Algorithme du simplexe sous forme matricielle

Notations

• Soit un problème sous forme canonique matricielle à n+m variables et m contraintes :

$$\max z = c \cdot x
\begin{cases}
Ax = b \\
x \ge 0
\end{cases}$$

où x, c, A, b matrices réelles de dimensions

$$x:(n+m,1), c:(1,n+m), A:(m,n+m), b:(m,1).$$

- Si $I \subset \{1, \dots, n+m\}$ les matrices c_I , A_I (resp. x_I) sont obtenus en ne gardant que les indices des colonnes (resp. lignes) qui sont dans I. On note B pour A_B .
- $\mathcal{B} \subset \{1, \dots, n+m\}$ est une base si $|\mathcal{B}| = m$ et $B = A_{\mathcal{B}}$ inversible.

Initialisation

Trouver une base réalisable. Eventuellement à partir de la solution nulle du problème sous forme standard si elle est réalisable $(b \ge 0)$: base $\mathcal{B} = \{n+1, \cdots, n+m\}$ qui donne $x_{\mathcal{B}}^* = b$, sinon résoudre le problème auxiliaire associé. Dans tous les cas, calculer $x_{\mathcal{B}}^*$.

Etape du simplexe

ullet Dictionnaire associé à la base ${\mathcal B}$:

- \diamond La solution de base associée est donnée par $x_N = 0$ et $x_{\mathcal{B}} = x_{\mathcal{B}}^*$;
- \diamond la base est réalisable si $x_{\mathcal{B}}^* \geq 0$;
- \diamond la valeur objectif associée est $z_{\mathcal{B}}^* = c_{\mathcal{B}} x_{\mathcal{B}}^*$.

• Recherche d'une variable entrante x_{i_0} .

- 1. Calculer $y := c_{\mathcal{B}}B^{-1}$ en résolvant le système $yB = c_{\mathcal{B}}$.
- 2. Calculer les coefficients de x_j dans z pour $j \in N : c_j y \cdot a_j :$
 - \diamond choisir une variable entrante j_0 parmi les j tels que $c_j y \cdot a_j > 0$;
 - ⋄ s'il n'en existe pas, la base est optimale.
- Recherche d'une variable sortante x_{i_0} .
- 3. Calculer $d := B^{-1}a_{j_0}$ en résolvant $Bd = a_{j_0}$.
 - $\diamond -d$ est la colonne des coefficients de x_j dans le dictionnaire.
- 4. Trouver la valeur maximale t_{max} de t telle que $x_{\mathcal{B}}^* t \cdot d \geq 0$.
 - \diamond choisir i_0 parmi les i tels que $x_i^* t_{\max} d_i = 0$;
 - \diamond si $t_{\rm max} = +\infty$ le problème est non borné.
- Mise à jour.
- 5. La nouvelle base est $\mathcal{B} \leftarrow \mathcal{B} \setminus \{i_0\} \cup \{j_0\}$. Mettre à jour $x_{\mathcal{B}}^*$:
 - \diamond remplacer $x_{\mathcal{B}}^*$ par $x_{\mathcal{B}}^* t_{\text{max}} \cdot d$ sur les coordonnées $i \neq i_0$;
 - \diamond remplacer dans $x_{\mathcal{B}}^*$ la valeur de $x_{i_0}^*$ par la nouvelle valeur de $x_{j_0}^* = t_{max}$.