SEMICONDUCTOR DEVICES

Junction Field-Effect Transistors: Part 2

M.B.Patil
mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay

In the linear region, i.e., $V_D < V_D^{\rm sat}$,

$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{\text{bi}} - V_P \right) \left[\left(\frac{V_D + V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} - \left(\frac{V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} \right] \right\}, \quad G_0 = \frac{(2aZ)}{L} \times (q\mu_n N_d).$$

In the linear region, i.e., $V_D < V_D^{\rm sat}$,

$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{\text{bi}} - V_P \right) \left[\left(\frac{V_D + V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} - \left(\frac{V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} \right] \right\}, \quad G_0 = \frac{(2aZ)}{L} \times (q\mu_n N_d).$$

Pinch-off (saturation): $V_G - V_D = V_P \ o \ V_D^{\mathsf{sat}} = V_G - V_P.$

In the linear region, i.e., $V_D < V_D^{\rm sat}$,

$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{bi} - V_P \right) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}, \quad G_0 = \frac{(2aZ)}{L} \times (q\mu_n N_d).$$

Pinch-off (saturation): $V_G - V_D = V_P \rightarrow V_D^{\rm sat} = V_G - V_P$.

Substituting in the I_D equation, we get

$$I_D^{\text{sat}}(V_G) = G_0 \left\{ (V_G - V_P) - \frac{2}{3} (V_{\text{bi}} - V_P) \left[1 - \left(\frac{V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} \right] \right\}.$$

In the linear region, i.e., $V_D < V_D^{\rm sat}$,

$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{bi} - V_P \right) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}, \quad G_0 = \frac{(2aZ)}{L} \times (q\mu_n N_d).$$

Pinch-off (saturation): $V_G - V_D = V_P \rightarrow V_D^{\text{sat}} = V_G - V_P$.

Substituting in the $I_{\mathcal{D}}$ equation, we get

$$I_D^{\text{sat}}(V_G) = G_0 \left\{ (V_G - V_P) - \frac{2}{3} (V_{\text{bi}} - V_P) \left[1 - \left(\frac{V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} \right] \right\}.$$

Note that I_D^{sat} depends on V_G . For an n-channel JFET, $I_D^{\mathsf{sat}} \downarrow$ as $V_G \downarrow$

Comparison of JFET and BJT I-V relationships

Comparison of JFET and BJT I-V relationships

* Note the different nomenclature for linear and saturation regions.

Comparison of JFET and BJT I-V relationships

- * Note the different nomenclature for linear and saturation regions.
- * In a BJT, $V_{CE}^{\rm sat} \approx 0.2\,{\rm V}$ irrespective of I_B . In a JFET, $V_D^{\rm sat} (= V_G - V_P)$ depends on V_G .

For an *n*-channel Si JFET with $N_d=1\times 10^{17}$ cm $^{-3}$, $\mu_n=300$ cm $^2/V$ -s, a=0.2 μ m, L=5 μ m, Z=10 μ m, $V_{\rm bi}=0.9$ V for the p^+n gate-to-channel junction,

For an *n*-channel Si JFET with $N_d=1\times 10^{17}$ cm $^{-3}$, $\mu_n=300$ cm $^2/V$ -s, a=0.2 μ m, L=5 μ m, Z=10 μ m, $V_{\rm bi}=0.9$ V for the p^+n gate-to-channel junction,

(a) What is the pinch-off voltage V_P ?

For an *n*-channel Si JFET with $N_d=1\times 10^{17}$ cm⁻³, $\mu_n=300$ cm²/V-s, a=0.2 μ m, L=5 μ m, Z=10 μ m, $V_{\rm bi}=0.9$ V for the p^+n gate-to-channel junction,

- (a) What is the pinch-off voltage V_P ?
- (b) Plot I_D versus V_G for $-2.5\,\mathrm{V} < V_G < 0\,\mathrm{V}$ and with (i) $V_D = 0.1\,\mathrm{V}$ and (ii) $V_D = 5\,\mathrm{V}$.

For an *n*-channel Si JFET with $N_d=1\times 10^{17}$ cm⁻³, $\mu_n=300$ cm²/V-s, a=0.2 μ m, L=5 μ m, Z=10 μ m, $V_{\rm bi}=0.9$ V for the p^+n gate-to-channel junction,

- (a) What is the pinch-off voltage V_P ?
- (b) Plot I_D versus V_G for $-2.5\,\mathrm{V} < V_G < 0\,\mathrm{V}$ and with (i) $V_D = 0.1\,\mathrm{V}$ and (ii) $V_D = 5\,\mathrm{V}$.
- (c) Plot I_D versus V_D for 0 V < V_D < 5 V and V_G = -1.5, -1, -0.5, 0 V. Mark the boundary between the linear and saturation regions.

