ECONOMIES OF SCALE IN COMPUTER USE: INITIAL TESTS AND IMPLICATIONS FOR THE COMPUTER UTILITY

Lee L. Selwyn

June, 1970

PROJECT MAC MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Cambridge

Massachusetts 02139

ECONOMIES OF SCALE IN COMPUTER USE: INITIAL TESTS AND IMPLICATIONS FOR THE COMPUTER UTILITY*

Abstract

This study is concerned with the existence of economies of scale in the production of data processing and other computing services, and the possible regulatory and public policy implications of such economies.

The rapid development of the technology of computation since the Second World War has raised many questions as to the supervision by public authorities of the use and progress of this technology. A study was initiated by the Federal Communications Commission in 1966 in an effort to consider that Commission's role in the production and distribution of computing services where the use of communications facilities, supplied by regulated carriers, forms an integral part of the computing system. The present investigation is concerned with the production of computing services per se; the direction that public policy takes will be greatly dependent upon the nature of the production of computing services, and perhaps secondarily upon the interdependence between computer systems and the communications suppliers.

The relative economies of the use of large computing systems have been known for some time, in terms of the relationship between some measure of the quantity of output of a machine and its cost. Indeed, it is demonstrated here that, when one considers, in addition to the cost of the computer hardware itself, the various categories of operating expenses associated with a computer installation, the relative advantages of large facilities become even more significant.

^{*}This report reproduces a thesis of the same title submitted to the Alfred P. Sloan School of Management, Massachusetts Institute of Technology, in partial fulfillment of the requirements for the degree of Doctor of Philosophy, June 1969.

Yet the evidence would seem to indicate that, despite these apparent efficiencies of large systems, the overwhelming majority of installed computers were generally fairly small operations. In an attempt to determine whether actual experience of users was that, all things considered, there were no true economies of large size, an analysis was made of data on nearly 10,000 computers installed at firms in manufacturing industries, using the survival technique, which uses market experience as a basis for studying levels of optimum plant size. The results of this analysis suggested that users did operate computers as if there were significant economies of scale in their use.

None of the evidence, in fact, suggested that even the largest size system available today is the most efficient possible size of "plant"; hence, the key implication for the formulation of regulatory policy toward the computer is that such policy should encourage, to the greatest possible extent, the shared use of large systems by those who require computing services. Those barriers that do exist which tend to mitigate such shared use should be reduced or eliminated. Public utility status would be indicated only if the costs associated with shared computer use - distribution, software development, system overhead and administration - are less than the potential direct savings resulting from use of large systems. This is at least as much a technological problem as it is regulatory; the future of the computer utility concept will thus be dependent upon the degree to which technology can reduce costs in these categories.

ACKNOWLEDGEMENTS

The work reported here was supported in part by Project MAC, an M. I. T. research program sponsored by the Advanced Research Projects Agency, Department of Defense, under Office of Naval Research Contract number Nonr-4102(01). Reproduction of this report, in whole or in part, is permitted for any purpose of the United States Government.

Partial Support was also received under a Dissertation Grant-in-Aid from the National Association of Accountants.

The analyses were made using the Compatible Time Sharing System (CTSS) developed at Project MAC on the IBM 7094. TROLL, an econometric analysis and simulation system available within CTSS, was used for the regression analyses. Additional data reduction procedures were accomplished on the IBM 360/65 operated at the M. I. T. Information Processing Center.

Many of the ideas presented and developed in the course of this work were the result of suggestions made by a number of individuals. My thesis committee, Profs. Paul W. MacAvoy, Malcolm M. Jones and Donald C. Carroll were extremely helpful in making suggestions and directing (and sometimes redirecting) the course of my work. I must also express my thanks to my colleague, Nelson Hanover, for his many suggestions and criticisms.

Dr. Horace J. DePodwin of Rutgers University, with whom worked on the preparation of the response by the Business Equipment Manufacturers Association to the FCC Computer Inquiry, was a valuable source of advice during the course of this work. Others included James Holmes of BEMA, Benjamin Kessel of Honeywell, Frank J. Rowe of the New England Telephone and Telegraph Company, Barbara Epstein of DePodwin Associates, Profs. F. J. Corbato and Robert M. Fano of Project MAC and the MIT Department of Electrical Engineering, Prof. Manley Irwin of the University of New Hampshire, Prof. John Menge of Dartmouth College, and my colleagues, Lawrence H. Wortzel, H. K. Wu, Y. S. Chang, Earl M. Foster, and John S. Fielden of Boston University.

Special thanks must go to those who provided me with the several sources of empirical data without which the analyses reported here would not have been possible. Patrick J. McGovern and James Peacock of International Data Corporation made available to me the source of data on computer installations which IDC has collected and maintained, and also made themselves available on a number of occasions to help clear up problems that arose from time

to time. My thanks also go to Mr. Richard S. Cook of the General Services Administration, who made available to me the source file for the Federal Government's computer installation inventory. I must also express my gratitude to Mr. Mark Eisner of the MIT Department of Economics, who developed the TROLL System, for providing useful advice during the course of the data analysis phase of this study.

Finally, I must express my sincere appreciation to my wife, Judy, whose encouragement helped see us both through a long graduate program.

TABLE OF CONTENTS

ABST	TRACT	2
ACKI	NOWLEDGEMENTS	4
1.	COMPUTERS AND PUBLIC POLICY	9
-•		
	Introduction	9
	Background of the Problem	10
	Natural Monopoly and the Public Utility Concept	14 16
	The Computer Service Industry References	18
	References	
2.	ECONOMICS OF COMPUTER SYSTEM OPERATION	19
	Introduction	19
	Economies of Scale in Computer Hardware	20
	Economies of System Operation	22
	Known Diseconomies in Computer Operation	24
	Control over computer operations	25
	Uniqueness of application and	0.5
	cost of development	25
	Standardization	27 28
	Diseconomies of sharing	29
	Conclusion References	31
	Tables and Charts	32
_	·	36
3.	OPTIMUM PLANT SIZE IN THE COMPUTER SERVICE INDUSTRY	טכ
	The Survival Principle	36
	The Survival Principle Applied to Computer	
	Services	40
	Measures of Plant Size in the Computer	
	Service Industry -	43
	Average rent	43 44
	Average total expenses	44
	Average power	45
	Construction of the Model Discussion of the Model	47
	Examination of the Residuals	48
	Conclusion	49
	References	51
	Tables and Charts	52

4. FINDINGS AND IMPLICATIONS FOR PUBLIC POLICY	6 1
Regulation as a Public Utility Barriers to Use of Large Systems Desire for control of the firm's computer Costs of system conversion Sharing of computing facilities Limitations of Large Size Computer Systems References	6 1 6 3 6 4 6 5 7 0
APPENDIX:	
SOURCES AND DESCRIPTIONS OF EMPIRICAL DATA	7 1
Manufacturing Industries Census Data Industry size Growth Concentration Establishment size Labor Intensiveness Capital Intensiveness Computer Installation Data Rent Power Size classification Installation Cost Data Computer System Cost Data Operating costs	71 73 73 74 74 74 75 77 79 79
References Tables and Charts	8 3 8 4
BIOGRAPHICAL NOTE	111

TABLES AND CHARTS

	* * *	
<u>Tables</u> :		
11-1	Rent and Expenses for all Federal Government	
11-7	Installations	32
11-2	Rent and Expenses for Installations with	
	2 or Fewer Computers	32
11-3	Results of Regression Analyses:	
	a. All installations	33
	b. Installations with 2 or fewer computers	33
111-1	Results of Regression Analyses, all 119 Industries	52
111-2	Results of Regression Analyses, all 119 Industries Actual and Predicted Values, all 119 Industries	53
111-3	Decults of Degrassion Analyses:	
	a. 93 Industries with mainly business data	5 !
	processing applications) :
	b. 13 industries with at least 25% analysis	5€
	appitcations	•
	c. 13 Industries with at least 25% process	5
A 1	control applications	81
A-1	Industry Characteristics Computer Size and Power Data	89
A-2	Computer Size Class Definitions	9
A-3 A-4	Characteristics of Computers by Industry	9(
A-4	Federal Government Computer Rental Data	10
A-6	Computer Applications by Industry	10(
A-0	Comparet Applications by Industry	
Charts		
Allai es		
11-1	Log Total Expenses vs. Log Rent	31
11-2	Log Total Expenses vs. Log Rent, < 2 computers	3 !
111-1	log Average Rent vs. Log Establishment Size	5
111-2	Log Avg. Total Expenses vs. Log Establishment Size	5
111-3	log Average power vs. Log Establishment size	6

CHAPTER ONE COMPUTERS AND PUBLIC POLICY

INTRODUCTION

Much discussion is presently taking place regarding the issue of possible regulation of computer services as a "public utility" in a manner similar to that characteristic of the electric power, gas, transportation and communications industries. This study is concerned with one possible basis for such regulation - the existence of significant economies of scale in the production of computing services.

A general background of the various issues involved is presented in this chapter. Chapter two examines the direct operating cost side of the production of computing services, and concludes that there are definite economies in the use of large size facilities, although various institutional and technological factors may prevent end-users from taking full advantage of them.

In an attempt to determine the extent of economies of scale in practice, an analysis was made of computer usage patterns in manufacturing industries. The results of this study, which are reported in Chapter three, do indeed suggest the existence of noticable economies of scale in the production of computing services. Indeed, it is concluded

that the optimum size of computer plant may be greater than even the largest machines in use today. Hence, Chapter four concludes the study by suggesting that public policy should be directed toward reduction of the barriers that tend to prevent use of larger more efficient systems by groups of individual users. However, it is pointed out that there are costs associated with multi-user sharing of a large system that may not be present when such a system is operated by and for only one user organization. These costs must be less than the advantages associated with the large systems in order not to merely offset an economy with a diseconomy in the use of large facilities.

BACKGROUND OF THE PROBLEM

in November, 1966 the Federal Communications Commission announced that its Common Carrier Bureau was undertaking an extensive inquiry aimed at determining what, if any, interdependencies exist between the computer and communications industries, and to what extent, if any, such interdependence warrants regulatory action by the Commission or some other regulatory body. (1)

The "Computer inquiry," as it is commonly called, was given impetus as a result of several significant developments in the technology of information processing in recent years. Since the Second World War, when military requirements resulted in the first really important innovations in the development of computing machinery, the

extent to which such devices have taken up key positions in the economic, social and political life of this country has been quite remarkable, especially when one considers that all of this happened in less than two decades.

As the computer's role in the nation's life has assumed greater import, so too has the need for sound public policy towards the machine, and its implementation on a fairly general level, become more urgent. Although there is, today, a considerable amount of interest in the problem of public policy formulation covering the technology of data processing, much of it has been stimulated by the aforementioned FCC study. As a result, the questions currently being considered by those studying the overall issues of public policy toward data processing have been those raised by the Commission. (2-6)

The intrinsic importance of the questions raised by the Commission cannot be underrated; however, in a sense they do stem from perhaps the wrong direction. The regulatory implications of the interdependence between computer systems and communications companies forms but one aspect of the overall issue of public policy toward the computer.

(Another issue of at least equal importance is the matter of personal privacy protection from potentially uncontrollable computer-based data banks of the Orwellian variety.) Others include such anti-trust matters as company size, market share and marketing practices; such technical issues as

programming language standardization, machine specification and design standardization; and of course the issue of privacy raised by the possibility of the Federal Government installing and maintaining a "National Data Bank" covering all individuals and organizations. The communication issues, as raised by the FCC, do have some particular significance insofar as one key development in computer technology is concerned: the remote access, time-shared computer system. Such facilities provide for simultaneous usage of large computing systems by a number of individual users, often doing a number of individual, and different, things, all connected directly to the computer by telecommunications facilities usually supplied by a communications common carrier.

The intrinsic importance of the time-shared computer is that (a) it has the potential for making available to users of modest means a (possibly) large computer system at a cost that is based upon the quantity of service actually obtained (7); (b) to the extent that there are economies of scale in the production of computing services, the shared use of computing facilities may bring down the average cost of computer usage; (c) extensive use of such systems can replace and to some extent render obsolete some portions of the installed communications plant now operated under exclusive franchise by communications carriers; and (d) because the computer's services may be "piped in" to the end

user's location via communications lines, the limit of possible application areas for such systems becomes bound only by man's imagination.

In a sense, none of these attributes of time-shared computer systems are new to the computer field. A user of modest means could always purchase computing services from a firm specifically established to provide them, or from another user who did maintain his own in-house computing facility. Shared use of large machines might have enabled many individual users to obtain the benefits of the scale economies in the operation of machines of this size. Computers have been slowly replacing many conventional forms of communication, replacing written notes and spoken words with specially designed messages that modify a data base or cause some specific action to be taken. Finally, with the increased experience in the use of computers, there would seem to be virtually no limit, even without remote access, time-shared systems, to which this technology could be applied.

Hence the time-sharing development has not really created any new problems and raised any new questions - it has served to bring several dormant issues out into the open. Time-sharing mainly increases the <u>availability</u> of computing machinery, and as the computer becomes more available, as it enters more areas of life, the concerns over how it should be controlled and regulated multiply.

There are, in fact, two categories of regulatory issues that have been raised. One concerns various operating practices of the computer industry and computer end-users, and includes such issues as technical standardization, personal privacy, sales practices of computer manufacturers, etc. The second set of issues, certainly not unrelated to the first but nonetheless identifiable as a distinct problem area, is the question of possible public utility status for suppliers of computing services, along similar lines as practiced in the natural gas, electric power, transportation and communications industries. The study reported here was principally concerned with the latter group of issues.

NATURAL MONOPOLY AND THE PUBLIC UTILITY CONCEPT

John Stuart Mill observed in 1848 that (a) gas and water service in London could be supplied at lower cost if the duplication of facilities by competitive firms were avoided, and (b) that in such circumstances, competition was unstable and inevitably replaced by monopoly (8). Mill thus noted that, under certain conditions, the forces of market competition would not result in either the lowest possible The conditions cost or the best service to the community. may be met when the production function for a given industry is characterized by significant long-run decreasing average ್ಲಾಗ ಚರ್ಚಗಳ ಶಾರತ ಈ ತಮ Where production of goods costs, i.e., economies of scale. بالعروان الرجايات or services may be accomplished at substantially lower cost 1904 નિસ્તુ **લુ**ઈ રહે ઉલ્લ if done in large quantities, it is inevitable that larger

sized firms will be able to produce and sell their output at lower cost, thereby driving out smaller producers. If, instead of operating under a competitive environment, the industries characterized by economies of scale were forced to operate under conditions of monopoly, then the potential duplication and waste resulting from competition might be avoided. In its place, however, would be a monopolist who could exact monopoly prices from the community and engage in other monopoly practices. Hence, some substitute for the forces of competition is in order. Such a substitute has historically taken the form of some government regulatory body charged with the responsibility of safeguarding the public interest. Generally, such bodies have permitted the "natural monopoly" to earn only a "reasonable return" on its investment, in exchange for an exclusive franchise to serve the public with whatever type of service it provides.

The existence of substantial economies of scale is not a sufficient condition for regulation, however. One additional test that must be met is that of necessity - the output of the firms in the industry must be necessary to the public good. (An industry that has a decreasing cost production function but does not produce a necessary good or service is, in effect, competing with other industries that produce non-necessary goods or services for the buyers' money, and, as a result, the public does not need to be protected from possible monopolistic practices.) (8,9)

This study has, as its primary objective, the determination of the extent to which the traditional concept of public utility regulation may be applied to the provision of computer services. To this end, the primary emphasis is placed upon the question of the existence of significant economies of scale.

it would be difficult for anyone to deny the fact that computing services are necessary services; they have attained this status over the past two decades by the extent to which computers have taken up important positions in so many aspects of social and business life. If computing services may be more efficiently supplied by a regulated, "natural monopoly" than by free competition, as is the practice today, then public policy must be directed toward the creation of a natural monopoly status for computer services. However, if such economies cannot be demonstrated, than public policy must safeguard the freedom of competition in the provision of such services by preventing any monopoly in part or all of the computer industry from being formed.

THE COMPUTER SERVICE INDUSTRY

The "Computer Service Industry" is defined, for the present study, as consisting of all "plants" that produce computing services. Such plants need not be independent computer service firms, such as service bureaus or datacenters, although these firms certainly form part of the

industry as defined here. All computers, whether operated as in-house facilities by the end-user organization or by firms specifically organized to supply such services to others, constitute the computer service industry.

This "industry" is considered as including all computer service-producing plants because in effect any end-user of such services has, available to him, the option of either purchasing the required services from an outside supplier or producing them with an in-house facility. Under this definition, at the end of 1968 there were some 50,000 plants producing computing services in the United States. (10)

REFERENCES

- (1) Federal Communications Commission, "Notice of Inquiry into the Regulatory and Policy Problems Presented by the Interdependence of Computer and Communications Services and Facilities," Docket No. 16979, FCC 66-1004, 8 P&F Radio Reg. 2d 1567-68 (Nov. 9, 1968).
- (2) Horace J. DePodwin Associates, Inc. "Major Economic issues in Data Processing/Data Communications Services," (New York: Business Equipment Manufacturers Association, 1968). Portion of response of BEMA to FCC Notice of Inquiry, op. cit.
- (3) Irwin, Manley R. "The Computer Utility," <u>Datamation</u>, November 1967.
- (4) Mathison, S. L. and P. M. Walker, "Public Policy Issues Arising from the Interdependence of Computers and Communications," Masters thesis, Sloan School of Management, MIT, 1968.
- (5) Baran, Paul, "The Coming Computer Utility -Laissez-faire, Licensing or Regulation," Public Interest, Summer, 1967.
- (6) Fano, Robert M., "The Computer Utility and the Community," IEEF Internation Convention Record, 1967.
- (7) Diamond, D. S. and L. L. Selwyn, "Considerations for Computer Utility Pricing Policies," <u>Proceedings of 23rd National Conference</u>,

 <u>Association for Computing Machinery</u> 1968.
- (8) Garfield, P. J. and W. F. Lovejoy, <u>Public Utility</u> <u>Economics</u>, (Englewood Cliffs, N.J.: Prentice-Hall, 1964). p. 15
- (9) Bonbright, James C., <u>Principles of Public Utility Rates</u>, (New York: Columbia University Press, 1961).
- (10) "Monthly Computer Census," <u>Computers and Automation</u>,
 March, 1969.

CHAPTER TWO

ECONOMICS OF COMPUTER SYSTEM OPERATION

INTRODUCTION

It has generally been asserted that there are certain economies associated with the use of large size data processing systems. The purpose of the present chapter is to examine the relative validity of the various contentions made, and to provide a basis for an examination of the patterns of computer use in manufacturing industries, the subject of Chapter three.

We consider first the previous work in this field Grosch's Law and the research by Knight on the subject of
computer performance vs. cost. Next, the results of an
analysis of cost patterns of computer installations in the
Federal Government is presented, with the conclusion that,
when one includes in the cost of operating a computing
center all cost categories, not just machine rent, the
magnitude of the economies of scale become even more
pronounced. Finally, this chapter considers several
possible bases for (short-run) diseconomies that may exist
in the provision of computing services, which may minimize
the impact of the scale economies as reflected in the
pattern of direct costs.

ECONOMIES OF SCALE IN COMPUTER HARDWARE

In the late 1940's, Herbert Grosch proposed a relationship between hardware cost and quantity of computation that could be provided by the hardware. This relationship, which has since become known as Grosch's Law, states that

Computing Power = C * (System cost)² (1)

where C is a constant determined by the level of

technological development.

Thus, according to Grosch's Law, it would be possible to

obtain a computer with four times the "power" at only about

twice the cost.

Kenneth E. Knight sought to consider the implications of this relationship in light of changes in technology.

(1,2) Certainly, it was true that newer computer models were often more costly, and substantially more powerful, than their predecessors. Knight's findings were that indeed Grosch's Law was still valid, even under conditions of changing technology, By holding technology constant by considering all models introduced in any one year seperately, Knight determined that the exponent was more like 2.5 for scientific applications and 3.1 for commercial applications. (2, p. 35).

It is not clear, of course, whether or not the prices of computers reflect costs of development and production, or whether or not the computer manufacturers consciously

relationship of this type. However, to the extent that there are now a fairly large number of hardware system suppliers, one might be willing to discount any overt pricing decision based upon performance rather than cost. (Although it is certainly valid that, within a single manufacturer's product line price is based upon relative performance, to at least some extent.)

Besides the direct, somewhat measurable economies proposed by Knight, there may be certain other economies · 是,从1984年,1997年, associated with relatively large systems that are not This is a result generally available in the smaller models. The state of the state of the state of of the development of the techniques of multiprogramming and The Company of the state of the multiprocessing. Any given program being executed on a CONTROL OF STREET PROPERTY OF STREET OF STREET computer will, at various times, require use of different components associated with the computer system. er many or play fire for the Traditionally, when one component was in use by the program, isaligo og grande og komunikarin statemente i statemente i statemente i statemente i statemente i statemente i the others would remain idle. (The computer had a ాంధానికించిన కేంద్రాలు కారుకుండి కోట్స్ కేంద్రాలు కున్నాయి. నాగు "one-track" mind, concerning itself with but one thing at a · Land · Carlon · Land · Confire To Love · Carlon · Sale · Sale · Sale · Carlon · C time.) However, it is now possible for several programs to ota. Afgarigaderia — gazen elitade e o be run on a machine simultaneously, either via a batch processing or remote access time-sharing operation. Under The Artist the Control of the Contro such a procedure, when any one program is using one 4. component and leaving the others idle, these might be made available to other programs, thereby increasing overall system throughput. Of course, there are costs associated Es ' (l' 1 - l)

with this procedure, and these must be weighed against the benefits. In general, the larger the machine, the greater the opportunity for savings under a multiprogramming environment.

ECONOMIES OF SYSTEM OPERATION

Hardware costs represent, however, only one part of total costs incurred in the course of running a computer 4 7 % 18 30 LB 1 installation. Other cost categories include peripheral devices, keypunching and other data collection activities, ここりご 大き杯 きなる行為 これい 三 programming support personnel, system management personnel, was an payor wyork given size only their physical site facilities, air conditioning, maintenance, कर्मा के प्राप्त के किस्सा **सुराह**ातक है सुक्रिया क्षेत्र के magnetic tapes and disk packs, and expendable supplies such 第二十二月中央有数集 新 \$ 等數 电电影中央 4. as punched cards, continuous forms, and the like. In general, these costs will rise as hardware cost rises, since To a visit the contract of the contract a larger operation is needed to support a larger size and the second of the second o machine. To determine the exact nature of the relationship 每月 我是一个一个一个一点,**将你还是那样**,不知识了一个时间,也是是这样了。" between computer system rental and total operating costs, we The many port of selection of two as a selection of the s analyzed cost data on 1,039 computer installations in TO THE SERVICE STREET AND THE STREET service within the Federal Government, in both civilian and 5 14 4 60 " 50 5 6 " TEL BOOK WALL & . TE 164 1765" military establishments. Interestingly (and somewhat the transfer of the state of the second state of the second secon surprisingly) it was discovered that, at least within the Federal Government, the rate of increase in overall and the transfer of the second and the second operating expenses is slower than the rate of increase in · 是1、1、夏 (秦)(5)(5)(秦)(秦)(秦)(秦)(秦)(5)(6) hardware system rent. This would suggest that, despite the on white and the second increased staff and operating facilities required to support a large system, and despite the exponentially increasing

unit of computation decreases even faster when all expenses are considered than when only hardware rent is considered.

The analysis revealed the following relationship between rent (R) and total operating expenses (X):

$$ln(X) = 1.9016 + .7657 ln(R)$$
 (2)

Table II-1 presents a summary of average rent and operating expenses for Federal Government installations divided into eight size classes. Some of these installations may contain several different computer systems. The curve that was fitted to these data is plotted, along with the actual data points, in Chart II-1.

