PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/13, 15/10, 15/62, 15/70, 1/21, C07K 1/04, G01N 33/53

(11) International Publication Number:

WO 97/08320

(43) International Publication Date:

6 March 1997 (06.03.97)

(21) International Application Number:

PCT/EP96/03647

A1

(22) International Filing Date:

19 August 1996 (19.08.96)

•

15 August 1990 (19.08.96)

(30) Priority Data:

95113021.0

18 August 1995 (18.08.95)

(34) Countries for which the regional or international application was filed:

DE et al.

EP

(71) Applicant (for all designated States except US): MORPHOSYS GESELLSCHAFT FÜR PROTEINOPTIMIERUNG MBH [DE/DE]; Frankfurter Ring 193a, D-80807 München (DE).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): KNAPPIK, Achim [DE/DE]; Killerstrasse 16, D-82166 Gräfelfing (DE). PACK, Peter [DE/DE]; Franz-Wolter-Strasse 4, D-81925 München (DE). ILAG, Vic [PH/DE]; Knorrstrasse 85, D-80807 München (DE). GE, Liming [CN/DE]; Nestroystrasse 17, D-81373 München (DE). MORONEY, Simon [NZ/DE]; Osterwaldstrasse 44, D-80805 München (DE). PLÜCKTHUN, Andreas [DE/CH]; Möhrlistrasse 97, CH-8006 Zürich (CH).
- (74) Agent: VOSSIUS & PARTNER; P.O. Box 86 07 67, D-81634 München (DE).

(81) Designated States: AU, CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: PROTEIN/(POLY)PEPTIDE LIBRARIES

(57) Abstract

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of humanderived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

Database of human lg gene segments Translation in amino acid sequences Alignment of protein sequences Germline Rearranged sequences sequences Assignment to Computation of families germline counterpart Database of used Assignment to germline families families Analysis of Computation of canonical structures consensus sequences Structural Analysis Design of CDRs Gene Design

antibody library

BEST AVAILABLE COPY

1

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Armenia	GB	United Kingdom	MW	Malawi
Austria	GE	Georgia	MX	Mexico
Australia .	GN	Guinea	NE	Niger
Barbados	GR	Greece	NL	Netherlands
Belgium	HU	Hungary .	NO	Norway
Burkina Faso	TE	Ireland	NZ	New Zealand
Bulgaria	IT	Italy	PL	Poland
Benin	JP	Japan	PT	Portugal
Brazil	KE	Kenya	RO	Romania
Belarus	KG			Russian Federation
Canada	KP	7 00		Sudan
Central African Republic		of Korea		Sweden
Congo	KR	Republic of Korea		Singapore
Switzerland	KZ	Kazakhstan		Slovenia
Côte d'Ivoire	LI	Liechtenstein		Slovakia
Cameroon	LK	Sri Lanka		Senegal
China	LR	Liberia		Swaziland
Czechoslovakia	LT			Chad
Czech Republic	LU			Togo
Germany	LV	•		Tajikistan
Denmark	MC	Monaco		Trinidad and Tobago
Estonia	MD	Republic of Moldova		Ukraine
Spain	MG			Uganda
Finland	ML			United States of America
France				Uzbekistan
Gabon	MR	Mauritania	VN	Viet Nam
	Australia Australia Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Cenada Central African Republic Congo Sulgaria Cotte d'Ivoire Cameroon China Czechoslovakia Czech Republic Germany Denmark Estonia Spain Finland France	Austria GE Australia GN Barbados GR Belgium HU Burkina Faso IE Bulgaria IT Benin JP Brazil KE Belarus KG Canada KP Central African Republic Congo KR Switzerland KZ Côte d'Ivoire LI Cameroon LK China LR Czechoslovakia LT Czech Republic LU Germany LV Denmark MC Estonia MD Spain MG Finland MI France MN	Austria GE Georgia Australia GN Guinea Barbados GR Greece Belgium HU Hungary Burkina Faso IE Ireland Bulgaria IT Italy Benin JP Japan Brazil KE Kenya Belarus KG Kyrgystan Camada KP Democratic People's Republic of Korea Congo KR Republic of Korea Congo KR Republic of Korea Switzerland KZ Kazakhstan Cote d'Ivoire LI Liechtenstein Cameroon LK Sri Lanka China LR Liberia Czechoslovakia LT Lithuania Czech Republic LU Luxembourg Germany LV Latvia Denmark MC Monaco Betonia MD Republic of Moldova Spain MG Madagascar Finland ML Mali France MN Mongolia	Australia GE Georgia MX Australia GN Guinea NE Barbados GR Greece NL Barbados IE Ireland NZ Bulgaria IT Italy PL Benin JP Japan PT Brazil KE Kenya RO Belarus KG Kyrgystan RU Canada KP Democratic People's Republic SD Central African Republic of Korea SE Congo KR Republic of Korea SG Switzerland KZ Kazakistan SI Côte d'Ivoire LI Liechtenstein SK Cameroon LK Sri Lanka SN China LR Liberia SZ Czechoslovakia LT Lithuanis TD Czech Republic LU Luxembourg TG Germany LV Larvia TJ Demark MC Monaco TT Estonia MD Republic of Moldova UA Spain MG Madagascar UG Finland ML Mali US France MN Mongolia

Protein/(Poly)peptide Libraries

Field of the Invention

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of human-derived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

Background to the Invention

All current recombinant methods which use libraries of proteins/(poly)peptides, e.g. antibodies, to screen for members with desired properties, e.g. binding a given ligand, do not provide the possibility to improve the desired properties of the members in an easy and rapid manner. Usually a library is created either by inserting a random oligonucleotide sequence into one or more DNA sequences cloned from an organism, or a family of DNA sequences is cloned and used as the library. The library is then screened, e.g. using phage display, for members which show the desired property. The sequences of one or more of these resulting molecules are then determined. There is no general procedure available to improve these molecules further on.

Winter (EP 0 368 684 B1) has provided a method for amplifying (by PCR), cloning, and expressing antibody variable region genes. Starting with these genes he was able to create libraries of functional antibody fragments by randomizing the CDR3 of the heavy and/or the light chain. This process is functionally equivalent to the natural process of VJ and VDJ recombination which occurs during the development of B-cells in the immune system.

However the Winter invention does not provide a method for optimizing the binding affinities of antibody fragments further on, a process which would be functionally equivalent to the naturally occurring phenomenon of "affinity maturation", which is provided by the present invention. Furthermore, the Winter invention does not provide for artificial variable region genes, which represent a whole family of

structurally similar natural genes, and which can be assembled from synthetic DNA oligonucleotides. Additionally, Winter does not enable the combinatorial assembly of portions of antibody variable regions, a feature which is provided by the present invention. Furthermore, this approach has the disadvantage that the genes of all antibodies obtained in the screening procedure have to be completely sequenced, since, except for the PCR priming regions, no additional sequence information about the library members is available. This is time and labor intensive and potentially leads to sequencing errors.

The teaching of Winter as well as other approaches have tried to create large antibody libraries having high diversity in the complementarity determining regions (CDRs) as well as in the frameworks to be able to find antibodies against as many different antigens as possible. It has been suggested that a single universal framework may be useful to build antibody libraries, but no approach has yet been successful.

Another problem lies in the production of reagents derived from antibodies. Small antibody fragments show exciting promise for use as therapeutic agents, diagnostic reagents, and for biochemical research. Thus, they are needed in large amounts, and the expression of antibody fragments, e.g. Fv, single-chain Fv (scFv), or Fab in the periplasm of E. coli (Skerra & Plückthun, 1988; Better et al., 1988) is now used routinely in many laboratories. Expression yields vary widely, however. While some fragments yield up to several mg of functional, soluble protein per liter and OD of culture broth in shake flask culture (Carter et al., 1992, Plückthun et al. 1996), other fragments may almost exclusively lead to insoluble material, often found in so-called inclusion bodies. Functional protein may be obtained from the latter in modest yields by a laborious and time-consuming refolding process. The factors influencing antibody expression levels are still only poorly understood. Folding efficiency and stability of the antibody fragments, protease lability and toxicity of the expressed proteins to the host cells often severely limit actual production levels, and several attempts have been tried to increase expression yields. For example, Knappik & Plückthun (1995) could show that expression yield depends on the antibody sequence. They identified key residues in the antibody framework which influence expression yields dramatically. Similarly, Ullrich et al. (1995) found that point mutations in the CDRs can increase the yields in periplasmic antibody fragment expression. Nevertheless, these strategies are only applicable to a few antibodies. Since the Winter invention uses existing repertoires of antibodies, no influence on expressibility of the genes is possible.

Furthermore, the findings of Knappik & Plückthun and Ullrich demonstrate that the knowledge about antibodies, especially about folding and expression is still increasing. The Winter invention does not allow to incorporate such improvements into the library design.

The expressibility of the genes is important for the library quality as well, since the screening procedure relies in most cases on the display of the gene product on a phage surface, and efficient display relies on at least moderate expression of the gene.

These disadvantages of the existing methodologies are overcome by the present invention, which is applicable for all collections of homologous proteins. It has the following novel and useful features illustrated in the following by antibodies as an example:

Artificial antibodies and fragments thereof can be constructed based on known antibody sequences, which reflect the structural properties of a whole group of homologous antibody genes. Therefore it is possible to reduce the number of different genes without any loss in the structural repertoire. This approach leads to a limited set of artificial genes, which can be synthesized de novo, thereby allowing introduction of cleavage sites and removing unwanted cleavages sites. Furthermore, this approach enables (i), adapting the codon usage of the genes to that of highly expressed genes in any desired host cell and (ii), analyzing all possible pairs of antibody light (L) and heavy (H) chains in terms of interaction preference, antigen preference or recombinant expression titer, which is virtually impossible using the complete collection of antibody genes of an organism and all combinations thereof.

The use of a limited set of completely synthetic genes makes it possible to create cleavage sites at the boundaries of encoded structural sub-elements. Therefore, each gene is built up from modules which represent structural sub-elements on the protein/(poly)peptide level. In the case of antibodies, the modules consist of "framework" and "CDR" modules. By creating separate framework and CDR modules, different combinatorial assembly possibilities are enabled. Moreover, if two or more artificial genes carry identical pairs of cleavage sites at the boundaries of each of the genetic sub-elements, pre-built libraries of sub-elements can be inserted in these genes simultaneously, without any additional information related to any particular gene sequence. This strategy enables rapid optimization of, for example, antibody affinity, since DNA cassettes encoding libraries of genetic sub-elements can be (i), pre-built, stored and reused and (ii), inserted in any of these

.4

sequences at the right position without knowing the actual sequence or having to determine the sequence of the individual library member.

Additionally, new information about amino acid residues important for binding, stability, or solubility and expression could be integrated into the library design by replacing existing modules with modules modified according to the new observations.

The limited number of consensus sequences used for creating the library allows to speed up the identification of binding antibodies after screening. After having identified the underlying consensus gene sequence, which could be done by sequencing or by using fingerprint restriction sites, just those part(s) comprising the random sequence(s) have to be determined. This reduces the probability of sequencing errors and of false-positive results.

The above mentioned cleavage sites can be used only if they are unique in the vector system where the artificial genes have been inserted. As a result, the vector has to be modified to contain none of these cleavage sites. The construction of a vector consisting of basic elements like resistance gene and origin of replication, where cleavage sites have been removed, is of general interest for many cloning attempts. Additionally, these vector(s) could be part of a kit comprising the above mentioned artificial genes and pre-built libraries.

The collection of artificial genes can be used for a rapid humanization procedure of non-human antibodies, preferably of rodent antibodies. First, the amino acid sequence of the non-human, preferably rodent antibody is compared with the amino acid sequences encoded by the collection of artificial genes to determine the most homologous light and heavy framework regions. These genes are then used for insertion of the genetic sub-elements encoding the CDRs of the non-human, preferably rodent antibody.

Surprisingly, it has been found that with a combination of only one consensus sequence for each of the light and heavy chains of a scFv fragment an antibody repertoire could be created yielding antibodies against virtually every antigen. Therefore, one aspect of the present invention is the use of a single consensus sequence as a universal framework for the creation of useful (poly)peptide libraries and antibody consensus sequences useful therefor.

4

Detailed Description of the Invention

The present invention enables the creation of useful libraries of (poly)peptides. In a first embodiment, the invention provides for a method of setting up nucleic acid sequences suitable for the creation of said libraries. In a first step, a collection of at least three homologous proteins is identified and then analyzed. Therefore, a dafabase of the protein sequences is established where the protein sequences are aligned to each other. The database is used to define subgroups of protein sequences which show a high degree of similarity in both the sequence and, if information is available, in the structural arrangement. For each of the subgroups a (poly)peptide sequence comprising at least one consensus sequence is deduced which represents the members of this subgroup; the complete collection of (poly)peptide sequences represent therefore the complete structural repertoire of the collection of homologous proteins. These artificial (poly)peptide sequences are then analyzed, if possible, according to their structural properties to identify unfavorable interactions between amino acids within said (poly)peptide sequences or between said or other (poly)peptide sequences, for example, in multimeric proteins. Such interactions are then removed by changing the consensus sequence accordingly. The (poly)peptide sequences are then analyzed to identify subelements such as domains, loops, helices or CDRs. The amino acid sequence is backtranslated into a corresponding coding nucleic acid sequence which is adapted to the codon usage of the host planned for expressing said nucleic acid sequences. A set of cleavage sites is set up in a way that each of the sub-sequences encoding the sub-elements identified as described above, is flanked by two sites which do not occur a second time within the nucleic acid sequence. This can be achieved by either identifying a cleavage site already flanking a sub-sequence of by changing one or more nucleotides to create the cleavage site, and by removing that site from the remaining part of the gene. The cleavage sites should be common to all corresponding sub-elements or sub-sequences, thus creating a fully modular arrangement of the sub-sequences in the nucleic acid sequence and of the subelements in the corresponding (poly)peptide.

In a further embodiment, the invention provides for a method which sets up two or more sets of (poly)peptides, where for each set the method as described above is performed, and where the cleavage sites are not only unique within each set but also between any two sets. This method can be applied for the creation of (poly)peptide libraries comprising for example two α -helical domains from two different proteins, where said library is screened for novel hetero-association domains.

In yet a further embodiment, at least two of the sets as described above, are derived from the same collection of proteins or at least a part of it. This describes libraries comprising for example, but not limited to, two domains from antibodies such as VH and VL, or two extracellular loops of transmembrane receptors.

In another embodiment, the nucleic acid sequences set up as described above, are synthesized. This can be achieved by any one of several methods well known to the practitioner skilled in the art, for example, by total gene synthesis or by PCR-based approaches.

In one embodiment, the nucleic acid sequences are cloned into a vector. The vector could be a sequencing vector, an expression vector or a display (e.g. phage display) vector, which are well known to those skilled in the art. Any vector could comprise one nucleic acid sequence, or two or more nucleic sequences, either in different or the same operon. In the last case, they could either be cloned separately or as contiguous sequences.

In one embodiment, the removal of unfavorable interactions as described above, leads to enhanced expression of the modified (poly)peptides.

In a preferred embodiment, one or more sub-sequences of the nucleic acid sequences are replaced by different sequences. This can be achieved by excising the sub-sequences using the conditions suitable for cleaving the cleavage sites adjacent to or at the end of the sub-sequence, for example, by using a restriction enzyme at the corresponding restriction site under the conditions well known to those skilled in the art, and replacing the sub-sequence by a different sequence compatible with the cleaved nucleic acid sequence. In a further preferred embodiment, the different sequences replacing the initial sub-sequence(s) are genomic or rearranged genomic sequences, for example in grafting CDRs from nonhuman antibodies onto consensus antibody sequences for rapid humanization of non-human antibodies. In the most preferred embodiment, the different sequences are random sequences, thus replacing the sub-sequence by a collection of sequences to introduce variability and to create a library. The random sequences can be assembled in various ways, for example by using a mixture of mononucleotides or preferably a mixture of trinucleotides (Virnekäs et al., 1994) during automated oligonucleotide synthesis, by error-prone PCR or by other methods well known to the practitioner in the art. The random sequences may be completely randomized or biased towards or against certain codons according to

the amino acid distribution at certain positions in known protein sequences. Additionally, the collection of random sub-sequences may comprise different numbers of codons, giving rise to a collection of sub-elements having different lengths.

In another embodiment, the invention provides for the expression of the nucleic acid sequences from a suitable vector and under suitable conditions well known to those skilled in the art.

In a further preferred embodiment, the (poly)peptides expressed from said nucleic acid sequences are screened and, optionally, optimized. Screening may be performed by using one of the methods well known to the practitioner in the art, such as phage-display, selectively infective phage, polysome technology to screen for binding, assay systems for enzymatic activity or protein stability. (Poly)peptides having the desired property can be identified by sequencing of the corresponding nucleic acid sequence or by amino acid sequencing or mass spectrometry. In the case of subsequent optimization, the nucleic acid sequences encoding the initially selected (poly)peptides can optionally be used without sequencing. Optimization is performed by repeating the replacement of sub-sequences by different sequences, preferably by random sequences, and the screening step one or more times.

The desired property the (poly)peptides are screened for is preferably, but not exclusively, selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

In one embodiment, the cleavage sites flanking the sub-sequences are sites recognized and cleaved by restriction enzymes, with recognition and cleavage sequences being either identical or different, the restricted sites either having blunt or sticky ends.

The length of the sub-elements is preferably, but not exclusively ranging between 1 amino acid, such as one residue in the active site of an enzyme or a structure-determining residue, and 150 amino acids, as for whole protein domains. Most preferably, the length ranges between 3 and 25 amino acids, such as most commonly found in CDR loops of antibodies.

The nucleic acid sequences could be RNA or, preferably, DNA.

In one embodiment, the (poly)peptides have an amino acid pattern characteristic of a particular species. This can for example be achieved by deducing the consensus sequences from a collection of homologous proteins of just one species, most preferably from a collection of human proteins. Since the (poly)peptides comprising consensus sequences are artificial, they have to be compared to the protein sequence(s) having the closest similarity to ensure the presence of said characteristic amino acid pattern.

In one embodiment, the invention provides for the creation of libraries of (poly)peptides comprising at least part of members or derivatives of the immunoglobulin superfamily, preferably of member or derivatives of the immunoglobulins. Most preferably, the invention provides for the creation of libraries of human antibodies, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3. In a first step, a database of published antibody sequences of human origin is established where the antibody sequences are aligned to each other. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold of CDR loops (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed e.g. by total gene synthesis or by the use of synthetic genetic subunits. These genetic subunits correspond to structural subelements on the (poly)peptide level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the sub-elements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of corresponding genetic sub-sequences. Most preferably, said (poly)peptides are or are derived from the HuCAL consensus genes: $V\kappa 1$, $V\kappa 2$, $V\kappa 3$, $V\kappa 4$, $V\lambda 1$, $V\lambda 2$, $V\lambda 3$, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, $C\kappa$, $C\lambda$, CH1 or any combination of said HuCAL consensus genes.

This collection of DNA molecules can then be used to create libraries of antibodies or antibody fragments, preferably Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments, which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimized using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which

binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. Preferably, an scFv fragment library comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes and at least a random sub-sequence encoding the heavy chain CDR3 sub-element is screened for binding antibodies. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic sub-sequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDRs) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are selected, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomized as described above.

A further embodiment of the present invention relates to fusion proteins by providing for a DNA sequence which encodes both the (poly)peptide, as described above, as well as an additional moiety. Particularly preferred are moieties which have a useful therapeutic function. For example, the additional moiety may be a toxin molecule which is able to kill cells (Vitetta et al., 1993). There are numerous examples of such toxins, well known to the one skilled in the art, such as the bacterial toxins Pseudomonas exotoxin A, and diphtheria toxin, as well as the plant toxins ricin, abrin, modeccin, saporin, and gelonin. By fusing such a toxin for example to an antibody fragment, the toxin can be targeted to, for example, diseased cells, and thereby have a beneficial therapeutic effect. Alternatively, the additional moiety may be a cytokine, such as IL-2 (Rosenberg & Lotze, 1986), which has a particular effect (in this case a T-cell proliferative effect) on a family of cells. In a further embodiment, the additional moiety may confer on its (poly)peptide partner a means of detection and/or purification. For example, the fusion protein could comprise the modified antibody fragment and an enzyme commonly used for detection purposes, such as alkaline phosphatase (Blake et al., 1984). There are numerous other moieties which can be used as detection or purification tags, which are well known to the practitioner skilled in the art. Particularly preferred are peptides comprising at least five histidine residues (Hochuli et al., 1988), which are able to bind to metal ions,

and can therefore be used for the purification of the protein to which they are fused (Lindner et al., 1992). Also provided for by the invention are additional moieties such as the commonly used C-myc and FLAG tags (Hopp et al., 1988; Knappik & Plückthun, 1994).

By engineering one or more fused additional domains, antibody fragments or any other (poly)peptide can be assembled into larger molecules which also fall under the scope of the present invention. For example, mini-antibodies (Pack, 1994) are dimers comprising two antibody fragments, each fused to a self-associating dimerization domain. Dimerization domains which are particularly preferred include those derived from a leucine zipper (Pack & Plückthun, 1992) or helix-turn-helix motif (Pack et al., 1993).

All of the above embodiments of the present invention can be effected using standard techniques of molecular biology known to anyone skilled in the art.

In a further embodiment, the random collection of sub-sequences (the library) is inserted into a singular nucleic acid sequence encoding one (poly)peptide, thus creating a (poly)peptide library based on one universal framework. Preferably a random collection of CDR sub-sequences is inserted into a universal antibody framework, for example into the HuCAL H3x2 single-chain Fv fragment described above.

In further embodiments, the invention provides for nucleic acid sequence(s), vector(s) containing the nucleic acid sequence(s), host cell(s) containing the vector(s), and (poly)peptides, obtainable according to the methods described above.

In a further preferred embodiment, the invention provides for modular vector systems being compatible with the modular nucleic acid sequences encoding the (poly)peptides. The modules of the vectors are flanked by restriction sites unique within the vector system and essentially unique with respect to the restriction sites incorporated into the nucleic acid sequences encoding the (poly)peptides, except for example the restriction sites necessary for cloning the nucleic acid sequences into the vector. The list of vector modules comprises origins of single-stranded replication, origins of double-stranded replication for high- and low copy number plasmids, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, purification and detection tags, and sequences of additional moieties.

The vectors are preferably, but not exclusively, expression vectors or vectors suitable for expression and screening of libraries.

In another embodiment, the invention provides for a kit, comprising one or more of the list of nucleic acid sequence(s), recombinant vector(s), (poly)peptide(s), and vector(s) according to the methods described above, and suitable host cell(s) for producing the (poly)peptide(s).

In a preferred embodiment, the invention provides for the creation of libraries of human antibodies. In a first step, a database of published antibody sequences of human origin is established. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed by the use of synthetic genetic subunits. These genetic subunits correspond to structural sub-elements on the protein level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the subelements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of said genetic subunits.

This collection of DNA molecules can then be used to create libraries of antibodies which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimised using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic subsequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDR's) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are eluted, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomised as described above.

Definitions

Protein:

The term protein comprises monomeric polypeptide chains as well as homo- or heteromultimeric complexes of two or more polypeptide chains connected either by covalent interactions (such as disulphide bonds) or by non-covalent interactions (such as hydrophobic or electrostatic interactions).

Analysis of homologous proteins:

The amino acid sequences of three or more proteins are aligned to each other (allowing for introduction of gaps) in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15% of the amino acids in the aligned genes are identical, and at least 30% are similar. Examples for families of homologous proteins are: immunoglobulin superfamily, scavenger receptor superfamily, fibronectin superfamilies (e.g. type II and III), complement control protein superfamily, cytokine receptor superfamily, cystine knot proteins, tyrosine kinases, and numerous other examples well known to one of ordinary skill in the art.

Consensus sequence:

Using a matrix of at least three aligned amino acid sequences, and allowing for gaps in the alignment, it is possible to determine the most frequent amino acid residue at each position. The consensus sequence is that sequence which comprises the amino acids which are most frequently represented at each position. In the event that two or more amino acids are equally represented at a single position, the consensus sequence includes both or all of those amino acids.

Removing unfavorable interactions:

The consensus sequence is per se in most cases artificial and has to be analyzed in order to change amino acid residues which, for example, would prevent the resulting molecule to adapt a functional tertiary structure or which would block the interaction with other (poly)peptide chains in multimeric complexes. This can be done either by (i) building a three-dimensional model of the consensus sequence using known related structures as a template, and identifying amino acid residues within the model which may interact unfavorably with each other, or (ii) analyzing the matrix of aligned amino acid sequences in order to detect combinations of amino

acid residues within the sequences which frequently occur together in one sequence and are therefore likely to interact with each other. These probable interaction-pairs are then tabulated and the consensus is compared with these "interaction maps". Missing or wrong interactions in the consensus are repaired accordingly by introducing appropriate changes in amino acids which minimize unfavorable interactions.

Identification of structural sub-elements:

Structural sub-elements are stretches of amino acid residues within a protein/(poly)peptide which correspond to a defined structural or functional part of the molecule. These can be loops (e.g. CDR loops of an antibody) or any other secondary or functional structure within the protein/(poly)peptide (domains, α -helices, β -sheets, framework regions of antibodies, etc.). A structural sub-element can be identified using known structures of similar or homologous (poly)peptides, or by using the above mentioned matrices of aligned amino acid sequences. Here the variability at each position is the basis for determining stretches of amino acid residues which belong to a structural sub-element (e.g. hypervariable regions of an antibody).

Sub-sequence:

A sub-sequence is defined as a genetic module which is flanked by unique cleavage sites and encodes at least one structural sub-element. It is not necessarily identical to a structural sub-element.

Cleavage site:

A short DNA sequence which is used as a specific target for a reagent which cleaves DNA in a sequence-specific manner (e.g. restriction endonucleases).

Compatible cleavage sites:

Cleavage sites are compatible with each other, if they can be efficiently ligated without modification and, preferably, also without adding an adapter molecule.

Unique cleavage sites:

A cleavage site is defined as unique if it occurs only once in a vector containing at least one of the genes of interest, or if a vector containing at least one of the genes of interest could be treated in a way that only one of the cleavage sites could be used by the cleaving agent.

Corresponding (poly)peptide sequences:

Sequences deduced from the same part of one group of homologous proteins are called corresponding (poly)peptide sequences.

Common cleavage sites:

A cleavage site in at least two corresponding sequences, which occurs at the same functional position (i.e. which flanks a defined sub-sequence), which can be hydrolyzed by the same cleavage tool and which yields identical compatible ends is termed a common cleavage site.

Excising genetic sub-sequences:

A method which uses the unique cleavage sites and the corresponding cleavage reagents to cleave the target DNA at the specified positions in order to isolate, remove or replace the genetic sub-sequence flanked by these unique cleavage sites.

Exchanging genetic sub-sequences:

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or a collection of sub-sequences, which contain ends compatible with the cleavage sites thus created, is inserted.

Expression of genes:

The term expression refers to in vivo or in vitro processes, by which the information of a gene is transcribed into mRNA and then translated into a protein/(poly)peptide. Thus, the term expression refers to a process which occurs inside cells, by which the information of a gene is transcribed into mRNA and then into a protein. The term expression also includes all events of post-translational modification and transport, which are necessary for the (poly)peptide to be functional.

Screening of protein/(poly)peptide libraries:

Any method which allows isolation of one or more proteins/(poly)peptides having a desired property from other proteins/(poly)peptides within a library.

Amino acid pattern characteristic for a species:

A (poly)peptide sequence is assumed to exhibit an amino acid pattern characteristic for a species if it is deduced from a collection of homologous proteins from just this species.

Immunoalobulin superfamily (IgSF):

The IgSF is a family of proteins comprising domains being characterized by the immunoglobulin fold. The IgSF comprises for example T-cell receptors and the immunoglobulins (antibodies).

Antibody framework:

A framework of an antibody variable domain is defined by Kabat et al. (1991) as the part of the variable domain which serves as a scaffold for the antigen binding loops of this variable domain.

Antibody CDR:

The CDRs (complementarity determining regions) of an antibody consist of the antigen binding loops, as defined by Kabat et al. (1991). Each of the two variable domains of an antibody Fv fragment contain three CDRs.

HuCAL:

Acronym for <u>Human Combinatorial Antibody Library</u>. Antibody Library based on modular consensus genes according to the invention (see Example 1).

Antibody fragment:

Any portion of an antibody which has a particular function, e.g. binding of antigen. Usually, antibody fragments are smaller than whole antibodies. Examples are Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments. Additionally, antibody fragments are often engineered to include new functions or properties.

Universal framework:

One single framework which can be used to create the full variability of functions, specificities or properties which is originally sustained by a large collection of different frameworks, is called universal framework.

Binding of an antibody to its target:

The process which leads to a tight and specific association between an antibody and a corresponding molecule or ligand is called binding. A molecule or ligand or any part of a molecule or ligand which is recognized by an antibody is called the target.

Replacing genetic sub-sequences

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or collection of sub-

sequences, which contains ends compatible with the cleavage sites thus created, is inserted.

Assembling of genetic sequences:

Any process which is used to combine synthetic or natural genetic sequences in a specific manner in order to get longer genetic sequences which contain at least parts of the used synthetic or natural genetic sequences.

Analysis of homologous genes:

The corresponding amino acid sequences of two or more genes are aligned to each other in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15 per cent of the amino acids in the aligned genes are identical, and at least 30 per cent are similar.

Legends to Figures and Tables

Fig. 1: Flow chart outlining the process of construction of a synthetic human antibody library based on consensus sequences.

- Fig. 2: Alignment of consensus sequences designed for each subgroup (amino acid residues are shown with their standard one-letter abbreviation). (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The positions are numbered according to Kabat (1991). In order to maximize homology in the alignment, gaps (—) have been introduced in the sequence at certain positions.
- Fig. 3: Gene sequences of the synthetic V kappa consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 4: Gene sequences of the synthetic V lambda consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 5: Gene sequences of the synthetic V heavy chain consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 6: Oligonucleotides used for construction of the consensus genes. The oligos are named according to the corresponding consensus gene, e.g. the gene Vκ1 was constructed using the six oligonucleotides O1K1 to O1K6. The oligonucleotides used for synthesizing the genes encoding the constant domains Cκ (OCLK1 to 8) and CH1 (OCH1 to 8) are also shown.
- Fig. 7A/B: Sequences of the synthetic genes encoding the constant domains C_K (A) and CH1 (B). The corresponding amino acid sequences as well as unique cleavage sites introduced in these genes are also shown.
- Fig. 7C: Functional map and sequence of module M24 comprising the synthetic Cλ gene segment (huCL lambda).
- Fig. 7D: Oligonucleotides used for synthesis of module M24.
- Fig. 8: Sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vx2. The signal sequence (amino acids 1 to 21) was derived from the *E. coli* phoA gene (Skerra &

Plückthun, 1988). Between the phoA signal sequence and the VH3 domain, a short sequence stretch encoding 4 amino acid residues (amino acid 22 to 25) has been inserted in order to allow detection of the single-chain fragment in Western blot or ELISA using the monoclonal antibody M1 (Knappik & Plückthun, 1994). The last 6 basepairs of the sequence were introduced for cloning purposes (EcoRI site).

- Fig. 9: Plasmid map of the vector pIG10.3 used for phage display of the H3κ2 scFv fragment. The vector is derived from pIG10 and contains the gene for the lac operon repressor, lacl, the artificial operon encoding the H3κ2-gene3ss fusion under control of the lac promoter, the lpp terminator of transcription, the single-strand replication origin of the *E. coli* phage 11 (F1_ORI), a gene encoding β-lactamase (bla) and the ColEI derived origin of replication.
- Fig. 10: Sequencing results of independent clones from the initial library, translated into the corresponding amino acid sequences. (A) Amino acid sequence of the VH3 consensus heavy chain CDR3 (position 93 to 102, Kabat numbering). (B) Amino acid sequences of 12 clones of the 10-mer library. (C) Amino acid sequences of 11 clones of the 15-mer library, *: single base deletion.
- Fig. 11: Expression test of individual library members. (A) Expression of 9 independent clones of the 10-mer library. (B) Expression of 9 independent clones of the 15-mer library. The lane designated with M contains the size marker. Both the gp3-scFv fusion and the scFv monomer are indicated.
- Fig. 12: Enrichment of specific phage antibodies during the panning against FITC-BSA. The initial as well as the subsequent fluorescein-specific sublibraries were panned against the blocking buffer and the ratio of the phage eluted from the FITC-BSA coated well vs. that from the powder milk coated well from each panning round is presented as the "specificity factor".
- Fig. 13: Phage ELISA of 24 independent clones after the third round of panning tested for binding on FITC-BSA.
- Fig. 14: Competition ELISA of selected FITC-BSA binding clones. The ELISA signals (OD_{405nm}) of scFv binding without inhibition are taken as 100%.
- Fig. 15: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against FITC-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).

Fig. 16: Coomassie-Blue stained SDS-PAGE of the purified anti-fluorescein soft fragments: M: molecular weight marker, A: total soluble cell extract after induction, B: fraction of the flow-through, C, D and E: purified soft fragments 1HA-3E4, 1HA-3E5 and 1HA-3E10, respectively.

- Fig. 17: Enrichment of specific phage antibodies during the panning against β-estradiol-BSA, testosterone-BSA, BSA, ESL-1, interleukin-2, lymphotoxin-β, and LeY-BSA after three rounds of panning.
- Fig. 18: ELISA of selected ESL-1 and B-estradiol binding clones
- Fig. 19: Selectivity and cross-reactivity of HuCAL antibodies: in the diagonal specific binding of HuCAL antibodies can be seen, off-diagonal signals show non-specific cross-reactivity.
- Fig. 20: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against β-estradiol-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat . numbering). One clone is derived from the 10mer library.
- Fig. 21: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against testosterone-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 22: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against lymphotoxin-B, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). One clone comprises a 14mer CDR, presumably introduced by incomplete coupling of the trinucleotide mixture during oligonucleotide synthesis.
- Fig. 23: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against ESL-1, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). Two clones are derived from the 10mer library. One clone comprises a 16mer CDR, presumably introduced by chain elongation during oligonucleotide synthesis using trinucleotides.
- Fig. 24: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 25: Schematic representation of the modular pCAL vector system.
- Fig. 25a:List of restriction sites already used in or suitable for the modular HuCAL genes and pCAL vector system.
- Fig. 26: List of the modular vector elements for the pCAL vector series: shown are only those restriction sites which are part of the modular system.

Fig. 27: Functional map and sequence of the multi-cloning site module (MCS)

- Fig. 28: Functional map and sequence of the pMCS cloning vector series.
- Fig. 29: Functional map and sequence of the pCAL module M1 (see Fig. 26).
- Fig. 30: Functional map and sequence of the pCAL module M7-III (see Fig. 26).
- Fig. 31: Functional map and sequence of the pCAL module M9-II (see Fig. 26).
- Fig. 32: Functional map and sequence of the pCAL module M11-II (see Fig. 26).
- Fig. 33: Functional map and sequence of the pCAL module M14-Ext2 (see Fig. 26).
- Fig. 34: Functional map and sequence of the pCAL module M17 (see Fig. 26).
- Fig. 35: Functional map and sequence of the modular vector pCAL4.
- Fig. 35a: Functional maps and sequences of additional pCAL modules (M2, M3, M7I, M7II, M8, M10II, M11II, M12, M13, M19, M20, M21, M41) and of low-copy number plasmid vectors (pCALO1 to pCALO3).
- Fig. 35b:List of oligonucleotides and primers used for synthesis of pCAL vector modules.
- Fig. 36: Functional map and sequence of the B-lactamase cassette for replacement of CDRs for CDR library cloning.
- Fig. 37: Oligo and primer design for Vk CDR3 libraries
- Fig. 38: Oligo and primer design for Vλ CDR3 libraries
- Fig. 39: Functional map of the pBS13 expression vector series.
- Fig. 40: Expression of all 49 HuCAL scFvs obtained by combining each of the 7 VH genes with each of the 7 VL genes (pBS13, 30°C): Values are given for the percentage of soluble vs. insoluble material, the total and the soluble amount compared to the combination H3κ2, which was set to 100%. In addition, the corresponding values for the McPC603 scFv are given.
- Table 1: Summary of human immunoglobulin germline sequences used for computing the germline membership of rearranged sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. (1) The germline name used in the various calculations, (2) the references number for the corresponding sequence (see appendix for sequence related citations), (3) the family where each sequence belongs to and (4), the various names found in literature for germline genes with identical amino acid sequences.
- Table 2: Rearranged human sequences used for the calculation of consensus sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The table summarized the name of the sequence (1),

the length of the sequence in amino acids (2), the germline family (3) as well as the computed germline counterpart (4). The number of amino acid exchanges between the rearranged sequence and the germline sequence is tabulated in (5), and the percentage of different amino acids is given in (6). Column (7) gives the references number for the corresponding sequence (see appendix for sequence related citations).

- Table 3: Assignment of rearranged V sequences to their germline counterparts.

 (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The germline genes are tabulated according to their family (1), and the number of rearranged genes found for every germline gene is given in (2).
- Table 4: Computation of the consensus sequence of the rearranged V kappa sequences. (A), V kappa subgroup 1, (B), V kappa subgroup 2, (C), V kappa subgroup 3 and (D), V kappa subgroup 4. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. (1) Amino acids are given with their standard one-letter abbreviations (and B means D or N, Z means E or Q and X means any amino acid). The statistical analysis summarizes the number of sequences found at each position (2), the number of occurrences of the most common amino acid (3), the amino acid residue which is most common at this position (4), the relative frequency of the occurrence of the most common amino acid (5) and the number of different amino acids found at each position (6).
- Table 5: Computation of the consensus sequence of the rearranged V lambda sequences. (A), V lambda subgroup 1, (B), V lambda subgroup 2, and (C), V lambda subgroup 3. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.
- Table 6: Computation of the consensus sequence of the rearranged V heavy chain sequences. (A), V heavy chain subgroup 1A, (B), V heavy chain subgroup 2, (D), V heavy chain subgroup 3, (E), V heavy chain subgroup 4, (F), V heavy chain subgroup 5, and (G), V heavy chain subgroup 6. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.

Examples

Example 1: Design of a Synthetic Human Combinatorial Antibody Library (HuCAL)

The following example describes the design of a fully synthetic human combinatorial antibody library (HuCAL), based on consensus sequences of the human immunoglobulin repertoire, and the synthesis of the consensus genes. The general procedure is outlined in Fig. 1.

1.1 Sequence database

1.1.1 Collection and alignment of human immunoglobulin sequences

In a first step, sequences of variable domains of human immunoglobulins have been collected and divided into three sub bases: V heavy chain (VH), V kappa (V κ) and V lambda (V λ). For each sequence, the gene sequence was then translated into the corresponding amino acid sequence. Subsequently, all amino acid sequences were aligned according to Kabat et al. (1991). In the case of V λ sequences, the numbering system of Chuchana et al. (1990) was used. Each of the three main databases was then divided into two further sub bases: the first sub base contained all sequences derived from rearranged V genes, where more than 70 positions of the sequence were known. The second sub base contained all germline gene segments (without the D- and J- minigenes; pseudogenes with internal stop codons were also removed). In all cases, where germline sequences with identical amino acid sequence but different names were found, only one sequence was used (see Table 1). The final databases of rearranged sequences contained 386, 149 and 674 entries for V κ , V λ and VH, respectively. The final databases of germline sequences contained 48, 26 and 141 entries for V κ , V λ and VH, respectively.

1.1.2 Assignment of sequences to subgroups

The sequences in the three germline databases where then grouped according to sequence homology (see also Tomlinson et al., 1992, Williams & Winter, 1993, and Cox et al., 1994). In the case of $V\kappa$, 7 families could be established. $V\lambda$ was divided into 8 families and VH into 6 families. The VH germline genes of the VH7 family (Van Dijk et al., 1993) were grouped into the VH1 family, since the genes of the two families are highly homologous. Each family contained different numbers of germline genes, varying from 1 (for example VH6) to 47 (VH3).

1.2 Analysis of sequences

1.2.1 Computation of germline membership

For each of the 1209 amino acid sequences in the databases of rearranged genes, the nearest germline counterpart, i.e. the germline sequence with the smallest number of amino acid differences was then calculated. After the germline counterpart was found, the number of somatic mutations which occurred in the rearranged gene and which led to amino acid exchanges could be tabulated. In 140 cases, the germline counterpart could not be calculated exactly, because more than one germline gene was found with an identical number of amino acid exchanges. These rearranged sequences were removed from the database. In a few cases, the number of amino acid exchanges was found to be unusually large (>20 for VL and >25 for VH), indicating either heavily mutated rearranged genes or derivation from germline genes not present in the database. Since it was not possible to distinguish between these two possibilities, these sequences were also removed from the database. Finally, 12 rearranged sequences were removed from the database because they were found to have very unusual CDR lengths and composition or unusual amino acids at canonical positions (see below). In summary, 1023 rearranged sequences out of 1209 (85%) could be clearly assigned to their germline counterparts (see Table 2).

After this calculation, every rearranged gene could be arranged in one of the families established for the germline genes. Now the usage of each germline gene, i.e. the number of rearranged genes which originate from each germline gene, could be calculated (see Table 2). It was found that the usage was strongly biased towards a subset of germline genes, whereas most of the germline genes were not present as rearranged genes in the database and therefore apparently not used in the immune system (Table 3). This observation had already been reported in the case of $V\kappa$ (Cox, et al., 1994). All germline gene families, where no or only very few rearranged counterparts could be assigned, were removed from the database, leaving 4 $V\kappa$, 3 $V\lambda$, and 6 VH families.

1.2.2 Analysis of CDR conformations

The conformation of the antigen binding loops of antibody molecules, the CDRs, is strongly dependent on both the length of the CDRs and the amino acid residues located at the so-called canonical positions (Chothia & Lesk, 1987). It has been found that only a few canonical structures exist, which determine the structural

repertoire of the immunoglobulin variable domains (Chothia et al., 1989). The canonical amino acid positions can be found in CDR as well as framework regions. The 13 used germline families defined above (7 VL and 6 VH) were now analyzed for their canonical structures in order to define the structural repertoire encoded in these families.

In 3 of the 4 V κ families (V κ 1, 2 and 4), one different type of CDR1 conformation could be defined for every family. The family V κ 3 showed two types of CDR1 conformation: one type which was identical to V κ 1 and one type only found in V κ 3. All V κ CDR2s used the same type of canonical structure. The CDR3 conformation is not encoded in the germline gene segments. Therefore, the 4 V κ families defined by sequence homology and usage corresponded also to 4 types of canonical structures found in V κ germline genes.

The 3 V λ families defined above showed 3 types of CDR1 conformation, each family with one unique type. The V λ 1 family contained 2 different CDR1 lengths (13 and 14 amino acids), but identical canonical residues, and it is thought that both lengths adopt the same canonical conformation (Chothia & Lesk, 1987). In the CDR2 of the used V λ germlines, only one canonical conformation exists, and the CDR3 conformation is not encoded in the germline gene segments. Therefore, the 3 V λ families defined by sequence homology and usage corresponded also to 3 types of canonical structures.

The structural repertoire of the human VH sequences was analyzed in detail by Chothia et al., 1992. In total, 3 conformations of CDR1 (H1-1, H1-2 and H1-3) and 6 conformations of CDR2 (H2-1, H2-2, H2-3, H2-4, H2-5 and H2-x) could be defined. Since the CDR3 is encoded in the D- and J-minigene segments, no particular canonical residues are defined for this CDR.

All the members of the VH1 family defined above contained the CDR1 conformation H1-1, but differed in their CDR2 conformation: the H2-2 conformation was found in 6 germline genes, whereas the conformation H2-3 was found in 8 germline genes. Since the two types of CDR2 conformations are defined by different types of amino acid at the framework position 72, the VH1 family was divided into two subfamilies: VH1A with CDR2 conformation H2-2 and VH1B with the conformation H2-3. The members of the VH2 family all had the conformations H1-3 and H2-1 in CDR1 and CDR2, respectively. The CDR1 conformation of the VH3 members was found in all cases to be H1-1, but 4 different types were found in CDR2 (H2-1, H2-3, H2-4 and H2-x). In these CDR2 conformations, the canonical framework residue 71 is always

defined by an arginine. Therefore, it was not necessary to divide the VH3 family into subfamilies, since the 4 types of CDR2 conformations were defined solely by the CDR2 itself. The same was true for the VH4 family. Here, all 3 types of CDR1 conformations were found, but since the CDR1 conformation was defined by the CDR itself (the canonical framework residue 26 was found to be glycine in all cases), no subdivisions were necessary. The CDR2 conformation of the VH4 members was found to be H2-1 in all cases. All members of the VH5 family were found to have the conformation H1-1 and H2-2, respectively. The single germline gene of the VH6 family had the conformations H1-3 and H2-5 in CDR1 and CDR2, respectively.

In summary, all possible CDR conformations of the $V\kappa$ and $V\lambda$ genes were present in the 7 families defined by sequence comparison. From the 12 different CDR conformations found in the used VH germline genes, 7 could be covered by dividing the family VH1 into two subfamilies, thereby creating 7 VH families. The remaining 5 CDR conformations (3 in the VH3 and 2 in the VH4 family) were defined by the CDRs themselves and could be created during the construction of CDR libraries. Therefore, the structural repertoire of the used human V genes could be covered by 49 (7 x 7) different frameworks.

1.2.3 Computation of consensus sequences

The 14 databases of rearranged sequences (4 Vκ, 3 Vλ and 7 VH) were used to compute the HuCAL consensus sequences of each subgroup (4 HuCAL- Vk, 3 HuCAL- Vλ, 7 HuCAL- VH, see Table 4, 5 and 6). This was done by counting the number of amino acid residues used at each position (position variability) and subsequently identifying the amino acid residue most frequently used at each position. By using the rearranged sequences instead of the used germline sequences for the calculation of the consensus, the consensus was weighted according to the frequency of usage. Additionally, frequently mutated and highly conserved positions could be identified. The consensus sequences were crosschecked with the consensus of the germline families to see whether the rearranged sequences were biased at certain positions towards amino acid residues which do not occur in the collected germline sequences, but this was found not to be the case. Subsequently, the number of differences of each of the 14 consensus sequences to each of the germline sequences found in each specific family was calculated. The overall deviation from the most homologous germline sequence was found to be 2.4 amino acid residues (s.d. = 2.7), ensuring that the "artificial" consensus sequences

can still be considered as truly human sequences as far as immunogenicity is concerned.

1.3 Structural analysis

So far, only sequence information was used to design the consensus sequences. Since it was possible that during the calculation certain artificial combinations of amino acid residues have been created, which are located far away in the sequence but have contacts to each other in the three dimensional structure, leading to destabilized or even misfolded frameworks, the 14 consensus sequences were analyzed according to their structural properties.

It was rationalized that all rearranged sequences present in the database correspond to functional and therefore correctly folded antibody molecules. Hence, the most homologous rearranged sequence was calculated for each consensus sequence. The positions where the consensus differed from the rearranged sequence were identified as potential "artificial residues" and inspected.

The inspection itself was done in two directions. First, the local sequence stretch around each potentially "artificial residue" was compared with the corresponding stretch of all the rearranged sequences. If this stretch was found to be truly artificial, i.e. never occurred in any of the rearranged sequences, the critical residue was converted into the second most common amino acid found at this position and analyzed again. Second, the potentially "artificial residues" were analyzed for their long range interactions. This was done by collecting all available structures of human antibody variable domains from the corresponding PDB files and calculating for every structure the number and type of interactions each amino acid residue established to each side-chain. These "interaction maps" were used to analyze the probable side-chain/side-chain interactions of the potentially "artificial residues". As a result of this analysis, the following residues were exchanged (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: S₆₅T Vκ1: N₃₄A,

Vk3: G₉A, D₆₀A, R₇₇S

Vλ3: V₇₈T

PCT/EP96/03647

1.4 Design of CDR sequences

WO 97/08320 .

The process described above provided the complete consensus sequences derived solely from the databases of rearranged sequences. It was rationalized that the CDR1 and CDR2 regions should be taken from the databases of used germline sequences, since the CDRs of rearranged and mutated sequences are biased towards their particular antigens. Moreover, the germline CDR sequences are known to allow binding to a variety of antigens in the primary immune response, where only CDR3 is varied. Therefore, the consensus CDRs obtained from the calculations described above were replaced by germline CDRs in the case of VH and V_K . In the case of V_A , a few amino acid exchanges were introduced in some of the chosen germline CDRs in order to avoid possible protease cleavage sites as well as possible structural constraints.

The CDRs of following germline genes have been chosen:

HuCAL gene	CDR1	CDR2
HuCAL-VH1A	VH1-12-1	VH1-12-1
HuCAL-VH1B	VH1-13-16	VH1-13-6,-7,-8,-9
HuCAL-VH2	VH2-31-10,-11,-12,-13	VH2-31-3,-4
HuCAL-VH3	VH3-13-8,-9,-10	VH3-13-8,-9,-10
HuCAL-VH4	VH4-11-7 to -14	VH4-11-8,-9,-11,-12,-14,-16
		VH4-31-17,-18,-19,-20
HuCAL-VH5	VH5-12-1,-2	VH5-12-1,-2
HuCAL-VH6	VH <u>6-35-1</u>	VH6-35-1
HuCAL-Vĸ1	Vκ1-14,-15	Vκ1-2,-3,-4,-5,-7,-8,-12,-13,-18,-19
HuCAL-Vĸ2	Vκ2-6	Vκ2-6
HuCAL-Vk3	Vκ3-1,-4	Vĸ3-4
HuCAL-Vĸ4	Vκ4-1	Vĸ4-1
HuCAL-Vλ1	HUMLV117,DPL5	DPL5
HuCAL-Vλ2	DPL11,DPL12	DPL12
HuCAL-Vλ3	DPL23	HUMLV318

In the case of the CDR3s, any sequence could be chosen since these CDRs were planned to be the first to be replaced by oligonucleotide libraries. In order to study the expression and folding behavior of the consensus sequences in *E. coli*, it would be useful to have all sequences with the same CDR3, since the influence of the CDR3s on the folding behavior would then be identical in all cases. The dummy sequences QQHYTTPP and ARWGGDGFYAMDY were selected for the VL chains (kappa and lambda) and for the VH chains, respectively. These sequences are known to be compatible with antibody folding in *E. coli* (Carter et al., 1992).

1.5 Gene design

The final outcome of the process described above was a collection of 14 HuCAL amino acid sequences, which represent the frequently used structural antibody repertoire of the human immune system (see Figure 2). These sequences were back-translated into DNA sequences. In a first step, the back-translation was done using only codons which are known to be frequently used in E. coli. These gene sequences were then used for creating a database of all possible restriction endonuclease sites, which could be introduced without changing the corresponding amino acid sequences. Using this database, cleavage sites were selected which were located at the flanking regions of all sub-elements of the genes (CDRs and framework regions) and which could be introduced in all HuCAL VH, Vκ or Vλ genes simultaneously at the same position. In a few cases it was not possible to find cleavage sites for all genes of a subgroup. When this happened, the amino acid sequence was changed, if this was possible according to the available sequence and structural information. This exchange was then analyzed again as described above. In total, the following 6 amino acid residues were exchanged during this design (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: T₃Q

VH6: S₄₂G

Vκ3: E,D, I_{se}V

Vκ4: K₂₄R

Vλ3: T₂₂S

In one case (5'-end of VH framework 3) it was not possible to identify a single cleavage site for all 7 VH genes. Two different type of cleavage sites were used instead: BstEll for HuCAL VH1A, VH1B, VH4 and VH5, and NspV for HuCAL VH2, VH3, VH4 and VH6.

Several restriction endonuclease sites were identified, which were not located at the flanking regions of the sub-elements but which could be introduced in every gene of a given group without changing the amino acid sequence. These cleavage sites were also introduced in order to make the system more flexible for further improvements. Finally, all but one remaining restriction endonuclease sites were removed in every gene sequence. The single cleavage site, which was not removed was different in all genes of a subgroup and could be therefore used as a "fingerprint" site to ease the identification of the different genes by restriction digest. The designed genes, together with the corresponding amino acid sequences and the group-specific restriction endonuclease sites are shown in Figure 3, 4 and 5, respectively.

1.6 Gene synthesis and cloning

The consensus genes were synthesized using the method described by Prodromou & Pearl, 1992, using the oligonucleotides shown in Fig. 6. Gene segments encoding the human constant domains $C\kappa$, $C\lambda$ and CH1 were also synthesized, based on sequence information given by Kabat et al., 1991 (see Fig. 6 and Fig. 7). Since for both the CDR3 and the framework 4 gene segments identical sequences were chosen in all HuCAL $V\kappa$, $V\lambda$ and VH genes, respectively, this part was constructed only once, together with the corresponding gene segments encoding the constant domains. The PCR products were cloned into pCR-Script KS(+) (Stratagene, Inc.) or pZErO-1 (Invitrogen, Inc.) and verified by sequencing.

Example 2: Cloning and Testing of a HuCAL-Based Antibody Library

A combination of two of the synthetic consensus genes was chosen after construction to test whether binding antibody fragments can be isolated from a library based on these two consensus frameworks. The two genes were cloned as a single-chain Fv (scFv) fragment, and a VH-CDR3 library was inserted. In order to test the library for the presence of functional antibody molecules, a selection procedure

was carried out using the small hapten fluorescein bound to BSA (FITC-BSA) as antigen.

2.1 Cloning of the HuCAL VH3-Vk2 scFv fragment

in order to test the design of the consensus genes, one randomly chosen combination of synthetic light and heavy gene (HuCAL-Vk2 and HuCAL-VH3) was used for the construction of a single-chain antibody (scFv) fragment. Briefly, the gene segments encoding the VH3 consensus gene and the CH1 gene segment including the CDR3 - framework 4 region, as well as the Vx2 consensus gene and the Ck gene segment including the CDR3 - framework 4 region were assembled yielding the gene for the VH3-CH1 Fd fragment and the gene encoding the Vκ2-Cκ light chain, respectively. The CH1 gene segment was then replaced by an oligonucleotide cassette encoding a 20-mer peptide linker with the sequence were 5'- TCAGCGGGTGGCGGTTCTGGCGGCGGTGGGAGCGGTGGCGGTGGTTC-TGGCGGTGGTGCTCCGATATCGGTCCACGTACGG-3' and 5'-AATTCCGTACG-TGGACCGATATCGGAACCACCACCGCCAGAACCACCGCCACCGCTCCCACCGC CGCCAGAACCGCCACCCGC-3', respectively. Finally, the HuCAL-Vk2 gene was inserted via EcoRV and BsiWI into the plasmid encoding the HuCAL-VH3-linker fusion, leading to the final gene HuCAL-VH3-Vk2, which encoded the two consensus sequences in the single-chain format VH-linker-VL. The complete coding sequence is shown in Fig. 8.

2.2 Construction of a monovalent phage-display phagemid vector pIG10.3

Phagemid plG10.3 (Fig. 9) was constructed in order to create a phage-display system (Winter et al., 1994) for the H3k2 scFv gene. Briefly, the EcoRI/HindIII restriction fragment in the phagemid vector plG10 (Ge et al., 1995) was replaced by the c-myc followed by an amber codon (which encodes an glutamate in the amber-suppresser strain XL1 Blue and a stop codon in the non-suppresser strain JM83) and a truncated version of the gene III (fusion junction at codon 249, see Lowman et al., 1991) through PCR mutagenesis.

2.3 Construction of H-CDR3 libraries

Heavy chain CDR3 libraries of two lengths (10 and 15 amino acids) were constructed using trinucleotide codon containing oligonucleotides (Virnekäs et al., 1994) as templates and the oligonucleotides complementing the flanking regions as primers. To concentrate only on the CDR3 structures that appear most often in functional antibodies, we kept the salt-bridge of R_{H94} and D_{H101} in the CDR3 loop. For the 15-mer library, both phenylalanine and methionine were introduced at position 100 since these two residues were found to occur quite often in human CDR3s of this length (not shown). For the same reason, valine and tyrosine were introduced at position 102. All other randomized positions contained codons for all amino acids except cystein, which was not used in the trinucleotide mixture.

The CDR3 libraries of lengths 10 and 15 were generated from the PCR fragments using oligonucleotide templates O3HCDR103T (5'- GATACGGCCGTGTATTA-TTGCGCGCGT (TRI), GATTATTGGGGCCAAGGCACCCTG-3') and O3HCDR153T (5'-GATACGGCCGT GTATTATTGCGCGCGT(TRI), (TTT/ATG)GAT(GTT/TAT)TGGG-GCCAAGGCACCCTG-3'), and primers O3HCDR35 (5'-GATACGGCCGTGTATTA-TTGC-3') and O3HCDR33 (5'-CAGGGTGCCTTGGCCCC-3'), where TRI are trinucleotide mixtures representing all amino acids without cystein, (TTT/ATG) and (GTT/TAT) are trinucleotide mixtures encoding the amino acids phenylalanine/methionine and valine/tyrosine, respectively. The potential diversity of these libraries was 4.7 x 107 and 3.4 x 1010 for 10-mer and 15-mer library, respectively. The library cassettes were first synthesized from PCR amplification of the oligo templates in the presence of both primers: 25 pmol of the oligo template O3HCDR103T or O3HCDR153T, 50 pmol each of the primers O3HCDR35 and O3HCDR33, 20 nmol of dNTP, 10x buffer and 2.5 units of Pfu DNA polymerase (Stratagene) in a total volume of 100 µl for 30 cycles (1 minute at 92°C, 1 minute at 62°C and 1 minute at 72°C). A hot-start procedure was used. The resulting mixtures were phenol-extracted, ethanol-precipitated and digested overnight with Eagl and Styl. The vector pIG10.3-scH3κ2cat, where the Eagl-Styl fragment in the vector pIG10.3-scH3κ2 encoding the H-CDR3 was replaced by the chloramphenical acetyltransferase gene (cat) flanked with these two sites, was similarly digested. The digested vector (35 μ g) was gel-purified and ligated with 100 μ g of the library cassette overnight at 16°C. The ligation mixtures were isopropanol precipitated, airdried and the pellets were redissolved in 100 µl of ddH2O. The ligation was mixed with 1 ml of freshly prepared electrocompetent XL1 Blue on ice. 20 rounds of electroporation were performed and the transformants were diluted in SOC medium, shaken at 37°C for 30 minutes and plated out on large LB plates (Amp/Tet/Glucose)

at 37°C for 6-9 hrs. The number of transformants (library size) was 3.2x10⁷ and 2.3x10⁷ for the 10-mer and the 15-mer library, respectively. The colonies were suspended in 2xYT medium (Amp/Tet/Glucose) and stored as glycerol culture. In order to test the quality of the initial library, phagemids from 24 independent colonies (12 from the 10-mer and 12 from the 15-mer library, respectively) were isolated and analyzed by restriction digestion and sequencing. The restriction analysis of the 24 phagemids indicated the presence of intact vector in all cases. Sequence analysis of these clones (see Fig. 10) indicated that 22 out of 24 contained a functional sequence in their heavy chain CDR3 regions. 1 out of 12 clones of the 10-mer library had a CDR3 of length 9 instead of 10, and 2 out of 12 clones of the 15-mer library had no open reading frame, thereby leading to a nonfunctional scFv; one of these two clones contained two consecutive inserts, but out of frame (data not shown). All codons introduced were presented in an even distribution.

Expression levels of individual library members were also measured. Briefly, 9 clones from each library were grown in 2xYT medium containing Amp/Tet/0.5% glucose at 37°C overnight. Next day, the cultures were diluted into fresh medium with Amp/Tet. At an OD_{500nm} of 0.4, the cultures were induced with 1 mM of IPTG and shaken at RT overnight. Then the cell pellets were suspended in 1 ml of PBS buffer + 1 mM of EDTA. The suspensions were sonicated and the supernatants were separated on an SDS-PAGE under reducing conditions, blotted on nylon membrane and detected with anti-FLAG M1 antibody (see Fig. 11). From the nine clones of the 10-mer library, all express the scFv fragments. Moreover, the gene III / scFv fusion proteins were present in all cases. Among the nine clones from the 15-mer library analyzed, 6/9 (67%) led to the expression of both scFv and the gene III/scFv fusion proteins. More importantly, all clones expressing the scFvs and gene III/scFv fusions gave rise to about the same level of expression.

2.4 Biopanning

Phages displaying the antibody libraries were prepared using standard protocols. Phages derived from the 10-mer library were mixed with phages from the 15-mer library in a ratio of 20:1 (1x10¹⁰ cfu/well of the 10-mer and $5x10^8$ cfu/well of the 15-mer phages, respectively). Subsequently, the phage solution was used for panning in ELISA plates (Maxisorp, Nunc) coated with FITC-BSA (Sigma) at concentration of $100 \, \mu \text{g/ml}$ in PBS at 4°C overnight. The antigen-coated wells were blocked with 3% powder milk in PBS and the phage solutions in 1% powder milk were added to each

well and the plate was shaken at RT for 1 hr. The wells were then washed with PBST and PBS (4 times each with shaking at RT for 5 minutes). The bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. The eluted phage solutions were immediately neutralized with 1/2 the volume of 1 M Tris-Cl, pH 7.6. Eluted phage solutions (ca. 450 μ l) were used to infect 5 ml of XL1 Blue cells at 37°C for 30 min. The infected cultures were then plated out on large LB plates (Amp/Tet/Glucose) and allowed to grow at 37°C until the colonies were visible. The colonies were suspended in 2xYT medium and the glycerol cultures were made as above described. This panning round was repeated twice, and in the third round elution was carried out with addition of fluorescein in a concentration of 100 μ g/ml in PBS. The enrichment of specific phage antibodies was monitored by panning the initial as well as the subsequent fluorescein-specific sub-libraries against the blocking buffer (Fig. 12). Antibodies with specificity against fluorescein were isolated after 3 rounds of panning.

2.5 ELISA measurements

One of the criteria for the successful biopanning is the isolation of individual phage clones that bind to the targeted antigen or hapten. We undertook the isolation of anti-FITC phage antibody clones and characterized them first in a phage ELISA format. After the 3rd round of biopanning (see above), 24 phagemid containing clones were used to inoculate 100 μ I of 2xYT medium (Amp/Tet/Glucose) in an ELISA plate (Nunc), which was subsequently shaken at 37°C for 5 hrs. 100 µl of 2xYT medium (Amp/Tet/1 mM IPTG) were added and shaking was continued for 30 minutes. A further 100 µl of 2xYT medium (Amp/Tet) containing the helper phage (1 x 109 cfu/well) was added and shaking was done at RT for 3 hrs. After addition of kanamycin to select for successful helper phage infection, the shaking was continued overnight. The plates were then centrifuged and the supernatants were pipetted directly into ELISA wells coated with 100 µl FITC-BSA (100µg/ml) and blocked with milk powder. Washing was performed similarly as during the panning procedure and the bound phages were detected with anti-M13 antibody-POD conjugate (Pharmacia) using soluble POD substrate (Boehringer-Mannheim). Of the 24 clones screened against FITC-BSA, 22 were active in the ELISA (Fig. 13). The initial libraries of similar titer gave rise to no detectable signal.

Specificity for fluorescein was measured in a competitive ELISA. Periplasmic fractions of five FITC specific scFvs were prepared as described above. Western blotting indicated that all clones expressed about the same amount of scFv fragment

(data not shown). ELISA was performed as described above, but additionally, the periplasmic fractions were incubated 30 min at RT either with buffer (no inhibition), with 10 mg/ml BSA (inhibition with BSA) or with 10 mg/ml fluorescein (inhibition with fluorescein) before adding to the well. Binding scFv fragment was detected using the anti-FLAG antibody M1. The ELISA signal could only be inhibited, when soluble fluorescein was added, indicating binding of the scFvs was specific for fluorescein (Fig. 14).

2.6 Sequence analysis

The heavy chain CDR3 region of 20 clones were sequenced in order to estimate the sequence diversity of fluorescein binding antibodies in the library (Fig. 15). In total, 16 of 20 sequences (80%) were different, showing that the constructed library contained a highly diverse repertoire of fluorescein binders. The CDR3s showed no particular sequence homology, but contained on average 4 arginine residues. This bias towards arginine in fluorescein binding antibodies had already been described by Barbas et al., 1992.

2.7 Production

E. coli JM83 was transformed with phagemid DNA of 3 selected clones and cultured in 0.5 L 2xYT medium. Induction was carried out with 1 mM IPTG at OD_{600nm} = 0.4 and growth was continued with vigorous shaking at RT overnight. The cells were harvested and pellets were suspended in PBS buffer and sonicated. The supernatants were separated from the cell debris via centrifugation and purified via the BioLogic system (Bio-Rad) by with a POROS®MC 20 column (IMAC, PerSeptive Biosystems, Inc.) coupled with an ion-exchange chromatography column. The ion-exchange column was one of the POROS®HS, CM or HQ or PI 20 (PerSeptive Biosystems, Inc.) depended on the theoretical pl of the scFv being purified. The pH of all the buffers was adjusted to one unit lower or higher than the pl of the scFv being purified throughout. The sample was loaded onto the first IMAC column, washed with 7 column volumes of 20 mM sodium phosphate, 1 M NaCl and 10 mM imidazole. This washing was followed by 7 column volumes of 20 mM sodium phosphate and 10 mM imidazole. Then 3 column volumes of an imidazole gradient (10 to 250 mM) were applied and the eluent was connected directly to the ion-exchanger. Nine column volumes of isocratic washing with 250 mM imidazole was followed by 15 column volumes of 250 mM to 100 mM and 7 column volumes of an imidazole / NaCl gradient (100 to 10 mM imidazole, 0 to 1 M NaCl). The flow rate was 5 ml/min. The purity of scFv fragments was checked by SDS-PAGE Coomassie

staining (Fig. 16). The concentration of the fragments was determined from the absorbance at 280 nm using the theoretically determined extinction coefficient (Gill & von Hippel, 1989). The scFv fragments could be purified to homogeneity (see Fig. 16). The yield of purified fragments ranged from 5 to 10 mg/L/OD.

Example 3: HuCAL H3k2 Library Against a Collection of Antigens

In order to test the library used in Example 2 further, a new selection procedure was carried out using a variety of antigens comprising ß-estradiol, testosterone, Lewis-Y epitope (LeY), interleukin-2 (IL-2), lymphotoxin-ß (LT-ß), E-selectin ligand-1 (ESL-1), and BSA.

3.1 Biopanning

The library and all procedures were identical to those described in Example 2. The ELISA plates were coated with β -estradiol-BSA (100 μ g/ml), testosterone-BSA (100 μ g/ml), LeY-BSA (20 μ g/ml) IL-2 (20 μ g/ml), ESL-1 (20 μ g/ml) and BSA (100 μ g/ml), LT- β (denatured protein, 20 μ g/ml). In the first two rounds, bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. In the case of BSA, elution after three rounds of panning was carried out with addition of BSA in a concentration of 100 μ g/ml in PBS. In the case of the other antigens, third round elution was done with 0.1 M triethylamine. In all cases except LeY, enrichment of binding phages could be seen (Figure 17). Moreover, a repetition of the biopanning experiment using only the 15-mer library resulted in the enrichment of LeY-binding phages as well (data not shown).

3.2. ELISA measurements

Clones binding to B-estradiol, testosterone, LeY, LT-B, ESL-1 and BSA were further analyzed and characterized as described in Example 2 for FITC. ELISA data for anti-B-estradiol and anti-ESL-1 antibodies are shown in Fig. 18. In one experiment, selectivity and cross-reactivity of binding scFv fragments were tested. For this purpose, an ELISA plate was coated with FITC, testosterone, B-estradiol, BSA, and ESL-1, with 5 wells for each antigen arranged in 5 rows, and 5 antibodies, one against each of the antigens, were screened against each of the antigens. Fig. 19

shows the specific binding of the antibodies to the antigen it was selected for, and the low cross-reactivity with the other four antigens.

3.3 Sequence analysis

The sequencing data of several clones against β -estradiol (34 clones), testosterone (12 clones), LT- β (23 clones), ESL-1 (34 clones), and BSA (10 clones) are given in Figures 20 to 24.

Example 4: Vector Construction

To be able to take advantage of the modularity of the consensus gene repertoire, a vector system had to be constructed which could be used in phage display screening of HuCAL libraries and subsequent optimization procedures. Therefore, all necessary vector elements such as origins of single-stranded or double-stranded replication, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, or detection tags had to be made compatible with the restriction site pattern of the modular consensus genes. Figure 25 shows a schematic representation of the pCAL vector system and the arrangement of vector modules and restriction sites therein. Figure 25a shows a list of all restriction sites which are already incorporated into the consensus genes or the vector elements as part of the modular system or which are not yet present in the whole system. The latter could be used in a later stage for the introduction of or within new modules.

4.1 Vector modules

A series of vector modules was constructed where the restriction sites flanking the gene sub-elements of the HuCAL genes were removed, the vector modules themselves being flanked by unique restriction sites. These modules were constructed either by gene synthesis or by mutagenesis of templates. Mutagenesis was done by add-on PCR, by site-directed mutagenesis (Kunkel et al., 1991) or multisite oligonucleotide-mediated mutagenesis (Sutherland et al., 1995; Perlak, 1990) using a PCR-based assembly method.

Figure 26 contains a list of the modules constructed. Instead of the terminator module M9 (HindIII-lpp-PacI), a larger cassette M9II was prepared to introduce Fsel as additional restriction site. M9II can be cloned via HindIII/BsrGI.

All vector modules were characterized by restriction analysis and sequencing. In the case of module M11-II, sequencing of the module revealed a two-base difference in positions 164/65 compared to the sequence database of the template. These two different bases (CA → GC) created an additional BanII site. Since the same two-base difference occurs in the f1 origin of other bacteriophages, it can be assumed that the two-base difference was present in the template and not created by mutagenesis during cloning. This BanII site was removed by site-directed mutagenesis, leading to module M11-III. The BssSI site of module M14 could initially not be removed without impact on the function of the CoIE1 origin, therefore M14-Ext2 was used for cloning of the first pCAL vector series. Figures 29 to 34 are showing the functional maps and sequences of the modules used for assembly of the modular vector pCAL4 (see below). The functional maps and sequences of additional modules can be found in Figure 35a. Figure 35b contains a list of oligonucleotides and primers used for the synthesis of the modules.

4.2 Cloning vector pMCS

To be able to assemble the individual vector modules, a cloning vector pMCS containing a specific multi-cloning site (MCS) was constructed. First, an MCS cassette (Fig. 27) was made by gene synthesis. This cassette contains all those restriction sites in the order necessary for the sequential introduction of all vector modules and can be cloned via the 5'-Hindll site and a four base overhang at the 3'-end compatible with an Aatll site. The vector pMCS (Figure 28) was constructed by digesting pUC19 with Aatll and Hindll, isolating the 2174 base pair fragment containing the bla gene and the CoIE1 origin, and ligating the MCS cassette.

4.3 Cloning of modular vector pCAL4

This was cloned step by step by restriction digest of pMCS and subsequent ligation of the modules M1 (via Aatll/Xbal), M7III (via EcoRI/HindIII), and M9II (via HindIII/BsrGI), and M11-II (via BsrGI/NheI). Finally, the bla gene was replaced by the cat gene module M17 (via Aatll/BgIII), and the wild type CoIE1 origin by module M14-Ext2 (via BgIII/NheI). Figure 35 is showing the functional map and the sequence of pCAL4.

4.4 Cloning of low-copy number plasmid vectors pCALO

A series of low-copy number plasmid vectors was constructed in a similar way using the p15A module M12 instead of the ColE1 module M14-Ext2. Figure 35a is showing the functional maps and sequences of the vectors pCALO1 to pCALO3.

Example 5: Construction of a HuCAL scFv Library

5.1. Cloning of all 49 HuCAL scFv fragments

All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes were assembled as described for the HuCAL VH3-Vk2 scFv in Example 2 and inserted into the vector pBS12, a modified version of the pLisc series of antibody expression vectors (Skerra et al., 1991).

5.2 Construction of a CDR cloning cassette

For replacement of CDRs, a universal ß-lactamase cloning cassette was constructed having a multi-cloning site at the 5'-end as well as at the 3'-end. The 5'-multi-cloning site comprises all restriction sites adjacent to the 5'-end of the HuCAL VH and VL CDRs, the 3'-multi-cloning site comprises all restriction sites adjacent to the 3' end of the HuCAL VH and VL CDRs. Both 5'- and 3'-multi-cloning site were prepared as cassettes via add-on PCR using synthetic oligonucleotides as 5'- and 3'-primers using wild type ß-lactamase gene as template. Figure 36 shows the functional map and the sequence of the cassette bla-MCS.

5.3. Preparation of VL-CDR3 library cassettes

The VL-CDR3 libraries comprising 7 random positions were generated from the PCR fragments using oligonucleotide templates $V\kappa1\&V\kappa3$, $V\kappa2$ and $V\kappa4$ and primers O_K3L_5 and O_K3L_3 (Fig. 37) for the $V\kappa$ genes, and $V\lambda$ and primers O_L3L_5 (5'-GCAGAAGGCGAACGTCC-3') and O_L3LA_3 (Fig. 38) for the $V\lambda$ genes. Construction of the cassettes was performed as described in Example 2.3.

5.4 Cloning of HuCAL scFv genes with VL-CDR3 libraries

Each of the 49 single-chains was subcloned into pCAL4 via Xbal/EcoRI and the VL-CDR3 replaced by the ß-lactamase cloning cassette via Bbsl/Mscl, which was then replaced by the corresponding VL-CDR3 library cassette synthesized as described above. This CDR replacement is described in detail in Example 2.3 where the cat gene was used.

5.5 Preparation of VH-CDR3 library cassette

The VH-CDR3 libraries were designed and synthesized as described in Example 2.3.

5.6 Cloning of HuCAL scFv genes with VL- and VH-CDR3 libraries

Each of the 49 single-chain VL-CDR3 libraries was digested with BssHII/Styl to replace VH-CDR3. The "dummy" cassette digested with BssHII/Styl was inserted, and was then replaced by a corresponding VH-CDR3 library cassette synthesized as described above.

Example 6: Expression tests

Expression and toxicity studies were performed using the scFv format VH-linker-VL. All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes assembled as described in Example 5 were inserted into the vector pBS13, a modified version of the pLisc series of antibody expression vectors (Skerra et al., 1991). A map of this vector is shown in Fig. 39.

E. coli JM83 was transformed 49 times with each of the vectors and stored as glycerol stock. Between 4 and 6 clones were tested simultaneously, always including the clone H3κ2, which was used as internal control throughout. As additional control, the McPC603 scFv fragment (Knappik & Plückthun, 1995) in pBS13 was expressed under identical conditions. Two days before the expression test was performed, the clones were cultivated on LB plates containing 30 μ g/ml chloramphenicol and 60 mM glucose. Using this plates an 3 ml culture (LB medium

containing 90 µg chloramphenicol and 60 mM glucose) was inoculated overnight at 37 °C. Next day the overnight culture was used to inoculate 30 ml LB medium containing chloramphenicol (30 μ g/ml). The starting OD_{600nm} was adjusted to 0.2 and a growth temperature of 30 °C was used. The physiology of the cells was monitored by measuring every 30 minutes for 8 to 9 hours the optical density at 600 nm. After the culture reached an OD soonm of 0.5, antibody expression was induced by adding IPTG to a final concentration of 1 mM. A 5 ml aliquot of the culture was removed after 2 h of induction in order to analyze the antibody expression. The cells were lysed and the soluble and insoluble fractions of the crude extract were separated as described in Knappik & Plückthun, 1995. The fractions were assayed by reducing SDS-PAGE with the samples normalized to identical optical densities. After blotting and immunostaining using the α -FLAG antibody M1 as the first antibody (see Ge et al., 1994) and an Fc-specific anti-mouse antiserum conjugated to alkaline phosphatase as the second antibody, the lanes were scanned and the intensities of the bands of the expected size (appr. 30 kDa) were quantified densitometrically and tabulated relative to the control antibody (see Fig. 40).

Example 7: Optimization of Fluorescein Binders

7.1. Construction of L-CDR3 and H-CDR2 library cassettes

A L-CDR3 library cassette was prepared from the oligonucleotide template CDR3L (5'-TGGAAGCTGAAGACGTGGGCGTGTATTATTGCCAGCAG(TR5)(TRI)₄CCG(TRI)-TTTGGCCAGGGTACGAAAGTT-3') and primer 5'-AACTTTCGTACCCTGGCC-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (TR5) comprised a trinucleotide mixture representing the 5 codons for Ala, Arg, His, Ser, and Tyr.

A H-CDR2 library cassette was prepared from the oligonucleotide template CDRsH (5'-AGGGTCTCGAGTGGGTGAGC(TRI)ATT(TRI)₂₋₃(6)₂(TRI)ACC(TRI)TATGCGGATA-GCGTGAAAGGCCGTTTTACCATTTCACGTGATAATTCGAAAAACACCA-3'), and primer 5'-TGGTGTTTTTCGAATTATCA-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (6) comprised the incorporation of (A/G) (A/C/G) T, resulting in the formation of 6 codons for Ala, Asn, Asp, Gly, Ser, and Thr, and the length distribution being obtained by performing one substoichiometric coupling of the (TRI) mixture during synthesis, omitting the capping step normally used in DNA synthesis.

DNA synthesis was performed on a 40 nmole scale, oligos were dissolved in 15 buffer, purified via gel filtration using spin columns (S-200), and the DNA concentration determined by OD measurement at 260 nm (OD 1.0 = 40 μg/ml). 10 nmole of the oligonucleotide templates and 12 nmole of the corresponding primers were mixed and annealed at 80°C for 1 min, and slowly cooled down to 37°C within 20 to 30 min. The fill-in reaction was performed for 2 h at 37°C using Klenow polymerase (2.0 μl) and 250 nmole of each dNTP. The excess of dNTPs was removed by gel filtration using Nick-Spin columns (Pharmacia), and the double-stranded DNA digested with Bbsl/Mscl (L-CDR3), or Xhol/Sful (H-CDR2) over night at 37°C. The cassettes were purified via Nick-Spin columns (Pharmacia), the concentration determined by OD measurement, and the cassettes aliquoted (15 pmole) for being stored at -80°C.

7.2 Library cloning:

DNA was prepared from the collection of FITC binding clones obtained in Example 2 (approx. 10^4 to clones). The collection of scFv fragments was isolated via Xbal/EcoRl digest. The vector pCAL4 (100 fmole, $10~\mu g$) described in Example 4.3 was similarly digested with Xbal/EcoRl, gel-purified and ligated with 300 fmole of the scFv fragment collection over night at 16° C. The ligation mixture was isopropanol precipitated, air-dried, and the pellets were redissolved in $100~\mu l$ of dd H_2 O. The ligation mixture was mixed with 1 ml of freshly prepared electrocompetent SCS 101 cells (for optimization of L-CDR3), or XL1 Blue cells (for optimization of H-CDR2) on ice. One round of electroporation was performed and the transformants were eluted in SOC medium, shaken at 37°C for 30 minutes, and an aliquot plated out on LB plates (Amp/Tet/Glucose) at 37°C for 6-9 hrs. The number of transformants was 5 x 10^4 .

Vector DNA (100 μ g) was isolated and digested (sequence and restriction map of scH3 κ 2 see Figure 8) with Bbsl/Mscl for optimization of L-CDR3, or Xhol/NspV for optimization of H-CDR2. 10 μ g of purified vector fragments (5 pmole) were ligated with 15 pmole of the L-CDR3 or H-CDR2 library cassettes over night at 16°C. The ligation mixtures were isopropanol precipitated, air-dried, and the pellets were redissolved in 100 μ l of dd H₂O. The ligation mixtures were mixed with 1 ml of freshly prepared electrocompetent XL1 Blue cells on ice. Electroporation was performed and the transformants were eluted in SOC medium and shaken at 37°C for 30 minutes. An aliquot was plated out on LB plates (Amp/Tet/Glucose) at 37°C for 6-9

hrs. The number of transformants (library size) was greater than 10⁸ for both libraries. The libraries were stored as glycerol cultures.

7.3. Biopanning

This was performed as described for the initial H3k2 H-CDR3 library in Example 2.1. Optimized scFvs binding to FITC could be characterized and analyzed as described in Example 2.2 and 2.3, and further rounds of optimization could be made if necessary.

References

- Barbas III, C.F., Bain, J.D., Hoekstra, D.M. & Lerner, R.A., PNAS <u>89</u>, 4457-4461 (1992).
- Better, M., Chang, P., Robinson, R. & Horwitz, A.H., Science 240, 1041-1043 (1988).
- Blake, M.S., Johnston, K.H., Russel-Jones, G.J. & Gotschlich, E.C., Anal. Biochem. 136, 175-179 (1984).
- Carter, P., Kelly, R.F., Rodrigues, M.L., Snedecor, B., Covrrubias, M., Velligan, M.D., Wong, W.L.T., Rowland, A.M., Kotts, C.E., Carver, M.E., Yang, M., Bourell, J.H., Shepard, H.M. & Henner, D., Bio/Technology 10, 163-167 (1992).
- Chothia, C. & Lesk, A.M., J. Biol. Chem. 196, 910-917 (1987).
- Chothia, C., Lesk, A.M., Gherardi, E., Tomlinson, I.A., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 799-817 (1992).
- Chothia, C., Lesk, A.M., Tramontano, A., Levitt, M., Smith-Gill, S.J., Air, G., Sheriff, S., Padlan, E.A., Davies, D., Tulip, W.R., Colman, P.M., Spinelli, S., Alzari, P.M. & Poljak, R.J., Nature 342, 877-883 (1989).
- Chuchana, P., Blancher, A., Brockly, F., Alexandre, D., Lefranc, G & Lefranc, M.-P., Eur. J. Immunol. 20, 1317-1325 (1990).
- Cox, J.P.L., Tomlinson, I.M. & Winter, G., Eur. J. Immunol. 24, 827-836 (1994).
- Ge, L., Knappik, A., Pack, P., Freund, C. & Plückthun, A., In: Antibody Engineering. Borrebaeck, C.A.K. (Ed.). p.229-266 (1995), Oxford University Press, New York, Oxford.)
- Gill, S.C. & von Hippel, P.H., Anal. Biochem. 182, 319.326 (1989).
- Hochuli, E., Bannwarth, W., Döbeli, H., Gentz, R. & Stüber, D., Bio/Technology 6, 1321-1325 (1988).
- Hopp, T.P., Prickett, K.S., Price, V.L., Libby, R.T., March, C.J., Cerretti, D.P., Urdal, D.L. & Conlon, P.J. Bio/Technology <u>6</u>, 1204-1210 (1988).
- Kabat, E.A., Wu, T.T., Perry, H.M., Gottesmann, K.S. & Foeller, C., Sequences of proteins of immunological interest, NIH publication 91-3242 (1991).
- Knappik, A. & Plückthun, A., Biotechniques 17, 754-761 (1994).
- Knappik, A. & Plückthun, A., Protein Engineering 8, 81-89 (1995).
- Kunkel, T.A., Bebenek, K. & McClary, J., Methods in Enzymol. 204, 125-39 (1991).
- Lindner, P., Guth, B., Wülfing, C., Krebber, C., Steipe, B., Müller, F. & Plückthun, A., Methods: A Companion to Methods Enzymol. 4, 41-56 (1992).
- Lowman, H.B., Bass, S.H., Simpson, N. and Wells, J.A., Biochemistry <u>30</u>, 10832-10838 (1991).
- Pack, P. & Plückthun, A., Biochemistry 31, 1579-1584 (1992).

