Hypothesis Testing I

Sean Hellingman ©

Introduction to Statistical Data Analysis (ADSC1000) shellingman@tru.ca

Fall 2024

Topics

- Introduction
- Basic Concepts
- 4 Hypothesis Formulation
- Significance Level
- 6 Decision Rules
- p-values

- One-Sample Tests
- One-Sample Tests for Means
- One-Sample Tests for Proportions
- One-Sample Tests for Variance
- Type II Errors
- Exercises and References

Introduction

- We are continuing to make statistical inferences about the target population.
- Now we are going to draw conclusions about population parameters.
- Example: Made improvements to a pencil making machine. Are pencils actually being produced more quickly?
 - Need statistical methods to draw conclusions about the pace of pencil production.

Hypothesis Testing

- Hypothesis testing involves drawing inferences about two contrasting hypotheses (propositions).
 - Related to the value of a population parameter such as mean, proportion, or standard deviation.
- The **null hypothesis** describes an existing theory or a belief.
 - It takes my pencil making machine at least 4.6 minutes to make a pencil.
- The **alternative hypothesis** is based on new information provided by sample data.
 - My improvements mean that it takes less than 4.6 minutes to make a pencil.
- Analogous to: innocent until proven guilty.

Steps of Hypothesis Testing

- Formulate the hypothesis test.
- **2** Select a *level of significance* (α) .
 - Defines the risk of drawing an incorrect conclusion about the assumed hypothesis that is actually true.
- 3 Determining a decision rule on which to base a conclusion.
- Collecting data and calculating a test statistic.
- Applying the decision rule to the test statistic in order to draw a conclusion about your hypotheses.

Hypothesis Formulation

- Define two alternative, mutually exclusive propositions about one or more population parameters.
- H_0 (null hypothesis) represents an existing theory or belief that is accepted to be correct in the absence of contradictory data.
- H₁ (alternative hypothesis) is accepted to be true if we reject the null hypothesis.
- Pencil making machine:

 H_0 : time to build a pencil \geq 4.6 minutes

 H_1 : time to build a pencil < 4.6 minutes

One-Sample Hypothesis Formulations

One-Sample Tests:

 H_0 : Population parameter \geq constant value

 H_1 : Population parameter < constant value

 H_0 : Population parameter \leq constant value

 H_1 : Population parameter > constant value

 H_0 : Population parameter = constant value

 H_1 : Population parameter \neq constant value

Example 1

- Identify the null (H_0) and alternative (H_1) hypotheses for the following situations:
 - I believe that the modifications to my pencil making machine have actually made production faster than 4.6 minutes per pencil.
 - ② I believe that cars actually travel faster than the 50Km/h posted speed limit on McGill road.
 - An employment company stated that the average income in Kamloops per person is \$59 875 per year. I want to check and see if this number is correct.

Two-Sample Hypothesis Formulations

• Two-Sample Tests:

```
H_0: Population parameter (group 1) - Population parameter (group 2) \geq 0

H_1: Population parameter (group 1) - Population parameter (group 2) < 0

H_0: Population parameter (group 1) - Population parameter (group 2) \leq 0

H_1: Population parameter (group 1) - Population parameter (group 2) > 0

H_0: Population parameter (group 1) - Population parameter (group 2) = 0

H_1: Population parameter (group 1) - Population parameter (group 2) \neq 0
```

Example 2

- Identify the null (H_0) and alternative (H_1) hypotheses for the following situations:
 - I believe that my new pencil producing machine is faster than my old pencil producing machine.
 - ② I believe that cars travel faster on Columbia street than they do on McGill road.
 - I believe that the average income in Kamloops per person is not the same as the average income in Kelowna per person.

Test Outcomes

- Four possible outcomes of a hypothesis test:
 - The null hypothesis is true, and the hypothesis test correctly fails to reject it.
 - The null hypothesis is actually false, and the test correctly rejects the null hypothesis.
 - The null hypothesis is actually true, but the hypothesis test incorrectly rejects the null hypothesis (Type I error).
 - The null hypothesis is actually false, but the hypothesis test incorrectly fails to reject the null hypothesis (**Type II error**).

