Wave Optics Practice MCQs

1.	Newton has postulated his corpuscular theory on the basis of:					
	(a) Newton's ring		(b) Colour due to th	in film		
	(c) Dispersing of l	ight	(d) Rectilinear prop	agation of light		
2.	The wave front is a surface in which:					
	(a) all points are in	(a) all points are in the same phase				
	(b) there are pairs	of points in opposite p	hase			
	(c) there are pairs	of points with phase di	fference $(\pi/2)$			
	(d) there is no rela	tion between the phase	es .			
3.	The concept of secondary wavelets from all points on a wave front was first proposed by:					
	(a) Newton	(b) Huygen	(c) Faraday	(d) Raman		
4.	Huygen's concept	s of secondary waves:				
	(a) allow us to find	the focal length of a t	hin lens			
	(b) gives the magn	(b) gives the magnifying power of a microscope				
	(c) is a geometrical method to find a wave front					
	(d) is used to deter	mine the velocity of li	ght			
5.	Interference proves :					
	(a) transverse nature of waves		(b) longitudinal natu	ure of waves		
	(c) wave nature		(d) particle nature			
6.	When interference of light takes place:					
	(a) energy is created in the region of maximum intensity					
	(b) energy is destroyed in the region of maximum intensity					
	(c) conservation of energy holds good and energy is redistributed					
	(d) conservation o	f energy does not hold	good			
7.	Two identical waves (each of intencity amplitudes are same I ₀) superpose at a point in space. Then the					
	are said to be cons	tructively interfering is	f the resultant intensity I	is:		
	(a) equal to $4I_0$	(b) equal to $2I_0$	(c) greater than 2I ₀	(d) less than 2 I_0		
8.	Two identical way	res (each of intensity I ₀) superpose at a point in	space. Then they are said to be		
	destructively inter	fering if the resultant I	is:			
	(a) equal to zero	(b) equal to $2I_0$	(c) greater than 2I ₀	(d) less than $2I_0$		
9.	For constructive in	nterference to take place	e between two monochi	comatic light waves of wavelength λ ,		
	the path difference	should be:				

	(a) $(2n - 1) \frac{\lambda}{4}$	(b) $(2n - 1) \frac{\lambda}{2}$	(c) n\lambda	(d) $(2n+1)\frac{\lambda}{2}$
10.	Two light sources are	e coherent when:		
	(a) their amplitudes a	are equal	(b) their frequencies	are equal
	(c) their wavelengths	are equal		
	(d) their frequencies	are equal and their pha	se difference is consta	nt
11.	Which of the followi	ng produces coherent s	sources?	
	(a) Ordinary prism	(b) Biprism	(c) Nichol prism	(d) Achromatic prism
12.	Light waves coming	from two closely space	ed pinholes, placed in f	front of a laser light source are:
	(a) coherent	(b) incoherent	(c) neither coherent r	nor incoherent
	(d) nothing can be pr	redicted		
13.	Two waves of equal	amplitude and waveler	ngth but differing in ph	ase are superimposed. Amplitude of
	resultant wave is max	ximum when phase dif	ference is:	
	(a) zero	(b) $\pi / 12$	(c) <i>π</i>	(d) $3\pi/2$
14.	Ratio of intensities of	f two waves is given by	y 4:1. The ratio of the	amplitudes of the waves is:
	(a) 2:1	(b) 1:2	(c) 4:1	(d) 1:4
15.	In the Young's doub	le slit experiment, if m	onochromatic light use	ed is replaced by white light, then
	(a) no fringes are observed		(b) all bright fringes	become white
	(c) all bright fringes	have colours between	violet and red	
	(d) only central fring	e is white and all other	fringes are coloured	
16.	Two coherent monoc	chromatic light beams	of intensities I and 4I a	re superposed; the maximum and
	-	tensities in the resulting		
	(a) 5I and I	(b) 5I and 3I	(c) 9I and I	(d) 9I and 3I
17.	_	es have crossed each of	ther, then just after cros	ssing, the following quantities of each
	wave change:			
	(a) amplitude	(b) frequency	(c) velocity	(d) none of these
18.		•	same frequency and sa	me phase, superimpose at a point, then
	the resultant wave in	tensity is:		_
	(a) I_0	(b) $2I_0$	(c) $4I_0$	(d) $\sqrt{2} I_0$
19.	It two waves, each of	f intensity I_0 , having th	e same frequency but of	differing by a constant phase angle of
	60° , superpose at a co	ertain point in space, th	nen the intensity of resu	ıltant wave is:
	(a) 2I0	(b) $\sqrt{3} I_0$	(c) $3I_0$	(d) 4I0
20.	Two monochromatic	waves each of intensit	y I have a constant pha	ase difference of ϕ . If these waves
	superpose, then the in	ntensity of the resultan	t wave is:	
	(a) 4I	(b) 4I $\cos \phi$	(c) $4I \cos^2 \phi$	(d) $4I \cos^2 (\phi/2)$
			•	

21.	The contrast in the	fringes in any interfere	nce pattern depends of	on:
	(a) fringe width	(b) wavelength	(c) intensity ratio	of the sources
	(d) distance betwee	en the sources		
22.	Using monochroma	atic light source Young	's double slit interfer	ence fringes have been obtained for a
	certain separation of	of the slits. As the slit se	eparation increases th	ne fringes will become
	(a) circular in shape	e (b) wider	(c) unchanged in v	width (d) narrower
23.	In Young's double	slit interference experi	ment if the distance b	between the slits is made 3-fold, the
	fringe width becom	nes:		
	(a) (1/3) fold	(b) 3 fold	(c) (1/9) fold	(d) 9 fold
24.	In Young's double	slit experiment the sep	aration between the s	lits is halved and the distance between
	the slits and screen	is doubled. The fringe	width is:	
	(a) unchanged	(b) halved	(c) doubled	(d) quadrupled
25.	The necessary cond	lition for an interference	e by two sources of l	ight is that :
	(a) two light source	es must have the same v	wavelength	
	(b) two point source	es should have the sam	e amplitude and same	e wavelength
	(c) two sources sho	ould have the same wav	elength, nearly the sa	ame amplitude and have a constant phase
	angle difference			
	(d) the two point so	ources should have a ra	ndomly varying phase	e difference
26.	The phenomenon o	f interference of light v	was first studied and e	explained by :
	(a) Newton	(b) Fresnel	(c) Huygens	(d) Young
27.	For most distinct in	terference patterns to b	be observed the neces	sary condition is that the ratio of
	intensities of light	waves from the two col	nerent sources should	be:
	(a) 1:1	(b) 1:2	(c) 1:3	(d) 1:4
28.	Yellow light emitte	ed by sodium lamp in Y	oung's double slit ex	periment is replaced by monochromatic
	blue light of the san	me intensity:		
	(a) fringe width wil	ll decrease	(b) fringe width w	rill increase
	(c) fringe width wil	Il remain unchanged	(d) fringes will be	come less intense
29.	In a certain double	slit experimental arran	gement, interference	friges of width 1.0 mm each are observed
	when light of wavelength 5000 $\overset{\scriptscriptstyle{0}}{\mathrm{A}}$ is used. Keeping the setup unaltered if the source is replaced by			
	replaced by another	r of wavelength 6000 A	A, the fringe width w	ill be:
	(a) 0.5 mm	(b) 1.0 mm	(c) 1.2 mm	(d) 1.5 mm
30.	The Young's doubl	le slit experiment is per	formed with blue and	d with green light of wavelengths
	4360 Å and 5460	A respectively. If x is	the distance of 4 th ma	ximum from the central one, then:
	(a) x (blue) = x (or	een)	(b) x (blue) $> x$ (c	oreen)

	(c) x (blue) $\leq x$ (gr	reen)	(d) $\frac{x(blue)}{x(green)} = \frac{5466}{4360}$	$\frac{0}{0}$		
31.	In a Young's doubl	e slit experiment, the fr	ringe width is found to	be 0.4 mm. If the whole apparatus is		
	immersed in water	of refractive index (4/3), without disturbing th	ne geometrical arrangement, the new		
	fringe width will be	: :				
	(a) 0.30 mm	(b) 0.40 mm	(c) 0.53 mm	(d) 450 microns		
32.	In an interference e	xperiment monochrom	atic light is replaced by	white light; we will see:		
	(a) uniform illumin	ation on the screen	(b) uniform darknes	s on the screen		
	(c) equally spaced v	white and dark bands	(d) a few coloured b	oands and then uniform illumination		
33.	The fringe width in	Young's double slit ex	xperiment on a screen v	which is placed at a distance of 1 m		
	from the slits 10^{-3} m apart when the light used has wavelength 6×10^{-7} m, is equal to :					
	(a) 3×10^{-10} m	(b) $3 \times 10^{-4} \text{ m}$	(c) 6×10^{-10} m	(d) 6×10^{-4} m		
34.	Monochromatic gre	Monochromatic green light of wavelength 5×10^{-7} m illuminates a pair of slits 1 mm apart. The				
	separation of bright	t lines in the interference	e pattern formed on a	screen 2 m away is:		
	(a) 0.25 mm	(b) 0.1 mm	(c) 1.0 mm	(d) 0.01 mm		
35.	In Young's double	slit experiment the ang	ular width of a fringe f	formed on a distant screen is 1 ⁰ . The		
	wavelength of light used is 6000 Å . The spacing between the slits is approximately:					
	(a) 1 mm	(b) 0.05 mm	(c) 0.03 mm	(d) 0.01 mm		
36.	The destructive interference at a certain point is produced when two coherent light waves superpose at					
	that point with a phase difference of:					
	(a) zero	(b) $\pi / 2$	(c) π	(d) 2π		
37.	The path difference	e equivalent to a phase of	difference of 270° (give	en wavelength of wave = λ) is:		
	(a) zero	(b) λ/2	(c) 3λ/4	(d) λ		
38.	The light waves from two independent monochromatic light sources are given by $y_1 = 2 \sin \omega t$ and					
	$y_2 = 3 \cos \omega t$ Then	the correct statement i	s:			
	(a) both the waves a	are coherent	(b) both the waves a	are incoherent		
	() 1 , 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

