Step	Algorithm: $C := AB + C$
1a	$\{C = \widehat{C}$
4	$A \to \left(\frac{A_T}{A_B}\right), C \to \left(\frac{C_T}{C_B}\right)$ where A_B has 0 rows, C_B has 0 rows
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right\}$
3	while $m(A_B) < m(A)$ do
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land m(A_B) < m(A) \right\}$
5a	Determine block size b $ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \to \left(\frac{C_0}{C_1}\right) $ where A_1 has b rows, C_1 has b rows
6	$ \left\{ \begin{array}{c} \begin{pmatrix} C_0 \\ C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} \widehat{C}_0 \\ \widehat{C}_1 \\ A_2B + \widehat{C}_2 \end{pmatrix} \right. $
8	$C_1 := A_1 B + C_1$
7	$ \left\{ \begin{pmatrix} C_0 \\ C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} \widehat{C}_0 \\ A_1B + \widehat{C}_1 \\ A_2B + \widehat{C}_2 \end{pmatrix} \right\} $
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \leftarrow \left(\frac{C_0}{C_1}\right)$ $\left(\frac{C_T}{C_2}\right)$
2	$\left\{ \qquad \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land \neg (m(A_B) < m(A)) \right\}$
1b	$\{C := AB + \widehat{C} $

Step	Algorithm: $C := AB + C$
1a	{
4	where
2	
3	while do
2,3	
	Determine block size b
5a	
	where
6	
8	
7	
5b	
2	$\left\{ \left\{ \right. \right. \right.$
	endwhile
2,3	
1b	{

Step	Algorithm: $C := AB + C$
1a	$\{C=\widehat{C}$
4	where
2	
3	while do
2,3	
	Determine block size b
5a	
	where
6	
8	
7	
5b	
2	$igg \left\{$
	endwhile
2,3	$\left\{ \begin{array}{ccc} & & & \\ & & & \\ & & & \\ \end{array} \right.$
1b	${C := AB + \widehat{C}}$

Step	Algorithm: $C := AB + C$	
1a	${C = \widehat{C}}$	
4	where	
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right\}$	>
3	while do	
2,3	$\left\{ \qquad \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land \right.$	>
	Determine block size b	
5a		
	where	
6		>
8		
7		>
5b		
2	$\left\{ \qquad \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right.$	>
	endwhile	
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land \neg () \right\}$	>
1b	$\{C := AB + \widehat{C} $	

Step	Algorithm: $C := AB + C$
1a	${C = \widehat{C}}$
4	where
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right\}$
3	while $m(A_B) < m(A)$ do
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \wedge m(A_B) < m(A) \right\}$
	Determine block size b
5a	
	where
6	
8	
7	
5b	
2	$\left\{ \qquad \left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B}\right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land \neg (m(A_B) < m(A)) \right\}$
1b	$\{C := AB + \widehat{C} $

Step	Algorithm: $C := AB + C$	
1a	$\{C = \widehat{C}$	
4	$A o \left(\frac{A_T}{A_B}\right), C o \left(\frac{C_T}{C_B}\right)$	
2	where A_B has 0 rows, C_B has 0 rows $ \left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right. $	
3	while $m(A_B) < m(A)$ do	
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land m(A_B) < m(A) \right\}$	
	Determine block size b	
5a		
	where	
6		
8		
7		
5b		
2	$\left\{ \qquad \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right.$	
	endwhile	
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land \neg (m(A_B) < m(A)) \right\}$	
1b	$\{C := AB + \widehat{C} $	

Step	Algorithm: $C := AB + C$
1a	$\{C = \widehat{C}\}$
4	$A o \left(\frac{A_T}{A_B}\right), C o \left(\frac{C_T}{C_B}\right)$ where A_B has 0 rows, C_B has 0 rows
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right\}$
3	while $m(A_B) < m(A)$ do
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land m(A_B) < m(A) \right\}$
	Determine block size b
5a	$\left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \to \left(\frac{C_0}{C_1}\right)$
	where A_1 has b rows, C_1 has b rows
6	
8	
7	
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \leftarrow \left(\frac{C_0}{C_1}\right)$ C_2
2	$\left\{ \qquad \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land \neg (m(A_B) < m(A)) \right\}$
1b	$\{C := AB + \widehat{C} $

Step	Algorithm: $C := AB + C$
1a	$\{C = \widehat{C}$
4	$A o \left(\frac{A_T}{A_B}\right), C o \left(\frac{C_T}{C_B}\right)$ where A_B has 0 rows, C_B has 0 rows
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right\}$
3	while $m(A_B) < m(A)$ do
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land m(A_B) < m(A) \right\}$
5a	Determine block size b $ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \to \left(\frac{C_0}{C_1}\right) $ where A_1 has b rows, C_1 has b rows
6	$ \left\{ \begin{pmatrix} C_0 \\ C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} \widehat{C}_0 \\ \widehat{C}_1 \\ A_2B + \widehat{C}_2 \end{pmatrix} \right\} $
8	
7	
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \leftarrow \left(\frac{C_0}{C_1}\right)$ C_2
2	$\left\{ \qquad \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land \neg (m(A_B) < m(A)) \right\}$
1b	$\{C := AB + \widehat{C} $

