FSM-Based Testing Part II

Mohammad Mousavi

Eindhoven University of Technology, The Netherlands

Software Testing, 2011

Announcements

- Comments on the first deliverable are posted.
- Some common issues:
 - Strange moments of choice,
 - Unnamed or plain (neither input nor output) transitions, and
 - Initial state issue.
- A package for the second deliverable is also posted.

Outline

Finite State Machines (recap)

 $M = (I, O, S, \delta, \lambda)$ with

- ▶ I, O, and S finite and non-empty sets of input symbols, output symbols, and states
- ▶ state transition function $\delta : S \times I \rightarrow S$
- ▶ output function λ : $S \times I \rightarrow O$

Finite State Machines (recap)

 $M = (I, O, S, \delta, \lambda)$ with

- ▶ I, O, and S finite and non-empty sets of input symbols, output symbols, and states
- ▶ state transition function $\delta : S \times I \rightarrow S$
- ▶ output function $\lambda : S \times I \rightarrow O$

 λ and δ are generalized to sets of states and sequences of inputs.

Finite State Machines (recap)

 $M = (I, O, S, \delta, \lambda)$ with

- I, O, and S finite and non-empty sets of input symbols, output symbols, and states
- ▶ state transition function $\delta : S \times I \rightarrow S$
- ▶ output function $\lambda : S \times I \rightarrow O$

 λ and δ are generalized to sets of states and sequences of inputs.

Assumption: FSM's are reduced, deterministic and complete.

Essential Notions (recap)

1. Reduced FSM:

for all distinct $s, s' \in S$, there exists an $x \in I^*$ such that $\lambda(s, x) \neq \lambda(s', x)$. I.e., x separates s and s'.

2. Completeness:

For each input a, and state s, there exists a s' such that $\delta(s, a) = s'$.

3. Determinism: For each input a, and state s, there exists at most one s' such that $\delta(s, a) = s'$.

Equivalence (recap)

Let
$$M = (I, O, S, \delta, \lambda)$$
 and $M' = (I, O, S', \delta', \lambda')$

1. State equivalence: for $s \in S$ and $s' \in S'$

$$s \approx s' \doteq \forall_{x \in I^*} \lambda(s, x) = \lambda'(s', x)$$

2. Machine equivalence

$$M \approx M' \;\; \doteq \;\; \forall_{s \in S} \exists_{s' \in S'} \; s \approx s' \; \land \; \forall_{s' \in S'} \exists_{s \in S} \; s' \approx s$$

Outline

- Determine the final state √
 - 1.1 homing sequence: a testcase to reveal the final state
 - 1.2 synchronizing sequence for s: final state (after running the testcase) is s

- 1. Determine the final state √
 - 1.1 homing sequence: a testcase to reveal the final state
 - 1.2 synchronizing sequence for s: final state (after running the testcase) is s
- 2. State identification (identify the initial state) √
 - 2.1 preset distinguishing sequence
 - 2.2 adaptive distinguishing sequence

- Determine the final state √
 - 1.1 homing sequence: a testcase to reveal the final state
 - 1.2 synchronizing sequence for s: final state (after running the testcase) is s
- 2. State identification (identify the initial state) √
 - 2.1 preset distinguishing sequence
 - 2.2 adaptive distinguishing sequence
- State verification (is machine in state s?):
 UIO sequence √

- 1. Determine the final state √
 - 1.1 homing sequence: a testcase to reveal the final state
 - 1.2 synchronizing sequence for s: final state (after running the testcase) is s
- 2. State identification (identify the initial state) √
 - 2.1 preset distinguishing sequence
 - 2.2 adaptive distinguishing sequence
- State verification (is machine in state s?):
 UIO sequence √
- 4. Conformance testing (is blackbox A equivalent to the FSM?)
- 5. Machine identification (derive the FSM from a blackbox)

Outline

Basic Idea

- Specification: FSM A
- ► Implementation: A blackbox B, only input-output observable
- Problem: given the specification determine a testcase (a sequence of inputs) to determine whether A ≈ B (Also called: fault detection, machine testing)

