

Comparações múltiplas e ANOVA

Teste paramétrico para vários grupos (desfecho quantitativo)

Felipe Figueiredo

Instituto Nacional de Traumatologia e Ortopedia

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

....

Exercício

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- Comparações múltiplas
 - O acaso prega peças
 - Comparações múltiplas
- 3 Análise de Variância (ANOVA)
 - ANOVA um fator (One-way ANOVA)
 - O teste F
 - Pós teste
 - Two-way ANOVA
- Exercício
 - Exercício
- Aprofundamento
 - Aprofundamento

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da Jula passada

Comparações múltiplas

Exercício

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- Comparações múltiplas
 - O acaso prega peças
 - Comparações múltiplas
- 3 Análise de Variância (ANOVA)
 - ANOVA um fator (One-way ANOVA)
 - O teste F
 - Pós teste
 - Two-way ANOVA
- Exercício
 - Exercício
- Aprofundamento
 - Aprofundamento

Comparações múltiplas e ANOVA

Felipe Figueiredo

Discussão da aula passada

Discussão da aula passada

múltiplas

ANOVA

xercício

profundamer

Discussão da aula passada

Comparações múltiplas e ANOVA

Felipe Figueiredo

aula passada

Discussão da aula

passada

múltiplas

ANOVA

xercício

profundamer

Discussão da leitura obrigatória da aula passada

Sumário

- 🕕 Discussão da aula passada
 - Discussão da aula passada
- Comparações múltiplas
 - O acaso prega peças
 - Comparações múltiplas
- 3 Análise de Variância (ANOVA)
 - ANOVA um fator (One-way ANOVA)
 - O teste F
 - Pós teste
 - Two-way ANOVA
- Exercício
 - Exercício
- Aprofundamento
 - Aprofundamento

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas Coincidências

núltiplas

ANOVA

kercício

Aprotundamen

Exemplo 13.2

5 crianças de uma escola tiveram leucemia, ano passado.

- Isto é uma coincidência?
- Esse agrupamento de casos sugere a presença de toxina ou efeito ambiental que causou a doença?

Qual é a probabilidade de se observar 5 casos *nesta* escola, em um ano?

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações

Coincidências

múltiplas

ANOVA

Exercício

Considerando a incidência de leucemia, isto parece ser um dado extraordinário

- Esta é a pergunta errada, após observar os casos nesta escola
- Se escola n\u00e3o \u00e9 especial, \u00e9 preciso considerar outras escolas

Além disso, outras doenças (por ex., asma é um fator?)

Comparações múltiplas e ANOVA

Felipe Figueiredo

Discussão da aula passada

Comparações

Coincidências Comparações

múltiplas

ANOVA

xercício

Coincidências podem não ser tão raras assim

- Você formulou a hipótese após observar o agrupamento de casos
- Você só destacou a escola por causa do agrupamento
- Agrupamentos ocorrem ao acaso
- Oefinir população:
 - População de escolas (cidade, estado...?)
 - Tempo de observação (mês, ano, década...?)

Considerando o tempo, e o número de escolas da população...

... um agrupamento deste tamanho é realmente improvável?

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações núltiplas

Coincidências Comparações múltiplas

ANOVA

vercício

Exemplo 13.2

5 crianças de uma escola tiveram leucemia, ano passado.

- Isto é uma coincidência?
- Esse agrupamento de casos sugere a presença de toxina ou efeito ambiental que causou a doença?

Qual é a probabilidade de se observar 5 casos *nesta* escola, em um ano?

Comparações múltiplas e ANOVA

Felipe Figueiredo

Discussão da aula passada

Comparações

Coincidências

múltiplas

ANOVA

profundament

Pergunta correta

Qual é a probabilidade de se observar 5 casos *em alguma* escola, em um ano?

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

Coincidências Comparações múltiplas

multiplas

ANOVA

cercício

Aprofundament

Coincidências podem ocorrer ao testar múltiplas hipóteses

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- 2 Comparações múltiplas
 - O acaso prega peças
 - Comparações múltiplas
- Análise de Variância (ANOVA)
 - ANOVA um fator (One-way ANOVA)
 - O teste F
 - Pós teste
 - Two-way ANOVA
- Exercício
 - Exercício
- Aprofundamento
 - Aprofundamento

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas Coincidências Comparações múltiplas

ANOVA

xercício

Como comparar dois grupos?

"Comparar" é um termo vago...

... precisamos de um critério bem definido!

Para comparar quanto às variâncias dos grupos

Podemos usar

Teste F

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações núltiplas ^{Coincidências}

Comparações múltiplas

ANOVA

recício

Aprofundament

Para comparar quanto às médias dos grupos

Teste t

Como comparar três ou mais grupos?

