CÁLCULO INTEGRAL EN VARIAS VARIABLES

Guía de Trabajo curso 2016

1. Integrales Dobles y Triples

1. Sea
$$I_{yx} = \int_{-1}^{1} \int_{-2|x|}^{|x|} e^{x+y} dy dx$$

- a) Exprese I_{yx} como integral doble.
- b) Calcule I_{yx} .
- 2. Exprese la suma de integrales iteradas:

$$\int_{1}^{2} \int_{1}^{y} \frac{\ln x}{x} dx dy + \int_{2}^{4} \int_{y/2}^{2} \frac{\ln x}{x} dx dy$$

como una sola integral iterada del tipo I_{yx} y calcular.

3. Sea
$$I_{yx} = \int_{2}^{\sqrt{2}/2} \int_{x}^{\sqrt{1-x^2}} xy dy dx$$

- a) Exprese I_{yx} como integral doble I y grafique la región de integración.
- b) Invierta el orden de integración.
- c) Calcule I en coordenadas rectangulares.
- d) Calcule I en coordenadas polares.
- 4. Calcule la integral iterada: $\int_0^1 \int_{\sqrt[3]{y}}^1 \sqrt{1+x^4} dx dy$ (Invierta el orden de integración si es necesario).
- 5. Calcule $\iint_D e^{\frac{y-x}{y+x}} dx dy$, donde D es el triángulo determiando por la recta x+y=2 y los ejes coordenados.

6. Sea
$$I_{xy} = \int_0^4 \int_{y/4}^{\sqrt{y}} (x+y) \, dx dy$$
.

- a) Invierta el orden de integración.
- b) Exprese I_{xy} como una integral tiple I. Grafique el dominio de integración de I.
- c) Calcule I y dé dos interpretaciones al resultado.

7. Sea
$$I_{xy} = \int_{-2}^{0} \int_{-\sqrt{2y+4}}^{0} \left(-\frac{y}{2}\right) dxdy$$

- a) Invierta el orden de integración.
- *b*) Exprese I_{yx} como una integral triple I. Grafique el dominio de integración.
- c) Exprese I en coordenadas cilíndricas.
- d) ¿Qué representa el valor de I?

8. Calcular
$$I = \int_{-a}^{a} \int_{-\sqrt{a^2 + x^2}}^{\sqrt{a^2 - x^2}} (x + y) \, dy dx$$

- 9. Sea D la región del 3^{er} octante del espacio, dentro de: $x^2 + y^2 = 4$ y fuera de $25(x^2 + y^2) = z^2$.
 - a) Exprese D en coordenadas cilíndricas.
 - b) Exprese D en coordenadas esféricas.
 - c) Calcule: $\iiint_{D} \frac{dxdydz}{\sqrt{x^2 + y^2}}$

- 10. Sea R la región acotada del espacio, dentro de la superficie: $16x^2 + 16y^2 z^2 = 0$ y bajo la superficie $x^2 + y^2 z + 3 = 0$.
 - a) Grafique R.
 - b) Exprese R en coordenadas cilíndricas.
 - c) Exprese R en coordenadas esféricas.
- 11. Sea $I = \iiint_S z dx dy dz$, en donde S es la región dentro del cilindro $x^2 4x + y^2 = 0$, sobre el plano xy y bajo el cono $3x^2 + 3y^2 z^2 = 0$.
 - a) Exprese I como integral iterada en coordenadas cilíndricas y esféricas.
 - b) Indique dos interpretaciones físicas para el valor de I.
- 12. Sea W la región en el primer octante de \mathbb{R}^3 acotada por los planos $x=0,\,z=0,\,x+y=2,\,x+2y=6$ y el cilindro $x^2+y^2=4$.
 - a) Grafique W.
 - b) Exprese $\iiint\limits_W f\left(x,y,z\right) dx dy dz$ como integral iterada, de dos formas diferentes.
- 13. Sea $I=\iiint_S x^2ydxdydz$, y S la región de \mathbb{R}^3 acotada inferiormente por $z^2=16\left(x^2+y^2\right)$ y superiormente por $z-3=x^2+y^2$. Exprese I como integral iterada en coordenadas cilíndricas.
- 14. Sea $I=\iiint_D \left(x^2+y^2\right) dx dy dz$, D la región de \mathbb{R}^3 acotada por las superficies $8x^2+8y^2-z^2=0$, $x^2+y^2+z-6=0$.
 - a) Grafique D.
 - b) Exprese I como integral iterada en coordenadas rectangulares, cilíndricas y esféricas.
 - c) Dar dos interpretaciones físicas del valor de *I*.
- 15. Sea D la región del plano, sobre el eje x, acotada por las curvas $x^2 + y^2 3x = 0$, $x^2 + y^2 3x = 3\sqrt{x^2 + y^2}$
 - a) Exprese las curvas en coordenadas polares y grafique D en el plano xy.
 - b) Calcule el área de D.
- 16. Considere la integral iterada

