Transect Report Lone Cabbage

Overview

This report provides summary statistics and figures for ongoing transect sampling. The first section of the report focuses on the current sampling (Winter 2022-2023) and how the collected data compare to last year's sampling (Winter 2021-2022). So far 11 days have been sampled this season. The second half of the report gives summaries of all of the data that have been collected since the beginning of the project (2010-05-27). In total, 155 days have been sampled over this entire project.

Definition of Localities

LOCALITY	LOCATION
$\overline{\mathrm{BT}}$	Big Trout
CK	Cedar Key
CR	Corrigan's Reef
HB	Horseshoe Beach
LC	Lone Cabbage
LT	Little Trout
NN	No Name

Definition of Strata

STRATA	DEFINITION
<u>Y_N</u>	Yes Harvest, No Rock
Y_Y	Yes Harvest, Yes Rock
N_N	No Harvest, No Rock
N_Y	No Harvest, Yes Rock
N_PILOT	No Harvest, Pilot Rocks

Current Sampling

Here, we provide a progress bar showing how much of the sampling has been completed for this season, plus summary tables and plots comparing live counts and density of oysters between this current season and last year. The current sampling period is period 26, and last year's sampling period is period 24.

Field Sites - Strata Progress

Summary Tables for Periods 20, 22, 24, and 26

These summary tables provide summary statistics on live counts and oyster densities for just periods 20 (Winter 2019-2020), 22 (Winter 2020-2021), 24 (Winter 2021-2022), and 26 (Winter 2022-2023).

Summary statistics include:

- Locality or Strata or Period Mean
- Median
- Standard Deviation (SD)
- Variance (Var)
- Coefficient of variation (CV)
- Standard Error (SE)
- Lower 95% Confidence Interval assuming normal distribution (L95)
- Upper 95% Confidence Interval assuming normal distribution (U95)
- Bootstrap Mean (Bstrap Mean)
- Lower 95% Confidence Interval from Bootstrap Values (L95 Bstrap)
- Upper 95% Confidence Interval from Bootstrap Values (U95 Bstrap)

Data are aggregated by station and period and then summarized in the tables below. Live counts are the number of live oysters summarized by locality, strata, and period, and density is the number of live oysters per square meter summarized by locality, strata, and period.

Summary of Live Counts for Periods 20, 22, 24, and 26

Live Oyster Counts by	Locality				
Locality Mean Median	•	CV SE I	.95 U95 Bstrap_	Mean L95_Bstrap	U95_Bstrap
BT 1331 766	2188 4789476	1.64 607	41 2521	1324 573	2704
LC 1877 1106	2126 4519935	1.13 189 15	506 2249	1889 1534	2240
LT 1097 877	582 338863	0.53 150 8	302 1392	1098 851	. 1412
NN 842 714	639 408613	0.76 202 4	146 1238	835 515	1218
Live Oyster Counts by	Strata				
Strata Mean Median		CV SE L9	95 U95 Bstrap_M	ean L95 Bstrap	U95 Bstrap
N_N 1083 767 1	185 1403189 3		_	084 826	1452
N_PILOT 2180 3009 1	582 2501624 (0.73 913 39	90 3970 2	190 356	3174
N_Y 3650 3674 2	182 4759072 (0.60 412 284	12 4458 3	658 2884	4510
Y_N 669 526	638 406598 (0.95 84 50	5 833	671 530	838
Y_Y 4206 3590 2	823 7971481 (0.67 706 282	23 5589 4	224 3037	5575
Live Oyster Counts by					
Period Mean Median	SD Var (CV SE L95	U95 Bstrap_Mea	n L95_Bstrap U9	05_Bstrap
20 1844 1253 21	25 4517189 1	.2 310 1236	2451 184	6 1304	2490
22 1334 702 16	93 2867783 1	.3 242 860	1808 133	3 872	1826
24 1729 942 18	45 3403035 1	.1 266 1207	2251 171	2 1227	2251
26 2186 654 26	33 6934945 1	.2 589 1032	3340 217	1 1160	3354
Live Density by Locali	tv				
Locality Mean Median	•	CV SE L95	U95 Bstrap_Mean	L95_Bstrap U95	5_Bstrap
BT 235 205	192 37004 0.8				349
LC 163 160	108 11754 0.6	67 9.7 144	181 163	146	183
LT 320 321	129 16749 0.4	40 33.4 255	386 319	260	382
NN 233 174	230 52911 0.9	99 72.7 91	376 231	125	386

Live Density by Strata

Strata	Mean	Median	SD	Var	CV	SE	L95	U95	Bstrap_Mean	L95_Bstrap	U95_Bstrap
N_N	239	192	163	26724	0.69	21	197	280	237	200	280
N_PILOT	143	147	39	1557	0.28	23	98	188	144	102	180
N_Y	179	180	83	6878	0.46	16	148	209	178	150	208
Y_N	150	144	128	16508	0.85	17	117	184	151	121	185
ΥΥ	152	159	71	5024	0.47	18	117	187	152	119	188

Live Density by Period

Period	Mean	${\tt Median}$	SD	Var	CV	SE	L95	U95	Bstrap_Mean	L95_Bstrap	U95_Bstrap
20	256	203	187	35057	0.73	27	203	310	256	203	312
22	137	121	93	8638	0.68	13	111	163	137	113	164
24	185	181	92	8385	0.49	13	159	211	185	162	211
26	151	155	108	11763	0.72	24	103	198	152	105	198

Summary of Dead Counts for Periods 20, 22, 24, and 26

Dead Oyster Counts by Locality	
Locality Mean Median SD Var CV SE L95 U95 Bstrap_Mea	n L95_Bstrap U95_Bstrap
BT 163 98 175 30535 1.07 48 68 258 16	1 97 264
LC 173 127 181 32903 1.05 16 142 205 17	3 143 206
LT 206 137 151 22760 0.73 39 130 282 20	7 136 283
NN 102 72 94 8760 0.92 30 44 160 10	2 57 163
Dead Oyster Counts by Strata	
Strata Mean Median SD Var CV SE L95 U95 Bstrap_Mean	L95_Bstrap U95_Bstrap
N_N 171 115 167 27877 0.97 22 129 214 171	132 213
N_PILOT 136 127 131 17150 0.97 76 -13 284 133	9 270
N_Y 196 166 143 20537 0.73 27 143 249 196	147 248
Y_N 113 66 124 15270 1.09 16 82 145 113	83 147
Y_Y 347 269 280 78219 0.81 70 210 484 350	224 494
Dead Oyster Counts by Period	
Period Mean Median SD Var CV SE L95 U95 Bstrap_Mean	L95_Bstrap U95_Bstrap
20 148 107 140 19727 0.95 20 108 188 147	111 189
22 191 128 193 37399 1.01 28 137 245 191	141 247
24 192 130 194 37816 1.01 28 137 247 192	144 246
26 129 81 140 19677 1.09 31 69 189 130	72 197
Dead Oyster Density by Locality	
Locality Mean Median SD Var CV SE L95 U95 Bstrap_Mean	L95 Bstrap U95 Bstrap
BT 36 28 23 534 0.64 6.4 23 48 36	25 48
LC 21 12 21 454 1.02 1.9 17 25 21	17 25
LT 56 50 30 881 0.53 7.7 41 71 55	41 70
NN 27 21 22 500 0.83 7.1 13 41 27	15 42
WW 21 21 22 000 0.00 1.1 10 11 21	10 12
Dead Oyster Density by Strata	
Strata Mean Median SD Var CV SE L95 U95 Bstrap_Mea	n I.95 Bstran II95 Bstran
N_N 37.9 32.5 26.5 700 0.70 3.4 31.2 45 38.	
N_PILOT 7.6 7.6 5.0 25 0.66 2.9 1.9 13 7.	
N_Y 9.9 9.6 6.4 42 0.65 1.2 7.5 12 10.	
Y_N 25.3 16.1 25.0 624 0.99 3.3 18.9 32 25.	
Y_Y 11.9 11.4 4.9 24 0.41 1.2 9.5 14 12.	
1_1 11.9 11.4 4.9 24 0.41 1.2 9.0 14 12.	0 9.0 14
Dead Oyster Density by Period	
Period Mean Median SD Var CV SE L95 U95 Bstrap_Mean L	95 Betran 1195 Betran
20 28 18 26 682 0.94 3.8 20.2 35 28	20.6 35
22 28 14 28 807 1.00 4.1 20.5 36 28	21.0 37
24 26 19 21 438 0.81 3.0 19.8 32 26	19.9 32
26 14 10 14 195 1.01 3.0 7.8 20 14	8.6 20
20 11 10 11 100 1.01 0.0 1.0 20 14	3.0

Summary Plots for Periods 20, 22, 24, and 26

Live Oyster Density by Locality for Periods 20, 22, 24, and 26

Figure- Calculated live oyster density by locality for periods 20 (Winter 2019-2020), 22 (Winter 2020-2021), 24 (Winter 2021-2022), and 26 (Winter 2022-2023) with the last sample date of period 26 as 2023-01-09.

