

Multi-corner Parametric Yield Estimation via Bayesian Inference on Bernoulli Distribution with Conjugate Prior

Jiahe Shi¹, Zhengqi Gao¹, Jun Tao¹, Yangfeng Su², Dian Zhou³ and Xuan Zeng¹
1 ASIC & System State Key Lab, School of Microelectronics, Fudan University, Shanghai, China,
2 School of Mathematical Sciences, Fudan University, Shanghai, China,
3 Dept. of EE, University of Texas at Dallas, Dallas, USA

2020 IEEE International Symposium on Circuits and Systems Virtual, October 10-21, 2020

Parametric Yield Estimation

Guarantee the robustness of circuit designs

Parametric Yield Estimation methods

- Statistical approaches
 - Estimate the PDF of the performance of interests (Pols) from a large number of transistor-level simulations
- Model-based methods
 - Approximate the Pols by analytical functions of process variations
 - Estimate the PDFs of Pols via numerical methods

Parametric Yield Estimation

CHALLENGES

- Measuring the exact value of a continuous Pol is expensive
 - VCO

- Circuit Performances over all process, voltage and temperature (PVT) corners are correlated
 - Different process corners

Parametric Yield Estimation

CHALLENGES

- Measuring the exact value of a continuous Pol is expensive
 - VCO

Model the circuit output as a Bernoulli random variable

- Circuit Performances over all process, voltage and temperature (PVT) corners are correlated
 - Different process corners

Encode the correlation of yields over all corners

Multi-corner Yield Estimation

Example: Access operation

 χ :

 β_k :

$$x = \begin{cases} 1 & \text{if success} \\ 0 & \text{if fail} \end{cases}$$

$$p(x|\beta_k) = \beta_k^x \cdot (1 - \beta_k)^{1-x}$$

Output of the binary testing Parametric yield at the *k*-th corner

Multi-corner Yield Estimation

Simplified SRAM array with A cells

Example: Access operation

$$x = \begin{cases} 1 & \text{if success} \\ 0 & \text{if fail} \end{cases} \qquad \beta_k:$$

$$p(x|\beta_k) = \beta_k^x \cdot (1 - \beta_k)^{1-x} \quad \frac{N}{K}$$

β:

Likelihood

$$p(\mathbf{D}|\boldsymbol{\beta}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \beta_k^{x_k^n} \cdot (1 - \beta_k)^{1 - x_k^n}$$

$$= \prod_{k=1}^{K} \beta_k^{M_k} \cdot (1 - \beta_k)^{N - M_k}$$

where,
$$M_k = \sum_{n=1}^N x_k^n$$

Output of the binary testing
Parametric yield at the *k*-th corner
Training dataset over all corners
Number of data at one corner
Number of corners

$$\boldsymbol{\beta} = [\beta_1 \ \beta_2 \cdots \beta_K]^T$$

Multi-corner Yield Estimation

Problem definition:

$$p(\boldsymbol{\beta}|\mathbf{D}) \propto p(\boldsymbol{\beta}) \cdot p(\mathbf{D}|\boldsymbol{\beta})$$
 $\max_{\boldsymbol{\beta}} p(\boldsymbol{\beta}|\mathbf{D})$

 $p(\beta|D)$: Posterior distribution

 $p(\beta)$: Prior distribution

 $p(D|\beta)$: Likelihood

- Bayesian Inference method based on Bernoulli distribution (BI-BD) [TCAD 2019]
 - Models the circuit output as a Bernoulli random variable
 - Adopts a multivariate Gaussian distribution as prior distribution
 - Calculate the multi-corner yields via posterior distribution approximation

Can not analytically derive the exact posterior but approximate it via an iterative method

Bayesian Inference

Simplified SRAM array with A cells

Likelihood function

$$\begin{split} p\!\left(\mathbf{D}\!\left|\mathbf{\beta}\right) &= \prod_{n=1}^{N} \prod_{k=1}^{K} \beta_{k}^{x_{k}^{n}} \cdot \!\left(1 - \beta_{k}\right)^{1 - x_{k}^{n}} \\ &= \prod_{k=1}^{K} \beta_{k}^{M_{k}} \cdot \!\left(1 - \beta_{k}\right)^{N - M_{k}} \quad \bullet \quad \end{split}$$
 where, $M_{k} = \sum_{n=1}^{N} x_{k}^{n}$

 Prior distribution conjugate to the likelihood function

$$p(\boldsymbol{\beta}|\boldsymbol{\alpha},L) = \prod_{k=1}^{K} p(\beta_k|\alpha_k,L) = \frac{1}{Z_1} \cdot \prod_{k=1}^{K} \beta_k^{\alpha_k} \cdot (1-\beta_k)^{L-\alpha_k}$$

where,
$$Z_1 = \prod_{k=1}^K B(\alpha_k + 1, L + 1 - \alpha_k)$$
 α_k : Hyper-parameter at k -th corner Hyper-parameter

