CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2013 series

9709 MATHEMATICS

9709/61 Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	61

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following
 on from previously incorrect results. Otherwise, A or B marks are given for correct work
 only. A and B marks are not given for fortuitously "correct" answers or results obtained from
 incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	61

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	
	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \"" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	61

$1 \qquad \qquad Y $	B1	X mean at 30, roughly from 10 to 50 or $15-45$
X	B1	Y same mean as X but higher and thinner
10 20 30 40 50 60 70	B1ft 3	Z same shape as Y but mean at 50 ft wrong Y
2 either 55/90 (11/18) or 95/160 (19/32) seen	B1	oe
$P(M \text{ and } 18 - 60) = 0.6 \times 55/90$ = 0.367 (11 / 30)	M1	0.6 mult by 55/90 seen as num / denom of a fraction
$P(18-60) = 0.6 \times 55/90 + 0.4 \times 95/160$ (= 29/48 or 0.604)	M1	Summing 2 two-factor products seen anywhere
$P(M \mid 18 - 60) = \frac{P(M \cap 18 - 60)}{P(18 - 60)}$	A1	Correct unsimplified answer seen as num/denom of a fraction
= 88/145 (0.607)	A1 5	Correct answer
3 $\Sigma(x-5) = 116 - 18 \times 5$ = 26	M1 A1	Obtaining Σx and subtracting 18×5 Correct answer
$\frac{\Sigma(x-5)^2}{18} - \left(\frac{26}{18}\right)^2 = \frac{967}{18} - \left(\frac{58}{9}\right)^2$	M1 M1	Subst in correct var formula all coded vals Subst in correct var formula all uncoded
$\Sigma(x-5)^2 = 257$	A1 5	Correct answer
OR coded mean = $58/9 - 5 = 1.444$ $\Sigma(x - 5) = 1.444 \times 18 = 26$	M1 A1	Subtracting 5 from true mean and mult by 18 Correct answer
$\Sigma(x-5)^2 = \Sigma x^2 - 10\Sigma x + 25 \times 18$ = 967 - 1160 + 450 = 257	M1 A1 A1	Expanding $\Sigma(x-5)^2$ 3 terms needed Any 2 terms correct Correct answer
4 (i)	B1 B1 B1	Linear scale or 5 values shown and labels or in heading, need thousands of dollars, Correct median Correct quartiles
200 300 400 500 600 700 800 900 1000 House price, 000's dollars	B1 4	Correct end points of whiskers not through box
(ii) 1.5 × 170 = 255	M1	Mult their IQ range by 1.5
Expensive houses above $690 + 170 \times 1.5 = 945$ i.e. 957 and 986 thousands of dollars	A1 2	Correct answers from correct wkg need thousands of dollars
(iii) doesn't show all the data items	B1 1	Need to see 'individual items' oe

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	61

5 (i)	z = -1.406	B1		Rounding to ± 1.41 seen
	$\frac{c-14.2}{3.6} = -1.406$	M1		Standardising allow sq rt no cc
	c = 9.14	A1	3	Correct answer
(ii)	$P\left(\frac{15-14.2}{3.6}\right) < z < \left(\frac{16-14.2}{3.6}\right)$	M1		2 attempts at standardising no cc no sq rt
	$= \Phi(0.5) - \Phi(0.222)$ = 0.6915 - 0.5879	M1		Subt two Φs (indep mark)
	= 0.6913 - 0.3879 $= 0.1036$	A1		Needn't be entirely accurate, rounding to 0.10
	P(at least 2) = 1 – P(0, 1) = 1 – $(0.8964)^7$ – $(0.8964)^6$ $(0.1036)_7$ C ₁	M1		Binomial term with ${}_{7}C_{r}p^{r}(1-p)^{7-r}$ seen $r \neq 0$ any $p < 1$
	= 1 - 0.8413	M1		1 - P(0), 1 - P(1), 1 - P(0, 1) seen their p
	= 0.159	A1	6	Correct answer accept 3sf rounding to 0.16
6 (i)	M R O $3 1 2 = 7C3 \times 5C1 \times 8C2 = 4900$	M1		Summing more than one 3term option involving combs (can be added)
	3 $2 1 = 7C3 \times 5C2 \times 8C1 = 2800$	M1		Mult 3 combs only (indep)
	2 $2 = 7C2 \times 5C2 \times 8C2 = 5880$	A1		1 option correct unsimplified
	Total = 13580	A1	4	Correct answer
(ii)	4 groups in 4! ways	M1		4! seen mult by something
	3 mountain in 3! ways 2 ordinary in 2! ways	M1		Mult by 3! for racing or 2! for ordinary
	$4! \times 3! \times 2 = 288$	A1	3	Correct answer
(iii)		M1		2! or 4! seen mult
	Ordinary in 2! Rest of bikes in 4! Bikes and spaces 5 groups in 5 ways	M1		Mult by 5 (ssssb)
	Since and spaces 5 groups in 5 ways $2! \times 4! \times 5 = 240$	A1	3	Correct answer

