

(19) Europäisches Patentamt
European Patent Office

Office européen des brevets

(11) EP 0 488 544 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
07.01.1998 Bulletin 1998/02

(51) Int Cl.⁶: G02B 5/30, G02B 1/08

(21) Application number: 91310336.2

(22) Date of filing: 08.11.1991

(54) Birefringent interference polarizer

Doppelbrechender Interferenz-Polarisator

Polarisateur d'interférence biréfringent

(84) Designated Contracting States:
BE DE ES FR GB IT NL

• Chang, Victor S.
Ellicott City, Maryland 21043 (US)

(30) Priority: 26.11.1990 US 618191

(74) Representative: Burford, Anthony Frederick et al

(43) Date of publication of application:
03.06.1992 Bulletin 1992/23

W.H. Beck, Greener & Co.
7 Stone Buildings
Lincoln's Inn
London WC2A 3SZ (GB)

(73) Proprietor: THE DOW CHEMICAL COMPANY
Midland, Michigan 48674 (US)

(56) References cited:

EP-A- 0 062 751 EP-A- 0 228 611
US-A- 3 213 753 US-A- 4 525 413
US-A- 4 937 134

(72) Inventors:

• Schrenk, Walter J.
Midland, Michigan 48640 (US)

• Wheatley, John A.
Midland, Michigan 48640 (US)

US-A- 4 937 134

• PATENT ABSTRACTS OF JAPAN vol. 14, no. 238
(P-1050) 21 May 1990; & JP-A-2 059 702

EP 0 488 544 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

The present invention relates to a multilayer birefringent interference polarizer, and more particularly to a multilayer coextruded polymeric device which can be designed to polarize selected wavelengths of light by constructive optical interference.

Birefringent polarizers are generally known in the art and have been used in the past to polarize and filter selected wavelengths of light. For example, birefringent polarizers may be used to reject (reflect) specific polarized narrow wavelength ranges while transmitting the remainder of the incident light, to reduce glare from other light sources, and to act as beam splitters.

Many naturally occurring crystalline compounds act as birefringent polarizers. For example, calcite (calcium carbonate) crystals have well known birefringent properties. However, single crystals are expensive materials and cannot be readily formed into the desired shapes or configurations which are required for particular applications. Others in the art, such as Makas, US-A-3,438,691, have fabricated birefringent polarizers from plate-like or sheet-like birefringent polymers such as polyethylene terephthalate incorporated into an isotropic matrix polymer.

In many instances, polymers can be oriented by uniaxial stretching to orient the polymer on a molecular level such as taught by Rogers et al., US-A-4,525,413 (see also EP-A-0062751). Multilayer optical devices comprising alternating layers of highly birefringent polymers and isotropic polymers having large refractive index mismatches have been proposed by Rogers et al. However, the Rogers et al. device requires the use of specific highly birefringent polymers having certain mathematical relationships between their molecular configurations and electron density distributions. Rogers et al does disclose (at page 38, lines 12/27 of EP-A-0062751) a film of only two alternating birefringent materials in which there is a refractive index mismatch in at least one plane and only one of the layers is oriented. Further, Rogers et al also discloses (at page 37, line 21 to page 38, line 10 of EP-A-0062751) the presence of more than one layer of birefringent material in a device containing a single layer of the molecularly oriented and highly birefringent material.

Accordingly, there remains a need in the art for birefringent interference polarizers which can be readily produced using existing techniques and readily available materials. Further, there still exists a need in the art for birefringent interference polarizers which absorb little light. Further, the need exists in the art for birefringent polarizers which can be fabricated to polarize light of specific wavelengths as desired.

The present invention meets that need by providing a birefringent interference polarizer in the form of a multilayered sheet or film which may be fabricated from readily available materials using established coextrusion techniques. The polarizer of the present invention

has a level of light absorption near zero and can be fabricated to polarize and reflect light of specific wavelengths while transmitting light of other wavelengths. The polarizer will also polarize the transmitted light at those wavelengths, while the remainder of the transmitted light remains unpolarized.

Reference to polarizers, polarized light, and polarization as used herein refers to a condition of light in which the transverse vibration of the rays assume different forms in different planes. Polarization, as used herein, includes the nonequal reflection of light in orthogonal planes and encompasses elliptical and circular polarization of light as well as plane polarization. By "light", we mean not only light in the visible spectrum, but also ultraviolet and infrared light. When the plane of orientation of the polymeric materials is discussed herein, we are referring to the directions of orientation of the polymeric materials due to uniaxial or biaxial stretching of the materials in the *x* and/or *y* direction to define the polarizing effect of the materials. In other contexts, reference to the plane that light enters or impinges upon the layers of polymeric materials is a plane normal to the major surfaces of the layers (that is, the *z* direction), unless otherwise indicated.

In accordance with one aspect of the present invention, a birefringent interference polarizer is provided comprising multiple alternating oriented birefringent layers of at least first and second polymeric materials having respective nonzero stress optical coefficients which are sufficiently different to produce a refractive index mismatch between the first and second polymeric materials in a first plane which is different from any refractive index mismatch between the first and second polymeric materials in a second plane normal to the first plane, both planes being normal to said layers. The alternating layers are oriented in the same direction.

The birefringent polarizer of the present invention may also comprise three or more alternating layers of diverse polymeric materials. For example, a three layer pattern of repeating units ABCBA may be used, where the B unit is a copolymer or miscible blend of the A and C repeat units. In some instances, the B layer may not only contribute to the light polarization properties of the invention, but also act as an adhesive layer to bond the A and C layers together.

Also, the third polymer layer may be found as a surface or skin layer on one or both major exterior surfaces for an ABABAB repeating body or as an interior layer. The skin layer may be sacrificial, or may be permanent and serve as scratch resistant or weatherable protective layer. Further, such skin layers may be postapplied to the polarizer after coextrusion. For example, a skin layer may be applied as a sprayed on coating which would act to level the surface of the polarizer to improve optical properties and impart scratch resistance, chemical resistance and/or weatherability. The skin layer may also be laminated to the multilayered polarizer. Lamination is desirable for those polymers which are not readily co-

extrudable.

