ASD Cheatsheet

alessandro.manfucci@studenti.unitn.it

10/01/2023

Table of contents

1	Pseu	ndo Linguaggio	3
2	Stru 2.1	tture dati elementari Pila	3
	2.2	Coda	4
3	Stru	atture dati astratte	4
	3.1	Sequenza	4
	3.2	Insieme	4
	3.3	Dizionario	5
	3.4	Priority Queue	5
	3.5	Albero binario	6
	3.6	Albero generico	6
	3.7	Grafo	7
4	Algo	oritmi ordinamento	7
_	4.1	selectionSort	7
		4.1.1 min	8
	4.2	insertionSort	8
	4.3	mergeSort	8
		4.3.1 merge	9
	4.4	quickSort	9
	4.5	heapSort	9
		-	10
		4.5.2 heapBuild	10
5	Δlσc	pritmi alberi binari	.0
J	5.1		10
	5.2		11
	5.3	-	11
	5.4		11
	5.5		12
	5.6	•	12
	5.7		12
	5.8		13
	5.9		13
	0.0		13
G	A lore	suitmi albani gananiai	1
6	6.1	oritmi alberi generici ${ m dfs}$. 4
	6.2	bfs	
	0.2	UIS	۱4
7	_		.5
	7.1	cc	
	7.2	hasCycle	15

8	\mathbf{Alg}	oritmi grafi orientati	16
	8.1	bfs	16
	8.2	distance	17
	8.3	dfs	17
	8.4	dfs-schema	
	8.5	hasCycle	18
	8.6	topSort	19
	8.7	transpose	
	8.8	scc	19
9	Alg	oritmi divide-et-impera	20
	9.1	binarySearch	20
	9.2	searchFirst	
	9.3	searchLast	
	9.4	hanoi	
10	Alg	oritmi misc.	22
	_	maxSum	22
11	Stu	dio equazioni di ricorrenza	22
		11.0.1 Template	22
	11.1	Metodo dell'albero di ricorsione	
		Master Theorems	
		Proprietà dei logaritmi	
		Serie matematiche convergenti	

Pseudo Linguaggio

```
• a = b
• a \leftrightarrow b \equiv tmp = a; a = b; b = tmp
• T[]A = new T[1...n]
• T[\tilde{}][] B = new T[1...n][1...m]
• int, float, boolean
• and, or, not
```

- $==, \neq, \leq, \geq$
- +, -, \cdot , /, $\lfloor x \rfloor$, $\lceil x \rceil$, \log , x^2 , mod, ...
- iif(condizione, v_1, v_2)
- if condizione then istruzione
- if condizione then istruzione1 else istruzione2
- while condizione do istruzione
- foreach elemento \in insieme do istruzione
- return
- % commento
- for indice = estremoInf to estremoSup do istruzione
- int indice = estremoInf while indice \leq estremoSup do istruzione | indice = indice + 1
- for indice = estremoSup downto estremoInf do istruzione
- int indice = estremoSup while indice \geq estremoInf do istruzione | indice = indice - 1

RETTANGOLO int lunghezza

int altezza

- rettangolo r = new rettangolo
- r.altezza = 10
- delete r
- r = nil

Strutture dati elementari

2.1 Pila

STACK

```
STACK STACK()
% Restituisce true se la pila è vuota
boolean isEmpty()
% Inserisce v in cima alla pila
push(ITEM v)
% Rimuove l'elemento in cima alla pila e lo restituisce
ITEM pop()
% Legge l'elemento in cima alla pila
ITEM top()
```

2.2 Coda

QUEUE

```
QUEUE QUEUE()
% Restituisce true se la coda è vuota
boolean isEmpty()
% Inserisce v in fondo alla coda
enqueue(ITEM v)
% Estrae l'elemento in testa alla coda e lo restituisce al chiamante
ITEM dequeue()
% Legge l'elemento in testa alla coda
ITEM top()
```

