ADMISSIONS USING LINEAR REGRESSION

Mod 4 Presentation Lim Zheng Wei

INTRO

A common concern for applicants to university is

- What are the chances of admission to a university?
- What is his probability of admission?
- What are the key factors?

In this exercise, we look at building a model to assess this.

CONTENT

The dataset contains several parameters which are considered important during the application for Masters Programs.

The parameters included are:

- 1. GRE Scores (out of 340)
- 2. TOEFL Scores (out of 120)
- 3. University Rating (out of 5)
- 4. Statement of Purpose(SOP) and Letter of Recommendation(LOR) Strength (out of 5)
- 5. Undergraduate GPA (out of 10)
- 6. Research Experience (either 0 or 1)
- 7. Chance of Admit(COA) (ranging from 0 to 1)

TRUST THE PROCESS

FDA

• Import data

Check and clean data if necessary

Observe

Seaborn to plot the variables

Read and identify the predictor and target variables

Feature Selection

- Create test/train model
- Find the best predictor variable(s)

Predict

Given the model we can now predict your odds

EDA

Import relevant libraries and data

```
import pandas as pd
import numpy as np
import seaborn as sns
import statsmodels.api as sm
import matplotlib.pyplot as plt
from sklearn import linear model
from sklearn import preprocessing
from sklearn.metrics import mean squared error
from sklearn.linear model import LinearRegression
from sklearn.model selection import train test split
from sklearn.model selection import KFold
from statsmodels.formula.api import ols
from mpl toolkits.mplot3d import Axes3D
%matplotlib inline
admission csv = 'C:/Users/zheng/Desktop/Data Science/Presentations/Mod 4//admission.csv'
admission = pd.read csv(admission csv)
```

admission.head()

	SKE SCOLE	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	337	118	4	4.5	4.5	9.65	1	0.92
1	324	107	4	4.0	4.5	8.87	1	0.76
2	316	104	3	3.0	3.5	8.00	1	0.72
3	322	110	3	3.5	2.5	8.67	1	0.80
4	314	103	2	2.0	3.0	8.21	0	0.65

EDA

admission.describe()

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
count	500.000000	500.000000	500.000000	500.000000	500.00000	500.000000	500.000000	500.00000
mean	316.472000	107.192000	3.114000	3.374000	3.48400	8.576440	0.560000	0.72174
std	11.295148	6.081868	1.143512	0.991004	0.92545	0.604813	0.496884	0.14114
min	290.000000	92.000000	1.000000	1.000000	1.00000	6.800000	0.000000	0.34000
25%	308.000000	103.000000	2.000000	2.500000	3.00000	8.127500	0.000000	0.63000
50%	317.000000	107.000000	3.000000	3.500000	3.50000	8.560000	1.000000	0.72000
75%	325.000000	112.000000	4.000000	4.000000	4.00000	9.040000	1.000000	0.82000
max	340.000000	120.000000	5.000000	5.000000	5.00000	9.920000	1.000000	0.97000

EDA

admission.isnull().sum()

GRE Score	0
TOEFL Score	0
University Rating	0
SOP	0
LOR	0
CGPA	0
Research	0
Chance of Admit	0
dtype: int64	

OBSERVE

- Select our predictor, target variables
- Y = admission['Chance of Admit']
- predictor_columns = [c for c in admission.columns if c != 'Chance of Admit ']
- X = pd.DataFrame(admission, columns = predictor_columns)

admission.corr()

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
GRE Score	1.000000	0.827200	0.635376	0.613498	0.524679	0.825878	0.563398	0.810351
TOEFL Score	0.827200	1.000000	0.649799	0.644410	0.541563	0.810574	0.467012	0.792228
University Rating	0.635376	0.649799	1.000000	0.728024	0.608651	0.705254	0.427047	0.690132
SOP	0.613498	0.644410	0.728024	1.000000	0.663707	0.712154	0.408116	0.684137
LOR	0.524679	0.541563	0.608651	0.663707	1.000000	0.637469	0.372526	0.645365
CGPA	0.825878	0.810574	0.705254	0.712154	0.637469	1.000000	0.50131	0.882413
Research	0.563398	0.467012	0.427047	0.408116	0.372526	0.501311	1.000000	0.545871
Chance of Admit	0.810351	0.792228	0.690132	0.684137	0.645365	0.882413	0.545871	1.000000

Recall corr value is 0.545871 TOEFL Score Chance of Admit High correlation values among predictor variables will cause inprecise estimates because they interfere with one another

Degree of correlation:

- Perfect: 1
- High: Between \pm 0.50 and \pm 1 i.e strong correlation.
- Moderate: Between ± 0.30 and ± 0.49 i.e medium correlation.
- Low: below ± .29 i.e small correlation.

