Laboratório de Sistemas Digitais

Trabalho Prático nº 2

Modelação em VHDL, simulação e implementação de componentes combinatórios (multiplexadores, descodificadores e codificadores)

Objetivos

 Modelação em VHDL, simulação, implementação em FPGA e teste no kit DE2-115 de componentes combinatórios simples.

Sumário

Este trabalho prático está dividido em quatro partes. A primeira é dedicada a descodificadores, a segunda a multiplexadores, a terceira a um caso particular de descodificador (binário - 7 segmentos) e a quarta a codificadores de prioridade. Por conveniência, a primeira parte utiliza exclusivamente descrições em VHDL, enquanto as restantes combinam diagramas lógicos para as descrições *top-level* e VHDL para os módulos combinatórios utilizados.

Notas importantes:

- Neste guião, os passos do fluxo de projeto são descritos de forma sumária; consulte o guião anterior para esclarecer eventuais dúvidas.
- No final da aula, desligue o kit e arrume-o na respectiva caixa, juntamente com os cabos e o alimentador.
- Nos pontos de TPC efetue a simulação e compilação prévia do projeto no seu PC antes de se dirigir à sala do DETI onde se encontram os kits. Desta forma utilizará os kits disponíveis de uma forma mais eficiente.

Parte I

- **1.** Abra a aplicação *"Quartus Prime"* e crie um novo projeto para a FPGA Cyclone IV EP4CE115F29C7. O nome do projeto e da entidade *top-level* deverão ser ambos "Dec2 4EnDemo".
- 2. Crie um novo ficheiro para código-fonte VHDL e introduza o código da Figura 1.
- 3. Grave o ficheiro com o nome "Dec2 4En.vhd".
- **4.** Identifique o componente modelado e construa no seu *log book* a respetiva tabela de verdade.
- 5. Efetue a simulação do componente modelado, realizando para tal os seguintes passos:
- selecione o ficheiro "Dec2_4En.vhd" como o top-level do projeto, de forma a efetuar a simulação apenas deste módulo.
- execute a opção "Analysis & Synthesis" para que, entre outros aspetos, seja verificada a correção sintática e a estrutura do projeto.
- crie um ficheiro VWF de suporte à simulação.
- selecione os portos a usar na simulação e especifique os vetores de teste ao longo do tempo. Sugestão: para a entrada "inputs", utilize a opção "Random Values" com "At

Ano Letivo 2019/20 Página 1 de 8

fixed intervals = 40 ns"; para "enable", use o 'rato' (tal como na aula 1) para definir janelas temporais de (in)atividade deste sinal.

 grave o ficheiro com o nome "Dec2_4En_1.vwf", execute a simulação e analise os resultados.

6. A abordagem trivial seguida no ponto anterior não é adequada para validar um modelo de um sistema real por simulação. Uma simulação adequada requer a aplicação de vetores de teste apropriados que permitam exercitar (idealmente) todas as situações possíveis e/ou relevantes de funcionamento do sistema. Para tal, contrua um novo ficheiro VWF que permita obter a simulação apresentada na Figura 2. Defina o valor do sinal "enable" ao longo do tempo e utilize a opção "Count Value" para gerar os valores aplicados à entrada "inputs" de forma a percorrer todas as possibilidades das entradas. Grave o ficheiro com o nome "Dec2 4En 2.vwf", execute a simulação e analise os resultados.

```
library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity Dec2_4En is
    port(enable : in std_logic;
         inputs : in std_logic_vector(1 downto 0);
         outputs: out std logic vector(3 downto 0));
end Dec2_4En;
architecture BehavEquations of Dec2_4En is
begin
    outputs(0) <= enable and (not inputs(1)) and (not inputs(0));</pre>
    outputs(1) <= enable and (not inputs(1)) and (</pre>
                                                       inputs(0));
    outputs(2) <= enable and ( inputs(1)) and (not inputs(0));</pre>
    outputs(3) <= enable and ( inputs(1)) and (</pre>
                                                       inputs(0));
end BehavEquations;
```

Figura 1 – Código VHDL da entidade Dec2 4En e arquitetura BehavEquations.

Figura 2 – Simulação com vetores de teste de forma a testar todas as possibilidades das entradas.

7. Crie um novo ficheiro VHDL, chamado "Dec2_4EnDemo.vhd", onde deverá instanciar o componente modelado **Dec2_4En** e associar os respetivos portos a pinos concretos da FPGA do *kit* de desenvolvimento DE2-115 que vai usar para o testar (entradas ligadas a interruptores e saídas ligadas a LEDs). O código base para este efeito, fornecido na Figura 3, foi escrito intencionalmente com alguns erros de sintaxe. Após corrigir esses erros, grave o ficheiro.