Dead Oyster Density by Locality for Periods 20, 22, 24, and 26

Figure- Calculated dead oyster density by locality for periods 20 (Winter 2019-2020), 22 (Winter 2020-2021), 24 (Winter 2021-2022), and 26 (Winter 2022-2023) with the last sample date of period 26 as 2023-01-09.

Live Oyster Density by Strata for Periods 20, 22, 24, and 26

Figure- Calculated live oyster density by strata for periods 20 (Winter 2019-2020), 22 (Winter 2020-2021), 24 (Winter 2021-2022), and 26 (Winter 2022-2023) with the last sample date of period 26 as 2023-01-09.

Dead Oyster Density by Strata for Periods 20, 22, 24, and 26

Figure- Calculated dead oyster density by strata for periods 20 (Winter 2019-2020), 22 (Winter 2020-2021), 24 (Winter 2021-2022), and 26 (Winter 2022-2023) with the last sample date of period 26 as 2023-01-09.

The following summary plot is calculated in R using the <code>geom_density</code> (https://ggplot2.tidyverse.org/reference/geom_density.html) statistical function in <code>ggplot</code>. The <code>geom_density</code> function computes and draws kernel density estimates, which is then represented as a smoothed version of a histogram.

Figure- Calculated live oyster density by periods 20 (Winter 2019-2020) and 22 (Winter 2020-2021) using a probability density function with the last sample date of period 22 as 2023-01-09.

Oyster density per m^2

600

800

400

200

0.000

Ö

Figure- Calculated dead oyster density by periods 20 (Winter 2019-2020) and 22 (Winter 2020-2021) using a probability density function with the last sample date of period 22 as 2023-01-09.

Oyster density per m^2

0.000

Live Oyster Density by Period (22 and 24)

Figure- Calculated live oyster density by periods 22 (Winter 2020-2021) and 24 (Winter 2021-2022) using a probability density function with the last sample date of period 24 as 2023-01-09.

Dead Oyster Density by Period (22 and 24)

Figure- Calculated dead oyster density by periods 22 (Winter 2020-2021) and 24 (Winter 2021-2022) using a probability density function with the last sample date of period 24 as 2023-01-09.

Live Oyster Density by Period (24 and 26)

Figure- Calculated live oyster density by periods 24 (Winter 2021-2022) and 26 (Winter 2022-2023) using a probability density function with the last sample date of period 26 as 2023-01-09.

Figure- Calculated dead oyster density by periods 24 (Winter 2021-2022) and 26 (Winter 2022-2023) using a probability density function with the last sample date of period 26 as 2023-01-09.

Figure- Live and dead oyster count comparison by periods 20 (Winter 2019-2020), 22 (Winter 2020-2021), 24 (Winter 2021-2022), and 26 (Winter 2022-2023) last sample date of period 26 as 2023-01-09.

Live Counts Double Pass Results

Figure- Boxplot of the difference in live counts between pass 1 and pass 2 (pass 1 live counts - pass 2 live counts) for period 18, 20, 22, 24,and 26

locality	period	mean_difference	sd_difference	CV
BT	18	-5.43	60.0	-11.1
LC	18	3.58	30.0	8.4
NN	18	13.17	15.5	1.2
LC	20	4.33	22.4	5.2
LT	20	2.64	39.2	14.9
BT	22	-1.00	18.9	-18.9
LC	22	0.14	9.0	63.6
LT	22	3.38	10.9	3.2
BT	24	9.23	14.0	1.5
LC	24	-0.44	8.7	-19.5
LC	26	-1.87	23.0	-12.3

Dead Counts Double Pass Results

Figure- Boxplot of the difference in dead counts between pass 1 and pass 2 (pass 1 dead counts - pass 2 dead counts) for period 18, 20, 22, 24, and 26

locality	period	CV_1	CV_2
BT	18	0.78	0.82
LC	18	2.35	2.06
NN	18	0.55	0.73
LC	20	1.93	1.62
LT	20	0.76	0.67
BT	22	0.60	0.66
LC	22	1.09	1.07
LT	22	0.69	0.66
BT	24	0.54	0.51
LC	24	1.13	1.11
LC	26	0.88	1.13

Sampling for all Periods

Next, we provide summary tables and plots for all transect sampling. These data were collected between 2010-05-27 and 2023-01-09. The following are only for live oysters.

Definitions of Periods

PERIOD	SEASON	YEAR
1	Summer	2010
2	Winter	2010-2011
3	Summer	2011
4	Winter	2011-2012
5	Summer	2012
6	Winter	2012-2013
7	Summer	2013
8	Winter	2013-2014
9	Summer	2014
10	Winter	2014-2015
11	Summer	2015
12	Winter	2015-2016
13	Summer	2016
14	Winter	2016-2017
15	Summer	2017
16	Winter	2017-2018
17	Summer	2018
18	Winter	2018-2019
19	Summer	2019
20	Winter	2019-2020
21	Summer	2020
22	Winter	2020-2021
23	Summer	2021
24	Winter	2021-2022
25	Summer	2022
26	Winter	2022-2023

Summary of Effort for all Periods

Locality Number of Transects Total Length (m)

Effort by Locality

18

18

18

LC

LT

NN

These effort summaries show the total number of transects and total number of meters walked per locality, strata, locality per period, and strata per period. These tables contain all data collected on the transects.

BT		19)		640	
CK		26	3	734		
CR		46	3	1375		
HB		45	5	1129		
LC		253	3	14	1939	
LT		21	_		542	
NN		14	<u> </u>		357	
Effort by						
Strata N	umber of Tran	sects	Total Le	ength ((m)	
N_N		134		43	379	
N_PILOT		15		10)50	
N_Y		41		47	785	
Y_N		214		61	L44	
Y_Y		20		33	356	
Effort by						
Period Nu	mber of Trans	ects 1	Cotal Ler	ngth (n	n)	
1		42		108		
2		30		75	53	
3		25		61	19	
6		33		91	19	
7		8		52	28	
10		8		51	12	
11		8		51	l1	
16		8		52	28	
18		61		266	30	
19		35		94	14	
20		47		258	36	
22		49		353	35	
24		48		305	59	
26		22		147	76	
Effort by	Locality and	Period	l			
Period Lo	cality Number	of Tr	ansects	Total	Length	(m)
1	CK		9			242
1	CR		10			300
1	HB		12			293
1	LC		11			250
10	LC		8			512
11	LC		8			511
16	LC		8			528
18	BT		6			238

2156

182

84

45

6

4

19	CK	9	221
19	CR	9	249
19	HB	9	247
19	LC	8	226
2	CR	9	283
2	HB	11	271
2	LC	10	199
20	BT	2	96
20	LC	34	2188
20	LT	7	176
20	NN	4	126
22	BT	5	132
22	LC	37	3228
22	LT	4	96
22	NN	3	78
24	BT	5	122
24	LC	36	2780
24	LT	4	87
24	NN	3	69
26	BT	1	52
26	LC	21	1424
3	CR	9	269
3	HB	7	184
3	LC	9	167
6	CK	8	271
6	CR	9	272
6	HB	6	134
6	LC	10	242
7	LC	8	528

