2/4 JAPIO - (C) JPO

PN - JP 05047189 A 19930226 [JP05047189]

TI - MEMORY CARD DEVICE

IN - KONISHI KAZUO; YOSHIOKA SHINPEI; TERASAKI SETSUO; SUYAMA TAKAAKI

PA - TOSHIBA CORP; TOSHIBA AVE CORP

AP - JP20030991 19910809 [1991JP-0200309]

IC1 - G11C-016/06

IC2 - G11C-005/00 G11C-007/00

- AB PURPOSE: To provide a memory card device capable of writing even a data inputted sequentially to an EEPROM with a sufficient margin and using it to a SRAM card like.
 - CONSTITUTION: In the memory card device having the EEPROM writing the
 data in pages, a control means 13 generating to output a signal
 rejecting the input of the above-mentioned data from the external at
 the time of switching the page is provided.
 - COPYRIGHT: (C)1993,JPO&Japio

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-47189

(43)公開日 平成5年(1993)2月26日

(51)Int.Cl. ⁵ G 1 1 C 16/06	識別記号	庁内整理番号	FI 技術表示箇所
5/00 7/00	302 Z 315	2116-5L 7323-5L 9191-5L	G11C 17/00 309 A
			審査請求 未請求 請求項の数 2(全 8 頁)
(21)出顯番号	特顯平3-200309		(71)出願人 000003078
(22)出願日	平成3年(1991)8月	I9 ⊟	株式会社東芝 神奈川県川崎市幸区堀川町72番地 (71)出願人 000221029 東芝エー・ブイ・イー株式会社 東京都港区新橋 3 丁目 3 番 9 号
			(72)発明者 小西 和夫 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝映像メディア技術研究所内
			(72)発明者 吉岡 心平 神奈川県横浜市磯子区新杉田町8番地 株
		·	式会社東芝映像メディア技術研究所内 (74)代理人 弁理士 鈴江 武彦
			最終頁に続く

(54)【発明の名称】 メモリカード装置

(57)【要約】

【目的】この発明は、シーケンシャルに入力されるデータでもEEPROMに十分に余裕を持って書き込むことができ、SRAMカードライクに使用できるようしたメモリカード装置を提供することを目的としている。

【構成】ページ単位でデータの書き込みを行なうEEPROMを有するメモリカード装置において、ページの切り替え時に外部からの前記データの入力を拒否する信号を生成して出力する制御手段13を備えている。

【特許請求の範囲】

【請求項1】 ページ単位でデータの書き込みを行なう EEPROMを有するメモリカード装置において、前記ページの切り替え時に外部からの前記データの入力を拒否する信号を生成して出力する制御手段を具備してなることを特徴とするメモリカード装置。

【請求項2】 前記制御手段は、通常では発生しないデータパターンが入力されることによりデータの終了を検知する検知手段と、この検知手段の出力に基づいてページ内のデータの足りない部分にダミーデータを付加する 10付加手段とを備えてなることを特徴とする請求項1記載のメモリカード装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、半導体メモリとして EEPROM(エレクトリカリィ・イレーサブル・アン ド・プログラマブル・リード・オンリー・メモリ)を使 用したメモリカード装置に係り、特に撮影した被写体の 光学像をデジタル画像データに変換して半導体メモリに 記録する電子スチルカメラ装置等に使用して好適するも 20 のに関する。

[0002]

【従来の技術】周知のように、撮影した被写体の光学像を固体撮像素子を用いて電気的な画像信号に変換し、この画像信号をデジタル画像データに変換して半導体メモリに記録する電子スチルカメラ装置が開発されている。そして、この種の電子スチルカメラ装置にあっては、半導体メモリをカード状のケースに内蔵してなるメモリカードを、カメラ本体に着脱自在となるように構成することによって、通常のカメラにおけるフィルムと等価な取り扱いができるようになされている。

