

Physics After GCSE: Subject Matters

Isaac Physics team 3rd Feb 2024

I like Physics... What next?

Which describes you best?

I know I want to be ... for a job!

I know I want to study ... at uni!

I don't know (but I do have some interests...)

A Levels

- > Typically two-year courses (year 12 & 13)
 - you might do AS Level after one year

- Often used as entry qualifications for university
 - apply to universities during your A Level course

- > During this time you may also:
 - do some work experience
 - broaden learning in other ways (sport/music/art, supercurriculars, DofE, volunteering...)

A Levels

- > Typically at least 3 subjects
 - Some schools allow more than 3, if they can schedule it
 - If you will "only" do 3, think about flexibility e.g. Maths + Further Maths +?
- A Level Physics almost always paired with Maths!
 - Physics with Maths is easier and more useful
- > Other subjects to go with Physics:
 - STEM subjects: Further Maths, Chemistry, Biology, Computer Science, Environmental Science...
 - Arts and humanities
 (if you like and they don't limit your next steps,
 e.g. if you want to study arts/humanities at uni)

A Level Physics

- > You will learn:
 - new ideas!
 - ideas from GCSE in more depth
 - > with more maths
 - valuable problem solving skills and applying maths
 - practical experimental skills

What's in A Level Physics?

Essential Physics Skills Book

Interactive questions from our Essential Pre-University Physics book.

Contents

Attaining Mastery – Notes for the Student and the Teacher i							
Acknowledgements ii							
Using Isaac Physics with this book; Significant figures iii							
Physical Quantities iv							
Checklists viii							
Part I – AS 1							
	General Questions A1 Using and Rearranging Equations A2 Derived and Base SI Units A3 Standard Form and Prefixes A4 Converting Units A5 Gradients and Intercepts of Graphs A6 Equations of Graphs A7 Area Under the Line on a Graph A8 Area Under the Line on a Graph II A9 Factor and Percentage Changes A10 Proportionality	1 1 2 3 4 5 6 7 8 9					
	B1 Components of a Vector B2 Adding Vectors B3 Uniform Accelerated Motion in One Dimension B4 Trajectories B5 Moments B6 Stress, Strain and Young's Modulus	11 12 13 14 15 17					

	B8 B9	, 82	20 21
	E1	o., 1	22
C	C1		22 22
	C2		24 24
	C2		24 25
	C4		25 26
	C4		
	05	1	26
	C5		27
	C6		29
		Additional Internal Resistance – on-line	29
D	Way	ves	30
	D1	Amplitude and Intensity	30
	D2		31
	D3		32
	D4		33
	D5		35
	D6		36
	107		38
	D8		40
	D9		42
Е	Unc	ertainties 4	13
Е	E1		43
	E2		45
	E3		46
	E4	1 0 0	47
	154	Accuracy, referringe Difference and Renability	£/
D.	-4 TT	- A2	18
Pa	ırt II	- A2	ю
F	Med	chanics	18
	F1		48
	F2	Conservation of Momentum	49
	F3	Units of Rotary Motion	50
	F4	Centripetal Acceleration	51
	F5		52
	F6	Gravity and Orbits	54
	F7		55

G	Gas	es and Thermal Physics 56
	G1	Kelvin Scale of Temperature
	G2	Gas Laws
	G3	Heat Capacity
	G4	Latent Heat and Heat Capacity
Н	Fiel	ds 60
	H1	Uniform Electric Fields 60
	H2	Electric Field near Point Charges 61
	Н3	Speed of Electron in an Electric Field
	H4	Force on a Conductor in a Magnetic Field 63
	H5	Force on Particle in a Magnetic Field 64
	H6	Circular Paths of Particles in Magnetic Fields 65
	H7	Magnetic Flux and Faraday's Law
	H8	Transformers
	Н9	Energies and potentials of charges in electric fields $$ 68
I	Cap	acitors 69
	I1	Charge and Energy stored on a Capacitor 69
	I2	Capacitor Networks
	I3	Discharge of a Capacitor
J	Nuc	lear Physics 73
	J1	Nuclear Equations
	J2	Activity and Decay
	J3	Nuclear Decay with Time
	J4	Energy in Nuclear Reactions
K	Mod	delling the Universe 77
	K1	Red Shift and Hubble's Law
	K2	Exponential Extrapolation
L	Fact	Sheets 80
	L1	Mass Spectrometers
	L2	Fundamental Particles and Interactions 81
	L3	Nuclear Reactors
	L4	X-Rays
	L5	Ultrasound
	L6	MRI and PET scanning
	L7	Stars
	L8	The History of the Universe 87

