Statistika

8. predavanje

Barbara Boldin

Fakulteta za matematiko, naravoslovje in informacijske tehnologije Univerza na Primorskem

Preizkušanje statističnih domnev (nadaljevanje)

Spoznali smo dva testa za preizkušanje statističnih domnev o populacijskem povprečju μ :

- \diamond Z-test (ki predpostavlja znan populacijski standardni odklon σ)
- t-test (kjer σ ni poznan)

Proces preizkušanja statističnih domnev:

- ⋄ postavimo ničelno hipotezo H₀ in alternativno hipotezo H₁
- predpostavimo, da H₀ velja. Izberemo ustrezen test, izračunamo testno statistiko za dani vzorec ter (iz tabel) za izbrano stopnjo značilnosti α določimo kritične vrednosti, ki določajo območje zavrnitve H₀ v korist H₁
- naredimo statistični sklep: bodisi
 - H₀ obdržimo, odstopanja niso statistično značilna, bodisi
 - ♣ H₀ zavrnemo v korist H₁, odstopanja so statistično značilna.
- Pripadajoči vsebinski sklep je tedaj
 - vzorčni podatki ne nasprotujejo ničelni domnevi ali
 - pri stopnji značilnosti α trdimo, da je alternativna domneva H_1 pravilna. Verjetnost, da smo se zmotili je največ α .

Sklep o tem, ali H_0 obdržimo ali zavrnemo temelji na enem vzorcu, zato so pri statističnem sklepanju možne napake. Naredimo lahko dve vrsti napak:

	DEJANSKO STANJE	
STATISTIČNI SKLEP	Velja H_0	Velja H ₁
H_0 obdržimo	Napake ni	Napaka II. vrste (β)
H_0 zavrnemo v korist H_1	Napaka I. vrste (α)	Napake ni

- α je verjetnost, da ničelno domnevo H₀ zavrnemo v korist alternativne domneve, ko je H₀ pravilna. Stopnjo značilnosti α izberemo sami, zato je verjetnost te napake pod našo kontrolo.
- β je verjetnost, da H₀ obdržimo, čeprav H₀ ne velja. Težava pri preizkušanju statističnih domnev je dejstvo, da verjetnosti β ne poznamo, kar ponazarja naslednji primer.

Denimo, da je masa zdravila v stekleničkah X normalno porazdeljena, $X\sim N(\mu,\sigma^2)$ z $\sigma=5$ mg.

V podjetju želijo s slučajnim vzorčenjem preveriti, ali je $\mu=50.$

Naj bo

 H_0 : $\mu=50$ mg H_1 : $\mu
eq 50$ mg

zberimo $\alpha = 0.05$ in n = 25.

Za $\alpha=0.05$ sta kritični vrednosti $z=\pm 1.96$, torej H_0 obdržimo, če je povprečje vzorca v intervalu

$$\left(\mu^* - z \frac{\sigma}{\sqrt{n}}, \mu^* + z \frac{\sigma}{\sqrt{n}}\right) = (48.04, 51.96).$$

Želimo izračunati verjetnost, s katero obdržimo H_0 , čeprav je pravilna H_1 Alternativna domneva je v resnici množica alternativnih domnev, $H_1: \{\mu = \mu_1 : \mu_1 \in \mathbb{R}, \mu \neq 50 \text{ mg} \}$

Denimo, da je masa zdravila v stekleničkah X normalno porazdeljena, $X\sim N(\mu,\sigma^2)$ z $\sigma=5$ mg.

V podjetju želijo s slučajnim vzorčenjem preveriti, ali je $\mu=$ 50.

Naj bo

 H_0 : $\mu = 50 \text{ mg}$ H_1 : $\mu \neq 50 \text{ mg}$

izberimo $\alpha = 0.05$ in n = 25.

