

Modèle système dynamique pour l'analyse de la menace

Tithnara Nicolas SUN

Philippe Dhaussy (Lab-STICC) Lionel Van Aertryck (DGA-MI) Ciprian Teodorov (Lab-STICC)

Joel Champeau (Lab-STICC)

Sommaire

Sujet de thèse

- Contexte
- Problématique
- Axes de recherches

Avancement

- Réification de la surface d'attaque
- Aspect dynamique et évolution
- Premier modèle

Conclusion

- Bilan
- Perspectives

Sommaire

Sujet de thèse

- Contexte
- Problématique
- Axes de recherches

Avancement

- Réification de la surface d'attaque
- Aspect dynamique et évolution
- Premier modèle

Conclusion

- Bilan
- Perspectives

Sujet de thèse Contexte

Analyse de la menace

- Stratégie attaque-défense
- Théorie de la cyber-défense
- Modélisation d'attaque

Sujet de thèse Problématique

- Nécessité d'une vue système holistique
 - ·Point de vue opérationnel
 - Ressources hétérogènes

Modèle système dynamique pour l'analyse de la menace

Sujet de thèse Axes de recherche

Réification de la surface d'attaque

Aspect dynamique

Création d'un moteur d'exécution

Sommaire

- Sujet de thèse
 - Contexte
 - Problématique
 - Axes de recherches
- Avancement
 - · Réification de la surface d'attaque
 - Aspect dynamique et évolution
 - · Premier modèle
- Conclusion
 - Bilan
 - Perspectives

Définitions [1][2][3]:

Vulnérabilité

Attaquantque

Définitions [1][2][3]:

Vulnérabilité

Définitions [1][2][3]:

Vulnérabilité

Surface d'attaque Menace Attaquantque

Définitions [1][2][3]:

Vulnérabilité Cyber Threat Intelligence Surface d'attaque Attaquantque

Avancement Aspect dynamique

Avancement Aspect dynamique

Théorie des jeux [7][8]:

Defender

View

Selection

Reward

Avancement Aspect dynamique

Model checking [9]:

Vérification formelle

Enumération exhaustive

Avancement Premier modèle

Avancement Premier modèle

Sommaire

- Sujet de thèse
 - Contexte
 - Problématique
 - Axes de recherches
- Avancement
 - Réification de la surface d'attaque
 - Aspect dynamique et évolution
 - Premier modèle
- Conclusion
 - Bilan
 - Perspectives
- 24

Conclusion Bilan

- Etat de l'art
 - Réification de la surface d'attaque
 - Aspect dynamique

- Premier prototype
 - Modèle graphique
 - Théorie mathématique
 - Implémentation
- Article en préparation

Conclusion Perspectives

- Maquette à raffiner
 - Machines à états
- Etude des systèmes cyber-physiques
- Asymétrie inhérente à la cyber-sécurité
 - Initiative de l'attaquant (proactif)
 - Préparation et/ou remédiation du défenseur (passif/réactif)

Merci de votre attention

Bibliographie

- [1] Analyse et réduction de la surface d'attaque / Mickael Dorigny / https://www.information-security.fr/ / 19 Décembre 2015
- [2] Towards Threat, Attack, and Vulnerability Taxonomies / Dennis Hollingworth / Network Associates laboratories USA / 2003
- [3] Trust in Cyberspace / Fred B. Schneider / Committee on Information Systems Trustworthiness, Washington, D.C. USA / 1999
- [4] Standardizing Cyber Threat Intelligence Information with the Structured Threat Information eXpression (STIX) / Sean Barnum / The MITRE Corporation / 20 Février 2014
- [5] Attack Modeling for Information Security and Survivability / Andrew P. Moore, Robert J. Ellison, Richard C. Linger/ Software Engineering Institute, Carnegie Mellon University, USA / Mars 2001
- [6] Is my attack tree correct? / Maxime Audinot, Sophie Pinchinat, & Barbara Kordy / IRISA Rennes, University Rennes 1, INSA Rennes, France / Août 2017

Bibliographie

[7] CyberWar Games: Strategic Jostling Among Traditional Adversaries / Sanjay Goel, Yuan Hong / University of New York, New York, USA / 2015

[8] Game-Theoretic Foundations for the Strategic Use of Honeypots in Network Security / Christopher Kiekintveld, Viliam Lisý, Radek Píbil / University of Texas, El Paso, USA / Czech Technical University, Prague, Czech Republic / 2015

[9] Contribution à la modélisation et la vérification formelle par model checking - Symétries pour les Réseaux de Petri temporels. Systèmes embarqués / Pierre-Alain Bourdil / INSA de Toulouse / 2015.

[10] Using Model Checking to Analyze Network Vulnerabilities / Ronald W. Ritchey & Paul Ammann / National Security Team Booz Allen & Hamilton & Information and Software Engineering Department George Mason University / Virginia /2000