SEQUENCE LISTING

<110> DeliaTroph Pharmaceuticals Inc.
 Frost, Gregory I.
 Kundu, Anirban
 Bookbinder, Louis H.

<120> HUMAN CHONDROITINASE GLYCOPROTEIN (CHASEGP), PROCESS FOR PREPARING THE SAME, AND PHARMACEUTICAL COMPOSITIONS COMPRISING THEREOF

<130> DELIA1330WO

<150> US 60/433,532

<151> 2002-12-16

<160> 10

<170> PatentIn version 3.1

<210> 1

<211> 481

<212> PRT

<213> Homo sapiens

<400> 1

Met Lys Val Leu Ser Glu Gly Gln Leu Lys Leu Cys Val Val Gln Pro 1 5 . 10 15

Val His Leu Thr Ser Trp Leu Leu Ile Phe Phe Ile Leu Lys Ser Ile 20 25 30

Ser Cys Leu Lys Pro Ala Arg Leu Pro Ile Tyr Gln Arg Lys Pro Phe 35 40 45

Ile Ala Ala Trp Asn Ala Pro Thr Asp Gln Cys Leu Ile Lys Tyr Asn 50 55 60

Leu Arg Leu Asn Leu Lys Met Phe Pro Val Ile Gly Ser Pro Leu Ala 65 70 75 80

Lys Ala Arg Gly Gln Asn Val Thr Ile Phe Tyr Val Asn Arg Leu Gly 85 90 95

Tyr Tyr Pro Trp Tyr Thr Ser Gln Gly Val Pro Ile Asn Gly Gly Leu
100 105 110

Pro Gln Asn Ile Ser Leu Gln Val His Leu Glu Lys Ala Asp Gln Asp 115 120 125

Ile Asn Tyr Tyr Ile Pro Ala Glu Asp Phe Ser Gly Leu Ala Val Ile 130 135 140

WO 2004/058147 PCT/US2003/040090 2/12

Asp 145	Trp	Glu	Tyr	Trp	Arg 150	Pro	Gln	Trp	Ala	Arg 155	Asn	Trp	Asn	Ser	Lys 160
Asp	Val	Tyr	Arg	Gln 165	Lys	Ser	Arg	Lys	Leu 170	Ile	Ser	Asp	Met	Gly 175	Lys
Asn	Val	Ser	Ala 180	Thr	Asp	Ile	Glu	Tyr 185	Leu	Ala	Lys	Val	Thr 190	Phe	Glu
Glu	Ser	Ala 195	Lys	Ala	Phe	Met	Lys 200	Glu	Thr	Ile	Lys	Leu 205	Gly	Ile	Lys
Ser	Arg 210	́Рго	Lys	Gly	Leu	Trp 215	Gly	Tyr	Tyr	Leu	Tyr 220	Pro	Asp	Cys	His
Asn 225	Tyr	Asn	Val	Tyr	Ala 230	Pro	Asn	Tyr	Ser	Gly 235	Ser	Cys	Pro	Glu	Asp 240
Glu	Val	Leu	Arg	Asn 245	Asn	Glu	Leu	Ser	Trp 250	Leu	Trp	Asn	Ser	Ser 255	Ala
Ala	Leu	Tyr	Pro 260	Ser	Ile	Сув	Val	Trp 265	Lys	Ser	Leu	Gly	Asp 270	Ser	Glu
Asn	Ile	Leu 275	Arg	Phe	Ser	Lys	Phe 280	Arg	Val	His	Glu	Ser 285	Met	Arg	Ile
Ser	Thr 290	Met	Thr	Ser	His	Asp 295	Tyr	Ala	Leu	Pro	Val 300	Phe	Val	Tyr	Thr
Arg 305	Leu	Gly	Tyr	Arg	Asp 310	Glu	Pro	Leu	Phe	Phe 315	Leu	Ser	Lys	Gln	Asp 320
Leu	Val	Ser	Thr	Ile 325	Gly	Glu	Ser	Ala	Ala 330	Leu	Gly	Ala	Ala	Gly 335	Ile
Val	Ile	Trp	Gly 340	Asp	Met	Asn	Leu	Thr 345	Ala	Ser	Lys	Ala	Asn 350	Cys	Thr
·Lys	Val	Lys 355	Gln	Phe	Val	Ser	Ser 360	Asp	Leu	Gly	Ser.	Tyr 365	Ile	Ala	Asn
Val	Thr 370	Arg	Ala	Ala	Glu	Val 375	Cys	Ser	Leu	His	Leu 380	Сув	Arg	Asn	Asn