The same analysis was made for Federal Government installations with two or fewer computer systems, in an attempt to isolate the operating costs of running a single installation. (in installations with two systems, one is most often operated as a satellite of the other, usually larger, system.) Here the rate of decline of total operating expenses versus har#dware system rent was even faster than in the previous case, suggesting again that the number of systems may be of just as much significance as the size of the system in determining the amount of operating expenses required. These results are presented in Table 11-2 and Chart i1-2. (Details of both regression analyses are presented in Table 11-3.)

The direct applicability of the data on computer installations in the Federal Government to commercial, non-government operation may be subject to some question. Indeed, there are several differences in Federal Government accounting practices vis-a-vis commercial practices that may alter the magnitudes of the costs reported. These are considered in somewhat more detail in the Appendix. However, it is quite unlikely that any differences are other than in the magnitudes of the figures involved, and the basic trend that was uncovered from this data is probably quite valid generally.

KNOWN DISECONOMIES IN COMPUTER OPERATION

The cost figures presented by Knight and by the author are deficient in that they generally refer to directly applicable cost categories that are charged directly to computing center operation, and within that to routine operation. In fact, this is not sufficient because the computer directly affects many other categories of costs within an organization.

Certainly, some of these other cost categories ought to have very little to do with the relative size of the computing system, but may be affected by the results, or output, of the computer's operation. However, certain other costs are more directly affected, and these are considered here.

Control over Computer Operations Many endausers of computer systems consider it essential that they be able to control the activities of the computer installation; hence they demand that the computer they use be an in-house facility. There may be several reasons for this feeling, some of which may have greater validity than others. First, to the extent that the computer is still a novelty in many facets of Industrial activity, there is an important element of prestige associated with having one's own system, without having to deal with some outside supplier. Then there is the concern over security of the data files maintained by the machine, and the belief that such security could not be guaranteed were the organization to contract with some other source for computing services. There is also the desire to have the computer available on a priority basis when needed, something which a service bureau might not be able to guarantee. In any event, whatever the validity of these reasons, many end-users have been of the view that, since the cost of the computer was such a small part of total company expenses, and, since the cost of the machine was possibly justified on the basis of perhaps only one application, there was no reason to be concerned about saving some money and sharing a larger machine with other firms, some of whom might even be competitors.

Uniqueness of Applications and Costs of Development
General use of large size, more efficient machines is

institutional factors in the computer service industry.

First, virtually every computer application in existence, and there are perhaps over 100,000 distinct applications in operation, is unique to at least some degree. Even the most common, pedestrian applications, such as payroll accounting, accounts receivable billing and accounts payable processing, are usually designed especially for the end-user firm.

Moreover, once a user has committed resources to the development of an application program package for one machine type, he often must amortize this investment over a certain time period, irrespective of other economies of routine operation that he might realize by a switch to some other model. Such a process is often costly and is not done without considerable justification in most instances.

Two opposing forces have been developing that might perhaps modify this situation in time. One is the fact that newly developed applications are often far more complex, and hence far more expensive to implement, than previously existing uses. However, at the same time, new developments in software may make the development of new applications, and the conversion of old ones to different machines, a less arduous task. A new software industry is only now beginning to pass along economies of software development to its clients by, in effect, sharing development costs of a package among several of them. The software firm writes the

basic programs in a fairly machine-independent format, and then implements the program individually on each client's system. In the past, end-users usually wrote their own applications programs from scratch, since there was no easy means of modifying a preexisting program without, in many cases, pirating the programmers from the organization where it was written.

Standardization. There is relatively little of significance in the way of standardization within the computer manufacturing industry. Programs written on one machine will usually not run on a machine of some other type; indeed the program may not even run on another machine of the same type! On the software side, programming languages have achieved some degree of standardization, but the standard is rarely implemented on a widespread basis. A case in point is the ASA Standard FORTRAN Ty language specifications, which seek to provide a uniform language for all FORTRAN programs. This standard has, in practice, been used as a minimum, rather than an optimum, by the manufacturers and users. Many have developed their own versions of FORTRAN IV that include additional capabilities. The effect of this is that a program written in the expanded version cannot be run on another system that does not use the same expanded version; the adoption of asstandard here has been virtually worthless.

undesirable. Adoption of a firm standard by the computer field would necessarily act as an impediment to innovation and development. In the FORTRAN example just cited, many of the "added" features are quite useful and important; they might not have been introduced at all if the standard was firmly adhered to. The value of setting standards must be weighed against the value of innovative freedom. In an industry so characterized by innovation, adoption of firm standards would seem to be premature at this time. Hence, the diseconomies associated with the necessity for a user to adhere to his present machine as long as possible will still be present for some time to some.

Diseconomies of Sharing. It was suggested earlier that there were advantages, as well as costs, associated with the technique of multiprogramming a large computer. These "costs of sharing" arise in both technical and operational ways, some of which may never actually show up on any user's books. Technically, additional hardware is required to support a multiprogramming environment. The cost of such hardware may often exceed the cost of the basic processing capability. In another study (3) it was learned, for example, that the "sharing overhead" components in one major time-sharing system then under development would be about 65% of total hardware cost, not to mention such additional cost factors as communications facilities, and the cost of

writing the software for the system, perhaps as high as \$6 million.

From the operational standpoint, the user of a remotely located computing facility must incur certain costs in order to gain access to the machine. If it is a time-shared, remote access system, he must contract for communications services from a common carrier, and lease a remote access terminal device. If the service involved is a batch processing system, the user must arrange for pickup and delivery of his jobs, and must bear the cost of any inconvenience that may result from some delay in transit.

CONCLUSION

From the foregoing, we conclude that although there are certain obvious and significant economies in the operation of a computing facility that would tend to make large systems far more efficient than small ones. We have also observed that there are certain factors that may negate any such efficiencies.

Thus we must ascertain the extent of actual economies of scale in practice. To accomplish this, an analysis was made of acquisition practices of firms in the manufacturing industries to determine whether they were acting as if the economies did outweigh the diseconomies, or vice versa. Although few of the installations studied operate in a time-sharing type of environment, the analysis does present a basis for assessing the nature of demand for computing

services in manufacturing industries, based upon the presently existing structure of costs for such services. If economies of scale exist under the present technology, then the more widespread use of shared facilities will serve to increase the efficiency with which this equipment is used. The results of this analysis are the subject of the next chapter.

REFERENCES

- (1) Knight, Kenneth E., "Changes in Computer Performance," <u>Datamation</u>, September 1966, pp. 40-54.
- (2) Knight, Kenneth E., "Evolving Computer Performance," <u>Datamation</u>, January 1968, pp. 31-35.
- (3) Diamond, D. S. and L. L. Selwyn, (1968), op. cit.

RENT AND EXPENSES FOR ALL FEDERAL GOVERNMENT INSTALLATIONS

G RNT/EXP	.220	22 1 5	13	17	.17	10
MM RNT/EXP SI	31	1 H W		4. R	56	
SIG TOTEXP	3.83	43.469	1./3 2.61	7.11 1.0k	3.12	
MFAN TOTEXP	∞ r	30.749	'n.	ın «	8	
SIGMA RENT	52 8.5	1.471	. t.	25	46	
MEAN RENT			#. ca		8.22	
r. LE.	6 r	25	0 4		6666	
NOBS .G.RENT.LE	00	4 rv é	70 70	40	100	
NOBS	10	126	M C	0) K	120	

RENT AND EXPENSES FOR INSTALLATIONS WITH 2 OR FEWER COMPUTERS

IG RNT/EXP	.219	.214	. 205	.177	.174	.156	22	18
I/EXP S	513	562	₩.	8	4	9	605	∞
SIG TOTEXP	~	3.00	5.16	7.08	7,75	0.55	05.70	0.15
MFAN TOTEXP	7.383	.26	.65	19	50	09.92	98	71,76
SIGMA RENT	.522	83	. 41	4.	89	. 23	7.683	0
MEAN RENT	1.381	3,270	M	3	8	2	86.287	7
ſ.LE.	7	S	10	20	S	7	100	0000
.G.RENT.LE	0	7	ĸ	, C	000	9 0	70	
NOBS	104	219	107	127	. o	, ,	· σ	יט י

TABLE 11-3 RESULTS OF REGRESSION ANALYSES

1. LOG(SYSTOT) = A0+A1+LOG(SYSRNT) \$,

NOB = 8 NOVAR = 2 RANGE 1 1 8 1 REGR4

RSQ = 0.9975 SER = 0.0718 SSR = 0.0309 F(1/6) = 2437.8990 DW(0) = 3.0744

COEF VALUE ST FR T-STAT

A1 0.7657 0.0155 49.3751
A0 1.9016 0.0521 36.4693

- a. All Federal Government Installations
- 1. LOG(SYSTOT) = AO+A1*LOG(SYSRNT) \$,

RSQ = 0.9924 SER = 0.1143 SSR = 0.0784 F(1/6) = 784.3572 DW(0) = 1.9961

COEF VALUE ST ER T-STAT

A1 0.7050 0.0252 28.0064
A0 1.9344 0.0837 23.1157

b. installations with 2 or Fewer Computers

CHART 11-1

CHART 11-2

CHAPTER THREE

OPTIMUM PLANT SIZE IN THE COMPUTER SERVICE INDUSTRY

THE SURVIVAL PRINCIPLE

The last chapter considered the determination of relative economies of scale in the provision of computing services by an analysis of relevant cost areas and by consideration of known short-run diseconomies which might act as detriments to obtaining the fullest cost advantages of the use of large scale computer systems. The present chapter considers the question of economies of scale by attempting to determine the optimum plant size in the computer service industry. A plant is defined as a single computer system, although several-such systems might be in operation within a single installation.

In considering the question of optimum plant size, Stigler (1) noted that:

An efficient size of firm . . . is one that meets any and all problems the entrepreneur actually faces: strained labor relations, rapid innovation, government regulation, unstable foreign markets, and what not. This is, of course, the decisive meaning of efficiency from the viewpoint of the enterprise. . . .

The survivor technique proceeds to solve the problem of determining the optimum plant size as follows: Classify the firms in an industry by size, and calculate the share of industry output coming from each class over time. If the share of a given class falls, it is relatively inefficient, and in general is more inefficient the more rapidly the share falls. (1, p. 56.)

Under this view, it should be possible to determine the relative efficiency of plants of various sizes merely by studying the existence and survival patterns of plants of various sizes in an industry. In the long run, only the most efficient firms, which presumably are those of relatively optimum size (assuming a continuous production function) would survive in a competitive market. Indeed, Stigler observes that

Not only is the survivor technique more direct and simpler than the alternative techniques for the determination of the optimum size of firm, it is also more authoritative. Suppose that the cost, rate of return, and technological studies all find that within a given industry the optimum size of firm is one which produces 500 to 600 units per day, and that costs per unit are much higher if one goes outside this range. Suppose also that most of the firms finishe industry are three times as large, and that those firms which are in the 500 to 600 unit class are rapidly falling or growing to a larger size. Would we believe that the optimum size was 500 to 600 units? Clearly one: an optimum size that cannot survive in rivalry with other sizes is a contradiction . . . (1,p. 56).

In another study, Simon and Bonini (2) used this principle to disclose the fact that in general, industry cost curves were "J" shaped, that is, above a certain minimum size of firm, expansion would take place along a constant cost portion of the long-run average cost curve and that, for most relevant size magnitudes, the theoretical upturn in what is considered to be a "U" shaped curve will not occur. The Simon-Bonini model was based upon the observation that over time there was no greater of the proportionate change in size among firms at various points

in the spectrum of firm sizes. If an industry were experiencing economies of scale (i.e., expension was taking place along the decreasing cost portion of the industry cost curve) then firms of relatively large size would have an increased probability of survival than their smaller competitors. Hence, under such cost conditions, we would expect, over time, to observe a greater proportionate change in size of large firms than of small firms.

T. R. Saving, in yet another application of the survival technique (3) suggested that there was some value in considering only the size distribution of plants at some single instant in time, thus, in effect, making the (perhaps heroic) assumption that the existing distribution of plants is optimum (3, p. 578). Certainly, this implies that any movements or trends toward optimum plant size in an industry are reflected in the existing structure of that industry; that a "snapshot" is sufficient to indicate some direction of movement. The survival technique is used, in the present study, in this manner, since the rapid rate of technological change in the computer field would render comparisons of plant sizes in different periods of little value.

Saving also concluded that "the greater the size of the market, the larger will be the optimum size (of plant) because it is the size of the market which allows a plant to be large enough to take advantage of all the economies of production which are available." He further notes that "by

size of market we refer to the size of the market in which the plant competes, and not the industry, since it is the market for the individual plant's output which determines the extent to which that plant may take advantage of existing economies of scale." (3, p. 587). Welss (5, p. 253), came to a similar conclusion by demonstrating that for any given industry the percentage of total capacity within any market (region) that was in plants of at least minimum efficient size increased with the size of the market. (i.e., the larger the market, the more the potential economies of scale were realized.)

In the computer service industry, as we have defined it, the "market" that is served by an individual "plant" (i.e., computer) is most often restricted to the firm which uses the computer's services as an input to its production process. Hence, by segmenting the computer service industry into its individual markets, we may examine the relative economies of scale in the industry as a whole by determining the nature of the effect upon optimum computer size of the specific market in which it operates.

This was accomplished by classifying the individual plants in the computer service industry into groups according to the specific (manufacturing) industry that each machine serves. This, of course, assumes that all firms in a manufacturing industry possess essentially identical production functions. Further, if we assume, as Bain (4)

and Simon and Bonini (2, op. cit.) have suggested, that industry cost curves are usually J-shaped such that in general constant costs exist above some minimum critical point, then by assumption the quantity of computing service demanded by a firm in any one industry should vary in direct proportion to its size, along a linear homogeneous production function for the (manufacturing) firm.

THE SURVIVAL PRINCIPLE APPLIED TO COMPUTER SERVICES

The operating cost data considered in Chapter two might lead one to expect that no computer save for the very largest is efficient, and that the prudent user will always obtain the largest system he can. However, this does not seem to be true in practice. In an attempt to determine what does occur in practice, the survival technique was applied to data on nearly 10,000 computer systems in manufacturing industries. Stigler suggests that survival over time is the key variable to be observed. However, as already observed, with the rapid rate of technological change in the computer industry, time series would not indicate any meaningful pattern, since the production functions in different years might not be strictly comparable (or even remotely similar!). As an alternative to studying survival patterns over time, usage patterns across a number of industries, each of which has its own characteristic structure, were analyzed.

If there were no actual economies of scale in the production of computer services, then we might expect the size pattern of systems serving firms within a particular industry to reflect the structure of that industry.

Further, proportionate changes in industry characteristics should result in a change of like proportion in the typical size of a computer installed within a firm in the industry. If economies of scale do exist, then the relationship between industry structure and computer size pattern would be less definite. Also, changes in industry structure should result in less than proportional changes in computer size, indicating that because smaller installations are less efficient to operate, relatively large systems are required to serve industries characterized by small firms.

Assuming linear homogeneous production functions for firms in manufacturi ng industries, then

where d is the quantity of computing service demanded by a firm of size s; in industry i, and is a constant. The Bain and Simon-Bonini findings lend credibility to this function for outputs as related to direct inputs. Outputs here are given by firm size s;, since we measure size in values of product shipments; but the input here, d, is very indirect; computer service is part of administrative, research, and process control functions, none of which approach "labor" as a direct input. But all three of these

indirect services are used to explain the existence of firms; that is, analysts of organizations place responsibility for limits on organization (or firm) size on the decreasing returns to scale of services in these three categories. We assume only constant returns, as a cautious first step in our analysis; decreasing returns would add to the strength of the findings below.

Thus, if p_i is the average size of a computing plant in industry i, then

where \prec is a constant and % = 1.0 if no economies of scale exist and % > 1.0 if they do. That is, if economies of scale exist, then a less than proportionate change in average size of computing plant will be required for any change in quantity of computing services demanded, d. This relationship may be rewritten as

$$p_i = \frac{1}{\alpha} d^{\beta} = As_i$$
 for $\beta = \frac{1}{\delta}$

where β < 1.0 under conditions of economies of scale.

Thus, if firm size is increased by some factor k, then kp < kd. We would expect a proportionate change in power as a result of a change in firm size only if no economies of scale are present. However, where such economies do exist, then the smaller firms are already using larger machines than they might be doing under conditions of constant costs, such that the magnitude of the increase in computer size is not as great as that in firm size.

MEASURES OF PLANT SIZE IN THE COMPUTER SERVICE INDUSTRY

in order to test this hypothesis, it was necessary to find a set of variables that would characterize the structure of the user industry and another group to characterize the structure of installed computer systems within the user industry.

Six variables were selected to describe the user industry: industry size, industry growth, industry concentration in the four largest firms, number of establishments in the four largest (and most important) firms, labor intensiveness, and capital intensiveness. (The appendix describes each of these more fully and presents, in Table A-1, a summary of these variables for the 119 industries studied.)

The variables used to characterize the structure of computer sizes were average rent, average total expenses, and average power. These are summarized, for each industry, in Table A-2.

Average rent. Average rent was computed by using, as mean rental values in each of eight size classes of computer systems, the values obtained from an analysis of the cost patterns in the Federal Government installations (see Tables A-2, A-3, A-4). Although a more valid method might have been to determine the actual rent for each computer installed, the data were not sufficient to develop such price determinations. However, considering the number of

averaged out over all systems. Hence, the use of the experience within the Federal Government is probably a fairly good estimator of actual average costs.

Average total expenses. Once again, the data on computer systems in the manufacturing industries was not sufficient to permit any determination of operating expenses. However, the results of the analysis of the Federal Government experience were used and are believed to reasonably estimate non-government experience. It should be noted, however, that certain expense categories are not included in the Federal Government's direct computer system operating costs that are usually figures by mongovernment users. However, it is believed that these are probably a fixed percentage of non-rent expenses, and will not materially affect the results obtained in the present application.

Average Power. A measure of the productive capacity of computer systems is provided by Knight's indicies of computing power, discussed earlier (and in the Appendix).

measures of system cost, they are also measures of system size, just as number of employees, sales, kilowatt hours used per month, etc., are all measures of plant on firm size. Use of the power variable, however, provides the best measure for change in productive capacity which we assert

characteristics of the user industry if computing costs are constant. However, the change in one of the cost variables will provide a more direct measure of the change in relative expenditure on the typical system. If this change is approximately in the same proportion as a change in industry structure, then clearly there are no economies of scale. However, to the extent that this change is less than the like change in the industry structure, then change in the industry structure, then there would seem to be certain efficiencies of large scale systems that are indeed being enjoyed by firms of larger size.

CONSTRUCTION OF THE MODEL

Linear regression analysis was used to test for relationships between any of the six industry variables and the three computer size variables just decribed. In the case of industry growth, labor intensiveness, and capital intensiveness, there was no significant relationship between any of these and any of the three computer size descriptors. Hence, these three variables were discarded from further analysis. The most significant relationship was found in a model whose independent variables consisted of the natural logarithms of industry size, concentration ratio, and number of establishments in the four largest firms. The three multiple regression equations were, then

$$\ln X = b_0 + b_1 \ln Q + b_2 \ln T + b_3 \ln E$$
 (2)

where

R = average computer rent

X = average total computer operating expenses

P = average computing power

Q = industry size

T = ratio of size of four largest firms to

E = number of establishment in four largest firms.

a;, b;, c; are regression coefficients.

In effect, the three independent variables, in a non-logarithmic form, form a measure of average plant size in the four largest, and most important, firms in the industry:

Average establishment size =
$$\frac{QT}{E}$$
 (4)

The results of these regressions are given in Table III-1.

A plot of the logarithm of average plant size against each of the three computer size variables is provided in Charts

III-1, 2, and 3.

DISCUSSION OF THE MODEL

The three equations used are transformations of the hypothesized relationship, which is non-linear. Hence, each of these equations could be written

$$P = e^{c_0} Q^{c_1} T^{c_2} E^{c_3}$$
 (5)

Since, from Table III-1, $C_1 \approx -C_3$, we may rewrite equation (5) as

$$P = e^{C_0} \left(\frac{Q}{E}\right)^{\beta} P T^{C_2}$$
 (6)

where $C_1 \approx \beta_P \approx -C_3$

if there were no economies of scale, then both β_P and $\mathcal{C}_{\mathcal{L}}$ would be approximately equal to one, such that any change in average plant size in the user industry would result in a proportionate change in average computer size. However, the results of the regression analysis, as shown in Table III-1, indicate that in fact β_P is approximately 0.4, and $\mathcal{C}_{\mathcal{L}}$ slightly less than 0.7, indicating that there apparently are economies of scale in computing services, and that these economies are most pronounced when average establishment size is changed.

Turning next to the other two cost-related measures of computer size, we find that, for average system rent, β_R = approximately 0.15, and a_2 is approximately .26; in the case of average total expenses, β_X is about 0.095, and b_2 , about 0.17. Once again, economies of scale are indicated, especially with respect to average establishment size.

However, the cost-related measures would seem to suggest highly significant economies: if average establishment size is doubled, the average cost of a computer increases by 2**0.095 times, or by only about 102. Average rent would increase by about 142.

EXAMINATION OF THE RESIDUALS

Table III-2 presents a summary of the actual and estimated values of average rent for the 119 industries studied. In an attempt to explain at least some of the variation from the model, the subject industries were classified into three groups, depending upon the nature of the applications to which computers had been used in that industry. Table III-3 summarizes this analysis. In general, the model seemed to overestimate the average rent in industries with significant analysis types of applications. These include such activities as engineering design, simulation, job-shop scheduling, mathematical programming, statistical studies, and what not. In the case of industries with process control applications, such as machine operation monitoring, computer typesetting, etc., the model seemed to underpredict the average size of the computer systems installed. The third class included all systems where business applications were predominant, and relatively little analysis or control activities were taking place. The original model seemed to be fairly accurate for this type of industry. Using this same grouping, the

there were any differences in the coefficients, and hence elasticities, when the installations with non-business applications were treated seperately. The purpose here was to isolate those groups of users whose industry production function requires that they make a different type of use of computing devices than most industrial users. A determination of differences in the regression line based upon application area would suggest that the degree to which economies of scale are present in any instance is, to at least some extent, determined by the nature of the service being obtained from the equipment. Table III-3 presents the results of this analysis and indicated that, although there were some small changes, the original conclusions are in no way invalidated.

CONCLUSION

The empirical data suggest that users of computing equipment are behaving as if there were significant economies of scale in the use of such devices. There seems to be a general tendency for users to acquire larger systems than their firm or plant size would indicate is required. A doubling of average establishment size results in only about a 35% increase in the average power of computer installations in the industry, far less of an increase in the two cost measures - machine rent and total operating expenses.

Further, only about 40% of the variation in computer system size could be explained by variations in industry structure. Even when some cognizance was taken of the specific application areas to which computer were used in the subject industries, the relative proportion of the variation that could be explained by the industry structure was not materially altered.

From this, one may only conclude that the decision as to which size machine to use is based upon factors other than the straight quantity requirement for service. Companies do tend to obtain systems that exceed their requirements, because they are substantially cheaper to run, on an average unit of processing basis. What is done with the excess capacity is not clear from this data; there is a developing market in excess computer capacity (within the last two years several new firms have been organized to provide brokerage services in this market).

If there are apparently economies of scale in the provision of computing services, one must then inquire as to what changes might be made to the economic environment of the computer service industry to promote greater efficiency of computer usage. This question is considered in the next, and concluding, chapter of this study.