3 Strutture dati astratte

3.1 Sequenza

SEQUENCE

```
SEQUENCE SEQUENCE()
\% Restituisce true se la sequenza è vuota
boolean isEmpty()
% Restituisce true se p = pos0 o se p = posn+1
boolean finished(POS p)
% Restituisce la posizione del primo elemento
POS head()
% Restituisce la posizione dell'ultimo elemento
POS tail()
\% Restituisce la posizione dell'elemento che segue p
POS next(POS p)
% Restituisce la posizione dell'elemento che precede p
POS prev(POS p)
% Inserisce l'elemento v di tipo ITEM nella posizione p e restituisce
% la posizione del nuovo elemento, che diviene il predecessore di p
POS insert(POS p, ITEM v)
% Rimuove l'elemento contenuto nella posizione p e restituisce la posizione
% del successore di p, che diviene il successore del predecessore di p
POS remove(POS p)
% Legge l'elemento di tipo ITEM contenuto nella posizione p
ITEM read(POS p)
% Scrive l'elemento v di tipo ITEM nella posizione p
write(POS p, ITEM v)
```

3.2 Insieme

SET

```
SET SET()

% Restituisce la cardinalità dell'insieme
int size()

% Restituisce true se x è contenuto nell'insieme
boolean contains(ITEM x)

% Inserisce x nell'insieme, se non è giù presente
insert(ITEM x)

% Rimuove x dall'insieme, se è presente
remove(ITEM x)

% Restituisce un nuovo insieme che è l'unione di A e B
Set union(Set A, Set B)

% Restituisce un nuovo insieme che è l'intersezione di A e B
Set intersection(Set A, Set B)

% Restituisce un nuovo insieme che è la differenza di A e B
Set difference(Set A, Set B)
```

Sia n il numero di elementi nell'insieme e m la capacità dell'insieme.

Implementazione	contains()	insert()	remove()	min()	foreach()
Array booleano	O(1)	O(1)	O(1)	O(m)	O(m)
Lista non ordinata	O(n)	O(n)	O(n)	O(n)	O(n)
Lista ordinata	O(n)	O(n)	O(n)	O(1)	O(n)
Array ordinato	$O(\log n)$	O(n)	O(n)	O(1)	O(n)
RB Tree	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(n)
Hash Table	O(1)	O(1)	O(1)	O(m)	O(m)

3.3 Dizionario

DICTIONARY

```
DICTIONARY DICTIONARY()
% Restituisce il valore associato alla chiave k se presente, nil altrimenti
ITEM lookup(ITEM k)
% Associa il valore v alla chiave k
insert(ITEM k, ITEM v)
% Rimuove l'associazione della chiave k
remove(ITEM k)
```

Implementazione	lookup()	insert()	remove()	foreach()
Array non ordinato Array ordinato	O(n)	O(1),O(n)	O(1)	O(n)
	O(log n)	O(n)	O(n)	O(n)
Lista non ordinata	O(n)	O(1),O(n)	O(n)	O(n) $O(n)$
RB Tree	O(log n)	$O(\log n)$	$O(\log n)$	
Hash Table	O(1)	O(1)	O(1)	O(n)

3.4 Priority Queue

MIN-PRIORITYQUEUE

```
MIN-PRIORITYQUEUE MIN-PRIORITYQUEUE()
% Crea una coda a priorità con capacità n
PRIORITYQUEUE PriorityQueue(int n)
% Restituisce true se la coda a priorità è vuota
boolean isEmpty()
```

```
% Restituisce l'elemento minimo di una coda a priorità non vuota
ITEM min()
% Rimuove e restituisce l'elemento minimo di una coda a priorità non vuota
deleteMin()
% Inserisce l'elemento x con priorità p nella coda a priorità e restituisce
% un oggetto PRIORITYITEM che identifica x all'interno della coda
PRIORITYITEM insert(ITEM x, int p)
% Diminuisce la priorità dell'oggetto identificato da y portandola a p
decrease(PRIORITYITEM y, int p)
```