- (c) both die waves have different time periods (d) none of the above
- 39. Four independent waves are represented by the equations:

$$y_1 = a_1 \sin \omega t, y_2 = a_2 \sin \omega t,$$

$$y_3 = a_3 \cos \omega t$$
, $y_2 = 0.4 \sin \left(\omega t + \frac{\pi}{3}\right)$

Then the waves for which the phenomenon of interference will be observed are:

- (a) 1 and 3
- (b) 1 and 4
- (c) all 1, 2, 3 and 4
- (d) none of these

- 40. Two waves are said to be coherent if they have:
 - (a) same amplitude
- (b) same wavelength (c) same amplitude and same wavelength

at

- (d) same wavelength and constant phase difference
- 41. In Young's double slit experiment, the intensity of a bright fringe is:
 - (a) equal to the intensity of light wave from any one slit
 - (b) twice the intensity of light wave from any slit
 - (c) three times the intensity of wave from any slit
 - (d) four times the intensity of wave from any slit
- 42. In Young's double slit experiment; if width (aperture) of the slit S is increased keeping other parameters constant, then the interference fringes will:
 - (a) remain unchanged (b) form closer
- (c) form further away (d) gradually disappear
- 43. In a Young's double slit experiment, fringe width equal to 1 mm is observed. Then the distance of first nearest bright fringe from the central fringe will be:
 - (a) 1 mm
- (b) 0.5 mm
- (c) 2 mm
- (d) insufficient data, cannot be determined
- 44. In a Young's double slit experimental arrangement shown here, if a mica sheet of thickness t and refractive index μ is placed in front of the slit S_1 , then the path difference $(S_1P S_2P)$:

(a) decreases by $(\mu - 1) t$

(b) increases by $(\mu - 1) t$

(c) does not change

- (d) increases by µt
- 45. In double slit experiment, the phase difference between the two waves reaching at the location of the third dark fringe is:
 - (a) π
- (b) 6π
- (c) 5π
- (d) 7π
- 46. Interference fringes of light are observed in an interference chamber containing pure water ($\mu = 4/3$). Now, if the water is drained out first and then the chamber is evacuated, then:
 - (a) no interference fringe pattern is observed
 - (b) same interference fringe pattern is observed
 - (c) interference pattern with smaller fringe width is observed
 - (d) interference pattern with larger fringe width is observed
- 47. It is found that when waves from two coherent sources superpose at a certain point, then the resultant intensity is equal to the intensity of one wave only. This means that the phase difference between the two waves at that point is:
 - (a) zero
- (b) $\pi/3$
- (c) $2\pi/3$
- (d) π

- 48. For interference, the two light sources must be:
 - (a) coherent, narrow and monochromatic
- (b) coherent, wide and monochromatic
- (c) coherent, wide and of equal intensity
- (d) incoherent, wide but monochromatic
- 49. Interference of light waves from two coherent sources is possible for:
 - (a) un polarised light waves only
 - (b) polarised light waves only if their polarisation is in the same direction
 - (c) both of the above
 - (d) none of the above
- 50. The following sources are coherent sources:
 - (a) two mercury lamps of same wattage
- (b) two sodium lamps of same wattage
- (c) two fluorescent lamps of the same wavelength and same power
- (d) two phase locked He-Ne lasers
- In Young's double slit experiment carried out with light of wavelength $\lambda = 5000$ Å, the distance 51. between the slits is 0.2 mm and the screen is at 200 cm from the plane of slits. The central maximum is at x = 0. The third maximum will be at x equal to :
 - (a) 1.67 cm
- (b) 1.5 cm
- (c) 0.5 cm
- (d) 5.0 cm
- 52. In Young's experiment, two coherent sources are placed 0.90 mm apart and the fringes are observed one metre away. If it produces the second order dark fringe at a distance of 1 mm from the central fringe the wavelength of monochromatic light used would be:
 - (a) 60×10^{-4} cm
- (b) 10×10^{-4} cm
 - (c) 10×10^{-5} cm (d) 6×10^{-5} cm
- 53. Two slits separated by a distance of 1 mm are illuminated with red light of wavelength 6.5×10^{-7} m. The interference fringes are observed on a screen placed 1 m from the slits. The distance between the thid dark fringe and the fifth bright fringe is equal to:
 - (a) 0.65 mm
- (b) 1.63 mm
- (c) 3.25 mm
- (d) 4.88 mm
- 54. In Young's experiment monochromatic light used to illuminate the two slits A and B Interference fringes are observed on a screen placed in front of the slits. Now, if a thin glass plate is placed normally in the path of the beam coming from the slit A, then:

- (a) the fringes will disappear
- (b) the fringe width will increase
- (c) the fringe width will decrease
- (d) there will be no change in fringe width

55.	The central fringe of the interference pattern produced by light of wavelength 6000 Å is found to shift						
	to the position of	to the position of 4 th bright fringe after a glass plate of refractive index 1.5 is introduced. The thickness					
	of the glass plate	would be:					
	(a) 4.8 μm	(b) 8.23 μm	(c) 14.98 μm	(d) 3.78 μm			
56.			<u>-</u>	⁰ A is used, then 62 fringes are seen in			
	the field of view. Instead, if violet light of wavelength 4358 Å is used then the number of fringes that						
	will be seen in the	e field of view will be	:				
	(a) 54	(b) 64	(c) 74	(d) 84			
57.	Interference was o	observed in an interfer	ence chamber, when ai	ir was present. Now, the chamber is			
	evacuated and if t	he same light is used,	a careful observation w	vill show:			
	(a) no interference	e (b) interference w	ith bright bands	(c) interference with dark bands			
	(d) interference in	which breadth of the	fringe will be slightly i	increased			
58.	In Young's two slit experiment the distance between the two coherent sources is 2 mm and the screen is						
	at a distance of 1	m. If the fringe width	is found to be 0.03 cm,	then the wave-length of the light used is			
	(a) 4000 Å	(b) 5000 A	(c) 5890 A	(d) $6000 \stackrel{0}{A}$			
59.	Instead of using two slits as in Young's experiment, if we use two separate but identical sodium lamps,						
	which of the following occurs?						
	(a) General illumi	nation	(b) Widely separa	ite interference			
	(c) Very bright ma	aximum	(d) Very dark min	nimum			
60.	For best contrast between maxima and minima in the interference pattern of Young's double slit						
	experiment, the in	experiment, the intensity of light emerging out of the two slits should be:					
	(a) equal	(b) double	(c) small	(d) large			
61.	The path difference	ce between two interfe	ring waves at a point o	on a screen is 11.5 times the wavelength.			
	The point is:						
	(a) dark	(b) bright	(c) neither bright	nor dark (d) data is inadequate			
62.	If white light is us	sed in a biprism experi	ment then:				
	(a) fringe pattern	disappears	(b) all fringes will	l be coloured			
	(c) central fringe	will be white others w	ill be coloured				
	(d) central fringe	will be dark					
63.	In interference of	two waves if the ampl	itude ratio $(r_1/r_2) = (1/2)$	2), then the intensity ratio (I_1/I_2) for the			
	two waves will be	: :					
	(a) (1/2)	(b) (1/4)	(c) (9/1)	(d) (1/9)			

