AUTHOR QUERY FORM

Journal: Appl. Phys. Lett.

Article Number: 076431APL

Please provide your responses and any corrections by annotating this PDF and uploading it according to the instructions provided in the proof notification email.

Dear Author,

Below are the queries associated with your article; please answer all of these queries before sending the proof back to AIP. Please indicate the following:

Figures that are to appear as color online only (i.e., Figs. 1, 2, 3) (this is a free service). Figures that are to appear as color online and color in print (a fee of \$325 per figure will apply).

Article checklist: In order to ensure greater accuracy, please check the following and make all necessary corrections before returning your proof.

- 1. Is the title of your article accurate and spelled correctly?
- 2. Are the author names in the proper order and spelled correctly?
- 3. Please check affiliations including spelling, completeness, and correct linking to authors.
- 4. Did you remember to include acknowledgment of funding, if required, and is it accurate?

Location in article	Query / Remark: click on the Q link to navigate to the appropriate spot in the proof. There, insert your comments as a PDF annotation.	
AQ1	Sections headings are not allowed in APL. Therefore, all headings have been deleted throughout the article.	
AQ2	Please provide publisher name in Ref. 17.	
AQ3	Please provide page number in Refs. 5, 7, and 21.	
AQ4	Please verify the change in page number in Ref. 10.	
AQ5	We were unable to locate a digital object identifier (doi) for Ref. 20. Please verify and correct author names and journal of (journal title, volume number, page number, and year) as needed and provide the doi. If a doi is not available, no other inform is needed from you. For additional information on doi's, please select this link: http://www.doi.org/.	

Thank you for your assistance.

11

12

13

14

15

16

18

19

20

21

22

23

24

25

26

27

45

46

48

49

50

51

APPLIED PHYSICS LETTERS 105, 000000 (2014)

A strained silicon cold electron bolometer using Schottky contacts

T. L. R. Brien, ^{1,a)} P. A. R. Ade, ¹ P. S. Barry, ¹ C. Dunscombe, ¹ D. R. Leadley, ² D. V. Morozov, ¹ M. Myronov, ² E. H. C. Parker, ² M. J. Prest, ² M. Prunnila, ³ R. V. Sudiwala, ¹ T. E. Whall, ² and P. D. Mauskopf ^{1,4} 3 School of Physics and Astronomy, Cardiff University, Queen's Buildings, The Parade, Cardiff CF24 3AA,

United Kingdom

²Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

³VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT Espoo, Finland

⁴Department of Physics and School of Earth and Space Exploration, Arizona State University,

10 650 E. Tyler Mall, Tempe, Arizona 85287, USA

(Received 20 May 2014; accepted 23 July 2014; published online xx xx xxxx)

We describe optical characterisation of a Strained Silicon Cold Electron Bolometer (CEB), operating on a 350 mK stage, designed for absorption of millimetre-wave radiation. The silicon cold electron bolometer utilises Schottky contacts between a superconductor and an n⁺⁺ doped silicon island to detect changes in the temperature of the charge carriers in the silicon, due to variations in absorbed radiation. By using strained silicon as the absorber, we decrease the electron-phonon coupling in the device and increase the responsivity to incoming power. The strained silicon absorber is coupled to a planar aluminium twin-slot antenna designed to couple to 160 GHz and that serves as the superconducting contacts. From the measured optical responsivity and spectral response, we calculate a maximum optical efficiency of 50% for radiation coupled into the device by the planar antenna and an overall noise equivalent power, referred to absorbed optical power, of 1.1 × 10⁻¹⁶ W Hz^{-1/2} when the detector is observing a 300 K source through a 4 K throughput limiting aperture. Even though this optical system is not optimized, we measure a system noise equivalent temperature difference of 6 mK Hz^{-1/2}. We measure the noise of the device using a crosscorrelation of time stream data measured simultaneously with two junction field-effect transistor amplifiers, with a base correlated noise level of 300 pV Hz^{-1/2} and find that the total noise is consistent with a combination of photon noise, current shot noise, and electron-phonon thermal noise. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4892069]

Photon noise limited detection of millimetre-wave radia-AQ1 28 tion has been demonstrated with a number of cryogenic 29 detectors such as: semiconductor bolometers, transition edge 30 sensors, and kinetic inductance detectors. ^{1,2} A bolometer 31 consists of a thermally isolated absorber that converts 32 absorbed radiation into thermal energy, which is detected by 33 means of a sensitive thermometer. The concept of using the weak coupling between electrons and phonons at low tem-35 peratures, combined with a normal metal-insulator-superconductor (NIS) tunnel junction thermometer, to make a fast and 37 sensitive hot electron bolometer, was first proposed by Nahum, Richards, and Mears.^{3,4} Dual normal metal-insulator-superconductor (SINIS) junctions, coupled to an absorbing metallic island, can be used to simultaneously act as a 41 microrefrigerator by extracting heat from the electrons and as a bolometric detector. The wavelengths that the island absorbs can be defined by patterning the superconducting 44

> Schmidt et al.⁵ describe how the use of a combined microwave and DC biasing signal, along with frequency domain multiplexing techniques, can be used to realise large imaging arrays (up to 10⁵ pixels) of Cold Electron Bolometers (CEBs).

> Detailed calculations of the characteristics of these CEBs indicate that they should exhibit a combination of fast response speeds ($<1 \mu s$) and high sensitivity. Achieving high

a)Electronic mail: tom.brien@astro.cf.ac.uk

leads into an antenna.

sensitivities with metal-based cold electron bolometers requires fabrication of submicron metal islands.

