$Alg\`ebre$

$D\'{e}terminants$

Denis Vekemans *

Solution 6 Soit $A = (a_{i,j})_{i \in \{1,...,n\}, j \in \{1,...,n\}}$ avec $a_{i,j} \in \mathbb{R}, \forall i \in \{1,...,n\}, \forall j \in \{1,...,n\}.$

Soit T l'application qui

- à 1 associe l'indice de la colonne T(1) telle que $a_{1,T(1)} \neq 0$,
- à 2 associe l'indice de la colonne T(2) telle que $a_{2,T(2)} \neq 0$,

- ..

– à n associe l'indice de la colonne T(n) telle que $a_{n,T(n)} \neq 0$.

L'application T est injective car chaque **colonne** ne contient qu'un seul élément non nul, et comme on est en dimension finie, on déduit que l'application T est bijective.

On note σ_n l'ensemble des permutations de $\{1,\ldots,n\}$ et $\varepsilon(\tau)$ la signature d'un élément τ de σ_n . D'après ce qui précède, on a $T \in \sigma_n$.

$$\begin{split} \det(A) &= \sum_{\tau \in \sigma_n} \varepsilon(\tau) a_{1,\tau(1)} a_{2,\tau(2)} \dots a_{n,\tau(n)} \\ &= \sum_{\tau \in \sigma_n \backslash \{T\}} \varepsilon(\tau) \underbrace{a_{1,\tau(1)} a_{2,\tau(2)} \dots a_{n,\tau(n)}}_{=0 \text{ car chaque } \mathbf{ligne} \text{ ne contient qu'un seul élément non nul}}_{=0 \text{ element } \mathbf{a}_{1,T(1)} a_{2,T(2)} \dots a_{n,T(n)}} \\ &+ \underbrace{\varepsilon(T)}_{\in \{-1,1\}} \underbrace{a_{1,T(1)} a_{2,T(2)} \dots a_{n,T(n)}}_{\neq 0} \\ &\neq 0 \end{split}$$

Ensuite, $det(A) \neq 0$ équivaut à A est inversible.

Solution 15 A est la signature de la permutation

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 4 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$
$$= \begin{pmatrix} 3 & 4 \\ 4 & 3 \end{pmatrix} \circ \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}.$$

 $^{^*}$ Laboratoire de mathématiques pures et appliquées Joseph Liouville ; 50, rue Ferdinand Buisson BP 699 ; 62 228 Calais cedex ; France

Cette signature est -1 car la permutation est produit de 3 transpositions. Et, A = -1.

 $B = (\frac{1}{2})^4$ par linéarité (multiplicative) du déterminant par rapport à chacune de ses colonnes.

C=1 et D=3 par linéarité (additive puis multiplicative) du déterminant par rapport à la quatrième colonne.

 $E=-a_{2,3}$ et $F=a_{3,3}$ par développement du déterminant selon la troisième colonne.