Optimization Model for a SCRUM-Based Software Development Company

AI Analyst

September 5, 2025

Contents

1	Sets (Entities)	2
2	Indices	2
3	Goals	3
4	Conditions	4
5	Decision Variables	5

Introduction

This document presents a formal mathematical optimization model for resource allocation, scheduling, and priority management in a software development company using the SCRUM framework. The model is derived from a defined domain model consisting of Entities, Relationships, Goals, and Constraints.

1 Sets (Entities)

- Project = $\{p|p \text{ is a Project}\}$, with attributes id, name, project_start, project_end, description, but
- Team = $\{t|t \text{ is a Team}\}$, with attributes id, name, team_size, team_start, team_status, location, t
- $\bullet \ \ \text{Worker} = \{w | w \ \text{is a Worker}\}, \ \text{with attributes id, name, first_name, email, start_date, status, available}, \ \text{which is a Worker}\}.$

• Velocity = $\{v|v \text{ is a Velocity}\}$, with attributes id, number_of_sprints_used, avg_story_points, m

- Feature = $\{f|f \text{ is a Feature}\}$, with attributes id, title, description, status, priority, estimated_effor
- $\bullet \ \, \text{Blocker} = \{b|b \ \text{is a Blocker}\}, \text{with attributes id, title, description, severity, status, detected_on, reserved}, \\$
- SprintGoal = $\{g|g \text{ is a SprintGoal}\}$, with attributes id, objective_description, achievement_status
- Task = $\{k|k \text{ is a Task}\}$, with attributes id, title, description, status, effort, type
- Stakeholder = $\{s|s \text{ is a Stakeholder}\}$, with attributes id, name, organization, role, email, area_of_i
- Sprint Patrospactive Irle is a Sprint Patrospactive with attributes
- SprintRetrospective = $\{r|r \text{ is a SprintRetrospective}\}$, with attributes id, date, duration, improvement _actions, team _satisfaction, moderation

2 Indices

- $p, p' \in \text{Project}$
- $t, t' \in \text{Team}$
- $w, w' \in Worker$
- $f, f' \in \text{Feature}$
- $b, b' \in Blocker$
- $g, g' \in SprintGoal$

- $k, k' \in \text{Task}$
- $s, s' \in Stakeholder$
- $v, v' \in \text{Velocity}$
- $r, r' \in SprintRetrospective$
- $i, i' \in Sprint$

3 Goals

• G0: maximize team utilization - Maximize the average availability of all team workers.

Maximize
$$Z_0 = \sum_{w \in \text{Worker}} \text{availability}(w)$$

• **G1:** minimize _project _duration - Minimize the total duration of the project in days.

Minimize $Z_1 = \text{project_end}(p_0) - \text{project_start}(p_0)$ for main project p_0

• G2: maximize_feature_delivery - Maximize the number of highpriority features delivered.

$$\text{Maximize } Z_2 = \sum_{f \in \text{Feature}} \mathbb{I}(\text{priority}(f) \ge P_{\text{high}}) \cdot \text{priority}(f)$$

• G3: minimize_blocker_impact - Minimize the number of highseverity blockers.

Minimize
$$Z_3 = \sum_{b \in \text{Blocker}} \mathbb{I}(\text{severity}(b) \geq S_{\text{critical}}) \cdot \text{severity}(b)$$

• G4: maximize sprint goal achievement - Maximize the rate of successfully achieved sprint goals.

Maximize
$$Z_4 = \sum_{g \in \text{SprintGoal}} \mathbb{I}(\text{achievement_status}(g) = \text{Done})$$

• **G5:** minimize task effort variance - Minimize the variance between estimated and actual task effort.

Minimize
$$Z_5 = \sum_{k \in \text{Task}} (\text{effort}_{\text{actual}}(k) - \text{effort}_{\text{estimated}}(k))^2$$

• **G6:** maximize_stakeholder_satisfaction - Maximize the average satisfaction level of stakeholders.

Maximize
$$Z_6 = \sum_{s \in \text{Stakeholder}} \text{influence_level}(s)$$

• G7: minimize budget overrun - Minimize the total project budget overrun.