X.corr()

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGP/	Research
GRE Score	1.000000	0.827200	0.635376	0.613498	0.524679	0.825878	0.563398
TOEFL Score	0.827200	1.000000	0.649799	0.644410	0.541563	0.810574	0.467012
University Rating	0.635376	0.649799	1.000000	0.728024	0.608651	0.705254	0.427047
SOP	0.613498	0.644410	0.728024	1.000000	0.663707	0.712154	0.408116
LOR	0.524679	0.541563	0.608651	0.663707	1.000000	0.637469	0.372526
CGPA	0.825878	0.810574	0.705254	0.712154	0.637469	1.000000	0.501311
Research	0.563398	0.467012	0.427047	0.408116	0.372526	0.50131	1.000000

• Predict: Likely not all are key variables, Research could be one of the factors

FEATURE SELECTION

• model1 =

• print(mo Date:

```
Dep. Variable:
                                        R-squared:
                                                                           0.657
Model:
                                         Adj. R-squared:
                                   OLS
                                                                           0.656
Method:
                         Least Squares
                                         F-statistic:
                                                                            952.5
                     Sat, 15 Aug 2020
                                         Prob (F-statistic):
                                                                       1.09e-117
Time:
                                         Log-Likelihood:
                              22:38:44
                                                                          537.30
No. Observations:
                                                                          -1071.
                                   500
                                         AIC:
Df Residuals:
                                                                           -1062.
                                   498
                                         BIC:
Df Model:
Covariance Type:
                             nonrobust
```

OLS Regression Results

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-2.4828	0.104	-23.896	0.000	-2.687	-2.279
GRE	0.0101	0.000	30.862	0.000	0.009	0.011

Omnibus:	61.111	Durbin-Watson:	0.904
Prob(Omnibus):	0.000	Jarque-Bera (JB):	90.883
Skew:	-0.822	Prob(JB):	1.84e-20
Kurtosis:	4.288	Cond. No.	8.89e+03

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 8.89e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Recall: t = coef/std error

RECAP

You want all

- High R2 score
- High t-score
- Low P > | t | score
- The P value is the probability of seeing a result as extreme as the one you are getting (a t value as large as yours) in a collection of random data in which the variable had no effect

Hypothesis Testing

RESULTS AGAINST CHANCE OF ADMIT

	GRE Score	TOEFL Score	Uni Ranking	SOP	LOR	CGPA	Research
R2 Value	0.657	0.628	0.476	0.468	0.416	0.779	0.298
Adjusted R2 Value	0.656	0.627	0.475	0.467	0.415	0.778	0.297
Coeff	0.101	0.0184	0.0852	0.0974	0.0984	0.2059	0.1551
Std Error	0.000	0.001	0.004	0.005	0.005	0.005	0.011
T-value	30.862	28.972	21.281	20.932	18.854	41.855	14.539
P > †	0.000	0.000	0.000	0.000	0.000	0.000	0.000

STRONG FEATURES

WEAK FEATURES

- Trial and Error is too tiring
- Total possible ways:
- 6C1 + 6C2 + 6C3 + 6C4 + 6C5 + 6C6 = 6 + 15 + 20 + 15 + 6 + 1 = 63 ways

Used forward selection model

Added feature CGPA with R^2 = 0.771 and adjusted R^2 = 0.769 Added feature GRE Score with R^2 = 0.800 and adjusted R^2 = 0.796 Added feature LOR with R^2 = 0.811 and adjusted R^2 = 0.805 Added feature TOEFL Score with R^2 = 0.816 and adjusted R^2 = 0.808 Added feature Research with R^2 = 0.821 and adjusted R^2 = 0.811

Resulting features: CGPA, GRE Score, LOR, TOEFL Score, Research

Q: Does transformation help improve the fit?

