OPIM 5604 – Predictive Modeling Professor Eigo

Absenteeism at Work Project #2

December 2, 2020

Table of Contents

Executive Summary	2
Problem Statement	3
Methodology	3
Results	8
Conclusions and Recommendations	9
References	11
Appendix	11

Executive Summary

In the courier industry, competition is fierce, and companies must rapidly innovate to keep up with their competitors and maintain customer satisfaction. The major factor in both is labor. With absenteeism comes a disruption in productivity and in turn disrupts profitability. The longer the absence of a worker, the larger the impact. This paper aims to help companies in the courier industry discover more insight into the factors that cause absenteeism by analyzing what factors influence the duration of a single absenteeism event. We used the SEMMA process to help us explore and analyze the dataset, as well as preprocess our data and build our predictive models.

First, we preprocessed our dataset by sampling, exploring, and modifying it. The major conclusions we discovered during this process were: 'Reason for absence' and 'absenteeism time in hours' had the strongest relationship. We needed to modify our target variable to fit our purposes. As the longer the absence the greater the disruption, we transformed our target variable into 0-8 and > 8 hours and classed it as a categorical variable. A validation column was also created to oversample > 8 hours period. Then we built our seven predictive models: Regression, Decision Tree, Neural Network, Discriminant Analysis, KNN, Naive Bayes, and Ensemble. Lastly, we assessed our predictive models on their misclassification rate and RMSE.

Based on each model's misclassification rate, RASE, RSquare, and RMSE, we concluded that our Ensemble model predicted the duration of a single absenteeism event with the most accuracy. We recommend that courier companies do the following: (1) Establish attendance policies and attendance tracking system (Madlinger, Grace). (2) Evaluate and update health policies to include coverage that is relevant to employees (Madlinger, Grace). (3) Screen employees for variables related to absenteeism and continually monitor employee absenteeism. (4) Establish a system to reward employees who do not participate in absenteeism and enable other employees to improve. (5) Organize orientation programs highlighting the consequences of absenteeism. (6) Create flexible working options for the employees who work desk jobs and have a need to work from home.

Problem Statement

Every workplace deals with absenteeism. It is an unavoidable fact of life that planned and unplanned events will and can happen. When an employee is habitually absent from work it is costly. Not only does it affect the number of packages delivered and delivery times which in turn affects competition and customer satisfaction, but it can also increase the stress levels of other employees and affect their overall morale and their health. Thus, leading to a cycle of absenteeism and decreased productivity. We set out to find what are the factors and how the company might mitigate them.

Methodology

SAMPLE

The dataset used for our predictive modeling project is the Absenteeism at Work dataset from UCI Machine Learning Repository's archive of clean tabular datasets. The dataset was collected from a courier service in Brazil by PhD students at the Universidade Nove de Julho (UCI Machine Learning Repository: Absenteeism at Work Data Set). It contains 21 columns and 740 rows describing instances of absenteeism, general information about employees, and reasons for absenteeism recorded over the course of 3 years (UCI Machine Learning Repository: Absenteeism at Work Data Set).

EXPLORE

In this project, we are looking at 'Absenteeism in Hours' (target variable) and which predictive variables influence the duration of a single absentee event. Early on we found that rather than looking at the 38 employees (the dataset would be too small) we needed to look at each absentee event as unique (700 absentee events). When we looked at the distribution of 'Absenteeism in Hours' we found that it would be best to keep the data as it was. We determined that in our modification steps we needed to split it into two categories of less than 1 workday and more than 1 workday to predict the greatest impact. Based on the distribution we knew that more than 1 workday would be a rare event as the average was 3 hours.

After performing 'Multivariate Correlations' on the continuous predictor variables we found that the most significant variables to 'Absenteeism in Hours' were: 'Reason for Absence' 17%, 'Height' 14%, 'Day of the Week' 12%, 'Disciplinary Failure' 12%, and 'Son' 11%.

