racine primitive de l'équation (2), et r une racine primitive de l'équivalence (3). Chacun des binômes

(62)
$$\begin{cases} x^{n} - 1, & x^{n} - 1, & x^{\frac{n}{b}} - 1, & x^{\frac{n}{c}} - 1, & \dots; \\ x^{n} & x^{\frac{n}{ab}} - 1, & x^{\frac{n}{bc}} - 1, & \dots; & x^{\frac{n}{abc}} - 1, & \dots \end{cases}$$

sora égal au produit de quelques-uns des facteurs linéaires

(63)
$$x = 1, x = \rho, x = \rho^2, \ldots, x = \rho^{n-1},$$

et de plus équivalent, suivant le module p, au produit de quelquesuns des facteurs linéaires

$$(6'_1) x-r, x-r, x-r^2, \dots, x-r^{n-1}.$$

D'ailleurs, m étant l'un quelconque des nombres entiers

$$0, 1, 2, \ldots, R-1,$$

le facteur linéaire $x - \rho^m$ divisora seulement le premier des bi-

nômes (62), si ρ^m est une racine primitive de l'équation (2). Le même facteur divisera les deux binômes

$$x^{n}-1, \quad x^{\frac{n}{a}}-1,$$

lorsque ρ^m sera une racine de l'équation $v^{\frac{n}{a}}=1$. Il divisera les quatre binòmes

$$x^{n}-1$$
, $x^{\frac{n}{a}}-1$, $x^{\frac{n}{b}}-1$, $x^{\frac{n}{ab}}-1$,

lorsque ρ^m sera une racine de l'équation $x^{ab} = \tau$, ... et généralement il divisera tous les binòmes dans lesquels les exposants de x seront égaux aux termes que présente le développement du produit

(65)
$$\begin{cases} n\left(1-\frac{1}{a}\right), & \text{off } n\left(1-\frac{1}{b}\right), & \text{off } n\left(1-\frac{1}{c}\right), \\ \text{off } n\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right), & \text{off } n\left(1-\frac{1}{a}\right)\left(1-\frac{1}{c}\right), & \dots, & \text{off } n\left(1-\frac{1}{b}\right)\left(1-\frac{1}{c}\right), & \dots, \\ \text{off } n\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)\left(1-\frac{1}{c}\right), & \dots, \end{cases}$$

lorsque ρ^m sera une racine de l'équation

(66)
$$\begin{cases} x^{\frac{n}{a}} = 1, & \text{ou } x^{\frac{n}{b}} = 1, & \text{ou } x^{\frac{n}{c}} = 1, & \dots, \\ 0 & x^{\frac{n}{ab}} = 1, & \text{ou } x^{\frac{n}{ab}} = 1, & \dots, & \text{ou } x^{\frac{n}{bc}} = 1, & \dots \end{cases}$$

c'est-à-dire lorsque le nombre m sera multiple de a, on de b, ou de c, ..., ou de ab, ou de ac, ..., ou de bc, ..., ou de abc, D'ailleurs, comme, dans le développement de chacun des produits que nous venons d'indiquer, le nombre des termes positifs est précisément égal au nombre des termes négatifs, il est clair que le facteur linéaire $x-\rho^m$ divisera généralement, dans le numérateur de la fraction que renferme la formule (61), autant de binômes que dans le dénominateur. Donc, en général, ce facteur disparaîtra, si l'on réduit la fraction

dont il s'agit à sa plus simple expression. On doit seulement excepter le cas où ρ^m , cessant d'être racine d'une ou de plusieurs des équations (66), deviendrait racine primitive de l'équation (2). Done la valeur de X, déterminée par la formule (61), sera égale au produit de ceux des facteurs (63) qui répondent aux racines primitives de l'équation (2). Done X sera une fonction entière de x, et l'équation (58) aura pour racines les racines primitives de l'équation (2).

Si, dans la fraction que renferme la formule (61), on remplaçait chacun des binômes (62) par le produit équivalent de plusieurs des facteurs (64), cette fraction, réduite à sa plus simple expression, serait le produit de ceux des mêmes facteurs qui répondent aux racines primitives de la formule (3). On en doit conclure que l'équivalence (59) aura pour racines les racines primitives de l'équivalence $x^n \varepsilon = \varepsilon \pmod{p}$.

Corollaire I. — Si l'on suppose que le nombre n se réduise à une puissance d'un certain nombre premier a, en sorte qu'on ait

$$(35) n = a^{\alpha},$$

on trouvera

(67)
$$X = \frac{v^n - 1}{\frac{n}{a}} = v^{n\left(1 - \frac{1}{a}\right)} + x^{n\left(1 - \frac{3}{a}\right)} + \dots + v^{\frac{n}{a}} + 1.$$

Par conséquent, l'équation (2) aura pour racines primitives les racines de l'équation

(68)
$$x^{n\left(1-\frac{1}{a}\right)} + x^{n\left(1-\frac{2}{a}\right)} + \dots + x^{\frac{n}{a}} + 1 = 0,$$

et l'équivalence (3) aura pour racines primitives les racines de la formule

(69)
$$x^{n\left(1-\frac{1}{a}\right)} + x^{n\left(1-\frac{2}{a}\right)} + \ldots + x^{\frac{n}{a}} + 1 \equiv 0 \pmod{p}.$$

Corollaire II. — Si n est le produit d'une puissance du nombre premier a par une puissance du nombre premier b, en sorte qu'on ait

$$(70) n = a^{\alpha}b^{\beta},$$

les racines primitives de l'équation (2) et de l'équivalence (3) se confondront avec les racines des deux formules

$$\frac{\left(x^{n}-1\right)\left(x^{\frac{n}{ab}}-1\right)}{\left(x^{\frac{n}{a}}-1\right)\left(x^{\frac{n}{b}}-1\right)}=0,$$

(72)
$$\frac{\left(x^{n}-1\right)\left(x^{\frac{n}{ab}}-1\right)}{\left(x^{\frac{n}{a}}-1\right)\left(x^{\frac{n}{b}}-1\right)} \equiv 0 \pmod{p}.$$

Corollaire III. — Si n est de la forme

$$(73) n = a^{\alpha}b^{\beta}c^{\gamma},$$

les racines primitives de l'équation (2) et de l'équivalence (3) se confondront avec les racines des deux formules

(74)
$$\frac{(x^{n}-1)(x^{\frac{n}{ab}}-1)(x^{\frac{n}{aa}}-1)(x^{\frac{n}{ba}}-1)}{(x^{\frac{n}{a}}-1)(x^{\frac{n}{b}}-1)(x^{\frac{n}{a}}-1)(x^{\frac{n}{ab}}-1)} = 0,$$

$$(75) \qquad \frac{\left(x^{n}-1\right)\left(x^{\frac{n}{ab}}-1\right)\left(x^{\frac{n}{ac}}-1\right)\left(x^{\frac{n}{b}}-1\right)}{\left(x^{\frac{n}{a}}-1\right)\left(x^{\frac{n}{b}}-1\right)\left(x^{\frac{n}{ab}}-1\right)\left(x^{\frac{n}{abc}}-1\right)} = 0 \qquad \text{(mod.}p).$$

Corollare IV. — Soient p un nombre premier queleonque et a, b, c, ... les facteurs premiers de p-1, en sorte qu'on ait

$$(76) p - 1 = a^{\alpha}b^{\beta}c^{\gamma}...$$

Les racines primitives du nombre p se confondront avec les racines de l'équivalence

(77)
$$\frac{(x^{p-1}-1)\left(\frac{p-1}{x^{\frac{p-1}{ab}}-1\right)\left(\frac{p-1}{x^{\frac{p-1}{ac}}-1\right)\dots\left(\frac{p-1}{x^{\frac{p-1}{abc}}-1}\right)\dots}{\left(\frac{p-1}{x^{\frac{p-1}{a}}-1\right)\left(\frac{p-1}{x^{\frac{p-1}{abc}}-1\right)\dots\left(\frac{p-1}{x^{\frac{p-1}{abc}}-1}\right)\dots}=0 \quad (\text{mod.}p),$$

Dans les binômes que renferme le premier membre de cette équivalence, les exposants de x sont respectivement égaux aux valeurs numé-

riques des termes que présente le développement du produit

(78)
$$\begin{cases} (p-1)\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)\left(1-\frac{1}{c}\right)\cdots \\ = (p-1)-\frac{p-1}{a}-\frac{p-1}{b}-\frac{p-1}{c}+\cdots \\ +\frac{p-1}{ab}+\frac{p-1}{ac}+\cdots+\frac{p-1}{bc}+\cdots -\frac{p-1}{abc}-\cdots \end{cases}$$

Exemples. — Puisqu'on trouve, en prenant p=3, p-1=2, a=2,

$$(p-1)\left(1-\frac{1}{a}\right)=2\left(1-\frac{1}{2}\right)=2-1;$$

en prenant p=5, p-1=4, a=2,

$$(p-1)\left(1-\frac{1}{a}\right)=4\left(1-\frac{1}{2}\right)=4-2;$$

en prenant p = 7, p = 1 = 6, a = 2, b = 3,

$$(p-1)\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)=6\left(1-\frac{1}{3}\right)\left(1-\frac{1}{3}\right)=6-3-2+1;$$

en prenant p = 111, p = 1 = 10, a = 2, b = 5,

$$(p-1)\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)=10\left(1-\frac{1}{2}\right)\left(1-\frac{1}{5}\right)=10-5-2+1;$$

en prenant p = 13, p - 1 = 12, a = 2, b = 3,

$$(p-1)\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)=12\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)=12-6-4+2;$$

en prenant p = 17, p = 1 = 16, a = 2,

$$(p-1)\left(1-\frac{1}{a}\right)=16\left(1-\frac{1}{2}\right)=16-8;$$

280

etc., et que l'on a d'ailleurs

$$\frac{x^{2}-1}{x^{2}-1} = x + 1,$$

$$\frac{x^{3}-1}{x^{2}-1} = x^{2} + 1,$$

$$\frac{(x^{6}-1)(x-1)}{(x^{3}-1)(x^{2}-1)} = \frac{x^{3}+1}{x+1} = x^{2} - x + 1,$$

$$\frac{(x^{10}-1)(x-1)}{(x^{3}-1)(x^{2}-1)} = \frac{x^{3}+1}{x+1} = x^{3} - x^{3} + x^{2} - x + 1,$$

$$\frac{(x^{12}-1)(x^{2}-1)}{(x^{6}-1)(x^{4}-1)} = \frac{x^{6}+1}{x^{2}+1} = x^{4} - x^{2} + 1,$$

$$\frac{x^{16}-1}{x^{8}-1} = x^{8} + 1,$$

on peut affirmer que les racines primitives de 3 se réduisent à la racine unique de l'équivalence

$$(79) c+1 \equiv 0 (mod, 3);$$

que les racines primitives de 5 coincident avec les racines de l'équivalence

$$(80) a^2 + i \equiv 0 (mod, 5);$$

les racines primitives de 7 avec les racines de l'équivalence

(81)
$$x^2 - x + 1 \equiv 0 \pmod{7};$$

les racines primitives de 11 avec les racines de l'équivalence

(82)
$$x^3 - x^3 + x^4 - x + 1 \equiv 0 \pmod{11}$$
;

les racines primitives de 13 avec les racines de l'équivalence

(83)
$$x^4 - x^2 + 1 = 0 \pmod{13}$$
;

les racines primitives de 17 avec les racines de l'équivalence

$$(84) x^8 + 1 \cong 0 (mod. 17),$$

etc.

On trouverait de même que les racines primitives des nombres 19.

٠,

23, 29, 31, 37, ... se confordent avec les racines des équivalences

$$x^{6} - x^{3} + 1 \equiv 0 \pmod{19},$$

$$x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{6} + x^{5} - x^{3} + x^{2} - x + 1 \equiv 0 \pmod{23},$$

$$x^{12} - x^{10} + x^{8} - x^{6} + x^{5} - x^{2} + 1 \equiv 0 \pmod{32},$$

$$x^{8} + x^{7} - x^{6} - x^{5} - x^{3} + x + 1 \equiv 0 \pmod{31},$$

$$x^{12} - x^{6} + 1 \equiv 0 \pmod{37},$$

$$\dots$$

11 est d'ailleurs facile de s'assurer que les racines primitives des nombres 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, ... vérifient les formules qu'on vient d'obtenir. En effet, ces racines primitives, lorsqu'on représente chacune d'elles par un nombre renfermé entre les limites 0, p, sont respectivement

```
pour p = 3, ..., 2,

p = 5, ..., 2, 3,

p = 7, ..., 3, 5,

p = 11, ..., 2, 6, 7, 8,

p = 13, ..., 2, 6, 7, 11,

p = 17, ..., 3, 5, 6, 7, 10, 11, 12, 14,

p = 19, ..., 2, 3, 10, 13, 14, 15,

p = 123, ..., 5, 7, 10, 11, 14, 15, 17, 19, 20, 21,

p = 23, ..., 5, 7, 10, 11, 14, 15, 18, 19, 21, 26, 27,

p = 31, ..., 3, 11, 12, 13, 17, 21, 22, 24,

p = 37, ..., 2, 5, 13, 15, 17, 18, 19, 20, 22, 24, 32, 35.
```

Elles deviendraient

```
pour p = 3, \ldots, -1,

p = 5, \ldots, -2, 2,

p = 7, \ldots, -2, 3,

p = 11, \ldots, -5, -4, -3, 2,

p = 13, \ldots, -6, -2, 2, 6,

p = 17, \ldots, -7, -6, -5, -3, 3, 5, 6, 7,

p = 19, \ldots, -9, -6, -5, -4, 2, 3,

p = 23, \ldots, -9, -8, -6, -4, -3, -2, 5, 7, 10, 11,

p = 29, \ldots, -14, -11, -10, -8, -3, -2, 2, 3, 8, 10, 11, 14,

p = 31, \ldots, -14, -10, -9, -7, 3, 11, 12, 13,

p = 37, \ldots, -18, -17, -15, -13, -5, -2, 2, 5, 13, 15, 17, 18,

OEueres de C, - S. II, t. IX.
```

si on les représentait par des quantités comprises entre les limites $-\frac{p}{2}$, $+\frac{p}{2}$. On aura d'ailleurs évidemment

$$3+1 = 0 \pmod{3},$$

 $3^2+1=3^2+1=0 \pmod{5},$
 $3^2-3+1=5^2-5+1=0 \pmod{7},$

Il est bon d'observer que le produit (78) sera un nombre pair, si l'un des facteurs a, b, c, \ldots est impair, ou si p-1 est divisible par 4. Donc ce produit sera toujours pair, excepté dans le cas où l'on supposerait n=3. De plus, les différents termes compris dans le second membre de la formule (78) seront pairs eux-mêmes, si p-1 est divisible par 4. Il suit de ces observations que l'équation (77), réduite à sa forme la plus simple, aura pour premier terme une puissance paire de x, si p n'est pas égal à 3, et ne renfermera que des puissances paires de x, si p-1 est divisible par 4. D'ailleurs le dernier terme de cette équation sera la valeur du rapport

$$\frac{(x^n-1)\left(x^{\frac{n}{ab}}-1\right)\left(x^{\frac{n}{ac}}-1\right)\ldots\left(x^{\frac{n}{bc}}-1\right)\ldots\left(x^{\frac{n}{bc}}-1\right)\ldots\left(x^{\frac{n}{bc}}-1\right)\ldots\left(x^{\frac{n}{abc}}-1\right)\ldots,}{\left(x^{\frac{n}{a}}-1\right)\left(x^{\frac{n}{bc}}-1\right)\left(x^{\frac{n}{bc}}-1\right)\ldots\left(x^{\frac{n}{abc}}-1\right)\ldots},$$

correspondante à w=o, c'est-à-dire l'unité. Donc, si l'on excepte le cas où l'on aurait $p\equiv 3$, les racines primitives du nombre p donneront l'unité pour produit; et ces racines pourront être considérées comme deux à deux égales, mais affectées de signes contraires, toutes les fois que le nombre p, divisé par 4, donnera 1 pour reste.

Theorème X. - Soient

$$\xi_1, \quad \xi_2, \quad \ldots, \quad \xi_{m-1}, \quad \xi_m$$

les racines de l'équation

$$(85) a_0 x^m + a_1 x^{m-1} + \ldots + a_{m-1} x + a_m = 0,$$

dans laquelle $a_0, a_1, \ldots, a_{m-1}, a_m$ désignent des quantités entières, p un

nombre premier supérieur ou égal à m, et supposons que l'équivalence

(4)
$$a_0 x^m + a_1 x^{m-1} + \ldots + a_{m-1} x + a_m = 0 \pmod{p}$$

admette m racines distinctes représentées par

$$x_1, x_2, \ldots, x_{m-1}, x_m$$

Soient d'ailleurs

$$\mathbf{F}(\xi_1,\,\xi_2,\,\ldots,\,\xi_{m-1},\,\xi_m)$$

une fonction entière et symétrique de $\xi_1, \xi_2, \ldots, \xi_{m-1}, \xi_m$, à coefficients entiers ou rationnels, et U la valeur entière ou fractionnaire de cette même fonction. L'équation

(86)
$$F(\xi_1, \, \xi_2, \, \ldots, \, \xi_{m-1}, \, \xi_m) = U$$

entraînera l'équivalence

(87)
$$F(x_1, x_2, ..., x_{m-1}, x_m) \equiv U \pmod{p}.$$

Démonstration. — Les fonctions symétriques de $\xi_1, \xi_2, \ldots, \xi_{m-1}, \xi_m$ et de $x_1, x_2, \ldots, x_{m-1}, x_m$, représentées par

$$F(\xi_1, \xi_2, \ldots, \xi_{m-1}, \xi_m)$$
 et $F(x_1, x_2, \ldots, x_{m-1}, x_m)$,

peuvent être considérées, la première comme une fonction entière des sommes .

(88)
$$\begin{cases} \xi_{1} + \xi_{2} + \ldots + \xi_{m} = -\frac{a_{1}}{a_{0}}, \\ \xi_{1} \xi_{2} + \xi_{1} \xi_{3} + \ldots + \xi_{1} \xi_{m} + \xi_{2} \xi_{3} + \ldots + \xi_{2} \xi_{m} + \ldots + \xi_{m-1} \xi_{m} = \frac{a_{2}}{a_{0}}, \\ \xi_{1} \xi_{2} + \ldots + \xi_{m-1} \xi_{m} = \pm \frac{a_{m}}{a_{0}}, \end{cases}$$

la seconde comme une fonction semblable des quantités que l'on déduit de ces mêmes sommes en écrivant partout ξ au lieu de x, quan-

284

tités qui vérifient les formules (10) et, par conséquent, les suivantes

$$\begin{cases}
x_1 + x_2 + \ldots + x_m & \frac{a_1}{a_0} \pmod{p}, \\
x_1 x_2 + x_1 x_3 + \ldots + x_1 x_m + x_2 x_3 + \ldots + x_2 x_{m-1}, & \cdots \\
x_1 x_2 + x_1 x_3 + \dots + x_m + x_m + x_n x_n + \dots + x_n x_{m-1}, & \cdots \\
x_1 x_2 + x_1 x_3 + \dots + x_m + x_m + x_n x_n + \dots + x_n x_{m-1}, & \cdots \\
x_n x_n x_n + x_n x_n + \dots + x_$$

Or il suit évidemment de cette remarque qu'en omettant les multiples de p on trouvera pour la fonction

$$F(x_1, x_2, \ldots, x_{m-1}, x_m)$$

une valeur numérique entière ou fractionnaire précisement égale à celle de la fonction

$$F(\xi_1, \xi_2, \ldots, \xi_{m-1}, \xi_m).$$

Corollaire I. — Si, après avoir posé l'équation identique

(90)
$$u_0 x^m + u_1 x^{m-1} + \dots + u_{m-1} x + u_m - u_0 (x - \xi_1) (x - \xi_1) \dots + x = \xi_m x$$

on différentie par rapport à w les logarithmes des deux membres, on trouvera

(91)
$$\begin{cases} \frac{ma_0 x^{m-1} - (m-1)a_1 x^{m-2} + \dots + \alpha a_{m-2} x^{n} + a_{m-1}}{a_0 x^{m} - (a_1 x)^{m-1} + \dots + a_{m-2} x^{n} + a_{m-1} x + a_{m}} \\ = \frac{1}{\alpha^{n} - \xi_1} - \frac{1}{\alpha^{n} - \xi_2} + \dots + \frac{1}{\alpha^{n} - \xi_m}, \end{cases}$$

puis on en conclura, en supposant x>1,

$$\begin{cases}
\frac{mu_0 \cdot v^{m-1} + (m-1)u_1 \cdot v^{m-2} + \dots + (2u_{m-2}, r + u_{m-1})}{u_0 \cdot v^{m} + u_1 \cdot v^{m-1} + \dots + u_{m-2} \cdot v^1 + u_{m-1} \cdot v + u_m} \\
= \frac{1}{u^i} + (\xi_1 + \xi_2 + \dots + \xi_m) \int_{u^2}^{1} + (\xi_1^2 + \xi_2^2 + \dots + \xi_m^2) \int_{u^2}^{1} + (\xi_$$

Done, si l'on représente par

(93)
$$\frac{1}{x^2} + \frac{s_1}{x^2} + \frac{s_2}{x^3} + \frac{s_3}{x^3} + \dots$$

le développement du premier membre de la formule (92) suivant les puissances ascendantes de $\frac{1}{x}$, on aura

$$\begin{cases} \xi_1 + \xi_2 + \ldots + \xi_m = s_1, \\ \xi_1^2 + \xi_2^3 + \ldots + \xi_m^2 = s_2, \\ \xi_1^3 + \xi_2^3 + \ldots + \xi_m^3 = s_3, \\ \vdots \end{cases}$$

et généralement, l'étant un nombre entier quelconque,

$$\xi_1^l + \xi_2^l + \ldots + \xi_m^l = s_l.$$

Cela posé, il résulte du théorème X que l'on aura encore

(95)
$$x_1' + x_2' + \ldots + x_m' = s_t \pmod{p}$$
.

Corollaire II. — Le théorème X pourrait devenir inexact, ainsi que les formules (10) et (89), si le degré m de l'équivalence

(4)
$$a_0 x^m + a_1 x^{m-1} + \ldots + a_{m-1} x + a_m = 0 \pmod{p}$$

devenait supérieur à son module p, ou si ce module cessait d'être un nombre premier.

Corollaire III. - Si l'on réduit le polynôme

$$a_0x^m + a_1x^{m-1} + \ldots + a_{m-1}x + a_m$$

au binôme

les formules (85) et (4) deviendront respectivement

$$(96) x^m = 1,$$

$$(97) x^m \equiv 1 (mod. p).$$

On trouvera d'ailleurs

$$\frac{m}{x} + \frac{s_1}{x^2} + \frac{s_2}{x^3} + \frac{s_3}{x^3} + \ldots = \frac{m \, x^{m-1}}{x^m - 1} = \frac{m}{x} + \frac{m}{x^{m+1}} + \frac{m}{x^{2m+1}} + \ldots$$

et, par conséquent,

$$(98) \begin{cases} s_1 = 0, & s_2 = 0, & \dots, & s_{m-1} = 0, & s_m = m, \\ s_{m+1} = 0, & s_{m+2} = 0, & \dots, & s_{2m-1} = 0, & s_{2m} = m, \\ s_{2m+1} = 0, & s_{2m+2} = 0, & \dots, & s_{3m-1} = 0, & s_{3m} = m, \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ s_{2m+1} = 0, & s_{2m+2} = 0, & \dots, & s_{3m-1} = 0, & s_{3m} = m, \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ s_{2m+1} = 0, & s_{2m+2} = 0, & \dots, & s_{3m-1} = 0, & s_{3m} = m, \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ s_{2m+1} = 0, & s_{2m+2} = 0, & \dots, & s_{3m-1} = 0, & s_{3m} = m, \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ s_{2m+1} = 0, & s_{2m+2} = 0, & \dots, & s_{3m-1} = 0, & s_{3m} = m, \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ s_{2m+1} = 0, & s_{2m+2} = 0, & \dots, & s_{3m-1} = 0, & s_{3m} = m, \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ s_{2m+1} = 0, & s_{2m+2} = 0, & \dots, & s_{3m-1} = 0, & s_{3m} = m, \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ s_{2m+1} = 0, & s_{2m+2} = 0, & \dots, & s_{3m-1} = 0, & s_{3m} = m, \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ s_{2m+1} = 0, & s_{2m+2} = 0, & \dots, & s_{3m-1} = 0, & s_{3m} = m, \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ s_{2m+1} = 0, & s_{2m+2} = 0, & \dots, & s_{2m-1} = 0, & \dots, \\ s_{2m+1} = 0, & s_{2m+2} = 0, & \dots, & s_{2m-1} = 0, & \dots, \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ s_{2m+1} = 0, & s_{2m+2} = 0, & \dots, & s_{2m+2} = 0, & \dots, \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ s_{2m+1} = 0, & s_{2m+2} = 0, & \dots, & s_{2m+2} = 0, & \dots, \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ s_{2m+1} = 0, & s_{2m+2} = 0, & \dots, & s_{2m+2} = 0, & \dots, \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ s_{2m+1} = 0, & s_{2m+2} = 0, & \dots, & s_{2m+2} = 0, & \dots, \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ s_{2m+1} = 0, & s_{2m+2} = 0, & \dots, \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ s_{2m+1} = 0, & s_{2m+2} = 0, & \dots, \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ s_{2m+1} = 0, & s_{2m+2} = 0, & \dots, \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ s_{2m+1} = 0, & s_{2m+2} = 0, & \dots, \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ s_{2m+1} = 0, & s_{2m+2} = 0, & \dots, \\ \vdots & \vdots & \vdots & \vdots \\ s_{2m+1} = 0, & s_{2m+2} = 0, & \dots, \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ s_{2m+1} = 0, & s_{2m+2} = 0, & \dots, \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ s_{2m+1} = 0, & s_{2m+2} = 0, & \dots, \\ \vdots & \vdots & \vdots & \vdots \\ s_{2m+1} = 0, & \vdots & \vdots \\ s_{2m+1} = 0$$

On aura done

$$(99) s_l = m$$

toutes les fois que l sera multiple de m, et

$$(100) s_l = 0$$

dans le cas contraire. Cela posé, on déduira immédiatement des formules (99) et (100) les propositions suivantes :

Théorème XI. — La somme des puissances du degré 1, pour les ravines de l'équation (96), est égale au nombre m ou à zéro, suivant que l'est ou n'est pas multiple de m.

Théorème XII. — Si l'équivalence bindme

(97)
$$x^m = 1 \pmod{p}$$

admet m racines distinctes, la somme de leurs puissances du degré l sera équivalente, suivant le module p, au nombre m ou à zéro, suivant que l sera ou ne sera pas multiple de m.

Concevons maintenant que, p étant un nombre premier, n un diviseur de p-1, a, b, c, ... les facteurs premiers de n, et X une fonction de x déterminée par la formule (57), on réduise l'équation (85) ou l'équivalence (4) à l'équation (58) ou à l'équivalence (59). On trouvera, eu égard à la formule (61),

(101)
$$\left\{ \begin{array}{l} a_0 x^m + a_1 x^{m-1} + \dots + a_{m+1} x + a_m \\ = \frac{(x^n - 1) \left(x^{\frac{n}{nb}} - 1 \right) \left(x^{\frac{n}{aa}} - 1 \right) \dots \left(x^{\frac{n}{bv}} - 1 \right) \dots}{\left(x^{\frac{n}{a}} - 1 \right) \left(x^{\frac{n}{b}} - 1 \right) \left(x^{\frac{n}{aa}} - 1 \right) \dots \left(x^{\frac{n}{abv}} - 1 \right) \dots} ; \right.$$

puis on tirera: 1º de l'équation (101), en différentiant les logarithmes

$$\begin{pmatrix}
\frac{mu_{0}x^{m-1} + (m-1)u_{1}x^{m-2} + \dots + u_{m-1}}{u_{0}x^{m} + u_{1}x^{m-1} + \dots + u_{m-1}x + u_{m}} \\
\frac{nx^{m-1}}{u^{m} + u_{1}x^{m-1} + \dots + u_{m-1}x + u_{m}} \\
\frac{nx^{m-1}}{u^{m} + u_{1}x^{m-1} + \dots + u_{m-1}x + u_{m}} \\
\frac{nx^{m-1}}{u^{m} + u_{1}x^{m} + u_{1}x^{m} + u_{1}x + u_{m}} \\
\frac{nx^{m} + u_{1}x^{m} + u_{1}x^{m} + u_{1}x^{m} + u_{1}x^{m} + u_{1}x^{m}}{u^{m} + u_{1}x^{m} + u_{1}x^{m$$

2º de la formule (102), en développant les deux membres suivant les puissances ascendantes de $\frac{1}{r}$.

$$\frac{n}{a} + \frac{s_1}{x^2} + \frac{s_2}{x^3} + \frac{s_3}{x^3} + \dots - n \quad \left(\frac{1}{x} + \frac{1}{x^{n+1}} + \frac{1}{x^{2n+1}} + \dots\right) \\
- \frac{n}{a} \left(\frac{1}{a^2} + \frac{1}{\frac{n}{x^{n+1}}} + \frac{1}{2^{\frac{n}{n+1}}} + \dots\right) \\
- \frac{n}{b} \left(\frac{1}{x} + \frac{1}{\frac{n}{x^{b+1}}} + \frac{1}{x^{\frac{n}{b+1}}} + \dots\right) \\
- \frac{n}{c} \left(\frac{1}{x} + \frac{1}{\frac{n}{x^{b+1}}} + \frac{1}{x^{\frac{n}{a+1}}} + \dots\right) \\
+ \frac{n}{ab} \left(\frac{1}{x} + \frac{1}{\frac{n}{x^{ab}+1}} + \frac{1}{x^{\frac{n}{ab}+1}} + \dots\right) \\
+ \frac{n}{ac} \left(\frac{1}{x} + \frac{1}{\frac{n}{x^{ac+1}}} + \frac{1}{x^{\frac{n}{ab}+1}} + \dots\right) \\
+ \dots \\
+ \frac{n}{bc} \left(\frac{1}{x} + \frac{1}{\frac{n}{x^{bc+1}}} + \frac{1}{x^{\frac{n}{ab}+1}} + \dots\right) \\
+ \dots \\
- \frac{n}{abc} \left(\frac{1}{x} + \frac{1}{\frac{n}{x^{ab}+1}} + \frac{1}{x^{\frac{n}{abc}+1}} + \dots\right)$$

Par suite, on aura

$$(100) s_l = 0,$$

si In'est divisible par aucun des nombres entiers

(104)
$$n, \frac{n}{a}, \frac{n}{b}, \frac{n}{c}, \cdots; \frac{n}{ab}, \frac{n}{ac}, \cdots; \frac{n}{bc}, \cdots; \frac{n}{abc}, \cdots;$$

c'est-à-dire par aucun des termes renfermés dans le développement du produit (56). Mais, si le contraire arrive, alors, en nommant o le plus grand des nombres (104) qui divise I, on trouvera

Pour
$$\omega = n$$
, $s_{l} = n\left(1 - \frac{1}{a}\right)\left(1 - \frac{1}{b}\right)\left(1 - \frac{1}{c}\right) \dots = N$,

$$\omega = \frac{n}{a}, \quad s_{l} = -\frac{n}{a}\left(1 - \frac{1}{b}\right)\left(1 - \frac{1}{c}\right) \dots = \frac{N}{1 - a},$$

$$\omega = \frac{n}{b}, \quad s_{l} = -\frac{n}{b}\left(1 - \frac{1}{a}\right)\left(1 - \frac{1}{c}\right) \dots = \frac{N}{1 - b},$$

$$\omega = \frac{n}{c}, \quad s_{l} = -\frac{n}{c}\left(1 - \frac{1}{a}\right)\left(1 - \frac{1}{b}\right) \dots = \frac{N}{1 - c},$$

$$\omega = \frac{n}{ab}, \quad s_{l} = \frac{n}{ab}\left(1 - \frac{1}{c}\right) \dots = \frac{N}{(1 - a)(1 - b)},$$

$$\omega = \frac{n}{ac}, \quad s_{l} = \frac{n}{ac}\left(1 - \frac{1}{b}\right) \dots = \frac{N}{(1 - a)(1 - c)},$$

$$\omega = \frac{n}{bc}, \quad s_{l} = \frac{n}{bc}\left(1 - \frac{1}{a}\right) \dots = \frac{N}{(1 - a)(1 - b)(1 - c)},$$

$$\omega = \frac{n}{abc}, \quad s_{l} = -\frac{n}{abc} \dots = \frac{N}{(1 - a)(1 - b)(1 - c)},$$

Cela posé, on déduira immédiatement des formules (100) et (105) les

Cela posé, on déduira immédiatement des formules (100) et (105) les propositions suivantes:

Theoreme XIII. — Soient n un nombre entier quelconque, a, b, c, ... les facteurs premiers de n, et faisons

(56)
$$N = n \left(1 - \frac{1}{a} \right) \left(1 - \frac{1}{b} \right) \left(1 - \frac{1}{c} \right) \dots$$

somme des puissances du degré l, pour les racines primitives de l'équa-

$$x^n = 1$$

THEOREME XIV. — Les mêmes choses étant posées que dans le théome XIII, et p étant un nombre premier qui, divisé par n, donne 1 pour ste, la somme des puissances du degré l, pour les vaeines primitives de équivalence

)
$$x^n = t \pmod{p}$$
,

ret équivalente à zéro, suivant le module p, si l n'est divisible par aucun s nombres (104). Mais, si, parmi ces nombres, on trouve un ou plusieurs viscurs de l, il suffira de considérer le plus grand de ces diviseurs, puis de raplacer, dans son expression sous forme fractionnaire, les nombres n, b, c, ... par N, 1-a, 1-b, 1-c, ... pour obtenir une fraction trivalente à la somme dont il s'agit.

Corollaire 1. – Lorsque, dans le nombre n, chacun des facteurs prejeus a, b, c, \ldots se trouve simplement élevé à la première puissance,

$$n = abc...,$$

10 plus petit terme de la suite (104), ou $\frac{n}{abc...}$, se réduit à l'unité. Ors aussi la dernière des équations (105) donnera

A ouble signe devant être réduit au signe + ou au signe - suivant of curres de c - s 11, 1. IX.

que le nombre des facteurs a, b, c, \ldots sera pair ou impair; et la formule (107) subsistera toutes les fois que l'sera premier à n. On pourra donc prendre l=1, et par conséquent la somme des racines primitiees sera équivalente à ± 1 .

Corollaire II. — Lorsque, dans le nombre n, un ou plusieurs des facteurs a, b, c, \ldots sont élevés au carré ou à des puissances supérieures, le dernier terme de la suite (104), savoir $\frac{n}{abc...}$, surpasse l'unité, et, si l'on désigne par l un nombre entier inférieur à ce terme, on aura

$$(100) s_l = 0.$$

Done alors, en prenant l=1, on trouvera

$$(108) s_1 = 0$$

Ajoutous que, dans le cas dont il s'agit, l'équation (100) subsistera toutes les fois que le nombre entier l sera premier à n, ou même à $\frac{n}{abc...}$

En remplaçant, dans le théorème XIV, n par p-1, on en déduira immédiatement la proposition dont voici l'énoncé :

Théorime XV. — Soient p un nombre premier quelconque, et a, b, c, ... les facteurs premiers de $p-\tau$. La somme des puissances du degré t, pour les racines primitives du nombre p, sera équivalente à zéro, si l n'est divisible par aucun des nombres

(109)
$$\begin{cases} p-1, & \frac{p-1}{a}, & \frac{p-1}{b}, & \frac{p-1}{c}, & \dots, \\ \frac{p-1}{ab}, & \frac{p-1}{ac}, & \dots, & \frac{p-1}{bc}, & \dots, & \frac{p-1}{abc}, & \dots \end{cases}$$

Mais, si, parmi ces nombres, on trouve un ou plusieurs diviseurs de l, u suffira de considérer le plus grand de ces diviseurs, puis de remplacer, dans son expression sous forme fractionnaire, p-1 par le produit

$$(p-1)\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)\left(1-\frac{1}{c}\right)\dots,$$

a par 1-a, b par 1-b, c par 1-c, etc. pour obtenir une fraction équivalente à la somme dont il s'agit.

Corollaire 1. — Lorsque, dans le nombre p-1, chacun des facteurs a,b,c,\ldots se trouve simplement élevé à la première puissance, la somme des racines primitives du nombre p est équivalente à ± 1 , savoir à +1 quand les facteurs a,b,c,\ldots sont en nombre pair, et à -1 quand ils sont en nombre impair. La même somme est équivalente à zéro, lorsqu'un ou plusieurs des facteurs a,b,c,\ldots se trouvent, dans le nombre p-1, élevés au carré ou à une puissance supérieure. C'est, au reste, ce que l'on savait déjà. Mais on peut ajouter que, si l'on désigne par l un nombre premier à p-1, ou même à $\frac{p-1}{abc\ldots}$, la somme des puissances du degré l, pour les racines primitives du nombre p, sera toujours équivalente à la somme de ces racines.

Pour montrer une application du théorème XV, supposons p = 19. Dans ce cas, le nombre

$$p - 1 = 18 = 2.3^2$$

aura pour facteurs premiers 2 et 3. On pourra donc supposer a=2, b=3, et la suite (104) renfermera sculement quatre termes, savoir

18,
$$\frac{18}{3} = 9$$
, $\frac{18}{3} = 6$, $\frac{18}{2 \cdot 3} = 3$.

On trouvera d'ailleurs

$$(p-1)\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right) = 18 \times \frac{1}{2} \times \frac{2}{3} = 6,$$

Done, en vertu du théorème XV, la somme des puissances du degré t, pour les racines primitives de 19, sera équivalente à zéro, suivant le module 19, si t n'est pas divisible par 3. La même somme deviendra équivalente à 6, si t est divisible par 18, à $\frac{6}{1} = -6$, si t est divisible par $\frac{18}{2} = 9$, à $\frac{6}{2} = -3$, si t est divisible par $\frac{18}{3} = 6$, enfin à

$$\frac{6}{(-1)(-2)} = 3$$
,

292

si l'est divisible par 3. Effectivement, les racines primitives du nomb

19 sont

et l'on trouve

Theorems XVI. — Supposons, comme dans le théorème X, que l'on e signe par $a_0, a_1, \ldots, a_{m-1}, a_m$ des quantités entières, par

$$\xi_1, \quad \xi_2, \quad \dots, \quad \xi_{m-1}, \quad \xi_m$$

les racines de l'equation

(85)
$$a_0 x^m + a_1 x^{m-1} + \ldots + a_{m-1} x + a_m = 0,$$

par p un nombre premier supérieur ou égal à m, et que l'équivalence

$$(1) a_0 x^m + a_1 x^{m-1} + \dots + a_{m-1} x + a_m = 0 (\text{mod}, p)$$

admette m racines distinctes représentées par

$$x_1, x_2, \ldots, x_{m-1}, x_m$$

Soient d'ailleurs

$$\Phi(\xi_1,\,\xi_2,\,\ldots,\,\xi_m)$$

une fonction entière à coefficients entiers ou rationnels, mais non symé-

trique, des racines de l'équation (85), ou de plusieurs d'entre elles, et M le nombre des valeurs distinctes que cette fonction peut acquérir en vertu d'échanges opérés entre les racines $\xi_1, \xi_2, \ldots, \xi_m$. Désignons par

$$v_1, v_2, \ldots, v_N$$

ces mêmes valeurs, et par

$$u_1, u_2, \ldots, u_M$$

les quantités dans lesquelles elles se transforment, quand aux racines ξ_1, \ldots, ξ_m de l'équation (85) on substitue les racines x_1, x_2, \ldots, x_m de l'équivalence (4). Enfin soit

(110)
$$u^{N} + \Lambda_1 u^{N-1} + \Lambda_2 u^{N-2} + \ldots + \Lambda_{N-1} u + \Lambda_N = 0$$

l'équation qui a pour racines $\upsilon_1,\,\upsilon_2,\,\ldots,\,\upsilon_M$. Les coefficients $A_1,\,A_2,\,\ldots,\,A_M$ seront entiers ou rationnels, et l'équivalence

$$(+++) \qquad u^{M} + \Lambda_1 u^{M-1} + \Lambda_2 u^{M-2} + \dots + \Lambda_{M-1} u + \Lambda_M \pm 0 \qquad (\bmod, p)$$

aura pour racines u_1, u_2, \ldots, u_n .

Démonstration. — Comme, dans l'hypothèse admise, on aura identiquement

(113)
$$(u - v_1)(u - v_2)...(u - v_M) = u^M + \Lambda_1 u^{M-1} + ... + \Lambda_{M-1} u + \Lambda_M$$
 et, par suite,

$$\begin{pmatrix} A_1 & -(\upsilon_1 + \upsilon_2 + \ldots + \upsilon_M), \\ A_2 & \upsilon_1 \upsilon_2 + \upsilon_1 \upsilon_3 + \ldots + \upsilon_1 \upsilon_M + \upsilon_2 \upsilon_3 + \ldots + \upsilon_2 \upsilon_M + \ldots + \upsilon_{M-1} \upsilon_M, \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ A_M & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ A_M & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \end{pmatrix},$$

il est clair que A_1 , A_2 , A_M seront des fonctions symétriques de ξ_1 , ξ_2 , ..., ξ_m à coefficients entiers ou rationnels, et par conséquent des tonctions entières des rapports $\frac{a_1}{a_0}$, $\frac{a_2}{a_0}$, ..., $\frac{a_m}{a_0}$. Donc A_1 , A_2 , ..., A_M se réduiront à des quantités entières ou rationnelles. De plus, si, dans les seconds membres des équations (113), on remplace v_1 , v_2 , ..., v_M par

 u_1, u_2, \ldots, u_n , ces seconds membres, qui étaient des fonctions symétriques des racines de l'équation (85), se transformeront en des fonctions semblables des racines de l'équivalence (4). Or il suit évidenment de cette remarque, qu'en omettant les multiples de p, on aura encore

$$\begin{array}{l} \Lambda_1 \equiv -\left(u_1 + u_2 + \ldots + u_{\mathrm{M}}\right) \quad (\mathrm{mod}, p), \\ \Lambda_2 \equiv u_1 u_2 + u_1 u_3 + \ldots + u_1 u_{\mathrm{M}} + u_2 u_3 + \ldots + u_2 u_{\mathrm{M}} + \ldots + u_{\mathrm{M}-1} u_{\mathrm{M}}, \\ \Lambda_{\mathrm{M}} \equiv \pm u_1 u_2 \ldots u_{\mathrm{M}-1} u_{\mathrm{M}}, \end{array}$$

Done la formule

(115)
$$(u-u_1)(u-u_2)...(u-u_M) \equiv u^M + \Lambda_1 u^{M-1} + ... + \Lambda_{M-1} u + \Lambda_M \pmod{p}$$

subsistera, quel que soit u, et l'équivalence

$$(u-u_1)(u-u_2)...(u-u_M) \equiv 0 \pmod{p},$$

qui a pour racines $u_1,\ u_2,\ \ldots,\ u_M$, pourra être présentée sous la forme

(117)
$$u^{M} + \Lambda_{1}u^{M-1} + \Lambda_{2}u^{M-2} + \ldots + \Lambda_{M-1}u + \Lambda_{M-1}o$$
 (mod. ρ),

Au reste, le théorème XVI est compris, comme cas particulier, dans un théorème plus général, que l'on démontrerait de la même manière, et dont voici l'énoncé :

THEOREME XVII. - Soient

(118)
$$\begin{cases} a_0 x^m + a_1 x^{m-1} + \dots + a_{m-1} x + a_m = 0, \\ b_0 y^{m'} + b_1 y^{m'-1} + \dots + b_{m'-1} y + b_{m'} = 0, \\ c_0 z^{m'} + c_1 z^{m''-1} + \dots + c_{m''-1} z + c_{m''} = 0, \\ \dots & \dots & \dots \end{cases}$$

diverses équations algébriques, la première du degré m, la deuxième du degré m', la troisième du degré m'', ... et dans lesquelles

$$a_0, a_1, \ldots, a_{m-1}, a_m; b_0, b_1, \ldots, b_{m'-1}, b_{m'}; c_0, c_1, \ldots, c_{m''-1}, c_{m''}; \ldots$$

 $\xi_1, \xi_2, \ldots, \xi_{m-1}, \xi_m; \quad \alpha_1, \alpha_2, \ldots, \alpha_{m'+1}, \alpha_{m'}; \quad \zeta_1, \zeta_2, \ldots, \zeta_{m''-1}, \zeta_{m''}; \quad \ldots$ les racines de ces diverses équations, et

$$\Phi(\xi_1, \, \xi_2, \, \ldots, \, \xi_m; \, \, \eta_1, \, \eta_2, \, \ldots, \, \eta_{m'}; \, \zeta_1, \, \zeta_2, \, \ldots, \, \zeta_{m''}; \, \ldots)$$

une fonction entière de ces racines, à coefficients entiers ou rationnels. Représentons par M le nombre des valeurs distinctes que la fonction (119) peut acquérir, en vertu d'échanges opérés entre les racines de chacune des équations (118), par

$$(130) \qquad \qquad \upsilon_1, \ \upsilon_2, \ \ldots, \ \upsilon_N$$

ces mêmes valeurs; et soit

(131)
$$u^{M} + \Lambda_{1} u^{M-1} + \Lambda_{2} u^{M-2} + \dots + \Lambda_{M-1} u + \Lambda_{M} = 0$$

l'équation qui a pour racines v_1, v_2, \ldots, v_n . Enfin supposons que, p étant un nombre premier supérieur ou égal au plus grand des nombres m, m', \ldots , les équivalences

$$\begin{pmatrix}
a_0 \cdot x^m + a_1 \cdot x^{m-1} + \dots + a_{m-1} \cdot x + a_m = 0 & \text{(mod. } p), \\
b_0 \cdot x^{m'} + b_1 \cdot x^{m'-1} + \dots + b_{m'-1} \cdot x + b_{m'} = 0, \\
c_0 \cdot x^{m''} + c_1 \cdot x^{m''-1} + \dots + c_{m''-1} \cdot x + c_{m''} = 0, \\
\dots$$

admettent, la première m racines distinctes x_1, x_2, \ldots, x_m , la deuxième m' racines distinctes $y_1, y_2, \ldots, y_{m'}$, la troisième m'' racines distinctes $z_1, z_2, \ldots, z_{m''}$; et soient

$$(123) u_1, u_2, \ldots, u_M$$

les quantités dans lesquelles se transforment $\upsilon_1, \upsilon_2, \ldots, \upsilon_M$, quand, aux racines des formules (118), on substitue les racines des formules (122). L'équivalence

(124)
$$u^{M} + \Lambda_{1} u^{M-1} + \Lambda_{2} u^{M-2} + \ldots + \Lambda_{M-1} u + \Lambda_{M} \equiv 0 \pmod{p}$$

aura pour racines $u_{1}, u_{2}, \ldots, u_{M}$.

Corollaire. — Si l'expression (119) devenait une fonction symétrique des racines de chacune des équations (118), elle aurait pour valeur une quantité entière ou rationnelle U, et les formules (121), (124) se réduiraient, la première à

$$(125) u - U = 0,$$

la seconde à

$$(136) u - U - o \pmod{p}.$$

Alors, en écrivant f au lieu de Φ, on conclurait du théorème XVII que l'équation

(127)
$$\mathbf{F}(\xi_1, \xi_2, \ldots, \xi_m; \eta_1, \eta_2, \ldots, \eta_{m'}; \zeta_1, \zeta_2, \ldots, \zeta_{m''}; \ldots)$$
 Untraîne l'équivalence

$$(128) \quad \mathbf{F}(x_1, x_2, \dots, x_m; j_1, j_2, \dots, j_m; z_1, z_2, \dots, z_m; \dots) \quad \mathbf{U} \quad (\text{mod. } p).$$

Dans le cas particulier où les équations (118) se réduisent à une seule, la formule (128) se confond avec l'équivalence (87).

