CPU 设计文档

一、 数据通路设计

1、 IF 级

1) PC

端口	方向	功能
Npc[31:0]	Ι	下一条指令地址
Clk	Ι	时钟端
Reset	Ι	同步复位
Enable	Ι	使能端
Pc[31:0]	0	指令地址

时钟上升沿到来时若使能端有效 Pc<=Npc。

Reset 同步复位将 Pc 初始化为 0x00003000

2) ROM

端口	方向	功能
Pc[31:0]	Ι	指令地址
Instr[31:0]	0	指令码

Rom 规格为 32bit*4096, 截取 Pc 的 14 到 2 位作为地址信号。ROM 范围从 0x0c000 到 0x1bff。

3) MUX_PC

端口	方向	功能
Pc_add_4[31:0]	I	PC+4
B_pc[31:0]	I	B型指令的下一条地址
J_pc[31:0]	I	J型指令的下一条地址
RD1[31:0]	I	JR 型指令的下一条地址
MUX_PCsel[1:0]	I	选择信号:
		00: Pc_add_4
		01:B_pc
		10: J_pc
		11:RD1
Npc[31:0]	0	输出下一条指令地址

该模块虽然放在 IF 级,但是从时间上来讲属于 ID 级或 EX 级

2、ID级

1) IF_ID_REG

端口	方向	功能
----	----	----

Pc[31:0]	I	IF 级的 PC
Instr[31:0]	I	IF 级的指令码
Reset	I	同步复位
Clk	I	时钟端
Enable	I	使能端
Pc_ID[31:0]	0	ID 级 PC
Instr_ID[31:0]	0	ID 级指令码

流水线寄存器,时钟上升沿到来时若使能端有效,分别将上一级数据 读入本级对应寄存器,同步复位 PC 初始化为 0x00003000

2) GRF (ID)

端口	方向	功能
RA1[4:0]	I	读地址一
RA2[4:0]	I	读地址二
Rdata1[31:0]	0	读数据一
Rdata2[31:0]	0	读数据二

模块为 GRF 的 ID 级部分,即仅包括读数据功能

3) EXT

端口名	方向	功能
In[15:0]	I	十六位输入信号
EXTsel[1:0]	I	功能选择信号
		00: 无符号拓展
		01: 符号拓展
		10: 加载到高位,低 16 位补零
EXTOut[31:0]	О	三十二位输出信号

4) COMP

端口	方向	功能	
RD1[31:0]	Ι	比较数 1	
RD2[31:0]	Ι	比较数 2	
bcp[2:0]	Ι	选择比较功能:	
		3' b000: Zero<=(RD1==RD2)	
		3' b001: Zero<=(RD1!=RD2)	

		3' b010: Zero<=(signed(RD1)<=0)
		3' b011: Zero<=(signed(RD1)>0)
		3' b100: Zero<=(signed(RD1)<0)
		3' b100: Zero<=(signed(RD1)>=0)
Zero	0	比较结果判定:
		0: 不成立
		1: 成立

B型指令比较模块,跳转条件成立输出1,不成立输出0

5) B_PC

端口	方向	功能
Pc_add_4[31:0]	I	PC+4
EXToff[31:0]	I	立即数的符号拓展结果
Zero	I	跳转条件判定信号
		1:Pc_add_4+(EXToff<<2)
		0:PC+8
B_pc[31:0]	0	下一条指令地址:

判定条件信号为一时跳转,否则输出 PC+8(延迟槽)

6) J_PC

端口	方向	功能
Pc[31:0]	I	PC 值
Instr_index[25:0]	I	J 型指令低 26 位
J_pc[31:0]	0	PC[31:28] Instr_index 00

输出J型指令地址

7) MFRSD

端口	方向	功能
RD1[31:0]	I	GRF 的 Rdata1
PC_EX_8[31:0]	I	EX 级 PC+8
AO_MEM[31:0]	I	MEM 级 ALUOut
PC_MEM_8[31:0]	I	MEM 级 PC+8