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	61

7	(i)		if throw H then smallest score is 2 $P(T, 1) = 1/2 \times 1/4 = 1/8$ AG					s 2		B1 B1	2	Or equivalent
	(ii)	(ii) $P(3)$ from two dice = $2/16$ seen							B1		From (1, 2) and (2, 1)	
		$P(H, 3) = 1/2 \times 2/16 = 2/32$ $P(T, 3) = 1/2 \times 1/4 = 1/8$ So $P(3) = 6/32 = 3/16$ AG			M1 A1 A1	4	Summing P(H, 3) and P(T, 3) One correct Correct answer must see clear reasoning					
	(iii)											
2	Y	1	2	3	4	5	6	7	8	B1		One correct prob
Pr	ob		5/32		7/32		3/32			B1 B1	3	A second correct prob A third correct prob
	(iv)	y) $P(Q \cap R) = 0$ or 'if you throw a tail you can't get a 7'			ou	M1		Stating $P(Q \cap R) = 0$ or implying by words				
	Yes they are exclusive							Aldep	2	Dep on previous M		

CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2013 series

9709 MATHEMATICS

9709/62 Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	62

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	62

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through √ marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	62

1		$P(x < -2.4) = P\left(z < \frac{-2.4 - 1.5}{3.2}\right)$	M1		Standardising no cc can have sq
		= P(z < -1.219) = 1 - 0.8886	M1		Correct area, i.e. < 0.5
		= 0.111	A1	[3]	Correct answer rounding to 0.111
2	(i)	$P(C \cap < 50) = 0.35 \times 0.2 = 0.07$	B1	[1]	
	(ii)	$P(C \mid <50) = \frac{P(C \cap <50)}{P(<50)}$	M1	[4]	Summing three 2-factor products seen anywhere (can omit the 1)
		$= \frac{0.35 \times 0.2}{0.25 \times 0.3 + 0.35 \times 0.2 + 0.4(\times 1)}$	A1		0.545 (unsimplified) seen as num or denom of a fraction
		$=\frac{0.07}{0.545}$	M1		Attempt at P(C \cap < 50) as 2-factor prod only seen as num or denom of a fraction
		= 0.128 (14/109)	A1		Correct answer
3	(i)	$z = 0.878$ $\frac{190 - 160}{2} = 0.878$	B1 M1		\pm 0.878, 0.88, rounding to 0.88 seen $(190-160)/\sigma$ = something
		$\sigma = 34.2$	A1	[3]	Correct answer
	(ii)	P(at least 1) = 1 - P(0)	M1		Using $1 - P(0)$, $1 - P(0, 1)$, $P(1,2 12)$ or $P(2, 12)$ with $p = 0.19$ or 0.81 , terms must be
		$= 1 - (0.81)^{12} = 0.920$	A1	[2]	evaluated to get the M1 Correct answer accept 0.92
4	(i)	number = $1.5 \times 50 = 75$ (AG)	B1	[1]	Must see 1.5×50
	(ii)	freqs are 10, 25, 50, 75, 30 (15, 15)	M1 A1		Attempt at freqs not fd Correct freqs
		Mean = $(10 \times 125 + 25 \times 162.5 + 50 \times 187.5 + 75 \times 225 + 30 \times 300)/190$	M1		attempt at mid points not cw or ucb or lcb
		= 40562.5/190 = 213 (213.48)	A1		correct mean
		$sd^{2} = 10 \times 125^{2} + 25 \times 162.5^{2} + 50 \times 187.5^{2} + 75 \times 225^{2} + 30 \times 300^{2})/190 - (213.48)^{2}$	M1		subst their Σfx^2 in correct variance formula
		sd = 46.5 or 46.6	A1	[6]	
	(iii)	have used the mid-point of each interval and not the raw data	B1	[1]	