Nous remarquerons, en terminant cet article, que le théorème III fournit un moyen facile de résondre l'équivalence binôme du premier degré

$$(129) kx = h \pmod{n},$$

ou, ce qui revient au même, de calculer la valeur de 2 déterminée par la formule

(130)
$$x = \frac{h}{h} \pmod{n},$$

n étant un nombre entier quelconque, et h, k désignant deux quantités entières, dont la seconde ne soit pas multiple de n. En effet, nommons a, b, c, ... les facteurs premiers de n, en sorte qu'on ait

$$n := a^{\alpha}b^{\beta}c^{\gamma},...$$

En vertu du théorème III, les binômes

$$1 - h^{a-1}$$
, $1 - h^{b-1}$, $1 - h^{a-1}$, ...

A L'ALGÉBRE ET A LA THÉORIE DES NOMBRES. 297 secont divisibles, le premier par α, le deuxième par δ, le troisième par

 $c_{i,j+1}$ par conséquent, le produit

sera divisible par $n=a^ab^bc^a,\ldots$ Done, si l'on fait, pour abréger,

on aura

$$(\tau(t)) \qquad \qquad \tau(\lambda(t)) \qquad \qquad (\text{mod}, n)$$

011

$$\frac{1}{\kappa}$$
 (1.4.3) K $\frac{1}{\kappa}$ (mod. n)

et, par suite,

$$(i31) \qquad i \quad kK \quad (mod, n).$$

Or, la quantite k, que détermine la formule (131), étant évidemment une quantité entière, la valeur &k de « sora entière elle-même et fournira la solution de l'équivalence (129). Cette remarque est due à M. Binet, Lorsque le nombre » se trouve réduit à un nombre premier p. l'équation (131) donne simplement

$$\mathbf{K} = k^{p-q} \qquad \qquad \mathbf{Imod}_{k}(p)_{k}$$

Done alors on vérifie l'équivalence

$$(136) \qquad \qquad k \neq b \pmod{p}$$

en prenant

$$(\tau \mid f) = -(\tau \mid f) = (\text{mod}, p).$$

water & from

RÉSOLUTION DES ÉQUIVALENCES

DONT

LES MODULES SE RÉDUISENT A DES NOMBRES PREMIERS,

§ I. — Considérations générales.

Soit p un nombre premier quelconque, et considérons l'equivalence

(1)
$$a_0 x_m + a_1 x^{m-1} + a_1 x^{m-2} + \dots + a_{m-1} x + a_m = 0$$
 (mod. μ),

dans laquelle m désigne un nombre entier, et $a_0, a_1, a_2, \ldots, a_{m-1}, a_m$ des quantités entières, ou même des quantités rationnelles qui aient pour valeurs numériques des fractions dont les dénominateurs ne soient pas des multiples de p. Il est clair : 1º qu'en multipliant la formule (1) par le produit de ces dénominateurs, on réduira les coefficients des diverses puissances de w à des quantités entières; γ^{μ} qu'après cette réduction on pourra supprimer tous les termes dans lesquels les coefficients seraient divisibles par $oldsymbol{p}_{oldsymbol{s}}$ On obtiendra ainsi une nonvelle équivalence d'un degré égal ou inférieur à m_i dans laquelle tous les coefficients seront entiers; et si, dans cette nouvelle équivalence, tous les termes étaient divisibles par a ou par une puissance entière de x, la division du premier membre par cette puissance ne changerait ni le nombre ni les valeurs des racines distinctes et non divisibles par p. On saura donc déterminer ces racines dans tous les cas possibles, si l'on parvient à résoudre l'équivalence (1), dans le cas où α_{a} . $a_1,\,a_2,\,\ldots,\,a_{m-1},\,a_m$ représentent des quantités entières dont la première et la dernière ne sont pas divisibles par p. D'ailleurs, si, dans le

eas dont il s'agit, on nomme $A_1, A_2, \ldots, A_{m-1}, A_m$ des quantités entières déterminées par les formules

(2)
$$\frac{a_1}{a_0} = \Lambda_1$$
, $\frac{a_2}{a_0} = \Lambda_2$, ..., $\frac{a_{m-1}}{a_0} = \Lambda_{m-1}$, $\frac{a_m}{a_0} = \Lambda_m$ (mod. p),

on pourra réduire l'équivalence (1) à la suivante

$$(3) x^m + \Lambda_1 x^{m-1} + \Lambda_2 x^{m-2} + \ldots + \Lambda_{m-1} x + \Lambda_m \equiv 0 (\text{mod}, p),$$

 A_m n'étant pas divisible par p. Enfin, comme on a, pour toute valeur entière de x non divisible par p,

$$(4) x^{p-1} \equiv 1 \pmod{p}$$

et, par conséquent,

(5)
$$x^{k(p-1)} = 1,$$

k étant un nombre entier quelconque, on pourra évidemment, dans l'équivalence (3), substituer, à ceux des exposants m, m-1, ... qui scraient supérieurs à p-2, les restes de leur division par p-1. Donc on peut, dans la formule (3), supposer le degré m inférieur à p-1.

Conceyons maintenant que, les quantités $a_0, a_1, \ldots, a_{m-1}, a_m$ étant entières, et le nombre m inférieur à p-1, ou seulement à p, l'on fasse, pour abréger,

(6)
$$a_0 x^m + a_1 x^{m-1} + a_2 x^{m-2} + \ldots + a_{m-1} x + a_m = f(x).$$

L'équivalence (1) pourra s'écrire comme il suit

$$f(x) = 0 \pmod{p},$$

et, si l'on désigne par r une racine quelconque de cette équivalence, on aura identiquement

(8)
$$f(x) = f(r) + (x - r) f'(r) + (x - r)^{2} \frac{f''(r)}{1,2} + \ldots + (x - r)^{m} \frac{f^{(m)}(r)}{1,2,3 \ldots m}.$$

D'ailleurs F(x) désignant une nouvelle fonction entière de x à coefficients entiers, nous dirons que l'équivalence (7) peut être présentée

300 SUR LA RÉSOLUTION DES ÉQUIVALENCES ETC.

sous la forme

$$(9) F(x) \equiv 0 (mod. p),$$

si I'on a, quel que soit x,

$$f(x) \equiv F(x) \pmod{p}$$
.

Cela posé, s'il arrive que la quantité r soit une racine, non seulement de l'équivalence (7), mais encore de chacune des suivantes

(10)
$$f'(x) \equiv 0$$
, $f''(x) \equiv 0$, ..., $f^{(i-1)}(x) \equiv 0$ (mod. p),

en sorte qu'on ait tout à la fois

(11)
$$f(r) \equiv 0 \pmod{p}$$

ct

(12)
$$f'(r) \equiv 0$$
, $f'(r) \equiv 0$, ..., $f^{(i-1)}(r) \equiv 0 \pmod{p}$,

la lettre i désignant un nombre entier, l'équation (8) donnera, pour une valeur quelconque de x,

$$f(x) = (x - r)^{i} \left[\frac{f^{(i)}(r)}{1.2 \cdot 3...i} + (x - r) \frac{f^{(i+1)}(r)}{1.2.3...i(i+1)} + \dots + (x - r)^{m-i} \frac{f^{(m)}(r)}{1.2.3...m} \right]$$
 (mod. p)

ou, ce qui revient au même,

(13)
$$f(x) \equiv (x - r)^{i} \varphi(x) \quad \text{(mod. } p),$$

 $\gamma(x)$ désignant une fonction entière, à coefficients entières (1), et du degré m-i, déterminée par la formule

$$(14) \quad \varphi(x) = \frac{f^{(i)}(r)}{1.2.3...t} + (x-r) \frac{f^{(i+1)}(r)}{1.2.3...t(i+1)} + ... + (x-r)^{m-1} \frac{f^{(m)}(r)}{1.2.3...m}.$$

(1) Il est aisé de reconnaître que les coefficients des diverses puissances de x-r, dans le second membre de l'équation (8), savoir

$$f(r), \frac{f'(r)}{1}, \frac{f''(r)}{1 \cdot 2}, \dots, \frac{f^{(m)}(r)}{1 \cdot 2 \cdot 3 \cdot \dots m} = a_0,$$

se réduisent toujours à des quantités entières, et que ces quantités sont divisibles par p, quand les fractions qui les représentent effrent des numérateurs divisibles par p.

Par conséquent, on pourra présenter l'équivalence (7) sous la forme

(15)
$$(x-r)^t \varphi(x) \equiv 0 \pmod{p}$$

et considérer cette équivalence comme offrant un nombre i de racines égales à r. Les autres racines devant nécessairement vérifier la formule

(16)
$$\varphi(x) = 0 \pmod{p},$$

dont le degré est m-i, il est clair que, dans l'hypothèse admise, l'équivalence (7) admettra au plus m-i+i racines distinctes dont l'une sera la quantité r.

Réciproquement, si l'équivalence (7) peut être présentée sous la forme

(15)
$$(x-r)^t \varphi(x) \equiv 0 \pmod{p},$$

 $\varphi(x)$ désignant une fonction entière de x, à coefficients entiers et du degré m-i, on en conclura que les conditions (12) sont remplies. Alors, en effet, on aura identiquement

(13)
$$f(x) = (x - r)^t \varphi(x) \pmod{p}$$

ou, ce qui revient au même,

(17)
$$f(x) = (x - r)^t \varphi(x) + \chi(x),$$

 $\chi(x)$ étant une fonction entière et à coefficients entière, qui devra vérifier, quel que soit x, la formule

(18)
$$\chi(x) = 0 \pmod{p}.$$

D'ailleurs, la fonction $\chi(x)$ étant, ainsi que les fonctions f(x) et $(x-r)^{\iota}\varphi(x)$, d'un degré m inférieur à p, la formule (18) ne pourra subsister, quel que soit x, à moins que les coefficients des diverses puissances de x dans le premier membre ne soient divisibles par p. Car, dans le cas contraire, cette formule offrirait l'exemple d'une équivalence qui admettrait plus de racines distinctes que son degré ne renferme d'unités. On aura donc nécessairement

(19)
$$\chi(x) = p \psi(x),$$

 $\chi(x)$ désignant une fonction entière de x à coefficients entière, et to formule (17) donnera

(20)
$$f(x) = (x \cdot x)^T \varphi(x) + p \psi(x).$$

Or, en différentiant cette dernière équation i fois de sonte par rapport à x, et posant après les différentiations x = r, on retrouvera précise ment les formules (12). On peut donc énoucer la proposition suivante

Theorems 1. — Pour que l'équivalence (γ) d'un degré m'inférieur a pouisse être présentée sous la forme (ι 5), i désignant un nombre entrer et $\varphi(x)$ une fonction entière, à coefficients entière, du degré $m=\iota_*$, ι 1, ι 3 nécessaire et il suffit que les conditions (ι 1) et (ι 2) soient verifiers.

Scolie. — Le théorème I ne subsisterait plus si le degre m du puly nôme f(x) devenait supérieur ou même égal à p. Supposons en effet que, le nombre m étant égal à p, la lettre r désignant une quantue entière, la lettre i un nombre supérieur à l'unité, et l'expression p et r une fonction entière de w du degré p = i. L'on prenne

(21)
$$f(x) = (x - r)^r \varphi(x) + x^{p_1} - r.$$

Comme on aura, quel que soit « (en vertu du théorème de Fermat),

$$\mathcal{Z}^{\mu_{max}} = 0 \qquad \text{(und}, p)$$

ct, par suite,

$$f(x) = (x - r)^{p} \varphi(x),$$

l'équivalence (7) pourra être présentée sons la forme (15), tambis que la valeur de $\ell'(r)$ tirée de la formule (21) sera

$$f'(r) = pr^{p+1} + 1 + 1 \pmod{p}$$

Nous avons remarqué ci-dessus que, dans le cas où l'équivalence que, d'un degré m inférieur à p, admet i racines égales à r, le nombre des racines distinctes de cette équivalence ne peut surpasser m i i i m. Ce cas n'est pas le seul dans lequel le nombre des racines distinctes de l'équivalence (7) devienne inférieur au degré m, et il peut même

arriver que cette équivalence soit complètement insoluble. Ainsi, en particulier, puisque toute valeur entière de x, non divisible par 3, vérifie la formule

$$x^2 = 1 \pmod{3}$$
,

il est clair que

$$x^3 \equiv 2 \pmod{3}$$

n'a point de racines.

Nous allons maintenant rechercher le nombre des racines distinctes de l'équivalence (7), nombre qui, comme on vient de le voir, peut devenir inférieur à m, ou même se réduire à zéro; et, pour y parvenir, nous commencerons par résoudre le problème suivant :

PROBLÈME. — Étant données deux fonctions entières et à coefficients entiers

$$f(x), f_1(x),$$

dont les degrés m et $l \le m$ ne surpassent pas le nombre premier p, et le nombre des racines distinctes de l'équivalence

$$f(x) \equiv 0 \pmod{p}$$

étant supposé précisément égal au degré m de cette équivalence, on demande une nouvelle fonction entière et à coefficients entiers $\varphi(x)$ tellement choisie que le degré de cette fonction coincide avec le nombre des valeurs distinctes de x propres à vérifier simultanément les deux formules

(23)
$$f(x) = 0, \quad f_1(x) = 0 \quad (\text{mod}.p),$$

et que chacune de ces valeurs vérifie encore l'équivalence

$$\varphi(x) = 0 \pmod{p}.$$

Solution. — Si, dans chacune des fonctions f(x), $f_i(x)$, le coefficient de la plus haute puissance de x ne se réduisait pas à l'unité, on pourrait, en supposant ce coefficient divisible par p, supprimer le terme qui le contient, ou, dans le cas contraire, substituer aux coefficients des différents termes, à l'aide de formules semblables aux formules (2), de nouveaux coefficients dont le premier serait l'unité,

30% SUR LA RÉSOLUTION DES ÉQUIVALENCES ETC.

sans altérer ni le nombre ni les valeurs des racines distinctes de chacune des équivalences (23). Par conséquent, dans le théorème ci-dessus énoncé, on pourra toujours supposer les fonctions f(x), $f_t(x)$ réduites à la forme

(35)
$$f(x) = x^m + \Lambda_1 x^{m+1} + \Lambda_2 x^{m-2} + \dots + \Lambda_{m-1} x^{m-1} + \Lambda_m,$$

(36)
$$f_1(x) = x^d + B_1 x^{d-1} + B_2 x^{d-2} + \dots + B_{\ell-1} x^{\ell-1} + B_{\ell},$$

 $A_1, A_2, \ldots, A_{m-1}, A_m; B_1, B_2, \ldots, B_{l-1}, B_l$ désignant des quantités entières. Soient maintenant Q le quotient et R le reste de la division du polynôme f(x) par le polynôme $f_1(x)$. Q et R seront des fonctions entières et à coefficients entières, l'une du degré m-l, l'autre d'un degré inférieur ou tout au plus égal à l-1, en sorte qu'on trouvera

(27)
$$\mathbf{R} = c_0 x^{l-1} + c_1 x^{l-2} + \dots + c_{l-2} x^{l} + c_{l-1},$$

 $c_0,\,c_1,\,\ldots,\,c_{l-2},\,c_{l-1}$ désignant des quantités entières. De plus, comme on aura généralement

(28)
$$f(x) = Q f_1(x) + R,$$

on en conclura

(29)
$$f(x) \equiv Q f_1(x) \pmod{p}$$

si les quantités

$$c_0, c_1, \ldots, c_{l-2}, c_{l-1}$$

sont toutes divisibles par p, c'est-à-dire si elles vérifient les conditions

(30)
$$c_0 \equiv 0$$
, $c_1 \equiv 0$, ..., $c_{l-2} = 0$, $c_{l-1} = 0 \pmod{p}$.

Dans ce cas particulier, l'équivalence (7) du degré m pourra être présentée sous la forme

$$Q f_1(x) = 0 \pmod{p},$$

et, comme le nombre de ses racines distinctes sera précisément égal au nombre m, on conclura du théorème II de l'article précèdent que l'équivalence

$$(32) f_1(x) = 0 (mod.p)$$

admet à son tour autant de racines distinctes que son degré l'renferme d'unités. Alors aussi toutes les racines de la formule (32) vérifieront en même temps la formule (31) ou (7), et, par conséquent, on pourra prendre

(33)
$$\varphi(x) = f_1(x),$$

Si les conditions (30) ne sont pas toutes remplies, alors, en désignant par $c_{\ell-k-1}$ le premier des coefficients

$$c_0, c_1, \ldots, c_{l-1}, c_{l-1}$$

qui ne sera pas multiple de p, et par C_1 , C_2 , ..., C_{k-1} , C_k des quantités entières déterminées à l'aide des formules

$$(3/1) \quad \frac{c_{l-k}}{c_{l+k-1}} = C_1, \qquad \frac{c_{l-k+1}}{c_{l-k-1}} = C_2, \qquad \dots, \qquad \frac{c_{l-1}}{c_{l-k-1}} = C_k \qquad (\text{mod. } p)$$

on trouvera

(35)
$$R = c_{l+k+1}(x^k + C_1x^{k+1} + C_2x^{k+2} + \ldots + C_{k+1}x + C_k)$$
 (mod. p);

puis, en faisant, pour abréger,

(36)
$$f_2(x) = x^k + C_1 x^{k-1} + C_2 x^{k-2} + \dots + C_{k-1} x + C_k,$$

on tirera des formules (28) et (35)

$$(37) \qquad \qquad f(x) = Q \, f_1(x) + c_{l-k-1} \, f_2(x) \qquad (\bmod p).$$

Or il résulte évidenment de la formule (37) que toute valeur de ω , propre à vérifier simultanément les équivalences (23), vérifiera encore la suivante :

(38)
$$f_2(x) = 0 \pmod{p}.$$

Soient maintenant Q_1 le quotient et R_i le reste de la division du polynôme $f_1(x)$ par le polynôme $f_2(x)$. Q_i et R_i seront des fonctions entières, l'une du degré l-k, l'autre d'un degré inférieur ou tout au plus égal à k-1, en sorte qu'on trouvera

(39)
$$R_1 = d_0 x^{k-1} + d_1 x^{k-2} + \dots + d_{k-2} x + d_{k-1},$$
Other et de C. = S. II, t. IX.

 $d_0,\,d_1,\,d_2,\,\dots,\,d_{k,2},\,d_k$, designant des quos trocos trocos. Desplit , comme on aura géneralement

on en conclura

si les quantités

sont fontes divisibles par p_i of a factor of all i and i and i and i

(19)
$$d_0 = 0$$
, $d_1 = 0$, $d_2 = 0$, $d_3 = 0$, $d_4 = 0$

Dans ce cas, on tire de la formule e 4/3

$$(5) \qquad 1 \mapsto (0)_{1} \cdot \dots \cdot$$

Par conséquent, l'équivalence e a pour a ets e par la les les la la beaute

$$(QQ_1 \circ \dots \circ QQ_n) = \{0, 1, \dots, n\} \quad \text{since}$$

et, comme elle offre, par hypothése, autout de a como de tos teorigiae son degré w renferme d'unites, l'espaixaleurs

jonira encore de la meme propriete e con le glorica con la la la contente propriete de contente de la meme propriete de contente de la meme propre a vérifier l'equivalence à la contente de la contente

$$(\vec{A}\vec{b}) = -\frac{1}{2} (\vec{A}\vec{b})$$

Si les conditions (jet ne sont pre toutes remple : dec : en de a guant par $d_{k(k)}$ le premier descraette tent

307

qui ne sera pas multiple de p, et par $D_1, D_2, \ldots, D_{h-1}, D_h$ des quantités entières déterminées à l'aide des formules

$$(6) \quad \frac{d_{k-h}}{d_{k-h-1}} = \mathbf{D}_1, \qquad \frac{d_{k-h+1}}{d_{k-h-1}} = \mathbf{D}_2, \qquad \dots, \qquad \frac{d_{k-1}}{d_{k-h-1}} = \mathbf{D}_h \qquad (\bmod p),$$

on frouvera

(47) $R_1 = d_{k-h-1}(x^h + D_1x^{h-1} + D_2x^{h-2} + \ldots + D_{h-1}x + D_h)$ (mod. p); puis, en faisant, pour abréger,

(48)
$$f_3(x) = x^h + D_1 x^{h-1} + D_2 x^{h-2} + \ldots + D_{h-1} x + D_h,$$

on tirera des formules (40) et (47)

(49)
$$f_1(x) = Q_1 f_4(x) + d_{k+h+1} f_k(x) \pmod{p}.$$

Or il résulte évidemment de la formule (49) que toute valeur entière de x propre à vérifier simultanément les formules (32) et (38) vérifiera encore la suivante :

(50)
$$f_d(x) = 0 \pmod{p}.$$

En continuant de la même manière, on déduira successivement des fonctions données f(x), $f_1(x)$ une suite de nouvelles fonctions

(51)
$$f_2(x), f_3(x), \ldots,$$

dont la dernière sera précisément la valeur cherchée de $\varphi(x)$. Pour obtenir ces nouvelles fonctions, il suffit d'opérer comme si l'on se proposait de trouver le plus grand commun diviseur algébrique des deux polynômes f(x), $f_1(x)$, de supprimer dans le reste de chaque division tous les termes dont les coefficients sont des multiples de p, de réduire ensuite le coefficient de la plus haute puissance de x à l'unité, et les autres coefficients à des nombres entiers à l'aide de formules semblables aux équivalences (34), (46), etc., enfin de s'arrêter au moment où cette réduction ne peut plus s'effectuer, c'est-à-dire au moment où l'on obtient un reste dont tous les coefficients sont des multiples de p. Si l'on désigne par R_{r-1} ce dernier reste, ce sera le reste précédent

308 SUR LA RÉSOLUTION DES ÉQUIVALENCES ETC.

 R_{i+2} , ou plutôt la fonction $f_i(x)$, qui fournira la valeur chercher de $\varphi(x)$, en sorte qu'on pourra prendre

(52)
$$\varphi(x) = f_t(x),$$

Si tous les restes successivement obtenus offraient des coefficients non divisibles par p, en sorte que le dernier reste, représenté par une quantité constante, fût lui-même non divisible par p, on pourrait affirmer que les équations (23) n'ont pas de racines communes.

Le problème ci-dessus énoncé étant ainsi résolu, il sera facile de trouver, pour l'équivalence (7) dont le degré, par hypothèse, est inferieur à p, le nombre des racines distinctes et non divisibles par p. En effet, puisque, en vertu du théorème de Fermat, tous les termes de La suite

$$(53) 1, 3, 3, \dots, p-1$$

vérifieront la formule

$$(54) x^{p+1} = 0 (mod. p),$$

les racines dont il s'agit se confondront évidemment avec les racines communes aux doux équivalences (7) et (54). Cela posé, il suffira d'opérer comme dans le problème précédent, en substituant aux deux fonctions f(x), $f_i(x)$ les doux fonctions $x^{p-i} = 1$, f(x), pour obtenu une équivalence nouvelle

(55)
$$\varphi(x) = 0 \pmod{p},$$

qui sera vérifiée par ces mêmes racines et sculement par elles. Le degré de cette nouvelle équivalence représentera donc le nombre des racines de la formule (7) distinctes et non divisibles par p.

Si à l'équivalence (54) on substituait l'équivalence (22), la formule (55), obtenue par la méthode que nous venous d'indiquer, four nirait les racines distinctes de la formule (7), dans le cas même ou l'on supposerait le premier membre de cette formule divisible par «

,

ou par une puissance de x, c'est-à-dire dans le cas même où cette formule admettrait des racines divisibles par p.

Si l'équivalence (7) n'admettait point de racines, les équivalences (7) et (22) n'auraient point de racines communes, et l'on en serait averti par le calcul même, conformément à la remarque que nous avons faite ci-dessus.

Si la formule (7) n'admet qu'une seule racine distincte de zéro, l'équivalence (55), déduite de la considération des formules (7) et (54), sera du premier degré seulement, et fera connaître la racine dont il s'agit.

Pour montrer une application des principes que nous venons d'établir, cherchons combien l'équivalence

$$(56) x^3 - x + 1 = 0 (mod.7)$$

admet de racines distinctes, ou, ce qui revient au même, combien it y a de racines communes entre cette équivalence et la suivante :

$$x^0 - r \equiv o \pmod{7}.$$

On trouvera, en effectuant la division de $x^{a} - 1$ par $x^{a} - x + 1$,

$$x^{6} - 1 = (x^{4} - x + 1)(x^{3} + x - 1) + x^{2} - 2x;$$

puis, en effectuant la division de $x^3 - x + 1$ par $x^2 - 2x$,

$$x^3 - x + 1 = (x^2 - 3x)(x + 3) + 3x + 1$$

$$= (x^2 - 3x)(x + 3) + 3(x + \frac{1}{4})$$

ou, ce qui revient au même,

$$x^3 - x + 1 - (x^2 - 3x)(x + 2) + 3(x - 3)$$

Enfin $x^2 - 2x$ sera exactement divisible par x - 2, ou, en d'autres termes, le reste de la division de $x^2 - 2x$ par x - 2 sera équivalent à zéro, puisqu'on aura

$$x^2 - 2x = (x - 2)x$$
.

Done la formule (56) n'admettra qu'une seule racine distincte de zéro,

et fournie par l'équivalence $x = 2z = 0 \pmod{7}$ ou

ce qui est exact.

Dans l'exemple que nous venons de choisir, on pourrait simplitier le calcul en observant que le polynôme $x^2 - 2x$ est évidemment le produit des deux facteurs x, x - 2, et que le second de ces deux facteurs est le seul qui divise le polynôme

$$x^3 - x + 1 \equiv (x - 2)(x^2 + 2x + 3).$$

On doit immédiatement en conclure que la formule (57) a pour racine unique le nombre 2.

Cherchons encore combien l'équivalence

$$(59) x3 + x + 1 \equiv 0 \pmod{11}$$

admet de racines distinctes, ou, ce qui revient au même, combien il y a de racines communes entre cette équivalence et la suivante :

(60)
$$x^{10} - 1 = 0 \pmod{11}$$
.

Dans ce cas, on trouvera successivement

$$x^{10} - 1 = (x^{7} + x + 1)(x^{7} - x^{5} - x^{4} + x^{4} + 2x^{2} - 3) - 2x^{2} + 3x^{4} + 2x^{2} - 3$$

$$= (x^{3} + x + 1)(x^{7} - x^{5} - x^{4} + x^{3} + 2x^{2} - 3) - 2(x^{2} + 4x^{2} + 1),$$

$$x^{3} + x + 1 = (x^{2} + 4x - 1)(x - 4) + 18x - 3$$

$$= (x^{2} + 4x - 1)(x - 4) + 18(x - 2),$$

$$x^{2} + 4x - 1 = (x - 2)(x + 6).$$

Done la formule (59) aura encore pour racine unique le nombre 2.

La méthode exposée dans ce paragraphe no diffère pas de colle que M. Libri a donnée dans le Tome I de ses Mémoires. Lorsqu'on applique cette méthode à la recherche de l'équivalence de condition qui doit être vérifiée pour que deux équivalences aient au moins une racine commune, on se trouve précisément ramené à la formule (16) de la page 164 du Volume I des Exercices (1).

⁽¹⁾ OEuvres de Cauchy, S. II, T. VI, p. 207.

§ II. - Sur la résolution des équivalences binômes.

Supposons que la formule (7) du paragraphe précédent se réduise à une équivalence binôme ou de la forme

$$x^m + K \equiv 0 \pmod{p}$$
,

K désignant une quantité entière non divisible par p.

Si l'on écrit — A au lieu de + K, cette équivalence deviendra

$$x^m - \lambda = 0 \pmod{p}$$

ou, ce qui revient au même,

$$(1) x^m = \Lambda (mod. p).$$

Soit d'ailleurs r une racine primitive de l'équivalence

$$(2) x^{p-1} \equiv 1 (mod. p).$$

La quantité $\Lambda = -K$, n'étant pas divisible par p, sera équivalente, suivant le module p, à l'un des termes de la suite

(3)
$$1, r, r^2, \ldots, r^{p-2}$$

(voir le théorème VII de l'article précédent, scolies l'et II), en sorte qu'on pourra supposer

(4)
$$\mathbf{A} = r^{d} \pmod{p},$$

l'exposant i étant l'un des nombres

(5)
$$0, 1, 2, \ldots, p-2$$

Il y a plus; si, deux de ces nombres étant représentés par i et par j, l'on suppose

$$y = i$$
, $z = j \pmod{p-1}$

ou, ce qui revient au même,

$$y = i + (p-1)v, \quad z = j + (p-1)w,$$

312 SUR LA RÉSOLUTION DES ÉQUIVALENCES ET)

e, œ désignant des nombres entiers quelconques, ou trouvera

$$r^{j} \equiv r^{(p-1)p}r^{j}$$
, r^{i} , r^{z} , $r^{(p-1)m}r^{j}$, r^{j} (mod. r^{j} (§)

et comme, i, j étant inférieurs à p-1, les deux puissances i', i' m pourront devenir équivalentes suivant le module p qu'autant que l'on aura i=j, il est clair que la formule

(6)
$$i^{\flat} = r^{\flat} \pmod{p}$$

entrainera toujours la suivante :

(7)
$$y \rightarrow z \pmod{p-1}$$
.

Cela posé, comme l'équivalence (ι) n'admettra point de racines divisibles par p, on pourra supposer encore

(8)
$$x = r^{\mu} \pmod{p}$$

puis on tirera des formules (1), (4), (8)

$$(9) p^{mu} r^{i} (\text{mod}, p)$$

et, par conséquent,

(10)
$$mu^{\perp} i \pmod{p-1}$$

ou, ce qui revient au même,

$$mu = i + (p - 1)v_1$$

 ρ désignant un nombre entier. Donc, pour que l'equivalence τ i sout résoluble, il sera nécessaire et il suffira qu'on puisse satisfaire par des valeurs entières de u et de e à l'équation (11); par conséquent, il sera nécessaire et il suffira que le plus grand commun diviseur de m et de $p-\tau$ divise i. Soit n ce plus grand commun diviseur. La formule

(13)
$$t^{\frac{1}{n}(p-1)}, \quad t \pmod{p},$$

qui peut être remplacée par la suivante

(13)
$$\Lambda^{\frac{p-1}{n}} = 1 \quad \text{(mod. } p),$$

sera ou ne sera pas vérifiée, suivant que i sera divisible ou non divisible par n. Donc la formule (13) exprimera la condition nécessaire et suffisante pour que l'équivalence (1) puisse être résolue.

Supposons maintenant que la condition (13) se trouve remplie, et désignons par v une valeur particulière de l'inconnue u que détermine la formule (10). La valeur générale de la même inconnue sera

$$(1/4) u = v \pm \frac{p-1}{n}h,$$

A désignant un nombre entier quelconque, et ce nombre pourra être choisi de manière que u soit positif, mais inférieur à $\frac{p-1}{n}$. Cela posé, concevons que v représente la plus petite valeur de u. Les nombres

(15)
$$v, v + \frac{p-1}{n}, v + 2\frac{p-1}{n}, \cdots, v + (n-1)\frac{p-1}{n}$$

seront les valeurs de u inférieures à p-1, et la formule (1) admettra les racines

(16)
$$r^{\mathsf{u}}, \quad r^{\mathsf{u} + \frac{p-1}{n}}, \quad r^{\mathsf{u} + \frac{p-1}{n}}, \quad \dots, \quad r^{\mathsf{u} + (n-1)\frac{p-1}{n}},$$

qui seront toutes distinctes les unes des autres. Donc le nombre de ces racines distinctes sera précisément n.

Lorsqu'on suppose m=2 et p>2, on trouve n=2, attendu que p-1 est nécessairement pair. Alors la condition (13) se réduit à

$$\Lambda^{\frac{p-1}{2}} = 1 \pmod{p}.$$

D'ailleurs, p étant un nombre premier impair et A un nombre entier non divisible par p, on aura généralement

(18)
$$\Lambda^{p-1} = 1 \pmod{p}$$

ou, ce qui revient au même,

$$\binom{\frac{p-1}{2}}{\Lambda^{\frac{2}{2}}-1}\binom{\frac{p-1}{2}}{\Lambda^{\frac{2}{2}}+1}\equiv 0 \pmod{p}$$
 Okuvros de C, — S, II, t, IX. 40

3th SUR LA RÉSOLUTION DES ÉQUIVALINGS \$115 et, par conséquent,

$$\lambda^{\frac{p-1}{2}} = \iota \pmod{p^{\epsilon_2}}$$

ou

$$\chi_{2}^{\rho} = \chi_{2}^{\rho} = \chi_{2$$

Done l'équivalence

(30)
$$\lambda^{\circ} \Lambda$$
 (mod. ρ)

aura deux racines distinctes ou n'en aura aucune, survant que $1 + \pi_{\frac{3}{6}}$, sion

$$(31) \qquad \qquad \bigvee_{b=1}^{y}$$

sera équivalente, suivant le module p_i à π_i on $\pi_i = \pi_i$

Si l'on suppose m=3, le plus grand commun des m=1 nombres m et p=1 sera 3 ou 1, suivant que p, divior p or p nora pour reste 1 ou p 1. Dans le premier cas, la condition p deviendra

$$\Lambda^{\frac{\mu-1}{2}} = (\bmod, \mu),$$

Dans le second eas, cette condition, réduite à la formule existement toujours vérifiée. Cela posé, on conclura des principes et de mark. Dis que l'équivalence

(23)
$$x^a = \lambda \pmod{p}$$

admet toujours une racine, mais une seule, lorsque par a une de pridivisible par 3. Dans le cas contraire, l'équivalence e vis admettre trois racines distinctes on n'en admettra ancune, survant que le condition (22) sera on ne sera pas satisfaite.

Soit encore m=4. On trouvers n=4 on n=2, survant que p=3 sera divisible par 4 ou simplement par 2. Danc. Super a sest divisible par 4, l'équivalence

315

admettra deux racines ou n'en admettra aucune, suivant que la condition

$$A^{\frac{p-1}{p}} = 1 \pmod{p}$$

sera ou ne sera pas remplie. Mais, si p-1 est divisible simplement par 2, l'équivalence (24) admettra deux racines distinctes ou n'en admettra aucune, suivant que la valeur de A satisfera ou non à la condition (17), c'est-à-dire suivant que cette valeur vérifiera la formule (17) ou la formule (19).

Soit enfin m = 6. On trouyera n = 6 ou n = 2, suivant que p - r sera divisible ou non divisible par 3. Dans le premier cas, la condition (13) donnera

(26)
$$A^{\frac{p-1}{6}} = 1 \pmod{p}.$$

Dans le second cas, cette condition se trouvera réduite à la formule (17). Donc, en vertu des principes ci-dessus établis, si p-r n'est pas divisible par 3, l'équivalence

(27)
$$x^{\mathfrak{d}} = \Lambda \pmod{p}$$

admettra deux racines distinctes ou n'en admettra aucune, suivant que la valeur de Λ vérifiera la formule (17) ou la formule (19). Mais, si p-1 devient divisible par 3, l'équivalence (27) admettra six racines distinctes ou n'en admettra aucune, suivant que la condition (26) sera ou ne sera pas vérifiée.

Généralement, si l'on suppose m=n,n étant un diviseur de p-1. l'équivalence (1), réduite à la forme

$$x^n = \Lambda \pmod{p},$$

admettra n racines distinctes, respectivement équivalentes aux quantités (16), ou n'en admettra aucune, suivant que la condition (13) sera on ne sera pas vérifiée.

Si l'on suppose $A = \tau$ ou, ce qui revient au mème, i = 0, on trouvera v = 0. Dans ce cas, la condition (13) sera toujours vérifiée, et

l'equivalence (1), réduite à la forme

$$(29) x^m \equiv 1 (mod. p),$$

n'admettra point d'autre racine que l'unité, si m est premier à p-1. Mars, si le contraire arrive, en nommant toujours n le plus grand commun diviseur de m et de p-1, on obtiendra, pour racines de l'équivalence (29), les différents termes de la suite

(30)
$$r^0 = 1$$
, $\frac{p-1}{r^n}$, $r^2 = \frac{p-1}{n}$, ..., $r^{(n-1)} = \frac{p-1}{n}$,

qui seront en même temps racines de l'équivalence x^n . $\tau (\text{mod.}p)$. On arriverait directement aux mêmes conclusions en ayant égard au théorème V de l'article précédent.

Si, pour fixer les idées, on prend successivement m=2, m=3, m=4, ... (p étant >2), on reconnaîtra : r^o que l'équivalence

$$(31) x^2 \equiv 1 (mod. p)$$

admet toujours deux racines distinctes, savoir +1 et -1; 2º que l'équivalence

$$(32) x^3 \equiv 1 \pmod{p}$$

admet deux racines distinctes de l'unité, lorsque p-1 est divisible par 3, et la seule racine 1 dans le cas contraire; 3° que l'équivalence

$$(33) x^4 \equiv 1 (mod. p)$$

admet les seules racines +1 et -1, lorsque $\frac{p-1}{2}$ est impair, et, de plus, deux autres racines distinctes, lorsque $\frac{p-1}{2}$ est un nombre pair;

Il est bon d'observer que, si A diffère de l'unité, il suffira de multiplier par r^3 les quantités (30) pour reproduire les diverses racines de la formule (1).

Observons encore que, étant donnée une équivalence complète du second degré

$$a_0 x^2 + a_1 x + a_2 \equiv 0 \pmod{p},$$

dans laquelle a_0 , a_1 , a_2 sont des nombres entiers, et p un nombre premier impair qui ne divise point a_0 , il suffira de poser

(35)
$$x \equiv y - \frac{a_1}{2a_0} \pmod{p},$$

et de diviser ensuite par a_0 les deux membres de la formule (34), pour la réduire à l'équivalence binôme

(36)
$$y^2 - \Lambda = 0 \pmod{p}$$
,

A désignant un nombre entier choisi de manière que l'on ait

(37)
$$\Lambda = \frac{a_1^2 - \ln a_0 a_2}{\ln a_0^2} \pmod{p}.$$

D'ailleurs, l'équivalence (36) admettra deux racines distinctes ou n'en admettra aucune, suivant que la valeur de A vérifiera la condition (17) ou (19). Donc, par suite, l'équivalence (34) admettra deux racines distinctes, si l'on a

(38)
$$(a_1^2 - 4a_0a_2)^{\frac{p-1}{2}} = (4a_0^2)^{\frac{p-1}{2}} \pmod{p}$$

ou, ce qui revient au même,

(39)
$$(a_1^2 - 4a_0a_2)^{\frac{p-1}{2}} = 1 \pmod{p},$$

tandis que la même équivalence n'admettra point de racines dans le cas contraire.

Concevons, pour fixer les idées, que l'équivalence (34) coïncide avec la suivante :

$$40$$
) $x^2 + x - 1 = 0 \pmod{11}$.

La condition (39), ou

sera remplie. Donc l'équivalence (40) admettra deux racines distinctes, qui se confondront nécessairement avec deux des racines de la formule

$$x^{10} - 1 = 0$$
 (mod. 11).

On trouvera effectivement

$$x^{10} - 1 = (x^2 + x - 1)(x^8 - x^7 + 2x^6 - 3x^5 + 5x^5 + 3x^3 + 3x^2 + x + 1)$$
 (mod. 11)

D'ailleurs, il suffira de poser

$$(5) \qquad x \equiv y - \frac{1}{2} \equiv y + 5 \pmod{1},$$

pour réduire la formule (40) à l'équivalence binôme

$$y^2 + 29 \equiv 0 \pmod{11}$$

ou, ce qui revient au même, à la suivante

(43)
$$y^2 = -29 = 4 \pmod{11}$$
;

et, comme on tirera de cette dernière

$$y = \pm 2,$$

la formule (42) donnera

$$(45) x = 5 \pm 2.$$

Done

(46)
$$x = 5 - 2 = 3$$
 et $x = 5 + 2 = 7$ (mod. 11)

seront les deux racines de l'équivalence (40), ce qui est exact.

La méthode par laquelle nous avons déterminé ci-dessus le nombre des racines distinctes d'une équivalence binôme ou d'une équivalence du second degré était déjà connue, et peut se déduire, comme l'a remarqué M. Libri, des principes exposés dans le premier paragraphe. Ainsi, en particulier, sì n est un diviseur de $p \to t$, en sorte qu'on ait

$$(57) p-1=n\varpi,$$

la division de $x^{p-1}-1$ ou $x^{n\overline{n}}-1$ par $x^n-\Lambda$ donnera pour quotient

$$x^{n(\varpi-1)} + \Lambda x^{n(\varpi-2)} + \ldots + \Lambda^{\varpi-2} x^n + \Lambda^{\varpi-1},$$

et pour reste $A^{\varpi}-1$. Donc, en vertu des principes que nous venons de rappeler, l'équivalence (28) admettra n racines réelles ou n'en

admettra aucune, suivant que la condition

$$\Lambda^{m} - 1 \equiv 0 \pmod{p}$$

sera ou ne sera pas vérifiée. Or la condition (48) ne diffère pas de celle que présente la formule (13).

Ajoutons que, pour ramener la résolution de l'équivalence (1) à la résolution de l'équivalence (10), qui est du premier degré sculement, il suffit de connaître la valeur de i déterminée par la formule (4). On y parviendra sans peine, quel que soit A, si l'on a formé une Table dans laquelle, aux nombres

(5)
$$0, 1, 2, 3, \ldots, p-2,$$

correspondent les diverses puissances de r dont les degrés sont indiqués par ces mêmes nombres, ou plutôt les restes qu'on obtient en divisant les puissances dont il s'agit par le nombre premier p. On peut placer dans la première colonne de la Table ces restes qui, rangés dans un ordre convenable, seront respectivement égaux aux nombres

$$1, 2, 3, \ldots, p-1;$$

puis, en considérant chacun de ces derniers nombres comme une valeur particulière de A, écrire à sa suite la valeur correspondante de i, qui représentera ce qu'on nomme l'indice de A, ou d'un nombre équivalent à A, dans le système dont la base est r. Cela posé, il est clair que, relativement à un nombre premier p, il existe autant de systèmes d'indices qu'il y a de racines primitives ou de nombres entiers, premiers à p et inférieurs à p. Dans chacun de ces systèmes, les indices jouissent de propriétés analogues à celles des logarithmes. En effet, soient i, j, h les indices de deux nombres entiers A, B et de leur produit AB, en sorte qu'on ait

(19)
$$A = r^{j}, \quad B = r^{j}, \quad AB = r^{h} \pmod{p},$$

r désignant une racine primitive de p. On tirera des équivalences (49)

(50)
$$r^h \equiv r^{l+j} \pmod{p}$$

et, par suite [attendu que la formule (6) entraîne toujours la formule (7)],

$$(5i) h \equiv i+j \quad (\text{mod}.p-1).$$

Donc, si l'on représente l'indice de A, à l'aide de la lettre caractéristique I, par la notation I(A), on aura

(52)
$$I(AB) = I(A) + I(B) \pmod{p-1}.$$

On trouvera de même

$$I(ABC) \equiv I(AB) + I(C) = I(A) + I(B) + I(C) \qquad (\bmod p - 1)$$

et généralement

(53)
$$I(ABCD...) \equiv I(A) + I(B) + I(C) + I(D) + ...$$
 (mod. $p - 1$),

quel que soit le nombre des facteurs A, B, C, D, Si, ce nombre étant désigné par m, les facteurs A, B, C, D, ... deviennent équivalents à une même quantité x, la formule (53) donnera

$$I(x^m) \equiv m I(x) \pmod{p-1}.$$

On peut donc énoncer la proposition suivante :

L'indice du produit de plusieurs nombres est équivalent à la somme de leurs indices, suivant le module p-1.

L'indice d'une puissance du degré m est équivalent, suivant le module p-1, à l'indice de la racine multiplié par m.

En vertu de la dernière proposition, l'équivalence (1) entraînera la formule

(55)
$$m I(x) \equiv I(\Lambda) \pmod{p-1},$$

de laquelle on tirera

(56)
$$I(x) \equiv \frac{I(\lambda)}{m} \pmod{p-1}.$$

L'équivalence (56), dans laquelle I(x) est précisément la plus petite des valeurs positives de u, propres à vérifier la formule (10), montre

comment, à l'aide d'une Table d'indices, on peut résoudre l'équivalence (1). (Voir, pour plus de détails, l'Ouvrage de M. Gauss, intitulé : Disquisitiones arithmeticæ.)

Observons enfin que toute équivalence du second degré, étant réductible à une équivalence binôme, pourra encore être résolue, si le module p est un nombre premier, à l'aide d'une Table d'indices dans laquelle on aurait pris pour base l'une quelconque des racines primitives de p.

En terminant ce paragraphe, nous ferons remarquer, avec M. Gauss, qu'il est facile de résoudre l'équivalence (1), toutes les fois que, la condition (13) étant remplie, les nombres m et $\frac{p-1}{n}$ sont premiers entre eux. Alors, en effet, on pourra trouver deux quantités entières e, α propres à vérifier la formule

(57)
$$mw = \frac{p-1}{n}e^{-1};$$

et comme on aura par suite, eu égard à la condition (13),

(58)
$$\mathbf{A} = \mathbf{A}^{1+\frac{p-1}{n-p}} = \mathbf{A}^{mw} \quad (\text{inod}. p),$$

il est clair qu'on résoudra l'équivalence (1), ou

$$(59) x^m = \Lambda^{mw} \pmod{p},$$

en prenant

(60)
$$x = \Lambda^w \pmod{p}$$
.

Considérons, pour fixer les idées, l'équivalence

$$(61) x^6 = 3 (mod, 23),$$

Dans ce cas, on trouvera n=2, et la condition (13), réduite à

$$3^{11} \rightleftharpoons 1 \pmod{33}$$

sera remplic. De plus, les exposants $\iota\iota$, 6 étant premiers entre eux, on pourra choisir e, σ de manière à vérifier la formule

$$11 \circ + 1 = 6 \circ$$

à laquelle on satisfait en prenant c=1, w=2. Par suite, on résondra la formule (61) en supposant

$$(61) x \equiv 3^2 \equiv 9 \pmod{23},$$

ce qui est exact. Ajoutons que, le nombre n étant égal à 2, l'équiva lence (61) admettra sculement deux racines distinctes, savoir

(63)
$$r \equiv 9, \quad x \equiv -9 \equiv 14 \pmod{23}.$$

En général, lorsque le carré de n ne divise pas p-1, l'équivalence (1) peut toujours être résolue par la méthode que nous venons d'indiquer, et les formules (57), (60) donnent

$$x \equiv \Lambda^{\frac{1}{m}\left(1 + \frac{p-1}{n}e\right)} \pmod{p},$$

v étant choisi de manière que la quantité

$$\frac{1}{m}\left(1+\frac{p-1}{n}v\right)$$

soit entière. Par suite, si p-1 n'est divisible qu'une fois par le nombre 2, on vérifiera l'équivalence

$$(20) x^2 \equiv \Lambda \quad (\text{mod}, p),$$

lorsqu'elle sera résoluble, en prenant

(65)
$$x = \Lambda^{\frac{1}{2}\left(1 + \frac{p-1}{2}\right)} = \Lambda^{\frac{p+1}{4}} \pmod{p}.$$

De même, si p-1 n'est pas divisible, ou s'il est divisible une seule fois par le nombre 3, on vérifiera l'équivalence

$$x^3 \equiv \Lambda \pmod{p},$$

supposée résoluble, en prenant, dans le premier cas,

(66)
$$x \equiv \Lambda^{\frac{1}{3}(1+2(p-1))} \equiv \Lambda^{\frac{2p-1}{3}} \pmod{p},$$

et, dans le second cas,

(67)
$$w \equiv \Lambda^{\frac{1}{3}\left(1 + \frac{p-1}{3}\right)} \equiv \Lambda^{\frac{p+2}{9}} \pmod{p},$$

323

ou bien

(68)
$$x = \Lambda^{\frac{1}{3}\left(1+2\frac{p-1}{3}\right)} = \Lambda^{\frac{1p+1}{9}} \pmod{p},$$

selon que p-1 divisé par 9 donnera pour reste 6 ou 3, etc. Ainsi, par exemple, on résoudra la formule

$$(69) x^3 \equiv 12 (mod. 23),$$

en prenant

(70)
$$x = 12^{\frac{1}{6}(1+3)} = 12^{16} = 8^{16}, 3^{16} = 3^{6} = 13 \pmod{23}.$$

Toutes les fois que le nombre n se réduit à l'unité, la formule (64) donne

$$(71) x \approx \Lambda^{\frac{1+(p-1)\sigma}{m}} (mod, p),$$

e étant choisi de manière que la quantité

soit entière, et cette formule détermine la racine unique de l'équivalence (1). Mais, lorsque le nombre n surpasse l'unité, p-1 n'étant pas divisible par n^2 , l'équivalence (1) admet plusieurs racines, dont une seule est déterminée par la formule (64); et, pour les obtenir toutes, il suffit de multiplier le second membre de cette formule par les diverses racines de l'équivalence (29) ou, ce qui revient au même, de la suivante :

(72)
$$x^n \equiv 1 \pmod{p}.$$

D'ailleurs, si l'on suppose n=2, la formule (72), réduite à

(31)
$$x^2 = 1 \pmod{p},$$

aura pour racines — τ et $+\tau$. Donc, si $p-\tau$ est divisible une seule fois par le nombre 2, l'équivalence

$$(30) x^2 \equiv \Lambda \quad (\text{mod.} p)$$

321 SUR LA RÉSOLUTION DES EQUIVALENCES ETC.

admettra les deux racines

(73)
$$v \equiv \Lambda^{\frac{p+1}{k}}, \quad v \equiv -\Lambda^{\frac{p+1}{k}} \pmod{p}.$$

Ainsi, par exemple, on résoudra la formule

$$(74)$$
 $x^2 = 3 \pmod{r}$,

en prenant

(75)
$$x = 3^1 = 5$$
 on $x = -5 = 6$ (mod.11),

et la formule

(76)
$$v^2 = -3 \pmod{31}$$
,

en prenant

(77)
$$x = 38 = 30$$
 or $x = -30 = 11$ (mod. 31).