Disciplinary failure	Education	Son So	cial drinker So	cial smoker	Pet	Weight	Height Absent	eeism time in hours
0.5451	-0.0474	-0.0554	0.0654	-0.1157	-0.0559	-0.0003	-0.0793	-0.1731
0.1079	-0.0661	0.0790	0.0562	-0.0386	0.0478	0.0233	-0.0689	0.0243
-0.0151	0.0585	0.0981	0.0418	0.0132	-0.0289	-0.1290	-0.0821	-0.1244
0.1518	-0.0030	0.0470	-0.0460	-0.0487	0.0124	-0.0263	-0.0337	-0.0056
0.1092	-0.0551	0.3830	0.1451	0.0444	0.4001	-0.2074	-0.1945	0.0276
-0.0565	-0.2596	0.0542	0.4522	-0.0754	0.2059	-0.0479	-0.3534	-0.0884
-0.0002	-0.2130	-0.0471	0.3531	0.0724	-0.4403	0.4560	-0.0531	0.0190
0.1043	-0.2219	0.0570	0.2132	0.1217	-0.2312	0.4187	-0.0630	0.0658
0.0290	-0.0750	0.0278	-0.0337	0.0310	0.0071	-0.0385	0.1033	0.0247
0.0438	-0.1013	0.0347	-0.0221	0.0178	0.0148	-0.0393	0.0718	0.0197
-0.1480	0.1011	-0.0141	-0.1025	0.0513	0.0072	-0.0449	0.0933	0.0267
1.0000	-0.0593	0.0721	0.0518	0.1167	0.0189	0.0722	-0.0105	-0.1242
-0.0593	1.0000	-0.1886	-0.4200	0.0327	-0.0536	-0.3006	0.1010	-0.0462
0.0721	-0.1886	1.0000	0.2064	0.1561	0.1089	-0.1396	-0.0142	0.1138
0.0518	-0.4200	0.2064	1.0000	-0.1117	-0.1228	0.3787	0.1700	0.0651
0.1167	0.0327	0.1561	-0.1117	1.0000	0.1054	-0.1985	0.0033	-0.0089
0.0189	-0.0536	0.1089	-0.1228	0.1054	1.0000	-0.1038	-0.1031	-0.0283
0.0722	-0.3006	-0.1396	0.3787	-0.1985	-0.1038	1.0000	0.3068	0.0158
-0.0105	0.1010	-0.0142	0.1700	0.0033	-0.1031	0.3068	1.0000	0.1444
-0.1242	-0.0462	0.1138	0.0651	-0.0089	-0.0283	0.0158	0.1444	1,0000

MODIFY

We performed the following treatments to our dataset: (1) We binned our target variable (Absenteeism Time in Hours) into 2 categories - 0 to 8 hours (1 workday or less) and > 8 hours. (more than 1 workday). We also reclassified it as a nominal variable as it would aid us in building models that predicted events of > 8 hours, to better identify events that would cause the greatest impact. (2) We partitioned our data

into 60% Training and 40% Validation in accordance with the size of the dataset. Since > 8 hours occurs less often than 0 to 8 hours, we also created an extra validation column that oversampled this event. (4) There were no missing values in this data, however, there were outliers in Age (no treatment - relevant to data and small in scale in terms of variance) and Height (transformed to normal quantile). (5) We decided to exclude BMI as it would be redundant to Weight and Height. (6) We binned Workload Average/Day into 40,000 range bins. The data was transformed from 38 unique values to 5 unique ranges.

Please see Appendix B: JMP Screenshots - Modify

MODEL

Regression Models

For our Regression models, we built both Logistic and Linear regression models with all our predictor variables. We determined that the best model of the two was the Logistic Regression model and decided to use this model for our final model comparison. The most influential variable in our logistic regression model was the Reason for Absence, as each category was both substantially influential on the prediction and differentiated from other categories. The only other truly noteworthy differentiation could be found in Education. Having secondary education makes having a long absentee event much less likely.

Please see Appendix A: Predictive Variables and Appendix B: JMP Screenshots - Model - Regression Models

Decision Tree Model

For our best Decision Tree model, we used all the predictor variables and the binned target variable as the inputs. The resultant model had just 1 split at "reason for absence". Additionally, we used the validation column which oversamples our dataset to build our decision tree models. On further pruning and testing with additional splits, we were able to build our optimum tree model with 4 splits at 'Reason for Absence', 'Social Drinker', 'Day of the Week', and 'Distance from Residence to Work'.

