ЛЕКЦИЯ 14.1 ЧИСЛЕННОЕ РЕШЕНИЕ ЗАДАЧИ КОШИ. МЕТОД ЭЙЛЕРА

1. Задача Коши для обыкновенного дифференциального уравнения

Многие задачи науки и техники сводятся к решению обыкновенных дифференциальных уравнений (ОДУ). Дифференциальные уравнения – это очень удобная и часто единственная математическая модель, которая описывает функционирование во времени технических устройств, динамических систем, изменение во времени природных объектов, процессов. Поэтому и инженерам, и исследователям часто приходится решать дифференциальные уравнения. А в прикладных расчётах это надо делать численно.

Мы рассмотрим решение *обыкновенных* дифференциальных уравнений. Обыкновенными называются такие уравнения, которые содержат одну или несколько обычных (не частных) производных искомой функции. Стало быть, ОДУ в качестве неизвестной содержит *функцию одной переменной*. В общем виде его можно записать следующим образом:

$$F(x, y, y', y'', ..., y^{(p)}) = 0, (1)$$

где x – независимая переменная, p - порядок высшей участвующей в уравнении производной порядок уравнения, который называется *порядком уравнения*.

Решением обыкновенного дифференциального уравнения (1) называется такая функция y, которая удовлетворяет этому уравнению в определенном конечном или бесконечном промежутке. Процесс нахождения решения называют интегрированием дифференциального уравнения.

Известно, что решение не определяется однозначно. Общее решение ОДУ p-го порядка содержит p произвольных констант $c_1,...,c_p$:

$$y = y(x, c_1, \dots, c_n).$$

Его возможно найти только аналитически, проинтегрировав уравнение.

Численные методы применяются для нахождения *частного решения*. Оно получается из общего, если константам интегрирования придать некоторые значения, определив

дополнительные условия, количество которых позволяет вычислить все неопределенные константы интегрирования.

Для выделения единственного частного решения из общего решения уравнения *р*-го порядка необходимо задать *р* дополнительных условий. В зависимости от способа их задания существуют два различных типа задач: задача Коши и краевая задача. Если дополнительные условия задаются в одной точке, то такая задача называется *задачей Коши*. Дополнительные условия в задаче Коши называются *начальными условиями*. Если же дополнительные условия задаются в более чем одной точке, т.е. при различных значениях независимой переменной, то такая задача называется *краевой*. Сами дополнительные условия называются *краевыми*, или *граничными*.

Задача Коши формулируется так. Найти частное решение y дифференциального уравнения (1), удовлетворяющее при $x=x_0$ условиям

$$\begin{cases} y(x_0) = y_0, \\ y'(x_0) = y'_0, \\ \vdots \\ y^{(p-1)}(x_0) = y_0^{(p-1)}. \end{cases}$$

Здесь $y_0, y_0', \dots, y_0^{(p-1)}$ – заданные константы. Промежуток, на котором определено решение, может быть как конечным, так и бесконечным.

Иногда дифференциальное уравнение можно преобразовать к виду, в котором старшая производная явно выражена через остальные функции. Такая форма записи называется уравнением, *разрешенным относительно старшей производной*, при этом в правой части уравнения старшая производная отсутствует:

$$y^{(p)} = \tilde{F}(x, y, y', y'', \dots, y^{(p-1)}).$$

Именно такая форма записи принята в качестве *стандартной* при рассмотрении численных методов решения ОДУ.

При p=1 можно говорить только о задаче Коши (единственная константа определяется по одному начальному условию в одной точке).

Решить дифференциальное уравнение аналитически удается лишь для некоторых типов уравнений. Точное (аналитическое) решение (общее или частное) подразумевает получение искомого решения (функции y) в виде выражения, содержащего элементарные

функции. Это возможно далеко не всегда даже для уравнений первого порядка. Поэтому и встаёт задача приближённого (численного) решения задачи Коши.

2. Постановка вычислительной задачи

Все численные методы предназначены для задачи Коши на конечном промежутке. Начнём с ОДУ первого порядка:

$$\begin{cases} \frac{dy}{dx} = f(x, y), \\ y(x_0) = y_0, \end{cases}$$

$$x \in [x_0, X].$$
(2)

Уравнение первого порядка разрешено относительно производной. Приближённым решением задачи (2) считается заданная численно функция, то есть фактически таблица значений решения в некоторых точках. Такое решение называется *сеточным*, и саму функцию также будем называть сеточной.

При нахождении приближенного (сеточного) решения будем считать, что вычисления проводятся с расчётным шагом h; расчетными узлами служат точки $x_i = x_0 + hi$ промежутка $[x_0, X], i = 0, \dots, n$, всего n+1 точка. Шаг h тогда равен

$$h = \frac{X - x_0}{n}.$$

Набор точек $\{x_i\}_{i=0}^n$ называется *сеткой*, сами x_i – *узлами сетки*. А набор значений $\{y_i\}_{i=0}^n$ функции y в узлах сетки, где $y_i = y(x_i)$, называется *сеточной функцией*. Таким образом, решить приближённо задачу Коши на отрезке $[x_0, X]$ – это значит вычислить сеточное решение $\{y_i\}_{i=0}^n$ на данной сетке $\{x_i\}_{i=0}^n$. Фактически надо построить таблицу значений функции y.

