大学物理

University Physics

华中科技大学物理学院

王宁

ningwang@hust.edu.cn

回顾 第五节 机械波

一、机械波的传播条件:

- 1). 波源 ---产生振动的物体;
- 2). 弹性媒质 ---传播振动的介质。

振动是波动的基础 波动是振动的传播

二、波动的描述:

一维简谐波的动力学方程

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{u^2} \frac{\partial^2 y}{\partial t^2}$$
 其中: $u^2 = \frac{Y}{\rho}$

① 波速**证**: 取决于介质的性质(弹性和惯性)

② 波长 λ

③ 周期 $T: T_{振动} = T_{波动}$

④ 频率

⑤ 波数k: $k = \frac{2\pi}{\lambda}$

二波动的描述

振动曲线: 某一个质点在不同时刻的位移状况的曲线

波形曲线:某个时刻各个质点位移状况的曲线

问题:如何用数学方法去描述波的传播?

平面简谐波

媒质中各质点都作谐振动并且向一个方向传播。

1. 波函数的概念

描述任意时刻,任意点的振动状态的函数,被称为波函数。

设一简谐波波源在原点0处,以速度u沿x轴方向传播。

波源的振动方程: $y = A \cos \omega t$

x轴上任意一点P: 重复O点运动,但落后于O点。

而O点的振动需要经过一定时间 Δt 才能传播到P点: $\Delta t = \frac{\lambda}{t}$

P点在t时刻的振动状态

O点在 $t-\frac{x}{y}$ 时刻的振动状态

: P点在t时刻的振动状态

$$y = A \cos \omega \left(t - \frac{x}{u} \right)$$
 ——平面简谐波波函数

波函数反映的是任何时刻任何位置的运动状态。

波传播的是波源处质点的振动状态。 ----传播波源的相位

波速 = 相位传播的速度 = 相速

P点的相位总是落后于O点的相位。

2. 波函数的意义

y是x和t的多元函数。

(1).
$$x$$
一定时: $x = x_1$

$$y = A\cos\omega\left(t - \frac{x_1}{u}\right)$$

表示 x_1 处质点的振动方程。

$$y = A\cos\omega\left(t - \frac{x}{u}\right)$$

- $\frac{\omega x_1}{u}$ x_1 点的初相位,表示着该点的振动相位相对于振u 动源的相位的落后。
- (2). t一定时: $t = t_1$ $y = A \cos \omega \left(t_1 \frac{x}{u} \right)$

表示 t_1 时刻的波形方程。

$$y_1 = A\cos\omega\left(t_1 - \frac{x_1}{u}\right)$$

$$y = A\cos\omega\left(t - \frac{x}{u}\right)$$

表示 t_1 时刻 x_1 处质点的位移。

当
$$t = t_1 + \Delta t = t_2$$
时,

考察 $x_2 = x_1 + u\Delta t$ 处质点:

$$y_2 = A\cos\omega\left(t_2 - \frac{x_2}{u}\right)$$

$$= A\cos\omega\left(t_1 + \Delta t - \frac{x_1 + u\Delta t}{u}\right) = A\cos\omega\left(t_1 - \frac{x_1}{u}\right) = y_1$$

 t_2 时刻 x_2 处质点的位移恰好就是 t_1 时刻 x_1 处质点的位移。

经过 Δt 时间,整个波形向前移动了一段距离 $\Delta x = u \Delta t$

在介质中传播的行波 波形传播的速度 = 相速

3. 讨论

(1). 平面简谐波的一般形式

通常情况下, t=0时, 波源的初始相位 $\varphi\neq 0$

波源的振动方程:
$$y = A\cos(\omega t + \varphi)$$

计入
$$P$$
点落后的相位: $\omega \Delta t = \omega \frac{x}{u}$

$$y = A \cos \left[\omega \left(t - \frac{x}{u}\right) + \varphi\right]$$
 ——波函数的一般形式

(2). 波函数的几种标准形式

$$\omega = \frac{2\pi}{T} = 2\pi\nu \qquad \lambda = uT = \frac{u}{\nu} \qquad k = \frac{2\pi}{\lambda} = \frac{2\pi}{uT} = \frac{\omega}{u}$$

$$y = A\cos\left[2\pi\left(\frac{t}{T} - \frac{x}{\lambda}\right) + \varphi\right] \qquad y = A\cos\left[(\omega t - kx) + \varphi\right]$$

$$y = A\cos[(\omega t - kx) + \varphi]$$

(3) 位相差与波程差的关系

$$\Delta \varphi = \varphi_1 - \varphi_2 = \left(\omega t - \frac{2\pi x_1}{\lambda} + \varphi\right) - \left(\omega t - \frac{2\pi x_2}{\lambda} + \varphi\right)$$
$$= \frac{2\pi}{\lambda} (x_2 - x_1) = \frac{2\pi}{\lambda} \Delta x = k\Delta x$$

$$\Delta \varphi = \frac{2\pi}{\lambda} \Delta x = k \Delta x$$

(4) 质点振动方向的确定

若已知某时刻的波形 曲线,确定该时刻各 质点的运动方向。

方法:

借助下一邻近时刻的 波形曲线

沿波的传播方向平移 波形。

左行波

例题

例1: 已知 $y = 0.05\cos(100\pi t - 5x)(m)(SIH)$, 计算A, T, u, λ ?

解: $y = A\cos[(\omega t - kx) + \varphi]$

比较可得 A = 0.05 m

$$\omega = \frac{2\pi}{T} = 100\pi \quad \longrightarrow \quad T = \frac{1}{50} = 0.02 \, s$$

$$k = \frac{2\pi}{\lambda} = 5 \qquad \longrightarrow \qquad \lambda = \frac{2\pi}{5} = 1.26 \ m$$

$$u = \frac{\lambda}{T} = 63 \ m/s$$

(5). 沿x轴反向传播的平面简谐波的波函数

已知波源的振动方程:

$$y = A \cos \omega t$$

P点在t时刻的振动状态

$$O$$
点在 $t - \frac{-x}{u} = t + \frac{x}{u}$ 时刻的振动状态

$$\mathbf{A}x$$
轴反向传播的波函数: $y = A \cos \omega \left(t + \frac{x}{u} \right)$

$$y = A \cos \omega \left(t \mp \frac{x}{u} \right)$$
 { "-" 沿正方向 "+" 沿负方向

(6) 由任意参考点的振动方程写波函数:

任意参考点均可作为准波源。

从振动时间角度看:

任意点比参考点晚振动,减去传播时间;任意点比参考点早振动,加上传播时间。

$$y_a = A\cos(\omega t + \varphi)$$
$$y = A\cos[\omega(t - \frac{x - x_a}{u}) + \varphi]$$

$\begin{array}{c|c} & u \\ & x_a \\ \hline & a \\ \hline & x \\ & x \\ \hline & x \\ &$

从振动位相角度看:

任意点比参考点晚振动,位相落后。

$$y = A\cos[\omega t - \frac{2\pi(x - x_a)}{\lambda} + \varphi]$$

$$\Delta \varphi = \frac{2\pi}{\lambda} \Delta x$$

例题

例1:已知波沿x轴正方向传播,波速为u, $x = x_a$ 处质点的振动方程为: $y_a = A\cos(\omega t + \varphi)$, 试写出波函数。

解: 考察a点右边的任意一点P, P点振动状态相对于a点的振动 状态落后:

$$\begin{array}{c|c}
 & \overrightarrow{u} \\
\hline
 & x_a \longrightarrow a \\
\hline
 & P & x
\end{array}$$

$$\Delta t = \frac{x - x_a}{u}$$

据此写出波函数:
$$y = A \cos \left[\omega \left(t - \frac{x - x_a}{u} \right) + \varphi \right]$$

同理,若P点在a点的左边,P点的振动相对于a点提前

$$\Delta t = \frac{x_a - x}{u} \qquad y = A \cos \left[\omega \left(t + \frac{x_a - x}{u} \right) + \varphi \right]$$
$$= A \cos \left[\omega \left(t - \frac{x - x_a}{u} \right) + \varphi \right]$$

例2:已知t=0时刻的波形如图,(1)写出波函数。

解: 根据波形曲线:

$$A = 0.01 m \quad \lambda = 0.12 m$$
$$u = 0.1 m/s$$

$$T = \frac{\lambda}{u} = 1.2 s$$

$$\omega = \frac{2\pi}{T} = \frac{5\pi}{3} \ rad/s \quad k = \frac{2\pi}{\lambda} = \frac{50\pi}{3} \ s^{-1}$$

