МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

Резонанс токов в параллельном контуре.

Автор: Шахматов Андрей Юрьевич Б02-304

Аннотация

Исследованы резонансные значения частот переменного тока в парралельном контуре для различных значений ёмкости конденсатора. Измерена амплитудно-частотная и фазо-частотная характеристика контура. По полученным данным несколькими способами определена добротность контура и характеристики электрических элементов.

1 Введение

Цель работы заключается в исследование резонанса токов в параллельном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудно-частотных и фазово-частотных характеристик, а также определение основных параметров контура.

2 Методика

В работе исследовалось поведение парралельного контура, схема которого представлена на Рис. 1. Так как в реальности конденсаторы и катушки имеют активное сопростивление, реальную схему установки можно изобразить как показано на Рис. 2.

Рис. 1: Схема установки.

Рис. 2: Последовательная эквивалентная схема конденсатора с потерями.

Приступим к расчёту контура. Тогда ток на генераторе:

$$I = \frac{E}{R_I} = \frac{E_0 cos(\omega t + \varphi_0)}{R_I} = I_0 cos(\omega t + \varphi_0).$$

$$R_S = \frac{U_{RS}}{I} = \frac{U_{RS}}{\omega C U_{CS}} = \frac{1}{\omega C} t g \delta,$$

где R_S - эквивалентное последовательное сопротивление (ЭПС). Для используемых емкостей C_n выполнено $tg\delta < 10^{-3}$

$$R_{\sum} = R + R_L + R_S,$$

где R_{Σ} - суммарное активное сопротивление контура. Воспользуемся методом комплексных амплитуд:

$$Z_L = R_L + i\omega L, Z_C = R_S - i\frac{1}{\omega C}, Z = R_{\sum} + i(\omega L - d\frac{1}{\omega C}).$$

Тогда напряжение на контуре и токи на индуктивной и емкостной частях контура при нулевой начальной фазе можно предствить в виде:

$$\begin{split} I_c &= I \frac{Z_L}{Z_C + Z_L} = iQI_0 \frac{\omega}{\omega_0} \frac{1 - i \frac{R + R_L}{\rho} \frac{\omega_0}{\omega}}{1 + iQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})}, \\ I_L &= I \frac{Z_c}{Z_C + Z_L} = iQI_0 \frac{\omega_0}{\omega} \frac{1 + itg\delta}{1 + iQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})}, \\ U &= I \frac{Z_L Z_c}{Z_C + Z_L} = Q\rho I_0 \frac{(1 - i \frac{R + R_L}{\rho} \frac{\omega_0}{\omega})(1 + itg\delta)}{1 + iQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})}, \end{split}$$

где $\omega_0=\frac{1}{\sqrt{LC}}$ - собственная частота, $\rho=\sqrt{\frac{L}{C}}$ - реактивное сопротивление контура, $Q=\frac{\rho}{L}R_{\sum}$ - добротность контура

Рассмотрим случай, когда $|\Delta\omega| = |\omega - \omega_0| \ll \omega_0$. Тогда

$$\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} = \frac{2\Delta\omega}{\omega_0}.$$

Пренебрегая поправками порядка Q^{-2} , получим:

$$I_{c} = QI_{0} \frac{\omega}{\omega_{0}} \frac{e^{i\phi_{c}}}{\sqrt{1 + (\tau \Delta \omega)^{2}}}, \phi_{c} = \frac{\pi}{2} - \frac{R + R_{L}}{\rho} - arctg(\tau \Delta \omega),$$

$$I_{L} = QI_{0} \frac{\omega_{0}}{\omega} \frac{e^{i\phi_{L}}}{\sqrt{1 + (\tau \Delta \omega)^{2}}}, \phi_{L} = -\frac{\pi}{2} + \delta \arctan(\tau \Delta \omega),$$

$$U = Q\rho I_{0} \frac{\omega}{\omega_{0}} \frac{e^{i\phi_{U}}}{\sqrt{1 + (\tau \Delta \omega)^{2}}}, \phi_{U} = -\frac{\omega}{\omega_{0}} \frac{R + R_{L}}{\rho} + \delta - arctg(\tau \Delta \omega),$$

где $au = rac{2L}{R_{\Sigma}} = rac{2Q}{\omega_0}$ - время затухания.

При резонансе, т.е. когда $\Delta\omega=0$:

$$I_{c}(\omega_{0}) = QI_{0}, \phi_{c}(\omega_{0}) = \frac{\pi}{2} - \frac{R + R_{L}}{\rho},$$

$$I_{L}(\omega_{0}) = QI_{0}, \phi_{L}(\omega_{0}) = -\frac{\pi}{2} + \delta,$$

$$U(\omega_{0}) = Q\rho I_{0} = Q^{2}R_{\Sigma}I_{0}, \phi_{U}\omega_{0} = -\frac{R + R_{L}}{\rho} + \delta,$$

$$\phi'_{c}(\omega_{0}) = \phi'_{L}(\omega_{0}) = \phi'_{U}(\omega_{0}) = -\tau.$$

3 Результаты и их обсуждение

Результаты измерения резонансных частот схемы для различных ёмкостей конденсаторов C и косвенные величины, вычисленные из полученных значений представлены в таблице 1. Значения величин, вычесленных косвенно были получены согласно формулам 6.2.