Basic Idea

- Specification: FSM A
- ► Implementation: A blackbox B, only input-output observable
- Problem: given the specification determine a testcase (a sequence of inputs) to determine whether A ≈ B (Also called: fault detection, machine testing)
- ► Challenge: for each testcase *t*, *B* can always behave the same as *A* up to | *t* |

specification:

specification:

 suppose that sequence aⁿ is the testcase (the answer to the conformance testing problem)

specification:

 suppose that sequence aⁿ is the testcase (the answer to the conformance testing problem)

for any n, some incorrect implementation may pass the test:

Simplifying Assumptions

Assumptions on A

- strongly connected: (testcase long enough ⇒ each state visited)
- reduced: (equivalence: interesting / efficient on reduced FSMs)

Simplifying Assumptions

Assumptions on A

- strongly connected: (testcase long enough ⇒ each state visited)
- reduced: (equivalence: interesting / efficient on reduced FSMs)
- A has the following transitions
 - set(j)/0: a transition from each state to state j,
 - status/i: a self-loop indicating the current state

 $\begin{array}{c|c} set(0) \\ \hline \\ status/1 \\ \hline \\ set(1)/0 \\ \hline \\ status/1 \\ set(1)/0 \\ \hline \\ \end{array}$

set(0)/0

rst/0

status/0

Last assumption: only for convenience; to be dropped later.

Simplifying Assumptions

Assumptions on B

- constant FSM (should not change; should be finite)
- at most | S_A | states
 (an upper bound is needed;
 here, only transfer and output faults tested
 no new states due to faults)

Fault Model

Basic Algorithm

For each state s and input a in A:

- set the state to s,
- supply input a and check in B whether
 - 1. output is $\lambda(s,a)$

, and

2. the target is $\delta(s, a)$

N.B. all transitions are covered by the algorithm (a transition tour is taken).

Basic Algorithm

For each state s and input a in A:

- set the state to s, using set(s)
- supply input a and check in B whether
 - 1. output is $\lambda(s, a)$ (observe the output), and
 - 2. the target is $\delta(s, a)$ (supply *status* and observe the output).

N.B. all transitions are covered by the algorithm (a transition tour is taken).

testcase:

set(0), status, status, status, rst, status, t, status, set(1), status, status, status, t, status, set(1), rst, status, set(1), set(0), status

Specification

0,0, 0,0, 0, 0, 1, 1, 0,1, 1,1, 0, 0, 0,0,0, 0,0,0

testcase:

set(0), status, status, status, rst, status, t, status, set(1), status, status, status, status, set(1), rst, status, set(1), set(0), status

testcase:

set(0), status, status, status, rst, status, t, status, set(1), status, status, status, t, status, set(1), rst, status, set(1), set(0), status

1,1, 0, 0, 0,0,0, 0,0,0

1, 0, 1,1, 0,0,0 0,0,0

Output Fault

testcase:

set(0), status, status, status, rst, status, t, status, set(1), status, status, status, t, status, set(1), rst, status, set(1), set(0), status

Specification

1,1, 0, 0, 0,0,0, 0,0,0

Transfer Fault

Output Fault

1, 0, 1,1, 0,0,0 0,0,0 | 1,1, 1, 0, 0,0,0 0,0,0

◆ロ > ◆個 > ◆ 差 > ◆ 差 > 一差 ● 夕 Q ©

Transfer Sequence

- FSM's usually have no set(j): use homing sequence and transfer sequences
- A transfer sequence $\tau(i, j)$: $\delta(s_i, \tau(s_i, s_i)) = s_i$
- au au (i,j) need not be unique; the shortest path can be found efficiently
- Examples:

$$HS = t$$

 $\tau(0,1) = t$,
 $\tau(1,0) = t$ or rst.

