

Model V2.1

∷ Tags	112-2 Oblivious Routing
■ Datum	@26. Februar 2024
© Präsentation	https://docs.google.com/presentation/d/1nGoEsjfNGFfNEGCVg3400Why6oGlugcIs2TvDghK-XM/edit#slide=id.p
Status	Im Gange

Aussage des Lehrers

model 中應該要有\phy_t(e) 所以目前式子看起來不大對

Steven

model 中應該要有 $\phi_t(e)$ 所以目前式子看起來不大對

Lösung

- 1. Kommen Sie Einschränkung $rac{\sum_{s\in V, s
 eq t} d^i_{st}\phi_{st}(e)}{\sum_{s\in V, s
 eq t} d^i_{st}} = \phi_t(e)$ dazu (v2.1.0)
- 2. Versuchen Sie, $\phi_t(e)$ durch $\phi_{st}(e)$ zu ersetzen (v2.1.1)

Der Thikung von dem Lehrer

 $\textbf{Input}: \text{Given a Demand Matrix } DM_1$

Output: Routing ϕ (Fraction of demand entering vertex)

- 1. Find the best routing ϕ_1 of DM_1
- 2. Find the worst demand matrix DM_2 of the routing ϕ_1
- 3. Find the best routing ϕ_2 of $DM_1 \bigcup DM_2$
- 4. Iteration until it meet the cutoff condition

ှိုင်္ဂိ Approach

Input: A demand Matrix Output: Routing (Fraction of demand entering vertex)

Best routing: Minimize maximum link ultialization **Worst demand matrix**: Maximum maximum link ultialization

Pseudo code

Algorithm 1: main algorithm

Input: Demand matrix DM

Output: Routing ϕ_{best} (Fraction of demand)

1 Initialization : $D = \{DM\}, DM_{worst} = 0;$

// D is the set of demand matrix

2 while not meet the cutoff condition do

 $D = D \cup \mathrm{DM}_{worst};$

4 Find the best routing ϕ of D; // The First model

 $\phi_{best} = \phi;$

Find the worst demand matrix DM_{worst} of ϕ_{best} // The

second model

7 end

8 return ϕ_{best}

Finden Sie größe Routing ϕ

Finding the link weight and traffic splitting ratio to minimize the maximum link ultilization

Kommen Sie Einschränkung
$$rac{\sum_{s \in V, s
eq t} d_{st}^i \phi_{st}(e)}{\sum_{s \in V, s
eq t} d_{st}^i} = \phi_t(e)$$
 dazu

Indicate

D The set of demand matrix

e=(u,v)∈E Edges form vertex u to vertex v

dist Demand forms to t of DM(i) Given set of demand matrix

 D_{ij} , find the fraction of figure D_{ij} .

demands that minimizing

Link capacity of the edge e the maximum link

ultilization.

Variable

Ce

α The maximum link ultilization of all the demand matrix in D

 $\phi_{st}(e)$ Routing fraction for edge e=(u, v) for OD pair (s,t)

 $\phi_t(e)$ Routing fraction for edge e=(u, v)

Indicate

D	The set of demand matrix
$e=(u,v)\in E$	Edges form vertex \boldsymbol{u} to vertex \boldsymbol{v}
d_{st}^i	Demand from s to t of $i-th$ DM of ${\it D}$
$f_{st}(u)^i$	Fraction of demand entering vertex u of $i-th$ DM of ${\it D}$
c_e	Link capacity of the edge \emph{e}

Variable

lpha The maximum link ultilization of all the demand matrix in $\it D$

 $\phi_{st}(e)$ Routing fraction for edge e=(u,v) for OD pair (s,t)

 $\phi_t(e)$ Routing fraction for edge e=(u,v)

