
Sequence Listing could not be accepted due to errors.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Zir Jijr (coii ilee).

Reviewer: Anne Corrigan

Timestamp: Tue Jun 05 18:58:10 EDT 2007

Reviewer Comments:

<210> 3

<211> 16

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic bromodomain peptide

<220>

<221> Xaa

<222> (2)..(4)

<223> Xaa is a maximum of three amino acids. Each of these can be any amino acid. One may be missing.

The above <222> response denotes Xaa's at locations 2 through 4; however, "Pro" is at location 3. Same type of error throughout sequence 3 and sequence 43.

<210> 7

<211> 110

<212> PRT

<213> Homo sapiens, bromodomain peptide

The <213> response above is erroneous; the response should only show "Homo sapiens." Please move "bromodomain peptide" to the <220>-<223> section.

<210> 34

<211> 112

<212> PRT

<213> Description of unknown organism, see Jeanmougin et al., Trends in Biochem. Sci. 22:151-153 (1997)

Per 1.823 of Sequence Rules, the only valid <213> response is "Unknown"; do not include any other explanation on the <213> line. The "see Jeanmougin..." is not a valid explanation of "Unknown." Please give the source of the genetic material in the <220>-<223> section. Same error in sequence 35.

Validated By CRFValidator v 1.0.2

Application No: 09510314 Version No: 1.0

Input Set:

Output Set:

Started: 2007-06-05 17:13:10.137

Finished: 2007-06-05 17:13:14.253

Elapsed: 0 hr(s) 0 min(s) 4 sec(s) 116 ms

Total Warnings: 6

Total Errors: 19

No. of SeqIDs Defined: 44

Actual SeqID Count: 44

Error code		Error Description								
W	213	Artificial or Unknown found in <213> in SEQ ID (3)								
E	257	Invalid sequence data feature in <221> in SEQ ID (3)								
E	257	Invalid sequence data feature in <221> in SEQ ID (3)								
E	257	Invalid sequence data feature in <221> in SEQ ID (3)								
E	257	Invalid sequence data feature in <221> in SEQ ID (3)								
E	257	Invalid sequence data feature in <221> in SEQ ID (3)								
E	257	Invalid sequence data feature in <221> in SEQ ID (3)								
E	257	Invalid sequence data feature in <221> in SEQ ID (3)								
W	213	Artificial or Unknown found in <213> in SEQ ID (4)								
E	257	Invalid sequence data feature in <221> in SEQ ID (4)								
W	213	Artificial or Unknown found in <213> in SEQ ID (5)								
E	257	Invalid sequence data feature in <221> in SEQ ID (5)								
W	213	Artificial or Unknown found in <213> in SEQ ID (6)								
E	257	Invalid sequence data feature in <221> in SEQ ID (6)								
W	213	Artificial or Unknown found in <213> in SEQ ID (43)								
E	257	Invalid sequence data feature in <221> in SEQ ID (43)								
E	257	Invalid sequence data feature in <221> in SEQ ID (43)								
E	257	Invalid sequence data feature in <221> in SEQ ID (43)								
E	257	Invalid sequence data feature in <221> in SEQ ID (43)								
E	257	Invalid sequence data feature in <221> in SEQ ID (43)								

Input Set:

Output Set:

Started: 2007-06-05 17:13:10.137

Finished: 2007-06-05 17:13:14.253

Elapsed: 0 hr(s) 0 min(s) 4 sec(s) 116 ms

Total Warnings: 6
Total Errors: 19

No. of SeqIDs Defined: 44

Actual SeqID Count: 44

Error code		Error Description									
E	257	Invalid sequence data feature in <221> in SEQ ID (43)									
E	257	Invalid sequence data feature in <221> in SEQ ID (43)									
E	257	Invalid sequence data feature in <221> in SEQ ID (43)									
E	257	Invalid sequence data feature in <221> in SEQ ID (43)									
W	213	Artificial or Unknown found in <213> in SEQ ID (44)									

```
SEQUENCE LISTING
<110> Zhou, Ming-Ming
      Aggarwal, Aneel
<120> Methods of Identifying Modulators of Bromodomains
<130> 2459-1-003
<140> 09510314
<141> 2007-06-05
<150>
        09/510,314
<151>
        2000-02-22
<160> 44
<170> PatentIn version 3.0
<210> 1
<211> 3014
<212> DNA
<213> Homo sapiens
<400>
ggggccgcgt cgacgcggaa aagaggccgt ggggggcctc ccagcgctgg cagacaccgt
gaggetggea geegeeggea egeacaceta gteegeagte eegaggaaca tgteegeage
                                                                     120
                                                                     180
cagggcgcgg agcagagtcc cgggcaggag aaccaaggga gggcgtgtgc tgtggcggcg
geggeagegg cageggagee getagteece teecteetgg gggageaget geegeegetg
                                                                   240
ccgccgccgc caccaccatc agcgcgcggg gcccggccag agcgagccgg gcgagcggcg
                                                                     300
                                                                     360
cgctaggggg agggcggggg cggggagggg ggtgggcgaa gggggggga gggcgtgggg
ggagggtete getetecega etaccagage eegagggaga eeetggegge ggeggeggeg
                                                                     420
cctgacactc ggcgcctcct gccgtgctcc ggggcggcat gtccgaggct ggcggggccg
                                                                     480
                                                                     540
ggccgggcgg ctgcggggca ggagccgggg caggggccgg gcccggggcg ctgcccccgc
agectgegge getteegeee gegeeeeege agggeteeee etgegeeget geegeegggg
                                                                     600
                                                                     660
gctcgggcgc ctgcggtccg gcgacggcag tggctgcagc gggcacggcc gaaggaccgg
gaggeggtgg cteggeeega ategeegtga agaaagegea actaegetee geteegeggg
                                                                     720
                                                                     780
ccaaqaaact qqaqaaactc qqaqtqtact ccqcctqcaa qqccqaqqaq tcttqtaaat
gtaatggctg gaaaaaccct aacccctcac ccactccccc cagagccgac ctgcagcaaa
                                                                   840
taattgtcag tctaacagaa tcctgtcgga gttgtagcca tgccctagct gctcatgttt
                                                                     900
cccacctgga gaatgtgtca gaggaagaaa tgaacagact cctgggaata gtattggatg
                                                                    960
tggaatatct ctttacctgt gtccacaagg aagaagatgc agataccaaa caagtttatt
                                                                   1020
                                                                   1080
tctatctatt taagctcttg agaaagtcta ttttacaaag aggaaaacct gtggttgaag
gctctttgga aaagaaaccc ccatttgaaa aacctagcat tgaacagggt gtgaataact
                                                                   1140
ttgtgcagta caaatttagt cacctgccag caaaagaaag gcaaacaata gttgagttgg
                                                                   1200
caaaaatgtt cctaaaccgc atcaactatt ggcatctgga ggcaccatct caacgaagac
                                                                   1260
tgcgatctcc caatgatgat atttctggat acaaagagaa ctacacaagg tggctgtgtt
                                                                   1320
actgcaacgt gccacagttc tgcgacagtc tacctcggta cgaaaccaca caggtgtttg
                                                                  1380
ggagaacatt gcttcgctcg gtcttcactg ttatgaggcg acaactcctg gaacaagcaa
                                                                   1440
                                                                   1500
gacaggaaaa agataaactg cctcttgaaa aacgaactct aatcctcact catttcccaa
aatttctqtc catqctaqaa qaaqaaqtat ataqtcaaaa ctctcccatc tqqqatcaqq
                                                                   1560
                                                                    1620
attttctctc agcctcttcc agaaccagcc agctaggcat ccaaacagtt atcaatccac
ctcctgtggc tgggacaatt tcatacaatt caacctcatc ttcccttgag cagccaaacg
                                                                   1680
cagggagcag cagtcctgcc tgcaaagcct cttctggact tgaggcaaac ccaggagaaa
                                                                    1740
                                                                    1800
agaggaaaat gactgattct catgttctgg aggaggccaa gaaaccccga gttatggggg
atattccgat ggaattaatc aacgaggtta tgtctaccat cacggaccct gcagcaatgc
                                                                    1860
```

