🗘 Anki

q: Force de Lorentz

a:

$$ec{f} = F_{
m elec} + F_{
m mag} = q \Big(ec{E} + ec{v} \wedge ec{B} \Big)$$

car
$$F_{\rm elec} = q \vec{E}$$
 et $F_{\rm mag} = q \vec{v} \wedge \vec{B}$

🗘 Anki

q
: Vecteur accéleration d'une particule de charge q dans un champ électrique
 $\vec{E}.$

a: On étudie le système q de masse m dans le référentiel terrestre supposé Galiléen. Bilan des forces:

• Poids, que l'on néglige

• Force électrique: $\vec{f} = q\vec{E}$

On applique le principe fondamental de la dynamique:

$$m\vec{a} = q\vec{E} \Leftrightarrow \vec{a} = \frac{q}{m}\vec{E}$$

Si \vec{E} est uniforme, l'accélération sera constante.

Anki

q: Que dire des ordres de grandeurs de la force électrique, de la force magnétique, de la force de gravitation?

a: La majorité du temps, la force électrique sera donc négligeable devant la force magnétique.

La force de gravitation est de l'ordre de $mg=9.1\times 10^{-31}\times 10\approx 10^{-29}{\rm N}$ et est complètement négligeable.

Éléments de preuve:

On se place dans un environnement relativiste (donc vitesses bien plus faible que la vitesse de la lumière), au max $v \leq \frac{c}{10}$

En prenant un champ magnétique relativement fort de $B=0.1\mathrm{T}$, on trouve un ordre de grandeur de la force magnétique de:

$$F_{\rm mag} \approx evB = 5 \times 10^{-13} \ {\rm N}$$

Si on suppose que $F_{\rm elec}$ est du même ordre de grandeur que $F_{\rm mag}$, on aurait alors $E \approx vB \approx 3.10^6~{
m V~m^{-1}}$, qui est un énorme champ électrique qui ne sera pas vu en général.

q: Que dire de la force électrique?

a: C'est une force conservative.

On a alors

$$\vec{F} = -\overrightarrow{\mathrm{grad}}\big(E_p\big) \text{ avec } E_p = \underbrace{qV}_{\text{potentiel électrique}} + \text{constante}$$

🗘 Anki

q:

Accélération d'une particule chargée par un champ électrique

Expression de la vitesse finale.

a: Si on fait l'hypothèse que la vitesse initiale est nulle (v(t=0)=0), on pose v_f la vitesse finale, alors on a:

$$\frac{1}{2}m\big(v_f\big)^2 = -qu$$

 $v_f = \sqrt{\frac{-2qu}{m}}$ si q et u sont de signe différents, on prend l'opposé sinon

Ici c'est la démonstration qui est intéressante:

Éléments de preuve:

On sait que la force électrique est une force conservative (par parachutage du résultat de deuxième année).

On a donc:

$$\overrightarrow{F} = -\overrightarrow{\operatorname{grad}}\big(E_p\big) \text{ avec } E_p = \underbrace{qV}_{\text{potentiel électrique}} + \text{constante}$$

On n'a que des force conservatives, donc par théorème de l'énergie mécanique:

$$E_m = E_c + E_p = {\rm constante}$$

Note: ΔV , c'est la différence de potentiel, autrement dit la tension u.

$$\Delta E_c = -\Delta E_p = -\Delta (qV + {\rm constante}) = -q\Delta V$$

On a $\vec{E} = -\overrightarrow{\operatorname{grad}}V$,

$$E = -\frac{\mathrm{d}V}{\mathrm{d}x}$$

Donc V = -Ex + constant,

$$u = V_1 - V - 2 = -E(x_1 - x_2)$$

Anki

- q: Déviation d'une particule chargée par un champ électrique a: On fait l'hypothèse:
- d'une vitesse initiale \boldsymbol{v}_0 perpendiculaire au champ électrique
- un champ électrique limité à la distance ${\cal L}.$

On pose θ la déviation entre $\vec{v_0}$ la vitesse initiale et $\vec{v_1}$ la vitesse finale.

Éléments de preuve:

On se place dans le plan x, y:

On pose les équation horaires:

$$\begin{cases} \ddot{x} = \frac{qE}{m} \\ \ddot{y} = 0 \end{cases}$$

$$\begin{cases} \ddot{x} = \frac{qE}{m} & L \\ \ddot{y} = 0 & \vec{v_0} \end{cases}$$

$$\Leftrightarrow \begin{cases} \dot{x} = \frac{qE}{m}t & q \\ \dot{y} = v_0 & q \end{cases}$$

$$\Leftrightarrow \begin{cases} x = \frac{qE}{2m}t^2 \\ y = v_0t \end{cases}$$

$$\tan \theta = \frac{\ddot{x_1}}{\dot{y_1}}$$

On pose t_1 le temps de sortie:

$$\tan \theta = \frac{qEt_1}{mv_0}$$

 y_1 est l'ordonnée de la fin du champ, donc:

$$y_1 = L = v_0 t_1 \Rightarrow t_1 = \frac{L}{v_0}$$

Donc

$$\tan \theta = \frac{qEL}{mv_0^2}$$

Duplicate id: 250406

```
q:
a:
```

Duplicate id: 250406

```
    Anki
    q:
    a:
```

Duplicate id: 250406

Duplicate id: 250406

```
q:
a:
```

Duplicate id: 250406

```
    Anki
    q:
    a:
```

Duplicate id: 250406

```
q:
a:
```

Duplicate id: 250406

```
q:
a:
```