1. Introduction to Linear Algebra

Linear algebra is the mathematical framework that deals with vectors, matrices, and linear transformations. It is crucial for machine learning as it enables us to:

- 1. Represent data compactly using vectors and matrices.
- 2. Transform and manipulate data efficiently.
- 3. Solve equations systematically.

Key Concepts

- Scalars, Vectors, and Matrices:
 - Scalars: Single numerical values (e.g., a = 5).
 - Vectors: One-dimensional arrays (e.g., $v = [3, 4, 5]^T$).
 - Matrices: Two-dimensional arrays (e.g., A = [[1, 2], [3, 4]]).

Practical Example

For a machine learning dataset:

- Each data point is a row vector $[x_1, x_2, ..., x_n]$.
- The entire dataset is represented as a matrix A where each row is a data point.

2. Vector Operations

Addition and Scalar Multiplication

Vectors can be added or scaled (multiplied by scalars). This is used in many machine learning models.

• Addition: Add corresponding elements.

$$v_1 = [1, 2, 3], \quad v_2 = [4, 5, 6] \quad \Rightarrow \quad v_1 + v_2 = [5, 7, 9]$$

• Scalar Multiplication: Multiply each element by a scalar.

$$c = 2$$
, $v = [1, 2, 3] \Rightarrow c \cdot v = [2, 4, 6]$

Practical Example

In a linear regression model, weights w are vectors, and predictions involve:

$$y = w^T x + b$$

3. Dot Product and Norms

Dot Product

The dot product measures the similarity between two vectors. It is calculated as:

$$a \cdot b = \sum_{i=1}^{n} a_i b_i$$

Example:

$$a = [1, 2], \quad b = [3, 4] \implies a \cdot b = (1 \cdot 3) + (2 \cdot 4) = 11$$

Norms

The norm of a vector measures its magnitude (length). For a vector v:

$$||v|| = \sqrt{\sum_{i=1}^{n} v_i^2}$$

Example:

$$v = [3, 4] \implies ||v|| = \sqrt{3^2 + 4^2} = 5$$

4. Linear Transformations

Linear transformations map one vector space to another while preserving vector operations. These are represented as matrix-vector multiplications.

Practical Example

In image processing:

- A rotation matrix can rotate an image by θ degrees.
- A scaling matrix can enlarge or shrink the image.

Example: Scaling a vector v = [2, 3] by a factor of 2:

$$S = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad v' = S \cdot v = [4, 6]$$

5. Systems of Linear Equations

Recap:

A system of linear equations can be written as Ax = b. Depending on A and b, the system can have:

1. No solution (inconsistent system).

- 2. A unique solution (independent equations).
- 3. Infinitely many solutions (dependent equations).

Advanced Example

Solve:

$$x + y + z = 6$$
, $x - y + z = 4$, $2x + 3y + 4z = 18$

Step 1: Write as an Augmented Matrix

$$\begin{bmatrix} 1 & 1 & 1 & | & 6 \\ 1 & -1 & 1 & | & 4 \\ 2 & 3 & 4 & | & 18 \end{bmatrix}$$

Step 2: Apply Gaussian Elimination

- 1. Eliminate x from rows 2 and 3 using row operations.
- 2. Back-substitute to find z, y, x.

Solution:

$$x = 2, y = 1, z = 3$$

6. Matrix Inversion

Advanced Notes

The inverse A^{-1} exists if $det(A) \equiv 0$. For a 2 × 2 matrix:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Example

Find A^{-1} for:

$$A = \begin{bmatrix} 4 & 7 \\ 2 & 6 \end{bmatrix}$$

Solution:

$$det(A) = (4)(6) - (7)(2) = 10$$

$$A^{-1} = \frac{1}{10} \begin{bmatrix} 6 & -7 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} 0.6 & -0.7 \\ -0.2 & 0.4 \end{bmatrix}$$

7. Eigenvalues and Eigenvectors

Detailed Explanation

An eigenvalue λ and eigenvector v satisfy:

$$Av = \lambda v$$

Steps to Compute Eigenvalues:

- 1. Solve $det(A \lambda I) = 0$.
- 2. Solve for λ .

Steps to Compute Eigenvectors:

- 1. Solve $(A \lambda I)v = 0$.
- 2. Find *v*.

Example

For
$$A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$$
:

- 1. Compute λ : Solve $\det(A \lambda I) = 0$.
- 2. Compute v: Substitute λ into $(A \lambda I)v = 0$.

8. Singular Value Decomposition (SVD)

Expanded Example

For
$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$
:

- 1. Compute A^TA .
- 2. Solve $det(A^TA \lambda I) = 0$ to find singular values.
- 3. Find U, V, Σ .

9. Applications in Machine Learning

Dimensionality Reduction

PCA uses eigenvalues to project high-dimensional data into a lower-dimensional space.

Optimization

Linear regression solves:

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

Data Compression

SVD reduces the size of matrices while retaining key features.