Gly Arg Cys Ile Arg Lys Met Trp Asn Ala Pro Ser Tyr Leu His Leu 385 390 395 400

Asn Pro Ala Ser Tyr His Ile Glu Ala Ser Glu Asp Gly Glu Phe Thr 405 410 415

Val Lys Gly Lys Ala Ser Asp Thr Asp Leu Ala Val Met Ala Asp Thr 420 425 430

Phe Ser Cys His Cys Tyr Gln Gly Tyr Glu Gly Ala Asp Cys Arg Glu 435 440 445

Ile Lys Thr Ala Asp Gly Cys Ser Gly Val Ser Pro Ser Pro Gly Ser 450 455 460

Leu Met Thr Leu Cys Leu Leu Leu Leu Ala Ser Tyr Arg Ser Ile Gln 465 470 475 480

Leu

<210> 2

<211> 481

<212> PRT

<213> Mus musculus

<220>

<221> SIGNAL

<222> (1)..(34)

<223>

<400> 2

Met Gln Leu Leu Pro Glu Gly Gln Leu Arg Leu Cys Val Phe Gln Pro 1 5 10 15

Val His Leu Thr Ser Gly Leu Leu Ile Leu Phe Ile Leu Lys Ser Ile
20 25 30

Ser Ser Leu Lys Pro Ala Arg Leu Pro Val Tyr Gln Arg Lys Pro Phe 35 40 45

Ile Ala Ala Trp Asn Ala Pro Thr Asp Leu Cys Leu Ile Lys Tyr Asn 50 . 55 60

Leu Thr Leu Asn Leu Lys Val Phe Gln Met Val Gly Ser Pro Arg Leu 65 70 75 80

Lys Asp Arg Gly Gln Asn Val Val Ile Phe Tyr Ala Asn Arg Leu Gly

95 90 95

Tyr Tyr Pro Trp Tyr Thr Ser Glu Gly Val Pro Ile Asn Gly Gly Leu 100 105 110

Pro Gln Asn Thr Ser Leu Gln Val His Leu Lys Gly Ala Gly Gln Asp 115 120 125

Ile Asn Tyr Tyr Ile Pro Ser Glu Asn Phe Ser Gly Leu Ala Val Ile 130 135 140

Asp Trp Glu Tyr Trp Arg Pro Gln Trp Ala Arg Asn Trp Asn Thr Lys 145 150 155 160

Asp. Ile Tyr Arg Gln Lys Ser Arg Thr Leu Ile Ser Asp Met Lys Glu 165 170 175

Asn Ile Ser Ala Ala Asp Ile Glu Tyr Ser Ala Lys Ala Thr Phe Glu 180 185 190

Lys Ser Ala Lys Ala Phe Met Glu Glu Thr Ile Lys Leu Gly Ser Lys 195 200 205

Ser Arg Pro Lys Gly Leu Trp Gly Tyr Tyr Leu Tyr Pro Asp Cys His 210 215 220

Asn Tyr Asn Val Tyr Ala Thr Asn Tyr Thr Gly Ser Cys Pro Glu Glu 225 230 235 240

Glu Val Leu Arg Asn Asn Asp Leu Ser Trp Leu Trp Asn Ser Ser Thr 245 250 255

Ala Leu Tyr Pro Ala Val Ser Ile Arg Lys Ser Phe Ala Asp Ser Glu 260 265 270

Asn Thr Leu His Phe Ser Arg Phe Arg Val Arg Glu Ser Leu Arg Ile 275 280 285

Ser Thr Met Thr Ser Gln Asp Tyr Ala Leu Pro Val Phe Val Tyr Thr 290 295 300

Gln Leu Gly Tyr Lys Glu Glu Pro Leu Leu Phe Pro Phe Lys Gln Asp 305 310 315 320

Leu Ile Ser Thr Ile Gly Glu Ser Ala Ala Leu Gly Ala Ala Gly Ile 325 330 335

Val	Val	Trp	Gly 340	Asp	Met	Asn	Leu	Thr 345	Ser	Ser	Glu	Glu	Asn 350	Cys	Thr	
Lys	Val	Asn 355	Arg	Phe	Val	Asn	Ser 360	Asp	Phe	Gly	Ser	Tyr 365	Ile	Ile	Asn	
Val	Thr 370	Arg	Ala	Ala	Glu	Val 375	Ser	Ser	Arg	His	Leu 380	Суз	Lys	Asn	Asn	
Gly 385	Arg	Сув	Val	Arg	Lys 390	Thr	Trp	Lys	Ala	Ala 395	His	Tyr	Leu	His	Leu 400	
Asn	Pro	Ala	Ser	Tyr 405	His	Ile	Glu	Ala	Ser 410	Glu	Asp	Gly	Glu	Phe 415	Ile	
Val	Arg	Gly	Arg 420	Ala	Ser	Asp	Thr	Asp 425	Leu	Ala	Val	Met	Ala 430	Glu	Asn	
Phe	Leu	Cys 435	His	Cys	Tyr	Glu	Gly 440	Tyr	Glu	Gly	Ala	Asp 445	Cys	Arg	Glu	
Met	Thr 450	Glu	Ala	Ser	Gly	Pro 455	Ser	Gly	Leu	Ser	Leu 460	Ser	Ser	Ser	Ser	
Val 465	Ile	Thr	Leu	Cys	Leu 470	Leu	Val	Leu	Ala	Gly 475	Tyr	Gln	Ser	Ile	Gln 480	
Leu																
<210 <211 <212 <213	l> 2 2> I	3 2414 ONA Homo	sapi	.ens												
<400 cgc			gtct	ttat	t tt	attt	atgo	: tat	ctat	ttc	tttt	cctt	tt t	ttt	tttt	60
tttt	tgaç	gat g	aagt	ctta	ic, to	tgtt	gccc	agg	ıctgg	agt	gtag	tggt	gt g	gatct	cggct	120
cgct	gcag	gcc a	ctgo	ctcc	t gg	gtto	aggt	gat	tctc	ctg	actt	agco	tc c	tgag	ıtggct	180
ggga	ctgo	ag g	agca	tgcc	a to	atgo	ccag	r ctg	attt	ttg	tatt	ttta	ıgt a	ıgaga	tgggg	240
tttc	acco	gtg t	tggc	caga	a tg	gttt	gcat	tcc	tgac	ctc	aagt	gato	tg c	ctgo	ctcag	300
ccto	ccaa	aa t	gttg	ggta	c ag	gggt	gago	cac	cgtg	cct	tgct	atta	at g	gccat	ctatt	360
tcac	tgaa	ıga t	tccg	cctc	t ca	tttc	ttga	gto	attt	ttt	ttaa	attt	.cc t	taaa	ttgga	420