(a)
$$V_P = V_{\rm bi} - \frac{qN_d}{2\epsilon} a^2 = -2.2 \, \rm V.$$

(b)
$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{bi} - V_P \right) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}, \quad V_D < V_D^{sat}$$

(a)
$$V_P = V_{bi} - \frac{qN_d}{2\epsilon} a^2 = -2.2 \text{ V}.$$

(b)
$$I_D = G_0 \left\{ V_D - \frac{2}{3} (V_{bi} - V_P) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}, \quad V_D < V_D^{\text{sat}}$$

$$= G_0 \left\{ (V_G - V_P) - \frac{2}{3} (V_{bi} - V_P) \left[1 - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}, \quad V_D > V_D^{\text{sat}}$$

(a)
$$V_P = V_{bi} - \frac{qN_d}{2\epsilon} a^2 = -2.2 \text{ V}.$$

(b)
$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{bi} - V_P \right) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}, \quad V_D < V_D^{\text{sat}}$$

$$= G_0 \left\{ \left(V_G - V_P \right) - \frac{2}{3} \left(V_{bi} - V_P \right) \left[1 - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}, \quad V_D > V_D^{\text{sat}}$$

$$G_0 = \frac{2aZ}{L} q \mu_n N_d = \frac{2 \times 0.2 \times 10^{-4} \times 10 \times 10^{-4}}{5 \times 10^{-4}} \times 1.6 \times 10^{-19} \times 300 \times 10^{17} = 3.84 \times 10^{-4} \, \text{T} = 0.384 \, \text{m} \text{T}.$$

(a)
$$V_P = V_{bi} - \frac{qN_d}{2\epsilon} a^2 = -2.2 \text{ V}.$$

(b)
$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{bi} - V_P \right) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}, \quad V_D < V_D^{\text{sat}}$$

$$= G_0 \left\{ \left(V_G - V_P \right) - \frac{2}{3} \left(V_{bi} - V_P \right) \left[1 - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}, \quad V_D > V_D^{\text{sat}}$$

$$G_0 = \frac{2aZ}{L} q \mu_n N_d = \frac{2 \times 0.2 \times 10^{-4} \times 10 \times 10^{-4}}{5 \times 10^{-4}} \times 1.6 \times 10^{-19} \times 300 \times 10^{17} = 3.84 \times 10^{-4} \, \text{T} = 0.384 \, \text{m} \text{T}.$$

Units:
$$\frac{\text{cm} \times \text{cm}}{\text{cm}} \times \text{Coul} \times \frac{\text{cm}^2}{\text{V-sec}} \times \frac{1}{\text{cm}^3} = \frac{A}{V} = \emptyset.$$

(b) For the transistor to be in the linear region, we need $V_G-V_D>V_P$, i.e., $V_G>V_P+V_D$.

- (b) For the transistor to be in the linear region, we need $V_G-V_D>V_P$, i.e., $V_G>V_P+V_D$.
 - (i) $V_D = 0.1 \, \text{V}_{,} \rightarrow V_G > -2.2 + 0.1 = -2.1 \, \text{V}$ for linear region.

- (b) For the transistor to be in the linear region, we need $V_G V_D > V_P$, i.e., $V_G > V_P + V_D$.
 - (i) $V_D = 0.1 \, \text{V}, \,
 ightarrow \, V_G > -2.2 + 0.1 = -2.1 \, \text{V}$ for linear region.
 - (ii) $V_D=5\,{\rm V}, \to V_G>-2.2+5=2.8\,{\rm V}$ for linear region. (Note: such a large V_G is not realistic.)

- (b) For the transistor to be in the linear region, we need $V_G-V_D>V_P$, i.e., $V_G>V_P+V_D$.
 - (i) $V_D = 0.1 \, \text{V}$, $\rightarrow V_G > -2.2 + 0.1 = -2.1 \, \text{V}$ for linear region.
 - (ii) $V_D=5\,{\rm V}, \to V_G>-2.2+5=2.8\,{\rm V}$ for linear region. (Note: such a large V_G is not realistic.)

The I_D - V_G plot can now be obtained using the appropriate I_D expression.

- (b) For the transistor to be in the linear region, we need $V_G V_D > V_P$, i.e., $V_G > V_P + V_D$.
 - (i) $V_D = 0.1 \, \text{V}$, $\rightarrow V_G > -2.2 + 0.1 = -2.1 \, \text{V}$ for linear region.
 - (ii) $V_D = 5 \text{ V}, \rightarrow V_G > -2.2 + 5 = 2.8 \text{ V}$ for linear region. (Note: such a large V_G is not realistic.)

The I_D - V_G plot can now be obtained using the appropriate I_D expression.

(c)
$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{bi} - V_P \right) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}, \quad V_D < V_D^{\text{sat}}$$

$$= G_0 \left\{ \left(V_G - V_P \right) - \frac{2}{3} \left(V_{bi} - V_P \right) \left[1 - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}, \quad V_D > V_D^{\text{sat}}$$

(c)
$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{bi} - V_P \right) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}, \quad V_D < V_D^{\text{sat}}$$

$$= G_0 \left\{ \left(V_G - V_P \right) - \frac{2}{3} \left(V_{bi} - V_P \right) \left[1 - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}, \quad V_D > V_D^{\text{sat}}$$

For each V_G , we first find $V_D^{\rm sat}$. For example, with $V_G=-1.5\,\rm V$, $V_D^{\rm sat}=V_G-V_P=-1.5-(-2.2)=0.7\,\rm V$.

