Isomorphism of memBers	1
Shigeo Hattori	2
bayship.org@gmail.com	
October 24, 2019	3
First version: September, 2019	4
1 Introduction	5
Definition 1.1 (memBer). Take $\forall x$ such that (there exists $\exists S$ such that $x \in S$).	6
Then x is said a memBer.	7
_	
This article:(1) defines a binary relation that (x,y) as memBers are isomorphic (2) proved that the binary relation is an asymptomic relation (2) proved	9
phic,(2) proves that the binary relation is an equivalence relation, (3) proves that all homeomorphic topological spaces are isomorphic as memBers,(4) de-	10 11
fines that a memBer $S1$ is a minor of a memBer $S2$.	12
I expect that readers will realize that the newly defined isomorphisms are	13
somehow more fundamental than ,e.g., homeomorphisms of topological spaces.	1 4
Because "homeomorphisms" logically resolve to "isomorphisms of memBers"	15
whereas the inverse of it does not hold.	16
2 Notation	17
Definition 2.1. Consider "A and B". It is almost equivalent to " $B \wedge A$ ". But	18
some times they are different. Because the meaning of B may depend on A .	19
	20
" $A_{and} \wedge B$ " \equiv " A and B where the meaning of B may depend on A ".	21
"A $_{or} \lor B$ " \equiv "A or B where the meaning of B may depend on $\neg A$ ".	22
" $\forall x :\in S$ " \equiv "for all x such that $x \in S$ ".	23
" $\forall x \text{ as an integer"} \equiv \text{"for all } x \text{ such that } x \text{ is an integer"}.$	24

3 Deep member	25
Definition 3.1 (Deep member of memBer). This definition uses a style of recursion. Take $\forall (x,y)$ such that *1 holds. Then define *2 $_{and} \land$ *3.	26 27 28
1 If $x \neq y$ then (there exists $\exists z$ such that $x \in z \in \geq 0$ y).	29
2 $x \in {}^{\geq 0} y$.	30
3 x is a deep member of y .	31
	32
Definition 3.2 (Space of memBer). Take $\forall (x,y)$ such that *1 holds. Then define *2.	33 34
$1 \ y = \{d \mid d \in^{\geq 0} x \ _{and} \land \ d \text{ is a point } \}.$	35
$2 \ y$ is the space of x .	36
·	37
4 Notations	38
Definition 4.1 (Restriction of binary relation). Take $\forall (L,X,Y,X1,Y1)$ such that *1 holds. Then define (*2 $_{and} \land$ *3 $_{and} \land$ *4).	39 40
$1 \ \text{L is a binary relation on} \ X * Y _{and} \land \ X1 \subset X _{and} \land \ Y1 \subset Y.$	41
2 $L[X1]:=\{ (x,y) \in L \mid x \in X1 \}.$	42
3 $L[,Y1]:=\{(x,y)\in L\mid y\in Y1\}.$	43
4 $L[X1,Y1]:=L[X1,]\cap L[,Y1].$	44

5 Isomorphic memBers	45
Definition 5.1 (Isomorphic memBers). Take all $\forall x$. Then (x, x) are said isomorphic.	46 47
Definition 5.2 (Isomorphic memBers by binary relation). This definition uses a style of recursion.	48 49
	50
Take $\forall (x, y, F)$ such that *A holds. Then define (*B1 $_{and} \land$ *B2).	51
A (F is a binary relation $and \wedge *0$) holds.	52
	53
0 If there exists $\exists v :\in \{x, y\}$ such that $space(v) = \emptyset$ Then $x = y$ Else *1.	5 4
1 If there exists $\exists v :\in \{x, y\}$ such that v is a point Then $((x, y)$ are points $and \land (x, y) \in F$) Else (*2 $and \land *3$).	55 56
2 $F[space(x), space(y)]$ is a ¹ bijection from*to space(x)*space(y).	57
3 There exists $\exists f$ such that (*4 $_{and} \land$ *5 $_{and} \land$ *6).	58
4 f is a bijection from*to $x * y$.	5 9
5 Take $\forall (m1, m2) \in f$.	60
6 *A holds for $(m1, m2, F)$ in place of (x, y, F)).	61
B1 (x,y) are said isomorphic by F as an isomorphism.	62
B2 Take $\forall (x, y, F)$ such that (x, y) are isomorphic by F . Then (x, y) are said isomorphic.	63 64

¹To weaken the definition, replace "bijection" with "function" or with "binary relation".

