Cálculo EC: aula 2

9. Calcule, caso existam, os limites seguintes:

(a)
$$\lim_{x \to 3} \frac{\sqrt{x} - \sqrt{3}}{x - 3}$$

(b)
$$\lim_{x \to 2} \frac{x^2 + x + 1}{x^2 + 2x}$$

(c)
$$\lim_{x\to 0} \frac{\sqrt{1-\cos^2 x}}{|\sin x|}$$

(d)
$$\lim_{x\to 0} \frac{x}{|x|}$$

(a)
$$\lim_{x \to 3} \frac{\sqrt{x} - \sqrt{3}}{x - 3}$$
 (b) $\lim_{x \to 2} \frac{x^2 + x + 1}{x^2 + 2x}$ (c) $\lim_{x \to 0} \frac{\sqrt{1 - \cos^2 x}}{|\sin x|}$ (d) $\lim_{x \to 0} \frac{x}{|x|}$ (e) $\lim_{x \to 0} \frac{-3x^4 + 2x^3 - x}{x^3 - x}$ (f) $\lim_{x \to 0} \pi x \cos\left(\frac{1}{3\pi x}\right)$

(f)
$$\lim_{x\to 0} \pi x \cos\left(\frac{1}{3\pi x}\right)$$

a lim
$$\frac{\sqrt{x}-\sqrt{3}}{x-3} = \lim_{x\to 3} \frac{(\sqrt{x}-\sqrt{3})(\sqrt{x}+\sqrt{3})}{(\sqrt{x}+\sqrt{3})} = \lim_{x\to 3} \frac{x-3}{(x-3)(\sqrt{x}+\sqrt{3})} = \lim_{x\to 3} \frac{x-3}{(x-3)(\sqrt{$$

$$= \lim_{x \to 3} \frac{1}{\sqrt{x+\sqrt{3}}} = \frac{1}{2\sqrt{3}}$$

$$\frac{1}{2} = \lim_{x \to 3} \frac{\sqrt{x} - \sqrt{3}}{x^{2}} = \lim_{x \to 3} \frac{\sqrt{x} - \sqrt{3}}{(\sqrt{x} + \sqrt{3})(\sqrt{x} + \sqrt{3})} = \lim_{x \to 3} \frac{1}{2\sqrt{3}}$$

$$\int_{2}^{2} \lim_{x \to 2} \frac{x^{2} + x + 1}{x^{2} + 2x} = \frac{7}{8}$$

d lim z

$$\lim_{x\to 0^{+}} \frac{z}{|x|} = \lim_{x\to 0^{+}} \frac{z}{|x|} = 1$$

$$\lim_{x\to 0^{-}} \frac{z}{|x|} = \lim_{x\to 0^{-}} \frac{z}{-x} = -1$$

$$\lim_{x\to 0^{-}} \frac{z}{|x|} = \lim_{x\to 0^{-}} \frac{z}{-x}$$

$$e^{-3x^{4}+2x^{3}-x} = \lim_{x\to 0} \frac{x(-3x^{3}+2x^{2}-1)}{x(-3x^{3}+2x^{2}-1)} = \lim_{x\to 0} \frac{-3x^{3}+2x^{2}-1}{x^{2}-1} = 1$$

 $\frac{1}{2} \quad \lim_{n \to \infty} \sum_{n \to \infty} \sum_{n$

Como a feenção cos $\left(\frac{1}{3\pi x}\right)$ e limitada, uma vez que $-1 \le \cos\left(\frac{1}{3\pi x}\right) \le 1$, e lim $ii \times 2 = c$

então lim
$$\pi \times \cos\left(\frac{1}{3\pi \times}\right) = 0$$

Teorema do enquadramento ou de confronte (ou das funções enquadradas)

Sejam $f_1g_1h:D \longrightarrow R_1$ $D \subseteq R_2$, to un possible de acumulação de D_1 , se $f(z) \in g(z) \leq h(z)$ e $\lim_{z \to \infty} f(z) = \lim_{z \to \infty} h(z) = l$ então $\lim_{z \to \infty} g(z) = l$