"Comparar" é um termo vago...

... precisamos de um critério bem definido!

Para comparar quanto às variâncias dos grupos

Podemos usar

- Teste de Levene
- Teste de Bartlett

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações núltiplas ^{Coincidências}

Comparações múltiplas

ANOVA

ercício

Aprofundament

Para comparar quanto às médias dos grupos

Teste ...

Como comparar médias

- Vimos que o teste t pode ser usado para comparar duas médias
- Assumindo que atendemos às premissas do teste t, consideramos:
 - variabilidade dos grupos¹
 - tamanho do estudo (n)²

Requisitos não óbvios (além das médias)

desvio padrão + n = erro padrão

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas Coincidências Comparações múltiplas

ANOVA

xercício

¹Se possível, semelhantes. Caso contrário, correção de Welch.

²Componente do DP e do SEM. Usado como GL para o t crítico. ← ≥ → → Q ←

Exercício

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

Comparações múltiplas

ANOV//

ANOVA

rcício

Aprofundamento

Exercício

Um cirurgião testa duas drogas para auxiliar a recuperação pós cirúrgica, e mensura a área cicatrizada (y) em uma semana.

São considerados os tratamentos A e B e um Placebo.

Foram selecionados 8 participantes para cada um dos três grupos.

Quais são as variáveis?

- Dependente:
 - numérica contínua
- Independentes:
 - grupo (categórica nominal 3 níveis)

Esta relação pode ser expressa como

Área cicatrizada ~ Grupo de tratamento

Comparações múltiplas e ANOVA

Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas Coincidências Comparações

múltiplas ANOVA

xercício

Você consegue decidir visualmente...

... se 3 grupos têm médias diferentes?

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas Coincidências Comparações

múltiplas

xercício

Cenário 1 – esses 3 grupos têm médias diferentes?

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas Coincidências Comparações

múltiplas

ANOVA

xercício

Médias: Placebo: 5.945, Tratamento A: 5.027, Tratamento B: 5.110

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da Jula passada

Comparações múltiplas Coincidências

Comparações múltiplas

ANOVA

kercício

Cenário 2 – esses 3 grupos têm médias diferentes?

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas Coincidências Comparações

múltiplas

....(ala

Médias: Placebo: 3.928, Tratamento A: 6.751, Tratamento B: 5.799

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

Comparações múltiplas

NOVA

kercício

Comparação entre 3 (ou mais) grupos

Abordagem mais simples

Uma ideia seria usar o teste t três vezes...

... comparando os grupos, dois a dois.

Proposta

- Placebo x Tratamento A
- Placebo x Tratamento B
- Tratamento A x Tratamento B

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas Coincidências

Comparações múltiplas

ANOVA

xercício

Cenário 1

P-valores dos 3 testes t

Placebo x Trat. A $\Rightarrow p = 0.025$

Placebo x Trat. B $\Rightarrow p = 0.100$

Trat. A x Trat. B $\Rightarrow p = 0.876$

Pergunta

Os tratamentos são diferentes do placebo?

E entre si?

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas Coincidências

Comparações múltiplas

ANOVA

xercício

Cenário 2

P-valores dos 3 testes t

Placebo x Trat. B $\Rightarrow p = 0.00037$

Trat. A x Trat. B $\Rightarrow p = 0.02943$

Pergunta

Os tratamentos são diferentes do placebo?

E entre si?

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão aula passa

Comparações
múltiplas
Coincidências
Comparações

múltiplas

xercício

Comparações múltiplas e ANOVA

Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas Coincidências Comparações

múltiplas

Aprofundament

Existe um problema oculto aí.

O problema é...

Comparações múltiplas e **ANOVA**

> Felipe Figueiredo

Comparações múltiplas

Nível de significância de cada teste ≠ nível de significância global.

³Leia várias vezes o Capítulo 13!

O problema é...

- A conclusão de que no Cenário 1 os 3 grupos são diferentes está errada!
- No Cenário 2, os 2 tratamentos não são diferentes entre si!

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas Coincidências Comparações múltiplas

ANOVA

rerefeio

Aprofundament

Nível de significância de cada teste ≠ nível de significância global.

³Leia várias vezes o Capítulo 13!

O problema é...

- A conclusão de que no Cenário 1 os 3 grupos são diferentes está errada!
- No Cenário 2, os 2 tratamentos não são diferentes entre si!

- O teste t permite a avaliação de uma hipótese
- Testamos simultaneamente três³
- Isto aumenta a chance de cometermos um erro tipo I (falso positivo)

Comparações múltiplas e **ANOVA**

Felipe Figueiredo

Comparações múltiplas

Nível de significância de cada teste \neq nível de significância global.