(c)
$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{bi} - V_P \right) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}, \quad V_D < V_D^{\text{sat}}$$

$$= G_0 \left\{ \left(V_G - V_P \right) - \frac{2}{3} \left(V_{bi} - V_P \right) \left[1 - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}, \quad V_D > V_D^{\text{sat}}$$

For each V_G , we first find $V_D^{\rm sat}$. For example, with $V_G=-1.5\,{\rm V},~V_D^{\rm sat}=V_G-V_P=-1.5-(-2.2)=0.7\,{\rm V}.$

We then use the appropriate I_D expression to obtain the I_D - V_D plot for that particular V_G .

(c)
$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{bi} - V_P \right) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}, \quad V_D < V_D^{\text{sat}}$$

$$= G_0 \left\{ \left(V_G - V_P \right) - \frac{2}{3} \left(V_{bi} - V_P \right) \left[1 - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}, \quad V_D > V_D^{\text{sat}}$$

For each V_G , we first find $V_D^{\rm sat}$. For example, with $V_G=-1.5\,{\rm V},~V_D^{\rm sat}=V_G-V_P=-1.5-(-2.2)=0.7\,{\rm V}.$

We then use the appropriate I_D expression to obtain the I_D - V_D plot for that particular V_G .

* In a real JFET structure, the source and drain contacts are some distance away from the active part of the device, adding resistances R_S and R_D in the current path.

- * In a real JFET structure, the source and drain contacts are some distance away from the active part of the device, adding resistances R_S and R_D in the current path.
- * The intrinsic device model needs to be augmented to include these resistances.

- * In a real JFET structure, the source and drain contacts are some distance away from the active part of the device, adding resistances R_S and R_D in the current path.
- * The intrinsic device model needs to be augmented to include these resistances.

* When a JFET is used for amplification, it is biased in the saturation region, and the saturation current I_D^{sat} at a given V_G is of interest.

* When a JFET is used for amplification, it is biased in the saturation region, and the saturation current I_D^{sat} at a given V_G is of interest.

*
$$I_D^{\text{sat}}(V_G) = G_0 \left\{ (V_G - V_P) - \frac{2}{3} (V_{\text{bi}} - V_P) \left[1 - \left(\frac{V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} \right] \right\}.$$

* When a JFET is used for amplification, it is biased in the saturation region, and the saturation current I_D^{sat} at a given V_G is of interest.

*
$$I_D^{\mathsf{sat}}(V_G) = G_0 \left\{ (V_G - V_P) - \frac{2}{3} (V_{\mathsf{bi}} - V_P) \left[1 - \left(\frac{V_{\mathsf{bi}} - V_G}{V_{\mathsf{bi}} - V_P} \right)^{3/2} \right] \right\}.$$

Simplified JFET model for circuit analysis

 When a JFET is used for amplification, it is biased in the saturation region, and the saturation current I_D^{sat} at a given V_G is of interest.

*
$$I_D^{\text{sat}}(V_G) = G_0 \left\{ (V_G - V_P) - \frac{2}{3} (V_{\text{bi}} - V_P) \left[1 - \left(\frac{V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} \right] \right\}.$$

* For circuit design, we can use a simplified empirical expression for I_D^{sat} : $I_D^{\text{sat}}(V_G) = I_{DSS} \left[1 - (V_G/V_P)\right]^2$, where $I_{DSS} = \left.I_D^{\text{sat}}\right|_{V_G = 0 \text{ V}}$.

Simplified JFET model for circuit analysis

* When a JFET is used for amplification, it is biased in the saturation region, and the saturation current I_D^{sat} at a given V_G is of interest.

*
$$I_D^{\text{sat}}(V_G) = G_0 \left\{ (V_G - V_P) - \frac{2}{3} (V_{\text{bi}} - V_P) \left[1 - \left(\frac{V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} \right] \right\}.$$

* For circuit design, we can use a simplified empirical expression for I_D^{sat} : $I_D^{\text{sat}}(V_G) = I_{DSS} \left[1 - (V_G/V_P)\right]^2$, where $I_{DSS} = I_D^{\text{sat}}\big|_{V_C = 0 \text{ V}}$.

