

SEQUENCE LISTING

<110> Harari, Daniel

<120> SPLICE VARIANTS OF ERB-B RECEPTOR LIGANDS, COMPOSITIONS AND USES THEREOF

<130> Harari-001

<160> 185

<170> PatentIn version 3.3

<210> 1

<211> 56

<212> PRT

<213> Homo sapiens

<400> 1

Thr Gly Thr Ser His Leu Val Lys Cys Ala Glu Lys Glu Lys Thr Phe
1 5 10 15

cys Val Asn Gly Gly Glu Cys Phe Met Val Lys Asp Leu Ser Asn Pro
20 25 30

Ser Arg Tyr Leu Cys Lys Cys Gln Pro Gly Phe Thr Gly Ala Arg Cys
35 40 45

Thr Glu Asn Val Pro Met Lys Val
50 55

<210> 2

<211> 56

<212> PRT

<213> Homo sapiens

<400> 2

Thr Gly Thr Ser His Leu Val Lys Cys Ala Glu Lys Glu Lys Thr Phe
1 5 10 15

cys Val Asn Gly Gly Glu Cys Phe Met Val Lys Asp Leu Ser Asn Pro
20 25 30

Ser Arg Tyr Leu Cys Lys Cys Pro Asn Glu Phe Thr Gly Asp Arg Cys
35 40 45

Gln Asn Tyr Val Met Ala Ser Phe
50 55

<210> 3

<211> 53

<212> PRT

<213> Homo sapiens

<400> 3

Ser Trp Ser Gly His Ala Arg Lys Cys Asn Glu Thr Ala Lys Ser Tyr
1 5 10 15

Cys Val Asn Gly Gly Val Cys Tyr Tyr Ile Glu Gly Ile Asn Gln Leu
20 25 30

Ser Cys Lys Cys Pro Asn Gly Phe Phe Gly Gln Arg Cys Leu Glu Lys
35 40 45

Leu Pro Leu Arg Leu
50

<210> 4
<211> 53
<212> PRT
<213> Homo sapiens

<400> 4

Ser Trp Ser Gly His Ala Arg Lys Cys Asn Glu Thr Ala Lys Ser Tyr
1 5 10 15

Cys Val Asn Gly Gly Val Cys Tyr Tyr Ile Glu Gly Ile Asn Gln Leu
20 25 30

Ser Cys Lys Cys Pro Val Gly Tyr Thr Gly Asp Arg Cys Gln Gln Phe
35 40 45

Ala Met Val Asn Phe
50

<210> 5
<211> 55
<212> PRT
<213> Homo sapiens

<400> 5

Glu Arg Ser Glu His Phe Lys Pro Cys Arg Asp Lys Asp Leu Ala Tyr
1 5 10 15

Cys Leu Asn Asp Gly Glu Cys Phe Val Ile Glu Thr Leu Thr Gly Ser
20 25 30

His Lys His Cys Arg Cys Lys Glu Gly Tyr Gln Gly Val Arg Cys Asp
35 40 45

Gln Phe Leu Pro Lys Thr Asp
50 55

<210> 6
<211> 53
<212> PRT
<213> Homo sapiens

<400> 6

Met Pro Thr Asp His Glu Glu Pro Cys Gly Pro Ser His Lys Ser Phe
1 5 10 15

Cys Leu Asn Gly Gly Leu Cys Tyr Val Ile Pro Thr Ile Pro Ser Pro
Page 2

20

25

30

Phe Cys Arg Cys Val Glu Asn Tyr Thr Gly Ala Arg Cys Glu Glu Val
35 40 45

Phe Leu Pro Gly Ser
50

<210> 7
<211> 53
<212> PRT
<213> Homo sapiens

<400> 7

Ser Val Arg Asn Ser Asp Ser Glu Cys Pro Leu Ser His Asp Gly Tyr
1 5 10 15

Cys Leu His Asp Gly Val Cys Met Tyr Ile Glu Ala Leu Asp Lys Tyr
20 25 30

Ala Cys Asn Cys Val Val Gly Tyr Ile Gly Glu Arg Cys Gln Tyr Arg
35 40 45

Asp Leu Lys Trp Trp
50

<210> 8
<211> 52
<212> PRT
<213> Homo sapiens

<400> 8

Ala Val Val Ser His Phe Asn Asp Cys Pro Asp Ser His Thr Gln Phe
1 5 10 15

Cys Phe His Gly Thr Cys Arg Phe Leu Val Gln Glu Asp Lys Pro Ala
20 25 30

Cys Val Cys His Ser Gly Tyr Val Gly Ala Arg Cys Glu His Ala Asp
35 40 45

Leu Leu Ala Val
50

<210> 9
<211> 52
<212> PRT
<213> Homo sapiens

<400> 9

Lys Arg Lys Gly His Phe Ser Arg Cys Pro Lys Gln Tyr Lys His Tyr
1 5 10 15

Cys Ile Lys Gly Arg Cys Arg Phe Val Val Ala Glu Gln Thr Pro Ser
20 25 30

Cys Val Cys Asp Glu Gly Tyr Ile Gly Ala Arg Cys Glu Arg Val Asp
35 40 45

Leu Phe Tyr Leu
50

<210> 10
<211> 52
<212> PRT
<213> Homo sapiens

<400> 10

Arg Asn Arg Lys Lys Lys Asn Pro Cys Asn Ala Glu Phe Gln Asn Phe
1 5 10 15

Cys Ile His Gly Glu Cys Lys Tyr Ile Glu His Leu Glu Ala Val Thr
20 25 30

Cys Lys Cys Gln Gln Glu Tyr Phe Gly Glu Arg Cys Gly Glu Lys Ser
35 40 45

Met Lys Thr His
50

<210> 11
<211> 52
<212> PRT
<213> Homo sapiens

<400> 11

Gly Leu Gly Lys Lys Arg Asp Pro Cys Leu Arg Lys Tyr Lys Asp Phe
1 5 10 15

Cys Ile His Gly Glu Cys Lys Tyr Val Lys Glu Leu Arg Ala Pro Ser
20 25 30

Cys Ile Cys His Pro Gly Tyr His Gly Glu Arg Cys His Gly Leu Ser
35 40 45

Leu Pro Val Glu
50

<210> 12
<211> 52
<212> PRT
<213> Homo sapiens

<400> 12

Val Ala Gln Val Ser Ile Thr Lys Cys Ser Ser Asp Met Asn Gly Tyr
1 5 10 15

Cys Leu His Gly Gln Cys Ile Tyr Leu Val Asp Met Ser Gln Asn Tyr
20 25 30

Cys Arg Cys Glu Val Gly Tyr Thr Gly Val Arg Cys Glu His Phe Phe
35 40 45

Leu Thr Val His
50

<210> 13
<211> 52
<212> PRT
<213> Mus musculus

<400> 13

Val Ala Leu Lys Phe Ser His Pro Cys Leu Glu Asp His Asn Ser Tyr
1 5 10 15

Cys Ile Asn Gly Ala Cys Ala Phe His His Glu Leu Lys Gln Ala Ile
20 25 30

Cys Arg Cys Phe Thr Gly Tyr Thr Gly Gln Arg Cys Glu His Leu Thr
35 40 45

Leu Thr Ser Tyr
50

<210> 14
<211> 57
<212> PRT
<213> Homo sapiens

<400> 14

Thr Gly Thr Ser His Leu Val Lys Cys Ala Glu Lys Glu Lys Thr Phe
1 5 10 15

Cys Val Asn Gly Gly Glu Cys Phe Met Val Lys Asp Leu Ser Asn Pro
20 25 30

Ser Arg Tyr Leu Cys Lys Cys Gln Pro Gly Phe Thr Gly Ala Arg Cys
35 40 45

Thr Glu Asn Val Pro Met Lys Val Gln
50 55

<210> 15
<211> 57
<212> PRT
<213> Homo sapiens

<400> 15

Thr Gly Thr Ser His Leu Val Lys Cys Ala Glu Lys Glu Lys Thr Phe
1 5 10 15

Cys Val Asn Gly Gly Glu Cys Phe Met Val Lys Asp Leu Ser Asn Pro
20 25 30

Ser Arg Tyr Leu Cys Lys Cys Pro Asn Glu Phe Thr Gly Asp Arg Cys
35 40 45

Gln Asn Tyr Val Met Ala Ser Phe Tyr
50 55

<210> 16
<211> 54
<212> PRT
<213> Homo sapiens

<400> 16

Ser Trp Ser Gly His Ala Arg Lys Cys Asn Glu Thr Ala Lys Ser Tyr
1 5 10 15

Cys Val Asn Gly Gly Val Cys Tyr Tyr Ile Glu Gly Ile Asn Gln Leu
20 25 30

Ser Cys Lys Cys Pro Asn Gly Phe Phe Gly Gln Arg Cys Leu Glu Lys
35 40 45

Leu Pro Leu Arg Leu Tyr
50

<210> 17
<211> 54
<212> PRT
<213> Homo sapiens

<400> 17

Ser Trp Ser Gly His Ala Arg Lys Cys Asn Glu Thr Ala Lys Ser Tyr
1 5 10 15

Cys Val Asn Gly Gly Val Cys Tyr Tyr Ile Glu Gly Ile Asn Gln Leu
20 25 30

Ser Cys Lys Cys Pro Val Gly Tyr Thr Gly Asp Arg Cys Gln Gln Phe
35 40 45

Ala Met Val Asn Phe Tyr
50

<210> 18
<211> 55
<212> PRT
<213> Homo sapiens

<400> 18

Glu Arg Ser Glu His Phe Lys Pro Cys Arg Asp Lys Asp Leu Ala Tyr
1 5 10 15

Cys Leu Asn Asp Gly Glu Cys Phe Val Ile Glu Thr Leu Thr Gly Ser
20 25 30

His Lys His Cys Arg Cys Lys Glu Gly Tyr Gln Gly Val Arg Cys Asp
Page 6

35

40

45

Gln Phe Leu Pro Lys Thr Asp
50 55

<210> 19
<211> 54
<212> PRT
<213> Homo sapiens

<400> 19

Met Pro Thr Asp His Glu Glu Pro Cys Gly Pro Ser His Lys Ser Phe
1 5 10 15

Cys Leu Asn Gly Gly Leu Cys Tyr Val Ile Pro Thr Ile Pro Ser Pro
20 25 30

Phe Cys Arg Cys Val Glu Asn Tyr Thr Gly Ala Arg Cys Glu Glu Val
35 40 45

Phe Leu Pro Gly Ser Ser
50

<210> 20
<211> 54
<212> PRT
<213> Homo sapiens

<400> 20

Ser Val Arg Asn Ser Asp Ser Glu Cys Pro Leu Ser His Asp Gly Tyr
1 5 10 15

Cys Leu His Asp Gly Val Cys Met Tyr Ile Glu Ala Leu Asp Lys Tyr
20 25 30

Ala Cys Asn Cys Val Val Gly Tyr Ile Gly Glu Arg Cys Gln Tyr Arg
35 40 45

Asp Leu Lys Trp Trp Glu
50

<210> 21
<211> 53
<212> PRT
<213> Homo sapiens

<400> 21

Ala Val Val Ser His Phe Asn Asp Cys Pro Asp Ser His Thr Gln Phe
1 5 10 15

Cys Phe His Gly Thr Cys Arg Phe Leu Val Gln Glu Asp Lys Pro Ala
20 25 30

Cys Val Cys His Ser Gly Tyr Val Gly Ala Arg Cys Glu His Ala Asp
35 40 45

Leu Leu Ala Val Val
50

<210> 22
<211> 53
<212> PRT
<213> Homo sapiens

<400> 22

Lys Arg Lys Gly His Phe Ser Arg Cys Pro Lys Gln Tyr Lys His Tyr
1 5 10 15

Cys Ile Lys Gly Arg Cys Arg Phe Val Val Ala Glu Gln Thr Pro Ser
20 25 30

Cys Val Cys Asp Glu Gly Tyr Ile Gly Ala Arg Cys Glu Arg Val Asp
35 40 45

Leu Phe Tyr Leu Arg
50

<210> 23
<211> 53
<212> PRT
<213> Homo sapiens

<400> 23 ..

