КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ

імені ТАРАСА ШЕВЧЕНКА

Факультет інформаційних технологій

Кафедра прикладних інформаційних систем

напрям 6.040302 «Інформатика»

(шифр і назва напряму підготовки або спеціальності)

Звіт

з лабораторної роботи №11

На тему: «Моделювання системи масового обслуговування виду М/D/1:FIFO/∞/∞>>

Виконав: студент 4 курсу навчання групи інформатика (I-42) Довбня Дмитро Володимирович **Мета**: Ознайомлення з методикою вирішення задач моделювання систем масового обслуговування виду M/D/1:FIFO/ ∞/∞ .

1. Моделювання систем масового обслуговування виду M/D/1:FIFO/ ∞/∞ у GPSS.

Використовуючи загально цільову систему моделювання GPSS побудуйте модель системи масового обслуговування типу M/D/1:FIFO/∞/∞. Визначте основні характеристики системи: коефіцієнт використання пристрою, середній час перебування вимог в пристрої обслуговування, середня довжина черги, середній час перебування в черзі, середня кількість вимог в системі, середній час перебування вимог в системі.

Для повного виконання завдання (яке містить непряму перевірку отриманих даних) Вам знадобляться наступні оператори: ADVANCE, DEPART (3 шт.), GENERATE, QUEUE (3 шт.), RELEASE, SEIZE, TERMINATE.

2. Моделювання систем масового обслуговування виду M/D/1:FIFO/∞/∞ y Matlab / Simulink.

Використовуючи пакет візуального блочного імітаційного моделювання Simulink матричної системи Matlab побудуйте модель системи масового обслуговування типу M/D/1:FIFO/ ∞/∞ . Визначте основні характеристики системи: коефіцієнт використання пристрою, середній час перебування вимог в пристрої обслуговування, середня довжина черги, середній час перебування в черзі, середня кількість вимог в системі, середній час перебування вимог в системі.

Для виконання завдання Вам знадобляться наступні блоки: DISPLAY (5 шт.), ENTITY SINK, FIFO QUEUE, READ TIMER, SINGLE SERVER, START TIMER, TIME-BASED ENTITY GENERATOR.

3. Порівняння результатів отриманих у процесі моделювання із теоретичними залежностями.

Порівняйте результати отримані в п.1-2 із теоретичними залежностями відповідних характеристик СМО, які наведені в лекційному матеріалі або в рекомендованій літературі по дисципліні.

Дані відповідно до варіанту:

Час між надходженням вимог = **27** Час обслуговування = **17**

Хід виконання:

1.1. Створюємо реалізацію моделі в GPSS

```
GENERATE (Exponential(1,0,27))
QUEUE stat

QUEUE Queue1
SEIZE Facility1
DEPART Queue1

ADVANCE 17
RELEASE Facility1

DEPART stat
TERMINATE 1
START 10000000
```

1.1.Результати отримані в GPSS

```
ENTRIES UTIL.
                               AVE. TIME AVAIL. OWNER PEND INTER RETRY DELAY
FACILITY
                          0.630
             10000000
                                     17.000 1
 FACILITY1
                                                       0
                                                            0
                                                                  0
                                                                        0
              MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME
QUEUE
                                                              AVE.(-0) RETRY
                     0 10000000
                                                       31.437
                                                                   31.437
 STAT
               19
                                             1.164
                                      \Omega
                     0 10000000 3704513
               18
                                              0.535
                                                                    22.933
QUEUE1
                                                        14.437
```

2. Моделюємо систему в MatLab / Simulink / SimEvents (10000000 літерацій)

3. Робимо аналітичні розрахунки параметрів системи

$$\begin{split} \lambda &\coloneqq \frac{1}{27} \qquad \mu \coloneqq \frac{1}{17} \qquad U \coloneqq \frac{\lambda}{\mu} = 0.63 \qquad p \coloneqq U \\ Lq &\coloneqq \frac{\lambda^2}{2 \cdot \mu \cdot (\mu - \lambda)} = 0.535 \qquad \qquad Ls \coloneqq Lq + \frac{\lambda}{\mu} = 1.165 \\ Wq &\coloneqq \frac{\lambda}{2\mu \cdot (\mu - \lambda)} = 14.45 \qquad \qquad Ws \coloneqq Wq + \frac{1}{\mu} = 31.45 \end{split}$$

Порівняння значень отриманих при моделюванні в системі SimEvents, GPSS з аналітичними розрахункам

	Аналітичні розрахунки	GPSS	Matlab / Simulink / SimEvents
Коефіцієнт використання пристрою, <i>U</i>	0.63	0.630	0.6301
Середній час перебування вимог в пристрої обслуговування, <i>М</i>	17	17.000	17
Середня довжина черги, L_q	0.535	0.535	0.5342
Середній час перебування в черзі, W_q	14.45	14.437	14.41
Середня кількість вимог в системі, L_s	1.165	1.164	1.164
Середній час перебування вимог в системі, W_s	31.45	31.437	31.41

Висновок: Під час виконання лабораторної роботи, було досліджено моделювання системи масового обслуговування виду M/D/1:FIFO/ ∞/∞ за допомогою Matlab Simulink SimEvents та GPSS. Під час моделювання було отримано результати які майже не мають відхилення.