WO 2004/058147 PCT/US2003/040090 6/12

cttcacattt	tctgatgcct	ccttgtttag	cttaataact	gaccttctga	attcttttt	480
aggaaaatca	ggaatttctt	cttggtttgg	agccattgct	ggacatcctt	tgccattcaa	540
cctctgattt	gcacaaggtg	actaaaggac	cagcagcaaa	caaaacgttt	ggtcttctag	600
agtgcactaa	agcagaagat	acgtaacatt	tttatcttac	catgaaagta	ttatctgaag	660
gacagttaaa	gctttgtgtt	gttcaaccag	tacatctcac	ttcatggctc	cttatatttt	720
ttattctaaa	gtctatctct	tgtctaaaac	ctgctcgact	tccaatttat	caaaggaaac	780
cttttatagc	tgcttggaat	gctccaacag	atcagtgttt	gataaaatat	aatttaagac	840
taaatttgaa	aatgtttcct	gtgattggaa	gcccactggc	caaggccagg	gggcaaaatg	900
tcactatatt	ttatgtcaac	agattgggat	actatccgtg	gtataca <u>t</u> ca	cagggggtcc	960
ccattaatgg	aggtctccca	cagaacataa	gtttacaagt	acatctggaa	aaagctgacc	1020
aagatattaa	ttattacatc	cctgctgaag	atttcagtgg	acttgctgtt	atagattggg	1080
aatattggag	accacagtgg	gcccggaact	ggaactcaaa	agatgtttac	agacagaagt	1140
caagaaagct	tatttccgat	atgggaaaga	atgtatcagc	taccgatatt	gaatatttag	1200
ccaaagtgac	ctttgaagaa	agtgcaaaag	ctttcatgaa	ggaaaccatc	aaattgggaa	1260
ttaagagccg	acccaaaggc	ctttggggtt	attatttata	tcctgattgc	cacaattata	1320
acgtttatgc	cccaaactac	tctgggtcat	gcccagaaga	cgaagtcttg	aggaacaatg	1380
agctctcttg	gctctggaac	agcagtgctg	ctttatatcc	ttctatctgt	gtctggaaat	1440
cccttggaga	cagtgaaaac	attttgcgct	tctccaaatt	tcgggtgcat	.gaatccatga	1500
ggatetecae	catgacatct	catgattatg	ctctgcctgt	atttgtctac	acaaggctag	1560
ggtacagaga	tgaaccttta	tttttccttt	ctaagcaaga	tctagtcagc	accataggag	1620
aaagtgctgc	cttgggagct	gcaggcattg	ttatttgggg	agacatgaat	ttaactgcat	1680
ccaaggccaa	ctgtacaaag	gtgaagcagt	ttgtgagttc	tgatttaggg	agctacatag	1740
ccaatgtgac	cagagctgct	gaggtatgca	gccttcacct	ctgcaggaac	aatggcaggt	1800
gcataaggaa	gatgtggaac	gcgcccagtt	accttcactt	gaaccctgca	agttaccaca	1860
tagaggcctc	tgaggacggg	gagtttactg	tgaaaggaaa	agcatctgat	acagacctgg	1920
cagtgatggc	agatacattt	tcctgtcatt	gttatcaggg	atatgaagga	gctgattgca	1980
gagaaataaa	gacggctgat	ggctgctctg	gggtttcccc	ttctcctggt	tcactaatga	2040
cactttgtct	actgctttta	gcaagttatc	gaagcattca	gttgtgagat	aattgagttt	2100
aaagggaatt	gtgtggcctc	tagcctagtc	atttaaagaa	ggatgtaact	tataacattt	2160
tttttctctt	atgaattcta	ttgagagata	ttataagtag	acattatgta	tgtcacttaa	2220

