Braid Groups

(*) composition?

 σ_i permutations

The *n*-strand braid groups B_n has the presentation:

$$B_n = \langle \sigma_1, \dots, \sigma_{n-1} \mid \sigma_i \sigma_j = \sigma_j \sigma_i \text{ for } |i-j| \ge 2, \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \rangle.$$

1 Mapping class groups

Let S an oriented compact surface, possibly with boundary, and P be a finite set of distinguished interior points of S.

The mapping clas group $\mathcal{MCG}(\mathcal{S}, \mathcal{P})$ of the surface \mathcal{S} relative to \mathcal{P} is the group of all isotopy classes of orientation-preserving homeomorphisms $\psi : \mathcal{S} \to \mathcal{S}$ satisfying $\psi_{|\partial S} = id$ and $\psi(\mathcal{P}) = \mathcal{P}$.

Proposition 1.1. There is an isomorphism $B_n \cong \mathcal{MCG}(D_n)$, where D_n is the disk D^2 with n regularly spaced points.

Dibujo?

Pure braids

Definition of pure braid.

Theorem 1.2. The pure braid group P_n is biorderable for all $n \ge 1$.

Order in B_n