

NASA Contractor Report 181736

APPENDICES TO THE USER'S MANUAL

FOR

A COMPUTER PROGRAM FOR THE

EMULATION/SIMULATION OF A SPACE STATION

ENVIRONMENTAL CONTROL AND LIFE SUPPORT SYSTEM

BY

HAMILTON STANDARD

DIVISION OF UNITED TECHNOLOGIES CORPORATION
WINDSOR LOCKS, CONNECTICUT

PREPARED UNDER CONTRACT NO. NAS1-17397

FOR

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

LANGLEY RESEARCH CENTER

HAMPTON, VIRGINIA

September 1988

(NASA-CH-181736) APPENDICES TO THE USER'S NANUAL FOR A CONFEITER EROGEAN FOR THE INDIATION/SIMULATION OF A SPACE STATION ENVIRONMENTAL CONTROL AND LIFE SUFFORT SYSTEM (Hamilton Standard Div.) 208 p

N69-13896

Unclas G3/54 0183245

ABSTRACT

A User's Manual for the Emulation Simulation Computer Model was published previously. The model consisted of a detailed model (emulation) of a SAWD CO2 removal subsystem which operated with much less detailed (simulation) models of a cabin, crew, and condensing and sensible heat exchangers. The purpose was to explore the utility of such an emulation/simulation combination in the design, development, and test of a piece of ARS hardware - SAWD.

Extensions to this original effort are presented in this manual. The first extension is an update of the model to reflect change in the SAWD control logic which resulted from test. In addition, slight changes were also made to the SAWD model to permit restarting and to improve the iteration technique. The second extension is the development of simulation models for more pieces of air and water processing equipment. Models are presented for: ECD, Molecular Sieve, Bosch, Sabatier, a new condensing heat exchanger, SPE, SFWES, Catalytic Oxidizer, and multifiltration. The third extension is to create two systems simulations using these models. The first system presented consists of one air and one water processing system. The second system consists of a potential Space Station air revitalization system complete with a habitat, laboratory, four nodes, and two crews.

FOREWORD

This User's Manual has been prepared by Hamilton Standard Division of United Technologies Corporation for the National Aeronautics and Space Administration's Langely Research Center in accordance with Contract NAS 1-17397, "Development of an Emulation/Simulation Computer Model of a Space Station Environmental Control and Life Support System (ECLSS)". This manual describes the use of the three models developed under this contract.

Appreciation is expressed to the Technical Monitors Messrs. John B. Hall, Jr. and Lawrence F. Rowell of the NASA Langley Research Center for their guidance and advice.

This manual was written by Dr. James L. Yanosy, Program Engineer, with assistance from Mr. Stephen A. Giangrande. The extensions to the program presented in this manual were performed under the direction of Mr. John M. Neel, Program Manager. Thanks is given to Joseph M. Homa for his efforts in the development of the Space Station Model.

•	

TABLE OF CONTENTS

Section	<u>Title</u>	Page
	List of Figures	vi
	List of Tables	vii
1.0	INTRODUCTION	1
2.0	REFERENCES	3
A.0	APPENDIX A: ESCM UPDATE	A-i
A.1	Introduction	A-1
A.2	Description of Program	A-2
A.2.1	GPOLY1 Subroutine	A-2
A.2.2	IR45 Subroutine	A- 5
A.3	Program Use	A-5
A.3.1	Accessing Desired Job Control List	A-5
A.3.2	Input Data	A-8
A.3.3	ESCM Output	A-8
A.4	Sample Problem	A-10
B.0	APPENDIX B: USER'S MANUAL FOR ECLSB MODEL	B-i
C.0	APPENDIX C: SPACE STATION MODEL	C-i
C.1	Introduction	_ C-1
C.2	Description of System	C-2
C.2.1	Overall Operation	C-17
C.2.2	ARS Equipment Operation	C-18
C.3	Description of Computer Program	C-20
C.3.1	GPOLY1 Subroutine	C-21
C.3.2	GPOLY2 Subroutine	C-31
C.3.3	ARSS Subroutine	C-32
C.3.4	Component Subroutines	C-33

TABLE OF CONTENTS

Section	<u>Title</u>	
C.4	Program Use	C-65
C.4.1	Operation Using the Hamilton Standard IBM Computer	C-65
-	The Command List G189CL	C-66
C.4.1.1	Input Data SSDATA Description	C-70
C.4.1.2	Input Data Modification	C-100
C.4.1.3	- 1	C-104
C.4.1.4	Program Output	C=104
C.4.2	Operation Using the Langley PRIME Computer	C-10-

,		
•		

LIST OF FIGURES

Number	Title	Page
Number		,
C-1	Space Station Model Overview	C-3
C-2	Space Station Nodes	C-4
C-3	Overview of Habitat ARS	C-5
C-4	Overview of Laboratory ARS	C-6
C-5	Habitat Cooling Packages	C-7
C-6	Laboratory Cooling Packages	C-8
C-7	Habitat Oxygen Generators	C-9
C-8	Laboratory Oxygen Generators	C-10
C-9	Habitat CO ₂ Removal Units	C-11
C-10	Laboratory CO ₂ Removal Units	C-12
C-11	Habitat CO ₂ Reduction Units	C - 13
C-12	Laboratory CO ₂ Reduction Units	C-14
C-13	Habitat Catalytic Oxidizers	C-15
C-14	Laboratory Catalytic Oxidizers	C-16
C-15	Habitat O ₂ Partial Pressure	C-130
C-16	Habitat CO ₂ Partial Pressure	C-131
C-17	Habitat Dew Point Temperature	C-132
C-18	Habitat Temperature	C-133
C-19	Lab O2 Partial Pressure	C-134
C-20	Lab CO ₂ Partial Pressure	C-135
C-21	Lab Dew Point Temperature	C-136
C-22	Lab Temperature	C-137
C-23	CO ₂ Accumulator Inlet Flow in Habitat Removal	
	Subsystem #1	C-138
C-24	CO ₂ Removed by Habitat Removal Subsystem #1	C-139
C-25	CO ₂ Accumulator Pressure in Habitat Removal	
	Subsystem #1	C-140
C-26	Habitat Pressure	C-141
C-27	CO ₂ Accumulator Inlet Flow in Lab Removal	a 140
	Subsystem #1	. C-142

.

LIST OF FIGURES

Number	<u>Title</u>	Page
C-28	CO ₂ Removed by Lab Removed Subsystem #1	C-143
C-29	CO ₂ Accumulator Pressure in Lab Removal Subsystem #1	C-144
C-30	Lab Pressure	C-145
C-31	H ₂ Vented from Habitat O ₂ Gen Subsystem #1	C-146
C-32	H ₂ Generated from Habitat O ₂ Gen Subsystem #1	C-147
C-33	O ₂ Produced by Habitat O ₂ Gen Subsystem #1	C-148
C-34	CO ₂ Accumulator Exit Flow in Habitat Removal	
	Subsystem #1	C-149
C-35	H ₂ Vented from Lab O ₂ Gen Subsystem #1	C-150
C-36	H ₂ Generated from Lab O ₂ Gen Subsystem #1	C-151
C-37	O ₂ Produced by Lab O ₂ Gen Subsystem #1	C-152
C-38	CO ₂ Accumulator Exit Flow in Lab Removal	
	Subsystem #1	C-153
C-39	H ₂ to CO ₂ Reduction from Lab O ₂ Gen Subsystem #1	C-154
C-40	H ₂ to CO ₂ Reduction from Habitat O ₂ Gen Subsystem #1	C-155
C-41	Total Water Consumed by O ₂ Generation Subsystems	C-156
C-42	Total Water Produced by CO ₂ Reduction Subsystems	C-157

		•	
			•
			,

LIST OF TABLES

Number	<u>Title</u>	Page
A-1	Listing of ESCMECL for ESCM Model	A-6
A-2	SAWD Performance Summary Output	A-11
A-3	ESCM Sample Problem Output	A-15
C-1	Listing of KOHHS	C-34
C-2	Listing of MOLSIV	C-40
C-3	Listing of BOSCHS	C-48
C-4	Listing of CNDHEX	C-56
C-5	Listing of G189CL for Space Station Model	C-67
C-6	I/O File Assignments	C-69
C-7	Input Data for Space Station Model	C-71
C-8	Component Numbers for Unused Units	C-103
C-9	Sample Output from Space Station Model	C-129

	ŧ

1.0 INTRODUCTION

The Original User's manual [4]* presented the instructions to use the Emulation Simulation Computer Model (ESCM). This model consisted of simple models of a crew, sensible heat exchanger, condensing heat exchanger, and a cabin combined with a very detailed model of the SAWD CO₂ Removal Subsystem. The simple models are called simulations while the very detailed model is called an emulation. The purpose of the program was to explore the utility of a combined emulation/simulation program to assist in the design, development, and testing of a piece of hardware-SAWD.

This original effort was extended to update the ESCM model following SAWD testing, to develop new computer simulations of other air revitalization and wastewater processing equipment, and lastly to develop two system simulations which would incorporate various air revitalization and wastewater processing equipment. The purpose of these additional system simulations is to explore their utility in system design.

This report presents in the form of appendices to the original User's Manual the new instructions for ESCM, the instructions to use ECLSB, and the instructions to use the Space Station Model.

^{*}Numbers in brackets denote references listed in Section 2.0.

ţ

ESCM was updated to incorporate the new control logic resulting from tests. In addition several improvements were also made in the output and the iteration procedure. ECLSB is one of the system simulations generated. It models one ARS combines with a water processing system. The User's Manual for this system has already been published [1], but it is included as Appendix B for completeness. Lastly, a Space station model was generated; it consists of a habitat, laboratory, four nodes, and two crews. Only air revitalization processes are simulated; the instructions for this model are presented in Appendix C.

The following are errata in the original User's Manual:

- (1) Page 2, Figure 1: above the box titled Launch Operation the words should be "Design changes" instead of Design chanes.
- (2) Page 17, Table 5: Delete VLH20 subroutine and its description as ESCM never calls it. Also, change "Subroutine None" to "Subroutine Name".
- (3) Page 18, Table 6: Delete DUCT subroutine and its description as ESCM never call it. Also, change "Subroutine None" to "Subroutine Name".
- (4) Page 47, Table 8, NSTR15 Card; add the following in the comment field: "Pressure from secondary side".
- (5) Page 48, Table 8, NSTRE20 Card; add the following in the comment field; "Pressure from secondary side".

			,

- (6) Page 49, Table 8, NSTR32 Card; add the following in the comment field: "Tank fluid temperature is specified".
- (7) Page 50, Table 8; the second TITL 21 3 line should be renumbered to TITL 21 4.
- (8) Page 50, Table 8: the line after TITL 23 3 should be renumbered from TITL 21 3 to TITL 23 4.
- (9) Page 51, Table 8: the lines beginning with VALU 71 14 and VALU 71 15 should have the numbers 0.315 and 1.000 deleted.
- (10) Page 53, Figure 8: in Note at top of figure, change the word "nonzero" to "non-blank". The program checks for a blank field; if the field is not blank, then the program takes the specified action.
- (11) Page 65, Section 4.3: add the following for the missing item (7) in the list of eleven values printed to the screen: "7) SAWD bed #1 H₂O loading, % of dry amine wgt.
- (12) Page 67, first six lines, references to Appendix B should be changed to Appendix C.
- (13) Page 67, item (3) at top of page should read: "3) Schematic printouts at the requested printoff frequency. See Figure 6 and Appendix C.
- (14) Page 67, item (2) in the middle of the page: change "indenpendent" to "independent".
- (15) Page 68, definition of NUMCAS: change sentence in parentheses to read: "(Refer to Appendix B GPLOT.DATA)".
- (16) Page A-10, Section A.4: change ESCMZE to ESCM2E.

· · · · · · · · · · · · · · · · · · ·	 	
		1
	•	
	,	

2.0 REFERENCES

- (1) Yanosy, J., "User's Manual for a Computer Program for the Simulation of a Space Station Environmental Control and Life Support System (ECISB)", Hamilton Standard Report SVHSER 10630 for the National Aeronautics and Space Administration, Langley Research Center; September 1986.
- (2) "G189A Generalized Environmental/Thermal Control and Life Support System Computer Program Manual", McDonnell Douglas Corporation MDA C-G2444; September 1971.
- (3) "CAEIMS User's Manual", Volume 1, Version 2.0, by United Technologies Hamilton Standard Engineering Software Systems; September 1986.
- (4) Yanosy, J., "User's Manual for a Computer Program for the Emulation/Simulation of a Space Station Environmental Control and Life Support System (ESCM)", Hamilton Standard Report SVHSER 9503 for the National Aeronautics and Space Administration, Langley Research Center; NASA CR-181735, September 1988.

	1
	1
	,
	*

APPENDIX A

ESCM UPDATE

Toronto .	

A.1 INTRODUCTION

The computer program for the emulation/simulation of a Space Station environmental control and life support system (ESCM) has been updated. Updates to the computer simulation model include:

(1) the addition of an energy balance control logic (flow sensor control) for the SAWD CO₂ removal subsystem, the capability of restarting the SAWD subsystem, clamping the SAWD bed segment temperature when iterating on the bed temperature during the energy balance of the bed segment, and the addition of a new output table to the hardcopy and screen output.

A new type of control has been incorporated in the SAWD subsystem. This control method is an energy balance method. Using this method, the amount of water remaining on the bed after absorption can be calculated from an energy balance of the bed. Based on the water remaining on the absorbed bed, the next absorb time is calculated. Thus, the absorption time is regulated to control the amount of water on the bed at the end of absorption. The time to desorb the bed is dependent on the water flow as well as steam generator power.

The capability of restarting the SAWD subsystem has been added to the SAWD subroutine. Previously, the user was required to run the program for steady state before the transient could be run. With the restart capability, the simulation can be executed from a transient start.

A.2 Description of Program

In order to incorporate the above changes to the ESCM model, two subroutines were modified. These subroutines, GPOLY1 and IR45, required logic changes. All input and output additions to these subroutines will be discussed in this section.

A.2.1 GPOLY1 Subroutine

GPOLY1 was restructured to the following format:

IF (N .EQ. 3) Then

END IF

:

The following are input additions to be input once at the first execution of GPOLY1.

KK(6,19) = Type of SAWD control 0 = RH control

1 = Accum control

2 = Flow sensor control

The following are input and output additions to be input and output from GPOLY1 before the solution of component #14 (splitter for gas flow from main cabin to SAWD Bed #1 or SAWD Bed #2).

INPUT:

VV(29,68) = steam generator power, watts

W(27,100) = H_2O supply tank flow, pph

KK(32,16) = Type of CO_2 delivery 0 = overboard

 $1 = \infty_2$ reduction

 $W(32,70) = CO_2$ accumulator temperature, F

OUTPUT:

 $CO2REM = CO_2$ removed from air, lbm

CO2LOD = CO₂ removed from air per # of bed, %

TCYCLE = Total cycle time, sec

 $H2OADD = H_2O$ added to air, lbm

 $H2OLOD = H_2O$ added air per # of bed, %

TBLD = Time for bleed down, sec

WAIR = Total air through bed, lbm

WLOD = Total air through bed per # bed, %

TA EX = Time for air exchange, sec

BH201 = Water loading, lbm

WLOAD = Water loading per # of bed, lbm

TABDT = absorption time, sec

BCO21 = CO_2 loading on bed, lbm

CLOAD = CO₂ loading at end of cycle per # of bed, %

CO2RR = CO_2 removal rate, pph

OUTPUT:

TOIWGT

PURITY

TABMAX Next absorb time limit, sec EFF CO, removal efficiency, % WCO21B ${\rm CO}_2$ at end of bleed, 1 ${\rm bm}$ WC021E CO_2 at end of air exchange, 1bm TDES desorb time, sec CO2OBD CO_2 to accumulator package, 1bm $^{\circ}$ 2 to accumulator package per # of bed, % PCTCO2 TFLAG Lag time after desorption, sec average rate of ${\rm CO}_2$ delivered to accumulator AVGDLV package, pph WSTEAM amount of steam through the bed, 1bm WSLOD amount of steam through bed per # of bed, % WSTM steam flow during next desorption cycle, pph BH202 Water loading on bed, 1bm CO, loading at end of bleed, 1bm WCO22B BC022 CO, loading on bed, 1bm WC022E ${\rm CO}_2$ loading at end of air exchange, lbm ACH2O $\mathrm{H}_{2}\mathrm{O}$ vapor flow to accumulator and flow sensor ACO2 ${\bf 0}_{2}$ flow to accumulator and flow sensor ${\rm N}_2$ flow to accumulator and flow sensor ACN2 ACCO2 ${^{\c CO}}_2$ flow to accumulator and flow sensor

Total vapor flow to accumulator and flow sensor

 ${\rm CO}_2$ purity to accumulator and flow sensor

A.2.2 IR45 Subroutine

Additional logic was incorporated into the IR45 subroutine to allow the SAWD subsystem restart capability. The SAWD can be started from a transient startup without the steady state solution being performed first. The restart capability was incorporated in the IR45 subroutine be initializing the SAWD inlet and exit header values as well as each bed segment (i.e., temperature, pressure, molecular weight ...) in the IR45 subroutine. Previously, these values were initialized in the subroutine STAEDY which is only performed during a steady state solution.

Additional logic was also added to IR45 in subroutine BAINCE. This logic clamps the bed segment temperature which has just been calculated through the iteration technique. If the bed segment inlet temperature is greater than the bed segment temperature at the start of the time step, then the bed segment temperature must increase.

A.3 Program Use

A.3.1 Accessing Desired Job Control List

Instructions to access ESCM and use the program have not been changed. However, the command list to be accessed is ESCMECL.CLIST instead of ESCMCL.CLIST. A listing of the ESCMECL.CLIST is given in Table A-1.

TABLE A-1

LISTING OF ESCMECL FOR ESCM MODEL

```
CONTROL PROMPT NOMSG
ERASE
N1: DELETE PLOT. DATA
    DELETE OUT. DATA
FREE FILE(FT05F001)
FREE FILE(FT06F001)
FREE FILE(FT10F001)
FREE FILE(FT11F001)
FREE FILE(FT16F001)
FREE FILE(FT20F001)
FREE FILE(FT80F001)
FREE FILE(FT81F001)
FREE FILE(FT41F001)
FREE FILE(FT42F001)
FREE FILE(FT48F001)
FREE FILE(FT44F001)
FREE ATTRLIST(A1 B2 C8 D4 E5)
ATTRIB A1 BLKSIZE(844) RECFM(V B)
                                    LRECL(844)
ATTRIB B2 BLKSIZE(10000) RECFM(V B-S) LRECL(10000)
ATTRIB C8 BLKSIZE(8404) RECFM(V B S) LRECL(8404)
ATTRIB D4 BLKSIZE(8990) RECFM(F B A) LRECL(188)
ATTRIB E5 BLKSIZE(8990) RECFM(F B) LRECL(80)
DELETE DD1
DELETE DD2
DELETE DD8
DELETE DD4
DELETE DD5
DELETE DD6
DELETE IN10
DELETE IN11
WRITE
WRITE
WRITE DATA SETS ARE NOW BEING ALLOCATED.
ALLOC DS(DD1) F(FT41F001) NEW SPACE(844,200) BLOCK(844) +
                     DELETE
         USING(A1)
ALLOC DS(DD2) F(FT42F001) NEW SPACE(200,200) BLOCK(10000) +
                     DELETE
         USING(B2)
ALLOC DS(DB2) F(FT48F001) NEW SPACE(200,200) BLOCK(8404) +
                     DELETE
          using(CB)
ALLOC DS(DB4) F(FT44F001) NEW SPACE(200,200) BLOCK(8408) +
          USING(C8) DELETE
ALLOC DS(DD5) F(FT80F001) NEW SPACE(200,200) BLOCK(8408) +
                      DELETE
          USING(C8)
ALLOC DS(DD6) F(FT81F001) NEW SPACE(200,200) BLOCK(8408) +
          USING(C8)
                      DELETE
 ALLOC DS(IN10) F(FT10F001) NEW SPACE(200,200) BLOCK(8408) +
                    DELETE
          USING(C8)
 ALLOC DS(IN11) F(FT11F001) NEW SPACE(200,200) BLOCK(8408) +
                    DELETE
          USING(C8)
 ALLOC DS(ESCM2E.DATA) F(FT05F001)
```


TABLE A-1 (Continued)

LISTING OF ESCMECL FOR ESCM MODEL

A.3.2 Input Data

There is an addition to the existing input data set, ESCM2B. An extra KARY card, KARY 19, was added to component #6 (cooling fluid boundary conditions). KARY 19 represents the type of control to be used for the SAWD subsystem. If KARY 19 is 0, relative humidity control is used for the SAWD. Accumulator control will be used if KARY 19 is 1. If KARY 19 is 2, then the newly implemented flow sensor (energy balance) control is used. This new data set is called ESCM2E. The procedure for accessing the data set is the same as in the original User's Manual [4].

A.3.3 ESCM Output

Additional output is available to two of the three forms of the output (screen and hardcopy output). At the end of each absorption and desorption, a summary of SAWD calculated parameters is output in tabular form. This table will appear on the screen and on hardcopy immediately following the schematic corresponding to the completion of the absorption or desorption. The values printed on the table include:

- (1) CO, removed from air during absorption, lbm
- (2) $\rm CO_2$ removed from air during absorption per # of bed, lbm
- (3) Total cycle time, sec
- (4) H₂O added to air during absorption, lbm
- (5) H₂O added to air (absorption) per # of bed, %

- (6) Time for bleed down (absorption), sec
- (7) Total air through bed (absorption), lbm
- (8) Total air through bed (absorption) per # of bed, %
- (9) Time for air exchange (absorption), sec
- (10) Water loading at end of absorption, lbm
- (11) Water loading at end of absorption per # of bed, %
- (12) Absorption time, sec
- (13) CO, loading at end of absorption, lbm
- (14) CO, loading at end of absorption per # of bed, %
- (15) CO, removal rate, pph
- (16) Next absorb time limit, sec
- (17) CO₂ removal efficiency %
- (18) CO, on bed at end of bleed (absorbing bed), lbm
- (19) CO, on bed at end of air exchange (absorbing bed), lbm
- (20) CO, removed from bed (desorption), lbm
- (21) CO, removed from bed per # bed (desorbing bed), %
- (22) Desorption time, sec
- (23) CO₂ to accumulator package, lbm
- (24) CO, to accumulator package per # of bed, %
- (25) Lag time after desorption sec
- (26) Water added to bed (desorbing bed), lbm
- (27) Water added to bed (desorbing) per # of bed %
- (28) Average rate of CO, delivered to accumulator package, pph
- (29) Amount of steam through the bed, 1bm
- (30) Steam flow during next desorption cycle, pph
- (31) Water loading at the end of desorption, lbm

- (32) Water loading at end of desorption per # of bed, %
- (33) CO, loading at end of bleed (desorption), lbm
- (34) CO, loading on bed at end of desorption, lbm
- (35) CO_2 loading on bed at end of desorption per # of bed, %
- (36) CO₂ on desorbing bed at end of air exchange, 1bm
- (37) Water vapor flow to accumulator flow sensor
- (38) O₂ vapor flow to accumulator and flow sensor
- (39) N₂ vapor flow to accumulator and flow sensor
- (40) CO, vapor flow to accumulator and flow sensor
- (41) Total vapor flow to accumulator and flow sensor
- (42) Carbon dioxide purity of flow to accumulator and flow sensors

A.4 Sample Problem

A sample problem has been run using the updated ESCM computer simulation/emulation model and the ESCMZE to input data set. The case was run for four hours. The hardcopy output of this sample problem is shown in Table A-3.

TABLE A-2

SAWD PERFORMANCE SUMMARY OUTPUT

COMPUTER SIMULATION RESULTS FOR SAND II CYCLE NUMBER 1 TIME = 2310.0 SEC

CO2 REMOVED FROM AIR H2O ADDED TO AIR TOTAL AIR THROUGH BED WATER LOADING AT END CO2 LOADING AT END NEXT ABSORB TIME LIMIT CO2 AT END OF BLEED	#1	= 2310.0 SEC = 0.0 SEC = 0.0 SEC = 2310.0 SEC = 0.000 PPH = 0.00 PCT = 0.005 LBM
********* DESORPTION S ********* FOR BED CO2 REMOVED FROM BED CO2 TO ACCUM. PKG. H2O ADDED TO BED STEAM THROUGH BED MATER LOADING AT END CO2 LOADING AT END	#2 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	

SUMMARY OF FLOW TO FLOW SENSOR AND ACCUMULATOR MATER VAPOR = 0.038 LBM
OXYGEN = 0.000 LBM
NITROGEN = 0.000 LBM CARBON DIOXIDE = 0.306 LBM TOTAL = 0.343 LBM PURITY = 89.08 PCT

SAWD PERFORMANCE SUMMARY OUTPUT

		F005.0 SEC PP = 0 6 = 9.9928 112 = 7.4079 23 = 0.00000E+00 76 = 0.00000E+00 76 = 0.00000E+00 86 = 0.00000E+00 XXP = 0.14600
	7	5005.0 SEC 1
		PP 3 5001
		*
		367 TII
		0000000
		SS NO 387 T1 IILLISEC CP= 3935 (1 5)= 1342.7 (1 11)= 1049.5 (1 22)= 0.00000E+00 (1 69)= 0.00000E+00 (1 75)= 0.00000E+00 (1 87)= 0.00000E+00 (1 87)= 0.00000E+00 (1 87)= 0.00000E+00 VISCS= 0.44000
		PASS PASS VRI VRI VRI VRI VI
	E E E E E E E E E E E E E E E E E E E	PSED TIME IN 14.689 305.75 0.000000 0.000000 0.000000 0.000000 0.000000
) SEC	3460.0 1 120.0 1 3300.0 2 3300.0 2 2550.0 2 2550.0 1 2 550	APS
5790.0 SEC		0 EL/4 4) 110) = 23) = 23) = 23) = 23) = 36) = 36) = 36) = 360 = 3
ii rU		* * * * * * * * * * * * * * * * * * *
TIME	DESO EEE EACH AND EEE EACH AND EEE EACH AND EESO EEE EACH EEC EACH EEE EACH EEC EACH EACH	SEC SOR 689 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
~	TOTAL CYCLE TIME TIME FOR BLEED DOWN TIME FOR AIR EXCHANGE ABSORPTION TATE COZ REMOVAL RATE COZ REMOVAL REFICIENCY COZ AT AIR EXCHG END ** ** LAG TIME AFTER DESORB AVG COZ TO ACCUM. PKG. NEXT DESORB STEAM FLOM COZ AT AIR EXCHG END COZ AT AIR EXCHG END TOR	1. SEC SOR 1.00P= 0 14.669 28.669 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 28.740
B ER	CYCL FOR B PTION PTION T AIR F AIR F AIR F AIR	
3	11 TE	44/V80/FF
CYCL	AL CONTRACTOR	PRI SON
11 0	######################################	
RESULTS FOR SAND II CYCLE NUNBER	######################################	FAILURE FLAGS C 2)= 49.944 2)= 0.24310 14)= 0.00000E+00 64)= 0.00000E+00 64)= 0.00000E+00 72)= 0.00000E+00 84)= 1.0000 90)= 0.00000E+00 CPP= 0.24455
S FO	## ### 1 TOTAL 1 LBM	SUBR ND 2 1= 2 2 1= 6 6 1= 0 14 1= 0 66 1= 0 72 1= 0 78 1= 0 90 1= 0 CPP = 0
SULT		SY YAR YAR YAR YAR YAR YAR YAR YAR YAR YA
	FOR BED 4 R AIR R R AIR R E LIMIT L LEED B PYION SUP FOR BED B TO FLOM TO FL	
COMPUTER SIMULATION	**************************************	12 FAN 1392.7 0.00000E+00 477.82 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
SIM	******* ABSORPT ****** FO COZ REMOVED FROM HZO ADDED TO AIR TOTAL AIR THROUGH WATER LOADING AT COZ LOADING AT ENT ABSORB TIME COZ AT END OF BLE ********* DESORPT ********** FO COZ REMOVED FROM I COZ REMOVED FROM I COZ LOADING AT EN COZ LOADING AT EN STEAM THROUGH BED WATER LOADING AT EN COZ LOADING AT EN SUPHARY OF FLOM TO COZ LOADING AT EN COZ LOADING AT EN SUPHARY OF FLOM TO COZ LOADING AT EN COZ AT END OF EN COZ AT EN	
YSTER	******** ******** COZ REMOVED HZO ADDED T TOTAL AIR T MATER LOADING COZ LOADING COZ AT END ********* COZ REMOVED COZ TO ACCU HZO ADDED T STEAM THROU MATER LOADING COZ LOADIN	1) = 1) = 1) = 1) = 13 = 13
200	######################################	**************************************

SAWD PERFORMANCE SUMMARY OUTPUT

ORIGINAL LACE AS OF POOR QUALITY

1260.0 5 60.0 5 0.0 5 1200.0 5 0.245 6 0.00 6

CYCLE

H SAMO

SIMULATION RESULTS

ABSORPTION SU FOR BED

TOTAL CYCLE TIME =
TIME FOR BLEED DOWN =
TIME FOR AIR EXCHANGE =
ABSORPTION TIME =
COZ REMOYAL RATE
COZ REMOYAL EFFICIENCY =
COZ AT AIR EXCHG END = DESORPTION TIME
LAG TIME AFTER DESORB =
AVG COZ TO ACCUM. PKG. =
NEXT DESORB STEAM FLOM =
COZ AT END OF BLEED =
COZ AT AT EXCHG END = ş CO2 REMOVED FROM BED CO2 TO ACCUM. PKG. H20 ADDED TO BED STEAM THROUGH BED MATER LOADING AT END CO2 LOADING AT END SUPPLARY OF FLOM
MATER VAPOR

OXYGEN
NITROGEN
CARBON DIOXIDE =
TOTAL 2

585.0 0.265 0.156 0.087

6)= 10.035 12)= 7.8741 23)= 0.00000E+00 70)= 0.00000E+00 76)= 300.00 82)= 0.00000E+00 88)= 0.00000E+00 . 14600 . 00000E+00 . . 13.62.3 VRI 13.62.3 VRI 10.000006.00 VRI 0.000006.00 VRI 0.0000006.00 VRI 0.000006.00 VRI WR(5)= WR(11)= WR(22)= 0 WR(25)= 0 WR(75)= 0 WR(81)= 0 WR(87)= 0 WR(97)= 0 WR(97)= 0 WR(97)= 0 WR(97)= 0 ELAPSED TIME IN H 4)= 14,687 VR 10)= 305.62 VR 121)= 0.00000E+00 VR (68)= 0.00000E+00 VR (74)= 0.00000E+00 VR (86)= 0.00000E+00 VF (1 92)= 0.00000E+00 VF (1 92)= 0.00000E+00 VF RHOP= 0.77141E-01 RHOS= 0.00000E+00 DE 1 LOOP 0 (1 3) = 14.687 V (1 20) = 28.868 V (1 20) = 0.00000E+00 V (1 72) = 0.00000E+00 V (1 73) = 140.00 V (1 74) = 140.00 V PRI SOR
-- COMP = VR | 3 VR | 3 VR | 4 VR | 6 VR | 1392.4 0.00000E+00 \ 0.00000E+00 \ 477.82 \ 0.00000E+00 \ 0.00000E+00 \ 0.00000E+00 \ 0.00000E+00 \ 1)= 7]= 113)= 65)= 71)= 77)= 83)= 89)=

YR YR YR Y

E+00 E+00 E+00

ORIGINAL PAGE IS OF POOR QUALITY

TABLE A-2 (CONTINUED)

SAWD PERFORMANCE SUMMARY OUTPUT

0 SEC 0 0 067 3.2637 00000E	300.00 .00000E	.14600 .00000E
= 11445.0 SEC pp = 0 6) = 10.067 12) = 6.2637 23) = 0.00000 70) = 0.00000	76)= 3 82)= 0. 88)= 0.	XXP= 0
TIME = +29 VR(VR(VR(OD VR(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8
.3 . CP = 54 .62.7 .68.4 .0000E+	0000E+	4000 0000E
COMP PASS NO 763 HE IN MILLISEC CP- VR(5)= 1362.3 VR(11)= 1068.4 VR(10)= 000000 E=+00 VR(69)= 0.00000	9000	0.0
S NO LLIST LLIST 513 113 223 223 223 223 223 223 223 223 2	871	11SCP 11SCS
PAS IN HI VR(****	~ ~
IP NO 12 FAN SUBR ND 23 PRI SOR 11 SEC SOR 0 COMP PASS NO 763 TIME = 11445.0 SEC 1 FAILURE FLAGS COMP = 1 LOOP = 0 ELAPSED TIME IN MILLISEC CP = 5429 PP = 0	0.00000E+000000000E+0000000000000000000	0.77165E-0] 0.00000E+0
0 EL/4 101= 21)= 21)=	24 58 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	#0# #0#
~ \$ \$ \$ \$	252	¥
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		E+00
SEI LOOP= 14.692 28.872 200000	00000	28.747 .00000
11 3)= 9)= 6)= 100=0	73)= 0 79)= 0 79)= 0	91.)= ITHS= 0
2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2	\$ 1
PRI C		\$ \$
23 FLAGS 50.145 .24306	9000	0.00000E+00 VKI 0.24452 0.0000 0E +00
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		- 15 S - 10 S - 10
SUBI FAII FAII	\$25\$	ନ ଓ ଓ ≈
88	777 222	<u>></u>
MP NO 12 FAN (1)= 1392.6 (7)= 0.00000E+(7.82 00000E+(00000E+(0000E+
21 0.0 0.0	7000	0.0
13 = 13 = 13 = 13 = 13 = 13 = 13 = 13 =	65]= 71]= 77]= 63]=	£ (69)
£		=

VRIVE

SENSOR AND ACCUMULATOR

SUPPLARY OF FLOM TO FLOM SI MATER VAPOR = 0.026 LI OXYGEN = 0.059 LI NITROGEN = 0.205 LI CARBON DIOXIDE = 0.016 LI PCT

TABLE A-3
ESCM SAMPLE PROBLEM OUTPUT

VOLUME AAIR MASS TEMP TEMP TEMP	CABIN (2)	CREM (1)	2	FROM CABIN			****		TO CABIN
AIR MASS = TEMP = DEM PT =	13-417			T= 40 9			# #T#	#L 4 47	4 27
TEMP ==			1350 0 8/MD			1			
DEM PT	-	LIC 6 =		٠ ح	SENSIBLE	-	SENSIBLE		<
-	50.7 F	*	327.0 B/HR/MAN	<	HX FAN (4)	1 1 20.5 1	K (5)	_	∢
TOTAL PRESS .		*		_	9 = 2843.	AAAAAAAA	A Q=-15773.	AAAAAAAAAAAAA	XX
OZ PRESS =	2.68 PSIA	11		^	CFM= 2100.	_		^	
CO2 PRESS =		904 200	0.2592 PPH	-		i			
GAS LEAKAGE	_					;	*		
02 HAKEUP =	0.000 PE					M=1799	¥ .66/		
N2 MAKEUP =	0.000 PPH					*	T= 60.0 *	2	CABIN
NON ECLSS 4:		CABIN				**	******	1	1391.
SENSIBLE		N= 1391.	******	*		i	^	<u> </u>	B
LATENT	255. BANK	T= 69.2	*						∢
ECLSS 4:		۷,	*T= 53.3	m.					<
SENSIBLE =		< -		1				•	-
LATENT	779. B/HR	A M= 1391.		_			M= 1390.		_
REL HUMIDITY =	51.40 PCT	V A T= 69.2	至	T= 48.7	N= 1348	<u>.</u>	T= 48.7	2	_
		(31)AAAAAAAA	AAA 19= -7874.	AAAAAAAA	9 JAAAAAAAAAAAAAA 11 JAAAAAAA	AAAAI 11 JAAA	AAAAAAAAAA		<u>₹</u>
		^ ∀	_		•	i «	^	CFH= 300.	_
		4 4		<u>-</u>		<		************	
		0.00 =N V	*	_	A HIZO SEP ((10) A H= 41.7	1.7		
		A T= 59.7	*H= 950	>	AA 14 = 13.	3	0.0		
		<u>۷</u>	*T 45	45.0	CFH = 9.	_			
FROM CABIN		<u> </u>	*****			****			
H= 0.00		•	^		x	> H20]	H20 INTERFACE: M ADDED	ĸ	0.634
= 69.2	;				1	WASSESSEE HE	0.8		
•	<u>s</u>	SAHD FAN (19)	J						
-	<u>•</u>	· ·	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	AAAAAAAAAA	RAAAAAAAA	AAAAAAAAAAAAA			
_	2	CFM= 0.		•	P= 14.70	⋖	⋖		
>	1		H= 0.00	:	H= 69.05	⋖	_		
# *	0.00		T= 69.5 A	AMINE I T		M= 69.05 A	_		
I 14 JAAAAAAAAA		AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 15	IAAAAAAAAI		AAAAAAAAAI 17 M	MAAAAAAA 18	_		
⋖	•	S	• ·		3	▼ ^	J	3	
A HZO INTERF	2FACE	S	MC02=	12= 0.005	U	4 4	T	9.0	
A M USED =	1.275	S	A MH20=	0= 2.550	Ű	<u> </u>	T=139.8	•	
I		S	-		_ u	∀	∢		
I -		H= 0.00 S	_		₩ 0.00C	≺ -	4 4		
- H H	2.55	S	_		Ü	≺ -	≺		
T= 7	0.0	S	_			⋖	≺ —		-
٠.	1 1 1	9			ပ	⋖	<u> </u>	- C05	_
- ON 10 V	Ta 83. 4 STEAM	1 1 T=290.0 S	H= 0.00		J	M= 0.00A	# 4	O. OO JACCUM	(35)
V A 1(28) 144		291 5555555125	55555	5555555555	555555(23/2	4)CCCCCCCC JA	OCCC(30)C		_
		8 < S			U	¥		#	0.442
					2	•	•	P= 29	29.86
		Ma 2.55 S			M= 0.00C	_	· -		
£ 4					•			-	
٠.)		Ó	7 20 00 -0			٠	
< ⋅		9 (- 111	-		•		- >	
< -	;	n (>		20.04		-	10 Sept 01	8
# ¥	•		1=290.0 BED 2 (ZI)	1 1(12) 2 0	1=137.0 C	A 00.0 = H		3A0 01	
AAAAAAAAAA	•	AAAAAAAAAAAAAAAAAAAAAAA (20)SSSSSSSSS	0888888888888		= 2579. CCCCCCCCC 22 JAAAAAAAAAAA	AAAAAAAAAAA		≺	Z Z
	·		> (MC02=	2= 0.111	^	^		₽ #	0.27
				1 2 2 2 2 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1				T= 70 0	c

×				X								: 1		
	CABIN ((2)		J	CREM (1)	_		FROM CABIN	7			*****	•	2
×								H= 9356.						N CABIN
-		* 8000 .	O. CU-FT	NO OF HEN	H			T= 69.4				#T= 48	•	7 7 7
		= 5%.12	12 LBM	TOTAL 9	= 15		B/HR	4		-	ĺ		<u>;</u> ,	
			in. 1	HETABOLIC	11 OF		B/HR/MAN	⋖	SENSIBLE		<u> </u>	SENSIBLE	_	<
				SENSIBLE	H		B/HR/HAN	۷	EX FAN (4)	1) T= 70.7	_	KX (5)		: ◀
		14.68	6 PSIA	LATENT			B/HR/HAN	AAAAAAA 19	14	2843. AAAAA	AAAAAAAAA Q=-16056	-16056.	IAAAAAAAAAAAA	MAAA
X CO PRESS		2.69	PSIA	02 USAGE	. o		Hdd	^	CFR=	2100.1	-			
		760				U. 2775 PI	=			1	!		1	
		, c										*		
	•	9 9		7000							H=1800	* .0		
	ċ	3									T= 60.0	* 0.	_	TO CABIN
2	L			NISK:							******	****	•	M= 1390.
		. T/065.		M* 1522.			******	ŧ			1	^		
A LAIENI			. 67	4.69 ml	•		*							•
2				∢ .			*T= 54.3	m						•
		5505.		<u> </u>		!								
	į	\$ 		≺	H= 1390. REL	0. JREL.	HUMB.				M= 1388	.98	IREL HIPE	-
X REL HUMIDITY		51.77	7 PCT	⋖ >	T= 70.8	6 HX (7)		T= 49.2	M= 1347	147.	T= 49.2			-
				(31)AA	(31)AAAAAAAAA (4=		-8880.	AAAAAAAA	AM(6	MAAAAAA	1 DAAAAA	MAAAAAA	A 10 = 478	•
25 X				· •	^	_	-	^	~	•		^	#	-
×:				4 4					A	V				-
				# × —	H= 67.19		*	_	A H20 SEP (18)	A (16)	H= 41.6	•		
				- L V	9 .		*H= 950	>	W W	₹	<u>=</u>	LC.		
				<u><</u>			*T= 45.0	•	CFM =	-		ı		
				<u> </u>		****	Ŧ							
X M= 66.82				<		^	^		*	^	H20 INI	TERFACE:	H20 INTERFACE: M ADDED =	1.743
•			; :		! :				Í	## 1000000000	H= 1.4	•		
< >			<u> </u>	3										
			2	•	₹.		MAAAAA	AAAAAAAA	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	AAAAAAAA	AAAA			
-:			_	Cr#= 15.	_			-			4 4			
> <	1		1		:	e E	١.	-	H= 0.00		-			
	H	8				T=288.6	_	-	T=180.3	H= 0.00	_ ¥ 00			
X 114 MAKAKAKAKAKA	3	MAAAA	MAAAAAA	AAAAAAAAAAAAAAAAAAAAAAA 15)SSSSSSSS	M 15 E	\$\$\$\$\$\$\$	2	1 (16) (5	(16) (7 JAAAAAAAI 18	AA(18)			
▼ ·					S	•	<u>-</u>	= 2406.	^	·	∢	TO CABIN	Z	
X H20	_	•			s		MC02=	= 0.017		U	4	H= 0.00	2	
5 : X :	= G2S1	1.966	99		S	_	MH20=	= 3.582		- 0	<	T=178.7		
* . <					s	_				_	<	•		
* ×				1	0.00 s	_			₩= 0.00C	_	· -	•		
- ×	Ï	9.0			S	_				_	· -	. −		
*	<u>"</u>	9.0			s	_			-	٠>	· <	. –	1	
V	!		******		s						٠ -		-	
x - PUR	_	T= 70	= 70.0 STEAM	T=281.9	v	I	00.0		-		1 8	; :	8	
X V A 1128	_	10000	PRESENTATION (201)	2	11.9E/24	10000	200000	999999999	70		40.00 0.004	E 4	Ξ.	125 L
- X			=0	****** · 0		2		3000000000	52)5555555	/24 PCCCCC	י אוכנ	אררכוניני ואן כככנו 30 וככככככ	.	
					3 0	, -					< ·	•	## · ····	M* 0.355
: ×				i	9					٠.	۷ ·		_	25.82
· <					9				00.00 =L	. د	<			
: >					n (_				٠.	-		_	ں
· ·					- : ^	: - :	١.		P= 14.68	_	-		_	<u>د</u>
< -	2	;			<i>y</i>	99 =H /		_	M= 67.19 (_	-		>	ப
<	00 H				S	L= 69	69.4 BED		T= 88.3	C M= 67.19	.19 A		TO 9	TO 0480 OR
X AAAAAAAAAAAA			AAAAAAA	IAAAAAAAAAAAAAAAAAAAA 20 JAAAAAAA I q	A(20)A	VAAAAA	WAI9	-988-	AAAAAAAAI 22 JAAAAAAAAAAA	2 DAAAAAAA	IAAAA		REC	RECOVERY
×			^			^	MC02=	= 0.080]	^	^	^		£	0.27
×							MH20:	MHZO= 2.046					<u>"</u>	T= 70.0
×														

.0000 = 6000.	•			TOOM CARTE			****	•	TO CABIN
. 6000.	u	CREM 11)	-	FROM CABIN M= 9361.			*		M= 9360
	CU-FT NO OF MEN	ĸ		T= 69.3			*T= 68.8		T* 63.5
_ •	LBM TOTAL 9	1755.0	B/HR B/IO/MAN	< <	ISENSTRIE	! -	ISENSTRIF	ı -	< <
= 51.2 F	SENSIBLE	= 331.7	B/HR/HAN	< <	HX FAN (4)	T= 70.5	EX (5)		< <
TOTAL PRESS = 14.69 PS		_	B/HR/MAN	AAAAAAAIQ	11	2843. AAAAAAAAA 9=-15985.	19=-15985.	AAAAAAAAAAAAA	AAA
= 2.89	PSIA 02 USAGE		H d	^	CFM= 2100.	- :	-	^	
29.2 =	2	0.33/0	Ę			ı	*	!	
0.000	. ₹					Ï	M=1827. #		
= 0.000	FROM					-	T= 60.0 *	2	CABIN
ë						Ī	******	£	
= 17065.		3.	*****				^	*_	50.5
LATENT = 255.8	B/HR T= 69.3	m	*						⋖ ·
	٠		*T= 54.1	-					< ⋅
LE = 3505.	< -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				į	9 2 2 3		< <
LAIENI * 586. B/I	< ->	T= 15%1. KCL. T= 70 % WY (Tr 40 1	M= 1348		T= 49.1	٠.	· -
03.36			-8668	4444444	9 JAAA	AAAAA(1114A	AAAAAAAAAA	Ale = 478.	¥
	<	·		^	4	<	^	Ħ	_
	4 4	. !		-		∢			!
	# V —	67.21		-	ZO SEP	H K			
	±	86.1	н	> (13. AAA T=	50.4		
2	- -	1	*T= 45.0	•	# H2	٠.			
FROM CABIN	< -	1 1	^		x	> H20	H20 INTERFACE: M ADDED	M ADDED =	2.450
		:	•		Ī	ş	1.4		•
	3		>						
	Q = 171.	IAAAAAAAA	AAAAAAAAA	AAAAAAAA	AAALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	LAKAAAAAAAA	, 5 •		
	Jun 15.	#	0.00	1	M= 20.63		< -		
M= 0.00		1=2	_	AMINE I I		M= 0.00	. –		
JAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AA(15)SSSSS	_	1 (16) CC	BED 1 (16) [CCCCCCCC(17) AAAAAAAA	JAAAAAAAI J	÷		
, actabates out	^	i vo u	* *		^	^:·	·	NI C	
MED INTERFACE		▼	14000	- 0.01/ - 2 582	ے د	< - -	A T:178 7	5 c	
		- v				-		•	
	0 #	0.00 S			M* 0.00C	-	**		
					S	<u>-</u>	۷ - ۷		
H T= 70.0		_ s			د	>	∀ ·		
	: -	ın u			.		< ·		į
<u> </u>	- /0:0 3 EM -2/5:3 3	S(25/26)SSS	n= 0.00 SSSSSSSSSSSS	55555555	26)\$	# 0.00 = H	A CCCC 30)CC	30)CCCCCCCC	1 (25) 1
Q= 0.1	Q= 0. >	S			٥	^	*	±	0.317
***					C	<	4 4		23.00
	• ±	0.00 s			M= 0.00C	-	_		į
		 		•		_			
		- >	I	7	14.69 C			-:	
H= 66.86			20.00	[2]	T= 0/.21 C	I W= 47 91	-) } }	
	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AA(20 JAAAA	į		AAAAA(2	JAAAAAAAAAA	٠,		RECOVERY
	·	-	õ		^	^	1	Ī	0.00
			200	MANAGE - 7E9					4

VOLUME 10 OF TEAN 1
NO OF TELEMENT OF THE TELEMENT

	CREM (1)	FROM CABIN	2) CREM (1) FROM CABIN X **** TO CABIN X H	***** TO CABIN * M= 9373.
TOTAL	HEN = 3			*T= 68.2 T= 63.3
	4 = 1950.0 MIC 4 = 650.0	< <	!	SENSIBLE
SE	SENSIBLE = 336.1	B/HR/HAN A LI	X FAN (4) T= 70.1 X (5) 0 = 2843. AAAAAAAAA G=-15498	HX (5) G==15498: AAAAAAAAAAAAAAA
֚֚֚֚֚֚֡֞֞֟֟֟֟ ֚֓֞֞֞֞֞֞֞֞֞֞֓֞֞֞֞֞֞֓֞֞֞֓֞	= 0.3178	^	#	_
CO2 PROD	= 0.3744	Hdd		*
			H=1880.	: *
_	FROM		T= 60.0	.o. TO CABIN
J ¥	CABIN M= 1323	*****	KKKKKKKKKK KKKKKKKKKKKKKKKKKKKKKKKKKKK	<u> </u>
: -	T= 68.8	*		
	4	#T= 54.9		
	A		M= 1488	- CMATH I HOU
- >	A T= 70.1 HX	(7) T= 49.4	H= 1347. T= 49.5	HX FAN (12)
	(31)AAAAAAAAA Q=	-9376. JAAAAAAAI	JAAAAAAAAAAAAA II JAA	MAM
	- ^ ¥ :	4 ^	^ V	> CFM= 300.
_	M M= 67.30	*	HZO SEP (10)! A N= 41.7	2
-	A T= 95.9	*H= 950. V A	= 13. AAA T=	7
_	<	*T= 45.0	CFM = 9.	
-	₹ :	· · · · · · · · · · · · · · · · · · ·	INI OCH <	H20 INTERFACE: M ADDED = 8.219
			Ī	
3	191	·>		
_		-BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	
CFM= 15	- :	EX	N= 14.07 A A A A A A A A A A A A A A A A A A A	
	± #	AMINE	T= 85.7 H= 67.30 A	
*	AAAAAAAAAAAAAAAAAAAAAAAAAAA 15 HAAAA	BED 1 (16)	AA(17)AAA	
	S		Y <	
	S	MC02= 0.089	V -	M= 0.00
	∀ •	H#420= 1.710		T : DGT = 1
	;		¥	< <
	- 0 00.00 #E			< -
	<u> </u>			
			.	A CD2
-	T=288 8 0 H		C M= 0.02A	A H= 0.02 ACCUM (32)
255	55555(55/26)555	\$55555555555555555555555555555555555555	######################################	
922.	s		Y <	<u>#</u>
:				67.78
_	M= 0.83 S		M= 0.02C A	-
	<u>.</u>	ė	· · · · · · · · · · · · · · · · · ·	
	- : - :			- >
	# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.831 AMINE	 	10 08/8 OF
:)=1 S	, ,	- 2	RECOVERY
3	MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		>	M= 0.27
		100		T= 70.0

CU-FT LBM F F PSIA PSIA	CREM (1)	FROM CABIN		* * * *	δ.;
595.01 LBM 69.3 F 52.4 F 14.70 PSIA 2.90 PSIA 3.08 PM-HG	NO OF HEN = 3	T= 69.3		# *	# 93/2.
69.3 F 52.4 F 14.70 PSIA 2.90 PSIA 3.08 HM-HG	Q = 1950.0	B/HR A			<u>.</u>
52.4 F 14.70 PSIA 2.90 PSIA 3.08 HM-HG	q = 650.0	B/HR/MAN A	SENSIBLE	SENSIBLE	_
14. /U PSIA 2. 90 PSIA 3.08 MM-NG	LE = 331.4	∢ :	HX FAN	T= 70.5 HX (5)	-
3.08 HM-HG	= 518.6	CHAN ABAAAAAA	# **	2843. AAAAAAAA 9=-11276.	IAAAAAAAAAAAAA
	02 USAGE = 0.51/8	Mdd Hdd	CFM= 2100.	_	<u></u>
-) 	!
				K :	
	300			H=ITOP:	,
١.	TOX.			* 0.09 =1	TO CABIN
3,000	CABIN			*******	M= 1392.
- 1/005. B/AR	. TS47.	******		^	T= 50.7
	67.5				≺
,	< .	#I = 54.5			≺
191					¥
865	A M= 1392. REL.	L. HUMD. I		M* 1390.	IREL. HUMD. A
EL HUMIDITY = 54.61 PCT	V A T= 70.2 HX	(7) T= 49.3	M= 1348.	T= 49.3	HX FAN (121) A
	(31)AAAAAAAAA [G=	-9029. JAAAAAAAI	9 JAAAAAAAAAAAAA 111 JAAAAAAAA	AI 11 JAAAAAAAAAAAA	AA19 = 478. IAAA
	- < V	<u> </u>	_	A	CFM= 300.
	Y Y			•	
	A M= 44.90		A THZO SEP (101)	A M= 41.7	
		****	7 = 12	AAA T= E0 4	
		4F 0		-	
	* -				
			3	A MAD TATEBOOK M ADDED	97C 9 - 43004 M .
	# 11 11 11 11 11 11 11 11 11 11 11 11 11	,	4	MACHINE TO BE	,
MASI	SAMD FAN (191)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
3				******	
CEM	-	ď	B= 16. 70		
			2 44	< -	
W- 6.6 4.7		-	? ,		
H- 44.05	- :	AMINE	- 1	H= 44.90 A	
Jaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	XX.	BED 1 1797	¥(1)	A(18)	
^	1	> 0 = -681.	· •	> A TO CABIN	BIN
M20 INTERFACE	Ŋ	IMC02= 0.2041	u	A M= 0	0.00
USED = 3.244	⋖	IMH20= 1,4591		=	Ċ
	. –				<u>,</u>
	2000				
•	3		E	< < < -	
>	<u>_</u>		- 0	۷ - V -	
M T= 70.0	_ s		> U	< - <	
† †	ب :		ပ	۷ - ۷	1 002
PUMP T=111.1 STEAM	T=290.1 S H=	0,00	Ü	H= 0.004 A M=	= 0.00 JACCUM (32)
1281 INGGOODSHIPEN 12011555555125	3351 46/36 1555555511	У.			
_	, , , , , , , , , , , , , , , , , , ,			יי ייייייייייייייייייייייייייייייייייי	:
			ا . د	¥ /	CO+.0 = L
			∀	« «	P= 29.92
	H= 0.83 S		.M= 0,000	- <	
	-s		- 0	-	_
		9			
	- ; - ;		•		، د :
	>	AMINE	. 0.00 C	_ <	ပ >
M= 0.00	S T=29	T=290.1 BED 2 (21) T=	T=159.1 C H=	0.00 A	TO 0VBD 0R
***************************************	ý		C1 22 144	********	DECOVED
	AAAAAAAAAAA EU JOSSOO		TOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTO	TAAAAAA	
A	^::-:-		· · · · · · · · · · · · · · · · · · ·	^	H= 0.27
		MH20= 2.218			T= 70.0

TRANSIENT SIMULATION

TRANSIENT SIMULATION

TRANSIENT SIMULATION

APPENDIX B

USER'S MANUAL FOR ECLSB MODEL

An extension of the original ESCM program is to develop lightweight simulation models of various life support equipment and to combine them into a system. Unlike the SAWD emulation model, these simulation models are not detailed and principally simulate the output for a given input. The system modelled consists of one air revitalization group and one waste water management group. The major components in the group are:

<u>Function</u>	Subsystem
CO ₂ Removal	Electrochemical Depolarized Concentrator
CO ₂ Reduction	Sabatier
O ₂ Generation	Static Feed Solid Polymer Electrolysis
Trace Gas Removal	Catalytic Oxidizer
Condensate Processing	Multifiltration
Urine Reclamation	Vapor Compression Distillation

The model is called ECLSB and a complete User's Manual [1] for it has been published.

APPENDIX C

SPACE STATION MODEL

C.1 INTRODUCTION

As part of the extension to the ESCM contract, a model of a potential Space Station Air Revitalization System was put together using the G189A [2] computer program. Unlike the ECLSB model described in Appendix B, this model treats only the ARS and does not treat any of the waste water and condensate storage tanks or processing equipment.

The Space Station model includes a habitat, a laboratory, four connecting nodes, and four air revitalization systems. The G189A input data set and the schematic were architectured to provide the user with a great deal of flexibility to easily swap subsystems of the same function.

The model was also planned to permit growth whereby hyperbaric chamber loads or loads from additional models could easily be added or various bussing schemes can be explored.

Lastly, an additional plotting capability was added where plots of Space Station simulation transients can be reviewed on the IBM 3179G graphic terminals and/or plotted on the Versatec plotter.

The software package used to create these plots is CAETMS [3].

C.2 DESCRIPTION OF SYSTEM

The system modelled is presented in Figures C-1 through C-14, and they are arranged in a hierarchical manner. Figure C-1 gives the overview of the entire model where rectangular blocks are used to represent groupings of equipment or a specific physical volume. The numbers in the blocks are the component number or groups of numbers which are used by G189A. The letters "P" and "S" denote primary and secondary flow paths in keeping with the G189A scheme for component flow connections [2].

Figure C-2 presents the fan, mixers, and splitters needed to represent the action of the four nodes on the air stream circulating between the habitat and laboratory modules. The nodes may also receive air from other sources like a hyperbaric chamber.

The ARS equipment for the habitat module and the laboratory module is presented in Figures C-3 and C-4. Again, rectangular blocks are used to represent groups of equipment or components. Accordingly, Figures C-5 and C-6 present the components for the cooling packages in the habitat and laboratory modules respectively. The following identifies the remaining figures::

FIGURE C-1
SPACE STATION MODEL OVERVIEW

FIGURE C-2 SPACE STATION NODES

FIGURE C-3 OVERVIEW OF HABITAT ARS

FIGURE C-4
OVERVIEW OF LABORATORY ARS

FIGURE C-5
HABITAT COOLING PACKAGES

FIGURE C-6
LABORATORY COOLING PACKAGES

FIGURE C-7
HABITAT OXYGEN GENERATORS

FIGURE C-8
LABORATORY OXYGEN GENERATORS

FIGURE C-9
HABITAT CO₂ REMOVAL UNITS

FIGURE C-10 LABORATORY CO2 REMOVAL UNITS

FIGURE C-11
HABITAT CO₂ REDUCTION UNITS

FIGURE C-12
LABORATORY CO₂ REDUCTION UNITS

FIGURE C-13
HABITAT CATALYTIC OXYDIZERS

FIGURE C-14
LABORATORY CATALYTIC OXYDIZERS

C.2 DESCRIPTION OF SYSTEM (Continued)

Package	<u> Habitat</u>	Laboratory
Oxygen Generator	C-7	C-8
CO ₂ Removal	C-9	C-10
CO ₂ Reduction	C-11	C-12
Catalytic Oxidizer	C-13	C-14

The following sections discuss the operation of the system.

C.2.1 Overall Operation

The air stream circulates through both habitats and the four nodes. First, the air leaves the habitat and splits to each of nodes 1 and 2. Inside these nodes, air from the habitat mixes with air from the corresponding laboratory nodes. This mixed air then splits and flows back to the habitat and back to the corresponding laboratory node.

Air is also drawn from the habitat and laboratory modules by ARS equipment. The ARS equipment provides air cooling, humidity removal, CO₂ removal, oxygen generation, and trace gas removal. Any oxygen generated goes into an oxygen bus which contains an oxygen storage tank. Oxygen generation equipment is supplied water from a water supply tank. At present, carbon dioxide removed by

C.2.1 Overall Operation (Continued)

each ${\rm CO}_2$ removal unit is stored in each unit's own ${\rm CO}_2$ accumulator. The architecture exists for possible ${\rm CO}_2$ bussing concepts; however, these concepts have not been explored and validated on the model. In addition, the architecture exists for a nitrogen bus for equipment purging. This architecture can be used at a future date when equipment models are developed further to simulate the effects of nitrogen purging and the need arises to explore these effects.

Air from the equipment is then altered by crew additions of ∞_2 and water vapor and by subtraction of oxygen before returning to the habitat and laboratory modules.

C.2.2 ARS Equipment Operation

Figures C-3 and C-4 show the arrangement of ARS equipment packages for the model. As shown in Figures C-5 through C-14, two units are available in each of the packages represented by a rectangle in Figures C-3 and C-4. Therefore, in the habitat, two oxygen generator units exist; and in the laboratory, two oxygen generator units exist. This gives a total of four in the modeled Space Station. The same is true for the condensing heat exchangers, \mathbf{CO}_2 removal units, \mathbf{CO}_2 reduction units, and the catalytic oxidizer units.

C.2.2 ARS Equipment Operation (Continued)

The model is configured presently to have each group of ARS equipment operate independently of the other; a group of equipment is defined as a condensing heat exchanger, an oxygen generator, a $\rm CO_2$ removal unit, a $\rm CO_2$ reduction unit, and a catalytic oxidizer. The architecture of the model is constructed to permit exploration of different plumbing configurations and bussing arrangements at a later date.

Water is drawn into the oxygen generator where oxygen and hydrogen are produced. The oxygen flows to an oxygen bus while the hydrogen flows to a CO_2 reduction unit, and if needed to a CO_2 removal unit. An EDC CO_2 removal unit requires hydrogen for operation, while a SAWD or molecular sieve do not. Air from the cooling package flows through the CO_2 removal package where CO_2 is removed from the air and then sent to mix with hydrogen before entering a CO_2 reduction package. The air now with little CO_2 returns to the cooling package.

The CO_2 and the hydrogen flow to the CO_2 reduction package where the CO_2 is reduced to a solid or gas depending upon the reduction process.

C.2.2 ARS Equipment Operation (Continued)

Air from the cooling package also flows to the catalytic oxidizers where trace gases are burned. The air then returns back to the inlet of the cooling package.

C.3 Description Of Computer Program

A description of G189A is contained in the original User's Manual [1]. The subroutines newly written for this Space Station Model are described here. These new subroutines are:

GPOLY1 = Control Logic

GPOLY2 = Control Logic

ARSS = Tabular and Graphical Output

CNDHEX = Condensing Heat Exchanger

BOSCHS = Bosch CO, Reduction

MOLSIV = Molecular Sieve CO, Removal

KOHHS = Static Feed Water Vapor Electrolysis O, Generation

FORTRAN 77 is used extensively in these newly written routines.

C.3.1 GPOLY1 Subroutine

GPOLY1 simulates the control of functions required for operating the Space Station model. Since FORTRAN 77 is used, the standard construct changes from that described in the original manual. Essentially, the construct divides the subroutine into the various control functions for the equipment. The construct is:

END IF

The following are input once at the first execution of GPOLY1; these are various options to be selected by the user:

KK(80,16) = Process Air Bus? 1 = Yes, 0 = No

 $KK(80,17) = CO_2$ Gas Bus? 0 = None, 1 = Intramod, 2 = Intermod

 $KK(80,19) = N_2 Gas Bus? 1 = Yes, 0 = No$

 $KK(80,19) = H_2 Gas Bus? 0 = None, 1 = Intramod$

KK(80,20) = Habitat O₂ Gen #1 On? 1 = Yes, 0 = No

KK(80,21) = Habitat CO_2 Removal #1 On? 1 = Yes, 0 = No

KK(80,22) = Habitat CO_2 Reduction #1 On? 1 = Yes, 0 = No

KK(80,23) = Habitat Cat. Ox. #1 On? 1 = Yes, 0 = No

 $KK(80,24) = Habitat O_2 Gen. #2 On? 1 = Yes, 0 = No$

KK(80,25) = Habitat CO_2 Removal #2 On? 1 = Yes, 0 = No

KK(80,26) = Habitat CO_2 Reduction #2 On? 1 = Yes, 0 = No

KK(80,27) = Habitat Cat. Ox. #2 On? 1 = Yes, 0 = No

KK(80,28) = Laboratory O₂ Gen. #1 On? 1 = Yes, 0 = No

KK(80,29) = Laboratory CO₂ Removal #1 On? 1 = Yes, 0 = No

KK(80,30) = Laboratory CO₂ Reduction #1 On? 1 = Yes, 0 = No

KK(80,31) = Laboratory Cat. Ox. #1 On? 1 = Yes, 0 = No

 $KK(80,32) = Laboratory O_2 Gen. #2 On? 1 = Yes, 0 = No$

KK(80,33) = Laboratory CO₂ Removal #2 On? 1 = Yes, 0 = No

KK(80,34) = Laboratory CO₂ Reduction #2 On? 1 = Yes, 0 = No

KK(80,35) = Laboratory Cat. Ox. #2 On? 1 = Yes, 0 = No

These are then used to set up the proper solution path, the fluid flow fractions for splitters, and to make any adjustments in component to component flow connections.

Printoff frequency, habitat and laboratory air conditions, and fan flows are input once at the first execution:

VV(80,55) = Printoff frequency, time steps per printoff

W(80,66) = Habitat gas mixture initial temperature, OF

W(80,67) = Habitat total pressure, pin

VV(80,68) = Habitat CO_2 partial pressure, mm Hg

W(80,69) = Habitat dew point temperature, OF

 $W(80,70) = Habitat O_2 partial pressure, psia$

VV(80,71) = Laboratory gas mixture initial temperature, OF

W(80,72) = Laboratory total pressure, psia

W(80,73) = Laboratory CO, partial pressure, mm Hg

W(80,74) = Laboratory dew point temperature, ${}^{O}F$

W(80,75) = Laboratory O₂ partial pressure, psia

VV(13,76) = Nodal mixer fan flow, cfm

W(103,76) = Cooling package fan flow, cfm

After all these values are input and various initializations done, total pressure and oxygen partial pressure control laws are executed for the habitat and the laboratory. The following are input and output from the habitat (component number 1):

Input

R(4) = Habitat total pressure, psia

R(94) = Present oxygen partial pressure, psia

Output

R(165) = Oxygen flow required into habitat, lbm/hr

R(166) = Nitrogen flow required into habitat, lbm/hr

The analogous variables are used for the component number 2 laboratory.

Following oxygen partial pressure and total pressure control is the calculation of crew metabolic loads. The following are input and output from the crew represented as component number 3:

Input

TIME = Elapsed time of simulation, sec.

W(1,104) = Habitat temperature, OF

Output

R(66) = Sensible load per man, Btu/Hr

R(67) = Latent heat load generated per man, Btu/Hr

R(82) = Total metabolic heat generated per man, Btu/Hr

The analogous variables are used for the other crew which is represented by component number 4.

Control of oxygen generation units is performed next. The four units are represented as components 141, 143, 341, and 343. The first two components are in the habitat while the three hundred series components are in the laboratory. The following are input and output from the oxygen generation control logic represented by component number 141.

Input

GENH1 = Habitat O_2 Gen. #1 On? 1 = Yes, 0 = No

R(72) = Nominal design SPE electrolysis current, amps

VV(28,72) = Pressure in the oxygen bus accumulator, psia

Output

R(69) = Actual current applied to SPE unit, amps

The condensing heat exchangers in the cooling package are followed by water separators. To model the action of the separator in its removal of entrained liquid water, GPOLY logic is employed. The following are input and output for the water separator components represented by components 93, 99, 293 and 299:

Input

A(7) = Entrained liquid entering water separator, lbm/hr

DTIME = Simulation time step, seconds

R(68) = Cumulative water removed by separator, lbm

A(1) = Total mass flow into separator, lbm/hr

A(5) = Total dry mass flow into separator, lbm/hr

A(6) = Specific heat at dry mass, flow into separator,

Btu/lbm-F

CPCONV = Specific heat of water vapor, Btu/lbm-F

Output

A(7) = New entrained liquid entering water separator, lbm-hr

A(1) = New total flow entering separator, lbm/hr

CPA = New specific heat of flow entering separator, Btu/lbm-F

R(67) = Flow of liquid water leaving separator, lbm/hr

R(68) = New cumulative water removed by separator, 1hm

Temperature of the habitat and laboratory is effected by regulating the bypass flow of air around the condensing heat exchangers. The following are input and output for the component number 90 splitter upstream of the component number 91 condensing heat exchanger:

Input

VV(1,104) = Habitat temperature, ^OF

VV(1,87) = Habitat setpoint temperature, OF

DTIME = Simulation time step, seconds

Output

R(65) = fraction of flow bypassing the heat exchanger

Following some mass balance updates for G189A is a calculation of the water flow consumed by electrolysis and the flow split of water to be divided between the habitat and laboratory oxygen generator units. The following are input and output:

Input

WV(141,67) = Habitat SPE unit #1 water demand, pph

VV(143,67) = Habitat SPE unit #2 water demand, pph

W(341,67) = Laboratory SPE unit #1 water demand, pph

W(343,67) = Laboratory SPE unit #2 water demand, pph

DTIME = Simulation time step, seconds

W(30,67) = Water consumed by SPEs to date, 1bm

Output

VV(30,67) = New water consumed by SPEs, 1bm

Next, the control of ${\rm CO}_2$ out of the accumulator to feed the ${\rm CO}_2$ reduction unit is done. The amount of flow is updated every molecular sieve cycle.

Input

VV(135,72) = Pressure in accumulator tank, psia

VV(1,104) = Habitat temperature, ^OF

W(131,65) = Molecular sieve half cycle time, minute

TIME = Elapsed time of simulation, seconds

 $W(131,87) = CO_2$ removal rate by molecular sieve, pph

DTIME = Simulation time step, seconds

Output

R(1) = Flow out of accumulator, pph

Analogous variables are used for the other ${\rm CO}_2$ accumulators and removal units.

Hydrogen vent control is accomplished by the use of flow splitter components 202 and 204 for the habitat and 402 and 404 for the laboratory. The following are the input and output:

Input

VV(135,72) = Habitat CO_2 removal unit #1 accumulator pressure, psia

RATE1 = Flow out of accumulator to reduction unit, lbm/hr

A(1) = Flow into splitter, lbm/hr

Output

R(65) = Fraction of input H_2 flow to be vented

Lastly, the flow out of the oxygen accumulator component 28 and the flow of oxygen to the habitat and laboratory are computed. For the component 28 oxygen accumulator.

Input

VV(1,104) = Habitat temperature, F

W(1,165) = Oxygen addition rate required by habitat, lbm/hr

W(2,165) = Oxygen addition rate required by laboratory, lbm/hr

Output

R(70) = Temperature of oxygen in tank, F

R(1) = Flow out of oxygen tank, lbm/hr

The flow split to the habitat and laboratory is represented by component 17:

Input

W(1,165) = Oxygen addition rate required by habitat, lbm/hr

W(2,165) = Oxygen addition rate required by laboratory, lbm/hr

Output

R(65) = Function of inlet flow to laboratory.

C.3.2 GPOLY2 Subroutine

GPOLY2 computes the mass additions to the habitat that arise from components in the primary and secondary flow streams. These additions are then input into the habitat through the R array. This is done because of the manner in which the out flow is computed for the habitat in G189A [2]. Essentially, the exit flow is set equal to the inlet flow. The mass changes only due to mass additions. The following are input and output for the component number 3 crew who are in the habitat.

Input

R(70) = Water added by crew, lbm/hr

VV(131,88) = Water removal rate of Co2 removal unit #1 in habitat, lbm/hr

VV(93,67) = Water removed by unit #1 condensing Hx, lbm/hr

WW(99,67) = Water removed by unit #2 condensing Hx, lbm/hr

VV(1,25) = Water leaving habitat to nodes, lbm/hr

W(8,6) = Water returning to habitat from nodes, lbm/hr

R(68) = Oxygen removed by crew, lbm/hr

VV(1,29) = Oxygen leaving habitat to nodes, lbm/hr

W(8,10) = Oxygen returning to habitat from nodes, lbm/hr

R(69) = CO₂ generated by crew lbm/hr

 $VV(133,87) = CO_2$ removed by molecular sieve unit #2, lbm/hr

 $VV(1,31) = CO_2$ leaving habitat to nodes, lbm/hr

 $W(8,12) = \infty_2$ returning to habitat from nodes, lbm/hr

Output

W(1,137) = Water addition rate to habitat, lbm/hr

W(1,175) = Oxygen addition rate to habitat, lbm/hr

 $W(1,177) = CO_2$ addition rate to habitat, lbm/hr

Analogous variables are used for the laboratory module.

C.3.3 ARSS Subroutine

ARSS is the subroutine which prints the output of the Space Station model and which generates a plot file for use by CAETMS [3] for generation of plots. As no significant calculations are performed in ARSS, the input and output variables are virtually identical. A complete description of the output is presented in Section C.4.

C.3.4 Component Subroutines

Models were generated for the following components:

KOHHS = Static feed water vapor electrolysis (KOH)

MOLSIV = Molecular sieve CO2 removal

 $BOSCHS = Bosch CO_2$ reduction

CNDHEX = Condensing heat exchanger

Tables C-1 through C-4 contain a listing of these programs and provide their documentation as well as a listing of their input and output.