MUX_WD[31:0]	I	WB 级 MUX_WD 输出
PC_WB_8[31:0]	I	WB级PC+8
HI_MEM[31:0]	I	MEM 级 HI 寄存器
LO_MEM[31:0]	I	MEM 级 LO 寄存器
HI_WB[31:0]	I	WB 级 HI 寄存器
LO_WB[31:0]	I	WB级LO寄存器
MFRSDse1[3:0]	I	选择信号:
		0000:RD1
		0001:PC_EX_8
		0010:AO_MEM
		0011:PC_MEM_8
		0100:MUX_WD
		0101:PC_WB_8
		0110:HI_MEM
		0111:LO_MEM
		1000:HI_WB
		1001:LO_WB
MFRSDout[31:0]	0	输出结果

ID级RS转发器多选器,用以代替原本数据通路中的Rdatal

8) MFRTD

端口	方向	功能
RD2[31:0]	I	GRF 的 Rdata2
PC_EX_8[31:0]	I	EX 级 PC+8
AO_MEM[31:0]	I	MEM 级 ALUOut
PC_MEM_8[31:0]	I	MEM 级 PC+8
MUX_WD[31:0]	I	WB 级 MUX_WD 输出
PC_WB_8[31:0]	I	WB级PC+8
HI_MEM[31:0]	I	MEM 级 HI 寄存器
LO_MEM[31:0]	I	MEM 级 LO 寄存器

HI_WB[31:0]	I	WB 级 HI 寄存器
LO_WB[31:0]	I	WB级LO寄存器
MFRTDse1[2:0]	I	选择信号:
		0000:RD1
		0001:PC_EX_8
		0010:AO_MEM
		0011:PC_MEM_8
		0100:MUX_WD
		0101:PC_WB_8
		O110:HI_MEM
		0111:LO_MEM
		1000:HI_WB
		1001:LO_WB
MFRTDout[31:0]	0	输出结果

ID级RT转发器多选器,用以代替原本数据通路中的Rdata2

3、 EX 级

1) ID_EX_REG

端口	方向	功能
MFRSD[31:0]	I	MFRSD 转发器结果
MFRTD[31:0]	I	MFRTD 转发器结果
EXT[31:0]	I	立即数拓展结果
Pc_ID[31:0]	I	ID级 PC
Instr_ID[31:0]	I	ID 级指令码
Reset	I	同步复位
Clk	I	时钟端
RS_EX[31:0]	0	EX 级 RS 数据,对应 MFRSD
RT_EX[31:0]	0	EX 级 RT 数据,对应 MFRTD
EXT_EX[31:0]	0	EX 级立即数拓展结果
Pc_EX[31:0]	0	EX 级 PC

Instr_EX[31:0]	0	EX 级指令码
----------------	---	---------

EX 级流水线寄存器,时钟上升沿到来时更新对应数据,同步复位将PC 初始化为 0x00003000

2) ALU

端口	方向	功能
A[31:0]	I	第一个操作数
B[31:0]	I	第二个操作数
Op[3:0]	I	操作码:
		0000:A&B
		0001:A B
		0010:A+B
		0011:A-B
		0100:A^B\
		0101:~(A B)
		0110:B< <s< td=""></s<>
		0111:B>>s
		1000:signed(B)>>>s
		1001:signed(A) <signed(b)< td=""></signed(b)<>
		1010:A <b< td=""></b<>
C[31:0]	0	运算结果

3) MUX_ALU_B

端口	方向	功能
RT[31:0]	I	来自 MFRTE 的结果
EXT[31:0]	I	来自 EXT@EX
MUX_ALU_Bsel	I	选择信号:
		O:RT
		1:EXT
B[31:0]	0	输出结果

4) MUX_ALU_A

端口	方向	功能
MFRSE[31:0]	I	来自 MFRSE 的结果
S[4:0]	I	当前 EX 级指令的 10 到 6
		位
MUX_ALU_Ase1	I	选择信号
		O:MFRSE
		1:zero_ext(s)
ALU_A[31:0]	0	输出

5) M_D

端口	方向	功能
start	Ι	Start 信号
D1[31:0]	Ι	计算数 1
D2[31:0]	Ι	计算数 2
sel[2:0]	Ι	功能选择信号:
		000:mult
		001:multu
		010:div
		011:divu
		100:mthi
		101:mtlo
clk	Ι	时钟信号
reset	Ι	复位信号
Busy	0	繁忙信号
HI[31:0]	0	HI 寄存器
L0[31:0]	0	LO 寄存器

