CSCI 2011 HW 1

Fletcher Gornick

September 14, 2020

1 1.2 Problem 18

Let P, Q and R be statements. Determine whether the following is true.

$$P \oplus (Q \oplus R) \equiv (P \oplus Q) \oplus R$$

P	Q	R	$P \oplus Q$	$Q \oplus R$	$P \oplus (Q \oplus R)$	$(P \oplus Q) \oplus R$
T	Т	Т	F	F	T	T
Т	Т	F	F	Т	F	F
Т	F	Τ	Т	Т	F	F
Т	F	F	Т	F	T	Т
F	Τ	Τ	Т	F	F	F
F	Τ	F	Т	Т	T	Т
F	F	Τ	F	Т	T	Т
F	F	F	F	F	F	F

Since both $P \oplus (Q \oplus R)$ and $(P \oplus Q) \oplus R$ have the same truth values, the two are logically equivalent.

2 1.3 Problem 18

The <u>inverse</u> of the implication of $P \Rightarrow Q$ is the implication $(\sim P) \Rightarrow (\sim Q)$.

(a) Use a truth table to verify that $P \Rightarrow Q \not\equiv (\sim P) \Rightarrow (\sim Q)$.

P	Q	$\sim P$	$\sim Q$	$P \Rightarrow Q$	$(\sim P) \Rightarrow (\sim Q)$
T	Т	F	F	Т	T
Т	F	F	Т	F	T
F	Т	Т	F	T	F
F	F	Т	Т	T	T

 $P \Rightarrow Q$ and $(\sim P) \Rightarrow (\sim Q)$ don't contain the same truth values in row two and three, so they are not logically equivalent.

(b) Find another implication that is logically equivalent to $(\sim P) \Rightarrow (\sim Q)$ and verify your answer.

$$\begin{array}{ll} (\sim P) \Rightarrow (\sim Q) \equiv \sim (\sim P) \vee (\sim Q) & \text{(Theorem 1.48 from textbook and 3a of HW)} \\ & \equiv P \vee (\sim Q) & \text{(Double negation)} \\ & \equiv (\sim Q) \vee P & \text{(Commutative Law)} \\ & \equiv Q \Rightarrow P & \text{(Theorem 1.48 from textbook again)} \end{array}$$

 $(\sim P) \Rightarrow (\sim Q) \equiv Q \Rightarrow P$ as proven by the above logical equivalencies.

3 1.3 Problem 25

For two statements P and Q, use logical equivalencies to verify the following.

(a)
$$P \vee Q \equiv (\sim P) \Rightarrow Q$$
.

P	Q	$P \Rightarrow Q$	$(\sim P) \lor Q$
T	Т	T	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

This shows that $P \Rightarrow Q \equiv (\sim P) \lor Q$, It's also theorem 1.48 in the textbook. Now we can use logical equivalencies to prove that $P \lor Q \equiv (\sim P) \Rightarrow Q$.

$$(\sim P) \Rightarrow Q \equiv \sim (\sim P) \lor Q$$
 (Theorem 1.48)
 $\equiv P \lor Q$ (Double negation)

(b)
$$P \wedge Q \equiv \sim (P \Rightarrow (\sim Q))$$
.

$$P \wedge Q \equiv \sim (\sim (P \wedge Q))$$
 (Double negation)
 $\equiv \sim ((\sim P) \vee (\sim Q))$ (De Morgan's Law)
 $\equiv \sim (P \Rightarrow (\sim Q))$ (Theorem 1.48)

(c)
$$\sim (P \Rightarrow Q) \equiv P \wedge (\sim Q)$$
.

$$\begin{array}{ll} \sim (P \Rightarrow Q) \equiv \sim ((\sim P) \vee Q) & \text{(Theorem 1.48)} \\ & \equiv \sim (\sim P) \wedge (\sim Q) & \text{(De Morgan's Law)} \\ & \equiv P \wedge (\sim Q) & \text{(Double negation)} \end{array}$$

4 1.4 Problem 12

For every two statements P and Q, use logical equivalencies to verify the following.

