Machine Learning

From Inception to Innovation

Overview

- > Introduction to Machine Learning
- > Historical Background
- > Evolution of Machine Learning
- > Types of Machine Learning
- > Key Concepts
- > Common Algorithms
- ➤ Data Preprocessing
- > Model Training and Evaluation
- > Tools and Frameworks
- > Real-world Applications
- > Challenges and Limitations
- > Future Trends
- > References

Introduction To Machine Learning

Definition

- Machine learning is the science (and art) of programming computers so they can learn from data.
- [Machine learning is the] field of study that gives computers the ability to learn without being explicitly programmed.

— Arthur Samuel, 1959

• A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.

—Tom Mitchell, 1997

Introduction To Machine Learning cont...

Importance in the Modern World

Machine Learning is crucial in today's world for several reasons:

- Analyzing images of products on a production line to automatically classify them
- Detecting tumors in brain scans
- Summarizing long documents automatically

Historical Background

Early Methods Before Machine Learning

Rule-Based Systems

MYCIN (used for diagnosing bacterial infections)

Expert Systems

- o DENDRAL, an early expert system, developed beginning in 1965 by the artificial intelligence (AI) researcher Edward Feigenbaum and the geneticist Joshua Lederberg, both of Stanford University in California.
- DENDRAL, an expert system for chemical analysis, inferred molecular structures from spectroscopic data.

Traditional Statistical Methods

 Linear regression, used for finding and explaining relationship between variables based on historical data patterns.

Historical Background cont...

Limitations of Pre-ML Methods

Scalability

o Manual rule creation and maintenance

Flexibility

Non-linear relationships and complex data patterns

Adaptability

 Required extensive human intervention to update rules or adapt to new data trends, limiting real-time decision-making capabilities.

Generalization

Expert systems were often domain-specific

Evolution of Machine Learning

Early Developments

Dartmouth Conference (1956)

- o The Dartmouth Conference, held in 1956, is considered the birthplace of Artificial Intelligence (AI) as a field.
- Researchers gathered to discuss the potential of creating intelligent machines.

Initial Algorithms and Theories

- o Perceptron (1957) Frank Rosenblatt
- o Decision Trees (1960s) ID3
- o Bayesian Networks (1980s) probabilistic models

Key Milestones

Development of Neural Networks

- o Backpropagation (1986) Rumelhart, Hinton, and Williams
- o Support Vector Machines (1990s) Vapnik and Cortes

Inputs

Evolution of Machine Learning cont...

Rise of Big Data and Computational Power

- Big Data (2000s)
 - o Internet, sensors, and various digital platforms provided vast amounts of information for training ML models.
- Improved Hardware
 - o Advances in computational power, particularly with GPUs
- Frameworks and Libraries
 - o TensorFlow, PyTorch, and scikit-learn

Emergence of Deep Learning

- Deep Learning (2010s)
 - o Convolutional Neural Networks (CNNs)
 - Recurrent Neural Networks (RNNs)
- · AlphaGo (2016)
 - Google's DeepMind
- GPT Models (2018-2021s)
 - o OpenAI

Types of Machine Learning

Supervised Learning

Definition

- Supervised Learning involves training a model on a labeled dataset, where the input data is paired with the correct output.
- The model learns to map inputs to outputs based on this labeled data.

Example

- **Regression:** Predicting a continuous value. For example, predicting house prices based on features like size, location, and age.
- **Classification:** Categorizing input data into predefined classes. For example, identifying whether an email is spam or not spam based on its content.

Types of Machine Learning cont...

Unsupervised Learning

Definition:

- Unsupervised Learning involves training a model on data that does not have labeled responses.
- The model tries to find hidden patterns or intrinsic structures in the input data.

Example

- Clustering: Grouping similar data points together.
 For example, customer segmentation in marketing, where customers are grouped based on purchasing behavior.
- Anomaly Detection: Identifying outliers or unusual data points that do not conform to the expected pattern. For example, detecting fraudulent transactions in financial systems.
- o **Association:** Discovering rules that describe large portions of the data. For example, market basket analysis in retail, where associations between products bought together are identified.

Types of Machine Learning cont...

Reinforcement Learning

Definition

- Reinforcement Learning involves training a model to make sequences of decisions by interacting with an environment.
- The model receives feedback in the form of rewards or penalties and learns to optimize its actions to maximize cumulative rewards.

Example

- Game Playing: Training an AI to play games like Chess or Go, where the AI learns strategies through trial and error and feedback from wins or losses.
- o **Robotics:** Teaching a robot to navigate and perform tasks in an environment, such as a robot learning to walk or pick up objects, by receiving feedback from its actions.

Key Concepts

Data and Features

Data

- The raw information collected from various sources, such as text, images, or numerical values, that is used to train machine learning models.
- **Example:** A dataset of housing prices with columns like size, number of bedrooms, location, and price.

Features

- The individual measurable properties or characteristics of the data that are used as input for the model.
- **Example:** In the housing dataset, features would include size, number of bedrooms, and location.

