Theory of Computation KTU S5 CSE CS306

November 14, 2020

Contents

1	\mathbf{Mo}	ıle 1	
	1.1	FSM	
		1.1.1 Powers of Σ	
		.1.2 Cardinality	
		$1.1.3 \Sigma^* \dots \dots \dots \dots \dots \dots \dots \dots \dots $	
		.1.4 Finite Automata	
		.1.5 DFA - Deterministic Finite Automata	
		.1.6 Operations on Regular Languages	
	1.2	NFA - Non Deterministic Finite Automata	
		.2.1 NFA - Formal Definition	
	1.3	Conversion NFA to DFA	

4 CONTENTS

Chapter 1

Module 1

- FSM: Finite State Machine
- CFL : Context Free Language
- Turing Machine

 $\mathrm{FSM} \to \mathrm{CFL} \to \mathrm{Turing\ Machine}$

Language here is a set of Strings

1.1 FSM

- Symbol: a b c 0 1 2 4...
- Alphabet : Denoted by Σ is a collection of symbols
 - $\text{ Eg}: \{a, b, c\} \text{ or } \{1, 2, 3\}$
- String: Sequence of Symbols eg: a,b,c... or aa,bb,cc,...
- Language : Set of Strings
 - Eg: $\Sigma = \{0, 1\}$
 - Set of all strings of Length 2: {00, 01, 10, 11}
 - Set of all strings of length 3: {000,001,010}
 - Set of all strings that begin with 0: $\{0,001,010\}$
 - Third example is an ∞ set

1.1.1 Powers of Σ

Let $\Sigma = \{0, 1\}$

- Σ^0 = Set of all strings of length 0: $\Sigma^0 = {\epsilon}$ (Epsilon)
- ϵ denotes all strings of length 0
- $\Sigma^1 = \text{Set of all strings of length 1}; \ \Sigma^1 = \{0, 1\}$
- Σ^n = Set of all strings of length n

1.1.2 Cardinality

- No of Elements in a set
- Cardinality of $\Sigma^n = 2^n$

1.1.3 Σ^*

 $\begin{array}{l} \Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \Sigma^n \\ => \{\epsilon\} \cup \{0,1\} \cup \\ => \text{Set of all possible strinfgs of all length over } \{0,1\} \text{ -> } \infty \text{ set} \end{array}$

1.1.4 Finite Automata

FA-1

1.1.5 DFA - Deterministic Finite Automata

- Simplest Model fo Computation
- It has veru limited memory

- Circles are **States**
- Edges/ Arrows are **transistions**
- Labelling are **Inputs**
- Double Cirlce is Final State
- Arrow from *nowhere* is the Initial State

Every DFA can be represented using 5 tuples $\rightarrow (Q, \Sigma, q_0, F, \delta)$

- Q: Set if al States
- Σ : Inputes
- q₀: Start state/ Initaial State
- \bullet F: Set of Final States
- δ : Transisition Function that maps from $Q \times \Sigma \to Q$

For the Above DFA, the values are - $Q=\{A,B,C,D\}$ - $\Sigma=\{0,1\}$ - $q_0=A$ - $F=\{D\}$ - $\delta=\{0,1\}$ - $\delta=\{0$

	0	1
A	С	В
В	D	A
С	A	D
D	В	С

Example Question: Let L1= Set of all strings that stras with $0 = \{0,00,01,000,010,011,0000,\dots\}$. Design the DFA

Answer:

DFA-2

Here C is the Dead State of Trap State

Example Question: Construct a DFA that accepts sets of all strings over $\{0,1\}$ of length 2.

Answer: $\Sigma = \{0, 1\}$ and $L = \{00, 01, 10, 11\}$

Regular Language - a regular language is said to be a regular language \iff a finite state machine recognizes it - Not Regular - When requires memory - Not recognized by FSM

Memory of FSM is very Limited and canno count strings

1.1.6 Operations on Regular Languages

Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

Concatenation: $A \circ B = \{xy \mid x \in A \text{ and } y \in B\}$ Star: $A* = \{x_1, x_2, x_3 \dots x_k \mid k \geq 0 \text{ and each } x_i \in A\}$

Eg: $A = \{pq, r\}, B = \{t, uv\}$

Ans:

- $A \cup B = \{pq, r, t, uv\}$ - $A \circ B = \{pqt, pquv, rt, ruv\}$ - $A* = \{\epsilon, pq, r, pqr, rpq \dots\} = \infty$ set

Theorem 1: The class of Reglular Lanugauges is closed under $Union(\cup)$

Theorem 2: The class of RL is closed unde $Concatenation(\circ)$

1.2 NFA - Non Deterministic Finite Automata

- There could be multiple Next states
- The next state could be chosen at random
- All the next states may be chosen in Parallel

1.2.1 NFA - Formal Definition

- NFA are defined using
 - -Q: Set if al States
 - $-\Sigma$: Inputs
 - $-q_0$: Start state/ Initaial State
 - F: Set of Final States
 - $-\delta$: Transisition Function that maps from $Q \times \Sigma \to 2^Q$

 $L=\{\text{Set of all strings that end with }0\}$

If there is any way to run the machine that **ends in any set of states** out of which **atleast one state is a final state**, then the NFA accepts

For examples, check this video

1.3 Conversion NFA to DFA

Every DFA is an NFA, but not vice-versa. But there is an equivalent DFA for every NFA

NFA-1

NFA-2

Things to keep in mind - ϕ in NFA is the Dead State in DFA - NFA's ϕ should be replaced by another state in DFA

Example 1: Convert to DFA, L={Set of all strings over(0,1) that starts with 0}

Answer: $\Sigma = \{0, 1\}$

NFA(NFA to DFA)

Transition Table:

	0	1
A	В	ϕ
В	В	В

While converting this to DFA, we have to account the ϕ as it should be converted to a **dead state**. This gives us the Transition Table,

	0	1
A	В	\overline{C}
В	В	В
С	С	С

Which gives us the DFA, where C is the dead state

DFA-2