《数据结构》期末考试试题 (B卷)

考 一、学生参加考试须带学生证或学院证明,未带者不准进入考场。学生必须按 试 照监考教师指定座位就坐。

注 二、书本、参考资料、书包等物品一律放到考场指定位置。

三、学生不得另行携带、使用稿纸,要遵守《北京邮电大学考场规则》,有考场违纪或作弊行为者,按相应规定严肃处理。

四、学生必须将答题内容做在试题答卷上,做在试题及草稿纸上一律无效。

五、答卷应字迹清楚、语义确切。

六、算法应说明基本思路,应对主要数据类型、变量给出说明,所写算法应结构清晰、简明易懂,应加上必要的注释。

考试 课程	数据结构				考试时间			2020年 06月 29日				
题号	1	11	111	四	五.	六	七	八	九	+	总分	
满分	20	10	10	10	10	10	10	10	10		100	
得分												
阅卷 教师												

一、选择题(每题2分,共20分)

1. 下列函数的时间复杂度为()。

 \mathbf{A} . $O(\log_2 n)$

意

事

项

- **B** . $O(n^{1/2})$
 - **C**.O(n)
- \mathbf{D} . $O(nlog_2n)$
- 2. 带头结点的双循环链表,删除指针 p 所指结点的正确语序是 ()。
- \mathbf{A} . \mathbf{p} ->next->prev = \mathbf{p} ->prev; \mathbf{p} ->prev->next = \mathbf{p} ->prev; free(\mathbf{p});

卟

\mathbf{C} . p ->next->prev = p	->next; p->prev->ne	ext = p->prev; free	e(p);	
D . p->next->prev = p-	>prev; p->prev->ne	kt = p->next; free((p);	
3. 设栈 S 和队列 Q 的	的初始状态均为空,	元素 abcdefg 依	次进入栈 S,	若每个元素
出栈后立即进入队列	Q, 且7个元素的出	出队顺序为 bdcfe	eag, 则栈 S 的	的容量至少为
()。				
A .1 B	. 2	C.3	D .4	
4.字符串'pqpqppqpc	q'的 nextval 为()。		
A . (0,1,0,1,0,4,1,0,1)		B . (0,1,0,1,	0,2,1,0,1)	
C. (0,1,0,1,0,0,0,1,1)		D . (0,1,0,1,	0,1,0,1,1)	
5. 适合于压缩存储器	^希 疏矩阵的两种存储	绪结构是 ()。		
A. 三元组表和十字银	连表	B. 三元组表	和邻接矩阵	
C. 十字链表和二叉链	连表	D. 邻接矩阵	和十字链表	
6.一颗完全二叉树有	〒768 个结点,则该	该二叉树中叶子的	的数目是()。
A . 383	B .384	C.385	D .	无法确定的
7.下列选项给出的是	从根到两个叶子结	点路径上的结点	权值序列, 能	尨属于同一颗
哈夫曼树的是()	0			
A.24、10、5和24、	10、7	B . 24、10	、5和24、12	2、7
C.24、10、10和24	. 14、11	D . 24、10	、5和24、14	4、6
8. 在有 n 个顶点的有	百向图中,每个顶点	的度最大可达	()。	
A .n B .	. n-1 C.	2n D .	2n-2	
9. 对有 2500 个记录	的表进行分块查找	,则理想的块长	为()。	
A . 50 B	. 51 C.	. 500 D	. 501	
10. 下列排序算法中	,对初始状态为递	增序列的表按递	增顺序排序,	最省时间的
是 ()。				
A.快速排序	B. 起泡排序 第2页,却		D . j	简单选择排序

 \mathbf{B} . p->next->prev = p->next; p->prev->next = p->next; free(p);

二、判断题(每题1分,共10分)

- 1. () 数据的逻辑结构是指数据的各数据项之间的逻辑关系。
- 2.()线性表采用链表存储时,结点和结点内部的存储空间可以是不连续的。
- 3. () 广度优先遍历算法通常借助队列来实现。
- 4. () 串是一种数据对象和操作都特殊的线性表。
- 5. () 若一个广义表的表尾为空表,则此广义表亦为空表。
- 6. () 用一维数组存储二叉树时,总是以先序遍历顺序存储结点。
- 7. () 无向图的邻接矩阵一定是对称矩阵,有向图的邻接矩阵不一定是非对 称矩阵。
- 8. () m 阶 B-树所有叶子都在同一层上。
- 9. () 快速排序算法不是稳定排序算法, 其空间复杂度也不是 O(1)。
- 10. () 外部排序是把外存文件调入内存,可利用内部排序的方法进行排序,因此排序所花的时间取决于内部排序的时间。

