Appunti di Teoria dei circuiti

Giacomo Simonetto

Secondo semestre 2024-25

Sommario

Appunti del corso di Teoria dei circuiti della facoltà di Ingegneria Informatica dell'Università di Padova.

Indice

1	Introduzione alla teoria dei circuiti	3
2	Interpretazione fisica dell'elettrostatica 2.1 Campi e grandezze fisiche 2.2 Carica elettrica e densità di carica 2.3 Corrente elettrica e densità di corrente 2.4 Campo elettrostatico 2.5 Potenziale elettrostatico 2.6 Tensioni e forze elettromotrici	4 4 4 6 6 7
3	Modello a parametri concentrati - mpc 3.1 Teorema	8 8 8 9 9
4	4.1 Caratteristica esterna 4.2 Componenti	11 11 11 13
5	5.1 Introduzione	14 14 14 15 15 16
6	6.1 Componenti lineari - GLC, GLT 6.2 Circuiti lineari ed equazioni indipendenti	17 18 18 20 20
7	7.1 Introduzione ai doppi bipoli	21 21 23 24 24 25

1 Introduzione alla teoria dei circuiti

Definizione di circuito

Un circuito elettrico è un insieme di dispositivi elettrici interconnessi, deputati alla produzione, trasmissione ed utiizzazione dell'energia elettrica.

Equazioni di Maxwell

È possibile risolvere un circuito attraverso le equazioni di Maxwell, ma si otterrebbe un sistema troppo complesso da gestire e da risolvere, per cui si utilizzano approssimazioni e modelli definiti dalla teoria dei circuiti.

Modello zero-dimensionale

Il modello zero-dimensionale non tiene conto di cosa avviene all'interno dei componenti elettrici, ma solo di come interagiscono tra di loro. In altre parole viene trascurata la loro dimensione.

Grandezze fisiche

Le grandezze fisiche utilizzate sono: tensione, corrente, potenza, energia e frequenza

Modello a parametri concentrati

Il modello a parametri concentrati prevede che:

- 1. i componenti RLC sono idealizzati e considerati puntiformi (modello zero-dimensionale)
- 2. tensioni e correnti dipendono dal tempo e non dallo spazio: si può evitare di considerare eventuali propagazioni elettromagnetiche
- 3. l'interazione tra componenti avviene solo attraverso connessioni elettriche

Il suo scopo è di:

- analizzare i comportamenti di tensioni e correnti (flussi di potenza)
- prevedere comportamenti dei dispositivi reali mediante modelli semplificati
- progettare e ottimizzare sistemi elettrici

Validità

La teoria dei circuiti è valida se la dimensione del circuito è inferiore alla lunghezza d'onda del segnale che circola all'interno:

- corrente alternata di rete \rightarrow 50 Hz $\rightarrow \lambda = 6000~\mathrm{km}$
- radiofreguenza \rightarrow 100 MHz \rightarrow λ = 3 m
- microonde \rightarrow 10 GHz $\rightarrow \lambda = 3$ cm (limite della TdC)

Tipi di circuiti

- circuiti elettrici di segnale, lavorano con mW
- circuiti elettrici di potenza, lavorano con kW

Flusso e trasmissione di energia

Per flusso di energia si intende come viene utilizzata la potenza in un circuito. La trasmissione di energia può avvenire in due modi: attraverso onde elettromagnetiche (radio, antenne, ...) o per conduzione (linee elettriche).

2 Interpretazione fisica dell'elettrostatica

2.1 Campi e grandezze fisiche

Campo fisico

Un campo fisico è la distribuzione su un volume o su una superficie di una certa grandezza fisica rappresentabile tramite vettore o scalare. I campi fisici di grandezze scalari si dicono campi scalari, mentre i campi fisici di grandezze vettoriali si dicono campi vettoriali.

Grandezze fisiche

Una grandezza fisica è una quantità misurabile di un oggetto. Il processo di misura consiste nel comparare una quantità campione (detta unità di misura) con l'oggetto da misurare. Le grandezze fondamentali del Sistema Internazionale sono: m, kg, s, K, A, cd, mol.

2.2 Carica elettrica e densità di carica

Carica elettrica

- la quantità di carica è una grandezza che misura la carica elettrica di un oggetto
- si osserva che esiste una forza che dipende dalla quantità di carica dei corpi e può essere attrattiva tra corpi con cariche di segno opposto o repulsiva tra corpi con cariche dello stesso segno
- la carica è quantizzata con quanto $e = 1.6 \cdot 10^{-19} \ C$

Densità di carica

La carica di una distribuzione è data da $q = \int_V \rho d\tau$, ovvero la somma complessiva delle cariche positive e negative di un corpo:

- densità volumica: $\rho(P,t)=[C_{oulomb}/m^3]=\lim_{V\to 0}\frac{q}{V},\quad q=\int_V \rho(P,t)d\tau$
- densità superficiale: $\sigma(P,t) = [C_{oulomb}/m^2] = \lim_{\Sigma \to 0} \frac{q}{\Sigma}, \quad q = \int_{\Sigma} \sigma(P,t) d\Sigma$

2.3 Corrente elettrica e densità di corrente

Densità di corrente

Si genera per conduzione elettrica attraverso due modi:

- corrente di conduzione: moto delle cariche libere (es. nei metalli)
- corrente di convezione: moto delle cariche libere e/o vincolate (es. soluzioni elettrolitiche)

$$\vec{J}(P,t) = \rho^+ + v_d^+ + \rho^- + v_d^- \qquad \begin{cases} \rho^+ &\to \text{ densit\`a delle cariche positive} \\ v_d^+ &\to \text{ velocit\`a di deriva delle cariche positive} \\ \rho^- &\to \text{ densit\`a delle cariche negative} \\ v_d^- &\to \text{ velocit\`a di deriva delle cariche negative} \end{cases}$$

Corrente

La corrente è la quantità di cariche che attraversano una superficie in un'unità di tempo. Dipende dalla superficie e dal suo orientamento. Non dipende dal resto dello spazio. Se si inverte l'orientamento della superficie o il riferimento, il segno della corrente si inverte. Si misura in Ampère $[A_{mpere}] = [C_{oulomb}/s]$.

$$i(t) = \int_{\Sigma} \vec{J}(P,t) \cdot d\vec{\Sigma} \qquad \Leftrightarrow \qquad i(t) = \lim_{\Delta t \to 0} \frac{\Delta q_{\text{ attraverso }\Sigma}(t)}{\Delta t}$$

In caso di conduttori filiformi (dove $\Sigma \ll \text{lunghezza}$), vale $i(t) = \vec{J} \cdot \vec{\Sigma}$

Conservazione della carica e continuità della corrente

La carica elettrica non si crea, non si distrugge, si conserva sempre.

$$q_{\rm interna}(t+\Delta t) = q_{\rm interna}(t) + \Delta q_{\rm uscente}$$

$$i_{\rm uscente}(t) = \lim_{\Delta t \to 0} \frac{\Delta q_{\rm uscente}}{\Delta t} = -\frac{dq_{\rm entrante}}{dt} = -i_{\rm entrante}$$

- la variazione di carica corrisponde ad una corrente
- in assenza di corrente, la carica non varia
- la carica entrante è pari a quella uscente (in modulo)

Corrente solenoidale

La corrente si dice solenoidale quando:

- si è in regime stazionario: non si hanno accumuli o prelievi di carica in nessun punto del volume, la carica entrante e quella uscente sono uguali e il campo \vec{J} forma linee di flusso chiuse
- in regioni di carica nulla: $\rho=0$ ad esempio nei metalli

si è in regime stazionario

Tubo di flusso

Il tubo di flusso è un conduttore rivestito da materiale isolante che può essere attraversato da corrente. In condizioni stazionarie (con campo di corrente solenoidale) si ha che la corrente i_1 attraverso una superficie Σ_1 è uguale alla corrente i_2 attraverso una superficie Σ_2 . Ovvero non si hanno perdite di corrente: $i_{\text{uscente}} = 0$.

