Homomorphic Encryption

2024.12.26. 이지은

Basic concept

- 암호화 체계
 - 키생성
 - 암호화
 - 복호화
 - 대칭 키 암호화 체계: 암호화와 복호화에 동일한 비밀 키를 사용
 - 공개 키를 아는 사람은 누구나 데이터를 암호화할 수 있지만 비밀 키를 아는 사람만 데이터를 복호화하고 읽을 수 있음
 - 공개 키 암호화 체계: 암호화에 공개 키를 사용하고 복호화에 비밀 키를 별도로 사용
 - 매우 많은 양의 데이터를 효율적으로 암호화하는 데 사용할 수 있으며 안전한 <u>아웃소싱 클라우드 스토리지</u>*를 가능하게 함
 - 아웃소싱 클라우드 스토리지*: 사용자 데이터를 CSP에 저장하는 방식
 (사용자가 직접 데이터를 관리하지 않고, 외부의 클라우드 서비스를 통해 저장과 관리를 위임)
 - 오늘날 안전한 온라인 통신을 가능하게 하는 기본 개념
 - 보안성이 높지만 속도가 느림

Basic concept

- 암호화 체계
 - 키 생성=> 기존 대칭/공개키 암호화 사용 시, 아웃소싱된 계산은 계산 수행 전 암호화 계층이 제거되어야 함
 - 따라서 아웃소싱된 계산 기능을 제공하는 클라우드 서비스는 비밀 키에 엑세스할 수 있어야 함
 - 이때 암호화를 이용하여 CSP가 데이터를 훔치거나 보는 등의 보안상의 문제를 방지할 수 있음 (데이터 처리를 위해 CSP가 비밀키를 알아야 할 경우 보안 위협 초래)

- Mathemetical Induction 수학적 귀납법
 - Well-ordering principle (axiom, postulate) 자연수의 대표적인 성질
 - 공집합이 아닌 부분집합에서 항상 최소 원소가 존재함
 - S: nonempty subset of {0, 1, 2, ..., }
 - \Rightarrow S has th smallest element in S
 - ⇔ There exists a∈S such that a≤b for all b∈S
 - $\Leftrightarrow \exists a \in S \text{ s.t. } a \leq b, \forall b \in S$

- Mathemetical Induction 수학적 귀납법
 - First principle of induction
 - Assume that S⊆N satisfies
 - (a) 1∈S,
 - (b) if $k \in S$, then $k+1 \in S$.

Then $S=\mathbb{N}$.

- Let T:=N\S. Suppose that T is nonempty.
 Since T⊂N, by well-ordering principle, T mush have the smallest element a∈T.
- By (a), $1 \notin T \implies a \ge 2 \implies a-1 \in S$
- Since a∈T, a∉S \Rightarrow by (b), a-1∉S \Rightarrow a-1∈T, which is a contradiction to the assumption : a∈T is the smallest element in T ∴ T is empty \Rightarrow element S = N

● Mathemetical Induction 수학적 귀납법

Example

- Show that $1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.
- P(n): $1+2+\cdots+n=\frac{n(n+1)}{2}$
- Define $S := \{n \in \mathbb{N} : P(n) \text{ is true}\}$
- $1 \in S \Leftrightarrow P(1)$ is true
- If $k \in S$, then $k+1 \in S \Leftrightarrow if P(k)$ is true, then P(k+1) is true

$$\therefore 1+2+\cdots+k+(k+1) = \frac{k(k+1)}{2} + (k+1) = \frac{(k+1)(k+2)}{2}$$

● The Binomial Theorem 이항 전개

- Definition
 - Let $n \in \mathbb{N}$ and $0 \le k \le n$. Then we define

$$\binom{n}{k} := \frac{n!}{k!(n-k)!}$$

- Theorem
 - $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$ Let $n \in \mathbb{N}$ and $0 \le k \le n$. Then we define

$$= a^{n} + na^{n-1}b + \frac{n(n+1)}{2}a^{n-2}b^{2} + \dots + nab^{n-1} + b^{n}$$