REFERENCES

- (1) Stigler, George J., "The Economies of Scale,"

 J. Law and Economics, (1, October 1958), pp. 54-71.
- (2) Simon, Herbert A., and Charles P. Bonini, "The Size Distribution of Business Firms," <u>American Economic Review</u>, XLVIII, (September, 1958), pp. 607-617.
- (3) Saving, T. R., "Estimation of Optimum Size of Plant by the Survivor Technique," <u>Quarterly Journal of Economics</u>, (LXXV:4, November, 1961), pp. 569-607.
- (4) Bain, Joe S., <u>Barriers to New Competition</u>, (Cambridge, Mass.: Harvard University Press, 1956)
- (5) Weiss, Leonard W., "The Survival Technique and the Extent of Suboptimal Capacity," <u>Journal of Political Economy</u>, (LXXII:3, June, 1964)

TABLE III-1 RESULTS OF REGRESSION ANALYSES

ALL 119 INDUSTRIES 1. LOG(AVGRNT) = A0+A1*LOG(INDSIZ)+A2*LOG(CONCEN)+A3*LOG(ESTAB) \$,NOB = 119NOVAR = 41 1 119 RANGE REGR4 RSQ = 0.3665 SER = 0.2670 SSR = 8.1988 F(3/115) = 22.1815 DW(0) = 2.1211 VALUE ST ER T-STAT COFF 0.0398 3.9789 0.1585 ٨1 9.5253 0.3050 2,9057 Α0 6.6026 0,2611 0.0396 A2 -0.14080.0330 -4.2631۸3 2. LOG(AVGEXP) = B0+B1*LOG(INDSIZ)+B2*LOG(CONCEN)+B3*LOG(ESTAB) \$, NOVAR = 4NOB = 1191 RANGE 1 119 REGR4 0.3664 SER = 0.1751 SSR = 3.5278 2.0545 F(3/115) = 22.1712DW(0) =ST ER T-STAT **VALUE** COEF 0.0261 3.7816 0.0988 B1 4.7507 0.2001 23.7416 B06.7088 0.0259 0.1740 B 2 -4.2099 -0.09120.0217 33 3. LOG(AVGPOW) = CO+C1*LOG(INDSIZ)+C2*LOG(CONCEN)+C3*LOG(ESTAB) \$, NOVAR = 4NOB = 119119 RANGE 1 1 1 REGR4 RSQ = 0.3440 SER = 0.7602 SSR = 66.4561 F(3/115) = 20.1027 DW(0) = 2.1500 ST ER T-STAT VALUE COEF 0.1134 4.1460 0.4702 C10.8685 6.0580 CO 5,2613 22 0.6764 0.1126 6.0069

0.0940

-0.4036

C3

-4.2927

Table 111-2: Actual And Predicted Values - All 119 Industrles

r sortx ind3 W 1107.8

CNTRL	090	100	7 v	0 2	7 2	5	3	1	9	2	4	4	9	1	2	. 5	0	0		13	7	F	1 -	2	† C	o m
ANAL	0 m c	2 2 5	77	0 0	7 0	0	П	0	2	0	5	11	0	0	0	-	10	ст	0	2) C	> -	- C	> <	0
BUS	24 12	22	13	23	13	7	9	19	20	27	56	22	21	16	13	29	27	7	. 00	16	27	; c	27	ř	ţ	71
ESTAB	77 11 7	19	33	29) o	10	11	6	26	9	32	27	24	13	42	232	85	14	100	23	10	14	- 12	5	250	91
CONC	14 10 31	42	27	16	6	26	20	81	30	24	14	28	43	2	28	25	23	85	18	96	34	38	14	22	23	27
SIZE	2735 1397 1273	2339	2853	2502	1345	1072	1696	2860	1253	1681	2602	2323	2846	2791	1052	5007	4438	1992	2891	1399	2713	2544	3202	3139	7435	15069
NAME OF INDUSTRY	Bottled and Canned Soft Drinks Metal Door, Sash, and Trim Iron and Steel Foreines	Ship Bullding and Repairing	Paperboard Mills	Meat Processing Plants Newspapers	Millwork Plants	Steel Plpe and Tube	Railroad and Street Cars	Cigarettes	Cement, Hydraulic	Confectionary Products	Fabricated Structural Steel	Boiler Shop Products	Copper Rolling and Drawing	Printing, Lithographic	Work Clothing	Bread and Related Products	Prepared Animal Feeds	Organic Fibers, Noncellulosic	Corrugated Shlpping Containers	Ball and Roller Bearings	Refrigeration Machinery	Hardware, N.E.C.	Printing, Except Lithographic	Rubber Products, N.F.C.	Fluid Milk	Meat Slaughtering Plants
NCOMP	27 22 33	28	18	27 207	17	10	15	27	31	33	42	43	27	18	18	45	41	13	10	45	48	39	72	52	39	106
PCT-ERR	-16.15 -12.45 -11.83	-10.09	-9.20	-8.89 -8.75	-8.63	-8.55	-8.20	-8.L8	-7.62	-7.53	-6.88	-6.78	-6.70	-6.63	-6.38	-6.31	-6.17	-6.15	-5.42	-4.18	-3.80	-3.68	-3.59	-3.53	-3.41	-3,39
RESIDU	6956 5444 5579	4801	4231	3964	3770	3930	3956	4T4U	33/8	3546	-,303/	3121	3190	2832	2824	2778	2775	3047	2358	1977	1828	1758	1634	1629	1512	1599
YFIT	4.3065 4.3730 4.7168	4.7568	4.5975	4.45 68 4.5404	4.3660	4.5977	4.8264	5.0584	4.432T	4./II4 / /1//	4.4T4b	4.6026	4.7617	4.2722	4.4256	4.4049	4.4970	4.9587	4.3467	4.7303	4.8078	4.7709	4.5454	4.6173	4.4278	4.7138
Y	3.6109 3.8286 4.1589	4.2767	4.1744	4.0604 4.1431	3,9890	4.2047	4.4308	4.0444	4.0943	4.336/	4.1109	4.2905	4.4427	3.9890	4.1431	4.1271	4.2195	4.6540	4.1109	4.5326	4.6250	4.5951	4.3820	4.4543	4.2767	4.5530
SIC	2086 3442 3391	3731 3674	2631	2013 2711	2431	3317	3/42	327.1	3241	1767	344T	3443	1331	75/7	2328	2021	2042	787	2653	3562	3585	3429	2751	3069	2026	2011
Rank	3 2 3	5 4	91	~ 80	ο ;	10	1 :	13	CT -	4 5	71	To	\ T	× •	T6	07 5	7.T	77	5.73	47	52	26	27	28	53	30

CNTRL 9	42	7	n -		m	0	က	Н	٣	-	7	91	٠,	-	0	⊣ !	47	n ×	3 4	78	ო	7	- г		4 10	0	ଷ	0	14	-	-	7	9	10	'n	1	
ANAL 11	56	4	0 -	1 0	~	0	0	0	m		7	0	0	0	m	7	7	4.	v t	21 21	0	7	⊣ •	۷ -		10	9	0	œ	11	0	7	7	7	ı ,	Н	
SUS 34	199	47	2	n r-	13	20	12	23	20	1 7	191	3 %	60	. 53	20	20	112	72	78	9 F3	2	ន	8	7 7	1 2	a #	4	13	57	61	16	24	17	i E	87	: ::	
ES TAB	135	38	9 ;	1 7	7 5	3 5	4	22	2	2 2	1 1	1 =	33	13	4	11	57	32	១ ;	9 °	12	11	23	14	77	‡ <u>\$</u>	23	14	24	13	14	11	15] [1 8	113	
CONC		23	2 5		8 %		1 9	2	1,0		, , ,				14	22	49	11			15					y 5									ţ «	. T	!
SIZE	45630	2970	1157	1342	1483	1300	2241	7000	9626	07/7 07/7	1270	2762	900	1230	1273	1148	21193	3716	3286	1053	2623	1051	2700	1429	1885	3/11	75.57	1457	2467	6432	1020	1167	2151	1017	4092	2631	
NAME OF INDUSTRY	cals, N.E.C. s and Parts	14ed Products		cal Equipment	Section 1	intermediate Coal Tar Products	wood Plants	Synthetic	Detergents	dries	STOOL Put	Charles Preparations, N.E.C.	Lachinery	Aluminum Rolling and Drewing	AMEDICAL TOOLS AND ACCESSOLIES	And the Machine M. F. C.	state Witnesses and Steel Mills	nd Inner Tubes	quipment	?-	Clacked Messuring Instruments	MOL OPHOLES	101	I Measuring Devices	and Vegetables	re Drawing, Etc.	ite Trousers	y and aquipment	LILLIES American	lelephone, lelegrapu Apparatus	Pharmaceutical Freparations	Collabos and Sanitation Goods	Mesting Equipment, Except Electic	mpressors	Radio and IV Receiving Sets	ducts, N.E.C.	
NA	Organic Chemicals, N.E.C.	Detate and Allied Products	Cames and Toys	Engine Electrical Equipment	Abrasive Products	Intermediate C	Veneer and Plywood Plants	Weaving Mills, Synthetic	Soap and other	Gray Iron Foundries	Special Dies and Tools	Chamical Prepa	Construction Machinery	Aluminum Rolls	Machine Tools and Ac	ALIAN CHARACTER	Winest Property	Times and Inn		Transformers	Risctaic Mass	MOOG FUTTILLIE NO.		Mechanical Me	Promen Pruits			Farm Machines	Conned Specialities	Telephone, I	Pharmaceutica	Polishes and	Beating Equi	Pumps and Compressors	Radio and IV	Plastics Pro	Metal Cans
P.	120 Organic Chemi			13 Engine Electri	11 Abrasive Produ	26 Intermediate C	17 Veneer and Ply	18 Weaving Mills,	28 Soap and other	39 Gray Iron Foun		33 Chemical Prepa	_	•			-	100 Tires and Inne				32 Mood Fernancus	Sell: 14a	Machanica	Promes Fr		Separ	Farm	•				50 Heating Equil	_	97 Radio and TV		27 Metal Cans
_			S &	ដ	717	76	-2.27 17 Veneer and Ply	18	78	66	17	33	- 93	16		57	07 6		67	0*		32 MOOD SEE	Sell: 14a	54 Mechanica	31 Promp Fr	28 Monte	13 Separa	166 Farm	61	159	105	70	200	35	97	28	27
PCT-ERR NCOMP	120	13.04	-2.94 30	-2.39 1.3	-2.38 11 4	-2.35 26 1	-2.27	-2.03 18	-1.97 28	-1.59 39	-1.58 21	-1.42 33	-1.34 63 (-1.12 16	-1.08 17	-1.05	07 16	7, 100	63 67	- 38 40	36 111	- 29 32 MOOD FUEL	05 40 Walt Lide	07 54 Mechanica	31 Tromps Pt	.28 28 Monte	.33 13 Separa	.59 Ico Farm	.72	. 75	. 86 105	.87 20	. 92 50	1.09 32	1.13 97	1.24 58	1.24 27
PCT-ERR NCOMP	-3.21 120	C++ 40°C	- 1353 - 2.94 30 (1167 -2.39 1.3	1129 -2.38 11 4	1123 -2.35 26 7	1007 -2.27 17	0937 -2.03 18	0957 -1.97 28	0739 -1.59 39	0676 -1.58 21	0640 -1.42 33	0654 -1.34 63 (0540 -1.12 16	0487 -1.08	0483 -1.05	07 16 81.0	23.3	- 030 63 - 67	018338 40	016536 111 1	013029 32 MOSG FUET	-,0052 -,11	range 54 Mechanica	. 28 31 Probate Pt	.0132 .28 28 Monte	.0149 .33 13 Separa	.0285 .59 166 Farm	.0348 .72 L9	.0372 .75 159	. 0407	.0400	.0409 .92 50	.0507 1.09 32	.0561 1.13 97	.0536 1.24 58	.0580 1.24 27
T RESIDU PCT-ERR NCOMP	1567 -3.21 120	5.11121553 -5.04 445	4.542/1339 -2.33 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	4.88741167 -2.39 13	4,74761129 -2.38 11	4,77581123 -2.35 26 1	4,43141007 -2.27 17	4.61550937 -2.03 18	4.86630957 -1.97 28	4.63820739 -1.59 39	4,2723 -,0676 -1.58 21	4.50660640 -1.42 33	4.86120654 -1.34 63 (4.84150540 -1.12 16	4.51470487 -1.08 17	4.58090483 -1.05 24	4.5851041891	4.9836042004	# 0150 = 0318 = 63 67	4, 7632018338 40	4.6415016536 111 1	4.4318013029 32 Mood Furt	4.7326005211 40 Walt 14de	200 CON 00 CON 0	4 1306 0127 . 28 31 Probab Pr	4.7053 .0132 .28 .28 Monte	4.4624 .0149 .33 13 Separa	4.8313 .0285 .59 156 Farm	4.8328 .0348 .72 L9	4.9464 .0372 .75 159	4.7551 .0407 .86 105 F	4.5850 .0400 .87 20	4,4699 .0409 .92 50	4,6588 .0507 1.09 32	4.9478 .0561 1.13 97	4.3284 .0536 1.24 58	4.6782 .0580 1.24 27
T RESIDU PCT-ERR NCOMP	4.88411567 -3.21 120	4.9558 5.11121553 -5.04	4.4067 4.542/1339 -2.55 37 3	4.7707 4.88741167 -2.39 1.3	4.6347 4.74761129 -2.38 11	4.6634 4.77581123 -2.35 26 1	4,3307 4,43141007 -2.27 17	4,5218 4,61550937 -2.03 18	4.26630957 -1.97 28	4.5643 4.63820739 -1.59 39	4.2047 4.27230676 -1.58 21	4, 4427 4, 5066 0640 -1.42 33	4,7958 4,86120654 -1.34 63	4.7875 4.84150540 -1.12 16	4.4659 4.51470487 -1.08 17 1	4.5326 4.58090483 -1.05 24	4.5853 4.5851041891	4.9416 4.9836042004	4.8598 4.8490035453 67	A. 7469 A. 7632 0183 38 40	4.6250 4.6415016536 111	4.4188 4.4318013029 32 MOSG FULL	4,7224 4,7326005211 to territorial to territo	4, 150 Chan Chan 54 Machanica	4. 54.93 4 14.06	4,7185 4.7053 .0132 .28 .28 Bonfer	4. 4773 4. 4624 .0149 .33 13 Separa	4.8598 4.8313 .0285 .59 166 Farm	4.8675 4.8328 .0348 .72 L9	4,9836 4,9464 .0372 .75 159	4.7958 4.7551 .0407 .86 105	4,6250 4,5850 .0400 .87 20	4,5109 4,4699 .0409 .92 50	4,7095 4,6588 .0507 1.09 32	5,0039 4,9478 .0561 1.13 97	4.3820 4.3284 .0536 1.24 58	4.7362 4.6782 .0580 1.24 27

Table 111-2 (CONTINUED)

CNTRL	4 1 5 13	1011	ო ი თ c	5 g m 6	15 0 0	00714	14 0 0 1 1	26 26 19 7 7 7 7 10 10 11 12
ANAL		1900	0,000	000	1691	3 3	27 0 1 1 0	18 46 0 0 0 0 0 45 3
BUS	37 10 33 33	52 12 27	20 26 16	36 21 28	23 27 17	73 17 17 17	66 51 19 9 24 14	18 55 00 19 40 40 18 22 92
ESTAB	32 21 10 10	31.1.2.2.3	22 41 19 28	28 112 119	64 13 45 33 45 45 45 45 45 45 45 45 45 45 45 45 45	12 45 80 10	35 62 41 28 56 22	15 5 19 108 108 14 57 60 14
CONC	25 22 22 22	32 33 33	15 52 17 55	30811	7 7 7 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	32 45 45 6	48 24 25 19 31 15	58 22 22 26 30 26 26 26 27
SIZE	1167 1300 1314 1826 1279	3532 1327 1142	1042 1549 1850 1332	1531 1731 1544 3756	1662 4805 2052 2206	1393 1183 18742 1100 2865	2289 3216 1348 1479 2345 1250	4572 2718 4002 1049 2650 2431 3562 2508 1128
NAME OF INDUSTRY	Weaving, Finishing Mills, Wool Fabricated Metal Products, N.E.C. Power Transmission Equipment Metal-Cutting Machine Tools Steel Foundries	Plastics Materials and Resins Biscuits, Crackers, and Cookies Ice Cream and Frozen Desserts	Women's and Children's Underwear Switchgear and Switchboards Men's and Boys' Suits and Coats Distilled Liquor. Except Brandy	Special Industry Machinery, N.E.C. Lighting Fixtures Metal Stampings	Bolts, Nuts Kivets and Washers Paper Mills, Except Building Internal Combustion Engines Food Preparations, N.E.C. Rock Dublishing and Duitele	Fertilizers Petrolium Refining Condensed and Evaporated Milk Misc. Machinery	Motors and Generators Canned Fruits and Vegetables Men's Dress Shirts and Nightwear Yarn Mills, Except Wool Flour Mills Wood Furniture, Upholstered	Aircraft Engines and Parts Periodicals Electronic Components, N.E.C. Industrial Controls Shoes, Except Rubber Toilet Preparations Weaving Mills, Cotton Dresses Electric Housewares and Fans Radio, TV Communications Equipment
NCOMP	57 16 51 64 25	84 16 33	27 30 29	14 4 5 25 5 26 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	30 134 58 22 136	120 120 13 13 13	141 65 27 13 34 21	80 104 158 42 64 71 72 23 43
PCT-ERR	1.26 1.39 1.44 1.53	1.66 1.93 2.25	2.25 2.41 2.50 2.55	2.79 2.91 2.92	3.62 3.88 3.88 3.97	3.97 4.17 4.27 4.48	4.50 4.82 4.91 5.20 5.33	5.60 5.81 6.04 6.13 6.22 6.46 6.59 7.07
RESIDU	.0589 .0604 .0642 .0669	.0984	.0980 .1122 .1120 .1199	1258	.1462 .1668 .1871 .1730	.1850 .2036 .1909 .1951	. 2117 . 2171 . 2179 . 22 6 1 . 2358	.2787 .2818 .2818 .2876 .277 .2977 .2962 .2787 .3164
YFIT	4.6596 4.3463 4.6179 4.6336 4.5359	4.7338 4.6968 4.3900	4.344/ 4.6500 4.4831 4.6923	4.5090	4.4617 4.6618 4.4617 4.6891	4.6592 4.8840 4.4725 4.3587	4.7083 4.5014 4.4361 4.4278 4.5348	4.9736 4.8481 4.6669 4.7428 4.7899 4.7899 4.2322 4.7334
¥	4.7185 4.4067 4.6821 4.7005 4.6052	4.8122 4.7875 4.4886	4.4427 4.7622 4.5951 4.8122	4.6347 4.6634 4.6052	4.7707 5.0304 4.6347 4.8752	4.8442 5.0876 4.6634 4.5539	4.9200 4.7185 4.6540 4.6540 4.7707	5.2523 5.1299 5.0304 4.6913 5.0876 4.8828 4.5109 5.0699
SIC	131 181 166 141 123	821 052 024	311 085	3559 3642 3461 3461	2621 2621 3519 2099 2731	2871 2911 2023 3599	3621 2033 2321 2281 2041 2512	3722 2721 3679 3622 3141 2844 2211 2335 3634
	33535	0000	1000	., ., ., .,				

Table 111-2 (CONTINUED)

CNTRL	2	0	3	14	0	5	0	23	2
ANAL	6	0	0	98	19	2	0	39	∞
BUS	15	9	10	91	57	33	39	37	19
ESTAB	28	38	40	6	75	20	54	11	5
CONC	28	23	59	67	29	1.3	13	26	21
SIZE	1383	1.359	1207	0006	3845	2209	3391	3781	1024
NAME OF INDUSTRY	aper Coating and Glazing	Except Textile Bags	tainers		Inorganic Chemicals, N.E.C.	d Pipe Fittings	and Planing Mills	Squipment, N.E.C	eneral Industry Machines, N.E.C.
NA	Paper Coat	Bags, Exce	Glass Containers	Aircraft	Inorganic	Valves and	Sawmills a	Aircraft F	General Ir
NCOMP NA	33 Paper Coat	Bags,	Glass		134 Inorganic			127 Aircraft F	Ŭ
	33 Paper	11 Bags,	Glass	455	134	. 65	52	127	43 (
NCOMP	7.17 33 Paper	7.42 11 Bags,	22 Glass	7.92 455	8.22 134	8.39 49	9.79 52	13.07 127	17.18 43 (
PCT-ERR NCOMP	7.17 33 Paper	.3283 7.42 11 Bags,	.3682 7.92 22 Glass	.4105 7.92 455	.3742 8.22 134	.3717 8.39 49	.4231 9.79 52	.6238 13.07 127	.7948 17.18 43 (
RESIDU PCT-ERR NCOMP	.3242 7.17 33 Paper	4.4253 .3283 7.42 11 Bags,	4.6491 .3682 7.92 22 Glass	5.1805 .4105 7.92 455	4.5530 .3742 8.22 134	4.4323 .3717 8.39 49	4.3219 .4231 9.79 52	4.7744 .6238 13.07 127	4.6257 .7948 17.18 43 (
RESIDU PCT-ERR NCOMP	4.8442 4.5200 .3242 7.17 33 Paper	4.7536 4.4253 .3283 7.42 11 Bags,	4.6491 .3682 7.92 22 Glass	5.5910 5.1805 .4105 7.92 455	4.9273 4.5530 .3742 8.22 134	4.8040 4.4323 .3717 8.39 49	4.7449 4.3219 .4231 9.79 52	5.3982 4.7744 .6238 13.07 127	5.4205 4.6257 .7948 17.18 43 (

Table 111-2 (CONTINUED)

TABLE III-3a RESULTS OF REGRESSION ANALYSES

93 INDUSTRIES WITH MAINLY BUSINESS

DATA PROCESSING APPLICATIONS LOG(AVGRNT) = A0+A1*LOG(INDSIZ)+A2*LOG(CONCEN)+A3*LOG(ESTAB) \$, NOB = 93NOVAR = 4 RANGE 1 1 93 1 REGR4 0.4305 RSC = SER = 0.2279 SSR = 4.6236F(3/89) = 22.4293DW(0) = 2.1672 VALUE COFF ST FR T-STAT 4.3830 0.1682 A1 0.0384 0.3069 8.3963 A0 2,5770 A 2 0.2634 0.0381 6.9135 **A3** -0.0652 0.0335 -1.94882. LOG(AVGEXP) = B0+B1*LOG(INDSIZ)+B2*LOG(CONCEN)+B3*IOG(ESTAB) \$, NOB = 93NOVAR = 41 1 93 1 RANGE REGR4 0.4001 SER = 0.1584 SSR = 2.2336 2.1305 F(3/89) = 19.7826DW(0) =ST ER COEF T-STAT VALUE 0.0267 **B1** 0.1068 4.0036 **B**0 4.5444 0.2133 21.3026 0.0265 **B2** 0.1736 6.5566 **B3** 0.0233 -0.0461 -1.9801 LOG(AVGPON) = C0+C1*LOG(INDSIZ)+C2*LOG(CONCEN)+C3*LOG(ESTAB) \$, NOB = 93NOVAR = 4 RANGE 1 93 1 1 REGR4 SER = RSQ = 0.3765 0.6978 SSR = 43.3331 F(3/89) = 17.9141DW(0) =2.1855

