Chương 3: Ngôn ngữ đại số quan hệ

Nội dung

- 1. Giới thiệu
- 2. Biểu thức đại số quan hệ
- 3. Các phép toán
- 4. Ví dụ

1. Giới thiệu

• Đại số quan hệ (ĐSQH) có nền tảng toán học (cụ thể là lý thuyết tập hợp) để mô hình hóa CSDL quan hệ. Đối tượng xử lý là các quan hệ trong cơ sở dữ liệu quan hệ.

Chức năng:

- Cho phép mô tả các phép toán rút trích dữ liệu từ các quan hệ trong cơ sở dữ liệu quan hệ.
- Cho phép tối ưu quá trình rút trích bằng các phép toán có sẵn của lý thuyết tập hợp.

2. Biểu thức ĐSQH

- Biểu thức ĐSQH là một biểu thức gồm các phép toán ĐSQH.
- Biểu thức ĐSQH được xem như một quan hệ (không có tên).
- Có thể đặt tên cho quan hệ được tạo từ một biểu thức ĐSQH.
- Có thể đổi tên các thuộc tính của quan hệ được tạo từ một biểu thức ĐSQH.

3. Các phép toán

- 3.1 Giới thiệu
- 3.2 Phép chọn
- 3.3 Phép chiếu
- 3.4 Phép gán
- 3.5 Các phép toán trên tập hợp
- 3.6 Phép kết
- 3.7 Phép chia
- 3.8 Hàm tính toán và gom nhóm

3.1 Giới thiệu (1)

- Có năm phép toán cơ bản:
 - Chọn (σ) hoặc (:)
 - **Chiếu** (π) hoặc ([])
 - **Tích** (×)
 - **Hiệu (-)**
 - **Hội** (∪)

3.1 Giới thiệu (2)

- Các phép toán khác không cơ bản nhưng hữu ích:

 - Kết (▷◁)
 - **■** Chia (÷)
 - Phép bù (¬)
 - \blacksquare Đổi tên (ρ)
 - Phép gán (←)
- Kết quả sau khi thực hiện các phép toán là các quan hệ, do đó có thể kết hợp giữa các phép toán để tạo nên phép toán mới.

3.2 Phép chọn (Selection)

- Trích chọn các bộ (dòng) từ quan hệ R. Các bộ được trích chọn phải thỏa mãn điều kiện chọn p.
- **Ký hiệu**: $\sigma_p(R)$ hoặc R:p
- Định nghĩa: $\sigma_p(R) = \{t/t \in R, p(t)\}\ p(t)$: thỏa điều kiện p
- Kết quả trả về là một quan hệ, có cùng danh sách thuộc tính với quan hệ R. Không có kết quả trùng.
- Phép chọn có tính giao hoán

$$\sigma_{p1}(\sigma_{p2}(R)) = \sigma_{p2}(\sigma_{p1}(R)) = \sigma_{(p1 \land p2)}(R)$$

Lược đồ CSDL quản lý giáo vụ

HOCVIEN (MAHV, HO, TEN, NGSINH, GIOITINH, NOISINH, MALOP)

LOP (MALOP, TENLOP, TRGLOP, SISO, MAGVCN)

KHOA (MAKHOA, TENKHOA, NGTLAP, TRGKHOA)

MONHOC (MAMH, TENMH, TCLT, TCTH, MAKHOA)

DIEUKIEN (MAMH, MAMH_TRUOC)

GIAOVIEN(MAGV, HOTEN, HOCVI, HOCHAM, GIOITINH, NGSINH, NGVL, HESO, MUCLUONG, MAKHOA)

GIANGDAY(MALOP, MAMH, MAGV, HOCKY, NAM, TUNGAY, DENNGAY)

KETQUATHI (MAHV, MAMH, LANTHI, NGTHI, DIEM, KQUA)

3.2.1 Phép chọn (Selection)

Trích chọn các bộ (dòng) từ quan hệ R. Các bộ được trích chọn phải thỏa mãn điều kiện chọn (select condition).

HOCVIEN			
Mahv	HoTen	Gioitinh	
K1103	Ha Duy Lap	Nam	
K1102	Tran Ngoc Han	Nu	
K1104	Tran Ngoc Linh	Nu	
K1105	Tran Minh Long	Nam	
K1106	Le Nhat Minh	Nam	

Mahv	HoTen	Gioitinh
K1102	Tran Ngoc Han	Nu
K1104	Tran Ngoc Linh	Nu

σ_(Gioitinh='Nu')(HOCVIEN) Hoặc HOCVIEN: Gioitinh='Nu'

• Ký hiệu: $\sigma_{\text{selection condition}}(R)$ Hoặc R: selection condition

3.2.2 Phép chọn (Selection)

- Biểu thức luận lý (boolean) trong điều kiện chọn được tạo bởi các mệnh đề dưới dạng:
 - <tên thuộc tính> <toán tử so sánh> <hằng số>
 - < tên thuộc tính> < toán tử so sánh > < tên thuộc tính>