In an amplifier, a JFET is biased in saturation, and we have

$$I_D^{\rm sat} = I_{DSS} [1 - (V_G/V_P)]^2.$$

In an amplifier, a JFET is biased in saturation, and we have

$$I_D^{\text{sat}} = I_{DSS} [1 - (V_G/V_P)]^2.$$

In an amplifier, a JFET is biased in saturation, and we have

$$I_D^{\text{sat}} = I_{DSS} [1 - (V_G/V_P)]^2.$$

The small-signal model at low frequencies can be derived as follows (with source at 0 V).

$$\Delta I_D = \frac{\partial I_D}{\partial V_G} \, \Delta V_G + \frac{\partial I_D}{\partial V_D} \, \Delta V_D.$$

In an amplifier, a JFET is biased in saturation, and we have

$$I_D^{\text{sat}} = I_{DSS} [1 - (V_G/V_P)]^2.$$

The small-signal model at low frequencies can be derived as follows (with source at 0 V).

$$\Delta I_D = \frac{\partial I_D}{\partial V_G} \, \Delta V_G + \frac{\partial I_D}{\partial V_D} \, \Delta V_D.$$

$$\rightarrow i_d = g_m v_g, \text{ with } g_m = \frac{\partial I_D}{\partial V_G} = -\frac{2I_{DSS}}{V_P} \left(1 - \frac{V_G}{V_P}\right).$$

In an amplifier, a JFET is biased in saturation, and we have

$$I_D^{\text{sat}} = I_{DSS} [1 - (V_G/V_P)]^2.$$

The small-signal model at low frequencies can be derived as follows (with source at 0 V).

$$\Delta I_D = \frac{\partial I_D}{\partial V_G} \, \Delta V_G + \frac{\partial I_D}{\partial V_D} \, \Delta V_D.$$

$$\rightarrow i_d = g_m v_g, \text{ with } g_m = \frac{\partial I_D}{\partial V_G} = -\frac{2I_{DSS}}{V_P} \left(1 - \frac{V_G}{V_P}\right).$$

In an amplifier, a JFET is biased in saturation, and we have

$$I_D^{\text{sat}} = I_{DSS} [1 - (V_G/V_P)]^2.$$

The small-signal model at low frequencies can be derived as follows (with source at 0 V).

$$\Delta I_D = \frac{\partial I_D}{\partial V_G} \, \Delta V_G + \frac{\partial I_D}{\partial V_D} \, \Delta V_D.$$

$$\rightarrow i_d = g_m v_g, \text{ with } g_m = \frac{\partial I_D}{\partial V_G} = -\frac{2I_{DSS}}{V_D} \left(1 - \frac{V_G}{V_D}\right).$$

(Note that there is a reverse biased pn junction between G and S and betweeen G and D. $\rightarrow i_g = 0$.)

* In saturation, the actual channel length is

 $L_{\rm eff} = L - \Delta L$.

* In saturation, the actual channel length is

$$L_{
m eff} = L - \Delta L.$$
 $V_D \uparrow \
ightarrow \ \Delta L \uparrow \
ightarrow \ L_{
m eff} \downarrow$

$$V_D \uparrow \rightarrow \Delta L \uparrow \rightarrow L_{\rm eff} \downarrow$$

 $\rightarrow G_0 \left(= \frac{(2aZ)}{L_{\rm eff}} \times (q\mu_n N_d) \right) \uparrow \rightarrow I_D \uparrow$

* In saturation, the actual channel length is

$$L_{\rm eff} = L - \Delta L.$$

$$V_D \uparrow \rightarrow \Delta L \uparrow \rightarrow L_{\text{eff}} \downarrow$$

$$C \left(- \frac{(2aZ)}{2} \times (2aZ) \times (2aZ) \right)$$

$$V_D \uparrow \rightarrow \Delta L \uparrow \rightarrow L_{\rm eff} \downarrow$$

 $\rightarrow G_0 \left(= \frac{(2aZ)}{L_{\rm eff}} \times (q\mu_n N_d) \right) \uparrow \rightarrow I_D \uparrow$

* At high frequencies, the device capacitances must be included in the small-signal model.

- * At high frequencies, the device capacitances must be included in the small-signal model.
- * The gate capacitance is essentially that of the gate-to-channel reverse-biased p^+n junction, which gets divided between C_{gs} and C_{gd} .

- * At high frequencies, the device capacitances must be included in the small-signal model.
- * The gate capacitance is essentially that of the gate-to-channel reverse-biased p^+n junction, which gets divided between C_{gs} and C_{gd} .

JFET

BJT

* Qualitatively, the I_D - V_{DS} relationship of a JFET is similar to the I_C - V_{CE} relationship of a BJT.

- * Qualitatively, the I_D - V_{DS} relationship of a JFET is similar to the I_C - V_{CE} relationship of a BJT.
- * A JFET can be used for amplification, e.g., we can have a "common-source" amplifier which is similar to the "common-emitter" amplifier.

JFET

BJT

- * For amplification, a JFET needs to be biased in the saturation region, and the design goal is to bias it at a certain Q-point, (I_D, V_{DS}) .
- * The drain current equation, $I_D^{\rm sat}(V_G) = I_{DSS} \left[1 (V_G/V_P)\right]^2,$ implies that there is a unique I_D for a given V_{GS} .

However, there is a device-to-device varation in the I_D - V_{GS} curve, giving rise to some deviation from the intended bias point.

