语法分析: SLR分析算法

编译原理 华保健 bjhua@ustc.edu.cn

前端

表驱动的LR分析器架构

LR(0)分析算法

- 从左(L)向右读入程序,最右(L)推导,不用前看符号来决定产生式的选择(0个前看符号)
 - 优点:
 - 容易实现
 - 缺点:
 - 能分析的文法有限

LR(0)分析算法的缺点

- 对每一个形如X -> α 的项目
 - 直接把 α 归约成 X, 紧跟一个 "goto"
 - 尽管不会漏掉错误,但会延迟错误发现时机
 - 练习: 尝试"x x y x"
- LR(0)分析表中可能包含冲突

	ACTION		GOTO	
状态\符号	Х	у	\$	S
1	s2	s3		g4
2	s2	s3		g5
3 -	T2 -	T 2	r2	
4			accept	
5 -	r1 -	r1	r1	

问题2: 冲突

状态3包含移进-归约冲突!

SLR分析算法

- 和LR(0)分析算法基本步骤相同
- 仅区别于对归约的处理
 - 对于状态i上的项目X -> α
 - Q对y ∈ FOLLOW(X)添加ACTION[i, y]

	ACTION			GOTO
状态\符号	Х	у	\$	S
1	s2	s3		g4
2	s2	s3		g5
3 -	T2 -	12	r2	
4			accept	
5 -	<u>r1</u> -	<u>r1</u>	r1	

示例2