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	62

5	(i)	$P(4, 5, 6) = (0.22)^{4}(0.78)^{4}8C4 + (0.22)^{5}(0.78)^{3}8C5 + (0.22)^{6}(0.78)^{2}8C6$	M1 M1		Bin term with ${}_{8}C_{r} p^{r} (1-p)^{8-r}$ seen $r \neq 0$ any $p < 1$ Summing 2 or 3 bin probs $p = 0.22$,
		= 0.0763	A1	[3]	n = 8 Correct answer
	(ii)	prob = 0.13 mean = $300 \times 0.13 = 39$ var = $300 \times 0.13 \times 0.87 = 33.93$	B1 B1ft		Correct prob can be implied Correct unsimplified np and npq ft wrong 0.13
		P(30 < x < 50) = P	M1		Standardising a value need sq rt
		$\left(\frac{30.5 - 39}{\sqrt{33.93}} < z < \frac{49.5 - 39}{\sqrt{33.93}}\right)$	M1		Cont correction 30.5 / 31.5 or 48.5/49.5 only
		$= P(-1.4592 < z < 1.8026)$ $= \Phi(1.8026) + \Phi(1.4592) - 1$ $= 0.9643 + 0.9278 - 1 = 0.892$	M1 A1	[6]	Correct area $\Phi_1 + \Phi_2 - 1$ oe Rounding to correct answer SC P(31,49)=300C31(0.13) ³¹ (0.87) ²⁶⁹ + +300C49 etc.) B1B1
6	(i)	1663200	B1	[1]	
	(ii)	M xxxxxxxx M	M1		9! or 9P9 seen
		Number of ways = $\frac{9!}{3!2!}$ = 30240	A1	[2]	Correct answer
	(iii)	4 vowels together = $8! \times 4/2!2!$ = 40320	M1 M1		8!/2!2! seen mult by something 4 oe 4!/3! or 4C1 etc. seen mult by something
		1663200 - 40320 = 1622880	B1	[3]	Correct answer SC 7!/2!2! × 8P4 or 7! × 8P4/3! Or 7!/2!2! × 8P4/3! M1
	(iv)	Exactly 2 Es 4C2 = 6 Exactly 3 Es 4C1 = 4 Total = 10 ways	M1 B1 A1	[3]	Summing 2 options One option correct Correct answer
		OR 5C2 = 10	M2 A1		M1 for k5C2 Correct ans

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	62

7	(i)	options (3, 4, 4,) or (4, 3, 4) or (4, 4, 3) Probs (4/10 × 6/9 × 5/8) ×3C1 = 360/720	M1 M1		Summing three 3-factor options oe $10 \times 9 \times 8$ seen in denom
		$= \frac{1}{2} AG$	A1	[3]	Correct answer
		$OR \frac{{}_{6}C_{2} \times_{4} C_{1}}{{}_{10}C_{3}} = \frac{1}{2} AG$	M1 M1 A1		One of 6C2 or 4C1 seen in num 10C3 in denom Correct answer
	(ii)		B1	[4]	9, 10, 11, 12 only seen
	sum Prob	9 10 11 12 24/720 216/720 360/720 120/720	B1		One correct prob other than P(11), with or without replacement
		$P(3, 3, 3) = 4/10 \times 3/9 \times 2/8 = 24/720 (1/30)$ $P(3, 3, 4) = 4/10 \times 3/9 \times 6/8 \times 3C1$	B1		Another correct prob
		= $216/720 (3/10)$ P(4, 4, 4) = $6/10 \times 5/9 \times 4/8 = 120/720(1/6)$	B1		Σ all 4 probs = 1
	(iii)	$P(R) = 0.5 P(S) = 0.4 P(R \cap S) = 120/720$ $P(R \cap S) = 120/720 \neq P(R) \times P(S)$ Not indep	B1 M1 A1ft	[3]	$P(R \cap S) = 120/720 \ (1/6)$ Numerical attempt to compare $P(R \text{ and } S)$ with $P(R) \times P(S)$ provided $P(R \cap S) \neq 1/5$ Correct conclusion ft wrong $P(R \cap S) \neq 1/5$, $P(S)$ correct
	(iv)	$P(R \cap S) \neq 0$ or there is an overlap between R and S (34,4) Not exclusive $\sum xf/\sum f$	B1ft	[1]	Correct answer following correct reasoning ft wrong non zero $P(R \cap S)$

CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2013 series

9709 MATHEMATICS

9709/63 Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	63

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol [↑] implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	63

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	
IVIIX	Misread
PA	Misread Premature Approximation (resulting in basically correct work that is insufficiently accurate)
	Premature Approximation (resulting in basically correct work that is insufficiently

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through √ marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	63

1 bars are not touching oe	B1		Sensible reason involving not touching, no gaps, class boundaries, group data not
Area not rep by frequency, not used fd, not labelled fd	B1	2	Must be frequency density oe. Wrong height not sufficient. (Best 2 reasons awarded)
$P(13.6 < X < 14.8) = P\left(\frac{13.6 - 14}{0.52} < z < \frac{14.8 - 14}{0.52}\right)$	M1		Standardising 1 expression, no cc, no sq rt, no sq, ±, mean on num.
$= P(-0.7692 < z < 1.538)$ $= \Phi(1.538) - [1 - \Phi(0.7692)]$ $= 0.9380 - [1 - 0.7791]$	M1 A1		$\Phi 1 + \Phi 2 - 1$ (indep) oe $(\Phi 2 - \Phi 1 \text{ if cc used})$
$= 0.7171$ $= 0.7171$ $P(8) = (0.7171)^{8}(0.2829)^{2}_{10}C_{8}$	M1		Correct probability rounding to 0.72 here Binomial expression 10C8 p^8q^2 , $\Sigma p + q = 1$,
$P(8) = (0.7171) (0.2829)_{10} C_8$ $= 0.252$	A1	5	any p Correct answer (rounding to 0.252)
3 (i) $(p =)0.85$ P(<12) = 1 - P(12, 13, 14) $= 1 - [(0.85)^{12}(0.15)^{2}_{14}C_{12} + (0.85)^{13}(0.15)_{14}C_{13} + (0.85)^{14}]$ = 1 - 0.6479 = 0.352	B1 M1	3	(p =)0.85 oe seen anywhere Summing 2 or 3 consistent bin probs, any $p < 1$, $n = 14$ (or summing 12 or 13 consistent bin probs) Correct answer
(ii) $(0.85)^n \ge 0.1$ $n \le 14.2$ n = 14	M1 M1 A1	3	Eqn or inequality in 0.85(or 0.15), n , 0.1, n as a power Attempt to solve (can be implied) if n a power Correct answer – must be equals, not approx. MR allowed for 0.01, M1M1A0 max.
4 (i) (220×20 + 118×25)/45 = 163	M1 A1	2	Mult by 20 and 25 and dividing their sum by 45 Correct answer, 163.3 or 490/3 oe acceptable
(ii) $\Sigma x_o^2 / 20 - 220^2 = 32^2$ $\Sigma x_o^2 = 988480$	M1 A1		Subst in correct variance formula Correct Σx_0^2
$\sum x_l^2 / 25 - 118^2 = 12^2$ $\sum x_l^2 = 351700$	A1		correct Σx_1^2
$\Sigma x_o^2 + \Sigma x_l^2 = 1340180$ New var = 1340180/45 - (7350/45) ² = 3100 - 3120	M1 A1	5	Subst their combined results in correct var formula Correct answer

