

Neste trabalho definimos 3 tipos de endereçamentos:

- -Endereçamento Público Ipv4;
- -Endereçamento Privado Ipv4;
- -Endereçamento Público Ipv6;

Endereçamento Público IPv4

Começando pelo endereçamento público Ipv4, temos de ter em consideração a rede de classe C 200.107.128.0/24, e para tal tivemos que criar várias sub-redes, uma para cada Vlan conforme pedido no enunciado. Em cada sub-rede, tivemos que ter em atenção o número de endereços que necessitávamos de criar. Para além dos endereços necessários para os servidores/pcs/routers, também necessitávamos sempre de 2 endereços, um para a sub-rede e outro para o broadcast, e ainda alguns endereços correspondentes às ligações da Vlan aos SWL3C2/SWL3C1. Definimos a máscara das sub-redes tendo em conta o número de endereços necessários. Tivemos também em conta a ordem das sub-redes, observando a árvore binária, fazendo com que não necessitássemos de deixar endereços indefinidos pelo meio. Como podemos ver na tabela seguinte, optamos então por colocar as sub-redes por ordem da sua máscara.

VLAN	Nº de Endereços	Endereço	Alcance
DMZ	55+2+1=58	200.107.128.0/26	200.107.128.0-200.107.128.63
Marketing	48+2+2=52	200.107.128.64/26	200.107.128.64-200.107.128.127
Datacenter	45+2+1=48	200.107.128.128/26	200.107.128.128-200.107.128.191
Router1	11+2+2=13	200.107.128.192/28	200.107.128.192-200.107.128.207
Design	5+2+2=9	200.107.128.208/28	200.107.128.208-200.107.128.223
Admin	9+2+2=13	200.107.128.224/28	200.107.128.224-200.107.128.239

Os endereços apresentados na tabela acima, foram determinados da seguinte forma:

Adicionamos 2 endereços (1 para Broadcast, 1 para sub-rede atual) ao número de terminais que eram necessários e ainda adicionamos o número mínimo de default-gateway. Depois de calculado o número de endereços para cada Vlan, calculamos o número mínimo de bits, que eram necessários para o host ID, definindo a nova máscara para cada sub-rede.

Endereçamento Privado IPv4

Para atribuirmos endereços para o endereçamento privado IPv4, tivemos de ter em conta quantas sub-redes iriamos considerar (no nosso caso serão 6), bem como as ligações ponto a ponto que no nosso caso são 3. Visto que vamos usar redes de classe C, e estas têm 8 bits para identificar o terminal, vamos assim utilizar uma máscara de 24 bits. Para além de isto, temos ainda que preservar os endereços do Old building.

Visto que é essencial considerar as ligações ponto para a atribuição de endereços, e estas têm de ser privadas, utilizamos 2 bits(broadcast, rede atual e para a identificação do terminal), tornando a máscara em /30.

VLAN	Endereço	Alcance
Design	10.178.0.0/24	10.178.0.0-10.178.0.255
Marketing	10.178.1.0/24	10.178.1.0-10.178.1.255
Admin	10.178.2.0/24	10.178.2.0-10.178.2.255
Research	10.178.3.0/24	10.178.3.0-10.178.3.255
DMZ	10.178.4.0/24	10.178.4.0-10.178.4.255
Datacenter	10.178.5.0/24	10.178.5.0-10.178.5.255
SWL3C1<->R1	10.178.6.0/30	10.178.6.0-10.178.6.3
SWL3C1<-> <u>SWL3C2</u>	10.178.6.4/30	10.178.6.4-10.178.6.7
SWL3C2<->RouterA	10.178.6.8/30	10.178.6.8-10.178.6.11
SWL3C2<->R1	10.178.6.12/30	10.178.6.12-10.178.6.15

Endereçamento Público IPv6

Falando então do endereçamento IPV6, a principal diferença entre este modo de endereçamento e o IPV4 é o número de bits, que neste caso, são 128, sendo 64 para a rede e 64 para o terminal. Como foi referido, todas as redes locais também possuem endereçamento IPV6(exceto a Old Building), então voltamos a criar sub-redes para cada Vlan e também para as ligações ponto a ponto. Como sabemos, as ligações ponto a ponto podem ser definidas em apenas 2 bits, ficando com os restantes bits para a sub-rede. O global address é 2001:02::/60, logo vamos ter 4 bits para as sub-redes.

VLAN	Endereço	Alcance
DMZ	2001:02::/64	2001:02:: - 2001:02::FFFF:FFFF:FFFF
Datacenter	2001:02:0:1::/64	2001:02:0:1:: - 2001:02:0:1:FFFF:FFFF:FFFF
Design	2001:02:0:2::/64	2001:02:0:2:: - 2001:02:0:2:FFFF:FFFF:FFFF
Marketing	2001:02:0:3::/64	2001:02:0:3:: - 2001:02:0:3:FFFF:FFFF:FFFF
Admin	2001:02:0:4::/64	2001:02:0:4:: - 2001:02:0:4:FFFF:FFFF:FFFF
Research	2001:02:0:5::/64	2001:02:0:5:: - 2001:02:0:5:FFFF:FFFF:FFFF
SWL3C1<->R1	2001:02:0:6::/126	2001:02:0:6:: - 2001:02:0:6::3
SWL3C1<-> <u>SWL3C2</u>	2001:02:0:6::4/126	2001:02:0:6::4 - 2001:02:0:6::7
SWL3C2<->RouterA	2001:02:0:6::8/126	2001:02:0:6::8 - 2001:02:0:6::B
SWL3C2<->R1	2001:02:0:6::C/126	2001:02:0:6::C - 2001:02:0:6::F