

Ensemble learning

Machine Learning (ML)

Agenda

- Motivation
- Bias and Variance revisited
- Bagging
- Random Forests
- Boosting
- Stacking

Motivation

= 1 inch (2,54 cm)

Motivation

"If each member of a jury is more likely to be right than wrong, then the majority of the jury, too, is more likely to be right than wrong; and the probability that the right outcome is supported by a majority of the jury is a (swiftly) increasing function of the size of the jury, converging to 1 as the size of the jury tends to infinity." - Marquis de Condorcet, 1785

Bias and Variance revisited

- Given a target function f
- **Find** a hypothesis *h*, such that
 - Such that $h \approx f$
- **Bias** is the **tendency** of *h* to **deviate** from expected value when averaged on different training sets
 - High bias, linear model
 - Low bias, k-nearest neighbor
- Variance is the amount of change in h due to fluctuations in training data
 - Low variance, linear model (stable)
 - High variance, decision tree (unstable)
- Bias-variance tradeoff, the choice between a more complex low bias h vs
 simple low variance h

Ensemble learning

- Successful ensembles require diversity
 - Classifiers should make different mistakes
- 1. Adjusting induction method
 - By using different base learners (with different biases)
 - This will most probably ensure that they make different errors
- 2. Adjust data by using homogenous induction method
 - Bagging
 - Boosting
- 3. Adjust data and selection method
 - Random Forest

Ensemble learning

versus

Traditional approach

Build one good model

Ensemble approach

Build many models and average the results

Bagging

- Idea: Combining many unstable predictors to produce a stable predictor, by reducing variance
- A bootstrap sample B (one bag) of a set of examples E is created by randomly selecting n = |E| examples from E with replacement
- The probability of an example in E appearing in B is

$$1 - \left(1 - \frac{1}{n}\right)^n = 1 - \frac{1}{e} \approx 0.632$$

- Examples in E \ B is called out-of-bag examples
 - i.e. examples not in B

Bootstrap example

```
>>>from sklearn.utils import resample
>>>e = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>>samp = resample(e)
>>>samp
array([1, 4, 8, 1, 5, 2, 8, 2, 3, 9])
>>>samp = resample(e)
>>>samp
array([3, 7, 7, 9, 2, 4, 4, 5, 2, 9])
>>>samp = resample(e)
>>>samp
array([1, 7, 2, 4, 8, 8, 8, 2, 1, 8])
>>>samp = resample(e)
>>>samp
array([9, 3, 9, 1, 6, 6, 9, 8, 6, 9])
>>>samp = resample(e)
>>>samp
array([6, 9, 6, 8, 5, 0, 0, 5, 9, 5])
```


Bagging

- Take repeated bootstrap samples from training set D
- Bootstrap sampling
 - Given training set D containing N training examples
 - Create D' by drawing N examples at random with replacement from D
- Bagging*
 - Create k bootstrap samples B₁,..., B_k
 - Train a classifier (or regressor) on each B_i
 - Predict new instance
 - by majority vote (classification)
 - by averaging value (regression)

^{*} L. Breiman. 1996. Bagging predictors. Machine Learning, 24(2):123-140

Bagging example result

Breast-cancer-Wisconsin dataset from UCI repository Stratified 10 fold cross validation Decision trees as base classifier

Bagging tips

- Any base learner can be used but,
 - good results are obtained by unstable (high variance) learners like
 - Decision trees
 - Neural networks
- Works in similar way for both classification and regression, only the **voting** scheme needs to change
- Using decision trees, pruning should not be used,
 - as this **decrease** the variance
- Can be used without separate validation or test set
 - Out-of-bag examples can be used for this

Random Forest

- Idea: Combine bagging and the random subspace method (RSM)^(feature bagging), in one method to further increase diversity (variance) in the base learner to produce a low variance predictor (ensemble).
- Similarly to bagging RSM samples features with replacement, typically the sqrt(no_features) is used
- No_features = 10, $\sqrt{10}$ = 3 features selected at random