Pack, P., Kujau, M., Schroeckh, V., Knüpfer, U., Wenderoth, E., Riesenberg D. & Plückthun, A., Bio/Technology 11, 1271-1277 (1993).

- Pack, P., Ph.D. thesis, Ludwig-Maximilians-Universität München (1994).
- Perlak, F. J., Nuc. Acids Res. 18, 7457-7458 (1990).
- Plückthun, A., Krebber, A., Krebber, C., Horn, U., Knüpfer, U., Wenderoth, R., Nieba, L., Proba, K. & Riesenberg, D., A practical approach. Antibody Engineering (Ed. J. McCafferty). IRL Press, Oxford, pp. 203-252 (1996).
- Prodromou, C. & Pearl, L.H., Protein Engineering 5, 827-829 (1992).
- Rosenberg, S.A. & Lotze, M.T., Ann. Rev. Immunol. 4, 681-709 (1986).
- Skerra, A. & Plückthun, A., Science 240, 1038-1041 (1988).
- Skerra, A., Pfitzinger, I. & Plückthun, A., Bio/Technology 9, 273-278 (1991).
- Sutherland, L., Davidson, J., Glass, L.L., & Jacobs, H.T., BioTechniques <u>18</u>, 458-464, 1995.
- Tomlinson, I.M., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 776-798 (1992).
- Ullrich, H.D., Patten, P.A., Yang, P.L., Romesberg, F.E. & Schultz, P.G., Proc. Natl. Acad. Sci. USA <u>92</u>, 11907-11911 (1995).
- Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder Jr., H.W. & Milner, E.C.B., Eur. J. Immunol. 23, 832-839 (1993).
- Virnekäs, B., Ge, L., Plückthun, A., Schneider, K.C., Wellnhofer, G. & Moroney, S.E., Nucleic Acids Research 22, 5600-5607 (1994).
- Vitetta, E.S., Thorpe, P.E. & Uhr, J., Immunol. Today 14, 253-259 (1993).
- Williams, S.C. & Winter, G., Eur. J. Immunol. 23, 1456-1461 (1993).
- Winter, G., Griffiths, A.D., Hawkins, R.E. & Hoogenboom, H.R., Ann. Rev. Immunol. 12, 433-455 (1994).

Table 1A: Human kappa germline gene segments

Used Name¹	Reference ²	Family	Germline genes
Vk1-1	9	1	08; 018; DPK1
.Vk1-2	1	1	L14; DPK2
Vk1-3	2	1	L15(1); HK101; HK146; HK189
Vk1-4	9	1	L11-
Vk1-5	2	1	A30
Vk1-6	1	1	LFVK5
Vk1-7	1	1	LFVK431
Vk1-8	1	1	L1; HK137
Vk1-9	1	1	A20; DPK4
Vk 1-10	1	1	L18; Va"
Vk1-11	1 .	1	L4; L18; Va'; V4a
Vk1-12	2	1	L5; L19(1); Vb; Vb4; DPK5; L19(2); Vb"; DPK6
Vk 1-13	2	1	L15(2); HK134; HK166; DPK7
Vk1-14	8	1	L8; Vd; DPK8
Vk1-15	8	1	L9; Ve
Vk1-16	1	1	L12(1); HK102; V1
Vk1-17	2	1	L12(2)
Vk1-18	1	1	012a (V3b)
Vk1-19	6	1	02; 012; DPK9
Vk1-20	2	1	L24; Ve"; V13; DPK10
Vk1-21	1	1	04; 014
Vk1-22	2	1	L22
Vk1-23	2	1	L23
Vk2-1	1	2	A2; DPK12
Vk2-2	6	. 2	01; 011(1); DPK13
Vk2-3	6	2	012(2); V3a
Vk2-4	2	2	L13
Vk2-5	1	2	DPK14
Vk2-6	4 .	2	A3; A19; DPK15
Vk2-7	4	2	A29; DPK27
Vk2-8	4	2	A13
Vk2-9	1	2	A23

PCT/EP96/03647

WO 97/08320

Table 1A: (continued)

Used Name	Reference ²	Family	Germline genes
Vk2-10	4	2	A7; DPK17
Vk2-11	4	2	A17; DPK18
Vk2-12	4	2	A1; DPK19
Vk3-1	11	3	A11; humkv305; DPK20
Vk3-2	1	3	L20; Vg"
Vk3-3	2	3	L2; L16; humkv328; humkv328h2; humkv328h5; DPK21
Vk3-4	11	· 3	A27; humkv325; VkRF; DPK22
Vk3-5	2	3	L25; DPK23
Vk3-6	2	3	L10(1)
Vk3-7	7	3	L10(2)
Vk3-7	, 7	3	L6; Vg
Vk4-1	3	4	B3; VkIV; DPK24
Vk5-1	10	5	B2; EV15
Vk6-1	12	6	A14; DPK25
Vk6-2	12	6	A10; A26; DPK26
Vk7-1	5	7	B1

PCT/EP96/03647

Table 1B: Human lambda germline gene segments

WO 97/08320

Used Name'	Reference ²	Family ³	Germline genes
DPL1	1	1	
DPL2	1	1	HUMLV1L1
DPL3	1	1	HUMLV122
DPL4	1	1	VLAMBDA 1.1
HUMLV117	2	1	
DPL5	1	1	HUMLV117D
DPL6	1	1	
DPL7	1	1	IGLV1S2
DPL8	1	1	HUMLV1042
DPL9	1	1	HUMLV101
DPL10	1	2	
VLAMBDA 2.1	3	2	
DPL11	1	2	
DPL12	1	2	
DPL13	1	2	
DPL14	1	2	
DPL16	1	3	Humlv418; IGLV3S1
DPL23	1	3	VI III.1
Humlv318	4 ·	3	
DPL18	1	7	4A: HUMIGLVA
DPL19	· 1	7	
DPL21	1	8	VL8.1
HUMLV801	5	8	
DPL22	1	9	
DPL24	1	unassigned	VLAMBDA N.2
gVLX-4.4	6	10	

4 8 SUBSTITUTE SHEET (RULE 26)

Table 1C: Human heavy chain germline gene segments

Used Name ¹	Reference ²	Family ³	Germline genes
VH1-12-1	19	1	DP10; DA-2; DA-6
VH1-12-8	22	1	RR.VH1:2
VH1-12-2	6	1	hv1263
VH1-12-9	7	1	YAC-7; RR.VH1.1; 1-69
VH1-12-3	19	1	DP3
VH1-12-4	· 19	1	DP21; 4d275a; VH7a
VH1-12-5	18	1	1-4.1b; V1-4.1b
VH1-12-6	21	1	1D37; VH7b ; 7-81; YAC-10
VH1-12-7	19	1	DP14; VH1GRR; V1-18
VH1-13-1	10	1	71-5; DP2
VH1-13-2	10	1	E3-10
VH1-13-3	19	1	DP1
VH1-13-4	12	1	V35
VH1-13-5	8	1	V1-2b
VH1-13-6	18	1	1-2; DP75
VH1-13-7	21	1	V1-2
VH1-13-8	19	1	DP8
VH1-13-9	3	1	1-1
VH1-13-10	19	1	DP12
VH1-13-11	15	1	V13C
VH1-13-12	18	1	I-3b; DP25; V1-3b
VH1-13-13	3	1	1-92
VH1-13-14	18	1	I-3; V1-3
VH1-13-15	19	1	DP15; V1-8
VH1-13-16	3	1	21-2; 3-1; DP7; V1-46
VH1-13-17	16	1	HG3
VH1-13-18	19	. 1	DP4; 7-2; V1-45
VH1-13-19	27	1	COS 5
VH1-1X-1	19	1	DP5; 1-24P
VH2-21-1	18	2	II-5b
VH2-31-1	2	2	VH2S12-1
VH2-31-2	2	2	VH2S12-7
VH2-31-3	2	2	VH2S12-9; DP27
VH2-31-4	2	2	VH2S12-10
VH2-31-5	14	2	V2-26; DP26; 2-26
VH2-31-6	15	2	VF2-26

4°S

Table 1C: (continued)

Used Name'	Reference ²	Family	Germline genes*
VH2-31-7	19	2	DP28; DA-7
VH2-31-14	7	2	YAC-3; 2-70
VH2-31-8	2	2	VH2S12-5
VH2-31-9	2	2	VH2S12-12
VH2-31-10	18	. 2	II-5; V2-5
VH2-31-11	2	2	VH2S12-2; VH2S12-8
VH2-31-12	2	2	VH2S12-4; VH2S12-6
VH2-31-13	2 .	2	VH2S12-14
VH3-11-1	13	3	v65-2; DP44
VH3-11-2	19	3	DP45
VH3-11-3	3	3	13-2; DP48
VH3-11-4	19	3	DP52
VH3-11-5	14	3	v3-13
VH3-11-6	19	3	DP42
VH3-11-7	3	3	8-1B; YAC-5; 3-66
VH3-11-8	14	3	V3-53
VH3-13-1	3	3	22-2B; DP35; V3-11
VH3-13-5	19	3	DP59; VH19; V3-35
VH3-13-6	25	. 3	f1-p1; DP61
VH3-13-7	19	3	DP46; GL-SJ2; COS 8; hv3005; hv3005f3; 3d21b; 56p1
VH3-13-8	24	3	VH26
VH3-13-9	5	3	vh26c
VH3-13-10	19	3	DP47; VH26; 3-23
VH3-13-11	3	3	1-91
VH3-13-12	19	3	DP58
VH3-13-13	3	3	1-9III; DP49; 3-30; 3d28.1
VH3-13-14	24	. 3	3019B9; DP50; 3-33; 3d277
VH3-13-15	27	. 3	COS 3
VH3-13-16	19	3	DP51
VH3-13-17	16	3	H11
VH3-13-18	19	3	DP53; COS 6; 3-74; DA-8
VH3-13-19	19	3	DP54; VH3-11; V3-7
VH3-13-20	14	3	V3-64; YAC-6
VH3-13-21	14	3	V3-48
VH3-13-22	14	3	V3-43; DP33
VH3-13-23	14	3	V3-33

PCT/EP96/03647

Table 1C: (continued)

Used Name ¹	Reference ²	Family	Germline genes*
VH3-13-24	14	3	V3-21; DP77
VH3-13-25	14	3	V3-20; DP32
VH3-13-26	14	3	V3-9; DP31
VH3-14-1	3	3	12-2; DP29; 3-72; DA-3
VH3-14-4	7	. 3	YAC-9; 3-73; MTGL
VH3-14-2	4	3	VHD26
VH3-14-3	19	3 .	DP30
VH3-1X-1	1	3	LSG8.1; LSG9.1; LSG10.1; HUM12IGVH; HUM13IGVH
VH3-1X-2	1	3	LSG11.1; HUM4IGVH
VH3-1X-3	3	3	9-1; DP38; LSG7.1; RCG1.1; LSG1.1; LSG3.1; LSG5.1; HUM15IGVH; HUM2IGVH; HUM9IGVH
VH3-1X-4	1	3	LSG4.1
VH3-1X-5	1	3	L5G2.1
VH3-1X-6	1	3	LSG6.1; HUM10IGVH
VH3-1X-7	18	· 3	3-15; V3-15
VH3-1X-8	1	3	LSG12.1; HUM5IGVH
VH3-1X-9	14	3	V3-49
VH4-11-1	22	4	Tou-VH4.21
VH4-11-2	17	4	VH4.21; DP63; VH5; 4d76; V4-34
VH4-11-3	23	4	4.44
VH4-11-4	23	4	4.44.3
VH4-11-5	23	. 4	4.36
VH4-11-6	23	4	4.37
VH4-11-7	18	4	IV-4; 4.35; V4-4
VH4-11-8	17	4	VH4.11; 3d197d; DP71; 58p2
VH4-11-9	20	4	Н7
VH4-11-10	20	. 4	HB
VH4-11-11	20	4	H9
VH4-11-12	17	4	VH4.16
VH4-11-13	23	4	4.38
VH4-11-14	17	4	VH4.15
VH4-11-15	11	4	58
VH4-11-16	10	4	71-4; V4-59
VH4-21-1	11	4	11
VH4-21-2	17	4	VH4.17; VH4.23; 4d255; 4.40; DP69
VH4-21-3	17	4	VH4.19; 79; V4-4b

Table 1C: (continued)

Used Name'	Reference ²	Family ³	Germline genes
VH4-21-4	19	4	DP70; 4d68; 4.41
VH4-21-5	19	4	DP67; VH4-4B
VH4-21-6	17	4	VH4.22; VHSP; VH-JA
VH4-21-7	17	4	VH4.13; 1-9II; 12G-1; 3d28d; 4.42; DP68; 4-28
VH4-21-8	26	4	hv4005; 3d24d
VH4-21-9	. 17	4	VH4.14
VH4-31-1	23	4	4.34; 3d230d; DP78
VH4-31-2	23	4	4.34.2
VH4-31-3	19	4	DP64; 3d216d
VH4-31-4	19	4	DP65; 4-31; 3d277d
VH4-31-5	23	4	4.33; 3d75d
VH4-31-6	20	4	H10
VH4-31-7	20	4	. H11
VH4-31-8	23	4	4.31
VH4-31-9	23	4	4.32
VH4-31-10	20	4	3d277d
VH4-31-11	20	4	3d216d
VH4-31-12	20	4	3d279d
VH4-31-13	17	4	VH4.18; 4d154; DP79
VH4-31-14	8	4	V4-39
VH4-31-15	11	4	2-1; DP79
VH4-31-16	23	4	4.30
VH4-31-17	17	4	VH4.12
VH4-31-18	10	4	71-2; DP66
VH4-31-19	23	4	4.39
VH4-31-20	8	4	V4-61
VH5-12-1	9	5	VH251; DP73; VHVCW; 51-R1; VHVLB; VHVCH; VHVTT; VHVAU; VHVBLK; VhAU; V5-51
VH5-12-2	17	5	VHVJB
VH5-12-3	3	5	1-v; DP80; 5-78
VH5-12-4	9	5	VH32; VHVRG; VHVMW; 5-2R1
VH6-35-1	4	6	VHVI; VH6; VHVIIS; VHVITE; VHVIJB; VHVICH; VHVICW; VHVIBLK; VHVIMW; DP74; 6-1G1; V6-1

Table 2A: rearranged human kappa sequences

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
III-3R	108	1	08	1	1,1%	70
No.86	109	1	08	3	3,2%	80
AU	108	1	08	6	6,3%	103
ROY	108	1	08	6	6,3%	43
IC4	108	1	08	6	6,3%	70
HIV-B26	106	1	08	3	3,2%	8
GRI	108	1	08	8	8,4%	30
AG	106	1	08	8	8,6%	116
REI	108	1	08	9	9,5%	86
CLL PATIENT 16	88	1	08	2	2,3%	122
CLL PATIENT 14	87	1	08	2	2,3%	122
CLL PATIENT 15	88	1	08	2	2,3%	122
GM4672	108	1	08	11	11,6%	24
HUM. YFC51.1	108	1	08	12	12,6%	110
LAY	108	1	08	12	12,6%	48
HIV-b13	106	1	08	9	9,7%	8
MAL-NaCl	108	1	08	13	13,7%	102
STRAb SA-1A	108	1	02	0	0,0%	120
HuVHCAMP	108	1	08	13	13,7%	100
CRO	108	1	02	10	10,5%	30
Am107	108	1	02	12	12,6%	108
WALKER	107	1	02	4	4,2%	57
III-2R	109	1	A20	0	0,0%	70
FOG1-A4	107	1	A20	4	4,2%	41
HK137	95	1	L1	0	0,0%	10
CEA4-8A	107	1	02	7	7,4%	41
Va'	95	1	L4	0	0,0%	90
TR1.21	108	1	02	4	4,2%	92
HAU	108	1	02	6	6,3%	123
HK102	95	1	L12(1)	0	0,0%	9
H20C3K	108	1	L12(2)	3	3,2%	125
CHEB	108	i	02	7	7,4%	5
HK134	95	1	L15(2)	0	0,0%	10
TEL9	108	1	02	9	9,5%	73
			53			

Table 2A: (continued)

TR1.32 103 1 02 3 3.2% 92 RF-KES1 97 1 A20 4 4.2% 121 WES 108 1 L5 10 10,5% 61 DILp1 95 1 O4 1 1,1% 70 SA-4B 107 1 L12(2) 8 8,4% 120 HK101 95 1 L15(1) 0 0,0% 9 TR1.23 108 1 O2 5 5,3% 92 HF2-1/17 108 1 A30 0 0,0% 4 2E7 108 1 A30 1 1,1% 62 33.C9 107 1 L12(2) 7 7,4% 126 3D6 105 1 L12(2) 7 7,4% 126 3D6 105 1 L12(2) 2 2,1% 34 1-2a 108 1 L8 8 8,4% 70 RF-KL1 97 1 L8 4 4,2% 121 TNF-E7 108 1 A30 9 9,5% 41 TR1.22 108 1 O2 7 7,4% 92 HIV-B35 106 1 O2 7 7,4% 92 HIV-B35 106 1 O2 2 2,2% 8 HIV-b27 106 1 O2 2 2,2% 8 HIV-b28 107 1 O2 10 10,8% 8 RF-SJ5 95 1 A30 5 5,3% 113 GAL(I) 108 1 A30 6 6,3% 70 HIV-b8 107 1 O2 10 10,8% 8 RF-SJ5 95 1 A30 6 6,3% 70 HIV-b14 106 1 A20 2 2,2% 8 TNF-E1 105 1 L12(2) 5 5,3% 40 FOG1-68 108 1 A30 8 8,4% 37 EU 108 1 A30 8 8,4% 37 EU 108 1 L12(2) 5 5,3% 40 FOG1-68 108 1 L12(2) 11 11,6% 41 TXTRG1 108 1 L12(2) 11 11,6% 41 TXTRG1 108 1 L12(2) 11 11,6% 41 TXTRG1 108 1 L12(2) 11 11,6% 32 LUMmO1 108 1 L12(2) 11 11,6% 38 HIV-54	Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
WES 108 1 L5 10 10,5% 61 DILp1 95 1 04 1 1,1% 70 SA-4B 107 1 L12(2) 8 8,4% 120 HK101 95 1 L15(1) 0 0,0% 9 TR1.23 108 1 02 5 5,3% 92 HF2-1/17 108 1 A30 0 0,0% 4 2E7 108 1 A30 1 1,1% 62 33.C9 107 1 L12(2) 7 7,4% 126 3D6 105 1 L12(2) 7 7,4% 126 3D6 105 1 L12(2) 7 7,4% 126 SA-KL1 97 1 L8 8 8 8,4% 70 RF-KL1 97 1 L8 4 4,2% 121 TNF-E7 108 1 A30 9 9,5% 41 TR1.22 108 1 02 7 7,4% 92 HIV-B35 106 1 02 7 7,4% 92 HIV-B35 106 1 02 2 2,2% 8 HIV-b22 106 1 02 2 2,2% 8 HIV-b27 106 1 02 2 2,2% 8 HIV-B8 107 1 02 10 10,8% 8 RF-SJ5 95 1 A30 5 5,3% 113 GAL(1) 108 1 A30 6 6,3% 64 R3.SH5G 108 1 02 6 6,3% 70 HIV-b14 106 1 A20 2 2,2% 8 TNF-E1 105 1 L5 8 8,4% 41 WEA 108 1 A30 8 8,4% 37 EU 108 1 A30 8 8,4% 37 EU 108 1 L12(2) 5 5,3% 40 FOG1-G8 108 1 L12(2) 1 11,6% 37 EU 108 1 L12(2) 1 5 5,3% 40 FOG1-G8 108 1 L12(2) 1 11,6% 37 EU 108 1 L12(2) 1 11,1,6% 32 EU 109 1 108 1 L12(2) 1 11,1,6% 32 EU 109 1 108 1 L12(2) 1 11,1,6% 32 EU 109 1 108 1 L12(2) 1 11,1,6% 32 EU 109 1 108 1 L12(2) 1 11,1,6% 32 EU 109 1 108 1 L12(2) 1 10,1,5% 6	TR1.32	103	1	02	3	3,2%	92
Dilp1	RF-KES1	97	1	A20	4	4,2%	121
SA-4B	wes [.]	108	1	L5	10	10,5%	61
	DILp1	95	1	04	1	1,1%	70
IRILO 108	•	107	1	L12(2)	8	8,4%	120
HF2-1/17 108 1 A30 0 0,0% 4 2E7 108 1 A30 1 1,1% 62 33.C9 107 1 L12(2) 7 7,4% 126 306 105 1 L12(2) 2 2,1% 34 1-2a 108 1 L8 8 8,4% 70 RF-KL1 97 1 L8 4 4,2% 121 TNF-E7 108 1 A30 9 9,5% 41 TRF.22 108 1 02 7 7,4% 92 HIV-B35 106 1 02 7 7,4% 92 HIV-B35 106 1 02 2 2,2% 8 HIV-b22 106 1 02 2 2,2% 8 HIV-b27 106 1 02 2 2,2% 8 HIV-b27 106 1 02 2 2,2% 8 HIV-b88 107 1 02 10 10,8% 8 HIV-b8 107 1 02 10 10,8% 8 RF-SJ5 95 1 A30 5 5,3% 113 GAL(I) 108 1 A30 6 6,3% 64 RI-SJ56 108 1 02 6 6,3% 70 RI-SJ56 108 1 02 6 6,3% 70 RI-FE1 105 1 L5 8 8,4% 41 WEA 108 1 A30 8 8,4% 37 EU 108 1 L12(2) 5 5,3% 40 FOG1-G8 108 1 L8 11 11,6% 41 IX7RG1 108 1 L8 11 11,6% 41 IX7RG1 108 1 L8 3 3,2% 70 EU 108 1 L8 3 3,2% 72 EUUMm01 108 1 L12(2) 11 11,6% 32 EUUMm01 108 1 L12(2) 10 10,5% 6 EHIV-b1 106 1 A20 4 4,3% 8 EHIV-b1 100 10 A20 4 4,3% 8 EHIV-b1 100 10 A20 4 4,3% 8	HK101 -	95	1	L15(1)	0	0,0%	9
2E7 108 1 A30 1 1,1% 62 33.C9 107 1 L12(2) 7 7,4% 126 3D6 105 1 L12(2) 2 2,1% 34 1-2a 108 1 L8 8 8,4% 70 RF-KL1 97 1 L8 4 4,2% 121 TNF-E7 108 1 A30 9 9,5% 41 TR1.22 108 1 02 7 7,4% 92 HIV-B35 106 1 02 2 2,2% 8 HIV-b27 106 1 02 2 2,2% 8 HIV-b27 106 1 02 2 2,2% 8 HIV-b8 107 1 02 10 10,8% 8 RF-SJ5 95 1 A30 5 5,3% 113 GAL(I) 108 1 A30 6 6,3% 64 R3.SH5G 108 1 02 6 6,3% 70 HIV-b14 106 1 A20 2 6 6,3% 70 HIV-b14 106 1 A20 2 2,2% 8 TNF-E1 105 1 L5 8 8,4% 41 WEA 108 1 A30 8 8,4% 37 EU 108 1 L12(2) 5 5,3% 40 FOG1-G8 108 1 L8 11 11,6% 41 1X7RG1 108 1 L8 3 3,2% 72 LUNm01 108 1 L12(2) 11 11,6% 32 LUNm01 108 1 L12(2) 11 11,6% 6 HIV-b1 106 1 A20 4 4,3% 8	TR1.23	108	1	02	5	5,3%	92
108		108	i	A30	0	0,0%	4
33D6 105 1 L12(2) 2 2,1% 34 1-2a 108 1 L8 8 8,4% 70 RF-KL1 97 1 L8 4 4,2% 121 TNF-E7 108 1 A30 9 9,5% 41 TR1.22 108 1 02 7 7,4% 92 HIV-B35 106 1 02 2 2,2% 8 HIV-b22 106 1 02 2 2,2% 8 HIV-b27 106 1 02 2 2,2% 8 HIV-b8 107 1 02 10 10,8% 8 HIV-b8 107 1 02 10 10,8% 8 RF-SJ5 95 1 A30 5 5,3% 113 GAL(I) 108 1 A30 6 6,3% 64 R3.5H5G 108 1 02 6 6,3% 64 R3.5H5G 108 1 A20 2 2,2% 8 TNF-E1 105 1 L5 8 8,4% 41 WEA 108 1 A30 8 8,4% 37 EU 108 1 A30 8 8,4% 37 EU 108 1 L12(2) 5 5,3% 40 FOG1-G8 108 1 L8 11 11,6% 41 1X7RG1 108 1 L8 3 3,2% 72 KUE 108 1 L12(2) 11 11,6% 32 LUNmo1 108 1 L12(2) 11 11,6% 32		108	1	A30	1	1,1%	62
1-2a	33.C9	107	1	L12(2)	7	7,4%	126
RF-KL1 97 1 L8 4 4,2% 121 TNF-E7 108 1 A30 9 9,5% 41 TR1.22 108 1 02 7 7,4% 92 HIV-B35 106 1 02 2 2,2% 8 HIV-b22 106 1 02 2 2,2% 8 HIV-b27 106 1 02 2 2,2% 8 HIV-b8 107 1 02 10 10,8% 8 HIV-b8 107 1 02 10 10,8% 8 RF-SJ5 95 1 A30 5 5,3% 113 GAL(I) 108 1 A30 6 6,3% 64 R3.5H5G 108 1 02 6 6,3% 70 HIV-b14 106 1 A20 2 2,2% 8 TNF-E1 105 1 L5 8 8,4% 41 WEA 108 1 A30 8 8,4% 41 EU 108 1 A30 8 8,4% 41 IXTRG1 108 1 L12(2) 5 5,3% 40 FOG1-G8 108 1 L8 11 11,6% 41 IXTRG1 108 1 L8 3 3,2% 72 KUE 108 1 L12(2) 11 11,6% 32 LUNm01 108 1 L12(2) 10 10,5% 6 HIV-b1 106 1 A20 4 4,3% 8	3D6	105	1	L12(2)	2	2,1%	34
TINF-E7 108 1 A30 9 9,5% 41 TR1.22 108 1 02 7 7,4% 92 HIV-B35 106 1 02 2 2,2% 8 HIV-b22 106 1 02 2 2,2% 8 HIV-b27 106 1 02 2 2,2% 8 HIV-b8 107 1 02 10 10,8% 8 HIV-b8 107 1 02 10 10,8% 8 RF-SJ5 95 1 A30 5 5,3% 113 GAL(I) 108 1 A30 6 6,3% 64 R3.5H5G 108 1 02 6 6,3% 70 HIV-b14 106 1 A20 2 2,2% 8 TINF-E1 105 1 L5 8 8,4% 41 WEA 108 1 A30 8 8,4% 37 EU 108 1 L12(2) 5 5,3% 40 FOG1-G8 108 1 L8 11 11,6% 41 1X7RG1 108 1 L8 3 3,2% 72 KUE 108 1 L12(2) 11 11,6% 32 LUNm01 108 1 L12(2) 10 10,5% 6 HIV-b1 106 1 A20 4 4,3% 8 HIV-54 103 1 A20 4 4,3% 8 HIV-54 103 1 O2 2 2,2% 8	l-2a	108	1	L8	8	8,4%	. ~ 70
TR1.22	RF-KL1	97	1	L8	4	4,2%	121
HIV-B35	TNF-E7	108	1	A30	9	9,5%	41
HIV-b22	TR1.22	108	1	02	7	7,4%	92
HIV-b27	HIV-B35	106	1	02	2	2,2%	8
HIV-B8 107 1 02 10 10,8% 8 HIV-b8 107 1 02 10 10,8% 8 RF-SJ5 95 1 A30 5 5,3% 113 GAL(I) 108 1 A30 6 6,3% 64 R3.5H5G 108 1 02 6 6,3% 70 HIV-b14 106 1 A20 2 2,2% 8 TNF-E1 105 1 L5 8 8,4% 41 WEA 108 1 A30 8 8,4% 37 EU 108 1 L12(2) 5 5,3% 40 FOG1-G8 108 1 L8 11 11,6% 41 1X7RG1 108 1 L8 3 3,2% 72 KUE 108 1 L12(2) 11 11,6% 32 LUNmo1 108 1 L12(2) 10 10,5% 6 HIV-b1 106 1 A20 4 4,3% 8 HIV-54 103 1 O2 2 2,2% 8	HIV-b22	106	1	02	2	2,2%	8
HIV-b8 107 1 02 10 10,8% 8 RF-SJ5 95 1 A30 5 5,3% 113 GAL(I) 108 1 A30 6 6,3% 64 R3.5H5G 108 1 02 6 6,3% 70 HIV-b14 106 1 A20 2 2,2% 8 INF-E1 105 1 L5 8 8,4% 41 WEA 108 1 A30 8 8,4% 37 EU 108 1 L12(2) 5 5,3% 40 FOG1-G8 108 1 L8 11 11,6% 41 IX7RG1 108 1 L8 3 3,2% 72 KUE 108 1 L12(2) 11 11,6% 32 LUNm01 108 1 L12(2) 10 10,5% 6 HIV-b1 106 1 A20 4 4,3% 8 HIV-54 103 1 02 2 2,2% 8	HIV-b27	106	1	02	2	2,2%	8
RF-SJ5 95 1 A30 5 5,3% 113 GAL(I) 108 1 A30 6 6,3% 64 R3.5H5G 108 1 O2 6 6,3% 70 HIV-b14 106 1 A20 2 2,2% 8 TNF-E1 105 1 L5 8 8,4% 41 WEA 108 1 A30 8 8,4% 37 EU 108 1 L12(2) 5 5,3% 40 FOG1-G8 108 1 L8 11 11,6% 41 1X7RG1 108 1 L1 8 8,4% 70 BLI 108 1 L1 8 8,4% 70 BLI 108 1 L1 8 3 3,2% 72 KUE 108 1 L12(2) 11 11,6% 32 LUNmO1 108 1 L12(2) 10 10,5% 6 HIV-b1 106 1 A20 4 4,3% 8 HIV-54 103 1 O2 2 2,2% 8	HIV-B8	107	1	02	10	10,8%	8
GAL(I) 108 1 A30 6 6,3% 64 R3.5H5G 108 1 O2 6 6,3% 70 HIV-b14 106 1 A20 2 2,2% 8 TNF-E1 105 1 L5 8 8,4% 41 WEA 108 1 A30 8 8,4% 37 EU 108 1 L12(2) 5 5,3% 40 FOG1-G8 108 1 L8 11 11,6% 41 1X7RG1 108 1 L8 3 3,2% 70 BLI 108 1 L12(2) 11 11,6% 32 KUE 108 1 L12(2) 11 11,6% 32 LUNmO1 108 1 L12(2) 10 10,5% 6 HIV-b1 106 1 A20 4 4,3% 8 HIV-54 103 1 O2 2 2,2% 8	HIV-b8	107	1	02	10	10,8%	8
R3.5H5G	RF-SJ5	95	1 .	A30	5	5,3%	113
HIV-b14 106 1 A20 2 2,2% 8 TNF-E1 105 1 L5 8 8,4% 41 WEA 108 1 A30 8 8,4% 37 EU 108 1 L12(2) 5 5,3% 40 FOG1-G8 108 1 L8 11 11,6% 41 1X7RG1 108 1 L1 8 8,4% 70 BLI 108 1 L8 3 3,2% 72 KUE 108 1 L12(2) 11 11,6% 32 LUNmO1 108 1 L12(2) 10 10,5% 6 HIV-b1 106 1 A20 4 4,3% 8 HIV-54 103 1 02 2 2,2% 8	GAL(I)	108	1	A30	6	6,3%	64
TNF-E1 105 1 L5 8 8,4% 41 WEA 108 1 A30 8 8,4% 37 EU 108 1 L12(2) 5 5,3% 40 FOG1-G8 108 1 L8 11 11,6% 41 1X7RG1 108 1 L1 8 8,4% 70 BLI 108 1 L8 3 3,2% 72 KUE 108 1 L12(2) 11 11,6% 32 LUNmO1 108 1 L12(2) 10 10,5% 6 HIV-b1 106 1 A20 4 4,3% 8 HIV-54 103 1 O2 2 2,2% 8	R3.5H5G	108	1	02	6	6,3%	70
WEA 108 1 A30 8 8,4% 37 EU 108 1 L12(2) 5 5,3% 40 FOG 1-G8 108 1 L8 11 11,6% 41 1X7RG 1 108 1 L1 8 8,4% 70 BLI 108 1 L8 3 3,2% 72 KUE 108 1 L12(2) 11 11,6% 32 LUNmO 1 108 1 L12(2) 10 10,5% 6 HIV-b 1 106 1 A20 4 4,3% 8 HIV-54 103 1 02 2 2,2% 8	HIV-b14	106	1	A20	2	2,2%	8
EU 108 1 L12(2) 5 5,3% 40 FOG 1-G8 108 1 L8 11 11,6% 41 1X7RG 1 108 1 L1 8 8,4% 70 BLI 108 1 L8 3 3,2% 72 KUE 108 1 L12(2) 11 11,6% 32 LUNmO 1 108 1 L12(2) 10 10,5% 6 HIV-b 1 106 1 A20 4 4,3% 8 HIV-s 4 103 1 O2 2 2,2% 8	TNF-E1	105	1	·L5	8	8,4%	41
FOG1-G8 108 1 L8 11 11,6% 41 1X7RG1 108 1 L1 8 8,4% 70 BLI 108 1 L8 3 3,2% 72 KUE 108 1 L12(2) 11 11,6% 32 LUNm01 108 1 L12(2) 10 10,5% 6 HIV-b1 106 1 A20 4 4,3% 8 HIV-54 103 1 02 2 2,2% 8	WEA	108	1	A30	8	8,4%	37
1X7RG1 108 1 L1 8 8,4% 70 BLI 108 1 L8 3 3,2% 72 KUE 108 1 L12(2) 11 11,6% 32 LUNm01 108 1 L12(2) 10 10,5% 6 HIV-b1 106 1 A20 4 4,3% 8 HIV-s4 103 1 O2 2 2,2% 8	EU .	108	1	L12(2)	5	5,3%	40
BLI 108 1 L8 3 3,2% 72 KUE 108 1 L12(2) 11 11,6% 32 LUNm01 108 1 L12(2) 10 10,5% 6 HIV-b1 106 1 A20 4 4,3% 8 HIV-s4 103 1 02 2 2,2% 8	FOG1-G8	108	1	L8	11	11,6%	41
KUE 108 1 L12(2) 11 11,6% 32 LUNm01 108 1 L12(2) 10 10,5% 6 HIV-b1 106 1 A20 4 4,3% 8 HIV-s4 103 1 02 2 2,2% 8	1X7RG1	108	1	L1	8	8,4%	70
LUNm01 108 1 L12(2) 10 10,5% 6 HIV-b1 106 1 A20 4 4,3% 8 HIV-s4 103 1 O2 2 2,2% 8	BLI	108	1	L8	3	3,2%	72
HIV-b1 106 1 A20 4 4,3% 8 HIV-54 103 1 02 2 2,2% 8	KUE	108	1	L12(2)	11	11,6%	. 32
HIV-54 103 1 02 2 2,2% 8	LUNm01	108	1	L12(2)	10	10,5%	6
	HIV-b1	106	1	A20	. 4	4,3%	8
5.4-		103	1	02	2	2,2%	8
				54			

PCT/EP96/03647

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
CAR	107	1	L12(2)	11	11,7%	79
BR	107	1	L12(2)	11	11,6%	50
CLL PATIENT 10	88	1	02	0	0,0%	122
CLL PATIENT 12	88	1	02	0	0,0%	122
KING	108	1 .	L12(2)	12	12,6%	30
V13	95	1	L24	0	0,0%	46
CLL PATIENT 11	87	1	02	0	0,0%	122
CLL PATIENT 13	87	1	02	0	0,0%	122
CLL PATIENT 9	88	1	012	1	1,1%	122
HIV-B2	106	1	A20	9	9,7%	8
HIV-b2	106	1	A20	9	9,7%	8
CLL PATIENT 5	88	1	A20	1	1,1%	122
CLL PATIENT 1	88	1	L8	2	2,3%	122
CLL PATIENT 2	88	1	L8	0	0.0%	122
CLL PATIENT 7	88	1	L5	0	0,0%	122
CLL PATIENT 8	88	1	L5	0	0,0%	122
HIV-b5	105	1	L5	11	12,0%	8
CLL PATIENT 3	87	1	L8	1	1,1%	122
CLL PATIENT 4	88	1	L9	0	0,0%	122
CLL PATIENT 18	85	1	L9	6	7,1%	122
CLL PATIENT 17	86	1	L12(2)	7	8,1%	122
HIV-b20	107	3	A27	11	11,7%	8
2C12	108	1 ′	L12(2)	20	. 21,1%	68
1B11	108	1	L12(2)	20	21,1%	68
1H1	108	1	L12(2)	21	22,1%	68
2A12	108	1	L12(2)	21	22,1%	68
CUR	109	3	A27	0	0,0%	66
. GLO	109	3	A27	0	0,0%	16
RF-TS1	96	3	A27	0	0,0%	121
GAR'	109	3	A27	0	0,0%	67
FLO	109	3	A27	0	0,0%	66
PIE	109	3	A27	0	0.0%	91
HAH 14.1	109	3	A27	1	1,0%	51
HAH 14.2	109	3	A27	1	1,0%	51

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
HAH 16.1	109	3	A27	1	1,0%	51
NOV .	109	3	A27	1	1,0%	52
33.F12	108	3	A27	1	1,0%	126
8E10	110	3	A27	1	1,0%	25
TH3	109	3	A27	1	1,0%	25
HIC (R)	108	3	A27	0	0,0%	51
SON	110	3	A27	1	1,0%	67 .
PAY	109	3	A27	· 1	1,0%	66
GOT	109	3	A27	1	1,0%	67
mAbA6H4C5	109	3	A27	. 1	1,0%	12
BOR'	109	3	A27	2	2,1%	84
RF-SJ3	96	3	A27	2 -	2,1%	121
SIE	109	3	A27	2	2,1%	15
ESC	109	3	A27	2	2,1%	98
HEW'	110	3	A27	2	2,1%	98
YES8c	109	. 3	A27	3	3,1%	33
TI	109	3	A27	3	3,1%	114
mAb113	109	3	A27	3	3,1%	71
HEW	107	3	A27	0	0,0%	94
BRO	106	3	A27	0	0,0%	94
ROB	106	3 .	A27	. 0	0.0%	94
NG9	96	3	A27	4	4,2%	11
NEU	109	3	A27	4	4,2%	66
WOL	109	3	A27	4	4,2%	2
35G6	109	3	A27	4	4.2%	59
RF-SJ4	109	3	A11	0	0,0%	88
KAS	109	3	A27	4	4.2%	84
BRA	106	3	A27	1	1,1%	94
НАН	106	3	A27	1	1,1%	94
HIC	105	3	A27	0	0,0%	94
FS-2	109	3	A27	6	6,3%	87
JH'	107	3	A27	6	6,3%	38
EV1-15	109	3	A27	6.	6,3%	83
SCA	108	3	A27	6	6,3%	65
			56			

PCT/EP96/03647

WO 97/08320 .

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference'
mAb112	109	3	A27	6	6,3%	71
SIC	103	3	A27	3	3,3%	94
SA-4A	109	3	A27	6	6,3%	120
SER	108	3	A27	6	6,3%	98
GOL'	109	3	A27	7	7,3%	82
B5G10K	105	3	A27	9	9,7%	125
HG2B10K	110	3	A27	-9	9,4%	125
Taykv322	105	3	A27	5 .	5,4%	52
CLL PATIENT 24	89	3	A27	1	1,1%	122
HIV-b24	107	3	A27	7	7,4%	8
HIV-b6	107	3	A27	7	7.4%	8
Taykv310	99	3	A27	1	1,1%	. 52
KA3D1	108	3	L6	0	0,0%	85
19.E7	107	3	L6	0	0,0%	126
rsv6L	109	3	A27	12	12,5%	7
Taykv320	98	3	A27	1	1,2%	52
Vh	96	3	L10(2)	0	0,0%	89
LS8	108	3	L6	1	1,1%	109
LS1	108	3	L6	1	1,1%	109
LS2S3-3	107	3	L6	2.	2,1%	99
LS2	· 108	3	L6	1.	1,1%	109
LS7	108	3	L6	1	1,1%	109
LS2S3-4d	107	3	L6	2	2,1%	99
LS2S3-4a	107	3	L6	2	2,1%	_. 99
LS4	108	3	L6	1	1,1%	109
LS6	108	3	L6	1	1,1%	109
LS2S3-10a	107	3	L6	2	2,1%	99
LS2S3-8c	107	3	L6	2	2,1%	99
LS5	108	3	L6	1	1,1%	109
LS2S3-5	107	3	L6	3.	3,2%	99
LUNm03	109	3	A27	13	13,5%	6
IARC/BL41	108	3	A27	13	13,7%	55
slkv22	99	3	A27	3	3,5%	13
POP	108	3	L6	4	4,2%	111

5天

PCT/EP96/03647

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
LS2S3-10b	107	3	L6	3	3,2%	99
LS2S3-8f	107	. 3	L6	3	3,2%	9 9
LS2S3-12	107	3	Fe	3	3,2%	99
HIV-B30	107	3	A27	11	11,7%	8
HIV-B20	107	3	A27	11	11,7%	8
HIV-b3	108	3	A27	11	11,7%	8
HIV-s6	104	3	A27	9	9,9%	8
YSE	107	3	L2/L16	1	1,1%	72
POM	109	3	L2/L16	9	9,4%	53
Humkv328	95	3	L2/L16	1	1,1%	19
CLL	109	3	L2/L16	3	3,2%	47
LES	96	3	L2/L16	3	3,2%	38
HIV-s5	104	3	A27	11	12,1%	8
HIV-s7	104	3	A27	11	12,1%	8
slkv1	99	3	A27	7	8,1%	13
Humka31es	95	3	L2/L16	4	4,2%	18
slkv12	101	3	A27	8	9,2%	13
RF-TS2	95	3	L2/L16	3 ·	3,2%	121
11-1	109	3	L2/L16	4	4,2%	70
HIV-s3	105	3	A27	13	14,3%	. 8
RF-TMC1	96	3 .	L6	10	10,5%	121
GER	109	3	L2/L16	7 .	7,4%	7 5 ·
GF4/1.1	109	3	L2/L16	8	8,4%	36
mAb114	109	3	L2/L16	6	6,3%	71
HIV-loop13	109	3	L2/L16	7	7,4%	8
bkv16	86	3	L6	1	1,2%	13
CLL PATIENT 29	86	3	L6	1	1,2%	122
slkv9	98	3	L6	3	3,5%	13
bkv17	· 99	3	L6	1	1,2%	13
slkv14	99	3	L6	1	1,2%	13
slkv16	101	3	L6	2	2,3%	13
bkv33	101	3	L6	4	4,7%	13
slkv15	99	3	L6	2	2,3%	13
bkv6	100	3	L6	3	3,5%	13

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference?
R6B8K	108	3	L2/L16	12	12,6%	125
AL 700	107	3	L2/L16	9	9,5%	117
slkv11	100	3	L2/L16	3	3,5%	13
slkv4	97	3	L6	4	4.8%	13
CLL PATIENT 26	87	3	L2/L16	1	1,1%	122
AL Se124	103	3	L2/L16	9	9,5%	117
slkv13	100	3	L2/L16	6	7.0%	13
bkv7	100	3	L2/L16	5	5,8%	13
bkv22	100	3	L2/L16	. 6	7,0%	13
CLL PATIENT 27	84	3	L2/L16	0	0,0%	122
bkv35	100	3	L6	8	9,3%	13
CLL PATIENT 25	87	3	L2/L16	4	4,6%	122
sikv3	86	3	L2/L16	7	8,1%	13
slkv7	99	1	02	7	8,1%	13
HuFd79	111	3	L2/L16	24	24,2%	21
RAD	99	3	A27	9	10,3%	78
CLL PATIENT 28	83	3	L2/L16	4	4,8%	122
REE	104	3	L2/L16	25	27,2%	95
FR4	99	3	A27	8	9,2%	77
MD3.3	92	3	L6	1	1,3%	54
MD3.1	92	3	Ļ6	0	0,0%	54
GA3.6	92	3	L6	2	2,6%	54
M3.5N	92	3	L6	3	3,8%	54
WEI'	82	3	A27	0	0,0%	65
MD3.4	92	3	L2/L16	1	1,3%	54
MD3.2	91	3	L6	3	3,8%	54
VER	97	3	A27	19	22,4%	20
CLL PATIENT 30	78	3	L6	. 3	3,8%	122
M3.1N	92	3	L2/L16	1	1,3%	54
MD3.6	91	3	L2/L16	0	0,0%	54
MD3.8	91	3 .	L2/L16	0	0,0%	54
GA3.4	92	3	LG	7	9,0%	54
M3.6N	92	3	A27	0	0,0%	54
MD3.10	92	3	A27	0	0,0%	54

Table 2A: (continued)

Name ³	.aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
MD3.13	91	3	A27	0	0,0%	54
MD3.7	93	3	A27	, 0	0,0%	54
MD3.9	93	3	A27	0 .	0,0%	54
GA3.1	93	3	A27	6	7,6%	54
bkv32	101	3	A27	5	5,7%	13
GA3.5	93	3	A27	5	6,3%	54
GA3.7	92	3	A27	_7	8,9%	54
MD3.12	92	3	A27	2	2,5%	54
M3.2N	90	3	L6	6	7,8%	54
MD3.5	92	3	A27	1	1,3%	54
M3.4N	91	. 3	L2/L16	8	10,3%	54
M3.8N	91	· 3	L2/L16	7	9,0%	54
M3.7N	92	3	A27	3	3,8%	54
GA3.2	92	3	A27	9	11,4%	54 ·
GA3.8	93	3	A27	4	5,1%	54
GA3.3	92	3	A27	8	10,1%	54
M3.3N	92	3	A27	5	6,3%	54
B6	83	3	A27	8	11,3%	78
E29.1 KAPPA	78	3	L2/L16	0	0,0%	22
SCW	108	1	08	12	12,6%	31
REI-based CAMPATH-9	107	1	08	· 14	14,7%	39
RZ .	107	1	08	14	14,7%	50
BI	108	1	08	14	14,7%	14
AND	107	1	02	13	13,7%	. 69
2A4	109	1	02	12	12,6%	23
KA	108	1	08	19	20,0%	107
MEV	109	1	02	. 14	14,7%	29
DEE	106	1	02	13	14,0%	76
OU(IOC)	108	1	02	18	18,9%	60
HuRSV19VK	111	1	08	21	21,0%	115
SP2	108	1	02	17	17,9%	93
BJ26	99	1 .	08	21	24,1%	1 '
NI ·	112	1	08	24	24,2%	106
BMA 0310EUCIV2	106	1	L12(1)	21	22,3%	105

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
CLL PATIENT 6	71	1	A20	0	0,0%	122
BJ19	85	1	08	16	21,9%	1
GM 607	113	2	А3	0	0,0%	58
R5A3K	· 114	2	A3	1	1,0%	125
R1C8K	114	2	А3	1	1,0%	125
VK2.R149	113	2	A3	2	2,0%	118
TR1.6	109	2	A3	4	4,0%	92
TR1.37	104	2	A3	5	5,0%	92
FS-1	113	2 .	A 3	6	6,0%	87
TR1.8	110	2	A3	6	6.0%	92
NIM	113	2 .	A3	8	8,0%	28
Inc	112	2	A3	11	11,0%	35
TEW	107	2	A3	6	6,4%	96
CUM	114	2	01	7	6,9%	44
HRF1	71	2	A 3	4	5,6%	124
CLL PATIENT 19	87	2	A3	0	0.0%	122
CLL PATIENT 20	87	2	A 3	0	0,0%	122
MIL	112	2	A3	16	16,2%	26
FR	113	2	A3	20	20,0%	101
MAL-Urine	83	1	02	6	8,6%	102
Taykv306	73	3	A27	1	1,6%	52
Taykv312	75	3	A27	1	1,6%	52
HIV-b29	93	3	A27	14	17,5%	8
1-185-37	110	3	A27	. 0	0,0%	119
1-187-29	110	3	A27	0	0,0%	119
Π117	110	.3	A27	9	9,4%	63
HIV-loop8	108	3	A27	16	16,8%	8
rsv23L	108	3	A27	16	16,8%	7
HIV-b7	107	3	A27	14	14,9%	8
HIV-b11	107	3	A27	15	16,0%	8
HIV-LC1	107	3	A27	19	20,2%	8
HIV-LC7	107	3	A27	20	21,3%	8
HIV-LC22	107	3	A27	21	22,3%	8
HIV-LC13	107	3	A27	21	22,3%	8
			61			

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
HIV-LC3	107	3	A27	21	22,3%	8
HIV-LC5	107	3	A27	21	22,3%	8
HIV-LC28	107	3	A27	21	22,3%	. 8
HIV-b4	107	3	A27	22	23,4%	8
CLL PATIENT 31	87	3	A27	15	17,2%	122
HIV-loop2	108	3	L2/L16	17	17,9%	8
HIV-loop35	108	3	L2/L16	17	17,9%	8
HIV-LC11	107	3	A27	23	24,5%	8
HIV-LC24	107	3	A27	23	24,5%	8
HIV-b12	· 107	3	A27	24	25,5%	8
HIV-LC25	107	3	A27	24	25,5%	8
HIV-b21	107	3	A27	24	25,5%	8
HIV-LC26	107	3	A27	26	27,7%	8
G3D10K	108	1	L12(2)	12	12,6%	125
П125	108	1	L5	8	8,4%	63
HIV-s2	103	3	A27	28	31,1%	8
265-695	108	1	L5	7	7,4%	3
2-115-19	108	1	A30	2	2,1%	119
rsv13L	107	1	02	20	21,1%	7
HIV-b18	106	1	02	14	15,1%	8
RF-KL5	98	3	L6	36	36,7%	97
ZM1-1	113	2	A17	7	7,0%	3
HIV-s8	103	1	80	. 16	17,8%	8
K- EV15	95	5	B2	0	0,0%	112
RF-TS3	100	2	A23	0	0,0%	121
HF-21/28	111	2	A17	1	1,0%	17
RPMI6410	113	2	A17	1	1,0%	42
JC11	113	2	A17	1	1,0%	49
0-81	114	2	A17	5	5.0%	45
FK-001	113	4	В3	0	0.0%	81
CD5+.28	101	. 4	В3	1	1,0%	27
LEN	114	4	В3	1	1,0%	104
UC	114	4	В3	1	1,0%	111
CD5+.5	101	4	В3	1	1,0%	27

Table 2A: (continued)

Name'	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
CD5+.26	101	4	В3	1	1,0%	27
CD5+.12	101	4	B3	2	2.0%	27
CD5+.23	101	4	B3	2	2,0%	27
CD5+.7	101	4	В3	2 `	2.0%	27
ILA	113	4	В3	3	3,0%	56
LOC	113	4	В3	3	3,0%	72
MAL	113	4	В3	3	3,0%	72
CD5+.6	101	4	В3	3	3,0%	27
H2F	113	4	В3	3	3,0%	70
PB17IV	114	4	В3	4	4,0%	74
CD5+.27	101	4	B3	4	4,0%	27
CD5+.9	101	4	B3	4	4,0%	27 ·
CD528	101	4	В3	5	5,0%	27
CD526	101	4	В3	6.	5,9%	27
CD5+.24	101	4	В3	6	5,9%	27
CD5+.10	101	4	В3	6	5,9%	27
CD519	101	4	В3	6	5,9%	27
CD518	101	4	В3	7	6,9%	27
CD516	101	. 4	B3	8	7,9%	27
CD524	101	4	В3	8	7,9%	27
CD517	101	4	B3	10	9,9%	27
MD4.1	92	4	· B3	0	0,0%	54
MD4.4	92	4	B3	0	0,0%	54
MD4.5	92	4	В3	0	0,0%	54
MD4.6	92	4	B3	0	0,0%	54
MD4.7	92	4	В3	0	0,0%	54
MD4.2	92	4	В3	1	1,3%	54
MD4.3	92	4	В3	5	6,3%	54
CLL PATIENT 22	87	2	A17	2	2,3%	122
CLL PATIENT 23	84	2	A17	2	2.4%	122

Table 2B: rearranged human lambda sequences

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
WAH	110	1	DPL3	7	7%	68
1B9/F2	112	1	DPL3	7	7%	9
DIA	112	1	DPL2	7	7%	36
mAb67	89	1	DPL3	0	0%	29
HiH2	110	1	DPL3	12	11%	3
NIG-77	. 112	1	DPL2	9	9%	72
OKA	112	1	DPL2	7	7%	84
KOL	112	1	DPL2	12	11%	40
T2:C5	111	1	DPL5	0	0%	6
T2:C14	110	1	DPL5	0	O%	6
PR-TS1	110	1	DPL5	0	0%	55
4G12	111	1	DPL5	1	1%	35
KIM46L	112	1	HUMLV117	0	0%	8
Fog-B	111	1	DPL5	3	3%	31
9F2L	111	1	DPL5	3	3%	79
mAb111	110	1	DPL5	3	3%	48
PHOX15	111	1	DPL5	4	4%	49
BL2	111	1	DPL5	4	4%	74
NIG-64	111	1	DPL5	4	4%	72
RF-SJ2	100	1	DPL5	6	6%	78
AL EZI	112	1	DPL5	7	7%	41
ZIM	112	.1	HUMLV117	7	7%	18
RF-SJ1	100	1,	DPL5	9	9%	78
IGLV1.1	98	1	DPL4	0	O%	1
NEW	112	1	HUMLV117	11	10%	42
CB-201	87	, 1	DPL2	1	1%	62
MEM	109	1	DPL2	6	6%	50
H210	111	. 2	DPL10	4	4%	45
NOV	110	2	DPL10	8	8%	25
NEI	111	2	DPL10	8	8%	24
AL MC	110	2	DPL11	6	6%	28
MES	112	2	DPL11	8	8%	84
FOG1-A3	. 111	2	DPL11	9	9%	27
AL NOV	112	2	DPL11	7	7%	28

Table 2B: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ²
HMST-1	110	2	DPL11	4	4%	82
HBW4-1	108	2	DPL12	9	9%	52
WH	110	2	DPL11	11	11%	34
11-50	110	2	DPL11	7	7%	82
НВр2	110	2	DPL12	8	8%	3
NIG-84	113	2	DPL11	12	11%	73
VIL	112	2	DPL11	9	9%	58
TRO	111	2	DPL12	10	10%	61
ES492	108	2	DPL11	15	15%	7 6
mAb216	89	2	DPL12	1	1%	7
BSA3	109	3	DPL16	0	0%	49
THY-29	110	3	DPL16	0 -	0%	27
PR-TS2	108	3	DPL16	0	O%	55
E29.1 LAMBDA	107	3	DPL16	1	1%	13
mAb63	109	3	DPL16	2	2%	29
TEL14	110	. 3	DPL16	6	6%	49
6H-3C4	108	3	DPL16	7	7%	39
SH	109	3	DPL16	7	7%	70
AL GIL	109	3	DPL16	8	8%	23
H6-3C4	108	3	DPL16	8	8%	83
V-lambda-2.DS	111	2	DPL11	3	3%	15
8.12 ID	110	2	DPL11	3	3%	81
DSC	111	2	DPL11	3	3%	56
PV11	110	2	DPL11	1	1%	56
33.H11	110	2	DPL11	4	4%	81
AS17	111	2	DPL11	7	7%	56
SD6	110	2	DPL11	7	7%	56
KS3	110	2	DPL11	9	9%	56
PV6	110	2	DPL12	5	5%	. 56
NGD9	110	2	DPL11	7	7%	56
MUC1-1	111	2	DPL11	11	10%	27
A30c	111	2	DPL10	6	6%	56
KS6	110	2	DPL12	6	6%	56
TEL13	111	2	DPL11 65	11	10%	49

Table 2B: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
AS7	110	2	DPL12	6	6%	56
MCG	112	2	DPL12	12	11%	20
U266L	110	2	DPL12	13	12%	77
PR-SJ2	110	2	DPL12	14	13%	55
вон	112	2	DPL12	11	10%	37
TOG	111	2	DPL11	19	18%	53
TEL16	111	2	DPL11	19	18%	49
No.13	110	2	DPL10	14	13%	52
ВО	112	2	DPL12	18	17%	80
WIN	112	2	DPL12	17	16%	11
BUR	104	2	DPL12	15	15%	46
NIG-58	110	2	DPL12	20	19%	69 [°]
WEIR	112	2	DPL11	26	25%	21
THY-32	111	1	DPL8	8	8%	27
TNF-H9G1	111	1	DPL8	9	9%	27
mAb61	111	1	DPL3	1	1%	29
LV1L1	98	1	DPL2	0	0%	54
НА	113	1	DPL3	14	13%	63
LA1L1	111	1	DPL2	3	3%	54
RHE	112	1	DPL1	17	16%	22
K1B12L	113	1	· DPL8	17	16%	79
LOC	113	1	DPL2	15	14%	84
NIG-51	112	1	DPL2	12	11%	67
NEWM	104	1	DPL8	23	22%	10
MD3-4	106	3	DPL23	14	13%	4
COX	112	ï	DPL2	13	12%	84
HiH10	106	3	DPL23	13	12%	3
VOR	112	1	DPL2	16	15%	16
AL POL	113	1	DPL2 ·	16	15%	57
CD4-74	111	1	DPL2	19	18%	27
AMYLOID MOL	102	3	DPL23	15	15%	30
OST577	108	3	Humlv318	10	10%	4
NIG-48	113	1	DPL3	42	40%	66
CARR	108	3	DPL23	18	17%	19

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ²
mAb60	108	3	DPL23	14	13%	29
NIG-68	99	3	DPL23	25	26%	32
KERN	107	3	DPL23	26	25%	59
ANT	106	3	DPL23	17	16%	19
LEE	110	3	DPL23	18	17%	85
CLE .	94	3	DPL23	17	17%	19
VL8	98	8	DPL21	0	0%	81
MOT	110	3	Humlv318	23	22%	38
GAR	108	3	DPL23	26	25%	33
32.B9	. 98	8	DPL21	5	5%	81
PUG	108	3	Humlv318	24	23%	19
T1	115	8	HUMLV801	52	50%	6
RF-TS7	96	7	DPL18	4	4%	60
YM-1	116	8	HUMLV801	51	49%	75
K6H6	112	8	HUMLV801	20	19%	44
K5C7	112	8	HUMLV801	20	19%	44
K5B8	112	8	HUMLV801	20	19%	44
K5G5	112	8	HUMLV801	20	19%	44
K4B8	112	8	HUMLV801	19	18%	44
K6F5	112	8	HUMLV801	17	16%	44
HIL	108	3	DPL23	22	21%	47
KIR	109	3	DPL23	20	19%	19
CAP	109	3	DPL23	19	18%	84
1B8	110	3	DPL23	22	21%	· 43
SH0	108	3	DPL23	19	18%	19
HAN	108	3	DPL23	20	19%	19
cML23	96	3	DPL23	3	3%	12
PR-SJ1	96	3	DPL23	7	7%	55
BAU	107	3	DPL23	9	9%	5
TEX	99	3	DPL23	8	8%	19
X(PET)	107	3	DPL23	9	9%	51
DOY	106	3	DPL23	9	9%	19
COT	106		DPL23	13	12%	19
Pag-1	111		Humlv318	5	5%	31
			6=			

Table 2B: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference'
DIS	107	3	Humlv318	2	2%	19
WIT	108	3	Humlv318	7	7%	19
l.RH	108	3	Humlv318	12	11%	19
S1-1	108	3	Humlv318	12	11%	52
DEL	108	3	Humlv318	14	13%	17
TYR	108	3	Humlv318	11	10%	19
J.RH	109	3	Humlv318	13 ·	12%	19
THO	112	2	DPL13	38	36%	26
LBV	113	1	DPL3	38	36%	2
WLT	112	1	DPL3	33	31%	14
SUT	112	2	DPL12	37	35%	65

Table 2C: rearranged human heavy chain sequences

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
21/28	119	1	VH1-13-12	0	0,0%	31
8E10	123	1	VH1-13-12	0	0,0%	31
MUC1-1	118	1	VH1-13-6	4	4,1%	42
gF1	98	1	VH1-13-12	10	10,2%	75
VHGL 1.2	98	1	VH1-13-6	2	2,0%	26
HV1L1	98	1	VH1-13-6	0	0,0%	81
RF-TS7	104	1	VH1-13-6	3	3,1%	96
E55 1.A15	106	1	VH1-13-15	1	1.0%	26
HA1L1	126	1	VH1-13-6	7	7.1%	81
UC	123	1	VH1-13-6	5	5.1%	115
WIL2	123	1	VH1-13-6	6	6,1%	55
R3.5H5G	122	1	VH1-13-6	10	10,2%	70
N89P2	123	1	VH1-13-16	11	11,2%	77
mAb113	126	1	VH1-13-6	10	10,2%	71
LS2S3-3	125	1	VH1-12-7	5	5.1%	98
LS2S3-12a	125	1	VH1-12-7	· 5	5,1%	98
LS2S3-5	125	1	VH1-12-7	5	5,1%	98
LS2S3-12e	125	1	VH1-12-7	5	5,1%	98
LS2S3-4	125	1	VH1-12-7	5	5,1%	98
LS2S3-10	125	1	VH1-12-7	5	5,1%	98
LS253-12d	125	1	VH1-12-7	6	6,1%	98
LS2S3-8	125	1	VH1-12-7	5	5.1%	98
LS2	125	1	VH1-12-7	6	6,1%	113
LS4	105	1	VH1-12-7	6	6,1%	113
LS5	125	1	VH1-12-7	6	6,1%	113
LS1	125	1	VH1-12-7	6	6,1%	113
LS6	125	1	VH1-12-7	6	6,1%	113
LS8	125	1	VH1-12-7	7	7,1%	113
THY-29	122	1	VH1-12-7	0	0,0%	42
1B9/F2	122	1	VH1-12-7	10	10,2%	21
5 1 P1	122	1	VH1-12-1	0	0.0%	105
NEI	127	1	VH1-12-1	0	0.0%	55
AND	127	- 1	VH1-12-1	0	0.0%	55
L7	127	1	VH1-12-1	0	0.0%	54
L22 ·	124	1	VH1-12-1	0	0,0%	54
L24	127	1	VH1-12-1	0	0.0%	54

Table 2C:

(continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
L26	116	1 .	VH1-12-1	0	0,0%	54
L33	119	1	VH1-12-1	0	0,0%	54
L34	117	1	VH1-12-1	0	0,0%	54
L36	118	1	VH1-12-1	0	0,0%	54
L39	120	1	VH1-12-1	0	0,0%	54
L41 .	120	1	VH1-12-1	0	0,0%	54
L42	125	1	VH1-12-1	0	0,0%	54
VHGL 1.8	101	. 1	VH1-12-1	0	0,0%	26
783c	127	1	VH1-12-1	0	0,0%	22
X17115	127	1	VH1-12-1	0	0,0%	37
L25	124	-1	VH1-12-1	0	0,0%	54
L17	120	1	VH1-12-1	1	1.0%	54
L30	127	1	VH1-12-1	1	1.0%	54
L37	120	1	VH1-12-1	1	1.0%	54
TNF-E7	116	1 .	VH1-12-1	2	2.0%	42
mAb111	-122	1	VH1-12-1	7 -	7,1%	71
III-2R	122	1	VH1-12-9	3	3,1%	70
KAS	121	1	VH1-12-1	7	7,1%	79
YES8c	122	1	VH1-12-1	8	8,2%	34
RF-TS1	123	1	VH1-12-1	8	8,2%	82
BOR'	121	1	VH1-12-8	7	7,1%	79
VHGL 1.9	101	1 .	VH1-12-1	8	8,2%	26
mAb410.30F305	117	1	VH1-12-9	5	5.1%	52
EV1-15	127	1	VH1-12-8	10	10,2%	78
mAb112	122	1	VH1-12-1	11	11,2%	71
EU	117	1	VH1-12-1	11	11,2%	28
H210	127	1	VH1-12-1	12	12,2%	66
TRANSGENE	104	1	VH1-12-1	0	0,0%	111
CLL2-1	93	1	VH1-12-1	0	0,0%	30
CLL10 13-3	97	1	VH1-12-1	0	0,0%	29
LS7	99	1	VH1-12-7	4	4,1%	113
ALL7-1	87	1 .	VH1-12-7	0	0.0%	30
CLL3-1	91	1	VH1-12-7	1	1,0%	30
ALL56-1	85	1	VH1-13-8	0	0,0%	30
ALL1-1 ·	87	1	VH1-13-6	1	1,0%	30
ALL4-1	94	1	VH1-13-8	0	0,0%	30

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
ALL56 15-4	85	1	VH1-13-8	5	5,1%	29
CLL4-1	88	1	VH1-13-1	1	1,0%	30
Au92.1	98	1	VH1-12-5	0	0,0%	49
RF-TS3	120	1	VH1-12-5	1	1,0%	82
Au4.1	98	1	VH1-12-5	1	1,0%	49
HP1	121	1	VH1-13-6	13	13,3%	110
BLI	127	1	VH1-13-15	5	5,1%	72
No.13	127	, 1	VH1-12-2	19	19,4%	76
TR1.23	122	1	VH1-13-2	23	23,5%	88
S1-1	125	1	VH1-12-2	18	18,4%	76
TR1.10	119	1	VH1-13-12	14	14,3%	88
E55 1.A2	102	1 .	VH1-13-15	3	3,1%	26
SP2	119	1	VH1-13-6	. 15	15,3%	89
TNF-H9G1	111	1	VH1-13-18	2	2,0%	42
G3D10H	127	1	VH1-13-16	19	19,4%	127
TR1.9	118	1	VH1-13-12	14	14,3%	88
TR1.8	121	1	VH1-12-1	24	24,5%	88
LUNm01	127	1	VH1-13-6	22	22,4%	9
K1B12H	127	1	VH1-12-7	23	23,5%	127
L3B2	99	1	VH1-13-6	. 2	2.0%	46
ss2	100	1	VH1-13-6	2	2,0%	46
No.86	124	1	VH1-12-1	20	20,4%	76
TR1.6	124	1	VH1-12-1	19	19,4%	88
ss7	99	1	VH1-12-7	3	3.1%	46
s5B7	102	1	VH1-12-1	0	0,0%	46
s6A3	97	1	VH1-12-1	0	0,0%	46
ss6	99	1	VH1-12-1	0	0,0%	46
L2H7	103	1	VH1-13-12	0	0,0%	46
s6BG8	93	1	VH1-13-12	0	0,0%	46
s6C9	107	1	VH1-13-12	0	0,0%	46
HIV-b4	124	1	VH1-13-12	21	21,4%	12
HIV-b12	124	1	VH1-13-12	21	21,4%	12
L3G5	98	1	VH1-13-6	1	1,0%	46
22	115	1	VH1-13-6	11	11,2%	118
L2A12	99	1	VH1-13-15	3	3,1%	46
PHOX15	124	,1	VH1-12-7	20	20,4%	73
<u>-</u> -			≯ 1			

SUBSTITUTE SHEET (RULE 26)

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
LUNm03	127	1	VH1-1X-1	18	18,4%	9
CEA4-8A	129	1	VH1-12-7	1	1,0%	42
M60	121	2 .	VH2-31-3	3	3,0%	103
HiH10	127	2	VH2-31-5	9	9,0%	. 4
COR	119	2	VH2-31-2	11	11,0%	91
2-115-19	124	2 .	VH2-31-11	8	8,1%	124
OU	125	2	VH2-31-14	20	25,6%	92
HE	120	2	VH2-31-13	19	19,0%	27
CLL33 40-1	78	2 ·	VH2-31-5	2	2,0%	29
E55 3.9	88	3	VH3-11-5	7	7,2%	26
MTFC3	125	3	VH3-14-4	21	21,0%	131
MTFC11	125	3	VH3-14-4	21	21,0%	131
MTFJ1	114	3	VH3-14-4	21	21,0%	131
MTFJ2	114	3	VH3-14-4	21	21,0%	131
MTFUJ4	100	3	VH3-14-4	21	21,0%	131
MTFUJ5	100	3	VH3-14-4	21	21,0%	131
MTFUJ2	100	3	VH3-14-4	22	22,0%	131
MTFC8	125	3	VH3-14-4	23	23,0%	131
TD e Vq	113	3	VH3-14-4	0	0,0%	16
rMTF	. 114	3	VH3-14-4	5	5,0%	131
MTFUJ6	100	3	VH3-14-4	10	10,0%	131
RF-KES	107	3	· VH3-14-4	. 9	9,0%	85
N51P8	126	3	VH3-14-1	9	9,0%	77 ·
TEI	119	3	VH3-13-8	21	21,4%	20
33.H11	115	3	VH3-13-19	10	10,2%	129
SB1/D8	101	3	VH3-1X-8	14	14,0%	2
38P1	119	3	VH3-11-3	0	0,0%	104
BRO'IGM	119	3	VH3-11-3	13	13,4%	19
NIE	119	3	VH3-13-7	15	15,3%	87
3D6	126	3	VH3-13-26	5	5,1%	35
ZM 1-1	112	3	VH3-11-3	8	8,2%	5
E55 3.15	110	3	VH3-13-26	0	0,0%	26
gF9	108	3	VH3-13-8	15	15,3%	75
THY-32	120	3	VH3-13-26	3	3,1%	42
RF-KL5	100.	3	VH3-13-26	5	5,1%	96
OST577	122	3	VH3-13-13	6	6.1%	5
			72_			

Table 2C:

(continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
во	113	3	VH3-13-19	15	15,3%	10
П125	121	3	VH3-13-10	15	15,3%	64
2-115-58	127	3	VH3-13-10	11	11,2%	124
KOL	126	3	VH3-13-14	16	16,3%	102
mAb60	118	3 .	VH3-13-17	14	14,3%	45
RF-AN	106	3	VH3-13-26	8	8,2%	85
BUT	115	3	VH3-11-6	13	13,4%	119
KOL-based CAMPATH-						
9	118	3	VH3-13-13	16	16,3%	41
B1	119	3	VH3-13-19	13	13,3%	53
N98P1	127	3	VH3-13-1	13	13,3%	77
П117	107	3	VH3-13-10	12	12,2%	64
WEA	114	3	VH3-13-12	15	15,3%	40
HIL	120	3	VH3-13-14	14	14,3%	23
s5A10	97	3	VH3-13-14	0	0,0%	46
s5D11	98	3	VH3-13-7	0	0,0%	46
s6C8	100	3	VH3-13-7	0	0,0%	46
s6H12	98	3	VH3-13-7	0	0,0%	46
VH10.7	119	3	VH3-13-14	16	16,3%	128
HIV-loop2	126	3	VH3-13-7	16	16,3%	12
HIV-loop35	126	3	VH3-13-7	16	16,3%	12
TRO	122	3	VH3-13-1	13	13,3%	61
SA-4B	123	3	VH3-13-1	15	15,3%	125
L2B5	98	3	VH3-13-13	0	0,0%	46
s6E11	95	3	VH3-13-13	0	0,0%	46
s6H7	100	3	VH3-13-13	0	0,0%	46
ss1	102	3	VH3-13-13	0	0,0%	46
822	94	3	VH3-13-13	0	0,0%	46
DOB	120	3	VH3-13-26	21	21,4%	116
THY-33	115	3	VH3-13-15	20	20.4%	42
NOV	118	3	VH3-13 - 19	14	14,3%	38
rsv13H	120	3	VH3-13-24	20	20,4%	11
L3G11	98	3	VH3-13-20	2	2,0%	46
L2E8	99	3	VH3-13-19	0	0,0%	46
L2D10	101	3	VH3-13-10	1	1,0%	46
L2E7	98	3	VH3-13-10	1	1,0%	46

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference'
L3A10	100	3	VH3-13-24	0	0,0%	46
L2E5	97	3	VH3-13-2	1	1,0%	46
BUR	119	3	VH3-13-7	21	21,4%	67
s4D5	107	3	VH3-11-3	1	1,0%	46
19	116	3	VH3-13-16	4	4,1%	118
s5D4 .	99	3	VH3-13-1	0	0,0%	46
s6A8	100	3	VH3-13-1	0	0,0%	46
HIV-loop13	123	3	VH3-13-12	17	17,3%	12
TR1.32	112	3	VH3-11-8	18	18,6%	88
L2B10	97	3	VH3-11-3	1	1,0%	46
TR1.5	114	3	VH3-11-8	21	21,6%	88
s6H9	101	3	VH3-13-25	0	0,0%	46
8 .	112	3	VH3-13-1	6	6,1%	118
23	115	3	VH3-13-1	6	6,1%	118
7	115	3	VH3-13-1	4	4,1%	118
TR1.3	120	3	VH3-11-8	20	20,6%	88
18/2	125	3	VH3-13-10	0	0.0%	32
18/9	125	3	VH3-13-10	0	0,0%	31
30P1	119	3	VH3-13-10	0	0,0%	106
HF2-1/17	125	3	VH3-13-10	0	0.0%	8
A77	109	3	VH3-13-10	0 .	0,0%	44
B19.7	108	3 .	VH3-13-10	0	0,0%	44
M43	119	3	VH3-13-10	0	0,0%	103
1/17	125	3	VH3-13-10	0	0,0%	31
18/17	125	3	VH3-13-10	0	0,0%	31,
E54 3.4	109	3	VH3-13-10	0	0,0%	26
LAMBDA-VH26	98	3	VH3-13-10	1	1,0%	95
E54 3.8	111	3	VH3-13-10	1	1,0%	26
GL16	106	3	VH3-13-10	1	1,0%	44
4G12	125	3	VH3-13-10	1	1,0%	56
A73	106	3	VH3-13-10	2	2,0%	44
AL1.3	111	3	VH3-13-10	3	3,1%	117
3.A290	118	3	VH3-13-10	2	2,0%	108
Ab18	127	3	VH3-13-8	2	2,0%	100
E54 3.3	105	3	VH3-13-10	3	3,1%	26
35G6	121	3	VH3-13-10	3	3,1%	57

タ4 SUBSTITUTE SHEET (RULE 26)

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
A95	107	3	VH3-13-10	5	5,1%	44
Ab25	128	3	VH3-13-10	5	5.1%	100
N87	126	3	VH3-13-10	4	4,1%	77
ED8.4	99	3	VH3-13-10	6	6,1%	2
RF-KL1	122	3	VH3-13-10	6	6,1%	82
AL1.1	112	3	VH3-13-10	2	2,0%	117
AL3.11	102	3	VH3-13-10	1	1,0%	117
32.B9	127	3	VH3-13-8	6	6,1%	129—
TK1	109	3	VH3-13-10	2	2,0%	117
POP	123	3	VH3-13-10	8	8.2%	115
9F2H	127	3	VH3-13-10	9	9.2%	127
VD	115	3	VH3-13-10	9	9,2%	10
Vh38Cl.10	121	3	VH3-13-10	8	8,2%	74 .
Vh38Cl.9	121	3	VH3-13-10	8	8,2%	74
Vh38Cl.8	121	3	VH3-13-10	8	8,2%	74
63P1	120	3	VH3-11-8	0	0,0%	104
60P2	117	3	VH3-11-8	0	0.0%	104
AL3.5	90	3	VH3-13-10	` 2	2,0%	117
GF4/1.1	123	3	VH3-13-10	10	10,2%	39
Ab21	126	3	VH3-13-10	12	12,2%	100
TD d Vp	118	3	VH3-13-17	2	2,0%	16
Vh38Cl.4	119	3	VH3-13-10	8	8,2%	74
Vh38C1.5	119	3	VH3-13-10	8	8,2%	74
AL3.4	104	3	VH3-13-10	1	1,0%	117
FOG1-A3	115	3	VH3-13-19	2	2,0%	42.
HA3D1	117	. 3	VH3-13-21	1	1,0%	81
E54 3.2	112	3	VH3-13-24	0	0,0%	26
mAb52	128	3	VH3-13-12	2	2,0%	51
mAb53	128	3	VH3-13-12	2	2,0%	51
mAb56	128	3	VH3-13-12	2	2,0%	51
mAb57	128	3	VH3-13-12	2	2,0%	51
mAb58	128	.3	VH3-13-12	2	2,0%	51
mAb59	128	3	VH3-13-12	2	2,0%	`51
mAb105	128	3	VH3-13-12	2	2,0%	51
mAb107	128	3	VH3-13-12	2	2.0%	51
E55 3.14	110	3	VH3-13-19	0	0,0%	26

75

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ²
F13-28	106	3	VH3-13-19	1	1,0%	94
mAb55	127	3	VH3-13-18	4	4,1%	51
YSE	117	3	VH3-13-24	6	6,1%	. 72
E55 3.23	106	3	VH3-13-19	2	2,0%	26
RF-TS5	101	3	VH3-13-1	3	3,1%	85
N42P5	124	3	VH3-13-2	7	7,1%	77
FOG1-H6	110	3	VH3-13-16	7	7,1%	42
0-81	115	3	VH3-13-19	11 -	11,2%	47
HIV-s8	122	3	VH3-13-12	11	11,2%	. 12
mAb114	125	3	VH3-13-19	12	12,2%	71
33.F12	116	3	VH3-13-2	4	4,1%	129
484	119	3	VH3-1X-3	0	0,0%	101
M26	123	3	VH3-1X-3	0	0.0%	103
VHGL 3.1	100	3	VH3-1X-3	0	0.0%	26
E55 3.13	113	3	VH3-1X-3	1	1,0%	26
SB5/D6	101	3	VH3-1X-6	3	3,0%	2
RAY4	101	3	VH3-1X-6	3	3,0%	2
82-D V-D	106	3	VH3-1X-3	· 5	5,0%	112
MAL	129	3	VH3-1X-3	5	5,0%	72
LOC	123	3	VH3-1X-6	5	5,0%	72
LSF2	101	3	VH3-1X-6	11	11,0%	2
HIB RC3	100	3	· VH3-1X-6	11 .	11,0%	1
56P1	119	3	VH3-13-7	0	0,0%	104
M72	122	3	VH3-13-7	0	0,0%	103
M74	121	3	VH3-13-7	0	0,0%	103
E54 3.5	105	3	VH3-13-7	0	0,0%	26
2E7	123	3	VH3-13-7	0	0,0%	63
2P1	117	3	VH3-13-7	0	0,0%	104
RF-SJ2	127	3	VH3-13-7	1	1,0%	83
PR-TS1	114	3	VH3-13-7	1	1,0%	85
KIM46H	127	3	VH3-13-13	0	0,0%	18
E55 3.6	108	3	VH3-13-7	2	2,0%	26
E55 3.10	107	3	VH3-13-13	1	1,0%	26
3.B6	114	3	VH3-13-13	1	1,0%	108
E54 3.6	110	3	VH3-13-13	1	1,0%	26
FL2-2	114	3	VH3-13-13	1	1,0%	80
	, . .	**		•		

SUBSTITUTE SHEET (RULE 26)

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
RF-SJ3	112	3	VH3-13-7	2	2,0%	85
E55 3.5	105	3	VH3-13-14	1	1,0%	26
BSA3	121	3	VH3-13-13	1	1,0%	73
HMST-1	119	3	VH3-13-7	3 .	3,1%	130
RF-TS2	126	3	VH3-13-13	4	4,1%	82
E55 3.12	109	3	VH3-13-15	0	0,0%	26
19.E7	126	3	VH3-13-14	3	3,1%	129
11-50	119	3	VH3-13-13	6	6,1%	130
E29.1	120	3	VH3-13-15	2	2,0%	25
E55 3.16	108	3	VH3-13-7	6	6,1%	26
TNF-E1	117	3	VH3-13-7	7	7,1%	42
RF-SJ1	127	3	VH3-13-13	6	6,1%	83
FOG1-A4	116	3	VH3-13-7	8	8,2%	42
TNF-A1	117	3	VH3-13-15	4	4.1%	42
PR-SJ2	107	3	VH3-13-14	8	8,2%	85
HN.14	124	3	VH3-13-13	10	10,2%	33
CAM'	121	3	VH3-13-7	12	12,2%	65
HIV-B8	125	3	VH3-13-7	9	9,2%	12
HIV-b27	125	3	VH3-13-7	9	9,2%	12
HIV-b8	125	3	VH3-13-7	9	9,2%	12
HIV-s4	125	3	VH3-13-7	9	9,2%	12
HIV-B26	125	3	VH3-13-7	9	9,2%	12
HIV-B35	125	3	VH3-13-7	10	10,2%	12
HIV-b18	125	3	VH3-13-7	10	10.2%	12
HIV-b22	125	3	VH3-13-7	11	11,2%	.12
HIV-b13	125	3	VH3-13-7	12	12,2%	12
333	117	3	VH3-14-4	24	24,0%	24
1H1	120	3	VH3-14-4	24	24,0%	24
1B11	120	3	VH3-14-4	23	23,0%	24
CLL30 2-3	86	3	VH3-13-19	1	1,0%	29
GA	110	3	VH3-13-7	19	19,4%	36
JeB	99	3	VH3-13-14	3	3,1%	7
GAL	110	3	VH3-13-19	10	10,2%	126
K6H6	119	3	VH3-1X-6	18	18,0%	60
K4B8	119	3	VH3-1X-6	18	18,0%	60
K5B8	119	3	VH3-1X-6	18	18,0%	60

77-

SUBSTITUTE SHEET (RULE 26)

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ¹
K5C7	119	3	VH3-1X-6	19	19,0%	60
K5G5	119	3	VH3-1X-6	19	19,0%	60
K6F5	119	3	VH3-1X-6	19	19,0%	60
AL3.16	98	3	VH3-13-10	1	1,0%	117
N86P2	98	3 .	VH3-13-10	3	3,1%	77
N54P6	95	3	VH3-13-16	· 7	7,1%	77
LAMBDA HT112-1	126	4	VH4-11-2	0	0,0%	3
HY18	121	4	VH4-11-2	0	0,0%	43
mAb63	126	4	VH4-11-2	0	0,0%	45
FS-3	105	4	VH4-11-2	0	0,0%	86
FS-5	111	4	VH4-11-2	0	0,0%	86
FS-7	107	4	VH4-11-2	0	0,0%	86
FS-8	110	4	VH4-11-2	. 0	0,0%	86
PR-TS2	105	4	VH4-11-2	0	0,0%	85
RF-TMC	102	4	VH4-11-2	0	0,0%	85
mAb216	122	4	VH4-11-2	1	1,0%	15
mAb410.7.F91	122	4	VH4-11-2	1	1,0%	52
mAbA6H4C5	124	4	VH4-11-2	1	1,0%	15
Ab44	127	4	VH4-11-2	2	2,1%	100
6H-3C4	124	4	VH4-11-2	3	3,1%	59
FS-6	108	4	VH4-11-2	6	6,2%	86
FS-2	114	4 .	VH4-11-2	6	6,2%	84
HIG1	126	4	VH4-11-2	7	7,2%	62
FS-4	105	4	VH4-11-2	8	8,2%	86
SA-4A	123	4	VH4-11-2	9	9.3%	125
LES-C	119	4	VH4-11-2	10	10,3%	99
DI	78	4	VH4-11-9	16	16,5%	58
Ab26	126	4	VH4-31-4	8	8.1%	100
TS2	124	4	VH4-31-12	15	15,2%	110
265-695	115	4	VH4-11-7	16	16,5%	5
WAH	129	. 4	VH4-31-13	19	19.2%	93
268-D	122	4	VH4-11-8	22	22,7%	6
58P2	118	4	VH4-11-8	. 0	0,0%	104
mAb67	128	4	VH4-21-4	1	1,0%	45
4.L39	115	4	VH4-11-8	2	2,1%	108
mF7	111	4.	VH4-31-13	3	3,0%	75