Please see Appendix A: Predictive Variables and Appendix B: JMP Screenshots - Model - Decision Tree

Model

Discriminant Analysis Model

The best Discriminant Analysis model we built used all predictive variables. With this model, we adjusted the prior probabilities to match our population and the cutoff to register calculated probabilities of taking the additional sick time of 0.3 or greater as ">8" events. However, we did not retain the adjusted cutoff for our ensemble model since that would disrupt the voting algorithm. The discriminant analysis model type was not a good fit for our data, since few of our predictors were normal, there were many outliers within the critical Reason for Absenteeism variable, and not all predictors were equally correlated with the target variable.

Please see Appendix A: Predictive Variables and Appendix B: JMP Screenshots - Model - Discriminant Analysis Model

Neural Network Model

Our best Neural Network model used the following variables for the input layer: 'Reason for Absence', 'Day of the Week', 'Distance from Residence', 'Social Drinker', 'Pet', and 'Height.' We also used 1 hidden layer with 3 nodes: 1 Tanh, 1 Linear, and 1 Gaussian. The model is combining the input information and captures complex relationships between the outcome and predictors. There are multiple iterations done to find weights that give the best results.

Please see Appendix A: Predictive Variables and Appendix B: JMP Screenshots - Model - Neural Network

Model

KNN Model

The KNN model can be used for both categorical and continuous variables, so we build 2 models with different outcomes. For continuous target variables, we first use all the predictive variables to build the model. To reduce dimensionality, we use PCs to build the model again. For categorical target variables, we still use all the predictive variables to build the model first and then use PCs to build the model again. We determined that the best model for our model comparison was the model built with categorical variables.

Please see Appendix A: Predictive Variables and Appendix B: JMP Screenshots - Model - KNN Model

Naive Bayes

The Naive Bayes model looks at the classification of existing records to classify a new record. The best model that we built performed fairly well using all the categorical predictive variables. We changed the variables 'Pet' and 'Son' to nominal and used these columns, along with the rest of the categorical variables in the data set, as the predictors for this model to predict the binned 'Absenteeism time in hours.' Since there were no continuous variables that were significant predictors for our model, it wasn't necessary to add any to this one.

Please see Appendix A: Predictive Variables and Appendix B: JMP Screenshots - Model - Naive Bayes Model

Ensemble

Our Ensemble model includes the results from Logistic, Neural Network, Naïve Bayes, KNN, and Decision Tree models. We used the 'Model Averaging' tool to create our ensemble model. Below are the formulas for our 0 to 8 and > 8 hours predicted probabilities, generated by using 'Model Averaging' within JMP, which simply averages the fits for the various models.

Additionally, we used the voting method to formulate our ensemble model classifications, classifying records with the category that was predicted by at least three of our five major models.