- * For amplification, a JFET needs to be biased in the saturation region, and the design goal is to bias it at a certain Q-point, (I_D, V_{DS}) .
- * The drain current equation, $I_D^{\rm sat}(V_G) = I_{DSS} \left[1 (V_G/V_P)\right]^2,$ implies that there is a unique I_D for a given V_{GS} .

However, there is a device-to-device varation in the I_D - V_{GS} curve, giving rise to some deviation from the intended bias point.

- * For amplification, a JFET needs to be biased in the saturation region, and the design goal is to bias it at a certain Q-point, (I_D, V_{DS}) .
- * The drain current equation, $I_D^{\rm sat}(V_G) = I_{DSS} \left[1 (V_G/V_P)\right]^2,$ implies that there is a unique I_D for a given V_{GS} .

However, there is a device-to-device varation in the I_D - V_{GS} curve, giving rise to some deviation from the intended bias point.

The voltage divider scheme (c) is superior since it is least sensitive, i.e., the deviation in I_D is small compared to the other schemes.

Example

The JFET parameters are $I_{DSS}=1\,\mathrm{mA},\ V_P=-2\,\mathrm{V}.$ For $V_{DD}=12\,\mathrm{V}$ and $R_D=15\,\mathrm{k}\Omega,$ find suitable values of $R_1,\ R_2,\ R_5$ to get a bias point of $I_D^Q=0.4\,\mathrm{mA}$ and $V_{DS}^Q=4\,\mathrm{V}.$

Example

The JFET parameters are $I_{DSS}=1\,\mathrm{mA},\ V_P=-2\,\mathrm{V}.$ For $V_{DD}=12\,\mathrm{V}$ and $R_D=15\,\mathrm{k}\Omega,$ find suitable values of R_1 , R_2 , R_S to get a bias point of $I_D^Q = 0.4 \,\mathrm{mA}$ and $V_{DS}^Q = 4 \,\mathrm{V}$.

Solution: The drain current in the saturation region is given by

$$I_D^{\text{sat}}(V_G) = I_{DSS} [1 - (V_{GS}/V_P)]^2.$$

$$V_{GS} = \frac{R_2}{R_1 + R_2} V_{DD} - I_D R_S$$

Example

The JFET parameters are $I_{DSS}=1\,\mathrm{mA},\ V_P=-2\,\mathrm{V}.$ For $V_{DD}=12\,\mathrm{V}$ and $R_D=15\,\mathrm{k}\Omega,$ find suitable values of $R_1,\ R_2,\ R_S$ to get a bias point of $I_D^Q=0.4\,\mathrm{mA}$ and $V_{DS}^Q=4\,\mathrm{V}.$

Solution: The drain current in the saturation region is given by

$$I_D^{\rm sat}(V_G) = I_{DSS} [1 - (V_{GS}/V_P)]^2.$$

Solving for $I_D^{\rm sat}=I_D^{\,Q}=0.4\,{\rm mA},$ we get $V_{GS}^{\,Q}=-0.735\,{\rm V}.$

The JFET parameters are $I_{DSS}=1\,\mathrm{mA},\ V_P=-2\,\mathrm{V}.$ For $V_{DD}=12\,\mathrm{V}$ and $R_D=15\,\mathrm{k}\Omega,$ find suitable values of R_1 , R_2 , R_S to get a bias point of $I_D^Q = 0.4 \,\text{mA}$ and $V_{DS}^Q = 4 \,\text{V}$.

Solution: The drain current in the saturation region is given by

$$I_D^{\text{sat}}(V_G) = I_{DSS} [1 - (V_{GS}/V_P)]^2.$$

Solving for
$$I_D^{\rm sat}=I_D^Q=0.4\,{\rm mA}$$
, we get $V_{GS}^Q=-0.735\,{\rm V}$.

$$V_D = V_{DD} - I_D R_D = 12 \, \text{V} - 0.4 \, \text{mA} \times 15 \, \text{k} = 6 \, \text{V}.$$

$$V_{GS} = \frac{R_2}{R_1 + R_2} V_{DD} - I_D R$$

The JFET parameters are $I_{DSS}=1\,\mathrm{mA},\ V_P=-2\,\mathrm{V}.$ For $V_{DD}=12\,\mathrm{V}$ and $R_D=15\,\mathrm{k}\Omega,$ find suitable values of $R_1,\ R_2,\ R_S$ to get a bias point of $I_D^Q=0.4\,\mathrm{mA}$ and $V_{DS}^Q=4\,\mathrm{V}.$

Solution: The drain current in the saturation region is given by

$$I_D^{\text{sat}}(V_G) = I_{DSS} [1 - (V_{GS}/V_P)]^2.$$

Solving for
$$I_D^{\text{sat}} = I_D^Q = 0.4 \,\text{mA}$$
, we get $V_{GS}^Q = -0.735 \,\text{V}$.

$$V_D = V_{DD} - I_D R_D = 12 \,\text{V} - 0.4 \,\text{mA} \times 15 \,\text{k} = 6 \,\text{V}.$$

$$\rightarrow V_S = V_D - V_{DS}^Q = 6 \, \text{V} - 4 \, \text{V} = 2 \, \text{V}$$

