1 Форматы файлов

1.1 Task 1

Сконвертируйте sam файл в bam файл и создайте для полученного bam файла индекс. Файл: task_adh1b.sam.

```
samtools view -S -b /srv/common/midterm/task_adh1b.sam > ~/test1/task1.bam samtools sort task1.bam -o sorted_task1.bam samtools index sorted_task1.bam
```

1.2 Task 2

Определите сборку bam файла полученного вам в первом задании. В ответе приведите сборку.

```
samtools view -H sorted_task1.bam | grep 'LN:249250621
```

Результат: hg19

1.3 Task 3

Определите, есть ли у человека непереносимость лактозы с помощью IGV по bam: task_lactose.bam В ответе приведите мутации которые смотрели, их генотип и финальный вывод. Непереносимости

Mutation	REF Sequence	Sample Variants
rs4988235	G/G	G/G
rs41380347	A/A	A/A
rs145946881	C/C	C/C
rs41525747	G/G	G/G
rs121908937	C/C	C/C
rs121908936	-	-

нет

1.4 Task 4

Найдите количество всех ридов, выровненных на хромосому 4, в bam файле: task_adh1b.bam. В ответе приведите код и количество ридов.

```
samtools view /srv/common/midterm/task adh1b.bam chr4 | wc -l
```

Результат: 78105

1.5 Task 5

Определите пол человека по bam файлу: task gender.bam. В ответе приведите код и пол.

```
samtools view /srv/common/midterm/task_gender.bam chrX | wc -l
```

Результат: 592941

samtools view /srv/common/midterm/task gender.bam chrY | wc -l

Результат: 380490

1.6 Task 6

Сделайте bed файл включающий только регион гена ADH1B. Посчитайте среднее покрытие данного региона для файла полученного в первом задании. При помощи bedtools определите, какая доля гена ADH1B имеет покрытие x1+. В ответе приведите среднее покрытие, долю гена с покрытием x1+ и код.

1.7 Task 7

Подсчитайте количество позиций в файле chip.vcf.gz. В ответе приведете количество позиций и код.

```
view -H /srv/common/midterm/chip.vcf.gz | wc -l
```

Результат: 1001385

1.8 Task 8

Используя beftools, извлеките все варианты для интервала 5215000-5233000 хромосомы 21 из VCF файла: chip.vcf.gz. В ответе приведите количество вариантов.

```
bcftools index chip.vcf.gz bcftools view -r chr21:5215000-5233000 chip.vcf.gz | grep -v "^#" | wc -l
```

Результат: 97

1.9 Task 9

В ответе запишите следующие данные: хромосома, позиция, референсный, альтернативный аллель, генотип для вариантов с гетерозиготой или гомозиготой по альтернативному аллелю у образца NA21135 в том же регионе что в прошлом задании для файла: chip.vcf.gz

```
bcftools view -r chr21:5215000-5233000 chip.vcf.gz | bcftools query -s NA21135 -f '%CHROM\t%POS\t%REF\t%ALT\t[%GT]\n' | grep '1|1' bcftools view -r chr21:5215000-5233000 chip.vcf.gz | bcftools query -s NA21135 -f '%CHROM\t%POS\t%REF\t%ALT\t[%GT]\n' | grep '0|1'
```

Chromosome	Position	Reference Allele	Alternate Allele	Genotype
chr21	5219624	С	A	0 1
chr21	5231730	С	G	0 1
chr21	5225197	G	T	1 1

1.10 Task 10

Отфильтруйте позиции по колонке INFO/AF. Оставьте варианты с частотой не менее 5%. В ответе запишите количество вариантов.

```
bcftools view -r chr21:5215000-5233000 -i 'INFO/AF>=0.05' chip.vcf.gz | grep -v "^#" | wc -l
```

Результат: 5

1.11 Task 11

В ответе запишите генотип всех образцов в буквенном формате (пример: 0/1 стало AG) для позиций

chr21, pos 5231680, REF:T, ALT:C chr21, pos 5225197, REF:G, ALT:T

2 Глобальные и локальные выравнивания

2.1 Task 1

Выровняйте следующие последовательности с помощью алгоритма Нидлмана-Вунша: ATGCCCGA

GTCACCC

Используйте следующие параметры для выравнивания: награда за совпадение: +1, штраф за замену: -1, штраф за вставку или удаление: -2.

Формула для заполнения:

$$\begin{aligned} & \text{Score}(i,j) = \max \begin{cases} & \text{Score}(i-1,j-1) + \text{match/mismatch,} \\ & \text{Score}(i-1,j) + \text{gap penalty,} \\ & \text{Score}(i,j-1) + \text{gap penalty} \end{cases} \end{aligned}$$

Получим таблицу:

то есть выравнивание выглядит так:

ATGCCCGA

-TC-ACCC

2.2 Task 2

Найдите нуклеотидную последовательность белка эндонуклеазы III (Nth) из бактерии Escherichia coli, штамм K-12, субштамм MG1655, в базе данных NCBI. Проведите соответствующий последовательности BLAST. Напишите какой организм имеет лучший мэтч с данной последователь помимо Escherichia coli. Выпишите Max Score и E-value. В ответе приведите организм, max score и e-value.