The prior distribution is parametrized by the hyper-parameters $\Theta = \{L, \alpha\},\$ $\alpha = [\alpha_1 \ \alpha_2 \cdots \alpha_K]^T \in \Re^K$

The priors over different corners share a unique hyper-parameter L

Bayesian Inference

with A cells

$$p(\boldsymbol{\beta}|\mathbf{D},\boldsymbol{\alpha},L) \propto p(\boldsymbol{\beta}|\boldsymbol{\alpha},L) \cdot p(\mathbf{D}|\boldsymbol{\beta})$$

Posterior distribution

$$p(\boldsymbol{\beta}|\mathbf{D},\boldsymbol{\alpha},L) = \frac{1}{Z_2} \cdot \prod_{k=1}^K \beta_k^{\alpha_k + M_k} \cdot (1 - \beta_k)^{N + L - (\alpha_k + M_k)}$$

where,
$$Z_2 = \prod_{k=1}^K B(\alpha_k + M_k + 1, N + L + 1 - \alpha_k - M_k)$$

The posterior distribution is also a product of K Beta distributions

Z₂ is a normalization constant toguarantee that the integration ofthe posterior is equal to 1

Bayesian Inference

Simplified SRAM array

with A cells

$$p(\boldsymbol{\beta}|\mathbf{D},\boldsymbol{\alpha},L) = \frac{1}{Z_2} \cdot \prod_{k=1}^K \beta_k^{\alpha_k + M_k} \cdot (1 - \beta_k)^{N + L - (\alpha_k + M_k)}$$

Maximum-A-Posteriori Estimation

$$\ln p(\boldsymbol{\beta}|\mathbf{D},\boldsymbol{\alpha},L) = \sum_{k=1}^{K} \left[(\alpha_k + M_k) \cdot \ln \beta_k + (N + L - \alpha_k - M_k) \cdot \ln (1 - \beta_k) \right] - C$$

where, $C = \ln Z_2$ Independent of β

$$\frac{\partial}{\partial \boldsymbol{\beta}} \ln p(\boldsymbol{\beta} | \mathbf{D}, \boldsymbol{\alpha}, L) = 0$$

$$\boldsymbol{\beta}^{\text{MAP}} = \frac{\boldsymbol{\alpha} + \mathbf{M}}{L + N}$$

 $\mathbf{M} = [M_1 \ M_2 \cdots M_K]^T \in \mathfrak{R}^K$

Hyper-parameter Inference

Hyper-parameter Inference

Simplified SRAM array with A cells

$$\max_{\boldsymbol{\alpha},L} \quad \prod_{k=1}^{K} \frac{B(\alpha_k + M_k + 1, L + N - \alpha_k - M_k + 1)}{B(\alpha_k + 1, L + 1 - \alpha_k)}$$

Multi-start Quasi-Newton (MQN) method

- Hyper-parameters initialization
 - Randomly select N_s samples at each corner, where $N_s = r \times N$
 - Generate a small dataset $D_s = \{x_k^n; n = 1, 2, ..., N_s; k = 1, 2, ..., K\}$

•
$$\alpha_k = M_{s,k} = \sum_{n=1}^{N_s} x_k^n$$
 $L = N_s$ $\alpha = [\alpha_1 \ \alpha_2 \cdots \ \alpha_K]^T$

- Based on hyper-parameters initialization, generate several trail points
- Solve the optimization problem form each trail point via Quasi-Newton method
- Choose the best solution among all local optimums as the final result.

Example: SRAM Access Failure

- 65nm CMOS Technology
- Failure definition:
 - Differential bit-line voltage of any cell ≤ the SA input offset voltage
- PVT corners:
 - 5 process corners: TT, SS, FF, FS and SF

Example: SRAM Access Failure

	Relative Errors (%)						
# of samples	60	100	140	180	220	260	300
MC	5.34	4.33	3.65	3.15	2.62	2.25	2.00
BI-BD	4.59	3.76	3.17	2.75	2.29	1.97	1.76
BI-BC	3.76	2.72	2.54	2.41	1.98	1.67	1.47

Conclusion

- Bayesian Inference method based-on Bernoulli distribution with conjugate prior (BI-BC)
 - Using a product of Beta distributions as the conjugate prior
 - encode the performance correlation among different corners
 - Hyper-Parameter Inference by MQN method
 - BI-BC achieves up to 2.0× cost reduction over the state-of-the-art methods without surrendering any accuracy