64.	Light appears to travel in a straight line because :					
	(a) Its velocity is very large	(b) it is not absorb	(b) it is not absorbed by the surroundings			
	(c) its wavelength is very small	(d) it is reflected by	by the surroundings			
65.	According to modern theory for nature of light, the light has:					
	(a) wave nature only	(b) particle nature	only			
	(c) both particle and wave (dual) natural	re (d) neither particle	e nature nor wave nature			
66.	Colours appear on a thin soap film and	d on soap bubbled due to	the phenomenon of:			
	(a) refraction (b) dispersion	(c) interference	(d) diffraction			
67.	If the two waves represented by $y_1 =$	$4 \sin \omega t$ and $y_2 = 3 \sin (\omega t)$	$(\omega t + \pi/3)$ interfere at a point, the			
	amplitude of the resulting wave will b	e about :				
	(a) 7 (b) 5	(c) 6	(d) 3.5			
68.	The fringe width in Young's double s	slit experiment increases	when:			
	(a) wavelength increase	(b) distance between	en source and screen decreases			
	(c) distance between slits increases (d) the width of the slits increases					
69.	If the ratio of amplitude of two interfering waves is 4:3, then the ratio of maximum and minimum					
	intensity is:					
	(a) 16:18 (b) 18:16	(c) 49 : 1	(d) 94 : 1			
70.	If the ratio of intensities of two waves causing interference be 9:4, then the ratio of the resultant					
	maximum and minimum intensities w	rill be:				
	(a) 9:4 (b) 3:2	(c) 25 : 1	(d) 5:1			
71.	Two waves of same frequency and same	me amplitude from two n	nonochromatic sources are allowed to			
	superpose at a certain point. If in one case the phase difference is 0_0 and in other case it is $\pi/2$, then the					
	ratio of the intensities in the two cases	s will be:				
	(a) 1:1 (b) 2:1	(c) 4:1	(d) none of these			
72.	In interference pattern, the energy is:					
	(a) created at the maximum	(b) destroyed at the	(b) destroyed at the minimum			
	(c) conserved but redistributed (d) all of the above					
73.	The interference fringe pattern. In young's double slit experiment, will not be observed if:					
	(a) the separation d between the two slits is of the order of λ					
	(b) the separation d between the two slits					
	(c) the width of the slit S is large of the	(c) the width of the slit S is large of the order of a few mm				
	(d) all of the above					
74.	In the Young's double slit experiment	, initially equal intensitie	s were coming out of the two slits S_1 , and			
	S ₂ . Now if in front of one slit, a glass	sheet which absorbs half	of the intensity is placed, then			
	(a) the brighter fringes will become co	omparatively darker				
	(b) the darker fringes will become comparatively brighter					

	(d) all of the above	ve					
75.	In Young's doub	In Young's double slit experiment, white light source is used to obtain a white central fringe and a few					
	coloured fringes. Now if a filter allowing only red light is used in front of slit A ₁ and another filter						
	allowing only blu	ue light is used in front	of second slit S ₂ , then				
	(a) only red color	(a) only red coloured fringes will be observed					
	(b) only blue cold	oured fringes will be o	bserved				
	(c) both red color	ured and blue coloured	fringes will be observed				
	(d) Two indepent	soures will not form i	nterference				
76.	In Young's expen	riment monochromatic	light through a single slit	S is used to illuminated the two slits			
	S1 and S2. Interf	erence fringes are obta	ined on the screen. The fr	inge width is found to be β . Now a			
	thin sheet of mice	a (thickness t and refra	ctive index µ) is placed no	ear and in front of one of the two slits.			
	Now the fringe width is found to be β '. Then :						
	(a) $\beta' = \beta/\mu$	(b) $\beta' = \beta \mu$	(c) $\beta' = (\mu - 1)\beta$	(d) $\beta' = \beta$			
77.	Keeping the expe	eriment setup same, if a	a biprism experiment is re	peated inside water then the fringe			
	width will:						
	(a) decrease	(b) increase	(c) remain the same	(d) become zero			
78.	If Young's doubl	e slit experiment is im	mersed in water then the f	ringe width:			
	(a) decreases	(b) increases	(c) remains unchang	ed (d) becomes infinite			
79.	Two beams of me	Two beams of monochromatic light whose intensities are in the ratio of 4:1 are supermposed to form					
	interference fring	interference fringes. The ratio of the maximum to minimum intensity in this pattern is:					
	(a) 5:1	(b) 5:3	(c) 9:1	(d) 9:3			
80.	In an experiment to demonstrate the interference of light using Young's slits, the separation of two						
	narrow slits is doubled in order to maintain the same spacing of the fringes. The distance D of the screen						
	from the slits must now be altered to about :						
	(a) 2 D	(b) D	(c) $D/\sqrt{2}$	(d) D/2			
81.	In a biprism expe	eriment, by using light	of wavelength 5000 Å, 5	mm wide fringes are obtained on a			
	screen 1.0 m away from the coherent sources. The separation between the two coherent sources is						
	(a) 1.0 mm	(b) 0.1 mm	(c) .05 mm	(d) 0.01 mm			
82.	If the distance be	tween the coherent sou	arces is reduced to half and	d the distance of the screen is doubled			
	then the fringe w	then the fringe width will:					
	(a) become four t	times	(b) become one-fourth				
	(c) become two t	imes	(d) remain unchange	ed			
83.	If the refracting a	angle of a biprism is in	creased then the effect on	the interference pattern is:			
	(a) fringes will be	e formed closer	(b) fringes pattern w	ill disappear			
	DDS AC	ADEMY -	KK/DPS/Wave Optics/ F	Dec 19-21 9			

(c) the central fringe will shift on the side of the glass plate

	(c) fringe width will	increase	(d) fringes pattern will not be affected			
84.	The most essential of	The most essential characteristic of two coherent sources is:				
	(a) their amplitudes	are the same	(b) their wavelengths	s are the same		
	(c) their frequencies	are the same	(d) the phase differen	nce between them is constant		
85.	If a thin mica sheet	of thickness t and refrac	etive index μ is placed	in the path of one of the waves		
	producing interferen	nce, then the whole inter	rference pattern shifts	towards the side of the sheet by a		
	distance:					
	(a) $\frac{d}{D}(\mu - 1)t$	(b) $\frac{D}{d} (\mu - 1)t$	(c) Dd (μ - 1)t	(d) $(\mu - 1)t$		
86.	If in an interference	pattern, Imax represent	s the intensity maximu	am value and represents the intensity		
	minimum value, the	minimum value, then the fringes visibility is defined as:				
	(a) $V = \frac{I_{max}}{I_{min}}$	(b) $V = \frac{I_{\text{max.}} + I_{\text{min.}}}{I_{\text{max.}} - I_{\text{min.}}}$	(c) $V = \frac{I_{\text{max.}} - I_{\text{min.}}}{I_{\text{max.}} + I_{\text{min.}}}$	(d) $V = \frac{\sqrt{I_{\text{max.}}} - \sqrt{I_{\text{min.}}}}{\sqrt{I_{\text{max.}}} + \sqrt{I_{\text{min.}}}}$		
87.	Find the thickness o	f a plate which produce	e a change in optical pa	th equal to half the wavelength λ , of		
	the light passing through it normally. The refractive index of the plate μ is :					
	(a) $\frac{\lambda}{4(\mu-1)}$	(b) $\frac{2\lambda}{4(\mu-1)}$	(c) $\frac{\lambda}{(\mu-1)}$	(d) $\frac{\lambda}{2(\mu-1)}$		
88.	In Young's double s	slit experiment, the 7 th r	naximum with waveler	ngth λ_1 is at a distance d_1 and that		
	with wavelength λ_2 is at a distance d_2 . Then (d_1/d_2) is :					
	(a) (λ_1/λ_2)	(b) (λ_2/λ_1)	(c) $(\lambda_1^2/\lambda_2^2)$	(d) $(\lambda_2^2/\lambda_1^2)$		
89.	In Young's double s	slit experiment we get 6	0 fringes in the field o	f view of monochromatic light of		
	wavelength 4000 $\overset{0}{A}$. If we use monochromatic light of wavelength 6000 $\overset{0}{A}$, then the number of fringes					
	obtained in the same	e field of view are:				
	(a) 60	(b) 90	(c) 40	(d) 1.5		
90.	Waves from two dif	ferent sources overlap a	a particular point. The	amplitude and frequency of the two		
	waves are same. The	e ratio of the intensity w	when the two waves arr	rive in phase to that when they arrive		
	90 out of phase is:					

(c) 2:1

(c) 2

If one of the two slits of a Young's double slit experiment is painted over so that it transmits half the

. The value of n for which (n+1) th blue bright coincides with nth red band is :

In Young's experiment the wavelength of red light is 7.8×10^{-5} cm and that of blue light 5.2×10^{-5} cm

(d) 4:1

(d) 1

light intensity of the other, then:

(a) the fringe system would disappear

(a) 1:1

(a) 4

91.

92.

(b) $\sqrt{2}:1$

(b) 3

(h)	the bright	fringes v	vill be more	e bright and	dark fringes	will be more dark
1	υj	the origin	II IIIges v		c origin am	i dark iringes	will be libit dark

- (c) the dark fringes would be brighter and bright fringes would be darker
- (d) bright as well as dark fringes would be darker
- 93. In Young's double slit experiment, illuminated by yellow light, one slit is covered with plane transparent thin glass plate and the other slit by blue filter. Then:
 - (a) there will be yellow and blue interference fringes formed on the screen
 - (b) there will be uniform illumination on the screen
 - (c) the maximum intensity fringes will be doubly coloured
 - (d) the minimum intensity fringes will be dark
- 94. If a thin mica sheet of thickness t and refractive index $\mu = 5/3$ is placed in the path of one of the interfering beams as shown in figure, then the displacement of the fringes system is:

- (a) $\frac{Dt}{3d}$
- (b) $\frac{Dt}{5d}$
- (c) $\frac{Dt}{4d}$
- (d) $\frac{2Dt}{5d}$
- 95. In the Young's double slit experiment, the intensity on the screen at a point where path difference is λ is K. What will be the intensity at the point path difference is $(\lambda/4)$?
 - (a) K/4
- (b) K/2
- (c) K
- (d) Zero
- 96. In two separate setups of the Young's double slit experiment, fringes of equal width are observed when lights of wavelength in the ratio 1 : 2 are used. If the ratio of the slit separation in the two cases is 2 : 1, the ratio of the distances between the plane of the slits and the screen, in the two setups, is
 - (a) 4:1
- (b) 1:1
- (c) 1:4
- (d) 2:1
- 97. Light travels faster in air than an glass according to:
 - (a) wave theory of light