³Leia várias vezes o Capítulo 13!

Pensar é obrigatório

Os testes estatísticos (e fórmulas) não "sabem" o que foi levado em conta no estudo.

- Só o pesquisador sabe.
- A metodologia da análise precisa levar em conta todo o planejamento do estudo⁴.

Comparações múltiplas e ANOVA

Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas Coincidências Comparações múltiplas

AVOIA

ercício

profundament

Nível de significância de cada teste \neq nível de significância global.

⁴Leia várias vezes o Capítulo 13!

Ao testar uma hipótese, assumimos 5% de erro tipo I

- Mas se testarmos 100 hipóteses, o número esperado de falsos positivos é 5!
- Se os testes forem independentes, a probabilidade de pelo menos 1 erro tipo I é 99.4%.⁵

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas Coincidências Comparações múltiplas

ANOVA

.

E agora, José?

Como levar em conta as comparações múltiplas sem ser induzido ao erro, pelo teste t?

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas Coincidências Comparações múltiplas

ANOVA

xercício

Como comparar médias

- Vimos que o teste t pode ser usado para comparar duas médias
- Assumindo que atendemos às premissas do teste t, consideramos:
 - variabilidade dos grupos¹
 - tamanho do estudo (n)²

Requisitos não óbvios (além das médias)

desvio padrão + n = erro padrão

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas Coincidências Comparações múltiplas

ANOVA

xercício

¹Se possível, semelhantes. Caso contrário, correção de Welch.

²Componente do DP e do SEM. Usado como GL para o t crítico. ← ≥ → → Q ←

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- Comparações múltiplas
 - O acaso prega peças
 - Comparações múltiplas
- 3 Análise de Variância (ANOVA)
 - ANOVA um fator (One-way ANOVA)
 - O teste F
 - Pós teste
 - Two-way ANOVA
- Exercício
 - Exercício
- 6 Aprofundamento
 - Aprofundamento

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

NOVA

ANOVA um fator (One-way ANOVA)

O teste F
Pós teste
Two-way ANOVA

xercício

Aprofundam

Exemplo 13.5

Exemplo 13.5

Hetland, et. al (1993) pesquisaram alterações hormonais em mulheres corredoras. Mediram o nível de hormônio luteinizante (LH) em três grupos:

- sedentárias
- 2 corredoras recreacionais
- 3 corredoras de elite

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ΛΝΟ\/Λ

ANOVA um fator (One-way ANOVA)

O teste F

Pós teste Two-way ANOVA

Exercício

Aprofundam

Quais são as variáveis?

- Dependente:
 - numérica contínua
- Independente:
 - grupo (categórica nominal 3 níveis)

Esta relação pode ser expressa como

 $LH \sim Grupo$

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparaçõe múltiplas

NOVA

ANOVA um fator (One-way ANOVA)

Pós teste Two-way ANOVA

Exercício

Aprofundamer

Componentes da One-Way ANOVA

Versão simplificada (apenas variáveis)

LH ∼ Grupo

Modelo completo

LH = média global + efeito do fator grupo + ε

Hipótese: ε é um erro aleatório 6 normalmente distribuído e centrado em

Felipe Figueiredo

ANOVA um fator (One-way ANOVA)

Two-way ANOVA

zero – a incerteza que não pode ser controlada.

Comparações múltiplas e **ANOVA**

⁶residual – não é explicado pela relação entre as≥variáveis do modelo 📑

Exemplo 13.5

Table 30.1. LH Levels in Three Groups of Women

Group	$log(LH) \pm SEM$	N	
Nonrunners	0.52 ± 0.027	88	
Recreational runners	0.38 ± 0.034	89	
Elite runners	0.40 ± 0.049	28	

Com estas informações, podemos construir uma tabela ANOVA

H₀: todas as médias são iguais

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA

ANOVA um fator (One-way ANOVA)

O teste F Pós teste

Two-way ANOVA

xercício

Exemplo 13.5

Table 30.2. InStat Results for One-Way ANOVA

	Degrees of	Sum of	Mean
Source of Variation	Freedom	Squares	Square
Treatments (between groups)	2	0.92681	0.4634
Residuals (within groups)	202	16.450	0.0814
Total	204	17.377	

F = 5.690

The P value is 0.0039, considered very significant.

Variation among column means is significantly greater than expected by chance.

- A razão entre as Somas dos Quadrados: 0.93/17.38 = 5.3%
- 5.3% da variabilidade pode ser explicada pelas diferenças *entre os grupos*
- (lembra do r^2 ?)

