1 Truth Tables

Determine whether the following equivalences hold, by writing out truth tables. Clearly state whether or not each pair is equivalent.

- (a) $P \wedge (Q \vee P) \equiv P \wedge Q$
- (b) $(P \lor Q) \land R \equiv (P \land R) \lor (Q \land R)$
- (c) $(P \land Q) \lor R \equiv (P \lor R) \land (Q \lor R)$

Solution:

(a) Not equivalent.

P	Q	$P \wedge (Q \vee P)$	$P \wedge Q$
T	T	Т	T
T	F	T	F
F	T	F	F
F	F	F	F

(b) Equivalent.

P	Q	R	$(P \vee Q) \wedge R$	$(P \wedge R) \vee (Q \wedge R)$
T	T	T	T	T
T	T	F	F	F
T	F	T	T	Т
T	F	F	F	F
F	T	T	T	Т
F	T	F	F	F
F	F	T	F	F
F	F	F	F	F

(c) Equivalent.

P	Q	R	$(P \wedge Q) \vee R$	$(P \vee R) \wedge (Q \vee R)$
T	T	T	T	T
T	T	F	T	T
T	F	T	T	Т
T	F	F	F	F
F	T	T	T	Т
F	T	F	F	F
F	F	T	T	Т
F	F	F	F	F

2 XOR

The truth table of XOR (denoted by \oplus) is as follows.

Α	В	$A \oplus B$
F	F	F
F	T	T
Т	F	T
T	T	F

- 1. Express XOR using only (\land, \lor, \neg) and parentheses.
- 2. Does $(A \oplus B)$ imply $(A \vee B)$? Explain briefly.
- 3. Does $(A \lor B)$ imply $(A \oplus B)$? Explain briefly.

Solution:

- 1. These are all correct:
 - $A \oplus B = (A \land \neg B) \lor (\neg A \land B)$

Notice that there are only two instances when $A \oplus B$ is true: (1) when A is true and B is false, or (2) when B is true and A is false. The clause $(A \land \neg B)$ is only true when (1) is, and the clause $(\neg A \land B)$ is only true when (2) is.

• $A \oplus B = (A \lor B) \land (\neg A \lor \neg B)$

Another way to think about XOR is that exactly one of A and B needs to be true. This also means exactly one of $\neg A$ and $\neg B$ needs to be true. The clause $(A \lor B)$ tells us *at least* one of A and B needs to be true. In order to ensure that one of A or B is also false, we need the clause $(\neg A \lor \neg B)$ to be satisfied as well.

• $A \oplus B = (A \vee B) \wedge \neg (A \wedge B)$

This is the same as the previous, with De Morgan's law applied to equate $(\neg A \lor \neg B)$ to $\neg (A \land B)$.

- 2. Yes. $(A \oplus B) \implies (A \land \neg B) \lor (\neg A \land B) \implies (A \lor B)$. When $(A \oplus B)$ is true, at least one of A or B is true, which makes $(A \lor B)$ true as well.
- 3. No. When *A* and *B* are both true, then $(A \lor B)$ is true, but $(A \oplus B)$ is false.

3 Converse and Contrapositive

Consider the statement "if a natural number is divisible by 4, it is divisible by 2".

- (a) Write the statement in propositional logic. Prove that it is true or give a counterexample.
- (b) Write the inverse of the implication in English and in propositional logic. Prove that it is true or give a counterexample. (The inverse of an implication $P \Longrightarrow Q$ is $\neg P \Longrightarrow \neg Q$.)
- (c) Write the converse of the implication in English and in propositional logic. Prove that it is true or give a counterexample.
- (d) Write the contrapositive of the implication in English and in propositional logic. Prove that it is true or give a counterexample.

Solution:

- (a) $(\forall x \in \mathbb{N})$ $(4 \mid x \Longrightarrow 2 \mid x)$. This statement is true. We know that if x is divisible by 4, we can write x as 4k for some integer k. But $4k = (2 \cdot 2)k = 2(2k)$, where 2k is also an integer. Thus, x must also be divisible by 2, since it can be written as 2 times an integer.
- (b) The inverse is that if a natural number is not divisible by 4, it is not divisible by 2: $(\forall x \in \mathbb{N})$ $(4 \nmid x \implies 2 \nmid x)$. This is false, since 2 is not divisible by 4, but is divisible by 2.
- (c) The converse is that any natural number that is divisible by 2 is also divisible by 4: $(\forall x \in \mathbb{N})$ $(2 \mid x \implies 4 \mid x)$. Again, this is false, since 2 is divisible by 2 but not by 4.
- (d) The contrapositive is that any natural number that is not divisible by 2 is not divisible by 4: $(\forall x \in \mathbb{N}) \ (2 \nmid x \implies 4 \nmid x)$. To show that this is true, first consider that saying that x is not divisible by 2 is equivalent to saying that x/2 is not an integer. And if we divide a non-integer by an integer, we get back another non-integer—so (x/2)/2 = x/4 must also not be an integer. But that is exactly the same as saying that x is not divisible by 4.

Note that the inverse and the converse will always be contrapositives of each other, and so will always be logically equivalent.

4 Equivalences with Quantifiers

Evaluate whether the expressions on the left and right sides are equivalent in each part, and briefly justify your answers.

(a)	$\forall x ((\exists y \ Q(x,y)) \Rightarrow P(x))$	$\forall x \exists y (Q(x,y) \Rightarrow P(x))$
(b)	$ \neg \exists x \forall y (P(x,y) \Rightarrow \neg Q(x,y))$	$\forall x ((\exists y P(x,y)) \land (\exists y Q(x,y)))$
(c)	$\forall x \exists y (P(x) \Rightarrow Q(x,y))$	$\forall x \ (P(x) \Rightarrow (\exists y \ Q(x,y)))$

Solution:

(a) Not equivalent.

Justification: We can rewrite the left side as as $\forall x \ ((\neg(\exists y \ Q(x,y))) \lor P(x))$ and the right side as $\forall x \ \exists y \ (\neg Q(x,y) \lor P(x))$ Applying the negation on the left side of the equivalence $(\neg(\exists y Q(x,y)))$ changes the $\exists y$ to $\forall y$, and the two sides are clearly not the same. Another approach to the problem is to consider by linguistic example. Let x and y span the universe of all people, and let Q(x,y) mean "Person x is Person y's offspring", and let P(x) mean "Person x likes tofu". The right side claims that, for all Persons x, there exists some Person y such that either Person y is not Person y's offspring or that Person y likes tofu. The left side claims that, for all Persons y, if there exists a parent of Person y, then Person y likes tofu. Obviously, these are not the same.

(b) Not equivalent.

Justification: Using De Morgan's Law to distribute the negation on the left side yields

$$\forall x \exists y (P(x,y) \land Q(x,y)).$$

But \exists does not distribute over \land . There could exist different values of y such that P(x,y) and Q(x,y) for a given x, but not necessarily the same value.

(c) Equivalent.

Justification: We can rewrite the left side as $\forall x \exists y \ (\neg P(x) \lor Q(x,y))$ and the right side as $\forall x \ (\neg P(x) \lor (\exists y \ Q(x,y)))$. Clearly, the two sides are the same if $\neg P(x)$ is true. If $\neg P(x)$ is false, then the two sides are still the same, because $\forall x \exists y \ (\text{False} \lor Q(x,y)) \equiv \forall x \ (\text{False} \lor (\exists y \ Q(x,y)))$.