修士論文

J-PARC E07実験における beam 照射及び 原子核乾板中の E-粒子飛跡自動追跡

岐阜大学大学院 教育学研究科 総合教科教育専攻 仲澤研究室

後藤 良輔

最終更新 平成29年10月3日

目 次

1	序論	À CONTRACTOR DE	3
	1.1	はじめに	3
	1.2	Double- Λ Hyper 核	3
	1.3	原子核乾板	4
	1.4	光学顕微鏡	6
	1.5	KEK-PS E373 実験	6
	1.6	J-PARC E07 実験	6
2	J-P	ARC E07 実験 2ndRun	7
	2.1	Refresh 処理の実施	7
		2.1.1 実施背景	7
		2.1.2 原理	8
		2.1.3 実施環境	9
		2.1.4 評価	9
	2.2	暗室の拡張・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
	2.3	GridMark 照射	9
		2.3.1 GridMark ネガ	9
		2.3.2 GridMark 照射装置	
	2.4	E07 実験 beam 照射	10
		2.4.1 2ndRunbeam 照射	10
			10
		2.4.3 EmulsionCasette での真空度	11
		2.4.4 EmulsionCasette の固定法確立	11
		2.4.5 照射した乾板の密度	11
	2.5	現像	
3	荷雷		13
Ü	3.1		13
	-	三- 候補 & beam 認識に用いる画像処理	
	0.2	3.2.1 コントラスト処理	
		3.2.2 ガウシアンフィルタ処理	
		3.2.3 画像の白黒反転	
			14
	3.3		14
	3.4		14
	0.4		14 14
		3.4.2 Ξ ⁻ 候補飛跡の選択	
		3.4.3 K ⁻ beam パターンマッチ	
		5.4.5 N Deam バメークメック	τĐ

		表面認識 荷電粒子飛跡追跡											
4		おける開発プログ				•	·		•		•	•	16
5	まとめ												17

1 序論

1.1 はじめに

私たちを含め、身の回りの物質は原子からできている。その原子核は原子核と電子から構成されており、原子核は陽子と中性子で成り立つ。さらに、陽子や中性子はクォークで構成されている。

クォークは、up(u)、down(d)、strange(s)、charm(c)、top(t)、bottom(b) の 6 種類がある。(以降は()内の文字で省略する。) u と d 以外のクォークを含む粒子は非常に寿命が短いため地球上に存在していない。私たちは s クォークを含む粒子の相互作用について研究を進めている。

一般に粒子の相互作用を調べるためには粒子同士の衝突散乱実験を行うが、上述した通りs クォークを含む粒子は寿命が非常に短いため衝突実験によって相互作用を知ることは不可能である。例えば、私たちの研究で使用する Λ 粒子はuds の3 つのクォークからなり、その寿命は 10^-10 秒である。そのため、 Λ 粒子の相互作用を求めるには原子核の中に Λ 粒子持つものを生成し、核の崩壊過程から相互作用を求めるという手法しかない。

私たちの研究がストレンジネスの世界を明らかにするものと期待をしている。

1.2 Double-∧Hyper 核

通常の核に Λ 粒子を 2 つ持たせたものが Double- Λ Hyper 核である。 Λ 粒子は K^+K^- 反応により生成する。 式をここに入れる。

図 1: Hyper 核生成過程

1.3 原子核乾板

原子核乾板とは非常に高感度な写真フィルムの一種で、荷電粒子の通過した跡を 記録する検出器である。私たちが実験で使用するΛ粒子の寿命は非常に短いため、 Hyper 核の生成・崩壊事象をすべて記録できる原子核乾板を使う必要がある。

原子核乾板の利点としては大きく分けて2点ある。

一点目は、現像処理を行うことで半永久的に顕微鏡による観測を可能にすることである。原子核乾板中を荷電粒子が通ることで、原子核乾板の主成分である AgBrが電離され銀原子が生成される。現像処理により、銀が成長し 1m 程度の粒となり(grain)、荷電粒子の飛跡が grain の連なり(飛跡、track)として現れ、その状態を保持する。そのため、原子核乾板を破損しない限り一度記録した Hyper 核の生成・崩壊事象や Hyper 核以外の荷電粒子秘跡を何度でも同じ状態で観測することができる。

乾板に飛跡が記録される際の流れの図

二点目は、サブミクロン精度での空間分解能を持つことである。生成される銀粒子の大きさが μ m オーダーのため、その大きさでの位置分解能が出る。また、乾板に記録された飛跡の長さ、太さは通過した荷電粒子のエネルギーや電荷に依存する。そのため、私たちは記録された Hyper 核事象の飛跡の長さと角度からエネルギーを計算することで Λ - Λ 間に働く相互作用を算出することができる。