Arg Asn Arg Lys Lys Lys Asn Pro Cys Asn Ala Glu Phe Gln Asn Phe
1 5 10 15

Cys Ile His Gly Glu Cys Lys Tyr Ile Glu His Leu Glu Ala Val Thr
20 25 30

Cys Lys Cys Gln Gln Glu Tyr Phe Gly Glu Arg Cys Gly Glu Lys Ser
35 40 45

Met Lys Thr His Ser
50

<210> 24
<211> 53
<212> PRT
<213> Homo sapiens

<400> 24

Gly Leu Gly Lys Lys Arg Asp Pro Cys Leu Arg Lys Tyr Lys Asp Phe
1 5 10 15

Cys Ile His Gly Glu Cys Lys Tyr Val Lys Glu Leu Arg Ala Pro Ser
20 25 30

Cys Ile Cys His Pro Gly Tyr His Gly Glu Arg Cys His Gly Leu Ser
35 40 45

Leu Pro Val Glu Asn
50

<210> 25
<211> 53
<212> PRT
<213> Homo sapiens

<400> 25

Val Ala Gln Val Ser Ile Thr Lys Cys Ser Ser Asp Met Asn Gly Tyr
1 5 10 15

Cys Leu His Gly Gln Cys Ile Tyr Leu Val Asp Met Ser Gln Asn Tyr
20 25 30

Cys Arg Cys Glu Val Gly Tyr Thr Gly Val Arg Cys Glu His Phe Phe
35 40 45

Leu Thr Val His Gln
50

<210> 26
<211> 53
<212> PRT
<213> Mus musculus

<400> 26

Val Ala Leu Lys Phe Ser His Pro Cys Leu Glu Asp His Asn Ser Tyr
1 5 10 15

Cys Ile Asn Gly Ala Cys Ala Phe His His Glu Leu Lys Gln Ala Ile
20 25 30

Cys Arg Cys Phe Thr Gly Tyr Thr Gly Gln Arg Cys Glu His Leu Thr
35 40 45

Leu Thr Ser Tyr Ala
50

<210> 27
<211> 37
<212> PRT
<213> Homo sapiens

<400> 27

Cys Lys Leu Arg Lys Gly Asn Cys Ser Ser Thr Val Cys Gly Gln Asp
1 5 10 15

Leu Gln Ser His Leu Cys Met Cys Ala Glu Gly Tyr Ala Leu Ser Arg
20 25 30

Asp Arg Lys Tyr Cys
35

<210> 28
<211> 36
<212> PRT
<213> Homo sapiens

<400> 28

Cys Ala Phe Trp Asn His Gly Cys Thr Leu Gly Cys Lys Asn Thr Pro
1 5 10 15

Gly Ser Tyr Tyr Cys Thr Cys Pro Val Gly Phe Val Leu Leu Pro Asp
20 25 30

Gly Lys Arg Cys
35

<210> 29
<211> 36
<212> PRT
<213> Homo sapiens

<400> 29

Cys Pro Arg Asn Val Ser Glu Cys Ser His Asp Cys Val Leu Thr Ser
1 5 10 15

Glu Gly Pro Leu Cys Phe Cys Pro Glu Gly Ser Val Leu Glu Arg Asp
20 25 30

Gly Lys Thr Cys
35

<210> 30
<211> 38
<212> PRT
<213> Homo sapiens

<400> 30

Cys Ser Ser Pro Asp Asn Gly Gly Cys Ser Gln Leu Cys Val Pro Leu
1 5 10 15

Ser Pro Val Ser Trp Glu Cys Asp Cys Phe Pro Gly Tyr Asp Leu Gln
20 25 30

Leu Asp Glu Lys Ser Cys
35

<210> 31
<211> 36
<212> PRT
<213> Homo sapiens

<400> 31

Cys Leu Tyr Gln Asn Gly Gly Cys Glu His Ile Cys Lys Lys Arg Leu
1 5 10 15

Gly Thr Ala Trp Cys Ser Cys Arg Glu Gly Phe Met Lys Ala Ser Asp
20 25 30

Gly Lys Thr Cys
35

<210> 32
<211> 34
<212> PRT
<213> Homo sapiens

<400> 32

Cys Ala Pro Val Gly Cys Ser Met Tyr Ala Arg Cys Ile Ser Glu Gly
1 5 10 15

Glu Asp Ala Thr Cys Gln Cys Leu Lys Gly Phe Ala Gly Asp Gly Lys
20 25 30

Leu Cys

<210> 33
<211> 37
<212> PRT
<213> Homo sapiens

<400> 33

Cys Glu Met Gly Val Pro Val Cys Pro Pro Ala Ser Ser Lys Cys Ile
1 5 10 15

Asn Thr Glu Gly Gly Tyr Val Cys Arg Cys Ser Glu Gly Tyr Gln Gly
20 25 30

Asp Gly Ile His Cys
35

<210> 34
<211> 36
<212> PRT
<213> Homo sapiens

<400> 34

Cys Gln Leu Gly Val His Ser Cys Gly Glu Asn Ala Ser Cys Thr Asn
1 5 10 15

Thr Glu Gly Gly Tyr Thr Cys Met Cys Ala Gly Arg Leu Ser Glu Pro
20 25 30

Gly Leu Ile Cys
35

<210> 35
<211> 37
<212> PRT
<213> Homo sapiens

<400> 35

Cys Pro Leu Ser His Asp Gly Tyr Cys Leu His Asp Gly Val Cys Met
1 5 10 15

Tyr Ile Glu Ala Leu Asp Lys Tyr Ala Cys Asn Cys Val Val Gly Tyr
20 25 30

Ile Gly Glu Arg Cys
35

<210> 36
<211> 34
<212> PRT
<213> Homo sapiens

<400> 36

Cys Ser Gln Pro Gly Glu Thr Cys Leu Asn Gly Gly Lys Cys Glu Ala
1 5 10 15

Ala Asn Gly Thr Glu Ala Cys Val Cys Gly Gly Ala Phe Val Gly Pro
20 25 30

Arg Cys

<210> 37
<211> 36
<212> PRT
<213> Homo sapiens

<400> 37

Cys Leu Ser Thr Pro Cys Lys Asn Ala Gly Thr Cys His Val Val Asp
1 5 10 15

Arg Arg Gly Val Ala Asp Tyr Ala Cys Ser Cys Ala Leu Gly Phe Ser
20 25 30

Gly Pro Leu Cys
35

<210> 38
<211> 33
<212> PRT
<213> Homo sapiens

<400> 38

Cys Leu Thr Asn Pro Cys Arg Asn Gly Gly Thr Cys Asp Leu Leu Thr
1 5 10 15

Leu Thr Glu Tyr Lys Cys Arg Cys Pro Pro Gly Trp Ser Gly Lys Ser
20 25 30

Cys

<210> 39

<211> 32
<212> PRT
<213> Homo sapiens

<400> 39

cys Ala Ser Asn Pro Cys Ala Asn Gly Gly Gln Cys Leu Pro Phe Glu
1 5 10 15

Ala Ser Tyr Ile Cys His Cys Pro Pro Ser Phe His Gly Pro Thr Cys
20 25 30

<210> 40
<211> 34
<212> PRT
<213> Homo sapiens

<400> 40

cys Gly Gln Lys Pro Arg Leu Cys Arg His Gly Gly Thr Cys His Asn
1 5 10 15

Glu Val Gly Ser Tyr Arg Cys Val Cys Arg Ala Thr His Thr Gly Pro
20 25 30

Asn Cys

<210> 41
<211> 33
<212> PRT
<213> Homo sapiens

<400> 41

cys Ser Pro Ser Pro Cys Gln Asn Gly Gly Thr Cys Arg Pro Thr Gly
1 5 10 15

Asp Val Thr His Glu Cys Ala Cys Leu Pro Gly Phe Thr Gly Gln Asn
20 25 30

Cys

<210> 42
<211> 32
<212> PRT
<213> Homo sapiens

<400> 42

Cys Pro Gly Asn Asn Cys Lys Asn Gly Gly Ala Cys Val Asp Gly Val
1 5 10 15

Asn Thr Tyr Asn Cys Pro Cys Pro Pro Glu Trp Thr Gly Gln Tyr Cys
20 25 30

<210> 43
<211> 34
<212> PRT

<213> Homo sapiens

<400> 43

Cys Gln Leu Met Pro Asn Ala Cys Gln Asn Gly Gly Thr Cys His Asn
1 5 10 15

Thr His Gly Gly Tyr Asn Cys Val Cys Val Asn Gly Trp Thr Gly Glu
20 25 30

Asp Cys

<210> 44

<211> 32

<212> PRT

<213> Homo sapiens

<400> 44

Cys Ala Ser Ala Ala Cys Phe His Gly Ala Thr Cys His Asp Arg Val
1 5 10 15

Ala Ser Phe Tyr Cys Glu Cys Pro His Gly Arg Thr Gly Leu Leu Cys
20 25 30

<210> 45

<211> 34

<212> PRT

<213> Homo sapiens

<400> 45

Cys Ile Ser Asn Pro Cys Asn Glu Gly Ser Asn Cys Asp Thr Asn Pro
1 5 10 15

Val Asn Gly Lys Ala Ile Cys Thr Cys Pro Ser Gly Tyr Thr Gly Pro
20 25 30

Ala Cys

<210> 46

<211> 34

<212> PRT

<213> Homo sapiens

<400> 46

Cys Ser Leu Gly Ala Asn Pro Cys Glu His Ala Gly Lys Cys Ile Asn
1 5 10 15

Thr Leu Gly Ser Phe Glu Cys Gln Cys Leu Gln Gly Tyr Thr Gly Pro
20 25 30

Arg Cys

<210> 47

<211> 32

<212> PRT

<213> Mus musculus

<400> 47

Cys Val Ser Asn Pro Cys Gln Asn Asp Ala Thr Cys Leu Asp Gln Ile
1 5 10 15

Gly Glu Phe Gln Cys Met Cys Met Pro Gly Tyr Glu Gly Val His Cys
20 25 30

<210> 48

<211> 32

<212> PRT

<213> Homo sapiens

<400> 48

Cys Ala Ser Ser Pro Cys Leu His Asn Gly Arg Cys Leu Asp Lys Ile
1 5 10 15

Asn Glu Phe Gln Cys Glu Cys Pro Thr Gly Phe Thr Gly His Leu Cys
20 25 30

<210> 49

<211> 32

<212> PRT

<213> Homo sapiens

<400> 49

Cys Ala Ser Thr Pro Cys Lys Asn Gly Ala Lys Cys Leu Asp Gly Pro
1 5 10 15

Asn Thr Tyr Thr Cys Val Cys Thr Glu Gly Tyr Thr Gly Thr His Cys
20 25 30

<210> 50

<211> 31

<212> PRT

<213> Homo sapiens

<400> 50

Cys Asp Pro Asp Pro Cys His Tyr Gly Ser Cys Lys Asp Gly Val Ala
1 5 10 15

Thr Phe Thr Cys Leu Cys Arg Pro Gly Tyr Thr Gly His His Cys
20 25 30

<210> 51

<211> 32

<212> PRT

<213> Homo sapiens

<400> 51

Cys Ser Ser Gln Pro Cys Arg Leu Arg Gly Thr Cys Gln Asp Pro Asp
1 5 10 15

Asn Ala Tyr Leu Cys Phe Cys Leu Lys Gly Thr Thr Gly Pro Asn Cys
20 25 30

<210> 52
<211> 31
<212> PRT
<213> Homo sapiens

<400> 52

Cys Ala Ser Ser Pro Cys Asp Ser Gly Thr Cys Leu Asp Lys Ile Asp
1 5 10 15

Gly Tyr Glu Cys Ala Cys Glu Pro Gly Tyr Thr Gly Ser Met Cys
20 25 30

<210> 53
<211> 32
<212> PRT
<213> Homo sapiens

<400> 53

Cys Ala Gly Asn Pro Cys His Asn Gly Gly Thr Cys Glu Asp Gly Ile
1 5 10 15

Asn Gly Phe Thr Cys Arg Cys Pro Glu Gly Tyr His Asp Pro Thr Cys
20 25 30

<210> 54
<211> 31
<212> PRT
<213> Homo sapiens

<400> 54

Cys Asn Ser Asn Pro Cys Val His Gly Ala Cys Arg Asp Ser Leu Asn
1 5 10 15

Gly Tyr Lys Cys Asp Cys Asp Pro Gly Trp Ser Gly Thr Asn Cys
20 25 30

<210> 55
<211> 32
<212> PRT
<213> Homo sapiens

<400> 55

Cys Glu Ser Asn Pro Cys Val Asn Gly Gly Thr Cys Lys Asp Met Thr
1 5 10 15

Ser Gly Ile Val Cys Thr Cys Arg Glu Gly Phe Ser Gly Pro Asn Cys
20 25 30

<210> 56
<211> 32
<212> PRT
<213> Homo sapiens

<400> 56

Cys Ala Ser Asn Pro Cys Leu Asn Lys Gly Thr Cys Ile Asp Asp Val
 1 5 10 15

Ala Gly Tyr Lys Cys Asn Cys Leu Leu Pro Tyr Thr Gly Ala Thr Cys
 20 25 30

<210> 57
 <211> 35
 <212> PRT
 <213> Homo sapiens

<400> 57

Cys Ala Pro Ser Pro Cys Arg Asn Gly Gly Glu Cys Arg Gln Ser Glu
 1 5 10 15

Asp Tyr Glu Ser Phe Ser Cys Val Cys Pro Thr Ala Gly Ala Lys Gly
 20 25 30

Gln Thr Cys
 35

<210> 58
 <211> 32
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (18)..(18)
 <223> X = undefined amino acid

<400> 58

Cys Val Leu Ser Pro Cys Arg His Gly Ala Ser Cys Gln Asn Thr His
 1 5 10 15

Gly Xaa Tyr Arg Cys His Cys Gln Ala Gly Tyr Ser Gly Arg Asn Cys
 20 25 30

<210> 59
 <211> 32
 <212> PRT
 <213> Homo sapiens

<400> 59

Cys Arg Pro Asn Pro Cys His Asn Gly Gly Ser Cys Thr Asp Gly Ile
 1 5 10 15

Asn Thr Ala Phe Cys Asp Cys Leu Pro Gly Phe Arg Gly Thr Phe Cys
 20 25 30

<210> 60
 <211> 32
 <212> PRT
 <213> Homo sapiens

<400> 60

Cys Ala Ser Asp Pro Cys Arg Asn Gly Ala Asn Cys Thr Asp Cys Val
1 5 10 15

Asp Ser Tyr Thr Cys Thr Cys Pro Ala Gly Phe Ser Gly Ile His Cys
20 25 30

<210> 61
<211> 32
<212> PRT
<213> Homo sapiens

<400> 61
Cys Thr Glu Ser Ser Cys Phe Asn Gly Gly Thr Cys Val Asp Gly Ile
1 5 10 15

Asn Ser Phe Thr Cys Leu Cys Pro Pro Gly Phe Thr Gly Ser Tyr Cys
20 25 30

<210> 62
<211> 32
<212> PRT
<213> Homo sapiens

<400> 62
Cys Asp Ser Arg Pro Cys Leu Leu Gly Gly Thr Cys Gln Asp Gly Arg
1 5 10 15

Gly Leu His Arg Cys Thr Cys Pro Gln Gly Tyr Thr Gly Pro Asn Cys
20 25 30

<210> 63
<211> 32
<212> PRT
<213> Homo sapiens

<400> 63
Cys Asp Ser Ser Pro Cys Lys Asn Gly Gly Lys Cys Trp Gln Thr His
1 5 10 15

Thr Gln Tyr Arg Cys Glu Cys Pro Ser Gly Trp Thr Gly Leu Tyr Cys
20 25 30

<210> 64
<211> 42
<212> PRT
<213> Homo sapiens

<400> 64
Cys Glu Val Ala Ala Gln Arg Gln Gly Val Asp Val Ala Arg Leu Cys
1 5 10 15

Gln His Gly Gly Leu Cys Val Asp Ala Gly Asn Thr His His Cys Arg
20 25 30

Cys Gln Ala Gly Tyr Thr Gly Ser Tyr Cys
Page 18

35

40

<210> 65
<211> 32
<212> PRT
<213> Homo sapiens

<400> 65

Cys Ser Pro Ser Pro Cys Gln Asn Gly Ala Thr Cys Thr Asp Tyr Leu
1 5 10 15

Gly Gly Tyr Ser Cys Lys Cys Val Ala Gly Tyr His Gly Val Asn Cys
20 25 30

<210> 66
<211> 32
<212> PRT
<213> Homo sapiens

<400> 66

Cys Leu Ser His Pro Cys Gln Asn Gly Gly Thr Cys Leu Asp Leu Pro
1 5 10 15

Asn Thr Tyr Lys Cys Ser Cys Pro Arg Gly Thr Gln Gly Val His Cys
20 25 30

<210> 67
<211> 40
<212> PRT
<213> Mus musculus

<400> 67

Cys Asn Pro Pro Val Asp Pro Val Ser Arg Ser Pro Lys Cys Phe Asn
1 5 10 15

Asn Gly Thr Cys Val Asp Gln Val Gly Gly Tyr Ser Cys Thr Cys Pro
20 25 30

Pro Gly Phe Val Gly Glu Arg Cys
35 40

<210> 68
<211> 34
<212> PRT
<213> Homo sapiens

<400> 68

Cys Leu Ser Asn Pro Cys Asp Ala Arg Gly Thr Gln Asn Cys Val Gln
1 5 10 15

Arg Val Asn Asp Phe His Cys Glu Cys Arg Ala Gly His Thr Gly Arg
20 25 30

Arg Cys

<210> 69

<211> 35

<212> PRT

<213> Homo sapiens

<400> 69

Cys Lys Gly Lys Pro Cys Lys Asn Gly Gly Thr Cys Ala Val Ala Ser
1 5 10 15

Asn Thr Ala Arg Gly Phe Ile Cys Lys Cys Pro Ala Gly Phe Glu Gly
20 25 30

Ala Thr Cys
35

<210> 70

<211> 32

<212> PRT

<213> Homo sapiens

<400> 70

Cys Gly Ser Leu Arg Cys Leu Asn Gly Gly Thr Cys Ile Ser Gly Pro
1 5 10 15

Arg Ser Pro Thr Cys Leu Cys Leu Gly Pro Phe Thr Gly Pro Glu Cys
20 25 30

<210> 71

<211> 35

<212> PRT

<213> Homo sapiens

<400> 71

Cys Leu Gly Gly Asn Pro Cys Tyr Asn Gln Gly Thr Cys Glu Pro Thr
1 5 10 15

Ser Glu Ser Pro Phe Tyr Arg Cys Leu Cys Pro Ala Lys Phe Asn Gly
20 25 30

Leu Leu Cys
35

<210> 72

<211> 36

<212> PRT

<213> Homo sapiens

<400> 72

Cys Pro Asp Ser His Thr Gln Phe Cys Phe His Gly Thr Cys Arg Phe
1 5 10 15

Leu Val Gln Glu Asp Lys Pro Ala Cys Val Cys His Ser Gly Tyr Val
20 25 30

Gly Ala Arg Cys

35

<210> 73
<211> 38
<212> PRT
<213> Homo sapiens

<400> 73

Thr Gly Thr Ser His Leu Val Lys Cys Ala Glu Lys Glu Lys Thr Phe
1 5 10 15

Cys Val Asn Gly Gly Glu Cys Phe Met Val Lys Asp Leu Ser Asn Pro
20 25 30

Ser Arg Tyr Leu Cys Lys
35

<210> 74
<211> 35
<212> PRT
<213> Homo sapiens

<400> 74

Ser Trp Ser Gly His Ala Arg Lys Cys Asn Glu Thr Ala Lys Ser Tyr
1 5 10 15

Cys Val Asn Gly Gly Val Cys Tyr Tyr Ile Glu Gly Ile Asn Gln Leu
20 25 30

Ser Cys Lys
35

<210> 75
<211> 37
<212> PRT
<213> Homo sapiens

<400> 75

Glu Arg Ser Glu His Phe Lys Pro Cys Arg Asp Lys Asp Leu Ala Tyr
1 5 10 15

Cys Leu Asn Asp Gly Glu Cys Phe Val Ile Glu Thr Leu Thr Gly Ser
20 25 30

His Lys His Cys Arg
35

<210> 76
<211> 35
<212> PRT
<213> Homo sapiens

<400> 76

Met Pro Thr Asp His Glu Glu Pro Cys Gly Pro Ser His Lys Ser Phe
1 5 10 15

Cys Leu Asn Gly Gly Leu Cys Tyr Val Ile Pro Thr Ile Pro Ser Pro
20 25 30

Phe Cys Arg
35

<210> 77
<211> 35
<212> PRT
<213> Homo sapiens

<400> 77

Ser Val Arg Asn Ser Asp Ser Glu Cys Pro Leu Ser His Asp Gly Tyr
1 5 10 15

Cys Leu His Asp Gly Val Cys Met Tyr Ile Glu Ala Leu Asp Lys Tyr
20 25 30

Ala Cys Lys
35

<210> 78
<211> 34
<212> PRT
<213> Homo sapiens

<400> 78

Ala Val Val Ser His Phe Asn Asp Cys Pro Asp Ser His Thr Gln Phe
1 5 10 15

Cys Phe His Gly Thr Cys Arg Phe Leu Val Gln Glu Asp Lys Pro Ala
20 25 30

cys val

<210> 79
<211> 34
<212> PRT
<213> Homo sapiens

<400> 79

Lys Arg Lys Gly His Phe Ser Arg Cys Pro Lys Gln Tyr Lys His Tyr
1 5 10 15

cys Ile Lys Gly Arg Cys Arg Phe Val Val Ala Glu Gln Thr Pro Ser
20 25 30

cys val

<210> 80
<211> 34
<212> PRT
<213> Homo sapiens

<400> 80

Arg Asn Arg Lys Lys Lys Asn Pro Cys Asn Ala Glu Phe Gln Asn Phe
1 5 10 15

Cys Ile His Gly Glu Cys Lys Tyr Ile Glu His Leu Glu Ala Val Thr
20 25 30

Cys Lys

<210> 81

<211> 34

<212> PRT

<213> Homo sapiens

<400> 81

Gly Leu Gly Lys Lys Arg Asp Pro Cys Leu Arg Lys Tyr Lys Asp Phe
1 5 10 15

Cys Ile His Gly Glu Cys Lys Tyr Val Lys Glu Leu Arg Ala Pro Ser
20 25 30

Cys Met

<210> 82

<211> 34

<212> PRT

<213> Homo sapiens

<400> 82

Val Ala Gln Val Ser Ile Thr Lys Cys Ser Ser Asp Met Asn Gly Tyr
1 5 10 15

Cys Leu His Gly Gln Cys Ile Tyr Leu Val Asp Met Ser Gln Asn Tyr
20 25 30

Cys Arg

<210> 83

<211> 34

<212> PRT

<213> Mus musculus

<400> 83

Val Ala Leu Lys Phe Ser His Pro Cys Leu Glu Asp His Asn Ser Tyr
1 5 10 15

Cys Ile Asn Gly Ala Cys Ala Phe His His Glu Leu Lys Gln Ala Ile
20 25 30

Cys Arg

<210> 84
<211> 34
<212> PRT
<213> Homo sapiens

<400> 84

Ile	Ala	Leu	Lys	Phe	Ser	His	Leu	Cys	Leu	Glu	Asp	His	Asn	Ser	Tyr
			5					10						15	
1															
Cys	Ile	Asn	Gly	Ala	Cys	Ala	Phe	His	His	Glu	Leu	Glu	Lys	Ala	Ile
			20				25						30		

