Nama : Muhammad Azhar Rasyad

NIM : 0110217029

Program Studi: Teknik Informatika

Ujian Akhir Semester Natural Language Processing

1. (15 poin) Hitung jarak Levenshtein dari kata Belanda dan Holland

Jawaban:

1							
5							
4							
3							
2							
1							
0	1	2	3	4	5	6	7
#	Н	0	L	L	Α	Ν	D
-	3 2 1 0	5 4 3 2 1 0 1	5 4 3 2 1 0 1 2	5 4 3 2 1 0 1 2 3	5 4 3 2 1 0 1 2 3 4	5 4 3 2 1 0 1 2 3 4 5	5 4 3 2 1 0 1 2 3 4 5 6

Tahap 1 Inisialisasi (Levenshtein Distance = 2)

Α	7								Α	7							
D	6								D	6							
N	5								N	5							
A	4																
L	3								Α	4							
E	2								L	3	2	1	5	6	7	8	0
В	1	2	3	4	5	6	7	8	Е	2	3	4	_	-	-	_	9
#	0	1	2	3	4	5	6	7	В	1	2	3	4	5	6	7	8
#	#	Н	0	L	L L	A	N	D	#	0	1	2	3	4	5	6	7
	#	П	U	L	L	А	IV	D		#	Н	0	L	L	Α	N	D
Α	7								Α	7							
D	6								D	6							
N	5								N	5							
Α	4								Α	4	5	6	5	6	5	6	7
L	3	4	5	4	5	6	7	8	L	3	4	5	4	5	6	7	8
Е	2	3	4	5	6	7	8	9	Е	2	3	4	5	6	7	8	9
В	1	2	3	4	5	6	7	8	В	1	2	3	4	5	6	7	8
#	0	1	2	3	4	5	6	7	#	0	1	2	3	4	5	6	7
	#	Н	0	L	L	Α	N	D		#	Н	0	L	L	Α	N	D
		1			•							•			•		
Α	7								A	7							
D	6								D	6	7	8	7	8	7	6	5
N	5	6	7	6	7	6	5	6	N	5	6	7	6	7	6	5	6
Α	4	5	6	5	6	5	6	7	A	4	5	6	5	6	5	6	7
L	3	4	5	4	5	6	7	8	L	3	4	5	4	5	6	7	8
E	2	3	4	5	6	7	8	9	E	2	3	4	5	6	7	8	9
В	1	2	3	4	5	6	7	8	В	1	2	3	4	5	6	7	8
#	0	1	2	3	4	5	6	7	#	0	1	2	3	4	5	6	7
#	#	Н	0	L	L	A	N	D	#	#	Н	0	L	L L	A	N	D
	#	П	U	L	L	A	IV	D		#	111			L	A	IN	U

Α	7	8	9	8	9	8	7	6
D	6	7	8	7	8	7	6	5
N	5	6	7	6	7	6	5	6
Α	4	5	6	5	6	5	6	7
L	3	4	5	4	5	6	7	8
Е	2	3	4	5	6	7	8	9
В	1	2	3	4	5	6	7	8
#	0	1	2	3	4	5	6	7
	#	Н	0	L	L	Α	Ν	D

Tahap 2 Mengisi Isi Baris

Α	7	8	9	8	9	8	7	6
D	6	7	8	7	8	7	6	5
N	5	6	7	6	7	6	5	6
Α	4	5	6	5	6	5	6	7
L	3	4	5	4	5	6	7	8
Е	2	3	4	5	6	7	8	9
В	1	2	3	4	5	6	7	8
#	0	1	2	3	4	5	6	7
	#	Н	0	L	L	Α	N	D

Tahap 3 Jarak Belanda dan Holland adalah 6

2. (15 poin) Apa perbedaan open class dengan close class? Sebutkan 5 contoh kata dalam percakapan bahasa Indonesia yang termasuk open class yang 10 tahun lalu belum ada!

Jawaban: Open Class merupakan sekumpulan kata-kata baru yang dibuat seiring berjalannya waktu atau kata lama yang mengalami perubahan yang mudah diubah dari adanya kata benda, kata sifat, dan kata kerja. Sedangkan Close Class merupakan sekumpulan kata-kata yang tidak dapat berubah karena mengandung fungsi gramatikal bahasa tertentu, contohnya dari kata penghubung dan kata depan seperti kata dan, atau, tapi, ke, di, dan sebagainya.