Amperometro

L'amperometro è uno strumento per misurare la corrente in un circuito. Il verso del sistema è dal + al - (ovvero la corrente entra dal connettore + ed esce dal connettore -). Si usa in serie al circuito. Un amperometro si dice ideale se non influisce sul circuito e se la misura avviene senza ritardi.

2.4 Campo elettrostatico

Legge di Coulomb e campo elettrostatico

Il campo elettrostatico si definisce a partire dalla forza di Coulomb, per questo è anche chiamato campo coulombiano.

$$\vec{F}_{1,2} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 \, q_2}{r_{1,2}^2} \hat{u}_{1,2} \qquad \qquad \vec{F}_{\text{elettr}} = q\vec{E} \qquad \qquad \vec{E} = \frac{\vec{F}}{q} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \hat{u}_{1,2} = [N/C_{oulob}] = [V_{olt}/m]$$

Il campo elettrostatico è additivo:
$$\vec{E}(P) = \frac{1}{4\pi\varepsilon_0} \sum_{k=1}^n \frac{q_k}{r_{PO_k}^2} \vec{u}_k(P)$$
 $\vec{E}(P) = \frac{1}{4\pi\varepsilon_0} \int_V \frac{\rho}{r^2} \vec{u}_k d\tau$

Campo elettrostatico nei conduttori

Un conduttore è un materiale che conduce corrente. Le cariche sono libere di muoversi e, muovendosi, generano una corrente. In condizione di equilibrio il campo all'interno è nullo, ovvero non c'è nessuna forza che agisce sulle cariche e le cariche sono ferme (altrimenti non ci sarebbe equilibrio).

Campo elettrostatico nei dielettrici - isolanti

Un dielettrico o isolante è un materiale che non conduce corrente. Le cariche sono bloccate a meno di piccoli spostamenti responsabili della polarizzazione dei dielettrici. I dielettrici possono essere:

- omogenei: se ε non dipende dalla posizione
- lineari: se ε non dipende dal modulo del campo elettrico $||\vec{E}||$
- isotropi: se ε non dipende dalla direzione del campo elettrico $\vec{u} = \vec{E}/||\vec{E}||$

Un dielettrico omogeneo, lineare e isotropo si dice uniforme e per esso valgono tutte le leggi viste finora.

Permittività dielettrica di un mezzo

La permittività dielettrica di un mezzo indica come tale mezzo reagisce al campo elettrico:

$$\varepsilon = \varepsilon_{\text{relativa del mezzo}} \cdot \varepsilon_0$$
 - nel vuoto = $[F_{araday}/m] = [C_{oulomb}^2/J]$ $\varepsilon > \varepsilon_0 \cdot \varepsilon_r > 1$

Campo elettrico conservativo

Il campo elettrostatico è conservativo ovvero:

$$\oint_{\mathcal{L}} = \vec{E} \cdot d\vec{l} = 0 \qquad \qquad \oint_{\mathcal{L}_1} = \vec{E} \cdot d\vec{l} = \oint_{\mathcal{L}_2} = \vec{E} \cdot d\vec{l} \quad \text{con} \begin{array}{c} \mathcal{L}_{1,\text{iniziale}} = \mathcal{L}_{2,\text{iniziale}} \\ \mathcal{L}_{1,\text{finale}} = \mathcal{L}_{2,\text{finale}} \end{array}$$

2.5 Potenziale elettrostatico

Potenziale elettrostatico

Essendo \vec{E} un campo conservativo, si definisce il potenziale elettrostatico:

$$\int_{A}^{B} \vec{E} \cdot d\vec{s} = -\Delta V = V_{A} - V_{B} \qquad V(P) = \int_{P}^{C} \vec{E} \cdot d\vec{s} = [V_{olt}] \qquad (V(C) = 0)$$

Lavoro di una forza elettrostatica

Il lavoro compiuto dalla forza elettrostatica per spostare una carica q vale:

$$\mathcal{L}_{AB} = \int_{A}^{B} \vec{F} \cdot d\vec{l} = q \int_{A}^{B} \vec{E} \cdot d\vec{l} = -q\Delta V = q(V_A - V_B)$$

Energia potenziale elettrostatica

Si definisce l'energia potenziale di una carica come il lavoro compiuto per portare la carica da distanza ∞ alla posizione in cui si trova:

$$\psi(P) = q_0 V(P)$$

Sorgenti del campo elettrico - distribuzioni di carica

- distribuzioni di carica statiche condizioni elettrostatiche: le cariche che generano il campo sono in quiete e non ci sono correnti
- distribuzione di carica stazionarie regime stazionario:
 le cariche sono in moto a velocità costante nel tempo e di conseguenza sono presenti correnti costanti nel tempo
- distribuzione di carica variabile regime variabile: le cariche sono in moto variabile e le correnti variano nel tempo, il campo non è più conservativo in quanto avrà una componente non conservativa $\vec{E}_{\rm indotta}$

Forza di una carica in moto

Le forze agenti su cariche in moto immerse in un campo magnetico hanno una componente dovuta al campo elettrico e una al campo magnetico:

$$\vec{F} = q_0 \vec{E} + q_0 \vec{v} \times \vec{B}$$

2.6 Tensioni e forze elettromotrici

Tensione

La tensione è definita come il lavoro elettrico per unità di carica speso a muovere una carica elettrica di prova lungo una linea L.

$$u(t) = \int_{L} \vec{E}(P, t) \cdot \vec{t}(P) \ dl = \frac{W_e}{q_0} = [V_{olt}] = [J/C] = [J/A_{mpere} s] \qquad \vec{t}(P) = \text{versore della curva in P}$$

Questa definizione permette di essere indipendenti dalla conservatività del campo elettrico: se il campo elettrico è conservativo, la tensione equivale al potenziale (a meno di un segno), mentre se il campo elettrico non è conservativo non si definisce nessun potenziale, ma si può calcolare lo stesso la tensione.

campo conservativo
$$\rightarrow$$
 potenziale = -tensione campo non conservativo \rightarrow potenziale = -tensione

Forza elettromotrice indotta

Un campo elettrico non conservativo, è formato da una parte conservativa e da un campo elettrico indotto non conservativo. Di conseguenza la circuitazione non è più nulla e si definisce la forza elettromotrice indotta fem come il lavoro compiuto dal campo elettrico lungo una linea chiusa L:

$$fem\ e(t) = \oint_L \vec{E}(P,t) \cdot \vec{t}(P) \ dl$$

Forza elettromotrice mozionale

La forza elettromotrice complessiva agente sulle cariche in moto è data da una componente dovuta al campo elettrico e da una dovuta al campo magnetico, detta forza elettromotrice mozionale, provocata dal movimento delle cariche in un campo magnetico:

$$\oint_L (\vec{E} + \vec{v} \times \vec{B}) \cdot \vec{t} \, dl = \oint_L \vec{E} \cdot \vec{t} \, dl + \oint_L (\vec{v} \times \vec{B}) \cdot \vec{t} \, dl = e(t) + e_m(t)$$

Voltmetro

Il voltmetro è uno strumento per misurare la tensione, si collega in parallelo alla sezione di circuito di cui si vuole conoscere la tensione. La direzione del sistema è data dal vettore \vec{t} dal + al -. Un voltmetro si dice ideale se non altera il regime del circuito.