Effort by Strata and Period

Period	Strata	Number	of	Transects	Total	Length	(m)
1	N_N			8		Ü	149
1	Y_N			34			937
10	N_N			4			256
10	N_PILOT			4			256
11	N_N			4			255
11	N_PILOT			4			256
16	N_N			4			264
16	N_PILOT			4			264
18	N_N			18			571
18	N_Y			13			977
18	Y_N			26			728
18	Y_Y			4			384
19	N_N			5			93
19	Y_N			30			851
2	N_N			8			148
2	Y_N			22			605
20	N_N			18			595
20	N_PILOT			1			23
20	N_Y			6			903
20	Y_N			17			602
20	Y_Y			5			464
22	N_N			20			546

22	N_Y	9	1324
22	Y_N	15	526
22	Y_Y	5	1138
24	N_N	19	521
24	N_PILOT	2	251
24	N_Y	9	1174
24	Y_N	15	412
24	Y_Y	3	700
26	N_N	2	128
26	N_Y	4	408
26	Y_N	13	270
26	Y_Y	3	670
3	N_N	8	147
3	Y_N	17	472
6	N_N	8	178
6	Y_N	25	740
7	N N	8	528

Effort Plot Summaries for all Periods

Total Transect Length Sampled by Locality

Figure – Bar plot of total transect length in meters sampled by locality for all periods.

Total Transect Length Sampled by Strata

Figure – Bar plot of total transect length in meters sampled by strata for all periods.

Total Transect Length Sampled by Period

Figure – Bar plot of total transect length in meters sampled by period for all periods.

Summary Tables for all Periods

These summaries display summary statistics of live oysters by locality, strata, and period. These contain all data collected on the oyster transects.

The summary statistics include:

- Locality or Strata or Period Mean
- Median
- Standard Deviation (SD)
- Variance (Var)
- Coefficient of variation (CV)
- Standard Error (SE)
- Lower 95% Confidence Interval assuming normal distribution (L95)
- Upper 95% Confidence Interval assuming normal distribution (U95)
- Bootstrap Mean (Bstrap Mean)
- Lower 95% Confidence Interval from Bootstrap Values (L95 Bstrap)
- Upper 95% Confidence Interval from Bootstrap Values (U95 Bstrap)

Live Count Statistics for all Periods

Live Oyst	er Cou	ınts b	y Loc	cality							
Locality	Mean	Media	n S	SD Va	ar	CV S	SE L	95 U9!	Bstrap_Mean	L95_Bstrap	U95_Bstrap
BT	1372	87	2 190	8 36389:	19 1.	39 43	38 5	14 2230	1364	732	2325
CK	857	44	4 109	119093	33 1.	27 2	14 43	38 127	7 863	493	1314
CR	. 1026	71	6 103	35 107216	32 1.	01 1	53 7	27 132	5 1022	737	1323
HB	902	36	4 104	109562	22 1.	16 1	58 59	92 121:	901	587	1201
LC	1323	70	0 171	.0 29235	56 1.	29 1	09 11:	10 153	5 1322	1124	1532
LT	1026	87	7 55	30372	21 0.	54 1	20 79	90 1262	2 1029	820	1265
NN	735	67	4 58	34129	95 0.	79 1	56 4:	29 104:	1 731	471	1071
	~		α.								
Live Oyst					~			- 1105	D . W	105 D	MOE D
Strata						V S			Bstrap_Mean		_
_	989			1025017				7 1161	991	832	1171
N_PILOT			925					1787	1318	905	1767
_	2912			4892643					2899	2262	3580
_	743	428							745	633	869
Y_Y	3458	2615	2942	865614	7 0.8	5 65	8 2169	9 4748	3475	2252	4830
Live Oyst	er Con	ınts b	v Pei	riod							
Period M			SD	Var	CV	SE	1.95	1195 1	Bstrap_Mean L	95 Bstrap II	95 Bstran
	404			1657932					1409	1064	1775
	890	476	945	893727				1234	893	579	1251
	738	296	817	668064				1065	742	427	1069
	433	176	534	284791			245	621	434	262	642
7	50	29	56		1.12		11	90	50	17	89
10 1	207	1074	671	449607	0.56	237		1672	1208	817	1646
11	886	776	678	459708	0.77	240	416	1356	893	458	1353
16	494	366	467	217855			170	817	501	222	827
18	982	695	935	874733				1217	991	775	1256
	555	329	573	328431			365	745	550	382	747
20 1				4517189					1861	1303	2506
22 1				2867783				1808	1341	916	1843
24 1				3403035					1734	1286	2241
26 2				6934945					2196	1207	3310
				0	•				===•		

Live Density Statistics for all Periods

	Č												
Live Density by Locality													
Locality	7 Mean	Median	SD	Var	CV	SE	L95	U95	Bstrap_Me	ean L9	5_Bstrap	U95_Bst	rap
ВТ	238	218	168	28363	0.71	38.6	162	313	4	239	170		321
CK	241	112	321	102927	1.33	62.9	118	364	4	240	129		377
CF	283	178	294	86605	1.04	43.4	198	368	4	280	198		364
HE	3 257	101	303	92052	1.18	45.7	168	347		257	171		348
LC	154	131	139	19183	0.90	8.8	137	172	:	154	137		173
LT	279	261	132	17460	0.47	28.8	222	335		280	227		340
NN	1 215	174	202	40919	0.94	54.1	109	321	2	214	127		327
T. D													
Live Dens					~ ~-								
									rap_Mean 1	L95_Bs	-		
N_N	253			56963 0					253		214	292	
N_PILOT	118			3467 0					119		92	149	
N_Y									169		140	201	
_	179			43104 1							153	210	
Y_Y	128	129	80	6428 0	.63 18	3 93	163		127		93	163	
Live Dens	sity by	y Perio	d										
Period M	lean Me	dian	SD	Var	CV	SE	L95	US	95 Bstrap	Mean	L95 Bstr	ap U95 E	strap
1	393 3	300.8 3	62.6	131444					_	392	286	_	510.8
2	255	119.0 2	85.2	81348	1.12	53 1	51.3	358	.9	253	154	.5	362.8
3				72523						234		.9	347.3
6	121			22767						121	71		180.5

Dead Count Statistics for all Periods

Dead Oyster	Counts by	Locality								
Locality Me	an Median	SD Va	r CV	SE	L95	U95	Bstrap_Mean	L95_Bstrap	U95_Bstrap	
BT 2	49 160	278 7723	1 1.12	64	123.6	374	250	140	391	
CK	78 32	106 1117	0 1.36	37	4.3	151	77	17	154	
CR	60 47	38 144	4 0.63	13	35.2	85	60	39	84	
HB	44 21	45 200	0 1.02	15	14.8	73	43	19	70	
LC 1	32 72	157 2473	3 1.19	11	110.5	153	131	112	152	
LT 2	18 141	180 3254	3 0.83	39	140.5	295	216	146	294	
NN	98 72	87 749	3 0.88	23	52.5	143	99	60	153	
Dead Oyster Counts by Strata										
Strata Mea	3		CV	CF I	. OE 110E	. Rat	trap_Mean L95	S Ratran IIO	5 Ratran	
N N 15		189 35865					156	122	194	
N PILOT 9			0.67				98	70	132	
N_FILOT 9		141 19786					145	105	187	
Y_N 9		141 19700 110 12129			77 118		98	79	119	
Y_Y 28		283 80317					278	163	400	
1_1 20	0 204 2	200 00017	1.01	00 .	100 400	,	210	100	400	
Dead Oyster	Counts by	Period								
Period Mean	Median S	SD Var	CV	SE	L95	U95	${\tt Bstrap_Mean}$	L95_Bstrap	U95_Bstrap	
7 29	18 3	898	1.03 1	0.6	8.2	50	29	12	50	
10 80	88 6	35 4245	0.82 2	3.0	34.5	125	78	42	122	
11 50	40 2	25 620	0.49	8.8	33.2	68	50	36	66	
16 44	28 4	1708	0.93 1	4.6	15.6	73	45	20	71	
18 133	55 19	92 36903	1.44 2	4.6	85.1	182	134	91	184	
19 63	44 6	37 4548	1.08 1	1.6	40.0	85	63	42	87	
20 148	107 14	19727	0.95 2	0.5	107.6	188	148	113	187	
22 191	128 19	37399	1.01 2	7.6	137.2	245	191	139	251	
24 192	130 19	94 37816	1.01 2	8.1	136.8	247	191	139	251	
26 129	81 14	19677	1.09 3	0.6	69.0	189	130	80	190	

