TUGAS INDIVIDU 2 FUZZY LOGIC

DISUSUN OLEH:

Nama: Fahim Ahmad Saputra (G1A022037)

Dosen Pengampu:

Dr. Endina Putri Purwandari, S.T., M.Kom.

PROGRAM STUDI INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS BENGKULU 2024

Petunjuk:

- 1. Mahasiswa dengan NPM Ganjil → kerjakan dengan fungsi keanggotaan SEGITIGA
- 2. Mahasiswa dengan NPM Genap → kerjakan dengan fungsi keanggotaan TRAPESIUM

Soal:

Suatu penelitian dilakukan untuk mencari jumlah produksi berdasarkan pengaruh faktor suhu, kebisingan, dan pencahayaan. Dalam penelitian ini ada 30 pekerja, yang masing-masing melakukan 27 kali percobaan dengan kombinasi suhu (°C), kebisingan (dB), dan pencahayaan (lux) yang berbeda untuk menghasilkan sejumlah produk. Banyaknya data diperoleh sejumlah 810 data. Dari ketigapuluh data untuk setiap kombinasi diambil nilai rata-ratanya, sehingga data yang akan diolah tinggal 27 data sebagai berikut:

No	Suhu	Kebisingan	Pencahayaan	Rata-rata	Standar
1	(°C)	(dB)	(lux)	jumlah	deviasi
1			, , ,	produk	
1	22	55	150	148,00	4,71
2	22	55	300	150,90	4,78
3	22	55	500	146,50	4,90
4	22	75	150	143,10	4,90
5	22	75	300	146,53	4,58
6	22	75	500	142,73	5,42
7	22	90	150	136,73	4,49
8	22	90	300	140,77	4,49
9	22	90	500	135,97	4,75
10	26	55	150	149,73	4,43
11	26	55	300	153,27	5,59
12	26	55	500	152,13	5,04
13	26	75	150	148,00	5,15
14	26	75	300	150,63	5,06
15	26	75	500	147,63	4,84
16	26	90	150	141,47	5,69
17	26	90	300	145,67	4,81
18	26	90	500	140,20	4,76
19	32	55	150	142,10	4,28
20	32	55	300	146,53	5,38
21	32	55	500	142,17	4,53
22	32	75	150	138,70	4,84
23	32	75	300	141,40	4,95
24	32	75	500	138,30	5,12
25	32	90	150	133,33	4,71
26	32	90	300	138,53	4,51
27	32	90	500	137,77	4,83

Tentukan:

- a. Fungsi Keanggotaan beserta gambarnya
- b. 27 aturan Fuzzy
- c. Derajat keanggotaan nilai tiap variable dalam setiap himpunan
- d. a-predikat untuk setiap aturan
- e. Rata-rata jumlah produk (gunakan metode defuzzy weighted average)

Pembahasan:

A. Fungsi keanggotaan beserta gambarnya

1. Definisikan Variabel Linguistik

a. Suhu (°C)

- Dingin: [22°C]

- Sedang: [22°C - 26°C]

- Panas: [26°C - 32°C]

b. Kebisingan (dB)

- Rendah: [55 dB]

- Sedang: [55 dB - 75 dB]

- Tinggi: [75 dB - 90 dB]

c. Pencahayaan (lux)

- Redup: [150 lux]

- Sedang: [150 lux - 300 lux]

- Terang: [300 lux - 500 lux]

d. Jumlah produk (Output)

- Sedikit: [133,33 - 140]

- Sedang: [140 - 147]

- Banyak: [147 - 153,27]

2. Fungsi Keanggotaan Segitiga

- a. Suhu (°C)
- Dingin:

$$\mu_{dingin}(x) = egin{cases} 1 & ext{jika } x \leq 22, \ rac{26-x}{26-22} & ext{jika } 22 < x \leq 26, \ 0 & ext{jika } x > 26. \end{cases}$$

• Sedang

$$\mu_{sedang}(x) = egin{cases} 0 & ext{jika } x \leq 22 ext{ atau } x > 32, \ rac{x-22}{26-22} & ext{jika } 22 < x \leq 26, \ rac{32-x}{32-26} & ext{jika } 26 < x \leq 32. \end{cases}$$

Panas:

$$\mu_{panas}(x) = egin{cases} 0 & ext{jika } x \leq 26, \ rac{x-26}{32-26} & ext{jika } 26 < x \leq 32, \ 1 & ext{jika } x > 32. \end{cases}$$

b. Kebisingan (dB)

Rendah:

$$\mu_{rendah}(x) = egin{cases} 1 & ext{jika } x \leq 55, \ rac{75-x}{75-55} & ext{jika } 55 < x \leq 75, \ 0 & ext{jika } x > 75. \end{cases}$$