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
33.C9	122	4	VH4-21-5	7	7,1%	129
Pag-1	124	4	VH4-11-16	5	5,2%	50
B3	123	4	VH4-21-3	8	8,2%	53
IC4	120	4	VH4-11-8	6	6,2%	70
C6B2	127	4	VH4-31-12	4	4,0%	48
N78	118	4	VH4-11-9	11	11,3%	77
B2	109	4	VH4-11-8	12	12,4%	53
WRD2	123	4	VH4-11-12	6	6,2%	90
mAb426.4.2F20	126	4	VH4-11-8	2	2,1%	52
E54 4.58	115	4	VH4-11-8	1	1,0%	26
WRD6	123	4	VH4-11-12	10	10,3%	90
mAb426.12.3F1.4	122	4	VH4-11-9	· 4	4,1%	52
E54 4.2	108	4	VH4-21-6	2	2,0%	26
WIL	127	4	VH4-31-13	0 .	0,0%	90
COF	126	4	VH4-31-13	0	0,0%	90
LAR	122	4	VH4-31-13	2	2,0%	90
WAT	125	4	VH4-31-13	4	4,0%	90
mAb61	123	4	VH4-31-13	5	5,1%	45
WAG	127	4	VH4-31-4	0	0,0%	90
RF-SJ4	108	4	VH4-31-12	2	2,0%	85
E54 4.4	110	4	VH4-11-7	0	0,0%	26
E55 4.A1	108	4	VH4-11-7	0	0,0%	26
PR-SJ1	103	4	VH4-11-7	1	1,0%	85
E54 4.23	111	4	VH4-11-7	1	1.0%	26
CLL7 7-2	97	4	VH4-11-12	0	0,0%	29
37P1	95	4	VH4-11-12	0	0,0%	104 .
ALL52 30-2	91	4	VH4-31-12	4	4,0%	29
EBV-21	98	5	VH5-12-1	0	0.0%	13
CB-4	98	5	VH5-12-1	0	0,0%	13
CLL-12	98	5	VH5-12-1	0	0,0%	13
L3-4	98	5	VH5-12-1	0	. 0,0%	13
CLL11	98	5	VH5-12-1	0	0,0%	17
CORD3	98	5	VH5-12-1	0	0,0%	17
CORD4	98	5	VH5-12-1	0	0.0%	17
CORD8	98	5	VH5-12-1	0	0,0%	17
CORD9	98	5	VH5-12-1	0 .	0,0%	17

zς

SUBSTITUTE SHEET (RULE 26)

Table 2C:

(continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
CD+1	98	5	VH5-12-1	0	0,0%	17
CD+3	98	5	VH5-12-1	0	0,0%	17
CD+4	98	5	VH5-12-1	0	0,0%	17
CD-1	98	5	VH5-12-1	0	0,0%	17
CD-5	98	5	VH5-12-1	0	0,0%	17
VERG14	98	5	VH5-12-1	0	0,0%	17
PBL1	98	5	VH5-12-1	0	0,0%	17
PBL10	98	5	VH5-12-1	0	0,0%	17
STRAb SA-1A	127	5	VH5-12-1	0	0,0%	125
DOB'	122	5	VH5-12-1	0	0,0%	97
VERG5	98	5	VH5-12-1	0	0.0%	17
PBL2	98	5	VH5-12-1	1	1,0%	17
Tu16	119	5	VH5-12-1	1 -	1,0%	49
PBL12	98	5	VH5-12-1	1	1,0%	17
CD+2	98	5	VH5-12-1	1	1,0%	17
CORD10	98	5	VH5-12-1	1	1,0%	17
PBL9	98	. 5	VH5-12-1	1	1,0%	17
CORD2	98	5	VH5-12-1	2	2,0%	17
PBL6	98	5	VH5-12-1	2	2,0%	17
CORD5	98	5	VH5-12-1	, 2	2,0%	17
CD-2	98	5	VH5-12-1	· 2	2,0%	17
CORD1	98	5	VH5-12-1	2	2,0%	17
CD-3	98	5	VH5-12-1	3	3,1%	17
VERG4	98	5	VH5-12-1	3	3,1%	17 .
PBL13	98	.5	VH5-12-1	3	3,1%	·17 .
PBL7	98	5	VH5-12-1	3	3,1%	17
HAN	119	5	VH5-12-1	3	3,1%	97
VERG3	98	· 5	VH5-12-1	3	3,1%	17
PBL3	98	5	VH5-12-1	3 ·	3,1%	17
VERG7	98	5	VH5-12-1	3	3,1%	17
PBL5	94	5	VH5-12-1	0	0.0%	17
CD-4	98	5	VH5-12-1	4	4,1%	17
CLL10	98	5	VH5-12-1	4	4,1%	17
PBL11	98	5	VH5-12-1	4	4,1%	17
CORD6	98	5	VH5-12-1	. 4	4,1%	17
VERG2	98	5	VH5-12-1	5	5,1%	17

WO 97/08320

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
83P2	119	5	VH5-12-1	0	0,0%	103
VERG9	98	5	VH5-12-1	6	6,1%	17
CLIG	98	5	VH5-12-1	6	6,1%	17
PBL8	98	5	VH5-12-1	7	7,1%	17
Ab2022	120	5	VH5-12-1	3	3,1%	100
CAV	127	5	VH5-12-4	0	0,0%	97
HOW'	120	5	VH5-12-4	0	0,0%	97
PET	127	5	VH5-12-4	0	0,0%	97
ANG	121	5	VH5-12-4	0	0,0%	97
KER	121	5	VH5-12-4	0	0,0%	97
5.M13	118	5	VH5-12-4	0	0,0%	107
Au2.1	118	5	VH5-12-4	1	1,0%	49
WS1	126	5	VH5-12-1	9	9,2%	110
TD Vn	98	5	VH5-12-4	1	1,0%	16
TEL13	116	5	VH5-12-1	9	9,2%	73
E55 5.237	112	5	VH5-12-4	2	2,0%	26
VERG1	98	5	VH5-12-1	10	10,2%	17
CD4-74	117	5	VH5-12-1	10	10,2%	42
257-D	125	5	VH5-12-1	11	11,2%	6
CLL4	98	5	VH5-12-1	11	11,2%	17
CL18	98	5	VH5-12-1	11	11,2%	17
Ab2	124	5	VH5-12-1	12	12,2%	120
Vh383ex	98	5	VH5-12-1	12	12,2%	120
CLL3	98	5	VH5-12-2	11	11,2%	17
Au59.1	122	5	VH5-12-1	12	12,2%	49
TEL16	117	5	VH5-12-1	12	12,2%	73
M61	104	5	VH5-12-1	0	0,0%	103
Tu0	99	5 .	VH5-12-1	5	5,1%	49
P2-51	122	5	VH5-12-1	13	13,3%	121
P2-54	122	5	VH5-12-1	11	11,2%	121
P1-56	119	5	VH5-12-1	9	9,2%	121
P2-53	122	5	VH5-12-1	10	10,2%	121
P1-51	123	5	VH5-12-1	19	19,4%	121
P1-54	123	5	VH5-12-1	3	3,1%	121
P3-69	127	5	VH5-12-1	4	4,1%	121
P3-9	119	5	VH5-12-1	4	4,1%	121

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
1-185-37	125	5	VH5-12-4	0	0,0%	124
1-187-29	. 125	5	VH5-12-4	0	0,0%	124
P1-58	128	5	VH5-12-4	10	10,2%	121
P2-57	118	5	VH5-12-4	3	3,1%	121
P2-55	123	5	VH5-12-1	5	5,1%	121
P2-56	123	5	VH5-12-1	20	20,4%	121
P2-52	122	5	VH5-12-1	11	11,2%	121
P3-60	122	5	VH5-12-1	8	8,2%	121
P1-57	123	5	VH5-12-1	4	4,1%	121
P1-55	122		VH5-12-1	14	14,3%	121
MD3-4	128	5	VH5-12-4	12	12,2%	5
P1-52	121	5	VH5-12-1	11	11,2%	121
CLL5	98	5	VH5-12-1	13	13,3%	17
CLL7	98	5	VH5-12-1	14	14,3%	17
L2F10	100	5	VH5-12-1	1	1,0%	46
L3B6	98	5	VH5-12-1	1	1,0%	46
VH6.A12	119	6	VH6-35-1	13	12,9%	122
s5A9	102	6	VH6-35-1	1	1,0%	. 46
s6G4	99	6	VH6-35-1	1	1,0%	46
ss3	99	6	VH6-35-1	1	1,0%	46
6-1G1	101	6	VH6-35-1	0	0,0%	14
F19L16	107	6 -	VH6-35-1	0	0,0%	68
L16	120	6	VH6-35-1	0	0,0%	69
M71	121	6	VH6-35-1	0	0,0%	103
ML1	120	6	VH6-35-1	0	0,0%	69
F19ML1	107	6	VH6-35-1	0	0,0%	68
15P1	127	6	VH6-35-1	0	0,0%	104
VH6.N1	121	. 6	VH6-35-1	0 .	0,0%	122
VH6.N11	123	6	VH6-35-1	0	0,0%	122
VH6.N12	123	6	VH6-35-1	0	0.0%	122
VH6.N2	125	6	VH6-35-1	0	0,0%	122
VH6.N5	125	6	VH6-35-1	0	0.0%	122
VH6.N6	127	6	VH6-35-1	0	0,0%	122
VH6.N7	126	6	VH6-35-1	0	0,0%	122
VH6.N8	123	6	VH6-35-1	0	0,0%	122
VH6.N9	123	6	VH6-35-1	0	0,0%	122

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
VH6.N10	123	6	VH6-35-1	0	0,0%	122
VH6.A3	123	6	VH6-35-1	0	0,0%	122
VH6.A1	124	6	VH6-35-1	0	0,0%	122
VH6.A4	120	6	VH6-35-1	0	0,0%	122
E55 6.16	116	6	VH6-35-1	0	0,0%	26
E55 6.17	120	6	VH6-35-1	0	0,0%	26
E55 6.6	120	6	VH6-35-1	0	0,0%	26
VHGL 6.3	102	6	VH6-35-1	0	0,0%	26
CB-201	118	6	VH6-35-1	0	0,0%	109
VH6.N4	122	6	VH6-35-1	0	0,0%	122
E54 6.4	109	6	VH6-35-1	1	1,0%	26
VH6.A6	126	6	VH6-35-1	1	1,0%	122
E55 6.14	120	6	VH6-35-1	1	1,0%	26
E54 6.6	107	6	VH6-35-1	1	1,0%	26
E55 6.10	112	6	VH6-35-1	1	1,0%	26
E54 6.1	107	6	VH6-35-1	2	2,0%	26
E55 6.13	120	6	VH6-35-1	2	2,0%	26
E55 6.3	120	6	VH6-35-1	2	2,0%	26
E55 6.7	116	6	VH6-35-1	2	2,0%	26
E55 6.2	120	6	VH6-35-1	2	2,0%	26
E55 6.X	111	6	VH6-35-1	2	2,0%	26
E55 6.11	111	6	VH6-35-1	3	3,0%	26
VH6.A11	118	6	VH6-35-1	3	3,0%	122
A10	107	6	VH6-35-1	3	3,0%	68
E55 6.1	120	· 6	VH6-35-1	4	4,0%	26
FK-001	124	6	VH6-35-1	4	4,0%	65
VH6.A5	121	6	VH6-35-1	.4	4,0%	122
VH6.A7	123	6	VH6-35-1	4	4,0%	122
HBp2	119	6	VH6-35-1	4	4,0%	4
Au46.2	123	6	VH6-35-1	5	5,0%	49
A431	106	6	VH6-35-1	5	5,0%	68
VH6.A2	120	6	VH6-35-1	5	5,0%	122
VH6.A9	125	6	VH6-35-1	. 8	7,9%	122
VH6.A8	118	6	VH6-35-1	10	9,9%	122
VH6-FF3	118	6	VH6-35-1	2	2,0%	123
VH6.A10	126	6	VH6-35-1	12	11,9%	122

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
VH6-EB10	117	6	VH6-35-1	3	3,0%	123
VH6-E6	119	6	VH6-35-1	· 6	5,9%	123
VH6-FE2	121	6	VH6-35-1	6	5,9%	123
VH6-EE6	116	6	VH6-35-1	6	5,9%	123
VH6-FD10	118	6	VH6-35-1	6	5,9%	123
VH6-EX8	113	6	VH6-35-1	6	5,9%	123
VH6-FG9	121	6	VH6-35-1	8	7,9%	123
VH6-E5	116	6	VH6-35-1	9	8,9%	123
VH6-EC8	122	6	VH6-35-1	9	8,9%	123
VH6-E10	120	6	VH6-35-1	10	9,9%	123
VH6-FF11	122	6	VH6-35-1	11	10,9%	123
VH6-FD2	115	6	VH6-35-1	11	10,9%	123
CLL10 17-2	88	6	VH6-35-1	4	4,0%	29
VH6-BB11	94	6	VH6-35-1	4	4,0%	123
VH6-B41	93	6	VH6-35-1	7	6,9%	123
JU17	102	6	VH6-35-1	3	3,0%	114
VH6-BD9	96	6	VH6-35-1	11	10,9%	123
VH6-BB9	94	6	VH6-35-1	12	11,9%	123

WO 97/08320 PCT/EP96/03647

Table 3A: assignment of rearranged V kappa sequences to their germline counterparts

Family ¹	Name	Rearranged ¹	Sum
ı	Vkl-l	28	
1	Vk1-2	0	
_ 1	Vk1-3	1	
1	Vk1-4	0	
1	Vk1-5	7	•
i	Vk1-6	0	
1	Vk1-7	0	
1	Vk1-8	2	
1	Vk1-9	9	
ì	Vk1-10	0	
1	Vk1-11	1	
1	Vk1-12	7	
I	Vk1-13	1	
1	Vk1-14	7	
1	Vk1-15	2	
1	Vk1-16	2	
i	Vk1-17	16	
1	Vk1-18	i	
I	Vk1-19	33	
ł	Vk1-20	1	
I	Vk1-21	i	
1	Vk1-22	0	
1	Vk1-23	0	119 entries
2	Vk2-1	0	
2	Vk2-2	1	
2	Vk2-3	0	
2	Vk2-4	0	
2	Vk2-5	0	
2	Vk2-6	16	
2	Vk2-7	0	
2	Vk2-8	0	
2	Vk2-9	1	
2	Vk2-10	0	
2	Vk2-11	7	
2	Vk2-12	0	25 entries
3	Vk3-I		
3	Vk3-2	0	

WO 97/08320

Table 3A:

(continued)

Sum	Rearranged ²	Name	Family 1
	35	Vk3-3	3
	115	Vk3-4	3
	0	Vk3-5	3
	0	Vk3-6	_ 3
	1	Vk3-7	. 3
192 entries	40	Vk3-8	3
33 entries	33	Vk4-1	4
l entry	1	Vk5-1	5
	0	Vk6-1	6
0 entries	0	Vk6-2	6
0 entries	0	Vk7-1	7

WO 97/08320 PCT/EP96/03647

Table 3B: assignment of rearranged V lambda sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
1	DPL1	1	· · · · · · · · · · · · · · · · · · ·
1	DPL2	14	
1	DPL3	6	
1	DPL4	1	
1	HUMLV117	4	
1	DPL5	13	
1 .	DPL6	0	
1	DPL7	. 0	
1	DPL8	3	
1	DPL9	0	42 entries
2	DPL10	5	
2	VLAMBDA 2.1	0	
2	DPL11	23	
2	DPL12	15	
. 2	DPL13	0	
2	DPL14	0	43 entries
3	DPL16	10	
3	DPL23	19	
3	Humlv318	9	38 entries
7	DPL18	1	
7	DPL19	0	1 entries
8	DPL21	2	
8	HUMLV801	6	8 entries
9	DPL22	0	0 entries
unassigned	DPL24	0	0 entries
10	gVLX-4.4	0	0 entries

WO 97/08320 PCT/EP96/03647

Table 3C: assignment of rearranged V heavy chain sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
1	VH1-12-1	38	
1	VH1-12-8	2	
1	VH1-12-2	2	
1	VH1-12-9	2	
1	VH1-12-3	0	
1	VH1-12-4	0 .	
1	. VH1-12-5	3	
1	VH1-12-6	0	
1	VH1-12-7	23	•
1	VH1-13-1	1	
1.	VH1-13-2	1	
1	VH1-13-3	0	
1	VH1-13-4	0	
1	VH1-13-5	0	
1	VH1-13-6	17	
1	VH1-13-7	0	
1	VH1-13-8	3	
1	VH1-13-9	0	
1	VH1-13-10	0	
1	VH1-13-11	0	
1	VH1-13-12	10	
1	VH1-13-13	0	
1	VH1-13-14	0	
1	VH1-13-15	4	
1	VH1-13-16	2	
1	VH1-13-17	0	
1	VH1-13-18	1	
1	VH1-13-19	0	
1	VH1-1X-1	1	110 entries
2	VH2-21-1	0	· · · · · · · · · · · · · · · · · · ·
2	VH2-31-1	0	•
2	VH2-31-2	. 1	
2	VH2-31-3	1	
2	VH2-31-4	0	
2	VH2-31-5	2	
2	VH2-31-6	0	
2	VH2-31-7	0	
-	• .		8 9

Table 3C: (continued)

2	Family ¹	Name	Rearranged ²	Sum
2 VH2-31-9 0 2 VH2-31-10 0 2 VH2-31-11 1 2 VH2-31-12 0 2 VH2-31-13 1 7 entries 3 VH3-11-1 0 3 VH3-11-2 0 3 VH3-11-3 5 3 VH3-11-5 1 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-3 0 3 VH3-13-4 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-19 13 <	2	VH2-31-14	1	Y
2	2	VH2-31-8	0	
2 VH2-31-11 1 2 2 VH2-31-13 1 7 entries 3 VH3-11-1 0 3 VH3-11-2 0 3 VH3-11-3 5 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-1 0 46 3 VH3-13-1 0 46 3 VH3-13-1 1 0 3 VH3-13-1 1 17 3 VH3-13-1 1	2	VH2-31-9	0	
2 VH2-31-12 0 2 VH2-31-13 1 7 entries 3 VH3-11-1 0 3 VH3-11-2 0 3 VH3-11-3 5 3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-13-1 9 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-19 13 3 VH3-13-20 1	2	VH2-31-10	0	
2 VH2-31-13 1 7 entries 3 VH3-11-1 0 3 VH3-11-2 0 3 VH3-11-3 5 3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-4 0 3 VH3-13-5 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-16 3 3 VH3-13-19 13 3 VH3-13-19 13 3 VH3-13-20 1	2	VH2-31-11	1	
3 VH3-11-1 0 3 VH3-11-2 0 3 VH3-11-3 5 3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-5 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-1 0 46 3 VH3-13-1 10 3 VH3-13-1 10 3 VH3-13-1 11 3 VH3-13-2 1 11	2	VH2-31-12	. 0	
3 VH3-11-2 0 3 VH3-11-3 5 3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-5 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-17 2 3 VH3-13-19 13 3 VH3-13-19 13 3 VH3-13-19 13 3 VH3-13-20 1	2	VH2-31-13	1	7 entries_
3 VH3-11-3 5 3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-19 13 3 VH3-13-19 13 3 VH3-13-20 1	3	VH3-11-1	0	
3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-2 3 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-19 13 3 VH3-13-19 13 3 VH3-13-20 1	3	VH3-11-2	0	
3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-15 4 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-20 1	3	VH3-11-3	5	
3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-13 17 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-20 1	3	VH3-11-4	0	
3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-12 11 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-20 1	3	VH3-11-5	1	
3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-4 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-20 1	3	VH3-11-6	1	
3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-4 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3 -	VH3-11-7	0	
3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-4 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-20 1	3	VH3-11-8	5	
3 VH3-13-3 0 3 VH3-13-4 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-13 17 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-19 13 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-1	9	
3 VH3-13-4 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-13 17 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-2	3	
3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-3	0	
3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-13 17 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-4	0	
3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-5	0	
3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-13 17 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-6	0	
3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-13 17 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-7	32	
3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-13 17 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-17 2 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-8	4	
3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-13 17 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-9	0	
3 VH3-13-12 11 3 VH3-13-13 17 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-10	46	
3 VH3-13-13 17 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-11	0	
3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-12	11	
3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-13	17	
3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-14	8	
3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-15	4	
3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-16	3	
3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-17	2	
3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-18	1	
3 VH3-13-21 1	3	VH3-13-19	13	
	3	VH3-13-20	1	
3 VH3-13-22 0	3	VH3-13-21	1	
	3	VH3-13-22	0	

WO 97/08320

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
3	· VH3-13-23	0	
3	VH3-13-24	4	
3	VH3-13-25	1	
3	VH3-13-26	6 .	
3	VH3-14-1	1	
3	VH3-14-4	15	
3	VH3-14-2	0	-
3	VH3-14-3	0	
3	VH3-1X-1	0	•
3	VH3-1X-2	0	•
3	VH3-1X-3	6	
3 3	VH3-1X-4	0	
3	VH3-1X-5	0	
3	VH3-1X-6	11	
3	VH3-1X-7	0	
3	VH3-1X-8	1	
3	VH3-1X-9	0	212 entries
4	VH4-11-1	0	
4	VH4-11-2	20	
4	VH4-11-3	0	
4	VH4-11-4	0	•
4 .	VH4-11-5	0	
4	VH4-11-6	0	
4	VH4-11-7	5	
4	VH4-11-8	7	
4	VH4-11-9	3	
4	VH4-11-10	0	
4	VH4-11-11	0	
4	VH4-11-12	4	
4	VH4-11-13	0	
4	VH4-11-14	. 0	
4	VH4-11-15	0	
4 .	VH4-11-16	1	
4	VH4-21-1	0	
4	VH4-21-2	0 .	
4	VH4-21-3	1	

Table 3C: (continued)

		•	
Family ¹	Name	Rearranged ²	Sum
4	VH4-21-5	1	
4	VH4-21-6	1	
4	VH4-21-7	o .	
4	VH4-21-8	0	
. 4	VH4-21-9	0	
4	VH4-31-1	0	
4	VH4-31-2	0	
4	VH4-31-3	0	
4	VH4-31-4	2	
4	VH4-31-5	0	
4	VH4-31-6	0	
4	VH4-31-7	0	
4	VH4-31-8	0	
4 .	VH4-31-9	0	
4	VH4-31-10	0	
4	VH4-31-11	0	
4	VH4-31-12	4	
4	VH4-31-13	· 7	
4	VH4-31-14	0	
4	VH4-31-15	0	
4 .	VH4-31-16	0	
4	VH4-31-17	. 0	
4	VH4-31-18	0	
4	VH4-31-19	0	
4	VH4-31-20	0	57 entries
5	VH5-12-1	82	
5	VH5-12-2	1	
5	VH5-12-3	0	
5	VH5-12-4	14	97 entries
6	VH6-35-1	74	74 entries

WO 97/08320
Table 4A: Analysis of V kappa subgroup 1

Analysis of V				<u> </u>								Fran	iewor	k l		
amino acid'	-	2	6	4	2	9	7	80	6	10	=	12	£	4	15	16
Α		1							1				102		1	
В			1			1										
С							<u></u>							1		
D	64										<u>. </u>					
E	8		14												1	
F									1	6				1		
G																105
Н																
. 1		65													4	
K			1													
L		6		21							96		1			
М	1			66												
N																
P								103		1		2			1	
Q			62			88					1					
R	-															
S							89		102		·	103		103		
T		1			88					18						.
V		1	9								8		2		98	
W								,							· · ·	
X	1															
Y																
unknown (?)					47	10	1.0	·	4							
not sequenced											105	105	105	105	105	10
sum of seq ² .																
oomcaa	ļ					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					:		:	10 3 5	98 V	105
mcaa'	D	1	Q	М					S	S	L	<u>S</u>	Α	٥		G
rel. oomcaas	%98	88%	71%	9/9/	100%	99%	100%	100%	98%	76%	91%	98%	97%	986%	93%	100%
pos occupied			:	:		2	1	1	3	4	3	2	3	3	5	1

92 SUBSTITUTE SHEET (RULE 26)

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

amino acid' .	17	18	19	20	21	22	73	24	25	26	27	Α.	80	U	۵
Α			1	1		1			103					<u>. </u>	
В											1				
C							105								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
D	101														
E	2							1	1		2				,
F					2										
G								<u></u>		1					,
Н											1				
1			6	4	101	1									•••••
К								2			1				•••••
L								1							
М															
N ·										1					
P.															
Q								20			100				
R		94						81							,
S		5		1						102					
Т		6		99		103			1	1					
V			98		2										
W															
X	1														
Y	1														-
-												105	105	105	10
unknown (?)					············										
not sequenced		<u> </u>				<u> </u>									
sum of seq2	105	105	105	105	105	105	105	105	105	105	105	105	105	105	10
oomcaa³	101	94	98	99	101	1.03	105	81	103	102	:	105	105	105	10
mcaa¹	D	R	V	T	1	T	С	R	Α	S	Q	-	-	-	-
rel. oomcaas	%96	90%	93%	94%	%96	%86	100%	77%	%86	97%	95%	100%	100%	100%	200
pos occupied	;	3	:		:	:	:	5	3	4	5	1	1	1	<u></u>

PCT/EP96/03647

WO 97/08320 .

Table 4A:	Analysis of	V kappa	subgroup	1

Allalysis of	CDRI														
amino acid¹	ш	ш.	28	53	30	31	32	33	34	35	36	37	38	39	40
А					1	1		1	42						
В												1	1		
. C							1								
D			25		1	5	7					1			
E							1					2			
F				1	1		7				6				
G			25		7	3			4						
H					1	2	2		1			2			
1				98	1	4			1						
К						7								95	
L					2	1		101							
М															
N			6		16	42			50						
Р															10
Q												98	103		
R					16	3								3	-
S			41	2	57	32	3	1							
T			7			4			4					1	
V			1	4	1	•	•	1							
W							21			104					
Χ									1						
Υ					1		60				98	-			
-	105	105					·					······			
unknown (?)	ļ	<u> </u>			ļ		<u> </u>							3	:
not sequenced					<u> </u>	1							===		 -
sum of seq ²	105	105	105		1	:	•	:	:	104		•	:	:	:
oomcaa,	105	105	:	}			···	101	:············	104	;·	:	103		10
mcaa*	_		S	<u> </u>	S	N	Y	L	N	W	Y	Q	Q	K	Р
rel. oomcaa'	100%	100%	39%	93%	54%	40%	58%	97%	48%	100%	94%	94%	%66	91%	3
pos occupied	1	1		:	12	11	9	4	8	1	2	5	2	4	<u>.</u>

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

	Fran	new	ork	11										DR II		
amino acid'	41	42		t 4 .	44	45	46	47	48	49	20	52	52		54	52
Α				94							50	95				
В																
. C																
D											21	1	1	1		~~~
E	1		3			1	1				1		1			33
F	<u></u>						1			3			1			
G	100			1							9	2				1
Н		ļ								2						1
1			1				1		100					1		5
K		(95			86				•••••	16			2	101	
L		<u></u>	1				89	103							101	
M	1_	<u> </u>							2							
N		ļ				10					2	.; !	1	25		
Р		ļ			104						1					
Q			1			1					<u> </u>	<u> </u>				62
R						3	3							1	1	
S						1				5	÷	1			2	
T			3			1					1	4	<u> </u>			
V				9			9		ļ			1		1		
W	_	_ _						<u></u>		<u></u>	<u> </u>			4		
X						1		<u></u>						1		
Y	_	<u> </u>	_		ميند		_	_		92		1	<u> </u>			<u> </u>
_		_			********		<u> </u>			<u> </u>	-	-				
unknown (?) [3			·		ļ				3	2 1	1	1	1	
not sequence	ed	1	_1				·									
sum of seq	10	4													101	6
oomcaa,	10	0	95		104	-		103	1 .	:		0 9: A			·	
mcaa*	9	-	K	Α	Р	K	L		1	Y	A	A	S		<u> </u>	<u> </u>
rel. oomcaa	95	96%	91%	%06	100%	83%	86%	100%	%00°0	2 00	2006	9.00	950	39%	•	
pos occupie		2	6		1	{	3	6	1	2	4 1	0	6	6 9) (3

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

•															
amino acid'	26	27	58	23	9	61	62	63	64	65	99	67	89	69	70
Α	3										2	1	1	1	
В				1											
. C															
D	1														67
E													1		30
F			1				103					3			
G	2	105							105	4	101		102		
Н															
ı	3		4				1	3							
K	1					1									
L								1							
М														1	
N	6														
Р	1			101	2										
Q										1					
R	1					103		1		1				2	
S	68			. 2	103			98		96		100			
T	19			1		1		2		3				101	
V			99				1								····
W															•••••
X			1								1		1		
Y												1			
_															
unknown (?)	Į			·············								*********			
not sequenced															_
sum of seq ²		*****	·······								: :		:		
oomcaa³	68	105	99	101	103	103	103	98	105	96	101	100	102	101	6
mcaa*	S	G	V	Р	S	R	F	5	G	. S	G	S	G	T	D
rel. oomcaas	65%	100%	94%	96%	98%	%86	%86	93%	100%	91%	%96	95%	97%	%96	6.40%
pos occupied	•	:			2	3	3	5	1	5	4	4	4	4	

مح

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

;	Fr	amev	vork II	1											
amino acid'	71	72	73	74	75	92	77	78	79	8	<u>8</u>	82	83		82
Α		3				1				2				101	<u> </u>
В					1				3		2				
. C															
D						1						101			
E											83				•••••
F	102	1	21										73		
G							4				1			2	
Н															
					99	. 5							17		
K	<u> </u>														
<u> </u>	<u></u>		81					103	1				1		
M	ļ		ļ												
N	ļ					7	4								
Р										97					
Q	ļ	ļ							97						
R	ļ					2			2				··		
<u>S</u>		2	· · · · · · · · · · · · · · · · · · ·	1		86				4			1		9
T	ļ	98		102		2	1						11		9
<u> </u>	11		2		4			1					11		
W			<u> </u>								1				
X	ļ	ļ		1							1	2		•••••	
Υ	. 🗀		<u> </u>						_						
***************************************	-												<u> </u>		
unknown (?)	B		-					1	2	2	2	2	. 2	2	
not sequence			1 1											; -	:
sum of seq ²			4 104	7	•	•	1	i	:	97		101		2	9
oomcaa,			8 81	1	:	······	·	103	·!	:	E	D	F	Α	7
mcaa¹	F	Ţ	L	T	<u> </u>	S	<u> </u>	L	Q	Р	<u> </u>				†
rel. oomcaa ^s	0/080	9070	78%	%86	95%	83%	%06	%66	94%	94%	810%	98%	71%	98%	
pos occupied			4 3		3	7		2	4	J 3	5	2	2 5	2	1

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

Allalysis of V					•					DR II						
amino acid'	98	87	88	89	06	91	92	93	94	95	۷_	۵	U	۵	w	ᅩ
А					1	7	1		5	1						
В				2	3											
. C			102													,
D							23	5	1							
E							1	1		1	1					
F		7				3			13							
G						1		1	2	1		1				
Н		1		4	6	7	3	1								
1							4	1	2	1						
<u>K</u>	1				7		1									
L				7		6	2		18	2		•••••				
М																
N						6	31	19								
Р									1	82	6					
Q				90	86	1	2									
R						1		2								
5	1					27			· · · · · · · · · · · · · · · · · · ·							
Ţ						3	1	15								
<u> </u>						-			5							
<u> </u>									1							
X																•••••
Y	101	93				42	32	1			00	00	00	00	00	00
-					•					3	82	88	89	89	89	89
unknown (?)		1		·····	a		1	1	1	A	16	16	16	16	 16	16
not sequenced						=					_	_	-	_	_	_
				:		:			104 25			i	:	89		
oomcaa,		93 V	•••••••				32 ×	58 S	25 T	в <u>г</u> Р	02	00	<u> </u>	03	03	03
mcaa'	Y	Υ	C	Q	Ω	Υ	Υ	2	1			-	-	.o	.0	
rel. oomçaas	%86	91%	100%	87%	83%	40%	31%	26%	24%	81%	95%	93%	100%	100%	100%	100%
pos occupied6	3	3	1	4	5	11	12	10	14	8	3	2	1	1	1	1

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

1212 01 A Kahha		1					Fra	mev	ork/	IV					٠
amino acid¹	96	97	86	66	100	101	102	103	104	105	106	⋖	107	108	sum
Α	1														627
В					1					1					19
.С															209
D	1									15					459
E					2					65					25
F	6		86								2	<u></u>			45
G	1			87	29	87								2	89
Н	2	1													4
[5								1		72				60
K	1	1						77					79		48
L	18	1	1						22	4	2				79
M		1									5				7
N	1										1		2		23
P	6				7									1	62
Q	1				48					1					86
R	6							6					2	70	41
S	2	2													163
T	2	82					87	3					2		102
V	2							1	63		3				44
W	15				<u></u>			ļ		<u> </u>	<u> </u>				14
X							<u></u>								1
Y	16												_		56
-	4	1						<u> </u>				85		1	125
unknown (?)				<u></u>							<u> </u>	ļ			
not sequence	d 16	16	18	18	18	18	18	18	19	19	20	20	20	31	58
sum of seq²	89	89	87	87	87	87	87	87	86	86	85	85	85	74	
oomcaa,	18	82	86	87	48	87	87	77	63	65	72	85	79	70	
mcaa*	L	Ţ	F	G	G	G	T	K	٧	E	<u> </u>	-	K	R	
rel. oomcaa	700%	32%	99%	100%	55%	100%	100%	89%	73%	76%	85%	100%	93%	95%	
pos occupied															

33

·· WO 97/08320

Table 4B: Analysis of V kappa subgroup 2

4B: Analysis of											Frar	new	ork	1							
amino acid'	-	2	က	4	5	9	7	8	6	10	=	12	13	14	15	16	11	18	19	20	21
Α																	-		22		
В													<u></u>						<u></u>		
· C													<u> </u>	<u></u>					<u></u>		
D	14																				
E	3															<u> </u>	15				
F .									1	1			<u></u>	<u></u>							
G													<u></u>			22					
Н																					
l		8																			22
K																					
L		3		1					17		18				6						
M				15																	
N																					
Р								18				18			15			22			
Q						18											7				
R																					
5							18			17										22	·····
T					17									21							••••••
V		6	17	1									18								
W																					
X								,													
Υ																					
-																					
unknown (?)					1									·							·
not sequenced	5	5	5	5	4	4	4	4	4	4	4	4	4	1	1						
sum of seq²	17	17	17	17	18	18	18	18	18	18	18	18	18	21	21	22	22	22	22	22	22
oomcaa,	14	8	17	15	17	18	18	18	17	17	18	18	18	21	15	22	15	22	22	22	22
mcaa*	D	١	٧	М	Τ	Q	S	Ρ	L	S	L	Ρ	٧	Τ	Р	G	Ε	Р	Α	S	İ
rel. oomcaa ^s	82%	47%	100%	%88	94%	100%	100%	100%	94%	94%	100%	100%	100%	100%	71%	100%	68%	100%	100%	100%	100%
pos occupied ⁶		3																:	1	1	1

Table 4B: Analysis of V kappa subgroup 2

											CDF	ll .									
amino acid'	22	23	24	25	56	27	∢	8	U	٥	m	щ	28	29	30	31	32	33	34	35	36
Α																					
В					<u> </u>								<u> </u>	<u></u>		<u> </u>	<u></u>	<u></u>	<u> </u>		
· C		22			<u> </u>	<u>.</u>			<u> </u>							<u> </u>	<u></u>	<u></u>			
D		<u></u>	<u>.</u>	<u></u>						1			9		1	1		<u></u>	11		
E		<u>.</u>	<u>.</u>	<u></u>	<u></u>		<u> </u>	<u></u>								ļ					
F			<u></u>												2						7
G											1			22		<u>.</u>					
Н										16							1		1		
K			1								.					1					
L			ļ			1		22	13									22			
M									1												
N													10		7	12			9		
Р						.,															
Q	1					21															
R			21								2										
S	21			22	22		22				19		1								
T																8					
V									8												•••••
W										1										22	
X													1		1				1		
Y										4			1		11		21				15
-												22									
unknown (?)																					
not sequenced														_							
sum of seq ²	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
oowcaa,	21	22	21	22	22	21	22	22	13	16	19	22	10	22	11	12	21	22	11	22	15
mcaa'	S	С	R	5	S	Q	S	L	L	Н	5		N	G	Υ	N	Υ	L	D	W	Υ
rel. oomcaas	95%	100%	95%	100%	100%	95%	100%	100%	29%	73%	96%	100%	45%	100%	20%	55%	95%	100%	20%	100%	9089
pos occupied ⁵	2	1							3						:			1	4	1	2

Table 4B: Analysis of V kappa subgroup 2

4B: Analysis of					ran		ork	11								(DR	11			
amino acid'	37	38	39	40	41	42	43	44	45	46	47	48	49	20	21	52	53	54	55	26	57
Α																			14		
В													<u></u>			<u></u>					<u> </u>
· C													<u></u>			ļ					
D								ļ								ļ			7		
E									1							ļ					
F ·																				· · · · ·	ļ
G					22			<u></u>							12				1		2
Н																					
1										1		22	,								
K			15											5							
L	16									14	21			14	1						
M																					
N																	18				
Р				22				21													
Q	6	22				22			12					1	·						
R			7						8	7				1				22			
S							21								2	22	2			22	
T																	1				
V											1				6						
W																					
X																					
Υ													21				1				
-																					
unknown (?)																					
not sequenced							1	1	1				1	1	1						
sum of seq'	22	22	22	22	22	22	21	21	21	22	22	22	21	21	21	22	22	22	22	22	2
oomcaa'	16	22	15	22	22	22	21	21	12	14	21	22	21	14	12	22	18	22	14	22	2
mcaa'	L	Q	Κ	Ρ	G	Q	S	Р	Q	L	L	١	Y	L	G	S	Ν	R	Α	S	C
rel. oomcaa ^s	73%	100%	68%	100%	100%	100%	100%	100%	. %25	64%	95%	100%	100%	67%	57%	100%	82%	100%	64%	100%	1000%
pos occupied ^a														:							

Table 4B: Analysis of V kappa subgroup 2

•														Fra	mev	vorl	c III				
amino acid'	28	59	90	19	62	63	64	65	99	29	89	69	70	71	72	73	74	75	9/	77	18
А																					
В																					
· C																					
D			22				1				1		22								
E																					
F					21					·				22							
G							21		22		21										
Н																					
																	1	21		<u> </u>	
K																	19				
L																21	1				
М																					
N																					
Р		22																			
Q																					
R				20				1												20	
S				1		22		21		22									20	1	
Т				1								22			21				1		
V	22				1											: <u>.</u>					21
W																					
X																					
Υ														_			_	_			
	ļ																	ļ			
unknown (?)	ļ		ļ			<u></u>									1	.					
not sequenced	3==	<u> </u>															===		1		_
sum of seq ²		÷	<u> </u>	:	÷·····	÷••••••			:	:	:······	:	:	:		:	:	:	21		
oomcaa,	22	22	22	20	:	·	:	:·······	:	}	:	:	:		•	:	:	;	20		:
mcaa*	٧	÷	D	.	÷	÷	•••••	······	·····	:	÷	:	D	:	······	!	ļ	÷	S	R	V
rel. oomcaas	100%	100%	100%	91%	95%	100%	95%	95%	100%	100%	95%	100%	100%	100%	95%	100%	%06	100%	95%	95%	100%
pos occupied ^a																				2	1

Table 4B: Analysis of V kappa subgroup 2

je 48: Anaiysis oi		ОРР															C	DR	111		
amino acid'	79	80	.81	82	83	84	85	98	87	88	89	90	91	92	93	94	95	∢	8	ں	٥
Α		20											14			1					
В												1			1						
· C										21	<u></u>										
D			1	21							<u></u>										
E	19		20																		
F .																					
G	1					21							6			1		2			
Н													1		7						
1							1									1					
K																					
L							1							12			2				
М											21										
N																					
Р		1														2	16	1			
Q	1											20			13						
R	,													1							
S																3	2				
T														8		7					
V					21		19														
W								.,								6					
X																					
Y								21	21												_
-																		14	17	17	17
unknown (?)																					
not sequenced	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	_1	2	5	5	5	5
sum of seq ⁷	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	20	17	17	17	17
oomcaa,	19	20	20	21	21	21	19	21	21	21	21	20	14	12	13	7	16	14	17	17	17
mcaa¹	Ε	Α	Ε	D	٧	G	٧	Υ	Υ	С	М	Q	Α	L	0	T	Р	•••••	-	-	-
rel. oomcaa'	%06	95%	95%	100%	100%	100%	%06	100%	100%	100%	100%	95%	9/0/9	57%	62%	33%	80%	82%	100%	100%	100%
pos occupied"	3														:	:		:	:	•	1

Table 4B: Analysis of V kappa subgroup 2

BIYSIS OF V KAPP									Fra	mew	ork/	IV					
amino acid'	ш	ட	96	97	86	66	90	101	102	103	104	105	106	A	107	108	sui
Α	I		T														7
В												1					
С																	4
D																	11
E												13					1
. F			1		17												1
G						17	2	16				1					2:
Н																	:
ı			3										14				9
К								·		12					13	·	
L			2								11						2
М																	:
N																	
Р			1														1:
Q			1				14	<u> </u>	<u></u>					<u> </u>			1.
R						<u> </u>		<u> </u>	<u></u>	4			<u> </u>	<u> </u>		12	1:
S						<u> </u>	<u></u>	<u></u>						ļ			3:
Т				17		<u></u>		<u> </u>	16					<u> </u>			1
٧					<u> </u>		<u></u>	<u> </u>	<u> </u>		5		<u> </u>	<u> </u>		<u> </u>	1
W			2				<u> </u>	<u> </u>	<u></u>					<u></u>	<u></u>	ļ	
Χ			<u></u>			<u></u>	<u></u>		<u></u>				ļ	<u> </u>			
Υ			7	<u> </u>	<u> </u>	<u> </u>				<u>. </u>			_	<u> </u>	<u> </u>	<u> </u>	1
_	17	17						<u></u>	<u></u> .		<u>.</u>	ļ	<u></u>	13		ļ	1
unknown (?)				<u></u>	<u></u>	<u>.</u>		<u>.</u>	<u></u>		<u> </u>	ļ	ļ	<u>.</u>	<u></u>		
not sequenced	5	5	5	5	5	5	5 6	6	6	6	6	7	8	3 9	9	10	2
sum of seq²	17	17	17	17	17	17	16	16	16	16	16	15	14	13	13	12	2
oomcaa,	17	17	7	17	17	17	14	16	16	12	11	13	14	1 13	13	12	2
mcaa*	-	-	Υ	T	F	G	Q	G	Ţ	K	L	Ε	1		K	R	
rel. oomcaas	%00 	%001	41%	100%	100%	100%	880%	100%	100%	75%	%69	87%	100%	100%	100%	100%	
pos occupied ^a	·····	··••···	• • • • • • • • • • • • • • • • • • • •		•••••••	·· ·		·· :	:		;	:	:	:	:	١	1

105
SUBSTITUTE SHEET (RULE 26)

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

		Framework I														
amino acid'	-	2	6	4	S	9	7	8	6	10	11	12	13	14	15	16
Α		5					2		27						1	
В	1															<u>.</u>
· c												2				<u>.</u>
D	2							<u>.</u>	14					<u>.</u>	<u></u>	<u> </u>
E	76		27													<u> </u>
F .		1				<u> </u>				<u></u>	<u> </u>			1	<u> </u>	<u> </u>
G	1		<u> </u>	<u>.</u>	<u></u>	<u> </u>	<u>.</u>	<u> </u>	82	<u> </u>	<u>.</u>	<u>.</u>	<u></u>	<u>.</u>	1	152
Н			<u> </u>	<u></u>	<u> </u>	<u> </u>	<u>.</u>	<u> </u>	<u></u>	1	<u>.</u>	<u></u>	<u> </u>	<u> </u>	<u>.</u>	
1		75	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>.</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>		<u></u>	<u> </u>	<u> </u>
K	3		<u></u>		<u> </u>		<u>.</u>	<u> </u>		<u></u>	<u> </u>	<u> </u>	<u> </u>	<u></u>		<u> </u>
<u>L</u>		4	1	104		<u></u>	1	<u> </u>	<u></u>		150	<u> </u>	129	<u> </u>	1	
·M	5			13	<u> </u>	<u> </u>	<u>.</u>	<u> </u>	<u>.</u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>
N				<u></u>	<u> </u>	<u> </u>	<u></u>	<u></u>	<u>.</u>		<u></u>		<u></u>	5		ļ
Р					<u> </u>	<u></u>		124							147	
Q						123	<u></u>									<u></u>
R				<u> </u>	1	<u> </u>	<u> </u>									
· S						<u></u>	119		3	1		150	1	141		
Ţ		2			117		<u> </u>			147				5	1	
<u>V</u>		1	89	1		<u>.</u>	1				1		22		1	
W							ļ									
X	-											••••				
Y																
unknown (?)																
not sequenced																
sum of seq'	88	88	117	118	118	123	123	124	126	149	151	152	152	152	152	152
oomcaa,	76	75	89	104	117	123		124	82	147	150	150	129	141	147	152
mcaa¹	E	1	V	L	T	Q	S	Р	G	T	L	S	L	S	Р	G
rel. oomcaas	86%	85%	76%	98%	99%	100%	97%	100%	65%	99%	%66	%66	85%	93%	92%	100%
pos occupied"	6	6	3	3	2	1	4	1	4	3	2	2	3	4	6	1

Table 4C: Analysis of V kappa subgroup 3

												:			(CDR
amino acid'	11	18	19	20	21	22	23	24	25	56	27	⋖	<u>α</u>	ں 	٥.	ш
А			178	2					166	1						
В																
С							181			1						
D	6															
E	146	1									1					
F					7	1										
G	1	1							7	1		1				
Н											17					
1		1		5	2											
K		1						5								
L					173						1	1				
·M								ļ								
N												9				•••••
Р																
Q											159				<u> </u>	
R		175						176		1	1	10			<u></u>	,
S						180			7	175		87				
T		1		174					7	2		1			<u> </u>	
V		1	4	1					1			1				
W								1								
X			ļ													••••
ΥΥ	L					1					1					
													182	182	182	18
unknown (?)		ļ	<u> </u>	<u> </u>							1					
not sequenced																
sum of seq'									182							
oomcaa,	146	175	178	174		180	181	176	166	:	:		182	182	182	18
mcaa*	E	R	Α	T	L	S	С	R	Α	S	Q	S	-	-	-	
rel. oomcaa ^s	95%	97%	%86	%96	95%	%66	100%	97%	91%	97%	988%	48%	100%	100%	100%	
pos occupied		Ī	•	:	1	-	Ī	<u> </u>	1	:		:	1	1	1	

107

WO 97/08320 ·

Table 4C: Analysis of V kappa subgroup 3

							<u></u>								Fran	new
amino acid¹	и.	28	29	30	31	32	33	34	35	36	37	38	39	40	14	42
Α				1	1			181								
В																
. C																
D			1	1	2	1										
E						1							1			
F .		1				7				1						
G			2	7	3	1		2						1	184	
Н			1			2				1		12	1	1		
l		24	4	1	1											
K				1	1								153			
L		8	1	.,		1	176					3				
·M																
N			3	12	25	32										
. р					1									170		
Q					1	1					183	167	1			18
R			10	3	18	16		1			1		27	5		
·S		72	86	151	118	4								5		
Ţ		1	1	3	8	1							1			
V		76	68		1		7			,		3		2		
W			5						185							
X																
Y				1	1	115				183						
-	182															
unknown (?)											1					
not sequenced				·												
sum of seq ²	182	182	182	181	181	182	183	184	185	185	185	185	184	184	184	18
oomcaa,	182	76	86	151	118	115	176	181	185	183	183	167	153	170	184	18
mcaa'	-	٧	S	S	S	Υ	L	Α	W	Y	Q	Q	K	Р	G	Q
rel. oomcaas	100%	42%	47%	83%	65%	63%	%96	%86	100%	%66	%66	%06	83%	92%	100%	9000
pos occupied ⁶	1	6			13										1	

108

Table 4C: Analysis of V kappa subgroup 3

4C: Analysis of \	rk II		-3						.,							
amino acid¹	43	44	45	46	47	48	49	20	51	52	23	54	22	26	57	28
Α	176							4	147				176	1		
В																
. С				<u></u>					1							
D								43					2		4	
E																
F .			<u></u>	1		1	4						<u> </u>			
G								125					2	10	179	
Н							9		1							
						178								1		168
K			1								7	1				
L		1		179	174	1										
·M			<u> </u>			3					1					
N			1					1			53	<u></u>		2		
Р	5	184								2			2	2		
Q							1									
R			182					1			4	180				
S							3	6	4	179	74	1		5		
Т	3								11	2	44			164		2
V				3	9			3	19				3			15
W							1					1				
X									<u></u>							
Υ							165								2	_
-									ļ							
unknown (?)			1				ļ	ļ								
not sequenced	-									<u> </u>				<u> </u>		
sum of seq'	184	185	185	183	183	183	183	183	183	183	183	183	185	185	185	185
oomcaa ³	176	184	182	179	174	178	165	125	147	179	74	180	176	164	179	168
mcaa'	Α	Р	R	L	L	1	Υ	G	Α	S	S	R	Α	Ţ.	G	1
rel. oomcaa'	96%	%66	98%	%86	95%	97%	%06	9/089	90%	98%	40%	98%	95%	%68	97%	9,10
pos occupied	÷	2	1	:	:		•		1		•	:	5	7	3	3

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

,		ρυ <u>υ</u>									,		Fr	ame	work	Ш
amino acid'	59	99	61	62	63	64	65	99	29	89	69	20	71	72	73	74
Α		68						3		5	3	1		3		**********
В																
. C																
D	1	112				1						152				
E								1		1		30				
F .				183		·							183		2	
G						184	3	178		177						
Н		1														
1				1										1		3
К			1													
<u>L</u>				1											182	
. M								1	•••••							
N		1												1		
P	177															
<u> </u>												1				
R			182		2		1				2					
S	7		···········		180		179		185		3			7		2
T	1		2		3		2		···································		177			172		179
<u> </u>		3				•		1		1						
<u> </u>									•••••	1						
X.																
Y													1			
- (2)																
unknown (?)						• • • • • • • • • • • • • • • • • • • •		1								,
not sequenced sum of seq ²		100	105	105	105	105	105	105	105	185	195	194	194	184	184	184
Ť			•••••							177					:	
								G			T	132 D		1/2 T	••••••	
mcaa'	Р	U.			S	•••••			• • • • • • • • • • • • • • • • • • • •							
rcl. oomcaas	%96	61%	%86	%66	97%	%66	92%	%96	100%	%9 6	%96	83%	99%	93%	%66	97%
pos occupied ⁶	3	5	3	3	3	2	4	5		5	4	4	2	5	2	3

Table 4C: Analysis of V kappa subgroup 3

																·
amino acid'	75	9/	11	78	79	80	8	82	83	84	82	98	87	88	83	8
А							3			174						
В					1				<u> </u>							
· C									2				1	182		•••••
D			1				3	182				<u></u> į				
E					149		175									2
F		1				<u> </u>			178		2	1	4			******
G			3					1		2						
Н											1				1	7
1	178							1	1		9					
К							1									
L				178		1			1		7		1			1
М										1	5					
N	1	5														•••••
Р						149										
Q					34					<u> </u>				1	181	155
R		1	111							3						1
S		169	65			34			1				2			
T		8	4							1						3
V	4			6					1	3	159					7
W		•		<u></u>												
X				·												•••••
Υ	_ 1										1	183	176	-	1	2
-																<u>.</u>
unknown (?)				<u></u>												
not sequenced																
sum of seq²	184	184	184	184	184	184	182	184	184	184	184	184	184	183	183	183
oomcaa³	178	169	111	178	149	149	175	182	178	174	159	183	176	182	181	155
mcaa*	1	S	R	L	E	Р	E	D	F	Α	٧	Υ	Υ	С	Q	Q
rel. oomcaa ^s	97%	92%	%09	97%	81%	81%	%96	99%	97%	95%	86%	99%	%96	%66	% 66	85%
	, 0,	·	1	£		<u> </u>		<u></u>	:				-			

Table 4C: Analysis of V kappa subgroup 3

t 4C: Analysis of	- 10-	, pu 3.	<u></u>			DR I	11									
amino acid'	91	92	93	94	98	A	В	U	٥	ш	щ	96	97	86	66	100
Α		1	8	3	3	,										1
В																
· C	2			1								2				
D	7	8	5										1			
E		2										1				
F.	5		2					·				7		166		
G	1	104	15		1	1	2					1			166	41
Н	4	1										2				
			1			1						4				
K			2			1						1				1
L				2	7	5						42				
·M		1			1	2										
N		28	71									1				
Р				1	139	24						7	2			9
Q	1		1		. 3	1						3				114
R	34	2	3		2	2						19				
S	2	33	58	102	15	2						1	8			
T		2	13	1	1	·2		••••••				1	154			
V					3	• 1						2				
W				69								24				
χ .																
Y	134	1	1									43				
_			3	3	7	127	167	169	169	169	169	8	1	1	1	1
unknown (?)																
not sequenced						14	14	14	14	14	14	14	17	16	16	16
sum of seq²	183	183	183	182	182	169	169	169	169	169	169	169	166	167	167	167
. oowcaa,	134	104	71	102	139	127	167	169	169	169	169	43	154	166	166	114
mcaa*	Υ	G	N	S	Р	-	-		-		-	Υ	Ţ	F	G	Q
rel. oomcaas	73%	57%	39%	26%	76%	75%	%66	100%	100%	100%	100%	25%	93%	99%	99%	68%
pos occupied ⁶	8	11	13	8	11	12	2 //		1	1	1	18	5	2	2	6

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

OI A Kabba	Jeog.	-		ame	work	١٧					
amino a	cid'	101	102	103	104	105	106	¥	107	108	sum
А											1345
В											2
С											375
D						23					564
E				3		141					759
F							6				765
Ġ		166				•••••				1	1804
Н						1					64
1				••••••		**********	143				803
K				152					157		489
L					54		1			2	1596
М					•		3				36
N			1						3		255
Р			1		1						1147
. 0				1		1					1314
R				9			2		4	134	1326
S			2								2629
T			162	1					1		1593
V					111		11			1	646
W											287
X										10	
Y	,,,,,,,,,,,,,			1							1014
-		1	1	1	1	1	1	166	1	1	2151
unknow	n (?)				**********						4
not seque		16	16	15	16	16	16	17	17	. 45	337
sum of	seq'	167	167	168	167	167	167	166	166	138	
oomca	ıa'	166	162	152	111	141	143	166	157	134	
mcaa	14	G	T	K	٧	Е	1	-	K	R	
rel. oom	caa,	%66	97%	%06	%99	84%	%98	100%	95%	92%	
pos occu	pied"	2	5	7	4	5	7	1	5	4	
					1,	13					

SUBSTITUTE SHEET (RULE 26)

Table 4D: Analysis of V kappa subgroup 4

4D: Analysis of V			ogic	<u> </u>							Fran	new	ork l					
amino acid'		2	3	4	S	9	7	8	6	10	=	12	13	14	15	16	11	18
А												24					1	
В																		
. с										1						1		
D	25								26									
E																	25	
F																		
G												1				24		.
Н																		
1		26																
К						1												
L				1							26				26			
. W				24														
N	1																	
Р								26			•	1						
Q			1			25												
R						••••												26
S							26			25				26		1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
T					26													
V			25	1									26					
W																		
X																		
Y																		
-						•••••												
unknown (?)				•••••														
not sequenced	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
sum of seq'	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26
oomcaa,	25	26	25	24	26	25	26	26	26	25	26	24	26	26	26	24	25	26
mcaa*	D	l	٧	М	Ţ	Q	S	Р	D	S	L	Α	٧	S	L	G	Ε	R
rel. oomcaas	%96	100%	%96	92%	100%	%96	100%	100%	100%	%96	100%	92%	100%	100%	100%	92%	%96	100%
pos occupied ⁶	2	1	2	3	۱	2	1	1	1	2	1	3	1	1	1	3	2	1

Table 4D: Analysis of V kappa subgroup 4

			ogro										(CDR				
amino acid'	19	20	21	22	23	24	25	26	27	٧	മ	ں	٥	w	ഥ	28	29	30
A	26						1				1							
В																		
· C					33													
D				į							1		1			1		
E																		
F ·																		
G						<u></u>												
Н																		
1			26								1							
K						33										2		30
<u> </u>											2	_31						
· M																		
N				26												30	31	
Р							1								1			
Q				·					32									
R									1								1	
S .							31	33		33				32	32		1	
T		26												1				
V											28	2						
W							,											
X		,																
Ý													32					
-																		
unknown (?)																	•••••	
not sequenced	7	7	7	7														_
sum of seq'	26	26	26	26	33	33	33	33	33	33	33	33	33	33	33	33	33	3
oomcaa	26	26	26	26	33	33	31	33	32	33	28	31	32	32	32	30	31	3
mcaa'	Α	Ţ	١	N	С	Κ	S	S	Q	S	٧	L	Υ	S	S	Ν	N	K
rel. oomcaas	100%	100%	100%	100%	100%	100%	94%	100%	97%	100%	85%	94%	97%	97%	97%	910%	94%	0.10%
pos occupied ^a	1	1	1	1	1	1	3	:	2		•	2	:		2	3	3	

Table 4D: Analysis of V kappa subgroup 4

											Fran	iewo	ork I					
amino acid'	31	32	33	34	35	36	37	38	39	9	41	42	43	44	45	46	47	48
Α				32						2								
В																		
· C																		
D																		
E											1							
F																		
G											32							
Н						2												
1																		3
K									33						32			
L			33													29	33	
· M																		
N	33																	
Р										31			31	33				
Q							32	33				32						
R							1					1			1			
S													2					
Ţ				1														
V																4		
W					33													
X																		
Υ		33				31												_
unknown (?)				.,														••••
not sequenced																		
sum of seq ⁷	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	3 3	3
oomcaa,	33	33	33	32	33	31	32	33	33	31	32	32	31	33	32	29	33	3
mcaa*	N	Υ	L.	Α	W	Υ	Q	Q	Κ	Р	G	Q	Р	Р	Κ	L	L	1
rel. oomcaas	100%	100%	100%	97%	100%	94%	97%	100%	100%	94%	97%	97%	94%	100%	97%	988%	100%	0.70%
pos occupied ^a	1	1	1	2										1	2	2	1	

Table 4D: Analysis of V kappa subgroup 4

•				С	DR I													
amino acid¹	49	20	21	52	23	54	22	99	21	28	59	09	61	62	63	64	65	99
А			30															
В																		
· C																		
D												33						
E							32											
F ·														33				
G									33						1	33		33
Н																		
l					1													
K																		
L																		
M																		
N					2													
Р				1			 .				33		1					
Q												· 						
R						33							32					
S			1	31	1			33							32		33	
T			2	1	29													<u> </u>
V						.,	1	<u></u>	ļ	33					•••••	<u>.</u>		<u> </u>
W	ļ	33							<u></u>									
X	ļ									ļ								
Y	33						_	_	_			-		_		_	_	_
_	<u></u>										<u></u>	<u>·</u>				ļ		
unknown (?)	<u> </u>				<u></u>					<u></u>						<u> </u>		
not sequenced	<u> </u>							_		╄	<u> </u>							-
sum of seq ²		·····	• • • • • • • • • • •	********	-			•••••••		33	1	:	:	:	:	:	:	:
oomcaa,	33	33	30	31	29	33	32			33	:		•	1	:	•	:	;
mcaa'	Υ	W	Α	S	T	R	E	S	G	٠V	Р	D	R	F	S	G	S	· -
rel. oomcaa'	0,001	100%	910%	94%	988%	100%	97%	100%	100%	100%	100%	100%	92%	100%	97%	100%	100%	100%
pos occupied ^e	1	1	3	3	4	1	2		<u> </u>	1	1	1	2	1	2	1	1	1

117

Table 4D: Analysis of V kappa subgroup 4

					Fra	mev	vork	111										
amino acid'	29	89	69	70	71	72	73	74	75	9/	77	78	79	8	81	82	83	84
Α														33				3
В																		
С																		
D				32												33		
E				-											33			
F.					32	·												
G		33		1														
Н																		
1									33				••••••					
K												.,						
L				- 14 88			33					32						
· M												1						
N										2	1							
Р																		
Q													32					
R													1					
5	33									30	32							
T			33			33		33		1								
V					1												33	
. W													.					
X																		
Y																_		_
unknown (?)	ļ																	
not sequenced																		
sum of seq'	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	3
oomcaa,	33	33	33	32	32	33	33	33	33	30	32	32	32	33	33	33	33	3
mcaa*	S	G	Ţ	D	F	Ţ	L	Ţ	1	S	S	L	Q	Α	Ε	D	٧	ļ
rel. oomcaas	100%	100%	100%	97%	97%	100%	100%	100%	100%	91%	97%	97%	97%	100%	100%	100%	100%	,0,0
pos occupied"	1	1	1	2	2	1	** *** *****	<u>ነ</u> ጽ	1	3	2	2		1	1	1	1	

Table 4D: Analysis of V kappa subgroup 4

•		- 500									CI	OR II	1					
amino acid'	82	98	87	88	83	6	91	92	93	94	95	Α	ω	U	٥	w	u_	96
Α										1								
В																		
C				33														
D								1	1									
E																		
F ·			1					1										
G									2	_								
. Н			1		3													
1										2								
K																		
L						1		2		1	3							1
M					·													
N									4									
Р									····	1	29	1						4
Q					30	32					1		<u> </u>					1
R									1			1				<u> </u>		2
S							2		:	2						<u></u>		1
<u>T</u>	ļ								2	22								
V	33								<u> </u>	<u></u>						<u></u>		
W	ļ						<u></u>		<u></u>	ļ						<u></u>		2
X	ļ				<u></u>				<u> </u>							<u> </u>		
Y	<u> </u>	33	31	_		_	31	29	_			_		-				-
_	<u> </u>				<u> </u>		<u> </u>		<u></u>		<u></u>	13	15	15	15	15	15	3
unknown (?)	<u> </u>	ļ			<u></u>	<u> </u>			<u> </u>	ļ					• • •	10	10	10
not sequenced	<u> </u>					_				<u> </u>		-		-	•		18	:
sum of seq ²	*******	÷	********				•	•	•	33	:	:	•	•	•	•	:	:
oomcaa3	33	·	:		1		:	:	:	22	•	13	15	15	15	15	15	:
mcaa*		†	Υ	С	Q	· · · · · · · · · · · · · · · · · · ·	· *	·;······		T	· · · · · · · · · · · · · · · · · · ·	<u>-</u>	-		-	-	-	P
rel. oomcaas	100%	100%	94%	100%	910%	97%	94%	88%	70%	%29	88%	87%	100%	100%	100%	100%	100%	27%
pos occupied ⁶	1	1	3	1					(7					1	1	1	

SUBSTITUTE SHEET (RULE 26)

Table 4D: Analysis of V kappa subgroup 4

					<u>-</u>	Fra	mev	vork	IV				
amino acid'	97	.98	66	100	101	102	103	104	105	106	۷.	107	108
Α													
В													
С													
D													
E									14				
۴		15											
G			15	4	15								
Н													
										14			
K							14					13	
L								4					
М	1												
N												1	
Р						1							
Q				11				1					
R		<u></u>					1		1			1	11
5	2									1			
T	12					14							
V		<u> </u>						9					
W		<u> </u>					-	1					
X													
Y												_	
·	_	ļ									15		
unknown (?)		ļ. 	<u> </u>									•••••	
not sequenced	_	:		18									
sum of seq'	15	15	15	15	15	15	15		•				
oomcaa,	12	15	15	11	15	14	14	9	14	14	15	13	11
mcaa*	T	F	G	Q	G	Ţ	K	٧	Ε	1	-	K	R
rel. oomcaaʻ	80%	100%	100%	73%	100%	93%	93%	%Ó9	93%	93%	100%	87%	100%
pos occupied ⁶	3	1	1	2	1	2	2	4	2	2	1	3	1

WO 97/08320

Table 5A: Analysis of V lambda subgroup 1

											Fran	newo	ork I						
amino acid¹	_	2	3	4	2	9	7	္ထ	6	2	=	12	13	4	15	9.	17	18	19
Α											19		18	20					
В												<u> </u>							
· C																			
D																			
E																		1	
F .							<u> </u>												
G	·						<u></u>						22			42			
Н	2						<u></u>	<u> </u>											
1			1				<u> </u>	<u> </u>			1								
K					.,,			<u></u>										14	
L			1	41				<u></u>			1								
М						<u></u>	ļ	ļ											
N	<u> </u>					ļ	ļ	ļ											
Р	<u> </u>					<u> </u>	41	41						1	41				
Q	22		1			41	ļ	<u> </u>									42		
R						<u> </u>	ļ	<u> </u>	ļ									25	
S	<u> </u>	39		<u></u>		ļ	<u> </u>	<u> </u>	41			41			1			1	
<u> </u>	<u> </u>			ļ	41	<u> </u>	<u> </u>	ļ						19				1	
V		1	38	ļ		<u> </u>	ļ	ļ	<u></u>		20		1	1					4
W	<u> </u>	ļ		ļ		<u></u>		ļ	ļ		ļ								
X		ļ		<u> </u>		<u></u>		ļ	ļ		ļ						-		
Y		<u> </u>		ļ		ļ	ļ	ļ	ļ		ļ	ļ							
Z	16	<u> </u>	<u> </u>		<u> </u>	<u> </u>	ـــــ	<u> </u>	<u> </u>	<u> </u>		<u> </u>							
***************************************		ļ	<u> </u>	<u> </u>		<u> </u>	ļ	<u></u>	<u> </u>	41	<u> </u>	ļ				<u> </u>			<u></u>
unknown (?)		<u> </u>	<u> </u>	·	ļ	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>		<u></u>	
not sequence			=					1	 -				:	!				45	_
sum of seq ²		******	· ÷ ~ ·	÷	.;		;	41			7	:	:	:	:	į.	•	·	:
oowcaa,		·	·[41		••••••		41	··!····	41	?			:	:			:	:
mcaa*	Q	<u>S</u>	٧	L	Ţ	Q		Р	S	-	V	·	ļ		<u> </u>	G	Q	: :	
rel. oomcaas	55%	%86	93%	100%	100%	100%	100%	100%	100%	100%	49%	100%	54%	49%	%86	100%	100%	%09	
pos occupied	:	•				··:	1	1 1	1	1	•	•		:	;	1	1	5	

WO 97/08320
Table 5A: Analysis of V lambda subgroup 1

													RI							_
amino acid'	20	21	22	22	67	24	.75	26	27	۵	ш	28	29	98	31	4	32	33	34	35
Α	2								1			<u> </u>	2	2			1			
В				<u> </u>								<u> </u>								•••••
C			<u> </u>	4	12							ļ								
D									·		3	<u> </u>	ļ	3	1		3		1	
E			<u> </u>									<u></u>	ļ	1						
F			<u> </u>	1		1				1		<u></u>	<u> </u>			1	1			
G			<u> </u>				42	3	1		<u> </u>	2	39	4						
Н			<u> </u>	· <u> </u>							<u> </u>	<u> </u>	<u> </u>	<u></u>	2		2		2	
1	1	41		<u>.</u>							1	37	<u> </u>	<u> </u>					1	
K				<u>.</u>						ļ	1	ļ	ļ	1						••••
L		1								<u></u>		1 1	<u> </u>	ļ						
М												1	ļ	<u> </u>						
N		<u>.</u>							2	1	37	<u> </u>	<u> </u>	13	31	2		1	9	
Р		<u> </u>	<u> </u>							<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		1			
Q			<u> </u>		<u> </u>					<u> </u>		ļ	<u> </u>	<u> </u>	ļ	ļ	1			
R		<u> </u>	<u> </u>					1	1	<u> </u>	ļ.,	ļ	ļ	5		<u> </u>				
5	1	<u> </u>	4	2		38		34	34	38		-	<u> </u>	13	 -	! -			19	-
T	38					3		4	3	2		<u>.</u>	1	<u> </u>	1	<u> </u>	7		2	_
V				_						<u> </u>	<u> </u>	-		ļ	<u> </u>	<u> </u>	2	40		_
W			_						<u> </u>	-			ļ	<u> </u>	ļ	-				
Χ			_						ļ	<u></u>		ļ	ļ	ļ		ļ	ļ	<u> </u>		_
Υ		<u> </u>									<u> </u>	ļ		ᆜ—	4	1	20		7	_
Z			<u> </u>				<u></u>		<u> </u>	<u> </u>	<u> </u>	ــــــــــــــــــــــــــــــــــــــ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	_	<u> </u>
-							<u> </u>		L	<u> </u>		┇		<u> </u>	<u> </u>	36	-	ऻ—		L
unknown (?)									<u> </u>	<u></u>	<u> </u>	_	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>		ļ.
not sequence	d				,		<u> </u>	<u> </u>		<u> </u>	ᆜ_	ᆜ_	<u> </u>	<u> </u>		1		1		÷
sum of seq?	4:	2 4	2 4	12	42	42	42	42	42	4:	2 4	2 4	2 4	2 42	42	41	41	41	41	· !
oomcaa ₃	31	3 4	1 4	12	42	38	42	34	34	1 3	3	7 3	7 3	9 13	31	36	20	40	19	-
mcaa*	T	ı		S	С	S	G	S	S	S	١	1	G	N	N		Y	V	S	-
rel. oomcaas	7000	900	0.00	100%	100%	%06	100%	81%	۸018	9000	2000	0000	930%	31%	74%	88%	49%	98%	46%	•
pos occupied		4	···	<u>-</u> 1	_ <u></u> 1	-		•	:	i						•	10	:	•	,

WO 97/08320

Table 5A: Analysis of V lambda subgroup 1

					_	F	ram	ewo	rk II											
amino acid'	36	37	38	39	;	6	4	45	43	44	45	46	47	48	49	22	<u>v</u>	25	53	54
Α								4	40									_1		•••••
В				<u>.</u>		<u>.</u>							<u> </u>							
· C				<u>.</u>																
D				<u>.</u>			1									·	10	8		
E											2					5			1	
F	1		<u> </u>	<u>.</u>	4										1					
G			<u></u>			<u>.</u>	39									1				
Н	1	1	(5	1										1				1	
1														40		1				
K								1			35					1	1		18	•••••
L				1 3	1							41	40						1	
М								1						1					1	••••
N											1					3	28	30	2	
. Р			<u></u>	<u> </u>		42	1			42										
Q .		39	3	4						ļ	ļ								15	
R		2		<u> </u>	1		1			<u> </u>	4	<u></u>				7			 	4
S		<u> </u>							1	<u> </u>	<u> </u>	ļ				9	2	3	1	<u></u>
T			<u>.</u>					36	1		<u> </u>	<u> </u>				1			ļ	
V	<u></u>	<u></u>		1	5				<u></u>		<u></u>	1	2	1			ļ		ļ	<u> </u>
W		<u></u>								ļ	<u> </u>	ļ					ļ <u>-</u>		ļ	ļ
X										ļ	ļ	<u></u>					ļ	ļ	<u> </u>	
Υ	40									<u></u>	ļ	<u> </u>			40	1	1	<u> </u>	ļ	-
Z		<u> </u>		L												_		_	_	_
_										ļ	<u> </u>	<u> </u>				<u> </u>	<u> </u>		<u></u>	<u> </u>
unknown (?)								<u> </u>	ļ	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	-	<u> </u>	<u> </u>	-
not sequence	d							<u> </u>	_	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>	Ļ
sum of seq'	42	4	2 4	2	42	42	42	42	42	42	42	42	42	42	42	42	42	42	1 42	4
oomcaa¹	40) 3	9 3	4	31				:	:	•	:	40							
mcaa ⁴	Υ	С) ()	L	Р	÷•••••	·	- :	•••••••••	K	-÷····	L	÷	Y	D	N	N	K	
rel. oomcaa ^s	95%	,0cc	32%	81%	74%	100%	93%	86%	950%	100%	83%	980%	95%	95%	95%	31%	67%	710%	43%	
pos occupied				:	5							1 2				•	:	:	4 9	9

123

Table 5A: Analysis of V lambda subgroup 1

	CD	RII												·					
amino acid'	55	26	4	8	U	۵	ш	57	58	23	09	19	62	63	64	9	99	∢	α
Α	1														5				
В																			
. C																			
D											38								
E																			
F													38						
G								41			2				36	.,			
Н										·	1								
]									17				3						
K																	38		
L		1								1									
М																			
N																			
Р	38									38		·							
Q																			
R												42					4		
S	2	40								2				42		42			
T															1				
V									24				1						
W							•												
Χ																			
Υ																			
Z																			
-			41	41	41	41	42											42	4
unknown (?)																			
not sequenced	1	1						1	1	1	1								
sum of seq ²	41	41	41	41	41	41	42	41	41	41	41	42	42	42	42	42	42	42	4
oomcaa ³	38	40	41	41	41	41	42	41	24	38	38	42	38	42	36	42	38	42	4
mcaa'	Р	S	-	-	-	-	-	G	٧	Р	D	R	F	S	G	S	Κ	-	
rel. oomcaas)3%	%8(100%	100%	%001	%001	%00I	%001	9%6	3%	93%	%001	%O€	0,001	%9 £	100%	%06	100%	,
pos occupied ⁶						1										1			

WO 97/08320

Table 5A: Analysis of V lambda subgroup 1

				Fra	mev	vork	111												
amino acid'	29	89	69	70	71	72	73	74	75	9/	77	78	79	8	81	82	83	84	85
Α		1	3		41			24						2				38	1
В																	.,		
· C																			
D		1													1	41			37
E													1		24		42		1
F																			
G		40						17		1	42				15				
Н													1						2
									41										1
K																			
L							42					41							•••••
М																			
N																1			
Р														2					
Q													31						
R													8						
S	42		1	42		24				20				20				1	
Т			38			18				21				17				3	
V					1			1	1			1		1					
W													1		2				
X																			
Υ																			
Z						•													_
-																			
unknown (?)				·														<u> </u>	
not sequenced																<u> </u>			
sum of seq?	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42
oomcaa³	42	40	38	42	41	24	42	24	41	21	42	41	31	20	24	41	42	38	37
mcaa*	S	G	Ţ	S	Α	S	L	Α	1	Ţ	G	Ĺ	Q	S	Ε	D	E	Α	D
rel. oomcaas	%001	95%	%06	100%	%86	57%	100%	57%	%86	50%	100%	98%	74%	48%	57%	%86	100%	%06	%88
pos occupied ^a	•	•	•	?	:·· ···	•		•		3	:	:	•	:	:		1	3	5

WO 97/08320 Table 5A: Analysis of V lambda subgroup 1

•										CDF	3 111								
amino acid'	98	87	88	83	90	9	92	93	94	95	⋖	മ	ں —	۵	ய	u.	96	-97	98
Α	Ì			22	15			1				16					4	1	
В																			
С			42												_				
D							39	17			7								
E		<u></u>										1					1		
F		2								1									36
G				14				1				-17	1				5	1	
Н		1											1						<u> </u>
1											1	<u></u>						1	<u> </u>
K											1								
L				1						37			1					1	! -
М																		1	
N							2	2			9	1							-
Р										1							6		<u> </u>
Q				3	<u> </u>														<u> </u>
R					<u> </u>	<u> </u>	<u> </u>		5	 							2		<u> </u>
5					4	<u> </u>	<u> </u>	17	35	<u> </u>	18		1				1		┼
T					22	<u> </u>	<u> </u>	1	1	 	1								╁
V				1	<u> </u>	<u> </u>	<u> </u>	1	<u> </u>	1		2						34	-
W					ļ	38	<u>. </u>		ļ		<u> </u>						7		-
X				<u> </u>	-	<u> </u>	ļ	<u> </u>		<u> </u>	<u></u>							<u></u>	-
Y	42	39	ļ	<u> </u>	<u> </u>	3	ļ	1	<u> </u>	<u> </u>	<u> </u>						3	<u> </u>	-
Z		<u> </u>	_	<u> </u>		<u> </u>	<u> </u>	<u> </u>	 			<u> </u>					_	<u>! </u>	÷
	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	 	<u> </u>	2	4	35	39	38	38	1	 	╁
unknown (?)	<u> </u>	<u> </u>	<u> </u>	<u> .</u>	<u> </u>	-	┞-	 	<u> </u>	<u> </u>	<u> </u>	<u> </u>				3	3	-	 -
not sequenced	<u> </u>	<u> </u>	<u> </u>	1											_				
sum of seq ²		:	•	•	i	41	41	41	41	41	41	41	39	39	38	38	35	35	1
oomcaa ³	42	39		†		•						17	:	39	38	38	:	34 V	··!
mcaa'	Υ	Y	С	Α	T	W	D	D	S	L	5	G	-	-	_	-	٧	V	•=====
rel. oomcaas	100%	93%	100%	54%	54%	93%	95%	41%	85%	%06	44%	41%	%06	100%	100%	100%	23%	87%	2
pos occupied	1		· [· · · · ·	Ţ <u> </u>	5 ;	:	2 2		3	:		:	i	1	1	1	10) (6

Table 5A: Analysis of V lambda subgroup 1

_			F	rami	ewor	k IV						
amino acid'	66	100	101	102	103	104	105	106	⋖	107	108	sum
A				T	Ī							285
В												
C	1											84
D												224
E		1										81
F												87
G	36	31	36							26		559
н					-							25
1					<u> </u>							188
К					30							141
L		.,				25			34			344
М		********										5
N		•••••			1							176
Р											1	296
Q					3				1		18	251
R		*****			1					2		156
S		1								2		720
Т		3		36	1		36					359
V						11		36	1			282
W					ļ					1		92
X				<u></u>	ļ							
Υ			<u> </u>	<u>.</u>	ļ							202
Z			<u> </u>	<u>!</u> _							•	16
-				<u> </u>	<u> </u>	<u> </u>	ļ					524
unknown (?)		<u> </u>		<u> </u>	<u></u>	<u> </u>			,		ļ	
not sequenced					6		:				22	ب
sum of seq ²	36	36	*****		•••••	:	36	•	•	•	•	-
oowcaa,	36	3	36	36	30	25	36	36	34	26	18	
mcaa'	G	G	G	T	K	L	T	٧	L	G	Q	
rel. oomcaas	100%	86%	100%	100%	83%	%69	100%	100%	94%	84%	95%	
pos occupied ⁶	1	•		1	5	2	1	1	3	4	2	

127

Table 5B: Analysis of V lambda subgroup 2

											Fran	new	ork l						
amino acid'	-	7	c	4	2	9	7	8	6	01	=	12	13	14	15	91	17	18	19
А			35					30			6		1	1					
В		*******																	
- c																			
D																1			
E						•••••••													
F .					*******														
G				,									42			42			
Н	2																1		
I			1																28
К																			
L				40											3				1
М																			
N																			
Р							42	6							40				
Q	22		4			41											42		
R								6	1										
S		41							40			42		42				43	
T					42				1										
V		1	2								36								14
W																			
Х																			
Y	ļ,																		
Z	16							·		·									
-										42									
unknown (?)						1													
not sequenced	3	1	1	3	1	1	1	1	1	1	1	1							
sum of seq²		*******	-,	********	*********			********							:	:	:	:	:
oomcaa,	22	41	35	40	42	41	42	30	40	42	36	42	42	42	40	42	42	43	28
mcaa⁴	Q	S	Α	L	Ţ	Q	Р	Α	S	-	٧	S	G	S	Р	G	Q	S	1
rel. oomcaa ^s	55%	98%	83%	100%	100%	98%	100%	71%	95%	100%	%98	100%	98%	%86	93%	98%	98%	100%	9/29
pos occupied ⁶				1	1	1				1	2	1	:		•	2	2	1	3

Table 5B: Analysis of V lambda subgroup 2

												CD								
amino acid¹	20	21	22	23	24	25	ć	97	27	٥	u	28	53	8	3	⋖	32	33	34	35
Α					3			1						1			1			
В				<u> </u>	<u> </u>	<u> </u>	<u> </u>													
. С			<u></u>	42	<u> </u>	ļ				1					1					
D				<u> </u>	<u> </u>	<u>.</u>					39		1	4		5				
E			<u></u>	<u> </u>	<u> </u>	<u>.</u>										1				
F .		1			<u> </u>	<u>.</u>								1			4			
G				<u> </u>		4	3		1				39	26						
Н			<u></u>	<u>.</u>	<u>.</u>	<u>.</u>			1						<u>.</u>	1	1			
[41		<u>!</u>	1							6								
. K			<u>.</u>	<u> </u>	<u>.</u>	<u> </u>										4				
L		1		<u> </u>	<u> </u>	<u> </u>											4			••••
М																				
N									1	3	4		1	4	3	28				
P									1								ļ			
Q																				
R										1				2			<u> </u>			
S			4:	2		3		3	35	38	<u> </u>			5	1	2	4	1	42	
T	43				3	6		39	3		<u> </u>		1		1		ļ			
V											<u></u>	37				<u>.</u>	<u> </u>	41		_
W											<u> </u>					<u></u>	<u> </u>	<u> </u>	<u> </u>	4
Χ																<u> </u>			ļ	<u> </u>
Y									1				1		37	<u></u>	29		ļ	
Z																				
-												<u> </u>				1			<u> </u>	
unknown (?)												<u> </u>				1		<u>.</u>	<u> </u>	<u> </u>
not sequence				1	1									<u> </u>				1	1	<u>_</u>
sum of seq²	43	3 4	3 4	2 4	2 4	3 4	13	43	43	43	43	43	43	43	43	43	43	42	42	
oomcaa ₃		3 4	1 4	2 4	2 3	6 4	13	39	35	38	39	37	39	26	37	28	29	41	42	
mcaa'	Ţ	ı	2	(`]	(G	Ţ	S	S	D	٧	G	G	Υ	N	Υ	٧	S	
rel. oomcaas	%UU1	050	0000	200	0/00/0	8440	100%	91%	81%	88%	91%	%98	91%	%09	86%	65%	67%	98%	100%	
pos occupied		1		· 	1		1	_	:	:	:	;	;	:		:	7 (1	

Table 5B: Analysis of V lambda subgroup 2

						Fran	iewo	rk II											
amino acid'	36	37	38	39	4	4	45	43	44	45	46	47	48	49	20	5	25	53	54
А					1	- 4		40											
В																			
С																			
D				1		2									20	1	2	1	
E															20			2	
F .	2													7		1			
G						36									2	2		1	
Н			2	34														1	
1							1				1	9	43				1		
K .							40			41							1	21	
L			1	1							38	6							
М												26	-				1		
N				2											1		8	12	
Р	·				41				43										
Q		41	39							2									
R		1					1										2		4
S					1									2			21	3	
T							1										7		
V						1		3			4	2				39			
W																			
Χ																			
Y	41			5										34				2	
Z																			
									·										
unknown (?)		1	1	·															
not sequenced							<u> </u>												
sum of seq ²	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	4
oomcaa¹	41	41	39	34	41	36	40	40	43	41	38	26	43	34	20	39	21	21	4
mcaa'	Υ	Q	Q	Н	Р	G	K	Α	Р	Κ	L	М	ı	Υ	D	٧	S	K	F
rel. oomcaas	95%	95%	91%	79%	95%	84%	93%	93%	100%	95%	98%	%09	100%	79%	47%	91%	49%	49%	7000
pos occupied	:	1	:		•	:	:								4		8	8	