^T. K. Ho. 1998. The random subspace method for constructing decision forests, IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8):832-844

Feature selection example

```
>>> from sklearn.utils import resample
>>> import numpy as np
>>> e = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> no features = int(np.sqrt(len(e)))
>>> samp = resample(e, n samples=no features)
>>> samp
array([7, 6, 3])
>>> samp = resample(e, n samples=no features)
>>> samp
array([9, 3, 1])
>>> samp = resample(e, n samples=no features)
>>> samp
array([8, 0, 5])
>>> samp = resample(e, n samples=no features)
>>> samp
array([9, 2, 4])
>>> samp = resample(e, n samples=no features)
>>> samp
array([8, 3, 1])
```

Feature selection example

Ex.	Other	Bar	Fri/Sat	Hungry	Guests	Wait
e2	yes	no	no	yes	full	no
e2	yes	no	no	yes	full	no
e3	no	yes	no	no	some	yes
e4	yes	no	yes	yes	full	yes
e4	yes	no	yes	yes	full	yes
e6	no	yes	no	yes	full	yes

Random Forest

- Construct decision trees on bootstrap replicas
 - Restrict the node decisions to a small subset of features picked randomly for each node
- Do not prune the trees
 - Estimate tree performance on out-ofbootstrap data
 - Approximately 35% of data in a bootstrap sample
 - Predict new instance
 - by majority vote (classification)
 - by averaging value (regression)

Random forest example result

Breast-cancer-Wisconsin dataset from UCI repository Stratified 10 fold cross validation Decision trees as base classifier

Random forest tips

- In (Fernandez-Delgado et al 2014), an **empirical** investigation was presented using:
 - 179 classifiers from 17 families, incl. all standard approaches
 - 121 datasets, incl. all of UCI except the largest ones
 - The random forest versions ranked the highest and they obtained near to the best accuracy for almost all the data sets
- It was concluded that
 - The classifiers most likely to be the best are the random forest (RF) versions

M. Fernandez-Delgado, E. Cernadas, S. Barro, and D. Amorim. Do we Need Hundreds of Classifiers to Solve Real World Classification Problems? Journal of Machine Learning Research, 15(1), pp. 3133-3181, 2014.

Randomization

- Repeated application of a base learner that contains some stochastic element (or that can be adjusted to contain stochastic elements) such as
 - the setting of initial weights in a neural network
 - sampling of grow and prune data
 - choice of attribute to split on in decision trees
- Randomization may be combined with other techniques

Boosting - AdaBoost

- **Adaptive Boosting** -> AdaBoost
- Idea: Turn a weak stable learner into a strong learner by focusing on the difficult cases to predict.
- Each predictor is created by using a biased sample of the training data, hence boosting minimize the bias of the ensemble (and also variance).
- General Steps in boosting
 - Train a weak model on some training data
 - Compute the **error** of the model on each training example
 - Give **higher** importance to **examples** on which the model made **mistakes**
 - Re-train the model using **re-weighted** training example

AdaBoosting

- An sequential procedure to adaptively change the distribution of training data by
 - Focusing more on previously miss-classified examples
 - Initially all examples are assigned equal weights
 - After a classifier C_i is learned
 - The weights are adjusted to increase weights of misclassified examples of C_i
 - Using accuracy on a validation set as the basis for re-weighting

Training data Update weights Model **Training** Mode Model Prediction vote/ average