三、已知某二叉树的先序序列和中序序列如下所示,画出这颗二叉树及其对应的森林(树)。 $(10 \, \text{分})$

先序序列: 53 17 09 45 23 78 94 88 中序序列: 09 17 23 45 53 78 88 94

四、请看下边的有向无环图。(10分)

- (1) 画出它的逆邻接表;(3分)
- (2) 画出它的邻接矩阵;(3分)
- (3)从 V1 出发按照上述邻接矩阵的存储结构, 写出深度优先遍历的次序;(4分)

- 五、已知散列表的地址空间为 A[0..10],散列函数 $H(k) = (3k+5) \mod 11$,采用线性探测再散列法处理冲突。 **(10 分)**
- (1) 请将关键字序列{25, 17, 92, 51, 33, 29, 83, 123, 42, 105}依次插入到下面的散列表中,给出下表中各空的值;
 - (2) 并计算出在等概率情况下查找成功和不成功时的平均查找长度。

关键字	25	17	92	51	33	29	83	123	42	105
H(k)										

散列地址		0	1	2	3	4	5	6	7	8	9	10
关键字												
比较	查找成功											
次数	查找失败											

ASL 成功 =

 $ASL_{\Lambda \pi \pi \pi} =$

六、给定一组十个关键字的集合:{41H,94H,11H,A6H,23H,53H,F7H,28H,88H,75H},每个关键字是两位的一个十六进制数。对关键字进行快速排序。请回答:(10分)

- (1) 描述快速排序的处理过程(4分)
- (2) 写出快速排序第一趟和第二趟的结果(6分)

七、一棵有 n 个节点的完全二叉树,采用顺序存储的方式存于数组 a[n]中,其中每个节点存储的都是正整数,编写一个算法判断这棵完全二叉树是否是一个大根堆,将判断结果返回,1 代表是,0 代表不是。(10 分)

int IsBigRootHeap (int a[])

// 判断 a[n]存储的是否是大根堆,函数返回值1代表是,0代表不是;

```
八、已知二叉排序树的根指针及其中一个结点的值(树中一定存在该结点),请
编写算法,判断该结点是否叶子结点,是返回 1,否则返回 0。 (10 分)
typedef struct node
{
    char data;
    node *lc, rc;
} bitptr;
int Leaf(bitptr &t, char x) // t 为二叉排序树根指针, x 为某结点值
```

九、假设包含n个顶点的有向加权图(顶点编号从1到n)采用邻接矩阵存储, 其邻接矩阵和邻接表的存储结构定义在下面给出。请编制算法将图的存储结构由 邻接矩阵(Adjmatrix)转换为邻接表(Adjlist)。在邻接矩阵中定义一个最大权值 (MAXINT) 表示无弧相连。 (10 分) 邻接矩阵结构体定义: typedef char vtype; typedef double Adjmatrix[vtxnum][vtxnum]; //邻接矩阵, vtxnum 为顶点个数 typedef vtype Adjvexs[vtxnum];//顶点数组, vtxnum 为顶点个数 邻接表结构体定义: typedef struct { //邻接表边表节点; int adivex: double weight; arcnode *nextarc; } arcnode; typedef struct { //邻接表顶点 //顶点相关信息 vexdata: vtype arcnode *firstarc; } vexnode: typedef vexnode Adjlist[vtxnum]; //邻接表, vtxnum 为顶点个数 下面给出了一个不完整的转换算法,请添加算法描述语句,补充完成算法。 void Change(Adjvexs v, Adjmatrix m, Adjlist &adj, int n) //v 为邻接矩阵顶点数组, m 为邻接矩阵, adi 为邻接表, n 为顶点数 #define MAXINT 32767; arcnode *p,*q; for (int i=1;i<=n; i++) v[i].firstarc = NULL; // 邻接表初始化; for (int i =1; i<=n; i++) { // 按行遍历邻接矩阵 FIRSTARC=TRUE for (int j=1; j<=n; j++) { // 访问某行的各列

p= new arcnode; // 新的结点

邻接点。

// 请补充完成算法中所缺少的语句,并且语句带有注释说明其

ifm[i,j] < MAXINT // 存在一条弧,添加到邻接表结点 i 的队列中,i 是

功能。

```
}; // 存在一条弧的处理完成。
} // j 循环
} // i 循环
} 函数结束
```