Building, Checking, and Appying Logistic Regression Models

Jinhwan Suk

Department of Mathematical Science, KAIST

July 21, 2020

- Strategies in Model Selection
 - Significance Test
 - Stepwise Procedure: Forward Selection and Backward Elimination
 - Information Criteria
 - Using Causal Hypotheses
- 2 Logistic Regression Diagnositics
- 3 Summarizing the Predictive Power of a Model
- ullet Mantel-Haenszel and Related Methods for Multiple 2 imes 2 Tables
- 5 Detecting and Dealing with Infinite Estimates
- 6 Sample Size and Power Considerations

How Many Explanatory Variables Can Be in the Model?

- Model selection : Complexity vs. Simplicity
- (Peduzzi et al. 1996) For each type of predictors, it recommends to exist more than 10 outcomes.
- Cautions that apply to ordinary regression hold for any GLM.
- Correlations among several explanatory variables make it seem that no one variable is important.
- Deleting such a redundant variable can be helpful to reduce SE of other estimates.

How Many Explanatory Variables Can Be in the Model?

C	S	W	Wt	Sa
2	3	28.3	3.05	Yes
3	3	26.0	2.60	Yes
3	3	25.6	2.15	No
4	2	21.0	1.85	No
3	3	22.5	1.55	No

- logit[P(Y = 1)] = $\alpha + \beta_1 W + \beta_2 Wt + \beta_3 c_1 + \beta_4 c_2 + \beta_5 c_3 + \beta_6 s_1 + \beta_7 s_2$
- $H_0: \beta_1 = \beta_2 = \cdots = \beta_7 = 0$ Likelihood-ratio test
- Test statistic = 40.56, df = $7 \cdot \cdot \cdot (P < 0.0001)$
- At least one predictor has an effect

How Many Explanatory Variables Can Be in the Model?

TABLE 6.1 Computer Output from Fitting Model with All Main Effects to Horseshoe Crab Data

		Testing Gl	obal Null Hypo	thesis: BETA = 0	
	Test		Chi-Square	DF Pr >	ChiSq
	Likel	ihood Ratio	40.5565	7	<.0001
		Analysis of	Maximum Likel	ihood Estimate	s
Paramet	ter	Estimate	Std Error	Chi-Square	Pr > ChiSq
Interc	ept	-9.2734	3.8378	5.8386	0.0157
weight		0.8258	0.7038	1.3765	0.2407
width		0.2631	0.1953	1.8152	0.1779
color	1	1.6087	0.9355	2.9567	0.0855
color	2	1.5058	0.5667	7.0607	0.0079
color	3	1.1198	0.5933	3.5624	0.0591
spine	1	-0.4003	0.5027	0.6340	0.4259
spine	2	-0.4963	0.6292	0.6222	0.4302

- In previous chapter, we showed strong evidence of a width effect.
- Weight and width are equally good predictors, but they have a strong correlation(0.887)

- Strategies in Model Selection
 - Significance Test
 - Stepwise Procedure: Forward Selection and Backward Elimination
 - Information Criteria
 - Using Causal Hypotheses
- 2 Logistic Regression Diagnositics
- 3 Summarizing the Predictive Power of a Model
- f 4 Mantel-Haenszel and Related Methods for Multiple 2 imes 2 Tables
- 5 Detecting and Dealing with Infinite Estimates
- 6 Sample Size and Power Considerations

Stepwise Procedure: Forward Selection and Backward Elimination

Forward selection

- Adds terms sequentially
- Select the term giving the greatest improvement in fit Improvement in fit?? p-value or reduction in deviance??
- Stop when they do not improve the fit significantly

Backward Selection

- Begin with a complex model
- Sequentially remove terms

Cautions:

Qualitative predictors (more than 2 categories), Interaction effect terms

Stepwise Procedure: Forward Selection and Backward

TABLE 6.2 Results of Fitting Several Logistic Regression Models to Horseshoe Crab Data