Berikut 5 contoh kata dalam percakapan bahasa Indonesia yang termasuk Open Class dalam 10 tahun lalu yaitu mantul, santuy, kuy, mager, dan baper.

3. (15 poin) Buat sebuah kalimat lengkap (antara 7 hingga 15 kata) yang bercerita tentang salah satu teknologi yang terkait NLP. Beri tagging sesuai dengan tagset dari INACL.

Jawaban : Contoh kalimat : Kecerdasan buatan merupakan teknologi yang belakangan ini sedang berkembang pesat di Indonesia. Berikut tagset dari INACL dari kalimat di atas :

Kecerdasan_NNO buatan_NNO merupakan_VBL teknologi_NNO yang_PRR belakangan_NNO ini ART sedang ADK berkembang VBI pesat ADJ di PPO Indonesia NNP . SYM

4. (30 poin) Diberikan sebuah model HMM berikut :

A:

	SA	SB	sc	sf
s0	0.6	0.3	0.1	0
SA	0.2	0.6	0.1	0.1
SB	0.6	0.1	0.3	0
sc	0.1	0.1	0.5	0.3

B:

	SA	SB	sc
pun	0.1	0.3	0
khan	0.5	0.1	0
jos	0.4	0.4	0.4
men	0	0.2	0.6

(a) gambarkan diagram transisi statenya.

(b) Hitung berapa peluang kemunculan kata "khan jos pun men" menggunakan forward algorithm.

Jawaban:

]		SA	SB	SC					
	khan	0.5	0.1	0					
	jos	0.4	0.4	0.4			SA	SB	SC
	pun	0.1	0.3	0		s0	0.6	0.3	0.1
	men	0.1	0.2	0.6		-			
		Output Pr	obabilities		Input State	Probabilities			
	In	itialization	Output kh		SA	SB	SC		
			6 * 0.5 =			khan	0.3	0.03	0
		` /		0,3		jos			
	α	1(2) = 0.	3 * 0.1 =	0,03		pun			
	α	1(3) =	0.1 * 0 =	0		men			
	<u> </u>	<u> </u>	O-4	<u> </u>		1			
			Output jos				SA	SB	SC
$\alpha 2(1)$) = [(0,3 *	(0,2) + (0,03)	* 0,6) + (0 *	0,1)] * 0,4 =	0,0312	khan	0,3	0,03	0
$\alpha 2(2) = [(0.3 * 0.6) + (0.03 * 0.1) + (0 * 0.1)] * 0.4 = 0.0732$						jos	0,0312	0,0732	0,0156
$\alpha 2(3) = [(0.3 * 0.1) + (0.03 * 0.3) + (0 * 0.5)] * 0.4 = 0.0156$						pun			
5.2(0	()	-,-, (-,	-1-/	-1-/1 -1:	-,0200	men			
	-	Recursion	Output pun			1	SA	SB	SC
		. Coursion	Catpat pair				34	36	30

0,005172

0,00828

khan

jos

pun

men

Recursion Output men							
$\alpha 4(1) =$	[(0,005172 * 0,2) + (0,00828 * 0,6) + (0 * 0,1)] * 0 =	0					
$\alpha 4(2) =$	[(0,005172 * 0,6) + (0,00828 * 0,1) + (0 * 0,1)] * 0,2 =	0,00078624					
α4(3) =	[(0,005172 * 0,1) + (0,00828 * 0,3) + (0 * 0,5)] * 0,6 =	0,00180072					

 $\alpha 3(1) = [(0.0312 * 0.2) + (0.0732 * 0.6) + (0.0156 * 0.1)] * 0.1 =$

 $\alpha 3(2) = [(0.0312 * 0.6) + (0.0732 * 0.1) + (0.0156 * 0.1)] * 0.3 =$ $<math>\alpha 3(3) = [(0.0312 * 0.1) + (0.0732 * 0.3) + (0.0156 * 0.5)] * 0 =$

	SA	SB	SC
khan	0,3	0,03	0
jos	0,0312	0,0732	0,0156
pun	0,005172	0,00828	0
men	0	0,00078624	0.00180072

0,03

0,0732

0,00828

0

0,0156

0

0,3

0,0312

0,005172

Berikut Peluang Kemunculan kata "khan jos pun men"

	SA	SB	SC	Σ
khan	0,3	0,03	0	0,33
jos	0,0312	0,0732	0,0156	0,12
pun	0,005172	0,00828	0	0,013452
men	0	0,00078624	0,00180072	0,00258696

(c) (bonus) Apa state yang paling mungkin untukd kata tersebut (POS Tag dari kalimat tersebut)? Bisa dicari menggunakan viterbi algorithm.

