BIOESTATÍSTICA

M.I. Eng. Biomédica

2015-2016

Aula Teórica 8

Erros

H _o Decisão	Verdadeira	Falsa
Rejeitar H ₀	Erro tipo I α	Potência do teste 1-β
Aceitar H ₀	Nível de confiança 1- α	Erro tipo II β

$$\alpha = P(rejeitar \ H_0 \ / \ H_0 \ verdadeira) \qquad \qquad \beta = P(aceitar \ H_0 \ / \ H_0 \ falsa)$$

$$1-\alpha = P(aceitar \ H_0 \ / \ H_0 \ verdadeira) \qquad \qquad 1-\beta = P(rejeitar \ H_0 \ / \ H_0 \ falsa)$$

- Tamanho da amostra
 - Suponhamos que:

$$H_0: \mu = \mu_0$$

 $H_1: \mu = \mu_1$

- Em que os dados seguem uma distribuição normal com média μ e variância conhecida σ^2 .
- O tamanho da amostra necessário para executar um teste bilateral de nível de significância α e potência

1-
$$\beta$$
 é
$$n = \frac{\sigma^2 (z_{1-\beta} + z_{1-\alpha/2})^2}{(\mu_0 - \mu_1)^2}$$

- Tamanho da amostra
 - O tamanho da amostra também pode ser determinado a partir do tamanho do intervalo de confiança. Assim, para que um intervalo de confiança tenha um tamanho não superior a L, é necessário que o tamanho da amostra seja

$$n = 4 t_{n-1,1-\alpha/2}^2 s^2/L^2 = 4 z_{1-\alpha/2}^2 s^2/L^2$$

Testes de normalidade

- Teste de Kolmogorov-Smirnov
 - □ n>20
- Teste de Shapiro-Wilk
 - □ n≤20

 $\begin{cases} H_0: \ Distribuição \ Amostral \sim N(\mu, \sigma^2) \\ H_1: \ Distribuição \ Amostral \not\sim N(\mu, \sigma^2) \end{cases}, \ \alpha = 0.05$

- Num problema de testes de hipóteses para duas amostras os parâmetros associados às distribuições são comparados.
- Duas amostras dizem-se <u>emparelhadas</u> se a cada ponto da primeira amostra corresponde um único ponto na segunda amostra.
- Duas amostras dizem-se <u>independentes</u> se os pontos numa das amostras não tem relação com os pontos da outra amostra.

• O teste estatístico para amostras emparelhadas é

$$t = \frac{\overline{d}}{s_d / \sqrt{n}}$$

com

$$s_{d} = \sqrt{\left[\sum_{i=1}^{n} d_{i}^{2} - \left(\sum_{i=1}^{n} d_{i}\right)^{2} / n\right] / (n-1)}$$

- Se $|t| > t_{n-1,1-\alpha/2}$, então rejeita-se H_0
- Se $|t| \le t_{n-1,1-\alpha/2}$, então aceita-se H_0

$$p = \begin{cases} 2 P[t_{n-1} \le t], se \ t \le 0 \\ 2 (1 - P[t_{n-1} \le t], se \ t > 0) \end{cases}$$

• O intervalo de confiança para a verdadeira diferença (D) entre as médias de duas amostras emparelhadas (bilateral) é:

$$\left(\overline{d}-t_{n-1,1-\alpha/2}\,s_d/\sqrt{n}\,,\,\overline{d}+t_{n-1,1-\alpha/2}\,s_d/\sqrt{n}\right)$$

• Exemplo:

SBP levels (mm Hg) in 10 women while not using (baseline) and while using (follow-up) OCs

i	SBP level while not using OCs (x_n)	SBP level while using OCs (x_p)	d_i^*
1	115	128	13
2	112	115	3
3	107	106	-1
4	119	128	9
5	115	122	7
6	138	145	7
7	126	132	6
8	105	109	4
9	104	102	-2
10	115	117	2

in Fundamentals of Biostatistics, p271 Bernard Rossner

• Teste t:

$$\overline{d} = (13+3+...+2)/10 = 4,80$$

$$s_d^2 = \left[(13-4,80)^2 + ... + (2-4,80)^2 \right]/9 = 20,844$$

$$s_d = \sqrt{20,844} = 4,566$$

$$t = 4,80/(4,566/\sqrt{10}) = 3,32$$

Como

$$t_{9,0,975} = 2,262$$

• Então H_0 pode ser rejeitado (α = 0,05), e conclui-se que iniciar a toma de contraceptivos orais está associado a uma variação significativa da pressão arterial sistólica.

• O intervalo de confiança para o mesmo exemplo vem:

$$\overline{d} \pm t_{n-1,0,975} \ s_d \ / \sqrt{n} = 4,80 \pm t_{9,0,975} \ 1,444$$

$$= 4,80 \pm 2,262 \times 1,444$$

$$= 4,80 \pm 3,27 \ mmHg$$

• Assim a verdadeira variação de pressão arterial sistólica encontra-se com maior probabilidade entre 1,5mmHg e 8,1mmHg.

