期末设计题目: 状态可逆同步计数器

姓名: 侯少森 学号: 18340055

一、 设计任务、设计总体思路、基本原理和框图

1、设计任务

按照给定计数顺序(顺序为 75401) 设计状态可逆同步计数器并在数码管上显示出计数过程。

2、设计总体思路

使用 J-K 触发器以及门电路来实现状态顺序可逆的同步计数器,利用 74LS160(十进制同步计数器)以及门电路来实现进位操作。显示部分利用 BCD - 七段共阴极数码管来实现。

框图如下:

3、基本原理

利用 J-K 触发器的四个功能(清零, 置位, 保持, 翻转)来实现所需计的数

(二进制下)每位的 0 和 1 之间的变化, J-K 触发器的功能表如下。利用 74LS160 的进位功能(时钟端遇 1 则计数增加)来实现计数遍历一轮之后 的进位(普通进位)。最后再通过 BCD 码接入数码管上来实现计数和进位 的显示功能。

J-K 触发器的功能表:

СР	J	К	Q ^N	Q ^{N+1}	功能
\	0	0	0	0	保持
\	0	0	1	1	
\	0	1	0	0	清零
\	0	1	1	0	
\	1	0	0	1	置位
\	1	0	1	1	
—	1	1	0	1	翻转
	1	1	1	0	

4、实验总电路图

二、 单元电路设计

1. 状态可逆的计数器设计

(1)首先,创建一个状态图(要实现的计数顺序为 75401)

(2)根据状态图构建出次态表

当前状态			次态						
		X=0(减			X=0(减)				
Q2	Q1	Q0	Q2	Q1	Q0	Q2	Q1	Q0	
1	1	1	0	0	1	1	0	1	
1	0	1	1	1	1	1	0	0	
1	0	0	1	0	1	0	0	0	
0	0	0	1	0	0	0	0	1	
0	0	1	0	0	0	1	1	1	

(3)J-K 触发器转换表

输出	 转换	触发器输入		
Q ^N	Q ^{N+1}	J	К	
0	0	0	X	

0	1	1	X
1	0	X	1
1	1	X	0

(4)作出 J 和 K 的卡诺图

J_o:

Q_0X Q_2Q_1	00	01	11	10
00	0	1	X	X
01	X	X	X	X
11	Х	X	X	Х
10	1	0	X	Х

K₀:

Q_0X Q_2Q_1	00	01	11	10
00	X	X	0	1
01	X	X	X	X
11	Х	X	0	0
10	Х	X	1	0

J₁:

Q_0X Q_2Q_1	00	01	11	10
00	0	0	1	0
01	Х	X	Х	X
11	Х	Х	Х	Х

10	0	0	0	1
K ₁ :				
Q_0X Q_2Q_1	00	01	11	10
00	Х	Х	Х	Х
01	Х	Х	Х	Х
11	Х	Х	1	1
10	Х	Х	Х	Х
J ₂ :				
Q_0X Q_2Q_1	00	01	11	10
00	1	0	1	0
01	Х	Х	Х	Х
11	Х	X	Х	Х
10	Х	Х	Х	Х
K₂:				
Q_0X Q_2Q_1	00	01	11	10
00	X	X	Х	Х
01	Х	Х	X	Х
11	Х	Х	0	1
10	0	1	0	0

(5)由卡诺图可化简出 J 和 K 输入的表达式

$$J_0 = \overline{Q}_2 X + Q_2 \overline{X} = Q_2 \oplus X$$

$$\begin{split} &K_0 = \overline{Q}_2 \overline{X} + Q_2 \overline{Q}_1 X = \overline{\overline{Q}_2 \overline{X}} \overline{Q_2 \overline{Q}_1 X} \\ &J_1 = \overline{Q}_2 Q_0 X + Q_2 Q_0 \overline{X} = Q_0 (Q_2 \oplus X) \\ &K_1 = 1 \\ &J_2 = \overline{Q}_0 \overline{X} + Q_0 X = \overline{Q}_0 \oplus X \\ &K_2 = \overline{Q}_0 X + Q_1 Q_0 \overline{X} = \overline{\overline{Q}_0 X} \overline{Q_1 Q_0 \overline{X}} \end{split}$$

电路图如下:

2. 进位部分电路设计

这里只做顺序进位的电路设计

由顺序计数 7->5->4->0->1 得,要想由 1(二进制为 001)变为 7(二进制为 111)时进位,则需要在 Q_2 和 Q_1 同时由 0 变为 1 时,74LS160 的 CLK 端输入高电平,从而实现进位。但是,这种方法需要一个或门,这样实验箱上的门电路就不够用,所以,这里通过仔细观察 75401 这五个数,发现只有从 1(二进制为 111)时,1100,Q2 才会

从 0 变为 1,根据这个特殊性,可以直接将 Q_2 接入 74LS160 的 CLK 端,从而节省了门电路。

电路图如下:

3. 显示电路设计

通过 BCD-七段数码管来实现显示电路。

因为计数的 5 个数都是小于等于 7 的,所以 8421 码的最高位为 0,即数码管的最高位接低电平。其他三位接入 Q_0 , Q_1 , Q_2 。低电平选通,之后则可显示计数过程。

电路图如下:

三、实际安装与测试结果分析

1、状态可逆的仿真结果图如下图所示:

说明: A_0 接入的是 X, X 接入正脉冲信号,可以从仿真结果图中看到 X 从 1 变为 0 。 A_1 , A_2 , A_3 接入的是 Q_2 , Q_1 , Q_0 , 从图中可以看出顺序计数为 111->101->100->000->001, 逆序计数为 111->001->000->100->101。在 X 由 1 变为 0 的时刻两侧,图像呈对称分布(由 111 变为 101 再变为 111)。这一点证明了状态可逆设计成功。 A_4 到 A_7 是进位结果,在下一张仿真结果图中有详细说明。

使用表格可以更直观地表现出仿真结果图:

X	1	1	1	1	1	1	1	0	0	0	0	0	0
Num	7	5	4	0	1	7	5	7	1	0	4	5	7

2、顺序进位的仿真结果图如下图所示:

说明: A_0 接入的是 X,因为是顺序进位,所以 X 始终为 1。 A_1 , A_2 , A_3 分别接入的是 Q_2 , Q_1 , Q_0 ,可以从图中看到,顺序计数为 111->101->100->000->001。 A_4 , A_5 , A_6 , A_7 分别接入的是 74LS160 的 Q_3 , Q_2 , Q_1 , Q_0 ,从图中可以看出每经过一轮顺序计数,就进位一次。具体为从 0000 变为 0001 再变为 0010,如此进位下去。

3、实验结果图

实验完成经过助教现场检查后忘记拍照,已经向助教反映,在此深表歉意!

四、总结与体会

1、本次实验可以充分考察到以往实验课的许多重要的知识点,如 J-K 触发器,卡诺图,同步计数器的原理,一些芯片的使用(如 74LS160等)等,综合性非常大。

- 2、由于实验箱上的芯片数量有限,所以就算在 proteus 能够仿真出来电路,还需要再认真思考,不断化简电路,才能在实验箱上实现该电路。
- 3、连接电路非常考验耐心和毅力,连错一根线就可能导致整个电路的失败。 我认为这对以后不论是做科研还是做工程来说,都是一次非常好的训练。