	D 11 4 4	Deviance G^2		AIG	Models	Deviance	Corr.
Model	Predictors ^a	G ²	df	AIC	Compared	Difference	$r(y,\hat{\mu})$
1	(C^*S^*W)	170.44	152	212.4	_	_	
2	$(C^*S + C^*W + S^*W)$	173.68	155	209.7	(2)-(1)	3.2 (df = 3)	
3a	$(C^*S + S^*W)$	177.34	158	207.3	(3a)-(2)	3.7 (df = 3)	
3b	$(C^*W + S^*W)$	181.56	161	205.6	(3b)-(2)	7.9 (df = 6)	
3c	$(C^*S + C^*W)$	173.69	157	205.7	(3c)-(2)	0.0 (df = 2)	
4a	$(S+C^*W)$	181.64	163	201.6	(4a)-(3c)	8.0 (df = 6)	
4b	(W+C*S)	177.61	160	203.6	(4b)-(3c)	3.9 (df = 3)	
5	(C+S+W)	186.61	166	200.6	(5)-(4b)	9.0 (df = 6)	
6a	(C+S)	208.83	167	220.8	(6a)-(5)	22.2 (df = 1)	
6b	(S+W)	194.42	169	202.4	(6b)-(5)	7.8 (df = 3)	
6c	(C+W)	187.46	168	197.5	(6c)-(5)	0.8 (df = 2)	0.45
7a	(C)	212.06	169	220.1	(7a)– $(6c)$	24.5 (df = 1)	0.28
7b	(W)	194.45	171	198.5	(7b)-(6c)	7.0 (df = 3)	0.40
8	(C = dark + W)	187.96	170	194.0	(8)-(6c)	0.5 (df = 2)	0.44
9	None	225.76	172	227.8	(9)-(8)	37.8 (df = 2)	0.00

^aC, color; S, spine condition; W, width.

- Strategies in Model Selection
 - Significance Test
 - Stepwise Procedure: Forward Selection and Backward Elimination
 - Information Criteria
 - Using Causal Hypotheses
- 2 Logistic Regression Diagnositics
- 3 Summarizing the Predictive Power of a Model
- f 4 Mantel-Haenszel and Related Methods for Multiple 2 imes 2 Tables
- 5 Detecting and Dealing with Infinite Estimates
- 6 Sample Size and Power Considerations

Model Selection and the "Correct" Model

- We are not selecting a "correct" model from a set of candidates
- Model is a simplification of reality
- Simple model has the advantages of model parsimony
- Consider a criteria that can help select a good model in terms of estimating quantities of interest

Model Selection and the "Correct" Model

• Akaike information criterion (AIC)

$$AIC(\mathcal{M}) = -2(\sup_{M \in \mathcal{M}} \mathcal{L}(\theta_M; y) - p_{\mathcal{M}})$$

Bayesian information criterion (BIC)

$$BIC(\mathcal{M}) = -2 \sup_{M \in \mathcal{M}} \mathcal{L}(\theta_M; y) + p_{\mathcal{M}} \log(n)$$

Determine a set of models that has highest posterior probability. Unclear when applied with frequentist method.

- Strategies in Model Selection
 - Significance Test
 - Stepwise Procedure: Forward Selection and Backward Elimination
 - Information Criteria
 - Using Causal Hypotheses
- 2 Logistic Regression Diagnositics
- 3 Summarizing the Predictive Power of a Model
- ullet Mantel-Haenszel and Related Methods for Multiple 2 imes 2 Tables
- 5 Detecting and Dealing with Infinite Estimates
- 6 Sample Size and Power Considerations

Example: Using Causal Hypotheses to Guide Model Building

TABLE 6.3 Marital Status by Report of Pre- and Extramarital Sex (PMS and EMS)

			Gender							
		Women				Men				
	PMS:	Yes		N	О	Yes		No		
Marital Status	EMS:	Yes	No	Yes	No	Yes	No	Yes	No	
Divorced		17	54	36	214	28	60	17	68	
Still married		4	25	4	322	11	42	4	130	

Source: G. N. Gilbert, Modelling Society (London: George Allen & Unwin, 1981). Reprinted with permission from Unwin Hyman Ltd.

• There is a time ordering of the variables:

$$G \rightarrow P \rightarrow E \rightarrow M$$

Example: Using Causal Hypotheses to Guide Model Building

Causal diagram for Table 6.3. FIGURE 6.1

TABLE 6.4 Goodness of Fit of Various Models for Table 6.3a

Stage	Response Variable	Potential Explanatory	Actual Explanatory	G^2	df
1	P	G	None	75.3	1
			(G)	0.0	0
2	E	G, P	None	48.9	3
			(P)	2.9	2
			(G+P)	0.0	1
3	M	G, P, E	(E+P)	18.2	5
			(E^*P)	5.2	4
			(E^*P+G)	0.7	3

^aP, premarital sex; E, extramarital sex; M, marital status; G, gender.