6 Minors of memBers	65
Definition 6.1 (Minors). Take $\forall (x,y)$ such that *A holds. Then define *B.	66
$\mathbf{A} *1 _{and} \wedge *2.$	67
1 Take $\forall d$. Then $d \in \geq 0$ $x \Rightarrow d \in \geq 0$ y .	68
2 Take $\forall (d1, d2, d3)$ such that (take $\forall d \in \{d1, d2, d3\}$, then $d \in \geq 0$ x).	69
Then (*3 \Leftarrow *4).	70
3 $((x, d1, d3), (x, d2, d3))$ are isomorphic.	71
4 $((y, d1, d3), (y, d2, d3))$ are isomorphic.	72
$\mathbf{B} \ x$ is a minor of y .	73
· ·	74
7 Notations	7 5
Definition 7.1 (Set indexed by itself).	76
Take $\forall x$ as a set. Then define (*1 $_{and} \land \dots _{and} \land \ *6$).	77
1 By default, members of x are indexed by the identity function on x , as $\{x_i\}_{i\in x}$.	78
For example, x is a set and $x_i \in x$.	7 9
$2 \ x_{gen}$ denotes the general member of x to imply general conditions on all	80
member of x .	81
3 Take the set of all minimum members of x .	82
If it's not empty Then x_{min} denotes the general member of them.	83
4 Take the set of all maximum members of x .	84
If it's not empty Then x_{max} denotes the general member of them.	85
$5 \ x_{i+1}$ denotes the immediate follower of x_i if it uniquely exists.	86
6 x_{i-1} denotes the member immediately followed by x_i if it uniquely exists.	87
Definition 7.2 (Another form of set definition).	88
Consider, for example, $S := \{x \in N \mid 0 < x < 3\}.$	89
That is, $S = \{1, 2\}$.	90
And consider, for example, $S1 := \{ \mid x \in N and \land 0 < x < 3 and \land y = x+1 \}.$ That is $S1 = \{ 1x - 1, y - 2 \}, \{ x - 2, y - 3 \} \}$	91 92
That is, $S1 = \{\{x = 1, y = 2\}, \{x = 2, y = 3\}\}.$ Generally, given $S := \{ \mid L \text{ as a logical expression }\},$	93
you find all free variables in L ,	94
then S is the set of all possible substitutions into the free variables of L .	95

8 Depth of memBer	96
Definition 8.1 (Powers of set membership). Take $\forall (c, x, y)$ such that *1 $_{and} \land$ *2. Then define *3 $_{and} \land$ *4.	97 98
$1 \ c$ is a chain of set 2 membership.	99
$2 c \ge 1 and \land c_{min} = x and \land c_{max} = y.$	100
3 $power(x,y) : \ni c - 1.$	101
4 $x \in c -1 y$.	102
For example: let y:= $\{1,\{1\}\}$. Then $1 \in y$ and $1 \in y$	103 104 105
Definition 8.2 (Depth of deep membership). Take $\forall (x, y)$ such that *1. Then define (*2 $_{and} \land$ *3).	106 107 108
$1 \ S := \{ \dots \mid power(x,y) \ni p \} {}_{and} \land \ S \neq \varnothing.$	109
2 Let S be ordered by p .	110
3 $depth(x,y) := p$ for S_{max} .	111
For example: let $y:=\{1,\{1\}\}$. Then $depth(1,y)=2$.	112 113 114
Definition 8.3 (Sum of depths of deep membership). Take $\forall c$ such that *1. Then define *2 $_{and} \land$ *3.	115 116
1 c is a chain of deep ³ membership.	117
2 Let $S1:=\{\dots\mid c_i < c_j and \land take \ \forall h \text{ such that } (c_i \leq c_h \leq c_j), \text{ then } h \in \{i,j\}$ }	118 119 120 121
3 $depth(c) := \sum depth(c_i, c_j)$ over $S1$.	122
	123

²For example, $c_1 \in c_2$.