【0003】ここで、電子スチルカメラ装置のメモリカードは、現在、標準化が進められていて、内蔵される半導体メモリとしては、複数枚のデジタル画像データを記録するために大記憶容量のものが要求され、例えばSRAM(スタティック・ランダム・アクセス・メモリ)、マスクROM及び電気的にデータの書き込みや消去が可能なEEPROM等が考えられており、SRAMを用いたメモリカードは既に商品化されている。

【0004】ところで、SRAMを用いたメモリカード 40 は、どのようなフォーマットのデータ構成にも対応することができるとともに、データの書き込みスピード及び読み出しスピードも速いという利点がある反面、書き込んだデータを保持するためのバックアップ電池をメモリカード内に収容する必要があるため、電池収容スペースを設置する分だけ記憶容量が削減されるとともに、SRAM自体のコストが高く経済的な不利を招くという問題を持っている。

【0005】そこで、現在では、SRAMの持つ問題点 を解消するために、メモリカードに用いられる半導体メ 50 モリとしてEEPROMが注目されている。このEEPROMは、磁気ディスクに代わる記録媒体として注目を浴びているもので、データ保持のためのバックアップ電池が不要であるとともに、チップ自体のコストを安くすることができる等、SRAMの持たない特有な利点を有することから、メモリカード用として使用するための開発が盛んに行なわれている。

【0006】ここで、図3は、SRAMを用いたメモリカード(SRAMカード)とEEPROMを用いたメモリカード(EEPROMカード)との長短を比較して示している。まず、比較項目1,2のバックアップ電池及びコストについては、既に前述したように、SRAMカードはバックアップ電池が必要でありコストも高いという問題があるのに対し、EEPROMカードはバックアップ電池が不要でコストも低くすることができるという利点を有している。

【0007】次に、比較項目3,4の書き込みスピード及び読み出しスピードについては、アドレスで任意に指定したバイトまたはビットに対して、データの書き込み及び読み出しを行なう、SRAMとEEPROMとに共通のランダムアクセスモードと、複数の連続するバイト(数百バイト)でなるページを指定することにより、ページ単位で一括してデータの書き込み及び読み出しを行なう、EEPROMに特有のページモードとに分けて考えられる。

【0008】そして、ランダムアクセスモードおいて、SRAMは書き込みスピード及び読み出しスピードが共に速く、EEPROMは書き込みスピード及び読み出しスピードが共に遅くなっている。また、EEPROMは、ページモードにおいて、1ページ分の大量のデータを一斉に書き込み及び読み出しすることから、ランダムアクセスモードに比してデータの書き込みスピード及び読み出しスピードは速くなっている。

【0009】さらに、比較項目5のイレース(消去)モードは、EEPROMに特有のモードであり、SRAMには存在しないモードである。すなわち、EEPROMは、既にデータの書き込まれている領域に新たにデータを書き込む場合、先に書き込まれているデータを一旦イレースしないと新たなデータを書き込むことができないため、データの書き込みを行なうに際して、このイレースモードが実行されるようになっている。そして、このイレースモードには、EEPROMの全ての記憶内容を一括して消去するチップイレースと、複数のページでなるブロック(数Kバイト)単位で記憶内容を消去するブロックイレースとがある。

【0010】また、比較項目6の書き込みベリファイも、EEPROMに特有のモードであり、SRAMには存在しないモードである。すなわち、EEPROMは、データ書き込みを行なう場合、通常1回の書き込み動作では完全な書き込みが行なわれない。このため、EEP

ROMに対して1回の書き込み動作を行なう毎にEEP ROMの書き込み内容を読み出し、正確に書き込まれて いるか否かをチェックする必要があり、これが書き込み ベリファイである。

【0011】具体的には、EEPROMに書き込むべき データをバッファメモリに記録しておき、バッファメモ リからEEPROMにデータを転送して書き込んだ後、 EEPROMの書き込み内容を読み出し、バッファメモ リの内容と比較して一致しているか否かを判別してい る。そして、書き込みベリファイの結果、不一致(エラ 10 ー)と判定された場合には、再度バッファメモリの内容 をEEPROMに書き込む動作を繰り返すようにしてい る。

