

Bertrand Russell

Mathematician, philosopher, author

1950 literature Nobel Laureate

Democracy: fools have a right to vote.

Dictatorship: fools have a right to rule.

Most people would rather die than think. In fact, most do.

Men are born ignorant, not stupid.

They are made stupid by education.

Sets in Sets

Sets can be elements

Every set is a subset of itself {0} ⊆ {0}

$$\{0\}\subseteq\{0\}$$

Sets in Se { {0}, {1,2} } Sets can be elements Every set is a subset of itself S⊆S Can a set belong to (be an element of) itself? $S \in S$? Typically, sets do not belong to themselves $\{0\} \notin \{0\} \quad \emptyset \notin \emptyset$ cf. $0 \in \{0\}$ But some sets do belong to themselves! NT = { anything that is not } $NT \in NT$ $=\{\{\{0\}, 0, \{1,2\}, ..., NT\}\}$ Some sets ∈ themselves (NT), others don't ({0})

Can a set belong to (be an element of) itself? S ∈ S ?

Typically, sets do not belong to themselves

But some sets do belong to themselves!

$$0 \in \{0\}$$

$$NT = \{ \text{ anything that is not } \}$$

= $\{ \{ \{ \{ \} \}, \{ \}, \{ \}, \{ \}, \} \}$

Some sets ∈ themselves (NT), others don't ({0})

Russell's Paradox

Define a set that cannot exist

```
R = { sets that don't belong to themselves } = { S: S \notin S }
      \{0\} \notin \{0\}, hence \{0\} \in \mathbb{R} \mathbb{N} \in \mathbb{N}, hence \mathbb{N} \in \mathbb{R}
                               \rightarrow R \notin R
                  R \in R
 Must have
                                                             Both lead to
                     or
                                                            contradiction!
                              \rightarrow R \in R
                   R∉R
```

If R existed then both R ∈ R and R ∉ R would hold

R defined but cannot exist!

What Happened?

Self-referential definition

 $\{S:S \in S\}$

Sets in Set Sets as be elements $\{\{0\}, \{1,2\}\}$ Sets can be elements $\{\{0\}, \{1,2\}\}$ Every set is a subset of listelf $S \subseteq S$ Every set is a subset of itself $S \subseteq S$ Can a set belong to (be an element of) itself? $S \subseteq S$ Typically, sets do not belong to themselves $\{0\} \not\in S$ Every set is a subset of itself $S \subseteq S$ Can a set belong to (be an element of) itself? $S \subseteq S$ Typically, sets do not belong to themselves $\{0\} \not\in S$ But some sets do belong to themselves $\{0\} \not\in S$ Every set is a subset of itself $S \subseteq S$ Typically, sets do not belong to themselves $\{0\} \not\in S$ But some sets do belong to themselves!

Of. $0 \in \{0\}$ NT = $\{$ anything that is not $\{0\}$ anything that $\{0\}$ anything that

{ S : S ∉ S }

Not needed for exam

Variations

Who sl