ttqqaccaqa qaccaatttt ctqtcaqcac actcqqccaq qqatqaqqcq qcaaqqttqq

60

1920

aagagcgc	cag	gggtgtaatt	gaatttcacg	tggttggcaa	ttccctcaac	cagaaaccaa	1980
acaagaag	gat	cctgatgtgg	ctggttggcc	tacagaacgt	tttctcccac	cagctgcccc	2040
gaatgcca	aaa	agaatacatc	acacggctcg	tctttgaccc	gaaacacaaa	acccttgctt	2100
taattaaa	aga	tggccgtgtt	attggtggta	tctgtttccg	tatgttccca	tctcaaggat	2160
tcacagag	gat	tgtcttctgt	gctgtaacct	caaatgagca	agtcaagggc	tatggaacac	2220
acctgate	gaa	tcatttgaaa	gaatatcaca	taaagcatga	catcctgaac	ttcctcacat	2280
atgcagat	ga	atatgcaatt	ggatacttta	agaaacaggg	tttctccaaa	gaaattaaaa	2340
tacctaaa	aac	caaatatgtt	ggctatatca	aggattatga	aggagccact	ttaatgggat	2400
gtgagcta	aaa	tccacggatc	ccgtacacag	aattttctgt	catcattaaa	aagcagaagg	2460
agataatt	aa	aaaactgatt	gaaagaaaac	aggcacaaat	tcgaaaagtt	taccctggac	2520
tttcatgt	tt	taaagatgga	gttcgacaga	ttcctataga	aagcattcct	ggaattagag	2580
agacaggo	ctg	gaaaccgagt	ggaaaagaga	aaagtaaaga	gcccagagac	cctgaccagc	2640
tttacago	cac	gctcaagagc	atcctccagc	aggtgaagag	ccatcaaagc	gcttggccct	2700
tcatggaa	acc	tgtgaagaga	acagaagctc	caggatatta	tgaagttata	aggttcccca	2760
tggatctc	gaa	aaccatgagt	gaacgcctca	agaataggta	ctacgtgtct	aagaaattat	2820
tcatggca	aga	cttacagcga	gtctttacca	attgcaaaga	gtacaacgcc	gctgagagtg	2880
aatactac	caa	atgtgccaat	atcctggaga	aattcttctt	cagtaaaatt	aaggaagctg	2940
gattaatt	ga	caagtgattt	tttttcccc	tctgcttctt	agaaactcac	caagcagtgt	3000
gcctaaagca		aggt					3014
<210> 2	2						
<211> 8	332						
<212> F	PRT						
<213> E	Homo	sapiens					

