Kandom Variable

288

30

 $\overline{27}$

A Random Variable X is a symbol that represents the outcome of an experiment.

Example - consider an experiment of tossing a pair of identical coins and let the random variable x be the number of heads obtained. The sample spalls is follows.

TT OF HT TH HH Outcome Value of X

 $P(X=0) = \frac{1}{4}$, $P(X=1) = \frac{2}{4} = \frac{1}{2}$ and $P(X=2) = \frac{1}{4}$

Random Variable continuous Disoute

-> Discrete Random Variable A discrete variable is a Variable which can only take a countable numbers of values.

Eg. (0,1,2,3),

-> Continuous Random Variable continuous random variable is random variable where the data can take infinitely many values Example [0,1], [a,b]

Distribution function The cumulative distribution function (CDF also cumulative density funcity) of a real Valued random Variable X or Just distribution function of X evaluated at x 54 is the probability that X will take a value less 0 than or equal to x. X; $f_{X}(x) = \rho_{X}(X \leq x) \quad \forall x$ 10 Domein of Distribution function o is (-00 po) (and Range is [0,1] f -> Disoute Probability Distribution The set of values 2; with their probability P; constitute a discrete probability distribution of the discrete variatex P(x) = P(X = x) and if x_1, x_2 one the possible Values of X. where (i) $\rho(x) > 0 + i$ Mad (ii) 豆p(xi)=1 -> Continuous Probability Distribution if $f(x) = P(X \le x) = \int_{-\infty}^{\infty} f(x) dx$ or $P(x-\frac{1}{2}dx \leq x \leq x+\frac{1}{2}dx) = f(11)dx$ where f(x) is defined as the cumulative distribution function or simply the distribution function of the continuous variable X. It is the probability that the value of the vocate X will be

The distribution function F(x) has the following properties

(i)
$$f'(x) = f(x) \ge 0$$

So that $f(x)$ is a non-decreasing function.

(ii)
$$f(-\infty)=0$$

(iv)
$$f(\infty)=1$$

(iv) $f(\alpha \le x \le b) = \int_{a}^{b} f(x) dx = \int_{-\infty}^{b} f(x) dx$

$$= f(b) - f(a)$$

HIGHER ENGINEERING MATHEMAN Example 26.28. A die is tossed thrice. A success is 'getting 1 or 6' on a toss. Find the mean and variance (V.T.U., 2011 S; Rohtal and variance) (V.T.U., 2011 S; Rohtak, 2004) of the number of successes.

Solution. Probability of a success = $\frac{2}{6} = \frac{1}{3}$, Probability of failures = $1 - \frac{1}{3} = \frac{2}{3}$.

prob. of no success = Prob. of all 3 failures = $\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} = \frac{8}{27}$

Probability of one successes and 2 failures = $3c_1 \times \frac{1}{3} \times \frac{2}{3} \times \frac{2}{3} = \frac{4}{9}$

Probability of two successes and one failure = $3c_2 \times \frac{1}{3} \times \frac{1}{3} \times \frac{2}{3} = \frac{2}{9}$

Probability of three successes = $\frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} = \frac{1}{27}$

Now

$$x_i = 0$$
$$p_i = 8/27$$

mean

$$\mu = \sum p_i x_i = 0 + \frac{4}{9} + \frac{4}{9} + \frac{1}{9} = 1.$$

Also

$$\Sigma p_i x_i^2 = 0 + \frac{4}{9} + \frac{8}{9} + \frac{9}{27} = \frac{5}{3}$$

variance

$$\sigma^2 = \sum p_i x_i^2 - \mu^2 = \frac{5}{3} - 1 = \frac{2}{3}$$

Example 26.29. The probability density function of a variate X is

p(X):

13k

11 if (1) Find P(X < 4), $P(X \ge 5)$, $P(3 < X \le 6)$.

3k

1

2

3 7k

(ii) What will be the minimum value of k so that $P(X \le 2) > 3$.

Solution. (i) If X is a random variable, then

salues the values X that X takes the values $p(x_i) = 1$ i.e., k + 3k + 5k + 7k + 9k + 11k + 13k = 1 or k = 1/49.