VALUE

0.4715

4.7656

0.7033

-0.2728

ST ER

0.1175

0.9396

0.1166

0.1024

T-STAT

4.0134

5.0719

6.0302

-2.6628

COFF

C1

CO

C2

C3

TABLE III-3b RESULTS OF REGRESSION ANALYSES

13 INDUSTRIES WITH MORE THAN

```
25% ANALYSIS APPLICATIONS
1. LOG(AVGRNT) = A0+A1*LOG(INDS!Z)+A2*LOG(CONCEN)+A3*LOG(ESTAB) $,
                   NOVAR = 4
NOP = 13
                    13
                        1
RAMGE
          1
               1
REGR4
                    SER = 0.4554 SSR = 1.8664
RSQ =
       0.4513
F(3/9) =
           2.4680
                       DW(0) =
                                 1.6657
                                  ST ER
                                           T-STAT
                        VALUE
COEF
                                           1.2339
                       0.2566
                                 0.2080
A1
                                           2.3607
                       2,9351
                                 1,2433
A0
                                 0.2401
                       0.2374
                                          0.9888
A2
                                 0.1618
                                          -2.2559
                      -0.3650
A3
2. LOG(AVGEXP) = B0+B1*LOG(INDSIZ)+B2*LOG(CONCEN)+B3*LOG(ESTAB) $,
                   NOVAR = 4
NOB = 13
                          1
          1
               1
                    13
RANGE
REGR4
                                                 0.6378
         0.5029
                    SER =
                            0.2662
                                     SSR ≖
RSQ ≖
                       DW(0) =
                                 1.6718
           3.0353
F(3/9) =
                                  ST ER
                                           T-STAT
                        VA LUE
COFF
                                 0.1216
                                           1,2369
                       0.1504
B1
                                           6.4369
                                 0.7268
                       4.6786
B 0
                       0.1926
                                           1.3725
                                 0.1404
B 2
                      -0.2201
                                 0.0946
                                          -2.3268
B 3
3. LOG(AVGPOW) = CO+C1*LOG(INDSIZ)+C2*LOG(CONCEN)+C3*LOG(ESTAB) $,
                   NOVAR = 4
NOB = 13
RANGE
          1
               1
                    13
                          1
REGR4
                                                10.1405
                    S=R = 1.0615
                                        SSR =
RSQ =
         0.5009
                       DW(0) =
                                 1.4121
F(3/9) =
           3.0113
                                           T-STAT
                        VALUE
                                  ST FR
COEF
                                           1.7876
                                 0,4848
                       0.8665
C1
                                 2.8981
                                           1.7920
                       5.1936
CO
                                           0.6513
                       0.3645
                                 0.5596
C2
```

-1.0278

C3

-2.7254

0.3771

TABLE III-3c RESULTS OF REGRESSION ANALYSES

13 INDUSTRIES WITH MORE THAN 25% PROCESS CONTROL APPLICATIONS

1. LOG(AVGRNT) = A0+A1*LOG(INDSIZ)+A2*LOG(CONCFN)+A3*LOG(ESTAB) \$,

2. LOG(AVGEXP) = B0+B1*LOG(INDSIZ)+B2*LOG(CONCEN)+B3*LOG(FSTAB) \$,

3. LOG(AVGPOW) = CO+C1*LOG(INDSIZ)+C2*LOG(CONCFN)+C3*IOG(ESTAR) \$,

$$RSO = 0.2216$$
 $SER = 0.9107$ $SSR = 7.4636$ $F(3/9) = 0.8540$ $DW(0) = 0.9387$

COEF	VALUE	ST ER	T-STAT
C1	0.7677	0.7339	1.0460
C0	2.9378	5.6556	0.5194
C2	0.6205	0.4304	1.4419
C3	-0.3848	0.3825	-1.0060

* * * * * **>** 00006 8.500 LOG AVG. EXPENSES VS. LOG ESTABLISHMENT SIZE 8,000 VERTICAL - ESTSIZ 7.500 HORIZONTAL - LOGEXP 7.000 1 TO 119 = Y 005.9 0000.9 5.500 5,000 10,000 00009 7.000 8,000 000.6 11,00 12.00 13.00 14.00

CHART 1111-2

CHART 111-3

CHAPTER FOUR

FINDINGS AND IMPLICATIONS FOR PUBLIC POLICY

The conclusion reached, as a result of the analyses carried out in this study, is that there is indeed certain evidence of the existence of economies of scale in the production of computing services. Given that this is the case, public policy ought to be formulated in a manner so as to encourage the more widespread use of larger size computing plants. The purpose of this concluding chapter is to review some of the the possible directions that public policy might take, and consider, for each, the relative appropriateness insafar as meeting the objective.

REGULATION AS A PUBLIC UTILITY

One of the most widely discussed directions for public policy is the establishment of a regulated computer utility, along fairly traditional lines. Indeed, the analysis presented here would seem to provide additional support for this view. However, the present study is inconclusive as to the rationality of this approach to policy formulation for several reasons.

in the traditional public utilities, such as electric power, the optimum size of plant is quite large; the capacity of an electric generator might be sufficient to

serve a city of one million people or more. To construct a plant of less than optimum size would be inefficient, so that the granting of an exclusive franchise to the power company in a particular area implies that public policy dictates that only plants of optimum size, or approaching optimum size, can be built. The same may be said for plants which generate computing power. However, we do not as yet know what is the optimum size of plant in this industry. Of perhaps even greater importance, we do not know the extent to which sharing and distribution costs will increase as machine size becomes sufficiently larger than the limits of present technology. The present analysis suggests that this optimum size is at least as large as the largest systems now built, but is inconclusive as to now much starger than the present scale the average cost curve becomes horizontal. There are a number of reasons for this lack of knowledge or experience with large systems, some of which have already been considered (Chapter two). But, for whatever the reasons, relatively few very large systems have actually been installed, at least by comparison with the number of small and medium size facilities. Further, and as a result, manufacturers of complete systems have not as yet built any system that is more than an order of magnitude away from what is presently considered to be a "large" system.

Regulation of the computer service industry as a public utility is indicated if it can be shown that computers can

The same of the sa

operate far more efficiently if operated as very large scale systems, whose capacity far exceeds any one individual user's requirements. Hence, before any attempt is made to devise a structure for a regulated computer utility, some additional experience with large systems must be gathered. Thus, the most immediate objective of public policy should be to reduce or perhaps eliminate some of the presently existing barriers that mitigate against the (perhaps shared) use of the largest computers available.

BARRIERS TO USE OF LARGE SYSTEMS

The state of the s

in Chapter two we considered several of the short-run វិក្រុម ស្ត្រីក្រុម ប្រែក្រុម diseconomies that tend to induce end-users to continue to operate their own relatively small systems in-house. Briefly, these included the (perhaps psychological) desire to have hands-on control over the computer, the stickiness 新 100 mg caused by the high cost of conversion to some other machine, the relative incompatibilities of different models and, in ுறு. சு. இதை இது இத்தி some cases, different units of the same model, and finally 4.69 1 7.1分子。 the costs, some direct and some indirect, of sharing one computer with other users. There are several means by which and the control of the said problem. The control of government authority, if properly directed, might reduce Colors 3. St best they are the street some of these barriers.

Desire for control of the firm's computer. Much of the reasoning behind a firm's desire to operate its own in-house computer installation may be traced to psychological factors such as the prestige associated with the machine, the

security over the company's files and records maintained on the computer, and the feeling that, so long as the machine is on the premises, the firm's work will get done. The prestige factor will, of course, wear off in time, as computers become more and more common and hence impress fewer and fewer people. However, suitable legislation can significantly alter the businessmen's views concerning the other two Issues. Operators of shared-use computer centers must not only guarantee the privacy of their client's files, but must assume a large measure of liability for any leakages that may be attributed to their negligence. Also, laws or regulations may fix limits of liability for uncompleted jobs that more closely reflect the cost, to the end-user, of the delay. At present, there is usually no such liability for assignments which the computer service organization could not complete either when due or at all.

Costs of system conversion. It is difficult to imagine any way in which the costs associated with conversion from one computer system to another could be significantly reduced or eliminated unless we were to adopt a policy of freezing technological innovation. Indeed, virtually no computer has ever had to be replaced because it was "worn out" by usage; most conversions from system to another have been the result of the user's desire to obtain the fullest advantage of the most current technology. However, if technology cannot be frozen, then conversion expenses may

still be reduced by encouraging the development of the relatively new software industry which has the potential of significantly reducing applications programming costs by sharing these costs among many clients who require basically the same applications programming package. Thus, software must be viewed as a product and must enjoy the same protection that is available to other products. Its uniqueness must be fully protected by copyright or, where appropriate, patent. Purchasers of computer hardware must not be required to pay for manufacturer supplied software for which they have no need. With respect to software, policy should be directed at making a distinction between "computing power" and "computing service." Clearly, the greatest economies are potentially possible in the former sector of the industry, since raw power is, in effect, a common denominator that can satisfy the requirements of many end-users. Service, in contrast, must often be tailored to individual needs. Hence, an end-user should be able to supply his own programs, or contract for their development (or lease) and then be able to run his applications on any of, perhaps, a number of competing services. Thus, the separation between hardware and software should apply to more than the computer manufacturers, but also to the firms engaged in providing computing facilities for hire.

Sharing of computing facilities. The power produced by an electric generator may be shared among many individual

users because a distribution system exists to transmit the power from the generator to the user's home or factory. Although the electrical distribution system is costly to construct and maintain, the potential savings that result from the shared use of the generator more than outweigh these costs. A viable computer utility must also have a distribution network to transmit information between user and machine. For batch processing service bureaus, this network might consist of a fleet of messenger cars, or perhaps the U. S. mail. For on-Tine remote access systems, where the greatest potential for shared use lies, the distribution network would consist of telecommunications facilities to carry the two-directional flow of information electronically. The existing communications plant of the nation's communications common carriers is or can be more than adequate to serve as the distribution system for the on-line computer services. Howevery there are presently certain factors in the relationships between computer users and communications suppliers that may prevent the fullest advantage of the apparent economies of scale of computing systems from being made available to the public. Several recent works (1-3) have suggested the nature of some of these problems, including some of the responses to the FCC Inquiry. These include such issues as the right to interconnect privately-owned communications systems and apparatus to the common carrier bines with a minimum

interface requirement, the ability of several customers to share communications services in much the same way as they would share the computer's services, and the possible offering of services tailored specifically to certain computer communications requirements. It is essential that any barriers to the use of shared computer systems that may be attributable to policies and tariffs of communications suppliers be eliminated, where possible, and that the cost of this method of distributing the power not be so prohibitive as to negate any economies of large-scale computer operation.

LIMITATIONS OF LARGE SIZE COMPUTER SYSTEMS

We have suggested here that apparently significant cost savings might be realized by the more widespread use of large computer systems, perhaps on a shared bases. recent developments in the art and technology of time-sharing and data communications make the prospect of more widespread use of large systems, perhaps simultaneously by many users, much more probable. However, the advantages of large scale computer facilities can only be realized, by many users sharing this facility, if the various costs associated with sharing are less than the direct cost 도 병원 여름 가는 그리를 받았다. advantage of the use of the large system. Certainly, communications costs, required in order to distribute the computing service to the users, may be a significant factor. However, several other possible costs include software

development, system overhead, administration, sales, and perhaps others. Modification in existing policy with respect to communications services might serve to decrease the significance of this cost area, although it is still not absolutely clear that this will be sufficient. As for software development costs and system overhead, present experience would seem to indicate that operational limitations may have been reached in the development of large-scale operating systems, a factor which could seriously limit the potential for development of large computers specifically designed for shared use. (i.e., large system may be quite efficient if used by one organization for a limited number of different applications. However, when shared among a number of "hostile" subscribers, the software development costs and system overhead required to protect the users and the system and to provide for effective user-system communication and interface may prove greater than the economies of scale.)

What we have learned in this present investigation is that efforts must be directed toward providing the computer-using public with the advantages of large systems. This means that technology should be focused upon the possible solutions to some of the more formidable problems posed by shared use of large systems. Where possible, public authorities should seek to remove certain cost barriers particularly in the distribution sector of the

imformation processing field. The industry has demonstrated its ability to survive and prosper under a multi-plant, competitive environment. The computer utility, if it comes at all, will be the result of advances in the art of building, operating, and administering large-scale computing systems.

REFERENCES

- (1) Gold, M. M. and L. L. Selwyn, "Real-Time Computer Communications and the Public Interest," AFIPS Conference Proceedings Vol. 33, Part 2, (1968 Fall Joint Computer Conference; New York: Thompson Book Company, 1968), pp. 1473-1478.
- (2) Davies, D. W. et al, "A Digital Communications Network for computing giving rapid Response at Remote Terminals," ACM Symposium on Operating System Principles, October 1967 (Unpublished).
- (3) Mills, R. G., "Communications Implications of the Project MAC Multiple-access Computer System," <u>IEEE Convention Record</u>, 1965.

APPENDIX

T - X

- X11 58371.58

SOURCES AND DESCRIPTIONS OF EMPIRICAL DATA

The several sources of empirical data used to test the hypotheses described in this study are discussed in this appendix. The data fall into three broad categories, as follows!

- (1) Manufacturing industries census data
- (2) Computer installation data
- (3) Computer cost data

 Each category will be considered in turn below.

MANUFACTURING INDUSTRIES CENSUS DATA

The data on industry structures was obtained from several publications of the United States Department of Commerce, Bureau of the Census. They were based partly upon the 1963 Census of Manufactures and upon the 1966 Annual Survey of Manufactures. Manufacturing industries were chosen for analysis in this study because (a) they represent approximately one-third of the computer service market, and ((b) they are characterized by the most consistent and apparently accurate statistical reporting of any industry group.

The source documents referred to were:

- (1) 1963 Census of Manufactures Chapter 1, General Summary, and Chapter 2, Size of Establishments.
- (2) "Concentration Ratios in Manufacturing Industry 1963," report prepared by the Bureau of the Census for the Subcommittee of Antitrust and Monopoly of the Committee on the Judiciary, United States Senate, 90th Congress, first session.
- (3) 1966 Annual Survey of Manufactures, U. S. Department of Commerce Bureau of the Census, "Value of Shipment Concentration Ratios by Industry."

Six statistics were selected for each of the 417 manufacturing industries. The basis of selection was the apparent relevance to the use of computer services within each of the industries. Where possible, the statistics were obtained from the 1966 Annual Survey; however, in certain instances the 1966 figures were either missing or were ascribed questionable validity by the Bureau of the Census.

The Census of Manufactures is conducted every five years by the Bureau of the Census. It is, theoretically, an exhaustive canvass of all firms in all manufacturing industries. Manufacturing industries are those with Standard industrial Classification (SIC) codes between 1900 and 3999. Industries 1900 - 1999 were a recent addition to the Manufacturing group, and, as a result, the statistics on these industries were not reported as consistently as for the remaining manufacturers. Hence, only data on industries

In the 2000 - 3999 range were used. The Annual Survey of Manufactures, in contrast to the Census, is based upon a statistical sample of firms in each of the industries covered. As a result, it is conceivable that certain figures reported in the Survey are relatively inaccurate. When the Bureau considered the standard error of estimate for any one industry to be sufficiently great that the accuracy of the data was open to question, it so indicated in the report as published. The six statistics used were selected because they provided measures of size, growth, concentration, establishment size, labor intensiveness, and capital intensiveness. Each is discussed below:

Industry size. Value of Shipments as reported in the 1966 Annual Survey of Manufactures was used as the measure of industry size. Certainly it is not the only possible measure of size (value added may be another). However, this statistic was selected because it provided a measure of the overall quantity of business done by the industry, not just in the actual manufacturing process itself. To eliminate sporatic variations in the more marginal industries, only industries with value of shipments in excess of \$1 billion in 1966 were used in the analysis.

Growth. A measure of growth was provided by a ratio of the 1966 to 1963 value of shipments for each industry.

Concentration. As a measure of industry concentration, the ratio of value of shipments in the four largest firms to

the industry value of shipments, using the 1966 figures, was used. Industry concentration provides a measure of the relative size of the largest, and hence most important, firms in an industry.

Establishment size. A measure of establishment size in the four largest firms was obtained from the 1963.

Concentration Ratio report. This statistic gives the number of individual establishments in the four largest firms.

Thus, a large industry with a high concentration ratio and few establishments in the four largest firms would tend to be characterized by relatively large plants and establishments; one with many establishments, and perhaps a smaller concentration ratio or a small value of shipments, would exhibit establishments whose typical size is substantially smaller than in the first case.

Labor intensiveness. A ratio of Salaries and Wages/Adjusted Value Added was obtained from the Concentration Ratio report and subsequently was updated with data from the 1966 Annual Survey. This provides a measure of the relative use of labor in the manufacturing process in the industry.

Capital Intensiveness. A ratio of New Capital Expenditures/Value of Shipments was used to provide a measure of the importance of current acquisition of new capital assets in the industry.

their sufficiency sur contraction and the substitute of the substi

A summary of the above data for the 119 manufacturing industries used in the analysis are shown in Table A-1.

COMPUTER INSTALLATION DATA

The state of the s

The source of data on computer installations in the manufacturing industries was the "Computer Installation Data File" maintained by the Internation Data Corporation of Newton, Massachusetts. Access to this source file was provided for purposes of the research reported here.

The Computer installation Data File contains descriptive data on individual computer installations in the United States. included in the file are data on the using firm and data on the nature of the computer installation(s) 化海绵类 人名巴马奇兰 海绵 医三分裂 operated by that firm. Although this data base does not STERN TORONGE THE have 100% coverage, the file's coverage is about 70% to 85% The first of Augustin overall, with the greatest coverage in the larger size installations. Hence, the use of this data base necessitates some bias toward bigger machines and bigger · 是是有好的。 installations. However, the coverage is fairly constant over most systems in the \$5,000 per month and up range, Alter Weel, Buy You are covering most medium and large size systems, with the ar it out with the rest of the greatest deficiency occurring in the small, desk-top systems used primarily for specialized analysis and control 1-1 purposes. Records containing data on nearly 10,000 Regional to the individual machines installed at firms in the manufacturing industries was studied and analyzed.

Several attributes of each installation record were selected for use in this study. These were:

- (1) The primary SIC code for the user company.
- (2) The manufacturer and model number of the computer(s) installed in that company.
- (3) Principal application areas of the computer installation, where available.
 - (4) System configuration data
 - a) number of tapes
 - b) number of external memory devices
 - c) size of core memory
 - d) number of line printers
- (5) Company sales and employee data

 Although the Computer installation Data File contains
 records of systems in all industry classifications, only the
 manufacturing industries, 2000 3999, were used in this
 study.

Each computer system (manufacturer model) type was classified according to several possible attributes: rent, power, and size class. Table A-2 presents a summary of these data for the machines considered. In certain cases, it was not possible to classify a given machine for one reason or another, due to lack of information on the nature of the system. However, in terms of market coverage, some 95% or more of all installed systems were classifiable.

0.64 Rent . The typical rentufor-amodeputer asystem type was \sim obtained from several sounces: 6A study was made of the 190 - 1 rental aranges for computer systems who the black in the federal Government) where sample in the complete land oconsistently to add the reported if i be of "data on athese ecasta maxistar (see rhehow). I in addition, several treference sources were promouted, at the partition and Including the Adams Associates Monagetemedia pacteristics for a Quarter by hand the Averbach Gorpotation bit has and and vEDP 🥴 🦠 Reports : Makithough some adata for specific identiques blons was available from the Computer installation Data all leacht was . . determinación to the sistem of atypical asystemerentals awas a serie de la company de sufficientity accurate prand asongwhat niess bitased pothar the 🔻 🦠 use of any basis for directly pricing loubidack installation. This isodue to augmental back of .Overall goodstatency in the c reporting in ather Older and the seven agreeted selbficulty of the actually whetermining withich repachlic acomponentage having jokn ac many lifetances, a wide range of icents a wide eath suse to be a conparticular kostablation, whi is necognized that, escape in the result; the use of some "typical limital lation sentemay note directily provide a means of dassessing the enize of an a life in installation at largiven of imprintments out that terrather hierse size of othe sample paid, mearly:10,000 shothidge idsystems, ye any (discontinuities would be saveraged some sovernables ystems.)

Power A measure refistive "power" to fine paper of be required system that the sused is the result to be abstracted by Economic Knight (9,10); ather asought to be sign and bug is dimension of the content of the suse of

the equantity of sprecessing spentunity time to compute nesystem typesendThisebse ofwcoorse, As diffiliowbt itaskes ince the Patric "power" of dany computer daystom size a stungtion of stige and ture or of the application to published the applied sand of the quality of the worksgrams runs in The teams esystem may sprovide idifferente quantities tof service sper such to time nundered to fine to 11 to enclanding otherwaters is a large with the common tench applications and the second second second second second system (type stobanotké nosystem type many she eviktem) file nem t cop fow diffigures impolications. Athir sis shees see a gomputer sous? system done is to sof (several) (impartant upanponents) death of 1545 which may have several exerfermance for belowies a sigement his ob bus intessetype bean lications enequire impre element output ethan ide analýsis stype apabi dati gnáp imbi eli spaneta liby sequir emone seu computation see lative to ship. Schened, larayagem with good and input autpotidapabblibbles apelablie bus computation i galis ogen capábil hilvesi wed hentendoto i persennite tite grunden se situa in ese os use than sfores of entire is and attach nicely applied tiens of alles idea the issue of thout output versus dompublition stany system may have other esets of satts buités abhat shapender ebb beitten (u.e. : suited for one type sof apprises them coversenether a chimight be to be recognized athird and let tempted ito and to her lift ato asome lextented in by determining; formarily system the astacle independent and he lesses for both shis bness card sobeat blic cuts of 10 th take the seens to a line for the contract of the contract o reduces the extent of differences samengathe applications in each fofithese two scategories pabut adoes indical insinates the say a difficultysoifopithésparpaies sofithéspassentis tudy, ethe dans l

Knight indicies were weighted so as to form a single index. 75% of the greater of the two (business) or so bentific) was a added to 252 of the tessen of the two manght enumbers. (athle was based supon the assumption that of reference the machine of would be used to process the most effectent type of a grander application as aits appleary spurpose; so although the studex dis imperfect; it does provide a means for axadiaing theubor we quantity of data processing provided by each system type. Whereas its usefulness for making comparisons between any or given baff of machines is nighty bill sed bis cuseful briess for the purpose of this study, where such companisons are and not important in relation to data an the opders of magnitude of processing power-that is given by the sindicies, the conserve and the Genural Dervices som classifican simel. And Knight figures seem seelte appropriate and resetuty constitutions នៃស្រែក្រុម មេសាស ខេស់នេះ (idiaroqas) មេស្កា ប្រែក្រុម ខេត្ត

Size classification: Sased upon assempes to of rent;

8200 12 2001 12 2001 12 2001 10 11 2000 2000 2000 2001 20

A summary of computer characteristics for each of the summary of computer characteristics for each of the line of the summary of the relative importance of each of the contains a summary of the relative importance of each of the three principal application areas within each industry.

INSTALEATION COSTUDATA VIEW OF WHAT A LEGISLEM TESS DAME WITE TO

Publication 89-306, atheaso-eatled Brooks sact, and as assign established, within the Federal Governments and an assign

administrative procedure for maintaining a consistent reporting mechanism for all computer installations in use by Federal government agencies and idenatiments. While the primary purpose of this procedure was to facilitate greater sharing and economizing on the part of Federal agencies in their use of automatic data processing equipment, one of the by-products of this procedure was a consistently reported set of data on the nature of each installation in the government employ.

The Automatic Data Processing Management Information

System program was established by order of the Burget. The system's purposes are

(a) provide to the Bureau of the Budget as the Beneriment of Commerce, and the General Services Administration timely and comprehensive hatermation stocassist sties agencies in the discharge of their responsibilities under Public Law 89-306.