	nteeism time in hours	Absenteeism time in hours	Validation	Validation Stratified by Absenteeism time in	Logistic Regression Classification	Neural Model Classification	Naive Bayes Predictions	Decision Tree Classification	KNN Classification	Absenteeism Binned 0 — 8 Avg Predictor By Validation	Absenteeism Binned 2 > 8 Avg Predictor By Validation	Ensemble Model
377	3	0 — 8	Validation	Validation	0-8	0-8	0-8	0-8	0 - 8	0.9724200595	0.0275799405	0-8
378	8	8 — 0	Training	Validation	0-8	0-8	0-8	8 — 0	8 — 0	0.8722341293	0.1277658707	0-8
379	8	8 — 0	Validation	Validation	0 - 8	0 — 8	0-8	0 — 8	0 — 8	0.9417591041	0.0582408959	0 - 8
380	3	8 — 0	Training	Training	0 — 8	0-8	0-8	8 — 0	0 — 8	0.9908629273	0.0091370727	0-8
381	8	8 — 0	Training	Validation	0 - 8	0 — 8	0-8	0 — 8	0 — 8	0.9936611265	0.0063388735	0-8
382	3	8 — 0	Validation	Training	0 — 8	0-8	0-8	8 — 0	0 — 8	0.9506423219	0.0493576781	0-8
383	2	8 — 0	Training	Training	0 — 8	0 — 8	0 - 8	0 — 8	0 — 8	0.9822329332	0.0177670668	0-8
384	2	8 — 0	Training	Training	0 — 8	0-8	0-8	0 — 8	0 — 8	0.9816103155	0.0183896845	0-8
385	16	>8	Training	Training	>8	0 — 8	0-8	>8	0 — 8	0.3618098543	0.6381901457	0-8
386	3	8 — 0	Validation	Validation	0 — 8	0-8	0-8	0 — 8	0 — 8	0.9722729047	0.0277270953	0-8
387	3	8 — 0	Training	Validation	0 — 8	0 — 8	0 - 8	0 — 8	0 — 8	0.9908271403	0.0091728597	0-8
388	24	>8	Training	Training	0-8	0-8	0-8	0-8	0 — 8	0.8398777428	0.1601222572	0-8
389	3	8 — 0	Validation	Validation	0-8	0-8	0 - 8	8 — 0	8 — 0	0.9722009435	0.0277990565	0-8
390	3	8 — 0	Training	Validation	0-8	0-8	0-8	8 — 0	8 — 0	0.9908002826	0.0091997174	0-8
391	8	8 — 0	Validation	Training	0-8	0-8	0-8	8 — 0	8 — 0	0.9910405342	0.0089594658	0-8
	16	>8	Training	Training	>8	0-8	>8	>8	8 — 0	0.2857006645	0.7142993355	>8

Please see Appendix A: Predictive Variables and Appendix B: JMP Screenshots - Model - Ensemble Model

ASSESS

After building and determining the best model in each model type we needed to determine the best model overall. We decided on measuring each model's performance based on their misclassification rate, RSquare, RASE, and RMSE in the model comparison application in JMP.

Results

We determined based on the performance of the 'Model Comparison' application that the best model overall was the Ensemble Model. We based our decision on the Validation misclassification rate and RMSE. The ensemble model has a misclassification rate of 0.0473, RSquare of 0.4010, an RMSE of 0.2089 and an overall accuracy of 95.27%. The ensemble model has a relatively higher overall accuracy, and it classifies 3.4% of the validation records as ">8" hours of absenteeism and has an accuracy of 70% for ">8" predictions and 95% for "0 - 8" predictions. The logistic regression model on the other hand classifies 6.42% of the validation records as ">8" but has a relatively lower accuracy of 57.9% for ">8" predictions. The accuracy of "0 - 8" predictions is 93.5%, which is promising. The ensemble model captures sufficient variance and inherent patterns from the training partition while remaining relatively less complex and performing well on the validation partition. The Naïve Bayes model classifies 8.45% of the validation partition as ">8" but has a relatively lower accuracy of 52% for ">8" predictions. The Ensemble model has a better rate of classification and a higher accuracy of predictions for both (0 - 8, >8) classes of the categorical target variable.

Absenteeism_WithEns	embleMode	el - 3 - Mod	el Comparison	6 - JMP Pro			- 0	×
				•				
■ Model Comparis	son Valid	ation=Tr	aining					
Predictors								
△ Measures of Fit f	or Absen	teeism ti	me in hour	s Binned 2				
Creator	.2 .4 .6 .8	Entropy RSquare	Generalized RSquare	Mean -Log p	RMSE	Mean Abs Dev	Misclassification Rate	,
Fit Nominal Logistic		-0.105	-0.147	0.346	0.2546	0.0975	0.0766	44
Neural		0.2059	0.2599	0.2486	0.2632	0.1237	0.0901	44
Naive Bayes			100000				0.0878	44
Partition		0.3851	0.4605	0.1925	0.2347	0.1108	0.0676	44
K Nearest Neighbors				100000			0.0946	44
Model Averaged		0.3936	0.4694	0.1898	0.2355	0.1107	0.0743	44
■ Model Comparis	son Valid	ation=Va	lidation					
Predictors								
△ Measures of Fit f	or Absen	teeism ti	me in hour	Binned 2				
		Entropy	Generalized			Mean	Misclassification	
Creator	.2.4.6.8	RSquare	RSquare	Mean -Log p	RMSE	Abs Dev	Rate	
Fit Nominal Logistic		-0.821	-1.305	0.4664	0.2254	0.0775	0.0608	29
Neural		0.1943	0.2363	0.2063	0.2324	0.1099	0.0709	29
Naive Bayes							0.0676	29
Partition		0.2399	0.2884	0.1947	0.2313	0.1054	0.0676	29
K Nearest Neighbors							0.0709	29
Model Averaged		0.3421	0.4010	0.1685	0.2089	0.0976	0.0473	29

