Domínio e Imagem de Funções

Professor: Jefferson

Nome: Turma:

Conjuntos Numéricos Fundamen- Relação entre Conjuntos Numéricos tais

1.1 Números Naturais (N)

- Contagem natural: $\{1, 2, 3, \dots\}$
- Alguns incluem o zero: $\{0, 1, 2, \dots\}$
- Representação:

1.2 Números Inteiros (Z)

- Inclui negativos: $\{..., -2, -1, 0, 1, 2, ...\}$
- Representação:

1.3 Números Racionais (Q)

- Frações $\frac{a}{b}$ onde $b \neq 0$
- Exemplos: $\frac{1}{2}$, $-\frac{3}{4}$, 0, 333...
- Podem ser representados como decimais finitos ou periódicos
- Representação:

1.4 Números Reais (R)

- Inclui todos os racionais e irracionais
- Exemplos de irracionais: $\sqrt{2}$, π , e
- Reta real contínua:

- Números Naturais (N)
- \circ Números Inteiros (Z)
- \bigcirc Números Racionais (Q)
- \bigcirc Números Irracionais (I)
- Todos os Reais (R)

2. Domínio de uma Função

2.1 Conceito

O domínio (D) é o conjunto de todos os valores de entrada (x) para os quais a função está definida.

Exemplos Detalhados

1. f(x) = 2x + 3

Domínio: R (qualquer x real é válido)

2. $g(x) = \frac{1}{x-4}$ $Restrição: x-4 \neq 0 \Rightarrow x \neq 4$

Domínio: $R - \{4\}$

3. $h(x) = \sqrt{x+5}$

Restrição: $x + 5 \ge 0 \Rightarrow x \ge -5$

 $Domínio: [-5, +\infty)$

2. Imagem de uma Função

A imagem (Im) é o conjunto de todos os valores de saída (y) que a função pode produzir.

Como determinar?

- Funções do $1^{\mathbf{0}}$ grau: Im = R
- Funções quadráticas: Analisar vértice
- Funções raiz: $y \ge 0$ (para índice par)
- Funções exponenciais: y > 0

Exemplos Detalhados

- 1. $f(x) = x^2$ Imagem: $[0, +\infty)$ (quadrados são sempre nãonegativos)
- 2. q(x) = -3x + 2Imagem: R (funções lineares cobrem todos os reais)
- 3. $h(x) = 2^x$ $Imagem: (0, +\infty)$ (exponencial sempre positiva)

3. Diagrama de Máquina

Uma analogia útil para entender domínio e imagem:

Ex: $f(3) = 5 \Rightarrow 3$ pertence ao domínio, 5 pertence à imagera. Funções definidas por partes:

4. Exercícios Básicos (1-10)

- 1. Determine o domínio das funções:
 - a) f(x) = 5x 2
 - b) $g(x) = \frac{x+1}{x-3}$
 - c) $h(x) = \sqrt{2x 6}$
- 2. Determine a imagem das funções:
 - a) $f(x) = x^2 + 4$
 - b) q(x) = -2x + 5
 - c) $h(x) = \sqrt{9 x^2}$
- 3. Classifique como verdadeiro (V) ou falso (F):
 - a) () O domínio de $f(x) = \frac{1}{r}$ é R
 - b) () A imagem de $f(x) = |x| \in [0, +\infty)$
 - c) () $\sqrt{x^2} = x$ para todo $x \in R$
- 4. Associe cada função ao seu domínio:

a)
$$f(x) = \frac{1}{\sqrt{x}}$$
 () $x > 0$

b) $g(x) = \log(x+2)$ () $x \neq 0$

c)
$$h(x) = \frac{x}{x^2 - 4}$$
 () $x > -2$

- 5. Resolva:
 - a) Para $f(x) = \sqrt{4-x}$, calcule f(0), f(4) e f(5)
 - b) Qual o maior domínio possível para f(x) =

5. Exercícios Intermediários (11-20)

- 6. Esboce o gráfico e determine D e Im:
 - a) $f(x) = x^2 4$
 - b) $g(x) = \frac{1}{x+2}$
- 7. Determine o domínio máximo de:
 - a) $f(x) = \frac{\sqrt{x}}{x^2 \alpha}$
 - b) $q(x) = \log(x^2 4)$
- 8. Problemas aplicados:
 - a) A área de um círculo é $A(r) = \pi r^2$. Determine D e Im considerando r como raio.
 - b) O volume de uma caixa cúbica é V(a) = a^3 . Determine D e Im considerando a como

a)
$$f(x) = \begin{cases} x+2, & x<1\\ 5, & x \ge 1 \end{cases}$$
. Determine D e Im.

- 10. Desafio:
 - a) Determine o domínio de $f(x) = \sqrt{\frac{x-2}{x+3}}$
 - b) Determine a imagem de $f(x) = \frac{x}{x^2 + 1}$

Gabarito Sugerido

	_		
Questão	Resposta	Questão	Resposta
1a)	R	11a)	$D = R$, $Im = [-4, +\infty)$
1b)	$R - \{3\}$	11b)	$D = R - \{-2\}, Im = R$
1c)	$x \ge 3$	12a)	$x \ge 0 \text{ e } x \ne \pm 3$
2a)	$[4,+\infty)$	12b)	x < -2 ou $x > 2$
2b)	R	13a)	$D = (0, +\infty), Im = (0, -\infty)$
2c)	[0,3]	13b)	$D = (0, +\infty), Im = (0, -\infty)$
3a)	F	14a)	$D = R, Im = (-\infty, 3) \cup$
3b)	V	15a)	$x \le -3$ ou $x \ge 2$
3c)	F	15b)	$\left[-\frac{1}{2},\frac{1}{2}\right]$
4a)	(1)		- 2 2-
4b)	(3)		

4c)

(2)