Exame de preparação

13/01/2023 -duração: 2h

Selecione uma única opção por cada pergunta

- 1. O projeto de uma estrutura aeroespacial em que grandes deformações prejudicam o desempenho deve ser pensado com base
 - a) na resistência do material, de forma a minimizar as deformações das peças;
 - b) na resistência do material, de forma a minimizar a massa das peças;
 - c) na rigidez do material, de forma a minimizar as deformações das peças;
 - d) na otimização da massa.
- 2. Uma estrutura reticulada é formada por barras articuladas de forma a
 - a) permitir a rotação livre das barras, possibilitando o funcionamento como mecanismo;
 - b) permitir a rotação livre das barras para minimizar a sua carga axial;
 - c) permitir a rotação livre das barras para suportar apenas carga axial;
 - d) permitir a facilitar a montagem das estruturas.
- 3. Considerando a estrutura simétrica da figura onde $\overline{ac} = \overline{cd} = 4$, $\overline{ab} = \overline{bd} = 5$, $\overline{bc} = 3$ e F = 100N, a barra ab está sujeita a uma carga de

- a) $\frac{100}{2} N$;
- b) 100 N;
- c) $\frac{100 \times 5}{3 \times 2} N$;
- d) $\frac{100 \times 5}{4 \times 2} N$
- 4. Considerando as estruturas formadas por vigas e pórticos, identificar qual é isostática

- 5. Estruturas de casca são interessantes em estruturas aeroespaciais pressurizadas por
 - a) Permitirem o reforço com base na geometria ou com base em elementos adicionais;
 - b) Serem fáceis de produzir;
 - c) Suportarem cargas de vedação para além de cargas de tensão, compressão e corte;
 - d) Serem compatíveis com o fabrico em materiais compósitos e metálicos.

6. Sabendo que o momento de inercia de uma secção retangular em torno do eixo xx é dada por $I_{xx}=\frac{b.h^3}{12}$ e que o momento em torno de um eixo paralelo é dado por $I_{xx}=I_{xx}+A.d^2$, qual o momento de inercia da secção da uma estruturas sandwich com 480 mm de largura composta por duas chapas de alumínio de 1mm de espessura e núcleo de 9 mm

- a) $40 \, mm^4$;
- b) $12040 \ mm^4$;
- c) $24080 \ mm^4$;
- d) $80 \, mm^4$.
- 7. Na montagem de estruturas sandwich
 - a) Devem apenas ser utilizados incertos standard;
 - b) Devem utilizar-se maioritariamente colagens;
 - c) Deve ser utilizada uma combinação de colagens e incertos standard e especiais;
 - d) Deve evitar-se a necessidade de ligações
- 8. Sabendo que a mobilidade de um mecanismo no plano é determinada por M=n. $3-\sum_{i=1}^{j}(3-f_i)$, qual o número de graus de liberdade libres do mecanismo da figura?

- a) 1;
- b) 2;
- c) 3;
- d) 4.
- Num mecanismo que trabalhe com base em movimentos de rotação com velocidades muito baixas
 - a) Não é necessário proceder ao balanceamento;
 - b) Pode ser suficiente ter preocupações com o balanceamento dinâmico;
 - c) Pode ser suficiente ter preocupações com o balanceamento estático;
 - d) É relevante ter preocupações com o balanceamento estático e dinâmico
- 10. Relativamente à aplicabilidade de estruturas adaptativas em engenharia aeroespacial
 - a) As estruturas ativas são as mais relevantes devido à elevada rigidez;
 - b) As estruturas reconfiguráveis são as mais relevantes por se permitirem adaptar a diferentes condições de operação;
 - c) As estruturas implantáveis são as mais relevantes por facilitarem o transporte;
 - d) Apenas há testes experimentais devido ao baixo nível de confiança.

