STAT 500

Selection Methods for Multiple Linear Regression Models

Multiple Regression: Model Selection

- Importance of Model Selection
 - Including too few variables in the model leads to inaccurate estimates of coefficients and response means
 - Including too many variables leads to unnecessary excess variability in estimates of the coefficients and mean response

- Consider two models
 - model A ("fit") $Y = X\beta + \epsilon$
 - model B ("true") $\mathbf{Y} = X\beta + Z\gamma + \epsilon$
- ullet Fitting model A (we have omitted the variables in Z) leads to a biased estimate of the regression coefficients:

$$\mathbf{b} = (X^T X)^{-1} X^T \mathbf{Y}$$

$$E(\mathbf{b}) = E((X^T X)^{-1} X^T Y)$$

$$= (X^T X)^{-1} X^T E(Y)$$

$$= (X^T X)^{-1} X^T (X\beta + Z\gamma)$$

$$= (X^T X)^{-1} X^T X\beta + (X^T X)^{-1} X^T Z\gamma$$

$$= \beta + (X^T X)^{-1} X^T Z\gamma$$

 Estimates of the mean responses based on model A may be biased:

$$\hat{\mathbf{Y}} = X\mathbf{b} = X(X^TX)^{-1}X^T\mathbf{Y} = P_X\mathbf{Y}$$

where $P_X = X(X^TX)^{-1}X^T$ projects vectors into the space spanned by the columns of X. Then,

$$E(\hat{\mathbf{Y}}) = E(P_X \mathbf{Y})$$

$$= P_X E(\mathbf{Y})$$

$$= P_X (X\beta + Z\gamma)$$

$$= X\beta + P_X Z\gamma$$

because $P_X X = X(X^T X)^{-1} X^T X = X I_{n \times n} = X$.

ullet Bias in $\widehat{\mathbf{Y}}$ based on model A:

$$\delta = E(\hat{\mathbf{Y}}) - E(\mathbf{Y})$$

$$= (X\beta + P_X Z \gamma) - (X\beta + Z \gamma)$$

$$= (P_X - I)Z\gamma$$

• No bias if $\gamma = 0$ or each column in Z is in the column space of X, e.g. the correct model has $E(\mathbf{Y}) = X\beta$

 Another result: Estimate of the error variance based on model A may be biased.

$$E(MS_{error}) = \sigma^2 + \frac{\gamma^T Z^T (I - P_X) Z \gamma}{n - k - 1} = \sigma^2 + \frac{1}{n - k - 1} \Sigma_i \operatorname{Bias}(\hat{Y}_i)^2$$

- p = k + 1 is the number of parameters in the MLR model.
- Omitting useless terms ($\gamma = 0$): $E(MS_{error}) = \sigma^2$.
- Omitting needed terms $(\gamma \neq 0)$: $E(MS_{error}) > \sigma^2$.

ullet The total variance of $\widehat{\mathbf{Y}}$:

$$\sum_{i} \text{Var}(\hat{Y}_{i}) = \text{trace}(\text{Var}(\hat{Y}))$$

$$= \text{trace}(\text{Var}(P_{X}Y))$$

$$= \text{trace}(P_{X}(\sigma^{2}I)P_{X}^{T})$$

$$= \sigma^{2}\text{trace}(P_{X})$$

$$= \sigma^{2}(k+1)$$

Because P_X is symmetric and idempodent, i.e.,

$$P_X P_X^T = P_X P_X = P_X,$$

it has k+1 eigenvalues equal to one, and the rest are zero.

- Adding a predictor to model A (adding a column to X that is not a linear combination of the columns already in X)
 - ullet decreases bias (or may leave it the same) of $\hat{\mathbf{Y}}$
 - increases the total variance of the estimates of the response means $\hat{\mathbf{Y}}$, because the column rank of X, which is also the rank of the new P_X , increases by 1.
- If we fit the "true" model, model B, then
 - bias = 0
 - variance = $\sum_i \text{Var } \hat{Y}_i$ = $\sigma^2(k+1+\dim(Z))$

Model Selection Criteria

- How many explanatory variables? Which ones?
- Criteria for identifying the "best" model
 - $-R^2$
 - adj \mathbb{R}^2
 - $-C_p$
 - AIC
 - BIC

$$R^2 = \frac{SS_{\text{model}}}{SS_{\text{Total}}}$$

- Larger values indicate better model
- ullet Maximizing R^2 is equivalent to minimizing $SS_{
 m error}$
- ullet R^2 never decreases when adding an explanatory variable to model
- Most useful for comparing two models with the same number of explanatory variables