- Strategies in Model Selection
- 2 Logistic Regression Diagnositics
 - Residuals: Pearson, Deviance, and Standardized
- 3 Summarizing the Predictive Power of a Model
- $ext{ iny Mantel-Haenszel and Related Methods for Multiple 2 <math> imes$ 2 Tables
- 5 Detecting and Dealing with Infinite Estimates
- 6 Sample Size and Power Considerations

Residuals: Pearson, Deviance, and Standardized

Standard residuals :

$$r_i = y_i - \hat{\mu}_i = y_i - n_i \hat{\pi}_i$$

Pearson residuals :

$$e_i = \frac{y_i - n_i \hat{\pi}_i}{\sqrt{\widehat{Var}(Y_i)}} = \frac{y_i - n_i \hat{\pi}_i}{\sqrt{n_i \hat{\pi}_i (1 - \hat{\pi}_i)}}, \quad X^2 = \sum_{i=1}^N e_i^2$$

Deviance residuals :

$$\sqrt{d_i} \times \operatorname{sign}(y_i - \hat{\mu}_i), \quad G^2 = \sum_{i=1}^N d_i$$

Residuals: Pearson, Deviance, and Standardized

We prefer to use standardized residuals :

$$r_i = e_i / \sqrt{1 - \hat{h}_i}$$

• Asymptotic covariance of $\hat{\beta}$ is given by

asymp.
$$Cov(\hat{\beta}) = \mathcal{I}(\hat{\beta})^{-1}$$
 (property of MLE)
$$= \mathbb{E}\left[\left(\frac{\partial L}{\partial \beta}\right)^T \left(\frac{\partial L}{\partial \beta}\right)\right]^{-1}$$

$$= (X^T W X)^{-1} \qquad W = diag(\frac{(\partial \mu_i/\partial \eta_i)^2}{Var(Y_i)})$$

• Let D denote the diagonal matrix with $\partial \mu_i / \partial \eta_i$

$$W = DV^{-1}D$$
 $V = DW^{-1}D$

◆ロト ◆団ト ◆差ト ◆差ト を めなる

Residuals: Pearson, Deviance, and Standardized

ullet (Grouped Data) Asymptotic covariance of $\hat{\eta}=X\hat{eta}$ is

asymp.
$$Cov(\hat{\eta}) = X(X^TWX)^{-1}X^T$$

 \bullet Asymptotic covariance of $\hat{\mu}=g^{-1}(\hat{\eta})$ is

asymp.
$$Cov(\hat{\mu}) = DX(X^TWX)^{-1}X^TD$$

• Since $y - \hat{\mu}$ and $\hat{\mu} - \mu$ is asymptotically uncorrelated¹,

asymp.
$$Cov(y - \hat{\mu}) = asymp. Cov(y - \mu) - asymp. Cov(\hat{\mu} - \mu)$$

$$= V - Cov(\hat{\mu})$$

$$= DW^{-1}D - DX(X^TWX)^{-1}X^TD$$

$$= V^{1/2}[I - H_{at}]V^{1/2}$$

¹P 142, 4.5.7

Residuals: Pearson, Deviance, and Standardized

TABLE 6.5 Standardized Pearson Residuals for Logit Models Fitted to Data on Blood Pressure and Heart Disease

		Observed	Fit	ted	Residual		
Blood Pressure	Sample Size	Heart Disease	Indep. Model	Linear Logit	Indep. Model	Linear Logit	
< 117	156	3	10.8	5.2	-2.62	-1.11	
117-126	252	17	17.4	10.6	-0.12	2.37	
127-136	284	12	19.7	15.1	-2.02	-0.95	
137-146	271	16	18.8	18.1	-0.74	-0.57	
147-156	139	12	9.6	11.6	0.84	0.13	
157-166	85	8	5.9	8.9	0.93	-0.33	
167-186	99	16	6.9	14.2	3.76	0.65	
> 186	43	8	3.0	8.4	3.07	-0.18	

Source: Data from Cornfield (1962).