Za $\alpha=0.05$ sta kritični vrednosti $z=\pm 1.96$, torej H_0 obdržimo, če je povprečje vzorca v intervalu

$$\left(\mu^* - z \frac{\sigma}{\sqrt{n}}, \mu^* + z \frac{\sigma}{\sqrt{n}}\right) = (48.04, 51.96).$$

Želimo izračunati verjetnost, s katero obdržimo H_0 , čeprav je pravilna H_1 Alternativna domneva je v resnici množica alternativnih domnev, $H_1: \{\mu = \mu_1 : \mu_1 \in \mathbb{R}, \mu \neq 50 \text{ mg}\}$

Denimo, da je masa zdravila v stekleničkah X normalno porazdeljena, $X \sim N(\mu, \sigma^2)$ z $\sigma = 5$ mg.

V podjetju želijo s slučajnim vzorčenjem preveriti, ali je $\mu=$ 50.

Naj bo

 H_0 : $\mu = 50 \text{ mg}$

 $H_1: \mu \neq 50 \text{ mg}$

izberimo $\alpha = 0.05$ in n = 25.

Za $\alpha=0.05$ sta kritični vrednosti $z=\pm 1.96$, torej H_0 obdržimo, če je povprečje vzorca v intervalu

$$\left(\mu^* - z \frac{\sigma}{\sqrt{n}}, \mu^* + z \frac{\sigma}{\sqrt{n}}\right) = (48.04, 51.96).$$

Želimo izračunati verjetnost, s katero obdržimo H_0 , čeprav je pravilna H_1 Alternativna domneva je v resnici množica alternativnih domnev, $H_1: \{\mu = \mu_1 : \mu_1 \in \mathbb{R}, \mu \neq 50 \text{ mg} \}$

Denimo, da je masa zdravila v stekleničkah X normalno porazdeljena, $X\sim N(\mu,\sigma^2)$ z $\sigma=5$ mg.

V podjetju želijo s slučajnim vzorčenjem preveriti, ali je $\mu=50.$

Naj bo

 H_0 : $\mu = 50 \text{ mg}$

 $H_1: \mu \neq 50 \text{ mg}$

izberimo $\alpha = 0.05$ in n = 25.

Za $\alpha=0.05$ sta kritični vrednosti $z=\pm 1.96$, torej H_0 obdržimo, če je povprečje vzorca v intervalu

$$\left(\mu^* - z \frac{\sigma}{\sqrt{n}}, \mu^* + z \frac{\sigma}{\sqrt{n}}\right) = (48.04, 51.96).$$

Želimo izračunati verjetnost, s katero obdržimo H_0 , čeprav je pravilna H_1 . Alternativna domneva je v resnici množica alternativnih domnev, $H_1: \{\mu = \mu_1 : \mu_1 \in \mathbb{R}, \, \mu \neq 50 \text{ mg} \}$

Poglejmo eno od teh alternativnih domnev, npr.:

 H_1^* : $\mu = 53$ mg

Če velja H_1^* , potem je alternativna vzorčna porazdeltev $\bar{X}_1^* \sim N(53, 1)$. Verjetnost β , da H_0 obdržimo, čeprav velja H_1^* je

$$P(48.04 < \bar{X}_{1}^{*} < 51.96) = P\left(\frac{48.04 - 53}{\frac{5}{\sqrt{25}}} < Z < \frac{51.96 - 53}{\frac{5}{\sqrt{25}}}\right)$$

$$= P(-4.96 < Z < -1.04)$$

$$\approx P(Z < -1.04)$$

$$= 0.1492$$

Poglejmo eno od teh alternativnih domnev, npr.:

 H_1^* : $\mu = 53 {
m mg}$

Če velja H_1^* , potem je alternativna vzorčna porazdeltev $\bar{X}_1^* \sim N(53, 1)$. Verjetnost β , da H_0 obdržimo, čeprav velja H_1^* je

$$P(48.04 < \bar{X}_1^* < 51.96) = P\left(\frac{48.04 - 53}{\frac{5}{\sqrt{25}}} < Z < \frac{51.96 - 53}{\frac{5}{\sqrt{25}}}\right)$$

$$= P(-4.96 < Z < -1.04)$$

$$\approx P(Z < -1.04)$$

$$= 0.1492.$$

Ampak, za različne vrednosti μ_1 dobimo različne vrednosti β !