Objective function

Minimize the maximum link ultilization α

 $\min \alpha$

Constraints

$$0 \leq \alpha \leq 1 \text{ (Decision variable constraint)}$$

$$0 \leq \phi_{st}(e) \leq 1 \text{ , } \forall e \in E \text{ (Decision variable constraint)}$$

$$\sum_{(s,t)} \frac{d_{st}^i f_{st}^i(u) \phi_{st}(e)}{c(e)} \leq \alpha \text{ , } \forall e \in E, 1 \leq i \leq |D| \text{(Link capacity constraint)}$$

$$\sum_{e=(v,u)\in E} \phi_{st}(e) - f_{st}^i(u) = \begin{cases} 1 & \text{if } u = s \\ -1 & \text{if } u = t \text{ , } \forall (s,t) \in V \times V, \ 1 \leq i \leq |D| \text{(Flow conservation)} \\ 0 & \text{others} \end{cases}$$

$$\frac{\sum_{s \in V, s \neq t} d_{st}^i \phi_{st}(e)}{\sum_{s \in V, s \neq t} d_{st}^i} = \phi_t(e), \ \forall t \in V, 1 \leq i \leq |D| \text{ (Decision variable constraint)}$$

Model

 $\min \alpha$ (Minimize maximum link ultilization)

$$\sum_{e=(v,u)\in E} \phi_{st}(e) - f^i_{st}(u) = \begin{cases} 1 & \text{if } u = s \\ -1 & \text{if } u = t \\ 0 & \text{others} \end{cases}$$

$$, \forall (s,t) \in V \times V, 1 \leq i \leq |D|, \forall u \in V \qquad \qquad \text{(Flow conservation)}$$

$$\sum_{(s,t)} \frac{d^i_{st} f^i_{st}(u) \phi_{st}(e)}{c(e)} \leq \alpha \text{ , } \forall e \in E, 1 \leq i \leq |D| \qquad \text{(Link capacity constraint)}$$

$$0 \leq \phi_{st}(e) \leq 1 \text{ ,} \forall e \in E \qquad \qquad \text{(Decision variable constraint)}$$

$$0 \leq \alpha \leq 1 \qquad \qquad \text{(Decision variable constraint)}$$

$$\frac{\sum_{s \in V, s \neq t} d^i_{st} \phi_{st}(e)}{\sum_{s \in V, s \neq t} d^i_{st}} = \phi_t(e), \ \forall t \in V, 1 \leq i \leq |D| \quad \text{(Decision variable constraint)}$$

 $\min \alpha$ (Minimize maximum link ultilization)

$$\sum_{e=(v,u)\in E} \phi_{st}(e) - f_{st}^i(u) = \begin{cases} 1 & \text{if } u = s \\ -1 & \text{if } u = t \\ 0 & \text{others} \end{cases}$$

$$, \forall (s,t) \in V \times V, 1 \leq i \leq |D|, \forall u \in V \qquad \qquad \text{(Flow conservation)}$$

$$\sum_{(s,t)} \frac{d_{st}^i f_{st}^i(u)\phi_{st}(e)}{c(e)} \leq \alpha \ , \ \forall e \in E, 1 \leq i \leq |D| \qquad \text{(Link capacity constraint)}$$

$$0 \leq \phi_{st}(e) \leq 1 \ , \forall e \in E \qquad \qquad \text{(Decision variable constraint)}$$

$$0 \leq \alpha \leq 1 \qquad \qquad \text{(Decision variable constraint)}$$

$$\sum_{s \in V, s \neq t} d_{st}^i \phi_{st}(e) \\ \sum_{s \in V, s \neq t} d_{st}^i \end{cases} = \phi_t(e), \ \forall t \in V, 1 \leq i \leq |D| \qquad \text{(Decision variable constraint)}$$

Versuchen Sie, $\phi_t(e)$ durch $\phi_{st}(e)$ zu ersetzen

The first model

Indicate

D	The set of demand matrix	
e=(u,v)∈E	Edges form vertex u to vertex v	Given set of demand matrix
\mathbf{d}_{st}^{i}	Demand form s to t of DM(i)	D, find the fraction of demands that minimizing
$f_{st}^{i}(\mathbf{u})$	Fraction of demand entering vertex u of DM(i) the maximum link	
Ce	Link capacity of the edge e	ultilization.

