Primer Control Análisis Matemático de 2^{ϱ} de Matemáticas 2018-2019

Apellidos: Nombre: DNI:

Problema 1.- (2 puntos) (**Teoría**). Contestar brevemente a las siguientes preguntas:

- 1. Dar la definición de subconjunto abierto de un espacio métrico (X,d).
- **2.** Dar la definición de subconjunto cerrado de un espacio métrico (X, d) y explicar porqué X y \emptyset son siempre abiertos y cerrados en X.
- **3.** Dar la definición de cierre \overline{A} de un subconjunto A de X (métrico).
- **4.** Dar la definición de interior int(C) de un subconjunto C de X (métrico).
- **5.** Si definimos $\partial C := \overline{C} \setminus \text{int}(C)$ (borde topológico de $C \subset X$, con X métrico), probar que ∂C es un cerrado.

Soluciones:

- **1.** Si $U \subset X$, U es abierto en X si para todo x en U, hay un $\delta > 0$ tal que la bola abierta $B_{\delta}(x)$ está dentro de U; simbólicamente, $\forall x \in U \exists \delta > 0 \land B_{\delta}(x) \subset U$.
- **2.** $E \subset X$ es cerrado en X precisamente si $E^c = X \setminus E$ es abierto; \emptyset, X son ambos abiertos y cerrados porque está claro que ambos son abiertos según la definición de 1.), y son complementarios el uno del otro.
- **3.** Son posibles varias definiciones equivalentes: \overline{A} es el menor cerrado que contiene a A (intersección de todos los cerrados que lo contienen), ó también es el conjunto de todos sus puntos adherentes: $\overline{A} = \{x \in X : \exists (a_n) \text{ sucesion en } A \land a_n \to x\}.$
- **4.** Como en 3,), son posibles varias definiciones equivalentes: $\operatorname{int}(C)$ es el mayor abierto contenido en C (unión de todos los abiertos contenidos en C), ó bien el conjunto de todos sus puntos interiores: $\operatorname{int}(C) = \{x \in X : \exists \delta > 0 \land B_{\delta}(x) \subset C\}$.
- **5.** ∂C es un cerrado porque como $\operatorname{int}(C) \subset C \subset \overline{C}$, $\partial C = \overline{C} \cap \operatorname{int}(C)^c$, que es la intersección de dos cerrados.

Soluciones:

- **1.** Si $U \subset X$, U es abierto en X si para todo x en U, hay un $\delta > 0$ tal que la bola abierta $B_{\delta}(x)$ está dentro de U; simbólicamente, $\forall x \in U \exists \delta > 0 \land B_{\delta}(x) \subset U$.
- **2.** $E \subset X$ es cerrado en X precisamente si $E^c = X \setminus E$ es abierto; \emptyset, X son ambos abiertos y cerrados porque está claro que ambos son abiertos según la definición de 1.), y son complementarios el uno del otro.
- **3.** Son posibles varias definiciones equivalentes: \overline{A} es el menor cerrado que contiene a A (intersección de todos los cerrados que lo contienen), ó también es el conjunto de todos sus puntos adherentes: $\overline{A} = \{x \in X : \exists (a_n) \text{ sucesion en } A \land a_n \to x\}.$
- **4.** Como en 3,), son posibles varias definiciones equivalentes: $\operatorname{int}(C)$ es el mayor abierto contenido en C (unión de todos los abiertos contenidos en C), ó bien el conjunto de todos sus puntos interiores: $\operatorname{int}(C) = \{x \in X : \exists \delta > 0 \land B_{\delta}(x) \subset C\}$.

5. ∂C es un cerrado porque como $\operatorname{int}(C) \subset C \subset \overline{C}$, $\partial C = \overline{C} \cap \operatorname{int}(C)^c$, que es la intersección de dos cerrados.

Problema 2.- (3 puntos)

- 1. Sea E un espacio normado y $f: \Omega \subset E \mapsto E$ para las cuales existen constantes $L < \infty$ y $\alpha \in (0,1]$ tales que, para todos los $x,y \in \Omega$, $||f(x) f(y)|| \le L||x-y||^{\alpha}$. Probar que f es uniformemente continua en Ω .
- **2.** Sea $f(x) = x^{\alpha}, x \in [0, \infty); \alpha \in (0, 1]$. Probar que f es uniformemente continua.
- 3. Si f es como en 1.), pero para $\alpha > 1$ y su dominio Ω es un abierto conexo, probar que debe ser constante; dar un contraejemplo a ésta afirmación cuando $\alpha = 1$.

