

Report No.: EED32L00034202 Page 1 of 40

TEST REPORT

Product : uKit Robot
Trade mark : UBTECH

Model/Type reference : ERUB101, ERUwxyy

Serial Number : N/A

Report Number : EED32L00034202 FCC ID : 2AHJX-UKITERU Date of Issue : Apr. 02, 2019

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

UBTECH ROBOTICS CORP LTD 16th and 22nd Floor, Block C1, Nanshan I Park, No.1001 Xueyuan Road, Nanshan District, Shenzhen City, P.R.CHINA

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Tay Zheng

Compiled by:

Kevin Lan

Jay Zheng

Mare Xm

Ware Xin

Date:

Reviewed by:

Apr. 02, 2019

ReJn }

Kevin Yang

Check No.: 3096316262

Report No.: EED32L00034202

2 Version

Version No.	Date	(6)	Description)
00	Apr. 02, 2019		Original	
	*	12	713	/15
((45)	(675)	(6/2)

Report No.: EED32L00034202 Page 3 of 40

3 Test Summary

3 rest Summary			
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

Model No.: ERUB101, ERUwxyy

Only the model ERUB101 was tested, ERUwxyy(" w "can be a-z, indicating the product version; "x" can be 0-9, indicating the product category; "y" can be 0-9, indicating the product attributes.).All models are identical in interior structure, electrical circuits and components, only different from model name and color.

Report No.: EED32L00034202 Page 4 of 40

4 Content

1 COVER PAGE					1
2 VERSION			•••••		2
3 TEST SUMMARY			•••••	•••••	3
4 CONTENT					4
5 TEST REQUIREMEN	Т				5
5.1 TEST SETUP					5
	•				
		up			
		etup			
		TO THIS STANDARD			
		DITIONS			
		THE CUSTOMER			
		ONFIDENCE LEVELS, K=2)			
7 EQUIPMENT LIST					10
		SPECIFICATION			
		andwidth			
		Power			
		ucted Emissions			
		Emissions			
,					
		ed Emission			
		fundamental frequency			
		sions	,		
PHOTOGRAPHS OF T	EST SETUP	•••••	•••••		38
PHOTOGRAPHS OF E	UT CONSTRUCTIO	NAL DETAILS			40

Report No.: EED32L00034202 Page 5 of 40

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment for RF test:		
Temperature:	26°C	
Humidity:	54% RH	Tank in the case of the case o
Atmospheric Pressure:	101kPa	

5.3 Test Condition

Test channel:

Cot onarmor.					
Test Mode	Tu	RF Channel			
rest wode	Tx	Low(L)	Middle(M)	High(H)	
GFSK	2402MHz ~2480 MHz	Channel 1	Channel 20	Channel 40	
Gran	2402WIHZ ~2400 WIHZ	2402MHz	2440MHz	2480MHz	
TX mode:	The EUT transmitted the continuous signal at the specific channel(s).				
Charging mode:	Charging the EUT through charge	r.	(4		

6 General Information

6.1 Client Information

Applicant:	UBTECH ROBOTICS CORP LTD
Address of Applicant:	16th and 22nd Floor, Block C1, Nanshan I Park, No.1001 Xueyuan Road, Nanshan District, Shenzhen City, P.R.CHINA
Manufacturer:	UBTECH ROBOTICS CORP LTD
Address of Manufacturer:	16th and 22nd Floor, Block C1, Nanshan I Park, No.1001 Xueyuan Road, Nanshan District, Shenzhen City, P.R.CHINA
Factory:	UBTECH ROBOTICS CORP LTD BAOAN BRANCH
Address of Factory:	1-2 Floor, B Block, Huilongda Industry Park, Shilongzai, Shiyan Street, Baoan District, Shenzhen City, P.R.CHINA