Replacing the normal metal with a degenerately doped silicon offers reduced electron-phonon coupling compared to standard metals and thus gives higher sensitivity for a given island volume.⁶ It has been proposed⁷ that using a strained silicon absorber enables fabrication of detectors with photon noise limiting sensitivity using standard photolithographic techniques. Initial reports of optical noise equivalent power (NEP) for metal based cold electron bolometers have been published in recent years.^{8,9} Most of these measurements have been based on radiation absorbed from a cold blackbody source, this does not allow for the spectral response of the detector to be studied. They have also all reported optical noise equivalent powers limited by the readout electronics. Here, we present optical measurements of a strained silicon cold electron bolometer designed to absorb millimetre-wave radiation, these measurement have been taken with the detector looking out of a window in the cryostat which allowed for a number of sources, including a Fourier transform spectrometer, to be observed.

The electrothermal properties of both the normal metalinsulator-superconductor and the symmetric (SINIS) structures have been well studied. ^{3,4,10–13} Fig. 1 shows a typical normal metal-insulator-superconductor structure (shown in the presence of an external bias such that $eV = \Delta$). These devices have been shown¹³ to be able to reduce electron temperature from 300 mK to below 100 mK. For a sensitive

55

56

57

60

61

64

70

71

72

73

74

82

83

84

85

86

87

88

89

90

91

101

102 103

104

105

106

FIG. 1. Energy bands for a biased normal metal-insulator-superconductor NIS structure. In order for electrons to tunnel from the normal metal (left) into the superconductor (right), we require that $eV > \Delta - k_B T_e$, where V is the voltage across the structure due to the bias, T_e is the electron temperature, and Δ is half the superconducting gap.

bolometric detector, we would like the absorber (the normal metal in this case) to have as small a volume as possible.

A similar structure, superconductor-semiconductor-superconductor (SSmS), exists where the normal metal is replaced by a doped semiconductor and the insulator replaced by a Schottky contact formed between the semiconductor and the superconductor. These devices have the advantage of decreased electron-phonon coupling compared to the normal metal based type of device and reduced electron density. The current, *I*, flowing through each of the symmetric junctions is given by

$$I = \frac{1}{eR_N} \int_{\Delta}^{\infty} \frac{E}{\sqrt{E^2 - \Delta^2}} \times [f(E - eV/2, T_e)]$$
$$-f(E + eV/2, T_e)] dE, \qquad (1)$$

93 where R_N is the normal-state resistance due to tunnelling 94 through the insulating barrier, Δ is half the superconducting 95 bandgap, V is the voltage across the structure, and f(E,T) is 96 the Fermi distribution for electrons at temperature T_e . 97 Associated with this current is a flow of heat from the central 98 island which dissipates a power, P, within the device of

$$P = IV + \frac{2}{e^2 R_N} \int_{\Delta}^{\infty} \frac{E^2}{\sqrt{E^2 - \Delta^2}} \times [2f(E, T_s) - f(E - eV/2, T_e)] dE.$$
 (2)

99 This power is bias dependent and is negative (cooling) for bias voltages $eV \lesssim 3\Delta$.

In a cold electron bolometer, when the absorber is heated by incident optical power, it is this cooling power, associated with the most energetic of charges tunnelling out of the absorber, which removes the heat. Since the cooling (thermal resetting) of the bolometer is carried out directly by electron diffusion (as opposed to the long, weak, thermal links required by many of today's most sensitive

bolometers^{14–16}), the thermal time constant associated with 108 the cold electron bolometer is governed by the tunnelling 109 time. This can be¹⁷ as low as 10 ns, whereas other types of 110 detector¹⁸ have response times of the order of 1 ms.

In addition to this cooling power, the electrons are also 112 heated or cooled by the weak thermal link to the phonons. 113 This heating term, P_{e-ph} , is given by 114

$$P_{e-ph} = \Sigma \Omega (T_e^{\beta} - T_{ph}^{\beta}), \tag{3}$$

where Σ is a material constant that has been measured be $2 \times 10^7 \, \mathrm{W \, K^{-6} \, m^{-3}}$; Ω is the volume of the bolometer's life absorber; T_{ph} and T_e are the phonon and electron temperatures, respectively, and the power β has been found be 6. In From this, we can define a thermal conductance, G, from the phonons to the electrons as

$$G = \frac{\mathrm{d}P}{\mathrm{d}T_e} = \beta \Sigma \Omega T_e^{\beta - 1}.$$
 (4)

The total NEP for the cold electron bolometer is comprised 121 of several terms and has been fully derived by Golubev and 122 Kuzmin²⁰ to be 123

$$NEP_{CEB}^{2} = \frac{\langle \delta V^{2} \rangle_{\text{amp}}}{S^{2}} + 2\beta k_{B} \Sigma \Omega \left(T_{e}^{\beta+1} + T_{ph}^{\beta+1} \right) + \langle \delta P^{2} \rangle - 2 \frac{\langle \delta P \delta I \rangle}{\partial I / \partial V S} + \frac{\langle \delta I^{2} \rangle}{\left(\partial I / \partial V S \right)^{2}}, \quad (5)$$

where $\langle \delta V^2 \rangle_{\rm amp}$ is the noise of the readout amplifier and S is 124 the responsivity of the detector, which is a function of bias, 125 $\langle \delta P \rangle$ is the heat flow noise, and $\langle \delta I \rangle$ is the current noise. The 126 use of strained silicon reduces the constant Σ by a factor of 127 25 compared to unstrained silicon, 19 this results in a corresponding improvement in the second term of Eq. (5) (the 129 phonon noise).

The other dominant limiting factor to the noise equivalent power will be due to the absorption of photons into the strained silicon. This photon noise term is

$$NEP_{photon}^{2} = 2h\nu P_{opt} + \frac{P_{opt}^{2}}{\delta\nu},$$
 (6)

where ν and P_{opt} are the frequency and power of the incident radiation, respectively, and $\delta\nu$ is the optical bandwidth.