Conclusions and Recommendations

Based on our findings from our preprocessing steps and our final model, we have drawn several conclusions from the Absenteeism at Work dataset. 'Reason for Absence', 'Day of the Week', 'Disciplinary Failure' and 'Son' had the most significant relationships with 'Absenteeism in Hours.' With this information, we found out the following: (1) The most common 'Reasons for Absence' are (23) Blood Donation 20%, (28) Dental Consultation 15%, and (27) Physiotherapy 9%. (2) Employees are more likely to be absent on (2) Monday 21% than on (5) Friday 16%. (3) Those who never received disciplinary failure are more likely to be absent (95%) than those who haven't (5%). Disciplinary action seems to be an effective tool to motivate employees' punctuality and presence in the workplace. (4) On average employees have at least 1 son. (5) Additionally, it turns out that employees with a higher level of education are more likely to be present to work and on time. (6) Further, it seems that employees who are between the age of 30 to 45 years are late to work more often. This could be because they have kids and are required to attend school events or take them to doctor's appointments etc. They are probably tardy more owing to a more active family life. (7) Employees with a higher percentage of 'hit target' are usually late to work compared to employees who have not been able to meet a high percentage of their target.

Please see Appendix B: JMP Screenshots - Model Insights

Based on our findings and conclusions in this project, we made the following recommendations: (1)
Establish attendance policies and attendance tracking systems - addressing childcare and appropriate absences
(Madlinger, Grace). (2) Evaluate and update health policies to include coverage that is relevant to employees, such as physiotherapy and dentistry (Madlinger, Grace). (3) Screen employees for variables related to absenteeism and continually monitoring employee absenteeism. (4) Establish a system to reward employees who do not participate in absenteeism and enable other employees to improve. (5) Organize orientation programs highlighting the consequences of absenteeism. (6) Create flexible working options for the employees who work desk jobs and have a need to work from home, especially those with children. (7) The company should think about engaging high performing employees who have greater 'Hit Rates' in challenging activities and give them significant tasks to work on and opportunities to master their skills otherwise tardiness can potentially creep in.

The success of a courier company is based on the rate of innovation compared to competition and customer satisfaction. Both hinder the productivity of the employees. A disruption in labor affects production, profit, and morale. These recommendations ensure employee loyalty as it recognizes employees' needs while limiting future production disruptions. Consistent and loyal labor allows for consistent productivity and profitability.

References

Data Mining for Business Analytics. Wiley, 2016.

Madlinger, Grace. "The 6-Step Process for Dealing with Employee Absenteeism." When I Work, 20 Mar. 2018, wheniwork.com/blog/how-to-deal-with-employee-absenteeism.

UCI Machine Learning Repository: Absenteeism at Work Data Set. archive.ics.uci.edu/ml/datasets/Absenteeism+at+work.

Wakabayashi, Daisuke & Sheera Frenkel. "Parents Got More Time Off. Then the Backlash Started." New York Times. September 5, 2020. https://www.nytimes.com/2020/09/05/technology/parents-time-off-backlash.html

Appendix

Appendix A: Predictive Variables

Serial No#	Attribute	Possible values	Data Type	Attribute Information
1	ID		Nominal	ID corresponds to the Identification Codes for individual employees at the Courier Company
2	Reason For Absence	28 Unique Values	Nominal	This attribute represents the medical reasons given by employees while taking leaves. The concerned courier company recognizes 28 reasons for absence, out of which 21 are attested by the International Code of Diseases (ICD) and 7 are categories without ICD attestation.
3	Month Of Absence	1 To 12	Categorica 1/ Nominal	Corresponds to the months of a year, with 1 representing January; 2 representing February and so on. Each row relative to this variable represents the month when an employee was absent from work.

