ЛАБОРАТОРНАЯ РАБОТА №3

ОПРЕДЕЛЕНИЕ ПЛОТНОСТИ ТВЁРДОГО ТЕЛА СПОСОБОМ ГИДРОСТАТИЧЕСКОГО ВЗВЕШИВАНИЯ

Поляков Даниил, Б07-Ф3

Цель работы: определить плотность твёрдого тела методом гидростатического взвешивания.

Оборудование:

- Тело произвольной формы;
- Рычажные весы;
- Стакан для воды;
- Подставка;
- Стремя и проволока для подвешивания тела;
- Набор гирь.

Расчётные формулы:

• Плотность взвешиваемого тела без поправки на воздух:

$$ho_{\scriptscriptstyle
m T} = rac{M}{M-m}
ho_{\scriptscriptstyle
m B}$$

M – масса гирь, уравновешивающих тело в воздухе;

m — масса гирь, уравновешивающих тело, погруженное в воду;

 $ho_{\scriptscriptstyle
m B}$ – плотность воды.

• Плотность взвешиваемого тела с поправкой на воздух:

$$\rho_{\scriptscriptstyle \rm T} = \frac{M}{M-m} \rho_{\scriptscriptstyle \rm B} \left(1 - \frac{\rho}{\rho_{\scriptscriptstyle \rm B}}\right) + \rho$$

M – масса гирь, уравновешивающих тело в воздухе;

m — масса гирь, уравновешивающих тело, погруженное в воду;

 $ho_{\scriptscriptstyle
m B}$ – плотность воды;

ho – плотность воздуха.

• Масса гирь, уравновешивающих тело, погруженное в воду:

$$m = m_2 - m_1$$

 m_1 – масса гирь, уравновешивающих проволочку, погруженную в воду;

 m_2 – масса гирь, уравновешивающих тело и проволочку, погруженные в воду.

- Формулы для вычисления погрешностей:
 - о Абсолютная погрешность прямых измерений:

$$\Delta x = \sqrt{t^2 \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n(n-1)} + \Delta x_B^2}$$
 n – количество измерений; t – коэффициент Стьюдента; Δx_B – приборная погрешность.

о Абсолютная погрешность косвенных измерений:

$$\Delta f(x_1, x_2, \dots) = \sqrt{\left(\frac{\partial f}{\partial x_1} \cdot \Delta x_1\right)^2 + \left(\frac{\partial f}{\partial x_2} \cdot \Delta x_2\right)^2 + \dots}$$

Метод проведения измерений

- 1. Убедимся в равновесии весов.
- 2. Установим на первую чашу весов исследуемое тело, на вторую гирьки. Уравновесим весы, используя гирьки и точную настройку весов. Запишем суммарную уравновешивающую массу *М*. Уберём тело и гирьки с весов и повторим измерение 3 раза.
- 3. Установим подставку над первой чашей весов. Нальём воды в стакан и установим её на подставку. Привяжем проволочку к телу и подвесим тело на крючок весов. Уравновесим весы. Запишем суммарную уравновешивающую массу m_2 . Уберём тело и гирьки с весов и повторим измерение 3 раза.
- 4. Снимем тело с проволочки и повторим измерения, погружая в воду проволочку без тела. Запишем суммарную уравновешивающую массу m_1 . Повторим измерение 3 раза.

Таблицы и обработка данных

Приборная погрешность измеряемой массы равна 0.05 мг (половина цены деления).

При каждом измерении массы проводилось 4 измерения. Абсолютная погрешность находилась по формуле для погрешности прямых измерений, указанной в разделе «Расчётные формулы». Коэффициент Стьюдента при данном количестве равен 1.3.

Плотность воды: $\rho_{\rm B} \approx 998.2~{\kappa \Gamma \over {\rm M}^3}$; плотность воздуха: $\rho \approx 1.189~{\kappa \Gamma \over {\rm M}^3}$.