- Independent model : $logit(\pi_i) = \alpha$
- \bullet The (Standardized) residual of independent model shows an increasing trend \to linear logit model
- The trend in standardized residuals disappears!

•
$$G^2 = 5.91, X^2 = 6.29, df = 6$$

4□ > 4□ > 4 = > 4 = > = 90

Residuals: Pearson, Deviance, and Standardized

TABLE 6.7 Data Relating Admission to Gender and Department for Model with No Gender Effect

	Fema	ales	Ma]	les	Std. Res		Fema	ales	Mal	es	Std. Res
Dept	Yes	No	Yes	No	(Fem, Yes)	Dept	Yes	No	Yes	No	(Fem, Yes)
anth	32	81	21	41	-0.76	ling	21	10	7	8	1.37
astr	6	0	3	8	2.87	math	25	18	31	37	1.29
chem	12	43	34	110	-0.27	phil	3	0	9	6	1.34
clas	3	1	4	0	-1.07	phys	10	11	25	53	1.32
comm	52	149	5	10	-0.63	poli	25	34	39	49	-0.23
comp	8	7	6	12	1.16	psyc	2	123	4	41	-2.27
engl	35	100	30	112	0.94	reli	3	3	0	2	1.26
geog	9	1	11	11	2.17	roma	29	13	6	3	0.14
geol	6	3	15	6	-0.26	soci	16	33	7	17	0.30
germ	17	0	4	1	1.89	stat	23	9	36	14	-0.01
hist	9	9	21	19	-0.18	zool	4	62	10	54	-1.76
lati	26	7	25	16	1.65						

Source: Data courtesy of James Booth.

• The admissions decision is independent of gender :

$$logit(\pi_{ik}) = \alpha + \beta_k^D$$

• $G^2 = 44.74$, $X^2 = 40.85$, $df = 23 \rightarrow \text{poor fit}$

- Strategies in Model Selection
- 2 Logistic Regression Diagnositics
- 3 Summarizing the Predictive Power of a Model
 - R and R-Squared Measures
 - Likelihood and Deviance Measures
 - Classification Tables
 - ROC Curves
- ullet Mantel-Haenszel and Related Methods for Multiple 2 imes 2 Tables
- 5 Detecting and Dealing with Infinite Estimates
- 6 Sample Size and Power Considerations

Summarizing the Predictive Power of a Model

R and R-Squared Measures

•
$$R = Corr(y, \hat{\mu})$$

•
$$R^2 = 1 - \frac{\sum_i (y_i - \hat{\pi}_i)^2}{\sum_i (y_i - \bar{y})^2}$$

- Strategies in Model Selection
- 2 Logistic Regression Diagnositics
- 3 Summarizing the Predictive Power of a Model
 - R and R-Squared Measures
 - Likelihood and Deviance Measures
 - Classification Tables
 - ROC Curves
- ullet Mantel-Haenszel and Related Methods for Multiple 2 imes 2 Tables
- 5 Detecting and Dealing with Infinite Estimates
- 6 Sample Size and Power Considerations

Summarizing the Predictive Power of a Model

Likelihood and Deviance Measures

- $L_{(M/S/0)}$: the maximized log likelihood for a (given model / saturated model / model only with an intercept)
- $L_0 \le L_M \le L_S \le 0$
- Measure of predictive power(D):

$$\frac{L_M - L_0}{L_S - L_0} \in [0, 1]$$

For N independent Bernoulli observations,

$$L_0 = N[\bar{y}\log\bar{y} + (1-\bar{y})\log(1-\bar{y})] \leftarrow \hat{\pi}_i = \bar{y}$$

$$L_S = 0 \leftarrow \hat{\pi}_i = y_i, \ n_i = 1$$

$$D = 1 - \frac{L_M}{L_0}$$

- Strategies in Model Selection
- 2 Logistic Regression Diagnositics
- 3 Summarizing the Predictive Power of a Model
 - R and R-Squared Measures
 - Likelihood and Deviance Measures
 - Classification Tables
 - ROC Curves
- ullet Mantel-Haenszel and Related Methods for Multiple 2 imes 2 Tables
- 5 Detecting and Dealing with Infinite Estimates
- 6 Sample Size and Power Considerations

Summarizing the Predictive Power of a Model

Classification Tables

Test Indicator

Outcome

	No	Yes
No	а	b
	True Negative	False Positive
Yes	С	d
	False Negative	True Positive

