Задание 1 представлено в 6 вариантах. Общая постановка задачи такая:

Пусть дана выборка из распределения F_{θ} , $\theta \in E \subset \mathbb{R}^n$. Какого объема выборки достаточно, чтобы при любых допустимых параметрах θ вероятность отклонения выборочного среднего от теоретического математического ожидания больше чем на ε не превосходила δ ? Смоделируйте 100 выборок найденного объема из распределения F_{θ_0} при $\varepsilon = 0.1$ и $\delta = 0.05$. Указать число выборок, для которых выборочное среднее отличается от теоретического математического ожидания более чем на 0.1 (здесь используйте функцию типа set_seed(some_magic_number), чтобы при каждом запуске получался один и тот же результат).

Сами варианты:

- 1. Bern(p), $p \in (0,1)$. Эксперимент с Bern(0.4).
- 2. $Geom(p), p \in [0.05, 1)$ (трактуем как номер первого успеха). Эксперимент с Geom(0.6).
- 3. $Pois(\lambda), \lambda \in (0, 10]$. Эксперимент с Pois(2).
- 4. Norm(μ, σ^2), $\sigma \in (0, 3]$. Эксперимент с N(0, 0.5).
- 5. $U[0, b], b \in (0, 100]$. Эксперимент с U(0, 10).
- 6. $\text{Exp}(\lambda)$, то есть $p(x) = \lambda e^{-\lambda x} \mathbb{1}(x \ge 0)$, $\lambda \ge 0.1$. Эксперимент с Exp(2).