Tanishq D Kaushik Professor Benjamin Kedem STAT 430 5 July 2020

Research Topic

iOS and Android are the most popular mobile operating systems in the world. Every year apple, which creates its own processor and other companies which use 3rd party processors try to release phones with an upgrade in processing power. For statistical research I will try to find out which type of phone have consistently had higher processing power.

Collection of Data

For comparing the different results, I used results from benchmark testing. In computing, a benchmark is an act of running different sets of programs, or other operations to assess relative performance of a hardware component, normally by running a number of standard tests and trials against it. For collecting my data, I used AnTuTu as my benchmark testing software. It tests and gives individual scores for CPU (Central Processing Unit), GPU (Graphics Processing Unit), Memory read and write speeds and User Experience. Since apple only releases one model of phone each year which has to be compared to several smart phone companies which release phones with android OS, I chose to use the flagship phone from each year for comparison. A flagship phone is the best phone released by a company in a given year.

Link for the AnTuTu website - https://www.antutu.com/en/ranking/rank1.htm

SAS Code

```
PROC FORMAT;
VALUE $OperatingSystem 'i' = 'iOS'
            'a' = 'Android';
DATA SmartPhones;
INPUT OS $ CPU GPU MEM UX @@;
TOTAL = CPU + GPU + MEM + UX;
LABEL OS = 'Operating System'
CPU = 'Central Processing Unit'
GPU = 'Graphics Processing Unit'
MEM = 'Memory Read and Write Speed'
UX = 'User Experience';
FORMAT OS $OperatingSystem.;
DATALINES;
i 185231 212608 79051 77794 i 184836 211444 78607 77648 i 178583 205162 93189 76594
i 182729 200879 77309 83158 i 149208 181893 60863 82904 i 148221 183314 67626 80510
i 140194 155143 64538 78035 i 144646 159390 71430 70142 a 182017 250099 101961 86752
a 184311 239240 99442 83003 a 177641 236910 99018 88218 a 180174 228891 90462 84696
a 155478 216687 71887 75913 a 152928 194070 71075 74377 a 144732 197747 80356 68944
```

```
a 153117 186754 59208 64104 .
```

PROC PRINT DATA = SmartPhones; RUN;

Obs	os	CPU	GPU	MEM	UX	TOTAL
1	iOS	185231	212608	79051	77794	554684
2	iOS	184836	211444	78607	77648	552535
3	iOS	178583	205162	93189	76594	553528
4	iOS	182729	200879	77309	83158	544075
5	iOS	149208	181893	60863	82904	474868
6	iOS	148221	183314	67626	80510	479671
7	iOS	140194	155143	64538	78035	437910
8	iOS	144646	159390	71430	70142	445608
9	Android	182017	250099	101961	86752	620829
10	Android	184311	239240	99442	83003	605996
11	Android	177641	236910	99018	88218	601787
12	Android	180174	228891	90462	84696	584223
13	Android	155478	216687	71887	75913	519965
14	Android	152928	194070	71075	74377	492450
15	Android	144732	197747	80356	68944	491779
16	Android	153117	186754	59208	64104	463183

/* I decided to do a one way ANOVA on the dataset*/

PROC ANOVA DATA = SmartPhones; CLASS OS; MODEL CPU GPU MEM UX TOTAL = OS; MEANS OS / SNK; RUN;

The ANOVA Procedure

Dependent Variable: CPU Central Processing Unit

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	17535156	17535156	0.05	0.8222
Error	14	4684499704	334607122		
Corrected Total	15	4702034860			

R-Square	Coeff Var	Root MSE	CPU Mean
0.003729	11.06926	18292.27	165252.9

Source	DF	Anova SS	Mean Square	F Value	Pr > F
os	1	17535156.25	17535156.25	0.05	0.8222

The ANOVA Procedure

Dependent Variable: MEM Memory Read and Write Speed

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	407999601	407999601	2.28	0.1533
Error	14	2505005157	178928940		
Corrected Total	15	2913004758			

R-Square	Coeff Var	Root MSE	MEM Mean
0.140061	16.90515	13376.43	79126.38

Source	DF	Anova SS	Mean Square	F Value	Pr > F
os	1	407999601.0	407999601.0	2.28	0.1533

The ANOVA Procedure

Dependent Variable: UX User Experience

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	37830.3	37830.3	0.00	0.9778
Error	14	662836913.8	47345493.8		
Corrected Total	15	662874744.0			

R-Square	Coeff Var	Root MSE	UX Mean
0.000057	8.787803	6880.806	78299.50

Source	DF	Anova SS	Mean Square	F Value	Pr > F
os	1	37830.25000	37830.25000	0.00	0.9778

The ANOVA Procedure

Dependent Variable: GPU Graphics Processing Unit

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	3616969952	3616969952	6.77	0.0209
Error	14	7482127268	534437662		
Corrected Total	15	11099097220			

R-Square	Coeff Var	Root MSE	GPU Mean	
0.325880	11.34541	23117.91	203764.4	

Source	DF	Anova SS	Mean Square	F Value	Pr > F
os	1	3616969952	3616969952	6.77	0.0209

				The ANC						
				Dependent	Variab	ole: TOT	AL			
Source			DF	Sum of Squares		Mean Square		FV	alue	Pr > F
Model			1	7112097056		7112	7112097056		2.20	0.1603
Error			14	45284276631		3234591188				
Corrected Total		tal	15	5239637	3686					
			quare	Coeff Var	Roo	t MSE	TOTAL	TOTAL Mean		
			35736	10.80334	568	373.47	52644	443.2	3.2	
	Source	е	DF	Anova SS	Mear	Square	F Val	lue	Pr > F	:
	os		1	7112097056	711	2097056	2.	.20	0.1603	3

From the pictures of the output on doing the one way ANOVA procedure we find that there is no statistically significant difference between the two operating system in the field of CPU, Memory read and write speed, user experience and total score (since p value is greater than 0.05) however, there is a significant difference in terms of GPU of the two phones (since p value 0.0209<0.05).

To test which phones GPU is better I did an SNK test on the independent variable.

In case of GPUs, the performance of Android phones is much better.

Results

In case of CPU, Memory and User Experience and total score I found that the p values are greater than 0.05 hence I failed to reject the null hypothesis thus their performance was somewhat the same. In case of GPU (Graphics Processing Unit) I got a p value of 0.0209 which was enough to reject the null hypothesis. On doing the post hoc SNK test I found that Android phones had a better GPU in comparison to iPhones. Better GPU means that android phones are much better for gaming. So overall the performance of the two smartphones is the somewhat similar statistically because of the total score but because of better GPU android phones are better gaming phones.