

AULA 1 CAPÍTULO 10

PROF. DAVID WESLEY AMADO DUARTE 2023

LIGAÇÃO IÔNICA FÓRMULA UNITÁRIA PROPRIEDADES DE COMPOSTOS IÔNICOS

+ Vamos considerar como exemplo, para início de conversa, a reação entre o sódio (Na) e o cloro (Cl) na formação do cloreto de sódio (NaCl):

+ A reação pode ser explicada eletronicamente da seguinte forma:

- + Ou ainda, podemos dizer que:
- + Antes da reação:

Na⁰ 1s² 2s² 2p⁶ 3s¹ Cl⁰ 1s² 2s² 2p⁶ 3s² 3p⁵

+ Depois da reação:

Na⁺ 1s² 2s² 2p⁶ (eletrosfera igual à do neônio) Cl⁻ 1s² 2s² 2p⁶ 3s² 3p⁶ (eletrosfera igual à do argônio)

- + Explicando melhor, o átomo de sódio cede definitivamente 1 elétron ao átomo de cloro.
- + Assim, são formados um íon positivo (**cátion Na**+) e um íon negativo (**ânion Cl**-).
- + Os dois íons possuem octeto completo, como os gases nobres.

ÍON SÓDIO (cátion Na⁺)

ÍON CLORETO (ânion Cl⁻)

+ Como essa reação envolve somente os elétrons da camada de valência, podemos simplificar usando a fórmula (ou notação) de Lewis:

LIGAÇÃO IÔNICA

- + Com as cargas elétricas opostas, os cátions e os ânions se atraem e se mantêm unidos pela **Ligação Iônica**.
- + A substância originada é o cloreto de sódio (NaCl ou Na+Cl-), o nosso sal de cozinha.
- + Na prática, essa troca de elétrons acontece com um número enorme de átomos, formando um grande aglomerado de íons.

Representações espaciais do Na⁺Cl⁻

Essa arrumação geométrica é chamada de grade, rede ou reticulado cristalino. Trata-se de um reticulado iônico de forma cúbica.

LIGAÇÃO IÔNICA

RETÍCULO CRISTALINO

- + Obviamente não podemos ver esses arranjos chamados retículos cristalinos porque são muito pequenos.
- + Mas, através de raios X essas estruturas são confirmadas e através de um microscópio eletrônico de varredura pode-se ver que os cristais são cúbicos.

RETÍCULO CRISTALINO

LIGAÇÃO IÔNICA E ELETRONEGATIVIDADE

- + A ligação iônica também pode ser explicada em termos de diferença de eletronegatividade (△**En**).
- + Quando a ∆En entre dois átomos diferentes é maior que 1,6, a ligação entre eles é predominantemente iônica.
- + A ligação iônica é sempre polar, com a intensidade dos dipolos aumentando quanto maior a Δ En.

LIGAÇÃO IÔNICA E ELETRONEGATIVIDADE

- + Os **metais**, por exemplo, são elementos com **baixa eletronegatividade** e **tendência para formar cátions**.
- + Porém, essa tendência só se manifesta na presença de átomos que tenham tendência de formar ânions, como os ametais, com a formação de cargas opostas que se atraem mutuamente e se estabilizam.

SUBSTÂNCIA IÔNICA OU COMPOSTO IÔNICO

+ As substâncias formadas por metais e ametais, como o cloreto de sódio (NaCl), são denominadas substâncias iônicas ou compostos iônicos.

SUBSTÂNCIA IÔNICA OU COMPOSTO IÔNICO

+ Portanto, quando a **substância simples sódio metálico**, Na(s), **entra em contato com moléculas de gás cloro**, Cl₂(g), ocorre uma violenta reação química que provoca a formação de cátions **Na**⁺ e ânions **Cl**⁻, que permanecem fortemente ligados uns aos outros por força de atração elétrica entre as cargas opostas.

LIGAÇÃO IÔNICA E ENERGIA

+ A reação de formação do cloreto de sódio, NaCl(s), ocorre com grande liberação de energia, o que indica que **o composto formado é muito mais estável do que eram as substâncias simples** sódio metálico, Na(s), e gás cloro, Cl₂(g), isoladamente.

$$2 \text{ Na(s)} + 1 \text{C}\ell_2(g) \longrightarrow 2 \text{ NaC}\ell(s) + 642,4 \text{ kJ/mol de NaC}\ell(s)$$

LIGAÇÃO IÔNICA E ENERGIA

20

LIGAÇÃO IÔNICA X LIGAÇÃO COVALENTE

- + Mas, como saber se uma determinada ligação é iônica ou covalente?
- + Podemos calcular a diferença de eletronegatividade entre os átomos desses elementos e verificar a porcentagem de caráter iônico da ligação.