M_D 乘除单元模拟真实乘除器,乘法需要 5 个周期,除法需要 10 个, 乘除单元运行时只有非乘除类指令才能继续进行

6) MFRSE

端口	方向	功能
710 H	221-3	->> 100

RS_EX[31:0]	I	来自 RS@EX
AO_MEM[31:0]	I	MEM 级 ALUOut
PC_MEM_8[31:0]	I	MEM 级 PC+8
MUX_WD[31:0]	I	WB 级 MUX_WD 输出
PC_WB_8[31:0]	I	WB级PC+8
HI_MEM[31:0]	I	MEM 级 HI 寄存器
LO_MEM[31:0]	I	MEM 级 LO 寄存器
HI_WB[31:0]	I	WB 级 HI 寄存器
LO_WB[31:0]	I	WB级LO寄存器
MFRSEse1[3:0]	I	选择信号:
		0000:RS_EX
		0001:AO_MEM
		0010:PC_MEM_8
		0011:MUX_WD
		0100:PC_WB_8
		0101:HI_MEM
		0110:LO_MEM
		0111:HJ_MEM
		1000:LO_MEM
MFRSEout[31:0]	0	输出结果

MFRSE 转发器,用以代替 RS@EX

7) MFRTE

端口	方向	功能
RT_EX[31:0]	I	来自 RT@EX
AO_MEM[31:0]	I	MEM 级 ALUOut
PC_MEM_8[31:0]	I	MEM 级 PC+8
MUX_WD[31:0]	I	WB 级 MUX_WD 输出
PC_WB_8[31:0]	I	WB级PC+8
HI_MEM[31:0]	I	MEM 级 HI 寄存器

LO_MEM[31:0]	I	MEM 级 LO 寄存器
HI_WB[31:0]	I	WB 级 HI 寄存器
LO_WB[31:0]	I	WB级LO寄存器
MFRTEse1[3:0]	I	选择信号:
		0000:RT_EX
		0001:AO_MEM
		0010:PC_MEM_8
		0011:MUX_WD
		0100:PC_WB_8
		0101:HI_MEM
		0110:LO_MEM
		O111:HI_MEM
		1000:LO_MEM
MFRTEout[31:0]	0	输出结果

MFRTE 转发器,用以代替 RT@EX

4、 MEM 级

1) EX_MEM_REG

端口	方向	功能
ALUout[31:0]	Ι	EX 级的 ALU 计算结果
MFRTE[31:0]	Ι	EX 级 MFRTE 的输出
Instr_EX[31:0]	Ι	EX 级指令码
Pc_EX[31:0]	Ι	EX 级 PC
hi[31:0]	Ι	来自 EX 的 HI 寄存器
10[31:0]	Ι	来自 EX 的 LO 寄存器
Clk	Ι	时钟端
Reset	Ι	同步复位
RT_MEM [31:0]	0	MEM 级 RT 数据,对应 MFRTE
AO_MEM[31:0]	0	MEM 级 ALU 结果
Pc_MEM[31:0]	0	MEM 级 PC

Instr_MEM[31:0]	0	MEM 级指令码
HI_MEM[31:0]	0	MEM 级 HI 寄存器
LO_MEM[31:0]	0	MEM 级 LO 寄存器

MEM 级流水线寄存器,时钟上升沿到来时更新数据,同步复位将 PC 初始化为 0x00003000

2) Wdata_produce

端口	方向	功能
MFRTMout[31:0]	I	来自 MFRTM 的结果
Address[31:0]	I	写入地址信号
Sel[1:0]	Ι	功能选择信号:
		00:sw
		01:sh
		10:sb
Wdata[31:0]	0	输出写入内存数据

输出信号根据 sel 和地址信号低两位将所要写入的数据放在对应位

上,其他位为0

3) BEproduce

端口	方向	功能
Address[31:0]	I	地址信号
BEsel[1:0]	I	选择信号
		00: BE=1111
		01: BE=0011/1100
		10: BE=0001/0010/0100/1000
BE[3:0]	0	输出 BE 信号, BE[i]=1 表示对应 8 位可写入