Condário:

bejam $f,g:D\to iR$, $D\subseteq iR$, zo un ponto de accementação de D, se limitoda, então $X->X_0$ limitoda f(x)=0

NOTA: 9: D -> IR diz-se Dimitoda se Im, MER: m = g(x) < M, f xeD or em olternativa • g: D -> IR diz-se limitada se I M >0 tal que | lg(x) | < M, f xeD 10. Seja $f: \mathbb{R}\setminus\{0\} \to \mathbb{R}$ uma função tal que $\left|\frac{f(x)}{x}\right| \le 2000$ para todo $x \in \mathbb{R}\setminus\{0\}$. Calcule $\lim_{x\to 0} f(x)$.

Temos $\left| \frac{d(x)}{dx} \right| \leq 2000$ (=> $\left| \frac{d(x)}{dx} \right| \leq 2000 |x|$

Então: - 2000 |x| = fcx = 2000 |x|, para todo o x E R/ fog.

Como lim -2000/x/ = lim 2000/x/ = 0 entero x->0

pele teorema de enquadramente lin fixi = 0.

NoiA: Seja HE IRT. 1215H (=> -H & Z & H.

- 11. Determine os valores dos parâmetros a e b para que a função f(x) = ax + b satisfaça $\lim_{x \to -1} f(x) = 5 \text{ e } \lim_{x \to 1} f(x) = \lim_{x \to 1} (x 1) \text{sen} \left(\frac{1}{x 1}\right).$
 - $\lim_{x\to 1} (x-1) \operatorname{Sen}\left(\frac{1}{x-1}\right) = 0$

pois a fernção sen $\left(\frac{1}{x-1}\right)$ e limitada a lim (x-1)=0

· lim d(x) = -a+b $2 \rightarrow -1$ $\lim_{x \rightarrow 1} d(x) = a+b$

Resolvemos o sistema $\begin{cases} -a+b=5 \\ a+b=0 \end{cases}$ = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5

Portanto: $\sqrt{(x)} = -\frac{5}{2}x + \frac{5}{2}$.

12. Diga se é possível prolongar f por continuidade em a. Justifique.

(a)
$$f(x) = \frac{x^2 - 16}{|x - 4|}$$
, $a = 4$; (b) $f(x) = \frac{x^3 + 27}{x + 3}$, $a = -3$.

Seja $d: D \rightarrow R$ uma fernção e seja $E \subseteq R$ tal que $D \subseteq E$ a fernção $g: E \rightarrow R$ diz-se um prolongamento de f se g(x) = f(x), para todo c $x \in D$.

Definição: deja d: D -> IR uma tunção contínua a seja E s IR tal que D S E, a temção q: E -> IR diz-se problemgamento par continuidade de d se q é um prolongamento de d e se q é uma tenção contínua.

a $D_4 = IR / 446$ d'é continue pois é o que ciente entre un polinomie a a composta da deunção modelle com um polinomie.

lim $4cx = lim \frac{x^2 - 16}{x - 34} = lim \frac{(x - 4)(x + 4)}{x - 34} = 8$ x - 34 x - 34 x - 34 x - 34

lim $f(x) = l_{im}$ $\frac{\chi^2 - i6}{\chi} = l_{im} \frac{(x - i)(\chi + i)}{(\chi - i)(\chi + i)} = -8$ $\chi = 34$ $\chi = 34$ Logo não é possível prolongue of pos continuidade a $\chi_0 = 4$.

b Dd= R1d-33 de continua por se tratar de uma dernção pacional. 07

J lim f(x)?