Algorithm with Transfer/Homing Sequences

- 1. Go to a known final state s'
- 2. For each state s and input a in A:
 - set the state from s' (the current known state) to s,
 - supply input a and check in B whether
 - 2.1 output is $\lambda(s, a)$

, and

2.2 the target is $\delta(s, a)$

Algorithm with Transfer/Homing Sequences

- 1. Go to a known final state s' (using the homing sequence)
- 2. For each state s and input a in A:
 - set the state from s' (the current known state) to s, using τ(s', s)
 - supply input a and check in B whether
 - 2.1 output is $\lambda(s, a)$ (observe the output), and
 - 2.2 the target is $\delta(s, a)$ (supply *status* and observe the output, if successful let $s' = \delta(s, a)$)

testcase: first supply HS = t, if output = 1 then supply t, ts, otherwise, ts, where:

ts = status, status, status, rst, status, t, status, status, status, rst, status, t, t, status

Transfer Fault 1,0,0, 0,0, 0, 0, 1,1, 0,0, 0,0, 1,0,0

Output Fault 1,1,0, 0,0, 0,0, 1,1, 1,1, 0,0, 1,1,0

"Status", Realistic?

- Sometimes present: registers in hardware, state dumps (logs) in protocols
- Usually not: let's do without them and apply state identification (e.g., preset or adaptive distinguishing sequence)
- Challenge: distinguishing sequences change the state

Algorithm with Nuts and Bolts

- 1. Go to a known final state s_0 (homing sequence)
- 2. Take a sequence of all states $s_0, ..., s_{n+1}$, where $s_0 = s_{n+1}$. (state tour or state cover seq.) and let i = 0:
 - 2.1 supply the DS and check if FSM is in s_i ,
 - 2.2 FSM is in t_i (due to DS), supply $\tau(t_i, s_{i+1})$ and repeat for i := i + 1, until i = n + 1
- 3. For each state s_i and input label a, (assuming that current state is s'_i)
 - 3.1 supply $\tau(s'_j, s_{i-1})$, DS, $\tau(t_{i-1}, s_i)$, take yourself back to the safe path,
 - 3.2 supply the input a, DS and check whether the output is $\lambda(s_i, a)$ and FSM is in $\delta(s_i, a)$, the current state is s'_{j+1} (due to a, DS)
 - N.B. In step 3.1, one may apply $\tau(t_{i-1}, s_i)$, if $s'_j = t_{i-1}$ and skip the step if $s'_i = s_i$.

testcase: first supply HS = t, rst, output = 1,0 (no other choice!), then supply t, rst, t, rst, t, t, t, t

testcase: first supply HS = t, rst, output = 1,0 (no other choice!), then supply t, rst, t, rst, t, t, t, t

111011 Gappiy 1,701,1,701,1,101,1				
rst/0	rst/0			
(s_0)	(s_0)			
$rst/0 \begin{pmatrix} t/1 \\ t/0 \end{pmatrix}$	rst/0 $t/1$			
(s_1)	s_1			
Specification	Output Fault			
-	-			
1, 0, 1, 0, 1, 0, 1	1, <mark>1</mark> , 1, 0, 1, 1 , 0, 1			

Solution

► Homing sequence: ba

observed output	00	01	10
target state	s ₂	s_0	s ₂

Adaptive distinguishing sequences:

$$DS(s_0) = aa, \lambda(s_0, aa) = 00$$

 $DS(s_1) = aa, \lambda(s_1, aa) = 01$
 $DS(s_2) = a, \lambda(s_2, a) = 1$

Outline

Basic Idea

- ► Implementation: A blackbox B, only input-output observable
- Problem: by applying a testcase (a sequence of inputs)
 determine an FSM A such that A = B
- Same challenges as in conformance checking: B should be strongly connected, finite and constant. But that is not all...

Simple solution

- Construct all different reduced and strongly connected FSM's with n states and I_B and O_B as inputs and outputs,
- Use conformance testing: find the one conforming to B!

- State-space explosion: with n states, p inputs and q outputs, (nq)^{np}/n! machines 2 states, 2 inputs, 2 outputs, 256 machines!
- Possible Solutions:
 - Run all possible machines simultaneously (construct "direct sum" machines)
 - Use machine learning: have an oracle which provides a test-case for each failure

Study Guide

- Only sections II, III, IV.A, IV.B, IV.C and VII.A of Lee and Yananakis's paper were treated.
- ► There will be a study-guide on the web page, to guide you through the available material.