Sedang:

$$\mu_{sedang}(x) = egin{cases} 0 & ext{jika } x \leq 55 ext{ atau } x > 90, \ rac{x-55}{75-55} & ext{jika } 55 < x \leq 75, \ rac{90-x}{90-75} & ext{jika } 75 < x \leq 90. \end{cases}$$

Tinggi:

$$\mu_{tinggi}(x) = egin{cases} 0 & ext{jika } x \leq 75, \ rac{x-75}{90-75} & ext{jika } 75 < x \leq 90, \ 1 & ext{jika } x > 90. \end{cases}$$

c. Pencahayaan (lux)

Redup:

$$\mu_{redup}(x) = egin{cases} 1 & ext{jika } x \leq 150, \ rac{300-x}{300-150} & ext{jika } 150 < x \leq 300, \ 0 & ext{jika } x > 300. \end{cases}$$

Sedang:

$$\mu_{sedang}(x) = \begin{cases} 0 & \text{jika } x \leq 150 \text{ atau } x > 500, \\ \frac{x - 150}{300 - 150} & \text{jika } 150 < x \leq 300, \\ \frac{500 - x}{500 - 300} & \text{jika } 300 < x \leq 500. \end{cases}$$

Terang:

$$\mu_{terang}(x) = egin{cases} 0 & ext{jika } x \leq 300, \ rac{x-300}{500-300} & ext{jika } 300 < x \leq 500, \ 1 & ext{jika } x > 500. \end{cases}$$

3. Gambarkan Fungsi Keanggotaan

a. Suhu (°C)

b. Kebisingan (dB)

c. Pencahayaan (lux)

B. 27 aturan fuzzy

- Jika suhu Dingin dan kebisingan Rendah dan pencahayaan Redup, maka jumlah produk Sedikit.
- 2. Jika suhu Dingin dan kebisingan Rendah dan pencahayaan Sedang, maka jumlah produk Sedang.
- 3. Jika suhu Dingin dan kebisingan Rendah dan pencahayaan Terang, maka jumlah produk Sedang.
- 4. Jika suhu Dingin dan kebisingan Sedang dan pencahayaan Redup, maka jumlah produk Sedikit.
- 5. Jika suhu Dingin dan kebisingan Sedang dan pencahayaan Sedang, maka jumlah produk Sedang.

- 6. Jika suhu Dingin dan kebisingan Sedang dan pencahayaan Terang, maka jumlah produk Sedikit.
- 7. Jika suhu Dingin dan kebisingan Tinggi dan pencahayaan Redup, maka jumlah produk Sedikit.
- 8. Jika suhu Dingin dan kebisingan Tinggi dan pencahayaan Sedang, maka jumlah produk Sedikit.
- 9. Jika suhu Dingin dan kebisingan Tinggi dan pencahayaan Terang, maka jumlah produk Sedikit.
- 10. Jika suhu Sedang dan kebisingan Rendah dan pencahayaan Redup, maka jumlah produk Sedang.
- 11. Jika suhu Sedang dan kebisingan Rendah dan pencahayaan Sedang, maka jumlah produk Banyak.
- 12. Jika suhu Sedang dan kebisingan Rendah dan pencahayaan Terang, maka jumlah produk Banyak.
- 13. Jika suhu Sedang dan kebisingan Sedang dan pencahayaan Redup, maka jumlah produk Sedang.
- 14. Jika suhu Sedang dan kebisingan Sedang dan pencahayaan Sedang, maka jumlah produk Sedang.
- 15. Jika suhu Sedang dan kebisingan Sedang dan pencahayaan Terang, maka jumlah produk Sedang.
- 16. Jika suhu Sedang dan kebisingan Tinggi dan pencahayaan Redup, maka jumlah produk Sedikit.
- 17. Jika suhu Sedang dan kebisingan Tinggi dan pencahayaan Sedang, maka jumlah produk Sedang.
- 18. Jika suhu Sedang dan kebisingan Tinggi dan pencahayaan Terang, maka jumlah produk Sedikit.
- 19. Jika suhu Panas dan kebisingan Rendah dan pencahayaan Redup, maka jumlah produk Sedikit.
- 20. Jika suhu Panas dan kebisingan Rendah dan pencahayaan Sedang, maka jumlah produk Sedang.
- 21. Jika suhu Panas dan kebisingan Rendah dan pencahayaan Terang, maka jumlah produk Sedang.
- 22. Jika suhu Panas dan kebisingan Sedang dan pencahayaan Redup, maka jumlah produk Sedikit.