Variable

α	The maximum link ultilization of all the demand matrix in D	
φι(e)	Routing fraction for edge $e=(u, v)$	

Indicate

D	The set of demand matrix
$e=(u,v)\in E$	Edges form vertex \boldsymbol{u} to vertex \boldsymbol{v}
d_{st}^i	Demand from s to t of $i-th$ DM of ${\it D}$
$f_{st}(u)^i$	Fraction of demand entering vertex u of $i-th$ DM of ${\it D}$
c_e	Link capacity of the edge \boldsymbol{e}

Variable

lpha The maximum link ultilization of all the demand matrix in $\it D$

 $\phi_t(e)$ Routing fraction for edge e=(u,v)

Objective function

Minimize the maximum link ultilization lpha

 $\min \alpha$

Constraints

$$0 \leq \alpha \leq 1 \text{ (Decision variable constraint)}$$

$$0 \leq \phi_t(e) \leq 1 \text{ , } \forall e \in E \text{ (Decision variable constraint)}$$

$$\sum_{(s,t)} \frac{d_{st}^i f_{st}^i(u) \phi_t(e)}{c(e)} \leq \alpha \text{ , } \forall e \in E, 1 \leq i \leq |D| \text{(Link capacity constraint)}$$

$$\sum_{e=(u,v) \in E} \sum_{(s,t)} d_{st}^i f_{st}^i(v) \phi_t(e) - \sum_{(s,t)} d_{st}^i f_{st}^i(u) = \begin{cases} d_{st} & \text{if } u = s \\ -\sum_{(s,t)} d_{st} & \text{if } u = t \text{ , } \forall (s,t) \in V \times V \text{(Flow conservation)} \\ 0 & \text{others} \end{cases}$$

Model

 $\min \alpha$ (Minimize maximum link ultilization)

$$\sum_{e=(u,v)\in E}\sum_{(s,t)}d^i_{st}f^i_{st}(v)\phi_t(e) - \sum_{(s,t)}d^i_{st}f^i_{st}(u) = \begin{cases} d_{st} & \text{if } u=s\\ -\sum_{(s,t)}d_{st} & \text{if } u=t\\ 0 & \text{others} \end{cases}$$
 (Flow conservation)
$$\sum_{(s,t)}\frac{d^i_{st}f^i_{st}(u)\phi_t(e)}{c(e)} \leq \alpha \ , \ \forall e\in E, 1\leq i\leq |D|$$
 (Link capacity constraint)
$$0\leq \phi_t(e)\leq 1 \ , \forall e\in E$$
 (Decision variable constraint)
$$0\leq \alpha\leq 1$$
 (Decision variable constraint)

 $\min \alpha$ (Minimize maximum link ultilization)

$$\sum_{e=(u,v)\in E} \sum_{(s,t)} d^i_{st} f^i_{st}(v) \phi_t(e) - \sum_{(s,t)} d^i_{st} f^i_{st}(u)$$

$$= \begin{cases} d_{st} & \text{if } u = s \\ -\sum_{(s,t)} d_{st} & \text{if } u = t \\ 0 & \text{others} \end{cases}$$

$$, \forall (s,t) \in V \times V$$

$$\sum_{(s,t)} \frac{d^i_{st} f^i_{st}(u) \phi_t(e)}{c(e)} \le \alpha , \forall e \in E, 1 \le i \le |D|$$

$$0 \le \phi_t(e) \le 1, \forall e \in E$$

$$0 \text{ (Decision variable constraint)}$$

$$0 \le \alpha \le 1$$

$$0 \text{ (Decision variable constraint)}$$

Find the worst demand matrix of routing ϕ

Find the demand matrix maximizing the maximum link ultilization with given routing ϕ

