Propiedades de las opciones sobre acciones

Profesor: Miguel Jiménez

Factores que influyen en la prima de las opciones

Fecha	Opción de compra europea	Opción de venta europea	Opción de compra americana	Opción de venta americana
Precio actual de la acción, $\mathbf{S_0}$	+	-	+	-
Precio de ejercicio, K	-	+	-	+
Tiempo para la expiración, T	?	?	+	+
Volatilidad, σ	+	+	+	+
Tasa libre de riesgo, r	+	-	+	-
Dividendos, D	-	+	_	+

^{+:} Incremento en la variable ocasiona que el precio de la opción aumente.

^{-:} Incremento en la variable ocasiona que el precio de la opción disminuya.

^{?:} Relación incierta.

Límites superior e inferior para los precios de las opciones

Supuestos y notación

- 1. No hay costos de transacciones.
- 2. Igual tasa impositiva para las utilidades de las negociaciones.
- 3. Se puede prestar y pedir prestado a la tasa libre de riesgo.

S₀: Precio actual de la acción en el mercado *spot*.

K: Precio de ejercicio o strike de la opción.

T: Plazo para la expiración o vencimiento de la opción.

S_T: Precio de la acción en el mercado *spot* en la fecha de vencimiento.

r: Tasa libre de riesgo con capitalización continua para una inversión que vence en el plazo T.

C: Valor de una opción de compra americana para adquirir una acción.

P: Valor de una opción de venta americana para vender una acción.

c: Valor de una opción de compra europea para adquirir una acción.

p: Valor de una opción de venta europea para vender una acción.

Límite superior

Opción de compra:

Americana: $C \le S_0$

Europea: $c \le S_0$

La opción nunca valdrá más que la acción.

Oportunidad de arbitraje: Comprar la acción y venta opción de compra.

Opción de venta:

Americana: P ≤ K

Europea: p ≤ Ke^{-rT}

La opción nunca valdrá más el strike.

Oportunidad de arbitraje: Emitir (vender) la opción de venta e invirtiendo lo recibido a la tasa de interés libre de riesgo.

Límite inferior

Opción de compra:

Americana: $C > S_0 - Ke^{-rT}$

Europea: $c \ge máx(S_0 - Ke^{-rT};0)$

$$C \ge c$$

En las *call* americanas no es conveniente el ejercicio anticipado.

El precio de la opción de compra americana C siempre es mayor que el valor intrínseco de la opción antes del vencimiento.

Opción de venta:

Americana: $P \ge máx(K - S_0; 0)$

Europea: $p \ge máx(Ke^{-rT} - S_0;0)$

En las *put* americanas podría ser mejor ejercer anticipadamente para obtener en una fecha anticipada el precio *strike*.

Resumen límites de las opciones

$$S_0 - Ke^{-rT} \le C \le S_0$$

$$C \ge c$$

$$máx(S_0 - Ke^{-rT}; 0) \le \mathbf{c} \le S_0$$

$$máx(K - S_0; 0) \le P \le K$$

$$máx(Ke^{-rT} - S_0;0) \le p \le Ke^{-rT}$$

Portafolio A:

- Opción de compra europea
- Bono cupón cero que en T entregará un beneficio igual a K

Portafolio B:

- Opción de venta europea
- Acción

Supuestos:

- Las acciones no pagan dividendos.
- Las opciones tienen el mismo precio de ejercicio K y mismo plazo al vencimiento T.

Valores de los portafolios en el momento T:

_			_
	rtafo		Λ.
PU	ıcaiv	ш	$\boldsymbol{\wedge}$

Opción de compra

Bono cupón cero

TOTAL

 $S_T > K$

 $S_T - K$

K

S

Portafolio B:

Opción de venta

Acción

TOTAL

0

 $K - S_T$

 $S_T < K$

0

K

K

 S_{T}

S_T

S

K

Valores de los portafolios en el momento T:

Opción de compra

Bono cupón cero

TOTAL

Portafolio B:

Opción de venta

Acción

TOTAL

Opciones europeas:

Componentes portafolio A el día de hoy:

$$c + Ke^{-rT} = p + S_0$$

Componentes portafolio B el día de hoy:

$$p + S_0$$

Esta relación se conoce como paridad venta-compra (o *put-call*) y muestra que el valor de una opción de compra europea con determinado precio y fecha de ejercicio se puede deducir del valor de una opción de venta europea con igual precio y fecha de ejercicio, y viceversa.

Opciones americanas:

$$S_0 - K \le C - P \le S_0 - Ke^{-rT}$$

Ejemplo No. 1

¿Cuál es el límite inferior para el precio de una opción de compra europea a cuatro meses sobre una acción que no paga dividendos, cuando el precio de la acción es de \$28, el precio de ejercicio es de \$25 y la tasa libre de riesgo es de 8% continua anual?

T 4 meses

S₀ \$28,00

K \$25,00

r 8% Continua anual

(Hull, 2014; p. 250)

Opción de compra europea:

$$c \ge máx(S_0 - Ke^{-rT};0)$$

Límite inferior Opción de compra \$3,66

Ejemplo No. 2

¿Cuál es el límite inferior para el precio de una opción de venta europea a un mes sobre una acción que no paga dividendos, cuando el precio de la acción es de \$12, el precio de ejercicio es de \$15 y la tasa libre de riesgo es de 6% continua anual?

T 1 mes S_0 \$12,00 K \$15,00 r 6% Continua anual

Opción de venta europea:

$$p \ge máx(Ke^{-rT} - S_0;0)$$

Límite inferior Opción de venta \$2,93

(Hull, 2014; p. 250)

Ejemplo No. 3

El precio de una acción que no paga dividendos es de \$19 y el precio de una opción de compra europea a tres meses sobre esta acción con un precio de ejercicio de \$20 es de \$1. La tasa de interés libre de riesgo es de 4% continua anual. ¿Cuál es el precio de una opción de venta europea con un precio de ejercicio de \$20?

$$c + Ke^{-rT} = p + S_0$$

$$p = c + Ke^{-rT} - S_0$$

$$p = $1,80$$

(Hull, 2014; p. 250)

Propiedades de las opciones sobre acciones

Gracias

Profesor: Miguel Jiménez