<400> 2

Met Ser Glu Ala Gly Gly Ala Gly Pro Gly Gly Cys Gly Ala Gly Ala 10

Gly Ala Gly Ala Gly Pro Gly Ala Leu Pro Pro Gln Pro Ala Ala Leu 20 25

Pro Pro Ala Pro Pro Gln Gly Ser Pro Cys Ala Ala Ala Ala Gly Gly

Ser Gly Ala Cys Gly Pro Ala Thr Ala Val Ala Ala Ala Gly Thr Ala 50 55

Glu Gly Pro Gly Gly Gly Ser Ala Arg Ile Ala Val Lys Lys Ala 70 75 80

Gln Leu Arg Ser Ala Pro Arg Ala Lys Lys Leu Glu Lys Leu Gly Val 85 90

Tyr Ser Ala Cys Lys Ala Glu Glu Ser Cys Lys Cys Asn Gly Trp Lys 100 105

Asn Pro Asn Pro Ser Pro Thr Pro Pro Arg Ala Asp Leu Gln Gln Ile 120

Ile Val Ser Leu Thr Glu Ser Cys Arg Ser Cys Ser His Ala Leu Ala 135 140

Ala His Val Ser His Leu Glu Asn Val Ser Glu Glu Glu Met Asn Arg 145 150 155 160

Leu Leu Gl	y Ile Val 165	=	Val Glı	ı Tyr Leu 170	Phe Thr	Cys Val 175	His
Lys Glu Gl	u Asp Ala 180	Asp Thr	Lys Glr 189	_	Phe Tyr	Leu Phe 190	Lys
Leu Leu Ar	_	Ile Leu	Gln Arg	g Gly Lys	Pro Val 205	Val Glu	Gly
Ser Leu Gl	ı Lys Lys	Pro Pro 215		ı Lys Pro	Ser Ile 220	Glu Gln	Gly
Val Asn As: 225	n Phe Val	Gln Tyr 230	Lys Phe	e Ser His 235		Ala Lys	Glu 240
Arg Gln Th	r Ile Val 245		Ala Lys	Met Phe 250	Leu Asn	Arg Ile 255	Asn
Tyr Trp Hi	s Leu Glu 260	Ala Pro	Ser Glr 265		Leu Arg	Ser Pro 270	Asn
Asp Asp Il	_	Tyr Lys	Glu Asr 280	n Tyr Thr	Arg Trp 285	Leu Cys	Tyr
Cys Asn Va 290	l Pro Gln	Phe Cys 295	Asp Sei	Leu Pro	Arg Tyr 300	Glu Thr	Thr
Gln Val Ph	e Gly Arg	Thr Leu 310	Leu Arq	g Ser Val 315		Val Met	Arg 320
Arg Gln Le	325		-	330		335	
Glu Lys Ar	340		345	5	-	350	
Leu Glu Gl 35	5	-	360		365	-	
Phe Leu Se		375			380		
Ile Asn Pro		390	-	395			400
Ser Ser Le	405			410		415	_
Ala Ser Se	420		425	5		430	
Asp Ser Hi 43	5		440		445		
Ile Pro Me	t Glu Leu	Ile Asn 455		L Met Ser	Thr Ile 460	Thr Asp	Pro

Ala Ala M 465	let Leu	Gly Pro		Thr	Asn	Phe	Leu 475	Ser	Ala	His	Ser	Ala 480
Arg Asp G	Glu Ala	Ala Aro 485	g Leu	Glu	Glu	Arg 490	Arg	Gly	Val	Ile	Glu 495	Phe
His Val V	Val Gly 500	Asn Se	r Leu	Asn	Gln 505	Lys	Pro	Asn	Lys	Lys 510	Ile	Leu
Met Trp I 5	Leu Val	Gly Le	ı Gln	Asn 520	Val	Phe	Ser	His	Gln 525	Leu	Pro	Arg
Met Pro I 530	ys Glu	Tyr Il	9 Thr 535	Arg	Leu	Val	Phe	Asp 540	Pro	Lys	His	Lys
Thr Leu A	ala Leu	Ile Ly 55	_	Gly	Arg	Val	Ile 555	Gly	Gly	Ile	CÀ2	Phe 560
Arg Met P	he Pro	Ser Gl: 565	n Gly	Phe	Thr	Glu 570	Ile	Val	Phe	Cys	Ala 575	Val
Thr Ser A	Asn Glu 580	Gln Va	l Lys	Gly	Tyr 585	Gly	Thr	His	Leu	Met 590	Asn	His
Leu Lys G 5	Glu Tyr 595	His Il	e Lys	His 600	Asp	Ile	Leu	Asn	Phe 605	Leu	Thr	Tyr
Ala Asp G 610	Glu Tyr	Ala Il	e Gly 615	Tyr	Phe	Lys	Lys	Gln 620	Gly	Phe	Ser	Lys
Glu Ile I 625	ys Ile	Pro Ly 63		Lys	Tyr	Val	Gly 635	Tyr	Ile	Lys	Asp	Tyr 640
Glu Gly A	Ala Thr	Leu Me	Gly	Cys	Glu	Leu 650	Asn	Pro	Arg	Ile	Pro 655	Tyr
Thr Glu P	he Ser 660	Val Il	e Ile	Lys	Lys 665	Gln	Lys	Glu	Ile	Ile 670	Lys	Lys
Leu Ile G	Glu Arg 575	Lys Gl	n Ala	Gln 680	Ile	Arg	Lys	Val	Tyr 685	Pro	Gly	Leu
Ser Cys P 690	he Lys	Asp Gl	/ Val 695	Arg	Gln	Ile	Pro	Ile 700	Glu	Ser	Ile	Pro
Gly Ile A	arg Glu	Thr Gl	_	Lys	Pro	Ser	Gly 715	Lys	Glu	Lys	Ser	Lys 720
Glu Pro A	Arg Asp	Pro As:	o Gln	Leu	Tyr	Ser 730	Thr	Leu	Lys	Ser	Ile 735	Leu
Gln Gln V	7al Lys 740	Ser Hi	s Gln	Ser	Ala 745	Trp	Pro	Phe	Met	Glu 750	Pro	Val
Lys Arg T	hr Glu 755	Ala Pr	o Gly	Tyr 760	Tyr	Glu	Val	Ile	Arg 765	Phe	Pro	Met

```
770
                       775
                                           780
Lys Lys Leu Phe Met Ala Asp Leu Gln Arg Val Phe Thr Asn Cys Lys
                   790
                                      795
Glu Tyr Asn Ala Ala Glu Ser Glu Tyr Tyr Lys Cys Ala Asn Ile Leu
               805
                                  810
                                                       815
Glu Lys Phe Phe Phe Ser Lys Ile Lys Glu Ala Gly Leu Ile Asp Lys
                              825
           820
                                                   830
<210> 3
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic bromodomain peptide
<220>
<221> Xaa
<222> (2)..(4)
<223> Xaa is a maximum of three amino acids. Each of these can be
 any amino acid. One may be missing.
<220>
<221> Xaa
<222> (4)..(11)
<223> Xaa is a maximum of eight amino acids. Each of these can be
 any amino acid. One, two, or three may be missing.
<220>
<221> Xaa
<222> (5)..(5)
<223> Xaa is a single amino acid that is either Pro, Lys, or His.
<220>
<221> Xaa
<222> (6)..(6)
<223> Xaa is any single amino acid.
<220>
<221> Xaa
<222> (8)..(8)
<223> Xaa is a single amino acid that can be either Tyr, Phe, or His.
<220>
<221> Xaa
<222> (9)..(13)
```