- $\hat{y}=1$ when $\hat{\pi}>\pi_0$ and $\hat{y}=0$ when $\hat{\pi}<\pi_0$
- The proportion of correct classifications is

$$\begin{split} P_{cor} &= P(y=1 \ \text{and} \ \hat{y}=1) + P(y=0 \ \text{and} \ \hat{y}=0) \\ &= P(\hat{y}=1 \ | y=1) P(y=1) + P(\hat{y}=0 \ | y=0) P(y=0) \\ &= \textit{Sensitivity} * P(y=1) + \textit{Specificity} * P(y=0) \end{split}$$

• Sensitive to relative numbers of y = 1 and y = 0 ...?

- Strategies in Model Selection
- 2 Logistic Regression Diagnositics
- 3 Summarizing the Predictive Power of a Model
 - R and R-Squared Measures
 - Likelihood and Deviance Measures
 - Classification Tables
 - ROC Curves
- ullet Mantel-Haenszel and Related Methods for Multiple 2 imes 2 Tables
- 5 Detecting and Dealing with Infinite Estimates
- 6 Sample Size and Power Considerations

Summarizing the Predictive Power of a Model ROC Curves

- ullet The classification table depends on the cutoff π_0
- ROC curve is plot of Sensitivity as a function of (1-Specificity)
- When $\pi_0 \approx 0$, Sensitivity ≈ 1 and Specificity $\approx 0 \rightarrow (1,1)$
- When $\pi_0 \approx 1$, Sensitivity ≈ 0 and Specificity $\approx 1 \rightarrow (0,0)$
- The area under a ROC curve : concordance index

- Strategies in Model Selection
- 2 Logistic Regression Diagnositics
- 3 Summarizing the Predictive Power of a Model
- lacktriangle Mantel-Haenszel and Related Methods for Multiple 2 imes 2 Tables
 - Using Logistic Models to Test Conditional Independence
 - Cochran-Mantel-Haenszel Test of Conditional Independence
 - Estimation of Common Odds Ratio
 - ullet Meta-analyses for Summarizing Multiple 2 imes 2 Tables
- 5 Detecting and Dealing with Infinite Estimates
- 6 Sample Size and Power Considerations

Using Logistic Models to Test Conditional Independence

TABLE 6.9 Clinical Trial Relating Treatment to Response for Eight Centers

		Resp	onse			
Center	Treatment	Success	Failure	Odds Ratio	$\boldsymbol{\mu}_{11k}$	$var(n_{11k})$
1	Drug	11	25	1.19	10.36	3.79
	Control	10	27			
2	Drug	16	4	1.82	14.62	2.47
	Control	22	10			
3	Drug	14	5	4.80	10.50	2.41
	Control	7	12			
4	Drug	2	14	2.29	1.45	0.70
	Control	1	16			
5	Drug	6	11	∞	3.52	1.20
	Control	0	12			
6	Drug	1	10	∞	0.52	0.25
	Control	0	10			
7	Drug	1	4	2.0	0.71	0.42
	Control	1	8			
8	Drug	4	2	0.33	4.62	0.62
	Control	6	1			

Source: Beitler and Landis (1985).

Using Logistic Models to Test Conditional Independence

- Simpson's Paradox
- ullet For a binary response Y, we analyze the effect of binary predictor X, conditional on the covariate Z

$$\pi_{ik} = P(Y = 1 | X = i, Z = k)$$

Our model is

$$logit(\pi_{ik}) = \alpha + \beta x_i + \beta_k^Z$$

 This model (implicitly) assumes that the XY conditional odds ratio is same

$$\theta_1 = \theta_2 = \cdots = \theta_K = \exp(\beta)$$

Using Logistic Models to Test Conditional Independence

- **Method 1** : H_0 : $\beta = 0$ ($\Leftrightarrow XY$ conditional independence)
 - Wald statistic : $(\hat{\beta}/SE)^2$, df = 1
 - 2 LR statistic : $G^2(M|M_0)$, df = 1 where the model M_0 is

$$logit(\pi_{ik}) = \alpha + \beta_k^D$$

• **Method 2**: Goodness-of-fit test(df = K) of the model

$$logit(\pi_{ik}) = \alpha + \beta_k^D$$

where saturated model is given by

$$logit(\pi_{ik}) = \alpha + \beta x_i + \beta_k^D + \beta_{ik} x_i \beta_k^D$$

Using Logistic Models to Test Conditional Independence

- When we can assume that $\beta_{ik} \approx 0$, Method 2 is less powerful, especially when K is large
- When the direction of the conditional XY association varies among categories of Z, Method 1 can be less powerful