【0012】以上の比較結果から明らかなように、EE PROMには、バックアップ電池が不要でありコストが 安く、しかもページ単位のデータ書き込み及び読み出し が可能である等の、SRAMに見られない特有な利点が 備えられている反面、ランダムアクセスモードにおける データの書き込みスピード及び読み出しスピードが遅い とともに、イレースモードや書き込みベリファイ等のよ うなSRAMにはないモードを必要とするという不都合 もある。

【0013】そこで、メモリカードに使用する半導体メ モリとして、現在使用されているSRAMに代えてEE PROMを使用することを考えた場合、データの書き込 みスピード及び読み出しスピードの問題や、イレースモ ード及び書き込みベリファイ等を必要とするという問題 を解消し、SRAMを内蔵したメモリカードと等価な取 り扱い方ができるように、つまりSRAMカードライク に使用できるように細部に渡って種々の改良を施すこと が、肝要なこととなっている。

【0014】この場合、特に問題となることは、電子ス チルカメラ装置からメモリカードに送出されるデータ は、SRAM用のフォーマットに作成されていることか ら、シーケンシャルにメモリカードに入力されるのに対 し、EEPROMは、前述したように数百バイトのペー ジ単位でしか速い速度のデータの書き込みを行なうこと ができないとともに、データの書き込みを行なう前にデ ータ書き込み領域をイレースする必要があり、データ書 き込み後は書き込みベリファイ処理が必要であるという 40 ことである。

【0015】このため、SRAM用のフォーマットでシ ーケンシャルに入力されるデータをそのままEEPRO Mに書き込もうとすると、イレース時間、ページ単位で のデータ書き込み時間や書き込みベリファイ時間等の各 実行時間を設定している余裕がなくなり、データ書き込 みを行なうことができなくなるという問題が生じてい る。

[0016]

ROMを内蔵した従来のメモリカードでは、シーケンシ ャルに入力されるデータをそのまま書き込むことが、E EPROMの性能上できないという問題を有している。 【0017】そこで、この発明は上記事情を考慮してな されたもので、シーケンシャルに入力されるデータで も、EEPROMに十分に余裕を持って書き込むことが でき、SRAMカードライクに使用できるようした極め て良好なメモリカード装置を提供することを目的とす る。

[0018]

【課題を解決するための手段】この発明に係るメモリカ ード装置は、ページ単位でデータの書き込みを行なうE EPROMを有するものを対象としている。そして、ペ ージの切り替え時に外部からの前記データの入力を拒否 する信号を生成して出力する制御手段を備えるようにし たものである。

[0019]

【作用】上記のような構成によれば、1ページ分のデー タDAを書き込んだ状態で入力拒否状態とし、この入力 拒否状態の間に、EEPROMのイレース、ページ書き 込み及び書き込みベリファイ処理を行なわせることがで きるので、シーケンシャルに入力されるデータでも、E EPROMに十分に余裕を持って書き込むことができ、 SRAMカードライクに使用できるようになる。

[0020]

【実施例】以下、この発明を電子スチルカメラ装置に適 用した場合の一実施例について図面を参照して詳細に説 明する。図1において、11はメモリカード本体で、そ の一端部に設置されたコネクタ12を介して、図示しな い電子スチルカメラ本体に接続されるようになされてい る。このコネクタ12には、電子スチルカメラ本体側か ら、メモリカード本体11に書き込むべきデジタルデー タDAと、その書き込み場所を示すアドレスデータAD とが供給される。これらデジタルデータDA及びアドレ スデータADは、バスラインD0~D7を介してデータ 入出力制御回路13に供給されている。