In one embodiment of the invention, the first and second polymeric materials have substantially equal refractive indices when unoriented. The refractive index mismatch develops in the plane of orientation when the materials are stretched. In another embodiment, the first and second polymeric materials have differing refractive indices when unoriented. Orienting the polymers by stretching causes the mismatch between respective refractive indices in one of the planes to decrease, while the mismatch in the other plane is maintained or increased. The polarizer may be uniaxially or biaxially oriented.

In a preferred form of the invention, the first polymeric material has a positive stress optical coefficient, while the second polymeric material has a negative stress optical coefficient. Preferably, the refractive index mismatch in the first plane is at least 0.03, and most preferably 0.05 or greater.

Preferably, the optical thickness of each polymeric layer is from 0.09 micrometers to 0.70 micrometers. Optical thickness, nd , is defined as the product of the physical thickness of the layer (d) and its refractive index (n). In a preferred form of the invention, the layers increase in thickness monotonically through the thickness of the film to produce a layer thickness gradient which reflects and polarizes a broad range of wavelengths of light.

The two polymeric materials can be any of a number of different polymers which possess nonzero stress optical coefficients which provide the necessary refractive index mismatch when the materials are oriented. By nonzero stress optical coefficient, it is meant that the refractive index of the polymer changes in either a positive or negative direction when the polymer is oriented. Isotropic materials possessing zero stress optical coefficient lack birefringence.

For example, the first polymeric material may be a polycarbonate, such as a bisphenol A based polycarbonate, or a polyethylene terephthalate, both of which possess positive stress optical coefficients. The second polymeric material may be a polystyrene which has a negative stress optical coefficient. Either generally amorphous atactic polystyrenes or more crystalline syndiotactic polystyrenes are suitable. Other suitable polymers for the second polymeric material include copolymers of styrene and acrylonitrile, copolymers of styrene and methyl methacrylate, and polyethylene naphthalate, all of which possess negative stress optical coefficients.

The polarizer of the present invention reflects and polarizes a portion of the light incident on its surface while transmitting the remainder of the incident light. During fabrication, it may be designed to transmit only a narrow range of wavelengths while reflecting a broad range, or vice versa. The polarizer of the present invention may also be designed to reflect and polarize substantially all light incident in one plane of the device while transmitting substantially all light incident in a

plane normal thereto.

In some embodiments of the invention it may be desirable to incorporate coloring agents such as dyes or pigments into one or more of the individual layers of the birefringent polarizer. This can be done to one or both of the outer or skin layers of the body, or alternatively, the coloring agent may be incorporated into one or more interior layers in the polarizer. The use of pigments or dyes permits the selective absorption of certain wavelengths of light by the polarizer. While an unpigmented or undyed multilayer film will reflect specific polarized wavelengths and transmit the remainder of incident light, pigments and dyes can be used to further control the bandwidth of reflected polarized light and the wavelength range of transmitted light. For example, all transmitted light may be absorbed by coextruding a black layer on the back side of the birefringent polarizer. Furthermore, dyes may be used to narrow the wavelength band of reflected polarized light and transmitted light by absorbing selected wavelengths.

The polymers chosen will determine the refractive index mismatch, respective stress optical coefficients, and glass transition temperatures. The number of layers, degree of orientation, layer thicknesses, and use of pigments or dyes may all be adjusted (controlled) to provide a polarizer having the desired characteristics for a particular end use. This contrasts to prior art devices which were limited both in design and polarization characteristics.

In another embodiment of the invention, a tunable birefringent interference polarizer is provided and comprises multiple alternating layers of first and second elastomeric materials having respective nonzero stress optical coefficients which are sufficiently different to produce a refractive index mismatch between the first and second elastomeric materials in a first plane which is different from the refractive index mismatch between the first and second elastomeric materials in a second plane normal to the first plane. Because the individual layers forming the polarizer are elastomers, the polarizer variably polarizes wavelengths of light dependent upon the degree of elongation of the elastomers. Additionally, because the layers are elastomers, the polarizer is tunable and reversible as the device is returned to a relaxed state.

The present invention also provides a method of making a birefringent interference polarizer comprising the steps of coextruding at least first and second polymeric materials having respective nonzero stress optical coefficients in multiple layers. The layers may be stretched to orient the polymeric materials and produce a refractive index mismatch in a first plane which is different from any refractive index mismatch between the first and second polymeric materials in a second plane normal to the first plane. While many polymer combinations can be stretched at temperatures above the glass transition temperature but below the melting temperature of the polymers, some polymer combinations can

be "cold drawn," where one or more of the polymers can be stretched at a temperature below its glass transition temperature.

In one embodiment of the invention, the first and second polymeric materials have substantially equal refractive indices when unoriented, with a refractive index mismatch in one plane developing upon orientation. In another embodiment, when oriented, the first and second polymeric materials have substantially equal refractive indices in one of the first and second planes, but there is a refractive index mismatch in the other plane. The orientation of the polymeric materials may be either uniaxial or biaxial.

Preferably, the refractive index mismatch in the first plane is at least 0.03, and most preferably at least 0.05 or greater, with the optical thickness of each layer being from 0.09 micrometers to 0.70 micrometers. In one embodiment, the layers increase in thickness monotonically through the thickness of the film to provide a polarizer which reflects a broad range of wavelengths. In a preferred form of the invention, the first polymeric material has a positive stress optical coefficient, and the second polymeric material has a negative stress optical coefficient.