6.2 General Description of EUT

Product Name:	uKit Robot		
Model No.:	ERUB101, ERU	Jwxyy	
Test Model No.:	ERUB101		(30)
Trade mark:	UBTECH	(0.)	(0,
EUT Supports Radios application:	BT 4.0 Dual mo	ode, 2402-2480MHz	
Power Supply:	AC Adapter	Model: PS1012-096HIB100 Input: 100-240V~ 50/60Hz, 0.4A Output: 9.6V1.0A	
	Battery	Lithium-ion Ploymer Battery:1200mAh 7.4V	
Hardware Version:	1.5(manufactur	er declare)	-0-
Software Version:	1.77(manufactu	urer declare)	(20)
Sample Received Date:	Feb. 28, 2019		10
Sample tested Date:	Mar. 13, 2019 t	to Mar. 28, 2019	

6.3 Product Specification subjective to this standard

2402MHz~2480MHz
4.0
DSSS
GFSK
40
N/A
ISRT_V2.1.26.4392(manufacturer declare)
PCB antenna
1dBi
AC 120V, 60Hz

Report No.: EED32L00034202 Page 8 of 40

-0.7			-	100		205	
Operation F	requency eac	h of channe	1	(23)			
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

Report No.: EED32L00034202 Page 9 of 40

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.46dB (30MHz-1GHz)
	RF power, conducted	0.55dB (1GHz-18GHz)
2	Dedicted Courieus emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction aminaian	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No.: EED32L00034202 Page 10 of 40

7 Equipment List

RF test system							
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-29-2020		
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-29-2020		
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-29-2020		
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398-0 02		01-09-2019	01-08-2020		
High-pass filter	MICRO-TRO NICS	SPA-F-63029-4		01-09-2019	01-08-2020		
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-29-2020		
PC-1	Lenovo	R4960d		03-01-2019	02-29-2020		
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-29-2020		
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-29-2020		
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-29-2020		
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-29-2020		
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-01-2019	02-29-2020		
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019		

Report No.: EED32L00034202

Page 1	1	of	40
--------	---	----	----

	Conducted disturbance Test										
Equipment	Manufacturer	Model No. Seria Numbe		Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)						
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019						
Temperature/ Humidity Indicator	Defu	TH128	1	07-02-2018	07-01-2019						
Communication test set	Agilent	gilent E5515C		03-01-2019	02-29-2020						
Communication test set			102898	01-18-2019	01-17-2020						
LISN	R&S	ENV216	100098 05-10-2018		05-10-2019						
LISN	schwarzbeck	NNLK8121	8121-529	05-10-2018	05-10-2019						
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020						
Current Probe	R&S	EZ-17 816.2063.03	100106	05-30-2018	05-29-2019						
ISN	TESEQ	ISN T800	30297	01-06-2019	01-15-2020						

Report No. : EED32L00034202 Page 12 of 40

3M Semi/full-anechoic Chamber										
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)					
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019					
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019					
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019					
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019					
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020					
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-18 69	04-25-2018	04-23-2021					
Horn Antenna	ETS-LINDGRE N	3117	00057410	06-05-2018	06-03-2021					
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021					
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.60 4 1	08-08-2018	08-07-2019					
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019					
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019					
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019					
Receiver	R&S	ESCI7	100938-0	11-23-2018	11-22-2019					
Multi device Controller	maturo	NCD/070/107 11112		01-09-2019	01-08-2020					
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019					
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019					
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-29-2020					
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	02-29-2020					
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019					
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-29-2020					
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020					
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020					
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020					
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020					
Communication test set	R&S	CMW500	104466	01-18-2019	01-17-2020					
High-pass filter	Sinoscite	FL3CX03WG 18NM12-039 8-002		01-09-2019	01-08-2020					
High-pass filter	MICRO- TRONICS	SPA-F-63029 -4		01-09-2019	01-08-2020					
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020					
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-09-2019	01-08-2020					
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-09-2019	01-08-2020					
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-09-2019	01-08-2020					