Масса гирь, уравновешивающих тело в воздухе

Nº	М, г
1	12.5790
2	12.5786
3	12.5775
4	12.5786
Среднее	12.5784
Δ	0.0004

Масса гирь, уравновешивающих проволочку, погруженную в воду

Nº	m_1 , г
1	0.5625
2	0.5610
3	0.5587
4	0.5584
Среднее	0.5602
Δ	0.0013

Масса гирь, уравновешивающих тело и проволочку, погруженные в воду

Nº	m_2 , г
1	8.3954
2	8.3923
3	8.3927
4	8.3955
Среднее	8.3940
Δ	0.0011

Вычисление плотности тела

Найдём массу гирь, уравновешивающих тело, погруженное в воду (вычтем влияние проволоки):

$$\overline{m} = \overline{m_2} - \overline{m_1} \approx 7.8338 \ \Gamma$$

$$\Delta m = \sqrt{\left(\frac{\partial m}{\partial m_1} \cdot \Delta m_1\right)^2 + \left(\frac{\partial m}{\partial m_2} \cdot \Delta m_2\right)^2} = \sqrt{(\Delta m_1)^2 + (\Delta m_2)^2} \approx 0.0017 \ \Gamma$$

$$m = 7.8338 \ \pm 0.0017 \ \Gamma$$

Найдём плотность взвешиваемого тела без поправки на воздух:

$$\bar{\rho}_{\mathrm{T}} = \frac{M}{M - m} \rho_{\mathrm{B}} \approx 2646.33 \frac{\mathrm{K}\Gamma}{\mathrm{M}^{3}}$$

$$\Delta \rho_{\mathrm{T}} = \sqrt{\left(\frac{\partial \rho_{\mathrm{T}}}{\partial M} \cdot \Delta M\right)^{2} + \left(\frac{\partial \rho_{\mathrm{T}}}{\partial m} \cdot \Delta m\right)^{2}} =$$

$$= \sqrt{\left(\frac{m}{(M - m)^{2}} \rho_{\mathrm{B}} \cdot \Delta M\right)^{2} + \left(\frac{M}{(M - m)^{2}} \rho_{\mathrm{B}} \cdot \Delta m\right)^{2}} \approx 1.0 \frac{\mathrm{K}\Gamma}{\mathrm{M}^{3}}$$

$$\rho_{\mathrm{T}} = 2646.3 \pm 1.0 \frac{\mathrm{K}\Gamma}{\mathrm{M}^{3}}$$

Найдём плотность взвешиваемого тела с поправкой на воздух:

$$\begin{split} \bar{\rho_{\mathrm{T}}} &= \frac{M}{M-m} \rho_{\mathrm{B}} \left(1 - \frac{\rho}{\rho_{\mathrm{B}}} \right) + \rho \approx 2644.37 \frac{\mathrm{K}\Gamma}{\mathrm{M}^{3}} \\ \Delta \rho_{\mathrm{T}} &= \sqrt{\left(\frac{\partial \rho_{\mathrm{T}}}{\partial M} \cdot \Delta M \right)^{2} + \left(\frac{\partial \rho_{\mathrm{T}}}{\partial m} \cdot \Delta m \right)^{2}} = \\ &= \sqrt{\left(\frac{m}{(M-m)^{2}} \rho_{\mathrm{B}} \left(1 - \frac{\rho}{\rho_{\mathrm{B}}} \right) \cdot \Delta M \right)^{2} + \left(\frac{M}{(M-m)^{2}} \rho_{\mathrm{B}} \left(1 - \frac{\rho}{\rho_{\mathrm{B}}} \right) \cdot \Delta m \right)^{2}} \approx 1.0 \frac{\mathrm{K}\Gamma}{\mathrm{M}^{3}} \\ \rho_{\mathrm{T}} &= 2644.4 \pm 1.0 \frac{\mathrm{K}\Gamma}{\mathrm{M}^{3}} \end{split}$$

Выводы

- Метод гидростатического взвешивания удобный и простой способ нахождения точного значения плотности и объёма неправильных тел.
- Разница между плотностью тела с поправкой на воздух и без поправки сравнима с погрешностью данных величин, таким образом учитывать её практически не имеет смысла.