Dead Density Statistics for all Periods

Dead Oyster Density by Locality													
Locali	ty Mea	n Media	an SD	Var	CV	SE	L95	U95	Bst	rap_Mean	L95_Bstrap	U95	_Bstrap
I	BT 4	6 3	34 33	1076	0.72	7.5	30.9	60		46	32.5		62
(CK 2	1 1	l1 28	757	1.29	9.7	2.3	40		22	5.8		40
(CR 1	8 1	l1 16	247	0.87	5.2	7.8	28		18	9.3		28
I	HB 1	3	8 14	201	1.12	4.7	3.4	22		13	4.6		22
]	LC 1	8 1	10 20	407	1.14	1.4	15.0	20		18	15.0		21
]	LT 5	4 4	17 35	1232	0.64	7.7	39.5	70		54	40.0		69
I	NN 2	8 2	21 22	463	0.78	5.7	16.4	39		28	17.7		39
Dead Oys	Dead Oyster Density by Strata												
Strata	a Mean	Mediar	ı Sl	D Var	CV	SE	L95	U95	Bst	rap_Mean	L95_Bstrap	U95	_Bstrap
N_I	N 33.1	27.7	30.	5 928						32.9	27.3		39
N_PILO	Т 8.7	8.7	4.3	3 18	0.49	1.1	6.5	11		8.7	6.8		11
N_3	Y 8.4	8.0	6.0	6 43	0.78	1.0	6.4	10		8.4	6.7		11
Y_I	N 22.3	13.5	5 23.5	2 536	1.04	2.2	18.1	27		22.3	18.3		27
Y_?	Y 9.8	9.6	6.3	3 39	0.64	1.4	7.0	13		9.8	6.9		12
Dead Oys		Ū		eriod									
Period								L95		Bstrap_l	_	-	U95_Bstrap
	2.9		3.0		1.03			.82	4.9		2.9	1.0	4.8
10				44.0							8.3	3.9	13.1
11		4.1	2.6		0.49			.41	7.0		5.2	3.7	
	4.4	2.8	4.1		0.93			.55	7.2		4.4	1.8	
	26.4			979.8								18.6	33.5
	17.5			371.9								11.9	
	27.7			681.6								20.5	
	28.5			807.0								21.2	
24	25.7	19.1	20.9	438.3	0.81	3.0)2 19	.83	31.7		25.9	20.3	31.8

13.7

8.7

20.1

26 13.8 10.3 14.0 195.3 1.01 3.05 7.80 19.8

Summary Density Plots for all Periods

Figure - Calculated live oyster density by locality for all periods including period 22 (current period).

Figure – Calculated dead oyster density by locality for all periods including period 22 (current period).

Figure – Calculated live oyster density by strata for all periods including period 22 (current period).

Figure – Calculated dead oyster density by strata for all periods including period 22 (current period).

Figure – Calculated live oyster density for all periods including period 24 (current period) using a probability densit

Figure - Calculated Dead oyster density for all periods including period 22 (current period) using a probability densit

Live Oyster Density by Locality

Figure – Box plot depicting live oyster density by locality for all periods including period 22 (current period).

Dead Oyster Density by Locality NN LT LC CR CK ВТ 50 100 Oyster density per m^2

Figure – Box plot depicting dead oyster density by locality for all periods including period 22 (current period).

Figure – Box plot depicting live oyster density by strata for all periods including period 22 (current period).

Figure – Box plot depicting dead oyster density by strata for all periods including period 22 (current period).

Live Oyster Density by Period

Figure – Box plot depicting live oyster density by period for all periods including period 22 (current period).

Dead Oyster Density by Period Period Oyster density per m^2

Figure – Box plot depicting dead oyster density by period for all periods including period 22 (current period).

Live Oyster Density by Locality and Period

Figure – Live oyster density by locality and period for all periods including period 22 (current period).

Dead Oyster Density by Locality and Period Locality вт CK Deriod 13 CR ΗВ LC LT NN 8. 2 ·

Oyster density per m^2 Figure – Dead oyster density by locality and period for all periods including period 22 (current period).

Live Oyster Density by Strata and Period

Figure – Live oyster density by strata and period for all periods including period 22 (current period).

Figure – Dead oyster density by strata and period for all periods including period 22 (current period).

Live and Dead Count Comparison For All Periods

Figure- Live and dead oyster comparison for all periods, last sample date of period 26 is 2023-01-09.

Summary Plots for Pilot Study Sites

A subset of the oyster transect locations were sampled over time for a pilot study. Here we provide plots of live oyster counts and density for these pilot stations with Lone Cabbage (LCO10B, LCO11A, LCO8B, LCO9A).

Average Density by Station and Period

Figure - Average live oyster density comparison by station and period for all stations that were sampled during the pilc

Figure – Average live oyster density comparison by station and strata for all stations that were sampled during the

Latest Data Entered

Displayed are the entries for the last date of sampling (2023-01-09).