Step	Algorithm: $C := AB + C$
1a	$\{C = \widehat{C}\}$
4	$A o \left(\frac{A_T}{A_B}\right), C o \left(\frac{C_T}{C_B}\right)$ where A_B has 0 rows, C_B has 0 rows
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right\}$
3	while $m(A_B) < m(A)$ do
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land m(A_B) < m(A) \right\}$
5a	Determine block size b $ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \to \left(\frac{C_0}{C_1}\right) $ where A_1 has b rows, C_1 has b rows
6	$ \left\{ \begin{pmatrix} C_0 \\ C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} \widehat{C}_0 \\ \widehat{C}_1 \\ A_2B + \widehat{C}_2 \end{pmatrix} \right\} $
8	
7	$ \left\{ \begin{pmatrix} C_0 \\ C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} \widehat{C}_0 \\ A_1B + \widehat{C}_1 \\ A_2B + \widehat{C}_2 \end{pmatrix} \right\} $
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \leftarrow \left(\frac{C_0}{C_1}\right)$ C_2
2	$\left\{ \qquad \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land \neg (m(A_B) < m(A)) \right\}$
1b	$\{C := AB + \widehat{C} $

Step	Algorithm: $C := AB + C$
1a	$\{C = \widehat{C}$
4	$A o \left(\frac{A_T}{A_B}\right), C o \left(\frac{C_T}{C_B}\right)$ where A_B has 0 rows, C_B has 0 rows
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right\}$
3	while $m(A_B) < m(A)$ do
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land m(A_B) < m(A) \right\}$
5a	Determine block size b $ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \to \left(\frac{C_0}{C_1}\right) $ where A_1 has b rows, C_1 has b rows
6	$ \left\{ \begin{pmatrix} C_0 \\ C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} \widehat{C}_0 \\ \widehat{C}_1 \\ A_2B + \widehat{C}_2 \end{pmatrix} \right\} $
8	$C_1 := A_1 B + C_1$
7	$ \left\{ \begin{pmatrix} C_0 \\ C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} \widehat{C}_0 \\ A_1B + \widehat{C}_1 \\ A_2B + \widehat{C}_2 \end{pmatrix} \right\} $
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \leftarrow \left(\frac{C_0}{C_1}\right)$ C_2
2	$\left\{ \qquad \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land \neg (m(A_B) < m(A)) \right\}$
1b	$\left\{C := AB + \widehat{C}\right\}$

$A \to \left(\frac{A_T}{A_B}\right), C \to \left(\frac{C_T}{C_B}\right)$ where A_B has 0 rows, C_B has 0 rows $\begin{array}{c} \text{while } m(A_B) < m(A) \text{ do} \\ \\ \hline \\ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \to \left(\frac{C_0}{C_1}\right) \\ \\ \hline \text{where } A_1 \text{ has } b \text{ rows}, C_1 \text{ has } b \text{ rows} \\ \\ \hline \\ C_1 := A_1B + C_1 \end{array}$
where A_B has 0 rows, C_B has 0 rows while $m(A_B) < m(A)$ do Determine block size b $\left(\frac{A_T}{A_B}\right) \to \begin{pmatrix} A_0 \\ A_1 \\ A_2 \end{pmatrix}, \left(\frac{C_T}{C_B}\right) \to \begin{pmatrix} C_0 \\ C_1 \\ C_2 \end{pmatrix}$ where A_1 has b rows, C_1 has b rows
Determine block size b $ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \to \left(\frac{C_0}{C_1}\right) $ where A_1 has b rows, C_1 has b rows
Determine block size b $ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \to \left(\frac{C_0}{C_1}\right) $ where A_1 has b rows, C_1 has b rows
$ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \to \left(\frac{C_0}{C_1}\right) $ where A_1 has b rows, C_1 has b rows
$ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \to \left(\frac{C_0}{C_1}\right) $ where A_1 has b rows, C_1 has b rows
$C_1 := A_1 B + C_1$
$C_1 := A_1 B + C_1$
$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \leftarrow \left(\frac{C_0}{C_1}\right)$ C_2
endwhile

Algorithm: C := AB + C

$$A \to \left(\frac{A_T}{A_B}\right), C \to \left(\frac{C_T}{C_B}\right)$$

where A_B has 0 rows, C_B has 0 rows while $m(A_B) < m(A)$ do

Determine block size b

$$\left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \to \left(\frac{C_0}{C_1}\right)$$

where A_1 has b rows, C_1 has b rows

$$C_1 := A_1 B + C_1$$

$$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right), \left(\frac{C_T}{C_B}\right) \leftarrow \left(\frac{C_0}{C_1}\right)$$

endwhile