Aufgaben zum elektrostatischen Feld

Lie.

- 1) Warum kann es im Inneren eines Leiters kein elektrostatisches Feld geben?
- 2) Warum können Feldlinien nie schräg auf einen Leiter treffen? Tipp: Zerlegen Sie den Feldstärkevektor in Komponenten parallel und senkrecht zur Leiteroberfläche.
- 3) Kann es gekreuzte Feldlinien geben?
- 4 a) Welche Kraft und b) welche Beschleunigung erfährt ein Alphateilchen in einem Feld der Stärke 870 kV/m?
- 5) Zwei Punktladungen Q_1 = +1.8 μ C und Q_2 = -0.93 μ C sind r_3 = 50 cm voneinander entfernt. Wie gross ist der Feldstärkevektor an der Stelle, die r_1 = 40 cm von der ersten Ladung und r_2 = 30 cm von der zweiten Ladung entfernt ist? Bestimmen Sie auch den Winkel zwischen dem Feldstärkevektor und dem Abstandsvektor r_1 .
- 6) Vier gleichgrosse Punktladungen mit |Q| = 874 nC sind in den Ecken eines Quadrats von 0.372 m Kantenlänge angeordnet. Man berechne die Feldstärke im Mittelpunkt
- a) wenn alle Ladungen gleiches Vorzeichen haben.
- b) wenn jeweils zwei gleichnamig sind.
- 7) 0.2 kV/m ist die Schönwetterfeldstärke an der Erdoberfläche. Der Vektor zeigt nach unten. Die Erde darf als leitende Kugel betrachtet werden. Wie gross ist ihre Ladung?
- 8) Lange Drähte mit Durchmesser 0.50 mm werden in Luft gespannt und aufgeladen (Ozonisator). Ab welcher Linienladungsdichte (C/m) sind an der Drahtoberfläche Entladungserscheinungen zu beobachten?
- 9) Ein Kondensator mit Plattenfläche 1.3 dm² und Spaltbreite 1.5 cm wird mit 0.53 nC geladen. Ein Elektron löst sich von der negativen Platte und bewegt sich im Spalt.
- a) Wie gross ist die Feldstärke im evakuierten Plattenspalt?
- b) Wie gross ist die Beschleunigung des Elektrons?
- c) Mit welcher Geschwindigkeit schlägt es auf der anderen Platte auf?

Lösungen: 1) - 2) - 3) - 4a) $2.79 \cdot 10^{-13}$ N b) $4.19 \cdot 10^{13}$ m/s² 5) 137 kV/m, $42.6^{\circ} = 0.74$ rad 6a) 0 b) 0 oder 321 kV/m 7) $-9 \cdot 10^{5}$ C 8) $4 \cdot 10^{-8}$ C/m 9a) 4.6 kV/m b) $8.1 \cdot 10^{14}$ m/s² c) $4.9 \cdot 10^{6}$ m/s