Kommen Sie Einschränkung
$$rac{\sum_{s \in V, s
eq t} d_{st}^i \phi_{st}(e)}{\sum_{s \in V, s
eq t} d_{st}^i} = \phi_t(e)$$
 dazu

The second model

Indicate

 $\varphi_{st}(e) \hspace{1cm} \text{Given routing fraction for edge } e{=}(u,\,v)$

 $\phi t(e)$ Given routing fraction for edge e=(u, v)

e=(u,v)∈E Edges form vertex u to vertex v

demand) φ, find the

dst Demand forms to t demand matrix maximizing maximum link ultilization

f_{sf}(u) Fraction of demand entering vertex u with routing φ.

ce Link capacity of the edge e

Variable

ρ The minimum link ultilization of the demand matrix DM

DM The worstcase demand matrix of given routing ϕ

Indicate

$\phi_{st}(e)$	Given routing
$\phi_t(e)$	Given routing
$e=(u,v)\in E$	Edges
d_{st}	Demand from s to t
$f_{st}(u)$	Fraction of demand entering vertex \boldsymbol{u}
c_e	Link capacity of the edge \boldsymbol{e}

Variable

DM The worstcase demand matrix of given routing $\boldsymbol{\phi}$

ho The mnimum link ultilization of the demand matrix DM

Objective function

Maximize the maximum link ultilization α

 $\max \rho$

Constraints

Demand matrix is unconstrained

$$\frac{\sum_{s \in V, s \neq t} d^i_{st} \phi_{st}(e)}{\sum_{s \in V, s \neq t} d^i_{st}} = \phi_t(e), \ \forall t \in V, 1 \leq i \leq |D|, e \in E \ \text{(Decision variable constraint)}$$

$$\rho \leq \sum_{(s,t)} \frac{d_{st} f_{st}(u) \phi_{st}(e)}{c(e)} \leq 1 \ \text{(Link capacity constraint)}$$

$$\sum_{e = (v,u) \in E} \phi_{st}(e) - f_{st}(u) = \begin{cases} 1 & \text{if } u = s \\ -1 & \text{if } u = t \ , \ \forall (s,t) \in V \times V \text{(Flow conservation)} \\ 0 & \text{others} \end{cases}$$

Model

 $\max \rho$ (Maximize minimum link ultilization)

$$\sum_{e=(v,u)\in E} \phi_{st}(e) - f_{st}(u) = \begin{cases} 1 & \text{if } u = s \\ -1 & \text{if } u = t \text{ ,} \forall s,t,u \in V \\ 0 & \text{others} \end{cases}$$
 (Flow conservation)
$$\rho \leq \sum_{(s,t)} \frac{d_{st} f_{st}(u) \phi_{st}(e)}{c(e)} \leq 1$$
 (Link capacity constraint)
$$0 \leq \rho \leq 1$$
 (Decision variable constraint)
$$\frac{\sum_{s \in V, s \neq t} d_{st}^i \phi_{st}(e)}{\sum_{s \in V, s \neq t} d_{st}^i} = \phi_t(e), \ \forall t \in V, 1 \leq i \leq |D|, e \in E$$
 (Decision variable constraint)

 $\min \alpha$ (Minimize maximum link ultilization)

$$\sum_{e=(v,u)\in E} \phi_{st}(e) - f_{st}^i(u) = \begin{cases} 1 & \text{if } u = s \\ -1 & \text{if } u = t \\ 0 & \text{others} \end{cases}$$

$$, \forall (s,t) \in V \times V, 1 \leq i \leq |D|, \forall u \in V \qquad \text{(Flow conservation)}$$

$$\sum_{(s,t)} \frac{d_{st}^i f_{st}^i(u) \phi_{st}(e)}{c(e)} \leq \alpha \text{ , } \forall e \in E, 1 \leq i \leq |D| \qquad \text{(Link capacity constraint)}$$

$$0 \leq \phi_{st}(e) \leq 1 \text{ ,} \forall e \in E \qquad \text{(Decision variable constraint)}$$

$$0 \leq \alpha \leq 1 \qquad \text{(Decision variable constraint)}$$

$$\frac{\sum_{s \in V, s \neq t} d_{st}^i \phi_{st}(e)}{\sum_{s \in V, s \neq t} d_{st}^i} = \phi_t(e), \ \forall t \in V, 1 \leq i \leq |D| \quad \text{(Decision variable constraint)}$$

