## Introduction to Hadoop

#### Slides compiled from:

- Introduction to MapReduce and Hadoop
  - Shivnath Babu
- Experiences with Hadoop and MapReduce
  - Jian Wen

# Word Count over a Given Set of Web Pages



Can we do word count in parallel?

# The MapReduce Framework (pioneered by Google)



# Automatic Parallel Execution in MapReduce (Google)



Handles failures automatically, e.g., restarts tasks if a node fails; runs multiples copies of the same task to avoid a slow task slowing down the whole job

### MapReduce in Hadoop (1)



Figure 2-2. MapReduce data flow with a single reduce task

### MapReduce in Hadoop (2)



Figure 2-3. MapReduce data flow with multiple reduce tasks

## MapReduce in Hadoop (3)



Figure 2-4. MapReduce data flow with no reduce tasks

Data Flow in a MapReduce Program in Hadoop

- InputFormat
- Map function
- Partitioner
- Sorting & Merging
- Combiner
- Shuffling
- Merging
- Reduce function
- OutputFormat





Figure 6-4. Shuffle and sort in MapReduce

# Lifecycle of a MapReduce Job

```
File Edit Options Buffers Tools Java Help
  public class WordCount {
    public static class Map extends MapReduceBase implements
                  Mapper<LongWritable, Text, Text, IntWritable> {
      private final static IntWritable one = new IntWritable(1);
                                                                    Map function
      private Text word = new Text();
      public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable>
                      output, Reporter reporter) throws IOException {
        String line = value.toString();
        StringTokenizer tokenizer = new StringTokenizer(line);
        while (tokenizer.hasMoreTokens()) {
          word.set(tokenizer.nextToken());
          output.collect(word, one);
    }}}
                                                                    Reduce function
    public static class Reduce extends MapReduceBase implements
                  Reducer<Text, IntWritable, Text, IntWritable> 4
      public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text,</pre>
                        IntWritable> output, Reporter reporter) throws IOException {
        int sum = 0;
        while (values.hasNext()) { sum += values.next().get(); }
        output.collect(key, new IntWritable(sum));
    }}
    public static void main(String[] args) throws Exception {
      JobConf conf = new JobConf(WordCount.class);
      conf.setJobName("wordcount");
      conf.setOutputKeyClass(Text.class);
      conf.setOutputValueClass(IntWritable.class);
      conf.setMapperClass(Map.class);
      conf.setCombinerClass(Reduce.class);
      conf.setReducerClass(Reduce.class);
      conf.setInputFormat(TextInputFormat.class);
      conf.setOutputFormat(TextOutputFormat.class);
                                                               Run this program as a
      FileInputFormat.setInputPaths(conf, new Path(args[0]));
      FileOutputFormat.setOutputPath(conf, new Path(args[1]));
                                                                    MapReduce job
      JobClient.runJob(conf);
    }}
      mapreduce.java All L9
                                  (Java/l Abbrev)------
 Wrote /home/shivnath/Desktop/mapreduce.java
```

# Lifecycle of a MapReduce Job

```
File Edit Options Buffers Tools Java Help
                   public class WordCount {
                     public static class Map extends MapReduceBase implements
                                   Mapper<LongWritable, Text, Text, IntWritable> {
Tie Edit Options Buffers Tools Java Help
private final static IntWritable one = new IntWritable(1);
                                                                                     Map function
                       private Text word = new Text();
                       public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable>
                                       output, Reporter reporter) throws IOException {
                         String line = value.toString();
                         StringTokenizer tokenizer = new StringTokenizer(line);
                         while (tokenizer.hasMoreTokens()) {
                           word.set(tokenizer.nextToken());
                           output.collect(word, one);
                     }}}
                                                                                      Reduce function
                     public static class Reduce extends MapReduceBase implements
                                  Reducer<Text, IntWritable, Text, IntWritable> 4
                       public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text,</pre>
                                         IntWritable> output, Reporter reporter) throws IOException {
                         int sum = 0;
                         while (values.hasNext()) { sum += values.next().get(); }
                         output.collect(key, new IntWritable(sum));
                     }}
                     public static void main(String[] args) throws Exception {
                       JobConf conf = new JobConf(WordCount.class);
                       conf.setJobName("wordcount");
                       conf.setOutputKeyClass(Text.class);
                       conf.setOutputValueClass(IntWritable.class);
                       conf.setMapperClass(Map.class);
                       conf.setCombinerClass(Reduce.class);
                       conf.setReducerClass(Reduce.class);
                       conf.setInputFormat(TextInputFormat.class);
                       conf.setOutputFormat(TextOutputFormat.class);
                                                                                Run this program as a
                       FileInputFormat.setInputPaths(conf, new Path(args[0]));
                       FileOutputFormat.setOutputPath(conf, new Path(args[1]));
                                                                                     MapReduce job
                       JobClient.runJob(conf);
                     }}
                       mapreduce.java All L9
                                                   (Java/l Abbrev)------
               Wrote /home/shivnath/Desktop/mapreduce.java
```

#### Lifecycle of a MapReduce Job



How are the number of splits, number of map and reduce tasks, memory allocation to tasks, etc., determined?