Soluciones:

- 1. Fijemos $\epsilon > 0$. Si $\delta > 0$ cumple $L\delta^{\alpha} = \epsilon$ (ó lo que es lo mismo, $\delta = (\epsilon/L)^{1/\alpha}$), si $x,y \in \Omega$ cumplen $\|x-y\| < \delta$, entonces, usando que la función $t \mapsto t^{\alpha}$ es creciente $(t \geq 0)$, $\|f(x) f(y)\| \leq L\|x-y\|^{\alpha} < L\delta^{\alpha} = \epsilon$, y como tal elección de δ sólo depende de ϵ , pero no de los puntos $x,y \in \Omega$, f es uniformemente continua.
- 2. Éste apartado puede abordarse de muchas maneras, pero habida cuenta del Prob 2.1, podemos intentar probar que f cumple las condiciones dichas. Para ello, observamos que si $0 \le x < y$, podemos calcular

$$0 < y^{\alpha} - x^{\alpha} = \alpha \int_{x}^{y} t^{\alpha - 1} dt$$
$$= \alpha \int_{0}^{y - x} (t + x)^{\alpha - 1} dt$$
$$\leq \alpha \int_{0}^{y - x} t^{\alpha - 1} dt$$
$$= (y - x)^{\alpha}$$

dónde en la segunda línea hemos usado el cambio de variable $t\mapsto t+x,\,y$ en la tercera línea, que para $\alpha\in(0,1],\,t^{\alpha-1}$ es no-creciente en $[0,\infty)$. Otras posibilidades hubieran sido explotar que como $\alpha\in(0,1],\,t\mapsto t^\alpha$ es cóncava, y vale 0 para t=0, de dónde es subaditiva, y es fácil probar por otro argumento que $|x^\alpha-y^\alpha|\leq |x-y|^\alpha$, o varias otras más que omito.

3. Observamos que dado $x \in \Omega$, si $B_{\delta}(x) \subset \Omega$ (con $\delta > 0$) y $h \in E$ con $||h|| < \delta$, $x+h \in \Omega$ y podemos escribir $f(x+h) = f(x) + 0 \cdot h + (f(x+h) - f(x))$, con $||f(x+h) - f(x)|| \le L||h||^{\alpha}$, que es $o(||h||), h \to 0$, por ser $\alpha > 1$. Se sigue que en todo $x \in \Omega$, f es diferenciable con diferencial nula. Usando un resultado probado en clase, se sigue que como Ω es un abierto conexo en un espacio normado, que f es constante.

Problema 3.- (2 puntos)

- **1.** Sea (X_i,d_i) , i=1,2 espacios métricos y $X=X_1\times X_2$ (producto cartesiano de X_1,X_2). Pongamos en X $d_X((x,y),(x',y'))=d_1(x,x')+d_2(y,y'); \ x,x'\in X_1,\ y,y'\in X_2$. Probar que (X,d_X) es un espacio métrico en el que $(x_n,y_n)\to (x,y)$ (con (x_n) sucesión en $X_1,\ (y_n)$ sucesión en X_2), $x\in X_1,\ y\in X_2$ sii $x_n\to x$ (en X_1), $y_n\to y$ (en X_2).
- 2. Probar que X es completo si ambos factores lo son, y que es compacto si ambos factores lo son. Generalizar éstos resultados al caso de un producto cartesiano con n factores.