Table 5B: Analysis of V lambda subgroup 2

	CDR	11																	
amino acid'	22	99 .	∢ ،		י כי	י כ	u .	22	28	23	9	6	79	63	64	92	99	⋖	<u>ω</u>
Α															2				····
В					<u></u>									<u> </u>					•••••
C					<u></u>											1			
D					<u>.</u>						17								•
E																			
F													42						
G								43	1						41				
Н										<u>.</u>	2		-						
1			<u></u>						3										
K		<u> </u>															42		
L			<u> </u>								1	.	1						••••
М				· [
N			<u></u>								19								
Р	43									15									
Q																			
R												43					1		
S		43								28	2			43		42			
T																			
V									39									<u> </u>	
W														<u> </u>				<u> </u>	
X																		<u> </u>	! -
Υ											2							<u> </u>	<u>.</u>
Z							100				-	_				-	-	- 40	
			43	43	43	43	43											43	4
unknown (?)																	<u> </u>	<u> </u>	<u></u>
not sequence	d									<u> </u>									_
sum of seq ²	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	4
oomcaa,		43		43	43	43	43	43	39	28	19	43	42	43	41	42	42	43	4
mcaa'	Р	S	-	-	-	-		····		•	Ι'	R		:	:	<u> </u>	1		-
rel. oomcaa	100%	100%	100%	100%	100%	100%	100%	100%	91%	65%	44%	100%	%86	100%	95%	%86	98%	100%	
pos occupied	łe 1	1	1	1	1	1	•		•	•	•	:			2	2	2 2	2 1	١

131

Table 5B: Analysis of V lambda subgroup 2

				_	mev														
amino acid'	67	89	69	02	71	72	73	74	75	9/	77	78	79	8	8	82	83	84	82
A		3		1	43									36				43	
В																			· • • • • • • • • • • • • • • • • • • •
. С																			
D		1	2													42			39
E											1				38		43		
F.												<u> </u>							
G		39									42				1				
. Н																			
l									35										
K			1																
L							43					43							
M	<u> </u>																		
N			38								····				1	1			
Р														2					
Q .													41						
R				<u></u>									2						
S	42		<u></u>	1	<u></u>	43				42									
Ţ			1	41				43		1				2					<u>.</u>
V	<u>.</u>		<u> </u>	<u>.</u>			ļ		8					3					
W			<u> </u>	<u> </u>			·		••••										
X				<u></u>	ļ	<u>.</u>											••••		<u> </u>
Y			<u></u>		<u> </u>		<u></u>												ļ
Z	L	<u> </u>	<u> </u>	<u> </u>															_
•				ļ	<u></u>	ļ	ļ	<u></u>										.	<u> </u>
unknown (?)		<u> </u>	1	<u> </u>	<u></u>	<u> </u>										<u>:</u>			<u> </u>
not sequence						<u> </u>		<u></u>											<u> </u>
sum of seq ²		· · · · · · · · · · · · · · · · · · ·	**********	÷	· • • • • • • • • • • • • • • • • • • •	÷		·····	:···		:····	43				•	•	•	÷
oomcaa,	42	39	38	41	43	43	43	43	·····	42	42	43	41			:	:	÷	4
mcaa*	S	G	N	Ţ	Α	S	L	Ţ	1	S	G	L	Q	Α_	Ε	D	Ε	Α	ם
rel. oomcaa ^s	100%	91%	%88	95%	100%	100%	100%	100%	81%	%86	%86	100%	95%	84%	9/088	%86	100%	100%	200
pos occupied	1	3	•	:	:	:	1	1	:		2	:				2	1	1	

132

WO 97/08320

Table 5B: Analysis of V lambda subgroup 2

_										CDF	_								
amino acid'	98	87	88	83	8	9	92	93	94	95	⋖	മ	ပ —	۵	ш	u.	96	97	98
А				2	1		21		1								1	1	
В																	<u></u>		
· C		<u> </u>	43	11															
D								3	1	2							1		
E							1	1											
F		3				3				1		1					5		42
G							1	21	3	4							1		
Н						1												<u>.</u>	
l							1	1		1	2						1	7	
К										3									
L												1	1				6		
М																	1	1	
N								<u>.</u>	.5	7	5						1		
Р								1				4							
Q										1	2								
R						<u></u>	2	<u> </u>	3			1					5		
S ·		1		30	41	<u></u>		12	23	14	9			<u></u>			1		
Т							16	4	4	3	21								
V					<u></u>	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>						11	28	
W						<u></u>	<u></u>	<u></u>	<u> </u>	ļ	<u></u>						5		
X					<u> </u>	<u> </u>	<u>.</u>	<u> </u>	ļ		<u></u>							<u> </u>	_
Y	43	39		<u>.</u>		39			1	6	ļ						4		
Z								L			_						_		_
_								<u>.</u>		1	3	36	42	43	43	43		<u></u>	
unknown (?)				<u></u>		ļ	<u></u>	<u>.</u>	2	ļ	<u> </u>							ļ.,	ļ
not sequenced				<u></u>	1		<u> </u>	<u> </u>	<u></u>	_	1	<u> </u>					<u> </u>	1	⇌
sum of seq ²																			
oomcaa ₃	43	39	43	30	41	36	21	21	23	14	21	36	42	43	43	43	11	:	:
mcaa'	Υ	Υ	С	S	S	Υ	Α	G	S	S	Ţ			-	-	-	٧	٧	1
rel. oomcaas	100%	91%	100%	70%	980%	91%	490%	49%	53%	33%	50%	84%	%86	100%	100%	100%	26%	67%	300
pos occupied	<u> </u>	· · · · · · · · · · · · · · · · · · ·		:	:	;	:	:	;	:	•	1	:	1	1	1	•	•	,

Table 5B: Analysis of V lambda subgroup 2

				Fran	iewo	ork I\	/					
amino acid'	66	100	101	102	103	104	105	106	٧	107	108	sun
Α		1										28
В												
С						•••••	•					9
D							•••••					181
E				*******								10
F												11
G	42	33	42							19		56
Н												4
l							1					184
Κ.					36							189
L						28			40			26
М												29
N					1							146
Р												238
Q					1						14	250
R		1			2					4		12
S							1			2		83
Τ		7		41			40					398
V						14		42	1			327
W												48
Χ												
Υ					1							285
Z												16
-												555
unknown (?)												8
not sequenced	1	1	1	2	2	1	1	1	2	15	28	80
sum of seq²	42	42	42	41	41	42	42	42	41	25	14	
oomcaa³	42	33	42	41	36	28	40	42	40	19	14	
mcaa*	G	G	G	T	K	L	Ţ	٧	L	G	Q	
rel. oomcaas	100%	79%	100%	100%	88%	67%	95%	100%	%86	76%	100%	
pos occupied ^a	1	4	1	1			•••••••••••••••••••••••••••••••••••••••	1	2	3	1	

134

Table 5C: Analysis of V lambda subgroup 3

									<u> </u>	.	Fram	ewo	rk l						
amino acid'	_	7	က	4	ഹ	9	7	ω	6	2	Ξ	12	<u></u>	4	15	91	1	<u>~</u>	13
Α					1		1	2	7					20	1				27
В			<u>i</u>																
. С																			
D			5				10							_					
E			20		į								1			1			
F ·	1	1										1			_1				
G			1													37			
Н																			
1						1.													
K																	2		
L				37			į				4		1		9				
М																			
N																			
P							26	35	1						27				
Q	4		4			38											36		
R												<u></u> į							
S	13	14			1		1		28			37		18					
T			<u> </u>		36			1										38	
V			8	1					2		34		36						1
W		<u> </u>															<u> </u>		
Χ		<u> </u>	-													<u> </u>	<u> </u>	ļ	
Y		23																ļ	_
Z																<u> </u>	<u> </u>	<u> </u>	<u> </u>
_	20									38								<u> </u>	ļ
unknown (?)		<u> </u>	<u> </u>												<u> </u>				
not sequenced	-	<u> </u>	<u> </u>	1															_
		38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	3
				37															
mcaa'		Υ	· · · · · · · ·	Ţ	T	Q	Р	Р	•	•	٧	:	٧	:	:	:	:	Ţ	
rel. oomcaas	<u> </u>	<u> </u>	53%	İ	95%	0,001	%89	32%	74%	100%	968	97%	95%	53%	71%	97%	95%	100%	
pos occupied																:	•	:	

Table 5C: Analysis of V lambda subgroup 3

,											CD	RI							_
amino acid'	70	21	22	23	24	25	26	27	۵	ш	28	29	30	31	4	32	33	34	35
Α			1					5					. 1	1			21	3	
В																			
· C				38														5	
D							30	1					10			3		1	
Е							2	2				1	3	6					
F .														1		2			
G	·				9	38		1				23	4						
Н							1									2		9	
i		38									9			1					
K								7					2	13					
L											28								
M	1													1					
N			2				4	9			1		2			1		2	
Р			1									3							
Q					10									4					
R	25							2				10	1				1		
S	9		1		19			10					11	2		8		14	
T	3		33					1				1	4						
V																1	15		
W																			3
X																			
Υ							1							8		20	1	4	
Z		-																	
-									38	38					37				
unknown (?)				-															
not sequenced															1	1			
sum of seq ²	38	38	38	38	38	38	38	38	38	38	38	38	38	37	37	37	38	38	3
oomcaa,	25	38	33	38	19	38	30	10	38	38	28	23	11	13	37	20	21	14	3
mcaa'	R	1	T	С	S	G	D	S	-	-	L	G	5	K	_	Υ	Α	S	۷
rel. oomcaas	%99	100%	87%	100%	50%	100%	79%	76%	100%	100%	74%	61%	29%	35%	100%	54%	55%	37%	7000
pos occupied	4		5	1			:	9		:									

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

						Fran	iewo	rk II											
amino acid'	36	37	38	33	9	41	42	43	44	45	46	47	48	49	20	51	52	53	54
Α								23					_			1		1	
В										<u> </u>									
С																			
D																22			
E			1												_5	3		3	
F	3					<u></u>								_2			1		
G						36									9				
Н					<u> </u>	ļ	1							_1	3			1	
<u> </u>					ļ	<u> </u>		<u> </u>		1			28				1		
K				32	<u> </u>	ļ		<u> </u>							2	6	1	13	
L			2		<u> </u>	<u> </u>	<u> </u>	<u> </u>		6	33								
М						<u> </u>		<u> </u>			1		1						
N.						<u> </u>	<u> </u>	<u> </u>				<u> </u>				1	19	9	
Р	ļ			ļ	36	<u> </u>	1	<u> </u>	38							·			
Q		37	35	1	ļ	<u> </u>	36								9			1	<u>-</u>
R		1	<u> </u>	4		2	<u> </u>	<u> </u>							1	1			3
S		ļ	<u> </u>	1	2	<u> </u>	ļ	14									10		_
T		ļ		<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>					· · ·		2	4		<u> </u>
V	<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	<u> </u>	31	4	37	9				<u> </u>	<u> </u>	<u> </u>
W		<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>					<u></u>		<u> </u>	<u> </u>
Χ		ļ		<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>					<u> </u>			-
Υ	35	ļ		<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>			35		-		-	-
Z	_	<u> </u>	Ŀ	Ļ	<u> </u>	Ļ	-	╄-	<u> </u>	<u> </u>	<u> </u>		-		_	_	-	╁	┡
-	_	<u> </u>	<u> </u>	<u>.</u>	ļ	ļ	-	<u>!</u>	<u> </u>	<u> </u>	<u> </u>					<u> </u>	-		-
unknown (?)	_	<u> </u>	<u> </u>	<u> </u>		-	-	<u> </u>	<u> </u>	<u> </u>	ऻ				<u> </u>	<u> </u>	┼	┼	╀
not sequence	d	<u> </u>	_	<u> </u>	<u> </u>	<u> </u>	╄-	Ļ	<u> </u>		_				_	<u> </u>	1 ~	<u> </u>	<u> </u>
sum of seq'	38	38	38	3 38	3 31	38	3 3	38	3 38	38	38	38	38	38	38	38	38	38) ·
oomcaa,	35	37	3!	;	•	:	•					37			<u> </u>		· 	13	··:-··
mcaa*	Y	0	Q	K	Р	G	0	A	Р	V	L	V	1	Y	D	D	N	K	T
rel. oomcaas	92%	37%	%C b	9078	050%	050%	05.0	610%	100%	82%	87%	97%	74%	92%	24%	58%	50%	34%	
pos occupied	•				•		:		3 1			1		3	7	, {	3 :	7 9	9

PCT/EP96/03647

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

	CD	R II																	
amino acid'	52	26	∢	æ	U	٥	ய	57	28	23	09	61	62	63	64	65	99	⋖	α
Α		1																	
· B				<u> </u>															
С												·							
D											9								
E											27			.,					
F .										v	·		38						
G								38							38				
Н												·							
. 1				•					37										
К																			
Ĺ											·								
М																			
N																	21		
Р	37	1								36									
Q																			
R												38							
S	1	36								1				38		38	12		
T																	5		
٧																			
W																			
X																			
Υ																			
Z																			
_			38	38	38	38	38											38	3
unknown (?)										<u> </u>	1								
not sequenced									1	1	1		į						
sum of seq ²	38	38	38	38	38	38	38	38	37	37	37	38	38	38	38	38	38	38	3
oomcaa,	37	36	38	38	38	38	38	38	37	36	27	38	38	38	38	38	21	38	3
mcaa*	Р	S	-	_	-	_	-	G	1	Р	E	R	F	S	G	S	Ν	-	-
rel. oomcaas	97%	95%	100%	100%	100%	100%	100%	100%	100%	92%	73%	100%	100%	100%	100%	100%	55%	100%	100%
pos occupied	7						:	•	:	:	:	:							

138

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

				Fra	amev	work	: 111												
amino acid'	67	89	69	70	71	72	73	74	75	92	11	78	79	80	81	82	83	84	.85
Α				1	36	1		1				11	1	34				38	
В			Ī	2															
. с																			
D																38			37
E													10		14		38		1
F .						*******	********							·					
G		37				··					28				10				
Н.			1																
ļ.						1		1	37	1					1				
K			1															<u> </u>	
L L							38								2				
M															10				
N			28		į					1									
Р																			
Q		1											25						
R					·					1	10		1						
S	37		2			11				23		l		1					
Т	1		6	37		25		36		12		13		2					
V					2				1			14	1	1	1	i			
W					<u> </u>														
X																			
Y																			
Z																			
																	į		
unknown (?)																			
not sequenced																			
sum of seq ²	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
oomcaa³	37	37	28	37	36	25	38	36	37	23	28	14	25	34	14	38	38	38	37
mcaa*	S	G	Ν	Ţ	Α	T	L	T	1	S	G	٧	Q	Α	E	D	Е	Α	D
rel. oomcaa ^s	97%	97%	74%	92%	95%	%99	100%	95%	92%	61%	74%	37%	%99	93%	37%	100%	100%	100%	97%
pos occupied ^a			· · · · · · · · · · · · · · · · · · ·		2	4	1		:	5	:	3	5	4		1	1	1	2

Table 5C: Analysis of V lambda subgroup 3

										CDI	R III								
amino acid'	98	81	88	83	6	91	92	93	94	95	۷	8	ں	٥	w	u.	96	97	98
Α					13	3	2			1	2						4		
В																			
· C			38																
D							32	1	1		6								
E				1								2					2		
F .	-	2						2											3
G									3	14	3			1			3	1	
Н												12	1						
ı																		4	
K											1								
L				1				1		1		1	1				4	2	
М									1								1	1	
N				10			2	1	2		10	1							
Р									1				3				1		
Q				25						1	1								
R						10		1	2			2							
S				1	14	1		28	26	13		1				1			
Ţ						1		3		7	2								
V					11												18	28	
W						23	٠										1		
X																			
Υ	38	36					1		1		1	3	1				3		
Z																			
_											10	15	31	36	37	36		1	
unknown (?)																			
not sequenced				·			1	1	1	1	2	1	1	1	1	1	1	1	
sum of seq ²	38	38	38	38	38	38	37	37	37	37	36	37	37	37	37	37	37	37	3
oomcaa	38	36	38	25	14	23	32	28	26	14	10	15	31	36	37	36	18	28	3
mcaa*	Υ	Ý	С	Q	S	W	D	S	S	G	N	-	-	_	-	-	٧	٧	F
rel. oomcaas	100%	95%	100%	%99	37%	61%	%98	76%	70%	38%	28%	41%	84%	92%	100%	97%	49%	9/09/	100%
pos occupied	1		1		:	:											<u> </u>	6	

Table 5C: Analysis of V lambda subgroup 3

-			F	ram	ewo	rk	ſ۷						
amino acid'	66	00	101	102	103	104	5 0	305	90.	∢	107	108	sum
Α	T						Ī						265
В	Ť												
С	-										1		82
D													225
E					2								14!
F													90
G	35	31	35			<u></u>					24		46
Н						<u> </u>							3:
1						ļ							160
К					30	<u> </u>							110
L _						1	28			33			23:
М						<u> </u>				-			1
N				<u> </u>		<u> </u>							12
Р						<u> </u>				1			24
Q						L						7	27
R				<u> </u>	2	2							15
S			<u> </u>	<u> </u>							2	-	50
T	<u> </u>	4		35		_		35				ļ	34
V		<u> </u>	ŀ	<u> </u>		<u> </u>	7		35		<u> </u>	<u> </u>	30
W				<u> </u>		<u>.</u>					<u> </u>	ļ	6
X			ļ	<u> </u>		_						ļ	
Υ		<u></u>	ļ			<u>.</u>					ļ	ļ	21
Z	_	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>					-	<u> </u>	
		<u> </u>		<u> </u>				••••			<u> </u>	<u> </u>	60
unknown (?)	Ŀ	<u> </u>		<u> </u>		-				<u> </u>	<u> </u>		
not sequenced		_		-		4				•	-	1 28	3] 8
sum of seq ²				5 3				• "	•	1			7
oomcaa ₃	35	3	1 3	5 3	5 3	0	28	•	•	:	•	:	?
mcaa*	G	G	G	T	K		L	T	٧	L	G	Q	
rel. oomcaa'	100%	9000	9000	8000		0/28	80%	100%	100%	970%	9000	100%	2
pos occupied	٠			1				1	1		2	3	1

141

Table 6A: Analysis of V heavy chain subgroup 1A

											•			Fra	me	wor	k I			
amino acid'	,	2	က	4	2	9	7	&	6	01	=	12	13	14	15	16	17	8	19	20
A					1	14			60							24	1			
В																				
· C																				
D																				
E	1				2	1		2		64										
F																				
G								58	1						64					
Н			2																	
		2																		
K		2										57	64						60	
			2	59							3									
М		1													į					
· N					***************************************							6								
Р														63						
Q ·	53		56		2	45														
R												1							3	
5							60		3					1		40	63			
T																			1	
٧	2	55		1	55						61							64		6
W																				
Χ																				
Y																				
Z	3					_														
_																				
unknown (?)									<u>.</u>											
not sequenced	11	10	10	10	10	10	10	10	6	6	6	6	6	6	6	6	6	6	6	
sum of seq ²	59																			
oomcaa³	53	55	56	59	55	45	60	58	60	64	61	57	64	63	64	40	63	64		6
mcaa*	Q	٧	Q	L	٧	Q	S	G	Α	E	٧	K	K	Р	G	S	S	٧	K	٧
rel. oomcaas	%0(32%	93%	98%	32%	75%	100%	97%	94%	100%	95%	%68	100%	%86	100%	63%	%86	100%	94%	1000
pos occupied ⁶	1	į.	•	:	i	:	:	:	3	:	:	:			1		:		3	Ξ

WO 97/08320

Table 6A: Analysis of V heavy chain subgroup 1A

														CD						
amino acid'	21	22	23	24	25	56	27	78	53	30	3	∢	æ	32	33	34	35	36	37	38
Α				62				1							41				_	
В							·												_	
· C		63																		
D							1							_						
E														_		···				
F .									69					3		3				•
G				1		69	41		1		_				23					
Н										1				1			1			
1								1								61	1		1	
K			63					<u></u>	······	1	1		_							••••
L								<u> </u>	<u></u>						1					
М								<u> </u>	ļ							4				
N	<u></u>		<u></u>					<u> </u>	ļ	2	5						4			
Р	<u></u>								ļ	ļ					1					
Q		ļ	<u> </u>					<u>.</u>	<u></u>											
R		1	1	ļ	<u> </u>			<u> </u>	ļ	 	1	 								7
S	63		<u> </u>		68		1	ļ	ļ	40	60			2			60			
T	1	<u> </u>	<u> </u>	2	<u> </u>			68	<u> </u>	25	3				3	····	4			
V		<u> </u>	<u> </u>		<u></u>	<u></u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>				1	<u> </u>			69	
W	_	ļ	<u> </u>	<u> </u>	<u> </u>		·	<u></u>	<u> </u>	<u> </u>	<u> </u>					<u> </u>	<u> </u>	70		
X		ļ	<u> </u>		<u></u>		<u> </u>	<u> </u>	<u> </u>	ļ	-				••••	<u> </u>	<u> </u>			
Y			<u> </u>				27	<u> </u>	ļ	ļ	<u> </u>			64		ļ	ļ			
Z		<u> </u>	<u>_</u>	<u> </u>	<u></u>	<u> </u>	L	Ļ	_	<u> </u>	-					_	_	_	_	_
	_	<u> </u>	<u> </u>	<u> </u>		<u> </u>		ļ	ļ	<u> </u>	<u> </u>	70	70			ļ	ļ	<u> </u>		
unknown (?)	_	<u> </u>	<u> </u>	<u> </u>	ļ		<u> </u>	-	ļ	<u> </u>	ļ	ļ				ļ	<u> </u>			<u> </u>
not sequence	d e	6			2			<u> </u>	-	Ļ	<u> </u>	 				<u> </u>	<u> </u>		_	<u> </u>
sum of seq ²	64	64	64	65	68	69	70	70	7(70	70	70	70	70	70	70	70	70	70	7
oomcaa3				·	1	*******	•••••					70	•		41	61	60	70	69	. 7
mcaa*	ļ		K		<u>.</u>				- -	S	- 		-	Υ	Α	<u> </u>	S	. 	. .	-
rel. oomcaas	180%	38%	38%	35%	100%	100%	290%	0.00 0.00 0.00	7066	57%	%98	100%	100%	91%	59%	87%	%98	100%	%66	300
pos occupied	<u></u>) ·) .	, .	3 1			4	3	2 6	5 5			:	E	•	•	•	•	

143

Table 6A: Analysis of V heavy chain subgroup 1A

	_				Fr	am	ew	ork	11													
amino acid	20	3 5	} :	4	42	43	5 2	,	τ ο .	9	47	48	49	2 2	2 5	<u>.</u> .	70	< 0	xo (3 ر	3 2	† L
Α		7	0											1				5				Ī
В													Ī									
· C												•••••••	İ				İ	Ť	Ī		İ	
D						Ī				1	Ì		<u> </u>					Ī	i	Ť	Ť	
E					******				€	9			<u> </u>						1			T
F .													<u> </u>	Ī		2					3 3	9
G				1	68		6	9			1		69	3 3	9			1				6
Н				1												***************************************			<u> </u>			
1											Ī			-	6	5 3	8			3	4	
K																				Ī	<u> </u>	-
L					1			6	8		<u>-</u> -	1		Ī	1				Ī		2 4	1
М												67	*****	Ī	Ī		2		<u> </u>	1	1	<u>†</u>
N																-	1		1		22	2
Р			6	8					1				*******				44	1	1		Ī	
Q	69					69							**********							1	1	1
R	1	<u> </u>	<u> </u>		1		1							4		-				1	<u> </u>	
S						1					1	1				22				<u> </u>	1	1
T			<u> </u>									Ī			1	2	4		<u> </u>	1	3	<u> </u>
V		<u> </u>								Ī		1			2	2	16		T	1	†	
W								1		6	7			26					<u> </u>			
X		<u></u>	<u> </u>	<u> </u>																Ī		
Υ							••••••				1									20		
Z			_																			
																		70	70			
unknown (?)			<u> </u>	<u> </u>																		
not sequenced									<u> </u>													
sum of seq'	70	70	70	7	0 ;	70	70	70	70	70	7	0	70	70	70	70	70	70	70	70	70	70
oomcaa¹																				34		
mcaa'	Q	Α	Р	G		Q	G	L	Ε	W				G	ı	ı	Р	-	-	ı	F	G
rel. oomcaa³	%66	100%	97%	970%		99%	%66	92%	%66	%96	760%	2 2	%66	%95	93%	54%	63%	%00I	%00I	49%	26%	97%
oos occupied [«]	2	1	3	Ī							:	:				6				10	<u>ي</u> 6	3

44

WO 97/08320

Table 6A: Analysis of V heavy chain subgroup 1A

	C	DR																		
amino acid¹	26	22	58	23	09	19	62	63	64	65	99	29	89	69	20	7.1	72	73	74	75
Α	1	34			69											43				
В																				
· C																				i
D	15		1							2							70			
E									1									33		
F				1				48				3		4						
G	1			<u></u>			3			67										
Н			1																	
<u> </u>	4												1	44				1		
K	1		2	1			47		1		1							8		
L	1	1						22				2		1		3				
M														21						
N	9		59				18													
<u> </u>	1	7					••••••													
0	1	1				70			64								i			
R	2						2		1		69							1		
<u>S</u> '	ļ	1			1										5				70	
T	34	26	4						3				66		65	24		27		6
V	<u> </u>							<u> </u>		1		65	3							
W	<u> </u>						·													
X	-				· ·															
Y	-		1	68				<u> </u>												
Z			_	_						-								11		-
	-	<u> </u>		<u></u>																_
unknown (?)	<u> </u>			<u>.</u>		<u></u>				<u></u>										
not sequenced		_					_					70	70	70	70	70	70	70	70	_
sum of seq ²	·	÷	÷	÷	·	·	,,,,,,,, ,,,,	·••••	-		70									:
oomcaa,		÷	÷	÷	·····	····		48 F	÷	÷	69 P		66 T			43 A	÷	33 E		6 1
wcaa,	I	Α	N N	Υ	A		!	<u> </u>	 -	 	!					!	! -			<u> </u>
rel. oomcaas	49%	49%	84%	92%	%66	100%	67%	%69	910%	%96	%66	93%	94%	63%	93%	61%	100%	47%	100%	000
pos occupied	•	:	:	•:	:								÷	•	•	•	1	•	,	<u></u>

WO 97/08320

Table 6A: Analysis of V heavy chain subgroup 1A

					Fran	new	ork	III												
amino acid'	92	77	78	79	80	81	82	۷	8	U	83	84	85	98	87	88	.89	06	91	92
Α .	Π		64		Π	1						3		Ī	1	70)			
В		<u> </u>								-			·				-		-	
· C		<u> </u>	<u> </u>		Ì	<u></u>	<u> </u>		<u> </u>				<u> </u>							70
D					-	2							26	70)		İ	·		
E						64							44							
F .																	1	1	2	
G									1				·							
Н				1				1												
		1					3	1	1								2			
К											3									
L					3		63			70							2			
М			<u></u>		67					<u> </u>		<u> </u>	<u></u>		1	<u> </u>	1	<u>.</u>	<u> </u>	
N	4							. 1	16			<u> </u>				<u></u>		<u></u>		
Р																				
a				1		3						<u>.</u>								
R	3							23	1		62									
S	62		1					41	49			67			1					
T	.1	69	2	••••				3	2		4				67					
V			3				4				1						64			
W																				
X																				
Υ				68														69	68	
Z																				
-																				
unknown (?)																				
not sequenced														_						
sum of seq ⁷	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
oomcaa¹	*******				67	64	63	41	49	70	62	67	44	70	67	70	64	69	68	70
mcaa'	S	T	Α	Υ	М	Ε	L	S	S	L	R	S	E	D	T	Α	٧	Y	Υ	С
rel. oomcaa ^s	968	%66	91%	97%	%96	91%	900%	29%	20%	100%	%68	%96	63%	100%	%96	100%	91%	966	97%	100%
pos occupied ^a	4	2	4	3	2								·····	:		1			·········	

148

Table 6A: Analysis of V heavy chain subgroup 1A

										CD	R III									
amino acid'	93	94	95	96	97	98	66	100	∢	8	U	0	ш	щ	9	Ξ		_	¥	101
А	66	2	16		1	1	1	4	1	2	2	1	1		1	1	1	2		1
В																				
· C					1	1	16	2		1	1	7	2	1						
D			16	5	3		3	5	4	3	4	<u> </u>		1	1	14		<u> </u>	<u> </u>	59
E			9				2			1			1			1		<u> </u>		
F .					1	3		2		3	1	2		2	1				28	2
G		2	14	13	20	10	14	5	20	15	16	3	3	4	15	1	1	7		
Н										1	1	1	-	1						
1				2	5	2	2		2	2	1	1			1					
K		5			2	1			1											
L		1	4	4	2	5	2	1	1		4	2		1			1		1	
M			1		2		1		1			1	1						10	
N				2	2	1	2	1	2	2	2	2			1	1	4			
'P				20	3		1	3	2	2	2	4	2	1	4	1		1		1
Q				1			1		1	1	1									
R		55	1	5	7	8	1	4		2		1		16						
S		1	1	5	5	5	5	21	5	11	8	4	3		2	1		2		1
T	1	3	3	5	4	1	3	4	2	5	2		1			1	1			
V	3		3	2	4	3	3	3	4	2	2	2	1	2	1					
W				1	1	3	1	1			2		3				1	5	1	
X																				
Y		1		2	3	20	5	4	9	1	2	11	20	10	6	9	10	7	1	
Z																	·			
_				1	2	2	3	6	11	11	14	23	26	26	31	34	46	39	21	1
unknown (?)	i												1		1	1		2	3	
not sequenced			2	2	2	4	4	4	4	5	5	5	5	5	5	5	5	5	5	5
sum of seq ²	70	70	68	68	68	66	66	66	66	65	65	65	65	65	65	65	65	65	65	65
oomcaa,	66	55	16	20	20	20	16	21	20	15	16	23	26	26	31	34	46	39	28	59
mcaa'	Α	R	Α	Р	G	Υ	С	S	G	- [- [-	-	-	-	-	-	-	F	D
rel. oomcaa ^s	94%	79%	24%	29%	29%	30%	24%	32%	30%	23%	25%	35%	40%	40%	48%	52%	71%	%09	43%	91%
pos occupied ⁶		÷		:	:		:	:	•							••••••		:		

142

Table 6A: Analysis of V heavy chain subgroup 1A

					Fr	ame	10W	k IV]
amino acid'	102	103	104	105	106	107	108	109	110	=	112	113	sum
Α	Г			:									670
В			<u> </u>				<u> </u>		Ī-				
С						Ī	<u> </u>		<u> </u>				165
D		1	1				<u> </u>	<u> </u>	Ī	<u> </u>	Ī	Ī	308
E	1	1				<u> </u>				Ī			297
F	2												226
G			58		59	1	1						928
Н				1									14
í	3								4				286
К				3		1				:			325
L	3			1			40	1					386
М	1	<u> </u>					3						189
N		<u> </u>		1			<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		176
Р	5								<u></u>		<u> </u>	1	238
Q		<u> </u>		52					<u> </u>	ļ			494
R		<u> </u>		1				<u></u>		<u> </u>			351
S									<u></u>		53	51	972
T						54	11	1	51		1		736
V	15		1				1	54		54		1	699
W		59		1									243
X													
Y	34		1										542
Z													3
-	1												578
unknown (?)													8
not sequenced	5	9	9	10	11	14	14	14	15	16	16	17	406
sum of seq²	65	61	61	60	59	56	56	56	55	54	54	53	
oomcaa,	34	59	58	52	59	54	40	54	51	54	53	51	
mcaa'	Υ	W	G	Q	G	Ţ	L	٧	T	٧	S	S	
rel. oomcaa ^s	52%	92%	95%	87%	100%	%96	71%	%96	93%	100%	%86	%96	•
pos occupied	9	3	4	7	1	3	5	3	2	1	2	3	•

148

SUBSTITUTE SHEET (RULE 26)

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

														Fr	ame	wor	kΙ			
amino acid'	-	2	က	4	2	9	7	8	9	10	=	12	13	14	15	91	11	18	19	20
Α									32							34				
В			<u></u>			*********														
· C																				
D																				
E		1			5	1				35										
F .			<u> </u>																	
G								27							35					
Н			1											1						
1																				1
K		3	1									34	33						33	
L			3	26	1															
M				1	1															
N																				
Р									1					33			1			
Q	21		20			26														
R	1											1	2							
S							27									1	34			
T									1					1					2	
V	3	21			20						-35							35		34
W							٠													
X																				
Y																				
Z																				
-																				
unknown (?)				٠																
not sequenced	15	15	15	13	13	13	13	13	6	5	5	5	5	5	5	5	5	5	5	5
sum of seq ²	25	25	25	27	27	27	27	27	34	35	35	35	35	35	35	35	35	35	35	35
oomcaa3	21	21	20	26	20	26	27	27	32	*****	********			••••••			****	• • • • • • • • •		
mcaa'	Q	٧	Q	L	٧	Q	S	G	Α	Е	٧	K	K	Р	G	Α	S	٧	K	٧
rel. oomcaas	84%	84%	80%	%96	74%	%96	100%	100%	94%	100%	100%	97%	94%	94%	100%	97%	97%	100%	94%	97%
pos occupied ^a													:		•				2	2

SUBSTITUTE SHEET (RULE 26)

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

				• •		•								CI	DRI				Π	
amino acid'	21	22	23	24	25	26	27	28	29	30	31	۷	8	32	33	34	35	36	37	38
Α				30							2				6					
В																				
. C		35																		
D											1				5		1			1
E			3								1									
F							2		39					2	2					
G				1		40				1	14				1					1
Ĥ														3	1		34			
1								1		1						9				
K			28																	
L									1		1					5			2	
M.																23				
N							1			1	3					1	3			
Р															1					
Q			2								1				1		1			1
R			2					2						1						37
S	35				40			5		2	15			2	1					
T				3				32		34					1					
V				1			1			1	1				2	2			38	
W																		40		
- X																	·			
Y							36				1			32	19		1			
Z																				
-												40	٠40							
unknown (?)				٠																
not sequenced	5	5	5	5																
sum of seq'	35	35	35	35	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
oomcaa [,]	35	35	28	30	40	40	36	32	39	34	15	40	40	32	19	23	34	40	38	37
mcaa'	S	С	K	Α	S	G	Υ	T	F	T	S	-	-	Υ	Υ	М	Н	W	٧	R
rel. oomcaas	100%	100%	%08	96%	100%	100%	%06	%08	98%	85%	38%	100%	100%	%08	48%	58%	85%	100%	95%	93%
pos occupied ^a	1	1			·		:		:	······		1	•							4

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

,				Fra	me	work	c II													
amino acid'	39	40	4	42	43	44	45	46	47	48	49	20	51	25	∢	æ	υ	53	54	55
А		39				1					1				7			1		
В																				
. С																				
D														1					1	
E				1				39										1	1	
F .							. 2						1					1		
G				39		28					39	1			1			9	1	39
Н																		2		
1										3			34							
K					1														1	
L			1				37						1							
M										37		2	4							
N							-							35				20	12	1
Р		1	34				1	٠.							31					
Q	39				39			1												
R	1					10	,					4						3	1	
S			1			1								2				1	20	
T			4											1					3	
V								·						1	1					
W							٠		40			33								
X																				
Y																		2		
Z																				
-																40	40			
unknown (?)																				
not sequenced																				
sum of seq ²	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
oomcaa ³							37	39	40	37	39	33						20	20	39
mcaa'	Q	Α	Р	G	Q	G	L	E	W	М	G	W	I	N	Р	-	-	N	S	G
rel. oomcaas	98%	38%	35%	%86	%86	70%	93%	986%	100%	93%	98%	83%	85%	88%	78%	100%	100%	50%	20%	98%
pos occupied																				2

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

		CDR	11									Π								
amino acid'	56	22	58	59	90	61	62	63	64	65	99	29	89	69	70	71	72	73	74	75
А	1	2			27	2				1		1				2				12
В																				
· C																				
D	1									4							35			
E	2		2			1				1						1				
F .				4				39						3			<u></u>			
G	15		6		1					34									<u></u>	
Н			1	1													1			
1		1	1									1	1	13						22
· K	2	2	8				36		1							1				
L						1		1						1						
M														23				1		1
N	17		18				1		<u></u>					<u> </u>	····		4			
Р											,,								3	
0.						36			37											
R			2				1		2		37					34		1		
S	1			2	11		1									1			37	
T		35	2		1		1						39		40	1		38		5
V	1											38								
W											3									
X															<u>.</u>					
Y				33																
Z																				
unknown (?)																				
not sequenced																				
sum of seq'	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
oomcaa,		*****			27	********	*******		37	34	37	38	39	23	40	34	35	38	37	22
mcaa'	N	T	N	Υ	Α	Q	K	F	Q	G	R	٧	T	М	T	R	D	T	S	1
rel. oomcaas	43%	988%	45%	83%	%89	%06	%06	98%	93%	85%	93%	95%	98%	58%	100%	85%	88%	92%	93%	55%
pos occupied ^a	···					:				••••••	•••••	•	•	•	1			•	•••••	

WO 97/08320 ·

Table 6B: Analysis of V heavy chain subgroup 1B

				F	ram	ewo	rk il													
amino acid¹	92	77	78	79	80	81	82	4	8	ပ	83	84	82	98	87	88	83	8	91	92
A			35									1	2			40				
В																				
· C									<u></u>											37
D	1					4							19	40			1			
E						35							19							
F			1									2							2	
G						1		1	2											
Н																				
1		1															1			
К											1									
Ĺ					2		39			39							2			
М					37		1						-	·-			2			
N	7							1	2											
Р												1							1	
Q																				
R	4							2	16		37									
S	27			1				35	20		1	36						1	1	
T	1	39						1			1				40					
V			4		1	·				1							33			
W							٠													
Χ																				
Y				39														38	35	
Z																				
_																				
unknown (?)																				
not sequenced																	1	1	1	
sum of seq ²	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	39	39	39	3
oomcaa³		·		÷						: :	: :	36			:			; ;		
mcaa ⁴	S	T	Α	Υ	М	Ε	L	5	S	L	R	S	D	D	T	Α	٧	Υ	Υ	C
rel. oomcaas	68%	%86	%88	98%	93%	98%	98%	988%	20%	98%	93%	%06	48%	100%	100%	100%	85%	92%	%06	9000
pos occupied		•	•	•	•	:	:	•			: :		3	1	1	1	5	2	4	

Table 6B: Analysis of V heavy chain subgroup 1B

										CD	R III									
amino acid'	93	94	95	96	97	86	66	100	۷	8	ن	۵	ш	ᇿ	ပ	I	_	_	×	101
Α	37	1	6		1	1		2	3	1	3		1					5		
В																		<u> </u>		
. С		1	<u> </u>			3				2	1									
D			7		5	2	3	1	5	4		1		2	2	1	2			27
Ε			2		1			1	1		2		1		1					
- F .				1	1	3			2	1	1	1	1					2	15	
G		1	7	7	5	5	9	4	7	1	3		2	2	1		1	3		1
н			1				2			1	1					•				
1		1		1	1	3	1	1	1	1	1	1							1	
К		1			1				1	1		1		1			1			
L			2	4	4	4	3			1	2	1	1	2		1			2	
M				2		1	1								1				4	
N					1			1		1	1	1			3		1			1
Р				6	4				1	1		3	2				1			
Q					1							1	2	1				·		
R	1	31		5	1	1	3					1		1				1		
S		1	3	3	1	4	3	6	3	2	2	1		1						
T		2	1	1	2	2	1	5	1	1	1		1			1		1		
V	1	·	7	1	1		1	3	1	2		1			1	2	1			1
W			1		1		2	2		1	1					1		4		
X																				
Υ				5	5	4	2	3	•	4	3	3	2	1	2	· 5	6	2		
Z																				
-			·	1	1	4	6	8	10	11	14	20	23	25	25	25	23	18	11	6
unknown (?)																			3	
not sequenced	1	1	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4	4	4
sum of seq ²	39	39	37	37	37	37	37	37	36	36	36	36	36	36	36	36	36	36	36	36
oomcaa,	37	31	7	7	5	5	9	8	10	11	14	20	23	25	25	25	23	18	15	27
· mcaa'	Α	R	D	G	D	G	G	-	-	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa⁵	95%	79%	19%	19%	14%	14%	24%	22%	28%	31%	39%	26%	64%	%69	9069	%69	64%	20%	42%	75%
pos occupied"	<u>-</u>					•	:	:	12		14	:		;		•	1	8	5	5

WO 97/08320 .

Table 6B: Analysis of V heavy chain subgroup 1B

					Fra	mev	vork	IV.					
amino acid'	102	103	104	105	106	107-	108	109	110	111	112	113	Su
Α													3
В													
С													•
D	2												1
E				1									1
F	1												13
G			27		26					1			45
Н	1												:
l	7								3				1
K				2									19
L							12			1			20
М							2						14
N	1												13
Р	1			1									12
Q				23									25
R							1						24
S	3								1		18	18	43
Ţ						21	6		16		1		38
V	6							21		18			34
W		29		٠									15
X													
Y	11												29
Z													
_	3												39
unknown (?)													
not sequenced	4	11	13	13	14	19	19	19	20	20	21	22	4!
sum of seq ²	36	29	27	27	26	21	21	21	20	20	19	18	
oomcaa³	11	29	27	23	26	21	12	21	16	18	18	18	
mcaa'	Υ	W	G	Q	G	T	L	٧	T	٧	S	S	
rel. oomcaas	31%	100%	100%	85%	100%	100%	57%	100%	90%	%06	95%	100%	
pos occupied	10	1	1	4	1	15	*********	;				•	

Table 6C: Analysis of V heavy chain subgroup 2

														Fr	ame	wor	kΙ			
amino acid'		2	С	4	2	9	7	æ	6	10	11	12	13	14	15	16	17	18	19	20
A										3										
В																				
· c																				
D																				
E	1					6										2				
F																				
G								6												
Н																				
1		1																		
К					3								6		1					
L				6							6							6		6
М																				
N ·							1													
Р							1		6					6			1			
Q	2															4				
R					2															
S							4													
Т			6		1		·			2					5		5		6	
V		5								1		6								
W																				
X																		·		
Y																				
Z	3																			
-																	·			
unknown (?)																				
not sequenced	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sum of seq ²	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
oomcaa ³	3	5	6	6	3	6	4	6	6	3	6	6	6	6	5	4	5	6	6	6
mcaa*	Z	٧	T	L	K	Ε	S	G	Ρ	Α	L	٧	Κ	Р	T	Q	T	L	Ţ	L
	20%	83%	100%	100%	50%	100%	67%	100%	100%	20%	100%	100%	100%	100%	83%	67%	83%	100%	100%	100%
pos occupied"			1	1		••••••	3	···· ·	1		1	•	1		2	:	•	1	1	1

Table 6C: Analysis of V heavy chain subgroup 2

											\perp		-		CD		_				
amino acid'	17	22	23	24	25	26	5	/7	28	29	30	3	⋖	∞ .	32	33	34	35	36	37	38
Α .									1				1			1					
В					<u>.</u>																
C		7		<u> </u>	<u>.</u>	<u> </u>										2					<u> </u>
D						<u> </u>							1								
E						ļ															
F				3	3		_	6		1											
G				<u>.</u>	<u>.</u>		7							4		3		3			
Н			<u> </u>		<u> </u>										_			ļ			<u> </u>
1 .			<u> </u>	<u> </u>										1				<u> </u>		7	<u> </u>
K																		<u> </u>	<u>.</u>		ļ
L					2			1		6								ļ	<u> </u>	<u> </u>	<u> </u>
М															5			<u> </u>	<u></u>		<u> </u>
N												2						<u> </u>	<u> </u>	<u> </u>	_
Р																	ļ	<u></u>			
Q																		<u> </u>			
R														2		1		ļ	<u> </u>	<u></u>	<u> </u>
S			1	١		6			6		6	2	4				<u> </u>	4		<u> </u>	<u> </u>
T	6		(3							1	3	1				<u> </u>	<u> </u>	<u></u>		<u> </u>
٧					2										2		7			<u> </u>	<u>ļ</u>
W			Ī					·									<u> </u>	<u> </u>	7	<u> </u>	<u> </u>
Χ																	<u></u>		<u>.</u>	<u> </u>	<u> </u>
Y						1											ļ	ļ	<u>.</u>	<u>.</u>	
Z										·							_	<u> </u>	<u> </u>	_	Ļ
-																	<u> </u>	ļ	ļ	<u>.</u>	ļ
unknown (?)		Ī										<u></u>	ļ				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
not sequence	B																<u> </u>	<u> </u>	<u> </u>	╄	<u> </u>
sum of seq²	(3	7	7	7	7	7	7	7	7	7	7	7	7	7	7		7 7	7	7	7
oomcaa ₃	(3	7	6	3	6	7	6	6	A	<u> </u>	÷		******				<u> </u>		÷	7
mcaa*	T	-÷			F !	5	G	F	S	L	<u>.</u> S	T	S	G	М	G	V	5		. 	
rel. oomcaas	100%	100%	200	02.00	4300	86%	100%	%98	96%	%98	%98	43%	57%	57%	71%	43%	100%	57%	100%	100%	2
pos occupied	ıe	1			:	•	1		:	•	:	:	4	:	:	•	1	1 :	2	1	1

WO 97/08320

Table 6C: Analysis of V heavy chain subgroup 2

				Fr	ame	wor	k II													
amino acid'	39	40	41	42	43	44	45	46	47	48	49	20	51	52	۷	8	U	23	54	55
Α						6					7									
В																<u> </u>	<u> </u>	<u> </u>		
. c																				
D														2					3	6
E								7												
. F .														2						
G		1	<u> </u>	7		1	********													
Н		<u></u>	<u> </u>									2								1
1		<u></u>											6							
K			<u> </u>		6															*******
L			<u></u>				7			7		2	1	1						
M			ļ																	
N																			3	
Р		5	7																	
Q	6																			
R	_1				1							2								
S		1																2		
T																				
V																				
W									7			1						4		
X														1				1	1	
Y														1	1					
Z																				_
-															6	7	7			
unknown (?)																				
not sequenced																				
sum of seq ²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa,	6		***********		6	6	7	7	7	7	7	2	6	•••••••••••••••••••••••••••••••••••••••	6	7	7	4	3	6
mcaa'	Q	Р	Р	G	K	Α	L	Ε	W	L	Α	Н	1	D	-	-	-	W	D	D
rel. oomcaa ^s	%98	71%	100%	100%	96%	%98	100%	100%	100%	100%	100%	29%	96%	29%	96%	100%	100%	57%	43%	96%
pos occúpied ^a	2	3	:	:	2	2	1	1	1	1	1	4	2	5	2	1	1	3	3	2

Table 6C: Analysis of V heavy chain subgroup 2

		DR																		
amino acid'	26	27	28	29	99	61	62	63	64	65	99	29	89	69	2	71	72	73	74	75
Α																				
В																				
. С			.,																	
D	5			·													6	1		
E	1								1											
F		1		1																,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
G																				
Н				1					<u></u>											
1										·				6						
K	1	6							4							6				
L								7				7								
M .																				
N																	1			
. P						2														
Q																				
R			2			1			2		7					1				
S			2		6		7			4			1		5				7	
T						4				3			6		2			6		
V														1						
W			•	1			•													
Χ					1															
Y			3	4																
- Z																				
-																				
unknown (?)																				
not sequenced																				
sum of seq ²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
oomcaa ³	5	6	3	4	6	4	7	7	4	4	7	7	6	6	5	6	6	6	7	
mcaa'	D	K	Υ	Υ	S	T	S	L	K	S	R	L	T	1	S	K	D	Ţ	S	K
rel. oomcaas	71%	%98	43%	57%	%98	57%	100%	100%	57%	57%	100%	100%	%98	%98	71%	%98	%98	%98	100%	7050
pos occupied ⁶	•	2	:	:		:	•						_ :							

Table 6C: Analysis of V heavy chain subgroup 2

				F	ram	ewo	rk l	II												
amino acid'	9/	11	8/	79	8	81	82	⋖	8	ن	83	84	82	98	87	88	83	90	91	92
Α													1			5				
В																		<u> </u>		
. С																				7
D											6			7						
E																				
F.					1															
G																2				
Н																				
1						2		1												
K																				
L					6															
М							7			5										
N	5								6.		1									
Р												7								
Q		7																		
R																				
S	2																			
T						5		5							7		7			
V			7	7						1			6	•						
W																				
X					·															
Υ						••••••												7	7	
Z																				
								1	1	1										
unknown (?)																				
not sequenced																				
sum of seq ²	7	7	7	7	7	7	7	7	7	7	7	· 7	7	7	7	7	7	7	7	7
oomcaa3	5	7	7	7	6	5	7	5	6	5	6	7	6	7	7	5	7	7	7	7
mcaa*	N	Q	٧	٧	L	T	М	T	Ν	М	D	Р	٧	D	T	Α	T	Υ	Υ	C
rel. oomcaa ^s	71%	100%	100%	100%	%98	71%	100%	71%	%98	71%	96%	100%	%98	100%	100%	71%	100%	100%	100%	100%
pos occupied ⁶	2	1	1	1	2		:	3	. :	:	2		. :	1	1	2	1	1	1	

Table 6C: Analysis of V heavy chain subgroup 2

										CDI	R III									
amino acid'	93	94	95	96	97	86	66	100	∢	89	U	۵	ш	ഥ	ပ	π	_	_	×	101
Α	5							1	2	1										
В																				
. С																				
D																				6
E								2			1									
F .																			3	
G						. 1	1		1	2	1	1	1	1						
Н		1		1						<u> </u>										
ı			3			2					<u> </u>									
К							1													
L								1		1									1	
M.								1											2	
N				1	2												1			
Р				1	1		1		1											
Q			1								į									
R		6	1			1			1											
S				1		1	1													
Т				1			1		1											
V	2		1	1	1		1	1			1									
W						1									1			1		
Х																				
Y					2						1	2	1	1	1			2		
Z																				-
-										2	2	3	4	4	4	6	5	3		
unknown (?)																				
not sequenced			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sum of seq ²	7	7	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
oomcaa3	5	6	3	1	2	2	1	2	2	2	2	3	4	4	4	6	5	3		6
mcaa*	Α	R	ı	Н	N	ı	G	Ε	Α	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaas	71%	96%	20%	17%	33%	33%	17%	33%	33%	33%	33%	20%	67%	67%	67%	100%	83%	20%	20%	100%
pos occupied ^a	:	:			4	5	6	5	5 16	4	5	3	3	3	3	1	2	3	3	1

Table 6C: Analysis of V heavy chain subgroup 2

					Fra	me	vork	١٧				
amino acid'	102	103	104	105	106	107	108	109	110	1111	112	113
Α									. 1			
В												
С												
D												
E												
F												
G			6		6							
Н												
1											·	
K				1			1					
L	1						3					
М												
N												
Р	1						1					
Q				3								
R				2								
S											6	3
Ţ						6	1		5			
٧	3							6		6		
W		6										
Χ												
Υ	1											
Z												
-												
unknown (?)												
ot sequenced	1	1	1	1	1	1	_1	1	1	_1	1	4
sum of seq'	6	6	6	6	6	6	6	6	6	6	6	3
oomcaa ³	3	6	6	3	6	6	3		5	······	•••••••	•••••••••••••••••••••••••••••••••••••••
mcaa*	٧	W	G	Q	G	T	L	٧	T	٧	S	S
rel. oomcaa⁵	20%	100%	100%	20%	100%	100%	20%	100%	83%	100%	100%	100%
os occupied ^a					1	1	4	1	2	1	1	1

SUBSTITUTE SHEET (RULE 26)

Table 6D: Analysis of V heavy chain subgroup 3

ſ														Fr	ame
amino acid	-	2	က	4	S.	9	7	8	6	0	Ξ	12	13	14	15
A					1		1			12		1		3	1
В			1			1							1		
. С															.
D	1					1				16					
E	110		9		15	166			9				. 8		2
F											4				
G								181	193	174		1			202
. Н			5										4		
												9			
K		5	3										26		
L		1	5	176	43						140			1	
М		12		1											
N										1					
Р													······································	194	
Q	41		138	1	3	12							162		
R			6										4		
S							178			2				8	
T							1								
V	5	147		1	118						62	195			
W															
Х															
Y												•			
Z	8														
-				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
unknown (?)					<u></u>										
not sequenced										====					
sum of seq²										205					
oomcaa ³	110	147	138	176						174		195	162	194	20
mcaa*	E	٧	Q	L	٧	E	S	G	G	G	L	٧	Q	Р	G
rel. oomcaa ⁵	67%	9068	83%	98%	%99	92%	%66	100%	%96	85%	989%	95%	79%	94%	
pos occupied	:	-]		-	· · · · · · · · · · · · · · · · · · ·	1			:	3	4	7	4	

Table 6D: Analysis of V heavy chain subgroup 3

٠	work														
amino acid'	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
A								183	192		1				
В															
C						1	209								
D															
E	8			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				8			3		1		
F .		1	1			1		····				201		201	
G	134								2		207				
Н															
1								2				3	17	1	
K				15						·					
L			205		201							6		3	
Ņ			1										1		
N				•									10		1
Р				•				1					2		
Q			1												
R	62			191											1
S		206				207		4	2	209			15		17
T	4	1		2				4	4			1	163		
V					8			7	9				1	6	
W															
Χ															
Υ															
Z															
-															
unknown (?)															
not sequenced	4	4	4	4	3	3	3	3	3	3	1	1	2	1	
sum of seq7	208	208	208	208	209	209	209	209	209	209	211	211	210	211	21
oomcaa,	134	206	205	191	201	207	209	183	192	209	207	201	163	201	17
mcaa*	G		L	R	L	S	С	Α	Α	S _.	G	F	T	F	S
rel. oomcaas	64%	%66	%66	92%	%96	%66	100%	88%	92%	100%	98%	95%	78%	95%	930%
pos occupied ⁶					: :	:	1			1					

WO 97/08320 .

Table 6D: Analysis of V heavy chain subgroup 3

				CD	RI									F	ram
amino acid	31	∢	8	32	33	34	35	36	37	38	39	40	41	42	43
Α	1			17	80		1			1		187		1	
В															
· C												1		1	
D	26			3	7		2								
E	1				10		.,							1	
F .				5											
G	13				31		1					2		209	
Н .				4			88								
	1			1		15			12						
К	7										1				20
L	3					3			2	3	1	2	1		
М						193				_	-				
N	35			8	3		34								
P				1		•••••	1					4	191		
Q						••••••					209		1		
R	7									207		7			
S	103			17	8		72					3	14		
T	9				15		10					4	5		
V	2				7	1			197			2			
W					30			212							
Χ	1													·	
Y	1			154	19		3								
Z						***********	******								
-		210	210												
unknown (?)		**********													
not sequenced	2			2	2				1	1	1				
sum of seq²	210	210	210	210	210	212	212	212	211	211	211	212	212	212	21
oomcaa'	103	210	210	154	80	193	88	212	197	207	209	187	191	209	20
mcaa*	S	-	-	Y	Α	М	Н	W	٧	R	Q	Α	Р	G	K
rel. oomcaas	%6†	%00I	100%	73%	38%	91%	42%	100%	93%	98%	%66	88%.	%06	99%	0.00
pos occupied	14	 1	1					1		:					

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

	work	II													
amino acid'	44	45	46	47	48	49	20	51	52	⋖	8	U.	53	54	55
Α	1					77	42		1	2		14		7	
В			3			<u> </u>			<u></u>	1	<u> </u>				
· C					<u> </u>				:				1		
D			1		<u></u>					7			94	8	3
E			198		<u></u>	<u></u>			3	2	1	<u> </u>	2		1
F							7	1	2	1		ļ		1	8
G	207					33	11		· 10	46		<u></u>	4	163	85
Н	L						6			1	<u>.</u>				
					3		3	191		1					1
K ·								1	37	2	30		3	1	
L		211			5		12	1							
М							1	1							
N							13		7	9	2		13	11	1
P		1								1			1		
Q			7				7		,	10					
R	1						24	1	17	5	1		2		16
S	3			1		102	11	9	118	43		1	74	17	82
T							3	5	4	2		13	12	3	3
V			3		204		49	2		1		6			
W				210	•••••		1		8	6					
X													4		3
Υ				1			22		5	58					8
Z								·							
-										14	178	178	2	1	1
unknown (?)															
not sequenced															
sum of seq ²	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
oomcaa,	207	211	198	210	204	102	49	191	118	58	178	178	94	163	85
mcaa'	G	L	Е	W	٧	S	٧	1	S	Υ	-	-	D	G	G
rel. oomcaas	98%	100%	93%	%66	%96	48%	23%	%06	56%	27%	84%	84%	44%	77%	40%
pos occupied ^a	4	2	5	3	3		15 کار		11	19	5	5	12	9	12

WO 97/08320 .

Table 6D: Analysis of V heavy chain subgroup 3

	C	DR II													
amino acid'	26	22	28	29	9	61	62	63	64	65	99	67	89	69	70
Α	9	1	2		174	33							1		
В	1	2													
· C															
D	11		17			160									
E	8	3	2			1			2						
F .	1		3	2								207			
G	5	1	5		4	5				212	1				
Н	1		4												
ı	3	37	2					8					14	208	
К	-1	61							199		8				
L	1	1	1		1							1		1	
М	8		2		1										
N	51		4			2			2						
Р	1	1			6	8	18		1						
Q	3	2							2		2				
R	5	4			5				6		201				
S	48		11		4		193					2	7		21
T	42	97	5		7								189		
٧		2			10	2		204				1		3	
W			2			*********									
Χ	4		1			1									
Y	9		151	210			1					1	1		
Z															
-						*********							-		
unknown (?)															
not sequenced															
sum of seq ²	212	212	212	212	212	212	212	212	212	212	212	212	212	212	21
oomcaa ³	51	97	151	210	174	160	193	204	199	212	201	207		208	
mcaa'	N	Ţ	Υ	Y	Α	D	S	V	K	G	R	F	T	1	S
rel. oomcaa³	24%	46%	71%	%66	82%	75%	91%	%96	94%	100%	95%	%86	968	%86	300
pos occupied ⁶	:				:	;	•	•		1		•	•	•	

Table 6D: Analysis of V heavy chain subgroup 3

										Frai	newo	rk III			
amino acid'	7.1	72	73	74	75	9/	77	78	79	80	8	82	∢	8	U
A				57			1	8						1	
В				<u> </u>	<u></u>			<u>.</u>			2				<u> </u>
· C								·							<u></u>
D		199	38		2	2			1				10		
E		6			4	<u> </u>					5				
F									13					<u></u>	
G											<u></u>	• • • • •	1	4	
Н						1			1		2		2		<u></u>
1			1				2	2				3	1	1	
K					186	6							3		
L								188		209		3	1		212
M	1				2		10	3			-	205			
N		5	170		2	188					3		181	10	
Р							1								
Q					7						199				
R	211			,	1	1							2	8	
S				153	8	10	56		3		**********		6	186	
T							142				1		4	2	
V				1				11		1		1			
W					-										
X		2	2			4					*****		1		
Y									194						
Z															
-															
unknown (?)															***********
not sequenced			1	1											
sum of seq?	212	212	211	211	212	212	212	212	212	212	212	212	212	212	212
oomcaa³	211	199	170	153	186	188	142	188	194	209	199	205	181	186	212
mcaa*	R	D	N	S	K	N	T	L	Υ	L	Q	М	N	S	L
rel. oomcaa ^s	100%	94%	81%	73%	988%	968	9/0/9	%68	92%	%66	94%	97%	85%	%88	100%
pos occupied ^a	2	·····i			8	•	:	:	:		6				1
•		•••••••	***********				160			**********					***********

WO 97/08320 ·

Table 6D: Analysis of V heavy chain subgroup 3

-														····	
amino acid'	83	84	82	98	87	88	88	06	91	92	93	94	95	96	97
A	T	149	1		1	207					173	2	15	9	11
В															
· C									1	210		5	2		1
D		5	15	209								2	54	7	6
· E	1		190										11	2	11
F .							1		15			1		9	
G	1	1	6			4	1				2	8	34	26	35
Н		1							1					3	1
		8					2						4	15	10
К	30											60	4	3	
L							18					1	6	11	
M					2		1							6	
. N		1		1								2	20	4	
Р		9									1	3	4	29	1(
Q				1								5	3	9	
R	177											103	9	30	19
S		1			1							3	9	8	1
T	3	28			207		1				25	15	7	6	2
V		9					187				10	1	7	7	1
W										1			3	4	
X				1											
Y								211	194		*********		12	9	
Z															
_													1	3	
unknown (?)															
not sequenced					1	1	1	1	1	1	1	1	7	12	1
sum of seq'	212	212	212	212	211	211	211	211	211	211	211	211	205	200	19
oomcaa ³	*****	÷0000000000000	** *****				•	211	:	210	173	103	54	30	3
mcaa'	R	Α	Е	D	T	Α	V	Y	Υ	С	Α	R	D	R	G
rel. oomcaas	83%	. %01	%06	%66	%86	%86	89%	100%	92%	100%	82%	49%	26%	15%	ò
pos occupied ⁶	-	10		i	•	•	::·····	1				:			2

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

-					CDR	111									
amino acid'	86	66	100	A	B	U	۵	ш	ட		I	_	_	×	101
Α	7	13	7	9	6	2	3	5	5		9		13		2
В															
· c	13	5		1	2	11	3		2					1	
D	11	7	10	4	2	3	10	3	3	1		3	2		146
E	6	3	1	13		1	1								1
F .	3	5	4	5	5	6	3	5	7	2		1	1	65	1
G	34	17	35	17	14	23	10	5	1	5	3	2	32		6
H	3	4	3	2	9	2		1	3	1	2	8	1		
l	6	11	4	4	3	1	3	10	3	3	2		1	2	
К	2	11			3	1									.
L	26	13	4	12	8	2	6	3	10	3				2	1
М		1	2								1			32	
N	4	6	4	3	2	2	6				2	5			
Р	6	5	5	6	9	8	2	3	2	1		3		9	
Q	4		1	1	1	1	. 1					1			
R	4	10	9	7	5	5	2	3	1		1		2		
S	16	28	27	25	24	8	11	9	3		2	3	1	1	
T	6	12	9	17	17	1	2	5	1	9	3				
V	13	7	15	4	3	6	2	12		1	1				
W	6	5	6	7	2	4				1		6	10		
X				1											
Y	16	14	17	5	8	18	20	13	20	25	28	32	28		
Z														_	
-	12	21	35	54	73	87	102	110	126	135	134	120			
unknown (?)							3	2					3		
not sequenced	14														
sum of seq ²	198	198	198	197	196	:·····	•					: :	:	;	•
oomcaa,	34		·	5.4	73	87	102	110	126	135	134	120	91	······	14
mcaa*	G	S	G	-	-	-	-	-	-	-	-	-	-	-	D
rel. oomcaas	17%	14%	18%	27%	37%	45%	54%	28%	67%	72%	71%	65%	49%	38%	700%
pos occupied ⁶	20			:	:	:	:			•	•	13	12	8	1

Table 6D: Analysis of V heavy chain subgroup 3

					Fr	ramev	vork l	V					
amino acid'	102	103	104	105	106	107	108	109	110	111	112	113	SI
A	1		1			2							17
В				1									
С													4
D	2												11
E					1								8
F	2												8
G			140		130		1						27
Н	4												1
l l	15								1	1			€
K				13									9
L .	10			1			91					2	18
М							6						4
N	1					1							8
Р	17					1	1					l.	5
Q				111									9
R				8									14
S	7	1									118	110	30
T .						123	27		122			1	14
V	34		1			1		125		119			18
W		158											6
X												1511	
Y	82												15
Z													
_	9	2	2	2	2	2	2	2	2	2	1	1	20
unknown (?)		į											
not sequenced	27	50	67	75	78	81	83	84	86	89	92	97	16
sum of seq?	184	161	144	136	133	130	128	127	125	122	119	114	
oomcaa,	82	158	140	111	130	123	91	125	122	119	118	110	
mcaa'	Υ	W	G	Q	G	Ţ	L	٧	Ţ	V	S	S	
rel. oomcaa ^s	45%	%86	97%	82%	%86	95%	71%	%86	98%	98%	%66	%96	
pos occupied ⁶	12												

171

Table 6E: Analysis of V heavy chain subgroup 4

														Fr	ame	wo	k,I			
amino acid'	_	2	က	4	D.	9	7	8	6	10	11	12	13	14	15	16	17	8	19	20
А									19					1			1		1	
В																				
· C			<u> </u>	<u></u>																
D	ļ																			
E .						32										44				
F																				
G					(54	1	53		_)	2				
Н			4		2	·														
1																				
K												1	54						1	
L		7		54							53	19		1				5 3		50
M																				
N				••••••																
Р									33					51	1					2
Q	52		50		51	20										7				
R	1																			
S							3 3								52				52	
T									1								52			
V		47				1						34								1
W							20													
X																				
Y																				
Z	1																			
-																				
unknown (?)																	·			
not sequenced	3	3	3	3	4	4	4	3	3	4	4	3	3	4	4	4	4	4	3	4
sum of seq²	54	54	54	54	53	53	53	54	54	53	53	54	54	53	53	53	53	53	54	53
oomcaa³	52	47	50	54	51	32	33	54	33	53	53	34	54	51	52	44	52	53	52	50
mcaa*	Q	٧	Q	L	Q	Е	S	G	Р	G	L	٧	K	Р	S	Ε	T	L	S	L
rel. oomcaas	%96	87%	93%	100%	%96	%09	62%	100%	61%	100%	100%	63%	100%	%96	98%	83%	%86	100%	%96	94%
pos occupied ⁶	3	2	2	1	2	3	2	1	4	1	1	3	1	•	:	:	:	:	3	3

WO 97/08320

Table 6E: Analysis of V heavy chain subgroup 4

														CD	RI					
amino acid'	21	22	23	24	25	26	27	28	29	30	31	⋖	8	32	33	34	35	36	37	38
A			22											1						
В																				
. C		53													1					
D			1								4	1	1	1			1			
E																				
F					1				22					1	1				1	
G						53	53				21	3	4				8			
Н				<u>i</u>			1							2						
			1					1	32										51	
K																				
L																			1	
M																				
N						.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-104-1-7-			1	1		2	2			1			
Р								3												
Q											1									
R		<u> </u>				1				3	2		1							5
S		<u> </u>	2		35			51	1	52	25	5	9	_ 1			_44		1	
Т	53	<u> </u>	29								2	1					3			
٧		<u> </u>		55		1			1										3	
W												1			2	56		57		
Χ																				
Y					19		1							48	52					
Z																				
-										İ		45	39							ļ
unknown (?)						<u> </u>	<u> </u>	<u></u>	<u> </u>											<u> </u>
not sequenced		<u></u>	2		===	=	2	-	-					1			:		<u> </u>	<u> </u>
sum of seq ²	53	53	5 5	55	55	55	55	55	56	56	56	56	56	56	56	56	57	57	57	5
oomcaa³	53	53	29	55	******		•;•	51	32	52		45	39	48	:				• .	
mcaa ⁴	T	С	T	٧	S	G	G	S	1	S	S	-	-	Υ	Υ	W	S	W		F
rel. oomcaas	100%	100%	53%	100%	64%	%96	%96	93%	57%	93%	45%	%08	70%	%98	93%	100%	77%	100%	%68	,000
pos occupied	6 1	1	1	1	3		•	•	•		•	_		•	•		5	1	-	

Table 6E: Analysis of V heavy chain subgroup 4

				Fra	me	worl	k II													_
amino acid	33	9	4	42	43	44	45	46	47	48	49	20	5	52	٨	8	U	53	54	n n
Α			8	1							1									
В																`				
· C																				
D														1				1		
E				1				56				22								
F .												1		1						
G				55		55					56	1						1		5
Н		2																24		
1										54		1	54							
K					54															
L L		1					55			2										
M																				
N														21						
Р		50	49				2													
Q	56							1				1								_
R					3	2						9		1						
S		3										7		1					52	_
T	1	1																8	5	
V										1			3							_
W									56											
Х																				_
Υ									1			15		32				23		
Z																		·		
_															57	57	57			
unknown (?)																				
not sequenced																				_
sum of seq'	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	
oomcaa,	56	50	49	55	54	55	55	56	56		56	22		32	57	57	57	24	52	Ę
mcaa*	Q	Р	Р	G	K	G	L	Ε	W	1	G	E	١	Υ	-	-	-	Н	S	(
rel. oomcaas	38%	988%	96%	%96	95%	%96	%96	%86	%86	95%	%86	39%	95%	26%	100%	100%	100%	42%	91%	
pos occupied ^a		:			2	:	2	:	:	:	: :	: :							2	

WO 97/08320

Table 6E: Analysis of V heavy chain subgroup 4

		DR	11																	
amino acid'	26	22	28	23	9	61	62	63	64	65	99	67	89	69	70	71	72	73	74	75
Α		1									1		1			1				1
В																				
. С																				
D			2									1					55			
Ε																	_1			
F .				3														1		
G	1									1							<u>.</u>			
Н			2																	
1	1	1										1	1	48		3				
K					1				53									1		5
L						1		55				1				3				
М														7				2		
N	2		40		53								2							
Р						54		1												
Q																	1			
R	2								3		56									
S	49		1		2		56			56			1		56			1	57	
T	1	54	1			1			1				51		1			52		
٧	1	1										53		2		50				
W							٠													
Χ																				
Y·			11	54																
Z																				
-																				
unknown (?)																				
not sequenced					1	1	1	1				1	1							
sum of seq ²	7	57	57	57	56	56	56	56	57	57	57	56	56	57	57	57	57	57	57	5
oomcaa,	·	÷	÷		53															
mcaa'	S	T	N	Υ	N	Р	S	L	K	5	R	٧	T	I	S	٧	D	T	S	K
rel. oomcaas	%98	35%	70%	95%	95%	%96	100%	%86	93%	%86	%86	95%	91%	84%	98%	%88	%96	91%	100%	9000
pos occupied	:	1	6	:	:	3	:	•	3	•			5				_			

Table 6E: Analysis of V heavy chain subgroup 4

				F	ram															
amino acid'	92	77	78	79	8	81	82	∢	8	ပ	83	84	85	98	87	88	68	96	91	92
Α												55	57			57		•••••		
В																				<u></u>
. С																				57
D					1									57						
E						1														
F .	ļ		54						1											
G								1												
Н																				
l			1					1			3									
K	3					46		2												
Ĺ		3	1		55		53			2							1			
M.						1	1			1							1			
N	54					. 3		3	1											
Р																				
Q		54			1	1														
R						2		2				1								
S			1	57		2	1	44	55		1				2				1	
ī						1		4			53				55					
V							2			54		1					55			
W																				
Х																·				
Υ																		57	56	
Z ·																				
-																				
unknown (?)																				
not sequenced																				<u> </u>
sum of seq ²	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57
oomcaa,	54	54	54	57	55	46	53	44	55	54	53	55	57	57	55	57	55	57	56	57
mcaa*	N	Q	F	S	L	K	L	S	S	٧	T	Α	Α	D	T	Α	٧	Υ	Υ	С
rel. oomcaas	95%	95%	95%	100%	%96	81%	93%	77%	%96	95%	93%	%96	100%	100%	%96	100%	%96	100%	%86	100%
pos occupied ⁶						8	•					3			2		3			1
	1		£		:	*********	•••••			76		***************************************			**********					

WO 97/08320 .

Table 6E: Analysis of V heavy chain subgroup 4

•										CDF	R III									
amino acid'	93	94	95	96	97	86	66	100	⋖	80	ပ	۵	ш	u.	ဗ	I	_	_	×	101
A	56		3	3	3	2	5	4	2	2	4		. 2	1		1	1	12		
В																				
· C					1				1											
D			6		5	5	5	4	3	2	4	3	1		1	2	1			41
E			6	1	1	2	1			1	3	1	2	1						
F .				4	1	1		2	3	2	2		1	1					31	
G			25	9	10	8	10	11	4	7	7	6	1	1	1	2	1	9		
Н			1				1						1			1				2
1				1		2	4	1	3	2	3		1						1	
К			2	1						2	2			1			<u></u>			
L			2	6	7	3	5	3	2	4	1	5	3	3		1				
М				1	4		3	1		2	1			-					9	
N				3					2	1	1	5	1	1			2			
Р .				4	5	3	1	1	2	1	1	1	2	3	1	2	1			
Q					1	1		1			1	1			3					1
R		54	4	12	2	_ 5	5	3	2	3	1	2			2	1				
S		1	1	4	8	8	1	2	5	7	4	2	1	1	1					
Ţ		1	1	2	1	3	4	4	3	3			1	1	1					
V	1	1	4	2	2	5	4	4	7	3	1	2	1							
W			1	2	1	2	2	4	5	1	1	2		2	1		3	2		
X			<u> </u>	<u> </u>	<u> </u>															
Y				1	4	5	3	6	4	2	3	4	8	4	8	3	5	8		2
Z	L				_													_	_	
-						1	2	4	6	9	11	16	23	27	29	34	31	14	4	
unknown (?)		<u></u>	<u></u>	<u>.</u>	<u></u>	ļ			ļ		ļ			1			1		÷	
not sequenced			1		1		_		3				8	_				_	; 	11
sum of seq2		····		-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-;	~	54	•	•	•	: .				•	•	•	: :
oomcaa,		·÷	·÷	÷		· ·······			7	9	11	16	23	27	29	34	31	14		
mcaa•	Α	R	G	R	G	G	G	G	V	-	-	-	-	-	-	-	-	-	r	D
rel. oomcaa ^s	98%	95%	45%	21%	18%	14%	18%	20%	13%	17%	22%	32%	47%	26%	%09	72%	9029	30%	67%	89%
pos occupied	1 2	4	12	16	16	16	16	16	16	18	18	13	15	13	10	9	8	5	4	4

Table 6E: Analysis of V heavy chain subgroup 4

					Fra	mev	vork	· IV					
amino acid¹	102	103	104	105	106	107	108	109	110	111	112	113	sum
А						1		-	1				332
В													
С													113
D													210
E													176
. F													135
G			41		40	1							674
Н	1								1	-			45
1	9					1							282
K				3									278
L	4						19						540
М							9						43
N						1							204
Р	3			2								2	281
Q				29									334
R	1			4			1						250
S	1			1							36	33	986
T				1		33	8		34				532
V	12							36		36			488
W		46							,				267
X													
Υ	16												455
Z													1
-													466
unknown (?)	·												4
not sequenced													426
•	47			•									
oomcaa,		46			**********					**********	••••••		
mcaa*	Υ	W	•••••					٧	T	V	S	S	
rel. oomcaa ^s	34%	100%	100%	73%	100%	89%	51%	100%	94%	100%	100%	94%	
pos occupied ⁶	8	1	1	6	1	5	4	1	3	1	1	2	

WO 97/08320

Table 6F: Analysis of V heavy chain subgroup 5

	L													Fra	ame	wor	k I			_
amino acid'		7	က	4	Ŋ	9	7	80	6	0	=	12	13	14	15	16	17	2	19	20
. A					1			1	89		1			1						
В																				
· C							1													
D										2										
E	88	1			2				4	93						92				
F .																	1			
G	1							92							94					
Н																				
																				9
Κ												94	94						77	
L		1		91		2												95		
M											3								1	
N					••••••															
Р				1		••••••			1					94						
Q	. 3		92		1	90										3			1	
R						1						1	1		1				17	
S							92				·						94			
T																				
V		90			89				1		91									
W							٠													
Χ																				
Y																				
Z																				_
-																				<u> </u>
unknown (?)																				<u> </u>
not sequenced	5 [5	5	5	4	4	4	4	2	2	2	2	2	2	2	2	2	2	1	
sum of seq'	92	92	92	92	93	93	93	93	95	95	95	95	95	95	95	95	95	95	96	ç
oomcaa ³	88	90	92	91	89	90	92	92	89	93	91	94	94	94	94					9
mcaa'	Ε	٧	Q	L	٧	Q	S	G	Α	E	٧	K	K	Р	G	E	S	L	K	ļ
rel. oomcaa ^s	%96	%86	100%	39%	%9€	37%	99%	39%	94%	98%	%96	%66	%66	99%	%66	97%	%66	100%	80%	
pos occupied	•	•			4	•	•	i	:	•	•	•		:	•	•		•	i	

179

WO 97/08320

Table 6F: Analysis of V heavy chain subgroup 5

					•						L			С	DRI				L	
amino acid'	21	22	23	24	25	26	. 27	28	29	30	31	⋖	8	32	33	34	35	36	37	38
А				3	2					4							8		1	
В																				
· C		96						1			1									
D								2			2						1			
E						2					1									
F .					3		6		97					2						
G				92		93					1		<u></u>			<u> </u>	72		<u>.</u>	ļ
'Н											1	<u> </u>	<u> </u>	4			<u> </u>	<u> </u>	<u></u>	
1										4		<u> </u>	<u> </u>	<u> </u>	<u></u>	93	<u></u>			
Κ.			89					1					<u> </u>	<u></u>		<u> </u>	<u> </u>			
L													<u> </u>	<u> </u>	1		<u> </u>		2	
· M			1										_	• •		1			1	
N			1					2		4	14			2						
Р					1															
Q			4																	
R			1			1		2							1					9
S	94			1	90			84		10	61			2	2		15			
T	2							5		75	16					2	1			
V												,				1			93	
W															93			97	,	
X																.,				
Y							90							87						
Z																				
_												97	97							
unknown (?)																				
not sequenced	1	1	1	1	1	1	1													
sum of seq ²	96	96	96	96	96	96	96	97	97	97	97	97	97	97	97	97	97	97	97	97
oomcaa,	94	96	89	92	90	93	90	84	97	75	61	97	97	87	93	93	72	97	93	95
mcaa'	S	С	K	G	S	G	Υ	S	F	T	S	-	-	Υ	W	١	G	W	٧	R
rel. oomcaaʻ	98%	100%	93%	%96	94%	97%	94%	87%	100%	77%	63%	100%	100%	%06	%96	%96	74%	100%	%96	98%
pos occupied ^a		1	5	:		3			Ī		8	•••••			:		····	1	4	<u></u> 3

WO 97/08320

Table 6F: Analysis of V heavy chain subgroup 5

				Fra	mev	vork	: 11													
amino acid'	39	40	41	42	43	44	45	46	47	48	49	20	5	52	⋖	8	<u>ں</u>	53	54	55
Α			1			1									_1			2	_1	****
В																				
· C														1				1		
D														14				8	93	
E					3			97											2	
F												1		2						
G	ļ			97		96					95							69	1	
Н	<u> </u>								!					3	1					
1	<u> </u>									1		75	92							
K		1			94															
L							94			2		2	1							
М		92								89			1							
N																				
Р			96				2							1	93					
Q	97	<u> </u>					1													
R		1	<u> </u>								1	14						1		
S		<u> </u>	<u></u>									1			1			16		9
T		1	<u></u>									3	1		1					_
V	<u> </u>	2	<u> </u>	<u> </u>						5	1	1	2							
W								<u></u>	94											
Х																				
Y		<u> </u>		<u> </u>				<u></u>	3					76						
Z																		_		
_				<u> </u>												97	97			
unknown (?)							<u></u>	<u></u>			<u> </u>							ļ	<u> </u>	<u> </u>
not sequence								<u></u>	<u> </u>		_								<u> </u>	
sum of seq'																				
oomcaa,				97				97	94	89	95	75		76	93			69	93	(
mcaa'	Q	М	Р	G	K	G	L	E	W	М	G		1	Y	Р	-	-	G	D	
rel. oomcaas	100%	92%	%66	100%	%26	%66	97%	100%	97%	92%	98%	77%	95%	78%	%96	100%	100%	71%	%96	
pos occupied	·····	•	:	:		:	:	1	•	•	•	7	i	_	i			6	1	

Table 6F: Analysis of V heavy chain subgroup 5

		DR	11																	
amino acidi	26	22	28	29	09	61	62	83	64	65	99	67	89	69	20	71	72	73	74	75
Α		6					1									88				
В									·											
. С					1					1										
D	77									2			·				97			
E	3								2									2		
F .				2				91				1		3						
G	1									94										
Н											15									
l		4	1					1				3		88						9
Κ .			2															93		
L						1		4							2					
М														3						
N	2		14	2																
P						95	1		1.										1	
Q									91		81							1		
R			78						3		1			1				1		
S	2	2			95	1	95	1					1		95				96	
T		85	2		1								96							
V				1								93		2		9				
W																				
Х																				
Y	12			92																
Z																			.,	
-												,								
unknown (?)																				
not sequenced																				
sum of seq ²	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	9
oomcaa ³	77	85	78	92	95	95	95	91	91	94	81	93	96	88	95	88	97	93	96	9
mcaa*	D	T	R	Υ	S _.	Р	S	F	Q	G	Q	٧	Ţ	ı	S	Α	D	K	S	1
rel. oomcaas	79%	88%	80%	95%	98%	%86	%86	94%	94%	97%	84%	%96	%66	91%	%86	91%	100%	%96	%66	9070
pos occupied																	1		2	

Table 6F: Analysis of V heavy chain subgroup 5

				F	ram	ewo	rk II													
amino acid'	92	77	78	79	8	8	82	⋖	8	ပ	83	84	82	98	87	88	83	8	91	92
A		1	91								1	96				93				••••
В,													_							
. C							1													95
D				1										96						
E						1					1									.,
F				1														2	6	
G								3	1							4				
Н						3														
<u> </u>															2		9	<u>.</u>		
K											91						1			
L					96					97							2			
M																	84			
N	7							2	2						2					
Р		,	1																	
0						93														
R	1	ļ	<u> </u>	ļ			1	1	3		3									
S	87	2	1	1				90	91				96		5					
T	2	94	2	<u> </u>				1			1	1	1	-	88		1			
V		<u> </u>	2	ļ	1									1						
W			ļ	<u> </u>			95			,										
X	<u> </u>	<u></u>		<u> </u>			<u></u>													
Υ	<u>.</u>			94										······································				94	89	
Z	L												_	_			_		_	_
_	<u> </u>		<u> </u>	ļ																
unknown (?)		<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>		ļ	<u></u>	<u> </u>				•••••						
not sequenced			<u> </u>		<u> </u>	<u> </u>												1	_	-
sum of seq ²	********		******		•	•••••		÷	,		·	97	: :			:	:	÷	÷	ż
oomcaa ³	į	÷	·÷ ······	• ••••••••	•	• • • • • • • • • • • • • • • • • • • •	•;•••••	,	÷	-	÷	96			:					
mcaa ⁴	S	T	Α	Y	L	Q	W	S	S	<u> </u>		Α	S	. D	T	A	М	Y	, T	С
rel. oomcaas	%06	97%	94%	97%	99%	%96	98%	93%	94%	100%	94%	%66	%66	%66	91%	%96	87%	98%	94%	100%
pos occupied		•	•	:	:	:	:		:	:	5	:	2	•	4	2	5	2	2	1

Table 6F: Analysis of V heavy chain subgroup 5

										CD	R III									
amino acid'	93	94	95	96	97	86	66	100	٧	8	ပ	۵	ш	ш	9	I		_	×	101
Α	92		1	1	2		3	4	3	2		1			1			4		2
В																		<u></u>		
· C						1	1	1			2		1							
D				3	3	3	• 3	1	2	1	1	2		2	1	1	2			37
E			1	1	1	.2			1	1				1			1			
F .					1		3			3	2		1						26	
G			1	9	11	12	12	5	2	4	3.	10	2	1				5		
Н			10	1		2			1	1		1								
				3		2	2	1	1	4	1	1		1	1					
K		1	1	1		1	3	1								2				
L			11	2	3	1	1	2	5		1		1		1					
M					2	1	1		1	1	1	1							10	
N				1		_2		1	1	2			1					2		
P·			5	1	4	3	1	2				1	1	. 1	1					
Q		1	3	2		1	1	4	2	1	2									3
R		92	7	9	2	2		2	1		2									
S		1	1	3	2	6	4	4	5	3	5	3	2	2			1		1	
T	1		1	3	2	1	2	6	3	3	6	1		1						
V	2		2	4	4		1		1	2			1							
W			1		2	1					1		2		1		1	1		
X																				
Y				1	6	3	6	9	8	7	2	1	2	6	8	9	9	10		1
Z																				
_						1	1	2	8	10	16	23	30	30	31	32	30	22	7	2
unknown (?)							.,						1			1	1	1		
not sequenced	2	2	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	53	52
sum of seq ²	95	95	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	44	45
oomcaa'	92	92	11	9	11	12	12	9	8	10	16	23	30	30	31	32	30	22	26	37
mcaa•	.Α	R	L	G	G	G	G	Υ	Υ	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa ^s	97%	97%	24%	20%	24%	27%	27%	20%	18%	22%	36%	51%	9/0/9	%29	%69	71%	%29	49%	29%	82%
pos occupied"				;				<u>-</u>	······	••••••	14				•••••		<u>-</u>			

Table 6F: Analysis of V heavy chain subgroup 5

B C C C C C C C C C C C C C C C C C C C						Fra	mev	vork	IV					
B C C	amino acid'	102	103	104	105	106	107	108	109	110	Ξ	112	113	sum
C D 1 D 1 D 1 D D 1 D D D D D D D D D D	А												1	611
E 1 1 1 1 1 1 1 1 1	В													
E 1 1 404 256 66 66 67 68 69 69 69 69 69 69 69	С													205
F 2 41 41 41 64 656 66 66 67 67 67 67 6	D	1												458
G	Ε				1									404
H	F	2												256
	G			41		41								1065
K 3 3 3 650 L 2 3 25 1 30 M 3 30 60 64 N 3 30 64 66 P 2 34 30 31 31 41 41 Q 34 3 3 3 35 35 35 35 35 35 35 35 35 35 35 35 35 36 60 <td>Н</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>44</td>	Н													44
L 2 3 25 1 30 M 8 30 64 P 2 1 1 1 41 Q 34 3 3 3 35 35 S 2 3 40 39 154 T 1 40 8 39 39 60 V 11 40 40 41 59 W 43 3 40 40 41 43 X 7 13 3 3 3 3 3 43 40 39 154 M 43 3 40 40 41 40 59 43 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44<	1	9								2				588
M	К				3							<u></u>		650
N	L	2						25	1			<u></u>		549
P 2	M							8						303
Q 34 34 35 </td <td>N</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>64</td>	N													64
R	P	2					1					1		414
S 2	Q				34									612
T 1 1 40 8 39 60 60 70 11 70 73 73 73 73 74 75 76 76 76 76 76 76 76 76 76 76 76 76 76	R				3									351
V 11 Image: control of the control of t	S	2										40	39	1545
W 43 <	Т	1					40	8		39				604
X	V	11							40		41			594
Y 13 Image: Control of the control	W		43											432
Z	X													
- 2	Y	13												738
unknown (?)	Z													
Unitatiowin (1) not sequenced 52 54 56 56 56 56 56 56 56 56 56 56 56 56 57 167 sum of seq² 45 43 41 41 41 41 41 41 41 41 41 41 41 41 41 40 39 41 40 39 mcaa⁴ Y W G Q G T L V T V S S	_	2												635
sum of seq² 45 43 41 41 41 41 41 41 41 41 41 41 41 41 41 40 40 39 41 40 39 mcaa⁴ Y W G Q G T L V T V S S		<u> </u>												4
oomcaa³ 13 43 41 34 41 40 25 40 39 41 40 39 mcaa⁴ Y W G Q G T L V T V S S	not sequenced	52	54	56	56	56	56	56	56	56	56	56	57	1678
mcaa' Y W G Q G T L V T V S S	sum of seq?	45	43	41	41	41	41	41	41	41	41	41	40	ļ
mcaa v v v v v v v v v v v v v v v v v v	oomcaa		· · · · · · · · · · · · · · · · · · ·	÷	†	÷	 -	·····	·····		:	?···	·	•
Lel. 000000 1000000	mcaa*	Υ	W	G	Q	G	T	L	V	T	٧	S	5	•
	rel. oomcaas	29%	100%	100%	83%	100%	986	61%	%86	95%	100%	%86	%86	
pos occupied ⁶ 10 1 1 4 1 2 3 2 2 1 2 2	pos occupied ^e	10	1	1	4	1	2	3	2	2	1	2	2	

SUBSTITUTE SHEET (RULE 26)

PCT/EP96/03647

Table 6G: Analysis of V heavy chain subgroup 6

														F	rame	ewo	rk I			
amino acid'	_	2	က	. 4	2	9	7	æ	6	10	1	12	13	14	15	16	17	18	19	20
A												1								
В			 -					<u> </u>	<u></u>	<u> </u>	<u></u>									
· C		<u></u>	<u> </u>	<u></u>							<u> </u>			Ī						
D		<u> </u>						<u> </u>		<u> </u>										
E																				
F .																				
G								52		67										
· Н																				
Κ													68		<u> </u>		<u>.</u>			
L	·			52							68	1			<u></u>	<u> </u>		67	1	68
M																				
N		ì																		
Р								,	68					67					1	
Q	52		52		51	52								١		68				
R					1					1										
S							52							1	68				66	
Т																	68			
V		52										66						1		
W																				
Χ.																				
Y																				
Z																				_
unknown (?)																				
not sequenced	22	22	22	22	22	22	22	22	6	6	6	6	6	6	6	6	6	6	6	6
sum of seq²	52	52	52	52	52	52	52	52	68	68	68	68	68	68	68	68	68	68	68	68
oomcaa³		52			••••••••••		***************************************	•••••	••••••		68		•••••••••••••••••••••••••••••••••••••••	••••••			*****	••••••		•••••••••••••••••••••••••••••••••••••••
mcaa'	Q	٧	Q	L	Q						L	٧	K	Р	S	Q	T	L	S	L
rel. oomcaas	100%	100%	100%	100%	98%	100%	100%	100%	100%	%66	100%	97%	100%	%66	100%	100%	100%	99%	9,7%	100%
pos occupied ⁶	1	1	1	1	2	1	1	1	1	2	1	3	1	2	1	1	1	2	3	1

Table 6G: Analysis of V heavy chain subgroup 6

							_							CD						
amino acid	17	.22	23	24	25	26	27	28	53	ဇ္တ	3	⋖	മ	32	33	34	35	36	37	38
Α	1		67											66	67					
В																				
С		68																		
D							68				1						1			
E																				
F .										2				1	1				1	
G			1			69							3	1	2					
Н																	1			
1				64								2					1		70	
K												3								
L																				
М																				
N							1				2	66					70			
Р																				
Q																				
R											2	1								7
S	1			1	69			69		68	66		67		3		1			
T	67										2	1	4		1					
V			1	4					70					6				<u></u>	2	
W		1														74		74	<u> </u>	ļ
X																				<u> </u>
Y												1							1	<u>.</u>
Z							<u> </u>													
- '																			ļ	<u>.</u>
unknown (?)		<u> </u>									1					ļ	<u></u>	<u> </u>	<u> </u>	ļ
not sequence	5	5	5	5	5	5	5	5	4	4										_
sum of seq	69	69	69	69	69	69	69	69	70	70	74	74	74	74	74	74	74	74	74	7
oomcaa,	67	68	67	64	69	69	68	69	70	68	66	66	67	66					70	7
mcaa'	T	С	Α	I	S	G	D	S	٧	S	S	N	S	Α	Α	W	N	W	1	
rel. oomcaa ^s	92%	%6	97%	33%	%001	100%	%66	100%	100%	92%	%68	9068	91%	%68	91%	100%	95%	100%	95%	300
pos occupied	•	:	:	•			2	•	•	2			•		•	-	5	i	4	Ţ

WO 97/08320 .