Jawaban:

1		SA	SB	SC					
[khan	0.5	0.1	0					
[jos	0.4	0.4	0.4			SA	SB	SC
	pun	0.1	0.3	0		s0	0.6	0.3	0.1
l	men	0.1	0.2	0.6					
		Output Pr	obabilities				Input State	Probabilities	
	In	itialization	Output kh	an			SA	SB	SC
			3 * 0,5 =		khan	0.3	0.03	0	
				0,3		jos			
		•			pun				
	v1	L(3) = 0),1 *0=		men				
		Docursion	Output ios				SA	SB	SC
0(1)			Output jos		0.004	khan	0.3	0.03	0
v2(1) =)3 * 0,6);(0 *			jos	0,024	0,072	0,012
v2(2) =	Max((0,	,3 * 0,6);(0,0)3 * 0,1);(0 *	· 0,1)) * 0,4 :	0,072	pun	0,024	0,072	0,012
v2(3) =	Max((0,	3*0,1);(0,0)	3 * 0,3);(0 *	0,5)) * 0,4 :	0,012	men			
						men			
			Output pun				SA	SB	SC
v3(1) =			* 0,6);(0,012 *		0,00432	khan	0,3	0,03	0
v3(2) =			* 0,1);(0,012 *		0,00432	jos	0,024	0,072	0,012
v3(3) =	Max((0,0	24 * 0,1);(0,07	72 * 0,3);(0,012	2 * 0,5)) * 0 =	0	pun	0,00432	0,00432	0
					·	men			
Recursion Output men						<u> </u>	SA	SB	SC
v4(1) =							0.3	0.03	0
v4(2) =			0432 * 0,1);(0 *		0,0005184	khan ios	0.024	0.072	0,012
v4(3) =			0432 * 0,3);(0 *		0,0007776	pun	0,00432	0.00432	0,012
7.(0)	((-,50)	-1-//(3/00	-1-/1(0	-12//	5,5551.75	men	0	0.0005184	0.0007776

Berikut Peluang Kemunculan kata "khan jos pun men" dengan viterbi algorithm

	SA	SB	SC	Max
khan	0,3	0,03	0	0,3
jos	0,024	0,072	0,012	0,072
pun	0,00432	0,00432	0	0,00432
men	0	0,0005184	0,0007776	0,0007776

State yang paling mungkin untuk kata tersebut (POS Tag dari kalimat tersebut) berdasarkan viterbi algorithm adalah $SA-SB-SA-SC \ atau \ SA-SB-SB-SC$

- 5. (15 poin) Berikan penjelasan tentang istilah berikut:
 - (a) **Perceptron** merupakan algoritma dasar untuk neural network sederhana yang meniru cara kerja syaraf manusia dengan bekerja dari impuls-impuls yang diberikan oleh neuron disebelahnya, dan berfungsi untuk mengklasifikasikan suatu tipe pola tertentu dengan pemisahan secara linear.
 - (b) **Overfitting** merupakan keadaan ketika suatu data training berbeda jauh dengan data test sehingga menimbulkan bias yang sangat jauh ataupun sekumpulan data yang memiliki kriteria tertentu namun ada beberapa data yang berbeda jauh dari kriteria tersebut.
 - (c) **Feature Engineering** merupakan cara agar mesin dapat mengenali suatu model dari ciri model tersebut sehingga akurasi dalam mengenali suatu model tersebut dapat meningkat.
- 6. (10 poin) Jelaskan tentang MFCC dari apa yang kamu ketahui!

Jawaban : MFCC atau Mel Frequency Cepstral Coefficient merupakan metode dalam pengenalan audio untuk melakukan feature extraction sehingga mendapatkan suatu parameter dan informasi mengenai ciri dari audio tersebut.

7. (bonus poin) Apa perbedaan antara LSTM dan GRU?

Jawaban : LSTM atau Long Short Term Memory merupakan arsitektur yang mampu memproses data secara berurut karena dapat mengingat urutan yang lebih panjang dengan adanya 3 gate yaitu forget gate, input gate, dan output gate, sedangkan GRU atau Gated Recurrent Unit merupakan gabungan dari forget gate dan input gate sehingga menjadi update gate yang menjadikan komputasinya lebih sederhana dari LSTM dan melatih dengan lebih cepat, namun keduanya masih memiliki kelebihan dan kekurangannya masing-masing.