Ano Letivo 2019/20 Página 2 de 8

```
entity Dec2_4EnDemo is
   port(SW : std_logic_vector(2 downto 0);
       LEDG : std_logic_vector(3 downto 0));

architecture Shell of Dec2_4EnDemo is
begin
   system_core : work entity.Dec2_4En(BehavEquations)
       port map(enable <= SW(2);
       inputs <= SW;
       outputs => LEDG(3 downto 0);
end Dec2_4EnDemo;
```

Figura 3 – Código VHDL para instanciação do módulo Dec 2 4En e ligação a pinos da FPGA.

- 8. Selecione o ficheiro "Dec2 4EnDemo.vhd" como o novo top-level do projeto.
- **9.** Importe as definições de pinos da FPGA do *kit* DE2-115 (ficheiro "master.qsf").
- **10.** Efetue a síntese e implementação do projeto através do comando "Compile Design". No final do processo de compilação, programe a FPGA e teste o funcionamento do componente.
- **11.** Visualize o esquema lógico do circuito resultante da síntese lógica, usando para tal a ferramenta disponível no menu "Tools—Netlist Viewers—RTL Viewer", e interprete a forma como é traduzida em circuitos lógicos a descrição que efetuou em VHDL.
- **12.** Visualize agora e interprete o esquema lógico do circuito resultante do mapeamento da *netlist* nas primitivas da FPGA, usando para tal a ferramenta disponível no menu "Tools—Netlist Viewers—Technology Map Viewer (Post-Mapping)". Analise e compare este diagrama com o visualizado no ponto anterior e constate os seguintes aspetos:
- a implementação baseada em blocos lógicos configuráveis da FPGA ("LOGIC_CELL_COMB") contendo LUTs (através das respetivas propriedades, analise o conteúdo da LUT e a função lógica equivalente de cada "LOGIC_CELL_COMB").
- a inclusão de buffers de entrada/saída ("IO_BUF") para ligação aos pinos da FPGA.
- **13.** Edite o ficheiro "Dec2_4En.vhd" acrescentando no final a arquitetura (implementação) alternativa ("BehavAssign") da Figura 4. Nesta arquitetura são usadas atribuições condicionais para modelar o componente em vez das atribuições convencionais (concorrentes e incondicionais) usadas anteriormente para escrever as equações das saídas.
- **14.** No ficheiro "Dec2_4EnDemo.vhd" altere a instanciação do componente por forma a que seja agora usada a arquitetura "BehavAssign" em vez da "BehavEquations".

Figura 4 – Código VHDL da arquitetura BehavAssign para o módulo Dec2_4En.

Ano Letivo 2019/20 Página 3 de 8

- **15.** Repita os pontos 10 a 12, realizando a síntese, implementação, programação da FPGA e teste para a implementação alternativa do componente (arquitetura "BehavAssign").
- **16.** Feche a aplicação de programação da FPGA e seguidamente o projeto.

[TPC] Repita os pontos 10 a 12 para a arquitetura "**BehavProc**" apresentada na Figura 5 (baseada num processo em VHDL).

```
architecture BehavProc of Dec2_4En is
begin
    process(enable, inputs)
    begin
        if (enable = '0') then
            outputs <= "0000";
        else
            if (inputs = "00") then
                outputs <= "0001";
            elsif (inputs = "01") then
                outputs <= "0010";
            elsif (inputs = "10") then
                outputs <= "0100";
            else
                outputs <= "1000";
            end if;
        end if;
    end process;
end BehavProc;
```

Figura 5 – Código VHDL da arquitetura **BehavProc** para o módulo **Dec2_4En**.

Parte II

1. Escreva no seu *log book* código VHDL para definir um multiplexador 2:1 com interface de acordo com a Figura 6 e arquitetura baseada num processo (*process*).

Figura 6 – Interface do multiplexador $2\rightarrow 1$.

- **2.** Crie no "Quartus Prime" um novo projeto para a FPGA Cyclone IV EP4CE115F29C7. Designeo "Mux2_1Demo", bem como a sua entidade top-level.
- **3.** Grave o código-fonte VHDL que preparou no ponto 1 num novo ficheiro com o nome "Mux2 1.vhd".