● 동형암호

- 암호기술의 분류
 - 1세대 암호: 패스워드(인증기술)
 - 2세대 암호: 대칭키암호(데이터 암호화) 블록암호(AES)
 - 3세대 암호: 공개키 암호(키 암호화) RSA 암호화
 - 4세대 암호: 동형/함수암호(키보호 암호)
 - 암호화된 상태에서 계산이 가능 -> 키가 덜 사용된다는 측면에서 안전성이 높음

- 동형암호 미래 컴퓨팅 환경
 - '완벽한 하인'
 - 일을 빠르게 대신 수행, 비밀을 알지 못함
 - ex 1) 개인 클라우드
 - 스토리지 클라우드: Dropbox, Google email 등
 - 계산 클라우드: DNA 계산, 헬스케어 등
 - -> 기존의 대칭키 동형암호: 암호화해서 정보를 클라우드에 저장하고, 클라우드는 키를 갖지 않음이메일 검색 쿼리 날리면 일반 대칭키에서는 암호화 되어있기에 검색을 못해줌
 - ex 2) 다수 사용자 통계분석 -> 제한적으로 활용
 - 개인정보기반 마케팅(구글, 페이스북, 네이버 등)
 - -> 동형암호로 마케팅에 정보를 사용하되, 허용한 경우에만 이용하는 등의 권한 관리 가능

- 동형암호
 - Craig Gentry
 - 암호화된 데이터 연산
 - 사용자가 1+2 하고자 함
 - 각각 33, 54로 암호화되어 클라우드에서 33+54=87 연산 수행
 - 결과 복호화
 - 연산 결과 87을 클라우드에서 다운 후 복호화 시 최종 결과 3 반환
 - zk-SNARG (Zero-Knowledge Succinct Non-Interactive Argument of Knowledge)
 - 영지식 증명: 비밀 정보를 누설하지 않고, 특정 명제가 참임을 증명
 - 동형암호: 비밀을 보호하면서 계산
 - 영지식증명 : 비밀을 보호하면서 인증 zk-SNARG
 - 두가지가 양 축임(HE+zk-SNARG)

- 정수 기반 동형암호 (Integer-based HE scheme)
 - PAD PH
 - (비밀키 p(큰 소수), 공개키 n(두 소수의 곱 pq_0))
 - 암호화: $Enc(m) = m + pq \pmod{n}$
 - 복호화: Enc(m)(mod n) = m -> n이 p의 배수임을 활용해 복호화
 - $Enc(m_1) + Enc(m_2) = (m_1 + pq_1) + (m_2 + pq_2) = (m_1 + m_2) + (pq_1 + pq_2) = (m_1 + m_2) + p(q_1 + q_2) = Enc(m_1 + m_2) + (pq_1 + pq_2) = (m_1 + pq_2) + (pq_1 + pq_2) = (m_1 + pq_2) + (pq_1 + pq_2) = (pq_1 + pq_2) + (pq_1 + pq_2)$
 - DGHV HE scheme (on \mathbb{Z}_2) (van Dijk-Gentry-Halevi-Vaikuntanathan) -> $\{0,1\}$ 이진수 기반의 수학적 구조
 - Enc(m) = m + 2e + pq -> 랜덤한 노이즈값 e 추가, mod 2 수행 시 항상 m만 남음
 - Secure against quantum computing
 - Use a polynomial ring $R_q = \mathbb{Z}_q[x]/(xn+1) -> \mathbb{Z}_q[x]$ 는 계수가 \mathbb{Z}_q 에 속하는 다항식임