(b) provide assistance to assesy heads in the analogous administration and management of their automatic data processing activities / 64 and 1667 ave 1865 and 1866 a

(c) provide a comprehensive and perpetual inventory of electronic data processing sequipment and and an electronic data processing sequipment and perpetual inventory of electronic data processing sequipment and perpetual data perpetual data processing sequipment and perpetual data perpetual

(d) provide integrated subsystems for inventory, utilization, manpower, cost and sequisition history. (Ref. 6, p. 1)

The ADP Management Information Systems Office of the General Services Administration is charged with the responsibility for collecting and maintaining the data in the ADP file.

The use of this data was made possible by that Office.

U.S. government use of computers represents about 122 of the computer market in this country. Generally, the systems are obtained from the manufacturer, either on a lease or through outright purchase, at full list price.

Further, the nature of a computer instabliation in a government agency is quite similar to one that might be found in any divilian organization. Hence, it appears to be quite reasonable to draw some general conglusions as to the nature of all installations from this admittedly biased sample of such facilities that is limited to federal government operation.

Computer System Cost Data. Anoindi viduado recordo for be each installation contains a complete breakdownsof all : components in the one or more compater; systems present at the the particular site. As a result, it was possible to btain a costodistributionpof the various configurations of Each type of system installed in the Federal Governments: Generally; the average rentmofiallminstances. of athe same. system@model:type-wasiused@asea bashsifpr wiassifying: [] computer system types into the eightesize chasses (see above) and for assigning typical configuration rentals to a to that system type. Where the federal mgo veroment datas seemed to be inconsistent with the cost figures published in one of the aforementioned reference sources, further study was the necessary in order to determine the correct rental of gure to be assigned to a system: The rental figures for Federal Government computer installations; aspostal medig from the base Au tomatic Data Processing Management Information System data file are presented in Table A-5. Rental values are bused with because they seem to be the most consistently reported

purchased by the Federalongencies The actualonestal priceyon or its equivalent of the system were purchased; is required in the report of each agency is installations too the General-Services Administration for purposes of the ADP file:

the ADP Management Information System file contains of assemble breakdown of operating costs of installations other than the actual hardware rental for equivalentic of the computer (s) as present. As Several cost categories are provided for reporting expenses:

- (d) 61 villani Salagiès and povertimes (exclusive of semployees fringe benefits) avair lumbed and of uplicated metary to pove
 - (2) Militaryo Basa (Payo and Allowanses Subare applicable) and
- equipment, suche às keyspanshespasoriers petr. pethet supports theocomputer system) of local isologi aning lass for bor (sode bithos management cottopes and diskapasks used ... and a local of sologi aning lass for bor (sode of bithos management cottopes and diskapasks used ... and a local of sologi aning lass for local aning lass for local aning lass and a sologi aning lass and a local aning lass and a local aning lass and a local aning lass aning lass and a local aning lass anin
- (7)sOther operating expenses out classified of which we add the process of these cost of gures, were sused as the basis respond to model of our distributions operating a cost of gures were sused as the basis respond to the cost of the

ोसर प्रमुख्य हिल्ला हेट केंद्र मेरेस कल्कार देवाच्या अस्ति है। इस प्रमुख्य स्थापन कर्णा अस्ति है

REFERENCES

Manufacturing Industry Data:

(1) U. S. Bureau of the Census; "Census of Manufactures, 1963," Chapter 1, General Summary; Chapter 2, Size of Establi shments

රා - ඉතු - වරාගරණ භාඛය වස විධායක පතිකර මෙසි මුරුවා පරතික වඩ එ පරිගේ ජාතාවයි

- (2) U. S. Bureau of the Census, "Toncentrasian Ratios in Manufacturing Industry 1963, Part II, " report prepared for the Subcommittee on Antitrust and Monopoly of the Committee on the dudictory Alinted Stated Senate
- (3) U. S. Bureau of the Census, "Annual Survey of Manufactures, 1966," General Statistics section and Value of Shi phenes Concentration Racies by Industry.

Computer Installation Data

(4) International Data Corporation, Newton, Mass., "Program-Description: The International Data Corporation's Computer installation Data File," (unpublished).

in her

(5) Internaltional Data Corporation, "Sponsor's Coding Interpretation Manual for the Computer Installation Data Hie, (unpublished).

System and Installation Cost Data

- (6) Executive Office of the President V. S. Bureau of the Budget, Office A-83, "ADE Management in Formation
- System, "April 20, 3967. San and the state of the state o
- (3). Auerhach Corporation, Standard Englishments
- (9) Knight, Kenneth E. (1968) p. 600 1100 10

																	: \$ _																
		(9)	>	09	21	5 #	90 I	47	24	34	39	31	53	20	M	4	, ,-	• •		•												200	
		-	Z Z																				7 1	•		Ċ							
		<u>~</u>			, -1 ,	5 1 .	N	4-4 '	M	M:	4	*	2	100	0	ĺ	M	7	44	D 4). -	, M		20 S				~ '	7 -	7 92	*
	3 1	الله الله الله	3			1 -1						. (177	7 1	i Ç.		1.0	9 64	* "		-	*		± 4		-4				- 4			
			_		_	_	_#	ക	_	~	7	9	S) Q	- ا	• •	> ×	٠.	o ņ	_ 4	* <	ם ת	-,0	9 5	4 -4	00	O)	-	چ	2 5	⊃ (7 4	
	17	3	€ .	0	N	જ ાં ી ઝ	&	id CV	<u>;</u>	3	(2)	Dri	្ត ម	S	l y			4 V			e i im	n i		9 F	3 • /	U.	3.0		11	- in		7 2	,
	 		7) (y (0	,a		٠,		-4 2	, 4	24		10	4	* -	4	a A	* *			o e	31.	1	٠.			¥.	~ .	^ -	4
		3	පු -	2	16	12	50	<u>امر</u> ای	1 0	77	4 2 3 4 3 5	31	î C	1 C	ı u) (16F	ĎĮ	U !		07	0 1	→ ×	フ A ま u	D)-	1 F		2	20	78	~ ;	<u> </u>	i
CS		•		,						4	÷			. *	*			× 20	. ~ .	4			1		1 . 5	-	1	.J				Ŧ,	*
STI		reg.	× 6.		0	क हैं	ம	<u>ان</u>		2	ز اس				8	4 ¢	97	e :	, ,	9	3 6		<u>.</u> E.,	3	3	d 0		Z	9	1	a (106	5
_	_ <	(2)	‡ 3	12	11	-	10	10	12	11	12	1) 	4-ipi 4	4 +	4 +	4	4 ¥	H A		7	- I	(F	-4 -	-1 +	7 -	1 -	7	-	-	<u> </u>	-	4
HARACTER			0																	4 5	4.4	.eq	~ 1	~ •		د د ا		ئد ي			تعتا		æ.
3AC			E C	69	02	00	42	3	57	16	40	4) (N	10	1 -	7	7 6	200	7	3	90	9	705		701	7	- 6	4	10	05	20	10 to	Ď
H.	*> =	¥ 10 1	- ZE	50	S	S	V	74		5	W	(A	14	N	o i	÷.		94		60	71	N	d d	7	-	10	,	617	4	1 C	ë	-∳ \$	À
S		₹.		Zie .	ري ايم	70	7	+ 5		1	Ţ*,		*	¥" '	134	1,	3 6 : "	11	3 27	4 3	•	3.7	73.8		\$ 1 8 • • • •		a` '	'	~	n P	•		
TRY			: >																				***	٠.		•	4 1	en en		ر د	. 1	ck -	. 1
NDUST		4.20				1	- -	٠,	-		اً به لورد	· · · · ·	-		23	0	ገ ሮ ግ ብ	3	् भ	ان کند		i de Maria			មេរា ខ្មែរ	- 1 - 1 - 1 - 1)			3 45		₩	,
N.			r.		_	¥	v.								4	Z E	¥ ::	e fire	暑	X	Ć:	J.	,		ਰ	٠, ٥	1 6		/ :	50 ·		ERM	
						-	F01	•		u	ה ה ה	1			2				œ						♀			. 5	5			BCN.	
-1:			ш	V.	,	_	5)		A		D L		•	- (S	()			2	6	5 }	Ţ. #	4	in	3 ::	€ €		2 ~ ·	, ķ		5	
×			M	7	·)	L	֓֞֞֝֝֞֜֜֝֝֝֝֡֜֝֝֝֡֜֝֝֡֓֜֝֡֡֡֜֝		Ĺ) (u			5				KEP	OF!	E.	^	Z.	-	=	n		7 4	<u> </u>		-	Site	I
LE	¥ A	i No	Z L	្តាត្ត កាត់		2	Z		: 19:	, i		5	5	ð.		À	5	;	X	Ÿ.	3	ن ٦	0	艺	37	3			_	1	-	L :	
TAB			TRI		-	<u>ا</u> ا	5	1	U	•						2	C	, T	38	100	#S, 3	20	S	3		I	E i		ر د د			2	Z
•			UNS	2	- C	c iu	'n	K L	-	- 3 - 4	Z -	Ę		AL	-	CKE	٥		0	2	0				-	-	, , _	4	- 1		A.C	3	5
		" ģ :	₹.	و ا	۲ ع د ا	5€	9				2	ΙŢ	-	Ŧ	Z	B	2		8	Y	E				-	1					2		$\overline{}$
				_		_		_	ر د بر	د د	5	5 .	2	Z	c	C	\$	Ğ		AND	MAG	67	-		L		S		34	<u> </u>		AND	=
				~~		ץ מי	1 1 1		24 20	L (X C	T G		9	2	Č	D	g	Į.	-	W	5	VING K	•	હે	50		58	51	รื่อ	i do	ch	S
				_		Ē				~ 4	•	•		~	_	_	Ľ	_		Į.	N.	RE	*	X	Z	~	-	n			SE		1
					- t	- 5	_			Ž	54			3	P	8	1	7	60	E	6	3	3	3	7		2	2	2		E	3	A
				L	ũ	E C	? (2	7	5	٧ <u>ا</u>	4	Z.	4		8	8		F	P	5	į	*	亳	F	3	7	4	Į,	7.3	40	HOWEN	n
			•	_	- ·	۸ ۳	- ۸																										
			SIC	•	7 6	- (c	, c	770	770) i	5	5	*	5	05	95	07	80	8	0.0	50		21	122	23	225	28	23	23.	7 7 7	, c	234	24,

D) (2) (3 ROWTH CON	126 24 21 24 21 24 21 24 21 24 21 24 21 24 21 24 21 24 21 24 21 24 21 24 21 21 21 21 21 21 21 21 21 21 21 21 21	1 1 2 2 2 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1	1000	P P P	11.25 V	145 24 14 14 14 14 14 14 14 14 14 14 14 14 14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1332 113 30 15 3 18742 113 32 45 3 3716 125 71 32 4 3139 120 22 21 3
	TWOOD PLANTS	EXCEPTS BUILDED TO THE STATE OF		ORES.V. PUBLISMING AND PRINTING UNGSORD EXCEPT LAYNDERAPHIC LIFFING VILITURERAPHIC	PAR THE STATE OF T	PREPARETTURES TO PERSONS TO PERSO	ELIER PRODUC	CHEMICAL PREPARATEONS N. E.C. PETROLIUM REFINING TIRES AND INNER TUBES RUBBER PRODUCTS, N.E.C.

### ##################################	(5) (6) CAP LABOR	10	0 0 r	5 kJ ⊗ -4 kJ		2 m € 2.	# % + c f)	17.75 to 00.00 to 00.	1844 NO. 18	æ 'ሁረኤ	- C. W	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 5 5 9 5 5	
WHUSTRY NAME WHUSTRY NAME WHUSTRY NAME WHUSTRY NAME WERSON WHITE W	FST≱B	108 6	\$ # Y					4.414	454	HINE!	スナデク			11
TABLE A-1 (CONTINUED) WOUSTRY, NAME FIRUBBER WERSTON WERSTON WERSTON WERSTON WORNELS WONNELS WONNE	2000 No.	୍ୟ <u>୧</u> ୯.୧.	R # 3	187	4 A		-10.100	والمراجعة بالما		hapaille Spring "I	A 110°2	2.04	200	52
TABLE A-1 (CONTINUE WILLSTREE NAME WERSON W	D)	43	337	14-41 14-41	2-7-7- 4-4-7	1.00	9 6			0 0 	0 0 0 	9 K	156	# # # # # # # # # # # # # # # # # # #
THUBBER WERSON WERSON WERSON WERSON WERSON WO THER WERSON WENT WERSON WENT WERSON WENT WERSON WENT WENT WENT WENT WENT	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2650			7	ずらべ	40	でもなる	امان دوران امر وی بریدادی	DIMINAT DIMINATO	くらしょう	L-1 CD-4	4 CV 1	9 + 1 + 1 · · · · · · · · · · · · · · · ·
THE TOTAL THE PROPERTY OF THE	-1							ပ		£				

J 🐠	325
(ÇCHT INUED)	٠.
A-1	
TABLE	

	ABLE A-1	CONTINUED :	2) 600 2			,			
			(1)	Ţ	2)	_	(4)	J	5)	(9)
SIC	INDUSTRY NAME	S		GROW	Ξ	္မင္မ	ESTA	ပ	۵	LABOR
55	PECIAL INDUSTRY	<u>1</u>	1331		170	2			-3	55
99	JMPS AND COMPRESSORS		151		51	:	-		~	-
56	ALL AND ROLLER BEARIN		399		4 0	`	7		~	5
56	DWER TRANSMISSION EQU		T		1 1		_		_	50
56	ENERAL INDUSTRY MACHINES,		778		∞ ≠	ii 16				6
200	EFRIGERATION MACHINERY		713		0	1 0	-		M	- \$
59	ISC. MACHINERY		865		0.4	. 4	-	\$ 8 ° .	Ŋ	Ŋ
61	LECTRIC		050		36	. s	_		M	S
61	RANSFORMERS		33			æ -,			- ‡	.
61	MITCHGEAR AND SWI		64		13°	90	.		7	#
62	OTOR) (1)	289		33	ŕ	M		.	
62	MDUSTRIAL CONTROLS		5		61	***			m	=
63	LECTRIC MOUSEWARES AND FANS		1128		3 3 3 3	÷ • .			~	M
9	IGHTING FIXTURES		544		33	- T	-		M	-
65	ADIO AND TV RECEIVING SETS		637	(83		;• ••••	`.W		4
99	ELEPHONE, TELEGRAPH APPARATUS		19	ਹ ਜ	ر ح		ल आ		#	S
99	ADIO, TV COMMUNICATIONS EQUIPM		253	· 10 1	0.5		N F		~	9
67	EM - CONDUCTORS		Ö	US.	2	7	, g.)	×		S
67	LECTRONIC COMPONENTS, N. E.C.		8	17	7	21/2	7		=	5.
0	NGINE EVECTRICAL EQUIPMEN		1742	4	80	وجري	-		m	5
77	OTOR VEHICLES AND PARTS	-	630	C C	20	; , <u>.</u>			~	42
72	RCAAFT		S S	9.0	42	9	⊕ .	_		9
72	IRCRAFT ENGINES AND PARTS		27		11	.1	_		.	61
72	IRCRAFT EQUIPMENT, N.E		12	4	19		ر در به		M	63
7	HIP BUILDING AND REPAIRING	-	339		39	we.		_	~	78
7	AILROAD AND STREET CARS		9691	ę į	82	, -	그] 중		7	2
3821	MEASURING DEVICES		123	Ť	25	لرنس		_	~	53
9	HOTOGRAPHIC EQUIPMENT		3286		11		7	_	Ŋ	×
† 6	AMES AND	Î	1357		Α. ()	-	7	_	7	.

TABLE A-1 (CONTINUED) EXPLANATION OF COLUMNS

- (1) 1966 Value of Shipments
- (2) 1966 Value of Shipments 4 1963 Value of Shipments
- (3) Value of Shipments of four largest firms / Industry Value of Shipments (1966 figures)
- (4) Number of Individual establishments in the four largest firms (1963 figures)
- (5) New Cab (tal I Investiget / 1984 of 2hi grents (1966
- (6) Wages and Salaries / Adjusted Value Added (1966 figures)
 Dollar figures in \$ millrons

TABLE A-2.
COMPUTER SIZE AND POWER DATA

MANU	MODEL	CLASS	COMB	POWER	Scr	PÓWER	BUS POWER
ASI ASI	210 2100	2	76	79.50	193.88	68.00	4114.00
	6020	3		31.25		28.00 160.00	10241.00 13161.00
AST	6040	3	3-	N.A.	k* =1 -la	Ñ.A.	N.A.
ASI .	6050	3.	100	N.A.	5153	Ņ.A.	N.A.
AUT.	REC2	4.1		38.03		N.A. 41.36	N.A. 28.03
AUT	REC3	1	-1 ·	45,15	Mara	48.28	35.76
BRA:	230 300	Ŏ		N.A.	. .	N.A.	N.A.
BRA	330	A 0		N.A.		Ņ.A. N.A.	N.A. N.A.
BRA	340	3.	,	N.A.	· e	N.A.	N.A.
	220 E101		14	16.55	Õn : 8	10.20	1616.00
BUR	E103	i	. 4	1.78	7 6 .	.68	2.15 2.15
BUR .	E2100	2222255		N.A.	÷	M.A.	N.A.
	.B100 .B250	2	•	N.A.	* ~	N.A.	N.A.
BUR	B263	2		N.A.	ž - ž	N.A.	N.A.
BUR	B270	2		N.A.	·4 .	N.A.	N.A.
BUR	B280	2		N.A.	2.4	N.A.	N.A.
	\$5500	. (- \$.	5022	19.50	3762	M.A. 79.00	N.A. 544201.00
BUR	B\$00	3 '	1	N.A.	ж <u>.</u> Х	Ņ.A.	N.A.
BUR	B\$500	41. 0	44071	N.A.	e & \$	Ñ.A. 53.00	N.A.
BUR :	83500	4		31,50 94.25	1548	53.00 42.00	28791.00 130251.00
BUR	B6500	5	30343			66.00	2755760.06
BUR	8500 DDP24	2		N.A.	ଅନ୍ତ ଅନ୍ତ	N.A.	N.A.
	DDP224	ាក្≸្	742	19767 01750	\$ 23	80.40 30.00	632.76 81492.00
HON	DDP116	2	.35	61,00	21	7 \$.0 0	4023.00
HON	DDP124 DDP516	2	71	66.50	58	12.00	7618.00
CDC	G15D	î		N.A. 50.57		N.A. 57.34	N.A.
CDC	G20	4 .	626	10.00	3720	5 0. 00	71060.00
CDC	160 160A	3	10	01,88	10	19.30	49.63
CDC	160B	4	13	88.75 N.A.	10.	15.00 N.A.	1780.00 N.A.
CDC	924	* 4		N.A.		Ņ.A.	N.A.
CDC	924A 1604	4	400	N.A.	5004	Ñ.A.	N.A.
CDC	1604A	5.6.65	488	NA	2025	90.00 N.A.	20390.00
CDC	3600	6	38339	2.50		55.00	156375.00
CDC	3400	* 5	24169	4.75		5 9 .00	157202.00

TABLE - A-2 CONTINUED 3 THE STORE

MANU MODEL	CLASS	ĊĠŴB	POWERS	SCI POP	ERO BUSORO	MERAM
CDE 3200	no.ka	168 2280	319.50 T	2 195256. 2 202161\$.		4800
CDC 5600 CDC 1604B	22	1 0 C	SARE	1110	A. nena	A SA
CDC 3100		107	444,25	""11846 2 .	00 74391 A. 5563N	AS 00.
CDC 33300 CDC 33800	· A · B	555	564 00	690510		AS 00.
CDG 3150	22.04		SaAsa		A. 5235N	ATUA
CDC 5 636 CDC 5 6400	- 6	570	510:75	696086		
cnc. 8090	A . 2		N.A.		A. OFN	AAAB
CDCA 1700 DEQA PDP1	A 2	3	884 50	445\$		္ ၁၈၈၈
nea bube			184,14	220		.97°°
DEO PDP5 DEO PDP6	3	10 42	973,75^ 970,00	633\$, 4635\$,		οα
DFÖ PDP7	2 m	58	765.50	68497		.00 US
DEQ PDP8 DEQ LINC8		1	573 75 N.A.	1768	A. Gosan	.Aris
DEQ PDP8S	A . 7	6	808 25	15 9 \$.	00 8546	.00
DEQ PDP10	A	6	808.25	1595	A. 075 N	00
FR(6010	- A . 5		36 91	Į.	8 200	.66
GEÉ 295 GEL 215	2		084275 504.50	25021775 246		.00
GELA 225	3		989 75	6566	.00 7131	.00
GEL 235	0 - 5	26 13	978 75, 636 00	28557	00 015688	.00
GELO 0445250	47,00	\$ P = 19	491 25	2841148	00 22160	.og
GEL 435		48	668,00	24803	00 30053	APUE
GE&* * : 394 GE&: : \$25 :	50.8	197	819 00	22437	00 118134	.000H
GEL 635	1	1317	693000	33895	00 9254848	A
GEL 34920 GEL 3405011	60 \$ 1	58	NEAS	i Ti	0000124 000055	. A 23 H
GEE : 0 20	1 2 2		NEA C		A. SELIN	A
GEE 5 5312	12372 1000 1000 1000 1000 1000 1000 1000 10		103.28	1835 122 1635 122	00 0347	.12
GE4 0412	10.3		N.A.	158	A. A00.N	. A.
GELA MIIS	, j		NAAM AAM	À	IA. 808 IN	.A.
GELA MADO GELA M	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	8	1500 A A A A A A A A A A A A A A A A A A	1200 1200 1200 1200 1200 1200 1200 1200
GED : :406	00. 8 8	58.3	NA.	[884]	15044 15044 3500	.ADGO
GE 60 34180	อบ 🂆	16270	NEAS	38339	75600 75600 3800	Asac
GEL 265	0.00	2693	N.A.	24189	·A. (0υΣ"	100000

TARLE A-20 (CONTINUED)

MANU	a Mo nel	L TROASS	TECOMBER	OWEBMO	SC1 2 POV	ER BUS	POWER
BEL	405	, e 🦸 🕜	ä	N.A.	. N.	A. gaçt	Na A
⊹GŅ₽ä₽	LGP21	1601 No. 0	5 /5		ę Ν.	A.HIOJI	NãA.
GNP	LGP30	0 լա թ 3	Α.		. N.	A. 010	Ng A.
BNP	4000	0.4.34 3 2.4.44 3 4.4.44 4	A .	N.A.	r N.	A. 0500	No A
∂HÕN 7	200	Ex. 48 3	5 5 5	7825	1148.	00:053170	27 80
MON	400	4 يو بر	2 A O		1354.	00105522	752 00
BONES	⊭800	100 SYE 5	2753		28790.	00020823	760200
HOM	H1400) _{2.50 2} 10 4	555	2.25	1770.	00 008168	21.00
SHONS		0 3 4 6	9738	50	110600.	00 061577	50g 00
UHON ₹₹		ធ្វាក្រីក្នុងស្នឹ	381 2 51 1	124235	§ 354.	30aəbər 1	82_80
HON		Br. 31 €	211 22 1	NA AL PE	t t N.	A. Whoat	N.A.
∂#O#∂#			ð5€ 1380¢	103089		00270a 2 43	32.00
HON	H20	A.M. O	. 2 . 1	N.A.	s N.	A. 98 . 98	NeA.
NON.	H21	. A . W O	٠,٨,١	A.A.	o N.	A	NgA.
			50± 7668	\$5088	2100.	00ឆ្នាប់បត្ត95	26.00
HON	1200	A 4	8719	2.75	2130.	001208109	07.00
MOM.	H4200	5	4224		4\$569.	00∂,0∂\$22	70.00
"HQN	H8200	1.5.M 6	.A.	1. A.	S N.	A. 2362:	N.A.
MON	H125	3	4 A . D	I. A.	ξ N.	350/#.A	N.A.
HQU	H110	2	51.0	I.A.	" N.	3507#.A	N.A.
INUN.	H1220	4	₹8.	J. A.	1 N.	A - OM	N.A.
		84.8E12	275	121	½ 94.	47 105	96.47
		14.8114	16813		7942.	00 n 171	04=00
U ltm a#.	35040	00 ROUS	45014		→ 3438 .	00435 00	70200
E PBM I	20020	50 5	17785		72%#88"	UU	6 # # 000
. ABM	020		246		3110.	80s-144 2	91210
å r by s . A bm	1401	3	8811		340. 9	90 jea 9	67.80
. PBM	1401G	2	,814		£340.9	90 ÇŞT 9	
· POM · ADMO A	141U	, 1 5	3896		1673.		3 8 gQ0
P P D TE STATE	1440	3	4522		1412.	263158MQC	59.200
I BM	1600	4	5802		£611.	00143072	00 300
I BM	7010	2	.A82		ξ 94.	CEN2007	47:20
HDM FPMC	7010	6 FC 13 5	10885			00 本区第15	
ABM	7040	·	8948		19670.0	0 99937	85 _A 90
i tom PEBM ; ∮₹		5	18334		21420.0	90 يَوْيَوْنُ 0	79,00
O D BM & BO		0.4.169			67660.0		
OFBM EXA		CO(5 5	1748		₽734.C		
ABM	7074	10.35 P 50		050 00		0 (2 - M2 51)	
OFBB : * :		4.# 6	4		41990.0		90
4 BM		ិ .⊭୬ ६ ₹0 .୯.,ታ 6				0.5 -M308	
EBMROE		0.25.7	15575		18690.0		
DIBMEES		10.10573	84389		97350.0	~ 45	
BATEL		-0 .201 3 17 425 7	155800 186617		17 5 900.0	··· - · · ·	
10BM338		04348		- 10 :	217108.0	a v •	5.57
* *** ** ** ** **	-,-4 5	- "កស្សស្គាល់	Ç & Ç M .	406"	B N.A	• 158	NeA.