My guess is not much

	OLS Regression Results						
Dep. Variable: Model: Method: Date: Time: No. Observatio Df Residuals: Df Model: Covariance Typ	ns:	Least Squ Sat, 15 Aug 23:4	2020 13:18 500 494 5	Adj. F-sta Prob	uared: R-squared: atistic: (F-statistic): Likelihood:		0.821 0.819 452.1 9.97e-182 699.65 -1387. -1362.
=========	coef	std err		t	P> t	[0.025	0.975]
Intercept CGPA GRE TOEFL LOR Research	-1.3357 0.1236 0.0019 0.0036 0.0193 0.0252	0.009 0.001 0.001 0.004		3.482 3.221 3.760 3.501 5.092 3.814	0.000 0.000 0.000 0.001 0.000 0.000	-1.530 0.105 0.001 0.001 0.012 0.012	-1.141 0.141 0.003 0.005 0.027 0.038
Omnibus: Prob(Omnibus): Skew: Kurtosis:		-1	0.027 0.000 1.130 5.615		• •	======	0.800 248.874 9.07e-55 1.23e+04

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.23e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Normal

OLS Regression Results							
========							========
Dep. Variabl	le:		COA	R-squared:			0.821
Model:			OLS	Adj.	R-squared:		0.819
Method:	Least Squ	iares	F-sta	atistic:		452.1	
Date:		Sat, 15 Aug	2020	Prob	(F-statistic):		9.97e-182
Time:		23:4	13:18		Likelihood:		699.65
No. Observat	tions:		500	AIC:			-1387.
Df Residuals	s:		494	BIC:			-1362.
Df Model:			5				
Covariance 1	Гуре:	nonro	bust				
=======	coef	std err		t	P> t	[0.025	0.975]
Intercept	-1.3357	0.099	-13	3.482	0.000	-1.530	-1.141
CGPA	0.1230	0.009	13	3.221	0.000	0.105	0.141
GRE	0.0019	0.001	3	3.760	0.000	0.001	0.003
TOEFL	0.0030	0.001	3	3.501	0.001	0.001	0.005
LOR	0.0193	0.004		.092	0.000	0.012	0.027
Research	0.0252	0.007	3	8.814	0.000	0.012	0.038
Omnibus:		109	.027	Durb	in-Watson:		0.800
Prob(Omnibus	s):	6	0.000	Jarqu	ue-Bera (JB):		248.874
Skew:		-1	.130	Prob	(JB):		9.07e-55
Kurtosis:		5	.615	Cond	• •		1.23e+04
========		========					=======

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 1.23e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Scaled

OLS Regression Results							
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	OLS Adj. Least Squares F-st Sat, 15 Aug 2020 Prob 23:58:44 Log- 500 AIC:		Adj. R-squ F-statisti Prob (F-st Log-Likeli	dj. R-squared: -statistic: rob (F-statistic): og-Likelihood: IC:		0.821 0.819 452.1 9.97e-182 699.65 -1387. -1362.	
==========	coef	std err	t	P> t	[0.025	0.975]	
GRE_scale TOEFL_scale	0.0179	0.006 0.005 0.004	13.221 3.760 3.501 5.092	0.000 0.000 0.001	0.011	0.085 0.032 0.029	
Omnibus: Prob(Omnibus): Skew: Kurtosis:	======	109.027 0.000 -1.130 5.615	Jarque-Ber Prob(JB):		24	0.800 8.874 7e-55 4.77	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

