Computerphysik - physik441

Studiengang - B.Sc. in Physik (PO von 2014)

\overline{Modul}	Computerphysik
Modul-Nr.	physik440

$\overline{Lehr veran staltung}$	Computerphysik		
LV-Nr.	physik441		

Kategorie	LV-Art	Sprache	SWS	LP	Semester
Pflicht	Vorlesung mit Übungen	deutsch	3+2	6	SS

Teilnahmevoraussetzungen:

Empfohlene Vorkenntnisse: Theoretische Physik I-II (physik220, physik320), Physik I - III (physik110, physik310), EDV (physik130), Lineare Algebra, Analysis.

Studien- und Prüfungsmodalitäten: Die Prüfung erfolgt in der Form von sechs Übungsaufgaben. Die Übungsaufgaben werden über das Semester verteilt in Gruppen von zwei Studierenden bearbeitet und bewertet.

Dauer der Lehrveranstaltung: 1 Semester

Lernziele der LV: Lösung eines physikalischen Problems im Team mit Hilfe numerischer Methoden. Darstellung der Lösung. Vorbereitung für Softwareentwicklung auch für nichtuniversitäre Bereiche.

Inhalte der LV: Rechengenauigkeit, numerische und algorithmische Fehler; Lösung wissenschaftlicher Probleme mit numerischen Methoden: Lösung linearer Gleichungssysteme, Lösung von Differentialgleichungen, Nullstellensuche, Approximation (Schnelle Fourier Transformation), Numerische Integration, Minimierungsprobleme

Literaturhinweise:

- S.E. Koonin, Computational Physics; (Benjamin/Cummings, 1986)
- T. Pang, Computational Physics; (Cambridge University Press, 2006)
- F. J. Vesely, Computational Physics; (Plenum Press, 1994)
- W.H. Press et al.; Numerical Recipes in C (Cambridge University Press, 1992)
- H. R. Schwarz, N. Köckler; Numerische Mathematik (Vieweg+Teubner, 2009)