## CE 363-364 Homework-3-Solution

## **Question 1**



a) Elevation head, Pressure head, Total head at plane X-X,

$$h_A=z_A+u_A/\gamma_w$$
 
$$h_A=8\,m\,(\,elev.head\,)+1.5\,m\,(\,pressure\,head\,)=9.5\,m$$
 
$$h_B=4\,m\,(\,elev.head\,)+7.5\,m\,(\,pressure\,head\,)=11.5\,m$$
 
$$\Delta h=2\,m$$

The flow direction is from greater head to lower head.

#### OR

You could also calculate the head difference between points A and B by finding the reservoir head differences which is  $2 \text{ m} = \Delta H$ .

To contiune with X-X plane calculations , it is better to find hydraulic gradient in the soil :

$$i = \frac{\Delta H}{I} = \frac{2 m}{4 m} = 0.5$$
 (b)

OR

$$i = \frac{\Delta H}{L} = \frac{11.5 \, m - 9.5 \, m}{4 \, m} = 0.5$$

### At X-X Section

$$z = 7.5 m$$
,  $h_{x-x} = h_B - (3.5 m) * i$ 

$$h_{x-x} = 11.5 m - 3.5 m * 0.5 = 9.75 m$$

OR

$$h_{x-x} = h_A + 0.5 * i = 9.5 m + 0.5 * 0.5 = 9.75 m$$
 Total Head

Since 
$$h_{x-x}=z_{x-x}+\frac{u_{x-x}}{\gamma_w};$$
  $z_{x-x}=7.5~m$ , Elev. Head

$$\frac{u_{x-x}}{\gamma_w} = 9.75 \ m - 7.5 \ m = 2.25 \ m$$
 Pressure Head

c) 
$$q = k * i = (2 * 10^{-3} cm/s) * (0.5) = 10^{-3} cm/s$$

$$A = \pi * \frac{(20 \ cm)^2}{4} = 314 \ cm^2$$

$$Q = A * k * i = 314 \text{ cm}^2 * 10^{-3} \text{ cm/s} = 0.314 \text{ cm}^3/\text{s}$$

$$1 \, day = 86400 \, s$$
 ,  $Q = 0.314 \, (cm^3)/s * 86400 \, s = 27130 \, cm^3/day = 0.027 \, m^3/day$ 

d) Eff. Stress on plane X-X,

Total Stress on  $X - X : 1.5 \text{ m} * 10 \text{kN/m}^3 + 0.5 \text{ m} * 20 \text{kN/m}^3 = 25 \text{ kN/m}^2$ 

Pore Pressure on 
$$X - X$$
:  $\frac{u_{x-x}}{\gamma_w} = 2.25 \text{ m}$ ;  $u_{x-x} = 22.5 \text{ kN/m}^2$ 

$$\sigma'_{x-x} = \sigma_{x-x} - u_{x-x} = 25\,kN/m^2 - 22.5\,kN/m^2 = 2.5\,kN/m^2$$

e) For quick condition;

$$i > i_c$$

$$i_c = \frac{\gamma'}{\gamma_w} = \frac{20 \, kN/m^3 - 10 \, kN/m^3}{10 \, kN/m^3} = 1$$

So whenever i > 1 condition is satisfied, then quick condition or boiling occurs :

$$i=rac{\Delta H_i}{L}$$
 ; initially head difference is  $2m$  ,  $i_{initial}=rac{2\ m}{4\ m}=0.5$ 

For 
$$i = \frac{\Delta H_f}{L} > 1$$
;  $\Delta H_f > 4 m$ ,  $\Delta H_f - \Delta H_i > 4 m - 2 m = 2 m$ 

For boiling we should raise the water level on the right side for 2 m.

### **Question 2**



The bottom (where sand and impermeable layer intersects) was selected as DATUM.

$$\Delta H \ (\ between\ A\ and\ B\ ) = 4.5\ m$$
 
$$(\ h_A = 8.25\ m + 2.5\ m = 10.75\ m\ , h_B = 6.25\ m\ )$$
 The head loss between two energy lines : 
$$\frac{\Delta H}{N_d} = \frac{4.5\ m}{10} = 0.45\ m$$

### At Point E

( By making the necessary scaling, the depth of " E" is measured as 2.5 m from the bottom of excavation )  $\sigma_E=2.5~m*19~kN/m^3=47.5~kN/m^2$ 

$$h_E = h_B + 2.5 * 0.45 \quad (2.5 \, drops)$$
  $OR$   $h_E = h_A - 7.5 * 0.45$   $h_E = 6.25 \, m + 2.5 * 0.45 = 7.375 \, m$   $h_E = z_E + \frac{u_E}{\gamma_W}$  ,  $7.375 \, m = 3.75 \, m + \frac{u_E}{\gamma_W}$  ;  $u_E = 36.25 \, kN/m^2$   $\sigma_E' = 47.5 \, kN/m^2 - 36.25 \, kN/m^2 = 11.25 \, kN/m^2$ 

#### At point F

$$\sigma_F = 19 \, kN/m^3 * 6 \, m + 2.5 \, m * 10 \, kN/m^3 = 139 \, kN/m^2$$

$$h_F = h_A - 2 * 0.45$$

$$h_F = 10.75 \, m - 0.9 \, m = 9.85 \, m$$

$$9.85 \, m = 2.25 \, m + \frac{u_F}{\gamma_w}; \quad u_F = 76 \, kN/m^2$$

$$\sigma_F' = 139 \, kN/m^2 - 76 \, kN/m^2 = 63 \, kN/m^2$$

b) Estimation of the hydraulic gradient at E and F,

$$i_E \approx \frac{\Delta H}{l_e} = \frac{0.45 \, m}{1.17 \, m} = 0.38$$

( There is one drop and used length,  $l_{\rm e}$ , which is measured according to scale , is shown on the figure with red ).