用以产生标志信号表示哪些位置可以写入

4) DM

端口名	方向	功能
Address[11:2]	I	选择内存位置
Wdata[31:0]	I	写数据

DMld	I	选择读写操作信号	
		0: 写操作	
		1: 读操作	
Reset	I	异步复位	
Clk	I	时钟信号	
BE[3:0]	I	写入位使能	
Pc[31:0]	I	MEM级PC用来display输出	
Rdata[31:0]	О	读数据	

本模块规格为 32bit*1024, 截取地址信号的 13 到 2 位作为选择地址

5) MFRTM

端口	方向	功能
RT_MEM[31:0]	I	来自 RT@MEM
MUX_WD[31:0]	I	WB 级 MUX_WD 的结果
PC_WB_8[31:0]	I	WB级PC+8
MFRTMse1[1:0]	I	MFRTM 选择信号:
		OO: RT_MEM
		01: MUX_WD
		10: PC_WB_8
MFRTMout[31:0]	0	MFRTM 的结果

MEM 级的 MFRTM 转发多选器,用以代替 RT@MEM

5、 WB 级

1) MEM_WB_REG

端口名	方向	功能
RD_MEM[31:0]	I	MEM 级读内存结果
AO_MEM[31:0]	I	MEM 级的 ALU 结果
Insre_MEM[31:0]	I	MEM 的指令码
Pc_MEM[31:0]	I	MEM 级 PC
HI_MEM[31:0]	I	来自 MEM 级的 HI 数据
LO_MEM[31:0]	Ι	来自 MEM 级的 LO 数据

Clk	I	时钟端
Reset	I	同步复位清零
RD_WB[31:0]	0	WB 级读内存结果
AO_WB[31:0]	0	WB 级 ALU 结果
Instr_WB[31:0]	0	WB 级指令码
Pc_WB[31:0]	0	WB级PC
HI_WB[31:0]	0	WB 级 HI 寄存器
LO_WB[31:0]	0	WB 级 LO 寄存器

WB 级流水线寄存器,时钟上升沿到来时更新数据,同步复位将 PC 初始化为 0x00003000

2) Load_ext

端口	方向	功能
address[31:0]	I	来自 WB 级的 AO
Rdata[31:0]	Ι	来自 WB 级的 RD
loadse1[2:0]	Ι	选择信号:
		000:1w
		001:1h
		010:1hu
		011:1b
		100:1bu
out[31:0]	0	Load 拓展后的输出

这个部件主要用于将从内存读出的数据进行截取和拓展

3) MUX_WA

端口名	方向	功能
Instr_WB[31:0]	I	WB 级指令码
MUX_WAsel[1:0]	I	选择信号:
		00: rd
		01: rt
		10: 31

MUX_WAout[4:0]	0	输出结果
----------------	---	------

4) MUX_WD

端口名	方向	功能
AO_WB[31:0]	I	WB级A1U计算结果
RD_WB[31:0]	I	WB 级内存读取数
Instr_WB[31:0]	I	WB 级指令码
Pc_WB[31: 0]	I	WB 级 PC
hi[31:0]	I	WB 级的 HI 寄存器
10[31:0]	I	WB 级的 LO 寄存器
MUX_WDse1[2:0]	I	选择信号
		000: AO_WB
		001: PC_WB+8
		010: RD_WB
		011:hi
		100:10
MUX_WDout[31:0]	0	输出结果

5) GRF (WB)

端口名	方向	功能
WA[4:0]	I	写数据地址,来自 MUX_WA
Wdata[31:0]	I	写入数据,来自 MUX_WD
WE	I	写使能
Reset	I	同步复位清零
Clk	I	时钟端
Pc[31:0]	I	WB 级 PC