3 Modello a parametri concentrati - mpc

3.1 Teorema

Obiettivo

- 1. ogni componente elettrico si può modellare con equazioni algebriche o differenziali che dipendono solo da tensioni o correnti (ovvero non da componenti spaziali)
- 2. le tensioni sono definite tra coppie di morsetti e le correnti sono definite ai terminali
- 3. i terminali terminano con morsetti utilizzati per collegare il componente con il resto del circuito

Ipotesi

- 1. all'esterno dei componenti elettrici
 - il campo \vec{E} è conservativo
 - la densità \vec{J} è solenoidale (regime stazionario, no accumuli o prelievi)
- 2. i terminali e i morsetti sono superfici equipotenziali senza accumuli o prelievi di carica in essi

Teoria

- 1. è possibile modellare ogni componente attraverso Equazioni
- 2. per formare un circuito si collegano più morsetti tra loro attraverso conduttori detti connessioni o interconnessioni che soddisfano le ipotesi dei morsetti/terminali
- 3. se più morsetti sono attaccati insieme, si formano nodi di volume e carica nulla per cui vale la legge dei nodi (o legge di continuità $\rightarrow \sum i_{\text{entranti}} + \sum i_{\text{uscenti}} = 0$)

3.2 Componenti

Introduzione

I componenti sono elementi del circuito:

- rappresentati graficamente da una curva chiusa (detta superficie limite) con due (o più) tratti filiformi detti terminali con cui si possono collegare ad altri componenti
- modellabili con un'equazione differenziale o algebrica

Si definiscono:

- corrente entrante e corrente uscente (per ogni morsetto) rappresentata con \rightarrow
- tensione (per ogni coppia di morsetti) rappresentata con + -

Porte elettriche, bipoli, n-poli m-bipoli, (n-1)-bipoli

- porta elettrica: coppia di terminali in cui la corrente entrante in un terminale è pari alla corrente uscente dall'altro terminale; si definisce la corrente di porta $i_{AB}(t)$ e la tensione di porta $u_{AB}(t)$
- bipolo elettrico: componente con due terminali
- **n-polo**: componente con n terminali
- **m-bipolo**: componente con m porte e 2m terminali
- **n-polo come (n-1)-bipolo**: componente in cui si sceglie un polo N come polo di riferimento e si definiscono:
 - n-1 porte tra il polo di riferimento e gli altri n-1 poli del componente
 - n-1 correnti $i_{kN}(t)$ che entrano dagli n-1 morsetti ed escono dal morsetto N, per cui la corrente uscente dal polo N è la somma di tutte le correnti di porta
 - n-1 tensioni $u_{kN}(t)$ di porta

3.3 Reti elettriche o circuiti

Introduzione

Una rete è formata da interconnessioni tra n-poli e m-bipoli. Le interconnessioni prendono il nome di nodi e i morsetti collegati allo stesso nodo sono superfici equipotenziali.

Suddivisione

- reti in regime stazionario: valgono le ipotesi del mpc
- reti in regime variabile: in teoria non si potrebbe applicare il mpc, ma si definiscono le ...
- reti in regime variabile-quasi-stazionario: ovvero reti in regime variabile in cui è possibile applicare il mpc se i campi \vec{E} e \vec{J} variano lentamente nel tempo e non si hanno propagazioni di onde elettromagnetiche all'esterno dei componenti

Tipologia tipo dei componenti utilizzati nel circuito (resistivo, capacitativo, RLC, ...)

Topologia tipo di connessioni utilizzate nel circuito (serie, parallelo, ...)

3.4 Potenza di bipolo, convenzione dei generatori e utilizzatori

Potenza di una porta

Data una porta elettrica, la potenza è data dal prodotto:

$$p(t) = u(t) \cdot i(t) \qquad [W_{\rm att}] = [V_{\rm olt}] \cdot [A_{\rm mpere}]$$

Convenzione degli utilizzatori

Un componente (o meglio una porta o bipolo) soddisfa la convenzione degli utilizzatori se la corrente entra nel morsetto +. Se p > 0, la porta assorbe potenza, se p < 0 la porta eroga energia.

Convenzione dei generatori

Un componente (o meglio una porta o bipolo) soddisfa la convenzione dei generatori se la corrente entra nel morsetto -. Se p > 0, la porta eroga energia, se p < 0 la porta assorbe potenza.

Lavoro elettrico

Il lavoro elettrico compiuto da una porta nell'intervallo $[t_0, t_1]$ vale:

$$\mathcal{L}(t_0, t_1) = \int_{t_0}^{t_1} p(t)dt = \int_{t_0}^{t_1} u(t) \cdot i(t)$$
 $[J_{\text{oule}}] = [W_{\text{att}}] \cdot [\text{sec}]$ $[kWh] = 3.6 \cdot 10^6 \ [J]$

Il lavoro è entrante per potenza entrante e viceversa.

Wattmetro

Il wattmetro è uno strumento per misurare la potenza ed è costituito da un amperometro (in serie) e un voltmetro (in parallelo) combinati.

... disegno

Potenza di un m-bipolo

La potenza di un m-bipolo in cui tutte le porte sono convenzionate allo stesso modo è la somma di tutte le potenze delle singole porte.

$$p(t) = p_1(t) + p_2(t) + \dots + p_n(t)$$

$$\mathcal{L}(t_0, t_1) = \int_{t_0}^{t_1} p(t)dt = \int_{t_0}^{t_1} \sum_{n=1}^{m} u_n(t) \cdot i_n(t)dt$$

In base al segno e alla convenzione utilizzata, si avrà potenza dissipata o erogata.

Potenza di un n-polo

Per calcolare la potenza di un n-polo, uso la corrispondenza tra n-polo e (n-1)-bipolo.

Bipolo passivo

Un bipolo si dice passivo se il lavoro elettrico uscente da un certo tempo t_0 in poi è minore dell'energia immagazzinata fino a t_0 . Ovvero un bipolo passivo è capace di accumulare energia, ma non ne può emettere più di quella che ha immagazzinato. In condizioni stazionarie $p_{\text{uscente}}(t) < 0$

$$\mathcal{L}_{\text{lavoro uscente}}(t_0, t) < W_{\text{energia immagazzinata}}(t_0)$$

Bipolo attivo

Un bipolo si dice attivo se per certe condizioni non è rispettata la legge sopra, ovvero se per certe condizioni vale:

$$\mathcal{L}_{\text{lavoro uscente}}(t_0, t) > W_{\text{energia immagazzinata}}(t_0)$$

In generale un bipolo attivo fornisce lavoro elettrico convertendolo da altre fonti e in condizioni stazionarie $p_{\text{uscente}}(t) > 0$

4 Componenti elettrici

4.1 Caratteristica esterna

Caratteristica esterna di un bipolo e di un m-bipolo

La caratteristica esterna è un'equazione che lega tutte le variabili (tensione e corrente) di ogni porta di un determinato componente. Per un m-bipolo si avranno 2m variabili (tensione e corrente delle m-porte), per un bipolo si avranno 2 variabili.

- caratteristica esterna m-bipolo: $F(u_1(t), i_1(t), u_2(t), i_2(t), \dots, u_m(t), i_m(t)) = 0$
- caratteristica esterna bipolo: F(u(t), i(t)) = 0

Bipolo controllato in corrente o in tensione

È possibile scrivere l'equazione per un bipolo in funzione di una delle due variabili:

- bipolo controllato in corrente: u(t) = f(i(t))
- bipolo controllato in tensione: i(t) = f(u(t))

Bipolo ideale

Un bipolo si dice ideale se la sua caratteristica esterna è lineare a tratti, ovvero è possibile usare un'equazione lineare per descriverne il comportamento in un intorno del punto (U^*, I^*)

4.2 Componenti

Resistenza

- caratteristica esterna: $F(u,i)=0 \rightarrow \frac{U}{I}-R=0$
- effetto Joule: $\Delta Q = R \cdot I^2 \cdot \Delta t$
- bilancio energetico: $\begin{array}{c} P_{\rm entrante} = u \cdot i \\ P_{\rm uscente} = R \cdot i^2 \end{array} \quad u \cdot i = R \cdot i^2 \ \rightarrow \ P_{\rm entrante} = P_{\rm uscente}$
- resistività: $R=\rho\cdot L/S \qquad \rho=\rho_0(1+\alpha\Delta T) \qquad \begin{array}{c} \rho_0=\text{resistività a 20°C} \\ \Delta T=\Delta \text{temp. rispetto a 20°C} \end{array}$
 - conduttori: $\rho_{\rm Cu} = 1.8 \cdot 10^{-8} \Omega m$ semiconduttori: $\rho_{\rm Si} = 2.3 \cdot 10^{3} \Omega m$ isolanti: $\rho_{\rm PVC} = 10^{10} 10^{13} \Omega m$