原子核乾板は Base に Emulsion を塗布して作成している。Base とはポリスチレンフィルムで作られた支持体である。Emulsion は通常の写真乳剤よりもハロゲン化銀

図 2: 原子核乾板中に記録される track と grain の様子

の含有量が高く、最小電離損失に対して感度を持っているものである。E07実験で使用する原子核乾板1400枚(薄型:200、厚形:1200)はすべて岐阜大学で製造された。

E07 実験で使用する乾板は 40m の Base に 450m の乳剤を塗布する厚型乾板と、180m の Base に 100m の乳剤を塗布する薄型乾板の二種類である。

薄型乾板はSSDと emulsionとの接続に使用される。薄型乾板は base が厚く、乳剤が薄く塗布されているため現像の前後で乾板の変形が小さい。そのため、記録された飛跡の角度や位置を明確に求められる。

厚形乾板は照射された E 粒子を乾板中で静止させ、娘粒子の飛跡を記録するために用いられる。

図 3: 使用する原子核乾板の規格

1.4 光学顕微鏡

光学顕微鏡を用いて、現像後の原子核乾板に記録されている track を追跡・観察する。使用する顕微鏡は、モーターによって水平方向 (x, y) 方向) に約 1m の精度で位置制御し、エンコーダーによって鉛直方向 (z) 方向) に約 0.1m の精度で稼働できる。この顕微鏡により、原子核乾板表面の推測される位置で目的の track を探し、 E^- 粒子候補を見つけ、t track を原子核乾板上面から下面まで追跡していく。

PCを接続することで、この光学顕微鏡を制御している。CCDカメラを顕微鏡に設置することで、顕微鏡で観察したものを画像として取得する。取得した画像をPCの画面上に表示することや、顕微鏡の稼働に活用している。E⁻粒子自動追跡には、50倍の対物レンズを使用している。使用する顕微鏡とPCを示す。

1.5 KEK-PS E373 実験

- この実験で●例のハイパー核事象が検出された。
- 検出されたイベントの例としては、Nagara、Kiso がある。

1.6 J-PARC E07 実験

- ハイブリッド方により E373 の 10 倍の統計、全面探査により 100 倍の統計を目 指す実験である。
- 実験セットアップを示す。
- SSD に変更したことで、検出した候補の角度分解能、位置分解の精度が向上 している。

J-PARC E07 実験はハイブリッド emulsion 法により KEK-PS E373 実験の 10 倍の統計量を目指す実験である。表●は J-PARC E07 実験と KEK-PS E373 実験の比較をしたものである。表にあるように、beam の K^-/π^- を約 3.5 倍、原子核乳剤の量を約 3 倍にすることで 10 倍の Ξ^- 粒子静止事象を実現する。

表 1: J-PARC E07 実験と KEK-PS E373 実験の比較 | KEK PS E373 実験 | I PARC E07 実験

	KEK-13 E373 天殿	J-I AINO EUI 天際
Ξ-粒子静止事象	$\sim 10^{3}$	~10 ⁴
K^-/π^-	1/4	6/1
原子核乳剤量	0.8t	2.1t

grain R track

表 2: 原子核乾板中に記録される track と grain の様子

2 J-PARC E07実験 2ndRun

J-PARC E07 実験は 1stRun を $\bullet \sim \bullet$ に、2ndRun を $\bullet \sim \bullet$ に実施した。1stRun では \bullet mod、2ndRun では \bullet mod の beam 照射に成功した。beam 照射を行うにあたり原子核乾板の真空パック法の確立、使用する原子核乾板のバックグラウンド削減法の実施、現像の薬品調整などを実施した。

本章では J-PARC E07 実験 beam 照射、現像においての実施内容及びその手法について述べる。

2.1 Refresh 処理の実施

2.1.1 実施背景

- 放射能漏れで乾板を制作した直後に beam 照射ができなかった。
- 莫大なバックグラウンドの増加を防ぐため神岡鉱山内にて制作した原子核乾板 を保管
- 神岡内で保管したことで岐阜大で保管するよりバックグラウンドの増加を押さ えることができた。
- しかし、解析に支障が出る程度まで蓄積されたため、リフレッシュ処理を実施 した。
- E07 実験では 1stRun で●枚、2ndRun で●枚のリフレッシュ処理を実施した。

