

Bases de Datos

Segundo Cuatrimestre de 2020

Segundo examen parcial - 26 de Noviembre 2020

Ejercicios: en hojas separadas, con su nombre en cada hoja.

1. Considere la siguiente planificación:

	T_1	T_2	T_3	T_4
1.	read(C)			
2.				write(B)
3.		Read(A)		
4.	write(C)			
5.			write(C)	
6.		write(B)		
7.				read(C)
8.			read(B)	

- a) Determine si es serializable en conflictos o en vistas, justificando en cada caso. En caso de serlo, obtenga una serie equivalente.
- b) Para la planificación anterior simule la aplicación de los protocolos con las estampillas mencionadas en cada inciso (I a IV), indicando para cada instante de tiempo (1. al 8.) como se modifican la estampillas del dato (o versión) correspondiente. En caso que la planificación produzca una violación

a las reglas del protocolo indique en que instante se produce la primer violación, que transacciones retroceden y por qué. Suponga que inicialmente las estampillas R-ts y W-ts de todos los datos/versiones tienen valor 0.

- I) Estampillas con Regla de Thomas y $0 < ts(T_1) < ts(T_2) < ts(T_3) < ts(T_4)$
- II) Multiversión con $0 < ts(T_1) < ts(T_2) < ts(T_3) < ts(T_4)$
- III) Estampillas con Regla de Thomas y $0 < ts(T_4) < ts(T_3) < ts(T_2) < ts(T_1)$
- IV) Multiversión con $0 < ts(T_4) < ts(T_3) < ts(T_2) < ts(T_1)$
- 2. Considere el siguiente escenario en un sistema distribuido: Hay 7 sitios S1, S2, S3, S4, S5, S6 y S7 conectados en red y una transacción **T1 ejecutándose en S1**. Del ítem de dato A existen 6 copias: A1, A2, A3, A4, A5, A6 que residen en S1, S2, S3, S4, S5, S6 respectivamente. Considerando que un sitio caído no puede enviar ni recibir mensajes, **indique** para cada uno de los siguientes protocolos cual es la cantidad máxima de sitios que podrían estar caídos y aun así T1 lograría obtener un Read-lock sobre el item de dato A. En cada respuesta de un ejemplo de cuales podrían ser los sitios caídos. (Respuesta genérica: la cantidad máxima de sitios que podrían estar caídos es 3, por ejemplo podrían estar caídos S1, S2 y S3.)
 - a) Nodo central, siendo S7 el nodo central
 - b) Mayoría
 - c) 5 de 6
 - d) ROWA
 - e) Sitio Primario, siendo S1 el sitio primario de A.

3. **Protocolo de concurrencia por validación**. Considere las siguientes transacciones con sus respectivos conjuntos de lectura y escritura:

	T_1	T_2	T_3	T_4	T_5
Read-Set	{A}	$\{A,C\}$	$\{A,E\}$	$\{B,D,E\}$	{B,D}
Write-Set	{A}	$\{C,D\}$	{C}	{B,E}	{B,D}

Considere la secuencia: S2 S3 V2 S1 S5 F2 V3 S4 F3 V5 V4 F5 V1 F4 F1, donde S_i, V_i y F_i representan cuando una transacción T_i comienza, intenta validar y termina respectivamente. Determine cuales transacciones validan y cuales retroceden, justificando en cada caso.

- 4. Considere el siguiente fragmento de bitácora, donde se utiliza modificación inmediata:
 - 1. <T1, starts>
 - 2. <T1, A, 11, 21>
 - 3. <checkpoint,[T1]>
 - 4. <T2, starts>
 - 5. <T2, C, 23, 13>
 - 6. <T1, B, 22, 32>
 - 7. <...>
 - 8. <T3, starts>
 - 9. <T1, A, 21, 31>
 - 10. <T1,commit>
 - 11. <T3, A, 31, 41>
 - 12. <...>
 - 13. <T4, starts>
 - 14. <T4, E, 35, 25>
 - 15. <T3, D, 34, 44>
 - 16. <T2, B, 32, 42>
 - 17. <T3,commit>
 - 18. <T4, D, 44, 24>
 - 19. <T4, commit>
 - 20. Fallo del sistema

- a) Suponga que en el instante 7 y 12 se realiza un checkpoint. Indique que registro se guarda en la bitácora para cada checkpoint.
- b) Indique cual es el valor almacenado en disco de los datos A,B y C inmediatamente después de realizar el checkpoint del instante 12.
- c) Suponga que en el instante 20 se produce un fallo del sistema. Especifique que acciones se realizan durante la recuperación del sistema, indicando:
 - Que listas se construyen y el contenido de cada una.
 - Las modificaciones y el orden en que se realizan, construyendo una tabla con el siguiente formato:

Dato	Valor	Reg. de bitácora asociado	Acción asociada
X	100	<ti, 200="" x,100,=""></ti,>	Undo(Ti)

5. Protocolos de Bloqueo

	_	
$ T_1$	T_2	T_3
		Read(A)
	Read(B)	
Read(A)		
	Write(B)	
		Read(B)
Write(A)		

Conteste las siguientes preguntas sobre la planificación dada y justifique incorporando los bloqueos para simular la aplicación del protocolo.

- a) ¿Es posible obtener esta planificación al aplicar el protocolo de 2 fases **sin** upgrade y downgrade?
- b) ¿Es posible obtener esta planificación al aplicar el protocolo de 2 fases **con** upgrade y downgrade?
- c) Siguiendo el protocolo de árbol: ¿Con cual/es de los siguientes árboles es posible obtener la planificación?

i)	Α	ii)	Α
			- 1
	В		С
			- 1
	C		В