The JFET parameters are $I_{DSS}=1\,\mathrm{mA},\ V_P=-2\,\mathrm{V}.$ For $V_{DD}=12\,\mathrm{V}$ and $R_D=15\,\mathrm{k}\Omega,$ find suitable values of $R_1,\ R_2,\ R_S$ to get a bias point of $I_D^Q=0.4\,\mathrm{mA}$ and $V_{DS}^Q=4\,\mathrm{V}.$

Solution: The drain current in the saturation region is given by

$$I_D^{\text{sat}}(V_G) = I_{DSS} [1 - (V_{GS}/V_P)]^2.$$

Solving for
$$I_D^{\text{sat}} = I_D^Q = 0.4 \,\text{mA}$$
, we get $V_{GS}^Q = -0.735 \,\text{V}$.

$$V_D = V_{DD} - I_D R_D = 12 \,\text{V} - 0.4 \,\text{mA} \times 15 \,\text{k} = 6 \,\text{V}.$$

$$\rightarrow \ V_S = V_D - V_{DS}^Q = 6 \, \text{V} - 4 \, \text{V} = 2 \, \text{V} \rightarrow \ R_S = V_S / I_D^Q = 2 \, \text{V} / 0.4 \, \text{mA} = 5 \, \text{k} \Omega.$$

The JFET parameters are $I_{DSS}=1\,\mathrm{mA},\ V_P=-2\,\mathrm{V}.$ For $V_{DD}=12\,\mathrm{V}$ and $R_D=15\,\mathrm{k}\Omega,$ find suitable values of $R_1,\ R_2,\ R_S$ to get a bias point of $I_D^Q=0.4\,\mathrm{mA}$ and $V_{DS}^Q=4\,\mathrm{V}.$

Solution: The drain current in the saturation region is given by

$$I_D^{\text{sat}}(V_G) = I_{DSS} [1 - (V_{GS}/V_P)]^2.$$

Solving for
$$I_D^{\text{sat}} = I_D^Q = 0.4 \,\text{mA}$$
, we get $V_{GS}^Q = -0.735 \,\text{V}$.

$$V_D = V_{DD} - I_D R_D = 12 \,\text{V} - 0.4 \,\text{mA} \times 15 \,\text{k} = 6 \,\text{V}.$$

$$ightarrow \ V_S = V_D - V_{DS}^Q = 6 \, \mathrm{V} - 4 \, \mathrm{V} = 2 \, \mathrm{V}
ightarrow \ R_S = V_S / I_D^Q = 2 \, \mathrm{V} / 0.4 \, \mathrm{mA} = 5 \, \mathrm{k} \Omega.$$

For V_{GS} to be $-0.735\,\mathrm{V}$, we need $V_G=V_S+V_{GS}=2\,\mathrm{V}+(-0.735\,\mathrm{V})=1.265\,\mathrm{V}.$

Solution: The drain current in the saturation region is given by

$$I_D^{\text{sat}}(V_G) = I_{DSS} [1 - (V_{GS}/V_P)]^2.$$

Solving for
$$I_D^{\text{sat}} = I_D^Q = 0.4 \,\text{mA}$$
, we get $V_{GS}^Q = -0.735 \,\text{V}$.

$$V_D = V_{DD} - I_D R_D = 12 \, \text{V} - 0.4 \, \text{mA} \times 15 \, \text{k} = 6 \, \text{V}.$$

$$\rightarrow \ V_S = V_D - V_{DS}^Q = 6 \, \text{V} - 4 \, \text{V} = 2 \, \text{V} \rightarrow \ R_S = V_S / I_D^Q = 2 \, \text{V} / 0.4 \, \text{mA} = 5 \, \text{k} \Omega.$$

For
$$V_{GS}$$
 to be $-0.735\,\text{V}$, we need $V_G = V_S + V_{GS} = 2\,\text{V} + (-0.735\,\text{V}) = 1.265\,\text{V}$.

Since
$$V_G = \frac{R_2}{R_1 + R_2} V_{DD}$$
, we now need to choose suitable values of R_1 and R_2 to get

the above V_G . $R_1=200\,\mathrm{k}\Omega$ and $R_1=23.5\,\mathrm{k}\Omega$ is one such choice.

Solution: The drain current in the saturation region is given by

$$I_D^{\text{sat}}(V_G) = I_{DSS} [1 - (V_{GS}/V_P)]^2.$$

Solving for
$$I_D^{\text{sat}} = I_D^Q = 0.4 \text{ mA}$$
, we get $V_{GS}^Q = -0.735 \text{ V}$.

$$V_D = V_{DD} - I_D R_D = 12 \,\text{V} - 0.4 \,\text{mA} \times 15 \,\text{k} = 6 \,\text{V}.$$

$$\rightarrow \ V_S = V_D - V_{DS}^Q = 6 \, \text{V} - 4 \, \text{V} = 2 \, \text{V} \rightarrow \ R_S = V_S / I_D^Q = 2 \, \text{V} / 0.4 \, \text{mA} = 5 \, \text{k} \Omega.$$

For
$$V_{GS}$$
 to be $-0.735\,\mathrm{V}$, we need $V_G=V_S+V_{GS}=2\,\mathrm{V}+(-0.735\,\mathrm{V})=1.265\,\mathrm{V}$.