٠. P(X < 4) = k + 3k + 5k + 7k = 16k = 16/49 $P(X \ge 5) = 11k + 13k = 24k = 24/49$.

 $P(X \le 2) = k + 3k + 5k = 9k > 0.3 \text{ or } k > 1/30$

sum ook paydosiday hild millimed ATsing a

Lumple 26.31. (i) Is the function defined as follows a density function?

$$f(x) = e^{-x}, \quad x \ge 0$$

= 0, $x < 0$,

All the completive probability that the variate having this density will full in the interval (1, 2) Y in his first the cumulative probability function F(2) ?

Solution. (i) f(x) is clearly > 0 for every x in (1, 2) and

$$\int_{-\pi}^{\pi} f(x) dx = \int_{-\pi}^{\pi} 0 \cdot dx + \int_{0}^{\pi} e^{-x} dx = 1$$

874

HIGHER ENGNEEN

Hence the function f(x) satisfies the requirements for a density function,

(ii) Required probability =
$$P(1 \le x \le 2) = \int_{1}^{2} e^{-x} dx = e^{-1} - e^{-2} = 0.368 - 0.135 = 0.233$$

This probability is equal to the shaded area in Fig. 26.3 (a).

(iii) Cumulative probability function F(2)

$$\int_{-\infty}^{2} f(x) dx = \int_{-\infty}^{0} 0 \cdot dx + \int_{0}^{2} e^{-x} dx = 1 - e^{-2} = 1 - 0.135 = 0.865$$

which is shown in Fig. 26.3 (b).

Fig. 26.3

(1) EXPECTATION

The mean value (μ) of the probability distribution of a variate X is commonly known as it_{δ} expectable. The mean value (μ) is the probability density function of the variate X, then The mean value (μ) of the probability density function of the variate X, then and is denoted by E(X). If f(x) is the probability density function of the variate X,

$$\sum_{i} x_{i} f(x_{i})$$

 $({\rm discrete}\,_{\rm distribulin}$

or

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

In general, expectation of any function $\phi(x)$ is given by

$$E[\phi(x)] = \sum_{i} \phi(x_i) f(x_i)$$

(discrete distribution

or

$$E[\phi(x)] = \int_{-\infty}^{\infty} \phi(x) f(x) dx$$

(continuous distribution

(2) Variance of a distribution is given by

$$\sigma^2 = \sum_i (x_i - \mu)^2 f(x_i)$$

(discrete distribution

or

$$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

(continuous distribution

where σ is the standard deviation of the distribution.

(3) The **rth moment** about the mean (denoted by μ_r) is defined by

$$\mu_r = \Sigma (x_i - \mu)^r f(x_i)$$

(discrete distribution

or

$$\mu_r = \int_{-\infty}^{\infty} (x - \mu)^r f(x) dx$$

(continuous distribution

(4) Mean deviation from the mean is given by

$$\Sigma \mid x_i - \mu \mid f(x_i)$$

(discrete distribution

or by

$$\int_{-\infty}^{\infty} |x - \mu| f(x) dx$$

(continuous distribution

Example 26.32. In a lottery, m tickets are drawn at a time out of n tickets numbered from 1 to n. Find the tred walks of the same of the s expected value of the sum of the numbers on the tickets drawn.

solution. Let $x_1, x_2, ..., x_n$ be the variables representing the numbers on the first, second, ..., nth ticket. solution of drawing a ticket out of n tickets being in each case 1/n we have Solution. Decay, x_n and the variables representing the numbers on the solution of drawing a ticket out of n tickets being in each case 1/n, we have $E(x_i) = 1 \cdot \frac{1}{n} + 2 \cdot \frac{1}{n} + 3 \cdot \frac{1}{n}$

$$E(x_i) = 1 \cdot \frac{1}{n} + 2 \cdot \frac{1}{n} + 3 \cdot \frac{1}{n} + \dots + n \cdot \frac{1}{n} = \frac{1}{2} (n+1)$$

 $expected value of the sum of the numbers on the tickets drawn <math display="block">E(x_1 + x_2 + \dots + x_n) = E(x_n + x_n)$ $= E(x_1 + x_2 + \dots + x_m) = E(x_1) + E(x_2) + \dots + E(x_m)$ $= mE(x_i) = \frac{1}{2}m(n+1).$

Example 26.33. X is a continuous random variable with probability density function given by $f(x) = h_{x}(0, x)$

$$f(x) = kx (0 \le x < 2)$$

= $2k (2 \le x < 4)$
= $-kx + 6k (4 \le x < 6)$

Find k and mean value of X.

