Title

D. Zack Garza

Sunday 13th September, 2020

Contents

1 Sunday, September 13		day, September 13	1
	1.1	General Notes	1
	1.2	1.a	1
	1.3	3 a	2

1 | Sunday, September 13

1.1 General Notes

- Say what you're assuming at the start of the proof.
- If using any flipped logic (contradiction, contrapositive, etc), then signpost that near the beginning of the proof.
- Put any important equations (i.e. major steps of the proof) on their own line.
- Use some whitespace to separate independent

1.2 1.a

 $Proof(A \Longrightarrow B).$

- Suppose $\{a_n\}$ is not bounded above.
- Then any $k \in \mathbb{N}$ is not an upper bound for $\{a_n\}$.
- So choose a subsequence $a_{n_k} > k$, then by order-limit laws,

$$a_{n_k} > k \implies \liminf_{k \to \infty} a_{n_k} > \liminf_{k \to \infty} k = \infty.$$

Note that $\lim_{n\to\infty} a_n$ need not exist, but liminf/limsup always exist.

 $Proof(A \Longrightarrow B).$

• Suppose $\{a_n\}$ is bounded by M, so $a_n < M < \infty$ for all $n \in \mathbb{N}$.

- Then if $\{a_{n_k}\}$ is a subsequence, we have $a_{n_k} \in \{a_n\}$, so $a_{n_k} < M$ for all $k \in \mathbb{N}$.
- But then

$$a_{n_k} < M \implies \limsup_{k \to \infty} a_{n_k} \le M,$$

• Now note that if $\lim_{k\to\infty} a_{n_k}$ exists,

$$\lim_{k \to \infty} a_{n_k} < \limsup_{k \to \infty} a_{n_k} \le M < \infty,$$

so every subsequence is bounded and thus can not converge to ∞ .

1.3 3.a

Proof (Using definition (i)).

- Suppose $x_n \leq M$ for all n, we will show that every subsequential limit is also bounded by M.
- Let

$$S := \left\{ x \in \mathbb{R} \mid x \text{ is a subsequential limit of } \left\{ x_n \right\} \right\}$$

be the set of subsequential limits.

- Note that $\inf S := \liminf x_n$ by definition (i).
- Let $\{x_{n_k}\}\in S$ be an arbitrary convergent subsequence (since we are only concerned about subsequences with well-defined limits).
- Then for every k we have $x_{n_k} \in \{x_n\}$, so

$$|x_{nk}| \leq M$$
.

• By order limit laws,

$$|x_{n_k}| \le M \implies \lim_{k \to \infty} |x_{n_k}| \le M,$$

• Since the map $x \mapsto |x|$ is continuous, using the sequential definition of continuity we can pass the limit through the absolute value to obtain

$$\left| \lim_{k \to \infty} x_{n_k} \right| \le M.$$

- Since the subsequence was arbitrary, we find that M is an upper bound for S and so $\sup S \leq M$.
- But

$$\inf S < \sup S < M \implies \inf S < M.$$

Proof (Using definition (ii)).

- Suppose $|x_n| \leq M$ for every n, we will directly show that $\left| \liminf_{n \to \infty} x_n \right| \leq M$.
- Let $\{x_{n_k}\}$ be an arbitrary subsequence, then since $x_{n_k} \in \{x_n\}$ for all k, $|x_{n_k}| \leq M$ for all k.
- By order-limit laws, for every fixed n we have

$$|x_{n_k}| \le M \iff -M \le x_{n_k} \le M \implies -M \le \inf_{k > n} x_{n_k} \le M.$$

• Again applying order-limit laws,

$$-M \leq \inf_{k > n} x_{n_k} \leq M \implies -M \leq \lim_{n \to \infty} \inf_{k > n} x_{n_k} \leq M \iff \left| \lim_{n \to \infty} \inf_{k \geq n} x_{n_k} \right| \leq M.$$

• But by definition (i), this precisely says that $\left| \liminf_{n \to \infty} x_n \right| \le M$.