2023-01-09 LC020	date	station	tran_length	count_live	count_dead	treatment	strata
2023-01-09 LC020					_		
2023-01-09					4	rocks	_
2023-01-09			7.5			rocks	_
2023-01-09				0	0	rocks	_
2023-01-09		LC020		3	0	rocks	_
2023-01-09 LC020 17.5 5 1 rocks Y_Y 2023-01-09 LC020 20.0 0 0 rocks Y_Y 2023-01-09 LC020 22.0 0 0 rocks Y_Y 2023-01-09 LC020 5.0 70 8 rocks Y_Y 2023-01-09 LC020 7.5 86 4 rocks Y_Y 2023-01-09 LC020 10.0 46 3 rocks Y_Y 2023-01-09 LC020 15.0 101 4 rocks Y_Y 2023-01-09 LC020 15.0 101 4 rocks Y_Y 2023-01-09 LC020 20.0 27 2 rocks Y_Y 2023-01-09 LC020 20.0 27 2 rocks Y_Y 2023-01-09 LC020 2.5 85 3 rocks Y_Y 2023-01-09 LC020 5.0 82 5		LC020			0	rocks	_
2023-01-09					1	rocks	_
2023-01-09 LC020 22.0 0 nocks Y_Y 2023-01-09 LC020 2.5 51 11 rocks Y_Y 2023-01-09 LC020 5.0 70 8 rocks Y_Y 2023-01-09 LC020 10.0 46 3 rocks Y_Y 2023-01-09 LC020 12.5 110 8 rocks Y_Y 2023-01-09 LC020 15.0 101 4 rocks Y_Y 2023-01-09 LC020 17.5 6 0 rocks Y_Y 2023-01-09 LC020 20.0 27 2 rocks Y_Y 2023-01-09 LC020 2.5 85 3 rocks Y_Y 2023-01-09 LC020 2.5 85 3 rocks Y_Y 2023-01-09 LC020 7.5 94 2 rocks Y_Y 2023-01-09 LC020 15.0 122 8 rocks <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>rocks</td> <td>_</td>					0	rocks	_
2023-01-09 LC020 2.5 51 11 rocks Y_Y 2023-01-09 LC020 5.0 70 8 rocks Y_Y 2023-01-09 LC020 7.5 86 4 rocks Y_Y 2023-01-09 LC020 10.0 46 3 rocks Y_Y 2023-01-09 LC020 15.0 101 4 rocks Y_Y 2023-01-09 LC020 17.5 6 0 rocks Y_Y 2023-01-09 LC020 20.0 27 2 rocks Y_Y 2023-01-09 LC020 22.0 2 0 rocks Y_Y 2023-01-09 LC020 5.0 82 5 rocks Y_Y 2023-01-09 LC020 7.5 94 2 rocks Y_Y 2023-01-09 LC020 15.0 122 8 rocks Y_Y 2023-01-09 LC020 15.0 122 8	2023-01-09			0	0	rocks	_
2023-01-09	2023-01-09			51	11	rocks	_
2023-01-09 LC020 7.5 86 4 rocks Y_Y 2023-01-09 LC020 10.0 46 3 rocks Y_Y 2023-01-09 LC020 12.5 110 8 rocks Y_Y 2023-01-09 LC020 15.0 101 4 rocks Y_Y 2023-01-09 LC020 20.0 27 2 rocks Y_Y 2023-01-09 LC020 22.0 2 0 rocks Y_Y 2023-01-09 LC020 2.5 85 3 rocks Y_Y 2023-01-09 LC020 5.0 82 5 rocks Y_Y 2023-01-09 LC020 7.5 94 2 rocks Y_Y 2023-01-09 LC020 10.0 78 4 rocks Y_Y 2023-01-09 LC020 12.5 73 0 rocks Y_Y 2023-01-09 LC020 15.0 102 8	2023-01-09	LC020	5.0	70	8	rocks	_
2023-01-09 LC020 10.0 46 3 rocks Y_Y 2023-01-09 LC020 12.5 110 8 rocks Y_Y 2023-01-09 LC020 15.0 101 4 rocks Y_Y 2023-01-09 LC020 17.5 6 0 rocks Y_Y 2023-01-09 LC020 22.0 2 0 rocks Y_Y 2023-01-09 LC020 2.5 85 3 rocks Y_Y 2023-01-09 LC020 5.0 82 5 rocks Y_Y 2023-01-09 LC020 7.5 94 2 rocks Y_Y 2023-01-09 LC020 10.0 78 4 rocks Y_Y 2023-01-09 LC020 15.0 122 8 rocks Y_Y 2023-01-09 LC020 15.0 122 8 rocks Y_Y 2023-01-09 LC020 25.0 38 2	2023-01-09		7.5	86		rocks	_
2023-01-09	2023-01-09	LC020	10.0	46	3	rocks	_
2023-01-09	2023-01-09	LC020	12.5	110	8	rocks	_
2023-01-09	2023-01-09	LC020	15.0	101	4	rocks	_
2023-01-09 LC020 20.0 27 2 rocks Y_Y 2023-01-09 LC020 22.0 2 0 rocks Y_Y 2023-01-09 LC020 2.5 85 3 rocks Y_Y 2023-01-09 LC020 7.5 94 2 rocks Y_Y 2023-01-09 LC020 10.0 78 4 rocks Y_Y 2023-01-09 LC020 12.5 73 0 rocks Y_Y 2023-01-09 LC020 15.0 122 8 rocks Y_Y 2023-01-09 LC020 15.0 122 8 rocks Y_Y 2023-01-09 LC020 20.0 89 7 rocks Y_Y 2023-01-09 LC020 20.0 89 7 rocks Y_Y 2023-01-09 LC020 25.0 38 2 rocks Y_Y 2023-01-09 LC020 2.5 132 2	2023-01-09	LC020	17.5	6	0	rocks	_
2023-01-09 LC020 22.0 2 0 rocks Y_Y 2023-01-09 LC020 2.5 85 3 rocks Y_Y 2023-01-09 LC020 5.0 82 5 rocks Y_Y 2023-01-09 LC020 7.5 94 2 rocks Y_Y 2023-01-09 LC020 10.0 78 4 rocks Y_Y 2023-01-09 LC020 12.5 73 0 rocks Y_Y 2023-01-09 LC020 15.0 122 8 rocks Y_Y 2023-01-09 LC020 20.0 89 7 rocks Y_Y 2023-01-09 LC020 20.0 89 7 rocks Y_Y 2023-01-09 LC020 25.0 38 2 rocks Y_Y 2023-01-09 LC020 2.5 132 2 rocks Y_Y 2023-01-09 LC020 5.0 104 1	2023-01-09	LC020	20.0	27	2	rocks	_
2023-01-09 LC020 2.5 85 3 rocks Y_Y 2023-01-09 LC020 5.0 82 5 rocks Y_Y 2023-01-09 LC020 7.5 94 2 rocks Y_Y 2023-01-09 LC020 12.5 73 0 rocks Y_Y 2023-01-09 LC020 15.0 122 8 rocks Y_Y 2023-01-09 LC020 17.5 86 7 rocks Y_Y 2023-01-09 LC020 20.0 89 7 rocks Y_Y 2023-01-09 LC020 22.0 128 3 rocks Y_Y 2023-01-09 LC020 25.0 38 2 rocks Y_Y 2023-01-09 LC020 2.5 132 2 rocks Y_Y 2023-01-09 LC020 5.0 104 1 rocks Y_Y 2023-01-09 LC020 15.0 101 1 <td>2023-01-09</td> <td>LC020</td> <td>22.0</td> <td>2</td> <td>0</td> <td>rocks</td> <td>_</td>	2023-01-09	LC020	22.0	2	0	rocks	_
2023-01-09 LC020 7.5 94 2 rocks Y_Y 2023-01-09 LC020 10.0 78 4 rocks Y_Y 2023-01-09 LC020 12.5 73 0 rocks Y_Y 2023-01-09 LC020 15.0 122 8 rocks Y_Y 2023-01-09 LC020 20.0 89 7 rocks Y_Y 2023-01-09 LC020 22.0 128 3 rocks Y_Y 2023-01-09 LC020 25.0 38 2 rocks Y_Y 2023-01-09 LC020 25.0 38 2 rocks Y_Y 2023-01-09 LC020 2.5 132 2 rocks Y_Y 2023-01-09 LC020 5.0 104 1 rocks Y_Y 2023-01-09 LC020 7.5 69 2 rocks Y_Y 2023-01-09 LC020 12.5 210 9 <td>2023-01-09</td> <td>LC020</td> <td>2.5</td> <td>85</td> <td>3</td> <td>rocks</td> <td>_</td>	2023-01-09	LC020	2.5	85	3	rocks	_
2023-01-09 LC020 10.0 78 4 rocks Y_Y 2023-01-09 LC020 12.5 73 0 rocks Y_Y 2023-01-09 LC020 15.0 122 8 rocks Y_Y 2023-01-09 LC020 17.5 86 7 rocks Y_Y 2023-01-09 LC020 22.0 128 3 rocks Y_Y 2023-01-09 LC020 25.0 38 2 rocks Y_Y 2023-01-09 LC020 2.5 132 2 rocks Y_Y 2023-01-09 LC020 5.0 104 1 rocks Y_Y 2023-01-09 LC020 7.5 69 2 rocks Y_Y 2023-01-09 LC020 10.0 71 0 rocks Y_Y 2023-01-09 LC020 12.5 210 9 rocks Y_Y 2023-01-09 LC020 15.0 101 1<	2023-01-09		5.0	82		rocks	_
2023-01-09 LC020 10.0 78 4 rocks Y_Y 2023-01-09 LC020 12.5 73 0 rocks Y_Y 2023-01-09 LC020 15.0 122 8 rocks Y_Y 2023-01-09 LC020 17.5 86 7 rocks Y_Y 2023-01-09 LC020 20.0 89 7 rocks Y_Y 2023-01-09 LC020 22.0 128 3 rocks Y_Y 2023-01-09 LC020 25.0 38 2 rocks Y_Y 2023-01-09 LC020 2.5 132 2 rocks Y_Y 2023-01-09 LC020 5.0 104 1 rocks Y_Y 2023-01-09 LC020 7.5 69 2 rocks Y_Y 2023-01-09 LC020 10.0 71 0 rocks Y_Y 2023-01-09 LC020 15.0 101 1 </td <td>2023-01-09</td> <td>LC020</td> <td>7.5</td> <td>94</td> <td>2</td> <td>rocks</td> <td>_</td>	2023-01-09	LC020	7.5	94	2	rocks	_
2023-01-09 LC020 12.5 73 0 rocks Y_Y 2023-01-09 LC020 15.0 122 8 rocks Y_Y 2023-01-09 LC020 17.5 86 7 rocks Y_Y 2023-01-09 LC020 20.0 89 7 rocks Y_Y 2023-01-09 LC020 22.0 128 3 rocks Y_Y 2023-01-09 LC020 25.0 38 2 rocks Y_Y 2023-01-09 LC020 2.5 132 2 rocks Y_Y 2023-01-09 LC020 5.0 104 1 rocks Y_Y 2023-01-09 LC020 7.5 69 2 rocks Y_Y 2023-01-09 LC020 10.0 71 0 rocks Y_Y 2023-01-09 LC020 15.0 101 1 rocks Y_Y 2023-01-09 LC020 20.0 99 2 </td <td>2023-01-09</td> <td>LC020</td> <td>10.0</td> <td>78</td> <td>4</td> <td>rocks</td> <td>_</td>	2023-01-09	LC020	10.0	78	4	rocks	_
2023-01-09 LC020 15.0 122 8 rocks Y_Y 2023-01-09 LC020 17.5 86 7 rocks Y_Y 2023-01-09 LC020 20.0 89 7 rocks Y_Y 2023-01-09 LC020 22.0 128 3 rocks Y_Y 2023-01-09 LC020 25.0 38 2 rocks Y_Y 2023-01-09 LC020 2.5 132 2 rocks Y_Y 2023-01-09 LC020 5.0 104 1 rocks Y_Y 2023-01-09 LC020 7.5 69 2 rocks Y_Y 2023-01-09 LC020 10.0 71 0 rocks Y_Y 2023-01-09 LC020 15.0 101 1 rocks Y_Y 2023-01-09 LC020 17.5 96 4 rocks Y_Y 2023-01-09 LC020 22.0 102 1<	2023-01-09	LC020	12.5	73	0	rocks	_
2023-01-09 LC020 17.5 86 7 rocks Y_Y 2023-01-09 LC020 20.0 89 7 rocks Y_Y 2023-01-09 LC020 22.0 128 3 rocks Y_Y 2023-01-09 LC020 25.0 38 2 rocks Y_Y 2023-01-09 LC020 2.5 132 2 rocks Y_Y 2023-01-09 LC020 5.0 104 1 rocks Y_Y 2023-01-09 LC020 7.5 69 2 rocks Y_Y 2023-01-09 LC020 10.0 71 0 rocks Y_Y 2023-01-09 LC020 12.5 210 9 rocks Y_Y 2023-01-09 LC020 15.0 101 1 rocks Y_Y 2023-01-09 LC020 17.5 96 4 rocks Y_Y 2023-01-09 LC020 20.0 99 2 </td <td>2023-01-09</td> <td>LC020</td> <td>15.0</td> <td>122</td> <td>8</td> <td>rocks</td> <td>_</td>	2023-01-09	LC020	15.0	122	8	rocks	_
2023-01-09 LC020 20.0 89 7 rocks Y_Y 2023-01-09 LC020 22.0 128 3 rocks Y_Y 2023-01-09 LC020 25.0 38 2 rocks Y_Y 2023-01-09 LC020 2.5 132 2 rocks Y_Y 2023-01-09 LC020 5.0 104 1 rocks Y_Y 2023-01-09 LC020 7.5 69 2 rocks Y_Y 2023-01-09 LC020 10.0 71 0 rocks Y_Y 2023-01-09 LC020 12.5 210 9 rocks Y_Y 2023-01-09 LC020 15.0 101 1 rocks Y_Y 2023-01-09 LC020 17.5 96 4 rocks Y_Y 2023-01-09 LC020 20.0 99 2 rocks Y_Y 2023-01-09 LC020 2.5 31 2 <td>2023-01-09</td> <td>LC020</td> <td>17.5</td> <td>86</td> <td>7</td> <td>rocks</td> <td>_</td>	2023-01-09	LC020	17.5	86	7	rocks	_