Type I Error

- The probability of a Type I error: $P(Rejecting H_0|H_0 \text{ is True}) = \alpha$
 - Called the level of significance of the test.
 - This is the risk you take in making the incorrect conclusion that the alternative hypothesis is true when in fact the null hypothesis is true.
- The confidence coefficient is 1α .
 - Probability of correctly failing to reject the null hypothesis.
- Commonly used levels for α : 0.10, 0.05, 0.01
- Confidence levels: 0.90, 0.95, 0.99

Type II Error

- ullet Probability of a Type II error: $P(\textit{Not Rejecting H}_0|H_0 \textit{ is False}) = eta$
- We cannot specify β in advance because it depends on an unknown population parameter.
- ullet Generally as lpha decreases, eta increases.
- 1β is called the **power of the test** which is the probability of correctly rejecting the null hypothesis when it is indeed false.
- The power of a test is sensitive to sample size and larger samples can increase the power of tests.

Decision Rules I

- The decision to reject or fail to reject a null hypothesis comes from test statistic calculated using the sample data.
- Is a function of the population parameter of interest and comparing it to a critical value from the hypothesized sampling distribution of the test statistic.
- Sampling distribution is usually the normal distribution, t-distribution, or some other well known distribution.
- The distribution is divided into two parts: the rejection region and the non-rejection region.
- If the null hypothesis is false, it is more likely that the test statistic will fall into the rejection region.
 - If the test statistic falls into the rejection region we reject the null hypothesis, otherwise we fail to reject the null hypothesis.

Decision Rules Graphics

Figure: Source: (1)

Decision Rules II

- The rejection region is defined by the *critical value(s)*.
- Two-tailed tests have two critical values while one-tailed tests only have one critical value.
- Critical values make it easy to determine if the test statistic falls within the rejection region or not.
- Examples:
 - For an upper one-tailed test, if the test statistic is greater than the critical value, the decision would be to reject the null hypothesis.
 - For a two-tailed test, if the test statistic is either greater than the upper critical value or less than the lower critical value, the decision would be to reject the null hypothesis.

p-values

- Another way to compare our test statistic to a critical value is by using a *p*-value.
- p-value: The probability of obtaining a test statistic value equal to or more extreme than that obtained from the sample data when the null hypothesis is true.
- You can think of a p-value as an observed significance level.
- In other words, a small *p*-value suggests that there is a low probability that the observed differences are due to chance.
- Whenever *p*-value $< \alpha$ reject the null hypothesis.

Example 3

- Do we *reject* or *fail to reject* the null hypothesis with a significance of α =0.05 given the following *p*-values:
 - p-value = 0.560
 - p-value = 0.042
 - p-value = 0.065
 - *p*-value = 0.002

One-Sample Tests

One-Sample Hypothesis Tests

Topics

- Hypothesis tests for means.
- 4 Hypothesis tests for proportions.
- 4 Hypothesis tests for variance.
- All involving only one sample.

Review

- Recall from confidence intervals for a mean value:
 - If the population standard deviation is known we can use the normal distribution.
 - In practice, the population standard deviation is not known and we use the *t*-distribution.
- The *t*-distribution *approaches* the normal distribution as the degrees of freedom (*n*) increases.

One-Sample *t*-Tests

Test statistic:

$$t = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}} \tag{1}$$

- Rejection regions:
 - Lower one-tailed test: $t < t_{-\alpha,n-1}$
 - Upper one-tailed test: $t > t_{\alpha,n-1}$
 - Two-tailed test: $|t|>|t_{lpha/2,n-1}|$

Rejection Regions in R

- $t_{-\alpha,n-1}$ (Lower one-tailed)
 - qt(p= α , df=n-1, lower.tail=TRUE)
- $t_{\alpha,n-1}$ (Upper one-tailed)
 - qt(p= α , df=n-1, lower.tail=FALSE)
- $t_{\alpha/2,n-1}$ (Two-tailed)
 - qt(p= α /2, df=n-1, lower.tail=FALSE)

Example 4

- Do we *reject* or *fail to reject* the null hypothesis with a significance of α =0.05 given the following results (use R):
 - H_0 : $\mu \ge 2$ VS H_1 : $\mu < 2$
 - Given: $\bar{x} = 1.93$, s = 1.3, and n = 43
 - H_0 : $\mu \le 1.5$ VS H_1 : $\mu > 1.5$
 - Given: $\bar{x} = 1.43$, s = 0.9, and n = 53
 - H_0 : $\mu = 2$ VS H_1 : $\neq 2$
 - Given: $\bar{x} = 1.93$, s = 1.3, and n = 43

p-values in R

- We may also use the t.test() function in R.
- This function takes at least one **vector** of values as the first argument.
- Produces the test statistic (t), confidence intervals, p-value, and sample mean.
- Usage:
 - Lower one-tailed: t.test(x, mu = μ_0 , alternative = "less", conf.level = 0.95)
 - Upper one-tailed: t.test(x, mu = μ_0 , alternative = "greater", conf.level = 0.95)
 - Two-tailed: t.test(x, mu = μ_0 , alternative = "two.sided", conf.level = 0.95)

