

Optimizing Interconnect Architectures for High-performance and Complex RISC-V SoCs

基于 RISC-V 复杂高性能 SoC 的互联架构优化

RISC-V Summit China 2024

https://www.arteris.cn/solutions/risc-v/

Hao Luan Chief Architect

August 2024

The Opportunities and Challenges

Interconnect is the Enabler for High Performance & Complex SoCs

However, the peak compute of server-grade AI hardware has increased over 60,000x over the past 20 years, as opposed to 100x for DRAM or 30x for the interconnect bandwidth

- Dr. John L. Hennessy and David A. Patterson predicted a few years ago that we are right in a new golden age for computer architecture with a few trends below:
 - Open Instruction Sets
 - Domain Specific Architecture
 - Agile Chip Development

John L. Hennessy and David A. Patterson. 2019. A new golden age for computer architecture. Commun. ACM 62, 2 (February 2019), 48–60. https://doi.org/10.1145/3282307

A. Gholami, Z. Yao, S. Kim, C. Hooper, M. W. Mahoney and K. Keutzer, "Al and Memory Wall," in IEEE Micro, vol. 44, no. 3, pp. 33-39, May-June 2024, doi: 10.1109/MM.2024.3373763

Challenges of RISC-V SoCs – Interconnect is the Problem to Address

Diverse interface protocols (ACE, CHI, ACE-Lite, AXI....) Varying coherency models (MESI, MOESI) 'Memory wall' - Massive memory bandwidth of AI/ML Safety standards for automotive functional safety Verification / Performance models / FPGAs Physical implementation (PD)

System IP and Network-on-Chip (NoC) SoC Interconnect IPs

Networking techniques for improved on-chip communication & data flow

Arteris Ncore Configurable Coherent Interconnect

Multi-protocol coherent interconnect

- AMBA protocols converted to internal Arteris CCMP protocol
 - Coherent Interfaces: CHI-B, CHI-E or ACE, interoperable
 - Arteris internal protocol supports MESI and MOESI coherency models
- I/O Interfaces:
 - ACE-Lite, AXI
 - Optional Proxy Cache participates in coherency domain as fully coherent cache
- Memory interface with optional system memory cache
- Peripheral Interface for I/O targets
- Directory with snoop filters
- Fault controller for functional safety option
- Transport created from switches

*CCMP: Concerto Coherent Messaging Protocol

Why Use AMBA CHI and ACE in the Same System?

Adapt to RISC-V dynamic ecosystem

- RISC-V is a diverse and evolving ecosystem
- Mixed ACE/CHI can ease integration of new and legacy processors
 - Mix latest high-performance RISC-V clusters using CHI with older RISC-V CPUs using ACE
 - Leverage investment in ACE IP
- Proxy caches ease integration of non-coherent accelerators into the coherent domain
- Provide PCIe connectivity for storage and data center applications

Proxy Cache & System Memory Cache (SMC)

Proxy cache

- Configurable up to 8MB, 1-16 ways
- Cache for non-coherent or I/O coherent accelerators
- Fully coherent with caches and memories in the system
- Reduces accelerator traffic into coherency system
- Smooths accelerator traffic with varying bursts into 64B coherency granules
- Enables Domain Specific Architecture with flexible and efficient heterogeneous SoCs

SMC

- System Memory Cache per distributed memory interface
- Configurable up to 8MB, 1-16 ways per DMI
- Scratchpad, partitioning, atomics
- Cache Maintenance Operations

Both can be configured with parity or ECC for FuSa systems

Efficient and Performant AI/ML Data Transport Architecture

Optimal solutions combine coherent and non-coherent NoCs

- Coherent NoCs required for data shared with cached CPUs
 - Coherent systems work on 64B coherency granules (512b cache line)
- Extreme bandwidths in AI/ML devices
 - Local memories may reduce traffic to external memory
 - Separate shared and non-shared memory traffic
- Provide a fast and wide path to memory for non-shared traffic
- Combine coherent and I/O-coherent NoCs for optimal performance
 - Coherent hub close to the cached CPUs with narrower buses
 - Wide NoC connects the rest of the SoC including Al core array
 - Mesh topology can be appropriate for AI applications

Ncore 3 coherent interconnect provides the coherent hub

FlexNoC 5 connects the Al core accelerator units

AI/ML Accelerator SoC

Al Bandwidth Demands Met with FlexNoC 5 XL

- FlexNoC[®] 5 XL addresses non-coherent bandwidth requirements of Al/ML systems
 - Large capacity mesh generator
 - Up to 1024-bit wide connections
 - Up to 200 Network Interface Units (NIUs)
 - Up to 512 Pending transactions
- Quality of Service ensured by virtual channels
- Multi-Cast/Broadcast Stations
 - Broadcast to multiple units to reduce bandwidth

FlexNoC Intelligent Multicast Write

Efficient multicast – bandwidth saving

- Broadcast station optimizes use of NoC bandwidth
 - Broadcasts performed as close as possible to the destination
 - Any number of broadcast stations in a FlexNoC
- Writing to broadcast station will cause it to send posted writes to multiple destinations
- Used in AI for DNN weight and image map updates

High Memory Bandwidth from Interleaving Channels

Up to 8 or 16 channels interleave

Read-reorder buffers

 Traffic aggregation / data width conversions

 Up to 1024 bits wide connections

Improved Productivity & Configurability
Save time and resources with library reuse and automation

Manual "from scratch" development

Quick estimates, simplified assumptions: Area, performance, timing closure, power

Manually-created topologies

Change requests:

- Add/remove interfaces
- User bits, QoS, address map, safety, buffering, service, probes, interrupts, modules, etc.
- ... cause significant changes to RTL

Floorplan & timing closure issues:

- Add/remove interfaces
- Interface location, blockages, fences
- Iterations for timing
- ... causing even more changes

FlexNoC Physically-Aware Mesh Topology Generator Flow

SystemC and UVM models enable system level simulation

Automotive Domains and Their Complexity

Cache coherency is required in safety-critical systems

Chiplets increasingly important in future

Challenge of Safety-certification for Coherent Systems

Automotive ADAS/autonomous driving is a key application of AI/ML

 The complexity of coherent systems makes safety certification especially challenging

- Ncore 3 safety/resilience capabilities:
 - External ECC or parity
 - Interface ECC or parity
 - Interface duplication
 - Cache/SF ECC or parity
 - Transport link ECC or parity
 - Directory duplication
 - Fault controller/signaling

Ncore 3.4 is ISO 26262 ASIL D certified

Summary

- Separate shared coherent traffic from high-bandwidth traffic where possible
- FlexNoC 5 Network-on-Chip XL option is suited to many complex SoCs
 - Mesh topology for large regular structures that align with physical layout
 - Wide buses for massive AI bandwidths
 - Broadcast writes for simultaneous updates of weights, map updates, and commands to heterogenous functional units
- Tooling environments speed design iterations compared with point solutions
- Ncore is ISO 26262 certified to ASIL D and FlexNoC 5 is available with a safety package enabling safety for AI-enabled automotive
- Chiplets offer an additional optimization opportunity enabling modularity, scaling of systems, and cost reductions due to yield improvement from disaggregation across dies and packages

Thank you

Arteris, Inc. All rights reserved worldwide. Arteris, Arteris IP, the Arteris IP logo, and the other Arteris marks found at https://www.arteris.com/trademarks are trademarks or registered trademarks of Arteris, Inc. or its subsidiaries. All other trademarks are the property of their respective owners.