Amendments to the Claims

This listing of claims will replace all prior versions, and listings of claims in the application.

<u>Listing of Claims</u>

1 1. (Currently Amended) A computerized method for selecting cells in a 2 circuit design database, the circuit design database having one or more levels of hierarchy 3 including one or more logic functions composed of one or more other logic functions 4 and/or one or more leaf cells, the leaf cells forming the lowest level of hierarchy in the 5 circuit design database, each of the leaf cells having one or more inputs and one or more 6 outputs, the circuit design database having one or more nets, each of the nets for 7 connecting an output port of a source leaf cell to an input port of one or more destination 8 leaf cells, the computerized method comprising the steps of: 9 selecting one of the nets via a user input device; 10 identifying selected leaf cells that are connected to the selected net, wherein the 11 selected leaf cells identified by the identifying step include only the source leaf cell that 12 is connected to the selected net; and 13 selecting the identified leaf cells. 1 2. (Original) A method according to claim 1, wherein the selected leaf 2 cells identified by the identifying step include all of the leaf cells that are connected to the 3 selected net.

1	3.	(Canceled)	
1	4.	(Canceled)	
1	5.	(Original)	A method according to claim 1, wherein each of the leaf
2	cells in the c	ircuit design da	tabase is either placed or unplaced, the identifying step only
3	identifying t	hose leaf cells the	hat are connected to the selected net and are placed.
1	6.	(Original)	A method according to claim 1, wherein each of the leaf
2	cells in the c	ircuit design da	tabase is either placed or unplaced, the identifying step only
3	identifying t	hose leaf cells the	hat are connected to the selected net and are unplaced.
1	7.	(Currently A	mended) A method according to claim 1, further comprising
2	the step of	A computerized	d method for selecting cells in a circuit design database, the
3	circuit desig	n database hav	ring one or more levels of hierarchy including one or more
4	logic function	ons composed o	of one or more other logic functions and/or one or more lead
5	cells, the lea	af cells forming	the lowest level of hierarchy in the circuit design database.
6	each of the	leaf cells havir	ng one or more inputs and one or more outputs, the circuit
7	design datab	ase having one	or more nets, each of the nets for connecting an output port of
8	a source lea	f cell to an inpu	t port of one or more destination leaf cells, the computerized
9	method com	prising the steps	s of:
10	selec	ting one of the 1	nets via a user input device;
11	ident	ifving selected 1	leaf cells that are connected to the selected net:

12	selecting the identified leaf cells; and		
13	setting a current context.		
1	8.	(Original)	A method according to claim 7, wherein the selected leaf
2	cells identifi	ed by the identi	ifying step include only those leaf cells that are connected to
3	the selected	net and are in the	he current context.
1	9.	(Original)	A method according to claim 7, wherein the selected leaf
2	cells identifie	ed by the identi	ifying step include only the source leaf cell that is connected
3	to the selecte	ed net and is in	the current context.
1	10.	(Original)	A method according to claim 7, wherein the selected leaf
2	cells identifie	ed by the identi	ifying step include only the destination leaf cells that are
3	connected to	the selected ne	et and are in the current context.
1	11.	(Original)	A method according to claim 7, wherein each of the leaf
2	cells in the c	ircuit design da	atabase is either placed or unplaced, the identifying step only
3	identifying those leaf cells that are connected to the selected net, are placed, and are in		
4	the current co	ontext.	
1	12.	(Original)	A method according to claim 11, wherein the identifying
2	step only ide	ntifies the sour	ce leaf cell that is connected to the selected net, is placed, and
3	is in the current context, if any.		

1 13. (Original) A method according to claim 11, wherein the identifying 2 step only identifies the source leaf cell that is connected to the selected net, is unplaced, 3 and is in the current context, if any. 1 14. (Original) A method according to claim 7, wherein each of the leaf 2 cells in the circuit design database is either placed or unplaced, the identifying step only 3 identifying those leaf cells that are connected to the selected net, are unplaced, and are in 4 the current context. 1 15. (Original) A method according to claim 1, wherein two or more of the 2 nets are selected, and the identifying step identifies selected leaf cells that are connected 3 to any of the selected nets. 1 16. (Original) A method according to claim 15, wherein the identifying 2 step identifies only those leaf cells that are placed. 1 17. (Original) A method according to claim 15, wherein the identifying 2 step identifies only those leaf cells that are unplaced. 1 18. (Original) A method according to claim 15, wherein the identifying 2 step identifies only those leaf cells that are in a current context.