Report No.: EED32L00034202 Page 13 of 40

3M full-anechoic Chamber										
Equipment	Manufac turer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)					
RSE Automatic test software	JS Tonscen d	JS36-RSE	10166	06-20-2018	06-19-2019					
Receiver	Keysight	N9038A	MY57290136	03-28-2018 03-27-2019	03-27-2019 03-25-2020					
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-28-2018 03-27-2019	03-27-2019 03-25-2020					
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-28-2018 03-27-2019	03-27-2019 03-25-2020					
Loop Antenna	Schwarz beck	FMZB 1519B	1519B-075	04-25-2018	04-23-2021					
Loop Antenna	Schwarz beck	FMZB 1519B	1519B-076	04-25-2018	04-23-2021					
TRILOG Broadband Antenna	Schwarz beck	VULB 9163	9163-1148	04-25-2018	04-23-2021					
Horn Antenna	Schwarz beck	BBHA 9170	9170-832	04-25-2018	04-23-2021					
Horn Antenna	Schwarz beck	BBHA 9170	9170-829	04-25-2018	04-23-2021					
Communication Antenna	Schwarz beck	CLSA 0110L	1014	02-15-2018	02-14-2019					
Biconical antenna	Schwarz beck	VUBA 9117	9117-381	04-25-2018	04-23-2021					
Horn Antenna	ETS-		00057407	07-10-2018	07-08-2021					
Preamplifier	EMCI	EMC184055SE	980596	06-20-2018	06-19-2019					
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020					
Preamplifier	EMCI	EMC001330	980563	06-20-2018	06-19-2019					
Preamplifier	Agilent	8449B	3008A02425	08-21-2018	08-20-2019					
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	05-02-2018	05-01-2019					
Signal Generator	KEYSIG HT	E8257D	MY53401106	03-13-2018	03-12-2019					
Fully Anechoic Chamber	TDK	FAC-3	-	01-17-2018	01-15-2021					
Filter bank	JS Tonscen d	JS0806-F	188060094	04-10-2018	04-08-2021					
Cable line	Times	SFT205- NMSM-2.50M	394812-0001	01-09-2019	01-08-2020					
Cable line	Times	SFT205- NMSM-2.50M	394812-0002	01-09-2019	01-08-2020					
Cable line	Times	SFT205- NMSM-2.50M	394812-0003	01-09-2019	01-08-2020					
Cable line	Times	SFT205- NMSM-2.50M	393495-0001	01-09-2019	01-08-2020					
Cable line	Times	EMC104- NMNM-1000	SN160710	01-09-2019	01-08-2020					
Cable line	Times	SFT205- NMSM-3.00M	394813-0001	01-09-2019	01-08-2020					
Cable line	Times	SFT205- NMNM-1.50M	381964-0001	01-09-2019	01-08-2020					
Cable line	Times	SFT205- NMSM-7.00M	394815-0001	01-09-2019	01-08-2020					
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	01-09-2019	01-08-2020					

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	C63.10 Power Spectral Density		Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	rt15C Section ANSI C63.10 Radiated		PASS	Appendix I)

Report No. : EED32L00034202

Page 15 of 40

Appendix A): 6dB & 99% Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.5236	1.0989	PASS
BLE	MCH	0.5270	1.0966	PASS
BLE	НСН	0.5249	1.0981	PASS

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Test Graphs

Report No.: EED32L00034202

Report No.: EED32L00034202 Page 17 of 40

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-0.744	PASS
BLE	MCH	-1.177	PASS
BLE	НСН	-3.272	PASS

Report No. : EED32L00034202 Page 19 of 40

Appendix C): Band-edge for RF Conducted Emissions

Result Table

	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict	
5	BLE	LCH	-1.049	-59.191	-21.05	PASS	
	BLE	HCH	-3.767	-59.230	-23.77	PASS	

Report No. : EED32L00034202 Page 20 of 40

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-1.135	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-1.611	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	-3.844	<limit< td=""><td>PASS</td></limit<>	PASS

Report No.: EED32L00034202 Page 21 of 40

Report No.: EED32L00034202

Page 22 of 40

Report No.: EED32L00034202

Page 23 of 40

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-15.872	8	PASS
BLE	MCH	-16.418	8	PASS
BLE	нсн	-18.386	8	PASS

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No.: EED32L00034202 Page 25 of 40

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PCB antenna and no consideration of replacement. The best case gain of the antenna is 1dBi.