Soluciones:

- 1. Es trivial comprobar que d_X define una métrica en X. $(x_n, y_n) \to (x, y)$ sii $d_1(x_n, x) + d_2(y_n, y) \to 0$, y como las distancias son no-negativas, ésto equivale a que $d_1(x_n, x)$, $d_2(y_n, y) \to 0$, lo cual a su vez equivale a que $x_n \to x$ (en X_1) e $y_n \to y$ (en X_2).
- 2. Usaremos el apartado 1.). Si ambos factores son completos y (x_n, y_n) es una sucesión de Cauchy en X (con $x_n \in X_1, y_n \in X_2$), como $d_1(x_m, x_n), d_2(y_m, y_n) \le d_X((x_m, y_m), (x_n, y_n)), (x_n)$ es de Cauchy en $X_1, (y_n)$ es de Cauchy en X_2, y usando la completitud de ambos espacios, $\exists x \in X_1, \exists y \in X_2 \text{ con } x_n \to x$ (en $X_1), y_n \to y$ (en X_2), y usando el resultado del apartado 1.), $(x_n, y_n) \to (x, y)$ (en X); se sigue que X es X completo. Si, en cambio, suponemos que los factores son compactos, extraemos primero una subsucesión convergente (x_{n_k}) a un $x \in X_1$ (usando la compacidad de X_1) y consideramos la sucesión $(x'_k, y'_k) = (x_{n_k}, y_{n_k})$. Ahora, extraemos una subsucesión (y'_{k_l}) de (y'_k) convergente a un $y \in X_2$ (usando la compacidad de X_2). Si $(x''_l, y''_l) = (x'_{k_l}, y'_{k_l}), x''_l \to x$ (en X_1), $y''_l \to y$ (en X_2), y de nuevo, usando el apartado 1.), $(x''_l, y''_l) \to (x, y)$ (en X), luego X es compacto.

Problema 4.- (3 puntos) Sea (X,d) un espacio métrico y $D \subset X$ no-vacío. Definimos diam(D) como sup $\{d(x,y):x,y\in D\}$ (con el entendimiento de que el supremo es ∞ si ése conjunto de valores no es acotado superiormente); diremos que D es acotado si diam $(D) < \infty$.

- 1. Probar que si $D \subset E \subset X$, con E acotado, entonces D es acotado.
- **2.** Probar que en $Y = X^2 = X \times X$, con distancia $d_Y((x,y),(x',y')) = d(x,x') + d(y,y')$; $x,x',y,y' \in Y$, la función d(x,y) es continua.
- **3.** Probar que si X es compacto, todo subconjunto no-vacío suyo D es acotado y además, si D es cerrado, existen $x,y\in D$ tales que $\operatorname{diam}(D)=d(x,y)$ (indicación: recordar el resultado del Problema 3.2)).

Soluciones:

- **1.** Si $\emptyset \neq D \subset E \subset X$, $\emptyset \neq \{d(x,y): x,y \in D\} \subset \{d(x,y): x,y \in E\}$, y si E es acotado, entonces toda cota superior de $\{d(x,y): x,y \in E\}$ también lo es de $\{d(x,y): x,y \in D\}$, luego $\sup\{d(x,y): x,y \in D\} \leq \sup\{d(x,y): x,y \in E\}$, lo cual quiere decir que $\operatorname{diam}(D) \leq \operatorname{diam}(E) < \infty$, luego D es acotado.
- **2.** Dados puntos $(x,y), (x',y') \in Y$, $d(x,y) \leq d(x,x') + d(x',y) \leq d(x,x') + d(x',y') + d(y',y)$ (aplicando dos veces consecutivas la Desigualdad Triangular). Se sigue que $d(x,y) d(x',y') \leq d(x,x') + d(y',y)$, y por simetría, $d(x',y') d(x,y) \leq d(x,x') + d(y',y)$, de dónde $|d(x,y) d(x',y')| \leq d(x,x') + d(y',y) = d_Y((x,y),(x',y'))$, de dónde la función d(x,y) en Y es continua.
- 3. Por 2.), la función d(x,y) es continua en Y, que es compacto, luego por el Teorema de Weiersstrass alcanza un máximo en cierto punto $(x_0,y_0) \in Y$, lo cual equivale a afirmar que $\operatorname{diam}(X) = \sup\{d(x,y): x,y \in X\} = d(x_0,y_0)$ (para ciertos $x_0, y_0 \in X$); si $\emptyset \neq D \subset X$, usando 1.), se sigue que D es acotado, mientras que si además D es cerrado, por ser subconjunto de X, que es compacto, es él mismo también compacto, luego entonces aplicando el argumento del principio, existe $(x_0,y_0) \in D \times D$ con $\operatorname{diam}(D) = \sup\{d(x,y): x,y \in D\} = d(x_0,y_0)$ (con $x_0, y_0 \in D$).