Persuasion and Norm Persistence

Francesca Chiaradia

University of St Andrews

Quality Certification and Norm Persistence

In the EU, around 12 kg of textiles per person are discarded every year

■ Yet the number of **EU Ecolabels** continues to increase!

Key problem: Regulation should first understand the **norms** guiding consumption behaviour.

Key Question

Can quality certification moderate "extreme norms" of consumption?

Contribution

Game of incomplete information:

- Benchmark model à la Albano and Lizzeri (2001);
- 2 Dynamic information acquisition problem.

Key Innovation

Optimal policy should balance imitation of success and imitation by dissatisfaction

Benchmark Model

CONSUMERS

- \blacksquare Consumers carry a norm, $\gamma \in \{0,1\}$
- Mass of consumers with $\gamma=1$ is n_t ;
- Mass of consumers with $\overset{'}{\gamma}=0$ is $\overline{n}-n_t$
- \blacksquare Consumers with $\gamma=1$ have marginal value v of asset quality q
- \blacksquare Consumers with $\gamma=0$ do not care about quality
- lacksquare Both consumers are affected by other consumers who bought the asset in the last period, z_{t-1}
- Consumers' payoff:

$$U_R := \begin{cases} 0, & \text{if don't buy} \\ v\gamma E[q|s] + v^0 + bz_{t-1} - p, & \text{if buy} \end{cases}$$

FIRM

- \blacksquare Firm owns an asset of quality $q \in Q \subseteq [q,\overline{q}]$ and sets price p
- Quality is unobservable to consumers
- \blacksquare Cost of production $c(q,\theta)$, where $\theta\in\Theta=[\underline{\theta},\overline{\theta}]$ is the firm's type
- Firm's payoff:

$$U_A := \max_{p,q \ge 0} \{0, \{\mathbb{E}_s[\mathbb{E}_{\hat{q}_s}(p - c(q, \theta)z_t)] | s\}\}$$

REGULATOR

- \blacksquare Regulator does not observe the firm's type, θ
- He commits to a certification rule, (π, Σ) :

 Finite set of signal realizations: $s \in \Sigma$, with $\Sigma < \infty$
- Set of conditional distribution over Σ : $\pi_{q,\theta}(s)$
- Regulator's payoff:

$$U_S := n_t \left(\int_{v_1^*}^1 (v \gamma \hat{q}_s + v^0 + b z_{t-1} - p^*) dF(v) \right) +$$

$$+ (\overline{n} - n_t) \left(\int_{v_0^*}^1 (v \gamma \hat{q}_s + v^0 + b z_{t-1} - p^*) dF(v) \right)$$

Equilibrium Characterisation

Market Equilibrium (Case I)

Let $q=\overline{q}=1$ and $p>v^0+bz_{t-1}$. Consumers with norm γ_0 do not buy. Consumers with norm γ_1 buy iff $v\geq \min\left\{\frac{p-bz_{t-1}-v^0}{\overline{q}},1\right\}$. The firm optimally sets $p^*=\frac{v^0+\overline{q}+bz_{t-1}-c(\overline{q},\theta)}{2}$ or does not produce if $c(\overline{q},\theta)>v^0+\overline{q}+bz_{t-1}$.

Market Equilibrium (Case II)

Let $q = \overline{q} = 1$ and $p \le v_0 + bz_{t-1}$. Consumers with norm γ_0 buy iff $p^* \le v^0 + bz_{t-1}$. Consumers with norm γ_1 always buy if the product is offered. The firm optimally sets $p^* = v^0 + bz_{t-1}$ or does not produce.

When producing $q=\overline{q}=1$, the firm earns profit $\pi_{\overline{q}}$:

$$\pi_{\overline{q}}^* := \begin{cases} 0, & \text{if } c(\overline{q}, \theta) > v^0 + \overline{q} + bz_{t-1} \\ \frac{(v^0 + \overline{q} + bz_{t-1} - c(\overline{q}, \theta))^2}{4}, & \text{if } c(\overline{q}, \theta) \leq v^0 + \overline{q} + bz_{t-1} \end{cases}$$

$$(1)$$

Market Equilibrium (Case III)

Let q=q=0. Assume $c_0=c(0,\theta)\leq v^0\ \forall\ \theta$. Consumers with norm γ_0 and consumers with norm γ_1 buy iff $p^*\leq v^0+bz_{t-1}$. The firm optimally sets $p^*=v^0+bz_{t-1}$ or does not produce.

When producing q=q=0, the firm earns profit π_q :

$$\pi_q^* := v^0 + bz_{t-1} - c_0 \tag{2}$$

Dynamic Game

Imitation driven by success / dissatisfaction:

- Consumers' imitation dynamics depend on the payoff of other players in the population;
- Let n_{t+1} be the share of the population with norm $\gamma = 1$ at time t+1;
- Let $\overline{n} n_{t+1}$ be the share of the population with norm $\gamma = 0$ at time t+1;

$$n_{t+1} = \begin{cases} \underbrace{\overline{(1-\epsilon)n_t}}^{\textit{Success}} + \underbrace{\overline{(\overline{n}-n_t)}}^{\textit{Dissatis faction}} & \text{if } u_1(n_t) > u_0(n_t) \\ (1-\epsilon)n_t & \text{if } u_1(n_t) < u_0(n_t) \\ n_t & \text{if } u_1(n_t) = u_0(n_t) \end{cases}$$

$$\overline{n} - n_{t+1} = \begin{cases} \underbrace{\overline{n_{t}} - e(\overline{n} - n_{t})}^{\text{Dissatis faction}} & \text{if } u_{0}(n_{t}) > u_{1}(n_{t}) \\ (1 - e)(\overline{n} - n_{t}) & \text{if } u_{0}(n_{t}) < u_{1}(n_{t}) \\ (\overline{n} - n_{t}) & \text{if } u_{0}(n_{t}) = u_{1}(n_{t}) \end{cases}$$

Dealing with Information

Equilibrium Selection and Implications

- Candidates for long-run equilibrium are the pure-strategy equilibria of a static coordination game;
- Not all fixed points can be selected as an equilibria (Sandholm 2010):
- ► Stable Equilibria: If the system has a single, stable fixed point, the system will tend converge to it;
- ▶ <u>Unstable Equilibria</u>: If the system has multiple candidate solutions, the system will cycle indefinitely.

Next Step

How can the regulator affect norm persistence?

References

- Albano, G. L. and A. Lizzeri (2001). "Strategic Certification and Provision of Quality". In: *International Economic Review* 42.1, pp. 267–283.
- European Commission (2023). Circular economy for textiles: taking responsibility to reduce, reuse and recycle textile waste and boosting markets for used textiles. Available at: https://ec.europa.eu/commission/presscorner/detail/en/ip_23_3635. (Accessed: 17 January 2024).
- Sandholm, W. H. (2010). *Population Games and Evolutionary Dynamics*. Cambridge, MA: MIT Press.

Let's Connect!

Website: www.francescachiaradia.com X: @FrancescaChia11

CEPR Paris Symposium 2024 12-18 December 2024 12-18 December 2024