Algebra HW 4

- O Since F is algebraically closed over K, every $f(x) \in F[x]$ has a root in F. Since we want to show that E is also algebraically closed, let $f(x) \in E[x]$; we will show F has a root in F. Writing $f(x) = \sum_{i=0}^{n} e_i x^i$, consider $J := K[e_i, \cdots, e_n]$; then $f \in J[x]$. We have $[J:K] = n < \infty$, and since $K \in J \subseteq E \subseteq F \Rightarrow K[x] \le J[x] \le E[x] \le F[x]$, we have $f \in F[x]$ and so f has a root $\alpha \in F$. But $[J(\alpha):J] < \infty$, and thus $[J(\alpha):K] = [J(\alpha):J][J:K] < \infty$, so α is algebraic over $\alpha \in F$. Then $\alpha \in F$ by defin. But then G is an algebraic extension of G that is algebraically closed, so G is an algebraic closure of G.
- 2) Suppose $K = \{k_1, \dots, k_n\}$ is finite, and consider $f(x) = k_1 + \prod_{i=1}^{n} (x k_i) \in k[x]$. Then $f(k_i) = k_i \neq 0$, so f has no root in K. Thus $K \neq \overline{K}$.
- 3) Let p be prime; for any group G we have $g \in G \Rightarrow g' = e$. Since \mathbb{Z}_p is a field, $(\mathbb{Z}_p^{\times}, \times)$ is a group. In particular, $|\mathbb{Z}_p^{\times}| = p-1$, so for every $\times e \mathbb{Z}_p^{\times}$ we have $\times^{p-1} = 1$. Multiplying by \times yields $\times^p = \times$ (since no element of \mathbb{Z}_p^{\times} is a zero divisor.) Since this also holds for $\times e \mathbb{Z}_p$.
- 4) Let $|K| = p^n$ and consider the Frobenius endomorphism $\phi: K \to K$

This is a field homomorphism since char(k)=p, which yields

$$\phi(x+y) = (x+y)^{p} = \sum_{i=0}^{p} {p \choose i} x^{p-i} y^{i} = x^{p} y^{p} = \phi(x) + \phi(y).$$

$$p \text{ divides all but first/last terms}$$

We have $\ker \phi = \phi^{-1}(0) = \{x \in K \mid x^P = 0\} = 0$, since no element of a field can be nilpotent (otherwise $x \cdot x^{P-1} = 0 \Rightarrow x$ is a zero divisor $\Rightarrow x$ is not a unit). But then ϕ is an injective endomorphism and thus bijective since $||domain(\phi)|| = ||range(\phi)|| < \infty$. Thus for every $x \in K$, $\phi^{-1}(x)$ is a unique p^{th} root of x.

5) Suppose K is a field, then $|K| = p^n$ and char(K) = p. If p = 2, then $\phi': K \to K$ is an automorphism and thus we can write any xeK as $x = \phi^-(x)^2 + O^2$.

Otherwise, p is odd, so $|K^{x}| = p^{n} - 1$ is even, so $p^{n} - 1 = 2l$ for some $l \in \mathbb{N}^{\infty}$. Moreover, K^{x} is cyclic, say $K^{x} = \langle \alpha \rangle$, where order $(\alpha) = p^{n} - 1 = 2l$, so

$$\alpha^{2m} = (\alpha^{m})^{2} = \beta \pm 1$$
 for each m s.t. $1 \le m \le l$,

so this yields $l = \frac{p^2}{2}$ elts that are the squares of some elements in $K^{\times} \subseteq K$. Now fix some $\underline{X \in K^{\times}}$, and consider the sets

$$P = \{(x^m)^2 \mid 1 \le m < \ell \} \cup \{0\} \text{ and } Q = \{x - p \mid p \in P\}$$

We have $|P| = |Q| = \frac{1}{2}(p^{-1}) + 1$, so

$$|Q| + |P| = \rho^n + | > |K|$$
.

So Q \cap P is nonempty, but then $\beta \in Q \cap P \Rightarrow \beta = (\alpha^m)^2 + (\alpha^n)^2 + (\alpha^n)^2 + (\alpha^n)^2 + (\alpha^n)^2$ as desired.

6) Since
$$gcd(p,n)=1$$
, write $1=tp+sn$ for some $t,s\in\mathbb{Z}$. Then $v\in F \Rightarrow v=(tp+sn)v=tpv+snv\in F$.

Since char K=p, tpv=0, so v=s(nv).

Since nvek, s(nv) ek, and so vek must hold as well.

That f has no repeated roots. We have d-deg f = $[K(\alpha):K]$, and thus $f(x) = x^d + c_{x_1}x^{t_1} + c_1x + c_0$. But $n = [F:K] = [F:K(\alpha)][K(\alpha):K] = m \cdot d$, and since $p \nmid n$, we have $p \nmid d$, so we can compute $f'(x) = dx + \cdots + c_1$, and the leading coefficient is <u>nonzero</u>. So $\deg f' = d \cdot 1 < \deg f = d$. Moreover, f'(x) is not the Zero polynomial. Since f was irreducible in F[x], we can only possibly have $\gcd(f,f') \in \{1,f(x)\}$ - but $\gcd(f,f') = f$ would imply $f(x) \mid f'(x)$, contradicting $\deg f \leq \deg f'$. So $\gcd(f,f') = 1$, which happens if f for has no repeated roots.