Resistore ideale

Cortocircuito ideale

Circuito aperto

modello grafico | equazioni costitutive | descrizione |
$$i(t) = 0 \quad \forall t$$
 | resistore con $R = +\infty$

Interruttore ideale

modello grafico

descrizione

dipolo in grado di commutarsi tra due stati:

- 1. cortocircuito ideale
- 2. circuito aperto

Interruttore reale

modello grafico

descrizione

unipolare: interrompe la continuità di un solo conduttore

Diodo ideale

modello grafico

descrizione

dipolo in grado di commutarsi tra due stati:

se $u > 0 \rightarrow$ conduzione

se $u < 0 \rightarrow$ interdizione

Diodo reale

modello grafico | descrizione

dipolo con tre stati:

se $u > 0 \rightarrow \text{ conduzione}$

se $V_{bd} < u < 0 \rightarrow \text{interdizione}$ se $u < V_{bd} \rightarrow \text{rottura/conduzione}$

ottenuto con giunzione PN (materiali drogati positivamente o negativamente)

Induttore ideale

modello grafico | equazioni costitutive | parametri caratteristici | descrizione

Induttore reale

Usato nei circuiti AC, $e(t) = -\frac{d\Phi}{dt}$

Condensatore ideale

modello grafico | equazioni costitutive | parametri caratteristici | descrizione

in regime stazionario agisce come un circuito aperto

Condensatore reale

Usato nei circuiti AC, $\oint \vec{D} \cdot d\vec{\Sigma} = q_{\text{int}}$

4.3 Generatori

Forze elettriche generatrici e generatori

In condizioni stazionarie si ha che \vec{J} è solenoidale e che $Q = L + \Delta W \rightarrow Q = L$ ovvero il lavoro compiuto dal circuito è tutto dissipato in calore dalle resistenze ($\Delta W = 0$). Per cui si ha:

$$Q = L = \oint \vec{F}_{\rm gen} \cdot d\vec{l} \neq 0$$

Esistono delle forze generatrici non conservative $\vec{F}_{\rm gen}$ la cui circuitazione non è nulla che mettono in moto le cariche. Le parti del circuito in cui si sviluppano tali forze non conservative sono detti generatori.

Forza elettrica generatrice specifica

Si definisce quindi la forza elettrica generatrice specifica come forza per unità di carica:

$$\vec{E}_{
m gen} = rac{\vec{F}_{
m gen}}{q} \qquad [N_{
m ewton}/C_{
m oulomb}] = [V_{
m olt}/m]$$

Generatori a vuoto

- si hanno forze $\vec{E}_{\rm gen}$ che inducono accumuli di cariche ai capi del generatore e l'accumulo forma un campo $\vec{E}_{\rm coulombiano}$ (\vec{E}_c) contrario a $\vec{E}_{\rm gen}$
- in regime stazionario $\vec{E}_q = -\vec{E}_c$ e le cariche non si muovono (o hanno a = 0, v costante)
- si ottiene che la forze elettromotrice è pari alla tensione ai capi del generatore:

$$fem_{AB} = \int_{B}^{A} \vec{E}_{g}(P, t) \cdot d\vec{l} = \int_{B}^{A} -\vec{E}_{c}(P, t) \cdot d\vec{l} = \int_{A}^{B} \vec{E}_{c}(P, t) \cdot d\vec{l} = u_{0, AB}(t)$$

- se $U_{0,AB}(t)$ è costante, il generatore è in regime DC e $E_{AB}=U_{0,AB}$
- se $U_{0,AB}(t)$ è sinusoidale, il generatore è in regime AC e $E_{AB}(t)=u_{0,AB}(t)$
- il campo \vec{E}_c tende a muovere le cariche positive dal + al -
- il campo \vec{E}_g tende a muovere le cariche positive dal al +

Generatori a carico

- $\vec{E}_g \neq -\vec{E}_c$, si ha uno spostamento di cariche
- la caratteristica esterna vale $U=E_{AB}-R_{i}I$ con $R_{i}=$ resistenza interna

Generatori ideali

generatore ideale di tensione
$$U=E$$
 $\xrightarrow{-}$ $\xrightarrow{-}$ $\xrightarrow{+}$ generatore ideale di corrente $I=J$ \xrightarrow{J}

Esempi di generatori

- elettrochimici (sede di reazioni chimiche, esempio pile a secco e accumulatori)
- fotovoltaici (fotone "convertito" in elettrone, funzionamento basato su fotodiodi)
- termoelettrici (giunzioni bimetalliche a temperature diverse formano una f.e.m. per effetto Seebeck)
- piezoelettrici (cristalli soggetti a stress meccanico formano un campo elettrico, quindi una f.e.m.)
- elettromeccanici (macchine rotanti con di statore e rotore, convertono energia meccanica in elettrica)

5 Topologia delle reti

5.1 Introduzione

La topologia di un circuito indica come gli n-poli sono connessi tra loro. Le interconnessioni tra i componenti sono dette nodi del circuito.

5.2 Teoria dei grafi

Dal circuito al grafo

Ad ogni circuito si associa un grafo:

- i nodi del grafo corrispondono ai nodi del circuito
- gli archi del grafo corrispondono ai componenti
- ad ogni arco viene associata una tensione e una corrente
- gli archi sono orientati secondo le correnti e le tensioni

Componenti connesse

Se si hanno grafi non connessi, le componenti connesse corrispondono a sottocircuiti non connessi tra loro che verranno analizzati separatamente.

Definizioni

- insieme di taglio: insieme di archi che intersecano una superficie chiusa che taglia il circuito. La superficie di taglio può isolare nodi singoli o parti del circuito
- nodo: punto di interconnessione tra due o più archi del grafo
- maglia: insieme di archi che costituiscono un percorso chiuso che tocca ciascun nodo una sola volta
- grafo piano: grafo che può essere distribuito su un piano senza che gli archi si intersechino
- anello: maglia che non racchiude altre parti del grafo al suo interno
- albero: insieme di archi del grafo che collegano tutti i nodi del grafo senza formare maglie
- coalbero: insieme di archi del grafo complementare ad un albero

Per un grafo vale: $m_{\text{ anelli}} = l_{\text{ archi}} - n_{\text{ nodi}} + 1$

5.3 Leggi di Kirchhoff

Legge di Kirchhoff delle correnti - LKC

In un circuito chiuso la corrente entrante ed uscente in un insieme di taglio è nulla. Se l'insieme di taglio racchiude solo un nodo, si avrà che la somma delle correnti entranti ed uscenti in un nodo è nulla.

$$\sum_{h \in \mathcal{T}_{\text{insieme di taglio}}} \alpha_h i_h(t) = 0$$

- le correnti entranti nella sezione di taglio (o in un nodo) hanno $\alpha_h = -1$
- le correnti uscenti dalla sezione di taglio (o da un nodo) hanno segno $\alpha_h = +1$

Legge di Kirchhoff delle tensioni - LKT

In un circuito chiuso, la somma di tutte le tensioni associate ai componenti di ogni maglia è nulla.

$$\sum_{h \in \mathcal{M}_{\text{maglia}}} \beta_h u_h(t) = 0$$

- ad ogni maglia si associa una orientazione (oraria o antioraria)
- le tensioni concordi con il verso della maglia hanno $\beta_h = +1$
- le tensioni discordi con il verso della maglia hanno segno $\beta_h=-1$

5.4 Sistemi di equazioni topologiche

Equazioni linearmente indipendenti

Il sistema di equazioni topologiche è un sistema formato dalle equazioni LKT e LKC. Per avere un'unica soluzione e descrivere completamente un circuito, devo avere il massimo numero di equazioni LKT/LKC linearmente indipendenti.

