Partiel Mat309, 9 novembre 2022, 11h30-13h

Calculatrices interdites. Une feuille manuscrite A4 recto-verso autorisée. Les réponses doivent être justifiées.

Exercice 1. (~ 6 points)

- 1. Calculer $8 \cdot 9 \cdot 10 + 3^4 \pmod{89}$.
- 2. Calculer 8! $\pmod{17}$ et $(8!)^2 \pmod{17}$.
- 3. Montrer $(((n-1)/2)!)^2 \equiv (-1)^{(n-1)/2}(n-1)! \pmod{n}$ si $n \in [n-1)$ est impair.
- 4. Vérifier la valeur obtenue pour $(8!)^2 \pmod{17}$ en utilisant l'identité de la question 3 et l'identité (admise) $(p-1)! \equiv -1 \pmod{p}$ si p est premier.
- 5. Utiliser le fait que x^{-1} est différent de x dans $(\mathbb{Z}/(p\mathbb{Z}))^*$ pour $x \not\equiv \pm 1 \pmod{p}$ pour montrer l'identité $(p-1)! \equiv -1 \pmod{p}$ si p est premier.

Exercice 2. (~ 4 points) 1. Trouver le plus petit entier naturel x tel que

$$\begin{cases} x \equiv 2004 \pmod{19}, \\ x \equiv 2004 \pmod{11}. \end{cases}$$

- 2. Les comètes P/2004 V3 et P/2004 FY ont étés vues toutes les deux durant l'année 2004 et elles sont visibles tous les 19, respectivement tous les 11 ans.
 - (a) Quelle est la prochaine année durant laquelle on pourra voir les deux comètes?
- (b) La comète P/2011 C2 a été vue en 2011 et elle est visible tous les 20 ans. Combien de temps s'écoule entre deux apparitions simultanées (dans la même année) des trois comètes P/2004 V3 et P/2004 FY et P/2011 C2?

Exercice 3. (~ 6 points)

1. Sachant que $2^{1022} \equiv 4 \pmod{1023}$, que peut-on en déduire (sans s'intéresser aux diviseurs de 1023) sur la primalité de l'entier 1023?

Dans la suite de cet exercice on se propose de vérifier indépendamment que 2^{1022} est effectivement congru à 4 modulo 1023.

- 2. Donner l'écriture binaire (écriture en base 2) de 1022.
- 3. Calculer $2^{1022} \pmod{11}$ en utilisant l'algorithme de l'exponentiation rapide et en détaillant les calculs
- 4. Calculer $2^{1022} \pmod{31}$ en utilisant le théorème de Lagrange: $a^{\phi(n)} \equiv 1 \pmod{n}$ si a et n sont premiers entre eux. (Indication: $\phi(p) = p 1$ si p est premier.)
 - 5. Calculer 2¹⁰²² (mod 3) par la méthode de votre choix.
- 6. Utiliser les résultats des questions 2-4 pour vérifier que 2^{1022} est bien congru à 4 modulo 1023. (Indication: Combien vaut le produit $3\cdot 11\cdot 31$?)

Exercice 4. (~ 5 points)

- 1. Calculer les indicatrices d'Euler $\phi(8)$ et $\phi(12)$ de 8 et de 12.
- 2. Écrire la table du groupe multiplicatif $(\mathbb{Z}/8\mathbb{Z})^*$.
- 3. Ecrire la table du groupe multiplicatif $(\mathbb{Z}/12\mathbb{Z})^*$.
- 4. Exhiber une bijection σ de $(\mathbb{Z}/8\mathbb{Z})^*$ dans $(\mathbb{Z}/12\mathbb{Z})^*$ qui vérifie $\sigma(ab) = \sigma(a)\sigma(b)$ pour tous les a, b dans $(\mathbb{Z}/8\mathbb{Z})^*$.