TABLE C-1

LISTING OF KOHHS

SUBROUTINE KOHHS

```
C
      THIS SUBROUTINE MODELS A KOH ELECTROLYSIS MODULE MADE UP
C
     OF A NUMBER OF CELLS. FEEDWATER IS CONVERTED INTO HYDROGEN
C
      AND OXYGEN. PRODUCTION DEPENDS ON ELECTRICAL CURRENT APPLIED,
C
     EFFECTIVE AREA PER CELL, NUMBER OF CELLS, AND EFFICIENCIES.
C
      THE UNIT MAY BE COOLED BY GAS OR LIQUID FLOW.
C
C
      INPUTS:
C
C
      K(16) - TABLE NUMBER FOR CELL OVERALL EFFICIENCY
C
      K(17) - ALTCOM NUMBER FOR LIQUID COOLING
C
      K(18) - TABLE NUMBER FOR UA TO ALTCOM
C
      R(52) - EFFECTIVE SUMMED CONDUCTANCE (BTU/HR-F)
C
      R(54) - AMBIENT GAS TEMPERATURE (F)
C
      R(55) - AMBIENT GAS TO INSULATION UA (BTU/HR-F)
C
      R(57) - AMBIENT WALL TEMPERATURE (F)
C
      R(58) - AMBIENT WALL TO INSULATION SURFACE FA (1/SQ.FT.)
C
      R(60) - STRUCTURE TEMPERATURE (F)
C
      R(61) - CELL TO STRUCTURE UA (BTU/HR-F)
C
      R(64) - INSULATION SURFACE TO CELL UA (BTU/HR-F)
C
      R(66) - CELL POWER EFFICIENCY (%), IF CONSTANT
C
      R(67) - VALUE OF 1ST INDEP. VARIABLE FOR EFFICIENCY INTERPOL.
C
      R(68) - VALUE OF 2ND INDEP. VARIABLE FOR EFFICIENCY INTERPOL.
C
      R(69) - CURRENT (AMPS)
C
      R(70) - DELIVERY PRESSURE (PSIA)
C
      R(71) - CELL TEMPERATURE (F), FIRST GUESS
C
      R(78) - KOH CONCENTRATION (WEIGHT %)
C
      R(74) - UA BETWEEN CELL AND LIQUID COOLANT (BTU/HR-F)
C
      R(75) - VALUE OF 1ST INDEP. VARIABLE FOR UA INTERPOL.
C
      R(76) - VALUE OF 2ND INDEP. VARIABLE FOR UA INTERPOL.
C
      R(81) - TRIAL AND ERROR CONVERGENCE TOLERANCE (%)
C
      R(82) - PRODUCT OXYGEN RELATIVE HUMIDITY (%)
C
      R(88) - PRODUCT HYDROGEN RELATIVE HUMIDITY (%)
C
      R(84) - UNIT LUMPED THERMAL CAPACITANCE (BTU/F)
C
      R(85) - COMPONENT INTIAL TEMPERATURE (F)
C
      R(87) - EFFECTIVE AREA PER CELL (SQ. FT.)
C
      R(89) - NUMBER OF CELLS
C
C
      OUTPUTS:
C
 C
       R(10) - PRODUCT OXYGEN (LB/HR)
 C
       R(88) - PRODUCT HYDROGEN (LB/HR)
 C
       R(51) - CELL TEMPERATURE (F)
 C
       R(58) - COMPONENT TOTAL HEAT LOSS (EXCL. LOSS TO ALTCOM) (BTU/HR)
 C
       R(56) - HEAT LOSS TO AMBIENT GAS BY CONVECTION (BTU/HR)
       R(59) - HEAT LOSS TO AMBIENT WALL BY RADIATION (BTU/HR)
       R(62) - HEAT LOSS TO STRUCTURE BY CONDUCTION (BTU/HR)
 C
       R(68) - INSULATION SURFACE TEMPERATURE (F)
 C
       R(65) - TOTAL HEAT LOSS (SURROUNDINGS + HX) (BTU/HR)
```



```
R(71) - CELL TEMPERATURE (F)
      R(72) - ELECTROLYSIS RATE (LB H20 / HR)
C
      R(77) - FEEDWATER DISSOLVED MATTER ACCUMULATION RATE (LB/HR)
C
      R(78) - TOTAL WATER INFLOW RATE REQUIRED (LB/HR)
C
      R(79) - PREVIOUS TRIAL VALUE FOR PHI (BTU/HR)
C
      R(80) - PREVIOUS TRIAL VALUE FOR TCELL (F)
C
      R(86) - ACCUMULATED DISSOLVED MATERIAL (LB)
C
      R(88) - CURRENT DENSITY (ASF)
C
      R(90) - VOLTAGE (VOLTS)
C
      R(91) - EFFICIENCY (Z)
C
      R(92) - INPUT POWER REQUIRED (BTU/HR)
C
C
C
C
      COMMON /COMP/ DS(15),N,NA1,NB1,NC,NCAB,NCFL,NEXT,NEXV,NK,
     1 NKEX.NKS, NKT, NLFL, NP. NPASS, NPF, NPFT(6), NQ, NS, NSF, NSFT(6),
     2 NSTR(18), NSUBR, NV, NVT, Y(12)
      COMMON /RARRAY/ IMAXR,R(92)
      COMMON /ECLST1/ KCHOUT, KPRNT, KPTINV(4), KWIT, KWIT1, KWIT2,
      1 KWIT3, KWIT4, NUFF, KSTEDY
      COMMON /KANDV/ K
      COMMON /MISC/ DTIME, GRAV, KFLSYS, KOUTPT, KPDROP, KSYPAS, KTRANS,
      1 LPSUM(6), MAXCI, MAXLP, MAXSLP, MAXSSI, NCOMPS, NEWDT, NLAST, NPASPD,
      2 MINSSI, PGMIN, PLMIN, START, STEADY, TIME, TIMEMX, TMAX, TMIN, WTMAX
       COMMON /SOURCE/ A(19), B(19), CPA, CPB, IA1, IB1, NA, NB, NPFS, NPFST(6),
      1 NSFS, NSFST(6), RHOA, RHOB, VISCA, VISCB, WTMA, WTMB, XKA, XKB
       EQUIVALENCE (V(1),K(1))
       DIMENSION V(1),K(1)
                   AX(19), NPFSTX(6)
       DIMENSION
       REAL MH2,MH200,M02,MH201,NCELLS
       LOGICAL STEADY, TRANS, CNVRGE
       DATA J /0/
 C
            ARITHMETIC STATEMENT FUNCTION
 C
       QFUNC(AA,BB,CC,TC)=(AA*(TC-298.8888)+BB*(TC**2-89002.7778)/2.E+8
 C
      1+CC*(TC**8-26552495.87)/8.E+6)*1.8
       NTEFF - K(NKS + 1)
       NALT - K(NES + 2)
        NTHC - K(NES + 8)
        eff
               - R(66)
        TCELL - R(71)
               - R(79)
        PHI
               - R(80)
        TI.
        NCELLS - R(89)
        QT - 0.0
        CNVRGE - .TRUE.
        TRANS - ( .NOT. STEADY .AND. NSTR(16).EQ.0 )
        IF( KTRANS.EQ.1 .AND. TIMB.EQ.START .AND. STEADY ) R(86) - 0.0
```



```
C
C
         ELECTROLYSIS RATE
      TC - 0.0
      R(88) - R(69) / R(87)
      R(72) = NCELLS * (R(69) / 1850.0)
     MH2 - R(72)/18.0
     M02 - MH2 / 2.0
      PHI - 0.0
C
              START TRIAL AND ERROR HEAT BALANCE
C
                       INTIAL GUESS FOR TEMP
C
      TCELL - R(71)
      IF ( TCELL .EQ. 0.0 ) TCELL - 120.0
C
          DO 8500 KO - 1,100
          IF( TRANS ) QT - R(84)*(TCELL - R(85)) * 8600.0 / DTIME
C
                   FRACTION DISSOLVED SOLIDS
C
C
          IF( A(1) .LE. 0.0) THEN
                FRAC - 0.0
          ELSE
                FRAC - (A(16)+A(17)+A(18) + A(19))/A(1)
          END IF
          WATRIN
                       A(1) * (1.0 - FRAC)
C
C
                   MOLAR WATER RATES
C
          IF ( R(78) .LT.O.0101 ) THEN
                PS - PSAT(TCELL)
              IF ( (TCELL-140.)/(TCELL+459.69) .GT. 10.) THEN
                PS - -10000.
              ELSE
                PS - 0.01984 * (57.48 + 26.18 *
                       ((TCELL - 140.0)/(TCELL + 459.69)) - R(78))
     1
                      / (0.3074 * 2.777 ** (-17.66 *
     2
     8
                       (( TCELL - 140.0)/ (TCELL + 459.69) ) ))
              END IF
          END IF
C
                    MO2 / (((100.0 \pm R(70)/ PS)/ R(82)) - 1.0)
          MH200 -
                    MH2 /(((100.0 \pm R(70)/ PS)/ R(88)) - 1.0 )
     1
          MH20I - MH200 + MH2
          QSIGR - MH20I *(18.0 * (A(2) - 77.0) - 68.8 * 1800.0 ) TC - (TCELL +459.69 ) / 1.8
          QSIGP - MH2* QFUNC(6.947,-0.2,0.481,TC) + MO2*QFUNC(6.148,
                   8.10,-0.928,TC) + MH200*(QFUNC(7.256,2.80,0.288,TC)
     1
                   - 57.8 *1800.0 )
     2
          CALL QSURR
```



```
С
                  HEAT LOSS TO LIQUID COOLANT
C
C
          QLOSS - 0.0
          IF ( NALT .NE. 0 ) THEN
             CALL FLOARY (AX, NALT ,0, NPFSX, NPFSTX ,NAX1)
             CALL PROP( AX, NPFSX, NPFSTX, CPC, WTMX, RHOX, VISCX, XKX )
C
                      FIND UA
C
C
             IF( NSTR(2) .NE. 0 .AND. NSTR(2) .NE. 2 ) THEN
                R(75) - AX(1)
                R(76) - AX(2)
             END IF
             IF( NSTR(2) .NE. 0 ) THEN
                 R(74) - VALUE( NTHC, R(75), R(78) )
             END IF
             IF( AX(1).GT. 0.0 ) THEN
                   BETA = R(74) / (AX(1)*CPC)
             ELSE
                   BETA - 0.0
             END IF
             IF (BETA.GT.10.) THEN
                   TOUT - TCELL
              ELSE
                   TOUT - TCELL + ( AX(2) - TCELL) * EXP(-BETA)
              END IF
              QLOSS - AX(1) * CPC * ( TOUT - AX(2) )
              NAX - LV ( NALT,65)
              V(NAX) - QLOSS
              V(NAX +1) - TOUT
           END IF
                      QLOSS + R(58)
           QLOSS -
 C
                       FIND CELL EFFICIENCY
 C
 C
           IF( NSTR(1) .NE. 0 .AND. NSTR(1) .NE. 2 ) THEN
               R(67) - TCELL
           END IF
           IF ( NSTR(1) .NE. 0 ) THEN
               EFF - VALUE ( NTEFF, R(67), R(68) )
           END IF
           VOLTS1 - VALUE ( 1, TCELL, 0.0 )
           IF(TCELL.LT.110.) VOLTS1 - 1.70
           DVDA - VALUE ( 2, R(88), 0.0 )
           VOLTS - VOLTS1 + DVDA * ( R(88) - 150. )
            EFF - 1.48 / VOLTS * 100.
            IF( EFF .GT. 99.) EFF - 99.
 C
                          ELECTRICAL POWER
 C
```



```
C
                NCELLS * ( 1.48 * R(69) *841.8 / EFF )
          P -
C
C
                       SUM OF HEAT EFFECTS
C
          PHI
              - - QT + QSIGR - QSIGP - QLOSS + P
C
                   FIND ZERO VALUE OF PHI AS FCN OF ICELL
C
C
          IF(ABS ( PHI/( P )) .LE. R(81) /100.0 ) GO TO 4000
          IF ( KO. GT. 99 ) THEN
              WRITE(6,2600) NSUBR,N ,KO
              CNVRGE - .FALSE.
              GO TO 4000
          END IF
          ZERO - 0.0
          CALL ESTIM(TCELL, PHI, ZERO, TL, PH, ZERO, 0.5, J, NSTR(1) )
 8500
          CONTINUE
C
 4000 CONTINUE
C
      R(78) - MH20I * 18.0
      R(10) - M02 * 32.0
      R(6) = MH200 * 6.0
      R(25) - 2.0 * R(6)
      R(2) - TCELL
      R(21) - TCELL
      R(38) = MH2 * 2.0
      R(3) - R(70)
      R(4) - R(70)
      R(22) - R(70)
      R(28) - R(70)
      R(65) - QLOSS
      R(77) = R(78) * FRAC
      R(90) - VOLTS
      R(91) - EFF
      R(92) - P
C
      IF ( TRANS ) THEN
           R(86) - R(86) + R(77) * DTIME /8600.0
           R(85) - TCELL
      END IF
C
      IF( KTRANS.EQ.1 ) R(85) - TCELL
C
          ( ABS((A(1)*(1.0 -FRAC) - R(78))/ R(78)).GT..O1 ) THEN
          NCFL -1
          WRITE(6,9013) NCFL
      END IF
C
```


TABLE C-2

LISTING OF MOLSIV

SUBROUTINE MOLSIV

C MOLECULAR SIEVE SUBROUTINE C C C C VARIABLES USED: C C ABSHUM - ABSOLUTE HUMIDITY OF ENTERING AIR CMPCFM - COMPRESSOR FLOWRATE, CFM CO2AD - AMOUNT OF CO2 ADSORBED IN THE PRESENT HALF CYCLE, LB C CO2AD1 - AMOUNT OF CO2 ADSORBED IN MOLECULAR SIEVE BED #1 C IN THE PREVIOUS CYCLE, LB C CO2AD2 - AMOUNT OF CO2 ADSORBED IN MOLECULAR SIEVE BED #2 C IN THE PREVIOUS CYCLE, LB C CO2DES - AMOUNT OF CO2 DESORBED IN THE PRESENT HALF CYCLE, LB C CO2LFT - 1 - (REMOVAL EFFICIENCY, CO2RE) C CO2NET - NET CO2 FLOW IN AIR THROUGH MOLSIV SUBSYSTEM, LB/HR C CO2RE - CO2 REMOVAL EFFICIENCY C CTIME - TIME TO COMPLETE ONE FULL CYCLE, SEC C DHMS - ENTHALPY CHANGE FOR ADSORBING MOLECULAR SIEVE BED. C BTU/LB CO2 DHSG C - ENTHALPY CHANGE FOR ADSORBING SILICA GEL BED. C BTU/LB-H20 C DTIMEH - COMPUTATIONAL TIME STEP, HOURS FANCEM - FAN FLOWRATE, CFM C C FANDP - PRESSURE RISE ACROSS FAN, INCHES H20 C FANEFF - FAN EFFICIENCY C H2OAD - AMOUNT OF H2O ADSORBED IN THE PRESENT HALF CYCLE, LB C H2OAD1 - AMOUNT OF H2O ADSORBED IN SILICA GEL BED #1 C IN THE PREVIOUS CYCLE, LB C H2OAD2 - AMOUNT OF H2O ADSORBED IN SILICA GEL BED #2 C IN THE PREVIOUS CYCLE, LB C H2ODES - AMOUNT OF H2O DESORBED IN THE PRESENT HALF CYCLE, LB C H2ONET - NET H2O FLOW IN AIR THROUGH MOLSIV SUBSYSTEM, LB/HR C HCTIME - TIME TO COMPLETE ONE HALF CYCLE, SEC C HCTIMM - TIME TO COMPLETE ONE HALF CYCLE, MIN C MCAIR - MASS FLOWARTE + SPECIFIC HEAT OF BONE DRY GAS, C BTU/HR-F MCORRE - MASS FLOWRATE OF CO2 CURRENTLY ADSORBED, LB/HR

C C C C

C

C

C

C

C

C

C

C

MCO29 - MASS FLOWRATE OF CO2 CURRENTLY EXITING THE

DESORBING MOL. SIEVE BED. LB/HR

MCO2X - MASS FLOWRATE OF CO2 CURRENTLY EXITING THE ADSORBING MOLECULAR SIEVE BED

MH2OX - MASS FLOWRATE OF H2O CURRENTLY EXITING THE DESORBING SILICA GEL BED

OCO2AD - AMOUNT OF CO2 ADSORBED IN THE PREVIOUS CYCLE, LB OH2OAD - AMOUNT OF H2O ADSORBED IN THE PREVIOUS CYCLE, LB - PRESSURE INSIDE THE DESORBING MOL. SIEVE BED, PSIA

- PRESSURE OF CO2 ACCUMULATOR, PSIA

PCO2MM - CO2 PARTIAL PRESSURE OF ENTERING AIR, MM HG


```
- CO2 PARTIAL PRESSURE OF ENTERING AIR, PSIA
C
         PCO25 - CO2 PARTIAL PRESSURE EXITING ADSORBING MOL. SIEVE
C
                  BED. PSIA
C
         PCOMPR - COMPRESSOR POWER, WATTS
C
               - FAN POWER, WATTS
         PFAN
C
         PH20X - H20 PARTIAL PRESSURE EXITING DESORBING
C
                  MOL. SIEVE BED, PSIA
C
         QCOMPR - COMPRESSOR POWER, BTU/HR
C
               - FAN POWER, BTU/HR
         OFAN
C
                - HEAT REMOVED BY HEAT EXCHANGER, BTU/HR
         OHX
C
                - HEAT LOSS TO ENVIRONMENT BY MOL. SIEVE BED, WATTS
C
         QMS
                - HEAT LOSS TO ENVIRONMENT BY SILICA GEL BED, WATTS
C
         QSG
                 - TEMPERATURE OF GAS EXITING THE INLET FAN, F
C
         T2
                 - TEMPERATURE OF GAS EXITING THE ADSORBING SILICA
         T8
C
                   GEL BED. F
C
         TROLD - TEMPERATURE OF GAS EXITING THE ADSORBING SILICA
C
                   GEL BED AT THE LAST COMPUTATIONAL TIME STEP, F
C
         TSMAX - MAXIMUM TEMPERATURE OF GAS EXITING THE ADSORBING
C
                   SILICA GEL BED, F
C
                 - TEMPERATURE OF GAS EXITING THE HEAT EXCHANGER, F
         T4
C
                 - TEMPERATURE OF GAS EXITING THE ADSORBING MOL. SIEVE
         IZ
C
                   BED. F
C
         TEMIN - MINIMUM TEMPERATURE OF GAS EXITING THE ADSORBING
C
                   MOL. SIEVE BED. F
C
                 - TEMPERATURE OF GAS EXITING THE DESORBING SILICA
C
          T6
                   GEL BED. F
C
          TCABIN - TEMPERATURE OF SURROUNDING CABIN AIR, F
C
         TCOOL - TEMPERATURE OF COOLANT SUPPLIED TO HEAT EXCHANGER, F
C
          TCYCLE - ELAPSED TIME OF THE CURRENT CYCLE, SEC
C
          THCYCL - ELAPSED TIME OF THE CURRENT HALF CYCLE, SEC
C
          TMSDES - MAXIMUM MOL. SIEVE BED DESORBING TEMPERATURE, F
C
          TSGDES - MAXIMUM SILICA GEL BED DESORBING TEMPERATURE, F
C
                 - CO2 SPECIFIC VOLUME INSIDE DESORBING MOL. SIEVE BED
C
C
C
       COMMON /COMP/ DS(15), N, NA1, NB1, NC, NCAB, NCFL, NEXT, NEXY, NK,
      1 NERY, MES, NET, NLFL, NP, NPASS, NPF, NPFT(6), NQ, NS, NSF, NSFT(6),
      2 NSTR(12), NSUBR, NV, NVT, Y(12)
       COMMON /RARRAY/ IMAXR, R(160)
       COMMON /KANDV/ K
       COMMON /MAXR1/ MAXR
       COMMON /MISC/ DTIME, GRAV, KFLSYS, KOUTPT, KPDROP, KSYPAS, KTRANS,
      1 LPSUM(6), MAXCI, MAXLP, MAXSLP, MAXSSI, NCOMPS, NEWDT, NLAST, NPASPD,
      2 MINSSI, PGMIN, PLMIN, START, STEADY, TIME, TIMEMX, TMAX, TMIN, WTMAX
       COMMON /PROPTY/ CPO,CP(99),CPCONL,CPCONV,CPCO2,CPDIL,CPOXY,CPTC,
      1 GAMGAS, RHOO, RHO(99), VISCO, VISC(99), VISGAS, WIMO, WIM(99), WIMCON,
      2 WTMDIL, WTMTC, XKO, XK(99), XKGAS, XKLIQ, VISLIQ
       COMMON /SOURCE/ A(19), B(19), CPA, CPB, IA1, IB1, NA, NB, NPFS, NPFST(6),
      1 NSFS, NSFST(6), RHOA, RHOB, VISCA, VISCB, WIMA, WIMB, XKA, XKB
```



```
DIMENSION V(1), K(1)
      EQUIVALENCE (V(1),K(1))
C
                MCAIR, MCO2AD, MCO2D, MH2OX, MCO2X
      REAL
                MWN2.MWO2.MWH20.MWCO2.NDOI.MWTOI
      PARAMETER (FANCEM - 28.625, FANDP - 11., FANEFF - 0.85)
      PARAMETER (PFAN - (FANCFM * FANDP) / (8.5 * FANEFF))
      PARAMETER (QFAN - 8.414 + PFAN)
      PARAMETER (CMPCFM -1.05, PCOMPR -90.)
      PARAMETER (QCOMPR - 8.414 * PCOMPR)
      PARAMETER (DHSG - 1400., DHMS - 1800.)
      PARAMETER (CO2RE - 0.65)
      PARAMETER (CO2LFT - 1.- CO2RE)
C
                       ---- INITIALIZATIONS -
C-
C
      IF ( R(71) .EQ. 1. ) THEN
  INITIALIZATIONS:
         H20AD1 - 0.
         H20AD2 - 0.
         CO2AD1 - 0.
         CO2AD2 - 0.
         H20AD - 0.
         CO2AD - 0.
         H20DES - 0.
         CO2DES - 0.
         OH2OAD - H2OAD2
         OCO2AD - CO2AD2
         CYCLE - 0.
         R(90) - H20AD1
         R(91) - H2OAD2
         R(92) - CO2AD1
         R(98) - CO2AD2
         R(94) - H2OAD
         R(95) - CO2AD
         R(96) - R20DES
         R(97) - CO2DES
         R(98) - 0820AD
         R(90) - 0C02AD
      END IF
C
      HCTIMM - R(65)
      P7
             - R(66)
      P8
             - R(67)
      TMSDES - R(68)
      TSGDES - R(69)
      TCABIN - R(70)
      HCTIME - HCTIMM + 60.
      CTIME - 2. * HCTIME
      DTIMEH - DTIME / 8600.
```



```
R(72) - HCTIME
    R(78) - CTIME
R(74) - DTIMEH
HALF1 - R(75)
     H2OAD1 - R(90)
     H20AD2 - R(91)
     CO2AD1 - R(92)
     CO2AD2 - R(93)
     H2OAD - R(94)
CO2AD - R(95)
     H20DES - R(96)
     CO2DES - R(97)
     OH2OAD - R(98)
     OCO2AD - R(99)
     CYCLE - R(100)
            = R(101)
     T2
            - R(102)
     T8
            = R(108)
      T5
           - R(104)
      T6
      PCO2MM - VV(2,69)
      PCO2 - PCO2MM / 51.715
C
      IF( A(1) .LE. 0.) GOTO 100
            _____ CALCULATE CYCLE AND HALF-CYCLE TIME ____
C
C-
C
      TCYCLE - AMOD (TIME, CTIME)
      THEYEL - AMOD (TIME, HETIME)
      IF (TCYCLE .EQ. O.) CYCLE - CYCLE + 1.
C
                        ___ FAN -
C-
C
      FAN EXIT TEMPERATURE:
C
         T2 - A(2) + QFAN / ( A(1)*CPA )
       ABSOLUTE HUMIDITY AT FAN EXIT:
 C
         ABSHUM - ( A(6) + A(7) ) / A(5)
               ADSORBING SILICA GEL BED
 C
 C-
       MAXIMUM EXIT TEMPERATURE FROM ADSORBING STLICA GEL BED:
 C
 C
         T8MAX - T2 + ABSHUM + DHSG / CPA
       TEMPERATURE OF DRY AIR LEAVING ADSORBING SILICA GEL BED:
 C
 C
          IF ( R(71) .EQ. 1. ) THEN
             T8 - 60.
          ELSE
           IF ( THCYCL .EQ. O. ) THEN
              T8 - T6
           ELSE
```



```
IF ( THCYCL .LT. 600. ) THEN
              SLOPSG - ( T8MAX-T8 ) / ( 600.-THCYCL )
              T8 - T8 + SLOPSG * DTIME
              IF ( T8 .GE. T8MAX ) T8 - T8MAX
           ELSE
              T8 - T8MAX
           END IF
         END IF
        END IF
C
    WATER REMOVED BY THE ADSORBING SILICA GEL BED:
C
        H2OAD - H2OAD + (A(6) + A(7)) * DTIMEH
C
C-
                    --- BEAT EXCHANGER -
C
C
    TEMPERATURE AND MASS FLOW OF COOL, DRY AIR LEAVING HX:
        TCOOL - R(76)
        T4 - TCOOL + 5.
        MCAIR - A(5) + A(8)
        QHX - MCAIR * (T8 - T4)
C
              ----- ADSORBING MOLECULAR SIEVE BED -
C-
C
C
    CO2 ADSORBED BY ADSORBING MOLECULAR SIEVE BED:
        MCO2AD - A(12) * CO2RE
        CO2AD - CO2AD + MCO2AD + DTIMEH
C
C
    PARTIAL PRESSURE OF CO2 REMAINING IN THE DRY, CO2 DEFICIENT AIR
C
    EXITING THE ADSORBING MOLECULAR SIEVE BED:
        PCO25 - PCO2 * CO2LFT
        MCO2X - A(12) * CO2LFT
C
    MINIMUM EXIT TEMPERATURE OF ADSORBING MOLECULAR SIEVE BED:
C
        T5MIN - T4 + (MCO2AD * DHMS) / MCAIR
C
    ACTUAL EXIT TEMPERATURE OF ADSORBING MOLECULAR SIEVE BED:
       IF ( THEYEL .EQ. O.) To - TMSDES
       IF ( R(71) .EQ. 1. ) T5 - T4
       IF (THEYEL .NE. O. .AND. THEYEL .LT. 1800.) THEN
          SLOPMS - (TEMIN - TE) / (1800. - THCYCL)
          To - To + SLOPMS * DTIME
          IF ( To .LE. Tomin ) To - Tomin
        RLSR
          TS - TSMIN
        END IF
C
C-
                 — DESORBING SILICA GEL BED ———
C
    ACTUAL EXIT TEMPERATURE OF WETTED, CO2 DEFICIENT AIR
C
   LEAVING THE DESORBING SILICA GEL BED:
```


LISTING OF MOLSIV

```
IF(THCYCL .EQ. 0.) T6 - R(102)
C
        IF (TIME .LT. 8600.) THEN
           T6 - T5
        ELSE
           IF ( THCYCL .LT. 1020.) THEN
              SLSGD - ( TSGDES - T6) / (1020.-THCYCL)
              T6 - T6 + SLSGD * DTIME
              IF( T6 .GT. TSGDES) T6 - TSGDES
           IF ( THCYCL .EQ. 1020.) T6 - TSCDES
           IF ( THCYCL .GT. 1020. .AND. THCYCL .LT. 2040.) THEN
              SLSGD - (T5MIN - T6)/ (2040. - THCYCL)
              T6 - T6 + SLSGD * DTIME
              IF(T6 .LT. T5MIN) T6 - T5MIN
           IF(THCYCL .GE. 2040. .AND. THCYCL .LT. 8600.) T6 - TEMIN
        END IF
C
    WATER EXITING THE DESORBING SILICA GEL BED:
        PH2OX - PSAT(T6)
        MH20X = (18./A(9)) * (PH20X / (A(8)-PH20X)) * A(5)
        H2OD - H2ODES
        H2ODES - H2ODES + MH2OX*DTIMEH
        IF ( H2ODES .GE. OH2OAD ) THEN
           MH2OX - (OH2OAD-H2OD)/DTIMEH
           H20DES - OH20AD
        END IF
    HEATER POWER TO DESORBING SILICA GEL BED:
      IF(THCYCL .LT. 240.) THEN
        PHTR - 0.
      ELSE
        PHTR - 657.
      END IF
      OHTR - PHTR + 8.418
    AVERAGE HEAT GIVEN UP BY DESORBING SILICA GEL BED TO CABIN:
C
        QSG - 22. * (TSGDES - TCABIN) / 110.
C
               --- DESORBING MOLECULAR SIEVE BED -
C-
C
    CO2 DESORPTION OF MOLECULAR SIEVE BED
C
         IF (THCYCL .GE. 480.) THEN
           V7 - 85.8*(T4+460.) / (P7*144.)
           FACT - 1.01 - 0.01*(P8/P7)**0.769
           MCO2D - FACT * CMPCFM/ V7 * 60.
           MCO2D - 0.
         END IF
```


LISTING OF MOLSIV

```
CO2D - CO2DES
        CO2DES - CO2DES + MCO2D * DTIMEH
        IF ( CO2DES .GE. OCO2AD ) THEN
          MCO2D - (OCO2AD-CO2D)/DTIMEH
          CO2DES - OCO2AD
        END IF
C
    AVERAGE HEAT GIVEN UP BY DESORBING MOLEC. SIEVE BED TO CABIN:
C
        QMS - 46. * (TMSDES - TCABIN) / 290.
C
C-
          ---- UPDATES AT THE END OF ONE HALF-CYCLE -
C-
C
      IF (THCYCL .EQ. O. ) THEN
         IF (HALF1 .EQ. 1.) THEN
            H20AD1 - H20AD
            OH2OAD - H2OAD1
            CO2AD1 - CO2AD
            OCO2AD - CO2AD1
            H2OAD - H2OAD2 - H2ODES
            CO2AD - CO2AD2 - CO2DES
            H20DES - 0.
            CO2DES - 0.
            HALF1 - 0.
         ELSE
            H20AD2 - H20AD
            OH2OAD - H2OAD2
            CO2AD2 - CO2AD
            OCO2AD - CO2AD2
            H2OAD - H2OAD1 - H2ODES
            CO2AD - CO2AD1 - CO2DES
            H20DES - 0.
            CO2DES - 0.
            HALF1 - 1.
         END IF
      END IF
      IF( A(1) .LE. O. ) THEN
100
          ME20X - A(6)
          MC02X - A(12)
           MC029 - 0.
           QHTR - 0.
           QHX - 0.
           QSG - 0.
           QMS - 0.
           H20AD - 0.
           CO2AD - 0.
           H20DES - 0.
           CO2DES - 0.
           CYCLE - 0.
           T2 - A(2)
```


LISTING OF MOLSIV

```
T8 - A(2)
   TS - A(2)
   T6 - A(2)
END IF
CO2NET - A(12)-MCO2X
H20NET - A(6)+A(7)-MH20X
IF(R(71) .EQ. 1.) R(71) = 0.
T80LD - T8
R(2) - T6
R(3) - A(8)
R(4) = A(4)
R(6) - MH20X
R(7) - 0.
R(10) - A(10)
R(11) - A(11)
R(12) - MCO2X
R(21) - R(70)
R(22) - P8
R(28) - P8
 R(81) - MCO2D
 R(71) - 0.
 R(75) - HALF1
 IF( A(1) .LE. O.) THEN
    R(81) - 0.
    R(82) = 0.
 ELSE
    R(81) - QCOMPR
    R(82) - QFAN
 END IF
 R(83) - QHTR
 R(84) - QHX
 R(85) - QSC
 R(86) - QMS
  R(87) - CO2NET
  R(88) - H20NET
  R(90) - H20AD1
  R(91) - H2OAD2
  R(92) - CO2AD1
  R(98) - CO2AD2
  R(94) - H20AD
  R(95) - CO2AD
  R(96) - H20DES
  R(97) - CO2DES
  R(98) - OH2OAD
  R(99) - OCO2AD
  R(100) - CYCLE
   R(101) - T2
   R(102) - T8
   R(108) - T5
   R(104) - T6
```


C

C

C

C

C

C

C

C

C

C

TABLE C-3

```
SUBROUTINE BOSCHS
C
C
      THIS SUBROUTINE MODELS A BOSCH REACTOR SYSTEM, CONSISTING OF THE
      REACTOR, A REGENERATIVE HEAT EXCHANGER, A COMPRESSOR, AND A CON-
C
C
      DENSER.
      REAL MRECYC, MH2CE, MCO2CE, MCH4CE, MCOCE, MH2OCE, MPRC, MASSC
      REAL IDNUM, MWCMPO
      COMMON
              /CASE/
                          NCASE, NRSCS, NRECS
      COMMON /COMP/ DS(15), N, NA1, NB1, NC, NCAB, NCFL, NEXT, NEXY, NK,
    1 NKEX, NKS, NKT, NLFL, NP, NPASS, NPF, NPFT(6), NQ, NS, NSF, NSFT(6).
    2 NSTR(18), NSUBR, NV, NVT, Y(12)
     COMMON /ECLST1/ KCHOUT, KPRNT, KPTINV(4), KWIT, KWIT1, KWIT2,
    1 KWIT8, KWIT4, NUFF, KSTEDY
     COMMON /GPOLYF/
                         ICPOLY
     COMMON /KANDY/ K
     COMMON /KASE/ NEWRUN, LASTGO, NUCASE, KASAVE
     COMMON
              /KLOC/ IK, IKC, IKS, IKT, IKEX, IP1
     COMMON /MAXR1/ MAXR
     COMMON /MISC/ DIIME, GRAV, KFLSYS, KOUTPT, KPDROP, KSYPAS, KTRANS,
    1 LPSUM(6), MAXCI, MAXLP, MAXSLP, MAXSSI, NCOMPS, NEWDI, NLAST, NPASPD,
    2 MINSSI, PCMIN, PLMIN, START, STEADY, TIME, TIMEMX, TMAX, TMIN, WIMAX
     COMMON /PROPTY/ CPO.CP(99), CPCONL, CPCONV, CPCO2, CPDIL, CPOXY, CPTC,
    1 GAMGAS, RHOO, RHO(99), VISCO, VISC(99), VISGAS, WIMO, WIM(99), WIMCON,
    2 WTMDIL, WTMTC, XKO, XK(99), XKGAS, XKLIQ, VISLIQ
     COMMON /RARRAY/ IMAXR, R(105)
     COMMON /SOURCE/ A(19), B(19), CPA, CPB, IA1, IB1, NA, NB, NPFS, NPFSI(6),
    1 NSFS, NSFST(6), RHOA, RHOB, VISCA, VISCB, WTMA, WTMB, XKA, XKB
     COMMON /YLENTH/ ISSO, ISS(100), IQLO, IQL(100), ITRO, ITR(100)
     COMMON /VLOC/ IP, IS, IC, IQ, IV, IVT, IEX, INEXK
     COMMON /VPRT/ SLPATH(400), ALPHA(100), ISLP1
     DIMENSION V(1), K(1)
     DOUBLE PRECISION ALPHA
     EQUIVALENCE (V(1),R(1))
     LOGICAL STEADY
  INPUTS:
     A(12) - CO2 INLET FLOW (LB/HR)
    A(14) - H2 INLET FLOW (LB/HR)
    B(2) - INLET COOLANT TEMPERATURE (F)
    R(66) - MAX. CARBON LOADING FOR CARTRIDGE (LB): CMAX
    R(66) - DRY BASIS VOLUME FRACTION OF CO2 IN EXIT GASES: FRCO2
    R(67) - DRY BASIS VOLUME FRACTION OF H2 IN EXIT GASES: FRH2
    R(68) - DRY BASIS VOLUME FRACTION OF CH4 IN EXIT GASES: FRCH4
    R(69) - DRY BASIS VOLUME FRACTION OF CO IN EXIT GASES: FRCO
    R(70) - EFFECTIVENESS FACTOR FOR CONDENSER: EC
    R(71) - EFFECTIVENESS FACTOR FOR REGEN HX:
    R(78) - REACTOR PRESSURE (PSIA): PRCTR
    R(74) - CONDENSER PRESSURE (PSIA): PCOND
```



```
R(76) - AERODYNAMIC EFFICIENCY OF COMPRESSOR:
                                                       AECOMP
      R(77) - MOTOR EFFICIENCY OF COMPRESSOR:
C
      R(78) - DESIRED REACTOR TEMP (F): TRCTRD
C
      R(79) - RECYCLE FLOW RATE (LB/HR): MRECYC
C
C
   OUTPUTS:
C
C
      R(1) = PRODUCT WATER (LB/HR): PRH20
C
      R(2) = PRODUCT WATER TEMP (F): TPRH20
C
      R(7) = R(1) = PRODUCT WATER (LB/HR)
C
      R(51) - BOSCH REACTOR TEMP (F): TRCTR
C
      R(53) - TOTAL HEAT LOSS TO AMB. (REACTOR + COMPRESSOR). RTU/HR:
C
                   QLR + QLCOMP
C
      R(72) - HEAT LOSS TO AMBIENT FROM REACTOR, BTU/HR: QLR
C
      R(80) - MASS RATE OF H2 OUT OF COMPRESSOR (LB/HR): MH2CE
C
      R(81) - MASS RATE OF CO2 OUT OF COMPRESSOR (LB/HR): MCO2CE
      R(82) - MASS RATE OF CH4 OUT OF COMPRESSOR (LB/HR): MCH4CE
C
C
      R(88) - MASS RATE OF CO OUT OF COMPRESSOR (LB/HR): MCOCE
C
      R(84) - MASS RATE OF H20 OUT OF COMPRESSOR (LB/HR): MH20CE
C
      R(85) - RATE OF CARBON PRODUCTION (LB/HR): MPRC
C.
      R(86) - MASS OF CARBON IN CARTRDIGE (LB): MASSC
      R(87) - IDENTIFICATION NUMBER OF CARTRDIGE IN USE: IDNUM
C
C
      R(88) - MOLECULAR WEIGHT OF GASES OUT OF COMPRESSOR (LB/LB MOLE):
C
                   MWCMPO
C
      R(89) - SPECIFIC HEAT OF GASES OUT OF COMPRESSOR (BTU/LB-F):
C
                   CPCMPO
C
      R(90) - SPECIFIC HEAT RATIO OF GASES OUT OF COMPRESSOR (CP/CV):
C
                   GAMCMO
      R(91) - CONDENSER HEAT LOAD (BTU/HR): QLCOND
C
      R(92) - HEAT LOSS TO AMBIENT FROM COMPRESSOR (BTU/HR): QLCOMP
C
      R(98) - HEAT OF REACTION (BTU/HR): QRXN
C
      R(94) - ACTUAL HEATER POWER BEING DRAWN (BTU/HR): QHTRNO
      R(95) - TEMP OF GASES LEAVING REACTOR (F): T1
C
      R(96) - TEMP OF GASES ENTERING REACTOR (F): T5
      R(97) - TEMP OF GASES ENTERING CONDENSER (F): T2
C
      R(98) - TEMP OF GASES LEAVING COMPRESSOR (F): T4
C
      R(99) - TEMP OF GASES LEAVING CONDENSER (F): T3
C
C
      R(100) - TEMP OF GASES ENTERING COMPRESSOR (F): T6
C
      R(101) - THERMAL CAPACITANCE OF BOSCH REACTOR (BTU/F):
C
               (INITIAL VALUE IS MODIFIED AS CARBON DEPOSITS)
C
      R(102) - REACTOR TEMP BELOW WHICH HEATER TURNS ON, F
C
      R(108) - REACTOR TEMP ABOVE WHICH HEATER TURNS OFF, F
C
      R(104) - REACTOR TEMP AT PREVIOUS STEP. F
C
      R(105) - TOTAL POWER TO COMPRESSOR (WATTS): QCOMPT
C
C
      ITRATE -0
C
      IF(NPASS.EQ.O) THCAPO - R(101)
C
```



```
TRCTR - R(51)
     CMAX - R(65)
     FRC02 - R(66)
     FRH2 - R(67)
     FRCH4 - R(68)
     FRCO - R(69)
            - R(70)
     EC
            - R(71)
     EHX
            = R(72)
      QLR
      PRCTR - R(73)
      PCOND - R(74)
      QHTR - R(75)
      AECOMP - R(76)
      ECOMP - R(77)
      TRCTRD - R(78)
      MRECYC - R(79)
C
C
C
      CALCULATE MOLECULAR WEIGHT OF BONE DRY RECYCLE GASES
      IF ( A(14) .EQ. 0.) THEN
        WMH2 - 0.
      ELSE
        WMH2 - A(14)/2.016
      END IF
      WMC02- A(12)/44.011
      XWBDG - 16.043*FRCH4 + 44.011*FRC02 + 2.016*FRH2 + 28.011*FRC0
C
c -
      BEGIN ITERATION ON MASS AND HEAT BALANCES
C
      ASSUME THAT TEMPERATURE OF GASES OUT OF CONDENSER IS 20 DEC ABOVE
C
      INLET COOLANT TEMPERATURE, AS A FIRST GUESS.
C
      TSOLD - B(02) + 20.
      T8 - T30LD
C
C
      CALCULATE PARTIAL PRESSURE OF WATER IN CONDENSER EXIT GASES
C
C
C
C
C
C
C
C ·
      CALCULATE RATE OF CARBON FORMATION AND WATER PRODUCTION
C
      SEE IF REACTANTS ARE WITHIN 1 PERCENT OF STOICHIOMETRIC RATIO
C
      NX - NKS+1
      IF (WMH2 .EQ. O.) THEN
          TEST - 999.
      ELSE
```



```
TEST - WMCO2/WMH2 * 2.0 - 1.
     END IF
     K(NX) - 1
     IF( ABS(TEST) .LE. .01 ) K(NX) = 0
     TEST1 - A(10)+A(11)+A(18)+A(16)+A(16)+A(17)+A(18)+A(19)
     TEST FOR EXTRANEOUS FLOWS IN FEED SUCH AS 02 AND DILUENT
C
     NX1- NX+1
     K(NX1) = 0
     IF( TEST1 .NE. 0. ) K(NX1)-1
C .
     SEE WHICH IS LIMITING REACTANT
      IF(TEST .LE. 0.0) THEN
          CO2 LIMITING, HYDROGEN RICH FEED.
C
          MPRC - WMCO2 *12.011
                     WMCO2 *2. * 18.016 + A(6) + A(7)
          PRH20 -
      ELSE
          H2 LIMITING, CO2 RICH FEED
C
          MPRC - WMH2 * .5 * 12.011
          PRH20 - WMH2 * 18.016 + A(6) + A(7)
      END IF
C
C
      CALCULATE TOTAL FLOW OUT OF CONDENSER
C
      WCONDO - MRECYC - PRH20 - MPRC
      WATERO - PRH20
      DUM1 - 18.016/XWBDG
C
C
      CALCULATE COMPRESSOR FACTORS THAT STAY CONSTANT DURING ITERATIONS
C
      PRATIO - PRCTR/PCOND
C
C
C
C
      DO 200 IB - 1,20,1
C
      PW - PSAT( T8 )
      ITRATE - ITRATE + 1
C
C
 C
      CALCULATE FLOW RATE OF BONE DRY GAS
 C
                       /(1.+DUM1* PW/(PCOND-PW) )
      WBDG-WCONDO
 C
 C
       CALCULATE FLOWS OUT OF COMPRESSOR
 C
       BDGMOL- WBDG/XWBDG
       WATER - BDGMOL * PW/PCOND * 18.016
 C
       MH2CE - A(14) + BDGMOL * FRH2 * 2.016
```



```
C
      C02
      MCO2CE - A(12) + BDGMOL * FRCO2 * 44.011
C
      MCH4CE - BDGMOL * FRCH4 * 16.048
C
      MCOCE - BDGMOL * FRCO * 28.011
C
      H20
      MH2OCE - WATER + A(6) + A(7)
      CPBDG =((MH2CE-A(14))*8.42 + (MCO2CE-A(12))*.21 + MCH4CE* .55
     1 + MCOCE*.25 + R(10)*0.22 + R(11)*0.249) /WBDG
      CALCULATE MOLECULAR WEIGHT OF GASES OUT OF COMPRESSOR
C
      MWCMPO - MRECYC/(MH2CE/2.016 + MCO2CE/44.011 + MCH4CE/16.048
     1 + MH2OCE/18.016 + MCOCE/28.011 + R(10)/82. + R(11)/28.008)
      CALCULATE SPECIFIC HEAT OF COMPRESSOR GASES
C
      CPCMPO -(8.42*MH2CE + .21 * MCO2CE + .55 * MCH4CE + .25 * MCOCE
     1 + .49 * MH2OCE + 0.22*R(10) + 0.249*R(11) )/ MRECYC
C
      WCOMPR - MH2CE+MCO2CE+MCH4CE+MCOCE+MH2OCE
      WCPCMP - WCOMPR + CPCMPO
      CALCULATE GAMMA OF COMPRESSOR GASES
C
      GAMCMO - CPCMPO/( CPCMPO - 1.987/MWCMPO )
C
C
      CALCULATE ISENTROPIC POWER REQUIREMENT(BTU/HR)
C
      FIRST CALCULATE TEMP AT MIX POINT
C
            -((WBDG *CPBDG + .49*WATER)* T8 + ( A(12)*.21+A(14)*8.42
     1 + A(6) * .49 + A(7) * 1.0 ) * A(2))/MRECYC/CPCMPO
      T0 - 459.6 + T6
      XN = (GAMCMO-1.)/GAMCMO
      QCOMP - MRECYC *1545. *TO *GAMCMO *(PRATIO **XN-1.)/778./MWCMPO/
     1 (GAMCMO - 1.)/ AECOMP
      TOTAL POWER TO COMPRESSOR(WATTS)
C
      QCOMPT - QCOMP/ECOMP/8.41
      HEAT FLOW FROM COMPRESSOR TO AMBIENT(BTU/HR)
C
      QLCOMP - QCOMPT*8.41 - QCOMP
C
C
      HEAT OF REACTION(BIU/HR)
C
      QRXN - 978. * A(12)
C
C
      TEMPERATURE OUT OF COMPRESSOR
C
      T4 - T6 + QCOMP/MRECYC/CPCMPO
C
C
      TEMPERATURE OUT OF REACTOR
C
      T1 - TRCTR - QLR / WCPCMP
C
```



```
TEMPERATURE INTO CONDENSER
C
          - T1 - EHX*( T1 - T4 )
C
C ·
      TEMPERATURE OF GASES LEAVING CONDENSER
C
      T8 = T2 - EC * (T2 - B(2))
C
C
      THIS COMPLETES ONE ITERATION ON THERMAL BALANCE
C
C
C
      TESTT - TBOLD - TB
      T80LD - T8
      IF ( ABS(TESTT).LT. .8 .OR. ITRATE .GT. 10 ) GO TO 250
      CONTINUE
200
C
C
C
C
C
C
      CONTINUE
250
C
      HEAT INTO RECYCLE GASES BY THE REACTOR
C
       Q42 - WCPCMP * (T2 - T4)
       Q51 - Q42
       TEMPERATURE INTO REACTOR
C
       T5 - T1 - Q51/WCPCMP
       TOTAL HEAT LOST TO ENVIRONMENT
C
       QLTOT - QLR + QLCOMP
       R(88) - OLTOT
       HEATER SIZING
 C
       QHTR - Q51 + QLR - QRXN
       R(75) - QHTR
       OHTRNO - QHTR
 C
 C
       CALCULATE CARBON LOADING
 C
       DHOUR - DTIME/8600.
       IF( STEADY ) THEN
             IDNUM - 0.
             MASSC - CMAX/2.
            TRCTR - TRCTRD
       END IF
 C
 C
       HEATER CONTROL LOGIC
 C
       IF ( TRCTR .LT. R(102) ) QHTRNO - QHTR
IF ( TRCTR .GT. R(103) ) QHTRNO - 0.
        R(104) - TRCTR
```



```
C
C
      IF( .NOT. STEADY) THEN
C
      CALCULATE LBS OF CARBON IN CARTRIDGE
           IF( NPASS .EQ. 0 ) THEN
                MASSC-0.
           END IF
           IF ( MASSC .GE. CMAX ) THEN
                MASSC - 0.
                R(101) - THCAPO
                IDNUM - IDNUM + 1.
           END IF
           MASSC - MASSC + MPRC * DHOUR
           R(101) - R(101) + MASSC*.5
           TRCTR - (MRECYC*(T1-T5)*CPCMPO-R(58)+
                    QRXN + QHTRNO) + DHOUR/R(101) + TRCTR
      END IF
C
C
      QLCOND - (WBDG * CPBDG +PRH20*.49)*(T2- T8) +1050.*PRH20
      R(1) - PRH20
      R(2) - T8
      R(8) - A(4)
      R(4) - PCOND
     R(7) - WATERO
     R(8) - CPCONL
     R(9) - WIMCON
     R(20) - B(1)
     R(21)- B(2) + QLCOND/B(1)/CPB
     R(22) - B(4)
     R(28) - B(4)
     R(80) - MH2CE
     R(81) - MCO2CE
     R(82) - MCH4CE
     R(88) - MCOCE
     R(84) - MH20CE
     R(85) - MPRC
     R(86) - MASSC
     R(87) - IDNUM
     R(88) - MWCMPO
     R(89) - CPCMPO
     R(90) - GAMCMO
     R(91) - QLCOND
     R(92) - QLCOMP
     R(98) - QRXN
     R(94) - QHTRNO
     R(95) - T1
     R(96) - TS
     R(97) - T2
     R(98) - T4
```


LISTING OF BOSCHS

R(99) - T8 R(100) - T6 R(105) - QCOMPT

C

RETURN

C

END

TABLE C-4

```
SUBROUTINE CNDHEX
C
      THIS SUBROUTINE COMPUTES THE PERFORMANCE OF A PLATE FIN
C
      CONDENSING HEAT EXCHANGER.
C
      COMMON /PROPTY/ CPO,CP(99),CPCONL,CPCONV,CPCO2,CPDIL,CPOXY,CPTC,
     1 GAMGAS, RHOO, RHO(99), VISCO, VISC(99), VISGAS, WIMO, WIM(99), WIMCON,
     2 WIMDIL, WIMIC, XKO, XK(99), XKGAS, XKLIQ, VISLIQ
      COMMON /CANYHX/ FINAL,CC,CH,XCP(2),KBUZ(3)
     1. IFCPP, IFCPS, IFPTEM, IFSTEM, IFSIZE, IFFLOW
      COMMON /COMP/ DS(15), N. NA1, NB1, NC, NCAB, NCFL, NEXT, NEXY, NK,
     1 NKEX, NKS, NKT, NLFL, NP, NPASS, NPF, NPFT(6), NQ, NS, NSF, NSFT(6),
     2 NSTR(18), NSUBR, NV, NVT, Y(12)
      COMMON /RARRAY/ IMAXR, R(128)
      COMMON /MISC/ DTIME.GRAV.KFLSYS, KOUTPT, KPDROP, KSYPAS, KTRANS,
     1 LPSUM(6), MAXCI, MAXLP, MAXSLP, MAXSSI, NCOMPS, NEWDT, NLAST, NPASPD,
      2 MINSSI, PGMIN, PLMIN, START, STEADY, TIME, TIMEMX, TMAX, TMIN, WTMAX
      COMMON /SOURCE/ A(19), B(19), CPA, CPB, IA1, IB1, NA, NB, NPFS, NPFST(6),
      1 NSFS, NSFST(6), RHOA, RHOB, VISCA, VISCB, WTMA, WTMB, XKA, XKB
       EQUIVALENCE ( RT(1), R(79))
       DIMENSION RT(1)
       EQUIVALENCE(INSTR(1), NSTR(1))
       DIMENSION INSTR(18)
       LOGICAL STEADY, FINAL
       REAL PTOT, PPTHK, INWPP, INABSH, MDOTL
       INTEGER COOLPO
 C
       DEFINITION OF PARAMETERS
 C
 C
       INPUTS:
 C
       HOTEW - HOT FLOW WIDTH (INCHES)
 C
       HOTFLL - HOT FLOW LENGTH (INCHES)
       NCOOLP - NUMBER OF COOLANT PASSES
       NCFILL - NUMBER OF COLD FIN LAYERS
       NHFINL - NUMBER OF HOT FIN LAYERS
       CFINHT - COLD FIN HEIGHT (INCHES)
       HFINHT - HOT FIN HEIGHT (INCHES)
       CFINTE - COLD FIN THICKNESS (INCHES)
 C
        HFINTE - HOT FIN THICKNESS (INCHES)
        NCFIN - NUMBER OF COLD FINS
        NHFIN - NUMBER OF HOT FINS
 C
        CFINK - COLD FIN THERMAL CONDUCTIVITY
 C
        HFINK - HOT FIN THERMAL CONDUCTIVITY
 C
 C
        INTERMEDIATE:
 C
  C
               - COLD FLOW LENGTH (INCHES)
  C
        CFL
        CSSAR - COLD SECONDARY SURFACE AREA (FT-2)
  C
        HSSAR - HOT SECONDARY SURFACE AREA (FT-2)
```



```
CPRSA - COLD PRIMARY SURFACE AREA (FT-2)
     HPRSA - HOT PRIMARY SURFACE AREA (FT-2)
C
     TCSA - COLD SIDE TOTAL SURFACE AREA (FT-2)
C
           - HOT SIDE TOTAL SURFACE AREA (FT-2)
C
     THSA
     CFLWA - COLD FLOW AREA (FT-2)
C
     HFLWA - HOT FLOW AREA (FT-2)
C
     CHYDRD - COLD HYDRAULIC DIAMETER (FT)
C
     HHYDRD - HOT HYDRAULIC DIAMETER (FT)
C
     INABSH - INLET ABSOLUTE HUMIDITY
C
     INWPP - INLET WATER VAPOR PARTIAL PRESSURE (PSIA)
C
           - INLET DEW POINT (F)
C
     DPIN
     OUTWPP - OUTLET WATER VAPOR PARTIAL PRESSURE (PSIA)
C
C
     OUTABH - OUTLET ABSOLUTE HUMIDITY
     QLAT - LATENT HEAT LOAD (BTU/HR)
C
     QSENS - SENSIBLE HEAT LOAD (BTU/HR)
C
     QTOT - TOTAL HEAT LOAD (BTU/HR)
C
            - FACTOR OF SAFETY
C
     FS
            - COOLANT OUTLET TEMPERATURE (F)
C
     COUT
     CYISC - COOLANT VISCOSITY (LB/FT-HR)
C
     HVISC - HOT VISCOSITY (LB/FT-HR)
     CCOND - COLD THERMAL CONDUCTIVITY (BTU/HR-FT-F)
     HCOND - HOT THERMAL CONDUCTIVITY (BTU/HR-FT-F)
     CPRAND - COLD PRANDLT NUMBER
     HPRAND - HOT PRANDLT NUMBER
     CFLWUA - COLD FLOW PER UNIT AREA (LB/HR-FT-2)
     HFLWUA - HOT FLOW PER UNIT AREA (LB/HR-FT-2)
     CRENNO - COLD REYNOLDS NUMBER
     HRENNO - HOT REYNOLDS NUMBER
     CCOBRN - COLD COBURN FACTOR
     HCOBRN - HOT COBURN FACTOR
     CCFMOD - COLD MODIFIED COBURN FACTOR
     HCFMOD - HOT MODIFIED COBURN FACTOR
      CFCOF - COLD FILM COEFFICIENT (BTU/HR-FT2-F)
      HFCOF - HOT FILM COEFFICIENT (BTU/HR-FT2-F)
      COFINE - COLD OVERALL FIN EFFICIENCY
      HOFINE - HOT OVERALL FIN EFFICIENCY
      CEFC - COLD EFFECTIVE FILM COEFFICIENT (BTU/HR-FT2-F)
           - HOT EFFECTIVE FILM COEFFICIENT (BTU/HR-FT2-F)
      HACEFF - COLD EFFECTIVE UA (BTU/HR-F)
      HAREFF - HOT EFFECTIVE UA (BTU/HR-F)
      TEDUA1 - TOTAL DRY UA (BTU/HR-F)
      HWCP - HOT SIDE (W CP) (BTU/HR-F)
      AIRPP - PINCH POINT AIR SIDE TEMPERATURE (F)
      COOLPP - PINCH POINT COOLANT TEMPERATURE (F)
      WILMID - WEI SECTION LMID (F)
      DYLMTD - DRY SECTION LMID (F)
      WSDUA - WET SECTION DRY UA (BTU/HR-F)
      DSDUA - DRY SECTION DRY UA (BTU/HR-F)
      TEDUA2 - TOTAL EFFECTIVE DRY UA (BTU/HR-F)
```



```
C
      OUTPUT:
C
             - HOT SIDE OUTLET TEMPERATURE (F)
C
      R(2)
             - HOT SIDE CONDENSABLE VAPOR FLOW (LBM/HR)
C
      R(6)
             - HOT SIDE ENTRAINED LIQUID FLOW (LBM/HR)
C
      R(7)
      R(21) - COLD SIDE OUTLET TEMERATURE (F)
C
      PARAMETER (HOTFW - 8.60)
      PARAMETER (HOTFLL - 11.13)
      PARAMETER(NCOOLP - 4)
      PARAMETER(NCFINL = 28)
      PARAMETER(NHFINL - 28)
      PARAMETER(CFINHT - 0.1)
      PARAMETER(HFINHT - 0.20)
      PARAMETER(CFINTK - .002)
      PARAMETER (HFINTK - .002)
      PARAMETER(NCFIN - 28)
      PARAMETER(NHFIN - 16)
      PARAMETER(CFINK - 9.4)
      PARAMETER (HFINK - 9.4)
      PARAMETER(CFL= (HOTFW+HFINHT+2.)-2. *CFINHT)
      PARAMETER(CSSAR - CFL*HOTFLL*NCFINL*NCFIN*(CFINHT-CFINTK)/72.0)
      PARAMETER(HSSAR - HOTFW*HOTFLL*NHFINL*NHFIN*(HFINHT-HFINTK)/72.0)
      PARAMETER(CPRSA - CFL*HOTFLL*NCFINL*(1.-NCFIN*CFINTK)/72.)
      PARAMETER(HPRSA - HOTFW*HOTFLL*NHFINL*(1.-NHFIN*HFINTK)/72.)
      PARAMETER(TCSA - CSSAR+CPRSA)
      PARAMETER(THSA - HSSAR+HPRSA)
      PARAMETER(CFLWA - HOTFLL/NCOOLP*NCFINL*(1.-NCFIN*CFINTK)*
          (CFINHT-CFINTK)/144.)
      PARAMETER(HFLWA - HOTFW*NHFINL*(1.-NHFIN*HFINTK)*(HFINHT
          -HFINTK)/144.)
      PARAMETER(CHYDRD = (1./NCFIN-CFINTK)*(CFINHT-CFINTK)/(6.*((1./
          NCFIN-CFINTK)+(CFINHT-CFINTK))))
      PARAMETER(HHYDRD - (1./NHFIN-HFINTK)*(HFINHT-HFINTK)/(6.*((1./
          NHFIN-HFINTK)+(HFINHT-HFINTK))))
C
      INITIALIZE THE R ARRAY
C
C
          DO 10 I-1,19
          R(I) - A(I)
  10
          R(I+19) - B(I)
C
C
      INTITIALIZE PROGRAM VARIABLES
C
      IF(A(1) .GT. B(1)/10.) THEN
      CCP
             - CPB
             - CPA
      STEMCP - CPCONV
      HOTFLW - R(1)
      COLFLW - R(20)
```



```
HOTIN - R(2)
            - R(21)
     CIN
           - R(8)
     PTOT
      COOLPO = KK(N, 16)
      HOTOUT - ((HOTIN-CIN)/4.)+CIN
C
      CALCULATE INLET DEW POINT
C
C
      INABSH - R(6)/R(5)
      INWPP - (PTOT*INABSH)/(INABSH+0.622)
             - TSAT(INWPP)
      DPIN
             - 0.
      RJ
      BAND
             - CIN+2.0
C
          DO 50 I-1,50
          OUTWPP - PSAT(HOTOUT)
          OUTABH - 0.622*OUTWPP/(PTOT-OUTWPP)
          OUTABH - AMIN1(OUTABH, INABSH)
          LATENT.SENSIBLE AND TOTAL HEAT LOAD (BTU/HR)
C
          AVEHFG - 1094.1-0.575*(DPIN+HOTOUT)/2.
                - R(5)*(INABSH-OUTABH)*AVEHFG
           QLAT
                  - AMAX1(O.,QLAT)
           QLAT
           QSENS - HOTFLW+HCP+(HOTIN-HOTOUT)
           QTOT - QLAT+QSENS
C
           CALCULATE FACTOR OF SAFETY
 C
 C
           IF(COOLPO .EQ. 1) THEN
               CONST - 0.44
               CONST - -0.04
           END IF
           FS - 1.094 *QTOT/QSENS+CONST
 C
           OUTLET COLD FLUID TEMPERATURE (F)
 C
 C
           COUT - CIN+QTOT/COLFLW+CCP
           VISCOSITY, THERMAL CONDUCTIVITY, PRANDLT NO., FLOW/AREA, REYNOLDS
 C
 C
           NO., COBURN FACTOR, MODIFIED CF
 C
 C
            CVISC - -0.808+219.56/((CIN+COUT)/2.)-2286.14/(
            (CIN+COUT)/2.)**2.
       1
            HVISC - 0.0000685*((HOTIN+HOTOUT)/2.0)+0.08991
            CCOND - 0.2905+0.00095*((CIN+COUT)/2.)-0.000002186*(
  C
            (CIN+COUT)/2.)**2.
       1
            HCOND - 0.0000206*(HOTIN+HOTOUT)/2.+0.01884
```



```
C
          CPRAND - CVISC*CCP/CCOND
          HPRAND - HVISC + HCP/HCOND
C
          CFLWUA - COLFLW/CFLWA
          HFLWUA - (1.+(INABSH+OUTABH)/2.) *HOTFLW/HFLWA
C
          CRENNO - CHYDRD*CFLWUA/CVISC
          HRENNO - HHYDRD*HFLWUA/HVISC
C
          IF (CRENNO .LE. 500.) THEN
              CCOBRN - (1./CRENNO**.2288)*0.07081
          ELSE
              CCOBRN - (1./CRENNO**.4249)*.2454
          END IF
          IF (HRENNO .LE. 500.) THEN
              HCOBRN - (1./HRENNO**.2288)*0.07081
              HCOBRN = (1./HRENNO**.4249)*.2454
          END IF
C
          CCFMOD = (18./NCFIN)**0.284*CCOBRN
          HCFMOD = (18./NHFIN) ** 0.284 * HCOBRN
C
          FILM COEFFICIENT (BTU/HR-FT2-F)
C
C
          TEMP1 - 8.65 *CCOND/CHYDRD
          TEMP2 - CCFMOD*CCP*CFLWUA/CPRAND**.6667
          CFCOF - AMAX1(TEMP1, TEMP2)
          TEMP3 - 8.65 * HCOND/HHYDRD
          TEMP4 - HCFMOD*HCP*HFLWUA/HPRAND**.6667
          HFCOF - AMAX1(TEMP8, TEMP4)
C
          FIN EFFICIENCY AND OVERALL FIN EFFICIENCY CALCULATION
C
C
          TEMPC = SQRT(2.*CFCOF/(12.*CFINK*CFINTK))*CFINHT/2.
          TEMPH - SQRT(2.*HFCOF/(12.*HFINK*HFINTK))*HFINHT/2.
          CFINEF - (EXP(TEMPC)-EXP(-TEMPC))/(EXP(TEMPC)+EXP(-
          TEMPC))/TEMPC
          HFINEF - (EXP(TEMPH)-EXP(-TEMPH))/(EXP(TEMPH)+EXP(-TEMPH))/
          TEMPH
          COFINE - 1.-CSSAR/TCSA*(1.-CFINEF)
          HOFINE - 1.-HSSAR/THSA*(1.-HFINEF)
C
          CEFC - COFINE*CFCOF
          HEFC - HOFINE*HFCOF
          EFFECTIVE HA (BTU/HR-F)
C
C
          HACEFF - CEFC*TCSA
```



```
HAHEFF - HEFC*THSA
C
          DETERMIN IF THE HEAT EXCHANGER IS DRY OR CONDENSING.
C
C
          IF (DPIN .GT. CIN+0.50) THEN
C
              TOTAL EFFECTIVE DRY UA (BTU/HR-F)
C
C
              IF (COOLPO .EQ. 1) THEN
                 TEDUA1 = ((1./(2.*(1./HACEFF+1./HAHEFF)))+(1./(2.*(1./
                 HACEFF+1./HAHEFF)+12.*CFINHT/(CFINK*NCFIN*CFINTK*HOTFLL
     1
                 *HOTFLW*NCFINL))))/FS
     2
              FLSE
                 TEDUA1 - (1./(1./HACEFF+1./HAHEFF))/FS
              END IF
C
              HWCP - A(1)*CPA
C
              PINCH POINT AIR SIDE AND COOLANT TEMPERATURE (F)
C
C
              AIRPP - ((HAHEFF/HACEFF*DPIN+DPIN-COUT)*CCP*COLFLW+HWCP*
              HOTIN)/(HWCP+CCP*COLFLW*HAHEFF/HACEFF)
     1
              AIRPP - AMAX1(AIRPP, HOTOUT)
              COOLPP - DPIN-HAHEFF/HACEFF*(AIRPP-DPIN)
              COOLPP - AMAX1(COOLPP, CIN)
C
              WET AND DRY SECTION LMTD (F)
C
C
              RATIO - (HOTOUT-CIN)/(AIRPP-COOLPP)
               IF (RATIO .LE. O.O) THEN
                   WILMID - 1.
               ELSE IF((ABS(RATIO)-1.) .LT. 0.0001) THEN
                   WILMID - HOTOUT-CIN
                   WTLMTD - ((HOTOUT-CIN)-(AIRPP-COOLPP))/ALOG((HOTOUT-
                   CIN)/(AIRPP-COOLPP))
     1
               END IF
               IF (AIRPP .LT. CIN .OR. AIRPP .GT. HOTIN .OR. COOLPP .LE.
                  CIN .OR. COOLPP .GT. COUT .OR. COOLPP .GT. AIRPP) THEN
     1
                   DYLMTD - 4.
               ELSE
                   DYLMTD - ABS(((AIRPP-COOLPP)-(HOTIN-COUT))/ALOG((AIRPP
                   -COOLPP)/(HOTIN-COUT)))
     1
               END IF
C
               WET SECTION AND DRY SECTION DRY UA (BTU/HR-F)
C
               TEMP1 - COOLPP-CIN
               IF (TEMP1 .GT. 0.0 .AND. WILMID .GT. 0.0) THEN
                   WSDUA - COLFLW*(COOLPP-CIN)/WTLMTD*(HACEFF/HAHEFF+
```



```
QTOT/QSENS)/(QTOT/QSENS*(HACEFF/HAHEFF+1.))
    1
              ELSE
                  WSDUA - 0.0
              END IF
              TEMP1 - COUT-COOLPP
              IF(DYLMTD .GT. 0.0 .AND. TEMP1 .GT. 0.0) THEN
                  DSDUA - COLFLW*(COUT-COOLPP)/DYLMTD
              ELSE
                  DSDUA - 0.0
              END IF
C
              TOTAL EFFECTIVE DRY UA (BTU-HR-F)
C
C
              TEDUA2 - WSDUA+DSDUA
C
              NEWTON-RHAPSON ITERATION ON THE HOT SIDE OUTLET
C
              TEMP. UNTIL THE EFFEXTIVE DRY UA'S ARE WITHIN 1 BTU-HR-F
C
C
              ERROR - TEDUA2-TEDUA1
              IF (ABS(ERROR) .LE. 8.0) GO TO 100
              IF (I .EQ. 1) THEN
                  HOTNEW - 1.01*HOTOUT
              ELSE
                   CHCK1 - HOTOUT-HOTOLD
                   IF (CHCK1 .GT. -0.00001 .AND. CHCK1 .LT. 0.00001)THEN
                       CHCK1 - 0.0001
                   END IF
                   IF (ABS(ERROR-ERROLD) .GT. 0.00001) THEN
                       SLOPE - (ERROR-ERROLD)/CHCK1
                       CRINC - ERROR/SLOPE
                       HOTNEW - HOTOUT-CRINC/4.
                   ELSE
                       HOTNEW - HOTNEW + 1.01
                   END IF
                   IF (HOTNEW .GT. HOTIN) THEN
                       HOTNEW - (HOTIN-CIN)/4.+CIN-RJ
                       RJ - RJ+1.
                   END IF
                   IF (HOTNEW .LT. CIN) THEN
                       HOTNEW - (HOTOUT+BAND)/2.0
                       IF (ABS(HOTNEW-HOTOUT) .LT. 0.0001) GO TO 100
                   END IF
               END IF
               HOTOLD - HOTOUT
               ERROLD - ERROR
               HOTOUT - HOTNEW
                IF (I .EQ. 50 ) THEN
                   WRITE(6,45) I
                    NSTR(17) - 1
                END IF
```



```
ELSE
              IF(COOLPO .EQ. 1) THEN
                  C1 - (12.*CFINHT)/(CFINK*NCFIN*CFINTK*HOTFLL*HOTFW*
                       NCFINL)
     1
                  C1 - 0.0
              END IF
              DRYUA = (1./(2.*(1./HACEFF+1./HAHEFF))+1./(2.*(1./HACEFF
                       +1./HAHEFF)+C1))*(1./FS)
     1
C
              NTU'S PER PASS
C
C
              PSSNTU - DRYUA/(HOTFLW+HCP+NCOOLP)
C
              MASS FLOW RATIO
C
              FLWRTO - HOTFLW+HCP/(COLFLW+CCP)
C
              EFFECTIVENESS PER PASS
C
C
                    - EXP(-PSSNTU**0.78*FLWRTO)
                    - EXP((C2-1.)/(FLWRTO/PSSNTU**.22))
              C8
              EFFPP - 1.-C8
C
               OVERALL EFFECTIVENESS
                   - ((1.-EFFPP*FLWRTO)/(1.-EFFPP))**NCOOLP
               OVEFF - (C4-1.)/(C4-FLWRTO)
C
               AIR OUTLET TEMPERATURE
C
C
               HOTNEW - HOTIN-OVEFF*(HOTIN-CIN)
               IF (ABS(HOTNEW-HOTOUT) .LE. 0.1) GO TO 100
               HOTOUT - HOTNEW
           END IF
           CONTINUE
  50
C
       CALCULATED THE CONDENSED LIQUID (LBM/HR)
C
 C
   100 MDOTL - R(5)*(INABSH-OUTABH)
       H2OV - R(6)-MDOTL
       STORE RESULTS IN R ARRAY FOR G189 SOLUTION
 C
 C
       R(2) - AMAX1(HOTOUT,B(2))
R(6) - H2OV
R(7) - MDOTL
       R(21) - COUT
       ELSE
```



```
R(2) - B(2)
          R(21) - B(2)
      END IF
C
      PROGRAM DEBUG OUTPUT
C
C
      IF (TIME .GE. 8000. .AND. TIME .LE. 8600.) THEN
C
         NSTR(17) - 1
C
C
      ELSE
         NSTR(17) - 0
C
C
      END IF
C
C
      FORMAT STATEMENTS
C
     FORMAT (' ****ERROR****THE CONDENSING HEAT EXCHANGERS UA DOES
 45
     1NOT CONVERGE AFTER ', 12, 'INTERATIONS.')
      RETURN
      END
```


C.4 Program Use

The following section presents the procedures to use the program on the Hamilton Standard IBM or the NASA Langley Prime Computers. Also, instructions are given to allow the user to swap one ${\rm CO}_2$ removal subsystem for another, to modify the input data, and to change control logic.

C.4.1 Operation Using the Hamilton Standard IBM Computer

To run the Space Station simulation model, use the following sequence of steps:

(1) Access the command list from the G15UARL library:

LGCL G189CL G15UARL

(2) Access the input data set:

LG SSDATA DATA SO(G15UARL)

C.4 Program Use (Continued)

- (3) Make desired changes to SSDATA.DATA.
- (4) Enter the following command:

EX G189CL

More detailed information on each of these steps is provided in the following sections.

C.4.1.1 The Command List G189CL

G198CL is a general command list to run any FORTRAN 77 G198A load module. A listing of this command list is provided in Table C-5 and a description of the file assignments is given in Table C-6.

TABLE C-5

LISTING OF G189CL FOR SPACE STATION MODEL

```
CONTROL PROMPT NOMSG
ERASE
N1: DELETE PLOT. DATA
    DELETE PLICAT. DATA
    DELETE OUT.DATA
    DELETE OUT1.DATA
    DELETE OUT2.DATA
    DELETE OUTS.DATA
FREE FILE(FT05F001)
FREE FILE(FT06F001)
FREE FILE(FT07F001)
FREE FILE(FT08F001)
FREE FILE(FT09F001)
FREE FILE(FT10F001)
FREE FILE(FT11F001)
FREE FILE(FT16F001)
FREE FILE(FT20F001)
FREE FILE(FT80F001)
FREE FILE(FT81F001)
FREE FILE(FT41F001)
FREE FILE(FT42F001)
FREE FILE(FT48F001)
FREE FILE(FT44F001)
FREE FILE(FT45F001)
FREE ATTRLIST(A1 B2 C8 D4 E5)
ATTRIB A1 BLKSIZE(844) RECFM(V B) LRECL(844)
ATTRIB B2 BLKSIZE(10000) RECFM(V B S) LRECL(10000)
ATTRIB C8 BLKSIZE(8404) RECFM(V B S) LRECL(8404)
ATTRIB D4 BLKSIZE(8990) RECFM(F B A) LRECL(188)
ATTRIB E5 BLKSIZE(8990) RECFM(F B) LRECL(80)
DELETE DD1
DELETE DD2
DELETE DD8
DELETE DD4
DELETE DDS
DELETE DD6
DELETE IN10
DELETE IN11
WRITE
WRITE
WRITE DATA SETS ARE NOW BRING ALLOCATED.
ALLOC DS(DD1) F(FT41F001) NEW SPACE(844,200) BLOCK(844) +
                     DELETE
          USING(A1)
 ALLOC DS(DD2) F(FT42F001) NEW SPACE(200,200) BLOCK(10000) +
          USING(B2)
                      DELETE
 ALLOC DS(DD8) F(FT48F001) NEW SPACE(200,200) BLOCK(8404) +
          USING(C8)
                      DELETE
 ALLOC DS(DD4) F(FT44F001) NEW SPACE(200,200) BLOCK(8408) +
                       DELETE
           USING(C8)
 ALLOC DS(DD6) F(FT80F001) NEW SPACE(200,200) BLOCK(8408) +
```


END

TABLE C-5 (CONTINUED)

LISTING OF G189CL FOR SPACE STATION MODEL

USING(C8) DELETE ALLOC DS(DD6) F(FT81F001) NEW SPACE(200,200) BLOCK(8408) + USING(C8) DELETE ALLOC DS(IN10) F(FT10F001) NEW SPACE(200,200) BLOCK(8408) + DELETE USING(C8) ALLOC DS(IN11) F(FT11F001) NEW SPACE(200,200) BLOCK(8408) + USING(C8) DELETE ALLOC DS(SSDATA.DATA) F(FT05F001) ALLOC DS(OUT.DATA) F(FT06F001) NEW SPACE(200,200) BLOCK(8120) + USING(D4) CATALOG ALLOC DS(OUT1.DATA) F(FT07F001) NEW SPACE(200,200) BLOCK(8120) + USING(D4) CATALOG ALLOC DS(OUT2.DATA) F(FT08F001) NEW SPACE(200,200) BLOCK(8120) + CATALOG USING(D4) ALLOC DS(OUTB.DATA) F(FT09F001) NEW SPACE(200,200) BLOCK(8120) + USING(D4) CATALOG ALLOC DS(PLTCAT.DATA) F(FT45F001) NEW SPACE(200,200) BLOCK(8120) + USING(E5) CATALOG ALLOC DS(PLOT.DATA) F(FT16F001) NEW SPACE(200,200) BLOCK(8408) + UNIT(TSOWRKB) USING(C8) CATALOG ALLOC DS(*) F(FT20F001) CONTROL MSG WRITE WRITE DATA SETS HAVE BEEN ALLOCATED. PROGRAM IS NOW EXECUTING. CALL 'ENG.G15.LM(SS)' WRITE WRITE THE PROGRAM HAS FINISHED. TIME

TABLE C-6 I/O FILE ASSIGNMENTS

File Name	No.	File Type	Status	Comments
SSDATA	5	Formatted	INPUT	Problem Input Data
OUT	6	Formatted	OUTPUT	Output For Printer Listing of Habitat Conditions
OUT1	7	Formatted	OUTPUT	Printer Output of Nodal Conditions
OUT2	8	Formatted	OUTPUT	Printer Output of Station Performance
OUT3	9	Formatted	OUTPUT	Printer Output of Station Performance
IN10	10	Unformatted	INPUT	Input File for Data Tape
IN11	11	Unformatted	OUTPUT	Output File for Data Tape
PLOT	16	Formatted	OUTPUT	Plot File for Use with MERIAM
	20	Formatted	OUTPUT	Special Output to Interactive Terminal
DD5	30	Formatted	Unknown	Used by IEDIT Subroutine
DD6	31	Formatted	OUTPUT	Card Punch File (Used Only When Punch Card Selected)
DD1	41	Formatted	SCRATCH	File Built in IEDIT, Containing Problem Input Data for Current Run
DD2	42	Unformatted	SCRATCH	File Used for Merging Operations During Creations of Basic Cases Used for Holding K/V Array Data of Basic Case or Restart Case
DD3	43	Unformatted	SCRATCH	File Which Contains the Sorted Component Data Card Images Plus Sort Number for the Basic Case
DD4	44	Unformatted	SCRATCH	File Which Contains the Sorted Table Data Card Images Plus Sort Number for the Basic Case
PLTCAT	45	Unformatted	OUTPUT	File for Storing Data to be Plotted With CAET/MS Plot Program

C.4.1.2 Input Data SSDATA Description

The input data for the Space Station simulation model is shown in Table C-7. The data set is divided into five sections. The first section contains user options and initial conditions for the habitat and laboratory air. These are located up front for ease of the user to make selections.