(J.N.T.U., 2003)

Solution. Since the total probability is unity

$$\int_{0}^{6} f(x) dx = 1$$

$$\int_{0}^{2} kx dx + \int_{2}^{4} 2k dx + \int_{4}^{6} (-kx + 6k) dx = 1$$

$$k \left| x^{2} / 2 \right|_{0}^{2} + 2k \left| x \right|_{2}^{4} + \left(-kx^{2} / 2 + 6kx \right)_{4}^{6} = 1$$

$$2k + 4k + (-10k + 12k) = 1 \text{ i.e., } k = 1/8.$$
Mean of $X = \int_{0}^{6} x f(x) dx$

$$= \int_{0}^{2} kx^{2} dx + \int_{2}^{4} 2kx dx + \int_{4}^{6} x (-kx + 6k) dx$$

$$= k \left| x^{3} / 3 \right|_{0}^{2} + 2k \left| x^{2} / 2 \right|_{2}^{4} + \left(-k \left| x^{3} / 3 \right|_{4}^{6} + 6k \left| x^{2} / 2 \right|_{4}^{6} \right)$$

$$= k (8/3) + k (12) - k (152/3) + 3k (20) = \frac{1}{8} (24) = 3.$$

Example 26.34. A variate X has the probability distribution

26.34. A variate X has the proof
$$\frac{x}{x} : \frac{-3}{1/6} = \frac{6}{1/2}$$
 $P(X = x) : \frac{1}{6} = \frac{1}{2}$

Find E (X) and E (X^2). Hence evaluate E (2X + 1)².

Solution.
$$E(X) = -3 \times \frac{1}{6} + 6 \times \frac{1}{2} + 9 \times \frac{1}{3} = 11/2.$$

$$E(X)^2 = 9 \times \frac{1}{6} + 36 \times \frac{1}{2} + 81 \times \frac{1}{3} = 93/2$$

$$E(2X + 1)^2 = E(4X^2 + 4X + 1) = 4E(X^2) + 4E(X) + 1$$

$$= 4(93/2) + 4(11/2) + 1 = 209.$$

Example 26.35. The frequency distribution of a measurable characteristic varying between 0 and 2 is as

$$f(x) = x^3,$$
 $0 \le x \le 1$
= $(2-x)^3,$ $1 \le x \le 2$

Calculate the standard deviation and also the mean deviation about the mean

Solution. Total frequency
$$N = \int_0^1 x^3 dx + \int_1^2 (2-x)^3 dx = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

Solution. Total frequency
$$N = \int_0^\infty x^3 dx + \int_1^2 x(2-x)^3 dx$$

$$\therefore \qquad \mu_1' \text{ (about the origin)} = \frac{1}{N} \left[\int_0^1 x \cdot x^3 dx + \int_1^2 x(2-x)^3 dx \right]$$

$$= 2 \left\{ \left| \frac{x^5}{5} \right|_0^1 + \left| -x \cdot \frac{(2-x)^4}{4} \right|_1^2 - \left| \frac{(2-x)^5}{20} \right|_1^2 \right\} = 2 \left(\frac{1}{5} + \frac{1}{4} + \frac{1}{20} \right) = 1$$

$$\mu_{2}' \text{ (about the origin)} = \frac{1}{N} \left[\int_{0}^{1} x^{2} \cdot x^{3} dx + \int_{1}^{2} x^{2} (2 - x)^{3} dx \right]$$

$$= 2 \left\{ \left| \frac{x^{6}}{6} \right|_{0}^{1} + \left| -x^{2} \frac{(2 - x)^{4}}{4} \right|_{1}^{2} + \frac{1}{2} \int_{1}^{2} x (2 - x)^{4} dx \right\}$$

$$= 2 \left\{ \frac{1}{6} + \frac{1}{4} + \frac{1}{2} \left[\frac{1}{5} + \frac{1}{30} \right] \right\} = \frac{16}{15}$$