- 23. Jika suhu Panas dan kebisingan Sedang dan pencahayaan Sedang, maka jumlah produk Sedang.
- 24. Jika suhu Panas dan kebisingan Sedang dan pencahayaan Terang, maka jumlah produk Sedikit.
- 25. Jika suhu Panas dan kebisingan Tinggi dan pencahayaan Redup, maka jumlah produk Sedikit.
- 26. Jika suhu Panas dan kebisingan Tinggi dan pencahayaan Sedang, maka jumlah produk Sedikit.
- 27. Jika suhu Panas dan kebisingan Tinggi dan pencahayaan Terang, maka jumlah produk Sedikit.
- C. Derajat keanggotaan setiap nilai tiap variable dalam setiap himpunan
 - 1. Rumus Derajat Keanggotaan Segitiga

$$\mu(x) = \max\left(\min\left(rac{x-a}{b-a},rac{c-x}{c-b}
ight),0
ight)$$

2. Contoh Penghitungan Derajat Keanggotaan

Suhu = 22° C

Kebisingan = 55 dB

Pencahayaan = 150 lux

a. Derajat Keanggotaan Suhu (22°C)

- 1. Dingin: $\mu_{dingin}(22)=1 \quad (\text{karena } x\leq 22)$ 2. Sedang: $\mu_{sedang}(22)=\frac{22-22}{26-22}=0$ 3. Panas: $\mu_{panas}(22)=0 \quad (\text{karena } x\leq 26)$
- b. Derajat Keanggotaan Kebisingan (55 dB)
 - 1. Rendah: $\mu_{rendah}(55)=1 \quad (\text{karena } x \leq 55)$ 2. Sedang: $\mu_{sedang}(55)=0 \quad (\text{karena } x \leq 55)$ 3. Tinggi: $\mu_{tinggi}(55)=0 \quad (\text{karena } x \leq 75)$

c. Derajat Keanggotaan Pencahayaan (150 lux)

1. Redup:
$$\mu_{redup}(150)=1 \quad ({\rm karena} \ x \leq 150)$$
 2. Sedang:
$$\mu_{sedang}(150)=0$$
 3. Terang:
$$\mu_{terang}(150)=0$$

n o	Su hu (° C)	Kebis ingan (dB)	Kebis ingan (dB)	μ ren dah suh u	μ sed ang suh u	μ tin ggi su hu	μ renda h kebis ingan	μ sedan g kebis ingan	μ tinggi kebis ingan	μ renda h penca hayaa n	μ sedang penca hayaa n	μ tinggi penca hayaa n
1	22	55	150	1	0	0	1	0	0	1	0	0
2	22	55	300	1	0	0	1	0	0	0	1	0
3	22	75	150	1	0	0	1	0	0	1	0	0
4	22	75	300	1	0	0	1	0	0	0	1	0
5	22	75	500	1	0	0	1	0	0	0	0.33	0.67
6	22	75	500	1	0	0	1	0	0	0	0.33	0.67
7	22	90	150	1	0	0	1	0	0	1	0	0
8	22	90	300	1	0	0	1	0	0	0	1	0
9	26	55	150	0.7	0.2 5	0	1	0	0	1	0	0
1 0	26	55	300	0.7	0.2 5	0	1	0	0	0	1	0
1	26	75	150	0.7	0.2 5	0	1	0	0	1	0	0
1 2	26	75	300	0.7	0.2 5	0	1	0	0	0	1	0
1 3	26	90	150	0.7	0.2 5	0	1	0	0	1	0	0
1 4	26	90	300	0.7	0.2 5	0	1	0	0	0	1	0
1 5	26	55	150	0.7	0.2 5	0	1	0	0	1	0	0

1 6	26	55	300	0.7	0.2 5	0	1	0	0	0	1	0
1 7	26	75	150	0.7	0.2 5	0	1	0	0	1	0	0
1 8	26	75	300	0.7	0.2 5	0	1	0	0	0	1	0
1 9	26	90	150	0.7	0.2 5	0	1	0	0	1	0	0
2 0	32	55	300	0.5	0.5	0	1	0	0	1	0	0
2	32	55	500	0.5	0.5	0	1	0	0	0.33	0	0.67
2 2	32	75	150	0.5	0.5	0	1	0	0	1	0	0
2 3	32	75	300	0.5	0.5	0	1	0	0	1	0	0
2 4	32	75	500	0.5	0.5	0	1	0	0	0.33	0	0.67
2 5	32	90	150	0.5	0.5	0	1	0	0	1	0	0
2 6	32	90	300	0.5	0.5	0	1	0	0	1	0	0
2 7	32	90	500	0.5	0.5	0	1	0	0	0.33	0	0.67

D. α -predikat untuk setiap aturan

Jika (Suhu adalah A) dan (Kebisingan adalah B) dan (Pencahayaan adalah C), maka (Produksi adalah Z).

