I'm trying a new way of writing solutions this work. Please let me know if you don't like it! Note: I'm not sure if you've covered the rank-nullity throrem, so I wan 4 use it, but you can make some problems easiel with it.
Problem 1: Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear map.

Parta: $\dim \operatorname{Im} f \in \{0,1,2\}$. $\dim \operatorname{Kel} f \in \{0,1,2\}$. We give examples of all of these in Subsequent sections. For now we show that $\dim \operatorname{Im} f \neq 3$. Suppose $\{e_1,e_2\}$ is a basis for \mathbb{R}^2 . Then $\operatorname{Im} f = \operatorname{Spon} \{\{e_1\}, \{e_2\}\}\}$, have dimension at most 2.

Part 1: Let $f_0: \mathbb{R}^2 \to \mathbb{R}^3$ be the zero map. T.e. $f_0: \mathbb{R}^2 \to \mathbb{R}^3$ be the zero map. T.e. $f_0: \mathbb{R}^2 \to \mathbb{R}^3$ be the zero map. T.e. $f_0: \mathbb{R}^2 \to \mathbb{R}^3$ be the zero map. T.e. $f_0: \mathbb{R}^2 \to \mathbb{R}^3$ be the zero map. T.e.

Let $f: \mathbb{R}^2 \to \mathbb{R}^3$, $f_i(x,y) = (x,0,0)$. Then $Imf_i = span 2(1/0,0)3, so <math>J: mImf_i = 1$. $Kerf_i = 2(0,y) | y \in \mathbb{R}^3 = span 2(0,1)3, so <math>J: mkerf_i = 1$.

Let $f_2: \mathbb{R}^2 \to \mathbb{R}^3$, $f_2(x,y) = (x,y,0)$. Then $Imf_2 = 4pan \& (1,0,0), (0,1,0) \& 3,50$ Imf_ has dimension 2. The Kennel is trivial: (x,y,0) = (0,0,0) if and only if x = y = 0,50 dimher $f_2 = 0$.

Partc: Imfo = $\frac{203}{50}$, so the image is just the Zero vector and the only basis for it is the empty set, \varnothing .

We described Infi and Imfz in part b. We give bases for them here for completeness. [[1,0,0]] is a basis for Imfi, and [(1,0,0),(0,1,0)] is a basis for Imfz.

Part : Kerfo= \mathbb{R}^2 , so any basis for \mathbb{R}^2 will work, e.g., the standard basis $\{(1,0),(0,1)\}$.

Kerf, and Kerfz we described in parts. {(0,1)} is a basis for Kerfi, and of is the unique basis for Kerfz.

Problem 2:

Yoldem2:

So
$$f_A\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + 2y + 2 \\ x + 2y + 2 \\ x + y \end{pmatrix}$$

Solving this linear system we have $x_0=-/o$, and $x_0-2x_0+z_0=0,50$ $z_{0=x_0}$. Then the solutions to this linear system are of the form

$$\begin{pmatrix} x_0 \\ -x_0 \\ x_0 \end{pmatrix}$$
, so $\text{Kerf}_A = \frac{2}{2} \times_0 \begin{pmatrix} -1 \\ 1 \end{pmatrix} \mid x_0 \in \mathbb{R}_3^2 = 5 \text{pon} \left[\frac{2}{3} \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right]^2$, as desired.

Pout b: Let
$$B = \begin{pmatrix} 1 & 3 & 0 \\ 2 & 2 & 0 \\ 3 & 1 & 0 \end{pmatrix}$$

Note that
$$f_{\mathcal{B}}\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $f_{\mathcal{B}}\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$, and $f_{\mathcal{B}}\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.

Then
$$f_{\mathcal{B}}\begin{pmatrix} x \\ y \\ z \end{pmatrix} = x \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + y \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$
, so $Imf_{\mathcal{B}} = \underbrace{5}_{x} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + y \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \Big|_{x/y \in \mathbb{R}_{3}^{2} = 50}$

$$Imf_{\mathcal{B}} = 5pan_{\mathcal{B}}\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \Big\}.$$

Then $f_c(\bar{e}_1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = f_c(\bar{e}_3)$, and any set with the zero vector is linearly dependent.

Problem3: 4: V-SV linear

Porta: No. Let V=1R² and \$\psi(\x,y)=(\y,0). Then \$\psi(\lambda(\psi)=(0,0)\), so (1,0) \in \text{Ker\$.}
However, \$\psi(0,1)=(1/0)\, so (1/0)\in \text{Im\$. Note that (1/0) ≠ \$\frac{1}{2}\$.

Portb: No. Let $V=\mathbb{R}^2$ and $\psi(x,y)=(y,0)$ as before. Then $\psi(0,1)=(1,0)\neq \tilde{0}$, so (0,1) KKer ψ , but $\text{Im}\, \phi=\text{Spon}\, \hat{3}(1,0)\hat{3}$, so (0,1) KIm ψ either.