μ_1	β
46	0.0207
47	0.1492
48	0.484
49	0.83
51	0.83
52	0.484
53	0.1492
54	0.0207

Ker je alternativna domneva sestavljena torej ne vemo, kakšna je verjetnost za napako II. vrste (iz danega primera pa je razvidno, da je le ta lahko zelo velika).

Če torej H_0 obdržimo moramo biti pri vsebinskem sklepu previdni: vse kar lahko rečemo je, da vzorčni rezultati ne nasprotujejo H_0 , kar pa seveda ni dokaz, da H_0 res velja.

Verjetnost 1 – β imenujemo moč preizkusa. Na moč preizkusa bistveno vpliva velikost vzorca: večji je vzorec, večja je verjetnost, da zavrnemo H_0 v korist alternativne domneve H_1 , ko je H_1 pravilna.

Interval zaupanja za standardni odklon in varianco

Naj bo $X \sim N(\mu, \sigma^2)$. Vemo, da je nepristranska točkovna ocena za populacijsko varianco

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

kjer so x_1, \ldots, x_n vrednosti slučajnega vzorca, \bar{x} pa povprečje vzorca.

Pri naključnem vzorčenju so vrednosti s^2 realizacije slučajne spremenljivke, ki jo označimo z S^2 .

Porazdelitev S^2 je podana z χ^2 - porazdelitvijo z

$$df = n - 1$$

stopnjami prostosti (df za angl. "degrees of freedom"), in sicer je

$$\frac{n-1}{\sigma^2}S^2 \sim \chi^2(df)$$
.

Porazdelitev χ^2 :

- ⋄ je zvezna porazdelitev, definirana na $[0, \infty)$ (oz. $(0, \infty)$ za df = 1)
- za majhne df je porazdelitev asimetrična v desno, asimetrija se zmanjšuje s povečevanjem df. Ko df → ∞, je porazdelitev vse bolj podobna normalni.
- ♦ če je $X \sim \chi^2(df)$ lahko v tabeli χ^2 porazdelitve najdemo za nekaj vrednosti $\alpha \in [0,1]$ vrednosti $c \ge 0$, da je $P(X \ge c) = \alpha$ Npr. če $X \sim \chi^2(5)$, je $P(X \ge 9.24) = 0.1$; če $X \sim \chi^2(9)$, je $P(X \ge 3.33) = 0.95$

Funkcija gostote za $\chi^2(df)$ za df = 1 (modra), df = 3 (rumena), df = 5 (zelena), df = 10 (rdeča)

Kako dobimo intervale zaupanja za σ^2 oz. σ ? Naj bo $X \sim \chi^2(df)$. Z $\chi^2_\gamma(df)$ označimo vrednost c, za katero je $P(X \geq c) = \gamma$

Za dano stopnjo zaupanja β (0 < β < 1) interval zaupanja za σ^2 dobimo na naslednji način:

⋄ iz tabele za χ^2 - porazdelitev razberemo vrednosti a in b, da je

$$P(a \le \chi^2(df) \le b) = \beta,$$

torej

$$a = \chi^2_{(1+\beta)/2}(df), \qquad b = \chi^2_{(1-\beta)/2}(df)$$

 \diamond interval zaupanja za σ^2 je tedaj

$$\left(\frac{n-1}{b}s^2, \frac{n-1}{a}s^2\right)$$

Opazimo, da interval ni simetričen okoli s2.

