Regression with Linear Factored Functions

Wendelin Böhmer

<wendelin@ni.tu-berlin.de>

Neural Information Processing Group,

Klaus Obermayer

<oby@ni.tu-berlin.de>

Technische Universität Berlin

DFG Schwerpunktprogramm 1527 Autonomous Learning

Abstract

Many applications that use empirically estimated functions face a curse of dimensionality, because integrals over most function classes must be approximated by sampling. This paper introduces a novel regression-algorithm that learns linear factored functions (LFF). This class of functions has structural properties that allow to analytically solve certain integrals and to calculate point-wise products. Applications like belief propagation and reinforcement learning can exploit these properties to break the curse and speed up computation. We derive a regularized greedy optimization scheme, that learns factored basis functions during training. The novel regression algorithm performs competitively to Gaussian processes on benchmark tasks, and the learned LFF functions are with 4-9 factored basis functions on average very compact.

Linear Factored Functions (LFF)

$$f(\vec{x}) := \vec{a}^{\top} \vec{\psi}(\vec{x}) := \vec{a}^{\top} \left[\prod_{k=1}^{d} \vec{\psi}^{k}(x_{k}) \right] := \sum_{i=1}^{m} a_{i} \prod_{k=1}^{d} \sum_{j=0}^{m_{k}} B_{ji}^{k} \phi_{j}^{k}(x_{k})$$

factorizing inner products

$$\vartheta(d\vec{x}) = \prod_{k=1}^{d} \vartheta(dx_k)$$
$$\langle \psi_i, \psi_j \rangle_{\vartheta} = \prod_{k=1}^{d} \langle \psi_i^k, \psi_j^k \rangle_{\vartheta^k}$$

Fourier cosine base
$$\phi_j^k(x_k) := \sqrt{2}\cos\left(j\pi x_k\right)$$

$$\phi_0^k(x_k) := 1, \ \langle \phi_i^k, \phi_j^k \rangle_{\vartheta^k} = \delta_{ij}$$

- In the limit equivalent to the space of square-integrable functions.
- Allows analytical marginalization and point-wise multiplication.

Regularization

Regression with virtual or noisy samples

$$\inf_{f} \mathcal{C}[f|\mu, \chi] \quad := \quad \inf_{f} \iint_{\mathcal{L}} \xi(d\vec{x}) \, \chi(d\vec{z}|\vec{x}) \, \left(f(\vec{z}) - \mu(\vec{x})\right)^{2}$$

Gaussian noise assumption with uncertainty scaled variance

$$\int \chi(d\vec{z}|\vec{x}) \, (\vec{z} - \vec{x}) = \vec{0} \,, \quad \int \chi(d\vec{z}|\vec{x}) \, (\vec{z} - \vec{x}) \, (\vec{z} - \vec{x})^{\top} = \frac{d\vartheta}{d\xi} (\vec{x}) \cdot \mathbf{\Sigma} \,, \quad \forall \vec{x} \in \mathcal{X}$$

First order Taylor approximation

$$ilde{\mathcal{C}}[f] := \underbrace{ \left\| f - \mu \right\|_{\xi}^2 }_{ ext{least-squares}} + \underbrace{ \sum_{k=1}^d \sigma_k^2 }_{ ext{regularization}} \underbrace{ \left\| \frac{\partial}{\partial x_k} f \right\|_{\vartheta}^2 }_{ ext{regularization}}$$

- Regularization enforces smoothness
- Over-fitting in rarely sampled regions
- Under-fitting in often sampled regions
- Uncertainty measure scales variance 🚡 • Inverse PDF (Radon-Nikodym derivative)

Optimization

- Cost function $\widetilde{\mathcal{C}}[f]$ for LFF $f \in \mathcal{F}^m$ non-convex
- Learn **one** factored basis function $g \in \mathcal{F}$ at a time

$$\inf_{g \in \mathcal{F}} \tilde{\mathcal{C}}[f+g] \quad \text{s.t.} \quad \|g^k\|_{\vartheta^k} = 1, \quad \forall k \in \{1, \dots, d\}$$

- Analytical solution for one factor function $g^k:\mathcal{X}_k \to \mathbb{R}$
- Repeat with random dimensions k until convergence
- Greedy LFF regression algorithm:
 - "inner loop" optimizes one basis function g at a time
 - "outer loop" learns coefficients a; with ordinary least squares (OLS)

while new factored basis function can improve solution **do** initialize new basis function *g* as constant function

while optimization improves cost in Equation 6 do

for random input dimension k do

calculate optimal solution for g^k without changing other g^l

end for // new basis function g has converged end while add g to set of factored basis functions and solve OLS

end while // regression has converged

Evaluation: Spiral Toy Example

- Labels from sinus
- •n = 1000 2D-spiral samples
- Not easily factorizable
- 10-fold crossvalidation
- Additional noise dim. (normal distributed)
- No information
- Full RBF-GP does not generalize well
- ARD-GP adapts RBF kernel parameters
- C.E. Rasmussen and H. Nickisch: Gaussian Processes for Machine Learning (GPML) Toolbox. *Journal of Machine* Learning Research, 11:3011-3015, 2010.

 $\vec{x}_t = 6\frac{t}{n} \begin{bmatrix} \cos(6\frac{t}{n}\pi) \\ \sin(6\frac{t}{n}\pi) \end{bmatrix} + \mathcal{N}(\vec{0}, \frac{t^2}{4n^2}I)$

Evaluation: UCI Repository

DATA SET d n #SV RMSE LFF RMSE GP m LFF h LFF h GP 927 4.429 ± 0.69 5.196 ± 0.64 4.2 ± 0.8 3.00 0.05 4 9568 2000 | 3.957 ± 0.17 | 3.888 ± 0.17 | 8.8 ± 2.0 | 1.96 | 1.14White Wine 11 4898 2000 0.707 ± 0.02 0.708 ± 0.03 4.2 ± 0.4 4.21 0.69 Red Wine 11 1599 1440 | 0.632 ± 0.03 0.625 ± 0.03 | 4.7 ± 0.7 | 3.25 | 0.136 308 278 0.446 ± 0.23 0.383 ± 0.11 4.2 ± 0.6 0.43 0.005

n samples with **d** dimensions, learned by **m** LFF bases in **h** hrs. Full GP ARD-GP (ε=0.05)

Benchmark Data Set

Concrete compression strength I-C. Yeh: Modeling the stength of high performance concrete using artificial neural

networks. Cement and Concrete Research, 28(12):1797-1808, 1998. **Combined cycle power plant** P. Tüfekci: Prediction of full load electrical

power output of a base load operated combined cycle power plant using machine learning methods. International Journal of Electical Power & Energy Systems, 60:126-140, 2014.

Wine quality (white and red)

P. Cortez et al.: Modeling wine preferences by data mining from physicochemical properties. Decision Support Systems, 47 (4):547-553, 2009.

Yacht hydrodynamics

J. Gettirsma et al.: Geometry, resistance and stability of the delft systematic yacht hull series. International Shipbuilding Progress, 28:276-297, 1981.