Hence

$$\sigma^2 = \mu_2 = \mu_2' - (\mu_1')^2 = \frac{1}{15}$$

i.e., standard deviation $\sigma = \frac{1}{\sqrt{15}}$

Mean deviation about the mean

tean
$$= \frac{1}{N} \left\{ \int_0^1 |x - 1| x^3 dx + \int_1^2 |x - 1| (2 - x)^3 dx \right\}$$

$$= 2 \left\{ \int_0^1 (1 - x) x^3 dx + \int_1^2 (x - 1) (2 - x)^3 dx \right\}$$

$$= 2 \left\{ \left(\frac{1}{4} - \frac{1}{5} \right) + \left(0 + \frac{1}{20} \right) \right\} = \frac{1}{5}.$$

1008

COVARIANCE AND VARIANCECovariance: If $E(X) = \overline{X}$ and $E(Y) = \overline{Y}$, then the covariance of the random variables X is given by

Y, denoted by cov(X, Y), is given by

$$E(X) = \overline{X} \quad \text{and} \quad E(Y)$$

$$\text{sov } (X, Y), \quad \text{is given by}$$

$$\text{cov } (X, Y) = E[(X - \overline{X})(Y - \overline{Y})] = E(XY - X\overline{Y} - Y\overline{X} + \overline{X}\overline{Y})$$

$$= E(XY) - \overline{Y}E(X) - \overline{X}E(Y) + \overline{X}\overline{Y}$$

$$= E(XY) - \overline{Y}\overline{X} - \overline{X}\overline{Y} + \overline{X}\overline{Y}$$

$$cov(X, Y) = E(XY) - \overline{X}\overline{Y}.$$

Note that, when X and Y are independent, we have

X and Y are independent,
$$E(XY) = E(X) E(Y)$$
, then $COV(X, Y) = 0$.

Also we can easily establish that

1. cov(aX, bY) = ab cov(X, Y)

1.
$$cov(aX, bY) = ub$$

2. $cov(X + a, Y + b) = cov(X, Y)$

3.
$$\operatorname{cov}\left(\frac{X-a}{h}, \frac{Y-b}{k}\right) = \frac{1}{hk}\operatorname{cov}\left(X, Y\right)$$

4.
$$cov(X, Y, Z) = cov(X, Y) + cov(X, Z)$$
.

Variance: It is easy to verify the following properties:

1.
$$Var(X) = cov(X, X)$$

2.
$$Var(ax + b) = a^2 Var(X)$$

2.
$$Var(ax + b) = a^2 Var(X)$$

3. $Var(aX + bY) = a^2 Var(X) + b^2 Var(Y) + 2ab cov(X, Y)$.

MOMENT GENERATING FUNCTION

The moment generating function (m.g.f.) of a random variable X about the origin is defined as

$$M_0(t) = E(e^{tX}) = \sum e^{tX} P(X).$$

This function $M_0(t)$ is called moment generating function because all the moments of X $^{\text{cm}}$ be obtained from $M_0(t)$, as follows:

$$M_0(t) = \left[1 + tX + \frac{t^2}{2!}X^2 + \frac{t^3}{3!}X^3 + \dots + \frac{t^rX^r}{r!} + \dots \right] p(X)$$

$$= 1 + tE(X) + \frac{t^2}{2!}E(X^2) + \dots + \frac{t^r}{r!}E(X^r) + \dots$$

$$= 1 + t\mu_1' + \frac{t^2}{2!}\mu_2' + \dots + \frac{t^r}{r!}\mu_r' + \dots \quad \text{where} \quad \mu_r' = E(X^r).$$

Obviously, we can write here

$$\mu'_{r} = \frac{d'}{dt'} [M_0(t)].$$

As a general case, the moment generating function of the random variable X about an arbitrary at 'a' which can be \overline{V} point 'a' which can be \bar{X} (or μ) also, is defined as

$$M_a(t) = E(e^{t(X-a)}) = e^{-at} E(e^{tX}).$$

Probability Distributions: Binomial, Poisson and Normal Distribution

Moment generating function of the sum of two independent variables is the product of their moment generating functions.