C , н Φ	f , к Γ ц	U, B	E, B	L , м Γ н	ρ	Z, Om	Q	R_{sum} , Om	R_{smax} , OM	R_L , Om
25,1	32,12	1,45	0,25	978	197,4	5850,8	29,64	6,66	0,20	3,0
33,2	27,81	1,14	0,25	986	172,4	4593,3	26,65	6,47	0,17	2,8
47,3	23,21	0,82	0,25	994	145,0	3320,4	22,90	6,33	0,14	2,7
57,4	21,26	0,71	0,25	976	130,4	2852,2	21,87	5,96	0,13	2,3
67,5	19,47	0,57	0,25	990	121,1	2278,9	18,82	6,44	0,12	2,8
82,7	17,76	0,29	0,25	971	108,4	1179,0	10,88	9,96	0,11	2,3
101,6	16,06	0,42	0,25	967	97,5	1686,7	17,29	5,64	0,10	2,0
Ср знач				980						2,6
Погр				4						0,5

Таблица 1: Результаты измерения резонансных частот f при разных значениях ёмкостей конденсаторов C при напряжении на схеме E. U — напряжение на конденсаторе, L — индуктивность катушки, ρ — харастеристика активного сопростивления конденсатора, Z — модуль импеданса контура, Q — добротность контура, R_{sum} — полное активное сопротивление контура, R_{smax} — максимальное активное сопротивление конденсатора, R_L — активное сопротивление катушки.

Измерены зависимости напряжения на конденсаторе от частоты вблизи резонанса ($U \ge 0.6U_0$) для конденсаторов с номерами 3 и 5 (Таблицы 2 и 3). Построены АЧХ для соответствующий конденсаторов (Puc. 3).

Согласно приведённым графикам при меньшей ёмкости конденсатора C резонанс достигается при большей частоте и большей амплитуде напряжения. Для лучшего анализа построены АЧХ в нормированных осях $\frac{U}{U_0} \left(\frac{f}{f_0} \right)$ (Рис. 4).

По ширине нормированной АЧХ на высоте $\frac{U}{U_0}=\sqrt{2}$ найдены значения добротности контуров $Q=\frac{w_0}{\Delta w}$. Для цепи с конденсатором 3 $Q_3\approx 23\pm 1$, для цепи с конденсатором 5 $Q_5\approx 19\pm 1$. Что совпадает с добротностями, рассчитанных из резонанса (Таблица 1) $Q_{3t}=22,9,\ Q_{5t}=18,82$.

Измерена зависимость фазы на конденсаторе в зависимости от частоты вблизи резонанса для конденсаторов 3 и 5(Таблицы 4 и 5). Построен график нормированной ФЧХ(Рис. 5). Расстоянию между точками $\frac{\varphi}{\varphi_0} = -\frac{1}{4}, \frac{1}{4}$ получим добротность. $Q_3 = 22, 8 \pm 0, 5, Q_5 = 18, 7 \pm 0, 5$, что совпадает с предыдущими рассчитанными значениями добротностями контуров.

4 Выводы

Исследован резонанс токов в параллельном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудно-частотных и фазово-частотных характеристик, а также определение основных параметров контура. Определена добротность контуров с помощью непосредственных измерений резонанса, графиков АЧХ и ФЧХ, полученные результаты совпали в пределах погрешности.

Рис. 3: Зависимость напряжения на конденсаторе U от частоты f вблизи резонанса. $1-\mathrm{AYX}$ для конденсатора с C=47.3 нФ, $2-\mathrm{AYX}$ для конденсатора с C=67.5 нФ.

Рис. 4: Зависимость нормированного напряжения на конденсаторе $\frac{U}{U_0}$ от нормированной частоты $\frac{f}{f_0}$ вблизи резонанса. 1 — АЧХ для конденсатора с C=47,3 нФ, 2 — АЧХ для конденсатора с C=67,5 нФ.

Рис. 5: Зависимость нормированной фазы на конденсаторе $\frac{\varphi}{\varphi_0}$ от нормированной частоты $\frac{f}{f_0}$ вблизи резонанса. $1-\Phi$ ЧХ для конденсатора с C=47,3 н Φ , $2-\Phi$ ЧХ для конденсатора с C=67,5 н Φ .

Рис. 6: Зависимость активного сопротивления катушки R_L от резонансных частот f. Пунктиром обозначено среднее значение сопротивлений.

5 Использованная литература

Список литературы

[1] Лабораторный практикум по общей физике, Том 2, под редакцией А. Д. Гладуна

6 Приложения

6.1 Параметры установки и погрешности приборов

Сопротивления установки, представленной на Рис. 2: $R_1 = 1008$, R = 3.5 Ом. Погрешность вольтметра 3%.