CROSS VALIDATION

```
# Create linear regression object
reg = LinearRegression()
# Set up 5-fold cross validation
k_fold = KFold(5, shuffle=True)
train scores = []
train_rmse = []
test_scores = []
test_rmse = []
for k, (train, test) in enumerate(k fold.split(X)): # Get training and test sets for X1 and y
    print("Train:", train, "Validation:",test)
   X1_train, X1_test = X1.iloc[train], X1.iloc[test]
   Y_train, Y_test = Y.iloc[train], Y.iloc[test]
    reg.fit(X1 train, Y train) # Fit model with training set
    y_pred_train = reg.predict(X1_train) # Make predictions with training and test set
   y_pred_test = reg.predict(X1_test)
    train_rmse.append(mean_squared_error(Y_train, y_pred_train, squared=False))
                                                                                   # Score R2 and RMSE on training and test sets
   test_rmse.append(mean_squared_error(Y_test, y_pred_test, squared=False))
   train_scores.append(reg.score(X1_train, Y_train))
    test_scores.append(reg.score(X1_test, Y_test))
```

	R2 Test Scores	RMSE Test Scores	R2 Train Scores	RMSE Train Scores
0	0.858612	0.051204	0.810446	0.061830
1	0.772919	0.067273	0.831216	0.057895
2	0.774110	0.069819	0.833499	0.056916
3	0.829672	0.053878	0.818350	0.061133
4	0.844665	0.058557	0.812892	0.060144

	R2 Test Scores	RMSE Test Scores	R2 Train Scores	RMSE Train Scores
count	5.000000	5.000000	5.000000	5.000000
mean	0.815996	0.060146	0.821281	0.059584
std	0.040110	0.008157	0.010540	0.002105
min	0.772919	0.051204	0.810446	0.056916
25%	0.774110	0.053878	0.812892	0.057895
50%	0.829672	0.058557	0.818350	0.060144
75%	0.844665	0.067273	0.831216	0.061133
max	0.858612	0.069819	0.833499	0.061830

- X1 = admission[['GRE', 'TOEFL', 'LOR', 'CGPA', 'Research',]]
- X1.head()

	GRE	TOEFL	LOR	CGPA	Research
0	337	118	4.5	9.65	1
1	324	107	4.5	8.87	1
2	316	104	3.5	8.00	1
3	322	110	2.5	8.67	1
4	314	103	3.0	8.21	0

CREATE MODEL

X1_train, X1_test, Y_train, Y_test = train_test_split(X1, Y, test_size=0.2, random_state=42)

```
reg = LinearRegression().fit(X1_train, Y_train) # Train the model using the training sets print(reg.intercept_)
print(reg.coef_)
reg.score(X1_test, Y_test)
```

RESULTS

Chance of Admit =

0.00219 GRE + 0.00316 TOEFL + 0.0187 LOR + 0.113 CGPA + 0.0264 Research - 1.355

R2 Score: 0.845

*rounded off to 3 d.p

PREDICT

• E.g GRE score = 300, TOEFL = 100, LOR = 4, CGPA = 8.5 Research = 1

```
X1_pred = np.array([300, 100, 4, 8.5, 1])
X1_pred = X1_pred.reshape(-1, len(X1_pred))
reg.predict(X1_pred)
array([0.67148219])
```

```
X1 = [[300, 100, 4, 8.5, 1]]
reg.predict(X1)
array([0.67148219])
```

• GRE = 320, TOEFL = 110, LOR = 0, CGPA = 9.6, Research = 0

```
X1_pred = np.array([320, 110, 0, 9.6, 0])
X1_pred = X1_pred.reshape(-1, len(X1_pred))
reg.predict(X1_pred)
array([0.7790727])
```

```
X1 = [[320, 110, 0, 9.6, 0]]
reg.predict(X1)
array([0.7790727])
```

CONCLUSION

- The key factor = CGPA
- Having a good GRE, TOEFL, SOP, LOR and Research help your chances more
- Probability of admission = 0.00219 GRE + 0.00316 TOEFL + 0.0187 LOR + 0.112
 CGPA + 0.0264 Research 1.355

REFERENCES

- https://www.statisticssolutions.com/pearsons-correlation-coefficient/#:~:text=High%20degree%3A%20If%20the%20coefficient,to%20be%20a%20small%20correlation.
- Lab 4.3
- https://www.youtube.com/watch?v=DlwOTOydeyk
- https://aegis4048.github.io/mutiple_linear_regression_and_visualization_in_py thon
- https://dss.princeton.edu/online_help/analysis/interpreting_regression.htm