One advantage of the silicon based cold electron bolom- 136 eter compared to those utilising a metal absorber (SINIS) is 137 that since the tunnel barrier is formed by a Schottky contact, 138 there is no need to fabricate separate insulating layers. The 139 strained silicon cold electron bolometer, studied in this work, 140 consists of three elements: First, the silicon substrate has an 141 epitaxially grown 2.5 µm thick relaxed SiGe (80% silicon) 142 straining layer. On top of the straining layer is a 30 nm thick 143 layer of n⁺⁺ doped silicon $(N_D = 4 \times 10^{19} \,\mathrm{cm}^{-3})$ etched to 144 form a rectangular mesa with an area of $38 \,\mu\mathrm{m} \times 14 \,\mu\mathrm{m}$. 145 Finally, the top layer is a 100 nm thick film of e-beam evaporated aluminium. This final layer is patterned to form both 147 the contacts to the doped silicon absorber and a twin slot 148 antenna. The contacts to the absorber are both $30 \, \mu \text{m} \times 5 \, \mu \text{m}$ 149 and have a give a tunnelling resistance of 290 Ω . The twin 150 slot antenna has been designed to couple 160 GHz radiation 151

PROOF COPY [L14-04602R1] 076431APL

000000-3 Brien et al.

152

153

154

155

156

157

158

159

161

162

163

164

166

167

168

169

170

171

172

173

174

175

176

177

178

179 180 Appl. Phys. Lett. 105, 000000 (2014)

Total Pages: 6

FIG. 2. (a) Cross-sectional view of cold electron bolometer structure. (b) Optical image of a cold electron bolometer. A small island absorber of n++ doped silicon ((a)-green and (b)-highlighted green) sits atop a strained SiGe virtual substrate ((a)—light green and (b) brown); the top layer of aluminium ((a) blue and (b)-beige) forms both the antenna structure and the contacts to the absorber; the small slots, which can be seen at the edges of the device, allows DC measure of the cold electron bolometer without affecting the antenna coupling.

204

to the central absorber and the coupling has been simulated with Ansoft's HFSS software prior to fabrication. The device design is shown in Fig. 2.

A schematic of the testing setup is shown in Fig. 3. The detector was housed in a liquid helium cryostat and cooled to 350 mK using a helium-3 refrigerator. Radiation, visible through a window in the outer cryostat shield, was fed in to a pair of back-to-back horns, the beam from this horn pair was then focussed on to the detector's antenna by a hemispherical silicon lens. This optical coupling scheme was not optimised for high efficiency but designed to minimise stray light coupling to the device.

The detector was current biased using a differential voltage source and a pair of cold $1 M\Omega$ biasing resistors. The voltage output of the detector was fed into two matched junction field-effect transistor (JFET) differential amplifiers, each of which had an input referred noise of $2 \text{ nV Hz}^{-1/2}$. The output of each of these amplifiers was then passed to a computer which cross-correlated the signal in real time and resulted in a final input referred correlated noise, after averaging, of $300 \,\mathrm{pV}\,\mathrm{Hz}^{-1/2}$ for the readout system. For optical testing, we used an eccosorb load chopped between 300 K and 77 K.

The silicon cold electron bolometer has been tested both dark and optically loaded. Dark measurements consist of current-voltage (IV) characterisation at various bath (phonon) temperatures. The optical response of the device to a variable temperature blackbody source has also been measured. Fig. 4 compares the current-voltage relationship for the detector in these various conditions; it can be seen that the optically

FIG. 3. Experimental setup, radiation is focussed onto the detector chip via a pair of back-to-back horns and a silicon lens. Optical filters are placed before and after the horns and have the effect of limiting the radiation seen by the detector to an upper limit of 300 GHz. The detector is biased via a simple voltage generator and biasing resistors. The voltage output of the detector is sent into two JFET based amplifiers (each with an input referred noise of $2\,\text{nV}\,\text{Hz}^{-1/2})$ and the output of these is correlated to achieve a final input referred noise of 300 pV Hz^{-1/2}.

loaded measurements correspond to higher electron tempera- 181 ture in the device and therefore more linear current-voltage 182 curves compared to the corresponding unloaded measure- 183 ment. In fact, the optically loaded curves are similar to a dark 184 measurement at a much higher phonon temperature.

From the measured voltage for a given current bias and 186 using Eq. (1), we can calculate the temperature of the electrons. This model, shown as the lines in Fig. 4, shows that a 188 high quality fit to the data (open circles) can be achieved 189 based on this algorithm in all cases. The electron temperatures found from this fit were 570 mK and 640 mK at zero 191 bias for the 77 K and 300 K illuminations. The increase from 192 the phonon temperature of 350 mK is accounted for by the 193 incident power heating the electrons. At a bias corresponding 194 to a voltage of $\sim 2\Delta$ across the detector, the minimum electron temperatures achieved for the two illumination levels 196 were 350 mK and 500 mK. By use of Eq. (3) at zero bias, 197 combined with the dimensions of the absorbing island and 198 the measured value of Σ (2.7 × 10⁷ W K⁻⁶ m⁻³) and assuming the electron temperature is significantly greater than that 200 of the phonons, we compute the absorbed power to be 10.5 201 pW and 21.5 pW for the two load temperatures. We believe 202 that there is a contribution of approximately 5 pW from stray 203 light to both of these powers.

FIG. 4. IV characteristics and model fit. Solid lines optical measurements; dashed lines dark measurements. Red – 77 K source; green – 300 K source; blue $-T_{ph} = 350 \,\mathrm{mK}$; black $-T_{ph} = 550 \,\mathrm{mK}$. There is a clear shift of the IV towards the linear as the incident power is increased. Lines-model fit based on T_e fitting in Eq. (1). Circles—heavily reduced experimental data. Inset variation in electron temperature with bias; colours as in main figure.

PROOF COPY [L14-04602R1] 076431APL

000000-4 Brien et al.