$$\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{0} \int_{0}^{-y} f(x, y, z) \, dz \, dy \, dx$$

- a) Exprésela como integral triple y grafique la región de integración.
- b) Transfórmela en otra integral iterada cambiando el orden de integración.

- 17. Calcule $\iint_R (x+y)^2 e^{x-y} dx dy$ donde R es la región acotada por $x+y=1, \, x+y=4, \, x-y=-1, \, x-y=1.$
- 18. Considere la región de \mathbb{R}^3

$$D = \left\{ 0 \le x \le 2, \ 0 \le y \le \sqrt{2x - x^2}, \ 0 \le z \le 2 \right\}$$

- a) Determine D^* , la región que es preimagen de D por la transformación a coordenadas cilíndricas.
- b) Calcule $\iiint_D z\sqrt{x^2+y^2}dxdydz$.
- ${\it c}$) Indique dos interpretaciones físicas que se puede dar al resultado de ${\it b}$).

19. Considere la integral iterada

$$I = \int_0^2 \int_0^{\sqrt{2x - x^2}} \int_0^a z \sqrt{x^2 + y^2} dz dy dx, \ a > 0$$

- a) Exprese I como integral triple.
- b) Dado que I se puede expresar como integral iterada de otras 5 formas intercambiando el orden de integración, exprese I como alguna de estas otras integrales iteradas.
- c) Calcule I, usando coordenadas cilíndricas.
- d) Interprete fisicamente el resultado de I.
- 20. Halle la masa del sólido acotado por el cilindro $x^2 + y^2 = 2x$ y el cono $z^2 = x^2 + y^2$, si la densidad en cada punto es igual a la distancia al origen.

2. Integrales de Línea

- 1. Sea C la curva determinada por la intersección de las superficies : $x^2+y+z^2-1=0 \ 2x-y=0$ }; parametrice y grafique C.
- - a) Grafique C
 - b) Parametrice C, indicando punto inicial y punto final.
- 3. Sea $\overrightarrow{F}(x,y,z)=(y-z,z-x,x-y)$ función vectorial y C la curva en \mathbb{R}^3 definida por $x^2+y^2=1$ recorrida en sentido antihorario al mirar desde el origen. Calcule $\int_C \overrightarrow{F} \cdot \overrightarrow{dr}$
- 4. Calcule $\int_C |x| \, ds$ si C es la curva: $x^2 + y^2 4y + 3 = 0$
- 5. Calcule $\int_C xydx + xdy$, donde C es el arco de la parábola $y = x^2$, desde el punto (2,4) al punto (1,1).
- - a) Parametrice y grafique C.
 - b) Sea $f(x, y, z) = \sqrt{2y^2 + z^2}$, calcule $\oint_C f ds$
 - c) Dé una interpretación física al valor obtenido en b.
- 7. Sea $\overrightarrow{F}(x,y) = (\sin(y), x\cos(y) + 3)$
 - a) Pruebe que \overrightarrow{F} es campo gradiente.
 - b) Halle potencial de \overrightarrow{F}
 - c) Calcule, usando a) y b), el valor de $I=\int_C\overrightarrow{F}\cdot\overrightarrow{dr}$ donde C es la curva $\begin{cases} x=t^3-2t\\y=5t+3 \end{cases} \}\,t\in[0,1]$