Example 5

- Import the Cars93 dataset from the MASS R package into your environment and use the t.test() to test the following one-sample hypotheses ($\alpha = 0.05$):
 - The hypothesis that the mean mid-range price (*Price*) of the cars is less than 20 (\$20 000).
 - The hypothesis that the mean highway miles per gallon (MPG.highway) is greater than 29.
 - That the mean engine size in litres (EngineSize) is not 2.4 litres.
- Hint: Start by identifying H₀ and H₁

Review

- Recall from confidence intervals for a proportion value:
 - An unbiased estimator of a population proportion π is the statistic $\hat{p} = x/n$ (sample proportion).
 - We assume that a sample proportion follows a normal distribution.
- Therefore, we use the quantiles of the standard normal distribution for hypothesis testing of proportions.

One-Sample Tests for Proportions

Test statistic:

$$z = \frac{\hat{p} - \pi_0}{\sqrt{\pi_0 (1 - \pi_0)/n}} \tag{2}$$

- Rejection regions:
 - Lower one-tailed test: $z < z_{-\alpha}$
 - Upper one-tailed test: $z>z_{\alpha}$
 - Two-tailed test: $|z|>|z_{lpha/2}|$

Rejection Regions in R

- $z_{-\alpha}$ (Lower one-tailed)
 - qnorm(p= α , lower.tail=TRUE)
- z_{α} (Upper one-tailed)
 - qnorm(p= α , lower.tail=FALSE)
- $|z_{\alpha/2}|$ (Two-tailed)
 - qnorm(p= α /2, lower.tail=FALSE)

Example 6

- Do we *reject* or *fail to reject* the null hypothesis with a significance of α =0.05 given the following results (use R):
 - H_0 : $\pi > 0.65$ VS H_1 : $\pi < 0.65$
 - Given: $\hat{p} = 0.63$ and n = 43
 - H_0 : $\pi \le 0.5$ VS H_1 : $\pi > 0.5$
 - Given: $\hat{p} = 0.43$ and n = 53
 - H_0 : $\pi = 0.4$ VS H_1 : $\neq 0.4$
 - Given: $\hat{p} = 0.44$, and n = 43

p-values in R

- We may also use the prop.test() function in R.
- This function takes the number of *successes* x as the first argument.
- It takes the number of *trials* n as the second argument.
- Produces the test statistic, confidence intervals, p-value, and sample proportion.
- Usage:
 - Lower one-tailed: prop.test(x, n, p = π_0 , alternative = "less", conf.level = 0.95, correct = FALSE)
 - Upper one-tailed: prop.test(x, n, p = π_0 , alternative = "greater", conf.level = 0.95, correct = FALSE)
 - Two-tailed: prop.test(x, n, p = π_0 , alternative = "two.sided", conf.level = 0.95, correct = FALSE)

Example 7

- Import the *Cars93* dataset from the *MASS* R package into your environment and use the prop.test() to test the following one-sample hypotheses ($\alpha = 0.05$):
 - The hypothesis that the proportion of Small cars (from *Type*) is less than 0.25.
 - The hypothesis that the proportion of Sporty cars (from *Type*) is greater than 0.15.
 - That the proportion of cars on the road with 4 cylinders (Cylinders) is not 0.5.
- Hint: Start by identifying H₀ and H₁

Variance Review

- Understanding variability is very important in the implementation of statistical theory to decision-making process.
- We have point estimates for variability (standard deviation & variance).
- The sampling distribution of s is **not** normally distributed.
- Instead, the chi-square (χ^2) distribution is used.
- The chi-square (χ^2) distribution also relies on degrees of freedom (df) and it is **not** symmetric.

