Physics of Soft Condensed Matter

Created ByNishant SachdevaRoll Number2018111040

There are 4 parts of the assignment:

- 1. Mean Square Distribution / Diffusion Coefficient
- 2. Van Hoe Function
- 3. Velocity Correlation Function
- 4. Dipole Dipole Time Correlation Function

Following are the write ups and observations on each:

MEAN SQUARE DISTRIBUTION

This is a measure of the displacement of the particle over different time periods with respect to a given reference position and time.

Here, in the graph, we see how with time, on an average, the displacement of a particle is increasing.

$$MSD(t) = \frac{1}{TN} \sum_{t_0=0}^{T} \sum_{i=1}^{N} (r_i(t_0 + t) - r_i(t_0))^2$$

The diffusion coefficient (accounting for some multiplier factors) comes out to be proportional to 0.004 $A^2/ps\,$. This is proportional to the slope of the curve at higher values of t.

CODE ::

python3 run.py

⇒ data.txt (path to input file)

 \Rightarrow enter the value as '1' to run the msd function and display the diffusion coefficient

VAN HOVE FUNCTION

Van Hove function signifies the chances of spotting a particle i in the region of radius r at a given time t. This is calculated knowing that a particle j is in the vicinity of the origin at time t=0

$$G(r,t) = \frac{1}{N} \sum_{i=0}^{N} \sum_{j=0}^{N} \delta(r - (r_j(t) - r_i(0)))$$

This particular curve represents Van Hove at a time t = 200. We see, even for other values (although their calculation is really slow, so, we don't plot the graph

here), the curve is a Gaussian curve. This shows how the distribution varies for various distances.

CODE ::

python3 run.py

- ⇒ data.txt (path to input file)
- ⇒ enter the value as '2' to run the Van hove function

VELOCITY CORRELATION FUNCTION

This curve displays the correlation between the velocity vectors at various times in the given intervals

$$v(t) = \frac{1}{T} \sum_{t_0=0}^{T} \langle v_i(t_0 + t) | v_i(t_0) \rangle$$

Here we see, how in the starting, when all the velocities are mostly same, the correlation is high, and how it goes towards a negative spike as all molecules turn together.

We also see how with time, when velocities become random, the correlation reduces and hovers around the 0 mark, sometimes being positive and sometimes negative.

CODE ::

python3 run.py

- ⇒ data.txt (path to input file)
- ⇒ enter the value as '3' to run the Velocity Correlation function

DIPOLE - DIPOLE TIME CORRELATION FUNCTION

This curve represents the Total Dipole-Dipole time Correlation function for the given molecular structure.

$$V(t) = \frac{1}{T} \sum_{t_0=0}^{I} \langle V(t_0 + t) | V(t_0) \rangle$$

We see here, how with time, the dipole varies in time and how it decreases over time

CODE ::

python3 run.py

- \Rightarrow data.txt (path to input file)
- ⇒ enter the value as '4' to run the Dipole Dipole time correlation function