TABLE A-2 (CONTINUED)

MANU	MODEL CLASS	COMB POWER	SC#2#OWER - OBUS POWER
à DM	7740 4	A.N.A.	9 N.A N.A.
1 BM	7740 4 1401H 2 610 1 6400 1 1620I 2 1620I 3	814.07	340 901030 96780 8 N.A. 31001 NFA. 8 N.A. 3201 NFA. 94.79 100 47920 8 N.A. 301 NFA.
t om	610 1	A.N.A.	E N.A. SETES NEA.
F DM	6400 - 1	N.A.	S N.A. FOR NEA.
T DM	1620199 - 2	2 8 2 2 8 9	₹ 94.79 °°° 47°20
1 DIM	162011	NOAL	# N.A. JOH NOA.
POM	36020 2	\$8556750	1957,00 4524436200
PMS 3	31200 5	NEAS	& N.A. BUZER NVA.
* BM		469660	16.38
₹ BM			1388573.00 ↓809738⊋80
1-BM	36067	701181W 98	1292573 00 0209738.00
* 2M	36075	3030092000	3564854.00 = \$437806\$****
	1974 0		O N.A. N.A.
₽ RM	36044 4	984085075	0 N.A. N.A. 1025941.00 858528000 N.A. O. N.A.
I RM	36091 8	PA.A.	N.A. COLL NUA.
FRM	36025 3	AS HEAS	8 N.A. Character N.A.
RM	36085 8	N.A.	N.A. M.A.
₽ RM	360/* 3	N.A.	N.A. N.A.
MON	MON-IX: 1	A. 1.12	.46
MON	MON-XI 1	. A . W . 93	1025941.00 858528200 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
NeD	304 4	2117275	1136.00 2445 00
NCB -	310 2	101481	4119.3005: 49.063
NER	315	9447.00	3408.00040-11460200
NCR	315 390 441-22 590 1 395 1 500	0.4.12135	£ 2_030009A 10643
NED	441-22 0	N.A.	N.A. 22 21276 N.A. 22 21276 N.A. N.A. N.A. N.A. N.A. N.A. 3364.00 00 00 00 00 00 00 00 00 00 00 00 00
NCR	590 1	17.39	4.29 14 21276
NCR	395	N.A.	N.A. GARA
Nep	500	APAT	N.A. N.A.
NeR	-315RMC 4	8263 <u>2</u> 00	3364.00
NGR	CFN100 2	NÇA.	" N.A. " " "
NCR	CFN209 3	€8. N₽A.	N.A. N.A.
NGR	500 315RMC 4 CEN100 2 CEN209 3 CEN* 2 250 1440 3 520 1000	SAL NEAD	N.A. N.A. 13.27.20
RAY	250 1	52:22	62.23
PAY	440 3	N.A.	N.A. N.A.
RAY	520 3	25195115	53779°00
Du I	1000 4		\$811.00 DI0440:00
PHI	2M-212 6	298407.50	369800.00 03084236800
PHT	2000 6	OU. ROAPE	N.A. NEA.
PH F	2M-211 6	93318,600	105844.00 0 55748800
pu s	. 3100	LEAZA. C.	3 N.A. ET NEA.
RCA	301	S8723008	323.00 620(1055200
RCA :	3301 5	109850250	1 126761.00 98058359880
	501 4	1567,428	₹ 5638.70 \@UD\$187₹\$00
RCA	601 5	66237.50	64690.00 01758880200

TABLE A-2 (CONTINUED)

MANU	MODEL	CLASS	COMB POWER	SCI POWER	BUS POWER
RCA	7015	. 2	12898,75	1837.00	16586.00
RCA	7025	3	28479.00	4818.00	36366.00
RCA	7045	4	270772.25	211610.00	290493.00
RCA	7055	5	1311851.50	1341132.00	1224010.00
RCA	7035	4	110089.75	61186.00	126391.00
RCA	7046	5	N.A.	N.A.	N.A.
RCA	110	ő	N.A.	N.A.	
RCA	70/+	3		~ N.Ā.	N.A.
SDS	910	2	4219.50	4841.00	2355.00
SDS	920	3	8174.00	9244.00	4964.00
SDS	930	3	60144.50	73181.00	
SDS	9300	4	35568.50		21035.00 10646.00
SDS	92	3	64083.75	43876.00 19140.00	
SDS	925	3	135749.50	92692.00	79065.00
SDS	SIGMA7		809494.50	PONECE OF	150102.00
SDS	SIGMA2	2	113883.75	894566.00	554280.00
SDS	SIGMA5	7		118152.00	101079.00
UNI	SIGMAS	3 9		N.A.	N.A.
UNI			238.97	140.10	271.40
UNI	11 SS11	5 5 5 5	2061.00	1155.00	2363.00
) E	N.A.	N.A.	N.A.
UNI) •	22772.50	22720.00	22790.00
UNI	FCII		79.23	33.46	94.49
UNI	SS80 SS00	4	N.A.	N.A.	N.A.
UNI	SS90	3	N.A.	N.A.	N.A.
UNI	418	4	139614.75	58767.00	166564.00
UNI	490	6 2 3 3	17090.00	17770.00	15050.00
UNI	1004	7	19.41	1.79	25.29
UNI	1050	2	17763.25	12028.00	19675.00
UNI	1050-3	2	N.A.	N.A.	N.A.
UNI	1105	6 1	5253.50	4433.00	5527.00
UNI	U60		• N.A.	N.A.	N.A.
UNI	1218	2	N.A.	N.A.	N.A.
UNI	1107	6 2	123037.50	138700.00	76050.00
UNI	1005		907.43	71.73	1186.00
UNI	1040	0	N.A.	N.A.	N.A.
UNI	1108	7	N.A.	N.A.	N.A.
UNI	9200	1 2	5991.50	1592.00	7458.00
UNI	9300		14905.50	4350.00	18424.00
UNI	1206	6	N.A.	N.A.	N.A.
UNI	491	6	49090.00	49290.00	48490.00
UNI	492	6	N.A.	N.A.	N.A.
UNI	494	6	1468290.00	1291740.00	1527140.00
UNI	1230	3	N.A.	N.A.	N.A.
UNI	1219	4	N.A.	N.A.	N.A.
UNI	9400	3	N.A.	N.A.	N.A.

TABLE A-2 (CONTINUED)

MANU	MODEL	CLASS	COMB POWER	SCI POWER	BUS	POWER
EAI	8400	4	N.A.	N.A.		N.A.
EAI	640	- 1	N.A.	N.A.		N.A.
EAI	8800	Ó	N.A.	N.A.	10	N.A.
PDS	1020	1	N.A.	N.A.		N.A.
SEL	810	3	N.A.	N.A.	- 15	N.A.
COL	8401A	0 1 3 0	N.A.	3 N.A.		N.A.
COL	8500A	0	N.A.	N.A.		N.A.
DSC	1000	Ō	N.A.	· N.A.		N.A.
VAR	DMI 620	0	N.A.	N.A.		N.A.
VAR	DM6201	- 0	N.A.	. N.A.	10.7 V	N.A.
FOX	97400	Ö	N.A.	N.A.		N.A.
FOX	97600	0	N.A.	N.A.		N.A.
FO X	97600A	O.	N.A.	N.A.		N.A.
SCC	670	2	N.A.	N.A.	e	N.A.
WES	PR0580	, 10	No.A.	N.A.		N.A.
WES	PRO50	0	N.A.	N.A.	- 26 · .	N.A.
WES	PR0510	0	N.A.	N.A.		N.A.
SYL -	**	5	59270,00	62510.00	49	50.00
	609	0	N.A.	N.A.		N.A.

TARLE A-3
COMPUTER SIZE CLASS DEFINITIONS

CLASS	RENTAL	RANGE	MEAN	RENT
1	0	<2000	138	1
2	2000	<5000	327	0
3	5000	<10000	738	6
4	10000	<20000	1320	1
5	20000	<40000	2875	1
6	40000	<70000	5221	3
7	70000	<100000	8628	7
8	100000	& over	22736	7

Rental figures are monthly

TABLE A-4: CHARACTERISTICS OF COMPUTERS BY INDUSTRY

(4) EXP AVGPOW	902	37 475	34 1508	04 827	577	00 4560	1251	1035	4333	1106	536	30400	795	361 45959	1367	260	1591	186	601	87	168	151	117	103	158	79	102	96	3 74	9 316
(2) (3) AVGRNT AVGE)	00 00											,																		111
(1) NO.COMP. A	106	27	19	33	39	6	65	31	**	-4	54	9	22	04	200	7	22	27	72	907	27	24	13	30	27	13	82	23	27	52
											. 1	S		+10	×	· in	í.		* *	t S	ن ا	12		S	FAR				FRWFAR	
INDUSTRY NAME	MEAT SLAUGHTERIN	MEAT PROCESSING PLANTS	CONDENSED AND EVAPORATED MIL	LCE CBEAN AND E-OZEN		CAMMEN SPECIAL	CAMMED SPIRITS AND VEGETABLE	FROZEN FRUITS AND VEGET		PREPARED ANIMAL FE	ROTAL AND RELAT	RESCUETS CRACKERS AND C	COMERCTIONARY PRODUCTS	MALT LIDUOR	DISTILLED LIGUOR. EXCE	ROTTLED AND CANNED SOFT D	FOOD PERPARATIONS N.E.C.	C. DABETTES	MEANING MILLS.	N LANGE	TENT TO THE SE	KELT CHESTER MILLS	TOTAL WILLIAM	MEN'S AND BOYS' SUITS	MEN'S SECS SHIETS AND NIC	CEDADATE TENTINES AND MICHIEL	MOOK CLOTEING	DESCES	WOMEN'S AND CHILDREN'S UND	S AND PLANING MILLS

TABLE A-4 (CONTINUED)

	(1)	(2)	(3)	(T)
THE STATE OF THE S	NO.COMP.	AVGRNT	AVGEXP	AVEPOW
RK PLANTS	11	5.0	218	5101
AND PLYWOOD	17	7.1	265	10814
URNI TURE,	32	7.6	298	
URNI TURE	21	100	330	10976
MILLS EXCEPT	134	1.10	373	27222
PAPERBOARD MILLS	90) F ⁻¹	62	251	6137
PAMER CDATING JAND GLAZING	33	119	394	18975
	11	108	379	51029
	9	5.7	230	4587
NONSIGHAPORES - VANCOUNTY AND THE REAL PROPERTY OF THE PERTY OF THE PE	207	60	227	7257
PERIODICALS	104	159	478	72816
BOOMS MUBLISHING AND PRINTING	126	123	397	32934
PRENTANG & BACEPT LICKORRAPHIC	72	74	284	20814
CREATERING CITYOCRAPHIC	13	52	222	3837
ANTERNEDICATE CHALL TAR PRODUCTS	92	101	347	12746
ONDANTO CHENTOALSON IE. C.	120	107	430	26520
HEG TOHER FOALS WITH	\$51	132	3.95	48652
TE MANNETER ALS AND	****	411	375	42288
CHE MERNEY MONCELL	23	7.0	335	11094
THE MAN TOWN THE PARATIONS	105	477	581	26107
SONER AND COTHER DETENDENTS	7.8	110	357	52231
ADDITIONES LAND SAND TATION GOODS	20	92	34.5	8391
	F	152		2.1582
	19	78		11836
FERTILIZERS . COS.	12	116		46801
CHEMICAL PREPARATIONS, N.E.C.	33	79		13574
₹	429	153		94760
IND INNER T	109	120		46826
PRODUCTS,	52	80		10841
PLASTICS PRODUCTS, N.E.C.	ς. Θ	9/		9246
	WORK PLANTS ER AND PLYNOOD PLANTS ER AND TURE, UPHOUS R PURNITURE, UPHOUS R PURNITURE, UPHOUS R MILLS, EXCEPT BU RROARD MILLS R AND CATING AND GLAZ EXCEPT TEXT ILE BUGATED SHIPPING CO RAPPBRS S. PURNIC LITTORY RAPPBRS IT LOS MADERICAL AT TO RAPPBRS S. PURNIC LITTORY RAPPBRS IT LOS MADERICAL AT TO RAPPBRS RA	THOUSTRY NAME THOUSTRY NAME AND PLYNODD PLANTS JAND PLYNODD PLANTS JAND PLYNODD PLANTS JAND TURE, UPHOLSTERED JAND TURE, UPHOLSTERED JAND TURE, UPHOLSTERED ALLS, EXCEPT BUILDING DATHNE AND GLAZING EXCEPT TEXT PLE BAGS ALED SHIPPING CONTAINS PERS ALED SHIPPING CONTAINS THOUGHEN TO SEND THOUGHEN TO SEND THOUGHEN TO SEND THOUGHEN DET ENGENTS THOUGHEN DET ENGENTS THOUGHEN DET ENGENTS THOUGHEN DET ENGENTS THE SAMD SAME TATION GOODS PREPARATIONS, N.E.C. THOUGHEN TUBES AL PREPARATIONS, N.E.C. THOM REFINING AND INNER TUBES PRODUCTS, N.E.C. CS PRODUCTS, N.E.C.	THE PREPARATIONS, N.E.C. (1) (2) THE PRODUCTS (1) (1) (2) THE PRODUCTS (1) (2) THE P	AND CANAL TANDUSTRY NAME AND PLANTS AND PLYNOOD PLANTS JAND PLYNOOD PLANTS JAND TURE, UPHOUSTERED JAND TORNOOD CLOUTS JAND THE PART ON GOODS JAND THE PREPARATIONS AND THE PART ON GOODS JAND THE PART ON C. C. JAND THE PART ON GOODS JAND THE PART ON C. C. JAND THE PART ON C. C. C. J

TARLE A-4 (CONTINUED)

1				* .	
- - - -			`	,	
-		(1)	(5)	(3)	(†)
SIC	INDUSTRY NAME	NO. COMP.	AVGRNT	AVGEXP	AVGPOW
•		***		 L	N 24
3242	SHRES, EXCEPT RUBBER	# <u>.</u> 9	102	355	16369
3221	ပ	22.	141	436	45834
3242	-	37	200	238	4888
5291	3	77	66	333	24146
3302	BLAST FURNADES AND STEEL MILLS	353	131	4.16	30872
3317	- 50	70	63	256	6436
3321	PON HOUSE	500	(15 6	314	15774
3323	STEEL ROUNDAIRS	22	93	33.1	18015
3351	E3.	7.7	8.1	293	52633
3352	ALLUMENUM ROBLING JAND DRAWING	91	111	361	9702
3356	2 S	1.6.	101	3.6.2	8973
3357	NONTHERMOUS INTRA-DARKING, ETC.	28	103	360	16885
7391	LACAL LAND STEAT FORGUNGS	22	09	942	10142
3411	NEXT CAMBILIZATIVE VAR SULKITHE	12	105	364	62029
A CO	HARDWARE, IN. E.C.	38	93	33.1	12008
100 A	HEARTHAG BOULDMENT, EXCEPT ELECTRIC	205	<u>27</u>	312	13350
3555		Ê.	57	235	9255
244.2 244.2	HETEL DOOR SASH, IAND TREEM	2.2	W.	1561	6014
が古典	~	3	187	292	55872
253A	~~	30	25	i z	9728
194	MODEL SHANDLESS SOUTH SOUTH	32	1.6	331	17032
ACE!	PARKA CATED META'L PRODUCTS E.C.	91	<u>6</u> 2	29.5	20652
NO.	VALVE STATE THE BUILDING STATES	6	115	978 1979	15573
20.00	~	200	164	441	70865
2222	FARM MACHEMERAL SAND EQUIPMENT	166	120	78K	58892
3531	CONSTRUCTION MACHINERY	63	112	383	14302
3541	CUTTING	79	102	356	19598
3544	SPECIAL DIES AND TOOLS	21	. 62	254 254	12268
3545	IE TOOLS	17	82	296	9279
3548	METALWORKING MACHINERY, N.E.C.	26	Ø	312	14362
		* · · · · · · · · · · · · · · · · · · ·			

TABLE A-4 (CONTINUED)

		(1)	(2)	(3)	(±)
SIC	INDUSTRY NAME	NO.COMP.	AVGRNT	AVGEXP	AVGPOW
55	CIA	11	96		23472
Y.	DC AND COMPDESSORS		7		• (
) (שניים לואול סו	70	CAT	797	5 5 6
26	L AND ROLLER BEA	S	&	317	126
26	ER TRANSMISSION EQUIPMEN	~	102	342	519
26	FRAL INDUSTRY MA	13	272	556	569
2 2	RIGERATION MACHINERY	60 27	95	331	2605
59	<u>۔</u> ن	13	8 2	¥18	110
3611	ELECTRIC MEASURING INSTRUMENTS	111	96	\$29	16755
9	KSFORMERS	0 \$	109	346	186
61	TCHGEAR AND S	14	110	C	1916
62	ORS AND GENERAT		131	~	708
62	USTRIAL CONTROLS	42	141	_	4346
63	MAIN HO		1 5 1	8 17	899
49	HTING FIXTURES		100	•	1101
65	IO AND TV RECEIVING	1:	138	0	541
99	EPHONE, TELEGRAPH APPAR	£1º	138	_	9 1/ 14
99	IO, TV COMMUNICATION	234	155	10	13626
67	I CONCTORS	Ç.	5	~	523
67	CTRONIC COMPONENTS, N.E.	٤ ۽	-	~	8563
50	INE ELECTRICAL EQUIPME		120	372	9 14 1
7	OR VEHICLES AND PART	7 6	-	415	122
77		wr		652	313
72	CRAFT ENGINES AND PAR		-	515	204
72	CRAFT EQUIPMENT, N.E.C	÷	~	556	238
13	P BUILDING AND REPAIR	77	8	270	704
74	LROAD AND STREET CARS			270	081
200	HANICAL MEASURING	300	2	317	471
90	TOGRAPHIC EQUIPMEN	29	138	413	882
1 6	ES AND TOY	30	80	302	10335

TABLE A-4 (CONTINUED)

EXPLANATION OF COLUMNS

- (1) Number of computers in operation within this industry.
- (2) Average rent of computers in industry
- (3) Average total expenses of computer installations in this industry (based upon Federal Government experience)
- (4) Average power of computers in industry (based upon Knight's power indecies)

TABLE A-5 FEDERAL GOVERNMENT COMPUTER RENTAL DATA

COMP	UTER MODEL	NO.	RE	NT IN DO	ELARS MAX
MANGI	HOULE	1 173 1	141 1 14	MEAN	MAA
AST	210	3	1194	2512	4175
ASI	2100	2	3200	5232	7264
ASI	6020	2	5410	6548	7687
ASI	6050	· 3	6384	7006	8028
ASI	6130	1	6855	6855	6855
AUT	REC2	18	1	859	2495
BRA	130	1	3129	3129	3129
BRA	133	4	196	2974	4500
BRA	340	1	9422	9422	9422
BUR	B250	2	4380	4380	4380
BUR	B2500	. 1	8910	8910	8910
BUR	B263	101	1220	2579	3700
BUR	B280	2	3833	3854	3835
BUR	B283	- 6	6135	7438	10895
BUR	B300	2	4168	5521	6875
BUR	B3500	77	4139	4543	35280
BUR	B5500	9	19817	37347	84063
BUR	E101	- 3	935	1205	1635
BUR	220	1	28220	28220	28220
CDC	G15D	30	280	1533	- 2621
CDC	LGP21	3	740	885	1080
CDC	LGP30	11	350	1502	5080
On C	160	54	1600	7777	37123
CDC	160A	42	1502	9126	76709
CDC	160G	32	6025	12012	19950
CDC	1604	23	3829	35548 5195	54590
CDC	1700	11	2070	5195	10322
CDC	3100	29	4125	11665	21302
CDC	3200	23	4340	16889	32395
CDC	3300	18	13800	16889 30677 28350	50780
CDC	3400	1	28350	28350	28350
CDC	3600	13	15600	57468	104292
CDC	3800	14	16200	51970	77710
CDC	4000	3	1865	2381 2530 61221	3150
CDC	4010	1	2530	2220	2530
CDC	6400		38700	91221	81655
CDC	6600	27	62950	111848	328505
CDC	8041	1 37	2955	2955	2955
CDC	8090	2/	1650	4642	16900
CDC	8092B 8490	5	3915	4207	835
CDC			\$230 \$250	5922	6615
	924	14	4352	16535	24186
CDC	924A	3	10262	16792	21015
DEQ	LINC8	. 5	160	1272	3954
DEQ	PDP1	14	1327	4418	10682

TABLE A-5 (CONTINUED)