Trong đó toán tử so sánh: =, <, \le , >, $\ge \ne$

Các mệnh đề này được nối với nhau bởi toán tử logic: ^, ~, —

3.2.3 Ví dụ phép chọn

 Tìm những học viên có giới tính là nam và có nơi sinh ở TpHCM

HOCVIEN	Mahv	HoTen	Gioitinh	Noisinh
	K1104	Tran Ngoc Linh	Nu	Tay Ninh
	K1105	Tran Minh Long	Nam	ТрНСМ
	K1106	Le Nhat Minh	Nam	Tay Ninh

 $\sigma_{(Gioitinh=`Nam') \land (Noisinh=`TpHCM')}(HOCVIEN)$

Mahv	HoTen	Gioitinh	Noisinh
K1105	Tran Minh Long	Nam	ТрНСМ

Hoặc HOCVIEN: (Gioitinh='Nam')∧(Noisinh='TpHCM')

3.2 Ví dụ phép chọn

 Tìm những học viên có giới tính là nam và có nơi sinh ở TpHCM

 $\sigma_{\text{(Gioitinh='Nam')} \land \text{(Noisinh='TpHCM')}}(\text{HOCVIEN})$

HOCVIEN				
Mahv	HoTen	Gioitinh	Noisinh	Malop
K1103	Ha Duy Lap	Nam	Nghe An	K11
K1102	Tran Ngoc Han	Nu	Kien Giang	K11
K1104	Tran Ngoc Linh	Nu	Tay Ninh	K11
K1105	Tran Minh Long	Nam	ТрНСМ	K11
K1106	Le Nhat Minh	Nam	ТрНСМ	K11

3.3 Phép chiếu (Project)

- Sử dụng để trích chọn giá trị một vài thuộc tính của quan hệ
- Ký hiệu: $\pi_{A_1,A_2,...,A_k}(R)$ hoặc $R[A_1,A_2...A_K]$

trong đó A_i là tên các thuộc tính được chiếu.

- Kết quả trả về một quan hệ có k thuộc tính theo thứ tự như liệt kê. Các dòng trùng nhau chỉ lấy một.
- Phép chiếu không có tính giao hoán

3.3.1 Ví dụ

Tìm họ tên, nơi sinh của tất cả học viên

HOCVIEN				
Mahv	HoTen	Gioitinh	Noisinh	
K1103	Ha Duy Lap	Nam	Nghe An	
K1102	Tran Ngoc Han	Nu	Kien Giang	
K1104	Tran Ngoc Linh	Nu	Tay Ninh	
K1105	Tran Minh Long	Nam	ТрНСМ	
K1106	Le Nhat Minh	Nam	ТрНСМ	

 $\pi_{\text{ Hoten,Noisinh}}(HOCVIEN)$

HoTen	Noisinh
Ha Duy Lap	Nghe An
Tran Ngoc Han	Kien Giang
Tran Ngoc Linh	Tay Ninh
Tran Minh Long	ТрНСМ
Le Nhat Minh	ТрНСМ

Hoặc HOCVIEN [Hoten, Noisinh]

3.3.2 Ví dụ

Tìm mã số, họ tên những học viên có giới tính là nam và có nơi sinh ở TpHCM

HOCVIEN	Mahv	HoTen	Gioitinh	Noisinh	Malop
	K1103	Ha Duy Lap	Nam	Nghe An	K11
	K1102	Tran Ngoc Han	Nu	Kien Giang	K11
	K1104	Tran Ngoc Linh	Nu	Tay Ninh	K11
	K1105	Tran Minh Long	Nam	ТрНСМ	K11
	K1106	Le Nhat Minh	Nam	ТрНСМ	K11

 $\pi_{\text{Mahv,Hoten}}\sigma_{\text{(Gioitinh='Nam')} \land (\text{Noisinh='TpHCM'})}(\text{HOCVIEN})$

Hoặc (HOCVIEN: (Gioitinh='Nam')∧(Noisinh='TpHCM')) [Mahv, Hoten]

Mahv	HoTen
K1105	Tran Minh Long
K1106	Le Nhat Minh

3.3 Ví dụ

Tìm mã số, họ tên những học viên có giới tính là nam và có nơi sinh ở TpHCM

 $\pi_{Mahv,Hoten}\sigma_{(Gioitinh=`Nam')\land (Noisinh=`TpHCM')}(HOCVIEN)$

HOCVIEN				
Mahv	HoTen	Gioitinh	Noisinh	Malop
K1103	Ha Duy Lap	Nam	Nghe An	K11
K1102	Tran Ngoc Han	Nu	Kien Giang	K11
K1104	Tran Ngoc Linh	Nu	Tay Ninh	K11
K1105	Tran Minh Long	Nam	ТрНСМ	K11
K1106	Le Nhat Minh	Nam	ТрНСМ	K11

