Графические

планшеты

Графический планшет

- это внешнее устройство, которое подключается к компьютеру через кабель USB или беспроводным способом через технологию Bluetooth и позволяет рисовать ручкой или карандашом прямо на планшете, видя результаты на компьютере.

Типы графических планшетов

В продаже есть графические планшеты без экрана (настольные) и с экраном (интерактивные).

Отдельный тип — планшетные компьютеры: proверсии iPad и Samsung Galaxy также позволяют рисовать и писать на экранах стилусами.

В чем отличие

- Автономность
- Способ рисования
- Срок использования
- Цена

Размер активной области

Выбирая размер планшета, ориентируйтесь в первую очередь на размер чувствительного пространства для рисования. Обычно оно примерно соответствует форматам листов бумаги: А6, А5 и А4. Размер около А6 может обозначаться буквой S или словом Small в названии, А5 — М или Medium, А4 — L или Large.

Рабочая область

Показатель разрешения для безэкранных планшетов — это характеристика LPI или lines per inch: количество линий на один дюйм, которое способна распознать активная зона при передвижении стилуса по ней. Чем выше эта характеристика, тем точнее будет получаться рисунок на экране.

Диагональ и разрешение дисплея

Для интерактивных планшетов (с экранчиком) также есть показатель диагонали и разрешения дисплеев — количество пикселей по горизонтали и по вертикали.

Скорость отклика

Показатель чувствительности активной зоны — это RPS (report per second), PPS (points per second) или DPS (dots per second): разные производители могут использовать разные обозначения. Он означает, сколько точек сенсорная поверхность распознаёт в секунду — или сколько раз в секунду сенсор даёт информацию компьютеру, что стилус находится на его поверхности.

Чувствительность к нажатию пера

Этот параметр означает, насколько точно вы сможете управлять пером и рисовать линии именно той толщины и прозрачности, которая требуется. Показатель измеряется в уровнях, и чем он выше, тем лучше для качественной работы.

Тип подключения

- Беспроводные
- USB
- HDMI
- Type C

Совместимость с ОС

Обращайте внимание на то, с какими операционными системами совместимо программное обеспечение устройства.

Дополнительные характеристики

- Вес планшета
- Вес стилуса
- Тип подключения стилуса
- Наличие кнопок на планшете
- Наличие кнопок на стилусе

В современных планшетах основной рабочей частью также является сеть из проводов.

работы и технологии существуют принципу различные типы планшетов. В электростатических планшетах регистрируется локальное изменение электрического потенциала сетки ПОД пером. B электромагнитных перо излучает электромагнитные волны, а сетка приёмником. В обоих случаях на перо должно быть подано питание.

Фирма Wacom создала технологию на основе электромагнитного резонанса, когда сетка и излучает, и принимает сигнал. При этом излучаемый сеткой сигнал используется для питания пера, которое, в очередь, посылает ответный СВОЮ являющийся не просто отражением исходного, заново сформированным, который, как правило, несёт дополнительную информацию

Проекторы

Долгое время проекторы оставались специфической офисной техникой для презентаций и лекций. Высокая цена, низкая контрастность и плохое качество изображения отпугивали массового покупателя. Однако технологии совершенствовались, и теперь проектор вполне может заменить телевизор большой диагонали или стать основой домашнего кинотеатра.

Классификация

Класс устройства

- Карманные
- Портативные
- Стационарные

Лампа

— это самый дорогой и важный компонент. От нее напрямую зависит качество изображения, срок службы и цена устройства.

Виды ламп

- Лампа HID (High Intensity Discharge Lamp)
- LED
- Laser

Ресурс лампы

Напрямую зависит от типа. Газоразрядные предлагают в среднем до 8000 часов. LED и лазерные — от 10 000 часов.

Мощность лампы

лежит в пределах от 120 до 575 Вт. Чем мощнее лампа, тем больший световой поток генерирует проектор, но и греется устройство обычно сильнее. В помещениях, где можно создать затемнение от дневного света хватит ламп мощностью до 200 Вт. Если такой возможности нет или проектор будет использоваться совместно с другими источниками света — ищите модели с суммарной мощностью ламп от 200 Вт.