D'autre part, si l'on a n=3, la formule (72), réduite à

$$(3z) x^1 \equiv 1 (mod. p),$$

donnera

$$(78) x \equiv 1 \pmod{p}$$

011

(79)
$$x^2 + x + 1 \equiv 0 \pmod{p}$$
,

par conséquent

(80)
$$(2x+1)^2 \equiv -3 \pmod{p}$$
;

et comme, en supposant p-1 divisible une scule fois par le nombre 2, on tirera de la formule (80)

(81)
$$3x + 1 \equiv \pm (-3)^{\frac{p+1}{2}} \pmod{p},$$

il est clair que, dans cette hypothèse, les trois racines de l'équivalence (32) seront respectivement

(82)
$$x \equiv 1$$
, $x \equiv \frac{-1 - (-3)^{\frac{p+1}{2}}}{2}$, $x \equiv \frac{-1 + (-3)^{\frac{p+1}{2}}}{2}$ (mod.p).

#

325

Done, si p-1 est divisible une seule fois par chacun des nombres 2 ct 3, l'équivalence

$$(23) x^3 = \Lambda (mod.p)$$

admettra trois racines qui seront respectivement

(83)
$$x = \Lambda^{\frac{p+2}{9}}, \quad x = \frac{-1 - (-3)^{\frac{p+1}{5}}}{3} \Lambda^{\frac{p+2}{9}}, \quad x = \frac{-1 + (-3)^{\frac{p+1}{5}}}{2} \Lambda^{\frac{p+2}{9}} \pmod{p},$$
ou bien

(84)
$$x = \Lambda^{\frac{2p+1}{p}}, \quad x = \frac{-1 - (-3)^{\frac{p+1}{p}}}{2} \Lambda^{\frac{2p+1}{p}}, \quad x = \frac{-1 + (-3)^{\frac{p+1}{p}}}{2} \Lambda^{\frac{2p+1}{p}} \pmod{p},$$

selon que p-1, divisé par 9, donnera pour reste 6 ou 3. Ainsi, par exemple, les trois racines de l'équivalence

$$(85) \qquad \qquad x^3 = 4 \pmod{31}$$

seront

(86)
$$\begin{cases} a = 4^7 = 16, \\ x = \frac{-1 - 3^8}{2} = 16 = 5.16 = -13 \\ a = \frac{-1 + 3^8}{2} = 16 = -6.16 = -3 \end{cases}$$
 (mod. 31).

Si, la condition (13) étant remplie, les nombres m, $\frac{p-1}{n}$ cessent d'être premiers entre eux, et si l'on désigne par ω leur plus grand commun diviseur, le nombre $\frac{m}{\omega}$ sera premier à $\frac{p-1}{n}$, pourvu qu'il soit premier à ω, et l'on pourra, dans cette hypothèse, trouver deux quantités entières c, or propres à vérifier l'équation

$$(87) \qquad \frac{m}{\omega} w - \frac{p-1}{n} v = 1.$$

On aura, par suite, cu égard à la condition (13),

(88)
$$\mathbf{A} = \mathbf{A}^{1 + \frac{p-1}{n}} = \mathbf{A}^{\frac{m}{\omega}},$$

et il est clair qu'on résoudra l'équivalence (1) en choisissant 2 de manière à vérifier la formule

$$(8q) \qquad x^m \equiv \Lambda^m \pmod{p},$$

de laquelle on tire

$$x^m = (x^{\omega})^{\frac{m}{\omega}} = \Lambda^{\frac{m}{\omega}} = \Lambda \quad (\bmod, p),$$

D'ailleurs l'équivalence (89) sera du nombre de celles qui peuvent être résolues. En effet, ω , divisant à la fois m et $\frac{p-1}{n}$, par conséquent m et p-1, sera diviseur de n. Donc la formule (13) entraînera les suivantes :

$$\Lambda^{\frac{p-1}{6l}} \equiv \left(\Lambda^{\frac{p-1}{n}}\right)^{\frac{n}{60}} \equiv 1^{\frac{n}{60}} = 1 \pmod{p},$$

(91)
$$(\Lambda^{w})^{\frac{p-1}{\omega}} \equiv \Lambda^{\frac{p-1}{\omega}} \equiv_{1} \pmod{p},$$

Or la formule (91), semblable à la formule (13), exprime précisément la condition à laquelle A^{re} doit satisfaire pour qu'on puisse résondre l'équivalence (89).

Il est bon d'observer que, ω étant diviseur de n, ω^2 sera diviseur de p-1. Donc il est toujours facile, dans l'hypothèse admise, de réduire l'équivalence (1) du degré m à une autre équivalence dont le degré ω soit la racine d'un carré qui divise p-1. Lorsque p-1 n'offre pas de diviseurs carrés dont les racines diviseut l'exposant m, le nombre ω coincide avec l'unité, et la formule (89) ou (60) fournit une racine de l'équivalence (1).

Étaut donnée une équivalence du troisième ou du quatrième degré, on peut, à l'aide de la méthode exposée dans le premier paragraphe. décider si cette équivalence admet autant de racines distinctes que son degré renferme d'unités. Dans le cas contraire, on pourra toujours, à

l'aide de la même méthode, ou s'assurer que l'équivalence proposée n'a point de racines, ou la réduire à une équivalence de degré moindre. Pour cette raison, nous nous hornerons, dans ce qui va suivre, à considérer les équivalences du troisième ou du quatrième degré qui admettent trois ou quatre racines distinctes.

Considérons d'abord une équivalence complète du troisième degré ou de la forme

(1)
$$a_0x^3 + a_1x^2 + a_2x + a_3z = 0 \pmod{p}$$
,

p désignant un nombre premier et a_0 , a_1 , a_2 , a_3 des quantités entières dont la première ne soit pas divisible par p, ou même des quantités rationnelles. Si l'on fait

$$x = y - \frac{a_1}{3a_0} \pmod{p},$$

la formule (1) deviendra

(3)
$$y^3 + By + C = 0 \pmod{p},$$

B, C étant des quantités rationnelles que l'on pourra réduire à des quantités entières. D'un autre côté, si l'on désigne par

$$\eta_1, \quad \eta_2, \quad \eta_3$$

les racines de l'équation

$$y^3 + By + C = 0,$$

et par p une racine primitive de la suivante

$$(5) v^{d} := 1,$$

 ρ_1 , ρ_2 seront les deux racines de

$$(6) x^2 \vdash x \vdash 1 = 0,$$

et l'expression

$$\left(\frac{\eta_1 + \rho \eta_3 + \rho^2 \eta_3}{3}\right)^3,$$

considérée comme fonction des racines des équations (4), (5), n'aura,

comme l'on sait, que deux valeurs distinctes, savoir

(8)
$$v_1 = \left(\frac{n_1 + \rho n_2 + \rho^2 n_3}{3}\right)^3, \quad v_2 = \left(\frac{n_1 + \rho^2 n_2 + \rho n_3}{3}\right)^3,$$

qui serviront elles-mêmes de racines à la réduite

(9)
$$u^2 + Cu - \frac{B^2}{27} = 0.$$

Cela posé, concevons que l'équivalence (3) admette trois racines distinetes

et que le nombre p-1 soit divisible par 3. L'équivalence

$$(10) x^3 \equiv 1 (mod. p)$$

offrira elle-même trois racines distinctes, dont la première sera l'unité, les deux dernières étant propres à vérifier la formule

$$(it) a^2 + v + i = 0 (mod. p).$$

Si l'on nomme r l'une de ces deux dernières, l'autre sera représentée par r^z , et si l'on fait

$$(13) \quad u_1 = \left(\frac{y_1 + r_1 y_2 + r^2 y_1}{3}\right)^3, \qquad u_2 = \left(\frac{y_1 + r_2 y_2 + r_1 y_1}{3}\right)^3 \pmod{p},$$

 u₁, u₂ seront, en vertu du théorème XVII de la page 294, les deux racines de l'équivalence du second degré

(13)
$$u^2 + Cu - \frac{R^3}{27} \equiv 0 \pmod{p}.$$

Comme on aura d'ailleurs

$$(14) \begin{cases} n_1 + n_2 + n_3 = 0, \\ (n_1 + \rho n_2 + \rho^2 n_3) (n_1 + \rho^2 n_2 + \rho n_3) = n_1^2 + n_2^2 + n_3^2 - n_1 n_2 - n_1 n_3 - n_2 n_3 \\ = -3 (n_1 n_2 + n_1 n_3 + n_2 n_3) = -3B, \end{cases}$$

le corollaire I du théorème XVII de la page 294 donnera

(15)
$$\begin{cases} y_1 + y_2 + y_3 \equiv 0 \pmod{p}, \\ (y_1 + ry_2 + r^2y_3)(y_1 + r^2y_2 + ry_3) \equiv -3B \pmod{p}. \end{cases}$$

320

A l'aide de ces formules, on réduira la résolution de l'équivalence (t) ou (3) à la résolution de deux équivalences du deuxième degré, et d'une équivalence binôme du troisième degré. En effet, supposons

(16)
$$\frac{y_1 + ry_2 + r^2y_3}{3} = v_1, \quad \frac{y_1 + r^2y_2 + ry_3}{3} = v_2.$$

H suffira, pour déterminer v_1 , de résoudre : 1° les équivalences du deuxième degré (11) et (13); 2° l'équivalence binôme du troisième degré

$$(17) c_1^3 \equiv u_1 (mod. p),$$

après quoi l'on déterminera e_2 , si B n'est pas divisible par p, à l'aide de la formule $9e_1e_2=\pm -3$ B, on

(18)
$$v_2 = -\frac{B}{3v_1} \pmod{p},$$

et y_1, y_2, y_3 à l'aide des formules

$$y_1 + y_2 + y_3 = 0$$
, $y_1 + ry_2 + r^2y_3 = 3v_1$, $y_1 + r^2y_2 + ry_3 = 3v_2 \pmod{p}$, desquelles on tire

$$(19) \quad y_1 = v_1 + v_2, \qquad y_2 = r^2 v_1 + r v_2, \qquad y_3 = r v_1 + r^2 v_2 \qquad (\text{mod. } p).$$

Si B devenaît divisible par ρ , l'une des racines de l'équivalence (13) serait équivalente à zéro, et, en désignant par u_i l'autre racine, on devenit à la formule (17) joindre la suivante

$$v_2 = 0 \pmod{p}$$
.

Il importe d'observer qu'en vertu des formules (12) on aura

(40)
$$u_1 = u_2 = \frac{r - r^2}{3^6} (y_1 - y_2) (y_1 - y_3) (y_2 - y_3).$$

Done, puisque chacune des équivalences (3), (10) admet, par hypothèse, trois racines distinctes, et qu'en conséquence aucune des différences $r-r^2$, y_1-y_2 , y_1-y_3 , y_2-y_3 n'est équivalente à zéro suivant le module p, la différence u_1-u_2 ne sera pas non plus équi-

valente à zéro, et la formule (13) offrira encore deux racines distinctes. Cela posé, la condition (38) du § II donnera

(21)
$$\left(\frac{C^2}{4} + \frac{B^3}{27}\right)^{\frac{p-1}{2}} = 1 \pmod{p}.$$

De même, l'équivalence (17) devant être résoluble, et p-1 étant divisible par 3, on tirera de la formule (13) du § 11

$$(22) \qquad \frac{p-1}{u_1^3} \equiv 1 \pmod{p}$$

et, par suite, si B n'est pas divisible par p,

$$(3) \quad u_1^{\frac{p-1}{\delta}} + u_2^{\frac{p-1}{\delta}} \equiv u_1^{\frac{p-1}{\delta}} + \left(-\frac{B^3}{27u_1}\right)^{\frac{p-1}{\delta}} \equiv u_1^{\frac{p-1}{\delta}} + \left(-\frac{B}{3}\right)^{\frac{p-1}{\delta}} + \left(-\frac{B}{3}\right)^{\frac{p-1}{\delta}} = u_1^{\frac{p-1}{\delta}} + u_1^{\frac{p-1}{\delta}} = u_1^{\frac{p-1}{\delta}} = u_1^{\frac{p-1}{\delta}} + u_1^{\frac{p-1}{\delta}} = u_1^{\frac{$$

D'autre part, on aura, en vertu du théorème X de la page 282,

$$(2'_{+}) \qquad \qquad \frac{p-1}{u_{1}^{-3}} + \frac{p-1}{u_{2}^{-1}} = v_{1}^{\frac{p-1}{\delta}} + v_{2}^{\frac{p-1}{\delta}},$$

 $\nu_i,\,\nu_i$ désignant les deux racines de l'équation (9), dont les valeurs seront

(25)
$$v_1 = -\frac{C}{2} - \left(\frac{C^2}{4} + \frac{B^3}{27}\right)^{\frac{1}{2}}, \quad v_2 = -\frac{C}{2} + \left(\frac{C^2}{4} + \frac{B^3}{37}\right)^{\frac{1}{2}}.$$

Donc la formule (23) pourra être réduite à

(26)
$$\left[-\frac{C}{2} - \left(\frac{C^2}{4} + \frac{B^3}{27} \right)^{\frac{1}{2}} \right]^{\frac{p-1}{3}} + \left[-\frac{C}{2} + \left(\frac{C^2}{4} + \frac{B^3}{27} \right)^{\frac{1}{2}} \right]^{\frac{p-1}{3}}$$
 2 (mod. p)

ou, ce qui revient au même, à

$$\begin{pmatrix}
\frac{C}{2}
\end{pmatrix}^{\frac{p-1}{3}} + \frac{(p-1)(p-4)}{3.6} \left(\frac{C}{2}\right)^{\frac{p-1}{3}} \left(\frac{C^{2}}{4} + \frac{B^{3}}{27}\right) + \frac{(p-1)(p-4)(p-7)(p-10)}{3.6.9.12} \left(\frac{C}{2}\right)^{\frac{p-13}{3}} \left(\frac{C^{2}}{4} + \frac{B^{3}}{27}\right)^{2} + \dots = 1 \pmod{p}.$$

Amsi, lorsque, p-1 étant divisible par 3, et B non divisible par p, l'équivalence (3) admet trois racines distinctes, les valeurs des quantités B, C vérifient les conditions (21), (27). Réciproquement, si ces conditions sont vérifiées, p-1 étant toujours divisible par 3, et B non divisible par p, chacune des équivalences (1) et (3) admettra trois racines distinctes. En effet, eu égard à la condition (21), l'équivalence (13) sera résoluble. Désignons par u_1 , u_2 ses deux racines, et faisons

$$u_1^{p-1} =: z.$$

La condition (27) ou (23) donnera

$$z + \frac{1}{s} \equiv s \pmod{p}$$

ou, ce qui revient au même,

$$(z-1)^2 \equiv 0 \pmod{p}$$

et, par conséquent,

$$z \equiv 1 \pmod{p}$$
.

Donc la condition (22) sera elle-même remplie, et l'équation (17) sera résoluble. Cela posé, les formules (18) et (19) fourniront évidemment des valeurs de y_1 , y_2 , y_3 propres à vérifier l'équivalence (3).

Si, les conditions (21), (27) étant remplies, le nombre p-1 n'est divisible ni par 4, ni par 9, la résolution des équivalences (11), (13), (17), dont les deux premières peuvent s'écrire comme il suit

(28)
$$(2x+1)^3 = -3 \pmod{p},$$

(39)
$$\left(u + \frac{C}{2}\right)^2 = \frac{C^2}{4} + \frac{B^3}{27} \pmod{p}$$

et, par conséquent, la résolution des équivalences (1) ou (3) s'effectuera sans peine à l'aide des formules (67), (68), (69) du paragraphe précédent.

Pour montrer une application des principes que nous venons d'exposer, considérons l'équivalence

(30)
$$x^3 - 3x^2 + 15x - 1 = 0 \pmod{31}$$
.

332 SUR LA RÉSOLUTION DES ÉQUIVALENCES ETC.

Dans ce cas, le nombre p-1=30 sera multiple de 3, sans être divisible ni par 4, ni par 9, et l'on vérifiera la formule (11) ou (28)] voir les formules (77) du §II], en prenant $2x+1=\pm 11$, par conséquent $x=\frac{-1\pm 11}{2}$. On pourra donc supposer

(31)
$$r = \frac{-1 - 11}{2} = -6.$$

De plus, si l'on fait

(32)
$$x = y + \frac{3}{3} = y + 1,$$

la formule (30) deviendra

(33)
$$y^3 + 13y + 13 = 0$$
 (mod. 31).

En comparant cette dernière à l'équivalence (3), on trouvera

(34)
$$B = 12$$
, $C = 13$,

(35)
$$\frac{C}{2} = 6$$
, $\frac{C^2}{4} + \frac{B^3}{27} \equiv 6^2 + 4^3 \equiv 5 + 2 = 7$ (mod. 31).

Cela posé, les conditions (21), (27) donneront

(36)
$$7^{15} \equiv 1 \pmod{31}$$

et

$$6^{10} + \frac{10.9}{1.2} 6^{8} \cdot 7 + \frac{10.9.8.7}{1.2.3.4} 6^{6} \cdot 7^{2} + \frac{10.9.8.7}{1.2.3.4} 6^{6} \cdot 7^{3} + \frac{10.9}{1.2} 6^{2} \cdot 7^{5} + 7^{6} - 1 \pmod{31}$$

ou, ce qui revient au même, attendu que l'on aura 6^3 . -1, 7^3 2, $\frac{10.9}{1.2} = 2.7$ et $\frac{10.9.8.7}{1.2.3.4} = -7$,

$$(37) -6 + 2.6^2.7^2 + 2 + 2.6.7 + 2^2.6^2.7^2 + 2.7^2 = 1 \pmod{31}.$$

Or, les formules (36), (37) étant vérifiées, on doit en conclure que l'équivalence (30) ou (33) admettra trois racines distinctes. Effectivement, la formule (13) ou (29) deviendra

(38)
$$(u+6)^2 \approx 7 \pmod{31}$$

et l'on en tirera [voir les formules (73) du § II]

(39)
$$u + 6 = \pm 7^8 = \pm 10 \pmod{31}$$
.

On pourra donc supposer

$$(40)$$
 $u_1 = 10 - 6 = 4,$

et l'équivalence (17), réduite à

$$c_1^3 = 4 \pmod{3},$$

aura pour racines | voir les formules (86) du § II | les trois quantités 16, -3, -13. Cela posé, on pourra prendre

(42)
$$v_1 = 16$$
, $v_1 = -3$, $v_2 v_1 = -13$ (mod. 31);

et, comme on tirera de la formule (18)

(43)
$$c_2 = -\frac{12}{3\bar{c}_1} = -\frac{1}{4} = -8 \pmod{3r},$$

on trouvera encore

(44)
$$v_2 = -8$$
, $rv_2 = -14$, $r^2 v_2 = -9$ (mod. 31).

Done enfin les formules (19) donneront

(45)
$$y_1 = 16 - 8 = 8$$
, $y_2 = -13 - 14 = 4$, $y_3 = -3 - 9 = -12$ (mod. 31).

Ainsi l'équivalence (33) aura pour racines

(46)
$$y = 8, \quad y = 4, \quad y = -12 \pmod{31},$$

ce qui est exact. Les racines correspondantes de l'équivalence (30), calculées à l'aide de la formule (32), seront évidemment

(47)
$$x = 11$$
, $x = -9$ (mod.31).

Considérons maintenant une équivalence complète du quatrième degré ou de la forme

(48)
$$u_0 x^4 + u_1 x^3 + a_2 x^2 + a_3 x + a_4 \cdots$$
 (mod. p),

334 SUR LA RÉSOLUTION DES ÉQUIVALENCES ETC.

p désignant un nombre premier, et a_0 , a_1 , a_2 , a_3 , a_4 des quantités entières dont la première ne soit pas divisible par p, ou même des quantités rationnelles. Si l'on fait

$$(49) x \equiv y - \frac{a_1}{\sqrt{a_0}} (\text{mod. } p),$$

l'équivalence (48) deviendra

(50)
$$y^4 + By^2 + Cy + D \equiv 0 \pmod{p},$$

B, C, D étant des quantités rationnelles que l'on pourra réduire à des quantités entières. D'un autre côté, si l'on désigne par

$$\eta_1$$
, η_2 , η_3 , η_4

les racines de l'équation

(51)
$$y^3 + By^2 + Cy + D = 0,$$

Pexpression

$$\left(\frac{\eta_1-\eta_2+\eta_3-\eta_4}{2}\right)^2,$$

considérée comme fonction de ces racines, n'aura, comme l'on sait, que trois valeurs distinctes, savoir

(59)
$$\begin{cases} v_1 = \left(\frac{\eta_1 - \eta_2 + \eta_3 - \eta_4}{2}\right)^2, \\ v_2 = \left(\frac{\eta_1 - \eta_2 - \eta_3 + \eta_4}{2}\right)^2, \\ v_3 = \left(\frac{\eta_1 + \eta_2 - \eta_4 - \eta_4}{2}\right)^2, \end{cases}$$

qui serviront de racines à la réduite

(53)
$$u^3 + 2Bu^2 + (B^2 - 4D)u - C^2 = 0.$$

Cela posé, concevons que l'équation (51) admette quatro racines distinctes

$$y_1, y_2, y_3, y_4,$$

et faisons

(54)
$$\begin{cases} u_1 = \left(\frac{y_1}{y_1} - \frac{y_2 + y_3 - y_4}{y_1}\right)^2 \\ u_2 = \left(\frac{y_1 - y_2 - y_3 + y_4}{y_1}\right)^2 \\ u_3 = \left(\frac{y_1 + y_2 - y_3 - y_4}{y_2}\right)^2 \end{cases} \pmod{p},$$

 u_1 , u_2 , u_3 seront, en vertu du théorème XVI de la page 292, les trois racines de l'équivalence du troisième degré

(55)
$$u^3 + 2Bu^2 + (B^2 - 4D)u - C^2 = 0 \pmod{p}.$$

Comme on aura d'ailleurs

$$(56) \left\{ \begin{array}{c} \eta_1 + \eta_2 + \eta_3 + \eta_4 = 0, \\ (\eta_1 - \eta_2 + \eta_3 - \eta_4) (\eta_1 + \eta_2 - \eta_3 - \eta_4) = -8C, \end{array} \right.$$

on frouvera encore

$$(57) \begin{cases} y_1 + y_2 + y_3 + y_5 = 0 \pmod{p}, \\ (y_1 - y_2 + y_4 - y_4) (y_1 - y_2 - y_3 + y_5) (y_1 + y_2 - y_4 - y_5) = 80. \end{cases}$$

A l'aide de ces formules, on réduira la résolution de l'équivalence (48) ou (50) à la résolution de deux équivalences binômes du deuxième degré et d'une équivalence du troisième. En effet, supposons

(58)
$$\begin{cases} \rho_1 = \frac{y_1 - y_2 + y_3 - y_4}{2} \\ \rho_2 = \frac{y_1 - y_2 - y_3 + y_4}{2} \\ \rho_3 = \frac{y_1 - y_2 - y_3 + y_4}{2} \end{cases} \pmod{p}.$$

Il suffira, pour déterminer ρ_1 , ρ_2 , de résoudre : 1º l'équivalence (55), qui est du troisième degré; 2º les deux équivalences du deuxième degré

(59)
$$v_1^2 = u_1, \quad v_2^2 = u_2 \quad (\text{mod}.p),$$

336 SUR LA RÉSOLUTION DES EQUIVALENCES L'IC.

après quoi l'on déterminera c_3 , si C n'est pas divisable par p_{τ} a l'ade de la formule $8e_1e_2e_3=-8$ C, on

(60)
$$v_1 = \frac{C}{v_1 v_2} \pmod{p},$$

 $et_1 y_1, y_2, y_3, y_4$ à l'aide des formules

(61)
$$\begin{cases} \mathcal{Y}_1 + \mathcal{Y}_2 + \mathcal{Y}_3 + \mathcal{Y}_5 & \alpha \in (\text{mod}, \mathcal{P}), \\ \mathcal{Y}_1 - \mathcal{Y}_2 + \mathcal{Y}_3 - \mathcal{Y}_4 & \alpha v_{14} \\ \\ \mathcal{Y}_4 - \mathcal{Y}_2 - \mathcal{Y}_3 + \mathcal{Y}_5 & \alpha v_{24} \\ \\ \mathcal{Y}_4 + \mathcal{Y}_2 - \mathcal{Y}_4 - \mathcal{Y}_5 - \alpha v_{25} \end{cases}$$

desquelles on tire

$$(6a) = \begin{cases} x_1 - \frac{v_1 + v_2 + v_1}{3}, & y_2 - \frac{v_1 - v_2 + v_3}{3}, \\ y_3 - \frac{v_1 - v_2 - v_1}{3}, & y_5 - \frac{v_1 + v_3 - v_3}{3} \end{cases} \text{ cumd. } p_{\beta},$$

Si C devenait divisible par p. L'une des racines de l'équivalence $e^{-i\phi}$ s'évanouirait, et, en désignant les deux autres par u_e , u_s , on deveat aux formules (59) joindre, non plus la formule (60), mais la suivante :

$$P_a = 0 \pmod{p}$$
,

Hest bon d'observer que l'on a, en vertu des formales Chin.

(63)
$$\begin{cases} u_1 - u_2 - (y_1 - y_2)(y_3 - y_4) \\ u_1 - u_3 - (y_1 - y_4)(y_4 - y_4) \\ u_2 - u_3 - (y_1 - y_3)(y_3 - y_4) \end{cases} \pmod{p_3},$$

On peut en conclure que, si l'équivalence (50) admet quatre memoristimetes l'une de l'autre, l'équivalence (55) admettra elle même trois racines distinctes. Si l'on fait d'ailleurs

$$(64) u + \frac{3B}{3} \quad U \pmod{p},$$

SUR LA RÉSOLUTION DES ÉQUIVALENCES ETC. 337 et de plus

(65)
$$E = -\left(\frac{1}{3}B^2 + 4D\right), \quad F = -\left(\frac{3}{27}B^3 - \frac{8}{3}BD + C^2\right) \pmod{\rho},$$

L'équivalence (55) deviendra

(66)
$$U^{\eta} + EU + F = 0 \pmod{p},$$

Supposons maintenant p-1 divisible par 3. On pourra déterminer les trois racines de l'équivalence (66), correspondantes aux trois vateurs de u qui vérifient la formule (55), en suivant la méthode par laquelle nous avons résolu l'équivalence (4), et, comme les trois racines de l'équivalence (66) seront distinctes l'une de l'autre, si l'équivalence (50) offre elle-même trois racines distinctes, il est clair que les quantités E, F satisferont alors généralement aux conditions que l'on déduit des formules (21) et (27), en y remplaçant B par E et C par F. On aura donc, en admettant que l'équivalence (50) offre quatre racines distinctes,

(67)
$$\left(\frac{\mathbb{F}^2}{4} + \frac{\mathbb{E}^4}{27}\right)^{\frac{p-1}{2}} = 1 \pmod{p}$$

et

$$\begin{pmatrix} \left(\frac{F}{4}\right)^{\frac{p-1}{4}} + \frac{(p-1)(p-4)}{3.6} \left(\frac{F}{4}\right)^{\frac{p-7}{4}} \left(\frac{F^{2}}{4} + \frac{E^{3}}{27}\right) \\
+ \frac{(p-1)(p-4)(p-7)(p-10)}{3.6.9.12} \left(\frac{F}{4}\right)^{\frac{p-13}{3}} \left(\frac{F^{2}}{4} + \frac{E^{3}}{27}\right)^{2} + \dots = 1 \pmod{p}$$

On doit toutefois excepter le cas où le coefficient E deviendrait divisible par p. De plus, chacune des formules (59) devant être résoluble, on aura encore, si E n'est pas équivalent à zéro,

(69)
$$u_1^{\frac{p-1}{2}} = 1, \quad u_2^{\frac{p-1}{2}} = 1 \pmod{p}$$

et, par conséquent,

(76)
$$u_3^{p-1} = \left(\frac{C^2}{u_1 u_2}\right)^{\frac{p-1}{2}} = 1 \pmod{p}.$$

338 SUR LA RÉSOLUTION DES ÉQUIVALENCES ETC. Cela posé, concevons que l'élimination de *u* entre les équations

(71)
$$u^3 + {}^{3}Bu^2 + (B^2 - 4D)u - C^2 = 0, \quad V = u^{\frac{p-1}{2}}$$

produise une autre équation de la forme

$$(72) V3 + GV2 + IIV + I = 0.$$

On aura identiquement

(73)
$$V_1 + GV_2 + HV_1 = \left(V - u_1^{\frac{p-1}{2}}\right) \left(V - u_2^{\frac{p-1}{2}}\right) \left(V - u_3^{\frac{p-1}{2}}\right)$$

et, par suite,

$$(7') \qquad \begin{cases} G = -\left(u_{1}^{\frac{p-1}{2}} + u_{2}^{\frac{p-1}{2}} + u_{3}^{\frac{p-1}{2}}\right), \\ H = u_{1}^{\frac{p-1}{2}} u_{2}^{\frac{p-1}{2}} + u_{1}^{\frac{p-1}{2}} u_{3}^{\frac{p-1}{2}} + u_{2}^{\frac{p-1}{2}} u_{3}^{\frac{p-1}{2}}, \\ I = -u_{1}^{\frac{p-1}{2}} u_{2}^{\frac{p-1}{2}} u_{3}^{\frac{p-1}{2}} = -C^{2}^{\frac{p-1}{2}} = -C^{2}^{\frac{p-1}{2}}. \end{cases}$$

puis on conclura des formules (74), combinées avec les formules (69), (70),

(75)
$$G \equiv -3$$
, $\Pi \equiv 3 \pmod{p}$

eŧ

$$C^{p-1} \equiv t \pmod{p}.$$

Done, en définitive, les conditions (67), (68), (75) doivent être vérifiées toutes les fois que, p-1 étant divisible par 3, et C, E non divisibles par p, l'équivalence (48) ou (50) offre quatre racines distinctes. Quant à la condition (76), il est inutile d'en faire mention, puisque, dans le cas dont il s'agit, elle sera toujours remplie. Done, si les conditions (67), (68), (75) sont vérifiées, p-1 étant divisible par 3, et C, E non divisibles par p, l'équivalence (50) et, par suite, l'équivalence (48) offriront quatre racines distinctes. En effet, les conditions (67), (68) étant vérifiées, chacune des équivalences (55), (66) offrira trois racines distinctes l'une de l'autre. Désignons par u_1, u_2, u_3

celles de ces racines qui appartiendront à l'équivalence (55). Les quantités

$$\frac{p-1}{u_1^{-2}}, \quad \frac{p-1}{u_2^{-2}}, \quad \frac{p-1}{u_1^{-2}}$$

seront les trois racmes de l'équivalence

(78)
$$V_1 + GV_2 + HV_2 + I_1 = 0$$
,

qui, en vertu de la dernière des formules (74), deviendra

(79)
$$V^{3} + GV^{2} + HV - C^{p-1} = 0.$$

De plus, les conditions (75), (76) étant remplies, la formule (78) deviendra

$$V^3 = 3V^2 + 3V - 1$$
 o

ou, ce qui revient au même,

$$(80) (V-1)^3 = 0,$$

et ses trois racines seront équivalentes à l'unité. Donc les quantités (77) vérifieront les conditions (69), (70), et les formules (59) seront résolubles. Cela posé, les formules (60) et (62) fourniront évidemment des valeurs de y_1 , y_2 , y_3 , y_4 propres à vérifier l'équivalence (50).

Si, les conditions (67), (68), (75), (76) étant remplies, le nombre p-1 n'est divisible ni par 4, ni par 9, la résolution des équivalences (66), (69) et, par suite, la résolution des équivalences (50), (51) s'effectueront sans peine à l'aide des formules (67), (68), (69) du paragraphe précédent.

Concevons, pour fixer les idées, qu'il s'agisse de résoudre l'équivalence :

(81)
$$x^4 + 4x^3 + 6x^2 + 13x + 7 = 0 \pmod{34}$$
.

Alors, en posant

$$(82) x = y - \frac{1}{2} = y - 1,$$

on obtiendra la formule

(83)
$$y'' + 9y' - 3 = 0 \pmod{31};$$

340 SUR LA RÉSOLUTION DES ÉQUIVALENCES ETC.

puis, en comparant cette formule à l'équivalence (50), on trouvera

(84)
$$B = 0$$
, $C = 9$, $D = -3$.

Cela posé, l'équivalence (55) deviendra

(85)
$$u^3 + 12u + 12 \equiv 0;$$

elle se confondra donc avec l'équivalence (33), dont les racines étaient 8, 4 et -12, en sorte qu'on pourra prendre

(86)
$$u_1 \equiv 8, \quad u_2 \equiv 4, \quad u_3 \equiv -12 \pmod{31}.$$

Or, les valeurs précédentes de u_4 , u_2 , u_3 vérifierent les conditions (69), (70), ou

(87)
$$8^{15} \equiv 1$$
, $4^{15} \equiv 1$, $(-12)^{15} \equiv 1$ (mod. 31).

On pourra donc résoudre les équivalences (59) ou

(88)
$$v_1^2 \equiv 8, \quad v_2^2 \equiv 4 \pmod{31}.$$

On tirera effectivement de ces dernières, en ayant égard aux formules (73) du § II, et à la condition 25 == 1,

(89)
$$v_1 = \pm 8^8 = \pm 2^{21} = \pm 2^4 = \pm 16$$
, $v_2 = \pm 4^8 = \pm 2^{16} = \pm 1$.

Par conséquent, on pourra supposer

(90)
$$v_1 = 16, \quad v_2 = 2.$$

Les valeurs de e_1, e_2 étant ainsi fixées, l'équivalence (60) donnera

(91)
$$v_3 = -\frac{9}{32} = -9 = 2$$
 (mod. 31);

et l'on tirera des formules (62)

(92)
$$y_1 = 20 = -11$$
, $y_2 = 2$, $y_3 = -4$, $y_4 = -18 = 13 \pmod{31}$.

Telles seront les quatre racines de l'équivalence (83). Les racines correspondantes de l'équivalence (81), calculées à l'aide de la formule (82), seront respectivement

(93)
$$x = -12, \quad x = 1, \quad x = -5, \quad x = 12.$$

341

Les équivalences (88) étant résolubles, et le nombre C = g n'étant pas divisible par 31, on peut affirmer que, dans l'exemple précédent, les conditions (75), (76) se vérifient, ou, en d'autres termes, que l'équivalence produite par l'élimination de u entre les suivantes

(94)
$$u^3 + 12u + 11 = 0$$
, $V = u^{1s}$ (mod. 31)

se réduit à la formule

(95)
$$V^3 - 3V^2 + 3V - 1 = 0 \pmod{31}$$
.

C'est, au reste, ce dont il est facile de s'assurer directement.

SUR L'ÉQUILIBRE

ET LE

MOUVEMENT INTÉRIEUR DES CORPS

CONSIDÉRI S

COMME DES MASSES CONTINUES.

§ I. - Formules générales.

Dans la recherche des équations d'équilibre ou de mouvement des corps solides ou fluides, on peut considérer ces corps comme des masses continues, ou bien les regarder comme des systèmes de points matériels qui s'attirent ou se repoussent à de très petites distances. Dans la première hypothèse, il faut d'abord établir la théorie des pressions ou tensions exercées en un point donné d'un corps solide contre les divers plans qu'on peut faire passer par ce même point. J'ai développé cette théorie dans le Tome II des Exercices de Mathématiques (1), et j'ai fait connaître les relations qui existent, dans le cas d'équilibre d'un corps solide ou fluide, entre les pressions ou tensions et les forces accélératrices. Si, pour fixer les idées, on désigne par x, y, z les coordonnées rectangulaires d'un point quel
conque; par ρ la densité d'un corps au point (x, y, z); par p', p'', p''' les pressions ou tensions que supportent en ce point et du côté des coordonnées positives trois plans respectivement perpendiculaires aux axes coordonnés; par A, F, E; F, B, D; E, D, C les projections algébriques des pressions p', p'', p''' sur ces mêmes axes; enfin, par X, Y, Z les projections algébriques de la force accélératrice appliquée au point (x, y, z); les relations dont il

⁽¹⁾ OEuvres de Cauchy, S. II, T. VII.

s'agit seront exprimées par les formules

$$\begin{cases} \frac{\partial A}{\partial x} + \frac{\partial F}{\partial y} + \frac{\partial E}{\partial z} + \rho X = 0, \\ \frac{\partial F}{\partial x} + \frac{\partial B}{\partial y} + \frac{\partial D}{\partial z} + \rho Y = 0, \\ \frac{\partial E}{\partial x} + \frac{\partial D}{\partial y} + \frac{\partial C}{\partial z} + \rho Z = 0, \end{cases}$$

dans lesquelles x, y, z sont prises pour variables indépendantes. Si les diverses particules du corps, au lieu d'offrir un état d'équilibre, sont en mouvement, alors, en désignant par x, z, z les projections algébriques de la force accélératrice qui scrait capable de produire à elle seule le mouvement effectif d'une particule, et prenant x, y, z, t pour variables indépendantes, on obtiendra, à la place des équations (1), celles qui suivent :

(1)
$$\begin{cases} \frac{\partial X}{\partial x} + \frac{\partial E}{\partial y} + \frac{\partial E}{\partial z} + \rho X = \rho X, \\ \frac{\partial F}{\partial x} + \frac{\partial B}{\partial y} + \frac{\partial D}{\partial z} + \rho Y = \rho X, \\ \frac{\partial E}{\partial x} + \frac{\partial D}{\partial y} + \frac{\partial C}{\partial z} + \rho Z = \rho Z. \end{cases}$$

Entin, si l'on nomme ξ , η , ζ les déplacements de la particule qui, au bout d'un temps t, coincide avec le point (x, y, z), mesurés parallèlement aux axes coordonnés, on trouvera, en supposant ces déplacements très petits,

$$\chi = \frac{\partial^2 \xi}{\partial t^2}, \qquad \Im = \frac{\partial^2 \eta}{\partial t^2}, \qquad \mathfrak{Z} = \frac{\partial^2 \zeta}{\partial t^2},$$

et, par conséquent, les équations (2) deviendront

(3)
$$\begin{cases} \frac{\partial \mathbf{A}}{\partial x} + \frac{\partial \mathbf{F}}{\partial y} + \frac{\partial \mathbf{E}}{\partial z} + \rho \mathbf{X} = \rho \frac{\partial^2 \xi}{\partial t^2}, \\ \frac{\partial \mathbf{F}}{\partial x} + \frac{\partial \mathbf{B}}{\partial y} + \frac{\partial \mathbf{D}}{\partial z} + \rho \mathbf{Y} = \rho \frac{\partial^2 \eta}{\partial t^2}, \\ \frac{\partial \mathbf{E}}{\partial x} + \frac{\partial \mathbf{D}}{\partial y} + \frac{\partial \mathbf{C}}{\partial z} + \rho \mathbf{Z} = \rho \frac{\partial^2 \zeta}{\partial t^2}. \end{cases}$$

Les formules (1), (2), (3) sont les véritables équations d'équilibre ou de mouvement intérieur des corps considérés comme des masses continues; et pour en déduire, par exemple, les lois de l'équilibre on du mouvement des corps solides élastiques, il suffit de chercher comment, dans ces derniers, les pressions ou tensions A, B, C, D, E, F doivent s'exprimer à l'aide des déplacements ξ , η , ζ . Nous ferons, à ce sujet, les remarques suivantes.

Soient, au bout du temps t, α , β , γ les angles que forme avec les demiaxes des coordonnées positives une droite menée par le point (x, y, z), et représentons par ε la dilatation ou condensation linéaire ε , mesurée suivant cette droite. On aura, en supposant que les déplacements ξ , γ , ζ soient très petits,

$$\begin{cases} \varepsilon = \frac{\partial \xi}{\partial x} \cos^2 \alpha + \frac{\partial \eta}{\partial y} \cos^2 \beta + \frac{\partial \xi}{\partial z} \cos^2 \gamma \\ + \left(\frac{\partial \eta}{\partial z} + \frac{\partial \xi}{\partial y}\right) \cos \beta \cos \gamma + \left(\frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial z}\right) \cos \gamma \cos \gamma + \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x}\right) \cos \alpha \cos \beta. \end{cases}$$

Donc, le système des dilatations ou condensations linéaires, mesurées dans toutes les directions possibles autour du point (x, y, z), sera complètement déterminé, lorsqu'on connaîtra les valeurs des six quantités

(5)
$$\frac{\partial \xi}{\partial x}, \quad \frac{\partial \eta}{\partial y}, \quad \frac{\partial \xi}{\partial z}, \quad \frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y}, \quad \frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z}, \quad \frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x},$$

qui, dans la formule (4), servent de coefficients aux carrès et aux produits des cosinus des angles α , β , γ . Cela posé, admettons, comme nous l'avons déjà fait dans le IH c Volume (p. 167) (†), que, dans un corps élastique, la pression ou tension exercée contre un plan passant par un point donné (x, y, z) dépende uniquement des condensations ou dilatations linéaires autour de ce point, en sorte que, le système de ces condensations ou dilatations étant connu, on puisse en déduire le système entier des pressions ou tensions exercées contre les divers plans

⁽¹⁾ OEuvres de Cauchy, S. II, T. VIII, p. 204.

ET LE MOUVEMENT INTÉRIEUR DES CORPS ETC. 345 qui renferment le point (x, y, z) (1). Les pressions ou tensions

devront être des fonctions des seules quantités

$$\frac{\partial \xi}{\partial x}$$
, $\frac{\partial \eta}{\partial y}$, $\frac{\partial \zeta}{\partial z}$, $\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y}$, $\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z}$, $\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x}$

et même des fonctions linéaires, si, en considérant les quantités dont il s'agit comme infiniment petites du premier ordre, on néglige, dans les développements de A, B, C, D, E, F, suivant les puissances ascendantes de ces quantités, les infiniment petits du second ordre et des ordres supérieurs. Donc alors, en admettant que les pressions s'évanouissent dans l'état naturel, on trouvera

$$\begin{cases}
A = a_1 \frac{\partial \xi}{\partial x} + a_2 \frac{\partial \eta}{\partial y} + a_3 \frac{\partial \xi}{\partial z} + a_4 \left(\frac{\partial \eta}{\partial z} + \frac{\partial \xi}{\partial y} \right) + a_4 \left(\frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial z} \right) + a_6 \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right), \\
B = b_1 \frac{\partial \xi}{\partial x} + b_2 \frac{\partial \eta}{\partial y} + b_4 \frac{\partial \xi}{\partial z} + b_4 \left(\frac{\partial \eta}{\partial z} + \frac{\partial \xi}{\partial y} \right) + b_5 \left(\frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial z} \right) + b_6 \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right), \\
C = c_4 \frac{\partial \xi}{\partial x} + c_2 \frac{\partial \eta}{\partial y} + c_3 \frac{\partial \xi}{\partial z} + c_4 \left(\frac{\partial \eta}{\partial z} + \frac{\partial \xi}{\partial y} \right) + c_5 \left(\frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial z} \right) + c_6 \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right), \\
D = d_1 \frac{\partial \xi}{\partial x} + d_2 \frac{\partial \eta}{\partial y} + d_3 \frac{\partial \xi}{\partial z} + d_4 \left(\frac{\partial \eta}{\partial z} + \frac{\partial \xi}{\partial y} \right) + d_4 \left(\frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial z} \right) + d_6 \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right), \\
E = c_4 \frac{\partial \xi}{\partial x} + c_2 \frac{\partial \eta}{\partial y} + c_3 \frac{\partial \xi}{\partial z} + c_4 \left(\frac{\partial \eta}{\partial z} + \frac{\partial \xi}{\partial y} \right) + c_5 \left(\frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial z} \right) + c_6 \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right), \\
F = f_1 \frac{\partial \xi}{\partial x} + f_2 \frac{\partial \eta}{\partial y} + f_3 \frac{\partial \xi}{\partial z} + f_4 \left(\frac{\partial \eta}{\partial z} + \frac{\partial \xi}{\partial y} \right) + f_5 \left(\frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial z} \right) + f_6 \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right),
\end{cases}$$

 $a_1, b_1, c_1, d_1, a_2, b_2, \ldots$ étant des coefficients qui seront déterminés en chaque point du corps, mais pourront varier avec x, y, z. Les équations (7) et (8) coïncident avec celles que M. Poisson a données

⁽¹⁾ Nous avons indiqué ce principe, dans le IIIⁿ Volume des *Exercices*, comme propre à fournir les équations d'équitibre ou de mouvement intérieur d'un corps solide dont l'élasticité reste la même en tous sons; mais rien n'empêche d'étendre le même principe au cas où l'élasticité varie dans le passage d'une direction à une autre.

dans son dernier Mémoire sur les corps élastiques (1). Chacune de ces équations, prise à part, est de la même forme que l'une des équations (5), (6) des pages 10 et 11 du présent Volume, et renforme six coefficients dépendants de la nature du corps. Mais il n'arrive plus ici, comme pour les équations (5), (6) des pages 10 et 11, que quelquesuns des coefficients qui servent à déterminer la pression A soient égaux à quelques-uns de ceux qui servent à déterminer chacune des autres pressions B, C, D, E, F; et les trente-six coefficients a,, b,, c_1 , d_1 , e_4 , f_4 , a_2 , b_2 , e_2 , ... sont tous distincts les uns des autres.

Si l'élasticité du corps redevient la même en tous sens, les équations (7), (8) se réduiront à celles que j'ai données dans le III Volume [p. 210 (2)]. Alors, en effet, comme je l'ai déjà remarqué [III Volume, p. 167 (3)], trois directions perpendiculaires entre elles devront, en chaque point du corps élastique, correspondre simultanément aux trois pressions ou tensions principales et aux trois condensations ou dilatations principales. De plus, si l'on nomme ε' , ε'' , ε''' les dilatations ou condensations principales, et ω', ω", ω" les tensions principales prises avec le signe +, ou les pressions principales prises avec le signe —, ϖ' , ϖ'' seront des fonctions de ϵ' , ϵ'' , ϵ''' , qui devront conserver les mêmes formes quand on échangera entre eux les axes des æ,

(1) Pour établir les formules (7) et (8) qu'il regardo comme applicables aux corps sobdes élastiques, dont les molécules sont très peu écartées des positions qu'elles occuparent dans l'état naturel, M. Poisson part de ce principe, que les pressions A, B, C, D. E. F. relatives au point (x, y, z), dépendent uniquement des déplacements relatifs des molécules dans le voisinage de ce point et, par conséquent, des nouf quantités

$$\frac{\partial \xi}{\partial x}$$
, $\frac{\partial \xi}{\partial y}$, $\frac{\partial \xi}{\partial z}$, $\frac{\partial \eta}{\partial x}$, $\frac{\partial \eta}{\partial y}$, $\frac{\partial \eta}{\partial z}$, $\frac{\partial \zeta}{\partial x}$, $\frac{\partial \zeta}{\partial y}$, $\frac{\partial \zeta}{\partial z}$;

puis, en considérant ces quantités comme infiniment petites du premier ordre, et négligeant les infiniment petits du second ordre, il réduit les valeurs de A, B, C, D, E, F à des fonctions linéaires des quantités dont il s'agit. Enfin, il ramone ces fonctions à la forme sous laquelle elles se présentent dans les équations (7), (8), en admettant que les pressions s'évanomissent dans l'état naturel du corps, et en observant que cet état contune de subsister, quand on imprime à tous les points un mouvement commun de rotation autour de l'un des axes coordonnés.

