

86.06 - Laboratorio de Microprocesadores Anteproyecto: Medidor de tensión, corriente y cofimetro.

101627 - Cabeza, Manuel - <u>trabajosmanu1@gmail.com</u> 101137 - Charrut, Matias - <u>matiascharrut@gmail.com</u> 100742 - Itzcovitz, Axel - <u>axelitzcovitz@gmail.com</u> Actualización 23.10

Introducción

El proyecto busca medir valores medios cuadráticos (RMS) de corriente y tensión de línea, además del desfase entre ambas, denominado cos(phi) (suponiendo que son sinusoidales). De estos parámetros se puede obtener así la potencia activa (o consumida) y la aparente (que dimensiona los cables de conexión) que demanda un dispositivo conectado a la red monofásica. El prototipo proyectado permitirá mostrar en un display la tensión, la corriente, el ángulo de desfasaje y las potencias.

Diagrama en Bloques

Medición de corriente

La corriente se medirá utilizando el integrado ACS712 (el cual se puede conseguir como módulo para Arduino, con borneras y otros componentes), el cual utiliza un sensor de efecto Hall y entrega una tensión de Vcc/2 para I=0, para luego aumentar y finalmente disminuir su salida según el gráfico presentado.

Mediante las muestras de esta tensión es posible obtener tanto el valor pico y el valor eficaz de la corriente. Así como también conocer los ceros para luego implementar el medidor de *cos(phi)*.

Medición de tensión

La tensión se medirá a través de un transformador mediante el cual se bajará la tensión de la línea a una tensión que pueda ser procesada por el microcontrolador. A partir de esta entrada se podrá conocer el valor eficaz y el valor pico de la tensión, para así recoger datos que se utilizarán para la medición del cos(phi).

Medición de coseno de phi

Los datos obtenidos anteriormente se utilizarán para medir el coseno de phi. Mediante la detección de los ceros de corriente y de tensión se podrá medir la diferencia de tiempo entre ambos y así conocer el desfase entre ambos.

El desfase entre tensión y corriente se medirá utilizando dos comparadores, uno para la corriente (tensión entregada por el ACS712) y otro para la tensión (entregada por el transformador). Ambas tensiones serán comparadas con 0 (utilizando un amplificador operacional LM324) y luego pasadas a una compuerta XOR. Por lo tanto, a la salida de esta compuerta habrá un 1 lógico solamente cuando una de las tensiones sea positiva y la otra negativa. De esta manera, midiendo el tiempo en que la salida se encuentra en 1 se obtiene el desfase tensión-corriente.

Display

La información obtenida a través de la medición de corriente y tensión de línea serán mostrados en un display LCD de dimensiones 16x2. La conexión se realizará tal que los bornes de alimentación y tierra (tanto de la luz de fondo como del display mismo) estén conectados a los bornes de alimentación del Arduino, conectado entre la alimentación del display y del Arduino una resistencia de $200~\Omega$ de tal manera de poder regular la tensión a la entrada de la alimentación del LCD, los primeros 4 pines de datos de 8-bit conectados a los pines digitales 2 a 5 (los últimos 4 pines

no se conectan ya que estaremos realizando operaciones sobre el LCD), los pines de selector entre comandos y datos (RS) y sincronización de lectura y datos (el pin de ENABLE) conectados a los pines digitales 11 y 12, el pin de escritura y lectura de comandos y datos (RW) conectado a tierra (para así setear al LCD como de escritura), y el pin de control de contraste de pantalla conectado aun potenciómetro de $10~\mathrm{k}\Omega$, para poder regularlo a nuestro gusto.