нуклеотидная последовательность белка эндонуклеазы III (Nth) из бактерии Escherichia coli, штамм K-12, субштамм MG1655, бластнув получим Shigella flexneri strain STIN_92 chromosome

<u>♣ Download</u> ✓ <u>GenBank</u> <u>Graphics</u>

Shigella flexneri strain STIN_92 chromosome, complete genome

Sequence ID: CP054977.1 Length: 4813336 Number of Matches: 1

Sequence ib. GF034977.1 Length. 4013330 Number of Matches. 1						
Range 1: 2260016 to 2260651 <u>GenBank</u> <u>Graphics</u> <u>▼ Next Match</u>					h A Previous Match	
Score 1175 b	oits(636)	Expect 0.0	Identities 636/636(100%)	Gaps 0/636(0%)	Strand Plus/Minus	
Query	1		AAAACGCCTGGAGATCCTCA			60
Sbjct	2260651					2260592
Query	61		TAATTTCAGTTCGCCTTTTG			120
Sbjct	2260591					2260532
Query	121		TGTCAGTGTTAATAAGGCGA			180
Sbjct	2260531		TGTCAGTGTTAATAAGGCGA			2260472
Query	181		GCTTGAACTGGGCGTTGAAG			240
Sbjct	2260471		GCTTGAACTGGGCGTTGAAG			2260412
Query	241		CAAAGCAGAAAATATCATCA			300
Sbjct	2260411		CAAAGCAGAAAATATCATCA			2260352
Query	301		TCCGGAAGATCGTGCTGCGC			360
Sbjct	2260351		TCCGGAAGATCGTGCTGCGC			2260292
Query	361		CGTATTAAACACTGCATTCG			420
Sbjct	2260291		CGTATTAAACACTGCATTCG			2260232
Query	421		TTGTAATCGTACTCAATTTG			480
Sbjct	2260231		TTGTAATCGTACTCAATTTG			2260172
Query	481		GAAAGTGGTTCCAGCAGAGT			540
Sbjct	2260171		GAAAGTGGTTCCAGCAGAGT			2260112
Query	541		TTATACCTGCATTGCCCGCA		TTGTATTATTGAA	600
Sbjct	2260111				CTTGTATTATTGAA	2260052
Query	601	GATCTTTGTGA	ATACAAAGAGAAAGTTGACA	TCTGA 636		
Sbjct	2260051	GATCTTTGTGA	ATACAAAGAGAAAGTTGACA	 TCTGA 2260016		

2.3 Task 3

Найдите белковую последовательность человеческого (Homo sapiens) гена BRCA1, в базе данных белков NCBI. Проведите соответствующий последовательности BLAST. Выпишите Max Score и E-value лучшего мэтча с отличным от организма запроса. Выполните парное выравнивание мэтча с исходным запросом и сохраните получившийся dotplot. В ответе приведите. В ответе приведите организм, max score, e-value и dotplot

BRCA1

3 Множественные выравнивания

3.1 Task 1

Возьмите белковую последовательность человеческого гена BRCA1. Выполните белковый BLAST с использованием базы данных Reference proteins database (Refseq protein). Из полученных результатов выберите последовательности для 4ex любых видов (Homo sapiens, Gorilla gorilla и т.д.). Получите последовательности в формате FASTA. Сократите названия чтобы они содержали только название белка и вид (например, BRCA1 Homo sapiens).

Возьмем:

BRCA1 isoform 2 [Pan troglodytes] Sequence ID: PNI33707.1,

breast cancer type 1 susceptibility protein homolog isoform X1 [Gorilla gorilla gorilla] Sequence ID: XP 030867412.3,

breast cancer type 1 susceptibility protein [Pan paniscus] Sequence ID: NP_001288687.1, breast cancer type 1 [Gorilla gorilla] Sequence ID: AAT44835.1

- 1 >BRCA1 Pan troglodytes
- 2 MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTKCDHIFCKFCMLKLLNQKKG
- 3 >BRCA1 Gorilla gorilla gorilla
- 4 MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTKCDHIFCKFCMLKLLNQKKG
- 5 >BRCA1 Pan paniscus
- 6 MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTKCDHIFCKFCMLKLLNQKKG
- 7 >BRCA1 Gorilla gorilla
- 8 MDLSALRVEEVONVINAMOKILECPICLELIKEPVSTKCDHIFCKFCMLKLLNOKKG
- 9

4 Филогенетика

4.1 Task 1

Нарисуйте произвольное ультраметрическое укорененное древо с 6-ю листьями. В ответе приведите фотографию/скриншот.

4.2 Task 2

Постройте филогенетические древо используя расстояние по Хэммингу и посчитав матрицы расстояний, для следующих последовательностей. Приведите матрицы расстояний и древо в качестве ответа

	AGCTGA	AGTTGA	CGCTGA	AGCTGG	CGTTGA
AGCTGA	0	1	1	1	2
AGTTGA	1	0	2	2	1
CGCTGA	1	2	0	2	1
AGCTGG	1	2	2	0	2
CGTTGA	2	1	1	2	0

4.3 Task 3

Постройте дерево записанное в Newick формате (A1:0.1,(A2:0.2,(A3:0.3,A4:0.4):0.2):0.1,A5:0.5);. В ответе приведите древо

4.4 Task 4

Постройте дерево для файла Mammals.fasta в программе MEGA, методами UPGMA, Neighbourhood Joining, Maximum Parsimony. Укорените деревья в нужном месте на ваш взгляд. Проанализировав ВСЕ деревья в ответе приведите ответы на следующие вопросы:

- а. Кто ближайший сосед человеку мышь или собака?
- b. Можем ли мы доказать независимое происхождение ламантинов и китообразных?
- с. Кто ближайший сосед летучим мышам собака или человек?

4.5 Task 5

Визуализируйте любое дерево на ваш вкус из задания 4 в программе iTOL, сделав его круговым и покрасив узел с человеком в зеленый цвет. В ответе приведите скриншот.

4.6 Task 6

Используя программу MEGA, постройте древо методом максимального правдоподобия (ultra fast bootstrap with 1000 replicates) для результата множественного выравнивания из задания "Множественные выравнивания". В ответ приведите дерево.