COMPUTER	NO.	REI	NT IN DO	LLARS
MANUF MODE	L INST	WIN	MEAN	MAX
DEQ PDP	10 1	12650	12650	12650
DEQ PDP	75 1.	1750	2823	4732
DEQ POPS		400	1134	3038
DEQ POPE		2492	3871	5250
DEQ POP		1240	2767	3672
		142	431	1069
		199	431 241	294
DEQ PDP8		1024	1897	3834
DEQ POPS			9088	
EA1 8400		9088	1055	9088
ELT ALW		110	1855	3600
FRI 6010)	621	1190	1820
GEL D30	1	6913	6913	6913
GEL PAC		35270	37457 4375	39791
GEL 115	4	3005	4375	6880
GEL 205	5	2625	3665	5400
GEL 215	4	3163	3445 4805	7510
GEL 225	22	1835	8858	13763
GEL 235	8	11258	285788 2457923374 127387	58025
GEL 412	- 5	4904	5298	5662
GEL 415	4	9740	12929	16150
GEL 425	5	9140	17338	20593
GEL 435	- 6	22645	17338 23873 43850	24251
GEL 625	1	43850	43850	43850
GEL 635		32733	73358	100740
HON DDP	16 13	243	2394	5162
HON DOP		4724	4724	4724
HON DOP		\$724 2750	4237	7050
HÖN DER	24 25	4500	4237 9723	17426
HON DOP	24 25 4 20	1809	6142	11197
HON DOPA		378	489	600
HON DOPS		478	1765	3891
HON H629		5400	1747 5400	5400
	i	6000	6000	6000
HON H632 HON 120		2360	3925	4955
			10275	
HON 1200	30	5305 70050	10373	15165
HON 1800 HON 200	2	39850	44/92	50437
HQN 200	89	2300	12527	22599
HON 2200	1.3	11190	16853	27826
HON 400 HON 610	3 89 13 6	4785	14755213305875 147552515975 111509573 255	14445
HON 610		6060	25050	5060
HON 800	21	1,5033	20915	50248
IBM 1130	75	13033 2770	1658	3037
18M 1401	356	1136	6797	22775
18M 1410	72	9600	26175	22775 58406 13979
18M 1440	21 75 356 72 22	2750	5838	13979

TABLE A-5 (CONTINUED)

COM	PUTER	NO.	RF	NT IN DO	LLARS
	F MODEL	INST	MIN	MEAN	MAX
117,110	·	71131	P4 F4	711 87 3-614	MAA
18M	1460	25	7140	11910	19271
IBM	1500	2	12248	19821	27395
1 BM	1620	594	1164	3428	5891
18M	1710	1	16158	16158	16158
I BM	1800	22	1220	4918	11920
I BM	305	2	4012	4012	4912
IBM	36020	72.	617	2916	7576
1 BM	36030	117	3990	12127	28225
I BM	36040	70	8068	23404	51337
1 BM	36044	1133 8	5666	10575	20169
1 BM	36050	55	14165	37564	95442
IBM	36065	33	13905	58219	151266
1 BM	36067	:4	57405	198931	171303
- I BM	36075	13	63696	106248	143028
I BM	36091	2	129395	150300	171206
1 BM	36095	2	138236	141443	144651
1 BM	610	- 1	1150	1150	1350
I BM	6400	3	730	931	1054
IBM	650	í	4450	4450	4450
IBM	7010	-15	30523	45657	77836
IBM	7030	3	118075	142950	177200
1 BM	704	3	10674	20363	38272
1 BM	7040	13	12259	37532	68924
IBM	7044	12	33750	62534	129389
1 BM	705	- 4	22800	32502	45100
I BM	7070	2	18220	28679	39139
IBM	7074	15	25120	47427	109576
I BM	7080	33	49548	77287	140554
IBM	7090	17	43561	76040	103309
IBM	7094	46	35967	76931	122284
IBM	709411	7	51704	84376	116935
1 BM	7740	7	6733	11096	16137
1 BM	9020	4	11779	26101	48586
1 NF	4900	- 1	700	700	700
1 TT	ADX73	3	493	42086	106133
NCR	304	- 4	15390	16778	18708
NCR	315	11	7225	10207	17965
NCR	390	135	534	1765	2062
NCR	500	36	1015	1533	1920
PD\$	1020	- 4	450	601	900
PHT	1000	× 4-	5100	16759	25598
PH I	2000	6	23970	52773	89928
RAY	250	24	460	1135	1766
RAY	440-	√ 2	5228	5743	6259
RAY	440	2	5228	5743	6259

TABLE A-5 (CONTINUED)

RAY 520 5 2191 4900 8154 RCA 301 106 4403 19887 25065 RCA 3301 25 17923 28648 46562 RCA 4101 1 4000 4000 4000 RCA 501 25 1240 19242 41111 RCA 7025 1 7610 7610 7610 7610 RCA 7035 14 10425 11325 14558 RCA 7045 6 12573 19601 22991 SCC 650 3 433 6534 950 SCC 660 2 1800 2114 2428 SDS SIGMA2 5 1310 2171 4029 SDS SIGMA5 3 1385 8796 20030 SDS SIGMA7 7 3885 8720 18577 SDS 910 53 521 4371 19566 SDS 92 4 2760 6235 13359 SDS 920 52 1800 5563 11650 SDS 925 3 3480 5309 8673 SDS 9300 7 9655 13433 18233 SDS 940 1 28009 28009 28009 SEL 810 7 640 6380 8020 SEL 810A 2 1350 1707 2065 SEL 810B 2 1335 1657 1980 SEL 840MP 2 1 1 1 15174 15174 15174 UNI FC!! 3 23770 24380 25426 UNI SS80 2 4584 4750 4916 SEL 840MP 2 1 1 1 15174 15174 15174 UNI FC!! 3 23770 24380 25426 UNI SS80 5 5750 12647 26320 UNI 1005!! 2 2993 3024 3055 UNI 1005!!	COMPI	JTER	NO.	REN		
RCA 301 106 4403 19887 25065 RCA 3301 25 17923 28648 46562 RCA 4101 1 4000 4000 4000 RCA 501 25 5240 19242 41111 RCA 7025 1 7610 7610 7610 RCA 7045 6 12373 19601 22991 SCC 650 3 433 634 950 SCC 660 2 1800 2114 2428 SDS SIGMA2 5 1310 2171 4029 SDS SIGMA5 3 1385 8796 20030 SDS SIGMA7 7 3885 8720 18577 SDS 910 53 521 4371 19566 SDS 92 4 2760 6235 13359 SDS 92 4 2760 6235 13359 SDS 92 52 1800 5563 11660 SDS 925 3 3480 5309 8673 SDS 930 48 1605 8255 20600 SDS 9300 7 9655 13433 18233 SDS 930 1 28009 28009 28009 SEL 810 7 640 6380 8020 SEL 810A 2 1350 1707 2065 SEL 810B 2 1335 1657 1980 SEL 840MP 2 1 1 15174 15174 UNI FC!! 3 23770 24380 25426 UNI SS90 2 1852 2431 26225 UNI M460 1 9032 9032 9032 UNI SS80 5 5750 12647 26320 UNI SS90 2 66865 7032 7200 UNI SS90 128 1975 2030 4452 UNI 1004!! 14 1055 2836 3485 UNI 1005!! 2 1975 2030 2085 UNI 1005!! 2 1975 2030 2085 UNI 10504 196 535 2380 4772 UNI 1005!! 2 1975 2030 2085 UNI 10504 196 535 2380 4772 UNI 1005!! 2 1975 2030 2085 UNI 10501! 6 6400 8398 10135 UNI 1050!! 6 6400 8398 10135 UNI 1105 1 48060 48060 48060 UNI 1108 30 14100 47849 214791 UNI 1108 30 14100 47849 214791 UNI 1108 30 14100 47849 214791	MANUF	MODEL	INST	MIN	MEAN	MAX
RCA 301 106 4403 19887 25065 RCA 3301 25 17923 28648 46562 RCA 4101 1 4000 4000 4000 RCA 501 25 5240 19242 41111 RCA 7025 1 7610 7610 7610 RCA 7045 6 12373 19601 22991 SCC 650 3 433 634 950 SCC 660 2 1800 2114 2428 SDS SIGMA2 5 1310 2171 4029 SDS SIGMA5 3 1385 8796 20030 SDS SIGMA7 7 3885 8720 18577 SDS 910 53 521 4371 19566 SDS 92 4 2760 6235 13359 SDS 92 4 2760 6235 13359 SDS 92 52 1800 5563 11660 SDS 925 3 3480 5309 8673 SDS 930 48 1605 8255 20600 SDS 9300 7 9655 13433 18233 SDS 930 1 28009 28009 28009 SEL 810 7 640 6380 8020 SEL 810A 2 1350 1707 2065 SEL 810B 2 1335 1657 1980 SEL 840MP 2 1 1 15174 15174 UNI FC!! 3 23770 24380 25426 UNI SS90 2 1852 2431 26225 UNI M460 1 9032 9032 9032 UNI SS80 5 5750 12647 26320 UNI SS90 2 66865 7032 7200 UNI SS90 128 1975 2030 4452 UNI 1004!! 14 1055 2836 3485 UNI 1005!! 2 1975 2030 2085 UNI 1005!! 2 1975 2030 2085 UNI 10504 196 535 2380 4772 UNI 1005!! 2 1975 2030 2085 UNI 10504 196 535 2380 4772 UNI 1005!! 2 1975 2030 2085 UNI 10501! 6 6400 8398 10135 UNI 1050!! 6 6400 8398 10135 UNI 1105 1 48060 48060 48060 UNI 1108 30 14100 47849 214791 UNI 1108 30 14100 47849 214791 UNI 1108 30 14100 47849 214791	~	E 2.0		93 0 1	4.900	8154
RCA 3301 25 17923 28588 46562 RCA 4101 1 4000 4000 4000 4000 RCA 501 25 5240 19242 41111 RCA 7025 1 7610 7610 7610 7610 RCA 7035 14 10425 11325 14558 RCA 7045 6 12373 19601 22991 SCC 650 3 433 634 950 SCC 660 2 1800 2114 2428 SDS SIGMA2 5 1310 2171 4029 SDS SIGMA5 3 1385 8796 20030 SDS SIGMA7 7 3885 8720 18577 SDS 910 53 521 4371 19566 SDS 92 4 2760 6235 13359 SDS 920 52 1800 5563 11660 SDS 925 3 3480 5309 8673 SDS 920 52 1800 5563 11660 SDS 925 3 3480 5309 8673 SDS 930 48 1605 8255 20600 SDS 9300 7 9655 13433 18233 SDS 940 1 28009 28009 28009 SEL 810 7 640 6380 8020 SEL 840A 2 1350 1707 2065 SEL 840MP 2 1 1 1 1 15174 1517						
RCA 501 25 5240 19242 41111 RCA 7025 1 7610 7610 7610 RCA 7035 14 10425 11325 14558 RCA 7045 6 12373 19601 22991 SCC 650 3 433 634 950 SCC 650 2 1800 2114 2428 SDS SIGMA2 5 1310 2171 4029 SDS SIGMA5 3 1385 8796 20030 SDS SIGMA7 7 3885 8720 18577 SDS 910 53 521 4371 19566 SDS 92 4 2760 6235 13359 SDS 92 5 1800 5563 1660 SDS 930 48 1605 8255 20600 SDS 930 48 1605 8255 20600 SDS 930 48 1605 8255 20600 SEL 810 7 640 6380 8020 SEL 810 7 640 6380 8020 SEL 810 8 2 1355 1707 2065 SEL 810A 2 1350 1707 2065 SEL 810B 2 1335 1657 1980 SEL 840A 2 4584 4750 4916 SEL 840MP 2 1 1 1 15174 15174 UNI FC!! 3 23770 24380 25426 UNI FC!! 3 23770 24380 25426 UNI SS90 2 6865 7032 9032 UNI SS90 2 6865 7032 9032 UNI SS90 2 6865 7032 7200 UNI 1004!! 14 1055 2836 3485 UNI 1005!! 2 2993 3024 3055 UNI 1005!! 2 2993 3024 3055 UNI 1005!! 2 1950 9134 16000 UNI 1050A 1 5052 5052 5052 UNI 1050A 1 5052 5052 5052 UNI 1050A 1 5052 5052 5052 UNI 1050I! 6 6400 8398 10135 UNI 1108 30 14100 47449 214791 UNI 1108 30 14100 47449 214791 UNI 1218 22 1606 4680 11352						
RCA 7025 1 7610 7610 7610 7610 RCA 7035 14 10425 11325 14558 RCA 7045 6 12373 19601 22991 SCC 650 3 433 634 950 SCC 660 2 1800 2114 22428 SDS SIGMA2 5 1310 2171 4029 SDS SIGMA5 3 1385 8796 20030 SDS SIGMA7 7 3885 8720 18577 SDS 910 53 521 4371 19566 SDS 92 4 2760 6235 13359 SDS 92 4 2760 6235 13359 SDS 92 4 2760 6235 13359 SDS 92 52 1800 \$563 11660 SDS 925 3 3480 5309 8673 SDS 9300 7 9655 13433 18233 SDS 940 1 28009 28009 28009 28009 SEL 810 7 6640 6380 8020 SEL 810A 2 1350 1707 2065 SEL 810A 2 1350 1707 2065 SEL 840A 2 4584 4750 4916 SEL 840MP 2 1 1 1 15174 15174 UNI FC!! 3 23770 24380 25426 UNI SS0 5 5750 12647 26320 UNI SS0 5 148 1297 1951 4452 UNI 1005!! 2 2993 3024 3055 UNI 1005!! 2 2993 3024 40600 UNI 10501! 6 6400 8398 10135 UNI 1105 1 48060 48060 48060 40600 UNI 1105 1 48060 48060 48060 48060 UNI 1108 30 14100 47449 214791 UNI 1118 22 1606 4680 113552						
RCA 7025 1 7610 7610 7610 RCA 7035 14 10425 11325 14558 RCA 7045 6 12373 19601 22991 SCC 650 3 433 634 950 SCC 660 2 1800 2114 2428 SDS SIGMA2 5 1310 2171 4029 SDS SIGMA5 3 1385 8796 20030 SDS SIGMA7 7 3885 8720 18577 SDS 910 53 521 4374 19566 SDS 92 4 2760 6235 11660 SDS 92 5 1800 5563 11660 SDS 930 7 9655 13433 18235 SDS 930 7 9655 13433 18235 SDS 940 1 28009 28009 28009 SEL 810 7 640 6380 8020 SEL 810A 2 1350 1707 2065 SEL 810B 2 1335 1657 1980 SEL 840A 2 4584 4750 4916 SEL 840MP 1 1 15174 15174 15174 UNI 11 1 15174 15174 15174 UNI SS80 5750 12647 26320 UNI SS90 2 6865 7032 7200 UNI 1004 1 14 1055 2836 3485 UNI 1005 1 2 2993 3024 452 UNI 1005 1 2 1950 9134 16000 UNI 1050 122 1950 9134 16000 UNI 1050 1 22 1950 9134 16000						
RCA 7035 14 10425 11325 14558 RCA 7045 6 12373 19601 22991 SCC 650 3 433 654 950 SCC 660 2 1800 2114 2428 SDS SIGMA2 5 1310 2171 4029 SDS SIGMA5 3 1385 8796 20030 SDS SIGMA7 7 3885 8720 18577 SDS 910 53 521 4371 19566 SDS 92 4 2760 6235 13359 SDS 920 52 1800 5563 11660 SDS 920 52 1800 5563 11660 SDS 930 48 1605 8255 20600 SDS 930 48 1605 8255 20600 SDS 930 7 9655 13433 18233 SDS 940 1 28009 28009 28009 SEL 810 7 640 6380 8020 SEL 810 8 2 1350 1707 2065 SEL 810B 2 1350 1707 2065 SEL 840A 2 1350 1707 2065 SEL 840A 2 4584 4750 4916 SEL 840MP 2 1 1 UNI FC!! 3 23770 24380 25426 UNI FC!! 3 23770 24380 25426 UNI FC!! 3 23770 24380 25426 UNI SS80 5 5750 12647 26320 UNI 1004! 14 1055 2836 3485 UNI 1005! 2 2993 3024 3055 UNI 1005! 2 2993 3024 3055 UNI 1050 122 1950 9134 16000 UNI 1050A 1 5852 5052 5052 UNI 1050A 1 5852 5052 5052 UNI 1050! 6 6400 8398 10135 UNI 1107 9 56395 68440 74603 UNI 1108 30 14100 47449 214791 UNI 1218 22 1606 4680 11352						
RCA 7045 6 12373 19691 22991 SCC 650 3 433 634 950 SCC 660 2 1800 2114 2428 SDS SIGMA2 5 1310 2171 4029 SDS SIGMA5 3 1385 8796 20030 SDS SIGMA7 7 3885 8720 18577 SDS 910 53 521 4374 19566 SDS 92 4 2760 6235 13359 SDS 920 52 1800 5563 11660 SDS 925 3 3480 5309 8563 SDS 930 48 1605 8255 20600 SDS 930 48 1605 8255 20600 SDS 930 48 1605 8255 20600 SDS 930 7 9655 13433 18233 SDS 940 1 28009 28009 28009 SEL 810 7 640 6380 8020 SEL 810 8 2 1335 1657 2065 SEL 810B 2 1335 1657 2065 SEL 840A 2 1350 1707 2065 UNI FC!! 3 23770 24380 25426 UNI FC!! 3 23770 24380 25426 UNI S880 5 5750 12647 26320 UNI S880 5 5750 12647 26320 UNI S890 2 6865 7032 7200 UNI S890 2 6865 7032 9032 UNI S890 2 6865 7032 7200 UNI 1004!! 14 1055 2836 3485 UNI 1005!! 2 2993 3024 3055 UNI 1005!! 2 2993 3024 3055 UNI 1050 122 1950 9134 16000 UNI 1050A 1 5052 5052 5052 UNI 1050I! 6 6400 8398 10155 UNI 1107 9 56395 68440 74603 UNI 1108 30 14100 47449 214791 UNI 1218 22 1606 4680 11352						
SCC 650 3 433 654 950 SCC 660 2 1800 2114 2428 SDS SIGMA2 5 1310 2171 4029 SDS SIGMA5 3 1385 8796 20030 SDS SIGMA7 7 3885 8720 18577 SDS 910 53 521 4371 19566 SDS 92 4 2760 6235 13359 SDS 920 52 1800 5563 11660 SDS 920 52 1800 5563 11660 SDS 925 3 3480 5309 8673 SDS 930 48 1605 8255 20600 SDS 9300 7 9655 13433 18233 SDS 940 1 28009 28009 28009 SEL 810 7 640 6380 8020 SEL 810A 2 1350 1707 2065 SEL 810B 2 1335 1657 1980 SEL 840A 2 4584 4750 4916 SEL 840MP 2 1 1 UNI FC!! 3 23770 24380 25426 UNI 1 1 15174 15174 125174 UNI F!! 8 19520 22131 26225 UNI M460 1 9032 9032 9032 UNI SS80 5 7550 12647 26320 UNI SS80 5 5750 12647 26320 UNI SS80 5 5750 12647 26320 UNI SS80 5 5750 12647 26320 UNI 1004!! 14 1055 2836 3485 UNI 1004!! 14 1055 2836 3485 UNI 1005!! 2 2993 3024 3055 UNI 1005!! 2 2993 3024 3055 UNI 1050A 1 5052 5052 1001 UNI 1050A 1 5052 5052 5052 UNI 1050I! 6 6400 8398 1000 UNI 1050I! 6 6400 8398 1001 UNI 1050I! 6 6400 8398 1001 UNI 1107 9 56395 68440 74603 UNI 1108 30 14100 47449 214791 UNI 1218 22 1606 4680 11352						
SCC 660 2 1800 2114 2428 SDS SIGMA2 5 1310 2171 4029 SDS SIGMA5 3 1385 8796 20030 SDS SIGMA7 7 3885 8720 18577 SDS 910 53 521 4371 19566 SDS 920 52 1800 5563 11660 SDS 930 48 1605 8255 20600 SDS 930 7 9655 13433 18233 SDS 940 1 28009 28009 28009 SEL 810A 2 1355 1657 1980 SEL 810A 2 1355 1657					•	
SDS SIGMA2 5 1310 2171 4029 SDS SIGMA5 3 1385 8796 20030 SDS SIGMA7 7 3885 8720 18577 SDS 910 53 521 4371 19566 SDS 920 52 1800 5563 11660 SDS 925 3 3480 5309 8673 SDS 930 7 9655 13433 18233 SDS 9300 7 9655 13433 18233 SDS 9300 7 9655 13433 18233 SDS 9300 7 9655 13433 18233 SDS 940 1 28009 28009 28009 SEL 810A 2 1350 1707 2065 SEL 810B 2 1335 1657 1980 SEL 840A 2 4584 4750				•		
SDS SIGMA5 3 1385 8796 20030 SDS SIGMA7 7 3885 8720 18577 SDS 910 53 521 4371 19566 SDS 920 52 1800 5563 11660 SDS 925 3 3480 5309 8673 SDS 9300 7 9655 13433 18233 SDS 9300 7 9655 13433 18233 SDS 940 1 28009 28009 28009 SEL 810A 2 1350 1707 2065 SEL 810A 2 1355 1657 1980 SEL 840A 2 4584 4750 4916 SEL 840MP 2 1 1 1 UNI FC!! 3 23770 24380 25426 UNI 1!! 1 15174 15174 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
SDS SIGMA7 7 3885 8720 18577 SDS 910 53 521 4374 19566 SDS 920 52 1800 \$5563 11660 SDS 925 3 3480 5509 8673 SDS 930 4 1605 8255 20600 SDS 9300 7 9655 13433 18233 SDS 940 1 28009 28009 28009 SEL 810A 2 1350 1707 2065 SEL 810B 2 1355 1657 1980 SEL 840A 2 4584 4750 4916 SEL 840MP 2 1 1 1 UNI FCII 3 23770 24380 25426 UNI 1I 1 15174 15174 15174 UNI 1I 1 15174 15174 15						
SDS 910 53 521 4371 19566 SDS 92 4 2760 6235 13359 SDS 920 52 1800 5563 11660 SDS 925 3 3480 5309 8673 SDS 930 48 1605 8255 20600 SDS 9300 7 9655 13433 18233 SDS 940 1 28009 28009 28009 SEL 810 7 640 6380 8020 SEL 810B 2 1355 1657 1980 SEL 840A 2 1335 1657 1980 SEL 840A 2 4584 4750 4916 SEL 840MP 2 1 1 1 UNI 1:1 1 15174 15174 15174 UNI 1:1 1 15174 15174 15174 UNI 1:1 1 15174 15174 15174				-		
SDS 92 4 2760 6235 13359 SDS 920 52 1800 5563 11660 SDS 925 3 3480 5309 8673 SDS 930 48 1605 8255 20600 SDS 9300 7 9655 13433 18233 SDS 940 1 28009 28009 28009 SEL 810 7 640 6380 8020 SEL 810A 2 1350 1707 2065 SEL 810B 2 1355 1657 1980 SEL 840A 2 4584 4750 4916 SEL 840AP 2 4584 4750 4916 SEL 840MP 2 1 1 1 UNI FCII 3 23770 24380 25426 UNI 11 1 15174 15174 15174 UNI 101 1 9032 9032 9032						
SDS 920 52 1800 \$563 11660 SDS 925 3 3480 5309 8673 SDS 930 48 1605 8255 20600 SDS 9300 7 9655 13433 18233 SDS 940 1 28009 28009 28009 SEL 810 7 640 6380 8020 SEL 810A 2 1350 1707 2065 SEL 810B 2 1335 1657 1980 SEL 840A 2 4584 4750 4916 SEL 840MP 2 1 1 1 UNI FCI! 3 23770 24380 25426 UNI 1! 1 15174 15174 15174 UNI 1! 1 15174 15174 15174 UNI 1! 1 15174 15174 15174 UNI 1! 1 15174 15174 15174 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tr<>						
SDS 925 3 3480 5309 8673 SDS 930 48 1605 8255 20600 SDS 9300 7 9655 13433 18233 SDS 940 1 28009 28009 28009 SEL 810 7 640 6380 8020 SEL 810A 2 1350 1707 2065 SEL 810B 2 1335 1657 1980 SEL 840A 2 4584 4750 4916 SEL 840MP 2 1 1 1 SEL 840MP 2 1 1 1 1 SEL 840MP 2 1						
SDS 930 48 1605 8255 20600 SDS 9300 7 9655 13433 18233 SDS 940 1 28009 28009 28009 SEL 810 7 640 6380 8020 SEL 810A 2 1350 1707 2065 SEL 810B 2 1335 1657 1980 SEL 840A 2 4584 4750 4916 SEL 840MP 2 1 1 1 UNI FCII 3 23770 24380 25426 UNI III 1 15174 15174 15174 UNI III 8 19520 22131 26225 UNI M460 1 9032 9032 9032 UNI S890 2 5865 7032 7200 UNI 1004!! 14 1055 2836 3						
SDS 9300 7 9655 13433 18233 SDS 940 1 28009 28009 28009 SEL 810 7 640 6380 8020 SEL 810A 2 1350 1707 2065 SEL 810B 2 1335 1657 1980 SEL 840A 2 4584 4750 4916 SEL 840MP 2 1 1 1 UNI FCII 3 23770 24380 25426 UNI II 1 15174 15174 15174 UNI III 1 15174 15174 15174 UNI III 8 19520 22131 26225 UNI 1860 1 9032 9032 9032 UNI 1004 196 535 2380 4772 UNI 1004 196 535 2380 47						
SDS 940 1 28009 28009 28009 SEL 810 7 640 6380 8020 SEL 810A 2 1350 1707 2065 SEL 810B 2 1355 1657 1980 SEL 840A 2 1232 1863 3390 SEL 840MP 2 1 1 1 SEL 840MP 2 1 1 1 UNI FCII 3 23770 24380 25426 UNI 11 1 15174 15174 15174 UNI 11 1 15174 15174 15174 UNI 11 1 15174 15174 15174 UNI 14 19520 22131 26225 UNI 1860 1 9032 9032 9032 UNI 1004 196 535 2380 4772						
SEL 810 7 640 6380 8020 SEL 810A 2 1350 1707 2065 SEL 810B 2 1335 1657 1980 SEL 840 4 1232 1863 3390 SEL 840MP 2 4584 4750 4916 SEL 840MP 2 1 1 1 UNI FCI! 3 23770 24380 25426 UNI 1! 1 15174 15174 15174 UNI 1! 1 19520 22131 26225 UNI 8890 2 5865 7032 7200 UNI 1004 196 535 2380 4772 UNI 1005!! 2 1975 2030 2085					•	
SEL 810A 2 1350 1707 2065 SEL 810B 2 1335 1657 1980 SEL 840 4 1232 1863 3390 SEL 840MP 2 4584 4750 4916 SEL 840MP 2 1 1 1 UNI FCII 3 23770 24380 25426 UNI II 1 15174 15174 15174 UNI III 8 19520 22131 26225 UNI M460 1 9032 9032 9032 UNI SS80 5 5750 12647 26320 UNI SS80 5 5750 12647 26320 UNI 1004 196 535 2380 4772 UNI 1004 196 535 2380 4772 UNI 1005 148 1297 1951 4452 UNI 1005 1 2993 3024 3055						
SEL 810B 2 1335 1657 1980 SEL 840A 2 4584 4750 4916 SEL 840MP 2 1 1 1 UNI FCII 3 23770 24380 25426 UNI II 1 15174 15174 15174 UNI II 8 19520 22131 26225 UNI M460 1 9032 9032 9032 UNI SS80 5 5750 12647 26320 UNI SS80 5 5750 12647 26320 UNI 1004 196 535 2380 4772 UNI 1004 196 535 2380 4772 UNI 1004 196 535 2380 4772 UNI 1005 148 1297 1951 4452 UNI 1005 1 2993 3024 3055 UNI 1050 122 1950 9134 16000			_			
SEL 840 4 1232 1863 3390 SEL 840A 2 4584 4750 4916 SEL 840MP 2 1 1 1 UNI FCII 3 23770 24380 25426 UNI II 1 15174 15174 15174 UNI III 8 19520 22131 26225 UNI M460 1 9032 9032 9032 UNI SS80 5 5750 12647 26320 UNI 1004 196 535 2380 4772 UNI 1004 196 535 2380 4772 UNI 1005 148 1297 1951 4452 UNI 1005II 2 1975 2030 2085 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
SEL 840A 2 4584 4750 4916 SEL 840MP 2 1 1 1 UNI FCII 3 23770 24380 25426 UNI II 1 15174 15174 15174 UNI II 8 19520 22131 26225 UNI M460 1 9032 9032 9032 UNI SS80 5 5750 12647 26320 UNI SS80 5 5750 12647 26320 UNI 1004 196 535 2380 4772 UNI 1005 148 1297 1951 4452 UNI 1005 1 2993 3024 3055 UNI 1050 122 1950 9134 16000						
SEL 840MP 2 1 1 1 UNI FCII 3 23770 24380 25426 UNI II 1 15174 15174 15174 UNI II 8 19520 22131 26225 UNI M460 1 9032 9032 9032 UNI SS80 5 5750 12647 26320 UNI SS80 5 5750 12647 26320 UNI 1004 196 535 2380 4772 UNI 1005 148 1297 1951 4452 UNI 1005 1 2993 3024 3055 UNI 1050 122 1950 9134 16000 UNI 1050A 1 5052 5052 5052 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
UNI FCII 3 23770 24380 25426 UNI II 1 15174 15174 15174 UNI III 8 19520 22131 26225 UNI M460 1 9032 9032 9032 UNI SS80 5 5750 12647 26320 UNI SS90 2 6865 7032 7200 UNI 1004 196 535 2380 4772 UNI 1004!! 14 1055 2836 3485 UNI 1005!! 2 2993 3024 3055 UNI 1005!! 2 2993 3024 3055 UNI 1005!! 2 2993 3024 3055 UNI 1050 122 1950 9134 16000 UNI 1050A 1 5052 5052 5052 UNI 1050I 6 6400 8398 10135 UNI 1105 1 48060 48060 48060 UNI 1107 9 56395 68440 74603 UNI 1108 30 14100 47449 214791 UNI 1218 22 1606 4680 11352						
UNI II				_		
UNI						
UNI M460 1 9032 9032 9032 UNI SS80 5 5750 12647 26320 UNI SS80 2 6865 7032 7200 UNI 1004 196 535 2380 4772 UNI 1004!! 14 1055 2836 3485 UNI 1605 148 1297 1951 4452 UNI 1005!! 2 2993 3024 3055 UNI 1005!! 2 1975 2030 2085 UNI 1050 122 1950 9134 16900 UNI 1050A 1 5052 5052 5052 UNI 1050A 1 5052 5052 5052 UNI 1050I! 6 6400 8398 10135 UNI 1105 1 48060 48060 48060 UNI 1105 1 48060 48060 48060 UNI 1108 30 14100 47449 214791 UNI 1218 22 1606 4680 11352						
UNI SS80 5 5750 12647 26320 UNI S890 2 6865 7052 7200 UNI 1004 196 535 2380 4772 UNI 1004!! 14 1055 2836 3485 UNI 1005!! 2 2993 3024 3055 UNI 1005!! 2 2993 3024 3055 UNI 1005!! 2 1975 2030 2085 UNI 1050 122 1950 9134 16000 UNI 1050A 1 5052 5052 5052 UNI 1050A 1 5052 5052 5052 UNI 1050!! 6 6400 8398 10135 UNI 1105 1 48060 48060 48060 UNI 1107 9 56395 68440 74603 UNI 1108 30 14100 47449 214791 UNI 1218 22 1606 4680 11352				•		
UN! S890 2 6865 7032 7200 UN! 1004 196 535 2380 4772 UN! 1004!! 14 1055 2836 3485 UN! 1005!! 2 2993 3024 3055 UN! 1005!! 2 1975 2030 2085 UN! 1050 122 1950 9134 16000 UN! 1050A 1 5052 5052 5052 UN! 1050A 1 5052 5052 5052 UN! 1050I! 6 6400 8398 10135 UN! 1105 1 48060 48060 48060 UN! 1107 9 56395 68440 74603 UN! 1108 30 14100 47449 214791 UN! 1218 22 1606 4680 11352						
UNI 1004 196 535 2380 4772 UNI 1004 1 14 1055 2836 3485 UNI 1005 148 1297 1951 4452 UNI 1005 1 2 2993 3024 3055 UNI 1005 1 2 1975 2030 2085 UNI 1050 122 1950 9134 16000 UNI 1050A 1 5052 5052 5052 UNI 1050 1 6 6400 8398 10135 UNI 1105 1 48060 48060 48060 UNI 1107 9 56395 68440 74603 UNI 1108 30 14100 47449 214791 UNI 1218 22 1606 4680 11352						
UNI 1004!! 14 1055 2836 3485 UNI 1005!! 2 2993 3024 3055 UNI 1005!! 2 1975 2030 2085 UNI 1005!! 2 1975 2030 2085 UNI 1050 122 1950 9134 16000 UNI 1050A 1 5052 5052 5052 UNI 1050!! 6 6400 8398 10135 UNI 1105 1 48060 48060 48660 UNI 1107 9 56395 68440 74603 UNI 1108 30 14100 47449 214791 UNI 1218 22 1606 4680 11352				1		
UNI 1005 148 1297 1951 4452 101 1005 1 2 2993 3024 3055 201 1005 1 2 1975 2030 2085 201 1050 122 1950 9134 16000 201 1050 1 5052 5052 5052 201 1050 1 6 6400 8398 10135 201 1050 1 48060 48060 48060 48060 201 1107 9 56395 68440 74603 201 1108 30 14100 47449 214791 201 1218 22 1606 4680 11352 207						
UNI 1005 1 2 2993 3024 3055 UNI 1005 V 2 1975 2030 2085 UNI 1050 122 1950 9134 16000 UNI 1050A 1 5052 5052 5052 UNI 1050 6 6400 8398 10135 UNI 1105 1 48060 48060 48060 UNI 1107 9 56395 68440 74603 UNI 1108 30 14100 47449 214791 UNI 1218 22 1606 4680 11352						
UNI 1005 IV 2 1975 2030 2085 UNI 1050 122 1950 9134 16000 UNI 1050A 1 5052 5052 5052 UNI 1050 I 6 6400 8398 10135 UNI 1105 1 48060 48060 48060 UNI 1107 9 56395 68440 74603 UNI 1108 30 14100 47449 214791 UNI 1218 22 1606 4680 11352						
UNI 1050 122 1950 9134 16000 UNI 1050A 1 5052 5052 5052 UNI 1050II 6 6400 8398 10135 UNI 1105 1 48060 48060 48060 UNI 1107 9 56395 68440 74603 UNI 1108 30 14100 47449 214791 UNI 1218 22 1606 4680 11352						
UNI 1050A 1 5052 5052 5052 UNI 1050II 6 6400 8398 10135 UNI 1105 1 48060 48060 48060 UNI 1107 9 56395 68440 74603 UNI 1108 30 14100 47449 214791 UNI 1218 22 1606 4680 11352						
UNI 105011 6 6400 8398 10135 UNI 1105 1 48060 48060 48060 UNI 1107 9 56395 68440 74603 UNI 1108 30 14100 47449 214791 UNI 1218 22 1606 4680 11352						
UN! 1105 1 48060 48060 48060 UN! 1107 9 56395 68440 74603 UN! 1108 30 14100 47449 214791 UN! 1218 22 1606 4680 11352						
UNI 1107 9 56395 68440 74603 UNI 1108 30 14100 47449 214791 UNI 1218 22 1606 4680 11352						
UNI 1108 30 14100 47449 214791 UNI 1218 22 1606 4680 11352						
UNI 1218 22 1606 4680 11352					-	
7770 10700 00700						
UNI 1227 / 416V PPTTT	UNI	1219	7	3720	12599	28360