Table 6G: Analysis of V heavy chain subgroup 6

				Fr	ame	wor	k II						Γ							
amino acid'	39	40	41	42	43	44	45	46	47	48	49		51	52	Α	8	U	53	54	55
А				1									1					1		
В																	<u> </u>	<u> </u>		<u> </u>
· c																		<u> </u>		<u> </u>
D																				
E								74												
F .														2	1			1		
G						74					74	1							1	
Н													,		1					
ı																				
K	1				1											1			66	
L	1						74			74										
М																				
N																			1	
Р			73																	
Q	72																			
R					73							73				72			1	1
S		74	1	73												1		72		
T			<u>.</u>										73						5	
V			<u> </u>																	
W									74											73
X																				
Y		·												72	72					
Z																				
-																	74			
unknown (?)											<u></u>									
not sequenced																				
sum of seq'	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74
oowcaa,	72	74	73	73	73	74	74	74	74	74	74	73	73	72	72	72	74	72	66	73
mcaa'	Q	S	Р	S	R	G	L	Ε	W	L	G	R	T	Υ	Υ	R	-	S	K	W
rel. oomcaa ^s	97%	100%	%66	%66	%66	100%	100%	100%	100%	100%	100%	%66	%66	97%	97%	97%	100%	97%	89%	%66
pos occupied	3	1	2	2	2	1	1		1 &&	1	•	2	•	2	:		1	3		2

PCT/EP96/03647

WO 97/08320

Table 6G: Analysis of V heavy chain subgroup 6

	<u> </u>	DR	!!																	
amino acid'	26	23	28	23	8	61	62	63	64	65	99	29	89	69	2	7	72	73	74	75
Α					73	1							2			6		1		
В																				
. С				1																
D			68			1									2		73			
E	1		3			7			1											
F .	7																			
G			1				1			8										
Н	1																1			
ı						1						65	2	71				1		
K		1							67						1					7(
L	1					5		2				4						1		
М												1								
N	2	65	1						1						69					
Р					1	1										66				
Q ·									2		1									
R		1							3		73									
S	2	2	1	1			73			66			1		2	1			73	
T		4											69	1				71	1	
V						58		72				4		2		1				
W							·													
Χ																				
Υ	60	1		72				<u> </u>								,				
Ζ.																				
<u></u>											<u> </u>	<u></u>								
unknown (?)																				
not sequenced												<u> </u>								
sum of seq?	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	7
oomcaa¹	60	65	68	72	73	58	73	72	67	66	73	65	69	71	69	66	73	71	73	7
mcaa'				Υ	*******		.,	٧			•	1	T	1	N	Р	D	T	S	
rel. oomcaas	31%	38%	32%	97%	%66	78%	%66	97%	91%	89%	%66	88%	93%	%96	93%	%68	%66	%96	%66	č
pos occupied	1	•	:	•	•	:	•	•	•	1	:	•	:	: .	:		: .	:		1

PCT/EP96/03647

WO 97/08320 .

Table 6G: Analysis of V heavy chain subgroup 6

				i	ram	ewo	ork I	it												
amino acid'	9/	77	78	79	80	81	82	۷	80	U	83	84	85	98	87	88	89	90	91	92
Α													1			74				
В																				
· C																<u> </u>				73
D								3						73						
E										•			73							
F			71						1										3	
G														1						
Н						2		1												
1			1														2			
K								4												
L		1			74		72													
M							1			1	·						2			
N	74							63											1	
Р			•									70								
Q		72				71														
R		1				1		1												1
S				74				1	73		1	3								
T								1			73				74			1		
V			2				1			73							70			
W																				
X				•																
Υ																		73	70	
Z																				
-																				
unknown (?)																				
not sequenced												1								
sum of seq ²	74	74	74	74	74	74	74	74	74	74	74	73	74	74	74	74	74	74	74	74
oomcaa ³	74	72	71	74	74	71	72	63	73	73	73	70	73	73	74	74	70	73	70	73
mcaa*	N	Q	F	S	L	Q	L	Ν	S	٧	T	Р	Ε	D	Τ	Α	٧	Υ	Υ	С
rel. oomcaas	100%	92%	%96	100%	100%	%96	97%	85%	%66	%66	%66	%96	99%	%66	100%	100%	95%	93%	95%	%66
pos occupied ⁶	1	3	3	1	1		3	:	2 19		2	•	•	•	1	1	3	2		2

WO 97/08320

Table 6G: Analysis of V heavy chain subgroup 6

										CD	R III									
amino acid¹	93	94	95	96	97	86	66	100	4	В	U	۵	ш	ш.	9	I	_	_	×	101
Α	69		11	1	3	12	4	3	2	5		8						10	1	
В																				
· C					1		1			1		1	1							
D			19	4	3	7	4	3	1	6	1	1	1							62
E			10	4	2	1	2	2	1	2							1			
F .	1		1	1	1		1	2	3		2			1		. <u>.</u>			38	4
G	1		16	4	15	15	11	8	6	2	5	1	8	6	1			17		
Н				1		1			1	1	1	1				1	1	1		·····
1				1	2		2		5	1										
K		1	1	1	1	1	1	1				1								
L			1	8	4	2	3	2	1					1	5				8	
M				1				1			5								11	
N			1	3	1	2	1	1	1	3		2		1		1	3			
Р				10	4		5	3		5	1		1							
Q			1	1	1	1					1									1
R		69	1	7	8	1	8	8	3		1	1	5							1
5		3	5	5	5	7	6	7	3	4	2					1	1			
T			1	1	4	3	4	4	6	3	1			1						
V	3	1	4	5	1	9			4		9	5	1	1					2	
W			1	6	8		3	2	4						,		4	4		
X																				
Υ				6	4	2	2	2	6	6	2	4	2	1	8	8	12	12		
Z																				
-				2	3	7	14	23	25	33	41	47	53	54	57	56	50	28	12	4
unknown (?)														6	1	5				
not sequenced				1	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sum of seq ²	74	74	73	72	71	71	72	72	72	72	72	72	72	72	72	72	72	72	72	72
oomcaa³	69	69	19	10	15	15	14	23	25	33	41	47	53	54	57	56	50	28	38	62
mcaa'	Α	R	D	Р	G	G	-	-	-	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa ^s	93%	93%	26%	14%	21%	21%	19%	32%	35%	46%	57%	65%	74%	75%	%62	78%	%69	39%	53%	86%
pos occupied ^a				•				:			:	:						··· ····		

1ay

Table 6G: Analysis of V heavy chain subgroup 6

	Framework IV												
amino acid'	102	103	104	105	106	107	108	109	110	11.	112	113	sum
Α						1	2						494
В						-							
С													147
D				<u></u>				1					403
E					<u> </u>	-							186
F	2										2		150
G			49		50								571
Н	2												18
	9					3		1					304
K				1			1						293
L	5		•				26						632
М							8			-	,		31
N													436
P	4			6								1	387
Q				40									539
R				2						<u></u>			495
S	4		1			1					43	46	1271
T						45	4		45				640
V	21						2	46		48			647
W		65					5						398
X		-,											8
Y	19												518
Z													
	2												585
unknown (?)													13
not sequenced	5	8	23	24	23	24	25	25	28	25	28	26	580
sum of seq?	68	65	50	49	50	49	48	48	45	48	45	47	
oowcaa,							26	46	45	48	43	46	
mcaa*	٧	W	G	Q	G	T	L	٧	T	٧	S	S	
rel. oomcaas	31%	100%	98%	82%	100%	92%	54%	%96	100%	100%	%96	%86	
pos occupied ⁶	9	1	2	4	1	3	7	3	1	1	2	2	

192

Appendix to Tables 1A-C

A. References of rearranged sequences

References of rearranged human kappa sequences used for alignment

- 1 . Alescio-Zonta, L. & Baglioni, C. (1970) Eur.J.Biochem., 15, 450-463.
- 2 Andrews, D.W. & Capra, J.D. (1981) Biochemistry, 20, 5816-5822.
- 3 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138–1143.
- Aucouturier, P., Bauwens, M., Khamlichi, A.A., Denoroy, L., Spinelli, S., Touchard, G., Preud'homme, J.-L. & Cogne, M. (1993) J.Immunol., 150, 3561-3568.
- 6 Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273-274.
- Barbas Iii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.
- Barbas, C.F., lii, et al. (1993) J-Mol-Biol., 230, 812-23.
- 9 Bentley, D.L. & Rabbitts, T.H. (1980) Nature, 288, 730-733.
- 10 Bentley, D.L. & Rabbitts, T.H. (1983) Cell, 32, 181-189.
- 11 Bentley, D.L. (1984) Nature, 307, 77-80.
- 12 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 13 Blaison, G., Kuntz, J.-L. & Pasquali, J.-L. (1991) Eur.J.Immunol., 21, 1221-1227.
- Braun, H., Leibold, W., Barnikol, H.U. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 647-651; (1972) Z.Physiol.Chem., 353, 1284-1306.
- 15 Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Andrews, D.W. & Capra, J.D. (1981) Proc.Nat.Acad.Sci.Usa, 78, 3799-3803.
- Capra, J.D. &t Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. &t Frangione, B. (1983) J.Immunol., 131, 1322-1325.
- 17 Chastagner, P., Theze, J. & Zouali, M. (1991) Gene, 101, 305-306.

18 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905.

- 19 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905; Liu, M.-F., Robbins, D.L., Crowley, J.J., Sinha, S., Kozin, F., Kipps, T.J., Carson, D.A. & Chen.P.P. (1989) J.Immunol., 142, 688-694.
- 20 Chersi, A. & Natali, P.G. (1978) Immunochemistry, 15, 585-589.
- 21 Co, M.S., Deschamps, M., Whitley, R.J. & Queen, C. (1991) Proc.Natl.Acad.Sci.Usa, 88, 2869-2873.
- 22 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Davidson, A., Manheimer-Lory, A., Aranow, C., Peterson, R., Hannigan, N. & Diamond, B. (1990) J.Clin.Invest., 85, 1401-1409.
- Denomme, G.A., Mahmoudi, M., Edwards, J.Y., Massicotte, H., Cairns, E. & Bell, D.A. (1993) Hum.Antibod.Hybridomas, 4, 98-103.
- Dersimonian, H., Mcadam, K.P.W.J., Mackworth-Young, C. & Stollar, B.D. (1989) J.Immunol., 142, 4027-4033.
- Dreyer, W.J., Gray, W.R. & Hood, L. (1967) Cold Spring Harbor Symp. Quantitative Biol., 32, 353-367.
- 27 Ebeling, S.B., Schutte, M.E.M. & Logtenberg, T. (1993) Eur.J.Immunol., 23, 1405-1408.
- 28 Eulitz, M. & Kley, H.-P. (1977) Immunochem., 14, 289-297.
- 29 Eulitz, M. & Linke, R.P. (1982) Z.Physiol.Chem., 363, 1347-1358.
- Eulitz, M., Breuer, M., Eblen, A., Weiss, D.T. & Solomon, A. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 31 Eulitz, M., Gotze, D. & Hilschmann, N. (1972) Z.Physiol.Chem., 353, 487-491; Eulitz, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 842-866.
- 32 Eulitz, M., Kley, H.P. & Zeitler, H.J. (1979) Z.Physiol.Chem., 360, 725-734.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991)

 Arthritis And Rheumatism, 34, 343-350.
- 34 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- Ferri, G., Stoppini, M., Iadarola, P., Bellotti, V. & Merlini, G. (1989) Biochim.Biophys.Acta, 995, 103-108.

36 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799-804.

- 37 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- Goni, F.R., Chen, P.P., Mcginnis, D., Arjonilla, M.L., Fernandez, J., Carson, D., Solomon, A., Mendez, E. & Frangione, B. (1989) J.Immunol., 142, 3158-3163.
- 39 Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991) Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- Gottlieb, P.D., Cunningham, B.A., Rutishauser, U. & Edelman, G.M. (1970) Biochemistry, 9, 3155-3161.
- 41 Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- Hieter, P.A., Max, E.E., Seidman, J.G., Maizel, J.V., Jr. & Leder, P. (1980) Cell, 22, 197-207;
 Klobeck, H.G., Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids
 Res., 13, 6499-6513; Weir, L. & Leder, P. (1986)
- Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403-1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1077-1080.
- Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403-1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1718-1722; Hilschmann, N. (1969) Naturwissenschaften, 56, 195-205.
- 45 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- Jaenichen, H.-R., Pech, M., Lindenmaier, W., Wildgruber, N. & Zachau, H.G. (1984) Nuc.Acids Res., 12, 5249–5263.
- Jirik, F.R., Sorge, J., Fong, S., Heitzmann, J.G., Curd, J.G., Chen, P.P., Goldfien, R. & Carson, D.A. (1986) Proc.Nat.Acad.Sci.Usa, 83, 2195-2199.
- 48 Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.; Klapper, D.G. & Capra, J.D. (1976) Ann.Immunol.(Inst.Pasteur), 127c, 261-271.
- 49 Kennedy, M.A. (1991) J.Exp.Med., 173, 1033-1036.
- 50 Kim, H.S. & Deutsch, H.F. (1988) Immunol., 64, 573-579.
- 51 Kipps, T.J., Tomhave, E., Chen, P.P. & Carson, D.A. (1988) J.Exp.Med., 167, 840-852.
- 52 Kipps, T.J., Tomhave, E., Chen, P.P. & Fox, R.I. (1989) J.Immunol., 142, 4261-4268.
- 53 Klapper, D.G. & Capra, J.D. (1976) Ann.Immunol.(Inst.Pasteur), 127c, 261-271.

- 54 Klein, U., Kuppers, R. & Rajewsky, K. (1993) Eur.J.Immunol., 23, 3272-3277.
- 55 Klobeck, H.G, Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6499-6513.
- Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6515-6529.
- 57 Klobeck, H.G., Combriato, G. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 6995–7006.
- 58 Klobeck, H.G., Solomon, A. & Zachau, H.G. (1984) Nature, 309, 73-76.
- 59 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993)
 J.Exp.Med., 178, 1903–1911.
- Kohler, H., Shimizu, A., Paul, C. & Putnam, F.W. (1970) Science, 169, 56-59. (Kaplan, A.P.
 & Metzger, H. (1969) Biochemistry, 8, 3944-3951.)
- 61 Kratzin, H., Yang, C.Y., Krusche, J.U. & Hilschmann, N. (1980) Z.Physiol.Chem., 361, 1591-1598.
- 62 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- 63 Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69-85.
- 64 Laure, C.J., Watanabe, S. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1503-1504.
- Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)

 J.Immunol., 131, 1322-1325.
- 66 Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)
 J.Immunol., 131, 1322-1325.
- 67 Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)
 J.Immunol., 131, 1322–1325. Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984)
 J.Exp.Med., 160, 893.
- 68 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- 69 Liepnieks, J.J., Dwulet, F.E. & Benson, M.D. (1990) Mol.Immunol., 27, 481-485.
- 70 Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.

- 74 Marsh, P., Mills, F. &t Gould, H. (1985) Nuc. Acids Res., 13, 6531-6544.
- 75 Middaugh, C.R. & Litman, G.W. (1987) J.Biol.Chem., 262, 3671-3673.
- 76 Milstein, C. & Deverson, E.V. (1971) Biochem.J., 123, 945-958.
- 77 Milstein, C. (1969) Febs Letters, 2, 301-304.
- 78 · Milstein, C. (1969) Febs Letters, 2, 301-304.
- 79 Milstein, C.P. & Deverson, E.V. (1974) Eur.J.Biochem., 49, 377-391.
- 80 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- Nakatani, T., Nomura, N., Horigome, K., Ohtsuka, H. & Noguchi, H. (1989) Bio/Tech., 7, 805-810.
- 82 Newkirk, M., Chen, P.P., Carson, D., Posnett, D. & Capra, J.D. (1986) Mol.Immunol., 23, 239-244.
- 83 Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988)

 J.Clin.Invest., 81, 1511-1518.
- 84 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550-564.
- Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Palm, W. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1651-1654; (1975)
 Z.Physiol.Chem., 356, 167-191.
- Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385-4391.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- 89 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 90 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- 91 Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984) J.Exp.Med., 160, 893-904.
- 92 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.

94 Pratt, L.F., Rassenti, L., Larrick, J., Robbins, B., Banks, P.M. & Kipps, T.J. (1989) J.Immunol., 143, 699-705.

- 95 Prelli, F., Tummolo, D., Solomon, A. & Francione, B. (1986) J.Immunol., 136, 4169-4173.
- 96 Putnam, F.W., Whitley, E.J., Jr., Paul, C.& Davidson, J.N. (1973) Biochemistry, 12, 3763-3780.
- 97 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 98 Rassenti, L.Z., Pratt, L.F., Chen, P.P., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 1060-1066.
- 99 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991)
 J.Immunol., 147, 3623-3631.
- 100 Riechmann, L., Clark, M., Waldmann, H. & Winter, G. (1988) Nature, 332, 323-327.
- 101 Riesen, W., Rudikoff, S., Oriol, R. & Potter, M. (1975) Biochemistry, 14, 1052-1057; Riesen, W.F., Braun, D.G. & Jaton, J.C. (1976) Proc.Nat.Acad.Sci.Usa, 73, 2096-2100; Riesen, W.F. & Jaton, J.C. (1976) Biochemistry, 15, 3829.
- 102 Rodilla Sala, E., Kratzin, D.H., Pick, A.I. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Schiechl, H. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 111-115; (1972)Z.Physiol.Chem., 353, 345-370.
- 104 Schneider, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 1164-1168.
- 105 Shearman, C.W., Pollock, D., White, G., Hehir, K., Moore, G.P., Kanzy, E.J. & Kurrle, R. (1991) J.Immunol., 147, 4366-4373.
- 106 Shinoda, T. (1973) J.Biochem., 73, 433-446.
- 107 Shinoda, T. (1975) J.Biochem., 77, 1277-1296.
- 108 Shinoda, T., Takenawa, T., Hoshi, A. & Isobe, T. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.157-
- 109 Silberstein, L.E., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- 110 Sims, M.J., Hassal, D.G., Brett, S., Rowan, W., Lockyer, M.J., Angel, A., Lewis, A.P., Hale, G., Waldmann, H. & Crowe, J.S. (1993) J.Immunol., 151, 2296-2308.

111 Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821–2828.

- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl. Acids Res., 13, 3495-3514.
- 113 Straubinger, B., Thiebe, R., Pech, M. & Zachau, H.G. (1988) Gene, 69, 209-214.
- Suter, L., Barnikol, H.U., Watanabe, S. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 275-278; (1972) Z.Physiol.Chem., 353, 189-208.
- Tempest, P.R., Bremner, P., Lambert, M., Taylor, G., Furze, J.M., Carr, F.J. & Harris, W.J. (1991) Bio/Tech., 9, 266-271.
- 116 Titani, K., Shinoda, T. & Putnam, F.W. (1969) J.Biol.Chem., 244, 3550-3560.
- 117 Toft, K.G., Olstad, O.K., Sletten, K. & Westermark, P. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 118 Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234-2240.
- 119 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 120 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231–2236.
- 121 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991)
 J.Clin.Invest., 87, 1603–1613.
- 122 Wagner, S.D. & Luzzatto, L. (1993) Eur.J.Immunol., 23, 391-397.
- , 123 Watanabe, S. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 1291-1295.
- 124 Weisbart, R.H., Wong, A.L., Noritake, D., Kacena, A., Chan, G., Ruland, C., Chin, E., Chen, I.S.Y. & Rosenblatt, J.D. (1991) J.Immunol., 147, 2795–2801.
- 125 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 126 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.

References of rearranged human lambda sequences used for alignment

Alexandre, D., Chuchana, P., Brockly, F., Blancher, A., Lefranc, G. & Lefranc, M.-P. (1989) Nuc.Acids Res., 17, 3975.

2 Anderson, M.L.M., Brown, L., Mckenzie, E., Kellow, J.E. & Young, B.D. (1985) Nuc. Acids Res., 13, 2931-2941.

- 3 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 4 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- Baczko, K., Braun, D.G., Hess, M. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 763-767; Baczko, K., Braun, D.G. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 131-154.
- 6 Berinstein, N., Levy, S. & Levy, R. (1989) Science, 244, 337-339.
- 7 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 8 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 9 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- 10 Chen, B.L. & Poljak, R.J. (1974) Biochemistry, 13, 1295-1302.
- 11 Chen, B.L., Chiu, Y.Y.H., Humphrey, R.L. & Poljak, R.J. (1978) Biochim.Biophys.Acta, 537, 9-21.
- 12 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 13 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- 14 Dwulet, F.E., Strako, K. & Benson, M.D. (1985) Scand.J.Immunol., 22, 653-660.
- 15 Elahna, P., Livneh, A., Manheimer-Lory, A.J. & Diamond, B. (1991) J.Immunol., 147, 2771-2776.
- Engelhard, M., Hess, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 85-88; Engelhard,
 M. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1413-1444.
- 17 Eulitz, M. (1974) Eur.J.Biochem., 50, 49-69.
- 18 Eulitz, M., Breuer, M. & Linke, R.P. (1987) Biol.Che.Hoppe-Seyler, 368, 863-870.
- 19 Eulitz, M., Murphy, C., Weiss, D.T. & Solomon, A. (1991) J.Immunol., 146, 3091-3096.
- 20 Fett, J.W. & Deutsch, H.F. (1974) Biochemistry, 13, 4102-4114.
- 21 Fett, J.W. & Deutsch, H.F. (1976) Immunochem., 13, 149-155.; Jabusch, J.R. & Deutsch, H.F. (1982) Mol.Immunol., 19, 901-906.
- 22 Furey, W. Jr., Wang, B.C., Yoo, C.S. & Sax, M. (1983) J.Mol.Biol., 167, 661-692.
- 23 Fykse, E.-M., Sletten, K., Husby, G. & Cornwell, G.G., lii (1988) Biochem.J., 256, 973-980.

- 24 Garver, F.A. & Hilschmann, N. (1971) Febs Letters, 16, 128-132; (1972) Eur.J.Biochem., 26, 10-32.
- 25 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 26 Ghiso, J., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 716-719.
- 27 Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- Gullasken, N., Idso, H., Nilsen, R., Sletten, K., Husby, G. & Cornwell, G.G. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.
- 30 Holm, E., Sletten, K. & Husby, G. (1986) Biochem.J., 239, 545-551.
- 31 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem.J., 268, 135-140.
- 32 Kametani, F., Yoshimura, K., Tonoike, H., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 848-852.
- 33 Kiefer, C.R., Mcguire, B.S., Jr., Osserman, E.F. & Garver, F.A. (1983) J.Immunol., 131, 1871-1875.
- 34 Kiefer, C.R., Patton, H.M., Jr., Mcquire, B.S., Jr. & Garver, F.A. (1980) J.Immunol., 124, 301-306.
- 35 Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- 36 Klafki, H.-W., Kratzin, H.D., Pick, A.I., Eckart, K. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 37 Kohler, H., Rudofsky, S. & Kluskens, L. (1975) J.Immunology, 114, 415-421.
- 38 Kojima, M., Odani, S. & Ikenaka, T. (1980) Mol.Immunol., 17, 1407-1414.
- 39 Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin.Exp.Immunol., 71, 508-516.
- Kratzin, H.D., Palm, W., Stangel, M., Schmidt, W.E., Friedrich, J. & Hilschmann, N. (1989) Biol.Chem.Hoppe-Seyler, 370, 263-272.

Kratzin, H.D., Pick, A.I., Stangel, M. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.181-

- 42 Langer, B., Steinmetz-Kayne, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 945-951.
- Larrick, J.W., Danielsson, L., Brenner, C.A., Wallace, E.F., Abrahamson, M., Fry, K.E. & Borrebaeck, C.A.K. (1989) Bio/Tech., 7, 934-938.
- 44 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829–2838.
- 46 Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017-1020; Infante, A. & Putnam, F.W. (1979) J.Biol.Chem., 254, 9006-9016.
- 47 Lopez De Castro, J.A., Chiu, Y.Y.H. & Poljak, R.J. (1978) Biochemistry, 17, 1718-1723.
- 48 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581–597.
- 50 Mihaesco, E., Roy, J.-P., Congy, N., Peran-Rivat, L & Mihaesco, C. (1985) Eur.J.Biochem., 150, 349-357.
- 51 Milstein, C., Clegg, J.B. & Jarvis, J.M. (1968) Biochem.J., 110, 631-652.
- 52 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 53 Nabeshima, Y. & Ikenaka, T. (1979) Mol.Immunol., 16, 439-444.
- Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- 56 Paul, E., Iliev, A.A., Livneh, A. & Diamond, B. (1992) J.Immunol., 149, 3588-3595.
- Pick, A.I., Kratzin, H.D., Barnikol-Watanabe, S. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Ponstingl, H. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 1148-1152; (1971)
 Z.Physiol.Chem., 352, 859-877.

Ponstingl, H., Hess, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 867-871; (1971)
 Z.Physiol.Chem., 352, 247-266.

- 60 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 61 Scholz, R. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1333-1335.
- 62 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- 63 Shinoda, T., Titani, K. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4475-4487.
- 64 Sletten, K., Husby, G. & Natvig, J.B. (1974) Scand J. Immunol., 3, 833–836.; Sletten, K., Natvig, J.B., Husby, G. & Juul, J. (1981) Biochem J., 195, 561–572.
- Solomon, A., Frangione, B. & Franklin, E.C. (1982) J.Clin.Invest., 70, 453-460.; Frangione,
 B., Moloshok, T. & Solomon, A. (1983) J.Immunol., 131, 2490-2493.
- 66 Takahashi, N., Takayasu, T., Isobe, T., Shinoda, T., Okuyama, T. & Shimizu, A. (1979)

 J.Biochem., 86, 1523-1535.
- Takahashi, N., Takayasu, T., Shinoda, T., Ito, S., Okuyama, T. & Shimizu, A. (1980) Biomed.Res., 1, 321-333.
- Takahashi, Y., Takahashi, N., Tetaert, D. & Putnam, F.W. (1983) Proc.Nat.Acad.Sci.Usa, 80, 3686-3690.
- Takayasu, T., Takahashi, N., Shinoda, T., Okuyama, T. & Tomioka, H. (1980) J.Biochem., 89, 421-436.
- 70 Titani, K., Wikler, M., Shinoda, T. & Putnam, F.W. (1970) J.Biol.Chem., 245, 2171-2176.
- 71 Toft, K.G., Sletten, K. & Husby, G. (1985) Biol.Chem.Hoppe-Seyler, 366, 617-625.
- 72 Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 1228-1234.
- 73 Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Febs Letters, 185, 139-141.
- 74 Tsujimoto, Y. & Croce, C.M. (1984) Nucl. Acids Res., 12, 8407-8414.
- 75 Tsunetsugu-Yokota, Y., Minekawa, T., Shigemoto, K., Shirasawa, T. & Takemori, T. (1992) Mol.Immunol., 29, 723-728.
- 76 Tveteraas, T., Sletten, K. & Westermark, P. (1985) Biochem.J., 232, 183-190.
- 77 Vasicek, T.J. & Leder, P. (1990) J.Exp.Med., 172, 609-620.

203

78 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991)
J.Clin.Invest., 87, 1603-1613.

- 79 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 80 Wikler, M. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4488-4507.
- 81 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481-1489.
- 83 Yamasaki, N., Komori, S. & Watanabe, T. (1987) Mol.Immunol., 24, 981-985.
- 84 Zhu, D., Kim, H.S. & Deutsch, H.F. (1983) Mol.Immunol., 20, 1107–1116.
- 85 Zhu, D., Zhang, H., Zhu, N. & Luo, X. (1986) Scientia Sinica, 29, 746-755.

References of rearranged human heavy chain sequences used for alignment

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L (1993) J.Immunol., 151, 800-809.
- 2 Adderson, E.E., Shackelford, P.G., Quinn, A. & Carroll, W.L. (1991) J.Immunol., 147, 1667-1674.
- 3 Akahori, Y., Kurosawa, Y., Kamachi, Y., Torii, S. & Matsuoka, H. (1990) J.Clin.Invest., 85, 1722–1727.
- 4 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 5 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- 6 Andris, J.S., Johnson, S., Zolla-Pazner, S. & Capra, J.D. (1991) Proc.Natl.Acad.Sci.Usa, 88, 7783-7787.
- 7 Anker, R., Conley, M.E. & Pollok, B.A. (1989) J.Exp.Med., 169, 2109-2119.
- Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138-1143.;Lampman, G.W., Furie, B., Schwartz, R.S., Stollar, B.D. & Furie, B.C. (1989)
- Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273-274.
- 10 Bakkus, M.H.C., Heirman, C., Van Riet, I., Van Camp, B. & Thielemans, K. (1992) Blood, 80, 2326-2335.

Barbas III, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. &t Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.

- Barbas, C.F., Iii, Collet, T.A., Amberg, W., Roben, P., Binley, J.M., Hoekstra, D., Cababa, D., Jones, T.M., Williamson, R.A., Pilkington, G.R., Haigwood, N.L., Cabezas, E., Satterthwait, A.C., Sanz, I. & Burton, D.R. (1993) J.Mol.Biol., 230, 812–823.
- 13 Berman, J.E., Humphries, C.G., Barth, J., Alt, F.W. & Tucker, P.W. (1991) J.Exp.Med., 173, 1529–1535.
- Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727–738.
- 15 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 16 Bird, J., Galili, N., Link, M., Stites, D. & Sklar, J. (1988) J.Exp.Med., 168, 229-245.
- 17 Cai, J., Humphries, C., Richardson, A. & Tucker, P.W. (1992) J.Exp.Med., 176, 1073-1081.
- 18 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 19 Capra, J.D. & Hopper, J.E. (1976) Immunochemistry, 13, 995-999; Hopper, J.E., Noyes, C., Heinrikson, R. & Kessel, J.W. (1976) J.Immunol., 116, 743-746.
- 20 Capra, J.D. & Kehoe, J.M. (1974) Proc.Nat.Acad.Sci.Usa, 71, 845-848.
- 21 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- 22 Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72–76; Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913–5917.
- 23 Chiu, Y.Y.H., Lopez De Castro, J.A. & Poljak, R.J. (1979) Biochemistry, 18, 553-560.
- 24 Cleary, M.L., Meeker, T.C., Levy, S., Lee, E., Trela, M., Sklar, J. & Levy, R. (1986) Cell, 44, 97-106.
- 25 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Cuisinier, A.-M., Gauthier, L., Boubli, L., Fougereau, M. & Tonnelle, C. (1993) Eur.J.Immunol., 23, 110-118.
- Cunningham, B.A., Gottlieb.P.D., Pflumm, M.N. & Edelman, G.M. (1971) Progress In Immunology (B.Amos, Ed.), Academic Press, N.Y., Pp.3–24.

Cunningham, B.A., Rutishauser, U., Gall, W.E., Gottlieb, P.D., Waxdal, M.J. & Edelman, G.M. (1970) Biochemistry, 9, 3161-3170.

- 29 Deane, M. & Norton, J.D. (1990) Eur.J.Immunol., 20, 2209-2217.
- 30 Deane, M. & Norton, J.D. (1991) Leukemia, 5, 646-650.
- 31 Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501.
- Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501; Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- Desai, R., Spatz, L., Matsuda, T., Ilyas, A.A., Berman, J.E., Alt, F.W., Kabat, E.A. & Latov, N. (1990) J.Neuroimmunol., 26, 35-41.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991)
 Arthritis And Rheumatism, 34, 343-350.
- 35 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- 36 Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498.
- 37 Friedlander, R.M., Nussenzweig, M.C. & Leder, P. (1990) Nucl. Acids Res., 18, 4278.
- 38 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 39 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799-804.
- 40 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- 41 Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991) Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- 42 Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- 43 Grillot-Courvalin, C., Brouet, J.-C., Piller, F., Rassenti, L.Z., Labaume, S., Silverman, G.J., Silberstein, L. & Kipps, T.J. (1992) Eur.J.Immunol., 22, 1781-1788.
- Guillaume, T., Rubinstein, D.B., Young, F., Tucker, L., Logtenberg, T., Schwartz, R.S. & Barrett, K.L. (1990) J.Immunol., 145, 1934–1945; Young, F., Tucker, L., Rubinstein, D., Guillaume, T., Andre-Schwartz, J., Barrett, K.J., Schwartz, R.S. & Logtenberg, T. (1990)
- 45 Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.

46 Hillson, J.L., Oppliger, I.R., Sasso, E.H., Milner, E.C.B. & Wener, M.H. (1992) J.Immunol., 149, 3741–3752.

- 47 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- 48 Hoch, S. & Schwaber, J. (1987) J.Immunol., 139, 1689–1693.
- 49 Huang, C., Stewart, A.K., Schwartz, R.S. & Stollar, B.D. (1992) J.Clin.Invest., 89, 1331–1343.
- 50 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem.J., 268, 135-140.
- 51 Ikematsu, H., Harindranath, N., Ueki, Y., Notkins, A.L. & Casali, P. (1993) J.Immunol., 150, 1325-1337.
- 52 Ikematsu, H., Kasaian, M.T., Schettino, E.W. & Casali, P. (1993) J.Immunol., 151, 3604-3616.
- 53 Kelly, P.J., Pascual, V., Capra, J.D. & Lipsky, P.E. (1992) J.Immunol., 148, 1294–1301.
- 54 Kipps, T.J. & Duffy, S.F. (1991) J.Clin.Invest., 87, 2087–2096.
- Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
- 56 Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- 57 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993) J.Exp.Med., 178, 1903-1911.
- 58 Kohler, H., Shimizu, A., Paul, C., Moore, V. & Putnam, F.W. (1970) Nature, 227, 1318-1320; Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498
- Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin.Exp.Immunol., 71, 508-516.
- 60 Kon, S., Levy, S. & Levy, R. (1987) Proc.Natl.Acad.Sci.Usa, 84, 5053-5057.
- Kratzin, H., Altevogt, P., Ruban, E., Kortt, A., Staroscik, K. & Hilschmann, N. (1975)
 Z.Physiol.Chem., 356, 1337-1342; Kratzin, H., Altevogt, P., Kortt, A., Ruban, E. & Hilschmann, N. (1978) Z.Physiol.Chem., 359, 1717-1745.
- 62 Kudo, A., Ishihara, T., Nishimura, Y. & Watanabe, T. (1985) Gene, 33, 181–189.
- 63 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- 64 Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69–85.
- 65 Lehman, D.W. & Putnam, F.W. (1980) Proc.Nat.Acad.Sci.Usa, 77, 3239-3243.

66 Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829–2838.

- 67 Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017-1020.
- Logtenberg, T., Young, F.M., Van Es, J., Gmelig-Meyling, F.H.J., Berman, J.E. & Alt, F.W. (1989) J.Autoimmunity, 2, 203–213.
- 69 Logtenberg, T., Young, F.M., Van Es, J.H., Gmelig-Meyling, F.H.J. & Alt, F.W. (1989)
 J.Exp.Med., 170, 1347-1355.
- 70 Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991)

 J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.
- 74 Meeker, T.C., Grimaldi, J., O'rourke, R., Loeb, JJuliusson, G. & Einhorn, S. (1988) J.Immol., 141, 3994-3998.
- 75 Milili, M., Fougereau, M., Guglielmi, P. & Schiff, C. (1991) Mol.Immunol., 28, 753-761.
- 76 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 77 Mortari, F., Wang, J.-Y. & Schroeder, Jr., H.W. (1993) J.Immunol., 150, 1348–1357.
- 78 Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511–1518.
- 79 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550-564.
- 80 Nickerson, K.G., Berman, J., Glickman, E., Chess, L. & Alt, F.W. (1989) J.Exp.Med., 169, 1391-1403.
- 81 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- 82 Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990) J.Clin.Invest., 86, 1320-1328.
- Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990)

 J.Clin.Invest., 86, 1320–1328; Randen, I., Brown, D., Thompson, K.M., Hughes-Jones, N.,
 Pascual, V., Victor, K., Capra, J.D., Forre, O. & Natvig, J.B. (1992)

Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385–4391.

- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand J.Immunol., 36, 349-362.
- Pascual, V., Victor, K., Spellerberg, M., Hamblin, T.J., Stevenson, F.K. & Capra, J.D. (1992) J.Immunol., 149, 2337-2344.
- Ponstingl, H., Schwarz, J., Reichel, W. & Hilschmann, N. (1970) Z.Physiol.Chem., 351,
 1591–1594.; Ponstingl, H. & Hilschmann, N. (1976) Z.Physiol.Chem., 357, 1571–1604.
- 88 Portolano, S., Mclachian, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.
- 90 Pratt, L.F., Szubin, R., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 2041-2046.
- 91 Press, E.M. & Hogg, N.M. (1970) Biochem.J., 117, 641-660.
- 92 Putnam, F.W., Shimizu, A., Paul., C., Shinoda, T. & Kohler, H. (1971) Ann.N.Y.Acad.Sci., 190, 83-103.
- 93 Putnam, F.W., Takahashi, N., Tetaert, D., Debuire, B. & Lin, LC. (1981)
 Proc.Nat.Acad.Sci.Usa; 78, 6168-6172.;Takahashi, N., Tetaert, D., Debuire, B., Lin, L & Putnam, F.W. (1982) Proc.Nat.Acad.Sci.Usa, 79, 2850-2854.
- 94 Raaphorst, F.M., Timmers, E., Kenter, M.J.H., Van Tol, M.J.D., Vossen, J.M. & Schuurman, R.K.B. (1992) Eur.J.Immunol., 22, 247-251.
- 95 Rabbitts, T.H., Bentley, D.L., Dunnick, W., Forster, A., Matthyssens, G. & Milstein, C. (1980) Cold Spring Harb.Symp.Quanti.Biol., 45, 867-878; Matthyssens, G. & Rabbitts, T.H. (1980) Proc.Nat.Acad.Sci.Usa, 77, 6561-6565.
- 96 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220-1225.
- 97 Rassenti, LZ. & Kipps, TJ. (1993) J.Exp.Med., 177, 1039-1046.
- 98 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, LE. (1991)
 J.Immunol., 147, 3623-3631.
- 99 Roudier, J., Silverman, G.J., Chen, P.P., Carson, D.A. & Kipps, T.J. (1990) J.Immunol., 144, 1526–1530.
- 100 Sanz, I., Casali, P., Thomas, J.W., Notkins, A.L. & Capra, J.D. (1989) J.Immunol., 142, 4054-4061.

101 Sanz, I., Dang, H., Takei, M., Talal, N. & Capra, J.D. (1989) J.Immunol., 142, 883-887.

- 102 Schmidt, W.E., Jung, H-.D., Palm, W. & Hilschmann, N. (1983) Z.Physiol.Chem., 364, 713-747.
- 103 Schroeder, H.W., Jr. & Wang, J.Y. (1990) Proc.Natl.Acad.Sci.Usa, 87, 6146-6150.
- 104. Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791–793.
- 105 Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793; Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76.
- Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791–793; Chen,
 P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429–1431.
- 107 Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115-1121.
- Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115-1121.
- 109 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- 110 Shen, A., Humphries, C., Tucker, P. & Blattner, F. (1987) Proc.Natl.Acad.Sci.Usa, 84, 8563-8567.
- 111 Shimizu, A., Nussenzweig, M.C., Mizuta, T.-R., Leder, P. & Honjo, T. (1989) Proc.Natl.Acad.Sci.Usa, 86, 8020-8023.
- 112 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365-2367.
- 113 Silberstein, LE., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- 114 Singal, D.P., Frame, B., Joseph, S., Blajchman, M.A. & Leber, B.F. (1993) Immunogenet., 38, 242.
- 115 Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821-2828.
- 116 Steiner, L.A., Garcia-Pardo, A. & Margolies, M.N. (1979) Biochemistry, 18, 4068-4080.
- 117 Stewart, A.K., Huang, C., Stollar, B.D. & Schwartz, R.S. (1993) J.Exp.Med., 177, 409-418.
- 118 Thomas, J.W. (1993) J.Immunol., 150, 1375-1382.
- 119 Torano, A. & Putnam, F.W. (1978) Proc.Nat.Acad.Sci.Usa, 75, 966-969.

120 Van Der Heijden, R.W.J., Bunschoten, H., Pascual, V., Uytdehaag, F.G.C.M., Osterhaus, A.D.M.E. & Capra, J.D. (1990) J.Immunol., 144, 2835-2839.

- 121 Van Der Stoep, N., Van Der Linden, J. & Logtenberg, T. (1993) J.Exp. Med., 177, 99-107.
- 122 Van Es, J.H., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1992) Eur.J.Immunol., 22, 2761-2764.
- 123 Varade, W.S., Marin, E., Kittelberger, A.M. & Insel, R.A. (1993) J.Immunol., 150, 4985-4995.
- 124 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 125 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231-2236.
- 126 Watanabe, S., Barnikol, H.U., Horn, J., Bertram, J. & Hilschmann, N. (1973) ~ Z.Physiol.Chem., 354, 1505-1509.
- 127 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 128 White, M.B., Word, C.J., Humphries, C.G., Blattner, F.R. & Tucker, P.W. (1990) Mol.Cell.Biol., 10, 3690-3699.
- 129 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- 130 Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481–1489.
- 131 Zelenetz, A.D., Chen, T.T. & Levy, R. (1992) J.Exp.Med., 176, 1137-1148.
- B. References of germline sequences

References of human germline kappa sequences

- 1 Cox, J.P.L., Tomlinson, I.M. & Winter, G. (1994) Eur.J.Immunol., 24, 827–836.
- 2 Huber, C., Et Al. (1993) Eur.J.Immunol., 23, 2868.
- 3 Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6515-6529.
- 4 Lautner-Rieske, A., Huber, C., Meindl, A., Pargent, W., Schäble, K.F., Thiebe, R., Zocher, I. & Zachau, H.G. (1992) Eur.J.Immunol. 22, 1023.
- Lorenz, W., Schäble, K.F., Thiebe, R., Stavnezer, J. & Zachau, H.G. (1988) Mol.Immunol., 25, 479.

6 Pargent, W., Meindl, A., Thiebe, R., Mitzel, S. & Zachau, H.G. (1991) Eur.J.Immunol., 21, 1821-1827.

- 7 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 8 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- Scott, M.G., Crimmins, D.L., Mccourt, D.W., Chung, G., Schable, K.F., Thiebe, R., Quenzel, E.-M., Zachau, H.G. & Nahm, M.H. (1991) J.Immunol., 147, 4007-4013.
- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl. Acids Res., 13, 3495-3514.
- Straubinger, B., Huber, E., Lorenz, W., Osterholzer, E., Pargent, W., Pech, M., Pohlenz, H. D., Zimmer, F.-J. & Zachau, H.G. (1988) J.Mol.Biol., 199, 23-34.
- 12 Straubinger, B., Thiebe, R., Huber, C., Osterholzer, E. & Zachau, H.G. (1988) Biol.Chem.Hoppe-Seyer, 369, 601-607.

References of human germline lambda sequences

- 1 Williams, S.C. & Winter, G. (1993) Eur.J.Immunol., 23, 1456–1461.
- 2 Siminovitch, K.A., Misener, V., Kwong, P.C., Song, Q.-L & Chen, P.P. (1989) J.Clin.Invest., 84, 1675-1678.
- Brockly, F., Alexandre, D., Chuchana, P., Huck, S., Lefranc, G. & Lefranc, M.-P. (1989) Nuc.Acids.Res., 17, 3976.
- 4 Daley, M.D., Peng, H.-Q., Misener, V., Liu, X.-Y., Chen, P.P. & Siminovitch, K.A. (1992) Mol.Immunol., 29, 1515-1518.
- 5 Deftos, M., Soto-Gil, R., Quan, M., Olee, T. & Chen, P.P. (1994) Scand. J. Immunol., 39, 95.
- 6 Stiernholm, N.B.J., Kuzniar, B. & Berinstein, N.L. (1994) J. Immunol., 152, 4969-4975.
- 7 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 8 Anderson, M.L.M., Szajnert, M.F., Kaplan, J.C., Mccoll, L. & Young, B.D. (1984) Nuc. Acids Res., 12, 6647-6661.

References of human germline heavy chain sequences

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993)
 J.Immunol., 151, 800-809.
- 2 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.

Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727-738.

- Buluwela, L. & Rabbitts, T.H. (1988) Eur.J.Immunol., 18, 1843–1845.; Buluwela, L.,
 Albertson, D.G., Sherrington, P., Rabbitts, P.H., Spurr, N. & Rabbitts, T.H. (1988) Embo J., 7,
 2003–2010.
- 5 Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 6 Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76.
- 7 Cook, G.P. et al. (1994) Nature Genetics 7, 162-168.
- 8 Haino, M. et al., (1994). J. Biol. Chem. 269, 2619-2626
- 9 Humphries, C.G., Shen, A., Kuziel, W.A., Capra, J.D., Blattner, F.R. & Tucker, P.W. (1988) Nature, 331, 446-449.
- 10 Kodaira, M., Kinashi, T., Umemura, I., Matsuda, F., Noma, T., Ono, Y. & Honjo, T. (1986)
 J.Mol.Biol., 190, 529-541.
- 11 Lee, K.H., Matsuda, F., Kinashi, T., Kodaira, M. & Honjo, T. (1987) J.Mol.Biol., 195, 761-768.
- 12 Matsuda, F., Lee, K.H., Nakai, S., Sato, T., Kodaira, M., Zong, S.Q., Ohno, H., Fukuhara, S. & Honjo, T. (1988) Embo J., 7, 1047–1051.
- 13 Matsuda, F., Shin, E.K., Hirabayashi, Y., Nagaoka, H., Yoshida, M.C., Zong, S.Q. & Honjo, T. (1990) Embo J., 9, 2501–2506.
- Matsuda, F., Shin, E.K., Nagaoka, H., Matsumura, R., Haino, M., Fukita, Y., Taka-Ishi, S., Imai, T., Riley, J.H., Anand, R. Et, Al. (1993) Nature Genet. 3, 88-94
- Nagaoka, H., Ozawa, K., Matsuda, F., Hayashida, H., Matsumura, R., Haino, M., Shin, E.K., Fukita, Y., Imai, T., Anand, R., Yokoyama, K., Eki, T., Soeda, E. & Honjo, T. (1993). (Temporal)
- Rechavi, G., Bienz, B., Ram, D., Ben-Neriah, Y., Cohen, J.B., Zakut, R. & Givol, D. (1982) Proc.Nat.Acad.Sci.Usa, 79, 4405-4409.
- 17 Sanz, I., Kelly, P., Williams, C., Scholl, S., Tucker, P. & Capra, J.D. (1989) Embo J., 8, 3741-3748.
- 18 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365-2367.
- 19 Tomlinson, Im., Walter, G., Marks, Jd., Llewelyn, Mb. & Winter. G. (1992) J.Mol.Biol. 227, 776-798.

20 Van Der Maarel, S., Van Dijk, K.W., Alexander, C.M., Sasso, E.H., Bull, A. & Milner, E.C.B. (1993) J.Immunol., 150, 2858-2868.

- Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder, Jr., H.W. & Milner, E.C.B. (1993) Eur-J.Immunol., 23, 832-839.
- Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234-2240.
- 23 Weng, N.-P., Snyder, J.G., Yu-Lee, L-Y. & Marcus, D.M. (1992) Eur.J.Immunol., 22, 1075-1082.
- 24 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Olee, T., Yang, P.M., Siminovitch, K.A., Olsen, N.J., Hillson, J.L., Wu, J., Kozin, F., Carson, D.A.&Chen, P.P. (1991) J. Clin. Invest. 88, 193-203.
- 26 Chen, P.P.& Yang, P.M. (1990) Scand. J. Immunol. 31, 593-599.
- 27 Tomlinson, M., Walter, G., Cook&Winter, G. (Unpublished)

Claims

1. A method of setting up one or more nucleic acid sequences encoding one or more (poly)peptide sequences suitable for the creation of libraries of (poly)peptides said (poly)peptide sequences comprising amino acid consensus sequences, said method comprising the following steps:

- (a) deducing from a collection of at least three homologous proteins one or more (poly)peptide sequences comprising at least one amino acid consensus sequence;
- (b) optionally, identifying amino acids in said (poly)peptide sequences to be modified so as to remove unfavorable interactions between amino acids within or between said or other (poly)peptide sequences;
- (c) identifying at least one structural sub-element within each of said (poly)peptide sequences;
- (d) backtranslating each of said (poly)peptide sequences into a corresponding coding nucleic acid sequence;
- (e) setting up cleavage sites in regions adjacent to or between the ends of sub-sequences encoding said sub-elements, each of said cleavage sites:
 - (ea) being unique within each of said coding nucleic acid sequences;
 - (eb) being common to the corresponding sub-sequences of any said coding nucleic acids.
- A method of setting up two or more sets of one or more nucleic acid sequences comprising executing the steps described in claim 1 for each of said sets with the additional provision that said cleavage sites are unique between said sets.
- 3. The method of claim 2 in which at least two of said sets are deduced from the same collection of at least three homologous proteins.
- 4. The method according to any one of claims 1 to 3, wherein said setting up further comprises the synthesis of said nucleic acid coding sequences.
- 5. The method according to any one of claims 1 to 4, further comprising the cloning of said nucleic acid coding sequences into a vector.

6. The method according to any one of claims 1 to 5, wherein said removal of unfavorable interactions results in enhanced expression of said (poly)peptides.

- 7. The method according to any one of claims 1 to 6, further comprising the steps of:
 - (f) cleaving at least two of said cleavage sites located in regions adjacent to or between the ends of said sub-sequences; and
 - (g) exchanging said sub-sequences by different sequences; and
 - (h) optionally, repeating steps (f) and (g) one or more times.
- 8. The method according to claim 7, wherein said different sequences are selected from the group of different sub-sequences encoding the same or different sub-elements derived from the same or different (poly)peptides.
- 9. The method according to claims 7 or 8, wherein said different sequences are selected from the group of:
 - (i) genomic sequences or sequences derived from genomic sequences;
 - (ii) rearranged genomic sequences or sequences derived from rearranged genomic sequences; and
 - (iii) random sequences.
- 10. The method according to any one of claims 1 to 9 further comprising the expression of said nucleic acid coding sequences.
- 11. The method according to any one of claims 1 to 10 further comprising the steps of:
 - screening, after expression, the resultant (poly)peptides for a desired property;
 - (k) optionally, repeating steps (f) to (i) one or more times with nucleic acid sequences encoding one or more (poly)peptides obtained in step (i).
- 12. The method according to claim 11, wherein said desired property is selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

13. The method according to any one of claims 1 to 12, wherein said cleavage sites are sites cleaved by restriction enzymes.

- 14. The method according to any one of claims 1 to 13, wherein said structural sub-elements comprise between 1 and 150 amino acids.
- 15. The method according to claim 14, wherein said structural sub-elements comprise between 3 and 25 amino acids.
- 16. The method according to any one of claims 1 to 15, wherein said nucleic acid is DNA.
- 17. The method according to any one of claims 1 to 16, wherein said (poly)peptides have an amino acid pattern characteristic of a particular species.
- 18. The method according to claim 17, wherein said species is human.
- 19. The method according to any one of claims 1 to 18, wherein said (poly)peptides are at least part of members or derivatives of the immunoglobulin superfamily.
- 20. The method according to claim 19, wherein said members or derivatives of the immunoglobulin superfamily are members or derivatives of the immunoglobulin family.
- 21. The method according to claim 19 or 20, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3.
- 22. The method according to claim 20 or 21, wherein said (poly)peptides are or are derived from the HuCAL consensus genes:
 Vκ1, Vκ2, Vκ3, Vκ4, Vλ1, Vλ2, Vλ3, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, Cκ, Cλ, CH1 or any combination of said HuCAL consensus genes.
- 23. The method according to any one of claims 20 to 22, wherein said derivative of said immunoglobulin family or said combination is an Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragment.

24. The method according to claims 22 to 23, wherein said derivative is an scFv fragment comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes that comprises a random sub-sequence encoding the heavy chain CDR3 sub-element.

- 25. The method according to any one of claims 1 to 24, wherein at least part of said (poly)peptide sequences or (poly)peptides is connected to a sequence encoding at least one additional moiety or to at least one additional moiety, respectively.
- 26. The method according to claim 25, wherein said connection is formed via a contiguous nucleic acid sequence or amino acid sequence, respectively.
- 27. The method according to claims 25 to 26, wherein said additional moiety is a toxin, a cytokine, a reporter enzyme, a moiety being capable of binding a metal ion, a peptide, a tag suitable for detection and/or purification, or a homo- or hetero-association domain.
- 28. The method according to any one of claims 10 to 27, wherein the expression of said nucleic acid sequences results in the generation of a repertoire of biological activities and/or specificities, preferably in the generation of a repertoire based on a universal framework.
- 29. A nucleic acid sequence obtainable by the method according to any of claims 1 to 28.
- 30. A collection of nucleic acid sequences obtainable by the method according to any of claims 1 to 28.
- 31. A recombinant vector obtainable by the method according to any of claims 5 to 28.
- 32. A collection of recombinant vectors obtainable by the method according to any of claims 5 to 30.
- 33. A host cell transformed with the recombinant vector according to claim 31.

34. A collection of host cells transformed with the collection of recombinant vectors according to claim 32.

- 35. A method of producing a (poly)peptide or a collection of (poly)peptides as defined in any of claims 1 to 28 comprising culturing the host cell according to claim 33 or the collection of host cells according to claim 34 under suitable conditions and isolating said (poly)peptide or said collection of (poly)peptides.
- 36. A (poly)peptide devisable by the method according to any one of claims 1 to 3, encoded by the nucleic acid sequence according to claim 29 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 37. A collection of (poly)peptides devisable by the method according to any one of claims 1 to 3, encoded by the collection of nucleic acid sequences according to claim 30 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 38. A vector suitable for use in the method according to any of claims 5 to 28 and 35 characterized in that said vector is essentially devoid of any cleavage site as defined in claim 1(e) and 2.
- **39**. The vector according to claim 38 which is an expression vector.
- 40. A kit comprising at least one of:
 - (a) a nucleic acid sequence according to claim 29;
 - (b) a collection of nucleic acid sequences according to claim 30;
 - (c) a recombinant vector according to claim 31;
 - (d) a collection of recombinant vectors according to claim 32;
 - (e) a (poly)peptide according to claim 36;
 - (f) a collection of (poly)peptides according to claim 37;
 - (g) a vector according to claim 38 or 39; and optionally,
 - (h) a suitable host cell for carrying out the method according to claim 35.
- 41. A method of designing two or more genes encoding a collection of two or more proteins, comprising the steps of:

- (a) either
 - (aa) identifying two or more homologous gene sequences, or
 - (ab) analyzing at least three homologous genes, and deducing two or more consensus gene sequences therefrom,
- (b) optionally, modifying codons in said consensus gene sequences to remove unfavourable interactions between amino acids in the resulting proteins,
- (c) identifying sub-sequences which encode structural subelements in said consensus gene sequences
- (d) modifying one or more bases in regions adjacent to or between the ends of said sub-sequences to define one or more cleavage sites, each of which:
 - (da) are unique within each consensus gene sequence,
 - (db) do not form compatible sites with respect to any single sub-sequence,
 - (dc) are common to all homologous sub-sequences.
- **42**. A method of preparing two or more genes encoding a collection of two or more proteins, comprising the steps of :
 - (a) designing said genes according to claim 41, and
 - (b) synthesizing said genes.
- 43. A collection of genes prepared according to the method of claim 42.
- 44. A collection of two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and

- (b) carry cleavage sites, each of which:
 - (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
- 45. The collection of genes according to either of claims 43 or 44 in which each of said gene sequences has a nucleotide composition characteristic of a particular species.
- 46. The collection of genes according to claim 45 in which said species is human.
- 47. The collection of genes according to any of claims 43 to 46 in which one or more of said gene sequences encodes at least part of a member of the immunoglobulin superfamily, preferably of the immunoglobulin family.
- 48. The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, and/or CDR regions 1, 2, and 3 of antibody heavy chains.
- 49. The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, and/or CDR regions 1, 2, and 3 of antibody light chains.
- **50.** A collection of vectors comprising a collection of gene sequences according to any of claims 43 to 49.

51. The collection of vectors according to claim 50 comprising the additional feature that the vector does not comprise any cleavage site that is contained in the collection of genes according to any of claims 43 to 49.

- 52. A method for identifying one or more genes encoding one or more proteins having a desirable property, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims 50 or 51 a collection of proteins.
 - (b) screening said collection to isolate one or more proteins having a desired property,
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the proteins isolated in step (b) one or more genetic sub-sequences encoding structural subelements, and replacing said sub-sequence(s) by one or more second sub-sequences encoding structural sub-elements, to generate new vectors according to either of claims 50 or 51,
 - (e) optionally, repeating steps (a) to (c).
- 53. A method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims.50 or 51 a collection of proteins,
 - (b) screening said collection to isolate one or more antibody fragments which bind to said target,
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the antibody fragments isolated in step (b) one or more genetic sub-sequences encoding structural sub-elements, and replacing said sub-sequence(s) by one or

more second sub-sequences encoding structural sub-generate new vectors according to either of claims 50 or 51,

- (e) optionally, repeating steps (a) to (c).
- 54. A kit comprising two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and
 - (b) carry cleavage sites, each of which:
 - (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
- 55. A kit comprising two or more genetic sub-sequences which encode structural sub-elements, which can be assembled to form genes, and which carry cleavage sites, each of which:
 - (a) lie at or adjacent to the ends of said genetic sub-sequences,
 - (b) do not form compatible sites with respect to any single sub-sequence, and
 - (d) are common to all homologous sub-sequences.

Figure 1: construction of a synthetic human antibody library based on consensus sequences

Ş
š
ž
Š
S
IS I
Se
consensu
_
appa
Š
₹
2A:
v
gur
ᄄ

	C B	1	ــ ب	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3	79 23	S	Z	S	⊢ -
CDRI	\\ \A	0	0	0.5	Q S	CDR	29 19	1	G S	A S	V
0	97	S	S	S	S		09	A		G	>
	25 24	RA	R	R A	R S		67 87	_	<i>≻</i> _	-	≻
	53	ر ا	SC	SC	S N		74				<u></u> ,
	22	_	_	٠,	_		9t St	 	Q I	~	\prec
	07 18	⊢	A S	A T	A T	rk 2	77	A	SP	A P	<u>Р</u>
	81	8	۵	8	8	framework	43	*	0	0	d
	۲۱ 9۱	G G	<u>П</u>	ш, 9	G E	fram	l † 0†	P G	آ G	P G	P G
	91	>	م	م	_		38	∡.	¥	¥	¥
ork 1	13 13	A S	V. T	L S	S		38	0 0	L 0	0 0	0
framework	15	S	۵.	S	4		36	>	≻	≻	≻
fran	11 01	S	S	一	j S		32	× ×	M Q	Α.	A W
	6	5		A .	0 0		33				<u>ا</u> ر
	8 	SP	S	SP	S P		32	S	z	S	z
	9	0	Q.	0 _	ГΩ	CDRI	30	S	≻ 9 N	S	× ~
	ל	Q M T Q	Σ		VMTQ		28	_ _	z	>	z
	2 4 5 6	0 -	>	> _			58 58 E E D	l I	S	1	S
	l	Ω	VK2 DIVMTQ	VK3 DIVLTO	۵		0	1	Ξ_	ı	VK4 Y S S N N K
<u>-</u>		Vk1 D	VK2	VK3	VK4		٠	Vĸ1	VK2	Vĸ3	VK4

	_
v	7
O.	•
7	•
9	•
	-
a	,
=	•
=	٠.
C	7
SPALLER	,
	٤.
SUSPERING	٩.
-	•
=	•
~	•
5	-
0	,
v	'n
÷	÷
-	-
C	•
e	,
_	
0	3
5	3
SC	2
COU	2
1 6000	2
1 60067	
2002	מללפע
2002	2000
2002	2000
// kanna	nddov 1
2002	nddov 1
20.VI V2002	ACT AL NOPPO
20.VI V2002	ACT AL NOPPO
20.VI V2002	IL EC. VE NOPPO
20.VI V2002	IL EC. VE NOPPO
20.VI V2002	IL EC. VE NOPPO
COUCH IV VO PAINS	ACT AL NOPPO
20.VI V2002	IL EC. VE NOPPO

	CDRII	R			1.										framework	me		돗	3							1				
-	99	99	129	69 89	69	09	19	79	63	79	99	99	۷9	89	69	02	17	72	73.	47	SZ	94	LL	87	64	08	18	82	83	148
Vk1	0	S	9		V P	S	R	LL	S	Ö	S	9	S	9	-		4	-	-	-	-	S	S		O	ط	ш		ш	<
VK2	⋖	S	G	>	٩	\odot	X	ш	S	ග	S	G	S	9	 	0	ட	-	_	×		S	\propto	>	ш	A	ш		>	G
VK3	A	-	9	>	٩	\forall	X	ш	S	G	S	G	S	G	<u> </u>	0	u_	-	_	 		S	S		ш	۵	ш	Ω	ட	A
VK4 E	ய	S	9	>	ط		8	щ	S	9		9	S	9	—		ш	<u> </u>		 	_	S	S	لـــا	O	A	ш		>	Α.
fr	am	e W	, 0	framework 3				CC	CDRIII						-		f.	framework 4	Je v	Vor	지 자									
	58	98	۲8	88	68	06	16	76	93	+6	96	96	۷6	86	66	100	101	102	103	104	901	901	701	801	60 L	٦				
/k1	<u> </u>	>	>	ر	a	0 0	工	 >	-	-	٩	۵	-	L.	G	Q	ပ	-	×	>	ш	-	$ \mathbf{x} $	2	-					
VK2	>	>	>	ပ	O	O	I	>	-	-	٩.	۵.	—	щ	G	Q	Ö	-	\prec	>	سب		\checkmark	\propto	-					
VK3	>	>	>	C	O	O	I	>	-		۵.	٩	Η	ш	9	O	G	 -	\mathbf{x}	>	ш	_	\checkmark	8	 					
VK4	>	>	>	ی	Q	Q	H	>	_	 	Р	Ф	_	ı	9	O	 (D	 	\mathbf{x}	>	Ш	_	\checkmark	8	, 					

Figure 2B: VL lambda consensus sequences

							\cdot			-				1										-		ľ				
						- 1				=	a⊒	ا کے	rramework	_													CORI	=		
3 4 5 6 6	997	3 5 7 6	9 5	9	9	_	L	8	6	10	11	15	13	ÞΙ	91	91	21	81	61	50	17	22	23	74	52	97	77	а	3	28
OSVLTC	SVLTC	VLTO	L T (1	0	~	۵_	٩	S	ļ	>	S	ව	A	٦	9	g	R	>		-	S	U	S	9	S	S	2	z	-
W2 0 S A L T Q I	SALTO	ALTO	1 1	+	\cup	\sim	Д	A	S	ľ	>	S	9	S	۵.	G	0	S	_	—		S	Ç	_	G	\vdash	S	S		>
SYELT (Y E L T (E L T (\sim 1	ط	۵_ ا	S	١,	>	S	>	Α.	٩	G	O	⊢	4	α 2	_	S	ر د	S	G		V	1	1	
CDRI	CDRI	CDRI	DRI	=	1	1							7	framework 2	le v	/or	X			,						CDR	=			
20 30 32 32 32 32	30 32 32 32	32 32	32 32	32		33	34	32	98	37	38	39	07	17	77	43	77	94	97	74	84	67	09	15	25	23	75	99	99	7 49
G S N - Y	S N - Y	≻ - N	\	>	-	>	S	≥	>	O	a	-	۵	9	-	A	٩	×	-	-	-	>		1	1	a	2		S	9
W2 GGYNYV	GYNY	> Z >	> Z	>		>	S	3	>	0	O	エ	ط	G	\prec	×	۵	~		Σ		>	0	· >	S	Z	\propto	۵	Ś	9
VA3 G D K - Y A	D K - Y	K - Y	>	>-		A	S	≥	>	O	d	\prec	٥	G	O	Α	۵	>		>	_	>-	0		S		\propto	۵	S	Ö
					l	ĺ				١	I			I							ĺ									

Figure 2B: VL lambda consensus sequences

						•	•				
	78	>	>	>							
	98	>	>	>							
	98										
	78	4	V	V							
	83	ш	ш	ш							
	85										
	18	ш	ш	ш							
	08	S	\forall	\forall							
	64	a	O	O	ļ.						
	87		ٔ ــا	 				101	9	G	G
	LL	9	9	G				∀.	_	_	
	92	⊢	S	S	;			901	>	>	>
3	SZ	_	-				4	901	-	<u> </u>	-
논	ħ۷	⋖	—	 				104		_	_
0 X	73						NO W	103	ᅩ	×	\prec
ne	72	S	S	—			πe	102	⊢	—	-
framework	17	⋖	\forall	<			framework	101	G	G	9
-	٥۷	S	—	<u> </u>			-	100	9	G	9
	69	⊢	Z	Z				66	9	G	9
	89	9	G	9				86	щ	ш.	ц.
	۷9	S	S	S				۷6	>	>	>.
	99	\times	\checkmark	Z				96	م	Δ	ا ۵
	9	S	S	S				96	ط	ط	٩
	79	9	G	9			_	7 6	 	 	-
-	63	S	S	Š		•	<u>E</u>	63	-	-	
	79 19 09	ᄔ	L	<u>LL</u>			CDR	65	>	>	>
	19	8	\aleph	\propto				16	工	工	COOH
	09		Z	ш				06	O	O	0
	69		S	٩				68	a	O	
	89	>	>			•		88	0 0 0	ں	
•		Š	VA2 V	M3					3	W2	M3

sednences :
consensus
heavy chair
re 2C: V
Figu

											γ -							
	•			·							73	<	—	\checkmark	 	—	-	Z
											99		9		S	S		>
	30	2	—	S	S	S		S			99	9	9		9	9	S	≥
	58	Щ	щ		ш_	_	ய	>			79	4	S		9	S		\prec
	28	-	-	S	—	Ň	S	S	:	8	23	-	Z	≥	S	>	9	S
	77	9	>	ட	ட	9	>			CDR	Э	1	1	1	1	1	1	4
	97	ပ	9	9	9	9	9	9			8	1	1	1	ı	1	ı	\propto
	52	2	S	S	S	S	S	S	Ì		A	م	ط	1.	9	1	ط	>
	74	$ <$	\forall	ட	Ø	>	G	.—			25	-	Z		S	>	>	.>-
	23	\times	\checkmark	<u> </u>	V	—	¥	\triangleleft	Ì		١S		_	_				-
.	77	ပ	ပ	ပ	ပ	ပ	ں	ပ			90	9	≥		Ø	>	_	M.
	17	S	S	⊢	S		S	\vdash			67	ပ	9	A	S	9	9	9
	50	>	>	_		_	_				84	≥	Σ		>	_	≥	_
	61	$ \mathbf{x} $	\checkmark	 	\propto	S	\checkmark	S			LΦ	≥	≥	≥	≥	≥	≥	≥
	81	>	>	_			_	_		2	97	ш	ш	ш	ب	ш	u	ш
ί×	۷1	S	S	—	S	—	S	\vdash			97		_	_				_
νOI	91	S	\forall	O	9	u	ш	Q		V 0	77	9	9	\forall	9	9	9	0
ne	SI	ပ	9	-	9	S	g	S		ne	43	O	O	×	\checkmark	\checkmark	\checkmark	اعه.
framework	τl	ام	م	۵	۵	ط	<u>م</u>	ط		framework	45	9	9	9	9	G	ල	0
f	13	\mathbf{x}	\checkmark	\checkmark	0	\checkmark	\checkmark	~		+	lt	۵.	م	۵	۵	۵	۵	ما
	71	$ \mathbf{x} $	\checkmark	>	>	>	\checkmark	>.			07	K	A	۵_	A	٩	Σ	S
	11	>	<i>></i>		٠	ب	>	ب			38	Q	0	O	0	O	Ö	a
	10	ш	ш	V	<u>0</u>	9	ш	G			38	<u>~</u>	\propto	\propto	\propto	\propto	\propto	~
	6	K	A	م	9	ص	A	م			37	>	>		>	_	>	-
	8	9	9	9	9	G	9	9			36	≥	≥	≥	≥	≥	≥	≥
	L	S	S	S	S	S	S	S			32	5	工	9	Š	S	9	Z
	9	O	0	ш	ш	ш	O	0			34	-	≥	>	≥	≥		3
	S	>	>	\checkmark	>	0	>	O		CDRI	33	A	>	9	A	>	≥	<
	Þ		_							J	35	>	>	>	>	>	>	<
	3	O	O	0	0	O	O	a			8	١	1	9	1	ı	1	S
	7	>	>	>	>	>	>	>			A	ł	ŧ	S	i	1	. 1	Z
	L	a	O	0	ய	a	ш	0			15	<u>S</u>	S	<u>—</u>	S	S	S	S
		A	8		~~	مقسو	10	9				A	8	<u>ر.</u>	~	₹+	ഹ	က
		VH1A	H	VH2	/H3	VH4	/HE	/HE				H	VH1B	/H,	VH3	Ή	Ξ̈́	9H/
•		>	<i>></i>	>	_	_	SUI	SSTIT	ΠĚ	SHE	ET (RL	ILE 2	6)					
					•				6	/ 204	7							

ڹۄٚ
Ĕ
¥
5
Š
2
ೱ
5
Š
ē
2
.≒
chai
Ü
5
B
드
>
2C:
7
5
gu
Ξ̈́

									_									
	98	ш	ш	>	ш	⋖	S	ш			113	S	S	S	S	S	S	S
	48	S	S	م	\forall	A	A	م		4	115	2	S	S	S	S	S	S
	83	8	\propto		\propto	—	\checkmark	\vdash		논	111	>	>	>	>	>	>	>
	Э.		_	Σ	_	>	_	>		0 ×	011	—	—			—	—	-
	В	S	S	Z	S	S	S	S		me	60 l	>	>	>	>	>	>	>
	A	S	S	₩	Z	S	S	Z		frar	108		ب	_				
	85			≥	≥	_	\geq	_		-	10L	-	\vdash	\vdash	—		-	-
	18	ш	ш	-	O	\checkmark	O	O			901	ပြ	9	ල	9	9	9	9
3	08	≥	Σ	_	ن	_	_				102	Q	Q	0	Q	O	Q	0
ork	64	>	>-	>	>-	S	>	S			10t	9	9	9	9	9	9	9
framew	87	A	V	>		ட	A	ட			103	≥	\geq	≥	≥	≥	≥	3
au	LL	⊢		0	-	0	—	O			102	>	>	>	>_	>	>	>-
1	94	S	S	Z	Z	Z	S	Z			101			0				
	S۷	—	_	\prec	\prec	\checkmark		\prec		\equiv	Э	≥	Σ	Σ	≥	≥	Σ	≥
	74	S	S	S	S	S	S	2		CDR	8	X	A	V	\forall	A	A	4
	73	ш		-	Z	₩	\checkmark	-		ပ	A	>	>	>	>	>	>	>
	72										100	Щ.	ட	<u></u>	ட	ட	ட	-
	17			\checkmark			A				66	9	Ö	O	9	9	G	9
	٥۷	-	Η.	S	S	S	S	Z			86							
	69	—	≥	_			_	-			۷6	9	9	9		တ	Ξ.	9
	89			₩		—	-	 			96	9	9		9 /	_		_
	۷9	>	>		ш.	>	>				96	3	_		≥	-,	_	3
	99			8				~			76				ر ج			- 1
	9						9			3	.63				A			- 1
_		O	O	×	\leq		Q	×		칫	65		C		ب		<u> </u>	
CDRI	CJ	Щ.	ш		>			>		framework	16	>	>	>	<u>></u>	>	>	
2	79	Ä			S		S	7		m	06	/	_	>	>	≻	<i>></i>	
	19	0		_		<u>م</u>		<i>></i>		fre	68		_	_	_		Σ	
	09	A	\triangleleft	S	<	_	S	Α,			88	Α.		٠.	Α,		<	
	69	<u> </u>	<u>></u>	>	>	<i>></i>	<i>></i> -	_			78		_			<u> </u>	_	\Box
	89	Z	<u> </u>	<u>></u>	<u> </u>		8				98		<u>~</u>	<u> </u>		_	_	لــــــــــــــــــــــــــــــــــــــ
		11A	118	12	3	4	15	91				İIA	118	12	<u>7</u>	4	15	9
		X	\forall	>	VH3	7	Y.		רו וידן:	E Ch	FET /DI 1	<u>`</u> ₹	₹ Z	\Rightarrow	>	>	X	≒
							J	ויייייייייייייייייייייייייייייייייייייי	7	7 20	EET (RU 4	ید کا	رد			٠		

	CGAGACCTAG
	TCGA ACGITICGCC CCAGGGCAGG GCAAAAICGC CGAGACCIAG
(pa)	CCAGGGCAGG
) gene sequence (continu	ACGTTTCGCC
Figure 3A: V kappa 1 (Vĸ1)	CGGTCGTCGA

GGTCGTCGA ACGTTTCGCC CCAGGCAGG GCAAAATCGC CGAGACCTAG G T D F T L T I S S L Q P E D F Eco571 CGCCACTGAT TTTACCCTGA CCATTAGCAG CCTGCAACCT GAAGACTTTG GCCGTGACTA AAATGGACT GGTAATCGTC GGACGTTGGA CTTCTGAAAC A T Y Y C Q Q H Y T T P P T F G Q MScI CGACCTATTA TTGCCAGCA CATTATACCA CCCGCCGAC CTTTGGCCAG GCTGGATAAT AACGGTCGTC GTAATATGGT GGGCGGCTG GAAACCGGTC G T K V E I K R T BSIWI. GGTACGAAAG TTGAAATTAA ACGTACG
--

CGGATCGTTT GCCTAGCAAA

AGTGGGGTCC TCACCCCAGG

CAACCGTGCC GTTGGCACGG

ATCTGGGCAG TAGACCCGTC

CTATTAATTT GATAATTAAA

Figure 3B: V kappa 2 (Vk2) gene sequence

时 ,	GA		υ υ υ	Q	AG	ഥ	
С	CTCCGGGCGA	Z	CATAGCAACG	Д	AAGCCCGCAG	以	
щ	990	W	AGC) (GGC	Д	
	CTC	Ħ	CAT	Ω.	AAG ITC		,
H				Q		P I	1
>	STG	ì	GCT	• .	~~ GTC CAG	V SanDI	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Д	CTGCCAGTGA GACGGTCACT	IJ	AAGCCTGCTG TTCGGACGAC	P G SexAI	AACCAGGTCA TTGGTCCAGT	Ω Ω	1
ᆸ	rgc Acg	W	AGC	Se.	ACC TGG	ഗ	
.,		O 1		×			
W	CCCACTGAGC	Oi .	GAAGCAGCCA	Q M	TACCTTCAAR ATGGAAGTTT	Ø	
'n	CTG	Ŋ	CAG	ы	rtc AAG	民	
Д	CAC	Ŋ	AG			Z	
S BanII	AG CCC	~		Y KpnI	l		
Q S Bal	TGACCCAGAG ACTGGGTCTC	T H	ATTAGCTGCA G	Z X	TCTGGATTGG AGACCTAACC	Ŋ	
Q	CAG		CTC	Σ Ω	ATT	Ŋ	
Et .	TGACCCAGAG ACTGGGTCTC	Ω.	ATTAGCTGCA TAATCGACGT	Ä	~~ TCTGGATTGG AGACCTAACC	Ţ	٠
_	TG2 AC1	⊢ 	AT		TC. AG.		
Σ	GA	Ø		≯	TA AT	,>1	
>	GTC	A S	GA	Z	AAC LTG	H	?
D I EcoRV	~~~~~ ATATC TATAG		TGG	≯	ATA TAT	L L AseI	~ ~ ~ ~ ~ ~ ~
D D D	CTATAGCACT	Д	GCCTGCGAGC	G Y N	GCTATAACTA CGATATTGAT	ı	l
	, 00			Ŭ			

Figure 3B: V kappa 2 (Vk2) gene sequence (continued)

	L T Q S P A T L S L S P G E			CTGAGCCTGT CTCCGGGCGA	GACTCGGACA GAGGCCCGCT
	H			C CTGA	
	PAT	BanII	* * * * * * * * * * * * * * * * * * * *	CCCGGCGACC	GGGCCGCTGG
(Vk3) gene sequence	TOS	Bar	~ ~ ~	C TGACCCAGAG	ACTGGGTCTC
Figure 3C: V kappa 3 (Vx	I A I O	EcoRV	~~~~	GATATCGTGC	CTATAGCACG ACTGGGTCTC

CTGAGCTGCA GAGCGAGCCA GAGCGTGAGC AGCAGCTATC TCGTCGATAG CTCGCACTCG CICGCICGGI GACTCGACGT ACGTGCGACC TGCACGCTGG

ഗ

ഗ

ഗ

>

ഗ

Ø

S

K

Ϋ́

. ن

ഗ

口

F

Ø

 \propto

PstI

AseI Ä 口 K ρι ď Ø ပ SexAI Щ 又 Ø Ø KpnI Y W Ø Н

ATTAATTTAT TAATTAATA GTGGCGCAGA CACCGCGTCT CCAGGTCAAG GGTCCAGTTC CCAGCAGAAA GGTCGTCTTT ACCGCACCAT TGGCGTGGTA

G BamHI ഗ U ഗ H 召 Ø Д SanDI > <u>ص</u> E Ø K ഗ S Ø

φ

GCGGCTCTGG GCGCGTTTTA TGGGGTCCCG GGCGCGAGCA GCCGTGCAAC

Figure 3C: V kappa 3 (Vk3) gene sequence (continued)

CGCCGAGACC
GCGCAAAAT
S ACCCCAGGGC C
CGGCACGTTG
CCGCGCTCGT

Q H		psI	
7	<pre></pre>	Bb	
P ECO5	?		
EI.			
ц			
ഗ			
ഗ			
Н			
E			
ப			
E		•	
Ĺτι			
Q			
H			
ა ტ			
ഗ		RamHT	******
		ц	ן י

SEGCACE GATTTTACCC TGACCATTAG CAGCCTEGAA CCTGAAGACT	GGACTTCTGA
CAGCCTGGAA	GTCGGACCTT
TGACCATTAG	ACTGGTAATC
GATTTTACCC	CTAAAATGGG
ATCCGGCACG	TAGGCCGTGC

	ر در در در در در در در در در در در در در د	ָרָר עָרָיהַ הַי	ָר ל ל		(£	{	(
? ? ?												
MscI					:						I	
P P T F	T T	×	H	Ø	Ø	υ	X	X	>	A	Ĺτι	

ATTTGCATGC TAAACGTACG TTCAACTTTA AAGTTGAAAT CAGGGTACGA GTCCCATGCT

Figure 3D: V kappa 4 (Vx4) gene sequence

田。		GA
Ф		000 000
PDSLAVSLGE I		GCCTGGGCGA
Ŋ		
>		GTC
Ą		CTGGCGGTGA
Ы		CTC
W		AGC
Ω		GAT
	1 2	CCCGGATAGC CTGGCGGTGA GGGCCTATCG GACCGCCACT
S BanI	22222	
O	*	CAG
M T Q S Ban		TGACCCAGAG
Ξ		SA T
>		GATATCGTGA CTATAGCACT
D I EcoRV	~ ~ ~ ~ ~ ~ ~	GATATCGTG CTATAGCAC
D E	1	GAT

•	~~~~~~			
ACGTGCGACC	ACC ATTAACTGCA GAAGCAGCCA GAGCGTGCTG TATAGCAGCA	GAAGCAGCCA	GAGCGTGCTG	TATAGCAGCA
TGCACGCTGG	TGG TAATTGACGT CTTCGTCGGT CTCGCACGAC ATATCGTCGT	CTTCGTCGGT	CTCGCACGAC	ATATCGTCGT

Ŋ

ß

×

П

>

Ŋ

Ø

Ŋ

Ø.