- 8. Sea $I = \int_C (e^x \cos y e^y \sin x) \, dx + (e^y \cos x e^x \sin y) \, dy$ donde C es la parte de la curva $x^{2/3} + y^{2/3} = 1$ contenida en el primer cuadrante, orientada en sentido antihorario. Muestre que I es independiente de la trayectoria y calcule I.
- 9. Sea $I=\int_C (2x-3y)\,dx+(3x-2y)dy$, donde C es la parte de la elipse $\frac{x^2}{4}+\frac{y^2}{9}=1$, que está en el primer cuadrante, que va desde (2,0) a (0,3).
 - a) Calcule *I*, directamente.
 - b) Pruebe que *I* es independiente de la trayectoria.
 - c) Calcule I, usando b.
- 10. Sea C la parte de la curva $\begin{cases} 9x^2 + 4y^2 36 &= 0 \\ \sqrt{5}x 2z &= 0 \end{cases}$ contenida en el primer octante orientada de modo que la abscisa crece.
 - a) Parametrice y grafique C.
 - b) Sea $\overrightarrow{F}(x,y,z)=(x+2y+az,2bx-z,cy-z^2)$. Determine valores de a, b, c de modo que \overrightarrow{F} sea campo gradiente.
 - c) Calcule el trabajo necesario para que \overrightarrow{F} traslade una partícula a lo largo de C, haciendo uso de la parte b).
- 11. Sean $\overrightarrow{F}(x,y,z)=\left(\frac{2x}{y-3},\frac{-x^2}{(y-3)^2},z\right)$ y C el menor arco de la curva: $x^2+y^2+z^2=1\\ x+y+z=1 \right\}, \text{ que va desde el punto } A(1,0,0) \text{ al punto } B(0,1,0).$
 - a) Pruebe que \overrightarrow{F} es campo gradiente en algún conjunto de \mathbb{R}^3 (Indique cual).
 - b) Halle potencial de \overrightarrow{F} .
 - c) ¿Es $I = \int_C \overrightarrow{F} \cdot \overrightarrow{dr}$ independiente de la trayectoria?