(b) corpuscular theory of light

(c) both (a) and (b)

- (d) neither (a) nor (b)
- 98. Which one of the following phenomena is not explained by Huygens' construction of wavefront?
 - (a) Refraction
- (b) Reflection
- (c) Diffraction
- (d) Origin of spectra
- 99. In an experiment similar to Young's experiment, interference is observed using waves associated with electrons. The electrons are being produced in an electron gun. In order to increase the fringe width:
 - (a) electron gun voltage be increased
- (b) electron gun voltage be decreased
- (c) the slits be moved away
- (d) the screen be moved closer to interfering slits

100.	Interference fringe	s were produced in You	ıng's double slit experi	ment using light of wavelength			
	$5000 \stackrel{\scriptscriptstyle 0}{\mathrm{A}}$. When a f	ilm of material 2.5×10^{-2}	O ⁻³ cm thick was placed	d over one of the slits, the fringe pattern			
	shifted by a distant	ce equal to 20 fringe wi	dths. The refractive inc	lex of the material of the film is			
	(a) 1.25	(b) 1.33	(c) 1.4	(d) 1.5			
101.	In a Young's doub	le slit experiment, the f	ringe width is found to	be 0.4 mm. If the whole apparatus is			
	dipped in water of	refractive index 4/3, wi	thout disturbing the arr	rangement, the new fringe width will be			
	:						
	(a) 0.30 mm	(b) 0.40 mm	(c) 0.53 mm	(d) 0.2 mm			
102.	Diffraction effects	are easily observable for	or:				
	(a) microwaves	(b) sound waves	(c) radio waves	(d) all of the above			
103.	To observe diffract	tion, the size of an obsta	acle				
	(a) should be much	n larger than the wavele	ngth				
	(b) should be of the	e same order as the way	elength				
	(c) have no relation	n to wavelength	(d) should be exactl	y λ/2			
104.	The phenomenon of	The phenomenon of diffraction may be thought of as interference, where the number of coherent					
	sources are:						
	(a) zero	(b) two	(c) infinite	(d) none of these			
105.	The phenomenon of	of diffraction can be exh	nibited by:				
	(a) infrared waves	(b) microwaves	(c) X-rays	(d) all of these			
106.	The phenomenon of diffraction can be exhibited by:						
	(a) polarised waves	s only	(b) unpolarised way	res only			
	(c) longitudinal waves only						
	(d) all, polarised or	r unpolarised, longitudi	nal or transverse Wave	s			
107.	A diffraction pattern is obtained using a beam of red light. What happens if the red light is replaced by						
	blue light?						
	(a) No change	(b) Diffraction band	ls become narrower an	d crowded together			
	(c) Bands become	broader and farther apa	rt (d) Bands disappear				
108.	Diffraction and ref	raction indicate:					
	(a) wave nature	(b) particle nature	(c) both (a) and (b)	(d) none of the above			
109.	The condition for observing Fraunhofer diffraction from a single slit is that the light wavefront incident						
	on the slit should b	on the slit should be:					
	(a) spherical	(b) cylindrical	(c) plane	(d) elliptical			
110.	In Fresnel's class of	of diffraction, the:					
	(a) obstacle-screen	distance is small	(b) the diffracted wa	avefront is considered as spherical			
	(c) no convex lens	is used to focus the diff	fraction fringes on the	screen			
	(d) all of the above						
		VDEMV KK	/DPS/Maye Ontics/ I	Dec 10-21 12			

111. In Young's double slit experiment, the type of diffraction is :						
	(a) Fresnel	(b) Fraunhofer	(c) both of the above	e (d) none of the above		
112.	The first diffraction	minimum due to a sing	gle slit diffraction is at	$\theta = 30^{\circ}$ for a light of wavelength		
	$5000 \stackrel{0}{A}$. The width	of the slit is:				
	(a) 5×10^{-5} cm	(b) 1.0×10^{-4} cm	(c) 2.5×10^{-5} cm	(d) 1.25×10^{-5} cm		
113.	A slit of width a is i	illuminated by white lig	ht. The first minimum	for red light ($\lambda = 6500 \text{ AU}$). will fall		
	at $\theta = 30^{\circ}$, when a	will be:				
	(a) 3250 A	(b) 6.5×10^{-4} cm	(c) 1.3 micron	(d) 2.6×10^{-4} cm		
114.	Light of wavelength	λ is incident on a slit	of width d. The resulti	ing diffraction pattern is observed on a		
	screen at a distance D. The linear width of the principal maximum is then equal to the width of the slit if					
	D equals :					
	(a) (d/λ)	(b) $(2\lambda/d)$	(c) $(d^2/2\lambda)$	(d) $(2\lambda^2/d)$		
115.	The main difference	e in the phenomenon of	interference and diffra	action is that:		
	(a) diffraction is due to interaction of light from the same wavefront whereas interference is the					
	interaction of waves from two isolated sources					
	(b) diffraction is due to interaction of light from same wavefront, whereas the interference is the					
	interaction of two waves derived from the same source					
	(c) diffraction is due to interaction of source, whereas the interference is the bending of light from the					
	same wavefront					
	(d) diffraction is fro	om a source whereas int	erference is caused du	e to refraction of waves from a source		
116.	A beam of light of wavelength 600 nm from a distant source falls on a single slit 1.00 mm wide and the					
	resulting diffraction pattern is observed on a screen 2 m away. The distance between the first dark					
	fringes on either sid	le of the central bright f	ringe is:			
	(a) 1.2 cm	(b) 1.2 mm	(c) 2.4 cm	(d) 2.4 mm		
117.	In case of diffraction at single slit if the wavelength of light becomes equal to the aperture of slit, on the					
	screen we shall observe:					
	(a) image of slit	(b) diffraction band	(c) uniform illumina	ition		
	(d) nonuniform illum	mination				
118.	Polarisation of light	proves the:				
	(a) corpuscular natu	re of light	(b) quantum nature of light			
	(c) transverse wave	nature of light	(d) longitudinal wav	re nature of light		
119.	The fact that light is	s transverse, wave phen-	omenon derives its evi	idential support from the observation		
	that:					
	(a) light is a wave n	notion	(b) light is character	rised by interference		

	(c) light shows pola	rising effects	(d) light can be diffracted			
120.	The phenomenon w	hich does not take plac	e in sound waves is:			
	(a) scattering	(b) diffraction	(c) interference	(d) polarization		
121.	One of the devices t	to produce plane polari	zed light is:			
	(a) nicol prism	(b) a crystal	(c) a biprism	(d) a half wave plate		
122.	If light is polarised	by reflection, then the a	angle between reflect	ed and refracted light is:		
	(a) π	(b) $\pi / 2$	(c) 2π	(d) π / 4		
123.	Polaroid glass is use	ed in sun glasses becau	se because :			
	(a) it reduces the lig	tht intensity to half on a	account of polarisatio	n		
	(b) it is fashionable	(b) it has good color	ur (d) it is cheaper			
124.	In propagation of el	ectromagnetic waves tl	he angle between the	direction of propagation and plane of		
	polarisation is:					
	(a) 0^0	(b) 45^0	(c) 90^{0}	(d) 18^0		
125.	A beam of light stri	kes a piece of glass at a	an angle of incidence	of 60^0 and the reflected beam is		
	completely plane polarised. The refractive index of the glass is:					
	(a) 1.5	(b) $\sqrt{3}$	(c) $\sqrt{2}$	(d) (3/2)		
126.	A ray of unpolarised	d light is incident on a	glass plate at the pola	rising angle 57 ⁰ . Then:		
	(a) the reflected ray and the transmitted ray both will be completely polarised					
	(b) the reflected ray will be completely polarised and the transmitted ray will be partially polarised					
	(c) the reflected ray will be partially polarised and the transmitted ray will be completely polarised					
	(d) the reflected and transmitted both rays will be partially polarised					
127.	A ray of light is incident on the surface of a glass plate at an angle of incidence equal to Brewster's					
	angle ϕ . If μ represents the refractive index of glass with respect to air, the angle between the reflected					
	and refracted rays is:					
	(a) $(90^0 + \phi)$	(b) $\sin^{-1} (\mu \cos \phi)$	(c) 90^0	(d) $\sin^{-1}\left(\frac{\sin\phi}{\mu}\right)$		
128.	The polaroid is a:					
	(a) celluloid film	(b) big crystal	(c) cluster of small	crystals arranged in regular way		
	(d) cluster of small	crystals arranged in hap	phazard way			
129.	An interference patt	tern was made by using	gred light. If the red l	ight changes with blue light, the fringes		
	will becomes.					
	(a) wider	(b) narrower	(c) fainter	(d) brighter		
130.	In a Young's double	e slit experiment, 12 fri	inges are observed to	be formed in a certain segment of the		
	screen when light o	f wavelength 600 nm is	s used. If the wavelen	gth of light is changed to 400 nm,		

number of fringes observed in the same segment of the screen is given by:

	(a) 12	(b) 18	(c) 24	(d) 30	
131.	Two beams of light	having intensities I and	d 4I interfere to produc	ee a fringe pattern on a screen. The	
	phase difference bet	ween the beams is π /	2 at point A and π at	point B. Then the difference between	
	the resultant intensit	ies at A and B is:			
	(a) 2I	(b) 4I	(c) 5I	(d) 7I	
132.	Which of these wave	es can be polarised?			
	(a) sound waves		(b) longitudinal wav	es on a string	
	(c) transverse waves	on a string	(d) light waves		
133.	The two interfering	beams have intensities	in the ratio 9:4. The	ratio of intensities of maxima and	
	minima in the interfe	erence pattern will be:			
	(a) 1:25	(b) 25 : 1	(c) 9:4	(d) 4:9	
134.	The intensities of two superimposing waves are in the ratio 9:1. Then find the ratio of maximum and				
	minimum intensities	3:			
	(a) 1:9	(b) 9:1	(c) 4:1	(d) 1:4	
135	Which of the follow	ing statement indicates	s that light waves are to	ransverse [MP PMT 1995]	

Which of the following statement indicates that light waves are transverse

[MP PMT 1995]

(a) Light waves can travel in vacuum

(b) Light waves show interference

(c) Light waves can be polarized

(d) Light waves can be diffracted

136. The figure shows a double slit experiment P and Q are the slits. The path lengths PX and QX are $n\lambda$ and $(n+2)\lambda$ respectively, where n is a whole number and λ is the wavelength. Taking the central fringe as zero, what is formed at X

(a) First bright

(b) First dark

(c) Second bright

(d) Second dark

137. In Young's double slit experiment, if one of the slit is closed fully, then in the interference pattern

(a) A bright slit will be observed, no interference pattern will exist

(b) The bright fringes will become more bright

(c) The bright fringes will become fainter

(d) None of the above

In Young's double slit experiment, a glass plate is placed before a slit which absorbs half the intensity 138. of light. Under this case

(a) The brightness of fringes decreases (b) The fringe width decreases

(c) No fringes will be observed

	(d) The bright fring	es become fainter a	nd the dark fringes ha	ive finite light inten	sity			
139.	In Young's experim	ent, light of waveler	ngth $4000\stackrel{\scriptscriptstyle{0}}{ m A}$ is used t	o produce bright fr	inges of width 0.6 mm,			
	at a distance of 2 n	at a distance of 2 meters. If the whole apparatus is dipped in a liquid of refractive index 1.5, then						
	fringes width will b	e			[MP PMT 1994]			
	(a) 0.2 mm	(b) 0.3 mm	(c) 0.4 mm	(d) 1.2 mm				
140.	In Young's double s	slit experiment, if the	e widths of the slits ar	re in the ratio 4 : 9,	the ratio of the			
	intensity at maxima	a to the intensity at	minima will be	[Mar	nipal MEE 1995]			
	(a) 169 : 25	(b) 81 : 16	(c) 25 : 1	(d) 9:4				
141.	In Young's d double	e slit experiment, the	e fringe width is 1×10	$0^{ extstyle -4} ext{m} $ if the distanc	e between the slit and			
	screen is double ar	nd the distance betw	een the two slit is red	luced to half and w	avelength is changed			
	from 6.4×10^7 m ¹	to $4.0 \times 10^{-7} \text{ m}$, the	value of new fringe w	vidth will be				
	(a) $0.15 \times 10^{-4} \text{ m}$	(b) $2.0 \times 10^{-4} \text{ m}$	(c) 1.25×10^{-4} m	(d) 2.5×10^{-4}	m			
142.	In Young's experim	ent, one slit is cover	ed with a blur filter a	nd the other (slit) w	vith a yellow filter. Then			
	the interference pattern [MP PET 1997]							
	(a) Will be blue	(b) Will b	e yellow (c) Will b	e green (d) W	ill not be formed			
143.	In double slit expe	riment, the angular v	vidth of the fringes is	0.20 ⁰ for the sodiu	m light ($\lambda = 5890 \stackrel{0}{A}$).			
	·	_	_		nge in the wavelength is			
	moraer to mercus.	e the ungular what is	or the hinges by 1070,	the necessary char	[MP PMT 1997]			
	/-\\	0	0	0 				
		Å (b) Decrease of 5		ase of 6479 A	(d) Zero			
144.	A thin mica sheet of thickness $2 \times 10^{-6} \text{ m}$ and refractive index ($\mu = 1.5$) is introduced in the path of							
	the first wave. The wavelength of the wave used is $5000\ { m A}$. The central bright maximum will shift							
					[CPMT 1999]			
	(a) 2 fringes upwar	d (b) 2 fringes dow	nward (b) 10 fri	nges upward (d) No	one of these			
145.	In Young's double	slit experiment, angu	ılar width of fringes is	0.20 ⁰ for sodium li	ght of wavelength			
	$\overset{\scriptscriptstyle{0}}{\mathrm{A}}$. If complete system is dipped in water, then angular width of fringes becomes							
	•		, 0	G	[RPET 199 7]			
	(a) 0.11 ⁰	(b) 0.15 ⁰	(c) 0.22 ⁰	(d) 0.30 ⁰	[2.2.2.2.2.7.7]			
146.	In Young's double	slit experiment, the	distance between the	slits is 1 mm and tl	nat between slit and			
	screen is 1 meter and 10 th fringes is 5 mm away from the central bright fringe, then wavelength of							
	light used will be				[RPMT 1997]			
	(a) $5000 \stackrel{0}{\rm A}$	(b) 6000 Å	(c) 7000 Å	(d) $8000 \stackrel{_{}^{0}}{\mathrm{A}}$				
					16			
	DDS ACA	ADEMY I	KK/DPS/Wave Option	cs/ Dec 19-21	10			

147.	When a thin metal pl	ate is placed in the pat	th of one of the interfe	ering beams of lig	ht [KCET 1999]	
	(a) Fringe width incre	eases	(b) Fringes disappear			
	(c) Fringes become b	righter	(d) Fringes becomes	blurred		
148.	In a double slit exper	iment, instead of takin	g slits of equal widths	, one slit is made	twice as wide as the	
	other. Then in the int	erference pattern.		[IIT-JE]	E (Screening) 2000]	
	(a) The intensities of	both the maxima and	the minima increase			
	(b) The intensity of m	naxima increases and t	he minima has zero in	tensity		
	(c) The intensity of m	axima decreases and t	that of the minima inci	reases		
	(d) The intensity of m	naxima decreases and t	the minima has zero ir	itensity		
149.	In the Young's double	e slit experiment with	sodium light. The slits	are 0.589 m apar	t. The angular	
	separation of the thir	d maximum from the	central maximum will	be (given $\lambda = 58$	9 nm)	
	(a) $\sin^{-1} (0.33 \times 10^8)$	(b) $\sin^{-1} (0.33 \times 10^{-6})$) (c) $\sin^{-1} (3 \times 10^{-8})$	(d) $\sin^{-1} (3 \times 10)$	J ⁻⁶)	
150.	In Young's double slit	experiment, the inter	nsity of light coming fro	om the first slit do	ouble the intensity	
	from the second slit. The ratio of the maximum intensity to the minimum intensity on the interference					
	fringe pattern observ	red is			KCET 2002]	
	(a) 34	(b) 40	(c) 25	(d) 38		
151.	In Young's double-slit	t experiment, an interf	erence pattern is obta	ined on a screen	by a light of	
	wavelength $\stackrel{0}{6000}\stackrel{0}{\rm A}$, coming from the coherent sources S ₁ and S ₂ . At certain point P on the screen					
	third dark fringe is formed. Then the path difference S_1P-S_2P in microns is					
				[EAMCET 2003]	
	(a) 0.75	(b) 1.5	(c) 3.0	(d) 4.5		
152.	A double slit experim	ent is performed with	light of wavelength 50	00 nm. A thin film	of thickness 2 μm	
	and refractive index 1.5 is introduced in the path of the upper beam. The location of the central					
	maximum will			[.	AIIMS 2003]	
	(a) Remain unshifted		(b) Shift downward b	y nearly two fring	ges	
	(c) Shift upward by nearly two fringes (d) Shift downward by 10 fringes					
153.	In a Young's double-slit experiment the fringe width is 0.2 mm. If the wavelength of light used is					
	increased by 10% and the separation between the slits is also increased by 10%, the fringe width will					
	be			[MP PMT 2004]	
	(a) 0.20 mm	(b) 0.401 mm	(c) 0.242 mm	(d) 0.165 mm		
154.	Two coherent source	s of intensity ratio 1 :	4 produce an interfere	nce pattern. The	fringe visibility will	
	be			[,	J&K CET 2004]	
	(a) 1	(b) 0.8	(c) 0.4	(d) 0.6		