⁽¹⁾ Ohwres de Cauchy, S. II, T. VIII, p. 250.

⁽⁴⁾ Ibid., p. 203.

y, z. Ces mêmes fonctions deviendront linéaires, si, en considérant les quantités ε' , ε'' , ε''' comme infiniment petites du premier ordre, on néglige, dans les développements des pressions, les infiniment petits des ordres supérieurs; et alors, en supposant les pressions nulles dans l'état naturel, on aura nécessairement

$$\begin{cases} \varpi' = \Pi \varepsilon' + K \varepsilon'' + K \varepsilon'', \\ \varpi'' = K \varepsilon' + \Pi \varepsilon'' + K \varepsilon''', \\ \varpi''' = K \varepsilon' + K \varepsilon'' + H \varepsilon'', \end{cases}$$

II, K désignant deux coefficients qui pourront varier avec x, y, z. Su maintenant on fait, pour abréger,

$$\upsilon = \varepsilon' + \varepsilon'' + \varepsilon''',$$

o représentera la dilatation ou condensation du volume, et, en posant d'ailleurs

on réduira les équations (9) aux formules (74) de la page 179 du IIIº Volume (1), c'est-à-dire à

(11)
$$\varpi' = k \varepsilon' + K \upsilon$$
, $\varpi'' = k \varepsilon'' + K \upsilon$, $\varpi'' = k \varepsilon'' + K \upsilon$.

Enfin, en raisonnant comme dans le III Volume [p. 177 et suiv. (2)], on déduira des formules (11) les valeurs générales de A. B. C. D. E. F. savoir

(13)
$$\Lambda = \lambda \frac{\partial \xi}{\partial x} + Kv, \quad B = k \frac{d\eta}{dy} + Kv, \quad C = \lambda \frac{\partial \xi}{\partial z} + Kv,$$

(13)
$$D = \frac{1}{2} k \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} \right), \quad E = \frac{1}{2} k \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \zeta}{\partial z} \right), \quad F = \frac{1}{2} k \left(\frac{\partial \zeta}{\partial y} + \frac{\partial \eta}{\partial x} \right)^{\zeta}$$

et, en substituant ces valeurs dans les formules (1) ou (3), on obtiendra des équations propres à déterminer l'équilibre ou le mouvement des corps élastiques dont l'élasticité reste la même dans tous les sens. Or ces équations, qui renferment deux coefficients k, K dépendants de la nature du corps, sont précisément les formules (72), (73) de la

⁽¹⁾ OEuvros de Cauchy, S. II, T. VIII, p. 217.

⁽²⁾ Ibid., p. 215.

page 179 du IIIº Volume (†). Elles comprennent, comme cas particuliers, d'autres équations qui renferment un seul coefficient, savoir, celles que l'on trouve dans un Mémoire de M. Navier, présenté à l'Académie le 14 mai 1821, et dans le premier Mémoire de M. Poisson sur les corps élastiques, et celles que j'avais données moi-même dans le Mémoire présenté à l'Académie le 30 septembre 1822.

On ne doit pas oublier que, pour établir les équations (7), (8), (12), (13), nous avons considéré les corps élastiques comme des masses continues. Si on les regarde comme des systèmes de points matériels qui s'attirent ou se repoussent à de très petites distances, les équations (7), (8), (12), (13) ne changeront pas de forme. Sculement les trente-six coefficients renfermés dans les équations (7), (8) se réduiront aux quinze coefficients que comprennent les formules (5), (6) des pages 10 et 11, et les deux coefficients, renfermés dans les équations (12), (13) seront liés l'un à l'autre par la condition

$$(11) \lambda = 3K,$$

en sorte que les équations (12), (13) se réduiront aux formules (48) de la page 229 du III^e Volume (2). Or ce qui pourrait faire croire que dans la théorie des corps élastiques il convient d'opérer les diverses réductions dont nous venons de parler, c'est que les expériences faites sur des corps dont l'élasticité reste à peu près la même en tous sens paraissent s'accorder spécialement avec les formules qu'on obtient quand on suppose vérifiée la condition (14).

Nous allons maintenant rechercher les formules qui devront remplacer les équations (7), (8), si l'on considère un corps élastique passant d'un état dans lequel les pressions ne seraient pas nulles à un second état distinct du premier. Pour y parvenir, nous suivrons une méthode semblable à celle dont M. Poisson s'est servi pour établir les formules (7), (8), et nous supposerons que les pressions A, B, C, D, E, F, relatives au second état du corps élastique, dépendent en chaque

⁽¹⁾ OEures de Canch, S. II, T. VIII, p. 217.

⁽²⁾ Ibid., p. 270.

point (x, y, z) des déplacements relatifs des particules situées dans le voisinage de ce même point. Or, si l'on désigne toujours par ξ , η , ζ ces déplacements mesurés parallèlement aux axes coordonnés dans le passage du premier état au second, les déplacements relatifs de la particule qui coîncide dans le second état avec le point

$$(x \rightarrow -\Delta x, y \rightarrow -\Delta y, z \rightarrow -\Delta z),$$

' par rapport à la particule qui coincide avec le point (x,y,z), seront les trois quantités

 $\Delta \xi$, $\Delta \eta$, $\Delta \zeta$.

D'ailleurs, si l'on nomme r le rayon vecteur mené du point (x, y, z) au point $(x + \Delta x, y + \Delta y, z + \Delta z)$, et α , β , γ les angles formés par ce rayon vecteur avec les demi-axes des coordonnées positives, on aura

(15)
$$\Delta x = r \cos \alpha, \quad \Delta y = r \cos \beta, \quad \Delta z = r \cos \gamma;$$

et les trois quantités $\Delta \xi$, $\Delta \eta$, $\Delta \zeta$ seront, dans le voisinage du point (x, y, z), sonsiblement déterminées par les formules

$$(+6) \begin{cases} \Delta \xi &= \frac{\partial \xi}{\partial x} \Delta x + \frac{\partial \xi}{\partial y} \Delta y + \frac{\partial \xi}{\partial z} \Delta z = r \left(\frac{\partial \xi}{\partial x} \cos \alpha + \frac{\partial \xi}{\partial y} \cos \beta + \frac{\partial \xi}{\partial z} \cos \gamma \right), \\ \Delta \eta = \frac{\partial \eta}{\partial x} \Delta x + \frac{\partial \eta}{\partial y} \Delta y + \frac{\partial \eta}{\partial z} \Delta z = r \left(\frac{\partial \eta}{\partial x} \cos \alpha + \frac{\partial \eta}{\partial y} \cos \beta + \frac{\partial \eta}{\partial z} \cos \gamma \right), \\ \Delta \zeta = \frac{\partial \xi}{\partial x} \Delta x + \frac{\partial \xi}{\partial y} \Delta y + \frac{\partial \xi}{\partial z} \Delta z = r \left(\frac{\partial \xi}{\partial x} \cos \alpha + \frac{\partial \zeta}{\partial y} \cos \beta + \frac{\partial \zeta}{\partial z} \cos \gamma \right). \end{cases}$$

Donc les déplacements relatifs des diverses molécules dans le voisinage du point (x, y, z) dépendront principalement des neuf quantités

$$\frac{\partial \xi}{\partial x} = \frac{\partial \xi}{\partial y}, \quad \frac{\partial \xi}{\partial z}, \quad \frac{\partial \eta}{\partial x}, \quad \frac{\partial \eta}{\partial y}, \quad \frac{\partial \eta}{\partial z}, \quad \frac{\partial \zeta}{\partial x}, \quad \frac{\partial \zeta}{\partial y}, \quad \frac{\partial \zeta}{\partial z},$$

qui serviront de coefficients aux cosinus des angles α , β , γ dans les valeurs des rapports

 $\frac{\Delta \xi}{r}, \frac{\Delta \eta}{r}, \frac{\Delta \zeta}{r}.$

Done, en adoptant l'hypothèse ci-dessus mentionnée, on devra regarder les pressions A, B, C, D, E, F comme des fonctions de ces six

quantités. Enfin, si, en considérant ces quantités comme infiniment petites du premier ordre, on néglige dans les développements des pressions A, B, C, D, E, F les infiniment petits d'un ordre supérieur au premier, les fonctions dont il s'agit seront remplacées par des fonctions luiéaires, en sorte qu'on pourra supposer

$$\begin{aligned}
& \left\{ \begin{array}{l} 1 & \left\{ \begin{array}{l} A_{x} & \left\{ \frac{\partial \zeta}{\partial x} + a_{1} \frac{\partial \zeta}{\partial y} + a_{1} \frac{\partial \zeta}{\partial z} + a_{1} \left(\frac{\partial z}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + a_{2} \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \zeta}{\partial z} \right) + a_{3} \left(\frac{\partial \zeta}{\partial y} + \frac{\partial z}{\partial z} \right) \right\} \\
& \left\{ \begin{array}{l} A_{x} & \left\{ \frac{\partial z}{\partial x} + a_{2} \frac{\partial z}{\partial y} + a_{3} \frac{\partial \zeta}{\partial z} + a_{4} \left(\frac{\partial z}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + a_{3} \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \zeta}{\partial z} \right) + a_{3} \left(\frac{\partial \zeta}{\partial y} + \frac{\partial z}{\partial z} \right) \right\} \\
& \left\{ \begin{array}{l} A_{x} & A_{x} &$$

Pour découvrir les relations qui peuvent exister entre les soixante coefficients que renferment ces dernières formules, il suffit d'observer que le premier état du corps continuera de subsister, si, dans le passage du premier état au second, on a déplacé tous les points, en les faisant tourner simultanément autour de l'un des axes coordonnés.

ET LE MOLVEMENT INTÉRIELR DES CORPS ETC. 331

Supposons, pour fixer les idées, que, dans le passage du premier état au second, le corps ait tourne autour de l'axe des ω ; et soient, dans le second état du corps v_{ij} ; les coordonnées polaires du point (x,y,z) projete sur le plan des x,y, en sorte qu'on ait

Designous d'ailleurs par l'Paceroissement qu'a reen l'angle ; dans le passage du premier état au second. On aura évidenment

$$\frac{1}{(1-1)^{2}} = \frac{1}{(1-1)^{2}} \frac{1}{(1-1)$$

puis on en conclura, en considerant / comme infimment petit du premier ordre, et negligeant les infimment petits d'un ordre supérieur au premier,

D'antre part, les valeurs de A. B. C. D. E. Faclatives au premier état du corps, ou celles qu'on deduit des formules (17), (18), en remplagant $\mathbb{C}_{(A)}$ par zero, savoir

$$\begin{cases} \frac{2}{2} - \frac{1}{2} & \frac{1}{2} - \frac{1}{2} & \frac{1}{2} - \frac{1}{2} & \frac{1}{2} - \frac{1}{2} \\ \frac{2}{2} - \frac{1}{2} & \frac{1}{2} - \frac{1}{2} - \frac{1}{2} & \frac{1}{2} - \frac{$$

ou, ce qui revient au même,

$$\begin{cases}
\cos \alpha_1 = \cos i, & \cos \alpha_2 = -\sin i, & \cos \alpha_1 = 0, \\
\cos \beta_1 = \sin i, & \cos \beta_2 = \cos i, & \cos \beta_1 = 0, \\
\cos \gamma_1 = 0, & \cos \gamma_2 = 0, & \cos \gamma_1 = 1.
\end{cases}$$

On trouvera, en conséquence,

(2i)
$$\begin{cases} A = a \cos^2 i + b \sin^2 i - 2t \sin i \cos i, \\ B = a \sin^2 i + b \cos^2 i + 2t \sin i \cos i, \\ C = c, \end{cases}$$

$$\begin{cases} D = b \cos i + c \sin i, \\ E = -b \sin i + c \cos i, \\ F = (a - b) \sin i \cos i + t (\cos^2 i - \sin^2 i); \end{cases}$$

puis on en conclura, en négligeant les infiniment petits du second ordre.

(27)
$$D = \delta + ie$$
, $E = e - i\delta$, $F \cdot f + i(a - b)$.

D'ailleurs on tirera des équations (17), (18), réunies aux formules (21),

(58)
$$\Lambda = a - 2ia_0$$
, $B = b - 2ib_0$, $C = c - 2ic_0$,

$$(2a) \qquad \qquad \mathbf{B} = \mathbf{0} - 3t \mathbf{d}_{\theta}, \qquad \mathbf{E} = \mathbf{0} - 2t \mathbf{e}_{\theta}, \qquad \mathbf{F} = \mathbf{1} - 2t \mathbf{f}_{\theta};$$

et, comme ces dernières valeurs de A, B, C, D, E, F devront s'accorder avec celles que fournissent les équations (26), (27), on aura nécessairement

$$a_{q}=t, \qquad b_{n}=-t, \qquad e_{q}=a_{s}$$

(31)
$$d_0 = -\frac{1}{2}\mathfrak{e}, \qquad e_0 = \frac{1}{2}\mathfrak{d}, \qquad f_0 = \frac{1}{2}(\mathfrak{b} - \mathfrak{a}).$$

On trouvera de même : 1° en supposant que, dans le passage du premier état au second, le corps ait tourné autour de l'axe des γ .

$$a_s = -\mathfrak{c}, \quad b_s = \mathfrak{o}, \qquad \mathfrak{c}_{s-\mathfrak{c}},$$

(13)
$$d_6 = \frac{1}{2}t, \quad e_{8} = \frac{1}{2}(a - r), \quad l_8 = -\frac{1}{2}\delta;$$

ET LE MOUVEMENT INTÉRIEUR DES CORPS ETC. 353

 \mathbf{z}^{o} en supposant que, dans le passage du premier état au second, le corps ait tourné autour de l'axe des x,

$$(34) a_1 = 0, b_2 = \emptyset, c_2 = -\emptyset,$$

(35)
$$d_7 = \frac{1}{2}(\mathfrak{c} - \mathfrak{b}), \quad e_7 = -\frac{1}{2}\mathfrak{f}, \quad f_7 = \frac{1}{2}\mathfrak{c}$$

En vertu des formules (30), (31), (32), (33), (34), (35), les coefficients compris dans les équations (17), (18) se réduiront à quarante-deux, et ces équations deviendront respectivement

$$(36) \begin{cases} A = a + c \left(\frac{\partial \xi}{\partial z} - \frac{\partial \xi}{\partial w} \right) + t \left(\frac{\partial \xi}{\partial y} - \frac{\partial \eta}{\partial x} \right) \\ + a_1 \frac{\partial \xi}{\partial w} + a_2 \frac{\partial \eta}{\partial y} + a_3 \frac{\partial \xi}{\partial z} + a_4 \left(\frac{\partial \eta}{\partial z} + \frac{\partial \xi}{\partial y} \right) + a_3 \left(\frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial z} \right) + a_5 \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right), \\ B = b + f \left(\frac{\partial \eta}{\partial w} - \frac{\partial \xi}{\partial y} \right) + b \left(\frac{\partial \eta}{\partial z} - \frac{\partial \xi}{\partial y} \right) \\ + b_1 \frac{\partial \xi}{\partial w} + b_2 \frac{\partial \eta}{\partial y} + b_1 \frac{\partial \xi}{\partial z} + b_4 \left(\frac{\partial \eta}{\partial z} + \frac{\partial \xi}{\partial y} \right) + b_3 \left(\frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial z} \right) + b_5 \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial v} \right), \\ C = c + b \left(\frac{\partial \xi}{\partial y} - \frac{\partial \eta}{\partial z} \right) + c \left(\frac{\partial \xi}{\partial w} - \frac{\partial \xi}{\partial z} \right) \\ + c_1 \frac{\partial \xi}{\partial w} + c_2 \frac{\partial \eta}{\partial y} + c_3 \frac{\partial \xi}{\partial z} + c_4 \left(\frac{\partial \eta}{\partial z} + \frac{\partial \xi}{\partial y} \right) + c_5 \left(\frac{\partial \xi}{\partial w} + \frac{\partial \xi}{\partial z} \right) + c_6 \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial w} \right), \\ D = b + \frac{1}{2} (c - b) \left(\frac{\partial \eta}{\partial z} - \frac{\partial \zeta}{\partial y} \right) - \frac{1}{2} f \left(\frac{\partial \xi}{\partial z} - \frac{\partial \zeta}{\partial w} \right) - \frac{1}{2} c \left(\frac{\partial \xi}{\partial y} - \frac{\partial \eta}{\partial w} \right) \\ + d_1 \frac{\partial \xi}{\partial w} + d_2 \frac{\partial \eta}{\partial y} + d_3 \frac{\partial \xi}{\partial z} + d_4 \left(\frac{\partial \eta}{\partial z} + \frac{\partial \xi}{\partial y} \right) + d_5 \left(\frac{\partial \xi}{\partial w} + \frac{\partial \xi}{\partial z} \right) + d_6 \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial w} \right), \\ E = c + \frac{1}{2} (a - c) \left(\frac{\partial \zeta}{\partial w} - \frac{\partial \zeta}{\partial z} \right) - \frac{1}{2} b \left(\frac{\partial \eta}{\partial w} - \frac{\partial \zeta}{\partial y} \right) - \frac{1}{2} f \left(\frac{\partial \eta}{\partial z} - \frac{\partial \zeta}{\partial y} \right) \\ + c_1 \frac{\partial \xi}{\partial w} + c_2 \frac{\partial \eta}{\partial y} + c_3 \frac{\partial \xi}{\partial z} + c_4 \left(\frac{\partial \eta}{\partial w} + \frac{\partial \xi}{\partial y} \right) + c_4 \left(\frac{\partial \xi}{\partial w} + \frac{\partial \xi}{\partial z} \right) + c_6 \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial w} \right), \\ F = f + \frac{1}{2} (b - a) \left(\frac{\partial \xi}{\partial y} - \frac{\partial \eta}{\partial w} \right) - \frac{1}{2} c \left(\frac{\partial \zeta}{\partial y} - \frac{\partial \eta}{\partial z} \right) - \frac{1}{2} b \left(\frac{\partial \zeta}{\partial w} + \frac{\partial \xi}{\partial z} \right) + f_6 \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial w} \right), \\ + f_1 \frac{\partial \xi}{\partial w} + f_3 \frac{\partial \eta}{\partial y} + f_3 \frac{\partial \xi}{\partial z} + f_4 \left(\frac{\partial \eta}{\partial z} + \frac{\partial \xi}{\partial y} \right) + f_5 \left(\frac{\partial \xi}{\partial w} + \frac{\partial \xi}{\partial z} \right) + f_6 \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial w} \right). \end{cases}$$

Ajoutons que, si le premier état du corps est un état d'équilibre, dans lequel les forces accélératrices soient nulles, les pressions a, b, c, d,

OEuvres de C. - S. II, t. IX.

e, f, relatives à cet état, devront vérifier les conditions

(38)
$$\begin{cases} \frac{\partial a}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial e}{\partial z} = 0, \\ \frac{\partial f}{\partial x} + \frac{\partial b}{\partial y} + \frac{\partial b}{\partial z} = 0, \\ \frac{\partial e}{\partial x} + \frac{\partial b}{\partial y} + \frac{\partial e}{\partial z} = 0, \end{cases}$$

que l'on déduit des équations (1) en y remplaçant A, B, C, D, E, F par a, b, c, d, e, f, et X, Y, Z par zéro. On peut remarquer d'ailleurs que ces conditions seront toujours remplies, lorsque les pressions a, b, c, d, e, f relatives au premier état du corps se réduiront à des quantités constantes, c'est-à-dire, indépendantes de la position du point (x, y, z).

Il est bon d'observer que les équations (36), (37) comprendent, comme cas particuliers, les formules qui se trouvent inscrites sons les mêmes numéros, aux pages 172, 173, et qui se déduisent de ces équations lorsqu'on pose

Ainsi les valeurs de A, B, C, D, E, F, déterminées généralement par les formules (36), (37), conservent les mêmes formes, quand, au lieu de considérer les corps comme des masses continues, on les regarde comme des systèmes de points matériels qui s'attirent ou qui se repoussent à de très petites distances. Seulement, les quarante-deux coefficients renfermés dans les équations dont il s'agit se réduisent

ET LE MOUVEMENT INTÉRIEUR DES CORPS ETC. 355 alors à vingt et un, et vérifient les conditions

$$(40) \begin{cases} b_{3} + b = c_{2} + c = d_{4} - \frac{b+c}{2}, \\ c_{1} + c = a_{3} + a = c_{5} - \frac{c+a}{2}, \\ a_{2} + a = b_{1} + b = f_{6} - \frac{a+b}{2}; \end{cases}$$

$$(41) \begin{cases} d_{1} + d = a_{4} = c_{0} - \frac{1}{2}b = f_{3} - \frac{1}{2}b, & d_{2} + b = b_{5}, & d_{3} + b = c_{5}, \\ e_{1} + c = a_{5}, & e_{2} + c = b_{5} = f_{5} - \frac{1}{2}c, & d_{0} = \frac{1}{2}c, & e_{3} + c = c_{5}, \\ f_{1} + f = a_{6}, & f_{2} + f = b_{6}, & f_{3} + f = c_{6} = d_{0} - \frac{1}{2}f = e_{1} - \frac{1}{2}f. \end{cases}$$

Soient maintenant

ce que deviennent les pressions A, B, C, D, E, F lorsque, dans le second état du corps, on fait tourner les axes coordonnés des x et yautour de l'origine, de manière à substituer au demi-axe des x positives celui qui, partant de l'origine, se dirige vers le point correspondant aux coordonnées x, y. Supposons d'ailleurs que l'on désigne
toujours par x et τ les coordonnées polaires de ce dernier point. A, \mathcal{I} , \mathcal{E} ; \mathcal{I} , \mathcal{U} , \mathcal{O} ; \mathcal{E} , \mathcal{O} , \mathcal{O} seront les projections algébriques sur les nouveaux
axes coordonnés des pressions ou tensions que supportent dans le
second état du corps trois plans menés par le point (x, y, z), et perpendiculaires, le premier au rayon vecteur τ , le troisième à l'axe des z,
le deuxième à la droite d'intersection du premier et du troisième. Or
ces nouvelles pressions ou tensions seront évidemment liées aux pressions ou tensions A, B, C, D, E, F par les formules qu'on obtient
lorsque, dans les équations (24), (25), on remplace l'angle i par
l'angle τ , et \mathfrak{a} , \mathfrak{b} , \mathfrak{c} , \mathfrak{d} , \mathfrak{c} , \mathfrak{d} , \mathfrak{e} , \mathfrak{d}

(43)
$$\begin{cases} A = A \cos^2 \tau + B \sin^2 \tau - 2F \sin \tau \cos \tau, \\ B = A \sin^2 \tau + B \cos^2 \tau + 2F \sin \tau \cos \tau, \\ C = C; \end{cases}$$

$$\begin{cases} D = C \cos \tau + C \sin \tau, \\ E = C \sin \tau + C \cos \tau, \\ F = (A - B) \sin \tau \cos \tau + F(\cos^2 \tau - \sin^2 \tau), \end{cases}$$

ou, ce qui revient au même,

(45)
$$\begin{cases} 1 = \frac{4b + 4b}{2} + \frac{4b - 4b}{2} \cos 2\tau - F \sin 2\tau, \\ 1 = \frac{4b + 4b}{2} - \frac{4b - 4b}{2} \cos 2\tau + F \sin 2\tau, \\ 1 = 2c; \\ 1 = \cos 2\tau + C \sin 2\tau, \\ 1 = 4b - 4b \sin 2\tau + F \cos 2\tau. \end{cases}$$

$$\begin{cases} 1 = \frac{4b - 4b}{2} \sin 2\tau + F \cos 2\tau. \end{cases}$$

Ajoutons que des formules (45) et (46) on tirera

(47)
$$\Lambda + B = -b + 4b$$
, $\Lambda - B = (3b - 4b) \cos 2\tau - 3.7 \sin 3\tau$

et, par suite,

(48)
$$\begin{cases} A = \frac{A+B}{2} + \frac{A-B}{2}\cos 2\tau + F\sin 2\tau, \\ 4b = \frac{A+B}{2} - \frac{A-B}{2}\cos 2\tau - F\sin 2\tau, \\ e = C; \\ 6b = D\cos \tau - E\sin \tau, \\ c = D\sin \tau + E\cos \tau, \\ \frac{\hat{x}}{2} = -\frac{A-B}{2}\sin 2\tau + F\cos 2\tau. \end{cases}$$

(49)
$$\begin{cases} \dot{\sigma} = D \cos \tau - E \sin \tau, \\ \dot{\sigma} = D \sin \tau + E \cos \tau, \\ \dot{f} = -\frac{A - B}{2} \sin 2\tau + F \cos 3\tau. \end{cases}$$

Désignons à présent par je et par i les accroissements que reçoivent le rayon vecteur v et l'angle 7, tandis que le corps passe du premier état au second. On aura

(50)
$$\begin{cases} \xi = \varepsilon \cos \tau - \varepsilon (1 - j) \cos (\tau - i), \\ \eta = \varepsilon \sin \tau - \varepsilon (1 - j) \sin (\tau - i); \end{cases}$$

puis on en conclura, en considérant les quantités i, j comme infiniment petites du premier ordre, et négligeant les infiniment petits d'un ordre supérieur au premier,

(51)
$$\xi = -i\varepsilon\sin\tau + j\varepsilon\cos\tau, \quad \eta = i\varepsilon\cos\tau + j\varepsilon\sin\tau$$

on, computation notice,

D'antre part, en con elevant cet , comme des fonctions de æ, y, un trouvers, en c, est aux formule exects.

$$\xi$$
 to ϵ = $\frac{1}{\epsilon}$ ϵ

et, par auto,

$$(x_1, \dots, x_n) = (x_1, \dots, x_n$$

ing, or gift acknowled and the time,

On an choice

et, a l'on expression, et l'unimediatement exprimés en functions de 2, et le lour front et a les

telepare, le bereich exceptionnerent

$$\frac{\int_{-1}^{1} dx}{\int_{-1}^{1} dx} = \frac{\partial x}{\partial x} + \frac{\partial x}{\partial x} + \frac{\partial x}{\partial x} + \frac{\partial y}{\partial x} + \frac{\partial y}{\partial$$

*

et l'on conclura de ces dernières, combinées avec les équations (19) et (57),

(60)
$$\begin{cases} \frac{\partial \xi}{\partial x} = j + \frac{1}{2} \left(\frac{\partial i}{\partial \tau} + i \frac{\partial j}{\partial \tau} \right) - \frac{1}{2} \left[\left(\frac{\partial i}{\partial \tau} - i \frac{\partial j}{\partial \tau} \right) \cos 2\tau + \left(\frac{\partial j}{\partial \tau} + i \frac{\partial i}{\partial \tau} \right) \sin 2\tau \right], \\ \frac{\partial \eta}{\partial y} = j + \frac{1}{2} \left(\frac{\partial i}{\partial \tau} + i \frac{\partial j}{\partial \tau} \right) + \frac{1}{2} \left[\left(\frac{\partial i}{\partial \tau} - i \frac{\partial j}{\partial \tau} \right) \cos 2\tau + \left(\frac{\partial j}{\partial \tau} + i \frac{\partial i}{\partial \tau} \right) \sin 2\tau \right];$$

(61)
$$\begin{cases} \frac{\partial \xi}{\partial y} + \frac{\partial n}{\partial x} = \left(\frac{\partial j}{\partial \tau} + i \frac{\partial i}{\partial t}\right) \cos 2\tau - \left(\frac{\partial i}{\partial \tau} - i \frac{\partial j}{\partial t}\right) \sin 2\tau, \\ \frac{\partial \xi}{\partial y} - \frac{\partial n}{\partial x} = -2i + \frac{\partial j}{\partial \tau} - i \frac{\partial i}{\partial t}. \end{cases}$$

On trouvera d'ailleurs

(62)
$$\begin{cases} \frac{\partial \xi}{\partial z} = -y \frac{\partial i}{\partial z} + x \frac{\partial j}{\partial z} = i \left(-\frac{\partial i}{\partial z} \sin \tau + \frac{\partial j}{\partial z} \cos \tau \right), \\ \frac{\partial \eta}{\partial z} = x \frac{\partial i}{\partial z} + y \frac{\partial j}{\partial z} = i \left(\frac{\partial i}{\partial z} \cos \tau + \frac{\partial j}{\partial z} \sin \tau \right). \end{cases}$$

Enfin, si l'on substitue dans les équations (36) et (37) les valeurs de

$$\frac{\partial \xi}{\partial x}$$
, $\frac{\partial \xi}{\partial y}$, $\frac{\partial \xi}{\partial x}$, $\frac{\partial \eta}{\partial y}$, $\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x}$, $\frac{\partial \xi}{\partial y} - \frac{\partial \eta}{\partial x}$, $\frac{\partial \xi}{\partial z}$, $\frac{\partial \eta}{\partial z}$

tirées des formules (58), (60), (61), (62), on obtiendra de nouvelles valeurs de A, B, C, D, E, F, qui, substituées elles-mêmes dans les formules (48), (49), fourniront le moyen d'exprimer les pressions A, B, E, B en fonctions des quantités

$$(63) i, j, \iota, \tau,$$

et des coefficients dissérentiels

(64)
$$\frac{\partial i}{\partial x}, \frac{\partial i}{\partial \tau}, \frac{\partial i}{\partial z}; \frac{\partial j}{\partial x}, \frac{\partial j}{\partial \tau}, \frac{\partial j}{\partial z}; \frac{\partial \zeta}{\partial x}, \frac{\partial \zeta}{\partial \tau}, \frac{\partial \zeta}{\partial z}$$

Si, après avoir obtenu, comme on vient de le dire, les valeurs de A., &, &, &, &, £, exprimées en fonctions des quantités (63) et (64), on cherche ce qu'elles deviendraient dans le cas où l'on déplacerait, en le faisant tourner autour de l'origine, le demi-axe polaire, à partir du-

quel se compte l'angle τ , il suffira d'observer que, en vertu d'un semblable déplacement, la variable τ serait augmentée ou diminuée d'une quantité constante. Donc, pour déterminer les valeurs que prendraient \mathbb{A} , \mathbb{A} , \mathbb{C} , \mathbb{A} , \mathbb{C} , \mathbb{A} après le déplacement dont il s'agit, il suffirait de remplacer, dans les formules (58), (60), (61), (62), (48) et (49), l'angle τ renfermé sous les signes sin et cos par l'angle $\tau + \delta$, δ désignant une constante positive ou négative. Or il faudrait évidemment que les valeurs de \mathbb{A} , \mathbb{A} , \mathbb{C} , \mathbb{A} , ainsi trouvées, conservassent la même forme, quel que fût l'angle δ , pour que le corps, dans son premier état, pût être considéré comme offrant la même élasticité en tous sens autour d'un axe quelconque parallèle à l'axe des z. Il reste à examiner quelles sont les relations que doivent avoir entre eux les quarante-deux coefficients

$$(65) \begin{cases} a_1, & a_2, & a_3, & a_5, & a_6, \\ b_1, & b_1, & b_2, & b_3, & b_5, & b_6, & b_6, \\ c_1, & c_2, & c_3, & c_4, & c_5, & c_6, \\ b_1, & d_1, & d_1, & d_3, & d_1, & d_5, & d_6, \\ c_1, & c_1, & c_2, & c_3, & c_5, & c_6, \\ c_1, & c_2, & c_3, & c_5, & c_6, \\ c_1, & c_2, & c_3, & c_5, & c_6, \\ c_1, & c_2, & c_3, & c_5, & c_6, \end{cases}$$

pour satisfaire à la condition que nous venons d'indiquer.

Afin de résoudre plus facilement la question dont il s'agit, attribuons d'abord à δ la valeur particulière π , et supposons, en conséquence, que les valeurs de ω , ω , ε , ω , ε , ε , déduites des formules (58), (60), (61), (62), (36), (37), (48) et (49), conservent les mêmes formes, tandis qu'on y substitue l'angle $\tau + \pi$ à l'angle π . Il est clair que, après cette substitution, les valeurs des quantités

(66) A, B, C, F,
$$\frac{\partial \xi}{\partial x}$$
, $\frac{\partial \eta}{\partial y}$, $\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x}$, $\frac{\partial \xi}{\partial y} - \frac{\partial \zeta}{\partial x}$,

fournies par les équations (45), (46), (60), (61), n'auront pas changé, tandis que les valeurs des quantités

(67) D, E,
$$\frac{\partial \zeta}{\partial x}$$
, $\frac{\partial \zeta}{\partial y}$, $\frac{\partial \zeta}{\partial z}$, $\frac{\partial \eta}{\partial z}$,

fournies par les équations (46), (58), (62), auront simplement changé de signe. Donc les formules (36), (37) continueront de subsister lorsqu'on y changera seulement les signes des quantités (67). Donc ces formules entraîneront les suivantes :

$$(68) \begin{cases} A = a + a_1 \frac{\partial \xi}{\partial x} + a_2 \frac{\partial \eta}{\partial y} + a_3 \frac{\partial \zeta}{\partial z} + a_4 \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right) + f \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right), \\ B = b + b_1 \frac{\partial \xi}{\partial x} + b_2 \frac{\partial \eta}{\partial y} + b_4 \frac{\partial \zeta}{\partial z} + b_4 \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right) + f \left(\frac{\partial \eta}{\partial x} + \frac{\partial \xi}{\partial y} \right), \\ C = c + c_1 \frac{\partial \xi}{\partial x} + c_2 \frac{\partial \eta}{\partial y} + c_3 \frac{\partial \zeta}{\partial z} + c_4 \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right), \\ E = c_4 \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + d_4 \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right) + \frac{c - b}{3} \left(\frac{\partial \eta}{\partial z} - \frac{\partial \zeta}{\partial y} \right) - \frac{f}{3} \left(\frac{\partial \xi}{\partial z} - \frac{\partial \zeta}{\partial z} \right), \\ F = f + f_1 \frac{\partial \xi}{\partial x} + f_2 \frac{\partial \eta}{\partial y} + f_3 \frac{\partial \zeta}{\partial z} + f_4 \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right) + \frac{b}{3} \left(\frac{\partial \xi}{\partial z} - \frac{\partial \eta}{\partial z} \right), \\ c = a_4 \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + a_5 \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right) + c \left(\frac{\partial \xi}{\partial z} - \frac{\partial \zeta}{\partial x} \right), \\ c = b_4 \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + b_6 \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right) + c \left(\frac{\partial \xi}{\partial z} - \frac{\partial \zeta}{\partial x} \right), \\ c = b_4 \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + b_6 \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right) + b \left(\frac{\partial \eta}{\partial z} - \frac{\partial \zeta}{\partial y} \right), \\ c = c_4 \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + c_6 \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right) + b \left(\frac{\partial \zeta}{\partial y} - \frac{\partial \eta}{\partial z} \right) + c \left(\frac{\partial \zeta}{\partial z} - \frac{\partial \zeta}{\partial y} \right), \\ c = c_4 \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + c_6 \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right) + b \left(\frac{\partial \zeta}{\partial y} - \frac{\partial \eta}{\partial z} \right) + c \left(\frac{\partial \zeta}{\partial y} - \frac{\partial \zeta}{\partial z} \right), \\ c = b + d_1 \frac{\partial \xi}{\partial x} + d_2 \frac{\partial \eta}{\partial y} + d_3 \frac{\partial \zeta}{\partial z} + d_6 \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial z} \right) - \frac{c}{3} \left(\frac{\partial \zeta}{\partial x} - \frac{\partial \zeta}{\partial z} \right), \\ c = c + c_1 \frac{\partial \xi}{\partial x} + c_3 \frac{\partial \eta}{\partial y} + c_3 \frac{\partial \zeta}{\partial z} + c_6 \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial z} \right) - \frac{c}{3} \left(\frac{\partial \zeta}{\partial x} - \frac{\partial \zeta}{\partial z} \right), \\ c = c + c_1 \frac{\partial \xi}{\partial x} + c_3 \frac{\partial \eta}{\partial y} + c_3 \frac{\partial \zeta}{\partial z} + c_6 \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial z} \right) - \frac{c}{3} \left(\frac{\partial \zeta}{\partial x} - \frac{\partial \zeta}{\partial z} \right), \\ c = f_4 \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + f_5 \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \zeta}{\partial z} \right) - \frac{c}{3} \left(\frac{\partial \zeta}{\partial y} - \frac{\partial \eta}{\partial z} \right) - \frac{c}{3} \left(\frac{\partial \zeta}{\partial x} - \frac{\partial \zeta}{\partial z} \right).$$

Or les équations (70), (71) devant subsister pour des valeurs quelconques de ξ , η , ζ , et, par conséquent, pour des valeurs quelconques des quantités

$$\frac{\partial \xi}{\partial x}$$
, $\frac{\partial \eta}{\partial y}$, $\frac{\partial \zeta}{\partial z}$, $\frac{\partial \eta}{\partial z}$ + $\frac{\partial \zeta}{\partial y}$, $\frac{\partial \zeta}{\partial x}$ + $\frac{\partial \xi}{\partial z}$, $\frac{\partial \xi}{\partial y}$ + $\frac{\partial \eta}{\partial x}$; $\frac{\partial \eta}{\partial z}$ - $\frac{\partial \zeta}{\partial y}$, $\frac{\partial \zeta}{\partial x}$ - $\frac{\partial \xi}{\partial z}$, $\frac{\partial \xi}{\partial x}$, $\frac{\partial \eta}{\partial x}$

ET LE MOUVEMENT INTÉRIEUR DES CORPS ETC. 361 on en conclura immédiatement

$$a_{4}\!=\!a_{b}\!=\!o, \quad b_{1}\!=\!b_{5}\!=\!o, \quad c_{4}\!=\!c_{5}\!=\!o,$$

(73)
$$\delta = d_1 = d_2 = d_3 = d_6 = 0$$
, $c = e_1 = e_2 = e_3 = e_6 = 0$, $f_5 = f_6 = 0$.

Concevons à présent que l'on attribue à δ la valeur particulière $\frac{\pi}{2}$, et supposons que les valeurs de λ , κ , ε , ω , ε , f doivent encore conserver les mêmes formes quand on substitue l'angle $\tau + \frac{\pi}{2}$ à l'angle τ . Cette nouvelle substitution, opérée dans les formules (45), (46), (58), (60), (61), (62), aura pour effet de changer les valeurs de

(74) A, B, D, E, F,
$$\frac{\partial \zeta}{\partial x}$$
, $\frac{\partial \zeta}{\partial y}$, $\frac{\partial \zeta}{\partial x}$, $\frac{\partial \eta}{\partial y}$, $\frac{\partial \xi}{\partial y}$ + $\frac{\partial \eta}{\partial x}$, $\frac{\partial \xi}{\partial z}$, $\frac{\partial \eta}{\partial z}$

en celles de

(75) B, A, E, -D, -F,
$$-\frac{\partial \zeta}{\partial y}$$
, $\frac{\partial \zeta}{\partial x}$, $\frac{\partial \eta}{\partial y}$, $\frac{\partial \xi}{\partial x}$, $\frac{\partial \zeta}{\partial y}$, $\frac{\partial \xi}{\partial x}$, $\frac{\partial \eta}{\partial x}$, $\frac{\partial \eta}{\partial x}$, $\frac{\partial \eta}{\partial x}$, $\frac{\partial \eta}{\partial x}$

Done les formules (68), (69) devront continuer de subsister quand on y remplacera les quantités (74) par les quantités (75), et l'on aura nécessairement

$$(76) \begin{cases} A = b + b_2 \frac{\partial \xi}{\partial x} + b_1 \frac{\partial \eta}{\partial y} + b_3 \frac{\partial \xi}{\partial z} - b_4 \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right) + f \left(\frac{\partial \xi}{\partial y} - \frac{\partial \eta}{\partial x} \right), \\ B = a + a_2 \frac{\partial \xi}{\partial x} + a_1 \frac{\partial \eta}{\partial y} + a_3 \frac{\partial \xi}{\partial z} - a_4 \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right) + f \left(\frac{\partial \eta}{\partial x} - \frac{\partial \xi}{\partial y} \right), \\ C = c + c_2 \frac{\partial \xi}{\partial x} + c_1 \frac{\partial \eta}{\partial y} + c_3 \frac{\partial \xi}{\partial z} - c_4 \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right); \end{cases}$$

$$(77) \begin{cases} \mathbf{D} =: & \mathbf{e}_{b} \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} \right) - \mathbf{e}_{3} \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right) + \frac{\mathfrak{e} - \mathfrak{n}}{2} \left(\frac{\partial \eta}{\partial z} - \frac{\partial \zeta}{\partial y} \right) + \frac{\mathfrak{f}}{2} \left(\frac{\partial \xi}{\partial z} - \frac{\partial \zeta}{\partial x} \right), \\ \mathbf{E} =: & \mathbf{d}_{3} \left(\frac{\partial \eta}{\partial z} - \mathbf{e}_{3} \frac{\partial \zeta}{\partial y} \right) + \mathbf{d}_{3} \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \zeta}{\partial z} \right) + \frac{\mathfrak{b} - \mathfrak{r}}{2} \left(\frac{\partial \zeta}{\partial x} - \frac{\partial \zeta}{\partial z} \right) + \frac{\mathfrak{f}}{2} \left(\frac{\partial \eta}{\partial z} - \frac{\partial \zeta}{\partial y} \right), \\ \mathbf{F} =: & \mathbf{f} - \mathbf{f}_{2} \frac{\partial \xi}{\partial x} - \mathbf{f}_{1} \frac{\partial \eta}{\partial y} - \mathbf{f}_{3} \frac{\partial \zeta}{\partial z} + \mathbf{f}_{b} \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right) - \frac{\mathfrak{b} - \mathfrak{n}}{2} \left(\frac{\partial \xi}{\partial y} - \frac{\partial \eta}{\partial x} \right). \end{cases}$$

Or, ces dernières valeurs de A, B, C, D, E, F devant s'accorder avec celles que fournissent les formules (68), (69), quels que soient les Obueres de C. — S. II, t. IX.

déplacements ξ, η, ζ, on en conclura

(78)
$$a = b$$
, $a_1 = b_2$, $a_2 = b_1$, $a_3 = b_4$, $a_6 = -b_6$, $c_1 = c_2$, $c_6 = a_6$
(79) $d_1 = e_5$, $d_9 = -e_5$, $t = 0$, $f_1 = -f_2$, $f_3 = 0$.

Par suite, les formules (68), (69) pourront être réduites à

$$(80) \begin{cases} A = \mathfrak{a} + \mathfrak{a}_{1} \frac{\partial \xi}{\partial x} + \mathfrak{a}_{2} \frac{\partial \eta}{\partial y} + \mathfrak{a}_{3} \frac{\partial \zeta}{\partial z} + \mathfrak{a}_{6} \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right), \\ B = \mathfrak{a} + \mathfrak{a}_{2} \frac{\partial \xi}{\partial x} + \mathfrak{a}_{1} \frac{\partial \eta}{\partial y} + \mathfrak{a}_{3} \frac{\partial \zeta}{\partial z} - \mathfrak{a}_{6} \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right), \\ C = \mathfrak{a} + \mathfrak{c}_{2} \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right) + \mathfrak{c}_{3} \frac{\partial \zeta}{\partial z}; \end{cases}$$

$$D = d_{4} \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + d_{5} \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right) + \frac{\mathfrak{a} - \mathfrak{a}}{2} \left(\frac{\partial \eta}{\partial z} - \frac{\partial \zeta}{\partial y} \right),$$

$$E = -d_{5} \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + d_{4} \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right) + \frac{\mathfrak{c} - \mathfrak{a}}{2} \left(\frac{\partial \xi}{\partial z} - \frac{\partial \zeta}{\partial x} \right),$$

$$F = f_{1} \left(\frac{\partial \xi}{\partial x} - \frac{\partial \eta}{\partial y} \right) + f_{6} \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right),$$

et l'on en tirera

(82)
$$\begin{cases} \frac{A+B}{2} = \mathfrak{a} + \frac{\mathfrak{a}_1 + \mathfrak{a}_2}{2} \left(\frac{\partial \xi}{\partial x} + \frac{\partial \eta}{\partial y} \right) + \mathfrak{a}_3 \frac{\partial \zeta}{\partial z}, \\ \frac{A-B}{2} = \frac{\mathfrak{a}_1 - \mathfrak{a}_2}{2} \left(\frac{\partial \xi}{\partial x} - \frac{\partial \eta}{\partial y} \right) + \mathfrak{a}_4 \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right). \end{cases}$$

Concevons enfin que l'on attribue à δ la valeur $\frac{\pi}{4}$, et supposons que les valeurs de \mathbb{A} , \mathbb{B} , \mathbb{C} , \mathbb{G} , \mathbb{C} , \mathbb{F} doivent encore conserver les mêmes formes quand on substitue l'angle $\tau + \frac{\pi}{4}$ à l'angle τ . Cette dernière substitution, opérée dans les formules (45), (46), (47), (58), (60), (61), (62), aura pour effet de changer les valeurs de

(83)
$$F, \frac{\Lambda - B}{2}, \frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x}, \frac{\partial \xi}{\partial x} - \frac{\partial \eta}{\partial y}$$

en celles de

(84)
$$\frac{\Lambda - B}{2}, \quad -F, \quad \frac{\partial \xi}{\partial x} - \frac{\partial \eta}{\partial y}, \quad -\left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x}\right),$$

ET LE MOUVEMENT INTÉRIEUR DES CORPS ETC. 363 et les valeurs de

(85)
$$\mathbf{D}, \quad \mathbf{E}, \quad \frac{\partial \zeta}{\partial x}, \quad \frac{\partial \zeta}{\partial y}, \quad \frac{\partial \zeta}{\partial z}, \quad \frac{\partial \eta}{\partial z}$$

en celles de

(86)
$$\frac{D+E}{\sqrt{3}}$$
, $\frac{E-D}{\sqrt{3}}$, $\frac{1}{\sqrt{2}}\left(\frac{\partial \zeta}{\partial x} - \frac{\partial \zeta}{\partial y}\right)$, $\frac{1}{\sqrt{2}}\left(\frac{\partial \zeta}{\partial y} + \frac{\partial \zeta}{\partial x}\right)$, $\frac{1}{\sqrt{2}}\left(\frac{\partial \xi}{\partial z} - \frac{\partial \eta}{\partial z}\right)$, $\frac{1}{\sqrt{2}}\left(\frac{\partial \eta}{\partial z} + \frac{\partial \xi}{\partial z}\right)$.