Equazioni indipendenti in grafo connesso

Un grafo connesso ha:

- n-1 equazioni LKC indipendenti con insiemi di taglio (o nodi) che insistono su un solo arco dell'albero (detto lato peculiare specifico del taglio) e su altri archi del coalbero
- l-n+1 equazioni LKT indipendenti con maglie costituite da un solo arco del coalbero (detto lato peculiare specifico della maglia) e altri archi dell'albero
- in totale (l-n+1)+(n-1)=l equazioni indipendenti: una per ogni componente o arco del grafo

Equazioni indipendenti in grafo sconnesso

Un grafo con p componenti connesse ha:

- $n_k 1$ equazioni LKC indipendenti per ogni componente connessa $k \in 1, 2, \ldots, p$
- $l_k n_k + 1$ equazioni LKT indipendenti per ogni componente connessa $k \in {1,2,\ldots,p}$
- complessivamente $\sum_{k=1}^{p} (l_k n_k + 1) + (n_k 1) = \sum_{k=1}^{p} l_k = l$ equazioni indipendenti, ovvero una per ogni componente o arco del grafo (anche se sconnesso)

Conservazione delle potenze

La somma di tutte le potenze istantanee è nulla. La somma delle potenze entranti negli utilizzatori è uguale alla somma delle potenze uscenti dai generatori.

$$P_{\text{tot}} = \sum_{h=1}^{l} u_h(t) \cdot i_h(t) = 0 \qquad \sum_{h_{\text{utilizzatori}}} P_{entrante,h}(t) = \sum_{h_{\text{generatori}}} P_{uscente,h}(t)$$

5.5 Connessione in serie

In generale

- due bipoli sono collegati in serie se hanno un solo morsetto in comune
- due bipoli si dicono in serie diretta se hanno anche lo stesso riferimento di tensione e corrente

$$\begin{cases} u_{\text{serie}}(t) = u_1(t) + u_2(t) \\ i_{\text{serie}}(t) = i_1(t) = i_2(t) \end{cases}$$

Serie di generatori ideali di corrente

Non è possibile creare una serie di generatori ideali di corrente con $J_1 \neq J_2$ in quanto nel nodo in comune ai due generatori non è rispettata la LKC. Analogamente non può esistere una serie con un GIC e un circuito aperto.

Serie di un generatore ideale di tensione e un resistore

In una serie tra generatore ideale di tensione e resistore ideale si ha:

- $I_{
 m serie} = I_{
 m resistore} = -I_{
 m generatore} \ \,
 ightarrow \ \,$ il generatore ha convenzione opposta
- $U_{\text{serie}} = U_{\text{generatore}} + U_{\text{resistore}} = E + RI_2 = E RI$

Per determinare la curva caratteristica della serie servono almeno due punti del piano u, i:

- funzionamento a vuoto: $u_0 = E = fem, i_0 = 0$
- funzionamento a cortocircuito $u_{cc} = 0$, $I_{cc} = E/R$

Serie di resistori ideali e partitore di tensione

- $u_{\text{serie}} = u_1(t) + u_2(t) + \dots + u_n(t) = (R_1 + R_2 + \dots + R_n) \cdot i_{\text{serie}}(t) = R_{\text{eq,serie}} \cdot i_{\text{serie}}(t)$
- la resistenza equivalente della serie è la somma delle resistenze: $R_{\rm eq} = R_1 + R_2 + \cdots + R_n$
- le tensioni si ripartiscono in modo proporzionale alle resistenze: $u_k(t) = R_k/R_{\rm eq} \cdot u_{\rm serie}(t)$

5.6 Connessione in parallelo

In generale

- due bipoli sono collegati in parallelo se entrambi i morsetti sono in comune
- due bipoli sono in parallelo diretto se hanno i riferimenti di tensione e corrente concordi

$$\begin{cases} u_{\text{serie}}(t) = u_1(t) = u_2(t) \\ i_{\text{serie}}(t) = i_1(t) + i_2(t) \end{cases}$$

Parallelo di generatori ideali di tensione

Non è possibile creare un parallelo di generatori ideali di tensione con $E_1 \neq E_2$ in quanto nella maglia ottenuta non viene rispettata la LKT. Analogamente non è possible creare un parallelo tra GIT e cortocircuito.

Parallelo di un generatore ideale di corrente e un resistore

In una serie tra generatore ideale di tensione e resistore ideale si ha:

- $U_{\rm serie} = U_{\rm resistore} = -U_{\rm generatore} \rightarrow {\rm il~generatore~ha~convenzione~opposta}$
- $I_{\text{serie}} = I_{\text{generatore}} + I_{\text{resistore}} = J + GU_2 = J GU$

Parallelo di resistori ideali e partitore di corrente

- $i_{\text{parallelo}} = i_1(t) + i_2(t) + \dots + i_n(t) = (G_1 + G_2 + \dots + G_n) \cdot u_{\text{parallelo}}(t) = G_{\text{eq,parallelo}} \cdot u_{\text{parallelo}}(t)$
- la conduttanza equivalente del parallelo è la somma delle conduttanze: $G_{eq} = G_1 + G_2 + \cdots + G_n$
- le correnti si ripartiscono in modo proporzionale alle conduttanzze: $i_k(t) = G_k/G_{eq} \cdot i_{parallelo}(t)$

5.7 Resistenze e conduttanze equivalenti di porta

- in una rete di resistori (passivi) è possibile definire una resistenza equivalente di porta $R_{\rm eq,AB} = U_{\rm AB}/J_{\rm AB}$, per cui è possibile sostituire la rete passiva con un resistore equivalente $R_{\rm eq,AB}$.
- analogo per le conduttanze

Resistenze a stella e a triangolo

È possibile semplificare le reti di resistenze a maglie a triangolo con reti a stella attraverso la relazione:

$$R_{\Delta \text{ triangolo}} = 3R_{y \text{ stella}}$$

6 Analisi di circuiti lineari a corrente continua

6.1 Componenti lineari - GLC, GLT

Un circuito in regime stazionario in corrente continua formato solo da bipoli è lineare se costituito esclusivamente da generatori lineari di tensione (GLT) o generatori lineari di corrente (GLC).

Generatore lineare di tensione - GLT

Un generatore lineare di tensione è formato da una serie di generatore ideale di tensione e un resistore, entrambi con convensione di utilizzatore.

$$- \underbrace{\stackrel{E_{\text{GIT}}}{-} \stackrel{R}{\longleftarrow} + - \stackrel{+}{\longleftarrow} + + \underbrace{I_{GLT}, U_{\text{GLT}}}}_{R}$$

Il sistema ha come equazione costitutiva:

$$U_{\text{GLT}} = U_{\text{GIT}} + U_{\text{res}} = E_{\text{GIT}} + R \cdot I_{\text{GLT}}$$

Generatore lineare di corrente - GLC

Un generatore lineare di corrente è formato da un parallelo di generatore ideale di corrente e un resistore, entrambi con convensione di utilizzatore.

Il sistema ha come equazione costitutiva:

$$I_{\rm GLC} = I_{\rm GIC} + I_{\rm res} = J_{\rm GIC} + \frac{U_{\rm GLC}}{R}$$

Sostituzione da GLT a GLC

È possibile sostiuire un GLT con un GLC:

$$I_{\mathrm{GLC}} = I_{\mathrm{res}} + J_{\mathrm{GIC}} = \frac{U_{\mathrm{GLT}}}{R} - \frac{E_{\mathrm{GIT}}}{R}$$
 $J_{\mathrm{GIC}} = \frac{E_{\mathrm{GIT}}}{R}$

Sostituzione da GLC a GLT

È possibile sostiuire un GLT con un GLC:

$$U_{\rm GLT} = U_{\rm res} + E_{\rm GIT} = R \cdot I_{\rm GLC} - R \cdot J_{\rm GIC}$$
 $E_{\rm GIT} = R \cdot J_{\rm GIC}$

6.2 Circuiti lineari ed equazioni indipendenti

Un circuito lineare è descritto da equazioni linearmente indipendenti lineari di 1° grado ottenute dalle leggi di Kirchhoff o dalle equazioni costitutive dei GLT e GLC. Si ottiene un sistema lineare Ax = b risolvibile attraverso il calcolo matriciale $x = A^{-1}b$.

