Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа М3112	К работе допущен
Студент Анужин Баатарцогт	Работа выполнена
Преподаватель	Отчет принят
	ий протокол и отчет по В торной работе № 1.01

Исследование распределения случайной величины

1. Цель работы.

- 1.1. Провести многократные измерения определенного интервала времени.
- 1.2. Построить гистограмму распределения результатов измерения.
- 1.3. Вычислить среднее значение и дисперсию полученной выборки.
- 1.4. Сравнить гистограмму с графиком функции Гаусса с такими же как и у экспериментального распределения средним значением и дисперсией.
- 2. Задачи, решаемые при выполнении работы.
- 3. Объект исследования.
- 4. Метод экспериментального исследования.
- 5. Рабочие формулы и исходные данные.

$$\rho(t) = \lim_{\substack{N \to \infty \\ \Delta t \to 0}} \frac{\Delta N}{N \Delta t} = \frac{1}{N} \frac{dN}{dt}$$

$$\rho(t) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(t - \langle t \rangle)^2}{2\sigma^2}\right)$$

$$\langle t \rangle_N = \frac{1}{N} (t_1 + t_2 + \dots + t_N) = \frac{1}{N} \sum_{i=1}^N t_i,$$

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^N (t_i - \langle t \rangle_N)^2}.$$

$$\rho_{\text{max}} = \frac{1}{\sigma \sqrt{2\pi}}.$$

$$P(t_1 < t < t_2) = \int_{t_1}^{t_2} \rho(t)dt \approx \frac{N_{12}}{N}$$

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

$$\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle},$$

$$\alpha = P(t \in [\langle t \rangle - \Delta t, \langle t \rangle + \Delta t]).$$

6. Измерительные приборы.

№ n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Цифровой секундомер		7 сек	0,01
2				
3				
4				

7. Схема установки (перечень схем, которые составляют Приложение 1).

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

No t, s t - <t>, s 1 6.78 -0.4858 0.236</t>	(t)N)2, s2
1 6.78 -0.4858 0.236	
2 678 0.4050 0.224	600164
2 0.70 -0.4036 0.230	600164
3 6.78 -0.4858 0.230	600164
4 6.86 -0.4058 0.164	467364
5 6.84 -0.4258 0.18	130564
6 6.86 -0.4058 0.164	467364
7 6.91 -0.3558 0.120	659364
8 6.93 -0.3358 0.112	276164
9 6.93 -0.3358 0.112	276164
10 6.94 -0.3258 0.100	614564
11 6.95 -0.3158 0.099	972964
12 6.96 -0.3058 0.093	351364
13 6.97 -0.2958 0.08	749764
14 6.99 -0.2758 0.076	606564
15 6.99 -0.2758 0.076	606564
16 6.99 -0.2758 0.076	606564
17 6.99 -0.2758 0.076	606564
18 7 -0.2658 0.070	064964
19 7.07 -0.1958 0.033	833764
20 7.07 -0.1958 0.033	833764
21 7.1 -0.1658 0.027	748964
22 7.14 -0.1258 0.013	582564
23 7.14 -0.1258 0.01:	582564
24 7.17 -0.0958 0.009	917764
25 7.24 -0.0258 0.000	066564
26 7.28 0.0142 0.000	020164
27 7.28 0.0142 0.000	020164
28 7.28 0.0142 0.000	020164
29 7.31 0.0442 0.00	195364
30 7.32 0.0542 0.002	293764
31 7.34 0.0742 0.003	550564
32 7.35 0.0842 0.00	708964
33 7.43 0.1642 0.020	696164
34 7.44 0.1742 0.030	034564
35 7.46 0.1942 0.03°	771364
36 7.49 0.2242 0.050	026564
37 7.52 0.2542 0.06 ₄	461764
38 7.56 0.2942 0.086	655364
39 7.58 0.3142 0.098	872164
40 7.59 0.3242 0.103	510564
41 7.64 0.3742 0.140	002564
42 7.65 0.3842 0.14	760964
43 7.65 0.3842 0.14	760964

44	7.68	0.4142	0.17156164
45	7.75	0.4842	0.23444964
46	7.8	0.5342	0.28536964
47	7.83	0.5642	0.31832164
48	7.83	0.5642	0.31832164
49	7.88	0.6142	0.37724164
50	7.97	0.7042	0.49589764
	7.27	0.00000000000154543	0.34
			1.18

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Таблица 2: Данные для построения гистограммы

Гр.инт,с	ΔΝ	$\Delta N/(N\Delta t)$	t,c	$\rho(t), c^{-1}$
6.78				
6.95	11	1.294118	6.865	0.585064
6.95				
7.12	11	1.294118	7.035	0.933294
7.12				
7.29	7	0.823529	7.205	1.157857
7.29				
7.46	7	0.823529	7.375	1.117154
7.46				
7.63	6	0.705882	7.545	0.838287
7.63				
7.8	6	0.705882	7.715	0.489208
7.8				
7.97	5	0.588235	7.885	0.222032

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Таблица 3: Стандартные доверительные интегралы

	Интервал, с				
	ОТ	до	ΔN	$\Delta N/(N\Delta t)$	P
<t>±s</t>	6.93	7.60	33	0.66	0.683
<t>±2s</t>	6.59	7.94	49	0.98	0.954
<t>±3s</t>	6.25	8.28	50	1	0.997

12. Окончательные результаты.

13. Выводы и анализ результатов работы.

График распределения плотности вероятности показывает распределение вероятностей измеряемых случайных величин(в этом отчете как время t) при выполнении нескольких измерений (N).

14. Дополнительные задание.

- 1. Являются ли, по вашему мнению, случайными следующие физические величины: плотность алмаза при 20 °С напряжение сети сопротивление резистора, взятого наугад из партии с одним и тем же номинальным сопротивлением число молекул в 1см3 при нормальных условиях? Приведите другие примеры случайных и неслучайных физических величин.
- 2. Изучая распределение ЭДС партии электрических батареек, студент использовал цифровой вольтметр. После нескольких измерений получились такие результаты (в вольтах): 1;50; 1;49; 1;50; 1;49. Имеет ли смысл продолжать измерения? Что бы вы изменили в методике этого эксперимента?

3. При обработке результатов измерений емкости партии конденсаторов получено: $\langle C \rangle = 1;1$ мк Φ , = 0;1 мк Φ . Если взять коробку со 100 конденсаторами из этой партии, то сколько среди

них можно ожидать конденсаторов с емкостью меньше 1 мкФ? больше 1;3 мкФ?

15. Выполнение дополнительных заданий.

1.

Случайные физические величины: сопротивление резистора, взятого наугад из партии с одним и тем же номинальным сопротивлением .

Неслучайные физические величины плотность алмаза при 20^{0} С, число молекул в 1 см 3 при нормальных условиях , напряжение в сети

Примеры:

Случайные физические величины:

- +) электрическое поле
- +) влажность воздуха
- +) температура воздуха
- +) macca

Неслучайные физические величины:

- +) заряд и масса электрона
- +) скорость света в вакууме
 - 2. Да
 - 3. L1 = 0.023, 2 конденсаторов. L2 = 0.159, 15 конденсаторов

$$L = \int_{c1}^{c2} \frac{1}{\sigma \sqrt{2\Pi}} \, \frac{e^{(c-(c))^2}}{2\sigma^2}$$