Vertex order shellings

Bennet Goeckner (University of San Diego)

joint with

Joseph Doolittle (TU Graz) Alexander Lazar (KTH)

September 17, 2022

Simplicial complexes

Simplicial complex: Collection Δ such that

 $\text{if } \underline{\sigma} \in \Delta \text{ and } \underline{\tau} \subseteq \sigma, \text{ then } \tau \in \Delta.$

Face: Element $\sigma \in \Delta$. Facet: Maximal element $F \in \Delta$.

Dimension:
$$\dim \sigma := |\sigma| - 1$$
, $\dim \Delta := \max \{\dim \sigma \mid \sigma \in \Delta\}$.

Pure: All facets have the same dimension.

An example

$$\Delta = \langle 135, 136, 235, 245 \rangle$$

Throughout, all complexes will be **pure** with n **vertices**.

Shellability

A pure d-dimensional complex Δ is **shellable** if there exists an order on its facets F_1, F_2, \ldots, F_k such that

$$\langle F_1, \ldots, F_i \rangle \cap \langle F_{i+1} \rangle$$

is pure and (d-1)-dimensional for each $1 \le i \le k-1$.

Shellability and Matroids

Theorem (Björner)

A pure simplicial complex is a matroid independence complex if and only if every order on its vertices induces a shelling.

Lylex

Indepent sets matroid

The Lex-Shellability Statistic

An order on the vertices of Δ is **shelling compatible** (or **sc**) if it induces a shelling.

Lex-shelling statistic:
$$L(\Delta) = \frac{4sc \text{ order on various of } \Delta}{N!}$$

Only an epsilon away...

* complexes w/ O< L(1)< E

* Complexes w/ 1-8<2(0)<1

Vertex decomposability

Out 7! Options, exactly 7 indeastelly

Most have : 6<7<5<3<2<1<4

Vertex decomposability, Pt II

Quasi-matroidal classes

Recently introduced by Samper:

Generalize matroids

DE PURE
$$\Rightarrow$$
 $\mathcal{L}(1)>0$

DE LEX \Rightarrow $\mathcal{L}(0)>0$

The other lex shellability

EL-shelling:

GDL: If L(0) > 0 then face poset is EC-shelling

The end