写出波函数:
$$y = 0.01 \cos \left(\frac{5\pi}{3} t - \frac{50\pi}{3} x + \varphi \right)$$
 $\varphi = \frac{\pi}{3}$ $x = 0.02$

$$y = 0.01 \cos\left(\frac{5\pi}{3}t - \frac{\pi}{3} + \varphi\right)$$

u = 10cm/s

8

例题

(2) 求 $x_1 = 5cm$ 和 $x_2 = 11cm$ 两处质点振动相位差。

$$y = A\cos[(\omega t - kx) + \varphi]$$

x_1 处的振动方程:

$$y_1 = A\cos[(\omega t - kx_1) + \varphi]$$

x_2 处的振动方程:

$$y_2 = A\cos[(\omega t - kx_2) + \varphi]$$

两质点振动的相位差:
$$\Delta \varphi = -k(x_2 - x_1) = -\frac{50\pi}{3} \times 0.06 = -\pi$$

$$\Delta \varphi = -k\Delta x = -\frac{2\pi}{\lambda} \Delta x$$

x/cm

(3) 画出t = 3T/4时刻的波形曲线,此刻

x = 2cm处质点的位移,速度,加速度

$$y = 0.01 \cos\left(\frac{5\pi}{3}t - \frac{50\pi}{3}x + \frac{\pi}{3}\right)$$
 0.5
 $t = 3T/4$ 时刻: $T = 1.2s$ $t = 0.9s$

$$y = 0.01 \cos\left(\frac{11\pi}{6} - \frac{50\pi}{3}x\right)$$

x = 2cm处质点振动方程: $y|_{x=0.02} = 0.01 \cos\left(\frac{5\pi}{3}t\right)$ y = 0

$$v = \frac{\partial y}{\partial t}\Big|_{x=0.02} = -\frac{0.05\pi}{3} \sin\left(\frac{5\pi}{3}t\right)$$
 $v = \frac{0.05\pi}{3} = 0.052 \text{ m/s}$

$$a = \frac{\partial^2 y}{\partial t^2} \bigg|_{x=0.03} = -\frac{0.25\pi^2}{9} \cos\left(\frac{5\pi}{3}t\right)$$

$$v = \frac{0.05\pi}{3} = 0.052 \, m/s$$

u = 10cm/s

$$a = 0$$

例题

(4) 若图为t = 0.2s时刻的波形曲线, 波函数会如何变化?

波函数可以改写为:

$$y = A\cos[\omega(t - t_0) - kx + \varphi]$$

$$= 0.01 \cos \left[\frac{5\pi}{3} (t - 0.2) - \frac{50\pi}{3} x + \frac{\pi}{3} \right]$$

$$\therefore \quad y = 0.01 \cos\left(\frac{5\pi}{3}t - \frac{50\pi}{3}x\right) m$$

(7)波动方程

分别对x和t两次求导:

$$y = A\cos\left[\omega\left(t - \frac{x}{u}\right) + \varphi\right]$$

$$\frac{\partial^2 y}{\partial t^2} = -A\omega^2 \cos\left[\omega\left(t - \frac{x}{u}\right) + \varphi\right]$$

$$\frac{\partial^2 y}{\partial x^2} = -A \frac{\omega^2}{u^2} \cos \left[\omega \left(t - \frac{x}{u} \right) + \varphi \right]$$

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{u^2} \frac{\partial^2 y}{\partial t^2}$$

沿*x*方向传播的 平面波的波动方程

讨论:

- 1). 描述经典波动过程的普遍方程。波动方程适用于任何平面波, 平面简谐波表达式只是一个特解;
- 2). 波动方程的解并不限于行波。若任何物理量的运动规律满足上式,则可判断它是一波动过程,并且按平面波的形式传播。

1. 物体的弹性

a 线变

$$\vec{F}$$
 \sim l \sim Δl \sim \vec{F}

胡克定律: 在弹性限度内, 应力与应变成正比。

k为弹性系数或倔强系数。

任意长度为 Δx 的质元, $\Delta m = pS\Delta x$ 。

在弹性限度内,剪应力与剪应变成正比。

切变模量

 $\frac{F}{G} = G \varphi = G \frac{\Delta y}{\Delta y}$

介质薄层 $1对\Delta x$ 质元的作用力为:

$$F_1 = SG\left(\frac{\partial y}{\partial x}\right)$$

2. 波动能量的传播

以纵波为例:设平面简谐波在密度为 ρ 的弹性细棒中传播。

$$y = A\cos\omega\left(t - \frac{x}{u}\right)$$

考察平衡位置在 $x \sim x + \Delta x$ 之间,体积为 ΔV 的质元的能量根据胡克定律:

$$\frac{F}{S} = -Y \frac{\Delta y}{\Delta x} \begin{cases} Y: \text{ 杨氏弹性模量} \\ S: 弹性细棒横截面积 \end{cases}$$

$$F = -k\Delta y \qquad k = \frac{YS}{\Delta x}$$

势能:
$$W_p = \frac{1}{2}k(\Delta y)^2 = \frac{1}{2}\frac{YS}{\Delta x}(\Delta y)^2 = \frac{1}{2}YS\Delta x \left(\frac{\Delta y}{\Delta x}\right)^2 \quad \Delta x \to 0$$