Cys Arg

<210> 85
<211> 360
<212> PRT
<213> Homo sapiens

<400> 85

Thr	Ala	Arg	Gly	Ala	Gly	Glu	Glu	Phe	Pro	Glu	Thr	Cys	Trp	Asn	Ser
					5				10				15		
1															

Gly	Leu	Ala	Arg	Arg	Pro	Gly	Ala	Glu	Arg	Arg	Arg	Leu	Pro	Asp	Asp
						20		25				30			

Gly	Ser	Val	Ser	Arg	Thr	Val	Ile	Thr	Ser	Pro	Arg	Ser	Gly	Cys	Glu
						35		40				45			

Gly	Ala	Gly	Gln	Arg	Pro	Gly	Arg	Glu	Pro	Pro	Ala	Ala	Gly	Pro	Ile
						50		55			60				

Asp	Asp	Phe	Pro	Gly	Arg	Gln	Glu	Gln	Pro	Arg	Glu	Pro	Gly	Arg	Ala
					65		70		75		80				

Pro	Val	Pro	Gly	Gly	Arg	Thr	Ala	Arg	Arg	Val	Arg	Ala	Ala	Leu	Pro
								85	90			95			

Ala	Gly	Asn	Gly	Arg	Arg	Pro	Arg	Ala	Ala	Arg	Ala	Pro	Gln	Arg	Gly
								100	105			110			

Arg	Ser	Leu	Ser	Pro	Ser	Arg	Asp	Lys	Leu	Phe	Pro	Asn	Pro	Ile	Arg
							115		120			125			

Ala	Leu	Gly	Pro	Asn	Ser	Pro	Ala	Pro	Arg	Ala	Val	Arg	Val	Glu	Arg
							130		135		140				

Ser	Val	Ser	Gly	Glu	Met	Ser	Glu	Arg	Lys	Glu	Gly	Arg	Gly	Lys	Gly
					145		150		155		160				

Lys	Gly	Lys	Lys	Glu	Arg	Gly	Ser	Gly	Lys	Lys	Pro	Glu	Ser	Ala
							165		170		175			

Ala Gly Ser Gln Ser Pro Ala Leu Pro Pro Gln Leu Lys Glu Met Lys
180 185 190

Ser Gln Glu Ser Ala Ala Gly Ser Lys Leu Val Leu Arg Cys Glu Thr
195 200 205

Ser Ser Glu Tyr Ser Ser Leu Arg Phe Lys Trp Phe Lys Asn Gly Asn
210 215 220

Glu Leu Asn Arg Lys Asn Lys Pro Gln Asn Ile Lys Ile Gln Lys Lys
225 230 235 240

Pro Gly Lys Ser Glu Leu Arg Ile Asn Lys Ala Ser Leu Ala Asp Ser
245 250 255

Gly Glu Tyr Met Cys Lys Val Ile Ser Lys Leu Gly Asn Asp Ser Ala
260 265 270

Ser Ala Asn Ile Thr Ile Val Glu Ser Asn Glu Ile Ile Thr Gly Met
275 280 285

Pro Ala Ser Thr Glu Gly Ala Tyr Val Ser Ser Glu Ser Pro Ile Arg
290 295 300

Ile Ser Val Ser Thr Glu Gly Ala Asn Thr Ser Ser Ser Thr Ser Thr
305 310 315 320

Ser Thr Thr Gly Thr Ser His Leu Val Lys Cys Ala Glu Lys Glu Lys
325 330 335

Thr Phe Cys Val Asn Gly Gly Glu Cys Phe Met Val Lys Asp Leu Ser
340 345 350

Asn Pro Ser Arg Tyr Leu Cys Lys
355 360

<210> 86

<211> 43

<212> PRT

<213> Homo sapiens

<400> 86

Thr Ser Thr Ser Thr Thr Gly Thr Ser His Leu Val Lys Cys Ala Glu
1 5 10 15

Lys Glu Lys Thr Phe Cys Val Asn Gly Gly Glu Cys Phe Met Val Lys
20 25 30

Asp Leu Ser Asn Pro Ser Arg Tyr Leu Cys Lys
35 40

<210> 87

<211> 43

<212> PRT

<213> Homo sapiens

<400> 87

Thr Ser Thr Ser Thr Thr Gly Thr Ser His Leu Val Lys Cys Ala Glu
1 5 10 15

Lys Glu Lys Thr Phe Cys Val Asn Gly Gly Glu Cys Phe Met Val Lys
20 25 30

Asp Leu Ser Asn Pro Ser Arg Tyr Leu Cys Lys
35 40

<210> 88

<211> 211

<212> PRT

<213> Homo sapiens

<400> 88

Met Ser Glu Arg Lys Glu Gly Arg Gly Lys Gly Lys Lys Lys Lys
1 5 10 15

Glu Arg Gly Ser Gly Lys Lys Pro Glu Ser Ala Ala Gly Ser Gln Ser
20 25 30

Pro Ala Leu Pro Pro Gln Leu Lys Glu Met Lys Ser Gln Glu Ser Ala
35 40 45

Ala Gly Ser Lys Leu Val Leu Arg Cys Glu Thr Ser Ser Glu Tyr Ser
50 55 60

Ser Leu Arg Phe Lys Trp Phe Lys Asn Gly Asn Glu Leu Asn Arg Lys
65 70 75 80

Asn Lys Pro Gln Asn Ile Lys Ile Gln Lys Lys Pro Gly Lys Ser Glu
85 90 95

Leu Arg Ile Asn Lys Ala Ser Leu Ala Asp Ser Gly Glu Tyr Met Cys
100 105 110

Lys Val Ile Ser Lys Leu Gly Asn Asp Ser Ala Ser Ala Asn Ile Thr
115 120 125

Ile Val Glu Ser Asn Glu Ile Ile Thr Gly Met Pro Ala Ser Thr Glu
130 135 140

Gly Ala Tyr Val Ser Ser Glu Ser Pro Ile Arg Ile Ser Val Ser Thr
145 150 155 160

Glu Gly Ala Asn Thr Ser Ser Ser Thr Ser Thr Ser Thr Thr Gly Thr
165 170 175

Ser His Leu Val Lys Cys Ala Glu Lys Glu Lys Thr Phe Cys Val Asn
Page 26

180

185

190

Gly Gly Glu Cys Phe Met Val Lys Asp Leu Ser Asn Pro Ser Arg Tyr
195 200 205

Leu Cys Lys
210

<210> 89
<211> 211
<212> PRT
<213> Homo sapiens

<400> 89

Met Ser Glu Arg Lys Glu Gly Arg Gly Lys Gly Lys Gly Lys Lys Lys
1 5 10 15

Glu Arg Gly Ser Gly Lys Lys Pro Glu Ser Ala Ala Gly Ser Gln Ser
20 25 30

Pro Ala Leu Pro Pro Gln Leu Lys Glu Met Lys Ser Gln Glu Ser Ala
35 40 45

Ala Gly Ser Lys Leu Val Leu Arg Cys Glu Thr Ser Ser Glu Tyr Ser
50 55 60

Ser Leu Arg Phe Lys Trp Phe Lys Asn Gly Asn Glu Leu Asn Arg Lys
65 70 75 80

Asn Lys Pro Gln Asn Ile Lys Ile Gln Lys Lys Pro Gly Lys Ser Glu
85 90 95

Leu Arg Ile Asn Lys Ala Ser Leu Ala Asp Ser Gly Glu Tyr Met Cys
100 105 110

Lys Val Ile Ser Lys Leu Gly Asn Asp Ser Ala Ser Ala Asn Ile Thr
115 120 125

Ile Val Glu Ser Asn Glu Ile Ile Thr Gly Met Pro Ala Ser Thr Glu
130 135 140

Gly Ala Tyr Val Ser Ser Glu Ser Pro Ile Arg Ile Ser Val Ser Thr
145 150 155 160

Glu Gly Ala Asn Thr Ser Ser Ser Thr Ser Thr Ser Thr Thr Gly Thr
165 170 175

Ser His Leu Val Lys Cys Ala Glu Lys Glu Lys Thr Phe Cys Val Asn
180 185 190

Gly Gly Glu Cys Phe Met Val Lys Asp Leu Ser Asn Pro Ser Arg Tyr
195 200 205

Leu Cys Lys
210

<210> 90
<211> 211
<212> PRT
<213> MUS musculus

<400> 90

Met Ser Glu Arg Lys Glu Gly Arg Gly Lys Gly Lys Lys Lys Lys
1 5 10 15

Asp Arg Gly Ser Arg Gly Lys Pro Ala Pro Ala Glu Gly Asp Pro Ser
20 25 30

Pro Ala Leu Pro Pro Arg Leu Lys Glu Met Lys Ser Gln Glu Ser Ala
35 40 45

Ala Gly Ser Lys Leu Val Leu Arg Cys Glu Thr Ser Ser Glu Tyr Ser
50 55 60

Ser Leu Arg Phe Lys Trp Phe Lys Asn Gly Asn Glu Leu Asn Arg Arg
65 70 75 80

Asn Lys Pro Gln Asn Val Lys Ile Gln Lys Lys Pro Gly Lys Ser Glu
85 90 95

Leu Arg Ile Asn Lys Ala Ser Leu Ala Asp Ser Gly Glu Tyr' Met Cys
100 105 110

Lys Val Ile Ser Lys Leu Gly Asn Asp Ser Ala Ser Ala Asn Ile Thr
115 120 125

Ile Val Glu Ser Asn Asp Leu Thr Thr Gly Met Ser Ala Ser Thr Glu
130 135 140

Arg Pro Tyr Val Ser Ser Glu Ser Pro Ile Arg Ile Ser Val Ser Thr
145 150 155 160

Glu Gly Ala Asn Thr Ser Ser Ser Thr Ser Thr Ser Thr Thr Gly Thr
165 170 175

Ser His Leu Ile Lys Cys Ala Glu Lys Glu Lys Thr Phe Cys Val Asn
180 185 190

Gly Gly Glu Cys Phe Met Val Lys Asp Leu Ser Asn Pro Ser Arg Tyr
195 200 205

Leu Cys Lys
210

<210> 91
<211> 211
<212> PRT

<213> Mus musculus

<400> 91

Met Ser Glu Arg Lys Glu Gly Arg Gly Lys Gly Lys Lys Lys Lys
 1 5 10 15

Asp Arg Gly Ser Arg Gly Lys Pro Ala Pro Ala Glu Gly Asp Pro Ser
 20 25 30

Pro Ala Leu Pro Pro Arg Leu Lys Glu Met Lys Ser Gln Glu Ser Ala
 35 40 45

Ala Gly Ser Lys Leu Val Leu Arg Cys Glu Thr Ser Ser Glu Tyr Ser
 50 55 60

Ser Leu Arg Phe Lys Trp Phe Lys Asn Gly Asn Glu Leu Asn Arg Arg
 65 70 75 80

Asn Lys Pro Gln Asn Val Lys Ile Gln Lys Lys Pro Gly Lys Ser Glu
 85 90 95

Leu Arg Ile Asn Lys Ala Ser Leu Ala Asp Ser Gly Glu Tyr Met Cys
 100 105 110

Lys Val Ile Ser Lys Leu Gly Asn Asp Ser Ala Ser Ala Asn Ile Thr
 115 120 125

Ile Val Glu Ser Asn Asp Leu Thr Thr Gly Met Ser Ala Ser Thr Glu
 130 135 140

Arg Pro Tyr Val Ser Ser Glu Ser Pro Ile Arg Ile Ser Val Ser Thr
 145 150 155 160

Glu Gly Ala Asn Thr Ser Ser Thr Ser Thr Ser Thr Thr Gly Thr
 165 170 175

Ser His Leu Ile Lys Cys Ala Glu Lys Glu Lys Thr Phe Cys Val Asn
 180 185 190

Gly Gly Glu Cys Phe Met Val Lys Asp Leu Ser Asn Pro Ser Arg Tyr
 195 200 205

Leu Cys Lys
 210

<210> 92

<211> 73

<212> PRT

<213> Mus musculus

<400> 92

Met Ser Ala Ser Thr Glu Arg Pro Tyr Val Ser Ser Glu Ser Pro Ile
 1 5 10 15

Arg Ile Ser Val Ser Thr Glu Gly Ala Asn Thr Ser Ser Ser Thr Ser
 20 25 30

Thr Ser Thr Thr Gly Thr Ser His Leu Ile Lys Cys Ala Glu Lys Glu
 35 40 45

Lys Thr Phe Cys Val Asn Gly Gly Glu Cys Phe Met Val Lys Asp Leu
 50 55 60

Ser Asn Pro Ser Arg Tyr Leu Cys Lys
 65 70

<210> 93
 <211> 137
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (113)..(113)
 <223> X = undefined amino acid
 <400> 93