3.3.4 Phép đổi tên

- Dùng để đổi tên quan hệ và thuộc tính của nó.
- Cho quan hệ $R(A_1, A_2, ..., A_n)$
 - Đổi tên quan hệ R thành S: $\rho_S(R)$
 - Đổi tên các thuộc tính A_i thành B_i : $\rho_{B1,B2...Bn}(R)$
 - Đổi tên quan hệ R thành S và các thuộc tính A_i thành B_i : $\rho_{S(B1,B2...Bn)}(R)$

3.4 Phép gán (Assignment)

- Để lưu lại kết quả của phép toán, kết quả bên phải của phép gán được gán cho biến quan hệ nằm bên trái.
- Để đơn giản hóa một chuỗi các phép toán/câu truy vấn phức tạp.
- **Ký hiệu**: A ← B
- Ví dụ1:
 - $R(HO,TEN,LUONG) \leftarrow \pi_{HONV,TENNV,LUONG}(NHANVIEN)$
 - $R \leftarrow \pi_{HONV,TENNV,LUONG}(NHANVIEN)$
- Ví dụ2:
 - Với một câu truy vấn:
 - $\pi_{\text{Mahv,Hoten}} \sigma_{\text{(Gioitinh='Nam')} \land (\text{Noisinh='TpHCM'})} (HOCVIEN)$
 - Ta có thể viết:
 - $R \leftarrow \sigma_{\text{(Gioitinh='Nam')} \land (Noisinh='TpHCM')}(HOCVIEN)$

$$\pi_{Mahv,Hoten}(R)$$

3.5 Các phép toán tập hợp

- 3.5.1 Giới thiệu
- 3.5.2 Phép hội
- 3.5.3 Phép trừ
- 3.5.4 Phép giao
- 3.5.5 Phép tích

3.5.1 Giới thiệu

- ◆ Các phép toán thực hiện trên 2 quan hệ xuất phát từ lý thuyết tập hợp của toán học: phép hội (R∪S), phép giao (R∩S), phép trừ (R-S), phép tích (R×S).
- Đối với các phép hội, giao, trừ, các quan hệ R và S phải khả hợp:
 - Số lượng thuộc tính của R và S phải bằng nhau: $R(A_1,A_2,...A_n)$ và $S(B_1,B_2,...B_n)$
 - Miền giá trị của thuộc tính phải tương thích dom(A_i)=dom(B_i)
- Quan hệ kết quả của phép hội, giao, trừ có cùng tên thuộc tính với quan hệ đầu tiên.

3.5.2 Phép hội (Union)

- Ký hiệu: R∪S
- ◆ Định nghĩa: $R \cup S = \{t | t \in R \lor t \in S\}$ trong đó R, S là hai quan hệ khả hợp.
- Ví dụ: Học viên được khen thưởng đợt 1 hoặc đợt 2

DOT1		
Mahv	Hoten	
K1103	Le Van Tam	
K1114	Tran Ngoc Han	
K1203	Le Thanh Hau	
K1308	Nguyen Gia	

DOT2		
Mahv	Hoten	
K1101	Le Kieu My	
K1114	Tran Ngoc Han	

Mahv	Hoten
K1101	Le Kieu My
K1103	Le Van Tam
K1114	Tran Ngoc Han
K1203	Le Thanh Hau
K1308	Nguyen Gia

3.5.3 Phép trừ (Set Difference)

- Ký hiệu: R-S
- ◆ Định nghĩa: $R-S=\{t|t\in R \land t\notin S\}$ trong đó R, S là hai quan hệ khả hợp.
- ◆ Ví dụ: Học viên được khen thưởng đợt 1 nhưng không được khen thưởng đợt 2

DOT1	
Mahv	Hoten
K1103	Le Van Tam
K1114	Tran Ngoc Han
K1203	Le Thanh Hau
K1308	Nguyen Gia

DOT2	
Hoten	
Le Kieu My	
Tran Ngoc Han	

Mahv	Hoten
K1103	Le Van Tam
K1203	Le Thanh Hau
K1308	Nguyen Gia

DOT1- DOT2

3.5.4 Phép giao (Set-Intersection)

- Ký hiệu: R∩S
- ♦ Định nghĩa: $R \cap S = \{t | t \in R \land t \in S\}$ trong đó R,S là hai quan hệ khả hợp. Hoặc $R \cap S = R (R S)$
- Ví dụ: Học viên được khen thưởng cả hai đợt 1 và 2

KT_D1	
Mahv	Hoten
K1103	Le Van Tam
K1114	Tran Ngoc Han
K1203	Le Thanh Hau
K1308	Nguyen Gia

KT_D2	
Mahv	Hoten
K1101	Le Kieu My
K1114	Tran Ngoc Han

Mahv	Hoten
K1114	Tran Ngoc Han

KT_D1∩ KT_D2

3.5.5 Phép tích (1)

- Ký hiệu: R×S
- Định nghĩa: $R \times S = \{t_r t_S / t_r \in R \land t_S \in S\}$
- Nếu R có n bộ và S có m bộ thì kết quả là n*m bộ $KQ(A_1,A_2,...A_m,B_1,B_2,...B_n) \leftarrow R(A_1,A_2,...A_m) \times S(B_1,B_2,...B_n)$
- Phép tích thường dùng kết hợp với các phép chọn để kết hợp các bộ có liên quan từ hai quan hệ.