Ano Letivo 2019/20 Página 4 de 8

- **4.** Efetue a simulação do multiplexador, realizando todos os passos necessários e especificando uma adequada sequência de vetores de entrada para validar o seu comportamento.
- 5. Crie um símbolo para poder usar o módulo "Mux2_1.vhd" em esquemas lógicos.
- **6.** Crie um novo ficheiro para um esquema lógico, chamado "Mux2_1Demo.bdf". Instancie nele o multiplexador e associe os seus portos a pinos concretos da FPGA do *kit* DE2-115 que vai usar para o testar (sugere-se que ligue as entradas de dados a interruptores, a entrada de seleção a um botão e a saída a um LEDs, como mostra a Figura 7).

Figura 7 – Instanciação do módulo "Mux2 1" e ligação a pinos da FPGA.

- 7. Importe as definições de pinos da FPGA do kit DE2-115 (ficheiro "master.qsf").
- **8.** Efetue a síntese e implementação do projeto através do comando "Compile Design". No final do processo de compilação, programe a FPGA do kit e teste o multiplexador.
- 9. Feche a aplicação de programação da FPGA e seguidamente o projeto.
- **10.** Repita a parte II para um multiplexador 4:1; note que a entrada de seleção **sel** passa a ser um vetor (**std_logic_vector**) de 2 *bits*.

[TPC] Repita a parte II, mas usando agora uma abordagem de modelação do multiplexador 4:1 baseada em atribuições condicionais.

Parte III

Nesta parte do trabalho prático, pretende-se implementar e testar um módulo muito útil para visualização de dados em sistemas digitais e que será usado frequentemente ao longo do semestre: um descodificador binário→7 segmentos, cuja função é converter palavras binárias de entrada de 4 *bits*, representando valores entre 0 e 9 (ou entre 0 e 15), em padrões de saída de 7 *bits* destinados a controlar os LEDs de um *display* de 7 segmentos. No *kit* DE2-115, criaremos um sistema de teste muito simples, com os 4 *bits* de entrada controlados por interruptores e os 7 *bits* de saída ligados ao *display* HEXO. Considere o esquema de ligações entre este *display* e a FPGA, mostrado na Figura 8. Os restantes *displays* do *kit* (HEX1 - HEX7) possuem esquemas de ligação semelhantes − vide manual do utilizador disponível no site de LSD.

Figura 8 – Ligações entre a FPGA e o display HEXO do kit DE2-115.

Ano Letivo 2019/20 Página 5 de 8

A Figura 9 apresenta uma possível implementação em VHDL (baseada em atribuições condicionais) de um descodificador binário para 7 segmentos.

```
library IEEE;
use IEEE.STD LOGIC 1164.all;
entity Bin7SegDecoder is
    port(binInput : in std_logic_vector(3 downto 0);
         decOut_n : out std_logic_vector(6 downto 0));
end Bin7SegDecoder;
architecture Behavioral of Bin7SegDecoder is
begin
    decOut n <= "1111001" when (binInput = "0001") else --1
                -- determine o valor das saídas para o dígito 2
                "0110000" when (binInput = "0011") else
                "0011001" when (binInput = "0100") else
                "0010010" when (binInput = "0101") else
                "0000010" when (binInput = "0110") else
                "1111000" when (binInput = "0111") else
                "0000000" when (binInput = "1000") else
                "0010000" when (binInput = "1001") else
                "0001000" when (binInput = "1010") else
                "0000011" when (binInput = "1011") else
                "1000110" when (binInput = "1100") else --C
                -- determine o valor das saídas para o dígito d
                "0000110" when (binInput = "1110") else --E
                "0001110" when (binInput = "1111") else --F
                "1000000";
                                                          --0
end Behavioral;
```

Figura 9 – Código VHDL do descodificador binário→7 segmentos.

- **1.** Analise o código da Figura 9 e identifique o nível lógico ('0' ou '1') que o descodificador aplica ao *display* para ativar um segmento.
- **2.** Note que a descodificação é apresentada para todos os dígitos hexadecimais, exceto para os dígitos "2" e "D". Determine o valor das saídas para esses dígitos e efetue as modificações necessárias nas linhas de código comentadas.
- **3.** Crie no "Quartus Prime" um novo projeto para a FPGA Cyclone IV EP4CE115F29C7. O nome do projeto e da entidade top-level deverão ser ambos "DisplayDemo".
- **4.** Crie um novo ficheiro para código-fonte VHDL, introduza o código apresentado na Figura 9 e grave-o com o nome "Bin7SegDecoder.vhd".
- **5.** Crie um símbolo para o módulo "Bin7SegDecoder.vhd", de forma a poder ser usado num diagrama lógico.
- **6.** Num novo ficheiro chamado "DisplayDemo.bdf", crie um esquema lógico para instanciar o descodificador binário→7 segmentos e associar os respetivos portos a pinos concretos da FPGA do *kit* de desenvolvimento. Como mostra a Figura 10, ligue as entradas a interruptores e as saídas aos sinais de controlo dos segmentos do *display* HEX0.

