Tut 4: Logistic Regression (cont)

Jan 2022

1. (May 2020 Final Q2(a)) The testing dataset of an insurance claim is given in Table 2.1. The variables "gender", "bmi", "age_bracket" and "previous_claim" are the predictors and the "claim" is the response.

Table 2.1: The testing data of	an insurance claim (randomly sampled v	with repeated entry).
--------------------------------	----------------------	--------------------	-----------------------

gender	bmi	age_bracket	previous_claim	claim
female	under_weight	18-30	0	no_claim
female	under_weight	18-30	0	no_claim
$_{\mathrm{male}}$	over_weight	31-50	0	no_claim
female	under_weight	50+	1	no_claim
$_{\mathrm{male}}$	$normal_weight$	18-30	0	no_claim
female	$under_weight$	18-30	1	${ m no_claim}$
$_{\mathrm{male}}$	over_weight	18-30	1	${ m no_claim}$
male	over_weight	50+	1	claim
female	$normal_weight$	18-30	0	no_claim
female	obese	50+	0	claim

The "gender" is binary categorical data, the "bmi" is a four-value categorical data with values under_weight, normal_weight, over_weight and obese, the "age_bracket" is a three-value categorical data with value "18-30", "31-50" and "50+", the "previous_claim" is a binary categorical data with 0 indicating "no previous claim" and 1 indicating "having a previous claim". The "claim" is a binary response with values "no_claim" (negative class, with value 1) and "claim" (positive class, with value 0).

Suppose a logistic regression model is trained and the coefficients are stated in Figure 2.2.

Figure 2.2: The coefficients of the logistic regression based on an insurance claim data.

```
glm(formula=Purchased~., family=binomial, data=data.train)
Deviance Residuals:
    Min
         1 Q
                 Median
                                ЗQ
                                        Max
-2.9882
        -0.5640
                -0.1372
                            0.5532
                                     2.1820
Coefficients:
                  Estimate Std. Error z value Pr(>|z|)
(Intercept)
                -1.188e+01
                           2.497e+00
                                      -4.757 1.96e-06 ***
GenderMale
                4.221e-01
                           5.927e-01
                                        0.712 0.476319
                2.178e-01
                           4.751e-02
                                        4.584 4.56e-06 ***
                                        3.863 0.000112 ***
EstimatedSalary 3.868e-05
                           1.001e-05
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
(Dispersion parameter for binomial family taken to be 1)
```

Null deviance: 135.37 on 99 degrees of freedom Residual deviance: 74.91 on 96 degrees of freedom

Write down the mathematical formula of the logistic regression model and then use it to predict the "claim" of the insurance data in Table 2.1 as well as evaluating the performance of the model by calculating the confusion matrix, accuracy, sensitivity, specificity, PPV, NPV of the logistic model. [Note : The default cut-off is 0.5] (4 marks)				
	,			

2. (Jan 2021 Final Q2(b)) The testing dataset of a social network advertisement is given in Table 2.2. The variables "Gender", "Age" and "EstimatedSalary" are the predictors and the variable "Purchased" is the response. The "Gender" is a binary categorical data with levels "Male" and "Female", the "Age" and the "EstimatedSalary" are quantitative data. The "Purchased" is a binary response with values 0 (representing "no purchase", assuming **0** is the positive class) and 1 (representing "purchase").

Table 2.2: The testing data of a social network advertisement.

Gender	Age	EstimatedSalary	Purchased
Male	29	80000	0
Male	45	26000	1
Female	48	29000	1
Male	45	22000	1
Female	47	49000	1
Male	48	41000	1
Male	46	23000	1
Male	47	20000	1
Male	49	28000	1
Female	47	30000	1

Figure 2.1: The coefficients of the logistic regression based on an insurance claim data.

```
Call:
glm(formula=Purchased~., family=binomial, data=data.train)
Deviance Residuals:
    Min
              1 Q
                  Median
                                 3 Q
                                         Max
-2.9882
        -0.5640 -0.1372
                             0.5532
                                      2.1820
Coefficients:
                  Estimate Std. Error z value Pr(>|z|)
(Intercept)
                            2.497e+00
                -1.188e+01
                                        -4.757 1.96e-06
GenderMale
                 4.221e-01
                             5.927e-01
                                         0.712 0.476319
                 2.178e-01
                             4.751e-02
                                         4.584 4.56e-06 ***
EstimatedSalary 3.868e-05
                             1.001e-05
                                         3.863 0.000112 ***
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 135.37
                            on 99
                                   degrees of freedom
                    74.91
Residual deviance:
                            on 96
                                   degrees of freedom
```

Suppose a logistic regression model is trained and the coefficients are stated in Figure 2.1. Write down the **mathematical formula** of the logistic regression model and then use it to **predict** the variable "Purchase" of the insurance data in Table 2.2 as well as **evaluating** the performance of the model by calculating the confusion matrix, accuracy, sensitivity, specificity, PPV, NPV of the logistic model (assuming 0 is the positive class). [**Note**: The default cut-off is 0.5] (5 marks)