cataaacaga	aacattattt	tatttgcctc	cagtetgget	aggaaaccag	atctggggta	2280
aagtcaatgt	acacttcctc	cttattggaa	tatttaagtt	gcatttaaac	taaaactagt	2340
ataatttagt	cttttcatga	atgtacatac	ataaaattat	acataaaaat	attaaattat	2400
tcatttcaaa	aaaa					2414
<210> 4 <211> 3255 <212> DNA <213> Mus	o musculus					
<400> 4 tggctctgga	gcaggtgaat	aaaggaccag	caggcaaaca	aaagcaaagg	tttttaaaca	60
tagtttatca	cagctgttct	gctgagagga	gagtggcttt	ttcactaact	ccagtctata	120
tgtggcaaac	ctgtctccac	ccaaggaata	gctattcacc	tttttcgcta	actggaagag	180
tgaaccaaag	aggeettttg	gattacgttg	aagaaaaggt	agtgaaggtt	ctatcttatc	240
atgcaactat	tgcctgaagg	acaattaaga	ctctgtgttt	ttcaaccagt	acatcttaca	300
teggggetge	tcatactttt	tatcctgaag	tctatctcat	ccctaaaacc	tgcccgactt	360
ccagtttatc	aaaggaaacc	ttttattgct	gcttggaatg	ctccaacaga	cctgtgtttg	420
ataaaatata	atttaacact	gaacttaaaa	gtgtttcaga	tggttggaag	ccctcggctc	480
aaagacaggg	ggcaaaatgt	tgttatattt	tatgccaaca	gattgggata	ttacccatgg	540
tatacatcag	aaggggtacc	catcaatggt	ggtcttcccc	aaaacacaag	cttacaagta	600
cacctgaaag	gggctggcca	ggatattaat	tattacatcc	cttctgaaaa	tttcagtgga	660
cttgctgtta	tagactggga	atattggcgc	ccacagtggg	cccggaactg	gaacacaaag	720
gatatctaca	gacagaagtc	aagaactctt	atttctgata	tgaaagagaa	catatctgct	780
gctgatattg	aatattcagc	caaggcaact	tttgagaaaa	gtgcaaaagc	tttcatggag	840
gaaactatca	aattgggaag	taagagcaga	cccaagggcc	tttggggtta	ttatttatat	900
cctgattgcc	acaattataa	tgtttatgcc	acaaactata	ctgggtcatg	cccagaagag	960
gaagttttga	ggaacaatga	cctctcttgg	ctctggaaca	gcagtacagc	cctgtatcct	1020
gctgtcagta	ttaggaaatc	ctttgcagac	agtgaaaaca	ctttgcactt	ctcacgattt	1080
cgggtgcgtg	aatcactgag	gatttccacc	atgacatcac	aggattatgc	tctgcctgta	1140
tttgtctaca	cacaģctggg	ctacaaagag	gaacctttac	Ttttcccttt	taagcaagat	1200
ctaattagta	ccataggaga	aagtgctgcg	ttgggagcgg	caggcattgt	tgtttgggga	1260
gacatgaatt	taacttcatc	tgaggagaac	tgtacgaaag	tgaaccgctt	tgtgaattct	1320
gattttggca (gctacataat	caatgtgacc	agagcagctg	aggtgtccag	tcgtcacctt	1380

tgcaagaata	atgggaggtg	tgtacggaag	acatggaaag	g cagctcatta	cctccatttg	1440
aaccctgcaa	gttaccacat	agaggcctct	gaggatggag	aattcatagt	gaggggaaga	1500