<223> Xaa is any amino acid.

Asp Leu Lys Thr Met Ser Glu Arg Leu Lys Asn Arg Tyr Tyr Val Ser

```
<221> Xaa
<222> (15)..(15)
<223> Xaa is a single amino acid that can be either Met, Ile, or Val.
<400> 3
Phe Xaa Pro Xaa Xaa Xaa Tyr Xaa Xaa Xaa Xaa Xaa Pro Xaa Asp
              5
                                 10
<210> 4
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic bromodomain peptide
<220>
<221> Xaa
<222> (6)..(6)
<223> Xaa represents an acetyl-lysine
<400> 4
Ile Ser Tyr Gly Arg Xaa Lys Arg Arg Gln Arg Arg
<210> 5
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic bromodomain peptide
<220>
<221> Xaa
<222> (8)..(8)
<223> Xaa represents an acetyl lysine.
<400> 5
Ala Arg Lys Ser Thr Gly Gly Xaa Ala Pro Arg Lys Gln Leu
              5
                                 10
<210> 6
<211> 14
<212> PRT
<213> Artificial Sequence
```

<220>

<220>

```
<223> synthetic bromodomain peptide
<220>
<221> Xaa
<222> (8)..(8)
<223> Xaa represents an acetyl lysine.
<400> 6
Gln Ser Thr Ser Arg His Lys Xaa Leu Met Phe Lys Thr Glu
            5
                             10
<210> 7
<211> 110
<212> PRT
<213> Homo sapiens, bromodomain peptide
<400> 7
Ser Lys Glu Pro Arg Asp Pro Asp Gln Leu Tyr Ser Thr Leu Lys Ser
   5
                  10 15
Ile Leu Gln Gln Val Lys Ser His Gln Ser Ala Trp Pro Phe Met Glu
                 25
        20
Pro Val Lys Arg Thr Glu Ala Pro Gly Tyr Tyr Glu Val Ile Arg Ser
     35
                      40
Pro Met Asp Leu Lys Thr Met Ser Glu Arg Leu Lys Asn Arg Tyr Tyr
                    55
Val Ser Lys Lys Leu Phe Met Ala Asp Leu Gln Arg Val Phe Thr Asn
             70
                                 75
Cys Lys Glu Tyr Asn Ala Pro Glu Ser Glu Tyr Tyr Lys Cys Ala Asn
            85
                      90 95
Ile Leu Glu Lys Phe Phe Phe Ser Lys Ile Lys Glu Ala Gly
      100 105 110
<210> 8
<211> 110
<212> PRT
<213> Homo sapiens
<400> 8
Gly Lys Glu Leu Lys Asp Pro Asp Gln Leu Tyr Thr Thr Leu Lys Asn
```