 \diamond interval zaupanja za s je $\left(\sqrt{\frac{n-1}{b}}s, \sqrt{\frac{n-1}{a}}s\right)$

Za dan 0 < β < 1 tedaj govorimo o 100 β % intervalu zaupanja, npr. za β = 0.99 imamo 99% interval zaupanja.

nepristranska točkovna ocena za μ je

$$\bar{x} = \frac{1}{9} \Big(10.8 + 9.0 + \ldots + 11.2 \Big) = 10.5$$

 \diamond nepristranska točkovna ocena za σ^2 je

$$s^2 = \frac{1}{8} ((10.8 - 10.5)^2 + \ldots + (11.2 - 10.5)^2) = 0.6576$$

$$s = 0.8109$$

$$10.8, 9.0, 10.1, 10.9, 10.1, 11.0, 9.8, 11.6, 11.2$$

nepristranska točkovna ocena za μ je

$$\bar{x} = \frac{1}{9} \Big(10.8 + 9.0 + \ldots + 11.2 \Big) = 10.5$$

 \diamond nepristranska točkovna ocena za σ^2 je

$$s^2 = \frac{1}{8} ((10.8 - 10.5)^2 + \ldots + (11.2 - 10.5)^2) = 0.6576$$

$$s = 0.8109$$

nepristranska točkovna ocena za μ je

$$\bar{x} = \frac{1}{9} \Big(10.8 + 9.0 + \ldots + 11.2 \Big) = 10.5$$

 \diamond nepristranska točkovna ocena za σ^2 je

$$s^2 = \frac{1}{8} \Big((10.8 - 10.5)^2 + \ldots + (11.2 - 10.5)^2 \Big) = 0.6576$$

nepristranska točkovna ocena za μ je

$$\bar{x} = \frac{1}{9} \Big(10.8 + 9.0 + \ldots + 11.2 \Big) = 10.5$$

 \diamond nepristranska točkovna ocena za σ^2 je

$$s^2 = \frac{1}{8} \Big((10.8 - 10.5)^2 + \ldots + (11.2 - 10.5)^2 \Big) = 0.6576$$

$$s = 0.8109$$

$$(\bar{x} - \frac{s}{\sqrt{n}}t_{\frac{1+\beta}{2}}(8), \bar{x} + \frac{s}{\sqrt{n}}t_{\frac{1+\beta}{2}}(8))$$

$$= (10.5 - \frac{0.8109}{\sqrt{9}}2.306, 10.5 + \frac{0.8109}{\sqrt{9}}2.306) = (9.88, 11.12)$$

 \diamond 95%-interval zaupanja za σ^2 je $\left(\frac{n-1}{b}s^2, \frac{n-1}{a}s^2\right)$, kjer je

$$p = \chi_{0.025}^2(8) = 17.53$$

$$q = \chi_{0.975}^2(8) = 2.18$$

torej je 95%-interval zaupanja za σ^2 interval

$$\left(\frac{8}{17.53}0.6575, \frac{8}{2.18}0.6575\right) = (0.3, 2.41)$$

 \circ 95%-interval zaupanja za σ je interval $\left(\sqrt{\frac{n-1}{b}}s,\,\sqrt{\frac{n-1}{a}}s\right)$, tore interval

$$\begin{split} &(\bar{x} - \frac{s}{\sqrt{n}} t_{\frac{1+\beta}{2}}(8), \bar{x} + \frac{s}{\sqrt{n}} t_{\frac{1+\beta}{2}}(8)) \\ &= (10.5 - \frac{0.8109}{\sqrt{9}} 2.306, 10.5 + \frac{0.8109}{\sqrt{9}} 2.306) = (9.88, 11.12) \end{split}$$