- 정수 기반 동형암호 (Integer-based HE scheme)
 - ullet DGHV HE scheme (on \mathbb{Z}_2) (van Dijk-Gentry-Halevi-Vaikuntanathan) -> $\{0,1\}$ 이진수 기반의 수학적 구조
 - $Enc(m_1) = m_1 + 2^{100}e_1$, $Enc(m_2) = m_2 + 2^{100}e_2$ ->큰 노이즈를 추가해 m과 독립적으로 다룰 수 있게 함
 - ->노이즈가 증폭됨

- ->0으로 이루어진 흰 공간 존재: 곱셈 횟수만큼 비워놓아야 함 => 동형암호 사이즈가 커지는 이유(암호화시 50배 커짐)
 - 연속적으로 50번 곱할 수 있음(Depth가 log_2 50) -> 연산 횟수에 제한이 생김
- 노이즈를 재부팅해야 함: Bootstrapping (노이즈 리셋하여 암호문을 다시 원래 수준의 노이즈로 줄임)
 - 이를 통해 이론적으로 무한한 동형 연산 지원 가능

- 정수 기반 동형암호 (Integer-based HE scheme)
 - 재부팅 (Bootstrapping)
 - Clearing 과정에서 비밀키가 필요함-> HE 안에서 진행(암호화된 비밀키 Enc(K) 그대로 이용: 암호화된 상태에서 복호화)
 - 다항식 기반 FHE에서는 연산이 반복되면서 다항식의 차수(Degree)가 증가하고, 이로 인해 노이즈도 커짐
 - Deergee가 50이 되면 재부팅 진행 -> public하게 가능

● 근사동형암호

- 평문 크기가 연산마다 2배 증가 시 20번 후에는 백 만 비트 ; 쌀 한 톨의 비유
 - 곱하기 10번 하면 2^10 1000비트 공간 필요 => 평문 크기도 커짐
 - => 반올림(Rounding) 필요: + * 만으로도 가능

● 근사동형암호

- HEAAN [CKKS17]
 - 근사계산 지원(암호화된 정수값의 Re-scaling) -> 암호문 크기 관리
 - 항상 같은 크기의 자릿수 유지 가능, 대부분 응용분야에서는 실수계산을 필요로 함 -> 효율적인 연산 지원

● 동형암호의 현재

- HEAAN [CKKS17]
 - 암호화된 복소수를 2^(-30) 이하의 Error로 Depth2의 연산이 가능한 파라미터 기준
 - -> 곱셈 연산이 반복되면 오차가 기하급수적으로 커질 수 있으므로, Depth로 연산의 깊이를 제한하여 오차를 관리
 - -> slot: 암호문이 동시에 처리할 수 있는 데이터 항목 수
 - => 평문이 복소수

	공개키크기	암호문크기	암호화	복호화	덧셈	곱셈	평문	Slot 개수
RSA-2048	2048bit	2048bit	6ms	200ms	-	.=1	_	-
ECC-193	193bit	80B	8ms	15ms	-	-	_	-
HEAAN	444kB	111kB	11ms	5ms	0.2ms	25ms	복소수	2048

- Fully Homomorphic Encryption
 - 정수 동형암호: 정수론 (AGCD 기반)
 - [DGHV10] FHE over the Integers. Eurocrypt 2010
 - CMNT11, CNT12, CCKLLTY13, CLT14, etc
 - 행렬 동형암호: 격자(Lattice)이론 (LWE 기반) -> Learning With Errors
 - [BV11a] Efficient FHE from (Standard) LWE. FOCS11
 - Bra12, BGV12, GSW13
 - 다항식 동형암호: Ideal Lattice (RingLWE 기반)
 - Ideal lattice: SV10, NTRU: LTV12
 - Ring-LWE: BV11b, GHS13, BLLN13, HEAAN, etc