Donc les formules (80), (81), (82) continueront de subsister quand on y remplacera les quantités (83) et (85) par les quantités (84) et (86), de sorte qu'on aura

$$(87) \begin{cases} \frac{A-B}{a} = -f_1 \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right) + f_0 \left(\frac{\partial \xi}{\partial x} - \frac{\partial \eta}{\partial y} \right), \\ F = \frac{a_1 - a_2}{a} \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right) - a_0 \left(\frac{\partial \xi}{\partial x} - \frac{\partial \eta}{\partial y} \right); \end{cases}$$

(88)
$$\begin{cases} D + E = (d_4 - d_5) \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} \right) \\ + (d_4 + d_5) \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right) + \frac{c - a}{2} \left(\frac{\partial \eta}{\partial z} - \frac{\partial \zeta}{\partial y} + \frac{\partial \xi}{\partial z} - \frac{\partial \zeta}{\partial x} \right), \\ E - D - (d_4 + d_5) \left(\frac{\partial \eta}{\partial z} - \frac{\partial \zeta}{\partial y} \right) \\ + (d_5 - d_6) \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right) - \frac{c - a}{2} \left(\frac{\partial \eta}{\partial z} - \frac{\partial \zeta}{\partial y} - \frac{\partial \zeta}{\partial z} + \frac{\partial \zeta}{\partial x} \right). \end{cases}$$

Pour faire coincider les valeurs précédentes de $\frac{A-B}{2}$ et F avec celles que fournissent les équations (81), (82), il est nécessaire d'assujettir les coefficients $\frac{a_1-a_2}{2}$, a_6 , f_4 , f_6 aux deux conditions

(89)
$$\frac{a_1 - a_2}{a} = f_0, \quad a_n = -f_1.$$

Quant aux formules (88), elles s'accordent avec les deux premières des formules (81), quels que soient d'ailleurs les coefficients d_4 , d_5 , a_6 et a_6 .

En vertu des formules (89), les équations (80), (81) se réduisent à

$$\begin{cases}
A = a + a_2 \left(\frac{\partial \xi}{\partial x} + \frac{\partial \eta}{\partial y} \right) + a_3 \frac{\partial \zeta}{\partial z} + 2 \int_0^a \frac{\partial \xi}{\partial x} - \int_1^a \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right), \\
B = a + a_2 \left(\frac{\partial \xi}{\partial x} + \frac{\partial \eta}{\partial y} \right) + a_3 \frac{\partial \zeta}{\partial z} + 2 \int_0^a \frac{\partial \eta}{\partial y} + \int_1^a \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right), \\
C = c + c_2 \left(\frac{\partial \xi}{\partial x} + \frac{\partial \eta}{\partial y} \right) + c_3 \frac{\partial \zeta}{\partial z};
\end{cases}$$

$$(91) \begin{cases} D = d_4 \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + d_3 \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right) + \frac{\mathfrak{c} - \mathfrak{n}}{\mathfrak{n}} \left(\frac{\partial \eta}{\partial z} - \frac{\partial \zeta}{\partial y} \right), \\ E = -d_5 \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + d_4 \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right) + \frac{\mathfrak{c} - \mathfrak{n}}{\mathfrak{n}} \left(\frac{\partial \xi}{\partial z} - \frac{\partial \zeta}{\partial x} \right), \\ F = f_1 \left(\frac{\partial \zeta}{\partial x} - \frac{\partial \eta}{\partial y} \right) + f_6 \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right). \end{cases}$$

Cela posé, les formules (48), (49) donneront

$$\frac{ds = a + (a_2 + f_0) \left(\frac{\partial \xi}{\partial x} + \frac{\partial a}{\partial y} \right) + a_3 \frac{\partial \xi}{\partial z} + f_4 \left[\left(\frac{\partial \xi}{\partial x} - \frac{\partial a}{\partial y} \right) \cos 2\tau + \left(\frac{\partial \xi}{\partial y} + \frac{\partial a}{\partial x} \right) \sin 2\tau \right]}{-f_1 \left[\left(\frac{\partial \xi}{\partial y} + \frac{\partial a}{\partial x} \right) \cos 2\tau - \left(\frac{\partial \xi}{\partial x} - \frac{\partial a}{\partial y} \right) \sin 2\tau \right]},$$

$$\frac{ds = a + (a_2 + f_0) \left(\frac{\partial \xi}{\partial x} + \frac{\partial a}{\partial y} \right) + a_3 \frac{\partial \xi}{\partial z} - f_4 \left[\left(\frac{\partial \xi}{\partial x} - \frac{\partial a}{\partial y} \right) \cos 2\tau + \left(\frac{\partial \xi}{\partial y} + \frac{\partial a}{\partial x} \right) \sin 2\tau \right]}{+f_1 \left[\left(\frac{\partial \xi}{\partial y} + \frac{\partial a}{\partial x} \right) \cos 2\tau - \left(\frac{\partial \xi}{\partial x} - \frac{\partial a}{\partial y} \right) \sin 2\tau \right]},$$

$$= a + c_2 \left(\frac{\partial \xi}{\partial x} + \frac{\partial a}{\partial y} \right) + c_3 \frac{\partial \xi}{\partial z};$$

$$= a + c_2 \left(\frac{\partial \xi}{\partial x} + \frac{\partial a}{\partial y} \right) + c_3 \frac{\partial \xi}{\partial z};$$

$$= a + c_2 \left(\frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial y} \right) \cos \tau - \left(\frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial z} \right) \sin \tau \right] + d_4 \left[\left(\frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial z} \right) \cos \tau + \left(\frac{\partial a}{\partial z} + \frac{\partial \xi}{\partial y} \right) \sin \tau \right] + \frac{c - a}{2} \left[\left(\frac{\partial a}{\partial x} - \frac{\partial \xi}{\partial y} \right) \cos \tau - \left(\frac{\partial \xi}{\partial z} - \frac{\partial \xi}{\partial x} \right) \sin \tau \right] + \frac{c - a}{2} \left[\left(\frac{\partial \xi}{\partial x} - \frac{\partial \xi}{\partial y} \right) \sin \tau - \left(\frac{\partial z}{\partial x} - \frac{\partial \xi}{\partial y} \right) \cos \tau \right] + \frac{c - a}{2} \left[\left(\frac{\partial \xi}{\partial x} - \frac{\partial z}{\partial y} \right) \sin \tau + \left(\frac{\partial \xi}{\partial z} - \frac{\partial \xi}{\partial z} \right) \cos \tau \right] + \frac{c - a}{2} \left[\left(\frac{\partial \xi}{\partial x} - \frac{\partial a}{\partial y} \right) \sin \tau + \left(\frac{\partial \xi}{\partial z} - \frac{\partial \xi}{\partial z} \right) \cos \tau \right] + \frac{c - a}{2} \left[\left(\frac{\partial \xi}{\partial x} - \frac{\partial a}{\partial y} \right) \cos 2\tau + \left(\frac{\partial \xi}{\partial z} - \frac{\partial \xi}{\partial z} \right) \cos \tau \right] + \frac{c - a}{2} \left[\left(\frac{\partial \xi}{\partial x} - \frac{\partial a}{\partial y} \right) \cos 2\tau + \left(\frac{\partial \xi}{\partial z} - \frac{\partial \xi}{\partial z} \right) \cos \tau \right] + \frac{c - a}{2} \left[\left(\frac{\partial \xi}{\partial x} - \frac{\partial a}{\partial y} \right) \cos 2\tau + \left(\frac{\partial \xi}{\partial z} - \frac{\partial \xi}{\partial z} \right) \cos \tau \right] + \frac{c - a}{2} \left[\left(\frac{\partial \xi}{\partial x} - \frac{\partial a}{\partial y} \right) \cos 2\tau + \left(\frac{\partial \xi}{\partial z} - \frac{\partial \xi}{\partial z} \right) \cos \tau \right] + \frac{c - a}{2} \left[\left(\frac{\partial \xi}{\partial x} - \frac{\partial a}{\partial y} \right) \cos 2\tau + \left(\frac{\partial \xi}{\partial z} - \frac{\partial \xi}{\partial z} \right) \cos \tau \right] + \frac{c - a}{2} \left[\left(\frac{\partial \xi}{\partial x} - \frac{\partial a}{\partial y} \right) \cos 2\tau + \left(\frac{\partial \xi}{\partial z} - \frac{\partial \xi}{\partial z} \right) \cos \tau \right] + \frac{c - a}{2} \left[\left(\frac{\partial \xi}{\partial x} - \frac{\partial a}{\partial y} \right) \cos 2\tau + \left(\frac{\partial \xi}{\partial z} - \frac{\partial \xi}{\partial z} \right) \cos \tau \right] + \frac{c - a}{2} \left[\left(\frac{\partial \xi}{\partial x} - \frac{\partial a}{\partial y} \right) \cos 2\tau + \left(\frac{\partial \xi}{\partial z} - \frac{\partial \xi}{\partial z} \right) \cos 2\tau \right] + \frac{c - a}{2} \left[\left(\frac{\partial \xi}{\partial x} - \frac{\partial \xi}{\partial y} \right) \cos 2\tau + \left(\frac{\partial \xi}{\partial z} - \frac{\partial \xi}{\partial z} \right) \cos 2\tau \right] + \frac$$

On tirera d'ailleurs des équations (58), (60), (61) et (62)

(94)
$$\frac{\partial \zeta}{\partial x} \cos \tau + \frac{\partial \zeta}{\partial y} \sin \tau = \frac{\partial \zeta}{\partial x}, \qquad \frac{\partial \zeta}{\partial y} \cos \tau - \frac{\partial \zeta}{\partial x} \sin \tau = \frac{1}{x} \frac{\partial \zeta}{\partial y}$$

(95)
$$\frac{\partial \xi}{\partial x} + \frac{\partial \eta}{\partial y} = 3j + \frac{\partial i}{\partial \tau} + i \frac{\partial j}{\partial \tau},$$

(96)
$$\begin{cases} \left(\frac{\partial \xi}{\partial x} - \frac{\partial \eta}{\partial y}\right) \cos 2\tau + \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x}\right) \sin 2\tau = -\frac{\partial i}{\partial \tau} + \iota \frac{\partial f}{\partial \tau}, \\ \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x}\right) \cos 2\tau - \left(\frac{\partial \xi}{\partial x} - \frac{\partial \eta}{\partial y}\right) \sin 2\tau = \frac{\partial f}{\partial \tau} + \iota \frac{\partial i}{\partial \iota}, \end{cases}$$

(97)
$$\frac{\partial \xi}{\partial z} \cos \tau + \frac{\partial \eta}{\partial z} \sin \tau = i \frac{\partial I}{\partial z}, \qquad \frac{\partial \eta}{\partial z} \cos \tau - \frac{\partial \xi}{\partial z} \sin \tau = i \frac{\partial i}{\partial z}.$$

Donc les équations (92), (93) pourront être remplacées par les suivantes :

$$(98) \begin{cases} A_{0} = a + a_{2} \left(2j + \frac{\partial i}{\partial \tau} + i \frac{\partial j}{\partial \iota} \right) + 2 f_{0} \left(j + i \frac{\partial j}{\partial \tau} \right) + a_{3} \frac{\partial \zeta}{\partial z} - f_{1} \left(\frac{\partial j}{\partial \tau} + i \frac{\partial i}{\partial \iota} \right), \\ a_{0} = a + a_{2} \left(2j + \frac{\partial i}{\partial \tau} + i \frac{\partial j}{\partial \iota} \right) + 2 f_{0} \left(j + \frac{\partial i}{\partial \tau} \right) + a_{3} \frac{\partial \zeta}{\partial z} + f_{1} \left(\frac{\partial j}{\partial \tau} + i \frac{\partial i}{\partial \iota} \right), \\ c = c + c_{2} \left(2j + \frac{\partial i}{\partial \tau} + i \frac{\partial j}{\partial \iota} \right) + c_{3} \frac{\partial \zeta}{\partial z}; \end{cases}$$

$$(99) \begin{cases} \partial_{z} = d_{1} \left(i \frac{\partial i}{\partial z} + \frac{1}{\nu} \frac{\partial \zeta}{\partial \tau} \right) + d_{3} \left(\nu \frac{\partial j}{\partial z} + \frac{\partial \zeta}{\partial \nu} \right) + \frac{v - a}{2} \left(i \frac{\partial i}{\partial z} - \frac{1}{\nu} \frac{\partial \zeta}{\partial \tau} \right), \\ \mathcal{E} = d_{3} \left(i \frac{\partial j}{\partial z} + \frac{\partial \zeta}{\partial i} \right) + d_{3} \left(\nu \frac{\partial i}{\partial z} + \frac{1}{\nu} \frac{\partial \zeta}{\partial \tau} \right) + \frac{v - a}{2} \left(\nu \frac{\partial j}{\partial z} - \frac{\partial \zeta}{\partial \tau} \right), \\ \mathcal{F} = -f_{1} \left(\frac{\partial i}{\partial \tau} - \nu \frac{\partial j}{\partial \nu} \right) + f_{6} \left(\frac{\partial j}{\partial \tau} + \nu \frac{\partial i}{\partial \nu} \right). \end{cases}$$

l'axe des z. Lorsque ces conditions sont vérifiées, les valeurs des pressions

se réduisent à celles que fournissent les équations (90), (91). Si, pour plus de simplicité, on écrit dans ces équations

au lieu de

$$a_1$$
, c_2 , a_3 , c_2 , c_3 , d_4 , d_4 , f_4 , f_6 ,

on trouvera

$$\begin{cases}
\Lambda = a + (a' + 2f'') \frac{\partial \xi}{\partial x} + a' \frac{\partial \eta}{\partial y} + a'' \frac{\partial \xi}{\partial z} - f' \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right), \\
B = a + a' \frac{\partial \xi}{\partial x} + (a' + 2f'') \frac{\partial \eta}{\partial y} + a'' \frac{\partial \xi}{\partial z} + f' \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right), \\
C = c + c' \frac{\partial \xi}{\partial x} + c' \frac{\partial \eta}{\partial y} + c'' \frac{\partial \xi}{\partial z}; \\
D = d' \left(\frac{\partial \eta}{\partial z} + \frac{\partial \xi}{\partial y} \right) + d'' \left(\frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial z} \right) + \frac{c - a}{2} \left(\frac{\partial \eta}{\partial z} - \frac{\partial \xi}{\partial y} \right), \\
E = -d'' \left(\frac{\partial \eta}{\partial z} + \frac{\partial \xi}{\partial y} \right) + d \left(\frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial z} \right) + \frac{c - a}{2} \left(\frac{\partial \xi}{\partial z} - \frac{\partial \xi}{\partial y} \right), \\
F = f' \left(\frac{\partial \xi}{\partial x} - \frac{\partial \eta}{\partial y} \right) + f'' \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right).
\end{cases}$$

Il est bon d'observer que les équations (90), (91) ou (100) et (101) renferment seulement dix coefficients dépendants de la nature du corps, savoir

Si l'on combine les formules (40), (41) avec les conditions (72), (73), (78), (79) et (89), on trouvera

(102)
$$a_3 + a = c_2 + c = d_4 - \frac{a + c}{2}, \quad a_2 + a = f_6 - a,$$

(103) $f_1 = 0, \quad d_4 = 0;$

puis, en écrivant a et c au lieu de a, c, et posant

(104)
$$a_3 + a = c_2 + c = d_4 - \frac{a+c}{2} = d$$
, $a_2 + a = f_0 - a = f$, $c_3 - c = h$,

(105)
$$\begin{cases} A = a + (3f + a) \frac{\partial \xi}{\partial x} + (f - a) \frac{\partial \eta}{\partial y} + (d - a) \frac{\partial \xi}{\partial z}, \\ B = a + (f - a) \frac{\partial \xi}{\partial x} + (3f + a) \frac{\partial \eta}{\partial y} + (d - a) \frac{\partial \zeta}{\partial z}, \\ C = c + (d - c) \frac{\partial \xi}{\partial x} + (d - c) \frac{\partial \eta}{\partial y} + (k + c) \frac{\partial \zeta}{\partial z}, \\ D = (d + c) \frac{\partial \eta}{\partial z} + (d + a) \frac{\partial \zeta}{\partial y}, \end{cases}$$

(106)
$$\begin{cases} D = (d+e)\frac{\partial n}{\partial z} + (d+a)\frac{\partial \zeta}{\partial y}, \\ E = (d+a)\frac{\partial \zeta}{\partial x} + (d+e)\frac{\partial \zeta}{\partial z}, \\ F = (f+a)\left(\frac{\partial \xi}{\partial y} + \frac{\partial n}{\partial x}\right). \end{cases}$$

Ces dernières formules ne renferment que cinq coefficients dépendants de la nature du corps, savoir

Elles sont d'ailleurs comprises, comme cas particuliers, dans les équations (24), (25) de la page 170, et se déduisent de ces équations lorsque, en supposant

(107)
$$G = H, P = Q, L = M = 3R,$$

on prend

$$a = G\Delta$$
, $c = I\Delta$, $d = Q\Delta$, $f = R\Delta$, $k = N\Delta$.

Il suit, du reste, des principes exposés dans le IIIe Volume (p. 199 et 201) (†) que les conditions (107) sont précisément celles auxquelles il faut assujettir les quantités

pour que l'élasticité du corps reste la même en tous sens autour d'un axe quelconque parallèle à l'axe des z.

Si l'on veut que le corps, dans son premier état, puisse être considéré comme offrant la même élasticité en tous sens autour d'un point

(1) OEures de Cauchy, S. II, T. VIII, p. 239 et 240.

quelconque, et par conséquent autour d'un axe quelconque parallèle ou non parallèle à l'axe des z, il faudra que les valeurs de A, B, C, D, E, F, fournées par les équations (90), (91), ou (100) et (101), ne changent pas de forme après un échange opéré entre les axes des x, y, z. Or, si l'on remplace l'axe des y par l'axe des z, et réciproquement, on devra, dans les formules (100), (101), échanger entre elles les quantités B et C, E et F, y et z, q et ζ . On aura donc, par suite,

(108)
$$\begin{cases} A = a + a' \left(\frac{\partial \xi}{\partial x} + \frac{\partial \zeta}{\partial z} \right) + a'' \frac{\partial \eta}{\partial y} + 2 f'' \frac{\partial \xi}{\partial x} - f' \left(\frac{\partial \xi}{\partial z} + \frac{\partial \zeta}{\partial x} \right), \\ B = c + c' \left(\frac{\partial \xi}{\partial x} + \frac{\partial \zeta}{\partial z} \right) + c'' \frac{\partial \eta}{\partial y}, \\ C = a + a' \left(\frac{\partial \xi}{\partial x} + \frac{\partial \zeta}{\partial z} \right) + a'' \frac{\partial \eta}{\partial y} + 2 f'' \frac{\partial \zeta}{\partial z} + f' \left(\frac{\partial \xi}{\partial z} + \frac{\partial \zeta}{\partial x} \right), \\ D = d' \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + d'' \left(\frac{\partial \eta}{\partial x} + \frac{\partial \xi}{\partial y} \right) - \frac{c - a}{2} \left(\frac{\partial \eta}{\partial z} - \frac{\partial \zeta}{\partial y} \right), \\ E = f' \left(\frac{\partial \xi}{\partial x} - \frac{\partial \zeta}{\partial z} \right) + f'' \left(\frac{\partial \xi}{\partial z} + \frac{\partial \zeta}{\partial x} \right), \\ F = -d'' \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} \right) + d' \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right) + \frac{c - a}{2} \left(\frac{\partial \xi}{\partial y} - \frac{\partial \eta}{\partial x} \right). \end{cases}$$

Pour que ces dernières valeurs de A, B, C, D, E, F s'accordent avec celles que fournissent les équations (100), (101), il suffit d'assujettir les coefficients

aux conditions

(110)
$$a = c$$
, $a' = a'' = e'$, $c'' = c' + af''$, $d' = f''$, $d'' = f' = a$.

Cela posé, si l'on désigne par l la valeur commune des deux quantités a, e, par K la valeur commune des trois quantités a', a'', e', et par $\frac{1}{4}k$ la valeur commune des deux quantités d', f'', on trouvera, en ayant égard à la formule (10),

(111)
$$A = k \frac{\partial \xi}{\partial x} + Kv + l$$
, $B = k \frac{\partial n}{\partial y} + Kv + l$, $C = k \frac{\partial \zeta}{\partial z} + Kv + l$,

(112)
$$D = \frac{1}{2} k \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} \right), \qquad E = \frac{1}{2} k \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right), \qquad F = \frac{1}{2} k \left(\frac{\partial \zeta}{\partial y} + \frac{\partial \eta}{\partial z} \right).$$

ET LE MOUVEMENT INTÉRIEUR DES CORPS ETC. 369

Les formules (111), (112) pourraient être établies directement par la méthode à l'aide de laquelle nous avons obtenu les formules (12) et (13). En supposant l constant, c'est-à-dire indépendant de x, y, z, on déduit de ces deux systèmes de formules les mêmes équations d'équilibre ou de mouvement intérieur des corps élastiques. Ajoutons que l'on peut tirer les formules (111), (112) des équations (67) de la page 178 du IIIe Volume des Exercices (1), en posant dans ces équations R = Kv + l.

(1) OEuvres de Cauchy, S. II, T. VIII, p. 216.

ť

	•	

EXERCICES

DΕ

MATHÉMATIQUES,

PAR M. AUGUSTIN-LOUIS CAUCITY.

GÉNIEUR EN CHEF DES PONTS ET CHAUSSÉES, PROFESSEUR A L'ECOLE ROYALE POLYTECHNIQUE, PROFESSEUR ADJOINT À LA FAGULTE DES SCIENCES, MEMBRE DE L'ACADÉMIE DES SCIENCES, CHEVALIER DE LA LEGION D'HONNEUR.

A PARIS,

CHEZ DE BURE FRÈRES, LIBRAIRES DU ROI ET DE LA BIBLIOTHÈQUE DU ROI, RUE SERPENTE, N.º 7.

1850.

SUR LA TRANSFORMATION ET LA RÉDUCTION

D'UNE

CERTAINE CLASSE D'INTÉGRALES.

Considérations générales.

Considérons une masse M concentrée sur une surface plane ou comprise sous un volume donné. Si l'on rapporte les divers points de cette surface ou de ce volume à deux axes rectangulaires des x, y, ou à trois axes rectangulaires des x, y, z, la masse M sera représentée par une intégrale double ou triple relative aux variables x, y ou x, y, z, et dans laquelle la fonction sous le signe \int sera précisément la densité correspondante au point (x,y) ou (x,y,z). Supposons maintenant que la surface ou le volume donné s'étendent indéfiniment dans l'espace. La masse M pourra conserver une valeur finie, si la densité devient sensiblement nulle à de très grandes distances de l'origine des coordonnées; et, si l'on désigne cette densité par f(x,y) ou par f(x,y,z), on aura

(1)
$$M = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx \, dy,$$

ou

(2)
$$\mathbf{M} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y, z) \, dx \, dy \, dz.$$

Concevons enfin que la densité f(x, y) ou f(x, y, z) se réduise à une expression de la forme $f(\xi, \rho)$,

ξ, ρ² désignant deux fonctions entières et homogènes de w, y, z du

374 SUR LA TRANSFORMATION ET LA REDUCTION premier et du second degré. Les intégrales (1) et (2) deviendront

(3)
$$\mathbf{M} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi, \rho) \, dx \, dy,$$

(4)
$$\mathbf{M} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbf{f}(\xi, \rho) \, dx \, dy \, dz.$$

Or ces dernières intégrales peuvent subir diverses transformations qui conduisent à des résultats dignes de remarque, et que je vais exposer dans les paragraphes suivants.

§ 1. — Sur la transformation de l'intégrale $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi, \rho) dx dy$, dans laquelle ξ , ρ^2 désignent des fonctions entières et homogènes de x, y, du premier et du second degré.

Désignons par a, b, A, B, C des constantes réelles dont les trois dernières soient tellement choisies que le trinôme

$$Ax^2 + By^2 + 2Cxy$$

reste positif pour toutes les valeurs réelles possibles des variables w, y; et considérons l'intégrale

(2)
$$S = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi, \rho) \, dx \, dy,$$

 ξ , ρ^2 étant deux fonctions de x, y, z, déterminées par les formules

$$\xi = ax + by,$$

(4)
$$\rho = (Ax^2 + By^2 + 2Cxy)^{\frac{1}{2}}.$$

On pourra regarder les variables w, y comme propres à représenter des coordonnées rectangulaires, et leur substituer des coordonnées polaires p, r qui soient liées avec elles par les équations

$$(5) x = r \cos p, y = r \sin p.$$

Cela posé, si l'on fait, pour abréger,

$$(6) u = \cos p, v = \sin p,$$

$$P = au + bv,$$

(8)
$$Q = (\Lambda u^2 + Bv^2 + 3Cuv)^{\frac{1}{2}},$$

on trouvera

(9)
$$\xi - \mathbf{P} r, \quad \rho = \mathbf{Q} r.$$

De plus, en vertu des règles connues, on devra, dans l'intégrale (2), remplacer le produit dx dy par r dp dr, et cette intégrale deviendra

(10)
$$S = \int_0^{2\pi} \int_0^{\infty} f(Pr, Qr) r \, dp \, dr.$$

En comparant la formule (2) à la formule (10), on en conclura

(11)
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi, \rho) dx dy = \int_{0}^{2\pi} \int_{0}^{\infty} f(Pr, Qr) r d\rho dr.$$

Si l'on suppose en particulier

$$(13) a=1, b=0,$$

(13)
$$A = :B = 1, C = 0,$$

on aura

(14)
$$\xi = x$$
, $\rho = (x^2 + y^2)^{\frac{1}{2}}$,

(15)
$$P = \cos p, \quad Q = 1,$$

et la formule (11) donnera

(16)
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left[x, (x^2 + y^2)^{\frac{1}{2}}\right] dx dy = \int_{0}^{\pi} \int_{0}^{\infty} f(r \cos p, r) r dp dr.$$

Supposons maintenant que, les conditions (13) étant remplies, on attribue aux quantités a, b des valeurs α , β qui vérifient la formule

$$\alpha^2 + \beta^2 = 1.$$

376

On pourra concevoir qu'aux coordonnées rectangulaires x, y on substitue deux autres coordonnées rectangulaires E, n dont la première E serait déterminée par l'équation

(18)
$$\xi = \alpha x + \beta y,$$

et considérer a, \beta comme représentant les cosinus des angles formés par le demi-axe des ξ positives avec les demi-axes des x et des y positives. Alors on aura nécessairement

$$(19) x^2 + y^2 = \xi^2 + \eta^2.$$

Par suite, la seconde des formules (14) donnera

(30)
$$\rho = (\xi^2 + \eta^2)^{\frac{1}{2}},$$

et l'on tirera de l'équation (2): 1º

$$S = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left[\xi, (\xi^2 + \eta^2)^{\frac{1}{2}}\right] d\xi d\eta;$$

2º en ayant égard à la formule (16),

(21)
$$S = \int_0^{\pi} \int_0^{\infty} f(r \cos \rho, r) d\rho dr.$$

On aura done, en admettant que la condition (17) soit remplie,

(22)
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left[\alpha x + \beta y, (x^2 + y^2)^{\frac{1}{2}}\right] dx dy = \int_{0}^{2\pi} \int_{0}^{\infty} f(r \cos p) r dp dr.$$

On trouvera de même, en désignant par k une nouvelle constante et remplaçant $f(\xi, \rho)$ par $f(k\xi, \rho)$,

(23)
$$\begin{cases} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left[k(\alpha x + \beta y), (x^2 + y^2)^{\frac{1}{2}}\right] dx dy \\ = \int_{0}^{2\pi} \int_{0}^{\infty} f(kr\cos p, r) r dp dr \end{cases}$$

D'ailleurs, pour faire coincider le premier membre de l'équation (23)

avec l'intégrale

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f \left[ax + by, (x^2 + y^2)^{\frac{1}{2}} \right] dx dy,$$

il suffira de choisir α , β , k de manière à vérifier les formules

$$(\gamma'_1) \qquad \qquad k\alpha = a, \qquad k\beta = b,$$

et alors l'équation (17) donnera

$$\frac{a^2+b^2}{h^4} = 1.$$

On satisfait à l'équation (25) en prenant

$$h = \frac{1}{2} (a^2 + b^2)^{\frac{1}{2}}$$
.

Si, pour fixer les idées, on suppose

$$(ab) k = (a^2 + b^2)^{\frac{1}{2}},$$

on tirera des formules (23) et (24)

$$\begin{cases} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbf{f} \left[a \, v + b \, y, \left(x^2 + y^2 \right)^{\frac{1}{2}} \right] dw \, dy \\ \int_{0}^{\infty} \int_{0}^{\infty} \mathbf{f} \left[\left(a^2 + b^2 \right)^{\frac{1}{2}} r \cos p, r \right] r \, dp \, dr. \end{cases}$$

Cette dernière équation subsiste, quelles que soient les valeurs réelles attribuées aux constantes $a,\ b$.

Conceyons à présent que les coefficients A, B, C cessent de vérifier les conditions (13). On aura évidemment

$$(48) \qquad e^{x} = A x^{2} + B y^{2} + 3 C x y + A \left(x + \frac{C}{A} y \right)^{2} + \frac{AB - C^{2}}{A} y^{2},$$

D'autre part, le polynôme (1), qui est précisément égal à ρ^2 , devant rester positif pour toutes les valeurs réelles de α , γ , le dernier membre de la formule (28) jouira de la même propriété, d'où il suit qu'on aura

encore

(29)
$$\Lambda > 0, \quad \Lambda B - C^2 > 0.$$

Cela posé, si l'on fait, pour abréger,

(3o)
$$\Omega = (AB - C^2)^{\frac{1}{2}}$$

et

les nouvelles variables x, y seront réelles en même temps que x, y, el la formule (28) donnera

(32)
$$\rho^2 = x^2 + y^2.$$

Alors aussi, en remplaçant, dans l'intégrale (2), a par x et y par y, on trouvera

(33)
$$S = \frac{1}{\Omega} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi, \rho) \, dx \, dy,$$

tandis que les formules (31) donneront

$$dx = \frac{dx}{\Lambda^{\frac{1}{2}}}, \quad dy = \Lambda^{\frac{1}{2}} \frac{dy}{\Omega}.$$

De plus, on tirera des formules (31)

(34)
$$y = \frac{\Lambda^{\frac{1}{2}}}{\Omega}y, \qquad x = \frac{1}{\Lambda^{\frac{1}{2}}} \left(x - \frac{C}{\Omega}y\right),$$

et, par suite,

į

(35)
$$\xi = ax + by = ax + by,$$

les valeurs de a, b, c étant

(36)
$$a = \frac{1}{\Lambda^{\frac{1}{2}}}a, \quad b = \frac{\Lambda^{\frac{1}{2}}}{\Omega} \left(b - \frac{C}{\Lambda} a \right);$$

puis on en conclura

$$(37) (a^2 + b^2)^{\frac{1}{2}} = K,$$

la valeur de K étant

(38)
$$K = \left(\frac{Ba^2 + Ab^2 - 2Cab}{AB - C^2}\right)^{\frac{1}{2}}.$$

Cela posé, la formule (33), jointe à l'équation (27), donnera

$$S = \frac{1}{\Omega} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f \left[ax - by, (x^2 + y^2)^{\frac{1}{2}} \right] dx dy$$
$$= \frac{1}{\Omega} \int_{0}^{\sqrt{2\pi}} \int_{0}^{\sqrt{2}} f \left[(a^2 + b^2)^{\frac{1}{2}} r \cos p, r \right] r dp dr,$$

ou, ce qui revient au même,

(39)
$$S = \frac{1}{\Omega} \int_0^{\pi} \int_0^{\pi} f(Kr \cos p, \iota) r \, dp \, dr.$$

En comparant cette dernière équation à la formule (10), on trouvera

$$(40) \qquad \int_0^{2\pi} \int_0^{\infty} \mathbf{f}(\mathbf{P}r, \mathbf{Q}r) r \, dp \, dr = \frac{1}{\Omega} \int_0^{\pi} \int_0^{\infty} \mathbf{f}(\mathbf{K}r \cos p, r) r \, dp \, dr,$$

les valeurs de P, Q, Ω et K étant déterminées par les formules (6), (7), (8), (30) et (38).

Si l'on remplace, dans le premier membre de l'équation (40), r par $\frac{r}{0}$, on en tirera

$$(41) = \int_0^{2\pi} \int_0^{\infty} f\left(\frac{P}{Q}r, r\right) \frac{r \, dp \, dr}{Q^2} = \frac{1}{\Omega} \int_0^{2\pi} \int_0^{\infty} f(\mathbf{K}r \cos p, r) r \, dp \, dr;$$

puis, en posant, pour abréger,

(43)
$$\int_0^\infty f(Kr, r) r \, dr = f(K),$$

on frouvera

(43)
$$\int_0^{2\pi} f\left(\frac{P}{Q}\right) \frac{dp}{Q^2} = \frac{1}{\Omega} \int_0^{2\pi} f(K\cos p) dp.$$

On arriverait encore au même résultat en pronant

(14)
$$f(\xi, \rho) = e^{-\rho} f\left(\frac{\xi}{\rho}\right)$$

ou bien

(45)
$$f(\xi, \rho) = e^{-\rho^4} f\left(\frac{\xi}{\rho}\right),$$

etc. Ainsi, par exemple, en adoptant la valeur de $f(\xi, \rho)$ donnée par la formule (44), on réduirait l'équation (41) à

$$\int_0^{2\pi} \int_0^{\infty} re^{-r} f\left(\frac{P}{Q}\right) \frac{dp \, dr}{Q^2} = \frac{1}{\Omega} \int_0^{2\pi} \int_0^{\infty} re^{-r} f(\mathbf{K} \cos p) \, dp \, dr,$$

puis, en divisant les deux membres par la quantité

$$\int_0^{\infty} re^{-r} dr = 1,$$

on retrouverait l'équation (43).

Si, dans l'équation (43), on remet au lieu de P, Q, Ω , K leurs valeurs respectives, on obtiendra la formule

$$\begin{cases} \int_{0}^{2\pi} \int \left[\frac{a \cos \rho + b \sin \rho}{\left(A \cos^{2} \rho + B \sin^{2} \rho + 2 C \sin \rho \cos \rho \right)^{\frac{1}{2}}} \right] \frac{d\rho}{A \cos^{2} \rho + B \sin^{2} \rho + 2 C \sin \rho \cos \rho} \\ = \frac{1}{\left(AB - C^{2} \right)^{\frac{1}{2}}} \int_{0}^{2\pi} \int \left[\frac{\left(A a^{2} + B b^{2} - 2 C a b \right)^{\frac{1}{2}} \cos \rho}{\left(AB - C^{2} \right)^{\frac{1}{2}}} \right] d\rho, \end{cases}$$

de laquelle on peut en déduire plusieurs autres par des différentiations relatives aux constantes a, b, Λ , B, C, D. Si, dans la même formule, on pose

$$(47) b = 0, 0 = 0$$

si de plus on divise chacun de ses membres par 2, on trouvera

(48)
$$\int_{0}^{\pi} f \left[\frac{a \cos p}{(A \cos^{2} p + B \sin^{2} p)^{\frac{1}{2}}} \right] \frac{dp}{A \cos^{2} p + B \sin^{2} p} = \frac{2}{A^{\frac{1}{2}} B^{\frac{1}{2}}} \int_{0}^{\pi} f \left(\frac{a \cos p}{A^{\frac{1}{2}}} \right) dp;$$

et l'on en conclura, en prenant cosp = x,

(49)
$$\int_{-1}^{1} f \left| \frac{a \cdot x}{\left[(A - B) \cdot x^{2} + B \right]^{\frac{1}{2}}} \right| \frac{1}{(A - B) \cdot x^{2} + B} \frac{d \cdot x}{\sqrt{1 - x^{2}}} = \frac{1}{A^{\frac{1}{2}} B^{\frac{1}{2}}} \int_{-1}^{1} f \left(\frac{a \cdot x}{A^{\frac{1}{2}}} \right) \frac{d x}{\sqrt{1 - x^{2}}}.$$

Enfin, si, dans l'équation (46), on pose

elle donnera simplement

(51)
$$\int_0^{2\pi} f(a \cos p + b \sin p) \, dp = \int_0^{2\pi} f[(a^2 + b^2)^{\frac{1}{2}} \cos p] \, dp,$$

Les équations (46), (48), (49), (51) paraissent dignes de remarque, et fournissent les moyens de transformer les unes dans les autres un grand nombre d'intégrales définies.

§ II. - Sur la transformation de l'intégrale $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi, \rho) dx dy dz$, dans laquelle ξ , ρ^2 désignent deux fonctions entières et homogènes de x, y, z, du premier et du second degré.

Désignons par a, b, c, A, B, C, D, E, F des constantes réelles dont les six dernières soient tellement choisies que le polynôme

reste positif pour toutes les valeurs réelles possibles des variables x, y, z; et considérons l'intégrale triple

(2)
$$\mathfrak{H} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi, \rho) \, dx \, dy \, dz,$$

 $\xi, \, \rho^2$ étant deux fonctions déterminées par les formules

$$(3) \qquad \qquad \xi : ax + b) + cz,$$

(4)
$$\rho = (A \cdot v^2 + B y^2 + (C z^2 + 2 D y^2 + 2 E z x + 2 F x y^2)^{\frac{1}{2}}.$$

On pourra regarder les variables w, y, z comme propres à représenter des coordonnées rectangulaires, et leur substituer des coordonnées polaires p, q, r, qui soient liées avec elles par les équations

(5)
$$x = r \cos p$$
, $y = r \sin p \cos q$, $z = r \sin p \sin q$.

Cela posé, si l'on fait, pour abréger,

(6)
$$u = \cos p$$
, $v = \sin p \cos q$, $w = \sin p \sin q$,

$$(7) P = au + bv + cw,$$

(8)
$$Q = (Au^2 + Bv^2 + Cw^2 + 2Dvw + 2Evu + 2Fuv)^{\frac{1}{2}},$$

on frouvera

(9)
$$\xi = Pr, \quad \rho = Qr.$$

De plus, en vertu des règles connues, on devra, dans l'intégrale (2), remplacer le produit dx dy dz par $r^2 \sin p dp dq dr$, et cette intégrale deviendra

(10)
$$S = \int_0^{\pi} \int_0^{2\pi} \int_{-\pi}^{\infty} f(Pr, Qr) r^2 \sin p \, dp \, dq \, dr.$$

En comparant la formule (2) à la formule (10), on en conclura

(11)
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\hat{z}, \rho) \, dx \, dy \, dz = \int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{\infty} f(Pr, Qr) r^{2} \sin \rho \, d\rho \, dq \, dr.$$

Si l'on suppose en particulier

$$(12) a=1, b=c=0$$

et

(13)
$$A = B = C = 1$$
, $D = E = F = 0$,

on aura

(11)
$$\zeta = x$$
, $\rho = (x^2 + y^2 + z^2)^{\frac{1}{2}}$,

(15)
$$P = \cos p, \quad Q = 1,$$

et la formule (11) donnera

(16)
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\pi}^{\infty} f\left[x, (x^2+y^2+z^2)^{\frac{1}{2}}\right] dx \, dy \, dz = 2\pi \int_{0}^{\pi} \int_{0}^{\infty} f(r\cos p, r) \, r^2 \sin p \, dp \, dr.$$

Supposons maintenant que, les conditions (13) étant remplies, on

attribue aux quantités a, b, c des valeurs α, β, γ qui vérifient la formule

$$\alpha^2 + \beta^2 + \gamma^2 = 1.$$

On pourra concevoir qu'aux coordonnées rectangulaires x, y, z on substitue trois autres coordonnées rectangulaires ξ , η , ζ , dont la première ξ soit déterminée par l'équation

(18)
$$\xi = \sigma \cdot x + \beta y + \gamma z,$$

et considérer α , β , γ comme représentant les cosinus des angles formés par le demi-axe des ξ positives avec les demi-axes des α , γ , z positives. Alors on aura nécessairement

(10)
$$x^2 + y^2 + z^2 = \xi^2 + \eta^2 + \zeta^2.$$

Par suite, la seconde des formules (14) donnera

$$\rho = (\xi^2 + \eta^2 + \zeta^2)^{\frac{1}{2}},$$

et l'on tirera de l'équation (2): 1º

$$S = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left[\xi, (\xi^2 + n^2 + \xi^2)^{\frac{1}{2}}\right] d\xi d\eta d\zeta;$$

2º en ayant égard à la formule (16),

(21)
$$S = 2\pi \int_0^{\pi} \int_0^{\pi} f(r\cos p, r) r^2 \sin p \, dp \, dr.$$

On aura done, en admettant que la condition (17) soit remplie,

$$\begin{cases} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\left[\alpha x + \beta y + \gamma z, \left(x^2 + y^2 + z^2 \right)^{\frac{1}{2}} \right] dx \, dy \, dz \\ = 2\pi \int_{0}^{\pi} \int_{0}^{\infty} \left[\left(r \cos p, r \right) r^2 \sin p \, dp \, dr. \right] \end{cases}$$

On trouvera de même, en désignant par k une nouvelle constante, et

remplaçant $f(\xi, \rho)$ par $f(k\xi, \rho)$,

(23)
$$\begin{cases} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{\infty} \int_$$

D'ailleurs, pour faire coincider le premier membre de l'équation (23) avec l'intégrale

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[a.v + b.y + c.z, (x^2 + y^2 + z^2)^{\frac{1}{2}} \right] d.v \, dy \, dz,$$

il suffira de choisir α , β , γ , k de manière à vérifier les formules

(24)
$$k\alpha = a, \quad k\beta = b, \quad k\gamma = c,$$

et alors l'équation (17) donnera

(25)
$$\frac{a^2 + b^2 + c^2}{h^2} \stackrel{\cdot}{=} 1.$$

On satisfait à l'équation (25) en prenant

$$\lambda = \pm (a^2 + b^2 + c^2)^{\frac{1}{2}}.$$

Si, pour fixer les idées, on suppose

on tirera des formules (23) et (24)

$$\begin{cases} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \left[\left(a^{2} + b^{2} + c^{2} \right)^{\frac{1}{2}} r \cos \rho, r \right] r^{2} \sin \rho \, d\rho \, dr. \end{cases}$$

Cette dernière équation subsiste, quelles que soient les valeurs réelles attribuées aux constantés a, b, c.

Concevons à présent que les coefficients A, B, C, D, E, F cessent de

vérifier les conditions (13). On aura évidemment

$$\frac{A x^{2} + B y^{2} + C z^{2} + 2 D yz + 2 E z x + 2 F x y}{A \left(x + \frac{F}{A} y + \frac{E}{A} z\right)^{2} + \frac{(AB - F^{2}) y^{2} + 2(AD - EF) yz + (AC - E^{2}) z^{2}}{A}}$$

ef

$$\begin{array}{l} (AB - F^2) \nu^2 + 2(AD - EF) \gamma z + (AC - E^2) z^2 \\ + (AB - F^2) \left(\gamma + \frac{AD - EF}{AB - F^2} z \right)^2 + \frac{A(ABC - AD^2 - BE^2 - CF^2 + 2DEF) z^2}{AB - F^2}. \end{array}$$

Par suite, l'équation qui détermine la valeur de ρ^2 , savoir

(28)
$$\rho^2 = A x^2 + B y^2 + C z^2 + 2 D y z + 2 E z x + 2 F x y,$$

pourra être présentée sous la forme

(29)
$$\rho^{3} = G\left(x + \frac{F}{\Lambda}y + \frac{E}{\Lambda}z\right)^{2} + H\left(y + \frac{\Lambda D - EF}{\Lambda B - F^{2}}z\right)^{2} + Iz^{2},$$

les valeurs de G, II, I étant

(30) G A, II
$$\frac{AB-F^2}{A}$$
, $1 = \frac{ABC-AD^2-BE^2-CF^2+DEF}{AB-F^2}$.

D'autre part, le polynôme (1), qui est précisément égal à ρ^2 , devant rester positif pour toutes les valeurs réelles de x, y, z, on aura nécessairement

(31)
$$G > 0$$
, $H > 0$, $1 > 0$,

ou, ce qui revient au même,

(32)
$$A > 0$$
, AB $F^2 > 0$, ABC $-AD^2 - BE^2 - CF^2 + 2DEF > 0$.

Cela posé, si l'on prend

(33)
$$x = G^{\frac{1}{2}}\left(x + \frac{F}{A}y + \frac{E}{A}z\right), \quad y = H^{\frac{1}{2}}\left(y + \frac{AD - EF}{AB - F^2}z\right), \quad z = I^{\frac{1}{2}}z,$$

les nouvelles variables x, y, z seront réelles en même temps que x, OEuvres de C. — S. II, t. IX.

386 SUR LA TRANSFORMATION ET LA RÉDUCTION

y, z, et la valeur positive de ρ, déduite de la formule (29), sera

(34)
$$\rho = (x^2 + y^2 + z^2)^{\frac{1}{2}}.$$

Alors aussi, en remplaçant, dans l'intégrale (2), α par x, y par y, z par z, on trouvera

(35)
$$S = \frac{1}{(GHI)^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi, \rho) dx dy dz,$$

attendu que les formules (33) donneront

$$dx = \frac{dx}{G^{\frac{1}{2}}}, \qquad dy = \frac{dy}{\Pi^{\frac{1}{2}}}, \qquad dz = \frac{dz}{\Gamma^{\frac{1}{2}}}.$$

Done, en faisant, pour abréger, Ω - = $(GHI)^{\frac{1}{2}}$, ou, ce qui revient au même,

(36)
$$\Omega = (ABC - AD^2 - BE^2 - CF^2 + \alpha DEF)^{\frac{1}{2}},$$

on aura encore

(37)
$$S = \frac{1}{\Omega} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f(\xi, \rho) \, dx \, dy \, dz.$$

De plus, on tirera des formules (33)

(38)
$$z = \frac{z}{I^{\frac{1}{2}}}, \quad y = \frac{y}{H^{\frac{1}{2}}} - \frac{AD - EF}{AB - F^{2}} \frac{z}{I^{\frac{1}{2}}}, \quad x = \frac{y}{G^{\frac{1}{2}}} - \frac{F}{A} \frac{y}{II^{\frac{1}{2}}} + \frac{FD}{AB} - \frac{BE}{F^{2}} \frac{z}{I^{\frac{1}{2}}},$$

et par suite

(39)
$$\xi = ax + by + cz = ax + by + cz$$

les valeurs de a, b, c étant

(40)
$$a = \frac{1}{G^2}a$$
, $b = \frac{1}{H^2}(b - \frac{F}{A}a)$, $c = \frac{1}{I^2}(c - \frac{AD - EF}{AB - F^2}b + \frac{FD - BE}{AB - F^2}a)$;

puis on en conclura

(41)
$$(a^2 + b^2 + c^2)^{\frac{1}{2}} = K,$$

la valeur de K étant

$$(F_{2}) = K = \begin{bmatrix} (BC - D^{2})a^{2} + (CA - B^{2})b^{2} + (AB - F^{2})c^{2} + 2(EF - AD)bc + 2(FD - BE)ca + 2(DE - CF)ab \end{bmatrix}^{\frac{1}{2}},$$

Enfin on tirera de la formule (37), jointe aux équations (39), (34) et (27),

$$S = \frac{1}{\Omega} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f \left[ax + by + cz, (x^2 + y^2 + z^2)^{\frac{1}{2}} \right] dx dy dz$$

$$= \frac{2\pi}{\Omega} \int_{0}^{2\pi} \int_{0}^{\infty} f \left[(a^2 + b^2 + c^2)^{\frac{1}{2}} r \cos p, r \right] r^2 \sin p dp dr,$$

ou, ce qui revient au même,

(43)
$$S = \frac{2\pi}{\Omega} \int_0^{\pi} \int_0^{r} f(Kr\cos p, r) r^2 \sin p \, dp \, dr.$$

Or, en comparant cette dernière équation à la formule (10), on trouvera

$$\left(\frac{1}{1}\right) = \begin{cases} \int_0^{\pi} \int_0^{2\pi} \int_0^{\infty} f(\mathbf{P}r, \mathbf{Q}r) r^2 \sin p \, dp \, dq \, dr \\ = \frac{2\pi}{\Omega} \int_0^{\pi} \int_0^{\infty} f(\mathbf{K}r \cos p, r) r^2 \sin p \, dp \, dr, \end{cases}$$

les valeurs de P, Q, Ω et K étant déterminées par les formules (6), (7), (8), (36) et (42).