 \diamond 95%-interval zaupanja za σ^2 je $\left(\frac{n-1}{6}s^2, \frac{n-1}{4}s^2\right)$, kjer je

$$b = \chi_{0.025}^{2}(8) = 17.53$$
$$a = \chi_{0.975}^{2}(8) = 2.18$$

torej je 95%-interval zaupanja za σ^2 interval

$$\left(\frac{8}{17.53}0.6575, \frac{8}{2.18}0.6575\right) = (0.3, 2.41)$$

 \diamond 95%-interval zaupanja za σ je interval $\left(\sqrt{\frac{n-1}{b}}s,\,\sqrt{\frac{n-1}{a}}s\right)$, torej interval

(0.548, 1.55)

$$\begin{split} &(\bar{x} - \frac{s}{\sqrt{n}} t_{\frac{1+\beta}{2}}(8), \bar{x} + \frac{s}{\sqrt{n}} t_{\frac{1+\beta}{2}}(8)) \\ &= (10.5 - \frac{0.8109}{\sqrt{9}} 2.306, 10.5 + \frac{0.8109}{\sqrt{9}} 2.306) = (9.88, 11.12) \end{split}$$

 \diamond 95%-interval zaupanja za σ^2 je $\left(\frac{n-1}{b}s^2, \frac{n-1}{a}s^2\right)$, kjer je

$$b = \chi_{0.025}^{2}(8) = 17.53$$
$$a = \chi_{0.975}^{2}(8) = 2.18$$

torej je 95%-interval zaupanja za σ^2 interval

$$\left(\frac{8}{17.53}0.6575, \frac{8}{2.18}0.6575\right) = (0.3, 2.41)$$

 \diamond 95%-interval zaupanja za σ je interval $\left(\sqrt{\frac{n-1}{n}}s,\sqrt{\frac{n-1}{n}}s\right)$, torej interval

$$\begin{split} &(\bar{x} - \frac{s}{\sqrt{n}} t_{\frac{1+\beta}{2}}(8), \bar{x} + \frac{s}{\sqrt{n}} t_{\frac{1+\beta}{2}}(8)) \\ &= (10.5 - \frac{0.8109}{\sqrt{9}} 2.306, 10.5 + \frac{0.8109}{\sqrt{9}} 2.306) = (9.88, 11.12) \end{split}$$

 \diamond 95%-interval zaupanja za σ^2 je $\left(\frac{n-1}{b}s^2, \frac{n-1}{a}s^2\right)$, kjer je

$$b = \chi_{0.025}^2(8) = 17.53$$

 $a = \chi_{0.975}^2(8) = 2.18$

torej je 95%-interval zaupanja za σ^2 interval

$$\left(\frac{8}{17.53}0.6575, \frac{8}{2.18}0.6575\right) = (0.3, 2.41)$$

 \diamond 95%-interval zaupanja za σ je interval $\left(\sqrt{\frac{n-1}{b}}s,\sqrt{\frac{n-1}{a}}s\right)$, torej interval

Testiranje hipotez o σ

Pri stopnji značilnosti α želimo testirati ničelno domnevo

 $H_0: \sigma = \sigma^*$.

Ničelno hipotezo testiramo s pomočjo testne statistike

$$\chi^2 = \frac{(n-1)s^2}{(\sigma^*)^2}$$

Spet si poglejmo tri alternativne hipoteze. Ničelno hipotezo H_0 zavrnemo

- \diamond v korist alternativne hipoteze H_1^+ : $\sigma > \sigma^*$ kadar $\chi^2 > \chi_{\sigma}^2(df)$
- \diamond v korist alternativne hipoteze $H_1^-: \sigma < \sigma^*$ kadar $\chi^2 < \chi^2_{1-\alpha}(df)$
- \diamond v korist alternativne hipoteze $H_1: \sigma \neq \sigma^*$ kadar

$$\chi^2 < \chi^2_{1-\alpha/2}(df)$$
 ali $\chi^2 > \chi^2_{\alpha/2}(df)$

$$10.8, 9.0, 10.1, 10.9, 10.1, 11.0, 9.8, 11.6, 11.2$$

Pri stopnji značilnosti $\alpha=0.05$ preverimo domnevo, da ja $\sigma=1$.