WB 级的 GRF 部分,时钟上升沿到来时若写使能有效,写入数据,冲 突通过 GRF 内部转发实现

二、 控制器设计

端口名	方向	功能
Op[5:0]	Ι	各流水级指令操作码

Func[5:0]	Ι	各流水级 R 型指令功能码
EXTsel@ID[1:0]	0	ID 级 EXT 选择信号:
		00: 无符号
		01: 有符号
		10: 加载到高位
MUX_PCsel@ID[1:0]	0	PC 选择信号:
		00: PC+8
		01: B 型指令地址
		10: J型指令地址
		11: jr 跳转地址
bcp@ID[2:0]	0	B型指令功能选择:
		000: beq
		001: bne
		010: blez
		011: bgtz
		100: bltz
		101: bgez
M_Dsel@EX[2:0]	0	乘除单元功能选择信号:
		000: mult
		001: multu
		010: div
		011: divu
		100: mthi
		101: mtlo
MUX_ALU_Asel@EX	0	EX 级 ALUA 操作数选择信号:
		0:MFRSE
		1:zero_ext(s)
MUX_ALU_Bsel@EX	0	EX 级 ALUB 操作数选择信号
		O: RT

		1: imi_EXT
ALUop@EX[3:0]	0	ALU 运算选择信号:
		0000: 与
		0001: 或
		0010: 加
		0011: 减
		0100: 异或
		0101: 或非
		0110: 逻辑左移
		0111: 逻辑右移
		1000: 算术右移
		1001: 有符号小于
		1010: 无符号小于
DM1d@MEM	0	MEM 级读使能
		0: 写内存
		1: 读内存
BEsel@MEM[1:0]	0	BE 信号的选择
		00:1111
		01:0011/1100
		10:0001/0010/0100/1000
Wdata_producesel@MEM[1:0]	0	Wdata 扩展选择信号:
		00: sw
		01: sh
		10: sb
Load_extsel@WB[2:0]	0	从内存读取的数据的拓展信号:
		000:1w
		001:1h
		010:1hu
		011:1b

		100:1bu
MUX_WAsel@WB[1:0]	0	WB 级 WA 选择信号
		00: rd
		01: rt
		10: 31
MUX_WDse1@WB[2:0]	0	WB级WD选择信号
		000: AO
		001: PC+8
		010: RD
		011: hi
		100: 1o
WE@WB	0	WB 级写使能
		1: 可以写入
		0: 不可以写入

控制器采用分布译码方式, 具体逻辑见附表

三、 暂停器设计

端口名	方向	功能
Instr_ID[31:0]	I	ID 级指令码
Instr_EX[31:0]	I	EX 级指令码
Instr_MEM[31:0]	I	MEM 级指令码
Busy_start	I	乘除单元占用信号
Enable_PC	0	PC 使能信号
Enable_IF_ID	0	ID 流水寄存器使能
Reset_ID_EX	0	EX 流水寄存器复位信号

暂停器逻辑设计具体方式见附表

四、 转发器

vili 🗲	. ,	T 4 4比
端口名	方向	功能
141	72.5	***

Instr_ID[31:0]	I	ID 级指令码
Instr_EX[31:0]	I	EX 级指令码
Instr_MEM[31:0]	I	MEM 级指令码
Instr_WB[31:0]	I	WB 级指令码
MFRSDsel[3:0]	0	MFRSD 选择信号
MFRTDsel[3:0]	0	MFRTD 选择信号
MFRSEse1[3:0]	0	MFRSE 选择信号
MFRTEsel[3:0]	0	MFRTE 选择信号
MFRTMsel[2:0]	0	MFRTM 选择信号

转发器逻辑设计具体方式见附表

五、 测试代码

```
.text
ori $0, $0, 869
lui $1, 0xCA65
ori $3, $0, 8
ori $2, $1, 61000
addi $1, $1, 138
sub $4, $3, $1
subu $5, $1, $2
add $6, $3, $4
sw $1, -4($3)
sw $2, 4($3)
sh $5, 0($3)
sh $6, 2($3)
jal label4
addu $ra, $ra, $3
nop
ori $7, $0, 4
lb $16, -1($3)
```

```
lw $9, 4($3)
```

beq \$16, \$9, label1

lbu \$16, -4(\$3)

xori \$7, \$7, 0xFF00

label1: beq \$16, \$16, label2

or \$7, \$7, \$3

ori \$7, \$7, 2

label2: sll \$7, \$7, 1

sb \$7, 5(\$3)

j label3

ori \$2, \$0, 0x8C09

label4: sb \$ra, 6(\$3)

