Übungsblatt 5 zur Algebra I

Abgabe bis 20. Mai 2013, 17:00 Uhr

Rohentwurf!

Aufgabe 1. Elementarsymmetrische Funktionen

- a) Gib $e_2(X, Y, Z, U, V)$, also die zweite elementarsymmetrische Funktion in den fünf Unbestimmten X, Y, Z, U und V, explizit an.
- b) Schreibe $X^2 + Y^2 + Z^2$ als Polynom in den $e_i(X, Y, Z)$.
- c) Schreibe $X_1^2 + \cdots + X_n^2$ als Polynom in den $e_i(X_1, \dots, X_n)$.
- d) Zeige, dass $e_k(\underbrace{1,\ldots,1}_{n \text{ Argumente}}) = \binom{n}{k}$.

Aufgabe 2. Der Vietasche Satz

- a) Sei $X^4 + a_3 X^3 + a_2 X^2 + a_1 X + a_0 = 0$ eine normierte Polynomgleichung vierten Grades, deren Lösungen mit Vielfachheiten x_1 , x_2 , x_3 und x_4 seien. Drücke die Koeffizienten a_0 , a_1 , a_2 und a_3 explizit als Polynome in den x_i aus.
- b) Verwende den Vietaschen Satz für n=2 um die bekannte Lösungsformel für normierte quadratische Gleichungen herzuleiten.

Aufgabe 3. Diskriminante der reduzierten kubischen Gleichung

Sei $X^3 + pX + q = 0$ eine reduzierte kubische Gleichung. Zeige, dass ihre Diskrimante durch $-4p^3 - 27q^2$ gegeben ist.

Aufgabe 4. Symmetrien eines Polynoms

Sei f(X, Y, Z, W) := XY + ZW + XYZW. Wieviele vierstellige Permutationen σ gibt es, so dass $\sigma \cdot f = f$?

Aufgabe 5. Formale Ableitung von Polynomen

- a) Seien g(X) und h(Y) Polynome. Zeige: $(gh)^{(k)}(X) = \sum_{i+j=k} {k \choose i} g^{(i)}(X) h^{(j)}(X)$.
- b) Sei f(X) ein Polynom und n eine natürliche Zahl. Zeige:

$$f^{(n+1)} = 0 \quad \Longleftrightarrow \quad \deg f \le n.$$

c) Sei f(X) ein Polynom und x eine komplexe Zahl. Zeige, daß die Entwicklung von f(X) nach X-x durch die Taylorsche Formel gegeben ist (nach Brooke Taylor, 1685–1731, britischer Mathematiker):

$$f(X) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x)}{k!} (X - x)^k$$