³For example, $c_1 \in {}^n c_2$

Definition 8.4 (Depth of memBber). Take $\forall x$. Then define *1 $_{and} \land$ *2 $_{and} \land$ *3.	124 125
1 Let $S := \{ \dots \mid depth(y, x) = d \}.$	126
2 Let S be ordered by d .	127
3 $depth(x) := d$ for S_{max} .	128
For example: let $x := \{1, \{1\}\}$.	129 130 131
Then $depth(x)=2$. Proposition 1 (Depths of chains). Take $\forall (x,y,z)$ such that $x\in \geq 0$ $y\in \geq 0$ z . Then $depth(x,z)\geq depth(x,y,z)$.	132133134135
Proof.	136
• Assume it is false.	137
• There exists $\exists (x, y, z)$ such that it is a counterexample.	138
• Hence $depth(x, z) < depth(x, y, z) = depth(x, y) + depth(y, z)$.	139
\bullet Meanwhile $depth(x,z)$ equals to (length-1) of the longest membership chain from,to $(x,z).$	140 141
• And $depth(x,y,z)$ equals to (sum of (length-1)) of the longest membership chains from,to (x,y) and from,to (y,z) .	142 143
\bullet Hence $depth(x,y,z)$ equals to (length-1) of the longest membership chain from,via,to $(x,y,z).$	144 145
• Hence $depth(x, z) \ge depth(x, y, z)$.	146
• The assumption is false.	147
	148
Proposition 2 (Relative depths of member and set). Take $\forall (x,y,z)$ such that $x \in y \in \geq 0$ z. Then $depth(x,z) > depth(x,y)$.	149 150
	151

Proof.	152
• Assume it is false.	153
• There exists $\exists (x, y, z)$ such that it is a counterexample.	154
• Hence $depth(x, z) \leq depth(x, y)$.	155
• Hence $depth(x, z) \ge depth(x, y, z) > depth(x, y) \ge depth(x, z)$.	156
• The assumption is false.	157
	□ 158
Proposition 3 (Depths of member and set). Take $\forall (x,y)$ such that $x \in y$. Then $depth(x) < depth(y)$.	159 ■ 160
Proof.	161
• Assume it is false.	162
• There exists $\exists (x,y)$ such that it is a counterexample.	163
• Hence $depth(x) \ge depth(y)$.	164
• There exists $\exists v:\in \geq 0$ x such that ($depth(x)=depth(v,x)\geq depth(v,x,y)\leq depth(y)$).	165 166 167
• Though $depth(v, x) + 1 = depth(v, x) + depth(x, y) = depth(v, x, y)$.	168
• The assumption is false.	169
	□ 170
9 Isomorphic memBers as equivalence relation	n 171
Definition 9.1. In this section, *Def refers to the definition titled as "Ison phic memBers by binary relation". And $*1 \equiv *2$, without any explicit proof because it is trivial by *Def. And *3 holds, without any explicit proof because it is trivial by *Def.	nor- 172 173 174 175
1 (x_i, y_i) are isomorphic by F_i .	176
2 *Def.A holds for (x_i, y_i, F_i) in place of (x, y, F) .	177

3 Take $\forall (x, y, F)$ such that (*4 $_{and} \land$ (*5 $_{or} \lor$ *6)). Then *7 holds.	178
$4 \ F$ is a binary relation.	179
5 $(space(x) = \emptyset and \land \ x = y).$	180
6 $((x,y) \text{ are points } and \land (x,y) \in F).$	181
7 (x,y) are isomorphic by F .	182
Proposition 4 (Restriction). Take $\forall (x, y, F1, F2)$ such that (*A1 $_{and} \land$ *A2 $_{and} \land$ *A3) holds. Then *B holds.	183 184
A1 $(F1, F2)$ are binary relations.	185
A2 $F1[space(x)] = F2[space(x)].$	186
A3 *Def.A holds for $(x, y, F1)$.	187
B *Def.A holds for $(x, y, F2)$.	188
· ·	189
Proof.	190
• Assume it is false.	191
• There exists $\exists (x, y, F1, F2)$ such that it is a minimum counterexample by $depth(x)$.	192 193
• Let us follow *Def.A for $(x, y, F1)$.	194
• Assume the antecedent of *0 holds.	195
• Hence $space(x) = \emptyset$ and $x = y$.	196
• Then *0 holds for $(x, y, F2)$.	197
• The last assumption is false.	198
• Assume the antecedent of *1 holds.	199
• Hence (x, y) are points $and \land (x, y) \in F1$.	200
• Then *1 holds for $(x, y, F2)$.	201
• The last assumption is false.	202
• Then (*2 $_{and} \wedge$ *3) holds.	203