【0021】また、電子スチルカメラ本体からは、コネ クタ12に対して、メモリカード本体11を選択したと きH(ハイ)レベルとなるカードイネーブル信号CE と、バスラインDO~D7に供給されたデータがアドレ スデータADのときL(ロー)レベルとなりデジタルデ ータDAのときHレベルとなるアドレス/データ切替信 号A/Dと、後述するEEPROMに対するデータ書き 込み要求のときLレベルとなりデータ読み出し要求のと きHレベルとなるリード/ライト切替信号R/Wと、ア ドレスデータADに同期したバスクロックBCKとが、 供給されるようになっている。

【0022】これらカードイネーブル信号CE,アドレ ス/データ切替信号A/D, リード/ライト切替信号R 【発明が解決しようとする課題】以上のように、EEP 50 /W及びバスクロックBCKも、データ入出力制御回路 13に供給されている。また、電子スチルカメラ本体からは、コネクタ12を介してEEPROMに対するデータのイレースを要求する命令も、データ入出力制御回路13に供給されるようになっている。また、このデータ入出力制御回路13からは、電子スチルカメラ本体からのデジタルデータDAの入力許可時にHレベルとなり、入力拒否時にLレベルとなるレディ/ビジィ切替信号RDY/BSYが発生されるようになっている。

【0023】ここで、概略的な動作について説明すると、上記コネクタ12に供給されたデジタルデータDA 10は、データ入出力制御回路13の制御により、一旦バッファメモリ14に取り込まれ記録される。このときのバッファメモリ14のデジタルデータDAの取り込みタイミングは、アドレス発生回路15から出力されるアドレスデータによってコントロールされる。また、このアドレス発生回路15は、セレクタ16によって選択されたクロックCKをカウントして、バッファメモリ14へのアドレスデータを生成している。このセレクタ16には、上記バスクロックBCKとデータ入出力制御回路13から出力されるクロックYCKとが供給されるように20なっている。

【0024】そして、バッファメモリ14のデジタルデータDAの取り込み時には、セレクタ16が、データ入出力制御回路13から出力されるセレクト信号SELによってバスクロックBCKを選択し、クロックCKとしてアドレス発生回路15に導出している。このため、電子スチルカメラ本体からコネクタ12に送出されたデジタルデータDAは、バスクロックBCKに基づいて生成されるアドレスデータにしたがって、バッファメモリ14に書き込まれることになる。

【0025】その後、データ入出力制御回路13は、バッファメモリ14に対するデジタルデータDAの書き込みが終了すると、セレクト信号SELを制御して、自己の生成するクロックYCKが、アドレス発生回路15に導出されるようにセレクタ16を切り替える。このため、クロックYCKに基づいてアドレス発生回路15で生成されるアドレスデータによって、バッファメモリ14からデジタルデータDAが読み出される。

【0026】このとき、データ入出力制御回路13は、EEPROM17に対してチップイネーブル信号CEN 40及びライトイネーブル信号WEを出力するとともに、アドレスデータADを出力し、バッファメモリ14から読み出されたデジタルデータDAを、EEPROM17に例えば512バイトのページ単位で書き込むように制御する。そして、EEPROM17にデジタルデータDAが書き込まれた状態で、データ入出力制御回路13は、EEPROM17に対して、アウトイネーブルデータOE及び先にデータの書き込みを指定したアドレスデータADを出力して、EEPROM17から書き込んだデジタルデータDAを読み出させ、バッファメモリ14に記 50

録されたデジタルデータDAと一致しているか否かを判別する、書き込みベリファイを実行する。

【0027】そして、EEPROM17から読み出した デジタルデータDAと、バッファメモリ14に記録され たデジタルデータDAとが一致していないと、データ入 出力制御回路13は、再度、バッファメモリ14からE EPROM17にデジタルデータDAを転送して書き込 みを行ない、この動作が、EEPROM17から読み出 したデジタルデータDAと、バッファメモリ14に記録 されたデジタルデータDAとが完全に一致するまで繰り 返され、ここにデジタルデータDAのEEPROM17 への書き込みが行なわれる。