Thr Arg Pro Lys Leu Lys Lys Met Lys Ser Gln Thr Gly Gln Val Gly
 1 5 10 15

Glu Lys Gln Ser Leu Lys Cys Glu Ala Ala Ala Ile Asn Pro Gln Pro
 20 25 30

Ser Tyr Arg Trp Phe Lys Asp Gly Lys Glu Leu Asn Arg Ser Arg Asp
 35 40 45

Ile Arg Ile Lys Tyr Gly Asn Gly Arg Lys Asn Ser Arg Leu Gln Phe
 50 55 60

Asn Lys Val Lys Val Glu Asp Ala Gly Glu Tyr Val Cys Glu Ala Glu
 65 70 75 80

Asn Ile Leu Gly Lys Asp Thr Val Arg Gly Arg Leu Tyr Val Asn Ser
 85 90 95

Val Thr Thr Thr Leu Ser Ser Trp Ser Gly His Ala Gly Lys Cys Asn
 100 105 110

Xaa Thr Ala Lys Ser Tyr Cys Val Asn Gly Gly Val Cys Tyr Tyr Ile
 115 120 125

Glu Gly Ile Asn Gln Leu Ser Cys Lys
 130 135

<210> 94
 <211> 73
 <212> PRT
 <213> Homo sapiens

<400> 94

Ser Ser Ser Ser Phe Asp Val Gly His Glu Gly Asp Asp Ser Trp Gly
1 5 10 15

Leu Gly Ile Val Ser Val Arg His Trp His Met Ser Leu Ile Pro Ser
20 25 30

Val Ser Thr Thr Leu Ser Ser Trp Ser Gly His Ala Arg Lys Cys Asn
35 40 45

Glu Thr Ala Lys Ser Tyr Cys Val Asn Gly Gly Val Cys Tyr Tyr Ile
50 55 60

Glu Gly Ile Asn Gln Leu Ser Cys Lys
65 70

<210> 95

<211> 78

<212> PRT

<213> Homo sapiens

<400> 95

Glu Ile Asn Ile Ile Ile Trp Tyr Tyr Phe Pro Ser Ala Trp Arg Thr
1 5 10 15

Cys Phe Asn Ile Ser Ser Val Gly Leu Leu Leu Thr Asn Ser Tyr
20 25 30

Lys Phe Tyr Thr Thr Tyr Ser Thr Glu Arg Ser Glu His Phe Lys
35 40 45

Pro Cys Arg Asp Lys Asp Leu Ala Tyr Cys Leu Asn Asp Gly Glu Cys
50 55 60

Phe Val Ile Glu Thr Leu Thr Gly Ser His Lys His Cys Arg
65 70 75

<210> 96

<211> 42

<212> PRT

<213> Homo sapiens

<400> 96

Asn Tyr Leu Gln Ile Lys Met Pro Thr Asp His Glu Glu Pro Cys Gly
1 5 10 15

Pro Ser His Lys Ser Phe Cys Leu Asn Gly Gly Leu Cys Tyr Val Ile
20 25 30

Pro Thr Ile Pro Ser Pro Phe Cys Arg Lys
35 40

<210> 97

<211> 36
<212> PRT
<213> Homo sapiens

<400> 97

Met Pro Thr Asp His Glu Glu Pro Cys Gly Pro Ser His Lys Ser Phe
1 5 10 15

Cys Leu Asn Gly Gly Leu Cys Tyr Val Ile Pro Thr Ile Pro Ser Pro
20 25 30

Phe Cys Arg Lys
35

<210> 98
<211> 36
<212> PRT
<213> Homo sapiens

<400> 98

Met Pro Thr Asp His Glu Glu Pro Cys Gly Pro Ser His Lys Ser Phe
1 5 10 15

Cys Leu Asn Gly Gly Leu Cys Tyr Val Ile Pro Thr Ile Pro Ser Pro
20 25 30

Phe Cys Arg Lys
35

<210> 99
<211> 37
<212> PRT
<213> Mus musculus

<400> 99

Met Pro Thr Gly Asn Phe Leu Ser Arg Ala Ala Leu Trp Ser Gln Ala
1 5 10 15

Gln Val Ile Leu Pro Gln Trp Gly Asp Leu Leu Cys Asp Pro Tyr Tyr
20 25 30

Pro Gln Pro Ile Leu
35

<210> 100
<211> 37
<212> PRT
<213> Mus musculus

<400> 100

Met Pro Thr Gly Asn Phe Leu Ser Arg Ala Ala Leu Trp Ser Gln Ala
1 5 10 15

Gln Val Ile Leu Pro Gln Trp Gly Asp Leu Leu Cys Asp Pro Tyr Tyr
20 25 30

Pro Gln Pro Ile Leu
35

<210> 101
<211> 25
<212> PRT
<213> Homo sapiens

<400> 101

Ser His Lys Ser Phe Cys Leu Asn Gly Gly Leu Cys Tyr Val Ile Pro
1 5 10 15

Thr Ile Pro Ser Pro Phe Cys Arg Lys
20 25

<210> 102
<211> 30
<212> PRT
<213> Sus scrofa

<400> 102

Glu Pro Cys Gly Pro Ser His Arg Ser Phe Cys Leu Asn Gly Gly Ile
1 5 10 15

Cys Tyr Val Ile Pro Thr Ile Pro Ser Pro Phe Cys Arg Lys
20 25 30

<210> 103
<211> 30
<212> PRT
<213> Sus scrofa

<400> 103

Glu Pro Cys Gly Pro Ser His Arg Ser Phe Cys Leu Asn Gly Gly Ile
1 5 10 15

Cys Tyr Val Ile Pro Thr Ile Pro Ser Pro Phe Cys Arg Lys
20 25 30

<210> 104
<211> 46
<212> PRT
<213> Mus musculus

<400> 104

Cys Leu Phe Ala Pro Ala Asp Ser Pro Val Ala Ala Ala Val Val Ser
1 5 10 15

His Phe Asn Lys Cys Pro Asp Ser His Thr Gln Tyr Cys Phe His Gly
20 25 30

Thr Cys Arg Phe Leu Val Gln Glu Glu Lys Pro Ala Cys Val
35 40 45

<210> 105

<211> 51
<212> PRT
<213> Homo sapiens

<400> 105

Asp Leu Ser Pro Ala Ser Phe Leu Ser Pro Ala Asp Pro Pro Val Ala
1 5 10 15

Ala Ala Val Val Ser His Phe Asn Asp Cys Pro Asp Ser His Thr Gln
20 25 30

Phe Cys Phe His Gly Thr Cys Arg Phe Leu Val Gln Glu Asp Lys Pro
35 40 45

Ala Cys Val
50

<210> 106
<211> 42
<212> PRT
<213> Homo sapiens

<400> 106

Val Gln Thr Glu Asp Asn Pro Arg Val Ala Gln Val Ser Ile Thr Lys
1 5 10 15

Cys Ser Ser Asp Met Asn Gly Tyr Cys Leu His Gly Gln Cys Ile Tyr
20 25 30

Leu Val Asp Met Ser Gln Asn Tyr Cys Arg
35 40

<210> 107
<211> 40
<212> PRT
<213> Homo sapiens

<400> 107

Gln Thr Glu Asp Asn Pro Arg Val Ala Gln Val Ser Ile Thr Lys Cys
1 5 10 15

Ser Ser Asp Met Asn Gly Tyr Cys Leu His Gly Gln Cys Ile Tyr Leu
20 25 30

Val Asp Met Ser Gln Asn Tyr Cys
35 40

<210> 108
<211> 42
<212> PRT
<213> Mus musculus

<400> 108

Val Gln Met Glu Asp Asp Pro Arg Val Ala Gln Val Gln Ile Thr Lys
1 5 10 15

Cys Ser Ser Asp Met Asp Gly Tyr Cys Leu His Gly Gln Cys Ile Tyr
20 25 30

Leu Val Asp Met Arg Glu Lys Phe Cys Arg
35 40

<210> 109
<211> 93
<212> PRT
<213> Homo sapiens

<400> 109

Met Thr Ala Gly Arg Arg Met Glu Met Leu Cys Ala Gly Arg Val Pro
1 5 10 15

Ala Leu Leu Leu Cys Leu Gly Phe His Leu Leu Gln Ala Val Leu Ser
20 25 30

Thr Thr Val Ile Pro Ser Cys Ile Pro Gly Glu Ser Ser Asp Asn Cys
35 40 45

Thr Ala Leu Val Gln Thr Glu Asp Asn Pro Arg Val Ala Gln Val Ser
50 55 60

Ile Thr Lys Cys Ser Ser Asp Met Asn Gly Tyr Cys Leu His Gly Gln
65 70 75 80

Cys Ile Tyr Leu Val Asp Met Ser Gln Asn Tyr Cys Arg
85 90

<210> 110
<211> 93
<212> PRT
<213> Homo sapiens

<400> 110

Met Thr Ala Gly Arg Arg Met Glu Met Leu Cys Ala Gly Arg Val Pro
1 5 10 15

Ala Leu Leu Leu Cys Leu Gly Phe His Leu Leu Gln Ala Val Leu Ser
20 25 30

Thr Thr Val Ile Pro Ser Cys Ile Pro Gly Glu Ser Ser Asp Asn Cys
35 40 45

Thr Ala Leu Val Gln Thr Glu Asp Asn Pro Arg Val Ala Gln Val Ser
50 55 60

Ile Thr Lys Cys Ser Ser Asp Met Asn Gly Tyr Cys Leu His Gly Gln
65 70 75 80

Cys Ile Tyr Leu Val Asp Met Ser Gln Asn Tyr Cys Arg
85 90

<210> 111
 <211> 180
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> X = undefined amino acid

<220>
 <221> misc_feature
 <222> (118)..(118)
 <223> X = undefined amino acid

<400> 111
 Pro Gly Glu Lys Ala Thr Arg Pro Lys Leu Lys Lys Met Lys Ser Gln
 1 5 10 15

Thr Gly Gln Val Gly Glu Lys Gln Ser Leu Lys Cys Glu Ala Ala Ala
 20 25 30

Gly Asn Pro Gln Pro Ser Tyr Arg Trp Phe Lys Asp Gly Lys Glu Leu
 35 40 45

Asn Arg Ser Arg Asp Ile Arg Ile Lys Tyr Gly Asn Gly Arg Lys Asn
 50 55 60

Ser Arg Leu Gln Phe Asn Lys Val Lys Val Glu Asp Ala Gly Glu Tyr
 65 70 75 80

Val Cys Glu Ala Glu Asn Ile Leu Gly Lys Asp Thr Val Gly Arg
 85 90 95

Leu Tyr Val Asn Ser Val Thr Thr Leu Ser Ser Trp Ser Gly His
 100 105 110

Ala Arg Lys Cys Asn Xaa Thr Ala Lys Ser Tyr Cys Val Asn Gly Gly
 115 120 125

Val Cys Tyr Tyr Ile Glu Gly Ile Asn Gln Leu Ser Cys Lys Ala Pro
 130 135 140

Gly Leu His Cys Leu Glu Leu Gly Thr Gln Ser His His Phe Pro Ile
 145 150 155 160

Ser Ala Ser Pro Gly Ser Ser Gln Gly Ser Trp Asn Gln Leu Pro Gln
 165 170 175

His Pro Leu Ser
 180

<210> 112
 <211> 120
 <212> PRT
 <213> Homo sapiens

<220>
<221> misc_feature
<222> (13)..(13)
<223> X = undefined amino acid
<400> 112

Glu Ala Glu Asn Ile Leu Gly Lys Asp Thr Val Arg Xaa Arg Leu Tyr
1 5 10 15

Val Asn Ser Val Ser Thr Thr Leu Ser Ser Trp Ser Gly His Ala Arg
20 25 30

Lys Cys Asn Glu Thr Ala Lys Ser Tyr Cys Val Asn Gly Gly Val Cys
35 40 45

Tyr Tyr Ile Glu Gly Ile Asn Gln Leu Ser Cys Lys Ala His Gly Leu
50 55 60

His Cys Leu Glu Leu Gly Thr Gln Ser His His Phe Pro Ile Ser Ala
65 70 75 80

Ser Pro Gly Ser Ser Gln Gly Ser Trp Asn Gln Leu Pro Gln His Pro
85 90 95

Leu Ser Ala Leu Gly Gly Glu Gly Ser Pro Gly Gly Asp Ala Val Arg
100 105 110

Thr Pro Gly Pro Gln Ser Cys Ala
115 120

<210> 113
<211> 76
<212> PRT
<213> Mus musculus
<400> 113

Val Arg Gln Arg Arg Glu Thr Pro Ser Pro Pro Ile Ala Gly Ser Arg
1 5 10 15

Met Ala Arg Asn Ser Thr Gly Val Val Ile Phe Ala Ser Ser Met Ala
20 25 30

Met Ala Val Ser Thr Thr Leu Ser Ser Trp Ser Gly His Ala Arg Lys
35 40 45

Cys Asn Glu Thr Ala Lys Ser Tyr Cys Val Asn Gly Gly Val Cys Tyr
50 55 60

Tyr Ile Glu Gly Ile Asn Gln Leu Ser Cys Lys Gly
65 70 75

<210> 114
<211> 167

<212> PRT
<213> Danio rerio

<400> 114

Lys Asp Cys Ala Ser Ala Pro Lys Val Lys Pro Met Asp Ser Gln Trp
1 5 10 15

Leu Gln Glu Gly Lys Lys Leu Thr Leu Lys Cys Glu Ala Val Gly Asn
20 25 30

Pro Ser Pro Ser Phe Asn Trp Tyr Lys Asp Gly Ser Gln Leu Arg Gln
35 40 45

Lys Lys Thr Val Lys Ile Lys Thr Asn Lys Lys Asn Ser Lys Leu His
50 55 60

Ile Ser Lys Val Arg Leu Glu Asp Ser Gly Asn Tyr Thr Cys Val Val
65 70 75 80

Glu Asn Ser Leu Gly Arg Glu Asn Ala Thr Ser Phe Val Ser Val Gln
85 90 95

Ser Ile Thr Thr Leu Ser Pro Gly Ser Ser His Ala Arg Lys Cys
100 105 110

Asn Glu Thr Glu Lys Thr Tyr Cys Ile Asn Gly Gly Asp Cys Tyr Phe
115 120 125

Ile His Gly Ile Asn Gln Leu Ser Cys Lys Cys Pro Asn Asp Tyr Thr
130 135 140

Gly Glu Arg Cys Gln Thr Ser Val Met Ala Gly Phe Tyr Lys Ala Glu
145 150 155 160

Glu Leu Tyr Gln Asn Glu Cys
165

<210> 115
<211> 84
<212> PRT
<213> Gallus gallus

<400> 115

Ala Val Gln Ser Leu Glu Leu Leu Gln Gln Thr Trp Arg Leu Ser Thr
1 5 10 15

Leu Gln Phe Glu Tyr Asp Arg Arg Val Ala Cys Gly Phe His Tyr Thr
20 25 30

Thr Thr Tyr Ser Thr Glu Arg Ser Glu His Phe Lys Pro Cys Lys Asp
35 40 45

Lys Asp Leu Ala Tyr Cys Leu Asn Glu Gly Glu Cys Phe Val Ile Glu
50 55 60

Thr Leu Thr Gly Ser His Lys His Cys Arg Ser Asn Cys Pro Ser Gly
65 70 75 80

Val Phe Cys Trp

<210> 116

<211> 77

<212> PRT

<213> Gallus gallus

<400> 116

Met Arg Thr Asp His Glu Glu Leu Cys Gly Thr Ser Tyr Gly Ser Phe
1 5 10 15

Cys Leu Asn Gly Gly Ile Cys Tyr Met Ile Pro Thr Val Pro Ser Pro
20 25 30

Phe Cys Arg His Leu Pro Lys Ala Ala Asn Gln Ala Ser Ala Leu His
35 40 45

Lys Ser Val Phe Ser Ile Phe Val Leu His Thr Asp Thr Thr Ala Leu
50 55 60

Pro Ser Cys His Leu Met Pro Ala His Phe Tyr Thr Gln
65 70 75

<210> 117

<211> 65

<212> PRT

<213> Mus musculus

<400> 117

Met Pro Thr Asp His Glu Gln Pro Cys Gly Pro Arg His Arg Ser Phe
1 5 10 15

Cys Leu Asn Gly Gly Ile Cys Ile Asp Pro Tyr Tyr Pro His Pro Phe
20 25 30

Cys Arg Phe Tyr His Leu Phe Leu Arg His Cys Leu Leu Lys Pro Phe
35 40 45

Val Gln Leu Gly Thr Leu Val Tyr Pro Val Phe Leu Lys Glu Leu Phe
50 55 60

His
65

<210> 118

<211> 70

<212> PRT

<213> Homo sapiens

<400> 118

Asp Val Ile Ala Gln His Lys Pro Glu Ser Glu Asn Thr Ser Asp Lys
1 5 10 15

Pro Lys Arg Lys Lys Gly Gly Lys Asn Gly Lys Asn Arg Arg Asn
20 25 30

Arg Lys Lys Lys Asn Pro Cys Asp Ala Glu Phe Gln Asn Phe Cys Ile
35 40 45

His Gly Glu Cys Lys Tyr Ile Glu His Leu Glu Ala Val Thr Cys Asn
50 55 60

Val Ser Arg Ile Phe Pro
65 70

<210> 119
<211> 112
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<222> (2)..(2)
<223> X = undefined amino acid

<400> 119

Leu Xaa Ala Thr Thr Gln Ser Lys Trp Lys Gly His Ser Ser Arg Cys
1 5 10 15

Pro Lys Gln Tyr Lys His Tyr Cys Ile Lys Gly Arg Cys Arg Phe Val
20 25 30

Val Ala Glu Gln Thr Pro Ser Cys Val Pro Leu Arg Lys Arg Arg Lys
35 40 45

Arg Lys Lys Lys Glu Glu Met Glu Thr Leu Gly Lys Asp Met Thr
50 55 60

Pro Ile Asn Glu Asp Ile Glu Glu Thr Asn Ile Ala Tyr Lys Ala Met
65 70 75 80

Lys Leu Pro Pro Gly Trp Trp Gln Ala Ala Lys Cys Leu Ala His Leu
85 90 95

Lys Met Asp Arg Met Arg Leu Arg Lys Thr Ala Ser Arg His Glu Phe
100 105 110

<210> 120
<211> 119
<212> PRT
<213> Mus musculus

<400> 120

Lys Ser Leu Thr Trp Lys Ser Phe Asn Phe Leu Ser Leu Leu Leu Pro

1:

5

10

15

Leu Gly Ser Thr Gly Thr Arg Arg Ile Leu Cys Pro Leu Ser Thr Pro
20 25 30

Ser Cys Ser Ala Gly Leu Ala Ile Leu His Cys Val Val Ala Asp Gly
35 40 45

Asn Thr Thr Arg Thr Pro Glu Thr Asn Gly Ser Leu Cys Gly Ala Pro
50 55 60

Gly Glu Asn Cys Thr Gly Thr Thr Pro Arg Gln Lys Val Lys Thr His
65 70 75 80

Phe Ser Arg Cys Pro Lys Gln Tyr Lys His Tyr Cys Ile His Gly Arg
85 90 95

Cys Arg Phe Val Val Asp Glu Gln Thr Pro Ser Cys Met Ala Arg Leu
100 105 110

Ser Ile Tyr Leu Trp Arg Asn
115

<210> 121

<211> 141

<212> PRT

<213> Cercopithecus aethiops (African green monkey)

<400> 121

Met Lys Leu Leu Pro Ser Val Val Leu Lys Leu Leu Leu Ala Ala Val
1 5 10 15

Leu Ser Ala Leu Val Thr Gly Glu Ser Leu Glu Gln Leu Arg Arg Gly
20 25 30

Pro Ala Ala Gly Thr Ser Asn Pro Asp Pro Ser Thr Gly Ser Thr Asp
35 40 45

Gln Leu Leu Arg Leu Gly Gly Arg Asp Arg Lys Val Arg Asp Leu
50 55 60

Gln Glu Ala Asp Leu Asp Leu Leu Arg Val Thr Leu Ser Ser Lys Pro
65 70 75 80

Gln Ala Leu Ala Thr Pro Ser Lys Glu Glu His Gly Lys Arg Lys Lys
85 90 95

Lys Gly Lys Gly Leu Gly Lys Lys Arg Asp Pro Cys Leu Arg Lys Tyr
100 105 110

Lys Asp Phe Cys Ile His Gly Glu Cys Lys Tyr Val Lys Glu Leu Arg
115 120 125

Ala Pro Ser Cys Met Ala Ala Gly Gln Lys Asp Val Thr
130 135 140

<210> 122
<211> 79
<212> PRT
<213> Homo sapiens

<400> 122

Met Thr Ala Leu Thr Glu Glu Ala Ala Val Thr Val Thr Pro Pro Ile
1 5 10 15

Thr Ala Gln Gln Ala Asp Asn Ile Glu Gly Pro Ile Ala Leu Lys Phe
20 25 30

Ser His Leu Cys Leu Glu Asp His Asn Ser Tyr Cys Ile Asn Gly Ala
35 40 45

Cys Ala Phe His His Glu Leu Glu Lys Ala Ile Cys Arg Cys Leu Lys
50 55 60

Leu Lys Ser Pro Tyr Asn Val Cys Ser Gly Glu Arg Arg Pro Leu
65 70 75

<210> 123
<211> 96
<212> PRT
<213> Homo sapiens

<400> 123

Gly Thr Arg Glu Ala Leu Cys Tyr Arg Cys Phe Cys Pro Leu Asn Thr
1 5 10 15

Ala Met Arg Ala Leu Thr Glu Glu Ala Ala Val Thr Val Thr Pro Pro
20 25 30

Ile Thr Ala Gln Gln Ala Asp Asn Ile Glu Gly Pro Ile Ala Leu Lys
35 40 45

Phe Ser His Leu Cys Leu Glu Asp His Asn Ser Tyr Cys Ile Asn Gly
50 55 60

Ala Cys Ala Phe His His Glu Leu Glu Lys Ala Ile Cys Arg Cys Leu
65 70 75 80

Lys Leu Lys Ser Pro Tyr Asn Val Cys Ser Gly Glu Arg Arg Pro Leu
85 90 95

<210> 124
<211> 96
<212> PRT
<213> Homo sapiens

<400> 124

Gly Thr Arg Glu Ala Leu Cys Tyr Arg Cys Phe Cys Pro Leu Asn Thr
Page 42

1

5

10

15

Ala Met Arg Ala Leu Thr Glu Glu Ala Ala Val Thr Val Thr Pro Pro
 20 25 30

Ile Thr Ala Gln Gln Ala Asp Asn Ile Glu Gly Pro Ile Ala Leu Lys
 35 40 45

Phe Ser His Leu Cys Leu Glu Asp His Asn Ser Tyr Cys Ile Asn Gly
 50 55 60

Ala Cys Ala Phe His His Glu Leu Glu Lys Ala Ile Cys Arg Cys Leu
 65 70 75 80

Lys Leu Lys Ser Pro Tyr Asn Val Cys Ser Gly Glu Arg Arg Pro Leu
 85 90 95

<210> 125

<211> 97

<212> PRT

<213> Homo sapiens

<400> 125

Leu Gln Glu Met Ala Leu Gly Val Pro Ile Ser Val Tyr Leu Leu Phe
 1 5 10 15

Asn Ala Met Thr Ala Leu Thr Glu Glu Ala Ala Val Thr Val Thr Pro
 20 25 30

Pro Ile Thr Ala Gln Gln Ala Asp Asn Ile Glu Gly Pro Ile Ala Leu
 35 40 45

Lys Phe Ser His Leu Cys Leu Glu Asp His Asn Ser Tyr Cys Ile Asn
 50 55 60

Gly Ala Cys Ala Phe His His Glu Leu Glu Lys Ala Ile Cys Arg Cys
 65 70 75 80

Leu Lys Leu Lys Ser Pro Tyr Asn Val Cys Ser Gly Glu Arg Arg Pro
 85 90 95

Leu

<210> 126

<211> 115

<212> PRT

<213> Homo sapiens

<400> 126

Lys Asp Lys Arg Lys Lys Val Lys Gln Leu Gln Glu Met Ala Leu Gly
 1 5 10 15

Val Pro Ile Ser Val Tyr Leu Leu Phe Asn Ala Met Thr Ala Leu Thr
 Page 43

20

25

30

Glu Glu Ala Ala Val Thr Val Thr Pro Pro Ile Thr Ala Gln Gln Gly
 35 40 45

Asn Trp Thr Val Asn Lys Thr Glu Ala Asp Asn Ile Glu Gly Pro Ile
 50 55 60

Ala Leu Lys Phe Ser His Leu Cys Leu Glu Asp His Asn Ser Tyr Cys
 65 70 75 80

Ile Asn Gly Ala Cys Ala Phe His His Glu Leu Glu Lys Ala Ile Cys
 85 90 95

Arg Cys Leu Lys Leu Lys Ser Pro Tyr Asn Val Cys Ser Gly Glu Arg
 100 105 110

Arg Pro Leu
 115

<210> 127

<211> 94

<212> PRT

<213> Homo sapiens

<400> 127

Met Ala Leu Gly Val Pro Ile Ser Val Tyr Leu Leu Phe Asn Ala Met
 1 5 10 15

Thr Ala Leu Thr Glu Glu Ala Ala Val Thr Val Thr Pro Pro Ile Thr
 20 25 30

Ala Gln Gln Ala Asp Asn Ile Glu Gly Pro Ile Ala Leu Lys Phe Ser
 35 40 45

His Leu Cys Leu Glu Asp His Asn Ser Tyr Cys Ile Asn Gly Ala Cys
 50 55 60

Ala Phe His His Glu Leu Glu Lys Ala Ile Cys Arg Cys Leu Lys Leu
 65 70 75 80

Lys Ser Pro Tyr Asn Val Cys Ser Gly Glu Arg Arg Pro Leu
 85 90

<210> 128

<211> 117

<212> DNA

<213> Homo sapiens

<400> 128

actgggacaa gccatcttgtt aaaatgtgcg gagaaggaga aaactttctg tgtgaatgga 60
 ggggagtgct tcatggtaaa agacctttca aacccttcga gatacttgcg caagtaa 117

<210> 129

```

<211> 108
<212> DNA
<213> Homo sapiens

<400> 129
tcctggtcgg ggcacgcccgaagtgcaac gagacagccaa gtcctattcgtaatggaa 60
ggcgtctgct actacatcga gggcatcaac cagctctcct gcaagtaa 108

<210> 130
<211> 114
<212> DNA
<213> Homo sapiens

<400> 130
gagcgatccg agcacttcaa accctgccga gacaaggacc ttgcatactgtctcaatgat 60
ggcgagtgct ttgtgatcga aaccctgacc ggatcccata aacactgtcg gtaa 114

<210> 131
<211> 99
<212> DNA
<213> Homo sapiens

<400> 131
gatcacgaag agccctgtgg tcccagtcac aagtcgtttt gcctgaatgg ggggctttgt 60
tatgtgatac ctactattcc cagcccattt tgttaggtga 99

<210> 132
<211> 108
<212> DNA
<213> Homo sapiens

<400> 132
tccgtaagaa atagtgactc tgaatgtccc ctgtcccacg atgggtactgcctccatgat 60
ggtgtgtgca tgtatattga agcattggac aagtatgcat gcaagtaa 108

<210> 133
<211> 105
<212> DNA
<213> Homo sapiens

<400> 133
gcagtggtgt cccatttaa tgactgcccc gattcccaca ctcagttctg cttccatgga 60
acctgcaggt ttttgtgca ggaggacaag ccagcatgtg tgtaa 105

<210> 134
<211> 105
<212> DNA
<213> Homo sapiens

<400> 134
aagcggaaag gccacttctc taggtgcccc aagcaataca agcattactgcataaagg 60
agatgccgct tcgtggtgcc cgagcagacg ccctcctgtgtaa 105

<210> 135
<211> 105
<212> DNA
<213> Homo sapiens

```

<400> 135
 agaaacagaa agaagaaaaa tccatgtaat gcagaatttc aaaattctg cattcacgga 60
 gaatgcaa atatagagca cctggaagca gtaacatgca agtaa 105

<210> 136
<211> 105
<212> DNA
<213> Homo sapiens

<400> 136
 gggcttaggga agaagaggga cccatgtctt cgaaaataca aggacttctg catccatgga 60
 gaatgcaa atgtgaagga gctccggct ccctcctgca tgtaa 105

<210> 137
<211> 105
<212> DNA
<213> Homo sapiens

<400> 137
 gtggctcaag tgtcaataac aaagtgttagc tctgacatga atggctattg tttgcattgga 60
 cagtgcattt atctggtggaa catgagtcaa aactactgca ggtaa 105

<210> 138
<211> 105
<212> DNA
<213> Mus musculus

<400> 138
 gtagctctga agttctctca tccttgctcg gaagaccata atagttactg cattaatggaa 60
 gcatgtgcattt tccaccatga gctgaagcaa gccatggca ggtaa 105

<210> 139
<211> 105
<212> DNA
<213> Homo sapiens

<400> 139
 atagccttga agttctcaca cctttgcctg gaagatcata acagttactg catcaacgg 60
 gcttgcattt tccaccatga gcttagagaaa gccatctgca ggtaa 105

<210> 140
<211> 1651
<212> DNA
<213> Homo sapiens

<400> 140
 acggcacgag gagccggcga ggagttcccc gaaacttggg ggaactccgg gctcgccgg 60
 aggccaggag ctgagcggcg gcggctgccc gacgatggga gcgtgagcag gacgggtgata 120
 acctctcccc gatcggttg cgagggcgcc gggcagaggc caggacgcga gccgccagcg 180
 gcgggaccca tcgacgactt cccggggcga caggagcagc cccgagagcc agggcgagcg 240
 cccgttccag gtggccggac cggccgcgc gtccgcggc cgctccctgc aggcaacggg 300
 agacgcccccc ggcgcggcg agcgctcag cgcggccgct cgctctcccc atcgagggac 360
 aaactttcc caaacccgat ccgagccctt ggaccaaact cgcctgcgcc gagagccg 420

cgcgtagagc gctccgtctc	cggcgagatg tccgagcgca	aagaaggcag aggcaaaggg	480
aagggcaaga agaaggagcg	aggctccggc aagaagccgg	agtccgcggc gggcagccag	540
agcccagcct tgcctcccc	attgaaagag atgaaaagcc	aggaatcggc tgcaggttcc	600
aaactagtcc ttccggtgtga	aaccagttct gaatactcct	ctctcagatt caagtggttc	660
aagaatggga atgaattgaa	tgcaaaaaac aaaccacaaa	atatcaagat acaaaaaaaaag	720
ccagggaaat cagaacttcg	cattaacaaa gcatcaactgg	ctgattctgg agagtatatg	780
tgcaaagtga tcagcaaatt	aggaaatgac agtgcctctg	ccaatatcac catcgtaaa	840
tcaaacgaga tcatcaactgg	tatgccagcc tcaactgaag	gagcatatgt gtcttcagag	900
tctcccaatta gaatatcagt	atccacagaa ggagcaaata	cttcttcatac tacatctaca	960
tccaccactg ggacaagcca	tcttgtaaaa tgtgcggaga	aggagaaaaac tttctgtgt	1020
aatggagggg agtgcttcat	ggtgaaagac ctttcaaacc	cctcgagata cttgtgcaag	1080
taagaaaaaga aatccctgtgt	gtcgcttatg tctataactc	cttgcattcag atgattctat	1140
gtctcatgat tgattgttgc	ttttttcca atttgttgc	atcatgttga ataatgctgt	1200
tttatatgtta gagtctttta	aaacattcac accattcgac	atcactcctc tgtcatatgc	1260
agttttgttt tttgctctt	tcaatgtgtg tgaggtgtt	tttgcatttgc tttttgttt	1320
tttgccatgt tatttatagt	gttgcttcc ttgtgtttt	cttgcatttgc tttttttttt	1380
ttattcagaa aagatgtgca	gatatcacag aggccatata	cctttggta tctacttcta	1440
catccaaatgt atgaattaag	ctgtaagata atgttgctt	cttgcatttgc tgatcaccc	1500
ccaaatgaat aagacaacaa	agagaaggcag aaggcaaga	agattattta ctgacatata	1560
tctattacac ttgggattgt	gcttactgtt gcataactat	ttttaaacg gagtttagtt	1620
ttatattgtct agtaaaaaaaa	aaaaaaaaaa a		1651

<210> 141
 <211> 675
 <212> DNA
 <213> Homo sapiens

<400> 141	ctacatctac atccaccact	gggacaagcc atcttgaaa atgtgcggag aaggagaaaa	60
	ctttctgtgt	aatggagggg gagtgcttca tggtgaaaga ctttcaaacc ccctcgagat	120
	acttgcacaa	gtaaagaaaaaa aatccctgtg tgtcgcttat gtctataact ctttgcattc	180
	gtatgttcta	tgtctcatga tgtattgttgc tttttttcc aattttgttgc catcatgttgc	240
	aataatgttgc	ttttatatgtt agagtgtttt aaaacattca caccattcgat catcaactcct	300
	ctgtcatatg	cagaattgtt ttttgcatttgc ttcaatgtgtg tgaggtgtt ttttgcatttgc	360
	gtttttgttt	tttgccatgt tatttatagt gttgcttcc ttgtgtttt ttttgcatttgc	420
	attcagaaaa	gatgtgcaga tatcacagag gcctataact tttggatct acttctacat	480
	ccaaatgtatg	aattaagctg taagataatg ttgcatttgc atccrgrtga tcacactgcca	540
	aatgaataag	acaacaaaga gaagcagaag ggcagaagat tatttactga catatatcta	600
	ttacacttgg	gattgtctya ctgttgcata actatgtttt aaacggagtt tagttttata	660

ttgctagtaa aaaaa**675**

<210> 142
<211> 675
<212> DNA
<213> Homo sapiens

<400> 142
ctacatctac atccaccact gggacaagcc atcttgtaaa atgtgcggag aaggagaaaa 60
ctttctgtgt gaatggaggg gagtgcttca tggtaaaaga ccttcaaacc ccctcgagat 120
acttgtcaaa gtaagaaaag aaatcctgtg tgtcgcttat gtctataact ccttgtttca 180
gatgattcta tgtctcatga tgtattgtt cttttttcc aattttgtt catcatgtt 240
aataatgtg ttttatatgt agagtgtttt aaaacattca caccattcgt catcaactcct 300
ctgtcatatg cagaattgtt ttttgcctt ttcaatgtgt gtgaggtgtt ttttgtttt 360
gtttttgttt tttgccccatgt tatttatagt gttgcttcc ttgtggttt tcttgtt 420
attcagaaaa gatgtgcaga tatcacagag gcctataact tttggtatct acttctacat 480
ccaatgtatg aattaagctg taagataatg ttgcttctt atcccrgtga tcacctgcc 540
aatgaataag acaacaaaga gaagcagaag ggcagaagat tatttactga catatatcta 600
ttacacttgg gattgtctya ctgttcata actattttt aaacggagtt tagtttata 660
ttgctagtaa aaaaa 675

