คามใม่เนฮื่อน พาเพาูดน

Similarity, Dissimilarity, and Proximity

- Similarity measure or similarity function -> 1 con unda quoints -> moonmula [0,1]
 - A real-valued function that quantifies the similarity between two objects
 - Measure how two data objects are alike: The higher value, the more alike
 - Often falls in the range [0,1]: 0: no similarity; 1: completely similar
- Dissimilarity (or distance) measure
 - Numerical measure of how different two data objects are
 - In some sense, the inverse of similarity: The lower, the more alike
 - Minimum dissimilarity is often 0 (i.e., completely similar) -> worked O
 - Range [0, 1] or $[0, \infty)$, depending on the definition
- **Proximity** usually refers to either similarity or dissimilarity > ATUANUL

Data Matrix and Dissimilarity Matrix

- Data matrix
 - A data matrix of n data points with *l* dimensions
- Dissimilarity (distance) matrix Fancou you de Dum
- n data points, but registers only the distance d(i, j)(typically metric)
- Usually symmetric, thus a triangular matrix
- Distance functions are usually different for real, boolean, categorical, ordinal, ratio, and vector variables
- Weights can be associated with different variables based on applications and data semantics

 $D = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1l} \\ x_{21} & x_{22} & \dots & x_{2l} \\ ? & ? & ? & ? \end{pmatrix}$

d(2,1)

(#>

(#)

Standardizing Numeric Data ossuls Scole Virmine ion W

• Z-score:

$$z = \frac{x - \mu}{\sigma}$$

- Z-score: $z = \frac{x \mu}{\sigma}$ X: raw score to be standardized, μ : mean of the population, σ : standard deviation
- the distance between the raw score and the population mean in units of the standard deviation
- negative when the raw score is below the mean, "+" when above
- An alternative way: Calculate the mean absolute deviation

$$s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$$

where

(#)

$$m_f = \frac{1}{n} (x_{1f} + x_{2f} + ... + x_{nf}).$$

- standardized measure (z-score): $z_{if} = \frac{x_{if} m_f}{s}$
- Using mean absolute deviation is more robust than using standard deviation

Example: Data Matrix and Dissimilarity Matrix

Data Matrix

point	attribute1	attribute2
x1	1	2
x2	3	5
х3	2	0
x4	4	5

Dissimilarity Matrix (by Euclidean Distance)

	x1 /	x2	х3	x4
x1	0			
x2	3.61	0		
x3	2.24	5.1	0	
x4	4.24	1	5.39	0

Special Cases of Minkowski Distance => 3 mu

• p = 1: (L1 norm) Manhattan (or city block) distance -> คนผล เดา แน้ว เพียง)

- E.g., the Hamming distance: the number of bits that are different between two binary vectors $d(i, j) = |x_{i1} - x_{i1}| + |x_{i2} - x_{i2}| + [] + |x_{il} - x_{il}|$
- p = 2: (L2 norm) Euclidean distance $\rightarrow c^1 = a^1 + b^1 \rightarrow 5$

$$d(i,j) = \sqrt{|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ? + |x_{il} - x_{jl}|^2}$$

- - The maximum difference between any component (attribute) of the vectors

$$d(i,j) = \lim_{p \to \infty} \sqrt[p]{|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p} = \max_{f=1}^l |x_{if} - x_{jf}|$$

(#)

Example: Minkowski Distance at Special Cases

point	attribute 1	attribute 2
x1	1	2
x2	3	5
x3	2	0
x4	4	5

Manhattan (L1)

L	x1	x2	x3	x4
x1	0			
x2	5	0		
x3	3	6	0	
x4	6	1	7	0

Euclidean

(L2)	x1	x2	х3	x4
<u>x1</u>	0			
x2	3.61	0		
x3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum

(LL)	x1	x2	х3	x4
x1	0			
x2	3	0		
х3	2	5	0	
x4	3	1	5	0

(#)