Computer Science in Bioinformatics

DAVID L. TABB, PH.D.

Overview

- Metadata: context for interpretation
- Bits are mapped to information
- Compression: efficient space usage
- Scaling: more data, more time

Metadata: describing data

- Metadata are experimental descriptions.
- They contextualize results, making them understandable.
- •Metadata are essential for replication of the experiment and the analysis of its outputs.

An experiment without its metadata is wasted effort!

Output files do not tell the full story.

Exif: metadata for photos, sound

MIAME: minimum information standards

"Minimum information standards are sets of guidelines and formats for reporting data derived by specific high-throughput methods. Their purpose is to ensure the data generated by these methods can be easily verified, analysed and interpreted by the wider scientific community"

Representing numbers in binary

SUMMING POWERS OF TWO

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	Σ
128	64	32	16	8	4	2	1	_
1	1	1	1	1	1	1	1	255
0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	1	0	2
0	0	0	0	0	0	1	1	3
0	0	0	0	0	1	0	0	4
0	0	0	0	0	1	0	1	5
0	0	0	0	0	1	1	0	6
0	0	0	0	0	1	1	1	7
0	0	0	0	1	0	0	0	8

SIGNED? INTEGER? PRECISION?

Different answers imply different storage options.

char	1 byte		
short int	2 bytes		
long int	4 bytes		
float	1+8+23 bits		
double float	1+11+52 bits		

Base what?

- The base of numbers defines how many symbols are usable in each place.
- The base also defines exponential increase in weight from right to left.

Decimal	Binary	Hexadecimal
0	0000000	00
1	0000001	01
2	0000010	02
3	0000011	03
4	0000100	04
5	0000101	05
6	0000110	06
7	0000111	07
8	0001000	08
9	0001001	09
10	0001010	0A
11	0001011	OB
12	0001100	OC.
13	0001101	0D
14	0001110	0E
15	0001111	OF
16	0001000	10

ASCII: How we map bytes to characters

- In hexadecimal (base 16), A-F follow 9.
- ■The character 'A' is in the fourth column, so it is 4*16+1=65 ↑ ↑
 Column Row

Intensity at each *pixel* is recorded in a number of bits. In a typical 24-bit image, 8 bits are recorded for Red, for Green, and for Blue values.

Figure 1-1 A physical image and a corresponding digital image

Intensity fidelity and bit depth

Grayscale Resolution and Digital Image Appearance

Compression: efficient storage

- Biological data are very large. As a result, we frequently use compression to fit data into as small a file size as possible.
- •Compression seeks the smallest number of bits or bytes to represent the original content.
- Formats may allow for compression internally.
- Recognize these formats: .zip, .gz, .bz2, .rar

.tar is not compression; instead, it combines many files into one file.

Run-Length Encoding

In data with multiple repeats, one can simply give the symbol and then state how many times in a row it will appear.

Huffman Codes

In English text, some letters appear more frequently than others; use the smallest number of bits for most frequent letters.

From frequencies to a binary tree: greedy algorithm

JPG, MPEG: *Lossy* compression and artifacts

- Shifting *chrominance* is less perceivable by eye than *luminance* alterations.
- Each save to JPG re-approximates image.
- Image is split to 8x8 blocks, with each subjected to discrete cosine transform (DCT).
- DCT quantizing results in "blocking,""ringing," and "mosquitos."

Lossy media formats: .mp3, .jpg, .mov, .avi

Re-saving JPGs has a cost

Original TIFF

> First JPEG

Second JPEG

...

Big O notation: worstcase algorithmic efficiency

- ■O(log₂n): run time scales with log of data size
 - Binary search for a value in a binary search tree
- O(n): run time scales linearly with data size
 - Add 2 to every item in this vector
- O(mn): run time is multiple of two data sizes
 - •Multiply each in A with each in B
- ■O(2ⁿ): run time scales exponentially with data
 - •What is shortest possible trip through cities?

Closing thoughts

- Systems biology employs bioinformatics for initial pre-processing, follow-on summarization, established knowledge representation, and visualization.
- Bioinformatics draws upon diverse computer science fundamentals to accomplish its aims.
- •Biologists need to understand some computer science. Computers scientists need to learn some biology!