# Job Configuration Parameters

```
File Edit Options Buffers Tools SGML Help
               <?xml version="1.0"?>
  <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
  <configuration>
  property>
    <name>mapred.reduce.tasks
    <value>1</value>
    <description>The default number of reduce tasks
                per job</description>
  </property>
  cproperty>
    <name>io.sort.factor</name>
    <value>10</value>
    <description>Number of streams to merge at once
                while sorting</description>
  </property>
  property>
    <name>io.sort.record.percent</name>
    <value>0.05</value>
    <description>Percentage of io.sort.mb dedicated to
                tracking record boundaries</description>
  </property>
  </configuration>
-U:--- conf.xml
                     All L9
```

- 190+ parameters in Hadoop
- Set manually or defaults are used

#### **Hadoop Streaming**

- Allows you to create and run map/reduce jobs with any executable
- Similar to unix pipes, e.g.:
  - format is: Input | Mapper | Reducer
  - echo "this sentence has five lines" | cat | wc

#### **Hadoop Streaming**

- Mapper and Reducer receive data from stdin and output to stdout
- Hadoop takes care of the transmission of data between the map/reduce tasks
  - It is still the programmer's responsibility to set the correct key/value
  - Default format: "key \t value\n"
- Let's look at a Python example of a MapReduce word count program...

#### Streaming\_Mapper.py

# read in one line of input at a time from stdin for line in sys.stdin:

```
line = line.strip() # string
words = line.split() # list of strings

# write data on stdout
for word in words:
    print '%s\t%i' % (word, 1)
```

#### **Hadoop Streaming**

- What are we outputting?
  - Example output: "the 1"
  - By default, "the" is the key, and "1" is the value
- Hadoop Streaming handles delivering this key/ value pair to a Reducer
  - Able to send similar keys to the same Reducer or to an intermediary Combiner

#### Streaming\_Reducer.py

```
wordcount = { } # empty dictionary
# read in one line of input at a time from stdin
for line in sys.stdin:
  line = line.strip() # string
  key, value = line.split()
  wordcount[key] = wordcount.get(key, 0) + value
  # write data on stdout
  for word, count in sorted(wordcount.items()):
     print '%s\t%i' % (word, count)
```

#### **Hadoop Streaming**

- Streaming Reducer receives single lines (which are key/value pairs) from stdin
  - Regular Reducer receives a collection of all the values for a particular key
  - It is still the case that all the values for a particular key will go to a single Reducer

# Using Hadoop Distributed File System (HDFS)

- Can access HDFS through various shell commands (see Further Resources slide for link to documentation)
  - □ hadoop −put <localsrc> ... <dst>
  - hadoop –get <src> <localdst>
  - hadoop −ls
  - hadoop –rm file

#### Configuring Number of Tasks

- Normal method
  - jobConf.setNumMapTasks(400)
  - jobConf.setNumReduceTasks(4)
- Hadoop Streaming method
  - -jobconf mapred.map.tasks=400
  - -jobconf mapred.reduce.tasks=4
- Note: # of map tasks is only a hint to the framework. Actual number depends on the number of InputSplits generated

#### Running a Hadoop Job

- Place input file into HDFS:
  - hadoop fs -put ./input-file input-file
- Run either normal or streaming version:
  - hadoop jar Wordcount.jar org.myorg.Wordcount input-file output-file
  - hadoop jar hadoop-streaming.jar \
    - -input input-file \
    - -output output-file \
    - -file Streaming\_Mapper.py \
    - -mapper python Streaming\_Mapper.py \
    - -file Streaming\_Reducer.py \
    - -reducer python Streaming\_Reducer.py \

#### **Output Parsing**

- Output of the reduce tasks must be retrieved:
  - hadoop fs –get output-file hadoop-output
- This creates a directory of output files, 1 per reduce task
  - □ Output files numbered part-00000, part-00001, etc.
- Sample output of Wordcount

```
head –n5 part-00000
```

```
"tis 1
"come 2
"coming 1
"edwin 1
"found 1
```

# Case study 1

NetflixHadoop

#### NetflixHadoop: Problem Definition

- From Netflix Competition
  - Data: 100480507 rating data from 480189 users on 17770 movies.
  - Goal: Predict unknown ratings for any given user and movie pairs.
  - Measurement: Use RMSE to measure the precision.
- The approach: Singular Value Decomposition (SVD)

#### NetflixHadoop: SVD algorithm

- A feature means...
  - User: Preference (I like sci-fi or comedy...)
  - Movie: Genres, contents, ...
  - Abstract attribute of the object it belongs to.
- Feature Vector
  - Each user has a user feature vector;
  - Each movie has a movie feature vector.
- Rating for a (user, movie) pair can be estimated by a linear combination of the feature vectors of the user and the movie.
- Algorithm: Train the feature vectors to minimize the prediction error!

#### NetflixHadoop: SVD Pseudcode

- Basic idea:
  - Initialize the feature vectors;
  - Recursively: calculate the error, adjust the feature vectors.