155.	In Young's double slit experiment the amplitudes of two sources are 3a and a respectively. The ratio of					
	intensities of bright	and dark fringes will l	be		[J&K CET2004]	
	(a) 3:1	(b) 4:1	(c)	2:1	(d) 9:1	
156.	In Young's double sl	it experiment, distand	ce between two sour	ces is 0.1 mm. Th	e distance of screen	
	from the sources is	20 cm. Wavelength of	f light used is $5460~{ ilde A}$. Then angular p	osition of the first dark	
	fringe is				[DEC 2002]	
	(a) 0.08 ⁰	(b) 0.16 ⁰	(c) 0.20 ⁰	(d) 0.313 ⁰		
157.	In Young double sli	t experiment, when to	wo light waves form	third minimum, tl	hey have [RPMT 2003]	
	(a) Phase difference of 3 π		(b) Phase differe	(b) Phase difference of $\frac{5 \pi}{2}$		
	(c) Path difference o	of 3 λ	(d) Path differenc	e of $\frac{5\lambda}{2}$		
158.	The angle of polaris	ation for any medium	is 60°, what will be o	critical angle for t	his [UPSEAT 1999]	
	(a) $\sin^{-1} \sqrt{3}$	(b) $\tan^{-1} \sqrt{3}$	(c) $\cos^{-1} \sqrt{3}$	(d) $\sin^{-1} \frac{1}{\sqrt{3}}$		
159.	The angle of incidence at which reflected light is totally polarized for reflection from air to glass					
	(refraction index n)	is		[AIEEE 200	04; UPSEAT 2005]	
	(a) $\sin^{-1}(n)$	(b) $\sin^{-1}\left(\frac{1}{n}\right)$	(c) $\tan^{-1}\left(\frac{1}{n}\right)$	(d) $tan^{-1}(n)$		
160.	A polaroid is placed at 45 ⁰ to an incoming light of intensity I ₀ . Now the intensity of light passing					
	through polaroid after polarisation would be				[CPMT 1995]	
	(a) $I_{\scriptscriptstyle 0}$	(b) $I_0/2$	(c) $I_0/4$	(d) Zero		
161.	Plane polarised light is passed through a polaroid. On viewing through the polaroid we find that when					
	the polaroid is given one complete rotation about the direction of the light, one of the following is					
	observed				[MNR 1993]	
	(a) The intensity of light gradually decreases to zero and remains at zero					
	(b) The intensity of light gradually increases to a maximum and remains at maximum					
	(c) There is no change in intensity					
	(d) The intensity of light is twice maximum and twice zero					
162.	A light has amplitude A and angle between analyser and polariser is 60°. Light is reflected by analyser					
	has amplitude				[UPSEAT 2001]	
	(a) $A\sqrt{2}$	(b) $A/\sqrt{2}$	(c) $\sqrt{3}A/2$	(d) A/2		

163.	Two Nicols are oriented with their principle planes making an angle of 60°. The percentage of incident					
	unpolarized light which passes through the system is					
	(a) 50%	(b) 100%	(c) 12.5%	(d) 37.5%		
164.	When an unpolarized	I light of intensity I_0 is	incident on a polarizing	g sheet, the intensity of the light		
	which does not get tr	ransmitted is		[AIEEE 2005]		
	(a) Zero	(b) I ₀	(c) $\frac{1}{2}I_0$	(d) $\frac{1}{4} I_0$		
165.	When unpolarised lig	tht beam is incident fro	om air into glass (n = 1.	5) at the polarising angle		
	(a) Reflected beam is	polarised 100 percent	t (b) Reflected and refr	acted beams are partially polarised		
	(c) The reason for (a)	is that almost all the I	ight is reflected			
	(d) All of the above					
166.	When the angle of in	cidence on a material	is 60 ⁰ , the reflected lig	ht is completely polarized. The		
velocity of the refracted ray inside the material is (in ms ⁻¹) [Kerala				[Kerala PMT 2005]		
	(a) 3×10^8	(b) $\left(\frac{3}{\sqrt{2}}\right) \times 10^8$	(c) $\sqrt{3} \times 10^8$	(d) 0.5×10^8		
167.	In the ideal double-sl	it experiment, when a	glass-plate (refractive	index 1.5) of thickness t is introduced		
	in the path of one of the interfering beams (wavelength λ), the intensity at the position where the					
	central maximum occurred previously remains unchanged. The minimum thickness of the glass-plate					
				[HT-JEE (Screening) 2004]		
	(a) 2λ	(b) $\frac{2\lambda}{3}$	(c) $\frac{\lambda}{3}$	(d) λ		
168.	In the Young's double	e slit experiment, if the	e phase difference bety	ween the two waves interfering at a		
	point is ϕ , the intensity at that point can be expressed by the expression					
				[MP PET 1998; MP PMT 2003]		
	(a) $I = \sqrt{A^2 + B^2} \cos \theta$	$s^2 \phi$	(b) $I = \frac{A}{B} \cos \phi$			
	(c) $I = A + B \cos \frac{\phi}{2}$		(d) $I = A + B \cos \phi$			
169.	In a two slit experime	ent with monochroma	tic light fringes are obt	ained on a screen placed at some		

In a two slit experiment with monochromatic light fringes are obtained on a screen placed at some distance from the slits. If the screen is moved by 5×10^{-2} m towards the slits, the change in fringe width is 3×10^{-5} m. If separation between the slits is 10^{-3} m, the wavelength of light used is [Roorkee) 1992]

(a) $6000\stackrel{\scriptscriptstyle{0}}{A}$

(b) $5000 \stackrel{0}{A}$

(c) $3000 \stackrel{0}{A}$

(d) $4500 \stackrel{_{}^{0}}{\rm A}$

In the figure is shown Young's double slit experiment. Q is the position of the first bright fringe on the 170. right side of O. P is the 11th fringe on the other side, as measured from Q. If the wavelength of the light used is 6000×10^{-10} m, then S_1B will be equal to [CPMT 1986, 92]

- (a) 6×10^{-6} m
- (b) 6.6×10^{-6} m
- (c) 3.138×10^{-7} m
- (d) 3.144×10^{-7} m

- 171. Four light waves are represented by
 - (i) $y = a_1 \sin \omega t$
- (ii) $y = a_2 \sin(\omega t + \phi)$ (iii) $y = a_1 \sin 2\omega t$ (iv) $y = a_2 \sin 2(\omega t + \phi)$

Interference fringes may be observed due to superposition of

- (a) (i) and (ii)
- (b) (i) and (iii)
- (c) (ii) and (iv)
- (d) (iii) and (iv)
- 172. The maximum intensity in Young's double slit experiment is I_0 . Distance between the slits is $d = 5\lambda$, where λ is the wavelength of monochromatic light used in the experiment. What will be the intensity of light in front of one of the slits on a screen at a distance D = 10 d.
 - (a) $\frac{I_0}{2}$
- (b) $\frac{3}{4} l_0$
- (c) l_0
- (d) $\frac{l_0}{4}$
- 173. A beam of electron is used in an YDSE experiment. The slit width is d. When the velocity of electron is increased, then [IIT-JEE (Screening) 2005]
 - (a) No interference is observed
- (b) Fringe width increases
- (c) Fringe width decreases

- (d) Fringe width remains same
- A slit of width a is illuminated by white light. For red light $(\lambda = 6500 \, \text{Å})$, the first minima is obtained at 174. $\theta = 30^{\circ}$. Then the value of a will be [MP PMT 1987; CPMT 2002]
 - (a) 3250 A
- (b) $6.5 \times 10^{-4} \ mm$ (c) $1.24 \ microns$ (d) $2.6 \times 10^{-4} \ cm$
- The light of wavelength $6328 \stackrel{0}{\mathrm{A}}$ is incident on a slit of width 0.2 mm perpendicularly, the angular 175. width of central maxima will be [MP PMT 1987; PMT 2002]
 - (a) 0.36°
- (b) 0.18⁰
- (c) 0.72^0
- (d) 0.09°
- 176. A slit of size 0.15 cm is placed at 2.1 m from a screen. On illuminated it by a light of wavelength 5×10^{-5} cm. The width of central maxima will be [RPMT 1999]
 - (a) 70 mm
- (b) 0.14 mm
- (c) 1.4 mm
- (d) 0.14 cm