(Original)

19.

1

A method according to claim 15, wherein the identifying

2	step identifies only those leaf cells that are source leaf cells for the selected nets.
1	20. (Original) A method according to claim 15, wherein the identifying
2	step identifies only those leaf cells that are destination leaf cells for the selected nets.
1	21. (Currently Amended) A method according to claim 15 A computerized
2	method for selecting cells in a circuit design database, the circuit design database having
3	one or more levels of hierarchy including one or more logic functions composed of one
4	or more other logic functions and/or one or more leaf cells, the leaf cells forming the
5	lowest level of hierarchy in the circuit design database, each of the leaf cells having one
6	or more inputs and one or more outputs, the circuit design database having one or more
7	nets, each of the nets for connecting an output port of a source leaf cell to an input port of
8	one or more destination leaf cells, the computerized method comprising the steps of:
9	selecting two or more of the nets via a user input device, wherein the two or more
10	nets are part of a vectored net;
11	identifying selected leaf cells that are connected to any of the selected nets;
12	selecting the identified leaf cells.
1	22. (Original) A method according to claim 21, wherein the vectored net
2	is selected at an interface of a selected logic function.

1	23. (Currently Amended) A computerized method for selecting and aligning		
2	cells in a circuit design database using a placement tool, the circuit design database		
3	having one or more levels of hierarchy including one or more logic functions composed		
4	of one or more other logic functions and/or one or more leaf cells, the leaf cells forming		
5	the lowest level of hierarchy in the circuit design database, each of the leaf cells having		
6	one or more inputs and one or more outputs, the circuit design database having one or		
7	more nets, each of the nets for connecting an output port of a source leaf cell to an input		
8	port of one or more destination leaf cells, the computerized method comprising the steps		
9	of:		
10	selecting one or more of the nets via a user input device;		
11	identifying and selecting selected leaf cells that are connected to the selected one		
12	or more nets, wherein the selected leaf cells identified by the identifying step include		
13	only the source leaf cell(s) that are connected to the one or more selected nets;		
14	identifying an alignment axis; and		
15	aligning selected ones of the identified leaf cells in the direction of the alignment		
16	axis.		
1	24. (Original) A method according to claim 23, wherein the alignment		
2	axis is substantially horizontal.		
1	25. (Original) A method according to claim 23, wherein the alignment		
2	axis is substantially vertical.		

1	26.	(Original)	A method according to claim 23, wherein each of the leaf
2	cells in the c	ircuit design da	atabase is either placed or unplaced, the aligning step further
3	including the	step of placin	g the identified leaf cells if not already placed.
1	27.	(Original)	A method according to claim 26, wherein the unplaced
2	identified lea	of cells are first	placed in a predetermined region before alignment.
1	28.	(Original)	A method according to claim 23, wherein the aligning step
2	puts the selec	cted identified	leaf cells into a predetermined order along the alignment axis.
1	29.	(Original)	A method according to claim 28, A computerized method
2	for selecting	and aligning c	ells in a circuit design database using a placement tool, the
3	circuit design	n database hav	ing one or more levels of hierarchy including one or more
4	logic functio	ns composed o	of one or more other logic functions and/or one or more leaf
5	cells, the lea	f cells forming	the lowest level of hierarchy in the circuit design database,
6	each of the le	eaf cells having	g one or more inputs and one or more outputs, the circuit
7	design datab	ase having one	e or more nets, each of the nets for connecting an output port of
8	a source leaf	cell to an inpu	t port of one or more destination leaf cells, the computerized
9		prising the ster	
10		_	ore of the nets via a user input device, wherein the one or more
11	•		net having ordered bits;
12			ecting selected leaf cells that are connected to the selected one
13	or more nets	1	