Ano Letivo 2019/20 Página 6 de 8

Figura 10 – Instanciação do módulo "Bin7SegDecoder" e ligação a pinos da FPGA.

- 7. Importe as definições de pinos da FPGA do kit de desenvolvimento (ficheiro "master.qsf").
- **8.** Efetue a síntese e implementação do projeto através do comando "Compile Design". No final do processo de compilação, programe a FPGA e teste o funcionamento do sistema.
- **9.** Altere o projecto para que as entradas e as saídas do descodificador binário→7 segmentos sejam também visualizadas em LEDs do *kit* (observe a sugestão da Figura 11: quer os portos de entrada, onde ligam os interruptores, quer as saídas do descodificador passam também a ligar a portos de saída associados aos LEDs).

Figura 11 – Alteração do circuito da Figura 10 para visualização em LEDs das entradas e saídas do descodificador.

- **10.** Importe novamente o ficheiro "master.qsf" e repita a síntese e implementação do projeto através do comando "*Compile Design*". No final do processo de compilação, programe a FPGA e teste o funcionamento do sistema.
- **11.** Adicione ao descodificador uma entrada de *enable* que, quando ativa, habilite o seu funcionamento normal e, quando inativa, iniba (desative) todas as saídas, apagando todos os segmentos, independentemente das restantes entradas do descodificador.
- **12.** Volte a criar o símbolo do módulo "Bin7SegDecoder.vhd" de forma a atualizá-lo com a nova entrada (*enable*).
- **13.** Edite o módulo *top-level* do projeto ("DisplayDemo.bdf") para que a entrada *enable* do descodificador seja controlada por um interruptor do *kit* (e.g. KEY(0) vide Figura 12). Como a interface do módulo "Bin7SegDecoder.vhd" foi alterada, deverá voltar a instanciá-lo.

Figura 12 – Instanciação do módulo "Bin7SegDecoder" com enable e ligação a pinos da FPGA.

- **14.** Volte a importar o ficheiro "master.qsf", a sintetizar e a implementar o projeto através do comando "Compile Design". No final programe a FPGA e teste o funcionamento do sistema.
- **15.** Feche a aplicação de programação da FPGA e seguidamente o projeto.

Ano Letivo 2019/20 Página 7 de 8

[TPC] Repita o exercício a partir de 6 usando VHDL em vez do diagrama lógico para definir o módulo *top-level* ("DisplayDemo.vhd").

Parte IV

1. Construa no seu *log book* a tabela de verdade de um codificador de prioridade 4→2 com indicação de saída válida. A interface deste componente é apresentada na Figura 13.

Figura 13 – Interface de codificador de prioridade.

- **2.** Escreva no seu *log book* código VHDL para este codificador de prioridade, com arquitetura baseada num processo (*process*) contendo construções **if...then...else** encadeadas para testar o valor lógico das entradas pela ordem (prioridade) correta.
- **3.** Crie no "Quartus Prime" um novo projeto para a FPGA Cyclone IV EP4CE115F29C7. O nome do projeto e da entidade top-level poderão ser ambos "PEnc4_2Demo".
- 4. Grave o código-fonte VHDL do ponto 2 num novo ficheiro designado "PEnc4_2.vhd".
- **5.** Efetue a simulação do codificador, realizando todos os passos necessários e especificando uma sequência adequada de vetores de entrada para validar o seu comportamento.
- **6.** Crie um símbolo para o módulo "PEnc4_2.vhd", de forma a poder ser usado num diagrama lógico.
- **7.** Crie um novo ficheiro para um esquema lógico, chamado "PEnc4_2Demo.bdf", que irá servir para instanciar o codificador e associar os respetivos portos a pinos concretos da FPGA do *kit* de desenvolvimento DE2-115 que vai usar para o testar (sugere-se que ligue as entradas a interruptores e as saídas a LEDs).
- 8. Importe as definições de pinos da FPGA do kit DE2-115 (ficheiro "master.qsf").
- **9.** Efetue a síntese e implementação do projeto através do comando "Compile Design". No final do processo de compilação, programe a FPGA e teste o funcionamento do codificador.
- 10. Feche a aplicação de programação da FPGA e seguidamente o projeto.

[TPC] Repita a parte IV para um codificador de prioridade 16→4 com indicação de saída válida.

PDF criado em 03/02/2020 às 19:53:00

Ano Letivo 2019/20 Página 8 de 8