• Hence F1[space(x),space(y)] is a bijection from*to space(x)*space(y). 204 • Hence *2 holds for (x, y, F2). 205 • Hence *3 fails for (x, y, F2). 206 • Hence there exists $\exists (m1, m2) \in f$ such that 207 • *Def.A holds for (m1, m2, F1) and \land *Def.A fails for (m1, m2, F2). 208 • By the way F1[space(m1)]=F2[space(m1)]. • Hence (m1, m2, F1, F2) is a counterexample smaller than (x, y, F1, F2). 210 • The first assumption is false. 212 **Proposition 5** (Members' isomorphisms as consequent). Take $\forall (x, y, F)$ such 213 that (*A1 $_{and} \land$ *A2). Then (*B1 $_{and} \land$ *B2) holds. **A1** *Def.A holds for (x, y, F) in place of (x, y, F). 215 $\mathbf{A2}$ F is an injection. **B1** Take $\forall m1 :\in \geq 0$ x. Then there exists $\exists m2 :\in \geq 0$ y such that *Def.A holds 217 for (m1, m2, F) in place of (x, y, F). 218 **B2** Take $\forall m2 :\in \geq 0$ y. Then there exists $\exists m1 :\in \geq 0$ x such that *Def.A holds 219 for (m1, m2, F) in place of (x, y, F). **22**0 Proof of *B1. 221 • Assume it is false. • Then there exists $\exists (x, y, F, m1)$ such that it is a minimum counterexample 223 by depth(m1, x). 224 • It is trivial that $(x \neq m1)$. • Consider the proposition titled as "Depth of deep member". • There exists $\exists x1$ such that $(m1 \in x1 \quad and \land (x,y,F,x1)$ is not a coun-227 terexample). 228 • Hence *B1 holds for x1 in place of m1. 229 • Hence there exists $2 :\in \geq 0$ y such that *Def.A holds for (x_1, y_2, F) .

• Let us follow *Def.A for $(x1, y2, F)$.	231
• Assume the antecedent of *0 holds.	232
• Then $space(x1) = \emptyset$ and $x1 = y2$.	233
• Hence $space(m1) = \varnothing \ _{and} \land \ m1 = m1 \ _{and} \land \ m1 \in ^{\geq 0} y$.	234
• Hence *B1 holds for $m1$ in place of $m1$.	235
• Hence $(x, y, F, m1)$ is not a counterexample.	236
• Hence the last assumption is false.	237
• Assume the antecedent of *1 holds.	238
• Hence $(x1 \text{ is a point})$ $and \land (m1 \in x1).$	239
• Hence the last assumption is false.	240
• Hence (*2 $_{and} \wedge$ *3) must hold.	241
• Hence, (*4 $_{and} \wedge$ *5 $_{and} \wedge$ *6) holds.	242
• Hence *B1 holds for $(x, y, F, m1)$ in place of $(x, y, F, m1)$.	243
• Hence $(x, y, F, m1)$ is not a counterexample.	244
• The first assumption is false.	245
	246
Proof of *B2.	247
• Assume it is false.	248
• Then there exists $\exists (x, y, F, m2)$ such that $(x, y, F, m2)$ is a minimum counterexample by $depth(m2, y)$.	249 250
• It is trivial that $(y \neq m2)$.	251
• There exists $\exists y2$ such that $(m2 \in y2 and \land (x,y,F,y2)$ is not a counterexample).	252 253
• Hence *B2 should hold for $y2$ in place of $m2$.	254
• Hence there exists $1:\in^{\geq 0} x$ such that *Def.A holds for $(x1,y2,F)$.	255
• Let us follow *Def.A for (x_1, y_2, F) .	256

