Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа	M3105	К работе допущен 12.06.2020 0	
Студент	Клишевич Вадим Александрович	Работа выполнена	28.06.2020 05:40
	атель Зинчик Алексанлр Алольфович	Отчет принят	

Рабочий протокол и отчет по лабораторной работе № 1.04V

ИССЛЕДОВАНИЕ РАВНОУСКОРЕННОГО ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ (МАЯТНИК ОБЕРБЕКА)

1. Цель работы.

Проверка основного закона динамики вращения. Проверка зависимости момента инерции от положения масс относительно оси вращения.

2. Задачи, решаемые при выполнении работы.

Измерение времени падения каретки с шайбами

3. Объект исследования.

Маятник Обербека

4. Метод экспериментального исследования.

Виртуальное моделирование

5. Рабочие формулы и исходные данные.

d ступицы =
$$(46.0 \pm 0.5)$$
 мм $ma = mg - T$

$$a = \frac{2h}{t^2}$$

$$\varepsilon = \frac{2a}{d}$$

$$T = m(g - a)$$

$$M = \frac{md}{2}(g-a)$$

$$I\varepsilon = M - M_{\rm Tp}$$

$$I = I_0 + 4m_{\rm yr}R^2$$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Цифровой счетчик	Элек.	0 - ∞ мс	1 мс

7. Схема установки (перечень схем, которые составляют Приложение 1).

Рис. 2. Стенд лаборатории механики (общий вид): I — основание; 2 — рукоятка сцепления крестовин; 3 — устройство принудительного трения; 4 — поперечина; 5 — груз крестовины; 6 — трубчатая направляющая; 7 — передняя крестовина; 8 — задняя крестовина; 9 — шайбы каретки; 10 — каретка; 11 — система передних стоек.

		Положение утях	келителей				
Масса груза, кг		1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
	t1, c	9,04	11,02	13,21	15,55	17,98	20,45
	t2, c	9,04	11,01	13,22	15,56	17,97	20,45
	t3, c	9,04	11,01	13,21	15,55	17,99	20,46
	t4, c	9,04	11,02	13,22	15,55	17,98	20,45
	t5, c	9,05	11,00	13,21	15,56	17,98	20,46
0,1	t cp, c	9,04	11,01	13,21	15,55	17,98	20,45
	t1, c	4,24	5,15	6,17	7,26	8,39	9,57
	t2, c	4,24	5,15	6,17	7,27	8,41	9,55
	t3, c	4,23	5,14	6,18	7,27	8,41	9,56
	t4, c	4,24	5,15	6,17	7,27	8,40	9,56
	t5, c	4,24	5,15	6,18	7,26	8,39	9,56
0,3	t cp, c	4,24	5,15	6,17	7,27	8,40	9,56
	t1, c	2,88	3,50	4,20	4,95	5,71	6,49
	t2, c	2,89	3,51	4,20	4,94	5,71	6,49
	t3, c	2,88	3,51	4,21	4,94	5,71	6,50
	t4, c	2,89	3,51	4,21	4,94	5,71	6,49
	t5, c	2,89	3,51	4,20	4,94	5,72	6,48
0,6	t cp, c	2,89	3,51	4,20	4,94	5,71	6,49
	t1, c	2,34	2,83	3,39	3,98	4,60	5,24
	t2, c	2,33	2,84	3,39	4,00	4,60	5,23
	t3, c	2,33	2,84	3,39	3,98	4,60	5,24
	t4, c	2,34	2,83	3,39	4,00	4,60	5,23
	t5, c	2,33	2,84	3,40	3,99	4,60	5,23
0,9	t cp, c	2,33	2,84	3,39	3,99	4,60	5,23

Где риска 1 соответствует R = 0,07 м риска 2 – R = 0,1 м риска 3 – R = 0,13 м риска 4 – R = 0,16 м риска 5 – R = 0,19 м риска 6 – R = 0,22 м

- 9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).
 - 1)Для каждой m и R вычислим a, ε и M

$$a = \frac{2h}{t^2}$$

$$\varepsilon = \frac{2a}{d}$$

$$M = \frac{md}{2}(g - a)$$

		Положение утях					
Масса груза		1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
	а, м/с^2	0,017	0,012	0,008	0,006	0,004	0,003
	e, c^-2	0,745	0,502	0,349	0,252	0,188	0,145
m1 = 100r	М, Н * м	0,023	0,023	0,023	0,023	0,023	0,023
	а, м/с^3	0,078	0,053	0,037	0,027	0,020	0,015
	e, c^-3	3,389	2,297	1,597	1,153	0,863	0,666
m2 = 300г	М, Н * м	0,067	0,067	0,067	0,067	0,067	0,068
	а, м/с^4	0,168	0,114	0,079	0,057	0,043	0,033
	e, c^-4	7,308	4,946	3,444	2,492	1,866	1,445
m3 = 600r	М, Н * м	0,133	0,134	0,134	0,134	0,135	0,135
	а, м/с^5	0,257	0,174	0,122	0,088	0,066	0,051
	e, c^-5	11,174	7,568	5,290	3,823	2,877	2,222
m4 = 900r	М, Н * м	0,198	0,199	0,200	0,201	0,201	0,202

где
$$R_1 = 0.07$$
 м

$$R_2 = 0.10 \text{ M}$$

$$R_3 = 0.13 \text{ M}$$

$$R_4 = 0.16 \text{ M}$$

$$R_5 = 0.19 \text{ M}$$

$$R_6 = 0.22 \text{ M}$$

2) По методу наименьших квадратов рассчитаем момент инерции I крестовины с утяжелителями и момент силы трения Мтр.

