1 Derivatives of simple functions

Compute the derivatives of the following simple functions used as non-linearities in neural networks.

(a)
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

(b)
$$ReLu(x) = max(x, 0)$$

(c)
$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

2 Backpropagation

In this discussion, we will explore the chain rule of differentiation, and provide some algorithmic motivation for the backpropagation algorithm.

- (a) Chain rule of multiple variables: Assume that you have a function given by $f(x_1, x_2, \ldots, x_n)$, and that $g_i(w) = x_i$ for a scalar variable w. How would you compute $\frac{d}{dw} f(g_1(w), g_2(w), \ldots, g_n(w))$? What is its computation graph?
- (b) Let $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n \in \mathbb{R}^d$, and we refer to these variables together as $\mathbf{W} \in \mathbb{R}^{n \times d}$. We also have $\mathbf{x} \in \mathbb{R}^d$ and $y \in \mathbb{R}$. Consider the function

$$f(\mathbf{W}, \mathbf{x}, y) = \left(y - \sum_{i=1}^{n} \phi(\mathbf{w}_{i}^{\mathsf{T}} \mathbf{x} + b_{i})\right)^{2}.$$

Write out the function computation graph (also sometimes referred to as a pictorial representation of the network). This is a directed graph of decomposed function computations, with the function at one end, and the variables $\mathbf{W}, \mathbf{b}, \mathbf{x}, y$ at the other end, where $\mathbf{b} = [b_1, \dots, b_n]$.

- (c) Suppose $\phi(x) = \sigma(x)$ (from problem 1a). Compute the partial derivatives $\frac{\partial f}{\partial \mathbf{w}_i}$ and $\frac{\partial f}{\partial b_i}$. Use the computational graph you drew in the previous part to guide you.
- (d) Write down a single gradient descent update for $\mathbf{w}_i^{(t+1)}$ and $b_i^{(t+1)}$, assuming step size η . You answer should be in terms of $\mathbf{w}_i^{(t)}$, $b_i^{(t)}$, \mathbf{x} , and y.
- (e) (optional) Define the cost function

$$\ell(\mathbf{x}) = \frac{1}{2} \|\mathbf{W}^{(2)} \mathbf{\Phi} \left(\mathbf{W}^{(1)} \mathbf{x} + \mathbf{b} \right) - \mathbf{y} \|_2^2, \tag{1}$$

- where $\mathbf{W}^{(1)} \in \mathbb{R}^{d \times d}$, $\mathbf{W}^{(2)} \in \mathbb{R}^{d \times d}$, and $\mathbf{\Phi} : \mathbb{R}^d \to \mathbb{R}^d$ is some nonlinear transformation. Compute the partial derivatives $\frac{\partial \ell}{\partial \mathbf{x}}, \frac{\partial \ell}{\partial \mathbf{W}^{(1)}}, \frac{\partial \ell}{\partial \mathbf{W}^{(2)}}$, and $\frac{\partial \ell}{\partial \mathbf{b}}$.
- (f) (optional) Suppose Φ is the identity map. Write down a single gradient descent update for $\mathbf{W}_{t+1}^{(1)}$ and $\mathbf{W}_{t+1}^{(2)}$ assuming step size η . Your answer should be in terms of $\mathbf{W}_t^{(1)}, \mathbf{W}_t^{(2)}, \mathbf{b}_t$ and \mathbf{x}, \mathbf{y} .