Redes de Computadores II

Universidade do Algarve

Semana 3

https://github.com/ncatanoc/redes_algarve

Néstor Cataño

nestor.catano@gmail.com

The network layer

Goal:

To understand the principles behind the network layer.

application

transport

network

link

physical

Roadmap

- I. the network layer
- 2. IP addresses
- 3. IP packet structure
- 4. Routing basics

application transport network link physical

the network layer

- The network layer is responsible for connecting multiple local networks.
- It makes it possible for my friend and myself to exchange messages.
- It is implemented using the IP (Internet Protocol).
- The IP layer sits on the ethernet layer, but does not depend on it.

application transport network link physical

why a new protocol?

why don't we use ethernet for everything?

- Ethernet MAC addresses only contain information on the manufacturer; you have an idea of where the devices are in the network.
- To be able to send packets to the correct destination, every switch would need to manage a list of all connected devices.
- It would be like delivering a Mail only using a person's name.

Application
HTTP, DNS, ...

Transport
TCP, UDP

Internetwork
IP

Link
Ethernet

Why a new protocol?

- Solution: addresses should be organised hierarchically like we already do with postcards: country, state, city, etc.
- How does the Internet Protocol (IP) fix this?
 - IP Addressing + routing

application

transport

network

link/ethernet

physical

Roadmap

- I. the network layer
- 2. IP addresses
- 3. IP packet structure
- 4. Routing basics

IP addresses

- IP addresses are dynamically assigned to devices.
- The first parts of IP addresses are equal for all the devices in the local network.
 - The first part of an IP is called a "locator".
- One is assigned a new IP address with every new Wi-Fi connection.

what do IP addresses look like?

IPv4 addresses.

4 groups of bytes
32= 8x4 bits in total
Insufficient!

IPv4 (1981)

IPv6 addresses

8 groups of 4 hexadecimals 128 = 8 * 4 * 4 Sufficient!

IPv6 (1998)

 $2^{32} \approx 4$ billion addresses

 $2^{128} \approx 3.4 * 10^{38}$ addresses

IPv6 - reduced versions

IPv6 (1998)

- Replace 0000 or groups of 0000: ...:0000 with ::
- remove leading 0s
 - 00 15 becomes 15

 $2^{128} \approx 3.4 * 10^{38}$ addresses

IPv4 vs. IPv6

Currently, most connections are still IPv4 https://www.google.com/ipv6/statistics.html

IPv6 Adoption

We are continuously measuring the availability of IPv6 connectivity among Google users. The graph shows the percentage of users that access Google over IPv6.

IPv6 adoption per country

https://www.google.com/ipv6/statistics.html

Reserved IP addresses

- Loopback address (it means 'this computer')
 - 127.0.0.1 (IPv4)
 - :: I (IPv6)
- Local/private addresses (IPv4): reserved for local communications between the local network only
 - 10.0.0.0 10.255.255.255
 - 172.16.0.0 172.16.255.255
 - 192.168.0.0 192.168.255.255

Reserved IP addresses - CIDR

- Loopback address (it means 'this computer')
 - 127.0.0.1 (IPv4)
 - ○:: I (IPv6)
- Local/private addresses (IPv4): reserved for local communications between the local network only
 - $0.0000 10.255.255.255 \sim 10.0.0.0/24$
 - $= 172.16.0.0 172.16.255.255 \sim 172.16.0.0/16$
 - 192.168.0.0 192.168.255.255 ~ 192.168.0.0/16

Roadmap

- I. the network layer
- 2. IP addresses
- 3. IP packet structure
- 4. Routing basics

IPv4 packet structure

IPv4 packet structure

- VER: 4 bits, protocol version, 0100
- Total length: 2 bytes, total length of the packet (which sometimes is fragmented)
- TTL (Time To Live): hop limit, the maximum number of hops the package can traverse.

IPv4

Protocol: protocol used in the Transport Layer
Source address: where the packet is coming from
Destination address: where the packet is going to
Payload - the Transport protocol packet (remember the matryoshka image)

IPv4 vs IPv6 packet structure

IPv4 vs IPv6 packet structure

The difference is Source and Destination addresses are 128 bits

19

Roadmap

- I. the network layer
- 2. IP addresses
- 3. IP packet structure
- 4. Routing basics

Arpanet -1974

ARPANET (1974)

30% of Internet in 2005

Internet

How do you maintain a routing table?

- the Internet is divided into ASs (Autonomous Systems).
 - each AS has a unique number and multiple IP ranges.
 - IGP (Interior Gateway Protocols) used for routing within ASs
- Routing: you need to take your packet to the right AS which will take care of its delivery
- BGP (Border Gateway Protocol): routing between ASs
 - BGPs are Internet Providers
- AS25 (UC Berkeley)

BGP routes for AS25

- AS25 UC Berkeley
- Each AS owns multiple IP address ranges
 - 128.32.0.0/16 UC Berkeley
- UC Berkeley is directly connected to 2 other systems:

BGP routes for AS25

routing - basics

Routing Tables contain ranges of IP addresses

10.0.1.0/24 => 10.0.1

10.0.2.0/24 => LAN

10.0.3.0/24 => 10.0.3.1

Summary

IPv4 and IPv6

- Addressing
- Routing
- Addresses & Packets

Security

- Eavesdropping
- BGP Hijacking

Central Properties

- best effort
- connection-less
- unauthenticated plaintext

ICMP

- ping
- traceroute