predominantemente covalente

Porcentagem de caráter iônico						
≠ E −	% Ci					
0,5	6					
0,6	9					
0,7	12					
0,8	15					
0,9	19					
1,0	22					
1,1	26					
1,2	30					
1,3	34					
1,4	39					
1,5	43					
1,6	47					

predominantemente iônico

≠ E −	% Ci			
1,7	51			
1,8	55			
1,9	59			
2,0	63			
2,1	67			
2,2	70			
2,3	74			
2,4	76			
2,5	79			
2,6	82			
2,7	84			
2,8	86			

Elemento	Na	Mg	Aℓ	Pb	F	0	Cℓ	Р
Eletronegatividade	1,0	1,2	1,5	1,7	4,0	3,5	3,0	2,1

Diferença de eletronegatividade ($\neq E$ –) dos átomos nos compostos:

- NaC ℓ : 3,0 1,0 = 2,0 (%Ci = 63%; predominantemente iônico)
- MgC ℓ_2 : 3,0 1,2 = 1,8 (%Ci = 55%; predominantemente iônico)
- A ℓ F₃: 4,0 1,5 = 2,5 (%Ci = 79%; predominantemente iônico)
- A ℓ P: 2,1-1,5 = 0,6 (%Ci = 19%; predominantemente covalente)
- PbO₂: 3,5-1,7=1,8 (%Ci = 55%; predominantemente iônico)

LIGAÇÃO IÔNICA E ELETRONEGATIVIDADE

- + Qual a explicação para que alguns elementos tenham a tendência de formar cátions **monovalentes**, enquanto outros formam cátions **bivalentes**, **trivalentes** ou **tetravalentes**?
- + Uma explicação possível está relacionada à energia de ionização.

Energias de ionização em kJ/mol								
Cátion formado	Elemento	1º Ei	2ª Ei	3ª Ei	4ª Ei	5ª Ei		
Monovalente	₃ Li	520,2	7 297,9	11 814,6				
Monovalente	₁₁ Na	495,8	4 562,4	6 912	9 543	13 352		
Monovalente	₁₉ K	418,8	3 051,3	4 411	5 877	7 975		
Bivalente	₁₂ Mg	737,7	1450,6	7732,6	10 540	13 629		
Bivalente	₂₀ Ca	589,8	1145,4	4 911,8	6 474	8 144		
Bivalente	₃₈ Sr	549,5	1064,5	4 120	5 500	6 910		
Trivalente	$_{13}A\ell$	577,6	1 816,6	2 744,7	11 577	14 831		
Tetravalente	₈₂ Pb	715,5	1450,4	3 081,4	4 083	6 640		

- + Portanto, o sódio forma um **cátion monovalente** porque a sua segunda energia de ionização é muito maior que a primeira.
- + O caso do magnésio formar um **cátion bivalente**, por exemplo, é que a sua terceira energia de ionização é muito maior que as duas primeiras.

Família	1	2	13	14	15	16	17
Principais elementos	Li, Na, K	Mg, Ca, Sr	A ℓ	Sn, Pb	N, P	O, S	F, Cℓ, Br, I
Elétrons de valência	1e− <i>E</i> •	2 e− • <i>E</i> •	3 e− • E	4 e− • E	5 e− • E	6 e– E	7 e–
Íon que tende a formar	E ¹⁺	E ²⁺	E ³⁺	E ⁴⁺	E³-	E ²⁻	E ^{1–}

RELEMBRANDO A REGRA DO OCTETO

+ Antes da reação:

Na⁰ 1s² 2s² 2p⁶ 3s¹ Cl⁰ 1s² 2s² 2p⁶ 3s² 3p⁵

+ Depois da reação:

Na⁺ 1s² 2s² 2p⁶ (eletrosfera igual à do neônio) Cl⁻ 1s² 2s² 2p⁶ 3s² 3p⁶ (eletrosfera igual à do argônio)

RELEMBRANDO A REGRA DO OCTETO

+ O átomo de sódio, 11 Na, possui 1 elétron no último nível de energia (3° nível). Quando o cátion Na+ é formado, seu último nível passa a ser o anterior (2° nível), já completo. Ou seja, o cátion sódio, Na+, possui a mesma configuração eletrônica do neônio, 10 Ne.

sódio (Na⁰)

ÍON SÓDIO (cátion Na⁺)

RELEMBRANDO A REGRA DO OCTETO

+ O átomo de cloro, ₁₇Cl, possui **7 elétrons no último nível de energia** (3° nível). Quando **o ânion Cl**· é formado, **seu último nível fica completo** (3° nível). Ou seja, **o ânion cloreto, Cl**·, **possui a mesma configuração eletrônica do argônio**, ₁₈Ar.

FÓRMULA UNITÁRIA

+ Como os compostos iônicos são formados por um número muito grande de cátions e ânions, de acordo com uma forma geométrica definida, característica de compostos iônicos, chamamos este formato de **arranjo** (já vimos o retículos cristalino).

FÓRMULA UNITÁRIA

- + Cada íon Na⁺ **está cercado por 6** íons Cl⁻, e viceversa.
- + Esse número (6, neste caso) é conhecido como **número de coordenação**, e está ligado ao arranjo cristalino particular de cada íon.

