

DATABASE DESIGN

PRJ381

Student Name	Surname	Student
		Number
Thandeka	Mavunda	577949
Nosipho Precious	Donkrag	577354
Nontsikelelo	Buhlungu	577878
Sharon		
Owethu	Moyo	577051
Omphile	Tladi	577776
Oratile	Hlashwayo	577279

SEPTEMBER 6, 2024
BELGIUM CAMPUS IT-VERSITY

Database and Analytics

ANALYTICS

Below are some analytics that could be ran related to hyacinth tracking:

• Seasonal Water Hyacinth Growth Analysis

Track seasonal growth patterns of the water hyacinth by tracking the area covered by water hyacinth over different seasons and years.

• Analyse NDVI/EVI trends across different seasons and year for vegetation analysis

The average NDVI and EVI values of each image will be stored in the database.

$$NDVI (mean) = \frac{\sum NDVI \ values}{Number \ of \ pixels}$$

This will allow a new column called "Vegetation Density" to be created:

- \circ *NDVI* < 0.2: Low vegetation density (no vegetation)
- $0.2 \le NDVI \le 0.5$: Moderate vegetation density
- o NDVI > 0.5: High vegetation density
- Investigate weather factors

Investigate the influence of weather factors on the growth and distribution of the hyacinth mat (look at % or area of dam covered by the mat, $\frac{\sum binary\ pixels}{number\ of\ pixels}$). Factors to consider:

- o Temperature,
- o Season,
- Humidity? (ask Thandeka if humidity I available)
- Analyse historical data to forecast potential future infestation hotspots.

Use clustering algorithms (like DBSCAN or K-Means) to detect spatial hotspots where hyacinth is likely to grow based on historical spatial distribution data.

DATABASE DESIGN:

Raw images will be stored in the cloud.

It is not practical to store raw images in the database, due to the file sizes that may reduce performance.

Tables:

1. Image Table

Columns:

- image_id (Primary Key)
- date
- satellite name (Landsat 8)
- NIR band
- RED band
- BLUE band
- file location

3. NDVI_EVI Table

Columns:

- ndvi_evi_id (Primary Key)
- image_id (Foreign Key to the Images Table)
- pixel_x (X coordinate of the pixel)
- pixel_y (Y coordinate of the pixel)
- NDVI_value
- EVI_value
- vegetation_density

5. Hyacinth_Growth_Analysis Table

Columns:

- growth id (Primary Key)
- seasonal_id (Foreign Key to Seasonal_Analysis Table)
- year
- hyacinth_growth_rate (Percentage increase or decrease)

2. Weather Table

Columns:

- weather id (Primary Key)
- date
- temperature
- wind_speed
- wind direction
- humidity

4. Seasonal_Analysis Table

Columns:

- seasonal_id (Primary Key)
- season (e.g., Summer, Winter)
- year
- average_ndvi
- average evi
- hyacinth_coverage_area

ERD Design:

The relationship between the NDVI_EVI table is yet to be finalised; the manner in which the pixels are stored will determine the nature of the relationship.

*Suggested storage: text file holding pixel values.