1//.	what will be the ang	gie of diffraction for the	e first minimum due to) Fraunnoffer d	iffraction with sources	
	of light of wave leng	th 550 nm and slit of w	vidth 0.55 mm		[Pb. PMT 2001]	
	(a) 0.001 rad	(b) 0.01 rad	(c) 1 rad	(d) 0.1 rad		
178.	Yellow light is used i	n single slit diffraction	experiment with slit w	vidth 0.6 mm. If	fyellow light is	
	replaced by X-ra	ys then the pattern wil	l reveal			
			[IIT-JEE (Screening	g) 1999; MP P	MT 200; KCET 2003]	
	(a) That the central i	maxima is narrower	(b) No diffraction pa	ttern		
	(c) More number of	fringes	(d) Less number of fr	ringes		
179.	Conditions of diffrac	tion is			[RPET 2001]	
	(a) $\frac{a}{\lambda} = 1$	(b) $\frac{a}{\lambda} >> 1$	(c) $\frac{a}{\lambda} \ll 1$	(d) None of the	hese	
180.	The diffraction effec	t can be observed in			[J & K CET 2004]	
	(a) Only sound wave	s (b) Only light waves	(c) Only ultrasonic w	aves (d) Sound	l as well as light waves	
181.	Diffraction of the first	st secondary maximum	in the Fraunhofer diff	fraction patterr	n at a single slit is given	
	by (a is the width of	·			[KCET 1999]	
	(a) $a \sin \theta = \frac{\lambda}{2}$	(b) $a \sin \theta = \frac{3\lambda}{2}$	(c) $a \sin \theta = \lambda$	(d) <i>a</i>	$\sin\theta = \frac{3\lambda}{2}$	
182.	A light wave is incide	ent normally over a slit	of width $24 \times 10^{-5} cm$.	. The angular po	osition of second dark	
	fringe from the cent	ral maxima is 30 ⁰ . Wha	t is the wavelength of	light	[RPET 1995]	
	(a) $6000~{ m A}^{^0}$	(b) $5000 \stackrel{0}{\rm A}$	(c) $3000 \stackrel{0}{A}$	(d) $1500 \stackrel{\scriptscriptstyle 0}{\mathrm{A}}$		
183.	The condition for ob	serving Fraunhofer dif	fraction from a single s	slit is that the li	ght wavefront incident	
	on the slit should be				[MP PMT 1987]	
	(a) Spherical	(b) Cylindrical	(c) Plane	(d) Elliptical		
184.	Angular width of cer	ntral maxima in the Fra	unhoffer diffraction pa	attern of a slit i	s measured. The slit is	
	illuminated by light of wavelength $6000\stackrel{0}{ m A}$. When the slit is illuminated by light of another					
	wavelength, the ang	ular width decreases b	y 30%. The wavelengt	h of this light w	vill be	
	(a) $6000 \stackrel{0}{\rm A}$	(b) $4200 \stackrel{0}{A}$	(c) $3000 \stackrel{0}{A}$	(d) $1800 \stackrel{^{0}}{A}$		
185.	In a single slit diffraction experiment first minimum for red light (660 nm) coincides with first maximum					
	of some other wave	length λ '. The value of				
	(a) $4400 \stackrel{0}{\rm A}$	(b) $6600 \stackrel{^{0}}{\rm A}$	(c) $2000 \stackrel{^{0}}{\rm A}$	(d) $3500 \stackrel{0}{A}$		

- 186. Young's double slit experiment is carried out by using green, red and blue light, one color at a time. The fringe widths records are (IIT 2012)
 - a) $\beta_G > \beta_R > \beta_R$
- b) $\beta_R > \beta_G > \beta_R$ c) $\beta_R > \beta_R > \beta_G$
- d) $\beta_R > \beta_G > \beta_R$
- 187. In the Young's double slit experiment using a monochromatic light of wavelength λ , the path diffference (in terms of an integer n) corresponding to any point having half the peak intensity is (JEE advanced 2013)
 - a) $(2n+1)\frac{\lambda}{2}$ b) $(2n+1)\frac{\lambda}{4}$ c) $(2n+1)\frac{\lambda}{8}$
- d) $(2n+1)\frac{\lambda}{16}$
- In the experiment of diffraction at a single slit, if the slit width is decreased, the width of the central (UPSEAT 2004, VITEEE 2008) maximum
 - a) increases in both Fresnel and Faunhoffer diffraction
 - b) decreases both in Fresnel and Fraunhoffer diffraction
 - c) increases in Fresnel; diffractin but decreases in Faunhoffer diffraction
 - d) decreases in Fresnel diffraction but increases is Fraunhoffer diffraction
- 189. Figure shows the dependence of intensity of transmitted light on the angle between the polariser and analyser. Choose the correct option (AIIMS 2007)

- 190. A beam of unpolarised light of intensity I_0 is passed through a polaroid A and then through another polaroid B which is oriented so that its principal plane makes an angle of 45° relative to that of A. The intensity of emergent light is

c) $I_0/4$

- 191. For a parallel beam of monochromatic light of wavelength ' λ ' diffraction is produced by a single slit whose width 'a' is of the order of the wavelength of the light. If 'D' is the distance of the screen from the slit, the width of the cenral maxima will be **(CBSE AIPMT 2015)**
 - a) $\frac{2D\lambda}{a}$
- b) $\frac{D\lambda}{a}$
- c) $\frac{Da}{a}$

- d) $\frac{2Da}{\lambda}$
- In a double slit experiment, the two slits are 1 mm apart and the screen is placed 1 m away. A monochromatic light of wavelength 500 nm is used. What will be the width of each slit for obtaining ten maxima of double slit within the ccentral maxima of single slit patttern? **(CBSE AIMT 2015)**
 - a) 0.2 mm
- b) 0.1 mm
- d) 0.02mm
- 193. The ratio of resolving powers of an optical microscope for two wavelengths $\lambda_1 = 4000 \,\text{Å}$ and
 - $\lambda_2 = 6000 \,\text{Å} \, \text{is}$

(NEET 2017)

- a) 8:27
- b) 9:4

c)3:2

- d) 16:81
- 194. Two polaroids P_1 and P_2 are placed with their axis perpendicular to each other. Unpolarised light I_0 is incident on P_1 . A third polaroid P_3 is kept in between P_1 and P_2 such that its axis makes an angle 45° with that of P_1 . The intensity of transmitted light through P_2 is (NEET 2017)

٠,	I_0
a)	2

b)
$$\frac{I_0}{4}$$

c)
$$\frac{I_0}{8}$$

d)
$$\frac{I_0}{16}$$

- 195. The Young's double slit experiment is performed with blue and green light of wavelengths 4360Å and 5460Å respectively. If x is the distance of 4th maxima from the central one, then (AIIMS 2017)
 - a) $x_{blue} = x_{green}$
- b) $x_{blue} > x_{green}$
- c) $x_{blue} < x_{green}$
- d) x_{blue} / x_{green}
- 196. In the Young's double slit experiment, the intensity of light at a point on the screen where the path difference is λ is K (λ being the wavelength of light used). The intensity at a point where path diff. is λ /4 will be

(AIPMT 2014)

a) K

b) K/4

c) K/2

- d) zero
- 197. A parallel beam of fast moving electrons is incident normally in a narrow slit. A fluorescent screen is placed at a large distance from the slit. If the speed of the electrons is increased, which of the following statements is correct? (NEET 2013)
 - a) The angular width of central maximum will be unaffected
 - b) diffraction attern is not observed on the screen in the case of electrons.
 - c) The angular width of the central maximum of the diffraction pattern will increase
 - d) The angular width of the central maximum will decrease.
- A single slit Fraunhoffer diffraction pattern is formed with white light. For what wavelength of light the third secondary maximum in the diffraction pattern coincides with the second secondary maximum in the pattern for red light of wavelength 6500Å?
 - a) 4400Å
- b) 4100Å
- c) 4642Å
- d) 9100Å
- The diameter of the objective of a telescope is 0.1m and the wavelength of the light is 6000Å. Its 199. resolving power would be approximately (AIIMS 2011)
 - a) 6×10^{-5} rad
- b) $6 \times 10^{-4} \text{ rad}$
- c) 6×10^{-3}
- d) 6×10^{-6} rad
- 200. The graph showing the dependence of intensity of transmitted light on the angle between polariser and (AIIMS 2007) analyser is

- Two polaroids P₁ and P₂ are placed with their axis perpendicular to each other. Unpolarised light I₀ is incident on P₁. A third polaroid P₃ is kept in between P₁ and P₂ such that its axis makes an angle 45⁰ with that of P₁. The intensity of transmitted light through P₂ is (NEET 2017)
 - a) $\frac{I_0}{2}$
- b) $\frac{I_0}{4}$
- c) $\frac{I_0}{\varrho}$

- d) $\frac{I_0}{16}$
- 202. At the first minimum adjacent to the central maximum of a single-slit diffraction pattern, the phase difference between the Huygen's wavelenth from the edge of the slit and the wavelet from the midpoint of the slit is (NEET 2015)
- a) $\frac{\pi}{2}$ radian b) $\frac{\pi}{4}$ radian c) $\frac{\pi}{2}$ radian
- d) π radian

- Two slits in Young's experiment have widths in the ratio 1:25. The ratio of intensity at the maxima and minima in the interference pattern $\frac{I_{\text{max}}}{I_{\text{min}}}$ is (NEET 2015)
 - a) $\frac{4}{9}$

- c) $\frac{121}{49}$
- In a diffraction pattern due to a single slit of sidth 'a' the first minimum is observed at an angle 30° when light of wavelength 5000 Å is incident on the slit. The first secondary maximum is observed at an angle of (NEET 2016)

- a) $\sin^{-1}\left(\frac{1}{4}\right)$ b) $\sin^{-1}\left(\frac{2}{3}\right)$ c) $\sin^{-1}\left(\frac{1}{2}\right)$ d) $\sin^{-1}\left(\frac{3}{4}\right)$
- The intensity at the maximum in a Young's double slit experiment is I_0 . Distance between two slits is $d = 5\lambda$, where λ is the wavelength of light used in the experiment. What will be the intensity in front of one of the slits on the screen placed at a distance D = 10 d? (NEET 2016)
 - a) I_0
- b) $\frac{I_0}{4}$

c) $\frac{3}{4}I_0$

- The interference pattern is obtained with two coherent light sources of intensity ratio n. In the interfer-

ence pattern, the ratio $\frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$ will be

(NEET 2017)