- Existem várias situações para as quais se está interessado em testar a igualdade de duas populações normais independentes.
- Seja, então:

$$X \sim N(\mu_X, \sigma_X^2)$$
 e $Y \sim N(\mu_Y, \sigma_Y^2)$

- sendo as variáveis X e Y <u>independentes</u>.
- Testar a igualdade das distribuições equivale a testar a igualdade das médias ou a igualdade das variâncias. Recolhe-se então uma amostra casual com *m* observações da população X, e outra, com dimensão *n* da população Y.

• Para o teste da igualdade das duas médias tem-se:

$$H_0: \mu_X = \mu_Y$$
$$H_1: \mu_X \neq \mu_Y$$

- Parece razoável basear o teste na diferença entre as duas médias amostrais. Se a diferença se encontra longe do zero a hipótese nula é rejeitada.
- Como X e Y, são distribuídas normalmente, com uma determinada média e variância, a sua diferença, X-Y, também seguirá uma distribuição normal de média igual a μ_X - μ_Y e variância $\sigma^2(1/m+1/n)$, supondo-se neste caso específico que

$$\sigma_X^2 = \sigma_Y^2 = \sigma^2$$

Simbolicamente, vem:

$$X - Y \sim N \left[\mu_X - \mu_Y, \sigma^2 \left(\frac{1}{m} + \frac{1}{n} \right) \right]$$

• Sob H_0 , assume-se que μ_X - μ_Y = 0, logo

$$X - Y \sim N \left[0, \sigma^2 \left(\frac{1}{m} + \frac{1}{n} \right) \right]$$

• Se a variância for conhecida, então

$$\frac{X-Y}{\sigma\sqrt{\frac{1}{m}+\frac{1}{n}}} \sim N[0,1]$$

- Infelizmente, σ² é geralmente desconhecida, sendo necessário por isso estimá-la a partir dos dados.
- As amostras apresentam variâncias s_X^2 e s_Y^2 cuja média poderia ser usada para estimar σ^2 . No entanto, a média iria ponderar de forma igual as duas amostras que podem ter dimensões diferentes.
- A melhor estimativa é dada por:

$$s^{2} = \frac{(m-1)s_{X}^{2} + (n-1)s_{Y}^{2}}{m+n-2}$$

• O teste t para amostras independentes é:

$$t = \frac{\mu_X - \mu_Y}{s\sqrt{\frac{1}{m} + \frac{1}{n}}} \sim t(m + n - 2)$$

Com

$$s = \sqrt{\frac{(m-1)s_X^2 + (n-1)s_Y^2}{m+n-2}}$$

• Se $|t| > t_{m+n-2,1-\alpha/2}$, então rejeita-se H_o

• Se
$$|t| \le t_{m+n-2,1-\alpha/2}$$
, então aceita-se H_0

$$p = \begin{cases} 2 P[t_{m+n-2} \le t], se \ t \le 0 \\ 2 (1 - P[t_{m+n-2} \le t], se \ t > 0) \end{cases}$$

• Quando a variância das duas populações são desconhecidas e diferentes recorre-se à aproximação de Welch e considera-se a estatística-teste:

$$t = \frac{\mu_X - \mu_Y}{\sqrt{\frac{s_X^2}{m} + \frac{s_Y^2}{n}}} \sim t(r^*)$$

Com

$$r^* = \frac{\left(\frac{s_X^2}{m} + \frac{s_Y^2}{n}\right)^2}{\frac{1}{m-1}\left(\frac{s_X^2}{m}\right)^2 + \frac{1}{n-1}\left(\frac{s_Y^2}{n}\right)^2}$$

• O teste para a igualdade das variâncias apresenta como hipótese nula:

$$H_0: \sigma_X^2 = \sigma_Y^2$$
 ou alternativamente $H_0: \frac{\sigma_X^2}{\sigma_Y^2} = 1$

- Sabe-se que o quociente de variâncias segue uma distribuição F, estudada por R.A. Fisher e G. Snedecor.
- Não existe apenas uma distribuição F, mas sim uma família de distribuições indexada aos graus de liberdade do numerador e do denominador.
- Para o nosso caso teríamos F_{m-1,n-1}.

• O teste F para a igualdade de variâncias é:

$$F = \frac{s_X^2}{s_Y^2} \sim F(m-1, n-1)$$

- Se F > $F_{m-1,n-1,1-\alpha/2}$, ou F < $F_{m-1,n-1,\alpha/2}$ então rejeita-se H_o
- Se $F_{m-1,n-1,\alpha/2} \le F \le F_{m-1,n-1,1-\alpha/2}$, então aceita-se H_o
- Para o valor de p tem-se:
- Se $F \ge 1$ então $p = 2 \times P(F_{m-1,n-1} > F)$
- Se F < 1 então $p = 2 \times P(F_{m-1,n-1} < F)$