Accordingly, it is an object of the present invention to provide a birefringent interference polarizer, and method of making, which may be fabricated from readily available materials, using established coextrusion techniques, to include having a level of light absorption near zero and be fabricated to reflect and polarize light of specific wavelengths while transmitting light of other wavelengths. This, and other objects and advantages of the present invention will become apparent from the following detailed description, the accompanying drawings, and the appended claims.

Fig. 1 is a graph of reflectance versus wavelength of light for a multilayer optical interference polarizer made in accordance with the present invention.

The present invention provides improved optical interference polarizers in the form of multilayer films with a number of desirable properties including the ability to tailor the device to polarize selected wavelengths of light. The basic optical principles involved in the present invention are those relating to the reflection of light by thin film layers having differing refractive indices. These principles demonstrate the dependency of the effect on both individual layer thickness as well as refractive index of the material. See, Radford et al, "Reflectivity of Iridescent Coextruded Multilayered Plastic Films", 13 Polymer Engineering and Science 216 (1973).

A thin film is described in the literature as one whose thickness, d , is less than 0.5 micrometers or whose optical thickness, nd (where n is the refractive index of the material) is less than 0.7 micrometers. Vasicek, Optics of Thin Films (1960) at pages 100 and 139.

Interference films which rely on the constructive optical interference of light to produce intense reflected light in the visible, ultraviolet, or infrared portions of the

electromagnetic spectrum have been described in the prior art. See, for example, Alfrey, Jr. et al., US-A-3,711,176. Such interference films act according to the equation:

5

$$\lambda_m = (2/m) (N_1 D_1 + N_2 D_2)$$

where λ_m is the reflected wavelength in nanometers, N_1 and N_2 are the refractive indices of the alternating polymers, D_1 and D_2 are the thickness of the respective layers of polymers in nanometers, and m is the order of reflection ($m=1, 2, 3, 4, 5$). This is the equation for light incident normal to the surface of the film. For other angles of incidence, the equation will be modified to take into account the angle, as is known in the art. The polarizer of the present invention is operable for all angles of incident light. Each solution of the equation determines a wavelength at which an intense reflection, relative to surrounding regions, is expected. The intensity of the reflection is a function of the "f-ratio" where,

25

$$f = \frac{N_1 D_1}{N_1 D_1 + N_2 D_2}$$

By proper selection of the f-ratio, one can exercise some degree of control over the intensity of reflection of the various higher order reflections. For example, first order visible reflections of violet (about 0.38 μm wavelength) to red (about 0.68 μm wavelength) can be obtained with layer optical thicknesses between 0.075 to 0.25 micrometers.

However, light reflected from prior art thin layer interference films is not polarized. The light reflected from the alternating polymeric layers of the present invention is polarized principally due to the birefringent nature of the film. Thus, the birefringent interference polarizer of the present invention comprises multiple alternating oriented layers of at least first and second polymeric materials having respective nonzero stress optical coefficients which are sufficiently different to produce a refractive index mismatch between the first and second polymeric materials in a first plane which is different from the refractive index mismatch between the first and second polymeric materials in a second plane normal to the first plane. This refractive index mismatch is preferably at least 0.03, and most preferably at least 0.05. This construction results in a polarizer having optical interference in a first plane, such as the plane of orientation, and near zero optical interference in a second plane normal thereto.

Preferably, the optical thickness of each polymeric layer is in the range of from 0.09 to 0.70 micrometers. Polymers suitable for use in the practice of the present invention include generally transparent thermoplastic polymers having stress optical coefficients which provide the necessary refractive index mismatch in at least

one plane when the polymers are oriented. Additionally, it is desirable from a processing standpoint that the polymers be compatible for coextrusion.

One example of a suitable polymer pair is polycarbonate and polystyrene. Syndiotactic polystyrene is believed to be especially suitable. Polycarbonate has a positive stress optical coefficient, while polystyrene has a negative stress optical coefficient. Both have refractive indices (unoriented) of approximately 1.6. Other generally transparent thermoplastic polymers which are suitable for use in the present invention include elastomers such as those described in US-A-4,937,134.

Additionally, other polymers and copolymers such as polyethylene 2,6 naphthalate, a copolymer based on 1,4-cyclohexanedimethylene terephthalate (PCTG), and copolymers of gluterimide and methyl methacrylate (KAMAX resins, available from Rohm and Haas), are useful in the practice of the present invention. Further, miscible blends of polymers may be used to adjust the refractive index, stress optical coefficient, and glass transition temperature of the layers used in the polarizer. Other exemplary thermoplastic resins, along with representative refractive indices, which may find use in the practice of the present invention include, but are not limited to: perfluoroalkoxy resins (refractive index = 1.35), polytetrafluoroethylene (1.35), fluorinated ethylene-propylene copolymers (1.34), silicone resins(1.41), polyvinylidene fluoride (1.42), polychlorotrifluoroethylene (1.42), epoxy resins (1.45), poly(butyl acrylate) (1.46), poly(4-methylpenteno-1)(1.46), poly(vinyl acetate) (1.47), ethyl cellulose (1.47), polyformaldehyde (1.48), polyisobutyl methacrylate (1.48), polymethyl acrylate (1.48), polypropylmethacrylate (1.48), polyethyl methacrylate(1.48), polyether block amide (1.49), polymethyl methacrylate (1.49), cellulose acetate (1.49), cellulose propionate (1.49), cellulose acetate butyrate (1.49), cellulose nitrate (1.49), polyvinyl butyral (1.49), polypropylene (1.49), polybutylene (1.50), ionomeric resins such as Surlyn (trademark) (1.51), low density polyethylene (1.51), polyacrylonitrile (1.51), polyisobutylene (1.51), thermoplastic polyesters such as Ecdel (trademark) (1.52), natural rubber (1.52), perbunan (1.52), polybutadiene (1.52), nylon (1.53), polyacrylic imides (1.53), poly(vinyl chloro acetate) (1.54), polyvinyl chloride (1.54), high density polyethylene (1.54), copolymers of methyl methacrylate and styrene (1.54), transparent acrylonitrile-butadiene-styrene terpolymer (1.54), allyldiglycol resin (1.55), blends of polyvinylidene chloride and polyvinyl chloride such as Saran resins (trademark) (1.55), poly-alpha-methyl styrene (1.56), styrene-butadiene latexes such as Dow 512-K (trademark) (1.56), polyurethane (1.56), neoprene (1.56), copolymers of styrene and acrylonitrile such as Tyril resin (trademark) (1.57), copolymers of styrene and butadiene (1.57), other thermoplastic polyesters such as polyethylene terephthalate and polyethylene terephthalate glycol (1.60), polyimide (1.61), polyvinylidene chloride (1.61), polydichlorostyrene (1.62), polysulfone (1.63), polyethersulfone (1.65),

and polyetherimide (1.66).

