Simulating X-ray Burst Flame Propagation: From Parallel Plane to Full Star

Zhi Chen¹ and Mike Zingale¹

¹Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA

INTRODUCTION

An X-ray burst (XRB) is a thermonuclear runaway caused by the ignition of the accreted fuel on the surface of a neutron star. The burst oscillation behavior observed during the rise-time of the burst and difference between the accretion and burst timescales both suggest that nuclear ignition is likely to begin in a localized region (hotspot), and spread to the rest of the neutron star. **The goal is to** use numerical simulations to study the XRB flame dynamics:

- 1) Study the effect of nuclear reactions on ⁴He flame propagation in a localized region on the rotating pole with 2D R-Z geometry.
- 2) Study the effect of variation in rotational forces on ⁴He flame as it spreads across the full star with 2D R- θ geometry.

INITIAL MODEL

- Corotating frame with consideration of rotating pseudo forces.
- Assumed a 1.4 M $_{\odot}$ NS with R = 11 km and Ω = 1000 Hz.
- Pure Helium-4 accretion layer for pure Helium XRB.
- Initial model is in hydrostatic equilibrium.
- Isothermal base with $T = T_*$ and pure ⁵⁶Ni composition for $0 < z < H_*$ to represent the underlying neutron star.
- A transition phase with prescribed temperature and composition profiles that blend the base and atmosphere for $H_* < z < H_* + 3\delta_{atm}$.
- Isentropic atmosphere with pure ⁴He composition for $z > H_* + 3\delta_{atm}$ to represent the accretion layer.
- A temperature perturbation on the left part of the domain to drive a rightward propagating flame, a spreading hotspot for our geometry.

Fig: Zoom-in of the initial temperature profile. A temperature perturbation of 1.2 GK is set on the left edge of the domain to start the burning.

CODE

Castro Microphysics Pynucastro

https://github.com/AMReX-Astro/Castro https://github.com/AMReX-Astro/Microphysics https://github.com/pynucastro/pynucastro

New Contributions Are Welcome!

PARALLEL PLANE SIMULATION RESULTS

Plane Parallel Local Simulation:

- 9216 × 1536 zones or 20 cm resolution in finest grid
- $\mathbf{R} = [0, 1.843 \times 10^5 \text{ cm}] \text{ and } \mathbf{Z} = [0, 3.072 \times 10^4 \text{ cm}]$
- \sim 3,000 GPU node hours to finish at t = 120 ms.
- Shows results between two networks: aprox13 and subch_simple, they differ as subch_simple includes:

Fig: Slice plot showing average atomic weight at t = 50 ms.

Fig: Top Panels: Time evolution of the density weighted T (left), nuclear energy generation rate (mid), and flame position (right). Bot Panels: Time evolution of total mass of ¹²C, ¹⁶O, and ³²S.

SPHERICAL POLAR SIMULATION RESULTS

Spherical Polar Local simulation:

- $R = [11 \text{ km}, 11.3072 \text{ km}], \theta = [0, 10^{\circ}]$
- 1536 × 9360 zones or 20 cm res
- \bullet ~ 2,000 node hours to reach 120 ms.
- A test run to demonstrate that the spherical-polar geometry is well behaved.

Full – Star simulation:

- $R = [11 \text{ km}, 11.3072 \text{ km}], \theta = [0, \pi]$
- 1536 × 172,800 zones or 20 x 20 cm resolution
- Will need ~100,000 node hours to finish.
- Ongoing simulation!

t = 50 ms. Black Dashed line indicates the flame front position, determined by the leading edge of the energy generation rate. Burning ash is more uniform compared to the plane-parallel run.

Fig: Time evolution of the flame front position with fitted curve shown in Blue. Derived fitted angular velocity shown in Red.

Fig: Full Star slice plot with zoom-in shown in the center, showing nuclear energy generation rate.