

HOME TOP CATALOG CONTESTS GYM PROBLEMSET GROUPS RATING EDU API CALENDAR HELP

P

PROBLEMS SUBMIT CODE MY SUBMISSIONS STATUS HACKS ROOM STANDINGS CUSTOM INVOCATION

F2. Cycling (Hard Version)

time limit per test: 5 seconds memory limit per test: 1024 megabytes

This is the hard version of the problem. The difference between the versions is that in this version, $1 \le n \le 10^6$ and you need to output the answer for each prefix. You can hack only if you solved all versions of this problem.

Leo works as a programmer in the city center, and his lover teaches at a high school in the suburbs. Every weekend, Leo would ride his bike to the suburbs to spend a nice weekend with his lover.

There are n cyclists riding in front of Leo on this road right now. They are numbered $1, 2, \ldots, n$ from front to back. Initially, Leo is behind the n-th cyclist. The i-th cyclist has an agility value a_i .

Leo wants to get ahead of the 1-st cyclist. Leo can take the following actions as many times as he wants:

- Assuming that the first person in front of Leo is cyclist i, he can go in front of cyclist i for a cost of a_i . This puts him behind cyclist i-1.
- Using his super powers, swap a_i and a_i ($1 \le i < j \le n$) for a cost of (j-i).

Leo wants to know the minimum cost to get in front of the 1-st cyclist.

In addition, he wants to know the answer for each $1 \leq i \leq n$, $[a_1,a_2,\ldots,a_i]$ as the original array. The problems of different i are independent. To be more specific, in the i-th problem, Leo starts behind the i-th cyclist instead of the n-th cyclist, and cyclists numbered $i+1,i+2,\ldots,n$ are not present.

Input

Each test contains multiple test cases. The first line contains the number of test cases t ($1 \le t \le 10^4$). The description of the test cases follows.

The first line of each test case contains a positive integer n ($1 \le n \le 10^6$), representing the number of the cyclists.

The second line of each test case contains n integers a_1, \ldots, a_n ($1 \le a_i \le 10^9$).

It is guaranteed that the sum of n over all test cases does not exceed 10^6 .

Output

For each test case, print n integers, the answers for the array $[a_1,a_2,\ldots,a_i]$ for each $i=1,2,\ldots n$ in this order.

Example

input	Сору
4	
3	
1 2 4	
4	
1 1 1 1	
2	
1 2	
4	
4 1 3 2	
output	Сору
1 3 7	
1 2 3 4	
1 3	
4 3 6 8	

Note

In the first test case, one possible way to move from the position behind the n-th cyclist to the position in front of the 1-st cyclist is:

Codeforces Round 1023 (Div. 2)

Finished

Practice

→ Virtual participation

Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests. If you've seen these problems, a virtual contest is not for you solve these problems in the archive. If you just want to solve some problem from a contest, a virtual contest is not for you solve this problem in the archive. Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

Start virtual contest

→ Clone Contest to Mashup

You can clone this contest to a mashup.

Clone Contest

→ Last submissions		
Submission	Time	Verdict
321871200	May/29/2025 09:08	Accepted

- Leo swaps $a_2\ (i=2)$ and $a_3\ (j=3)$, then the array becomes [1,4,2]; it costs j-i=3-2=1 .
- Leo is behind the 3-rd cyclist and moves behind the 2-nd cyclist; it costs $a_3=2.\,$
- Leo swaps $a_1\ (i=1)$ and $a_2\ (j=2)$, then the array becomes [4,1,2]; it costs j-i=2-1=1.
- Leo is behind the 2-nd cyclist and moves behind the 1-st cyclist; it costs $a_2=1$.
- Leo swaps $a_1\ (i=1)$ and $a_2\ (j=2)$, then the array becomes [1,4,2]; it costs j-i=2-1=1 .
- Leo moves ahead of the 1-st cyclist; it costs $a_1=1$.

So the total cost is 1+2+1+1+1+1=7. It can be proved that 7 is the minimum cost.

In the second test case, to move ahead of the 1-st cyclist from the position behind the n-th cyclist, Leo should not swap anyone's agility value. The total cost is 1+1+1+1=4.

Codeforces (c) Copyright 2010-2025 Mike Mirzayanov The only programming contests Web 2.0 platform Server time: May/29/2025 13:08:55^{UTC+7} (I2).

Desktop version, switch to mobile version.

Privacy Policy | Terms and Conditions

Supported by