Проекционная технология

LCD (3LCD). Перед источником света устанавливаются специальная матрица и линзы. Проекторы с LCD относятся к дешевым из-за низкого качества изображения. При близком рассмотрении на проекции разглядеть цветовую структуру пикселя. Пространство между пикселями остается пустым, из-за чего эти модели отличаются слабой контрастностью.

Технология LCD (1LCD)

Проекционная технология

Недостатки LCD были устранены путем установки трех монохромных матриц и системы зеркал. Такая дополнительная технология получила название **3LCD** и обеспечила более высокую яркость и насыщенность картинки, вариативность настройки изображения и отсутствие эффекта радуги. Из минусов осталась слабая контрастность.

Технология 3LCD

Проекционная технология

DLP (Digital Light Processing). В DLP-проекторе изображение формируется с помощью специального DMD-чипа, на котором расположено множество микроскопических поворотных зеркал, образующих матрицу определенного размера и разрешения.

Проекционная технология

DMD-чипы с высоким разрешением содержат миллионы размеры которых не превышают толщину зеркал, человеческого волоса. На матрицу падает свет от лампы, проходящий через цветовое колесо — вращающийся прозрачный диск с секторами разных цветов. При работе изображения цветовые компоненты проектора формируются по очереди, по мере прохождения луча света через соответствующие секторы.

Технология DLP с одним DMD

Проекционная технология

LCoS (SRXD, D-ILA, R3LCD). Технология призвана объединить достоинства 3LCD и DLP. Изображение формируется тремя монохромными LCD-матрицами (как у 3LCD), но не на просвет, а с отражением от зеркальной подложки (как у DLP).

LCoS технология

Проекционная технология

ALPD (Advanced Laser Phosphor Display) — проекционная технология, встречающаяся только в лазерных проекторах. Основана на лазерных диодах дополнительным светодиодом, который светит обработанную фосфором поверхность. Фосфор флуоресцент, и под воздействием излучения начинает светиться. Этот свет замешивается в общий спектр, что позволяет расширить цветовую гамму и насытить цвета.

Параметры изображения

Разрешение — это количество отдельных точек (пикселей), которое проектор в состоянии отобразить на экране. Чем выше разрешение, тем четче получится картинка.

Формат	Разрешение	Варианты применения
4:3	VGA (640x480)	Презентации в школе, офисе
	SVGA (800x600)	
	XGA (1024x780)	Просмотр образовательного медиаконтента
	SXGA (1280x1024)	
	SXGA+ (1400x1050)	
	UXGA (1600x1200)	Работа с мелким текстом и таблицами
	QXGA (2048x1536)	
	W XGA (1280x768)	Кино, рабочие задачи
	HD720 (1280x720)	
16:9	W VGA (864x480)	
16:10	W SVGA (1024x576)	
15:9	Full HD (1920x1080)	Кино, презентации в крупных конференц-залах
	WUXGA (1920x1200)	
	HD 4K (4096x2400)	

Световой поток

Влияет на яркость изображения. Чем больше световой поток, тем при более сильном освещении можно будет использовать проектор. Поток до 400 люмен подходит для демонстрации небольших изображений в полной проекторы с максимальным световым темноте, потоком 3000 люмен и более могут использоваться в освещенных залах, днем на открытом пространстве.

Белый свет - 2800 лм Цветовая яркость 2800 лм Технология - 3LCD

Белый свет - 2800 лм Цветовая яркость 730 лм Технология - 1 матричный проектор

Контрастность

Определяется отношением яркости черного цвета к яркости белого. Контрастность отвечает за глубину черного цвета («чистый черный»), за насыщенность «картинки», за отображение слабоконтрастных элементов.

Параметры проекции

Минимальный/Максимальный размер проекции по диагонали — доступные размеры изображения, передаваемые с проекционного расстояния.

Максимальное/Минимальное проекционное расстояние. Определяет, насколько минимально или максимально близко можно установить проектор для получения четкой картинки необходимого размера.

Обычный проектор

Короткофокусный проектор Ультра-короткофокусный

- Дешевый
- Тень спикера

- Меньше тень
- Меньше проводов
- Дороже

- Выше яркость
- Нет тени
- Минимум проводов

Подключения

- Wi-Fi
- Bluetooth
- HDMI, VGA, USB
- RJ-45 (LAN)

Дополнительные возможности

- Поддержка съемных носителей
- Пульт ДУ
- Потолочное крепление
- Питание от аккумулятора