2022-2023 MP2I

À chercher pour mardi 30/05/2023, corrigé

TD 29:

Exercice 8. On veut construire une probabilité sur $\Omega = [1, n]$ telle que la probabilité de l'évènement $A_k = [1, k]$ soit proportionnelle à k^2 . On cherche donc $\lambda \in \mathbb{R}_+$ tel que $P(A_k) = \lambda k^2$ pour tout $k \in [1, n]$. Notre but va être ici de construire P sur les évènements élémentaires $\{1\}, \{2\}, \ldots, \{n\}\}$. Posons alors $a_k = P(\{k\})$. En retraduisant l'hypothèse de l'énoncé, on obtient donc :

$$\forall k \in [1, n], \ \sum_{j=1}^{k} a_j = \lambda k^2.$$

En retranchant deux égalités successives, on obtient pour tout $k \in [1, n]$, $a_k = \lambda(k^2 - (k-1)^2)$. On en déduit que :

$$a_k = \lambda(2k-1).$$

Puisque l'on doit avoir $\sum_{k=1}^{n} a_k = 1$, on en déduit que l'on doit avoir $\lambda(n(n+1) - n) = 1$, ce qui entraine $\lambda = \frac{1}{n^2}$.

Une probabilité répondant à la question posée est donc P définie sur les évènements élémentaires par $P(\{k\}) = \frac{2k-1}{n^2}$ (tout est positif et la somme fait bien 1).

Exercice 9. On pose T_1 et T_2 les évènements « on choisit la pièce P_1 (respectivement P_2) » et P l'évènement « on fait pile avec la pièce ». D'après la formule de Bayes, on a :

$$P_P(T_1) = \frac{P_{T_1}(P)P(T_1)}{P(P)}.$$

Puisque (T_1, T_2) forme un système complet d'évènements, on a d'après la formule des probabilités totales :

$$P(P) = P(T_1)P_{T_1}(P) + P(T_2)P_{T_2}(P) = \frac{3}{8} + \frac{1}{3} = \frac{17}{24}.$$

On en déduit finalement que $P_P(T_1) = \frac{9}{17}$.

En reprenant le même raisonnement avec l'évènement P_n : « on fait n pile de suite », on obtient, en utilisant le fait que les tirages successifs sont indépendants :

$$P_{P_n}(T_1) = \frac{\left(\frac{3}{4}\right)^n}{\left(\frac{3}{4}\right)^n + \left(\frac{2}{3}\right)^n}.$$

On a donc $P_{P_n}(T_1) = \frac{1}{1 + \left(\frac{8}{9}\right)^n} \to 1$. La probabilité d'avoir choisi la pièce P_1 tend donc vers 1 quand n tend vers l'infini.

Exercice 11. On note T l'évènement « il y a un trésor » et pour $k \in [1, n]$, C_k l'évènement « le trésor est dans le coffre k ». On cherche à déterminer l'évènement $P_{\overline{C_1} \cap ... \overline{C_{n-1}}}(C_n)$. Par définition, on a :

$$\begin{split} P_{\overline{C_1} \cap \dots \overline{C_{n-1}}}(C_n) &= \frac{P(\overline{C_1} \cap \overline{C_2} \cap \dots \overline{C_{n-1}} \cap C_n)}{P(\overline{C_1} \cap \dots \overline{C_{n-1}})}. \\ P(\overline{C_1} \cap \dots \overline{C_{n-1}}) &= P_T(\overline{C_1} \cap \dots \overline{C_{n-1}}) P(T) + P_{\overline{T}}(\overline{C_1} \cap \dots \overline{C_{n-1}}) P(\overline{T}) \\ &= p \times \frac{1}{n} + (1-p) \times 1. \end{split}$$
 On en déduit que $P_{\overline{C_1} \cap \dots \overline{C_{n-1}}}(C_n) = \frac{p}{p + (1-p)n}.$

Exercice 13. On considère un dé équilibré à 8 faces numérotées de 1 à 8. On considère les évènements A: obtenir un nombre compris entre 1 et 4, B: obtenir un nombre pair C: obtenir 1,2,5 ou 6.