- Strategies in Model Selection
- 2 Logistic Regression Diagnositics
- 3 Summarizing the Predictive Power of a Model
- lacktriangle Mantel-Haenszel and Related Methods for Multiple 2 imes 2 Tables
 - Using Logistic Models to Test Conditional Independence
 - Cochran-Mantel-Haenszel Test of Conditional Independence
 - Estimation of Common Odds Ratio
 - ullet Meta-analyses for Summarizing Multiple 2 \times 2 Tables
- 5 Detecting and Dealing with Infinite Estimates
- 6 Sample Size and Power Considerations

Cochran-Mantel-Haenszel Test of Conditional Independence

- Non model based test of H_0 : conditional independence in $2 \times 2 \times K$
- Hypergeometric sampling for n_{11k}
- Under H_0 , each n_{11k} follows hypergeometric mean and variace are

$$\mu_{11k} = \mathbb{E} n_{11k} = n_{1+k} n_{+1k} / n_{++k}$$
 $var(n_{11k}) = n_{1+k} n_{2+k} n_{+1k} n_{+2k} / [n_{++k}^2 (n_{++k} - 1)]$

Each partial tables are independent :

$$CMH = \frac{(\sum_{k} n_{11k} - \sum_{k} \mu_{11k})^{2}}{var(\sum_{k} n_{11k})} = \frac{[\sum_{k} (n_{11k} - \mu_{11k})]^{2}}{\sum_{k} var(n_{11k})}$$

• This statistic has a large-sample χ^2 null distribution with df=1

Cochran-Mantel-Haenszel Test of Conditional Independence

ullet Cochran (1954) treated the rows in each 2 imes 2 table as two independent binomials

$$var(n_{11k}) = n_{1+k}n_{2+k}n_{+1k}n_{+2k}/n_{++k}^3$$

- Mantel-Haenszel approach:
 - Retrospective study
 - Randomized clinical trials with volunteers randomly allocated to two treatments

Cochran-Mantel-Haenszel Test of Conditional Independence

- The multicenter clinical trial reports the sample odds ratio
- Except last, the sample odds ratio shows a positive association
- Combine results using CMH = 6.38 with df=1(P=0.012)
- Testing $H_0: \beta = 0$ in logistic model
 - Model fit : $\hat{\beta} = 0.777$ with SE = 0.307
 - Wald statistic = 6.42 (P = 0.011)
 - LR statistic = 6.67 (P = 0.010)
 - Score statistic = CMH

Cochran-Mantel-Haenszel Test of Conditional Independence

• As $n \to \infty$ with fixed K.

Wald, LR, CMH tests
$$o \chi_1^2$$
 under H_0

• Advantage of CMH statistic is that when $K \to \infty$ as $n \to \infty$

CMH test
$$ightarrow \chi_1^2$$
 under H_0

Cochran-Mantel-Haenszel Test of Conditional Independence

- n=2K, so $K\to\infty$ as $n\to\infty$ (Sparse-data asymptotics)
- The first case in Table 6.10
 - $\mu_{11k} n_{11k} = 0$
 - $var(n_{11k}) = 0$
- The second case in Table 6.10
 - $\mu_{11k} = 0.50$
 - $var(n_{11k}) = 0.25$
- By CLT, the CMH is approximately chi-squared

TABLE 6.10 Stratum Containing a Matched Pair

Element of Pair	Response		Response		
	Success	Failure	Success	Failure	
First	1	0	1	0	
Second	1	0	0	1	

- Strategies in Model Selection
- 2 Logistic Regression Diagnositics
- 3 Summarizing the Predictive Power of a Model
- lacktriangle Mantel-Haenszel and Related Methods for Multiple 2 imes 2 Tables
 - Using Logistic Models to Test Conditional Independence
 - Cochran-Mantel-Haenszel Test of Conditional Independence
 - Estimation of Common Odds Ratio
 - ullet Meta-analyses for Summarizing Multiple 2 \times 2 Tables
- 5 Detecting and Dealing with Infinite Estimates
- 6 Sample Size and Power Considerations