Si l'on remplace, dans le premier membre de l'équation (41), r par $\frac{r}{6}$, on en tirera

(45)
$$\left(\int_{0}^{\pi} \int_{0}^{r^{2}\pi} \int_{0}^{\infty} f\left(\frac{P}{Q}r,r\right) r^{2} \sin p \frac{dp}{Q^{3}} \frac{dq}{r} \right)$$

$$\left(\int_{0}^{\pi} \int_{0}^{r^{2}\pi} \int_{0}^{\pi} \int_{0}^{\infty} f(Kr \cos p, r) r^{2} \sin p \, dp \, dr \right)$$

puis, en posant, pour abréger,

(46)
$$\int_0^\infty f(Kr, r) r^2 dr = f(K),$$

388

on frouvera

(47)
$$\int_0^{\pi} \int_0^{2\pi} f\left(\frac{P}{Q}\right) \frac{\sin p \, dp \, dq}{Q^2} = \frac{2\pi}{\Omega} \int_0^{\pi} f\left(K \cos p\right) \sin p \, dp.$$

On arriverait encore au même résultat en prenant

(48)
$$f(\xi, \rho) = e^{-\rho} f\left(\frac{\xi}{\rho}\right)$$

ou bien

(49)
$$f(\xi,\rho) = e^{-\rho^2} f\left(\frac{\xi}{\rho}\right),$$

elc.

Ainsi, par exemple, en adoptant la valeur de $f(\xi, \rho)$ donnée par la formule (49), on réduirait l'équation (45) à

$$\int_0^{\pi} \int_0^{2\pi} \int_0^{\infty} r^2 e^{-r^2} f\left(\frac{P}{Q}\right) \frac{\sin p \, dp \, dq \, dr}{Q^4}$$

$$= \frac{2\pi}{\Omega} \int_0^{\pi} \int_0^{\infty} r^2 e^{-r^2} f(K \cos p) \sin p \, dp \, dr;$$

puis, en divisant les deux membres par la quantité

$$\int_0^\infty r^2 e^{-r^2} dr = |\pi|^2,$$

on retrouverait l'équation (47).

Si, dans les formules (8), (36) et (42), on suppose

(50)
$$A = B = C = 1, \quad D = E = F = 0,$$

on trouvera

$$Q = 1$$
, $\Omega = 1$, $K = (a^2 + b^2 + c^2)^{\frac{1}{2}}$

et l'on tirera de l'équation (47), jointe à l'équation (7),

(51)
$$\begin{cases} \int_0^{\pi} \int_0^{2\pi} f(a\cos p + b\sin p\cos q + c\sin p\sin q) \, dp \, dq \\ = 2\pi \int_0^{\pi} f[(a^2 + b^2 + c^2)^{\frac{1}{2}}\cos p] \sin p \, dp. \end{cases}$$

Cette dernière formule a été donnée pour la première fois par M. Poisson dans un Mémoire lu à l'Académie le 19 juillet 1819.

Si, dans les formules (7), (8), (36) et (42), on suppose

(52)
$$b = c = 0$$
, $B = C$, $D = C$, $D = E = F = 0$,

on trouvera

$$P = a \cos p, \qquad Q = (A \cos^2 p + B \sin^2 p)^{\frac{1}{2}},$$

$$\Omega = A^{\frac{1}{2}}B,$$

$$K = \left(\frac{a^2}{A} + \frac{b^2 + c^2}{B}\right)^{\frac{1}{2}},$$

et, par suite, l'équation (47) donnera

(53)
$$\begin{cases} \int_{0}^{\pi} f \left[\frac{a \cos p}{(A \cos^{2} p + B \sin^{2} p)^{2}} \right] \frac{\sin p \, dp}{(A \cos^{2} p + B \sin^{2} p)^{\frac{1}{2}}} \\ -\frac{1}{A^{\frac{1}{2}} B} \int_{0}^{\pi} f \left(\frac{a \cos p}{A^{\frac{1}{2}}} \right) \sin p \, dp, \end{cases}$$

puis on en conclura, en posant $\cos p = x$,

(54)
$$\int_{1}^{1} f\left\{\frac{ax}{(\Lambda - B)x^2 + B}\right\}^{\frac{1}{2}} \frac{dx}{[(\Lambda - B)x^2 + B]^{\frac{1}{2}}} = \frac{1}{\Lambda^{\frac{1}{2}}B} \int_{-1}^{1} f\left(\frac{ax}{\Lambda^{\frac{1}{2}}}\right) dx.$$

Nous reviendrons dans un autre article sur le parti qu'on peut tirer de ces diverses équations pour transformer les intégrales définies, et en particulier celles que l'on désigne sous le nom de fonctions elliptiques.

APPLICATION DES FORMULES

QUI REPRESENTENT

LE MOUVEMENT D'UN SYSTÈME DE MOLÉCULES SOLLICITÉES PAR DES FORCES D'ATTRACTION OU DE REPULSION MUTUELLE

A LA THÉORIE DE LA LUMIÈRE.

Considérations générales.

J'ai donné le premier, dans le HI° et le IV° Volume des Exercices (¹). les équations générales d'équilibre et de mouvement d'un système de molécules sollicitées par des forces d'attraction ou de répulsion mutuelle, en admettant que ces forces fussent représentées par des fonctions des distances entre les molécules; et j'ai prouvé que ces équations, qui renferment un grand nombre de coefficients dépendants de la nature du système, se réduisaient, dans le cas où l'élasticité redevenait la même en tous sens, à d'autres formules qui ne renferment qu'un seul coefficient, et qui avaient été primitivement obtenues par M. Navier. Si l'on désigne par m la molécule qui coincide, au bout d'un temps quelconque t, avec le point (x, y, z); par ξ , η , ζ les déplacements de cette molécule mesurés parallèlement aux axes des α , γ , z, que nous supposons rectangulaires; et si l'on fait abstraction des coefficients qui s'évanouissent, lorsque les masses m, m', m'', \dots des diverses molécules sont deux à deux égales entre elles, et distribuées symétriquement de part et d'autre d'un point (x, y, z) sur des droites menées par ce point; les équations du mouvement du système seront

⁽¹⁾ OEuvres de Cauchy, S. II, T. VIII of IX.

celles qui se trouvent inscrites, sous le nº 11, à la page 166. Nous montrerons, dans un autre article, comment on peut trouver les intégrales générales des équations dont il s'agit, et en déduire les lois de la propagation du son dans les corps solides. Mais, pour établir la théorie de la lumière, nous n'aurons pas besoin de recourir aux intégrales générales, et il suffira de considérer, parmi les mouvements que peut prendre le système, ceux dans lesquels les déplacements restent les mêmes pour toutes les molécules situées dans un plan parallèle à un plan donné. Or, dans la recherche des phénomènes que doivent présenter les mouvements de cette espèce, on peut substituer aux équations ci-dessus mentionnées d'autres équations différentielles beaucoup plus simples. La formation de ces dernières sera l'objet du paragraphe suivant.

§ 1. — Équations différentielles du mouvement d'un système dans lequel les molécules situées à la même distance d'un plan donné éprouvent les mêmes déplacements.

Concevons que, par l'origine O, on mêne un plan OO'O" perpendiculaire au demi-axe OD qui forme avec les demi-axes des ω , γ et z positives les angles λ , μ et ν . L'équation de ce plan sera

(1)
$$x \cos \lambda + y \cos \mu + z \cos \nu = 0.$$

De plus, si l'on considère un point (x, y, z) situé, non plus dans le plan OO'O'', mais en dehors, et si l'on nomme z la distance du point (x, y, z) au plan OO'O'', cette distance étant prise avec le signe + ou avec le signe -, suivant qu'elle se mesure à partir du plan dans le même sens que le demi-axe OD ou en sens inverse, on aura

$$(2) \qquad \qquad \iota = x \cos \lambda + y \cos \mu + z \cos \nu.$$

Si l'on pose, pour abréger,

(3)
$$a = \cos \lambda, \quad b = \cos \mu, \quad c = \cos \nu,$$

on aura simplement

$$\iota = ax + by + cz.$$

Cela posé, soient, au bout du temps t, m la molécule qui coïncide avec le point (x,y,z) et ξ , η , ζ ses déplacements mesurés parallèlement aux axes coordonnés. Si ces déplacements restent les mêmes pour toutes les molécules situées dans un plan parallèle à celui que représente l'équation (1), ξ pourra être regardé comme fonction des seules variables x, t; et, comme on tirera de l'équation (2)

$$\frac{\partial c}{\partial x} = a, \quad \frac{\partial c}{\partial y} = b, \quad \frac{\partial c}{\partial z} = c,$$

on trouvers

$$\frac{\partial \xi}{\partial x} = \frac{\partial \xi}{\partial x} \frac{\partial x}{\partial x} = a \frac{\partial \xi}{\partial x}, \qquad \cdots$$

On aura donc

$$\frac{\partial \xi}{\partial x} = a \frac{\partial \xi}{\partial c}, \qquad \frac{\partial \xi}{\partial y} = b \frac{\partial \xi}{\partial c}, \qquad \frac{\partial \xi}{\partial z} = c \frac{\partial \xi}{\partial c},
\frac{\partial^2 \xi}{\partial x^2} = a^2 \frac{\partial^2 \xi}{\partial c^2}, \qquad \frac{\partial^2 \xi}{\partial y^2} = b^2 \frac{\partial^2 \xi}{\partial c^2}, \qquad \frac{\partial^2 \xi}{\partial z^2} = c^2 \frac{\partial^2 \xi}{\partial c^2},
\frac{\partial^2 \xi}{\partial y^2 \partial z} = bc \frac{\partial^2 \xi}{\partial c^2}, \qquad \frac{\partial^2 \xi}{\partial z \partial w} = ca \frac{\partial^2 \xi}{\partial c^2}, \qquad \frac{\partial^2 \xi}{\partial w \partial y} = ab \frac{\partial^2 \xi}{\partial c^2},$$

Les mêmes équations subsisteraient encore si l'on y remplaçait ξ par η ou par ζ. Donc, si, dans les formules (11) de la page 166, on suppose les coefficients A, e, C, D, C, F, L, R, ... constants, et les forces accélératrices X, Y, Z réduites à zéro, on tirera

(6)
$$\begin{cases} \frac{\partial^2 \xi}{\partial t^2} = \xi \frac{\partial^2 \xi}{\partial t^2} + \Re \frac{\partial^2 \eta}{\partial t^2} + \Im \frac{\partial^2 \xi}{\partial t^2}, \\ \frac{\partial^2 \eta}{\partial t^2} = \Re \frac{\partial^2 \xi}{\partial t^2} + \Re \frac{\partial^2 \eta}{\partial t^2} + \Re \frac{\partial^2 \xi}{\partial t^2}, \\ \frac{\partial^2 \xi}{\partial t^2} = 2 \frac{\partial^2 \xi}{\partial t^2} + \Re \frac{\partial^2 \eta}{\partial t^2} + \Re \frac{\partial^2 \xi}{\partial t^2}, \end{cases}$$

les valeurs L, N, N, E, Q, A étant

(7)
$$\begin{cases} \mathcal{C} = \Im a^{2} + \emptyset b^{2} + \mathbb{C}c^{2} + 2 \mathbb{D}bc + 2 \mathbb{C}ca + 2 \mathbb{E}ab \\ + \mathbb{L}a^{2} + \mathbb{R}b^{2} + \mathbb{Q}c^{2} + 2 \mathbb{D}bc + 2 \mathbb{V}ca + 2 \mathbb{V}ab, \\ - \mathbb{R}a^{2} + \mathbb{D}b^{2} + \mathbb{C}c^{2} + 2 \mathbb{D}bc + 2 \mathbb{C}ca + 2 \mathbb{E}ab \\ + \mathbb{R}a^{2} + \mathbb{D}b^{2} + \mathbb{C}c^{2} + 2 \mathbb{D}bc + 2 \mathbb{C}ca + 2 \mathbb{E}ab \\ + \mathbb{C}a^{2} + \mathbb{D}b^{2} + \mathbb{C}c^{2} + 2 \mathbb{D}bc + 2 \mathbb{C}ca + 2 \mathbb{E}ab \\ + \mathbb{C}a^{2} + \mathbb{D}b^{2} + \mathbb{C}c^{2} + 2 \mathbb{D}bc + 2 \mathbb{C}ca + 2 \mathbb{E}ab \\ + \mathbb{C}a^{2} + \mathbb{C}a^{2} + 2 \mathbb{D}bc + 2 \mathbb{C}a + 2 \mathbb{C}a + 2 \mathbb{C}ab, \\ + \mathbb{C}a^{2} + \mathbb{C}a^{2} + \mathbb{C}a^{2} + 2 \mathbb{C}a^{2} + 2 \mathbb{C}a^{2} + 2 \mathbb{C}a^{2} + 2 \mathbb{C}ab, \\ \mathbb{C}a^{2} + \mathbb{C}a^{2} + \mathbb{C}a^{2} + 2 \mathbb{C}a^{2} +$$

Soient maintenant OA une nouvelle droite menée par l'origine, A, \$\omega\$, \$\infty\$ les cosinus des angles que forme cette droite, prolongée dans un certain sens OA, avec les demi-axes des coordonnées positives; et prenons

$$8 = \mathcal{M}\xi + 1/2\eta + \mathcal{O}\zeta.$$

On aura

$$(10) \qquad \qquad \wedge^{1/2} + 0 \cdot b^2 + 2^{2} = 1.$$

De plus, le rapport

représentera évidemment le cosinus de l'angle formé par la nouvelle droite avec la direction suivant laquelle se mesure le déplacement absolu de la molécule m. Par conséquent, la valeur de z, déterminée par la formule (9), représentera le déplacement de cette molécule mesuré parallèlement à la droite OA, et sera positive si ce déplacement se compte dans le même sens que la direction OA, mais négative dans le cas contraire. D'ailleurs, si l'on combine par voie d'addition les formules (6), après avoir multiplié les deux membres de la première par A, de la seconde par A, de la troisième par ©, et si l'on

50

choisif A, B, 2 ou plutôt les rapports $\frac{db}{dt}$, $\frac{2}{db}$ de manière que les trois fractions

(11)
$$\frac{2b + 3b + 2\varepsilon}{b}, \quad \frac{3b + 3bb + 2\varepsilon}{b}, \quad \frac{2b + 2b + 3\varepsilon}{\varepsilon}$$

deviennent égales entre elles, on trouvera, en désignant par s^2 la valeur commune de ces trois rapports,

$$\frac{\partial^2 s}{\partial t^2} = s^2 \frac{\partial^2 s}{\partial t^2}.$$

Or il existe trois valeurs de s^2 propres à vérifier la formule

(13)
$$\frac{\operatorname{Ceb} + \operatorname{Rib} + \operatorname{QO}}{\operatorname{eb}} = \frac{\operatorname{Rib} + \operatorname{NCib} + \operatorname{QO}}{\operatorname{ib}} = \frac{\operatorname{Qib} + \operatorname{Rib} + \operatorname{NCO}}{\operatorname{E}} - s^2,$$

et, par conséquent, les équations

(11)
$$\begin{cases} (x^2 - s^2) \mathcal{A} + \mathcal{R} \mathcal{W} + 2\mathfrak{S} = 0, \\ \mathcal{R} \mathcal{A} + (\mathcal{H} - s^2) \mathcal{W} + \mathfrak{R} \mathfrak{S} = 0, \\ 2\mathcal{A} + \mathfrak{L} \mathcal{W} + (\mathcal{H} - s^2) \mathfrak{S} = 0, \end{cases}$$

desquelles on tire

(15)
$$\begin{cases} (\mathcal{C} - s^2) (\partial \mathcal{K} - s^2) (\partial \mathcal{G} - s^2) \\ - \mathcal{Q}^2 (\mathcal{E} - s^2) - \mathcal{Q}^2 (\partial \mathcal{K} - s^2) + \mathcal{Q}^2 (\partial \mathcal{G} - s^2) + 2 \mathcal{Q} \mathcal{R} \end{cases} \approx 0.$$

De plus, à ces trois valeurs de s^2 correspondent trois systèmes de valeurs pour les rapports $\frac{\partial b}{\partial s}$, $\frac{\partial}{\partial s}$, et, par conséquent, trois droites OA', OA'', OA'' avec lesquelles on peut faire coincider successivement la droite OA. Enfin, il résulte de la forme des équations (13) et (14) que ces trois droites se confondent avec les trois axes de la surface du second degré représentée par l'équation

et l'on peut ajouter que, dans le cas où cette surface est un ellipsoïde, les trois valeurs de $\frac{1}{3^2}$ sont précisément les trois demi-axes. Done, à

l'aide de la formule (12), on pourra déterminer, au bout du temps t, les trois déplacements de la molécule m mesurés parallèlement aux trois axes de l'ellipsoïde, et, par suite, à trois droites perpendiculaires entre elles. Si l'on désigne ces trois déplacements par

$$(17)$$
 8', 8", 8",

et les valeurs correspondantes de s, A, B, & par

on pourra supposer que les quantités s', s'', s'' restent positives; et le déplacement s', déterminé en fonction de v et t par la formule

$$\frac{\partial^2 8'}{\partial t^2} = s'^2 \frac{\partial^2 8'}{\partial \tau^2},$$

se mesurera dans une direction parallèle à celle de la droite OA', représentée par l'équation

(20)
$$\frac{x}{\sqrt{y}} = \frac{x}{\sqrt{y}} = \frac{z}{z^{2}}.$$

De même, le déplacement s'', déterminé par la formule

$$\frac{\partial^2 \mathbf{s}''}{\partial t^2} = s''^2 \frac{\partial^2 \mathbf{s}''}{\partial \mathbf{r}^2},$$

se mesurera dans une direction parallèle à celle de la droite OA", représentée par l'équation

$$\frac{x}{dt^y} = \frac{y'}{dt^y} = \frac{z}{\xi z^y},$$

et le déplacement s'', déterminé par la formule

(23)
$$\frac{\partial^2 8''}{\partial t^2} = \delta'''^2 \frac{\partial^2 8''}{\partial \epsilon^2},$$

se mesurera dans une direction parallèle à celle de la droite OA''', représentée par l'équation

$$\frac{x}{s y''} = \frac{y}{y y''} = \frac{z}{z''}.$$

Lorsque, à l'aide des formules (19), (21), (23), on aura calculé les valeurs de z', z'', z''', on en déduira facilement celles de ξ , η , ζ ; et, pour y parvenir, il suffira de recourir aux équations

$$\begin{cases} 8' = 3b' \xi + 1b' \eta + \mathfrak{D}' \zeta, \\ 8'' = 3b'' \xi + 1b'' \eta + \mathfrak{D}'' \zeta, \\ 8'' = ab'' \xi + 1b'' \eta + \mathfrak{D}'' \zeta, \end{cases}$$

desquelles on tirera

(26)
$$\begin{cases} \xi = \varepsilon b' s' + \lambda'' s'' + \lambda b'' s'', \\ \eta = v b' s' + v b'' s'' + v b'' s'', \\ \zeta = \varepsilon' s' + \varepsilon'' s'' + \varepsilon'' s'' + \varepsilon''' s''', \end{cases}$$

en avant égard aux conditions

Observons encore que, si, au bout du temps t, l'on nomme ω la vitesse absolue de la molécule m qui coïncide avec le point (w, y, z), les projections algébriques de cette vitesse sur les axes coordonnés seront, en vertu de ce qui a été dit dans le III° Volume (p. 166) (¹), respectivement égales à

(28)
$$\frac{\partial \xi}{\partial t}, \frac{\partial \eta}{\partial t}, \frac{\partial \zeta}{\partial t},$$

en sorte qu'on aura

(29)
$$\omega^2 = \left(\frac{\partial \xi}{\partial t}\right)^2 + \left(\frac{\partial \eta}{\partial t}\right)^2 + \left(\frac{\partial \zeta}{\partial t}\right)^2.$$

(1) OEuvres de Cauchy, S. II, t. VIII, p. 202, 203.

Si, au lieu de projeter la vitesse ω sur les axes des x, y, z, on la projette sur les droites OA', OA'', OA''', on trouvera pour projections algébriques, non plus les quantités (28), mais les suivantes

(30)
$$\frac{\partial \mathbf{s}'}{\partial t}, \quad \frac{\partial \mathbf{s}''}{\partial t}, \quad \frac{\partial \mathbf{s}''}{\partial t},$$

et, par conséquent, on aura encore

(31)
$$\omega^2 = \left(\frac{\partial \mathbf{g}'}{\partial t}\right)^2 - \left(\frac{\partial \mathbf{g}''}{\partial t}\right)^2 + \left(\frac{\partial \mathbf{g}''}{\partial t}\right)^2.$$

Il suit de ce qui a été dit dans le III^e Volume (p. 213 et suiv.) (') que, en divisant les coefficients

par la densité naturelle du système de molécules que l'on considère, on obtient pour quotient les projections algébriques des pressions ou tensions supportées dans l'état naturel, et du côté des coordonnées positives, par trois plans perpendiculaires aux axes des x, y, z. Si ces pressions ou tensions s'évanouissent, on pourra en dire autant des coefficients (32), et les formules (7) se réduiront à

Tes valours de જ, રૂ, ક્રા étant toujours

(8)
$$\begin{cases} \mathfrak{D} : Ua^{2} + U'b^{2} + U''c^{2} + 2Pbc + 2W''ca + 2V'ab, \\ \mathfrak{D} : Va^{2} + V'b^{2} + V''c^{2} + 2W''bc + 2Qca + 2Uab, \\ \mathfrak{R} : Wa^{2} + W'b^{2} + W''c^{2} + 2V'bc + 2Uca + 2Rab. \end{cases}$$

Dans le cas où le système des molécules proposé offre trois axes d'élasticité rectangulaires entre eux et respectivement parallèles aux

(1) OEuvres de Cauchy, S. II, T. VIII, p. 253 et suiv.

axes des a, y, z, les coefficients

$$(34)$$
 \mathfrak{D} , \mathfrak{C} , \mathfrak{E} ; \mathfrak{U} , \mathfrak{V} , \mathfrak{W} ; \mathfrak{U}' , \mathfrak{V}' , \mathfrak{W}' , \mathfrak{U}'' , \mathfrak{V}'' , \mathfrak{W}''

s'evanouissent; et, en écrivant G, II, I au lieu de A, C, on réduit les formules (11) de la page 166 aux formules (68) de la page 208 du III Volume (1). Alors aussi les équations (7) et (8) donnent simplement

(35)
$$\begin{cases} \mathcal{E} = (L + G)a^{2} + (R + H)b^{2} + (Q + I)c^{2}, \\ \partial \mathcal{E} = (R + G)a^{2} + (M + H)b^{2} + (P + I)c^{2}, \\ \partial \mathcal{E} = (Q + G)a^{2} + (P + H)b^{2} + (N + I)c^{2}, \end{cases}$$

(36)
$$\emptyset = 2 \operatorname{P} bc, \quad \emptyset = 2 \operatorname{Q} ca, \quad \beta = 2 \operatorname{R} ab.$$

Si, de plus, les pressions relatives à l'état naturel s'évanouissent, on aura

(37)
$$G = II = I = 0$$

et les valeurs de g, on, or se réduiront à

(38)
$$\begin{cases} \mathcal{L} = La^{2} + Rb^{2} + Qc^{2}, \\ \Im L = Ra^{2} + Mb^{2} + Pc^{2}, \\ \Im L = Qa^{2} + Pb^{2} + Nc^{2}. \end{cases}$$

Lorsque le système proposé offre la même élasticité en tous sens autour d'un axe quelconque parallèle à l'axe des z, les coefficients G, H, P, Q, R, L, M vérifient les conditions (107) de la page 367, savoir

(39)
$$G = II, P = Q, L = M = 3R,$$

et les formules (35), (36) deviennent

(40)
$$\begin{cases} \mathcal{L} = (3R + H)a^2 + (R + H)b^2 + (Q + I)c^2, \\ \Im \mathcal{L} = (R + H)a^2 + (3R + H)b^2 + (Q + I)c^2, \\ \Im \mathcal{L} = (Q + H)(a^2 + b^2) + (N + I)c^2, \end{cases}$$

$$\mathfrak{A} = 2 Q bc, \qquad \mathfrak{D} = 2 Q ca, \qquad \mathfrak{A} = 2 R cb.$$

(1) OEueres de Cauchy, S. II, T. VIII, p. 247.

Si, de plus, on suppose nulles les pressions relatives à l'état naturel, les formules (40) se réduiront à

(42)
$$\begin{cases} \zeta = 3 R a^2 + R b^2 + Q c^2, \\ \partial K = R a^2 + 3 R b^2 + Q c^2, \\ \partial L = Q (a^2 + b^2) + N c^2. \end{cases}$$

Enfin, si le système proposé offre la même élasticité en tous sens autour d'un point quelconque, on trouvera

(43)
$$G = H = I, P = Q = R, L = M = N = 3R,$$

et, en ayant égard à l'équation

$$(44) a^2 + b^2 + c^2 = 1,$$

on tirera des formules (35), (36)

(45)
$$f = 2Ra^2 + R + I$$
, $\partial R = 2Rb^2 + R + I$, $N = 2Rc^2 + R + I$,

(46)
$$\mathfrak{L}^{\perp} \circ \mathfrak{R} bc$$
, $\mathfrak{L} = \mathfrak{L} R bc$, $\mathfrak{L} = \mathfrak{L} R ab$;

puis, en supposant les pressions nulles dans l'état naturel, on réduira les équations (45) à

Lorsqu'on adopte les valeurs de L, M, B, Q, A fournies par les équations (45), (46), la formule (15) se réduit à

(48)
$$(R+1-s^2)^2 (3R+1-s^2) = o;$$

et, par conséquent, des trois valeurs de s généralement représentées par s', s", s", deux deviennent égales entre elles, en sorte qu'on peut prendre

(49)
$$s'^2 = s''^2 = R + 1, \quad s''^2 = 3R + 1.$$

Nous avons précédemment supposé, et nous supposerons généralement dans ce qui va suivre, que la surface représentée par l'équation (16) est un ellipsoïde. Or on peut s'assurer qu'il en sera effectivement ainsi, toutes les fois que, les valeurs de £, m, m, m, m, m, m, et ant déterminées pour les formules (35), (36), les coefficients G, H, I seront positifs ou nuls, et les coefficients L, M, N, P, Q, R positifs. Alors, en effet, l'équation (16) pouvant être présentée sous la forme

(50)
$$\left\{ \begin{array}{l} (Ga^2 + \Pi b^2 + Ic^2)(x^2 + y^2 + z^2) + La^2x^2 + Mb^2y^2 + Nc^2z^2 \\ + P(bz + cy)^2 + Q(cx + az)^2 + R(ay + bx)^2zz_1, \end{array} \right.$$

le polynôme que renferme le premier membre restera évidemment positif pour des valeurs quelconques de x, y, z, et ne deviendra jamais nul, d'où il est aisé de conclure que la surface représentée par l'équation (16) n'offrira pas de rayon vecteur infini, et sera un ellipsoide. Il y a plus; on peut, dans tous les cas, présenter sous une forme très simple les conditions qui doivent être remplies pour que la surface (16) soit un ellipsoide. En effet, si l'on nomme r le rayon vecteur mené, dans l'état naturel du corps, de la molécule m à une molécule voisine m, α , β , γ les angles formés par ce rayon vecteur avec les demi-axes des coordonnées positives, et m $m_f(r)$ l'attraction ou la répulsion mutuelle des deux masses m et m, on tirera des formules (7) et (8), réunies aux équations (3), (4), (5), (6), (7) des pages 163, 164,

$$\begin{cases} \mathcal{E} = \mathbf{S} \left\{ \frac{mr}{2} (a\cos\alpha + b\cos\beta + c\cos\gamma)^2 |\cos^2\alpha f(r)|^{\frac{1}{2}} |f(r)|^2 \right\}, \\ \mathfrak{I} = \mathbf{S} \left\{ \frac{mr}{2} (a\cos\alpha + b\cos\beta + c\cos\gamma)^2 |\cos^2\beta f(r)|^{\frac{1}{2}} |f(r)|^2 \right\}, \\ \mathfrak{I} = \mathbf{S} \left\{ \frac{mr}{2} (a\cos\alpha + b\cos\beta + c\cos\gamma)^2 |\cos^2\gamma f(r)|^{\frac{1}{2}} |f(r)|^2 \right\}, \\ \mathfrak{I} = \mathbf{S} \left[\frac{mr}{2} (a\cos\alpha + b\cos\beta + c\cos\gamma)^2 \cos\beta \cos\gamma f(r) \right], \\ \mathfrak{I} = \mathbf{S} \left[\frac{mr}{2} (a\cos\alpha + b\cos\beta + c\cos\gamma)^2 \cos\gamma \cos\alpha f(r) \right], \\ \mathfrak{I} = \mathbf{S} \left[\frac{mr}{2} (a\cos\alpha + b\cos\beta + c\cos\gamma)^2 \cos\alpha \cos\beta f(r) \right], \\ \mathfrak{I} = \mathbf{S} \left[\frac{mr}{2} (a\cos\alpha + b\cos\beta + c\cos\gamma)^2 \cos\alpha \cos\beta f(r) \right], \end{cases}$$

le signe S indiquant une somme de termes semblables, mais relatifs

aux diverses molécules m, m', \ldots , le double signe \pm devant être réduit au signe + ou au signe -, suivant que la masse $\mathfrak m$ sera attirée ou repoussée par la molécule m, et la fonction f(r) étant déterminée en fonction de r par la formule

(53)
$$f(r) = \pm [r]'(r) - f(r)].$$

Cela posé, l'équation (16) deviendra

(51)
$$S\left\{\frac{mr}{3}(a\cos\alpha+b\cos\beta+c\cos\gamma)^2\left[(x\cos\alpha+y\cos\beta+z\cos\gamma)^2f(r)\pm(x^2+y^2+z^2)f(r)\right]\right\}=1.$$

Si, maintenant, on nomme δ et τ les angles que forme le rayon vecteur r: 1° avec la perpendiculaire au plan représenté par l'équation (1); 2° avec le rayon vecteur $\sqrt{x^2 + y^2 + z^2}$ mené de l'origine au point (x, y, z), on trouvera

(55)
$$\cos \delta = a \cos \sigma + b \cos \beta + c \cos \gamma,$$

(56)
$$\cos \tau = \frac{x \cos \alpha + y \cos \beta + z \cos \gamma}{\sqrt{x^2 + y^2 + z^2}};$$

puis, en posant, pour abréger,

on tirera de la formule (56)

(58)
$$x \cos \alpha + y \cos \beta + z \cos \gamma = r \cos \tau.$$

Par suite, la formule (16) ou (54) donnera

ou, ce qui revient au même,

(60)
$$\tau^2 = \frac{1}{S\left\{\frac{mr}{3}\cos^2\delta\left[\cos^2\tau f(r) \pm f(r)\right]\right\}}$$

Or la surface représentée par la formule (16) sera un ellipsoïde, si le rayon vecteur : mené de l'origine à un point quelconque (x, y, z) do cette même surface conserve constamment une valeur réelle et finie,

51

c'est-à-dire, en d'autres termes, si l'on a pour toutes les directions possibles de ce rayon vecteur

Si l'on suppose que les pressions s'évanouissent dans l'état naturel, le polynôme

(6)
$$\Im a^2 + \Im b^2 + \operatorname{C} c^2 + 2 \operatorname{D} b c + 2 \operatorname{C} c a + 2 \operatorname{C} a b = \operatorname{S} \left[\pm \frac{mr}{3} \cos^2 \delta \right] (r)$$

s'évanouira en même temps que les coefficients A, D, C, D, C, F, et par conséquent la condition (G1) se trouvera réduite à

(63)
$$\mathbf{S}\left[\frac{mr}{2}\cos^2\delta\cos^2\tau f(r)\right] > 0.$$

§ II. — Propagation des ondes planes dans un système de molécules sollicitées par des forces d'attraction ou de répulsion mutuelle. Surface des ondes,

Concevons que les valeurs initiales des déplacements et des vitesses de la molécule m mesurés parallèlement aux axes, c'est-à-dire les valeurs initiales des quantités

$$\xi$$
, η , ζ , $\frac{\partial \xi}{\partial t}$, $\frac{\partial \eta}{\partial t}$, $\frac{\partial \zeta}{\partial t}$,

soient connues et représentées par certaines fonctions de ϵ . On en déduira sans peine les valeurs initiales des quantités

$$8'$$
, $8''$, $8''$, $\frac{\partial 8'}{\partial t}$, $\frac{\partial 8''}{\partial t}$, $\frac{\partial e'''}{\partial t}$;

et dès lors on pourra facilement déterminer les fonctions arbitraires introduites par l'intégration des équations aux différences partielles (19), (21), (23) du § I. Or ces trois équations sont toutes renfermées dans la formule (12), § I, de laquelle on les tire en attribuant successivement à s les trois valeurs particulières s', s'', s'''. D'ailleurs, si l'on désigne par $\mathfrak{f}_{\emptyset}(\mathfrak{r})$, $\mathfrak{f}_{\mathfrak{l}}(\mathfrak{r})$ les valeurs initiales de s et de $\frac{\partial s}{\partial t}$, la valeur gé-

nérale de 2, donnée par la formule (12), § I, sera

(1)
$$8 = \frac{\int_0^t (\tau - st) + \int_0^t (\tau - st)}{2} + \int_0^t \frac{\int_1^t (\tau - st) + \int_1^t (\tau - st)}{2} dt.$$

Cela posé, concevons qu'au premier instant z et $\frac{\partial s}{\partial t}$ n'aient de valeurs sensibles que dans le voisinage du plan représenté par l'équation (+) du § 1, ou

et que $f_{\theta}(x)$, $f_{1}(x)$ s'évanouissent, par exemple, pour toutes les valeurs de x situées hors des limites

$$i = -i, \quad i = i,$$

 \imath désignant une longueur très petite. Il est clair qu'au bout du temps \imath les fonctions

$$f_0(x \rightarrow st), \quad f_1(x \rightarrow st)$$

s'évanouiront pour toutes les valeurs de « situées hors des limites

$$(i_1) \qquad \qquad i = st - i, \qquad i = st - i,$$

c'est-à-dire, pour tous les points situés hors de la couche très mince dont l'épaisseur 2*i* sora divisée en parties égales par le plan que représentera l'équation

$$t = st$$

00

(6)
$$ax + by + es = st;$$

et les fonctions

$$|f_0(x+st), f_1(x+st)|$$

pour toutes les valeurs de v situées hors des limites

$$(7) \qquad \qquad 1 = -st - i, \qquad 1 = -st + i,$$

c'est-à-dire, pour toutes les valeurs de a situées hors de la couche très

mince dont l'épaisseur 2i sera divisée en deux parties égales par le plan que représentera l'équation

$$t = -st$$

ou

$$(9) ax + by + cz = -st.$$

Donc le déplacement z et la vitesse $\frac{dz}{dt}$, mesurés parallèlement à la droite OA, s'évanouiront constamment hors des deux couches ci-dessus mentionnées; et, comme, au hout du temps t, il existera deux conches de cette espèce pour chacune des trois valeurs de a désignées par a', z", z", nous devons en conclure que le mouvement, qui n'était d'abord sensible que dans le voisinage du plan OO'O", représenté par l'équation (1), se propagera dans l'espace de manière à produire six ondes planes indéfinies qui offriront toutes la même épaisseur 2i, et resteront comprises entre des plans parallèles à OO'O". Ces ondes, considérées deux à deux, auront des vitesses de propagation égales, mais dirigées en sens contraires, savoir, dans le sens des r positives et dans le sens des r négatives. De plus, ces vitesses, mesurées suivant une droite perpendiculaire au plan OO'O", pour trois ondes qui se mouvront dans un même sens, seront constantes en vertu de la formule (5) ou (8), et respectivement égales aux trois valeurs de s que détermine la formule (15) du § I, c'est-à-dire, aux quantités s', s", s". Les points situés hors des ondes planes dont il s'agit scront en repos, puisque les vafeurs de

$$8'$$
, $8''$, $8'''$, $\frac{\partial 8''}{\partial t}$, $\frac{\partial 8''}{\partial t}$, $\frac{\partial 8''}{\partial t}$,

correspondantes à ces mêmes points, s'évanouiront. Mais, pour les points renfermés dans l'épaisseur d'une onde plane, l'un des trois déplacements s', s'', s''' et l'une des trois vitesses $\frac{ds'}{dt}$, $\frac{ds''}{dt}$, $\frac{ds'''}{dt}$ cesseront de s'évanouir. Ainsi, en particulier, dans l'onde plane qui se propage avec la vitesse s', le déplacement s' mesuré parallèlement à la droite OA'

acquerra une valeur différente de zéro, ainsi que la vitesse $\frac{ds'}{dt}$; et, comme les déplacements ou les vitesses mesurés parallèlement aux droites OA", OA" continueront de s'évanouir, on peut affirmer que, dans l'intérieur de la même onde, le déplacement absolu et la vitesse absolue d'une molécule mes seront dirigés suivant une droite parallèle à l'axe OA', et représentés par les valeurs numériques des quantités s', $\frac{ds'}{dt}$. Pareillement, dans l'onde plane qui se propage avec la vitesse s'' ou s''', le déplacement absolu et la vitesse absolue d'une molécule seront dirigés suivant une droite parallèle à l'axe OA" ou OA", et représentés par les valeurs numériques de s'', $\frac{ds''}{dt}$ ou de s''', $\frac{ds'''}{dt}$.

En résumant ce qui précède, on obtient la proposition suivante :

Théorème I. — Si, dans un corps homogène, les déplacements et les vitesses des molécules sont nuls au premier instant, pour tous les points situés hors d'une couche plane très mince dont l'épaisseur 2i est divisée en deux parties égales par un certain plan OO'O", et restent les mêmes pour tous les points de la couche qui se trouvent situés à la même distance de ce plan, la propagation du mouvement, de chaque côté du plan OO'O", donnera généralement naissance à trois ondes renfermées entre des plans purallèles. Chacune de ces ondes offrira une épaisseur égale à 2i. De plus, les vitesses de propagation des trois ondes, mesurées suivant une perpendiculaire au plan OO'O", seront constantes et respectivement égales aux quotients qu'on obtient en divisant l'unité par les demi-axes de l'ellipsoïde que représente la formule (16) du § I. Enfin les déplacements absolus ainsi que les vitesses absolues des molécules dans les trois ondes se mesureront suivant trois directions respectivement parallèles aux trois axes de l'ellipsoïde.

Le théorème I suppose que la surface représentée par l'équation (16) du § I est un ellipsoïde. Si la même équation devenait propre à représenter un système de deux hyperboloïdes conjugués, ou si elle ne pouvait plus être vérifiée par des valeurs réelles de x, y, z, quelques-unes des trois vitesses de propagation s', s'', s''', ou même ces trois vitesses à

la fois deviendraient imaginaires; et, dans le dernier cas, la propagation des ondes planes deviendrait impossible.

Si deux ou trois axes de l'ellipsoide ei-dessus mentionné devenaient égaux, les ondes planes qui se propageraient dans le même sens, avec des vitesses réciproquement proportionnelles à ces axes, coincideraient, et la vitesse absolue de chaque molécule renfermée dans une onde plane serait, au bout d'un temps quelconque, parallèle aux droites suivant lesquelles les vitesses initiales se projetaient sur le plan mené par les deux axes égaux de l'ellipsoide, ou même, si l'ellipsoide se changeait en une sphère, aux directions de ces vitesses initiales.

Concevons maintenant qu'au premier instant plusieurs ondes planes, peu inclinées les unes sur les autres, et sur un certain plan OO'O", se rencontrent et se superposent en un certain point O. Le temps venant à croître, chacune de ces ondes se propagera dans l'espace, en donnant naissance, de chaque côté du plan qui divisait primitivement l'épaisseur de l'onde en parties égales, à trois ondes semblables renfermées entre des plans parallèles, mais douées de vitesses de propagation différentes. Par conséquent, le système d'ondes planes que l'on considérait au premier instant se subdivisera en trois autres systèmes, et le point de rencontre des ondes qui feront partie d'un même système se déplacera suivant une certaine droite, avec une vitesse de propagation distincte de celle des ondes planes. Soient x, y, z les coordonnées de ce point de rencontre, et faisons, pour abréger,

(10)
$$\begin{cases} \mathbf{F}(a,b,c,s) = (\xi - s^2) \left(\Im \xi - s^2 \right) \left(\Im \xi - s^2 \right) - \Re^2 \left(\xi - s^2 \right) \\ - 2^2 \left(\Im \xi - s^2 \right) - \Re^2 \left(\Im \xi - s^2 \right) + 2 \Re 2 \Re. \end{cases}$$

Pour calculer, au bout du temps t, les valeurs de α , γ , z, on devra, dans l'équation (6) ou (9), considérer s comme une fonction de a, b, c, déterminée par la formule (15) du § I, ou, ce qui revient au même, par la suivante

$$\mathbf{F}(a,b,c,s) = \mathbf{0},$$

et joindre à l'équation (6) ou (9) celles qu'on en déduit en attribuant

aux trois paramètres a, b, c, ou seulement à l'un d'entre eux, des accroissements infiniment petits (1). Done, les coordonnées x, y, z du point de rencontre des ondes planes qui feront partie d'un même système seront déterminées par l'équation (6) jointe aux formules

(13)
$$x = t \frac{\partial s}{\partial a}, \quad y = t \frac{\partial s}{\partial b}, \quad z = t \frac{\partial s}{\partial c},$$

ou par l'équation (9) jointe aux formules

(13)
$$x = -t \frac{\partial s}{\partial u}, \quad y = -t \frac{\partial s}{\partial b}, \quad z = -t \frac{\partial s}{\partial c},$$

(1) Dans les formules (6) ou (9) et (11), les trois paramètres a, b, c, étant les cosinus des angles compris entre une certaine droite et les demi-axes des coordonnées positives, sont liés entre eux par l'équation $a^2 + b^2 + c^2 = 1.$

Mais on doit observer que le plan représenté par l'équation (6) ou (9) ne se déplacera point si les valeurs a, b, c, s variont dans un même rapport, et qu'alors ces valeurs continueront de satisfaire à la formule (11), en cessant de vérifier la condition

$$a^2+b^2+c^2=1.$$

Il en résulte qu'en prenant pour s une fonction de a, b, c déterminée par la formule (n) on peut, dans l'équation (6) ou (9), supposer les trois paramètres a, b, c indépendants l'un de l'autre. Dans cette hypothèse en établit facilement les formules (12) ou (13), et, comme $\frac{\partial s}{\partial a}$, $\frac{\partial s}{\partial b}$, $\frac{\partial s}{\partial c}$ sont des fonctions homogènes de a, b, c d'un degré nul, il est clair que ces formules déterminent les rapports $\frac{s}{t}$, $\frac{s}{t}$, $\frac{s}{t}$ on fonctions des rapports $\frac{b}{a}$, $\frac{c}{a}$, quelle que soit la valeur du trinôme $a^2 + b^2 + c^2$, par conséquent dans le cas où ce trinôme même se réduit à l'unité.

aura identiquement

(11)
$$a\frac{\partial s}{\partial a} + b\frac{\partial s}{\partial b} + c\frac{\partial s}{\partial c} = s.$$

D'ailleurs, en ayant égard à l'équation (14), et combinant entre elles, par voie d'addition, les formules (12) et (13) respectivement multipliées par a, b, c, on reproduit évidemment l'équation (6) ou (9).

Il est important d'observer que, s'étant une fonction homogène du premier degré en a, b, c, les dérivées $\frac{\partial s}{\partial a}$, $\frac{\partial s}{\partial b}$, $\frac{\partial s}{\partial c}$ seront des fonctions homogènes d'un degré nul, ou, en d'autres termes, que ces dérivées dépendront uniquement des rapports $\frac{b}{a}$, $\frac{c}{a}$. Cela posé, concevous que, entre les formules (12) ou (13), on élimine les rapports dont il s'agit. L'équation produite par cette élimination sera de la forme

(15)
$$\Pi\left(\frac{x}{t},\frac{y'}{t},\frac{z}{t}\right) = 0,$$

et représentera une certaine surface courbe, qui sera touchée, au bout du temps t, par les plans tracés de manière à diviser en parties égales les épaisseurs très petites des ondes ci-dessus mentionnées. Cette surface courbe sera donc l'enveloppe de l'espace traversé par les plans dont il s'agit. Nous la nommerons, pour abréger, surface des ondes.

Si, au bout du temps t, l'on désigne par a', b', c' les cosinus des angles que forme le rayon vecteur mené de l'origine à la surface des ondes, avec les demi-axes des coordonnées positives, et par \mathbf{r}' ce même rayon vecteur, les valeurs de x, y, z correspondantes à l'extrémité du rayon \mathbf{r}' seront déterminées par les formules

(16)
$$x = a'v', y = b'v', z = c'v'.$$

Par suite, l'équation (15) donnera

(17)
$$\Pi\left(a'\frac{\mathfrak{r}'}{t},\ b'\frac{\mathfrak{r}'}{t},\ c'\frac{\mathfrak{r}'}{t}\right)=0;$$

et l'on en déduira, pour r', une valeur générale de la forme

(18)
$$i' = t \, \varpi(a', b', c').$$

Donc, le temps venant à croître, le rayon vecteur r' croîtra proportionnellement au temps ou, en d'autres termes, la vitesse avec laquelle l'extrémité du rayon v' se déplacera dans l'espace sera une vitesse constante pour une direction donnée de ce rayon, et la surface des ondes acquerra des dimensions de plus en plus grandes, sans cesser d'être semblable à elle-même.

Il existe des relations dignes de remarque entre la surface des ondes et celle dont les coordonnées x, y, z vérifient l'équation

(19)
$$F(x, y, z, t) = 0.$$

En effet, désignons par $\mathfrak x$ le rayon vecteur mené de l'origine à cette dernière surface de manière à former, avec les demi-axes des coordonnées positives, les angles λ , μ , ν , dont les cosinus sont a, b, c. Les coordonnées $\mathfrak x$, $\mathfrak y$, $\mathfrak z$ de l'extrémité du rayon $\mathfrak x$ étant liées à ce rayon par les formules

$$(20) \qquad \qquad \chi = av, \qquad \chi = bv, \qquad \chi = cv,$$

Péquation (19) donnera

(21)
$$F(ar, br, cr, t) = 0,$$

ou, ce qui revient au même, attendu que F(x, y, z, t) est une fonction homogène de x, y, z, t.

(23)
$$F\left(a,b,c,\frac{t}{r}\right) = 0.$$

Or, les diverses valeurs de $\frac{t}{\tau}$ déduites de l'équation (22) coincideront évidemment avec les diverses valeurs de s déduites de la formule (11). D'autre part, si, dans l'équation (6) ou (9), qui représente le plan tangent à la surface des ondes, on pose

$$(23) s = \frac{t}{2},$$

on trouvera

$$(24) u.v + by + cz = \pm \frac{t^2}{v}.$$

Enfin, il est clair que la formule (22) représentera un plan mené perpendiculairement au rayon vecteur \mathbf{r} par un point situé sur ce rayon vecteur à la distance $\frac{\ell^2}{\tau}$ de l'origine des coordonnées. On peut donc énoncer la proposition suivante :

Theorem 11. — Construisez la surface représentée par l'équation (19), et. après avoir mené de l'origine à cette surface un rayon vecteur x, portez sur ce rayon vecteur, à partir de l'origine, une longueur égale au rapport qui existe entre le carré du temps et ce même rayon. Menez enfin, pur l'extrémité de cette longueur, un plan perpendiculaire à su direction. Ce plan seru le plan tangent à la surface des ondes. Par conséquent, cette dernière surface sera l'enveloppe de l'espace que traverseront les divers plans qu'on peut construire en opérant comme on vient de le dire.

Nous observerons encore que, en vertu des formules (16) et (20), l'équation (24) peut être réduite à

(25)
$$\mathfrak{n}'(aa' + bb' + cc') = \pm t^2$$

ou bien à

(26)
$$xx + yy + 5z = \pm t^2$$
.

D'ailleurs, si l'on nomme τ l'angle compris entre les rayons vecteurs menés de l'origine à deux points correspondants (x, y, z), (x, y, z) des deux surfaces représentées par les équations (15) et (19), on aura

$$(27) \qquad \cos \gamma = aa' + bb' + cc'.$$

Done, l'équation (25) donnera

$$(28) u'\cos_1 = \pm \ell^2.$$

Or il résulte évidemment de la formule (28) qu'en multipliant les rayons vecteurs r et r' par le cosinus de l'angle aigu compris entre eux, ou, ce qui revient au même, le premier de ces rayons vecteurs par la projection du second sur le premier, on obtiendra toujours un produit égal au carré du temps.

