TEE API의 정형 명세 및 모델 검증

유근열 POSTECH

커지는 보안의 중요성

무단 도용 방지 (저작권 보호)

자산 탈취 방지 (결제 정보 보호)

samsung pay

→ 기존보다 더 강력한 보안 요구

Secure OS

연산을 보호된 환경에서 처리하는 운영체제

Secure OS 표준 문서

GlobalPlatform Technology
TEE Internal Core API Specification
Version 1.1.2.50 (Target v1.2)

Public Review

June 2018

Document Reference: GPD_SPE_010

topping in 2 20 y 2 voir a sistema-raisorim, inc. Air region researced, as sequence of the document of a related to a found, will their comments, notification of any relevant patents sequenced by the sequence of the sequ

연구 동기

• 표준 명세 자체에 설계 결함이 있다면?

• 표준 명세를 따른 구현이 <u>명세 요구 사항</u>을 만족하는가?

→ 검증의 필요성

어려운 점

- 문서를 읽고 정형 명세하는 것 자체에 많은 노력과 시간이 필요
 - 자연어로 적힌 문서 > 모호한 표현 해석 필요
- 동시성을 어떻게 고려할 것인가?
 - Code-based testing & static analysis로는 하기 어려움
- 구현 되어있는 Real-world 프로그램을 어떻게 검증할 것인가?
 - Real-world 프로그램은 C/C++로 작성되어 있음

연구 전략

- 문서를 읽고 정형 명세하는 것 자체에 많은 노력과 시간이 필요
 - → 열심히 하자!
- 동시성을 어떻게 고려할 것인가?
 - → Maude로 명세
- 구현 되어있는 Real-world 프로그램을 어떻게 검증할 것인가?
 - > C-like language 지원

TEE 정형 명세

- 주요 컴포넌트 정의 및 명세
 - 어플리케이션, 커널, TEE 리소스

TEE 정형 명세

• TEE 표준 API 모델링

Category	Types	# APIs	
	Generic	5	
Secure	Transient	8	
Storage	Persistent	4	
	Persistent Enumerator	5	
	Data Stream Access		

Category	Types	# APIs
	Generic	9
Cryptographic	Symmetric Cipher & MAC	7
Cryptographic Operation	Authenticated Encryption	5
	Asymmetric & Random Data Generation	5
	Key Derivation & Message Digest	4

TEE 정형 명세

- Real-world 프로그램 검증 위한 언어 실행 지원
 - C-like 프로그램 syntax

```
struct Person { var age } ;
Person john ; john.age = 0 ;
while (john.age < 10) { john.age += 1 }</pre>
```

- C-like 프로그램 semantics
 - Memory model (x) multi-threading (x)

TEE 모델 검증 예시

- TEE API spec 검사
 - Reachable state analysis, LTL model checking

search run(teeApi) ⇒* RESULT **such that** checkSpec(RESULT) . **red** modelCheck(teeApi, [] invariant(teeApi)) .

- TEE 프로그램 검증
 - E.g., process2는 항상 process1 보다 나중에 끝나야 함

red modelCheck(init(proc1) init(proc2), [] exitAfter(proc1, proc2)) .

- 상태 공간 축소 기법
 - Invisible transition reduction, partial order reduction

Case study: MQT-TZ

- IoT message protocol을 사용한 real-world 프로그램
 - TEE를 사용하여 message 탈취 방지
- TEE 여부에 따른 message 탈취 가능성 검증

# Msg	# State	Time
1	15112	
2	77784	
3	254632	< 100
4	677880	< 100
5	1611976	
6	3585832	
7	7657224	1008.081

# Msg	Intruder	Intercept	Max Trial	# State	Time
1	0	Т	25	59304	7.828
'	X	\perp	25	395576	17.408
2	0	Т	25	59740	8.352
	X	\perp	25	22633856	2543.146
3	0	Т	25	59740	8.367
3	X	Τ	25	-	T/O
4	-	-	25	-	T/O

FORMAL SPECIFICATION AND VERIFICATION OF TEE

Geunyeol Yu

Software Verification Lab., Pohang University of Science and Engineering, South Korea

BACKGROUND

- · A trusted execution environment (TEE) is an isolated code execution environment to provide high-level of trust.
- Global Platform defines standard APIs and architectures for TEE and device vendors provide their own TEE implementations.
- · Maude is a language and tool for formal specification and analysis of distributed systems.

MOTIVATION

- · What if there is a design flaw in the standard APIs?
- Does a TEE implementation follow the standard?
- · Is a TEE application safe and bug-free?

CHALLENGE

- · Specifying the standard APIs is itself challenging.
- -e.g., free all the resources (?) after TEE_FreeTransientObject.
- How to verify concurrent behaviours?
- -code-based testing (x), code-based static analysis (x).
- How to verify real-world TEE applications only with their code?

FORMAL SPECIFICATION OF TEE IN MAUDE

- · Specify models for trusted & rich applications.
- · Specify abstracted objects for REE & TEE kernels.
- · Specify objects representing TEE resources.
- -handle objects, secure storage objects, cryptographic objects.
- · Define overall relations b/w them.

Overall Specification

· Specify the standard TEE APIs

-	,				
Category	Types	# API	Category	Types	# API
	Generic	5		Generic	9
	Transient	8	Crypto	Symmetric Cipher & MAC	7
	Persistent	4		Authenticated Encryption	5
	Persistent Enumerator	5		Asymmetric & Message Digest	7
	Data Stroam Access	A		Key Deriy & Rand Generation	4

PROGRAMMING LANGUAGE SEMANTICS FOR TEE

- · C-like language syntax.
- -e.g., structure, if-else, loop, function call.

```
struct Person { var age } ;
Person john ; john.age = 0 ;
while (john.age < 10) { john.age += 1 }
```

- · C-like language semantics.
- -memory model (x), multi-threading (x), executing a program (o)

FORMAL VERIFICATION OF TEE USING MAUDE

- · Verify the TEE formal specification using Maude.
- -reachable state analysis, LTL model checking

```
search teeApi =>* STATE such that checkSpec(STATE) .
red modelCheck(teeApi, [] invariant(teeApi))
```

- · Verify real-world TEE applications using Maude.
- -using C-like language semantics
- -high-level behaviour analysis (o), code-level analysis (x)
- -e.g., program2 always exits after program1

red modelCheck(init(p1 p2), [] exitAfter(p1, p2)) .

STATE SPACE REDUCTION

- · Invisible transition reduction
- -reduce a transition b/w equivalent states.
- -i.e., remove stuttering equivalent paths.

- · Partial order reduction
- -explore only necessary paths w.r.t independent relations.
- i.e., do not consider all interleavings.

CASE STUDY: MQT-TZ IOT APPLICATION

- MQTT is a standard messaging protocol for the IoTs.
- MQT-TZ protects MQTT broker using TEE.
- -preventing message interception, modification
- · Analyzing MQT-TZ using formal specification.
- -Model an intruder that tries to intercept messages.
- -Simulate the intruder can intercept a message w/o TEE.

-Verify the intruder	fails to	intercept ar	ny message	w/ TEE.

# Msg	# State	Time	# Msg	Intruder	Intercept	Max Trial	# State	Time
1	15112		-1	0	Т	25	59304	7.828
2	77784			X		25	395576	17.408
3	254632		2	0	Т	25	59740	8.352
4	677880		-	X		25	22633856	2543.146
5	1611976		3	0	Т	25	59740	8.367
6	3585832		3	X		25	-	T/O
7	7657224	1008.081	4	-	-	25	-	T/O