Z

H

Ø

召

PstI U

?	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	SexAI	KpnI	
Q P P	K P G	O O X W	N N K N Y L A W Y Q Q K P G
ATATCGTCG1	CTCGCACGAC	CTTCGTCGGT C	TGCACGCTGG TAATTGACGT
TATAGCAGCA	AGCGTGCTG	GAAGCAGCCA GAGCGTGCTG	ACGTGCGACC ATTAACTGCA

TCAGCCGCCG AGTCGGCGGC AGAAACCAGG TCTTTGGTCC TGGTACCAGC ACCATGGTCG CTATCTGGCG GATAGACCGC ACAACAAAA TGTTGTTTT

TCCCGGATCG AGGCCCTAGC GAAAGCGGGG CTTTCGCCCC ATCCACCCGT TAGGTGGCCA TTTATTGGGC AAATAACCCG TTTGATAATT AAACTATTAA

Figure 3D: V kappa 4 (VK4) gene sequence (continued)

I S S	ATTTCGTCCC TAAAGCAGGG	T T X		TTATACCACC	T BsiWI	C GTACG C CATGC
T L T	TACCCTGACC ATGGGACTGG	H O O		GCCAGCAGCA	E I K R Bsi	GAAATTAAAC CTTTAATTTG
T D F	GCACTGATTT СGTGACTAAA	V Y Y C		GTGTATTATT CACATAATAA	T X V	TACGAAAGTT ATGCTTTCAA
FSGSGSG BamHI	TTTTAGCGGC TCTGGATCCG	L Q A E D V A Eco57I	BbsI	TGCAAGCTGA AGACGTGGCG ACGTTCGACT TCTGCACCGC	P P T F G Q G MscI	CCGCCGACCT TTGGCCAGGG GGCGGCTGGA AACCGGTCCC

r R	D D	≯	ATG	×	GCTGATTTAT CGACTAAATA	H.	1
Q	CAGGTCAGCG GTCCAGTCGC		AGCAACTATG TCGTTGATAC	н	ATT TAA	G S BamHI	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ъ П	GGT	Z	CAZ	J.	SAC	υщ	1
P SexAI	C CAGG G GTCC	Ω.				ഗ	
	TAC FTG	O	3GC	Н	ACT TGA	Įт	
K	AGTGGCGCAC TCACCGCGTG	н	CAACATTGGC GTTGTAACCG	×	CGCCGAAACT GCGGCTTTGA	x ,	
Ö	rgg ACC	Z	ACA TGI	Д	2000		
Q	AG		CA	A BbeI	9909 00 0090 99	Ω.	
>	AC AC	ω. Ω	AG	E		Д	
ω.	CAG GTC 57 I	W	AGO		ĭčA()CT(>	
<u>о</u>	GCCTTCAGTG CGGAAGTCAC ECO57I	W	GCAGCAGCAG CGTCGTCGTC	P G XmaI	CCCGGGACGG	O	?
	000	ڻ ت	99	д Χ		Ι9	- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
<u>ρ</u> ,	0 0 0	S	000 000	Ä	rtg Aac	PS Bsu36I	<i>\ \ \ \ \ \</i>
g O	CAG GTC		TAC	O	AG	дД	≀
1) gene sequence L T (TGACCCAGCC ACTGGGTCGG	S C BssSI	TCGTGTAGCG	o o	CCAGCAGTTG GGTCGTCAAC	K	
gene	TG/ AC	S Bs	TC AG		}	α	
1 (V.)	0 0 0	н	ATC PAG	/ Y KpnI	GGTA CC	z	
gure 4A: V lambda 1 (V.) Q S V	CAGAGCGTGC GTCTCGCACG	Ħ	~ TGTGACCATC ACACTGGTAG	````	TGAGCTGGTA ACTCGACCAT		
re 4A: V lar Q S	3AG CTC	>	TGP	W	AGC	Z	
gure 4,	CAC	·	TG	>	TG	Ω.	

Figure 4A: V lambda 1 (VA1) gene sequence (continued)

GCGGATCCAA CGCCTAGGTT	S E D BbsI	AGCGAAGACG TCGCTTCTGC	V F G TGTGTTTGGC ACACAAACCG		
GATCGTTTTA CTAGCAAAAT	G I. Q	GGGCCTGCAA CCCGGACGTT	T T P P P CACCCCCC		·
AGGCGTGCCG GATCGTTTTA TCCGCACGGC CTAGCAAAT	T I A	TTGCGATTAC	Q H Y T CAGCATTATA GTCGTAATAT	L G MscI	TCTTGGC
AGCGTCCCTC TCGCAGGGAG	SASL	AGCGCGAGCC	Y C Q TTATTGCCAG AATAACGGTC	K L T V Hpai	Ą
GATAACAACC CTATTGTTGG	S G T	AAGCGGCACC AGCGCGAGCC TTCGCCGTGG TCGCGCTCGG	E A D Y AAGCGGATTA TTCGCCTAAT	G G T K	GGCGGCACGA

Ω	AG		CT	н	TT	HI	~ AG
Q	CAGGTCAGAG GTCCAGTCTC	Z	GGCTATAACT CCGATATTGA	\mathbb{X}	ACTGATGATT TGACTACTAA	G S BamHI	TTAGCGGATC AATCGCCTAG
ט }	GTCAC	\Rightarrow	TAZ		GAC	ω _.	, 555 1567
P G SexAI	CAG	Ф	990	니	ACT TGA		TTA AAT
		**		×		ĮΤι	
w (TCA	Ö	999	Д	~ CGA GCT	氏 .	CGT
Ö	,	>	CACA	A BbeI	22222 22525 225255	Z	AAC TG
ω	AGCGGCTCAC TCGCCGAGTG	Ω	CGATGTGGGC GCTACACCCG		AGGCGCCGAA TCCGCGGCTT	ω	AGCAACCGTT TCGTTGGCAA
>	TG AC	Ø	AG	* **	GA	>	TG
Ø	CTTCAG GAAGTC ECO57I	ഗ	AGC ICG	P G Xma I	CATCCCGGGA		300 300
	TTC	E	CTZ	요 汉 :	222		AGC
A	AGCTTCAGTG TCGAAGTCAC ECO57I	•	GTACTAGCAG CATGATCGTC	Ħ	CATCCCGGGA	P S G Bsu36I	CTCAGGCGTG
വ		O		O		д В В	
ام ہو	TGACCCAGCC ACTGGGTCGG	. E+ ,	TCGTGTACGG AGCACATGCC	•	GTACCAGCAG CATGGTCGTC	K	GCAACCGTCC CGTTGGCAGG
(VX2) gene sequence L T (000	SI	TGI	Q H ~~	CCA	Z	ACC TGG
Jene se	PGA	S C BSSSI	PCG	W Y KpnI	STA		SCA
(M2)				3 ~ ≥		W	
oda 2 A	GGT	H	CAT	S	GCT	>	GTG
Figure 48: V lambda 2 Q S A	CAGAGCGCAC GTCTCGCGTG	H	CATTACCATC GTAATGGTAG	1	ATGTGAGCTG TACACTCGAC	Ω	TATGATGTGA ATACTACACT
re 48: '	AGA TCI	Н	ATT TA?	1	TGJ	≯	ATG TAC
Figur	OO		00	≻	A .		T &

Figure 4B: V lambda 2 (VA2) gene sequence (continued)

H≀	ວັດ	r.	TT AA		
E BbsI ~~~~~	GAZ	щ	GT7		
Ø	900 000 000	P V F	rgt \CA		
Q	GCCTGACCAT TAGCGGCCTG CAAGCGGAAG CGGACTGGTA ATCGCCGGAC GTTCGCCTTC		ATACCACCCC GCCTGTGTTT TATGGTGGGG CGGACACAAA		
NTAS LTISGL	TG	T T	ATACCACCCC TATGGTGGGG		
ტ	TAGCGGCCTG ATCGCCGGAC	E	ACC	* .	
	0 0 0 0 0 0 0	E	ACC PGG		
	TAC ATC		AT <i>i</i> TA		
Ĥ	GCCTGACCAT	х н о	I'T AA	() () {	ე ე ე
H	16G	H	CAGCAGCATT GTCGTCGTAA	L G MscI	CGTTCTTGGC
i I	TG2 AC1	O	CAC	Η	TCJ
•	300 300 300	Ø	CAG	>	CGT
Ŋ				E → 1'	
4	0 0 0 0 0	Ö.	LTG	L T HpaI	PAA ATT
E	000	×	TAT ATZ	田田	GT
7.	AACACCGCGA TTGTGGCGCT	D Y Y C	TAT ATA	T K L T HpaI	GAA
-	A L		E A	E	บัต
Ö	CAAAAGCGGC AACACCGCGA GTTTTCGCCG TTGTGGCGCT	Д	ACGAAGCGGA TTATTATTGC TGCTTCGCCT AATAATAACG	Q	GGCGGCGCA CGAAGTTAAC CCGCCGCCGT GCTTCAATTG
W) (G	A	, (C, G, C,		, 1903 1903
K mHI	AAA L'T'I	E H	SAA	Ö	300
K BamHI ~	CA/ GT	D E BbsI ~~	AC(TG(O	900

Figure 4C: V lambda 3 (VA.3) gene sequence

SVAPGQT	SexAI ~~~~~~~ AC CAGGTCAGAC TG GTCCAGTCTG	Y A S	TACGCGAGCT ATGCGCTCGA	A D D	ТТАТGАТGАТ ААТАСТАСТА
Д	SexAI ~~~~~ C CAG G GTC			H	
Ø	3CA CGT	K	raa. Attr	_	IGA!
>	TTC	Д	GA7		1967 1007
W	AGCGTTGCAC TCGCAACGTG	D A L G	GGGCGATAAA CCCGCTATTT	V L V I	TTCTGGTGAT AAGACCACTA
>	TG	山 .	CT		AG
ß	CTTCAG GAAGTC ECO57I	Ø	၁၅၁၂	A F BbeI	~~~~~ 2000000
വ	GCCTTCAGTG CGGAAGTCAC Eco57I	Ω	GCGATGCGCT GGGCGATAAA CGCTACGCGA CCCGCTATTT	Q A P BbeI	CAGGCGCCAG GTCCGCGGTC
ሷ		O .		.	_
L T Q P P S V	TGACCCAGCC ACTGGGTCGG	S S	TCGTGTAGCG AGCACATCGC	K P G XmaI	GAAACCCGGG CTTTGGGCCC
H	TGACC	S C BssSI	TCGTG	×	GAAA(CTTT(
IJ	D D D			O.	
田	GAZ		TAZ	a .	AGC
⊁	AGCTATGAAC TCGATACTTG	K.	CGCGCGTATC GCGCGCATAG	W Y KpnI	ACC
຺ຑ	AGC	A	9 2 9 2 9 2	W Y Q KpnI	GGTACCAGCA CCATGGTCGT

Figure 4C: V lambda 3 (VA3) gene sequence (continued)

Ŋ			GG	Ç		
ß		\GC		l C G	Ø	
N S G				ACZ	TTGTCGCC	E
		?	CCAACAGCGG	GGT	Ωн	
Ŋ	mHI	₹			sq	
O	Bam	2 2 2 2	3GA	CT	шш	
ß		•	GCC	CGC	4	
FI S S			TTTAGCGGAT	AAATCGCCTA	S G T Q A	
P E R			် ပ	້ : ເປັ	E 4	
r-3			CCGGAACGC	GGGCCTTGCG	Q	
щ			GGZ	ည်	Ø	
			CCC	366	•	
Н			_		H	
רם. מיז		,	GCA	CGT	I H	
	I 9	1 1 1 1 1	AG(AGTCCGTA	į н	
ß	Bsu36I	1	CTCAGGCAT	GGAG	E	
Д	Щ		. O	r h		
M M			GTC	CAC	Ø	
0			ACC	rgg	A T A	
S D R			TCTGACCGTC	AGACTGGCA	Z	
			_	•		

GACGAAGCGG CTGCTTCGCC $\mathtt{TGGCGGCGGC}$ ACCGCCGCCG G ෆ O TCAGGCGGAA AGTCCGCCTT Д Ņ AATCGCCGTG TTAGCGGCAC ATATGGTGGG TATACCACCC H H TGGGACTGGT ACCCTGACCA CCAGCAGCAT GGTCGTCGTA 二 Ø Ø ATTATTAG GTTGTGGCGC TAATAATAAC CAACACCGCG \mathcal{O}

T K L T V L G HpaI MscI ACGAAGTTAA CCGTTCTTGG C TGCTTCAATT GGCAAGAACC G

	Ŋ	CAG	Ø	AGCTATGCGA TCGATACGCT	Ŋ	GATGGGCGGC CTACCCGCCG	TTCAGGGCCG	니
	W	CGGGCAGCAG GCCCGTCGTC		TGC	Ŋ	360	0 00 00 00 00 00 00 00 00 00 00 00 00 0	
•	O.	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	×	CTA	\mathbb{Z}	TGG	O CAG GTC	· ы
	•	S S S S S	W	AG		GA		Σ
	വ	AC	Ω.	ည္သင္သ	Z	TG	A Q K F GCGCAGAAGT CGCGTCTTCA	×
	×	GTGAAAAAAC CACTTTTTTG	Ĺτι	CACTTTTAGC GTGAAAATCG	· 日日 O	~~~~~~ CTCGAG GAGCTC	A Q K GCGCAGAAGT CGCGTCTTCA	æ
٠	×	AAA.		TT. BAA	L. E XhoI	~~~ CTC GAG	SCA(C)	E-I
	>	GTC	E-1	CACTTTTAGC GTGAAAATCG		GTCTCGAGTG	A . GCG CGC	ζ,
	团	A.A. T.T	Ŋ		G .	•	Y AC TG	S)
		TGGCGCGGAA ACCGCGCCTT	S G BSPEI	CCTCCGGAGG	Ø	CCTGGGCAGG	A N Y GGCGAACTAC CCGCTTGATG	E
		0000		2000	Q	ຼິ ວິດ ໄດ້ດີ	A J CGAZ	Ø
	Ŋ	TGG		CCT	<u>а</u> .	C CCTGG G GGACC) 	
•	ω.		A	AG LIC	A BstXI	≀	E O D	问
quence	, O	AGT	× , .	AAZ	m m	CCAAGO	0 0 0 0 0 0 0 0	Ω
ene se	, >	TTC	Ö	TGC		CC2 GG1	F TTG AAC	Ø
H1A) g	· }	TGGTTCAGTC ACCAAGTCAG	w	AGCTGCAAAG TCGACGTTTC	民	GCGCCAAGCC CGCGGTTCGG	I F G T TTTTTGGCAC AAAAACCGTG	E
JA S	O L MfeI				>		GACT	Н
chain	Ø₩ }	CAA		AG1	3))))	P CCC 1666	
heavy	>	3TG CAC	×	SAA	ഗ	GCT	I ATT TAA	ELI
Figure 5A: V heavy chain 1A (VH1A) gene sequence	Q	CAGGTGCAAT GTCCACGTTA	>	CGTGAAAGTG GCACTTTCAC	H	TTAGCTGGGT	I I P ATTATTCCGA TAATAAGGCT	V T BstEII
Figure						L	.4 6	

Figure 5A: V heavy chain 1.A (VH1A) gene sequence (continued)

A L	- h	ပ္ပ ပ	E	AC PG		
TG	O	990	>	rg2 AC1		
AAC	3	TGC		GG.		
CACCGCGTAT ATGGAACTGA GTGGCGCATA TACCTTGACT	R W	GCGTTGGGGC	ŭ	CCCTGGTGAC GGGACCACTĢ		
AT	H 2	8 0	F4			• •
AT	C A BssHII	ည က က	E4 .	CA		•
CACCGCGTAT	C Bss	ACGGCCGTGT ATTATTGCGC TGCCGGCACA TAATAACGCG	G Q G Styl	GGCCAAGGCA CCGGTTCCGT		
200	≻	AT	StyI	CA		
CAC		ATT FAA	Ö	200		
	≯	E K				
CA	>	TG	N	TG AAC		
AAAGCACCAG TTTCGTGGTC	H }	ACGGCCGTGT TGCCGGCACA	D K	GGATTATTGG CCTAATAACC		. •
AG	T A EagI	900	Д	SAT		
AA	Н ,	AC		8 5		
TG	Ω	AT	A	TTTATGCGAT AAATACGCTA		
ACCGCGGATG TGGCGCCTAC	臼	AAG TTC	A	000		
Ü Ü Ü		, 1903 1903	≯	TAT		
ACC PGG	Ŋ	raG ATC		TTT AAA		<u>ი</u> ი
	ĸ	ט ט	Įτι		. H ₹	Ą; Ti
SAT 3TA	H	rgc Acg	O	390 300	SSB	CTC
ACC TGC		CC.	Q	AT(TA(S : √	AG
GGTGACCATT CCACTGGTAA	Ŋ	GCAGCCTGCG TAGCGAAGAT CGTCGGACGC ATCGCTTCTA	д О О	GGCGATGGCT CCGCTACCGA	>	GGTTAGCTCA G CCAATCGAGT C
2 0 0 0 0 0	W	90	O	S S		ŏŏ

Figure 5B: V.heavy chain 1B (VH1B) gene sequence

S S	CGGGCGCGAG GCCCGCGCTC	X X S	AGCTATTATA TCGATAATAT	M G	GATGGGCTGG CTACCCGACC	A Q K F Q G R GCGCAGAAGT TTCAGGGCCG CGCGTCTTCA AAGTCCCGGC
Д			•	_		ĬŢ,
V K K P	GTGAAAAAAC CACTTTTTTG	EH .	TACCTTTACC ATGGAAATGG	E W	GTCTCGAGTG CAGAGCTCAC	A Q K GCGCAGAAGT CGCGTCTTCA
×	AA.	ĮT.	CT.	L E XhoI	ı IC(AG(Q CA(
>	GTGZ	E4	TAC(ATG(GTC	8 6 6 6 6 6 6 6 6 6
ា	GAA CTT	H √	ATA	ტ ტ ტ	AGG	Y TAC
Ø	900	S G BSPEI	900	ch	990	N NAAC FTG
G A	CGGCGCGGAA GCCGCGCCTT	1	CCTCCGGATA GGAGGCCTAT	മ	CCTGGGCAGG	T N Y CACGAACTAC GTGCTTGATG
S	AG PC	Ai .	ညီ ပြ	A BstXI	ပ္ပုပ္ပ	တ မွာ ည
S O >	TGGTTCAGAG ACCAAGTCTC	S C K	AGCTGCAAAG TCGACGTTTC	R Q A Bs1	CCGCCAAGCC	I N P N S G G ATTAACCCGA ATAGCGGCGG TAATTGGGCT TATCGCCGCC
EeI	AT IA	:>	FG AC	>	GT	GA CT
Q Mfe	CA	<i>r</i>	AG. TC.	X	ลื่อ เกิด	C C P
>	TG	K V	AA		ACT	N AAC FTG
O.	CAGGTGCAAT GTCCACGTTA	>	CGTGAAAGTG GCACTTTCAC	H W	TGCACTGGGT	I N P ATTAACCCG TAATTGGGC

		A T	ტ	Ω ()	H	O S		
	H.	ATGGAACTGA TACCTTGACT	O	GCGTTGGGGC	>	CCCTGGTGAC GGGACCACTG		
	臼	AA(TT(X	TG(AC(66.7 CC2		•
		0 0 0 0	~	GT	H	CT		
	Σ	AT	HH HH YHH	000	C.	ည်		
	≯	AT IA		\mathcal{O}	H	CA		
		GT	C Bss]	0 0 0 0	ບ H ×	990	•	
	A	CACCGCGTAT GTGGCGCATA	٨.	ATTATTGCGC TAATAACGCG	Styl	GGCCAAGGCA CCGGTTCCGT		
	H) GG	Ħ	LTP VAT	გ	300		
		Z S S	≯ ⊦	AT		88		
٠.	ഗ	AG		ACGGCCGTGT TGCCGGCACA	3	ဗ္ဗဗ ပ		•
	Н	TT	>	CGT	•	TT.		
	ഗ	3C.Z	BagI	300	>	rt? AA1	: •	
nued)	•-	CCAGCATTAG GGTCGTAATC	E E ₹	ACGGCCGTGT TGCCGGCACA	Ω	GGATTATTGG CCTAATAACC		
(conti	H				.			·
ence	Ω	ACCCGTGATA TGGGCACTAT	Ω	TAGCGAAGAT ATCGCTTCTA	Σ	TTTATGCGAT AAATACGCTA		
sedu		TG2	臼	AA(TT(A.	0 0 0 0	•	•
gene	R	900		ည် သည်	×	AT		
/H1B)	Ħ	\CC PGG	ß	rag atc		LTT	•	ტ ე
18 (± .	•	ഥ	T K	⊢ ≀	
chain	Σ	AT		ည်	O	55	SSB	TC
Figure 5B: V heavy chain 1B (VH1B) gene sequence (continued)	HH	GGTGACCATG	H	GCAGCCTGCG CGTCGGACGC	Ω	GGCGATGGC CCGCTACCG	S Z	GGTTAGCTCA
B: V !	V T BStEII	TG? AC1	ഗ	AGC		CG2	>	TT2 AA1
lure 5	BST	GG.	ഗ	GC	O	G G G	. •	GG CC
Ę,								

MluI

×

Ļ

ഗ

Н

ഗ

×

又

Ω

Ω

3

Н

Þ

드 CGACCCAAAC GCTGGGTTTG ACGTCTGGCG TGCAGACCGC GGAAAGCCCT CGAGTGGCTG GCTCACCGAC Н C O 3 ഗ H ~~~~~~ 띠 Е XhoI Д CCTTTCGGGA CTGGTGAAAC TAGCCTGTCC GACCACTTTG ATCGGACAGG Ц S × Ø Ц 凶 S 口 ᠐ CAGCCGCCTG TTTCCGGATT GTCGCCGGAC 2295222552 9900999009 AAAGGCCTAA ĮΤι K Д BSPEI BstXI G Д Д ഗ G Ø H CAGGTGCAAT TGAAAGAAAG ACTTTCTTTC CTGGATTCGC TGGACATGGA GACCTAAGCG ACCTGTACCT S Figure 5C: V heavy chain 2 (VH2) gene sequence 召 Н 団 Н C 3 ₽. MfeI GTCCACGTTA TTGGCGTGGG CCTGACCCTG GGACTGGGAC AACCGCACCC \mathfrak{O} 니 > Ľ G Ц >

CGGACTTTTG TATAGCACCA GCCTGAAAAC ATATCGTGGT TGATAAGTAT ACTATTCATA ATTGGGATGA TAACCCTACT GCTCTGATTG CGAGACTAAC

	•	ra 1t	W	(a) (b)	>	HA		
	H	GTGCTGACTA CACGACTGAT	. 	CGCGCGTTGG	гī	GCACCCTGGT		
	ы	FG.	民	ַ טטי טטי	-	C C C	,	
	•	G G	A II	ອນອນອ	H	AC TG		
	>	GT CA	C A BSSHII	ະ ປ ປ ປ	l			
	_	ပ္ ပ	C B	်ပ္ပံ	ρ Ω į	ပ် ပု		
	>	CA		TT.	Styl	AA		
	Q	AAATCAGGTG TTTAGTCCAC	×	CCTATTATTG GGATAATAAC	νη (() ()	TGGGGCCAAG ACCCCGGTTC		
	Z	ATC	≯.	raj atz	Ŋ	360		
		AA/ ITI		CC:	M	TG(AC(
	X !		H		•			•
	ρά	ATACTTCGAA TATGAAGCTT	Ø	GATACGGCCA CTATGCCGGT	≯	GATGGATTAT CTACCTAATA		
	S Z	TC AG	_	ဗ္ဗဗ္ဗ	Ω	AT		
ଚ	E	CT	H	'AC TG		99	,	
tinue		בדו דאי	Ω	AT:	Σ	AT TP		
(con	Ω				Æ			
Jence	×	ATTAGCAAAG TAATCGTTTC	>	GGACCCGGTG CCTGGGCCAC	7	GCTTTTATGC CGAAAATACG		
e sequ		CA	· · μ	ÖÖ	×	TA		
gen	W	AG		ည္သ	<u>ل</u> تا ·	TT		ບຸ ບ
(VH2)	Н	TT	Δ.	GA		CT	SH.	TCAG AGTC
in 2			-	E E	U		BlpI	
y ch	H) 166	Σ	CA1	Д	ATC FAC	S H ≤	AGC ICG
Figure 5C: V heavy chain 2 (VH2) gene sequence (continued)	H	GCGTCTGACC CGCAGACTGG	Z	TGACCAACA ACTGGTTGT	П	GGCGGCGATG CCGCCGCTAC	>	GACGGTTAG CTGCCAATC
50: V		rc: ₄G2	Ħ	C C C	Ŋ	ÜÜ ÜÜ		GG
gure	R MluI	3C.7	•	GA	O	S S S S S	H	AC. TG
Œ,	MI	ŏŏ	Σ	HK		ט ט		ט ט

TGAAAGGCCG

U

GGTGAGCGCG CCACTCGCGC

GTCTCGAGTG

CCTGGGAAGG

GGACCCTTCC CAGAGCTCAC

CGCGGTTCGG GCGCCAAGCC

TGAGCTGGGT ACTCGACCCA

Figure 5D: V heavy chain 3 (VH3) gene sequence

L V E S G G G L V Q P G G S	AG	A	GA	4
Ŋ	999	R.	TGC ACG	Ś
Ŋ	555	×	TA	_
	CGGGCGGCAG	လ	AGCTATGCGA TCGATACGCT	<i>></i>
<u>ρ</u> ι		70		×
Q	CTGGTGCAAC GACCACGTTG	T F S S Y A	TACCTTTAGC ATGGAAATCG	R Q A P G K G L E W V S A BstxI xhoI
> .	TG	Ţ	TT	L E Xhoi
⊢	TGG	H	ACC	нА
		뇬		O
Q	990		AT.	×
G	200	S G BspEI	0 0 0 0	ליז
ن	ອວວອວວອວວອ	လ မျို	CCTCCGGATT GGAGGCCTAA	•
	•	Æ		H X
ß	TGGTGGAAAG ACCACCTTTC	S C A A	AGCTGCGCGG TCGACGCGCC	A BstXI
田	GAZ CTJ	7	000 000	а
>	STG	Ö	SAC	oc.
Ή H Γ 	TG	.	AGO	
Q L MfeI	AT TA	` ப	TG AC	>
Q Mfe	CA	۰.	TC AG	×
>	GAAGTGCAAT CTTCACGTTA	L R	CCTGCGTCTG GGACGCAGAC	W
匝	AA	H	CCT	Σ
			<u> </u>	

CGCCTATCGC GCGGATAGCG ഗ Ω CGCCGCCGTC ഗ G Ö ß TAATCGCCAT ATTAGCGGTA G

<u>က</u> ပ

GGTTAGCTCA

Figure 5D: V heavy chain 3 (VH3) gene sequence (continued)

S K N T L Y L Q M	ATTCGAAAAA CACCCTGTAT CTGCAAATGA	T A V Y Y C A R W G	ACGGCCGTGT ATTATTGCGC GCGTTGGGGC	D Y W G Q G T L V T	GGATTATTGG GGCCAAGGCA CCCTGGTGAC	
Nspv	TAAGCTTTTT GTGGGACATA GACGTTTACT	Eagl BSSHII	TGCCGGCACA TAATAACGCG CGCAACCCCG	Styl	CCTAATAACC CCGGTTCCGT GGGACCACTG	
F T I S R D N PMlI	TTTTACCATT TCACGTGATA A AAAATGGTAA AGTGCACTAT T	N S L R A E D	ACAGCCTGCG TGCGGAAGAT A TGTCGGACGC ACGCCTTCTA T	G D G F Y A M	GGCGATGGCT TTTATGCGAT G CCGCTACCGA AAATACGCTA C	V S S

BStEII

Figure 5E: V heavy chain 4 (VH4) gene sequence

H		AAAC	
S E		GA	Ē
		CGAGCG	
Д		7)	
×		SAA!	, mm
>		TGGTGAAA	びませいないしない
L V K P		CTG	מט
Б		GGC	じしし
ф		CCG	טיטי
<u>ග</u>		TGGTCCGGGC	A C C A
ß		AG	<u>ر</u> ا
国.		GAA	上上して
L Q I	1	TGCAAGAAAG	し は は は は は は は は は は は は は は は は は は は
fei	111	AAT	4
OΣ	i	\mathbf{c}	な出しいないしませ
>		AGGTG	700
Oi		CAG	ノルご

	Ħ		
	×		
	ഗ		
	Ŋ		
·	Н		
	ഗ		
	ტ		
	G	per	1
		\mathbf{c}	ı
	യ	Bsp	111111
	S V	Bsp	1 1 1
		dsg	1 1 1 1
	>	dsg	111111111111111111111111111111111111111
	Λ I	gsg	
	C H	BSp	1 2 2 2
	T C I	dsg	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	L T C T V	dsg	

AGCTATTATT TCGATAATAA	I G Y
CAGCATTAGC GTCGTAATCG	R Q P P G K G L E W I G Y BstXI xhoi
TTTCCGGAGG AAAGGCCTCC	P. G. K.
ACCTGCACCG TGGACGTGGC	R Q P Bstx
CCTGAGCCTG	M S W

AT.	>
GCT	ĸ
GATTGGCTAT CTAACCGATA	S G S T N Y N P S L K S R V
	×
GTCTCGAGTG CAGAGCTCAC	H
TCC	ഗ
60	Д
CTGGGAAGG GACCCTTCC	z
TGGGAAG	×
CCTG	Z
ဗ ဗ ဗ	H
AGC	S
TCGCCAGCCG AGCGGTCGGC	r
T T' A A'	S
a. 🗀	×
GCT	×
GGAGCTGĠŻ CCTCGACCT	Н

AAAGCCGGGT TTTCGGCCCA CCGAGCCTGA GGCTCGGACT CAACTATAAT GTTGATATTA GCGGCAGCAC CGCCGTCGTG ATTTATTA TAAATAAT

TAGCTCAG

BlpI

Figure 5E: V heavy chain 4 (VH4) gene sequence (continued)

	•					
ß	AAACTGAGCA TTTGACTCGT	Ö	TTGGGGCGGC	T	TGGTGACGGT ACCACTGCCA	
ᆸ	CTG	G	900	T /	GA	
K	AAA(TTT(M	TTGG	>	TGGT	
H.	TG	ЯН	္ ဗ္ဗ္ဟ ဗ္ဗ္ဟ ဗ္ဗ္ဟ	H	C G G	
	GTTTAGCCTG CAAATCGGAC	C A BSSHII	ATTGCGCGCG TAACGCGCGC	EH	CAAGGCACCC GTTCCGTGGG	
F. S	lta aat	C Bs	FGC ACG	G 7.I	77 70 70 70 70 70 70 70 70 70 70 70 70 7	
	GT		ATI TAI	Q StyI	C CAAGG G GTTCC	
Q1	CA GT	Х Х	TT AA	(1)	≀	
Z	CGAAAAACCA GCTTTTTGGT	×	GCCGTGTATT CGGCACATAA	D C	TTATTGGGGC AATAACCCCG	
M M	AAA TTT	>	GTC	<u> </u>	TTG	
ρζ	CGA	A I b	0 0 0 0 0 0 0	≯ 1	TTA	
S NspV	rr cgaa Aa gcit	r A EagI	1	A M D Y W		
EI .	'ACT	E, H	TAC	\mathbf{Z}	TGC	
Ω	GAT	Q ·	GGA	₫:	CGA	
>	GTTGATACTT CAACTATGAA	A	GGCGGATACG CCGCCTATGC		ATGCGATGGA TACGCTACCT	
		Æ.		×		
ഗ	TAG	EH	992	Įτι	LTT	
HHE	CAT	7 T	rga.	ტ	36C'	Ŋ
T I BstEII	GACCATTAGC CTGGTAATCG	S N	GCGTGACGGC CGCACTGCCG	Ω	GATGGCTTTT CTACCGAAAA	ഗ

ഗ 뙤 C ρц 区 × 뙤 Ø C Figure 5F: V heavy chain 5 (VH5) gene sequence ഗ Ø MfeI Ø >

CGGGCGAAAG GCCCGCTTTC GTGAAAAAAC CACTTTTTG. CGGCGCGGAA GCCGCGCCTT GAAGTGCAAT TGGTTCAGAG CTTCACGTTA ACCAAGTCTC

3 ഗ Н لتا S \succ S G BspEI G X Ö **ഗ** Н × П

TTCCTTTACG AGCTATTGGA TCGATAACCT AAGGAAATGC CAAGGCCTAT GTTCCGGATA TCGACGTTTC AGCTGCAAAG GGACTTTTAA CCTGAAAATT

G Σ 3 ~~~~~ XhoI ᄓ Ц C 又 C Д BstXI Σ O 召 3 \mathfrak{O}

CTACCCGTAA GATGGGCATT CAGAGCTCAC GTCTCGAGTG GGACCCTTCC CCTGGGAAGG GCGCCAGATG CGCGGTCTAC TTGGCTGGGT AACCGACCCA

TCTCCGAGCT TTCAGGGCCA AGAGGCTCGA AAGTCCCGGT G O ഥ ഗ Д ഗ ATGGGCAATA TACCCGTTAT ; ;ĸ H ATTTATCCGG GCGATAGCGA CGCTATCGCT ഗ Ω G TAAATAGGCC Щ \succ

			GA	CI		Ŋ			C	CG
Z			TG	AC		_			3.6.6	CCC
0	ŧ		CAZ	GTT		.			TTG	AAC
IJ			CTT	GAA		R	IJ	?	GCG	CGCAACCCCG
>			PAT	ATA		A	SSH.	`	CGC	3CG
A			CGJ	:GCZ		ပ	B	{	'TGC	ACC
H			CCG	299		X			TAT	ATA
			CA	GŢ		_	٠		AT	TA
ß			'AG	TC		_			'GT	CA
Н		•	ATT	TAA		≥;			CAT	GTA
ഗ			₹GC,	CG		A	•		3GC	CG
			AA	TT		H			ACC	$^{\mathrm{TG}}$
×						\cap				ГА
Ò			GA	CT/		:			CGZ	D D
Ø			300	295		ഗ			3AG	CTC
ഗ			AGC	TCG		Ø	•		AGC	CGTCGGACTT TCGCTCGCTA TGCCGGTACA TAATAACGCG
H			$_{ m TT}$	AA		又			AA	TT.
F	Н	?	CCA	GGT		L			CTG	GAC
	EI	~	GA	CT		ഗ			₹GC	rcg
12	Bst	?	GGI	CCF		S			GC7	CGJ
	V T I S A D K S I S T A Y L O W	V T I S A D K S I S T A Y L Q W Bsteii	V T I S A D K S I S T A Y L Q W BstEII	V T I S A D K S I S T A Y L Q W Bstell ~~~~~~~~ GGTGACCATT AGCGCGGATA AAAGCATTAG CACCGCGTAT CTTCAATGGA	V T I S A D K S I S T A Y L Q W Bstell ~~~~~~~~ GGTGACCATT AGCGCGGATA AAAGCATTAG CACCGCGTAT CTTCAATGGA CCACTGGTAA TCGCGCCTAT TTTCGTAATC GTGGCGCATA GAAGTTACCT	V T I S A D K S I S T A Y L Q W Bstell ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	V T I S A D K S I S T A Y L Q W Bstell CCACTGGTAA AAAGCATTAG CACCGCGTAT CTTCAATGGA CCACTGGTAA TCGCGCCTAT TTTCGTAATC GTGGCGCATA GAAGTTACCT S S L K A S D T A M Y Y C A R W G	V T I S A D K S I S T A Y L Q W Bstell CCACTGGCATT AGCGCGATA AAAGCATTAG CACCGCGTAT CTTCAATGGA CCACTGGTAA TCGCGCCTAT TTTCGTAATC GTGGCGCATA GAAGTTACCT S S L K A S D T A M Y Y C A R W G BSSHII	V T I S A D K S I S T A Y L Q W Bstell CCCCCTGTAT AGCGCGATA AAAGCATTAG CACCGCGTAT CTTCAATGGA CCACTGGTAA TCGCGCCTAT TTTCGTAATC GTGGCGCATA GAAGTTACCT S S L K A S D T A M Y Y C A R W G BSSHII	V T I S A D K S I S T A Y L Q W Bstell CCACTGGTAA AAAGCATTAG CACCGCGTAT CTTCAATGGA CCACTGGTAA TCGCGCCTAT TTTCGTAATC GTGGCGCATA GAAGTTACCT S S L K A S D T A M Y Y C A R W G BSSHII GCAGCCTGAA AGCGAGCGAT ACGGCCATGT ATTATTGCGC GCGTTGGGGC

GGCCAAGGCA CCCTGGTGAC CCGGTTCCGT GGGACCACTG CCTAATAACC GGATTATTGG CCGCTACCGA AAATACGCTA GGCGATGGCT TTTATGCGAT

E

<u>ෆ</u>

G

3

Σ

Ø

ᆈ

G

Ω

G

Q (StyI

> V S S BlpI

GGTTAGCTCA G CCAATCGAGT C

Figure 5G: V heavy chain 6 (VH6) gene sequence

Ø

H Ø S Д × >Ы G Д G ഗ Ø Ø MfeI Ø

CGAGCCAAAC GCTCGGTTTG CTGGTGAAAC GACCACTTTG TGGTCCGGGC ACCAGGCCCG GTCCACGTTA ACGTTGTCAG CAGGTGCAAT TGCAACAGTC

ഗ Z ഗ ഗ >S Ω BspEI G ഗ Н ď O, ٠ 🗀 П ഗ П

AGCAACAGCG TCGTTGTCGC TAGCGTGAGC ATCGCACTCG TTTCCGGAGA AAAGGCCTCT ACCTGTGCGA TGGACACGCT CCTGAGCCTG GGACTCGGAC

≥ ~~~~~~ 口 XhoI Ц C K G Д BstXI ഗ O K 3 \mathbf{z} 3 Ø . K

口

GGCGTGGCCT CGAGTGGCTG GCTCACCGAC CCGCACCGGA CAGTCTCCTG GTCAGAGGAC CTGGATTCGC GACCTAAGCG CGGCGTGGAA GCCGCACCTT

GCCACTCGCA CGGTGAGCGT ഗ > Ø TTGCTAATAC AACGATTATG × Ω Z CAAATGGTAT GTTTACCATA 3 × G R T Y Y R S GGCCGTACCT ATTATCGTAG CCGGCATGGA TAATAGCATC 2 ٣ 2 C

Q Fr S	CAGTTTAGCC GTCAAATCGG	Y C A BssHII	TTATTGCGCG AATAACGCGC	G Q G T StyI	GCCAAGGCAC CGGTTCCGTG		
S K N Nspv	~~~~~~ TTCGAAAAAC AAGCTTTTTG	T A V Y Eagl	cggccgrgra Gccgccacar	D X M	GATTATTGGG CTAATAACCC		
(continued)	ACCCGGATAC TGGGCCTATG		CCGGAAGATA	Y A M	TTATGCGATG AATACGCTAC		. * ,
Figure 5G: V heavy chain 6 (VH6) gene sequence (continued) K S R I T I N P BSABI	GAAAAGCCGG ATTACCATCA CTTTTCGGCC TAATGGTAGT	L Q L N S V T	TGCAACTGAA CAGCGTGACC ACGTTGACTT GTCGCACTGG	R W G G D G F BSSHII	CGTTGGGGCG GCGATGGCTT GCAACCCCGC CGCTACCGAA	L V T V S S BlpI	CCTGGTGACG GTTAGCTCAG GGACCACTGC CAATCGAGTC

- Figure 6: oligonucleotides for gene synthesis
- **O1K1** 5'- GAATGCATACGCTGATATCCAGATGACCCAGAG-CCCGTCTAGCCTGAGC -3'
- **01K2** 5'- CGCTCTGCAGGTAATGGTCACACGATCACCCAC-GCTCGCGCTCAGGCTAGACGGGC -3'
- **O1K3** 5'- GACCATTACCTGCAGAGCGAGCCAGGGCATTAG-CAGCTATCTGGCGTGGTACCAGCAG -3'
- **O1K4** 5'- CTTTGCAAGCTGCTGGCTGCATAAATTAATAGT-TTCGGTGCTTTACCTGGTTTCTGCTGGTACCACGCCAG -3'
- **O1K5** 5'- CAGCCAGCAGCTTGCAAAGCGGGGTCCCGTCCC-GTTTTAGCGGCTCTGGATCCGGCACTGATTTTAC -3'
- **O1K6** 5'- GATAATAGGTCGCAAAGTCTTCAGGTTGCAGGC-TGCTAATGGTCAGGGTAAAATCAGTGCCGGATCC -3'
- **O2K1** 5'- CGATATCGTGATGACCCAGAGCCCACTGAGCCT-GCCAGTGACTCCGGGCGAGCC -3'
- **O2K2** 5'- GCCGTTGCTATGCAGCAGGCTTTGGCTGCTTCT-GCAGCTAATGCTCGCAGGCTCGCCCGGAGTCAC -3'
- **O2K3** 5'- CTGCTGCATAGCAACGGCTATAACTATCTGGAT-TGGTACCTTCAAAAACCAGGTCAAAGCCC -3'
- **O2K4** 5'- CGATCCGGGACCCCACTGGCACGGTTGCTGCCC-AGATAAATTAATAGCTGCGGGCTTTTGACCTGGTTTTTG -3'
- **02K5** 5'- AGTGGGGTCCCGGATCGTTTTAGCGGCTCTGGA-TCCGGCACCGATTTTACCCTGAAAATTAGCCGTGTG -3'
- **O2K6** 5'- CCATGCAATAATACACGCCCACGTCTTCAGCTT-CACCACGCCTAATTTTCAGGG -3'
- **O3K1** 5'- GAATGCATACGCTGATATCGTGCTGACCCAGAG-CCCGG -3'
- O3K2 5'- CGCTCTGCAGCTCAGGGTCGCACGTTCGCCCGG-AGACAGGCTCAGGGTCGCCGGGCTCTGGGTCAGC -3'
- O3K3 5'- CCCTGAGCTGCAGAGCGAGCCAGAGCGTGAGCA-GCAGCTATCTGGCGTGGTACCAG -3'

Figure 6: (continued)

- O3K4 5'- GCACGGCTGCTCGCGCCATAAATTAATAGACGC-GGTGCTTGACCTGGTTTCTGCTGGTACCACGCCAGATAG -3'
- O3K5 5'- GCGCGAGCAGCCGTGCAACTGGGGTCCCGGCGC-GTTTTAGCGGCTCTGGATCCGGCACGGATTTTAC -3'
- O3K6 5'- GATAATACACCGCAAAGTCTTCAGGTTCCAGGC-TGCTAATGGTCAGGGTAAAATCCGTGCCGGATC -3'
- **O4K1** 5'- GAATGCATACGCTGATATCGTGATGACCCAGAG-CCCGGATAGCCTGGCG -3'
- O4K2 5'- GCTTCTGCAGTTAATGGTCGCACGTTCGCCCAG-GCTCACCGCCAGGCTATCCGGGC -3'
- **O4K3** 5'- CGACCATTAACTGCAGAAGCAGCCAGAGCGTGC-TGTATAGCAGCAACAACAAAAACTATCTGGCGTGGTACCAG 3'
- **04K4** 5'- GATGCCCAATAAATTAATAGTTTCGGCGGCTGA-CCTGGTTCTGCTGGTACCACGCCAGATAG -3'
- **O4K5** 5'- AAACTATTAATTTATTGGGCATCCACCCGTGAA-AGCGGGGTCCCGGATCGTTTTAGCGGCTCTGGATCCGGCAC-3'
- **O4K6** 5'- GATAATACACCGCCACGTCTTCAGCTTGCAGGG-ACGAAATGGTCAGGGTAAAATCAGTGCCGGATCCAGAGCC -3'
- O1L1 5'- GAATGCATACGCTCAGAGCGTGCTGACCCAGCC-GCCTTCAGTGAGTGG -3'
- O1L2 5'- CAATGTTGCTGCTGCTGCCGCTACACGAGATGG-TCACACGCTGACCTGGTGCGCCACTCACTGAAGGCGGC -3'
- **O1L3** 5'- GGCAGCAGCAACATTGGCAGCAACTATGTG-AGCTGGTACCAGCAGTTGCCCGGGAC -3'
- O1L4 5'- CCGGCACGCCTGAGGGACGCTGGTTGTTATCAT-AAATCAGCAGTTTCGGCGCCCGTCCCGGGCAACTGC -3'
- O1L5 5'- CCCTCAGGCGTGCCGGATCGTTTTAGCGGATCC-AAAAGCGGCACCAGCGCGAGCCTTGCG -3'

Figure 6: (continued)

- **01L6** 5'- CCGCTTCGTCTTCGCTTTGCAGGCCCGTAATCG-CAAGGCTCGCGCTGG -3'
- **O2L1** 5'- GAATGCATACGCTCAGAGCGCACTGACCCAGCC-AGCTTCAGTGAGCGGC -3'
- **O2L2** 5'- CGCTGCTAGTACCCGTACACGAGATGGTAATGC-TCTGACCTGGTGAGCCGCTCACTGAAGCTGG -3'
- **O2L3** 5'- GTACGGGTACTAGCAGCGATGTGGGCGGCTATA-ACTATGTGAGCTGGTACCAGCAGCATCCCGG -3'
- **O2L4** 5'- CGCCTGAGGGACGGTTGCTCACATCATAAATCA-TCAGTTTCGGCGCCTTCCCGGGATGCTGCTGGTAC -3'
- **O2L5** 5'- CAACCGTCCCTCAGGCGTGAGCAACCGTTTTAG-CGGATCCAAAAGCGGCAACACCGCGAGCC -3'
- **O2L6** 5'- CCGCTTCGTCTTCCGCTTGCAGGCCGCTAATGG-TCAGGCTCGCGGTGTTGCCG -3'
- **O3L1** ,5'- GAATGCATACGCTAGCTATGAACTGACCCAGCC-GCCTTCAGTGAGCG -3'
- O3L2 5'- CGCCCAGCGCATCGCCGCTACACGAGATACGCG-CGGTCTGACCTGGTGCAACGCTCACTGAAGGCGGC -3'
- **O3L3** 5'- GGCGATGCGCTGGGCGATAAATACGCGAGCTGG-TACCAGCAGAAACCCGGGCAGGCGC -3'
- **O3L4** 5'- GCGTTCCGGGATGCCTGAGGGACGGTCAGAATC-ATCATAAATCACCAGAACTGGCGCCTGCCCGGGTTTC -3'
- **O3L5** 5'- CAGGCATCCCGGAACGCTTTAGCGGATCCAACA-GCGGCAACACCGCGACCCTGACCATTAGCGG -3'
- O3L6 5'- CCGCTTCGTCTTCCGCCTGAGTGCCGCTAATGG-TCAGGGTC -3'
- **O1246H1** 5'- GCTCTTCACCCCTGTTACCAAAGCCCAG-GTGCAATTG -3'
- Olah25'- GGCTTTGCAGCTCACTTTCACGCTGCCCGG-TTTTTTCACTTCCGCGCCAGACTGAACCAATTGCACCTGGGC-TTTG -3'

Figure 6: (continued)

- O1AH3 5'- GAAAGTGAGCTGCAAAGCCTCCGGAGGCACTTT-TAGCAGCTATGCGATTAGCTGGGTGCGCCAAGCCCCTGGGCAG GGTC -3'
- **O1AH4** 5 '- GCCCTGAAACTTCTGCGCGTAGTTCGCCGTGCC-AAAAATCGGAATAATGCCGCCCATCCACTCGAGACCCTGCCC-AGGGGC -3 '
- **O1AH5** 5 ' GCGCAGAAGTTTCAGGGCCGGGTGACCATTACC-GCGGATGAAAGCACCAGCACCGCGTATATGGAACTGAGCAGCCTGCG -3 '
- **O1ABH6** 5'- GCGCGCAATAATACACGGCCGTATCTTCGCT-ACGCAGGCTGCTCAGTTCC -3'
- **O1BH2** 5 '- GGCTTTGCAGCTCACTTTCACGCTCGCGCCCGG-TTTTTTCACTTCCGCGCCGCTCTGAACCAATTGCACCTGGGC-TTTG -3'
- **O1BH4** 5 '- GCCCTGAAACTTCTGCGCGTAGTTCGTGCCGCC-GCTATTCGGGTTAATCCAGCCCATCCACTCGAGACCCTGCCCAGGGGC -3 '
- **O1BH5** 5 ' GCGCAGAAGTTTCAGGGCCGGGTGACCATGACC-CGTGATACCAGCATTAGCACCGCGTATATGGAACTGAGCAGCCTGCG -3 '
- **O2H3** 5'- CTGACCCTGACCTGTACCTTTTCCGGATTTAGC-CTGTCCACGTCTGGCGTTGGCGTGGGCTGGATTCGCCAGCCGCCTGGGAAAG -3'
- **O2H4** 5'- GCGTTTTCAGGCTGGTGCTATAATACTTATCAT-CATCCCAATCAATCAGAGCCAGCCACTCGAGGGCTTTCCCAGGCGCTGG -3'

- Figure 6: (continued)
- **O2H5** 5'- GCACCAGCCTGAAAACGCGTCTGACCATTAGCA-AAGATACTTCGAAAAATCAGGTGGTGCTGACTATGACCAACAT
- **O2H6** 5'- GCGCGCAATAATAGGTGGCCGTATCCACCGGGT-CCATGTTGGTCATAGTCAGC -3'
- O3H1 5'- CGAAGTGCAATTGGTGGAAAGCGGCGGCGCCT-GGTGCAACCGGCGGCAG -3'
- O3H2 5'- CATAGCTGCTAAAGGTAAATCCGGAGGCCGCC-AGCTCAGACGCAGGCTGCCGCCCGGTTGCAC -3'
- O3H3 5'- GATTTACCTTTAGCAGCTATGCGATGAGCTGGG-TGCGCCAAGCCCCTGGGAAGGGTCTCGAGTGGGTGAG -3'
- O3H4 5'- GGCCTTTCACGCTATCCGCATAATAGGTGCTGC-CGCCGCTACCGCTAATCGCGCTCACCCACTCGAGACCC -3'
- **O3H5** 5'- CGGATAGCGTGAAAGGCCGTTTTACCATTTCAC-GTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAG-3'
- O3H6 5'- CACGCGCGCAATAATACACGGCCGTATCTTCCG-CACGCAGGCTGTTCATTTGCAGATACAGG -3'
- **O4H2** 5'- GGTCAGGCTCAGGGTTTCGCTCGGTTTCACCAG-GCCCGGACCACTTTCTTGCAATTGCACCTGGGCTTTG -3'
- O4H3 5'- GAAACCCTGAGCCTGACCTGCACCGTTTCCGGA-GGCAGCATTAGCAGCTATTATTGGAGCTGGATTCGCCAGCCGC-3'
- **O4H4** 5'- GATTATAGTTGGTGCTGCCGCTATAATAAATAT-AGCCAATCCACTCGAGACCCTTCCCAGGCGGCTGGCGAATCCAGGCG-3'
- **O4H5** 5'- CGGCAGCACCAACTATAATCCGAGCCTGAAAAG-CCGGGTGACCATTAGCGTTGATACTTCGAAAAACCAGTTTAGCCTG -3'
- **O4H6** 5'- GCGCGCAATAATACACGGCCGTATCCGCCGCCG-TCACGCTGCTCAGTTTCAGGCTAAACTGGTTTTTCG -3'

- Figure 6: (continued)
- **O5H1** 5'- GCTCTTCACCCCTGTTACCAAAGCCGAAGTGCA-ATTG -3'.
- **O5H2** 5'- CCTTTGCAGCTAATTTTCAGGCTTTCGCCCGGT-TTTTTCACTTCCGCGCCGCTCTGAACCAATTGCACTTCGGCTTTGG -3'
- **O5H4** 5'- CGGAGAATAACGGGTATCGCTATCGCCCGGATA-AATAATGCCCATCCACTCGAGACCCTTCCCAGGCATCTGGCGCAC -3'
- **O5H5** 5'- CGATACCCGTTATTCTCCGAGCTTTCAGGGCCA-GGTGACCATTAGCGCGGATAAAAGCATTAGCACCGCGTATCTT C -3'
- **O5H6** 5'- GCGCGCAATAATACATGGCCGTATCGCTCGCTT-TCAGGCTGCTCCATTGAAGATACGCGGTGCTAATG -3'
- **O6H2** 5'- GAAATCGCACAGGTCAGGCTCAGGGTTTGGCTC-GGTTTCACCAGGCCCGGACCAGACTGTTGCAATTGCACCTGG-GCTTTG -3'
- **O6H3** 5'- GCCTGACCTGTGCGATTTCCGGAGATAGCGTGA-GCAGCAACAGCGCGGCGTGGAACTGGATTCGCCAGTCTCCTGGGCG-3'
- **O6H4** 5'- CACCGCATAATCGTTATACCATTTGCTACGATA-ATAGGTACGGCCCAGCCACTCGAGGCCACGCCCAGGAGACTG-GCG -3'
- **O6H5** 5'- GGTATAACGATTATGCGGTGAGCGTGAAAAGCC-GGATTACCATCAACCCGGATACTTCGAAAAACCAGTTTAGCCTGC -3'
- **O6H6** 5'- GCGCGCAATAATACACGGCCGTATCTTCCGGGG-TCACGCTGTTCAGTTGCAGGCTAAACTGGTTTTTC -3'
- OCLK1 5 ' GGCTGAAGACGTGGGCGTGTATTATTGCCAGCA-GCATTATACCACCCCGCCGACCTTTGGCCAGGGTAC -3 '
 SUBSTITUTE SHEET (RULE 26)

Figure 6: (continued)

- OCLK2 5'- GCGGAAAAATAAACACGCTCGGAGCAGCCACCG-TACGTTTAATTTCAACTTTCGTACCCTGGCCAAAGGTC -3'
- OCLK3 5'- GAGCGTGTTTATTTTTCCGCCGAGCGATGAACA-ACTGAAAAGCGGCACGGCGAGCGTGGTGTGCCTGCTG -3'
- OCLK4 5'- CAGCGCGTTGTCTACTTTCCACTGAACTTTCGC-TTCACGCGGATAAAAGTTGTTCAGCAGGCACACCACGC -3'
- OCLK5 5'- GAAAGTAGACAACGCGCTGCAAAGCGGCAACAG-CCAGGAAAGCGTGACCGAACAGGATAGCAAAGATAG -3'
- OCLK6 5' GTTTTTCATAATCCGCTTTGCTCAGGGTCAGGG-TGCTGCTCAGAGAATAGGTGCTATCTTTGCTATCCTGTTCG - 3'
- OCLK7 5'- GCAAAGCGGATTATGAAAAACATAAAGTGTATG-CGTGCGAAGTGACCCATCAAGGTCTGAGCAGCCCGGTG -3'
- OCLK8 5'- GGCATGCTTATCAGGCCTCGCCACGATTAAAAG-ATTTAGTCACCGGGCTGCTCAGAC -3'
- OCH1 5'- GGCGTCTAGAGGCCAAGGCACCCTGGTGACGGT-TAGCTCAGCGTCGAC -3'
- OCH2 5'- GTGCTTTTGCTGCTCGGAGCCAGCGGAAACACG-CTTGGACCTTTGGTCGACGCTGAGCTAACC -3'
- OCH3 5'- CTCCGAGCAGCAAAAGCACCAGCGGCGCACGG-CTGCCCTGGGCTGCCTGGTTAAAGATTATTTCC -3'
- OCH4 5'- CTGGTCAGCGCCCCGCTGTTCCAGCTCACGGTG-ACTGGTTCCGGGAAATAATCTTTAACCAGGCA -3'
- OCH5 5'- AGCGGGGCGCTGACCAGCGGCGTGCATACCTTT-CCGGCGGTGCTGCAAAGCAGCGGCCTG -3'
- OCH6 5'- GTGCCTAAGCTGCTCGGCACGGTCACAACG-CTGCTCAGGCTATACAGGCCGCTGCTTTGCAG -3'
- OCH7 5'- GAGCAGCAGCTTAGGCACTCAGACCTATATTTG-CAACGTGAACCATAAACCGAGCAACACC -3'
- OCH8 5'- GCGCGAATTCGCTTTTCGGTTCCACTTTTTAT-CCACTTTGGTGTTGCTCGGTTTATGG -3'

AAACATAAAG TTTGTATTTC

GGATTATGAA CCTAATACTT

ACCCTGACCC TGAGCAAAGC

TCTGAGCAGC

ACTCGTTTCG

TGGGACTGGG

Figure 7A: sequence of the synthetic Ck gene segment

O GCGATGAACA CGCTACTTGT AACTTTTATC TTGAAAATAG N A L Q S G ACAACGCGCT GCAAAGCGGC CGTTTCGCCG S GCACCTATTC CGTGGATAAG 回 Ω വ ß TGTTGCGCGA TTTCCGCCGA AAAGGCGGCT CCTGCTGAAC GGACGACTTG AGCAAAGATA TCGTTTCTAT Z Ω щ ᆸ ₽ × Н Ω Ω TGGAAAGTAG GCGTGGTGTG CGTGTTTATT GCACAAATAA CGCACCACAC ACCTTTCATC CGAACAGGAT GCTTGTCCTA Ω > × Λ·Λ Õ × വ 더 > ഗ Н CTGCTCCGAG GGCACGGCGA AACAGCCAGG AAAGCGTGAC GACGAGGCTC CCGTGCCGCT TIGICGGICC TITCGCACTG S GAAAGTTCAG H CTTTCAAGTC I. K > д . EH > വ Ø × ن 回 Ø CGCGTGAAGC GCGCACTTCG GCATGCCACC CGTACGGTGG TGACTTTTCG ACTGAAAAGC Ŋ O > 臼 × ഗ BsiWI 22222 . W . 모

Figure 7A: sequence of the synthetic Ck gene segment (continued)

GGTGACTAA? TGAGCAGCCC CATCAAGGTC <u>ෆ</u> Ø 田 GCTTCACTGG CGAAGTGACC 团 TGTATGCGTG ACATACGCAC

EA U **1** Z ഥ

S

SphI StuI

ACG CTGATAAGCA GTGGCGAGGC

CACCGCTCCG GACTATTCGT AGAAAATTAG TCTTTTAATC

Figure 7B: sequence of the synthetic CH1 gene segment

S S Ø Н Д بعآ > S Д G 又 E SalI S Ø BlpI

AAGGCGACCG AGGCTCGTCG TCCGAGCAGC TICCGCIGGC GGTTCGCACA CCAAGCGTGT CTGGTTTCCA GCTCAGCGTC GACCAAAGGT CGAGTCGCAG

GGCTGCCTGG TTAAAGATTA CCGACGGACC AATITCIAAI 又 H O
 O
 CGCCGCCGTG CCGACGGGAC GGCTGCCCTG Ø Ø AAAAGCACCA GCGGCGCAC ග · ပ ഗ TTTCGTGGT Е ഗ 又

CTGACCAGCG GACTGGTCGC Е CAGCGGGCG GICCCCCCC G ഗ TGAGCTGGAA Z GGTCAGTGGC ACTCGACCTT 3 ഗ > CCAGTCACCG Н > TTTCCCGGAA AAAGGGCCTT 띠 Д ſτι

GTATAGCCTG CATATCGGAC ഗ CGTCGCCGGA GCAGCGGCCT ഗ ഗ ഗ GTGCTGCAAA CACGACGTTT Ø Н CTTTCCGGCG GAAAGGCCGC Д GCGTGCATAC CGCACGTATG 田 >

TTAGGCACTC AGACCTATAT TCTGGATATA Ø AATCCGTGAG H G GAGCAGCAGC CTCGTCGTCG ഗ S ഗ TCGTCGCAAC ACTGGCACGG TGACCGTGCC > AGCAGCGTTG ഗ

Figure 7B; sequence of the synthetic CH1 gene segment (continued)

K V D CAAAGTGGAT S N T CGAGCAACAC GCTCGTTGTG ٠ W വ AACCATAAAC × 工 Z AACGTTGCAC TTGCAACGTG z ပ

PKSEF* ECORI

团

ScoRI HindIII

AACCGAAAAG CGAATTCTGA TAAGCTT TTGGCTTTTC GCTTAAGACT ATTCGAA

Figure 7C: functional map and sequence of module 24 comprising the synthetic CA gene segment (huCL lambda)

47 / 204

Figure 7C: functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda) (continued)

CCCCGCCTGT	DraIII ~~~ AAAGCCGCAC TTTCGGCGTG	GGCGAACAAA CCGCTTGTTT	CCGTGACAGT GGCACTGTCA	GAGACCACCA CTCTGGTGGT
CATTATACCA CC GTAATATGGT GG	MscI ~~~~~~ TGGCCAGCCG AA ACCGGTCGGC TT	AAGAATTGCA GG TTCTTAACGT CC	TATCCGGGAG CC ATAGGCCCTC GG	GGCGGGAGTG GA CCGCCCTCAC CT
TTGCCAGCAG	HpaI ~~~~~~ GT TAACCGTTCT CA ATTGGCAAGA	CCGAGCAGCG	TAGCGACTTT ATCGCTGAAA	GCCCCGTCAA CGGGGCAGTT
CGGATTATTA GCCTAATAAT	Hp ~~~ GGCACGAAGT CCGTGCTTCA	GCTGTTTCCG CGACAAAGGC	TGTGCCTGAT ACÁCGGACTA	GCAGATAGCA CGTCTATCGT
BbsI ~~~~~ GAAGACGAAG CTTCTGCTTC	GTTTGGCGGC	DrallI ~~~~~ CGAGTGTGAC GCTCACACTG	GCGACCCTGG	GGCCTGGAAG CCGGACCTTC
' स ः :	51	101	151	201

Figure 7C: functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda) (continued)

CTATCTGAGC	GATAGACTCG	
CGGCCAGCAG	GCCGGTCGTC	
AACAAGTACG	TTGTTCATGC	
ACAAAGCAAC	TGTTTCGTTG	
CACCCTCCAA	GTGGGAGGTT	
251		

RleAI

		٠	-		
CGGTCCAGTG	GACTGCGGAC TCGTCACCTT CAGGGTGTCT TCGATGTCGA CGGTCCAGTG	CAGGGTGTCT	TCGTCACCTT	GACTGCGGAC	
GCCAGGTCAC	CTGACGCCTG AGCAGTGGAA GTCCCACAGA AGCTACAGCT GCCAGGTCAC	GTCCCACAGA	AGCAGTGGAA	CTGACGCCTG	301
		? ? ? ? ?			

~~~~~~	GGGG AGCACCGTGG AAAAAACCGT TGCGCCGACT GAGGCCTGAT	CCCC TCGTGGCACC TTTTTGGCA ACGCGGCTGA CTCCGGACTA	
	TGCGCCGACT	ACGCGGCTGA	-
	AAAAAACCGT	TTTTTGGCA	
•	AGCACCGTGG	TCGTGGCACC	
	GCATGAGGGG	CGTACTCCCC	
	351		
SHF	FT (F	2111 F	261

StuI

Sphi ~~~~~ 401 AAGCATGC TTCGTACG Figure 7D: oligonucleotides used for synthesis of module M24 containing CA gene segment

## M24: assembly PCR

M24-A: GAAGACAAGCGGATTATTATTGCCAGCAGCATTATACCACCCCGCCTGTGTTTGGCGGCG-GCACGAAGTTAACCGTTC

M24-B: CAATTCTTCGCTGCTCGGCGGAAACAGCGTCACACTCGGTGCGGCTTTCGGCTGGCCAA-

, GAACGGTTAACTTCGTGCCGC

M24-C: CGCCGAGCAGCGAAGAATTGCAGGCGAACAAAGCGACCCTGGTGTGCCTGATTAGCGACT-

TTTATCCGGGAGCCGTGACA

GCCACTGTCACGGCTCCCGG

M24-E: CCACACCCTCCAAACAAAGCAACAAGTACGCGGCCAGCAGCTATCTGAGCCTGACGC

CTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTG

M24-F: GCATGCTTATCAGGCCTCAGTCGGCGCAACGGTTTTTTCCACGGTGCTCCCCTCATGCGT-

GACCTGGCAGCTGTAGCTTC

Д

	₽	
VH3-VK2	ŢĽ	
ragment	IJ	Sant
hain fi	니	
ingle-cha	Д	
nsensus sin	IJ	
the co	Ы	
encoding the	Æ	
gene er	H	
synthetic	Ø	
of the s	Н	
ion map	₽	
restricti	വ	
nce and r	O	
: seducr	×	
Figure 8:	Σ	

TCTTCACCCC	AGAAGTGGGG
TTACCGTTGC	AATGGCAACG
ACTGGCACTC	TGACCGTGAG
GCACTATIGC	GTGATAAC
ATGAAACAAA	TACTTTGTTT C

មា ស មា		GAAAGCGGCG
Q L V MfeI	111111	GCAATTGGTG
D E		AAGATGAAGT
A D Y K		GCCGACTACA
V T K		TGTTACCAAA

Н

AAA GCCGACTACA AAGATGAAGT GCAATTGGTG GAAAGCGGCG ITTT CGGCTGATGT TTCTACTTCA CGTTAACCAC CTTTCGCCGC  , V Q P G G S L R L S C A A S BSPEI	GAAAGCGGCG CTTTCGCCGC	A S Bspei
ATGAAGT GCAATTGGTG TACTTCA CGTTAACCAC S L R L S C	GAAA	Æ
ATGAAGT GCAATTGC TACTTCA CGTTAACC S L R L S	STG	Ö
ATGAAGT GCAAT TACTTCA CGTTA S L R L	ACC	လ
ATGAAGT G TACTTCA C S L R	CAAT	ij
ATGAAG TACTTC S L	F A C	R.
ATG TAC S	AAG	H
	ATG	മ
	ACA TGT	U
ACA TGT G	ACT	ρı
ACTACA TGATGT P G	9999	O
GCCGACTACA CGGCTGATGT Q P G	AA	>
AA GCCGACTACA TT CGGCTGATGT V Q P G	$o_{\omega}$	H
00 1	TTA	G
TGTTACCAAA GCCGACTACA ACAATGGTTT CGGCTGATGT G G L V Q P G	TG	Ŋ

GCGCCGGAGG	CAGACTCGAC	CCGTCGGACG	CA CGTTGGCCCG	CGCCGGACCA
CGCGGCCTCC	GTCTGAGCTG	GGCAGCCTGC	GT GCAACCGGGC	GCGGCCTGGT
	•			

G	
t X I	
A Bst	
OI .	
ĸ	
>	
<b>Z</b>	
ß	
<b>Σ</b>	
Ø	
≯	
တ	
Š	
Ĺτι	
EH.	
F T	
GBSp	

GGATTTACCT TTAGCAGCTA TGCGATGAGC TGGGTGCGCC AAGCCCCTGG CCTAAATGGA AATCGTCGAT ACGCTACTCG ACCCACGCGG TTCGGGGACC

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2 (continued) വ C U വ G S വ > XhoI ы C

GGCAGCACCT CCGTCGTGGA CGGTAGCGGC GCGCGATTAG CTCACCCACT CGCGCTAATC GAGTGGGTGA GAAGGGTCTC CTTCCCAGAG

Nspv Z Ω PmlI K ß Н H ابتا K Ö × > ល Ω Ø ×

×

TGATAATTCG ACTATTAAGC GGTAAAGTGC CCATTTCACG GGCCGTTTTA CCGGCAAAAT TAGCGTGAAA TAATACGCCT ATCGCACTTT ATTATGCGGA

EagI 1111 Н Ω 团 K K Н വ Z Σ Ø . H Н Н Z NspV

AAGATACGGC TTCTATGCCG CTGCGTGCGG GACGCACGCC TTACTTGTCG AATGAACAGC TGTATCTGCA ACATAGACGT AAAAACACCC TTTTTGTGGG

Ω Σ 4 ſτι U Ω C G 3 ĸ A

Eagl BssHII

GCGATGGATT TGGCTTTTAT TGCGCGCGTT GGGGCGGCGA CGTGTATTAT

CGCTACCTAA GG G S	TGGCGGTTCT ACCGCCAAGA	S D I ECORV	GTTCCGATAT CAAGGCTATA	д Б	GGCGAGCCTG CCGCTCGGAC	N G	CAACGGCTAT GTTGCCGATA
igure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2 (continued GCACATAATA CGCTACCTAA CCCCGCCGCT ACCGAAAATA CGCTACCTAA Y W G Q G T L V T V S S A G G G S S S A G G G S S S YI	GCTCAGCGGG	_ອ	GGCGGTGGTG CCGCCACCAC	T D	AGTGACTCCG TCACTGAGGC	L H S	TGCTGCATAG ACGACGTATC
tic gene encoding the cons CCCCGCCGCT V T V S	GTGACGGTTA CACTGCCAAT	დ ტ	CGGTGGTTCT GCCACCAAGA	S L	TGAGCCTGCC ACTCGGACGG	S Q S	AGCCAAAGCC TCGGTTTCGG
riction map of the synthe ACGCGCGCGCAA G T L	A AGGCACCCTG T TCCGTGGGAC	ტ ტ გ	GGAGCGGTGG CCTCGCCACC	Q S P L Banii	CAGAGCCCAC GTCTCGGGTG	C R S PstI	CTGCAGAAGC GACGTCTTCG
Figure 8: sequence and restriction map of the synthetic gene encoding the conscnsus single-chain fragment VH3-VK2 (continued) GCACACATAATA CGCTACTAA GCACACACACACACATA CGCTACATAATA CGCTACTAAAYAATA CGCTACCTAAAYAACGCGCGCAAAATA CGCTACCTAAAYAACGCGCGCAAAATA CGCTACTAAAYAACGCGCGCAAAATA CGCTACTAAAYAAACGCAAAATA CGCTACTAAAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ATTGGGGCCA	_ອ ອ ອ	GGCGGCGGTG	V M T ECORV	CGTGATGACC GCACTACTGG	A S I S	CGAGCATTAG GCTCGTAATC

it VH3-Vk2 (continued) Q L L ASEI	CGCAGCTATT GCGTCGATAA	አ ፫ተ የ	CGTTTTAGCG GCAAAATCGC	V E A	TGTGGAAGCT ACACCTTCGA	E G	CCCCGCCGAC
restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 (continued) ${ m D}$ ${ m W}$ ${ m Y}$ ${ m L}$ ${ m Q}$ ${ m K}$ ${ m P}$ ${ m G}$ ${ m Q}$ ${ m S}$ ${ m L}$ ${ m L}$ ${ m RpnI}$	TCAAAAACCA GGTCAAAGCC AGTTTTTGGT CCAGTTTCGG	Ω	GIGCCAGIGG GGICCCGGAI CACGGICACC CCAGGGCCIA	F T L K I S R	TTTACCCTGA AAATTAGCCG AAATGGGACT TTTAATCGGC	соонит	TTGCCAGCAG CATTATACCA AACGGTCGTC GTAATATGGT
Figure 8: sequence and restriction map of the synthetic ${ m N}$ ${ m Y}$ ${ m L}$ ${ m KprI}$	AACTATCTGG ATTGGTACCT TTGATAGGA I	I Y L G S N R Asel	TTATCTG GGCAGCAACC AATAGAC CCGTCGTTGG	G S G S G T D BamHI	GATC CGGCACCGAT CTAG GCCGTGGCTA	E D V G V Y Y Bbsi	GAAGACGIGG GCGIGIATIA CTICIGCACC CGCACATAAI

ישמור כי שלמנייני פוים וכשניוניתיו וויפף כו נויר שליינירני שלייר ביירטפווים נויר בסיישניים שלווכוו וו פשווכוו עווש-ער ב (בסוינוו			•		
-21. 41.2.	Įщ	ECORI	1 2 -	TTC	7
الد العكاد	臼		111	GAA	上上し
שורירום	H	BsiWI	1 1	ACG	ププロ
110 000110	ĸ	Bs	ì. ! !	ACGTACGGAP	びるる。日田といび日本とで日
	×			AA	FF
2	Н			AATT	S S THI
	阳			TTGAAATTAA	マ マ ク 中 中 中 ウ ク ク
	>				
	<b>×</b>			GAA	THU
2011	H			GGTACGAAAG	しませいじまないこ
	ט				
	Ö	H	1	CAG	つ上で
111111	Ö	MscI	1111	rggc	じししへ
	Ţτι		ſ	CTTTGGCCAG	しまじじしてなるなじ



SUBSTITUTE SHEET (RULE 26) 56 / 204

EOI	<b>&gt;</b>	>	≥	>	>	≥	≥	≥	≷	≥	≥	≥	≥
102	<b>→</b>	>	>	>	>	>	>	>	>	>-	>	>	>
101												Ω	
100E	·Σ	i	ı	ı	1	ı	ı	ı	1	1	ı	t	1
100D	Ε,	t	1	ı	1	1	ı	t	1	1	1	1	1
200 L	ı	1	1	1	1	t	ı	1	1	1	ı	ı	1
1008	⋖	ı		1	ı	. 1	ı	t	ı	1	1	t	ı
A001	>	t.	ı	1	ı		t	ı	.1	;	ι,	t	4
001	ட	· >-	エ	I	$\propto$	>	ص	ı	S	$\checkmark$	⋖	Ω	Σ
66	9	Z	≥	>	⋖	9	0	œ	Z	S	⋖	>	≥
86	Ω	Σ	ш	_	$\leq$	H	⋖	<del> </del>	$\propto$	Ω	ட	0	ш
<i>26</i>	Ŋ	$\checkmark$	<b>—</b>	ш		<b>—</b>	ш	-	Z	G	<b>—</b>	۵.	S
96	9	9	$\propto$	$\propto$	ட	Z	Z	<	<b>&gt;</b> -	>	$\prec$	V	0
<i>S6</i>	≥	ட	エ	>	$\checkmark$	≥	-	H	≥	S	Ċ	>	Σ
<b>7</b> 6	$\simeq$	$\propto$	~	$\propto$	$\propto$	$\propto$	$\propto$	œ	$\propto$	œ	<u>~</u>	$\propto$	$\propto$
£6	⋖	4	⋖	⋖	4	4	4	⋖	⋖	4	⋖	⋖	⋖
<i>76</i>	S	S	ပ	ပ	ပ	ပ	ပ	ပ	ပ	C	ပ	ပ	<b>O</b> .
⋖		8											

Figure 10: Sequence analysis of initial libraries

<u>≥</u>	≷	≷	≥	≥	≥	≥	≥	≥	≥	≥
>	>	>	>	>	>	>	>	>	>	>
		Ω		Ω	Ω	Ω	Ω		Ω	
Σ	Σ	ட	Σ	Σ	ш	ட	Σ	Σ	Σ	Σ
>		$\checkmark$	>	۵	_	エ	<b>—</b>	>		ص_
Σ	>	$\propto$	$\leq$	Σ	S	_	G		щ	Ŋ
$\vdash$	$\leq$	⋖	0	ய	≥	>		<b>—</b>	Z	0
>	Ġ	エ	ď	· 止	エ	Z	$\simeq$	ш	۵	<u>×</u>
	S	щ	ш	Z	ш	>	Ż		$\checkmark$	LL.
LL	⋖	>	≥	S.	S	Z		ட	Ω	<b>—</b>
エ	$\propto$	Σ	ட	~	Ō	≥	Σ	ш	Z	<b>-</b>
>	_	0	S	>-	S	۵.	٩	S	<b>—</b>	S
ш.	<	Z	0	۵	G	Z	$\times$	G	≥	⋖
>	Σ	$\checkmark$	<b>-</b>	>	*	œ	Σ	$\leq$	S	>
$\propto$	$\simeq$	$\propto$	$\propto$	$\propto$	$\propto$	$\propto$	$\propto$	$\propto$	œ	$\propto$
4	⋖	4	⋖	⋖	` <b></b>	⋖	⋖	⋖	⋖	⋖,
ပ	ပ	ပ	ပ	ပ	ပ	ن	ပ	C	ပ	C

Figure 11: Expression analysis of initial library





Figure 12: Increase of specificity during the panning rounds



Figure 13: Phage ELISA of clones after the 3rd round of panning



Clone Number

Figure 14: Competition ELISA



- No Inhibition
- Inhibition with BSA
- □ Inhibition with Fluorescein

reguency	1	ന	<u></u>	~	_	.,—	· <del></del>	2		<del></del>	-		<b>.</b>	<del></del>	_	· —
E01	≥	≥.	≥	≥	≥	≥	≷	>	≥	≥	≥	≥	≥	≥	≥	≥
105	>	>	>	>	>	>	>	>-	>	>	>	>	>	>	>	>_
101		Ω			Ω									Ω		
JOOL	ட	щ	ш	ட	سا	Σ	ய	ய	ட	щ	Щ	ட	ட	ட	щ	ш.
<i>α001</i>	æ	$\propto$	8	$\propto$	Š	O	<b>'</b> >	$\leq$	>	8	~	∝		0	$\propto$	$\propto$
2001	ட	$\propto$	工	~	Z		⋖	>	$\leq$		Z	۵	$\leq$	<u>.</u>	⋖	S
100B	$\propto$	Σ	$\propto$	$\checkmark$	$\checkmark$	ட		$\vdash$	>	Σ	Σ	~	$\propto$	∝	ட	ட
₩001	م	¥	نـ		≷	Ś	¥	S	ج	~	$\propto$	⋖	¥	۵	S	<b>—</b>
001	Z	~	I	~	$\leq$	م		>	S	<u>~</u>	Ŋ	ட	ග	<b>&gt;</b> -	~	>
66	0	$\leq$	2	$\leq$	Σ	I	ட	$\propto$	œ	≥	2	$\checkmark$	¥	<b>—</b>	$\propto$	0
86	Σ	O'	$\checkmark$	$\propto$		>	Σ	工	Σ	S	~	$\checkmark$	エ	<u> </u>	$\leq$	$\leq$
	Σ	$\leq$	G	Σ	$\checkmark$	ш	م	ட	<b>—</b>	$\propto$	ف.	<b>×</b>	>	エ	<b>—</b>	<u>ا</u>
96	$\propto$	S	Z	¥	$\propto$	· ·	<u>~</u>	$\checkmark$	¥	$\checkmark$	Z	ග	Σ	$\leq$	≥	$\checkmark$
<i>S6</i>	$\leq$	$\simeq$	$\propto$	$\propto$	>		$\propto$	<u>~</u>	~	$\leq$	~	$\checkmark$	$\propto$	œ	$\propto$	$\preceq$
<i>t</i> 6	<u>_</u>	$\propto$	$\propto$	$\propto$	$\propto$	~	$\propto$	$\propto$	$\propto$	$\simeq$	$\propto$	$\propto$	$\propto$	$\propto$	$\propto$	$\propto$
£6	⋖	⋖	⋖	∢	4	⋖	⋖	⋖	⋖	4	4	4	⋖	4	⋖	<u> </u>
76	C	ပ	ပ	ပ	ပ	ပ	ပ	ر ا	ပ	ပ	ပ	ပ	ပ	ن	ပ	ر ک

PCT/EP96/03647

Figure 16: Purification of fluorescein binding scFv fragments



WO 97/08320 PCT/EP96/03647

Figure 17: Enrichment factors after three rounds of panning



Figure 18: ELISA of anti-ESL-1 and anti-eta-estradiol antibodies



WO 97/08320 PCT/EP96/03647

Figure 19: Selectivity and cross-reactivity of HuCAL antibodies



33333333333 103 105 >>>>>>>>>> 101  $\ \sqcap \ \, \supseteq \ \, \sqcap \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \ \, \square \$ 100E 100D OXXII -  $\times$  > - -  $\sim$   $\sim$ J001  $\times \times \times \times \times \times \times$  $i \times \succ \times \times \times$ **4001** M.S.E. +Z-O≥I 1 H O H K ∑ A001 100 Q L Z K D J L T Z Z J Z 66  $\mathbb{Z}$   $\mathbb{Z}$   $\mathbb{Z}$   $\mathbb{Z}$   $\mathbb{Z}$   $\mathbb{Z}$   $\mathbb{Z}$   $\mathbb{Z}$   $\mathbb{Z}$   $\mathbb{Z}$   $\mathbb{Z}$   $\mathbb{Z}$   $\mathbb{Z}$ 86 16 96  $\vdash Z \times \succ > Z - \times \leq Z \times Z$ 96 **76 CCCCCCCCCCC** 4444444444 63 0000000000000

Frequency	4	က	2	-	<del></del>	
103	3	≥	3	3	>	≥
105	>	>	>	>	>	>
101				Ω		
100E	ய	щ	ட	ட	ட	ட
100D	⋖	O	O	≥	≥	O
J001	_	Σ	Σ	<b>—</b>	$\checkmark$	Σ
1008	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	Σ	O
A001	~	O	Z	Σ	_	$\propto$
100	$\checkmark$	≥	$\propto$	≥	≃.	S
66	A	Ø	V	A	<u>~</u>	⋖
86	O	工	>	9		<u>«</u>
	$\checkmark$	œ	$\checkmark$	œ	مـ	×
96	_	Z	>	<u>-</u>	<b>~</b>	œ
<i>9</i> 6	>	>	>-	>-	<u>.</u> œ	>-
<b>⊅</b> 6	$\propto$	æ	$\propto$	œ	œ	œ
63	V	Ø	4	A	⋖	۷
76	$\overline{\Box}$	ر )	$\mathcal{C}$	ري	ن	ر

Frequency	16	_	<b>-</b>	<b>-</b>		<b>-</b>		<b></b>
103	3	≥	≥	3	3	≥	>	≥
105	>	>	>	>	>	>	>	>-
101		Ω	0	Ω	٩			_
JOOL	ட	Σ	ட	Σ	Σ	ட	Σ	ц.
100D	工	م	O	≥	>	S	≥	≥
J001	9	۵	>	工	工	O	ш	>
100B	$\checkmark$	>	≥	エ		<del>-</del>	Z	≥
A001		S	>-	۵	8	ட	ш	ட
100	×	Z	Z	$\checkmark$	V	O	<del></del>	
66	S	ш.	0	_	Ö	S	O	_
86	<u>~</u>	Ω		>-	ய	Z	ц.	<del></del>
<b>Z</b> 6	>	<u>~</u>	0	4		工	工	م
96	$\propto$	≥	$\forall$	O		≥		≥
96	O	1	Σ	_	$\propto$	S	>	
<b>7</b> 6	$\propto$	~	$\alpha$	α.	œ	$\propto$	$\propto$	$\propto$
63	A	4	4	⋖	⋖	⋖	⋖	Α
76	ب	ပ	ں	ں	ں	ں	ں	ن

