Statistics 630 - Assignment 8

(partial solutions)

- 1. Exer. 6.2.4. $p(x) = \frac{\theta^x e^{-\theta}}{x!}$.
 - (a) The log-likelihood is $\ell(\theta) = -n\theta + \log(\theta) \sum_{i=1}^{n} X_i \sum_{i=1}^{n} \log(x_i!)$, and the score function is $S(\theta) = -n + \frac{1}{\theta} \sum_{i=1}^{n} X_i$, which is decreasing in θ and has root $\widehat{\theta} = \overline{X}$.
 - (b) The only term in the log-likelihood above that has both θ and the sample involves the sample solely through the value of $\sum_{i=1}^{n} X_i$. [This is the factorization theorem expressed in terms of the log-likelihood.]
 - (c) Since $\mathsf{E}(X) = \mathsf{Var}(X) = \theta$ we have $\mathsf{E}(\widehat{\theta}) = \theta$ (so that $\mathsf{Bias}(\widehat{\theta}) = 0$), and $\mathsf{MSE}(\widehat{\theta}) = \mathsf{Var}(\widehat{\theta}) = \frac{\theta}{n}$.
 - (d) The MLE for θ^2 is $\widehat{\theta}^2 = \overline{X}^2$. Since $\mathsf{E}(\overline{X}^2) = (\mathsf{E}(\overline{X}))^2 + \mathsf{Var}(\overline{X}) = \theta^2 + \frac{1}{n}\theta$, we have $\mathsf{Bias}(\widehat{\theta}^2) = \frac{1}{n}\theta$.
 - (e) $e^{-\widehat{\theta}}$.
- 2. Exer. 6.2.7. Note that $f(x) = \alpha x^{\alpha 1}$ for 0 < x < 1.
 - (a) The score equation is $S(\alpha) = \frac{n}{\alpha} + \sum_{i=1}^{n} \log(X_i) = 0$, yielding MLE $\widehat{\alpha} = -\frac{n}{\sum_{i=1}^{n} \log(X_i)}$. The score function is decreasing, so $\widehat{\alpha}$ does indeed maximize the log-likelihood.
 - (b) $\sum_{i=1}^{n} \log(X_i)$.
 - (c) $\operatorname{\sf Var}(X) = \frac{\alpha}{(\alpha+1)^2(\alpha+2)}$ has MLE $\frac{\widehat{\alpha}}{(\widehat{\alpha}+1)^2(\widehat{\alpha}+2)}$.
 - (d) Since $\mathsf{E}(X) = \frac{\alpha}{\alpha+1}$, a method of moments estimator for α solves $\frac{\widetilde{\alpha}}{\widetilde{\alpha}+1} = \overline{X}$, namely, $\widetilde{\alpha} = \frac{\overline{X}}{1-\overline{X}}$.
- 3. (a) $L(\beta) = \frac{3^n}{\beta^{3n}} \prod_{i=1}^n W_i^2 \times I_{[\max(W_1, \dots, W_n), \infty)}(\beta)$, which is decreasing in β starting from $\max(W_1, \dots, W_n)$. Thus the MLE is $\widehat{\beta} = \max(W_1, \dots, W_n)$.
 - (b) $\mathsf{E}(W) = \frac{3\beta}{4}$, so a MOME for β is $\widetilde{\beta} = \frac{4\overline{W}}{3}$. [Note: if $\widetilde{\beta} < \widehat{\beta}$ then $\widetilde{\beta}$ is in contradiction to the data. This can certainly happen with some positive probability.]
- 4. Exer. 6.2.12. Since the value of $\mu = \mu_0$ is assumed to be known, this is a constant and not a parameter. We work with the likelihood as a function of σ (rather than σ^2).
 - (a) $\ell(\sigma) = \frac{n \log(2\pi)}{2} n \log(\sigma) \frac{1}{2\sigma^2} \sum_{i=1}^n (X_i \mu_0)^2$. So $S(\sigma) = -\frac{n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^n (X_i \mu_0)^2 = 0$ leads to MLE $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \mu_0)^2$. [Check: $\frac{dS(\sigma)}{d\sigma} \Big|_{\sigma = \widehat{\sigma}} < 0$.]
 - (b,c) The MLE here is unbiased since $\mathsf{E}((X-\mu_0)^2) = \sigma^2$. Observe that $\frac{n\widehat{\sigma}^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i \mu_0}{\sigma}\right)^2$ has chi-square(n) distribution with variance 2n. Hence, $\mathsf{Var}(\widehat{\sigma}^2) = \mathsf{MSE}(\widehat{\sigma}^2) = \frac{2\sigma^4}{n}$. On the other hand, recall from the notes that $\mathsf{Var}(S^2) = \mathsf{MSE}(S^2) = \frac{2\sigma^4}{n-1}$. So the MLE here is marginally better (i.e., has smaller MSE) than the conventional unbiased estimator S^2 .

(continued next page)

- 5. Exer. 6.2.8. The log-likelihood is $\ell(\beta) = n \log(\beta) + (\beta 1) \sum_{i=1}^{n} \log(X_i) \sum_{i=1}^{n} X_i^{\beta}$. To find the MLE, solve the score equation $S(\beta) = \frac{n}{\beta} + \sum_{i=1}^{n} \log(X_i) \sum_{i=1}^{n} (\log(X_i) X_i^{\beta}) = 0$.
- 6. Exer. 6.2.19. Note: technically the *sample* is n values of categories 1, 2 or 3. Here, we have reduced that to the category counts (X_1, X_2, X_3) , which can be seen to be a sufficient statistic.
 - (a) The distribution is multinomial $(\theta^2, 2\theta(1-\theta), (1-\theta)^2)$.
 - (b,c) $\ell(\theta) = (2X_1 + X_2) \log(\theta) + (2X_3 + X_2) \log(1 \theta) + \log(n!) \log(X_1!X_2!X_3!)$. The score equation is $S(\theta) = \frac{2X_1 + X_2}{\theta} \frac{2X_3 + X_2}{1 \theta} = 0$, which leads to the MLE $\hat{\theta} = \frac{2X_1 + X_2}{2(X_1 + X_2 + X_3)} = \frac{2X_1 + X_2}{2n}$. Note that $S(\theta)$ is decreasing.
- 7. $T = \sum_{i=1}^{n} X_i \sim \text{gamma}(n, \lambda)$ from which we can find

$$\mathsf{E}(1/T) = \int_0^\infty \frac{1}{t} \, \frac{\lambda^n t^{n-1} \mathrm{e}^{-\lambda t}}{(n-1)!} \, \mathrm{d}t = \dots = \frac{\lambda}{n-1}.$$

Similarly, $\mathsf{E}(1/T^2) = \frac{\lambda^2}{(n-1)(n-2)}$. (Obviously, we need n>2 for this to be finite.) Therefore,

$$\begin{split} \mathsf{MSE}(L_a) &= (\mathsf{Bias}(L_a))^2 + \mathsf{Var}(L_a) = \left(\frac{a\lambda}{n-1} - \lambda\right)^2 + \frac{a^2\lambda^2}{(n-1)(n-2)} - \left(\frac{a\lambda}{n-1}\right)^2 \\ &= \lambda^2 \Big(\frac{1}{(n-1)(n-2)} \, a^2 - \frac{2}{n-1} \, a + 1\Big), \end{split}$$

which is minimized with a = n - 2, giving value $\frac{1}{n-1}$. [Which is sensible as then $L_a = \frac{a}{T}$ is approximately the MLE for very large n.]