• Assume the antecedent of *0 holds.	257
• Then $space(x1) = \emptyset$ and $x1 = y2$.	25 8
• Hence $space(m2) = \varnothing$ $_{and} \land \ m2 = m2$ $_{and} \land \ m2 \in \ge 0$ x .	25 9
• Hence *B2 holds for $m2$ in place of $m2$.	260
• Hence $(x, y, F, m2)$ is not a counterexample.	261
• Hence the last assumption is false.	262
• Assume the antecedent of *1 holds.	263
• Hence $(y2 \text{ is a point})$ $and \land (m2 \in y2).$	264
• Hence the last assumption is false.	265
• Hence (*2 $_{and} \land$ *3) must hold.	266
• Hence, (*4 $_{and} \wedge$ *5 $_{and} \wedge$ *6) holds.	267
• Hence *B2 holds for $(x, y, F, m2)$ in place of $(x, y, F, m2)$.	268
• Hence $(x, y, F, m2)$ is not a counterexample.	269
• The first assumption is false.	270
	271
Proposition 6 (Symmetric property). Take $\forall B$ such that B is a binary relation. Then let B^{-1} denote $\{(b2,b1)\mid (b1,b2)\in B\}$. Take $\forall (x,y,F)$. Then *A1 implies *A2.	272 273 274
A1 Def.A holds for (x, y, F) .	275
A2 Def.A holds for (y, x, F^{-1}) .	276
•	277
Proof.	278
• Assume it is false.	279
• There exists $\exists (x, y, F)$ such that it is a minimum counterexample by $depth(x)$.	280 281
• Let us follow *Def.A for (x, y, F) in terms of *A1.	282

• Assume the antecedent of *0 holds for (x, y, F) in terms of *A1.	283
• Hence $space(x) = \emptyset$ and $x = y$.	284
• Hence *0 holds for (x, y, F) in terms of *A2.	285
• Hence the last assumption is false.	286
• Assume the antecedent of *1 holds for (x, y, F) in terms of *A1.	287
• Hence (x, y) are points $and \land (x, y) \in F$.	288
• Hence (y, x) are points $and \land (y, x) \in F^{-1}$.	289
• Hence *1 holds for (x, y, F) in terms of *A2.	290
• Hence the last assumption is false.	291
• Hence (*2 $_{and} \wedge$ *3) must hold for (x, y, F) in terms of *A1.	292
• Hence $F[space(x), space(y)]$ is a bijection from*to $space(x) * space(y)$.	293
• Hence $F^{-1}[space(y), space(x)]$ is a bijection from *to $space(y) * space(x)$.	294
• Hence *2 holds for (x, y, F) in terms of *A2.	295
• Hence *3 must fail for (x, y, F) in terms of *A2.	296
• At same time, *3 hold for (x, y, F) in terms of *A1.	297
• Hence there exists $\exists (m1, m2) \in f$ such that (Def.A holds for $(m1, m2, F)$ and \land Def.A fails for $(m2, m1, F^{-1})$. item).	298299300301
• Hence $(m1, m2, F)$ is a counterexample.	302
• Consider the proposition titled as "Depth of memBer".	303
• Moreover $depth(m1) < depth(x)$.	304
• It contradicts to the title of (x, y, F) as a minimum counterexample.	305
• Hence the first assumption is false.	306
	307
Proposition 7 (Reflexive property). Take $\forall (x, F)$ such that *A holds. Then	

*B holds.

A	F is the identity function on $space(x)$.	310
В	Def.A holds for (x, x, F) .	311
	· · · · · · · · · · · · · · · · · · ·	312
Pr	poof.	313
	• Assume it is false.	314
	• There exists $\exists (x, F)$ such that it is a minimum counterexample by $depth(x)$.	315
	• Let us follow *Def.A for (x, x, F) .	316
	• Assume the antecedent of *0 holds.	317
	• Then *0 holds.	318
	• The last assumption is false.	319
	• Assume the antecedent of *1 holds.	320
	• Then *1 holds.	321
	• The last assumption is false.	322
	• It is trivial that *2 holds. Hence *3 must fail.	323
	• Let $f1$ be the identity function on x .	32 4
	• Then *3 must fail for $f1$ in place of f .	325
	• Though *4 holds.	326
	• Hence (*5 $_{and} \land$ *6) must fail.	327
	• Hence there exists $\exists (m1, m1) :\in f1$ such that *Def.A fails for $(m1, m1, F)$.	328
	• Meanwhile *Def.A holds for $(m1, m1, F[space(m1)])$ because otherwise $(m1, F[space(m1)])$ would be a counterexample smaller than a minimum counterexample, (x, F) .	329 330 331
	• Though consider the proposition titled as "Restriction".	332
	• Then *Def.A holds for $(m1, m1, F)$.	333
	• The first assumption is false.	334