2023-01-09 LC020 22.0 128 3 rocks Y_Y 2023-01-09 LC020 25.0 38 2 rocks Y_Y 2023-01-09 LC020 2.5 132 2 rocks Y_Y 2023-01-09 LC020 5.0 104 1 rocks Y_Y 2023-01-09 LC020 7.5 69 2 rocks Y_Y 2023-01-09 LC020 10.0 71 0 rocks Y_Y 2023-01-09 LC020 12.5 210 9 rocks Y_Y 2023-01-09 LC020 15.0 101 1 rocks Y_Y 2023-01-09 LC020 17.5 96 4 rocks Y_Y 2023-01-09 LC020 20.0 99 2 rocks Y_Y 2023-01-09 LC020 22.5 20 2 rocks Y_Y 2023-01-09 LC020 2.5 31 2 <td>2023-01-09</td> <td>LC020</td> <td>20.0</td> <td>89</td> <td>7</td> <td>rocks</td> <td>_</td>	2023-01-09	LC020	20.0	89	7	rocks	_
2023-01-09 LC020 2.5 132 2 rocks Y_Y 2023-01-09 LC020 5.0 104 1 rocks Y_Y 2023-01-09 LC020 7.5 69 2 rocks Y_Y 2023-01-09 LC020 10.0 71 0 rocks Y_Y 2023-01-09 LC020 12.5 210 9 rocks Y_Y 2023-01-09 LC020 15.0 101 1 rocks Y_Y 2023-01-09 LC020 17.5 96 4 rocks Y_Y 2023-01-09 LC020 20.0 99 2 rocks Y_Y 2023-01-09 LC020 22.0 102 1 rocks Y_Y 2023-01-09 LC020 22.5 20 2 rocks Y_Y 2023-01-09 LC020 2.5 31 2 rocks Y_Y 2023-01-09 LC020 7.5 8 0	2023-01-09	LC020	22.0	128	3	rocks	Y _ Y
2023-01-09 LC020 2.5 132 2 rocks Y_Y 2023-01-09 LC020 5.0 104 1 rocks Y_Y 2023-01-09 LC020 7.5 69 2 rocks Y_Y 2023-01-09 LC020 10.0 71 0 rocks Y_Y 2023-01-09 LC020 12.5 210 9 rocks Y_Y 2023-01-09 LC020 15.0 101 1 rocks Y_Y 2023-01-09 LC020 17.5 96 4 rocks Y_Y 2023-01-09 LC020 20.0 99 2 rocks Y_Y 2023-01-09 LC020 22.0 102 1 rocks Y_Y 2023-01-09 LC020 22.5 20 2 rocks Y_Y 2023-01-09 LC020 2.5 31 2 rocks Y_Y 2023-01-09 LC020 7.5 8 0	2023-01-09	LC020	25.0	38	2	rocks	Y Y
2023-01-09 LC020 7.5 69 2 rocks Y_Y 2023-01-09 LC020 10.0 71 0 rocks Y_Y 2023-01-09 LC020 12.5 210 9 rocks Y_Y 2023-01-09 LC020 15.0 101 1 rocks Y_Y 2023-01-09 LC020 17.5 96 4 rocks Y_Y 2023-01-09 LC020 20.0 99 2 rocks Y_Y 2023-01-09 LC020 22.0 102 1 rocks Y_Y 2023-01-09 LC020 22.5 20 2 rocks Y_Y 2023-01-09 LC020 2.5 31 2 rocks Y_Y 2023-01-09 LC020 5.0 0 0 rocks Y_Y 2023-01-09 LC020 7.5 8 0 rocks Y_Y 2023-01-09 LC020 12.5 34 3	2023-01-09	LC020	2.5	132	2	rocks	Y_Y
2023-01-09 LC020 10.0 71 0 rocks Y_Y 2023-01-09 LC020 12.5 210 9 rocks Y_Y 2023-01-09 LC020 15.0 101 1 rocks Y_Y 2023-01-09 LC020 17.5 96 4 rocks Y_Y 2023-01-09 LC020 20.0 99 2 rocks Y_Y 2023-01-09 LC020 22.0 102 1 rocks Y_Y 2023-01-09 LC020 22.5 20 2 rocks Y_Y 2023-01-09 LC020 2.5 31 2 rocks Y_Y 2023-01-09 LC020 5.0 0 0 rocks Y_Y 2023-01-09 LC020 7.5 8 0 rocks Y_Y 2023-01-09 LC020 12.5 34 3 rocks Y_Y 2023-01-09 LC020 15.0 40 8	2023-01-09	LC020	5.0	104	1	rocks	Y_Y
2023-01-09 LC020 12.5 210 9 rocks Y_Y 2023-01-09 LC020 15.0 101 1 rocks Y_Y 2023-01-09 LC020 17.5 96 4 rocks Y_Y 2023-01-09 LC020 20.0 99 2 rocks Y_Y 2023-01-09 LC020 22.0 102 1 rocks Y_Y 2023-01-09 LC020 22.5 20 2 rocks Y_Y 2023-01-09 LC020 2.5 31 2 rocks Y_Y 2023-01-09 LC020 5.0 0 0 rocks Y_Y 2023-01-09 LC020 7.5 8 0 rocks Y_Y 2023-01-09 LC020 10.0 25 2 rocks Y_Y 2023-01-09 LC020 15.0 40 8 rocks Y_Y 2023-01-09 LC020 17.5 40 4	2023-01-09	LC020	7.5	69	2	rocks	Y_Y
2023-01-09 LC020 15.0 101 1 rocks Y_Y 2023-01-09 LC020 17.5 96 4 rocks Y_Y 2023-01-09 LC020 20.0 99 2 rocks Y_Y 2023-01-09 LC020 22.0 102 1 rocks Y_Y 2023-01-09 LC020 22.5 20 2 rocks Y_Y 2023-01-09 LC020 2.5 31 2 rocks Y_Y 2023-01-09 LC020 5.0 0 0 rocks Y_Y 2023-01-09 LC020 7.5 8 0 rocks Y_Y 2023-01-09 LC020 10.0 25 2 rocks Y_Y 2023-01-09 LC020 12.5 34 3 rocks Y_Y 2023-01-09 LC020 15.0 40 8 rocks Y_Y 2023-01-09 LC020 20.0 61 4	2023-01-09	LC020	10.0	71	0	rocks	Y_Y
2023-01-09 LC020 17.5 96 4 rocks Y_Y 2023-01-09 LC020 20.0 99 2 rocks Y_Y 2023-01-09 LC020 22.0 102 1 rocks Y_Y 2023-01-09 LC020 22.5 20 2 rocks Y_Y 2023-01-09 LC020 2.5 31 2 rocks Y_Y 2023-01-09 LC020 5.0 0 0 rocks Y_Y 2023-01-09 LC020 7.5 8 0 rocks Y_Y 2023-01-09 LC020 10.0 25 2 rocks Y_Y 2023-01-09 LC020 12.5 34 3 rocks Y_Y 2023-01-09 LC020 15.0 40 8 rocks Y_Y 2023-01-09 LC020 17.5 40 4 rocks Y_Y 2023-01-09 LC020 20.0 61 4	2023-01-09	LC020	12.5	210	9	rocks	Y_Y
2023-01-09 LC020 20.0 99 2 rocks Y_Y 2023-01-09 LC020 22.0 102 1 rocks Y_Y 2023-01-09 LC020 22.5 20 2 rocks Y_Y 2023-01-09 LC020 2.5 31 2 rocks Y_Y 2023-01-09 LC020 5.0 0 0 rocks Y_Y 2023-01-09 LC020 7.5 8 0 rocks Y_Y 2023-01-09 LC020 10.0 25 2 rocks Y_Y 2023-01-09 LC020 12.5 34 3 rocks Y_Y 2023-01-09 LC020 15.0 40 8 rocks Y_Y 2023-01-09 LC020 17.5 40 4 rocks Y_Y 2023-01-09 LC020 20.0 61 4 rocks Y_Y 2023-01-09 LC020 22.0 8 0	2023-01-09	LC020	15.0	101	1	rocks	Y_Y
2023-01-09 LC020 22.0 102 1 rocks Y_Y 2023-01-09 LC020 22.5 20 2 rocks Y_Y 2023-01-09 LC020 2.5 31 2 rocks Y_Y 2023-01-09 LC020 5.0 0 0 rocks Y_Y 2023-01-09 LC020 7.5 8 0 rocks Y_Y 2023-01-09 LC020 10.0 25 2 rocks Y_Y 2023-01-09 LC020 12.5 34 3 rocks Y_Y 2023-01-09 LC020 15.0 40 8 rocks Y_Y 2023-01-09 LC020 17.5 40 4 rocks Y_Y 2023-01-09 LC020 20.0 61 4 rocks Y_Y 2023-01-09 LC020 22.0 8 0 rocks Y_Y 2023-01-09 LC020 22.0 8 0	2023-01-09	LC020	17.5	96	4	rocks	Y_Y
2023-01-09 LC020 22.5 20 2 rocks Y_Y 2023-01-09 LC020 2.5 31 2 rocks Y_Y 2023-01-09 LC020 5.0 0 0 rocks Y_Y 2023-01-09 LC020 7.5 8 0 rocks Y_Y 2023-01-09 LC020 10.0 25 2 rocks Y_Y 2023-01-09 LC020 12.5 34 3 rocks Y_Y 2023-01-09 LC020 15.0 40 8 rocks Y_Y 2023-01-09 LC020 17.5 40 4 rocks Y_Y 2023-01-09 LC020 20.0 61 4 rocks Y_Y 2023-01-09 LC020 22.0 8 0 rocks Y_Y 2023-01-09 LC020 25 68 2 rocks Y_Y	2023-01-09	LC020	20.0	99	2	rocks	Y_Y
2023-01-09 LC020 2.5 31 2 rocks Y_Y 2023-01-09 LC020 5.0 0 0 rocks Y_Y 2023-01-09 LC020 7.5 8 0 rocks Y_Y 2023-01-09 LC020 10.0 25 2 rocks Y_Y 2023-01-09 LC020 12.5 34 3 rocks Y_Y 2023-01-09 LC020 15.0 40 8 rocks Y_Y 2023-01-09 LC020 17.5 40 4 rocks Y_Y 2023-01-09 LC020 20.0 61 4 rocks Y_Y 2023-01-09 LC020 22.0 8 0 rocks Y_Y 2023-01-09 LC020 25 68 2 rocks Y_Y	2023-01-09	LC020	22.0	102	1	rocks	Y_Y
2023-01-09 LC020 5.0 0 0 rocks Y_Y 2023-01-09 LC020 7.5 8 0 rocks Y_Y 2023-01-09 LC020 10.0 25 2 rocks Y_Y 2023-01-09 LC020 12.5 34 3 rocks Y_Y 2023-01-09 LC020 15.0 40 8 rocks Y_Y 2023-01-09 LC020 17.5 40 4 rocks Y_Y 2023-01-09 LC020 20.0 61 4 rocks Y_Y 2023-01-09 LC020 22.0 8 0 rocks Y_Y 2023-01-09 LC020 2.5 68 2 rocks Y_Y	2023-01-09	LC020	22.5	20	2	rocks	Y_Y
2023-01-09 LC020 7.5 8 0 rocks Y_Y 2023-01-09 LC020 10.0 25 2 rocks Y_Y 2023-01-09 LC020 12.5 34 3 rocks Y_Y 2023-01-09 LC020 15.0 40 8 rocks Y_Y 2023-01-09 LC020 17.5 40 4 rocks Y_Y 2023-01-09 LC020 20.0 61 4 rocks Y_Y 2023-01-09 LC020 22.0 8 0 rocks Y_Y 2023-01-09 LC020 2.5 68 2 rocks Y_Y	2023-01-09	LC020	2.5	31	2	rocks	Y_Y
2023-01-09 LC020 10.0 25 2 rocks Y_Y 2023-01-09 LC020 12.5 34 3 rocks Y_Y 2023-01-09 LC020 15.0 40 8 rocks Y_Y 2023-01-09 LC020 17.5 40 4 rocks Y_Y 2023-01-09 LC020 20.0 61 4 rocks Y_Y 2023-01-09 LC020 22.0 8 0 rocks Y_Y 2023-01-09 LC020 2.5 68 2 rocks Y_Y	2023-01-09	LC020	5.0	0	0	rocks	Y_Y
2023-01-09 LC020 12.5 34 3 rocks Y_Y 2023-01-09 LC020 15.0 40 8 rocks Y_Y 2023-01-09 LC020 17.5 40 4 rocks Y_Y 2023-01-09 LC020 20.0 61 4 rocks Y_Y 2023-01-09 LC020 22.0 8 0 rocks Y_Y 2023-01-09 LC020 2.5 68 2 rocks Y_Y	2023-01-09	LC020	7.5	8	0	rocks	Y_Y
2023-01-09 LC020 15.0 40 8 rocks Y_Y 2023-01-09 LC020 17.5 40 4 rocks Y_Y 2023-01-09 LC020 20.0 61 4 rocks Y_Y 2023-01-09 LC020 22.0 8 0 rocks Y_Y 2023-01-09 LC020 2.5 68 2 rocks Y_Y	2023-01-09	LC020	10.0	25	2	rocks	Y_Y
2023-01-09 LC020 17.5 40 4 rocks Y_Y 2023-01-09 LC020 20.0 61 4 rocks Y_Y 2023-01-09 LC020 22.0 8 0 rocks Y_Y 2023-01-09 LC020 2.5 68 2 rocks Y_Y	2023-01-09		12.5	34	3	rocks	Y_Y
2023-01-09 LC020 20.0 61 4 rocks Y_Y 2023-01-09 LC020 22.0 8 0 rocks Y_Y 2023-01-09 LC020 2.5 68 2 rocks Y_Y	2023-01-09	LC020	15.0	40	8	rocks	
2023-01-09 LC020 20.0 61 4 rocks Y_Y 2023-01-09 LC020 22.0 8 0 rocks Y_Y 2023-01-09 LC020 2.5 68 2 rocks Y_Y	2023-01-09	LC020	17.5	40	4	rocks	
2023-01-09 LC020 2.5 68 2 rocks Y_Y	2023-01-09	LC020	20.0	61	4	rocks	Y_Y
-	2023-01-09	LC020	22.0	8	0	rocks	Y_Y
2023-01-09 LC020 5.0 167 8 rocks Y_Y	2023-01-09	LC020	2.5	68	2	rocks	Y_Y
	2023-01-09	LC020	5.0	167	8	rocks	Y_Y

