ECS 122A Sections **001** Midterm Exam Solution

- 1. (a) False, $H(n) = \ln n + O(1) \in \Theta(\log n)$
 - (b) True, observe that $\log(c\sqrt{n}) = \log c + \log(\sqrt{n})$.
 - (c) False, it takes $\Theta(n^{\log 7})$.
 - (d) False. Dynamic programming (not greedy algorithm)
- 2. (a) $T(n) = 2 \cdot T(n-2) = 2^k T(n-2k) = \Theta(2^{n/2})$, where assumes that n = 2k.
 - (b) $T(n) = 3 \cdot T(\frac{n}{4}) + n + 1 = \Theta(n)$ by the case 3 of the master theorem.
 - (c) $T(n) = 16 \cdot T(\frac{n}{4}) + n^2 = \Theta(n^2 \log n)$ by the case 2 of the master theorem.
- 3. (a) $\sum_{i=0}^{k} \frac{1}{2^i} = \frac{1 \frac{1}{2^{k+1}}}{1 \frac{1}{2}} = 2 \frac{1}{2^k}$, geometric sum
 - (b) $\Omega(g(n)) = \{f(n) : \exists c, n_0 \text{ such that } f(n) \ge cg(n) \ge 0, \forall n \ge n_0\}$
 - (c) Counting sort, O(n)
 - (d) The optimal solution to the problem contains optimal solutions to subproblems. For example, the matrix-chain multiplication.
- 4. (a) The codes are

$_{ m char}$	frequency	code
h	21	1
g	13	01
\mathbf{f}	8	001
e	5	0001
d	3	00001
\mathbf{c}	2	000001
b	1	0000001
\mathbf{a}	1	0000000

- (b) In general, the code for the *i*th character, in a sequence of *n* characters where the frequencies are the first *n* Fibonacci numbers, is n-1 0's when i=1, and $0^{(n-i)}1$ for $2 \le i \le n$.
- 5. (a) For example, for the change of N = 55 cents,

		total
greedy:	$50 + 5 \cdot 1$	6 coins
optimal:	$25 + 3 \cdot 10$	4 coins

- (b) The smallest number of coins required $= \min\{\text{Change}(N), 1 + \text{Change}(N 50)\}$. This assumes that Change(N) returns ∞ for N < 0.
- (c) The optimal solution has to either have 0 or 1 half-dollars in it. The solution finds the best of options and returns the minimum of those.

Running time = $2 \cdot O(N) = O(N)$.