3. Метод Эйлера

По условиям задачи (2) у нас есть начальное значение $y_0 = y(x_0)$. По нему с помощью дифференциального уравнения можно как-то вычислить y_1 ; потом так же по y_1 вычисляется y_2 и т.д., пока не будет достигнут конец сетки. Таким образом, мы получим всё сеточное решение. Следовательно, нужно вывести формулу вычисления следующего значения сетки y_{i+1} по имеющемуся y_i .

Интегрируя уравнение (2) на отрезке $[x_i, x_{i+1}]$, получим

$$\int_{x_{i}}^{x_{i+1}} dy = \int_{x_{i}}^{x_{i+1}} f(x,y)dx \Rightarrow y(x_{i+1}) - y(x_{i}) = \int_{x_{i}}^{x_{i+1}} f(x,y)dx \Leftrightarrow$$

$$\Leftrightarrow y(x_{i+1}) = y_{i} + \int_{x_{i}}^{x_{i+1}} f(x,y)dx. \tag{3}$$

Заменим интеграл в правой части (3) какой-либо квадратурной формулой численного интегрирования. Если воспользоваться простейшей формулой левых прямоугольников, то получим *явную формулу Эйлера*:

$$\int_{x_i}^{x_{i+1}} f(x,y)dx \approx hf(x_i,y_i) \Rightarrow y(x_{i+1}) \approx y_{i+1} = y_i + hf(x_i,y_i),$$

Расчётная формула явного метода Эйлера имеет вид:

$$\begin{cases} y_{i+1} = y_i + hf(x_i, y_i), \\ y(x_0) = y_0, \end{cases}$$
 (4)

i = 0, 1, ..., n - 1.

Метод Эйлера имеет простую геометрическую интерпретацию. Пользуясь тем, что в точке x_i известно решение $y(x_i) = y_i$ и значение его производной $y'(x_i) = f(x_i, y_i)$ согласно уравнению (на самом деле приближённые), можно записать уравнение касательной l к графику искомой функции y в точке (x_i, y_i) :

$$y = y_i + y'(x_i)(x - x_i) = y_i + f(x_i, y_i)(x - x_i).$$
 (5)

При достаточно малом шаге h ордината $y_{i+1} = y_i + hf(x_i, y_i)$ этой касательной, полученная подстановкой в правую часть (5) значения $x_{i+1} = x_i + h$, должна мало отличаться от ординаты $y(x_{i+1})$ точного решения задачи Коши. Следовательно, точка (x_{i+1}, y_{i+1}) пересечения касательной с прямой $x = x_{i+1}$ может быть приближенно принята за новую начальную точку, а y_{i+1} за следующее значение сеточной функции (рис. 1).

Таким образом, суть метода Эйлера заключается в замене кривой y=y(x) на отрезке интегрирования $[x_i;\ x_{i+1}]$ прямой линией, касательной к кривой в точке $x=x_i$. А решение на всём отрезке решения $[x_0,x_n]$ аппроксимируется ломаной. Если искомая функция сильно отличается от линейной на отрезке интегрирования $[x_i;\ x_{i+1}]$, то погреш-

ность вычисления будет значительной. Отсюда логично следует, что ошибка метода Эйлера прямо пропорциональна шагу интегрирования.

Рис. 1. Метод Эйлера

Оценим её более точно. Запишем формулу Тейлора для функции y в точке x_i в окрестности x_{i-1} с остаточным членом в форме Лагранжа второго порядка и заменим в ней производную $y'(x_{i-1})$ на $f(x_{i-1},y_{i-1})$ согласно уравнению (2):

$$y(x_i) = y_{i-1} + y'(x_{i-1})(x_i - x_{i-1}) + O(h^2) = y_{i-1} + hf(x_{i-1}, y_{i-1}) + O(h^2).$$
 (6)

Далее запишем расчётную формулу (4) для y_i :

$$y_i = y_{i-1} + hf(x_{i-1}, y_{i-1}). (7)$$

Вычитаем из (7) (6) и по модулю получаем абсолютную погрешность сеточного решения y_i в точке x_i :

$$\Delta y_i = |y_i - y(x_i)| = 0(h^2).$$

Метод Эйлера имеет в каждой точке точность $O(h^2)$ (это называется локальной точностью, Δy_i – локальная погрешность). Поскольку погрешность порядка $O(h^2)$ вносится в каждом узле сетки, а их количество равно

$$n=\frac{x_n-x_0}{h},$$

то общая накопленная погрешность имеет порядок O(h):

$$\Delta y^* = \max_{0 \le i \le n} \Delta y_i = \max_{0 \le i \le n} |y_i - y(x_i)| = O(h).$$

Это называется глобальной точностью, Δy^* – глобальная погрешность. Поскольку для получения этих результатов использовалась формула Тейлора, то они верны при условии её применимости, т.е. функция y должна быть дважды непрерывно дифференцируема. Итак, явный метод Эйлера имеет первый порядок точности по h.