$$i_F \approx \frac{\Delta H}{l_f} = \frac{2*0.45 \, m}{4.17 \, m} = 0.22$$

( Two drops around F is selected and an average is calculated. Length  $l_f$ , which is measured according to scale, is shown on the figure with red).

c) In the calculations below , the subscript b refers to back of the wall and the subscript f refers to front of the wall ( All the calculations were done for scaled measurements )

| Level | z(m)  | h <sub>b</sub> ( m ) | u <sub>b</sub> / γ <sub>w</sub> ( m) | hf (m) | uf / γw ( m) | ub - uf ( kN/ m <sup>2</sup> ) |
|-------|-------|----------------------|--------------------------------------|--------|--------------|--------------------------------|
| 1     | 10,75 | 10,75                | 0,00                                 |        | 0,00         | 0                              |
| 2     | 8,25  | 10,75                | 2,50                                 |        | 0,00         | 25                             |
| 3     | 6,25  | 10,39                | 4,14                                 | 6,25   | 0,00         | 41,4                           |
| 4     | 5,75  | 10,3                 | 4,55                                 | 6,61   | 0,86         | 36,9                           |
| 5     | 3,58  | 9,85                 | 6,27                                 | 7,6    | 4,02         | 22,5                           |
| 6     | 2,42  | 9,4                  | 6,98                                 | 8,41   | 5,99         | 9,9                            |
| 7     | 2,25  | 9,31                 | 7,06                                 | 8,73   | 6,48         | 5,85                           |

Water pressure distribution occurs as follows:

| Level | u <sub>b</sub> ( kN/m <sup>2</sup> ) | u <sub>f</sub> ( kN/m <sup>2</sup> ) | ub - uf ( kN/ m <sup>2</sup> ) |
|-------|--------------------------------------|--------------------------------------|--------------------------------|
| 1     | 0                                    | 0                                    | 0                              |
| 2     | 25                                   | 0                                    | 25                             |
| 3     | 41,4                                 | 0                                    | 41,4                           |
| 4     | 45,5                                 | 8,6                                  | 36,9                           |
| 5     | 62,7                                 | 40,2                                 | 22,5                           |
| 6     | 69,8                                 | 59,9                                 | 9,9                            |
| 7     | 70,6                                 | 64,8                                 | 5,85                           |

For instance, calculation for point 6:

$$h_6=z_6+u_6/\gamma$$
 
$$z_6=2.42~m~, h_{6b}=h_A-3*0.45=10.75~m-1.35~m=9.4~m(at~the~back~of~the~wall)$$
 
$$u_{6b}/\gamma=9.4~m-2.42~m=6.98~m$$
 
$$u_{6b}=69.8~kPa$$
 
$$h_{6f}=h_B+4.8*0.45=6.25+2.16=8.41~m~(4.8~drops~from~point~B)$$
 
$$u_{6f}/\gamma=8.41~m-2.42~m=5.99~m$$
 
$$u_{6f}=59.9~kPa$$
 
$$u_{6b}-u_{6f}=69.8-59.9=9.9~kPa$$



Water Pressure Distribution



**Net Water Pressure Distribution** 

$$R = (10.75 - 8.25) * \frac{25 \text{ kPa}}{2} + (8.25 - 6.25) * \frac{41.4 \text{ kPa} + 25 \text{ kPa}}{2} + (6.25 - 5.75) * \frac{41.4 \text{ kPa} + 36.9 \text{ kPa}}{2} + (5.75 - 3.58) * \frac{36.9 \text{ kPa} + 22.5 \text{ kPa}}{2} + (3.58 - 2.42) * \frac{22.5 \text{ kPa} + 9.9 \text{ kPa}}{2} + (2.42 - 2.25) * \frac{9.9 \text{ kPa} + 5.85 \text{ kPa}}{2}$$

$$R = 31.25 \, kN/m + 66.4 \, kN/m + 19.58 \, kN/m + 64.45 \, kN/m + 18.79 \, kN/m + 1.34 \, kN/m$$
  
 $R = 201.81 \, kN/m \quad (per meter thickness of wall into the page)$ 

d) F.S against boiling at the excavated surface:

$$i_c = \frac{\gamma'}{\gamma_w} = \frac{19 \, kN/m^3 - 10 \, kN/m^3}{10 \, kN/m^3} = 0.9$$

We could check the boiling tendency approximately in d \* d/2 area shown with red line in the figure.

Average head at the bottom of this line (at a point shown with black dot)

For 4.5 head drops,

$$\Delta H = 4.5 * 0.45 \ m = 1.8 \ m$$
 ,  $L = 4.33 \ m$  ,  $i = \frac{\Delta H}{L} = \frac{1.8 \ m}{4.33} = 0.42$ 

$$F.S = \frac{0.9}{0.42} = 2.14$$

# **Question 3**



b) 
$$q = k * h * \frac{N_f}{N_d} = 10^{-6} \text{ m/sec} * 6 \text{ m} * \frac{4}{6} = 4 * 10^{-6} \text{ m}^3/\text{sec}$$

( per meter thickness of levee wall)