Statistični domnevi sta

 $H_0: \sigma = 1$

 $H_1: \sigma \neq 1$

Izračunamo testno statistiko

$$\chi^2 = \frac{(n-1)s^2}{(\sigma^*)^2} = \frac{8 \cdot 0.6575}{1} = 5.26$$

Za $\alpha = 0.05$ sta kritični točki:

$$\chi^2_{0.025}(8) = 17.53$$
 $\chi^2_{0.025}(8) = 2.18$

Ker 5.25 \in (2.18, 17.53) H_0 torej ne zavrnemo. Pri stopnji značilnosti $\alpha=0.05$ trdimo, da je $\sigma=1$.

Pri stopnji značilnosti $\alpha=0.05$ preverimo domnevo, da ja $\sigma=1$. Statistični domnevi sta:

 $H_0: \sigma = 1$ $H_1: \sigma \neq 1$

Izračunamo testno statistiko

$$\chi^2 = \frac{(n-1)s^2}{(\sigma^*)^2} = \frac{8 \cdot 0.6575}{1} = 5.26$$

Za $\alpha = 0.05$ sta kritični točki:

$$\chi^2_{0.025}(8) = 17.53$$

 $\chi^2_{0.025}(8) = 2.18$

Ker 5.25 \in (2.18, 17.53) H_0 torej ne zavrnemo. Pri stopnji značilnosti $\alpha=0.05$ trdimo, da je $\sigma=1$.

Pri stopnji značilnosti $\alpha=0.05$ preverimo domnevo, da ja $\sigma=1$. Statistični domnevi sta:

 $H_0: \sigma = 1$ $H_1: \sigma \neq 1$

Izračunamo testno statistiko

$$\chi^2 = \frac{(n-1)s^2}{(\sigma^*)^2} = \frac{8 \cdot 0.6575}{1} = 5.26$$

Za $\alpha = 0.05$ sta kritični točki:

$$\chi^2_{0.025}(8) = 17.53$$

 $\chi^2_{0.975}(8) = 2.18$

Ker $5.25 \in (2.18, 17.53)$ H_0 torej ne zavrnemo. Pri stopnji značilnosti $\alpha = 0.05$ trdimo, da je $\sigma = 1$.

Aproksimacija binomske porazdelitve B(n,p) z normalno in preizkušanje domnev o p

Spomnimo se: binomska porazdelitev je diskretna porazdelitev uspehov pri *n* zaporednih, neodvisnih poskusih, kjer ima vsak poskus le dva izida (uspeh z verjetnostjo p; neuspeh z verjetnostjo 1-p).

Če je
$$X \sim B(n,p)$$
 je $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, \ k = 0, ..., n.$
Vemo $E(X) = np$ in $Var(X) = np(1-p)$

Ce lahko binomsko porazdelitev B(n,p) aproksimiramo z normalno N(np,np(1-p)), potem je porazdelitev deležov $\frac{X}{n}$ približno normalna

$$\frac{X}{n} \sim N\left(p, \frac{p(1-p)}{n}\right).$$

Pričakovana vrednost deležev bo torej enaka Bernoullijevi verjetnosti *p*, varianca deležev pa je odvisna od *n*.

Kdaj lahko binomsko porazdelitev aproksimiramo z normalno? V literaturi najdemo več pogojev, eden od njih pravi, da je aproksimacija upravičena,

Aproksimacija binomske porazdelitve B(n,p) z normalno in preizkušanje domnev o p

Spomnimo se: binomska porazdelitev je diskretna porazdelitev uspehov pri *n* zaporednih, neodvisnih poskusih, kjer ima vsak poskus le dva izida (uspeh z verjetnostjo p; neuspeh z verjetnostjo 1-p).