#### NetflixHadoop: Implementation

- Data Pre-process
  - Randomize the data sequence.
  - Mapper: for each record, randomly assign an integer key.
  - Reducer: do nothing; simply output (automatically sort the output based on the key)
  - Customized RatingOutputFormat from FileOutputFormat
    - Remove the key in the output.

#### NetflixHadoop: Implementation

- Feature Vector Training
  - Mapper: From an input (user, movie, rating),
     adjust the related feature vectors, output the vectors for the user and the movie.
  - Reducer: Compute the average of the feature vectors collected from the map phase for a given user/movie.
- Challenge: Global sharing feature vectors!

#### NetflixHadoop: Implementation

- Global sharing feature vectors
  - Global Variables: fail!
    - Different mappers use different JVM and no global variable available between different JVM.
  - Database (DBInputFormat): fail!
    - Error on configuration; expecting bad performance due to frequent updates (race condition, query start-up overhead)
  - Configuration files in Hadoop: fine!
    - Data can be shared and modified by different mappers;
       limited by the main memory of each working node.

#### NetflixHadoop: Experiments

- Experiments using single-thread, multi-thread and MapReduce
- Test Environment
  - Hadoop 0.19.1
  - Single-machine, virtual environment:
    - Host: 2.2 GHz Intel Core 2 Duo, 4GB 667 RAM, Max OS X
    - Virtual machine: 2 virtual processors, 748MB RAM each, Fedora 10.
  - Distributed environment:
    - 4 nodes (should be... currently 9 node)
    - 400 GB Hard Driver on each node
    - Hadoop Heap Size: 1GB (failed to finish)

#### NetflixHadoop: Experiments





#### 1 mapper v.s. 2 mapper2



### NetflixHadoop: Experiments



# Case study 2

**XML** Filtering

#### XML Filtering: Problem Definition

- Aimed at a publish/subscriber system utilizing distributed computation environment
  - Pub/sub: Queries are known, data are fed as a stream into the system (DBMS: data are known, queries are fed).

## XML Filtering: Pub/Sub System



## XML Filtering: Algorithms

- Use YFilter Algorithm
  - YFilter: XML queries are indexed as a NFA, then XML data is fed into the NFA and test the final state output.
  - Easy for parallel: queries can be partitioned and indexed separately.



### XML Filtering: Implementations

- Three benchmark platforms are implemented in our project:
  - Single-threaded: Directly apply the YFilter on the profiles and document stream.
  - Multi-threaded: Parallel YFilter onto different threads.
  - Map/Reduce: Parallel YFilter onto different machines (currently in pseudo-distributed environment).

## XML Filtering: Single-Threaded Implementation

- The index (NFA) is built once on the whole set of profiles.
- Documents then are streamed into the YFilter for matching.
- Matching results then are returned by YFilter.



## XML Filtering: Multi-Threaded Implementation

- Profiles are split into parts, and each part of the profiles are used to build a NFA separately.
- Each YFilter instance listens a port for income documents,
   then it outputs the results through the socket.



## XML Filtering: Map/Reduce Implementation

- Profile splitting: Profiles are read line by line with line number as the key and profile as the value.
  - Map: For each profile, assign a new key using (old\_key % split\_num)
  - Reduce: For all profiles with the same key, output them into a file.
  - Output: Separated profiles, each with profiles having the same (old\_key % split\_num) value.

## XML Filtering: Map/Reduce Implementation

- Document matching: Split profiles are read file by file with file number as the key and profiles as the value.
  - Map: For each set of profiles, run YFilter on the document (fed as a configuration of the job), and output the old\_key of the matching profile as the key and the file number as the values.
  - Reduce: Just collect results.
  - Output: All keys (line numbers) of matching profiles.

# XML Filtering: Map/Reduce Implementation



#### • Hardware:

- Macbook 2.2 GHz Intel Core 2 Duo
- 4G 667 MHz DDR2 SDRAM

#### • Software:

- Java 1.6.0\_17, 1GB heap size
- Cloudera Hadoop Distribution (0.20.1) in a virtual machine.

#### Data:

- XML docs: SIGMOD Record (9 files).
- Profiles: 25K and 50K profiles on SIGMOD Record.

| Data | 1      | 2      | 3      | 4      | 5      | 6     | 7     | 8     | 9     |
|------|--------|--------|--------|--------|--------|-------|-------|-------|-------|
| Size | 478416 | 415043 | 312515 | 213197 | 103528 | 53019 | 42128 | 30467 | 20984 |

- Run-out-of-memory: We encountered this problem in all the three benchmarks, however Hadoop is much robust on this:
  - Smaller profile split
  - Map phase scheduler uses the memory wisely.
- Race-condition: since the YFilter code we are using is not thread-safe, in multi-threaded version race-condition messes the results; however Hadoop works this around by its shared-nothing run-time.
  - Separate JVM are used for different mappers, instead of threads that may share something lower-level.





#### Map/Reduce: # of Splits on Profiles









