حل تمرین دوم جبرخطی یاییز ۱۴۰۳

پرسش ۱ : اثبات کنید W1, W2, ..., Vk و W1, W2, ..., Vk در فضای برداری V مستقل خطی باشند (هر مجموعه بردار Vi و Wi, W2, ..., Vk و Vi به صورت جداگانه مستقل خطی هستند) در نتیجه V1 + W1, V2 + W2, ..., Vk + Wk مستقل خطی هستند.

: فرض کنید $k \in \{1,...,m\}$ یک لیست از بردار ها در فضای برداری $v_1,v_2,...,v_m$ تعریف میکنیم : $w_k = v_1 + \cdots + v_k$

نشان دهید که W_1 , W_2 , ..., V_m پایه برای V هستند اگر و تنها اگر W_1 , W_2 , ..., V_m پایه برای V باشند.

پرسش ۳: فرض کنید S یک زیرمجموعه مستقل خطی از فضای برداری V باشد. فرض کنید b یک بردار در V باشد به طوریکه در Span بردار های مجموعه S نباشد. اثبات کنید b با بردار های مجموعه S مستقل خطی هستند.

پرسش * : اثبات کنید مجموعه بردار $v_1, v_2, ..., v_k$ یک مجموعه affinely independent هستند در فضای در $v_1, v_2, ..., v_k$ و $v_1, v_2, ..., v_k$ می باشد. نشان دهید مجموعه v_1, v_2, v_3, v_4, v_5 نیز $v_1 + q, v_2 + q, ..., v_k + q$ هستند.

يرسش ۵ : تنها با استفاده از تعريف affine dependence نشان دهيد مجموعه بردار $\{v_1,v_2\}$ در فضای در $\{v_1,v_2\}$ هستند اگر $\{v_1,v_2\}$ در فضای در $\{v_1,v_2\}$ هستند اگر $\{v_1,v_2\}$ و تنها اگر $\{v_1,v_2\}$ در فضای در $\{v_1,v_2\}$ در $\{v_1,v_2\}$ در فضای در $\{v_1,v_2\}$ در

پرسش 2 : بعد مجموعه زیر را بیابید و برای آن یک مجموعه بردار پایه بیابید :

$$U = \{ p \in \beta_3(R) : p'(5) = 0 \}$$

منظور از $\mathfrak{h}_3(R)$ چند جمله ای های با حداکثر درجه $\mathfrak{h}_3(R)$

 $\dim(V) = \dim(W) + \dim(W^T)$ کنید W یک زیر فضای برداری از زیر مجموعه V می باشد اثبات کنید W یک زیر فضای برداری از زیر مجموعه V

پرسش ۸: عبارات زیر اثبات کنید:

$$Rank(I_m - AA^T) - Rank(I_n - A^TA) = m - n : 1$$

ب: اگر ماتریس A ماتریس n در n دلخواه و B ماتریس هم ماتریس n در n فقط با درایه های همه یک آنکاه

$$Rank(A) - 1 \le Rank(A - B)$$

پ :

 $Rank(AB) \le \min(Rank(A) + Rank(B))$

$$: A^2 = 0$$
 ماتریس A ماتریس n در n داخواه به طوریکه C : اگر ماتریس

$$Rank(A + A^T) = 2Rank(A)$$