Since
$$V_G = \frac{R_2}{R_1 + R_2} V_{DD}$$
, we now need to choose suitable values of R_1 and R_2 to get

the above V_G . $R_1=200\,\mathrm{k}\Omega$ and $R_1=23.5\,\mathrm{k}\Omega$ is one such choice.

Finally, we check whether the transistor is indeed biased in saturation.

Solution: The drain current in the saturation region is given by

$$I_D^{\text{sat}}(V_G) = I_{DSS} [1 - (V_{GS}/V_P)]^2.$$

Solving for
$$I_D^{\text{sat}} = I_D^Q = 0.4 \text{ mA}$$
, we get $V_{GS}^Q = -0.735 \text{ V}$.

$$V_D = V_{DD} - I_D R_D = 12 \, \text{V} - 0.4 \, \text{mA} \times 15 \, \text{k} = 6 \, \text{V}.$$

$$\rightarrow \ V_S = V_D - V_{DS}^Q = 6 \, \text{V} - 4 \, \text{V} = 2 \, \text{V} \rightarrow \ R_S = V_S / I_D^Q = 2 \, \text{V} / 0.4 \, \text{mA} = 5 \, \text{k} \Omega.$$

For
$$V_{GS}$$
 to be $-0.735\,\mathrm{V}$, we need $V_G=V_S+V_{GS}=2\,\mathrm{V}+(-0.735\,\mathrm{V})=1.265\,\mathrm{V}$.

Since
$$V_G = \frac{R_2}{R_1 + R_2} V_{DD}$$
, we now need to choose suitable values of R_1 and R_2 to get

the above V_G . $R_1=200\,\mathrm{k}\Omega$ and $R_1=23.5\,\mathrm{k}\Omega$ is one such choice.

Finally, we check whether the transistor is indeed biased in saturation.

For saturation, we need $V_{GS} - V_{DS} < V_P$,

Solution: The drain current in the saturation region is given by

$$I_D^{\text{sat}}(V_G) = I_{DSS} [1 - (V_{GS}/V_P)]^2.$$

Solving for
$$I_D^{\text{sat}} = I_D^Q = 0.4 \,\text{mA}$$
, we get $V_{GS}^Q = -0.735 \,\text{V}$.

$$V_D = V_{DD} - I_D R_D = 12 \text{ V} - 0.4 \text{ mA} \times 15 \text{ k} = 6 \text{ V}.$$

$$\rightarrow \ \, V_S = V_D - V_{DS}^Q = 6\, \text{V} - 4\, \text{V} = 2\, \text{V} \rightarrow \ \, R_S = V_S/I_D^Q = 2\, \text{V}/0.4\, \text{mA} = 5\, \text{k}\Omega.$$

For
$$V_{GS}$$
 to be $-0.735\,\mathrm{V}$, we need $V_G=V_S+V_{GS}=2\,\mathrm{V}+(-0.735\,\mathrm{V})=1.265\,\mathrm{V}$.

Since
$$V_G = \frac{R_2}{R_1 + R_2} V_{DD}$$
, we now need to choose suitable values of R_1 and R_2 to get

the above $\mathit{V}_{\mathit{G}}.\ \mathit{R}_{1}=200\,\mathrm{k}\Omega$ and $\mathit{R}_{1}=23.5\,\mathrm{k}\Omega$ is one such choice.

Finally, we check whether the transistor is indeed biased in saturation.

For saturation, we need $V_{GS} - V_{DS} < V_P$, i.e., -0.735 - 4 < -2 V.

Solution: The drain current in the saturation region is given by

$$I_D^{\text{sat}}(V_G) = I_{DSS} [1 - (V_{GS}/V_P)]^2.$$

Solving for
$$I_D^{\text{sat}} = I_D^Q = 0.4 \text{ mA}$$
, we get $V_{GS}^Q = -0.735 \text{ V}$.

$$V_D = V_{DD} - I_D R_D = 12 \, \text{V} - 0.4 \, \text{mA} \times 15 \, \text{k} = 6 \, \text{V}.$$

$$\rightarrow \ \, V_S = V_D - V_{DS}^Q = 6\, \text{V} - 4\, \text{V} = 2\, \text{V} \rightarrow \ \, R_S = V_S/I_D^Q = 2\, \text{V}/0.4\, \text{mA} = 5\, \text{k}\Omega.$$

For
$$V_{GS}$$
 to be $-0.735\,\mathrm{V}$, we need $V_G=V_S+V_{GS}=2\,\mathrm{V}+(-0.735\,\mathrm{V})=1.265\,\mathrm{V}$.

