R 8

Xuanxi Zhang

1 9.26 True or False

- (a) The generalized likelihood ratio statistic LR is always less than or equal to 1.
- (b) If the p-value is 0.03, the corresponding test will reject at the significance level 0.02.
- (c) If a test rejects at a significance level of 0.06, then the p-value is less than or equal to 0.06.
- (d) The *p*-value of a test is the probability that the null hypothesis is correct.
- (e) If a χ^2 test statistic with 4 degrees of freedom has a value of 8.5, the p-value is less than 0.05.

2 9.35

Under a standard genetic model, the genotypes AA, Aa, and aa occur with probabilities $(1-\theta)^2$, $2\theta(1-\theta)$, θ^2 for some $0 \le \theta \le 1$. A sample of 190 people reveals that 10 have type AA, 68 have type Aa, and 112 have type aa. Develop a test for the null hypothesis that the data we observe comes from this model.

1. If we assume the data comes from the model, what is the MLE estimate of θ ? Recall the pmf of a multinomial distribution is

$$\frac{n!}{X_1!\cdots X_k!} p_1^{X_1}\cdots p_k^{X_k}.$$

- 2. what is the generalized likelihood ratio statistic?
- 3. What is the Pearson chi-squared statistic?
- 4. Use the table below to estimate the p-value of the data. At a significance level of 0.05, would we accept or reject the null hypothesis that the data comes from our model?

TABLE 3 Percentiles of the χ^2 Distribution-Values of χ^2_P Corresponding to P

df	$\chi^{2}_{.005}$	$\chi^{2}_{.01}$	$\chi^{2}_{.025}$	$\chi^{2}_{.05}$	$\chi^{2}_{.10}$	$\chi^{2}_{.90}$	$\chi^{2}_{.95}$	$\chi^{2}_{.975}$	$\chi^{2}_{.99}$	$\chi^{2}_{.995}$
1	. 000039	. 00016	. 00098	. 0039	. 0158	2.71	3.84	5.02	6.63	7.88
2	. 0100	. 0201	. 0506	. 1026	. 2107	4.61	5.99	7.38	9.21	10.60
3	. 0717	. 115	. 216	. 352	. 584	6.25	7.81	9.35	11.34	12.84
4	. 207	. 297	. 484	. 711	1.064	7.78	9.49	11.14	13.28	14.86
5	. 412	. 554	. 831	1.15	1.61	9.24	11.07	12.83	15.09	16.75
6	. 676	. 872	1.24	1.64	2.20	10.64	12.59	14.45	16.81	18.55
7	989	1.24	1.69	2.17	2.83	12.02	14.07	16.01	18.48	20.28
8	1.34	1.65	2.18	2.73	3.49	13.36	15.51	17.53	20.09	21.96
9	1.73	2.09	2.70	3.33	4.17	14.68	16.92	19.02	21.67	23.59
10	2.16	2.56	3.25	3.94	4.87	15.99	18.31	20.48	23.21	25.19