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	63

5 (a)	P($X < q + 82$) = 0.72 z = 0.583 $\frac{\pm q}{7.4}$ or $\frac{\pm 2q}{7.4}$ = z or probabilty (o.e.)	M1 M1		Rounding to \pm 0.58 or \pm 0.15 seen Standardising, no cc, no sq, no sq rt
	q = 4.31	A1	3	correct answer
(b)	$\frac{0.5\mu - \mu}{\sigma} = \frac{\pm 0.5\mu}{\sigma}$	M1		Standardising attempt some μ/σ allow cc, sq rt, sq Can be implied
	$\frac{0.2\sigma^2}{\sigma} = -0.2\sigma = -0.580$	B1 M1		±0.580 seen (accept $\pm0.58)$ substituting to eliminate μ or σ , arriving at numerical solution, any z value or probability – not dependent
	$\sigma = 2.90$ $\mu = 3.36$	A1	4	both answers correct, accept 2.9
6 (i)	8! 3 2 2!	M1		8! Divided by at least one of 3!2!2! oe
	= 1680	A1	2	Correct answer
(ii)	5! = 120	M1 A1	2	5! Seen (not added, may be divided/multipled) Correct answer
(iii)	<u>5!4!</u> <u>3!2!2!</u>	B1 M1		5! Or 4! Seen in sum or product in numerator (denominator may by 1) $\frac{k5!4!}{3!2!2!}$ in a numerical expression
	= 120	A1	3	3!2!2! Correct final answer
(iv)	TA, TE, = 8 ways	M1		Summing 2 options (could be lists)
	GGG with A, E, R, $T = 4$ ways Total = 12 ways	A1 A1	3	1 correct option Correct answer

Page 6	e 6 Mark Scheme		Paper
	GCE AS/A LEVEL – October/November 2013	9709	63

7 (i)	P(same) = P(1, 1) + P(3, 3) + P(5, 5)	M1		Summing 3 two-factor options
	$= \frac{2}{9} \times \frac{1}{8} + \frac{4}{9} \times \frac{3}{8} + \frac{3}{9} \times \frac{2}{8}$	M1		Multiplying terms by one less in the numerator or denominator
	= 5/18 (0.278)	A1 3	3	Correct answer
	Alt. method: $ \frac{2C2+4C2+3C2}{9C2} $ or $ \frac{2\times 1+3\times 4+2\times 3}{9C2\times 2} $ oe			M1 for numerator, M1 for denominator, A1 correct answer
(ii)	$P(5,\overline{5}) + P(\overline{5},5)$	M1 M1		Mult 2 probs whose numerators sum to 9 o.e. Summing 2 options or mult by 2 (may be 4 options)
	$= \frac{3}{9} \times \frac{6}{8} + \frac{6}{9} \times \frac{3}{8} = \frac{36}{72} = \frac{1}{2} \text{ or } 0.5$	A1 3	3	Correct answer
	Alt. method:			
	$\frac{6C1\times3C1(\times2)}{9C2(\times2)} oe$			M1 for numerator, M1 for denominator, A1 correct answer
(iii)	$P(5 \cap \overline{5}) = \frac{3}{9} \times \frac{6}{8} = \frac{1}{4}$	M1		Attempt at P(5 and not 5) seen as numerator or denominator of a fraction
	$P(\overline{5}) = \frac{1}{4} + \frac{6}{9} \times \frac{5}{8} = 48/72 = 0.6666$	M1		Attempt at P(not 5) sum of 2 two-factor terms seen anywhere
	$P(5_1 \overline{5}_2) = \frac{1/4}{48/72} = 3/8$	A1		Correct $P(\overline{5})$ as numerator or denominator in fraction
	= 0.375	A1 4	4	Correct answer
(iv)	$ \begin{array}{c ccccc} x & 0 & 1 & 2 \\ \hline P(X=x) & 5/12 & 1/2 & 1/12 \\ \end{array} $	В1		Values 0, 1, 2 seen in table with at least 1 prob
	$P(0) = P(\overline{5}, \overline{5}) = \frac{6}{9} \times \frac{5}{8} = 30/72 $ (5/12) (0.4166)	B1		Correct P(0) unsimplified
	P(1) = 0.5 from part (ii)			
	P(2) = 6/72 (1/12) (0.0833) from part (i)	B1ft 3	3	If $x=0,1,2(,3)$ ft $\Sigma p=1$, no –ve values, all probabilities <1