The second section contains the KBAS cards for all components in the system except for ECLS equipment like an O_2 generator. The KBAS card defines the subroutine for analyzing the component, the components which provide film to the component, and the next component to be solved in the solution path.

The third section contains all the other cards for all components in the system except for ECLS equipment. These are the ID, NSTR, KARY, and VARY cards.

The forth section is the library of all ECLS components. These components to date in the library are:

CO, Reduction

O₂ Generation

. Sabatier

. SPE

. Bosch

. SFWES (KOH)

TABLE C-7

```
INPUT CARD IMAGES LISTED BELOW
 IOUT = 0 IPRT =
       *** NAMELIST, BASIC CASE
                                 0
TAPE
                                                              NAY
                                   21
                                             2
                                                   YEA
                        593
BASIC
                SPACE STATION ARS SIMULATION MODEL
CASE
  KPTINV(1)=1, KPTINV(2)=5, KPTINV(3)=10, KPTINV(4)=30,
  KCHOUT= 0, KPUNCH= 0, KPRNT= 0, KRUN= 2, KSTEDY= 0,
  MAXSLP= 4, MAXSSI= 15, MINSSI= 10, NOLIM=0,
  DTIME=60., START= 0.0, TIMEMX=86400.,
  TMAX= 500.0, TMIN= 0.0, WTMAX= 1.6E6 $END
 $PROP1
  CP(1)=1.0, RHO(1)=62.4000, VISC(1)=2.420, WTM(1)=18.016, XK(1)=0.34,
  CP(2)=0.2, RHO(2)=0.00045, VISC(2)=0.378, MTM(2)=44.01, XK(2)=0.0098, CP(3)=3.42,RHO(3)=0.00520, VISC(3)=0.021, MTM(3)=2.016, XK(3)=0.1032, CP(4)=0.52,RHO(4)=0.04150, VISC(4)=0.026, MTM(4)=16.04, XK(4)=0.0191,
  CPCONL=1., CPCONV=0.445,CPCO2=0.2, CPDIL=0.25, CPOXY=0.22, CPTC=0.2,
  GAMGAS=1.4, VISGAS=.44, NTMCON=18.016, NTMDIL=28.013, NTMTC=20.,
  XKGAS=0.146 $END
             1 THE FOLLOWING ARE OPTIONS TO BE SELECTED BY THE USER:
ID** 80
ID** 80
             2
               49 11 22
KBAS 80
                                        SUBROUTINE OPTIONS
              0
NSTR 80
                                                                       1=YES, 0=NO
                                 PROCESS AIR BUS?
KARY 80 16
KARY 80 17
                          0
                                 CO2 GAS BUS? 0=NONE, 1=INTRAMOD, 2=INTERMOD
                                                                       1=YES, 0=NO
            18
                          0
                                 N2 GAS BUS?
KARY 80
                                                                O=NONE,1=INTRAMOD
                                 H2 GAS BUS?
KARY 80
            19
                          0
KARY 80 20
KARY 80 21
KARY 80 22
KARY 80 23
KARY 80 24
KARY 80 25
KARY 80 26
KARY 80 27
KARY 80 28
KARY 80 29
KARY 80 30
                                                                 1=YES, 0=NO
                                 HABITAT 02 GEN #1 ON?
                                 HABITAT CO2 REMOVAL $1 ON?
                                                                       1=YES, 0=NO
                                HABITAT CO2 REDUCTION $1 ON? 1=YES, 0=NO
                               HABITAT CAT OX #1 ON?
                                                                        1=YES, 0=NO
                                                                      1=YES, 0=NO
                        0
                                 HABITAT COZ REDUCTION $2 ON?
HABITAT CAT OX $2 ON?
HABITAT CAT OX $2 ON?
                                 HABITAT 02 GEN #2 ON?
                                HABITAT CO2 REMOVAL #2 ON?
                          0
                        0
1
1
                                                                       1=YES, 0=NO
                                 LABORATORY 02 GEN #1 ON?
                                 LABORATORY CO2 REMOVAL #1 ON?
                                                                        1=YES, 0=NO
                                 LABORATORY CO2 REDUCTION #1 ON? 1=YES, 0=NO
                                                                        1=YES, 0=NO
                                 LABORATORY CAT OX #1 ON?
 KARY 80
            31
                                                                        1=YES, 0=NO
                                 LABORATORY 02 GEN #2 ON?
 KARY 80
                         0
                                  LABORATORY CO2 REMOVAL #2 ON? 1=YES, 0=NO
 KARY
                          0
        80
            33
                                 LABORATORY CO2 REDUCTION #2 ON? 1=YES, 0=NO
 KARY 80
                         0
            34
                                                                        1=YES, 0=NO
                                  LABORATORY CAT OX #2 ON?
 KARY 80
            65 5.0
66 70.0
                                  PRINTOFF FREQUENCY, TIMESTEPS PER PRINTOFF
VARY 80
                                  HABITAT GAS MIXTURE: INITIAL TEMPERATURE (F)
                                  HABITAT TOTAL PRESSURE (PSIA)
 VARY 80 67 14.7
                                  HABITAT GAS CO2 PRESSURE (MMHG)
 VARY 80 68
VARY 80 69
                  2.8
                                 HABITAT DEW POINT TEMPERATURE (F)
            69 50.0
                               HABITAT O2 PARTIAL PRESSURE (PSIA)
LABORATORY GAS MIXTURE: INITIAL TEMP (F)
 VARY 80
            70 3.09
 VARY 80 71 70.0
VARY 80 72 14.7
                              LABORATORY TOTAL PRESSURE (PSIA)
LABORATORY GAS CO2 PRESSURE (MMH)
                                LABORATORY GAS CO2 PRESSURE (MMHG)
LABORATORY DEW POINT TEMPERATURE (F)
LABORATORY O2 PARTIAL PRESSURE (PSIA)
 VARY 80 73
                2.5
=VARY 80 74 50.0
VARY 80 75 3.09
                                 323
                                                          -A 2 3
                  1 26
 KBAS 1
```


KBAS	2	1	26		4 2	3		-9	2	3	10	2
KBAS	3	2	1		165 2	3					2	1
KBAS	4	2	1		365 2	3				_	18	2
KBAS	5	6			12	3		-42		3	216	1
KBAS	6	6			2 2	3		-62	2	3	351	2
KBAS	7	10			-1 2	3					13	1
KBAS	8	6			52 2	3		-42		3	151	1
KBAS	9	6			72 2	3		-62	2	3	351	2
KBAS	10	10			-2 2	3	•				15	2
KBAS	13	23			7 2						14	1
KBAS	14	23			-7 2	3					40	1
KBAS	15	23			10 2						16	2
KBAS	16	23			-10 2						60	2
KBAS	17	10			28 2	3	;				21	1
KBAS	18	6			195 2			-395	2	3	31	1
KBAS	19	10			18 2						31	1
KBAS	20	6			19 2			-28	2	3	17	1
KBAS	21	10			30 0						1	1
KBAS	22	10			29 2						23	2
KBAS	23	10			22 2						24	2
KBAS	24	10			23 2	3	•				1	2
KBAS	25	6			190 2	3	3	-390	2	3	26	1
KBAS	26	30	4		25 2	3	•				27	1
KBAS	27	10			26 2	3	•				1	1
KBAS	28	30			31 2	3	5				17	1
KBAS	29	49										
KBAS	30	49	1									
KBAS	31	10			18 2	. 3	5				28	1
KBAS	40	6			73 2	3	\$	-516	2	3	41	1
KBAS	41	6			14 2	3	5	-40	2	3	42	1
KBAS	42	10			41 2	3	5				50	1
KBAS	50	6	ı		13 2	3	5	-517	2	3	51	1
KBAS	51	6	ı		50 2		5	-63	2	3	52	1
KBAS	52	10	ļ		51 2		5				8	1
KBAS	60	6	+		16 2	: 3	5	-518		3	61	2
KBAS	61	6	,		60 2	3	5	52	2	3	62	2
KBAS	62	10)		61 2	: 3	5				63	2
KBAS	63	23	;		-62 2	: 3	5				70	2
KBAS	70	6	,		519 2	3	5		2	3	71	2
KBAS	71	6	•		15 2		5	-70	2	3	72	2
KBAS	72	10)		71 2		5				73	2
KBAS	73	23	;		-72 2		3				9	2
KBAS	90	10)		103 2		5				107	1
KBAS	91	80)	1	107 2	: 3	3	-500	0	1	92	1
KBAS	92	10	7		91 2	: 3	3				93	1
KBAS	93	49	2		-92 2		3				105	1
KBAS	94	6	•		105 2		3	-93		3	95	1
KBAS	95	•	•		94 2	: 3	3	90	2	3	104	1
_KBAS	96	10)		104 2	2 3	3				108	1
KBAS	97	80)	1	108 2	2 3	3	-501	. 0	1	98	
KBAS	98	10	7		97 2	2 3	3				99	
KBAS		49			-98 2		3				106	
KBAS		6			106 2	2 3	3	-99		3	102	
KBAS		•	•		100 2		3	96	2	3	153	
KBAS		23			152 2	2 3	3				90	1
KBAS		23			-152 2	2 3	3				96	1
_KBAS		10			92 2	2 3	3				94	
-KBAS		10			98 2	2 3	3				100	
KBAS					90 2		3	-216		3	91	
KBAS			•		96 2		3	-162	2	3	97	1
	-											

						_
KBAS 111	75 2	-155 2 3			112	1
KBAS 112	75 2	-156 2 3			216	1
KBAS 151	10	123			152	1
KBAS 152	10	151 2 3			103	1
KBAS 153	6	95 2 3	-102 2	3	154	1
KBAS 154	10	153 2 3			155	1
	10	-105 2 3			156	1
KBAS 155		-106 2 3			163	1
KBAS 156	10	180 2 3	-158 2	3	159	1
KBAS 157	6	-179 2 3		_	111	1
KBAS 158	10	178 2 3	158 2	3	111	1
KBAS 159	6	111 2 3	-112 2	3	161	1
KBAS 160	6	154 2 3	-160 2	3	165	1
KBAS 161	6	133 2 3	-112 2	3	165	1
KBAS 162	6				218	1
KBAS 163	10	-151 2 3	-123 2	3	170	1
KBAS 164	6	121 2 3	-164 2	3	3	1
KBAS 165	6	154 2 3		3	168	ī
KBAS 166	6	183 2 3	-167 2	•	121	ī
KBAS 167	10	186 2 3	7/7.0	-	121	ī
KBAS 168	6	184 2 3	167 2	3	111	î
KBAS 170	7	121 0 1	-123 0	1	174	î
KBAS 172	10 7	-123 3 3				î
KBAS 173	10 7	170 3 3			177	
KBAS 174	10 7	-121 3 3		_ ,	176	1
KBAS 176	6	-174 3 3		3 4	177	1
KBAS 177	10 12	170 3 3	4 0	1	111	1
KBAS 178	6	172 3 3	4 201 2	3	180	1
KBAS 179	6	173 3 3	4 200 2	3	156	1
KBAS 180	6	174 3 3	4 199 2	3	158	1
KBAS 181	10	-22 2 3			182	1
KBAS 182	10	181 2 3			194	1
KBAS 183	6	187 2 3	182 2	3	184	1
KBAS 184	6	185 2 3	-182 2	3	121	1
KBAS 185	ě	136 2 3	205 2	3	187	1
KBAS 186	6	213 2 3	206 2	3	163	1
KBAS 187	6	135 2 3	207 2	3	121	1
KBAS 188	6	213 2 3			167	1
KBAS 190	10	213 2 3			188	1
KBAS 194	10	-181 2 3			141	1
KBAS 195	6	141 2 3	-143 2	3	202	1
KBAS 197	6	-141 2 3	143 2	3	203	1
KBAS 199	10	-141 2 3			201	1
KBAS 200	10	197 2 3			203	1
	10	-143 2 3			202	1
KBAS 201 KBAS 202	10	-141 2 3			204	1
KBAS 202 KBAS 203	10	197 2 3			206	1
		-143 2 3			205	1
KBAS 204 KBAS 205	10 . 10	204 2 3			207	1
		203 2 3			131	1
KBAS 206	10	202 2 3			131	1
KBAS 207	10				131	1
KBAS 209	10	206 2 3 131 2 3	-133 2	3	220	1
KBAS 213	6	131 2 3	-111 2	3	162	1
KBAS 216	6		- 414 6	-	219	1
KBAS 217	10				217	1
KBAS 218	10	21 0 1			141	ī
KBAS 219	10	-218 0 1			186	ī
_KBAS 220	30 4	213 2 3			307	2
-KBAS 290	10	303 2 3	-508 0	1	292	2
KBAS 291	80	1 307 2 3	-508 0	•	293	2
KBAS 292	10 7	291 2 3			/	-

KBAS	293	49	2		-292 2	3					305	2
	294	6			305 2	3		-2 9 3		3	295	2
	295	6			294 2	3		290	2	3	304	2
	296	10		_	304 2	3					308	2
	297	80		1	308 2	3		-509	0	1	298	2
	298	10			297 2	3					299	2
	299	49	_		-298 2	3					306	2
	300	6			306 2	3		-299		3	302	2
	302	6			300 2	3		296	2	3	353	2
	303	23			352 2	3					290	2
	304	23			-352 2	3					296	2
_	305	10			292 2	3					294	2
	306 307	10			298 2	3			_	_	300	2
	308	6			290 2	3		-416	2	3	291	2
KBAS		6			296 2	3		-362	2	3	297	2
	312	75 75			-355 2 -756 2	3					312	2
KBAS		10			-356 2 2 2	3					416	2
KBAS		10			351 2	3					352	2
KBAS		6			295 2	3 3		700		-	303	2
KBAS		10			353 2	3		-302	Z	3	354	2
KBAS		10			-305 2	3					355	2
KBAS		10			-306 2	3					356	2
KBAS		6			380 2	3		-358	•	•	363	2
KBAS		10			-379 2	3		-250	~	3	359	2
KBAS		6			378 2	3		358	2	3	311	2
KBAS		6			311 2	3		-312		3	311	2
KBAS		6			354 2	3		-360		3	361	2
KBAS		6			333 2	3		-312		3	365 365	2
KBAS	363	10			-351 2	3		316	-	3	305 418	2
KBAS	364	6			321 2	3		-323	2	3	370	2 2
KBAS	365	6			354 2	3		-364		3	4.	2
KBAS	366	6			383 2	3		-367		3	368	2
KBAS	367	10			386 2	3			-	•	321	2
KBAS	368	6			384 2	3		367	2	3	321	2
KBAS	370	7			321 0	1		-323		ī	311	2
KBAS		10	7		-323 3	3	4		-	-	374	2
KBAS	373	10	7		370 3	3	4				377	2
KBAS		10	7		-321 3	3	4				376	2
KBAS		6			-374 3	3	4	372	3	3 4	377	2
KBAS		10	12		370 3	3	4		0	1	311	2
KBAS		6			372 3	3	4	401	2	3	380	2
KBAS		6			373 3	3	4	400	2	3	356	2
KBAS		_ 6			374 3	-	4	399	2	3	358	2
KBAS		10	7		-24 2	3					382	2
KBAS		10	7		381 2	3					394	2
KBAS		6			387 2	3		382	2	3	384	2
KBAS		6			385 2	3		-382	2	3	321	2
KBAS		6			336 2	3		405	2	3	387	2
KBAS		6			413 2	3		406		3	383	2
KBAS		6			335 2	3		407	2	3	321	2
KBAS		6			413 2	3					367	2
KBAS		10			413 2	3					388	2
KBAS		10			-381 2	3			_	_	341	2
KBAS		6			341 2	3		-343			402	2
KBAS		6			-341 2	3		343	2	3	403	2
KBAS		10			-341 2	3					401	2
KBAS		10			397 2	3					403	2
KBAS	_	10			-343 2	3					402	2
KBAS	402	10			-341 2	3					404	2

2

2

TABLE C-7 (CONTINUED)

```
KBAS 403
                          397 2
                                                                        406
              10
KBAS 404
                         -343 2
                                                                        405
              10
                                  3
KBAS 405
              10
                          404 2
                                                                        407
KBAS 406
                          403 2
                                  3
                                                                        331
              10
KBAS 407
                          402 2
              10
                                  3
                                                                        331
KBAS 409
              10
                          406 2
                                                                        331
KBAS 413
                          331 2
                                                -333 2 3
                                                                        386
              6
KBAS 416
                          331 2
                                                 -311 2 3
                                                                        362
KBAS 417
                          418 0
              10
                                                                        419
KBAS 418
                          -21 0
              10
                                  1
                                                                        417
KBAS 419
                         -418 0
              10
                                                                        341
KBAS 420
                          413 2
                                  3
              30
                                                                        386
KBAS 500
              49
                          -91 0
                                  1
KBAS 501
                          -97 0
              49
                                  1
KBAS 502
              49
                         -121 0
KBAS 503
              49
                         -123 0
                                  1
              49
KBAS 504
                          132 0
                                  1
KBAS 505
              49
                          134 0
KBAS 506
              49
                          142 0
                                  1
KBAS 507
              49
                         144 0
                                  1
KBAS 508
              49
                         -291 0
KBAS 509
              49
                         -297 0
KBAS 510
              49
                         -321 0
KBAS 511
              49
                         -323 0
                                  1
KBAS 512
              49
                         332 0
                                  1
              49
KBAS 513
                          334 0
                                  1
KBAS 514
              49
                          342 0
                                  1
KBAS 515
              49
                          344 0
                                  1
KBAS 516
              49
KBAS 517
              49
KBAS 518
              49
KBAS 519
ID**
       1
               CABIN - SPACE STATION HABITAT
                               0 PRI P, 5 RESETS, SPECIFY NET FLOWS
NSTR
             151011000
       1
VARY
                             CABIN GAS MIXTURE: INITIAL TEMPERATURE
VARY
           3
                           4 TOTAL PRESSURE (PSIA)
       1
                             H20 VAPOR FLOW (LB/HR)
VARY
       1
VARY
       1 10
                             OXYGEN FLOW (LBM/HR)
VARY
          11
                             NITROGEN FLOW (LBM/HR)
VARY
                             CO2 FLOW (LBM/HR)
       1 12
VARY
                             CABIN GAS MIXTURE: INITIAL TEMPERATURE
       1 21
VARY
          22
                           4 TOTAL PRESSURE (PSIA)
                             H2O VAPOR FLOW (LB/HR)
VARY
       1 25
VARY
                             OXYGEN FLOW (LBM/HR)
       1 29
VARY
       1
          30
                             NITROGEN FLOW (LBM/HR)
                             CO2 FLOW (LBM/HR)
VARY
       1 31
                             TOTAL HEAT ADDED TO CABIN GAS MIX (BTU/HR)
VARY
       1
          65
VARY
                6826.
                             NON ECLS HEAT LOAD (BTU/HR)
                             HEAT LOSS DUE TO OUTBOARD LEAKAGE (BTU/HR)
VARY
        1 71
                             HEAT GAIN DUE TO MASS ADDITIONS (BTU/HR)
VARY
       1
          72
VARY
        1
          73
                             HEAT REQD TO FLASH ENTRAINED H20(BTU/HR)
VARY
                             FLASH EVAP RATE OF ENTRAINED H20 (LBM/HR)
        1
          74
                             CABIN GAS DESIGN TEMP (DEGF)
CABIN GAS DESIGN TEMP TOL. (F)
VARY
                 70.0
          87
       1
VARY
        1
          88
                 15.0
VARY
          89
                             CABIN GAS RELATIVE HUMIDITY (DECIMAL)
                             DESIGN TOTAL PRESSURE (PSIA)
VARY
          90
                 14.7
       1
_VARY
       1
          91
                 2.0
                             DESIGN TOTAL PRESSURE TOLERANCE (PSIA)
-VARY
                             DESIGN OXYGEN PRESSURE (PSIA)
       1 92
                  2.9
VARY
                             DESIGN OXYGEN PRESSURE TOL (PSIA)
       1 93
                  1.0
VARY
       1 94
                             CABIN GAS OXYGEN PRESSURE (PSIA)
```



```
CABIN GAS NITROGEN PRESSURE (PSIA)
VARY
                             DESIGN DEW PT (F)
                50.0
VARY
          96
       1
                             DESIGN DEW POINT TOL (F)
                25.0
          97
VARY
                             CABIN GAS DEM POINT
VARY
          98
                             MAX ALLOWABLE CO2 PRESSURE (MM-HG)
       1 99
                10.0
VARY
                             CABIN GAS CO2 PRESSURE (MM-HG)
       1 100
VARY
                             MAX ALLOWABLE TRACE CONTAMINENT LEVEL (PPM)
                250.0
VARY
       1 101
                             CABIN GAS TRACE CONTAMINENT LEVEL (PPM)
VARY
       1 102
                             CABIN GAS MIXTURE, TOTAL MASS (LBM)
VARY
       1 103
                             CABIN GAS MIXTURE, TEMPERATURE (F)
VARY
       1 104
                             CABIN GAS MIXTURE, TOTAL PRESSURE(PSIA)
VARY
       1 105
                             CABIN GAS MIXTURE, NON-CONDENSABLES MASS
VARY
       1 107
                             CABIN GAS MIXTURE, H20 VAPOR MASS (LBM)
VARY
       1 108
                             CABIN GAS MIXTURE, ENTRAINED H20 MASS (LBM)
CABIN GAS MIXTURE, NON-COND SPECIFIC HEAT
VARY
       1 109
VARY
       1 110
                             CABIN GAS MIXTURE, NON-COND MOLECULAR MT.
VARY
       1 111
                             CABIN GAS MIXTURE, OXYGEN MASS(LBM)
CABIN GAS MIXTURE, NITROGEN MASS (LBM)
VARY
       1 112
VARY
       1 113
                             CABIN GAS MIXTURE, CO2 MASS (LBM)
VARY
       1 114
                             CABIN GAS MIXTURE, TRACE CONTAMINENTS MASS
VARY
       1 115
                             OUTBOARD LEAKAGE RATE (LBM/HR)
                 .104167
VARY
       1 122
                             NON-CONDENSABLES LEAKAGE RATE (LBM/HR)
VARY
       1 123
                             H2O VAPOR LEAKAGE RATE (LBM/HR)
VARY
       1 124
                             ENTRAINED H20 LEAKAGE RATE (LBM/HR)
VARY
       1 125
                             TOTAL MASS ADDITION RATE (LBM/HR)
VARY
       1 126
                             NON-CONDENSABLES ADDITION RATE (LBM/HR)
VARY
       1 127
                             H20 VAPOR ADDITION RATE (LBM/HR)
                 0.0
VARY
       1 128
                             ENTRAINED H20 ADDITION RATE (LBM/HR)
VARY
       1 129
                 0.0
                             AVERAGE TEMPERATURE OF MASS ADDITIONS (F)
VARY
       1 130
                             ADD COND VAPOR TEMP (F)
                 70.0
VARY
       1 132
                             NET TOTAL FLOW INTO CABIN (LBM/HR)
VARY
       1 135
                             NET NON-COND FLOW INTO CABIN (LBM/HR)
 VARY
       1 136
                             NET H20 FLOW INTO CABIN - GPOLY CALC
 VARY
        1 137
                              CABIN FREE VOLUME (FT-3)
                10000.
VARY
       1 139
                              OXYGEN ADDITION TEMP (F)
                 70.0
 VARY
       1 170
                             NITROGEN ADDITION TEMP (F)
                 70.0
 VARY
       1 171
                              CO2 ADDITION TEMP (F)
                 70.0
 VARY
       1 172
                              TRACE CONTAMINENT ADDITION TEMP (F)
 VARY
       1 173
                 70.0
                              SPECIAL FLOW NO.1 ADDITION TEMP (F)
       1 174
                 70.0
 VARY
                              NET O2 ADDITION (LBM/HR)-GPOLY2 CALC
       1 175
 VARY
                              NET N2 ADDITION (LBM/HR)-GPOLY2 CALC
 VARY
       1 176
                             NET CO2 ADDITION(LBM/HR)-GPOLY2 CALC
 VARY
        1 177
                  0.0
                              NET TRACE CONTAMINENT ADDITION (LBM/HR)
 VARY
       1 178
                  0.0
                              NET SPECIAL FLOW 1 ADDITION (LBM/HR)
 VARY
       1 179
                  0.0
                              02/N2 REG FLAG = 0.0 IF 02 USED LAST, = 1.0
 VARY
        1 180
                  0.0
                              MISSION TIME (SEC)
 VARY
       1 181
 VARY
                              MISSION TIME (MIN)
       1 182
               CABIN - SPACE STATION LABORATORY
 ID××
                                    PRI P, 5 RESETS, SPECIFY NET FLONS
 NSTR
             151011000
                              CABIN GAS MIXTURE: INITIAL TEMPERATURE
 VARY
            2
                            4 TOTAL PRESSURE (PSIA)
 VARY
            3
                              H20 VAPOR FLOW (LB/HR)
 VARY
            6
                              OXYGEN FLOW (LBM/HR)
       2 10
 VARY
                              NITROGEN FLOW (LBM/HR)
 VARY
           11
                              CO2 FLOW (LBM/HR)
 VARY
        2 12
                              CABIN GAS MIXTURE: INITIAL TEMPERATURE
 VARY
           21
                            4 TOTAL PRESSURE (PSIA)
 VARY
           22
                              H20 VAPOR FLOW (LB/HR)
        2 25
VARY
        2 29
                              OXYGEN FLOW (LBM/HR)
 VARY
                              NITROGEN FLOW (LBM/HR)
 VARY
           30
```


			TION (10M/ND)
VARY	2 31		CO2 FLOW (LBM/HR) TOTAL HEAT ADDED TO CABIN GAS MIX (BTU/HR)
VARY	2 65		NON ECLS HEAT LOAD (BTU/HR)
VARY	2 66	6826.	WEAT LOSS DUE TO OUTROARD LEAKAGE (BIO/HK)
VARY	2 71		HEAT CATH DUE TO MASS ADDITIONS (BIO/DK)
VARY	2 72		WEAT DOOD TO FLASH ENTRAINED HZU(BIU/HK)
VARY	2 73		FLASH EVAP RATE OF ENTRAINED H20 (LBM/HR)
VARY	2 74		CABIN GAS DESIGN TEMP (DEGF)
VARY	2 87		CARTH CAS RESTON TEMP TOL. (F)
VARY	2 88		CABIN GAS RELATIVE HUMIDITY (DECIMAL)
VARY	2 89		DESTEN TOTAL PRESSURE (PSIA)
VARY	2 90		DESIGN TOTAL PRESSURE TOLERANCE (PSIA)
VARY	2 91		DESTON DYYGEN PRESSURE (PSIA)
VARY	2 92		DESTEN OXYGEN PRESSURE TOL (PSIA)
VARY	2 93		CARTH GAS OXYGEN PRESSURE (PSIA)
VARY	2 94	-	CABIN GAS NITROGEN PRESSURE (PSIA)
VARY	2 9		DESIGN DEW PT (F)
VARY	2 90		DESIGN DEM POINT TOL (F)
VARY	2 9		CARTN GAS DEW POINT
VARY	2 98		MAY ALLOWABLE CO2 PRESSURE (MM-HG)
VARY	2 9		ALATH DAG CO2 DDESSIRE (MM-HG)
VARY	2 10		MAY ALLOWARDS TRACE CONTAMINENT LEVEL (PPH)
VARY	2 10		CARTH CAS TRACE CONTAMINENT LEVEL (PPH)
VARY	2 10		CARTH CAS MIXILIRE. TOTAL MASS (LDM)
VARY	2 10		CARTH CAS MITTIRF, TEMPERATURE (F)
	2 10		AADEN CAC MIVITIDE, TOTAL PRESSURE(POIA)
VARY	2 10		CARTAL CAS MITTIRE, MON-CONDENSABLES MASS
	2 10		ALBERT OLD MICHIGE. NON VAPUR MASS (LDIV)
VARY	2 10 2 10		CARTH CAS MITTIDE, FATRAINED HZU MASS (LDN)
	2 11		CARTA CAR MITTHIDE, MIN-COND SPECIFIC DESI
VARY			CARTH GAS MIXTURE. NON-COND MOLECULAR MI.
VARY			CARTH CAS MIXILIRE, OXYGEN MASSILBITI
VARY VARY			CARTH GAS MIXTURE, NITROGEN MASS (LBM)
VARY	2 11		CABIN GAS MIXTURE, CO2 MASS (LBM)
VARY	2 11		CARTH GAS MIXTURE, TRACE CONTAMINENTS MASS
VARY	2 12		OUTPOARD LEAKAGE RATE (LBM/HR)
VARY	2 12		MON-CONDENSARIES LEAKAGE RATE (LBM/HK)
VARY	2 12		H20 VAPOR LEAKAGE RATE (LBM/HR)
VARY	2 1		ENTRATNED HOO LEAKAGE RATE (LBM/HK)
VARY	2 1		TOTAL MASS ADDITION RATE (LBM/HR)
VARY	2 1		NON-CONDENSABLES ADDITION RATE (LBM/HR)
YARY	2 1		H2O VAPOR ADDITION RATE (LBM/HR)
VARY	2 1		ENTRAINED H20 ADDITION RATE (LBM/HR)
VARY	2 1	30	AVERAGE TEMPERATURE OF MASS ADDITIONS (F)
VARY	2 1	32 70.0	ADD COND VAPOR TEMP (F) NET TOTAL FLOM INTO CABIN (LBM/HR)
VARY	2 1	35	NET NON-COND FLOW INTO CABIN (LBM/HR)
VARY	2 1		NET HON-LUND FLOW INTO CABIN - GPOLY CALC
· VARY	2 1	37	CABIN FREE VOLUME (FT-3)
VARY	2 1		OXYGEN ADDITION TEMP (F)
-VARY	2 1	70 70.0	OXYGEN ADDITION TEMP (F)
VARY	2 1		NITROGEN ADDITION TEMP (F) CO2 ADDITION TEMP (F)
VARY	2 1		TRACE CONTAMINENT ADDITION TEMP (F)
VARY	2 1		SPECIAL FLOW NO.1 ADDITION TEMP (F)
VARY	2 1		NET OF ADDITION (LBM/HR)-GPOLYZ CALC
VARY	2 1		MET NO ANDITTON (LBM/HR)-GPOLYZ CALC
VARY			NET COS ADDITION(IRM/HR)-GPOLYZ CALC
VARY			NET TRACE CONTAMINENT ADDITION (LBM/HK)
=VARY			MET CRECTAL FLOW 1 ADDITION (LBM/HK)
VARY			02/N2 REG FLAG = 0.0 IF 02 USED LAST, = 1.0
VARY	2 :	180 0.0	OTAME WERE I PURE


```
VARY
       2 181
                             MISSION TIME (SEC)
 VARY
       2 182
                             MISSION TIME (MIN)
 TD##
              SPACE STATION HABITAT CREW
 NSTR
             0
                              1
                                   NO TESTS, SS CALC
                             NUMBER OF CREWMEN
 KARY
        3 16
 VARY
                             TOTAL METABOLIC HEAT - ALL CREWMEN (BTU/HR)
        3
           65
 VARY
                             SENSIBLE HEAT LOAD PER CREMMAN(BTU/HR)
           66
 VARY
                             LATENT HEAT PER CREWMAN (BTU/HR)
        3
           67
 VARY
        3
           68
                             TOTAL OXYGEN USE RATE (LBM/HR)
 VARY
        3
                             TOTAL CO2 GENERATION RATE (LBM/HR)
           69
 VARY
        3
           70
                             TOTAL H20 VAPOR GENERATION RATE (LBM/HR)
 VARY
                             INLET GAS RELATIVE HUMIDITY (DECIMAL)
        3
           75
 VARY
        3
           76
                             INLET GAS DEW POINT (F)
 VARY
                             OUTLET GAS RELATIVE HUMIDITY (DECIMAL)
           77
                             OUTLET GAS DEW POINT (F)
 VARY
          78
        3
 VARY
        3
           82
                             TOTAL METABOLIC RATE PER CREMMAN (BTU/HR)
 ID**
              SPACE STATION LABORATORY CREW
 NSTR
        4
             ٥
                              1
                                 NO TESTS, SS CALC
 KARY
        4
           16
                             NUMBER OF CREWMEN
 VARY
                             TOTAL METABOLIC HEAT - ALL CREMMEN (BTU/HR)
           65
 VARY
           66
                             SENSIBLE HEAT LOAD PER CREMMAN(BTU/HR)
 VARY
        4
           67
                             LATENT HEAT PER CREWMAN (BTU/HR)
                             TOTAL OXYGEN USE RATE (LBM/HR)
 VARY
           68
                             TOTAL CO2 GENERATION RATE (LBM/HR)
 VARY
        4
           69
 VARY
        4
           70
                             TOTAL H20 VAPOR GENERATION RATE (LBM/HR)
 VARY
                             INLET GAS RELATIVE HUMIDITY (DECIMAL)
 VARY
                             INLET GAS DEW POINT (F)
        4
           76
 VARY
        4
           77
                             OUTLET GAS RELATIVE HUMIDITY (DECIMAL)
 VARY
                             OUTLET GAS DEW POINT (F)
           78
                             TOTAL METABOLIC RATE PER CREMMAN (BTU/HR)
 VARY
        4
           82
 ID**
        5
              GAS MIXER - HABITAT AIR AND SPLIT 12
 NSTR
        5
              GAS MIXER - LABORATORY AIR AND SPLIT 11
 ID××
NSTR
        6
              SPLITTER - TO FAN 14 AND FAN 13
 ID**
        7
NSTR
        7
 VARY
        7
                 0.5
                             FLOW FRACTION TO FAN 13 AND FAN 14
 ID**
              GAS MIXER - FROM COMP 12 AND NODE 2
NSTR
        8
              GAS MIXER - FROM COMP 11 AND NODE 4
ID**
        9
 NSTR
 ID**
       10
              SPLITTER - TO FAN 14 AND FAN 15
NSTR
       10
 VARY
                             FLOW FRACTION TO FAN 14 AND FAN 15
       10
              FAN FOR NODAL MIXERS
 ID**
       13
                                   INPUT CFM AND Q
NSTR
       13
             1
                             FAN FLOW (CFM)
 VARY
                 130.0
       13
           76
 VARY
       13
           84
                 1.0
                             FAN ON/OFF SWITCH, (1.0=ON, 0.0=OFF)
                             FAN HEAT ADDITION (WATTS)
VARY
           91
                 152.0
       13
ID**
              FAN FOR NODAL MIXERS
NSTR
       14
             1
          76
                             FAN FLON (CFM)
VARY
       14
                 130.0
VARY
                             FAN ON/OFF SWITCH (1.0=ON,0.0=OFF)
                 1.0
VARY
       14
           91
                 152.0
                             FAN HEAT ADDITION (MATTS)
ID**
       15
              FAN FOR NODAL MIXERS
NSTR
       15
             1
                                   INPUT CFM AND Q
 VARY
       15
           76
                 130.0
                             FAN FLOW (CFM)
-VARY
       15
                             FAN ON/OFF SHITCH, (1.0=ON, 0.0=OFF)
           84
                 1.0
VARY 15
           91
                 152.0
                             FAN HEAT ADDITION (WATTS)
ID**
              FAN FOR NODAL MIXERS
```



```
NSTR 16
 VARY 16 76
VARY 16 84
                 130.0
                             FAN FLOW (CFM)
                 1.0
                             FAN ON/OFF SWITCH (1.0=ON,0.0=OFF)
           91
 VARY 16
                 152.00
                            FAN HEAT ADDITION (MATTS)
 ID** 17
              SPLITTER - 02 BUS FLOW TO HAB AND LAB
 NSTR 17
 VARY 17
                 0.5
                             FLOW FRACTION TO HAB AND LAB
 ID** 18
              GAS MIXER - 02 BUS MIXER FROM ARS #1 AND #2
 NSTR 18
 ID** 19
              SPLITTER - TO 02 STORAGE OR TO 02 BUS
 NSTR 19
                             FLOW FRACTION TO 02 STORAGE AND BUS
 VARY
               0.0
       19
 ID** 20
              GAS MIXER - 02 STORAGE AND RETURN 02 BUS
 NSTR 20
 ID** 21
              SPLITTER - WATER TO ARS #1 AND ARS #2
 NSTR
       21
 VARY
       21
                             FLOW FRACTION TO ARS #1 AND ARS #2
              SPLITTER - N2 TO ARS #1 AND SPLIT 23
 ID**
       22
 NSTR 22
                             FLOW FRACTION TO ARS #1 AND SPLIT 23
 VARY
       22
              SPLITTER - N2 TO HABITAT AND SPLIT 24
 ID**
       23
 NSTR
       23
 VARY
       23
                             FLOW FRACTION TO HABITAT AND SPLIT 24
              SPLITTER - N2 TO ARS #2 AND LABORATORY
 ID** 24
 NSTR 24
 VARY 24
                               SPLIT RATIO TO ARS #2 AND LABORATORY
              GAS MIXER - FROM ARS #1 AND ARS #2 CO2 BUS
 ID** 25
 NSTR 25
 ID**
              TANK - CO2 STORAGE ACCUMULATOR
       26
 NSTR 26
                                  COMPUTE OUTLET FLOW IN GPOLY1
             01010
 VARY
       26
                             TANK MAX CAPACITY (LBM)
 VARY
                             TANK INITIAL FILL (LBM)
       26
           69
                             TANK FLUID TEMPERATURE (F)
 VARY
       26
           70
 VARY
                             TANK VOLUME (FT-3)
       26 71
 VARY
       26
          72
                             TANK PRESSURE (PSIA)
                             THERMAL CAPACITANCE OF SHELL (BTU/HR)
 VARY
       26
           92
 VARY
                             MAX TEMP CHANGE IN ONE TIME STEP
       26
                             FLUID USED FROM TANK - GPOLY2 CALC. FLUID ADDED TO TANK - GPOLY2 CALC.
       26 98
 VARY
 VARY
       26
           99
       26 100
 VARY
                             FLUID FLOW - GPOLY1 CALC.
              SPLITTER - CO2 BUS TO ARS #1 AND ARS #2
 ID**
       27
 NSTR 27
 VARY
       27 65
                              FLOW FRACTION TO ARS #1 AND ARS #2
 ID** 28
               OXYGEN ACCUMULATOR
 NSTR 28
             01000
                                   FLUID TEMP EQUALS HABITAT TEMP.
 VARY
       28 69
                  79.844
                             TOTAL MASS OF FLUID IN TANK, LBM
 VARY
                    70.0
                             FLUID TEMPERATURE IN TANK, F
       28
           70
                             TANK VOLUME, CUBIC FEET
 VARY
                    13.5
       28
           71
-VARY
       28 72
                  1051.0
                             FLUID PRESSURE IN TANK, PSIA
                             MASS OF 02 IN TANK, LBM
       28 78
                  79.844
 ID** 29
              ALTCOM - NITROGEN SOURCE
 NSTR 29
                                   PASS VALUES UNCHANGED
 ID**
              ALTCOM - H20 SOURCE
       30
 NSTR 30
                                   PASS VALUES UNCHANGED
 VARY 30
                 45.0
                                   MATER TEMPERATURE, F
            2
 VARY
                                   WATER PRESSURE, PSIA
       30
                 14.7
 VARY 30
                 0.0
                                   CUMULATIVE WATER CONSUMED, LBM
           67
              SPLITTER - 02 FROM BUS TO STORAGE OR AIR LOCK
=ID** 31
 NSTR
       31
 VARY 31 65
                 0.0
                            FLOW FRACTION TO AIR LOCK AND STORAGE
```



```
GAS MIXER - NODE 1
ID** 40
NSTR 40
            GAS MIXER - NODE 1
ID** 41
NSTR 41
            SPLITTER - NODE 1 TO MIXER 12 AND NODE 4
ID**
     42
NSTR 42
                           FLOW FRACTION TO MIXER 12 AND NODE 4(GPOLY
              0.5
VARY 42
         65
            GAS MIXER - NODE 2
     50
ID**
NSTR 50
            GAS MIXER - NODE 2
TD**
     51
NSTR
     51
            SPLITTER - NODE 2 TO MIXER 8 AND NODE 3
ID** 52
NSTR 52
                           FLOW FRACTION TO MIXER 8 AND NODE 3(GPOLY C
               0.5
VARY 52 65
             GAS MIXER - NODE 3
ID** 60
NSTR 60
             GAS MIXER - NODE 3
ID**
      61
NSTR 61
             SPLITTER - NODE 3 TO MIXER 11 AND NODE 2
ID** 62
NSTR
      62
                            FLOW FRACTION TO MIXER 11 AND NODE 2(GPOLY
VARY 62 65
               0.5
            FAN FOR NODAL MIXERS
ID** 63
            1
NSTR 63
                           FAN FLOW (CFM)
VARY
      63 76
                130.0
                           FAN ON/OFF SMITCH (1.0=ON,0.0=OFF)
                1.0
VARY 63 84
                          FAN HEAT ADDITION (MATTS)
               152.0
VARY
     63
          91
             GAS MIXER - NODE 4
ID** 70
NSTR 70
             GAS MIXER - NODE 4
 ID**
      71
 NSTR 71
             SPLITTER - NODE 4 TO MIXER 9 AND NODE 1
 ID** 72
 NSTR
      72
                             FLOW FRACTION TO MIXER 9 AND NODE 1(GPOLY C
 VARY 72 65
                0.5
             FAN FOR NODAL MIXERS
 ID** 73
 NSTR 73
            1
                            FAN FLOW (CFM)
 VARY 73
         76
                130.0
                           FAN ON/OFF SMITCH (1.0=ON,0.0=OFF)
                1.0
 VARY
      73
           84
                           FAN HEAT ADDITION (MATTS)
              152.0
 VARY
      73
           91
 ID**
      90
             ARS #1 EQUIPMENT
 ID**
       90
       90
 ID**
             SPLITTER - CABIN AIR BYPASS TO HX 91 AND MIXER 95
 ID** 90
 NSTR 90
                             FLOW FRACTION TO BYPASS AND HX 91(GPOLY CAL
 VARY 90 65
               0.5
             ARS #1 HEAT EXCHANGER #1
 ID** 91
 NSTR 91
                             REDUNDANT COOLANT LOOPS? 1=YES, 0=NO
                      0
 KARY 91 16
             SPLITTER - TO MATER SEP 93
 ID** 92
                                  SPLIT RATIOS ARE INPUT
       92
             10
 NSTR
                             SPLIT RATIO CONDENSABLE VAPOR SPLIT RATIO CONDENSED LIQUID
                 0.03
 VARY
           66
       92
           67
                 1.0
 VARY
      92
                             SPLIT RATIO OXYGEN
                 0.03
       92
           68
  VARY
                             SPLIT RATIO NITROGEN
 VARY 92
                 0.03
           69
                             SPLIT RATIO CARBON DIOXIDE
                 0.03
 VARY 92
           70
                             SPLIT RATIO TRACE CONTAMINANTS
 VARY 92
VARY 92
           71
                 0.03
                              SPLIT RATIO SPECIAL FLOW $1 (HYDROGEN)
                0.03
           72
             WATER SEPARATOR
 _ID** 93
 NSTR 93
             2
                               HEAT ADDED (BTU/HR)
  VARY 93 65
                 13.1
                               CONDENSATE REMOVED, LBM/HR GPOLY1 CALC
  VARY 93 67
```



```
CUMULATIVE H20 REMOVED, LBM GPOLY1 CALC
 VARY 93 68
                 0.0
              GAS MIXER - FROM WATER SEP AND HEAT EXCHANGER #1
 ID**
       94
 NSTR 94
              GAS MIXER - BYPASS FLOW AND MIXER 94
 TD**
       95
 NSTR
       95
              SPLITTER - CABIN AIR BYPASS TO HX 97 AND MIXER 102
 ID**
       96
 NSTR
       96
                              FLOW FRACTION TO BYPASS AND HX 97(GPOLY CAL
 VARY
       96
           65
               0.5
              ARS #1 HEAT EXCHANGER #2
 ID**
       97
                              0
 NSTR
       97
                              REDUNDANT COOLANT LOOPS? 1=YES, 0=NO
       97
                      0
 KARY
              SPLITTER - TO WATER SEP 99 AND MIXER 100
       98
 TD**
                                  SPLIT RATIOS ARE INPUT
 NSTR
       98
             10
                              SPLIT RATIO CONDENSABLE VAPOR
                 0.03
 VARY
       98
           66
                             SPLIT RATIO CONDENSED LIQUID
                1.00
 VARY
       98
           67
                              SPLIT RATIO OXYGEN
               0.03
 VARY
       98
           68
                              SPLIT RATIO NITROGEN
 VARY
       98
           69
                 0.03
                              SPLIT RATIO CARBON DIOXIDE
           70
                 0.03
 VARY
       98
                              SPLIT RATIO TRACE CONTAMINANTS
                 0.03
       98
           71
 VARY
                              SPLIT RATIO SPECIAL FLOW #1 (HYDROGEN)
 VARY
       98
           72
                 0.03
              WATER SEPARATOR
 ID** 99
 NSTR 99
             2
                              HEAT ADDED (BTU/HR)
       99
           65
                 13.1
 VARY
                              CONDENSATE REMOVED, LBM/HR GPOLY1 CALC
 VARY 99
           67
                              CUMULALATIVE H20 REMOVED, LBM GPOLY1 CALC
 VARY 99
           68
                 0.0
              GAS MIXER - FROM WATER SEP AND HEAT EXCHANGER #1
 ID** 100
 NSTR 100
              GAS MIXER - FROM BYPASS 96 AND MIXER 100
 ID** 102
 NSTR 102
              FAN FOR COOLING PACKAGE #1 (ARS#1)
 ID** 103
                                  INPUT CFM AND Q
 NSTR 103
             1
                 334.0
 VARY 103
          76
                             FAN FLOW (CFM)
 VARY 103 84
                             FAN ON/OFF SWITCH, (1.0=ON, 0.0=OFF)
                 1.0
                            FAN HEAT ADDITION (WATTS)
 VARY 103
           91
                700.0
              FAN FOR COOLING PACKAGE #2 (ARS #1)
 ID** 104
                                  INPUT CFM AND Q
 NSTR 104
             1
                             FAN FLOW (CFM)
 VARY 104 76
                 334.00
                             FAN ON/OFF SWITCH, (1.0=ON, 0.0=OFF)
 VARY 104
           84
                 1.0
 VARY 104
                             FAN HEAT ADDITION (WATTS)
                 700.0
           91
              SPLIT AIR FROM COOLING PKG 2 TO CAT.OX AND CO2 REMVL
 ID** 105
 NSTR 105
 VARY 105
                0.00
                             SR TO CAT.OX/CO2 REMVL AND CABIN-GPOLY CALC
              SPLIT AIR FROM COOLING PKG 2 TO CAT.OX AND CO2 REMVL
 ID** 106
 NSTR 106
                             SR TO CAT.OX/CO2 REMVL AND CABIN-GPOLY CALC
 VARY 106
           65
              GAS MIXER CABIN AIR AND CAT.OX/CO2 REMVL EXIT AIR
 ID** 107
 NSTR 107
                               0
 ID** 108
              GAS MIXER CABIN AIR AND CAT.OX/CO2 REMVL EXIT AIR
_NSTR 108
                               O
              CATALYTIC OXIDIZER #1
 ID** 111
 NSTR 111
                              CAT. OX. HEATER POWER (WATTS)
CAT. OX. EFFECTIVENESS
                 28.0
 VARY 111 65
 VARY 111 66
                 1.0
 VARY 111 67
                 2.0
                              MGT OF HIGH TEMP CATALYST BED(LBM)
                              OPERATING TEMP OF HIGH TEMP CAT. BED (F)
                 600.0
 VARY 111 68
                              FRACTION OF TOTAL FLOW TO HIGH TEMP BED
 VARY 111 69
                 0.1111
              CATALYTIC OXIDIZER #2
 ID** 112
 -NSTR 112
                             CAT. OX. HEATER POWER (WATTS)
 VARY 112 65
                 28.0
 VARY 112 66
                             CAT. OX. EFFECTIVENESS
                1.0
```



```
MGT OF HIGH TEMP CATALYST BED(LBM)
                2.0
VARY 112 67
                             OPERATING TEMP OF HIGH TEMP CAT. BED (F)
                600.0
VARY 112 68
                             FRACTION OF TOTAL FLOW TO HIGH TEMP BED
                0.1111
VARY 112
          69
             SPLITTER - CABIN AIR TO COOLING PKG AND SPLIT 155
ID** 151
NSTR 151
                             FLOW FRACTION TO COOLING AND SLIT 155(GPOLY
VARY 151
             SPLITTER - COOLING PKG FLOW TO PACKAGE #1 AND #2
ID** 152
NSTR 152
                             FLOW FRACTION TO COOLING PKG #1 AND #2
VARY 152
               0.5
             GAS MIXER - FROM COOLING PKG #1 AND #2
ID** 153
NSTR 153
             SPLITTER - TO CABIN AIR OR ANOTHER MODULE
ID** 154
NSTR 154
                             FLOW FRACTION TO CABIN AND MODULE
VARY 154
               0.0
          65
             SPLITTER - CABIN AIR TO CAT OX AND CO2 REMOVAL
ID** 155
NSTR 155
                             SPLIT RATIO CAT OX AND CO2 REMOVAL(GPOLY CA
VARY 155
          65
             SPLITTER - COOLING PKG AIR TO CAT OX AND CO2 REMVL
ID** 156
NSTR 156
                             SPLIT RATIO TO CAT OX AND CO2 REMOVAL(GPOLY
VARY 156
             GAS MIXER - CAT OX PACKAGE #1
ID** 157
NSTR 157
             SPLITTER - TO MIXER 157 AND MIXER 159
ID** 158
NSTR 158
                              FLOW FRACTION TO CAT OX #1 AND CAT OX #2
VARY 158
                0.5
             GAS MIXER - CAT OX PACKAGE #2
ID** 159
NSTR 159
             GAS MIXER - CAT OX #1 AND PURGE N2
ID** 160
NSTR 160
             GAS MIXER - CAT OX #2 AND PURGE N2
ID** 161
NSTR 161
              GAS MIXER - CAT OX #2 AND CO2 REMOVAL #2 EXIT AIR
 ID** 162
 NSTR 162
              SPLITTER - TO CO2 REDUCTION PACKAGE #1 AND #2
 ID** 163
 NSTR 163
                              FLOW FRACTION TO CO2 REDUCTION #1 AND #2
                 0.5
 VARY 163
              GAS MIXER - EXIT AIR FROM CO2 REDUCTION PKGS #1 AND #2
 ID** 164
 NSTR 164
              GAS MIXER - MIXER 161 AND MIXER 164
 ID** 165
 NSTR 165
              GAS MIXER - FROM MIXER 183 AND MIXER 187
 TD** 166
 NSTR 166
              SPLITTER - TO CO2 REDUCTION PKS #1 AND #2
 ID** 167
 NSTR 167
                              FLOW FRACTION TO CO2 RED PKGS #1 AND #2
 VARY 167
              GAS MIXER - FROM MIXER 184 AND MIXER 167
 ID** 168
 NSTR 168
              LIQ MIXER - FROM CO2 REDUCTION UNITS
 ID** 170
_NSTR 170
              SPLITTER - TO MIXER 176 AND MIXER 178
 ID** 172
 NSTR 172
                               FLOW FRACTION TO MIXER 176 AND MIXER 178
 VARY 172
              SPLITTER - TO MIXER 179 AND SPLITTER 177
 ID** 173
 NSTR 173
                               FLOW FRACTION TO MIXER 179 AND SPLIT 177
 VARY 173
                 1.0
              SPLITTER TO MIXER 176 AND MIXER 180
 ID** 174
 NSTR 174
                               FLOW FRACTION TO MIXER 176 AND MIXER 180
 -VARY 174
              GAS MIXER - FROM SPLIT 172 AND MIXER 174
 ID** 176
 NSTR 176
```



```
SPLITTER - TO CONDENSATE AND CH4 STORAGE
ID** 177
NSTR 177
            1
                             SPLIT RATIO FOR CONDENSABLE VAPOR FLOW
                0.0
VARY 177 66
                             SPLIT RATIO FOR CONDENSABLE LIQUID FLOW
                1.0
VARY 177 67
                             SPLIT RATIO FOR OXYGEN FLOW
VARY 177
          68
                0.0
                             SPLIT RATIO FOR NITROGEN FLOW
VARY 177
          69
                0.0
                             SPLIT RATIO FOR CARBON DIOXIDE FLOM
VARY 177
          70
                0.0
                             SPLIT RATIO FOR TRACE CONTAMINANT FLOW
VARY 177
          71
                0.0
                             SPLIT RATIO FOR SPECIAL FLOW #1, H2
VARY 177
          72
                0.0
                             SPLIT RATIO FOR SPECIAL FLOW #2, CH4
VARY 177
                0.0
          73
             GAS MIXER - FROM SPLIT 172 AND SPLIT 201
ID** 178
NSTR 178
             GAS MIXER - FROM SPLIT 173 AND SPLIT 200
ID** 179
NSTR 179
             GAS MIXER - FROM SPLIT 199 AND SPLIT 174
ID** 180
NSTR 180
             SPLITTER - N2 TO SPLIT 182 AND TO SPLIT 194
ID** 181
NSTR 181
                             FLOW FRACTION TO SPLIT 182 AND SPLIT 194
VARY 181 65
             SPLITTER - NITROGEN TO MIXER 183 AND MIXER 184
ID** 182
NSTR 182
                             FLOW FRACTION TO MIXER 183 AND MIXER 184
VARY 182 65
             GAS MIXER - N2 FROM MIXER 187 AND SPLIT 182
ID** 183
NSTR 183
             GAS MIXER - N2 FROM MIXER 185 AND SPLIT 182
ID** 184
NSTR 184
             GAS MIXER - CO2 FROM CO2 REM. PKG #2 AND H2 FROM SPLIT 205
ID** 185
NSTR 185
             GAS MIXER - FROM CO2 ACCUMULATOR AND H2 FROM SPLIT 206
ID** 186
NSTR 186
             GAS MIXER - CO2 FROM SPLIT 131 AND H2 FROM SPLIT 207
ID** 187
NSTR 187
             GAS MIXER - CO2 FROM CO2 BUS AND SPLIT 190
ID** 188
NSTR 188
             SPLITTER - CO2 TO MIXER 188 AND CO2 BUS
ID** 190
NSTR 190
                              FLOW FRACTION TO MIXER 188 AND CO2 BUS
VARY 190
             SPLITTER - N2 TO 02 GEN PKG #1 AND PKG #2
ID** 194
NSTR 194
                              FLOW FRACTION TO 02 GEN PKG #1 AND #2
VARY 194
             GAS MIXER - 02 FROM 02 GEN PKG #1 AND #2
ID** 195
NSTR 195
             GAS MIXER - H2 OR N2 FROM 02 GEN PKGS #1 AND #2
ID** 197
NSTR 197
              SPLITTER - N2 TO MIXER 180 OR H2 TO SPLIT 202
ID** 199
NSTR 199
                              FLOW FRACTION TO MIXER 180 OR SPLIT 202
VARY 199
              SPLITTER - N2 TO MIXER 179 OR H2 TO SPLIT 203
ID** 200
NSTR 200
                              FLOW FRACTION TO MIXER 179 OR SPLIT 203
VARY 200
              SPLITTER - N2 TO MIXER 178 OR H2 TO SPLIT 204
ID** 201
NSTR 201
                              FLOW FRACTION TO MIXER 178 OR SPLIT 204
VARY 201
              SPLITTER - H2 TO VENT AND SPLIT 207
ID** 202
 NSTR 202
                              FLOW FRACTION TO VENT AND SPLIT 207
 VARY 202
              SPLITTER - H2 TO VENT AND SPLIT 206
_ID** 203
-NSTR 203
                              FLOW FRACTION TO VENT AND SPLIT 206
 VARY 203
              SPLITTER - H2 TO VENT AND SPLIT 205
 ID** 204
```



```
FLOW FRACTION TO VENT AND SPLIT 206
NSTR 204
            SPLITTER - H2 TO CO2 REDUCTION AND CO2 REMOVAL
VARY 204
         65
ID** 205
                             SPLIT RATIO CO2 RED AND CO2 REMOVAL(GPOLY C
NSTR 205
                  1.0
             SPLITTER - H2 TO CO2 REDUCTION AND CO2 REMOVAL
VARY 205
ID** 206
                             FLOW FRACTION TO CO2 RED AND CO2 REMOVAL
NSTR 206
             SPLITTER - H2 TO CO2 REDUCTION AND CO2 REMOVAL
VARY 206
ID** 207
                             SPLIT RATIO CO2 RED AND CO2 REMOVAL(GPOLY C
NSTR 207
                   1.0
VARY 207
             SPLITTER - H2 TO CO2 REMOVAL PKG #1 AND #2
ID** 209
                             FLOH FRACTION TO CO2 REMOVAL PKG #1 AND #2
NSTR 209
             GAS MIXER - CO2 FROM CO2 REMOVAL PKGS #1 AND #2
VARY 209
ID** 213
             GAS MIXER - CABIN AIR AND CO2 REMOVAL EXIT
NSTR 213
ID** 216
              SPLITTER - H20 TO 02 GENERATION PKG #1 AND #2
NSTR 216
 ID** 217
                              FLOW FRACTION TO 02 GEN PKG #1 AND #2
 NSTR 217
              SPLITTER - H20 TO 02 GENERATION AND CO2 REMOVAL
 VARY 217
 ID** 218
                              FLOW TO 02 GENERATION AND CO2 REMOVAL
 NSTR 218
 VARY 218
              SPLITTER - H2O TO CO2 REMOVAL PKG #1 AND #2
                0.0
 ID** 219
                              FLOW FRACTION TO CO2 REMOVAL #1 AND #2
 NSTR 219
                 0.5
 VARY 219
              TANK - CO2 STORAGE ACCUMULATOR
 ID** 220
                                   COMPUTE OUTLET FLOW IN GPOLYI
             01010
 NSTR 220
                             TANK MAX CAPACITY (LBM)
 VARY 220
           68
                             TANK INITIAL FILL (LBM)
           69
 VARY 220
                             TANK FLUID TEMPERATURE (F)
  YARY 220
           70
                              TANK VOLUME (FT-3)
  VARY 220
           71
                              TANK PRESSURE (PSIA)
                             THERMAL CAPACITANCE OF SHELL (BTU/HR)
  VARY 220
            72
  YARY 220
            92
                             MAX TEMP CHANGE IN ONE TIME STEP
  VARY 220
            94
                              FLUID USED FROM TANK - GPOLY2 CALC.
                              FLUID ADDED TO TANK - GPOLY2 CALC.
            98
  VARY 220
            99
  VARY 220
                              FLUID FLOW - GPOLY1 CALC.
  VARY 220 100
  ID** 290
              ARS #2 EQUIPMENT
  ID** 290
               SPLITTER - CABIN AIR BYPASS TO HX 291 AND MIXER 295
  ID** 290
  ID** 290
                               SPLIT RATIO BYPASS AND HX 291-GPOLY CALC
  NSTR 290
                 0.500
  VARY 290 65
              ARS #2 HEAT EXCHANGER #1
  ID** 291
                                REDUNDANT COOLANT LOOPS? 1=YES, 0=NO
  NSTR 291
  KARY 291 16
               SPLITTER - TO WATER SEP 293
 _ID** 292
                                    SPLIT RATIOS ARE INPUT
   NSTR 292
                                SPLIT RATIO WATER VAPOR
                   0.030
                                SPLIT RATIO CONDENSED WATER
   VARY 292 66
                   1.000
   VARY 292
VARY 292
             67
                                SPLIT RATIO OXYGEN
                   0.030
             68
                                SPLIT RATIO NITROGEN
                   0.030
             69
   VARY 292
                                SPLIT RATIO CARBON DIOXIDE
                   0.030
             70
                                SPLIT RATIO TRACE CONTAMINANTS
   VARY 292
                   0.030
   VARY 292
             71
                                SPLIT RATIO HYDROGEN
                   0.030
             72
   VARY 292
               WATER SEPARATOR
  _ID** 293
             2
   NSTR 293
                               MATER SEPARATOR HEAT LOAD (BTU/HR)
                   13.10
   VARY 293 65
```



```
CONDENSATE REMOVED, PPH GPOLY1 CALC
                            CUCMULATIVE H20 REMOVED, LBM GPOLY1 CALC
VARY 293 67
             GAS MIXER - FROM MATER SEP AND HEAT EXCHANGER $1
VARY 293
         68
ID** 294
NSTR 294
             GAS MIXER - BYPASS FLOW AND MIXER 294
ID** 295
             SPLITTER - CABIN AIR BYPASS TO HX 297 AND MIXER 302
NSTR 295
ID** 296
                             SPLIT RATIO BYPASS AND HX 297-GPOLY CALC
NSTR 296
               0.500
VARY 296
             ARS #2 HEAT EXCHANGER #2
ID** 297
                              0
                             REDUNDANT COOLANT LOOPS? 1=YES, 0=NO
NSTR 297
KARY 297
            SPLITTER - TO WATER SEP 299
                                  SPLIT RATIOS ARE INPUT
ID** 298
            10
NSTR 298
                             SPLIT RATIO WATER VAPOR
                0.030
                             SPLIT RATIO CONDENSED WATER
VARY 298
           67
                1.000
 VARY 298
                              SPLIT RATIO OXYGEN
                0.030
 VARY 298
           68
                              SPLIT RATIO NITROGEN
                0.030
 VARY 298
           69
                              SPLIT RATIO CARBON DIOXIDE
                 0.030
           70
                              SPLIT RATIO TRACE CONTAMINANTS
 VARY 298
                0.030
 VARY 298
           71
                              SPLIT RATIO HYDROGEN
                 0.030
 VARY 298
           72
              WATER SEPARATOR
 ID** 299
                              MATER SEPARATOR HEAT LOAD (BTU/HR)
 NSTR 299
             2
                 13.10
                              CONDENSATE REMOVED, PPH GPOLY1 CALC
          65
 VARY 299
                              CUMULATIVE H20 REMOVED, LBM GPOLY1 CALC
           67
 VARY 299
              GAS MIXER - FROM MATER SEP AND HEAT EXCHANGER #1
 VARY 299
           68
 ID** 300
              GAS MIXER - FROM BYPASS 296 AND MIXER 300
 NSTR 300
 ID** 302
 NSTR 302
              FAN FOR COOLING PACKAGE #1 (ARS#2)
 ID** 303
                                   INPUT CFM AND Q
  NSTR 303
             1
                              FAN FLOW (CFM)
                  334.0
                             FAN ON/OFF SMITCH,(1.0=ON,0.0=OFF)
  VARY 303 76
            84
                  1.0
  VARY 303
                              FAN HEAT ADDITION (MATTS)
                  700.00
               FAN FOR COOLING PACKAGE #2 (ARS #2)
  VARY 303
            91
  ID** 304
                                   INPUT CFM AND Q
  NSTR 304
                              FAN FLOH (CFM)
            76
                  334.00
                              FAN ON/OFF SHITCH,(1.0=ON,0.0=OFF)
  VARY 304
                 1.0
  VARY 304
            84
                              FAN HEAT ADDITION (MATTS)
               SPLIT AIR FROM COOLING PKG 2 TO CAT.OX AND CO2 REMVL
  VARY 304
            91
  TD** 305
                              SR TO CAT.OX/CO2 REMVL AND CABIN-GPOLY CALC
  NSTR 305
               SPLIT AIR FROM COOLING PKG 2 TO CAT.OX AND CO2 REMVL
  VARY 305
  ID** 306
                              SR TO CAT.OX/CO2 REMVL AND CABIN-GPOLY CALC
  NSTR 306
                GAS MIXER CABIN AIR AND CAT. 0X/CO2 REMVL EXIT AIR
   VARY 306
   ID** 307
                GAS MIXER CABIN AIR AND CAT.OX/CO2 REMVL EXIT AIR
   NSTR 307
  _ID** 308
   NSTR 308
                CATALYTIC OXIDIZER #1
   ID** 311
                                CAT. OX. HEATER POWER (MATTS)
   NSTR 311
                   28.00
   VARY 311 65
                                CAT. OX. EFFECTIVENESS
                   1.00
                                HGT OF HIGH TEMP CATALYST BED(LBM)
   VARY 311 66
                                OPERATING TEMP OF HIGH TEMP CAT. BED (F)
                   2.00
   VARY 311 67
                                FRACTION OF TOTAL FLOW TO HIGH TEMP BED
                   600.0
   VARY 311 68
                   0.1111
             69
   VARY 311
                CATALYTIC OXIDIZER #2
  =ID** 312
   NSTR 312
                                CAT. OX. HEATER POHER (MATTS)
   VARY 312 65
                   28.00
```



```
VARY 312 66
                  1.00
                               CAT. OX. EFFECTIVENESS
  VARY 312 67
                               MGT OF HIGH TEMP CATALYST BED(LBM)
                  2.00
  VARY 312 68
                  600.0
                                OPERATING TEMP OF HIGH TEMP CAT. BED (F)
  VARY 312
            69
                  0.1111
                               FRACTION OF TOTAL FLOW TO HIGH TEMP BED
  ID** 351
               SPLITTER - CABIN AIR TO COOLING PKG AND SPLIT 355
  NSTR 351
  VARY 351
                               SPLIT RATIO COOLING AND SPLIT 355-GPOLY CAL
  ID** 352
               SPLITTER - COOLING PKG FLOW TO PACKAGE #1 AND #2
  NSTR 352
  VARY 352
                  0.5
                               FLOW FRACTION TO COOLING PKG #1 AND #2
  ID** 353
               GAS MIXER - FROM COOLING PKG #1 AND #2
  NSTR 353
  ID** 354
               SPLITTER - TO CABIN AIR OR ANOTHER MODULE
  NSTR 354
  VARY 354
            65
                 0.0
                               FLOW FRACTION TO CABIN AND MODULE
  ID** 355
               SPLITTER - COOLING PKG AIR TO CAT OX AND CO2 REMOVAL (PKG 1
  NSTR 355
  VARY 355
                               SPLIT RATIO CAT OX AND CO2 REMOVAL-GPOLY CA
  ID** 356
               SPLITTER - COOLING PKG AIR TO CAT OX AND CO2 REMOVAL (PKG
  NSTR 356
  VARY 356
                               SPLIT RATIO TO CAT OX AND CO2 REM #2-GPOLY
 ID** 357
               GAS MIXER - CAT OX PACKAGE #1
 NSTR 357
  ID** 358
               SPLITTER - TO MIXER 357 AND MIXER 359
 NSTR 358
 VARY 358
                               FLOW FRACTION TO CAT OX #1 AND CAT OX #2
 ID** 359
               GAS MIXER - CAT OX PACKAGE #2
 NSTR 359
               GAS MIXER - CAT OX #1 EXIT AIR AND PURGE N2
 ID** 360
 NSTR 360
 ID** 361
              GAS MIXER - CAT OX #2 EXIT AIR AND PURGE N2
 NSTR 361
 ID** 362
              GAS MIXER- CAT OX #2 EXIT AND CO2 REMOVAL #2 EXIT
 NSTR 362
 ID** 363
              SPLITTER - TO CO2 REDUCTION PACKAGE #1 AND #2
 NSTR 363
 VARY 363 65
                              FLOW FRACTION TO CO2 REDUCTION #1 AND #2
                 0.500
 ID** 364
              GAS MIXER - EXIT AIR FROM CO2 REDUCTION PKGS #1 AND #2
 NSTR 364
 ID** 365
              GAS MIXER - MIXER 361 AND MIXER 364
 NSTR 365
 ID** 366
              GAS MIXER - FROM MIXER 383 AND MIXER 387
 NSTR 366
 ID** 367
              SPLITTER - TO CO2 REDUCTION PKS #1 AND #2
 NSTR 367
 VARY 367 65
                              FLOW FRACTION TO CO2 RED PKGS #1 AND #2
 ID** 368
              GAS MIXER - FROM MIXER 384 AND MIXER 367
 NSTR 368
__ID** 370
              GAS MIXER - CO2 REDUCTION PKGS #1 AND #2
 NSTR 370
 ID** 372
              SPLITTER - TO MIXER 376 AND MIXER 378
 NSTR 372
 VARY 372
                              FLOW FRACTION TO MIXER 376 AND MIXER 378
 ID** 373
              SPLITTER - TO MIXER 379 AND SPLITTER 377
 NSTR 373
 VARY 373
                              FLOW FRACTION TO MIXER 379 AND SPLIT 377
_ID** 374
              SPLITTER TO MIXER 376 AND MIXER 380
-NSTR 374
VARY 374
                              FLOW FRACTION TO MIXER 376 AND MIXER 380
ID** 376
             GAS MIXER - FROM SPLIT 372 AND MIXER 374
```



```
NSTR 376
             SPLITTER - TO CONDENSATE AND CH4 STORAGE
ID** 377
            1
NSTR 377
                             SPLIT RATIO FOR CONDENSABLE VAPOR FLOW
                0.0
VARY 377
         66
                             SPLIT RATIO FOR CONDENSABLE LIQUID FLOW
VARY 377
          67
                1.0
                             SPLIT RATIO FOR OXYGEN FLOW
                0.0
VARY 377
          68
                             SPLIT RATIO FOR NITROGEN FLOW
                0.0
          69
VARY 377
                             SPLIT RATIO FOR CARBON DIOXIDE FLOW
VARY 377
          70
                0.0
                              SPLIT RATIO FOR TRACE CONTAMINENT FLOW
VARY 377
          71
                0.0
                             SPLIT RATIO FOR SPECIAL FLOW #1, H2
                0.0
VARY 377
          72
                             SPLIT RATIO FOR SPECIAL FLOW #2, CH4
                0.0
VARY 377
             GAS MIXER - FROM SPLIT 372 AND SPLIT 401
ID** 378
NSTR 378
             GAS MIXER - FROM SPLIT 373 AND SPLIT 400
ID** 379
NSTR 379
             GAS MIXER - FROM SPLIT 399 AND SPLIT 374
ID** 380
NSTR 380
              SPLITTER - N2 TO SPLIT 382 AND TO SPLIT 394
ID** 381
NSTR 381
                              FLOW FRACTION TO SPLIT 382 AND SPLIT 394
VARY 381
              SPLITTER - NITROGEN TO MIXER 383 AND MIXER 384
T0** 382
NSTR 382
                              FLOW FRACTION TO MIXER 383 AND MIXER 384
 VARY 382
              GAS MIXER - N2 FROM MIXER 387 AND SPLIT 382
ID** 383
NSTR 383
              GAS MIXER - N2 FROM MIXER 185 AND SPLIT 182
 ID** 384
NSTR 384
              GAS MIXER - CO2 FROM SPLIT 391 AND H2 FROM SPLIT 405
 ID** 385
 NSTR 385
              GAS MIXER - FROM CO2 ACCUMULATOR AND H2 FROM SPLIT 406
 ID** 386
 NSTR 386
              GAS MIXER - CO2 FROM CO2 REM PKG #1 AND H2 FROM SPLIT 407
 ID** 387
 NSTR 387
              GAS MIXER - CO2 FROM CO2 BUS AND SPLIT 390
 ID** 388
 NSTR 388
              SPLITTER - CO2 TO MIXER 388 AND CO2 BUS
 ID** 390
 NSTR 390
                              FLON FRACTION TO MIXER 388 AND CO2 BUS
 VARY 390
              SPLITTER - N2 TO 02 GEN PKG #1 AND PKG #2
 ID** 394
 NSTR 394
                              FLOW FRACTION TO 02 GEN PKG #1 AND #2
 VARY 394
              GAS MIXER - 02 FROM 02 GEN PKG #1 AND #2
 ID** 395
 NSTR 395
              GAS MIXER - H2 OR N2 FROM O2 GEN PKG #1 AND #2
 ID** 397
 NSTR 397
              SPLITTER - N2 TO MIXER 380 OR H2 TO SPLIT 402
 ID** 399
 NSTR 399
                               FLOW FRACTION TO MIXER 380 OR SPLIT 402
 VARY 399
              SPLITTER - N2 TO MIXER 379 OR H2 TO SPLIT 403
 _ID** 400
 NSTR 400
                               FLOW FRACTION TO MIXER 379 OR SPLIT 403
 VARY 400
               SPLITTER - N2 TO MIXER 378 OR H2 TO SPLIT 404
  ID** 401
  NSTR 401
                               FLOW FRACTION TO MIXER 378 OR SPLIT 404
  VARY 401
               SPLITTER - H2 TO VENT AND SPLIT 407
  ID** 402
  NSTR 402
                               FLOW FRACTION TO VENT AND SPLIT 407
  VARY 402
            65
                 0.0
               SPLITTER - H2 TO VENT AND SPLIT 406
 ID** 403
  NSTR 403
                              .FLOW FRACTION TO VENT AND SPLIT 406
  VARY 403
```



```
SPLITTER - H2 TO VENT AND SPLIT 405
ID** 404
NSTR 404
                            FLOW FRACTION TO VENT AND SPLIT 406
VARY 404
            SPLITTER - H2 TO CO2 REDUCTION AND CO2 REMOVAL
               0.0
ID** 405
                            SPLIT RATIO CO2 RED AND CO2 REM-GPOLY CALC
NSTR 405
            SPLITTER - H2 TO CO2 REDUCTION AND CO2 REMOVAL
VARY 405
ID** 406
                             FLOW FRACTION TO CO2 RED AND CO2 REMOVAL
NSTR 406
             SPLITTER - H2 TO CO2 REDUCTION AND CO2 REMOVAL
VARY 406
ID** 407
                            SPLIT RATIO CO2 RED AND CO2 REM-GPLOY CALC
NSTR 407
             SPLITTER - H2 OR H2O TO CO2 REMOVAL PKG #1 AND #2
VARY 407
ID** 409
NSTR 409
                             FLOW FRACTION TO CO2 REMOVAL PKG #1 AND #2
VARY 409
             GAS MIXER - CO2 FROM CO2 REMOVAL PKG #1 AND #2
ID** 413
NSTR 413
             GAS MIXER - CABIN AIR AND CO2 REMOVAL EXIT
ID** 416
NSTR 416
             SPLITTER - H20 TO 02 GENERATION PKG $1 AND $2
ID** 417
NSTR 417
                            FLOW FRACTION TO 02 GEN PKG #1 AND #2
VARY 417
             SPLITTER - H2O TO 02 GENERATION AND CO2 REMOVAL
               0.5
ID** 418
 NSTR 418
                             FLOW TO 02 GENERATION AND CO2 REMOVAL
                0.0
 VARY 418
             SPLITTER - H2O TO CO2 REMOVAL PKG #1 AND #2
 ID** 419
 NSTR 419
                              FLOW FRACTION TO CO2 REMOVAL #1 AND #2
               0.0
 VARY 419
             TANK - CO2 STORAGE ACCUMULATOR
 ID** 420
                                   COMPUTE OUTLET FLOW IN GPOLY1
             01010
 NSTR 420
                             TANK MAX CAPACITY (LBM)
 VARY 420 68
                             TANK INITIAL FILL (LBM)
 VARY 420
          69
                             TANK FLUID TEMPERATURE (F)
 VARY 420 70
                             TANK VOLUME (FT-3)
           71
 VARY 420
                             TANK PRESSURE (PSIA)
 VARY 420 72
                             THERMAL CAPACITANCE OF SHELL (BTU/HR)
 VARY 420 92
                            MAX TEMP CHANGE IN ONE TIME STEP
           94
 VARY 420
                            FLUID USED FROM TANK - GPOLY2 CALC.
 VARY 420 98
                             FLUID ADDED TO TANK - GPOLY2 CALC.
  VARY 420 99
                             FLUID FLOW - GPOLY1 CALC.
  VARY 420 100
           BOUNDARY: ARS $1 HEAT EXCHANGER $1 COOLANT
  ID** 500
  NSTR 500
                             COOLANT FLOW (LBM/HR)
                 497.00
  VARY 500
          2 40.00
50.00
                             COOLANT TEMP (F)
                 40.00 COOLANT TENT (1)
50.00 4 COOLANT PRESSURE (PSIA)
  VARY 500
  VARY 500
             BOUNDARY: ARS #1 HEAT EXCHANGER #2 COOLANT
  ID** 501
  NSTR 501
                             COOLANT FLOW (LBM/HR)
                 497.00
  VARY 501
            1
                            COOLANT TEMP (F)
__VARY 501
                40.00
                           4 COOLANT PRESSURE (PSIA)
            3 50.00
  VARY 501
              BOUNDARY: ARS #1 CO2 REDUCTION #1 COOLANT
  ID** 502
  NSTR 502
                              COOLANT FLOW (LBM/HR)
  VARY 502
                   60.0
                             COOLANT TEMP (F)
                  38.00
             2
  VARY 502
                           4 COOLANT PRESSURE (PSIA)
                  50.00
  VARY 502
             3
               BOUNDARY: ARS $1 CO2 REDUCTION $2 COOLANT
  ID** 503
  NSTR 503
                              COOLANT FLOW (LBM/HR)
                    60.0
  -VARY 503
             1
                              COOLANT TEMP (F)
                  38.00
   VARY 503
                            4 COOLANT PRESSURE (PSIA)
                  50.00
   VARY 503
```



```
BOUNDARY: ARS #1 CO2 REMOVAL #1 COOLANT
ID** 504
NSTR 504
                            COOLANT FLOW (LBM/HR)
               5005.0
VARY 504
                        COOLANT TEMP (F)
4 COOLANT PRESSURE (PSIA)
                45.00
VARY 504
VARY 504
               50.00
            BOUNDARY: ARS #1 CO2 REMOVAL #2 COOLANT
ID** 505
NSTR 505
                           COOLANT FLOH (LBM/HR)
               5005.0
VARY 505
          1
                           COOLANT TEMP (F)
VARY 505
               45.00
                        4 COOLANT PRESSURE (PSIA)
              50.00
VARY 505
             BOUNDARY: ARS #1 02 GENERATION #1 COOLANT
ID** 506
NSTR 506
                           COOLANT FLON (LBM/HR)
                5005.0
VARY 506
                            COOLANT TEMP (F)
                45.00
VARY 506
              50.00
                        4 COOLANT PRESSURE (PSIA)
VARY 506
           3
             BOUNDARY: ARS #1 02 GENERATION #2 COOLANT
ID** 507
NSTR 507
                            COOLANT FLOW (LBM/HR)
VARY 507
                5005.0
             45.00
50.00
                           COOLANT TEMP (F)
VARY 507
                45.00
                          4 COOLANT PRESSURE (PSIA)
VARY 507
             BOUNDARY: ARS #2 HEAT EXCHANGER #1 COOLANT
ID** 508
NSTR 508
                            COOLANT FLOW (LBM/HR)
VARY 508
                497.0
                           COOLANT TEMP (F)
VARY 508
                40.00
                50.00 4 COOLANT PRESSURE (PSIA)
VARY 508
             BOUNDARY: ARS #2 HEAT EXCHANGER #2 COOLANT
ID** 509
NSTR 509
                            COOLANT FLOW (LBM/HR)
                497.0
VARY 509
           2
                            COOLANT TEMP (F)
VARY 509
                40.00
                          4 COOLANT PRESSURE (PSIA)
VARY 509
                50.00
             BOUNDARY: ARS #2 CO2 REDUCTION #1 COOLANT
ID** 510
NSTR 510
                            COOLANT FLOW (LBM/HR)
VARY 510
                  60.0
           2 38.00
                           COOLANT TEMP (F)
VARY 510
                50.00
                          4 COOLANT PRESSURE (PSIA)
VARY 510
             BOUNDARY: ARS #2 CO2 REDUCTION #2 COOLANT
ID** 511
NSTR 511
                  60.0
                            COOLANT FLOW (LBM/HR)
 VARY 511
           1
                38.00
                            COOLANT TEMP (F)
VARY 511
                         4 COOLANT PRESSURE (PSIA)
 VARY 511
               50.00
             BOUNDARY: ARS #2 CO2 REMOVAL #1 COOLANT
ID** 512
 NSTR 512
                            COOLANT FLOW (LBM/HR)
 VARY 512
                5005.0
                            COOLANT TEMP (F)
 VARY 512
                45.00
                           4 COOLANT PRESSURE (PSIA)
                50.00
 VARY 512
           3
             BOUNDARY: ARS #2 CO2 REMOVAL #2 COOLANT
 ID** 513
 NSTR 513
                             COOLANT FLOW (LBM/HR)
                 5005.0
 VARY 513
                           COOLANT TEMP (F)
4 COOLANT PRESSURE (PSIA)
 VARY 513
                45.00
                50.00
 VARY 513
              BOUNDARY: ARS #2 02 GENERATION #1 COOLANT
 ID** 514
 NSTR 514
                             COOLANT FLOW (LBM/HR)
                 5005.0
 VARY 514
               45.00
 VARY 514
                             COOLANT TEMP (F)
                           4 COOLANT PRESSURE (PSIA)
                50.00
 VARY 514
            3
              BOUNDARY: ARS #2 02 GENERATION #2 COOLANT
 ID** 515
 NSTR 515
                             COOLANT FLOW (LBM/HR)
WARY 515
            1
                 5005.0
                            COOLANT TEMP (F)
                 45.00
 VARY 515
          3
                           4 COOLANT PRESSURE (PSIA)
                50.00
 VARY 515
```



```
BOUNDARY: NODE $1 INLET BOUNDARY FLOM
ID** 516
NSTR 516
            BOUNDARY: NODE #2 INLET BOUNDARY FLOW
ID** 517
NSTR 517
            BOUNDARY: NODE #3 INLET BOUNDARY FLOW
ID** 518
NSTR 518
            BOUNDARY: NODE #4 INLET BOUNDARY FLOW
ID** 519
NSTR 519
            TD** 540
ID** 540
                                 LIBRARY OF SUBSYSTEMS
            ¥
ID** 540
TD** 540
            ID** 540
ID** 540
ID** 540
            ----- CO2 REDUCTION SUBSYSTEMS #1 FOR ARS #1 -----
ID** 540
ID** 540
            SABATIER
ID** 540
                                                                   123
                                                                          1
                                             -163 3 3 4
                        187 3 3 4
            78 4
KBAS 540
NSTR 540
                           HEATER POHER, NORMAL (HATTS)
VARY 540 65
                           HEATER POWER, STATUP (MATTS)
VARY 540 66
                           MATER CONDENSED (LBM/HR)
VARY 540
          67
                           METHANE EXIT FLOW (LBM/HR)
VARY 540
          68
            BOSCH
ID** 121
                                                                   123
                                                                          1
                                             -502 0
            83 1 0
                        187 0 1
KBAS 121
NSTR 121
                           MAX. CARBON LOADING FOR CARTRIDGE, LBM
                 40.000
 VARY 121 65
                           DRY BASIS VOL FRAC OF CO2 IN COMP EXIT GASES
 VARY 121
          66
                 0.163
                           DRY BASIS VOL FRAC OF H2 IN COMP EXIT GASES
 VARY 121 67
                  0.327
                           DRY BASIS VOL FRAC OF CH4 IN COMP EXIT GASES
                 0.235
 VARY 121 68
                           DRY BASIS VOL FRAC OF CO IN COMP EXIT GASES
                 0.275
 VARY 121
          69
                           EFFECTIVENESS FACTOR FOR CONDENSER
 VARY 121 70
                 0.900
                           EFFECTIVENESS FACTOR FOR REGEN HX
                  0.850
 VARY 121 71
                           REACTOR PRESSURE, PSIA
                 24.300
 VARY 121
          73
                           CONDENSER PRESSURE, PSIA
 VARY 121 74
                 16.900
                           AERODYNAMIC EFFICIENCY OF COMPRESSOR
                  1.000
 VARY 121 76
                           MOTOR EFFICIENCY OF COMPRESSOR
                  0.250
 VARY 121
          77
                           DESIRED REACTOR TEMPERATURE, F
               1230.000
 VARY 121 78
                            RECYCLE FLOW RATE, PPH
                 6.800
 VARY 121 79
                            LUMPED THERMAL MASS OF REACTOR, BTU/F
                  6.600
 VARY 121 101
             ----- CO2 REDUCTION SUBSYSTEMS #2 FOR ARS #1 -----
 ID** 542
 ID** 542
             SABATIER
                                                                    164
                                                                           1
                                               163 3 3 4
                         185 3 3 4
             78 4
 KBAS 542
 NSTR 542
                            HEATER POMER, NORMAL (MATTS)
 VARY 542 65
                            HEATER POWER, STARTUP (MATTS)
 VARY 542
          66
                            WATER CONDENSED (LBM/HR)
 VARY 542
           67
                            METHANE EXIT FLOW (LBM/HR)
-VARY 542
           68
             BOSCH
                                                                           1
                                                                    170
                                              -503 0
              83 1 0
                         185 0
 KBAS 123
            1
 NSTR 123
                            MAX. CARBON LOADING FOR CARTRIDGE, LBM
                  40.000
 VARY 123 65
                            DRY BASIS VOL FRAC OF CO2 IN COMP EXIT GASES
 VARY 123
                  0.163
                            DRY BASIS VOL FRAC OF H2 IN COMP EXIT GASES
                  0.327
 VARY 123 67
                            DRY BASIS VOL FRAC OF CH4 IN COMP EXIT GASES DRY BASIS VOL FRAC OF CO IN COMP EXIT GASES
                  0.235
 VARY 123 68
                  0.275
 VARY 123
                            EFFECTIVENESS FACTOR FOR CONDENSER
                   0.900
 ■VARY 123 70
                            EFFECTIVENESS FACTOR FOR REGEN HX
                  0.850
 VARY 123 71
                            REACTOR PRESSURE, PSIA
                  24.300
 VARY 123 73
```