	^						
	ID	Outlook	Temp	Humidity	Windy	Play Golf	
	1	Rainy	85	92	False	No	
	2	Rainy	80	88	True	No	Values
	3	Overcast	83	86	False	Yes	
	4	Sunny	70	80	False	Yes	
	5	Sunny	68	7	False	Yes	
	6	Sunny	65	58	True	No	
	7	Overcast	64	62	True	Yes	
	8	Rainy	72	95	2	No	
	9	Rainy	?	70	False	Yes	
	10	Sunny	75	72	False	Yes	
	11	Rainy	75	74	True	Yes	
	12	?	72	78	True	Yes	
	13	Overcast	81	66	False	Yes	
Ц	14	Sunny	71	79	True	No	

Columns

Key Concepts cont...

Algorithms and Models

Algorithms

- The step-by-step procedures or formulas used to perform calculations and process data.
- In machine learning, algorithms are used to train models.
- o **Example**: Linear Regression, Logistic Regression, neural networks etc.

Model

- The output of a machine learning algorithm that has been trained on data.
- Models make predictions or decisions based on new data.
- Example: A trained model that can predict house prices based on size, number of bedrooms, and location.

Key Concepts cont...

Training and Testing

Training

- The process of teaching a machine learning model using a dataset.
- The model learns patterns and relationships from the training data.

Testing

- The process of evaluating the trained model on a separate dataset to assess its performance.
- This helps ensure that the model generalizes well to new, unseen data.

Key Concepts cont...

Evaluation metrics

Evaluation metrics are used to assess the performance of machine learning models. Here are some key metrics:

Accuracy

 The proportion of correct predictions out of all predictions made.

Precision

 The proportion of true positive predictions out of all positive predictions made by the model.

Recall

 The proportion of true positive predictions out of all actual positive cases in the dataset.

F1 Score

 The harmonic mean of precision and recall, providing a balance between the two metrics.

$$F1 = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

Common Algorithms

Supervised Learning

- Linear Regression: Predicting continuous values.
- Decision Trees: Making decisions based on data splits.
- Support Vector Machines (SVM): Classifying data points.
- **Neural Networks:** Mimicking brain functions for complex tasks.

Common Algorithms cont...

Unsupervised Learning

- **K-Means Clustering:** Grouping similar data points.
- Principal Component Analysis (PCA): Reducing dimensionality.

Common Algorithms cont...

Reinforcement Learning

- Q-Learning: Learning optimal actions.
- Deep Q-Networks (DQN): Advanced game-playing models.

Data Preprocessing

- Cleaning the Data
 - o Removing duplicates, correcting errors.
- Feature Scaling and Normalization
 - Standardizing data ranges.
- Feature Engineering
 - Creating new features from existing data.

Feature engineering

$$f_{\vec{w},b}(\vec{x}) = w_1 x_1 + w_2 x_2 + b$$

frontage depth
area = frontage × depth

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \underline{\mathbf{w}}_1 \mathbf{x}_1 + \underline{\mathbf{w}}_2 \mathbf{x}_2 + \underline{\mathbf{w}}_3 \mathbf{x}_3 + b$$

Model Training and Evaluation

- Splitting the Dataset
 - Training Set: For learning.
 - **Validation Set**: For tuning.
 - o **Test Set:** For final evaluation

- Cross-Validation
- Overfitting vs. Under-fitting
- Hyper-parameter Tuning

Tools and Frameworks

Programming Languages

- **Python:** Versatile and widely used.
- **R**: Statistical analysis.

Libraries and Frameworks.

- **TensorFlow:** Open-source ML library.
- **Keras:** High-level neural networks API.
- **PyTorch:** Deep learning framework.
- **Scikit-learn:** Simple and efficient tools for data mining and analysis.

Real-world Applications

Healthcare

O Disease Prediction: Early diagnosis and treatment plans.

Finance

• Fraud Detection: Identifying fraudulent transactions.

Retail

- Customer Segmentation: Targeted marketing.
- **Recommendation Systems**: Personalized product recommendations.

Autonomous Vehicles

Self-driving car technology.

Natural Language Processing (NLP)

- O Sentiment Analysis: Understanding emotions in text.
- o Language Translation: Translating between languages.

Real-world Applications cont...

Collaborative Filtering

Challenges and Limitations

- Data Quality and Quantity
 - Need for large, high-quality datasets
- Computational Power
 - \circ High resource requirements.
- Model Interpretability
 - O Difficulty in understanding complex models.
- Ethical and Privacy Concerns
 - o Issues around data usage and bias..

Future Trends

- AutoML
 - Automated machine learning processes.
- Edge Computing
 - ORunning ML models on edge devices.
- Explainable AI (XAI)
 - Making ML models transparent and interpretable.
- Federated Learning
 - o Collaborative learning without data sharing.

Edge Computing

References

- https://powerunit-ju.com/wp-content/uploads/2021/04/Aurelien-Geron-Hands-On-Machine-Learning-with-Scikit-Learn-Keras-and-Tensorflow -Concepts-Tools-and-Techniques-to-Build-Intelligent-Systems-OReilly-Media-2019.pdf
- https://www.nvidia.com/en-us/glossary/recommendation-system/
- https://blog.mlq.ai/deep-reinforcement-learning-q-learning/
- https://www.linkedin.com/pulse/explainable-ai-xai-ishad-satyen
- https://learn.microsoft.com/en-us/dotnet/machine-learning-mlnet

Thank You