INF264 - Exercise 4

Pierre Gillot Natacha Galmiche*

Week 37 - 2021

In this group session you will first get familiar with neural networks and more specifically MLP (Multi-Layer Perceptron) using Tensorflow Playground, then apply the feedforward and backward algorithm by hand on a very simple neural network.

To help you go through the exercises, some key-points of the last lectures are recalled in the appendix.

1 Tensorflow playground

Get familiar with MLP (Multi-Layer Perceptron) by playing around with Tensorflow Playground http://playground.tensorflow.org/ and then answer the following questions:

1. Preliminary:

- (a) Click multiple times on the "reset the network" button. What does this button do?
- (b) Sometimes if you reinitialize and re-train a model with exactly the same data and exactly the same configuration it converges to different weights values. Why?
- (c) What could happen if your learning rate is too low?
- (d) What could happen if your learning rate is too high?
- (e) If your learning rate is a bit high and your data noisy, would increasing the batch size improve or reduce the generalization performance of your model?
- 2. Look at Figure 1, and assume X_1, X_2 and Y are in \mathbb{R} .:
 - (a) What are the dimensions of the hidden units $\mathbf{H}^{(1)}$ and $\mathbf{H}^{(2)}$?
 - (b) What are the dimensions of the weights $\mathbf{W}^{(1)}$, $\mathbf{W}^{(2)}$ and $\mathbf{W}^{(3)}$?
 - (c) Assume all activation functions are the identity function. Recalling $\mathbf{H}^{(1)} = \mathbf{W}^{(1)}\mathbf{X}$ where $\mathbf{X} = (X_1, X_2) \in \mathbb{R}^2$, express Y using only $\mathbf{W}^{(1)}, \mathbf{W}^{(2)}, \mathbf{W}^{(3)}$ and \mathbf{X} .
 - (d) What is the type of the relation between Y and X in question 2.(c)?

^{*}Not a TA for this course this year.

Figure 1: An example of a MLP with 2 hidden layers

3. MLP for regression:

- (a) Click on **this link** to get a specific model configuration or look at the figure in the appendix.
- (b) Train this model. Is this model suitable for this problem? Why?
- (c) Change the activation function of this model to 'Sigmoid' and observe the results.

4. MLP for classification:

- (a) What can you say if your test accuracy is close to 0.5?
- (b) Select the "exclusive or" dataset. If you had to select only one feature for this problem, which one would you choose?
- (c) Should you use a neural network to solve this problem using this feature?

2 Neural networks

Consider the following simple neural network:

We have a one-dimensional input $x \in \mathbb{R}$ and a one-dimensional target $y \in \mathbb{R}$. Furthermore, we have one hidden layer consisting of one neuron and ReLU activation function. The output layer is linear.

That is, we have $z = w_1 x$, h = f(z) where $f(z) = \max(0, z)$ and $\hat{y} = w_2 h$. We consider squared loss $L(y, \hat{y}) = \frac{1}{2}(y - \hat{y})^2$.

Suppose that initial weights have values $w_1 = 3$ and $w_2 = 2$. We have observed one data point with x = 1 and y = 5.

1. Perform one update of parameters w_1 and w_2 using gradient descent with learning rate $\gamma = 0.1$

Hint: f'(z) = 1 when z > 0, f'(z) = 0 when z < 0 and undefined when z = 0.

APPENDIX

Tensorflow playground configuration

Figure 2: An example of a MLP configuration using Tensorflow playground

Reminders

This section is based on the lectures slides for more details directly look at the slides.

Gradient-based learning

Given a loss function $L(\theta)$ where θ are the parameters of your neural network

• The goal is to minimize the training loss by selecting appropriate values for the weights:

$$\min_{\theta} L(\theta).$$

• Update weights using gradient descent:

$$\theta_{t+1} = \theta_t - \gamma_t \nabla L(\theta)$$
 where γ_t is the learning rate.

• The objective function is not convex, thus gradient descent converges towards a local minimum.

Chain rule of calculus

• Formula for computing the derivative of the composition of two or more functions:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial g} \cdot \frac{\partial g}{\partial x}.$$

Backpropagation

- First compute the gradient for the last set of weights.
- Then propagate the error to the previous layer and compute the gradient for the next set of weights.
- Repeat this process until you have processed the first set of weights (all weights have now been updated).