gcatcagaca	ctgacctagc	tgtgatggca	gagaatttcc	: tatgtcactg	ttatgaggga	1560
tatgaggggg	ctgactgtag	agaaatgaca	gaggccagtg	geeeeteggg	gctttccctt	1620
tcctctagct	ctgtaataac	actgtgtctg	ctagttctag	caggttatca	aagcattcag	1680
ttgtgacata	attgacttta	aagggaatcg	catcctttta	aaaagggtgt	tagggaacag	1740
atagacactc	ttctctctta	ggagttcctc	tgagaggcct	tataaatcaa	catatgtgtc	1800
acaacataaa	tagaacctgt	taccttattt	gctacacttt	gtttagagcc	agctttaaaa	1860
gaacaaagca	atgcacacca	ttttcttact	tgagtatttc	aattacactt	aaattgaatt	1920
ttattctctt	tctaattata	taaacaccag	tgtatacatg	aatactaagt	ttgttatttc	1980
aagcacattt	tctaggtagc	agtttaagga	ctggttacaa	tgtaaccacc	tcattcaaca	2040
gatggatcaa	ctcagccatg	acccagtcaa	ctaattcatc	agagaaggtg	aaatgcaggg	2100
ctactgtgcc	agcctcccct	tcacttgtat	ctgtttccct	gatggaggac	agggttacta	2160
ccggtatggt	ttcttaggaa	agagaggtca	gggacctggt	tccaattcat	cgcaaccatc	2220
aacctcttcc	ttcatagacc	ctaccagttt	gcaaaccaca	aaaaaggtcc	aggattcatt	2280
gagctgtaga	tccaaaagct	gtagtgatgg	tgacttttga	aagtgaaacc	ttttatttaa	2340
tgaaaagtaa	gttataagga	aaatcagcta	ctctgccttc	ctctgctgcc	catatcattt	2400
tgagtagtat	acttggattt	agaatccatt	tgaacctgat	ttaaatcatg	ctttccacaa	2460
tttatgtgtg	gtataaatct	tagcaaattc	tttataatcc	cctttttcca	tctgaaattt	2520
ggtagtataa	ttttatctta	acaaattagc	acaggaattt	gctctgcact	cctgggttct	2580
tagtgatgta	agggatgcag	gacaatetet	tggtcaccaa	agagaagtca	agctgtttcc	2640
ttccatggcc	agggaccatt	tatcatcact	tagacattgt	gttgtggtct	tgagcgacac	2700
tctcagggga	tacggttttc	actccataaa	gataatttag	tgggaaaaga	agctcagaag	2760
tgatatgatg	atgctgttaa	agaagggcac	caccacttga	tgtcttctct	ttcttaactc	2820
tttcaactca (ggatecetge	ttgccagagg	tgactgtgaa	agcttaattt	tgaaatgtac	2880
gatacaaaca a	aacaaggctt	taataatact	gtgaatgaaa	gttatgttta	aatacataga	2940
ttagctattt a	agaaattaaa (ttaattttta	tatgaaagta	gatgtgatta	gcactataga	3000
acatttacac a	aactttaata a	ataaccaaag	aaatcaccaa	caaaccccta	ccatatgctg	3060
gtaacttttg g	gtgtactatt (tactaatatt	tcttgtaaaa	tgatttttgt	attattgttg	3120
taattatatt t	tatgatctg t	gtttcaatt	tatgatgtga :	gtggttttca	tatcatttca	3180
taatattcat c	gcatattatt t	aaaaatctt	tttctcttcc	agtagagga	ttaaaggtaa	3240