Implementazione	min()	deleteMin()	insert()	decrease()
Array/Lista non ordinato	O(n)	O(n)	O(n)	O(n)
Array ordinato	O(1)	O(n)	O(n)	$O(\log n)$
Lista ordinata	O(1)	O(1)	O(n)	O(n)
RB Tree	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$
Heap Tree	O(1)	$O(\log n)$	$O(\log n)$	O(log n)

3.5 Albero binario

TREE

```
TREE TREE()
% Costituisce un nuovo nodo, contenente v, senza figli o genitori
TREE(ITEM v)
% Legge il valore memorizzato nel nodo
ITEM read()
% Modifica il valore memorizzato nel nodo
write(ITEM v)
% Restituisce il padre, oppure nil se questo è il nodo radice
TREE parent()
% Restituisce il figlio sinistro di questo nodo, oppure nil se è assente
TREE left()
% Restituisce il figlio destro di questo nodo, oppure nil se è assente
TREE right()
% Inserisce il sottoalbero radicato t come figlio sinistro di questo nodo
insertLeft(TREE t)
% Inserisce il sottoalbero radicato t come figlio destro di questo nodo
insertRight(TREE t)
% Distrugge ricorsivamente il figlio sinistro di questo nodo (in O(n) con punt.)
deleteLeft()
\% Distrugge ricorsivamente il figlio destro di questo nodo (in O(n) con punt.)
deleteRight()
```

3.6 Albero generico

TREE

```
TREE TREE()
% Costituisce un nuovo nodo, contenente v, senza figli o genitori
TREE(ITEM v)
% Legge il valore memorizzato nel nodo
ITEM read()
% Modifica il valore memorizzato nel nodo
write(ITEM v)
% Restituisce il padre, oppure nil se questo è il nodo radice
TREE parent()
% Restituisce il primo figlio da sinistra, oppure nil se questo nodo
% è una foglia
TREE leftmostChild()
% Restituisce il primo fratello sulla destra, oppure nil se è assente
TREE rightSibling()
% Inserisce il sottoalbero t come primo figlio di questo nodo
insertChild(TREE t)
% Inserisce il sottoalbero t come prossimo fratello di questo nodo
insertSibling(TREE t)
% Distrugge l'albero radicato identificato dal primo figlio
deleteChild()
% Distrugge l'albero radicato identificato dal prossimo fratello
deleteSibling()
\% Distrugge l'albero radicato identificato dal nodo
delete(TREE t)
```

3.7 Grafo

GRAPH

```
GRAPH GRAPH()
% Restituisce l'insieme di tutti i vertici
SET V()
% Restituisce il numero di nodi
int size()
% Restituisce l'insieme dei nodi adiacenti ad u
SET adj(NODE u)
% Aggiunge un nodo u al grafo
insertNode(NODE u)
% Aggiunge l'arco (u, v) al grafo
insertEdge(NODE u, NODE v)
% Rimuove il nodo u dal grafo (in O(n) con vettori/liste adiacenza)
removeNode(NODE u)
% Rimuove l'arco (u, v) dal grafo
removeEdge(NODE u, NODE v)
```

4 Algoritmi ordinamento

4.1 selectionSort

• handout.2-analisi.49/65

Pessimo	Medio	Ottimo
$O(n^2)$	$O(n^2)$	$O(n^2)$

selectionSort(ITEM[] A, int n)

```
for i = 1 to n - 1 do
  | int min = min(A, i, n)
  | A[i] <-> A[min]
  -
```

4.1.1 min

• O(n)

int min(ITEM[] A, int i, int n)

```
% Posizione del minimo parziale
int min = i
for j = i + 1 to n do
    | if A[j] < A[min] then
    | | % Nuovo minimo parziale
    | | min = j
    | -
    -
return min</pre>
```

4.2 insertionSort

Pessimo	Medio	Ottimo
$\overline{\mathrm{O}(n^2)}$	$\mathcal{O}(n^2)$	O(n)

• handout.2-analisi.52/65

insertionSort(ITEM[] A, int n)

4.3 mergeSort

Pessimo	Medio	Ottimo
$\overline{O(n \cdot \log n)}$	$O(n \cdot \log n)$	$O(n \cdot \log n)$