14	identifying an alignment axis; and
15	aligning selected ones of the identified leaf cells in the direction of the alignment
16	axis, wherein the aligning step puts the selected identified leaf cells into a predetermined
17	order along the alignment axis.
1	30. (Original) A method according to claim 29, wherein the aligning step
2	orders the selected identified leaf cells in accordance with the ordered bits of the vectored
3	net.
1	31. (Original) A method according to claim 29, wherein the aligning step
2	orders the selected identified leaf cells in reverse of the ordered bits of the vectored net.
1	32. (Original) A method according to claim 29, wherein each of the
2	identified leaf cells is associated with one of the ordered bits of the vectored net, and the
3	identified leaf cells for each ordered bit has one source leaf cell and at least one
4	destination leaf cell, the aligning step putting the source leaf cells into a predetermined
5	order along the alignment axis, and putting the at least one destination leaf cell adjacent
6	the corresponding source leaf cell along an axis that is perpendicular to the alignment
7	axis.
1	33. (Original) A data processing system for selecting cells in a circuit
2	design database, the circuit design database having one or more levels of hierarchy
3	including one or more logic functions composed of one or more other logic functions

4	and/or one or more leaf cells, the leaf cells forming the lowest level of hierarchy in the
5	circuit design database, each of the leaf cells having one or more inputs and one or more
6	outputs, the circuit design database having one or more nets, each of the nets for
7	connecting an output port of a source leaf cell to an input port of one or more destination
8	leaf cells, the data processing system comprising:
9	net selection means for selecting one or more of the nets of the circuit design
10	database;
11	leaf cell identifying means for identifying selected leaf cells that are connected to
12	the selected net(s), wherein the selected leaf cells identified by the identifying means
13	include only the source leaf cell(s) that is/are connected to the selected net(s); and
14	leaf cell selecting means for selecting the identified leaf cells.
1	34. (Original) A data processing system according to claim 33, further
2	comprising:
3	identifying means for identifying an alignment axis; and
4	aligning means for aligning the identified leaf cells in the direction of the
5	alignment axis.
6	
7	35. (New) A computerized method for selecting cells in a circuit design
. 8	database, the circuit design database having one or more levels of hierarchy including one
9	or more logic functions composed of one or more other logic functions and/or one or
10	more leaf cells, the leaf cells forming the lowest level of hierarchy in the circuit design
11	database, each of the leaf cells having one or more inputs and one or more outputs, the

circuit design database having one or more nets, each of the nets for connecting an output
port of a source leaf cell to an input port of one or more destination leaf cells, the
computerized method comprising the steps of:
selecting one of the nets via a user input device;
identifying selected leaf cells that are connected to the selected net, wherein the
selected leaf cells identified by the identifying step only include one or more of the
destination leaf cell(s) that is/are connected to the selected net; and
selecting the identified leaf cells.
36. (New) A computerized method for selecting and aligning cells in a circuit
design database using a placement tool, the circuit design database having one or more
levels of hierarchy including one or more logic functions composed of one or more other
logic functions and/or one or more leaf cells, the leaf cells forming the lowest level of
hierarchy in the circuit design database, each of the leaf cells having one or more inputs
and one or more outputs, the circuit design database having one or more nets, each of the
nets for connecting an output port of a source leaf cell to an input port of one or more
destination leaf cells, the computerized method comprising the steps of:
selecting one or more of the nets via a user input device;
identifying and selecting selected leaf cells that are connected to the selected one
or more nets, wherein the selected leaf cells identified by the identifying step only
include one or more of the destination leaf cell(s) that is/are connected to the one or more
selected net;
identifying an alignment axis; and

aligning selected ones of the identified leaf cells in the direction of the alignment

15

16 axis. 1 37. (New) A data processing system for selecting cells in a circuit design 2 database, the circuit design database having one or more levels of hierarchy including one 3 or more logic functions composed of one or more other logic functions and/or one or 4 more leaf cells, the leaf cells forming the lowest level of hierarchy in the circuit design 5 database, each of the leaf cells having one or more inputs and one or more outputs, the 6 circuit design database having one or more nets, each of the nets for connecting an output 7 port of a source leaf cell to an input port of one or more destination leaf cells, the data 8 processing system comprising: 9 net selection means for selecting one or more of the nets of the circuit design 10 database; leaf cell identifying means for identifying selected leaf cells that are connected to 11 12 the selected net(s), wherein the selected leaf cells identified by the identifying means only 13 include one or more of the destination leaf cell(s) that is/are connected to the one or more 14 selected net(s); and 15 leaf cell selecting means for selecting the identified leaf cells.