(a)
$$P \Leftrightarrow Q \equiv (\sim P) \Leftrightarrow (\sim Q)$$
.

$$P \Leftrightarrow Q \equiv (P \Rightarrow Q) \land (Q \Rightarrow P)$$
 (Definition of a biconditional)
$$\equiv ((\sim P) \lor Q) \land ((\sim Q) \lor P)$$
 (Theorem 1.48)
$$\equiv (Q \lor (\sim P)) \land (P \lor (\sim Q))$$
 (Commutative property)
$$\equiv ((\sim Q) \Rightarrow (\sim P)) \land ((\sim P) \Rightarrow (\sim Q))$$
 (Theorem 1.48)
$$\equiv (\sim P) \Leftrightarrow (\sim Q)$$
 (Definition of a biconditional)

(b)
$$P \Leftrightarrow Q \equiv (P \land Q) \lor ((\sim P) \land (\sim Q))$$
.

$$P \Leftrightarrow Q \equiv (P \Rightarrow Q) \land (Q \Rightarrow P) \qquad \qquad \text{(Definition of a biconditional)}$$

$$\equiv ((\sim P) \lor Q) \land ((\sim Q) \lor P) \qquad \qquad \text{(Theorem 1.48)}$$

$$\equiv ((\sim P) \land ((\sim Q) \lor P)) \lor (Q \land ((\sim Q) \lor P)) \qquad \qquad \text{(Distributive property)}$$

$$\equiv (((\sim P) \land (\sim Q)) \lor ((\sim P) \land P)) \lor ((Q \land (\sim Q)) \lor (Q \land P)) \qquad \qquad \text{(Distributive property)}$$

$$\equiv ((\sim P) \land (\sim Q)) \lor (Q \land P) \qquad \qquad ((\sim X) \land X = F)$$

$$\equiv (P \land Q) \lor ((\sim P) \land (\sim Q)) \qquad \qquad \text{(Commutative property)}$$

(c)
$$\sim (P \Leftrightarrow Q) \equiv P \Leftrightarrow (\sim Q)$$
.

$$\sim (P \Leftrightarrow Q) \equiv \sim ((P \Rightarrow Q) \land (Q \Rightarrow P)) \qquad \qquad \text{(Definition of a biconditional)}$$

$$\equiv \sim (((\sim P) \lor Q) \land ((\sim Q) \lor P)) \qquad \qquad \text{(Theorem 1.48)}$$

$$\equiv (\sim ((\sim P) \lor Q)) \lor (\sim ((\sim Q) \lor P)) \qquad \qquad \text{(De Morgan's Law)}$$

$$\equiv (P \land (\sim Q)) \lor (Q \land (\sim P)) \qquad \qquad \text{(De Morgan's Law)}$$

$$\equiv (P \lor (Q \land (\sim P))) \land ((\sim Q) \lor (Q \land (\sim P))) \qquad \qquad \text{(Distributive property)}$$

$$\equiv ((P \lor Q) \land (P \lor (\sim P))) \land (((\sim Q) \lor Q) \land ((\sim Q) \lor (\sim P))) \qquad \qquad \text{(Distributive property)}$$

$$\equiv (P \lor Q) \land ((\sim Q) \lor (\sim P)) \qquad \qquad (\sim X \lor X = T)$$

$$\equiv (Q \lor P) \land ((\sim P) \lor (\sim Q)) \qquad \qquad \text{(Commutative property)}$$

$$\equiv ((\sim Q) \Rightarrow P) \land (P \Rightarrow (\sim Q)) \qquad \qquad \text{(Theorem 1.48)}$$

$$\equiv P \Leftrightarrow (\sim Q) \qquad \qquad \text{(Definition of a biconditional)}$$

5 1.5 Problem 10

Let S and R be two compound statements with the same component statements. If S is a tautology and R is a contradiction, then what is the truth value of the following?

- (a) $S \vee R$ True (Always True \vee Always False \equiv Always True)
- (b) $S \wedge R$ False (Always True \wedge Always False \equiv Always False)
- (c) $S \Rightarrow R$ False (Always True \Rightarrow Always False \equiv Always False)
- (d) $R \Rightarrow S$ True (Always False \Rightarrow Always True \equiv Always True)
- (e) $S \Leftrightarrow R$ $S \Leftrightarrow R \equiv (S \Rightarrow R) \land (R \Rightarrow S)$ (Always False) \land (Always True) \equiv Always False False