VE472 Lecture 9

Jing Liu

UM-SJTU Joint Institute

Summer

very large n

• Consider the following large dataset, which has only 3 columns but...

```
> DATA = data.table::fread("large_472.gz")
```

> str(DATA)

```
X1 X2 Y
1: 88 -1.746573094 8.087930
2: 88 0.658447891 8.957405
```

299999999: 96 -0.218207636 8.875289 300000000: 108 0.004935685 10.489749

• Notice the original data file is in a compressed format, gzip in this case,

```
[1] 5.347417
```

when it is uncompressed and read into the memory, the data is even bigger.

- > pryr::object_size(DATA)
- 6 GB

• Since most computers nowadays still have fewer than 16GB of memory,

Error: vector memory exhausted (limit reached?)

any dataset bigger than 4GB, is too big to be analysed in the usual way.

- Note the computational as well memory requirement prohibit us in doing so.
- Especially, if we want to consider a more flexible model,

$$Y = f_1(X_1) + f_2(X_2) + \varepsilon$$

where $\varepsilon \sim N(0,1)$, f_1 and f_2 are smooth functions, then the computational cost is going to be an even bigger issue than the memory requirement.

• Suppose all data points are independent, given the dimension of the problem is very low, k=2, we do not really need all those 300 million data points.

- In this case, a simple random sampling scheme will actually be sufficient.
 - > (total.row.n = nrow(DATA))

[1] 300000000

- Consider using 5000 data points instead of 300 million
 - > sample.n = 5000L
 - > index = sample(1:total.row.n, sample.n)
 - > index[1:3]

[1] 272402730 186655906 115527201

- > DATA.sample = DATA[index,]
- > nrow(DATA.sample)
- Γ1] 5000

读讲来再sample

 Of course, it would be better to perform a simple random sampling scheme without loading the whole dataset into memory, which may not be possible.

```
> rm(list=ls())
> sample.n = 5000L
> # Find how many rows the data has without header
> row.n = R.utils::countLines("large_472.gz")-1
> # Sample the required number of rows
> index = sample(1:row.n, sample.n)
> index = index[order(index)]
> skip.vec = c(index[1], diff(index)-1)
                  每次要skip多少行
> # Create an object to put the data
 DATA.sample = data.table::data.table(
                    X1 = integer(sample.n),
+
                    X2 = double(sample.n),
+
                    Y=double(sample.n))
```

```
> # Open a connection to the data file
> con = file("large_472.gz", open = "r")
>
> # Load the required data points
> for (i in 1:sample.n){
    skip = skip.vec[i]
    data.tmp = scan(
+
      con, nlines = 1, skip = skip,
+
      sep = ",", quiet = TRUE,
+
      what = list(integer(), double(), double()))
+
    DATA.sample[i, (1:3):= data.tmp]
+
+ }
> close(con)
```

> DATA DATA.sample

```
X1 X2 Y
1: 87 0.6907444 8.499598
---
5000: 101 -0.8642063 8.767105
```

• Loading the whole dataset without doing anything else need

```
> system.time({
+    DATA = data.table::fread("large_472.gz")
+ })

user    system elapsed
73.122    27.769    100.598
```

while loading 5000 lines using the method on the last page need

```
user system elapsed
431.998 2.323 145.937
```

• So it is not for speeding things up but addressing the limited memory issue.

```
> pryr::object_size(DATA.sample)
```

101 kB

The rest becomes a standard linear smoother (local regression) problem

```
> model.lo = loess ( local polynomial regression
    Y~X1+X2, control=loess.control(surface="direct"),
    data = DATA.sample)
> # Create the range of X1 and X2 values
> x1.n = 200
> x2.n = 200
> x1.plot = seq(0, 200, length.out = x1.n)
> x2.plot = seq(-5, 5, length.out = x2.n)
> grid = expand.grid(x1.plot, x2.plot)
>
> newdata = data.frame(grid)
> names(newdata) = c("X1", "X2")
>
> # Fitted values for this nonlinear surface
> Y = predict(model.lo, newdata = newdata)
> Y = matrix(Y, nrow = x1.n, ncol = x2.n)
```

The model gradually becomes stable when $n \to 1e5$

- Basing on 1 million sample points out of those 300 million data points will take hours! So the CPU bound actually kicks in before the memory bound.
- Since common methods in data science often involve the followings,

Choleksy, QR, SVD or numerical optimisation/integration

knowing the limits of those algorithms will give you some roughly idea on whether some kind of sampling scheme is needed for your dataset. e.g.

• Although a simple random sampling scheme is effective in many problems, it is not always appropriate even for low dimensional problems. For example

• Time series arise as recordings of processes which vary over time.

$$Y_1,\ldots,Y_T$$

correlated

- The data points in a time series are usually not independent, thus containing information to predict nearby values, potentially each value connected to the next, thus a simple random sampling scheme destroys this structure!
- Another big data issue regarding time series is there are a huge collection

$$Y_{11},Y_{12}\cdot\cdots\cdot Y_{1T_1}$$
 $Y_{21},Y_{22}\cdot\cdots\cdot Y_{2T_2}$ serveral time serires $Y_{i1},Y_{i2}\cdot\cdots\cdot \vdots \ \vdots \ Y_{n1},Y_{n2}\cdot\cdots\cdot Y_{nT_n}$

that is, n, T_1, T_2, \ldots, T_n could all be very large.