Il sistema ha 2l incognite:

- $u_h(t)$ per ogni bipolo $h = 1, 2, 3, \dots l$
- $i_h(t)$ per ogni bipolo $h = 1, 2, 3, \dots l$

Il sistema ha (n-1) + (l-n+1) + l = 2l equazioni indipendenti:

- n-1 equazioni indipendenti per LKC
- l-n+1 equazioni indipendenti per LKT
- l equazioni costitutive (una per ogni GLC e GLT)

Il sistema ha, quindi, 2l equazioni linearmente indipendenti con 2l incognite e rango $\{A\} = 2l$, ovvero ha un'unica soluzione.

6.3 Metodi di analisi delle reti lineari

Metodo diretto o di sostituzione

Se un bipolo ha una certa tensione $u_h(t)$ e corrente $i_h(t)$ data dalla soluzione unica del sistema, è possible sostituire tale bipolo con:

- un generatore ideale di tensione con $e_h(t) = u_h(t)$
- un generatore ideale di corrente con $j_h(t) = i_h(t)$

In questo modo si ottiene una rete semplificata e di conseguenza un sistema più semplice da risolvere.

Sovrapposizione degli effetti

La tensione di un certo bipolo è data dalla somma dei contributi di tensione (detti tensioni parziali) di ogni generatore ideale di tensione o corrente preso singolarmente, mentre tutti gli altri sono spenti.

$$u_h(t) = \sum_{r} u_{h,E_r}(t) + \sum_{s} u_{h,J_s}(t) \qquad u_{h,E_r}(t) = \alpha_{hr} \cdot e_r(t) / u_{h,J_s}(t) = R_{hs} \cdot j_s(t)$$

La corrente di un certo bipolo è data dalla somma dei contributi di corrente (detti correnti parziali) di ogni generatore ideale di tensione o corrente preso singolarmente, mentre tutti gli altri sono spenti.

$$i_h(t) = \sum_r i_{h,E_r}(t) + \sum_s i_{h,J_s}(t)$$
 $i_{h,E_r}(t) = G_{hr} \cdot e_r(t)$ / $i_{h,J_s}(t) = \beta_{hs} \cdot j_s(t)$

I coefficienti $\alpha_{hr}, R_{hr}, \beta_{hr}, G_{hr}$ sono detti coefficienti di rete e sono costanti in una rete lineare.

Correnti cicliche o di anello

- si semplifica il sistema introducendo delle correnti fittizzie dette correnti cicliche di anello, ottenute matematicamente da un cambio di variabile nelle LKC, il sistema finale avrà soltanto m equazioni, ovvero una per maglia
- è richiesto avere soltanto generatori ideali di tensione convenzionati da generatore: i GIC/GLC vanno trasformati in GIT/GLC con l'aggiunta delle seguenti condizioni $E_h = U_h$, $J_h = I_{Ar} I_{As}$
- per ogni anello A_k vale:

$$R_{A_{kk}} = \sum_{r} \text{resistenze della maglia } A_k$$

$$R_{A_{kr}} = \sum_{r} \text{resistenze in comune alle maglie } A_k \text{ e } A_r$$

$$E_{A_k} = \sum_{r} \text{fem di anello della maglia } A_k \text{ con conv. generatore } I_{A_k} = \text{corrente di anello della maglia } A_k$$

$$I_{A_r} = \text{corrente di anello della maglia } A_r$$

Potenziali nodali

- si considerano come incognite solo i potenziali ai nodi del circuito in modo da soddisfare le LKT, per cui il sistema finale avrà solo n-1 equazioni
- si sceglie un nodo di riferimento a cui si assegna potenziale nullo $V_{rif} = 0$ e si calcolano i potenziali degli altri n-1 nodi in modo da rispettare la relazione di tensione $U_{kh} = V_{N_k} V_{N_h}$
- è richiesto avere soltanto generatori ideali di corrente convenzionati da generatore: i GIT/GLT vanno trasformati in GIC/GLC con l'aggiunta delle seguenti condizioni $J_h = I_h$, $V_{N_r} V_{N_s} = E_h$
- per ogni nodo N_k vale:

$$G_{N_{kk}} \cdot V_{N_k} - \sum_r (G_{N_{kr}} \cdot V_{N_r}) = J_{N_k}$$

$$G_{N_{kk}} \cdot V_{N_k} - \sum_r (G_{N_{kr}} \cdot V_{N_r}) = J_{N_k}$$

$$G_{N_{kr}} = \sum_r \text{conduttanze comprese tra i nodi } N_k \text{ e } N_r$$

$$J_{N_k} = \sum_r \text{correnti dei GIC impresse su } N_k \text{ (+ se entranti)}$$

$$V_{N_k} = \text{potenziale del nodo } N_k$$

$$V_{N_r} = \text{potenziale del nodo } N_r$$

Metodo di riduzione - Teorema di Thévenin

- si individua una superficie di taglio che intercetta solo due conduttori, per cui è possibile individuare una porta costituita dai morsetti a, b
- è possibile sostituire la parte di circuito individuata dalla superficie di taglio con un generatore di Thévenin costituito da un generatore lineare di tensione con:

$$U_{eq}=E_{ab}=U_{0,ab}=$$
tensione a vuoto della porta ab
$$R_{eq}=R_{ab}=\frac{U_{0,ab}}{I_{cc,ab}}=\text{resistenza della rete inerte (con tutti i GIT/GIC spenti)}$$

$$U_{ab}=U_{0,ab}-R_{eq}\cdot I_{cc,ab} \quad \rightarrow \quad \text{equazione del GLT}$$

Metodo di riduzione - Teorema di Norton

- si individua una superficie di taglio che intercetta solo due conduttori, per cui è possibile individuare una porta costituita dai morsetti a, b
- è possibile sostituire la parte di circuito individuata dalla superficie di taglio con un generatore di Norton costituito da un generatore lineare di corrente con:

$$I_{eq} = J_{ab} = I_{cc,ab} =$$
 corrente di cortocircuito della porta ab
$$R_{eq} = R_{ab} = \frac{U_{0,ab}}{I_{cc,ab}} = \text{resistenza della rete inerte (con tutti i GIT/GIC spenti)}$$

$$I_{ab} = I_{cc,ab} - \frac{U_{ab}}{R_{eq}} \rightarrow \text{equazione del GLC}$$

6.4 Rendimento di un generatore elettrico lineare

Sia dato un circuito costituito da un generatore lineare e una resistenza

Si osserva che:

- il rendimento è sempre ≤ 1
- in caso di generatore a vuoto $\eta = 1$, in quanto I = 0
- in caso di cortocirtuito $\eta = 0$, in quanto E = 0
- nel mezzo si ha un andamento lineare $\eta = 1 R_i I/E$

Rendimento nei circuiti di potenza

Nei circuiti di potenza si vogliono rendimenti massimi, ovvero quando $R_u \gg R_i$.

Rendimento nei circuiti di segnale

Nei circuiti di segnale si vuole il massimo rapporto segnale/rumore e si analizzano le potenze massime. Analizzando la potenza dissipata da R_u in funzione del carico si osserva che si ha massima potenza dissipata quando $R_i = R_u$, con un rendimento di 1/2.

$$\frac{\partial P_{R_u}}{\partial R_u} = 0 \quad \Leftrightarrow \quad \frac{R_i - R_u}{(R_i + R_u)^3} E^2 = 0 \quad \Leftrightarrow \quad R_i = R_u \qquad \qquad \eta = \frac{R_u}{R_i + R_u} = 0.5$$

6.5 Punto di lavoro

Si immagina di avere una rete di bipoli di ordine 0 e non necessariamente lineare. Nel seguente caso, si ha un fotodiodo convenzionato da utilizzatore e un glt convenzionato da generatore con le rispettive caratteristiche esterne.