Versuchen Sie, $\phi_t(e)$ durch $\phi_{st}(e)$ zu ersetzen

The second model

Indicate

 $\phi(e)$ Given routing fraction for edge e=(u, v)

e=(u,v)∈E Edges form vertex u to vertex v

dst Demand form s to t Given routing (Fracttion of

demand) ϕ , find the

fsr(u) Fraction of demand entering vertex u demand matrix maximizing maximum link ultilization

Link capacity of the edge e

with routing ϕ .

Variable

Ce

ρ The minimum link ultilization of the demand matrix DM

DM The worstcase demand matrix of given routing φ

Indicate

$\phi_t(e)$	Given routing
$e=(u,v)\in E$	Edges
d_{st}	Demand from s to t
$f_{st}(u)$	Fraction of demand entering vertex \boldsymbol{u}
c_e	Link capacity of the edge \boldsymbol{e}

Variable

DM The worstcase demand matrix of given routing ϕ

 ρ The mnimum link ultilization of the demand matrix DM

Objective function

Maximize the maximum link ultilization $\boldsymbol{\alpha}$

 $\max \rho$

Constraints

Demand matrix is unconstrained

$$\rho \leq \sum_{(s,t)} \frac{0 \leq \rho \leq 1 \text{ (Decision variable constraint)}}{c(e)} \leq 1 \text{ (Link capacity constraint)}$$

$$\sum_{e=(u,v)\in E} \sum_{(s,t)} d^i_{st} f^i_{st}(v) \phi_t(e) - \sum_{(s,t)} d^i_{st} f^i_{st}(u) = \begin{cases} d_{st} & \text{if } u=s \\ -\sum_{(s,t)} d_{st} & \text{if } u=t \end{cases}, \ \forall (s,t) \in V \times V, s \neq t \text{(Flow conservation)}$$
 others

Model

 $\max \rho$ (Maximize minimum link ultilization)

$$\sum_{e=(u,v)\in E} \sum_{(s,t)} d^i_{st} f^i_{st}(v) \phi_t(e) - \sum_{(s,t)} d^i_{st} f^i_{st}(u) \qquad = \begin{cases} d_{st} & \text{if } u=s \\ -\sum_{(s,t)} d_{st} & \text{if } u=t \\ 0 & \text{others} \end{cases}$$

$$, \forall (s,t) \in V \times V, s \neq t \qquad \qquad \text{(Flow conservation)}$$

$$\rho \leq \sum_{(s,t)} \frac{d_{st} f_{st}(u) \phi_t(e)}{c(e)} \leq 1 \qquad \qquad \text{(Link capacity constraint)}$$

$$0 \leq \rho \leq 1 \qquad \qquad \text{(Decision variable constraint)}$$

 $\max \rho$ (Maximize minimum link ultilization)

$$\sum_{e=(u,v)\in E} \sum_{(s,t)} d^i_{st} f^i_{st}(v) \phi_t(e) - \sum_{(s,t)} d^i_{st} f^i_{st}(u) \qquad = \begin{cases} d_{st} & \text{if } u=s \\ -\sum_{(s,t)} d_{st} & \text{if } u=t \\ 0 & \text{others} \end{cases}$$

$$, \forall (s,t) \in V \times V, s \neq t \qquad \qquad \text{(Flow conservation)}$$

$$\rho \leq \sum_{(s,t)} \frac{d_{st} f_{st}(u) \phi_t(e)}{c(e)} \leq 1 \qquad \qquad \text{(Link capacity constraint)}$$

$$0 \leq \rho \leq 1 \qquad \qquad \text{(Decision variable constraint)}$$