TABLE A-5 (CONTINUED)

COMP	UTER	NO.	REI	OD NI TH	LLARS
MANUF	MODEL	INST	MIN	MEAN	MAX
UNI	1230	7	0	7012	19238
UNI	1500	1	2404	2404	2404
UNI	418	30	4555	11129	26573
UNI	490	9	25050	50295	99070
UNI	492	1	44249	44249	44249
UNI	494	17	10500	50508	112718
UNI	642A	6.	1100	6356	13414
UNI	642B	7	8425	13726	20494
UNI	667	1	37202	37202	37202
UNI	818	1	7166	7166	7166
UNI	855	3	6120	7556	8274
UNI	9200	2	1160	1352	1545
UNI	9300	17	1580	2203	10500
WES	DD\$240	1 .	9	9	9

TABLE A-6 COMPUTER APPLICATIONS BY INDUSTRY (PERCENT IN EACH CATEGORY)

		(1)	•	APP	APPLICATIONS	ONS	
SIC	INDUSTRY NAME	NCOMP	NAPP	BUSI	ANAL	PROC	
_	AT SIANGHTE	106	71/	95	0	#	
4 =	AT PROCESSING PL	27	23	100	0	0	
10	INDENSED AND EVAPORATED MIL	6		92	0	1	
10	TO COLAM AND FROZEN DESSE	33	**	96	0	N	·:
10		58	1.0	100	0	0	è
1 1	NNFD	19	13		0	0	
, K	INNED FRUITS AND VEGETABLE	65	51		0	0	į
<u> </u>	OZEN FRUITS AND VEGETABL	31	56		M	~	
1	OUR MILLS	34	36		M.	m	
4	FPARED A	14	7.7		•	O	
7	FAD AND RELATED PR	45	35		7	14	
Š	SCULTS, CRACKERS, AND	16	13		0	7	
	NFECTIONARY PRODUCTS	33	6Z		0	9	. :
9	LT LIQUOR	04	32		m	M	41 14 <u>1</u>
	STI	29	20		0	0	
8	TTLED AND CANNED SOFT D	27	24		0	0	
	ARATIONS, N.E.C.	22.		- 4^ On∰		0	۽ ڏِ.
	GARETTES	27	20			5	
2	EAVING MILLS,	72	37	2 .	60	21	-
22	EAVING MILLS.	18	15			20	1
2	EAVING, FINISH	57	42		7	σ .	
2	NIT OUTERWEAR M	24	2	· (r.		0	
2	ARN MILLS, E	13	H	•		ට	
8	EN'S AND BOYS' SUI	30	24		0	33	
	EN'S DRESS SHIRTS AND NIG	27	19		0	0	
, W	FPARATE TROUSERS	13	11		0	0	
'n	DRK CLOTHING	18	15	86	0	73	_
M	RESSES	23	19	Ö	0	LA	
· ~	OMEN'S AND CHILDREN'S	27	.23	8	0	13	
2421	AWMI LLS	52	30	10	0	•	

TABLE A-6 (CONTINUED)

,		(1)		APF	LICATI	ONS
S S	INDUSTRY NAME	NCOMP	NAPP	BUS1	BUSI ANAL PR	PROC
2431	Z Z Z	1.7		8	C	13
2432	AND PLYWOOD PLANT	17	12	100	· c	•
2511	INITURE, NOT UPHOLS	32	26	000	ò	11
2512	JAKI TURE, UPHOLSTE	23	16	87	0	12
2621	ALLS, EXCEPT BUILDI	134	102	8	7	7
2631	DARD MILLS	100	17	1,6	0	23
2641	COATING AND G	33	26	57	34	7
£ 197	EXCEPT TEXTILE B	<u>-</u> 1	φ	100	0	Ó
2653	TED SHIPPING CO	10	6	88	0	11
2717	PER	207	176	9	-	38
77.7	CALS	104	81	67	0	22
2731	PUBLISHING AND PRI	126	0.6	87	m	00
2751	IG, EXCE	72	28	⇔	Ä	17
7732	IG. LITHOGRA	99	17	76	0	'n
2815	DIATE COAL TAR P	5.6	18	72	Ħ	97
8 1 8 7	CHEMICALS, N.E.O.	120	24	62	20	2
2819	LC CHEMICALS, N.E.	太二	76	7.5	25	9
2821	S MATERIALS AND RESIL	17 80 80	, 20	68	10	O
2824	FIBERS, NOWCELLULOSI	22	10	20	30	0
78 M	EUTICAL PREPARA	105	73	K. 00	15	7
1 1 2 2	OTHER DETERGENTS	28	74	50	0	چ
7 6 7	S AND SAN	20	17	すの	0	Ę
4 4 4	PREPARATI	71	∞ €	100	0	0
100 N	AND ALLIED	67	Š		7	M
2871	ZERS	12	10	96	10	0
2899	AL PREPARA	33	22	72	73	6
2911	IOM REFINING	429	9	67	52	m
5011	AND INNER	109	81	00 00	. .	9
8069	PRODUCTS, N.	52	38	ტ დ	0	10
3079	rics PRODUCTS,	53	64	7.80	7	10

TABLE A-6 (CONTINUED)

		(1)		APP	APPLICATIONS	SNO
SIC	INDUSTRY NAME	NCOMP	NAPP	BUS1	ANAL	PROC.
7141	CHOES	40	47	85	0	14
1111	ひことの こうなせること	22	-	9/	0	23
1041		31	28	71	1	21
となって	ARDAK	11		87	0	12
イイント	こうとこ	353	16	67	. ≢	28
インナイ	CTER DIDE AND THRE	10				22
4401	COAY 1805	39				1
があるい	CTEC! FOIL	25				12
	COOPED OF	27				22
パパパ	ATTENTION ROLLING AN	1.6			0	3.8
がなっている。	POT TING AND DRAWING.	16				1.
メンプスプレング	MONETONIN WIRE DRAWING.	2.8				20
4407	POTA AND STEED FORGINGS	33				6
されて	シャンプラー	27				7
1100	The Control of the	39				35
いい	DESCRIPTION OF THE EXCEPT ELECTRIC	20				2.1
	CARDICATED STORETHAN STEP	4.2				11
101	LATE COURSE SECT. AND TO	22				28
7.00	のようなできる。	1				10
		200				11.
44 F.1	LOTAL OFFER	iv iv	4.5	80	0	20
41.81	14. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	16				00
1027	WALLEY AND PLDE FLITTESS	61				12
X 7 10	INTERNATIONAL	ή. 80				19
45.00	EADW MACHINERY AND E	166				19
7571	CONSTRUCTION MACHINERY	63				21
/ Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	METAL-CUTTING	19				25
3544	SPECIAL DIES AND TOOLS	21			6	
4544	MACHINE TOOLS AND	17				w
3548	METALWORKING MACHI	26				-3

TABLE A-6 (CONTINUED)

		(1)	(2)	APP	APPLICATIONS	S'NC
S S	INDUSTRY NAME	NCOMP	NAPP	BUSI	ANAL	PROC
3559	NDUSTRY	3 3	37	56	16	27
561	AND COMPRESSORS	32	25	8 9	00	24
295	AND ROLLER	4 5	31	51	ထ	41
266	TRANSMISSI	51	39	** **	7	12
900	AL INDUS	43	29	65	27	9
200	GERATION MA	8; 1	31	8 7		12
50.00	MACHINERY	23	21	99	*	19
611		111	92	9 †	22	30
719	FORMERS	0 4	30	9	20	20
619	HGEAR A	T 73	36	72	13	13
521	S AND	141	107	61	25	13
522	TRIAL CONTROLS	42	29	6.5	17	17
45.9	ELECTRIC HOUSEWARES AND FANS	43	75	1 9	∞	26
542	ING FIXTURES	19	19	**************************************	0	15
551	AND TV RECEIVIN	97	75	. ≠	7	13
561	HONE, TELEGRAPH APPAR	159	19	72	10	17
799	_	214	152	9	29	σ
\$ 1 st	ONDUCTORS	73	22	31	3	13
679	RONIE COMPON	158	125	8 †	36	15
***	E ELECTRICAL EQUIPMEN	13	11	81	o	o
/ 4 /	VEHICLES AN	443	267	74	o,	15
17.7	IAF T	455	191	47	4.5	7
77.7	AFT ENGINES AND PAR	80	ð	9#	9	7
57/	AFT EQUIPMENT, N.E.C.	127	66	37	39	23
16/	BUILDING AND REPAIR	28	74	91	00	0
747	OAD AND STREET CARS	15	2	9	10	30
778	INICAL MEASURING	54	41	78	.	17
T 0 :	GRAPHIC	6 7	36	11	11	11
7 + 7	AND TOY	30	78	83	0	10

TABLE A-6 (CONTINUED) EXPLANATION OF COLUMNS

- (1) NCOMP Number of computers in industry
- (2) NAPP Number of computers in industry that reported principal application area

BIOGRAPHICAL WOTE

金子的有效的 如此一人上、我也不是我的事事一个

The state of the s

Lee Lawrence Selwyn was born in New York City on June 16, 1942. He received his primary and secondary education in New York and won a New York State Regents Scholarship upon graduation from high school in 1958.

York, and graduated with a Bachelor of Arts degree in 1962.

At Queens he was elected to membership in two honor societies, Omicron Delta Epsilon (Economics) and Pi Sigma Alpha (Political Science). He graduated with departmental honors in Economics.

Management at the Massachusetts institute of Technology in 1962, where he pursued a Master of Science degree, which was received in 1964, and subsequently the doctorate. At MiT, Mr. Selwyn was the recipient of an IBM Research Assistantship, a United States Steel Foundation Doctoral Fellowship, and a Dissertation Grant-in-Aid from the National Association of Accountants. He was a Research Assistant at Project MAC at MiT from 1963 until 1969, and was also a Teaching Assistant at the Sloan School during the period 1964 - 1966.

He has published several articles, including "The Information Utility," in the <u>industrial Management Review</u>

(Spring, 1966); "Taxes, Corporate Financial Policy and Return to investors," with D. E. Farrar, in the National Tax Journal (December 1967); "Considerations for Computer Utility Pricing Policies," with D. S. Diamond, presented at the 1968 National Conference of the Association for Computing Machinery; and "Real-Time Computer Communications and the Public Interest," with M. M. Gold, presented at the 1968 Fall Joint Computer Conference.

During 1967-68 he served as a consultant to the Business Equipment Manufacturers Association and participated in the preparation of that organization's response to the Federal Communications Commission's "Computer inquiry." Mr. Selwyn is presently Assistant Professor of Finance at the Boston University College of Business Administration.

Mr. Selwyn lives in Chestnut Hill, Massachusetts, with his wife, Judith, and son, Mark.

m m

30, 1

Security Classification

DOCUMENT CONTROL DATA _ R&D (Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)								
Massachusetts Institute of Technology Project MAC		20. REPORT SECURITY CLASSIFICATION UNCLASSIFIED						
		None						
ECOnomies of Scale in Computer Vice Till I								
Economies of Scale in Computer Use: Initial Tests and Implications for the Computer Utility								
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Ph.D. Thesis, Alfred P. Sloan School of Management, June, 1969								
5. AUTHOR(S) (Last name, first name, initial) Selwyn, Lee L.								
6. REPORT DATE	7a. TOTAL	NO. OF PAGES	7b. NO. OF REFS					
June 1969	116		10					
ONR, Nonr-4102 (01)	1	Sa. ORIGINATOR'S REPORT NUMBER(S)						
b. PROJECT NO.	MAC TR-68 (THESIS)							
_NR-048-189 _RR 003-09-01	9b. OTHER REPORT NO(\$) (Any other numbers that may be assigned this report)		ny other numbers that may be					
10. AVAILABILITY/LIMITATION NOTICES								
None	12. sponsoring military activity Advanced Research Projects Agency							
	3D-200 Pentagon Washington, D.C. 20301							
in the production of data processing and other computing services, and the possible regulatory and public policy implications of such economies an analysis was made of data on nearly 10,000 computers installed at firms in manufacturing industries, using the survival technique, which uses market experience as a basis for studying levels of optimum plant size. The results of this analysis suggested that users did operate computers as if there were significant economies of scale in their use. This is at least as much a technological problem as it is regulatory; the future of the computer utility concept will thus be dependent upon the degree to which technology can reduce costs in these categories. **KEY WORDS COMPUTERS.** Computer utility. Economics. Time sharing. Time-sharing computers. Industry installations.								