VARY 123 74	16.900	CONDENSER PRESS	URE, PSIA	wnneccop		
VARY 125 74	1.000	CONDENSER PRESS AERODYNAMIC EFF MOTOR EFFICIENC DESIRED REACTOR	ICIENCY OF CO	Mhkeasour		
VARY 123 76 VARY 123 77	0.250	MOTOR EFFICIENC	Y OF COMPRESS	NK .		
VARY 125 77	1230.000	DESIRED REACTOR	TEMPERATURE	, r		
VARY 125 70	6.800	RECYCLE FLOW RA	TE, PPH	ron DTU/E		
VARY 123 77 VARY 123 78 VARY 123 79 VARY 123 101	6.600	LUMPED THERMAL	MASS OF REACT	UK, BIO/I		
VARY 125 101	0.000					
ID** 550	CO2 1	REMOVAL SUBSYSTER	15 #1 FOR AKS	#1		
ID** 550	EUC			-	132	1
ID** 550	76 6 1	55 2 3	-207 2	5		
	70 0 -					
NSTR 550 KARY 550 16	30	NUMBER OF CELL	S	eu (BTH/HP)		
VARY 550 65		HEAT TO BE REM ACTUAL CELL CU DESIGN CELL CU DESIGN PCO2 (M CO2 TRANSFER R UNIT CELL AREA CELL OPERATING MASS FLOM OF M CHERFATT GENERAL	OVED BY FAC H	CAMP/SG-FT)	1	
VARY 550 65		ACTUAL CELL CU	RRENT DENSITY	(AMD/SQ_FT)	1	
VARY 550 68 VARY 550 69	11.00	DESIGN CELL CU	RENT DENSTIT	(AMP/ Sq. 1)	•	
VARY 550 70	3.00	DESIGN PCO2 (M	MHG)	AMD_UD)		
VARY 550 71	0.001736	CO2 TRANSFER R	ATE (LBM-CUZ/	AMP-NK)		
VARY 550 72	0.5	UNIT CELL AREA	(SQ-FI/CELL)			
VARY 550 72	70.00	CELL OPERATING	TEMP (F)			
VARY 550 73 VARY 550 74	14.7	CELL OPERATING	PRESSURE (PS	TA)		
VARY 550 75	• • • • • • • • • • • • • • • • • • • •	MASS FLOW OF F CURRENT GENERA	ATER PRODUCE) (LDIVIN)		
VARY 550 75		CURRENT GENERA	TED (AMP)			
VARY 550 76 VARY 550 77		POWER GENERATION CONSUMED (D (WATTS)			
VARY 550 78		02 CONSUMED (LBM/HR)			
		CO2 REMOVED (LBM/HK)			
VARY 550 79	0.03	H2 CONSUMED (LBM/HR)			
10** 551	CAMD			7	133	1
	73	155 2 3	-219 2	2		
NOIK 331	MOLECULAR SI	EVE	. 2	7	133	1
10xx 131	MOLECULAR SI 84 40	155 2 3	2	3		
NSTR 131	• • • • • • • • • • • • • • • • • • • •	0	MILETTER			
VARY 131 6	5 60.0	O HALF CYCLE TI MIN PRESS OF CO2 ACCUMULAT MAX TEMP OF I MAX TEMP OF I CARTN AIR TER	ME, MINUIES	E STEVE BED	. PSIA	
VARY 131 60	1.0	MIN PRESS OF	DESOKRING UOT	DSTA		
VARY 131 6	7 20.0	CO2 ACCUMULAT	OR PRESSURE;	F RED. F		
VARY 131 6	в 360.0	MAX TEMP OF	SESKR MOT STE	E RED F		
VARY 131 6	9 180.0	MAX TEMP OF L	SECRED STLICE .	, L 010, .		
VARY 131 7	ก /บ.บ	CADE!!	TO COMPONENT	1=TRUE, 0=	FALSE	
VARY 131 7		FIRST TIME IN	THE SECUNDS			
VARY 131 7	2	HALF CYCLE TO	IME, SECONDS			
VARY 131 7	3	COMPUTATION	TIME STEP. HO	URS		
VARY 131 7	4	FIRST HALF O	F CYCLE: 1=TR	UE, 0=FALSE		
VARY 131 7	1.0	HX COOLANT I	NI FT TEMPERAT	URE, F		
VARY 131 7	6 45.0	COMPRESSOR P	OWER BTU/HR			
VARY 131 8		BOLES B	771 t /UD			
VARY 131 8	32		A RECOR STILL	A GEL BED, 8	STU/HR	
VARY 131 8	33					
	84					
	85	AUG O EDOM I	ICDANG MOL SIV	, in cuprist :	STU/HR	
10111	86					
	90 0.0		Y THE STIEFLE	DED BE) LL.		
1 A	91 0.0	AAA AACADDEI	TNIMOLISTA 1	250 873 5501		
	92 0.0		A PAI MITH SIVI	SEU BES LES		
	93 0.0		N TAI ODESENI :	SIL GEL DEDI	LBM	
	94 0.0					
	95 0.0 96 0.0		N YN DDESENI :	SIL GEL DEDI		
-VARY 131	,•	uso necorre	n IN PRESENT	MOF STA BERN	LBM	
VARY 131	<i>''</i>	A BOODDE	D LAST CYCLE,	LBM		
VARY 131	98 0.0	·				


```
CO2 ADSORBED LAST CYCLE, LBM
VARY 131 99
                     0.0
VARY 131 100
VARY 131 101
                              CYCLE CURRENTLY RUNNING
                              FAN EXIT TEMPERATURE, F
                              ADSORBING SIL GEL BED EXIT TEMP, F
VARY 131 102
VARY 131 103
VARY 131 104
                              ADSORBING MOL SIV BED EXIT TEMP, F
                              DESORBING SIL GEL BED EXIT TEMP, F
ID** 132
              EDC HEAT EXCHANGER
                                                                          133
                                                                                 1
                          504 0
              49 1
KBAS 132
NSTR 132
             2
                              HEAT LOAD FROM EDC OR MOL SIEVE (BTU/HR)
                 944.0
 VARY 132 65
ID** 553
                ----- CO2 REMOVAL SYSTEMS #2 FOR ARS #1 ------
 ID** 553
 ID** 553
                   EDC
 ID** 553
                                                                          134
                                                                                 1
                                                  -205 2 3
              76 6
                          156 2 3
KBAS 553
NSTR 553
 KARY 553 16
                      30
                              NUMBER OF CELLS
                              HEAT TO BE REMOVED BY EDC HEX (BTU/HR)
 VARY 553
           65
                              ACTUAL CELL CURRENT DENSITY (AMP/SQ-FT)
DESIGN CELL CURRENT DENSITY (AMP/SQ-FT)
 VARY 553
              11.00
 VARY 553
           69
                              DESIGN PCO2 (MMHG)
 VARY 553
               3.00
           70
                              CO2 TRANSFER RATE (LBM-CO2/AMP-HR)
 VARY 553 71
              0.001736
                              UNIT CELL AREA (SQ-FT/CELL)
 VARY 553
           72
               0.5
 VARY 553
           73
              70.00
                              CELL OPERATING TEMP (F)
                              CELL OPERATING PRESSURE (PSIA)
 VARY 553
           74
              14.7
                              MASS FLOW OF WATER PRODUCED (LBM/HR)
 VARY 553
           75
                              CURRENT GENERATED (AMP)
 VARY 553 76
                              POWER GENERATED (WATTS)
 VARY 553
           77
                              02 CONSUMED (LBM/HR)
 VARY 553
           78
                              CO2 REMOVED (LBM/HR)
 VARY 553
           79
                 0.03
                              H2 CONSUMED (LBM/HR)
 VARY 553
           80
 ID** 554
                   SAHD
                                                                          135
                                                                                  1
                           156 2 3
                                                   219 2 3
 KBAS 554
              73
 NSTR 554
                   MOLECULAR SIEVE
 ID** 133
                                                                          135
                                                                                  1
              84 40
                                                       2
                                                          3
 KBAS 133
 NSTR 133
                                0
                     60.0
                              HALF CYCLE TIME, MINUTES
 VARY 133
           65
                              MIN PRESS OF DESORBING MOLE SIEVE BED, PSIA
 VARY 133 66
                     1.0
                              CO2 ACCUMULATOR PRESSURE, PSIA
 VARY 133 67
                     20.0
                              MAX TEMP OF DESRB MOL SIEVE BED, F
 VARY 133
           68
                    360.0
                              MAX TEMP OF DESRB SILICA GEL BED, F
 VARY 133
                    180.0
           69
                              CABIN AIR TEMPERATURE, F
 VARY 133
           70
                     70.0
                              FIRST TIME INTO COMPONENT: 1=TRUE, 0=FALSE
 VARY 133
           71
                     1.0
                              HALF CYCLE TIME, SECONDS
 VARY 133
           72
 VARY 133
           73
                              FULL CYCLE TIME, SECONDS
                              COMPUTATION TIME STEP, HOURS
 VARY 133
           74
                              FIRST HALF OF CYCLE: 1=TRUE, 0=FALSE
 VARY 133
           75
                     1.0
__VARY 133
                              HX COOLANT INLET TEMPERATURE, F
           76
                     45.0
                              COMPRESSOR POWER, BTU/HR
 VARY 133
           81
                              FAN POWER, BTU/HR
 VARY 133
           82
 VARY 133
VARY 133
                              HEAT GIVEN TO DESRB SILICA GEL BED, BTU/HR
           83
                              HEAT REMOVED BY THE HEAT EXCHANGER, BTU/HR
           84
                              AVG Q FROM DSRBNG SIL GEL TO CABIN, BTU/HR AVG Q FROM DSRBNG MOL SIV TO CABIN, BTU/HR
 VARY 133
           85
 VARY 133
VARY 133
            86
                              H2O ADSORBED IN SIL GEL BED #1, LBM
                      0.0
            90
                              H2O ADSORBED IN SIL GEL BED #2, LBM
 _VARY 133 91
                      0.0
                              CO2 ADSORBED IN MOL SIV BED #1, LBM
VARY 133
            92
                      0.0
                              CO2 ADSORBED IN MOL SIV BED #2, LBM
 VARY 133 93
                      0.0
                              H2O ADSORBED IN PRESENT SIL GEL BED, LBM
 VARY 133 94
                      0.0
```



```
CO2 ADSORBED IN PRESENT MOL SIV BED, LBM
VARY 133 95
                    0.0
                             H2O DESORBED IN PRESENT SIL GEL BED, LBM
VARY 133 96
                    0.0
VARY 133 97
VARY 133 98
                             H2O DESORBED IN PRESENT MOL SIV BED, LBM
                    0.0
                             H2O ADSORBED LAST CYCLE, LBM
                    0.0
VARY 133 99
                             CO2 ADSORBED LAST CYCLE, LBM
                    0.0
VARY 133 100
VARY 133 101
                             CYCLE CURRENTLY RUNNING
                             FAN EXIT TEMPERATURE, F
VARY 133 102
                             ADSORBING SIL GEL BED EXIT TEMP, F
VARY 133 103
VARY 133 104
                             ADSORBING MOL SIV BED EXIT TEMP, F
DESORBING SIL GEL BED EXIT TEMP, F
ID** 134
               EDC HEAT EXCHANGER
KBAS 134
              49 1
                        505 0 1
                                                                        135
                                                                               1
NSTR 134
            2
VARY 134 65
                 944.0
                            HEAT LOAD FROM EDC OR MOL SIEVE (BTU/HR)
ID** 135
              ACCUMULATOR FOR CO2 REMOVAL UNIT #1 IN ARS #1
KBAS 135
                     -131 2 3
                                                                               1
              30
                                                                        136
NSTR 135
                                  FLUID TEMP EQUALS INLET TEMP.
             00000
VARY 135 69
VARY 135 70
                    1.10
                             TOTAL MASS OF FLUID IN TANK, LBM
                             FLUID TEMPERATURE IN TANK, F
                    70.0
VARY 135 71
                             TANK VOLUME, CUBIC FEET
                    4.75
VARY 135 72
VARY 135 80
                    30.0
                             FLUID PRESSURE IN TANK, PSIA
                            MASS OF CO2 IN TANK, LBM
                    1.10
ID** 136
               ACCUMULATOR FOR CO2 REMOVAL UNIT #2 IN ARS #1
                     -133 2 3
KBAS 136
             30
                                                                        185
                                                                               1
                                  FLUID TEMP EQUALS INLET TEMP.
NSTR 136
            00000
VARY 136 69
                    1.10
                             TOTAL MASS OF FLUID IN TANK, LBM
VARY 136 70
                    70.0
                             FLUID TEMPERATURE IN TANK, F
VARY 136
          71
                    4.75
                             TANK VOLUME, CUBIC FEET
VARY 136 72
                             FLUID PRESSURE IN TANK, PSIA
                    30.0
VARY 136 80
                             MASS OF CO2 IN TANK, LBM
                    1.10
ID** 141
ID** 141
              ----- 02 GENERATION SUBSYSTEMS #1 FOR ARS #1 ------
ID** 141
ID** 141
                  STATIC FEED SOLID POLYMER ELECTROLYSIS
              77 2 217 2 3
KBAS 141
                                                                       142
NSTR 141
KARY 141 16
                      1
                             LIGHTSIDE/CONTINUOUS = 1, DARKSIDE =0
KARY 141 17
                     20
                             NUMBER OF CELLS
VARY 141 65
VARY 141 66
                             TOTAL HEAT TO BE REMOVED BY SPE HX (BTU/HR)
                             O2 FLOW RATE TO CABIN (LBM/HR)
VARY 141 67
                             SPE WATER DEMAND (LBM/HR)
VARY 141 68
VARY 141 69
                             WATER VAPOR FLOW TO CABIN (LBM/HR)
                             CELL CURRENT (AMPS) - GPOLY CALC.
VARY 141 70
                200.0
                             CELL OPERATING PRESSURE (PSIA)
VARY 141 71
VARY 141 72
                155.0
                             CELL OPERATING TEMP (F)
                            NOMINAL CELL CURRENT (AMP/CELL)
                 29.33
ID** 561
                 KOH ELECTROLYSIS
KBAS 561
                          217 0
                                                                        142
                                                                               1
NSTR 561
ID** 142
               02 GENERATION HEAT EXCHANGER FOR SYSTEM #1
KBAS 142
              49 1 506 0 1
                                                                               1
NSTR 142
            2
VARY 142
                             HEAT LOAD ELEC CELLS (BTU/HR) GPOLY1 CALC
              ----- O2 GENERATION SUBSYSTEMS #2 FOR ARS #1 -----
ID** 143
ID** 143
ID** 143
                  STATIC FEED SOLID POLYMER ELECTROLYSIS
             77 2 -217 2 3
KBAS 143
                                                                        144
                                                                               1
-NSTR 143
KARY 143 16
                      1
                             LIGHTSIDE CONTINUOUS=1,DARKSIDE =0
                      20
                             NUMBER OF CELLS
KARY 143 17
```



```
TOTAL HEAT TO BE REMOVED BY SPE HX (BTU/HR)
VARY 143 65
                               O2 FLOW RATE TO CABIN (LBM/HR)
VARY 143 66
                               SPE WATER DEMAND (LBM/HR)
VARY 143 67
VARY 143 68
                               MATER VAPOR FLOW TO CABIN (LBM/HR)
                               CELL CURRENT (AMPS) - GPOLY CALC.
VARY 143
                               CELL OPERATING PRESSURE (PSIA)
VARY 143
VARY 143
                  200.0
           70
                          CELL OPERATING TEMP (F)
                  155.0
           71
                               NOMINAL CELL CURRENT (AMP/CELL)
VARY 143
                  29.33
                  KOH ELECTROLYSIS
ID** 563
                                                                               144
                                                                                       1
                          -217 0 1
               85
KBAS 563
NSTR 563
                02 GENERATION HEAT EXCHANGER FOR SYSTEM #2
ID** 144
                                                                               195
                                                                                       1
               49 1 507 0 1
KBAS 144
             2
NSTR 144
                                HEAT LOAD ELEC CELLS (BTU/HR) GPOLY1 CALC
           65
VARY 144
ID** 570
ID** 570
ID** 570
             ----- CO2 REDUCTION SUBSYSTEM #1 FOR ARS #2 -----
ID** 570
                   SABATIER
ID** 570
                                                                               323
                            387 3 3 4
                                                     -363 3 3 4
               78 4
KBAS 570
NSTR 570
                                HEATER POWER, NORMAL (MATTS)
VARY 570 65
                                HEATER POWER, STARTUP (MATTS)
VARY 570
           66
                                MATER CONDENSED (LBM/HR)
VARY 570 67
                                METHANE EXIT FLOW (LBM/HR)
           68
VARY 570
                    BOSCH
ID** 321
                                                                                323
                                                                                        2
                                                      -510 0
               83 1
                            387 0 1
KBAS 321
             1
NSTR 321
                                MAX. CARBON LOADING FOR CARTRIDGE, LBM
                    40.000
 VARY 321 65
                                DRY BASIS VOL FRAC OF CO2 IN COMP EXIT GASES
 VARY 321 66
                     0.163
                                DRY BASIS VOL FRAC OF H2 IN COMP EXIT GASES
                   0.327 DRY BASIS VOL FRAC OF H2 IN COMP EXIT GASES
0.235 DRY BASIS VOL FRAC OF CH4 IN COMP EXIT GASES
0.275 DRY BASIS VOL FRAC OF CO IN COMP EXIT GASES
0.900 EFFECTIVENESS FACTOR FOR CONDENSER
0.850 EFFECTIVENESS FACTOR FOR REGEN HX
24.300 REACTOR PRESSURE, PSIA
16.900 CONDENSER PRESSURE, PSIA
1.000 AERODYNAMIC EFFICIENCY OF COMPRESSOR
 VARY 321 67
 VARY 321 68
VARY 321 69
            70
 VARY 321
 VARY 321
            71
 VARY 321 73
                  16.900
 VARY 321 74
 VARY 321 76
                            MOTOR EFFICIENCY OF COMPRESSOR
 VARY 321 77
                     0.250
                                DESIRED REACTOR TEMPERATURE, F
 VARY 321 78
VARY 321 79
                 1230.000
                  6.800
                                RECYCLE FLOW RATE, PPH
                                LUMPED THERMAL MASS OF REACTOR, BTU/F
                     6.600
 VARY 321 101
                 CO2 REDUCTION SUBSYSTEM #2 FOR ARS #2
 ID** 572
 ID** 572
                    SABATIER
                                                                                        2
                                                       363 3 3 4
                                                                               364
                78 4
                             385 3
                                     3 4
 KBAS 572
 NSTR 572
                                 HEATER POWER, NORMAL (WATTS)
 VARY 572 65
__VARY 572 66
                                 HEATER POWER, STARTUP (WATTS)
                                 MATER CONDENSED (LBM/HR)
 VARY 572 67
                                 METHANE EXIT FLOW (LBM/HR)
 VARY 572
            68
                     BOSCH
 ID** 323
                                                                                370
                                                                                        2
                                                      -511 0 1
                             385 0
                83 18
 KBAS 323
 NSTR 323
               1
                                 MAX. CARBON LOADING FOR CARTRIDGE, LBM
 VARY 323 65
                     40.000
                                 DRY BASIS VOL FRAC OF CO2 IN COMP EXIT GASES
                     0.163
 VARY 323 66
                                 DRY BASIS VOL FRAC OF H2 IN COMP EXIT GASES
 VARY 323 67
                     0.327
                                 DRY BASIS VOL FRAC OF CH4 IN COMP EXIT GASES DRY BASIS VOL FRAC OF CO IN COMP EXIT GASES
VARY 323 68
                    0.235
                     0.275
 VARY 323 69
                                 EFFECTIVENESS FACTOR FOR CONDENSER
                     0.900
 VARY 323 70
```



```
EFFECTIVENESS FACTOR FOR REGEN HX
                 0.850
VARY 323 71
                            REACTOR PRESSURE, PSIA
                24.300
VARY 323
         73
                            CONDENSER PRESSURE, PSIA
                 16.900
         74
VARY 323
                            AERODYNAMIC EFFICIENCY OF COMPRESSOR
                 1.000
          76
VARY 323
                            MOTOR EFFICIENCY OF COMPRESSOR
VARY 323
                  0.250
         77
                            DESIRED REACTOR TEMPERATURE, F
               1230,000
VARY 323
         78
                            RECYCLE FLOW RATE, PPH
                  6.800
          79
                            LUMPED THERMAL MASS OF REACTOR, BTU/F
VARY 323
VARY 323 101
                  6.600
              ID** 580
ID** 580
ID** 580
                  EDC CO2 REMOVAL SUBSYSTEM
ID** 580
                                                                      332
                                                                             2
                                               -407 2 3
                         355 2 3
             76 6
KBAS 580
NSTR 580
                            NUMBER OF CELLS
                     30
         16
KARY 580
                            HEAT TO BE REMOVED BY EDC HEX (BTU/HR)
VARY 580
          65
                            ACTUAL CELL CURRENT DENSITY (AMP/SQ-FT)
VARY 580
         68
                            DESIGN CELL CURRENT DENSITY (AMP/SQ-FT)
              11.00
          69
VARY 580
                            DESIGN PCO2 (MMHG)
VARY 580
          70
              3.00
                            CO2 TRANSFER RATE (LBM-CO2/AMP-HR)
VARY 580
          71
              0.001736
                            UNIT CELL AREA (SQ-FT/CELL)
              0.50
VARY 580
          72
                            CELL OPERATING TEMP (F)
VARY 580
          73
              70.0
                            CELL OPERATING PRESSURE (PSIA)
VARY 580
          74
              14.7
                            MASS FLOM OF WATER PRODUCED (LBM/HR)
 VARY 580
          75
                             CURRENT GENERATED (AMP)
 VARY 580
           76
                             POWER GENERATED (MATTS)
 VARY 580
           77
                             02 CONSUMED (LBM/HR)
 VARY 580
           78
                             CO2 REMOVED (LBM/HR)
 VARY 580
           79
                            H2 CONSUMED (LBM/HR)
                 0.03
 VARY 580
                   SAMD CO2 REMOVAL SUBSYSTEM
 ID** 581
                                                                       333
                                                                              2
                                                -419 2
                                                         3
                                3
                         355 2
 KBAS 581
 NSTR 581
                   MOL SIEVE
 ID** 331
                                                                       333
                                                                              2
                                                     2
                                                         3
                          355 2 3
              84 40
 KBAS 331
 NSTR 331
                             HALF CYCLE TIME, MINUTES
                    60.0
           65
                             MIN PRESS OF DESORBING MOLE SIEVE BED, PSIA
 VARY 331
                     1.0
 VARY 331
           66
                             CO2 ACCUMULATOR PRESSURE, PSIA
                    20.0
 VARY 331
           67
                             MAX TEMP OF DESRB MOL SIEVE BED, F
                   360.0
           68
 VARY 331
                             MAX TEMP OF DESRB SILICA GEL BED, F
                   180.0
 VARY 331
           69
                             CABIN AIR TEMPERATURE, F
                    70.0
 VARY 331
           70
                             FIRST TIME INTO COMPONENT: 1=TRUE, 0=FALSE
                     1.0
           71
 VARY 331
                             HALF CYCLE TIME, SECONDS
FULL CYCLE TIME, SECONDS
 VARY 331
           72
  VARY 331
           73
                             COMPUTATION TIME STEP, HOURS
  VARY 331
                              FIRST HALF OF CYCLE: 1=TRUE, 0=FALSE
                     1.0
  VARY 331
           75
                              HX COOLANT INLET TEMPERATURE, F
                     45.0
  VARY 331
           76
                              COMPRESSOR POMER, BTU/HR
            81
  VARY 331
                              FAN POWER, BTU/HR
  VARY 331
           82
                              HEAT GIVEN TO DESRB SILICA GEL BED, BTU/HR
  VARY 331
           83
                              HEAT REMOVED BY THE HEAT EXCHANGER, BTU/HR
  VARY 331
            84
                              AVG Q FROM DSRBNG SIL GEL TO CABIN, BTU/HR
  VARY 331
           85
                              AVG Q FROM DSRBNG MOL SIV TO CABIN, BTU/HR
           86
  VARY 331
                              H2O ADSORBED IN SIL GEL BED #1, LBM
                      0.0
  VARY 331
            90
                              H2O ADSORBED IN SIL GEL BED #2, LBM
  VARY 331
                      0.0
            91
                              CO2 ADSORBED IN MOL SIV BED #1, LBM
            92
                      0.0
  VARY 331
                              CO2 ADSORBED IN MOL SIV BED #2, LBM
__VARY 331
                      0.0
            93
                              H2O ADSORBED IN PRESENT SIL GEL BED, LBM
                      0.0
 -VARY 331
            94
                              CO2 ADSORBED IN PRESENT MOL SIV BED, LBM
  VARY 331 95
                      0.0
                              H2O DESORBED IN PRESENT SIL GEL BED, LBM
                      0.0
  VARY 331 96
```



```
VARY 331 97
VARY 331 98
                      0.0
                              H2O DESORBED IN PRESENT MOL SIV BED, LBM
                              H2O ADSORBED LAST CYCLE, LBM
                      0.0
                              CO2 ADSORBED LAST CYCLE, LBM
  VARY 331 99
                      0.0
  VARY 331 100
VARY 331 101
                              CYCLE CURRENTLY RUNNING
                              FAN EXIT TEMPERATURE, F
  VARY 331 102
                              ADSORBING SIL GEL BED EXIT TEMP, F
  VARY 331 103
                              ADSORBING MOL SIV BED EXIT TEMP, F
  VARY 331 104
                              DESORBING SIL GEL BED EXIT TEMP, F
                EDC/MOL SIEVE HEAT EXCHANGER FOR SYSTEM #1
  ID** 332
  KBAS 332
               49 1
                           512 0
                                                                         333
                                                                                2
  NSTR 332
              2
  VARY 332 65
                  944.0
                              HEAT LOAD FROM EDC OR MOL SIEVE (BTU/HR)
  ID** 583
  ID** 583
                CO2 REMOVAL SYSTEMS #2 FOR ARS #2****************************
  ID** 583
  ID** 583
                    EDC CO2 REMOVAL SUBSYSTEM
  KBAS 583
               76 6
                          356 2 3
                                                 -405 2 3
                                                                        334
                                                                                2
  NSTR 583
  KARY 583 16
                      30
                              NUMBER OF CELLS
  VARY 583 65
                              HEAT TO BE REMOVED BY EDC HEX (BTU/HR)
 VARY 583 68
                              ACTUAL CELL CURRENT DENSITY (AMP/SQ-FT)
  VARY 583
           69 11.00
                              DESIGN CELL CURRENT DENSITY (AMP/SQ-FT)
  VARY 583 70 3.00
                              DESIGN PCO2 (MMHG)
  VARY 583 71 0.001736
                             CO2 TRANSFER RATE (LBM-CO2/AMP-HR)
  VARY 583
           72 0.5
                              UNIT CELL AREA (SQ-FT/CELL)
           73 70.00
  VARY 583
                              CELL OPERATING TEMP (F)
 VARY 583 74 14.7
                              CELL OPERATING PRESSURE (PSIA)
 VARY 583
           75
                              MASS FLOW OF WATER PRODUCED (LBM/HR)
  VARY 583 76
                              CURRENT GENERATED (AMP)
 VARY 583 77
                              POWER GENERATED (MATTS)
 VARY 583
           78
                              02 CONSUMED (LBM/HR)
  VARY 583 79
                              CO2 REMOVED (LBM/HR)
 VARY 583 80 0.03
                             H2 CONSUMED (LBM/HR)
                   SAND CO2 REMOVAL SUBSYSTEM
 ID** 584
 KBAS 584
                          356 2 3
                                                  419 2
                                                                        385
                                                                                2
 NSTR 584
                   MOL SIEVE CO2 REMOVAL SUBSYSTEM
 ID** 333
 KBAS 333
              84 40
                          356 2
                                  3
                                                                        335
                                                                               2
 NSTR 333
 VARY 333 65
                    60.0
                              HALF CYCLE TIME, MINUTES
 VARY 333 66
                     1.0
                              MIN PRESS OF DESORBING MOLE SIEVE BED, PSIA
 VARY 333 67
                    20.0
                              CO2 ACCUMULATOR PRESSURE, PSIA
                             MAX TEMP OF DESRB MOL SIEVE BED, F
MAX TEMP OF DESRB SILICA GEL BED, F
 VARY 333 68
                   360.0
 VARY 333 69
                   180.0
 VARY 333 70
                    70.0
                              CABIN AIR TEMPERATURE, F
 VARY 333
           71
                    1.0
                              FIRST TIME INTO COMPONENT: 1=TRUE, 0=FALSE
 VARY 333 72
                             HALF CYCLE TIME, SECONDS
 VARY 333 73
                              FULL CYCLE TIME, SECONDS
-VARY 333 74
VARY 333 75
                             COMPUTATION TIME STEP, HOURS
                     1.0
                             FIRST HALF OF CYCLE: 1=TRUE, 0=FALSE
 VARY 333 76
                              HX COOLANT INLET TEMPERATURE, F
                    45.0
 VARY 333 81
                             COMPRESSOR POWER, BTU/HR
 VARY 333 82
                             FAN POWER, BTU/HR
 VARY 333 83
                             HEAT GIVEN TO DESRB SILICA GEL BED, BTU/HR
 VARY 333 84
                             HEAT REMOVED BY THE HEAT EXCHANGER, BTU/HR
 VARY 333 85
                             AVG Q FROM DSRBNG SIL GEL TO CABIN, BTU/HR
_VARY 333 86
                             AVG Q FROM DSRBNG MOL SIV TO CABIN, BTU/HR
-VARY 333 90
                     0.0
                             H2O ADSORBED IN SIL GEL BED #1, LBM
 VARY 333 91
                     0.0
                             H2O ADSORBED IN SIL GEL BED #2, LBM
 VARY 333 92
                     0.0
                             CO2 ADSORBED IN MOL SIV BED $1, LBM
```



```
VARY 333 93
                     0.0
                             CO2 ADSORBED IN MOL SIV BED #2, LBM
 VARY 333 94
                    0.0
                             H2O ADSORBED IN PRESENT SIL GEL BED, LBM
 VARY 333 95
                             CO2 ADSORBED IN PRESENT MOL SIV BED, LBM
                    0.0
 VARY 333 96
VARY 333 97
                             H2O DESORBED IN PRESENT SIL GEL BED, LBM
                    0.0
                    0.0
                             H2O DESORBED IN PRESENT MOL SIV BED, LBM
 VARY 333 98
                    0.0
                             H2O ADSORBED LAST CYCLE, LBM
                    0.0
 VARY 333 99
                             CO2 ADSORBED LAST CYCLE, LBM
 VARY 333 100
                             CYCLE CURRENTLY RUNNING
                            FAN EXIT TEMPERATURE, F
 VARY 333 101
 VARY 333 102
                            ADSORBING SIL GEL BED EXIT TEMP, F
 VARY 333 103
                            ADSORBING MOL SIV BED EXIT TEMP, F
DESORBING SIL GEL BED EXIT TEMP, F
 VARY 333 104
              EDC HEAT EXCHANGER FOR SYSYEM #2
 ID** 334
 KBAS 334
              49 1 513 0 1
                                                                      385
                                                                             2
 NSTR 334
 VARY 334 65
                944.0
                           HEAT LOAD FROM EDC OR MOL SIEVE (BTU/HR)
 ID** 335
              ACCUMULATOR FOR CO2 REMOVAL UNIT #1 IN ARS #2
 KBAS 335
                    -331 2 3
             30
                                                                      336
                                                                             2
 NSTR 335
            00000
                                  FLUID TEMP EQUALS INLET TEMP.
 VARY 335 69
               1.10
                            TOTAL MASS OF FLUID IN TANK, LBM
 VARY 335 70
                           FLUID TEMPERATURE IN TANK, F
                   70.0
 VARY 335 71
VARY 335 72
                4.75 TANK VOLUME, CUBIC FEET
30.0 FLUID PRESSURE IN TANK, P
1.10 MASS OF CO2 IN TANK, LBM
                            FLUID PRESSURE IN TANK, PSIA
 VARY 335 80
          ACCUMULATOR FOR CO2 REMOVAL UNIT #2 IN ARS #2
 ID** 336
 KBAS 336
                    -333 2 3
             30
                                                                     385
                                                                             2
 NSTR 336 00000
                                 FLUID TEMP EQUALS INLET TEMP.
 VARY 336 69
                   1.10
                            TOTAL MASS OF FLUID IN TANK, LBM
 VARY 336 70
                   70.0
                            FLUID TEMPERATURE IN TANK, F
 VARY 336 71
                            TANK VOLUME, CUBIC FEET
                   4.75
VARY 336 72
VARY 336 80
                            FLUID PRESSURE IN TANK, PSIA
                   30.0
                   1.10
                            MASS OF CO2 IN TANK, LBM
 ID** 341
 ID** 341
             O2 GENERATION SYSTEM #1 FOR ARS #2*******************
 ID** 341
 ID** 341
                  STATIC FEED SOLID POLYMER ELECTROLYSIS
             77 2
 KBAS 341
                        417 2 3
                                                                    342
                                                                            2
NSTR 341
 KARY 341 16
                            LIGHTSIDE CONTINUOUS=1,DARKSIDE =0
KARY 341 17
VARY 341 65
                    20
                            NUMBER OF CELLS
                            TOTAL HEAT TO BE REMOVED BY SPE HX (BTU/HR)
VARY 341 66
                            02 FLOW RATE TO CABIN (LBM/HR)
VARY 341 67
VARY 341 68
                            SPE WATER DEMAND (LBM/HR)
                            WATER VAPOR FLOW TO CABIN (LBM/HR)
VARY 341
                            CELL CURRENT (AMPS) - GPOLY CALC.
VARY 341
          70
                200.0
                           CELL OPERATING PRESSURE (PSIA)
VARY 341
          71
                155.0
                            CELL OPERATING TEMP (F)
VARY 341 72
                29.33
                           NOMINAL CELL CURRENT (AMP/CELL)
_ID** 591
                  KOH ELECTROLYSIS SUBSYSTEM
KBAS 591
                         417 0 1
                                                                     342
                                                                            2
NSTR 591
ID** 342
              02 GENERATION HEAT EXCHANGER FOR SYSTEM #1
KBAS 342
             49 1 514 0 1
            2
NSTR 342
VARY 342
                            HEAT LOAD ELECT CELLS (BTU/HR) GPOLY1 CALC
              ID** 343
_ID** 343
ID** 343
                  STATIC FEED SOLID POLYMER ELECTROLYSIS
KBAS 343
             77 2 -417 2 3
                                                                   344
                                                                            2
NSTR 343
```



```
LIGHTSIDE CONTINUOUS=1,DARKSIDE =0
KARY 343 16
                     1
                    20
                            NUMBER OF CELLS
KARY 343 17
                            TOTAL HEAT TO BE REMOVED BY SPE HX (BTU/HR)
VARY 343 65
VARY 343 66
                            02 FLOW RATE TO CABIN (LBM/HR)
                            SPE WATER DEMAND (LBM/HR)
VARY 343 67
                            MATER VAPOR FLOW TO CABIN (LBM/HR)
VARY 343
          68
VARY 343 69
                            CELL CURRENT (AMPS) - GPOLY CALC.
                            CELL OPERATING PRESSURE (PSIA)
VARY 343 70
                200.0
                155.0
                            CELL OPERATING TEMP (F)
VARY 343 71
                           NOMINAL CELL CURRENT (AMP/CELL)
VARY 343 72
                29.33
                  KOH ELECTROLYSIS SUBSYSTEM
ID** 593
                                                                             2
                        -417 0 1
                                                                      766
KBAS 593
NSTR 593
              02 GENERATION HEAT EXCHANGER FOR SYSTEM #2
ID** 344
                                                                             2
                                                                      395
KBAS 344
             49 1 515 0 1
NSTR 344
            2
                           HEAT LOAD ELEC CELLS (BTU/HR) GPOLY1 CALC
VARY 344 65
      1 1 2 14 0 LIN LIN
1 2 CREWMAN METABOLIC RATE (BTU/HR) VS MISSION TIME (SEC)
 TABL
 TITL
       1 10 2I 0.0
1 11 2D 300.0
1 12 2I 54000.
                           24300. 28800.
                                                 42300.
                                                            43200.
                                                                       46800.
 VALU
                                                            450.0
                                                                       450.
                           300.0
                                      633.4
                                                 633.4
 VALU
                                      64800.
                                                 68400.
                                                            72000.
                                                                       77400.
 VALU
                           61200.
       1 13 2D 633.4
1 14 2I 83700.
                                      450.0
                                                 450.0
                                                            550.0
                           633.4
 VALU
                           86400.
 VALU
       1 15 2D 300.0
 VALU
                           300.0
       2 1 2 8 LIN LIN
2 2 PRESSURE CONTROL SUBSYSTEM REGULATOR FLOHRATE CURVE
 TABL
 TITL
       2 3 N2 OPENING FLOWS (FROM JULY 1980 PCS TESTING AT JSC)
 TITL
       2 4 N2 OPENING FLOWS VS TOTAL PRESSURE (PSIA)
 TITL
                         14.500
                                                 14.563
                                                             14.583
                                                                      14,640
       2 10 2I 0.0
                                    14.510
 VALU
       2 11 2D
                  67.0
                            67.0
                                        25.0
                                                    7.0
                                                             1.0
                                                                         0.5
 VALU
                            100.0
       2 12 2I 14.748
 VALU
                 0.0
 VALU
       2 13 2D
                             0.0
                                        LIN LIN
 TABL
       3 2 PRESSURE CONTROL SUBSYSTEM REGULATOR FLOWRATE CURVE
 TITL
       3 3 N2 CLOSING FLOMS (FROM JULY 1980 PCS TESTING AT JSC)
3 4 N2 CLOSING FLOMS VS TOTAL PRESSURE (PSIA)
 TITL
 TITL
                         14.590
                                                 14.658
                                                             14.680
                                                                       14.748
                  0.0
                                    14.625
       3 10 2I
 VALU
                                                     7.0
                                                               0.8
                                                                         0.5
                            67.0
 VALU
       3 11 2D
                 67.0
                                        11.0
 VALU
       3 12 2I 14.813
                            100.0
                 0.0
                             0.0
 VALU
       3 13 2D
        4 1 3
                            3 14
                                       LIN LIN LIN
 TABL
       4 2 CREMMAN LATENT LOAD (BTU/MAN-HR) VS TIME (SEC) AND TEMP (F)
 TITL
                                      24300.
                                                 28800.
                                                            42300.
       4 10 3I
                           0.0
 VALU
                                                 253.375
                                                                       90.0
 VALU
       4 11 3D 65.0
                           70.0
                                      70.0
                                                            253.375
       4 12 3D 70.0
                           70.0
                                      70.0
                                                 305.0
                                                            305.0
                                                                       135.0
 VALU
                           70.0
                                      70.0
                                                 363.375
                                                            363.375
                                                                       180.0
 VALU
       4 13 30 75.0
                                                            64800.
                                                                       68400.
 VALU
       4 14 3I
                           46800.
                                      54000.
                                                 61200.
_VALŪ
       4 15 3D 65.0
                            90.0
                                      253.375
                                                 253.375
                                                            90.0
                                                                       90.0
       4 16 3D 70.0
                                                            135.0
                                                                       135.0
                           135.0
                                      305.0
                                                 305.0
 VALLE
                                      363.375
                                                 363.375
                                                            180.0
                                                                       180.0
 VALU
       4 17 3D
                75.0
                           180.0
                           72000.
                                      77400.
                                                 83700.
                                                            86400.
 VALU
       4 18 3I
       4 19 3D 65.0
                                                            70.0
                           175.0
                                      175.0
                                                 70.0
 VALU
                                      225.0
                                                            70.0
 VALU
       4 20 3D 70.0
                           225.0
                                                 70.0
                                                 70.0
       4 21 30 75.0
                           280.0
                                      280.0
                                                            70.0
 VALU
       5 1 2 4 LIN STP
5 2 NUMBER OF PEOPLE IN HABITAT VS. TIME, SECONDS
       5 1 2
 TABL
_TITL
       5 10 2I 0.0 28800. 79200.
                                                 86400.
TVALU
                           8.0
                                      8.0
                                                 8.0
 VALU
       5 11 2D 8.0
                                        LIN STP
               2
                            4
 TABL
```



```
6 2 NUMBER OF PEOPLE IN LABORATORY VS. TIME, SECONDS
TITL
                         28800. 79200. 86400.
VALU
      6 10 2I 0.0
      6 11 2D 0.0
VALU
                          0.0
                                     0.0
                                                0.0
                                     LIN LIN
      7 1 2 6 LIN LIN
7 2 PRESSURE CONTROL SUBSYSTEM REGULATOR FLOWRATE CURVE
TABL
TITL
      7 3 02 OPENING FLOWS (FROM JULY 1980 PCS TESTING AT JSC)
TITL
       7 4 02 OPENING FLOWS VS TOTAL PRESSURE (PSIA)
TITL
                                    14.565
                                              14.666
                                                            14.700 100.000
      7 10 2I
                         14.510
VALU
                 0.0
                                                                         0.0
                                                              0.0
                           10.0
                                      0.85
                                                    0.2
VALU
      7 11 2D
                 10.0
                                       LIN LIN
             2
                           6
TABL
       8 1
       8 2 PRESSURE CONTROL SUBSYSTEM REGULATOR FLOWRATE CURVE
TITL
       8 3 02 CLOSING FLOWS (FROM JULY 1980 PCS TESTING AT JSC)
TITL
       8 4 02 CLOSING FLOWS VS TOTAL PRESSURE (PSIA)
TITL
                                                 14.745
                                                                     100.000
                                                            14.819
                          14.605
                                     14.672
VALU
      8 10 2I
                  0.0
                                                                         0.0
                                                             0.0
                            10.0
                                        0.6
                                                   0.25
      8 11 2D
                  10.0
VALU
PLOTO
                                      HABITAT TEMPERATURE (F)
PLOT2
              2
                                      HABITAT PRESSURE (PSIA)
PLOT2
           1
             94
                                      HABITAT 02 PRESSURE (PSIA)
PLOT2
          1
                                      HABITAT DEM POINT (F)
PLOT2
           1
              98
                                      HABITAT CO2 PRESSURE (MMHG)
PLOT2
          1 100
                                      LABORATORY TEMPERATURE (F)
              2
PLOT2
           2
                                      LABORATORY PRESSURE (PSIA)
PLOT2
           2
              4
                                      LABORATORY 02 PRESSURE (PSIA)
           2 94
PLOT2
                                      LABORATORY DEW POINT (F)
           2 98
PLOT2
                                      LABORATORY CO2 PRESSURE (MMHG)
PLOT2
           2 100
                                      O2 ACCUMULATOR PRESSURE (PSIA)
PLOT2
          28 72
                                      HAB. CO2 SUB #1 ACCUM. INLET FLOW (PPH)
PLOT2
         131
              1
                                      CO2 REMOVED BY HAB. SUBSYSTEM #1 (PPH)
PLOT2
         131
             87
                                      HAB. SUB. #1 CO2 ACCUM EXIT FLOW (PPH)
         135
PLOT2
              1
                                      CO2 ACCUM. PRESSURE (HAB. SUB. #1) (PSIA)
PLOT2
         135 72
                                      O2 PRODUCED BY HAB. O2 GEN #1 (PPH)
PLOT2
         141
             10
                                      H2 GEN FROM HAB. 02 GEN #1 (PPH)
         141 14
PLOT2
                                      H2 VENTED FROM HAB. 02 GEN #1 (PPH)
PLOT2
         202 33
                                      H2 TO CO2 RED. FROM HAB O2 GEN #1 (PPH)
         207
             33
PLOT2
                                      LAB. CO2 SUB #1 ACCUM. INLET FLOW (PPH)
         331
PLOT2
              1
                                      CO2 REMOVED BY LAB. SUBSYSTEM #1 (PPH)
PLOT2
         331 87
                                      LAB. SUB. #1 CO2 ACCUM EXIT FLOW (PPH)
PLOT2
         335
               1
                                      CO2 ACCUM. PRESSURE(LAB. SUB. #1) (PSIA)
PLOT2
         335 72
                                      O2 PRODUCED BY HAB. O2 GEN #1 (PPH)
         341 10
PLOT2
                                      H2 GEN FROM LAB. 02 GEN #1 (PPH)
PLOT2
         341
              14
                                      H2 VENTED FROM LAB. 02 GEN #1 (PPH)
PLOT2
         402 33
                                      H2 TO CO2 RED. FROM LAB O2 GEN #1 (PPH)
         407 33
PLOT2
ENDC
```


C.4.1.2 Input Data SSDATA Description (Continued)

CO₂ Removal

- . EDC
- . Molecular Sieve
- . SAWD

The fifth section contains table data whereby parameters or conditions that vary with time may be input. For example, the number of people in crew #1 for the habitat can be varied with time to permit simulation of the crew moving about the station.

C.4.1.3 Input Data Modification

The user has various options to select. These options define the bussing of hydrogen, nitrogen, carbon dioxide, and process air. For carbon dioxide a further choice is provided between intramodular and intermodular bussing. To date, none of the bussing options have been checked; however, the architecture and logic is in place for these options.

The process air bus option provides a path around the station for process air to flow to the various ECLS equipment. Without a bus, air is simply drawn from the room.

C.4.1.3 <u>Input Data Modification</u> (Continued)

An intramodule hydrogen bus causes any hydrogen generated from either of two units in the module to be dumped to a common line. The same exists for carbon dioxide but with the addition of a COL accumulation in each module and no accumulation with each $^{\rm CO}_2$ removal unit. For an intermodule $^{\rm CO}_2$ bus, the $^{\rm CO}_2$ from all $^{\rm CO}_2$ removal units dump to a common line with only one $^{\rm CO}_2$ accumulator for the station.

At present, the nitrogen bus logic is not in place either in the flow connections or in the subroutines themselves where ${\rm N}_2$ purging needs to be modeled.

The user also can select which type of unit to perform an ECLSS function. The input setup shown in Table C-7 has Bosch for ${\rm CO}_2$ reduction, molecular sieve for ${\rm CO}_2$ removal, and solid polymer electrolysis for oxygen generation. To swap one unit for another to perform a function, simply make the component number the one for that function according to the following table:

		Unit	Component
Function	Location	Number	Number
CO ₂ Reduction	Habitat	1	121
∞_2 Reduction	Habitat	2	123
CO ₂ Reduction	Laboratory	1	321
∞ ₂ Reduction	Laboratory	2	323
∞ ₂ Removal	Habitat	1	131
CO ₂ Removal	Habitat	2	133
	•		
∞_2 Removal	Laboratory	1	331
CO ₂ Removal	Laboratory	2	333
_			
O ₂ Generation	Habitat	1	141
O ₂ Generation	Habitat	2	142
O ₂ Generation	Laboratory	1	341
O ₂ Generation	Laboratory	2	343

Units that are not used in the simulation should be numbered 500 or above according to Table C-8.

TABLE C-8 COMPONENT NUMBERS FOR UNUSED UNITS

Component Number	Equipment	Location	Unit <u>Number</u>
540	Sabatier	Habitat "	1 1
541	Bosch		2
542	Sabatier		2 1 1 1 2 2 2 1 1 2 2 1
543	Bosch		้ำ
550	EDC	 U	1
551	SAWD		ī
552	Molecular Sieve		2
553	EDC	"	2
554	SAWD	 11	2
555	Molecular Sieve		1
560	SPE	**	1
561	KOH	"	2
562	SPE	"	2
563	KOH		1
570	Sabatier	Laboratory "	J
571	Bosch	**	7
572	Sabatier		2 2 1 1
573	Bosch	**	2
580	EDC	11	1
581	SAWD	u u	1
582	Molecular Sieve	11	1 2 2 2
583	EDC	17	2
584	SAWD	tt .	2
	Molecular Sieve	17	
585	SPE	11	1 1
590	KOH	и	1
591	SPE	17	2
592	KOH	, "	2
593	TOI:	`	

C.4.1.4 Program Output

Five output files are generated; three are tabular data and two are for plots. Table C-9 shows the output data for the input file shown in Table C-7. As discussed earlier, plots are generated using the CAETMS software [3]. Plots generated are presented in Figures C-1 through C-20.

C.4.2 Operation Using the Langley Prime Computer

For instructions on installing and using a program from Hamilton Standard's IBM to Langley's PRIME, please refer to instructions provided in the ECLSB User's Manual ^[1], Section 4.2.