J-PARCE07 実験で移用する原子核乾板はすべて岐阜大学ダブルハイパー核実験棟にて制作した。制作は●~●の期間で完了している。当初の予定では乾板製造後すぐに beam 照射を実施する予定であったが、J-PARC での放射能漏れ事故により実験は延期になった。しかし、乾板の製造は上記の期間中に終了させた。

製造した原子核乾板は現像されるまで空気中の宇宙線やコンプトン電子を記録していく。これらのバックグラウンドが増加すると、beam 照射後の解析に支障を来す恐れがある。原子核乾板製造から beam 照射が可能になるまでどれだけの期間を要するか不明であったため、宇宙線の影響が少ない神岡鉱山内に製造した原子核乾板を保管した。

ここから下いらんかも…―神岡鉱山内が宇宙線の影響が少ないのは神岡鉱山内から地表まで約1km分山があるためである。―これにより宇宙線は神岡鉱山内まで透過してこない。―原子核乾板の保管は神岡鉱山内に鉛ブロックを用いて作成した箱に入れ、クーラーにて…

コンプトンと宇宙線の図

神岡鉱山内の鉛ブロック中に原子核乾板を保管している図

図●は製造からの時間経過による原子核乾板記録された宇宙線、コンプトン電子の蓄積量を示している。●色が岐阜大学内で保管した場合、●色が神岡鉱山内で保管した場合を示している。二つの量を比較すると、神岡鉱山内で保管したことで非常に多くのバックグラウンドを削減することができたということが分かる。

しかし、製造から beam 照射まで 2 年の期間が経過したため、神岡鉱山内で保管していたとしても解析に支障を及ぼすレベルまでバックグラウンドが蓄積してしまった。図●はである。図から beam 検出効率が著しく低下することが分かる。また、図●はバックグラウンド蓄積量の違う乾板での輝度値の位置変化を示している。図からバックグラウンドの増加により、コントラストが悪くなることが分かる。

これらのことから、蓄積されたバックグラウンドの消去のために原子核乾板に対して潜像退行処理 (Refresh 処理) を実施した。

2.1.2 原理

- 写真乾板には潜像退行性がある。
- 高温・多湿の環境下に乾板を置くことでその性質を促進し記録されたバックグラウンドを消去することを潜像退行処理という。
- たくさんのD論も引用でいれるか。

原子核乾板には潜像退行性がある。現像退行性とは…である。

原子核乾板を高温多湿の場所に置くことでその現像退行性を促進することができる。これを潜像退行処理 (Refresh 処理) という。

過去に実施された Refresh 処理を参考に、岐阜大学で●枚の Refresh 処理を実施した。[たくさん]

2.1.3 実施環境

- リフレッシュ処理を行うには温度●度、湿度●%の環境を●時間維持する必要がある。
- リフレッシュ処理を行うためその環境を維持する装置を作成した。
- 1stRunでは温度・湿度の調整を手動で行ってきたが、2ndRunでは温度・湿度の調整を自動で制御させた。[村本卒論]
- 湿度と厚みのグラフを載せて制御できていると書く。

2.1.4 評価

- リフレッシュ処理の実施によりバックグラウンドが減少した。[大橋卒論]
- 1stRun、2ndRunのリフレッシュ処理の評価の詳細は大橋修論にて述べる。

2.2 暗室の拡張

- 2ndRun では beam 照射後すぐに Grid マークを照射するため、暗室を拡大する必要があった。
- 1stRun と 2ndRun での暗室とものの配置の違いを載せる。

2ndRun では beam 照射後の原子核乾板に対して J-PARC 内の暗室下で GridMark 照射を実施した。そのため、2017年3月に GridMark 照射装置を設置するため暗室の拡張を行った。

2.3 GridMark 照射

2.3.1 GridMark ネガ

- 1stRun 乾板にはネガのつまり等もあり、Grid マークが照射されていない部分があったので、それを防ぐためにネガを新調した。
- 発注の注文図をつける。

1stRun では beam 照射後岐阜に乾板を郵送し、現像する数日前に GridMark を照射した。これが原因か判明していないが、 Ξ 飛跡追跡の際に想定の精度で視野内に飛跡を持ってくることができなかった。また、2016 年に実施された E07 実験 testRun で beam 照射された原子核乾板に焼き付けられた Grid マークがネガのつまり等で照射されていない等の問題が解消されないまま 1stRun を行ったため、Grid マークが照射されていない箇所がある。これらを受けてネガの変更を行った。E07 実験のと同様に発注し、ネガを貼り付けた。