A1 Def.A holds for $(x, y, F1)$.	340
A2 Def.A holds for $(y, z, F2)$.	341
B Def.A holds for $(x, z, F2 \circ F1)$.	342
_	343
Proof.	344
• Assume it is false.	345
• There exists $\exists (x, y, z, F1, F2)$ such that it is a minimum counterexample by $depth(x)$.	346 347
• Let us follow *Def.A for $(x, y, F1)$ and for $(y, z, F2)$.	348
• Assume the antecedent of *0 holds for $(x, y, F1)$.	349
• Hence $space(x) = \emptyset$ and $x = y$.	350
• Hence the antecedent of *0 holds for $(y, z, F2)$.	351
• Hence $x = y = z$.	352
• Hence *0 holds for $(x, z, F2 \circ F1)$.	353
• The last assumption is false.	354
• Assume the antecedent of *0 holds for $(y, z, F2)$.	355
• Hence $space(y) = \emptyset$ and $y = z$.	356
• Hence the antecedent of *0 holds for $(x, y, F1)$.	357
• The last assumption is false.	358
• Assume the antecedent of *1 holds $(x, y, F1)$.	359
• Hence (x, y) are points $and \land (x, y) \in F1$.	360
• Hence *1 also hold for $(y, z, F2)$ because otherwise *G.A cannot hold for $(y, z, F2)$.	361 362

```
• Hence (y, z) are points and \land (y, z) \in F2).
• Hence (x, z) are points and \land (x, z) \in F2 \circ F1.
• Hence *1 holds for (x, z, F2 \circ F1).
• The last assumption is false.
• Assume the antecedent of *1 holds (y, z, F2).
• Hence (y, z) are points and \land (y, z) \in F2).
                                                                                   368
• Hence the antecedent of *1 also hold for (x, y, F1) because otherwise *G.A 369
  cannot hold for (x, y, F1).
• The last assumption is false.
                                                                                   371
• Hence (*2 _{and} \wedge *3) holds for (x, y, F1) and for (y, z, F2).
                                                                                   372
• Hence F1[space(x), space(Y)] is a bijection from *to space(x) * space(y).
                                                                                  373
• And F2[space(y), space(z)] is a bijection from*to space(y) * space(z).
                                                                                   374
• Hence (F2 \circ F1)[space(x), space(z)] is a bijection from *to space(x) * space(z)375
• Hence *2 holds for (x, z, F2 \circ F1).
• Hence *3 fails for (x, z, F2 \circ F1).
• By the way, there exists (f1, f2) such that (
                                                                                   378
  3 holds for (x, y, F1, f1) in place of (x, y, F, f) and \land
  3 holds for (y, z, F2, f2) in place of (x, y, F, f)
  ).
                                                                                   381
• Then *3 fails for (x, z, F2 \circ F1, f2 \circ f1) in place of (x, y, F, f).
                                                                                   382
• Hence, there exists \exists (m1, m2, m3) such that (
  (m1, m2) \in f1 and \land
                                                                                   384
  (m2, m3) \in f2 and \land
  ( the antecedent of this proposition accepts
     (m1, m2, m3, F1, F2) as (x, y, z, F1, F2)
                                                                                   387
  ) and \wedge
                                                                                   388
  (m1, m2, m3, F1, F2) is a counterexample
```

• Though (m1, m2, m3, F1, F2) is smaller than a minimum counterexample. 391

• The first assumption is false.	392
	393
10 Homeomorphism as Isomorphism	394
Proposition 9 (Members' isomorphisms as antecedent). Take $\forall (x,y,F,f)$ such that (*A1 $_{and} \land$ *A2 $_{and} \land$ *A3). Then *B holds.	395 396
A1 F is an injection.	397
A2 f is a bijection from*to x*y.	398
A3 Take $\forall (m1, m2) :\in f$. Then *Def.A holds for $(m1, m2, F)$.	399
B *Def.A holds for (x, y, F) in place of (x, y, F) .	400
Proof.	401
• Assume B fails.	402
• Hence there exists $\exists (x, y, F)$ such that *Def.A fails for (x, y, F) .	403
• Let us follow *Def.A for (x, y, F) .	404
• (the antecedent of *0 fails $_{and}\wedge$ the antecedent of *1 fails $_{and}\wedge$ (*2 fails $_{or}\vee$ *3 fails)).	405 406
• Hence $(space(x) \neq \emptyset \neq space(y))$ and \land both of (x,y) are not points.	407
• Assume *2 fails.	408
• Hence $F[space(x), space(y)]$ is not a bijection from *to $space(x) * space(y)$.	409
• Consider *A1 which says F is an injection.	410
• Hence there exists $\exists (p_x, p_y) :\in space(x) * space(y)$ such that $p_x \not\in domain(F)$ $or \lor p_y \not\in image(F)$.	411 412
\bullet Consider *A2,*A3 and the proposition titled as "Members' isomorphisms as the consequent".	413 414
• There exists $\exists y2 \in \geq 0$ y such that *Def.A holds for $(p_x, y2, F)$.	415
• There exists $\exists x \in \mathbb{R}^2 \subseteq \mathbb{R}^2$ such that *Def.A holds for (x_1, p_y, F) .	416