Estimation of Common Odds Ratio

The logistic model implies homogeneous association

$$\theta_{XY(1)} = \dots = \theta_{XY(1)} = \exp(\beta)$$

- The ML estimate of the common odds ratio is $exp(\beta)$
- Mantel and Haenszel (1959) proposed

$$\hat{\theta}_{MH} = \frac{\sum_{k} n_{++k} p_{11|k} p_{22|k}}{\sum_{k} n_{++k} p_{12|k} p_{21|k}}$$

It is preferred over the ML estimator when K is large and the data are very sparse

• Robins et al. (1986) derived an estimated variance for $\log(\hat{\theta}_{MH})$

- Strategies in Model Selection
- 2 Logistic Regression Diagnositics
- 3 Summarizing the Predictive Power of a Model
- lacktriangle Mantel-Haenszel and Related Methods for Multiple 2 imes 2 Tables
 - Using Logistic Models to Test Conditional Independence
 - Cochran-Mantel-Haenszel Test of Conditional Independence
 - Estimation of Common Odds Ratio
 - \bullet Meta-analyses for Summarizing Multiple 2 \times 2 Tables
- 5 Detecting and Dealing with Infinite Estimates
- 6 Sample Size and Power Considerations

Meta-analyses for Summarizing Multiple 2×2 Tables

- Meta-analysis is a statistical analysis that combines information from several studies.
- Assume that the population values of the particular effect measure(Odds ratio or difference of proportion) are identical in each study
- Significance test of no effect(conditional independence)
 - **1** Test $H_0: \beta = 0$ using Wald or LR
 - 2 CMH test (Advantageous for highly sparse data)
 - **3** Small sample \rightarrow Generalization of Fisher's exact test (7.3.5)
- Common odds ratio
 - **1** Logistic model : $\exp(\hat{\beta})$
 - **②** Highly sparse data : $\hat{\theta}_{MH}$

Meta-analyses for Summarizing Multiple 2×2 Tables Difference of Proportions

• ML estimate : Common difference of proportion(δ) in a model

$$\pi_{ik} = \alpha + \delta x_i + \beta_k^Z$$

Greenland and Robins (1985) proposed Mantel-Haenszel-type estimates

$$\hat{\delta}_{MH} = \sum_{k} w_{k} \hat{\delta}_{k} / \sum_{k} w_{k}$$

$$w_{k} = n_{1+k} n_{2+k} / (n_{1+k} + n_{2+k})$$

• ML estimator is more efficient but

But, π_{ik} must be constrained to fall between 0 and 1

◆ロト ◆昼 ト ◆ 重 ト ◆ 重 ・ 夕 Q ②

Meta-analyses for Summarizing Multiple 2×2 Tables Difference of Proportions

- Alternative approach :
 - Score or Profile likelihood confidence interval

$$d_k \pm z_{\alpha/2} s_k$$

2 Then taking weight,

$$\hat{\delta} = \sum_{k} w_k d_k, \quad SE = \sum_{k} [1/n_{11k}^2]^{-1/2}$$

- The multicenter clinical trial
 - **1** $\hat{\delta}_{MH} = 0.130, SE = 0.050$
 - $\hat{\delta} = 0.128, SE = 0.049$

Meta-analyses for Summarizing Multiple 2×2 Tables

Collapsibility and Logistic Models for Contingency Tables

- Collapsibility condition for Odds Ratio: When $\theta_{XY(k)}$ is identical at every level k of Z, that value equals to θ_{XY} if either Z and X are conditionally independent or if Z and Y are conditionally independent.
- Consider the logistic model

$$logit(\pi_{ik}) = \alpha + \beta x_i + \beta_k^Z$$

- The estimated odds ratio $\exp(\hat{\beta})$ differs from the sample odds ratio in marginal 2 × 2 table.
- When center effects are negligible and the model

$$logit(\pi_{ik}) = \alpha + \beta x_i$$

fits well, then the collapsibility holds

Meta-analyses for Summarizing Multiple 2×2 Tables Testing Homogeneity of Odds Ratio