Model Selection Criteria – adj R^2

$$\text{adj } R^2 = 1 - \frac{MS_{\text{error}}}{SS_{\text{Total}}/(n-1)}$$

- Larger values indicate better model
- Maximizing adj R^2 equivalent to minimizing $MS_{error} = \hat{\sigma}^2$
- Does not necessarily increase when adding an explanatory variable to model
- Most useful in comparing models with different numbers of explanatory variables

$$C_p = \frac{SSerror}{\hat{\sigma}^2} - (n - 2(k+1))$$

- SSerror from fitted model
- ullet $\hat{\sigma}^2$ is $MS_{ ext{error}}$ for model containing all explanatory variables
- p = k + 1 is the number of coefficients in the fitted model

• The rationale behind C_p statistic is to minimize $E[\Sigma_i(\hat{Y}_i - E(Y_i))^2]$, the mean squared error of the predictions, $MSEP = bias^2 + variance$.

$$MSEP = E[\Sigma_{i}(\hat{Y}_{i} - E(\hat{Y}_{i}) + E(\hat{Y}_{i}) - E(Y_{i}))^{2}]$$

$$= E[\Sigma_{i}(\hat{Y}_{i} - E(\hat{Y}_{i}))^{2}] + E[\Sigma_{i}(E(\hat{Y}_{i}) - E(Y_{i}))^{2}]$$

$$= \Sigma_{i} \text{Var}(\hat{Y}_{i}) + \Sigma_{i} \text{Bias}(\hat{Y}_{i})^{2}$$

$$= \sigma^{2}(k+1) + E(SS_{error}) - \sigma^{2}(n-k-1)$$

$$= E(SS_{error}) - \sigma^{2}(n-2(k+1))$$

• The second to last line uses the previously obtained relationship of bias and $E(MS_{error})$.

$$C_p = \frac{SSerror}{\hat{\sigma}^2} - (n - 2(k+1))$$

- ullet Full name Mallow's C_p
- Good models have C_p around p = k + 1
 - Why?
- $C_p < p$ is no problem (sampling error)

- ullet Large C_p indicates poor model
- Let m denote the size of biggest possible model with m-1 explanatory variables and m regression coefficients.
- ullet For the model containing all explanatory variables, $C_p=m$
- Limited to MLR models

Model Selection: Mallow's C_p

ullet C_p is related to the F-test that the submodel with only p explanatory variables is acceptable

$$C_p = (m-p)(F-1) + p$$

If F < 2 then $C_p < m$ and the data do not provide enough evidence on bias to reject the submodel

- ullet C_p focuses on prediction
- ullet You can think of using C_p to minimize

$$SS_{error}$$
 + [penalty for p]

so do AIC and BIC

$$AIC = n \log(SS_{error}/n) + 2(k+1)$$

- Full name Akaike Information Criterion
- Smaller values indicate better models
- Favors models with a slightly larger number of explanatory variables, i.e., may include a few non-significant explanatory variables
- Not limited to MLR models

$$BIC = n \log(SS_{error}/n) + (k+1) \log(n)$$

- Full name Bayesian Information Criterion
- Smaller values indicate better models
- Leads to smaller models than AIC (larger penalty for explanatory variables)
- Not limited to MLR models

Model Selection Summary

- Many different approaches
- Measures that focus on fit
 - R^2 (fit using SS_{error}): bad
 - adjusted R^2 (fit using MS_{error})

Model Selection Summary

- Measures that combine fit and complexity
 - general idea: fit + penalty for model complexity
 - Mallows C_p : least penalty
 - AIC: larger penalty
 - BIC: largest penalty (usually)

Model Selection Summary

- ullet Often C_p , AIC and BIC lead to same model
 - When they differ, smaller penalty will tend to select more variables
 - C_p selects most variables
 - BIC selects fewest

Model Comparison Example – Grandfather Clocks

Model	R^2	adj \mathbb{R}^2	C_p	AIC	BIC
Numbid	15.62%	12.81%	484.299	379.953	382.884
Age	53.24%	51.68%	255.914	361.065	363.997
Age & Numbid	89.23%	88.49%	39.361	316.065	320.462
Age & Numbid*	95.39%	94.89%	4	290.938	296.801

Multiple Regression: Model Selection

- Significance of explanatory variables depends on presence of other explanatory variables in model.
- Cannot make independent decisions about significance of explanatory variables.
- How do we decide which explanatory variables to be included in the final model?