Report No.: EED32L00034202 Page 26 of 40

Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KH	Iz-30MHz							
	1)The mains terminal disturbance voltage test was conducted in a shielded room.								
	2) The EUT was connected to AC power source through a LISN 1 (Line Imped Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance power cables of all other units of the EUT were connected to a second LISW which was bonded to the ground reference plane in the same way as the L for the unit being measured. A multiple socket outlet strip was used to comultiple power cables to a single LISN provided the rating of the LISN was receded.								
	3)The tabletop EUT was pla reference plane. And for f horizontal ground reference	loor-standing arrangeme							
	4) The test was performed we EUT shall be 0.4 m from the reference plane was bond 1 was placed 0.8 m from ground reference plane plane. This distance was	the vertical ground referenced ded to the horizontal gro nothe boundary of the un for LISNs mounted on	ence plane. The ve und reference plar nit under test and n top of the groun	ertical ground ne. The LISN bonded to a nd reference					
	LISN 2. 5) In order to find the maximum		ent was at least 0. e positions of equip	8 m from the oment and al					
	LISN 2.	um emission, the relative	ent was at least 0. e positions of equip	8 m from the oment and al					
Limit:	LISN 2. 5) In order to find the maximum of the interface cables	um emission, the relative must be changed ac	ent was at least 0. e positions of equip	8 m from the oment and al					
Limit:	LISN 2. 5) In order to find the maximum of the interface cables conducted measurement.	um emission, the relative	ent was at least 0. e positions of equip	8 m from the oment and a					
Limit:	LISN 2. 5) In order to find the maximum of the interface cables	um emission, the relative must be changed ac	ent was at least 0. e positions of equip	8 m from the oment and al					
Limit:	LISN 2. 5) In order to find the maximum of the interface cables conducted measurement.	um emission, the relative must be changed ac	ent was at least 0. e positions of equipocording to ANSI	8 m from the oment and al					
Limit:	LISN 2. 5) In order to find the maximulation of the interface cables conducted measurement. Frequency range (MHz)	um emission, the relative must be changed ac Limit (d	ent was at least 0. e positions of equipocording to ANSI BµV) Average	8 m from the oment and a					
Limit:	LISN 2. 5) In order to find the maximum of the interface cables conducted measurement. Frequency range (MHz) 0.15-0.5	Limit (dl Quasi-peak 66 to 56*	ent was at least 0. e positions of equipecording to ANSI BµV) Average 56 to 46*	8 m from the oment and a					
Limit:	LISN 2. 5) In order to find the maximulation of the interface cables conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly MHz to 0.50 MHz.	Limit (d) Quasi-peak 66 to 56* 56 60 y with the logarithm of t	ent was at least 0. e positions of equipocording to ANSI BµV) Average 56 to 46* 46 50 he frequency in th	8 m from the					
Limit: Charging mode:	LISN 2. 5) In order to find the maximulation of the interface cables conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly	Limit (dl Quasi-peak 66 to 56* 56 60 y with the logarithm of to	ent was at least 0. e positions of equipocording to ANSI BµV) Average 56 to 46* 46 50 he frequency in th	8 m from the					

Report No.: EED32L00034202 Page 27 of 40

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:

		Read	ing_Le	evel	Correct	M	leasurem	ent	Lin	nit	Mai	rgin		
No.	Freq.	(0	∃Bu∀)		Factor		(dBuV)		(dB	uV)	(0	dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1580	34.98		-1.01	9.91	44.89		8.90	65.56	55.56	-20.67	-46.66	Р	
2	0.5140	30.48		0.41	9.91	40.39		10.32	56.00	46.00	-15.61	-35.68	Р	
3	1.1019	26.16		-6.66	9.80	35.96		3.14	56.00	46.00	-20.04	-42.86	Р	
4	1.5220	27.91		-4.79	9.76	37.67		4.97	56.00	46.00	-18.33	-41.03	Р	
5	6.3700	23.27		-8.18	9.74	33.01		1.56	60.00	50.00	-26.99	-48.44	Р	
6	16.4860	27.27		1.26	9.96	37.23		11.22	60.00	50.00	-22.77	-38.78	Р	