205

206

207

208

209

210

211

212

213

215

216

217

218 219

220

221

222

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

Appl. Phys. Lett. 105, 000000 (2014)

The responsivity, at a particular current bias, of the cold electron bolometer can be calculated from the change in the voltage when the incident power changes by a known amount. From the calculated absorbed powers for the two illuminations and the voltage changes resulting from this change (seen in Fig. 4), we calculate the responsivity to have a maximum of $7.9 \times 10^6 \,\mathrm{V\,W^{-1}}$ for the 77 K (10.5 pW) source and $2.8 \times$ 10⁶ V W⁻¹ for the room temperature (21.5 pW) source. In both the cases, the maximum responsivity occurs when the voltage across the device is just below 2Δ , as is expected. Fig. shows the noise equivalent power calculated from these results. For both the 77 K and the 300 K loading, this is dominated by photon noise. From Fig. 5, we see that the 77 K noise equivalent power is $1.1 \times 10^{-16} \,\mathrm{W} \,\mathrm{Hz}^{-1/2}$.

The speed of the detector can be found from the roll-off in the white noise level from the photon noise or from measuring the change in responsivity for a modulated signal as a function of frequency. We attempted to measure this using a coherent 150 GHz tunable source which could be chopped on and off at frequencies up to 6 kHz but did not see any reduction in the signal and we also did not see any roll-off in the noise power (as seen in Fig. 5) up to the bandwidth of the readout amplifier (100 kHz). From this, we conclude that the time-constant of this detector is less than 1 μ s.

From Eq. (5), we compute that the limit on the electrical (dark) noise equivalent power, for optical loading less than 1 pW, from the electron-phonon interaction is $8.3 \times 10^{-18} \,\mathrm{W\,Hz^{-1/2}}$, this compares well to the "dark" noise equivalent power estimations for hot electron bolometer type devices operating at comparable phonon temperawhich share a common noise limit in these circumstances. The current proof of concept detector has a very large absorbing element, if this was reduced by a factor of 10 (which is still larger than the absorbing element of the comparable hot electron bolometer²¹ and still possible with standard photolithography) the phonon noise limit would be reduced to $2.6 \times 10^{-18} \,\mathrm{W \, Hz^{-1/2}}$ for the same operating temperature.

FIG. 5. Noise equivalent power for a SiCEB, as a function of readout frequency, operating at optimum bias ($eV = 2\Delta$) with 10.5 pW of absorbed optical power. Left inset-measured device noise (blue) and amplifier noise limit (red). Right inset—reduction in amplifier noise with averaging for two JFET amplifiers operating in cross-correlated mode.

FIG. 6. Response of the strained silicon cold electron bolometer to a Fourier transform spectrometer with a mercury arc lamp source. Red—response to a vertically polarised source; green-horizontally polarised source; highlighted region—expected frequency range of the antenna's 3 dB response.

We have also measured the response of the strained sili- 243 con cold electron bolometer as a function of the frequency of 244 incident radiation. This was performed in both linear polar- 245 isations; since the detector used a twin-slot antenna to couple 246 radiation, it was expected that there would be more response 247 in one polarisation. The measured spectral response is shown 248 in Fig. 6. The measured response has a cutoff of 300 GHz due 249 to the optical filters in place. The highlighted region denotes 250 the expected frequency range of the twin-slot antenna. There 251 is a clear excess response in this region in the vertical polar- 252 isation, parallel to the twin slot antenna. The peak in the hori-253 zontal polarisation may be attributed to response in the 254 coplanar waveguide (CPW), which couples radiation to the 255 absorber and is also due to the cuts in the aluminium (seen in 256 Fig. 2(b)), which break the DC continuity around the detec- 257 tor. Both these cuts and the coplanar waveguide are orthogo- 258 nal to the twin-slot antenna. The plateau level, around half of 259 the maximum response, is due to a combination of photons 260 directly splitting Cooper pairs in the aluminium along with 261 direct absorption in the doped silicon mesa, general broaden- 262 ing of the absorption spectrum due to the silicon lens and the 263 integrating cavity in which the detector was housed.

We have demonstrated a detector that utilises direct elec- 265 tron cooling via Schottky tunnelling contacts between alu- 266 minium and strained silicon. We have shown that this 267 detector has a photon noise limited noise equivalent power of 268 $1.1 \times 10^{-16} \, \text{W} \, \text{Hz}^{-1/2}$ when observing a 77 K blackbody and 269 under low optical loading conditions has an electrical or dark 270 noise equivalent power, at 350 mK, of 8.3×10^{-18} W Hz^{-1/2}. 271 The time constant of this detector has been determined to be 272 less than 1 μ s, which compares extremely favourably to other 273 detector types with similar noise equivalent power.

This work has been financially supported by the EPSRC 276 through Grant No. EP/F040784/1.

274 275

277 278

280

¹D. Morozov, P. Mauskopf, P. Ade, M. Ridder, P. Khosropanah, M. Bruijn, 279 J. Van der Kuur, H. Hoevers, J. Gao, and D. Griffin, IEEE Trans. Appl. Supercond. 21, 188 (2011).

J_ID: APPLAB DOI: 10.1063/1.4892069 Date: 26-July-14 Page: 5 Total Pages: 6

PROOF COPY [L14-04602R1] 076431APL

000000-5 Brien et al.