Copolymers and miscible blends of the above polymers may also find use in the practice of the present invention. Such copolymers and blends may be used to provide an extremely wide variety of different refractive indices which may be matched to provide optimum polarizing effects. Additionally, the use of copolymers and miscible blends of polymers may be used to enhance the processability of the alternating layers during coextrusion and orientation. Further, the use of copolymers and miscible blends permits the adjustment of the stress optical coefficients and glass transition temperatures of the polymers.

Multilayer birefringent interference polarizing films in accordance with the present invention are most advantageously prepared by employing a multilayered co-extrusion device as described in US-A-3,773,882 and US-A-3,884,606. Such a device provides a method for preparing multilayered, simultaneously extruded thermoplastic materials, each of which are of a substantially uniform layer thickness. Preferably, a series of layer multiplying means as are described in US-A-3,759,647 may be employed.

The feedblock of the coextrusion device receives streams of the diverse thermoplastic polymeric materials from a source such as a heat plastifying extruder. The streams of resinous materials are passed to a mechanical manipulating section within the feedblock. This section serves to rearrange the original streams into a multilayered stream having the number of layers desired in the final body. Optionally, this multilayered stream maybe subsequently passed through a series of layer multiplying means in order to further increase the number of layers in the final body.

The multilayered stream is then passed into an extrusion die which is so constructed and arranged that streamlined flow is maintained therein. Such an extrusion device is described in US-A-3,557,265. The resultant product is extruded to form a multilayered body in which each layer is generally parallel to the major surface of adjacent layers.

The configuration of the extrusion die can vary and can be such as to reduce the thickness and dimensions of each of the layers. The precise degree of reduction in thickness of the layers delivered from the mechanical orienting section, the configuration of the die, and the amount of mechanical working of the body after extrusion are all factors which affect the thickness of the individual layers in the final body.

After coextrusion, and layer multiplication, the resultant multilayer film is stretched, either uniaxially or biaxially, at a temperature above the respective glass transition temperatures of the polymers, but below their respective melting temperatures. Alternatively, the multilayer film may be cold drawn and stretched below the glass transition temperature of at least one of the polymers in the film. This causes the polymers to orient and produces a refractive index mismatch in at least one

plane of the polarizer due to the differences in stress optical coefficients and/or refractive indices between the polymers.

Polarization of selected wavelengths of light is achieved by means of constructive optical interference due to the refractive index mismatch in at least one plane of the polarizer. The polarizer can be constructed so that different wavelengths may be polarized as desired. Control of the refractive index mismatch, relative layer thicknesses within the film, and the amount of induced orientation in the film determines which wavelengths will be polarized. As with other interference films, the wavelengths of light which are polarized are also dependent on the angle of incidence of the incoming light relative to the surface of the polarizer.

The birefringent interference polarizer of the present invention reflects and polarizes a portion of the light incident on its surface while transmitting the remainder of the incident light. Essentially no light is absorbed by the polarizer. During fabrication, the layer thicknesses of the alternating polymer layers may be controlled so that the polarizer transmits only a narrow range of wavelengths while reflecting and polarizing a broad range. For example, the layers in the multilayer film may be arranged so that their thickness increases monotonically through the thickness of the film to produce a layer thickness gradient. This provides broad bandwidth reflective properties to the polarizer. Such a polarizer can be used as a band pass filter which transmits only an arrow range of wavelengths.

Alternatively, the film can be constructed to polarize and reflect only a narrow wavelength range while remaining transparent to the remaining portion of incident light. If white light is used as a source, the polarizer of the present invention will reflect polarized light of specific wavelengths in one plane dependent upon the optical thicknesses of the layers, while transmitting the remaining light.

One end use for the polarizer of the present invention is installation on an aircraft or vehicular windshield onto which a "heads-up" display is projected. The polarizer will reduce the glare component from outside of the aircraft or vehicle, or from within the aircraft or vehicle itself which is at the same angle as the projected heads-up image. The use of the present invention results in increased transmission of other incident light over that which would be possible using conventional polarizers which absorb at least some of the incident light. Another use for the polarizer of the present invention is as a beam splitter.

In order that the invention may be more readily understood, reference is made to the following example, which is intended to be illustrative of the invention, but is not intended to be limiting in scope.

Example 1

Employing an apparatus as generally described in

US-A-3,773,882 and US-A-3,759,647, a sheet of a birefringent interference polarizing film was prepared. The sheet was approximately 0.008 cm (0.003 inches) in thickness and had 385 alternating layers (ABABAB) of

5 polycarbonate (Calibre 300-15, trademark of The Dow Chemical Company) and polystyrene (Styron 685D, trademark of The Dow Chemical Company).

A 2.54 cm (1 inch) by 2.54 cm (1 inch) by 0.008 cm (0.003 inch) sample of the film was poststretched uniaxially at 160°C (above the glass transition temperature of the two polymers) at 448 N/cm² (650 lb/in²) 4.48 MPa) from its original 2.54 cm (1 inch) length to a final length of 7.6 cm (3 inches) and then quickly quenched with water to orient the polymers. Final sample thickness averaged 0.004 cm (0.0015 inch), and the minimum width of the sample was 1.27 cm (0.50 inch).

