

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №18 по курсу "Функциональное и логическое программирование"

Teма Формирование и модификация списков на Prolog
Студент Варин Д.В.
Группа <u>ИУ7-66Б</u>
Оценка (баллы)
Преподаватели Строганов Ю.В., Толпинская Н.Б.

Условие

Используя хвостовую рекурсию, разработать эффективную программу, позволяющую:

- 1. Сформировать список из элементов числового списка, больших заданного значения;
- 2. Сформировать список из элементов, стоящих на нечетных позициях исходного списка (нумерация от 0);
- 3. Удалить заданный элемент из списка (один или все вхождения);
- 4. Преобразовать список в множество (можно использовать ранее разработанные процедуры).

Убедиться в правильности результатов.

Для одного из вариантов **ВОПРОСА** и 1-го задания **составить таблицу**, отражающую конкретный порядок работы системы:

Т.к. резольвента хранится в виде стека, то состояние резольвенты требуется отображать в столбик: (вершина – сверху). Новый шаг надо начинать с нового состояния резольвенты.

No	Состояние	Для каких термов	Дальнейшие действия:
шага	резольвенты, и	запускается алгоритм	прямой ход или откат
	вывод: дальнейшие	унификации: T1=T2 и	(почему и к чему
	действия (почему?)	каков результат (и	приводит?)
		подстановка)	

Решение

Листинг 1 – Решение 1

```
domains
list = integer*.

predicates
f(list, integer, list).

clauses
f([H|T], EI, [H|Res]) :- H > EI, !, f(T, EI, Res).

f([_|T], EI, Res) :- f(T, EI, Res).
f([], _, []) :- !.

goal
f([6, 0, 4, 2], 3, R).
```

Листинг 2 – Решение 2

```
domains
list = integer*.

predicates
odd(list, list).

clauses
odd([_, H|T], [H|Res]) :- odd(T, Res).
odd([_], []) :- !.
odd([],[]) :- !.

goal
odd([0, 1, 2, 3, 4, 5, 6], Result).
```

Листинг 3 – Решение 3 и 4

```
domains
list = integer*.

predicates
del(integer, list, list).
createSet(list, list).
```

```
clauses
          \label{eq:del_del_del} \text{del}\left(\,\mathsf{El}\,,\ \left[\,\mathsf{El}\,|\,\mathsf{T}\,\right]\,,\ \mathsf{Res}\,\right)\,:-\,\,\mathsf{del}\left(\,\mathsf{El}\,,\ \mathsf{T},\ \mathsf{Res}\,\right)\,.
10
          del(El, [H|T], [H|Res]) :- del(El, T, Res), !.
11
12
          del(_, [], []).
13
          createSet([H|T], [H|Res]) := del(H, T, Tmp), createSet(Tmp, Res),
15
          createSet([], []).
16
17
   goal
18
          del(3, [1, 2, 3, 2, 3], Res).
```

В Таблице 1 представлен порядок поиска ответа на вопрос 1.

Таблица 1 — Порядок формирования результата для 1-го вопроса

IIIar	Сравниваемые термы;	Дальнейшие	Резольвента	Подстановка
	результаты	действия		
	f([2, 6, 4, 2], 3, R).	Прямой ход	2 > 3	${ m H}=2$
	и f([H T], El, [H Res])			$\mathrm{T} = [6,4,2]$
			f([6, 4, 2], 3, Res)	$\mathrm{El}=3$
	2>3	Откат		H=2
2			f([6, 4, 2], 3, Res)	$\mathrm{T} = [6,4,2]$
				$\mathrm{El}=3$
	f([2, 6, 4, 2], 3, R).	Прямой ход	f([6, 4, 2], 3, R)	T=[6,4,2]
က	и f([_ T], El, [H Res])			$\mathrm{El}=3$
	f([6, 4, 2], 3, R).	Прямой ход	6>3	9 = H
4	и f([H T], El, [H Res])			$\mathrm{T}=[4,2]$
			f([4, 2], 3, Res)	$\mathrm{El}=3$
	6 > 3	Прямой ход	-	$9=\mathrm{H}$
ಬ			f([4, 2], 3, Res)	$\mathrm{T} = [4,2]$
				$\mathrm{El}=3$
		Прямой ход	f([4, 2], 3, Res)	9 = H
9				$\mathrm{T}=[4,2]$
				$\mathrm{El}=3$
:	:	:	•••	
0	f([], 3, []) n f((], . (])	Прямой ход		$\mathrm{Res} = [6,4]$
		ДродП	Продолжение на следующей странице	щей странице

Таблица 1 – продолжение

Подстановка		$\mathrm{Res} = [6,4]$			Конец таблицы
Резольвента					
Дальнейшие	действия	Завершение	1 подст.	в рез-те	
Паг Сравниваемые термы; Дальнейшие	результаты				
		0			

Контрольные вопросы

Что такое рекурсия?

Рекурсия – это ссылка на описываемый объект при описании объекта.

Как организуется хвостовая рекурсия в Prolog?

- рекурсивный вызов один, расположен в конце тела правила;
- не должно быть возможности сделать откат до вычисления рекурсивного вызова.

Как организовать выход из рекурсии в Prolog?

С помощью отсечения

Какое первое состояние резольвенты?

Заданный вопрос (goal).

В каких пределах программы переменные уникальны?

Именованная переменная уникальна в предложении, в котором она используется. Анонимные переменные всегда уникальны.

В какой момент, и каким образом системе удается получить доступ к голове списка?

Получить голову или хвост списка можно при унификации списка с [H|T], H – голова списка, T – хвост списка.

Каково назначение и результат использования алгоритма унификации?

Унификация – логический вывод. Результат – подстановка.

Как формируется новое состояние резольвенты?

Преобразования резольвенты выполняются с помощью редукции. Редукцией цели G с помощью программы P называется замена цели G телом того правила из P, заголовок которого унифицируется с целью. Новая резольвента образуется в два этапа:

- в текущей резольвенте выбирается одна из подцелей и для неё выполняется редукция;
- к полученной конъюнкции целей применяется подстановка, полученная как наибольший общий унификатор цели и заголовка сопоставленного с ней правила.

Как применяется подстановка, полученная с помощью алгоритма унификации?

Подстановка применяется к целям в резольвенте путем замены текущей переменной на соответствующий терм.

В каких случаях запускается механизм отката?

Механизм отката запустится в случае неудачи алгоритма унификации.

Когда останавливается работа системы?

Работа системы останавливается, когда найдены все возможные ответы на вопрос.

Как это определяется на формальном уровне?

Когда в резольвенте находится исходный вопрос, для которого пройдена вся БЗ.