	HABITAT PARAMETERS	INLET			,		
The proof Cocc Coc	TEMP PRESS PRESS PRESS LAB DEM COZ OZ PRESS PRESS PRESS		ı	ACCUM	O2 GENERATE	IMATER ED I	FLOM
Fig.	F F	LAB1 		_	HAB1 LA		ICO2
70. 6149. 12. 7931 0.0931 1.0. 71 (2. 4931 0.0914 2. 7012 0.0010 0.00010 0.00010 0.0012 9 129 9 1 3501 3501 0 7210 0.0016 9 12 7913 0.0931 1.0. 71 (2. 4941 0.0914 2. 7012 0.0010 0.00010 0.0010 1.0. 71 (2. 4911 0.0914 0.0014 0.0012 0.0010 0.0010 0.0012 9 129 9 1 3501 3501 0.0 50	70. 6 50. 0 2. 500 0 3. 09 0 14. 70 70. 6 50. 0 2. 500 3. 09 0 14. 70 40 0 1370 3710 170. 6 59. 4 49. 10 2. 793 3. 099 14. 71 70. 0 49. 6 3. 793 19. 47 378 333 0. 6 99. 4 49. 10 2. 793 3. 099 14. 67 67 69. 4 47. 6 2. 491 3. 092 14. 67 3. 093 14. 67 57 57 57 57 57 57 57	PPH	Hdd -			-	E
17. 5 18. 4 18. 17. 17. 18.	10 15 15 15 15 15 15 15	.000.01000.	<u>.</u>	.0130.	<u>.</u>	<u>.</u>	-
10, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	6.9 4 (46, 112, 779 3. 087 14, 67 69, 4 47, 8 2. 484 3. 088 14, 68 370 327 10. 679 47, 48 2. 082 14, 68 370 327 10. 614, 48 2. 771 3. 088 14, 68 370 14, 64 370 327 10. 614, 48 2. 778 3. 098 14, 68 9. 745, 712, 469 3. 092 14, 68 371 322 10. 614, 272 3. 092 14, 618 371 322 10. 614, 272 3. 092 14, 618 371 322 10. 614, 272 3. 092 14, 618 371 322 10. 614, 272 3. 092 14, 618 371 322 10. 614, 272 3. 092 14, 618 70. 144, 212, 445 3. 099 14, 618 371 322 10. 618 4, 512 3. 092 14, 618 70. 144, 212, 445 3. 099 14, 618 371 322 10. 618 4, 512 3. 272 3. 091 4, 618 70. 144, 212, 449 3. 099 14, 618 371 322 10. 618 4, 512 3. 272 3. 091 4, 618 70. 144, 212, 449 3. 099 14, 618 371 322 10. 618 4, 512 3. 272 3. 101 14, 67 67 67 67 371 329 10. 618 4, 612 371 322 10. 618 4, 612 371 322 10. 618 4, 612 371 322 322 10. 618 4, 612 371 371 372 3	.000 0 000	<u>.</u>	.0129.	<u>:</u> -		
19. 17. 18.	19. 1 17. 1 2. 088 14. 6 170. 1 47. 1 2. 481 3. 092 14. 6 1. 370 332 0. 170. 6 46. 8 2. 786 3. 093 14. 6 19. 0 4 46. 477 3. 092 14. 6 1. 375 332 0. 170. 6 46. 8 2. 786 3. 093 14. 6 19. 7 45. 12. 469 3. 092 14. 6 1. 375 332 0. 170. 0 46. 2 2. 786 3. 093 14. 6 19. 7 45. 12. 469 3. 092 14. 6 371 322 0. 18. 18. 18. 18. 19. 18. 18. 19. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18	0.000.0	<u>.</u>	29.9129.9	ᆣ.	<u>.</u>	
17.0, 614.6, 27.7, 24.8, 10.99 14.6, 61.7, 46.9 1.095 14.6, 61.7, 27.8 1.350 1.000 1.000 1.000 1.59, 91.5, 91.5, 91.550 1.350 1.500 1.	170 6 46 6 12 768 3 294 14 69 70 646 64 27 3 2095 14 67 37 3322 07 170 64 62 72 72 72 72 72 72 72	0.000.01	<u>.</u>	29.9 29.9	ᆣ.	<u>.</u>	
15. 16. 15.	70.0 46. 2 2. 759 3.093 14. 66 69. 7 45. 12 469 3.092 14. 67 371 325 0.0 69. 164. 5 12. 759 3.093 14. 66 69. 7 45. 12. 459 3.098 14. 67 371 325 0.0 70. 1 45. 3 12. 743 3.099 14. 66 70. 1 44. 2 2. 453 3.099 14. 67 371 325 0.0 70. 1 45. 3 12. 743 3.099 14. 67 69. 7 44. 7 2. 459 3.099 14. 67 371 325 0.0 70. 3 44. 6 2. 721 3.091 14. 67 70. 1 44. 2 2. 453 3.099 14. 67 352 325 0.0 70. 3 42. 2 22. 721 3.091 14. 67 70. 2 43. 0 2. 428 3.108 14. 67 352 325 0.0 70. 3 42. 612 771 3.101 14. 67 69. 9 42. 61. 248 3.108 14. 67 354 325 0.0 70. 6 43. 6 2. 701 3.101 14. 67 69. 9 42. 61. 248 3.108 14. 67 354 325 0.0 70. 6 43. 6 2. 701 3.101 14. 67 69. 9 42. 61. 248 3.108 14. 67 354 325 0.0 70. 6 43. 6 2. 701 3.101 14. 67 69. 9 42. 61. 248 3.108 14. 67 354 325 0.0 70. 6 43. 6 2. 701 3.101 14. 67 69. 9 42. 61. 248 3.118 14. 70 359 328 0.0 70. 6 43. 6 2. 701 3.101 14. 67 69. 9 42. 61. 248 3.118 14. 70 354 323 0.0 70. 6 44. 6 2. 701 3.101 14. 67 69. 9 42. 12 2. 421 3.118 14. 67 354 323 0.0 70. 6 44. 6 2. 701 3.101 14. 66 69. 9 42. 12 2. 389 3.118 14. 70 354 323 0.0 70. 1 42. 7 2. 660 3.119 14. 66 69. 4 41. 2 2. 389 3.118 14. 67 354 321 0.0 70. 1 42. 7 2. 660 3.119 14. 66 70. 14. 12 2. 389 3.128 14. 66 357 351 0.0 70. 2 42. 7 2. 660 3.118 14. 66 70. 14. 12 2. 389 3.128 14. 66 357 351 0.0 70. 2 42. 7 2. 660 3.118 14. 66 70. 14. 12 2. 354 3.128 14. 66 357 351 0.0 70. 2 42. 7 2. 626 3. 128 14. 66 70. 14. 31. 2. 354 3.128 14. 66 357 351 0.0 70. 2 42. 7 2. 626 3. 128 4. 66 59. 3 40. 2 2. 354 3.128 4. 66 357 351 0.0	000.0	<u>.</u>	30.0[29.9	<u>:</u>	<u>.</u>	ö
10.0 46.7 17.7 12.0	16.0 145 312 743 3.09 14.66 69. 7 45.1 12.465 3.09 14.66 3.71 326 10. 170 145 312 743 3.09 14.67 70. 3 44. 7 2.459 3.09 14.67 3.71 326 10. 170 145 312 743 3.09 14.67 70. 3 44. 7 2.459 3.09 14.67 3.71 325 10. 16.9 8 44.2 22. 729 3.09 14.67 70. 2 43. 7 2.469 3.09 14.67 3.71 325 10. 16.9 8 44.2 22. 729 3.09 14.67 70. 2 43. 10. 2 43. 5 10. 14.67 3.25 10. 170 143 45 17.77 3.101 14.67 70. 2 43. 10. 2 43. 5 3.09 14.67 3.55 3.25 10. 170 143 45 12. 770 3.101 14.67 70. 2 43. 10. 2 42. 13. 104 14.67 3.56 3.25 10. 170 143 51 2.09 3.101 14.67 70. 2 43. 10. 2 42. 13. 104 14.67 3.56 3.25 10. 170 143 51 2.09 3.101 14.67 69. 9 43. 5 2.421 3.105 14.67 3.56 3.25 10. 170 143 51 2.09 3.101 14.67 69. 9 43. 5 2.421 3.105 14.67 3.66 3.25 3.00 10. 170 143 51 2.00 3.100 14.66 69. 0 42. 0 2.340 3.117 14.66 3.27 3.10 14.66 69. 0 42. 0 2.34 3.117 14.66 3.27 3.10 14.66 69. 0 42. 0 2.34 3.117 14.66 3.27 3.12 14.60 3.27 3.12 10. 16. 143 51 52 52 53 3.10 14.66 69. 0 41.8 2.38 3.117 14.66 3.27 3.12 10. 16. 142 51 52 52 53 3.118 14.66 69. 7 41.2 2.389 3.118 14.66 3.57 3.12 10. 16. 142 51 52 52 53 3.118 14.66 69. 4 41.2 2.389 3.12 14.60 3.27 3.12 14.60 3.27 3.12 14.60 3.27 3.12 14.60 3.27 3.12 14.60 3.27 3.12 14.60 3.27 3.12 14.60 3.27 3.12 14.60 3.27 3.12 14.60 3.27 3.12 14.60 3.27 3.12 14.60 3.27 3.12 14.60 3.27 3.12 14.60 3.27 3.12 14.60 3.27 3.12 14.60 3.27 3.12 14.60 3.27 3.12 14.60 3.27 3.12 14.60 3.27 3.12 14.60 3.27 3.12 14.60 3.12 3.12 4.60 3.27 3.12 4.60 3.27 3.1	000 0 000	<u> </u>	29.9 29.9	÷	<u>.</u>	≗
10.2 14.5 2.7 2.5 2.	19. 1 45. 12 73 1.09 14. 61 70. 3 44. 7 2. 459 3.09 14. 61 37 326 10. 61 77 10. 3 44. 9 2. 738 3.09 14. 66 70. 3 14. 66 77 326 10. 61 37 326 10. 61 37 326 10. 61 37 326 10. 61 37 326 10. 61 37 326 10. 61 37 326 10. 61 37 326 10. 61 37 326 10. 61 37 326 10. 61 37 326 10. 61 37 326 10. 61 37 326 10. 61 37 37 37 326 10. 61 37 37 37 37 37 37 37 3	000 10 000	0000	29.9129.9	_:	<u>.</u>	<u>.</u>
10. 149. 15. 778 20.08 14. 67 771 74. 21 25	70. 144. 9 21. 728 3. 099 14. 67 69. 7 43. 7 2. 453 3. 099 14. 66 370 326 10. 69. 8 44. 6 22. 728 3. 099 14. 67 69. 7 43. 7 2. 443 3. 099 14. 66 370 326 10. 69. 8 44. 6 22. 728 3. 099 14. 66 70. 2 43. 7 2. 448 3. 098 14. 66 370 326 10. 69. 8 44. 6 22. 772 3. 097 14. 67 69. 9 42. 6 2. 448 3. 098 14. 66 370 326 10. 69. 8 44. 6 22. 772 3. 101 14. 67 69. 9 42. 6 2. 428 3. 104 14. 66 36 325 10. 6 14. 66 36 370 326 10. 6 43. 6 22. 772 3. 101 14. 67 69. 9 42. 6 2. 428 3. 104 14. 66 36 328 10. 6 43. 6 22. 66 3. 101 14. 67 69. 9 42. 6 2. 428 3. 104 14. 66 356 328 10. 6 43. 41. 6 69. 8 42. 7 2. 422 3. 114 14. 61 59. 8 44. 6 2. 703 3. 101 14. 67 69. 9 42. 2 2. 422 3. 114 14. 66 356 328 10. 6 43. 41. 6 69. 8 42. 7 2. 422 3. 114 14. 66 356 328 10. 6 43. 41. 6 69. 4 42. 7 2. 66 3. 110 14. 66 69. 7 41. 6 2. 407 3. 112 14. 66 356 322 10. 6 69. 7 42. 7 2. 66 3. 110 14. 66 69. 7 41. 6 2. 364 3. 112 14. 66 356 3. 312 14. 66 356 3. 312 14. 66 356 3. 312 14. 66 356 3. 312 14. 66 3. 362 3. 362 3. 36		000	29.9129.9	_:	<u>.</u>	
19. 8 144. 2 27. 279 2. 099 14. 671 2. 17. 2. 471 2. 099 1. 0.60 1. 0.00 1. 0.00 2. 9 2. 9 2. 9 3. 90 3. 90 1. 0.	69, 8 64, 5 2, 729 3, 109 14, 66 70, 0 43, 3 2, 40 3, 102 14, 67 365 325 0. 69, 8 64, 5 2, 729 3, 099 14, 66 70, 0 43, 3 2, 40 3, 102 14, 67 365 325 0. 69, 8 64, 5 2, 729 3, 099 14, 67 69, 9 42, 612, 428 3, 106 14, 67 365 325 0. 170, 3 43, 9 2, 777 3, 101 14, 67 69, 9 42, 612, 428 3, 106 14, 67 365 325 0. 170, 6 43, 9 2, 771 3, 101 14, 67 69, 9 43, 5 2, 421 3, 105 14, 67 369 325 0. 169, 8 64, 6 2, 701 3, 101 14, 67 69, 9 43, 5 2, 421 3, 105 14, 67 355 325 0. 170, 6 43, 9 2, 700 3, 108 14, 67 69, 9 42, 5 2, 407 3, 105 14, 67 355 328 0. 170, 6 43, 9 2, 700 3, 108 14, 67 69, 9 42, 2 2, 407 3, 105 14, 67 355 328 0. 170, 6 43, 9 2, 700 3, 108 14, 67 70, 9 41, 21, 22, 325 3, 116 14, 70 359 328 0. 170, 6 43, 9 2, 669 3, 100 14, 66 69, 4 41, 21, 22, 345 3, 117 14, 66 352 332 0. 180, 6 43, 112, 6, 69 3, 108 14, 67 70, 9 41, 12 2, 335 3, 116 14, 68 356 332 0. 180, 6 42, 112, 6 69 3, 108 14, 67 70, 9 41, 31, 239 3, 126 14, 68 356 332 0. 180, 6 42, 112, 6 69 3, 108 14, 67 70, 9 41, 31, 239 3, 126 14, 68 356 332 0. 180, 6 42, 112, 6 42, 112 44, 68 70, 2 40, 5 2, 326 3, 126 14, 69 356 331 0. 180, 6 42, 112, 6 69 3, 108 14, 68 69, 8 41, 31, 235 3, 121 14, 68 356 331 0. 180, 9 42, 112, 6 69 3, 118 14, 68 69, 8 41, 31 2, 326 3, 126 14, 69 356 331 0. 180, 9 42, 112, 6 69 3, 118 14, 68 69, 8 41, 31 2, 326 3, 126 14, 69 356 331 0. 180, 9 42, 112, 6 69 3, 118 14, 68 69, 8 41, 31 2, 326 3, 126 14, 69 356 331 0. 180, 9 42, 112, 6 69 3, 118 14, 68 69, 8 41, 31 3, 236 3, 136 14, 69 356 331 0. 180, 9 42, 112, 6 69 3, 118 14, 69 7, 139 9, 12, 327 3, 131 14, 67 357 349 0. 180, 9 41, 12 12, 257 3, 131 14, 69 7, 139 14, 69 356 351 3, 14, 67 369 369 0. 180, 9 41, 12 12, 257 3, 131 14, 69 3, 136 14, 69 3, 136 14,		<u> </u>	29.9129.9		0	
19.8 44.2 17.721 1.091 14.6 17.0 14.6 17.6 14.6 1.26 1.25 1.000 0.000 0.000 0.000 12.6 12.6 1.25	69. 8 44. 5 2. 723 3. 095 14. 6 70. 0 43. 3 2.400 3. 5102 14. 6 7 366 325 0. 1043. 6 2.428 3. 104 14. 6 7 366 325 0. 1043. 6 2.717 3. 101 14. 67 70. 2 43. 6 2.428 3. 104 14. 67 365 325 0. 1043. 6 2.717 3. 101 14. 67 70. 2 43. 6 2.428 3. 104 14. 67 365 325 0. 116. 8, 61 2.52 0. 117. 11. 101 14. 67 69. 9 43. 5 2. 421 3. 105 14. 67 367 325 0. 117. 11. 11. 14. 61 2. 105 14. 65 325 0. 117. 11. 11. 11. 11. 11. 11. 11. 11. 1	1000.01000	<u> </u>		: _:	6	9
19.5 44.5 27.7715 2.0911 4.6 7.0 2.45 2.10 4.6 1.56 1.25 1.000 0.000 0.000 0.59 0.25 0.	169.8 444. 2 2. 7721 3.097 14. 66 70.0 143.3 2. 420 3.104 14. 67 3.561 3.251 0.0 14. 67 3.501 3.251 0.0 14. 67 3.501 3.251 0.0 14. 67 3.501 3.251 0.0 14. 67 3.501 3.251 0.0 14. 67 3.501 3.251 0.0 14. 67 3.501 3.251 0.0 14. 67 3.501 3.251 0.0 14. 67 3.501 3.251 0.0 14. 67 3.501 3.251 0.0 14. 67 3.501 3.251 0.0 14. 67 3.501 3.251 0.0 14. 67 3.501 3.251 0.0 14. 67 3.501 3.251 0.0 14. 67 3.501 3.251 3.251 0.0 14. 67 3.501 3.251 0.0 14. 67 3.501 3.251	01000.01000.	<u>:</u>		:_	-	9
170 3143 612 709 3.10 114 67 68 612 3.25 3.25 0.000 0.000 0.000 3.28 0.28 3.25	170, 3 43, 9 2, 717 3, 101 14, 67 70, 2 43, 10 14, 67 356 3.556	.000.01000.		, ,	<u>:</u>	; 	<u>.</u>
170 0 145 6 12.70 13.10 114, 67 69 9 62 12, 62 31, 10 114, 67 532 0.000 0.000 0.359 0.318 28 829 1.350 1.350 0.59 0.99 0.45 0.45 0.45 0.359 0.318 28 829 1.359 0.359 0.318 0.45 0.45 0.359 0.318 28 829 1.359 0.359 0.318 0.45 0.45 0.45 0.45 0.359 0.318 28 829 1.359 0.359 0.318 0.45 0.45 0.45 0.359 0.318 0.35 0.359 0.318 0.45 0.45 0.45 0.45 0.359 0.318 0.45 0.45 0.359 0.318 0.35 0.359 0.318 0.35 0.359 0.318 0.35 0.359 0.318 0.35 0.359 0.318 0.35 0.359 0.318 0.35 0.359 0.318 0.35 0.359 0.318 0.35 0.359 0.318 0.35 0.359 0.318 0.35 0.359 0.318 0.35 0.359 0.318 0.35 0.359 0.318 0.35 0.359 0.318 0.35 0.359 0.318 0.35 0.359 0.318 0.35 0.359 0.38 0.39 0	170. 0 43. 6 2. 709 3. 101 14, 67 69. 9 42. 6 2. 428 3. 104 14, 66 .357 .325 0. 10. 6. 8 44. 6. 1. 351 3. 101 14, 67 69. 9 42. 5 2. 422 3. 105 14, 67 .359 .328 0. 1170, 6 43. 9 2. 701 3. 101 14, 67 69. 9 94. 2 2. 422 3. 114 14, 70 .369 .328 10. 169. 1 43. 5 2. 685 3. 100 14, 65 69. 0 42. 3 2. 402 3. 115 14, 67 .359 .328 0. 169. 1 43. 5 2. 685 3. 100 14, 65 69. 0 42. 3 2. 402 3. 102 14, 67 .354 .322 10, 70 .352 .322 0. 10, 70 .352 .322 0. 10, 70 .352 .322 0. 10 14, 66 69. 7 41. 2 2. 384 3. 117 14, 67 .354 .322 0. 10 .322 0. 10 .354 .322 0. 10 .354 .322 0. 10 .354 .322 0. 10 .354 .322 0. 10 .354 .322 0. 10 .354 .322 0. 10 .354 .322 0. 10 .354 .322 0. 10 .354 .322 0. 10 .354 .322 0. 10 .322 0. 10 .342 .324 .322 .344 .322 0. 10 .322 0. 10 .342 .324 .322 .344 .322 .344 .322 0. 10 .322 0. 10 .342 .324 .322 .344 .322 .344 .322 .344 .322 .344 .322 .344 .322 .344 .322 .344 .322 .344 .322 .344 .322 .344 .322 .344 .322 .344	.000.01000.		7.	<u>:</u>	; 	2 0
16 16 16 17 18 18 18 18 18 18 18	169. 8 44. 6 2. 701 3. 101 14. 67 69. 9 43. 5 2. 421 3. 105 14. 67 .355 .320 0. 1 14. 65 69. 0 42. 7 2. 422 3. 1105 14. 65 .352 .322 0. 1 14. 65 69. 0 42. 7 2. 422 3. 1105 14. 65 .352 .322 0. 1 14. 65 69. 0 42. 7 2. 402 3. 1105 14. 65 .352 .322 0. 1 170. 8 43. 4 2. 665 3. 110 14. 65 69. 8 42. 7 2. 402 3. 112 14. 66 .357 .322 0. 1 170. 8 43. 4 2. 665 3. 110 14. 65 69. 4 40. 5 2. 384 3. 112 14. 67 .357 .322 0. 1 170. 8 42. 7 2. 669 3. 110 14. 66 69. 4 40. 5 2. 384 3. 112 14. 67 .356 .322 0. 1 170. 5 42. 7 2. 669 3. 110 14. 66 69. 4 40. 5 2. 384 3. 125 14. 68 .356 .321 0. 1 170. 5 42. 7 2. 669 3. 110 14. 68 70. 2 40. 8 2. 379 3. 125 14. 68 .356 .321 0. 1 170. 5 42. 7 2. 659 3. 110 14. 69 70. 2 40. 8 2. 379 3. 126 14. 69 .360 .320 0. 1 170. 5 42. 7 2. 659 3. 110 14. 69 70. 2 40. 6 2. 356 3. 121 14. 69 .350 .320 0. 1 170. 5 42. 7 2. 628 3. 128 14. 69 70. 2 40. 2 2. 369 3. 121 14. 69 .350 .320 0. 1 14. 69 70. 2 40. 5 2. 369 3. 121 14. 69 .352 .331 0. 1 14. 69 .361 3. 120 3. 120 3. 120 3. 120 3. 120 3. 120 3. 120 3. 120 3. 120 3. 12	.000.0000.	ġ.	9	<u>:</u> .	; -	<u>:</u>
16. 16.	170	000 0 000	<u>.</u>	<u>.</u>	ᆣ.	-	<u>:</u>
19 16 15 15 16 15 15 15 15	169. 1	442 0 442	<u>6</u>	<u>.</u>		-	₫.
17.0 45.4 2.66 5.110 14.6 65.6 64.2 2.40 3.12 114.6 1.35 1.35 0.42 0.44 0.35 0.35 0.35 1.35 1.35 1.35 0.30 0.45 1.45 1.35 1.35 1.35 1.35 1.35 1.35 0.30 0.45 1.45 1.35	170. 8 43. 4 2. 686 3. 110 14. 69 69. 8 42. 0 2. 404 3. 122 14. 70 357 321 0. 69. 69. 7 41. 8 2. 404 3. 122 14. 70 357 321 0. 69. 6 43. 1 2. 677 3. 109 14. 67 70. 9 41. 8 2. 396 3. 115 14. 67 357 321 0. 6 69. 7 41. 2 2. 336 3. 116 14. 67 356 323 0. 6 69. 7 41. 2 2. 336 3. 116 14. 67 356 323 0. 6 69. 7 41. 2 2. 336 3. 116 14. 65 3. 356 3. 313 0. 69. 6 42. 1 2. 660 3. 110 14. 66 69. 4 41. 2 2. 336 3. 116 14. 69 3. 20 3. 20 0. 317 0. 6 69. 4 40. 6 2. 359 3. 126 14. 69 3. 20 3. 20 0. 317 0. 6 69. 4 40. 5 2. 369 3. 126 14. 69 3. 20 0. 320 0. 317 0. 6 69. 9 42. 0 2. 629 3. 112 14. 69 70. 2 40. 2 2. 356 3. 120 14. 60 3. 20 3. 20 0. 30	442 0 442	<u>.</u>	8.9	÷	<u>.</u>	<u>.</u>
16.5 14.2.1 2.677 3.109 14.6 17.0 14.1 12.2 14.70 357 322 10.44 0.440 0.359 0.318 19.5 31.9. 31.59 350 0.50 0.48 16.5 16.5 14.2 12.2 13.10 14.6 15.6 13.10 14.10 10.36 13.20 13.10 13.10 14.10 10.36 13.10 14.10 13.2 13.10 14.10 10.36 13.10 14.10 13.2 13.10 14.10 13.10 14.10 13.2 13.10 14.10 13.10 13.10 14.10 13.10 14.10 13.10 14.10 13.10 14.10 13.10 14.10 13.10 14.10 13.10 14.10 13.10 14.10 13.10 14.10 13.10 14.10 13.10 14.10 13.10 14.10 13.10 14.10 13.10 14.10 13.10 14.10 13.10 13.10 14.10 13.10 14.10 13.10 14.10 13.10 14.10 13.10 14.10 13.10 14.10 13.10 14.10 13.10 14.10 13.10 14.10 13.10 14.10 13.10 13.10 14.10 13.10 13.10 14.10 13		442 0 441	<u>.</u>	9.2	_:	<u>.</u>	<u>.</u>
16.5, 64.5, 112, 66.17, 110 14.6, 16.5, 34.1 12.5, 11.5 14.4, 67.1 12.5, 11.5 10.4, 44.1 10.5 13.6 10.5 13.6 13.6 13.6 10.5 10.5 10.5 13.6	169.6 42. 12.6 13.10 14.6 10. 141.5 12.236 3.12 14.6 1.364 3.22 10.6 142. 12.6 13.10 14.6 14.6 14.6 13.10 14.6 14.6 13.10 14.6 14.6 13.10 14.6 14.6 13.10 14	10 440	2	9.3	_	0	-
16.5, 742, 712, 666 3.110 14. 66 69. 4 41. 2 2.386 3.116 14. 64 0.399 0.399 0.318 29. 7 350 350 0.309 0.489 0.389 0.318 29. 7 350 350 0.309 0.489 0.389 0.318 29. 7 350 350 0.309 0.489 0.389 0.318 29. 7 350 350 0.309 0.489 0.389 0.318 39. 7 350 350 0.309 0.489 0.389 0.318 39. 7 350 350 0.309 0.489 0.38	169.7 142.9 2.669 3.108 14.66 69.7 141.5 12.358 3.118 14.65 3.56 3.12 10.69 42.7 2.661 3.112 14.66 3.55 3.12 14.68 3.13 14.68	10000 01100	XEO IO	2	_	_	_
170 342 2 12 665 3 117 14 66 70 54 14 17 15 14 68 1755 1350 1350 1350 359 359 359 359 1350 136 10 64 17 17 14 68 70 54 14 17 15 64 15 17 15 64 15 17 15 15 15 15 15 15	69.4 42.7 12.661 5.110 14.60 69.4 44.2 2.565 3.125 14.68 3.551 3.313 0.70 169.4 42.7 12.661 5.110 14.60 10.5 41.0 2.384 3.125 14.68 3.551 3.313 0.70 3 42.4 2.665 3.115 14.66 69.4 40.5 2.369 3.125 14.68 3.521 3.20 0.169.5 42.1 2.644 3.115 14.66 69.4 40.5 2.365 3.121 14.66 3.57 3.15 0.169.5 42.1 2.644 3.115 14.66 69.4 40.5 2.365 3.121 14.66 3.57 3.15 0.169.5 42.1 2.644 3.115 14.65 70.0 40.3 2.365 3.12 14.66 3.52 3.09 0.169.5 42.0 2.627 3.122 14.69 70.5 40.2 2.362 3.13 14.68 3.47 3.07 0.169.5 43.0 2.626 3.127 14.68 69.3 40.1 2.351 3.13 14.68 3.47 3.07 0.169.1 42.2 2.625 3.117 14.68 69.3 40.1 2.351 3.13 14.69 3.58 3.31 0.169.1 42.1 2.613 3.117 4.66 69.3 40.1 2.356 3.13 14.69 3.58 3.31 0.170.1 42.1 2.613 3.127 14.68 69.3 40.1 2.358 3.13 14.67 3.45 3.04 0.170.1 42.1 2.610 3.125 14.66 69.7 39.7 2.227 3.135 14.67 3.45 3.04 0.170.1 42.1 2.566 3.131 14.69 70.4 39.7 2.327 3.132 14.67 3.47 3.05 0.170.1 41.4 2.566 3.131 4.69 3.47 3.06 0.170.1 41.4 2.566 3.131 4.69 3.40 3.05 0.170.1 41.4 2.566 3.131 4.66 69.7 39.4 2.327 3.135 14.67 3.47 3.05 0.170.1 41.4 2.567 3.131 4.68 3.44 3.03 0.170.1 41.4 2.563 3.131 4.68 3.44 3.03 0.170.1 41.4 2.563 3.131 4.68 3.44 3.03 0.170.1 41.5 2.54 3.131 4.68 3.44 3.03 0.170.1 41.5 2.54 3.131 4.68 3.44 3.03 0.170.1 41.5 2.54 3.131 4.68 3.44 3.03 0.170.1 41.5 2.54 3.131 4.68 3.44 3.03 0.170.1 41.5 2.54 3.131 4.68 3.44 3.03 0.170.1 41.5 2.54 3.131 4.68 3.44 3.03 0.170.1 41.5 2.54 3.14 4.68 3.44 3.03 0.170.1 41.5 2.54 3.14 4.68 3.44 3.03 0.170.1 41.5 2.52 3.13 4.6 3.13 4.6	10000 01 100	2500	7	: <u>_</u>	. –	9
170. 5 42. 5 65 3.117 14, 68 70. 2 640. 8 2.379 3.128 14, 68 3.599 0.349 0.359 0.318 30. 318 3	70.5 42.5 2.660 3.117 14.68 70.5 41.0 2.384 3.125 14.69 .355 .315 10.0 170.3 42.4 2.655 3.119 14.69 70.2 40.61 23.79 3.125 14.69 .360 .350 .350 .250 0.0 16.9.5 3.115 14.66 69.4 40.5 2.369 3.121 14.69 .360 .350 0.0 16.9.5 3.115 14.60 .362 3.20 10.0 16.9.5 3.121 14.69 .352 .309 10.0 16.9.5 42.0 2.625 3.115 14.60 70.0 40.3 2.362 3.120 14.69 .352 .309 10.0 170.4 41.9 2.637 3.122 14.69 70.0 40.2 2.362 3.130 14.69 .352 .315 10.0 16.9.5 12.2 14.69 .361 .309 10.0 10.0 14.60 .352 .315 10.0 16.9.5 12.2 14.69 .361 .309 10.0 14.60 .352 .315 10.0 14.60 .352 .315 10.0 14.60 .352 .315 10.0 14.60 .352 .315 10.0 14.60 .352 .315 10.0 14.60 .352 .315 10.0 170.7 142.0 12.610 3.127 14.60 .200 170.7 142.0 12.610 3.127 14.60 .200 170.7 142.0 12.610 3.125 14.60 69.7 139.9 2.327 3.131 14.60 .352 .312 10.0 170.7 142.0 12.610 3.131 14.69 170.5 140.7 13.20 14.60 .353 .312 10.0 170.7 141.8 12.60 13.13 14.60 14.60 .352 .312 14.60 .353 .312 10.0 170.7 141.8 12.60 13.13 14.60 .357 .304 10.0 13.9 14.60 17.9 13.9 14.60 .352 .312 14.60 .352 .312 10.0 12.577 3.131 14.60 .399 12.20 3.132 14.60 .344 .303 10.0 170.3 14.60 .342 .304 .	1044.0144.	200		<u>.</u>	· -	9
19. 19. 19. 24. 26. 13.		.44010.4391	35910.		<u>:</u> -	- ·	<u>.</u>
16, 5 42, 1 2, 644 3, 115 14, 66 69, 4 40, 5 2, 356 3, 121 14, 66 357 335 0, 300 0, 439 0, 3218 30, 4 30, 2 31, 350 350 350 0, 500 0, 40	69.5 42. 1 2.644 3.115 14.66 69.4 40.5 2.369 3.121 14.66 .357 .315 0.9 0.9 0.9 0.9 0.2 0.2 0.2 0.2 0.9	.440 0.438	.35910.	130.1130.9	ᆣ.	۰ د	<u>:</u>
10.0 1.0	0.0 0.0	.440 0.438	.35910.	130.2131.2	<u>.</u>	-	_
170, 4(41.9) 2, 637 3, 122 14, 69 70.5 13.50 14, 69 355 315 0.000 0.000 0.352 0.312 29.2 29.2 350 0.800 0.45 170, 4(41.9) 2, 637 3, 122 14, 69 13.6 13.7 14, 69 35.8 13.7 0.000 0.352 0.312 29.2 29.2 350 350 0.800 0.45 170, 4(41.9) 2, 621 3, 120 14, 69 13.8 13.13 14, 69 35.8 37 0.000 0.352 0.312 29.2 29.4 350 350 0.800 0.45 170, 142, 5 2, 631 3, 124 14, 69 13.13 14, 69 35.8 31.10 0.44 0.352 0.312 29.9 3.5 3.5 0.800 0.45 170, 142, 2 2, 641 3, 13.14 4, 64 3.24 3.34 3.44 0.44 0.352 0.312 29.9 3.5 3.5 0.800 0.45 170, 142, 12, 124 14, 64 0.70 14, 12 12.34 3.13 14, 69 3.35 3.21 0.440 0.440 0.352 0.312 29.9 3.0 3.0 0.60 0.45 170, 142, 12, 124 14, 64 0.70 14, 12 12.34 3.13 14, 67 3.44 3.24 3.	70. 4 41. 9 2. 637 3. 122 14. 69 70. 5 40. 2 2. 362 3. 130 14. 69 .355 .315 0. 170. 4 41. 9 2. 629 3. 120 14. 68 69. 8 41. 3 2. 354 3. 127 14. 68 .347 .307 0. 170. 2 42. 5 2. 626 3. 124 14. 69 70. 2 40. 7 2. 351 3. 131 14. 69 .358 .317 0. 170. 2 42. 2 2. 613 3. 117 14. 66 69. 3 40. 5 2. 335 3. 131 14. 66 .352 .317 0. 170. 1 42. 1 2. 610 3. 124 14. 68 69. 7 19. 9 2. 338 3. 131 14. 66 .352 .317 0. 170. 7 42. 0 2. 610 3. 124 14. 68 69. 7 39. 9 2. 328 3. 131 14. 67 .345 .304 0. 170. 7 42. 0 2. 610 3. 125 14. 68 69. 7 39. 9 2. 327 3. 132 14. 67 .345 .304 0. 170. 7 42. 0 2. 620 3. 125 14. 68 69. 7 39. 9 2. 327 3. 132 14. 67 .346 .304 0. 170. 6 41. 6 2. 592 3. 125 14. 66 69. 7 39. 7 2. 320 3. 132 14. 67 .346 .304 0. 170. 6 41. 6 2. 592 3. 125 14. 66 69. 7 39. 6 2. 320 3. 132 14. 68 .346 .304 0. 170. 6 41. 6 2. 592 3. 131 14. 69 70. 6 139. 6 2. 326 3. 135 14. 68 .346 .306 0. 170. 6 41. 6 2. 592 3. 131 14. 69 70. 1 39. 9 2. 227 3. 135 14. 68 .346 .306 0. 170. 0 41. 1 2. 573 3. 131 14. 68 69. 8 40. 1 2. 297 3. 141 14. 69 .346 .306 0. 170. 0 41. 1 2. 573 3. 131 14. 68 69. 8 40. 1 2. 297 3. 141 14. 68 .346 .308 0. 170. 0 41. 1 2. 573 3. 131 14. 68 69. 8 40. 1 2. 297 3. 141 14. 68 .346 .308 0. 170. 0 41. 1 2. 573 3. 134 14. 68 69. 8 40. 1 2. 298 3. 137 14. 68 .346 .308 0. 170. 0 41. 1 2. 573 3. 136 14. 68 69. 8 40. 1 2. 298 3. 141 14. 68 .344 .303 0. 170. 0 41. 3 2. 546 3. 140 14. 68 69. 8 69. 7 2. 268 3. 147 14. 68 .344 .303 0. 170. 6 41. 3 2. 546 3. 140 14. 68 69. 7 2. 268 3. 147 14. 68 .344 .303 0. 170. 6 41. 3 2. 529 3. 140 14. 68 69. 7 2. 268 3. 147 14. 68 .344 .303 0. 170. 6 41. 3 2. 529 3. 140 14. 68 69. 7 2. 268 3. 147 14. 68 .344 .303 0. 170. 6 41. 3 2. 529 3. 140 14. 68 7 2. 258	.43910.0001	.359 0.	130.4130.7	<u>:</u>	-	_
1,0, 1,0, 1,0, 1,0, 1,0, 1,0, 1,0, 1,0	69, 9 43.0 2.629 3.120 14.68 69.8 41.3 2.354 3.127 14.68 .347 .307 0.5 14.25 2.626 3.124 14.69 .702 14.55 3.131 14.69 .358 .317 0.5 69.1 42.2 2.613 3.117 14.66 69.3 40.5 2.341 3.126 14.69 .358 .317 0.5 69.1 42.2 2.613 3.117 14.66 69.3 40.5 2.341 3.126 14.66 .355 .311 0.5 69.1 42.2 2.613 3.127 14.68 70.1 40.3 2.348 3.131 14.67 .345 .304 0.5 69.7 41.2 2.513 4.65 3.55 3.12 0.5 69.7 41.2 2.55 3.12 4.65 3.55 3.12 0.5 69.7 41.2 2.52 3.12 4.65 3.55 3.12 0.5 69.6 41.6 2.52 3.12 4.65 3.55 3.12 0.5 69.6 41.6 2.52 3.13 4.69 7.39 6.5 3.13 4.69 3.47 3.06 0.5 6.	.00010.0001	.352 0.31	30.0 30.0	÷	o -	_
70.2 42.5 2.66 3.124 14.69 70.2 40.7 2.351 3.131 14.69 356 317 0.442 0.441 0.352 0.312 29.5 29.5 350 350 0.80 0.40 0.41 0.442 0.441 0.442 0.352 0.312 29.5 29.5 350 350 0.80 0.40 0.41 0.441 0.441 0.441 0.352 0.312 29.5 29.5 350 350 0.80 0.41 0.441 0.442 0.442 0.444 0.444 0.352 0.312 29.6 350 350 350 0.80 0.44 0.444 0.444 0.444 0.352 0.312 29.6 350 350 350 0.80 0.44 0.444 0.444 0.444 0.444 0.352 0.312 29.6 350 350 350 0.80 0.44 0.444 0.	70.2 42.5 2.626 3.124 14.69 70.2 40.7 2.351 3.131 14.69 .358 .317 0.169. 142.2 2.613 3.117 14.66 69.3 40.5 2.341 3.126 14.66 .352 .311 0.169. 142.2 2.613 3.117 14.66 69.3 40.5 2.341 3.126 14.66 .352 .311 0.170. 142.1 2.611 3.124 14.68 70.1 40.3 2.328 3.131 14.67 .345 .304 0.170. 142.1 2.610 3.125 14.68 69.7 39.9 2.327 3.132 14.67 .353 .312 0.169. 141.6 2.592 3.125 14.66 .7139. 12.320 3.132 14.67 .353 .312 0.170. 141.4 2.586 3.131 14.69 .70.4 39.9 2.327 3.132 14.67 .346 .304 0.170. 141.4 2.586 3.131 14.69 .70.4 39.9 2.320 3.132 14.67 .347 .306 0.170. 141.4 2.586 3.131 14.69 .70.4 3.99 2.320 3.132 14.67 .347 .306 0.170. 141.4 2.586 3.131 14.69 .70.4 39.9 2.220 3.135 14.69 .347 .306 0.170. 141.4 2.586 3.131 14.69 .70.4 39.9 2.20 3.135 14.69 .347 .306 0.170. 141.4 2.563 3.131 14.69 .70.4 3.135 14.68 .344 .305 0.170. 141.4 2.573 3.130 14.66 .90.7 3.99 2.297 3.131 14.69 .344 .305 0.170. 3.41.7 2.513 3.131 14.68 .90.8 3.132 3.143 14.68 .344 .305 0.170. 3.41.7 3.141 4.61 .347 .314 4.61 .347 .314 4.61 .347 .314 .40.9 .344 .303 0.170. 4.14 2.547 .314 14.66 .90.8 3.19.4 .208 3.10 3.10 .344 .305 0.170. 4.11.1 2.57 3.140 14.68 .90.8 2.26 3.147 14.69 .344 .303 0.10 .014.4 2.544 .301 3.10 .014.4 .012.255 3.147 14.69 .344 .303 0.170. 4.141.2 2.52 3.147 14.69 .344 .303 0.170. 4.14 2.547 .314 4.68 .90.8 2.26 3.147 14.69 .342 .302 0.170. 4.140.9 2.52 3.147 14.69 .342 .302 0.170. 4.140.9 2.52 3.147 14.69 .342 .302 0.170. 4.140.9 2.52 3.140 14.69 .70.8 2.25 3.147 14.69 .342 .326 .308 0.170. 4.140.9 2.52 3.140 14.69	.000 0 000	.352 0.	129.5	÷	<u> </u>	_
16.		.442 0.441	.352 0.	129.2129.4		_	_
70.1 42.1 2.61 3.12 14.68 70.1 140.3 2.336 3.131 14.67 345 336 0.44 0.444 0.352 0.312 29.9 3.25 3.550 0.80 0.46 0.45 0.45 0.352 0.312 29.9 3.05 3.550 0.80 0.46 0.45 0.45 0.45 0.352 0.312 29.9 3.05 3.550 0.80 0.46 0.45 0.45 0.45 0.352 0.312 29.9 3.05 3.550 0.80 0.46 0.45 0.45 0.45 0.45 0.45 0.45 0.25 0.312 29.9 3.05 3.550 3.550 0.80 0.46 0.45 0.	70.1 42.1 2.611 3.124 14.68 70.1 40.3 2.338 3.131 14.67 .345 .304 0.0 170.1 42.0 2.610 3.126 14.68 70.1 40.1 2.336 3.136 14.69 .353 .312 0.0 69.7 141.8 2.610 3.125 14.68 69.7 39.9 2.327 3.132 14.67 .345 .332 10.0 69.6 41.6 2.592 3.125 14.66 69.7 39.7 2.320 3.132 14.67 .346 .304 0.0 0.0 41.5 2.591 3.131 14.69 70.4 39.6 2.312 3.131 14.67 .346 .304 0.0 0.0 41.5 2.591 3.131 14.69 70.4 39.6 2.312 3.137 14.68 .347 .306 0.0 0.0 0.0 41.1 2.573 3.131 14.69 70.4 39.0 2.301 3.138 14.67 .347 .305 0.0	441 10.441	.352 0.	29.3	ᆣ	<u>-</u>	_
70.7 742.0 2.610 3.120 14.0 0.556 3.156 14.69 3551 312 0.440 0.452 0.352 0.312 29.9 30.51 350 350 0.80 0.40 0.459 0.352 0.312 30.115 30.155 30.80 0.40 0.459 0.352 0.312 30.115 30.155 350 350 0.80 0.40 0.459 0.352 0.312 30.115 30.155 30.80 0.40 0.459 0.452 0.352 30.51 30.115 350 350 0.80 0.40 0.459 0.352 0.312 30.115 30.150 350 0.80 0.40 0.459 0.352 0.312 30.115 30.150 350 350 0.80 0.40 0.441 0.155 3.121 4.66 69.7139.7 2.321 3.131 4.68 347 30.6 0.439 0.458 0.352 0.312 30.413 3.150 350 0.80 0.40 0.459 0.458 0.352 0.312 30.413 3.111 4.69 70.1139.4 2.304 3.131 4.68 3.251 3.131 4.68 3.204 3.131 4.68 3.204 3.131 4.68 3.204 3.131 4.68 3.22 0.312 30.	70.7 42.0 2.6 60 3.126 14.70 70.5 40.1 2.336 3.136 14.69 .353 .312 0.16, 9.7 9.9 9.327 3.132 14.67 .353 .312 0.169, 7 9.9 9.327 3.132 14.67 .353 .312 0.169, 7 9.9 9.327 3.132 14.67 .353 .312 0.169, 6 14.6 1.5 1.5 14.6 1.5 1.5 14.6 1.5 1.5 14.6 1.5 1.5 14.6 1.5 1.5 14.6 1.5 1.5 14.6 1.5 1.5 14.6 1.5 1.5 14.6 1.5 1.5 14.6 1.5 1.5 14.6 1.5 1.5 14.6 1.5 1.5 14.6 1.5 1.5 14.6 1.5 1.5 14.6 1.5 1.5 14.6 1.5	.441 10.440	.352 10.	_	÷	_	_
69. 7 41. 8 2.60 3. 125 14. 68 69. 7 3.99 2. 3.27 3. 132 10. 440 0. 439 0. 352 0. 312 30. 5 3.50 3.50 0. 60 10. 40 10. 40 10. 40 10. 552 0. 312 30. 5 3.50 1.50		.440 0 .440	.352 0.	129.8130.	1.350 .	<u>.</u>	_
69.6 41.6 2.592 3.125 14.66 69.7 73.7 2.520 3.132 14.67 346 304 0.439 0.435 0.352 0.312 30.1 350 350 0.80 0.40 0	1,00,00,00,00,00,00,00,00,00,00,00,00,00	144010.4391	.352 0.	129.9130.	1.350 .	<u>-</u>	_
10.0.6 41.0.6 2.50 2.51 2.51 3.13 14.6 3.47 3.06 0.439 0.438 0.352 0.312 30.4 31.1 3.50 3.50 0.80 0.40 0.70 141.4 2.56 3.131 14.6 170.4 3.13 14.6 170.4 3.14 170.4 3.14 10.4 10.4 10.3 10.3 4.1 3.14 1.2 3.13 14.6 170.4 3.14 14.6 170.4 3.14 10.4 10.4 10.4 10.3 12.4 3.14 10.4 10.4 10.4 10.3 12.2 4.1 3.1	10.0 10.0	1629 01022	35210.	130.1130.	1.3501.	<u> </u>	_
10.04 145 2.556 3.15 14.07 15.04 2.556 3.150 1.556 3.10 0.439 0.352 0.352 0.351 3.0.04	0 0.4 41.5 2.59 3.13 14.69 70.4 53.6 2.50 3.13 14.68 3.13 3.14	43910 4381	352 10.	30.4 31.	.350	0	_
	0 70.1 41.4 2.586 3.151 14.69 70.1 35.4 3.15 14.61 4.55 4.55 1.15 4.61 4.55 4.55 1.15 4.61 4.55 4.55 1.15 4.61 4.61 4.61 4.61 4.61 4.65 4.61 4	42010 438	25210	12 6 31	1.3501.	0	_
1,000 0.552 0.5128 14.68 17.0 1.552 1.552 0.512 1.552 0.51	0 69, 6 41, 2 2, 57/15, 128 14, 67 69, 6 59, 2 41, 53, 53 14, 67 5, 59 19, 61 12, 573 5, 120 14, 68 70, 1 13, 0 13, 138 14, 68 544 533 10, 170, 3 41, 10, 12, 573 5, 130 14, 68 70, 1 38, 90 2, 297 3, 141 14, 68 .344 .303 10, 10, 2, 314, 10, 25, 20 3, 134 14, 68 69, 8 40, 12, 297 3, 141 14, 68 .344 .303 10, 10, 3 41, 7 2, 561 3, 135 14, 70 70, 3 39, 6 2, 288 3, 143 14, 68 .348 .3297 10, 10, 2, 341, 13 2, 549 3, 129 14, 66 69, 3 39, 4 2, 278 3, 137 14, 66 .344 .303 10, 10, 2, 14, 14, 12, 24, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14	126101024	X52 10	120 7 21	350	-	_
70.0 41.1 2.573 3.130 14.68 70.1 59.0 2.501 3.130 14.68 70.1 59.0 2.501 3.130 14.68 70.1 59.0 2.501 3.130 14.68 70.2 31.0 4.68 3.08 3.04 3.01 3.04 3.01 3.01 3.50 3.50 0.60 0.48 0.544 0.304 3.01 3.01 3.50 3.50 0.60 0.48 0.544 0.304 3.01 3.01 3.50 3.50 0.60 0.48 0.544 0.304 2.5 3.131 14.68 69.8 40.2 2.2 3.131 4.68 69.8 3.04 3.14 14.68 3.28 3.29 0.500 0.000 0.344 0.304 2.9.4 2.5 3.50 3.50 0.60 0.48 0.304 2.2 3.2 3.5	70.0 [41.1]2.573[3.130]14.68[70.1]59.0[2.501]3.136[14.60].344[.505]0.0[41.1]2.573[3.130]14.68[70.1]59.0[2.501]3.136[14.60].346[.306]0.0[69.3]41.0[2.570]3.134[14.69]70.3[38.9]2.297[3.136]14.68[.336].326[.306]0.0[69.3]41.7[2.563]3.136[14.70]70.3[39.6]2.290[3.136]14.68[.338]14.70[70.3]39.6[2.290]3.135[14.66].349[.308]0.0[69.2]41.5[2.549]3.136[14.70]70.0[39.2]2.278[3.137]14.66[.344].308]0.0[69.2]41.5[2.549]3.134[14.66]70.0[39.2]2.278[3.137]14.66[.344].303]0.0[69.7]41.1[2.547]3.134[14.68]70.0[39.2]2.278[3.147]14.70[.344].303]0.0[69.7]41.1[2.537]3.136[14.68]69.7]38.9[2.255]3.147[14.70].344[.303]0.0[69.7]41.0[2.537]3.134[14.67]69.6[39.1]2.258[3.147]14.69[.338].296[0.70]70.4[40.9]2.529[3.140]14.69[70.4]38.6[2.257]3.147[14.69].338[.298]0.0[70.2]2.252[2.257]3.147[14.69].338[.298]0.0[70.2]2.252[2.257]3.147[14.69].338[.298]0.0[70.2]2.252[2.257]3.147[14.69].338[.298]0.0[70.2]2.252[2.257]3.147[14.69].342[.302]0.0[70.2]2.252[2.257]3.147[14.20]2.252[2.257]3.147[14.20]2.252[2.257]3.247[2.250]2.252[2.257]2.252[2.250]2.252[2.257]2.252[2.250]2.252[2.252]2.252[2	722 0 000	75.00	מבוס טבו	750		
70. 3 41. 0 2. 570 3. 134 14. 69 70. 3 38. 9 2. 297 3. 141 114. 69 .346 .306 0.000 0.004 0.544 0.544 0.504 19. 11 .504 .350 .350 0.60 0.44 0.544 0.304 29. 3 29. 4 .350 .350 0.60 0.44 0.344 0.344 0.304 29. 4 29. 5 .350 0.80 0.44 0.441 0.344 0.304 29. 4 .250 .350 0.80 0.44 0.441 0.344 0.304 29. 4 .250 .350 0.80 0.44 0.441 0.344 0.304 29. 4 .250 .350 0.80 0.44 0.441 0.344 0.304 29. 5 .250 .350 0.80 0.44 0.441 0.344 0.304 29. 4 .250 .350 0.80 0.44 0.441 0.344 0.304 29. 5 .250 .350 0.80 0.44 0.441 0.344 0.304 29. 5 .250 .350 0.80 0.44 0.441 0.344 0.304 29. 5 .250 .350 0.80 0.44 0.441 0.344 0.344 0.304 29. 5 .350 0.80 0.44 0.441 0.344 0.344 0.304 29. 5 .350 .350 0.80 0.44 0.441 0.344 0.304 0.304 29. 5 .350 0.80 0.44 0.441 0.344 0.344 0.344 0.30	70.3 41.0 2.570 3.134 14.69 70.3 38.9 2.297 3.141 14.69 .346 .306 0. 69.9 42.2 2.563 3.131 14.68 69.8 40.1 2.290 3.138 14.68 .338 .297 0. 70.3 41.7 2.561 3.136 14.70 70.3 39.6 2.288 3.145 14.70 .349 .308 0. 69.2 41.5 2.547 3.129 14.66 69.3 39.46 2.278 3.137 14.66 .347 .303 0. 70.0 41.4 2.547 3.134 14.68 69.7 39.2 2.278 3.147 14.70 .344 .303 0. 70.6 41.3 2.546 3.140 14.70 70.6 39.1 2.273 3.147 14.70 .344 .303 0. 69.7 41.1 2.537 3.136 14.68 69.7 38.9 2.265 3.143 14.68 .344 .304 0. 69.6 41.0 2.530 3.134 14.67 69.6 38.7 2.258 3.147 14.69 .338 .296 0. 70.4 40.9 2.529 3.140 14.69 70.13 38.7 2.252 3.147 14.69 .342 .302 0. 70.2 40.2 2.527 3.140 4.69 70.13 7.47 7.47 7.20 7	2/2/0.000	. 55610.	130.7130.	000		
69.9 42.2 2.563 3.131 14.68 69.8 40.1 2.290 3.138 14.68 .358 .297 0.100 0.304 0.304 27.5 1.550 .350 .350 0.300 0.40 0.304 27.5 1.550 .350 .350 0.40 0.41 0.344 0.304 29.4 2.550 .350 0.80 0.40 0.41 0.344 0.304 29.4 2.550 .350 0.80 0.40 0.41 0.344 0.304 29.8 .350 .350 0.80 0.40 0.41 0.344 0.304 29.8 .350 .350 0.80 0.40 0.40 0.344 0.304 29.8 .350 .350 0.80 0.40 0.40 0.40 0.344 0.304 29.8 .350 .350 0.80 0.40 0.40 0.40 0.344 0.304 29.8 .350 .350 0.80 0.40 0.40 0.40 0.344 0.304 29.8 .350 .350 0.80 0.40 0.40 0.40 0.344 0.304 30.1 30.1 .350 .350 0.80 0.40 0.40 0.40 0.40 0.344 0.304 30.1 30.1 .350 .350 0.80 0.40 0.40 0.40 0.40 0.344 0.304 30.1 30.1 .350 .350 0.80 0.40 0.40 0.40 0.40 0.344 0.304 30.1 30.1 3.50 .350 0.80 0.40 0.40 0.40 0.40 0.344 0.304 30.1 30.1 3.50 .350 0.80 0.40 0.40 0.40 0.40 0.344 0.304 30.1 3.50 .350 0.80 0.40 0.40 0.40 0.344 0.304 30.1 3.01 3.50 .350 0.80 0.40 0.40 0.40 0.40 0.344 0.304 30.1 3.01 3.50 3.50 0.80 0.40 0.40 0.40 0.40 0.344 0.304 30.1 3.01 3.50 3.50 0.80 0.40 0.40 0.40 0.40 0.344 0.304 30.1 3.01 3.50 3.50 0.80 0.40	69.9 42.2 2.563 3.131 14.68 69.8 40.1 2.290 3.138 14.68 .358 .297 10.1 10.2 2.563 3.131 14.68 69.8 40.1 2.290 3.138 14.68 .358 .297 10.1 10.2 3.137 14.70 .349 .308 10.1 10.2 3.137 14.70 .349 .308 10.1 10.2 3.141 14.70 .349 .308 10.1 10.2 3.141 14.70 .349 .308 10.1 10.1 10.2 3.141 14.70 .344 .303 10.1 10.1 3.154 3.141 4.70 .341 3.12 3.147 14.70 .344 .303 10.1 10.2 3.141 12.537 3.137 3.141 4.68 59.7 39.9 2.265 3.143 14.68 .344 .304 10.1 12.537 3.140 14.67 69.6 38.6 2.258 3.147 14.67 .338 .296 10.1 10.2 3.140 14.67 3.140	000 10 000	.54410.	150.1150.	. 250	; 	
70.3 41.7 2.561 3.136 14.70 70.3 39.6 2.288 3.143 14.70 .349 .308 0.441 0.441 0.344 0.344 29.4 29.5 29.50 .350 .350 .950 0.40 0.441 0.344 0.344 0.304 29.5 29.8 .350 .350 0.80 0.40 0.441 0.344 0.304 29.5 29.8 .350 .350 0.80 0.40 0.441 0.344 0.304 29.5 29.8 .350 .350 0.80 0.40 0.441 0.344 0.304 29.8 30.1 .350 .350 0.80 0.40 0.441 0.344 0.304 0.304 30.1 .350 .350 0.80 0.40 0.441 0.344 0.304 0.304 30.1 .350 .350 0.80 0.40 0.441 0.344 0.304 0.304 0.304 30.1 .350 .350 0.80 0.40 0.441 0.344 0.304 30.1 .350 .350 0.80 0.40 0.441 0.344 0.304 30.1 .350 .350 0.80 0.40 0.441 0.344 0.304 30.1 .350 .350 0.80 0.40 0.441 0.344 0.304 30.1 .350 0.350 0.80 0.40 0.441 0.344 0.304 30.1 .350 0.350 0.80 0.40 0.441 0.12.537 3.34 4.67 6.5 3.344 30.444 0.439 0.434 0.304 30.2 30.7 350 0.80 0.40 0.441 0.12.537 3.34 4.67 6.344 30.444 0.439 0.434 0.304 30.2 30.7 350 0.80 0.40 0.441 0.12.530 3.344 0.304 0.439 0.439 0.439 0.344 0.304 30.2 30.7 350 0.80 0.40 0.441 0.12.530 3.34 0.344 0.304 30.2 30.34 0.344 0.304 30.2 30 0.430 0.439 0.439 0.344 0.304 30.2 30.350 0.80 0.40 0.430 0.344 0.304 30.2 30 30 30 0.40 0.430 0.344 0.304 30.2 30 30 30 0.40 0.430 0.344 0.304 30.2 30 30 30 0.40 0.430 0.344 0.304 30.2 30 30 30 0.40 0.430 0.344 0.304 30.2 30 30 30 0.40 0.430 0.344 0.304 30.2 30 30 30 0.40 0.40 0.430 0.344 0.304 30.2 30 30 30 0.40 0.430 0.344 0.304 30.2 30 30 30 0.40 0.430 0.344 0.304 30.2 30 30 30 0.40 0.430 0.344 0.304 30.2 30 30 30 0.40 0.430 0.344 0.304 30.2 30 30 30 0.40 0.430 0.344 0.304 30.2 30 30 30 30 0.40 0.430 0.344 0.304 30 30 30 30 30 30 30 30 30 30 30 30 30	0 70, 3 41, 7 2, 561 3, 136 14, 70 70, 3 39, 6 2, 288 3, 143 14, 70 , 349 , 308 0. 16.9, 2 41, 5 2, 549 3, 129 14, 66 69, 3 39, 4 2, 278 3, 137 14, 66 , 344 , 303 0. 170, 0 41, 4 2, 547 3, 134 14, 68 70, 0 39, 2 2, 274 3, 141 14, 67 , 337 , 295 0. 170, 6 41, 3 2, 546 3, 140 14, 70 70, 6 39, 3 2, 273 3, 147 14, 70 , 334 , 303 0. 169, 7 41, 3 2, 546 3, 140 14, 68 69, 7 38, 9 2, 265 3, 143 14, 68 , 334 , 304 0. 169, 6 41, 0 2, 537 3, 134 14, 67 69, 6 38, 7 2, 258 3, 142 14, 67 , 338 , 296 0. 170, 6 40, 9 2, 529 3, 140 14, 69 70, 4 38, 6 2, 257 3, 147 14, 69 , 338 , 298 0. 170, 2 40, 8 2, 524 3, 140 14, 69 70, 1 38, 4 2, 252 3, 147 14, 69 , 338 , 398 0. 170, 2 40, 8 2, 524 3, 140 14, 69 70, 1 38, 4 2, 252 3, 147 14, 69 , 338 , 398 0. 170, 2 40, 8 2, 524 3, 140 14, 69 70, 1 38, 4 2, 252 3, 147 14, 69 , 338 , 398 0. 170, 2 40, 8 2, 524 3, 140 14, 69 70, 1 38, 4 2, 252 3, 147 14, 69 , 338 , 398 0. 170, 2 40, 8 2, 524 3, 140 14, 69 70, 1 38, 4 2, 252 3, 147 14, 69 , 338 , 398 0. 170, 2 40, 8 2, 524 3, 140 14, 69 70, 1 38, 4 2, 252 3, 147 14, 69 , 338 , 398 0. 170, 2 40, 8 2, 524 3, 140 14, 69 70, 1 38, 4 2, 252 3, 147 14, 69 , 338 , 398 0. 170, 170, 170, 170, 170, 170, 170, 170,	inno ninno.	- C	127.5127.		;	
169.2 16.549 3.129 14.66 69.3 39.4 2.278 3.137 14.66 344 303 0.441 0.441 0.304 29.5 29.8 350 350 0.80 0.40 0.304 29.5 29.8 350 350 0.80 0.40 0.344 0.304 29.8 350 350 0.80 0.40 0.344 0.304 20.1 350 350 0.80 0.40 0.344 0.304 30.1 350 350 0.80 0.40 0.344 0.304 30.1 30.5 350 350 0.80 0.40 0.459 0.344 0.304 30.1 30.5 350 0.80 0.40 0.459 0.344 0.304 30.1 3.05 350 0.80 0.40 0.459 0.344 0.304 0.304 30.4 30.5 350 0.80 0.40 0.459 0.344 0.304 0.304 30.4 3.50 350 0.80 0.40 0.459 0.344 0.304 0.304 30.4 3.10 350 350 0.80 0.40 0.459 0.344 0.304 0.304 30.4 3.10 350 350 0.80 0.40 0.459 0.344 0.304 0.304 30.4 3.10	0 69,2 41,5 2,5 49 3,129 14,66 69,3 39,4 2,278 3,137 14,66 .344 .303 0.0 70,0 41,4 2,547 3,134 14,68 70,0 39,2 2,274 3,141 14,67 .337 .295 0.0 70,6 41,312 2,546 3,347 3	.441 0.441	3440.	214.621		<u>.</u>	
70.0 41.4 2.547 3.14 14.68 70.0 39.2 2.274 3.141 14.67 .337 .295 0.440 0.344 0.304 29.8 30.1 .350 .350 0.80 0.40 0.45 0.544 0.304 20.8 30.1 .350 .350 0.80 0.40 0.45 0.344 0.304 30.1 30.5 .350 .350 0.80 0.40 0.45 0.344 0.304 30.1 30.5 .350 .350 0.80 0.40 0.45 0.344 0.304 30.1 30.5 .350 .350 0.80 0.40 0.45 0.344 0.304 30.2 30.		.441 0.441	3440.	129.512	.350	<u>.</u>	_
70.6 41.3 2.546 3.140 14.70 70.6 139.1 2.273 3.147 14.70 .344 .303 0.440 0.439 0.344 0.304 30.1 30.5 .350 .350 0.80 0.40 0.459 0.344 0.304 30.2 30.7 .350 .350 0.80 0.40 0.459 0.344 0.304 30.2 30.7 .350 .350 0.80 0.40 0.459 0.344 0.304 30.2 30.7 .350 .350 0.80 0.40 0.459 0.344 0.304 30.2 30.7 .350 .350 0.80 0.40 0.459 0.344 0.304 30.4 31.0 .350 .350 0.80 0.40 0.40 0.459 0.344 0.304 30.4 31.0 .350 .350 0.80 0.40 0.40 0.459 0.344 0.304 30.7 31.4 .350 .350 0.80 0.40 0.459 0.4	0 70.6 41.3 2.546 3.140 14.70 70.6 39.1 2.273 3.147 14.70 .344 .303 0.7 69.7 41.1 2.537 3.156 14.68 69.7 38.9 2.265 3.143 14.68 .344 .304 0.7 69.6 41.0 2.537 3.136 14.68 69.7 38.9 2.265 3.143 14.68 .344 .304 0.7 0.6 641.0 2.530 3.134 14.67 69.6 38.7 2.258 3.142 14.67 .338 .296 0.7 0.4 40.9 2.529 3.140 14.69 70.4 38.6 2.257 3.147 14.69 .338 .298 0.7 0.2 40.8 2.524 3.147 14.69 .338 .298 0.7 0.2 40.8 2.524 3.147 14.69 .338 .298 0.7 0.2 40.8 2.524 3.147 14.69 .338 .398 0.7 0.2 40.8 2.524 3.147 14.69 .338 .398 0.7 0.2 40.8 2.524 3.147 14.69 .338 .398 0.7 0.2 40.8 2.524 3.147 14.69 .338 .398 0.7 0.2 40.8 2.524 3.147 14.69 .338 .308 0.7 0.2 40.8 2.524 3.147 14.69 .338 .308 0.7 0.2 40.8 2.524 3.147 14.69 .338 .308 0.7 0.2 40.8 2.524 3.147 14.69 .338 .308 0.7 0.2 40.8 2.524 3.147 14.69 .338 .308 0.7 0.2 40.8 2.524 3.147 14.69 .338 .308 0.7 0.2 40.8 2.524 3.147 14.69 .338 .308 0.7 0.2 40.8 2.524 3.147 14.69 .338 .338 .338 0.7 0.2 40.8 2.524 3.147 14.69 .338 .338 0.7 0.2 40.8 2.524 3.147 14.69 .338 .338 .338 0.7 0.2 40.8 2.524 3.147 14.69 .338 .338 0.7 0.2 40.8 2.524 3.147 14.69 .338 .338 0.7 0.2 40.8 2.524 3.147 14.69 .338 .338 0.7 0.2 40.8 2.524 3.147 14.69 .338 .338 0.7 0.2 40.8 2.524 3.147 14.69 .338 0.7 0.2 40.8 20.2 40.8	440 0 440	.344 0.	129.8 30		<u>.</u>	_
		440 0 439	344 10.	130.1130.	1.350	<u>.</u>	Ξ
169, / [41, 1] 2, 557 [3, 134 [14, 67] 69, 6[38, 7] 2, 258 [3, 142] 14, 67] 338 [326] 0, 438 [0, 344 [0, 304 [30, 4] 31.0 [350] 350] 0, 80 [0, 4] 169, 6[13, 134 [14, 67] 69, 6[38, 7] 2, 258 [1, 298] 0, 438 [0, 438] 0, 344 [0, 304 [30, 7] 31, 4], 350 [350] 0, 80 [0, 4] 170, 2 [40, 9] 2, 529 [3, 140 [14, 69] 70, 1] 38, 4[2, 257] 3, 147 [14, 69], 342 [30, 29] 0, 437 [0, 344 [0, 304 [30, 9] 31, 7], 350 [350] 0, 80 [0, 4] 170, 2 [40, 8] 2, 524 [3, 140 [14, 69] 70, 1] 38, 4[2, 252] 3, 147 [14, 69], 342 [30, 29] 0, 439 [0, 344 [0, 304 [30, 9] 31, 7], 350 [350] 0, 80 [0, 4] 170, 2 [40, 8] 2, 127 [14, 69], 6 [38, 212, 244 [3, 144, 14, 67], 339 [3, 298] 0, 000 [0, 344 [0, 304 [31, 1] 31, 6], 350 [350] 0, 80 [0, 4] 170, 0 [0, 344 [0, 304 [31, 1] 31, 6], 350 [350] 0, 80 [0, 4] 170, 0 [0, 344 [0, 304 [31, 1] 31, 6], 350 [350] 0, 80 [0, 4] 170, 0 [0, 344 [0, 304 [31, 1] 31, 6], 350 [350] 0, 80 [0, 4] 170, 0 [0, 344 [0, 304 [31, 1] 31, 6], 350 [350] 0, 80 [0, 4] 170, 0 [0, 344 [0, 304 [31, 1] 31, 6], 350 [350] 0, 80 [0, 4] 170, 0 [0, 344 [0, 304 [31, 1] 31, 6], 350 [350] 0, 80 [0, 4] 170, 0 [0, 344 [0, 304 [31, 1] 31, 6], 350 [350] 0, 80 [0, 4] 170, 0 [350] 0	169.7 [41.1] 2.557 [5.156] 14.08 [69.7] 156.7 [2.258] 5.145] 14.08 [69.7] 15.57 [5.258] 5.145] 14.67 [5.258] 5.145] 14.67 [69.6] 18.67 [6.258] 5.145] 14.67 [6.258] 5.145] 14.69 [6.258] 5.145] 14.69 [6.258] 5.145] 14.69 [6.258] 5.145] 14.69 [6.258] 5.145] 14.69 [6.258] 5.145] 14.69 [6.258] 5.145] 14.69 [6.258] 5.145] 14.69 [6.258] 5.145] 14.69 [6.258] 5.258]	44010 439	366 0	130.2130.	1.350	<u>.</u>	_
169.6 41.0 2.530 3.154 14.67 69.6 38.7 2.556 3.142 14.67 .556 1.278 0.459 0.459 0.544 0.544 3.54 14.67 69.6 38 .7 2.556 3.147 14.69 .558 0.488 0.439 0.438 0.544 0.304 30.7 31.4 .556 .356 0.86 0.4 170.2 40.8 2.529 3.140 14.69 70.1 38.4 2.252 3.147 14.69 .342 .302 0.439 0.437 0.344 0.304 30.7 31.4 .356 .356 0.80 0.4 170.2 40.8 2.524 3.140 14.67 69.6 38.2 2.244 3.144 14.67 14.69 .349 0.438 0.438 0.000 0.344 0.304 31.1 31.6 .350 .350 0.80 0.4 170.0 40.6 2.512 3.139 14.68 70.1 38.1 2.241 3.147 14.68 .355 294 0.000 0.346 0.304 31.1 30.9 .350 .350 0.80 0.4] [69.6] [41.0] [2.530] [3.134] [4.67] [69.6] [38.7] [2.258] [3.142] [4.69] [358] [298] [0.7] [0.4] [40.9] [2.529] [3.140] [4.69] [70.4] [38.6] [2.257] [3.147] [4.69] [3.8] [3.8] [4] [3.147] [4.69] [3.4] [3.8] [3.8] [3.47] [4.69] [3.47] [3.4] [3.	1927 01927	266 0	20 4 21	250	_	9.010
0 70.4 40.9 2.529 3.140 14.69 70.4 38.6 2.257 3.147 14.69 .538 .298 0.459 0.450 0.544 0.504 50.7 51.4 .550 .550 .550 0.50 0.450 0.544 0.544 0.504 50.7 13.4 .550 .550 .550 0.457 0.457 0.544 0.544 0.544 0.550 .550 .550 0.457 0.457 0.544	0 70.4 40.9 2.529 3.140 14.69 70.4 38.6 2.257 3.147 14.69 .558 .298 0. 0 70.2 40.8 2.524 3.140 14.69 70.1 38.4 2.525 3.147 14.69 .352 0.00 0.	1024.01464.		100.4	200	; c	9
.0 70.2 40.8 2.524 3.140 14.69 70.1 38.4 2.252 3.147 14.69 .342 .302 0.439 0.437 0.544 0.504 30.7 31.7 .350 .350 .350 .037 0.439 0.437 0.544 0.504 30.7 31.7 14.67 69.6 38.2 2.244 3.147 14.67 69.6 38 0.000 0.344 0.304 31.1 31.6 .350 .350 .350 0.40 0.40 0.40 0.40 0.304 0.304 31.1 31.6 .350 .350 .350 0.40 0.40 0.40 0.40 0.350 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	.0 70.2 40.8 2.524 3.140 14.69 70.1 38.4 2.252 3.147 14.69 .342 .302 0.	1954.01454.	- C		<u>:</u>	; 	
.0 69.6 40.7 2.516 3.137 14.67 69.6 38.2 2.244 3.144 14.67 .339 .298 0.438 0.000 0.344 0.304 31.1 31.6 .550 .350 0.80 0.4 .0 70.0 40.6 2.512 3.139 14.68 70.1 38.1 2.244 3.147 14.68 .335 .294 0.000 0.000 0.344 0.304 31.1 30.9 .350 .350 .0 70.0 40.6 2.512 3.139 14.68 70.1 38.1 2.244 3.147 14.68 .335 .394 0.000 0.344 0.304 31.1 31.0 31.0 0.90 0.4	7 0 806 3022 367 76 776 2 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1754.01654.	.54410.	<u> </u>	<u>:</u> -	<u>.</u>	
.0 70.0 40.6 2.512 3.139 14.68 70.1 38.1 2.241 3.147 14.68 .335 .294 0.000 0.344 0.344 0.304 31.1 30.9 .350 .350 0.80 0.4	.0 69.6 40.7 2.516 3.137 14.67 69.6 38.2 2.244 3.144 14.67 .559 .290 0.4	.438 0.000	.344 0.	131.1131.	<u>:</u>	-	_
0//0.0	0.0150 162 163 21 173 113 113 113 113 113 17 17 17 17 17 17 17 17 17 17 17 17 17	1000.01000	.34410.3	131.1130.	91.350	<u>.</u>	9.00
	.0 /0.0 40.6 Z.51Z15.1Z47414.501/103.1126.112.24113.1Z4.1Z4.1Z4.1Z4.1Z4.1Z4.1Z4.1Z4.1Z4.1Z4	200.000	ZZELO 2	-	: _	5010	-

<u>-</u> -				dS	SPACE STATION		OUTPUT PAR	PARAMETERS	TABLE	-	} ! ! !	! ! ! !	; ; ; ; ;	 		
	HABITAT PARAMETERS	RS	LABORATORY		PARAMETERS	I CO2 I REMOVAL		CCUM INLET	T ACCUM	FLOW	ACCUM PRESS		02 GENERATED	IMATER D	R FLOM	
	TIME HAB DEM CO2 O2 TEMP PT PRESSIPRESS	PRESS	LAB DEM TEMP PT	CO2 O2 PRESS PRESS	۱ ۵ ـ	HABIL	RESS HAB1 LAB1 HAB1	31 LAB1	HAB1	!	HABII	[88]	LABI HABI LABI HABI LABI	11 02 66N	CO2	
<u>-</u>	MIN F F MMHG PSIA	A PSIA	<u>.</u>	MMHG PSIA	A PSIA	PPHI	ррні рь	ррн ррн	I PPH	ЬРН	PSIA	PSIA	РРН РРН	# d		- Hd
	246.0[69.9[41.8[2.503[3.140	14.69	69.8 39.3	7.	9.	<i>-</i>	0.0	9	0.33		29.5	29.61.	┧ -:.	0		- \$
)	14.67	69.3 38.6 	<u> </u>	52 14. /U 45 14. 67	335	295 0.4	44110.441	0 0 335	0.295	29.6 20.8	29.71. 30.01	350 .350 zeni zen		9000	- 3
	0 70.1 41.0 2.489 3.	14.68	1 38.	.217 3.1	*	: -: .	088	<u>.</u>	<u>.</u>	<u>.</u>	30.0	• •	<u>: -:</u>	; ;		3
	.0170.6140.912.4881 .0169.7140.812.4791	14.68	70.5 38.4 69.7 38.2	2.216 3.1 2.208 3.1	155 14.70 151 14.68	336	296 0.4	440 0.439	19 0.335	10.295	2	30.7	<u>-</u> -	<u>.</u>	80 0.0	3
	169.7 40.6 2.473 3.	14.67	7 38.	M	9.51	. M	<u>.</u>	0	<u>.</u>	<u>: :</u>	30.7	31.3		; ; 	2 <u>2</u> 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	<u> </u>
	.0 70.5 40.5 2.469 3.1	14.69	70.4 57.9 70.1 37.8	2.201 3.1 2.196 3.1	155 14.69 155 14.69	1.331	291 0.4	438 0.437 438 0.437	7 10.335 7 10.335	0.295	31.0	31.7	350 .350 350 350	ة د 	000	- 3
	0169.3140.312.46013.	14.67	6 37.	2.1	152 14.67	. 334	9	<u>.</u>	<u>.</u>	<u>.</u>		31.7	<u>:</u>	; ;		3
	0170.7[40.2[2.456]	14.97	70.3 37.4 70.3 37.4	2.186 5.1 2.183 3.1	154 14 . 68 157 14 . 69	H . 325 . H . 329 .	. 287 0 . C . 291 0 . C	.000.000.000.	00 0 0 . 335 00 0 . 328	0.295	31.2	31.1 <u>1.</u> 30.4 .	350 350	<u>.</u>	80 00.	- 5
	0 70.1 41.5 2.450 3.1	14.70	69.8 38.8	<u>m</u> !	14.6		₽.	<u>.</u>	<u>.</u>	<u>.</u>	_	29.7		-	800.	£3.
	8 41.1 2.446 3.1 2 40.9 2.436 3.1	14.70 14.67	70.3 38.3 69.3 38.1	2.175 3.1 2.166 3.1	159 14.70 153 14.67	.333 . .326 .	. 293 0.4 . 288 0.4	441 0.440 440 0.440	010.328	0.288	129.7	29.9].	350 350	<u>.</u>	80 00.4	£3
	0170.4140.812.43713.	14.70	1 38.	M	157 14.68	1.323	<u>.</u>	<u>.</u>	0	<u>.</u>	30.3	30.61.	<u>: -</u> :	;	88	i ş
	;26.0 70.5 40.7 2.435 3.155 ;31.0 70.1 40.6 2.429 3.153	14.71	70.5 37.9 69.7 37.7	2.163 3.1(2.155 3.1	161 14.70	1.330	28910.4	439 0.439	39 0.328	0.288	30.5	30.9	<u>-</u> -	<u>.</u>	<u>.</u>	Ţ.
-	0169.6140.412.42213.	14.68	69.7[37.6]	<u>8</u>	156 14.67	1.329	<u> </u>	<u>.</u>	<u>: 0</u>	<u>.</u>	31.0	31.6 .	350 350	;	80.00	5 5
	416	14.67	70.4 37.5	12.149 3.1	61 14.69	1.321	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	_	32.01.	: _:		<u>.</u>	Į.
-10	0 70.2 40.2 2.413 3.	14.70	69.7[37.2]	<u> </u>	158 14 . 67 158 14 . 67	1.327	284 0.4	437 0.000	0 0 328	0.288	31.6	32.31. 31.81.	3501.350		80 10 10 10 10 10 10 10 10 10 10 10 10 10	£ £3
)6	0 69.5 40.0 2.405 3.1 70 79 79 79 79 79 79 79	14.68	70.1 37.1	<u> </u>	<u> </u>	1.3241.	<u></u>	<u>•</u>	<u></u>	<u>.</u>	31.3	•	二 .	•	80 0.	43
	0 70.4 41.2 2.401 3.	14.70	<u> </u>	<u> </u>	60 14 . 69 60 14 . 68	.320 . .316 .	276 10.0	000 0 000	0 0 321	10.281	30.6 29.9	30.5 . 29.9 .	350 .350 350 .350	o	80 0.0 80 0.0	25.0
	5 5	14.71	70.5 37.9	2.126 3.1	65 14.70	<u>:</u>	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	0		: -:	0	80 0.4	12
	69.4 40.5 2.385 3.	14.68	70	<u> </u>	59 14.67 62 14.68	<u>: :</u>	<u></u>	439 0.439	9 0 321	0.281	30.2	30.4 <u>1.</u> 30.8[.	350 .350 350 .350	-	80 0.0	- 2
	36.0 70.1 40.4 2.383 3.156 91.0 70.4 40.3 2.382 3.160	114.69	70.6 37.5 49.7 27.5	2.114 3.1	68 14.70	1.3171.	28210.4	<u>.</u>	<u>50.3</u>	<u>•</u>	<u> </u>	31.2		-		12
	0 69.7 40.2 2.375 3.	14.69	9.7	<u> </u>		1.3211.	<u> </u>	438 0.437	710.321	0.281	31.3	31.9 <u>1.</u>	350 .350 350 .350		9.00 0.00 0.00 0.00	- - -
	401.0 69.8 40.1 2.371 3.156 406.0 70.3 40.0 2.370 3.160	14.68	70.4 37.1	2.101 3.10	67 14.69 67 14.69	1.3171.	277 0.4	437 0.436	6 0 321	<u>•</u>	31.5	32.2	<u> </u>	6		7
	0 70.0 39.9 2.366 3.	14.69	7	3.1	_	. 320	<u>.</u>	<u>.</u>	<u>i</u>		32.1	31.91.	350 .350	<u> </u>	90 <u>10</u> 8	124
	0 70.11	14.68	70.1 36.7 70.2 36.6	2.089 3.10 2.087 3.10	66 14.68 69 14.69	1.3181.	275 0.0	000 0 000	0 0 321	0.281 0.275	31.5	31.31.	350 .350	<u>.</u>	8010.4	42
	0 70.2 41.4 2.369 3.	14.70	69.8 38.1	2.082 3.1	:	.312	0	0	<u>.</u>	<u>.</u>	9		<u>: -</u> :	; ;	_	17
. — · I	0 69.0 41.3 2.375 3.	14.67	69.3 37.5	<u> </u>	64 14.67	1.320	276 0.4	440 0.439	010.315 910.315	10.275 0.275	30.1	30.2 . 30.5 .	350 .350 350 .350	<u>.</u>	80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u> </u>
	441.0 70.1 41.6 2.385 3.160 446.0 70.8 41.8 2.399 3.166	14.69	70.1 37.4 70.6 37.4	2.074 3.16	68 14.68 73 14.70	324	269 0.4	439 0.439	9 0 315 315 0 8	<u>.</u>	7.0	31.0].			80 0.	3
	451.0 69.7 42.1 2.404 3.160 456.0 69.5 42.3 2.413 3.158	0 14.70 6	9.7137.31	<u> </u>	69 14.68	1.327	00	<u> </u>	00	0.27	31.2	31.7[.	: <u>-</u> : -			7.7
	70.5 42.7 2.430 3.	14.72	7	<u> </u>	3	.325	<u>: : : : : : : : : : : : : : : : : : : </u>	4.	<u>: : :</u>	<u> </u>	31.8	32.5 <u> </u> .	<u>: -</u> :		80 0.4 80 0.4	==
 I	69.6 43.3 2.456 3.15	14.70	69.6[37.3]	2.070 3.16	/2 14.69 68 14.68	.551 . .332 .	277 10.9 274 10.3	436 0.117 355 0.000	710.315 010.315	0.275 0.275	32.1 32.3	32.7 . 32.0 .	350 .350 350 .350	<u>.</u>	80 0.4 80 0.4	<u> </u>
	0 70.4 44.0 2.493 3.1	14.71	70.1 37.3 70.3 37.4	2.073 3.1 2.077 3.1	70 14.69 73 14.70	.331 . .337 .	272 0.0 277 0.0	000 0 000	010.315	10.275 10.270	30.9	51.41.	350 .350 350 .350	<u>.</u> .	80 0.4 80 10.4	<u> </u>
-	.5071	_	9.8 38.9	2.077 3.16	69 14.69	1.331 .	26910.0	000 0 000	010.318	0.270	30.2	30.2 .	350 .350	<u>.</u>	80 0.4	11

!	·	=		447444444444444444444444444444444444444
	FLOW	CO2 RED	10000000000000000000000000000000000000	2000 2000
	MATER	O2 GEN PPH	0.80 0.80	
	,		350 350	250 250 250 250 250 250 250 250 250 250
	02 GENERATED	HAB1 LAB1	~~~~~~~~~~~~~~~ <u>~~~~~~~~~~~~~~~~~~~~~~</u>	350 350 350 350 350 350 350 350 350 350
	_ 0 E		<u>471892789189888998798770466704668704687046</u>	76 W 0 6 9 6 N 9 6 N 9 6 N 9 6
	ACCUM PRESS	LAB1	33.00 33	2 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3
	PR	HABILABI 	30.5 31.1 31.9 31.9 31.9 31.9 31.9 30.2 30.2 30.3 30.3 31.0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	EXIT FLOM	LAB1		0.2951 0.2951 0.2951 0.2951 0.2951 0.2951 0.2951 0.2951 0.2951 0.2951 0.2951
-				375 375 375 375 375 375 375 375 375 375 375 375 375 387
TABLE	¥_	HAB1		
ERS	INLET	LAB1	444444444444444444444444444444444444444	
PARAMETERS	ACCUM I		1000 1000	. 637 . 639 . 639 . 639 . 638 . 638 . 638 . 638 . 638 . 637 . 637
! .	¥	# H		302 0.0
DYTPU	CO2 REMOVAL	PRESS HAB1 LAB1 HAB1		
	REA	HAB1		
STATION	82	PRESS PSIA	14. 71 14. 71 14. 68 14. 69 14. 69 14. 70 14. 70	14.70 14.71 14.72 14.72 14.72 14.73 14.70 14.71 14.71 14.71 14.71 14.70
SPACE :	PARAMETERS		174 175	172 172 172 172 173 173 173 174 174 174 174 174 174 174 174 174 173
g.	PARA	CO2 O2 RESS PRESS HMHG PSIA		305 3. 3316 3. 3316 3. 331 331 3. 331
	TORY	CO2 PRESS	2.083 2.083 2.083 2.083 2.083 2.086 2.103 2.117 2.117 2.128 2.128 2.128 2.128 2.128 2.138 2.141 2.162 2.141 2.163 2.163 2.163 2.164	<u> </u>
	LABORATORY	PT	238.71 238.71 238.71 238.71 238.71 238.71 238.91 239.11 239.11 240.44 240.54 24	41.0 41.7 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6
	2	LAB 10 TEMP1	1000.11 1000.1	70.1 69.8 69.2 69.2 69.2 70.1 70.1 70.1 70.1
İ				14.72 1.6.74 1.6.74 1.6.75 1.6.73 1.6.73 1.6.73 1.6.73 1.6.73 1.6.73 1.6.73 1.6.73 1.6.73 1.6.73 1.6.73 1.6.73 1.6.73 1.6.73
	S	i	<u> </u>	
	ÆTER	O2 PRESS	I M M M M M M M M M M M M M M M M M M M	<u> </u>
	HABITAT PARAMETERS	CO2 O2 PRESS PRESS	527 536 537	
	TAT	1	722222222222222222222222222222222222222	221222122222222222222222222222222222222
!	HABI	P PT		8 W H W Q O O O O A W A L O W L W
		HAB TEMP		0 69.81 0 70.31 0 70.31 0 70.31 0 70.9 0 69.9 0 69.8 0 69.8 0 69.8 0 69.8 0 70.4 0 70.3
		TIME		665.01 661.01 671.01 671.01 671.01 686.01 686.01 696.01 701.01 701.01 711.01 721.01
l _	<u> </u>	<u> </u>	C-107	

				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SP	SPACE STATION		OUTPUT PAR	PARAMETERS	TABLE 1		# 			
	HABI	HABITAT PARAMETERS	S2	LABORATORY	1	PARAMETERS	CO2	!	M INLET	ACCUM	EXIT	ACCUM	02	MATER	FLOW
TIME	HAB DEW	CO2 02 PRESS PRESS	PRESS	LAB DEW TEMP PT	CO2 O2 PRESS PRE	1 - 8	HAB1 L	PRESS HAB1 LAB1 HAB1		·		AB1 LAB1	HABI LABI HABI LABI	70	703
MIN	L.	MMHG PSIA	PSIA			 PSIA	PH	PPH! PPH	-	ă.	<u>-</u>	PSTAIDSTA			RED
	<u>.0</u>	13.12013.	114.72	70.0141.51	2.55813.17	07 21 07	1217	,	1				_ !	1 22	¥
986.0	70.8 47.]	[3.134]3.	14.75	6 41.	.568 3.1	14	1.4231.	342 0.440	0 0 637	10.4031	0.326 29	9.9 31.7	<u>-</u>	0.80	•
	3	<u> </u>	14.75	69.7 41.4	93.1	_:	1.427	<u>.</u>	0.4	0.403	.326		350 350	08.0	0.51
	M	3.148 3.	14.73	41.	582 3.1	72 14 69	1.422 .	<u>.</u>	<u>6.6</u>	-	.326	7	-	0.80	
<u> </u>	<u>m</u> i	3.156 3.	14.74	=	.587[3.1	<u>:=</u>	4281	34010.440	010.435	0.403	.326	7.2 32.7	:	0.80	
11016.01	69.7146.7 69.8146.7	7 3.158 3.158 7 3.158 3.158	14.72	5	3.1	=	: -:	<u>: :</u>	4.0	0.403	0.526 30 0.326 30	0.3 32.9 	350 350	0.80	•
:=		3. 103 3. 3. 173 3.	114.72	<u> </u>	<u> </u>	=:	<u>-</u> :	0	910.	<u> </u>	.326	.4 32.7	350 350	08.0	0.51
0	47	3.17713.	14.73	9.8[42.3]	2.605[3.17 2.605[3.17	173 14.71	<u>-</u> -	<u> </u>	<u>.</u>	415	.334	.1 32.0		0.80	0.53
9	3/47.	3.185 3	14.75	m	M	14	419	55810.000 35210.642	010.000	<u>. 1</u>	.334	7.2 31.2		0.80	•
11056.0	68.9147.0	3.176 3. 7.388 7	114.70	2	3 3.1	14.6	30	<u>.</u>	<u> </u>	0.41510	. 534 2 xx6 2	9.0131.3		0.80	•
_	<u> </u>	13.18215.157	114.72 70	7	0 3.1	14.		0	_	151	334/2	12.131.5	3881.388	1 0.89	•
7	8	. 183 3.	14.72	9.641.5	2.629 3.17	75 14.72	_:_	<u>.</u>	<u>.</u>	.415	.334	.3 32.0	<u>: -</u>	0.8010	52.
5 6	.4 46.	[3.177]3.	14.7016	9	3.1	14.	427	555 U. 441 344 U. 441	0.43	14.5	.334 2	.3 32.2	Ξ.	0.80	
50	70.3145.7	3.179 3.160 3.177 3.160	14.72	.5 41.	13.1	14.7	• - •	9	9	0.41510	334 29	.3 32.4	<u>:</u> _	0.89	•
0		3.167 3.	14.75/70	7.7	3.17	3 14.	<u>:</u>	<u>.</u>	<u>.</u>	415	334	5 32.9	. 550 J . 550	0.80	•
1076.0	45	3.161 3.	14.71	7.0141.11 7.1141.013	2.645 3.169 2.647 3.171	9114.691	<u>-</u> -	<u>.</u>	<u>:</u>	415	.334	.5 33.1	<u> </u>	0.8910	53.
11081.01	70.3 44.8	3.158[3.1	.72	M	<u> </u>	14	424	34/10.441	<u>.</u>	å٠	2	<u>5</u> :		_	
0 11086.017	70.1145.7	[3.150 3.161 [z 169 z 161	.72	8	3.1	7.	-	<u>.</u>	_	0.42110	. 342 29. 342 28	2 32.2	<u>:</u> .	5	.54
1096.0	~	3.131 3.	14.75/70	7.5/41.5/2 2.2/41.5/2	<u> </u>	4	<u>.</u>	4.0	٥	٠.	_	1 31.4	350 358	0.8910	<u> </u>
9	3	3.130 3.	702.	3 =	2.655[3.170]	7114.68	423 .3	352 0.443 266 0.663	3 0 . 437	4	2	7	=	0.890	, <u>,</u>
11106.017	70.8 44.5	.132 3.166	7	9	3.1	7.		_	10.457	0.42110		.2 <u>.3</u>	<u>:</u> .	0.8910	-55
1116.016	69.5144.01	121 3. 161 . 112	14.71 69	9.7	<u> </u>	14.		4.0	10.436	i a	. 342 28 . 342 28	3 32.1	.350 .350 288 288	0.80	<u> </u>
	44	.114 3.164	72 7	5 40 612	921.51660.	<u> </u>	<u>:</u> .	<u>.</u>	0.436	4.	2	32.	:_:	0.8910	<u> </u>
1126.0 7	70.2 43.9	٦,	:	ਜ਼	3.1	114.70	. 422 .3 . 422 .3	356 10 . 443 356 10 . 443	0.435	0.42110	342 28	5 32.7	<u>.</u>		74
	:=		14.70169	.6140.312	<u> </u>	<u> </u>	Ξ.	<u>.</u>	10.435	.421	_	5 33.1	288 . 1885 288 . 1885	5	<u> </u>
9	. 9 43.	.09613.		<u> </u>	. 658 3. 175	2114.691.	412 .3	•	0.000	_	345	-		0.8910.	1 75
11146.016	69.7 44.6 70.7 66.3	09013.	202	8	3.1	114.69	-	344 10.000 I	1000.01	0.41310.	346 28		ᆣ.	189	53
:=	. 2	08513.160	14.74 70	.3140.812	<u> </u>	7.5	<u>×</u>	<u>.</u>	10.437		346 27	2 3 5	288 . 388 288 . 388	0.8910	
=	44.0	.089 3.164	14.71	. 0	.65213.170	114.68 .		<u> </u>	0.437	.413	_	2 31.7		0.8910	57.0
11166.017	0.1 44.0 9.6 47.9	090 3.165	72/7	6 40.4	.656[3.]	14.7	420 3	354 10 . 445 354 10 . 445	0.437	0.413 0.	346 27.	3 31.91.			53
<u>-0</u>	0.0 44.0	.089[3.162]	14. /0 69 14. /0 69	7160.31	.651[3.]	74.		<u>.</u>	0.436	413	346	4 32.3	3881.388 388 388	0.890.5	53
9	.3 44.0]	.09413.166	<u>^</u>	7	.648 5.171	14.68	<u>-:</u> -	<u>.</u>	10.436	413	346	5 32.5	-	89	52
= 7	9 44.11	.094 3.164	717	1140.012	<u> </u>	1 7	4181.5	•	10.435	.413	_	'n	_	6	ì
11196.0170	.8 44.1 2 66.2	3.095 3.163 1	9!	.6139.912	M	14.	. 3	3510.444	10.4351 10.4351	0.413/0. n 412/n	346 27.	7 33.0 .	_:	_	53
0	14.3	1051	14.71.70.	1139.912	.649 3.175	14.6	ᆣ.	348 0.444		413	_	8 33.21	3881.3881 3881.3881	5 6	53
206.0	0 45.6	.108 3	<u>: 9</u>	8 41.1 2	.648 3.174	114.70 .	420 .39	<u>.</u>	_	9.	345 27.	5 32.5 .		0.8910.	53 l
710.11211	4 [45.2]	117 3.1691	4.74 7	3140.712	.652 3.179	14.71	. <u>.</u> .	357 10.000	0.00010	604.		5 31.7 .	<u>-</u> .	=	53 (
1.0 <u>6</u>	9.9[45.1]	3.111 3.160 1 3.117 3.160 1	4.69[6		.646 3.171	114.68	=		0.437 0 0.437 0	.40910.	345 26. 345 26.	5131.71. 5131 al	388[.388]		53
<u>.</u>		car.c /++.	÷	.0140.512.	.649 3.174	14.69	413 .34	343 0.446	0.43610	.40910.	345 26.	6 32.11.	388 .388	0.8910.	53.