324

Appl. Phys. Lett. 105, 000000 (2014)

Dobbie, M. Myronov, R. J. H. Morris, T. E. Whall, E. H. C. Parker, and D. R. Leadley, Appl. Phys. Lett. 98, (2011). R. Leadley, Appl. Phys. Lett. 99, (2013). R. Leadley, Appl. Phys. Lett. 98, (2011). R. Leadley, Appl. Phys. Lett. 98, (20						
3M. Nahum, P. Richards, and C. Mears, IEEE Trans. Appl. Supercond. 3, 2124 (1993). 286		282	² S. Doyle, P. Mauskopf, J. Naylon, A. Porch, and C. Duncombe, J. Low	¹³ J. P. Pekola, T. T. Heikkilä, A. M. Savin, J. T. Flyktman, F. Giazotto, and	303	
285 2124 (1993). 286 4M. Nahum, T. M. Eiles, and J. M. Martinis, Appl. Phys. Lett. 65, 3123 287 (1994). 288 5D. R. Schmidt, K. W. Lehnert, A. M. Clark, W. D. Duncan, K. D. Irwin, 289 N. Miller, and J. N. Ullom, Appl. Phys. Lett. 86, ■ (2005). 290 6R. Leoni, New Astron. Rev. 43, 317 (1999). 291 7J. T. Muhonen, M. J. Prest, M. Prunnila, D. Gunnarsson, V. A. Shah, A. 292 Dobbie, M. Myronov, R. J. H. Morris, T. E. Whall, E. H. C. Parker, and D. 293 R. Leadley, Appl. Phys. Lett. 98, ■ (2011). 294 8E. Otto, M. Tarasov, P. K. Grimes, A. Chekushkin, L. S. Kuzmin, and G. 295 Yassin, Supercond. Sci. Technol. 26, 085020 (2013). 296 9M. Tarasov, L. Kuzmin, V. Edelman, S. Mahashabde, and P. De 297 Bernardis, IEEE Trans. Appl. Supercond. 21, 3635 (2011). 4Q4 298 10 J. Pekola, Nature 435, 889 (2005). 300 (1996). 301 12 A. M. Savin, M. Prunnila, P. P. Kivinen, J. P. Pekola, J. Ahopelto, and A. 306 15M. D. Audley, G. de Lange, JR. Gao, P. Khosropanah, M. Ridder, L. 307 Ferrari, W. M. Laauwen, M. Ranjan, P. D. Mauskopf, D. Morozov, and N. 308 A. Trappe, Proc. SPIE 8452, 84520B (2012). 309 16W. S. Holland, D. Bintley, E. L. Chapin, and A. Chrysostomou, Mon. Not. 310 R. Astron. Soc. 430, 2513 (2013). 311 17L. Kuzmin, Infrared and Millimeter Waves (■, 2004), pp. 239–240. 312 N. Bruijn, A. Cros, J. Gao, D. Griffin, R. Den Hartog, M. 314 Kiviranta, G. De Lange, B. van Leeuwen, C. Macculi, L. Ravera, N. 315 Trappe, H. Van Weers, and S. Withington, IEEE Trans. THz Sci. 316 Technol. 2, 12 (2012). 317 19M. J. Prest, J. T. Muhonen, M. Prunnila, D. Gunnarsson, V. A. Shah, J. S. 318 Richardson-Bullock, A. Dobbie, M. Myronov, R. J. H. Morris, T. E. 319 Whall, E. H. C. Parker, and D. R. Leadley, Appl. Phys. Lett. 99, 251908 320 320 (1996). 321 10 10 10 10 10 10 10 10 10 10 10 10 10		283	Temp. Phys. 151 , 530 (2008).	F. W. J. Hekking, Phys. Rev. Lett. 92, 056804 (2004).	304	
4M. Nahum, T. M. Eiles, and J. M. Martinis, Appl. Phys. Lett. 65, 3123 (1994). 287 (1994). 288 5D. R. Schmidt, K. W. Lehnert, A. M. Clark, W. D. Duncan, K. D. Irwin, N. Miller, and J. N. Ullom, Appl. Phys. Lett. 86, ■ (2005). 289 6R. Leoni, New Astron. Rev. 43, 317 (1999). 290 7J. T. Muhonen, M. J. Prest, M. Prunnila, D. Gunnarsson, V. A. Shah, A. Dobbie, M. Myronov, R. J. H. Morris, T. E. Whall, E. H. C. Parker, and D. R. Leadley, Appl. Phys. Lett. 98, ■ (2011). 291 8E. Otto, M. Tarasov, P. K. Grimes, A. Chekushkin, L. S. Kuzmin, and G. Yassin, Supercond. Sci. Technol. 26, 085020 (2013). 292 Popular Phys. Lett. 98, ■ (2011). 293 Parmardis, IEEE Trans. Appl. Supercond. 21, 3635 (2011). AQ4 298 101 Pekola, Nature 435, 889 (2005). AQ4 298 102 Pil. M. M. Leivo, J. P. Pekola, and D. V. Averin, Appl. Phys. Lett. 68, 1996 (1996). 300 12A. M. Savin, M. Prunnila, P. P. Kivinen, J. P. Pekola, J. Ahopelto, and A. Corysostomou, Mon. Not. 310 R. Astron. Soc. 430, 2513 (2013). 15M. D. Audley, G. de Lange, JR. Gao, P. Khosropanah, M. Ridder, L. 307 Ferrari, W. M. Laauwen, M. Ranjan, P. D. Mauskopf, D. Morozov, and N. 308 A. Trappe, Proc. SPIE 8452, 84520B (2012). 16W. S. Holland, D. Bintley, E. L. Chapin, and A. Chrysostomou, Mon. Not. 310 R. Astron. Soc. 430, 2513 (2013). 17L. Kuzmin, Infrared and Millimeter Waves (■, 2004), pp. 239–240. 