 $\lim_{z\to -3} \frac{z^3+z}{z+3}$ indeeminação o

1 0 0 27 -3 -3 9 -27 1 -3 9 0

Regra de Ruffini $x^{3}+27 = (x^{2}-3x+9)(x+3)$

 $\lim_{x \to -3} \frac{x^3 + 27}{x^3} = \lim_{x \to -3} \frac{x^2 - 3x + 9}{x^3} = 27$

Entais g: \mathbb{R} $\longrightarrow \mathbb{R}$ $\times + \rightarrow \rightarrow \times + 27$, $\times \times \times + -3$ $\times + 3$ $\times + 3$

28. Calcule:

- (a) $\operatorname{sen}(\operatorname{arcsen}(-1/2));$ (b) $\operatorname{arcsen}(\operatorname{sen}(7\pi/6));$
- (c) $\cos(\arccos(\sqrt{3}/2));$ (d) $\arccos(\cos(-\pi/3));$
- (e) $\operatorname{arctg}(\operatorname{tg}(-\pi/4));$ (f) $\operatorname{tg}(\operatorname{arctg}(-1)).$
- sen: P -> P não é injetira nem sobrejetiva mas:
- sen: [-1/2, T/2] → [-1,1] et bijetiva logo tem inversa:
- ascsen: C-417 → [-π/2] arcson (y) = 2 see y = sen 2 2 E [-1/2, 1/2]
- · <u>cos</u>: R __ > R não é injetva nem sobre jetve mas: · cos: [0,1] __ > [-1,1] e bijetva logo tem inversa
- anc cos: C- 1, 1] → Co,π] anccos(γ) = κ se $\gamma = \cos \kappa$ e $\kappa \in C_{0}\pi$)

- tg: Rl d (2k11)]: kEZZ de ... > R nove é injetiva (é sobrejetiva) mas: tg: J-172, 172 [... > R é bijetiva logo tem inversa: arctg: R ... > J-172, 172 [

 arctg(p) = 2 sse p= tgz e ze J-172, 172 [

- a sen(accsen(-1/2)) = -1/2
- De facto sen (ancsency) = g, para tale o $g \in [-1,1]$. Note-se que ancsen $\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$, pois sen $\left(-\frac{\pi}{2}\right) = -\frac{1}{2}$ e $-\frac{\pi}{6} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- b Note-se que arcsen (sen(7%)) \neq 7% , pois 7% & [-72,72] arcsen (sen(7%)) = arcsen (sen(T+76)) = arccsen(-1/2) = -7% Em genal: se $\alpha \in 1^{\circ}$ arcsen (sen(T+ α)) = - α .
- G cos (aeccos ($\sqrt{3}$ 2)) = $\sqrt{3}$ 2

 De factor cos (aeccos ($\sqrt{9}$ 1) = $\sqrt{9}$, para todo o $\sqrt{9}$ 6 [-1,1]

 Note-se que aeccos ($\sqrt{3}$ 2) = $\sqrt{1}$ 6, pois cos ($\sqrt{7}$ 6) = $\frac{\sqrt{3}}{2}$ 8 $\sqrt{1}$ 7 € [0, $\sqrt{1}$ 7]
- d $aeccos(cos(-V_3)) \neq -V_3 \neq ois -V_3 \notin [o,\pi]$ $aeccos(cos(-V_3)) = anccos(cos(V_3)) = V_3$ $Emgenal: Se de 10: aeccos(cos(-x)) = \infty$
- € aectg(tg(-1/4)) = -11/4 pois 11/4 €]-1/2, 1/2[.
- $\frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \right) \right) \right) \right) = -1$ De facto $\frac{1}{2} \left(\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \right) \right) \right) = \frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \right) \right) \right) = \frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \right) \right) \right) = \frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \right) \right) = \frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \right) \right) \right) = \frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \right) \right) \right) = \frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \right) \right) \right) = \frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \right) \right) \right) = \frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \right) \right) \right) = \frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \right) \right) \right) = \frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \right) \right) \right) = \frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \right) \right) \right) = \frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \right) \right) \right) = \frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \right) \right) \right) = \frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \right) \right) \right) = \frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \right) \right) \right) = \frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \right) \right) \right) = \frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \right) \right) \right) = \frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \right) \right) \right) = \frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \right) \right) \right) + \frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \right) \right) \right) + \frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \right) \right) \right) + \frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{$