Comparações múltiplas e ANOVA

Felipe Figueiredo

Discussão d aula passad

Comparações

NOVA

ANOVA um fator (One-way ANOVA)

Pós teste
Two-way ANOVA

vercício

. . .

One-way ANOVA

 Este método é chamado One-way (ou 1-way) ANOVA, pois tem um fator categórico

 A premissa é que pode-se modelar a relação entre um desfecho quantitativo e um preditor categórico + um erro aleatório

- A variável dependente do exemplo é o LH
- A (única) variável independente é o Grupo

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

. ANOVA

ANOVA um fator (One-way ANOVA)

O teste F
Pós teste
Two-way ANOVA

xercício

A ideia básica

 Quando os grupos têm médias diferentes, parte da variabilidade total é devido a esta diferença

O resto da variabilidade é devido apenas às variâncias intragrupos

 A ANOVA tenta desembaraçar esta decomposição, assumindo a hipótese nula.

Comparações múltiplas e ANOVA

Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

muitipias

ANOVA um fator

ANOVA um fator (One-way ANOVA)

Pós teste
Two-way ANOVA

Iwo-way ANOVA

xercício

A ideia básica

 O nome Análise de Variância vem do critério usado para comparar as médias

O teste é baseado na razão entre as variâncias intra e inter grupos

Estas variâncias aparecem na tabela como "Média dos Quadrados"

• Lembrete: a variância é a média dos desvios elevados ao quadrado

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ALOVA

ANOVA um fator (One-way ANOVA)

O teste F Pós teste

Two-way ANOVA

xercício

xercicio

Sumário

- 🕕 Discussão da aula passada
 - Discussão da aula passada
- Comparações múltiplas
 - O acaso prega peças
 - Comparações múltiplas
- 3 Análise de Variância (ANOVA)
 - ANOVA um fator (One-way ANOVA)
 - O teste F
 - Pós teste
 - Two-way ANOVA
- Exercício
 - Exercício
- 6 Aprofundamento
 - Aprofundamento

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA

ANOVA um fator (One-way ANOVA

> Pós teste Two-way ANOVA

Exercício

Expectativa x realidade⁷ – O teste F⁸

Se as médias forem iguais, a variância intragrupo deve ser "igual" à variância intergrupo...

... nesse caso a razão entre as variâncias deve ser próxima de 1

$$F = \frac{\text{variância intergrupos}}{\text{variância intragrupos}}$$

Interpretação da estatística F

Uma razão muito maior que 1 indica que há mais variância entre os grupos do que o esperado

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da

Comparações

MOVA

ANOVA um fator

(One-way ANOVA

Pós teste

Two-way ANOVA

xercício

⁷Mesma ideia do qui-quadrado.

⁸O teste leva em conta dois graus de liberdade: numerador e denominador ∽ < ○

Exemplo 13.5

Table 30.2. InStat Results for One-Way ANOVA

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square
Treatments (between groups)	2	0.9268	0.4634
Residuals (within groups)	202	16.450	0.0814
Total	204	17.377	

F = 5.690

The P value is 0.0039, considered very significant.

Variation among column means is significantly greater than expected by chance.

• Razão entre as variâncias: F = 0.4634/0.0814 = 5.69 >> 1 (mesmo considerando o n de cada grupo)

p = 0.0039

Comparações múltiplas e ANOVA

Felipe Figueiredo

Discussão d aula passad

Comparaçõe múltiplas

ANOVA

ANOVA um fator (One-way ANOVA)

O teste F
Pós teste
Two-way ANOVA

Exercício

Anrofundam

Comparações múltiplas e ANOVA

Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA um fator

ANOVA um fator (One-way ANOVA O teste F

Pós teste Two-way ANOVA

vorcício

Aprofundamer

Resposta

Sabemos apenas que pelo menos um dos grupos é diferente dos outros. Mas qual(is)?

Ainda não estamos prontos para redigir o resultado!

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- Comparações múltiplas
 - O acaso prega peças
 - Comparações múltiplas
- 3 Análise de Variância (ANOVA)
 - ANOVA um fator (One-way ANOVA)
 - O teste F
 - Pós teste
 - Two-way ANOVA
- Exercício
 - Exercício
- 5 Aprofundamento
 - Aprofundamento

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA

ANOVA um fator (One-way ANOVA)

Pós teste Two-way ANOVA

vorcício

Testes post-hoc

O teste de ANOVA é apenas a primeira parte!⁹

O p-valor do teste F indica o quão raro é encontrar uma discrepância tão grande (ou maior) entre as médias dos grupos, ao acaso

- Mas isso não nos ajuda a saber qual é o grupo discrepante
- Para esta outra pergunta, precisamos de outro método

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações

múltiplas

ANOVA um fator (One-way ANOVA)

O teste F Pós teste

Two-way ANOVA

xercício

⁹Está com saudade do teste t?