Если интеграл в (3) заменить квадратурой правых прямоугольников, то придём к формуле

$$y(x_{i+1}) = y_i + hf(x_{i+1}, y_{i+1}) \Rightarrow y_{i+1} = y_i + hf(x_{i+1}, y_{i+1}).$$

Это *неявный метод Эйлера*, поскольку для вычисления неизвестного значения $y_{i+1} \approx y(x_{i+1})$ по известному значению $y_i \approx y(x_i)$ требуется решать уравнение, в общем случае нелинейное. Расчётная формула неявного метода Эйлера имеет вид:

$$\begin{cases} y_{i+1} = y_i + hf(x_{i+1}, y_{i+1}), \\ y(x_0) = y_0, \end{cases}$$

i=0,1,...,n-1. Метод также имеет первый порядок точности.

4. Модификации метода Эйлера

Метод Эйлера хоть и очень прост, но имеет невысокую точность. Поэтому созданы его модификации, не намного усложняющие его, но повышающие точность.

4.1. Метод Эйлера-Коши

В методе Эйлера-Коши вычисление y_{i+1} состоит из двух этапов:

$$\begin{cases} \tilde{y}_{i+1} = y_i + hf(x_i, y_i), \\ y_{i+1} = y_i + \frac{h}{2} (f(x_i, y_i) + f(x_{i+1}, \tilde{y}_{i+1})), \\ y(x_0) = y_0, \end{cases}$$

i=0,1,...,n-1. Его также называют модифицированным методом Эйлера, или методом «предиктор – корректор» (предсказывающее – исправляющее). На первом этапе приближенное значение предсказывается с невысокой точностью O(h) по явному методу Эйлера, а на втором этапе это предсказание исправляется так, что результирующее значение имеет второй порядок точности. Благодаря более точной формуле интегрирования погреш-

ность (имеется в виду глобальная) модифицированного метода пропорциональна уже квадрату шага интегрирования: его глобальная точность равна $O(h^2)$.

Геометрический смысл модифицированного метода Эйлера показан на рисунке 2.

Рис. 2. Метод Эйлера-Коши

Проводится касательная l_1 к кривой y = y(x) в точке (x_i, y_i) :

$$y = y_i + f(x_i, y_i)(x - x_i).$$

Потом проводим касательную l_2 в точке (x_{i+1},y_{i+1}) . Поскольку y_{i+1} неизвестно, вместо него используется \tilde{y}_{i+1} , вычисленное как ордината точки пересечения касательной l_1 с прямой $x=x_{i+1}$, то есть фактически l_2 проводится через точку $(x_{i+1},\tilde{y}_{i+1})$:

$$y = \tilde{y}_{i+1} + f(x_{i+1}, \tilde{y}_{i+1})(x - x_{i+1}),$$

где $\tilde{y}_{i+1} = y_i + hf(x_i, y_i)$. Потом усредняются угловые коэффициенты l_1 и l_2 , и проводится прямая l со средним угловым коэффициентом. Для наглядности на рисунке 2 она проходит через точку пересечения l_1 и l_2 . И наконец, l переносится параллельно в точку (x_i, y_i) (это прямая l'):

$$y = y_i + \frac{f(x_i, y_i) + f(x_{i+1}, \tilde{y}_{i+1})}{2} (x - x_i).$$

ордината точки пересечения l' с прямой $x=x_{i+1}$ – это и есть следующее сеточное значение y_{i+1} :

$$x = x_{i+1} \Rightarrow y = y_{i+1} = y_i + \frac{f(x_i, y_i) + f(x_{i+1}, \tilde{y}_{i+1})}{2} (x_{i+1} - x_i) =$$

$$= y_i + \frac{h}{2} (f(x_i, y_i) + f(x_{i+1}, \tilde{y}_{i+1})).$$

4.2. Усовершенствованный метод Эйлера

В усовершенствованном методе Эйлера следующее значение y_{i+1} тоже вычисляется в два этапа. Сначала находится промежуточная точка $y_{i+\frac{1}{2}}$ – значение функции y в середине отрезка $[x_i; x_{i+1}]$ (по основному методу Эйлера), а затем с её помощью вычисляется y_{i+1} . Расчётная формула метода такова:

$$\begin{cases} x_{i+\frac{1}{2}} = x_i + \frac{h}{2}, \\ y_{i+\frac{1}{2}} = y_i + \frac{h}{2} f(x_i, y_i), \\ y_{i+1} = y_i + h f\left(x_{i+\frac{1}{2}}, y_{i+\frac{1}{2}}\right), \\ y(x_0) = y_0, \end{cases}$$

i=0,1,...,n-1. Эта модификация имеют второй порядок точности: глобальная погрешность усовершенствованного метода Эйлера равна $O(h^2)$.