			222222222222222222222222222222222222222
:	<u> </u>	PPH -	
		O & . : :	
	MATER	PPH GEN	
			288 288
	O2 Generated	AB1 LAB	
	SA	B11 PHI	388 388
	_=	三	202 2 1 2 4 4 6 8 6 0 W W A 6 9 0 0 0 1 4 6 8 0 0 4 4 7 7 W W W W W W W W W W W W W W W W
į	58	LAB PSI	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
	ACCUM	HABI LABI 	26. 713 26. 813 26. 813 26. 813 27. 113 27. 113 27. 113 27. 21
į		五	
	FICE	ГАВ1 РРН	
H	,	HAB1	
TABLE	20	HAB.	
1 1	INLET ACCUM	LAB1 PPH	0.436 0. 0.436 0. 0.435 0. 0.435 0. 0.435 0. 0.446 0. 0.000 0. 0.000 0. 0.000 0. 0.436 0. 0.636
ETE		=	
PARAMETERS	ACCUM CO2	AB1	444444444444444444444444444444444444444
	₹_	AB11H	355 0. 355
OUTPUT	CO2 REMOVAL	! = 1	MWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
8 z	2 2	AB1	344444444444444444444444444444444444444
STATION		SS H	14.71 14.68 14.68 14.68 14.70 14.70 14.70 14.69 14.69 14.70 14.70 14.70 14.70 14.70 14.68 14.69 14.70 14.70 14.70 14.68 14.68 14.68 14.70 14.70 14.70 14.68 14.70 14.70 14.68 14.70 14.70 14.68 14.70 14.70 14.68 14.70 14.70 14.68 14.70 14.69 14.70 14.69 14.69 14.70 14.69 14.69 14.69 14.70 14.69 14.6
ST	ERS	PRES	
SPACE	- FE	ESSI	179 177
22	PARAMETERS	PRE	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	1	CO2 O2 RESS PRESS	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	LABORATORY		40.512 40.312 40.312 40.312 40.112 40.912 40.912 40.912 40.612
	ABO	P P	
		AB F	- アスプラグアグアグレクレアクタレアのレス・ファーデーデーデーデーデーデーデーデー
		! = =	169 14, 74 70 16 14, 70 60
	!	PSIA	144444444444444444444444444444444444444
i	E	02 RESS PSIA	100 100 100 100 100 100 100 100 100 100
	L L	PR 2	
	PAR	CO2 O2 PRESS PRESS	5.2[3.127[3.5] 5.2[3.127[3.5] 5.0[3.126[3.126[3.126]3.13.13.13.13.13.13.13.13.13.13.13.13.13
İ	AT	CO2 IPRESS	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
i	HABITAT PARAMETERS	P P	70. 7 45. 2 3. 12 69. 8 45. 1 3. 12 70. 3 45. 1 3. 13 70. 3 45. 1 3. 14 70. 3 45. 2 3. 15 70. 1 46. 1 3. 16 70. 1 46. 1 3. 16 70. 0 45. 5 3. 16 170. 3 45. 2 3. 16 170. 3 45. 2 3. 16 170. 3 44. 8 3. 11 170. 3 44. 8 3. 11 170. 3 44. 8 3. 11 170. 1 44. 4 3. 13 170. 1 44. 4 3. 13 170. 1 43. 13. 14 170. 1
Ì	Ť	HAB DEW	70.7145 69.8146 69.8147 70.3147 70.
		_ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
1 t		71.ME	1226.0 70. 7 45.2 1226.0 70. 7 45.2 1231.0 69.8 45.1 1241.0 70.3 45.1 1241.0 70.3 45.1 1241.0 70.3 45.1 1241.0 70.3 45.1 1251.0 69.7 45.0 1251.0 69.7 45.0 1256.0 70.3 45.0 1276.0 69.0 45.5 1276.0 69.0 45.5 1276.0 69.0 45.5 1276.0 69.0 45.5 1226.0 70.3 45.2 1236.0 70.3 45.2 1336.0 70.3 45.2 1336.0 70.3 45.2 1336.0 70.3 44.8 1336.0 70.3 44.8 1336.0 70.3 44.8 1336.0 70.3 44.8 1336.0 70.3 44.8 1336.0 70.3 44.8 1336.0 70.3 44.8 1336.0 70.3 44.8 1356.0 69.5 44.7 1356.0 69.5 44.7 1356.0 70.1 43.5 1366.0 70.0 43.5 1366.0 70.0 43.5 1400.0 69.5 42.8
	<u>.l</u>		C-110
			C-110

NOTE PRIMARTING NOTE	_							SPACE S	STATION OUTPUT		PARAMETERS	ERS TABLE	T 7				-
The The	<u> </u>	2		ARAMETER	S	JQN	~	RAMETERS		2	m	RAMETERS		Ž	JE 4 PAI	RAMETERS	 ! !
1.	TIME	TEMP	1	CO2 PRESS	02 PRESS	TEMP	PE	CO2 PRESS	02 PRESS	TEMP	DEW	CO2 PRESS	02 PRESS	TEMP -	DEW	CO2 PRESS	02 PRESS
10 17 11 11 14 16 12 15 16 12 13 14 14 15 15 15 15 15 15	NIN	 	L .	IMAHC I	PSIA	 Le,		 ##	PSIA	 L		- PHG	PSIA		- -	MMHG	PSIA
11.0 75.53 47.79 2.667 3.091 75.54 43.9 2.667 3.091 75.91 5.081 3.091 75.91 5.091 75.91		1 72.	io	~	. 0	72.13		2.650			49.85		3.0901		49.85		3.0901
11.0 75.53 47.22 2.674 2.087 7.881 7.981 7.882 3.087 7.881 7.881 2.576 3.089 7.881	9	1 76	48.96	-	0	76.54		2.693	•		48.83		3.091		48.83	•	3.091
11.0 75.81 47.22 2.666 3.089 75.81 47.22 2.667 3.089 7.82 4.640 2.569 3.089 7.82 4.640 2.691 2.691 3.089 75.81 47.22 2.661 3.089 75.81 47.22 2.661 3.089 75.81 47.22 2.661 3.089 75.81 47.22 2.661 3.089 75.81 47.22 2.661 3.089 75.81 47.22 2.661 3.089 75.81 47.22 2.661 3.089 75.81 47.22 2.661 3.089 75.81 47.22 2.661 3.089 76.81 47.81 2.661 3.089 76.81 47.81 2.561 3.089 76.81 47.81 2.661 3.089 76.81 47.81 2.661 3.089 76.81 47.81 2.661 3.089 76.81 47.81 2.661 3.089 76.81 47.81 2.661 3.089 76.81 47.81 2.661 3.089 76.81 47.81 2.661 3.089 76.81 47.81 2.661 3.089 76.81 47.81 2.661 3.089 76.81 47.81 2.661 3.089 76.81 47.81 2.661 3.089 76.81 47.81 2.661 3.089 76.81 47.81 2.661 3.089 76.81 47.81 2.661 3.089 76.81 47.81 2.661 3.089 76.81 47.81 2.661 3.089 76.81 47.81 2.661 3.089 76.81 47.81 2.661 3.089 76.81 47.81 2.661 3.089 76.81 47.81 4	11.0	75	47.97	- -	0	75.53	47.97	2.682	3.087	•	47.83		3.087	74.30	47.83	•	3.087
25.0 7.6.11 46.61 4.6.82 2.6.64 3.089 7.6.11 4.6.82 2.6.64 3.089 7.6.11 4.6.82 2.6.61 3.099 7.6.11 4.6.91 2.6.91 3.099 7.6.11 4.6.12 2.6.61 3.099 7.6.11 4.6.12 2.6.61 3.099 7.6.11 4.6.12 2.6.61 3.099 7.6.11 4.6.12 2.6.61 3.099 7.6.11 4.6.12 2.6.61 3.099 7.6.11 4.6.12 2.6.61 3.099 7.6.11 4.6.12 2.6.61 3.099 7.6.11 4.6.12 2.6.61 3.099 7.6.11 4.6.12 2.6.61 3.099 7.6.11 4.6.12 3.6.61 7.6.11 4.6.11 3.099 7.6.11 4.6.11 3.099 7.6.11 4.6.11 3.099 7.6.11 4.6.11 7.6.11 4.6.11 7.6.11 4.6.11 4.6.11 4.6.11 4.6.11 4.6.11 4.6.11 4.6.11 4.6.11 4.6.11 4.6.11 4.6.11 4.6.11 4.6.11 4.6.11 4.		75	47.22	ر د	0	75.83	47.22	2.674	3.087	•	47.09	•	3.088	74.81	47.09		3.088
3.0.0 7.5.12 4.5.79 2.0.641 3.0.90 7.5.12 4.5.70 3.0.90 7.5.12 4.5.70 3.0.90 7.5.12 4.5.70 3.0.90 7.5.12 4.5.70 3.0.90 7.5.12 4.5.70 3.0.90 7.5.10 4.5.10 3.0.90 7.5.10 4.5.10 3.0.90 7.5.10 4.5.10 3.0.90 7.5.10 4.5.10 3.0.90 7.5.10 4.5.10 3.0.90 7.5.10 4.5.10 3.0.90 7.5.10 4.5.10 3.0.90 7.5.10 3.0.90<	21.0		•	ر ا	0	76.61	•	2.668	3.089		46.44	2.570	3.089	٠	•	•	3.089
5.0. 7.0. 1.0. 2.0. 3.0. 1.0. <th< td=""><td>26.0</td><td>- 76. 75.</td><td>เก๋น</td><td>~i ~</td><td>w w</td><td>76.12</td><td>45.99</td><td>2.661</td><td>3.090</td><td>•</td><td>45.781</td><td>2.564</td><td>3.090</td><td>•</td><td>•</td><td>2.564</td><td>3.090</td></th<>	26.0	- 76. 75.	เก๋น	~i ~	w w	76.12	45.99	2.661	3.090	•	45.781	2.564	3.090	•	•	2.564	3.090
4. 0. 7. 6. 40. 4. 5. 5. 6. 44. 5. 6. 6. 44. 5. 6. 5. 6. 44. 5. 6. 6. 45. 6. 6. 6. 5. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	36.0	. ×	45.42	, c	, w	76.23	45.42	2.647	3.093	75.08	4 4 5		3.0%	75.08		• •	3.0%
6.0 75.88 44.18 2.628 3.095 75.88 44.18 2.628 3.097 74.81 45.50 2.533 3.099 74.81 45.18 5.268 3.010 74.81 45.50 2.533 3.099 74.81 45.50 2.50 2.534 3.010 74.82 45.50 2.501 3.100 74.82 3.100 7	41.0	76.	44.56		, w	76.40		2.641	3.0%	75.06	44.29		3.095	75.06		2.545	3.095
66.0 75.34 45.81 2.623 3.097 75.34 45.81 2.621 3.097 75.48 45.81 2.621 3.097 75.44 45.81 2.621 3.097 75.34 45.81 2.621 3.099 75.34 45.81 2.621 3.101 75.81 45.81 2.621 3.101 75.81 45.81 2.607 3.099 75.84 45.82 2.621 3.101 75.82 45.81 2.607 3.099 75.81 45.97 2.607 3.099 75.81 45.97 2.607 2.607 2.607 3.099 75.81 45.97 2.607 3.099 75.81 45.97 2.607 3.099 75.81 45.97 2.607 3.099 75.81 45.91 7.828 45.81 7.007 2.607 3.008 7.607 7.607 7.607 7.607 7.607 7.607 7.607 7.607 7.607 7.607 7.607 7.607 7.607 7.607 7.607 7.607 7.607 7.607	46.0	75.	44.16	2	3.0	75.88	44.16	2.635	3.095	74.61	43.87	2.539	3.096	74.61	43.87	•	3.096
6.0 (7.6.14) 43.51] 2.6.21 3.1007 76.34 43.51 2.6.21 3.099] 76.34 43.51] 2.6.25 3.1007 76.24 43.51] 2.6.65 3.099] 76.34 43.51] 2.6.25 3.1007 76.24 43.51] 2.6.65 3.099] 76.37 43.52 3.099] 76.37 4.265 2.509] 3.1007 76.24 43.51] 2.6.61 7.309] 76.37 4.265 2.501 3.1007 76.24 42.507 3.1007 7	51.0	75.	43.81	<u>ن</u>	3.0	75.93	43.81	2.628	3.097	74.81	43.50	2.533	3.099	74.81	43.50	•	3.099
6.10 76.84 43.521 2.6071 3.1010 76.14 43.521 2.6071 3.1091 76.75 42.64 2.5071 3.1011 76.89 43.57 2.6011 3.1011 76.89 43.57 2.6011 3.1011 76.89 43.57 2.6011 3.1011 76.89 43.07 2.6012 3.1011 76.89 43.07 3.1011 76.89 43.07 3.1011 76.89 3.1011 76.89 3.1011 76.89 3.1011 76.89 3.1011 76.89 3.1011 76.89 3.1011 76.89 3.1011 76.89 3.1011 76.89 3.1011 76.89 3.1011 76.89 3.1011 76.89 3.1011 76.89 3.1011 76.89 3.1011 76.89 3.1011 76.89 3.1011 76.89 3.1011	56.0		M I	ر د	0 ·	76.34	43.51	2.621	3.099	75.10	43.17	2.527	3.100	75.10	43.17		3.100
7.0 7.89 45.37 2.601 3.107 76.81 43.37 2.601 3.101 75.84 42.80 2.507 3.103 75.84 42.80 2.507 3.103 75.84 42.80 2.507 2.103 75.84 42.80 2.607 2.103 75.84 42.80 2.607 2.103 75.84 42.80 2.607 2.103 75.84 42.80 2.607 2.103 75.84 42.80 2.607 2.584 3.103 76.34 42.80 2.487 3.104 76.84 42.80 2.487 3.104 76.84 42.80 3	91.0	<u>,</u>	'n	, i	4 6	76 97	45.21	2.615	5. 1001 2 0001	74.82	68.24	2.521	5. LO1.	74.82	42.85	7.561	101.5
7.6.0 7.5.28 43.07 2.594 3.101 73.94 42.61 2.500 3.108 73.94 42.61 2.500 3.108 73.94 42.62 3.108 74.61 42.62 3.108 74.61 42.62 3.108 74.61 42.63 3.108 74.61 42.63 3.108 74.61 42.63 3.108 74.61 42.63 3.108 74.61 42.63 3.108 74.61 42.63 3.108 74.61 42.63 3.108 74.61 42.63 3.108 74.61 2.453 3.118 75.71 4.108 75.61 4.208 2.108 3.108 74.61 2.463 3.118 74.71 4.208 3.108 74.61 2.463 3.118 75.71 4.108 2.463 3.118 75.71 4.108 2.468 3.118 76.71 4.108 2.468 3.118 76.71 4.108 2.468 3.118 76.71 4.108 2.468 3.118 7.711 4.108 2.468 3.118 <t< td=""><td>9.5</td><td></td><td>'n</td><td>i</td><td>, v</td><td>76.67</td><td>43.75</td><td>700.7</td><td>3.101</td><td>75.62</td><td>•</td><td>2.507</td><td>3,101</td><td>75.62</td><td>42.07</td><td>2.507</td><td>3 104</td></t<>	9.5		'n	i	, v	76.67	43.75	700.7	3.101	75.62	•	2.507	3,101	75.62	42.07	2.507	3 104
81.01 76.251 42.70 2.586 3.103 76.91 42.81 3.103 76.91 42.82 3.103 76.91 42.82 3.104 76.11 42.82 3.106 76.81 42.82 3.108 76.81 41.89 2.681 3.108 76.81 41.89 2.681 3.108 76.81 41.89 2.681 3.111 76.81 41.89 2.682 3.111 76.81 41.89 2.681 3.111 76.81 41.89 2.681 3.111 76.81 41.89 2.682 3.111 76.81 41.81 2.461 3.111 76.81 41.81 2.461 3.111 76.81 41.71 2.462 3.111 76.81 41.71 2.462 3.111 76.81 41.71 2.463 3.111 76.81 41.11 2.461 3.111 76.81 41.71 2.461 3.111 76.81 41.71 2.461 3.111 76.81 41.81 2.461 3.111 76.81 4.611 4.611 4.611 <t< td=""><td>76.0</td><td>75.</td><td>M</td><td></td><td>×</td><td>75.28</td><td>43.07</td><td>2.594</td><td>3.101</td><td>73.94</td><td></td><td>2.500</td><td>3,103</td><td>3.8</td><td></td><td>2.500</td><td>3,103</td></t<>	76.0	75.	M		×	75.28	43.07	2.594	3.101	73.94		2.500	3,103	3.8		2.500	3,103
86.0 76.25 42.55 2.580 3.106 76.25 42.25 2.580 3.106 76.26 41.80 2.497 3.107 75.41 42.09 2.586 3.108 75.41 42.09 2.586 3.108 75.41 41.59 2.495 3.118 75.21 41.59 2.495 3.128 75.21 41.59 2.495	81.0	76.	į	-	×.	76.35	42.79	2.586	3.103	74.91	42.35	2.493	3.106		42.35	2.493	3.106
75-44 42.32 2.564 3.106 75-34 42.574 3.106 74-64 41.59 2.475 3.113 74-28 41.59 2.566 3.113 75-38 41.59 2.475 3.113 74-28 41.59 2.566 3.113 75-38 41.17 2.464 3.113 75-38 41.17 2.464 3.113 75-38 41.17 2.464 3.113 75-38 41.17 2.464 3.113 75-38 41.17 2.464 3.113 75-38 41.17 2.464 3.113 75-38 41.17 2.464 3.113 75-38 41.17 2.464 3.113 75-38 41.17 2.464 3.113 75-38 41.17 2.464 3.113 75-38 41.17 2.464 3.113 75-38 41.17 2.464 3.113 75-38 41.14 75-37 41.44 2.464 3.113 75-38 41.14 75-37 41.14 75-	86.0	1 76.	c.	~	m	76.25	42.55	2.580	3.104	75.41	45.09	2.487	3.107	75.41	42.09	2.487	3.107
7.646 41.80 2.562 3.111 76.46 41.80 2.562 3.111 76.46 41.80 3.113 75.25 41.31 75.25 41.31 75.25 41.31 75.25 41.31 75.25 3.111 76.46 41.80 3.113 75.25 41.31 75.25 3.111 76.48 41.71 2.463 3.113 75.25 41.31 75.25 41.31 75.25 3.115 75.25 41.31 75.31 41.35 75.31 75.3		75.	42.32	~	m i	75.91	42.32	2.574	3.106	74.61	41.84	2.481	3.108	74.61	•	2.481	3.108
76.46 41.70 2.556 3.111 76.48 41.70 2.556 3.111 75.38 41.17 2.463 3.114 75.18 41.17 2.463 3.114 75.18 41.17 2.463 3.114 75.18 41.17 2.463 3.115 75.18 40.96 2.468 3.115 75.18 40.96 2.468 3.115 75.18 40.96 2.468 3.115 75.18 40.96 2.468 3.115 75.18 40.96 2.468 3.115 75.18 40.96 2.468 3.115 75.18 40.96 2.468 3.115 75.18 40.96 2.468 3.115 75.18 40.96 2.468 3.115 75.18 40.96 2.468 3.117 74.86 40.96 2.468 3.115 75.18 40.96 2.469 3.117 74.86 40.96 2.469 3.117 74.86 40.96 2.469 3.117 74.86 40.96 2.469 3.117 74.86 40.96 2.469 3.118 75.18 40.96 2.469 3.118 75.18 40.96 2.469 3.118 75.18 40.96 2.469 3.118 75.18 40.96 2.469 3.118 75.18 40.96 2.469 3.118 75.18 40.96 2.469 3.118 75.18 40.96 2.469 3.118 75.18 40.96 2.469 3.128 74.96 3.128 74.96 40.96 2.469 3.128 74.96 3.128 74.96 40.96 2.469 3.128 74.96 40.96 2.469 3.128 74.96 40.96 2.469 3.128 74.96 40.96 2.469 3.128 74.96 40.96 2.469 3.128 74.96 3.128 74.96 3.128 74.96 40.96 2.469 3.128 74.96 3.128			42.0	~ ·		75.46	42.09	2.568	5.108	74.24	41.59	2.4/5	5.1111	74.24	•	2.4/5	5.1111
75.65 41.51 2.550 3.112 75.65 41.15 2.550 3.112 74.36 40.96 2.452 3.111 74.36 40.96 2.452 3.111 74.36 40.96 2.452 3.111 74.36 40.96 2.452 3.111 74.31 74.31 40.56 2.442 3.111 74.31 74.31 40.96 2.442 3.111 74.31 74.31 40.96 2.442 3.113 75.31 40.96 2.442 3.113 75.31 40.96 2.442 3.113 75.31 40.96 2.442 3.113 75.31 40.96 2.442 3.113 75.31 40.96 2.442 3.113 75.31 40.96 2.442 3.113 75.31 40.96 2.442 3.113 75.31 40.96 2.442 3.113 75.31 40.96 2.442 3.113 75.31 40.96 2.442 3.113 75.31 40.96 2.442 3.113 75.31 40.96 2.442 3.113 75.34 40.96 2.442 3.113 75.34 40.96 2.442 3.113 75.34 40.96 2.442 3.113 75.34 40.96 2.442 3.113 75.34 40.96 2.442 3.113 75.44 40.96 2.442 3.113 75.44 40.97 2.442 3.123 75.48 40.07 2.442 3.123 75.48 40.07 2.442 3.123 75.48 40.07 2.442 3.123 75.48 40.07 2.442 3.123 75.48 40.07 2.442 3.123 75.49 40.23 2.454 40.72 2.44	96	92	41.70	<u> </u>		76.48	41.70	2.556	3.111	75.18	41.17	2.463	3.114	75.18	41.17	2.463	3.114
75.97 41.35 2.544 3.114 75.97 41.35 2.554 3.114 74.82 40.771 2.452 3.118 75.31 40.58 2.446 3.118 75.31 40.58 2.446 3.118 75.31 40.58 2.446 3.118 75.31 40.58 2.446 3.118 75.31 40.58 2.446 3.118 75.31 40.58 2.446 3.118 75.31 40.58 2.446 3.118 75.31 40.58 2.446 3.117 74.81 40.58 2.428 3.118 75.31 40.58 2.428 3.118 75.31 40.58 2.428 3.118 75.31 40.58 2.428 3.118 75.31 40.58 2.428 3.118 75.31 40.58 2.428 3.118 75.31 40.58 2.428 3.128 75.31 40.58 2.428 3.128 75.31 40.58 2.428 3.128 75.31 40.58 2.428 3.128 75.31 40.58 2.428 3.128 75.48 40.58 2.428 3.128 75.48 40.58 2.428 3.128 75.48 40.58 2.428 3.128 75.48 40.58 2.428 3.128 75.48 40.58 2.428 3.128 75.48 40.58 2.428 3.128 75.48 40.58 2.428 3.128 75.48 40.58 2.428 3.128 75.48 40.58 2.428 3.128 75.48 40.58 2.428 3.128 75.48 3.128 75.48 40.58 2.428 3.128 75.48 3.138 75.48 3.138 75.48 3.138 75.48 3.138 75.48 3.138 75.48 3.138 75.48 3.138 75.48 3.138 75.48 3.138 75.48 3.1		75	41.51	-	3.1	75.65	41.51	2.550	3.112	74.36	40.96	2.458	3.115	74.36	40.96	2.458	3.115
76,53 41.16 2.532 3.115 76,53 41.16 2.532 3.115 75.31 40.56 2.446 3.118 75.31 40.56 2.450 3.117 74.71 41.64 2.671 76.71 41.64 2.450 3.117 74.71 41.64 2.671 76.71 41.64 2.450 3.117 74.71 41.64 2.450 3.118 75.31 41.15 2.451 3.118 75.31 41.64 2.450 3.117 74.71 41.64 2.671 76.74 41.15 2.451 3.118 75.31 41.15 2.451 3.118 75.31 41.15 2.451 3.118 75.31 41.15 2.451 3.118 75.31 41.15 2.451 3.118 75.31 41.15 2.451 3.118 75.41 40.95 2.423 3.122 76.46 40.96 2.418 3.122 76.46 40.96 2.418 3.122 76.46 40.96 2.418 3.122 76.46 40.96 2.418 3.122 76.46 40.96 2.418 3.122 76.46 40.90 2.418 3.122 76.46 40.90 2.418 3.122 76.46 40.90 2.418 3.122 76.46 40.90 2.418 3.122 76.46 40.90 2.418 3.122 76.46 40.72 2.494 3.122 76.46 40.72 2.494 3.122 76.46 40.72 2.494 3.122 76.46 40.72 2.494 3.122 76.49 40.10 2.472 3.124 76.43 40.10 2.472 3.124 76.43 40.10 2.472 3.124 76.41 40.10 2.442 3.124 76.41 40.40 2.444 3.124 74.41 3.124 76.41 40.40 2.444 3.124 74.44 3.124 74.44 3.124 74.44 3.124 74.44 3.124 76.44 40.14 2.446 3.124 76.44 40.14 2.446 3.124 76.42 40.14 2.446 3.124 76.44 40.14 2.446 3.124 76.4	•	1 75	41.33	~	3.1	75.97	41.33	2.544	3.114	74.82	40.77	2.452	•	74.82	40.77	2.452	3.117
76,40 42.12 2.532 3.115 76,40 41.212 2.532 3.115 74.71 41.64 2.445 3.118 74.14 41.64 2.1845 2.118 74.14 41.64 2.1845 2.118 74.14 41.64 2.1845 2.425 3.118 76.14 41.64 2.521 3.118 76.44 41.64 2.521 3.118 76.44 41.64 2.521 3.118 76.44 41.64 2.521 3.118 76.44 41.64 2.521 3.118 76.44 41.64 2.521 3.118 76.44 41.64 3.122 76.46 3.122 76.46 41.64 3.122 76.46 41.64 3.122 76.46 3.1			4:	ر د	3:1	76.53	41.16	2.539	3.115	75.31	40.58	2.446	3.118	75.31	40.58	2.446	3.118
76.549 41.54 2.521 3.116 75.54 41.54 2.521 3.116 75.54 41.54 2.521 3.116 75.54 41.54 2.521 3.116 75.54 41.54 2.521 3.116 75.54 41.54 2.521 3.116 75.54 41.54 2.521 3.116 75.54 41.54 2.521 3.116 75.54 41.54 2.521 3.116 75.54 41.54 2.521 3.121 74.90 40.76 2.423 3.122 74.90 40.76 2.521 3.122 75.64 40.56 2.521 3.121 75.64 40.56 3.120 75.68 40.60 2.423 3.122 75.68 40.60 2.423 3.122 75.68 40.60 2.521 3.122 75.68 40.60 2.423 3.122 75.68 40.60 2.423 3.122 75.68 40.60 2.423 3.122 75.68 40.60 2.423 3.122 75.68 40.60 2.423 3.122 75.68 40.60 2.420 3.122 75.68 40.60 2.420 3.122 75.68 40.60 2.420 3.122 75.68 40.60 2.420 3.122 75.68 40.60 2.420 3.122 75.68 40.60 2.420 3.122 75.68 40.60 2.420 3.122 75.68 40.60 2.420 3.122 75.68 40.60 2.420 3.122 75.68 40.27 2.448 3.123 75.78 40.07 2.420 3.124 75.71 40.45 2.420 3.124 75.71 40.45 2.420 3.126 75.09 40.27 2.448 3.125 76.69 40.20 2.472 3.126 76.69 40.20 2.472 3.126 76.69 40.20 2.420 3.128 75.71 40.60 2.420 3.126 75.70 40.20 2.420 3.128 75.71 40.60 2.420 3.126 75.79 40.10 2.421 3.128 75.71 39.49 2.242 3.128 75.71 75.69 40.10 2.421 3.128 75.71 75.69 40.10 2.421 3.128 75.71 75.69 40.10 2.421 3.131 75.46 39.23 2.350 3.131 75.69 30.31 2.421 3.131 75.64 40.14 2.426 3.131 75.64 39.23 2.350 3.131 74.64 39.23 2.350 3.131 74.64 39.23 2.350 3.131 74.69 39.31 2.421 3.131 76.64 39.23 2.350 3.131 76.69 39.69 2.331 3.131 76.69 39.69 2.331 3.131 76.69 39.69 2.331 3.131 76.69 39.69 2.331 3.131 76.69 39.69 2.331 3.131 76.60 39.65 2.411 3.131 76.61 39.61 2.421 3.131 76.61 39.61 2.421 3.131 76.61 39.			45:	٠i د		76.01	42.12	2.532	3.115	74.71	41.64	2.440	3.117	74.71	41.64	2.440	3.117
76.04 41.36 2.516 3.119 76.04 41.36 2.516 3.120 76.64 40.76 2.423 3.122 74.90 40.76 2.423 3.122 74.64 40.76 2.423 3.122 74.64 40.76 2.418 3.122 74.64 40.76 3.122 74.64 40.70 3.122 74.64 40.70 3.122 74.64 40.70 3.124 74.64 40.07 3.124 74.64 40.07 3.124 74.64 40.07 3.124 74.64 40.07 3.124 74.64 40.07 3.124 74.64 40.07 3.124 74.64 40.07 3.124 74.64 40.07 3.124 74.64 40.07 3.124 74.64 40.07 3.124 74.64 40.07 3.124 74.64 40.27 3.125 76.64 40.07 3.124 76.64 40.27 3.125 76.64 40.07 3.124 76.64 30.07 3.126 76.64 40.07 3.126 76.64 <td< td=""><td></td><td></td><td><u> </u></td><td>ن د </td><td>4 6</td><td>75.34</td><td>47.</td><td>2.527</td><td>3.116</td><td>74.14</td><td>41.15</td><td>2.429</td><td>3.119</td><td>74.14</td><td>41.15</td><td>2,435</td><td>3.119</td></td<>			<u> </u>	ن د 	4 6	75.34	47.	2.527	3.116	74.14	41.15	2.429	3.119	74.14	41.15	2,435	3.119
146.0 76.75 41.19 2.510 3.120 76.75 41.19 2.510 3.120 75.46 40.56 2.418 3.122 75.46 40.50 2.510 3.120 75.88 41.03 2.504 3.120 75.88 41.03 2.524 3.120 75.88 41.03 2.524 3.120 75.88 41.03 2.499 3.122 75.65 40.87 3.122 75.65 40.87 3.122 75.65 40.87 3.122 75.65 40.87 3.122 75.65 40.87 3.122 75.65 40.87 3.122 75.65 40.87 3.122 75.65 40.87 3.122 75.67 40.07 2.497 3.122 75.67 40.07 2.497 3.122 75.67 40.07 2.497 3.122 75.67 40.07 2.497 3.122 75.67 40.07 2.497 3.122 75.67 40.07 2.497 3.122 75.67 40.07 2.497 3.122 75.67 40.27 2.498 3.123 75.11 40.43 3.125 75.67 39.44 2.397 3.126 75.67 40.67 2.497 3.124 75.11 40.43 3.125 74.49 39.44 2.391 3.127 74.48 3.127 74.48 3.127 75.48 40.16 2.472 3.126 75.67 39.44 2.391 3.128 75.74 40.16 2.472 3.126 75.24 40.16 2.472 3.126 75.59 40.17 2.462 3.125 74.47 39.44 2.391 3.129 75.74 40.18 2.472 3.126 75.59 40.17 2.462 3.127 74.48 3.129 75.17 39.44 2.301 3.129 75.24 40.17 2.462 3.127 74.48 3.129 75.24 40.18 2.472 3.126 75.24 40.17 2.462 3.127 74.48 3.129 75.24 40.18 2.441 3.120 75.39 40.71 2.462 3.129 74.41 3.130 75.39 40.71 2.462 3.129 74.46 39.37 2.442 3.131 75.44 39.52 2.340 3.131 75.44 39.52 2.340 3.131 75.44 39.52 2.340 3.131 75.44 39.52 2.340 3.131 75.44 40.14 2.454 3.131 75.44 39.52 2.340 3.131 75.44 39.52 2.350 3.131 75.44 39.52 2.350 3.131 75.44 39.52 2.350 3.131 75.44 39.52 2.350 3.131 75.44 39.52 2.350 3.131 75.44 39.53 2.350 3.131 75.44 39.53 3.132 75.44 39.53 3.132 75.44 39.53 3.132 75.44 39.53 3.132 75.44 39.53 3.132 75.44 39.53 3.132 75.44 39.53 3.132 75.44 39.53 3.132 75.4		26	41.36	ر د	, w	76.04	41.36	2.515	3.119	74.90	40.76	2.423	3.122	74.90	40.76	2.423	3.122
151.0 75.88 41.03 2.504 3.120 75.88 41.03 2.504 3.120 74.89 40.23 2.407 3.124 74.99 40.23 3.122 74.99 40.23 3.122 74.99 40.23 3.122 74.99 40.23 3.122 74.99 40.23 3.122 74.99 40.23 3.122 75.27 40.07 2.402 3.122 75.27 40.07 2.402 3.122 75.27 40.07 2.402 3.122 75.27 40.07 2.402 3.122 75.27 40.07 2.402 3.122 75.27 40.07 2.402 3.122 75.27 40.07 2.402 3.122 75.27 40.07 2.402 3.122 75.00 39.90 2.105 75.27 40.07 2.402 3.122 75.27 40.07 2.402 3.122 75.27 40.07 2.402 3.122 75.27 40.07 2.402 3.122 75.27 40.07 2.402 3.122 75.27 40.07 2.402 3.122 75.27 40.07 2.402 3.122 75.27 40.07 2.402 3.122 75.27 40.07 2.402 3.122 75.27 40.16 2.402 3.122 75.27 40.16 2.402 3.122 75.27 3.122		92	_	<u>ن</u> ہ	3.1	76.75	41.19	2.510	3.120	75.46	40.58	2.418	3.122	75.46	40.58	2.418	3.122
156.0 75.65 40.87 2.499 5.122 75.65 40.87 2.494 5.122 75.27 40.07 5.124 74.49 40.25 2.407 5.124 76.49 40.25 2.494 3.123 75.27 40.07 2.492 3.125 75.27 40.07 2.312 75.27 40.07 2.312 75.27 40.07 2.312 75.27 40.07 2.312 75.27 40.07 2.312 75.27 40.07 2.312 75.27 40.07 2.312 75.27 75.49 3.125 75.27 75.49 3.125 75.27 75.49 3.125 75.27 75.49 3.125 75.27 75.49 3.125 75.27 75.49 3.125 75.27 75.49 3.125 75.27 75.49 3.125 75.27 75.49 3.125 75.29 2.356 3.125 75.29 2.356 3.125 75.29 2.356 3.125 75.27 3.126 75.27 75.49 3.125 75.29	•	22 1		<u>رن</u> د	M .	75.88	41.03	2.504	3.120	74.58	40.40	2.413	3.123	74.58	40.40	2.413	3.123
156.0 76.31 40.57 2.488 3.123 76.31 40.57 2.488 3.123 75.00 39.90 2.397 3.126 75.00 39.90 2.397 3.126 75.00 39.90 2.397 3.126 75.00 39.90 2.397 3.126 75.00 39.90 2.397 3.126 75.00 39.90 2.397 3.126 75.00 39.90 2.397 3.126 76.92 39.59 2.478 3.125 76.08 40.29 2.472 3.125 76.43 40.16 2.472 3.126 76.43 40.16 2.472 3.126 76.43 40.16 2.472 3.126 76.43 40.16 2.472 3.126 76.43 40.16 2.472 3.126 76.43 40.16 2.472 3.126 76.43 40.16 2.472 3.126 76.43 40.16 2.472 3.126 76.43 40.16 2.472 3.126 76.43 40.16 2.472 3.126 76.43 40.16 2.472 3.126 76.43 40.16 2.472 3.126 76.43 40.16 2.472 3.126 76.43 40.16 2.472 3.126 76.43 40.16 2.472 3.126 76.43 40.16 2.472 3.126 76.43 40.16 2.472 3.126 76.43 40.16 2.472 3.126 76.43 40.16 2.472 3.126 76.44 3.126 3.126 76.44 3.126 3.12		 2	40.8			74.65	40.87	2.499	2.122	75 27	40.25	2.407	3.1241 2 1251	75 27	40.23	2.407	5.124 2 125
171.0 75.71 40.43 2.483 3.124 75.71 40.43 2.483 3.124 74.48 39.74 2.391 3.127 74.48 39.74 2.301 3.128 74.92 39.59 2.366 3.128 74.92 39.59 2.366 3.128 74.92 39.59 2.366 3.128 74.92 39.59 2.366 3.128 74.92 39.59 2.366 3.128 74.92 39.59 2.366 3.128 74.92 39.59 2.366 3.128 76.73 40.16 2.472 3.128 76.74 40.60 2.375 3.128 74.67 40.60 2.375 3.128 74.67 40.60 2.375 3.128 74.67 40.60 2.375 3.128 74.67 40.60 2.375 3.128 74.67 40.60 2.375 3.128 74.67 40.60 2.375 3.128 74.67 39.99 2.360 3.129 74.17 39.99 2.360 3.129 74.17 39.99 2.360 3.131 74.82 39.83 2.360 3.131 74.82 39.83 2.360 3.131 74.82 39.83 2.360 3.131 74.86 39.57 2.464 39.52 2.360 3.131 74.64 39.52 2.360 3.131 74.64 39.52 2.360 3.132 74.64 39.52 2.312 74.64 39.52 2.312 74.64 39.52 2.312 74.64 39.53 2.312 74.64 39.53 2.312 74.64 39.53 2.312 74.64 39.53 2.312 74.64 39.53 2.312 74.64 39.53 2.312 74.64 39.53 2.312 74.64 39.53 2.312 74.64 39.53 2.312 74.64 39.53 2.312 74.64 39.53 2.312 74.64 39.53 2.320 3.132 74.64 39.53 2.320 3.333 74.64 39.53 2.320 3.333 74.64 39.33 39.89 2.427 3.333 74.64 39.09 2.335 3.326 3.335 74.64 39.39 2.320 3.335 74.64 39.39 38.81 2.320 3.335 74.64 39.39 38.81 2.320 3.335 74.64 39.39 38.81 2.320 3.335 74.64 39.39 38.81 2.320 3.335 74.64 39.39 38.81 2.320 3.335 74.64 39.39 38.81 2.320 3.335 74.64 39.39 38.81 2.320 3.335 74.64 39.65 2.417 3.333 74.64 39.69 3.321 3.337 75.77 3.356 3.337 75.77 38.68 3.337 75.77 38.68 3.337 75.77 38.68 3.337 75.77 38.68 3.337 75.77 38.68 3.337 75.77 38.68 3.337 75.77 38.68 3.337 75.77 38.68 3.337 75.77 38.68 3.337 75.77 38.68 3.337 75.77 38.68 3.337 75.77 38.68 3.337 75.77 38.68 3.337 75.77 38.68 3.337 75.77 38.68 38.313 75.77 38.68 38.313 3.337 75.77 38.68 38.313 3.337 3.337 3.337 3.337 3.337 3.337 3.337 3.337 3.337 3.337 3.33		2 2	40.57	; v;		76.31	40.57	2.488	3.123	75.00	39.90	2.397	3.126	75.00	39.90	2.397	3.126
176.0 76.08 40.29 2.478 3.125 76.08 40.29 2.478 3.125 74.92 39.59 2.386 3.128 74.92 39.59 2.		i 75	_	ية ح	3.1	75.71	40.43	2.483	3.124	74.48	39.74	2.391	3.127	74.48	39.74	2.391	3.127
181.0 76,43 40.16 2.472 3.126 76,43 40.16 2.472 3.126 75.17 39,44 2.381 3.128 75.17 39,44 2. 181.0 76,43 40.16 2.472 3.126 76.546 3.125 76.57 40.60 2.375 3.128 76.57 40.60 2.375 3.128 76.57 40.60 2.375 3.128 76.57 40.60 2.375 3.128 76.57 40.60 2.370 3.129 76.27 40.60 2.370 3.129 76.17 39.99 2.362 3.129 76.17 39.99 2.362 3.129 76.17 39.99 2.362 3.129 76.17 39.99 2.362 3.129 76.17 39.99 2.362 3.129 76.17 39.99 2.362 3.129 76.17 39.99 2.362 3.129 76.17 39.99 2.362 3.129 76.17 39.83 2.360 3.131 76.42 30.68 2.451 3.129 76.73 40.42 2.464 3.129 76.73 40.42 2.464 3.129 76.74 39.68 2.355 3.132 76.46 39.57 2.356 3.132 76.46 39.57 2.356 3.132 76.46 39.37 2.359 3.132 76.46 39.37 2.359 3.132 76.46 39.37 2.349 3.133 76.42 40.14 2.436 3.131 76.42 40.14 2.436 3.131 76.42 40.14 2.436 3.131 76.42 40.14 2.436 3.131 76.42 40.10 2.431 3.131 76.42 40.10 2.431 3.131 76.42 40.10 2.431 3.131 76.42 40.10 2.431 3.131 76.42 40.10 2.421 3.133 76.45 39.39 2.427 3.132 76.49 38.95 2.350 3.135 76.49 38.95 2.350 3.135 76.49 38.95 2.350 3.135 76.49 38.95 2.350 3.135 76.49 38.95 2.350 3.135 76.49 38.95 2.350 3.135 76.49 38.95 2.320 3.135 76.49 38.95 2.320 3.135 76.49 38.95 2.320 3.135 76.49 38.95 2.320 3.135 76.49 38.98 2.411 3.134 76.42 39.53 2.412 3.134 76.42 39.53 2.412 3.134 76.42 39.53 2.412 3.134 76.42 39.53 2.412 3.134 76.42 39.53 2.313 75.17 38.68 2.321 3.137 75.17 38.68 2.321 3.137 75.17 38.68 2.321 3.137 75.17 38.68 2.321 3.137 75.17 38.68 2.321 3.137 75.17 38.68 2.321 3.137 75.17 38.68 2.321 3.137 75.17 38.68 2.321 3.137 75.17 38.68 2.321 3.137 75.17 38.68 2.321 3.134 75.17 38.68 2.321 3.134 75.17 38.68 3.134 75.17 38.68 3.134 75.17 38.68 3.134 75.17 38.68 3.134 75.17 38.68 3.134 75.17 38.68 3.134 75.17 38.68 3.134 75.17 38.68 3.134 75.17 38.68 3	176.0	2	_	ر نہ		76.08	40.29	2.478	3.125	74.92	39.59	2.386	3.128	74.92	39.59	2.386	3.128
196.0 75.74 41.21 2.466 5.125 75.74 41.21 2.462 5.125 74.67 49.60 2.575 5.128 75.26 40.15 2.370 5.129 75.26 40.15 2.370 5.129 75.26 40.15 2.370 5.129 75.26 40.15 2.370 5.129 75.17 59.99 2.126 75.26 40.15 2.370 3.129 74.17 39.99 2.126 75.38 40.71 2.466 3.127 74.17 39.99 2.360 3.131 74.82 39.83 2.360 3.131 74.82 39.83 2.360 3.131 74.82 39.83 2.360 3.131 74.82 39.83 2.360 3.131 74.82 39.83 2.360 3.131 74.82 39.83 2.360 3.131 74.82 39.83 2.360 3.132 75.74 39.88 2.360 3.132 75.74 39.88 2.360 3.132 76.44 3.129 76.73 40.42 2.446 3.129 76.73 40.42 2.446 3.129 76.44 3.130 76.44 39.52 2.356 3.132 74.44 39.52 2.360 3.132 74.44 39.52 2.360 3.132 74.44 39.52 2.360 3.132 74.44 39.37 2.342 3.331 76.42 40.14 2.436 3.131 76.42 40.14 2.436 3.131 76.42 40.14 2.436 3.131 76.42 40.14 2.436 3.131 76.42 40.14 2.436 3.131 76.42 40.14 2.436 3.131 76.42 40.14 2.436 3.131 76.42 40.14 2.436 3.131 76.42 40.14 2.436 3.131 76.42 40.14 2.436 3.131 76.42 40.14 2.436 3.131 76.42 40.14 2.436 3.131 76.42 40.14 2.436 3.131 76.42 40.14 2.436 3.131 76.42 40.14 2.436 3.131 76.43 30.31 3.135 76.49 38.95 2.350 3.135 74.49 38.95 2.350 3.135 74.49 38.95 2.350 3.135 74.49 38.95 2.350 3.135 74.49 38.95 2.350 3.135 74.49 38.95 2.320 3.135 74.49 38.98 2.321 3.131 75.17 38.68 2.321 3.137 75.17 38.68 2.321 3.137 75.17 38.68 2.321 3.137 75.17 38.68 2.321 3.137 75.17 38.68 2.321 3.137 75.17 38.68 2.321 3.137 75.17 38.68 2.321 3.137 75.17 38.68 2.321 3.137 75.17 38.68 2.321 3.137 75.17 38.68 2.321 3.137 75.17 38.68 2.321 3.137 75.17 38.68 2.321 3.137 75.17 38.68 3.136 75.17 38.68 3.136 75.17 38.68 3.136 75.17 38.68 3.136 75.17 38.68 3.136 75.17 38.68 3.136 75.17 38.68 3.136 75.17 38.68 3.136 75.17 38.68 3.136 75.17 38.68 3.136 75.17 38.68 3.136 75.17 38.68 3.136 75.17 38.68	181.	9 1	를 :	<u>د</u> د	M 1	76.43	40.16	2.472	3.126	75.17	39.44	2.381	3.128	75.17	39.44	2.381	3.128
196.0 75.39 40.71 2.456 3.127 75.39 40.71 2.456 3.127 74.17 39.99 2.365 3.129 74.17 39.99 2.365 3.129 74.17 39.99 2.365 3.129 74.17 39.99 2.365 3.129 74.17 39.99 2.365 3.129 74.17 39.99 2.365 3.129 74.17 39.99 2.365 3.129 74.17 39.99 2.365 3.129 74.17 39.99 2.365 3.129 74.17 39.99 2.365 3.132 74.64 39.83 2.365 3.132 74.64 39.83 2.365 3.132 74.64 39.83 2.365 3.132 74.64 39.83 2.365 3.132 74.64 39.83 2.365 3.132 74.64 39.85 2.355 3.132 74.64 39.55 3.132 74.64 39.55 3.132 74.64 39.37 2.365 3.133 74.64 39.37 2.365 3.133 74.64 39.37 2.365 3.133 74.64 39.37 2.365 3.135 74.64 39.37 2.365 3.135 74.64 39.39 2.355 3.135 74.64 39.39 2.355 3.135 74.64 39.39 2.355 3.135 74.64 39.39 2.355 3.135 74.64 39.39 2.355 3.135 74.64 39.39 2.355 3.135 74.64 39.39 2.355 3.135 74.64 39.39 2.355 3.135 74.64 39.39 2.355 3.135 74.64 39.39 2.355 3.135 74.64 39.39 2.355 3.135 74.64 39.39 2.355 3.135 74.64 39.39 2.355 3.135 74.64 39.39 2.355 3.135 74.64 39.39 2.355 3.135 74.64 39.39 2.355 3.135 74.64 39.39 2.355 3.135 74.69 38.95 2.355 3.135 74.69 38.88 2.355 3.135 74.69 38.88 2.355 3.135 74.69 38.68 2.355 3.135 74.69 38.68 2.355 3.135 74.69 38.68 2.355 3.135 74.69 38.68 2.355 3.135 74.69 38.68 2.355 3.135 74.69 38.68 2.355 3.135 74.69 38.68 2.355 3.135 74.69 38.68 2.355 3.135 74.69 38.68 2.355 3.135 74.69 38.68 2.355 3.135	1.981	 2 %	1 9	, 	n N		41.21	2.466	2 1251	75 26	40.60	2.5/5/	5.128	75 24	40.60	2.5/5	5.128
201.0 75.98 40.56 2.451 3.129 75.98 40.56 2.451 3.129 74.82 39.83 2.350 3.131 74.82 39.83 2.350 2.555 3.132 75.47 39.68 2.00.0 76.73 40.42 2.446 3.129 75.47 39.68 2.355 3.132 75.47 39.68 2.350 3.132 75.47 39.68 2.350 3.132 74.64 39.52 2.350 3.132 74.64 39.52 2.350 3.132 74.64 39.52 2.350 3.133 74.64 39.52 2.350 3.133 74.64 39.37 2.350 3.133 74.64 39.37 2.350 3.133 74.64 39.37 2.350 3.133 74.64 39.23 2.350 3.133 74.64 39.23 2.350 3.135 74.64 39.23 2.350 3.135 74.64 39.23 2.350 3.135 74.64 39.23 2.350 3.135 74.64 39.23 2.350 3.135 74.64 39.23 2.350 3.135 74.64 39.23 2.350 3.135 74.64 39.23 2.350 2.335 3.135 74.64 39.23 2.350 3.135 74.64 39.23 2.350 3.135 74.64 39.23 2.350 3.135 74.64 39.23 2.350 3.135 74.64 39.23 2.350 3.135 74.64 39.23 2.350 3.135 74.64 39.23 2.350 3.135 74.64 39.23 3.355 3.135 74.64 39.23 2.350 3.135 74.64 39.23 3.355 3.135 74.64 39.23 3.355 3.135 74.64 39.23 3.355 3.135 74.64 39.23 3.355 3.135 74.64 39.23 3.355 3.135 74.64 39.23 3.355 3.135 74.64 39.23 3.355 3.135 74.64 39.23 3.355 3.135 74.64 39.23 3.355 3.135 74.64 39.23 3.355 3.135 74.64 39.23 3.355 3.135 74.64 39.23 3.355 3.135 74.64 39.23 3.355 3.135 74.64 39.23 3.355 3.135 74.64 39.23 3.355 3.135 74.64 39.23 3.355 3.135 74.64 39.23 3.135	196.6	75	9	2	. M		40.71	2.456	3.127	74.17	39.99	2.365	3.129	74.17	39.99		3.129
206.0 76.73 40.42 2.446 3.129 76.73 40.42 2.446 3.129 75.47 39.68 2.355 3.132 75.47 39.68 2.50 2.132 40.28 2.441 3.130 75.93 40.28 2.441 3.130 74.64 39.52 2.350 3.132 74.64 39.52 2.250 3.132 74.64 39.52 2.250 3.132 74.64 39.52 2.250 3.133 74.64 39.37 2.26.0 75.64 40.14 2.436 3.131 75.64 40.14 2.436 3.131 76.42 40.01 2.431 3.131 76.42 40.01 2.431 3.131 76.42 40.01 2.431 3.131 76.42 40.01 2.431 3.131 75.24 39.23 2.340 3.134 75.24 39.23 2.350 2.355 3.135 75.04 39.09 2.355 3.135 75.04 39.09 2.355 3.135 75.04 39.09 2.355 3.135 75.04 39.09 2.355 3.135 76.49 38.95 2.350 3.135 74.49 38.95 2.350 3.135 74.49 38.95 2.350 76.66 39.65 2.417 3.133 76.06 39.65 2.417 3.133 76.06 39.65 2.417 3.134 76.42 39.53 2.321 3.134 75.17 38.68 2.321 3.137 75.17 38.68 2.41.0 76.42 39.53 2.412 3.134 75.17 38.68 2.321 3.137 75.17 38.68 2.321	201.0	75.	3	2	m		40.56	2.451	3.129	74.82	39.83	2.360	3.131	74.82	39.83	2.360	3.131
211.0 75.93 40.28 2.441 3.130 75.93 40.28 2.441 3.130 74.64 39.52 2.350 3.132 74.64 39.52 2. 2. 2. 2. 2. 2. 3.132 74.64 39.52 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	206.0	1 76.	-	~i	<u></u>	76.73	40.45	2.446	3.129	75.47	39.68	2.355	3.132	75.47	39.68	•	3.132
216.0 75.04 40.14 2.456 5.151 75.04 40.14 2.456 5.151 74.46 59.57 2.545 5.155 74.46 59.57 2.510 75.04 40.14 2.451 5.151 75.24 59.25 2.545 5.154 75.24 39.23 2.510 76.42 40.01 2.421 3.131 76.42 39.23 2.510 76.33 39.89 2.427 3.132 75.04 39.09 2.335 3.135 75.04 39.09 2.335 75.04 39.09 2.331 75.73 39.77 2.422 3.133 74.49 38.95 2.330 3.135 74.49 38.95 2.350 76.06 39.65 2.417 3.133 76.06 39.65 2.417 3.133 76.06 39.65 2.412 3.134 75.17 38.68 2.321 3.137 75.17 38.68 2.5110 76.42 39.53 2.412 3.134 75.17 38.68 2.321 3.137 75.17 38.68 2.321	211.0	5	÷ ;	بر ج	M :	75.93	40.28	2.41	3.130	74.64	39.52	2.350	3.132	74.64	39.52	•	3.132
226.0 76.33 39.89 2.427 3.132 76.33 39.89 2.427 3.132 75.04 39.09 2.335 3.135 75.04 39.09 2.335 3.135 75.04 39.09 2.335 3.135 75.04 39.09 2.335 3.135 75.04 39.09 2.331 3.135 76.49 38.95 2.331 76.49 38.95 2.331 3.135 76.49 38.95 2.331 3.135 76.49 38.95 2.331 2.326 3.135 76.89 38.81 2.350 76.65 2.417 3.135 76.65 2.417 3.135 76.89 38.81 2.326 3.137 75.17 38.68 2.321 3.137 75.17 38.68 2.321 3.137 75.17 38.68 2.321	7.677		⊋	; ; ;	- N	76.67	40.04	1054.2	2 121	75 26	20.27	240.7	2.155	75 26	29.57	2,545	5.155
231.0 75.73 39.77 2.422 3.133 75.73 39.77 2.422 3.133 74.49 38.95 2.330 3.135 74.49 38.95 2.350 3.135 74.49 38.95 2.350 3.135 74.49 38.95 2.350 76.06 39.65 2.417 3.135 74.89 38.81 2.326 3.136 74.89 38.81 2.41.0 76.42 39.53 2.412 3.134 76.42 39.53 2.412 3.134 75.17 38.68 2.321 3.137 75.17 38.68	226.		39.8		. M		39.89	2.427	3.132	75.94	39.09	2.335	3.135	75.94	39.09	2.335	3.135
236.0 76.06 39.65 2.417 3.133 76.06 39.65 2.417 3.133 74.89 38.81 2.326 3.136 74.89 38.81 2.36.0 76.42 39.53 2.412 3.134 76.42 39.53 2.412 3.134 75.17 38.68 2.321 3.137 75.17 38.68 2.	231.	75.	39.7	 	<u>~</u>	75.73	39.77	2.422	3.133	74.49	38.95	2.330	3.135		38.95	2.330	3.135
.0 76.42 39.53 2.412 3.134 76.42 39.53 2:412 3.134 75.17 38.68 2.321 3.137 75.17 38.68 2.	236.	76.	39.6	2	 M	•	39.65	2.417	3.133	74.89	38.81	2.326	3.136	74.89	38.81	2.326	3.136
	•	1 76.4	9.5	-2	 M	•	39.53	2:412	3.134	•	38.68	2.321	3.137	75.17	38.68	2.321	3.137

			1111111											1 1 1 1 1 1 1		
	NODE	7	PARAMETERS	<u>د</u>	2	NODE 2 PA	PARAMETERS		2	NODE 3 PAI	PARAMETERS		_ _	NODE 4 PA	PARAMETERS	40
TIME	TEMP	DEN	CO2	02 PRESS	TEMP	DEW	CO2 PRESS	02 PRESS	TEMP	DEW	CO2 PRESS	02 PRESS	EX T	M La	CO2 PRESS	02 PRESS
NI NI		u.	### ###	PSIA	u.	 L		PSIA	<u>.</u>			PSIA	<u>.</u>	<u>.</u>	74.	PSIA
246.0		40.64	2	ļ m	75.96	40.64	2.4071	3.133	74.691	39.91		3.136	! _	39.91	2.315	
251.0	76.45	40.34	2.402	×		40.34	2.402	3.134	75.18	39.50	2.311	3.137	75.	39.	2.311	3.137
•		40.19	'n	M.	75.42	40.19	•	•	74.19	39.35	•	3.137	2	m :	2.306	•
261.0		40.06	Ni ·	× .	76.06	40.06	•	3.136	74.88	39.21	•	3.139	<u> </u>	39.	2.302	3.139
		39.93	Ni .	M.	76.67	39.93	2.388	3.136	75.43	39.07	2.297	3.139	£ i	39.07	2.297	3.139
271.0	75.88	39.80	oi o	M H	75.88	39.80	2.384	3.137	74.61	38.93	2.293	3.140	74.61	28.95	2.293	3.140
			i				2.375	3.138	75.24	38.67		3.141	75.24	88	2.284	3.141
		ໍ່ຕ	, vi	, T				3.139	75.12	38.54	2.279	3.142		38.	2.279	3.142
		39.33	N	3.1		39.33	•	3.139	74.42	38.41	2.275	3.142	74.42	_	2.275	•
		39.21	તં	3.1		39.21	2.361	3.141	74.76	38.28	2.270	3.143	92.42	8	2.270	3.143
		39.10	Ni .		76.64	39.10	•	3.141	75.28	38.16	2.266	3.144	75.28	M :	તું ₍	3.144
		40.25	oi (M :	76.101	40.25	•	3.1401	4.76	59.45	2.261	5.145	9 2		, i	5.143
311.0	76.23	20.02	N O	41 W	76 27	40.02	2.348	5.141	76.17	29.07	2.52/1	2. L	76 17	29.07	2.25/	7.7
			<i>i</i>		76.25	70.75	2 2 2 2	141.4	76 99	38.80	2,248	3.145		-	2.248	3.165
		• •	1 0	3 M	76.62	39.63		3.143	75.39	38.67	2.244	3.146	_	_		м —
		. 5	N	M	76.15	39.51	2.331	3.144	74.73	38.55	2.240	3.146	_	_	انه -	м —
	75.70	•	N	3.1	75.70	39.39	2.327	3.144	74.52	38.42	2.236	3.147	74.52	38.45	2.236	3.147
341.	75.80	v	N	3.1	75.80	39.27	2.323	3.145		38.30	2.232	3.148	-	_	~i	м —
346.	9		N	3.1	76.50	39.15	2.319	3.145	•	38.17	2.228	3.148			من ہ —	m .
	œ١	A. (N C	3.1	76.16	39.04	2.315	3.146	74.74	38.05	922.2	3.149	74.74	38.05	422.2	5.149
	i d	. .	ý n	7 K	76.19	78.87	2.307	3.147	• -	37.81	2.216	3.150			: 2	i mi
366.0		39.93	1 01	M	76.28	39.93	2.302	3.146	74.87	39.08	2.211	3.149		. m		. m
371.0	76.	•	N	3.1	76.57	39.67	2.298	3.147	75.25	38.71	2.207	3.150	_	1 38.71	~i	<u>m</u>
376.0	75.	•	N	3.1	75.60	39.54	2.294	3.147	•	•	2.203	3.150	74.2	38	~i «	м —
381.0	2		N C		75.64	39.42	2.290	3.148	74.66	38.45	2.199	3.151	74.66	38.45	2.199	3.151
200.00	76.	39.19	1 0	M	76.35	39.19	; ;;	3.149	74.85	38.20	2.192	i м		, 8g		i M
396.0	75.	•	N	3.	75.79	39.07		3.150	74.55	38.08	2.188	m		38	~i	m —
401.0	9	w	0	W	76.02	38.96	نه -	3.150		•	2.184	mi ı	2	37	~i «	m
0.90	72	58.85	N		76.38	58.85	12/2.2	3.151	75.06	37.85	2.181	5.154	75.06	27.85	181.2	3.154
416.0	2	, w	1 ~	M	75.91	38.71	2.267	3.152	74.80	37.66	2.174	. w		3	; ~i	-
421.0	76.	w	~	3.1	76.23	38.71	2.266	3.152	75.06	37.60	2.172	3.155	75.06	37.60	2.172	3.155
1 426.0	<u>~</u> :	39.98	~	M	76.14	39.98	2.266	3.151	74.80	38.97	2.170	<u>.</u>	<u> </u>	8	~i .	m (
451.0	• <u>+</u>	, · ·	N 6	4 6	76.58	59.89	2.2681	5.151	65.65	58.70	0/1.2	4. Lyd	75.25	28.70	0/1.2	47. ×
450.0	9		4 N		76.01	40.07	2.274	3.152		38.71	2.171	i M	. 4	- -	;	i M
1 446.0	76.	_	~	3.1	76.81	40.22	2.279	3.152	75.50	38.75	2.172	m	75	38.	, ,	M M
	75.	_	~	3.1	•	40.38	2:285	3.152	74.60	38.81	2.175	m	74.	_	, ,	m —
26.	75.	•	7	3.1	•	40.55	2.292	3.152	74.45	•	انہ —	m —	2	38	~	m
. 19	76.4	40.76	oi ·	 	•	40.76	2.300	3.151	75.26	38.99	2.182		2	28	-	м —
. 66	76.	•	~i «	M .	•	40.99	2.3091	3.151	75.04	39.10	2.186	, ,	75.0	M +	.; 	m ,
0.1/4	i d				75.71	41.21	1615.2	2.1511	74.48	29.25	2.191	3.156	74.48	59.25	2.191	5.156
7.07	76.65	ŗr	; . 		76.65	77. 57	4.550	7.7.		77.00	C: 177	n 1	֓֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜		F. 177	<u>.</u>
٠	٥						1115	-			7 7114	7 7 7 5	75 10	20 2	2000	71 7

HIN F F F MIN F F F F MIN F F F F MIN F F F F F F F F F	2.5599 2.564 2.410 2.442 2.442 2.442 2.442 2.442 2.442 2.442 2.442 2.442 2.442 2.442 2.442 2.442 2.442 2.452 2.491 2.590 2.550	PRESS PRESS		-!	·	002 PRESS PRESS 2.149 3.149 3.148 3.148 3.148 3.148 3.148 3.148 3.148 3.148 3.146 3.146 3.146 3.146 3.146 3.146 3.146 3.146 3.146 3.146 3.146	F F F F F F F F F F F F F F F F F F F	799 979 979 979 979 979 979 979 979 979	CO2 PRESS PRESS PRESS CO2 CO2 CO2 CO3 92 PRESS PSIA 3.154 3.154 3.154 3.154 3.154 3.154 3.154 3.154 3.154 3.154 3.154 3.154 3.154 3.154 3.154 3.154	TEMP F 75.17 74.86 74.64 74.64 74.51 75.41 75.41 75.41 75.41 75.18 75.18 75.18	DEM PT F F F F F F F F F	CO2 PRESS	O2 PRESS PSIA	
F F F F F F F F F F	2.365 2.365 2.365 2.365 2.365 2.452 2.452 2.452 2.452 2.452 2.550 2.556	6668888888888999999999		. 99	52855177	3.148 3.148 3.148 3.148 3.148 3.148 3.148 3.148 3.148 3.148 3.148	75.17 74.19 74.19 74.64 75.64 74.60 75.02 75.02 75.02 75.02 75.02 75.02 75.02 76.74 76.74 76.77		2.2191 2.2261 2.2261 2.2261 2.2501 2.2501 2.2501 2.298 2.298 2.298 2.298 2.298	W W W W W W W W W W	75. 74. 75. 75. 76.	F 40.79 40.97 41.06	MMHG	PSIA
F F				23111223111231112311123111231112311123	2.3651 2.377 2.388 2.388 2.420 2.421 2.422 2.442 2.442	3.149 3.149 3.149 3.148 3.148 3.148 3.148 3.148 3.148 3.148 3.148	75.17 74.19 74.86 75.41 76.64 776.50 776.50 776.54 776.54 776.54 776.54 776.54 776.54 776.64 776.64 776.64 776.74 776.61 776.61 776.61	40.79 40.79 40.88 41.06 41.13 41.25 41.35 41.35 41.36 41.31 41.31 42.40 42.39 42.40 42.40	2.256 2.256 2.256 2.256 2.258 2.258 2.256 2.282 2.292 2.293 2.293 2.293 2.293	m m m m m m m m m m	74.75.75.75.75.75.75.75.75.75.75.75.75.75.	40.79 40.88 40.97 41.06		1
76.451 76.451 76.451 76.681 76.681 76.681 76.681 76.351		149 149 149 148 148 148 148 148 146 146 146 146 146					75.17 74.19 74.86 75.41 74.50 75.02 75.02 75.02 76.76 76.76 76.76 76.76 76.76 76.76 76.76 76.76 76.76 76.76	40.79 40.88 40.97 41.06 41.25 41.25 41.46 41		m m m m m m m m m m	. 4 4 5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	40.79 40.881 40.971 41.061		
76.451 76.681 76.681 76.681 76.851 76.351		1491 1491 1481 1481 1488 1488 1488 1488					74.19 74.86 75.41 74.50 74.50 75.18 75.02 74.86 75.12 74.74 75.25 74.07 74.63	40.88 41.06 41.06 41.25 41.31 41.46 41.46 42.40 42.39 42.40			 4	40.97 40.97 61.06	1612.2	2.194
76.021 76.681 76.681 76.321 76.321 76.321 76.321 76.351		1491 1481 1481 1488 1488 1488 1488 1488			2.3881 2.3991 2.4211 2.4321 2.4421 2.4521 2.4521	3.148 3.148 3.148 3.148 3.148 3.148 3.148 3.148 3.148 3.148	74.86 75.41 74.64 74.50 75.02 76.54 74.86 74.76 74.77 74.74 74.74 74.74 74.74	40.97 41.06 41.06 41.25 41.31 41.46 41.46 42.70 42.39 42.40 42.40			7 4 4 4 5	41.06	2 2 24	•
76.32 75.32 76.35 76.35 76.35 76.35 76.35 76.35 76.38 76.38 76.38 76.38 76.39 76.42 76.39 76.39 76.39 76.39 76.39 76.39 76.39 76.39 76.39 76.39 76.39 76.39 76.39		1488 1488 1488 1488 1488 1488 1488 1488			2.3991 2.4101 2.4211 2.4421 2.4621 2.4621	3.148 3.148 3.148 3.148 3.148 3.148 3.148 3.148 3.148 3.148	75.41 74.64 74.50 75.18 75.02 76.86 76.84 75.12 76.74 76.74 76.07 76.61 76.61	41.06 41.13 41.25 41.31 41.36 41.46 41.46 42.70 42.70 42.39 42.39 42.39			. 4 4 6 . 4 4 6	90.1	2 262	•
75.93 75.67 76.35 76	. તે તે તે તે તે તે તે તે તે તે તે તે તે	148 148			2.421 2.421 2.432 2.442 2.452 2.462	3.148 3.148 3.148 3.148 3.148 3.148 3.148 3.148 3.146 3.146	74.64 74.50 75.18 75.18 75.51 74.86 75.12 74.74 75.25 76.07 76.63	41.18 41.18 41.31 41.31 41.36 41.46 42.70 42.70 42.39 42.39 42.40			7 2 5	26 67	2 2501	7 156
75.751 76.351		1488 11488 11488 11488 11488 11468 11468 11468 11468 11468 11468 11468			2.421 2.432 2.442 2.452 2.452	3.148 3.148 3.148 3.148 3.148 3.146 3.146 3.146	74.50 75.18 75.18 74.54 74.86 74.74 74.74 74.07 74.07 74.61 75.51	41.18 41.25 41.31 41.36 41.41 42.40 42.40 42.40 42.40 42.40			- 7 5.	41.15	2.2501	7 1 5
76.35 76.35		1148 1148 1148 1148 1148 1146 1146 1146			2.442 2.442 2.452 2.452	3.148 3.148 3.148 3.148 3.148 3.146 3.146 3.146	75.18 75.02 76.54 76.86 75.12 76.12 76.25 76.07 76.63 76.63				_	41.10	2,44	7 156
76.32 76.32 76.35 76.00 76.00 76.35		<u>AAAAAAAAAAAA</u>			2.442	3.148 3.148 3.148 3.148 3.146 3.146	75.02 74.54 74.86 75.12 75.12 76.25 76.07 76.63 76.63					2.14	2 274	3.154
75.791 76.001 76.001 76.351 76.581 76.581 76.581 76.281 76.391		<u>Pagadadadada</u>			2.452	3.148 3.148 3.148 3.148 3.146 3.146	74.54 74.86 75.12 75.12 74.74 75.25 76.07 74.81 75.51 74.63			 		172 17	2 282	7 164
76.00 76.35 76.35 76.35 76.35 76.35 76.35 76.35 76.35 76.35 76.35 76.35 76.35 76.35 76.35 76.35 76.35 76.35 76.36 76.36 76.36 76.36 76.36		<u>Addadadadad</u>	76.00 76.35 76.35 76.05 76.58 75.23 75.92 76.81 75.97		2.462	3.148 3.148 3.146 3.146 3.146	74.86 75.12 74.74 75.25 76.07 74.81 75.51 74.63			, w	į,	41.50	2 2903	7.154
76.35 76.35		<u> Addadadada</u>	76.35 76.05 76.58 75.23 75.23 76.81 75.97 75.97			3.148 3.146 3.146 3.146	75.121 74.741 75.251 74.071 74.631 74.631 74.631 74.631			•		77.14	2 298	3,153
76.05 76.05 76.58 75.23 75.23 76.81 76.35 76.35 76.35 76.39 76.39 76.39 76.39 76.39 76.39 76.39 76.39 76.39 76.39 76.39 76.39 76.39			76.05 76.58 75.23 75.92 76.81 75.97 75.54		2.472	3.146 3.146 3.146 2.146	74.74 75.25 74.07 74.81 75.51 74.63	42.70 42.40 42.39 42.39 42.41 42.40	2.314		<u>.</u>	27.70	2 206	7.152
76.581 75.231 75.231 75.971 75.971 76.421 76.421 76.731			76.58 75.23 75.92 76.81 75.97 75.54	44.52	2.481	3.146	75.25 74.07 74.81 75.51 74.63 74.41	42.40 42.39 42.39 42.41 42.40 42.38	2.514	٠ -	t ; 	77.70	2 214	7 152
75.23 175.32 175.92 175.92 175.92 176.35 176.35 176.35 176.39			75.23 75.92 76.81 75.97 75.54 76.35	157 77	2.491	3.146	74.07 74.81 75.51 74.63 74.41	42.39 42.39 42.41 42.40		٠ -		į;	2 2 2 2	4 152
75.92 75.92 75.92 75.97 76.81 76.85 76.39			75.92 76.81 75.97 75.54 76.35	- - - - - - - -	2.500	97 z	74.81 75.51 74.63 74.41	42.39 42.41 42.40 42.38	2.323	m 1	₹ i 	, ,	2223	2 150
75.32 175.32 175.35 176.35 176.35 176.35 176.33 176.33 176.33 176.34 176.84			76.81 75.97 75.54 76.35	44.46	2.510	> 1 1 1	75.51 74.63 74.41 75.21	42.41 42.40 42.38	2.331	m i		45	7.554	7.156
75.54 75.54 76.35 76.35 76.35 76.35 76.35 76.35 76.39 76.30 76			75.97 75.54 76.35	164.45	2.520	3.146	74.63	42.40	2.339	ń:		* ·		7.15
75.54 76.354 76.354 76.354 76.351 76.39			75.54	44.46	2.529	3.146	74.41	42.38	2.347	м -			7.546	3.45E
76.351 76.421 76.421 75.761 75.761 76.391 76.391 76.391 76.391 76.391 176.391 176.391 176.391 176.391 176.391 176.391 176.391 176.391 176.391 176.391 176.391 176.391	44444		76.35	44.41	2.538	3.146	75.21	.07	2.356	M I	_	- -	2.550	7 152
76.42 76.42 75.76 75.76 76.39 76.39 76.39 76.84 80 76.84 80 76.84 80 76.84 80 76.84 80 80 80 80 80 80 80 80 80 80	20000			44.41	2.547	3.146	•	145.54	2.364	, -		*	2 279	307.2
00 75.76 01 75.93 00 76.39 00 76.39 00 76.39 00 76.84 00 75.96 00 75.96 00 75.96 00 75.96 00 75.96 00 75.96 00 75.96	2444		76.42	44.41	2.556	3.146	75.07	42.38	2.572	i :		;;	282	152
00 75.93 01 76.39 00 76.39 00 76.99 01 76.99 01 75.92 01 75.96 01 75.95 01 75.95 01 75.95 01 75.43	9 9 9	M	75.76	44.37	2.564	3.146	74.50	42.37	2.580	<u>.</u>	74.50		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3, 152
76.39 76.39 76.58 75.92 75.92 75.96 75.56 75.56 75.56 75.56 75.56	2 2	W	75.93	44.35	2.573	3.146	74.83	42.36	2.588	201.5		r 9		3,152
76.09 76.58 75.19 75.92 75.96 75.96 75.52 76.36 76.36	7	3.1	76.39	44.35	2.582	3.146	75.16	42.56	2.530	<u>,</u> ,			۸	3.150
76.58 75.19 75.92 76.84 75.96 75.52 76.43		3.1	16.09	45.35	2.589	3.145	<u>*</u>		504.2 I	i ► 	; ×		. ~	3.151
75.19 75.92 76.84 75.96 75.52 76.36 76.36	~	3.1	76.58	45.07	2.599	3.145	_ :	45.1	7777	1 N	· r	. 4	2	3.151
75.92 76.84 75.96 75.52 76.36 76.43	~	3.1	75.19	44.97	2.606	3.145	_	*	<u>.</u> .	n M		7		3.151
76.84 75.96 75.52 76.36 76.43 75.75 75.75	7	3.1	75.92	44.92	2.615	3.145		# V	<u> </u>	^ M			- 2	3.151
75.96 75.52 76.36 76.43 75.75	2	3.1	76.84	4.93	2.624	3.145		10.C+ -) M		_		3.151
75.52 76.36 76.43 75.75	7	3.1	75.96	44.86	2.6521	5. L45	74.02	, ç		, r	74	42	- 24	3.151
) 76.36) 76.43) 75.75	~	M.1	75.52	\$;	2.659	V 145	, ,	;	. ~	M	75.	42	2	1 3.151
1 76.43 01 75.75 01 75.92	~	3.1	76.36	1 2	040.7	2.145 2.145 3.145		-		м	75.	_	1 2.467	3.151
1 75.75	~	3.1	6.65	12.13	277 6	271.2		6		M	_	_	1 2.474	3.151
75.92	~	N 1	(). ().	10:13	2 673	2.112 7.145		42.7	- 2	m	_	_	1 2.482	3.151
	~	M .	72.42	70.1	2 670	7.115 7.145		. 4		M	_	42	1 2.490	<u>~</u>
1 76.40	~	M I	104.97	10.1	7077	77.5		. 4		M	_	7 43.83	1 2.496	3.149
.0 76.09 45	6	3.1	76.091	45.57	7.000	77.0				×	_	_	2.504	3.150
0 76.58 45.	291 2	۳. ۲.	76.581	45.29	K. 0. 4			7 7	. ~	×	_	4	-2	3.150
.0 75.19 45.	171	M 1	75.17	45.17	2007	 		63	2	M		1 43.28	31 2.519	_
0 75.91 45.	101	N .	75.91	40.10	2 23 7	;		43	\ -		0 75.55	5 43.24	1 2.526	м —
76.85 45.	101	ni 1	16.65	45.10	2 727	, _N		43		M	10 74.62	2 43.17	7 2.534	ж —
0 75.97 45.	10	ที่ เ	75.77	10.01	2 721	; _N		. 4	2	м -	50 74.38	81 43.09	<u>.</u>	<u>м</u>
.0 75.51 44.	916	,	12.67	74.74		, w	_	₩,	2	8 3.150	50 75.22	2 43.05	~	m —
.0 76.35 44.	_	n 1	160.07		;	, _N		4		M M	_	<u>-</u>	0 2.555	3.150
.0] 76.44 44		'n	10.44	0 7	2 753	: ·	· -	: 3		M	74.	48 42.90	0 2.561	.1 3.150
.0 75.75 44.	71	M I	6.6	T/ · **	75/12	, N		3		M -	_	11 42.7	61 2.566	3.150
716.0 75.90 44.		m I		1				71 42.57	2	м	75.	17 42.57	<u>-</u> 2	3.150
.0 76.39 44.		M I		17.		· ·		4		M	74.	77 43.5	01 2.569	3.149
726.0 76.09 44.	88 2.749		76.09	3 :	i	, _N	75	63	. ~	M	75.	25 42.%	4 2.571	1 3.150