Če je
$$X \sim B(n,p)$$
 je $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, \ k = 0, ..., n.$
Vemo $E(X) = np$ in $Var(X) = np(1-p)$

Če lahko binomsko porazdelitev B(n,p) aproksimiramo z normalno N(np,np(1-p)), potem je porazdelitev deležov $\frac{X}{n}$ približno normalna

$$\frac{X}{n} \sim N\left(p, \frac{p(1-p)}{n}\right).$$

Pričakovana vrednost deležev bo torej enaka Bernoullijevi verjetnosti p, varianca deležev pa je odvisna od n.

Kdaj lahko binomsko porazdelitev aproksimiramo z normalno? V literaturi najdemo več pogojev, eden od njih pravi, da je aproksimacija upravičena,

če sta hkrati izpolnjena dva pogoja: (i) $np \ge 5$ in (ii) $n(1-p) \ge 5$.

Primer. V neki tovarni je verjetnost, da je izdelek slab enaka 0.05. Pri kontroli kakovosti vzamemo vzorce velikosti n=250. Kolikšen odstotek kontrolnih vzorcev velikosti 250 vsebuje več kot 7% slabih izdelkov?

Naj bo X število slabih izdelkov v kontrolnem vzorcu velikosti 250. Potem je

$$X \sim B(250, 0.05)$$

Porazdelitev deleža slabih vzorcev aproksimiramo z normalno porazdelitvijo

$$\frac{X}{n} \sim N(0.05, \sigma^2).$$

kier ie

$$\sigma^2 = \frac{0.05 \cdot 0.95}{250} = 0.00019$$

orei

$$P\left(\frac{X}{n} > 0.07\right) = P\left(Z > \frac{0.07 - 0.05}{\sqrt{0.00019}}\right) = P(Z \ge 1.45) = 0.0735$$

Približno 7.4% vzorcev velikosti 250 vsebuje več kot 7% slabih izdelkov

Primer. V neki tovarni je verjetnost, da je izdelek slab enaka 0.05. Pri kontroli kakovosti vzamemo vzorce velikosti n=250. Kolikšen odstotek kontrolnih vzorcev velikosti 250 vsebuje več kot 7% slabih izdelkov?

Naj bo *X* število slabih izdelkov v kontrolnem vzorcu velikosti 250. Potem je

$$X \sim B(250, 0.05).$$

Porazdelitev deleža slabih vzorcev aproksimiramo z normalno porazdelitvijo

$$\frac{X}{n} \sim N(0.05, \sigma^2).$$

kjer je

$$\sigma^2 = \frac{0.05 \cdot 0.95}{250} = 0.00019$$

torej

$$P\left(\frac{X}{n} > 0.07\right) = P\left(Z > \frac{0.07 - 0.05}{\sqrt{0.00019}}\right) = P(Z \ge 1.45) = 0.0735$$

Približno 7.4% vzorcev velikosti 250 vsebuje več kot 7% slabih izdelkov.

Preizkušanje domnev o Bernoullijevi verjetnosti

Preizkusiti želimo statistično domnevo o Bernoullijevi verjetnosti p binomske slučajne spremenljivke $X \sim B(n, p)$.

Postavimo ničelno domnevo

 $H_0: p=p^*$

in alternativno domnevno, ki je lahko dvostranska $(H_1 : p \neq p^*)$ ali ena od enostranskih domnev $(H_1 : p > p^*)$ ali $H_1 : p < p^*)$.

Če binomsko porazdelitev aproksimiramo z $N(np^*, np^*(1-p^*))$, potem za preizkus domneve o p uporabimo Z-test in testno statistiko

$$Z = \frac{x - np^*}{\sqrt{np^*(1-p^*)}}$$

Primer. V farmacevtskem podjetju trdijo, da je neko zdravilo učinkovito proti alergiji na cvetni prah v vsaj 90 odstotkov primerov. V naključnem vzorcu je bilo 200 alergikov, zdravilo je učinkovalo pri 190 alergikih. Preverimo trditev farmacevtov pri stopnji značilnosti $\alpha = 0.01$.

