Exercice 15

1. Résolvons dans Z les équations: x=2 mod6; x=3 mod9

(i)
$$x^2 = 2 \mod 6 \Leftrightarrow x^2 = 2 [6] \Leftrightarrow x^2 = 2 (dans \frac{1}{6} \mathbb{Z})$$

or x ∈ Z/6Z = {0;1;2;3;4;5}

et $\dot{0}^2 = \dot{0}$; $\dot{1}^2 = \dot{1}$; $\dot{2}^2 = \dot{4}$; $\dot{3}^2 = \dot{3}$; $\dot{4}^2 = \dot{4}$ et $\dot{5}^2 = 1$

donc cette équation n'admet pas de solution dans Z;

cuinsi $S_Z = \emptyset$.

(ii)
$$x^3 = 3 \mod 9 \Leftrightarrow x^3 = 3 [9] \Leftrightarrow x^3 = 3 (dam \mathbb{Z}/9\mathbb{Z})$$

donc $x \in \mathbb{Z}/9\mathbb{Z} = \{0; 1; 2; 3; 4; 5; 6; 7; 8\}$

or
$$0=0$$
; $1=1$; $2=8$; $3=0$; $4=1$; $5^3=8$; $6=0$; $7=1$

abors l'équation $\dot{x}^3 = 3$ n'admet pas de solution dans $\frac{7}{9}$ ansi l'équation $\dot{x}^3 = 3$ mod 9 n'admet pas de polution dans \mathbb{Z} .

D'on
$$S_Z = \emptyset$$
.

(40)

2. Résolvons dans
$$Z^2$$
 les équations puivants:
 $5x^2+2xy-3=0$ et $y^2+4xy-2=0$

(i)
$$5x^2 + 2xy - 3 = 0 \Leftrightarrow 5x^2 + 2xy = 3 \Leftrightarrow x(5x + 2y) = 3$$

alos
$$\begin{cases} \chi = 1 \\ 2y = 3-5 \end{cases} \Rightarrow \begin{cases} \chi = 1 \\ 2y = -2 \end{cases} = 0 \begin{cases} \chi = 1 \\ y = -1 \end{cases}$$

donc
$$\begin{cases} \chi = -1 \\ 2y = 3+1 \end{cases} \Rightarrow \begin{cases} \chi = -1 \\ 2y = 2 \end{cases} \Rightarrow \begin{cases} \chi = -1 \\ y = 1 \end{cases}$$

alors
$$\begin{cases} \chi = 3 \\ 2y = 1 - 15 \end{cases} = 0 \begin{cases} \chi = 3 \\ 2y = -4 \end{cases} = 0 \begin{cases} \chi = 3 \\ y = -4 \end{cases}$$

$$\lim_{x \to \infty} \int_{y=-1+15}^{x=-3} = D \int_{y=-1+15$$

(41)

Par consequent,
$$S_{Z^2} = \sqrt{(4-1)} \cdot (-4/4) \cdot (3/7) \cdot (-3/7)^2$$

(ii) $y^2 + 4xy - 2 = 0 \iff y^2 + 4xy = 2$
 $\iff y(y+4x) = 2$
 $4x - 1 \implies y = 2$

also $\begin{cases} y = 2 \\ y + 4x = 1 \end{cases}$
 $\begin{cases} y = 2 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -2 \\ 4x = -1 \end{cases}$

impossible (car $x \in Z$)

 $\begin{cases} y = -2 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -2 \\ 4x = -1 \end{cases}$

impossible (car $x \in Z$)

 $\begin{cases} y = -2 \\ 4x = 1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$
 $\begin{cases} y = -1 \\ 4x = -1 \end{cases}$

(42)