agatttatac aaacc		3255
<210> 5 <211> 1269 <212> DNA <213> Homo sapiens	•	
<400> 5		
ctaaaacctg ctcgacttcc aatttatcaa aggaaacctt	ttatagctgc ttggaatgct	60
ccaacagatc agtgtttgat aaaatataat ttaagactaa	. atttgaaaat gtttcctgtg	120
attggaagcc cactggccaa ggccaggggg caaaatgtca	. ctatatttta tgtcaacaga	180
ttgggatact atccgtggta tacatcacag ggggtcccca	. ttaatggagg tctcccacag	240
aacataagtt tacaagtaca tctggaaaaa gctgaccaag	atattaatta ttacatccct	300
gctgaagatt tcagtggact tgctgttata gattgggaat	attggagacc acagtgggcc	360
cggaactgga actcaaaaga tgtttacaga cagaagtcaa	gaaagcttat ttccgatatg	420
ggaaagaatg tatcagctac cgatattgaa tatttagcca	aagtgacctt tgaagaaagt	480
gcaaaagctt tcatgaagga aaccatcaaa ttgggaatta	agageegaee caaaggeett	540
tggggttatt atttatatcc tgattgccac aattataacg	tttatgcccc aaactactct	600
gggtcatgcc cagaagacga agtcttgagg aacaatgagc	tctcttggct ctggaacagc	660
agtgctgctt tatatccttc tatctgtgtc tggaaatccc	ttggagacag tgaaaacatt	720
ttgcgcttct ccaaatttcg ggtgcatgaa tccatgagga	tctccaccat gacatctcat	780
gattatgctc tgcctgtatt tgtctacaca aggctagggt	acagagatga acctttattt	840
ttcctttcta agcaagatct agtcagcacc ataggagaaa	gtgctgcctt gggagctgca	900
ggcattgtta tttggggaga catgaattta actgcatcca	aggccaactg tacaaaggtg	960
aagcagtttg tgagttctga tttagggagc tacatagcca	atgtgaccag agctgctgag	1020
gtatgcagcc ttcacctctg caggaacaat ggcaggtgca	taaggaagat gtggaacgcg	1080
cccagttacc ttcacttgaa ccctgcaagt taccacatag	aggcctctga ggacggggag	1140
tttactgtga aaggaaaagc atctgataca gacctggcag	tgatggcaga tacattttcc	1200
tgtcattgtt atcagggata tgaaggagct gattgcagag	aaataaagac ggctgatggc	1260
tgctctggg		1269
<210> 6 <211> 423 <212> PRT <213> Homo sapiens		

