专业

第七章总复习

1、填空题

- (4) 二阶线性方程 $\frac{d^2x}{dt^2} + q(t)x = 0$ 有解 $x = \sin t$,则其通解为______.
- (5) 用待定系数法求非齐次线性方程 $x'' + 25x = te^{5t}$ 的特解,其待定解的形式为______.
- (6) 用待定系数法求非齐次线性方程 $x'' + 25x = t \sin 5t$ 的特解,其待定解的形式为______.
- (7)已知 xe^x , $x\cos x$ 为 n 阶常系数齐次微分方程的两个解,则最小的正整数 n=
- (8) 若函数 f(x) 满足方程 f''(x) f'(x) 2f(x) = 0 及方程 $f''(x) + f(x) = 2e^{-x}$,则 $f(x) = ______$.
- 2. 求下列各微分方程的通解
- $(1) \quad x\frac{dy}{dx} = xe^{\frac{y}{x}} + y;$

(2)
$$-2xy^3dx + (y^4 - 3x^2y^2)dy = 0$$
;

(3)
$$\frac{dy}{dx} = \frac{n-1}{x}y + 2x^n e^x \quad (n > 1)$$

(4)
$$y'' + (y')^2 + 1 = 0$$
;

(5)
$$\frac{d^2x}{dt^2} + 8\frac{dx}{dt} + 12x = e^{-3t};$$

(6)
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 8\sin 2x$$
.

3. 求下列微分方程 $yy'' + (y')^2 - 1 = 0$ 满足初值条件 $y(0) = 1, y'(0) = \sqrt{2}$ 的特解.

4. 设函数 $\varphi(x)$ 连续且满足 $\varphi(x) = e^x + \int_0^x t\varphi(t)dt - x \int_0^x \varphi(t)dt$, 求 $\varphi(x)$.

5. 给定方程 y''' + 5y'' + 6y' = f(x),其中 f(x) 在 $-\infty < x < \infty$ 上连续,设 $\varphi_1(x), \varphi_2(x)$ 是上述方程的两个解,证明极限 $\lim_{x \to +\infty} [\varphi_1(x) - \varphi_2(x)]$ 存在.

 6^* . 设 f(x) 在 $[0,+\infty)$ 上连续,且 $\lim_{x\to +\infty} f(x) = b$,又 $a > 0, b \neq 0$,证明方程 $\frac{dy}{dx} + ay = f(x)$ 的一切解 y(x),均有 $\lim_{x\to +\infty} y(x) = \frac{b}{a}$.