- 11. (selecionar a errada) Os mecanismos conformáveis substituem movimento relativo de peças pela deformação de uma única peça, tendo como principais vantagens
 - a) precisão de movimento devido à inexistência de folgas de montagem que possibilita movimento mais preciso;
 - b) baixo custo devido ao reduzido número de peças, facilidade de fabrico e dispensa de montagem;
 - c) facilidade de desenvolvimento devido ao reduzido número de peças a detalhar e dispensa de dimensionamento de folgas;
 - d) possibilidade de estabilidade em múltiplas posições.
- 12. As aplicações de origami de engenharia permitem a criação de estruturas com comportamento não clássico de materiais, como por exemplo o painel de caixa de ovos que apresenta um Coeficiente de Poisson positivo quando sujeito a uma carga axial e um Coeficiente de Poisson negativo quando sujeito a uma carga de flexão. Isto significa que um painel de caixa de ovos
 - a) é mais rígido quando sujeito a um esforço axial do que quando sujeito a um esforço de flexão;
 - b) é mais rígido quando sujeito a um esforço de flexão do que quando sujeito a um esforço axial;
 - c) comprime na direção oposta a uma axial de tração e expande num sentido quando fletido no sentido oposto;
 - d) expande na direção oposta a uma axial de tração e comprime num sentido quando fletido no sentido oposto.
- 13. No processo de ligação de peças do painel estrutural de uma cabine pressurizada
 - a) a soldadura é a solução mais interessante por produzir ligações rígidas;
 - a ligação aparafusada é a solução mais interessante por suportar esforços em qualquer direção;
 - a ligação entre componentes deve combinar ligações rebitadas e aparafusadas em função do sentido de carregamento;
 - d) a ligação rebitada é a mais interessante devido à estabilidade e confiabilidade da ligação.
- 14. A aplicação de um parafuso deve ser feita de forma a que
 - a) o corpo do parafuso esteja sempre alinhado com o esforço de carregamento;
 - b) o corpo do parafuso esteja sempre perpendicular ao carregamento;
 - c) o corpo do parafuso deve suportar apenas esforço axial, sendo o esforço de corte suportado pelo atrito causado entre a ligação;
 - d) o esforço seja distribuído pelas peças de forma a não carregar os elementos de ligação.

- 15. No desenvolvimento de um mecanismo deve ser minimizado o atrito entre todos os componentes móveis. A utilização de casquilhos tira partido do coeficiente de atrito baixo entre materiais para possibilitar soluções de montagem
 - a) que minimizam ao máximo a dissipação de energia;
 - b) compatíveis com os possíveis desalinhamentos;
 - c) com componentes simples, económicos e muito pouco volumosos;
 - d) que possibilitam suportar esforços em qualquer direção.
- 16. O tempo de vida de um rolamento depende de diversos fatores, devendo obedecer a um mínimo estimado com confiança de 90% dado por $L_{10}=\left(\frac{c}{p}\right)^p$, onde p=3 para rolamentos de esferas e p=10/3 para rolamentos de rolos. Considerando rolamentos de dimensões similares sujeitos à mesma carga,
 - a) o tempo de vida de um rolamento de rolos é menor que um rolamento de esferas;
 - b) o tempo de vida de um rolamento de rolos é ligeiramente maior que um rolamento de esferas;
 - c) o tempo de vida de um rolamento de rolos é significativamente maior que um rolamento de esferas;
 - d) o tempo de vida de um rolamento de esferas não é comprável com um rolamento de rolos;
- 17. Considerando o sistema de 4 rodas de atrito da figura, com a primeira roda a girar no sentido horário com 400 rpm, qual a velocidade e sentido de rotação da última roda?

- a) 1600 rpm no sentido horário;
- b) 200 rpm no sentido anti-horário;
- c) 100 rpm no sentido horário;
- d) 100 rpm no sentido anti-horário.
- 18. Considerando uma montagem onde ser pretende acoplar o eixo de um motor com binário baixo a um veio longo que poderá sofrer oscilações, o melhor acoplamento a utilizar é
 - a) acoplamento rígido;
 - b) união lateral (oldham);
 - c) acoplamento flexível (beam coupling);
 - d) junta flexível (jaw coupling);
- 19. O desenho de peças deve seguir alguns princípios de forma a minimizar o custo de produção e de montagem. Qual a propostas de desenho que deve ser evitada?

Daniel Afonso

20. A montagem de duas peças depende das folgas e das tolerâncias de fabrico. Sabendo que pelo método estatístico a probabilidade de interferência pode ser determinada com base

em:
$$\bar{x}=\sum x_i$$
, $s=\frac{tol}{3}$, $S=\sqrt{\sum s_i^2}$ e $Z^*=\frac{x^*-\bar{x}}{s}$, qual a probabilidade de interferência na montagem da peça B na cavidade da peça A, ambas fabricas com toleranciamento geral ISO2768-mK?

- a) 0%;
- b) 0,0018%;
- c) 0,18%;
- d) 2,91%.