Ensemble prediction

Y. Freund and R. Schapire. 1997. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 55(1): 119-139

AdaBoost

Stockholm University

Weak stable learner – decision stump

```
Input: instances e1,..., em, base learner BL, size S
Output: a set of model-weight pairs M
w1, \ldots, wm = 1
M = \{ \}
for i = 1 to S:
       Mi = BL(\{(e1,w1), ..., (em,wm)\})
        Err = (w1*err(Mi,e1)+...+wm*err(Mi,em))/(w1+...+wm)
        if Err = 0 or Err > 0.5 then break
        \alpha i = \frac{1}{2} \ln((1-Err)/Err)
        for j = 1 to m:
               if err(Mi,ej) = 0 then wj = wj*e(-\alphai) #down-w
               else wj = wj*e(\alphai)
                                                            #up-weighted
       Normalize(w1, ..., wm)
       M = M + (Mi, \alpha i)
      23/01/2023 Tony Lindgren, Department of Computer and Systems Sciences
```


Err = 0.3

Normalize

0.455/0.911 = 0.5

 $\alpha i = \frac{1}{2} \ln((1-Err)/Err) = \frac{1}{2} \ln((1-0.3)/0.3) = 0.42$

0.065 * 7 = 0.455

0.5/7 = 0.0714

wj = wj*e(-0.42) = 0.065

#down-weighted

0.152 * 3 = 0.456

0.456/0.911 = 0.5

wj = wj*e(0.42) = 0.152

#up-weighted

0.455 + 0.456 = 0.911

0.5/3 =**0.167**

23/01/2023

$$\alpha i = \frac{1}{2} \ln((1-Err)/Err) = \frac{1}{2} \ln((1-0.21)/0.21) = 0.65$$

$$wj = wj*e(-0.65) = 0.0714*e(-0.65) = 0.37$$

$$wj = wj*e(-0.65) = 0.167*e(-0.65) = 0.87$$

$$wj = 0.0714*e(0.65) = 1.37$$

$$0.87 * 3 = 2.61$$

$$1.48 + 2.61 + 4.11 = 8.2$$

Err = 0.045 * 3 = **0.14**

$$\alpha i = \frac{1}{2} \ln((1-\text{Err})/\text{Err}) = \frac{1}{2} \ln((1-0.14)/0.14) = 0.92$$

- Suppose we **stop** induction at round 3
- Then the ensemble consist of 3 predictors:
 - M1, M2, M3

- Final predictor is a weighted linear combination of all predictors
- Where each predictor has weight αi
- Hence multiple weak, linear classifiers combined to give a strong nonlinear predictor
 23/01/2023 Tony Lindgren, Department of Computer and Systems Sciences

Decision stump

AdaBoost example result

Breast-cancer-Wisconsin dataset from UCI repository Stratified 10 fold cross validation Decision stump as base classifier

- Generalize Boosting methodology to use
 - Any differentiable loss functions
 - Gradient for mean squared error

23/01/2023

Setting	Loss function	$-\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}$
Regression	$\frac{1}{2}[y_i - f(x_i)]^2$	$y_i - f(x_i)$

```
Input: instances (y1,x1), ..., (ym,xm), base learner BL, size s, learning rate I

Output: a sequence of models M0, ..., Ms

M0 = (y1 + ... + ym)/m  #step 1 Initial model

for i = 1 to s:
  for j = 1 to m:
    yj = (yj - Mi-1(Xj))  #step 2 Calculate residual values
    Mi = Mi-1 + I * BL({(y1,X1), ..., (ym,Xm)}) #step 3 Induce new tree + update Mi
```


Input: instances (y1,x1), ..., (ym,xm), base learner BL, size s, learning rate I

Output: a sequence of models M0, ..., Ms

$$M0 = (y1 + ... + ym)/m$$

#step 1 Initial model

for i = 1 to s:

for j = 1 to m:

$$yj = (yj - Mi-1(Xj))$$

#step 2 Calculate residual values

$$Mi = Mi-1 + I * BL({(y1,X1), ..., (ym,Xm)})$$
 #step 3 Induce new tree + update Mi

