

Sri Chaitanya IIT Academy, India

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI

A right Choice for the Real Aspirant

ICON CENTRAL OFFICE, MADHAPUR-HYD

 Sec: Sr.IPLCO
 Dt: 01-11-15

 Time: 09:00 AM to 12:00 Noon
 RPTA-10
 Max.Marks: 180

PAPER-1

KEY & SOLUTIONS

PHYSICS

1	ABD	2	ВС	3	A	4	ВС	5	D	6	ABC
7	AC	8	С	9	AD	10	AC	11	5	12	3
13	8	14	6	15	3	16	0	17	6	18	6
19	3	20	0								

CHEMISTRY

21	ABCD	22	CD	23	ABC	24	ABCD	25	ACD	26	ABD
27	ABD	28	AB	29	ABC	30	ABD	31	4	32	3
33	4	34	5	35	7	36	2	37	8	38	3
39	9	40	3								

MATHS

41	BCD	42	AC	43	ABC	44	ABD	45	ABCD	46	ABD
47	BCD	48	AB	49	AD	50	ABCD	51	3	52	5
53	2	54	7	55	1	56	6	57	1	58	9
59	2	60	3								

SOLUTIONS PHYSICS

1. After imparting impulse

$$V_{C_1} = \frac{J}{m}$$

About C.M C_1 moves in circle with speed $\frac{J}{2m}$

So,
$$\frac{Gm^2}{4R^2} - N = \frac{m\left(\frac{J}{2m}\right)^2}{R}$$

$$\Rightarrow N = \frac{Gm^2}{8R^2}$$

2. Field due to hollow hemispherical shell at its curvature is $\pi G \sigma = \frac{GM}{2R^2}$ So due to thin differential shell of thickness dr

$$\int dE = \int \frac{GdM}{2r^2}$$

$$= \int \frac{G\rho 2\pi r^2 dr}{2r^2} = G\rho \pi R$$

$$= \frac{GM}{\frac{2}{3}\pi R^3} \pi R = \frac{3GM}{2R^2}$$

- 3. For a bound system, M.E of the system in C.M frame should be strictly negative
- 8. $E.4\pi r^2 = \int \frac{\rho 4\pi r^2 dr}{\varepsilon_0}$ $\Rightarrow n = \frac{1}{2}$
- 9. Use symmetry and dimensional analysis
- 10. Using super position $E_A = 0$ due to both hemricylinder so E due to each at A should be perpendicular to OA

11. Radii are R and 4R and angular velocities are w and $\frac{w}{8}$

$$\omega_{rel} = \frac{V_{rel}}{R} = \frac{R\omega - \frac{R\omega}{2}}{3R}$$

$$=\frac{\omega}{6}$$

$$\omega_{rel} = \frac{R\omega + \frac{R\omega}{2}}{5R}$$
$$-\frac{3\omega}{2}$$

12.
$$\frac{x}{y} = \frac{\frac{1}{2}(PS)^2 d\theta}{\frac{1}{2}(SQ)^2 d\theta} = \frac{(PS)^2}{(SQ)^2}$$

13.
$$\frac{GM}{R^2} = \frac{G(m+M)}{(R+h)^2}$$
 here

$$M = \rho \frac{4}{3} \pi R^3$$

$$m = \sigma 4\pi R^2 h$$

14. Take field due to each sheet and integrate or use G gravitational equivalent of gauss law

$$\int \vec{E}.\vec{ds} = -4\pi G m_{enclosed}$$

Sec: Sr.IPLCO

15.
$$\frac{GMm^{1}}{(R-r)^{2}} - \frac{Gmm^{1}}{r^{2}} = m^{1}(R-r)\frac{GM}{R^{3}}$$

$$(M - earth, m - moon, m' - object)$$

$$\frac{GMm'}{R^2} \left(1 - \frac{r}{R}\right)^{-2} - \frac{Gmm'}{r^2} = \frac{GMm'}{R^2} - \frac{GMm'r}{R^3}$$

$$\frac{GMm'}{R^2}\left(1+\frac{2r}{R}\right) - \frac{Gmm'}{r^2} = \frac{GMm'}{R^2} - \frac{GMm'r}{R^3}$$

$$\Rightarrow x = 3$$

16. Zero due to symmetry

17.
$$\frac{q_1 q_2}{4\pi\varepsilon_0 r^2} \propto v \frac{dv}{dr}$$

$$\Rightarrow v^2 \propto \frac{q_1 q_2}{4\pi\varepsilon_0 r}$$

$$\Rightarrow \frac{dr}{dt} \propto \sqrt{\frac{q_1 q_2}{4\pi\varepsilon_0 r}} \Rightarrow r^{3/2} \propto \sqrt{\frac{q_1 q_2}{4\pi\varepsilon_0}} t$$

18. Assume the energy missing in the conductor's material volume to be present and substract these values from initial to final situation

19.
$$E_{hollow} = \frac{\sigma}{4\varepsilon_0}$$

$$E_{solid} = \frac{\rho R}{4\varepsilon_0}$$

$$\sigma = \rho R$$

$$\frac{Q_{1}}{4\pi R^{2}} = \frac{Q_{2}R}{\frac{4}{3}\pi R^{3}}$$

$$\Rightarrow \frac{Q_1}{Q_2} = 3$$

20. $\vec{E} = \vec{O}$ inside conductor.