- Il punto di lavoro del circuito è il punto in cui le equazioni di Kirchhoff per le correnti e le tensioni sono soddisfatte e corrisponde al punto di intersezione delle caratteristiche esterne.
- Siccome l'intersezione si trova nel secondo quadrante, significa che l'utilizzatore (il fotodiodo) eroga energia e il generatore la assorbe. L'area evidenziata è la potenza erogata dal fotodiodo.
- In questo caso, le curve caratteristiche si intersecano in un unico punto, per cui la rete ha un'unica soluzione. Se le due curve caratteristiche si intersecano in più punti, non è possibile determinare a priori in quale dei punti la rete andrà a lavorare.

20

7 Doppi bipoli

7.1 Introduzione ai doppi bipoli

Doppi bipoli generici

I doppi bipoli sono componenti elettrici costituiti da due porte.

- è possibile collegare i doppi bipoli con altri componenti attraverso le due porte
- valgono sempre le LKT, le LKC e le sezioni di taglio

Doppi bipoli di ordine zero

I doppi bipoli di ordine zero sono doppi bipoli con:

- 2 porte convenzionate da utilizzatore
- 2 equazioni costitutive di ordine zero, cioè senza derivate
- 4 variabili (v_1, v_2, i_1, i_2) di cui due sono grandezze libere e due sono grandezze pilotate esprimibili in funzione delle due grandezze libere

Potenza nei doppi bipoli

La potenza dei doppi bipoli vale: $p_{entrante} = p_{e1} + p_{e2} = v_1i_1 + v_2i_2$, per un generico circuito vale la conservazione delle potenze $p_{tot} = 0$

Doppi bipoli ideali e inerti

- doppi bipoli ideali: se modellabili con un sistema di eq. lineari del tipo $Y = A \cdot X + B$
- doppi bipoli ideali inerti: se $B=0 \Rightarrow Y=A \cdot X$, per cui sono rappresentabili attraverso una delle 6 rappresentazioni in base alle variabili indipendenti e controllate.

7.2 Rappresentazioni dei doppi bipoli ideali inerti

Rappresentazione controllata in corrente

$$\begin{cases} v_1 = R_{11}i_1 + R_{12}i_2 \\ v_2 = R_{21}i_1 + R_{22}i_2 \end{cases} \Leftrightarrow \vec{v} = R \cdot \vec{i} \qquad R = \begin{pmatrix} R_{11} = \frac{v_1}{i_1} \Big|_{i_2 = 0} = [\Omega] & R_{12} = \frac{v_1}{i_2} \Big|_{i_1 = 0} = [\Omega] \\ R_{21} = \frac{v_2}{i_1} \Big|_{i_2 = 0} = [\Omega] & R_{22} = \frac{v_2}{i_2} \Big|_{i_1 = 0} = [\Omega] \end{pmatrix}$$

- con R matrice di resistenza o matrice a vuoto
- per misurare R_{11} e R_{21} , impongo la corrente i_1 , lascio la porta 2 a vuoto e misuro v_1 e v_2
- per misurare R_{12} e R_{22} , impongo la corrente i_2 , lascio la porta 1 a vuoto e misuro v_1 e v_2

Rappresentazione controllata in tensione

$$\begin{cases} i_1 = G_{11}v_1 + G_{12}v_2 \\ i_2 = G_{21}v_1 + G_{22}v_2 \end{cases} \Leftrightarrow \vec{i} = G \cdot \vec{v} \qquad G = \begin{pmatrix} G_{11} = \frac{i_1}{v_1} \Big|_{v_2 = 0} = [S] & G_{12} = \frac{i_1}{v_2} \Big|_{v_1 = 0} = [S] \\ G_{21} = \frac{i_2}{v_1} \Big|_{v_2 = 0} = [S] & G_{22} = \frac{i_2}{v_2} \Big|_{v_1 = 0} = [S] \end{pmatrix}$$

- con G matrice di conduttanza o matrice di cortocircuito
- per misurare G_{11} e G_{21} , impongo la tensione v_1 , cortocircuito la porta 2 e misuro i_1 e i_2
- per misurare G_{12} e G_{22} , impongo la tensione v_2 , cortocircuito la porta 1 e misuro i_1 e i_2

Prima rappresentazione ibrida

$$\begin{cases} v_1 = h_{11}i_1 + h_{12}v_2 \\ i_2 = h_{21}i_1 + h_{22}v_2 \end{cases} \Leftrightarrow \begin{pmatrix} v_1 \\ i_2 \end{pmatrix} = h \cdot \begin{pmatrix} i_1 \\ v_2 \end{pmatrix} \qquad h = \begin{pmatrix} h_{11} = \frac{v_1}{i_1} \Big|_{v_2 = 0} = [\Omega] & h_{12} = \frac{v_1}{v_2} \Big|_{i_1 = 0} = [/] \\ h_{21} = \frac{i_2}{i_1} \Big|_{v_2 = 0} = [/] & h_{22} = \frac{i_2}{v_2} \Big|_{i_1 = 0} = [S] \end{pmatrix}$$

- con h prima matrice ibrida perché composta da grandezze ibride [R] e $[S_{iemens}]$
- per misurare h_{11} e h_{21} , impongo la corrente i_1 , cortocircuito la porta 2 e misuro v_1 e i_2
- per misurare h_{12} e h_{22} , impongo la tensione v_2 , lascio la porta 1 a vuoto e misuro v_1 e i_2

Seconda rappresentazione ibrida

$$\begin{cases} i_1 = g_{11}v_1 + g_{12}i_2 \\ v_2 = g_{21}v_1 + g_{22}i_2 \end{cases} \Leftrightarrow \begin{pmatrix} i_1 \\ v_2 \end{pmatrix} = h \cdot \begin{pmatrix} v_1 \\ i_2 \end{pmatrix} \qquad g = \begin{pmatrix} g_{11} = \frac{i_1}{v_1} \Big|_{i_2 = 0} = [S] & g_{12} = \frac{i_1}{i_2} \Big|_{v_1 = 0} = [/] \\ g_{21} = \frac{v_2}{v_1} \Big|_{i_2 = 0} = [/] & g_{22} = \frac{v_2}{i_2} \Big|_{v_1 = 0} = [\Omega] \end{pmatrix}$$

- con g seconda matrice ibrida perché composta da grandezze ibride [R] e $[S_{iemens}]$
- per misurare g_{11} e g_{21} , impongo la tensione v_1 , lascio la porta 2 a vuoto e misuro i_1 e v_2
- per misurare g_{12} e g_{22} , impongo la corrente i_2 , cortocircuito la porta 1 e misuro i_1 e v_2

Prima rappresentazione di trasmissione

$$\begin{cases} v_1 = Av_2 - Bi_2 \\ i_1 = Cv_2 - Di_2 \end{cases} \Leftrightarrow \begin{pmatrix} v_1 \\ i_1 \end{pmatrix} = T \cdot \begin{pmatrix} v_2 \\ -i_2 \end{pmatrix} \qquad T = \begin{pmatrix} A = \frac{v_1}{v_2} \Big|_{i_2 = 0} & B = -\frac{v_1}{i_2} \Big|_{v_2 = 0} \\ C = \frac{i_1}{v_2} \Big|_{i_2 = 0} & D = -\frac{i_1}{i_2} \Big|_{v_2 = 0} \end{pmatrix}$$

- con T prima matrice di trasmissione
- siccome si dovrebbe imporre sia v_2 che i_2 contemporaneamente, per determinare A, B, C, D si misurano i reciproci 1/A, 1/B, 1/C, 1/D imponendo le opportune grandezze alle opportune porte