Weight	Hair	Length
65	Short	178
55	Long	160
78	Long	180
95	Short	193

Step 1 Initial model:

$$M0 = (y1 + ... + ym)/m$$

$$M0 = (178+160+180+193)/4 = 177.75$$

Step 2 Calculate residual values :

$$y1 = (y1 - M1-1(X1)) = (178 - 177.75) = 0.25$$

$$y2 = (y2 - M2-1(X1)) = (160 - 177.75) = -17.75$$

$$y3 = (180 - 177.75) = 2.25$$

$$y4 = (193 - 177.75) = 15.25$$

Input: instances (y1,x1), ..., (ym,xm), base learner BL, size s, learning rate l

Output: a sequence of models M0, ..., Ms

$$M0 = (y1 + ... + ym)/m$$
 #step 1 Initial model

for i = 1 to s:

for
$$j = 1$$
 to m:

$$Mi = Mi-1 + I * BL({(y1,X1), ..., (ym,Xm)})$$
 #step 3 Induce new tree + update Mi

Step 3 Induce model M1:

					Weight		
Weight	Hair	Length	Residual	< 70	Weight	>= 70	
65	Short	178	0.25	Hair		8.9	2.25 + 15.5 / 2 =
55	Long	160	-17.75	long	short		8.9
78	Long	180	2.25	-17.75	0.25		
95	Short	193	15.25				

Predict regression value on the training data (learning rate[0,1] = 0.1):

Weight	Hair	Length	Residual	N. Res
65	Short	178	0.25	0.2
55	Long	160	-17.75	-15.9
78	Long	180	2.25	1.6
95	Short	193	15.25	14.6

Calculate new resdiual values:

$$Y1 = 177.75 + 0.1 * 0.25 = 177.8$$

$$Y3 = 177.75 + 0.1 * 8.9 = 178.4$$

Induce new tree:

Weight	Hair	Length	Residual	N. res.
65	Short	178	0.2	0.18
55	Long	160	-15.9	-15.5
78	Long	180	1.6	0.8
95	Short	193	14.6	13.8

Calculate new resdiual values:

$$Y2 = 175.9 + 0.1 * -15.9 = 174,3$$

Using the model:

Weight	Hair	Length
80	long	?

Boosting tips

- For multi-class problems, it may be difficult for AdaBoost to reduce the error below 50% with weak base learners (like decision stumps)
 - More powerful base learners may be employed
 - The problem may be transformed into multiple binary classification problems (one against all)
 - Specific multi-class versions of AdaBoost have been developed
- Various loss functions may be used for the Gradient Boosting Machine (GBM), including log likelihood for classification
- GBM requires tuning
 - no. of iterations, model size and learning rate
- XGBoost implements GBM
 - well-known for winning many competitions, see (www.kaggle.com)
- Boosting can be sensitive to noise
 - erroneously labeled training examples

Gradient Boosting example result

23/01/2023 Tony Lindgren, Department of Computer and Systems Sciences

Stacking

- Note that for example voting/averaging can be done in a weighted fashion
 - where weight come from for example
 - Accuracy on validation set
 - Or RMSError
- One can also use another classifier here
 - this is then called stacking

Stacking Example

Stacking tips

- Linear models have been shown to be effective when learning the combination function
- Predictive performance can be improved by combining class probability estimates rather than class labels generated by the base models
- Why is this?

Iterpretability of Ensembles

- There exist different approaches to estimating variable importance
 - one method is to measure the relative performance degradation (on OOB predictions) when permuting the values of each feature in turn.

Summary

- Bias/Variance tradeoff
 - Ensemble methods that minimize variance
 - Bagging
 - Random Forests
 - Ensemble methods that minimize bias
 - AdaBoost
 - Gradient Boosting Machine
- Compared to the base learning algorithms, ensembles
 - typically substantially **improve** the predictive performance
 - sometimes to state-of-the-art performance
- The increased predictive power comes
 - at the cost of **reduced** interpretability
- The combination strategies may can lead to increased computational time (both in learning and prediction)
 - But this time penalty can be eliminated via parallelization

All for today

Questions?