• handout.2-analisi.61/65

mergeSort(ITEM A[], int first, int last)

```
if first < last then
| int mid = b(first + last)/2c
| mergeSort(A, first, mid)
| mergeSort(A, mid + 1, last)
| merge(A, first, last, mid)</pre>
```

4.3.1 merge

• O(n)

merge(ITEM A[], int first, int last, int mid)

```
int i, j, k, h
i = first
j = mid + 1
k = first
while i <= mid and j <= last do \,
| if A[i] <= A[j] then
\mid B[k] = A[i]
| | i = i + 1
 | else
 | \quad | \quad B[k] = A[j]
 | | j = j + 1
 | \quad k = k + 1
j = last
for h = mid downto i do
| A[j] = A[h]
 | j = j - 1
for j = first to k - 1 do
| A[j] = B[j]
```

4.4 quickSort

• handout.12-divide.12/34

Pessimo	Medio	Ottimo
$\overline{\mathrm{O}(n^2)}$	$O(n \cdot \logn)$	$O(n \cdot \log n)$

quickSort(ITEM[] A, int n)

4.5 heapSort

Pessimo	Medio	Ottimo
$O(n \cdot \log n)$	$O(n \cdot log \ n)$	$O(n \cdot \log n)$

 $\bullet \ \ \mathrm{handout.} 10\text{-strutture-speciali.} 16/64$

```
heapSort(ITEM[] A, int n)
```

```
heapBuild(A, n)
for i=n downto 2 do
  | swap(A, 1, i) % L'elemento massimo viene spostato in fondo
  | maxHeapRestore(A, 1, i-1)
  -
```

4.5.1 maxHeapRestore

• O(log n)

maxHeapRestore(ITEM[] A, int i, int dim)

```
int max = i % Sceglie la radice
if l(i) <= and dim A[l(i)] > A[max] then
  | max = l(i)
if r(i) <= and dim A[r(i)] > A[max] then
  | max = r(i)
if i != max then % Se i == max l'albero è apposto
  | swap(A, i, max) % Scambia la radice e il maggiore tra i suoi figli
  | maxHeapRestore(A, max, dim) % Controlla il sottoalbero con radice max
```

4.5.2 heapBuild

• O(n)

heapBuild(ITEM[] A, int n)

```
for i = floor(n/2) downto 1 do
  | maxHeapRestore(A, i, n)
  -
```

5 Algoritmi alberi binari

5.1 dfs

• O(n)

dfs(TREE t)

```
if t != nil then
| % pre-order visit of t
| print t
| dfs(t.left())
| % in-order visit of t
| print t
| dfs(t.right())
```

```
| % post-order visit of t
| print t
-
```

5.2 lookupNode

Pessimo	Medio	Ottimo
O(n)	O(log n)	O(log n)

TREE lookupNode(TREE T, ITEM k)

5.3 min

Pessimo	Medio	Ottimo
O(n)	O(log n)	O(log n)

TREE min(TREE T)

5.4 max

Pessimo	Medio	Ottimo
O(n)	$O(\log n)$	O(log n)

TREE max(TREE T)

```
TREE u = T
while u.right != nil do
| u = u.right
-
return u
```

$5.5 \quad predecessor Node$

Pessimo	Medio	Ottimo	
O(n)	O(log n)	O(log n)	

TREE predecessorNode(TREE t)

```
if t == nil then
  | return t
  -

if t.left != nil then % Caso 1
  | return max(t.left)
else % Caso 2
  | TREE p = t.parent
  | while p != nil and t == p.left do
  | | t = p
  | | p = p.parent
  | -
  | return p
  -
```

5.6 successorNode

Pessimo	Medio	Ottimo	
O(n)	$O(\log n)$	O(log n)	

TREE successorNode(TREE t)

5.7 insertNode

Pessimo	Medio	Ottimo
O(n)	O(log n)	O(log n)

link(TREE p, TREE u, ITEM k)

```
if u != nil then
  | u.parent = p % Registrazione padre
  -
if p != nil then
  | if k < p.key then
  | | p.left = u % Attaccato come figlio sinistro
  | else
  | | p.right = u % Attaccato come figlio destro
  | -
  -</pre>
```