18B. D. Jackson, P. A. J. De Korte, J. Van der Kuur, P. Mauskopf, J. 312 Reyer, M. Bruijn, A. Cros, J. Gao, D. Griffin, R. Den Hartog, M. 314 Kiviranta, G. De Lange, B. van Leeuwen, C. Macculi, L. Ravera, N. 315 Trappe, H. Van Weers, and S. Withington, IEEE Trans. THz Sci. 316 Technol. 2, 12 (2012). 19M. J. Prest, J. T. Muhonen, M. Prunnila, D. Gunnarsson, V. A. Shah, J. S. 318 Richardson-Bullock, A. Dobbie, M. Myronov, R. J. H. Morris, T. E. 319 Whall, E. H. C. Parker, and D. R. Leadley, Appl. Phys. Lett. 99, 251908 200 (2011). 20D. Golubev and L. Kuzmin, Appl. Phys. Lett. 89, 6464 (2001).		284	³ M. Nahum, P. Richards, and C. Mears, IEEE Trans. Appl. Supercond. 3,	¹⁴ P. D. Mauskopf, J. J. Bock, H. D. Castillo, W. L. Holzapfel, and A. E.	305	
287 (1994). 288		285	2124 (1993).	Lange, Appl. Opt. 36, 765 (1997).	306	
5D. R. Schmidt, K. W. Lehnert, A. M. Clark, W. D. Duncan, K. D. Irwin, N. Miller, and J. N. Ullom, Appl. Phys. Lett. 86, ■ (2005). 289 N. Miller, and J. N. Ullom, Appl. Phys. Lett. 86, ■ (2005). 290 6R. Leoni, New Astron. Rev. 43, 317 (1999). 291 7J. T. Muhonen, M. J. Prest, M. Prunnila, D. Gunnarsson, V. A. Shah, A. Dobbie, M. Myronov, R. J. H. Morris, T. E. Whall, E. H. C. Parker, and D. R. Leadley, Appl. Phys. Lett. 98, ■ (2011). 293 8E. Otto, M. Tarasov, P. K. Grimes, A. Chekushkin, L. S. Kuzmin, and G. Yassin, Supercond. Sci. Technol. 26, 085020 (2013). 294 P. Bernardis, IEEE Trans. Appl. Supercond. 21, 3635 (2011). AQ4 298 10 J. Pekola, Nature 435, 889 (2005). 299 11 M. M. Leivo, J. P. Pekola, and D. V. Averin, Appl. Phys. Lett. 68, 1996 (1996). 300 (1996). 300 12 A. M. Savin, M. Prunnila, P. P. Kivinen, J. P. Pekola, J. Ahopelto, and A. 10 J. Pekola, J. Ahopelto, and A. 11 J. Pekola, J. A. M. Savin, M. Prunnila, P. P. Kivinen, J. P. Pekola, J. Ahopelto, and A. 11 J. Pekola, J. Ahopelto, and A. 12 J. Pekola, J. Ahopelto, and A. 13 J. A. 14 J. Pekola, J. Ahopelto, J. Ahopelto, and A. 15 J. Pekola, J. Ahopelto, and A. 15 J. Pekola, J. Ahopelto, and A. 16 J. Pekola, J. Ahopelto, J. Ahopelto, and A. 17 J. Pekola, J. Ahopelto, J. Ahopelto, J. Ahopelto, J. Alopelto, J. Ahopelto, J. Ahopelto		286	⁴ M. Nahum, T. M. Eiles, and J. M. Martinis, Appl. Phys. Lett. 65 , 3123	¹⁵ M. D. Audley, G. de Lange, JR. Gao, P. Khosropanah, M. Ridder, L.	307	
5D. R. Schmidt, K. W. Lehnert, A. M. Clark, W. D. Duncan, K. D. Irwin, N. Miller, and J. N. Ullom, Appl. Phys. Lett. 86, ■ (2005). 6R. Leoni, New Astron. Rev. 43, 317 (1999). 7J. T. Muhonen, M. J. Prest, M. Prunnila, D. Gunnarsson, V. A. Shah, A. Dobbie, M. Myronov, R. J. H. Morris, T. E. Whall, E. H. C. Parker, and D. R. Leadley, Appl. Phys. Lett. 98, ■ (2011). 8E. Otto, M. Tarasov, P. K. Grimes, A. Chekushkin, L. S. Kuzmin, and G. Yassin, Supercond. Sci. Technol. 26, 085020 (2013). 9M. Tarasov, L. Kuzmin, V. Edelman, S. Mahashabde, and P. De Bernardis, IEEE Trans. Appl. Supercond. 21, 3635 (2011). AQ4 Poly 10		287	(1994).	Ferrari, W. M. Laauwen, M. Ranjan, P. D. Mauskopf, D. Morozov, and N.	308	
N. Miller, and J. N. Ullom, Appl. Phys. Lett. 86, ■ (2005). N. Miller, and J. N. Ullom, Appl. Phys. Lett. 86, ■ (2005). R. Leoni, New Astron. Rev. 43, 317 (1999). J. T. Muhonen, M. J. Prest, M. Prunnila, D. Gunnarsson, V. A. Shah, A. Dobbie, M. Myronov, R. J. H. Morris, T. E. Whall, E. H. C. Parker, and D. R. Leadley, Appl. Phys. Lett. 98, ■ (2011). Se. Otto, M. Tarasov, P. K. Grimes, A. Chekushkin, L. S. Kuzmin, and G. Yassin, Supercond. Sci. Technol. 26, 085020 (2013). N. Miller, and J. N. Ullom, Appl. Phys. Lett. 98, ■ (2005). N. Miller, and J. N. Ullom, Appl. Phys. Lett. 99, 2590-240. N. Miller, and J. N. Ullom, Appl. Phys. Lett. 99, 251008. N. Miller, and J. N. Ullom, Appl. Phys. Lett. 86, ■ (2005). 11 M. M. Leivo, J. P. Pekola, and D. V. Averin, Appl. Phys. Lett. 68, 1996 (1996). N. Miller, and J. N. Ullom, Appl. Phys. Lett. 86, ■ (2005). 