【0028】また、電子スチルカメラ本体からEEPR OM17に記録されたデータをイレースする命令が発生されると、データ入出力制御回路13は、その消去命令に基づいて消去回路18を駆動する。この消去回路18は、データ入出力制御回路13の制御に基づいて、EEPROM17のアドレスライン及びデータラインに消去用の信号を出力することにより、EEPROM17を電気的にチップイレースまたはブロックイレースする。

【0029】次に、EEPROM17から、デジタルデータDAをメモリカード本体11の外部に読み出す動作について説明する。まず、電子スチルカメラ本体側からコネクタ12を介して読み出し要求と読み出すべきデータの記録されたアドレスが指定される。すると、データ入出力制御回路13は、EEPROM17に対してチップイネーブル信号CEN、アウトイネーブルデータOE及びアドレスデータADを出力し、EEPROM17からページ単位でデジタルデータDAを読み出すとともに、自己の生成するクロックYCKがアドレス発生回路15に導出されるようにセレクタ16を切り替え、バッファメモリ13に書き込ませる。

【0030】その後、データ入出力制御回路13は、コネクタ12を介して電子スチルカメラ本体側から供給されるバスクロックBCKが、アドレス発生回路15に導出されるようにセレクタ16を切り替え、バスクロックBCKに基づいてアドレス発生回路15で発生されるアドレスデータで、バッファメモリ14からデータを読み出し、コネクタ12を介して電子スチルカメラ本体に導出させ、ここにデジタルデータDAの読み出しが行なわれる。

【0031】したがって、上記のような構成によれば、電子スチルカメラ本体とメモリカード本体11との間におけるデータ転送は、必ずバッファメモリ14を介して行なわれるので、データの書き込みスピード及び読み出しスピードも向上し、SRAMカードライクに使用することができるようになる。また、EEPROM17に特有の書き込みベリファイも、メモリカード本体11の内部に設けられたバッファメモリ14を用いて行なうようにしているので、メモリカード本体11の取り扱いとし

ては、全くSRAMカードライクに使用することができ

7 .

【0032】ここで、EEPROM17に対するデジタ ルデータDAの書き込み動作の詳細なタイミングを、図 2に示している。まず、アドレス/データ切替信号A/ DがLレベルでバスラインD0~D7にアドレスデータ ADが供給されている。このとき、アドレスデータAD に同期してバスクロックBCKが発生されるとともに、 リード/ライト切替信号R/WがLレベルのデータ書き 込み要求状態となされ、レディ/ビジィ切替信号RDY 10 /BSYがHレベルの入力許可状態となされている。

【0033】このような状態で、アドレス/データ切替 信号A/DがHレベルに反転し、バスラインDO~D7 のデータがデジタルデータDAに変わると、以後、DO ~D511までの512個つまり1ページ分のデジタル データDAが512個のバスクロックBCKとともにデ ータ入出力制御回路13に入力され、順次バッファメモ リ14に書き込まれる。すると、データ入出力制御回路 13は、D0~D511までの1ページ分のデジタルデ ータDAがバッファメモリ14に書き込まれた状態で、 該512個目のバスクロックBCKに同期して、レディ **/ビジィ切替信号RDY/BSYをLレベルに反転さ** せ、電子スチルカメラ本体からの入力拒否状態となる。 このとき、データ入出力制御回路13は、消去回路18 を**介**して1ページ分のデジタルデータDAを書き込むべ き、EEPROM17の記憶領域を自動的にブロックイ レースする。

【0·0 3 4】その後、データ入出力制御回路 1 3 は、バ ッファメモリ14に書き込まれたデジタルデータDAの うち、D0~D511までの1ページ分のデジタルデー 30 タDAを、先にブロックイレースしたEEPROM17 の記憶領域にページ単位で書き込ませる。この書き込み 動作の間も、レディ/ビジィ切替信号RDY/BSYは Lレベルで入力拒否状態を保っている。