10 The post-stretch conditions were controlled to provide a final average layer thickness of 856.8 angstroms (85.68 nm) for the polycarbonate layers and 873.1 angstroms (87.31 nm) for the polystyrene layers. These layer thicknesses were calculated to provide a polarizing film which polarized light in the middle of the visible spectrum ($\lambda = 5500$ angstroms) with an I-ratio, as defined above, of 0.5.

15 Both polymers had measured refractive indices of about 1.6 in an unoriented condition. However, the polycarbonate was measured to have a positive stress optical coefficient of approximately +5,000 Brewsters, while the polystyrene was measured to have a negative stress optical coefficient of approximately -5,000 Brewsters. The degree of post-stretching was controlled to provide a refractive index mismatch between the two polymers of 0.03 in the plane of orientation.

20 To determine whether the film acted as a polarizer, two of the 385 layer films were laminated prior to uniaxial stretching to orient the polymers in the film. Reflectance at a given wavelength was measured along a plane parallel to the uniaxial stretch and along a plane normal to the plane of uniaxial stretch. As can be seen from the graph of Fig. 1, reflectance differences in the parallel and perpendicular planes over a wide range of wavelengths demonstrate that the film was functioning to polarize light.

25 While certain representative embodiments and details have been shown for purposes of illustrating the invention, it will be apparent to those skilled in the art that various changes in the methods and apparatus disclosed herein may be made without departing from the scope of the invention, which is defined in the appended claims.

Claims

30 55 1. A birefringent interference polarizer comprising multiple alternating birefringent layers of at least first and second polymeric materials, said alternating layers being oriented in the same direction,

- wherein the said materials have respective nonzero stress optical coefficients, i.e. the refractive index of the material changes when oriented, which are sufficiently different such that in the oriented layers there is a refractive index mismatch between said first and second polymeric materials in a first plane which is different from any refractive index mismatch between said first and second polymeric materials in a second plane normal to said first plane, both said planes being normal to said layers.
2. A polarizer as claimed in Claim 1 in which said first and second polymeric materials have substantially equal refractive indices when unoriented.
 3. A polarizer as claimed in Claim 1 or Claim 2 in which said oriented first and second polymeric materials have substantially equal refractive indices in one of said planes.
 4. A polarizer as claimed in any one of the preceding claims in which said first and second polymeric materials are uniaxially oriented.
 5. A polarizer as claimed in any one of the preceding claims in which said first polymeric material has a positive stress optical coefficient and said second polymeric material has a negative stress optical coefficient.
 6. A polarizer as claimed in any one of the preceding claims in which said refractive index mismatch in said first plane is at least 0.03.
 7. A polarizer as claimed in any one of the preceding claims in which the optical thickness of each layer is from 0.09 micrometers to 0.70 micrometers.
 8. A polarizer as claimed in any one of the preceding claims in which said layers increase in thickness monotonically to produce a layer thickness gradient.
 9. A polarizer as claimed in any one of the preceding claims in which said first polymeric material is a polycarbonate or a polyethylene terephthalate.
 10. A polarizer as claimed in any one of the preceding claims in which said second polymeric material is polystyrene, a copolymer of styrene and acrylonitrile, a copolymer of styrene and methylmethacrylate, or polyethylene naphthalate.
 11. A polarizer as claimed in any one of the preceding claims in which said second polymeric material is a syndiotactic polystyrene.
 12. A polarizer as claimed in any one of the preceding
- claims in which said polarizer reflects and polarizes a portion of the light incident on its surface while transmitting the remainder of said incident light.
- 5 13. A polarizer as claimed in any one of the preceding claims in which said polarizer reflects and polarizes substantially all light incident in said first plane while transmitting and polarizing substantially all light incident in said second plane.
 - 10 14. A polarizer as claimed in any one of the preceding claims in which said first and second polymeric materials comprise copolymers or miscible blends of polymers to adjust the respective refractive indices, stress optical coefficients, and glass transition temperatures of said polymeric materials.
 - 15 15. A polarizer as claimed in any one of the preceding claims in which a coloring agent is incorporated into at least one layer of said birefringent polarizer.
 - 20 16. A polarizer as claimed in Claim 15, in which said coloring agent is a pigment or a dye.
 - 25 17. A polarizer as claimed in any one of the preceding claims in which said polarizer is tunable by variably polarizing wavelengths of light dependent upon the degree of elongation of said polymeric materials.
 - 30 18. A polarizer as claimed in any one of the preceding claims wherein the polymeric materials are elastomers.
 - 35 19. A method of making a birefringent interference polarizer as claimed in Claim 1 comprising the steps of:
coextruding said at least first and second polymeric materials having respective nonzero stress optical coefficients, i.e. the refractive index of the material changes when oriented, in multiple alternating layers, and
40 stretching said layers to orient said polymeric materials and produce a refractive index mismatch in a first plane which is different from any refractive index mismatch between said first and second polymeric materials in a second plane normal to said first plane, both said planes being normal to said layers.
 - 45 20. A method of Claim 19 in which said stretching step is carried out at a temperature above the glass transition temperature but below the melting temperature of said polymeric materials.
 - 50 21. A method of Claim 19 or Claim 20 in which said first and second polymeric materials have substantially
 - 55