No.	Freq.		ling_Le dBuV)	evel	Correct Factor	IV	leasurem (dBuV)	ient	Lir (dB	nit u∀)		rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	36.34		7.03	9.91	46.25		16.94	65.99	55.99	-19.74	-39.05	Р	
2	0.4940	31.01		1.93	9.89	40.90		11.82	56.10	46.10	-15.20	-34.28	Р	
3	1.3900	25.49		-2.66	9.77	35.26		7.11	56.00	46.00	-20.74	-38.89	Р	
4	1.7180	25.04		-3.90	9.75	34.79		5.85	56.00	46.00	-21.21	-40.15	Р	
5	6.2900	20.17		-6.84	9.74	29.91		2.90	60.00	50.00	-30.09	-47.10	Р	
6	16.6500	23.51		-5.31	9.96	33.47		4.65	60.00	50.00	-26.53	-45.35	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

(110010100)	183 7	19.3	2	\	362 1	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	AL 4011-	Peak	1MHz	3MHz	Peak	-05
	Above 1GHz	Peak	1MHz	10Hz	Average	(3)
Test Procedure:	Below 1GHz test proced a. The EUT was placed at a 3 meter semi-and determine the position b. The EUT was set 3 m was mounted on the t c. The antenna height is determine the maximum polarizations of the ar d. For each suspected e the antenna was tune was turned from 0 det e. The test-receiver syst Bandwidth with Maxim f. Place a marker at the frequency to show co	dure as below: on the top of a roschoic camber. The of the highest rate ters away from top of a variable-between value of the finance are set to emission, the EUT of to heights from grees to 360 degreem was set to Penum Hold Mode, end of the restricts	otating table he table was adiation. the interfer neight ante meter to food to be also arranged to the table to find eak Detect	e 0.8 meter as rotated 3 rence-receinna tower. our meters h. Both hor measurement of 4 meters at the maximum function a	rs above the 360 degrees ving antenna above the grizontal and vent. worst case along the rotation reading and Specified the transmit	to a, whic ound t rertical ad the able
	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about to fully Anechoic Characterist 18GHz the distance is h. Test the EUT in the i. The radiation measure Transmitting mode, and j. Repeat above proced	trum analyzer plot the channel strum as below: Sove is the test site of the change form of the change form of the channel of	e, change fin table 0.8 le is 1.5 me the Highes rmed in X, kis position	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i	Anechoic Ch.5 meter(Ab	dulation nambe ove
₋imit:	Frequency	Limit (dBµV	/m @3m)	Rer	mark	
	30MHz-88MHz	40.0	/	Quasi-pe	eak Value	
	88MHz-216MHz	43.5	5	-	eak Value	
	216MHz-960MHz	46.0)	Quasi-pe	eak Value	
	960MHz-1GHz	54.0) (4	Quasi-pe	eak Value	
		54.0 54.0	167	· /	eak Value je Value	
	960MHz-1GHz Above 1GHz	e ⁻¹ /) (Averag		
Test Ambient:	Above 1GHz	54.0) (Averag	je Value	CH.

Report No.: EED32L00034202 Page 30 of 40

Test plot as follows:

Mode:	GFSK Transmitting	Channel:	2402
Remark:	Peak		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.49	52.67	74.00	21.33	Pass	Horizontal
2	2402.1464	32.26	13.31	-42.43	79.99	83.13	74.00	-9.13	Pass	Horizontal

Mode:	GFSK Transmitting	Channel:	2402	7
Remark:	Peak	(0)	7)	1/

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	51.67	54.85	74.00	19.15	Pass	Vertical
2	2402.1464	32.26	13.31	-42.43	73.81	76.95	74.00	-2.95	Pass	Vertical

I age of or T o	Page	31	of	40
----------------------------	------	----	----	----

Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		(0.)

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.42	41.60	54.00	12.40	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	63.10	66.24	54.00	-12.24	Pass	Horizontal

Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV	(25)	-

Test Graph

NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.62	41.80	54.00	12.20	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	59.34	62.48	54.00	-8.48	Pass	Vertical

Page	32	of	40
. ~9-		•	. •

Mode:	GFSK Transmitting	Channel:	2480
Remark:	Peak		(0.)