			NODE 1 P	PARAMETERS	RS	Z	۱,	PARAMETERS	-	2	İ			544		DADAMETEDS	
	-	ž			_	;	NODE 2 PA	Number of the Contract of the	-	}	NUVE 5 PAI	PARAMETERS		2	*	KATE I ERS	
	TIME	TEMP	DEW PT	CO2 PRESS	02 PRESS	TEMP	DEK	CO2 PRESS	02 PRESS	TEMP	DEW	CO2 PRESS	02 PRESS	TEMP	DEM	CO2 PRESS	02 PRESS
	MIN	<u>.</u>	4	IMMHG	PSIA		 L	## ##	PSIA	 L	—— L	 ##	PSIA			HE SHE	PSIA
	736.0	75.17	1 44.01	2.	3.146	75.171	44.011		7.1461	110 42	107 62		1036 6	•			
	•	75.95	43.75	~	M	75.95	43.75		3.146	74.83		2.574	3.151	74.01	42.70	2.572	3.150
	746.0	76.86	43.55	~	m	76.86	43.55	•	•		42.33		3.151	•		•	7.151
	/51.0	75.90	43.33	~ -	M	75.90	43.33	2.739	3.147	74.58			3.151		42.15	2.576	7.151.7
	10.06/	22.67	45.12	~ -	m i	75.53	43.12	2.737	3.147	74.39	41.97	2.576	3.152	74.39		2.576	3.152
	766.01	76.39	42.90			76.43	42.96	2.736	3.148	75.27	•	2.577	3.152	75.27	41.82	2.577	3.152
-	771.0	75.69	42.66		'n	75.69	42.81	2.734	3.148	75.06	41.68	2.578	3.152		41.68	2.578	3.152
-	776.0	75.99	45	· ~	M	75.99	•	2.73	2.140	1 2 2	41.5	2.578	3.153	74.44	41.54	2.578	3.153
-	781.0		42.	-	M	76.50	42.41	2.730	3.149	75.22	•	18/6.2	3.153	74.87	41.41	2.578	3.153
	786.0	75.90	43.	~	 	75.90	43.38	2.728	3.148		42.37	2.578	7 152	127.67	41.29!	2.579	3.153
	791.0	·Φ	£.	~	3.	76.53	43.05	2.728	3.149			2.579	3.153	75.26	44.5/ 61 02	2.5/8	5.152
	19.07	un v		~ -	M	75.35	42.92	2.728	3.149	74.12	41.79	2.579	3.153	74.12	41.79	2.573	7 162
	806.01	76.48		, ,	M N	76.28	•	2.728	3.149	74.99	41.68	2.580	3.153	74.99	41.68	2.580	3.153
-	811.01	75, 79	į 6	. ·	1.6	6.45 - 45 - 45 - 45 - 45 - 45 - 45 - 45 -	42.78	2.729	3.149	75.33	41.60	2.581	3.154	75.33	41.60	2.581	3.154
· _	816.0	75.89	42	. ~		75 801	127.24	2.7301	3.150	74.53	41.51	2.582	3.154	74.53	41.51	2.582	3.154
_	821.0	76.41		1 6	i M	76.67	•	2.7321	5.150	74.59	41.43	2.584	3.154	74.59	41.43	2.584	3.154
_	826.0	76.13	42.66	~	M	76.13	•	2 727	5.1501	15.24	41.38	2.585	3.154	75.24	wi	2.585	3.154
_	•	75.81	42.66	~	M	75.81		2,739	7.150	74 52	156.14	795.7	5.154	74.91	41.33	2.587	3.154
		76.16	45.68	~	8	76.16	42.68	2.742	3,150	74.96	41.67	2 503	2. Lye	74.52	41.29	2.589	3.154
11		76.29	42.71	~	3.1	76.29		2.746	3.150	75.09	41.25	2.594	3.155	75.70	41.27	2.591	3.155
		75.95	45.79	N (. M	75.95	43.79	2.749	3.149	74.68	42.43	2.596	3.154	74.68	42.43	2.594	2. L25
	856.01	75 20	45.55		M .	76.66	43.55	2.754	3.149	75.32	42.07	2.599	3.154	75.32	42.07	2.5991	3.154
_		75.88	43.54	. ~		75.88	45.55	2.758	3.1491	74.09	42.03	2.602	3.154	74.09	42.03	2.602	3.154
_	_	76.79	43.59	~	, K	76.79	43.59	2.768	7 149	75 53	42.00	2.606	3.154	74.77	42.00	2.606	3.154
	871.0	76.02	43.62	~	3.	76.02	43.62	2.774	3.149	74.79	42.00	2.614	5. L54	75.52	42.00	2.609	3.154
	-	75.56	43.62	~	M.	75.56	43.62	2.779	3.149	74.32	41.96	2.617	3.154		41.76	2.617	\$ 1. ×
	886.01	76.46	43.67	N 6		76.24	43.67	2.785	3.149	75.04		2.622	3.154	75.04	41.97	2.622	3.154
_	891.0	75.84	43.76	1 0	· /	75.96	127.64	1267.7	3.149	75.23	41.98	2.627	3.154	75.23	41.98	2.627	3.154
_	-	•	43.81	N		75.87	43.81	2.8061	3.149	76.49	41.99	2.632	3.154	74.56	41.99	2.632	3.154
	901.0	•	43.88	N	3.1	76.37	43.88	2.813	3.149	75.18	42.03	2,642	7.154	74.08	42.001	2.637	3.154
	906.01	76.16 74 E4	46.96	2.820	M ,	76.16	4.96	2.820	3.148	74.89	43.21	2.647	3.153	74.89	43.21	2.647	7.154
	916.01	•		779.7		76.56	46.73	2.827	3.148	75.18	45.88	2.653	3.153	75.18	42.88	2.653	3,153
_	921.0		44.67	2.841	1 1	75.47	27.43	2.854	3.148	73.97	42.83	2.658	3.153	•	42.83	2.658	3.153
_	926.01		•	2.849	M	76.86	102.4	2 849	3.140 2 1481	75.50	129.24	2.6641	3.153	74.90	42.85	2.664	3,153
_	931.0	75.91		2.855	3.1	75.91	44.66	2.855	3.148	74.54	42.78	10/9.7	5.153	75.56	42.82	2.670	3.153
	936.01		44.61	2.862	3.1	75.53	44.61	2.862	3.148	74.42	7. 7.4	2 682	7.155	10.7	12.78	9/9.7	5.153
		•	44.61	2.869		76.40	44.61	2.869	3.148			2.687	3.153	74.47	42.73	2.682	3.153
	95.01	0 4	44.60	2.876	M .	76.41	•	2.876	3.148	75.03	42.70	2.693	3.153	75.03	42, 70	7 693	2 162
	1 2	iu		700.7	4 .	75.72		2.882	3.148	74.45	42.67	2.699	3.153	_	42.67	2.699	7 157
_	61.	76.41	44.52	2.895		107.67	125.4	2.888			45.64	2.705	3.153	_	42.64	2.705	3.153
-	99		45.51	9	3.146	76.07	45.52	2 000		•	42.63	2.710	3.153	75.17	45.63	2.710	3.153
_	71.		45.22	2.907	3.147		• •	2.007	2 1671	75 27	45.74	2.715	3.152	_	43.74	2.715	3.152
-	.92		45.10	.91	3.147	12	45.10	2.9131		74 05	45.56	7.721	3.152	75.261	43.36	2.721	3.152
													7:125	_	107.64	7.7.7	5.152

NAMERIES NAME		-	•														
High The Detail Color Color Color The Detail Color Color Color The Detail Color Color The Detail Color Color The Detail Color Color The Detail The Detail Color The Detail The Detai		ž ;	-	ARAMETE!	S	ž	8	RAMETERS		2	M	RAMETER		ž 	4	RAMETERS	
Mark F F F F F F F F F	¥ 1 1	TEMP	# L	ICO2 IPRESS		TEMP	PT	CO2 PRESS	02 PRESS	TEMP	DEM	CO2 PRESS	02 PRESS	TEMP	DEW	CO2	02
98. 01 78. 05. 05. 05. 05. 05. 05. 05. 05. 05. 05	MIN	<u>.</u>	<u>. </u>	MMHG	PSIA	-	L	HE -	PSIA			- HHE	PSTA	L.			200
98. 0 7. 68 6 94 6 20 5 3 1497 75 97 6 4 6 6 10 2 2 5 1497 75 9 6 2 1 1 2 7 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	981.0	75.	5.0		3.147	75.91		1	•						-		Y T
10.00.10 15.55 44.50 2.791 3.147 7.549 44.50 2.792 3.147 7.549 45.700 2.792 3.140 7.549 44.50 2.792 3.147 7.549 44.50 2.792 3.147 7.549 44.50 2.792 3.147 7.549 45.700 2.792 3.147 4.792	986.	76.	•	•	3.147	76.83				•	•	2.733	3.152		43.21	2.733	
1000 0 15.5.5.4 4.28 2.5.95 3.147 7.5.3 4.4.2 2.5.95 3.147 7.5.2 9 4.2.9 2.5.9 3.147 7.5.2 9 4.2.9 2.5.9 3.147 7.5.2 9 4.2.9 2.5.9 3.147 7.5.2 9 4.2.9 2.5.9 3.147 7.5.2 9 4.2.9 2.5.9 3.147 7.5.2 9 4.2.9 2.5.9 3.147 7.5.2 9 4.2.9 2.5.9 3.147 7.5.2 9 4.2.9 2.5.9 3.147 7.5.2 9 4.2.9 2.5.9 3.147 7.5.2 9 4.2.9 2.5.9 3.147 7.5.2 9 4.2.9 2.5.9 3.147 7.5.1 9 4.5.1 9 4.5	7.1%		•	•	Ξ.	75.97	44.96			• •	•	26/19	3.152		43.18	2.738	
100.6. 76.44 76.45 76.	770		•	•	7	75.52	•	2.937		74.39	•	2,44	3.152		43.11	2.744	3.152
1001.0 75.91 4.77 4.77 5.78 4.77 5.86 3.45 7.74 4.78 5.89 5.76 3.12 7.74 4.78 5.78 4.77 5.86 3.45 7.74 4.78 5.89 5.14 7.74 4.78 5.89 5.14 7.74 4.78 5.89 5.14 7.74 4.78 5.89 5.14 7.74 4.78 5.89 5.14 7.74 4.78 5.89 5.14 7.74 4.78 5.80 5.14 7.74 4.78 5.80 5.14 7.74 4.80 7.80			•	•	٦,	•	44.85	2.943	3.147	75.20		2.755	7 152		45.04	2.749	3.153
1005.01 75.39 44.70 2.90 3.147 7.50 44.70 2.90 3.147 7.40 42.90 2.775 3.113 7.40 42.90 2.70 3.113 7.40 42.90 2.7		7	•	ķ	ᅾ 7	76.43	4.81	2.949	3.147	75.09	42.96	2.761	3.153	75.00	100.64	2.755	3.153
1002.0 65.519 45.61 2.946 3.447 74.81 4.848 2.748 3.147 74.81 4.248 2.748 3.148 7.518 4.248 2.748 3.148 7.518 4.248 2.748 3.148 7.518 4.248 2.748 3.148 7.518 4.248 2.748 3.148 7.518 4.248 2.748 3.148 7.518 4.248 2.748 3.148 7.518 4.248 2.748 3.148 7.518 4.248 2.748 3.148 7.518 4.248 2.748 3.148 7.518 4.248 2.748 3.148 7.518 4.248 2.748 3.148 7.518 4.248 2.748 3.148 7.518 4.248 2.748 3.148 7.518 4.248 2.748 3.148 7.548 4.248 2.748 3.148 7.548 4.248 2.748 3.148 7.448 4.248 2.748 3.148 7.448 4.248 2.748 3.148 7.448 4.248 2.748 3.148 7.448 4.248 2.748 3.148 7.448 4.248 2.748 3.148 7.448 4.248 2.748 3.148 7.448 4.248 2.748 3.148 7.448 4.248 2.748 3.148 7.448 4.248 2.748 3.148 7.448 4.248 2.748 3.148 7.448 4.248 2.748 3.148 7.448 3.148 7.448 3.148 7.448 3.148 7.448 3.148 7.448 3.148 3.	016.	75.		5 A	<u> ፣</u>	75.76	٠	2.955	3.147	74.49		2.766	3,153	74.69	42.70	179/ 2	3.153
1001.0 76.59 65.20 65.70 75.60 75.70 55.40 75.70 75.		1 76	3		; -		•	2.960	3.147	74.81	42.86	2.772	3.153	74.81	42.861	2 779	2.155
10036-0 75.01 44.96 2.978 3.146 75.779 3.155 74.91 3.151 3.151 3.152 75.25 3.46 75.10 3.150 75.25 3.46 75.10 3.150 75.25 3.46 75.10 3.150 75.25 3.46 75.10 3.150 75.25 3.46 75.10 3.150 75.25 3.46 75.10 3.150 75.25 3.46 75.10 3.150 75.25 3.46 75.10 3.150 75.25 3.46 75.10 3.150 75.25 3.46 75.10 3.150 75.25 3.1		1 76	45		: -		65.42	7.966	3.147	75.17	42.83	2.777	3.153	75.17	42.83	2.777	7 1 57
1004.0 75.11 44.94 2. 9.91 3.146 75.11 45.05 2. 978 3.146 75.14 43.34 2.778 3.125 75.15 43.18 2.779 3.120 75.15 43.18 2.779 3.120 75.15 43.18 2.779 3.120 75.15 43.18 2.790 3.125 75.15 43.18 2.791 3.18 75.18 42.21 2.791 3.18 7.791 3.18		2	45			76.581	45.28	2 97E	5.146	74.78	43.91	2.781	3.151	74.78	43.91	2.781	3.151
1004-10 76.06 44.0 2. 933 3.146 79.06 44.0 2. 9491 3.146 74.01 43.2 2. 7795 3.152 74.01 43.2 2. 7795 3.151 76.06 44.0 2. 9492 3.147 76.06 44.0 2. 9492 3.147 76.06 44.0 2. 9492 3.147 76.06 44.0 2. 9492 3.147 76.06 44.0 2. 9492 3.147 76.06 44.0 2. 9492 3.147 76.06 44.0 2. 9492 3.147 76.06 44.2 2. 9492 3.147 76.06 44.2 2. 9492 3.147 76.06 44.2 2. 9492 3.147 76.06 44.2 2. 9492 3.148 76.06 44.2 2. 9492 3.149 44.06 2. 9492 3.149 44.06 2. 9492 3.149 44.06 2. 9492 3.149 44.06 2. 9492 3.149 44.06 2. 9492 3.149 44.06 2. 9492 3.149 44.06 2. 9492 3.149 44.06 2. 9492 3.149 44.06 2. 9492 3.149 44.06 2. 9492 3.149 44.06 2. 9492 3.149 44.06 2. 9492 3.149 44.06 2. 9492 3.149 3.149 3.149		<u> </u>	45		_	75.17	45.09	2 078 C	2.146	5.6	43.48	2.786	3.152	75.25	43.48	2.786	3.152
1056.0 75.56 44.62 2.984 3.147 75.66 44.62 2.994 3.147 74.61 42.97 3.182 75.66 43.12 75.61 43.		5	4	•		75.91	1	2.9811	2.146	74.01		2.791	3.152	74.01	43.34	2.791	3.152
1056-10 75-50 44-27 75-50 44-27 75-50 44-27 75-50 45-27 75		1 %		•	ᅼ	76.86	44.82	2.983	3.147	75.56	45.62	2.795	3.152		43.22	2.795	3.152
1006.0 76.27 44.21 2.984 3.144 75.50 44.39 2.994 3.144 75.50 42.50 2.904 3.151 75.50 42.50 2.9	056	 •	•	•	٠, ٠	75.95	44.62	2.984	3.147		42.97	2 801	2 152		43.12	2.798	3.152
1006. 76.75 44-10 2.937 3.148 76.25 4.602 2.998 3.148 76.65 42.55 2.906 3.155 75.25 76.05 2.907 3.151 76.65 42.55 2.907 3.151 76.65 42.65 2.907 3.151 76.65 42.65 2.907 3.151 76.65 42.65 2.907 3.151 76.65 76.6	061	76.27	•	•	٦,	75.50	•	2.984	3.147	74.38		2.803	3.152			2.801	3.152
10076.0 75.73 43.76 2.981 3.146 75.75 43.78 3.148 74.84 74.84 42.15 2.807 3.154 74.84 42.25 2.807 3.154 74.84 42.25 2.907 3.154 74.84 42.25 2.807 3.154 74.84 42.25 2.907 3.154 74.84 42.25 2.807 3.154 74.84 42.25 2.807 3.154 74.84 42.25 2.807 3.154 74.84 42.25 2.807 3.154 74.84 42.25 2.807 3.154 74.84 42.25 2.807 3.154 74.84 42.25 2.807 3.154 74.84 42.25 2.807 3.154 74.84 42.25 2.807 3.154 74.84 42.25 2.805 3.154 74.84 42.25 2.805 3.154 74.84 42.25 2.805 3.154 74.84 42.25 2.805 3.154 74.84 42.25 2.805 3.154 74.84 42.25 2.805 3.154 74.84 2.807 3.154 74.84 42.25 2.805 3.154 74.84 2.807 3.154 74.84 2.807 3.154 74.84 2.807 3.154 74.84 2.807 3.154 74.84 2.807 3.154 74.84 2.807 3.154 74.84 2.807 3.154 74.84 2.807 3.154 74.84 2.807 3.154 74.84 2.807 3.154 74.84 2.807 3.154 74.84 2.807 3.154 74.84 2.807 3.154 74.84 2.807 3.154 74.84 2.807 3.154 74.84 2.807 3.154 74.84 2.807 3.154 74.84 2.807 3.154 74.84 2.807 3.155 74.84 74	066.			•	4 -	76.37	4.21	2.984	3.148	75.23	•	2.805	3.153			7.605 Por	3.153
1.0 76.42 43.52 2.976 3.149 76.24 43.55 2.975 3.149 74.46 42.35 2.807 3.1149 75.46 42.25 2.807 3.1149 75.46 42.01 2.807 3.1149 75.46 42.01 2.807 3.1149 75.46 42.01 2.807 3.1149 75.46 42.01 2.807 3.1149 75.46 42.01 2.807 3.1149 75.46 42.01 2.807 3.1149 75.46 42.01 2.807 3.1149 75.46 42.01 2.807 3.1149 75.46 42.01 2.807 3.1149 75.46 42.01 2.807 3.1149 75.46 42.01 2.807 3.1149 75.46 42.01 2.807 3.1149 75.46 42.01 2.807 3.1149 75.46 42.01 2.807 3.1149 75.46 42.01 2.807 3.1149 75.46 42.01 2.807 3.1149 75.46 42.01 2.807 3.1149 75.47 42.01 2.807 3.1149 75.47 42.01 2.807 3.1149 75.47 42.01 2.807 3.1149 75.47 42.01 2.807 3.1149 74.41 42.01 2.807 3.1149 74.41 42.01 2.807 3.1149 74.41 42.419 2.807 3.1149 74.41 42.419 2.807 3.1149 74.41 42.419 2.807 3.1149 74.41 42.419 2.807 3.1149 74.41 42.419 2.807 3.1149 74.41 42.419 2.807 3.1149 74.41 42.419 2.807 3.1149 74.41 42.419 2.807 3.1149 74.41 42.419 2.807 3.1149 74.41 42.419 2.807 3.1149 74.41 42.419 2.807 3.1149 74.41 42.419 2.807 3.1149 74.41 42.419 2.807 3.1149 74.41 42.419 2.807 3.1149 74.41 42.419 2.807 3.1149 74.41 42.419 2.807 3.1149 74.419 2.807 3.1149 74.41 42.419 2.807 3.1149 74.419 2.807 3.1149 7	•				1 -	75.45	•	2.983	3.148	75.08	•	2.806	3.153			2.806	3. L55 7 157
1.0 76.08 43.14 2.971 3.149 76.08 44.16 2.972 3.149 75.08 42.20 2.806 3.154 75.18 42.02 2.806 3.154 75.18 42.02 2.806 3.154 75.18 42.02 2.806 3.154 75.18 42.02 2.806 3.154 75.18 42.02 2.806 3.154 75.18 42.02 2.806 3.154 75.18 42.02 2.806 3.154 75.18 42.02 2.806 3.154 75.18 42.02 2.806 3.154 75.18 42.02 2.806 3.154 75.18 42.20 2.806 3.154 75.18 42.20 2.806 3.154 75.18 42.30 2.806 3.155 74.84 42.30 2.802 3.151 75.84 42.85 2.802 3.151 75.84 42.85 2.802 3.151 75.84 42.85 2.802 3.151 75.84 42.85 2.802 3.151 75.84 42.85 2.802 3.151 75.84 42.85 2.802 3.151 75.84 42.85 2.802 3.151 75.84 42.85 2.802 3.151 75.84 42.85 2.802 3.151 75.84 42.85 2.802 3.151 75.84 74.14 74.15 2.702 3.155 74.84 42.85 2.802 3.151 75.84 75.24 2.802 3.151 75.84 74.14 74.15 2.702 3.152 75.14 75.24 2.802 3.152 75.14 74.14 75.15 77.77 3.156 74.44 75.15 77.77 3.156 74.44 77.85 77.77 3.156 74.44 77.85 77.77 3.156 74.44 77.85 77.77 3.156 74.44 77.85 77.77 3.156 74.44 77.85 77.77 3.156 74.45 77.77 3.156 74.20 2.704 3.157 75.02 41.82 2.704 3.157 75.02 41.85 77.77 3.156 74.74 77.77 2.705 3.157 75.02 41.85 77.77 3.156 74.74 77.77 2.705 3.157 75.02 41.85 77.77 3.156 74.74 77.77 2.705 3.157 75.02 41.85 77.77 3.156 75.04 41.20 2.704 3.157 75.02 41.85 77.77 3.156 74.74 77.77 2.705 3.157 75.02 41.20 2.705 3.157 75.02 41.20 2.705 3.157 75.02 41.20 2.705 3.157 75.02 41.20 2.705 3.157 75.02 41.20 2.705 3.157 75.02 41.20 2.705 3.157 75.02 41.20 2.705 3.157 75.02 41.20 2.705 3.157 75.02 41.20 2.705 3.157 75.02 41.20 2.705 3.157 75.02 41.20 2.705 3.157 75.02 41.20			•	•	•	75.93	٠.	2.978	5.148]	74.46	42.35	2.807	3.153	74.46		2.807	3.153
			43.34	•	149	76.42		2.975	3.149	75.18	44.18	2.807	3.154		42.18	2.807	3.154
7.01 75.10 43.70 2.968 3.159 75.20 2.969 3.159 75.20 2.969 3.159 75.20 2.969 3.150 74.03 42.30 2.961 3.156 75.30 42.30 3.156 75.20 2.961 3.150 74.03 42.30 3.156 75.30 43.20 3.150 74.03 42.30 3.156 75.30 43.31 2.961 3.150 74.03 42.30 3.156 75.30 42.30 3.156 75.31 75.84 42.31 2.961 3.150 74.01 41.83 2.900 3.156 75.84 42.30 2.961 3.150 75.84 42.30 2.961 3.150 75.84 42.31 2.961 3.151 75.84 42.30 2.961 3.151 75.84 42.30 2.961 3.152 75.74 41.83 2.901 3.152 75.74 41.83 2.901 3.152 75.74 41.31 2.901 3.152 75.74 41.31 2.901 3.152			44.16	•	149	76.08	•	2.971	3.149		43.01	2.805	3.154	•	42.02	2.8061	3.154
10 75.98 43.281 2.961 3.154 74.301 2.903 3.154 74.03 2.903 3.154 74.03 2.903 3.158 74.03 2.903 3.158 74.03 2.903 3.158 74.03 2.903 3.158 74.03 2.903 3.158 75.54 42.301 2.903 3.158 75.54 42.301 2.903 3.158 75.54 42.301 3.158 75.54 42.301 3.158 75.54 42.301 3.158 75.54 42.301 2.903 3.158 75.54 42.301 2.903 3.158 75.54 41.301 2.903 3.158 75.54 41.301 2.901 3.158 75.701 41.301 2.901 3.158 75.701 41.301 2.901 3.158 75.701 41.301 2.901 3.158 75.701 41.301 2.901 3.158 75.701 41.301 2.901 3.158 75.701 41.301 2.901 3.158 75.701 3.158 75.701 3.158	.960		ıM	• •	1501	76.56		2.968	3.149	•	42.50	2.804	3.154	• •	42.50	2.806.7	5.153
7.6 7.6 31 31 31 31 31 31 32 33 32 32	101	75.98	M		150	75.98		2.964	3.150		42.30	2.803	3.154		42.30	2.803	3.154
75.89 42.76 2.955 3.151 75.89 42.96 2.952 3.151 74.56 41.81 5.8001 5.155 75.54 41.96 2.901 3.1 76.44 42.66 2.949 3.152 75.44 42.66 2.949 3.152 75.44 41.67 2.799 3.156 75.77 41.55 2.799 3.150 74.41 41.67 2.799 3.156 75.77 41.55 2.799 3.150 75.44 41.50 2.794 3.150 75.44 41.55 2.797 3.150 75.44 41.55 2.797 3.150 75.44 41.55 2.794 3.150 75.44 41.55 2.794 3.150 75.44 41.55 2.794 3.150 75.44 41.55 2.794 3.150 75.44 41.50 2.794 3.150 75.44 42.70 2.794 3.150 75.44 42.70 2.794 3.150 75.44 42.70 2.794 3.150 75.44 42.70 2.794 3.150 75.44 42.70 2.794 3.150 75.44 42.70 2.794 3.150 75.44 42.70 2.794 3.150 75.44 42.70 2.794 3.150 75.44 42.70 2.794 3.150 75.44 42.70 2.794 3.150 74.54 42.70 2.794 3.150 75.44 42.70 2.794 3.150 74.54 42.70 2.794 3.150 75.44 42.70 2.794 3.150 74.54 42.70 2.794 3.150 75.44 42.70 2.794 3.150 75.44 42.70 2.794 3.150 75.44 42.70 2.794 3.150 74.54 42.70 2.794 3.150 75.44 42.70 2.794 3.150 74.54 42.70 2.794 3.150 75.44 42.70 2.794 3.150 75.44 42.70 2.794 3.1	106.	76.83	m ·	•	151	76.83		2.958	3.151			2.802	3.155	74.84	42.13	2.802	3.155
76.44 42.66 3.152 76.44 42.66 3.152 76.44 41.67 2.799 3.156 77.59 41.42 2.799 3.15 77.59 41.42 2.799 3.15 77.59 41.42 2.799 3.15 77.59 41.42 2.799 3.15 77.59 41.42 2.799 3.15 77.59 41.42 2.799 3.15 77.59 41.42 2.799 3.15 77.59 41.42 2.799 3.15 77.59 41.42 2.799 3.15 77.59 41.42 2.799 3.15 77.59 41.42 2.799 3.15 76.29 41.42 2.799 3.15 77.59 41.42 2.799 3.15 77.59 41.42 2.799 3.15 76.29 41.42 2.799 3.15 76.29 41.42 2.799 3.15 76.29 41.42 2.799 3.15 76.29 41.42 2.799 3.15 76.29 41.42 2.799 3.15 76.29 41.30 2.794 3.15 76.29 41.42 2.799 3.15 76.29 41.30 2.794 3.15 76.29 41.20 2.795 3.15 76.29 41.20 2.795 3.15 76.29 41.20 2.795 3.15 76.29 41.20 2.795 3.15 76.29 41.20 2.795 3.15 76.29 41.20 2.795 3.15 76.29 41.		75.89	•	•	151	75.89	•	2.955	3.151		41.83	2.8001	5.155	75.54	41.98	2.801	3.155
0 76.371 42.561 2.949 3.152 76.271 41.551 75.771 42.561 2.946 3.152 76.441 41.42 2.7961 3.152 76.701 42.62 2.946 3.152 76.441 41.21 7.571 42.42 2.943 3.152 76.371 42.62 2.946 3.152 76.441 2.796 3.156 75.04 41.21 2.796 3.156 75.04 41.31 2.796 3.156 75.04 41.31 2.794 3.156 76.71 2.794 3.157 75.02 41.31 2.794 3.157 75.02 41.31 2.794 3.157 75.02 41.31 2.794 3.157 75.02 41.31 2.794 3.157 75.02 41.31 2.794 3.157 75.01 41.31 2.794 3.157 75.01 42.71 2.794 3.157 75.01 42.71 2.794 3.157 75.02 41.31 2.794 3.157 75.02 41.41 2.794 3.157 75.02		76.44	•			75.56		2.952	3.151	41	41.67	2.799	3.156	74.61	41.85	2.800	3.155
75.70 42.42 2.943 3.152 75.70 42.42 2.943 3.152 74.44 41.30 2.794 3.156 75.04 41.42 2.794 3.156 75.04 41.30 2.794 3.157 75.02 41.18 2.793 3.157 75.02 41.20 2.784 3.157 75.02 41.20 2.784 3.157 75.02 41.20 2.784 3.157 75.02 41.20 2.784 3.157 75.02 41.20 2.784 3.157 75.02 41.20 2.784 3.157 75.02 41.20 2.784 3.157 75.02 41.20 2.784 3.157 75.02 41.20 2.784 3.157 75.02 41.20 2.784 3.157 75.02 41.20 2.784 3.157 75.02 41.20 2.784 3.157 75.02 41.20 2.784 3.157 75.02 41.20 2.784 3.157 75.02 41.20 2.784 3.157 75.02 41.20 2.784 3.158 75.02 41.20 2.784 3.158 75.02 41.20 2.784 3.158 75.02 41.20 2.784 3.158 75.02 41.20 2.784 3.158 75.02 41.20 2.784 3.158 75.02 41.18 2.784 3.158 75.02 41.18 2.784 3.158 75.02 41.18 2.784 3.158 75.02 41.18 2.784 3.158 75.02 41.18 2.784 3.158 75.02 41.18 2.784 3.158 75.02 41.18 2.784 3.158 75.02 41.18 2.792 3.158 75.02 41.18 2.792 3.158 75.02 41.18 2.792 3.158 75.02 41.18 2.792 3.158 75.02 41.18 2.792 3.158 75.02 41.18 2.792 3.158 75.02 41.18 2.792 3.158 75.02 41.18 2.792 3.158 75.02 41.18 2.792 3.15		76.37				76.37		2.349.	3.152	27	41.55	2.797	3.156	75.27	41.55	2.797	3.156
1,000, 1,000,		75.70		•		75.70	42.42	2.943	3.152	76.66	41.42	2.796	3.156		41.42	2.796	3.156
0 75.76 43.153 76.06 41.07 2.792 3.157 75.06 41.101 2.792 3.158 75.791 3.158 75.791 3.158 75.06 41.07 2.792 3.158 75.791 3.158 75.391 42.17 2.792 3.158 75.791 3.158 75.791 3.158 75.791 3.158 75.791 3.158 75.701 42.171 2.7891 3.158 75.701 2.7981 3.158 75.701 2.7981 3.158 75.701 2.7981 3.158 75.701 75.701 75.701 75.701 75.701 75.701 75.701 75.701 75.701 75.701 75.701 75.701 75.701 76.701		76.17		•	_,	76.29	42.30	2.941	3.153	75.02	41.18	2.793	3.150	# # # # # # # # # # # # # # # # # # #	•	2.7%	3.156
76.81 42.81 2.936 3.152 74.58 42.17 2.789 3.156 74.58 42.17 2.789 3.157 75.39 41.72 2.789 3.157 75.39 41.72 2.789 3.157 75.39 41.72 2.789 3.157 75.39 41.72 2.789 3.157 75.39 41.72 2.789 3.157 75.39 41.72 2.789 3.157 75.39 41.72 2.789 3.157 75.39 41.72 2.789 3.157 75.39 41.72 2.789 3.157 75.39 41.72 2.789 3.157 75.39 41.72 2.789 3.157 75.39 41.751 2.786 3.157 75.39 41.751 2.786 3.157 75.39 41.50 2.786 3.157 75.31 41.50 2.786 3.158 75.31 42.51 2.931 3.154 75.21 41.50 2.786 3.158 75.21 41.31 2.786 3.158 75.23 41.25 2.786 3.158 <		'n	in		1551	76.171	42.20	2.938	3.153	75.06	41.07	2.792	3.157	75.06		2.795	3.157
0 75.40 42.72 2.932 3.153 75.40 42.72 2.932 3.153 74.15 41.72 2.788 3.157 74.15 41.60 2.787 3.157 74.15 41.60 2.787 3.157 74.95 41.60 2.787 3.157 74.95 41.60 2.787 3.157 74.95 41.60 2.787 3.157 74.95 41.60 2.786 3.157 74.95 41.60 2.786 3.157 74.95 41.60 2.786 3.157 74.95 41.60 2.786 3.157 74.95 41.60 2.786 3.157 74.95 41.60 2.786 3.158 75.23 41.60 2.786 3.158 75.23 41.60 2.786 3.158 75.23 41.26 2.786 3.158 75.23 41.26 2.786 3.158 75.23 41.26 2.786 3.158 75.23 41.26 2.786 3.158 75.23 41.26 2.786 3.158 75.93 41.26 2.786 3.1		76.81	'n	•	153	76.811	42.81	1 920 6	3.152	28	42.17	2.789	3.156	74.58	42.17	2.789	3.156
0 76.24 42.64 2.932 3.153 74.15 75.20 41.50 2.786 3.157 74.95 41.50 2.786 3.157 74.95 41.43 2.786 3.157 74.95 41.43 2.786 3.158 75.21 41.43 2.786 3.158 74.51 41.43 2.786 3.158 74.56 41.35 2.786 3.158 74.56 41.35 2.786 3.158 74.56 41.35 2.786 3.158 74.56 41.36 2.786 3.158 74.51 41.26 2.786 3.158 74.51 41.26 2.786 3.158 74.51 41.26 2.786 3.158 74.51 41.16 2.786 3.158 74.51 41.18 2.786 3.159 74.51 41.		75.40	ö	•		75.401	42.72	2.932	2.155	39		2.788	3.157		41.72	2.788	3.157
1,0 1,0		6.24	oi o	•		76.24	45.64	2.9321	3.153	1 H		2.7871	3.157	74.15	•	2.787	3.157
1,500 1,50		114.0	2.61	•	153	76.41		2.931	3.153	32	11.43	2 786	5.157		41.50	2.786	3.157
0 76.39 42.55 2.932 3.154 74.61 41.30 2.785 3.158 74.51 41.25 2.786 3.158 74.51 41.26 2.786 3.158 75.23 41.26 2.786 3.158 75.23 41.26 2.786 3.158 75.23 41.26 2.786 3.158 75.23 41.26 2.786 3.158 75.23 41.26 2.786 3.158 75.23 41.26 2.786 3.158 75.23 41.26 2.786 3.158 75.23 41.26 2.786 3.158 74.91 41.22 2.786 3.158 74.91 41.26 2.786 3.158 74.91 41.26 2.786 3.158 74.91 41.19 2.787 3.159 74.59 41.19 2.787 3.159 74.59 41.19 2.789 3.159 74.59 41.19 2.789 3.159 74.59 41.19 2.789 3.159 74.59 41.11 2.789 3.159 74.59 41.11 2.789 3.1	1176.0	9 6	2 55	•	154	75.80	42.57	2.931	3.154	26		2.786	3.150 3.158	120.67	41.43	2.786	3.158
0 76.12 42.57 2.934 3.154 76.23 41.26 2.786 3.158 75.23 41.26 3.158 75.23 41.26 3.158 3.154 76.12 42.57 2.934 3.154 74.91 41.22 2.786 3.158 74.91 41.22 2.786 3.158 74.91 41.22 2.786 3.158 74.91 41.22 2.786 3.158 74.91 41.22 2.786 3.158 74.91 41.22 2.786 3.158 74.91 41.22 2.786 3.158 74.91 41.22 2.786 3.158 74.54 41.19 2.787 3.159 74.54 41.19 2.787 3.159 76.58 42.67 2.938 3.154 76.28 42.67 2.938 3.154 76.99 41.17 2.789 3.159 76.09 41.17 2.789 3.159 76.09 41.17 2.789 3.159 76.69 42.36 2.945 3.153 76.66 43.49 2.942 3.153 76.69 42.36 2.789 3.158 76.69 43.49 2.945 3.154 75.29 43.45 2.947 3.154 75.89 43.45 2.947 3.154 75.89 43.45 2.947 3.154 75.89 43.45 2.947 3.154 75.89 43.45 2.947 3.154 75.89 43.45 2.947 3.154 75.89 43.45 2.947 3.154 75.88 43.42 2.950 3.154 74.78 41.90 2.794 3.159 74.78 41.90 2.794 3.150 3.154 74.78 41.90 2.794 3.150 3.154 74.78 41.90 2.794 3.150 3.154 74.78 41.90 2.794 3.150 3.154 74.78 41.90 2.794 3.150 3.154 74.78 41.90 3.154 74.78 41.90 3.154 74.78 41	1181.0	6:39	2.56	• •	<u> </u>	15.93	42.55	2.932	3.154	74.61 4	11.30	2.785	3.158		11.35	2.786	3.158
0 75.84 42.58 2.936 3.154 75.84 42.58 3.154 74.91 41.22 2.786 3.158 74.91 41.22 2.786 3.158 74.51 41.22 2.786 3.154 75.84 42.58 3.154 74.54 41.19 2.787 3.159 74.54 41.19 2.787 3.00 76.28 42.61 2.938 3.154 74.54 74.19 2.787 3.159 74.54 41.19 2.787 3.00 76.28 42.67 2.940 3.154 76.28 42.67 2.940 3.154 76.28 42.67 2.940 3.154 76.99 41.17 2.789 3.159 75.09 41.17 2.789 3.00 75.64 43.49 2.945 3.153 76.66 43.49 2.942 3.153 76.69 42.36 2.789 3.158 74.69 42.36 2.789 3.158 74.69 42.36 2.789 3.158 74.69 42.36 2.789 3.158 75.28 41.99 2.791 3.158 75.29 43.45 2.947 3.154 75.88 43.42 2.950 3.154 75.88 43.42 2.950 3.154 75.88 43.42 2.950 3.154 75.88 43.42 2.950 3.154 75.88 43.42 2.950 3.154 75.88 43.42 2.950 3.154 75.88 43.42 2.950 3.154 76.78 41.90 2.794 3.159 74.78 41.90 2.794 3.158 74.78 74.99 2.792 3.158 74.78 74.90 2.792 3.158 74.78 74.90 2.792 3.158 74.78 74.90 2.792 3.158 74.78 74.90 2.792 3.154 75.88 74.78	1186.0	6.12	2.57		1	161.07	•	2.933	3.154	•	11.26	2.786	3.158		41.26	2 786	2.156
0 76.16 42.62 2.938 3.154 76.16 42.62 2.938 3.154 74.94 41.19 2.787 3.159 74.54 41.19 2.787 3 0 76.28 42.67 2.940 3.154 76.28 42.67 2.940 3.154 75.09 41.18 2.788 3.159 74.96 41.18 2.788 3 0 75.28 42.67 2.942 3.154 76.28 42.67 2.940 3.154 75.09 42.36 3.159 75.09 41.17 2.789 3.159 76.99 41.17 2.789 3.159 76.99 43.75 2.942 3.153 76.66 43.49 2.945 3.153 76.66 43.49 2.945 3.153 76.66 43.49 2.789 3.158 76.32 41.99 2.799 3.158 76.32 41.99 2.791 3.158 76.32 41.99 2.791 3.158 76.32 41.99 2.791 3.158 76.32 41.99 2.791 3.158 76.32 41.99 2.791 3.158 76.32 41.99 2.791 3.158 76.32 41.99 2.791 3.158 76.32 41.99 2.791 3.158 76.32 41.99 2.792 3.158 76.32 41.99 2.792 3.158 76.32 41.99 2.792 3.158 76.09 41.94 3.792 3.158 76.09 41.94 3.792 3.158 76.09	1191.0	5.84	2.58		5	75.84	• •	1 426 6	5. 154 7. 7. 7.		•	2.786	3.158	176	41.22	2.786	3,1581
.0	196.	.16	2.62		154	76.16	42.62	2.9381	7 156		•	2.787	3.159	本	41.19	2.787	3.159
75.70 43.75 2.942 3.153 75.96 43.75 2.942 3.153 74.69 42.36 2.789 3.159 75.09 41.17 2.789 3. 10 75.66 43.49 2.945 3.153 76.66 43.49 2.945 3.153 74.69 42.36 2.789 3.156 74.69 42.36 2.789 3. 10 75.69 43.49 2.947 3.154 75.29 43.45 2.945 3.153 75.32 41.99 2.791 3.158 75.32 41.99 2.791 3. 10 75.88 43.42 2.950 3.154 75.88 43.42 2.947 3.154 74.09 41.94 2.792 3.158 74.09 41.94 2.791 3.		82.	2.67		54	76.281	42.67	2.940	3.154		121	2.788	3.159	96	41.18	2.788	3.159
0 75.29 43.42 2.947 3.154 75.29 43.49 2.945 3.153 75.32 41.99 2.791 3.158 75.32 41.99 2.791 3.158 75.32 41.99 2.791 3.158 75.32 41.99 2.791 3.158 75.32 41.99 2.791 3.0 0 75.88 43.42 2.950 3.154 75.28 43.42 2.950 3.154 75.88 43.42 2.950 3.154 75.88 43.42 2.950 3.154 74.78 41.90 2.794 3.159 74.78 41.90 2.794 3.159 74.78 41.90 2.794 3.		9,7	5.75	•		•	43.75	2.942	3.153		12.36	2 7891	2 159	6	41.17	2.789	3.159
0 75.88 43.42 2.950 3.154 75.88 43.42 2.950 3.154 74.09 41.94 2.792 3.158 74.09 41.94 2.792 3.		5.29	7.44 4.65	•	23	76.66	43.49	2.945	3.153 7	32	1.99	2.791	3 158	202	12.36	2.789	3.158
3.154 74.78 41.90 2.794 3.159 74.78 41.90 2.794 3.159 74.78 41.90 2.794		5.88	3.42		- 1	•	13.45	2.87	3.154 7	160	1.8	2.792			1 96 1	7.791	3.158
		•		•	Ŧ,		124.64	2.950	_	4.781 4	1.90	2.794	-	74.781	11.90	2.7%	3.158

							SPACE S	STATION OUTPUT		ARAMETE	PARAMETERS TABLE	2			A DADAMETEDS	-
	NODE	-	PARAMETERS		NODE	8	PARAMETERS		NODE	M	PARAMETERS		NODE.			
TIME	TEMP	DEW 10	C02	02	TEMP -	DEW -	CO2 PRESS	02 PRESS	TEMP -	DEW PT	CO2 PRESS	O2 PRESS	TEMP	DEM 1 PT 1	CO2 0 PRESS 1	02 PRESS
			2		<u>_</u>			PSIA			H	PSIA	 	- i	MARG	PSIA
NIX	-			٠ !			1230 0	7 1561	75, 521	41.87	2.7961	3.159	75.52	41.87	2.7961	3.159
11226.01 7	6.79	43.43	2.953	~	76.79	43.43	2.9551	7.154	76.6F	41.83	2.797	3.159	74.65	41.83	2.797	•
31.01 7	'n	M		3.154	75.99	43.40		3.154	74.41	41.77	2.799	3.159	•	41.77	2.7991	3.159
=	•	43.34	٠	5.154	74 25	67.72	2.960	3.154	75.21	41.73	2.801	3.159	75.21	41.73	2.0011	7.159
=	76.35	43.321	2.9601		76.43	43.30	2.962	3.154	75.08	41.70	2.802	3.159	75.00	41.70	2.804	
<u> </u>	76.411	105.54	•		75.76	43.26	2.964	3.154	74.49	41.66	2.8041	5. L571 z 159	76.84	41.62	2.805	3.159
11251.01 /	75.70	i M			75.95	43.23	2.966	3.155	74.84.1 2.1	41.62	2.005		75.17	41.59	2.807	3.160
	6.40	m	•		76.40	43.21	2.969	5. L55	76 76	42.74	2.808	3.158	74.76	42.74	2.808	3.1581
266.	120.9	44.22	•		76.07	22.45	2.9701	7 156	75.24	42.35	2.810	3.159	75.24	42.35	2.810	5.157
271.01		43.93	2.972		76.56	45.751	2.974	3.154	74.05		2.811	3.159	74.05	42.27	2.8111	2 159
<u>-</u>	75.22	'n.	2.974	2.154	75.97	43.77	2.976	3.154	74.85	42.20	2.813	3.159	74.85	42.201	2 815	3.159
281.0	75.971	٠.	976.3	•	76.82	43.74	2.978	3.154	75.53	42.15	2.815	5.157	74 50	62.49	2.817	3.160
<u> </u>	76.821	45.74	, i		75.91	43.67	2.980	3.155	74.59	42.09	2.81/	, h	74.42	42.01	2.818	3.160
11291.01	75.74	'n				43.57	2.982	3.155	74.42	42.01	2 820		75.25	41.95		3.160
מלא מוני		43.51		m		43.51	2.983	3.155	75.25	61.75	2.820	i m		41.88	_	3.160
306.01			-2	m —		43.43	2.965	2 . 155 2 . 155		41.79	2.821	m —	-	41.79	2.821	3.160
5	•	•	-	m :		45.52		3.156		41.70	-	M _	_	41.70		2.161.
	75.98	43.21	-	3.156	74.43		. ~	3.156		_	_	M :	_		1779.7	3.160
11321.	76.41	43.12	, i	, v			<u>ن</u> ہ ا	3.155	4.	42.70		3.160	75.75	5 4		3.160
1326.01	76.04	43.65	: «i	. w	. —	4	· ·	3.156	75.24	42.25	2.619	n M			_	3.161
1336.		43.46	~	w w	_	£:	~i «	5.150	• r			. M	_	_	_	3.161
1341.	'n	43.	2	м —		43.30	2.900	i ×				M _	_			3.1611
346.	ø.	43.	~ .	3.157	76.82	. 4 1 4		i m		_	_	м —	74.59	41.71	2.811	3.162
1351.01	75.89	42.39	 -	. w		4	~	m		3; -	2.808	5.162		_	_	3.162
1350.01		42	, -	m —	_	4	~ :	3.158	75.20	41.46	. ~	i m	_	_	2	3.163
366.		42.	2	m i		42.47	2.941	i r		4.4	-	M		_	~; -	3.163
•	•	- -		4 3 159	76.07		. ~i	m —	_	_	_	m	_ :	40.99	767.7	3.164
	76.05	745	, v	· м		_	2.	m —			~i «	91.5 164	76 72	_		3.163
11381.01	7.67	5	. 2	, ,		4	- -	<u>~</u>	_		2.760	, w		_	-	3.164
	76.66	65	~	m —		_	~ .	3.161	1 75.51	41.50		- m		2	7	м —
	75.86	45.	7	m m	75		2.892	å r			. ~	m	_	_	~	m :
	•	41.	نه 	м —	۶ì	3 ?		i		_	~	M 	75.	_		м I
1406.0	•	41.	ر د	м 	27.97 12	21 41.60		, M		_	2	<u>~</u>			.i .	
-	•	4:		4 5.165			- ~	m			-	м —			8 2.742	2 168
	•	3;		, w		_	. —	M	- 75.		~i	m :		5 40.3¢		
.; .	76.97	41.14	;	i M		3		m m	_	_	~ ·		į			3.169
1426.01	o L	3	- ~	m	_	_	_	m 1	<u>.</u>	71 39.99	2.721	5.169	75		ام -	_
	i N	4	نہ –	м —	9/		~	м —.) M	7	_	1 2.709	1 3.170
0		÷	-	5 3.167	71 76.71	11 40.52	2 2.815	5 3.167		_	; -	۱ -	<u>.</u>	•	•	

												•	
	H2 PRODUCTI	LCTION !	H2 VENTED	 e	H2 CO2 REDU	H2 TO REDUCTION	CO2 REMOVAL EXIT CO2 PR	OVAL 2 PRESS	HEAT EXCI	EXCHANGER CO2 PRESS	O2 ADDITION	i	ACCUM
TIME	HAB1	LAB1	HAB1	LAB1	HAB1	LAB1	HAB1	LAB1	HAB1	LAB1	HABITAT	 8	05
HIN	- H	ЬРН	Hdd	- Hdd	- Hdd	ЬЬН	H HG	¥ #	₩ H@	HH HC	ЬРН	ЬРН	PSIA
-	lexo	1920 0	1620.0	1620.0	0.0001	0.0001	0.994	0.9031	2.8071	2.549	0.001	0.00	
9		0.039	0.039	0.0391		0.000	0.930	0.822	2.625	2.322	\$.0 \$	0.38	1051.9
11.0	0.044		0.044	0.044	•	0.000	•	0.804	•	2.273	0.59	0.561	1049.5
16.0	0.044	٦.	•		0.00	0.000	0.8991	0.7951	2.5401	2.242	76.0	1 5	
21.0	0.044	٦.	0.044	0.044	•	0.000	•	0.807	•	7.07.7	0.50	2 0	1068 2
26.0	0.044	٦.	•	•	0.000	0.000	•	0.805	2.581	19/2.2	9.50	1.97	
31.0	0.044	٦.	0.044	•	•	0.00	0.400	0.767	6.5		58	146	1043.9
36.0		٠. ٠	440.0	1 2 2 2	900	900	•	0.798	2.544	2.256	0.57	0.55	
41.0	20.0	10.0	40.0	•		•	•	0.7891	2.537		1.99	1.01	1041.5
2.6	1 4 80	• -	0.0	•				0.781	2.504		1.63	2.25	1037.9
27.0	446	• -	0.044	0.044	0.000	0.000	0.887	0.788	2.507	2.228	0.59	0.60	1037.3
200	0.044		0.016		0.028	0.024	0.842	0.7461	2.517		1.32	0.59	1036.1
66.0	0.044	٠.	0.016	0.019	0.0281	0.024	0.787	0.687	2.474	2.167	•	1.85	1032.2
71.0	0.044	0.044	0.016	0.019	0.028	0.024	968.0	0.797	2.533	2.254	0.44	0.46	1032.9
76.0	0.044	0.044	0.016	0.019	0.028	0.024	0.883	0.783	2.497	2.215	2.981	2. S	1028.1
81.0	0.044	٦.	0.016	0.019	0.028	0.024	0.885	0.744	2.503	2.1071	5.601	20.0	C. 4201
86.0	0.044	٦.	0.016	0.019	0.028	•	0.892	0.7/61	2.521	761.2	0.478	26.0	1010
91.0	0.044	٠.	0.016	0.0191	0.0281	0.0241	200.0	0.755	2 436	2.138	2.58	3.07	1014.9
96.01		•	970.0	0.017	0.020	0.064	0.00	- -	2.434	2.143		0.58	1013.8
10.101	200	70.0	0.016	10.0	20.0	0.024	0.874	-	2.470	2.193	_	0.52	1013.1
11.0				0.019			0.865	_	2.448	2.159	_	1.37	1010.
116.0	-		0.016	0.019	0.028	0.024	0.852	_	2.411	2.115	_	1.52	1007.
121.0	-	0.044	0.017	0.020]	0.027	0.024	0.817		2.435	2.158		٠ ا	1008.
126.0	_	0.044	0.017	0.020	0.027	0.024	0.768		2.421	2.136		74.0	
131.0	• _	•	0.017	0.020	0.027	0.024	0.870	0.768	2.459	2.1/4		9.40	1002
136.0	<u> </u>	٠	0.0171	0.0201	0.0271	0.024	40.0		24.5	2.130	¹ -	1.17	
141.0	1450.0	0.044	0.017	0.020	0.027	0.024	0.855		2.419	2.138		0.47	_
151.0			0.017	0.0201	0.027	0.024	0.856	-	2.421	_		0.55	_
156.0	440.0	0.044	0.017		0.027	0.024	0.837	0.735	2.369		_	1.86	_
161.0	0.044	0.044	0.017	0.020	0.027	0.024	0.840	ö	2.376	_		\$:	
166.0	_	0.044	0.017		0.027	0.024	0.849	<u>.</u>	2.403			0.51	996.9
171.0	0.044	_	0.017		0.027	0.024	0.840		2.5/8	2,032	1.23	200	
176.0	_	-	0.017	•	0.0271	0.024			2 475	_		5.5	_
181.0			0.0171	0.020	0.0261			-	2,353			0.56	
186.0	20.0	0.04	0.0171			20.00		; d		_	0	0.43	
0.141		; c		; c		0.023		_	2.356	_	_	1.32	_
20.00			_	-	· -	0.023		<u>.</u>	~	_	1.05	0.75	989.
206.0		0.044	_	_	_	0.023	0.833	<u>.</u>	- -	_	_	_	_
211.0		1 0.044		0.020	0.026	0.023	_	<u>.</u>	~i	_			
216.0	1 0.044	0.044	<u>.</u>	<u> </u>	_	0.023	_	_	-			- ·	
221.0	<u> </u>	<u>.</u>	<u>.</u>	_	_	0.023	_					~ -	
226.0	<u> </u>	<u>.</u>	_	_	o _	0.023	_		~i «				786.
1 231.0	0.044	0.044	0.017	0.020	0.026	0.023	_	; _		.i	-	; -	_
						100	4.0		7 201	_	_	4 C	700

-			1111111			111111111					10000		
	H2 PRODUCT	UCTION	H2 VENTED	ED	H2 CO2 REDU	H2 TO REDUCTION	CO2 REM EXIT CO	CO2 REMOVAL EXIT CO2 PRESS	HEAT EX EXIT CO	EXCHANGER CO2 PRESS	O2 ADDITION	NOIL	ACCUM
TIME	HAB1	LAB1	HAB1	LAB1	HAB1	LAB1	HAB1	LAB1	HAB1	LABI	HABITAT	[. [.	05
MIN	н н) Hdd	ЬРН	ЬРН	Hdd	- Hdd	또 표	至	유 문 문	¥	ЬРК	H H	PSIA
246.0	0.044	0.044	0.018	0.021	0.026	0.023	0.744	0.660	2.303	2.013	0.57	0.53	983.8
251.0	_	0.044	0.018	0.021	0.026	0.023	0.826		•	2.058	0.45	0.43	984.0
256.0		0.044	0.018	•	0.026	0.023	0.811	•	2.296	•	0.93	0.95	981.7
	o ·	0.044	0.018	0.021	0.026	0.023	0.798	•	•	1.974	0.601	0.58	981.4
	0.044	0.044	•	•	•	•		•	2.304	2.025	•	0.45	981.9
274.0	0.044	440.0	0.0181	0.021		0.0231	0.8141	•	•	2.027	-5. -5.	0.53	979.9
	0.0	0.0	•	0.021	0.0261	0.0251	0.7981	0.698	2.259	1.977	1.20	0.70	979.0
286.0	0.044	0.04				0.023	0.812	0.71	2 201	יייייייייייייייייייייייייייייייייייייי	26.0	0.51	979.9
291.0	-	0.044			•	0.023	0.808		• •	1.988	0.601	0.56	977.9
296.0	_	0.044		•	0.026	0.023				1.966	0.58	1.5	976.2
301.0	_	0.044	•	0.022	0.025	0.022	0.760	0.672	2.257	1.992	0.52	0.47	977.6
306.0	0.044	0.044	•	0.022	0.025	0.022	0.731	0.648	2.267	1.964	0.56	0.46	976.2
214.0		1 1 2 2	1610.0	0.0221	0.0251	0.022	1608.0	0.7091	2.288	2.007	0.45	4.	975.5
321.0		0.0	•		0.025	0.0221	0.7881	0.6961	2.231	1.971	0.70	1.21	973.7
326.0	-	0.044	0.019	0.0221	0.025	0.0221	797.0	000.0	2 262	1.9271	0.54	156.0	9/4.6
331.0	·		0.019	0.022	0.025	0.022	0.804	0.698	2.276	1.978	4	0.42	974.4
336.0	<u>-</u>	0.044	0.019	0.022	0.025	0.022	0.798	0.681	2.258	1.931	0.88	0.55	972.0
341.0	• -	٠	0.019	0.022	0.025	0.022	0.777	0.686	2.200	1.943	0.52	1.11	971.1
346.0		•	•	0.022	0.025	0.022	0.781	0.6%	2.210	1.965	0.51	0.49	972.6
256.01	0.044	40.0	0.0191	0.022	0.025	0.0221	0.792	0.685	2.243	1.942	0.58	0.45	971.7
361.0	; d	•		0.022	0.025	0.0221	0.785	0.674	7.12.2	1.924	0.57	0.571	970.0
366.0	_			0.022	0.025	0.022	0.709	0.635	2.197	1.915	0.561	0.50	9.079
371.0	<u>.</u>	•		0.022	0.025	0.022	0.796	0.693	2.252	1.963	0.43	0.35	970.6
376.0	·	•	•	0.022	0.025	0.022	0.791	0.680		1.928	0.60		968.7
381.0	0 (•	•	0.022	0.025	0.022	0.776	0.663	2.197	1.880	0.59	0.58	9.29
200.00		- T	610.0	0.0224	0.025	0.0221	0.767	0.681	2.171	1.930	0.46	•	968.4
396.0		• -	0.019	0.022	0.025	0.0221	0.7/8	0.683	2.2021	1.935	0.52	0.45	968.6
401.0	•		0.019	0.0221	0.0251	0.022	0.7661	0.670	2.169	1.090	0.00	0.51	767.0
406.0	<u>.</u>	٦.	•	0.022	0.025	0.022	0.769	0.678	2.178	1.922	0.50		7.007
411.0	_	-	0.019	0.022	0.025	0.022	0.774	0.670	2.191	1.900	0.57		966.5
416.0	-	٠.	0.019	0.022	0.025	0.022	0.769	0.664	2.176	1.881	0.56	0.54	965.6
421.04	-	•	0.019	0.0231	0.024	0.021	0.731	0.642	2.171	1.902	0.51	•	965.8
421.0	-	9	0.019	0.0251	0.024	0.021	0.7051	0.623	2.169	1.876	0.55	•	965.6
436.0	-		0.019	0.023	0.024	0.021	0.707	0.0/0	2.201	1.921	0.43	0.54	965.7
441.0	<u>.</u>		0.019	0.023	0.0241	0.021	0.761	0.651	2.154	1 866	9 2	20.0	966
446.0	•	•	0.019	0.023	0.024	0.021	0.786	0.669	2.223	1.896	0.45		965.2
451.0	•	•	•	•	•	0.021	0.792	0.671	•	1.901	0.51	0.43	963.1
456.0	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		<u> </u>	•	•	0.021		0.655		1.856	0.59	•	962.4
466.0		4	0.019	0.025	0.024	0.021	•	0.660	2.230	1.871	0.50	0.42	963.8
471.0	0.044			0.025	•	1770.0	- SO4	0.6/1	2.274	1.901	8 7 .	0.36	963.2
476.0	0.044	0.044				0.0211	0.00	0.005	2 260	1.6/9.1	9.50	0.45	961.8
481.0					•	11000	-		407.3	-00	, ,		707
	•	٠	2	0.023	0.026	רנטיי	777	1027 0	0 211	1 000	0.0	**	

_	;							1	1				
	H2 PRODUC	UCTION	H2 VENTED	ED	H2 CO2 REDU	H2 TO	CO2 REMOVEXIT CO2	REMOVAL CO2 PRESS	HEAT EY EXIT CO	EXCHANGER CO2 PRESS	02 ADDITION		ACCUM
TIME	HAB1	LAB1	HAB1	LAB1	HAB1	LAB1	HAB1	LAB1	HAB1	LAB1	[HABITAT]	LAB	02
HIN	ЬРН	Hdd	Hdd	- Hdd	Hdd	Hdd Hdd	- 알 王	무 물 王	 ¥	 왕 王		Hdd	PSIA
491.0	0.044	0.044	0.0191	0.023	0.0241	0.021	0.8381	1878	1072 6	1000 1	157 6		
496.0	0.044	•	•	0.023	0.024	0.021				i -	14.0	97.0	762.I
	0.044	•	6	0.023	0.024	0.021			2.331	1.860	95.0	14	1.004
•	440.0	0.044	•		0.024	0.021	0.845			1.914	0.42	0.27	962.3
•	450.0	•	<u>.</u>	•	0.024	0.021	•	0.679	2.411	1.923	0.48	0.33	960.8
520.01	\$ 0.00		•		0.024	0.021	•	0.666	2.391	1.887	0.55	0.41	
	9	1 4 4 6	1610.0	0.0231	0.024	0.021	•	0.673	2.405	1.907	0.46	0.34	961.4
	0.044			0.025	0.0241	0.021	•	0.685	2.443	1.939	0.44	0.29	
	0.044	0.044	0.0191	0.023	0.024	0.021	•	0.679	2.446	1.923	0.52	0.36	960.
541.0	0.044		0.017	0.00	0.024	0.021	0.865	0.6761	2.439	1.914	0.50	0.37	960.3
546.0	0.044	0.044		0.023		0.021	788	000.0	2.465	1.47	4.0	0.31	•
551.0	0.044	0.044	•	0.023	0.026	0.021	•	168.0	201.70	1.928	9.0	•	9.096
556.0	•	0.044	•	0.023		0.021	0.885	0.691	2.501	1.70	0.50	0.50	960
561.01	0.044	0.044	•	0.023	0.026	0.021	0.8691	0.677	2.457	1.918	2.0	•	950
20.00	٠	0.044	•	0.023	0.026	0.021	0.893	0.701	2.523	1.984	0.37	•	. 667
574.01	440.0	0.044		0.023	0.026	0.021	0.902	0.706	2.549	1.997	0.44	! ~	9.69
20.0	10.0	1 3 3	0.0171	0.023	•	0.021		0.690	2.520	1.955	0.53		958.
586.0		0.044	0.017	0.023	0.0261	0.021	•	0.699		•	0.43	0.33	.096
591.0	0.044	0.044			0.026	0.021	90.0	0.715	2.566	2.018	0.40	0.26	960.
596.0	0.044	0.044			0.0261	0.021	•	207.0	10/6.2	2.0001	0.50	•	959.
601.0	0.044	0.044	•	0.022	0.028	0.022	0.859	0.6821	2 K7E	1.788	9.5	0.38	959
606.02	0.044	0.044	•	•	0.028	0.022	0.819	0.658	2.578	2.011	194.0	0.00	960
10.110	4 3	440.0	•	0.022	0.028	0.022	0.935	0.731	2.639	2.069	0.33	ין:	960
623.01	7	10.0	0.0161	•	0.0281	0.022	0.924	0.720	2.609	2.039	0.51	0.42	957.
626.01	0.0	0.0	910.0	0.0221	0.0281	0.0221	0.906	0.705	2.559	1.997	165.0	0.40	959
31.	0.044	0.044	1910.0	•	0.020	0.0221	0.931	0.731	2.628	2.068	0.35	0.23	960
636.0	0.044	0.044	0.016	0.022	90.0	•	26.0	0.7351	2.654	2.082	0.43	0.28	958.
641.0	0.044	0.044	0.016	0.022	0.0281	0.022	0.9281	0.719	1029.2	2.056	0.52	0.41	958
646.01	0.044	0.044]	0.016	0.022	0.028				2 6661	2.0621	0.421	0.33	959.
651.0	0.044	0.044	0.016	0.022	0.028				2.667	2 082	164.0	97.0	959
	0.044	0.044	0.016	•	0.028	0.022	0.937	0.731	2.648	2.0691	0.47	2 2 2	750.
10.700	1	4,000	0.015	٠		0.023	0.890		2.669	2.111	0.40	0.30	920
		3	0.0151	•	0.029	•	0.848	0.680	2.671	2.094	0.45	0.30	989
	20.0	1	0.0151	•	0.0291	•	0.968	0.761	2.733	2.152		0.19	959.5
	1490	1000	0.015	•	0.0291		0.956	0.750	2.700	2.122	0.50	0.42	956
686.0	0.044	900	•	170.0	•	•	0.937	0.733	2.647	2.076	165.0	0.40	958.6
	990	0.0	•	0.021	0.029		0.962	0.760	2.718	2.149	0.35	0.23	960.1
10.969	0.044	0.044	•	•	0.029	0.023	•	0.765	•	2.164	0.43	0.28	958.3
	0.044	0.044	•	•		0.023	•	0.747	2.707	2.115	0.52	0.41	957.5
706.01	0.044	0.044		• .	•	0.023	0.758	0.756	2.7071	2.140	0.42	0.33	959.0
111.0	0.044	0.044	•	0.021		20.0	•	0.77	2.75	2.183	0.39	0.26	959.1
716.0	•	0.044	•	0.021		0.023	•	7591	1007.7	291.2	0.49	M	•
•	•	•	0.014	0.020	0.030	0.024	0.9101	0.7361	2 727	7-17-7	74.0	0.391	957.9
726 01													
٠	0.044	0.044	0.014	0.020	0.030	0.024	0.8571	202	2 717	2 1 20 1	0.40	0.55	958

							1 1 1 1 1 1 1 1						ć
	H2 PRODUCT	CTION	H2 VENTED		H2 CO2 REDU	H2 TO REDUCTION	CO2 REM EXIT CO	CO2 REMOVAL EXIT CO2 PRESS!	HEAT EXC EXIT CO2	EXCHANGER CO2 PRESS	OZ ADDITON		ACCUM
TIME	HAB1	LAB1	HAB1	LAB1	HAB1	LAB1	HAB1	LAB1	HAB1	LABJ	HABITAT 	9	05
	 Hdd	- Hdd	PPH	- H	- Hdd	ЬЬН	¥ ¥	野野	HH HG	¥ £	PPH 1	Hdd	PSIA
١	- 336	1 2 2 2	1200	1000 0	0.0301	0.0241	0.961	0.775	2.715	2.193	0.51	0.47	•
736.01	4.5	4	0.014	0.020	0.030	0.024		•	2.648	2.142	- 50	0.46	957.8
10.14/	0.0	9	0.014		0.030	0.024	0.961		2.714	2.216	0.361	0.28	957.6
76.01	900	0.0	0.0141	0.020	0.0301	0.024	•	•	•	2.227	‡:	90.0	427.1
754.01	4		0.014	0.020	0.030	0.024	•	•	•	2.172	0.55	2 6	958
	0.0441		0.014	•	0.030	•	•	•	•	•	104.0	92.0	957.7
766.0	0.044	•	0.014	•		0.024	•	0.7891	٠	2 207		4	956
	0.044	0.044	•	•	•	•	0.950	0.779	2.0001		-		956.
776.0	-	0.0441	•	•	0.030	0.024	0.959	0.776	•	•	. –	0.35	957.
781.0	<u>.</u>	0.044	0.014	0.019	•	0.024	6,044	0.747		2.201		0.42	956
786.0	•	0.044	0.014	0.0191	0.0301	1420.0	0.0	•			_	0.28	956.
	•	0.044	•	0.0191	0.00	0.024	•	0.784	2.673	2.20		9.48	_
•	•	0.044	0.0141	0.019	•	0.0241			2.658	2.168	_	0.43	_
	•	0.0	0.014	0.019		0.024		·	2.693	_	<u>.</u>	0.34	
•	20.0	10.0	•		0.030	0.024	0.947	0.793	2.676	_		\$	
0.118	•	0.0	0.014		0.030	0.024	0.939	<u>.</u>	2.654	2.189	<u>.</u>	1.5	4.666 -
•	•	0.044	0.014		0.030	0.024	0.948	-	•	2.213		7.0	
•			0.014	0.019	0.030	0.024	0.953	<u> </u>	2.692	747.7	0.42	0.0	
	· -	•	•	•	0.030	0.024	7 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.73				9.0	
1 836.0	<u>.</u>	•	0.014	•	0.0301	9.024	2 6			~			_
•	-	•	0.0141	0.019	0.029	0.024	;	, o	- ~	~	_		
		20.0	410.0	•	0.0291	0.024	_	_		_	_		
851.0	9.044	0.044		0.019		0.024	<u>.</u>	_	_				952.0
0.020	-	0.044		•	0.029	0.024	<u>.</u>	• -					
	;	0.044		0.019	0.029	0.024	-	- ·	~ •	2.251	0.50	_ =	
871.0	_	0.044	•	0.019	0.029			202.0	2.73	; «		. –	
	<u> </u>	0.044	•	0.019	0.0291			; c				_	_
	<u>.</u>	0.044	•	1610.0	0.029	0.024	; c	. -		~		<u> </u>	_
•	• ·	0.044	775	0.019				_	_	~i	_	• -	_
•	440.0	1000	0.014		0.029		·	<u>-</u>	_	~i	_	_	
9,60		; c	0.014	_	_	<u>.</u>	_	_	_	ا	-	0.54	. 555
906		-	-	• -	_	<u> </u>	•	_		, . 	11 U.45		
911.0	_	·	0.014	° –	<u>.</u>	<u> </u>	-i ·	<u>.</u>					
916.0	· -	0.044	0.014	<u>-</u>	_	<u> </u>	-		2.809				
921.0	<u> </u>	<u>.</u>	_		-		676.0	20.782				_	
_i 926.0	<u>.</u>	<u>.</u>				0.025	-i -			. ~			_
_	<u>.</u>	-	o •	0.019	0.030		11011		. ~		_	_	3 951.
936.0	-	0.044	*To.0		-	-	-	_	~	.; -	_	_	_
941.0	- c	; c	; c	-	-	-	1.015	_	2	~i	_	o ·	
	; c	; 	· -	-	· -	0	1.014	41 0.808	~	~i			_
724.		-	-	· -	<u> </u>	<u> </u>	-		~i	~i •	5 0.48	 	71 751.
: -:	-		• -	<u>.</u>	<u>.</u>		<u>.</u>	- ·	~ ~	2.520			
	0 0.044	0.044	0.013	0.019	0.031	0.025	5 0.911	_		; _			-
•							040	VV0 0 10	71 0 020	0 25K	74	2.0	01 952.