5.8 removeNode

Pessimo	Medio	Ottimo	
O(n)	$O(\log n)$	O(log n)	

TREE removeNode(TREE T, ITEM k)

5.9 isRedBlack

- O(n)
- soluzione.19-08-22.A2

5.9.1 Proprietà RB Tree

- 1. La radice è nera
- 2. Tutte le foglie sono nere
- 3. Entrambi i figli di un nodo rosso sono neri
- 4. Ogni cammino semplice da un nodo ad una delle sue foglie ha sempre lo stesso numero di nodi neri (ovvero ogni nodo nel suo sottoalbero ha i figli con la stessa altezza nera)

boolean isRedBlack(TREE T)

```
% Proprietà (1)
if T.color == red then
  | return false
else
  | return (blackHeight(T) > 0)
-
```

int blackHeight(TREE T)

```
% Proprietà (2)
if T == nil then
  | return iif(T.color == red, -1, 1)
   -
   % Proprietà (3)
if t.color == red and t.parent != nil and t.parent.color == red then
   | return -1
   -
   % Proprietà (4)
int bhL = blackHeight(T.left)
int bhR = blackHeight(T.right)
if bhL < 0 or bhR < 0 or bhL != bhR then
   | return -1
else
   | return bhL + iif(t.color == black, 1, 0)
   -</pre>
```

6 Algoritmi alberi generici

6.1 dfs

• O(n)

dfs(TREE t)

```
if t != nil then
  | % pre-order visit of node t
  | print t
  | TREE u = t.leftmostChild()
  | while u != nil do
  | | dfs(u)
  | | u = u.rightSibling()
  | -
  | % post-order visit of node t
  | print t
  |-
```

6.2 bfs

• O(n)

bfs(TREE t)

7 Algoritmi grafi non orientati

7.1 cc

- O(n+m)
- handout.09-grafi.53/101

int[] cc(GRAPH G)

```
int[] id = new int[1...G.size()]
foreach u in G.V() do
   | id[u] = 0
-
int counter = 0
foreach u in G.V() do
   | if id[u] == 0 then
   | | counter = counter + 1
   | | ccdfs(G, counter , u, id)
   | -
   -
   return id
```

ccdfs(GRAPH G, int counter , NODE u, int[] id)

```
id[u] = counter
foreach v in G.adj(u) do
if id[v] == 0 then
  | ccdfs(G, counter , v, id)
-
```

7.2 hasCycle

- O(n+m)
- handout.09-grafi.58/101

```
boolean[] visited = new boolean[1...G.size()]
foreach u in G.V() do
    | visited[u] = false
    -
foreach u in G.V() do
    | if not visited[u] then
    | | if hasCyclerec(G, u, null, visited) then
    | | | return true
    | | -
    | -
    | -
    return false
```

boolean hasCycleRec(GRAPH G, NODE u, NODE p, boolean[] visited)

```
visited[u] = true
foreach v in G.adj(u)\{p} do
  | if visited[v] then
  | | return true
  | else if hasCycleRec(G, v, u, visited) then
  | | return true
  | -
  -
return false
```

8 Algoritmi grafi orientati

8.1 bfs

- O(n+m)
- handout.09-grafi.41/101

bfs(GRAPH G, NODE r, NODE[] parent)

```
| | | visited[v] = true
| | | parent[v] = u
| | Q.enqueue(v)
| | -
| -
```

8.2 distance

- O(n+m)
- handout.09-grafi.39/101

distance(GRAPH G, NODE r, int[] distance)

```
QUEUE Q = QUEUE()
Q.enqueue(r)
foreach u in G.V()\{r\} do
  | distance[u] = inf
-
distance[r] = 0
while not Q.isEmpty() do
  | NODE u = Q.dequeue()
  | foreach v in G.adj(u) do
  | | if distance[v] == inf then % Se il nodo v non è stato scoperto
  | | distance[v] = distance[u] + 1
  | | Q.enqueue(v)
  | | -
  | -
```

