1 Lebesgue Integration Theory

1.1 Review of measure theory

Definition. Given a set E, a σ -algebra on E is a collection \mathcal{E} of subsets of E such that:

- (i) $E \in \mathcal{E}$;
- (ii) $A \in \mathcal{E} \Rightarrow A^c = E \setminus A \in \mathcal{A}$;
- (iii) $A_n \in \mathcal{E}, n \in \mathbb{N} \Rightarrow \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{E}.$
- (E,\mathcal{E}) is called a measurable space, and any $A \in \mathcal{E}$ is called a measurable set.

Given a collection \mathcal{A} of subsets of E, $\sigma(\mathcal{A})$ is the smallest σ -algebra containing \mathcal{A} .

Definition. A measure on (E,\mathcal{E}) is a function $\mu:\mathcal{E}\to[0,\infty]$ such that

- (i) $\mu(\emptyset) = 0;$
- (ii) $A_n \in \mathcal{E}, n \in \mathbb{N} \text{ disjoint } \Rightarrow \mu\left(\bigcup_{n \in \mathbb{N}} A_n\right) = \sum_{n \in \mathbb{N}} \mu(A_n).$

 (E, \mathcal{E}, μ) is called a measure space.

Definition (Borel measure). If (E, τ) is a topological space, then $\sigma(\tau)$ is called a *Borel algebra*, denoted $\mathcal{B}(E)$, and a measure on $(E, \mathcal{B}(E))$ is called a *Borel measure*.

Example. $E = \mathbb{R}^n$, μ the Lebesgue measure satisfying $\mu((a_1, b_1) \times \ldots \times (a_n, b_n)) = (b_1 - a_1) \ldots (b_n - a_n)$.

Notation: we write $\mu(dx) = dx$ and $\mu(A) = |A|$ when μ is the Lebesgue measure.

Definition (Measurable function). Let (E, \mathcal{E}) and (F, \mathcal{F}) be measurable spaces. Then $f: E \to F$ is measurable if $f^{-1}(A) \in \mathcal{E}$ whenever $A \in \mathcal{F}$. If (E, \mathcal{E}) and (F, \mathcal{F}) are Borel algebras, a measurable function is called a Borel function. Special case: $(F, \mathcal{F}) = ([0, \infty], \mathcal{B}([0, \infty]))$, then $f: E \to F$ is called a nonnegative measurable function.

Fact. The class of measurable functions is closed under addition, multiplication and taking (pointwise) limits.

Definition. $f: E \to F$ $(F = [0, \infty] \text{ or } \mathbb{R}^n \text{ or } \mathbb{C}^n)$ is a *simple function* if $f = \sum_{k=1}^K a_k \mathbb{1}_{A_k}$ for some $K \in \mathbb{N}$, $a_k \in F$, $A_k \in \mathcal{E}$. For a simple function, the integral is

$$\int f d\mu = \int f(x) d\mu(x) = \sum_{k=1}^{K} a_k \mu(A_k) \ (0 \cdot \infty := 0).$$

For a non-negative measurable f, we define

$$\int f \mathrm{d} \mu = \sup \left\{ \int g \mathrm{d} \mu : g \text{ simple }, 0 \leq g \leq f \right\}.$$

Definition. A measurable function $f: E \to \mathbb{R}$ is said to be *integrable* if $\int |f| d\mu < \infty$. Write $f = f_+ - f_-$ with f_\pm non-negative, measurable, $\int f_\pm d\mu < \infty$, and then $\int f d\mu = \int f_+ d\mu - \int f_- d\mu$. For $f: E \to \mathbb{R}^n$, this is applied in each component.

Theorem (Monotone convergence theorem). Let (E, \mathcal{E}, μ) be a measure space, and let (f_n) be a (pointwise) increasing sequence of non-negative functions on E converging to f. Then

$$\lim_{n\to\infty} \int_E f_n \mathrm{d}\mu = \int_E f \mathrm{d}\mu.$$

Theorem (Dominated convergence theorem). Let (f_n) be a sequence of measurable functions on a measure space (E, \mathcal{E}, μ) such that:

- (i) $f_n \to f$ pointwise almost everywhere;
- (ii) $|f_n| \leq g$ almost everywhere for some integrable g.