```
33333333333
   105
 101
   100E
   000 L
100Ca
   · K K K K L L K K ≷ K
J001
1008
   1 > N - T - > K O X 1 K
   · # X 4 ≥ ∑ ≥ ⊢ I N · Q
A001
   占 SSGSDRKVXFK
 001
   TOSYA>TSYTET
   86
   らひょりょ ほうドー Rー ほ
 Z6
   LLJOTZ \succ L \lor S \succ L
 96
   9 d - m z m d d x к d d
 96
   76
   4444444444
 63
   0000000000000
```

Figure 24: Sequence analysis of BSA binders

Frequency	2	_	~~	_	_	
103	>	≥	≥	3	≥	≷
105	>-	>	>	>	>	>
101		Ω	0			
100E	Σ	ட	Σ	Σ	Σ	ட
100L	>	~	œ	O	>-	ட
1000	>_	ட	>	S	≥	エ
100B	۵	>	>	≥	z	<b>—</b>
A001	_	z	ш	S	مـ	ب
001	⋖	>-	Σ	_	Ø	۵
<b>6</b> 6	>-	Σ	Q	œ	≥	$\checkmark$
86	ட	>	ш	>	œ	ட
<b>Z</b> 6	9	<b>—</b>	ட	ш	S	O
96	O	ட	ய	$\checkmark$	Δ_	<b>O</b> .
<i>9</i> 6		>	>	w.	<b>&gt;</b>	
<b>\$</b> 6	α.	æ	œ	æ	خ	œ
63	Ø	A	Ø	A	⋖	⋖
<i>7</i> 6	<del>ن</del>	ں	ں	ر ا	ں	ں

**S**tll

phoA

lox' site

ompA Xbal BgIII @ lox site lox site ColEI Ext2 origin p15A module -Aatll cat Jac b/o pCAL system Nhel fl ori BsrGI gIII ss Pacl\ |-| Ipp-Terminator Fsel (His, myc) Hind||7 tails domains module IMP-Figure 25: modular pCAL vector system functions lacI effector (IL2) l long SUBSTITUTE SHEET (RULE 26)

WO 97/08320 PCT/EP96/03647

Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

unique restriction site	Isoschizomers
Aatll	1
Afill	Bfrl, BspTl, Bst981
Ascl	1
Asel	Vspl, Asnl, PshBl
BamHI	Bstl
Bbel	Ehel, Kasl, Narl
Bbsl	BpuAl, Bpil
Bglll	I
Blpl	Bpu1102l,Celll, Blpl
BsaBl	Maml, Bsh1365l, BsrBRl
BsiWl	Pfl23II, SpII, SunI
BspEl	AccIII, BseAI, BsiMI, Kpn2I, Mrol
BsrGl	Bsp1407l, SspBl
BssHII	Paul
BstEll	BstPl, Eco91l, EcoO651
BstXI	
Bsu36l	Aocl, Cvnl, Eco81l
Dralll	./
DsmAl	9
Eagl	BstZl, EclXl, Eco52l, Xmalll
Eco57l	
Eco01091	Drall
EcoRI	
EcoRV	Eco32I
Fsel	
HindIII	
Hpal	/
Kpni	Acc65l, Asp718l
Mlul	
Mscl	Ball, MluNl

WO 97/08320 PCT/EP96/03647

Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

unique restriction site	Isoschizomers
Muni	Mfel
Nhel	1
Nsil	Ppu10l, EcoT22l, Mph1103l
NspV	Bsp1191, BstBl, Csp451, Lspl, Sful
Pacl	
Pmel	1
PmII	BbrPl, Eco72l, PmaCl
Psp5II	PpuMI
Pstl	1
Rsrll	(Rsril), Cpol, Cspl
SanDI	1
Sapl	1
SexAl	/
Spel	1
Sfil	1
Sphl	Bbul, Pael,Nspl
Stul	Aatl, Eco147l
Styl	Eco130l, EcoT14l
Xbal	BspLU11II
Xhol	PaeR7I
Xmal	Aval, Smal, Cfr9l, PspAl

Figure 26: list of pCAL vector modules

WO 97/08320		,		. 0.,2.,
reference	Skerra et al. (1991) Bio/Technology 9, 273-278	Hoess et al. (1986) Nucleic Acids Res. 2287-2300	see M2	Ge et al., (1994) Expressing antibodies in E. coli. In: Antibody engineering: A practical approach. IRL Press, New York, pp 229-266
templațe	vector pASK30	(synthetic)	(synthetic)	vector plG10
sites to be inserted	Aatll	lox, BgIII	lox', Sphl	none
sites to be removed	2x Vspl (Asel)	2x Vspl (Asel)	none	Sphl, BamHl
functional element	lac promotor/operator	Cre/lox recombination site	Cre/lox' recombination site	glilp of filamentous phage with N- terminal myctail/amber codon
module/flan- king restriction sites	Aatll-lacp/o- Xbal	BgIII-lox- Aatli	Xbal-lox'- Sphl	EcoRI- gllllong- Hindlll
No	M1	M2	M3	M7-I

SUBSTITUTE SHEET (RULE 28) 76 / 204

Figure 26: list of pCAL vector modules

						<del></del>	<del></del>
	see M7-i	see M7-I	see M3	see M1	see M1	see M1	see M1
rotoev	p1610	vector plG10	(synthetic)	(synthetic)	pASK30	pASK30	pASK30
			kol	Pacl, Fsel	Pacl, Fsel, BsrGl	BsrGI, Nhel	BsrGI, Nhel
	Sphl	Sphl, Bbsl	none	none	Vspl, Eco571, BssSl	Dralll (Banll not removed)	Dralli, Banli
truncated gillp of	with N-terminal Gly- Ser linker	truncated glllp of filamentous phage with N-terminal myctail/amber codon	Cre/lox recombination site	lpp-terminator	beta-lactamase/bla (ampR)	origin of single- stranded replication	origin of single- stranded replication
FooRI-alliss-	HindIII	M7-III EcoRI-gIIIss- HindIII	Sphl-lox- HindIII	HindIII-Ipp- Pacl	Pacl/Fsel-bla- BsrGl	BsrGI-f1 ori- Nhel	BsrGI-f1 ori- Nhel
·	M7-II	M7-111	M8	M9-II	M10- II	M11-	M11-

Figure 26: list of pCAL vector modules

WO 97/0832	£U				PCT/EP9
Rose, R.E. (1988) Nucleic Acids Res. 16, 355	see M3	Yanisch-Peron, C. (1985) Gene 33,103-119	Cardoso, M. & Schwarz, S. (1992) J. Appl. Bacteriol. 72, 289-293	see M1	Knappik, A & Plückthun, A. (1994) BioTechniques 17, 754-761
pACYC184	(synthetic)	pUC19	pACYC184	(synthetic)	(synthetic)
Nhel, BgIII	BgIII, Iox, Xmnl	BgIII, Nhei			
BssSI, VspI, NspV	none	Eco571 (BssSl not removed)	BspEl, Mscl, Styl/Ncol	(synthetic)	(synthetic)
origin of double- stranded replication	Cre/lox recombination site	origin of double- stranded replication	chloramphenicol- acetyltransferase/ cat (camR)	signal sequence of phosphatase A	signal sequence of phosphatase A + FLAG detection tag
Nhel-p15A- BgIII	BgIII-lox- BgIII	BgIII-ColEI- Nhel	Aatll-cat- Bglll	Xbal-phoA- EcoRI	Xbal-phoA- FLAG-EcoRI
M12	M13	M14- Ext2	M17	M19	M20

Figure 26: list of pCAL vector modules

WO 97/0832	0	
Lee et al. (1983) Infect. Immunol. 264-268	see M1	Lindner et al., (1992) Methods: a companion to methods in enzymology 4, 41-
(synthetic)	pASK30	(synthetic)
(synthetic)	BstXI, MluI,BbsI, BanII, BstEII, HpaI, BbeI, VspI	(synthetic)
heat-stable enterotoxin II signal (synthetic) sequence	lac-repressor	poly-histidine tail
Xbal-stll- Sapl	Afill-laci- Nhei	EcoRI-Histail- HindIII
M21	M41	M42





SUBSTITUTE SHEET (RULE 25) 80 / 204

Figure 27: functional map and sequence of MCS module (continued)

	0 0 0 0 0	XbaI CCCT	
BsrGI	TGTACAC(	I X) ~~ TCCCC	ပု ပု
Щ	TG AC	Aatii ~~~~~~ GA CGTC CT GCAG	tii ~~~ GT
	CCCCCCCCC TGTACACCCC GGGGGGGG ACATGTGGGG	Aatii Xbai CCCCCCGA CGTCCCCCT GGGGGGCT GCAGGGGGAA	EcoRI AatII ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		000	, 0,0
Paci	CCTTAATTAA GGAATTAATT	Bglii ~~~~~ CCAGATCTCC GGTCTAGAGG	00000000000000000000000000000000000000
II	ACATGTAAGC TTCCCCCCC CCTTAATTAA TGTACATTCG AAGGGGGGGG GGAATTAATT	Nhel Bglli Aatll Xbal CCCCCCGCTA GCCCCCCCC CCCCCCGA CGTCCCCCT GCGGGGGGGGGG	Xbai  CTAGACCCCC CCCCCGCATG CCCCCCCCC CGAATTCGAC GTC GATCTGGGGG GGGGGGGGGGGGGGGGGGGGGGGGGGGGG
HindIII	ACATGTAAGC TTCCCCCCCC TGTACATTCG AAGGGGGGGG	NheI ~~~~ CCCCCGCTA GGGGGGCGAT	xbal cragaccccc garcreege
	Н	51	101

WO 97/08320 PCT/EP96/03647

Figure 28: functional map and sequence of pMCS cloning vector



Figure 28: functional map and sequence of pMCS cloning vector (continued)

CAC TTTTCGGGGA AATGTGCGCG GAACCCCTAT TTGTTTATTT	AACAAATAAA
GAACCCCTAT	CTTGGGGATA
AATGTGCGCG	TTACACGCGC
TTTTCGGGGA	AAAAGCCCCT
CAGGTGGCAC	GTCCACCGTG
Ä	

TTGGGACTAT AACCCTGATA ATGAGACAAT TACTCTGTTA CATAGGCGAG GTATCCGCTC TAAGTTTATA ATTCAAATAT AAGATTTATG TTCTAAATAC 51

GTTGTAAAGG CAACATTTCC ATACTCATAA TATGAGTATT AAAGGAAGAG TTTCCTTCTC ATTATAACTT TAATATTGAA TTACGAAGTT AATGCTTCAA 101

ACAAAAACGA TGTTTTGCT AAACGGAAGG TTTGCCTTCC AAACGCCGTA TTTGCGGCAT ATAAGGGAAA TATTCCCTTT CACAGCGGGA GTGTCGCCCT 151

Eco57I

TCAACCCACG AGTTGGGTGC BSSSI GCTGAAGATC CGACTTCTAG TCATTTTCTA AGTAAAAGAT CGCTGGTGAA GCGACCACTT CACCCAGAAA GTGGGTCTTT 201

ATCCTTGAGA TAGGAACTCT CAGCGGTAAG GTCGCCATTC TGGATCTCAA ACCTAGAGTT TACATCGAAC ATGTAGCTTG ACGAGTGGGT TGCTCACCCA BSSSI 251

Figure 28: functional map and sequence of pMCS cloning vector (continued)

_	٦.
_	4
L	ä
Ξ	3
≻	•
•	1
×	7
	٠

CGTTGCGCAA	ATGGCAACAA	GCCTGTAGCA	ACACCACGAT	GACGAGCGTG	651
CATACCAAAC	TGAATGAAGC	GAACCGGAGC	TGATCGTTGG	TAACTCGCCT	601
GTATGGTTTG	ACTTACTTCG	CTTGGCCTCG	ACTAGCAACC	ATTGAGCGGA	
GGGGATCATG	GCACAACATG	CCGCTTTTTT	AAGGAGCTAA	CGGAGGACCG	551
CCCCTAGTAC	CGTGTTGTAC	GGCGAAAAAA	TTCCTCGATT	GCCTCCTGGC	
TGACAACGAT	AACTTACTTC	CACTGCGGCC	TGAGTGATAA	GCCATAACCA	501
ACTGTTGCTA	TTGAATGAAG	GTGACGCCGG	ACTCACTATT	CGGTATTGGT	
ATGCAGTGCT	TAAGAGAATT	GGCATGACAG	TCTTACGGAT	CAGAAAAGCA	451
TACGTCACGA	ATTCTCTTAA	CCGTACTGTC	AGAATGCCTA	GTCTTTTCGT	
TCACCAGTCA AGTGGTCAGT	GGTTGAGTAC CCAACTCATG	AGAATGACTT TCTTACTGAA	CACTATTCTC GTGATAAGAG	TCGCCGCATA	401
AGCAACTCGG	GCCGGGCAAG	CCGTATTGAC	CGGTATTATC	CTATGTGGCG	351
TCGTTGAGCC	CGGCCCGTTC	GGCATAACTG	GCCATAATAG	GATACACCGC	
TAAAGTTCTG ATTTCAAGAC	TGAGCACTTT ACTCGTGAAA	TTTCCAATGA AAAGGTTACT	CGAAGAACGT GCTTCTTGCA	GTTTTCGCCC	301

Figure 28: functional map and sequence of pMCS cloning vector (continued)

GCAACGCGTT		AseI
TACCGTTGTT		
CGGACATCGT	- 00	
TGTGGTGCTA		
CTGCTCGCAC		

TTCCCGGCAA CAATTAATAG AAGGGCCGTT GTTAATTATC	CACTTCTGCG CTCGGCCCTT GTGAAGACGC GAGCCGGGAA	GGAGCCGGTG AGCGTGGGTC CCTCGGCCAC TCGCACCCAG	TGGTAAGCCC TCCCGTATCG ACCATTCGGG AGGGCATAGC	CTATGGATGA ACGAAATAGA GATACCTACT TGCTTTATCT	AAGCATTGGT AACTGTCAGA TTCGTAACCA TTGACAGTCT	TTTAAAACTT CATTTTTAAT AAATTTTGAA GTAAAAATTA
TTACTCTAGC AATGAGATCG	GTTGCAGGAC	TGATAAATCT ACTATTTAGA	TGGGGCCAGA	AGTCAGGCAA TCAGTCCGTT	CTCACTGATT GAGTGACTAA	TTTAGATTGA AAATCTAACT
GGCGAACTAC	GGCGGATAAA CCGCCTATTT	GGTTTATTGC CCAAATAACG	ATTGCAGCAC TAACGTCGTG	CACGACGGGG	AGATAGGTGC TCTATCCACG	TCATATATAC AGTATATATG
ACTATTAACT TGATAATTGA	ACTGGATGGA TGACCTACCT	CCGGCTGGCT	TCGCGGTATC AGCGCCATAG	TAGTTATCTA ATCAATAGAT	CAGATCGCTG GTCTAGCGAC	CCAAGTTTAC GGTTCAAATG
701	751	.801	851	901	951	1001

Figure 28: functional map and sequence of pMCS cloning vector (continued)

GACCAAAATC	TAGAAAAGAT	TGCTGCTTGC	GGATCAAGAG	CGCAGATACC		TTCAAGAACT	ACCAGTGGCT
CTGGTTTTAG	ATCTTTTCTA	ACGACGAACG	CCTAGTTCTC	GCGTCTATGG		AAGTTCTTGA	TGGTCACCGA
ATAATCTCAT TATTAGAGTA	TCAGACCCCG	GCGCGTAATC CGCGCATTAG	TTTGTTTGCC AAACAAACGG	C TTCAGCAGAG G AAGTCGTCTC Eco57I	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AGGCCACCAC TCCGGTGGTG	TAATCCTGTT ATTAGGACAA
ATCCTTTTTG TAGGAAAAAC	CCACTGAGCG GGTGACTCGC	CTTTTTTTCT GAAAAAAAGA	CCAGCGGTGG GGTCGCCACC	GGTAACTGGC CCATTGACCG EC	2	AGCCGTAGTT TCGGCATCAA	CTCGCTCTGC GAGCGAGACG
CTAGGTGAAG	AGTTTTCGTT	TCTTGAGATC	ACCACCGCTA	TTTTTCCGAA		CTTCTAGTGT	GCCTACATAC
GATCCACTTC	TCAAAAGCAA	AGAACTCTAG	TGGTGGCGAT	AAAAAGGCTT		GAAGATCACA	CGGATGTATG
TTAAAAGGAT	CCTTAACGTG	CAAAGGATCT	AAACAAAAA	CTACCAACTC	1	AAATACTGTC	CTGTAGCACC
AATTTTCCTA	GGAATTGCAC	GTTTCCTAGA	TTTGTTTTTT	GATGGTTGAG		TTTATGACAG	GACATCGTGG
1051	1101	1151	1201	1251		1301	1351

	Figure 28: fu	Figure 28: functional map and sequenc	uence of pMCS cloning vector (continued)	(continued)		
	1401	GCTGCCAGTG	GCTGCCAGTG GCGATAAGTC CGACGGTCAC CGCTATTCAG	GTGTCTTACC CACAGAATGG	GGGTTGGACT CCCAACCTGA	CAAGACGATA GTTCTGCTAT
,	1451	GTTACCGGAT CAATGGCCTA	AAGGCGCAGC TTCCGCGTCG	GGTCGGGCTG	AACGGGGGGT TTGCCCCCCA	TCGTGCACAC AGCACGTGTG
	1501	AGCCCAGCTT TCGGGTCGAA	GGAGCGAACG CCTCGCTTGC	ACCTACACCG TGGATGTGGC	AACTGAGATA TTGACTCTAT	CCTACAGCGT
SUBSTITU	1551	GAGCTATGAG CTCGATACTC	AAAGCGCCAC TTTCGCGGTG	GCTTCCCGAA CGAAGGGCTT	GGGAGAAAGG CCCTCTTTCC	CGGACAGGTA GCCTGTCCAT
ITE SHEET (BULE 26	1601	TCCGGTAAGC AGGCCATTCG	GGCAGGGTCG CCGTCCCAGC	GAACAGGAGA CTTGTCCTCT	GCGCACGAGG CGCGTGCTCC BSSSI	GAGCTTCCAG CTCGAAGGTC
3)	1651	GGGGAAACGC CCCCTTTGCG	CTGGTATCTT GACCATAGAA	TATAGTCCTG	TCGGGTTTCG AGCCCAAAGC	CCACCTCTGA
	1701	CTTGAGCGTC GAACTCGCAG	GATTTTTGTG CTAAAAACAC	ATGCTCGTCA TACGAGCAGT	GGGGGGCGGA	GCCTATGGAA CGGATACCTT
	1751	AAACGCCAGC	AACGCGGCCT	TTTACGGTT	CCTGGCCTTT	TGCTGGCCTT

Figure 28: functional map and sequence of pMCS cloning vector (continued)

ACGACCGGAA	BsrGI CCCCCTGTA GGGGGGACAT	Aatii ~~~~~ CCCCGACGTC GGGGCTGCAG	RI ~~~~ TTCACGT AAGTGCA
TTGCGCCGGA AAAATGCCAA GGACCGGAAA ACGACCGGAA	Paci 	Bglii CCCCCCCAG ATCTCCCCCC GGGGGGGTC TAGAGGGGGG	ECORI CCCCCCGAA TTCACGT GGGGGGCTT AAGTGCA
AAAATGCCAA	CCCCCCCTT	Bg CCCCCCCAG GGGGGGGTC	Sphi ccareccc ccarecccc
TTGCGCCGGA	HindIII ~~~~~~ GTAAGCTTCC CATTCGAAGG	Nhel ~~~~~~ CCGCTAGCCC GGCGATCGGG	XbaI ~~~~~~~ CCCCCTCTAG ACCCCCCC GGGGGAGATC TGGGGGGGG
TTTGCGGTCG	TTGCTCACAT	BsrGI ~~ CACCCCCCC GTGGGGGGGG	XbaI ~~~~~ CCCCCTCTAG GGGGAGATC
	1801	1851	1901





89 / 204

Figure 29: functional map and sequence of pCAL module M1

AatII

GGCTTTACAC CCGAAATGTG	GATAACAATT
AGGCACCCCA TCCGTGGGGT	GTTGTGTGGA ATTGTGAGCG GATAACAATT
CTCACTCATT GAGTGAGTAA	GTTGTGTGGA
AA TGTGAGTTAG TT ACACTCAATC	TC CGGCTCGTAT
GACGTCTTAA CTGCAGAATT	TTTATGCTTC
. ⊢	51

XbaI ~ ~ ~ ~ ~ ~

CTATTGTTAA

TAACACTCGC

CAACACACCT

GCCGAGCATA

AAATACGAAG

CJ CGAATTTCTA GA GCTTAAAGAT ACCATGATTA TGGTACTAAT TCACACAGGA AACAGCTATG TTGTCGATAC AGTGTGTCCT 101





SUBSTITUTE SHEET (RULE 26)

GGTGATTTTG CCACTAAAAC TAATTCACCT

GTGACGGTGA

GCTCAAGTCG

TTCCCAAATG AAGGGTTTAC

GACCGAGATT CTGGCTCTAA

251

XmnI

CGAGTTCAGC

ACCACGATGA

GATTACCATT

AGGCCGGAAC

ACCACTGCAA

CACTGCCACT

ATTAAGTGGA

Figure 30: functional map and sequence of pCAL module M7-II (continued)

ECORI 11111

GTGGTGGCTC	AATAAGGGGG	CGCTAAAGGC	ATGGTTTCAT	GGTGATTTTG
CACCACCGAG	TTATTCCCCC	GCGATTTCCG	TACCAAAGTA	
GATCTGTAGG CTAGACATCC	GATTTTGATT ATGAAAAGAT GGCAAACGCT CTAAAAACTAA TACTTTTCTA CCGTTTGCGA	TACAGTCTGA CGCTAAAGGC ATGTCAGACT GCGATTTCCG	GCTGCTATCG	TGGTGACGTT TCCGGCCTTG CTAATGGTAA TGGTGCTACT GGTGATTTTG
CTCTGAGGAG	ATGAAAAGAT	GAAAACGCGC	TGATTACGGT	CTAATGGTAA
GAGACTCCTC	TACTTTTCTA	CTTTTGCGCG	ACTAATGCCA	
AGAAGCTGAT	СТАРАРСТАР	AAATGCCGAT	CTGTCGCTAC	TCCGGCCTTG
TCTTCGACTA	СТАРАРСТРА	TTTACGGCTA	GACAGCGATG	
GAATTCGAGC	TGGTTCCGGT	CTATGACCGA	AAACTTGATT	TGGTGACGTT
CTTAAGCTCG	ACCAAGGCCA	GATACTGGCT	TTTGAACTAA	
Н	51	101	151	201
		SUBS	TITUTE SHE	et (ru

## AATCGGTTGA TTAGCCAACT TCCCTCCCTC AGGGAGGAG ATATTTACCT TATAAATGGA ATTTCCGTCA TAAAGGCAGT TTAATGAATA AATTACTTAT 301

(RULE 26)

Figure 30: functional map and sequence of pCAL module M7-11 (continued)

TTTTCTATTG	TCTTTTATAT	GTTGCCACCT TTATGTATGT ATTTTCTACG TTTGCTAACA TACTGCGTAA	
AAAAGATAAC	AGAAAATATA	CAACGGTGGA AATACATACA TAAAAGATGC AAACGATTGT ATGACGCATT	
ACCATATGAA	TCTTTGCGTT TCTTTTATAT	TTTGCTAACA	
TGGTATACTT	AGAAACGCAA AGAAAATATA	AAACGATTGT	
GCGCTGGTAA	ATTGTGACAA AATAAACTTA TTCCGTGGTG TAACACTGTT TTATTTGAAT AAGGCACCAC	ATTTTCTACG TAAAAGATGC	
TTTGTCTTTG	ААТАААСТТА	TTATGTATGT	HindIII
AAACAGAAAC	ТТАТТТGААТ	AATACATACA	
ATGTCGCCCT TTTGTCTTTG TACAGCGGGA AAACAGAAAC	ATTGTGACAA AATAAACTTA TTCCGTGGTG TCTTTGCGTT TAACACTGTT TTATTTGAAT AAGGCACCAC AGAAACGCAA	GTTGCCACCT	
351	401	451	

501

TAAGGAGTCT TGATAAGCTT ATTCCTCAGA ACTATTCGAA





94 / 204

Figure 31: functional map and sequence of pCAL module M9-II (continued)

HindIII

AGATTGTGCG TCTAACACGC AAAATGGCGC TGTGAAGTGA ACACTTCACT TTCGAACTGG AAGCTTGACC ממממממממ 9999999999

PacI

FseI

TTTTACCGCG

GCCGGCCTGG CGGCCGGACC 5555555555

CCCCCCCCCC

TTAATTAAAG AATTAATTTC

ACAGACGGCA TGTCTGCCGT

TGTAAAAAA

ACATTTTTT

51

BsrGI

999 GGGGGGTGT ACAGGGGGG TGTCCCCCC CCCCCCACA

101





SUBSTITUTE SHEET (RULE 26) 96 / 204

Figure 32: functional map and sequence of pCAL module M11-III (continued)

	4
a	:
2	•
_	4

	いじつべつじく出して		そを生まっていてい		
4	CGATCGTGCG	CGGGACATCG	CCGCGTAATT		ACACCACCAA
51	ACGCGCAGCG TGCGCGTCGC	TGACCGCTAC ACTGGCGATG	ACTTGCCAGC TGAACGGTCG	GCCCTAGCGC CGGGATCGCG	CCGCTCCTTT GGCGAGGAAA
101	CGCTTTCTTC	CCTTCCTTTC GGAAGGAAAG	TCGCCACGTT AGCGGTGCAA	CGCCGGCTTT GCGGCCGAAA	CCCCGTCAAG
151	CTCTAAATCG GAGATTTAGC	GGGCATCCCT CCCGTAGGGA	TTAGGGTTCC AATCCCAAGG	GATTTAGTGC CTAAATCACG	TTTACGGCAC AAATGCCGTG
201	CTCGACCCCA	AAAAACTTGA TTTTGAACT	TTAGGGTGAT	GGTTCTCGTA CCAAGAGCAT	GTGGGCCATC
251	GCCCTGATAG CGGGACTATC	ACGGTTTTTC TGCCAAAAAG	GCCCTTTGAC CGGGAAACTG	GTTGGAGTCC CAACCTCAGG	ACGTTCTTTA TGCAAGAAAT
301	ATAGTGGACT TATCACCTGA	CTTGTTCCAA GAACAAGGTT	ACTGGAACAA TGACCTTGTT	CACTCAACCC GTGAGTTGGG	TATCTCGGTC ATAGAGCCAG
351	TATTCTTTTG	ATTTATAAGG	GATTTTGCCG	ATTTCGGCCT	ATTGGTTAAA

TTTATATT

Figure 32: functional map and sequence of pCAL module M11-III (continued)

AAAATATTAA TAAAGCCGGA TAACCAATTT GAATTTTAAC ATAAGAAAAC TAAATATTCC CTAAAACGGC AATTTAACGC ATTTAACAAA AAATGAGCTG 401

CTTAAAATTG TTAAATTGCG TAAATTGTTT TTTACTCGAC

BsrGI

451 CGTTTACAAT TTCATGTACA

GCAAATGTTA AAGTACATGT





TGGACTCAAG ACGATAGTTA CCGGATAAGG CGCAGCGGTC GGGCTGAACG

351

Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

Bglii

Н	AGATCTGACC	AAAATCCCTT	AACGTGAGTT	TTCGTTCCAC	TGAGCGTCAG
	oo tououto t		1717 171777 1		7194797174
51	ACCCCGTAGA TGGGGCATCT	AAAGATCAAA TTTCTAGTTT	GGATCTTCTT CCTAGAAGAA	GAGATCCTTT CTCTAGGAAA	TTTTCTGCGC AAAAGACGCG
 101	GTAATCTGCT CATTAGACGA	GCTTGCAAAC CGAACGTTTG	AAAAAAACCA TTTTTTTGGT	CCGCTACCAG	CGGTGGTTTG GCCACCAAAC
151	TTTGCCGGAT	CAAGAGCTAC GTTCTCGATG	CAACTCTTTT GTTGAGAAAA	TCCGAAGGTA AGGCTTCCAT	ACTGGCTACA TGACCGATGT
201	GCAGAGCGCA CGTCTCGCGT	GATACCAAAT CTATGGTTTA	ACTGTTCTTC TGACAAGAAG	TAGTGTAGCC ATCACATCGG	GTAGTTAGGC CATCAATCCG
251	CACCACTTCA GTGGTGAAGT	AGAACTCTGT TCTTGAGACA	AGCACCGCCT TCGTGGCGGA	ACATACCTCG TGTATGGAGC	CTCTGCTAAT GAGACGATTA
301	CCTGTTACCA GGACAATGGT	GTGGCTGCTG	CCAGTGGCGA GGTCACCGCT	TAAGTCGTGT ATTCAGCACA	CTTACCGGGT GAATGGCCCA

SUBSTITUTE SHEET (RULE 26)

	CCCGACTTGC
	PC TGCTATCAAT GGCCTATTCC GCGTCGCCAG CCCGACTTGC
ile M14-Ext2 (continued)	GGCCTATTCC
nce of pCAL module M14-E	TGCTATCAAT
igure 33: functional map and sequenc	ACCTGAGTTC

ACACCGAACT TGTGGCTTGA	CCCGAAGGGA
GCACACAGCC CAGCTTGGAG CGAACGACCT ACACCGAACT CGTGTGTCGG GTCGAACCTC GCTTGCTGGA TGTGGCTTGA	CAGCGTGAGC TATGAGAAAG CGCCACGCTT CCCGAAGGGA
CAGCTTGGAG C	TATGAGAAAG
GCACACAGCC CGTGTGTCGG	CAGCGTGAGC
GGGGGTTCGT	GAGATACCTA
401	451

CCCGAAGGGA GGGCTTCCCT	PCGGAAC AGGAGAGCGC AGCCTTG TCCTCTCGCG BSSSI
CAGCGTGAGC TATGAGAAAG CGCCACGCTT CCCGAAGGGA	GTAAGCGGCA GGGTCGGAAC
GTCGCACTCG ATACTCTTTC GCGGTGCGAA GGGCTTCCCT	CATTCGCCGT CCCAGCCTTG
TATGAGAAAG	GTAAGCGGCA
ATACTCTTTC	CATTCGCCGT
CAGCGTGAGC	CAGGTATCCG
GTCGCACTCG	GTCCATAGGC
GAGATACCTA	GAAAGGCGGA
CTCTATGGAT	CTTTCCGCCT
451	501

	990,191,001,0	CAGGACAGCC		
	IAICITIAIA	ATAGAAATAT		· · · · ·
	AAACGCC1GG	TTTGCGGACC		
	ITCAGGGG	SG AAGGTCCCCC	,	
ر ر	つせらららせらつ	TGCTCCCTCG	BssSI	<b>? ? ?</b>
п п	7			
SHE	ET	(RL	JLE :	26)

TCGTCAGGGG	ACGGTTCCTG TGCCAAGGAC
CTCTGACTTG AGCGTCGATT TTTGTGATGC GAGACTGAAC TCGCAGCTAA AAACACTACG	CGGCCTTTTT ACGGTTCCTG GCCGGAAAAA TGCCAAGGAC
AGCGTCGATT	GCCAGCAACG
CTCTGACTTG GAGACTGAAC	GGCGGAGCCT ATGGAAAAAC GCCAGCAACG CCGCCTCGGA TACCTTTTTG CGGTCGTTGC
GTTTCGCCAC	GGCGGAGCCT
601	651

SUBSTITUTE S

Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

NheI

GCCTTTTGCT GGCCTTTTGC TCACATGGCT AGC CGGAAAACGA CCGGAAAACG AGTGTACCGA TCG

701

SUBSTITUTE SHEET (RULE 26) 102 / 204





SUBSTITUTE SHEET (RULE 26) 103 / 204

GTTTTCCATG AGCAAACTGA

TTGTTACACC

GTGTTCACCC

ATATGGGATA

351

1

Figure 34: functional map and sequence of pCAL module M17. (continued)

١.	4	
	4	
	כ	
-	ช	
<		

AAGATCACTA	AGGAAGCTAA	TCCCAATGGC	ATGTACCTAT	CCGTAAAGAA	GCCCGCCTGA	TGAGCTGGTG
TTCTAGTGAT	TCCTTCGATT	AGGGTTACCG	TACATGGATA	GGCATTTCTT	CGGGCGGACT	ACTCGACCAC
ATAATGAAAT	TCAGGAGCTA	CGTTGATATA	CAGTTGCTCA	TTTTTAAAGA	TCACATTCTT	TGAAAGACGG
TATTACTTTA	AGTCCTCGAT	GCAACTATAT	GTCAACGAGT	AAAAATTTCT	AGTGTAAGAA	ACTTTCTGCC
AACTTTCACC	ATCGAGATTT TAGCTCTAAA	GATATACCAC	GCATTTCAGT CGTAAAGTCA	TATTACGGCC	CGGCCTTTAT GCCGGAAATA	CGTATGGCAA GCATACCGTT
GTGAGGTTCC	ТТТТТСАСТТ	AAAATCACTG	ACATTTTGAG	TTCAGCTGGA	AAGTTTTATC	CCCGGAGTTC
	АААААСТСАА	TTTTAGTGAC	TGTAAAACTC	AAGTCGACCT	TTCAAAATAG	GGGCCTCAAG
GGGACGTCGG	CCGGGCGTAT	AATGGAGAAA	ATCGTAAAGA ACATTTTGAG	AACCAGACCG	AAATAAGCAC	TGAATGCTCA
CCCTGCAGCC		TTACCTCTTT	TAGCATTTCT TGTAAAACTC	TTGGTCTGGC	TTTATTCGTG	ACTTACGAGT
Н	51	101	151	201	251	301

SUBSTITUTE SHEET (RULE 26) 104 / 204

GGGTGCCCTT AAACGCCTGG

GGCAGTTATT

751

(continued)	
17 (	
Ξ	
~	
š	
듗	
2	
_	
₹	
2	
ce of pCAL module	
0	
$\mathbf{\tilde{z}}$	
5	
<u> </u>	
ည္တ	
I map and sequence	
≘	
3	
=	
乭	
5	
Ξ	
Ĕ	
2	
₹:	
ñ	
igure 3	
2	
<u>.</u>	

C CGGCAGTTTC	A CCTGGCCTAT T GGACCGGATA	G CCAATCCCTG	G GACAACTTCT C CTGTTGAAGA	G CGACAAGGTG C GCTGTTCCAC	G ATGGCTTCCA C TACCGAAGGT	T GAGTGGCAGG A CTCACCGTCC
	•	-				GTACTGCGAT CATGACGCTA
GTGAATACCA CACTTATGGT	GTGGCGTGTT CACCGCACAA	GAATATGTTT CTTATACAAA	ATTTAAACGT TAAATTTGCA	GGCAAATATT CCGTTTATAA	GGTTCATCAT CCAAGTAGTA	AATTACAACA TTAATGTTGT
TCGCTCTGGA AGCGAGACCT	TTCGCAAGAT AAGCGTTCTA	GGTTTATTGA CCAAATAACT	ACCAGTTTTG TGGTCAAAAC	TTTCACTATG AAAGTGATAC	TGGCGATTCA ACCGCTAAGT	ATGCTTAATG TACGAATTAC
AACGTTTTCA TTGCAAAAGT	TACACATATA ATGTGTATAT	TTCCCTAAAG AAGGGATTTC	GGTGAGTTTC CCACTCAAAG	TCGCCCCCGT	CTGATGCCGC GACTACGGCG	TGTCGGCAGA ACAGCCGTCT
401	451	501	551	601	651	701
	AACGTTTTCA TCGCTCTGGA GTGAATACCA CGACGATTTC TTGCAAAAGT AGCGAGACCT CACTTATGGT GCTGCTAAAG	AACGTTTTCA TCGCTCTGGA GTGAATACCA CGACGATTTC TTGCAAAAGT AGCGAGACCT CACTTATGGT GCTGCTAAAG TACACATATA TTCGCAAGAT GTGGCGTGTT ACGGTGAAAA ATGTGTATAT AAGCGTTCTA CACCGCACAA TGCCACTTTT	AACGTTTTCA TCGCTCTGGA GTGAATACCA CGACGATTTC TTGCAAAAGT AGCGAGACCT CACTTATGGT GCTGCTAAAG TACACATATA TTCGCAAGAT GTGGCGTGTT ACGGTGAAAAATGTTTTTTTTTT	AACGTTTTCA TCGCTCTGGA GTGAATACCA CGACGATTTC TTGCAAAAGT AGCGAGACCT CACTTATGGT GCTGCTAAAG ATGTGTATAT TTCGCAAGAT GTGGCGTGTT ACGGTGAAAA TTCCCTAAAG GGTTTATTGA GAATATGTTT TTCGTCTCTAG AAGGGATTTC CCAAATAACT CTTATACAAA AAGCAGAGTC GGTGAGTTTC ACCAGTTTTG ATTTAAACGT AGCCAATATG CCACTCAAAG TGGTCAAAAC TAAATTTGCA TCGGTTATAC	AACGTTTTCA TCGCAGACCT CACTTATGGT GCTGCTAAAG TTGCAAAAGT AGCGAGACCT CACTTATGGT GCTGCTAAAG TACACATATA TTCGCAAGAT GTGGCGTGTT ACGGTGAAAA ATGTGTATAT AAGCGTTCTA CACCGCACAA TGCCACTTTT TTCCCTAAAG GGTTTATTGA GAATATGTTT TTCGTCTCAG AAGGGATTTC CCAAATAACT CTTATAAACGT AGCCAATATG CCACTCAAAG TGGTCAAAAC TAAATTTGCA TCGGTTATAC TCGCCCCCGT TTTCACTATG GGCAAATATT ATACGCAAGG AGCGGGCA AAAGTGATAC CCGTTTATAA TATGCGTTCC	AACGTTTTCA TCGCTCTGGA GTGAATACCA CGACGATTTC TTGCAAAAGT AGCGAGACT CACTTATGGT GCTGCTAAAG TACACATATA TTCGCAAGAT GTGGCGTGTT ACGGTGAAAA ATGTGTATAT AAGCGTTCTA CACCGCACAA TGCCACTTTT TTCCCTAAAG GGTTTATTGA GAATATGTTT TTCGTCTCAG AAGGGATTTC CCAAATAACT CTTATACAA AAGCAGAGTC GGTGAGTTTC ACCAGTTTTG ATTTAAACGT AGCCAATATG CCACTCAAAG TGGTCAAAAC TAAATTTGCA TCGGTTATAC TCGCCCCCGT TTTCACTATG GGCAAATATT ATACGCAAGG AGCGGGGCA AAAGTGATAC CCGTTTATAA TATACGCTTCC CTGATGCCG TGGCGATTCA GGTTCATCAT GCCGTTTGTG GACTACGCC TGGCGATTCA GGTTCATCAT CTGATGCCGC TGGCGATTCA GGCAAACAC

SUBSTITUTE SHEET (RULE 26) 105 / 204 Figure 34: functional map and sequence of pCAL module M17 (continued)

CCGTCAATAA CCCACGGGAA TTTGCGGACC TAAAAAATT CGCCCGCAT

BglII

TGCTAGATCT ACGATCTAGA 801

TCC

SUBSTITUTE SHEET (RULE 26) 106 / 204

functional ssori BsrGI (612) Hind 111 (515) Fsel (599) gill supershort Pac! (579) Gen11-Nick Kmnl (310) Ban II (919) Nhei (1076) replication start ECORI (1) 2755 bp pCAL4 Sph1 (2749) BssSI (1254) Figure 35: functional map and sequence of modular vector pCAL4 Colel Ext2 origin **Rbal (2739) Hatll** (2608) lac p/o BgIII (1803) cat

SUBSTITUTE SHEET (NULE 28)
107 / 204

ATCGGTTGAA

CCCTCCCTCA

TATTTACCTT ATAAATGGAA

TTTCCGTCAA AAAGGCAGTT

TAATGAATAA ATTACTTATT

301

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

EcoRI

				IcmX	
AATTCACCTT TTAAGTGGAA	TGACGGTGAT ACTGCCACTA	CTCAAGTCGG GAGTTCAGCC	TCCCAAATGG AGGGTTTACC	TGGCTCTAAT ACCGAGATTA	251
GTGATTTTGC CACTAAAACG	GGTGCTACTG CCACGATGAC	TAATGGTAAT ATTACCATTA	CCGGCCTTGC GGCCGGAACG	GGTGACGTTT	201
TGGTTTCATT ACCAAAGTAA	CTGCTATCGA GACGATAGCT	GATTACGGTG CTAATGCCAC	TGTCGCTACT ACAGCGATGA	AACTTGATTC TTGAACTAAG	151
GCTAAAGGCA CGATTTCCGT	ACAGTCTGAC TGTCAGACTG	AAAACGCGCT TTTTGCGCGA	AATGCCGATG TTACGGCTAC	TATGACCGAA ATACTGGCTT	101
ATAAGGGGGC TATTCCCCCG	GCAAACGCTA CGTTTGCGAT	TGAAAAGATG ACTTTTCTAC	ATTTTGATTA TAAAACTAAT	GGTTCCGGTG CCAAGGCCAC	51
TGGTGGCTCT ACCACCGAGA	ATCTGTAGGG TAGACATCCC	TCTGAGGAGG AGACTCCTCC	GAAGCTGATC CTTCGACTAG	AATTCGAGCA TTAAGCTCGT	Н

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

351	TGTCGCCCTT	TTGTCTTTGG	CGCTGGTAAA	CCATATGAAT	TTTCTATTGA
	ACAGCGGGAA	AACAGAAACC	GCGACCATTT	GGTATACTTA	AAAGATAACT
401	TTGTGACAAA	ATAAACTTAT	TCCGTGGTGT	CTTTGCGTTT	CTTTTATATG
	AACACTGTTT	TATTTGAATA	AGGCACCACA	GAAACGCAAA	GAAAATATAC
451	TTGCCACCTT	TATGTATGTA	TTTTCTACGT	ТТGСТААСАТ	ACTGCGTAAT
	AACGGTGGAA	ATACATACAT	AAAAGATGCA	ААСGАГТGТА	TGACGCATTA
501	AAGGAGTCTT TTCCTCAGAA	HindIII ~~~~~~ GATAAGCTTG CTATTCGAAC	ACCTGTGAAG TGGACACTTC	TGAAAAATGG ACTTTTTACC	CGCAGATTGT GCGTCTAACA
			Paci		
551	GCGACATTTT CGCTGTAAAA	TTTTGTCTGC	CGTTTAATTA GCAAATTAAT	AAGGGGGGGG	55005500000 5055005555
		BsrGI			
601	TGGGGGGGG	TGTACATGAA	ATTGTAAACG	ТТААТАТТТТ	GTTAAAATTC
	ACCCCCCCC	ACATGTACTT	TAACATTTGC	ААТТАТАААА	CAATTTTAAG

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

SUBSTITUTE SHEET (RULE 26)

	GCTGGCAAGT GTAGCGGTCA CGCTGCGCGT AACCACCACACA CCCGCCGCGC	CGACCGTTCA CATCGCCAGT GCGACGCGCA TTGGTGGTGT GGGCGGCGCG
	AACCACCACA	TTGGTGGTGT
teoninger)	CGCTGCGCGT	GCGACGCGCA
מבווכב חו ונוסמתושו אברנסו מבער ובסוונוות במ	GTAGCGGTCA	CATCGCCAGT
Figure 35: Tunctional map and Schucife	GCTGGCAAGT	CGACCGTTCA
Figure 35: It	1001	

	CAGC	ragg atcc	GGTG	AGCT TCGA	GTCC	GTAG CATC
	AAAGGCCAGC TTTCCGGTCG	TTTCCATAGG AAAGGTATCC	GTCAGAGGTG CAGTCTCCAC	CCTGGAAGCT GGACCTTCGA	ATACCTGTCC	CACGCTGTAG GTGCGACATC
	CATGTGAGCA GTACACTCGT	TGCTGGCGTT ACGACCGCAA	CGACGCTCAA GCTGCGAGTT	GGCGTTTCCC	CGCTTACCGG	TCTCATAGCT AGAGTATCGA
NheI	GCGTGCTAGC CGCACGATCG	AAGGCCGCGT TTCCGGCGCA	TCACAAAAAT AGTGTTTTTA	AAAGATACCA TTTCTATGGT	CCGACCCTGC	CGTGGCGCTT GCACCGCGAA
	GCTACAGGGC CGATGTCCCG	GAACCGTAAA CTTGGCATTT	CTGACGAGCA	ACAGGACTAT TGTCCTGATA	CTCTCCTGTT GAGAGGACAA	CTTCGGGAAG GAAGCCCTTC
	TTAATGCGCC	AAAAGGCCAG TTTTCCGGTC	CTCCGCCCCC	GCGAAACCCG CGCTTTGGGC	BSSSI ~~~~~ CCCTCGTGCG GGGAGCACGC	GCCTTTCTCC CGGAAAGAGG
	1051	1101	1151	1201	1251	1301
		SUBS	TITUTE SHE	ET (RULE 26		·

Figure 35: functional map and sequence of modular-vector pCAL4 (continued)

1351	GTATCTCAGT CATAGAGTCA	TCGGTGTAGG	TCGTTCGCTC	CAAGCTGGGC GTTCGACCCG	TGTGTGCACG
1401	AACCCCCCGT TTGGGGGGCA	TCAGCCCGAC AGTCGGGCTG	CGCTGCGCCT	TATCCGGTAA	CTATCGTCTT GATAGCAGAA
1451	GAGTCCAACC CTCAGGTTGG	CGGTAAGACA GCCATTCTGT	CGACTTATCG GCTGAATAGC	CCACTGGCAG GGTGACCGTC	CAGCCACTGG GTCGGTGACC
1501	TAACAGGATT ATTGTCCTAA	AGCAGAGCGA TCGTCTCGCT	GGTATGTAGG CCATACATCC	CGGTGCTACA	GAGTTCTTGA CTCAAGAACT
1551	AGTGGTGGCC TCACCACCGG	TAACTACGGC ATTGATGCCG	TACACTAGAA ATGTGATCTT	GAACAGTATT CTTGTCATAA	TGGTATCTGC ACCATAGACG
1601	GCTCTGCTGT	AGCCAGTTAC TCGGTCAATG	CTTCGGAAAA GAAGCCTTTT	AGAGTTGGTA TCTCAACCAT	GCTCTTGATC CGAGAACTAG
1651	CGGCAAACAA	ACCACCGCTG TGGTGGCGAC	GTAGCGGTGG CATCGCCACC	ТТТТТТТТБТТ АААААААСАА	TGCAAGCAGC ACGTTCGTCG
1701	AGATTACGCG TCTAATGCGC	CAGAAAAAA GTCTTTTTTT	GGATCTCAAG CCTAGAGTTC	AAGATCCTTT TTCTAGGAAA	GATCTTTTCT CTAGAAAAGA

SUBSTITUTE SHEET (RULE 26)

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

						•
GGATTTTGGT	TTAAAAAAAT	CATTAAGCAT	TGAATCGCCA	CATAGTGAAA	CAAAACTGGT	TCAATAAACC
CCTAAAAACCA	AATTTTTTA	GTAATTCGTA	ACTTAGCGGT	GTATCACTTT	GTTTTGACCA	AGTTATTTGG
TCACGTTAAG	AATAACTGCC	TGTTGTAATT	ATGATGAACC	AATATTTGCC	ACGTTTAAAT	AAACATATTC
AGTGCAATTC	TTATTGACGG	ACAACATTAA	TACTACTTGG	TTATAAACGG	TGCAAATTTA	TTTGTATAAG
GAACGAAAAC	TAAGGGCACC	ATCGCAGTAC	CACAAACGGC	CCTTGCGTAT	CATATTGGCT	CTGAGACGAA
CTTGCTTTTG		TAGCGTCATG	GTGTTTGCCG	GGAACGCATA	GTATAACCGA	GACTCTGCTT
ACGCTCAGTG	ACCAGGCGTT	CCTGCCACTC	TGGAAGCCAT	CACCTTGTCG	AGAAGTTGTC	CAGGGATTGG
TGCGAGTCAC	TGGTCCGCAA	GGACGGTGAG	ACCTTCGGTA	GTGGAACAGC	TCTTCAACAG	GTCCCTAACC
ACGGGGTCTG	BgllI ~~~~~CAGATCTAGC GTCTAGATCG	TACGCCCCGC	TCTGCCGACA	GCGGCATCAG CGCCGTAGTC	ACGGGGGCGA TGCCCCCGCT	GAAACTCACC CTTTGAGTGG
1751	1801	1851	1901	1951	2001	2051
		SUBSTITU	JTE SHEET (	RULE 26)		

ATCTTGCGAA TAGAACGCTT	TCCAGAGCGA AGGTCTCGCT	GGGTGAACAC CCCACTTGTG	GAACTCCGGG CTTGAGGCCC	GATAAAACTT CTATTTTGAA	TCCAGCTGAA AGGTCGACTT	CTCAAAATGT GAGTTTTACA	CAGTGATTTT GTCACTAAAA
ATCT	TCCA	6667 CCC <i>1</i>	GAAC	GATZ	TCC	CTC	CAG
AACACGCCAC TTGTGCGGTG	TGGTATTCAC ACCATAAGTG	GGTGTAACAA CCACATTGTT	TTGCCATACG AACGGTATGC	ATAAAGGCCG TATTTCCGGC	GGCCGTAATA CCGGCATTAT	ACTGAAATGC TGACTTTACG	GTGGTATATC CACCATATAG
4 (continued) TTTTCACCGT AAAAGTGGCA	GAAATCGTCG CTTTAGCAGC	CATGGAAAAC GTACCTTTTG	CCGTCTTTCA GGCAGAAAGT	AAGAATGTGA TTCTTACACT	TCTTTAAAAA AGAAATTTTT	TGAGCAACTG	TATATCAACG ATATAGTTGC
e of modular vector pCALATAGGCCAGG	GAAACTGCCG CTTTGACGGC	TCAGTTTGCT AGTCAAACGA	CACCAGCTCA GTGGTCGAGT	TCAGGCGGGC	TTCTTTACGG AAGAAATGCC	ATAGGTACAT TATCCATGTA	GCCATTGGGA
Figure 35: functional map and sequence of modular vector pCAL4 (continued) 2101 CTTTAGGGAA ATAGGCCAGG TTTTC/GAAG'	TATATGTGTA ATATACACAT	TGAAAACGTT ACTTTTGCAA	TATCCCATAT ATAGGGTATA	TGAGCATTCA ACTCGTAAGT	GTGCTTATTT CACGAATAAA	CGGTCTGGTT GCCAGACCAA	TCTTTACGAT AGAAATGCTA
Figure 35: fu 2 1 0 1	2151	2201	2251	2301	2351	2401	2451
			SUBSTITU	JTE SHEET (	RULE 26)		

AACTCAAAAA TTGAGTTTTT

Figure 35:	Figure 35: functional map and sequence of modular vector pCAL4 (continued)	e of modular vector pCAI	.4 (continued)	
2501	TTTCTCCATT TTAGCTTCCT TAGCTCCTGA AAATCT	TTAGCTTCCT	TAGCTCCTGA	AAATCT
	AAAGAGGTAA	AAAGAGGTAA AATCGAAGGA ATCGAGGACT	ATCGAGGACT	TTTAGA
		-	·	

GGTGAAAGTT GGAACCTCAC CCACTTTCAA CCTTGGAGTG		
GGTC		
ATTTCATTAT TAAAGTAATA		
TAGTGATCTT ATCACTAGAA		
ATACGCCCGG TATGCGGGCC	AatII	1 1 1 1 1
2551		

AGGCTTTACA	TCCGAAATGT	
TAGGCACCCC	ATCCGTGGGG	
CCGACGTCTA ATGTGAGTTA GCTCACTCAT TAGGCACCCC AGGCTTTACA	T CGAGTGAGTA ATCCGTGGGG TCCGAAATGT	
ATGTGAGTTA	AT TACACTCAAT	
CCGACGTCTA	GGCTGCAGAT	
2601		(
	SUB	STIT

Thus	XhaT				
P ACAACACAC TTAACACTCG CCTATTGTTA	TTAACACTCG	ACAACACACC	AA GGCCGAGCAT	GAAATACGAA	
GGATAACAAT	AA'I"I'G'I'GAGC	CIIIAIGCII CCGGCICGIA IGIIGIGIGG AAI'IGIGAGC GGATAACAAT	CCGGCICGIA	CITAIGCII	T C O 7

G AAACAGCTAT GACCATGATT ACGAATTTCT AGAGCATGCG	TA CTGGTACTAA TGCTTAAAGA TCTCGTACGC
ACGAATTTCT	TGCTTAAAGA
GACCATGATT	CTGGTACTAA
AAACAGCTAT	C TTTGTCGATA (
TTCACACAGG	AAGTGTGTCC
2701	

EcoRI	55555
	2751

SUBSTITUTE SHEET (RULE 26)



SUBSTITUTE SHEET (RULE 26) 116 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

Z W AatII

CCGAAATGTG GGCTTTACAC TCCGTGGGGT AGGCACCCCA CTCACTCATT GAGTGAGTAA ACACTCAATC TGTGAGTTAG GACGTCTTAA CTGCAGAATT

GATAACAATT CTATTGTTAA ATTGTGAGCG TAACACTCGC GTTGTGTGGA CAACACACCT GCCGAGCATA CGGCTCGTAT AAATACGAAG TTTATGCTTC 51

XmnI

XbaI

GTATAATGTA CATATTACAT GAATAACTTC CTTATTGAAG ACCATGTCTA TGGTACAGAT AACAGCTATG TTGTCGATAC TCACACAGGA AGTGTGTCCT

SphI

1 11 1

CGCTATACGA AGTTATCGCA TGC GCGATATGCT TCAATAGCGT ACG

151

SUBSTITUTE SHEET (RULE 26)

101





SUBSTITUTE SHEET (RULE 26) 118 / 204 AatII

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

ж Ж BglII

ACTGCAG TGACGTC ATGCTTCAAT TACGAAGTTA ATGTATGCTA TACATACGAT ACTTCGTATA TGAAGCATAT AGATCTCATA TCTAGAGTAT

SUBSTITUTE SHEET (RULE 26)





SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

## M 7-I (long):

ECORI

Н	GAATTCGGTG	GTGGTGGATC	TGCGTGCGCT	GAAACGGTTG	AAAGTTGTTT
	CTTAAGCCAC	CACCACCIFAG	ACGCACGCGA	CTTTGCCAAC	T.T.CAACAAA
51	AGCAAAATCC TCGTTTTAGG	CATACAGAAA GTATGTCTTT	ATTCATTTAC TAAGTAAATG	TAACGTCTGG	AAAGACGACA TTTCTGCTGT
101	AAACTTTAGA	TCGTTACGCT	AACTATGAGG	GCTGTCTGTG	ADATOTA AD
	TTTGAAATCT	AGCAATGCGA	TTGATACTCC	CGACAGACAC	CTTACGATGT
151	GGCGTTGTAG	TTTGTACTGG	TGACGAAACT	CAGTGTTACG	GTACATGGGT
	CCGCAACATC	AAACATGACC	ACTGCTTTGA	GTCACAATGC	CATGTACCCA
201	TCCTATTGGG	CTTGCTATCC	CTGAAAATGA	GGGTGGTGGC	TCTGAGGGTG
	AGGATAACCC	GAACGATAGG	GACTTTTACT	CCCACCACCG	AGACTCCCAC
251	GCGGTTCTGA	GGGTGGCGGT	TCTGAGGGTG	GCGGTACTAA	ACCTCCTGAG
	CGCCAAGACT	CCCACCGCCA	AGACTCCCAC	CGCCATGATT	TGGAGGACTC
301	TACGGTGATA	CACCTATTCC	GGGCTATACT	TATATCAACC	CTCTCGACGG
,	ATGCCACTAT	GTGGATAAGG	CCCGATATGA	ATATAGTTGG	GAGAGCTGCC

SUBSTITUTE SHEET (RULE 26)
121 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

351	CACTTATCCG	CCTGGTACTG	AGCAAAACCC	CGCTAATCCT	AATCCTTCTC
	GTGAATAGGC	GGACCATGAC	TCGTTTTGGG	GCGATTAGGA	TTAGGAAGAG
401	TTGAGGAGTC	TCAGCCTCTT	AATACTTTCA	TGTTTCAGAA	TAATAGGTTC
	AACTCCTCAG	AGTCGGAGAA	TTATGAAAGT	ACAAAGTCTT	ATTATCCAAG
451	CGAAATAGGC	AGGGGGCATT	AACTGTTTAT	ACGGGCACTG	TTACTCAAGG
	GCTTTATCCG	TCCCCCGTAA	TTGACAAATA	TGCCCGTGAC	AATGAGTTCC
501	CACTGACCCC	GTTAAAACTT CAATTTTGAA	ATTACCAGTA TAATGGTCAT	CACTCCTGTA GTGAGGACAT	TCATCAAAAG AGTAGTTTTC
551	CCATGTATGA	CGCTTACTGG	AACGGTAAAT	TCAGAGACTG	CGCTTTCCAT
	GGTACATACT	GCGAATGACC	TTGCCATTTA	AGTCTCTGAC	GCGAAAGGTA
601	TCTGGCTTTA	ATGAGGATTT	ATTTGTTTGT	GAATATCAAG	GCCAATCGTC
	AGACCGAAAT	TACTCCTAAA	TAAACAAACA	CTTATAGTTC	CGGTTAGCAG
651	TGACCTGCCT	CAACCTCCTG	TCAATGCTGG	CGGCGGCTCT	GGTGGTGGTT
	ACTGGACGGA	GTTGGAGGAC	AGTTACGACC	GCCGCCGAGA	CCACCACCAA
701	CTGGTGGCGG	CTCTGAGGGT GAGACTCCCA	GGTGGCTCTG CCACCGAGAC	AGGGTGGCGG	TTCTGAGGGT AAGACTCCCA

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

				•		
CCGGTGATTT GGCCACTAAA	ACCGAAAATG TGGCTTTTAC	TGATTCTGTC ACTAAGACAG	ACGTTTCCGG TGCAAAGGCC	TCTAATTCCC AGATTAAGGG	XmnI ~~~~~~~~~ GAATAATTTC CTTATTAAAG	GCCCTTTTGT
GGCTCTGGTT	GGGGGCTATG	AAGGCAAACT	TTCATTGGTG	TTTTGCTGGC	CACCTTTAAT	GTTGAATGTC
CCGAGACCAA	CCCCCGATAC	TTCCGTTTGA	AAGTAACCAC		GTGGAAATTA	CAACTTACAG
TTCCGGTGGT	ACGCTAATAA	TCTGACGCTA	TATCGATGGT	CTACTGGTGA	GGTGATAATT	CCCTCAATCG
AAGGCCACCA	TGCGATTATT	AGACTGCGAT	ATAGCTACCA		CCACTATTAA	GGGAGTTAGC
AGGGAGGCGG	AAGATGGCAA	CGCGCTACAG	ACGGTGCTGC	GGTAATGGTG	AGTCGGTGAA	TACCTTCCAT
TCCCTCCGCC	TTCTACCGTT	GCGCGATGTC	TGCCACGACG	CCATTACCAC	TCAGCCACTT	ATGGAAGGTA
GGCGGCTCTG	TGATTATGAA	CCGATGAAAA	GCTACTGATT	CCTTGCTAAT	AAATGGCTCA	CGTCAATATT
CCGCCGAGAC	ACTAATACTT	GGCTACTTTT	CGATGACTAA	GGAACGATTA	TTTACCGAGT	GCAGTTATAA
751	801	851	901	951	1001	1051
			SUBSTITUT	E SHEET (RUL	E 26)	

SUBSTITUTE SHEET (RULE 26) 123 / 204

즁	
۳	
€	
-≅	
Ξ	
ဗ	
<u>ت</u>	
2	
₽	
Ñ	
Š	
ت	
⋖	
ă	
Ξ	
9	
ਛ	
S	
≗	
콖	
ŏ	
Ε	
-	
2	
S	
8	
ب	
⋖	
ഗ്റ	
_	
B	•
ă	
Ξ.	
ᇹ	
Ğ	
-	
Ö	
Š	
ະ	
Ξ	
ĭ	
5	
ĸ	
P	
Ē	
<u>u</u>	
8	
<u>e</u>	
Ξ	
_	
Ĕ	
.0	
ij	
Ē	
3	
<del>-</del>	
œ.	
35	
نه	
Ξ	
g	
ιΞ	

•				
GACAAAATAA CTGTTTTATT	CACCTTTATG GTGGAAATAC	HindIII ~ AGTCTTGATA TCAGAACTAT		-
TATTGATTGT ATAACTAACA	TATATGTTGC ATATACAACG	CGTAATAAGG GCATTATTCC		*
ATGAATTTTC TACTTAAAAG	GCGTTTCTTT CGCAAAGAAA	TAACATACTG		·.
GGTAAACCCT CCATTTGGGA	TGGTGTCTTT ACCACAGAAA	CTACGTTTGC GATGCAAACG	*	
CTTTGGCGCT GAAACCGCGA	ACTTATTCCG TGAATAAGGC	TATGTATTTT ATACATAAAA	HindI ~~~~ AGCTT TCGAA	
1101	1151	1201	1251	
		SU	BSTITUTE SHEET (RI	JLE 26)
			.124 / 204	



SUBSTITUTE SHEET (RULE 25) 125 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

# M 7-II (SS-TAG)

#### ECORI

GTGATTTTGA CACTAAAACT TCTGGTTCCG AGACCAAGGC GCCACCACCG CGGTGGTGGC CTCCGCCAAG GAGGCGGTTC CGGGAATTCG GCCCTTAAGC

GAAAATGCCG CTTTTACGGC CCGATACTGG GGCTATGACC CTAATAAGGG GATTATTCCC ATGGCAAACG TACCGTTTGC TTATGAAAAG AATACTTTTC 51

TICICICCC AAGACAGCGA GCAAACTTGA CGTTTGAACT GACGCTAAAG CTGCGATTTC GCTACAGTCT CGATGTCAGA TACTTTTGCG ATGAAAACGC 101

ATTGGTGACG TAACCACTGC CGATGGTTTC GCTACCAAAG GTGCTGCTAT CACGACGATA ACTGATTACG TGACTAATGC

TTTCCGGCCT

TTAAGGGTTT AATTCCCAAA TGCTGGCTCT ACGACCGAGA GACCACTAAA CTGGTGATTT AATGGTGCTA TTACCACGAT TGCTAATGGT ACGATTACCA 201

#### XmnI

TAATTTCCGT ATTAAAGGCA CTTTAATGAA GAAATTACTT CTATTAAGTG GATAATTCAC CGGTGACGGT GCCACTGCCA TGGCTCAAGT ACCGAGTTCA 251

SUBSTITUTE SHEET (RULE 26)

51

	CHOH HAD BENTON HAR HAR HAR HAR HAR HAR HAR HAR HAR HAR
<del>g</del>	È
inue	f 7
Cont	'
ors (	
vect	(
Ş	(
p bu	•
les a	(
npor	1
וסו	1
vect	
SA	
nal p	
ži į	
j adc	
es of	
uenc	
sedi	
and	
naps	
nalr	
ctio	
Fun	
35a:	
Figure	
Ē	•

301	CAATATTTAC GTTATAAATG	CTTCCCTCCC	TCAATCGGTT AGTTAGCCAA	GAATGTCGCC CTTACAGCGG	CTTTTGTCTT
351	TGGCGCTGGT	AAACCATATG TTTGGTATAC	AATTTTCTAT TTAAAAGATA	TGATTGTGAC ACTAACACTG	AAAATAAACT TTTTATTTGA
401	TATTCCGTGG ATAAGGCACC	TGTCTTTGCG ACAGAAACGC	TTTCTTTTAT AAAGAAAATA	ATGTTGCCAC TACAACGGTG	CTTTATGTAT GAAATACATA
451	GTATTTTCTA	CGTTTGCTAA GCAAACGATT	CATACTGCGT GTATGACGCA	AATAAGGAGT TTATTCCTCA	HindIII ~~~~ CTTGATAAGC GAACTATTCG
501	Hi TT				

SUBSTITUTE SHEET (RULE 26) 127 / 204





SUBSTITUTE SHEET (RULE 26)
128 / 204

HindIII

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

.. ∞ Σ SphI

TAAGCTT ATTCGAA TACGAAGTTA ATGCTTCAAT ATGTACGCTA TACATGCGAT ACTTCGTATA TGAAGCATAT GCATGCCATA CGTACGGTAT

SUBSTITUTE SHEET (RULE 26)





SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

### M 10-II:

BsrGI

AACCCTGATA	TTGGGACTAT	
	TACTCTGTTA	
GTATCCGCTC	CATAGGCGAG	
ATTCAAATAT	TAAGTTTATA	
TAC	CCCCCACATG	
1		

AATGCTTCAA TAATATTGAA AAAGGAAGA TATGAGTATT CAACATTTCC
-------------------------------------------------------

TGTTTTGCT	ACAAAAACGA
TTTGCCTTCC	AAACGGAAGG
TL	AAACGCCGT
TATTCCCTTT	ATAAGGGAAA
TGTCGCCCT	CACAGCGGGA
101 TITZE	irr= (

CAGAAA CGCTGGTGA	GTC	
AG.	TC	
151		

G ATCCTTGAGA	3 ACCTAGAGTT GTCGCCATTC TAGGAACTCT
CAGCGGTAA	GTCGCCATT
TGGATCTCAA	ACCTAGAGTT
3T TACATCGAAC	A ATGTAGCTTG
GCGAGTGGGT	CGCTCACCCA
201	

XmnI

	GG GCTTCTTGCA AAAGGTTACT ACTCGTGAAA ATTTCAAGAC
TGAGCACTTT	ACTCGTGAAA
TTTCCAATGA	AAAGGTTACT
CC CGAAGAACGT	GCTTCTTGCA
GTTTTCGCCC	CAAAAGCGGG
251	

SUBSTITUTE SHEET (RULE 26)
131 / 204

$\Rightarrow$
ັ
ā
.⊆
Ξ
Ξ
ซ
ت
S
ō
77
ັ
>
⋖
ŏ
ч
Q
Ξ
0
S
<del>=</del>
7
ă
Ξ
=
ħ
vecto
ŭ
>
َ
⋖
PCAL,
Q.
<del>-</del>
Ĕ
ō
:=
ö
õ
O
ټ
0
Sign
ย
č
ñ
2
2
Ň
ъ
<b>C</b>
a
χ.
ğ
nap
map
al maps
nal maps
ional maps
tional maps:
nctional maps
unctional maps
Functional maps
1: Functional maps
sa: Functional maps
35a: Functional maps
? 35a: Functional maps
re 35a: Functional maps
iure 35a: Functional maps
Figure 35a: Functional maps

301	CTATGTGGCG	CGGTATTATC GCCATAATAG	CCGTATTGAC GGCATAACTG	GCCGGGCAAG CGGCCCGTTC	AGCAACTCGG TCGTTGAGCC	
351	TCGCCGCATA	CACTATTCTC GTGATAAGAG	AGAATGACTT TCTTACTGAA	GGTTGAGTAC CCAACTCATG	TCACCAGTCA AGTGGTCAGT	
401	CAGAAAAGCA GTCTTTTCGT	TCTTACGGAT AGAATGCCTA	GGCATGACAG CCGTACTGTC	TAAGAGAATT ATTCTCTTAA	ATGCAGTGCT TACGTCACGA	
451	GCCATAACCA CGGTATTGGT	TGAGTGATAA ACTCACTATT	CACTGCGGCC GTGACGCCGG	AACTTACTTC TTGAATGAAG	TGACAACGAT	•
501	CGGAGGACCG GCCTCCTGGC	AAGGAGCTAA TTCCTCGATT	CCGCTTTTTT GGCGAAAAA	GCACAACATG CGTGTTGTAC	GGGGATCATG CCCCTAGIAC	
551	TAACTCGCCT ATTGAGCGGA	TGATCGTTGG	GAACCGGAGC CTTGGCCTCG	TGAATGAAGC ACTTACTTCG	CATACCAAAC GTATGGTTTG	
601	GACGAGCGTG	ACACCACGAT TGTGGTGCTA	GCCTGTAGCA	ATGGCAACAA TACCGTTGTT	CGTTGCGCAA GCAACGCGTT	
651	ACTATTAACT TGATAATTGA	GGCGAACTAC CCGCTTGATG	TTACTCTAGC AATGAGATCG	TTCCCGGCAA AAGGGCCGTT	CAGTTAATAG GTCAATTATC	

SUBSTITUTE SHEET (RULE 25)

continued)
vectors (c
PS P
les and p(
modul
vector
PCAL
additiona
<u>پ</u>
naps and sequences c
and St
l maps
ctiona
a: Fun
ıre 35
Figu

Œ.	701	ACTGGATGGA TGACCTACCT	GGCGGATAAA CCGCCTATTT	GTTGCAGGAC CAACGTCCTG	CACTTCTGCG GTGAAGACGC	CTCGGCCCTT GAGCCGGGAA
	751	CCGGCTGGCT	GGTTTATTGC CCAAATAACG	TGATAAATCT ACTATTTAGA	GGAGCCGGTG CCTCGGCCAC	AGCGTGGGTC TCGCACCCAG
	801	TCGCGGTATC	ATTGCAGCAC TAACGTCGTG	TGGGGCCAGA	TGGTAAGCCC	TCCCGTATCG AGGGCATAGC
	851	TAGTTATCTA ATCAATAGAT	CACGACGGGG GTGCTGCCCC	AGTCAGGCAA TCAGTCCGTT	CTATGGATGA GATACCTACT	ACGAAATAGA TGCTTTATCT
	901	CAGATCGCTG GTCTAGCGAC	AGATAGGTGC TCTATCCACG	CTCACTGATT GAGTGACTAA	AAGCATTGGG TTCGTAACCC	TAACTGTCAG ATTGACAGTC
	951	ACCAAGTTTA TGGTTCAAAT	CTCATATATA GAGTATATAT	CTTTAGATTG GAAATCTAAC	АТТТААААСТ ТАААТТТТGA	TCATTTTAA AGTAAAAATT
<b>-</b>	1001	TTTAAAAGGA AAATTTTCCT	TCTAGGTGAA AGATCCACTT	GATCCTTTTT CTAGGAAAAA	GATAATCTCA CTATTAGAGT	TGACCAAAAT ACTGGTTTTA
7	1051	CCCTTAACGT GGGAATTGCA	GAGTTTTCGT CTCAAAAGCA	TCCACTGAGC AGGTGACTCG	GTCAGACCCC CAGTCTGGGG	GTAGAAAAGA CATCTTTTCT

SUBSTITUTE SHEET (RULE 26)

PacI

FseI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

 AATGGCCGGC CCCCCCCTT TTACCGGCCG GGGGGGGAA	
CCTTTTTGAT GGAAAAACTA	
TTCTTGAGAT AAGAACTCTA	
TCAAAGGATC AGTTTCCTAG	
1101	

11111 1151

PacI

000 000 AATTAAGGGG TTAATTCCCC

> SUBSTITUTE SHEET (RULE 26) 134 / 204



SUBSTITUTE SHEET (RULE 26) 135 / 204

TGTGGTGGTT ACACCACCAA TGCAAGAAAT

ACGTTCTTTA

GTTGGAGTCC

GCCCTTTGAC

ACGGTTTTTC TGCCAAAAAG

GCCCTGATAG

251

TTTACGGCAC AAATGCCGTG GTGGGCCATC CACCCGGTAG

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

## M11-II:

NheI

rh	r )	. د	7 1 pm	A .
555555555555555555555555555555555555555	GCCCTAGCGC CGGGATCGCG	CGCCGGCTTT	GATTTAGTGC CTAAATCACG	GGTTCTCGTA CCAAGAGCAT
CCGCGTAATT	ACTTGCCAGC TGAACGGTCG	TCGCCACGTT AGCGGTGCAA	TTAGGGTTCC	TTAGGGTGAT AATCCCACTA
CGATCGTGCG CGGGACATCG	TGACCGCTAC ACTGGCGATG	CCTTCCTTTC	Banii ~~~~~~ GGGCTCCCT CCCCGAGGGA	AAAAACTTGA TTTTTGAACT
CGATCGTGCG	ACGCGCAGCG TGCGCGTCGC	CGCTTTCTTC GCGAAAGAAG	CTCTAAATCG GAGATTTAGC	CTCGACCCCA
ı	51	01	51	01

SUBSTITUTE SHEET (RULE 26)

136 / 204

CCCCGTCAAG

GGCGAGGAAA

CCGCTCCTTT

_
ned)
2
æ
5
۳
2
2
ິ
>.
₹
ပ္က
<del>-</del>
and
S
≅.
dules
$\simeq$
Ξ
₫
vector n
>
₹
ပ္ပ
=
2
.≘
÷
g
<u></u>
S
uences
Š
due
ĕ
5
Ě
Š
æ
Ε
<del>_</del> =
Ë
Ξ.
2
چَ
=
53
<del>ر</del>
Ĭ
ğ
Œ

О. и	ATAGTGGACT TATCACCTGA				TATCTCGGTC
T C S	ATAAGAAAAC	AITIAIAAGG TAAATATTCC	GATTTTGCCG GTAAAACGGC	ATTTCGGCCT TAAAGCCGGA	ATTGGTTAAA TAACCAATTT
401	AAATGAGCTG TTTACTCGAC	ATTTAACAAA MATTTAACGC TAAATTGTTT TTAAATTGCG		GAATTTTAAC CTTAAAATTG	AAAATATTAA TTTTATAATT

BsrGI

CGTTTACAAT TTCATGTACA GCAAATGTTA AAGTACATGT

451

SUBSTITUTE SHEET (RULE 26)



SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 12:

BglII

<del></del>	AGATCTAATA	AGATGATCTT	CTTGAGATCG	TTTTGGTCTG	CGCGTAATCT
	TCTAGATTAT	TCTACTAGAA	GAACTCTAGC	AAAACCAGAC	GCGCATTAGA
51	CTTGCTCTGA	AAACGAAAAA TTTGCTTTTT	ACCGCCTTGC	AGGGCGGTTT	TTCGTAGGTT AAGCATCCAA

GAGGAGCGCA	TIGACCGAAC CICCICGCGI
AACTGGCTTG	A TTGACCGAAC
GAACCGAGGT AACTGGCTTG GAGGAGCGCA	CTTGGCTCCA
CCAACTCTTT	GGTTGAGAAA
CTCTGAGCTA	GAGACTCGAT
101	
SU	BS1

			-			
	151	GTCACTAAAA	CTTGTCCTTT	CAGTTTAGCC	AAA CITGICCIII CAGIIIAGCC TIAACCGGCG CAIGACIICA	CATGACTTCA
. *		CAGTGATTTT	GAACAGGAAA	GTCAAATCGG	AATTGGCCGC	GTACTGAAGT

GGA CTGAACGGGG GGTTCGTGCA TACAGTCCAG CTTGGAGCGA	CT GACTTGCCCC CCAAGCACGT ATGTCAGGTC GAACCTCGCT
TACAGTCCAG	ATGTCAGGTC
GGTTCGTGCA	CCAAGCACGT
CTGAACGGGG	GACTTGCCCC
AGCGGTCGGA	TCGCCAGCCT
301	

SUBSTITUTE SHEET (RULE 26)

PCT/EP96/03647 WO 97/08320

CAGTGAGCGA GTCACTCGCT

CGTAGCGAGT GCATCGCTCA

AACGACCGAG TTGCTGGCTC

GCCGCAGTCG CGGCGTCAGC

ATTTCCGCTC TAAAGGCGAG

651

AAACGCGGCC TTTGCGCCGG		AGGAGAGCGC TCCTCTCGCG	GTCCTGTCGG CAGGACAGCC	TTGTCAGGGG AACAGTCCCC	ACTTCCCTGT TGAAGGGACA	TTCGTAAGCC AAGCATTCGG
AC FIG	·	AGGCAGGAAC TCCGTCCTTG	TATCTTTATA ATAGAAATAT	TTCGTGATGC AAGCACTACG	CGGCCCTCTC	CTCCGCCCCG
sequences of additional pCAL vector modules and pCAL vectors (continued)  C CGGAACTGAG TGTCAGGCGT GGAATGAG  G GCCTTGACTC ACAGTCCGCA CCTTACTC		GTAAACCGAA CATTTGGCTT	AAACGCCTGG TTTGCGGACC	AGCGTCAGAT TCGCAGTCTA	GGCTTTGCCG CCGAAACGGC	TCCAGGAAAT AGGTCCTTTA
ences of additional pCAL CGGAACTGAG GCCTTGACTC	AgeI	AATGACACCG TTACTGTGGC	CGCCAGGGGG	CACTGATTTG GTGACTAAAC	ATGGAAAAAC TACCTTTTTG	CCTGGCATCT GGACCGTAGA
Figure 35a: Functional maps and sequal 51 ACTGCCTACC TGACGGATGG		ATAACAGCGG TATTGTCGCC	AGGAGGGAGC TCCTCCCTCG	GTTTCGCCAC	GGCGGAGCCT	TAAGTATCTT ATTCATAGAA
Figure 35a: 3 5 1		401	451	501	55 7.7	601

SUBSTITUTE SMEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

AgeI ~~~~~~ ACCGGTGCAG TGGCCACGTC	TCATCAGTGC AGTAGTCACG	
CTGCTGACGC GACGACTGCG	ACTGACACCC TGACTGTGGG	္ ပ္ ပ္ပံ ပ
TATATCCTGT ATCACATATT ATATAGGACA TAGTGTATAA	XmnI ~~~~~~~ GAAGCACTTC CTTCGTGAAG	Nhel CACTCCGCTA GC GTGAGGCGAT CG
TATATCCTGT ATATAGGACA	CCTGCCACAT	AGCCAGTATA TCGGTCATAT
GGAAGCGGAA CCTTCGCCTT	CCTTTTTTCT GGAAAAAAGA	CAACATAGTA GTTGTATCAT
701	751	801

SUBSTITUTE SHEET (RULE 26)



SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

13: Σ BglII

XmnI

BglII

TACGAAGTTA

TTCAGATCT ATGCTTCAAT TACATACGAT ATGTATGCTA ACTTCGTATA TGAAGCATAT AGATCTCATA TCTAGAGTAT

SUBSTITUTE SHEET (RULE 26)





SUBSTITUTE SHEET (RULE 26)
144 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 19:

XbaI SphI

CTATTGCACT GATAACGTGA AAACAAAGCA TTTGTTTCGT AAATAAATG TTTATTTAC CGCATCCTCT GCGTAGGAGA TCTAGAGCAT AGATCTCGTA

ECORI Sapi

CTTAAG GAATTC ATGGTTTCGG TACCAAAGCC TCACCCCTGT AGTGGGGACA CCGTTGCTCT GGCAACGAGA CCGTGAGAAT GGCACTCTTA 51

SUBSTITUTE SHEET (RULE 26)





SUBSTITUTE SHEET (RULE 26)
146 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 20

XbaI SphI

CTATTGCACT GATAACGTGA AAACAAAGCA TTTGTTTCGT TTTATTTAC AAATAAATG CGCATCCTCT GCGTAGGAGA AGATCTCGTA TCTAGAGCAT

Sapi

GACTACAAAG CTGATGTTTC ATGGTTTCGG TACCAAAGCC TCACCCCTGT AGTGGGGACA CCGTTGCTCT GGCAACGAGA CCGTGAGAAT GGCACTCTTA

51

Muni Ecori

ATGAAGTGCA ATTGGAATTC TACTTCACGT TAACCTTAAG

SUBSTITUTE SHEET (RULE 26)
147 / 204

101



SUBSTITUTE SHEET (RULE 26) 148 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 21:

XbaI

1111

AAGAAGAACG TTCTTCTTGC TTATAGCGTA AATATCGCAT TATGAAAAAG ATACTTTTC GAGGTGATTT CTCCACTAAA TCTAGAGGTT AGATCTCCAA

GAATTC ECORI Nsil

ACGTATGCGA TGCATACGCT TTGCTACAAA AACGATGTTT GTTTTTCTA CAAAAAAGAT ATCTATGTTC TAGATACAAG 51

CTTAAG

SUBSTITUTE SHEET (RULE 26)





SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 41

NheI

<b>H</b>	GCTAGCATOG	AATGGCGCAA TTACCGCGTT	AACCTTTCGC TTGGAAAGCG	GGTATGGCAT CCATACCGTA	GATAGCGCCC CTATCGCGGG
51	GGAAGAGAGT CCTTCTCTCA	CAATTCAGGG GTTAAGTCCC	TGGTGAATGT ACCACTTACA	GAAACCAGTA CTTTGGTCAT	ACGTTATACG TGCAATATGC
101	ATGTCGCAGA TACAGCGTCT	GTATGCCGGT CATACGGCCA	GTCTCTTATC CAGAGAATAG	AGACCGTTTC TCTGGCAAAG	CCGCGTGGTG
151	AACCAGGCCA	GCCACGTTTC CGGTGCAAAG	TGCGAAAACG ACGCTTTTGC	CGGGAAAAAG GCCCTTTTTC	TGGAAGCGGC ACCTTCGCCG
201	GATGGCGGAG CTACCGCCTC	CTGAATTACA GACTTAATGT	TTCCTAACCG AAGGATTGGC	CGTGGCACAA GCACCGTGTT	CAACTGGCGG GTTGACCGCC
251	GCAAACAGTC CGTTTGTCAG	GTTGCTGATT CAACGACTAA	GGCGTTGCCA	CCTCCAGTCT GGAGGTCAGA	GGCCCTGCAC
301	GCGCCGTCGC	AAATTGTCGC TTTAACAGCG	GGCGATTAAA CCGCTAATTT	TCTCGCGCCG AGAGCGCGGC	ATCAACTGGG TAGTTGACCC

SUBSTITUTE SHEET (RULE 26) = 151 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

GAAGCCTGTA	GCTGATTATT	CTGCCTGCAC	CCCATCAACA	GGAGCATCTG	CATTAAGTTC	CTCACTCGCA	TGCCATGTCC
CTTCGGACAT	CGACTAATAA	GACGGACGTG	GGGTAGTTGT	CCTCGTAGAC	GTAATTCAAG	GAGTGAGCGT	
AAGCGGCGTC	GTGTCAGTGG	GCTGTGGAAG	TGACCAGACA	GACTGGGCGT	TTAGCTGGCC	GCATAAATAT	GCGACTGGAG
TTCGCCGCAG	CACAGTCACC	CGACACCTTC	ACTGGTCTGT	CTGACCCGCA	AATCGACCGG	CGTATTTATA	CGCTGACCTC
TGGTAGAACG ACCATCTTGC	CTCGCGCAAC	GGATGCTATT CCTACGATAA	TTGATGTCTC AACTACAGAG	GACGGTACGC CTGCCATGCG	AATCGCGCTG TTAGCGCGAC	TGGCTGGCTG	GAACGGGAAG CTTGCCCTTC
GTCGTGTCGA	GCACAATCTT CGTGTTAGAA	TGGATGACCA ACCTACTGGT	GCGTTATTTC CGCAATAAAG	CTCCCATGAG GAGGGTACTC	GCCACCAGCA CGGTGGTCGT	CGTCTGCGTC	GCCGATAGCG CGGCTATCGC
TGCCAGCGTG	AAGCGGCGGT	AACTATCCGC	TAATGTTCCG	GTATTATTTT	GTCGCATTGG	TGTCTCGGCG	ATCAAATTCA
ACGGTCGCAC	TTCGCCGCCA	TTGATAGGCG	ATTACAAGGC	CATAATAAAA	CAGCGTAACC		TAGTTTAAGT
351	401	451	501	551	601	651	701

SUBSTITUTE SHEET (FULE 26)

Figure 35a; Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

			SUBSTITU	TE SHEET (R	ULE 26)	. ,	
751	801	851	901	951	1001	1051	1101
GGTTTTCAAC CCAAAAGTTG	GATGCTGGTT CTACGACCAA	CCGAGTCCGG GGCTCAGGCC	GATACCGAGG	GGATTTTCGC CCTAAAAGCG	CTCAGGGCCA GAGTCCCGGT	AAAAGAAAAA TTTTCTTTTT	GTTGGCCGAT
AAACCATGCA TTTGGTACGT	GCCAACGATC CGGTTGCTAG	GCTGCGCGTT CGACGCGCAA	ACAGCTCATG TGTCGAGTAC	CTGCTGGGGC	GGCGGTGAAG	CCACCCTGGC	TCACTGATGC AGTGACTACG
AATGCTGAAT TTACGACTTA	AGATGGCGCT TCTACCGCGA	GGTGCGGACA	TTATATCCCG AATATAGGGC	AAACCAGCGT TTTGGTCGCA	GGCAATCAGC CCGTTAGTCG	TCCCAATACG AGGGTTATGC	AGCTGGCACG
GAGGGCATCG CTCCCGTAGC	GGGCGCAATG	TCTCGGTAGT AGAGCCATCA	CCGCTGACCA GGCGACTGGT	GGACCGCTTG CCTGGCGAAC	TGTTGCCCGT	CAAACCGCCT GTTTGGCGGA	ACAGGTTTCC TGTCCAAAGG
TTCCCACTGC AAGGGTGACG	CGTGCCATTA	GGGATACGAC CCCTATGCTG	CCATCAAACA GGTAGTTTGT	CTGCAACTCT GACGTTGAGA	CTCACTGGTG	CTCCCGCGCGC	CGACTGGAAA GCTGACCTTT

SUBSTITUTE SHEET (RULE 26 153 / 204 Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

GGAGGCCGTT	CCTCCGGCAA
CTTCCTGACA	GAAGGACTGT (
ATAAAAGCGG (	C TATTTCGCC C
AGGCTACCCG	TCCGATGGGC
GCGGGCAGTG	CGCCCGTCAC
1151	

TTGTTTTGCA GCCCACTTAA AACAAAACGT CGGGTGAATT 1201

ပ ပ

SUBSTITUTE SHEET (RULE 26) 154 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



SUBSTITUTE SHEET (RULE 26) 155 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

pCALO-1: Bglii

AATTCGTAAG AAAAAATTA TTTTTTAAT TTAAGCATTC ATTGACGGAA TTGTAATTCA AACATTAAGT TAACTGCCTT TCCCGTGGTT GCGTCATGAC AGGCACCAA CGCAGTACTG ACGGTGAGTA CAGGCGTTTA GTCCGCAAAT TECCACTCAT 9990999509 CTAGATCGTG GATCTAGCAC 222222222 1 2 2 2 2 51

TTAGCGGTCG AATCGCCAGC TAGTGAAAAC GATGAACCTG CTACTTGGAC GTTTGCCGTA CAAACGGCAT CTTCGGTAGT GAAGCCATCA ACGGCTGTAC TGCCGACATG 101 51

TATTTGCCCA ATAAACGGGT TTGCGTATAA AACGCATATT GGAACAGCGG CCTTGTCGCC CCGTAGTCGT GGCATCAGCA

ATCACTTTTG

AAACTGGTGA TTTGACCACT GTTTAAATCA CAAATTTAGT TATTGGCTAC ATAACCGATG AAGTTGTCCA TTCAACAGGT CCCCCCTTC GGGGCGAAG 201

TTATTTGGGA AATAAACCCT TGTATAAGAG ACATATTCTC GAGACGAAAA CTCTGCTTTT GGGATTGGCT CCCTAACCGA AACTCACCCA TTGAGTGGGT 251

CTTGCGAATA GAACGCTTAT CACGCCACAT GTGCGGTGTA TTCACCGTAA AAGTGGCATT AGGCCAGGTT TCCGGTCCAA TTAGGGAAAT AATCCCTTTA 301

SUBSTITUTE SHEET (RULE 26)

(continued)
. vectors
ঠু
and
modules
. vector
질
additional
o sabuar
d segu
maps an
onal
Functi
35a: I
Figure

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

TTGGAGTGGG AACCTCACCC ACTTTCAACC TGAAAGTTGG AAGTAATACC TTCATTATGG CACTAGAATA GTGATCTTAT TGCGGGCCAT ACGCCCGGTA 51

AatII

GCTTTACACT CGAAATGTGA GGCACCCCAG CCGTGGGGTC AGTGAGTAAT TCACTCATTA CACTCAATCG GTGAGTTAGC CTGCAGATTA GACGTCTAAT 801

TATTGTTAAA ATAACAATTT TTGTGAGCGG AACACTCGCC TTGTGTGGAA CCGAGCATAC AACACACCTT GGCTCGTATG TTATGCTTCC AATACGAAGG 851

Xbal

