

Model Optimization and Tuning Phase Template

Date	11 July 2024
Team ID	SWTID1720011518
Project Title	WCE curated Colon Disease Classification using Deep Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining neural network models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (8 Marks):

Model	Tuned Hyperparameters
VGG16	<pre> tuner.search(train, epochs=20, callbacks=[stop_early]) # Get the optimal hyperparameters best_hps=tuner.get_best_hyperparameters(num_trials=1)[0] print(f""" The hyperparameter search is complete. The optimal learning rate for the optimizer is {best_hps.get('learning_rate')}. """) Trial 3 Complete [00h 02m 00s] accuracy: 0.9546874761581421 Best accuracy So Far: 0.9740625023841858 Total elapsed time: 00h 06m 03s The hyperparameter search is complete. The optimal learning rate for the optimizer is 0.001. model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=hp_learning_rate),</pre>

Loss Function: loss='categorical_crossentropy' - Determines the error between predicted and actual output for multi-class classification tasks.

Optimizer: optimizer=Adam(learning_rate=0.01) - Adam optimizer with a learning rate of 0.01, adjusting the step size during training for better convergence.

Metrics: metrics=['accuracy'] - Evaluation metric to measure the proportion of correctly classified examples out of the total during training and testing.

No. of epochs = 4

```
model = tuner.hypermodel.build(best_hps)
    history6 = model.fit(train, epochs=4)
    acc_per_epoch = history6.history['accuracy']
    best_epoch = acc_per_epoch.index(max(acc_per_epoch)) + 1
    print('Best epoch: %d' % (best_epoch,))
₹ Epoch 1/4
    160/160 [=
                                         ===] - 59s 365ms/step - loss: 0.2693 - accuracy: 0.9081
    Epoch 2/4
    160/160 [=
                                         ==] - 60s 372ms/step - loss: 0.0733 - accuracy: 0.9741
    Epoch 3/4
                                    ======] - 58s 359ms/step - loss: 0.0413 - accuracy: 0.9887
    160/160 [==
                             ========] - 59s 368ms/step - loss: 0.0373 - accuracy: 0.9881
    Best epoch: 3
```

But we found best epoch was 3 so went with 3 epochs.

We found the accuracy to be $98.91 \% \sim 99\%$

Resnet50

Loss Function: loss='categorical_crossentropy' - Determines the error between predicted and actual output for multi-class classification tasks.

Optimizer: optimizer=Adam - Adam optimizer with a learning rate of 0.01, adjusting the step size during training for better convergence.

Metrics: metrics=['accuracy'] - Evaluation metric to measure the proportion of correctly classified examples out of the total during training and testing.

For 5 epochs we found the best accuracy to be $77.63\% \sim 78\%$

inception.compile(loss = "categorical_crossentropy", optimizer = "adam", metrics = ["accuracy"])

Loss Function: loss='categorical_crossentropy' - Determines the error between predicted and actual output for multi-class classification tasks.

Optimizer: optimizer=Adam - Adam optimizer with a learning rate of 0.01, adjusting the step size during training for better convergence.

InceptionV3

Metrics: metrics=['accuracy'] - Evaluation metric to measure the proportion of correctly classified examples out of the total during training and testing.

For 5 epochs we found the best accuracy to be 97.63% ~ 98%

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	The decision to select VGG16 as the final optimized model for colon
	disease classification was based on its robust capability to extract
	relevant features from raw image data and its accuracy around 99%.
	We have built VGG16, INCEPTION V3 and RESNET50 out of which
	VGG16 had the highest accuracy. To refine its performance and ensure
	robustness, the VGG16 model underwent further optimization through
	techniques such as hyperparameter tuning. These enhancements were
	crucial in enhancing the model's accuracy, reliability, and
	generalizability for accurately diagnosing colon diseases from image
	data. Following is the graph which will help visualize the accuracies of
VGG16	the 3 models

