

Team DDI

Mengqiao (MQ) Liu Rachel King Evan Sinar

Problem

- Supervised learning
- Classification problem
- A few "strong" features and many weak features
- Redundant/interdependent features
- Sparse data
- A lot of noise
- Missing data
- •

Approach

- Bring in external data
- Data imputation
- Tried many models, with heavy focus on boosting models

Classifier Performance

(Ensemble Models)

XGBoost

Light GBM

Gradient Boosting Machine

Logistic Regression

Support Vector Machine

AdaBoost

Random Forest

Extra Tree

k-Nearest Neighbor

Neural Networks

Naïve Bayes

Our Winning Solution

Data Pre-Processing

- Categorical variables
 - Transformed to numeric variables (e.g., potential level)
 - Encoded to one column per category, with a 1 or o in each cell

EmployeeID	Country	
	US	
2	US	
3	Japan	
4	China	
5	Spain	
6	China	

EmployeeID	US	Japan	China	Spain
1	1	0	0	0
2	1	0	0	0
3	0	1	0	0
4	0	0	1	0
5	0	0	0	1
6	0	0	1	0

Data Pre-Processing

- Missing data
 - Replaced with column means
 - Tried the following methods; did <u>not</u> see sig. improvement in prediction:
 - Mean across time points
 - Imputation based on ML methods (e.g, KNN)
 - MICE imputation (Multiple Imputation by Chained Equations)

Feature Engineering & Selection

Add features

- External variables theoretically related to turnover
 - ✓ Country-level unemployment rate
 - ✓ Consumer Confidence Index
 - ✓ Composite Leading Indicator
- Combinations of original features (the most predictive ones)
 - ✓ Small increment in prediction but less variance

Remove features

- Low variance
- Supervisor ID and City
- Machine learning based methods (Lasso)

Model

Python 3.5

- XGBoost
 - Distributed gradient boosting system that is highly efficient, accurate, and flexible
 - Tianqi Chen and Carlos Guestrin, UW

Tianqi Chen and Carlos Guestrin. <u>XGBoost: A Scalable Tree Boosting System</u>. In 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, 2016

XGBoost

* Part of this content is based on these <u>slides</u> by the author of XGBoost

Based on classification trees

Input: tenure, gender, income Does the person leave

XGBoost

* Part of this content is based on these <u>slides</u> by the author of XGBoost

• Boosting: an iterative process

XGBoost

* Part of this content is based on these slides by the author of XGBoost

• Tree ensemble: sums the prediction of multiple trees

XGBoost: Advantages

- Boosting → accuracy
- Approximation algorithm → speed
- Greedy algorithm for tree learning → speed
- 10x faster than some other boosting methods © (e.g., GBM)
- Most popular method in machine learning competitions (e.g., Kaggle, KDDCup)

Hyperparameter Tuning

 Focused on hyperparameters that had the biggest impact on accuracy

Hyperparameter	Description
learning_rate	step size shrinkage used in update to prevents overfitting
n_estimators	number of boosted trees to fit
max_depth	maximum depth of a tree, increase this value will make the model more complex / likely to be overfitting.

Ensemble

- Combine models in order to achieve more accurate and stable predictions
 - 4/5 of our top performing models are ensemble models

The Most Important Predictors of Turnover

Feature Importance

Feature Importance

Feature Importance

• A great opportunity to learn and practice machine learning techniques on a large organizational dataset!

• It was a lot of work... Time spent to validity gained ratio started to plateau quickly after Week 1. ©

- A great opportunity to learn and practice machine learning techniques on a large organizational dataset!
- It was a lot of work... Time spent to validity gained ratio started to plateau quickly after Week 1. ©
- The impact of broader environmental variables on organizational phenomena.
- Considerations of model interpretability and fairness

Thank you!