- equal refractive indices when unoriented.
22. A method of any one of Claims 19 to 21 wherein the stretching is carried out so as to orient said first and second polymeric materials uniaxially.
23. A method of any one of Claims 19 to 22 in which said first polymeric material has a positive stress optical coefficient and said second polymeric material has a negative stress optical coefficient.
24. A method of any one of Claims 19 to 23 in which the refractive index mismatch in the plane of orientation is at least 0.03.
25. A method of any one of Claims 19 to 24 in which the final optical thickness of each layer is from 0.09 micrometers to 0.70 micrometers.
26. A method of any one of Claims 19 to 25 in which said layers increase in thickness monotonically to produce a layer thickness gradient.
27. A method of any one of Claims 19 to 26 in which said first polymeric material is polycarbonate or polyethylene terephthalate.
28. A method of any one of Claims 19 to 27 in which the said second polymeric material is polystyrene, a copolymer of styrene and acrylonitrile, a copolymer of styrene and methyl methacrylate, or polyethylene naphthalate.
29. A method of Claim 28 in which said second polymeric material is a syndiotactic polystyrene.
- Patentansprüche**
1. Doppelbrechender Interferenzpolarisator mit mehreren alternierenden doppelbrechenden Schichten aus mindestens einem ersten und zweiten polymeren Material, wobei die alternierenden Schichten in der gleichen Richtung orientiert sind und die Materialien jeweils spannungsoptische Koeffizienten ungleich Null aufweisen, d.h. der Brechungsindex des Materials sich bei Orientierung ändert, und wobei die Koeffizienten sich ausreichend voneinander unterscheiden, so daß in den orientierten Schichten ein Brechungsindexunterschied zwischen dem ersten und zweiten polymeren Material in einer ersten Ebene besteht, der sich von einem Brechungsindexunterschied zwischen dem ersten und zweiten polymeren Material in einer zweiten Ebene normal zu der ersten Ebene unterscheidet, und beide Ebenen normal zu den Schichten angeordnet sind.
 2. Polarisator nach Anspruch 1, in dem das erste und zweite polymere Material im wesentlichen gleiche Brechungsindices aufweisen, wenn keine Orientierung vorliegt.
 3. Polarisator nach Anspruch 1 oder 2, in dem das orientierte erste und zweite polymere Material im wesentlichen gleiche Brechungsindices in einer der Ebenen aufweisen.
 4. Polarisator nach einem der vorstehenden Ansprüche, in dem das erste und zweite polymere Material uniaxial orientiert sind.
 5. Polarisator nach einem der vorstehenden Ansprüche, in dem das erste polymere Material einen positiven spannungsoptischen Koeffizienten und das zweite polymere Material einen negativen spannungsoptischen Koeffizienten aufweist.
 6. Polarisator nach einem der vorstehenden Ansprüche, in dem der Brechungsindexunterschied in der ersten Ebene mindestens 0,03 beträgt.
 7. Polarisator nach einem der vorstehenden Ansprüche, in dem die optische Dicke jeder Schicht 0,09 bis 0,7 µm beträgt.
 8. Polarisator nach einem der vorstehenden Ansprüche, in dem die Schichten in ihrer Dicke monoton ansteigen, um einen Schichtdickengradienten zu bilden.
 9. Polarisator nach einem der vorstehenden Ansprüche, in dem das erste polymere Material ein Polycarbonat oder ein Polyethylenterephthalat ist.
 10. Polarisator nach einem der vorstehenden Ansprüche, in dem das zweite polymere Material Polystyrol, ein Copolymer aus Styrol und Acrylnitril, ein Copolymer aus Styrol und Methylmethacrylat oder Polyethylennapthalat ist.
 11. Polarisator nach einem der vorstehenden Ansprüche, in dem das zweite polymere Material ein syndiotaktisches Polystyrol ist.
 12. Polarisator nach einem der vorstehenden Ansprüche, wobei der Polarisator einen Teil der Lichts, das auf seine Oberfläche auftaßt, reflektiert und polarisiert, während der Rest des einfallenden Lichts hindurchgelassen wird.
 13. Polarisator nach einem der vorstehenden Ansprüche, wobei der Polarisator im wesentlichen das gesamte Licht, das auf die erste Ebene auftaßt, reflektiert und polarisiert, während im wesentlichen das gesamte Licht, das auf die zweite Ebene auftaßt, hindurchgelassen und polarisiert wird.

14. Polarisator nach einem der vorstehenden Ansprüche, in dem das erste und zweite polymere Material Copolymeren oder mischbare Blends von Polymeren enthält, um die jeweiligen Brechungsindices, spannungsoptischen Koeffizienten und Glasübergangstemperaturen der polymeren Materialien anzupassen.
15. Polarisator nach einem der vorstehenden Ansprüche, in dem ein Färbemittel in mindestens einer Schicht des doppelbrechenden Polarisators eingeschlossen ist.
16. Polarisator nach Anspruch 15, in dem das Färbemittel ein Pigment oder ein Farbstoff ist.
17. Polarisator nach einem der vorstehenden Ansprüche, wobei der Polarisator auf Polarisation unterschiedlicher Wellenlängen des Lichts in Abhängigkeit des Grads der Dehnung des polymeren Materials abstimmbar ist.
18. Polarisator nach einem der vorstehenden Ansprüche, in dem die polymeren Materialien Elastomere sind.
19. Verfahren zur Herstellung eines doppelbrechenden Interferenzpolarisators nach Anspruch 1, umfassend die Schritte:
- Koextrudieren des mindestens ersten und zweiten polymeren Materials, die spannungsoptische Koeffizienten ungleich Null aufweisen, d.h. der Brechungsindex des Materials sich bei Orientierung ändert, in mehreren alternierenden Schichten und
- Strecken der Schichten, um die polymeren Materialien zu orientieren und einen Brechungsindexunterschied in einer ersten Ebene zu erzeugen, der sich von jedem Brechungsindexunterschied zwischen dem ersten und zweiten polymeren Material in einer zweiten Ebene normal zu der ersten Ebene unterscheidet, wobei beide Ebenen normal zu den Schichten sind.
20. Verfahren nach Anspruch 19, in dem der Streckschritt bei einer Temperatur oberhalb der Glasübergangstemperatur, aber unterhalb des Schmelzpunkts der polymeren Materialien, durchgeführt wird.
21. Verfahren nach Anspruch 19 oder 20, in dem das erste und zweite polymere Material im wesentlichen gleiche Brechungsindices aufweisen, wenn keine Orientierung vorliegt.
22. Verfahren nach einem der Ansprüche 19 bis 21,
- worin die Streckung so ausgeführt wird, daß das erste und zweite polymere Material uniaxial orientiert werden.
- 5 23. Verfahren nach einem der Ansprüche 19 bis 22, in dem das erste polymere Material einen positiven spannungsoptischen Koeffizienten und das zweite polymere Material einen negativen spannungsoptischen Koeffizienten aufweist.
- 10 24. Verfahren nach einem der Ansprüche 19 bis 23, in dem der Brechungsindexunterschied in der Orientierungsebene mindestens 0,03 beträgt.
- 15 25. Verfahren nach einem der Ansprüche 19 bis 24, in dem die endgültige optische Dicke jeder Schicht von 0,09 bis 0,7 µm beträgt.
- 20 26. Verfahren nach einem der Ansprüche 19 bis 25, in dem die Schichten in ihrer Dicke monoton ansteigen, um einen Schichtdickengradienten zu bilden.
- 25 27. Verfahren nach einem der Ansprüche 19 bis 26, in dem das erste polymere Material Polycarbonat oder Polyethylenterephthalat ist.
- 30 28. Verfahren nach einem der Ansprüche 19 bis 27, in dem das zweite polymere Material Polystyrol, ein Copolymer aus Styrol und Acrylnitril, ein Copolymer aus Styrol und Methylmethacrylat oder Polyethylennaphthalat ist.
- 35 29. Verfahren nach einem der Anspruch 28, in dem das zweite polymere Material ein syndiotaktisches Polystyrol ist.