3.5.5 Phép tích (2)

R	
A	В
1	2
3	4
5	6

	S	
В	O	D
2	5	6
4	7	8
9	10	11

 $R \times S$

A	R.B	S.B	С	D
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11
5	6	2	5	6
5	6	4	7	8
5	6	9	10	11

3.5.5 Phép tích (3)

Ví dụ: từ hai quan hệ HOCVIEN và MONHOC, có tất cả những trường hợp nào "học viên đăng ký học môn học", giả sử không có bất kỳ điều kiện nào

HOCVIEN	
Mahv	Hoten
K1103	Le Van Tam
K1114	Tran Ngoc Han
K1203	Le Thanh Hau

MONHOC
Mamh
CTRR
THDC
CTDL

HOCVIEN×MONHOC

		-
Mahv	Hoten	Mamh
K1103	Le Van Tam	CTRR
K1103	Le Van Tam	THDC
K1103	Le Van Tam	CTDL
K1114	Tran Ngoc Han	CTRR
K1114	Tran Ngoc Han	THDC
K1114	Tran Ngoc Han	CTDL
K1203	Le Thanh Hau	CTRR
K1203	Le Thanh Hau	THDC
K1203	Le Thanh Hau	CTDL

3.5.5 Phép tích (4)

Điểm thi của từng học viên

HOCVIEN			
Mahv	Hoten		
HV01	Nguyen Van Lan		
HV02	Tran Hong Son		
HV03	Nguyen Le		
HV04	Le Minh		

KETQUATHI			
MHV	Mamh	Diem	
HV01	CSDL	7.0	
HV02	CSDL	8.5	
HV01	CTRR	8.5	
HV03	CTRR	9.0	

 $\sigma_{\text{(mahv=MHV)}}$ (HOCVIEN×KETQUATHI)

Mahv	Hoten	MHV	Mamh	Diem
HV01	Nguyen Van Lan	HV01	CSDL	7.0
HV01	Nguyen Van Lan	HV01	CTRR	8.5
HV02	Tran Hong Son	HV02	CSDL	8.5
HV03	Nguyen Le	HV03	CTRR	9.0

Hoặc (HOCVIEN×KETQUATHI): (mahv=MHV)

3.6 Phép kết

- 3.6.1 Phép kết
- 3.6.2 Phép kết bằng, phép kết tự nhiên
- 3.6.3 Phép kết ngoài

3.6.1 Phép kết (Theta-Join) (1)

- Theta-join (θ): Tương tự như phép tích kết hợp với phép chọn. Điều kiện chọn gọi là điều kiện kết.
- **Ký hiệu**: $R \triangleright \triangleleft S$ hoặc $R \bowtie S$ trong đó R,S là các quan hệ, p là điều kiện kết
- Các bộ có giá trị NULL tại thuộc tính kết nối không xuất hiện trong kết quả của phép kết.
- Phép kết với điều kiện tổng quát gọi là θ-kết với θ là một trong những phép so sánh (≠,=,>,≥,<,≤)

3.6.1 Phép kết (2)

R		
Α	В	
1	2	
3	4	
5	12	

S			
C	۵	Е	
2	5	6	
4	7	8	
9	10	11	

 $R^{\text{B}<\text{C}} S$

A	В	C	D	ш
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11
5	12	2	5	6
5	12	4	7	8
5	12	9	10	11

3.6.1 Phép kết (3)

R		
A ₁	A ₂	
1	2	
1	8	
0	0	
8	4	
0	3	

S			
B ₁	B ₂	B_3	
0	2	8	
7	8	7	
8	0	4	
1	0	7	
2	1	5	

 $R \triangleright \triangleleft S$

A ₁	A ₂	B ₁	B ₂	B ₃
1	2	8	0	4
1	2	1	0	7
1	8	8	0	4
1	8	1	0	7
8	4	0	2	8
8	4	8	0	4
8	4	1	0	7
8	4	2	1	5

3.6.2 Phép kết bằng, kết tự nhiên

 Nếu θ là phép so sánh bằng (=), phép kết gọi là phép kết bằng (equi-join).