4	Day Of The Week	Monday (2), Tuesday (3), Wednesday (4), Thursday (5), Friday (6)	Categorica 1/ Nominal	This column describes days when individual employees were absent, with each instance (corresponding row) representing a distinct day.
5	Seasons	Summer (1), Autumn (2), Winter (3), Spring (4)	Categorica 1/ Nominal	This column represents seasons.
6	Transportation Expense	Range: 118 - 388, Mean: 221.33, Median: 225	Continuou s	Continuous variable describing the transportation expenses.
7	Distance From Residence To Work		Continuou s	Continuous variable describing the distance from residence to the workplace of individual employees in Kilometers.
8	Service Time		Continuou s	The documented duration of service in the week when the concerned employee took leave from work.
9	Age		Continuou s	Age of the employee.
10	Workload Average/Day [Binned @ 40,000]		Categorica 1/ Nominal	The average workload per day.
11	Hit Target		Continuou s	% of employee's achievement of periodic goals
12	Disciplinary Failure	Yes=1 No=0	Categorica 1/Nominal	Whether or not the employee faced disciplinary action.
13	Education	High School (1), Graduate (2), Postgraduate (3), Master and Doctor (4)	Ordinal	The level of education the employee has.
14	Son		Continuou s	# of children the employee has.
15	Social Drinker	Yes=1 No=0	Categorica l/Nominal	Whether or not the employee is a social drinker.
16	Social Smoker	Yes=1 No=0	Categorica 1/Nominal	Whether or not the employee is a social smoker.

17	Pet	Continuou s	# of Pets
18	Weight	Continuou s	Weight of Employee in kg
19	Height [Normal Quantile]	Continuou s	Height of Employee in cm
20	Body Mass Index [Excluded]	Continuou s	BMI of Employee
21	Absenteeism Time in Hours (Target Variable) [Binned 0- 8 and >8]	Continuou s	# of Absenteeism Hours

Appendix B: JMP Screenshots

Sample

Explore

Modify

Model

Regression Models

Decision Tree Model

Leaf Report		
Response Prob		
Leaf Label	8-0	>8
Reason for absence(2, 9, 19, 12, 13, 7, 11, 10, 14, 1)&Social drinker(1)&Day of the week(2, 4)&Distance from Residence to Work<50	0.2896	0.7104
Reason for absence(2, 9, 19, 12, 13, 7, 11, 10, 14, 1)&Social drinker(1)&Day of the week(2, 4)&Distance from Residence to Work>=50	0.8926	0.1074
Reason for absence(2, 9, 19, 12, 13, 7, 11, 10, 14, 1)&Social drinker(1)&Day of the week(3, 6, 5)	0.7858	0.2142
Reason for absence(2, 9, 19, 12, 13, 7, 11, 10, 14, 1)&Social drinker(0)	0.8226	0.1774
Reason for absence(18, 28, 23, 0, 4, 5, 6, 8, 15, 16, 21, 22, 24, 25, 26, 27)	0.9870	0.0130
lesponse Counts		
Leaf Label	0-8	>8
Reason for absence(2, 9, 19, 12, 13, 7, 11, 10, 14, 1)&Social drinker(1)&Day of the week(2, 4)&Distance from Residence to Work<50	7	19]
Reason for absence(2, 9, 19, 12, 13, 7, 11, 10, 14, 1)&Social drinker(1)&Day of the week(2, 4)&Distance from Residence to Work>=50		1
Reason for absence(2, 9, 19, 12, 13, 7, 11, 10, 14, 1)&Social drinker(1)&Day of the week(3, 6, 5)	29	8
Reason for absence(2, 9, 19, 12, 13, 7, 11, 10, 14, 1)8/Social drinker(0)	46	10
Reason for absence(18, 28, 23, 0, 4, 5, 6, 8, 15, 16, 21, 22, 24, 25, 26, 27)	311	4