2.3.2 GridMark 照射装置

- 1stRun 乾板は人がストップウォッチを使い、10 秒間露光すると言うことを● 枚の乾板に対して実施した。
- この手法では 1mod 分照射するのに●時間が必要になるとともに、精神的疲労が大きいので変更した。
- 一瞬で●rpm?露光できるように作り替えた。
- 装置はこんな感じである。

E071stRunではタイマーを用いて10秒間原子核乾板に露光した。(田村卒論)参照論 文と同様の手法で1mod分照射するのに約1時間半の時間が必要になるとともに時間をストップウォッチを使って計測していたため、多大な精神的疲労を負うことになっていた。

田村卒論を確認して、露光時間、最終的にどれくらい照射すれば良いのか、照射 装置の構造の写真を引用して載せる。

E07 実験 2ndRun では beam 照射後すぐに Grid マークを照射する。従来の手法から変更することで照射の時間短縮及び疲労の削減のために照射装置の改造を行った。

2.4 E07 実験 beam 照射

2.4.1 2ndRunbeam 照射

- ●日をかけて原子核乾板●枚すべてに beam 照射を行った。
- beam ライン等の図。Runend の図を見せて終了。
- 何日かけて実施したかを記す。照射 Mod 数/月日 の図

2.4.2 岐阜大学の作業内容

ここでは emulsion カセットに乾板を詰める作業と乾板をカセットから出す。作業について書く。

遠藤修論を参考文献にする。

- 乾板を冷蔵庫から出す。
- 袋から乾板を開けて乾板の重さ・厚さを測定し、乾板の番号を記録、乾板の MOD番号を書く。

2.4.3 EmulsionCasette での真空度

- ・遠藤修論にある基準をクリアすることを確認しながら実施。
- ある真空度グラフをのせ、適切に行えたということを示す。
- 残りの Mod に関しては付録にあると記す。

2.4.4 EmulsionCasette の固定法確立

- 遠藤修論にあるカセットを押さえる装置を 2ndRun では導入して実施した。
- 1stRun では●回で●回 SUS を張り直していたが、2ndRun では●回で1度しか SUS を張り直さなかった。

2.4.5 照射した乾板の密度

- 乾板の密度は解析において非常に重要である。Nagara の密度が違った場合の データを見せる。
- カセットに入れる前と後で重さが大きく変化していないかを確認した。
- 測定した重さと厚さから乾板の密度を求めたところ、1stRun と 2ndRun で密度の大きな違いは無かった。リフレッシュ処理の有無も乾板の密度測定には影響がなかったと言える。

原子核乾板中に記録された Hyper 核 event を解析するためには記録されている原子核乾板の密度が重要になる。原子核乾板では記録された飛跡の飛程からエネルギーを算出する際に乾板の密度が必要になるからである。現在核種が一意に決定されている'NagaraEvent' の数値を使うとこのようなグラフになる。

このグラフから分かるように原子核乾板の密度を正確に求めることが必要である。 2ndRun では 1stRun と同様に emulsionCasette に乾板を入れる前に乾板の厚さと 重さの測定、beam 照射後に乾板の重さを測定することで beam 照射により乾板の重さに大きな変動がないかを確認した。照射の前後で重さが 1.0g 以上異なっていた場合再度厚さ重さの測定をして記録した。乾板の重さは電子天秤で測定した。乾板の厚さはシックネスゲージを用いて乾板の 4カ所を測定した。

この図は厚形乾板の1stRun 乾板での密度の測定結果と2ndRun 乾板での密度の測定結果である。比較すると、1stRun と2ndRun で使用した原子核乾板に大きな違いは無いように見える。また、1stRun 乾板の密度はRefresh 未処理の乾板、2ndRun はRefresh 実施乾板での密度である。そのため、Refresh 処理の有無で原子核乾板の密度が変化しないことが分かる。

薄型乾板でも同様に密度の比較をした。1stRunの薄型乾板は厚形乾板より密度が大きく算出されていたが、2ndRunで使用した薄型乾板でも同様の傾向になった。

2.5 現像

- 原子核乾板すべて現像している。
- 現像の行程
- 1stRun は●年に●枚終了、2ndRun は●年に●枚終了予定

3 荷電粒子飛跡追跡の自動化

3.1 目的

E373 実験では人が非常に多くの E^- 候補を顕微鏡を使い静止点まで追跡した。この追跡には約数年が必要となった。先に記述したが、今年度実施された J-PARC E07 実験はでは E373 実験の約 10 倍の統計量を検出することを目標にしている。 E07 実験にて採用されているハイブリッド方では、E373 実験より精度の高い検出機である SSD を使い追跡するべき飛跡候補を絞ることで追跡するべき飛跡を増やさないようにしている。しかしその条件であっても追跡すべき飛跡は E373 実験の場合を超えるため、人が操作せずに機械が自動で静止点まで追跡するプログラムの作成が必要になった。

