Формальные языки

домашнее задание до 23:59 05.03

- 1. Доказать или опровергнуть утверждение: произведение двух минимальных автоматов всегда дает минимальный автомат (рассмотреть случаи для пересечения, объединения и разности языков).
- 2. Для регулярного выражения:

$$(a \mid b)^+(aa \mid bb \mid abab \mid baba)^*(a \mid b)^+$$

Построить эквивалентные:

(a) Недетерминированный конечный автомат **РЕШЕНИЕ:**

(b) Недетерминированный конечный автомат без ε -переходов **РЕШЕНИЕ:**

(c) Минимальный полный детерминированный конечный автомат **РЕШЕНИЕ:**

Рассмотрим любое слово из языка, соответсвующего выражению

$$(a \mid b)^+(a \mid b)^+$$

. Тогда заметим, что оно входит в наш язык. С другой стороны, любое слово нашего языка может быть выражено конкатенацией какого-то числа a-шек и b-шек (длины не менее два), то есть как раз таким языком. То есть нашему изначальному выражению соответсвует автомат

3. Построить регулярное выражение, распознающее тот же язык, что и автомат: **РЕШЕНИЕ:**

$$(a \mid b \mid c)^*((a(b \mid c)^*a) \mid (b(a \mid c)^*b) \mid (c(a \mid b)^*c))$$

4. Определить, является ли автоматным язык $\{\omega\omega^r\mid \omega\in\{0,1\}^*\}$. Если является — построить автомат, иначе — доказать.

РЕШЕНИЕ:

От противного, пусть он автоматный. Воспользуемся леммой о накачке, возьмём n из неё, рассмотрим слово 1^n001^n , очевидно из нашего языка. $1^n001^n = xyz, \ y \neq \varepsilon, \ |xy| \leq n$, а значит в xy есть(а следовательно и в y, т.к. он непустой) только единички. Возьмём k=2, получим слово $xy^kz=1^{n+a}001^n$, причём a>0. Очевидно, это слово не палиндром, противоречие.

5. Определить, является ли автоматным язык $\{uaav \mid u,v \in \{a,b\}^*, |u|_b \geq |v|_a\}$. Если является — построить автомат, иначе — доказать.

РЕШЕНИЕ:

От противного, пусть он автоматный. Воспользуемся леммой о накачке, возьмём n из неё, рассмотрим слово $b^naa(ba)^n$ из нашего языка. $b^naa(ba)^n=xyz,\ y\neq \varepsilon,\ |xy|\leq n,$ а значит в xy есть(а следовательно и в y, т.к. он непустой) только b-шки. Но тогда возьмём k=0 в предположении $\forall k\geq 0\ xy^kz\in L$: Заметим, что колиечество подстрок aa не могло увеличится, то есть осталась только одна. При этом, слева количество b-шек строго уменьшится(мы зачёркиваем непустой y из хотя бы одной b-шки), а количество a-шек справа не изменится, то есть xy^kz не входит в язык. Противоречие.

Пример применения алгоритма минимизации

Минимизируем данный автомат:

Автомат полный, в нем нет недостижимых вершин — продолжаем. Строим обратное δ отображение.

δ^{-1}	0	1		
A	_	В		
В	_	A		
С	ΑВ	_		
D	\sim	С		
\mathbf{E}	D	_		
F	ΕF	DFG		
G	G	E		

Отмечаем в таблице и добавляем в очередь пары состояний, различаемых словом ε : все пары, один элемент которых — терминальное состояние, а второй — не терминальное состояние. Для данного автомата это пары

$$(A,F),(B,F),(C,F),(D,F),(E,F),(A,G),(B,G),(C,G),(D,G),(E,G)$$

Дальше итерируем процесс определения неэквивалентных состояний, пока очередь не оказывается пуста.

(A, F) не дает нам новых неэквивалентных пар. Для (B, F) находится 2 пары: (A, D), (A, G). Первая пара не отмечена в таблице — отмечаем и добавляем в очередь. Вторая пара уже отмечена в таблице, значит, ничего делать не надо. Переходим к следующей паре из очереди. Итерируем дальше, пока очередь не опустошится.

Результирующая таблица (заполнен только треугольник, потому что остальное симметрично) и порядок добавления пар в очередь.

	Α	В	С	D	E	F	G
Α							
В							
С	√	√					
D	\checkmark	\checkmark	✓				
Е	√	√	√	√			
F	\checkmark	\checkmark	✓	\checkmark	✓		
G	√	√	√	√	√		

Очередь:

$$(A, F), (B, F), (C, F), (D, F), (E, F), (A, G), (B, G), (C, G), (D, G), (E, G), (B, D), (A, D), (A, E), (B, E), (C, E), (C, D), (D, E), (A, C), (B, C)$$

В таблице выделились классы эквивалентных вершин: $\{A,B\},\{C\},\{D\},\{E\},\{F,G\}$. Остается только нарисовать результирующий автомат с вершинами-классами. Переходы добавляются тогда, когда из какого-нибудь состояния первого класса есть переход в какое-нибудь состояние второго класса. Минимизированный автомат:

