

TAACCCTAACCCTAACCCTAACCCTA
CCTAACCCTAACCCTAACCCTAACCC
CCCTAACCCTAACCCTAACCCTAACCCTAAC
AACCCTAACCCTAACCCTAACCCTA
ACCCTAACCCCAACCCCAACCCCAAC
CTACCCTAACCCTAACCCTAACCCTA
ACCCTAACCCTAACCCTAACCCTAA

Unit 3: Predict with Hidden Markov Model

北京大学生物信息学中心 高歌 Ge Gao, Ph.D.

Center for Bioinformatics, Peking University

Hidden Markov Model: as a predictor

The Most Simple Gene Predictor (MSGP)

Given a stretch of genomic sequence, where are the coding regions and where are noncoding regions?

ACCCTAACCCTAACCCTCGCGGTACCCTCAGCCCGAAAAAATCG

Transition Probability

	n	С
n		
С		

$$a_{kl} = P(x_t = S_l \mid x_{t-1} = S_k)$$
Copyright © Peking University

Emission Probability

$$e_k(b) = P(y_i = b | x_i = S_k)$$

Α	С	G	Т
Α	С	G	Т
	A	A C	A C G

Copyright © Peking University

Non-coding

Training the model

- What we need to train?
 - Transition Probabilities between states
 - Emission Probabilities for each state
- Estimate Probabilities from known "Training set"
 - An annotated genomic region, with coding/noncoding sequences labeled.

Token: ACGCTTCTGGTCCCCACAGACTCAGAGAACCCACCATGGTGATGT......

$$\hat{a}_{kl} = \frac{a_{kl}}{\sum_{l} a_{kl}}$$
 $\hat{e}_{k}(b) = \frac{e_{k}(b)}{\sum_{b} e_{k}(b')}$

Transition Probability

	n	С
n	0.8	0.2
С	0.4	0.6

Emission Probability

	Α	С	G	Т
n	0.2	0.3	0.3	0.2
С	0.4	0.2	0.2	0.2

	n	С
n	0.8	0.2
С	0.4	0.6

	Α	С	G	Т
n	0.2	0.3	0.3	0.2
С	0.4	0.2	0.2	0.2

Given a sequence $X=X_1X_2X_3...X_n$, let $S=S_1S_2S_3...S_n$ represent its hidden states (i.e. coding, non-coding annotation), we need the best S:

$$S^* = \arg\max_{S} P(S \mid X)$$

Transition Probability

	n	С
n	0.8	0.2
С	0.4	0.6

Emission Probability

	Α	С	G	Т
n	0.2	0.3	0.3	0.2
С	0.4	0.2	0.2	0.2

$$P_{coding}(i+1) = e_{coding}(x_{i+1}) \max_{k \in (coding, noncoding)} (P_k(i)a_{k->coding})$$

$$P_{noncoding}(i+1) = e_{noncoding}(x_{i+1}) \max_{k \in (coding, noncoding)} (P_k(i)a_{k->noncoding})$$

$$P(X,S) = \max(P_{coding}(n), P_{noncoding}(n))$$

Logarithmic transformation: Ease calculation

$$Log(a*b) = Log(a) + Log(b)$$

	n	С
n	0.8	0.2
С	0.4	0.6

	n	С
n	-0.097	-0.699
С	-0.398	-0.222

	Α	С	G	Т
n	0.2	0.3	0.3	0.2
С	0.4	0.2	0.2	0.2

	Α	С	G	Т
n	-0.699	-0.523	-0.523	-0.699
С	-0.398	-0.699	-0.699	-0.699

Testing Sequence: CGAAAAATCG

$P_{l}(i+1) = e_{l}(x_{i+1}) \max_{k} (P_{k}(i)a_{kl})$

	n	С
n	-0.097	-0.699
С	-0.398	-0.222

	A	С	G	Т
n	-0.699	-0.523	-0.523	-0.699
С	-0.398	-0.699	-0.699	-0.699

	С	G	A	A	А	А
n -0.097	- 0.62	-1.24	→ -2.036 — 3.117	-2.832	-3.628	-4.424
c -0.699	-1.40	-2.02	-2.337 → -2.64 —	→ -2.957 –	-3.577	→ -4.197

	А	А	А	T	С	G
n	-4.424	-5.22	▼ -5.914	-6.534 —	→ -7.154 -	→ -/.//4
С	-4.197	→ -4.817	-5.437	→ -6.358	→ -7.279	-7.978

The Most Simple Gene Predictor (MSGP)

CGAAAAATCG

NNCCCCCCNNN

N, intergenic region; P, promotor; F, 5'UTR; E_{sregl} , single-exon gene; E_{init} , initial exon; $E_k(0 \le k \le 2)$ phase k internal exon; E_{term} , ter-minal exon; T, 3'UTR; A, polyadenylation signal; and, $I_k(0 \le k \le 2)$, phase k intron.) strand.

GenScan:

- Chris Burge (1996): A 27-state semi-HMM
- A simpler model: 19-state
- A model taking UTR introns into account:
 35-state
 Copyright © Peking University

By decoupling states and tokens, Hidden
Markov Model (HMM) provides a sound
probability framework to model complex
biological sequences

St

(Nature Biotechnology 22, 1315 - 1316 (2004))

生物信息学:导论与方法 Bioinformatics: Introduction and Methods