FÓRMULA UNITÁRIA

- + No caso específico do cloreto de sódio (NaCl), o número de coordenação dos íons Na⁺ e Cl⁻ é o mesmo: 6.
- + Assim, definimos uma **fórmula unitária** para os compostos iônicos, exatamente porque não podemos definir quantos íons combinam no total.

FÓRMULA UNITÁRIA – COMO MONTAR

- + Símbolo do cátion antes do ânion.
- + Deve mostrar a menor proporção entre os íons em números inteiros, de modo que a carga total dos cátions seja neutralizada pela carga total dos ânions.
- + Não precisa escrever as cargas na fórmula.
- + Usar o índice, exceto para o número 1.

Na • + •
$$C\ell$$
 • Na¹⁺ $\begin{bmatrix} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \end{bmatrix}$ 1-

FÓRMULA UNITÁRIA – NOTAÇÃO DE LEWIS

FÓRMULA UNITÁRIA – OUTRO EXEMPLO

+ Vamos dar o exemplo da ligação entre os elementos 20 Ca e o F.

$$_{20}\text{Ca}
ightarrow 1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2$$
 $_{20}\text{Ca}^{2+}
ightarrow 1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6$ $_{9}F
ightarrow 1s^2\ 2s^2\ 2p^5$ $_{9}F^-
ightarrow 1s^2\ 2s^2\ 2p^6$

$$Ca_1^{2+}$$
 F_2^{1-} CaF_2

FÓRMULA UNITÁRIA – OUTRO EXEMPLO

FÓRMULA UNITÁRIA – OUTRO EXEMPLO

FÓRMULA UNITÁRIA – GENERALIZANDO

- (U. Católica Dom Bosco-MS) Para adquirir configuração eletrônica de gás nobre, o átomo de número atômico 16 deve:
- a) perder dois elétrons.
- b) receber seis elétrons.
- c) perder quatro elétrons.
- d) receber dois elétrons.
- e) perder seis elétrons.

(UFRRJ) Os íons são formados a partir das propriedades dos elementos químicos. Observe as propriedades periódicas e as configurações eletrônicas dos elementos abaixo e indique o íon que será formado a partir de cada um deles.

a) Cl

c) Zn

b) Ca

d) K

Em um composto, sendo A o cátion, B o ânion e A_3B_2 a fórmula, provavelmente os átomos A e B, no estado normal, tinham, respectivamente, os seguintes números de elétrons periféricos:

a) 3 e 2

d) 3 e 6

b) 2 e 3

e) 5 e 6

c) 2 e 5

(UFPA) Sejam os elementos X, com 53 elétrons, e Y, com 38 elétrons. Depois de fazermos a sua distribuição eletrônica, podemos afirmar que o composto mais provável formado pelos elementos é:

a) YX_2

d) Y_2X

b) Y_3X_2

e) *YX*

c) Y_2X_3

+ **Estado de agregação:** sólidos a temperatura e pressão ambientes, por causa da força de atração entre os íons. Alguns poucos podem ser líquidos, como o cloreto de titânio, TiCl₄, e o cloreto estânico, SnCl₄.

- + Temperaturas de fusão e ebulição: em geral muito elevadas, sendo necessário fornecer muita energia para separar os íons.
- + NaCl: TF = 801 °C e TE = 1413 °C.
- + $CaBr_2$: TF = 730 °C e TE = 1935 °C.
- + MgO: TF = 2852 °C e TE = 3600 °C.

+ **Solubilidade:** alguns são solúveis e outros não. Como os fatores que interferem na solubilidade são muitos, precisamos consultar tabelas de solubilidade.

+ **Dureza:** em geral, apresentam elevada dureza, ou grande resistência a serem riscados por outros materiais.

+ Tenacidade (resistência ao impacto): apresentam baixa tenacidade, pois, quando sofrem pressão, os íons de mesmo sinal se aproximam e se repelem, fragmentando o cristal.

Atração: íons de sinais opostos defrontam-se.

Repulsão: íons de sinais iguais defrontam-se.

O cristal se parte por causa das forças repulsivas ao longo do plano.

- + Condutividade elétrica: quando no estado líquido ou em solução aquosa, conduzem corrente elétrica, porque seus íons estão livres.
- + Na fase sólida não conduzem corrente elétrica.

ATIVIDADE DE CASA

+ Atividade de leitura:

Ler as páginas 242 a 246 do livro de Química.

+ Resolução de exercícios:

Responder as **questões 1 a 4** da **página 247** do livro de Química.

REFERÊNCIAS

FELTRE, Ricardo. **Química:** Volume 1. 6 ed. São Paulo: Moderna, 2004.

FONSECA, Martha Reis Marques da. **Química 1:** ensino médio. 2 ed. São Paulo: Ática, 2016.

ATÉ A PRÓXIMA AULA!