8.3 dfs

- O(n+m)
- handout.09-grafi.45/101

dfs(GRAPH G, NODE u, boolean[] visited)

```
visited[u] = true
% visita il nodo u (pre-order)
foreach v in G.adj(u) do
  | if not visited[v] then
  | | % visita l'arco (u, v)
  | | dfs(G, v, visited)
  | -
  -
% visita il nodo u (post-order)
```

8.4 dfs-schema

- O(n+m)
- handout.09-grafi.63/101

8.5 hasCycle

- O(n+m)
- handout.09-grafi.71/101

boolean hasCycle(GRAPH G)

boolean hasCycleRec(GRAPH G, NODE u, int &time, int[] dt, int[] ft)

```
time = time + 1; dt[u] = time
foreach v in G.adj(u) do
  | if dt[v] == 0 then
  | | if hasCycleRec(G, v, time, dt, ft) then
  | | return true
  | else if dt[u] > dt[v] and ft[v] == 0 then
  | | return true
  | -
  -
```

```
time = time + 1; ft[u] = time
return false
```

8.6 topSort

- O(n+m)
- handout.09-grafi.76/101

STACK topSort(GRAPH G)

```
STACK S = STACK()
boolean[] visited = boolean[1...G.size()]
foreach u in G.V() do visited[u] = false
foreach u in G.V() do
    | if not visited[u] then
    | | ts-dfs(G, u, visited, S)
    | -
    return S
```

ts-dfs(GRAPH G, NODE u, boolean[] visited, STACK S)

```
visited[u] = true
foreach v in G.adj(u) do
  | if not visited[v] then
  | | ts-dfs(G, v, visited, S)
  | -
  -
S.push(u)
```

8.7 transpose

- O(n+m)
- handout.09-grafi.86/101

GRAPH transpose(GRAPH G)

8.8 scc

• O(n+m)

• handout.09-grafi.83/101

int[] scc(GRAPH G)

```
STACK S = topSort(G) % First visit O(n+m)
GT = transpose(G) % GRAPH transposal O(n+m)
return cc(GT, S) % Second visit O(n+m)
```

cc(GRAPH G, STACK S)

```
int[] id = new int[G.size()]
foreach u in G.V() do
  | id[u] = 0
  -
int counter = 0
while not S.isEmpty() do
  | u = S.pop()
  | if id[u] == 0 then
  | | counter = counter + 1
  | | ccdfs(G, counter , u, id)
  | -
  -
return id
```

ccdfs(GRAPH G, int counter , NODE u, int[] id)

```
id[u] = counter
foreach v in G.adj(u) do
  | if id[v] == 0 then
  | | ccdfs(G, counter , v, id)
  | -
```

9 Algoritmi divide-et-impera

9.1 binarySearch

- O (log n)
- \bullet handout.01-introduzione.20/27

int binarySearch(int[] A, int v, int i, int j)

```
if i > j then
  | return 0
else
  | int m = floor((i+j)/2)
  | if S[m] == v then
  | return m
  | else if S[m] < v then</pre>
```

```
| | return binarySearch(S, v, m+1, j)
| else
| | return binarySearch(S, v, i, m-1)
| -
```

• $\forall \ binarySearch(A, v, i, j), v \in A \Leftrightarrow v \in A[i...j]$

9.2 searchFirst

• O(log n)

int searchFirst(int[] A, int v, int i, int j)

```
if i > j then
  | return 0
else if i == j and A[i] == v then
  | return i
else
  | int m = floor((i+j)/2)
  | if A[m] < v then
  | | return searchFirst(A, v, m+1, j)
  | else
  | | return searchFirst(A, v, i, m)
  | -</pre>
```

• $\forall searchFirst(A, v, i, j), \forall h \in A[1...i-1], h < v \land \forall k \in A[i...j], k \ge v$

Con questo algoritmo troviamo la **prima** (più a sinistra) occorrenza di v. Procediamo quindi per induzione.