Since
$$V_G = \frac{R_2}{R_1 + R_2} V_{DD}$$
, we now need to choose suitable values of R_1 and R_2 to get

the above V_G . $R_1=200\,\mathrm{k}\Omega$ and $R_1=23.5\,\mathrm{k}\Omega$ is one such choice.

Finally, we check whether the transistor is indeed biased in saturation.

For saturation, we need
$$V_{GS} - V_{DS} < V_P$$
, i.e., $-0.735 - 4 < -2$ V.

*
$$A_V \equiv \frac{v_o}{v_s} = -g_m(R_D' \parallel R_L)$$
, where $R_D' = R_D \parallel r_o \approx R_D$ if r_o is large.

*
$$A_V \equiv \frac{v_o}{v_s} = -g_m(R_D' \parallel R_L)$$
, where $R_D' = R_D \parallel r_o \approx R_D$ if r_o is large. $A_{VO} = A_V \Big|_{R_L \to \infty} = -g_m R_D'$.

*
$$A_V \equiv \frac{v_o}{v_s} = -g_m(R_D' \parallel R_L)$$
, where $R_D' = R_D \parallel r_o \approx R_D$ if r_o is large.
$$A_{VO} = A_V \bigg|_{R_L \to \infty} = -g_m R_D'.$$

*
$$R_i = R' = R_1 \parallel R_2$$
, $R_o = R'_D$.

$$g_m = 2 I_{DSS} \left(1 - \frac{V_{GS}^Q}{V_P} \right) \times \left(-\frac{1}{V_P} \right) = 2 \left(1 \, \text{mA} \right) \left(1 - \frac{-0.735 \, \text{V}}{-2 \, \text{V}} \right) \times \left(-\frac{1}{-2 \, \text{V}} \right) = 0.63 \, \text{mS}.$$

$$g_{m} = 2 I_{DSS} \left(1 - \frac{V_{GS}^{Q}}{V_{P}} \right) \times \left(-\frac{1}{V_{P}} \right) = 2 \left(1 \, \text{mA} \right) \left(1 - \frac{-0.735 \, \text{V}}{-2 \, \text{V}} \right) \times \left(-\frac{1}{-2 \, \text{V}} \right) = 0.63 \, \text{mS}.$$

(a)
$$A_{VO}=-g_mR_D=-0.63\,\mathrm{mS}\times15\,\mathrm{k}\Omega=-9.5$$
, assuming r_o to be large.

$$g_m = 2 I_{DSS} \left(1 - \frac{V_{GS}^Q}{V_P} \right) \times \left(-\frac{1}{V_P} \right) = 2 (1 \text{ mA}) \left(1 - \frac{-0.735 \text{ V}}{-2 \text{ V}} \right) \times \left(-\frac{1}{-2 \text{ V}} \right) = 0.63 \text{ mS}.$$

- (a) $A_{VO} = -g_m R_D = -0.63 \, \mathrm{mS} \times 15 \, \mathrm{k}\Omega = -9.5$, assuming r_o to be large.
- (b) $R_i = R_1 \parallel R_2 = 200 \,\mathrm{k}\Omega \parallel 23.5 \,\mathrm{k}\Omega = 21 \,\mathrm{k}\Omega.$

* In a MESFET, the channel conductance is modulated by a rectifying metal-semiconductor junction.

- * In a MESFET, the channel conductance is modulated by a rectifying metal-semiconductor junction.
- * The substrate is semi-insulating, with a resistivity of about $10^8\,\Omega\text{-cm}$.

- * In a MESFET, the channel conductance is modulated by a rectifying metal-semiconductor junction.
- * The substrate is semi-insulating, with a resistivity of about $10^8 \,\Omega$ -cm.
- * On the substrate, an n-type channel region is deposited, and the n⁺ source/drain regions are created by ion implantation.

- * In a MESFET, the channel conductance is modulated by a rectifying metal-semiconductor junction.
- * The substrate is semi-insulating, with a resistivity of about $10^8 \Omega$ -cm.
- * On the substrate, an n-type channel region is deposited, and the n⁺ source/drain regions are created by ion implantation.
- * The S/D contacts are ohmic; gate contact is rectifying.

* For MESFETs, GaAs is preferred over silicon because of its higher electron mobility (typically a factor of 5 larger than μ_n in silicon).

- * For MESFETs, GaAs is preferred over silicon because of its higher electron mobility (typically a factor of 5 larger than μ_n in silicon).
- * Small channel lengths (tenths of a micron) are often used to make the transistor faster, by reducing the transit time from source to drain and also the gate capacitance.

- * For MESFETs, GaAs is preferred over silicon because of its higher electron mobility (typically a factor of 5 larger than μ_n in silicon).
- * Small channel lengths (tenths of a micron) are often used to make the transistor faster, by reducing the transit time from source to drain and also the gate capacitance.
- * GaAs MESFETs are commonly used in high-frequency (a few GHz) applications.