

PHYLOViZ Web Platform

A Modular and Web-Based Tool for Phylogenetic Analysis

Supervisors:

- Cátia Vaz, ISEL
- Alexandre P. Francisco, IST

48089 André Páscoa 48280 André Jesus 48287 Nyckollas Brandão

Table of contents

01 Introduction (

02 Motivation

03 Architecture

04 Implementation

05 Software Stack

06 Testing

07 Demonstration

08 Conclusion

01

Introduction

What's **Phylogenetic Analysis**?

Introduction

Phylogenetic Analysis is a field of biomedical research which allow to understand the evolution of bacterial and viral epidemics.

Phylogenetic Analysis

Sequence Alignment

3 Inference Algorithms

2 Typing Methodology

Visualization
Algorithms

Pipeline

Isolate Data

id	ST	isolate	species	country	continent
1	1	AU2523	A.denitrificans	USA	NorthAmerica
2	2	AU8059	A.denitrificans	Unknown	
3	3	AU8060	A.denitrificans	France	Europe
4	1	AU8080	A.insolitus	USA	NorthAmerica
5	5	ACH26	A.insolitus	USA	NorthAmerica

DNA Sequences

ST	nusA	rpoB	eno	gltB	lepA	nuoL	aroe
1	1	26	2	2	59	8	1
2	1	26	2	4	59	2	1
3	1	26	2	2	62	8	2
4	1	26	7	2	59	3	2
5	1	27	1	1	62	9	1

Typing Data

Distance Matrix

02

Motivation

Related Tools

PHYLOVIZ

Desktop application for Phylogenetic Analysis

FLOWVIZ

Workflow Manager

Phylolib

Library of Phylogenetic Analysis Algorithms

PHYLOVIZ Online

Web application for Phylogenetic Analysis

PhyloDB

Graph-Oriented Database

Problem

- No future support for frameworks used by PHYLOViZ Desktop
- Features in both versions of PHYLOViZ are not the same
- PHYLOViZ Online is **not modular**, which makes it difficult to extend and maintain
- Current solutions **do not scale** for large data analysis and visualization
- Results and optimizations are not stored for reuse

Solution: PHYLOViZ Web Platform

Modular Architecture

Web Based

Advanced Data Management

Data Centric Workflows

Why Modular?

Allows seamless integration of new modules/tools, creating/editing workflows

Customization of **data repositories**, providing flexibility in storing and managing phylogenetic data

03

Architecture

Data Model

Phylogenetic Data

PhyloDB

Model and Database used for first deployment. Uses the graph database **neo4j**.

OpenStack S3

Object storage of OpenStack used for file storage.

Others

Other repositories can be easily used, even at the same time, because of metadata storage.

Data Model

Metadata

MongoDB

- Abstraction between application and data repositories.
- Document in MongoDB.
- Stores information of each resource no need to change existing databases to fit the data model of our application.
- Stores access information for each data repository multiple data representations.

Data Model Multiple data representations

- Integration with multiple data repositories.
- Different data representations to be used in different operations flexibility.
- Data replicated across the repositories.

Projects, Datasets and Files

04

Implementation

Metadata Documents

Project

_id: ObjectId('6442f8da3903160faccddf54')

name: "Project1"
description: ""

ownerId: "914cc356-ac86-4ab4-909c-bd02d3776a7b"

Dataset

_id: ObjectId('6442fb1d3903160faccddf62')

projectId: "6442f8da3903160faccddf54"

name: "Dataset1"

description: "My first dataset."

typingDataId: "7a01d824-e9a7-49cc-8d9d-7dacdcb2e92c"

Typing Data

_id: ObjectId('645d60621199246130dc94ea')

name: "allele_profiles.txt"

typingDataId: "026dcfaa-127d-4863-9208-55c1c539b983"
projectId: "645d60417f92b75799a8c86d"

▼ repositorySpecificData: Object

▼ s3: Object

url: "http://localhost:9444/phyloviz-web-platform/645d6041

originalFilename: "allele_profiles.txt"

▼ phylodb: Object

projectId: "01686wcfa29"

type: "ML"

Isolate Data

_id: ObjectId('645d60c91199246130dc94f0')

▼ repositorySpecificData: Object

▼ s3: Object

url: "http://localhost:9444/phyloviz-web-platform/645d60417f9

originalFilename: "isolates.txt"
projectId: "645d60417f92b75799a8c86d"

name: "isolates.txt"

isolateDataId: "ac4fd7cb-6a00-4755-a771-66b8e30ee027"