16 W. S. Holland, D. Bintley, E. L. Chapin, and A. Chrysostomou, Mon. Not. 310 R. Astron. Soc. 430, 2513 (2013). 17 L. Kuzmin, Infrared and Millimeter Waves (■, 2004), pp. 239–240. N. Beyer, M. Bruijn, A. Cros, J. Gao, D. Griffin, R. Den Hartog, M. Siviranta, G. De Lange, B. van Leeuwen, C. Macculi, L. Ravera, N. 315 Trappe, H. Van Weers, and S. Withington, IEEE Trans. THz Sci. 316 Technol. 2, 12 (2012). N. M. J. Prest, J. T. Muhonen, M. Prunnila, D. Gunnarsson, V. A. Shah, J. S. 318 Richardson-Bullock, A. Dobbie, M. Myronov, R. J. H. Morris, T. E. 319 Whall, E. H. C. Parker, and D. R. Leadley, Appl. Phys. Lett. 99, 251908 (2011). N. M. Leivo, J. P. Pekola, and D. V. Averin, Appl. Phys. Lett. 68, 1996 (2011). 10 D. Golubev and L. Kuzmin, Appl. Phys. Lett. 89, 6464 (2001).		288	⁵ D. R. Schmidt, K. W. Lehnert, A. M. Clark, W. D. Duncan, K. D. Irwin,			
290 6R. Leoni, New Astron. Rev. 43, 317 (1999). 7J. T. Muhonen, M. J. Prest, M. Prunnila, D. Gunnarsson, V. A. Shah, A. 291 Dobbie, M. Myronov, R. J. H. Morris, T. E. Whall, E. H. C. Parker, and D. R. Leadley, Appl. Phys. Lett. 98, ■ (2011). 292 Passin, Supercond. Sci. Technol. 26, 085020 (2013). 293 Paradis, IEEE Trans. Appl. Supercond. 21, 3635 (2011). AQ4 Passin, Supercond. Sci. Technol. 21, 3635 (2011). AQ4 Passin, Supercond. Sci. Technol. 21, 3635 (2011). AQ4 Passin, Supercond. 21, 3635 (2011). AQ4 Passin, Supercond. 21, 3635 (2011). AQ4 Passin, Supercond. 21, 3635 (2011). AQ5 Passin, Supercond. 21, 3635 (2011). AQ6 Passin, Supercond. 21, 3635 (2011). AQ6 Passin, Supercond. 21, 3635 (2011). AQ6 Passin, Supercond. 21, 3635 (2011). AQ7 Passin, Supercond. 21, 3635 (2011). Bernardis, IEEE Trans. Appl. Supercond. 21, 3635 (2011). AQ6 Passin, Supercond. Sci. Technol. 22, 12 (2012). Bernardis, IEEE Trans. Appl. Supercond. 21, 3635 (2011). AQ7 Passin, Supercond. Sci. Technol. 22, 12 (2012). Bernardis, IEEE Trans. Appl. Supercond. 21, 3635 (2011). Bernardis, IEEE Trans. Appl. Superco		289			310	
Dobbie, M. Myronov, R. J. H. Morris, T. E. Whall, E. H. C. Parker, and D. R. Leadley, Appl. Phys. Lett. 98, (2011). R. Leadley, Appl. Phys. Lett. 99, (2011). R. Leadley, Appl. Phys. Lett. 98, (2011). R. Leadley, Appl. Phys. Lett. 99, (20		290				
R. Leadley, Appl. Phys. Lett. 98, (2011). R. Leadley, Appl. Phys. Lett. 99, (2013). Richardson-Bullock, A. Dobbie, M. Myronov, R. J. H. Morris, T. E. 319 Richardson-Bullock, A. Dobbie, M. Myronov, R. J. H. Morris, T. E. 319 Whall, E. H. C. Parker, and D. R. Leadley, Appl. Phys. Lett. 99, (2011). Resper, M. Bruijn, A. Cros, J. Gao, D. Griffin, R. Den Hartog, M. 314 Kiviranta, G. De Lange, B. van Leeuwen, C. Macculi, L. Ravera, N. 315 Trappe, H. Van Weers, and S. Withington, IEEE Trans. THz Sci. 316 Technol. 2, 12 (2012). Richardson-Bullock, A. Dobbie, M. Myronov, R. J. H. Morris, T. E. 319 Whall, E. H. C. Parker, and D. R. Leadley, Appl. Phys. Lett. 99, 251908 (2011). Royania September 19, 10, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12		291	⁷ J. T. Muhonen, M. J. Prest, M. Prunnila, D. Gunnarsson, V. A. Shah, A.	¹⁷ L. Kuzmin, <i>Infrared and Millimeter Waves</i> (■, 2004), pp. 239–240.	312	AQ
Se. Otto, M. Tarasov, P. K. Grimes, A. Chekushkin, L. S. Kuzmin, and G. Yassin, Supercond. Sci. Technol. 26, 085020 (2013). Yassin, Supercond. Sci. Technol. 26, 085020 (2013). Phys. Lett. 68, 1996 10 J. Pekola, Nature 435, 889 (2005). 11 M. M. Leivo, J. P. Pekola, and D. V. Averin, Appl. Phys. Lett. 68, 1996 (1996). 12 A. M. Savin, M. Prunnila, P. P. Kivinen, J. P. Pekola, J. Ahopelto, and A. Skiviranta, G. De Lange, B. van Leeuwen, C. Macculi, L. Ravera, N. 315 Trappe, H. Van Weers, and S. Withington, IEEE Trans. THz Sci. 316 Technol. 2, 12 (2012). 19 M. J. Prest, J. T. Muhonen, M. Prunnila, D. Gunnarsson, V. A. Shah, J. S. 318 Richardson-Bullock, A. Dobbie, M. Myronov, R. J. H. Morris, T. E. 319 Whall, E. H. C. Parker, and D. R. Leadley, Appl. Phys. Lett. 99, 251908 (2011). 20 D. Golubev and L. Kuzmin, Appl. Phys. Lett. 89, 6464 (2001).		292	Dobbie, M. Myronov, R. J. H. Morris, T. E. Whall, E. H. C. Parker, and D.	¹⁸ B. D. Jackson, P. A. J. De Korte, J. Van der Kuur, P. Mauskopf, J.	313	
