

フィルムケースル変換基板つき 参考資料

☆漢字フォント(JIS第1/第2 水準)搭載!! 漢字を手軽に 表示できます

☆文字とグラフィックを重ねて 表示できます

☆電源電圧:DC 5V

※LEDバックライトは電流制限抵抗内蔵です。5V電源に直接

主な仕様

- ◎ コントローラ: HD66732 ※JIS第1/第2水準漢字フォント搭載
- ◎ 接続方式:8ビットパラレル(68系)
- ◎ 表示可能文字:半角英数文字 / 全角漢字(混在表示可能)
- ◎ 表示文字/ドット数:10文字 x 4行(漢字)/120 x 52ドット (グラフィック)※文字とグラフィックを同時表示可能
- ◎ 表示色:黒(LEDバックライト(黄緑)付き)
- ◎ 外形寸法:約63x32mm ◎表示部寸法:約44x21mm
- ◎ 電源電圧:DC 5V (DC3.3Vでの動作は未検証)

付属変換基板の使用方法

ここに来ます シルク番号20番に来る)になります ので、注意してください。 FPC-20P 0.5MM

〒556-0005 大阪市浪速区日本橋4-6-7

オーティネマイコン・メかトロ・電子バーツ 電子工作向けの学習、実験、開発向けであり 資料等は参考用です。目安程度のもので差異や誤りがある場合があり 商品の性能等を保証するものではありません。 各種設定、使用については自己責任でお願いいたします。 いかなる事故、損失においても製造者、流通者、販売者は

一切の責任を負いかねます。返品、交換、保証等の対応はしていません。

ピン配置

	信号名	概要		信号名	概要
1	VSS	グラウンド	11	DB4	データバス D4
2	VDD	電源(DC 5V)	12	DB5	データバス D5
3	۷O	コントラスト調整	13	DB6	データバス D6
4	RS	レジスタ選択	14	DB7	データバス D7
5	RW	書き込み(L)/読み出し(H)選択	15	NC	接続なし
6	Е	イネーブル信号	16	/RST	リセット信号(「L」でリセット)
7	DB0	データバス DO	17	VEE	液晶駆動電源出力
8	DB1	データバス D1	18	NC	接続なし
9	DB2	データバス D2	19	LED(+)	LEDバックライト(アノード)
10	DB3	データバス D3	20	LED(-)	LEDバックライト(カソード)

※LEDバックライトは電流制限抵抗内蔵です。5V電源に直接接続して 使用できます。

接続のしかた

2016年 10月 - 1 -LM4049_160930

アクセスのしかた

RW	RS	アクセス内容
L	L	レジスタ番号書き込み
L	Н	データ/コマンド書き込み
Н	L	ステータス読み出し(※)
Н	Н	データ読み出し(※)

※読み出しアクセスは 通常使用しません。 (詳細はHD66732の データシートを参照して ください)

書き込みアクセスタイミング(RW=「Lı)

- (1) レジスタ番号を設定するのかデータ/コマンドを書き込むのか に応じてRS信号の状態を設定し、イネーブル信号(E)を「L」から 「H」にします。(イネーブル信号立ち上がり時にRS信号の状態が 確定している必要があります)
- (2) データ/コマンドを出力してからイネーブル信号(E)を「L」にします。
- ◎コマンド/データの書き込みかた
- (1) RS信号を「L」にした状態でアクセスするレジスタの番号を設定 します。
- (2) RS信号を「H」にした状態でレジスタに設定するコマンド/データ を書き込みます。
- ※データのレジスタに書き込むと、書き込みデータの番地が自動的 に「1」増えます。

初期化のしかた

HD66732のコマンド、表示データの送り方の詳細については、 HD66732のデータシートを参照してください。

- (1) /RST端子を1ms以上の間「L」にしてコントローラをリセットします ※リセット解除後約10ms程度待ってからコマンドを送ります
- (2) 内部発振回路を有効にします

レジスタ1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

※発振が安定するまで約10ms程度 待ちます

(3) 液晶パネルの駆動方式を次の通り設定します。

◎ 駆動デューティ: 1/52 (4行/52ライン表示)

◎ 水平ドット数: 120ドット

◎ 垂直側スキャン方向:逆順

◎ 水平側スキャン方向:正順 ◎ バイアス方式:1/7バイアス ◎ 液晶駆動電源:有効

レジスタ2

│0│1│0│0│0│0│1│0│1∥0│※駆動デューティとスキャン方法の設定

レジスタ3

0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ※駆動方法設定

レジスタ4

0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | ※バイアス方式(1/7)設定

レジスタ5

- │1│0│0│1│0│0│0│0│0│※液晶駆動電源設定
- (4) グラフィック表示用のCGRAMを「OxOO」で埋めてクリアします ※キャラクタ表示用のDDRAMはリセット時自動でクリアされます。
- (5) キャラクタとグラフィックの混在表示を有効にします レジスタ7
- 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | ※表示モードの設定

(6)表示をONにします

レジスタ8

0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | ※カーソルを戻す(カーソルOFF)

レジスタ9

│0│0│1│1│1│0│0│1│0│※表示ON(水平方向120ドット)

参考(3.3V電源での使用)

※3.3V電源での使用については検証していません。自己責任で 実験してください。

3.3V電源で使用する場合、液晶パネルの駆動電圧が適正に なるよう内部DC-DCコンバータの昇圧比の設定を変更する必要 があります。

内部DC-DCコンバータの昇圧比を設定するには、レジスタ5 (POWER CONTROL)のBT1、BT0の設定を変更します。

レジスタ5 (POWER CONTROL)

ВТ	Γ1	BT0	DC-DCコンバータ昇圧比					
()	0	昇圧しない	レジスタ5のBT1、BT0の				
)	1	電源電圧の2倍	設定と昇圧比の関係は				
		0	電源電圧の3倍	左表の通りです。				
1		1	電源電圧の4倍					