2023-01-09	LC020	7.5	135	6	rocks	Y_Y
2023-01-09	LC020	10.0	144	4	rocks	Y_Y
2023-01-09	LC020	12.5	147	4	rocks	Y_Y
2023-01-09	LC020	15.0	70	7	rocks	Y_Y
2023-01-09	LC020	17.5	111	4	rocks	Y_Y
2023-01-09	LC020	20.0	113	10	rocks	Y_Y
2023-01-09	LC020	22.0	62	4	rocks	Y_Y
2023-01-09	LC020	23.6	81	5	rocks	Y_Y
2023-01-09	LC020	2.5	65	2	rocks	Y_Y
2023-01-09	LC020	5.0	90	3	rocks	Y_Y
2023-01-09	LC020	7.5	29	2	rocks	Y_Y
2023-01-09	LC020	10.0	83	3	rocks	Y_Y
2023-01-09	LC020	12.5	53	2	rocks	Y_Y
2023-01-09	LC020	15.0	49	6	rocks	Y_Y
2023-01-09	LC020	17.5	109	2	rocks	Y_Y
2023-01-09	LC020	20.0	62	6	rocks	Y_Y
2023-01-09	LC020	22.0	44	2	rocks	Y_Y
2023-01-09	LC020	24.1	62	4	rocks	Y _ Y
2023-01-09	LC020	2.5	62	4	rocks	Y_Y
2023-01-09	LC020	5.0	109	7	rocks	Y _ Y
2023-01-09	LC020	7.5	56	3	rocks	Y _ Y
2023-01-09	LC020	10.0	96	7	rocks	Y _ Y
2023-01-09	LC020	12.5	98	5	rocks	Y_Y
2023-01-09	LC020	15.0	71	2	rocks	Y_Y
2023-01-09	LC020	17.5	69	1	rocks	Y_Y
2023-01-09	LC020	20.0	90	4	rocks	Y_Y
2023-01-09	LC020	22.0	75	4	rocks	Y_Y
2023-01-09	LC020	25.0	96	3	rocks	Y_Y
2023-01-09	LC020	2.5	107	5	rocks	Y_Y
2023-01-09	LC020	5.0	106	4	rocks	Y_Y
2023-01-09	LC020	7.5	73	2	rocks	Y_Y
2023-01-09	LC020	10.0	132	1	rocks	Y_Y
2023-01-09	LC020	12.5	93	2	rocks	Y_Y
2023-01-09	LC020	15.0	106	2	rocks	Y_Y
2023-01-09	LC020	17.5	101	4	rocks	Y_Y
2023-01-09	LC020	20.0	121	5	rocks	Y_Y
2023-01-09	LC020	22.0	75	2	rocks	Y_Y
2023-01-09	LC020	25.0	156	3	rocks	Y_Y
2023-01-09	LC020	2.5	42	6	rocks	Y_Y
2023-01-09	LC020	5.0	31	2	rocks	Y_Y
2023-01-09	LC020	7.5	35	3	rocks	Y_Y
2023-01-09	LC020	10.0	25	2	rocks	Y_Y
2023-01-09	LC020	12.5	5	0	rocks	Y_Y
2023-01-09	LC020	15.0	9	0	rocks	Y_Y
2023-01-09	LC020	17.5	64	3	rocks	Y_Y
2023-01-09	LC020	20.0	34	2	rocks	Y_Y
2023-01-09	LC020	22.0	39	0	rocks	Y_Y
2023-01-09	LC020	24.5	9	1	rocks	Y_Y
2023-01-09	LCI25	2.5	2	0	control	Y_N
2023-01-09	LCI25	5.0	4	0	control	Y_N
2023-01-09	LCI25	7.5	0	0	control	Y_N
2023-01-09	LCI25	10.0	1	0	control	Y_N
2023-01-09	LCI25	12.5	15	2	control	Y_N
2023-01-09	LCI25	15.0	7	0	control	Y_N
			•	ū		