Testes post-hoc

Como vimos, não podemos simplesmente fazer vários testes t

 Mas podemos ajustar os p-valores destes testes, para compensar a inflação destes resultados

Isso pode ser feito de várias maneiras

Comparações múltiplas e ANOVA Felipe

Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA

ANOVA um fator (One-way ANOVA)

Pós teste

Two-way ANOVA

xercício

Testes post-hoc

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOV

ANOVA um fator

O teste F Pós teste

Two-way ANOVA

xercício

xercicio

- Correção de Bonferroni
- Correção para tendências
- Teste "honesto" das diferenças, de Tukey (HSD)
- Método de Scheffe
- Teste de Dunnet
- etc.

Ajustando os p-valores

- Faremos os múltiplos testes t, com ajuste de p-valor
- Os dois mais usados são Bonferroni e Tukey

- O ajuste de Bonferroni multiplica o p-valor¹⁰ pelo número de comparações, mas seus IC são muito grandes
- O ajuste de Tukey é mais conservador, mas pode acusar diferenças significativas com mais frequência
- Infelizmente não há consenso sobre critérios de escolha

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA um fator

ANOVA um fator (One-way ANOVA O teste F

Pós teste Two-way ANOVA

vercício

LXGIGIGIO

¹⁰ ou, analogamente, divide o nível de significância → ⟨ ≣ → ⟨ ≣ → ⟨ € → | €

Interpretando o método de Bonferroni¹¹

Exemplo

García-Arenzana et al. (2014) testaram associação de 25 variáveis dietárias e a densidade mamográfica (relevante p/ câncer de mama).

5 das variáveis parecem significativas.

Bonferroni

Ao dividir 0.05 pelo número de comparações, obtemos $\alpha = 0.05/25 = 0.002$.

Conclusão

Após o ajuste, apenas 1 significativo.

p-valores não ajustados

Dietary variable	P value		
Total calories	< 0.001		
Olive oil	0.008		
Whole milk	0.039		
White meat	0.041		
Proteins	0.042		
Nuts	0.06		
Cereals and pasta	0.074		
White fish	0.205		
Butter	0.212		
Vegetables	0.216		
Skimmed milk	0.222		
Red meat	0.251		
Fruit	0.269		
Eggs	0.275		
Blue fish	0.34		
Legumes	0.341		
Carbohydrates	0.384		
Potatoes	0.569		
Bread	0.594		
Fats	0.696		
Sweets	0.762		
Dairy products	0.94		
Semi-skimmed milk	0.942		
Total meat	0.975		
Processed meat	0.986		

Comparações múltiplas e ANOVA

Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA

O teste F
Pós teste
Two-way ANOVA

xercício

Exemplo 13.5

Hetland, et. al (1993) pesquisaram alterações hormonais em mulheres corredoras. Mediram o nível de hormônio luteinizante (LH) em três grupos:

- sedentárias
- 2 corredoras recreacionais
- 3 corredoras de elite

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA

ANOVA um fator (One-way ANOVA)

Pós teste

Two-way ANOVA

Exercício

Table 30.1. LH Levels in Three Groups of Women

Group	$log(LH) \pm SEM$	N	
Nonrunners	0.52 ± 0.027	88	
Recreational runners	0.38 ± 0.034	89	
Elite runners	0.40 ± 0.049	28	

Com estas informações, podemos construir uma tabela ANOVA

H₀: todas as médias são iguais

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA

ANOVA um fator (One-way ANOVA

Pós teste Two-way ANOVA

Iwo-way ANO

xercício

. . .

Exemplo 13.5

Table 30.2. InStat Results for One-Way ANOVA

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square
Treatments (between groups)	2	0.9268	0.4634
Residuals (within groups)	202	16.450	0.0814
Total	204	17.377	

F = 5.690

The P value is 0.0039, considered very significant.

Variation among column means is significantly greater than expected by chance.