Langkah menghitung a-predikat:

- Untuk aturan 1: "Jika Suhu Dingin, Kebisingan Rendah, dan Pencahayaan Redup, maka Produksi adalah Z"
- a-predikat = min(μ Suhu Dingin, μ Kebisingan Rendah, μ Pencahayaan Redup)

No	Suhu	Kebisingan	Pencahayaan	α-predikat
1	rendah	rendah	rendah	min(1,1,1)=1
2	rendah	rendah	sedang	min(1,1,0.33)=0.33
3	rendah	rendah	tinggi	min(1,1,0)=0
4	rendah	sedang	rendah	min(1,0.33,1)=0.33
5	rendah	sedang	sedang	min(1,0.33,0.33)=0.33
6	rendah	sedang	tinggi	min(1,0.33,0)=0
7	rendah	tinggi	rendah	min(1,0,1)=0
8	rendah	tinggi	sedang	min(1,0,0.33)=0
9	rendah	tinggi	tinggi	min(1,0,0)=0
10	sedang	rendah	rendah	min(0.75,1,1)=0.75
11	sedang	rendah	sedang	min(0.75,1,0.33)=0.33

12	sedang	rendah	tinggi	min(0.75,1,0)=0
13	sedang	sedang	rendah	min(0.75,0.33,1)=0.33
14	sedang	sedang	sedang	min(0.75,0.33,0.33)=0.33
15	sedang	sedang	tinggi	min(0.75,0.33,0)=0
16	sedang	tinggi	rendah	min(0.75,0,1)=0
17	sedang	tinggi	sedang	min(0.75,0,0.33)=0
18	sedang	tinggi	tinggi	min(0.75,0,0)=0
19	tinggi	rendah	rendah	min(0.5,1,1)=0.5
20	tinggi	rendah	sedang	min(0.5,1,0.33)=0.33
21	tinggi	sedang	rendah	min(0.5,1,0)=1
22	tinggi	sedang	sedang	min(0.5,0.33,1)=0.33
23	tinggi	sedang	tinggi	min(0.5,0.33,0.33)=0.33
24	tinggi	tinggi	rendah	min(0.5,0.33,0)=0
25	tinggi	tinggi	sedang	min(0.5,0,1)=0
26	tinggi	tinggi	sedang	min(0.5,0,0.33)=0
27	tinggi	tinggi	tinggi	min(0.5,0,0)=0

E. Rata-rata jumlah produk (metode defuzzy weighted average)

$$Z = rac{\sum (a ext{-predikat}_i \cdot Z_i)}{\sum a ext{-predikat}_i}$$

Langkah-langkah:

- 1. Dapatkan nilai rata-rata jumlah produk Z_i dari setiap aturan.
- 2. Hitung $\alpha predikat_i$. Z_i untuk semua aturan.
- 3. Jumlahkan semua nilai $\alpha-predikat_i$. Z_i
- 4. Jumlahkan semua $\alpha-predikat_i$. Z_i
- 5. Hitung rata-rata defuzzy menggunakan rumus di atas.

Nilai Rata-rata Jumlah Produk Z_i dan a-predikat:

Aturan	Z _i (Rata- rata Produk)	α – predikat _i	$\alpha-predikat_i \cdot Z_i$
1	148.00	1.0	148.00
2	150.90	0.0	0.00
3	146.50	0.0	0.00
4	143.10	0.0	0.00
5	146.53	0.0	0.00
6	142.73	0.0	0.00
7	136.73	0.0	0.00
8	140.77	0.0	0.00
9	135.97	0.0	0.00
10	149.73	1.0	149.73

11	153.27	1.0	153.27
12	152.13	1.0	152.13
13	148.00	1.0	148.00
14	150.63	1.0	150.63
15	147.63	1.0	147.63
16	141.47	0.0	0.00
17	145.67	0.0	0.00
18	140.20	0.0	0.00
19	142.10	1.0	142.10
20	146.53	1.0	146.53
21	142.17	1.0	142.17
22	138.70	1.0	138.70
23	141.40	1.0	141.40
24	138.30	1.0	138.30
25	133.33	0.0	0.00
26	138.53	0.0	0.00
27	137.77	0.0	0.00

Jumlahkan semua $\alpha - predikat_i \cdot Z_i$

 ${\rm Total}\,(\alpha-predikat_i.Z_i)=$

148.00 + 149.73 + 153.27 + 152.13 + 148.00 + 150.63 + 147.63 + 142.10 + 146.53 + 142.17 + 148.00 + 149.73 + 148.00 + 149.73 + 148.00 + 149.73 + 148.00 + 149.73 + 148.00 + 149.73 + 148.00 + 149.73 + 148.00 + 149.73 + 148.00 + 149.73 + 148.00 + 149.73 + 148.00 + 149.73 + 148.00 + 149.73 + 148.00 + 149.00 + 1

+138.70+141.40+138.30=1800.59

Jumlahkan semua $\alpha - predikat_i$

Total $\alpha - predikat_i =$

1.0 + 1.0

Hitung nilai rata-rata defuzzy (Z)

$$Z = \frac{1800.59}{13} = 138.50$$