Devoir à la maison n° 8

À rendre le 3 décembre

Triplets pythagoriciens

Le but de ce problème est l'étude dans \mathbb{Z}^3 de l'équation

$$x^2 + y^2 = z^2. (\mathscr{F})$$

Les solutions de cette équation sont appelées triplets pythagoriciens.

Un triplet pythagoricien primitif est un triplet $(x, y, z) \in \mathbb{Z}^2 \times \mathbb{N}$, tel que :

- (x, y, z) est solution de (\mathcal{F}) ;
- y est pair;
- il n'existe pas d'entier naturel autre que 1 divisant x, y et z (ce qui s'écrit $x \wedge y \wedge z = 1$).

On note \mathcal{S} l'ensemble des triplets pythagoriciens primitifs.

On note \mathcal{S}' l'ensemble des triplets de la forme $(u^2-v^2,2uv,u^2+v^2)$ tels que :

- $(u,v) \in \mathbb{Z}^2$;
- $u \wedge v = 1$;
- 2|(u+v+1).

Les questions des parties 1) et 2) sont très détaillées et doivent être bien comprises.

- 1) a) Soit $x \in \mathbb{Z}$. Montrer que si x est pair alors $4|x^2$, et que si x est impair alors $4|x^2-1$.
 - b) Soit $(x, y, z) \in \mathbb{Z}^3$ une solution de (\mathscr{F}) . En utilisant la question précédente, montrer que x et y ne peuvent pas être tous les deux impairs. Montrer que si $(x, y, z) \in \mathscr{S}$, x est impair.
- **2)** On veut montrer que $\mathscr{S}' \subset \mathscr{S}$.
 - a) Soit $(u, v) \in \mathbb{Z}^2$ tel que $u \wedge v = 1$. Montrer que $u^2 \wedge v^2 = 1$.
 - **b)** Soit $(u, v) \in \mathbb{Z}^2$, soit n un entier naturel divisant $u^2 v^2$ et $u^2 + v^2$. Montrer qu'alors n divise $2u^2$ et $2v^2$.

- c) Soit $(u, v) \in \mathbb{Z}^2$ tel que $u \wedge v = 1$. Déduire de ce qui précède que les seuls entiers naturels qui peuvent diviser $u^2 v^2$ et $u^2 + v^2$ sont 1 et 2.
- d) Soit $(u, v) \in \mathbb{Z}^2$ tel que 2|(u + v + 1). Montrer que u et v ne peuvent pas être tous deux impairs ou tous deux pairs.
- e) En déduire, en utilisant la question 1)a)), que, si $(u, v) \in \mathbb{Z}^2$ vérifie $u \wedge v = 1$ et $2|(u + v + 1), (u^2 v^2) \wedge (u^2 + v^2) = 1$.
- **f)** Montrer que $\mathscr{S}' \subset \mathscr{S}$.
- **3)** On veut maintenant montrer l'inclusion inverse, *i.e.* $\mathscr{S} \subset \mathscr{S}'$. Soit $(x,y,z) \in \mathscr{S}$. On introduit $(x',y',z') = \left(\frac{z+x}{2},\frac{y}{2},\frac{z-x}{2}\right)$.
 - a) Montrer que x', y' et z' sont des entiers.
 - **b)** Vérifier que $y'^2 = x'z'$.
 - c) Montrer que $x' \wedge z' = 1$.
 - d) En déduire, en utilisant la question 3)b)), que x' et z' sont en fait des carrés, c'est-à-dire des nombres de la forme q^2 , avec $q \in \mathbb{Z}$ (on pourra utiliser la décomposition en facteurs premiers de y').
 - e) Montrer que $(x, y, z) \in \mathscr{S}'$.
- 4) Donner l'ensemble des triplets pythagoriciens.
- 5) Dans le plan, quel est l'ensemble des points du cercle unité (de rayon 1, de centre l'origine) à coordonnées rationnelles?

— FIN —