Т.к. зависимость $M(\varepsilon) = M_{\tau p} + I$ - линейная, коэффициенты $M_{\tau p}$ и I можно найти по соответствующим формулам:

$$\varepsilon = \frac{1}{n} \sum \varepsilon_i \qquad \dot{M} = \frac{1}{n} \sum M_i$$

$$I = \frac{\sum (\varepsilon_i - \acute{\varepsilon})(M_i - \acute{M})}{\sum (\varepsilon_i - \acute{\varepsilon})^2}$$

$$M_{mp} = \dot{M} - I \dot{\varepsilon}$$

R1		R2		R3		
<e></e>	<m></m>	<e></e>	<m></m>	<e></e>	<m></m>	
5,654	0,105	3,828	0,106	2,670	0,106	
(e_i - <e>)*(M_i - <m>)</m></e>	(e_i - <e>)^2</e>	(e_i - <e>)*(M_i - <m>)</m></e>	(e_i - <e>)^2</e>	(e_i - <e>)*(M_i - <m>)</m></e>	(e_i - <e>)^2</e>	
0,405	24,102	0,277	11,065	0,194	5,389	
0,086	5,129	0,059	2,345	0,042	1,152	
0,046	2,737	0,031	1,250	0,022	0,599	
0,511	30,469	0,350	13,986	0,247	6,867	
I	М_тр	_	М_тр	_	М_тр	
0,017	0,010	0,025	0,010	0,036	0,010	
R4						
R4		R5		R6		
R4 <e></e>	<m></m>	R5 <e></e>	<m></m>	R6 <e></e>	<m></m>	
	<m> 0,106</m>		<m> 0,107</m>		<m></m>	
<e></e>		<e></e>	0,107	<e></e>		
<e> 1,930</e>	0,106	<e> 1,448</e>	0,107	<e> 1,120</e>	0,107	
<e> 1,930 (e_i - <e>)*(M_i - <m>)</m></e></e>	0,106 (e_i - <e>)^2</e>	<e> 1,448 (e_i - <e>)*(M_i - <m>)</m></e></e>	0,107 (e_i - <e>)^2</e>	<e> 1,120 (e_i - <e>)*(M_i - <m>)</m></e></e>	0,107 (e_i - <e>)^2</e>	
<e> 1,930 (e_i - <e>)*(M_i - <m>) 0,141</m></e></e>	0,106 (e_i - <e>)^2 2,817</e>	<e> 1,448 (e_i - <e>)*(M_i - <m>) 0,106</m></e></e>	0,107 (e_i - <e>)^2 1,588</e>	<e> 1,120 (e_i - <e>)*(M_i - <m>) 0,082</m></e></e>	0,107 (e_i - <e>)^2 0,949</e>	
<e> 1,930 (e_i - <e>)*(M_i - <m>) 0,141 0,030</m></e></e>	0,106 (e_i - <e>)^2 2,817 0,604</e>	<e> 1,448 (e_i - <e>)*(M_i - <m>) 0,106 0,023</m></e></e>	0,107 (e_i - <e>)^2 1,588 0,343</e>	<e> 1,120 (e_i - <e>)*(M_i - <m>) 0,082 0,018</m></e></e>	0,107 (e_i - <e>)^2 0,949 0,206</e>	
<e> 1,930 (e_i - <e>)*(M_i - <m>) 0,141 0,030 0,016</m></e></e>	0,106 (e_i - <e>)^2 2,817 0,604 0,316</e>	<e> 1,448 (e_i - <e>)*(M_i - <m>) 0,106 0,023 0,012</m></e></e>	0,107 (e_i - <e>)^2 1,588 0,343 0,174</e>	<e> 1,120 (e_i - <e>)*(M_i - <m>) 0,082 0,018 0,009</m></e></e>	0,107 (e_i - <e>)^2 0,949 0,206 0,106</e>	

Положение усилителей	I, кг*м^2	М_тр, Н * м
R_1	0,017	0,010
R_2	0,025	0,010
R_3	0,036	0,010
R_4	0,050	0,010
R_5	0,067	0,010
R_6	0,086	0,010

где $R_1 = 0.07$ м

 $R_2 = 0.10 \text{ M}$

 $R_3 = 0.13 \text{ M}$ $R_4 = 0.16 \text{ M}$

 $R_5 = 0,19 \text{ M}$

 $R_6 = 0.22 \text{ M}$

где точки – это экспериментальные значения углового ускорения ϵ и соответствующего значения момента силы M для каждого расположения утяжелителей на крестовине, а пунктирные линии – графики зависимости $M(\epsilon)$ с полученными значениями коэффициентов I и $M_{\rm TP}$

3) По методу наименьших квадратов рассчитаем сумму моментов инерции стержней крестовины, момент инерции ступицы и собственные центральные моменты инерции утяжелителей I_0 и массу утяжелителей $4m_{\rm yr}$.

