День 8

- 1. Рівняння теплового балансу. Фазові переходи.
- № 1. Нагрітий алюмінієвий куб поклали на лід. Куб повністю занурився в лід. До якої температури t він був нагрітий? Температура льоду $0^{\circ}C$, тепловтратами знехтувати.
- № 2. У колбі знаходилася вода за $0^{\circ}C$. Викачуючи повітря з колби, домоглись того, що в ній залишився лише лід. Яка частина води при цьому випарувалась? Питома теплота пароутворення води за $0^{\circ}C$ r=2.5 МДж/кг.
- № 3. Свинцева куля вдаряється об броньовану плиту та відскакує від неї. На нагрівання кулі йде 60 % втраченої нею механічної енергії. Швидкість кулі перед ударом об плиту $v_0 = 400\,$ м/с, після удару $v = 100\,$ м/с. Температура кулі до удару $t_1 = 50^{\circ}C$. Яка частина кулі розплавилась?
- 2. Робота та потужність струму. Закон Джоуля-Ленца.
- № 4. Електричний нагрівник живиться від N однакових акумуляторів, кожен з яких має внутрішній опір r. Нагрівник споживає однакову потужність при послідовному та паралельному з'єднанні акумуляторів. Визначте опір нагрівника R.
- № 5. До джерела ЕРС по черзі підключають резистори з опорами R_1 и R_2 . В обох випадках на резисторах виділяється однакова потужність. Визначте внутрішній опір r джерела.
- № 6. При почерговому підключенні до джерела ЕРС двох електричних нагрівників з опорами $R_1 = 3$ Ом и $R_2 = 48$ Ом на них виділяється однакова потужність P = 1.2 кВт. Визначте силу струму короткого замикання джерела I_{K3} .
- № 7. Яку силу струму I треба пропустити через залізний дріт діаметром $D=0.5\,$ мм, щоб через $\tau=1\,$ с дріт почав плавитись? Початкова температура дроту $t_0=0$ °C; тепловтратами та залежністю опору від температури знехтувати.
- № 8. Три тонких дроти однакового діаметра залізний, мідний і алюмінієвий з'єднані послідовно. Їх під'єднують до джерела високої напруги, і один з дротів перегорає. Яка? Початкова температура $t_0 = 0$ °C.

Домашне завдання 8

- № 1. Калориметр містить $m_1 = 250$ г води за температури $t_1 = 15$ °C. У воду кинули $m_2 = 20$ г мокрого снігу. У результаті температура в калориметрі знизилась на $\Delta t = 5$ °C. Скільки води було у снігу? (2 бали)
- № 2. За дотримання деяких запобіжних заходів воду можна переохолодити, тобто знизити її температуру нижче 0°C. Пробірку, що містить m=12 г переохолодженої води за температури t=-5°C, струшують. При цьому частина води замерзає. Яка маса m_{π} льоду, що утворився? Теплообміном з навколишнім середовищем і теплоємністю пробірки знехтувати (2 бали).
- № 3. З якої висоти h має падати вода, щоб при ударі об землю вона закипала? На нагрівання води йде 50% втраченої механічної енергії. Початкова температура води $t_1 = 20^{\circ}C$. (1 бал)
- № 4. У калориметрі знаходиться шматок льоду при температурі $t_0 = 0^{\circ}C$. У калориметр доливають воду масою m = 10 кг, взяту при температурі $t_1 = 9.9^{\circ}C$. Щоб утримати шматок льоду під водою відразу після додавання в калориметр води, до нього потрібно докласти спрямовану вертикально вниз силу $F_1 = 3$ Н. Яку силу F_2 , спрямовану вертикально вниз, необхідно докласти до шматка льоду для його утримання під водою після встановлення теплової рівноваги в калориметр? Теплообміном з калориметр і оточуючими тілами можна знехтувати. Питома теплота плавлення льоду $\lambda = 0.33$ МДж/кг, питома теплоємність води $c_B = 4.2$ кДж/(кг·°C), густина води $\rho_B = 10^3$ кг/м 3 , густина льоду $\rho_{\pi} = 0.9 \cdot 10^3$ кг/м 3 прискорення вільного падіння g = 10 м/с 2 (3 бали).
- № 5. У кімнаті горить електрична лампа потужністю $P_1 = 100~$ Вт, підключена до мережі з напругою U = 220~ В. Опір дротів, що проводять електроенергію до квартири, становить $R_0 = 4~$ Ом. Як зміниться напруга на лампі, якщо включити електрокамін потужністю $P_2 = 500~$ Вт? (1 бал)
- № 6. Акумуляторна батарея має ЕРС $\varepsilon = 12$ В і внутрішній опір r = 0.1 Ом. Скільки лампочок потужністю $P_0 = 25$ Вт кожна, розрахованих на напругу U = 10 В, можна підключити до цього джерела ЕРС, щоб вони горіли нормальним розжаром? (2 бали)