- Razão entre as variâncias: F = 0.4634/0.0814 = 5.69 >> 1 (mesmo considerando o n de cada grupo)
- p = 0.0039

Comparações múltiplas e ANOVA

Felipe Figueiredo

Discussão d aula passad

Comparaçõe múltiplas

ANOVA

ANOVA um fator (One-way ANOVA)

Pós teste Two-way ANOVA

Iwo-way ANOV

Exercício

Exemplo 13.5 - testes t com ajuste de Tukey

Exemplo 13.5

Table 30.3. InStat Results for Tukey's Post Test

Comparison	Mean Difference	q	P Value
Nonrunners vs Recreational	0.1400	2.741	** P < 0.01
Nonrunners vs Elite	0.1200	2.741	ns P > 0.05
Recreational vs Elite	-0.02000	0.4574	ns $P > 0.05$
	Mean	Lower	Upper 95%
Difference	Difference	95% CI	CI
Nonrunners — Recreational	0.1400	0.03823	0.2418
Nonrunners — Elite	0.1200	-0.02688	0.2669
Recreational — Elite	-0.02000	-0.1667	0.1267

Comparações múltiplas e ANOVA

Felipe Figueiredo

Discussão da aula passada

Comparações núltiplas

ANOVA
ANOVA um fator

One-way ANOVA O teste F Pós teste

Two-way ANOVA

xercício

rofundament

Pergunta

Como você redigiria este resultado?

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- Comparações múltiplas
 - O acaso prega peças
 - Comparações múltiplas
- 3 Análise de Variância (ANOVA)
 - ANOVA um fator (One-way ANOVA)
 - O teste F
 - Pós teste
 - Two-way ANOVA
- Exercício
 - Exercício
- 5 Aprofundamento
 - Aprofundamento

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA

ANOVA um fator (One-way ANOVA) O teste F

Two-way ANOVA

Exercício

ANOVA dois parâmetros

Vimos como usar o ANOVA com uma var. independente categórica

 O teste ANOVA permite qualquer quantidade de variáveis independentes! E de qualquer tipo¹²

• Vejamos o exemplo inicial da aula, com duas var. independentes

Nova pergunta

Os tratamentos são diferentes, mesmo controlando pelo Gênero?

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA

ANOVA um fator (One-way ANOVA)

Pós teste Two-way ANOVA

voroíoio

exercicio

¹²Na verdade, ANOVA e Regressão Linear são Múltipla são siameses

Quais são as variáveis?

- Dependente:
 - numérica contínua
- Independentes:
 - grupo (categórica nominal 3 níveis)
 - gênero (categórica nominal binária)

Esta relação pode ser expressa como

Área cicatrizada ~ Grupo de tratamento + Gênero

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

. ANOVA

ANOVA um fator (One-way ANOVA)

Pós teste

Two-way ANOVA

Exercício

Você consegue decidir visualmente...

... se 3 grupos têm médias diferentes?

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA

ANOVA um fator

O teste F Pós teste

Two-way ANOVA

xercício

Cenário 1 – esses 3 grupos têm médias diferentes?

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA

ANOVA um fator (One-way ANOVA) O teste F

Two-way ANOVA

xercício

Cenário 3 = cenário 1 ajustando pelo Gênero

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA

ANOVA um fator (One-way ANOVA O teste F

Two-way ANOVA

Exercício

Cenário 2 – esses 3 grupos têm médias diferentes?

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações

ANOVA

ANOVA um fator (One-way ANOVA) O teste F

Two-way ANOVA

xercício

Cenário 4 = cenário 2 ajustando pelo Gênero

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA

ANOVA um fator (One-way ANOVA O teste F

Two-way ANOVA

Exercício

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANO

ANOVA um fator (One-way ANOVA) O teste F

ós teste

Two-way ANOVA

xercício

Aprofundamer

Hora de testar seus conhecimentos

Sumário

- 🕕 Discussão da aula passada
 - Discussão da aula passada
- Comparações múltiplas
 - O acaso prega peças
 - Comparações múltiplas
- 3 Análise de Variância (ANOVA)
 - ANOVA um fator (One-way ANOVA)
 - O teste F
 - Pós teste
 - Two-way ANOVA
- Exercício
 - Exercício
- Aprofundamento
 - Aprofundamento

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA

Exercício

Exercício

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA

Exercício

Exercício

profundament

Exercício

Um cirurgião testa duas drogas para auxiliar a recuperação pós cirúrgica, e mensura a área cicatrizada (y) em uma semana.

São considerados os tratamentos A e B e um Placebo.

Foram selecionados 8 participantes para cada um dos três grupos.

Cenário 1 – esses 3 grupos têm médias diferentes?

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA

Exercício Exercício

Cenário 1

P-valores dos 3 testes t

Placebo x Trat. A $\Rightarrow p = 0.025$

Placebo x Trat. B $\Rightarrow p = 0.100$

Trat. A x Trat. B $\Rightarrow p = 0.876$

Pergunta

Os tratamentos são diferentes do placebo?

E entre si?

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA

Exercício

profundament

Por que este resultado está errado?

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA

Exercício Exercício

Por que este resultado está errado?