6.2 Формулы для расчёта параметров контура

$$L = \frac{1}{C(2\pi f)^2} \tag{1}$$

$$\rho = \frac{1}{2\pi fC} \tag{2}$$

$$Z_{\text{pes}} = \frac{U}{E_0} R_1 \tag{3}$$

$$Q = \frac{UR_1}{E_0} 2\pi f C \tag{4}$$

$$R_{\Sigma} = \frac{E_0}{UR_1} \frac{1}{(2\pi fC)^2} \tag{5}$$

$$R_{Smax} = 10^{-3} \cdot \frac{1}{\omega_0 C} \tag{6}$$

$$R_L = \frac{E_0}{UR_1} \frac{1}{(2\pi fC)^2} - R - 10^{-3} \cdot \frac{1}{\omega_0 C}$$
 (7)

6.3 Данные результатов измерений

f , к Γ ц	U, B	σf , к Γ ц	σU , к Γ ц
22,100	0,33	0,001	0,01
22,350	0,41	0,001	0,01
22,550	0,49	0,001	0,01
22,670	0,56	0,001	0,02
22,790	0,63	0,001	0,02
22,910	0,71	0,001	0,02
23,030	0,78	0,001	0,02
23,150	0,82	0,001	0,02
23,270	0,82	0,001	0,02
23,390	0,77	0,001	0,02
23,510	0,71	0,001	0,02
23,630	0,63	0,001	0,02
23,750	0,56	0,001	0,02
23,870	0,50	0,001	0,02
24,000	$0,\!45$	0,001	0,01
24,250	0,36	0,001	0,01
24,500	0,30	0,001	0,01
24,750	0,26	0,001	0,01
25,000	0,23	0,001	0,01

Таблица 2: Результаты измерения зависимости напряжения на конденсаторе U от частоты f в близи резонанса. Ёмкость конденсатора C=47,3 н Φ .

f , к Γ ц	U, B	σf , к Γ ц	σU , к Γ ц
18,800	0,33	0,001	0,01
18,880	0,36	0,001	0,01
18,960	0,39	0,001	0,01
19,040	0,42	0,001	0,01
19,120	0,46	0,001	0,01
19,200	0,49	0,001	0,01
19,280	0,52	0,001	0,02
19,360	$0,\!55$	0,001	0,02
19,440	0,56	0,001	0,02
19,480	$0,\!56$	0,001	0,02
19,520	$0,\!56$	0,001	0,02
19,600	$0,\!55$	0,001	0,02
19,680	0,53	0,001	0,02
19,760	0,50	0,001	0,01
19,840	0,47	0,001	0,01
19,920	0,43	0,001	0,01
20,000	0,40	0,001	0,01
20,100	0,37	0,001	0,01
20,200	0,33	0,001	0,01

Таблица 3: Результаты измерения зависимости напряжения на конденсаторе U от частоты f в близи резонанса. Ёмкость конденсатора C=67,5 н Φ .

f , к Γ ц	φ	f , к Γ ц	$\sigma \varphi$
22,000	1,54	0,001	0,02
22,150	1,59	0,001	0,02
22,300	1,65	0,001	0,02
22,400	1,66	0,001	0,02
22,550	1,76	0,001	0,02
22,800	1,92	0,001	0,02
23,000	2,16	0,001	0,02
23,100	2,31	0,001	0,02
23,200	0,00	0,001	0,05
23,250	0,09	0,001	0,02
23,300	$0,\!14$	0,001	0,02
23,400	0,30	0,001	0,02
23,600	0,54	0,001	0,02
23,800	0,71	0,001	0,02
24,000	0,82	0,001	0,02
24,200	0,87	0,001	0,02
24,400	0,93	0,001	0,02
24,600	0,98	0,001	0,02
24,800	0,99	0,001	0,02

Таблица 4: Результаты измерения зависимости фазы на конденсаторе φ от частоты f в близи резонанса. Ёмкость конденсатора $C=47{,}3$ н Φ .

f , к Γ ц	φ	f , к Γ ц	$\sigma\varphi$
18,000	1,48	0,001	0,02
18,180	1,53	0,001	0,02
18,360	1,58	0,001	0,02
18,480	1,61	0,001	0,02
18,700	1,68	0,001	0,02
18,900	1,81	0,001	0,02
19,100	2,01	0,001	0,05
19,200	2,11	0,001	0,05
19,300	2,22	0,001	0,05
19,400	2,33	0,001	0,05
19,500	0,04	0,001	0,02
19,600	0,20	0,001	0,02
19,700	0,33	0,001	0,02
19,800	0,48	0,001	0,02
20,000	0,66	0,001	0,02
20,200	0,77	0,001	0,02
20,400	0,86	0,001	0,02
20,700	0,95	0,001	0,02
21,000	1,01	0,001	0,02

Таблица 5: Результаты измерения зависимости фазы на конденсаторе φ от частоты f в близи резонанса. Ёмкость конденсатора C=67,5 нФ. Повышение погрешности вблизи резонанса связано с изменением режима просмотра на осцилографе.