- d) Calcule el trabajo realizado por el campo \overrightarrow{F} al trasladar una partícula desde A a B a lo largo de C.
- 12. Considere el campo en \mathbb{R}^3 , $\overrightarrow{F}(\overrightarrow{r})=\frac{\overrightarrow{r}}{|\overrightarrow{r}|^3}$ Campo de tipo gravitacional.
 - a) Muestre que \overrightarrow{F} es campo gradiente.
 - b) ¿Qué se puede concluir, a partir de a), respecto al valor de una integral $\int_{C_1} \overrightarrow{F} \cdot \overrightarrow{dr}$, donde C_1 es una curva seccionalmente suave que une los puntos P_1 y P_2 ?, ¿ Y para una integral $\int_{C_2} \overrightarrow{F} \cdot \overrightarrow{dr}$, donde C_2 es una curva cerrada seccionalmente suave?
 - c) Calcule $\int_{C_1} \overrightarrow{F} \cdot \overrightarrow{dr}$, donde C_1 es la curva $x = t^2 + 1$ $y = 2t^3 3$ $t \in [0, 1]$ z = t + 5
 - d) Calcule $\oint \overrightarrow{F} \bullet \overrightarrow{dr}$, donde C_2 es la curva $x^{2/3}+y^{2/3}=1$ z=1
- 13. Evalúe $\int_C 2xyzdx + x^2zdy + x^2ydz$, donde C es una curva orientada simple que conecta (1,1,1) con (1,2,4).
- 14. Sea C el triángulo en \mathbb{R}^3 de vértices (1,0,0), (0,2,0), (0,2,3) (orientada en ese orden) y $\overrightarrow{F}(x,y,z)=(xy,yz,zx)$.
 - a) Parametrice y grafique C.
 - b) Calcule el trabajo realizado por la fuerza \overrightarrow{F} al trasladar una partícula a lo largo de C.
- 15. Sea C la curva $x^2+y^2+z^2=a^2 \ x-z=0$. Si un alambre tiene la forma de la curva C, y su densidad en el punto (x,y,z) está dada por $\delta(x,y,z)=\sqrt{2x^2+y^2}$. Determine la masa del alambre.
- 16. Sea C una curva suave definida por $\overrightarrow{r}:[a,b]\to\mathbb{R}^3$, $\overrightarrow{r}=\overrightarrow{r}(t)$. Calcule la longitud del arco de la hélice $x=a\cos t,\,y=a\sin t,\,z=abt,$ desde el punto (a,0,0) hasta el punto $(-a,0,ab\pi)$.
- 17. Sea C la curva definida por $\overrightarrow{r}:[0,4\pi]\to\mathbb{R}^3$, $\overrightarrow{r}(t)=(\cos t,t,\sin t)$. Un alambre tiene la forma de la curva C y en cada punto (x,y,z) su densidad es $\delta(x,y,z)=1+y$. Calcule la masa del alambre.
- - a) Parametrice y grafique C.
 - b) Si un alambre tiene la forma de la curva C y la densidad en cada punto es proporcional a su distancia al origen, calcule el momento de inercia del alambre respecto al eje x.
- 19. La base de una cerca es la curva $y=\frac{x^2}{2}$, para $-\sqrt{3} \le x \le \sqrt{3}$. La altura de la cerca sobre el punto

- (x,y) es $\frac{1}{x^2+1}$ (las distancias se expresan en metros).
- a) Grafique la cerca.
- b) Calcule el área de la cerca.
- - a) Parametrice y grafique la curva C.
 - b) Considere un alambre con la forma de la curva C, y tal que la densidad en cada punto es igual a su distancia al origen. Calcule el momento de inercia del alambre respecto al eje x.
 - c) Si C' es la parte de C contenida en el primer octante (orientada partiendo desde el plano XY) y $\overrightarrow{F}(x,y,z)=(e^x\cos y,-e^x\sin y,2)$, muestre que $\int_{C'}\overrightarrow{F}\cdot\overrightarrow{dr}$ es independiente de la trayectoria y calcule usando este hecho.
- 21. Sobre una partícula en el punto (x,y,z) actúa la fuerza: $\overrightarrow{F}(x,y,z)=(y,-x,0)$
 - a) Halle el trabajo efectuado al mover una partícula desde el punto (1,0,0) hasta (-1,0,0) a lo largo de la mitad superior de la circunferencia unitaria de centro el origen en el plano xy.
 - b) Hallar el trabajo al mover una partícula desde (1,0,0) hasta (-1,0,0) a lo largo del eje x.
 - c) Los resultados a) y b) son diferentes. ¿Cómo podría haberse supuesto esto, sin calcular las integrales?
- 22. Sea C la curva definida por: \overrightarrow{r} : $[0,6\pi] \rightarrow \mathbb{R}^3$, $\overrightarrow{r}(t) = (\cos t, \sin t, t)$
 - a) Un alambre A tiene la forma de la curva C y en cada punto (x,y,z) la densidad está dada por $\delta(x,y,z)=1+z.$ Calcule la masa de A.
 - b) Sean $\overrightarrow{F}(x,y,z)=(e^x\cos y,-e^x\sin y,2)$ e $I=\int_C\overrightarrow{F}\cdot\overrightarrow{dr}$
 - i) Pruebe que *I* es independiente de la trayectoria.
 - ii) Calcule el potencial de \overrightarrow{F}
 - iii) Calcule *I*, usando i) e ii.
 - iv) ¿Qué interpretación física tiene el resultado de iii?