Then

$$\lim_{n \to \infty} \int_E f_n d\mu = \int_E f d\mu.$$

1.2 L^p spaces

Definition. Let (E, \mathcal{E}, μ) be a measure space. For $p \in [1, \infty)$ and $f : E \to \mathbb{R}$ define

$$||f||_{L^p} = \left(\int_E |f|^p \mathrm{d}\mu\right)^{1/p}$$

and

$$||f||_{L^{\infty}} = \operatorname{esssup}|f| = \inf\{K : |f| \le K \text{ a.e}\}.$$

The space L^p , $p \in [1, \infty]$ is defined by

$$L^p = L^p(E, \mathcal{E}, \mu) = \{f : E \to \mathbb{R} \text{ measurable} : ||f||_{L^p} < \infty\}/\sim$$
.

Where $f \sim g$ if f = g a.e.

Theorem (Riesz-Fisher theorem). L^p is a Banach space for all $p \in [1, \infty]$.

Notation: when $E = \mathbb{R}^n$, μ the Lebesgue measure, write $L^p(E, \mu) = L^p(\mathbb{R}^n)$.

Fact. For $p \in [1, \infty)$, the simple functions f with $\mu(\{x : f(x) \neq 0\}) < \infty$ are dense in L^p . For $p = \infty$ we can drop the condition on the measure of the support.

Definition. For $f, g : \mathbb{R}^n \to \mathbb{R}$, the *convolution* f * g is defined by

$$f * g(x) = \int_{\mathbb{R}^n} f(y)g(x-y)dy,$$

provided the integral exists. Note that f * g = g * f, convolution is associative, and $\mu(f * g) = \mu(f)\mu(g)$.

Theorem. $C_c^{\infty}(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$ for $p \in [1, \infty)$.

Remark. This theorem is false for $p = \infty$.

Notation: a multiindex is $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{Z}_{\geq 0}^n$. Set $|\alpha| = \alpha_1 + \dots + \alpha_n$; $\alpha! = \alpha_1! \dots \alpha_n!$; $X^{\alpha} = X_1^{\alpha_1} \dots X_n^{\alpha_n}$ for $X \in \mathbb{R}^n$; $\nabla^{\alpha} f = D^{\alpha} f = \frac{\partial^{\alpha} f}{\partial x^{\alpha}} = \frac{\partial^{|\alpha|} f}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}}$.

Definition. We say $f \in L^p_{loc}(\mathbb{R}^n)$ if $f \mathbb{1}_K \in L^p(\mathbb{R}^n)$ for any $K \subseteq \mathbb{R}^n$ compact.

Proposition. Let $f \in L^1_{loc}(\mathbb{R}^n)$, $g \in C^k_c(\mathbb{R}^n)$, some $k \geq 0$. Then $f * g \in C^k(\mathbb{R}^n)$ and $\nabla^{\alpha}(f * g) = f * (\nabla^{\alpha}g)$ for all $|\alpha| \leq k$.

Proof. First we check for k=0. Set $T_zf(x)=f(x-z), z\in\mathbb{R}^n$. Then $T_z(f*g)=f*(T_zg)$. Also $T_zg(x)\to g(x)$ for all x as $z\to 0$ (continuity of g). Furthermore $|T_zg(x)|\leq ||g||_{L^\infty}\mathbb{1}_{B_R(0)}(x)$ if $|x|+1\leq R, |z|<1$ (we can just take R large enough so it holds everywhere since g has compact support). Then $|f(y)T_zg(x-y)|\leq C|f(y)|\mathbb{1}_{B_R(0)}(x-y)$, for $C:=||g||_{L^\infty}$.