$$= \frac{1}{2}Y\Delta V \left(\frac{\partial y}{\partial x}\right)^2 = \frac{1}{2}Y\Delta V \left(\frac{\omega}{u}\right)^2 A^2 \sin^2 \omega \left(t - \frac{x}{u}\right)$$

$$= \frac{1}{2}\rho\Delta V \omega^2 A^2 \sin^2 \omega \left(t - \frac{x}{u}\right)$$

$$u^2 = \frac{Y}{\rho}$$

动能:
$$W_k = \frac{1}{2}\Delta m v^2 = \frac{1}{2}(\rho \Delta V) \left(\frac{\partial y}{\partial t}\right)^2$$
$$= \frac{1}{2}\rho \Delta V \omega^2 A^2 \sin^2 \omega \left(t - \frac{x}{u}\right)$$

$$W_k = W_p = \frac{1}{2}\rho\Delta V\omega^2 A^2 \sin^2\omega \left(t - \frac{x}{u}\right)$$

结论对横波 仍然成立

$$W_k = W_p = \frac{1}{2}\rho\Delta V\omega^2 A^2 \sin^2\omega \left(t - \frac{x}{u}\right)$$

$$y = A\cos\omega\left(t - \frac{x}{u}\right)$$

1). 波动动能与势能数值相同,相位相同。同时变大,同时减小。

 W_k 最大则 W_p 也最大,平衡位置; W_k 最小则 W_p 也最小,最大位移处。

与振动结论不同!

2). 质元的总能量

$$W = W_k + W_p = \rho \Delta V \omega^2 A^2 \sin^2 \omega \left(t - \frac{x}{u} \right)$$

总能量W随t,x变化,不守恒! ----能量传输

讨论:

- ①波动质元 $\Delta W_{\rm k} = \Delta W_{\rm p}$, $\Delta W_{\rm k} + \Delta W_{\rm p} \neq {\rm const.}$ 每个质元都与周围媒质交换能量。
- ②振动系统: $E_{\rm k} \neq E_{\rm p}$, $E_{\rm k} + E_{\rm p} = {\rm const.}$ 系统与外界无能量交换。

3. 能量密度

1). 能量密度

$W = \rho \Delta V \omega^2 A^2 \sin^2 \omega \left(t - \frac{x}{u} \right)$

介质中单位体积中的波动能量:

$$w = \frac{W}{\Delta V} = \rho \omega^2 A^2 \sin^2 \omega \left(t - \frac{x}{u} \right)$$

为时间和位置的函数。

其周期:
$$T' = \frac{T}{2}$$

平均能量密度:

$$\overline{w} = \frac{1}{T} \int_0^T w \, dt = \frac{1}{2} \rho \omega^2 A^2 \propto \omega^2, A^2$$

平面简谐波在各处的平均能量密度都相等。

4. 关于波动能量的讨论

1). 能量表达式

$$W_k = W_p = \frac{1}{2}\rho\Delta V\omega^2 A^2 \sin^2\omega \left(t - \frac{x}{u}\right)$$

平衡位置处质元:

振动位相为:

$$\varphi = \frac{\pi}{2}, or -\frac{\pi}{2}$$

动能最大、势能最大、总能量最大!

最大位移处质元: 振动位相为: $\varphi = 0, or \pi$

动能为零、势能为零、总能量为零!

例1. 一平面简谐波在t 时刻的波形曲线如图,若此时A处媒质质元的振动动能在增大,则:

A、A处媒质质元的弹性势能在减小;

B、波沿x轴负向传播;

C B处质元的振动动能在减小;

D. 各点的波的能量都不随时间变化。

波的能量

t 时刻

波动动能来源于质元的运动:

$$w_k \propto \left(\frac{\partial y}{\partial t}\right)$$

波动势能来源于介质的 相对形变:

$$w_p \propto \left(\frac{\partial y}{\partial x}\right)^2$$

波形曲 线斜率

动速度

平衡位置处质元: 动能最大、势能最大。

最大位移处质元: 动能为零、势能为零。

3). 波是能量传播的一种形式

体元 ΔV 中能量密度从0到 $\rho\omega^2A^2$,表明外部能量的输入,当 ΔV 中能量密度从 $\rho\omega^2A^2$ 减小到0,表明向外输出能量。周而复始。