Postavimo hipotezi

 $H_0: p = 0.9$ $H_1: p > 0.9$

Testna statistika je

$$z = \frac{x - np^*}{\sqrt{np^*(1 - p^*)}} = \frac{190 - 200 \cdot 0.9}{\sqrt{200 \cdot 0.9 \cdot 0.1}} = 2.36$$

Pri stopnji značilnosti $\alpha = 0.01$ je kritična točka 2.33. Ker je z > 2.33, H_0 zavrnemo v korist H_1 .

Rezultati torei kažeio. da ie učinkovitost zdravila vsai 90%

Primer. V farmacevtskem podjetju trdijo, da je neko zdravilo učinkovito proti alergiji na cvetni prah v vsaj 90 odstotkov primerov. V naključnem vzorcu je bilo 200 alergikov, zdravilo je učinkovalo pri 190 alergikih. Preverimo trditev farmacevtov pri stopnji značilnosti $\alpha = 0.01$.

Postavimo hipotezi

 $H_0: p = 0.9$ $H_1: p > 0.9$

Testna statistika je

$$z = \frac{x - np^*}{\sqrt{np^*(1 - p^*)}} = \frac{190 - 200 \cdot 0.9}{\sqrt{200 \cdot 0.9 \cdot 0.1}} = 2.36$$

Pri stopnji značilnosti $\alpha=0.01$ je kritična točka 2.33. Ker je z>2.33, H_0 zavrnemo v korist H_1 .

Rezultati torej kažejo, da je učinkovitost zdravila vsaj 90%.

Primer. V skladu z Mendelovimi zakoni bi moralo biti pri križanju dveh vrst graha v F1 generaciji razmerje med rumenimi in zelenimi zrni 3:1. V poskusu so ugotovili, da je izmed 1064 zrn v F1 generaciji 787 rumenih. Pri stopnji značilnosti $\alpha=0.05$ presodite, ali so rezultati poskusa v skladu z Mendelovo teorijo.

Naj bo *p* verjetnost, da je zrno v *F*1 generaciji rumeno Postavimo hipotezi

$$H_0: p = 0.75$$

 $H_1: p \neq 0.75$

Testna statistika je

$$z = \frac{x - np^*}{\sqrt{np^*(1 - p^*)}} = \frac{787 - 1064 \cdot 0.75}{\sqrt{1064 \cdot 0.75 \cdot 0.25}} = -0.78$$

Pri stopnji značilnosti $\alpha = 0.05$ hipotezo H_0 obdržimo, če je testna statistika v intervalu (-1.96, 1.96).

Pri stopnji značilnosti $\alpha=0.05$ torej trdimo, da so rezultati v skladu z Mendelovimi zakoni.

Primer. V skladu z Mendelovimi zakoni bi moralo biti pri križanju dveh vrst graha v F1 generaciji razmerje med rumenimi in zelenimi zrni 3:1. V poskusu so ugotovili, da je izmed 1064 zrn v F1 generaciji 787 rumenih. Pri stopnji značilnosti $\alpha=0.05$ presodite, ali so rezultati poskusa v skladu z Mendelovo teorijo.

Naj bo p verjetnost, da je zrno v F1 generaciji rumeno. Postavimo hipotezi

 $H_0: p = 0.75$ $H_1: p \neq 0.75$

Testna statistika je

$$z = \frac{x - np^*}{\sqrt{np^*(1 - p^*)}} = \frac{787 - 1064 \cdot 0.75}{\sqrt{1064 \cdot 0.75 \cdot 0.25}} = -0.78$$

Pri stopnji značilnosti $\alpha = 0.05$ hipotezo H_0 obdržimo, če je testna statistika v intervalu (-1.96, 1.96).

Pri stopnji značilnosti $\alpha=0.05$ torej trdimo, da so rezultati v skladu z Mendelovimi zakoni.