Base: con i = 1, j = n vale A[i...j] = A, dunque $A[1...0] = \emptyset = A[n...n + 1]$ ed entrambe le condizioni sono soddisfatte

Passo induttivo: Supponiamo che per binarySearch(A, v, i, j) valga l'invariante e dimostriamo che vale anche per l'invocazione successiva, binarySearch(A, v, i', j')

```
1) Se i>j allora A[i...j]=\emptyset e la funzione termina
2) Se i=j allora v\in A\Leftrightarrow v=A[i]
Posto m:=\lfloor (i+j)/2\rfloor
3) Se A[m]< v allora i':=m+1, j':=j e certamente il passo induttivo è verificato
4) Se A[m]\geq v allora i':=i,j':=m e certamente il passo induttivo è verificato
```

9.3 searchLast

• O(log n)

int searchLast(int[] A, int v, int i, int j)

```
if i > j then
  | return 0
else if i == j and A[i] == v then
  | return i
else
  | int m = ceil((i+j)/2)
```

```
| if A[m] <= v then
| | return searchLast(A, v, m, j)
| else
| | return searchLast(A, v, i, m-1)
| -</pre>
```

• $\forall searchLast(A, v, i, j), \forall h \in A[j+1...n], h > v \land \forall k \in A[i...j], k \geq v$

Con questo algoritmo troviamo l'ultima (più a destra) occorrenza di v.

9.4 hanoi

- $O(2^n)$
- handout.12-divide.10/34

hanoi(int n, int src, int dest, int middle)

```
if n == 1 then
  | print src -> dest
else
  | hanoi(n - 1, src, middle, dest)
  | print src -> dest
  | hanoi(n - 1, middle, dest, src)
  -
```

10 Algoritmi misc.

10.1 maxSum

• O(n)

maxSum(int[] A, int n)

11 Studio equazioni di ricorrenza

11.0.1 Template

```
\begin{split} T(n) &= a_1 T(n/b_1) + a_2 T(n/b_2) + f(n) \\ i) \ T(n) \ crescente \ e \ positiva \\ ii) \ T(n) &\geq f(n) \implies T(n) = \Omega(f(n)) \\ iii) \ T(n) &\leq (a_1 + a_2) T'(n/min(b_1, b_2)) \implies T(n) = O(\ldots) \ per \ il \ MT \\ iv) \ T(n) &\geq (a_1 + a_2) T'(n/max(b_1, b_2)) \implies T(n) = \Omega(\ldots) \ per \ il \ MT \\ v) \ Vogliamo \ dimostrare \ che \ T(n) = O(f(n)), \ ovvero \ che \ con \ c > 0, m \geq 0 \ vale \ T(n) \leq cf(n) \forall n \geq m \end{split}
```

• Base:

- Ipotesi induttiva:
- $\bullet \ \ Passo \ induttivo:$

11.1 Metodo dell'albero di ricorsione

	Livello Dim	ı. input Costo j	per chiamata	N. chiamate	Costo livello
--	-------------	------------------	--------------	-------------	---------------

11.2 Master Theorems

TEO.1 Ricorrenze lineari con partizione bilanciata

Siano a e b costanti intere tali che $a \ge 1$ e $b \ge 2$. Siano poi c e β costanti reali tali che c > 0 e $\beta \ge 0$. Sia T(n) una funzione di ricorrenza della seguente forma:

$$T(n) = \begin{cases} aT(n/b) + cn^{\beta} & \text{se} \quad n > 1\\ d & \text{se} \quad n \le 1 \end{cases}$$
 (1)

Allora, posto $\alpha := \frac{\log a}{\log b} = \log_b a$ vale:

$$T(n) = \begin{cases} \Theta(n^{\alpha}) & \text{se } \alpha > \beta \\ \Theta(n^{\alpha} \log n) & \text{se } \alpha = \beta \\ \Theta(n^{\beta}) & \text{se } \alpha < \beta \end{cases}$$
 (2)

TEO.2 Ricorrenze lineari con partizione bilanciata - Est.