即介质并不积累能量。能量随着波动的行进,从介质的这一部分传到另一部分。波动是能量传播的一种形式;波动的能量沿波速方向传播。

5. 能流密度

1). 能流P 单位时间内垂直通过某截面的能量 Δt时间内垂直通过某截面ΔS的能量

$$\Delta W = u\Delta t \cdot \Delta S \cdot w$$

$$P = \frac{\Delta W}{\Delta t} = wu\Delta S$$
$$= u\Delta S\rho\omega^2 A^2 \sin^2\left[\omega\left(t - \frac{x}{u}\right)\right]$$

即能流随时间周期性变化。单位: 瓦特(W)

- 5. 能流密度
- 2) 平均能流 在一个周期内能流的平均值。

$$\langle P \rangle = \langle w \rangle u \Delta S = \frac{1}{2} \rho \omega^2 A^2 u \Delta S$$

若波速与截面不垂直

$$\langle P \rangle = \langle w \rangle \vec{u} \cdot \Delta \vec{S} = \langle w \rangle u \Delta S \cos \theta$$

$$i = \frac{P}{\Delta S} = wu = \left[\rho \omega^2 A^2 \sin^2 \omega \left(t - \frac{x}{u}\right)\right] u$$

4). 平均能流密度 / 又称波的强度

$$I = \langle i \rangle = \frac{\langle P \rangle}{\Delta S} = \langle w \rangle u = \frac{1}{2} \rho \omega^2 A^2 u \propto \omega^2, A^2$$

矢量表示:
$$\vec{I} = \frac{1}{2} \rho \omega^2 A^2 \vec{u}$$
 与波速方向相同。

声音的强度

人听觉的频率为: $\omega = 20 \sim 2 \times 10^4 \text{Hz}$

人听觉的声强为: $I = 10^{-12} \sim 1 \text{ W/m}^2$

定义标准声强: $I_0 = 10^{-12} \text{ W/m}^2$

声强级别: $L = 10 \lg \frac{I}{I_0}$ (dB)

人听觉的范围是: 0~130 dB

无吸收的理想介质:

$$\overline{P} = u\Delta S\overline{w} = \frac{1}{2}\rho A^2 \omega^2 u\Delta S$$

穿过各波面 $(S_1, S_2, ...)$ 的平均能流应相等。

对平面波:

$$\frac{\overline{P_1}}{\overline{P_2}} = 1 = \frac{A_1^2}{A_2^2} \frac{S_1}{S_2}$$

$$A_1 = A_2$$

对球面波:
$$\frac{\overline{P}_1}{\overline{P}_2} = \frac{A_1^2}{A_2^2} \frac{S_1}{S_2} = \frac{A_1^2}{A_2^2} \frac{4\pi r_1^2}{4\pi r_2^2} = 1$$
 $\frac{A_1}{A_2} = \frac{r_2}{r_1}$

$$A_1 \neq A_2$$

如果距波源单位距离 的振幅为A,则距波 源r处的振幅为 A_r

球面简谐波的波函数: $y = \frac{A}{r} \cos \omega (t - \frac{r}{u})$

几种声音的声强级和响度

声源	声强级(dB)	响度
听觉	0	
风吹树叶	20	轻
通常谈话	60	正常
机器房	80	响
大瀑布	90	很响
铆钉机	100	震耳
摇滚乐	120	
炮声	120	
喷气机起飞	150	
聚焦超声波	210	

11-T17.假设在一根弦线上传播的简谐波为 $y=A\cos(kx-\omega t)$,式中 $k=\omega/u$ 称为波数。(1)写出弦线中的能量密度与能流密度的表示式;(2)写出平均能量密度与平均能流密度(波强)的表示式。

解: (1) 弦上质元的平均动能为

$$\Delta W_{k} = \frac{1}{2}mv^{2} = \frac{1}{2}\rho\Delta V \left(\frac{\partial y}{\partial t}\right)^{2} = \frac{1}{2}\rho\Delta V \omega^{2}A^{2}\sin^{2}(kx - \omega t)$$

平均动能等于平均势能,能量密度为

$$w = \frac{\Delta W_{k} + \Delta W_{p}}{\Delta V} = \rho \omega^{2} A^{2} \sin^{2}(kx - \omega t)$$

能流密度为 $i = wu = \rho u \omega^2 A^2 \sin^2(kx - \omega t)$

(2) 平均能量密度为
$$\overline{w} = \frac{1}{T} \int_{0}^{T} w \, \mathrm{d}t = \frac{1}{2} \rho \omega^{2} A^{2}$$

平均能流密度为
$$I = \overline{w}u = \frac{1}{2}\rho u\omega^2 A^2$$

作业: Chap.11—T17、T18、T19

- 1. 独立完成作业。
- 2. 图和公式要有必要的标注或文字说明。
- 3. 通过学习通提交作业。
- 4. 作业缺交三分之一及以上者按规定不能参加考试。