Multiple Regression Selection Techniques

- Different methods for searching among models
 - All possible subsets of a given group of explanatory variables
 - Stepwise model selection
 - * Backward elimination
 - * Forward selection
 - * Stepwise (Mixed) selection

Model Selection – All Possible Subsets

- \bullet Set of k explanatory variables
- Fit all $2^k 1$ possible models
- Compare models using some criterion (like $adjR^2$, C_p , AIC or BIC)
- Works up to about k = 20 (i.e., takes a reasonable amount of time to process $2^k 1$ possible models)
- Review the best models of each size $1, 2, \ldots, k$

Model Selection – Stepwise Methods

- Enter or delete one variable at a time from model according to algorithm
- Less time to compute than all possible subsets
- Possible algorithms
 - Forward selection
 - Backward elimination (selection)
 - Stepwise selection

Model Selection – Forward Selection

- 1. Start with only intercept in model
- 2. Fit all one variable models, select the explanatory variable with the largest correlation with the response as long as effect test for variable is statistically significant (p-value $< \alpha_{entry}$)
- 3. Add to the model the next explanatory variable that reduces the $SS_{\mbox{error}}$ the most as long as effect test for variable is statistically significant (p-value $< lpha_{\mbox{entrv}}$)
- 4. Repeat step 3 until no significant variables can be added to the model

Model Selection – Backward Elimination

- 1. Begin with the largest possible model (all k explanatory variables)
- 2. Do an effects test for each explanatory variable and compute the p-value.
- 3. Delete the variable with the least significant effect test (largest p-value) as long as p-value $\geq \alpha_{stay}$
- 4. Fit the model again. Repeat step 3. Stop when there is no explanatory variable with an effect test with p-value $\geq \alpha_{stay}$

Model Selection – Stepwise Selection

- 1. Start with only intercept in model
- 2. Fit all one variable models, select the explanatory variable with the largest correlation with the response as long as effect test for variable is statistically significant (p-value $< \alpha_{entry}$)
- 3. Add to the model the next explanatory variable that reduces the $SS_{\mbox{error}}$ the most as long as effect test for variable is statistically significant (p-value $< lpha_{\mbox{entrv}}$)
- 4. Examine each variable in the current model to make sure effect test for variable is still significant (p-value $< \alpha_{stay}$). If not, delete variable from model.
- 5. Repeat steps 3-4 until there are no changes
- 6. Note: need $\alpha_{entry} \leq \alpha_{stay}$ to avoid never ending loops

Difficulties with Model Selection

- High Correlation between Some Explanatory Variables (called multicollinearity)
- Example: Suppose x_j and x_l have a high correlation (near -1 or 1) and are both in model.
 - Significance test for either β_j or β_l : does x_j or x_l significantly add to the model that includes all other explanatory variables?
 - Once one of the variables is in the model, the other is not likely to significantly add to model due to their close association.

Assessing Impact of High Correlation

- Pairwise correlation matrix for explanatory variables
 - r > |0.7|
- Models with and without highly correlated explanatory variables.
 - Large change in estimated coefficients, standard errors, and p-values.
- ullet Models with a significant F-test statistic and many or all non-significant t-test statistics.

Variance Inflation Factor (VIF)

• Measures the degree to which the standard error of an estimated coefficient $\hat{\beta}_j$ is inflated by the correlations with the other explanatory variables.

$$VIF_j = \frac{1}{1 - R_j^2}$$

where R_j^2 is the R^2 values from the MLR with response variable x_j on the remaining explanatory variables.

Variance Inflation Factor (VIF)

- \bullet Explanatory variables with VIF $_j >$ 4 should be investigated further.
- ullet Explanatory variables with ${
 m VIF}_j>10$ indicate severe multicollinearity.

Solutions to Multicollinearity

- Fit model as is; don't assess significance of individual explanatory variables.
- Select only certain explanatory variables for model to remove highly correlated variables.
- Rely more on theoretical or contextual basis (rather than statistical) for inclusion of variables in model.

Misuses of Model Selection

Observational studies:

- Including an explanatory variable in the model does not imply a causal relationship. Wrong to claim that:
 - Included \Rightarrow variable *causes* change in Y
 - Omitted \Rightarrow variable has no effect on Y
 - Omitted ⇒ variable is unimportant
- DO NOT focus only on estimated coefficients for the selected model
 - Depends on which other variables are included in the model
 - Could be many other reasonable models

Misuses of Model Selection

- Overemphasis on choice of variables in model
 - e.g. repeat a study on a different population
 - Find predictors A, B, D, H in pop. 1and predictors A, F, L, M in pop. 2
 - Is A more important?
 - Do the two populations respond differently?
- Extrapolation
 - Model provides good predictions across region of X values included in the study
 - May not be valid outside that region

Model Selection: after selection?

- Still need to examine model assumptions Model Diagnostics
- Need to examine case diagnostics
- Have we overfit to this particular data set?
 - Rule of thumb: sample size $n > 6-10 \times m$.
 - If sample size is a lot fewer, e.g. 15 candidate variables, $n=40~{\rm obs},$ fitted model predicts current data well, new data poorly
 - Model validation