

UNIVERSIDADE FEDERAL DE OURO PRETO PRÓ-REITORIA DE PÓS-GRADUAÇÃO Programa de Pós-Graduação em Ciência da Computação PLANO DE ENSINO

Nome do Componente Curricular em português:		Código: PCC104	
Projeto e Análise de Algoritmos			
Nome do Componente Curricular em inglês:			
Design and Analysis of Algor			
Nome e sigla do departamento:		Unidade acadêmica:	
Programa de Pós-Graduação em Ciência da Computação		ICEB	
(PPGCC)			
Nome do docente: Rodrigo César Pedrosa Silva			
Carga horária semestral	Carga horária semanal teórica	Carga horária semanal prática	
60 horas	4 horas/aula	00 horas/aula	
- OO HOIGS	+ 1101as/auta	00 noras/auta	
Data de aprovação na assembleia departamental: 09/08/2024			
Ementa:			
Análise de Complexidade de Algoritmos			
Estruturas de Dados			
Algoritmos e Estruturas de Dados Padrão das Linguagens Mais Comuns			
Paradigmas de Projeto de Algoritmos			
Teoria da Complexidade			

Conteúdo programático:

- 1. Algoritmo, Análise de Algoritmos, Crescimento de Funções
- 2. Cálculo do Tempo de Execução; Comparando Algoritmos; Classes de Comportamento Assintótico
- 3. Algoritmos Recursivos
- 4. Teorema Mestre
- 5. Indução Matemática
- 6. Listas
- 7. Pilhas
- 8. Filas
- 9. Filas de Prioridade
- 10. Conjuntos
- 11. Mapas
- 12. Standard Templates Library
- 13. Problemas Computacionais; Busca Completa; Busca Aleatória

- 14. Recursividade
- 15. Backtracking
- 16. Algoritmos Gulosos
- 17. Divisão e Conquista

Objetivos: Apresentar aos alunos as estruturas de dados básicas e as principais técnicas de projeto e análise de algoritmos.

Metodologia:

Aulas expositivas sobre o conteúdo programático

Estudos Dirigidos: atividades individuais práticas contendo exercícios teóricos e de implementação dos métodos estudados que podem ser avaliados com entrevistas.

Leituras recomendadas: leitura de textos técnicos com a finalidade de proporcionar ao discente a oportunidade de consulta e desenvolvimento de sua capacidade de análise, síntese e crítica de uma bibliografía específica.

Atividades avaliativas:

5 provas (P1, P2, P3), 10 pontos. Nota final = 0.2P1 + 0.3P2 + 0.5P3

Cronograma:		
Semana	Conteúdo	
1 e 2	[Introdução à análise de algoritmos]	
3 e 4	[Algoritmos] em Arrays, Matrizes, Strings, Listas Encadeadas	
5	[Prova 1] (16/09)	
6 e 7	[Algoritmos] em Pilhas, Filas e Heaps	
8 e 9	[Algoritmos] em Tabelas Hash e Árvores	
10	[Prova 2] (11/11)	
11, 12, 13 e 14	[Algoritmos] em Grafos e Classes de Problemas	
15	[Prova 3] (16/12)	
Obs: Acompanhando o calendário da graduação, teremos um recesso entre 21/10 e 09/11		

Bibliografia básica:

A. Levitin. Introduction To Design And Analysis Of Algorithms. Pearson, 3rd Edition, 2012.

Szwarcfiter, Jayme, L. e Lilian Markenzon. Estruturas de Dados e Seus Algoritmos. Disponível em: Minha Biblioteca, (3rd edição). Grupo GEN, 2010.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press, 3rd edition, 2009. ISBN-13: 978-0-262-53305-8.

Bibliografia complementar:

R. Sedgewick. Algorithms. Addison-Wesley, 2 edition, 1988. ISBN-10: 0201066734.

N. Ziviani. Projeto de Algoritmos com Implementações em Java e C++. Cengage Learning, 2006.ISBN-10: 8522105251.

Lambert, Kenneth A. Fundamentos de Python: estruturas de dados. Disponível em: Minha Biblioteca, Cengage Learning Brasil, 2022.

Cormen, T. H., Leiserson, C. E., & Ronald L. Rivest et al. (2024). Algoritmos (4th ed.). Grupo GEN. https://integrada.minhabiblioteca.com.br/books/9788595159914

Wazlawick, R. S. (2018). Introdução a Algoritmos e Programação com Python: Uma Abordagem Dirigida por Testes. Grupo GEN.

https://integrada.minhabiblioteca.com.br/books/9788595156968