班号	学号	姓名	教师签字
实验日期	组号	预习成绩	总成绩
 实验(()		

一. 实验目的

二. 实验原理

三. 数据处理

频率/MHz	2.115	2.195	2.235	2.255	2.275	2.295	2.315	2.355	2.435	
峰值 Vpp/V	6.8	8.7	11	13	13.8	13.2	11.6	5.6	1.3	
距离/cm	10	13	16	19	22	25	28	31	34	37
峰值 Vpp/V	15.8	16	12.6	9.4	6.6	4.6	3.2	2.1	1.8	1.6

原始及插值绘制图像分别为

图表 1 Vpp-f 曲线

图表 2 Vpp-d 曲线

四. 实验结论及现象分析

实验绘制图像如前面部分所绘制图像所示。

传输规律:

- 1) Vpp-f 曲线先增后减,存在一频率,使得 Vpp 最大,即达到固有频率。
- 2) Vpp-d 曲线一直递减,符合经验,磁耦合谐振式电力传输效果随距离增大而降低。

自制 RLC 谐振电路传输效果分析:

实际测得
$$L=3.3\mu\text{H}, C=1500 \text{pF}$$
,由 $f_0=\frac{1}{2\pi\sqrt{LC}}$ 得到理论计算 $f_0=2.2621 \text{MHz}$

实际测得 $f_0 = 2.142$ MHz

故可知:在实验误差允许范围内,实际测量的固有频率与理论计算得到的固有频率相符。

五. 讨论问题

问题一:

两个 LC 谐振回路的两线圈靠近时会产生电磁感应,传递磁场能量。当频率为固有频率时,产生共振,其中一个振荡回路有能量补充,通过电磁感应,另一个谐振回路也会得到能量补充而维持震荡。

问题二:

- 1) 增加中继装置,减缓传输过程中的能量衰减。
- 2) 减小传输距离。

实验现象观察与原始数据记录

学生	姓名	学号	日期
签字			

教师	姓名
签字	