METAMOC: Worst-Case Execution Time of Embedded Software on ARM Processors

Martin Toft mt@cs.aau.dk

PhD student
Distributed and Embedded Systems
Department of Computer Science
Aalborg University

Joint work with Mads Christian Olesen, Andreas Engelbredt Dalsgaard, Kim Guldstrand Larsen and René Rydhof Hansen {mchro,andrease,kgl,rrh}@cs.aau.dk

May 21, 2010

Embedded Software and Real-Time Systems

- Embedded software is everywhere!
- Trend: more software, less hardware
- Easier to upgrade/customize software than hardware
- Systems with embedded software ⊃ safety-critical systems
 ⊃ time-critical/real-time systems (RTSs)
- RTSs must react to events in a timely fashion

Worst-Case Execution Time Analysis

- Scheduling algorithms for RTSs need WCETs for processes
- Arbitrary inputs must be taken into account
- Measurement-based methods are unsafe
- Tight and safe WCETs yield efficient and reliable RTSs

The Complexity of Modern Hardware

- The WCET of a process depends on the hardware platform
- Features of the platform must be taken into account
 - Caching: store frequently used data in a fast memory
 - Pipelining: parallelize the steps involved in executing a process
- There are even more complex techniques out there
 - Branch prediction, out-of-order execution, multicore, . . .

Cycle	Stage 1	Stage 2	Stage 3	Stage 4
1	Instr. 1			
2	Instr. 2	Instr. 1		
3	Instr. 3	Instr. 2	Instr. 1	
4	Instr. 4	Instr. 3	Instr. 2	Instr. 1
5	Instr. 5	Instr. 4	Instr. 3	Instr. 2

Value Analysis in METAMOC

- Memory addresses needed for cache hit/miss predictions
- Registers used as base and offset for memory accesses
- Overapproximate possible register values
- METAMOC uses Weighted Push-Down Systems (WPDSs) for an inter-procedural, control-flow sensitive value analysis¹
- Weighted Automata Library (WALi) utilised

¹T. Reps, A. Lal, N. Kidd. *Program Analysis using Weighted Push-Down Systems*. In *FSTTCS 2007*, vol. 4855 of *LNCS*, pp. 23–51.

Modelling in METAMOC

Overview of the ARM9 automata

Modelling in METAMOC

Sketch of the function automata for a process

Modelling in METAMOC

ARM9 overview and sketch of pipeline automata

Model Checking using UPPAAL

Model Checking using UPPAAL

Model Checking using UPPAAL

Graphical User Interface of METAMOC

Status

- Started out with ARM9 support
 - Five stage pipeline, instruction cache, data cache, simple main memory
- Demonstrated the method convincingly—we thought
- The WCET community: "It's a case study. You haven't demonstrated the method's modularity."
- Now:
 - Support for ARM7, ARM9 and ATMEL AVR 8-bit
 - ... with modest effort
- Accepted paper for WCET 2010, the 10th Int'l Workshop on Worst-Case Execution-Time Analysis
 - A. E. Dalsgaard, M. C. Olesen, M. Toft, R. R. Hansen and K. G. Larsen. METAMOC: Modular Execution Time Analysis using Model Checking.

Experiments

- Evaluation using WCET benchmark programs from Mälardalen Real-Time Research Centre²
 - Applicability
 - Performance
- Discarded a number of programs
 - Floating point operations handled by software routines
 - Dynamic jumps
 - Some programs do not compile
- 21 programs for ARM and 19 programs for AVR
- Manually annotated loop bounds

²http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

Experiments

ARM9, 21 benchmarks		
Analysable without caches	21	
Analysable with instruction cache	20	
Unanalysable, state space explosion	1	
Analysable with data and instruction cache	20	
Unanalysable, state space explosion		
Manual modification of e.g. data cache size	4	

ATMEL AVR 8-bit, 19 benchmarks			
Analysable	16		
Unanalysable, state space explosion	3		

40
35
30
25
20
15
10
ARM9, no cache Instr. cache Instr. and data cache

Relative improvement in WCET for ARM9.

Analysis times in minutes for AVR and ARM9.

Current Work

- The WCET 2010 paper is being revised—it seems FIFO caches give rise to timing anomalies
- Looking for WCET benchmark programs with reference WCETs
- Model checker improvements
 - Distributed model checking
 - Abstract caches using new, lattice-inspired types
- A general, cycle-accurate hardware emulator, turning a hardware description and a program into a WCET

Thank you for your attention!

Questions?

http://metamoc.martintoft.dk

http://martintoft.dk/slides/danes2010.pdf