Tout d'abord, on a $P(A) = P(B) = P(C) = \frac{1}{2}$. Pour montrer que A, B, C sont mutuellement indépendants, il faut vérifier que $P(A \cap B) = P(A \cap C) = P(B \cap C) = \frac{1}{4}$ et que $P(A \cap B \cap C) = \frac{1}{8}$.

 $A\cap B\cap C$ correspond à l'évènement « obtenir 2 » qui a donc une probabilité égale à $\frac{1}{8}$ (le dé est équilibré). L'évènement $A\cap B$ correspond à « obtenir 2 ou 4 » qui a bien une probabilité égale à $\frac{1}{4}$. L'évènement $A\cap C$ correspond à « obtenir 1 ou 2 » qui a bien une probabilité égale à $\frac{1}{4}$. Enfin, l'évènement $B\cap C$ correspond à « obtenir 2 ou 6 » qui a bien une probabilité égale à $\frac{1}{4}$. Les évènements A,B,C sont donc mutuellement indépendants.

TD 30:

Exercice 1. On considère la variable aléatoire X à valeurs dans [1, 5] dont la loi est donnée par P(X = k) = k/15 pour $k \in [1, 5]$.

1) Il suffit de vérifier que $\sum_{k=1}^{5} P(X=k) = 1$ (les probabilités données étant positives). On a $\sum_{k=1}^{5} P(X=k) = \frac{5 \times 6}{2 \times 15} = 1$. On a donc bien défini une variable aléatoire. On a :

$$E(X) = \sum_{k=1}^{5} \frac{k^2}{15} = \frac{5 \times 6 \times 11}{6 \times 15} = \frac{11}{3}.$$

On a $V(X) = E(X^2) - (E(X))^2$ donc :

$$V(X) = \sum_{k=1}^{5} k^2 \times \frac{k}{15} - \frac{121}{9} = \frac{15^2}{15} - \frac{121}{9} = \frac{14}{9}.$$

2) $Y = X^2$ est à valeurs dans $\{1, 4, 9, 16, 25\}$. On a $P(Y = k^2) = P(X = k) = \frac{k}{15}$ pour k variant entre 1 et 5. On a $E(Y) = E(X^2) = 15$. On a $V(Y) = E(Y^2) - (E(Y))^2 = E(X^4) - (E(X^2))^2$. On calcule alors $E(X^4) = \sum_{k=1}^5 k^4 \times \frac{k}{15} = 295$ d'où V(Y) = 70.

 $Z=\min(X-3,0)$ est à valeurs dans $\{-2,-1,0\}.$ On a P(Z=-2)=P(X=1)=1/15, P(Z=-1)=P(X=2)=2/15 et P(Z=0)=12/15. On en déduit $E(X)=-2\times 1/15-1\times 2/15+0\times 12/15=-4/15$ et :

$$V(Z) = E(Z^2) - (E(Z))^2 = 4 \times 1/15 + 1 \times 2/15 + 0 \times 12/15 - (4/15)^2 = \frac{74}{15^2}.$$

Exercice 3. On revient à la définition de l'espérance :

$$E(X) = \sum_{k=0}^{N} kP(X = k)$$

$$= 0 + \sum_{k=1}^{N} kP(X = k)$$

$$= 0 + \sum_{k=1}^{N} \sum_{j=1}^{k} P(X = k)$$

$$= \sum_{1 \le j \le k \le N} P(X = k)$$

$$= \sum_{j=1}^{N} \sum_{k=j}^{N} P(X = k)$$

$$= \sum_{j=1}^{N} P(X \ge j)$$

$$= \sum_{j=0}^{N-1} P(X \ge j + 1)$$

$$= \sum_{j=0}^{N-1} P(X > j).$$

On a ici utilisé le fait que les évènements $(X \ge j)$ et $\bigcup_{k=j}^n (X=k)$ sont égaux puisque X est à valeurs dans [0, N].