5V電源で使用する場合は電源電圧の2倍、3.3V電源で使用 する場合は電源電圧の3倍を選択します。

なお、本液晶の最適駆動電圧(3番ピン、VO)は約7.5Vです。

※注意:液晶駆動電圧(3番ピン、VO)が最大定格の13Vを超え ないよう設定に注意してください。(破壊します)

初期化コード例 (AVR GCC)

void LM4049_ini(void)

delay ms(10);

int i, j, k;

PORTB [= (1<<LCD_RST); delay_ms(50); LM4049_cmd(1, 0x01);

_delay_ms(20); // 発振が安定するまで待つ

PORTB &= (unsigned char) (1<<LCD_RST);

液晶駆動方式の設定 パネルに合わせて駆動デューティ、スキャン方向、

駆動波形、バイアス方式、内部DC-DCの設定を行う

// 発振開始

LM4049_cmd(2,0b01000010); // 1/52 duty, スキャン方向設定

LM4049_cmd(3,0b00000000); // I/32 uuty, / LM4049_cmd(3,0b00000000); // 駆動波形選択 LM4049_cmd(4,0b00111111); // 1/7 bias LM4049_cmd(5,0b10010000); // 駆動電源有効 /*

表示モードの設定 グラフィックと文字を重ねて表示できるモードに設定、

グラフィック表示用のCGRAMをクリア for(i=0;i<7;i++) // グラフィック表示用のCGRAMをクリア

LM4049_setcgadr(0, i); for (j=0; j<120; j++)

LM4049_cmd (0x0f, 0x00);

ĹM4049_cmd(7,0b00001001); // set entry mode

/* 表示を有効にする */ LM4049_cmd(8,0b00010000); // Set cursor home(カーソルOFF)

LM4049_cmd (9, 0b00110010);

データの送り方

- ◎DDRAMにデータを書き込んだあと、内部の書き込みアドレスが 自動的に1増えます
- ◎半角文字はDDRAM上の1バイト、全角文字はDDRAMの2バイトを 占有します
- ◎行の最後を越えて書き込んだ場合は次の行に表示されます。 但し行の最後のアドレスに全角文字を書き込むと文字化けします。
- (2) データの送り方
- ◎半角文字の場合(ASCIIコード0x20~0x7f)

◎全角文字の場合(JIS第1、第2水準)

JISコードをHD66732の内部コードに変換したあと、下位バイト、 上位バイトの順で送ります

文字コード表とJISコードから内部コードへの変換規則については HD66732のデータシートを見てください。

(3) グラフィック表示用CGRAMのアドレス

- ◎CGRAMにデータを書き込んだあと、内部の書き込みアドレスが 自動的に1増えます
- ◎書き込んだデータの上位ビットが画面の下側に来ます

CGRAMに書き込んだグラフィックデータは、DDRAMに書き込んだ 文字と同時に表示されます。

レジスタマップ

本液晶の機能設定用レジスタと主な機能です。各レジスタの機能の詳細についてはHD66732のデータシートを参照してください。

レジスタ	レジスタ名	設定ビット								主な機能	備考
0x00	Clear Display		0	0	0	0	0	0	1	表示クリア	実行後約2ms以上待つ
0x01	Start Oscillation		0	0	0	0	0	0	1	内部クロック発振開始	実行後10ms以上待つ
0x02	Driver Output Control		0 NL2-0			0	CEN	CMS	SGS	表示行数/表示向き設定	
0x03	LCD Driving Wave		B/C EOR 0 NW4-0)		液晶駆動波形選択	B/C=0のとき他のビットは無関係
0x04	LCD Driving Control		BS2-0				CT4-0			バイアス方式設定	CT4-0は本モジュールでは無関係
0x05	Power Control	AMP	0	ВТ	1-0	0	0	SLP	STB	液晶駆動電源設定	内部DC-DCコンバータの機能設定
0x06	Key Scan Control	0 PT2-0 KSB IRE KF1-0		キースキャン設定	本モジュールでは使用不可						
0x07	Entry Mode	0	0	0	REV	SPR	GR	RDM	I/D	表示モード設定	キャラクタ/グラフィック表示を設定
0x08	Cursor Control	0	0	0	CH	LC	B/W	С	В	カーソル設定	反転カーソルなどが設定可能
0x09	Display Control	0	0	DC	DS	0	0	NC	1-0	表示ON/OFF設定	水平表示文字数を設定
0x0A	Scroll Control	0	0	SN	1-0	SL3-0				縦スクロール設定	表示開始行/ラインを設定
0x0B	Half-Size ROM Select	0	0	0	0	RL4	RL3	RL2	RL1	半角文字フォント選択	行ごとに設定可能
0x0C	Half-Size ROM Display Attribute		A41-A40 A31		-A30	A30 A21-		0 A11-A10		半角文字表示属性指定	行ごとに反転/点滅など設定可能
0x0D	RAM Address	RM1-0 0		0	0	A10-A8		8	RAMアドレス指定	RM1-0で書き込み先選択	
0x0E	RAM Address	A7-A0								ハベミノトレク相足	(DDRAM/CGRAM/SEGRAM)
0x0F	RAM Data	D7 - D0					-			RAMへのデータ書き込み	RAMの指定はRAM Addressで行う

注意

※Clear Display(レジスタ0x00)以外のレジスタは書き込み後直ちにその機能が実行されます。 (実行完了を待つ必要はありません)

※Clear Display(レジスタ0x00)に書き込んだあと、約2msの間はほかのレジスタに書き込まないでください。 (書き込んでも無視されます)

2016年 10月 - 3 - LM4049_160930