Boosted Tree Model

Bootstrap Forest Model

Neural Network Model

Estimates		Parameter	Estimate		
Parameter	Estimate	H1_2:Reason for absence 2 2:4	-2.17977		
(Autobblish)		H1_2:Reason for absence 2 2:5	-4.98483		
H1_1:Reason for absence 2 2:1	-14.2851	H1_2:Reason for absence 2 2:6	2.756113		
H1_1:Reason for absence 2 2:2	-3.30474	H1_2:Reason for absence 2 2:7	2.016124		
H1_1:Reason for absence 2 2:3	6.460725	H1_2:Reason for absence 2 2:8	-0.01759		
H1_1:Reason for absence 2 2:4	-1.51236	H1_2:Reason for absence 2 2:9	-3.7176		
H1_1:Reason for absence 2 2:5	0.682486	H1_2:Reason for absence 2 2:10	1.487438		
H1_1:Reason for absence 2 2:6	2.209685	H1_2:Reason for absence 2 2:11	1.934893		
H1_1:Reason for absence 2 2:7	1.34471	H1_2:Reason for absence 2 2:12	4.382212		
H1 1:Reason for absence 2 2:8	-1.87216	H1_2:Reason for absence 2 2:13	4.18997		
H1_1:Reason for absence 2 2:9	-3.26155	H1_2:Reason for absence 2 2:14	3.8986	Estimates	
H1 1:Reason for absence 2 2:10	-4.53345	H1_2:Reason for absence 2 2:15	-0.62342	Parameter	Estimate
H1 1:Reason for absence 2 2:11	-0.62883	H1_2:Reason for absence 2 2:16	-0.07642		
H1 1:Reason for absence 2 2:12	-3.9237	H1_2:Reason for absence 2 2:17	0.363922	H1_3:Reason for absence 2 2:11	2.33346
H1_1:Reason for absence 2 2:13	-1.97881	H1_2:Reason for absence 2 2:18	-3.05731	H1_3:Reason for absence 2 2:12	-3.34867
	-1.28169	H1_2:Reason for absence 2 2:19		H1_3:Reason for absence 2 2:13	-2.06448
H1_1:Reason for absence 2 2:14		H1_2:Reason for absence 2 2:20	-1.46667	H1_3:Reason for absence 2 2:14	-3.41744
H1_1:Reason for absence 2 2:15	-1.75089	H1_2:Reason for absence 2 2:21	0.543256	H1_3:Reason for absence 2 2:15	0.715013
H1_1:Reason for absence 2 2:16	3.2808	H1_2:Reason for absence 2 2:22	-1.0357	H1_3:Reason for absence 2 2:16	1.766398
H1_1:Reason for absence 2 2:17	1.863819	H1_2:Reason for absence 2 2:23	-2.16601	H1_3:Reason for absence 2 2:17	1.754686
H1_1:Reason for absence 2 2:18	1.972338	H1_2:Reason for absence 2 2:24	1.905656	H1_3:Reason for absence 2 2:18	-2.34973
H1_1:Reason for absence 2 2:19	1.21902	H1_2:Reason for absence 2 2:25	-3.05335	H1_3:Reason for absence 2 2:19	0.808534
H1_1:Reason for absence 2 2:20	3.59837	H1_2:Reason for absence 2 2:26	-1.19391	H1_3:Reason for absence 2 2:20	1.478719
H1_1:Reason for absence 2 2:21	1.871631	H1_2:Reason for absence 2 2:27	-2.36777 1.670182	H1_3:Reason for absence 2 2:21	0.751471
H1 1:Reason for absence 2 2:22	2.607499	H1_2:Day of the week:2 H1_2:Day of the week:3	0.459382	H1_3:Reason for absence 2 2:22	2.324858
H1 1:Reason for absence 2 2:23	-0.61079	H1_2:Day of the week:3 H1_2:Day of the week:4	1.036869	H1_3:Reason for absence 2 2:23	-3.71378
