

Nonparametric Analysis of

Agricultural Productivity In U.S.

Sofia Moroni

Nonparametric Statistics (5 CFU) MSc. Mathematical Engineering

*** RESEARCH QUESTIONS

The project addresses Policymakers of US and their Economic Advisers

How Agricultural Growth has changed from the past

Which are the Primary Drivers of the agricultural sector's growth

Which States are leading in Agricultural Production and why

DATASET PRESENTATION

DATASET PRESENTATION

The variables are indexes of growth with respect to year 2015

Capital Input

Wide range of physical assets used in agricultural activities

- I
- Durable Equipment
- Service Buildings
- Inventories
- Land

Total Agricultural Output

Gross production leaving the farm

Labor Input

Total human effort in agricultural production

- <u>Hired Labor</u>
- Self Employed & Unpaid Family

Intermediate Input

Resources used within the production process but not directly transformed into the final output

- Fertilizer
- Energy
- Pesticides
- Purchased Services

GENERAL TRENDS IN DATA

Different composition of *Inputs* along Years

Farm Machinery
(Capital Input)
&
Intermediate Resources

GENERAL TRENDS IN DATA

Two Paired Samples Multivariate Permutational test

There is statistical evidence of difference between the means of first period and second period

	Total Output 48-90	Total Output 90-2015
Capital Input	0.1656040	- 0.3183969
Labor Input	- 0.9876408	- 0.8513482
Intermediate Input	0.9568786	0.7858585

- Intermediate Input: strongly positive correlation
- Labor Input: excessive or inefficient allocation of labor → reduction in productive efficiency
- Capital Input: shift from weakly positive to negative → changes in agricultural technologies, resource allocation or market dynamics

CONFORMAL PREDICTION

Conformal Intervals

- Mahalanobis distance
- T prediction interval
- **KNN** distance

Multiple Permutation Tests

$$H_0: \beta_{Feed} = 0 \text{ vs } H_1: \beta_{Feed} \neq 0$$

to assess the significance of each covariate

pval = 0.334

$$Total. Agricoltural. Output_{i} = \beta_{0} + \beta_{1} * Intermediate. Energy. Input_{i} \\ + \beta_{2} * Intermediate. Pesticides. Input_{i} \\ + \beta_{3} * Capital. Service. Buildings. Input_{i}: Period_{i} \\ + \beta_{4} * Self. Employed. Unpaid. Family_{i}: Period_{i} \\ + f_{1}(Capital. Durable. Equipment. Input_{i}) \\ + f_{2}(Labor. Hired. Labor. Input_{i}) + \varepsilon_{i} \\ \beta_{3,1}, \beta_{4,1}, \beta_{4,2} < 0$$

SEQUENTIAL CLUSTERING

Sequential Clustering based on Agricultural Output Index

Identify 4 clusters exhibiting similar patterns over years

Singleton California has values significantly higher than those of other state

PERMUTATIONAL MANOVA

Permutational Manova Analysis on Capital Input, Labor Input and Intermediate Input

Clustering not only captures output distinctions but also reflects **statistically significant variations** in the use of inputs

Capital Input

Spatial GAM to identify regions with the highest sales of agricultural commodities

Areas with high sales could indicate regions with a strong demand for agricultural commodities and a higher necessity for agricultural productivity

 $\log(Total_Commodities_Sales) = f_1(Latitude, Longitude) + f_2(\log(Population))$

Conclusions

01

Changes In Input Usage

Permutational Tests

02

Primary drivers of the agricultural sector

GAM + Bootstraps Intervals

03

Spatial Agricultural Trends

Permutational Manova + Spatial GAM

Further Developments

- Include in the analysis external factors, such us weather conditions or characteristics of the soil
- Employ more sophisticated modeling techniques to understand complexity of the dynamics of agricultural systems

Thanks for your attention!

- Ball et al. Is u.s. agricultural productivity growth slowing? Applied Economic Perspectives and Policy, 2013.
- Wang et al. Public r&d, private r&d, and us agricultural productivity growth: Dynamic and long-run relationships. American journal of agricultural economics, 2013.
- Sun Ling Wang, Paul Heisey, David Schimmelpfennig, and V Eldon Ball. Agricultural productivity growth in the united states: Measurement, trends, and drivers. Economic Research Service, 2015.
- Sun Ling Wang, Richard Nehring, and Roberto Mosheim. Agricultural productivity growth in the united states: 1948-2015. Amber Waves: The Economics of Food, Farming, Natural Resources, and Rural America, 2018(2), 2018.