University

- > Why go to university?
 - Good degree + good university = good job!
 - Subject + interest = good results

> What subjects could I study?

Physics

Materials Science

Geology

Engineering:

General

Mechanical

Civil

Electrical

Aerospace Chemical

Chemistry

Mathematics (+)

Computer Science

Natural Sciences

Economics

Biomedical Science

Life after university: Careers

- > Some careers require a certain degree
 - consider this when choosing your degree subject!
- Most graduate jobs "just" require a degree (any subject)
 - Needs to be "good" (grade = 2.i or higher)

Case study: Medicine

- If you want to be a doctor: start planning now!
 - Medical training includes: a degree; postgraduate training; specialty or GP training. Total >8 years!
 - A Levels: Chemistry; usually Biology; Physics can be helpful
 - > + work experience in a caring role; admissions tests; interview
 - More info:
 - > https://www.bma.org.uk/advice-and-support/studying-medicine/becoming-adoctor/medical-training-pathway
 - > https://www.bma.org.uk/advice-and-support/studying-medicine/becoming-adoctor/applying-to-medical-school
- > Many other careers in healthcare exist
 - https://www.healthcareers.nhs.uk/explore-roles

Case study: Engineering

- > "Chartered, with degree"
 - A Levels: Maths + Physics (and/or Engineering or D&T)
 - Approved degree: 4-5 years
 - > includes 1-year work placement and major project
 - Begin work
 - › Become member of professional institute (e.g. IMechE)
 - > make portfolio of professional development & projects delivered
 - > apply for chartered status
- > Vocational pathways also possible

Vocational pathways

- > Consider these if...
 - you are interested in physics and engineering, but not sure if the pathway of A Levels and university is right for you
 - you want to move more quickly towards employment
 - you think of yourself as more "practical"
- > e.g. T-Levels in Engineering subjects:
 - Design and Development for Engineering and Manufacturing
 - Maintenance, Installation and Repair for Engineering and Manufacturing
 - Engineering, Manufacturing, Processing and Control

Find out more: A Levels & University

- > A Level content
 - your school or local college website
 - exam board websites
 - many online resources
- > University course search:
 - https://digital.ucas.com/search
 - https://www.theuniguide.co.uk/courses

Find out more 2: A Levels & University

- > Cambridge resources
 - The Subject Matters
 https://www.undergraduate.study.cam.ac.uk/sites/www.undergraduate.study.cam.ac.uk/sites/www.undergraduate.study.cam.ac.uk/files/publications/the_subject_matters.pdf
 - Videos by Churchill College
 - How do I choose my A Levels? https://www.youtube.com/watch?v=8gOXfHqoMj8
 - > How many A Levels should I take? https://www.youtube.com/watch?v=xDk92WvaIT4

Find out more 3: Vocational pathways

- > Apprenticeships:
 - https://www.apprenticeships.gov.uk/apprentices
 - https://www.instituteforapprenticeships.org/about/find-an-apprenticeship/
 - https://www.findapprenticeship.service.gov.uk/apprenticeshipsear
 ch
- > T-Levels, BTEC etc:
 - https://www.tlevels.gov.uk/students
 - Your local FE college website

Final notes

- > The world of work changes fast
 - e.g. AI will shrink some professions, but create others
- > Work is important, but so are other things
- > An open mind is useful

"Don't feel guilty if you don't know what you want to do with your life.
The most interesting people I know didn't know at 22 what they wanted to do with their lives.
Some of the most interesting 40-year-olds I know still don't."

--Mary Schmich, *Chicago Tribune* journalist, 1997