FINAL

- Q.1. (15 points) Determine, with proof, if the following series converge:
 - (1) $\sum_{n=2}^{\infty} \frac{1}{n \cdot (\log n)^{\pi}}$

- (2) $\sum_{n=1}^{\infty} \frac{\pi^n n!}{n^n}$
- **Q.2.** (10 points) Compute the value of \sqrt{e} correct up to 5 decimals. (Do not simplify your final answer, just prove that it is correct up to 5 decimal places.)
- Q.3. (20 points) Compute the following integrals:
 - (1) $\int_{0}^{1} x(1-x)^{2017} dx$
 - (2) $\int_{0}^{2\pi} (x-\pi)^{2017} (1+\sin^{2018}x) dx$
 - (3) $\int_{0}^{\infty} x^{n} e^{-x} dx$, where n is a positive integer
 - (4) $\int \frac{1}{\sin^4 x + \cos^4 x} dx$ (I do not know how to solve this one.)
- Q.4. (15 points) Prove the following by explicit computation.

$$\int_{0}^{1} \frac{x^{4}(1-x)^{4}}{1+x^{2}} dx = \frac{22}{7} - \pi$$

and hence conclude that $22/7 > \pi$.

Q.5. (20 points) Suppose y(x) has the following Taylor series expansion at x=0

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \dots$$

(1) If y satisfies the differential equation

$$y - y' = 1$$

find the relations that a_i satisfy. If further y(0) = 1, determine y. Rewrite your final solution in terms of standard functions.

(2) If y satisfies the differential equation

$$y + y'' = 0$$

find the relations that a_i satisfy. If further y(0) = 0, y'(0) = 1, determine y. Rewrite your final solution in terms of standard functions.

Q.6. (20 points) Suppose f is a continuous function such that

$$\lim_{x \to \infty} \frac{f(x)}{x^{2017}} = 0 = \lim_{x \to -\infty} \frac{f(x)}{x^{2017}}$$

Prove that there exists a number c such that

$$f(c) = c^{2017}$$

- **Q.7.** (20 points) Prove that there does not exist a continuous function f on \mathbb{R} which takes every value exactly twice (i.e. for every $c \in \mathbb{R}$ there exist exactly two real numbers x, y such that f(x) = c = f(y)).
- **Q.8.** (25 points) Let a_n be a sequence bounded from above and below i.e. there are constants l, k such that $l < a_n < k$ for all n.

Define the following sequences

$$x_n = \sup\{a_m : m \ge n\} = \sup\{a_n, a_{n+1}, a_{n+2}, \dots\}$$

 $y_n = \inf\{a_m : m \ge n\} = \inf\{a_n, a_{n+1}, a_{n+2}, \dots\}$

- (1) Determine x_n , y_n when $a_n = \frac{(-1)^n}{n}$.
- (2) Prove that $\lim_{n\to\infty} x_n$ and $\lim_{n\to\infty} y_n$ always exist.
- (3) Prove that if $\lim_{n\to\infty} a_n = L$ then $\lim_{n\to\infty} x_n = L = \lim_{n\to\infty} y_n$.