Public Subnet vs Private Subnet

- 퍼블릭 서브넷과 프라이빗 서브넷을 같은 가용영역(AZ)으로 설정한 이유
 - AWS에서 가용영역은 데이터 센터를 의미
 - 가용영역 간에 통신은 데이터 전송량에 따라 비용이 발생
 - 같은 가용영역이면 서브넷이 달라도 비용이 발생하지 않음

Public Subnet vs Private Subnet

• 비용효율적으로 고가용성(High Availability)을 확보하기 위한 구조

- 공인 IP(Public IP)
 - _ 네트워크에서 장치를 특정하는 방법은 IP
 - 인터넷은 거대한 하나의 IP 범위를 갖는 네트워크

전체 인터넷 IP 범위 (Public, 공인) 나머지 모든 대역 (국가별로 할당)

내부용(Private, 사설) IP범위

- 1) 10.0.0.0 ~ 10.255.255.255
- 2) 172.16.0.0 ~ 172.31.255.255
- 3) 192.168.0.0 ~ 192.168.255.255

- 공인 IP(Public IP)
 - 인터넷의 IP는 국제기구에서 관리
 - ICANN 이라는 국제 기구에서 총괄하며, KISA(한국인터넷진흥원)에서 한국의 IP관리를 위임 받아 처리
 - KISA에서 관리하는 IP를 ISP(Internet Service Provider)에서 실제 사용자에게 할당
 - ISP는 SK브로드밴드, LGU+, KT 등의 인터넷 사업자를 의미
 - 인터넷에 연결하기 위해서 장치들은 인터넷으로 연결되는 경로와 인터넷에서 사용할 공인 IP가 반
 드시 있어야 함
 - AWS에서는 EIP나 자동할당 IP를 통해 공인 IP를 할당
 - 인터넷 게이트웨이와 라우팅 테이블을 통해 인터넷 연결 경로 생성

- 가정에서의 공유기를 통한 인터넷 연결
 - ISP에서 공유기에 공인 IP를 할당
 - _ 공유기에 연결된 기기는 공인 IP를 받지 않는데 어떻게 인터넷을 사용할 수 있는가? → NAT

- NAT(Network Address Translation)
 - 공유기에서 내부에 연결된 장치들이 인터넷으로 접근할 때, 공유기에 할당된 공인 IP를 이용하도록 지원

• IP와 Port

- IP는 네트워크에 연결된 대상(컴퓨터)을 특정할 수 있음
- 그렇다면 그 컴퓨터 내에서 여러 개의 프로그램이 네트워크를 사용하려 한다면 각각은 어떻게 구분하는가?

• IP와 Port

- 포트(Port)
 - 하나의 컴퓨터에 대해서 네트워크를 사용하는 어플리케이션이 여러 개일 경우 이들을 구분하기 위한 ID 역할을 수행
 - 포트는 하나의 컴퓨터 내에서 유일하게 어플리케이션을 구분 (0~65535까지 사용 가능)

59.293.22.32:2000

에서 접속하는구나

- **NAT(Network Address Translation)**
 - 공유기에서 NAT Table을 활용해 공유기의 공인 IP를 통해 통신할 수 있도록 지원
 - 요청에 대한 응답이 올바른 장치로 전달될 수 있도록 지원

- 즉, 히	나의 공인 IP로 여러	장치가 인터넷 사용	이 가능해짐		
NAT Table			공인 IP	Internet St	
192.168.0.2:1000	59.293.22.32:2000	50.29.32.44:3000	59.293.22.32		50.29.32.44 3000
			:2000 ((₁))		.0000
				ID [C . 400 46	0.0.0/05
192.168.0.1 공유기					
			↑		
요청					
				<u> </u>	
웹	브라우저 스마	트폰 노트	트북 🙀 🚜 데스크트	t TV	세탁기
والأنارة واللبني وجالا	1000 192 16	8 0 2 192 1	68 0 3 192 168 0	192 168 0 5	192 168 0 6

- NAT(Network Address Translation)
 - 단, 인터넷에 있는 다른 장치에서는 공유기에 연결된 장치에 직접 접근 불가
 - ___ 공인 IP는 공유기에만 할당되어 있으므로, 특정할 수 있는 장치는 공유기 뿐

NAT를 이용한 인터넷 사용

- NAT를 이용한 프라이빗 서브넷에서의 인터넷 접근
 - 프라이빗 서브넷에서 인터넷으로 접근 가능
 - 인터넷에서 NAT를 통해 내부로 접근 불가능

- 특정 EC2 인스턴스에 접근할 수 있는 네트워크 대역을 한정하여, 공격의 위험성을 제거
- 접근하는 대상을 제한하지 않으면 전세계 어디에서든 공인 IP를 보유한 EC2 인스턴스에 접근 가능

- 보안 그룹(Security Group)을 통해 EC2 인스턴스에 접근 가능한 네트워크 영역을 제한
 - 아웃바운드/인바운드 규칙을 통해 들어오고 나가는 트래픽을 제어
 - 트래픽: 네트워크를 통해 교환되는 패킷의 흐름
 - 패킷: 네트워크를 통해 장치 간에 교환되는 데이터

- 보안 그룹(Security Group) 설정
 - 아웃바운드와 인바운드에 아무런 규칙이 없으면 어떤 트래픽도 허용하지 않음
 - 아웃바운드 규칙에서 EC2 인스턴스에서 접근할 수 있는 외부의 네트워크 대역을 설정
 - 인바운드 규칙에서 EC2 인스턴스로 접근할 수 있는 외부의 네트워크 대역을 설정
 - 외부의 네트워크 대역은 인터넷이나 혹은 또 다른 네트워크일 수 있음

- 보안 그룹(Security Group) 설정
 - EC2 인스턴스에서 아웃바운드 허용된 곳으로 보낸 요청에 대한 응답은 인바운드 규칙과 상관없이 허용
 - 단, 외부에서 시작된 요청은 인바운드 규칙에 의해 통제됨
 - 아래 예시에서 192.168.1.0/24에서 EC2 인스턴스로 접근 불가