Seconda rappresentazione di trasmissione

$$\begin{cases} v_2 = A'v_1 + B'i_1 \\ -i_2 = C'v_1 + D'i_1 \end{cases} \Leftrightarrow \begin{pmatrix} v_2 \\ -i_2 \end{pmatrix} = T' \cdot \begin{pmatrix} v_1 \\ i_1 \end{pmatrix} \qquad T = \begin{pmatrix} A' = \frac{v_2}{v_1} \Big|_{i_1 = 0} & B' = \frac{v_2}{i_1} \Big|_{v_1 = 0} \\ C' = -\frac{i_2}{v_1} \Big|_{i_1 = 0} & D' = -\frac{i_2}{i_1} \Big|_{v_1 = 0} \end{pmatrix}$$

- con T' seconda matrice di trasmissione
- siccome si dovrebbe imporre sia v_1 che i_1 contemporaneamente, per determinare A', B', C', D' si misurano i reciproci 1/A', 1/B', 1/C', 1/D' imponendo le opportune grandezze alle opportune porte

Matrici e funzioni di trasferimento

- una matrice di trasferimento (che rappresenta una funzione di trasferimento) si può esprimere come rapporto tra causa ed effetto: $A = \frac{\text{effetto}}{\text{causa}} = \frac{X(s)}{U(s)}$
- siccome per determinare le matrici R,G,h,g, si imporre una causa per misurarne l'effetto, sono dette matrici di trasferimento
- siccome per determinare le matrici T,T' non è possibile imporre la causa previsa, allora non sono matrici di trasferimento

Cambio di rappresentazioni

Per i doppi bipoli ideali inerti per cui valgono tutte le rappresentazioni, allora vale:

$$R=G^{-1} \hspace{1cm} h=g^{-1} \hspace{1cm} T=T'^{-1}$$

Cambio dei riferimenti nelle rappresentazioni

Se cambio i riferimenti ad una porta, è necessario invertire i segni dei parametri mutui X_{12} e X_{21} per mantenere la stessa rappresentazione. Di seguito un esempio di doppi bipoli in rappresentazione controllata in corrente in cui si invertono i riferimenti alla porta 2.

$$\begin{array}{c|cccc}
 & i_1 + & & \\
\hline
u_1 & & & \\
& & & \\
\end{array}$$

$$\begin{array}{c|ccccc}
 & + & i_2 & \\
\hline
u_2 & & \\
\end{array}$$

$$\Rightarrow \begin{cases}
v_1 = R_{11}i_1 + R_{12}i_2 \\
v_2 = R_{21}i_1 + R_{22}i_2
\end{cases}$$

grandezze corrispondenti: $\begin{cases} i_2^* = -i_2 \\ v_2^* = -v_2 \end{cases} \quad \text{e} \quad R^* = \begin{pmatrix} R_{11}^* & R_{12}^* \\ R_{21}^* & R_{22}^* \end{pmatrix} = \begin{pmatrix} R_{11} & -R_{12} \\ -R_{21} & R_{22} \end{pmatrix}$

7.3 Collegamenti di doppi bipoli

Collegameno in cascata

Serie di doppi bipoli

Parallelo di doppi bipoli

Collegamento ibrido serie/parallelo

$$h_{eq} = h_a + h_b$$

Collegamento ibrido parallelo/serie

$$g_{eq} = g_a + g_b$$

7.4 Trasformatore ideale

Trasformatore ideale

Un trasformatore ideale è un doppio bipolo solitamente in rappresentazione di trasmissione in grado di modificare la tensione in ingresso di un certo fattore n detto rapporto di trasformazione.

Siccome non è possibile isolare i_1 e i_2 , oppure v_1 e v_2 , non è possibile usare le rappresentazioni controllate in corrente R o in tensione G, mentre è possibile usare le altre 4.

Trasformatore reale

I trasformatori reali sono utilizzabili solo in corrente alternata, servono per trasfomare la tensione o per isolare due parti di circuito. I trasformatori ideali sono solo utilizzati per modellare componenti elettrici.

Proprietà trasformatori ideali

- 1. trasparente alla potenza: $p_{e1} + p_{u2} = 0$
- 2. passivo: la potenza istantanea entrante è nulla
- 3. amplifica la tensione [o corrente] in ingresso, riducendone la corrente [o tensione]
- 4. trasporto: se alla porta 2 è collegato un resistore R_2 , dalla porta 1 appare come una resistenza equivalente $R_{eq} = n^2 R_2$: $v_1(t) = n v_2(t) = n(-R_2 i_2(t)) = -n R_2(-n i_1(t)) = n^2 R_2 i_1(t) = R_{eq} i_1(t)$

7.5 Generatori pilotati

I generatori pilotati sono generatori ideali rappresentati come doppi bipoli ideali. Una porta impone la corrente [o la tensione] mentre l'altra controlla la corrente [o la tensione] impressa.

Generatore di tensione pilotato in tensione - GTPT

$$\begin{array}{c|c}
i_1 \\
v_1 \\
\hline
\end{array}$$

$$\begin{array}{c|c}
+ & i_2 \\
\hline
v_2 \\
\end{array}$$

$$\begin{cases}
i_1 = 0 \\
v_2 = e_2 = k_\alpha v_1
\end{cases}$$

$$g = \begin{pmatrix} 0 & 0 \\ k_\alpha & 0 \end{pmatrix}$$

Generatore di tensione pilotato in corrente - GTPC

$$\begin{array}{c|c}
i_1 + & + & + & i_2 \\
v_1 & & & v_2 \\
\hline
\end{array}$$

$$\begin{cases}
v_1 = 0 \\
v_2 = e_2 = k_r i_1
\end{cases}$$

$$R = \begin{pmatrix} 0 & 0 \\ k_r & 0 \end{pmatrix}$$

Generatore di corrente pilotato in tensione - GCPT

$$\begin{array}{c|cccc}
i_1 & + & & + & i_2 \\
v_1 & & & \downarrow & & v_2 \\
\hline
& & & & & & \\
\end{array}$$

$$\begin{cases}
i_1 = 0 \\
i_2 = j_2 = k_g v_1
\end{cases}$$

$$G = \begin{pmatrix} 0 & 0 \\ k_g & 0 \end{pmatrix}$$

Generatore di corrente pilotato in corrente - GCPC

Osservazioni sui generatori pilotati

- Non esistono componenti reali corrispondenti, ma si utilizzano per modellare altri componenti, ad esempio per il transistor NPN come composizione di diodi, resistori e GP.
- Ogni tipo di generatore ha solo una delle quattro rappresentazioni R, G, h, g e tutti hanno la rappresentazione T'.

7.6 Circuiti lineari in corrente continua con doppi bipoli

Introduzione e teoremi

- in circuito in corrente continua con doppi bipoli si dice lineare se è costitituito solo da GRT, GRC e doppi bipoli lineari inerti di ordine zero
- valgono ancora le LKC e LKT e si può modellare il circuito con il sistema lineare Ax = b
- valgono i teoremi di sostituzione, sovrapposizione degli effetti, Thévenin e Norton
- vale il principio di conservazione delle potenze

Resistenza equivalente di porta

Si definisce la resistenza equivalente di porta in una sezione di circuito con generatori pilotati come la resistenza misurata quando si applica una corrente di 1 A_{mpere} , dopo aver spento tutti i generatori ideali e mantendendo accesi tutti i generatori pilotati.

Conduttanza equivalente di porta

Si definisce la conduttanza equivalente di porta in una sezione di circuito con generatori pilotati come la resistenza misurata quando si applica una tensione di 1 V_{olt} , dopo aver spento tutti i generatori ideali e mantendendo accesi tutti i generatori pilotati.

Esercizi con la sovrapposizione degli effetti

Quando si applica la sovrapposizione degli effeti in un circuito con generatori pilotati bisogna:

- 1. considerare individualmente ogni generatore ideale, spegnendo anche i generatori pilotati, in modo da calcolare la grandezza desiderata e le grandezze che controllano i generatori pilotati
- 2. alla fine considerare individualmente ogni generatore pilotato utilizzando le grandezze pilotate ottenute prima per calcolare le grandezze richieste