SSD と E373 実験の際に使用された検出機の精度をまとめた表を示す。

3.2 Ξ 候補 & beam 認識に用いる画像処理

3.2.1 コントラスト処理

- 乾板の写真は撮影した地点によりコントラストが異なるので、撮影の位置によらず画像を同等に扱いたいのでコントラスト処理をかける。
- ・ 位置による乾板中の飛跡の見え方の違いを示す。
- コントラスト処理で使用する数式を示す&それを説明した図を入れる。
- 処理前と処理後の画像を入れる。

3.2.2 ガウシアンフィルタ処理

- 撮影された画像にはノイズが記録されているので、そのノイズを消すためにガ ウシアンフィルタ処理により画像をぼかす。
- ガウシアンフィルタ処理の数式を入れる。
- 処理前と処理後の画像を入れる。

3.2.3 画像の白黒反転

- ガウシアンフィルタ処理とコントラスト処理をかけた画像の輝度値の差分を取ることで、白黒反転の画像を作成する。
- 今後の画像処理のために白黒反転処理を行う。
- 処理前と処理後の画像&なぜ白黒反転になるのかの図を入れる。

3.2.4 二値化

- 白黒反転画像に対して、ある一定以上の輝度値をもつピクセルのみ残すという 処理を行う。
- これによりある程度濃く記録された飛跡情報のみがのこるのでこのようにしている。飛跡のエネルギーが高いものは濃く記録されると言うことの図を入れた方が良いかも。
- 処理前と処理後の画像

3.3 座標変換

- affine 変換について書く。
- 追跡の際に考える必要のある座標系について書く。
- それらの座標系をつなぐために affine 変換をつかい、目的の飛跡の位置に行く ことが必要である。

3.4 自動追跡の要素技術

3.4.1 P-bar パターンマッチ

- SSD と emulsion の位置ズレを取得するのに必要。
- 乾板の四隅に照射されているものを使う。(なぜ P-bar を使うのか、どのよう に P-bar が照射されているか確認する。)
- どのように P-bar を取得するのか (スキャンする場所等を書く) を書く。
- 四隅のうち 3 点箇所でパターンマッチがとれればズレが取得できる。(精度について書く。)

原子核乾板には SSD と emulsion の照射時の位置差を取得するためにアンチプロトン beam が照射されている。照射されているのは乾板の四つ角 1 cm 1 cm の領域である。照射されている p-bar の濃度は 1 平方センチあたり 10 の 4 乗である。 k-beam は乾板に対して 10 の 6 乗照射されており、SSD と emulsion のパターンマッチをするには密に照射されすぎているので p-bar が必要になる。

角から 1cm ずつ内陸側に移動し、そこで 5mm× 5mm の領域をスキャンする。上側乳剤層と下側乳剤層をスキャンし、base を挟んで接続された垂直な beam を使いパターンマッチを行う。

3.4.2 Ξ-候補飛跡の選択

- affine 変換について書く。
- 追跡の際に考える必要のある座標系について書く。
- それらの座標系をつなぐために affine 変換をつかい、目的の飛跡の位置に行く ことが必要である。

下流の乾板に接続して追跡するために、SSDで検出した Ξ^- 候補と p 1 01 に記録された荷電粒子飛跡の対応をつける。

3.4.3 K⁻beam パターンマッチ

- emulsion と emulsion の位置ズレを補正するために行う。
- これにより、例 pl01 で記録された飛跡と pl02 で記録された飛跡の対応付けをする。
- どこをスキャンして、どのようになるのかを書く。模式図を書く。

beam 照射時の上流乾板と下流乾板の位置ずれを取得するために乾板に照射されている K^- beam を用いてパターンマッチを行う。

3.4.4 表面認識

- 乳剤層と非乳剤層の境界面を取得するために行う。
- 乾板中の位置における輝度値の違いを示す。

3.4.5 荷電粒子飛跡追跡

4 E07乾板における開発プログラムでの追跡実績

5 まとめ