- a) $\frac{\sqrt{n}}{n+1}$
- b) $\frac{2\sqrt{n}}{n+1}$
- c) $\frac{\sqrt{n}}{(n+1)^2}$
- d) $\frac{2\sqrt{n}}{(n+1)^2}$
- A linear aperture whose width is 0.02 cm is placed immediately in front of a lens of focal length 60 cm, The aperture is illuminated normally by a parallel beam of wavelength $5 \times 10^{-5} \, cm$. The distance of the first dark band of the diffraction pattern from the centre of the screen is (NEET 2017) c) 0.20 cm d) 0.15 cm a) 0.10 cm b) 0.25 cm
- Young's double slit experiment is first performed in air and then in a medium other than air. It is found that 8th bright fringe in the medium lies where 5th dark fringe lies in air. The refractive inde of the medium is nearly (NEET 2017)
 - a) 1.25
- b) 1.59

c) 1.69

- d) 1.78
- 209. Unpolarised light is incident from air on a plane surface of a material of refractive index ' μ ' At a particular angle of incidence 'i', it is found that the reflected and refracted rays are perpendicular to each other. Which of the following options is correct for this situation? (NEET 2018)
 - a) $i = \sin^{-1}\left(\frac{1}{u}\right)$
 - b) Reflected light is polarised with its electric vector perpendicular to the plane of incidence
 - c) Reflected light is polarised with its electric vector parallel to the plane of incidence
 - d) $i = \tan^{-1} \left(\frac{1}{n} \right)$

- 210. In Young's double slit experiment the separation d between the slits is 2 mm, the wavelength λ of the light used is 5896 Å and distance D between the screen and slits is 100 cm. It is found that the angular width of the fringes is 0.20° . To increase the fringe angular width to 0.21' (with same λ and D) the separation between the slits needs to be chaned to

 (NEET 2018)

 a) 2.1 mm

 b) 1.9 mm

 c) 1.8 mm

 d) 1.7 mm
- 211. In double slit experiment, when light of wavelength 400 nm was used, the angular width of the first minima formed on a screen placed 1m away, was found to be 0.2° . What will be the angular width of the first minima, if the entire experimental apparatus is immersed in water ($\mu_{water} = 4/3$)

(NEET 2019)

- (a) 0.05°
- (b) 0.1°
- (c) 0.266°
- (d) 0.15°
- 212. Assume that light of wavelength 600 nm is coming from a star. The limit of resolution of telescope whose objective has a diameter of 2 m is: (NEET 2020)
 - (1) 6.00×10^{-7} rad

(2) 3.66×10^{-7} rad

(3) 1.83×10^{-7} rad

- (4) 7.32×10^{-7} rad
- 213. The Brewsters angle ib for an interface should be:

(NEET 2020)

- $(1) i_b = 90^{\circ}$
- $(2) 0^{\circ} < i_{b} < 30^{\circ}$
- $(3) 30^{\circ} < i_{h} < 45^{\circ}$
- $(4) 45^{\circ} < i_{h} < 90^{\circ}$
- 214. In Young's double slit experiment, if the separation between coherent sources is halved and the distance of the screen from the coherent sources is doubled, then the fringe width becomes: (NEET 2020)
 - (1) one-fourth
- (2) double
- (3) half

- (4) four times
- 215. Unpolarised light of intensity I passes through an ideal polariser A. Another identical polariser B is placed behind A. The intensity of light beyond B is found to be $\frac{I}{2}$. Now another identical polariser C is placed
 - between A and B. The intensity beyond B is now found to be $\frac{I}{8}$. The angle between polariser A and C is
 - $(A) 45^{\circ}$
- (B) 60°

 $(C) 0^{0}$

- (D) 30°
- 216. Unpolarized light of intensity I_0 , is made to pass through three polarizers P_1 , P_2 and P_3 successively. Thge polarization axis of P_2 makes an angle of θ_1 with that of P_1 , while that of P_3 makes an angle θ_2 with that of the P_2 . What will be the intensity of light coming out of P_3 ? (Home Work)
- 217. In a young's double slit experiment, slits are separated by 0.5 mm and the screen is placed 150 cm away. A beam of light consisting of two wavelengths, 650 nm and 520 nm, is used to obtain interference fringes on the screen. The least distance from the common central maximum to the point where the bright fringes due to both the wavelengths coincide, is

 [JEE 2017]
 - a) 7.8 mm
- b) 9.75 mm
- c) 15.6 mm
- d)1.56 mm
- 218. Consider Young's double slit experiment as shown in figure. What whould be the slit separation d in terms of wavelength λ such that the first minima occurs directly in front of t he slit (S₁)

[JEE - 10 Jan 2019 Evening]

λ	λ	
(1) $\overline{2(\sqrt{5}-2)}$	$(2) \overline{\left(\sqrt{5}-2\right)}$	

$$(3) \frac{\lambda}{2(5-\sqrt{2})} \qquad (4) \frac{\lambda}{(5-\sqrt{2})}$$

219. In a Young's double slit experiment, the path difference, at a certain point on the screen, betwen two interfering waves is $\frac{1}{2}th$ of wavelength. The ratio of the intensity at this point to that at the centre of a [JEE - 11 Jan 2019 Morning] bright fringe is close to:

(1)0.74

(1)2

(2)0.85

(2)18

(3)0.94

(4)0.80

(4)9

- In an interference experiment the ratio of amplitudes of the ratio of amplitudes of coherent waves is 220. $\frac{a_1}{a_2} = \frac{1}{3}$. The ratio of maximum and minimum intensities of fringes will be: [JEE -8 April 2019 Mor]
- Calculate the limit of resolution of a telescope objectiv having a diameter of 200 cm, if it has to detect light 221. [JEE - 8 April 2019 Evening] of wavelength 500 nm coming from a star.

(3)4

(1) 305×10^{-9} radian

(2) 610×10^{-9} radian

(3) 152.5×10^{-9} radian

(4) 457.5×10^{-9} radian

The figure shows a Young's double slit experimental setup. It is observed that when a thin transparent 222. sheet of thickness t and refractive index μ is put in front of one of the slits, the central maximum gets shifted by a distance equal to n fringe widths. If the wavelength of light used is λ , t will be:

[JEE - 9 April 2019 Morning]

(1) $\frac{2n\lambda}{(\mu-1)}$ (2) $\frac{n\lambda}{(\mu-1)}$ (3) $\frac{\lambda}{a(\mu-1)}$ (4) $\frac{2\lambda}{a(\mu-1)}$

223. Diameter of the objective lens of a telescope is 250 cm. For light of wavelength 600 nm. Coming from a distant object, the limit of resolution of the telescope is close to [JEE - 9 April 2019 Evening]

(1) 1.5×10^{-7} rad (2) 2.0×10^{-7}

 $(3) 3.0 \times 10^{-7}$

(4) 4.5×10^{-7}

In a Young's double slit experiment, the ratio of the slit's width is 4:1. The ratio of the intensity of maxima 224. to minima, close to the central fringe on the screen, will be: [JEE - 10 April 2019 Evening]

(1)25:9

(2) 9 : I

(3)4:1

 $(4) \left(\sqrt{3}+1\right)^4:16$

The value of numerical aperature of the objective lens of a microscope is 1.25. If light of wavelength 225. 5000 A is used, the minimum separation between two points, to be seen as distinct, will be:

[JEE - 12 April 2019 Morning]

(1) 0.24 μ m

(2) $0.38 \mu \text{ m}$

(3) $0.12 \mu \text{ m}$

(4) $0.48 \mu \text{ m}$

- 226. In a double slit experiment, when a thin film of thickness t having refractive index μ is introduced in front of one of the slits, the maximum at the centre of the fringe pattern shifts by one fringe width. The value of t is (X is the wavelength of the light used): [JEE - 12 April 2019 Morning]

 - $(1) \frac{2\lambda}{(\mu-1)} \qquad (2) \frac{\lambda}{2(\mu-1)}$
 - $(3) \frac{\lambda}{(\mu-1)}$
- $^{(4)}\frac{\lambda}{(2\mu-1)}$
- 227. A system of three polarizers P₁P₂, P₃ is set up such that the pass axis of P₃ is crossed with respect to that of P₁ The pass axis of P₂ is inclined at 60° to the pass axis of P₃ When a beam of unpolarized light of intensity I_0 is incident on P_1 the intensity of light transmitted by the three polarizers is I. The ratio (I_0/I) [JEE - 12 April 2019 Evening] equals (nearly):
 - (1)5.33
- (2)16.00
- (3)10.67
- (4)1.80
- 228. In a single slit diffraction set up, second minima is observed at an angle of 60°. The expected position of (**JEE Mains 2020**) first minima is
 - $(1) 25^0$
- $(2) 20^{0}$

 $(3) 30^{0}$

- $(4)45^{0}$
- If 10% of intensity is passed from analyser, then, the angle by which analyser should be rotated such that 229. transmitted intensity becomes zero. (**JEE Mains 2020**)
 - $(1) 60^{\circ}$
- $(2) 18.4^{\circ}$
- $(3)45^{0}$

- $(4) 71.6^{\circ}$
- In YDSE, separation between slits is 0.15 mm, distance between slits and screen is 1.5 m and wavelength 230. of light is 589 nm, then fringe width is (**JEE Mains 2020**)
 - $(1) 5.9 \, \text{mm}$
- $(2) 3.9 \, \text{mm}$
- (3) 1.9 mm
- (4) 2.3 mm
- In YDSE path difference at a point on screen is $\frac{\lambda}{8}$. Find ratio of intensity at this point with maximum intensity (**JEE Mains 2020**)
 - (1)0.853
- (2) 0.533
- (3) 0.234
- (4) 0.123