Листок 12

Teма 12 (3.2). Аксиоматическое определение поля р-адических чисел, метризованные поля

Упражнения и задачи

- 1. Пусть (k, φ) метризованное поле. Докажите следующие свойства:
 - $\varphi(\pm 1) = 1$; $\varphi(-x) = \varphi(x)$;
 - $\varphi(x-y) \leqslant \varphi(x) + \varphi(y)$;
 - $\varphi(x \pm y) \geqslant |\varphi(x) \varphi(y)|$;
 - $\varphi(x/y) = \varphi(x)/\varphi(y), y \neq 0.$
- 2. Пусть (k,φ) метризованное поле, d индуцированное расстояние: $d(x,y)=\varphi(x-y)$. Докажите, что операции поля $(+,-,\cdot,/)$ являются непрерывными по отношению к d (то есть k топологическое поле).
- 3. Пусть (k,φ) метризованное поле. Докажите, что $\lim_{n\to\infty} x_n = x \Leftrightarrow$ каждое открытое множество содержащее x содержит все кроме конечного числа элементы последовательности x_n .
- 4. Пусть k- поле, на котором заданы две метрики (абсолютные величины) φ_1 , φ_2 . Докажите следующие импликации теоремы о критериях эквивалентности:
 - φ_1, φ_2 эквивалентны \Longrightarrow для любой сходящейся последовательности $\lim_{n\to\infty}^{(\varphi_1)} x_n = x$ если и только если $\lim_{n\to\infty}^{(\varphi_2)} x_n = x$ ($\lim^{(\varphi)}$ означает предел по метрике φ);
 - $\lim_{n\to\infty}^{(\varphi_1)}x_n=\lim_{n\to\infty}^{(\varphi_2)}x_n=x\implies \forall x\in k\ \varphi_1(x)<1$ если и только если $\varphi_2(x)<1;$
 - $\exists \alpha \in \mathbb{R}$: $\forall x \in k \ \varphi_1(x) = \varphi_2(x)^{\alpha} \implies \varphi_1, \ \varphi_2$ эквивалентны.
- 5. Пусть k поле, φ функция $k \to \mathbb{R}_{>0}$ такая что:
 - $\varphi(x) = 0 \Leftrightarrow x = 0$,
 - $\varphi(xy) = \varphi(x)\varphi(y)$,
 - $\varphi(x) \leqslant 1 \Rightarrow \varphi(x-1) \leqslant 1$.

Докажите, что φ является неархимедовой метрикой на k.

- 6. Пусть (k, φ) метризованное поле , φ неархимедова метрика. Докажите, что $\varphi(x) \neq \varphi(y) \Rightarrow \varphi(x+y) = \max(\varphi(x), \varphi(y))$.
- 7. Пусть (k, φ) метризованное поле, A образ \mathbb{Z} в k. Докажите, что φ неархимедова метрика $\Leftrightarrow \forall a \in A \ \varphi(a) \leqslant 1$. (Подсказка: сведите к утверждению φ неархимедова метрика $\Leftrightarrow \varphi(x+1) \leqslant \max(\varphi(x), 1)$; рассмотрите $\varphi(x+1)$).
- 8. Пусть (k, φ) метризованное поле, φ неархимедова метрика, B(x, r) открытый шар радиуса r с центром в x. Докажите следующие свойства:

1

- $\forall y \in B(x,r) \ B(x,r) = B(y,r);$
- $\partial B(x,r) = \emptyset$ ($\partial B(x,r)$ обозначает множество граничных точек);
- $B(x,r) \cap B(y,s) \neq \emptyset \Leftrightarrow B(x,r) \subset B(y,s)$ или $B(y,s) \subset B(x,r)$.

Рассмотрите аналогичные утверждения для замкнутых шаров $\bar{B}(x,r)$.

- 9. Пусть char k=p. Докажите, что всякая метрика φ поля k неархимедова.
- 10. Пусть k поле, $k(t) = \{f(t)/g(t): f, g \in k[t], g \neq 0\}$ поле рациональных функций над k. $\forall r \in k(t)^*$ определим $\varphi(r) = \rho^m$, где m такое, что $r = f/g = t^m(f_0/g_0)$, где f_0, g_0 не делятся на t как многочлены, $0 < \rho < 1$; для r = 0 положим $\varphi(0) = 0$. Докажите, что ϕ метрика поля k(t).

Докажите, что множество 2-адических чисел \mathbb{Z}_2 с 2-адической метрикой $|\cdot|_2$ гомеоморфно Канторову множеству C с обычным модулем $|\cdot| = |\cdot|_{\infty}$.

SageMath

• В контексте задач 11 и 12 ознакомьтесь с функцией Zp(n).plot().

Темы для самостоятельного изучения

- Единственность пополнения поля по метрике. [БШ] §І.4.
- \forall простого p множество целых p-адических чисел \mathbb{Z}_p гомеоморфно множеству 2-адических чисел \mathbb{Z}_2 . [Kat], глава 2.