18
19
20
21
22
23
24
25
26
27
28
29 30
31
32
33
34
35
36
37
38
39
10
41
12

⁴By Kazimierz Kuratowski.

```
C4 Take \forall (t1, t2) :\in g. Then (G takes t1 to t2).
                                                                                        443
                                                                                       444
Consider the previous proposition titled as Members' isomorphisms as antecedent 445
and refer it as *P.
Then *P accepts arguments as (*D1 _{and} \land \dots \quad _{and} \land  *D6).
                                                                                        447
                                                                                        448
D1 *P accepts (X1, X2, G, G) in place of (x, y, F, f).
                                                                                        449
D2 *P accepts (\{X1\}, \{X2\}, G, \{(X1, X2)\}) in place of (x, y, F, f).
D3 Take \forall (t1, t2) :\in g. Then *P accepts (t1, t2, G, G) in place of (x, y, F, f).
                                                                                       451
D4 *P accepts (T1, T2, G, g) in place of (x, y, F, f).
D5 *P accepts (
                                                                                       453
      {X1, T1},
                                                                                        454
      \{X2, T2\},\
      G,
                                                                                        456
      \{(X1, X2), (T1, T2)\}
      ) in place of (x, y, F, f).
                                                                                        458
D6 *P accepts (
                                                                                        459
      \{\{X1\}, \{X1, T1\}\},\
      \{\{X2\}, \{X2, T2\}\},\
      G,
      \{(\{X1\}, \{X2\}), (\{X1, T1\}, \{X2, T2\})\}
      ) in place of (x, y, F, f).
                                                                                       465
Hence *P implies (*E1 _{and} \land ..... _{and} \land *E6).
                                                                                       466
Finally, *E6 implies this proposition.
                                                                                        468
E1 (X1, X2) are isomorphic by G.
E2 (\{X1\}, \{X2\}) are isomorphic by G.
                                                                                        470
E3 Take \forall (t1, t2) :\in g. Then (t1, t2) are isomorphic by G.
                                                                                       471
E4 (T1, T2) are isomorphic by G.
                                                                                       472
```

E5 $\{X1, T1\}, \{X2, T2\}$) are isomorphic by G .	473
E6 $(\{\{X1\}, \{X1, T1\}\}, \{\{X2\}, \{X2, T2\}\})$ are isomorphic by G .	474
	475
	476
11 Restriction of memBer by space	477
Definition 11.1. This definition uses a style of recursion.	478
Take $\forall (S, X, NULL)$ such that (*A1 $_{and} \land$ *A2 $_{and} \land$ *A3) 5 holds. Then define	
	480
A1 X is a ⁶ space.	481
A2 NULL is not a set.	482
A3 $NULL \not\in^{\geq 0} (S, X)$.	483
\mathbf{B}	484
1 If $space(S) \subset X$ Then $S[X] := S$ Else *2.	485
2 If S is not a set Then $S[X] := NULL$ Else *3.	486
$3 \ S[X] := \{s[X] \mid s \in S \ _{and} \land \ s[X] \neq NULL\}.$	487
	488
12 Deep space	489
Definition 12.1. Take $\forall (S1, S2)$ such that (*1 $_{and} \land *2$ $_{and} \land *3$). Then de-	490
	491
1 $S2 \subset \{m \mid m \in \geq 0 \ S1\}.$	492
2 Take $\forall (p,C)$ such that	493
$(p:\in space(S1) \ _{and} \land \ C \text{ is a chain from } S1 \text{ down to } p \text{ by set member } ship).$	494 495
3 Then $C \cap S2 \neq \emptyset$	496
	497

 $^{^{5*}}$ A3 says that ¬($NULL ∈ ≥ ^{0} S$). 6 That is, x is a set of points.

References 498