1 Постановка задачи

Решаем задачу бинарной классификации. Есть обучающая выборка, для которой известны метки классов. Есть тестовая выборка, для которой по зачениям других признаков надо восстановить значение класса.

2 Общая схема работы алгоритма

Пусть G- множество объектов,

 G_{+} - множество положительных объектов,

 G_{-} - множество отрицательных объектов,

 G_t - тестовые объекты;

Для каждого отдельного элемента(g) из G составляем новую таблицу признаков. Для начала удаляем g из G (а также из G_+ или G_-).

Для q выполняем:

- 1) Для каждого объекта из плюс контекста рассмотрим пересечение его описания (g_i^+) и описания g', и проверим вкладывается ли оно в описание какого-либо из минус примеров (g_i^-)
- 2) Для каждого объекта из минус контекста рассмотрим пересечение его описания (g_i^-) и описания g', и проверим вкладывается ли оно в описание какого-либо из плюс примеров (g_i^+)

Для каждого g рассмотрим новые признаки:

```
1) min\sum_{i \in i^+} |g' \cap g_i^+|
```

2)
$$mean\sum_{i\in i^+} |g' \cap g_i^+|$$

3)
$$max\sum_{i\in i^+} |g'\cap g_i^+|$$

4)
$$min\sum_{i \in i^+} |(g' \cap g_i^+)^+|$$

5)
$$mean \sum_{i \in i^+} |(g' \cap g_i^+)^+|$$

6)
$$max \sum_{i \in i^+} |(g' \cap g_i^+)^+|$$

7)
$$min\sum_{i \in i^+} |(g' \cap g_i^+)^-|$$

8)
$$mean \sum_{i \in i^+} |(g' \cap g_i^+)^-|$$

9)
$$max\sum_{i \in i^+} |(g' \cap g_i^+)^-|$$

10)
$$min\sum_{i \in i^{-}} |g' \cap g_i^{-}|$$

11)
$$mean\sum_{i\in i^-} |g'\cap g_i^-|$$

12)
$$max \sum_{i \in i^{-}} |g' \cap g_i^{-}|$$

13)
$$min\sum_{i \in i^{-}} |(g' \cap g_{i}^{-})^{-}|$$

14)
$$mean \sum_{i \in i^{-}} |(g' \cap g_{i}^{-})^{-}|$$

15)
$$\max \sum_{i \in i^-} |(g' \cap g_i^-)^-|$$

16)
$$min\sum_{i \in i^{-}} |(g' \cap g_i^{-})^{+}|$$

17)
$$mean \sum_{\cdot,\cdot,\cdot} |(a' \cap a_{\cdot}^{-})^{+}|$$

11)
$$mean \sum_{i \in i^-} |(g + g_i)|^2$$

17)
$$mean \sum_{i \in i^{-}} |(g' \cap g_{i}^{-})^{+}|$$

18) $max \sum_{i \in i^{-}} |(g' \cap g_{i}^{-})^{+}|$

Строим такой же набор признаков для тестовых объектов.

чающей выборке строим дерево принятия решений и используем его на тестовых объектах.

3 Пример использования алгоритма

Проверим на двух наборах данных:

1)Congressional Voting Records Data Set

http://archive.ics.uci.edu/ml/machine-learning-databases/voting-records/house-votes-84.data

Данные имеют бинарную природу, шкалирование не требуется.

Используем 5-fold cross validation.

Результаты: Precision - 0.94590 Recall - 0.872165 Accuracy - 0.91739

На этом наборе данных основная функция классификации: $mean\sum_{i\in i^+}|(g'\cap g_i^+)^-|$

. Пороговое значение - 1.8452

2) Mushroom Database

https://archive.ics.uci.edu/ml/machine-learning-databases/mushroom/agaricus-lepiota.data Number of Attributes: 22 (all nominally valued) - необходимо выполнить шкалирование.

Используем 5-fold cross validation.

Результаты: Precision - 0.8 Recall - 0.7511 Accuracy - 0.756

На этом наборе данных основная функция классификации: $max \sum_{i \in i^+} |g' \cap g_i^+|$

Пороговое значение - 20