№ 7. Визначте загальну потужність P, споживану резисторами (див. рисунок). Опори резисторів $R_1 = 8$ Ом, $R_2 = 24$ Ом; ЕРС джерела $\varepsilon = 40$ В, його внутрішній опір r = 2 Ом. (1 бал)

№ 8. Визначте струм короткого замикання I_{K3} акумуляторної батареї, якщо при струмі $I_1 = 5$ А навантаження споживає потужність $P_1 = 30$ Вт, а при струмі $I_2 = 10$ А — потужність $P_2 = 40$ Вт. (2 бали)

№ 9. Джерело струму з ЕРС ε і внутрішнім опором r замкнуте на реостат. Побудуйте графіки залежності таких величин від опору R реостата: сили струму I, напруги U, потужності P у зовнішньому колі, повної потужності P_0 і ККД кола η . При якому R досягається максимальна потужність у зовнішньому колі? Який при цьому ККД кола? (3 бали)

№ 10. Опір реостата (див. рисунок) R = 16 Ом. ЕРС джерела струму $\varepsilon = 12$ В, його внутрішній опір r = 2 Ом. Виразіть через відношення $x = \frac{1}{L}$ такі величини: силу струму І на джерелі; напругу U на полюсах джерела; потужність P, що виділяється на реостаті. Побудуйте відповідні графіки (3 бали).

Додаткові задачі

№ 11. Полімер вмістили в калориметр із нагрівачем. Перші дві години температура $_{100}$ полімеру була $50^{\circ}C$. При цьому потужність $_{80}$ нагрівача складала $P_0 = 6$ Вт. Наступні дві години температура полімеру змінювалася так, як показано на рисунку (криву BC можна прийняти за $_{20}$ чверть кола). Яка кількість теплоти була передана навколишньому середовищу за перші дві години? Яка кількість теплоти була передана навколишньому середовищу за наступні дві

години? Потужність втрат тепла з калориметра прямо пропорційна різниці температур всередині й зовні калориметра. Теплоємністю калориметра знехтувати. Температура в лабораторії $20^{\circ}C$. Агрегатний стан полімеру не змінюється (4 бали).

№ 12. В електрочайник потужністю 2 кВт налили літр води. Після того, як вода почала інтенсивно кипіти, чайник автоматично вимикається, але кипіння продовжується ще 15 с, поступово зменшуючи інтенсивність утворення бульбашок пари. Ще через 30 с температура води у чайнику зменшується на 1°С. Вважаючи, що інтенсивність кипіння після вимкнення чайника зменшувалась рівномірно, визначте середню температуру нагрівального елементу чайника у момент вимкнення. Чому дорівнює ККД чайника при температурах води, близьких до $100^{\circ}C$? Запропонуйте формулу залежності ККД чайника від температури води. Маса нагрівального елементу m = 200 г, його питома теплоємність c = 500 Дж/ (кг·°С), питома теплоємність води $c_{B} = 4200$ Дж/(кг·°С) (4 бали).