~~~~~

TGGGGGGGGG GAATTTCTAG ACCCCCCCC HindIII CTTAAAGATC CCATGATTAC GGTACTAATG ACAGCTATGA TGTCGATACT CACACAGGAA GTGTGTCCTT 901

Sphi

ATAAGCTTGA TATTCGAACT ~~~~~ TATGCTTCAA ATACGAAGTT AATGTACGCT TTACATGCGA AACTTCGTAT TTGAAGCATA CGCATGCCAT GCGTACGGTA 951

TTTGTCTGCC AAACAGACGG CGACATTTTT GCTGTAAAAA GCAGATTGTG CGTCTAACAC GAAAAATGGC CTTTTTACCG CCTGTGAAGT GGACACTTCA 1001

SUBSTITUTE SHEET (RULE 23)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| BsrGI | ~~~~~~
GTACATGAAA
CATGTACTTT | TTGTTAAATC
AACAATTTAG | CTTATAAATC
GAATATTTAG | TGGAACAAGA
ACCTTGTTCT | AAAAACCGTC
TTTTTGGCAG | CAAGTTTTTT
GTTCAAAAAA | Banii |
|-------|------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| |
 | | GGCAAAATCC
CCGTTTTAGG | TGTTCCAGTT ACAAGGTCAA | TCAAAGGGCG AAGTTTCCCGC | TCACCCTAAT (ABCTGGGATTA) | GAACCCTAAA C |
| FSeI | GGGCCGGCCT | TTAAAATTCG
AATTTTAAGC | GGCCGAAATC
CCGGCTTTAG | GGTTGAGTGT
CCAACTCACA | GACTCCAACG
CTGAGGTTGC | ACGAGAACCA
TGCTCTTGGT | CACTAAATCG
GTGATTTAGC |
| | AGGGGGGGG | TAATATTTTG
ATTATAAAAC | ТТААССААТА
ААТТGGTTAT | ACCGAGATAG
TGGCTCTATC | AAAGAACGTG
TTTCTTGCAC | ATGGCCCACT
TACCGGGTGA | TGCCGTAAAG
ACGGCATTTC |
| PacI | GTTTAATTAA
CAAATTAATT | TTGTAAACGT
AACATTTGCA | AGCTCATTTT
TCGAGTAAAA | AAAAGAATAG
TTTTCTTATC | GTCCACTATT
CAGGTGATAA | TATCAGGGCG
ATAGTCCCGC | GGGGTCGAGG |
| | 1051 | 1101 | 1151 | 1201
1201 | 1251
ELUDE 20 | 1301 | 1351 |
| | | | SORS | STRUTE SHE | in (ilule 2 | o) | |

SUBSTITUTE SHEET (NULE 26 159 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| | GCGATCCCGC | GGCGGCGCGA | | ACT?
TGA1 | | AAZ | Ž, | 366 |
|--------------------------|-----------------------|---------------------------------|------|--------------------------|------|------------|-------------|------------|
| GGGGA | | 5
0
0
0
0
0
0 | | TGGCTTACTA
ACCGAATGAT | | GCAGGAGAAA | CGICCICIII. | TATATAAGGC |
| TTGACGGGGA | AAGGAGCGGG TTCCTCGCCC | ACCACCACAC
TGGTGGTGTG | | GAGTGTATAC
CTCACATATG | Ħ | GCTTCATGTG | GTGATACAGG | CACTATGTCC |
| GATTTAGAGC
CTAAATCTCG | TTCTTTCGCT | CGACGCGCAT | NheI | CGTGCTAGCG
GCACGATCGC | IrmX | TCAGTGAAGT | AGCAGAATAT | TCGTCTTATA |
| 1401 | 1451
1601 | T 0 C T | | 1551 | | 1601 | 1651 | |

SUBSTITUTE SHEET (RULE 20 160 / 204

| 7 |
|--------------------------------------|
| |
| |
| |
| 1 |
| - 1 |
| יווטלים מווים שלתביים בי |
| רוקעור ששה י שור ייטיים |
| בולמונג פספי ו מוני מסויםו וויניולים |

| Figure | 35a: Functional | Figure 35a: Functional maps and sequences of add | AGCAAGCTGA | additional pear vector modules and pear vectors remined. AGCAAGCTGA CGCCGCTCGC CTT | TACCGAA | TGCTTGCCCC |
|-----------------------|-----------------|--|--|---|--------------------------|--------------------------|
| | 1751 | CGGAGATTTC
GCCTCTAAAG | CTGGAAGATG
GACCTTCTAC | CCAGGAAGAT
GGTCCTTCTA | ACTTAACAGG
TGAATTGTCC | GAAGTGAGAG
CTTCACTCTC |
| | 1801 | GGCCGCGGCA | AAGCCGTTTT
TTCGGCAAAA | TCCATAGGCT
AGGTATCCGA | CCGCCCCCT | GACAAGCATC
CTGTTCGTAG |
| SUB | 1851 | ACGAAATCTG
TGCTTTAGAC | ACGCTCAAAT
TGCGAGTTTA | CAGTGGTGGC
GTCACCACCG | GAAACCCGAC
CTTTGGGCTG | AGGACTATAA
TCCTGATATT |
| STITUTE SH
161 / 2 | 1901 | AGATACCAGG
TCTATGGTCC | CGTTTCCCCCC | TGGCGGCTCC | CTCCTGCGCT | CTCCTGTTCC
GAGGACAAGG |
| | 1951 | TGCCTTTCGG | Agel
~~~~~~
TTTACCGGTG
AAATGGCCAC | TCATTCCGCT
AGTAAGGCGA | GTTATGGCCG | CGTTTGTCTC
GCAAACAGAG |
| | 2001 | AȚTCCACGCC
TAAGGTGCGG | TGACACTCAG | TTCCGGGTAG | GCAGTTCGCT
CGTCAAGCGA | CCAAGCTGGA
GGTTCGACCT |
| | 2051 | CTGTATGCAC
GACATACGTG | GAACCCCCCG | TTCAGTCCGA
AAGTCAGGCT | CCGCTGCGCC
GGCGACGCGG | TTATCCGGTA
AATAGGCCAT |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| ACCACTGGCA
TGGTGACCGT | TCATGCGCCG | TCCTCCAAGC
AGGAGGTTCG | ACGAAAAACC
TGCTTTTTGG | ACGCGCAGAC
TGCGCGTCTG | | |
|--------------------------|--|--------------------------|--------------------------|---------------------------|-------|--------------------------|
| ATGCAAAAGC
TACGTTTTCG | AGTCTTGAAG
TCAGAACTTC | GTGACTGCGC
CACTGACGCG | CAGAGAACCT
GTCTCTTGGA | GCAAGAGATT
CGTTCTCTAA | | |
| CCGGAAAGAC
GGCCTTTCTG | GTAATTGATT TAGAGGAGTT
CATTAACTAA ATCTCCTCAA | ACAAGTTTTA
TGTTCAAAAT | GTTGGTAGCT
CAACCATCGA | CGTTTTTCAGA
GCAAAAGTCT | Bglii | CATCTTATTA
GTAGAATAAT |
| TGAGTCCAAC
ACTCAGGTTG | GTAATTGATT
CATTAACTAA | AACTGAAAGG
TTGACTTTCC | GGTTCAAAGA
CCAAGTTTCT | GCGGTTTTTT
CGCCAAAAAA | | TCAAGAAGAT
AGTTCTTCTA |
| ACTATCGTCT
TGATAGCAGA | GCAGCCACTG
CGTCGGTGAC | GTTAAGGCTA
CAATTCCGAT | CAGTTACCTC | GCCCTGCAAG
CGGGACGTTC | | CAAAACGATC
GTTTTGCTAG |
| 2101 | 2151 | 2201 | 2251 | 2301 | | 2351 |
| | | S | | SHEET (FIUL | E 25) | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26) 163 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

pCALO-2: BsrGI

2222

CGTTAAATTT GCAATTTAAA TTAAAATTCG AATTTTAAGC TAATATTTG ATTATAAAAC AACATTTGCA TTGTAAACGT GTACATGAAA CATGTACTTT

CCGTTTTAGG GGCAAAATCC CCGGCTTTAG GGCCGAAATC TTAACCAATA AATTGGTTAT TCGAGTAAAA AGCTCATTTT AACAATTTAG TTGTTAAATC 51

TGTTCCAGTT ACAAGGTCAA GGTTGAGTGT CCAACTCACA TGGCTCTATC ACCGAGATAG AAAAGAATAG TTTTCTTATC GAATATTTAG CTTATAAATC 101

CTGAGGTTGC GACTCCAACG AAAGAACGTG TTTCTTGCAC GTCCACTATT CAGGTGATAA TGGAACAAGA ACCTTGTTCT

TCAAAGGGCGAGTTTCCCCGC

AGTGGGATTA TCACCCTAAT ACGAGAACCA TGCTCTTGGT TACCGGGTGA ATGGCCCACT TATCAGGGCG ATAGTCCCGC AAAAACCGTC TTTTGGCAG 201

GAACCCTAAA CTTGGGATTT CACTAAATCG GTGATTTAGC TGCCGTAAAG ACGCCATTTC GGGGTCGAGG CCCCAGCTCC CAAGTTTTT GTTCAAAAA 251

BanII

TIGACGGGGA AAGCCGGCGA ACGIGGCGAG GATTTAGAGC GGGAGCCCCC 301

SUBSTITUTE SHEET (RULE 20

151

| ued) | |
|----------------|--|
| 락 | |
| 2 | |
| ≔ | |
| Ξ | |
| ຸຽ | |
| \overline{S} | |
| Ĕ. | |
| 꽂 | |
| ຽ | |
| > | |
| 7 | |
| ට | |
| ď | |
| ō | |
| a | |
| Ŋ | |
| 프 | |
| 泵 | |
| ŏ | |
| Ε | |
| Ħ | |
| 5 | |
| S | |
| > | |
| 7 | |
| \circ | |
| <u>a</u> | |
| ā | |
| Ξ | |
| ⋰≝ | |
| ÷ | |
| ğ | |
| | |
| <u></u> | |
| Š | |
| ຽ | |
| ⊊. | |
| ă | |
| . D | |
| Š | |
| Ö | |
| Н | |
| Š | |
| Ğ. | |
| Ĕ | |
| _ | |
| 13 | |
| ō | |
| = | |
| Ĕ | |
| 5 | |
| | |
| 53 | |
| 3 | |
| ىە | |
| 5 | |
| ٠Ē | |
| 4 | |
| | |

| | , | | | | | _ |
|--|--------------------------|--------------------------|----------------------------------|-----------------------------------|----------------------------------|----------------------------------|
| TGCACCGCTC | CTGGCAAGTG
GACCGTTCAC | TAATGCGCCG | TGTTGGCACT | Agel
AAAGGCTGCA
TTTCCGACGT | CTTCCTCGCT | GAAATGGCTT |
| Trcgccccr | CGCTAGGGCG
GCGATCCCGC | CCGCCGCGCT | TGGCTTACTA | GCAGGAGAAA
CGTCCTCTTT | ATATATTCCG
TATATAAGGC | GCGGCGAGCG |
| additional pCAL vector modules and pCAL vectors (continued) GTAAATCTCG AACTGCCCCT TTC | AAGGAGCGGG
TTCCTCGCCC | ACCACCACAC
TGGTGGTGTG | GAGTGTATAC | II
GCTTCATGTG
CGAAGTACAC | GTGATACAGG | TCGTTCGACT GCGGCGAGCG GAAATGGCTT |
| STADAATCTCG AACTGCCCCT | AAGAAAGCGA
TTCTTTCGCT | GCTGCGCGTA
CGACGCGCAT | NheI
CGTGCTAGCG
GCACGATCGC | XmnI
TCAGTGAAGT GAGT GAGT GAGT | AGCAGAATAT
TCGTCTTATA | CACTGACTCG CTACGCTCGG |
| ure 35a: Functional maps and sequences of add
CCCTCGGGGG | AAAGGAAGGG | TAGCGGTCAC | CTACAGGGCG | GATGAGGGTG | Agel
ccccTcccTc
ccccAcccAc | CACTGACTCG |
| 35a: Functional I | 351 | 401 | 451 | 501 | 551 | 601 |
| ure 3 | | | SUBSTITUTES | SHEET (RULE 26) | | |

| ਰ | |
|----------|--|
| ä | |
| Ë. | |
| Ĕ | |
| ဋ | |
| S | |
| ₫ | |
| S. | |
| > | |
| ₹ | |
| ပ္က | |
| 9 | |
| Ē | |
| Š | |
| 폭 | |
| 듗 | |
| Ĕ | |
| Ξ | |
| 유 | |
| ĕ | |
| <u>_</u> | |
| S | |
| ā | |
| æ | |
| 5 | |
| Ξ | |
| 공 | |
| a. | |
| 5 | |
| Ŋ | |
| 2 | |
| ž | |
| ğ | |
| Š | |
| 2 | |
| ص
ع | |
| ğ | |
| Ë | |
| = | |
| Ë | |
| ≅ | |
| 2 | |
| Ē | |
| - | |
| 55 | |
| 3 | |
| Ħ | |
| ğ | |
| 正 | |

| | GTGACTGAGC | GATGCGAGCC | AGCAAGCTGA | CGCCGCTCGC | CTTTACCGAA |
|-----|--------------------------|--------------------------|--|--------------------------|--------------------------|
| 651 | ACGAACGGGG
TGCTTGCCCC | CGGAGATTTC
GCCTCTAAAG | CTGGAAGATG
GACCTTCTAC | CCAGGAAGAT
GGTCCTTCTA | ACTTAACAGG
TGAATTGTCC |
| 701 | GAAGTGAGAG
CTTCACTCTC | GGCCGCGGCA | AAGCCGTTTT
TTCGGCAAAA | TCCATAGGCT
AGGTATCCGA | CCGCCCCCCT |
| 751 | GACAAGCATC
CTGTTCGTAG | ACGAAATCTG
TGCTTTAGAC | ACGCTCAAAT
TGCGAGTTTA | CAGTGGTGGC
GTCACCACCG | GAAACCCGAC
CTTTGGGCTG |
| 801 | AGGACTATAA
TCCTGATATT | AGATACCAGG
TCTATGGTCC | CGTTTCCCCC | TGGCGGCTCC | CTCCTGCGCT |
| 851 | CTCCTGTTCC | TGCCTTTCGG | Agel
~~~~~~
TTTACCGGTG
AAATGGCCAC | TCATTCCGCT
AGTAAGGCGA | GTTATGGCCG
CAATACCGGC |
| 901 | CGTTTGTCTC
GCAAACAGAG | ATTCCACGCC
TAAGGTGCGG | TGACACTCAG
ACTGTGAGTC | TTCCGGGTAG
AAGGCCCATC | GCAGTTCGCT
CGTCAAGCGA |
| 951 | CCAAGCTGGA
GGTTCGACCT | CTGTATGCAC
GACATACGTG | GAACCCCCCG | TTCAGTCCGA
AAGTCAGGCT | CCGCTGCGCC
GGCGACGCGG |

SUBSTITUTE SHEET (RULE 26) 166 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| ATGCAAAAGC
TACGTTTTCG | AGTCTTGAAG
TCAGAACTTC | GTGACTGCGC
CACTGACGCG | CAGAGAACCT
GTCTCTTGGA | GCAAGAGATT | Bglii | ~~~~~
GATCTAGCAC
CTAGATCGTG | 9992999999 |
|----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------|-----------------------------------|--------------------------|
| CCGGAAAGAC
GGCCTTTCTG | TAGAGGAGTT
ATCTCCTCAA | ACAAGTTTTA
TGTTCAAAAT | GTTĞGTAGCT
CAACCATCGA | CGTTTTCAGA
GCAAAAGTCT | | CATCTTATTA
GTAGAATAAT | AAAAAATTA
TTTTTTAAT |
| TGAGTCCAAC
ACTCAGGTTG | GTAATTGATT
CATTAACTAA | AACTGAAAGG
TTGACTTTCC | GGTTCAAAGA
CCAAGTTTCT | GCGGTTTTTT
CGCCAAAAAA | | TCAAGAAGAT
AGTTCTTCTA | TAACTGCCTT
ATTGACGGAA |
| ACTATCGTCT
TGATAGCAGA | GCAGCCACTG
CGTCGGTGAC | GTTAAGGCTA
CAATTCCGAT | CAGTTACCTC
GTCAATGGAG | GCCCTGCAAG
CGGGACGTTC | | CAAAACGATC
GTTTTGCTAG | AGGGCACCAA
TCCCGTGGTT |
| TTATCCGGTA
AATAGGCCAT | ACCACTGGCA
TGGTGACCGT | TCATGCGCCG | TCCTCCAAGC
AGGAGGTTCG | ACGAAAAACC
TGCTTTTTGG | | ACGCGCAGAC
TGCGCGTCTG | CAGGCGTTTA
GTCCGCAAAT |
| 1001 | 1051 | 1101 | 1151 | 1201 | | 1251 | 1301 |
| SUBSTITUTE SHEET (RULE 26) | | | | | | | |
| 107 / 204 | | | | | | | |

| $\overline{}$ | |
|---------------|---|
| ฮ | |
| 3 | |
| = | |
| Ξ | • |
| Ξ | |
| 2 | |
| ۳ | |
| S | |
| 5 | |
| 7 | |
| ĕ | |
| 5 | |
| | |
| ⋖ | |
| ಲ | |
| 0 | |
| Q | |
| ⊑ | |
| G | |
| ules a | |
| = | |
| 7 | |
| ಠ | |
| Ē | |
| - | |
| õ | |
| بج | |
| 2 | |
| 5 | |
| _ | |
| ⋖ | |
| پ | |
| ď | |
| = | |
| Ë | |
| Ö | |
| ₽ | |
| ਙ | |
| ō | |
| G | |
| ₩ | |
| | |
| ຮ | |
| ್ಷ | |
| Ξ. | |
| d seque | |
| ಕ | , |
| بق | |
| ~~ | |
| 헏 | |
| 듩 | |
| | |
| õ | |
| 8 | • |
| Ę | |
| _ | |
| ro | |
| = | |
| .0 | |
| رج | |
| Ξ | |
| ਼ੜੋ | |
| LL. | |
| | |
| 35a | |
| Š | |
| Figure 3 | |
| Ξ | |
| 9 | |
| | |
| 正 | |

| CATG
GTAC | AGCA
TCGT | GAAG
CTTC | CCCA | AAAT
TTTA | TAGA
ATCT | TTTC
AAAG | ATCA |
|--|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------|
| TGCCGACATG | GGCATCAGCA
CCGTAGTCGT | GGGGGCGAAG | AACTCACCCA
TTGAGTGGGT | TTAGGGAAAT
AATCCCTTTA | TATGTGTAGA | AAAACGTTTC
TTTTGCAAAG | TCCCATATCA |
| TTAAGCATTC
AATTCGTAAG | AATCGCCAGC
TTAGCGGTCG | TAGTGAAAAC
ATCACTTTTG | AAACTGGTGA
TTTGACCACT | AATAAACCCT
TTATTTGGGA | CTTGCGAATA
GAACGCTTAT | CAGAGCGATG
GTCTCGCTAC | GTGAACACTA |
| TTGTAATTCA
AACATTAAGT | GATGAACCTG
CTACTTGGAC | TATTTGCCCA | GTTTAAATCA
CAAATTTAGT | ACATATTCTC
TGTATAAGAG | CACGCCACAT | GTATTCACTC
CATAAGTGAG | TGTAACAAGG |
| CGCAGTACTG
GCGTCATGAC | CAAACGGCAT
GTTTGCCGTA | ттGСGТАТАА
ААСGСАТАТТ | TATTGGCTAC
ATAACCGATG | GAGACGAAAA
CTCTGCTTTT | TTCACCGTAA
AAGTGGCATT | AATCGTCGTG
TTAGCAGCAC | TGGAAAACGG |
| gure 358. runctional maps and sequences of administrations with post sectors teaministry 1351 TGCCACTCAT CGCAGTACTG TTGTAATTCA TTAA ACGGTGAGTA GCGTCATGAC AACATTAAGT AAT | GAAGCCATCA
CTTCGGTAGT | CCTTGTCGCC
GGAACAGCGG | AAGTTGTCCA
TTCAACAGGT | GGGATTGGCT
CCCTAACCGA | AGGCCAGGTT
TCCGGTCCAA | AACTGCCGGA
TTGACGGCCT | AGTTTGCTCA |
| 1351 | 1401 | 1451 | 1501 | 1551 | 1601 | 1651 | 1701 |
| r
Jindi | | | SUBSTIT | UTE SHEET (| RULE 26) | | |

| (continued) | |
|-------------|--|
| L vectors | |
| ad po | |
| Jules ar | |
| or mod | |
| AL vector | |
| al pC/ | |
| of addition | |
| sednences | |
| maps and | |
| Functional | |
| Figure 35a: | |
| _ | |

| AGCATTCATC
TCGTAAGTAG | GCTTATTTT
CGAATAAAAA | GTCTGGTTAT
CAGACCAATA | TTTACGATGC
AAATGCTACG | TCTCCATTTT
AGAGGTAAAA | ACGCCCGGTA
TGCGGGCCAT | AatII | GACGTCTAAT
CTGCAGATTA | TTATGCTTCC |
|--|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------|--------------------------|------------|
| ACTCCGGGTG
TGAGGCCCAC | TAAAACTTGT
ATTTTGAACA | CAGCTGAACG | CAAAATGTTC
GTTTTACAAG | GTGATTTTTT
CACTAAAAAA | CTCAAAAAT
GAGTTTTTTA | • | AACCTCACCC
TTGGAGTGGG | GCTTTACACT |
| additional post, vector modules and post, vectors (continued); GTCTTTCATT GCCATACGGA ACT CAGAAAGTAA CGGTATGCCT TGA | AAAGGCCGGA
TTTCCGGCCT | CCGTAATATC
GGCATTATAG | TGAAATGCCT
ACTTTACGGA | GGTATATCCA
CCATATAGGT | ATCTCGATAA
TAGAGCTATT | | TGAAAGTTGG
ACTTTCAACC | GGCACCCCAG |
| GTCTTTCATT
CAGAAAGTAA | GAATGTGAAT
CTTACACTTA | TTTAAAAAGG
AAATTTTTCC | AGCAACTGAC
TCGTTGACTG | TATCAACGGT
ATAGTTGCCA | GCTCCTGAAA
CGAGGACTTT | | TTCATTATGG
AAGTAATACC | TCACTCATTA |
| rigure 358: Functional maps and sequences of action 1751 CCAGCTCACC GGTCGAGTGG | AGGCGGGCAA
TCCGCCCGTT | CTTTACGGTC
GAAATGCCAG | AGGTACATTG
TCCATGTAAC | CATTGGGATA
GTAACCCTAT | AGCTTCCTTA
TCGAAGGAAT | | GTGATCTTAT
CACTAGAATA | GTGAGTTAGC |
| 1751
1751 | 1801 | 1851 | 1901 | 1951 | 2001 | | 2051 | 2101 |
| gure | | | | | RULE 26) | | • | |
| Ē | | | • | 169 / 204 | | | | |

| • | 's (continued) | |
|---|----------------|--|
| | vector | |
| | 절 | |
| | dules and | |
| | modn | |
| | vector | |
| | 정 | |
| | additional | |
| | Inences of | |
| • | and sec | |
| | maps | |
| | Functional | |
| | 35a: | |
| | Figure | |

| | | CACTCAATCG | AGTGAGTAAT | ссетсеветс | CGAAATGTGA | AATACGAAGG | |
|---------------------|------|---------------------------------|--------------------------|---|---|---|--|
| | 2151 | GGCTCGTATG
CCGAGCATAC | TTGTGTGGAA
AACACACCTT | TTGTGAGCGG | ATAACAATTT
TATTGTTAAA | CACACAGGAA
GTGTGTCCTT | |
| SL | 2201 | ACAGCTATGA
TGTCGATACT | CCATGATTAC
GGTACTAATG | XbaI
~~~~~
GAATTTCTAG
CTTAAAGATC | ACCCCCCCC
TGGGGGGGGG | Sphi
~~~~~~
CGCATGCCAT
GCGTACGGTA | |
| IBSTITUTE SHEET (RI | 2251 | AACTTCGTAT
TTGAAGCATA | AATGTACGCT
TTACATGCGA | ATACGAAGTT
TATGCTTCAA | HindIII
~~~~~~
ATAAGCTTGA
TATTCGAACT | CCTGTGAAGT
GGACACTTCA | |
| JLE 26) | 2301 | GAAAAATGGC
CTTTTTACCG | GCAGATTGTG
CGTCTAACAC | CGACATTTTT
GCTGTAAAAA | TTTGTCTGCC | PacI
~~~~~~~
GTTTAATTAA
CAAATTAATT | |
| | | 면
0 | FseI | | | | |
| | 2351 | 90000000000
0000000000000000 | CGGCCATTAT
GCCGGTAATA | CAAAAAGGAT
GTTTTTCCTA | CTCAAGAAGA | TCCTTTGATC | |

- 170 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| GTTAAGGGAT
CAATTCCCTA | СТТТТАААТТ
GAAAATTTAA | AACTTGGTCT
TTGAACCAGA | GCGATCTGTC
CGCTAGACAG | GATAACTACG
CTATTGATGC | TACCGCGAGA | CCAGCCGGAA
GGTCGGCCTT | CATCCAGTCT
GTAGGTCAGA |
|----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------|--------------------------|--------------------------|
| GAAACTCAC
CTTTTGAGTG | CACCTAGATC
GTGGATCTAG | TATATGAGTA
ATATACTCAT | ACCTATCTCA
TGGATAGAGT | CCGTCGTGTA
GGCAGCACAT | GCTGCAATGA
CGACGTTACT | AATAAACCAG
TTATTTGGTC | TATCCGCCTC
ATAGGCGGAG |
| TCAGTGGAAC
AGTCACCTTG | AAAGGATCTT
TTTCCTAGAA | ATCTAAAGTA
TAGATTTCAT | TCAGTGAGGC
AGTCACTCCG | GCCTGACTCC
CGGACTGAGG | TGGCCCCAGT
ACCGGGGGTCA | ATTTATCAGC
TAAATAGTCG | CCTGCAACTT
GGACGTTGAA |
| GGTCTGACGC
CCAGACTGCG | AGATTATCAA
TCTAATAGTT | ттттааатса
аааатттабт | CAATGCTTAA
GTTACGAATT | ATCCATAGTT
TAGGTATCAA | GCTTACCATC
CGAATGGTAG | CCGGCTCCAG
GGCCGAGGTC | CAGAAGTGGT
GTCTTCACCA |
| TTTTCTACGG
AAAAGATGCC | TTTGGTCATG
AAACCAGTAC | AAAAATGAAG
TTTTTACTTC | GACAGTTACC
CTGTCAATGG | TATTTCGTTC
ATAAAGCAAG | ATACGGGAGG
TATGCCCTCC | CCCACGCTCA | GGGCCGAGCG
CCCGGCTCGC |
| 2401 | 2451 | 2501 | 2551 | 2601 | 2651 | . 2701 | 2751 |
| SUBSTITUTE SHEET (RULE 26) | | | | | | | |
| | | | | | | | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| SCCAG TTAATAGTTT | TGTCA CGCTCGTCGT | TCAAG GCGAGTTACA | CTTCG GTCCTCCGAT | TCATG GTTATGGCAG | AGATG CTTTTCTGTG | GTGTA TGCGGCGACC | CCGCG CCACATAGCA |
|--------------------------|------------------|--------------------------|------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| CGGTC AATTATCAAA | ACAGT GCGAGCAGCA | AGTTC CGCTCAATGT | GAAGC CAGGAGGCTA | AGTAC CAATACCGTC | TCTAC GAAAAGACAC | CACAT ACGCCGCTGG | GGCGC GGTGTATCGT |
| AGTTCGCCAG | CGTGGTGTCA | AACGATCAAG | AGCTCCTTCG | ATCACTCATG | CCGTAAGATG | GAATAGTGTA | TAATACCGCG |
| TCAAGCGGTC | GCACCACAGT | TTGCTAGTTC | TCGAGGAAGC | TAGTGAGTAC | GGCATTCTAC | CTTATCACAT | ATTATGGCGC |
| TAGAGTAAGT | CTACAGGCAT | TCCGGTTCCC | AAAAGCGGTT | CCGCAGTGTT | GTCATGCCAT | GTCATTCTGA | CAATACGGGA |
| ATCTCATTCA | GATGTCCGTA | AGGCCAAGGG | TTTTCGCCAA | GGCGTCACAA | | CAGTAAGACT | GTTATGCCCT |
| GCCGGGAAGC | GTTGCCATTG | TTCATTCAGC | TGTTGTGCAA | AGTAAGTTGG | TTCTCTTACT | ACTCAACCAA | TGCCCGGCGT |
| CGGCCCTTCG | CAACGGTAAC | | ACAACACGTT | TCATTCAACC | AAGAGAATGA | TGAGTTGGTT | ACGGGCCGCA |
| ATTAACTGTT
TAATTGACAA | GCGCAACGTT | TTGGTATGGC
AACCATACCG | TGATCCCCCA | CGTTGTCAGA
GCAACAGTCT | CACTGCATAA
GTGACGTATT | ACTGGTGAGT
TGACCACTCA | GAGTTGCTCT
CTCAACGAGA |
| 2801 | 2851 | 2901 | 2951 | 3001 | 3051 | 3101 | 3151 |
| | | S | UBSTITUTE | SHEET (RUL | E 20) | | |

SUBSTITUTE SHEET (RULE 20 172 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

XmnI

| | _ | | • | |
|------------|------------|------------|---------------------------------|------------|
| GCGAAAACTC | CCACTCGCGC | TCTGGGTGAG | GGCGACACGG | GAAGCATTTA |
| CGCTTTTGAG | | AGACCCACTC | CCGCTGTGCC | CTTCGTAAAT |
| GTTCTTCGGG | TCGATGTAAC | CACCAGCGTT | AGGGAATAAG | CAATATTATT |
| CAAGAAGCCC | AGCTACATTG | GTGGTCGCAA | TCCCTTATTC | GTTATAATAA |
| ATTGGAAAAC | GAGATCCAGT | CTTTTACTTT | GCCGCAAAAA | CTTCCTTTTT |
| TAACCTTTTG | CTCTAGGTCA | GAAAATGAAA | CGGCGTTTTT | GAAGGAAAAA |
| AGTGCTCATC | TACCGCTGTT | TCCTCAGCAT | AAGGCAAAAT | TACTCATACT |
| TCACGAGTAG | ATGGCGACAA | AGGAGTCGTA | TTCCGTTTTA | |
| GAACTTTAAA | TCAAGGATCT | ACCCAACTGA | CAAAAACAGG | AAATGTTGAA |
| CTTGAAATTT | AGTTCCTAGA | TGGGTTGACT | GTTTTTGTCC | TTTACAACTT |
| 3201 | 3251 | 3301 | 3351 | 3401 |
| | | | TE SHEET <i>(</i> F
73 / 204 | IULE 26) |

BsrGI

GCGGATACAT ATTTGAAT CGCCTATGTA TAAACTTA TCAGGGTTAT TGTCTCATGA AGTCCCAATA ACAGAGTACT 3451

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 25) 174 / 204

AatII

PacI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

pCALO-3: BglII

| . H | ~~~~~
GATCTCATAA
CTAGAGTATT | CTTCGTATAA
GAAGCATATT | TGTATGCTAT
ACATACGATA | ACGAAGTTAT
TGCTTCAATA | ~~~~~~
GACGTCTAAT
CTGCAGATTA |
|----------------|-----------------------------------|--------------------------|---|---|---|
| 51 | GTGAGTTAGC | TCACTCATTA
AGTGAGTAAT | GGCACCCCAG
CCGTGGGGGTC | GCTTTACACT
CGAAATGTGA | TTATGCTTCC
AATACGAAGG |
| 101 | GGCTCGTATG
CCGAGCATAC | TTGTGTGGAA
AACACACCTT | TTGTGAGCGG | ATAACAATTT
TATTGTTAAA | CACACAGGAA
GTGTGTCCTT |
| 151 | ACAGCTATGA
TGTCGATACT | CCATGATTAC
GGTACTAATG | XbaI
~~~~~~
GAATTTCTAG ACCCCCCCC
CTTAAAGATC TGGGGGGGGG | ACCCCCCCCC
TGGGGGGGG | Sphi
~~~~~
CGCATGCCAT
GCGTACGGTA |
| 201 | AACTTCGTAT
TTGAAGCATA | AATGTACGCT
TTACATGCGA | ATACGAAGTT
TATGCTTCAA | HindIII
~~~~~~
ATAAGCTTGA
TATTCGAACT | CCTGTGAAGT
GGACACTTCA |

SUBSTITUTE SHEET (RULE 26) 175 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| GTTTAATTAA
CAAATTAATT | | TCCTTTGATC
AGGAAACTAG | GTTAAGGGAT
CAATTCCCTA | CTTTTAAATT
GAAAATTTAA | AACTTGGTCT
TTGAACCAGA | GCGATCTGTC
CGCTAGACAG | GATAACTACG
CTATTGATGC |
|--------------------------|----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| TTTGTCTGCC | | CTCAAGAAGA
GAGTTCTTCT | GAAAACTCAC
CTTTTGAGTG | CACCTAGATC | TATATGAGTA
ATATACTCAT | ACCTATCTCA
TGGATAGAGT | CCGTCGTGTA
GGCAGCACAT |
| CGACATTTTT
GCTGTAAAAA | | CAAAAAGGAT
GTTTTTCCTA | TCAGTGGAAC
AGTCACCTTG | AAAGGATCTT
TTTCCTAGAA | ATCTAAAGTA
TAGATTTCAT | TCAGTGAGGC
AGTCACTCCG | GCCTGACTCC
CGGACTGAGG |
| GCAGATTGTG
CGTCTAACAC | eI | CGGCCATTAT | GGTCTGACGC
CCAGACTGCG | AGATTATCAA
TCTAATAGTT | TTTTAAATCA
AAAATTTAGT | CAATGCTTAA
GTTACGAATT | ATCCATAGTT
TAGGTATCAA |
| GAAAAATGGC
CTTTTTACCG | | ວອອອອອອອອອອ | TTTTCTACGG
AAAAGATGCC | TTTGGTCATG
AAACCAGTAC | AAAAATGAAG
TTTTTACTTC | GACAGTTACC
CTGTCAATGG | TATTTCGTTC
ATAAAGCAAG |
| 251 | | 301 | 351 | 401 | 451 | 501 | 551 |
| | | | SUBSTITE | JTE SHEET (| RULE 20) | | |

| ıre 35a: | Functional | ire 35a: Functional maps and sequences of ad | if additional pCAL vector modules and pCAL vectors (continued) | ules and pCAL vectors (co | ntinued) | , () () () () () () () () () () () () () |
|--------------|------------|--|--|---------------------------|--------------------------|--|
| | 109 | ATACGGGAGG | GCTTACCATIC | TGGCCCCAGT | GCTGCAATGA | TACCGCGAGA |
| | 651 | CCCACGCTCA
GGGTGCGAGT | CCGGCTCCAG
GGCCGAGGTC | ATTTATCAGC
TAAATAGTCG | AATAAACCAG
TTATTTGGTC | CCAGCCGGAA
GGTCGGCCTT |
| | 701 | GGGCCGAGCG
CCCGGCTCGC | CAGAAGTGGT
GTCTTCACCA | CCTGCAACTT
GGACGTTGAA | TATCCGCCTC
ATAGGCGGAG | CATCCAGTCT
GTAGGTCAGA |
| SUBSTITUT | 751 | ATTAACTGTT
TAATTGACAA | GCCGGGAAGC
CGGCCCTTCG | TAGAGTAAGT
ATCTCATTCA | AGTTCGCCAG
TCAAGCGGTC | TTAATAGTTT
AATTATCAAA |
| TE SHEET (P. | 801 | GCGCAACGTT | GTTGCCATTG
CAACGGTAAC | CTACAGGCAT
GATGTCCGTA | CGTGGTGTCA | CGCTCGTCGT |
| ULE 26) | 851 | TTGGTATGGC
AACCATACCG | TTCATTCAGC | TCCGGTTCCC | AACGATCAAG
TTGCTAGTTC | GCGAGTTACA
CGCTCAATGT |
| | 901 | TGATCCCCCA | TGTTGTGCAA
ACAACACGTT | AAAAGCGGTT
TTTTCGCCAA | AGCTCCTTCG
TCGAGGAAGC | GTCCTCCGAT |
| | 951 | CGTTGTCAGA
GCAACAGTCT | AGTAAGTTGG
TCATTCAACC | CCGCAGTGTT
GGCGTCACAA | ATCACTCATG
TAGTGAGTAC | GTTATGGCAG
CAATACCGTC |

| TG | \$CC
[GG | SCA | | CTC | 30C | SAG | 30C | ГТА |
|--|--------------------------|--------------------------|------|--------------------------|--------------------------|--------------------------|--------------------------|------------|
| CTTTTCTGTG
GAAAAGACAC | TGCGGCGACC
ACGCCGCTGG | CCACATAGCA
GGTGTATCGT | | GCGAAAACTC
CGCTTTTGAG | CCACTCGCGC
GGTGAGCGCG | TCTGGGTGAG
AGACCCACTC | GGCGACACGG
CCGCTGTGCC | GAAGCATTTA |
| CTT | TGC | CCA | | 900 | CCA | TCT(
AGA(| 999 | GAA |
| GATG
CTAC | TGTA
ACAT | ວອວອ | | 2225
2552 | TAAC
ATTG | CGTT
GCAA | TAAG | TATT |
| tinued)
CCGTAAGATG
GGCATTCTAC | GAATAGTGTA
CTTATCACAT | TAATACCGCG | | GTTCTTCGGG | TCGATGTAAC
AGCTACATTG | CACCAGCGTT
GTGGTCGCAA | AGGGAATAAG
TCCCTTATTC | СААТАТТАТТ |
| (contir | | | nI | | : | | | _ |
| vectors
SCCA | CTG | 1999
1000 | IcmX | AAA | CAG | CTT' | AAAA | TTT |
| If additional pCAL vector modules and pCAL vectors (continued) A TTCTCTTACT GTCATGCCAT CCG' T AAGAGAATGA CAGTACGGTA GGC. | GTCATTCTGA
CAGTAAGACT | CAATACGGGA
GTTATGCCCT | | ATTGGAAAAC
TAACCTTTTG | GAGATCCAGT
CTCTAGGTCA | CTTTTACTTT
GAAAATGAAA | GCCGCAAAAA
CGGCGTTTTT | CTTCCTTTTT |
| dules a
GT
CA | GT
CA | CA | | AT
TA | GA | CT | 99 | CŢ |
| ctor mo | CAA | SCGT | | ATC | GTT | CAT | AAAT
PTTA | ACT |
| Iitional pCAL vector mo
TTCTCTTTACT
AAGAGAATGA | ACTCAACCAA
TGAGTTGGTT | TGCCCGGCGT
ACGGGCCGCA | | AGTGCTCATC
TCACGAGTAG | TACCGCTGTT
ATGGCGACAA | TCCTCAGCAT
AGGAGTCGTA | AAGGCAAAAT
TTCCGTTTTA | TACTCATACT |
| fditional
TTC
AAG | ACT
TGA | TGC | | AGT | TAC | TCC | AAG
TTC | TAC |
| 0 7 5 | AGT
TCA | TCT | | AAA
TTT | TCT | TGA | AGG | GAA |
| sequend
GCA | GTG | SAGTTGCTC
CTCAACGAG | | GAACTTTAAA
CTTGAAATTT | TCAAGGATCT
AGTTCCTAGA | AAC | CAAAAACAGG
GTTTTTGTCC | GTT |
| Figure 35a: Functional maps and sequences of a 1001 CACTGCATAA GTGACGTATT | ACTGGTGAG
TGACCACTC | GAGTTGCTC | | GAACTTTAAA
CTTGAAATTT | TCAAGGATC
AGTTCCTAG | ACCCAACTGA
TGGGTTGACT | CAAA | AAATGTTGAA |
| nctional i | 51 | 01 | | 51 | 1201 | 1251 | 1301 | 1351 |
| 5a: Functio
1001 | 1051 | 11.01 | | 1151 | 12 | 12 | 13 | 13 |
| gure 3 | | | SUBS | STITUTE SH | EET (RULE 2 | 6) | | |
| ιĔ | | | | 178 / 20 | 4 . | | | |

BanII

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| GTTATAATAA | |
|------------|--|
| GAAGGAAAAA | |
| ATGAGTATGA | |
| TTTACAACTT | |
| | |

| | ~~~
ACATGAAATT
TGTACTTTAA | GTTAAATCAG
CAATTTAGTC | ТАТАААТСАА
АТАТТТАGTT | GAACAAGAGT
CTTGTTCTCA | AAACCGTCTA
TTTGGCAGAT | AGTTTTTGG |
|------------|----------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| GI | ACAT(
TGTA(| GTTAZ | TATA | GAAC | AAAC(
TTTG(| AGTT |
| BsrGI | ATTTGAATGT ACA
TAAACTTACA TGT | TTAAATTTTT
AATTTAAAAA | CAAAATCCCT
GTTTTAGGGA | TTCCAGTTTG
AAGGTCAAAC | AAAGGGCGAA
TTTCCCGCTT | ACCCTAATCA
TGGGATTAGT |
| | GCGGATACAT | AAAATTCGCG
TTTTAAGCGC | CCGAAATCGG
GGCTTTAGCC | TTGAGTGTTG
AACTCACAAC | CTCCAACGTC
GAGGTTGCAG | GAGAACCATC |
| . <i>'</i> | ТGТСТСАТGA
АСАGАGТАСТ | ATATTTTGTT
TATAAAACAA | AACCAATAGG
TTGGTTATCC | CGAGATAGGG
GCTCTATCCC | AGAACGTGGA
TCTTGCACCT | GGCCCACTAC |
| | TCAGGGTTAT
AGTCCCAATA | GTAAACGTTA
CATTTGCAAT | CTCATTTTTT
GAGTAAAAAA | AAGAATAGAC
TTCTTATCTG | CCACTATTAA
GGTGATAATT | TCAGGGCGAT |
| | 1401 | 1451 | 1501 | 1551 | 1601 | 1651 |
| | | - 8 | SUBSTITUTE | SHEET (RU | LE 26) | |

SUBSTITUTE SHEET (RULE 26 179 / 204

| = | |
|------------|---|
| 펄 | |
| _≓ | |
| Έ | |
| į, | |
| <u>ٿ</u> . | |
| 9 | |
| ぎ | |
| Š | |
| # | |
| Š | |
| 4 | |
| Ĕ | |
| S | |
| 半 | |
| ğ | |
| Ĕ | |
| Ξ | |
| 품 | |
| Š | |
| Ţ | |
| సై | |
| <u>d</u> | |
| na | |
| 2. | |
| Ē | |
| ag | |
| of | |
| S | |
| 5 | |
| 핕 | |
| ਨੁ | |
| Š | |
| 2 | |
| S | • |
| ğ | |
| Ë | |
| a | |
| ö | |
| ŧ | |
| Ĕ | |
| 屲 | |
| ĕ | |
| 35 | |
| 5 | |
| nb | |
| ıΞ | |

| | | | | , | | | |
|-------------------------------|--------------------------|--------------------------|--------------------------|--|-------|------------------------------|--------------------------|
| GAGCCCCCGA
CTCGGGGGGCT | AGGAAGGGAA
TCCTTCCCTT | GCGGTCACGC
CGCCAGTGCG | ACAGGGCGCG | TGAGGGTGTC
ACTCCCACAG | H | GGTGCGTCAG | CTGACTCGCT
GACTGAGCGA |
| ACCCTAAAGG
TGGGATTTCC | GTGGCGAGAA
CACCGCTCTT | GGCAAGTGTA
CCGTTCACAT | ATGCGCCGCT | TTGGCACTGA | AgeI | AGGCTGCACC G
TCCGACGTGG C | TCCTCGCTCA
AGGAGCGAGT |
| CTAAATCGGA
GATTTAGCCT | GCCGGCGAAC
CGGCCGCTTG | CTAGGGCGCT
GATCCCGCGA | GCCGCGCTTA | GCTTACTATG
CGAATGATAC | | AGGAGAAAAA
TCCTCTTTTT | ATATTCCGCT
TATAAGGCGA |
| CCGTAAAGCA
GGCATTTCGT | GACGGGGAAA
CTGCCCCTTT | GGAGCGGGCG | CACCACACCC
GTGGTGTGGG | GTGTATACTG
CACATATGAC | | TTCATGTGGC | GATACAGGAT |
| 1701 GGTCGAGGTG
CCAGCTCCAC | TTTAGAGCTT
AAATCTCGAA | GAAAGCGAAA
CTTTCGCTTT | TGCGCGTAAC
ACGCGCATTG | NheI
~~~~~~
TGCTAGCGGA
ACGATCGCCT | Xmn I | AGTGAAGTGC
TCACTTCACG | CAGAATATGT
GTCTTATACA |
| 1701 | 1751 | 1801 | 1821 | 1 90.1 | | 1951 | 2001 |
| i | | | 3003111 | TE SHEET (RULE 26) |) | | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| | GGCGAGCGGA AATGGCTTAC GAACGGGGCG
CCGCTCGCCT TTACCGAATG CTTGCCCCGC | AGGAAGATAC TTAACAGGGA AGTGAGAGGG
TCCTTCTATG AATTGTCCCT TCACTCTCCC | CATAGGCTCC GCCCCCTGA CAAGCATCAC
GTATCCGAGG CGGGGGGACT GTTCGTAGTG | GTGGTGGCGA AACCCGACAG GACTATAAAG
CACCACCGCT TTGGGCTGTC CTGATATTTC | GCGGCTCCCT CCTGCGCTCT CCTGTTCCTG
CGCCGAGGGA GGACGAGGAC | | ATTCCGCTGT TATGGCCGCG TTTGTCTCAT
TAAGGCGACA ATACCGGCGC AAACAGAGTA | CCGGGTAGGC AGTTCGCTCC AAGCTGGACT |
|---|--|--|---|--|---|------|--|----------------------------------|
| • | GTTCGACTGC
CAAGCTGACG | GGAAGATGCC
CCTTCTACGG | GCCGTTTTTC
CGGCAAAAAG | GCTCAAATCA
CGAGTTTAGT | TTTCCCCCTG | AgeI | TACCGGTGTC | ACACTCAGTT |
| | ACGCTCGGTC OT TGCGAGCCAG | GAGATTTCCT
CTCTAAAGGA | CCGCGGCAAA | GAAATCTGAC | ATACCAGGCG
TATGGTCCGC | | CCTTTCGGTT | TCCACGCCTG |
| | 2051 | 2101 | 2151 | 2201 | 2251 | | 2301 | 2351 |

| tinued) | • |
|-----------|---|
| 5 | |
| . vectors | |
| ਨੂ | |
| and | |
| r modules | |
| AL vector | |
| ටි | |
| dditional | |
| of | |
| sedneuces | |
| aps and | |
| Ë | |
| tions | |
| : Functi | |
| 35a: | |
| Figure | |

BglII

GCGCAGACCA

CGCGTCTGGT

AAAAGTCTCG TTCTCTAATG TTTTCAGAGC AAGAGATTAC

GAGGTTCGGT

CTGACGCGAG

TTCAAAATCA

GACTTTCCTG

ATTCCGATTT

GAAAAACCGC CTTTTTGGCG

CTCTTGGATG

GAGAACCTAC

TGGTAGCTCA ACCATCGAGT

AAGTTTCTCA TTCAAAGAGT

CAATGGAGCC GTTACCTCGG

GGTTTTTTCG CCAAAAAAGC

CCTGCAAGGC GGACGTTCCG

2651

TCTTATTA AGAATAAT AAGAAGATCA TTCTTCTAGT AAACGATCTC TTTGCTAGAG 2701

SUBSTITUTE SHEET (RULE 26) 182 / 204

2601

Figure 35b: List of oligonucleotides used for synthesis of modules

M1: PCR using template

NoVspAatII: TAGACGTC

M2: synthesis

BloxA-A: TATGAGATCTCATAACTTCGTATAATGTACGCTATACG-

AAGTTAT

BloxA-B: TAATAACTTCGTATAGCATACATTATACGAAGTTATG-

AGATCTCA

M3: PCR, NoVspAatll as second oligo

XloxS-muta: CATTTTTTGCCCTCGTTATCTACGCATGCGATAACTTCGTA-

TAGCGTACATTATACGAAGTTATTCTAGACATGGTCATAGCTGTTTCCTG

<u>M7-I: PCR</u>

gIIINEW-fow: GGGGGGAATTCGGTGGTGGTGGATCTGCGTGCGCTG-

AAACGGTTGAAAGTTG

gIIINEW-rev: CCCCCCAAGCTTATCAAGACTCCTTATTACG

M7-II: PCR

glllss-fow: GGGGGGGAATTCGGAGGCGGTTCCGGTGGTGGC

M7-III: PCR

glllsupernew-fow: GGGGGGGGAATTCGAGCAGAAGCTGATCTCT-

GAGGAGGATCTGTAGGGTGGTGGCTCTGGTTCCGGTGATTTTG

SUBSTITUTE SHEET (RULE 26)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M8: synthesis

lox514-A: CCATAACTTCGTATAATGTACGCTATACGAAGTTATA

lox514-B: AGCTTATAACTTCGTATAGCGTACATTATACGAAGT-

TATGGCATG

M9II: synthesis

M9II-fow: AGCTTGACCTGTGAAGTGAAAAATGGCGCAGATT-

M9II-rev: GTACACCCCCCCCAGGCCGGCCCCCCCCCTTTAA-

TTAAACGGCAGACAAAAAAAATGTCGCACAATCTGCG

M10II: assembly PCR with template

bla-fow: GGGGGGGTGTACATTCAAATATGTATCCGCTCATG

bla-seq4: GGGTTACATCGAACTGGATCTC

bla1-muta: CCAGTTCGATGTAACCCACTCGCGCACCCAACTGATC-

CTCAGCATCTTTTACTTTCACC

blall-muta: ACTCTAGCTTCCCGGCAACAGTTAATAGACTGGATG-

GAGGCGG

bla-NEW: CTGTTGCCGGGAAGCTAGAGTAAG

bla-rev: CCCCCCTTAATTAAGGGGGGGGGCCGGCCATTATCAAA-

AAGGATCTCAAGAAGATCC

M11II/III: PCR, site-directed mutagenesis

SUBSTITUTE SHEET (RULE 26)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

f1-fow: GGGGGGGCTAGCACGCCCCTGTAGCGGCGCATTAA

f1-rev: CCCCCCTGTACATGAAATTGTAAACGTTAATATTTTG

f1-t133.muta: GGGCGATGGCCCACTACGAGAACCATCACCCTAATC

M12: assembly PCR using template

p15-fow: GGGGGGAGATCTAATAAGATGATCTTCTTGAG

p15-NEWI: GAGTTGGTAGCTCAGAGAACCTACGAAAAACCGCCCTG-

CAAGGCG

p15-NEWII: GTAGGTTCTCTGAGCTACCAACTC

p15-NEWIII: GTTTCCCCCTGGCGGCTCCCTCCTGCGCTCTCCTGTTCCT-

GCC

p15-NEWIV: AGGAGGGAGCCGCCAGGGGAAAC

p15-rev: GACATCAGCGCTAGCGGAGTGTATAC

M13: synthesis

BloxXB-A: GATCTCATAACTTCGTATAATGTATGCTATACGAAGTTA-

TTCA

BloxXB-B: GATCTGAATAACTTCGTATAGCATACATTATACGAAGTTA-

TGAGA

M14-Ext2: PCR, site-directed mutagenesis

Colext2-fow: GGGGGGGAGATCTGACCAAAATCCCTTAACGTGAG

Col-mutal: GGTATCTGCGCTCTGCTGTAGCCAGTTACCTTCGG

SUBSTITUTE SHEET (AULE 26)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

Col-rev: CCCCCCGCTAGCCATGTGAGCAAAAGGCCAGCAA

M17: assembly PCR using template

CAT-1: GGGACGTCGGGTGAGGTTCCAAC

CAT-2: CCATACGGAACTCCGGGTGAGCATTCATC

CAT-3: CCGGAGTTCCGTATGG

CAT-4: ACGTTTAAATCAAAACTGG

CAT-5: CCAGTTTGATTTAAACGTAGCCAATATGGACAACTTCTTC-

GCCCCGTTTTCACTATGGGCAAATATT

CAT-6: GGAAGATCTAGCACCAGGCGTTTAAG

M41: assembly PCR using template

LAC1: GAGGCCGGCCATCGAATGGCGCAAAAC

LAC2: CGCGTACCGTCCTCATGGGAGAAAATAATAC

LAC3: CCATGAGGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCA-

TTGGGTCACCAGCAAATCCGCTGTTAGCTGGCCCATTAAG

LAC4: GTCAGCGGCGGGATATAACATGAGCTGTCCTCGGTATCGTCG

LAC5: GTTATATCCCGCCGCTGACCACCATCAAAC

LAC6: CATCAGTGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGT4TTG-

GGAGCCAGGGTGGTTTTC

LAC7: GGTTAATTAACCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCC-

AGCTGCATCAGTGAATCGGCCAAC

M41-MCS-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGCTT-

AAGGGGGGGGGG

SUBSTITUTE SHEET (RULE 26)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M41-MCS-rev: CTAGCCCCCCCCCCCTTAAGCCCCCCCCGGTCCGGT-

TTAAACACTAGT

M41-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGGCTTAA-

GGGGGGGGGGG

M41-rev: CCCCCCTTAAGTGGGCTGCAAAACAAACGGCCTCC-

TGTCAGGAAGCCGCTTTTATCGGGTAGCCTCACTGCCCGCTTTCC

M41-A2: GTTGTTGTGCCACGCGGTTAGGAATGTAATTCAGCTCCGC

M41-B1: AACCGCGTGGCACAACAAC

M41-B2: CTTCGTTCTACCATCGACACGACCACGCTGGCACCCAGTTG

M41-C1: GTGTCGATGGTAGAACGAAG

M41-CII: CCACAGCAATAGCATCCTGGTCATCCAGCGGATAGTT-

AATAATCAGCCCACTGACACGTTGCGCGAG

M41-DI: GACCAGGATGCTATTGCTGTGG

M41-DII: CAGCGCGATTTGCTGGTGGCCCAATGCGACCAGATGC

M41-EI: CACCAGCAAATCGCGCTG

M41-EII: CCCGGACTCGGTAATGGCACGCATTGCGCCCAGCGCC

M41-FI: GCCATTACCGAGTCCGGG

M42: synthesis

Eco-H5-Hind-fow: AATTCCACCATCACCATTGACGTCTA

Eco-H5-Hind-rev: AGCTTAGACGTCAATGGTGATGGTGG

Figure 36: functional map and sequence of ß-lactamase-MCS module

| Bbe I (1361) Ase I (1364) Eco 57I (1366) Xho I (1371) Bss HII (1376) Bsp EI (1397) Bsp EI (1397) Bsr GI (1403) | |
|--|--------------------|
| (189) Bam H I (192) Pst I (1356) 182) Kpn I (202) Bss SI (1346) 73) Fse I (210) Eag I (1340) -35 (bla) bla-term bla-term | bla MCS
1289 bp |
| Bsa BI (182) Nsp V (173) Bsi WI (166) Eco O109I (161) Psp 5II (161) Sty I (157) Msc I (156) Bst XI (152) Bst EII (140) Bsu 36I (136) | Mlu I (126) |

SUBSTITUTE SHEET (RULE 26)

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

| | | | | | StyI | |
|-----|--------------|--------|---------------------------------------|---|---|--------------|
| | | | | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | |
| | | | ٠ | | Psp5II | |
| | | | | | ? ? ? ? ? ? ? ? ? | |
| | MluI | Bsu36I | 36I | BstXI | Eco01091 | |
| | ? ? ? ? | 1 | ~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~ | |
| • | HpaI | | BSTEII | MscI | · | BsiwI NspV |
| 126 | CGCGTTAACC | | TCAGGTGACC | AAGCCCCTGG CCAAGGTCCC | CCAAGGTCCC | C GTACGTTCGA |
| | |)
 | Pm] T | | | |
| | | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | |
| | NspVBsaB | Н | | KpnI | FseI | |
| 176 | AGATTACCAT C | | CACGT | | GG CCGGCCATTA | TCAAAAAGGA |
| | TCTAATGGTA | | GIGCACCIAG | GCCATGGTCC | GGCCGGTAAT | AGTTTTTCCT |
| 226 | TCTCAAGA | AG | TCTCAAGAAG ATCCTTTGAT | CTTTTCTACG | GGGTCTGACG | CTCAGTGGAA |
| | AGAGTTCTTC | LTC | TAGGAAACTA | GAAAAGATGC | CCCAGACTGC | GAGTCACCTT |
| 276 | CGAAAACT | CA. | CGAAAACTCA CGTTAAGGGA | TTTTGGTCAT | GAGATTATCA AAAAGGATCT | AAAAGGATCI |
| • | GCTTTTGAGT | ٨GT | GCAATTCCCT | AAAACCAGTA | CTCTAATAGT | TTTTCCTAGA |

SUBSTITUTE SHEET (RULE 26) 189 / 204

Figure 36: functional map and sequence of θ -lactamase-MCS module (continued)

| CTACAGGCAT | GTTGCCATTG
CAACGGTAAC | GCGCAACGTT
CGCGTTGCAA | TTAATAGTTT
AATTATCAAA | AGTTCGCCAG
TCAAGCGGTC | 9 2 9 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------|
| TAGAGTAAGT
ATCTCATTCA | GCCGGGAAGC | ATTAACTGTT
TAATTGACAA | CATCCAGTCT
GTAGGTCAGA | TATCCGCCTC | 626 |
| CCTGCAACTT | CAGAAGTGGT
GTCTTCACCA | GGGCCGAGCG | CCAGCCGGAA
GGTCGGCCTT | AATAAACCAG
TTATTTGGTC | 576 |
| ATTTATCAGC
TAAATAGTCG | CCGGCTCCAG
GGCCGAGGTC | CCCACGCTCA
GGGTGCGAGT | TACCGCGAGA | GCTGCAATGA | 526 |
| TGGCCCCAGT | GCTTACCATC
CGAATGGTAG | ATACGGGAGG
TATGCCCTCC | GATAACTACG
CTATTGATGC | CCGTCGTGTA | 476 |
| GCCTGACTCC
CGGACTGAGG | ATCCATAGTT
TAGGTATCAA | TATTTCGTTC
ATAAAGCAAG | GCGATCTGTC
CGCTAGACAG | ACCTATCTCA
TGGATAGAGT | 426 |
| TCAGTGAGGC
AGTCACTCCG | CAATGCTTAA
GTTACGAATT | TGACAGTTAC
ACTGTCAATG | AAACTTGGTC
TTTGAACCAG | ATATATGAGT
TATATACTCA | 376 |
| AATCTAAAGT
TTAGATTTCA | GTTTTAAATC
CAAAATTTAG | TAAAAATGAA
ATTTTTACTT | CCTTTTAAAT
GGAAAATTTA | TCACCTAGAT
AGTGGATCTA | 326 |

SUBSTITUTE SHEET (RULE 26)

Figure 36: functional map and sequence of θ -lactamase-MCS module (continued)

| TTCATTCAGC TCCGGTTCCC
AAGTAAGTCG AGGCCAAGGG | TGTTGTGCAA AAAAGCGGTT
ACAACACGTT TTTTCGCCAA | AGTAAGTTGG CCGCAGTGTT
TCATTCAACC GGCGTCACAA | TTCTCTTACT GTCATGCCAT
AAGAGAATGA CAGTACGGTA | ACTCAACCAA GTCATTCTGA
TGAGTTGGTT CAGTAAGACT | TGCCCGGCGT CAATACGGGA
ACGGGCCGCA GTTATGCCCT | AGTGCTCATC ATTGGAAAAC
TCACGAGTAG TAACCTTTTG | TACCGCTGTT GAGATCCAGT
ATGGCGACAA CTCTAGGTCA |
|--|--|--|--|--|--|--|--|
| TTGGTATGGC 1 | TGATCCCCCA 1 | CGTTGTCAGA A | CACTGCATAA 1
GTGACGTATT 1 | ACTGGTGAGT 7 | GAGTTGCTCT CTCT CTCT CTCAACGAGA | GAACTTTAAA 1
CTTGAAATTT | TCAAGGATCT AGTTCCTAGA |
| CGCTCGTCGT
GCGAGCAGCA | GCGAGTTACA
CGCTCAATGT | GTCCTCCGAT | GTTATGGCAG
CAATACCGTC | CTTTTCTGTG
GAAAAGACAC | TGCGGCGACC | CCACATAGCA
GGTGTATCGT | GCGAAAACTC
CGCTTTTTGAG |
| CGTGGTGTCA
GCACCACAGT | AACGATCAAG
TTGCTAGTTC | AGCTCCTTCG
TCGAGGAAGC | ATCACTCATG
TAGTGAGTAC | CCGTAAGATG
GGCATTCTAC | GAATAGTGTA
CTTATCACAT | TAATACCGCG
ATTATGGCGC | GTTCTTCGGG
CAAGAAGCCC |
| 726 | 176 | 826 | 876 | 926 | 916 | 1026 | 1076 |

SUBSTITUTE SHEET (RULE 26)

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

| | 1126 | TCGATGTAAC
AGCTACATTG | CCACTCGTGC
GGTGAGCACG
BSSSI | ACCCAACTGA | TCTTCAGCAT
AGAAGTCGTA
Eco57I | CTTTTACTTT
GAAAATGAAA |
|--------------|------|--------------------------|-----------------------------------|---------------------------|------------------------------------|--------------------------|
| | 1176 | CACCAGCGTT
GTGGTCGCAA | TCTGGGTGAG
AGACCCACTC | CAAAAACAGG
GTTTTTTGTCC | AAGGCAAAAT
TTCCGTTTTA | GCCGCAAAAA |
| SUBSTITU | 1226 | AGGGAATAAG
TCCCTTATTC | GGCGACACGG | AAATGTTGAA
TTTACAACTT | TACTCATACT
ATGAGTATGA | CTTCCTTTTT
GAAGGAAAAA |
| ITE SHEET (F | 1276 | CAATATTATT
GTTATAATAA | GAAGCATTTA
CTTCGTAAAT | TCAGGGTTAT
AGTCCCAATA | TGTCTCATGA | GCGGATACAT
CGCCTATGTA |
| RULE 26 | | | | PstI | į | XhoI |
|) | | | EagI | | Bbel AseI | BSSHII |
| | 1326 | ATTTGAATGT
TAAACTTACA | ACTCGGCCGC | ACGAGCTGCA | GGCGCCATTA AT | ATGGCTCGAG
TACCGAGCTC |
| | , | BssHII | | BSpEI BsrGI | H ? | |

CATGAAATT Figure 36: functional map and sequence of θ -lactamase-MCS module (continued) BbsI CGCTTTGTCT GCGAAACAGA CGCGCTTCAG Eco57I

SUBSTITUTE SHEET (RULE 26)
193 / 204

Figure 37: Oligo and primer design for Vk CDR3 libraries

Figure 37: Oligo and primer design for Vk CDR3 libraries

40 30 20 Q CA TATTGC TGCGACTTA G CAGGGCGTGTA CAGGCGGTGTA C D E G . H CAK M N CAG Q R S T V W 80% Q

> SUBSTITUTE SHEET (RULE 26) 195 / 204

Figure 37: Oligo and primer design for Vk CDR3 libraries

G 3'- G G A

T A C C T

G A C C T

A C C T

G GCT GC GCT GA G A GAT G G A G G A G G A G GGTG G GG G CA AAG G G G Α CCCA G CAG CAG CG CGT CG A C A C G G G TGG G GG TAT

50% Y

SUBSTITUTE SHEET (RULE 26) 196 / 204

80% P

PCT/EP96/03647

Figure 37: Oligo and primer design for $V\kappa$ CDR3 libraries

Figure 38: Oligo and primer design for V λ CDR3 libraries

E D E A D
5'- C C T G C A A G C G G A A G A C G A A G C G G A T T -

SUBSTITUTE SHEET (RULE 26) 198 / 204

Figure 38: Oligo and primer design for VA CDR3 libraries

SUBSTITUTE SHEET (RULE 28) 199 / 204

Figure 38: Oligo and primer design for VA CDR3 libraries

Figure 38: Oligo and primer design for V λ CDR3 libraries

SÜBSTITUTE SHEET (RULE 26) 201 / 204

Figure 39: functional map of expression vector series pBS13

SUBSTITUTE SHEET (RULE 25) 202 / 204

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

| % soluble | 7 | Z | Ā | К 4 | ۲۲ | 77 | λ3 |
|---|-----|-----|-----|------------|-----|------|-----|
| H1A | 61% | 58% | 52% | 42% | %06 | 61% | %09 |
| H1B | 39% | 48% | %99 | 48% | 47% | 39% | 36% |
| H2 | 47% | 57% | 46% | 49% | 37% | 36% | 45% |
| H3 | 85% | %29 | 76% | 61% | 80% | 7.1% | 83% |
| H4 | %69 | 52% | 51% | 44% | 45% | 33% | 42% |
| H5 | 49% | 49% | 46% | 67% | 54% | 46% | 47% |
| H6 | %06 | 58% | 54% | 47% | 45% | 20% | 51% |
|) i i i i i i i i i i i i i i i i i i i | 2 | ? | | | | 1 | |

| Total amount | 107 | , | (,, | V | 7.1 | 6 | |
|------------------|------|------|------------|----------|------|------|----------|
| compared to H3K2 | 2 | Ž | 2 | 7 | ₹ | Ž | <u>ک</u> |
| H1A | 289% | 94% | 166% | 272% | 20% | 150% | 78% |
| H1B | 219% | 122% | 89% | 139% | 117% | 158% | 101% |
| H2 | 186% | 223% | 208% | 182% | 126% | %09 | 97% |
| H3 | 20% | • | 71% | 54% | 29% | 130% | 47% |
| H4 | 37% | 55% | %09 | 77% | 195% | 107% | 251% |
| H5 | 98% | 201% | 167% | 83% | 93% | 128% | 115% |
| . He | 65% | 117% | 89% | 109% | 299% | 215% | 278% |

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

| Soluble amount | , | , | , | 7. | , | , | , |
|------------------|------|------|----------|------------|-------|------|-------|
| compared to H3K2 | Z . | Ž | <u>S</u> | 4 4 | -≺ | 77 | ۲3 |
| H1A | 191% | 88% | 121% | 122% | 26% | 211% | 76%. |
| H1B | 124% | 95% | 83% | 107% | 79% | 142% | 29% |
| H2 | 126% | 204% | 139% | 130% | . %99 | 20% | 0/00/ |
| H3 | 63% | 1 | 81% | 49% | %69 | 143% | 61% |
| H4 | 40% | 47% | 49% | 54% | 95% | .55% | 125% |
| H2 | %69 | 158% | 116% | 80% | 72% | 84% | 84% |
| 9H | 85% | 122% | 87% | 77% | 162% | 162% | 212% |
| | McPC | | | | , | | |
| soluble | 38% | | | | | | |
| %H3k2 total | 117% | | | | | | |
| %H3k2 soluble | %69 | | | | | | |
| | | | | | | | |

SUBSTITUTE SHEET (RULE 26) 204 / 204

INTERNATIONAL SEARCH REPORT

Inv onal Application No PCT/EP 96/03647

| A. CLASS
IPC 6 | C12N15/13 C12N15/10 C12N15/
C07K1/04 G01N33/53 | /62 C12N15/70 C12 | N1/21 |
|-------------------|--|---|-------------------------|
| According t | to International Patent Classification (IPC) or to both national clas | sification and IPC | · |
| | S SEARCHED | | |
| | documentation searched (classification system followed by classific
C12N C07K G01N | ation symbols) | |
| | | | |
| Documenta | tion searched other than minimum documentation to the extent tha | t such documents are included in the fields | searched |
| | | | |
| Electronic d | data base consulted during the international search (name of data b | ase and, where practical, search terms used | |
| | | | |
| | | | |
| C. DOCUM | MENTS CONSIDERED TO BE RELEVANT | | · |
| Category * | Citation of document, with indication, where appropriate, of the | relevant passages | Relevant to claim No. |
| Α | EP 0 368 684 A (MEDICAL RES COUN | ICIL) 16. | 1-55 |
| | cited in the application | | |
| | see the whole document | | |
| Α | EUROPEAN J. IMMUNOLOGY, | | 1-55 |
| | vol. 23, July 1993, VCH
VERLAGSGESELLSCHAFT MBH, WEINHEI | M RDN | |
| | pages 1456-1461, XP000616572 | | |
| | | loning and | |
| | sequencing of human immunoglobul
 V-lambda gene segments" | in . | |
| İ | cited in the application | | |
| | see the whole document | | |
| | | -/ | |
| | | | * |
| | | X | · |
| | | | |
| X Fur | ther documents are listed in the continuation of box C. | X Patent family members are listed | in annex. |
| | stegaries of cited documents: | | |
| 1 | nent defining the general state of the art which is not | T later document published after the in-
or priority date and not in conflict w | ith the application but |
| consid | dered to be of particular relevance | cited to understand the principle or t | |
| filing | | "X" document of particular relevance; the
carnot be considered novel or canno | t be considered to |
| which | nent which may throw doubts on priority claim(s) or
is cited to establish the publication date of another | involve an inventive step when the d "Y" document of particular relevance; the | daimed invention |
| O docum | on or other special reason (as specified)
nent referring to an oral disclosure, use, exhibition or | cannot be considered to involve an indocument is combined with one or a ments, such combination being obvious | nore other such docu- |
| 'P' docum | means ment published prior to the international filing date but than the priority date claimed | in the art. *&* document member of the same paters | |
| | e actual completion of the international search | Date of mailing of the international s | |
| 3 | 30 January 1997 | .1 1. 02. 97 | |
| Name and | mailing address of the ISA | Authorized officer | |
| | European Patent Office, P.B. 5818 Patentiaan 2
NL - 2280 HV Rijwijk
Tel. (+31-70) 340-2040, Tz. 31 651 epo nl, | Hornia H | |

| Category * | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. |
|------------|--|-----------------------|
| A | PROC. NATL.ACAD SCI., vol. 89, May 1992, NATL. ACAD SCI.,WASHINGTON,DC,US;, pages 4457-4461, XP002024223 | 1-55 |
| | C. F. BARBAS III ET AL.: "Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem" cited in the application see the whole document | |
| A | PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 21, 1 November 1992, pages 10026-10030, XP000322464 COLLET T A ET AL: "A BINARY PLASMID SYSTEM FOR SHUFFLING COMBINATORIAL ANTIBODY LIBRARIES" see the whole document | 1-55 |
| A . | PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 8, 15 April 1992, pages 3576-3580, XP000384398 | 1-55 |
| | GRAM H ET AL: "IN VITRO SELECTION AND AFFINITY MATURATION OF ANTIBODIES FROM A NAIVE COMBINATORIAL IMMUNOGLOBULIN LIBRARY" see the whole document | |
| | PROTEIN ENGINEERING, vol. 8, no. 1, 1 January 1995, pages 81-89, XP800500393 KNAPPIK A ET AL: "ENGINEERED TURNS OF RECOMBINANT ANTIBODY IMPROVE ITS IN VIVO FOLDING" cited in the application see the whole document | 1-55 |
| A . | ANNUAL REVIEW OF IMMUNOLOGY, vol. 12, 1 January 1994, pages 433-455, XP000564245 WINTER G ET AL: "MAKING ANTIBODIES BY PHAGE DISPLAY TECHNOLOGY" cited in the application see the whole document | 1-55 |
| A | JOURNAL OF MOLECULAR BIOLOGY, vol. 224, no. 2, 1 January 1992, pages 487-499, XP000564649 FOOTE J ET AL: "ANTIBODY FRAMEWORK RESIDUES AFFECTING THE CONFORMATION OF THE HYPERCARIABLE LOOPS" cited in the application see the whole document | 1-55 |

1

INTERNATIONAL SEARCH REPORT

Int sonal Application No PCT/EP 96/03647

| | | PCT/EP 9 | 6/03647 |
|------------|---|----------|-----------------------|
| | anon) DOCUMENTS CONSIDERED TO BE RELEVANT | | |
| Category * | Citation of document, with indication, where appropriate, of the relevant passages | | Relevant to claim No. |
| | NUCLEIC ACIDS RESEARCH, vol. 21, no. 9, 11 May 1993, page 2265/2266 XP000575849 WATERHOUSE P ET AL: "COMBINATORIAL INFECTION AND IN VIVO RECOMBINATION: A STRATEGY FOR MAKING LARGE PHAGE ANTIBODY REPERTOIRES" see the whole document | | 1-55 |
| | WO 95 11998 A (UNITED BIOMEDICAL INC) 4 May 1995 see the whole document | • | 1-55 |
| | ANNALES DE BIOLOGIE CLINIQUE, vol. 49, no. 4, April 1991, PARIS, FR, pages 231-242, XP000407361 R.H. MELOEN ET AL.: "The use of peptides to reconstruct conformational determinants" see page 231, right-hand column, paragraph | | 1-55 |
| | 2 - page 233, right-hand column, line 4 CHEMICAL ABSTRACTS, vol. 122, no. 3, 16 January 1995 Columbus, Ohio, US; abstract no. 24865z, COX, JONATHAN P. L. ET AL: "A directory of human germ-line V.kappa. segments reveals a strong bias in their usage" page 227; column 1; XP002024224 | | 1-55 |
| | cited in the application see abstract & EUR. J. IMMUNOL. (1994), 24(4), 827-36 CODEN: EJIMAF;ISSN: 0014-2980, 1994, | | |
| | | | |
| | | | |
| | | | |
| | , | | |

INTERNATIONAL SEARCH REPORT

anformation on patent family members

Int onal Application No PCT/EP 96/03647

| Patent document cited in search report | | | | Publication date |
|--|----------|--|---|--|
| EP-A-0368684 | 16-05-90 | AU-B-
AU-A-
CA-A-
DE-D-
DE-T-
ES-T-
WO-A-
JP-T- | 634186
4520189
2002868
68913658
68913658
2052027
9005144
3502801 | 18-02-93
28-05-90
11-05-90
14-04-94
08-09-94
01-07-94
17-05-90
27-06-91 |
| WO-A-9511998 | 04-05-95 | AU-A-
EP-A- | 8091694
0725838 | 22-05-95
14-08-96 |

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.