Test Graph

1	10	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2479.8623	32.37	13.39	-42.39	79.71	83.08	74.00	-9.08	Pass	Horizontal
	2	2483.5000	32.38	13.38	-42.40	49.47	52.83	74.00	21.17	Pass	Horizontal

Mode:	GFSK Transmitting	Channel:	2480	- 9
Remark:	Peak		1	- (,

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9061	32.37	13.39	-42.39	73.27	76.64	74.00	-2.64	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	49.21	52.57	74.00	21.43	Pass	Vertical

Report No.: EED32L00034202

Page 33 of 40

	Mode:	GFSK Transmitting	Channel:	2480
- (Remark:	AV	(12)	(3/2)

Test Graph

♠ PK Detector AV Detector Ant Cable Pream Freq. Reading Level Limit Margin gain NO Factor loss Result **Polarity** [dBµV/m] [MHz] [dBµV] [dBµV/m] [dB] [dB] [dB] [dB] **Pass** -13.70 1 2479.9937 32.37 13.39 -42.3964.33 67.70 54.00 Horizontal **Pass** Horizontal 2 2483.5000 32.38 13.38 -42.40 36.76 40.12 54.00 13.88

Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV	·	

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9499	32.37	13.39	-42.39	59.86	63.23	54.00	-9.23	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	36.74	40.10	54.00	13.90	Pass	Vertical

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
\	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	AL 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-0-	300
6)	0.490MHz-1.705MHz	24000/F(kHz)	-	(4)	30
/	1.705MHz-30MHz	30	-	0	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
(0,	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Test Ambient: Temp.: 24°C Humid.: 56% Press.: 101kPa

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

M	ode	e:		GFSK Tra	ınsmitting			Channel:		2440	
R	ema	ark:		QP							
N	NO Freq. Ant Factor [dB]		Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit Mag [dBµV/m] [dB		Result	Polarity	
1		48.0438	13.20	0.78	-32.12	43.32	25.18	40.00	14.82	Pass	Horizontal
2	2	84.0344	8.03	1.06	-32.08	50.04	27.05	40.00	12.95	Pass	Horizontal
3	3	107.9958	10.92	1.23	-32.07	53.73	33.81	43.50	9.69	Pass	Horizontal
4	ļ.	175.9996	8.78	1.56	-31.98	57.79	36.15	43.50	7.35	Pass	Horizontal
5	5	192.0062	10.14	1.62	-31.96	58.39	38.19	43.50	5.31	Pass	Horizontal
6	6	408.0468	15.53	2.41	-31.82	49.41	35.53	46.00	10.47	Pass	Horizontal

Mode	e:		GFSK Tra	ınsmitting			Channel:		2440		
Rem	ark:		QP	QP							
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	gain Reading L		Limit Magin [dBµV/m] [dB]		Result	Polarity	
1	48.0438	13.20	0.78	-32.12	43.36	25.22	40.00	14.78	Pass	Vertical	
2	95.9666	10.35	1.13	-32.07	55.22	34.63	43.50	8.87	Pass	Vertical	
3	120.0250	9.20	1.30	-32.07	53.03	31.46	43.50	12.04	Pass	Vertical	
4	143.9864	7.34	1.41	1.41 -31.99 54.28 31.0			43.50	12.46	Pass	Vertical	
5	208.0128	11.11	1.71	1 -31.95 47.05		27.92	43.50	15.58	Pass	Vertical	
6	408.0468	15.53	2.41 -31.82 43.11 29.23			29.23	46.00	16.77	Pass Vertical		

Remark: All the channels are tested, only the worst data were reported.