	R_1	R_2	R_3	R_4	R_5	R_6
R	0,07	0,10	0,13	0,16	0,19	0,22
R^2	0,005	0,010	0,017	0,026	0,036	0,048
1	0,017	0,025	0,036	0,050	0,067	0,086
<r>^2</r>						0,024
< >						0,047
R^2 - <r>^2</r>	-0,019	-0,014	-0,007	0,002	0,012	0,025
I-< >	-0,030	-0,022	-0,011	0,003	0,020	0,040
(R^2 - <r>^2)^2</r>	0,0004	0,0002	0,0000	0,0000	0,0002	0,0006
(R^2 - <r>^2) * (I - <i>)</i></r>	0,0006	0,0003	0,0001	0,0000	0,0002	0,0010
b = 4*m_ут						1,5974
a=I_0						0,0090

$$I = I_0 + 4*m_y T*R^2$$

где точки — это экспериментальные значения расстояний положения утяжелителей R^2 и соответствующего значения момента инерции I для каждого расположения утяжелителей на крестовине, а пунктирная линяя — график зависимости $\mathsf{I}(\mathsf{R}^2)$ с полученными значениями коэффициентов I_0 и $\mathsf{4m}_{\mathsf{yr}}$.

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

1) Расчёт погрешности для первого t_{cp} (m = 0,1 кг, R = 0,07 м)

t	t_cp	(t-t_cp)^2	S_tcp	delta <t_cp></t_cp>	delta t_cp
9,04		0,000004			
9,04		0,000004			
9,04		0,000004			
9,04		0,000004			
9,05	9,04	0,000064	0,002	0,0056	0,0067

2) Рассчитаем погрешность для первого а (m = 0.1 кг, R = 0.07 м)

$$\Delta_a = \sqrt{\left(\frac{\partial f}{\partial h}\Delta_h\right)^2 + \left(\frac{\partial f}{\partial \bar{t}_1}\Delta_{\bar{t}_1}\right)^2}$$

a		delta a
	0,017	0,00002

3)Рассчитаем погрешность для первого ε (m = 0,1 кг, R = 0,07м)

$$\Delta_{\varepsilon} = \sqrt{\left(\frac{\partial f}{\partial a_1} \Delta_a\right)^2 + \left(\frac{\partial f}{\partial d} \Delta_d\right)^2}$$

е	delta e
0,745	0,0009

4) Рассчитаем погрешность для первого M (m = 0,1 кг, R = 0,07 м)

$$\varDelta_{M} = \sqrt{\left(\frac{\partial f}{\partial m_{1}} \varDelta m_{1}\right)^{2} + \left(\frac{\partial f}{\partial d} \varDelta_{d}\right)^{2} + \left(\frac{\partial f}{\partial a_{1}} \varDelta_{a_{1}}\right)^{2}}$$

m		delta m	
8	0,023		0,0002

5) Рассчитаем погрешность для коэффициентов I_0 и $4m_{y_T}$ в зависимости $I(R^2)$:

d_i	0,000	0,025	0,036	0,050	0,067	0,086
D						0,0014
d_i^2	0,0000	0,0006	0,0013	0,0025	0,0044	0,0075
S_b^2						3,0098
S_a^2						0,0024
S_b						1,7349
S_a						0,0486
delta I_0 = 2 * S_a	delta m_yτ = 1/2 * S_b					
0.0072	0.9674					

11. Окончательные результаты.

M(e) =	0,01	+	0,017	е	при R = 0,07
M(e) =	0,01	+	0,025	е	при R = 0,1
M(e) =	0,01	+	0,036	е	при R = 0,13
M(e) =	0,01	+	0,050	е	при R = 0,16
M(e) =	0,01	+	0,067	е	при R = 0,19
M(e) =	0,01	+	0,086	е	при R = 0,22
I =	0,0090	+	1,5974	R^2	

12. Выводы и анализ результатов работы.

В ходе выполнения лабораторной работы были проведены исследования с маятником Обербека. С помощью полученных данных удалось подтвердить линейную зависимость момента вращения от углового ускорения, где угловой коэффициент данного графика – момент инерции крестовины маятника. С помощью второго графика была подтверждена линейная

зависимость момента инерции крестовины от квадрата расстояния от центра утяжелителей до оси вращения, причем угловой коэффициент данного графика – сумма масс утяжелителей.
13. Дополнительные задания.
14. Выполнение дополнительных заданий.
15. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).
Приложение
Гугл таблица для расчетов: https://docs.google.com/spreadsheets/d/1TBz6j7Q82Pk1GkuzdbEC3VFXIOxZzZthRY1 tUcE2Ek/edit?usp=sharing