Respuestas Integrales de línea

[3] 4π , [4] 4, [5] $\frac{-101}{12}$, [6] 8π , [7b] $x \sin y + 3y$, [7c] $15 - \sin 8$, [8b] 0, [9a] -13, [10b] a = 0, b = 1, c = -1, [10c] $(6 - 5\sqrt{5})/3$, [11b] $\frac{x^2}{y^{-3}} + \frac{z^2}{2}$, [11c] Si, [11d] $\frac{1}{3}$, [12c] $\frac{1}{\sqrt{35}} - \frac{1}{\sqrt{41}}$, [12d] 0, [13] 7, [14b] $-\frac{11}{2}$, [15] $2\pi a^2$, [16] $a\sqrt{1+b^2}\pi$, [17] $\sqrt{2}(4\pi+8\pi^2)$, [18] $\frac{3ka^4\pi^2}{2}$, [19b] $2\ln(2+\sqrt{3})m^2$, [20b] $24\pi^2$, [21c] $5-e^{\sqrt{2}}\cos\sqrt{2}$, [22a] $-\pi$, [22b] 0

3. Integrales de Superficie

- 1. Sea S una superficie definida por \overrightarrow{r} : $[0,9] \times \left[\pi,\frac{3\pi}{2}\right] \to \mathbb{R}^3$, $\overrightarrow{r}(u,v) = \left(u\cos v,u\sin v,u^2\right)$
 - a) Exprese S en forma implícita.
 - b) Grafique S.
- 2. Sea S la superficie definida por $\overrightarrow{r}:[0,2]\times[0,\pi]\to\mathbb{R}^3$, $\overrightarrow{r}(u,v)=(u\cos v,u,u\sin v)$
 - a) Determine si $(1, 2, 1) \in S$.
 - b) Exprese S en forma implícita y grafiquela.
- 3. Calcule $\iint_S \sqrt{x^2+z^2} dS$, donde S es la superficie lateral del cilindro: $x^2+z^2=16$, $-1\leq y\leq 2$
- 4. Sea S la superficie $z=x^2+y^2$, $1\leq z\leq 4$
 - a) Parametrice y grafique S.
 - b) Calcule $\iint\limits_{S} \frac{z}{\sqrt{4x^2+4y^2+1}} d\sigma$

$$x = \frac{2v\cos u}{3}$$
 5. Sea S la superficie definida por $y = \frac{2v\sin u}{3}$ $\left\{ (u,v) \in \mathbb{R} \right\}$

$$[0,2\pi] \times [0,3]$$
. Calcule $\iint_S x dy dz + y dz dx - z dx dy$

6. Sea la región $R=\left\{(x,y,z)\ /\ x^2+y^2+z^2\leq a^2,z\geq 0\right\}$ y S la superficie frontera de R.

- a) Calcule $\iint_S (z^2 + 2) dxdy$
- b)¿Qué Interpretación física tiene el resultado obtenido en a)?
- 7. Sea S la parte de la superficie $x^2+y^2+z^2=5$ cortada por el plano y=1
 - a) Calcule $\iint_S z dx dy$
 - b) Interprete físicamente el resultado obtenido en a).
- 8. La esfera $x^2+y^2+z^2=25$ se corta por el plano z=3. Sea S la parte menor resultante. Calcule $\iint\limits_S xzdydz+yzdzdx+dxdy$
- 9. Sea S la parte del cono $x^2+y^2-z^2+4z-4=0$ que está dentro del cilindro $x^2+y^2-2y=0$ con $0\leq z\leq 2$. Calcule el área de S.
- 10. Calcule el área de la parte del cono $x^2+y^2=(z-1)^2$, contenida en el primer octante y bajo z=1, usando integral de superficie.

Respuestas Capítulo 4

[3]
$$96\pi$$
, [4] $\frac{15\pi}{2}$, [5] 16π , [6] $\frac{-a^4\pi}{2}$, [7a] 8π . [8] 144π , [9] $\sqrt{2}\pi$, [10] $\frac{\sqrt{2}}{4}\pi$.