:

The Holy Local Holy Local Holy Holy Holy Holy Local Holy H	_					בישנו ה	S WITH C		TANATIC ICAS			1		
Title Hell Lore Hell Lore Hell	<u>.</u>	H2 PRODL		H2 VENTE	 g		TO L	CO2 REM EXIT CO	OVAL 2 PRESS		CHANGER	05		O2 ACCUM
Name Part	TIME	HAB1	LAB1	HAB1	LAB1	HAB1	LAB1	HAB1	LAB1	HAB1	i	HABITAT	LAB	20
1981 0 0.0044 0.0044 0.0013 0.0013 0.0021 0.0022 1.0040 0.0042 0.2044 0.2044 0.0013	NIW .	нда	- H	Hdd	HA H	- Hdd	PPH		 왕 王	말 王		ЬВН	Н	PSIA
1966 0 0 0 0 0 0 0 0 0		9	0.044	6		0.031	0.0251					0.51	0.42	951.5
1991.01 0.044 0.044 0.0131 0.0131 0.0231 0.0231 0.0243 0.8451 2.3571 0.4571 0.4571 0.0544 0.0444 0.0131 0.0131 0.0231 0.		•	0.044	•	0.019	0.031	0.025	•	•	•		0.37	0.24	•
1001 0 0 0 0 0 0 0 0	•	•	0.044	٠	0.019	•	0.025	1.040	•	•	•	\$.	0.30	•
1006. 0 0.044 0.044 0.0121 0.0121 0.0221 1.042 0.0241 0.274 0.277 0.492 0.494 0.1121 0.0129 0.0221 0.0241 0.0244 0.0121 0.0129 0.0221 0.0251 0.0241 0.2741 0.2741 0.2751	•	•	0.044	•	0.0191	•	0.025	1.0251	•	•		0.55	0.42	•
1001.0 0.0044 0.0044 0.0121 0.0131 0.0251 0.0261 0.931 0.945 0.351 0.446 0.135 0.251 0.0241 0.0244 0.0131 0.0131 0.0251 0.0264 0.0244 0.0131 0.0024 0.0242 0.0244 0.0242 0.0244 0.0242 0.0244 0.0242 0.0244 0.0242 0.0244 0.0242 0.0244 0.0242 0.0244 0.0242 0.0244 0.0242 0.0244 0.0244 0.0244 0.0242 0.0244		•	440.0	•	0.0191	•	•	1.025	•	•	•	124.0	0.55	951.6
1001.01 0.0044 0.0044 0.0121 0.0101 0.0021 0.0251 0.0321 0.0491 0.0444 0.0444 0.0044 0.0012 0.0101 0.0024 0.0044 0.0044 0.0012 0.0101 0.0021 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0024 0.0044		•	44000				0.025	1.041			2.351	0.50	0.361	
100.056 0.044 0.044 0.012 0.018 0.022 0.026 0.039 0.7796 2.955 2.955 2.955 0.461 0.920 951 100.056 0.044 0.044 0.012 0.018 0.028 0.022 0.026 0.025 0.026 0.226 0.226 0.226 0.226 0.026 0.024 0.024 0.024 0.022 0.023 0.022 0			9.0				0.025	1.032			2.331	0.49	0.39	
1005.0. 0.0044 0.0044 0.012 0.022 0.026 0.931 0.782 2.946 2.446 0.349 0.349 0.349 0.0494 0.012 0.0281 0.0284 0.0281 0.0284 0.0281 0.			0.044	•			0.026			•	2.373	0.41	0.32	951.4
1005.0. 0.044 0.044 0.012 0.023 0.025 1.026 1.027 0.864 2.956 2.375 0.521 0.43 959 10049 0.044 0.017 0.023 0.025 0.026 1.027 0.824 2.960 2.954 2.446 0.54 0.52 0.52 959 1004.0 0.049 0.007 0.023 0.025 0.026 1.025 0.824 2.960 2.946 0.544 0.54 0.52 959 1004.0 0.044 0.044 0.012 0.023 0.025 0.025 1.025 0.025		•	0.044	•	•	•	0.026	•		•		0.46	0.32	•
1004.0.0 0.0449 0.0449 0.0171 0.0221 0.0261 1.0241 0.8401 2.4901 2.4941 0.541 0.541 0.541 0.0441 0.0444 0.0441 0.0444 0.0121 0.0221 0.0261 1.0551 0.8501 2.4941 2.4941 0.541 0.545 0.0241 0.04		•	0.044	•	•	0.032	0.026	1.062	•	•	•	0.34	0.20	951.4
1005.0 0.044 0.044 0.044 0.021 0.022 0.026 1.025 0.026 1.025 0.026 0.024 0.026 0.024 0.025 0.026 1.025 0.026 1.025 0.026 0.024 0.025 0.026 0.026 1.025 0.026 0.024 0.024 0.044 0.021 0.021 0.022 0.026 1.025 0.026 2.929 2.526 0.44 0.045 0.045 0.044 0.044 0.021 0.021 0.022 0.026 1.025 0.026 2.929 2.529 2.529 0.41 0.31 0.32 0.025 0.026 1.025 0.026 2.924 2.529 0.44 0.045 0.045 0.044 0.021 0.021 0.023 0.022 0.026 1.022 0.026 2.944 2.329 0.44 0.25 0.25 0.025 0.026 0.026 0.024 0.044 0.044 0.021 0.021 0.023 0.022 0.026 0.024 0.044 0.044 0.044 0.021 0.023 0.022 0.026 0.026 0.044 0.044 0.044 0.044 0.021 0.023 0.022 0.026 0.024 0.044 0.044 0.044 0.044 0.021 0.023 0.022 0.026 0.024 0.044 0.044 0.044 0.044 0.044 0.024 0.025 0.022 0.026 0.026 0.024 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.024 0.025 0.022 0.026 0.0			9.049	•		0.032	0.0261	1.04/1	•	•	•	126.0	24.0	950.4
1005.10 0.044 0.044 0.012 0.012 0.012 0.022 1.025 1.055 0.854 2.956 2.455 0.45 0.45 999 1006.0 0.004 0.0044 0.0044 0.012 0.012 0.023 0.026 1.027 0.861 2.946 2.947 2.358 0.45 0.45 999 1006.0 0.0049 0.0044 0.0044 0.0012 0.018 0.023 0.026 1.027 0.861 2.946 2.347 0.49 0.41 0.31 990 1006.0 0.0049 0.0049 0.0049 0.0012 0.023 0.022 0.026 1.027 0.840 2.946 2.399 0.44 999 0.0012 0.023 0.022 0.026 1.027 0.840 2.946 2.399 0.44 999 0.0012 0.023 0.022 0.026 0.940 2.940 2.399 0.44 999 0.0014 0.0044 0.0016 0.022 0.022 0.026 1.0024 0.861 2.807 2.401 0.45 0.401 0.401 0.0011 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.004 0.0044 0.0044 0.0014 0.002 0.002 0.002 0.002 0.004 0.0044 0.0044 0.0014 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.002 0.002 0.002 0.002 0.004 0.004 0.004 0.004 0.002 0.002 0.002 0.002 0.004 0.004 0.004 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.004 0.004 0.004 0.001 0.002 0.002 0.002 0.002 0.004 0.004 0.004 0.002 0.002 0.002 0.002 0.002 0.002 0.004 0.004 0.004 0.004 0.004 0.002 0.		•	0.047	•		0.032	0.026	1.049	0.850	• •		0.36	0.25	952.0
1006.0 0.049 0.049 0.017 0.021 0.022 0.026 1.037 0.833 2.929 2.385 0.45 0.04 0.044 0.044 0.012 0.012 0.022 0.026 1.027 0.846 2.956 2.377 0.41 0.31 999 0.049 0.049 0.017 0.023 0.026 0.026 0.976 0.944 2.907 2.397 0.049 0.049 0.017 0.023 0.026 0.026 0.976 0.944 2.907 2.395 0.049 0.049 0.017 0.022 0.026 0.026 0.037 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027						0.032	0.026	1.055	0.854		2.416	4.0	0.32	950.2
1006.1 0 0.0644 0.0044 0.0042 0.0121 0.0131 0.0252 0.0261 1.047 0.0569 2.9581 2.4271 0.491 0.491 9.991 1006.1 0.044 0.044 0.044 0.0042 0.0121 0.0131 0.0252 0.0261 1.047 0.0569 2.9561 2.9581 2.4277 0.491 0.441 9.991 1006.1 0.044 0.044 0.044 0.011 0.0121 0.0251 0.0251 0.0261 0.1079 0.949 2.994 2.399 0.517 0.491 0.941 9.991 1006.1 0.044 0.044 0.044 0.011 0.0121 0.0251 0.0261 0.0261 0.949 0.949 2.996 2.996 2.996 2.996 0.045 0.011 0.012 0.0251 0.0261 0.0261 0.0594 0.0591 0.044 0.0044 0.0044 0.0041 0.0011 0.0022 0.0251 0.0261 0.0261 0.0591 0.0591 0.049 0.0049 0.0049 0.0011 0.012 0.0251 0.0261 0.0261 0.0261 0.0591 0.049 0.0049 0.0049 0.0011 0.0012 0.0022 0.0261 0.0261 0.0261 0.0263 0.0291 0.0049 0.0049 0.0016 0.022 0.022 0.0261 0.0261 0.0263 0.0291 0.0049 0.0049 0.0049 0.0016 0.022 0.022 0.0261 0.0261 0.0263 0.0291 0.0049 0.0049 0.0049 0.0016 0.022 0.022 0.022 0.0261 0.0049 0.0049 0.0049 0.0049 0.0016 0.022 0.022 0.022 0.0261 0.0049 0.0049 0.0049 0.0049 0.0016 0.022 0.022 0.022 0.0261 0.0010 0.0049 0.						0.032	0.026	1.037	0.833	•	2.358	0.54	0.45	4.656
1006.0 0.0494 0.0494 0.0424 0.0218 0.0321 0.0264 1.047 0.0484 2.996 2.496 2.497 0.494 9.994 10075 0.0221 0.0221 0.0261 0.0241 0.949 0.0494				•	•	0.032	•	1.033	0.842	٠	2.383	0.43	0.38	
11071.0 0.0494 0.0494 0.0171 0.0231 0.0322 0.0326 1.0429 0.8401 2.3494 2.3579 0.541 0.441 9594 1.041 1.041 1.041 1.041 1.049 0.044 0.017 0.0231 0.0321 0.0326 0.946 0.949 0.949 0.441 0.017 0.0231 0.0321 0.0321 0.049 0.044 0.044 0.011 0.017 0.0231 0.0321 0.0321 0.049 0.044 0.044 0.011 0.017 0.0321 0.0321 0.049 0.044 0.044 0.011 0.017 0.0321 0.0321 0.049 0.044 0.044 0.011 0.017 0.0321 0.0321 0.0321 0.049 0.044 0.044 0.011 0.017 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.049 0.044 0.044 0.011 0.017 0.0321 0.0321 0.0321 0.049 0.049 0.044 0.011 0.017 0.0321		•		•	•		•	1.047	0.858	•	2.427	0.41	0.31	950.9
10081.0 0.0449 0.0449 0.011 0.0124 0.0221 0.026 0.9749 0.9749 0.9499 0.011 0.0124 0.0221 0.0261 0.9749 0.9499 0.011 0.0121 0.0221 0.0261 0.9491 0.0449 0.011 0.0121 0.0221 0.0221 0.0261 0.0491 0.0449 0.0101 0.0121 0.0221 0.0221 0.0261 0.0491 0.0499 0.0101 0.0121 0.0221 0.0221 0.0261 0.0491 0.0499 0.0101 0.0121 0.0221 0.0221 0.0261 0.0491 0.0499 0.0101 0.0222 0.0222 0.0261 0.0491 0.0499 0.0101 0.0222 0.0222 0.0221 0.0261 0.0491 0.0499 0.0101 0.0222 0.0222 0.0221 0.022	071.			•	•		•	1.042	848.0	2.8	2.399	0.51	14.0	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
10066.0 0.044 0.044 0.016 0.022 0.026 0.026 0.048 0.484 2.595 2.455 0.55 0	100.	•	•	•	•		•	0 976	918	2.919	2.420	0.47	0.47	950.5
1005.0. 0.044 0.044 0.041 0.011 0.012 0.025 0.026 1.048 0.853 2.959 2.445 0.531 0.513 0.518 955 1.051 955 955 1.051	1001	٠	•	•		0.035	•	918	774	2 907	2, 395	0.48	0.38	950.0
100% 0 0.049 0.049 0.049 0.016 0.022 0.032 0.026 1.028 0.655 2.937 2.555 0.521 0.491 949	1091.					0.032		1.048	0.868				0.26	950.3
1110.0 0.0449 0.0444 0.0146 0.0222 0.0226 1.0294 0.0854 2.9571 2.5351 0.5551 0.551 0.511 0.0311 0.0449 0.0449 0.0444 0.0114 0.0121 0.0222 0.0226 1.0229 0.0859 2.9971 2.4321 0.461 0.041 0.0449 0.0449 0.0449 0.0164 0.0222 0.0224 0.0226 1.0211 0.0849 2.9571 2.7431 0.455 0.451 0.451 0.1411 0.0449 0.0449 0.0449 0.0164 0.0222 0.0322 0.0226 1.0111 0.0849 2.8571 2.3781 0.451 0.451 0.451 0.451 0.0449 0.0449 0.0164 0.0222 0.0322 0.0226 1.0112 0.0849 2.8579 2.4411 0.443 0.441 0.0164 0.0222 0.0322 0.0226 1.0112 0.0849 2.8951 2.4411 0.443 0.451 0.1440 0.0449 0.0449 0.0164 0.0222 0.0322 0.0226 1.0171 0.0849 2.8771 2.486 2.426 0.441 0.441 0.441 0.022 0.0322 0.0226 1.017 0.0849 0.0449 0.0449 0.0171 0.022 0.0321 0.022 0.0226 0.0271 0.0849 0.0449 0.0449 0.017 0.022 0.0321 0.027 0.0441 0.0449 0.0449 0.017 0.0221 0.0321 0.027 0.0449 0.0449 0.0449 0.017 0.022 0.0321 0.027 0.0449 0.0449 0.0449 0.017 0.022 0.032 0.027 1.010 0.0840 0.0449 0.0449 0.017 0.022 0.032 0.027 1.010 0.0840 2.8671 2.846 2.426 0.541 0.471 0.471 0.0449 0.0449 0.0449 0.017 0.022 0.032 0.027 1.010 0.0840 2.867 2.841 0.441 0.471 0.471 0.0449 0.0449 0.0449 0.017 0.022 0.032 0.027 1.010 0.0840 0.0840 0.0449 0.0449 0.017 0.022 0.032 0.027 1.011 0.0840 2.867 2.426 0.441 0.441 0.441 0.441 0.0449 0.	1096.	•	•	•	•	0.032]	•	1.028	0.853	2.905	•		0.51	947.8
1111.10 0.0494 0.0494 0.0164 0.022 0.032 0.0264 1.032 0.0843 2.857 2.378 0.561 0.401 0.1111.10 0.0494 0.0494 0.0494 0.0164 0.022 0.032 0.0264 1.011 0.840 2.857 2.378 0.55 0.51 0.1111.10 0.0491 0.0491 0.0491 0.0164 0.022 0.032 0.0264 1.012 0.8491 2.859 2.441 0.451 0.049 0.049 0.049 0.016 0.022 0.032 0.026 1.017 0.861 2.874 2.488 2.481 0.451 0.411 0.411 0.049 0.049 0.049 0.017 0.022 0.032 0.027 0.049 0.049 0.049 0.017 0.022 0.032 0.027 0.049 0.049 0.049 0.049 0.017 0.022 0.032 0.027 1.028 0.847 2.484 2.454 0.57 0.411 0.411 0.049 0.049 0.049 0.017 0.022 0.032 0.027 1.010 0.854 2.877 2.454 0.57 0.471 0.471 0.471 0.471 0.049 0.049 0.049 0.017 0.022 0.032 0.027 1.019 0.857 2.853 2.454 0.57 0.471 0.471 0.471 0.471 0.049 0.049 0.049 0.017 0.022 0.032 0.027 1.019 0.857 2.853 2.454 0.54 0.471 0.471 0.471 0.049 0.049 0.049 0.017 0.022 0.032 0.027 1.019 0.857 2.853 2.451 0.45 0.441 0.471 0.441 0.049 0.049 0.049 0.017 0.022 0.032 0.027 1.019 0.859 2.877 2.425 0.46 0.491 0.049 0.049 0.017 0.022 0.032 0.027 1.019 0.859 2.877 2.425 0.46 0.491 0.441 0.049 0.049 0.049 0.017 0.022 0.032 0.027 1.019 0.849 2.865 2.401 0.45 0.441 0.441 0.441 0.441 0.441 0.044 0.044 0.044 0.017 0.022 0.032 0.027 1.010 0.849 2.861 2.411 0.42 0.44 0.441 0.441 0.044 0.044 0.044 0.017 0.022 0.031 0.027 0.045 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049	•	•	•	•	0.022	0.0321	0.026	1.004	0.832	2.837	•		0.49	949.5
1111.0 0.0491 0.0491 0.0161 0.0221 0.0221 0.0261 1.0121 0.8481 2.8571 2.3781 0.551 0		•	•	•	0.01/1	0.056	0.026	1.027	0.057	2.707	•		7 6	7.00.7
1121.0 0.049 0.049 0.016 0.022 0.032 0.026 1.021 0.848 2.859 2.401 0.451 0.451 0.571 1122.0 0.049 0.049 0.016 0.022 0.022 0.026 1.025 0.863 2.895 2.401 0.451 0.471 0.671 0.649 0.049 0.016 0.022 0.022 0.026 1.016 0.842 2.874 2.874 2.481 0.451 0.471 0.671 0.049 0.049 0.049 0.016 0.022 0.022 0.022 0.025 0.041 0.642 2.874 2.426 0.441 0.471 0.471 0.642 0.049 0.049 0.017 0.022 0.022 0.022 0.027 0.949 0.049 0.017 0.022 0.022 0.027 0.029 0.049 0.049 0.017 0.022 0.022 0.027 0.029 0.049 0.049 0.017 0.022 0.022 0.027 0.029 0.049 0.049 0.017 0.022 0.022 0.027 0.027 0.089 0.049 0.049 0.017 0.022 0.022 0.027 1.018 0.854 2.877 2.416 0.54 0.47 0.47 0.049 0.049 0.017 0.022 0.027 0.027 1.018 0.857 2.879 2.426 0.54 0.47 0.47 0.049 0.049 0.017 0.022 0.027 0.027 1.019 0.857 2.879 2.426 0.54 0.47 0.47 0.049 0.049 0.017 0.022 0.027 1.019 0.857 2.879 2.426 0.54 0.47 0.47 0.049 0.049 0.017 0.022 0.027 1.011 0.857 2.879 2.426 0.54 0.47 0.47 0.049 0.049 0.017 0.022 0.027 1.014 0.857 2.857 2.375 0.54 0.44 0.47 0.47 0.049 0.049 0.017 0.022 0.027 1.014 0.859 2.867 2.431 0.44 0.44 0.41 0.41 0.41 0.44						0.0321	0	1.011	0.840	2.857	; ;; 	-	0.51	948.2
11126.0 0.049 0.049 0.016 0.022 0.032 0.026 1.025 0.863 2.895 2.441 0.43 0.57 0.57 0.049 0.049 0.016 0.022 0.032 0.026 1.017 0.842 2.872 2.386 0.551 0.47 0.049 0.049 0.0049 0.0049 0.0049 0.0049 0.0049 0.0049 0.0049 0.0049 0.0049 0.0049 0.0049 0.0049 0.0049 0.0049 0.0071 0.022 0.032 0.027 0.089 0.776 2.824 2.394 0.50 0.641 0.41 0.41 0.41 0.044 0.007 0.0049 0.0049 0.007 0.022 0.032 0.027 0.085 0.857 2.824 2.394 0.50 0.50 0.50 0.049 0.007 0.022 0.032 0.027 0.027 0.085 2.877 2.454 0.50 0.50 0.50 0.049 0.007 0.022 0.032 0.027 0.027 0.085 2.877 2.454 0.57 0.57 0.57 0.049 0.007 0.022 0.032 0.027 0.019 0.857 2.877 2.454 0.57 0.57 0.57 0.049 0.049 0.017 0.022 0.032 0.027 0.019 0.857 2.877 2.454 0.54 0.40 0.07 0.049 0.049 0.017 0.022 0.032 0.027 1.019 0.860 2.857 2.455 0.40 0.57 0.47 0.049 0.049 0.017 0.022 0.032 0.027 1.011 0.860 2.857 2.433 0.40 0.40 0.049 0.017 0.022 0.032 0.027 1.011 0.846 2.865 2.40 0.41 0.41 0.41 0.41 0.049 0.049 0.017 0.022 0.032 0.027 1.014 0.846 2.865 2.400 0.54 0.44 0.41 0.41 0.049 0.049 0.049 0.017 0.022 0.032 0.027 1.011 0.846 2.857 2.351 0.46 0.41 0.41 0.41 0.41 0.049 0.049 0.049 0.017 0.022 0.032 0.027 1.011 0.849 2.851 2.352 0.51 0.45 0.45 0.049 0.049 0.017 0.022 0.032 0.027 1.011 0.849 2.851 2.352 0.51 0.45 0.45 0.049 0.049 0.049 0.049 0.007 0.022 0.031 0.027 0.045 0.849 2.851 2.352 0.51 0.45 0.049 0.049 0.049 0.007 0.022 0.031 0.027 0.045 0.864 2.857 2.384 2.40 0.50 0.45 0.045 0.044 0.044 0.044 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045		•	•	•	0.022	0.032	0	1.012	0.848	2.859	~;	<u> </u>	0.45	9.64
1135.0 0.049 0.049 0.016 0.022 0.025 0.026 1.017 0.851 2.874 2.408 0.55 0.55 0.47 1.135.0 0.049 0.049 0.049 0.0049 0.002 0.022 0.025 0.026 0.017 0.842 2.386 2.426 0.44 0.44 0.44 1.114.0 0.049 0.049 0.017 0.022 0.022 0.027 0.949 0.776 2.884 2.454 0.50 0.50 0.049 0.049 0.017 0.022 0.032 0.027 1.026 0.867 2.898 2.454 0.50 0.50 0.50 0.114.0 0.049 0.049 0.017 0.022 0.032 0.027 1.026 0.857 2.898 2.454 0.57 0.27 0.27 0.1151.0 0.049 0.049 0.017 0.022 0.032 0.027 1.018 0.854 2.877 2.416 0.54 0.57 0.27 0.1161.0 0.049 0.049 0.017 0.022 0.027 0.027 1.019 0.857 2.879 2.454 0.54 0.47 0.47 0.1165.0 0.049 0.049 0.017 0.022 0.032 0.027 1.019 0.857 2.879 2.455 0.54 0.47 0.47 0.1165.0 0.049 0.049 0.017 0.022 0.032 0.027 1.011 0.850 2.857 2.455 0.54 0.47 0.47 0.049 0.049 0.049 0.049 0.049 0.049 0.017 0.022 0.032 0.027 1.014 0.846 2.857 2.451 0.44 0.47 0.47 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.017 0.022 0.032 0.027 1.014 0.846 2.865 2.451 0.44 0.41 0.41 0.049		•		•	•	0.032	<u>.</u>	1.025	0.863	2.895	∾i (_	0.37	949.W
1141.0 0.049 0.049 0.017 0.022 0.032 0.027 0.945 0.776 2.886 2.426 0.44 0.41 0.41 1.141.0 0.049 0.049 0.017 0.022 0.032 0.027 0.095 0.776 2.826 2.426 0.44 0.50 0.049 0.049 0.017 0.022 0.032 0.027 1.026 0.847 2.886 2.454 0.50 0.057 1.015 0.049 0.049 0.049 0.017 0.022 0.032 0.027 1.016 0.854 2.877 2.416 0.54 0.57 0.27 1.151.0 0.049 0.049 0.017 0.022 0.032 0.027 1.010 0.832 2.853 2.354 0.54 0.57 0.57 1.166.0 0.049 0.049 0.017 0.022 0.032 0.027 1.010 0.837 2.853 2.354 0.54 0.47 0.48 0.049 0.017 0.022 0.032 0.027 1.011 0.867 2.879 2.425 0.40 0.47 0.17 0.022 0.032 0.027 1.011 0.867 2.879 2.425 0.40 0.47 0.17 0.022 0.032 0.027 1.011 0.867 2.857 2.357 0.45 0.47 0.47 0.18 0.049 0.017 0.022 0.032 0.027 1.011 0.864 2.857 2.355 0.46 0.47 0.47 0.18 0.049 0.017 0.022 0.032 0.027 1.011 0.848 2.857 2.355 0.46 0.39 0.049 0.017 0.022 0.032 0.027 1.011 0.848 2.857 2.359 0.40 0.47 0.47 0.18 0.049 0.017 0.022 0.032 0.027 1.011 0.848 2.856 2.431 0.44 0.41 0.46 0.49 0.049 0.017 0.022 0.032 0.027 1.011 0.848 2.856 2.431 0.44 0.41 0.46 0.41 0.44 0.41 0.46 0.049 0.049 0.017 0.022 0.032 0.027 1.011 0.849 2.850 2.418 0.45 0.51 0.45 0.51 0.049 0.049 0.017 0.022 0.032 0.027 1.012 0.841 2.861 2.850 2.418 0.45 0.51 0.42 0.049 0.049 0.017 0.022 0.031 0.027 0.945 0.049 0.049 0.049 0.017 0.022 0.031 0.027 0.945 0.949 0.049 0.049 0.017 0.022 0.031 0.027 0.945 0.949 0.049 0.049 0.017 0.022 0.031 0.027 0.945 0.949 0.049	31.	•	0.049		0.0221	0.0321	<u> </u>	1.10.1	0.851	2.8/4	 	- c	74.0	0.65.0
1146.0 0.049 0.049 0.017 0.022 0.032 0.027 1.026 0.867 2.894 2.394 0.50 0.27 1.025 1.026 0.867 2.898 2.454 0.37 0.27 1.025 1.026 0.867 2.898 2.454 0.37 0.27 1.025 1.026 0.867 2.898 2.454 0.37 0.27 1.025 1.026 0.867 2.898 2.454 0.37 0.27 1.025 1.026 0.867 2.898 2.454 0.37 0.27 1.025 0.049 0.049 0.017 0.022 0.032 0.027 1.010 0.852 2.853 2.354 0.54 0.46 1.066 0.049 0.049 0.017 0.022 0.032 0.027 1.019 0.867 2.857 2.435 0.54 0.47 0.47 1.017 0.022 0.037 1.016 0.860 2.857 2.435 0.46 0.47 0.47 1.017 0.049 0.049 0.049 0.017 0.022 0.032 0.027 1.011 0.860 2.857 2.435 0.46 0.47 0.47 1.18 0.049 0.049 0.017 0.022 0.032 0.027 1.014 0.846 2.855 2.355 0.46 0.47 1.18 0.049 0.049 0.017 0.022 0.032 0.027 1.014 0.846 2.865 2.395 0.46 0.47 0.47 1.18 0.049 0.049 0.017 0.022 0.032 0.027 1.017 0.859 2.874 2.431 0.44 0.41 1.18 0.049 0.049 0.017 0.022 0.032 0.027 1.011 0.849 2.851 2.382 0.46 0.41 1.19 0.049 0.049 0.017 0.022 0.032 0.027 1.011 0.841 2.861 2.382 0.51 0.51 0.45 1.19 0.049 0.049 0.017 0.022 0.032 0.027 1.011 0.841 2.861 2.851 2.382 0.51 0.51 0.42 1.19 0.049 0.049 0.017 0.022 0.031 0.027 0.045 0.044 0.049 0.049 0.017 0.022 0.031 0.027 0.045 0.044 0.049 0.049 0.049 0.017 0.022 0.031 0.027 1.036 0.865 2.926 2.449 0.37 0.54 0.48 1.21 0.049			0.049		0.0221	0.0321	, 0	0.965		2.886	. ~	-	0.41	
1151.0 0.049 0.049 0.017 0.022 0.032 0.027 1.026 0.867 2.898 2.454 0.37 0.27 0.27 1.018 0.854 2.877 2.416 0.54 0.47 0.47 1.156.0 0.049 0.049 0.017 0.022 0.032 0.027 1.010 0.852 2.853 2.354 0.54 0.47 0.48 0.47 0.049 0.017 0.022 0.032 0.027 1.010 0.857 2.873 2.425 0.40 0.48 0.47 0.049 0.049 0.017 0.022 0.032 0.027 1.011 0.860 2.857 2.435 0.45 0.47 0.47 0.47 0.47 0.049 0.049 0.017 0.022 0.032 0.027 1.014 0.860 2.857 2.375 0.46 0.47 0.47 0.17 0.022 0.032 0.027 1.014 0.846 2.857 2.375 0.46 0.46 0.47 0.47 0.47 0.049 0.049 0.017 0.022 0.032 0.027 1.014 0.846 2.865 2.375 0.46 0.39 0.049 0.049 0.017 0.022 0.032 0.027 1.014 0.846 2.865 2.431 0.44 0.47 0.47 0.47 0.049 0.049 0.017 0.022 0.032 0.027 1.017 0.848 2.854 2.431 0.44 0.47 0.47 0.47 0.049 0.049 0.017 0.022 0.032 0.027 1.012 0.841 2.861 2.851 0.46 0.47 0.47 0.47 0.47 0.049 0.049 0.017 0.022 0.032 0.027 1.012 0.841 2.861 2.48 0.51 0.45 0.41 0.45 0.41 0.45 0.41 0.45 0.41 0.45 0.41 0.45 0.41 0.45 0.41 0.45 0.41 0.45 0.41 0.45 0.41 0.45 0.41 0.45 0.45 0.41 0.45 0.05 0.05 0.05 0.05 0.05 0.45		<u>.</u>	0.049		0.022	0.032		0.899	0.776	2.824	~	<u> </u>	0.50	947.7
1156.0 0.049 0.049 0.017 0.022 0.032 0.027 1.018 0.854 2.877 2.5416 0.541 0.471 0.047 0.047 0.049 0.017 0.022 0.032 0.027 1.010 0.857 2.853 2.354 0.541 0.401 0.051 0.052 0.027 1.010 0.857 2.879 2.425 0.401 0.371 0.021 0.022 0.027 1.011 0.860 2.857 2.435 0.47	•	۰ 	0.049	•	0.022	0.032		1.026	0.867	2.898	ر ا	<u>.</u>	0.27	4.646
1106.0 0.049 0.049 0.017 0.022 0.032 0.027 1.010 0.055 2.055 2.055 0.056 0.040 0.049 0.017 0.022 0.032 0.027 1.011 0.860 2.857 2.425 0.460 0.37 0.47 0.17 0.022 0.032 0.027 1.011 0.860 2.857 2.435 0.46 0.47 0.47 0.47 1.17 0.860 2.857 2.435 0.46 0.47 0.47 0.47 0.47 0.47 0.047 0.049 0.049 0.017 0.022 0.027 1.014 0.846 2.857 2.375 0.56 0.46 0.46 0.18 0.049 0.017 0.022 0.027 1.014 0.846 2.865 2.395 0.46 0.39 0.049 0.049 0.017 0.022 0.027 1.017 0.859 2.874 2.431 0.44 0.49 0.18 0.049 0.017 0.022 0.037 0.027 1.017 0.859 2.874 2.431 0.44 0.41 0.41 0.049 0.017 0.022 0.032 0.027 1.011 0.848 2.856 2.400 0.53 0.46 0.41 0.42 0.017 0.022 0.032 0.027 0.037 0.034 0.049 0.017 0.022 0.037 0.037 0.034 0.049 0.049 0.017 0.022 0.037 0.037 0.015 0.784 2.861 2.861 2.382 0.51 0.45 0.42 0.049 0.049 0.017 0.022 0.031 0.027 0.915 0.778 2.857 2.386 0.49 0.42 0.42 0.42 0.44 0.449 0.017 0.022 0.031 0.027 0.915 0.865 2.926 2.449 0.37 0.55 0.48 0.48 0.48 0.049 0.049 0.017 0.022 0.031 0.027 0.915 0.855 2.864 2.418 0.549 0.549 0.017 0.022 0.031 0.027 0.915 0.855 2.864 2.418 0.549 0.549 0.017 0.022 0.031 0.027 0.915 0.855 2.864 2.418 0.549 0.549 0.017 0.022 0.031 0.027 0.915 0.855 2.864 2.418 0.549 0.549 0.017 0.022 0.031 0.027 1.035 0.855 2.854 2.411 0.549 0.48 0.48	•		0.049	•	0.022	0.032		1.018	9.826	2.877		<u>.</u>	74.0	7.95
1170.0 0.049 0.049 0.017 0.022 0.022 0.027 1.011 0.860 2.857 2.433 0.47 0.47 0.47 1.17 0.049 0.049 0.017 0.022 0.022 0.027 1.014 0.846 2.857 2.375 0.56 0.46 0.45 1.18 0.049 0.049 0.017 0.022 0.027 1.014 0.846 2.865 2.395 0.46 0.39 0.46 0.39 1.18 0.049 0.049 0.017 0.022 0.027 1.017 0.859 2.874 2.431 0.44 0.41 0.41 1.18 0.049 0.049 0.017 0.022 0.027 1.017 0.859 2.874 2.431 0.44 0.41 1.18 0.049 0.049 0.017 0.022 0.027 1.011 0.848 2.854 2.400 0.53 0.46 0.41 1.18 0.45 0.41 2.861 2.851 2.418 0.45 0.42 1.10 0.049 0.049 0.017 0.022 0.027 0.951 0.941 2.861 2.851 2.418 0.45 0.45 0.42 1.20 0.049 0.049 0.017 0.022 0.031 0.027 0.915 0.778 2.857 2.384 0.45 0.45 0.45 0.45 0.45 0.45 0.047 0.027 0.027 0.015 0.027 0.027 0.055 0.055 0.055 0.55 0			0.049	•	0.0221	0.0521		1010	0.652	2.655		-	7.40	
1176.0 0.049 0.049 0.017 0.022 0.032 0.027 1.004 0.839 2.837 2.375 0.56 0.46 0.39 1181.0 0.049 0.049 0.017 0.022 0.032 0.027 1.014 0.846 2.865 2.395 0.46 0.39 0.39 1186.0 0.049 0.049 0.017 0.022 0.032 0.027 1.017 0.859 2.874 2.431 0.44 0.41 1191.0 0.049 0.049 0.017 0.022 0.032 0.027 1.011 0.848 2.856 2.400 0.53 0.46 0.41 1191.0 0.049 0.049 0.017 0.022 0.032 0.027 1.012 0.841 2.861 2.382 0.51 0.44 0.41 1191.0 0.049 0.049 0.017 0.022 0.032 0.027 0.915 0.78 2.861 2.861 2.382 0.51 0.45 0.45 1101.0 0.049 0.049 0.017 0.022 0.031 0.027 0.915 0.778 2.857 2.386 0.49 0.42 1121.0 0.049 0.049 0.017 0.022 0.031 0.027 0.915 0.865 2.926 2.449 0.37 0.25 1121.0 0.049 0.049 0.017 0.022 0.031 0.027 1.025 0.855 2.869 2.411 0.549 0.37 0.55 1121.0 0.049 0.049 0.017 0.022 0.031 0.027 1.035 0.855 2.864 2.411 0.549 0.48 1121.0 0.049 0.049 0.017 0.022 0.031 0.027 1.035 0.850 2.854 2.411 0.549 0.48 11221.0 0.049 0.049 0.017 0.022 0.031 0.027 1.003 0.830 2.834 2.349 0.549 0.549 0.017 0.022 0.031 0.027 1.003 0.830 2.834 2.349 0.549 0.48		; c	0.049		0.0221	0.032		1.011	0.860	2.857				
1181.0 0.049 0.049 0.017 0.022 0.032 0.027 1.014 0.846 2.865 2.395 0.46 0.39 0.39		; ; 	0.049			0.032	6	1.004	0.839	2.837				
1186.0 0.049 0.049 0.017 0.022 0.032 0.027 1.017 0.859 2.874 2.431 0.44 0.41 0.41 1191.0 0.049 0.049 0.049 0.017 0.022 0.032 0.027 1.011 0.848 2.856 2.400 0.53 0.46 0.45 1192.0 0.049 0.049 0.017 0.022 0.032 0.027 1.012 0.841 2.861 2.382 0.51 0.45 0.42 1120.0 0.049 0.049 0.017 0.022 0.031 0.027 0.915 0.788 2.857 2.384 0.45 0.39 120.0 0.049 0.049 0.017 0.022 0.031 0.027 0.915 0.786 2.857 2.386 0.50 0.42 1211.0 0.049 0.049 0.017 0.022 0.031 0.027 1.036 0.865 2.926 2.449 0.37 0.25 1211.0 0.049 0.049 0.017 0.022 0.031 0.027 1.025 0.852 2.867 2.449 0.37 0.54 1211.0 0.049 0.049 0.017 0.022 0.031 0.027 1.025 0.852 2.857 2.384 0.549 0.549 0.48 1221.0 0.049 0.049 0.017 0.022 0.031 0.027 1.005 0.830 2.857 2.349 0.54 0.48 1221.0 0.049 0.049 0.017 0.022 0.031 0.027 1.003 0.830 2.854 2.349 0.54 0.48 1221.0 0.049 0.049 0.017 0.022 0.031 0.027 1.003 0.830 2.854 2.349 0.54 0.48 1221.0 0.049 0.049 0.017 0.022 0.031 0.027 1.003 0.830 2.854 2.349 0.54 0.48 1221.0 0.049 0.049 0.017 0.022 0.031 0.027 1.003 0.830 2.854 2.349 0.54 0.48 1221.0 0.049 0.049 0.049 0.040 0.0	181.	<u>.</u>	0.049	•		0.032	ö	1.014	0.846	2.865	- -	<u>.</u>	•	947.9
1191.0 0.049 0.049 0.017 0.022 0.032 0.027 1.011 0.848 2.856 2.400 0.53 0.46	186.	0.04	0.049			0.032	ö	1.017	0.859	•	ر م		•	
1196.0 0.049 0.049 0.017 0.022 0.032 0.027 1.012 0.841 2.861 2.362 0.51 0.42 0.42 1201.0 0.049 0.049 0.049 0.022 0.031 0.027 0.943 0.814 2.880 2.418 0.45 0.39 1206.0 0.049 0.049 0.049 0.022 0.031 0.027 0.915 0.778 2.857 2.386 0.50 0.42 1211.0 0.049 0.049 0.017 0.022 0.031 0.027 1.036 0.865 2.926 2.449 0.37 0.25 1216.0 0.049 0.049 0.017 0.022 0.031 0.027 1.025 0.852 2.894 2.411 0.54 0.48 1221.0 0.049 0.049 0.017 0.022 0.031 0.027 1.003 0.830 2.834 2.349 0.54 0.48 1	191.	0.04	0.049	•			0.027	1.011	0.848	•	~i «		•	•
1201.0 0.049 0.049 0.017 0.022 0.031 0.027 0.915 0.778 2.857 2.386 0.50 0.42 1206.0 0.049 0.049 0.017 0.022 0.031 0.027 0.915 0.786 2.926 2.949 0.37 0.25 1211.0 0.049 0.049 0.017 0.022 0.031 0.027 1.036 0.865 2.926 2.449 0.37 0.25 1216.0 0.049 0.049 0.017 0.022 0.031 0.027 1.025 0.852 2.894 2.411 0.54 0.48 1221.0 0.049 0.049 0.017 0.022 0.031 0.027 1.003 0.830 2.834 2.349 0.54 0.48	196.		\$8	•			0.027		0.041	•			•	27.7
	207		\$ 8	•		•	0.00		0.014	•				
1216.0 0.049 0.049 0.017 0.022 0.031 0.027 1.025 0.852 2.894 2.411 0.54 0.48	211.	0.0	5 2	5 6			0.027		0.865		; -			247.5
221.0 0.049 0.049 0.017 0.022 0.031 0.027 1.003 0.830 2.834 2.349 0.54 0.48	1216.	0.0	8	10.			0.027	1.025	0.852		2	·		945.0
	221.	0.04	9	•		•	0.027	1.003	0.830	•	2.	<u>.</u>	•	946.2

TIME	=	•											i !
TIME	PRODUC	CTION	H2 VENTED	_ _	H2 TO CO2 REDUCT	H2 TO 1	CO2 REMOVAL EXIT CO2 PRESS	WAL PRESS	HEAT EXCH EXIT CO2	EXCHANGER CO2 PRESS	O2 ADDITION		I 02 I ACCUM
HIN	HAB1	LA81	HAB1	LAB1	HAB1	LAB1	HAB1	LAB1	HAB1	LAB1	HABITAT	8	05
	PPH -	PPH	Hdd	ЬРН	НЬН	Hdd	9 H	포 포	— H H2	¥ 19	- HAA	PPH	PSIA
1226.0	0.049	0.049	0.017	0.022	0.031	0.0271	1.026	0.856	2.899		0.40	0.31	\$47.
	•	0.049	0.017	0.022	0.031	0.027	•	•	2.922	2.435	0.47	0.36	946.0
236.	0.049	0.049	0.017	0.022	0.031	0.027	1.020	0.839	2.881		0.56	0.48	945.2
	0.0491	0.049	0.017	0.022	0.031	0.027	1.019	0.8461	2.879	2.395	0.46	0.40	946.5
246.	0.049	0.049	0.017	0.022	0.031	0.027	1.034	0.861	•	•	0.43	0.34	946.5
251.	0.049	0.049	0.017	0.022	0.031	0.027	1.031	0.851	2.913	2.408	0.53	0.42	2 45
256.	•	0.049	0.017	0.022	0.031	0.027	1.022	0.842	2.889		0.51	0.4 4	945.5
261.	•	0.049	0.017	0.022	0.032	0.027	0.972	0.816	2.909		0.44	0.37	246.1
266.	0.0491	0.049	0.017	0.022	0.032	0.027	0.923	0.783	2.903	•	0.49	0.38	245.7
271.	•	0.049	0.017	0.022	0.032	0.027	1.050	0.869	2.964	•	0.37	0.25	246.1
276.	•	0.049	0.017	0.022	0.032	0.027	1.034	0.854	2.921	2.418	0.54	0.49	943.7
	0.049	0.049	0.017	0.022	0.032	0.027	1.013	0.834	2.863	2.362	0.53	0.46	25.3
286.		0.049	0.017	0.022	0.032	0.027	1.039	0.862	2.935	2.439	0.39	0.29	9.946
	0.049	0.049	0.017	0.022	0.032	0.027	1.045	0.865	2.952	2.447	0.47	0.36	944.8
1296.0	•	0.049	0.017	0.022	0.032	0.027	1.028	0.843	2.904	2.387	0.55	0.48	944.1
	•	0.049	0.017	0.022	0.032	0.027	1.028	0.852	2.904	2.411	0.45	0.39	245
306.		0.049	0.017	0.0221	0.032	0.027	1.042	0.866	2.943	2.452	0.43	0.33	945.4
311.	•	0.049	0.017	0.022	0.032	0.027	1.037	0.855	2.929	2.420	0.53	0.43	24.1
316.		0.049]	0.017		0.032	0.027	1.025	0.847	2.897	•	0.51	0.45	4.4.4
321.	0.049	0.049	0.016	0.022	0.032	0.027	0.975	0.822	2.916	2.441	0.44	0.38	, 2 5 5
326.	•	0.049	0.016	0.022	0.032	0.027	0.919	0.785	2.903	2.412	0.49	0.39	24.5
	0.049	0.049	0.016	0.0221	0.032	0.027	1.047	0.874	2.956	2.473	0.37	0.26	945.0
336.	0.049	0.0491	0.016	0.0221	0.032	0.027	1.028	0.859	2.904	2.432	0.54	<u>8</u>	¥2.
341.	0.049	0.049	0.016	0.0221	0.032	0.0271	1.0031	0.838	2.835	2.373	0.53	84.	\$
ş:	•	0.049	0.016	•	0.0321	0.027	1.0281	0.865	2.903	2.448	0.40	0.31	45
1251.0	0.044	0.049	0.0161	0.0221	0.0321	0.0271	1.0501	2000.0	2.909	2 202	74.0	9.0	25.
3 5	•	0.00	0.00	0.000	0.026	0.027	700	25.0	2 862	2 676	96.0	70.0	6 4
466	0.049	040	0.0161	0.0221	0.032	0.071	1810	0.867	2 876	2 453	2 3	27.0	970
371.	0.049	0.0491	0.016		0.0321	0.027	1.008	0.855	2.848	2.420	95	0.47	\$
	0.049	0.049	0.016	0.022	0.032	0.027	1.000	0.846	2.827	2.395	0.52	0.46	943
1381.0	0.049	0.049	0.017	0.022	0.032	0.027	0.946	0.819	2.824	2.433	0.45	0.4	943
M	•	0.049	0.017	0.022	0.032	0.027	0.880	0.780	2.792	2.401	0.50	0.45	23.0
391.	0.049	0.0491	0.017	0.022	0.032	0.027	1.009	0.869	2.850	2.459	0.38	0.29	\$43
1396.0	•	0.049	0.017	0.022	0.032	0.027	1.003	0.853	2.835	2.415	0.55	0.48	942.7
	•	0.049	0.017	0.022	0.032	0.027	1.006	0.832	2.843	•	0.54	0.41	943
406.	•	0.049	0.017	0.022	0.032	0.027	1.005	0.856	2.841	2.422	0.41	0.43	945.
[]	•	0.049	0.017	0.022	0.032	0.027	0.986	0.857	2.788	2.424	0.49	0.53	940.0
•	•	0.049	0.017	0.0221	0.032	0.027	0.934	0.834	2.642	•	0.57	1.48	939.
÷	•	0.049	0.017	0.022	0.032	0.027	0.966	0.841	2.732	2.382	0.47	0.36	3 45.
	•	0.049	0.017	0.022	0.032	0.027	0.980	0.853	2.770	2.415	0.45	0.39	2056
431.	•	0.049	0.017	0.022	0.032	0.027	0.953	0.839	2.6%	2.375	0.55	0.59	938.
1436.01	0.049	0.049	0.017	0.022	0.032	0.027	C 26 C	טאא כ	0 4EG	0110			4 7 4

	HEAT EXCHANGER CONDENSATE		CO2 REDUCTION CONDENSATE	REDUCTION	TOTAL COND						; ; ; ; ; ; ;	<u> </u> 	
TIME	HAB	LAB	HAB1	LAB1	_		-	-	-	-	-	-	İ
MIN	ЬРН	Н	PPH	- Hdd	- Hdd								
1.01	2.79	2.79	0.000	0.0001	5.57		-			-	-	-	
6.0	2.28	2.06	0.000	0.000	4.34		_		_	-		-	
16.01	1.28			000	•								
21.0	1.29	1.10	0.00	0.000	2.39	_							
26.0	1.19	0.00	0.000	0.000								-	
31.0	0.93	0.57	0.000	0.00	1.50								
36.0	0.74	0.52	0.000	0.000	•	_							
41.0	0.73	0.48	0.000	•	•	_	_			_	_		
9 5	0.621	0.35	0.000	•	0.96		_	_	_		_	_	
24.0	0.40	0.28	000.0	000.0	0.76	-				_	_	_	
61.01	0.39	0.23	0.000	•	•								
99	6.67	90.9	0.2521	•	12 18								
71.0	0.41	0.26	0.252		1.15								
76.0	0.38	0.20	0.252		1.06		-	_					
81.0	0.35	0.12			<u>*</u>	_							
	0.27	0.14	0.252	•	0.891		_	_	_				
	0.281	0.11		•	0.86	_	_	_	_			-	
֓֞֜֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֓֓֓֡֓֓֡֓֡֓֡	0.24	7 6	0.2521	•	0.79				_	_	_	_	
	1.20	20.0	•	•	9.6							_	
111.0	0.19	0.02	0.2521	0.2231	0.69								
	0.16	0.03	0.252		0.67	-	-						
121.0	0.15	0.00	0.247		0.62					. _			
126.0	5.71	5.23	0.247	0.219	11.40	_	_	_	-	-	_		
131.09	0.19	0.05	0.247	0.219	0.68	_	_	_	_	. _ _	-		
161.0	0.20	0.02	0.247	0.2191	0.68					_	_	_	
146.0	0.16	0.00	0.247	0.219	0.66								
151.0	0.13	0.0	0.247	0.219	0.60							-	
156.0	0.12	0.00	0.247	0.219	0.59								
161.0	0.11	0.00	0.247	0.219	0.58	_			_				
166.0	0.08	0.0	•	0.219	0.55	_	_	_	_	-			
127.01	0.08	0.00	•	0.2191	0.54		_		_				
18.0	20.0	9 6	0.247	0.2191	<u> </u>				_	_		_	
186.0	5.66	4.91		0.615	12.0								
191.0	0.0	0.00		0.213	55.0								
196.0	0.11	0.00		0.213	0.57								
201.0	0.10	0.00	•	0.213	0.55		-						
206.0	0.08	0.00			0.54	_							
211.0	0.05	0.00	•		0.51	_	_	_			_		
276.01	0.061	0.00	•		0.52	_	_	_	_	_	-	-	
10.122	0.05	0.00	•	•	0.51			_	_	_	_	_	
221 0	0.05	00.0	0.241	0.215	0.47				_	_	_	_	
246.0	70.0		•	٠	- 1		_	_			_		
					- 0 4	_		•					

SVHSER 10639

TIME HAB MIN PPH 246.0 5.22 251.0 0.05 256.0 0.07 261.0 0.06 266.0 0.06	CONDENSAIE	CO2 REDUCTION CONDENSATE	 8	TOTAL I		i ! ! !				-
	LAB	HAB1	LAB1							
0000	- H	Hdd	- Hdd	PPH –	- - -	!	_	!	-	-
	4.691	0.2351	0.2071	10.35	_	_				
	0.00	0.235	•	0.49]						
	0.00	0.235	•	0.51				_	-	_
	0.0	0.2351	0.207	184.0		_			-	_
_	8 6	0.235	0.2071	0.46	. —	. -	_	_		_
	0.0	0.235	0.207	0.47	_	_	_			
<u> </u>	0.00	0.235	0.207	0.46						
= :	0.0	0.2351	0.2071	± 4				_		-
	00.0	0.235					_	_	_	
=		0.230	0.202	0.43						
<u>-</u>	4.55	•	•	9.71						
= 7	0.0	0.2301	0.2021	24.0	-					
	9 6	0.230	0.2021	9.0	-			_	_	_
-	0.0		0.202	0.43	_	_				
- -	0.00	•	0.202	0.43						
	0.0	0.230	0.2021	0.43				 ,		_
	00.0			0.43		. —	_	_	، جنے	_
0	0.00	0.230	0.202	0.43						
<u>.</u>	0.00		0.2021	0.431		_ _				
. r.	4.48	0.226	0.197	8.6				· - ·	-	_
; o	. 0	0.226	0.197	_	_	_				
0		0.226	0.197							
	9.0	0.226	0.197	24.0				· -	-	. —
391.0 0.00		0.226	0.197		_	_				
-		0.226	0.197							
-	_	0.226	0.197	0.42						
<i>.</i>	9 0	0.2261	0.197		. —			_	_	
:=		0.226	0.197	_	_	_				
=	0	•	0.193	_						
	3	-	0.193	9.94						_
- -	9.0	112270	0.195							
	.		0.193		-	-		. <u> </u>		_
-	0.0	-	0.193	_	_	_	-	_		
1.01 0.	0.00	· ·	0.193	0 (
<u>.</u>	0.00		0.193					-		
			0.193	0			. —	_		_
71.0	0.0	-	0.193	•	. —			_		
	0.00	<u>.</u>	0.193	<u>.</u>	_	_				
81.04 0.	0.00	0.224	0.190	0.88					_	

<u> </u>	CONDENSATE	CONDENSATE C	CO2 REDUCTION CONDENSATE	NOTE -	COND				1 1 1 1			
TIME HAB	I LAB		HAB1	LAB1								
MIN PPH	<u>-</u>		- HAA	нда	- Hdd			!	-	_	_	-
491.01 0.	0	-00.	0.224	0.190	1.171	_				- -		
_	0.83 0.	0.00	•	0.190	1.24							
-		0.00	0.224	0.190	1.17							-
<u>.</u>	196	00.0	1422.0	190	1.57					-	-	_
; c	 3 8		0 224	200	1.35	-		_		_	_	
	98	8 8		0.190	1.39	-			_			
	071	0.00	0.224	0.190	1.48	_						
0 1.	_	0.00	0.224	0.190	1.47							
.0 1.	00	00	0.224	0.190	1.42						-	
- -		0.00	•	0.192	1.491							
- i	.32 5.	90.	0.2401	1241.0	167.71				-	-		. —
		0.00	0.2401	0 1921	1.71				. —	_	_	_
		0.0	0.240	0.192	1.47			_	_	_	_	
· -	_	0.21	0.2401	0.192	_	_	_	_	_	_		
		0.01	0.240	0.192	_	_						
	1.181 0	.04	0.240]	0.192								
- To	• ·	40.	0.240	0.192								
	281	20.5	0.2401	0.192						_	_	. —
= =	-	5 E	0.240	0.192			. 	_	. —	-		_
5 0	•	03	0.253	0.199	_	. _	· -	_	_			
0		5.39	•	0.199		 -						
=	0	60.	•	0.199								
<u>.</u>		0.081	0.253	0. L99						-		
	1.071 0	20.0	0.2551	0.199	1.92					-	_	_
		0.07	0.253	0.199		_	_	_	_			
=		0.061	0.253	0.199	_							
-	_	0.07	0.253	0.199								
10.		0.06	•	0.199							-	_
T -	125.	90.0	0.627	0.199		_		. —	_		_	_
	25	0.061	0.263	0.207		_	_	_	_	_		
-	8	5.56				_	_					
_	_	0.13	0.263	_	_							
	.42	0.12	•	o ·			-					
<u> </u>	01.	0.10	0.263									
_	-43	0.11	•	0.507				. –		- 		-
<u> </u>	<u> </u>	0.101	0.265			_	_			-	-	_
696.UI 1	197	160.0	2,4			-		-		_	_	_
	28	160.0		_		-	_		_	_	_	
	.31	0.081	•	_		_						
_	10T	0.07	•	-								
_ _	.02	0.07	0.272	0.215		_	_	_	_	-	-	-
		•	•		• •	•	-	_	-	_	_	_

	HEAT EXCHAN	GER	ICO2 REDUCTION	- NOTTO								
	CONDENSAT	SATE	CONDENSATE	ATE	COND		-		- -			
TIME	HAB	LAB	HAB1	LAB1					-	-	-	<u> </u>
NIN	Hdd.	ЬРН	ЬРН	- Hdd								
736.0	0.85	0.11		0.215	1.45			-	-			Ī
741.0	0.59	0.08	0.272	•	1.16					_	_	-
751.0		0.07		0.215	1.29							
1 756.0		0.05		0.215	1.08							
761.0		0.05	•		1.04	-	_					
766.0		0.03	•	•	1.01		_	-		-		_
774 01		0.021	•	•	0.961		_	_		_	_	_
781.0		20.0	12/2.0	0.215	0.92							_
786.0		5.34			12.17			_				
791.0		0.05		0.221	1.03		- -					
796.0		0.04	•	•	1.03	_	_	-	-	-		
801.01	0.46	0.03	•	•	0.99			_	-	_		-
813.0		0.02	0.2/1	•	0.991					_	_	_
816.0	4.0	0.02	•	0.221	1.00.				 .	-	-	_
821.0	0.50	0.0	0.271		1.00							
826.01	0.51	0.001			1.00							
	0.51	0.00	0.271	•	1.001	_	_	-	-	_		
836.01	0.52	0.0	0.271	•	1.01	_	_	-	_	-	-	-
-12	6.82	5.24	0.269	0.223	12.55							
_	0.71	0.02	0.2691		, –							
856.0	0.78	0.03	0.269	•	•		-	-	-	_		
861.0	0.64	0.03	0.269	•	1.16	- .			-	-	-	-
871.0		0.02	0.2691	0.223	1.35						_	_
876.0	0.83	0.04	0.269		1.36							
881.0		0.04	0.269	•	•		_				_	
891.0	0.40	0.0	0.269	0.223	1.46				-	_	_	_
1 896.0	0.93	0.02	0.269									
901.0	1.00	0.01	0.274	•	1.52		-	_				
906.0	7.23	5.26	0.274	0.225	12.991		_		_	_	-	_
1 916.01	1.25	0.00		0.225	1.79 1.81						_	_
921.0	0.99	0.06										
926.01	1.31	0.06	•	•								
931.0	1.33	0.06	•	•		_	_	-	-	_		
956.0	1.19	9.05	0.274	0.225	1.74		_	_		-	_	
246.0	1.31	0.05										
951.0	1.28	0.05	•		1.83		_					
956.01	1.16	0.05	•	0.225	1.71	_	_					
964.01	1.23	0.05	0.283	22.5	1.79			_	_	_		-
971.01	1.42	12.0	•	0.229	15.51						_	_
· ?								•	•			

	CONDENSATE	ATE	COZ REDUCTI	REDUCTION (TOTAL COND							
7	HAR	1 48 1	HARI	I AB1	-	-	-	-	-	-	-	-
N.	H H	H H	Hdd	Hdd	 Hdd							
10 100	100	100	1282 0	1066 0	1 601	-	-	-	-	-	-	-
10.786	1.67	? -	0.283	0.229	2.03							
	1.43	0.10		0.229	2.04		-	. –	-		-	-
0.966	1.27	0.08	•	0.229	1.87	_	_	_	_	_	_	_
1001.0	1.24	0.08	•	0.229	-	_		_	_	_	_	_
10006.0	1.37	•	•	0.229	1.97	_	_	_	_	_	_	_
•	1.34	0.07	•	0.229	1.92	_	_	-	_	-	_	_
1016.01	1.21	0.07	•	0.229	1.79		_		-	_	_	
1021.0	1.26	0.07	•	0.235	1.86		_					
1026.0	•	5.60	•	0.235	13.63							
1031.01	1.91	0.14	•	٠	2.08							
1036.01	1.50	0.151	•	•	7.01							
11041.01	1.021	0.101	•	•	•							
1046.01	1.281	0.121	•	0.235	1.921							
1021.01	1.22	0.101	•	0.255	1.05							
•	1.02	00.0	٠	0.655	10.							
1007701	3 5	90.0	0.291	0.235	1.55							
0.0001	0.97	00.0	162.0	0.255	1.0.1							
10.4.01		9 6	•	0.635	1.101							_
		0.05	• •	0.240	1.261							_
1086.0	6.701	5.52		0.240	12.75	. —	. —	_		_	. —	-
•	0.65	0.10	•	0.240	1.29	_	_		_	_	_	_
10096.01	0.66	0.09	0.295	0.240	1.28		_		_		_	
	0.47	0.06	•	0.240	1.07					_		
1106.0	0.56	0.06	0.295	0.240	1.16	_						
0.1111	0.52	0.0	0.295	•	1.09							
11116.01		5.0	0.2951	0.240	1.01							
0.7717	20.40	5 6	0.675		0.93							
	0.40	0.021	0.295	0.240	0.95		-		-	-	-	
1136.0	0.38	0.01	0.295	0.240	0.93	-	_	-	-	-		_
1141.0	0.37	00.00	0.230	0.243	0.00		_	_	_		_	_
11146.0	117.9	5.28	0.290	0.243	12.52	_	_	_	_	_	_	_
	1 0.44	0.03	0.290	0.243	1.01	_			_	_	_	_
	0.45	0.03	0.290	0.243	1.01	_	_	_	_	_	_	_
•	0.43	0.02	0.290	0.243	0.98	_	_	_	_	_	_	_
11166.0	0.44	0.02	0.290	0.243	0.99	_	_	_	_	_	_	_
•	4.0	0.00	0.290	٠	•	-	_	_	_		_	_
	0.43	0.01	0.290	•	0.97	_	_	_	_	_		
•	4.	0.00	0.290	٠	1.00		_	-	_		_	_
	4	0.00	0.290	•	1.02		_				_	_
	0.49	0.00	0.2901	•	1.021				_			
	0.51	0.00	0.290	•	1.05							
: .	ů.	0.00	0.287	•	1.081							
11206.0	•	5.20	0.287	٠	12.55							
1211.0	•	0.011	0.2871	0.242	1.24				_	_		_
•	0.761									-	-	•

									-		_
= - 	HEAT EXCH. CONDENS.	ANGER	ICO2 REDUCTION I CONDENSATE	TION	TOTAL COND						_
TIME	HAB	LAB	HAB1	LAB1			: : : : : :				
NIK	Hdd	Н	Н	Hdd	Н						
1226.0	0.78	0.031	0.287	0.2421	1.33	-	_	-	_	_	_
11231.0	0.78	0.00	0.287	0.242	1.31	_	_	_	_	_	_
11236.0	0.72	0.03		0.242	1.28	_	_	_		 ·	
11241.0	0.71	0.02	0.287	0.242	1.26	- ·		_			<u></u> , .
11246.0	0.77	0.00	•	0.242	1.30	_	_				 .
11251.0	0.76	0.00		0.242	1.29						
1256.0	0.7 0.1	0.0	•	0.242	1.23					_	
1261.0	0.73	•	•	0.242	1.26						
17266.01	90.0	77.6	0.290	242.0	15.04						
1274.0	20.0	2000	•	0.242	1.46						
11281.01	69.0	90.0		0.242	1.26					-	
1286.0	0.88	0.03		0.242		-			_		
1291.0	0.871	0.02		0.242	1.43					_	_
1296.0	0.77	0.02		0.242	1.33	_	_	_	_	_	
1301.0	0.76	0.02	•	0.242	1.31	_	_	_	_	_	_
1306.0	0.80	0.02	•	0.242	1.35	_	_	_	_	_	_
1311.0	0.75	0.03		0.242	1.31	_	_	_	_	_	_
1316.0	0.65	0.03	•	0.242	1.21						
	0.67	0.00	•	0.245	102.1						
1326.09 1326.09	9.4	5.33	•	0.243	12.62						
11351.0	0.71	0.0	0.295	0.245	T. 201						
	0.70	0.00		0.243	1.08						
11346.0	0.62	0.03		0.243	1.19			_		-	-
1351.0	0.57	0.02	0.293	0.243	1.12	_	_	_	_	_	
1356.0	0.46	0.05	•	0.243	1.04						
1361.0	0.43	0.03	0.293	0.243	1.00						
1721	74.0	9 6	0.295	0.645	0.30						
1376.01	32.0	00.0	0.293	0.243	0.88			-			
11381.0	0.32	0.00	0.289	0.244	0.85						-
11386.0	6.35	5.21	0.289	0.244	12.10	_		_	_	_	_
1391.01	0.33	0.01	0.289	0.244	0.88	_	_	_	_	_	_
11396.0	0.30	0.03	0.289	0.244	0.87	<u> </u>	_	_	_		_
1401.0	0.21	0.03	0.289	0.244	0.771						_
1406.0	0.131	0.00	0.289	0.244	0.66						
11411.0	0.221	0.00	0.2891	7.0	167.0						
0.6741	2		0.2891	264	0.001						
11426.0	0.11	00.00	0.2891	0.244	0.65	-	-	-	- 42		
1431.0	0.13	0.00		0.244	0.67		. —	_	_	-	-
1436.0		0.00	0.289	0.244	0.65	_	_	_	_	_	_
1440.0	0.10	0.00	0.289	0.244	0.63	_	_	_	_	-	_

FIGURES C-15 TO C-43

SAMPLE PROBLEM OUTPUT PLOTS

C-15	Habitat O, Partial Pressure
C-16	Habitat CO, Partial Pressure
C-17	Habitat Dew Point Temperature
C-18	Habitat Temperature
C-19	Lab O, Partial Pressure
C-20	Lab CO, Partial Pressure
C-21	Lab Dew Point Temperature
C-22	Lab Temperature
C-23	CO, Accumulator Inlet Flow in Habitat Removal
	Subsystem #1
C-24	CO, Removed by Habitat Removal Subsystem #1
C-25	CO2 Accumulator Pressure in Habitat Removal
	Subsystem #1
C-26	Habitat Pressure
C - 27	CO, Accumulator Inlet Flow in Lab Removal
	Subsystem #1
C-28	CO, Removed by Lab Removed Subsystem #1
C-29	CO ₂ Accumulator Pressure in Lab Removal Subsystem #1
C-30	Lab Pressure
C - 31	H, Vented from Habitat O, Gen Subsystem #1
C-32	H ₂ Generated from Habitat 0, Gen Subsystem #1
C-33	02 Produced by Habitat 0, Gén Subsystem #1
C-34	CO, Accumulator Exit Flow in Habitat Removal
	Subsystem #1
C-35	H ₂ Vented from Lab O ₂ Gen Subsystem #1
C-36	H ₂ Generated from Lab O ₂ Gen Subsystem #1
C-37	02 Produced by Lab 0, Gén Subsystem #1
C-38	00, Accumulator Exit Flow in Lab Removal
	Subsystem #1
C-39	H, to CO, Reduction from Lab O, Gen Subsystem #1
C-40	H_2^2 to CO_2^2 Reduction from Habitat O_2 Gen Subsystem #1
C-41	Total Water Consumed by O Generation Subsystems
C-42	Total Water Produced by CO ₂ Reduction Subsystems

FIGURE C-15 HABITAT O2 PARTIAL PRESSURE

FIGURE C-16
HABITAT CO2 PARTIAL PRESSURE

FIGURE C-17
HABITAT DEW POINT TEMPERATURE

FIGURE C-18 HABITAT TEMPERATURE

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE C-19 LAB O2 PARTIAL PRESSURE

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE C-20 LAB CO2 PARTIAL PRESSURE

FIGURE C-21
LAB DEW POINT TEMPERATURE

FIGURE C-22 LAB TEMPERATURE

FIGURE C-23
CO2 ACCUMULATOR INLET FLOW IN HABITAT REMOVAL SUBSYSTEM #1

FIGURE C-24
CO2 REMOVED BYHABITAT REMOVAL SUBSYSTEM #1

FIGURE C-25 CO2 ACCUMULATOR PRESSURE IN HABITAT REMOVAL SUBSYSTEM #1

FIGURE C-26 HABITAT PRESSURE

FIGURE C-27
CO2 ACCUMULATOR INLET FLOW IN LAB REMOVAL SUBSYSTEM #1

FIGURE C-28
CO2 REMOVED BY LAB REMOVED SUBSYSTEM #1

FIGURE C-29 CO2 ACCUMULATOR PRESSURE IN LAB REMOVAL SUBSYSTEM #1

FIGURE C-30 LAB PRESSURE

FIGURE C-31 H2 VENTED FROM HABITAT O2 GEN SUBSYSTEM #1

FIGURE C-32 H2 GENERATED FROM HABITAT O2 GEN SUBSYSTEM #1

C-147

FIGURE C-33 O2 PRODUCED BY HABITAT O2 GEN SUBSYSTEM #1

FIGURE C-34
CO2 ACCUMULATOR EXIT FLOW IN HABITAT REMOVAL SUBSYSTEM #1

FIGURE C-35 H2 VENTED FROMLAB O2 GEN SUBSYSTEM #1

FIGURE C-36 H2 GENERATED FROM LAB 02 GEN SUBSYSTEM #1

FIGURE C-37
O2 PRODUCED BYLAB O2 GEN SUBSYSTEM #1

FIGURE C-38
CO2 ACCUMULATOR EXIT FLOW IN LAB REMOVAL SUBSYSTEM #1

FIGURE C-39 H2 TO CO2 REDUCTION FROM LAB O2 GEN SUBSYSTEM #1

FIGURE C-40 H2 TO CO2 REDUCTION FROM HABITAT O2 GEN SUBSYSTEM #1

FIGURE C-42
TOTAL WATER PRODUCED BY CO2 REDUCTION SUBSYSTEMS

•		
·		
-		
÷		
·		
·		

ORIGINAL PAGE IS

NASA National Aeronautics and State Administrator	Report Documentation Page	Э		
1. Report No.	2. Government Accession No.	3. Recipient's Catalo	g No.	
NASA CR-181736				
4. Title and Subtitle		5. Report Date		
Appendices to the User's M	Contombor 1	αρρ		
for the Emulation/Simulati	-			
mental Control and Life Su	pport System	6. Performing Organi	ization Code	
7. Author(s)		8. Performing Organi	ization Report No.	
James L. Yanosy		SVHSER 106	30	
values 11. Tanosy		10. Work Unit No.		
		To. Troin Chil Ito.		
9. Performing Organization Name and Addr	ess	50649-31-		
Hamilton Standard		11. Contract or Grant	No.	
Division of United Technol	ogies Corporation	NAS1-17397		
Windsor Locks, CT 06096		13. Type of Report an	nd Period Covered	
12. Sponsoring Agency Name and Address		Can been about	Demonst	
NASA		Contractor 14. Sponsoring Agence		
Langley Research Center Hampton, VA 23665-5225		14. Sponsoning Agent	cy code	
,				
previously. The model con- removal subsystem which operation, crew, and condensing the utility of such an emusand test of a piece of ARS Extensions to this extension is an update of which resulted from test. model to permit restarting extension is the development processing equipment. Models abatier, a new condensing filtration. The third extension is the first system system. The second system	r the Emulation Simulation Comsisted of a detailed model (emerated with much less detailed g and sensible heat exchangers lation/simulation combination hardware - SAWD. original effort are presented the model to reflect changes in addition, slight changes we and to improve the iteration at of simulation models for models are presented for: EDC, Meat exchanger, SPE, SFWES, Commission is to create two systems presented consists of one air consists of a potential Space itat, laboratory, four modes,	ulation) of a second (simulation) of a second control of a second	models of a was to explore development, The first trol logic to the SAWD e second ir and water , Bosch, zer, and multising these processing	
17. Key Words (Suggested by Author(s))	18. Distribution State	ement		
Computer Simulation, Environment Space Station, Life Support Modeling	onmental Control, Unclassifi	ed - Unlimited at 54		
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of pages	22. Price	
Unclassified	Unclassifi	205	A10	

PREPARATION OF THE REPORT DOCUMENTATION PAGE

The last page of a report facing the third cover is the Report Documentation Page, RDP. Information presented on this page is used in announcing and cataloging reports as well as preparing the cover and title page. Thus it is important that the information be correct. Instructions for filling in each block of the form are as follows:

- Block 1. Report No. NASA report series number, if preassigned.
- Block 2. Government Accession No. Leave blank.
- Block 3. Recipient's Catalog No. Reserved for use by each report recipient.
- Block 4. <u>Title and Subtitle</u>. Typed in caps and lower case with dash or period separating subtitle from title.
- Block 5. Report Date. Approximate month and year the report will be published.
- Block 6. Performing Organization Code. Leave blank.
- Block 7. Author(s). Provide full names exactly as they are to appear on the title page. If applicable, the word editor should follow a name.
- Block 8. <u>Performing Organization Report No.</u> NASA installation report control number and, if desired, the non-NASA performing organization report control number.
- Block 9. <u>Performing Organization Name and Address.</u> Provide affiliation (NASA program office, NASA installation, or contractor name) of authors.
- Block 10. Work Unit No. Provide Research and Technology Objectives and Plans (RTOP) number.
- Block 11. Contract or Grant No. Provide when applicable.
- Block 12. Sponsoring Agency Name and Address. National Aeronautics and Space Administration, Washington, D.C. 20546-0001. If contractor report, add NASA installation or HQ program office.
- Block 13. Type of Report and Period Covered. NASA formal report series; for Contractor Report also list type (interim, final) and period covered when applicable.
- Block 14. Sponsoring Agency Code. Leave blank.
- Block 15. <u>Supplementary Notes.</u> Information not included elsewhere: affiliation of authors if additional space is re-

- quired for block 9, notice of work sponsored by another agency, monitor of contract, information about supplements (film, data tapes, etc.), meeting site and date for presented papers, journal to which an article has been submitted, note of a report made from a thesis, appendix by author other than shown in block 7.
- Block 16. Abstract. The abstract should be informative rather than descriptive and should state the objectives of the investigation, the methods employed (e.g., simulation, experiment, or remote sensing), the results obtained, and the conclusions reached.
- Block 17. <u>Key Words.</u> Identifying words or phrases to be used in cataloging the report.
- Block 18. <u>Distribution Statement.</u> Indicate whether report is available to public or not. If not to be controlled, use "Unclassified-Unlimited." If controlled availability is required, list the category approved on the Document Availability Authorization Form (see NHB 2200.2, Form FF427). Also specify subject category (see "Table of Contents" in a current issue of <u>STAR</u>), in which report is to be distributed.
- Block 19. <u>Security Classification</u> (of this report). Self-explanatory.
- Block 20. <u>Security Classification (of this page)</u>. Self-explanatory.
- Block 21. No. of Pages. Count front matter pages beginning with iii, text pages including internal blank pages, and the RDP, but not the title page or the back of the title page.
- Block 22. Price Code. If block 18 shows "Unclassified-Unlimited," provide the NTIS price code (see "NTIS Price Schedules" in a current issue of STAR) and at the bottom of the form add either "For sale by the National Technical Information Service, Springfield, VA 22161-2171" or "For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402-0001," whichever is appropriate.

		•	
•			
1			
4			
•			
i			
1			
Ī			
,			

`