Since $f \in L^1_{loc}(\mathbb{R}^n)$, $|f(y)|\mathbb{1}_{B_R(0)}(x-y)$ is integrable in y, so by the dominated convergence theorem,

$$T_z(f*g) = (f*T_zg)(x) = \int_{\mathbb{R}^n} f(y)T_zg(x-y)dy \xrightarrow{z\to 0} \int_{\mathbb{R}^n} f(y)g(x-y)dy = (f*g)(x).$$

And so $f * g \in C^0$. Now let k = 1. Let $\nabla_i^h g(x) = \frac{g(x + he_i) - g(x)}{h}$, where e_i is the *i*th unit vector. Then $\nabla_i^h g(x) \to \nabla_i g(x)$ as $h \to 0$.

By the mean value theorem, there exists $t \in [-h, h]$ such that

$$\nabla_i^h g(x) = \nabla_i g(x + te_i) \Rightarrow |\nabla_i^h g(x)| \le ||\nabla_i g||_{L^{\infty}} \mathbb{1}_{B_R(0)}(x).$$

Again by the dominated convergence theorem, $\nabla_i^h(f*g) = f*(\nabla_i^h g) \to f*\nabla_i g$. Thus $f*g \in C^1$. The case k>1 is similar, with induction.

Proposition (Minkowski's integral inequality). Let $p \in [1, \infty)$ and $f : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ Borel. Then

$$\left[\int_{\mathbb{R}^n} \left| \int_{\mathbb{R}^n} f(x, y) dx \right|^p dy \right]^{1/p} \le \int_{\mathbb{R}^n} \left| \int_{\mathbb{R}^n} |f(x, y)|^p dy \right|^{1/p} dx.$$

Proof. Example sheet 1.

Proposition. Let $p \in [1, \infty)$, $g \in L^p(\mathbb{R}^n)$. Then

$$||T_z g - g||_{L^p} \to 0 \text{ as } |z| \to 0.$$

Remark. This is not true for $p = \infty$. Let $\theta(x) = \mathbb{1}_{x \geq 0}$. Then $||T_z \theta - \theta||_{L^{\infty}} = 1$ if $z \neq 0$.

Proof. Consider first $g = \mathbb{1}_R$, R a rectangle. Then the result is clear. Hence it also follows for any finite union of rectangles. If B is a Borel set, $|B| < \infty$, then for every $\varepsilon > 0$, there exists a finite union of rectangles R such that

$$||\mathbb{1}_B - \mathbb{1}_R||_{L^p} = |B \triangle R|^{1/p} < \varepsilon.$$

Hence

$$||T_z\mathbbm{1}_B - \mathbbm{1}_B||_{L^p} \leq \underbrace{||T_z\mathbbm{1}_B - T_z\mathbbm{1}_R||_{L^p}}_{=||\mathbbm{1}_B - \mathbbm{1}_R||_{L^p}} + \underbrace{||T_z\mathbbm{1}_R - \mathbbm{1}_R||_{L^p}}_{<\varepsilon \text{ for } |z| \text{ small}} + \underbrace{||\mathbbm{1}_R - \mathbbm{1}_B||_{L^p}}_{<\varepsilon}.$$

Thus the result holds for $g=\mathbbm{1}_B,\,B\in\mathcal{B}(\mathbb{R}^n)$. Thus the result holds for simple functions g. Finally, for any $g\in L^p$, there is a \tilde{g} simple such that $||g-\tilde{g}||_{L^p}<\varepsilon$. Then

$$||T_zg-g||_{L^p} \leq \underbrace{||T_zg-T_z\tilde{g}||_{L^p}}_{=||g-\tilde{g}||_{L^p}<\varepsilon} + \underbrace{||T_z\tilde{g}-\tilde{g}||_{L^p}}_{<\varepsilon \text{ for } |z| \text{ small}} + \underbrace{||g-\tilde{g}||_{L^p}}_{<\varepsilon}.$$