To establish it, consider two independent random variables X and Y whose m.g.fs. are $M_X(t)$ and $M_Y(t)$ respectively, then m.g.f. of X + Y is given by $M_X(t) = F(c^{t}(X+Y)) - F(c^{t}X) + tY$

$$M_{X+Y}(t) = E[e^{t(X+Y)}] = E(e^{tX} \cdot e^{tY})$$

= $E(e^{tX}) E(e^{tY})$

(since X and Y are independent)

Thus, $M_{X+Y}(t) = M_X(t) M_Y(t)$.

Further, it is easy to verify that

1. $M_{cX}(t) = M_X(ct)$ where c is some constant

2. If
$$U = \frac{X-a}{h}$$
 then $M_U(t) = e^{at/h} M_X\left(\frac{t}{h}\right)$.

EXAMPLE 31.5.

Find the probability distribution of the number of green balls drawn when three balls are drawn one by one without replacement from a bag containing three green and five white balls.

SOLUTION: Let X be the random variable which is the number of green balls drawn when three balls are drawn without replacement.

$$P(X = 0) = P \text{ (no green ball is drawn)} = P(W, W, W)$$
$$= \frac{5}{8} \cdot \frac{4}{7} \cdot \frac{3}{6}.$$

$$P(X=1) = P$$
 (one green ball is drawn)
= $P(G, W, W) + P(W, G, W) + P(W, W, G)$

$$= \frac{3}{8} \cdot \frac{5}{7} \cdot \frac{4}{6} + \frac{5}{8} \cdot \frac{3}{7} \cdot \frac{4}{6} + \frac{5}{8} \cdot \frac{4}{7} \cdot \frac{3}{6}$$

$$P(X = 2) = P(\text{two green balls are drawn})$$

= $P(G, G, W) + P(G, W, G) + P(W, G, G)$

$$= \frac{3}{8} \cdot \frac{2}{7} \cdot \frac{5}{6} + \frac{3}{8} \cdot \frac{5}{7} \cdot \frac{2}{6} + \frac{5}{8} \cdot \frac{3}{7} \cdot \frac{3}{6}$$

$$P(X=3) = P(G G G) = \frac{3}{8} \cdot \frac{2}{7} \cdot \frac{1}{6}$$
.

Probability distribution is

X	0	1	15	1	
P(X)	$\frac{5}{28}$	28	28	56	be defective. A college

EXAMPLE 31.7.

A random variate X has the following probability distribution

	0	1	2	3	1
X	k	2k	2k	k^2	4
p(x)	2.1	l obtain P()	< 3) and	P(0 < Y < A)	$\frac{3k^2}{2}$

Find the value of k and obtain P(X < 3) and P(0 < X < 4).

Determine the distribution function of X, also mean and variance of χ

SOLUTION: Since $\sum p(x) = 1$ we have $k + 2k + 2k + k^2 + 5k^2 = 1$ or $6k^2 + 4k + k$ which gives k = -1 and k = 1/6. Therefore k = 1/6 as k cannot be negative. Ans,

Next,
$$P(X < 3) = p(0) + p(1) + p(2) = \frac{1}{6} + \frac{2}{6} + \frac{2}{6} = \frac{5}{6}$$
.

and
$$P(0 < X < 4) = p(1) + p(2) + p(3) = \frac{2}{6} + \frac{2}{6} + \frac{1}{36} = \frac{25}{36}$$

Now, the probability distribution and the distribution function is as follows:

x	0	1	2	3	4
p(x)	$\frac{1}{6}$	$\frac{2}{6}$	$\frac{2}{6}$	$\frac{1}{36}$	$\frac{5}{36}$
F(x)	$\frac{1}{6}$	$\frac{3}{6}$	<u>5</u>	31 36	1

Then

mean =
$$\mu_x = \sum x_i p_i = 0 + \frac{2}{6} + \frac{4}{6} + \frac{3}{36} + \frac{20}{36} = \frac{59}{36}$$

Variance =
$$\sigma_x^2 = \left[0\left(\frac{1}{6}\right) + 1\left(\frac{2}{6}\right) + 4\left(\frac{2}{6}\right) + 9\left(\frac{1}{36}\right) + 16\left(\frac{5}{36}\right)\right] - \left(\frac{59}{36}\right)^2$$

Two most important discrete probability distributions are - Binomial Distribution and Poisse distribution.