Siano $a \ge 1$, b > 1 e f(n) una funzione asintoticamente positiva. Sia poi T(n) una funzione di ricorrenza della seguente forma:

$$T(n) = \begin{cases} aT(n/b) + f(n) & \text{se} \quad n > 1\\ d & \text{se} \quad n \le 1 \end{cases}$$
 (3)

Allora vale:

- 1) Se $\exists \epsilon > 0 : f(n) = O(n^{\log_b(a) \epsilon})$ allora $T(n) = \Theta(n^{\log_b a})$
- $\begin{array}{c} 2) \ \textit{Se} \ f(n) = \Theta(n \log_b a) \\ \textit{allora} \ T(n) = \Theta(f(n) \log n) \end{array}$
- 3) Se $\exists \epsilon > 0 : f(n) = \Omega(n^{\log_b a + \epsilon}) \land \exists c : 0 < c < 1, \exists m \ge 0 : af(n/b) \le cf(n) \forall n \ge m$ allora $T(n) = \Theta(f(n))$

TEO.3 Ricorrenze lineari di ordine costante

Siano $a_1, a_2, ..., a_h$ costanti intere non negative con h costante e positivo. Siano poi c e β costanti reali tali che c > 0 e $\beta \ge 0$. Sia infine T(n) definita dalla seguente funzione di ricorrenza:

$$T(n) = \begin{cases} \sum_{i=1}^{h} \left(a_i T(n-i)\right) + c n^{\beta} & \text{se} \quad n > m \\ \Theta(1) & \text{se} \quad n \leq m \leq h \end{cases}$$
 (4)

Allora, posto $a = \sum_{i=1}^{h} a_i$ vale:

$$\begin{array}{ll} 1) \ a=1 \implies T(n) = \Theta(n^{\beta+1}) \\ 2) \ a \geq 2 \implies T(n) = \Theta(a^n \cdot n^\beta) \end{array}$$

2)
$$a \ge 2 \implies T(n) = \Theta(a^n \cdot n^{\beta})$$

11.3 Proprietà dei logaritmi

1. $\log_a a = 1$ Proprietà fondamentale

2. $\log_a 1 = 0$ $Propriet\`{a}\ fondamentale$

3. $\log_a b \cdot c = \log_a b + \log_a c$ Teorema del prodotto

 $4. \, \log_a b \cdot c = \log_a b - \log_a c$ Teorema del rapporto

5. $\log_a b^c = c \cdot \log_a b$ Teorema della potenza

6. $\log_{a^n} bm = \frac{m \cdot \log_a b}{n}$ Potenza alla base e all'argomento

7. $\log_{\frac{1}{a}} b = -\log_a b$ $Base\ frazionaria$

 $8. \log_a \frac{1}{b} = -\log_b a$ $Argomento\ frazionario$

9. $\log_{\frac{1}{a}} \frac{1}{b} = \log_a b$ Base e argomento frazionario

10. $\log_a b = \frac{1}{\log_b a}$ Commutazione base e argomento

11. $\log_a b = \frac{\log_c b}{\log_c a}$ $Cambio\ di\ base$

12. $a^{\log_b c} = c^{\log_b a}$ Scambio base-argomento

11.4 Serie matematiche convergenti

 $\frac{1}{1} \sum_{k=0}^{+\infty} k = \frac{k(k+1)}{2}$ Formula di Gauss

2. $\sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-q} = \frac{q^{n+1}-1}{q-1} \forall q : |q| \ge 1$ Serie geometrica finita

3. $\sum_{k=0}^{n} q^k = \frac{1}{1-q} \forall q : |q| < 1$ $Serie\ geometrica\ finita$

4. $\sum_{k=0}^{+\infty} q^k = \frac{1}{1-q} \forall |q| < 1$ Serie geometrica infinita decrescente

5. $\sum_{k=0}^{+\infty} kq^k = \frac{q}{(1-q)^2} \forall |q| < 1$ $Serie\ geometrica\ infinita\ decrescente$

 $6. \sum_{k=1}^{+\infty} \frac{1}{k(k+1)} = \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+1} \right) = 1$ Serie di Mengoli