게임 인공지능 속의 수학

한남대학교 수학과 20172581 김남훈

1. 게임에서 인공지능의 역할

게임 속 세계는 크게 플레이어와 NPC, 그리고 그들이 위치하는 맵으로 구성된다. NPC는 적대적 NPC(일명 몬스터)와 비적대적 NPC 가 존재하는데, 이들은 인공지능에 기반해 행동한다. 인공지능이 없다면 이들 NPC는 한 자리에 가만히 있으며 플레이어와 어떤 상호작용도 하지 않을 것이다. 이들이 움직이게 하고, 플레이어를 공격하거나 플레이어에게서 도망치게 하는 등 다양한 행동을 부여하는 것이 바로 인공지능의 역할이다.

2. 방향 그래프와 오토마타의 간략한 설명

게임 속 인공지능을 구현하는 기술은 크게 둘로 나눌 수 있다. 퍼셉트론과 유한상태기계가 그것인데, 여기서는 유한상태기계만을 다룰 것이다. 유한상태기계를 이해하기 위해 필요한 두 개념을 먼저 이야기해보자. 첫째는 방향 그래프이다.

방향 그래프

방향 그래프는 간단히 말해 각 변에 방향이 정의되어 있는 그래프이다. V가 그래프 G의 정점이라 하자. G가 변 (x,y)를 갖는다면 x에서 y로 가는 길이 1인 경로가 존재하지만, 변 (y,x)를 갖지 않는다면 에서 y로 x가는 길이 1인 경로는 존재하지 않는다. 방향이 없는 그래프에서 (x,y)와 (y,x)를 구분하지 않는 것과 대비되는 방향 그래프의 특성이다.

오토마타

오토마타는 주어진 입력과 현재 상태에 따라 자신의 상태를 변화시키는 가상의 기계이다. 오토마타는 자신이 가질 수 있는 상태들의 집합 V 와 받을 수 있는 입력의 집합 Σ , 그리고 각 상태에서 특정한 입력을 받았을 때 어떤 상태로 변화하는지를 나타내는 함수 $\delta:Q\times\Sigma\to Q$ 로 이루어진다. 이 때 Q 와 Σ 가 유한집합이라면, 처음 상태 $q_0\in Q$ 와 최종 상태(몬스터의 경우 죽음) $q_\omega\in Q$ 을 포함한

$$\mathcal{A} = (Q, \Sigma, \delta, q_0, q_\omega)$$

을 **유한상태기계** 라고 한다.

3. 유한상태기계를 이용한 게임 인공지능

Figure 1: 몬스터의 인공지능 예시

게임 속 간단한 몬스터를 상상해보자. 이 몬스터는 평상시엔 맵을 돌아다니다, 플레이어를 발견하면 플레이어를 공격한다. 그러다 체력이 10% 미만으로 감소하면 플레이어로부터 도주하며, 플레이어가 시야에서 벗어나면 다시 맵을 돌아다닌다. 그리고, 어떤 상태에서든 체력이 0이 되면 죽는다. 이를 다이어그램으로 나타내면, 위의 그림과 같을 것이다. 이 때, 정찰, 전투, 도주, 죽음은 각각의 상태가 되며 '체력이 0이 됨', '플레이어 발견', '플레이어 놓침', '체력이 10% 미만'은 각각의입력이 되어 다음과 같은 표로 함수 δ 를 나타낼 수 있을 것이다.

δ	플레이어 발견	플레이어 놓침	체력이 10% 미만	체력이 0 이 됨
정찰	전투	정찰	정찰	죽음
전투	전투	정찰	도주	죽음
도주	도주	정찰	도주	죽음
죽음	죽음	죽음	죽음	죽음

Table 1: 인공지능의 상태 변화를 표로 나타내기

유한상태기계의 장점은, 각 상태에서 NPC 의 구체적인 행동(이동, 공격, 스킬 사용 등) 을 디자인할 때, 다른 상태를 고려할 필요가 없어져 설계가 단순해진다는 것이다. 이와 같이, 수학을 이용하면 게임 인공지능의 구현을 단순화할 수 있다.

참고문헌

Michael Spiser(2023) $\[\]$ Introduction to the Theory of Computation $\[\]$ CENGAGE Learning. Reinhard Diestel(2010) $\[\]$ Graph Theory $\[\]$ Springer.