Revendications

- 40 1. Polarisateur biréfringent à interférences comprenant de multiples couches alternées biréfringentes d'au moins une première et une deuxième matières polymères, lesdites couches alternées étant orientées dans la même direction, dans lequel lesdites matières ont respectivement des coefficients de photoélasticité non nuls, c'est-à-dire que l'indice de réfraction de la matière se modifie lorsqu'elle est orientée, coefficients qui sont suffisamment différents pour que dans les couches orientées, il existe une désadaptation de l'indice de réfraction entre lesdites premières et deuxièmes matières polymères dans un premier plan, désadaptation qui est différente de toute désadaptation de l'indice de réfraction entre lesdites première et deuxième matières polymères dans un deuxième plan normal au premier plan, les deux plans étant normaux auxdites couches.
- 45 50 55 2. Polarisateur selon la revendication 1, dans lequel les-

- dites première et deuxième couches polymères ont des indices de réfraction essentiellement égaux quand elles ne sont pas orientées.
3. Polariseur selon l'une des revendications 1 ou 2, dans lequel lesdites première et deuxième matières polymères orientées ont des indices de réfraction essentiellement égaux dans un desdits plans.
4. Polariseur selon l'une des revendications précédentes, dans lequel lesdites première et deuxième matières polymères sont orientées uniaxiallement.
5. Polariseur selon l'une des revendications précédentes, dans lequel ladite première matière polymère possède un coefficient de photoélasticité positif et ladite seconde matière polymère possède un coefficient de photoélasticité négatif.
6. Polariseur selon l'une des revendications précédentes, dans lequel ladite désadaptation de l'indice de réfraction dans ledit premier plan est d'au moins 0,03.
7. Polariseur selon l'une des revendications précédentes, dans lequel l'épaisseur optique de chaque couche est de 0,09 micromètre à 0,70 micromètre.
8. Polariseur selon l'une des revendications précédentes, dans lequel lesdites couches augmentent en épaisseur de manière monotone en-produisant un gradient d'épaisseur de couche.
9. Polariseur selon l'une des revendications précédentes, dans lequel ladite première matière polymère est un polycarbonate ou un poly(téréphthalate d'éthylène).
10. Polariseur selon l'une des revendications précédentes, dans lequel ladite deuxième matière polymère est le polystyrène, un copolymère du styrène et de l'acrylonitrile, un copolymère du styrène et du méthacrylate de méthyle, ou un poly(naphtalate d'éthylène).
11. Polariseur selon l'une des revendications précédentes, dans lequel ladite deuxième matière polymère est un polystyrène syndiotactique.
12. Polariseur selon l'une des revendications précédentes, dans lequel ledit polariseur réfléchit et polarise une portion de la lumière incidente sur sa surface tout en transmettant le reste de ladite lumière incidente.
13. Polariseur selon l'une des revendications précédentes, dans lequel ledit polariseur réfléchit et polarise essentiellement toute la lumière incidente
14. Polariseur selon l'une des revendications précédentes, dans lequel lesdites premières et deuxièmes matières polymères comprennent des copolymères ou des mélanges miscibles de polymères de façon à ajuster les indices de réfraction respectifs, les coefficients de photoélasticité, et les températures de transition vitreuse desdites matières polymères.
15. Polariseur selon l'une des revendications précédentes, dans lequel un agent colorant est incorporé dans au moins une couche dudit polariseur biréfringent.
16. Polariseur selon la revendication 15, dans lequel ledit agent colorant est un pigment ou un colorant.
17. Polariseur selon l'une des revendications précédentes, dans lequel ledit polariseur peut être accordé en polarisant de façon variable les longueurs d'ondes lumineuses en fonction du degré d'allongement desdites matières polymères.
18. Polariseur selon l'une des revendications précédentes, dans lequel les matières polymères sont des élastomères.
19. Procédé de fabrication d'un polariseur biréfringent à interférences selon la revendication 1, comprenant les étapes consistant:
- à coextruder lesdites au moins première et deuxième matières polymères ayant respectivement des coefficients de photoélasticité non nuls, c'est-à-dire que l'indice de réfraction de la matière se modifie lorsqu'elle est orientée, en de multiples couches alternées; et
 - à étirer lesdites couches pour orienter lesdites matières polymères et produire une désadaptation de l'indice de réfraction dans un premier plan qui est différente de toute désadaptation de l'indice de réfraction entre lesdites première et deuxième matières polymères dans un deuxième plan normal audit premier plan, lesdits deux plans étant normaux auxdites couches.
20. Procédé selon la revendication 19, dans lequel ladite étape d'étirage est effectuée à une température au-dessus de la température de transition vitreuse mais au-dessous de la température de fusion desdites matières polymères.
21. Procédé selon l'une des revendications 19 ou 20, dans lequel lesdites première et deuxième matières

polymères ont des indices de réfraction essentiellement égaux lorsqu'elles ne sont pas orientées.

