Predictive Modelling

k-Nearest Neighbors (kNN)

Raquel Sebastião

Departamento de Electrónica, Telecomunicações, Informática Universidade de Aveiro

raquel.sebastiao@ua.pt

k-Nearest Neighbors (kNN)

k-Nearest Neighbor belongs to the class of instance-based often known as "lazy learner"

- No algorithm to extract information from labeled data.
- The labeled data is stored to classify new data.
- It does not learn a function to map the predictor variables into a target variable
- it does not make any assumption on the unknown functional form we are trying to approximate, it means that with sufficient data they are applicable to any problem

k-Nearest Neighbors (kNN)

The decision about label of new data

- looking for the most similar examples (neighbors) within the stored data
- the label is decided according to the label of neighbors

The hyper-parameters of the classifier are: k and criterium to find the neighbors.

k-Nearest Neighbors (kNN)

Method:

- Choose the number k and the distance metric d
- For a test case x
 - find the k nearest cases in the training data according to d
 - use the target variable values of these cases to obtain the prediction for x
 - the prediction is the majority class

k-Nearest Neighbors (kNN): example

2 - D data set belonging to two classes

- Class A
- Class B
- New data

What is the label of new (yellow) points p_i , i = 1...5?

KNN: choose K = 5

k-Nearest Neighbors (kNN): example

Looking for neighbors of \mathbf{p}_1

Within 5 neighbors: 3 are of class A then Class A

k-Nearest Neighbors (kNN): example

Looking for neighbors of **p**₃

Within 5 neighbors: 3 are of class A then Class A

k-Nearest Neighbors (kNN): basic principles

- The class membership of a new object is estimated by majority vote within nearest neighbors.
 - Note k = 1, is the label of the nearest neighbor.
- The definition of neighborhood depends on a proper measure

Different measures to find neighbors

- Euclidean distance
- Manhattan distance
- Chebyshev distance
- Cossine distance
- ...

k-Nearest Neighbors (kNN): Choosing k

What should be the value of k?

- typically, 3, 5 and 7
- odd numbers to avoid draws
- it can be estimated experimentally
 - global estimation searches for the ideal k for a given data set
 - local estimation methods try to estimate the ideal k for each test case (computationally very demanding!)

k-Nearest Neighbors (kNN): toy example

K = 1 and Euclidian distance versus Manhattan

k-Nearest Neighbors (kNN): toy example

Euclidian distance with k = 1 versus k = 3

k-Nearest Neighbors (kNN): Advantages

Algorithm provides a highly effective inference method for noisy training data

Algorithm is easy to interpret

New classes can be added without re-training

Different metrics provide flexibility

Works well for online learning as new data is constantly arriving

k-Nearest Neighbors (kNN): Disadvantages

Requires good choices!

- Results depend on choice of k
- Results depend on choice of metric, especially in high-dim spaces
 - normalization, irrelevant variables, unknown values, outliers may have a strong impact on the performance

"Training set" consumes much main memory

Complexity grows linearly with the number of cases

Classification is time consuming

Fast training time, but slow testing time

References

Introduction to Data Mining, Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, Vipin Kumar, Pearson, 2019 (chap 6.3)

Data Mining, the Textbook, Charu C. Aggarwal, Springer, 2015 (chap 10.8)

