Monte Carlo Estimation

2. Monte Carlo Estimation (6 Points)

Let $X \sim \mathcal{N}(1,3)$, and $f(x) = 1 + 2x + x^2$.

(a) Analytical Computation

Expectation of f(X):

$$\mathbb{E}[f(X)] = \mathbb{E}[1 + 2X + X^2]$$
$$= 1 + 2\mathbb{E}[X] + \mathbb{E}[X^2].$$

Given $X \sim \mathcal{N}(1,3)$:

- $\mathbb{E}[X] = 1$
- $\mathbb{E}[X^2] = \text{Var}(X) + (\mathbb{E}[X])^2 = 3 + 1^2 = 4$

Substituting these values:

$$\mathbb{E}[f(X)] = 1 + 2(1) + 4 = 7.$$

Variance of f(X):

Rewrite f(X) as:

$$f(X) = (X-1)^2 + 4(X-1) + 4.$$

Let Y = X - 1, so $Y \sim \mathcal{N}(0,3)$. Then:

$$f(X) = Y^2 + 4Y + 4.$$

The variance is unaffected by the constant term:

$$Var(f(X)) = Var(Y^2 + 4Y).$$

Since Y is a zero-mean Gaussian, Y^2 and Y are uncorrelated $(Cov(Y^2, Y) = 0)$:

$$Var(Y^2 + 4Y) = Var(Y^2) + Var(4Y).$$

- $Var(4Y) = 16Var(Y) = 16 \times 3 = 48$
- For $Y \sim \mathcal{N}(0, \sigma^2)$, $Var(Y^2) = 2\sigma^4$. Here, $\sigma^2 = 3$, so $Var(Y^2) = 2(3^2) = 18$

Adding the variances:

$$Var(f(X)) = 18 + 48 = 66.$$

Final Answer

(a)
$$\mathbb{E}[f(X)] = \boxed{7}, \quad \text{Var}[f(X)] = \boxed{66}.$$