La fonction F(a, b, c, s), déterminée par l'équation (10), est du sixième degré par rapport à s, et du troisième degré par rapport à s^2 . Donc, la formule (11) fournira généralement trois valeurs de s^2 , auxquelles répondront trois nappes différentes de la surface des ondes. Soit

(29)
$$s^2 = \hat{\pi}(a, b, c)$$

l'une de ces valeurs. L'équation (19) donnera, pour t^2 , une valeur correspondante, savoir

$$(3o) t^2 = \tilde{\mathcal{T}}(x, y, z),$$

et $\mathcal{F}(\mathbf{x}, \mathbf{y}, \mathbf{z})$ sera une fonction homogène du second degré. De plus, celle des trois nappes de la surface des ondes à laquelle se rapportera la valeur $\mathcal{F}(u, b, c)$ de s^2 sera l'enveloppe de l'espace que traverse le plan mobile dont les coordonnées x, y, z satisfont à l'équation (26) quand on considère x, y, z comme des paramètres variables assujettis à vérifier la condition (30). Gela posé, faisons, pour abréger,

(31)
$$\begin{cases}
\Phi(x, y, z) = \frac{1}{2} \frac{\partial \vec{x}(x, y, z)}{\partial x}, \\
X(x, y, z) = \frac{1}{2} \frac{\partial \vec{x}(x, y, z)}{\partial y}, \\
\Psi(x, y, z) = \frac{1}{2} \frac{\partial \vec{x}(x, y, z)}{\partial z}.
\end{cases}$$

Puisque, en différentiant, par rapport aux paramètres x, y, z, les formules (26), (30), on obtiendra les suivantes

$$(3a) x dx + y dy + z dz = 0,$$

(33)
$$\Phi(x, y, z) dx + X(x, y, z) dy + \Psi(x, y, z) dz = 0,$$

et que, en égalant à zéro, dans l'équation (33), les coefficients des différentielles dx, dy, après avoir éliminé dz à l'aide de la formule (32), on trouvera

(34)
$$\frac{\Phi(x,y,z)}{z} = \frac{X(x,y,z)}{y} = \frac{\Psi(x,y,z)}{z};$$

il est clair que l'équation de la nappe ci-dessus mentionnée sera fournie par l'élimination des paramètres x, y, z entre les formules (26), (30) et (34). Comme on aura d'ailleurs, en vertu du théorème des fonctions homogènes,

(35)
$$\nabla \Phi(x, y, z) + y X(x, y, z) + z \Psi(x, y, z) = \mathcal{I}(x, y, z),$$

on tirera de l'équation (34), jointe aux formules (26) et (30),

(36)
$$\frac{\Phi(x,y,z)}{x} = \frac{X(x,y,z)}{y} = \frac{\Psi(x,y,z)}{z} = \frac{\mathcal{F}(x,y,z)}{x^2 + y + z^2} = \pm t,$$

et, par conséquent,

$$(3z) \qquad \Phi(x,y,z) := x, \qquad X(x,y,z) = y, \qquad \Psi(x,y,z) = z,$$

00

(38)
$$\Phi(x, y, z) = -\alpha$$
, $X(x, y, z) = -y$, $\Psi(x, y, z) = -z$.

Done, pour obtenir l'équation de la nappe dont il s'agit, il suffira de substituer, dans la formule (30), les valeurs de x, y, z exprimées en fonctions de x, y, z, à l'aide des formules (37) ou (38). Observons, au reste, que les fonctions homogènes $\mathcal{F}(x, y, z)$, $\mathcal{F}(x, y, z, t)$ étant de degré pair, et les fonctions dérivées $2\Phi(x, y, z)$, 2X(x, y, z), $2\Psi(x, y, z)$ de degré impair, les valeurs de x, y, z changeront de signe avec x, y, z, de sorte qu'on arrivera au même résultat en partant des équations (37) ou des équations (38), et qu'on pourra réduire la formule (36) à la suivante :

(3g)
$$\frac{\Phi(x,y,z)}{z} = \frac{X(x,y,z)}{z} = \frac{\Psi(x,y,z)}{z} = 1.$$

Pour montrer une application des principes que nous venons d'établir, supposons que, en résolvant la formule (11), on obtienne pour s^2 une valeur de la forme

(40)
$$s^2 = aa^2 + bb^2 + cc^2 + 2bbc + 2cca + 2fab,$$

L'équation (30) deviendra

(11)
$$t^2 : ax^2 + by^2 + iz^2 + 2byz + 2czx + 2txy$$

et, par suite, les formules (37) donneront

$$(4^{\circ}) \quad \text{ax} + (y + cz - z), \quad (x + by + bz = y), \quad cx + by + cz = z.$$

Or, en substituant, dans l'équation (41), ou plutôt dans la suivante

$$(43) t^2 \quad x \searrow + yy + zz,$$

les valeurs de x, y, z tirées des formules (42), savoir

$$y = \frac{(bc - b^2)x + (bc - cf)y + (bc - bc)z}{abc - ab^2 - bc^2 - cf^2 + 2bct},$$

$$y = \frac{(bc - cf)x + (ca - c^2)y + (cf - ab)z}{abc - ab^2 - bc^2 - cf^2 + 2bct},$$

on trouvera

$$(14) \quad \frac{(\mathfrak{be} - \mathfrak{d}^2) \cdot v^2 + (\mathfrak{ca} - \mathfrak{e}^q) \cdot v^2 + (\mathfrak{ab} - \mathfrak{t}^2) \cdot \mathfrak{z}^2 + 2(\mathfrak{cf} - \mathfrak{ad}) \cdot yz + 2(\mathfrak{b} - \mathfrak{be}) \cdot zx + 2(\mathfrak{de} - \mathfrak{ct}) \cdot xy}{\mathfrak{abc} - \mathfrak{ad}^q - \mathfrak{be}^2 - \mathfrak{ct}^2 + 2\mathfrak{def}} = t^2.$$

Telle est l'équation qui représentera une nappe de la surface des ondes, si la valeur de s^a, correspondante à cette nappe, est donnée par la formule (40). Si l'équation (41) appartient à un ellipsoide, la nappe représentée par l'équation (44) sera un second ellipsoide, et les rayons vecteurs menés de l'origine à deux points correspondants de ces ellipsoïdes seront tellement liés entre eux que le produit de ces rayons vecteurs par l'angle aigu qu'ils comprennent sera égal au carré du temps.

Si, dans la formule (40), on substitue la valeur de s tirée de l'équation (6) ou (9), on trouvera

$$(45) \qquad (aa^2 + bb^2 + cc^2 + abbc + acca + a(ab)t^2 = (ax + by + cz)^2.$$

Or, au lieu d'éliminer x, y, z entre les formules (4τ) , (42), on pourrait éliminer a, b, c entre l'équation (45) et ses dérivées prises successivement par rapport à chacune des trois quantités a, b, c. En opérant amsi, on obtiendrait l'équation

$$\left(\frac{d}{dt} - \frac{d^2}{\ell^2} \right) \left(b - \frac{y^2}{\ell^2} \right) \left(c - \frac{z^2}{\ell^2} \right)$$

$$\left(a - \frac{d^2}{\ell^2} \right) \left(b - \frac{y^2}{\ell^2} \right)^2 - \left(b - \frac{y^2}{\ell^2} \right) \left(c - \frac{z^2}{\ell^2} \right)^2 - \left(c - \frac{z^2}{\ell^2} \right) \left(c - \frac{z^2}{\ell^2} \right)$$

$$+ 2 \left(b - \frac{y^2}{\ell^2} \right) \left(c - \frac{z^2}{\ell^2} \right) \left(c - \frac{z^2}{\ell^2} \right) \left(c - \frac{z^2}{\ell^2} \right)$$

$$+ 2 \left(b - \frac{y^2}{\ell^2} \right) \left(c - \frac{z^2}{\ell^2} \right) \left(c - \frac{z^2}{\ell^2} \right)$$

$$+ 2 \left(b - \frac{z^2}{\ell^2} \right) \left(c - \frac{z^2}{\ell^2} \right) \left(c - \frac{z^2}{\ell^2} \right)$$

$$+ 2 \left(b - \frac{z^2}{\ell^2} \right) \left(c - \frac{z^2}{\ell^2} \right) \left(c - \frac{z^2}{\ell^2} \right) \left(c - \frac{z^2}{\ell^2} \right)$$

$$+ 2 \left(b - \frac{z^2}{\ell^2} \right) \left(c - \frac{z^2}{\ell^2} \right)$$

$$+ 2 \left(b - \frac{z^2}{\ell^2} \right) \left(c - \frac{z^2}{\ell^2}$$

qui coincide effectivement avec la formule (44).

Si la valeur de s², déterminée par la formule (40), se réduisait à

$$s^2 = a\alpha^2 + b\beta^2 + cc^2,$$

l'équation (44), qui représente, au bout du temps 7, la surface de l'onde, deviendrait

$$\frac{x^2}{a} + \frac{y^2}{b} + \frac{z^2}{4} = l^2.$$

Supposons maintenant que $\hat{\mathcal{F}}(a,b,c)$ désigne seulement une valeur approchée de s^2 , et que l'on trouve, en poussant plus loin l'approximation, ou même en ne négligeant rien,

$$(49) \qquad \qquad \mathbf{v}^2 = \hat{\mathbf{x}}(a, b, c) + \mathbf{f}(a, b, c).$$

Pour obtenir la nappe de la surface des ondes à laquelle correspondra la valeur précédente de s^2 , il faudra substituer, non plus dans la formule (30), les valeurs de x, y, z fournies par les équations (37), mais dans la formule

(50)
$$\ell^1 = \vec{\mathcal{F}}(\sqrt{y'}, y', z') + f(x', y', z'),$$

les valeurs de \mathbf{x}' , \mathbf{y}' , \mathbf{z}' fournies par les équations

(51)
$$\begin{cases} \Phi(x', y', z') + \varphi(x', y', z') = x, \\ X(x', y', z') + \chi(x', y', z') = y, \\ \Psi(x', y', z') + \psi(x', y', z') = z, \end{cases}$$

en faisant, pour abréger,

(52)
$$\begin{cases} \varphi(x, y, z) = \frac{1}{2} \frac{\partial f(x, y, z)}{\partial x}, \\ \chi(x, y, z) = \frac{1}{2} \frac{\partial f(x, y, z)}{\partial y}, \\ \psi(x, y, z) = \frac{1}{2} \frac{\partial f(x, y, z)}{\partial z}. \end{cases}$$

Supposons maintenant que, les quantités f(x, y, z) et x' - x, y' - y, z' - z étant considérées comme infiniment petites du premier ordre, on néglige les infiniment petits du second ordre. En ayant égard au théorème des fonctions homogènes, on tirera des équations (51), respectivement multipliées par x', y', z',

(53)
$$xx' + yy' + zz' = \tilde{x}(x', y', z') + f(x', y', z'),$$

ou, à très peu près,

(54)
$$xx' + yy' + zz' = \hat{f}(x', y', z') + f(x, y, z).$$

Comme on aura d'ailleurs, en vertu des formules (35) et (37),

$$(55) x + yy + zz = f(x, y, z),$$

on trouvera encore

$$x(x'-x) + y(y'-y) + z(z'-z)$$

$$= \hat{x}(x', y', z') - \hat{x}(x, y, z) + f(x, y, z)$$

$$= 2[(x'-x) \Phi(x, y, z) + (y'-y) X(x, y, z) + (z'-z) \Psi(x, y, z)] + f(x, y, z)$$

$$= 2[x(x'-x) + y(y'-y) + z(z'-z)] + f(x, y, z),$$

ou, ce qui revient au même,

(56)
$$x(x'-x) + y(y'-y) + z(z'-z) = -f(x, y, z),$$

et, par conséquent,

(57)
$$xx' + yy' + zz' = xx + yy + zz - f(x, y, z) = \hat{f}(x, y, z) - f(x, y, z).$$

Cela posé, les formules (50) et (53) donneront

(58)
$$\ell^{2} = \mathcal{J}(x, y, z) - \ell(x, y, z).$$

Telle est l'équation qui représentera, sans erreur sensible, une nappe de la surface des ondes, cette nappe étant relative à la valeur de s² que détermine la formule (49).

Au reste, les méthodes que nous venons d'indiquer comme propres à fournir les diverses nappes de la surface (15) seraient évidemment applicables dans le cas même où l'on désignerait par $\mathcal{F}(a,b,c,s)$, non plus une fonction homogène du sixième degré, déterminée par l'équation (10), mais une fonction homogène de degré quelconque.

Revenons maintenant à la formule (10). Cette formule se trouvera réduite à l'équation (48) du § I, si l'élasticité du système de molécules que l'on considère reste la même en tous sens autour d'un point quelconque. Par suite, les trois valeurs de s, représentées par s', s'', se réduiront à celles que déterminent les formules (49) du § I, savoir

(59)
$$s'^2 = s''^2 - R + I = (R + I) (a^2 + b^2 + c^2),$$

(60)
$$s'''^2 = 3R + I = (3R + I)(a^2 + b^2 + c^2),$$

Donc alors, quelle que soit la direction du plan OO'O" qui, au premier moment, divise en deux parties égales l'épaisseur d'une onde plane, la propagation du mouvement de chaque côté du plan OO'O" donnera seulement naissance à deux ondes planes dont les vitesses de propagation seront

(61)
$$(R+1)^{\frac{1}{2}}, (3R+1)^{\frac{1}{2}},$$

et la surface des ondes se réduira au système de deux surfaces sphériques qui seront, au bout du temps 1, représentées par les équations

(62)
$$\frac{x^2 + y^2 + z^2}{R + 1} = t^2,$$

(63)
$$\frac{x^2 + y^2 + z^2}{3R + 1} = t^2.$$

Alors aussi les formules (13), (45) et (46) du § I donneront

(64)
$$\begin{cases} 2R(a + b + b + c = a) \frac{a}{\sqrt{3}} = 2R(a + b + b + c = a) \frac{b}{\sqrt{3}} \\ = 2R(a + b + b + c = a) \frac{c}{\sqrt{3}} = s^2 - R - 1. \end{cases}$$

D'ailleurs, si, dans la formule (64), on pose $s^2 = R + I$, on en conclura

et, par conséquent,

(65)
$$a + b + c = 0,$$

attendu que les quantités a, b, c, hées entre elles par la condition

$$a^2 + b^2 + c^2 = 1$$

ne peuvent s'évanouir simultanément. Si l'on pose, au contraire, $s^2 = 3R + 1$, on tirera de la formule (64)

$$\frac{a}{c \log a} = \frac{b}{\log a} = \frac{c}{\varpi} = \frac{1}{a \log a + b \log a + c \varpi},$$

ct, par suite,

(66)
$$\frac{db}{a} = \frac{db}{b} = \frac{e}{c} = \pm \frac{\sqrt{db^2 + db^2 + e^2}}{\sqrt{a^2 + b^2 + e^2}} = \pm 1.$$

De plus, comme deux racines égales de l'équation (11) correspondent à la première des ondes planes ci-dessus mentionnées, cette onde plane pourra être considérée comme produite par la superposition de deux autres ondes de même espèce. Cela posé, il résulte évidemment des formules (65), (66) que les déplacements et les vitesses absolues des molécules se mesureront, dans la première onde, suivant des droites parallèles au plan OO'O", et dans la deuxième onde, suivant des droites perpendiculaires au même plan.

Si la quantité l, c'est-à-dire la pression supportée par un plan quelconque dans l'état naturel s'évanouissait, les vitesses de propagation de la première et de la deuxième onde deviendraient respectivement

$$(67) \sqrt{R}, \sqrt{3R},$$

et la surface des ondes se réduirait au système des deux surfaces sphé-OEuvres de C. — S. II, t. IX. riques représentées par les équations

(68)
$$\frac{x^2 + y^2 + z^2}{R} = t^2,$$

(69)
$$\frac{x^2 + y^2 + z^2}{3R} = t^2.$$

En général, lorsque de la formule (10), combinée avec les formules (33) et (8) ou (38) et (36) du § I, on a déduit les trois valeurs de s^2 relatives au cas où les coefficients

des formules (7) ou (35) (§ I) s'évanouissent, il suffit évidemment d'ajouter à ces valeurs le polynôme

(71)
$$\mathfrak{A}a^2 + \mathfrak{O}b^2 + \mathfrak{C}c^2 + 2\mathfrak{D}bc + 2\mathfrak{C}cu + 2\mathfrak{F}ab$$

ou

(72)
$$Ga^2 + Hb^2 + Lc^2,$$

pour trouver ce qu'elles deviennent dans le cas contraire. On sait d'ailleurs que les coefficients (70) représentent les projections algébriques des pressions supportées dans l'état naturel par des plans perpendiculaires aux axes coordonnés.

Supposons maintenant que l'élasticité du système reste la même en tous sens autour d'un axe quelconque parallèle à l'axe des z. Alors, en admettant que les pressions s'évanouissent dans l'état naturel, on tirera de la formule (10), jointe aux équations (41), (42) du § I,

(73)
$$\begin{cases} F(a,b,c,s) = (3 R a^2 + R b^2 + Q c^2 - s^2) (R a^2 + 3 R b^2 + Q c^2 - s^2) (Q a^2 + Q b^2 - R b^2 + Q c^2 - s^2) \\ -4 Q^2 b^2 c^2 (3 R a^2 + R b^2 + Q c^2 - s^2) - 4 Q^2 c^2 a^2 (R a^2 + 3 R b^2 + Q c^2 - s^2) \\ -4 R^2 a^2 b^2 (Q a^2 + Q b^2 + R c^2 - s^2) - 16 Q^2 R a^2 b^2 c^2. \end{cases}$$

D'autre part, on aura identiquement .

$$(3Ra^{2} + Rb^{2} + Qc^{2} - s^{2})(Ra^{2} + 3Rb^{2} + Qc^{2} - s^{2}) - 4R^{2}a^{2}b^{2}$$

$$= (Ra^{2} + Rb^{2} + Qc^{2} - s^{2})(3Ra^{2} + 3Rb^{2} + Qc^{2} - s^{2}),$$

et

$$b^{2} (3 R a^{2} + R b^{2} + Q c^{2} - s^{2}) + a^{2} (R a^{2} + 3 R b^{2} + Q c^{2} - s^{2}) - 4 R a^{2} b^{2}$$

$$= (R a^{2} + R b^{2} + Q c^{2} - s^{2}) (a^{2} + b^{2}).$$

Donc, la formule (73) pouvant être réduite à

$$(7.4) \begin{cases} F(a, b, c, s) \\ = (Ra^2 + Rb^2 + Qc^2 - s^2)[(3Ra^2 + 3Rb^2 + Qc^2 - s^2)(Qa^2 + Qb^2 + Nc^2 - s^2) - 4Q^2c^2(a^2 + b^2)], \end{cases}$$

l'équation (11) se décomposera en deux autres, savoir,

(75)
$$Ra^2 + Rb^2 + Qc^2 - s^2 = 0$$

et

$$(76) \quad (3Ra^2 + 3Rb^2 + Qc^2 - s^2)(Qa^2 + Qb^2 + Nc^2 - s^2) - 4Q^2c^2(a^2 + b^2) = 0.$$

Ajoutons que l'équation (76), pouvant être présentée sous la forme

(77)
$$\begin{cases} (Qa^{2} + Qb^{2} + Qc^{2} - s^{2})(3Ra^{2} + 3Rb^{2} + Nc^{2} - s^{2}) \\ + [(N - Q)(3R - Q) - 4Q^{2}]c^{2}(a^{2} + b^{2}) = 0, \end{cases}$$

sera elle-même décomposable en deux autres, savoir,

(78)
$$Q(a^2 + b^2 + c^2) - s^2 = 0$$

et

(79)
$$3R(a^2+b^2)+Nc^2-s^2=0,$$

si les coefficients N, Q, R vérifient la condition

(80)
$$(N-Q)(3R-Q) = 4Q^2.$$

Alors on pourra prendre

$$(81) s'^2 = O(a^2 + b^2 + c^2) = O,$$

(82)
$$s''^2 = R(a^2 + b^2) + Qc^2,$$

(83)
$$s''^2 = 3R(a^2 + b^2) + Nc^2,$$

et, par suite, les trois nappes de la surface des ondes se réduiront aux

surfaces de la sphère représentée par l'équation

(84)
$$\frac{x^2 + y^2 + z^2}{Q} = t^2,$$

et des deux ellipsoïdes représentés par les deux équations

(85)
$$\frac{x^2 + y^2}{R} + \frac{z^2}{Q} = t^2,$$

(86)
$$\frac{x^2 + y^2}{3R} + \frac{z^2}{N} = t^2.$$

Alors aussi, en posant successivement s=s', s=s'', s=s'', on tirera des formules (14) du § I^{e1}

(87)
$$\frac{\partial u'}{\partial a} = \frac{\partial u'}{\partial b} = -\frac{2Q}{3R - Q} \frac{c \mathcal{Z}'}{\partial a^2 + \partial a^2},$$

(88)
$$a \mathbb{J}'' + b \mathbb{J}'' = 0, \qquad \mathfrak{S}'' = 0,$$

(89)
$$\frac{A''}{a} = \frac{10b''}{b} = \frac{2Q}{N-Q} \frac{\mathcal{E}'''}{c},$$

puis on conclura des équations (87), (88), (89), combinées avec les formules (20), (22), (24) du § I^{ee}, que, dans les trois ondes planes, parallèles à un même plan OO'O", et dont les vitesses de propagation seront s', s", s", les déplacements absolus des molécules se mesureront parallèlement aux trois droites représentées par les formules

(90)
$$\frac{x}{a} = \frac{y}{b} = -\frac{2Q}{3R - Q} \frac{cz}{a^2 + b^2} = -\frac{N - Q}{2Q} \frac{cz}{a^2 + b^2},$$

$$(91) ax + by = 0, z = 0,$$

(92)
$$\frac{x}{a} = \frac{y}{b} = \frac{2Q}{N-Q} \frac{z}{c} = \frac{3R-Q}{2Q} \frac{z}{c}.$$

Or il résulte des équations (91) que, dans les ondes planes dont la vitesse de propagation sera s", les droites suivant lesquelles se mesureront les déplacements des molécules resteront toujours parallèles au plan 00'0" et perpendiculaires à l'axe des z. Au contraire, il suit des formules (90) et (92) que, dans les ondes planes dont les vitesses de propagation seront s" et s", les droites suivant lesquelles se mesureront les déplacements des molécules resteront toujours comprises dans des plans parallèles à l'axe des z et perpendiculaires au plan OO'O''.

Si, la condition (80) étant vérifiée, ainsi que les conditions (39) du § I^{er}, on ne supposait pas les pressions nulles dans l'état naturel, il faudrait aux formules (81), (82), (83) substituer les suivantes

(93)
$$s'^{2} = (R + H)(a^{2} + b^{2}) + (Q + I)c^{2},$$

(94)
$$s''^2 = (R + H)(a^2 + b^2) + (Q + I)c^2,$$

(95)
$$s'''^2 = (3R + H)(a^2 + b^2) + (N + I)c^2;$$

et par conséquent les trois nappes de la surface des ondes coïncideraient avec les surfaces des trois ellipsoïdes représentés par les équations

(96)
$$\frac{x^2 + y^2}{Q + H} + \frac{z^2}{Q + 1} = t^2,$$

(97)
$$\frac{x^2 + y^2}{R + H} + \frac{z^2}{Q + 1} = t^2,$$

(98)
$$\frac{x^2 + y^2}{3R + II} + \frac{\sigma^2}{N + I} = \ell^3.$$

Quant aux déplacements absolus des molécules dans les ondes planes dont les vitesses de propagation scraient s', s'', s''', ils se mesureraient toujours suivant des droites parallèles à celles que représentent les formules (90), (91), (92).

Il est important d'observer que la condition (80) se trouve remplie, en même temps que les conditions (43) du § I^{er}, dans le cas où l'élasticité du système que l'on considère est la même en tous sens autour d'un point quelconque. Alors aussi on a

(99)
$$3R - Q = N - Q = aQ$$

et la formule (92), réduite à

$$\frac{x}{a} = \frac{y}{b} = \frac{z}{c},$$

montre que, dans la troisième onde, les déplacements absolus des molé-

cules se mesurent suivant des droites perpendiculaires au plan OO'O". Ajoutons que, si la condition (99) n'est pas rigoureusement mais sensiblement vérifiée, il en sera de même de la formule (100), et que par suite les déplacements absolus des molécules dans la troisième onde se mesureront suivant des droites sensiblement, mais non exactement perpendiculaires au plan OO'O".

On pourrait demander si le cas où l'on suppose la condition (80) vérifiée est le seul dans lequel les deux valeurs de s^2 , fournies par l'équation (76), se réduisent à des fonctions rationnelles de a, b, c. Pour répondre à cette question, il suffira d'observer qu'on tire généralement de l'équation (76)

(101)
$$\int v^2 = \frac{(3R + Q)(a^2 + b^2) + (N + Q)c^2}{2}$$

$$\pm \frac{1}{2} \sqrt{(3R - Q)^2(a^2 + b^2)^2 + 2[8Q^2 - (3R - Q)(N - Q)](a^2 + b^2)c^2 + (N - Q)^2}e^{\frac{\pi}{4}}.$$

Or la valeur précédente de s^2 deviendra une fonction rationnelle de a, b, c, si la quantité comprise sous le radical est un carré parfait, ou, ce qui revient au même, si l'on a

(109)
$$8Q^2 - (3R - Q)(N - Q) = \pm (3R - Q)(N - Q);$$

et suivant qu'on réduira le double signe ± au signe + ou au signe -, la formule (102) reproduira la condition (80) ou la suivante

$$0 = 0.$$

Donc, si le coefficient Q n'est pas nul, l'équation (76) ne pourra fournir une valeur rationnelle de s^2 , à moins que les trois quantités Q, R, N ne satisfassent à la condition (80). Remarquons d'ailleurs que, si, les pressions étant nulles dans l'état naturel du système que l'on considére, le coefficient Q s'évanouissait, les valeurs de s^2 déterminées par les formules (75), (76) deviendraient

$$(104) s^2 = Nc^2,$$

$$(105) s^2 = \mathbf{R}(a^2 + b^2),$$

(106)
$$s^2 = 3 R (a^2 + b^2).$$

Alors aussi les trois nappes de la surface des ondes disparaîtraient et se trouveraient remplacées par des points et des cercles. En effet, on tirerait des formules (37) ou (38) et (30) : τ° en supposant $\vec{x}(x,y,z) = Nz^2$,

(107)
$$x = 0, \quad y = 0, \quad \frac{z^2}{N} = t^2;$$

 2° en supposant $\hat{f}(x, y, z) = R(x^2 + y^2)$,

(108)
$$\frac{x^2 + y^2}{R} = t^2, \quad z = 0;$$

 3° on supposant $f(x, y, z) = 3R(x^2 + y^2)$,

$$\frac{x^2 + y^2}{3R} = t^2, \qquad z = 0.$$

Done, au bout du temps t, les ondes planes douées de la vitesse de propagation $\pm N^{\frac{1}{2}}c$ passeraient toutes par l'un des deux points situés sur l'axe des z à la distance $N^{\frac{1}{2}}t$ de l'origine des coordonnées, tandis que les plans tracés de manière à diviser en parties égales les épaisseurs des ondes douées de la vitesse de propagation $R^{\frac{1}{2}}(a^2+b^2)^{\frac{1}{2}}$ ou $3^{\frac{1}{2}}R^{\frac{1}{2}}(a^2+b^2)^{\frac{1}{2}}$ toucheraient les circonférences de cercles représentées par les équations (108) ou (109). Enfin l'on tirerait des formules (14), (41) et (42) du § I^{er} : 1° en supposant $s^2=Nc^2$,

(110)
$$A = 0$$
, $A = 0$, $C = \pm t$;

 2° en supposant $s^2 = \mathbb{R}(a^2 + b^2)$,

(111)
$$ab + bb = 0, \quad \mathfrak{S} = 0;$$

 3° en supposant $s^2 = 3R(a^2 + b^2)$,

(112)
$$\frac{\partial}{\partial a} = \frac{\partial}{\partial b}, \qquad \mathfrak{D} = 0.$$

Par suite, dans les ondes planes dont les vitesses de propagation seraient données par les formules (104), (105) et (106), les dépla-

cements absolus des molécules se mesureraient parallèlement aux droites représentées par les équations

$$(113) x=0, y=0,$$

$$(114) ax + by = 0, z = 0,$$

$$\frac{x}{a} = \frac{y}{b}, \qquad z = 0.$$

Or ces trois droites se confondent, la première avec l'axe des z, la seconde avec la perpendiculaire menée à cet axe dans le plan OO'O" que représente l'équation (2), et la troisième avec une perpendiculaire au plan des deux premières.

Si, les pressions n'étant pas nulles dans l'état naturel, le coefficient Q s'évanouissait, il faudrait aux formules (104), (105), (106) substituer les suivantes

(116)
$$s^2 = II(a^2 + b^2) + (N + I)c^2,$$

(117)
$$\delta^2 = (R + H)(a^2 + b^2) + Ic^2,$$

(118)
$$s^2 = (3R + H)(a^2 + b^2) + Ic^2;$$

et, par conséquent, les trois nappes de la surface des ondes coïncideraient avec les surfaces des trois ellipsoïdes représentés par les équations

(119)
$$\frac{x^2 + y^2}{H} + \frac{z^2}{N+1} = t^2,$$

(120)
$$\frac{x^2 + y^2}{R + II} + \frac{z^2}{I} = t^2,$$

(121)
$$\frac{x^2 + y^2}{3R + 1} + \frac{z^2}{1} = t^2.$$

Quant aux déplacements absolus des molécules dans les ondes planes, ils se mesureraient toujours suivant des droites parallèles à celles que représentent les formules (113), (114) et (115).

Lorsque, l'élasticité du système restant la même en tous sens autour de l'axe des z, les valeurs de s² fournies par l'équation (76) sont des

fonctions irrationnelles de a, b, c, chacune de ces valeurs est de la forme

(133)
$$s^2 = \vec{\pi} \left[(a^2 + b^2)^{\frac{1}{4}}, c \right],$$

Or, en substituant l'équation (122) avec la suivante

(123)
$$t^2 = \vec{x} \left[(x^2 + y^2)^{\frac{1}{2}}, z \right]$$

aux formules (29), (30), et posant d'ailleurs

(124)
$$\Phi(x,z) = \frac{1}{2} \frac{\partial \mathcal{J}(x,z)}{\partial x}, \qquad \Psi(x,z) = \frac{1}{2} \frac{\partial \mathcal{J}(x,z)}{\partial z},$$

on reconnaîtra sans peine que, pour obtenir, dans l'hypothèse admise, l'équation propre à représenter une nappe de la surface des ondes, il suffit d'éliminer x, y, z, non plus entre les formules (30) et (37) ou (38), mais entre l'équation (123) et les formules

$$\begin{cases} x = -\frac{1}{\sqrt{x^2 + y^2}} \Phi \left[(x^2 + y^2)^{\frac{1}{2}}, z \right], \\ y = -\frac{y}{\sqrt{x^2 + y^2}} \Phi \left[(x^2 + y^2)^{\frac{1}{2}}, z \right], \\ z = -\frac{y}{\sqrt{x^2 + y^2}} \frac{1}{y^2}, z \right], \end{cases}$$

$$(135)$$

$$\begin{cases} x = -\frac{x}{\sqrt{x^2 + y^2}} \Phi \left[(x^2 + y^2)^{\frac{1}{2}}, z \right], \\ x = -\frac{x}{\sqrt{x^2 + y^2}} \Phi \left[(x^2 + y^2)^{\frac{1}{2}}, z \right], \end{cases}$$

(126)
$$\begin{cases} x = -\frac{x}{\sqrt{x^2 + y^4}} \Phi \left[(x^2 + y^2)^{\frac{1}{2}}, z \right], \\ y = -\frac{y}{\sqrt{x^2 + y^2}} \Phi \left[(x^2 + y^2)^{\frac{1}{2}}, z \right], \\ y = -\frac{y}{\sqrt{x^2 + y^2}} \Phi \left[(x^2 + y^2)^{\frac{1}{2}}, z \right]. \end{cases}$$

Or, dans cette élimination, on pourra évidemment aux équations (125) ou (126) substituer les formules

(197)
$$(x^2 + y^2)^{\frac{1}{2}} - \Phi[(x^2 + y^2)^{\frac{1}{2}}, z], \quad z = \Psi[(x^2 + y^2)^{\frac{1}{2}}, z],$$

ou

(128)
$$(x^2 + y^2)^{\frac{1}{2}} = \Phi \left[(x^2 + y^2)^{\frac{1}{2}}, z \right], \qquad z = -\Psi \left[(x^2 + y^2)^{\frac{1}{2}}, z \right];$$
Observe do G. -- S. II, t. IX.

et, comme on tirera de ces dernières, combinées avec la formule (+23), une équation de la forme

(129)
$$\mathbb{I}\left[\frac{(x^2 + \gamma^2)^{\frac{1}{2}}}{t}, \frac{z}{t}\right] = 0,$$

il est clair que, dans la surface des ondes, les deux nappes correspondantes aux valeurs de s^2 déterminées par la formule (76) seront des surfaces de révolution autour de l'axe des z. Cette conclusion, qu'il était aisé de prévoir, s'étend au cas même où, les pressions n'étant pas nulles dans l'état naturel, on devrait modifier les deux valeurs de s^2 endessus mentionnées, en ajoutant à chacune d'elles le trinôme

(130)
$$H(a^2 - b^2) + Ic^2.$$

Quant à la troisième nappe de la surface des ondes, elle coincidera toujours avec l'ellipsoide (85) ou (97), qui est pareillement de révolution autour de l'axe des z.

La section méridienne, faite par le plan des x, z dans la surface de révolution que représente la formule (129), a pour équation

(13t)
$$\operatorname{II}\left(\frac{t}{t}, \frac{z}{t}\right) = o,$$

Or on peut obtenir directement l'équation (131); et, pour y parvenir, il suffit évidemment d'éliminer les deux variables x, z entre les formules

$$t^2 = \mathcal{F}(X, Z)$$

ſΙ

(133)
$$x = \Phi(x, z), \quad z = \Psi(x, z),$$

ou

(134)
$$x = -\Phi(x, z), \qquad z = -\Psi(x, z).$$

L'équation (131) étant ainsi trouvée, on en déduira immédiatement la formule (129), en remplaçant x par $(x^2 + y^2)^{\frac{1}{2}}$.

Concevons à présent que le système proposé n'offre plus la même élasticité en tous sens autour de l'axe des z, mais seulement trois axes d'élasticité rectangulaires entre eux. Si l'on admet en outre que les pressions soient nulles dans l'état naturel, la fonction F(a,b,c,s) sera déterminée par la formule (10), jointe aux équations (36), (38) du § 1, c'est-à-dire, en d'autres termes, par la formule

$$\begin{array}{c} \left(\text{F}(a,b,c,s) - (\text{L}a^2 + \text{R}b^2 + \text{Q}c^3 + s^2) \left(\text{R}a^2 + \text{M}b^2 + \text{P}c^2 + s^2 \right) \left(\text{Q}a^2 + \text{P}b^2 + \text{N}c^2 + s^2 \right) \\ + \left(\text{P}^2b^2c^2 \left(\text{L}a^2 + \text{R}b^2 + \text{Q}c^2 + s^2 \right) + 4\text{Q}^2c^2a^2 \left(\text{R}a^2 + \text{M}b^2 + \text{P}c^2 + s^2 \right) \\ + \left(\text{R}^2a^2b^2 \left(\text{Q}a^2 + \text{P}b^2 + \text{N}c^2 + s^2 \right) + 16\text{PQR}a^2b^2c^2 \right) \end{aligned}$$

Cela posé, la formule (11) deviendra

$$(136) \begin{cases} (La^{2} + Rb^{a} + Qc^{a} - s^{2})(Ra^{2} + Mb^{2} + Pc^{2} + s^{2})(Qa^{2} + Pb^{2} + Nc^{2} + s^{2}) \\ (P^{a}b^{a}c^{a}(La^{2} + Rb^{2} + Qc^{2} + s^{2}) - 4Q^{2}c^{2}a^{2}(Ra^{2} + Mb^{2} + Pc^{2} + s^{2}) \\ - 4R^{2}a^{2}b^{2}(Qa^{2} + Pb^{2} + Nc^{2} + s^{2}) + 16PQRa^{2}b^{2}c^{2} = 0. \end{cases}$$

Si, dans cette dernière, on fait successivement a = 0, b = 0, c = 0, on obtiendra les trois suivantes

(137)
$$(\mathbf{R}b^2 + \mathbf{Q}c^2 + s^2)[(\mathbf{M}b^2 + \mathbf{P}c^2 + s^2)(\mathbf{N}c^2 + \mathbf{P}b^2 + s^2) + 4\mathbf{P}^2b^2c^2] = 0$$

$$(138) \quad (\mathbf{P}c^2 + \mathbf{R}a^2 - s^2) \left[(\mathbf{N}c^2 + \mathbf{Q}a^2 - s^2) \left(\mathbf{L}a^2 + \mathbf{Q}c^2 - s^2 \right) - 4\mathbf{Q}^2c^2a^2 \right] = 0,$$

(139)
$$(Qa^2 + Pb^2 + v^2)[(La^2 + Rb^2 + s^2)(Mb^2 + Ra^2 + s^2) - 4R^2a^2b^2] = 0$$

qui détermineront les vitesses de propagation des ondes renfermées entre des plans perpendiculaires à l'axe des x, ou à l'axe des y, ou à l'axe des z. Soient d'ailleurs

(29)
$$s^2 = \mathcal{F}(a,b,c)$$

l'une des valeurs de s^2 déduites de la formule (136), et $\Phi(a,b,c)$, X(a,b,c), $\Psi(a,b,c)$ les demi-dérivées de f(a,b,c) prises par rapport aux trois quantités a,b,c. On vérifiera les équations (137), (138), (139) en posant successivement

$$(140) s^2 = \mathfrak{T}(0, b, c),$$

$$(141) s^2 = \tilde{\mathcal{F}}(a, 0, c),$$

$$(1/3) s^2 = \mathcal{F}(a, b, o);$$

et les plans qui diviseront en parties égales les épaisseurs des ondes dont les vitesses de propagation seront déterminées par la formule (140) ou (141) ou (142), toucheront, au bout du temps t, la surface cylindrique dont l'équation sera produite par l'élimination de y et z, ou de z et x, ou de x et y entre les formules

(143)
$$t^2 = \tilde{\mathcal{F}}(0, y, z), \qquad \frac{X(0, y, z)}{y} = \frac{\Psi(0, y, z)}{z} = \pm 1,$$

ou

(144)
$$t^2 = \tilde{x}(x, 0, z), \qquad \frac{\Psi(x, 0, z)}{z} = \frac{\Phi(x, 0, z)}{z} = \pm 1,$$

011

(145)
$$\ell^2 = \tilde{\mathcal{F}}(x, y, \alpha), \qquad \frac{\Phi(x, y, \alpha)}{x} = \frac{X(x, y, \alpha)}{y'} = \pm 1.$$

D'ailleurs, la fonction homogène f(x, y, z) étant de degré pair, et les fonctions dérivées $2\Phi(x, y, z)$, 2X(x, y, z), $2\Psi(x, y, z)$ de degré impair, les valeurs de x, y, z tirées des formules (143), (144), (145) changeront de signe avec x, y, z. Il en résulte que, avant d'effectuer l'élimination dont il s'agit, on pourra remplacer le double signe \pm par le signe \pm , et réduire les formules (143), (144), (145) à celles qui suivent:

(146)
$$t^2 = f(0, y, z), \quad X(0, y, z) = y, \quad \Psi(0, y, z) = z,$$

(147)
$$\ell^2 = \tilde{\mathcal{I}}(x, 0, z), \quad \Psi(x, 0, z) = z, \quad \Phi(x, 0, z) = x,$$

(148)
$$t^2 = f(x, y, 0), \quad \Phi(x, y, 0) = x, \quad X(x, y, 0) = y.$$

l'ajoute que les surfaces cylindriques dont les équations seront produites par l'élimination de y et z, ou de z et x, ou de x et y, entre les formules (146), ou (147), ou (148), couperont les plans coordonnés suivant des courbes comprises dans la surface des ondes, c'est-à-dire dans la surface (15). En effet, pour obtenir les sections faites dans cette dernière surface par le plan des y, z, il faudra éliminer x, y, z entre les formules (30) et (37), après avoir posé dans la première des formules (37) x = 0. D'ailleurs, si l'on différentie, par rapport à la

quantité a, l'équation (136), après y avoir remplacé s^2 par f(a,b,c), on obtiendra la formule

$$\begin{split} & \left| \left| \mathbf{R} \, a^2 + \mathbf{M} \, b^2 + \mathbf{P} \, c^2 - \vec{\mathcal{J}} (a,b,c) \right| \left| \mathbf{Q} \, a^2 + \mathbf{P} \, b^2 + \mathbf{N} \, c^2 - \vec{\mathcal{J}} (a,b,c) \right| - 4 \mathbf{P}^2 \, b^2 \, c^2 \right| \left[\mathbf{L} \, a - \Phi (a,b,c) \right] \\ & + \left| \left| \mathbf{Q} \, a^2 + \mathbf{P} \, b^2 + \mathbf{N} \, c^2 - \vec{\mathcal{J}} (a,b,c) \right| \left| \mathbf{L} \, a^2 + \mathbf{R} \, b^2 + \mathbf{Q} \, c^2 - \vec{\mathcal{J}} (a,b,c) \right| - 4 \mathbf{Q}^2 \, c^2 \, a^2 \right| \left[\mathbf{R} \, a - \Phi (a,b,c) \right] \\ & + \left| \left[\mathbf{L} \, a^2 + \mathbf{R} \, b^2 + \mathbf{Q} \, c^2 - \vec{\mathcal{J}} (a,b,c) \right] \left| \mathbf{R} \, a^2 + \mathbf{M} \, b^2 + \mathbf{P} \, c^2 - \vec{\mathcal{J}} (a,b,c) \right| - 4 \mathbf{R}^2 \, a^2 \, b^2 \right| \left[\mathbf{Q} \, a - \Phi (a,b,c) \right] \\ & - \left| 4 \, a \right| \mathbf{Q}^2 \, c^2 \left[\mathbf{R} \, a^2 + \mathbf{M} \, b^2 + \mathbf{P} \, c^2 - \vec{\mathcal{J}} (a,b,c) \right] + \mathbf{R}^2 \, b^2 \left[\mathbf{Q} \, a^2 + \mathbf{P} \, b^2 + \mathbf{N} \, c^2 - \vec{\mathcal{J}} (a,b,c) \right] - 4 \, \mathbf{P} \mathbf{Q} \, \mathbf{R} \, b^2 \, c^2 \right| = 0. \end{split}$$

dont l'inspection suffit pour montrer qu'on vérifiera l'équation

$$\Phi(a,b,c) = 0$$

en prenant a = 0, et par conséquent l'équation

$$\Phi(x, y, z) = c = 0,$$

en prenant

$$(150) x = 0.$$

Or, en vertu de la formule (150), l'équation (30) et les deux dernières des équations (37) se réduiront aux formules (146). Donc les sections faites par le plan des y, z dans la première des surfaces cylindriques ci-dessus mentionnées appartiendront en même temps à la surface des ondes; et il est clair qu'on pourra en dire autant des sections faites dans la seconde surface cylindrique par le plan des z, x, ou dans la troisième par le plan des x, y. En d'autres termes, les courbes qui, dans les trois plans coordonnés, seront représentées par les équations résultantes de l'élimination de y et z entre les formules (146), ou de z et x entre les formules (147), ou de x et y entre les formules (148), appartiendront à la surface des ondes. Il reste à savoir de quelle nature sont ces mêmes courbes. C'est ce que nous allons maintenant evaminer.

L'équation (137) se décompose en deux autres, savoir

$$(151) s^2 - Rb^2 + Qc^2$$

et

(159)
$$(Mb^2 + Pc^2 - s^2) (Nc^2 + Pb^2 - s^2) - 4P^2b^2c^2 = 0.$$

Ajoutons que l'équation (152) pourra être présentée sous la forme

$$[(\mathbf{M} - \mathbf{P})b^2 + \mathbf{P}(b^2 + c^2) - s^2][(\mathbf{N} - \mathbf{P})c^2 + \mathbf{P}(b^2 + c^2) - s^2] - 4\mathbf{P}^2b^2c^2 = 0$$

ou sous la suivante

(153)
$$[P(b^2+c^2)-s^2][Mb^2+Nc^2+s^2]+[(M-P)(N-P)-AP^2]b^2c^2$$
 o,

et sera elle-même décomposable en deux autres, savoir

$$y^2 = P(b^2 + c^2),$$

$$(155) s^2 = Mb^2 + Nc^2,$$

si les coefficients P. M. N vérifient la condition

(156)
$$(M-P)(N-P) = 4P^2$$
.

Alors, en prenant successivement pour $\mathfrak{F}(0,b,c)$ les valeurs de s^2 déterminées par les formules (154), (151) et (155), on tirera des formules (146)

(157)
$$\frac{y^2 + z^2}{P} = t^2,$$

$$\frac{y^2}{R} + \frac{z^2}{Q} = t^3,$$

(159)
$$\frac{y^2}{M} + \frac{z^2}{N} = t^2;$$

et ces trois dernières équations représenteront trois sections faites dans la surface des ondes par le plan des y, z. Or ces trois sections seront évidemment un cercle et deux ellipses. De même, en supposant que les coefficients Q, N, L vérifient la condition

(160)
$$(N-Q)(L-Q) = (Q^2,$$

on déduira des formúles (138) et (147) les trois équations

$$\frac{z^2+x^2}{Q}=\ell^2,$$

(162)
$$\frac{z^2}{P} + \frac{x^2}{R} = \ell^2$$
,

$$\frac{z^2}{N} + \frac{x^2}{L} = t^2,$$

propres à représenter un cercle et deux ellipses suivant lesquelles la surface des ondes sera coupée par le plan des z, x. Enfin, en supposant que les coefficients R, L, M vérifient la condition

$$(164)$$
 $(L-R)(M-R) = 4R^2,$

on déduira des formules (139) et (148) les trois équations

(165)
$$\frac{x^2 - 1 - y^2}{R} = t^2,$$

(166)
$$\frac{v^2}{Q} + \frac{v^2}{P} = t^2,$$

$$\frac{x^2}{L} + \frac{y^2}{M} = t^2,$$

propres à représenter un corcle et deux ellipses suivant lesquelles la surface des ondes sera coupée par le plan des x, y.

Lorsque l'élasticité du système est la même en tous sens autour d'un ave quelconque parallèle à l'axe des z, on a

$$P=0$$
, $L=M=3R$,

et des trois conditions (156), (160), (164) les deux premières comcident avec la formule (80), tandis que la dernière se trouve satisfaite d'elle-même. Ces trois conditions se transformeraient en trois équations identiques, si l'élasticité du système était la même en tous sens autour d'un point quelconque.

