Fonctions Numériques Limites de fonctions MPSI 2

1 Dfinitions

Définition 1.0.1

Soit $f \in \mathcal{F}(I, \mathbb{R})$

Soit $x_0 \in \mathbb{R}$, tel que $x_0 \in I$ ou x_0 est une extrmit de I. Soit $l \in \mathbb{R}$

• f(x) tend vers l quand x tend vers x_0 :

$$\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists \alpha \in \mathbb{R}^{+*}, \ \forall x \in I, \ |x - x_0| < \alpha \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

Définition 1.0.2

Soit $f \in \mathcal{F}(I, \mathbb{R})$

Soit $x_0 \in \mathbb{R}$, tel que $x_0 \in I$ ou x_0 est une extrmit de I.

• f(x) tend vers $+\infty$ quand x tend vers x_0 :

$$\forall K \in \mathbb{R}, \ \exists \alpha \in \mathbb{R}^{+*}, \ \forall x \in I, \ |x - x_0| < \alpha \Rightarrow K < f(x)$$

• f(x) tend vers $-\infty$ quand x tend vers x_0 :

$$\forall K \in \mathbb{R}, \ \exists \alpha \in \mathbb{R}^{+*}, \ \forall x \in I, \ |x - x_0| < \alpha \Rightarrow f(x) < K$$

Propriété 1.0.1

Si $x_0 \in I$, alors la seule limite ventuelle de f(x) en x_0 est $f(x_0)$

On suppose qu'il existe
$$l$$
 dans \mathbb{R} , tel que $f(x) \underset{x \to x_0}{\longrightarrow} plop l$