International Rectifier

IRF7855PbF

HEXFET® Power MOSFET

V _{DSS}	R _{DS(on)} max	I _D
60V	9.4 m Ω @VGS = 10 V	12A

Applications

- Primary Side Switch in Bridge Topology in Isolated DC-DC Converters
- Primary Side Switch in Push-Pull Topology for 18-36Vin Isolated DC-DC Converters
- Secondary Side Synchronous Rectification Switch for 15Vout
- Suitable for 48V Non-Isolated
 Synchronous Buck DC-DC Applications

Benefits

- Low Gate to Drain Charge to Reduce Switching Losses
- Fully Characterized Capacitance Including Effective C_{OSS} to Simplify Design, (See App. Note AN1001)
- Fully Characterized Avalanche Voltage and Current

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain-to-Source Voltage	60	V
V _{GS}	Gate-to-Source Voltage	± 20	
_D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	12	А
D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	8.7	
DM	Pulsed Drain Current ①	97	
P _D @T _A = 25°C	Maximum Power Dissipation ③	2.5	W
	Linear Derating Factor	0.02	W/°C
dv/dt	Peak Diode Recovery dv/dt ®	9.9	V/ns
Γ _J	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JL}$	Junction-to-Drain Lead		20	°C/W
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount) ③ ⑦	_	50	

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	60			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		72	_	mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		7.4	9.4	mΩ	V _{GS} = 10V, I _D = 12A ④
$V_{GS(th)}$	Gate Threshold Voltage	3.0		4.9	V	$V_{DS} = V_{GS}$, $I_D = 100\mu A$
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 60V, V_{GS} = 0V$
				250		$V_{DS} = 60V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100		$V_{GS} = -20V$

Dynamic @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	14			S	$V_{DS} = 25V, I_{D} = 7.2A$
Q_g	Total Gate Charge		26	39		I _D = 7.2A
Q_{gs}	Gate-to-Source Charge		6.8		nC	$V_{DS} = 30V$
Q_gd	Gate-to-Drain ("Miller") Charge		9.6	_]	V _{GS} = 10V ④
t _{d(on)}	Turn-On Delay Time		8.7			$V_{DD} = 30V$
t _r	Rise Time		13			$I_{D} = 7.2A$
$t_{d(off)}$	Turn-Off Delay Time		16	_	ns	$R_G = 6.2\Omega$
t _f	Fall Time		12			V _{GS} = 10V ④
C _{iss}	Input Capacitance		1560			$V_{GS} = 0V$
C _{oss}	Output Capacitance		440	_	1	$V_{DS} = 25V$
C_{rss}	Reverse Transfer Capacitance		120		pF	f = 1.0MHz
C _{oss}	Output Capacitance		1910			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
C _{oss}	Output Capacitance		320			$V_{GS} = 0V, V_{DS} = 48V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		520			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 48V $

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ^②		540	mJ
I _{AR}	Avalanche Current ①		7.2	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			2.3		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current		_	97		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25$ °C, $I_S = 7.2A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		33	50		$T_J = 25$ °C, $I_F = 7.2$ A, $V_{DD} = 25$ V
Q_{rr}	Reverse Recovery Charge		38	57	nC	di/dt = 100A/μs ④
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

100

(Y)

100

(Y)

100

8.0V

7.0V

6.0V

5.5V

5.0V

4.5V

4.5V

0.1

0.1

100

100

VDS, Drain-to-Source Voltage (V)

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Or Danier Control of the series of the serie

Fig 12. On-Resistance vs. Drain Current

Fig 13. On-Resistance vs. Gate Voltage

Fig 15a&b. Unclamped Inductive Test circuit and Waveforms

Fig 15c. Maximum Avalanche Energy vs. Drain Current

6

SO-8 Package Details

DIM	INC	HES	MILLIMETERS		
DIIVI	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	.1968	4.80	5.00	
Е	.1497	.1574	3.80	4.00	
е	.050 B	ASIC	1.27 BASIC		
e 1	.025 B	ASIC	0.635 E	BASIC	
Ι	.2284	.2440	5.80	6.20	
К	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
у	0°	8°	0°	8°	

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- (7) DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking

International IOR Rectifier

SO-8 Tape and Reel

NOTES:

- CONTROLLING DIMENSION : MILLIMETER.
 ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
- Notes: ① Repetitive rating; pulse width limited by

max. junction temperature.

② Starting $T_J = 25$ °C, L = 21mH, $R_G=25\Omega,\ I_{AS}=7.2A.$

8

- 3 When mounted on 1 inch square copper board, $t \le 10$ sec.
- 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- ⑤ Coss eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- $\text{ \ensuremath{\ooalign{\hfill{\hfill{\ooalign{\hfill{\hfill{\ooalign{\hfill{\hfil}\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfil}\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfil}\hfill{\hfill{\hfil}\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfil}\hfill{\hfil}\hfill{\hfill{\hfil}\hfil}\hfill{\hfill{\hfill{\hfill{\hfil}\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfil}\hfill{\hfill{\hfil}\hfill{\hfill{\hfil}\hfil}\hfil}\hfil}\hfill{\hfill{\hfil}\hfill{\hfill{\hfill{\hfil}\hfil}\hfill{\hfil}\hfill{\hfill{\hfil}\hfill{\hfil}\hfil}\hfill{\hfill{\hfill}\hfill{\hfil}\hfil}\hfil}\hfil}\hfil}\hfill{\hfil}\hfil}\hfill}\hfill{\hfil}\hfil}\hfil}\hfil}\hfill{\hfil}\hfil}\hfil}\hfil}\hfil}\hfil}\hfill{\hfil}\hfil}\hfill{\hfil}\hfil}\hfil}\hfil}\hfil}\hfil}\hfill{\hfil}\hfil}\hfil}\hfill{\hfil}\hfil}\hfil}\hfil}\hfill{\hfil}\hfil}\hfil}\hfil}\hfill{\hfil}\hfil}\hfil}\hfill{\hfil}\hfil}\hfil}\hfil}\hfill{\hfil}\hfil}\hfil}\hfill{\hfill}\hfill{\hfil}}\hfill}\hfil}\hfill{\hfil}\hfil}\hfil}\hfill}\hfill{\hfil}\hfil}\hfill{\hfil}$
- $\ensuremath{\mathfrak{D}}$ R₀ is measured at T_J of approximately 90°C.

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.05/06

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.