jr \$ra

nop

label3:

sra \$10, \$7, 5

srav \$5, \$7, \$16

sub \$9, \$0, \$7

srlv \$11, \$9, \$16

srl \$17, \$9, 5

sllv \$11, \$9, \$16

srav \$11, \$9, \$16

sra \$17, \$9, 5

ori \$9, \$0, 0xF3F2

nor \$2, \$2, \$9

andi \$2, \$2, 0x000F

div \$5, \$2

mflo \$5

mfhi \$6

xor \$5, \$5, \$6

```
mtlo $6
```

addiu \$7, \$5, -127

mthi \$5

mflo \$5

mfhi \$6

div \$17, \$9

mflo \$5

mfhi \$6

divu \$17, \$9

mflo \$5

mfhi \$6

mult \$17, \$9

mtlo \$6

mflo \$5

mfhi \$6

multu \$17, \$9

mflo \$5

mfhi \$6

sub \$18, \$0, \$3

sw \$18, 8(\$3)

lhu \$18, 8(\$3)

blez \$18, label5

nop

jal label6

addi \$20, \$ra, -20

label6: jalr \$21, \$20

sh \$0, 8(\$3)

label5: lh \$18, 10(\$3)

bne \$2, \$2, label7

slt \$19, \$11, \$0

ori \$7, \$0, 1

label7: bne \$2, \$18, label8

sltu \$19, \$11, \$0

ori \$7, \$7, 2

label8: bgez \$18, label9

slti \$19, \$9, -0x8000

ori \$7, \$7, 4

label9: bgez \$0, label10

sltiu \$19, \$9, -0x8000

ori \$7, \$7, 8

label10: lui \$22, 0x4000

beq \$0, \$0, label11

add \$22, \$22, \$22

ori \$23, \$0, 1

label11: lui \$23, 0x2000

addu \$23, \$23, \$22

addu \$23, \$23, \$22

sub \$24, \$23, \$22

srl \$25, \$24, 30

sw \$24, 0(\$24)

1w \$25, -8(\$25)

lw \$25, -8(\$25)

lw \$25, -8(\$25)

loop: beq \$0, \$0, loop

nop

.ktext 0x4180

mfc0 \$29, \$12

mfc0 \$30, \$13

andi \$30, \$30, 0x7C

ori \$28, \$0, 48

```
bne $30, $28, eov
nop
srl $22, $22, 1
eov: ori $28, $0, 20
bne $30, $28, eas
nop
sll $24, $0, 0
eas: ori $28, $0, 16
bne $30, $28, eal
nop
sll $25, $25, 1
mfc0 $27, $14
addi $27, $27, 4
sw $27, 0x2FFC($0)
lw $28, 0x2FFC($0)
mtc0 $28, $14
eal: eret
ori $1, $0, 237
```

六、 思考题

1、 我们计组课程一本参考书目标题中有"硬件/软件接口"接口字样,那么到底什么是"硬件/软件接口"?

操作系统内核和系统调用层合起来就是操作系统,正是操作 系统连接了软件和硬件,成为了软件和硬件的接口

2、 在我们设计的流水线中, DM 处于 CPU 内部,请你考虑现代 计算机中它的位置应该在何处。

应该属于外设部分,通过系统桥连接

3、 BE 部件对所有的外设都是必要的吗?

不是, 仅仅对于 DM 是需要的对于 Timer 不需要

4、 请开发一个主程序以及定时器的 exception handler。整个系统完成如下功能:

.text

mfc0 \$1 \$12

ori \$1 \$1 0xfc01

mtc0 \$1 \$12

li \$5 1

li \$6 0x00007f00

li \$7 9

li \$8 2

sw \$7 0(\$6)

sw \$8 4(\$6)

label:

addi \$5 \$5 1

addi \$5 \$5 1

addi \$5 \$5 1

jal label

addi \$5 \$5 1

.ktext 0x4180

mfc0 \$26 \$13

mfc0 \$27 \$14

nop

nop

sw \$7 0(\$6)

eret

5、 请查阅相关资料,说明鼠标和键盘的输入信号是如何被 CPU 知晓的?

键盘和鼠标动作时产生一个中断信号, cpu 进入处理程序