• The homogeneous association condition for $2 \times 2 \times K$

$$\theta_{XY(1)} = \cdots = \theta_{XY(K)}$$

is equivalent to logistic model

$$logit(\pi_{ik}) = \alpha + \beta x_i + \beta_k^Z$$

- G^2 and X^2 with df = K 1
- Saturated model : $logit(\pi_{ik}) = \alpha + \beta x_i + \beta_k^Z + \beta_{ik} x_i$
- The multicenter clinical trial
 - $G^2 = 9.75$, $X^2 = 8.03$, df = 7
 - Do not contradict the hypothesis of equal odds ratio
 - $\hat{\theta}_{MH} = 2.13 \text{ or } e^{\hat{\beta}} = 2.17$

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - り Q ()

- Strategies in Model Selection
- 2 Logistic Regression Diagnositics
- 3 Summarizing the Predictive Power of a Model
- ullet Mantel-Haenszel and Related Methods for Multiple 2 imes 2 Tables
- **5** Detecting and Dealing with Infinite Estimates
 - Complete or Quasi-complete Separation
 - Remedies When at Least One ML Estimate is Infinite
- 6 Sample Size and Power Considerations

Complete or Quasi-complete Separation

Definition (Complete separation)

The space of explanatory variable values is said to have **complete** separation when a hyperplane can pass through that space, i.e., there exists a vector **b** such that

$$\mathbf{b}^T x_i > 0$$
 whenever $y_i = 1$

$$\mathbf{b}^T x_i < 0$$
 whenever $y_i = 0$

Definition (Quasi-complete separation)

The space of explanatory variable values is said to have quasi-complete **separation** when a hyperplane separates explanatory variables with y=1and with y = 0, but cases exist with both outcomes on that hyperplane

Complete or Quasi-complete Separation

- Set $\alpha = -50 \beta$ and $\beta \to \infty$
- ullet As eta increases, it becomes closer to a perfect fit
- Wald inferecne is useless
- We can still get confidence interval by **inverting** LR test or Score test 95% confidence interval for β : $(0.06, \infty)$

◆□ ▶ ◆□ ▶ ◆ 亘 ▶ ◆ 亘 ・ 釣Q@

Complete or Quasi-complete Separation

		Response(Y)		YZ M	YZ Marginal	
Center(Z)	Treatment(X)	Success	Failure	Sucess	Failure	
1	Active drug	0	5	0	14	
	Placebo	0	9	U		
2	Active drug	1	12	1	22	
	Placebo	0	10	1		
3	Active drug	0	7	0	12	
	Placebo	0	5	U		
4	Active drug	6	3	0	9	
	Placebo	2	6	8		
5	Active drug	5	9	7	21	
	Placebo	2	12	1		
XY	Active drug	12	36			
marginal	Placebo	4	42			

July 21, 2020

51 / 55

- Strategies in Model Selection
- 2 Logistic Regression Diagnositics
- 3 Summarizing the Predictive Power of a Model
- ullet Mantel-Haenszel and Related Methods for Multiple 2 imes 2 Tables
- **5** Detecting and Dealing with Infinite Estimates
 - Complete or Quasi-complete Separation
 - Remedies When at Least One ML Estimate is Infinite
- 6 Sample Size and Power Considerations

Remedies When at Least One ML Estimate is Infinite

- Inverting LR or Score test
- Smoothing data
- The Bayesian approach(Sec 7.2)
- Instead, maximize Penalized likelihood function(Sec 7.4.5)

- Strategies in Model Selection
- 2 Logistic Regression Diagnositics
- 3 Summarizing the Predictive Power of a Model
- ullet Mantel-Haenszel and Related Methods for Multiple 2 imes 2 Tables
- 5 Detecting and Dealing with Infinite Estimates
- Sample Size and Power Considerations
 - Sample Size and Power for Comparing Two Proportions

Sample Size and Power Considerations

Sample Size and Power for Comparing Two Proportions

- We want to determine whether a particular variable has an effective on a response
- Strong effects are likely to be detected even when n is small
- Detection of weak effects requires large n
- Test $H_0: \pi_1 = \pi_2$. The study using equal sample size requires approximately

$$n_1 = n_2 = (z_{\alpha/2} + z_{\beta})^2 [\pi_1(1 - \pi_1) + \pi_2(1 - \pi_2)]/(\pi_1 - \pi_2)^2$$