● 동형암호의 발전 과정

- 2009~2010: Plausibility
 - [GH11]: 동형암호를 사용한 단일 비트 연산의 가능성을 입증, 단일 비트 연산에 30분 소요
- 2011~2012: Scalable for Large Circuits
 - [GHS12b]: AES-128 알고리즘의 120 블록을 36시간 내에 처리 / Bra12, BGV12, GSW13
- 2013~2015: Depth-Linear Construction
 - [HS14]: IBM의 오픈소스 라이브러리 Helib
 - Brakerski-Gentry-Vaikuntanathan(BGV) 체계 구현 / 동일한 30,000 게이트 회로를 4분 만에 처리
- 2015~Today: Usability
 - HEAAN, TFHF
 - 실제 응용: 빅데이터 분석, 기계학습 등
 - 동형암호 표준화 회의 / Private Genome Computation 대회 (iDash)

• Best Performing HE Schemes

Туре	Classical HE	Fast Bootstrapping	Approximate Encryption	
Scheme	[BGV12] BGV [Bra12, FV12] B/FV	[DM15] FHEW [CGGI16] TFHE	[CKKS17] HEAAN	
Plaintext	Finite Field Packing	Binary string	Real/Complex numbers Packing	
Operation	Addition, Multiplication	Look-up table & bootstrapping	Fixed-point Arithmetic	
Library	HElib (IBM) SEAL (Microsoft Research) Palisade (Duality inc.)	TFHE (inpher, gemalto, etc.)	HEAAN (SNU)	

SEAL > CKKS

- native/examples/5_ckks_basics.cpp
 - Microsoft SEAL 라이브러리를 사용하여 CKKS(Chexly-Kim-Kim-Song) 암호화 방식을 통해 암호화된 데이터 상에서 다항식 계산을 수행하는 예제
 - CKKS는 실수나 복소수 데이터를 암호화하여 동형연산을 가능하게 하며, 주로 머신러닝이나 데이터 분석에서 사용됨
 - CKKS 암호화 스키마를 활용하여 암호화된 데이터 상에서 다항식 $f(x) = \pi x^3 + 0.4x + 1$ 을 계산하는 방법을 시연하는 코드

SEAL > CKKS

- native/examples/5_ckks_basics.cpp
 - 코드 흐름
 - 1) CKKS 스키마 초기화: 암호화 매개변수(EncryptionParameters) 설정(다항식 차수, mod 크기 등 포함)
 - 2) 키 생성: 암호화를 위한 pk, sk 생성
 - 곱셈 후 암호문 크기를 줄이는 재선형화 키(RelinKeys)
 - 슬롯 데이터의 위치를 바꾸는 회전 키(GaloisKeys).
 - 3) 입력 데이터 준비 및 암호화: [0, 1] 구간의 4096개 점을 생성하여 암호화 함
 - 4) 다항식 계산: 연산 중 발생하는 스케일 문제를 해결하기 위해 재선형화와 모듈러스 체인 이동 수행
 - 5) 암호문 합산 및 복호화: 연산 중 발생하는 스케일 문제를 해결하기 위해 **재선형화**와 **모듈러스 체인 이동**을 수행.

SEAL > CKKS

- native/examples/5_ckks_basics.cpp
 - 관련 개념
 - 1. 스케일 관리
 - CKKS는 소수점을 처리하기 위해 데이터를 스케일링(확대)하여 정수로 변환된다. 연산이 진행될수록 스케일이 증가하므로, Rescale을 사용해 스케일을 조정한다.
 - 2. 모듈러스 체인 이동
 - CKKS는 계수 모듈러스(coeff_modulus)라는 수학적 공간을 사용한다. 연산 중 모듈러 체인을 이동시켜 암호문의 크기를 줄이고, 연산 호환성을 유지할 수 있다.
 - 3. 재선형화
 - 암호문 곱셈 연산은 결과의 크기를 키우므로, 재선형화를 통해 암호문의 크기를 줄여 연산 효율성을 높인다.
 - 4. 암호문 간 호환성
 - 암호문끼리 더하거나 곱하려면 동일한 스케일과 모듈러스 체인을 가져야 한다. 이를 위해 스케일을 정규화하고 모듈러 체인을 맞춘다.

End

End