1. Use elimination and back substitution to solve the following system. Indicate which elimination steps you use.

$$x + 2y - 4z = 3$$

$$2x + 3y - 2z = 7$$

$$4x + 5y + 4z = 17$$

$$x+2y-4z=3$$

 $2x+3y-2z=7$
 $4x+5y+4z=17$
 $(2)-9(2)-2(1)$
 $-3y+20z=5$

(2)
$$-y+6\cdot 1=1 \Rightarrow y=5$$

(1)
$$x + 2.5 - 4.1 = 3$$

=> $x = -3$

2. Apply elimination to the augmented matrix [A b] associated to the following matrix equation (indicate the operations you use) and then solve it using back substitution; find the corresponding elimination matrices, E_{21} , E_{31} , E_{32} .

$$\begin{bmatrix} 1 & 1 & 0 \\ 3 & 4 & 2 \\ -2 & -1 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 9 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 4 & 2 & 9 \\ -2 & -1 & 4 & 3 \end{bmatrix} \xrightarrow{R_2 - 3R_1} \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 4 & 7 \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

Book sub:
$$2 + 4$$
 = 2 (3) $22 = 4$ => $2 = 2$
 $y + 22 = 3$ (2) $y + 2 \cdot 2 = 3$ => $y = -1$
 $22 = 4$ (1) $2x + (-1) = 2$ => $2x = 3$

Solution [3]=[3]

$$E_{21} = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \end{bmatrix}$$
 $E_{31} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$ $E_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$