Report No.: EED32L00034202

Transmitter Emission above 1GHz

Mode	e :	GFSK T	ransmitt	ing			Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1429.8430	28.33	2.93	-42.68	51.71	40.29	74.00	33.71	Pass	Н	PK
2	1996.2996	31.68	3.47	-42.62	50.75	43.28	74.00	30.72	Pass	Н	PK
3	3295.1197	33.32	4.57	-41.95	51.12	47.06	74.00	26.94	Pass	Н	PK
4	4804.0000	34.50	4.55	-40.66	45.43	43.82	74.00	30.18	Pass	Н	PK
5	7206.0000	36.31	5.81	-41.02	43.75	44.85	74.00	29.15	Pass	Н	PK
6	9608.0000	37.64	6.63	-40.76	41.86	45.37	74.00	28.63	Pass	Н	PK
7	1396.8397	28.30	2.89	-42.68	55.31	43.82	74.00	30.18	Pass	V	PK
8	1897.0897	31.02	3.42	-42.66	55.72	47.50	74.00	26.50	Pass	V	PK
9	3189.8127	33.28	4.63	-42.01	51.62	47.52	74.00	26.48	Pass	V	PK
10	4804.0000	34.50	4.55	-40.66	45.06	43.45	74.00	30.55	Pass	V	PK
11	7206.0000	36.31	5.81	-41.02	44.61	45.71	74.00	28.29	Pass	V	PK
12	9608.0000	37.64	6.63	-40.76	42.57	46.08	74.00	27.92	Pass	V	PK

Mode:		GFSK Transmitting					Channel:		2440			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1396.2396	28.30	2.89	-42.68	52.00	40.51	74.00	33.49	Pass	Н	PK	
2	2195.9196	31.97	3.65	-42.52	53.72	46.82	74.00	27.18	Pass	Н	PK	
3	3163.1609	33.27	4.59	-42.03	49.63	45.46	74.00	28.54	Pass	Н	PK	
4	4880.0000	34.50	4.80	-40.60	45.29	43.99	74.00	30.01	Pass	Н	PK	
5	7320.0000	36.42	5.85	-40.92	43.89	45.24	74.00	28.76	Pass	Н	PK	
6	9760.0000	37.70	6.73	-40.62	41.00	44.81	74.00	29.19	Pass	Н	PK	
7	1398.8399	28.30	2.90	-42.68	56.18	44.70	74.00	29.30	Pass	V	PK	
8	1823.2823	30.53	3.35	-42.70	55.84	47.02	74.00	26.98	Pass	V	PK	
9	3191.1127	33.28	4.64	-42.01	52.66	48.57	74.00	25.43	Pass	V	PK	
10	4880.0000	34.50	4.80	-40.60	46.49	45.19	74.00	28.81	Pass	V	PK	
11	7320.0000	36.42	5.85	-40.92	44.48	45.83	74.00	28.17	Pass	V	PK	
12	9760.0000	37.70	6.73	-40.62	41.66	45.47	74.00	28.53	Pass	V	PK	

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No.: EED32L00034202 Page 37 of 40

	200			100		100	7%		200		
Mode	: :	GFSK Transmitting					Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1397.6398	28.30	2.90	-42.69	52.02	40.53	74.00	33.47	Pass	Н	PK
2	1947.6948	31.35	3.42	-42.63	50.73	42.87	74.00	31.13	Pass	Н	PK
3	2968.9969	33.15	4.46	-42.14	50.44	45.91	74.00	28.09	Pass	Н	PK
4	4960.0000	34.50	4.82	-40.53	45.79	44.58	74.00	29.42	Pass	Н	PK
5	7440.0000	36.54	5.85	-40.82	44.53	46.10	74.00	27.90	Pass	Н	PK
6	9920.0000	37.77	6.79	-40.48	43.52	47.60	74.00	26.40	Pass	Н	PK
7	1398.6399	28.30	2.90	-42.68	55.55	44.07	74.00	29.93	Pass	V	PK
8	1877.8878	30.89	3.40	-42.66	55.41	47.04	74.00	26.96	Pass	V	PK
9	3199.5633	33.28	4.65	-42.00	50.23	46.16	74.00	27.84	Pass	V	PK
10	4960.0000	34.50	4.82	-40.53	45.13	43.92	74.00	30.08	Pass	V	PK
11	7440.0000	36.54	5.85	-40.82	44.44	46.01	74.00	27.99	Pass	V	PK
12	9920.0000	37.77	6.79	-40.48	42.78	46.86	74.00	27.14	Pass	V	PK

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2)Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: EED32L00034202

PHOTOGRAPHS OF TEST SETUP

Test model No.: ERUB101

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)

Report No. : EED32L00034202 Page 39 of 40

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

Report No. : EED32L00034202 Page 40 of 40

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32L00034201 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