Ký hiệu: HOCVIEN ⊳⊲ LOP

• Nếu điều kiện của equi-join là các thuộc tính giống nhau thì gọi là phép kết tự nhiên (natural-join). Khi đó kết quả của phép kết loại bỏ bớt 1 cột (bỏ 1 trong 2 cột giống nhau)

Ký hiệu: HOCVIEN ⊳ ≺ KETQUATHI hoặc HOCVIEN* KETQUATHI

3.6.2 Phép kết bằng, kết tự nhiên

 Nếu θ là phép so sánh bằng (=), phép kết gọi là phép kết bằng (equi-join).
 R × S

R		
A	В	
1	2	
3	4	
5	12	

R	×	S

5	12			
S				
C	D	Е		
2	5	6		
4	7	8		
9	10	11		

A	В	С	D	E
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11
5	12	2	5	6
5	12	4	7	8
5	12	9	10	11

$R^{\text{B=C}} S$

A	В	С	D	Е
1	2	2	5	6
3	4	4	7	8

3.6.2 Phép kết bằng

R		
A	В	
1	2	
3	4	

S				
В	C	D		
2	5	6		
4	7	8		
9	10	11		

$R \times S$

	A	R.B	S.B	С	D
	1	2	2	5	6
	1	2	4	7	8
>	1	2	9	10	11
	3	4	2	5	6
	3	4	4	7	8
	3	4	9	10	11

$R\bowtie S$				
A	R.B	S.B	С	D
1	2	2	5	6
3	4	4	7	8

3.6.2 Phép kết tự nhiên

• Nếu điều kiện của phép kết bằng là các thuộc tính giống nhau thì gọi là phép kết tự nhiên (natural-join). Khi đó kết quả của phép kết loại bỏ bớt 1 cột (bỏ 1 trong 2 cột giống

nhau)

R		
A B		
1	2	
3	4	

S			
В	С	D	
2	5	6	
4	7	8	
9	10	11	

 $R \times S$

A	R.B	S.B	С	D
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

 $R \bowtie S$

A	В	С	D
1	2	5	6
3	4	7	8

Hoặc R * S

3.6.3 Phép kết ngoài (outer join)

- Mở rộng phép kết để tránh mất thông tin
- Thực hiện phép kết và sau đó thêm vào kết quả của phép kết các bộ của quan hệ mà không phù hợp với các bộ trong quan hệ kia.
- Có 3 loại:
 - Left outer join R ⊃ S
 - Right outer join R > S
 - Full outer join R ⊃ S

Left outer join

 Giữ lại tất cả các bộ của quan hệ bên trái của phép kết mà không liên kết được với bộ nào của quan hệ bên phải

R		
A	В	
1	2	
3	4	
5	12	

S		
C	۵	Е
2	5	6
4	7	8
9	10	11

Right outer join

 Giữ lại tất cả các bộ của quan hệ bên phải của phép kết mà không liên kết được với bộ nào của quan hệ bên trái

R		
A	В	
1	2	
3	4	
5	12	

S		
C	۵	Е
2	5	6
4	7	8
9	10	11

Full outer join

R		
A	В	
1	2	
3	4	
5	12	

S			
O	D	Е	
2	5	6	
4	7	8	
9	10	11	

Ví dụ: In ra danh sách tất cả các học viên và điểm số của các môn học mà học viên đó thi (nếu có)

Left outer join

HOCVIEN		
Mahv	Hoten	
HV01	Nguyen Van Lan	
HV02	Tran Hong Son	
HV03	Nguyen Le	
HV04	Le Minh	

KETQUATHI			
Mahv	Mamh	Diem	
HV01	CSDL	7.0	
HV02	CSDL	8.5	
HV01	CTRR	8.5	
HV03	CTRR	9.0	

HOCVIEN Mahv KE

KETQUATHI

Mahv	Hoten	Mahv	Mamh	Diem
HV01	Nguyen Van Lan	HV01	CSDL	7.0
HV01	Nguyen Van Lan	HV01	CTRR	8.5
HV02	Tran Hong Son	HV02	CSDL	8.5
HV03	Nguyen Le	HV03	CTRR	9.0
HV04	Le Minh	Null	Null	Null

Right outer join

Mahv

◆ HOCVIEN ▷< □ KETQUATHI

Mahv	Hoten	Mahv	Mamh	Diem
HV01	Nguyen Van Lan	HV01	CSDL	7.0
HV01	Nguyen Van Lan	HV01	CTRR	8.5
HV02	Tran Hong Son	HV02	CSDL	8.5
HV03	Nguyen Le	HV03	CTRR	9.0
Null	Null	HV05	CTRR	8.0

HOCVIEN		
Mahv	Hoten	
HV01	Nguyen Van Lan	
HV02	Tran Hong Son	
HV03	Nguyen Le	
HV04	Le Minh	

KETQUATHI			
Mahv	Mamh	Diem	
HV01	CSDL	7.0	
HV02	CSDL	8.5	
HV01	CTRR	8.5	
HV03	CTRR	9.0	
HV05	CTRR	8.0	

Full outer join

MahvHOCVIEN KETQUATHI

Mahv	Hoten	Mahv	Mamh	Diem
HV01	Nguyen Van Lan	HV01	CSDL	7.0
HV01	Nguyen Van Lan	HV01	CTRR	8.5
HV02	Tran Hong Son	HV02	CSDL	8.5
HV03	Nguyen Le	HV03	CTRR	9.0
HV04	Le Minh	Null	Null	Null
Null	Null	HV05	CTRR	8.0

