Low Level Document (LLD)
Concrete Compressive Strength Prediction
Rajesh Gottoju

Contents

Abstract

1.Introduction 1	
Why is low-level Design documentation? . 1	
Scope 2	
Constraints2	
Out of scope2	?
2.Technical Specification 2	2
Dataset2	2
Dataset overview3	3
Input schema3	3
Predicting4	4
Logging4	4
Database4	4
Deployment4	4
3.Technology Stack5	.5
4.Proposed Solution 5	5
5.Model Training/Validation Workflow 6	6
6.User I/O workflow7	.7
7.Test cases	.8

Abstract The quality of concrete is determined by its compressive strength, which is measured using a conventional crushing test on a concrete cylinder. The strength of the concrete is also a vital aspect in achieving the requisite longevity. It will take 28 days to test strength, which is a long period. So, what will we do now? We can save a lot of time and effort by using Data Science to estimate how much quantity of which raw material we need for acceptable compressive strength.

1.Introduction

Why this Low-Level Design Documentation?

The purpose of this documentation is detailed description of restaurant rating prediction system which will explain the purpose and the feature of the system, the interfaces of the system, what the system will do, the constraints under which it must operate and how the system will perform under different parameters. This document is intended for both the stack holders and developers of the system and will be proposed for the higher management for its approval.

This project can be delivered in three phases

Phase 1: Building Machine learning model depending on the requirements.

Phase 2: Integration of UI and database to all the functionalities.

Phase 3: Deployment of project on cloud.

Scope

This software system will be a web application, this system will be designed to predict the Strength Of cement based on user's input.

Constraints

This project is based on Infra domain, this system can get excepted results.

Out Of Scope

System will not perform correctly if the data in good format

2. Technical Specifications

Data: Concrete Compressive Strength Prediction

Finalized: Yes

Data Set overview

1030 rows

9 columns

	cement	blast_furnace_slag	fly_ash	water	superplasticizer	coarse_aggregate	fine_aggregate	age	concrete_compressive_strength
0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	79.99
1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.89
2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	270	40.27
3	332.5	142.5	0.0	228.0	0.0	932.0	594.0	365	41.05
4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	360	44.30
1025	276.4	116.0	90.3	179.6	8.9	870.1	768.3	28	44.28
1026	322.2	0.0	115.6	196.0	10.4	817.9	813.4	28	31.18
1027	148.5	139.4	108.6	192.7	6.1	892.4	780.0	28	23.70
1028	159.1	186.7	0.0	175.6	11.3	989.6	788.9	28	32.77
1029	260.9	100.5	78.3	200.6	8.6	864.5	761.5	28	32.40

1030 rows × 9 columns

Input schema

```
df.info()
RangeIndex: 1030 entries, 0 to 1029
Data columns (total 9 columns):
# Column
                                 Non-Null Count Dtype
--- -----
                                 -----
0
                                 1030 non-null float64
   cement
1 blast_furnace_slag
                                1030 non-null float64
2 fly_ash
                                1030 non-null float64
                                1030 non-null float64
3 water
                                 1030 non-null float64
1030 non-null float64
4 superplasticizer
   coarse_aggregate
   fine_aggregate
                                 1030 non-null float64
                                 1030 non-null int64
7
8 concrete_compressive_strength 1030 non-null float64
dtypes: float64(8), int64(1)
memory usage: 72.5 KB
```

Predicting

- The system displays Strength Of Cement according to user's Input.
- The system prevents the set of inputs required from the user.

- The user gives required information.
- The system should able to predict the Compressive Strength Of Concrete According to the user input given.

Logging

√ We have chosen File logging.

√ System logs each and every system flow.

✓ Each and every user's input information is logged.

Database

The system stores each and every data given by the user or received on request to the database. We have used Cassandra.

Deployment

1.Heroku

3.Technology Stack

* Python

6. User I/O Workflow

7.Test Cases.

Test Case	Pre-Requisite	Expected Result
Description		
Verify whether	Application	Application URL should
the Application	URL should be	be accessible to the
URL is	defined	user
accessible to the user Verify whether	1 Application	The Application should
the Application	1. Application URL is	The Application should load completely for the
loads	accessible	user when the URL is
completely for the user	2. Application is	accessed
when	deployed	
the URL is accessed		
Verify whether user is able	1. Application	User should be able to edit
to edit all input fields	is	all input fields
	accessible	
	2. User is logged in	
Varify whather were note	to the application	Hear about direct Cubesit
Verify whether user gets Submit button to submit	1. Application is	User should get Submit button to submit the inputs
the inputs	accessible	button to submit the inputs
the inputs	2. User is logged in	
	to the application	
Verify whether user is	1. Application	User should be presented
presented with	is	with recommended results
recommended results on	accessible	on clicking submit
clicking submit	2. User is logged in	
	to the application	
Verify whether the	1. Application	The recommended results
recommended results are in accordance to the	is accessible	should be in accordance to the selections user made
selections	2. User is logged in	the selections user made
user made	to the application	
door made	to the application	