Metadata Documents

Distance Matrix

Tree

```
_id: ObjectId('645dfcf8ba62c99ef7a314c1')
projectId: "645d60417f92b75799a8c86d"
datasetId: "645d60a27f92b75799a8c86e"
treeId: "a13123bd0-a33f-4262-8973-bd65c52d4"
name: "Tree a13123bd0-a33f-4262-8973-bd65c52d4"
sourceType: "algorithm_distance_matrix"
> source: Object
    repositorySpecificData: Object
    phylodb: Object
    projectId: "2j9dk461"
    datasetId: "3j18ddk2"
    inferenceId: "a863-a33f-4oi2-89g5-13vsees"
```

Tree View

```
_id: ObjectId('64a309ee43b9d415e11290aa')

> source: Object
layout: "force-directed"
datasetId: "6488b5f42b06c76a283e2c79"
treeViewId: "Lcf29267-af66-457c-9f8e-7285c3dacf79"
projectId: "6488a5122b06c76a283e2c70"
name: "Tree View 1 - force-directed"

* transformations: Object
gravity: 0.01
repulsion: 0.2
nodeSize: 4
nodeLabel: true
nodeLabelSize: 0
...

* repositorySpecificData: Object
```


Workflows

- Workflow and tool templates are managed by the system administrator and stored in a document database.
- Workflows and tools can be added, edited and removed during runtime.
- Ideally tool images are previously uploaded to the custom Docker image registry.

Workflow and Tool Documents

Workflow and Tool Documents

Tool Template

```
_id: ObjectId('6435c0997b1e5ce5a2527ec3')
▼ general: Object
    name: "phylolib"
    description: "The phylolib library"
▼ access: Object
    _type: "library"
  ▼ details: Object
      address: "localhost"
      dockerUrl: "unix://var/run/docker.sock"
      dockerImage: "localhost:5000/phylolib"
      dockerAutoRemove: "never"
      dockerNetworkMode: "bridge"
      dockerApiVersion: "auto"
    ▼ dockerVolumes: Array
      ▼ 0: Object
          source: "/mnt/phyloviz-web-platform/${projectId}/${workflowId}/"
          target: "/phyloviz-web-platform"
          _type: "bind"
▶ library: Array
```


Tree Visualization

- Cosmos (cosmograph) used as a base, to provide the force directed layout, showing the tree as a graph and running the simulation.
- Cosmos uses WebGL to run the simulation on the GPU, making use of its parallel computation capabilities.

Several additions to cosmos were made:

- Labels on nodes and edges;
- Draggable nodes;
- Pie-charts on nodes to represent ancillary data from isolates.

Tree Visualization

- High scalability, up to **15000 nodes** per cluster visualization.
- Such scalability is not possible in PHYLOViZ Online.

Deployment

- Deployed at <u>web.phyloviz.net</u>
- Authentication at auth.phyloviz.net
- Infrastructure **Biodata**, within private clouds hosted by Instituto Superior Técnico, using **OpenStack**

05

Software Stack

Backend Technologies

Spring

Gateway and Microservices

Java

Programming Language

Keycloak

Authorization Server

Apache Airflow

Workflow Management Platform

Backend Technologies

OpenStack

S3 Buckets for Big Data and VMs

Docker

Containerization Platform

MongoDB

Metadata Storage

Python

Language used for some starter compute tools

Frontend Technologies

React

User Interface

Material UI

React Library

TypeScript

Programming Language

Webpack

Module bundling

Cosmos

Tree Visualization

06

Testing

Testing

- Manual Testing: Service mocks in the frontend and Postman for API testing
- Automatic Testing: Unitary tests and Integration Tests
- User Acceptance Testing: to be conducted by a dedicated team from Institute of Molecular Medicine (iMM), in the future

07

Demonstration

Conclusions

- The PHYLOViZ Web Platform is a **modular** and **extensible** tool for phylogenetic analysis.
- It supports large-scale analyses through parallel computations on cloud and HPC environments.
- The platform integrates existing tools and provides efficient data management and analysis capabilities.
- It offers a user-friendly interface and advanced features for phylogenetic analysis.

Future Work

- Enhanced Visualization, including Collapsible Tree Visualization
- Dynamic Workflows
- Community Engagement and Collaboration
- Integration with PubMLST or other resources

Resources

- Project Proposal
- Progress Presentation
- GitHub Repository
- Project Wiki
- Project Report
- Poster
- Final Presentation

Thanks!

Do you have any questions?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**