<210> 143
<211> 1651
<212> DNA
<213> Homo sapiens

<400> 143
acggcacgag gagccggcga ggagttcccc gaaacttgtt ggaactccgg gctcgccgg 60
aggccaggag ctgagcggcg gcggctgccc gacgatggga gcgtgagcag gacgggtata 120
acctctcccc gatcgggttg cgagggcgcc gggcagaggc caggacgcga gccgccagcg 180
gcgggaccca tcgacgactt cccggggcga caggagcagc cccgagagcc agggcagc 240
cccgttccag gtggccggac cgcccgccgc gtccgcgcgc cgctccctgc aggcaacggg 300
agacgccccc gcgcagcgcg agcgccctcag cgccggccgc cgctctcccc atcgagggac 360
aaactttcc caaacccgat ccgagccctt ggaccaaact cgccctgcgc gagagccgtc 420
cgcttagagc gctccgtctc cggcgagatg tccgagcgc aagaaggcag aggcaaaagg 480
aaggcaaga agaaggagcg aggctccggc aagaagccgg agtccgcgc gggcagccag 540
agcccagcct tgccctcccc attgaaagag atgaaaagcc aggaatcggc tgcaggttcc 600
aaactagtcc ttccgtgtga aaccagttct gaataactcct ctctcagatt caagtggttc 660
aagaatggga atgaattgaa tcgaaaaaac aaaccacaaa atatcaagat aaaaaaaaaag 720
ccagggaaatc cagaacttcg cattaacaaa gcatcactgg ctgattctgg agagtatatg 780
tgcaaagtga tcagcaaatt aggaaatgac agtgcctctg ccaatatcac catcgtggaa 840
tcaaacgaga tcatcactgg tatgccagcc tcaactgaag gagcatatgt gtcttcagag 900

tctcccatta gaatatcagt atccacagaa ggagcaaata cttcttcatc tacatctaca 960
 tccaccactg ggacaagcca tcttgtaaaa tgtgcggaga aggagaaaac tttctgtgt 1020
 aatggagggg agtgcttcat ggtgaaagac ctttcaaacc cctcgagata cttgtgcaag 1080
 taagaaaaaga aatcctgtgt gtcgcttatg tctataactc cttgtttcag atgattctat 1140
 gtctcatgat tgattgtgc ttttttcca attttgtgc atcatgttga ataatgctgt 1200
 tttatatgtta gagtctttta aaacattcac accattcgtc atcactcctc tgtcatatgc 1260
 agttttgttt tttgctcttt tcaatgtgtg tgaggtgttt tttgttttg tttttgtttt 1320
 tttgccatgt tatttatagt gttgcttcc ttgtgcttcc cttgtggttt tcttggttgg 1380
 ttattcagaa aagatgtgca gatatcacag aggctatacg cctttggta tctacttcta 1440
 catccaatgt atgaattaag ctgtaagata atgttgcttt cttatcccag tgatcacctg 1500
 ccaaatgaat aagacaacaa agagaagcag aagggcaaga agattattta ctgacatata 1560
 tctattacac ttgggattgt gcttactgtt gcataactat ttttaaacg gagtttagtt 1620
 ttatattgct agaaaaaaaaaaaaaaa a 1651

<210> 144
<211> 1651
<212> DNA
<213> Homo sapiens

<400> 144
 acggcacgag gagccggcga ggagttcccc gaaacttgtt ggaactccgg gctcgccgg 60
 aggccaggag ctgagcggcg gcggctgccc gacgatggga gcgtgagcag gacgggtata 120
 acctctcccc gatcgggttg cgagggcgcc gggcagaggc caggacgcga gccgccagcg 180
 gcgggaccca tcgacgactt cccggggcga caggagcagc cccgagagcc agggcgagcg 240
 cccgttccag gtggccggac cgcccgccgc gtccgcggc cgctccctgc aggcaacggg 300
 agacgccccc gcgcagcgcg agcgctcag cgccggccgc cgctctcccc atcgagggac 360
 aaactttcc caaaccgcgt ccgagccctt ggaccaaact cgctgcgcg gagagccgtc 420
 cgcgtagagc gctccgtctc cggcgagatg tccgagcgc aagaaggcag aggcaaaagg 480
 aagggcaaga agaaggagcg aggctccggc aagaagccgg agtccgcggc gggcagccag 540
 agcccagcct tgcctccccca attgaaagag atgaaaagcc aggaatcggc tgcaggttcc 600
 aaactagtcc ttcggtgtga aaccagttct gaatactcct ctctcagatt caagtggttc 660
 aagaatggga atgaattgaa tcgaaaaaac aaaccacaaa atatcaagat aaaaaaaaaag 720
 ccagggaaat cagaacttcg cattaacaaa gcatcactgg ctgattctgg agagtatatg 780
 tgcaaagtga tcagcaaatt aggaaatgac agtgcctctg ccaatatcac catcgtggaa 840
 tcaaacgaga tcatcactgg tatgccagcc tcaactgaag gagcatatgt gtcttcagag 900
 tctcccatta gaatatcagt atccacagaa ggagcaaata cttcttcatc tacatctaca 960
 tccaccactg ggacaagcca tcttgtaaaa tgtgcggaga aggagaaaac tttctgtgt 1020
 aatggagggg agtgcttcat ggtgaaagac ctttcaaacc cctcgagata cttgtgcaag 1080

taagaaaaga aatcctgtgt gtcgcttatg tctataactc cttgtttcag atgattctat 1140
gtctcatgat tgattgttgc ttttttcca attttgttgc atcatgttga ataatgtgt 1200
tttatatgtta gagtctttta aaacattcac accattcgac atcaactccctc tgtcatatgc 1260
agttttgttt ttgcctttt tcaatgtgtg tgagggtttt tttgttttg tttttgtttt 1320
tttgccatgt tatttatagt gttgccttcc ttgtgccttc cttgtggttt tcttgggtgg 1380
tttattcagaa aagatgtgcg gatatcacag aggccatatag ccttttggta tctacttcta 1440
catccaatgt atgaattaag ctgtaagata atgttgcttt cttatcccag tgatcacctg 1500
ccaaatgaat aagacaacaa agagaagcag aagggcagaag a gatttattta ctgacatata 1560
tctattacac ttgggattgt gcttactgtt gcataactat tttttaaacg gagtttagtt 1620
ttatattgct agaaaaaaaaaaaaaaa a 1651

<210> 145
<211> 1590
<212> DNA
<213> *Mus musculus*

<400> 145
gactccgggc cgccgccggca gcaggagcgg aacgcagcgc agcggcggca gctgccagga 60
gatgcgagca tagaccggac tgtgagcacc ttcccctctt cgggctgtaa gggagcgaga 120
cagccaccgg agcgaggcca ctccagagcc ggcagcggca ggacccggga cacaagagta 180
cccccgagac accccccagac gtagcggcg ctccaggtga tcgagtccac gccgctccct 240
gcaggcgaca ggcgacgccc ccgcgcagcc cggccactgg ctctccctc ccgggacaaa 300
cttttctgca agcccttggc ccaaacttgt cgcgcgtcac cgtcgcccag ccgggtccgc 360
gtagagcgct catcttttagc gagatgtctg agcgcaaaga aggagaggc aaggggaagg 420
gcaagaagaa ggaccgggaa tcccgccggaa agcccgccgc cgcgaaggc gacccgagcc 480
cagcattgcc tcccagattg aaagagatga aaagccagga gtcaagctgca ggctccaagc 540
tcgtgcttcg gtgtgaaacc agctctgagt actcctcaact cagattcaaa tggttcaaga 600
acgggaatga gctgaaccgt aggaataaac cacaacgt caagatacag aagaagccag 660
ggaagtcaga gcttcgaatc aacaaagcgt ccctggctga ctctggagaa tatatgtca 720
aagtgtatcg caagtttagga aacgacagtg cctctgccaa catcaccatt gttgagtcaa 780
acgaccccac cactggcatg tcagcctcaa ctgaaagacc ttatgtgtcc tcagagtctc 840
ccattagaat atcagttca acagaaggcg caaatacttc ttcatccaca tctacatcca 900
cgactgggac cagccatctc ataaagtgtg cggagaagga gaaaactttc tgtgtgaatg 960
gaggcgagtg cttcatggtg aaggacctgt caaaccctc aagatacttg tgcaagtaag 1020
aatgtatcc ctctctgtgc ctcgtacctg taacagctta tcccagattg ttctgtgtcg 1080
ccatgaaccc ctggctttt tttccttact ttgttacatc ttgtttaaa taattctcat 1140
ttatgtgg agggttttt gaaatatttgc caccatctgc cattgcctct gtcatgttca 1200
gaattgtttt tacttttcaa ggttttaggg tggttttgggt tcttgcgtggg ttgagttttt 1260
ttttgtttt gttgggtttt ggtttttgtt gttttgtttt gttttgtt tttgtttct 1320

ttttgcctt catatatata atttgcttt ctcctggtg ttcctaata gctactgaaa 1380
 gaagtgtca aatattgttag aaagctgtca cttgaatcc ctacttttt atcccatgta 1440
 ttaattgagc cataaggtac ataaggtaac tttttttaa ctcagtgct tacctgcaag 1500
 gtgaacagga caaatagagg ttgcaagaga gcagaaagtt acctgctaaa gcatttctta 1560
 tgctctggat tatggtattt ccccataatt 1590

<210> 146
 <211> 1630
 <212> DNA
 <213> Mus musculus

<400> 146
 gactccgggc cgccggca gcaggagcg aacgcagcgc agcggcggca gctgccagga 60
 gatgcgagca tagaccggac tgtgagcacc tttccctctt cgggctgtaa gggagcgaga 120
 cagccaccgg agcgaggcca ctccagagcc ggcagcggca ggacccggga cacaagagta 180
 gccccgagac acccccagac gtagcggcg ctccaggtga tcgagtccac gccgctccct 240
 gcaggcgaca ggcgacgccc ccgcgcagcc cggccactgg ctctccctc ccgggacaaa 300
 ctttctgca agcccttggc ccaaacttgt cgcgctcac cgtgcccag ccgggtccgc 360
 gtagagcgct catcttagc gagatgtctg agcgcaaaga aggagaggc aaggggaagg 420
 gcaagaagaa ggaccgggaa tcccgcgggaa agcccgccgc cgccgaaggc gacccgagcc 480
 cagcattgcc tcccagattt aaagagatga aaagccagga gtcagctgca ggctccaagc 540
 tcgtgcttcg gtgtgaaacc agctctgagt actcctcact cagattcaaa tggttcaaga 600
 acgggaatga gctgaaccgt aggaataaac cacaaaacgt caagatacag aagaagccag 660
 ggaagtcaga gttcgaatc aacaaacgt ccctggctga ctctggagaa tatatgtgca 720
 aagtgatcag caagtttagga aacgacagtg cctctgccaa catcaccatt gttgagtcaa 780
 acgacccac cactggcatg tcagcctcaa ctgaaagacc ttatgtgtcc tcagagtctc 840
 ccattagaat atcagttca acagaaggcg caaatacttc ttcatccaca tctacatcca 900
 cgactggac cagccatctc ataaagtgtg cggagaagga gaaaaacttc tgtgtgaatg 960
 gaggcgagtg cttcatggtg aaggacctgt caaaccctc aagatacttg tgcaagtaag 1020
 aaatgaattt ctctctgtgc ctcgtacctg taacagctta tcccagattt ttctgtgtcg 1080
 ccatgaaccc ctggctttt tttccttact ttgttacatc ttgtttaaa taattctcat 1140
 ttatgttgg agggttttt gaaatattt caccatctgc cattgcctct gtcatgttca 1200
 gaattgattt tactttcaa gtttttaggg tgtttttgtt tcttgatggg ttgagtattt 1260
 tttttgttg gttggtttg gtttttgct gttttgttt gtttttgtt ttgtttct 1320
 ttttgcctt catatatata atttgcttt ctcctggtg ttcctaata gctactgaaa 1380
 gaagtgtca aatattgttag aaagctgtca cttgaatcc ctacttttt atcccatgta 1440
 ttaattgagc cataaggtac ataaggtaac tttttttaa ctcagtgct tacctgcaag 1500
 gtgaacagga caaatagagg ttgcaagaga gcagaaagtt acctgctaaa gcatttctta 1560

tgctctggat tatggtattt ccccataatt agttttcaag acaaattta agttgccctt 1620
 tcttagttact 1630

<210> 147
 <211> 366
 <212> DNA
 <213> Mus musculus

<400> 147
 ttcaaggcac tgctcgtcct tgctcgact catttgcct tggatcatag gcgatggccc 60
 cagctcctag cctcctgcac tacccataa tcgtctgtca ccctttgtt tttgcagag 120
 ctcacaactg gcatgtcagc ctcaactgaa agaccctatg tgtcctcaga gtctcccatt 180
 agaatatcag tttcaacaga aggccaaat acttcttcat ccacatctac atccacgact 240
 gggacaagcc atctaataaa gtgtgcggag aaggagaaaa ctttctgtgt gaacggaggc 300
 gagtgcttca tggtaagga cctgtcaaac ccctcaagat acttgcgaa gtaagaaatg 360
 aattcc 366

<210> 148
 <211> 412
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (339)..(339)
 <223> n = undefined nucleotide

<400> 148
 cacccggccc aagttgaaga agatgaagag ccagacggga caggtgggtg agaagcaatc 60
 gctgaagtgt gaggcagcag cgataaatcc ccagccttcc taccgttgt tcaaggatgg 120
 caaggagctc aaccgcagcc gagacattcg catcaaatat ggcaacggca gaaagaactc 180
 acgactacag ttcaacaagg tgaagggttggg ggacgctggg gagtatgtct gcgaggccga 240
 gaacatccctg gggaggaca ccgtacgagg cccgctttac gtcaacagcg tgacgaccac 300
 cctgtcatcc tggtcggggc acgcccggaa gtgcaacgng acagccaagt cctattgcgt 360
 caatggaggc gtctgctact acatcgaggg catcaaccag ctctcctgca ag 412

<210> 149
 <211> 350
 <212> DNA
 <213> Homo sapiens

<400> 149
 ggtcatcttc cagtttgac gtggggcatg aaggagatga ttccctggggc ctagggatag 60
 tctcagtgcg tcactggcac atgtctctca taccctcagt gaggcaccacc ctgtcattct 120
 ggtcggggca cgccccgaaag tgcaacgaga cagccaaatgc ctattgcgtc aatggaggcg 180
 tctgctacta catcgagggc atcaaccagc tctcctgcaa gtaagtgacc agtaggggtg 240
 ggcattggag caagaacagg gtaggagatg ctgggtcaga agtggaggc tcttagaaaa 300
 gagggttcca agccactgac aagaggtccc caaggggtgt agacaggaag 350

<210> 150
<211> 629
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (554)..(554)
<223> n = undefined nucleotide

<220>
<221> misc_feature
<222> (577)..(577)
<223> n = undefined nucleotide

<220>
<221> misc_feature
<222> (594)..(594)
<223> n = undefined nucleotide

<400> 150
gggagtcaag agatggcagt acttggctga aggttggtag tgagagatca atataatcat . 60
ctggatttat tttccttctg cctggaggac ttgcttaac atttcaagta gtgtgggtct 120
gctgctgacg aattcataca aattttatac gacgacatat tccacagagc gatccgagca 180
cttcaaacc ctcgcgagaca aggaccttgc atactgtctc aatgtggcg agtgcattgt 240
gatcgaacc ctgaccggat cccataaaaca ctgtcgtaa gccactgagg ccactgatgg 300
aaagggcagg cccttgcaa ggcgtgggg tgaggggtgc tggcagcatc tggtatgtgt 360
catatccggg atacacacag tcccaccgtt tgaatagcag aattgcgagt cttatttgg 420
aaagggcaag gctgctgcct cttaacagt ggaagaagac aaaatggaaa caaagttagtt 480
acggtttaag ttttacctga ccaagcaaac aaagatttac ttttagatct gcaaagttaa 540
tggaaataat tatntacaca cttagaagc gtctgtntat gatgtggagc ttangcatat 600
atcctagtagtac tcagaaataa tctgttctt 629

<210> 151
<211> 595
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (205)..(205)
<223> n = undefined nucleotide

<400> 151
gtgtctgcgg tattcaaaaa ctttgaaac actgcattgtc caacaaaatt tatttttgt 60
gtgaatgtaa gtttttattt agggtaactgt ttttcaaccc tactctctt accaagaatg 120
aaactattta caaattaaga tgccaacaga tcacgaagag ccctgtggtc ccagtcacaa 180
gtcgaaaaatgc ctgaatgggg ggctntgtta tgtgataacct actattccca gcccattttg 240
taggaagtga actgatgctg gcttctctt gtcttattcc aagttggca tgagattttc 300
cctgcatttag aaggttggtt agacctgaag cctggaaagg tgcgttggaaa actatacagg 360