Yassin, Supercond. Sci. Technol. 26, 085020 (2013). PM. Tarasov, L. Kuzmin, V. Edelman, S. Mahashabde, and P. De Bernardis, IEEE Trans. Appl. Supercond. 21, 3635 (2011). AQ4 298 10 J. Pekola, Nature 435, 889 (2005). 299 11 M. M. Leivo, J. P. Pekola, and D. V. Averin, Appl. Phys. Lett. 68, 1996 300 (1996). 301 12 A. M. Savin, M. Prunnila, P. P. Kivinen, J. P. Pekola, J. Ahopelto, and A. Trappe, H. Van Weers, and S. Withington, IEEE Trans. THz Sci. 316 Technol. 2, 12 (2012). 317 19 M. J. Prest, J. T. Muhonen, M. Prunnila, D. Gunnarsson, V. A. Shah, J. S. 318 Richardson-Bullock, A. Dobbie, M. Myronov, R. J. H. Morris, T. E. 319 Whall, E. H. C. Parker, and D. R. Leadley, Appl. Phys. Lett. 99, 251908 320 (2011). 200 D. Golubev and L. Kuzmin, Appl. Phys. Lett. 89, 6464 (2001). 321 20 D. Golubev and L. Kuzmin, Appl. Phys. Lett. 89, 6464 (2001).		293	R. Leadley, Appl. Phys. Lett. 98 , ■ (2011).	Beyer, M. Bruijn, A. Cros, J. Gao, D. Griffin, R. Den Hartog, M.	314	
 M. Tarasov, L. Kuzmin, V. Edelman, S. Mahashabde, and P. De Bernardis, IEEE Trans. Appl. Supercond. 21, 3635 (2011). AQ4 298 10 J. Pekola, Nature 435, 889 (2005). 11 M. M. Leivo, J. P. Pekola, and D. V. Averin, Appl. Phys. Lett. 68, 1996 (1996). 300 (1996). 301 12 A. M. Savin, M. Prunnila, P. P. Kivinen, J. P. Pekola, J. Ahopelto, and A. Technol. 2, 12 (2012). Technol. 2, 12 (2012). Technol. 2, 12 (2012). M. J. Prest, J. T. Muhonen, M. Prunnila, D. Gunnarsson, V. A. Shah, J. S. 318 Richardson-Bullock, A. Dobbie, M. Myronov, R. J. H. Morris, T. E. 319 Whall, E. H. C. Parker, and D. R. Leadley, Appl. Phys. Lett. 99, 251908 320 (2011). 321 20 D. Golubev and L. Kuzmin, Appl. Phys. Lett. 89, 6464 (2001). 		294	⁸ E. Otto, M. Tarasov, P. K. Grimes, A. Chekushkin, L. S. Kuzmin, and G.	Kiviranta, G. De Lange, B. van Leeuwen, C. Macculi, L. Ravera, N.	315	
Bernardis, IEEE Trans. Appl. Supercond. 21, 3635 (2011). AQ4 298 10 10 10 10 10 10 10 10 10 1		295	Yassin, Supercond. Sci. Technol. 26, 085020 (2013).	Trappe, H. Van Weers, and S. Withington, IEEE Trans. THz Sci.	316	
AQ4 298 11 Pekola, Nature 435, 889 (2005).		296	⁹ M. Tarasov, L. Kuzmin, V. Edelman, S. Mahashabde, and P. De	Technol. 2, 12 (2012).	317	
 299 11 M. M. Leivo, J. P. Pekola, and D. V. Averin, Appl. Phys. Lett. 68, 1996 300 (1996). 301 12 A. M. Savin, M. Prunnila, P. P. Kivinen, J. P. Pekola, J. Ahopelto, and A. 302 (2011). 303 Golubev and L. Kuzmin, Appl. Phys. Lett. 89, 251908 320 (2011). 321 (2011). 322 AQ 		297	Bernardis, IEEE Trans. Appl. Supercond. 21, 3635 (2011).	¹⁹ M. J. Prest, J. T. Muhonen, M. Prunnila, D. Gunnarsson, V. A. Shah, J. S.	318	
300 (1996). 321 301 ¹² A. M. Savin, M. Prunnila, P. P. Kivinen, J. P. Pekola, J. Ahopelto, and A. ²⁰ D. Golubev and L. Kuzmin, Appl. Phys. Lett. 89 , 6464 (2001). 322 AQ	AQ4	298	¹⁰ J. Pekola, Nature 435 , 889 (2005).	Richardson-Bullock, A. Dobbie, M. Myronov, R. J. H. Morris, T. E.	319	
301 12 A. M. Savin, M. Prunnila, P. P. Kivinen, J. P. Pekola, J. Ahopelto, and A. 20 D. Golubev and L. Kuzmin, Appl. Phys. Lett. 89, 6464 (2001). 322 AQ	_	299	M. M. Leivo, J. P. Pekola, and D. V. Averin, Appl. Phys. Lett. 68, 1996	Whall, E. H. C. Parker, and D. R. Leadley, Appl. Phys. Lett. 99, 251908	320	
		300	(1996).	(2011).	321	
		301	¹² A. M. Savin, M. Prunnila, P. P. Kivinen, J. P. Pekola, J. Ahopelto, and A.	²⁰ D. Golubev and L. Kuzmin, Appl. Phys. Lett. 89 , 6464 (2001).	322	AQ
302 J. Manninen, Appl. Phys. Lett. 79, 14/1 (2001). 323 AQ		302	J. Manninen, Appl. Phys. Lett. 79 , 1471 (2001).	²¹ B. S. Karasik and R. Cantor, Appl. Phys. Lett. 98 , ■ (2011).	323	ΑQ