Pro Val Lys Lys Ser Glu Ala Pro Asp Tyr Tyr Glu Val Ile Arg Phe

Leu Leu Ala Gln Ile Lys Ser His Pro Ser Ala Trp Pro Phe Met Glu

25

20

35 40 45

Pro Ile Asp Leu Lys Thr Met Thr Glu Arg Leu Arg Ser Arg Tyr Tyr

Val Thr Arg Lys Leu Phe Val Ala Asp Leu Gln Arg Val Ile Ala Asn 65 70 75 80

Cys Arg Glu Tyr Asn Pro Pro Asp Ser Glu Tyr Cys Arg Cys Ala Ser 85 90 95

Ala Leu Glu Lys Phe Phe Tyr Phe Lys Leu Lys Glu Gly Gly 100 105 110

<210> 9

<211> 109

<212> PRT

<213> Tetrahymena thermophila

<400> 9

Leu Lys Lys Ser Lys Glu Arg Ser Phe Asn Leu Gln Cys Ala Asn Val 1 5 10 15

Ile Glu Asn Met Lys Arg His Lys Gln Ser Trp Pro Phe Leu Asp Pro 20 25 30

Val Asn Lys Asp Asp Val Pro Asp Tyr Tyr Asp Val Ile Thr Asp Pro
35 40 45

Ile Asp Ile Lys Ala Ile Glu Lys Lys Leu Gln Asn Asn Gln Tyr Val 50 55 60

Asp Lys Asp Gln Phe Ile Lys Asp Val Lys Arg Ile Phe Thr Asn Ala 65 70 75 80

Lys Ile Tyr Asn Gln Pro Asp Thr Ile Tyr Tyr Lys Ala Ala Lys Glu 85 90 95

Leu Glu Asp Phe Val Glu Pro Tyr Leu Thr Lys Leu Lys $100 \hspace{1cm} 105$

<210> 10

<211> 109

<212> PRT

<213> Saccharomyces cerevisiae

<400> 10

Ala Gln Arg Pro Lys Arg Gly Pro His Asp Ala Ala Ile Gln Asn Ile 1 5 10 15

Leu Thr Glu Leu Gln Asn His Ala Ala Ala Trp Pro Phe Leu Gln Pro
20 25 30

Val Asn Lys Glu Glu Val Pro Asp Tyr Tyr Asp Phe Ile Lys Glu Pro 35 40 45

Met Asp Leu Ser Thr Met Glu Ile Lys Leu Glu Ser Asn Lys Tyr Gln 50 55 60

Lys Met Glu Asp Phe Ile Tyr Asp Ala Arg Leu Val Phe Asn Asn Cys 65 70 75 80

Arg Met Tyr Asn Gly Glu Asn Thr Ser Tyr Tyr Lys Tyr Ala Asn Arg 85 90 95

Leu Glu Lys Phe Phe Asn Asn Lys Val Lys Glu Ile Pro 100 105

<210> 11

<211> 112

<212> PRT

<213> Homo sapiens

<400> 11

Lys Lys Ile Phe Lys Pro Glu Glu Leu Arg Gln Ala Leu Met Pro Thr 1 5 10 15

Leu Glu Ala Leu Tyr Arg Gln Asp Pro Glu Ser Leu Pro Phe Arg Gln 20 25 30

Pro Val Asp Pro Gln Leu Leu Gly Ile Pro Asp Tyr Phe Asp Ile Val 35