HOCVIEN		
Mahv	Hoten	
HV01	Nguyen Van Lan	
HV02	Tran Hong Son	
HV03	Nguyen Le	
HV04	Le Minh	

KETQUATHI			
Mahv	Mamh	Diem	
HV01	CSDL	7.0	
HV02	CSDL	8.5	
HV01	CTRR	8.5	
HV03	CTRR	9.0	
HV05	CTRR	8.0	

3.7 Phép chia (Division)

- **Định nghĩa:** $Q = R \div S = \{t \mid \forall s \in S, (t, s) \in R\}$
- R và S là hai quan hệ, R⁺ và S⁺ lần lượt là tập thuộc tính của R và S. Điều kiện S⁺≠Ø là *tập con không bằng* của R⁺. Q là kết quả phép chia giữa R và S, Q⁺ = R⁺ S⁺
- Có thể diễn đạt bằng phép toán đại số như sau:

$$T_{1} \leftarrow \pi_{R^{+}-S^{+}}(R)$$

$$T_{2} \leftarrow \pi_{R^{+}-S^{+}}((S \times T_{1}) - R)$$

$$T \leftarrow T_{1} - T_{2}$$

3.7 Phép chia (Division)

- Được dùng để lấy ra một số bộ trong quan hệ R sao cho thỏa với <u>tất cả</u> các bộ trong quan hệ S
- Ký hiệu R ÷ S
 - \blacksquare R(Z) và S(X)
 - Z là tập thuộc tính của R, X là tập thuộc tính của S
 - $X \subseteq Z$
- Kết quả của phép chia là một quan hệ T(Y)
 - Với Y=Z-X
 - Có t là một bộ của T nếu <u>với mọi bộ</u> $t_S \in S$, tồn tại bộ $t_R \in R$ thỏa 2 điều kiện
 - $t_R(Y) = t$
 - $\bullet \ t_R(X) = t_S(X)$

T(Y)

Ví dụ

R	Α	В	U	D	Е
	α	а	α	a	1
	α	а	γ	а	1
	α	а	γ	b	1
	β	а	γ	a	1
	β	а	γ	b	3
	γ	а	γ	а	1
	γ	а	γ	b	1
	γ	а	β	b	1

S	D	Ш
	а	1
	b	1

Α	В	С
α	а	γ
γ	a	γ

 $R \div S$

Câu hỏi: Cho biết Mahv nào đã thi hết các môn học?

KETQUATHI			
Mahv	Mamh	Diem	
HV01	CSDL	7.0	
HV02	CSDL	8.5	
HV01	CTRR	8.5	
HV03	CTRR	9.0	
HV01	THDC	7.0	
HV02	THDC	5.0	
HV03	THDC	7.5	
HV03	CSDL	6.0	

MONHOC		
Mamh	Tenmh	
CSDL	Co so du lieu	
CTRR	Cau truc roi rac	
THDC	Tin hoc dai cuong	

MONHOC (S)

KETQUA÷MONHOC

 $KETQUA \leftarrow KETQUATHI [Mahv, Mamh]$ $MONHOC \leftarrow MONHOC [Mamh]$

KETQUA(R)

$$T_1 \leftarrow \pi_{R^+-S^+}(R)$$

T1	
Mahv	
HV01	
HV02	
HV03	

$$T_2 \leftarrow \pi_{R^+ - S^+}((S \times T_1) - R)$$

T1	
Mahv	
HV01	
HV02	
HV03	
HV03	

MONHOC
Mamh
CSDL
CTRR
THDC

T1-MONHOC		
Mahv	Mamh	
HV01	CSDL	
HV01	CTRR	
HV01	THDC	
HV02	CSDL	
HV02	CTRR	
HV02	THDC	
HV03	CSDL	
HV03	CTRR	
HV03	THDC	

	T2
Mahv	Mamh
HV02	CTRR

$$T \leftarrow T_1 - T_2$$

T1			•	Т
Mahv		T2		Mahv
HV01	_	Mahv		HV01
HV02		HV02		HV03
HV03				

 Biểu diễn phép chia thông qua tập đầy đủ các phép toán ĐSQH

$$Q1 \leftarrow \pi_{Y}(R)$$
 $Q2 \leftarrow Q1 \times S$
 $Q3 \leftarrow \pi_{Y}(Q2 - R)$
 $T \leftarrow Q1 - Q3$

3.8 Hàm tính toán và gom nhóm (1)

- Hàm tính toán gồm các hàm: avg(giatri), min(giatri), max(giatri), sum(giatri), count(giatri).
- Phép toán gom nhóm:

$$G_1, G_2, ..., G_n$$
 $\mathfrak{F}_{F_1(A_1), F_2(A_2), ..., F_n(A_n)}(E)$

- E là biểu thức đại số quan hệ
- G_i là thuộc tính gom nhóm (rỗng, nếu không gom nhóm)
- F_i là hàm tính toán
- A_i là tên thuộc tính

