

School of Mathematical Sciences Mile End, London E1 4NS · UK

Examiner: Dr T Prellberg

MTH5105 Differential and Integral Analysis MID-TERM TEST

Date: 25 Feb 2011 Time: 12:10-12:50

Complete the following information:

Name	
Student Number	
(9 digit code)	

The test has THREE questions. You should attempt ALL questions. Write your calculations and answers in the space provided. Cross out any work you do not wish to be marked.

Question	Marks
1	
2	
3	
Total Marks	

Nothing on this page will be marked!

Mid-Term Test

Question 1.

(a) State the formula for the Taylor polynomial $T_{n,a}$ of degree n of a function f at a.

[10 marks]

Let
$$g(x) = -\log(1-x)$$
.

(b) Prove by mathematical induction that
$$g^{(n)}(x) = \frac{(n-1)!}{(1-x)^n}$$
 for $n \in \mathbb{N}$. [10 marks] Hence compute the Taylor polynomial $T_{4,0}$ of degree 4 of g at $a=0$. [10 marks]

Let
$$h(x) = \log(1 + x + x^2)$$
.

(c) By factorising $1-x^3$, or otherwise, determine the Taylor polynomial $T_{4,0}$ of degree 4 of h at a=0. [10 marks]

Answer 1.

Answer 1. (Continue)

Mid-Term Test 3

Question 2.

- (a) Give the definition of $f: \mathcal{D} \to \mathbb{R}$ being differentiable at a point $a \in \mathcal{D}$. [10 marks]
- (b) Using this definition, show that g(x) = 1/x is differentiable at a = 1 and find its derivative. [10 marks]
- (c) Suppose that the function f is continuous at 0. Show that the function h defined by

$$h(x) = xf(x)$$

is differentiable at zero and find its derivative.

[10 marks]

Answer 2.

Answer 2. (Continue)

Mid-Term Test 5

Question 3.

(a) State the Mean Value Theorem.

[15 marks]

(b) Let g be differentiable on $\left[0,1\right]$ with

$$g'(x) = 0$$

for all $x\in [0,1]$, and let g(0)=1. Using the Mean Value Theorem, or otherwise, prove that

$$g(x) = 1$$

 $\text{ for all } x \in [0,1].$

[15 marks]

Answer 3.

Answer 3. (Continue)