22. Procédé selon l'une des revendications 19 à 21, dans lequel l'étirage est effectué de façon à orienter uniaxiallement lesdites première et deuxième matières polymères. 5
23. Procédé selon l'une des revendications 19 à 22, dans lequel ladite première matière polymère possède un coefficient de photoélasticité positif et ladite deuxième matière polymère possède un coefficient de photoélasticité négatif. 10
24. Procédé selon l'une des revendications 19 à 23, dans lequel la désadaptation de l'indice de réfraction dans le plan d'orientation est d'au moins 0,03. 15
25. Procédé selon l'une des revendications 19 à 24, dans lequel l'épaisseur optique finale de chaque couche est de 0,09 micromètre à 0,70 micromètre. 20
26. Procédé selon l'une des revendications 19 à 25, dans lequel lesdites couches augmentent en épaisseur de manière monotone en produisant un gradient d'épaisseur de couche. 25
27. Procédé selon l'une des revendications 19 à 26, dans lequel ladite première matière polymère est le polycarbonate ou le poly(téréphthalate d'éthylène). 30
28. Procédé selon l'une des revendications 19 à 27, dans lequel ladite deuxième matière polymère est le polystyrène, un copolymère du styrène et de l'acrylonitrile, un copolymère du styrène et du méthacrylate de méthyle, ou un poly(naphtalate d'éthylène). 35
29. Procédé selon la revendication 28, dans lequel ladite deuxième matière polymère est du polystyrène syndiotactique. 40

45

50

55

FIG. I

001004

총력 일

발송번호 : 9-5-2002-002706531
 발송일자 : 2002.01.30
 제출기일 : 2002.03.30

수신 : 서울시 종로구 내자동 219
 한누리빌딩(김&정 특허법률사무소)
 김영 귀하

110-350

특허청 의견제출통지서

출원인 영국 미네소타 마이닝 앤드 매뉴팩처링 컴파니 (출원인코드: 519980661948)
주소 미합중국 55133-3427 미네소타주 세인트 폴 피.오. 박스 33427 3층 센터
대리인 성명 김영 외 1명
주소 서울시 종로구 내자동 219 한누리빌딩(김&정 특허법률사무소)
출원번호 10-1996-0703295
발명의 명칭 다중광학필름

이 출원에 대한 심사결과 아래와 같은 거절이유가 있어 특허법 제63조의 규정에 의하여 이를 봉지해 오니 의견이 있거나 보정이 필요할 경우에는 살기 제출기일까지 의견서 또는 보정서를 제출하여 주시기 바랍니다. (살기 제출기일에 대하여 매회 1회 단위로 연장을 신청할 수 있으며, 이 신청에 대하여 별도의 기간연장승인통지는 하지 않습니다.)

[이유]

- 특허청구범위 제1항 내지 제2항은 두께가 0.5마이크론 미만인 결합성 풀리에틸렌 나프탈레이트 풀리에틸렌 나프탈레이트의 적층체에 있어서, 풀리에틸렌 나프탈레이트의 하나 이상의 폴리내 층과 다른 폴리내 층이 인접한 적층체보다 높을 것을 특징으로 하는 다중 광학체 필름에 관한 것이다. 본원에 접수된 특허청구권은 공개특허공보 EP488,544호 [1992. 6. 3. 이하 '인용발명'이라 함]에 통증되는 특허청구권에 접두된 두 개의 광학체 필름을 적층한 적층체가 기재되어 있어서, 외부광을 대비하여 주면 본원에서는 광학체 필름이 풀리에틸렌 나프탈레이트인 것이 실이 하나 풀리에틸렌 나프탈레이트 필름을 당연하게 예상되는 사용되고 있는 주지판용의 원료이므로, 당연히 주지판용에서 본원발명의 풀리에틸렌 나프탈레이트 필름으로의 전환을 원이하게 할 수 있는 것으로 인정되므로 상기 청구항은 특허법 제29조 제2항의 규정에 의해 특허방지 수 없느니다.
- 특허청구범위 제1항에 있어서 "또 다른 선택된 광학체"라는 기재는 또 다른 선택된 광학체가 어떤 광학체를 나타내는 지가 불명확한 것으로 인정되므로 특허법 제42조 제4항 제2호 규정에 위배됩니다.

- 특허청구범위 제1항 내지 제12항에 있어서 "거의"라는 기재는 어느 정도의 향을 나타내는 지가 불명확한 것으로 인정되므로 특허법 제42조 제4항 제2호 규정에 위배됩니다. 꿀.

[첨부] 첨부 1 유럽 공개특허공보 EP488,544호 사본 1부 꿀.

2002.01.30

특허청

심사3국

정밀화학 심사담당관실

심사관 이수현

출력 일자: 2002/1/31

<<안내>>

문의사항이 있으시면 ☎ 042)481-5582 를 문의하시기 바랍니다.

특허청 직원 또는 깨끗한 특허행정의 구현을 위하여 최선을 다하고 있습니다. 반뤄 일부지리과정에서 직원의 부조리행위가 있으면 신고하여 주시기 바랍니다.

▶ 홈페이지(www.kipo.go.kr)내 부조리신고센터