H1 1:Reason for absence 2 2:24	2.565152	H1_2:Day of the week:4 H1_2:Day of the week:5	0.563631	H1_3:Reason for absence 2 2:24	-0.35483
H1 1:Reason for absence 2 2:25	-6.41511	H1_2:Day of the week:5 H1_2:Distance from Residence to Work	0.563631	H1_3:Reason for absence 2 2:25	-0.39633
H1 1:Reason for absence 2 2:26	-0.77668	H1_2:Distance from Residence to Work H1_2:Social drinker:0	-1.35921	H1_3:Reason for absence 2 2:26	2.054207
H1_1:Reason for absence 2 2:27	-1.52495	H1_2:Social drinker:0 H1_2:Pet	-1.35921	H1_3:Reason for absence 2 2:27	1.346927
H1 1:Day of the week:2	1.318696	H1_2:Pet H1_2:Normal Quantile[Height]	0.274337	H1_3:Day of the week:2	-1.27412
			-44.4865	H1_3:Day of the week:3	0.821133
H1_1:Day of the week:3	-0.52639	H1_2:Intercept H1_3:Reason for absence 2 2:1	-6.32085	H1_3:Day of the week:4	-1.8393
H1_1:Day of the week:4	1.090348	H1_3:Reason for absence 2 2:1	2.200769	H1_3:Day of the week:5	-0.06275
H1_1:Day of the week:5	-1.09912	H1_3:Reason for absence 2 2:2 H1_3:Reason for absence 2 2:3	-1.31403	H1_3:Distance from Residence to Work	-0.07143
H1_1:Distance from Residence to Work	-0.04639	H1 3:Reason for absence 2 2:4	4.272612	H1_3:Social drinker:0	0.53498
H1_1:Social drinker:0	1.413925	H1_3:Reason for absence 2 2:5	1.646305	H1_3:Pet	1.09672
H1_1:Pet	-1.03053	H1_3:Reason for absence 2 2:5	-0.19575	H1_3:Normal Quantile[Height]	-0.03726
H1_1:Normal Quantile[Height]	0.210375	H1_3:Reason for absence 2 2:6	1.702996	H1_3:Intercept	10.33484
H1_1:Intercept	-35.7125	H1_3:Reason for absence 2 2:8	-2.96869	Absenteeism time in hours Binned 2(0 - 8):H1_1	0.059161
H1 2:Reason for absence 2 2:1	0.015831	H1 3:Reason for absence 2 2:9	1.140195	Absenteeism time in hours Binned 2(0 - 8):H1_2	-0.34793
H1 2:Reason for absence 2 2:2	3.564753	H1 3:Reason for absence 2 2:10	2.675935	Absenteeism time in hours Binned 2(0 - 8):H1_3	-0.08071
H1 2:Reason for absence 2 2:3	-0.96986	H1_3:Reason for absence 2 2:11	2.33346	Absenteeism time in hours Binned 2(0 - 8):Intercept	

Discriminant Analysis Model

		Cut-off
Absenteeism time in hours Binned 2	>8	0-8
0 — 8	495	182
>8	59	4

Adjusted Cutoff

KNN Model

Naive Bayes Model

v C	Confusion Matr	ix				
•	Training			Validation		
	Actual	Predic	ted	Actual	Predic	ted
	Absenteeism time	Cour	ıt	Absenteeism time	Cour	nt
	in hours Binned 2	0 — 8	>8	in hours Binned 2	8 — 0	>8
	0 — 8	390	16	0 — 8	258	13
	>8	14	24	 >8	16	9

Column	Main Effect	Total Effect	.2	.4	.6	.8
Reason for absence 2 2	0.504	0.82				
Pet	0.044	0.17				
Disciplinary failure	0.046	0.151				
Son	0.029	0.112				
Month of absence	0.032	0.091				
Social drinker	0.018	0.05				
Work load Average/day Binned	0.016	0.039				
Day of the week	0.014	0.036				
Education	0.007	0.016				
Seasons	0.004	0.008				
Social smoker	0.001	0.003				

Ensemble Model

Model Insights

