Apellidos	PARRA TEJIDO
Nombre	PABLO

Preguntas sobre grupos:

1. (4 puntos) Sea $\mathbb{F}_3 = \mathbb{Z}/(3)$ el cuerpo con 3 elementos y $\mathrm{GL}(2,\mathbb{F}_3)$ el grupo de matrices invertibles 2×2 con entradas en \mathbb{F}_3 .

- (a) $(\frac{1}{2})$ punto) En el conjunto de vectores no nulos $X = (\mathbb{F}_3 \times \mathbb{F}_3) \setminus \{(0,0)\}$ definimos una relación \sim de la siguiente manera: $\vec{v} \sim \vec{w}$ si y solo si $\vec{v} = \pm \vec{w}$. Prueba que \sim es una relación de equivalencia y da la lista de todos los elementos del conjunto cociente, que denotaremos $\mathbb{P}^2(\mathbb{F}_3) = X/\sim$, comprobando que hay exactamente cuatro.
 - (b) ($\frac{1}{2}$ punto) Dada $A \in GL(2, \mathbb{F}_3)$, demuestra que la aplicación

$$\varphi_A : \mathbb{P}^2(\mathbb{F}_3) \longrightarrow \mathbb{P}^2(\mathbb{F}_3)$$

$$[\vec{v}] \longmapsto [A\vec{v}]$$

está bien definida.

- (c) ($\frac{1}{2}$ punto) Enumera los elementos de $\mathbb{P}^2(\mathbb{F}_3)$ cuya lista has dado en el primer apartado, y que denotaremos $\mathbb{P}^2(\mathbb{F}_3) = \{[\vec{v}_1], [\vec{v}_2], [\vec{v}_3], [\vec{v}_4]\}$. Prueba que, para todo $A \in GL(2, \mathbb{F}_3)$, la aplicación φ_A es biyectiva y deduce que existe una única permutación $\sigma_A \in S_4$ tal que $\varphi_A([\vec{v}_i]) = [\vec{v}_{\sigma_A(i)}]$ para todo i.
- (d) (½ punto) Demuestra que la aplicación

$$f: \mathrm{GL}(2,\mathbb{F}_3) \longrightarrow S_4$$

 $A \longmapsto \sigma_A$

es un homomorfismo de grupos.

- (e) (1 punto) Prueba que para cada trasposición $(ij) \in S_4$ existe $A \in GL(2, \mathbb{F}_3)$ tal que $\sigma_A = (ij)$ y deduce de aquí que f es sobreyectiva.
- (f) (1 punto) Establece un isomorfismo entre S_4 y un cociente de $\mathrm{GL}(2,\mathbb{F}_3)$, describiendo explícitamente el subgrupo por el que se toma cociente, y úsalo para calcular el número de elementos de $GL(2,\mathbb{F}_3)$.

Elercicio 1

- a) $\overline{V} \sim \overline{V} = \pm \overline{W}$ Relleriva: $\overline{V} \sim \overline{V} \Rightarrow \text{ es evidente}: \overline{V} = + \overline{V}$
 - · Simétrics: $\overline{V} \sim \overline{W} \Rightarrow \overline{W} \sim \overline{V} \Rightarrow$ se tiene que si $\overline{V} = \pm \overline{W} \Rightarrow$ $\overline{W} = \pm \overline{V}$, o some ambos del mismo signo o opvesto.
 - · Transitiva: $\bar{V} \sim \bar{w} \Rightarrow \bar{y} = \bar{v} \sim \bar{v}$ es de cir, $\bar{V} = \pm \bar{w}$ y $\bar{w} = \pm \bar{v}$, o sea que \bar{V} -bien tiene unique signe \bar{v} opvesto a \bar{v} : $\bar{V} = \pm \bar{v}$.
 - · Elementos: x; x+1; x+2 => IF3 x F3 x Ex7, x2+x, x2+2x+1; x2+x+13.
- 5) Está bien definida es una aperación cervada bajo 6 un liplicación, toda que da en P(F5), y [v] +> [tv]

