East West University

Project Report

Course Code: EEE 305
Course Name: Electromagnetic Fields and Wave

Submitted to:

Dr Farhana parveen

Assistant Professor

Dept. of Electrical and Electronic Engineering

East West University

Submitted by:

Name	ID		
Md. Srabon Islam Ramim	2020-2-80-046		

Date of Submission: 23-12-2022

Theory

The capacitance of a cylindrical capacitor depends on four design parameters:

- 1. Radius of the inner cylinder (a)
- 2. Radius of the outer cylinder (b)
- 3. Length of the capacitor (H)
- 4. Permittivity of the material between the two cylinders (ε_r)

Circuit Diagrams

Vary a

SL No.	A (mm)	B (mm)	H (mm)	Material, \mathcal{E}_r	Screenshot
01.	0.5	1.5	30	Air/Vacuum (1)	Ansys Rizz 82 STUDENT X S S 10 (mm)
02.	0.8	1.5	30	Air/Vacuum (1)	Ansys 2022 by STUDENT X 0 5 10 (mm)
03.	1.1	1.5	30	Air/Vacuum (1)	Ansys 202 R2 STUCENT

Vary b

SL No.	a (mm)	b (mm)	H (mm)	Material, \mathcal{E}_r	Screenshot		
01.	0.5	1.5	30	Air/Vacuum (1)	Ansys 202 R STUDENT X 2 10 (mm)		
02.	0.5	2	30	Air/Vacuum (1)	Ansys Student Student		
03.	0.5	1	30	Air/Vacuum (1)	Ansys Stocker Stocker The stoc		

Vary H,

SL No.	a (mm)	b (mm)	H (mm)	Material, \mathcal{E}_r	Screenshot
01.	0.5	1.5	30	Air/Vacuum (1)	Ansys Wid R2 STUDENT
02.	0.5	1.5	10	Air/Vacuum (1)	Ansys 203 RD STUDENT
03	0.5	1.5	50	Air/Vacuum (1)	Ansys Ansys SOZ ED STUDENT 25 50 (mm)

Vary ε_r

SL No.	a(mm)	b(mm)	H(mm)	Material, ε _r	Screenshot
01.	0.5	1.5	30	Air/Vacuum(1)	Ansys 2002-02 STUCENT
02.	0.5	1.5	30	Teflon (2.1)	Ansys An
03	0.5	1.5	30	FR4 epoxy (4.4)	Ansys 2022 R2 STUDENT Y Q S 19 (mm)

Vary a

SL No.	a(mm)	b(mm)	H(mm)	Material, E _r	Capacitance (pF) from simulation	Capacitance (pF) from equation
01.	0.5	1.5	30	Air/Vacuum(1)	1.5328	1.5192
02.	0.8	1.5	30	Air/Vacuum(1)	2.6654	2.655
03	1.1	1.5	30	Air/Vacuum(1)	5.4001	5.3811

Vary b

SL No.	a(mm)	b(mm)	H(mm)	Material, \mathcal{E}_r	Capacitance (pF) from simulation	Capacitance (pF) from equation
01.	0.5	1.5	30	Air/Vacuum(1)	1.5328	1.5192
02.	0.5	2	30	Air/Vacuum(1)	1.2175	1.2039
03	0.5	1	30	Air/Vacuum(1)	2.4179	2.4078

Vary H

SL No.	a(mm)	b(mm)	H(mm)	Material, \mathcal{E}_r	Capacitance (pF) from simulation	Capacitance (pF) from equation
01.	0.5	1.5	30	Air/Vacuum(1)	1.5328	1.5192
02.	0.5	1.5	10	Air/Vacuum(1)	0.53472	0.5064
03	0.5	1.5	50	Air/Vacuum(1)	2.5125	2.5319

Vary ε_r

SL No.	a(mm)	b(mm)	H(mm)	Material, \mathcal{E}_r	Capacitanc e (pF) from simulation	Capacitance (pF) from equation
01.	0.5	1.5	30	Air/Vacuum(1)	1.5328	1.5192
02.	0.5	1.5	30	Teflon (2.1)	3.2113	3.1902
03	0.5	1.5	30	FR4 epoxy (4.4)	6.7082	6.6843