Worksheet 1

Spring 2016

Methods of Proof

Key Terms

Universal and existential quantifiers

Contrapositive/Converse

Methods of Proof: Direct, Contradiction, Contrapositive, Cases, Induction

Quantifiers

Let P(x, y) denote some proposition involving x and y. For each statement below, either prove that the statement is correct or provide a counterexample if it is false.

- 1. $\forall x \forall y P(x, y) \text{ implies } \forall y \forall x P(x, y).$
- 2. $\exists x \exists y P(x, y) \text{ implies } \exists y \exists x P(x, y).$
- 3. $\forall x \exists y P(x, y) \text{ implies } \exists y \forall x P(x, y).$
- 4. $\exists x \forall y P(x, y) \text{ implies } \forall y \exists x P(x, y).$

Contradiction and Contraposition

Write the contrapositive of the following statements in mathematical notation. (Using quantifiers, etc.) If a quadrilateral is not a rectangle, then it does not have two pairs of parallel sides. (Skip mathematical notation for this problem, just write the contrapositive)

For all natural numbers a where a² is even, a is even.

Negate this statement: For all integers x, there exists an integer y such that $x^2 + y = 16$.

Contradiction and Contraposition	(cont.))

Prove there exist irrational numbers x and y such that x^y is rational.

Prove or disprove: If $P \rightarrow Q$ and $R \rightarrow \neg Q$, then $P \rightarrow \neg R$.

Induction

What are the three steps of induction?

- 1. _____
- 2.
- 3

More Practice

1. Let x be a positive real number. Prove that if x is irrational (i.e., not a rational number), then \sqrt{x} is also irrational.

2. McDonald's sells chicken McNuggets only in 6, 9, and 20 piece packages. This means that you cannot purchase exactly 8 pieces, but can purchase 15. The Chicken McNugget Theorem states that the largest number of pieces you cannot purchase is 43. Formally state the Chicken McNugget Theorem using quantifiers.

3.	Prove or disprove the following statement: If n is a positive integer such that $n / 3$ leaves a remainder of 2, then n is not a perfect square.
4.	In a large field, n people are standing so that for each person, the distances to every other person is different. At a given signal, each person fires a water pistol and hits the person who is closest to them. When n is odd, prove that there is at least one person who is left dry.