GENERALIZED ASSIGNMENT PROBLEM (GAP)

Autor: Ana B. | MATF RI projekat

PROBLEM I FORMALIZACIJA

Cilj: minimizacija ukupnog troška dodele zadataka agentima

Ograničenja: Svaki zadatak se dodeljuje tačno jednom agentu

Zbir potrošnje resursa po agentu ≤ kapacitet agenta

Metrike evaluacije: ukupan trošak, ispunjenost ograničenja (feasibility), vreme

 $\min\sum c_{ij}x_{ij}$ uz $\sum_j a_{ij}x_{ij} \leq b_i$, $\sum_i x_{ij} = 1$, $x_{ij} \in \{0,1\}$.

INSTANCA I OKRUŽENJE

Instanca: 300 zadataka (300/300 dodeljeno u svim eksperimentima)

Šta merimo: trošak (niže je bolje), vreme (kraće je bolje)

Reproduktivnost: fiksiran random seed; jedan prolaz po eksperimentu

ALGORITMI

Naive: slepa dodela/pravila – kontrola da je sve dodeljeno

Random: uniformno slučajne dodele uz proveru kapaciteta

Greedy: iterativno bira (task, agent) sa najmanjim inkrementalnim troškom

(uz kapacitete)

Simulated Annealing v1: klasičan SA (jedan schedule, acceptance)

Simulated Annealing v2: modularan SA (različiti cooling schedule-i,

acceptance funkcije, move operatori)

Osobina / Algoritam	Naivni	Random	Greedy	Simulated Annealing (SA)
Kriterijum dodele	Prvi agent koji može	Nasumično validan agent	Najmanji trošak dodele	Ciljna funkcija + verovatnoća
Uzimanje troškova u obzir	× Ne	× Ne	✓ Da	✓ Da
Validacija kapaciteta	✓ Da	✓ Da	✓ Da	▽ Da
Heuristički pristup	× Ne	× Ne	☑ Da (na bazi troška)	☑ Da (sa lokalnim pretragama)
Eksploracija rešenja	× Ne	✓ Visoka, ali nasumična	X Ograničena	✓ Kontrolisana (temperature)
Mogućnost izlaska iz lošeg lokalnog minimuma	× Ne	× Ne	× Ne	✓ Da
Stabilnost rezultata	✓Visoka	X Niska (zavisi od random seed)	▽ Visoka	⚠ Zavisi od parametara
Brzina izvršavanja	✓ Veoma brza	✓ Veoma brza	✓ Brza	X Sporija
Očekivani kvalitet rešenja	× Nizak	X Nizak∕srednji	✓ Dobar	✓ Potencijalno najbolji
Upotreba u praksi	Referenca/test	Poređenje / baseline	Brza aproksimacija	Optimizacija / fine-tuning

REZIME REZULTATA – OSNOVNE METODE

Greedy, SA v1 i SA v2 daju isti minimalni trošak: 12260

Greedy je drastično brži (≈1 ms) od SA (≈1.16–1.29 s)

Naive (20746) i Random (19962) znatno lošiji po trošku

SA V2 – MINI-EKSPERIMENTI

- Varirali smo 3 komponente:
- Cooling: geometric / logarithmic / linear
- Acceptance: boltzmann / cauchy / sigmoid
- Move: swap / move / mixed
- Kombinacije testirane u 4 scenarija (#1-#4)

SA V2 – REZULTATI PO KOMBINACIJAMA

- Svi scenariji postižu trošak 12260
- Najbrži: Geometric + Cauchy + Mixed (0.8678 s)
- Najsporiji: Log/Sigmoid/Move (4.4461 s) i Linear/Boltzmann/Swap (4.5072 s)

ZAŠTO SA NIJE BOLJI OD GREEDY NA OVOJ INSTANCI?

- Struktura troškova i kapaciteta verovatno pogoduje lokalno optimalnoj greedy dodeli
- SA "plati" cenu za nasumično istraživanje bez dodatne koristi na ovoj instanci
- Pouka: SA vredi kao robustna metaheuristika ali nije garancija boljeg rešenja na svim instancama

ZAKLJUČAK

- Na ovoj instanci: Greedy = SA po kvalitetu, Greedy značajno brži
- SA v2 donosi fleksibilnost i robustnost (korisno za teže/različite instance)
- Najbrži SA v2 profil: Geometric + Cauchy + Mixed
- Vrednost projekta: okvir za sistematizovane eksperimente i lako poređenje