<400> 6

WO 2004/058147 PCT/US2003/040090 10/12

Leu Lys Pro Ala Arg Leu Pro Ile Tyr Gln Arg Lys Pro Phe Ile Ala 1 5 10 15

Ala Trp Asn Ala Pro Thr Asp Gln Cys Leu Ile Lys Tyr Asn Leu Arg
20 25 30

Leu Asn Leu Lys Met Phe Pro Val Ile Gly Ser Pro Leu Ala Lys Ala 35 40 45

Arg Gly Gln Asn Val Thr Ile Phe Tyr Val Asn Arg Leu Gly Tyr Tyr 50 55 60

Pro Trp Tyr Thr Ser Gln Gly Val Pro Ile Asn Gly Gly Leu Pro Gln 65 70 75 80

Asn Ile Ser Leu Gln Val His Leu Glu Lys Ala Asp Gln Asp Ile Asn 85 90 95

Tyr Tyr Ile Pro Ala Glu Asp Phe Ser Gly Leu Ala Val Ile Asp Trp 100 105 110

Glu Tyr Trp Arg Pro Gln Trp Ala Arg Asn Trp Asn Ser Lys Asp Val

Tyr Arg Gln Lys Ser Arg Lys Leu Ile Ser Asp Met Gly Lys Asn Val 130 135 140

Ser Ala Thr Asp Ile Glu Tyr Leu Ala Lys Val Thr Phe Glu Glu Ser 145 150 155 160

Ala Lys Ala Phe Met Lys Glu Thr Ile Lys Leu Gly Ile Lys Ser Arg 165 170 175

Pro Lys Gly Leu Trp Gly Tyr Tyr Leu Tyr Pro Asp Cys His Asn Tyr 180 185 190

Asn Val Tyr Ala Pro Asn Tyr Ser Gly Ser Cys Pro Glu Asp Glu Val 195 200 205

Leu Arg Asn Asn Glu Leu Ser Trp Leu Trp Asn Ser Ser Ala Ala Leu 210 215 220

Tyr Pro Ser Ile Cys Val Trp Lys Ser Leu Gly Asp Ser Glu Asn Ile 225 230 235 240 11/12

Leu Arg Phe Ser Lys Phe Arg Val His Glu Ser Met Arg Ile Ser Thr 245 250 255

Met Thr Ser His Asp Tyr Ala Leu Pro Val Phe Val Tyr Thr Arg Leu 260 265 270

Gly Tyr Arg Asp Glu Pro Leu Phe Phe Leu Ser Lys Gln Asp Leu Val 275 280 285

Ser Thr Ile Gly Glu Ser Ala Ala Leu Gly Ala Ala Gly Ile Val Ile 290 295 300

Trp Gly Asp Met Asn Leu Thr Ala Ser Lys Ala Asn Cys Thr Lys Val 305 310 315 320

Lys Gln Phe Val Ser Ser Asp Leu Gly Ser Tyr Ile Ala Asn Val Thr 325 330 335

Arg Ala Ala Glu Val Cys Ser Leu His Leu Cys Arg Asn Asn Gly Arg 340 345 350

Cys Ile Arg Lys Met Trp Asn Ala Pro Ser Tyr Leu His Leu Asn Pro 355 360 365

Ala Ser Tyr His Ile Glu Ala Ser Glu Asp Gly Glu Phe Thr Val Lys 370 380

Gly Lys Ala Ser Asp Thr Asp Leu Ala Val Met Ala Asp Thr Phe Ser 385 390 395 400

Cys His Cys Tyr Gln Gly Tyr Glu Gly Ala Asp Cys Arg Glu Ile Lys 405 410 415

Thr Ala Asp Gly Cys Ser Gly
420

<210> 7

<211> 34

<212> DNA

<213> Artificial Sequence

<220>

<223> NHECHASEGP Forward Primer

<400> 7

ggccgctagc atgaaagtat tatctgaagg acag

WO 2004/058147 PCT/US2003/040090 12/12

<211> 29 <212> DNA <213> Artificial Sequence <220> <223> BAMH1CHASEGP Reverse Primer <400> 8 ggaatggatc ctcacaactg aatgcttcg 29 <210> 9 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> CHASEGPSTOPBAMH1 Reverse Primer <400> 9 aattggatcc tcacccagag cagccatc 28 <210> 10 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> CHASEGP455STOP BAMH1 Reverse Primer <400> 10 aattggatcc tcagcagcca tcagccg 27