Les conditions (156), (160), (164) étant supposées remplies, on pourra présenter l'équation (136) sous une forme qui mérite d'être remarquée. En effet, comme on a généralement

$$\begin{aligned} & \mathbf{L}a^2 + \mathbf{R}b^2 + \mathbf{Q}c^2z \cdot \mathbf{L}a^2 + \mathbf{M}b^2 + \mathbf{N}c^2 - (\mathbf{M} - \mathbf{R})b^2 - (\mathbf{N} - \mathbf{Q})c^2, \\ & \mathbf{R}a^2 + \mathbf{M}b^2 + \mathbf{P}c^2 \cdot \mathbf{L}a^2 + \mathbf{M}b^2 + \mathbf{N}c^2 - (\mathbf{N} - \mathbf{P})c^2 - (\mathbf{L} - \mathbf{R})a^2, \\ & \mathbf{Q}a^2 + \mathbf{P}b^2 + \mathbf{N}c^2 - \mathbf{L}a^2 + \mathbf{M}b^2 + \mathbf{N}c^2 - (\mathbf{L} - \mathbf{Q})a^2 - (\mathbf{M} - \mathbf{P})b^2, \end{aligned}$$

on tirera de l'équation (136), en développant son premier membre suivant les puissances de

$$La^2 + Mb^2 + Nc^2 - s^2$$

et en ayant égard aux conditions (156), (160), (164),

$$\begin{cases} (La^{2} + Mb^{2} + Nc^{2} - s^{2})^{3} \\ -[(2L - Q - R)a^{2} + (2M - R - P)b^{2} + (2N - P - Q)c^{2}](La^{2} + Mb^{2} + Nc^{2} - s^{2})^{2} \\ +[(L - Q)(L - R)a^{2} + (L - R)(M - P)b^{2} + (L - Q)(N - P)c^{2}]a^{2} \\ +[(M - R)(L - Q)a^{2} + (M - R)(M - P)b^{2} + (M - P)(N - Q)c^{2}]b^{2} \\ +[(N - Q)(L - R)a^{2} + (N - P)(M - R)b^{2} + (N - P)(N - Q)c^{2}]c^{2} \\ +[(N - Q)(L - R)a^{2} + (N - P)(M - R)b^{2} + (N - P)(N - Q)c^{2}]c^{2} \\ +[(N - Q)(L - R)a^{2} + (N - P)(M - R)b^{2} + (N - P)(N - Q)c^{2}]c^{2} \\ -[(N - Q)(L - R)a^{2} + (N - P)(M - R)b^{2} + (N - P)(N - Q)a^{2}b^{2}c^{2} - o. \end{cases}$$

De plus, on aura évidemment

$$(169) \begin{cases} La^{2} + Mb^{2} + Nc^{2} - s^{2} - [(2L - Q - R)a^{2} + (2M - R - P)b^{2} + (2N - P - Q)c^{2}] \\ = (Q + R)a^{2} + (R + P)b^{2} + (P + Q)c^{2} - s^{2} - (La^{2} + Mb^{2} + Nc^{2}), \\ [(L - Q)(L - R)a^{2} + (L - R)(M - P)b^{2} + (L - Q)(N - P)c^{2}]a^{2} \\ + [(M - R)(L - Q)a^{2} + (M - R)(M - P)b^{2} + (M - P)(N - Q)c^{2}]b^{2} \\ + [(N - Q)(L - R)a^{2} + (N - P)(M - R)b^{2} + (N - P)(N - Q)c^{2}]b^{2} \\ + [(N - Q)(L - R)a^{2} + (N - P)(M - R)b^{2} + (N - P)(N - Q)c^{2}]c^{2} \\ = (La^{2} + Mb^{2} + Nc^{2})^{2} - [(Q + R)a^{2} + (R + P)b^{2} + (P + Q)c^{2}](La^{2} + Mb^{2} + Nc^{2}) \\ + (QRa^{2} + RPb^{2} + PQc^{2})(a^{2} + b^{2} + c^{2}), \end{cases}$$

et par suite

$$\begin{split} (La^2 + Mb^2 + Nc^2 - s^2)^2 - & \left[(2L - Q - R)a^2 + (2M - R - P)b^2 + (2N - P - Q)c^2 \right] (La^2 + Mb^2 + Nc^2 - s^2) \\ & + \left[(L - Q)(L - R)a^2 + (L - R)(M - P)b^2 + (L - Q)(N - P)c^2 \right] a^2 \\ & + \left[(M - R)(L - Q)a^2 + (M - R)(M - P)b^2 + (M - P)(N - Q)c^2 \right] b^2 \\ & + \left[(N - Q)(L - R)a^2 + (N - P)(M - R)b^2 + (N - P)(N - Q)c^2 \right] c^2 \\ & = s^2 - \left[(Q + R)a^2 + (R + P)b^2 + (P + Q)c^2 \right] s^2 + (QRa^2 + RPb^2 + PQc^2)(a^2 + b^2 + c^2). \end{split}$$

Donc l'équation (136) ou (168) pourra être réduite à

$$\left\{ (La^{2} + Mb^{2} + Nc^{2} - s^{2}) \right\} \begin{cases} s^{3} - \left[(Q + R)a^{2} + (R + P)b^{2} + (P + Q)c^{2} \right] s^{2} \\ + (QRa^{2} + RPb^{2} + PQc^{2})(a^{2} + b^{2} + c^{2}) \end{cases}$$

$$+ \left[t6PQR - (L - Q)(M - R)(N - P) - (L - R)(M - P)(N - Q) \right] a^{2}b^{2}c^{2} = 0.$$

Lorsque les coefficients L, M, N, P, Q, R vérifient, non seulement les conditions (156), (160), (164), mais encore la suivante

(172)
$$(L-Q)(M-R)(N-P)+(L-R)(M-P)(N-Q)=16PQR$$
,

l'équation (171) se décompose en deux autres, savoir :

(173)
$$s^2 = La^2 + Mb^2 + Nc^2$$

et

$$\begin{cases} s^4 - [(Q + R)a^2 + (R + P)b^2 + (P + Q)c^2]s^2 \\ + (QRa^2 + RPb^2 + PQc^2)(a^2 + b^3 + c^2) = 0. \end{cases}$$

Par suite, l'une des trois nappes de la surface des ondes concide avec l'ellipsoïde auquel appartient l'équation

(175)
$$\frac{x^2}{L} + \frac{v^2}{M} + \frac{z^2}{N} = t^2.$$

Cette même nappe, successivement coupée par les trois plans coordonnés, donne pour sections les trois ellipses que représentent les formules (159), (163), (167). Quant aux deux autres nappes, elles correspondent aux deux valeurs de s^2 déterminées par la formule (174).

Hest bon d'observer qu'on tire des conditions (156), (160), (164)

(176)
$$(L - Q)(M - R)(N - P) \times (L - R)(M - P)(N - Q) = 64 P^2 Q^2 R^2$$
,

et de cette dernière formule, combinée avec l'équation (172),

(177)
$$[(L - Q)(M - R)(N - P) - (L - R)(M - P)(N - Q)] = 0.$$

Done les conditions (156), (160), (164), (172) entrainent la suivante :

(178)
$$(I_t + Q)(M - R)(N - P) = (L - R)(M - P)(N - Q) = 8PQR.$$

Remarquons aussi que l'équation (174) peut être présentée sous la forme

$$\frac{(Q + R)a^{2} + (R + P)b^{2} + (P + Q)c^{2}}{2}\Big]^{2}$$

$$(Q + R)^{2}a^{3} + (R + P)^{2}b^{3} + (P + Q)^{2}c^{3} + 2(P + Q)(P + R)b^{2}c^{2} + 2(Q + R)(Q + P)c^{2}a^{2} + 2(R + P)(R + Q)a^{2}h^{2}}{4},$$

et qu'on en tire par conséquent

$$-\frac{1}{2}\left[(Q + R)a^{2} + (R + P)b^{2} + (P + Q)c^{2}\right]$$

$$+\frac{1}{4}\sqrt{(Q + R)^{2}a^{2} + (R + P)^{2}b^{2} + (P + Q)c^{2}}$$

$$+\frac{1}{4}\sqrt{(Q + R)^{2}a^{2} + (R + P)^{2}b^{2} + (P + Q)c^{2}}$$

$$+\frac{1}{4}\sqrt{(Q + R)^{2}a^{2} + (R + P)a^{2}b^{2} + (P + Q)c^{2}}$$

$$+\frac{1}{4}\sqrt{(Q + R)^{2}a^{2} + (R + P)b^{2}b^{2} + (P + Q)c^{2}}$$

$$+\frac{1}{4}\sqrt{(Q + R)^{2}a^{2} + (R + P)b^{2}b^{2} + (P + Q)c^{2}}$$

$$+\frac{1}{4}\sqrt{(Q + R)^{2}a^{2} + (R + P)b^{2}b^{2} + (P + Q)c^{2}}$$

$$+\frac{1}{4}\sqrt{(Q + R)^{2}a^{2} + (R + P)b^{2}b^{2} + (P + Q)c^{2}}$$

$$+\frac{1}{4}\sqrt{(Q + R)^{2}a^{2} + (R + P)b^{2}b^{2} + (P + Q)c^{2}}$$

$$+\frac{1}{4}\sqrt{(Q + R)^{2}a^{2} + (R + P)b^{2}b^{2} + (P + Q)c^{2}}$$

$$+\frac{1}{4}\sqrt{(Q + R)^{2}a^{2} + (R + P)b^{2}b^{2} + (P + Q)c^{2}}$$

$$+\frac{1}{4}\sqrt{(Q + R)^{2}a^{2} + (R + P)b^{2}b^{2} + (P + Q)c^{2}}$$

$$+\frac{1}{4}\sqrt{(Q + R)^{2}a^{2} + (R + P)b^{2}b^{2} + (P + Q)c^{2}}$$

$$+\frac{1}{4}\sqrt{(Q + R)^{2}a^{2} + (R + P)b^{2}b^{2} + (P + Q)c^{2}}$$

$$+\frac{1}{4}\sqrt{(Q + R)^{2}a^{2} + (R + P)b^{2}b^{2} + (P + Q)c^{2}}$$

$$+\frac{1}{4}\sqrt{(Q + R)^{2}a^{2} + (R + P)b^{2}b^{2} + (P + Q)c^{2}}$$

Concevons maintenant que l'on désigne par 0, ι , \varkappa les logarithmes népériens des rapports $\frac{M-P}{2P}$, $\frac{N-Q}{2Q}$, $\frac{L-R}{2R}$, en sorte qu'on ait

(181)
$$M - P = 2Pe^{\theta}$$
, $N - Q = 2Qe'$, $L - R = 2Re^{\theta}$.

Les conditions (156), (160), (164) donneront

(182)
$$N - P = 2Pe^{-0}$$
, $L - Q = 2Qe^{-1}$, $M - R = 2Re^{-\gamma}$.

On frouvera par suite

(183)
$$M = P(1 + 2e^{\theta}), \quad N = Q(1 + 2e^{\epsilon}), \quad L = R(1 + 2e^{\epsilon})$$

eŧ

(184)
$$N = P(1 + 2e^{-h}), L = Q(1 + 2e^{-t}), M = R(1 + 2e^{-t}).$$

Si le système offrait la même élasticité en tous sens autour d'un point quelconque, les formules (183), (184) devraient s'accorder avec la suivante

(185)
$$L = M = N = 3P = 3Q = 3R$$
,

et l'on aurait en conséquence

(186)
$$\theta = 0, \quad t = 0, \quad \lambda = 0.$$

J'ajoute que, si les quantités 0, 1, x ont des valeurs numériques différentes de zéro, mais très petites, on trouvera, en considérant ces valeurs comme infiniment petites du premier ordre, et négligeant les infiniment petits du troisième ordre,

$$(187) \theta + \iota + \varkappa = 0.$$

En effet, on tirera des formules (183), (184)

LMN = PQR
$$(1 + 2e^{0}) (1 + 2e^{t}) (1 + 2e^{y})$$

= PQR $(1 + 2e^{-0}) (1 + 2e^{-t}) (1 + 2e^{-x})$,

ou, ce qui revient au même,

$$(188) \quad (1+2e^0) (1+2e^i) (1+2e^y) = (1+2e^{-0}) (1+2e^{-i}) (1+2e^{-y}),$$

par on en constant, en prenant les logarithmes néperiens des deux membres de l'espertion (1883).

D'adleme, en me le cont le infimiment petits du troisième ordre, on troises

$$\frac{1}{16} \frac{1}{16} \frac$$

Programme Control of the Control

at parameter our reduce to burnite a top ca

$$\frac{\epsilon}{\epsilon} = \frac{\epsilon}{\epsilon} \left(\frac{1}{\epsilon} + \frac{1}{\epsilon} \left(\frac{1}{\epsilon} + \frac{1}{\epsilon} \left(\frac{1}{\epsilon} + \frac{1}{\epsilon} \right) \right) \right)$$

the between the course of the continues of

Descriptions and description of the first of the second infiniment of the dispersions and the suppose

or and specially saturate to the dustrations point in question of the second transfer of the point of the position of the point of the position of the positio

of personal asserting at the particular sometimes as a second.

$$c_{(P,G)}(1) = Q - M - R_0 (N - P) - (1 - R) - M - P - (N - Q) - (6PQR - 8PQR_2).$$

Done alors la formule (172) sera sensiblement vérifiée, et la différence entre ses deux membres sera une quantité infiniment petite du même ordre que ς^2 , c'est-à-dire du sixième ordre. Done, en négligeant sculement les infiniment petits du sixième ordre, on pourra remplacer l'équation (171) par le système des deux équations (173) et (174).

Lorsque les quatre conditions (156), (160), (164), (172) sont toutes remplies, on tire des formules (172) et (194)

$$e^{\zeta} + e^{-\zeta} = 2$$
,

et par suite

$$e^{\zeta} = 1, \quad \zeta = 0,$$

ou, ce qui revient au même,

$$(187) 0 + 1 + x = 0.$$

Donc alors l'équation (187) se trouve rigourensement vérifiée.

Puisque, dans le cas où 0, 1, x s'évanouissent, les formules (183), (184) se réduisent à la formule (185), il est clair que, pour des valeurs infiniment petites de 0, 1, x, les différences

(196)
$$R - Q$$
, $P - R$, $Q - P$, $M - N$, $N - L$, $L - M$

seront elles-mêmes infiniment petites, et les rapports

$$(197)$$
 $\stackrel{P}{O}$, $\stackrel{P}{R}$, $\stackrel{Q}{R}$, $\stackrel{Q}{P}$, $\stackrel{R}{P}$, $\stackrel{R}{O}$, $\stackrel{L}{M}$, $\stackrel{L}{N}$, $\stackrel{M}{N}$, $\stackrel{M}{N}$, $\stackrel{N}{L}$, $\stackrel{N}{L}$

infiniment peu différents de l'unité. D'ailleurs, si l'on égale entre elles les valeurs de P, Q, R ou de L, M, N tirées 1° des formules (183), 2° des formules (184), on en conclura, en négligeant les infiniment petits du second ordre et ayant égard à la formule (187),

(198)
$$\frac{M}{N} = \frac{1+2e^0}{1+2e^{-0}} = \frac{3+2\theta}{3-2\theta} = 1+\frac{4}{3}\theta, \qquad \frac{N}{L} = 1+\frac{4}{3}\iota, \quad \frac{L}{M} = 1+\frac{4}{3}\nu.$$

(199)
$$\frac{Q}{R} = \frac{1+2e^{\gamma}}{1+2e^{-1}} = 1 + \frac{2}{3}(x+t) = 1 - \frac{2}{3}\theta, \quad \frac{R}{P} = 1 - \frac{2}{3}t, \quad \frac{P}{Q} = 1 - \frac{2}{3}x,$$

et par suite

(200)
$$M - N = \frac{1}{3} \theta N$$
, $N - L = \frac{1}{3} \epsilon L$, $L - M = \frac{1}{3} \epsilon M$,

(201)
$$R - Q = \frac{2}{3} \theta R$$
, $P - R = \frac{2}{3} \epsilon P$, $Q - P = \frac{2}{3} \epsilon Q$.

Les formules (200), (201) montrent que, dans l'hypothèse admise, les différences (196) seront infiniment petites du premier ordre. De plus, en négligeant les infiniment petits du second ordre, on tirera des formules (201)

(201)
$$\theta = \frac{3}{2} \frac{R - Q}{P}, \quad \tau = \frac{3}{2} \frac{P - R}{Q}, \quad \gamma = \frac{3}{2} \frac{Q - P}{R},$$

et de ces dernières, combinées avec les équations (183),

(203)
$$L = 3(Q + R - P)$$
, $M = 3(R + P - Q)$, $N = 3(P + Q - R)$.

Supposons maintenant que, les quantités 0, ι , \varkappa , et par suite les différences (196), étant regardées comme infiniment petites du premier ordre, on cherche l'équation propre à représenter les deux nappes de la surface des ondes qui correspondent aux valeurs de s^2 déterminées par la formule (180). Concevons d'ailleurs que, dans le calcul, on néglige les infiniment petits du second ordre. Si l'on pose, pour abréger,

(201)
$$\dot{\mathfrak{f}}(a,b,c) = \frac{1}{2} [(Q+R)a^2 + (R+P)b^2 + (P+Q)c^2]$$

et

$$\text{if } f(a,b,c) = \frac{1}{2}\sqrt{(Q-R)^2a^5 + (R-P)^2b^5 + (P-Q)^2c^5 + 2(P-Q)(P-R)b^2c^2 + 2(Q-R)(Q-P)c^2a^4} + 2(R-P)(R-Q)a^2b^2,$$

la formule (180) deviendra

(206)
$$s^2 = \vec{s}(a, b, c) \pm f(a, b, c),$$

et l'équation cherchée se réduira, en vertu de ce qui a été dit plus haut, à la formule (58) ou plutôt à la suivante

(207)
$$\ell^2 = \tilde{\mathcal{I}}(x, y, z) = f(x, y, z),$$

les valeurs de x, y, z étant déterminées par les formules (37), qui,

dans le cas présent, donneront

(208)
$$Q + R = x, \qquad R + P = J, \quad J, \qquad P + Q = J$$

et par conséquent

(300)
$$\lambda = \frac{6}{9} \frac{1}{8} x_1 + \lambda = \frac{6}{8 + 4} p_1 x_2 + \lambda = \frac{1}{8 + 4} Q_1 x_2$$

En d'autres termes, il suffira, pour obtenir l'équation dont il s'agit, de substituer les valeurs précédentes de x, y, z dans la formule

$$\frac{1}{(240)} \left\{ \begin{array}{l} V_{3} = \frac{1}{2} \frac{1}{4} (Q + R) x_{3} + (R + P) y_{4} + (P + Q) x_{0} \\ + \frac{1}{2} \sqrt{(Q + R)^{2} x_{1} + (R + P)^{2} y_{1} + (P + Q) x_{0}} \end{array} \right. \\ \left. + \frac{1}{2} \sqrt{(Q + R)^{2} x_{1} + (R + P)^{2} y_{1} + (P + Q) x_{0}} \right]$$

qu'on peut encore écrire comme il suit :

L'équation cherchée sera donc

Il importe d'observer que, en négligeant les infiniment petits du second ordre, on réduira l'équation identique

$$\frac{q}{Q+R} = \frac{1}{2} \left(\frac{1}{Q} + \frac{1}{R} \right) = \frac{(Q-R)^2}{2QR(Q+R)}$$

à la formule

$$\frac{q}{Q+R}=\frac{1}{q}\left(\frac{1}{Q}+\frac{1}{R}\right),$$

et qu'en aura de même, sans erreur sensible,

$$\frac{1}{|\mathbf{g}|} + \mathbf{b} = \frac{2}{3} \left(\frac{\mathbf{g}}{1} + \frac{\mathbf{b}}{1} \right), \qquad \frac{\mathbf{b}}{3} + \frac{\mathbf{d}}{3} = \frac{3}{4} \left(\frac{\mathbf{b}}{1} + \frac{\mathbf{d}}{3} \right).$$

Par suite la fonction

$$\frac{-(\alpha + \beta)}{\left(\frac{\partial^{2}(x, y, z)}{\partial x^{2}} - \frac{1}{\alpha}\left[\left(Q + R\right)x^{2} + \left(R + P\right)y^{2} + \left(P + Q\right)x^{2}\right]\right]}{\alpha\left(\frac{\partial^{2}(x, y, z)}{\partial x^{2}} - \frac{\partial^{2}(x, y, z)}{\partial x^{2}} - \frac{\partial^{2}(x, y, z)}{\partial x^{2}}\right)}$$

pourra être réduite à

$$\frac{1}{\sqrt{\sigma(x,y,z)}} = \frac{1}{\sigma} \left[(Q+R) \frac{e^{1}}{QR} + (R+P) \frac{J^{2}}{RP} + (P+Q) \frac{z^{2}}{PQ} \right] + \frac{1}{\sqrt{q}} \left(\frac{e^{2}}{Q^{2}R^{4}}, \frac{e^{2}}{R^{4}P^{2}}, \frac{z^{2}}{P^{4}Q^{2}} \right).$$

D'autre part, la fonction f(x, y, z) étant, ainsi que les différences (196), infiniment petite du premier ordre, on pourra, dans cette fonction, substituer aux valeurs de x, y, z, déterminées par les formules (209), d'autres valeurs qui n'en différent qu'infiniment peu, par exemple les suivantes :

$$(419) \qquad \qquad \lambda = \frac{\hat{G}_1^{\dagger} \hat{K}_1^{\dagger}}{\hat{G}_1^{\dagger}}, \qquad \hat{H}_1^{\dagger} \hat{h}_2^{\dagger}, \qquad \hat{h}_2^{\dagger} \hat{G}_2^{\dagger}, \qquad \hat{h}_2^{\dagger} \hat{G}$$

On aura donc encore, en négligeant les infiniment petits du second ordre,

$$f(x,y,z) = f\Big(\frac{1}{Q_0^{\frac{1}{2}}R^{\frac{1}{2}}},\frac{1}{R^{\frac{1}{2}}P^{\frac{1}{2}}},\frac{1}{P_0^{\frac{1}{2}}Q_0^{\frac{1}{2}}}\Big),$$

Cela posé, la formule (207) deviendra

$$(-0.7) = \ell^4 = 2^r \left(\frac{2}{Q^{\frac{1}{4}} R^{\frac{1}{4}}}, \frac{1}{R^{\frac{1}{4}} p^{\frac{1}{4}}}, \frac{1}{p^{\frac{1}{4}} Q^{\frac{1}{4}}} \right) + f \left(\frac{2}{Q^{\frac{1}{4}} R^{\frac{1}{4}}}, \frac{1}{R^{\frac{1}{4}} p^{\frac{1}{4}}}, \frac{1}{p^{\frac{1}{4}} Q^{\frac{1}{4}}} \right),$$

et, puisque l'équation (206) fournit les deux valeurs de s^a qui vérifient la formule (174), il est clair que les deux nappes correspondantes de la surface des ondes pourront être représentées, non seulement par l'équation (217), mais aussi par celle qu'on déduit de la formule (174). en y écrivant z au lieu de s, et

$$-Q^{\frac{1}{2}}R^{\frac{1}{2}}, \quad R^{\frac{1}{2}}P^{\frac{1}{2}}, \quad P^{\frac{1}{2}}Q^{\frac{1}{2}}$$

au lieu de a, b, c, c'est-à-dire par l'équation

$$=\frac{1}{2}\left(\frac{\partial P}{\partial R}+\frac{\partial P}$$

on

$$\frac{\left(\operatorname{P}\left(\mathcal{O}^{2} + \mathcal{F}^{2} + \mathcal{F}^{2} + \mathcal{F}^{2} \right) \left(\operatorname{P}\left(\mathcal{O}^{2} + \operatorname{Q}\right)^{2} + \operatorname{R}\left(\operatorname{P}^{2} \right) \right)}{\left(-\left(\operatorname{P}\left(\operatorname{Q} + \operatorname{R}\right) \right) \cdot \mathcal{O}^{2} + \operatorname{Q}\left(\operatorname{R} + \operatorname{P} \right) \right)^{2} + \operatorname{R}\left(\operatorname{P} + \operatorname{Q} \right) \cdot \mathcal{O}^{2} \right) \cdot \left(\operatorname{P} + \operatorname{PQR}\mathcal{O}^{2} + \operatorname{O}^{2} \right)}$$

Si l'on coupe successivement la surface à laquelle appartient l'equation (219) par les plans des yz, des zv, des zy, les sections ainsi obtenues seront, comme on devait s'y aftendre, les trois cercles et les trois ellipses représentés par les formules (157), (164), (165) et (158), (162), (166).

Si, dans l'équation (219), on supposait P = Q, elle se décomposerait en deux autres, et ces deux dernières seraient précisément les formules (84), (85).

Cherchons à présent les directions suivant lesquelles se mesurent les vitesses et les déplacements des molécules dans les trois systèmes d'ondes planes correspondants aux trois valeurs de x^2 que détermine la formule (436). Chacune de ces directions sera parallèle à une droite représentée par une équation de la forme

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

les cosinus A, M, C étant déterminés par les formules (14), (56) et (38) du § 1, ou, ce qui revient au même, par les suivantes :

$$\begin{cases} (1a^2 + Rb^2 + Qc^2 - s^2)A + aRabb + aQcaC - a_1 \\ 2RabA + (Ra^2 + Mb^2 + Pc^2 - s^2)bb + aPbcC - a_2 \\ 2QcaA + aPbcb + (Qa^2 + Pb^2 + Nc^2 - s^2)C - a_3 \end{cases}$$

Si les conditions (156), (160), (164) et (172) sont remplies, l'équation (136) pourra être remplacée, comme on l'a dit, par le système des équations (173), (174). Or, si l'on substitue, dans les formules (221), la valeur de s^2 fournie par l'équation (173), elles donneront

$$\begin{cases} b | 3Rath - (M-R)b \cdot b | + c | 3Qa \cdot 2 - (N-Q)c \cdot b | = 0, \\ c | 3Pb \cdot 2 - (N-P)c \cdot b | + a | 3Rb \cdot b - (L-R)a \cdot b | = 0, \\ a | 3Qc \cdot b - (L-Q)a \cdot 2 | + b | 2Pc \cdot b - (M-P)b \cdot 2 | = 0, \end{cases}$$

et il est clair qu'on vérifiera celles-ci, en choisissant les cosinus 4, 18, © de manière à vérifier les trois équations

(323)
$$\frac{db}{\otimes} = \frac{3P}{N-P} \frac{b}{c}, \qquad \frac{\otimes}{db} = \frac{3Q}{L-Q} \frac{c}{a}, \qquad \frac{d_b}{db} = \frac{3R}{M-R} \frac{a}{b},$$

dont les deux premières, eu égard aux conditions (156), (160), (164), (172), (178), entraînent la troisième, ainsi que les trois suivantes :

(324)
$$\frac{ab}{2} = \frac{M - P}{aP} \frac{b}{c}, \qquad \frac{2}{ab} = \frac{N - Q}{aQ} \frac{c}{a}, \qquad \frac{cb}{ab} = \frac{L - R}{2R} \frac{a}{b}.$$

Observons d'ailleurs que, en vertu des formules (181) et (182), les équations (223) et (224) pourront être réduites à

(225)
$$\frac{db}{c} = \frac{b}{c}e^b, \qquad \frac{c}{cb} = \frac{c}{a}e^t, \qquad \frac{cb}{db} = \frac{a}{b}e^b,$$

et que ces dernières s'accordent entre elles, eu égard à l'équation (193).

Lorsque, les conditions (156), (160), (164) étant remplies, les différences (196) sont considérées comme infiniment petites du premier ordre, alors, en négligeant les quantités infiniment petites du troisième ordre, on obtient encore les équations (225). Alors aussi, les valeurs des exponentielles e^0 , e^i , e^i étant très voisines de l'unité, les valeurs de \mathbb{A} , \mathbb{A} , \mathbb{A} , que fournissent les équations (225), différent très peu de celles que détermine la formule

(226)
$$\frac{\sqrt{a}}{a} = \frac{\sqrt{b}}{b} = \frac{e}{c} = \pm \frac{\sqrt{ab^2 + \sqrt{bb^2 + e^2}}}{\sqrt{a^2 + b^2 + e^2}} = \pm 1.$$

On doit en conclure que, dans l'hypothèse admise, toute onde plane qui se propage avec une vitesse déterminée par l'équation (173) renferme des molécules dont les déplacements se mesurent suivant des drottes sensiblement perpendiculaires au plan de l'onde.

Il reste à trouver les valeurs de A, B, © qui correspondent aux valeurs de s² déterminées par la formule (174). Or, si l'on élimine € entre les deux premières des équations (221), on en conclura

$$\frac{2ac[2RPb^{2}-Q(Ra^{2}+Nb^{2}+Pc^{2}-s^{2})]}{\frac{2bc[2QRa^{2}-P(La^{2}+Rb^{2}+Qc^{2}-s^{2})]},$$

ou, ce qui revient au même,

$$\left(\begin{array}{c} P \left[s^2 - \left(\mathbf{L} - \frac{3 \mathbf{QR}}{\mathbf{P}} \right) a^2 - \mathbf{R} b^2 - \mathbf{Q} c^2 \right] \frac{d_0}{a} \\ \left(= \mathbf{Q} \left[s^2 - \mathbf{R} a^2 - \left(\mathbf{M} - \frac{3 \mathbf{RP}}{\mathbf{Q}} \right) b^2 - \mathbf{P} c^2 \right] \frac{db}{b}; \end{aligned}$$

et, comme l'équation (227) devra subsister encore après un échange opéré entre les axes des y et z, on aura nécessairement

$$\begin{cases}
P\left[s^{2}-\left(\mathbf{L}-\frac{2QR}{P}\right)a^{2}-Rb^{2}-Qc^{2}\right]\frac{d\sigma}{a} \\
=Q\left[s^{2}-Ra^{2}-\left(\mathbf{M}-\frac{2RP}{Q}\right)b^{2}-Pc^{2}\right]\frac{d\sigma}{b} \\
=R\left[s^{2}-Qa^{2}-Pb^{2}-\left(\mathbf{N}-\frac{2PQ}{R}\right)c^{2}\right]\frac{\mathfrak{D}}{c}.
\end{cases}$$

Cette dernière formule, jointe à l'équation (10) du § I, suffirait à la détermination générale des valeurs de &, &, © correspondantes aux valeurs de s² qui vérifient la formule (136). Mais, si l'on suppose remplies les conditions (156), (160), (164), alors, en considérant les différences (196) comme infiniment petites du premier ordre, et négligeant les infiniment petits du second ordre, on tirera des for-

\$ (20°3)

$$\begin{split} L &= \frac{3 \, Q \, R}{P} = Q + R = P + 3 \Big(Q + R - P - \frac{Q R}{P} \Big) \\ &= Q + R = P + 2 \frac{(P - R) \, (Q - P)}{P}, \end{split}$$

a-dire, à très peu près,

posé, la formule (328) deviendra

Teurs, at l'on nomme s'^2 , s''^2 les deux valeurs de s^2 qui vérifient ration (174), on aura évidemment

$$s^{ij} + s^{ij} = \mathbf{P}(|b^2 + c^2|) + \mathbf{Q}(c^2 + a^2) + \mathbf{R}(a^2 + b^2).$$

r, la formule (230) donnera

$${\rm P}\left({\rm P}-s^{n_2}\right)\frac{\gamma^{1/\epsilon}}{\alpha}={\rm Q}\left({\rm Q}-s^{eq}\right)\frac{\eta h^{\epsilon}}{\hbar}={\rm R}\left({\rm R}-s^{n_2}\right)\frac{\mathbb{C}^{\epsilon}}{\alpha}$$

$$P\left(P=s^{\prime 2}\right)^{\frac{2a^{\prime\prime\prime}}{a}}\cdot Q\left(Q=s^{\prime 2}\right)^{\frac{2b^{\prime\prime\prime}}{b}} - R\left(R \leftarrow s^{\prime 2}\right)^{\frac{2b^{\prime\prime\prime}}{c}},$$

al. C'étant les valeurs des cosinus A., al., © pour s = s', et A.", al.", es valeurs des mêmes cosinus pour s = s''.

i, en considérant un système qui offre trois axes d'élasticité rectan-

gulaires, on ne supposait pas les pressions nulles dans l'état naturel, il faudrait aux valeurs de s^2 , que détermine la formule (136), ajouter le polynôme (72). Alors, en admettant que les conditions (156), (160), (164), (172) fussent remplies, on obtiendrait, à la place des équations (173), (174), les deux formules

$$s^{2} = (L + G)a^{2} + (M + H)b^{2} + (N + I)c^{2},$$

$$\begin{cases} (s^{2} - Ga^{2} - Hb^{2} - Ic^{2})^{2} \\ -[(Q + R)a^{2} + (R + P)b^{2} + (P + Q)c^{2}](s^{2} - Ga^{2} - Hb^{2} - Ic^{2}) \\ + (QRa^{2} + RPb^{2} + PQc^{2})(a^{2} + b^{2} + c^{2}) = 0, \end{cases}$$

dont la dernière peut s'écrire ainsi qu'il suit

$$\begin{cases} \left\{ i^{2} - \frac{(Q + R + 2G)a^{2} + (R + P + 2H)b^{2} + (P + Q + 2I)c^{2}}{2} \right\}^{2} \\ = \frac{(Q - R)^{2}a^{4} + (R - P)^{2}b^{4} + (P - Q)^{2}c^{4} + 2(P - Q)(P - R)b^{2}c^{2} + 2(Q - R)(Q - P)c^{2}a^{2} + 2(R - P)(R - Q)a^{2}b^{2}}{4}; \end{cases}$$

et l'une des trois nappes de la surface des ondes coinciderait avec l'ellipsoide représenté, non par l'équation (175), mais par la suivante

(337)
$$\frac{x^2}{L+G} + \frac{y^2}{M+H} + \frac{z^2}{N+I} = t^2.$$

Alors aussi, en supposant remplies les conditions (156), (160), (164), regardant d'ailleurs les différences (196) comme infiniment petites du premier ordre, et négligeant les infiniment petits du second ordre, on déduirait des formules (58), (236) une équation propre à représenter les deux autres nappes de la surface des ondes, et, pour obtenir cette équation analogue à la formule (212), il suffirait d'éliminer x, y, z entre les formules

$$\begin{cases} \left(l^2 - \frac{(Q+R+2G)\chi^2 + (R+P+2H)\chi^2 + (P+Q+2I)\chi^2}{2} \right)^2 \\ - \frac{(Q-R)^2\chi^4 + (R-P)^2\chi^4 + (P-Q)^2\chi^4 + 2(P-Q)(P-R)\chi^2\chi^2 + 2(Q-R)(Q-P)\chi^2\chi^2 + 2(R-P)(R-Q)\chi^2\chi^2}{4}, \\ \chi = \frac{2}{Q+R+2G}x^2, \qquad \chi = \frac{2}{R+P+2H}\chi, \qquad \chi = \frac{2}{P+Q+2I}z^2 \end{cases}$$

Par conséquent, l'équation dont il s'agit scrait

$$= -\alpha \left(\frac{a^{-1}}{Q + R + \alpha G^{-1}} \frac{1}{R + P + \alpha H^{-1}} \frac{1}{P + Q + \alpha I} \right)^{\frac{1}{2}}$$

$$= -\frac{\left(\frac{Q - R}{Q + R + \alpha G^{-1}} \frac{1}{R + P + \alpha H^{-1}} \frac{1}{P + Q + \alpha I} \right)^{\frac{1}{2}} \frac{(P - Q)^{2} \pi^{3}}{(P + Q + \alpha I)^{2}}$$

$$= -\frac{\left(\frac{Q - R}{Q + R + \alpha G} \right)^{\frac{1}{2}} \frac{(R - P)^{\alpha} \pi^{3}}{(R + P + \alpha H)^{2}} \frac{(P - Q)^{2} \pi^{3}}{(P + Q + \alpha I)^{2}} \frac{(P - Q)^{2}}{(P + Q + \alpha I)^{2}} \frac{(P - Q)^{2}}{(P +$$

Quant aux déplacements absolus des molécules dans les ondes planes, ils se mesureraient toujours suivant des droites parallèles à celles que représente l'équation (220), quand on y substitue successivement les valeurs des cosinus 4., 45, C tirées des formules (223) et (228) ou (230).

Nous remarquerons, en terminant ce paragraphe, que, si l'on suppose

$$(+(1)) \qquad a = (1), \quad b = 0, \quad c \in [0, 1]$$

on tirera des formules (7), (8) du § 1

$$(1/3)$$
 $(1/3)$ $(1/3)$ $(1/3)$ $(1/3)$

Or, des formules (24°), (243), jointes à l'équation (10), il résulte que, pour les trois systèmes d'ondes planes renfermées entre des plans perpendiculaires à l'axe des x, les vitesses de propagation se rednisent aux trois valeurs positives de x déterminées par la formule

$$\frac{(1+3)}{1+1} = \frac{\int (1+3-s^4) (R+3-s^3) (Q+3-s^2)}{\Pi^3(L+3-s^3) + V^3(R+3-s^2) + W^2(Q+3-s^2) + 2UVW} = 0.$$

Pareillement, pour les trois systèmes d'ondes planes renfermées entre des plans perpendiculaires à l'axe des y ou à l'axe des z, les vitesses de propagation se réduisent aux trois valeurs positives de s déterminées par la formule

$$\frac{(R+0-s^2)(M+0-s^2)(P+B-s^2)}{U^{\prime 3}(R+0-s^2)-V^{\prime 2}(M+0-s^2)-W^{\prime 2}(P+0-s^2)+2U^{\prime}V^{\prime}W^{\prime}+0},$$

ou par la suivante :

$$(^{\alpha})^{6}) = \frac{\sqrt{\left(Q + q^{\alpha} - s^{\alpha}\right) \left(P + q^{\alpha} - s^{\alpha}\right) \left(N + q^{\alpha} - s^{\alpha}\right)}}{4 \left(Q + q^{\alpha} - s^{\alpha}\right) - \sqrt{\left(q + q^{\alpha} - s^{\alpha}\right)} - \sqrt{\left(q + q^{\alpha}$$

Dans le cas où le système de molécules que l'on considere offre trois axes d'élasticité rectangulaires entre envet respontivement parallele aux axes des x, y, v, les coefficients

s'évanouissent, et en écrivant G. H. Lan lieu de A. a. e. on tue de . formules (244), (245), (256)

$$(469) \qquad \qquad (4.446 - 52)(10.546 - 52)Q = G = 5.56$$

$$(960) \qquad (Q+1-s)(P+1-s)(N-1-s)s$$

Done alors les vitesses de propagation sont respectivement (1) pour les trois systèmes d'ondes planes renfermees entre des planes perpendienlaires à l'axe des x,

$$(A5a) \qquad (A5a) \qquad (A5a$$

or pour les trois systèmes d'ondes planes renfermées entre de «plans perpendienlaires à l'axe des ps

$$(991) \qquad \qquad \sqrt{4} U_{+} \Pi_{+} \sqrt{4} U_{+} \Pi_{+} \sqrt{4} U_{-} \Pi_{+}$$

3º pour les trois systèmes d'oudes planes rentermées entre des plans perpendiculaires à l'axe des c.

$$(252) \qquad \qquad \sqrt{Q} + 1, \quad \sqrt{P} + 1, \quad \sqrt{N} + 1.$$

Parmi les neuf vitesses que nous venors de ralenter, une reule contient dans son expression la lettre L on M on A. An contraire, deux de ces vitesses renferment l'un quelconque des coefficients P. Q. R; et, si l'un veut que ces deux vitesses deviennent tonjours eyales entre elles, il fandra nécessairement supposer

4 Application des principes établis dans les paragraphes précédents à la théorie de la lumière,

Plu reure illustres recometres on physicieus, parmi lesquels on doit di tirruer fluyreus, Euler, Young et Fresnel, ont suppose la sensation de la hunière produite par les vibrations des molécules d'un fluide imponderable qu'ils ont designé sous le nom d'éther ou de fluide viber. Non adopterous cette hypothèse, et nous supposerons de plus que le molécule, de l'ether sont sollientees par des forces d'attraction ou de republion mutuelle. Cette nouvelle supposition nous fournira le moven d'assigner les lors mivant lesquelles la hunière se propage d'un. Le quace on dans un milieu transparent, En effet, soient

- m to nederale d'effice qui comeide, au hout du temps 7, avec le point
- le rayon vecteur mene primitivement de la molécule m à une autre node cule m;
- 4. plus angles formes par ce rayon vecteur avec les demisaxes des socialismes positives;
- (i, c, 'b) deplacements de la molécule m mesures parallèlement aux con rectangulantes de ce, y, ...

Admettone d'adleure: 1º que l'état primitif du fluide éthéré soit un esta d'equildire dans lequel les molécules soient uniquement soumises aux netione qu'elles exercent l'une sur l'antre; 2º que, dans cef état d'equildire, l'attraction on la repulsion mutuelle des deux molécules m, es soit représentee par le produit

man fers,

• Obevienne in auxilhe pour des valeurs sensibles de r; 3^n que, dans nor première approximation, l'on neglige non seulement les produits, here arre cet les puissance empérieures de \S , η , \S et de leurs dérivées par rapport aux variables indépendantes x, π , p, ℓ , mais encore tous les termes qui s'evanouiraient, si, dans l'état naturel du fluide

éthéré, les masses m, m, m', \ldots des diverses molecules étaient deux à deux égales entre elles et distribuce) synotriquement de part et d'autre du point (x,y,x) air des droites mences par ce point. Le équations différentielles du mouvement de la lumière le réduiront la celles qui sont inscrites, sons le nº 11, a la page 196. Cela pore, concevous que les déplacements et les vitences des modernhes ethories soient nulles an premier instant pour touch a point a itne chois d'une conche plane très nance, dont l'epaisseur et est divi ce en deux par ties égales par un certain plan OOO, et restent beconcine commune les points de la couche qui se trouvent situe ca la meme di dance de ce plan. En vertu du théorème Pa (§ Pa), la proparation du monvement de chaque côté du plan OO'O donners generalement na came a troi ondes lumineuses renfermées entre des plans paralleles, Charane de ces andes offrira une épaisseur egale a vi. De plu , le , vites es de propagation des trois ondes, mesurees survant une perpondiculaire an plan OO'O', seront constantes, et respectivement excites any quantities qu'on obtient en divisant l'unite par les dema axis de l'ellip ande qui représente la formule (16) du § Ps. Futiu les deplacements alcolus, ainsi que les vitesses absolues des molecules d'ether dans le grouondes, so mesureront suivant trois directions to producement parallele anx trois axes de l'ellipsonde,

Considérons maintenant un grand mondre d'onde planes, qui, an premier instant, se superposent dans le vocan cer d'un certain pourt ti, et qui soient renfermées entre des plans peu moline des uns autres et sur le plan OO'O. Admettons d'ailleurs que les vilouteurs des molécules de l'éther, étant, dans ces diverse à oudes, dragée sur vant des droites parallèles, soient ses expetites pour is ter in en abbidans chaque onde prèse separément, mais deviennent sensibles parallèles mentionnée. Le temps venant as routre, l'un quelconque des andes primitives se propagata dans l'espace, et se ultivisera, de chaque côte du plan qui divisait son épais seur en partocégales, en trois ondes semblables, renfermers entre des plans parallèles, mais donées de vitesses de propagation differentes come.

perce patre. Par consequent le système d'ondes planes, que l'on considerant au premier in stant, se subdivisera en trois autres systèmes, et le point de rencontre de conde cqui feront partie d'un même système se deplacera survant une certaine droite, avec une vitesse de propagation districte de celle cles ambés planes. Ce point de rencontre est celui stant fequi l'on arppose que la lumière peut être perene par l'ieil, et la crie des position que premi le même point, tandis que les ondes se deplacent, constitue ce qu'on nomine un rayon lumineux. La viteve de la lumière, me aucre dans le seus de ce rayon, doit être soigneusement di tinguese non sentement de la vitesse de propagation des ondes planes , mais encore de la vitesse propre des molècules éthèrées. Enfin l'on nomine rayons polarisés ceux qui correspondent à des ondes planes dan di apuelles les vibrations des molècules restent constamment pas dieles a une droite donnée.

Pour plus de generalite, nous dirons que, dans un rayon lumineux, la brimiero est polarisce parallelement à une droite ou a un plandouné, lor apre les valuations des molecules ethèrées seront constamment pasadicles as ette droite ou à ce plan; et nous appellerons plun de polariscitura le plan spir renfermera la direction du rayon lumineux et celle de vites os propresses molecules etherèes.

Cela pa e, il re ulte des principes ei dessus établis que, en partant l'un point donne de l'espace, un rayon de lumière, dans lequel les vitesses propres des molecules ont des directions quelconques, se subdivir a la generalement en trois rayons de lumière polarisée parallèlement aux trois axes d'un certain ellipsonde. Mais chacun de ces rayons polatives que pourra plus etre divise par l'action du fluide ethèré dans bequel la lumière se propage. Il y a plus, les trois rayons se reduiront edeux on meme a un seul, si les vibrations initiales des molécules de l'ether sont parallèles à l'un des plans principaux de l'ellipsonde on à l'un de ses axes, et dès lors il est facile de comprendre pourquoi les rayous polarises me se subdivisent pas à l'infini.

diference encore que le mode de polarisation dépend tout à la fois de la constitution du fluide éthéré, c'est-à-dire de la distribution de ses molécules dans l'espace ou dans un corps transparent, et de la di-rection du plan OO O' qui divisant primitivement l'eparsem d'une onde en parties égales. En effet, les quantités e, sa, se, se, se, se la l'ajde desquelles on pent determiner la grandeur et la direction de la axes de l'ellipsoide représente par l'equation e (c) du SP, de pondent en général, non seulement des valeurs que premient dan une mahen donné les coefficients

3, 0, C, 0, C, T; L, M, N, P, Q, R; L, Y, W, L, Y, W, L, Y, W,

[voir les équations (7) et (8) du § \mathbb{P}], mais envoire des contrement α_s b, c, c'esteà-dire des cosinus des angles formes avec les dema avec des coordonnées positives par la perpendiculaire au plan α_s α_s

Nons avons supposé, dans ce qui precède, que la milace repose a tée par l'équation (16) du § l'était un ellipsoide. Mor le vote se de propagation des ondes planes, parallèles a un plan donne (16) (1), sont toutes récèles et se confondent avec trois valeurs positive de spropre à vérifier l'equation (15) (§ l'). Mais la distribution des molecule éthérées dans un corps pourrait être telle que les roune, de l'equation (15) (§ l'), et par suite les vitesses de propagation de molecule planes fussent imaginaires. Dans ce cas, l'ellipsoide etce du § l' disparaîtrait, et, la propagation des ondes planes ne pouvant plus l'el fectuer, le corps proposé deviendrant ce qu'on nomme un cope opaque.

[Publication broadcoment intercompute, a la suite de esementals policis en un juillet (846.)

FIN DR TOME IN DE LA SECONDUSTRIAL

TABLE DES MATIÈRES

DU TOME NEUVIEME.

SECONDE SÉRIE. MEMOTRES DIVERS ET OUVRAGES.

THE ALLMORIES PUBLIES IN CORPS D'OUVRAGES.

Exercices de Mathématiques (anciens Exercices).

Annoe 1829.

	1,041,
our la gadilar et le mouvement d'une plaque électique dont l'électieité n'est par la means d'un tour ber seuve	(1
son. Es quantica et le noorrement d'une verge rectangulaire extraite d'un corps solide : - il art l'elasticité n'est pres la même en toué seus	43
est. Les pressions en Tensione supportée (en un point donné d'un corps solide par trats place fou pandienlairescentre entre en en point donné d'un corps solide par .	î;
one l'existation qui existe entre les présidues on tensions supportées par doux plans specte orque é en un point donne d'un éarps sollibre	r'i
son le valuations longitudinales d'une verge cylindrique on prismatique à base quels - vonços	Δti
on to be non et les vilerations tournantes d'une verge rectangulaire	(1)
son la 10 adution des espations numériques et sur la théorie de l'élimination	87
Sar le co-pations différentielles d'equilibre ou de mouvement pour un système de pontre maternels sofficités par des forces d'attraction on de répulsion mutuelle	16
sur l'equation à l'aute de baquelle en détermine les inégalités séculaires des mouve	
multo des plantamentes conservamentes conservamente	17

	Pages					
Sur la détermination du résidu intégral de quelques fonctions	196					
Usage du calcul des résidus pour l'évaluation ou la transformation des produits com- posés d'un nombre fini ou infini de lacteurs						
						Sur diverses propositions relatives à l'Algèbre et à la théorie des nombres
Sur la résolution des équivalences dont les modules so réduisent à des nombres pre- mers						
Sur l'équilibre et le mouvement interieur des corps considérés comme des masses continues						
Exercices de Mathématiques (anciens Exercices).						
Anuée 1830.						
Sur la transformation et la réduction d'une certaine classe d'intégrales	373					
Application des formules qui représentent le mouvement d'un système de molécules sollicitées par des forces d'attraction ou de répulsion mutuelle à la théorie de la						
lumère	300					

FIN DE LA TABLE DES MATIÈRES DU TOME IX DE LA SECONDE SÈRIE.

¹⁵⁸⁹⁷ Paris. - Imprimerie Gustinea-Villars et rus, quai des Grands-Augustins, 55.