3.8 Hàm tính toán và gom nhóm (2)

3.8 Hàm tính toán và gom nhóm (3)

KETQUATHI		
Mahv	Mamh	Diem
HV01	CSDL	7.0
HV02	CSDL	8.5
HV01	CTRR	8.5
HV03	CTRR	9.0
HV01	THDC	7.0
HV02	THDC	5.0
HV03	THDC	7.0
HV03	CSDL	6.0

	Mamh	Max(diem)
>	CSDL	8.5
	CTRR	9.0
	THDC	7.0

${f 3}_{count(mahv)}$	(ketquathi)
-----------------------	-------------

	Mamh	Count(mahv)
*	CSDL	3
	CTRR	2
	THDC	3

3.8 Hàm tính toán và gom nhóm (4)

KETQUATHI			
Mahv	Mamh	Diem	
HV01	CSDL	7.0	
HV02	CSDL	8.5	
HV01	CTRR	8.5	
HV03	CTRR	9.0	
HV01	THDC	7.0	
HV02	THDC	5.0	
HV03	THDC	7.0	
HV03	CSDL	5.0	

Mahv	Avg(diem)
HV01	7.5
HV02	6.75
HV03	7.0

$_{\it Mahv}$ ${\bf \mathfrak{I}}_{\it max}$	(Diem) (Ketquathi)
Mahv max	(Diem) (Ketquathi	į

	Mahv	max(diem)
>	HV01	8.5
	HV02	8.5
	HV03	9.0

3.8 Hàm tính toán và gom nhóm (4)

KETQUATHI			
Mahv	Mamh	Diem	
HV01	CSDL	7.0	
HV01	CTRR	8.5	
HV01	THDC	7.0	
HV02	CSDL	8.5	
HV02	THDC	5.0	
HV03	CTRR	9.0	
HV03	THDC	7.0	
HV03	CSDL	5.0	

Mahv	max(diem)	Min(diem)
HV01	8.5	7.0
HV02	8.5	5.0
HV03	9.0	5.0

$\mathfrak{T}_{\mathit{sum}(\mathit{Diem})}$	(Ketquathi)
--	-------------

Mahv	sum(diem)
HV01	22.5
HV02	13.5
HV03	21

3.8 Hàm tính toán và gom nhóm (5)

• Điểm thi cao nhất, thấp nhất, trung bình của môn CSDL?

$$\mathfrak{I}_{\max(Diem),\min(Diem),agv(Diem)}\sigma_{\mathrm{Mamh='CSDL'}}(\mathit{KETQUATHI})$$

• Hoặc: $\mathfrak{I}_{\max(Diem),\min(Diem),agv(Diem)}(KETQUATHI): Mamh = 'CSDL'$

KETQUATHI			
Mahv	Mamh	Diem	
HV01	CSDL	7.0	
HV02	CSDL	8.5	
HV01	CTRR	8.5	
HV03	CTRR	9.0	
HV01	THDC	7.0	
HV02	THDC	5.0	
HV03	THDC	7.0	
HV03	CSDL	6.0	

Mamh	max(diem)	min(diem)	avg(diem)
CSDL	8.5	6.0	7.16667

3.8 Hàm tính toán và gom nhóm (6)

• Điểm thi cao nhất, thấp nhất, trung bình của từng môn? $\mathcal{T}_{max(Diem), min(Diem), avg(Diem)}(KETQUATHI)$

KETQUATHI			
Mahv	Mamh	Diem	
HV01	CSDL	7.0	
HV02	CSDL	8.5	
HV01	CTRR	8.5	
HV03	CTRR	9.0	
HV01	THDC	7.0	
HV02	THDC	5.0	
HV03	THDC	7.0	
HV03	CSDL	6.0	

Mamh	max(diem)	min(diem)	avg(diem)
CSDL	8.5	6.0	7.16667
CTRR	9.0	8.5	8.75
THDC	7.0	5.0	6.33333

BÀI TẬP

Lược đồ CSDL quản lý bán hàng gồm có các quan hệ sau:

KHACHHANG (MAKH, HOTEN, DCHI, SODT, NGSINH, DOANHSO, NGDK)

NHANVIEN (MANV, HOTEN, NGVL, SODT)

SANPHAM (MASP, TENSP, DVT, NUOCSX, GIA)

HOADON (SOHD, NGHD, MAKH, MANV, TRIGIA)

CTHD (SOHD, MASP, SL)

Mô tả các câu truy vấn sau bằng ĐSQH

- 1. In ra danh sách các sản phẩm (MASP,TENSP) do "Việt Nam" sản xuất có giá từ 30.000 đến 40.000
- In ra danh sách các khách hàng (MAKH, HOTEN) đã mua hàng trong ngày 1/1/2007.
- In ra danh sách các sản phẩm (MASP,TENSP) do "Việt Nam" sản xuất hoặc các sản phẩm được bán ra trong ngày 1/1/2007.
- Tìm các số hóa đơn mua cùng lúc 2 sản phẩm có mã số "BB01" và "BB02".
- In ra danh sách các sản phẩm (MASP,TENSP) do "Việt Nam" sản xuất không bán được trong năm 2006.
- 6. Tìm số hóa đơn đã mua tất cả các sản phẩm do Singapore sản xuất

• In ra danh sách các sản phẩm (MASP, TENSP) do "Việt Nam" sản xuất có giá từ 30.000 đến 40.000.