Comparações múltiplas e ANOVA

Felipe Figueiredo

Discussão da aula passada

Comparaçõe: múltiplas

AIVOVA

Exercício

Aprofundamen

Resposta

Testamos simultaneamente 3 hipóteses...

... você foi levado ao engano: Placebo é diferente do trat. A

Cenário 1 – ANOVA One-way

Df Sum Sq Mean Sq F value Pr(>F)
2 4.124 2.0620 2.545 0.102

Residuals 21 17.018 0.8104

Grupo

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparaçõe: múltiplas

_ _

Exercício

profundament

Cenário 1 – ANOVA One-way

Df Sum Sq Mean Sq F value Pr(>F)
Grupo 2 4.124 2.0620 2.545 0.102
Residuals 21 17.018 0.8104

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA

Exercício

rofundamente

Os 3 tratamentos não diferem além da expectativa (p = 0.102)

Cenário 1

P-valores dos 3 testes t

Placebo x Trat. A $\Rightarrow p = 0.025$

Placebo x Trat. B $\Rightarrow p = 0.100$

Trat. A x Trat. B $\Rightarrow p = 0.876$

Pergunta

Os tratamentos são diferentes do placebo?

E entre si?

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparaçõe múltiplas

ANOVA

Exercício

profundament

Cenário 1 - Bonferroni

Pairwise comparisons using t tests with non-pooled SD

data: y and Grupo

Placebo Trat.A

Trat.A 0.076 -

Trat.B 0.299 1.000

P value adjustment method: bonferroni

Os p-valores de Bonferroni são 3x maiores...

... o placebo não é diferente do tratamento A (p = 0.076)

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

- /:

Exercício

Aprofundament

Cenário 1 - Tukey

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = y ~ Grupo, data = cenariol.long)

\$Grupo

diff lwr upr padj Trat.A-Placebo -0.91797498 -2.052498 0.2165479 0.1274511 Trat.B-Placebo -0.83482042 -1.969343 0.2997025 0.1767378 Trat.B-Trat.A 0.08315455 -1.051368 1.2176774 0.9813768

Os p-valores de Tukey são mais conservadores...

... o placebo não é diferente do tratamento A (p = 0.12745)

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

Exercício

Aprofundament

Cenário 2 – esses 3 grupos têm médias diferentes?

Comparações múltiplas e ANOVA

Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA

Exercício Exercício

Aprofundamen

Cenário 2

P-valores dos 3 testes t

1 Placebo x Trat. A $\Rightarrow p < 0.0001$

Placebo x Trat. B $\Rightarrow p = 0.00037$

Trat. A x Trat. B $\Rightarrow p = 0.02943$

Pergunta

Os tratamentos são diferentes do placebo?

E entre si?

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA

Exercício

profundamen

Por que este resultado está errado?

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA

Exercício Exercício

Aprofundament

Por que este resultado está errado?

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

1140 171

Exercício

Aprofundamen

Resposta

Testamos simultaneamente 3 hipóteses...

... você foi levado ao engano: trat. A é diferente do trat. B

Cenário 2 – ANOVA One-way

Df Sum Sq Mean Sq F value Pr(>F)
2 32.99 16.496 25.04 2.75e-06 ***

Grupo 2 32.99 16.496 Residuals 21 13.83 0.659

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Comparações múltiplas e ANOVA

Felipe Figueiredo

Discussão da aula passada

Comparaçõe múltiplas

71110171

Exercício

profundament

Cenário 2

P-valores dos 3 testes t

1 Placebo x Trat. A $\Rightarrow p < 0.0001$

Placebo x Trat. B $\Rightarrow p = 0.00037$

Trat. A x Trat. B $\Rightarrow p = 0.02943$

Pergunta

Os tratamentos são diferentes do placebo?

E entre si?

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA

Exercício

profundamen

Cenário 2 - Bonferroni

Pairwise comparisons using t tests with non-pooled SD

data: y and Grupo

Placebo Trat.A Trat.A 8.8e-05 -

Trat.B 0.0011 0.0883

P value adjustment method: bonferroni

Os p-valores de Bonferroni são 3x maiores...

... os tratamentos A e B não são diferentes entre si (p = 0.0883)

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

Fuerefele

Exercício

Aprofundament

Cenário 2 – Tukey

```
Tukey multiple comparisons of means 95% family-wise confidence level
```

Fit: aov(formula = y ~ Grupo, data = cenario2.long)

ŚGrupo

	diff	lwr	upr	p adj
Trat.A-Placebo	2.8224313	1.7995273	3.8453353	0.0000021
Trat.B-Placebo	1.8711918	0.8482877	2.8940958	0.0004262
Trat B-Trat A	-0 9512395	-1 9741435	0 0716645	0 0713859

Os p-valores de Tukey são mais conservadores...

