IIT Jodhpur

Biological Vision and Applications Module 07-05: Graph Neural Networks

Explicit knowledge vs. Implicit knowledge

- Explicit knowledge
 - Model based
 - Inductive generalization
 - Slow
 - Good for reasoning

- Implicit knowledge
 - Emergent knowledge
 - No generalization
 - Fast
 - Good for understanding

Model-based Reasoning vs. Model-less understanding

Model-based reasoning

Hypothesis space Hidden variables Observable variables Feature space

Model-less understanding

Dual Process Theory

Logical reasoning

Intuitive understanding

Human Cognitive Process

- Interaction?
- Reasoning = asking questions

- Can we have reasoning coupled with understanding
 - "Intersection of deep learning and structured approaches"
 - Inductive generalization is the key to Al
 - Structure with emergent knowledge

Position paper from DeepMind, Google Brain, MIT, University of Edinburgh (2018)

Comments on the position paper

Combining structural analysis and machine learning

Part-based recognition of logos (1998)

- Functions f(), g() realized as NN
 - Trained with large data set
- Identical property descriptors u_x

Fairs better than a single NN

Frasconi, et al. A General Framework for Adaptive Processing of Data Structures

Frasesconi, et al. Logo Recognition by Recursive Neural Networks

Recursive Neural Network (RvNN)

- c_1, c_2 are inputs
 - Vectors of dimension n
- p₁₂ is the output
 - Also a vectors of dimension n
- $p_{12} = tanh(W[c_1; c_2])$, where
 - ightharpoonup W is a learned $n \times 2n$ weight matrix

- Limitations
 - Data must be organized as a binary tree
 - Data flow is one way leaf to root

Graph Neural Network

Data is represented as a graph

- Graph focussed Application
 - What is the property of the molecule ?
 - output = $\tau(G)$

Node focussed Application

- What does each of the nodes represent ?
- output = $\tau(G, n)$

2D Convolution vs. Graph Convolution

2D Convolution

Graph Convolution

Convolutional Graph Neural Network

Processing model

- Nodes have identical property (feature) descriptors (In)
 - e.g. color, texture, shape
- Edges have identical property descriptors (I_{mn})
 - e.g. distance between the center of gravities of the nodes
- State of a node: x_n

Graph Neural Network

Processing model: Example

Graph Neural Network

Recurrent Processing

- $f_w()$ and $g_w()$ are learned with training
- Take the output after several recursions
 - ▶ Is the system guaranteed to go into a steady state after a finite number of iterations?

Recursive & Convolutional Graph Neural Network

Rec-GNN & Conv-GNN

Recursive GNN:

Same weights at every time-stamp

A compact review of ... GNN

Convolutional GNN:

Different weights at different time-stamps

Structured RNN (S-RNN)

GNN: Spatio-Temporal adaptation

Construction of S-RNN for a video shot

CVPR-16 Paper *, (Presentation Video) *

Applications

- Rec-GNN / Conv-GNN (still images 2D/3D)
 - Fine-grained classification (e.g. bird species)
 - ▶ 3D point cloud processing (LiDAR)
- S-RNN (video / motion picture)
 - Human action recognition
 - Human/Robot Object Interaction
 - Human Motion Modeling

Limitations and Future Research

- Scalability
 - Graph size needs to be limited
 - Number of nodes / number of edges
- Heterogeneity of graphs
 - Presently graphs are assumed to be homogeneous
- Dynamicity
 - Graph structure changing over time
- Model depth
 - Performance (accuracy) drops with depth

Quiz

Quiz 07-05

End of Module 07-05