<212> DNA
<213> Mus musculus

<400> 154
gagtgttcaa acacttgtga aacgctgcat gtcttagcaaa attttctttt tttatggaa 60
tataaaatttc tgttgaggtg ctgattttca accttaattc ttccatcaag aatgaaacta 120
tttaaaaattt aagatgccaa caggtaattt cttatcacga gcagccctgt ggtcccaggc 180
acaggtcatt ttgcctcaat ggggggattt gttatgtgat ccctactatc cccagcccat 240
tctgttagaa gtgaactgtt gctggcttct ctttgtctta ttccaagttg ggtcatgaga 300
tttccctgc accctggaa ggtgcattga aaattacacc ggagcacgct gcgaagaggt 360
tttctccca agctccagca tcccaagcga aagtaatctg tcggcagctt tcgtggtgct 420
ggcggtcctc ctcactctta ccatcgcggc gctctgcttc ctgtgcaggg ccgagtggaa 480
ctgaccctcc aggacatatg tgagatgcta aaaggaagac taaagaagtg gaagggccac 540
cttcagaggg ccagttcagt ccaatgtgag atcagcctgg tggaaacaaa caataccaga 600
acccgtcaca gccacagaaa acactggaaa catacatccc cagggaggg catcattacc 660
tacaaaggg 669

<210> 155
<211> 614
<212> DNA
<213> Mus musculus

<400> 155
gagtgttcaa acacttgtga aacgctgcat gtcttagcaaa attttctttt tttatggaa 60
tataaaatttc tgttgaggtg ctgattttca accttaattc ttccatcaag aatgaaacta 120
tttaaaaattt aagatgccaa caggtaattt cttatcacga gcagccctgt ggtcccaggc 180
acaggtcatt ttgcctcaat ggggggattt gttatgtgat ccctactatc cccagcccat 240
tctgttagaa gtgaactgtt gctggcttct ctttgtctta ttccaagttg ggtcatgaga 300
tttccctgc accctggaa ggtgcattga aaattacacc ggagcacgct gcgaagaggt 360
tttctccca agctccagca tcccaagcga aagtaatctg tcggcagctt tcgtggtgct 420
ggcggtcctc ctcactctta ccatcgcggc gctctgcttc ctgtgcagga agggccacct 480
tcagagggcc agttcagtcc agtgtgagat cagcctggta gagacaaaca ataccagaac 540
ccgtcacagc cacagagaac actgaagaca tacatccccca gtgaagggca tcattaccta 600
caaaggcggg ctgg 614

<210> 156
<211> 513
<212> DNA
<213> Homo sapiens

<400> 156
ttaagaaaata aaggattaga ttttaatttc ttttacctag tggtgtttca ttttctgcct 60
ttgtaaaata aaaacaatga tttggttcac tttgacgttt cttcagtgtt gttcatgact 120
gtggtgggca ctggtactgc tcgtctctac caggttata tcatactgga ctgaactggc 180

tctctgaaaag tggccttcc tgcaaaggaa gtagaaggct ccaatgataa gtgttactag 240
 gaccgcccatt gccacaaaag cttcaaacag gttactttta gtttgatgc tggagcctgg 300
 gagaaaaacc tcttcacaac gagctcctgt atagtttca acgcacccccc ccaggcttca 360
 ggtctcaaca accttctaatt gcagggaaaa tctcatgccc aacttgaat aagacaaaga 420
 gaagccagca tcagttcaact tcctacaaaa tggctggga atagtaggta tcacataaca 480
 aagcccccca ttcaggcaaa acgacttgc act 513

<210> 157
<211> 243
<212> DNA
<213> Sus scrofa
<400> 157
aagagccctg tggcccagt cacaggtcat ttgcctgaa tggagggatt tgttatgtga 60
tacctactat tcccgcccccc tttttagga agtgaactga tgctggcttc tcttgtctt 120
attccaagtt gggcatgag atttgcctg cattagaagg ttgtttagac ctgaagcctg 180
gtaaggtcat gcagaacattt gaagaaatac catagtgaac tcaaaatcgt tgcttcttg 240
tta 243

<210> 158
<211> 300
<212> DNA
<213> Sus scrofa

<220>
<221> misc_feature
<222> (111)..(275)
<223> n = undefined nucleotide
<400> 158
aagagccctg tggcccagt cacaggtcat ttgcctgaa tggagggatt tgttatgtga 60
tacctactat tcccgcccccc tttttagga agtgaactga tgctggcttc ncnttggcct 120
aatnccagnt tggcatgag atttgcctgc attagaangg ttgtttaganc tgaagcctgg 180
taaaggcatg cagaacattt aagaatacnt agtgaactcc aaatcggtgc ttcccttggta 240
caaaaggcgn aatgnagccc atacgtaaa gatcnatgag ttaatcctcc ttggcccaa 300

<210> 159
<211> 2360
<212> DNA
<213> Mus musculus

<400> 159
ttgttttgttgcatacac caggctgctg gacactgaac ttctggcaat tctcttgc 60
ctgaccat ctcctggtag aggtgcactg gactacagac atgtgcccta ctgcactggc 120
tatttatgttgcatacac caggctgctg gacactgaac ttctggcaat tctcttgc 180
ctatcttccc agccctgtt gttggcttgcatacac caggctgctg gacactgaac ttctggcaat tctcttgc 240
catggcactt ggcagtgcatttgtgaggcac cagagatgttgcatacac caggctgctg gacactgaac ttctggcaat tctcttgc 300
tgaccctttgcatacac caggctgctg gacactgaac ttctggcaat tctcttgc 360

gaaacttcat tatagagggtt caggtaccca ggtcaatgtt ttcctcagga actctaagta	420
gaaaactaaa ctctagtcag tttgctatta aaaacagatc ccagctcaag cgtcccggga	480
ctcctttgt accctggaca tctggttgac agttctcattt cttcaacttg ctcagccctc	540
tgggtctcag atcagtagcc agccacatag aagcaaacac tcttttaatc gggtaacttg	600
ccaccccccctt cctccccctaa gacgagggga atactcacac acatgctggc ttctcttcct	660
gcaccaaaaa ccggcagggtt ccatggaagc agtactgagt gtggaaatct gggcacttgt	720
tgaagtgaga caccactgca gccgccacgg gtgagtcgtc tggggcaaag agacatcatc	780
agacctggca cagctcacac ccaggagggaa tttctgccc cacctgatgc cttctgcaaa	840
actcacgtcc taatgcccag ccagggctca gagttttcat taagcagtct gtatatttt	900
ctaagataac aaaataattt ctccaaaggc tttggtataa ttcaaagata gctagttaga	960
ttcatttgca aaatggcaca cacctgaaat cccagcactc agaaggtaga ggcacaagga	1020
tcaggagttc gaggccaacc tagtccatat gtggagttt aggtcagttt gatctcatta	1080
tctccaaccc ccaaaagaag ccaaggaacg gctcagtagg caaagtgtt gctgtgcaaa	1140
gatgaggacc tgagcttggc ctccagcacc cacataaaga gacatcacag taaggattgc	1200
aactccagca ttctagttcc tggggAACCA ctatactgct gaaggcagag ctctatgcct	1260
tgtaacagaa taaacaaaga tgctcaatgg ataaacatac tgacacacat gtaggatgga	1320
ctcaacattc tgtgttcaga gtcttgaag gagtcatgtt aagcaaaggc agaaacctcc	1380
tcaatgacat cccaaagatt cctgccagtg ccccttctcc tgtgtcatca tacagccaa	1440
aagctgggt ccacaccatg aagaaactcc acatgacacc caaaggttt tctctgtc	1500
cctggagcat agggtgagaa tgagaagcct gctacttctg attctcttgt ttctgagcct	1560
caagtatgtc aggctggcct agaatttact gtgtagccca ggctagtc tt gactcttga	1620
tcctcctgcc tccaccccca ccaagtgtt gggttatagg agtgtgatgc cactccttgt	1680
ttattcagta ttgggattga aaccaggcca gcactctaca actctacctc atcccagccc	1740
acttctggtc cttcatacag ccaactatct tcctgctact tataataat gcttccagtc	1800
ctttctgctg cccttctcca ggctaaagaga agaaaggatg aaggaagagg aatgacaatc	1860
catgctatga caactaaatg gtagctaaaa ataaaacaac ctttgcttt aattacagt	1920
atacatacac tttgaaact tttccagaag cttttctgaa tggcaaagggt agttcactga	1980
aactactgac atagaataaa atccaccta gagaataaag cacatctaa tcctcaactc	2040
atcaagagfc ataaaaacac agcacacacc aatgacatac ttgtgaactt acattcctgt	2100
tctaaaaatc aagggtgaat cacattgcaa ccaggaaact gcccctgcct gggactcagg	2160
ggcagctgcc aaagcacaga actggtaagt ttacgaggag actccaagtt cccgatatct	2220
tcccccaaga ttggaccttt caacttttt tctttttta ttctttaaa ttaaaagatg	2280
tgtgcgttgt gtgtgtgtgt gcgcacgcgc ttgtgactgc aaatgctgcc aagtgaactt	2340
ggacaagcat tactgcattt	2360

<210> 160
<211> 180
<212> DNA
<213> Homo sapiens

<400> 160
gatctgagcc ctgcacatctt cctctccccca gcagacccgc ccgtggctgc agcagtggtg 60
tcccattttta atgactgccc agattcccac actcagttct gcttccatgg aacctgcagg 120
tttttggtgc aggaggacaa gccagcatgt gtgtaagtat cccctgttct cctggagatc 180

<210> 161
<211> 129
<212> DNA
<213> Homo sapiens

<400> 161
cagttcagac agaagacaat ccacgtgtgg ctcaagtgtc aataacaaag tgtagctctg 60
acatgaatgg ctattgtttg catggacagt gcatctatct ggtggacatg agtcaaaact 120
actgcaggt 129

<210> 162
<211> 120
<212> DNA
<213> Homo sapiens

<400> 162
cagacagaag acaatccacg tgtggctcaa gtgtcaataa caaagtgttag ctctgacatg 60
aatggctatt gtttgcatttgg acagtgcattc tatctggtgg acatgagtca aaactactgc 120

<210> 163
<211> 129
<212> DNA
<213> Mus musculus

<400> 163
tagttcagat ggaagacgat ccccggtgtgg ctcaagtgcg gattacaaag tgtagttctg 60
acatggacgg ctactgcttg catggccagt gcatctacct ggtggacatg agagagaaat 120
tctgcagat 129

<210> 164
<211> 1299
<212> DNA
<213> Homo sapiens

<400> 164
gacacagcca acgtgggttc cttcttaggc tgacagccgc tctccagcca ctgccgcgag 60
cccgctctgct cccgcccctgc ccgtgcactc tccgcagccg ccctccgcca agccccagcg 120
cccgctccca tcgcccatttga ccgcggggag gaggatggag atgctctgtg ccggcagggt 180
ccctgcgctg ctgctctgccc tgggtttcca tcttctacag gcagtcctca gtacaactgt 240
gattccatca tgtatcccag gagagtccag tgataactgc acagcttttag ttcagacaga 300
agacaatcca cgtgtggctc aagtgtcaat aacaaagtgt agctctgaca tgaatggcta 360
ttgtttgcatttgg acagtgcatttgc tctatctgggt ggacatgagt caaaaactact gcaggtaata 420

tgtcagaaaat aaacaaacac agtttgtaaa atttgtttt atagatttag gggtacaagt	480
gcagatttc tagtgatat attcagtagt ggtgaagtct gagcttttag agtacctacc	540
cctcaaatacg tgtgcatgga acccattagg taattttca tcccttaacc cccccaaaac	600
tcttctacct tttgaagtct ccagagtcta ttactccact ctctatgaca atgtgtacac	660
attatttacg tcccacttgt gagaacatgt gataaacaaa tgca gtttttca ctctttgtat	720
ttctatTTT ataatttcaa attaccat attccatgg gctgttaat gcagtatata	780
tattattaga aactttctg agttttaaa aatttaggtag taaatagtag ctttttaaatt	840
gcacacatgat gtcagagggtg cagagcaggg aggacttctg atgcttctca cacttgccaa	900
gatgggtct ctctgctttg gatctttcc ttcaatttct atatcaggtt ttgttttaag	960
aattgattcc aggccggacg cggtggctca tgccgtataat cccagcaccc ttggaggccg	1020
aggcggggcg atcacggggt caggagatca agaccatcct ggcgaacacg gtgaaacccc	1080
gtctctacta aaaataaaaaa aaaaaaaaaa attagccagg ggtgtggcg gacgcctgaa	1140
gtcccagcta ctcgggaggc tgaggcagga gaatggcatg aacccggggg gtggagctt	1200
cagtgagcgg agatcatgcc actgtactcc agcctggca acacagcgg actccgtctc	1260
aaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	1299

<210> 165
<211> 1215
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (554)..(839)
<223> n = undefined nucleotide

<400> 165	
taatacgaag acacagccaa cgtgggtcc tttctcggtc gacagccgct ctccagccac	60
tgccgcgagc ccgtctgctc ccgcctgccc cgtgcactct ccgcagccgc cctccgccaa	120
gccccagcgc ccgcctccat cgccgatgac cgcggggagg aggatggaga tgctctgtgc	180
cggcagggtc cctgcgctgc tgctctgcct gggttccat cttctacagg cagtcctcag	240
tacaactgtt attccatcat gtatcccagg agagtccagt gataactgca cagtttagt	300
tcagacagaa gacaatccac gtgtggctca agtgtcaata acaaagtgtt gctctgacat	360
aatggctat tggttgcattt gacagtgcattt ctatctgggtt gacatgagtc aaaactactg	420
caggtaatat gtcaaaaaata aacaaacaca gtttggaaaa ttgtttttta tagatttagg	480
ggtacaagtgtt cagatttgcgtt agtggatata ttcaatgtt gttttttttt gttttttttt	540
atgtgcttcc cgcnn	600
nn	660
nn	720
nn	780
nnnnnnccnn	840

aaactttttt tttgaggttt taaaaaaaaat tagggtagt aaaaataggg aggtttttta 900
 aaatttgc caccattatg tccaaaagt gccaacatc aggaaaggaa cctttggag 960
 ggctttctc ccccccttgc cccccgaagg ggggtcctcc tccggcctt gggatctt 1020
 ttcccttac atttccaaa attccggga tttgtttt taaaaaaaaatg gagatttccc 1080
 cgcgccccgg acgccgtatg gggcttcatg gccctggaaa cccccccccca ctctttgtg 1140
 ggggtccccg aggccaggggg gggggattc cgccccccg ccggggaaat tacaaacacc 1200
 ctccccctgg ggcga 1215

<210> 166
 <211> 549
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (355)..(355)
 <223> n = undefined nucleotide

<400> 166
 atccccggga gaaagccacc cggcccaagt tgaagaagat gaagagccag acgggacagg 60
 tgggtgagaa gcaatcgctg aagtgtgagg cagcagcggg taatccccag ctttcctacc 120
 gttggttcaa ggtatggcaag gagctcaacc gcagccgaga cattcgcac 180
 acggcagaaa gaactcacga ctacagttca acaaggtgaa ggtggaggac gctggggagt 240
 atgtctgcga ggcggagaac atccctggga aggacaccgt cggaggccgg ctttacgtca 300
 acagcgtgac gaccaccctg tcataccctgg cggggcacgc ccggaaagtgc aacngacag 360
 ccaagtccta ttgcgtcaat ggaggcgtct gctactacat cgagggcatc aaccagctct 420
 cctgcaaggc acctgggctg cactgcttag aacttggtac ccagagccac cactccccca 480
 tctcagcctc ccctggttcc agccaaggtt cctggAACCA acttccccaa caccctttgt 540
 cagccctcg 549

<210> 167
 <211> 362
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (323)..(323)
 <223> n = undefined nucleotide