 $SANPHAM : ((nuocsx = 'Viet Nam') \land (30.000 \le gia \le 40.000))[masp, tensp]$

$$\pi_{masp,tensp}\sigma_{(nuocsx='VietNam')\land(30.000\leq gia\leq40.000)}SANPHAM$$

 In ra danh sách các khách hàng (MAKH, HOTEN) đã mua hàng trong ngày 1/1/2007.

$$KHACHHANG > A HOADON : (nghd = #1/1/2007#) [makh, hoten]$$

$$\pi_{masp,hoten}\sigma_{(nghd=\#1/1/2007\#)}(HOADON)
ightharpoons KHACHHANG)$$

• In ra danh sách các sản phẩm do "Việt Nam" sản xuất hoặc các sản phẩm được bán ra trong ngày 1/1/2007.

```
A \leftarrow SANPHAM : (nuocsx = 'VietNam')[masp, tensp]
B \leftarrow (SANPHAM \  \triangleright \triangleleft CTHD \  \triangleright \triangleleft HOADON : (nghd = \#1/1/2007\#))[masp, tensp]
C \leftarrow A \cup B
A \leftarrow \pi_{masp, tensp} \sigma_{nuocsx = 'VietNam'}(SANPHAM)
Hoặc
B \leftarrow \pi_{masp, tensp} ((\sigma_{nghd = \#1/1/2007\#}(HOADON)) \  \triangleright \triangleleft CTHD) \  \triangleright \triangleleft SANPHAM)
```

 $C \leftarrow A \cup B$

◆ Tìm các số hóa đơn đã mua cùng lúc các sản phẩm có mã số "BB01" và "BB02".

$$A \leftarrow CTHD : (masp = 'BB01')[sohd]$$
 $B \leftarrow CTHD : (masp = 'BB02')[sohd]$
 $C \leftarrow A \cap B$

Hoặc
$$A \leftarrow \pi_{sohd} \sigma_{masp='BB01'}(CTHD)$$

$$B \leftarrow \pi_{sohd} \sigma_{masp='BB02'}(CTHD)$$

$$C \leftarrow A \cap B$$

• In ra danh sách các sản phẩm do "Việt Nam" sản xuất không bán được trong năm 2006.

$$A \leftarrow \pi_{masp,tensp} \sigma_{nuocsx='VietNam'}(SANPHAM)$$

$$B \leftarrow ((SANPHAM \rhd \lhd CTHD) \rhd \lhd HOADON)$$

$$C \leftarrow \pi_{masp,tensp} \sigma_{(nuocsx='VietNam') \land (year(nghd)=2006)}(B)$$

$$D \leftarrow (A-C)$$

 Tìm số hóa đơn đã mua tất cả các sản phẩm do Singapore sản xuất

$$A \leftarrow \pi_{masp} \sigma_{nuocsx='Singapore'}(SANPHAM)$$
 $B \leftarrow \pi_{masp,sohd} \sigma_{nuocsx='Singapore'}(SANPHAM
ightharpoonup CTHD)$
 $C \leftarrow B \div A$

Bài tập thêm

Lược đồ CSDL quản lý bán hàng gồm có các quan hệ sau:

KHACHHANG (MAKH, HOTEN, DCHI, SODT, NGSINH, DOANHSO, NGDK)

NHANVIEN (MANV, HOTEN, NGVL, SODT)

SANPHAM (MASP, TENSP, DVT, NUOCSX, GIA)

HOADON (SOHD, NGHD, MAKH, MANV, TRIGIA)

CTHD (SOHD, MASP, SL)

Bài tập thêm

- 7. Tìm những khách hàng sinh vào tháng 7.
- 8. Hiến thị thông tin makh, hoten, sdt của những khách hàng sinh năm 1990 và có doanh số lớn hơn 50000.
- 9. Tìm những hóa đơn có trị giá lớn hơn 20000 do nhân viên mã số 'nv01' lập vào ngày 15/6/2007.

Bài tập thêm

- 10. In ra danh sách các khách hàng (MAKH, HOTEN) đã mua hàng vào tháng 8.
- 11. Hiển thị thông tin hoadon (sohd, nghd) mua sản phẩm có mã số 'bb01' nhưng không mua sản phẩm có mã số 'bb02'.