Minimize
$$Z_7 = \max(0, \operatorname{actual } \operatorname{cost}(p_0) - \operatorname{budget}(p_0))$$

• **G8:** maximize_team_velocity - Maximize the average velocity of the team.

Maximize
$$Z_8 = \text{avg_story_points}(v_t)$$
 for team t's velocity v_t

• **G9:** minimize_retrospective_actions - Minimize the number of improvement actions needed.

Minimize
$$Z_9 = \sum_{r \in SprintRetrospective} improvement_actions(r)$$

4 Conditions

• C0: team_must_be_cross_functional - The team must have a minimum number of distinct skills.

$$\operatorname{count_{distinct}}(\operatorname{skill}(w) \forall w \in t) \geq \theta_{\operatorname{skills}} \quad \forall t \in \operatorname{Team}$$

• C1: worker_availability_threshold - An individual worker's availability must be above a minimum threshold.

availability
$$(w) \ge A_{\min} \quad \forall w \in \text{Worker}$$

• C2: feature_priority_must_match - Features with 'Critical' priority must be developed first.

$$\operatorname{start_date}(f) < \operatorname{start_date}(f') \quad \forall f, f' | \operatorname{priority}(f) > \operatorname{priority}(f')$$

• C3: blocker_severity_tolerance - No blocker with 'Critical' severity is allowed to remain unresolved for more than X days.

$$(resolved_on(b) - detected_on(b)) \le T_{max} \quad \forall b \in Blocker|severity(b) = Critical$$

• C4: sprint_goal_must_be_defined - Every sprint must have a defined goal.

objective description
$$(g_i) \neq \emptyset$$
 \forall sprint i

• C5: task_effort_estimation_required - Every task must have an effort estimation greater than zero.

$$effort_{estimated}(k) > 0 \quad \forall k \in Task$$

• C6: stakeholder_influence_recognition - Key stakeholders (high influence) must be identified and managed.

influence_level(s)
$$\geq I_{\text{key}} \implies \text{status}(s) = \text{Managed} \quad \forall s \in \text{Stakeholder}$$

• C7: project_budget_hard_limit - The total project cost must not exceed the allocated budget.

$$\sum \operatorname{cost}(\operatorname{resources}) \leq \operatorname{budget}(p) \quad \forall p \in \operatorname{Project}$$

• C8: velocity_consistency - Team velocity should not drop below a certain stability threshold.

$$\min_{\text{velocity}}(v_t) \ge V_{\text{stable}} \quad \forall t \in \text{Team}$$

• C9: sprint_duration_fixed - Sprint duration must be fixed and cannot be changed.

(end date(i) - start date(i)) =
$$L_{\text{sprint}}$$
 $\forall i \in \text{Sprint}$

5 Decision Variables

- $x_{\text{team_size}}(t) \in \{5, 6, \dots, 10\}$: Number of workers assigned to team t.
- $x_{\text{sprint length}}(i) \in \{10, 12, 14\}$: The duration of sprint i in days.

- $x_{\text{worker_assign}}(w, i) \in \{0, 1\}$: 1 if worker w is assigned to sprint i, 0 otherwise.
- $x_{\text{feature_priority}}(f) \in \{1, 2, 3, 4, 5\}$: Priority level assigned to feature f.
- $x_{\text{story_points}}(us) \in \{1, 2, 3, 5, 8, 13\}$: Number of story points assigned to user story us.
- $x_{\text{task sequence}}(k) \in \mathbb{Z}^+$: The processing order of task k.
- $x_{\text{resource budget}}(f) \in \mathbb{R}^+$: Budget allocated to feature f.
- $x_{\text{skill_req}}(k) \in \{1, 2, 3, 4, 5\}$: Minimum skill level required for task k.
- $x_{\text{contingency}}(k) \in \{0, 1, 2, 3, 4, 5\}$: Buffer days added to task k.
- $x_{\text{concurrent_tasks}}(w) \in \{1, 2, 3\}$: Max number of tasks worker w can handle.