2023-01-09	LCI25	17.5	31	3	control	Y_N
2023-01-09	LCI25	20.0	48	3	control	Y_N
2023-01-09	LCI25	22.5	37	5	control	Y_N
2023-01-09	LCI25	25.0	15	3	control	Y_N
2023-01-09	LCI25	26.5	6	2	control	Y_N
2023-01-09	LCI25	2.5	2	1	control	Y_N
2023-01-09	LCI25	5.0	5	0	control	Y_N
2023-01-09	LCI25	7.5	1	1	control	Y_N
2023-01-09	LCI25	10.0	2	0	control	Y_N
2023-01-09	LCI25	12.5	20	3	control	Y_N
2023-01-09	LCI25	15.0	4	0	control	Y_N
2023-01-09	LCI25	17.5	30	7	control	Y_N
2023-01-09	LCI25	20.0	26	4	control	Y_N
2023-01-09	LCI25	22.5	39	3	control	Y_N
2023-01-09	LCI25	25.0	13	3	control	Y_N
2023-01-09	LCI25	26.5	5	1	control	Y_N
2023-01-09	LCI18	2.5	0	0	control	Y_N
2023-01-09	LCI18	5.0	0	0	control	Y_N
2023-01-09	LCI18	7.5	0	0	control	Y_N
2023-01-09	LCI18	10.0	14	2	control	Y_N
2023-01-09	LCI18	12.5	2	0	control	Y_N
2023-01-09	LCI18	15.0	0	0	control	Y_N
2023-01-09	LCI18	17.5	0	2	control	Y_N
2023-01-09	LCI18	20.0	0	0	control	Y_N
2023-01-09	LCI18	22.5	0	0	control	Y_N
2023-01-09	LCI18	25.0	55	17	control	Y_N
2023-01-09	LCI18	27.5	30	2	control	Y_N
2023-01-09	LCI18	30.0	38	4	control	Y_N
2023-01-09	LCI18	30.5	0	0	control	Y_N