... os tratamentos A e B não são diferentes (p = 0.0713859)

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

7 (1 40 47)

Exercício

Aprofundamen

Comparações múltiplas e ANOVA

Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

71140 171

Exercício Exercício

Aprofundament

Agora interprete cada um dos dois fatores

Cenário 3 = cenário 1 ajustando pelo Gênero

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

71110171

Exercício Exercício

profundamen

Cenário 3 – ANOVA Two-way

Df Sum Sq Mean Sq F value Pr(>F)
Grupo 2 4.124 2.0620 2.426 0.114
Genero 1 0.020 0.0198 0.023 0.880

Residuals 20 16.998 0.8499

Comparações múltiplas e ANOVA

Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

_ _

Exercício

profundament

Comparações múltiplas e ANOVA

Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA

Exercício

Exercício

profundament

Cenário 3 - Tukey

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = y ~ Grupo + Genero, data = cenario1.long)

\$Grupo

 diff
 lwr
 upr
 p adj

 Trat.A-Placebo
 -0.91797498
 -2.084178
 0.2482277
 0.1402196

 Trat.B-Placebo
 -0.83482042
 -2.001023
 0.331822
 0.1915255

 Trat.B-Trat.A
 0.08315455
 -1.083048
 1.2493572
 0.9822352

\$Genero

diff lwr upr padj M-F 0.05741033 -0.7276764 0.8424971 0.8802907

Cenário 4 = cenário 2 ajustando pelo Gênero

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA

Exercício Exercício

profundamen

Cenário 4 – ANOVA Two-way

Grupo Df Sum Sq Mean Sq F value Pr(>F)
2 32.99 16.496 24.760 3.88e-06 ***
Genero 1 0.51 0.509 0.764 0.393

Residuals 20 13.33 0.666

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparaçõe: múltiplas

ANOVA

Exercício

profundament

Comparações múltiplas e ANOVA

Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA

Exercício

Exercício

profundament

```
Cenário 4 – Tukey
```

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = y ~ Grupo + Genero, data = cenario2.long)

\$Grupo

 diff
 lwr
 upr
 p adj

 Trat.A-Placebo
 2.8224313
 1.789885
 3.85497800
 0.000030

 Trat.B-Placebo
 1.8711918
 0.638645
 2.90373849
 0.0005050

 Trat.B-Trat.A
 -0.9512395
 -1.983786
 0.08130722
 0.0743628

SGenero

diff lwr upr p adj M-F 0.3362835 -0.4663601 1.138927 0.3925159

Resumo

Comparações múltiplas e **ANOVA**

> Felipe Figueiredo

Vimos o modelo ANOVA com fatores fixos para comparar médias

Há também¹³

- ANOVA com interações entre os fatores
- ANOVA com Medidas Repetidas quando você mensura do participante em vários momentos diferentes (ex: baseline, pré-op imediato, pós-op imediato, e após 1 ano)
- ANOVA com fatores aleatórios permite decompor as variâncias contribuição de cada fator para a variância total
- ANOVA com fatores mistos fatores fixos E aleatórios

ANOVA é a base para (livros de) Design of Experiments (DoE)

Considere usar desenhos balanceados¹⁴ sempre que possível!

Exercício

¹³Todos fora do escopo, RM ANOVA mencionado no livro

¹⁴Grupos com **mesmo tamanho**

Modelo ANOVA em geral – quais são as variáveis?

Dependente (VD): numérica

- discreta
- contínua
- Independentes (VI):
 - categórica 2+ níveis
 - numérica discreta
 - numérica contínua

Comparações múltiplas e ANOVA

Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

ANOVA

Exercício Exercício

profundament

Esta relação pode ser expressa como

$$VD \sim VI_1 + VI_2 + ... \\$$

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- Comparações múltiplas
 - O acaso prega peças
 - Comparações múltiplas
- 3 Análise de Variância (ANOVA)
 - ANOVA um fator (One-way ANOVA)
 - O teste F
 - Pós teste
 - Two-way ANOVA
- Exercício
 - Exercício
- 5 Aprofundamento
 - Aprofundamento

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

AINOVA

Exercício

Aprofundamento

Aprofundamento

Aprofundamento

Leitura obrigatória

- Capítulo 13
- Capítulo 30 (atenção às premissas!)

Exercícios selecionados

Capítulo 13, problema: 1

Leitura recomendada

Kim, Bang, 2016, Dent. Hypotheses. (editorial) (este link é clicável)

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Discussão da aula passada

Comparações múltiplas

....

Exercício

Aprofundamento
Aprofundamento