

Ensimag MMIS 3A

Ondelettes et applications à l'image

Compte-Rendu du lab 2

Auteurs:

M. Antonin Klopp-Tosser

M. Yoan Souty

 ${\it Encadrants:} \\ {\rm M^{me}~Val\'erie~Perrier}$

Table des matières

I	Exerci	ice 1	4
II	Exerci	ice 2 : compression de signaux 1D	5
	II.1	Compression de signaux	5
	II.2	Analyse de l'erreur	10

Table des figures

1	Résultat pour la base de Haar, $J=4$	4
2	Résultat pour la base spline Battle-Lemaire, $J=4$	4
3	Résultat pour la base de Daubechies, $J=4$	5
4	Fonction f compressée avec la base de Haar, $\tau=0.92, n=64$	6
5	Fonction f compressée avec la base de Haar, $\tau=0.6, n=1024$	6
6	Fonction f compressée avec la base de Haar, $\tau=0.92, n=1024$	7
7	Signal $Sing$ compressé avec la base de Haar, $\tau=0.92, n=1024$	7
8	Signal $Riemann$ compressé avec la base de Haar, $\tau=0.92, n=1024$	8
9	Signal $Doppler$ compressé avec la base de Haar, $\tau=0.92, n=1024$	8
10	Signal $Doppler$ compressé avec la base de Daubechies, $\tau=0.92, n=1024$.	9
11	Signal $Doppler$ compressé avec la base de Battle, $\tau=0.92, n=1024$	9
12	Signal <i>Donnler</i> compressé avec la base de Haar $\tau = 0.92$ $n = 1024$	10

I Exercice 1

Les figures suivantes présentent les $scaling\ functions$ et les $wavelet\ functions$ associées des familles suivantes :

- base de Haar
- Spline Battle-Lemaire
- famille à support compact Daubechies

(a) Scaling functions.

(b) Wavelets.

FIGURE 1 – Résultat pour la base de Haar, J=4

(a) Scaling functions.

(b) Wavelets.

FIGURE 2 – Résultat pour la base spline Battle-Lemaire, J=4

FIGURE 3 – Résultat pour la base de Daubechies, J=4

La base de Haar a l'avantage de proposer un algorithme de décomposition (et de reconstruction) en complexité linéaire (O(N)).

Les autres familles permettent d'avoir une meilleure compression en gardant le même nombre de coefficients.

II Exercice 2 : compression de signaux 1D

II.1 Compression de signaux

Pour reconstruire un signal de taille n à partir des coefficients en ondelettes, on prend en paramètre un taux de compression $\tau \in [0,1]$, et l'on ne garde que (1-tau)% des plus grands coefficients.

Voici les résultats de compression pour les fonctions $f: x \mapsto \sqrt{|\cos 2\pi x|}$, et pour deux familles de signaux 1D disponibles avec la commande MakeSignal: Sing, Riemann, Doppler. Pour chaque signal, on affiche de haut en bas, la fonction d'origine, les coefficients des ondelettes et la fonction reconstruite.

Pour la base de Haar, on utilise un nombre d'échelles à 8, un moment dissipant de $4 = \frac{8}{2}$, et un moment dissipant de 5 pour la famille Battle.

FIGURE 4 – Fonction f compressée avec la base de Haar, $\tau=0.92, n=64$

FIGURE 5 – Fonction f compressée avec la base de Haar, $\tau=0.6, n=1024$

FIGURE 6 – Fonction f compressée avec la base de Haar, $\tau=0.92, n=1024$

FIGURE 7 – Signal Sing compressé avec la base de Haar, $\tau=0.92, n=1024$

FIGURE 8 – Signal Riemann compressé avec la base de Haar, $\tau=0.92, n=1024$

Pour le signel Doppler, nous avons affiché les compressions avec les trois familles d'ondelettes orthogonales précédemment citées.

FIGURE 9 – Signal Doppler compressé avec la base de Haar, $\tau=0.92, n=1024$

FIGURE 10 – Signal Doppler compressé avec la base de Daubechies, $\tau=0.92, n=1024$

FIGURE 11 – Signal *Doppler* compressé avec la base de Battle, $\tau=0.92, n=1024$

On constate qu'appliquer un taux de compression important sur un signal avec la base de Haar supprime un nombre important d'informations, alors qu'utiliser la base de Daubechies ou Battle permet *a priori* de conserver plus d'informations.

II.2 Analyse de l'erreur

Nous avons tracé la courbe Log-Log de l'erreur l_2 en fonction du taux de compression τ .

(a) Scaling functions.

FIGURE 12 – Signal Doppler compressé avec la base de Haar, $\tau=0.92, n=1024$