【0035】このようにして、バッファメモリ14から EEPROM17への1ページ分のデジタルデータの書 き込みが終了されると、データ入出力制御回路13は、 **その書き込んだデ**ータに対して書き込みベリファイ処理 を行なった後、レディ/ビジィ切替信号RDY/BSY をHレベルに反転させて入力許可状態とし、D513以 40 後のデジタルデータDAをバッファメモリ14に書き込 むように制御し、以下同様な動作が繰り返されて、EE PROM17に対するページ書き込み動作が行なわれ る。

【0036】したがって、上記実施例のような構成によ れば、D0~D511までの1ページ分のデジタルデー タDAをバッファメモリ14に書き込んだ状態で、ただ ちにレディ/ビジィ切替信号RDY/BSYをLレベル にして入力拒否状態とし、この入力拒否状態の間に、 E EPROM17のブロックイレース,ページ書き込み及 50 び書き込みベリファイ処理を行なわせるようにしたの で、シーケンシャルに入力されるデジタルデータDAで も、EEPROM17に十分に余裕を持って書き込むこ とができ、SRAMカードライクに使用できるようにな

【0037】ここで、上記のようなページ書き込み型の EEPROM17は、512バイトである1ページ分の デジタルデータDAが完全に入力されないと書き込み動 作に移らないことになっている。このため、例えば入力 デジタルデータDAが、1ページ分に満たないで終了さ れたとき、EEPROM17にデータが書き込めないと いう状態になる。なお、入力デジタルテータDAが1ペ ージ分に満たないで終了されたことは、バスクロックB CKが入力されないことで検知することができるが、ハ ード上及びデータの性格上これだけではデータの終了検 出がほとんど不可能である。

【0038】そこで、通常の書き込みでは絶対に発生し ないパターンを使用してデータの終了検出を行なってい る。このパターンは、例えば書き込み動作時からアドレ ス指定をしないで読み出しに移るパターンが用いられ る。つまり、通常、書き込みから読み出しに移る場合に は、まず、アドレスを指定して読み出す場所を指定して から読み出し動作に移るからである。そして、この絶対 発生しないパターンが検知されたらデータの終了と判断 し、レディ/ビジィ切替信号RDY/BSYをLレベル にして入力拒否状態とする。データ入出力制御回路13 は、データの終了を検知したら、ページの足りない部分 にダミーのデータを付け足してEEPROM17への書 き込み動作を行なわせる。なお、この発明は上記実施例 に限定されるものではなく、この外その要旨を逸脱しな い範囲で種々変形して実施することができる。

[0039]

【発明の効果】以上詳述したようにこの発明によれば、 シーケンシャルに入力されるデータでも、EEPROM に十分に余裕を持って書き込むことができ、SRAMカ ードライクに使用できるようした極めて良好なメモリカ ード装置を提供することができる。

【図面の簡単な説明】

【図1】この発明に係るメモリカード装置の一実施例を 示すブロック構成図。

【図2】同実施例の動作を説明するために示すタイミン グ図。

【図3】 SRAMとEEPROMとの長短を比較して示 す図。

【符号の説明】

11…メモリカード本体、12…コネクタ、13…デー タ入出力制御回路、14…バッファメモリ、15…アド レス発生回路、16…セレクタ、17…EEPROM、 18…消去回路。

【図1】

【図3】

比 較 項 目	SRAM カード	EEPROM カード
1. バックアップ電池 2. コスト 3. 書き込みスピード(ランダム) (ページ) 4. 読み出しスピード(ランダム) (ページ) 5. イレースモード 6. 書き込みベリファイ	有 高 速 ·	無 やや低 やや 遅 や 遅 で で で で で で で で で で で で で で で で で で で

フロントページの続き

(72) 発明者 寺崎 攝雄

埼玉県深谷市幡羅町1丁目9番2号 株式 会社東芝深谷工場内 (72)発明者 須山 高彰

東京都港区新橋3丁目3番9号 東芝エ ー・ブイ・イー株式会社内