Всероссийская олимпиада школьников по физике

11 класс, зональный этап, 1997/98 год

ЗАДАЧА 1. Цепь, показанная на рисунке, содержит два конденсатора, ёмкости которых равны C и 3C, катушку индуктивности L, идеальный диод D и ключ K. В начальный момент конденсатор ёмкости C заряжен до напряжения U_0 , конденсатор ёмкости 3C не заряжен, ключ K разомкнут, ток в катушке не течёт.

- 1) Через какое время после замыкания цепи ключом K напряжение на конденсаторе C окажется первый раз равным нулю?
- 2) Постройте графики зависимостей от времени напряжений на конденсаторах после замыкания ключа K с указанием координат характерных точек (экстремумы и нули функции). Сопротивлением катушки и соединительных проводов пренебречь.

 Γ $\tau = \frac{\pi}{2} \sqrt{LC}; \Sigma$ См. конец листка

Задача 2. Маленький шарик массой m с зарядом q>0 начинает двигаться из состояния покоя в гравитационном и однородном магнитном полях (рис.). Индукция магнитного поля равна B, вектор \vec{B} направлен параллельно поверхности Земли, причем $qcB\gg mg$, где c— скорость света в вакууме. На какое расстояние и в каком направлении шарик сместится от первоначального положения через достаточно большое время τ ? Какое

время τ можно считать достаточно большим? Шарик в течение всего времени τ не достигает поверхности Земли.

 $\frac{Bb}{m} \ll \tau$ иdп $\frac{Bb}{\tau \rho m} = J$

Задача 3. Прочный плоский обруч радиусом R=1 м раскрутили вокруг вертикальной оси, проходящей через его центр, до частоты обращения n=100 об/с и сообщили ему скорость $v_0=10$ см/с вдоль поверхности (рис.). Коэффициент трения скольжения между обручем и поверхностью равен $\mu=0,1$. За какое время t_1 обруч удалится на $s_1=10$ см от начального положения? Оцените, на какое максимальное расстояние s удалится обруч от начального положения. Обруч равномерно прилегает к поверхности.

 $M T \approx 1 C; S \approx 57 M$

Задача 4. В теплоизолированном цилиндре, расположенном вертикально, под невесомым не проводящим тепло свободно перемещающимся поршнем находится $\nu=1$ моль идеального одноатомного газа при температуре $T_1=300~{\rm K}$ (рис.). Сверху над поршнем находится ртуть, заполняющая цилиндр до открытого верхнего края. Объём газа в два раза больше объёма ртути, давление в газе вдвое превышает внешнее атмосферное давление. Система находится в состоянии равновесия. Какое минимальное количество теплоты нужно подвести к газу, чтобы вытеснить из сосуда всю ртуть?

жД $\Omega E \approx \Pi N u \frac{1}{8} = \min \Omega$

Задача 5. Некто предложил новый способ запуска ракет. Вместо того, чтобы запускать их вверх, он рекомендовал отпускать ракеты вниз по направляющим, образующим дугу большого радиуса R (рис.). В некоторый момент движения по направляющим следовало включать двигатель. Автор изобретения утверждал, что при таком запуске высота H_2 подъёма ракеты будет превышать высоту H_1 , достижимую при обычном запуске (вертикально вверх). Полагая H_1 и R заданными, найдите максимально возможное значение высоты H_2 . Считать, что двигатель ракеты работает короткий промежуток времени, а сопротивлением воздуха и трением между корпусом ракеты и направляющими можно пренебречь.

 $H_2 = H_1 + 2\sqrt{H_1R}$

Ответ к задаче 1

