Homework 2

Andy Alvarenga

February 24, 2019

1 Knowledge Representation

- 1. Let p = It is cloudy, and let q = It is raining, then $q \to p$.
- 2. Let p = I like to eat apples, and let q = I like to eat bananas, then $p \wedge q$.
- 3. Let p = Behind the clouds, and let $q = The sun is shining, then <math>q \to p$.
- 4. Let p = The function is differentiable, and let q = The function is continuous, then $p \to q$.
- 5. Let p = I will study for the final, and let q = I will fail the final, then $\neg p \rightarrow q$.

2 Equivilance in Propositional Logic

	p	q	$\neg q$	$p \wedge q$	$p \vee \neg q$	$(p \land q) \leftrightarrow (p \lor \neg q)$
	0	0	1	0	1	0
1.	0	1	0	0	0	1
	1	0	1	0	1	0
	1	1	0	1	1	1

The statements $p \land q$ and $p \lor \neg q$ are not equivilant because not all cases of the final column are true in the truth table.

	p	q	$\neg p$	$\neg q$	$p \lor q$	$\neg p \lor \neg q$	$(p \lor q) \leftrightarrow (\neg p \lor \neg q)$
	0	0	1	1	0	1	0
2.	0	1	1	0	1	1	1
	1	0	0	1	1	1	1
	1	1	0	0	1	0	0

The statements $p \lor q$ and $\neg p \lor \neg q$ are not equivilant because not all cases of the final column are true in the truth table.

	p	q	$\neg p$	$\neg q$	$p \rightarrow q$	$\neg q \to \neg p$	$\mid (p \to q) \leftrightarrow (\neg q \to \neg p) \mid$
	0	0	1	1	1	1	1
3.	0	1	1	0	1	1	1
	1	0	0	1	0	0	1
	1	1	0	0	1	1	1

The statements $p \to q$ and $\neg q \to \neg p$ are equivilant because all cases of the final column are true in the truth table.

	p	q	$\neg p$	$p \to q$	$\neg p \vee q$	$(p \to q) \leftrightarrow (\neg p \lor q)$
	0	0	1	1	1	1
4.	0	1	1	1	1	1
	1	0	0	0	0	1
	1	1	0	1	1	1

The statements $p \to q$ and $\neg p \lor q$ are equivilant because all cases of the final column are true in the truth table.

	p	q	$\neg p$	$\neg q$	$\neg (p \land q)$	$\neg p \lor \neg q$	$\neg (p \land q) \leftrightarrow (\neg p \lor \neg q)$
	0	0	1	1	1	1	1
5.	0	1	1	0	1	1	1
	1	0	0	1	1	1	1
	1	1	0	0	0	0	1

The statements $\neg(p \land q)$ and $\neg p \lor \neg q$ are equivilant because all cases of the final column are true in the truth table.