Chi-square Plots

One-Sample Tests for Variance

- This test is sensitive to any departures from the normal distribution.
- Test statistic:

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} \tag{3}$$

- Rejection regions:
 - Lower one-tailed test: $\chi^2 < \chi^2_{1-\alpha,n-1}$
 - Upper one-tailed test: $\chi^2 > \chi^2_{\alpha,n-1}$
 - Two-tailed test: $\chi^2 < \chi^2_{1-\alpha/2,n-1}$ OR $\chi^2 > \chi^2_{\alpha/2,n-1}$

Rejection Regions in R

- $\chi^2_{1-\alpha,n-1}$ (Lower one-tailed) • qchisq(p= α , df = n-1, lower.tail = TRUE)
- $\chi^2_{\alpha,n-1}$ (Upper one-tailed)
 - qchisq(p= α , df = n-1, lower.tail = FALSE)
- $\chi^2 < \chi^2_{1-lpha/2,n-1}$ OR $\chi^2 > \chi^2_{lpha/2,n-1}$ (Two-tailed)
 - qchisq(p= $\alpha/2$, df = n-1, lower.tail = TRUE) **AND**
 - qchisq(p= $\alpha/2$, df = n-1, lower.tail = FALSE)

p-values in R

- We may also use the varTest() function in the *EnvStats* R package.
- ullet This function takes a numeric vector ${\bf x}$ as the first argument.
- Produces the test statistic, confidence intervals, p-value, and sample variance.
- Usage:
 - Lower one-tailed: varTest(x, alternative = "less", sigma.squared = σ_0^2 , conf.level = 0.95)
 - Upper one-tailed: varTest(x, alternative = "greater", sigma.squared = σ_0^2 , conf.level = 0.95)
 - Two-tailed: varTest(x, alternative = "two.sided", sigma.squared = σ_0^2 , conf.level = 0.95)

Example 8

- Import the *swiss* dataset from base R into your environment and use the varTest() from the *EnvStats* R package to test the following one-sample hypotheses ($\alpha = 0.05$):
 - The hypothesis that the variance of the draftees receiving highest mark on army examination (*Examination*) is less than 66.
 - The hypothesis that the variance of the fertility (Fertility) is greater than 145.
 - That the variance of (Examination) is not 70.
- Hint: Start by identifying H₀ and H₁

Power of a Test

- 1β is called the **power of the test** which is the probability of correctly rejecting the null hypothesis when it is indeed false.
- The power of a test depends on the true value of the population mean, the level of confidence used, and the sample size.
- Assuming that H_1 is true, there will be some overlap in the sampling distributions of μ_0 and μ_1 .
- This means that the test statistic may fall into the *acceptance* region even when H_1 is true.

Power of a Test Graphics I

Figure: Source: (1)

Power of a Test Graphics II

Figure: Source: (1)

Exercise 1

- Import the *Cars93* dataset from the *MASS* R package into your environment and test the following one-sample hypotheses ($\alpha = 0.01$):
 - That the mean passenger capacity (Passengers) is not 4.
 - The hypothesis that the mean engine revolutions per mile (*Rev.per.mile*) is greater than 2100.
 - The hypothesis that the mean horsepower (*Horsepower*) of the cars is less than 155.
- Hint: Start by identifying H₀ and H₁

Exercise 2

- Import the *swiss* dataset into your environment and test the following one-sample hypotheses ($\alpha = 0.05$):
 - The hypothesis that the proportion of Large cars (from *Type*) is less than 0.20.
 - The hypothesis that the proportion of non-USA or USA company origins (*Origin*) is not the same.
 - That the proportion of cars on the road with 6 cylinders (*Cylinders*) is greater than 0.25.
- Hint: Start by identifying H₀ and H₁

Exercise 3

- Import the *Cars93* dataset from the *MASS* R package into your environment and test the following one-sample hypotheses ($\alpha=0.10$):
 - The hypothesis that the variance of the draftees receiving highest mark on army examination (*Examination*) is greater than than 60.
 - The hypothesis that the variance of the fertility (Fertility) is not 145.
 - That the variance of (Examination) is less than 70.
- Hint: Start by identifying H₀ and H₁

References & Resources

- Evans, J. R., Olson, D. L., & Olson, D. L. (2007). Statistics, data analysis, and decision modeling. Upper Saddle River, NJ: Pearson/Prentice Hall.
- ② Devore, J. L., Berk, K. N., & Carlton, M. A. (2012). Modern mathematical statistics with applications (Second Edition). New York: Springer.
- One-Sample Chi-Squared Test on Variance
- Student's t-Test
- Test of Equal or Given Proportions