PySparse - A sparse linear algebra extension for Python

Roman Geus January 4, 2007

spmatrix module functions

II_mat(n, m, sizeHint=1000) Creates a $\textit{II_mat}$ object, that represents a general, all zero $m \times$

```
>>> from pysparse import spmatrix
>>> A = spmatrix.II_mat(5, 5)
>>> for i in range(5):
...         A[i,i] = i+1
>>> A[2,1] = A[0,0]
>>> print A
II_mat(general, [5,5], [(0,0): 1, (1,1): 2, (2,1): 1, (2,2): 3, (3,3): 4, (4,4): 5])
```

A.export_mtx(fileName, precision=6)

A.update

Example: 2D-Poisson matrix This section illustrates the use of the *spmatrix* module to build the well known 2D-Poisson matrix resulting from a $n \times n$ square grid.

def poi sson2d(n):

Function	n = 100	n = 300	n = 500	n = 1000
				_

The performance difference between Python's poisson2d_sym and poisson2d_sym_bl k 751736.5255a.q0.25(s)00rmance985preconce985moduleTf20.42340Td(in07378.679perform

```
class diag_prec:
    def __i ni t__(sel f, A):
        sel f. shape = A. shape
        n = sel f. shape[0]
```

Return value All iterativ6 solv6rs return a tupl6 with thre6 elements (info, iter, relres):

info is an integer that contains the exit status of the iterativ6 solv6r. *info* has one of the following values

- 2 iteration conv6rged, residual is as small as seems reasonabl6 on this machine.
- 1 iteration conv6rged, b = 0 = 0 the exact solution is

iteration conv6rged,v6 rror6 so6 h(an) JJ/F459.9626Tf37.353770Td

Example: Solving the poisson system Let's solve the Poisson system

$$Lx = 1, (1)$$

	0.1		
Function	Size	t	

Iinsolver

Example: Maxwell problem The following code illustrates the use of the *jdsym* module. Two matrices \boldsymbol{A} and \boldsymbol{M} are read from files. A Jacobi preconditioner from $\boldsymbol{A} - \boldsymbol{M}$ is built. Then the JDSYM eigensolver is called, calculating 5 eigenvalues near 25.0 and the associated eigenvalues to an accuracy of 10^{-10} . We set strategy = 1 to avoid convergence to the high-dimensional null space of $(\boldsymbol{A}, \boldsymbol{M})$.

```
from pysparse import spmatrix, itsolvers, jdsym, precon
A = spmatrix.II_mat_from_mtx('edge6x3x5_A.mtx')
M = spmatrix.II_mat_from_mtx('edge6x3x5_B.mtx')
tau = 25.0

Atau = A.copy()
Atau.shift(-tau, M)
K = precon.jacobi(Atau)
```

- 0 natural ordering
- 1 MMD applied to the structure of $\mathbf{A}^T \mathbf{A}$
- 2 MMD applied to the structure of $\mathbf{A}^T + \mathbf{A}$
- 3 COLAMD, approximate minimum degree column ordering