Esempio: Esponenziale

Si definisca una funzione:

def factorial(n)

...Che calcoli il fattoriale del parametro di ingresso n.

La si utilizzi quindi per definire una seconda funzione:

def exponential(x, m)

...Che approssimi $oldsymbol{e}^x$ sando il suo sviluppo in serie di Taylor troncata:

$$e^x \simeq \sum_{n=0}^m \frac{x^n}{n!}$$

Esempio: Esponenziale

Si verifichi (per stampa) la validità delle seguenti affermazioni:

$$e^2 \simeq 7.389$$
 $e^3 \simeq 20.086$ $e^4 \simeq 54.598$

Si utilizzi un ciclo per gestire la stampa dei valori

Alcune note:

- Il codice dell'esercizio analogo nella parte 4 è disponibile come riferimento
- Il codice deve essere contenuto in un'unica cella
- lacksquare Si effettuino esperimenti con diversi valori di $oldsymbol{x}$ ed $oldsymbol{m}$

Esempio: Esponenziale

Una possibile soluzione dell'esercizio:

```
In [3]: m = 16
def factorial(n):
    res = 1
    for i in range (1, n+1):
        res *= i
     return res
def exponential(x, m):
    return sum(x**n / factorial(n) for n in range(m+1))
for x in range (2, 4+1):
    print(f'e^{x} \sim = \{exponential(x, m):.3f\}')
e^2 \sim 7.389
e^3 \sim 20.086
 e^4 \sim 54.598
```