Values in millimetres

Tolerance class		Permissible deviations for basic size range								
Designation	Description	0,5 ^a up to 3	over 3 up to 6	over 6 up to 30	over 30 up to 120	over 120 up to 400	over 400 up to 1 000	over 1 000 up to 2 000	over 2 000 up to 4 000	
f	fine	± 0,05	± 0,05	± 0,1	± 0.15	± 0,2	± 0,3	± 0,5	_	
m	medium	± 0,1	± 0,1	± 0,2	± 0,3	± 0,5	± 0,8	± 1,2	± 2	
c	coarse	± 0,2	± 0,3	± 0,5	± 0,8	± 1,2	± 2	± 3	± 4	
v	very coarse	_	± 0,5	± 1	± 1,5	± 2,5	± 4	± 6	± 8	
^a For nominal sizes below 0,5 mm, the deviations shall be indicated adjacent to the relevant nominal size(s).										

Z	0,00	0,01	0,02	0,03	0,04	0.05	0,06	0,07	0,08	0,09
-3,4	0,0003	0,0003	0,0003	0.0003	0.0003	0,0003	0,0003	0,0003	0,0003	0,0002
-3,3	0,0005	0.0005	0.0005	0.0004	0.0004	0,0004	0,0004	0,0004	0.0004	0,0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0,0006	0,0005	0,0005	0,000
-3,1	0,0010	0,0009	0,0009	0,0009	0,0008	0,0008	0,0008	0,0008	0.0007	0,000
-3.0	0,0013	0,0013	0,0013	0,0012	0.0012	0.0011	0,0011	0,0011	0,0010	0,0010
-2,9	0,0019	0,0018	0,0018	0.0017	0,0016	0,0016	0,0015	0,0015	0,0014	0,0014
-2.8	0.0026	0,0025	0,0024	0,0023	0,0023	0,0022	0,0021	0,0021	0,0020	0,0019
-2,7	0.0035	0,0034	0,0033	0,0032	0,0031	0,0030	0,0029	0,0028	0,0027	0,0026
-2,6	0,0047	0,0045	0.0044	0,0043	0,0041	0,0040	0,0039	0,0038	0,0037	0,0036
-2,5	0,0062	0,0060	0,0059	0,0057	0.0055	0,0054	0,0052	0,00511	0,0049	0,0048
-2,4	0,0082	0,0080	0.0078	0,0075	0,0073	0,0071	0,0069	0,0068	0.0066	0,0064
-2,3	0,0107	0,0104	0,0102	0,0099	0.0096	0,0094	0,0091	0,0089	0,0087	0,0084
-2.2	0,0139	0,0136	0,0132	0.0129	0.0125	0,0122	0,0119	0,0116	0.0113	0,0110
-2.1	0.0179	0,0174	0.0170	0,0166	0.0162	0,0158	0,0154	0,0150	0.0146	0,0143
-2.0	0,0228	0,0222	0.0217	0,0212	0,0207	0.0202	0,0197	0.0192	0,0188	0.0183
-1,9	0,0287	0,0281	0,0274	0,0268	0.0262	0,0256	0,0250	0,0244	0,0239	0,0233
-1,8	0,0359	0,0351	0,0344	0.0336	0,0329	0,0322	0,0314	0,0307	0,0301	0,0294
-1.7	0,0446	0,0436	0.0427	0,0418	0,0409	0,0401	0,0392	0,0384	0.0375	0,0367
-1,6	0,0548	0,0537	0.0526	0.0516	0,0505	0,0495	0,0485	0,0475	0.0465	0,0455
-1,5	0,0668	0.0655	0,0643	0,0630	0,0618	0,0606	0,0594	0.0582	0,0571	0.0559
-1.4	0,0808	0,0793	0.0778	0,0764	0,0749	0,0735	0,0721	0,0708	0,0694	0.0681
-1.3	0,0968	0,0951	0.0934	0,0918	0,0901	0,0885	0,0869	0,0853	0,0838	0,0823
-1.2	0,1151	0,1131	0,1112	0,1093	0,1075	0,1056	0,1038	0,1020	0,1003	0,0985
-1.1	0,1357	0,1335	0.1314	0,1292	0,1271	0,1251	0,1230	0.1210	0,1190	0,1170
-1,0	0.1587	0,1562	0,1539	0,1515	0,1492	0,1469	0,1446	0,1423	0,1401	0,1379
-0.9	0.1841	0,1814	0,1788	0,1762	0,1736	0,1711	0,1685	0,1660	0,1635	0,1611
-0,8	0,2119	0,2090	0,2061	0,2033	0,2005	0,1977	0,1949	0,1922	0,1894	0,1867
-0.7	0,2420	0,2389	0,2358	0,2327	0,2296	0,2266	0,2236	0,2206	0,2177	0,2148
-0,6	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578	0,2546	0,2514	0,2483	0,2451
-0,5	0.3085	0,3050	0,3015	0,2981	0,2946	0,2912	0,2877	0,2843	0,2810	0,2776