<400> 167
 agcacagctc tgaggacctg gtgttctgac cgcacatctcca ccaggcgtgc cctctcccc 60
 gagggctgac aaagggtgtt ggggaaggtt gttccaggaa cttggctgg aaccagggga 120
 ggctgagatg gggaaagtggt ggctctgggt accaagttct aagcagtgc gcccacgtgc 180
 cttgcaggag agctgggtga tgccctcgat gtagtagcag acgcctccat tgacgcaata 240
 ggacttggct gtctcggtgc acttccgggc gtgccccgac caggatgaca gggtggtgc 300

cacgctgttg acgtaaagcc ggnccggac ggtgtccttc cccaggatgt tctcggcctc	360
gc	362
<210> 168	
<211> 458	
<212> DNA	
<213> Mus musculus	
<400> 168	
gtgtgaggca gcggcggaa acccccagcc ctccatatgc tggttcaagg atggcaagga	60
actcaaccgg agtcgtata ttcgcatcaa gtatggcaat ggcagtgagc accactctgt	120
catcctggtc gggacatgcc cggaagtgc atgagaccgc caagtctac tgtgtaatg	180
gaggcgtgtg ctactacatc gagggcatca accagctctc ctgcaaaggc tgaggagctg	240
taccagaaga gagtgctgac aattactggt atctgtgtgg ccctgctggt cgtgggcatc	300
gtctgtgtgg tcgcctactg caagacaaa aaacagagga ggcagatgca tcatcatctc	360
cggcagaaca tgtgcccagc ccaccagaac cgaagcctgg ccaacggcc agccaccctc	420
ggctggacca tgaggagacc agatggcaga ttaatctc	458
<210> 169	
<211> 539	
<212> DNA	
<213> Danio rerio	
<400> 169	
ccaccacgcag agccacgcag atgccagtta tcgtcagcac tcgttttgtt acagctccctc	60
agcctttagt aaaccggcca taacggaggt ttgacagcgt tcgccccat agtcatttgg	120
acacttgcag gacagctgat ttataccatg tatgaaataa cagtcctccac cggtgatgca	180
gtatgtcttc tcagtttcat tgcacccctt ggcatgactt gagccggag acaatgttgtt	240
ggttatgtctt tggacgctga cgaagctggt ggcgttttct ctgcccagcg agttctccac	300
cacacaggtg tagttccag aatccctccag tctgactttt ctaatgtgaa gctttgagtt	360
tttcttgatg gtttgatTT tgacggtttt ctttggcga agctggctgc catctttgtt	420
ccagttgaag gaggggctcg gggtgcccac agttcacac ttcagtgtca acttttacc	480
ttccctggagc cactgagaat ccatggcatt cacctttgga gctgatgcgc agtctttac	539
<210> 170	
<211> 654	
<212> DNA	
<213> Gallus gallus	
<400> 170	
cacgctggga gatgagtgcgt gtgggtccca gctgtgaggt gcctggctg gcagtgccttc	60
tccctctctc cctctgcagg ggaaagaaaag aaggacttt ttctttctct gaagtagaaag	120
ttcagatTTT gatggtaagg gagctgatgt ggaggcctgg ccttaaggaa ggctttcagt	180
aggcagttaca gtctttggag ctgctgcagc agacctggcg gttgtctacc ttgcaatttgc	240
agtatgacag aagagtagcc tgtggattcc actatactac aacgtattcc actgagcgat	300

ctgagcactt taagccatgc aaagacaagg atcttgata ctgtctcaac gagggggaaat	360
gctttgtat tgaaacctta acaggatcac ataaacactg ccgcagcaat tgcccttctg	420
gtgtttctg ctgggtaccc gtctgaatag atgttcttcc agaggtggtt gtggtttggg	480
gcattgtatgc tggaaagagg attaccagga agagctcagc tgcccttca ttgctcagtc	540
cacgttata aagaaggatg gacagtgacc tgtgagcaag cttgttgca aaagaaagca	600
ttatctgttg gtaacttttg caataaaaaa tatttcttgt attactctaa aaaa	654

<210> 171
<211> 758
<212> DNA
<213> *Gallus gallus*

<220>	
<221> misc_feature	
<222> (4)..(4)	
<223> n = undefined nucleotide	
<400> 171	
gcanggcggg aggccgcgcg cggtcgtgt ccgcgggcag acagcggcat tacataaccg	60
cgtacagaga gcagctgcgg gattacacga tgcagattag cggcggcggtt gattcagcag	120
atgccctgtg cgtgtgtgag ggggattacg gcggcgcggg gcagaaccgc cgtgcgggtg	180
ccgttttaga agaatagctt ctgaccaaga attagaattt ttgaaataat atgcacacag	240
atcatgaaga actctgtggc accagttatg gatcttttg tctaaatgga ggcatttgct	300
atatgattcc tactgtaccc agtccattct gcagacatct tccgaaagca gcaaaccaag	360
cttcagcctt acataagtca gtcttctcta tcttcgtttt acatacagac accactgcac	420
tcccaagctg ccatttaatg cctgctcatt tctatacgca atgaaagata actagaaaat	480
ccgtatttca aggctatcct ccatttctac atccctgcaa actacctaag aacaattaga	540
tggaacagga ttgtctacaa cattgttattc acaaaggagg ctatctttag gatggaaattt	600
ctttttctc agatgtatta cttaccagca aggaaggttag ttctgttga atcttctcaa	660
taaacaccac atttcctgtt tcaggttggg tggaaactat tcttcaaaccg gaggaggttt	720
atgtgttcct ttcgttccta taatgtctca ataatgag	758

<210> 172
<211> 547
<212> DNA
<213> *Mus musculus*

<400> 172	
gttgctgaag tcctcagtgt tcaaacaactt gtgaaacgct gcatgtctag caaaattttc	60
ttttttatg ggaatataaa tttctgttga ggtgctgatt ttcaacctta attcttccat	120
caagaatgaa actattnaaa aattaagatg ccaacagatc acgagcagcc ctgtggccc	180
aggcacaggt cattttgcct caatgggggg atttgtattt atccctacta tccccaccca	240
ttctgttaggt tttatcattt gtttctaaga cattgcctac ttaaaccatt cgtcaatttgc	300
ggcaccttgg tgtacccagt gtttctgttgaag gagttattcc attgacgcgc cccaaagtct	360

tcatgcagtg gtgttcctga atgcttggaa tctgtttct gcgaatcctt ggtggatgg 420
 ctagaaacct gtgaaaaatc atgaaatcac caaataccat gtgatgtgta tagtctcttc 480
 tcctctccac tgacagctta atcagggaa agggactgtt gctgcttctc tttgtcttat 540
 tcccagt 547

<210> 173
 <211> 233
 <212> DNA
 <213> Homo sapiens

<400> 173
 cggatgtatc ccaacaccgt cacggaaata ttctgctgac attgcattgtt actgcttcca 60
 ggtgctctat atatttgcatt tctccgtgaa tgcagaaattt ttgaaattct gcatcacatg 120
 gatTTTCTT CTTCTGTTT CTTCTATT TTCCATTTTT GCCTCCCTTT TTCTTCCTT 180
 tgggtttatc tgaagtattt tcactttccg gcttgtgtt ggcgataaca tca 233

<210> 174
 <211> 533
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (7)..(7)
 <223> n = undefined nucleotide
 <400> 174
 ccctagntgc caccacacaa tcaaagtgga aaggccactc ctctaggtgc cccaaagcaat 60
 acaaggcatta ctgcattcaaa gggagatgcc gcttcgtggt ggccgagcag acgcccctct 120
 gtgtccctct ccggaaacgt cgtaaaaagaa agaagaaaaga agaagaaaatg gaaactctgg 180
 gtaaaagatat gactcctatc aatgaagata ttgaagagac aaatattgct tataaggcta 240
 tgaagttacc tccaggttgg tggcaagctg caaagtgcct tgctcatttg aaaatggaca 300
 gaatgcgtct cagggaaaca gctagtagac atgaattttt aataatgtat ttacttttt 360
 tttgcaactt cagtttgtt tattttttt taataagaac attaattata tgtatattgt 420
 ctagtaattt gaaaaaaaagc aactggttag gtagcaacaa cagaaggaa atttcaataa 480
 cctttcaactt aagtattgtc accaggatta ctagtcaaac aaaaaaaaaaaa aaa 533

<210> 175
 <211> 689
 <212> DNA
 <213> Mus musculus

<220>
 <221> misc_feature
 <222> (671)..(671)
 <223> n = any nucleotide
 <400> 175
 gcagattatt tgtttaccac tttagaacaca ggatgtcagc gccatcttgt aacgacgaat 60
 gtggggcggtt ctcacacac ttcaccatgg tttgacacctt gtcatgacca gttatTTCTT 120

ggcttatctc cactaatctt gggagcctca gcaccagccc tgagttcata tcacaccacc	180
aaagtcttg acctggaaga gcttaactt cctaagcctc ctgcttcac tggcagcac	240
tggtacccgg agaatcctgt gtcccttgtc tactccatcc tggtctgcag gtcttgcata	300
tctccactgt gtggtagcag atggaaacac aaccagaaca ccagaaacca atggctct	360
ttgtggagct cctggggaaa actgcacagg taccacccct agacagaaag tgaaaaccca	420
cttctctcg tgccccaaagc agtacaagca ttactgcatt catggagat gccgcttcgt	480
ggtggacgag caaactccct cctgcattgc ccggctcagc atctacttgt ggagaaactg	540
acgcagactt tcctcctgaa atctgaatat gagaaacccag gtccagttct gccctgctgg	600
tgtcccaact cccttgcga agaaaaggcg attctaattcg tgtaggatg ctcgatagtt	660
ccaatcatct nctgggtgtt tcaatgaaa	689

<210> 176

<211> 1196

<212> DNA

<213> Cercopithecus aethiops (African green monkey)

<400> 176

gcccagcgga atcttttag tcccaccgccc cagctccggc gccagcgccc agtggccgcc	60
gcttcgaaag tgactgggtgc ctcgcgcct cctctcggtg cgggaccatg aagctgctgc	120
cgtcgggtgt gctgaagctc cttctggctg cagttctttc ggcactggcgt actggcggaa	180
gcctggagca gcttcggaga gggccagctg ctggaccac caacccggac cttccactg	240
gatctacgga ccagctgcta cgcctaggag gcggccggga cggaaagtc cgtgacttgc	300
aagaggcaga tctggacctt ttgagagtca ctttatcctc caagccacaa gcaactggcca	360
caccaagcaa ggaggagcac gggaaaagaa agaagaaagg caagggacta gggagaaga	420
gggaccatg tcttcggaaa tacaaggact tctgcattcca cggagaatgc aaatatgtga	480
aggagctccg ggctccctcc tgcattggcag ctggcagaa agatgttact tgatttgttt	540
ggtttgcct gtgatgaaag aggctggta gctcagcgtt cagaggccaa aggccagagc	600
tgccacccag gttaccatgg agagaggtgt catggcgtga gcctcccgat gggaaatcgc	660
ttatataacct atgaccatac aactatcctg gctgtgggtgg ccgtgggtct gtcctctgtc	720
tgtctgtcgg tcatcgtggg gcttctcatg ttttaggtacc ataggagagg tggttatgat	780
gtggaaaacg aagagaaagt gaagttggc atgactaatt cccactgaga gacttgcgt	840
caaggaatca gctgggtact gctaccctcg agaagacaca aggtgatttc agattgcaga	900
ggggaaaagac gtcacatcta gccacaaaga ctccttcattc cccagtcgcc atctaggatt	960
gggcctccca taattgcttt gccaaaatac cagagccttc aagtgcacaa ccgagtatgt	1020
ctgatagtat ctgggtgaga agaaagcaaa agcaaggac cttcatgccc ttctgattcc	1080
cctccaccaa gccccacttc cccttataag ttgttaag cactcacttc tggattagaa	1140
tgccggtaa atccatatg ctccaggatc tttgactgaa aaaaaaaaaaaaaaa	1196

<210> 177

<211> 564

<212> DNA

<213> Homo sapiens

<400> 177

acggggtccg agaaaagttaa gcaactacag gaaatggctt tggaggttcc aatatcagtc	60
tatcttttat tcaacgcaat gacagcactg accgaagagg cagccgtgac tgtaacacct	120
ccaatcacag cccagcaagc tgacaacata gaaggaccga tagccttcaa gttctcacac	180
cttgcctgg aagatcataa cagttactgc atcaacggtg cttgtgcatt ccaccatgag	240
cttagagaaag ccatctgcag gtgtctaaaa ttgaaatcgc cttacaatgt ctgttctgga	300
gaaagacgac cactgtgagg ccttgcgaa gaattttcat caaggcatct gtagagatca	360
agtgagccca aaattaaagt ttccagatga aacaacaaa cttgtcaagc tgactagact	420
cggaaaatatg gaaagttggg gatcacaatg aaatgagaag ataaaatcag cggtggccct	480
tagactttgc catcctaag gagtgtatggc agccaagtga acaagcctca gtgacacaag	540
tcaattcat aggttcaactc tggg	564

<210> 178

<211> 387

<212> DNA

<213> Homo sapiens

<400> 178

ggcacgaggg aggcttttgc ttatagatgc ttttgc cccccc ttaatacagc aatgagagca	60
ctgaccgaag aggcagccgt gactgttaca cctccaaatca cagcccagca agctgacaac	120
atagaaggac ccatagcctt gaagttctca caccttgc tggaaatca taacagttac	180
tgcatcaacg gtgttgc attccaccat gagcttagaga aagccatctg caggtgtcta	240
aaattgaaat cgccttacaa tgtctgttgc ggagaaagac gaccactgtg aggcccttgc	300
gaagaatttt catcaaggca tctgttagaga tcagtgtatggc caaaattaaa gttttcagat	360
gaaaacaacaa aacttgtcaa gctgact	387

<210> 179

<211> 389

<212> DNA

<213> Homo sapiens

<400> 179

ggcacgagga aagttaagca tctacagggtt atggctttgg gagttccat atcagtctat	60
cttttattca acgcaatgac agcactgacc gaagaggcag ccgtgactgt aacacccatcca	120
atcacagccc agcaaggtaa ctggacagtt aacaaaacag aagctgacaa catagaagga	180
cccatagcct tgaagttctc acacccatcca ctggaaatgc ataacagttt ctgtcatcaac	240
ggtgcttgc cattccacca tgagcttagag aaagccatct gcaggtgtct aaaattgaaa	300
tcgccttaca atgtctgttgc tggagaaaga cgaccactgt gaagcccttgc tgaagaattt	360
tcatcaaggc atctgttagag atcagtgtatggc	389

<210> 180

<211> 409

<212> DNA

<213> Homo sapiens

<400> 180

aactacagga aatggcttg ggagttccaa tatcagtcta tctttattc aacgcaatga	60
cagcactgac cgaagaggca gccgtgactg taacacctcc aatcacagcc cagcaagctg	120
acaacataga aggacccata gccttgaagt tctcacacct ttgcctggaa gatcataaca	180
gttactgcat caacggtgct tgtgcattcc accatgagct agagaaagcc atctgcaggt	240
gtctaaaatt gaaatgcct tacaatgtct gtctggaga aagacgacca ctgtgaggcc	300
tttgtgaaga attttcatca aggcatttg tagagatcaa gtgagccaa aattaaagtt	360
ttcagatgaa acaacaaaac ttgtcaagct gactagactc gaaaatatg	409

<210> 181

<211> 568

<212> DNA

<213> Homo sapiens

<400> 181

ccgtcagtct agaaggataa gagaaagaaa gtaagcaac tacaggaaat ggctttggga	60
gttccaatat cagtctatct tttattcaac gcaatgacag cactgaccga agaggcagcc	120
gtgactgtaa cacctccaat cacagcccag caaggttaact ggacagttaa caaaacagaa	180
gctgacaaca tagaaggacc catagccttg aagttctcac acctttgcct ggaagatcat	240
aacagttact gcatcaacgg tgcttgca ttccaccatg agctagagaa agccatctgc	300
aggtgtctaa aattgaaatc gccttacaat gtctgttctg gagaaagacg accactgtga	360
ggcctttgtg aagaatttc atcaaggcat ctgttagagat cagttagcccc aaaattaaag	420
ttttcagatg aaacaacaaa acttgtcaag ctgacttagac tcgaaaataa taaaagttgg	480
gatcacaatg aaatgagaag ataaaattca gcgttggcct ttagactttg ccatccttaa	540
ggagtgtatgg aagccaagtg aacaagcc	568

<210> 182

<211> 282

<212> DNA

<213> Homo sapiens

<400> 182

atggctttgg gagttccaat atcagtctat cttttattca acgcaatgac agcactgacc	60
gaagaggcag ccgtgactgt aacacctcca atcacagccc agcaagctga caacatagaa	120
ggacccatag ccttgaagtt ctcacacctt tgcctggaaatcataacag ttactgcac	180
aacggtgctt gtgcattcca ccatgagcta gagaaagcca tctgcaggtg tctaaaattg	240
aaatcgccctt acaatgtctg ttctggagaa agacgaccac tg	282

<210> 183

<211> 32

<212> PRT

<213> Homo sapiens

<400> 183

Asn Ser Asp Ser Glu Cys Pro Leu Ser His Asp Gly Tyr Cys Leu His
1 5 10 15

Asp Gly Val Cys Met Tyr Ile Glu Ala Leu Asp Lys Tyr Ala Cys Lys
20 25 30

<210> 184
<211> 32
<212> PRT
<213> Homo sapiens

<400> 184

Gly His Ala Arg Lys Cys Asn Glu Thr Ala Lys Ser Tyr Cys Val Asn
1 5 10 15

Gly Gly Val Cys Tyr Tyr Ile Glu Gly Ile Asn Gln Leu Ser Cys Lys
20 25 30

<210> 185
<211> 32
<212> PRT
<213> Homo sapiens

<400> 185

Asn Ser Tyr Pro Gly Cys Pro Ser Ser Tyr Asp Gly Tyr Cys Leu Asn
1 5 10 15

Gly Gly Val Cys Met His Ile Glu Ser Leu Asp Ser Tyr Thr Cys Lys
20 25 30