• Traditionally, the followings are the two main interests in time series analysis:

Smoothing:

The observed Y_t are assumed to be the result of "noise" ε_t a signal η_t ,

$$Y_t = \eta_t + \varepsilon_t$$

remove the noise

we may wish to recover the values of the underlying η_t .

Forcasting: Forecasting

On the basis of observation

$$Y_1, Y_2, \ldots, Y_T,$$

we may wish to predict what the value of Y_{T+L} will be $(L \ge 1)$.

• But increasingly there is a need to identify, classify or predict some attribute using a large collect of time series over a period in which the attribute lies in.

Recall we could deal with time series using linear model

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

however, instead of assuming that the errors are independent, we assume

$$oldsymbol{arepsilon} \sim \operatorname{Normal}\left(\mathbf{0}, oldsymbol{\Sigma}
ight)$$

where the covariance matrix Σ as well as β need to be estimated.

- ullet Before considering any fancy model, we could consider decomposing Y_t into several components, and model each individually later on.
- If we assume an additive decomposition, then traditionally we have

 R_t represents noise/remainder in the data.

$$Y_t = T_t + C_t + S_t + R_t$$
 where

 T_t represents the long-term increase or decrease in the data. no C_t represents repeated but non-periodic fluctuations in the data. constant S_t represents periodic fluctuations in the data. \overline{z}

cycle

• Instead having a simple T_t and C_t , we could combine the two,

$$Y_t = T_t + S_t + R_t$$
 where

where T_t captures the non-periodic fluctuations and the long-term trend.

Alternatively, a multiplicative decomposition is given by

$$Y_t = T_t \times S_t \times R_t$$
 as time increses, more

variebility appears

• The additive decomposition is usually if the magnitude of S_t or the variation of T_t does not vary as t increases. If not, the multiplicative decomposition or a log transformation is needed to stabilise the variability over time

$$\log Y_t = \log T_t + \log S_t + \log R_t$$

Multiplicative decompositions are common with financial time series.

Moving average smoothing

• Recall a moving average of order m can be written as

$$\hat{T}_t = \frac{1}{m} \sum_{j=-k}^k y_{t+j}$$
 where $m = 2k+1$.

- It gives an estimate of the T_t by averaging values of the time series nearby.
- The idea is nearby values are under the same periodic force, and averaging eliminates, at least to some extent, the randomness due to S_t and R_t , thus leaving only trend-cycle component.
- Of course, there are more sophisticated smoothing, for example,

$$2 \times 4\text{-MA}$$
:

weighted moving averge. Nearby has more weight

$$\hat{T}_{t} = \frac{1}{2} \left(\frac{1}{4} \left(y_{t-2} + y_{t-1} + y_{t} + y_{t+1} \right) + \frac{1}{4} \left(y_{t-1} + y_{t} + y_{t+1} + y_{t+2} \right) \right)$$

$$= \frac{1}{8} y_{t-2} + \frac{1}{4} y_{t-1} + \frac{1}{4} y_{t} + \frac{1}{4} y_{t+1} + \frac{1}{8} y_{t+2}$$

Classical Decomposition

Step 1

Compute \hat{T}_t using linear or nonlinear smoother.

Step 2

Compute the detrended series: $y_t - \hat{T}_t$ or y_t / \hat{T}_t

Step 3

Compute \hat{S}_t by simply averaging the detrended values for that season.

Step 4

Compute \hat{R}_t by subtracting/dividing \hat{T}_t and \hat{S}_t .

$$R_t = y_t - \hat{T}_t - \hat{S}_t$$
 or $R_t = y_t / \left(\hat{T}_t \hat{S}_t\right)$

SLT decomposition

better than moving average -> local: straight line

- STL stands for "Seasonal and Trend decomposition using Loess", where Loess is local polynomial regression, local in the sense only data points nearby are used.
- It constructs an additive decomposition, pnly additive

```
> stl(nottem, s.window = 7, t.window = 50)
```

```
Call:
stl(x = nottem, s.window = 7, t.window = 50)
seasonal trend

Components
seasonal trend remainder
Jan 1920 -8.07925728 49.82196 -1.142707381
Feb 1920 -9.25894766 49.78641 0.272538172
```

log-transformation on the data is needed for multiplicative decomposition.

Forecasting with decomposition

• In terms of prediction,

$$Y_t - S_t$$

is known as the seasonally adjusted component, and

$$S_t$$

is usually assumed to be fixed for a given season, or changing very slowly.

- The simplest way to predict S_{T+1} is to use \hat{S}_t of the corresponding season if it is fixed, or the last \hat{S}_t of the corresponding season if it is not (SLT).
- ullet So once we \hat{T}_{T+1} from the smoother, we add the seasonal components back

$$\hat{Y}_{T+1} = \hat{T}_{T+1} + \hat{S}_{T+1}$$

STL Example I

```
> tail(fit.stl$time.series, 3)
```

```
seasonal trend remainder
Jan 2012 -4.951454 90.00316 1.3882959
Feb 2012 -5.776154 89.63097 1.1851810
Mar 2012 7.921218 89.25879 0.6199934
```

STL Example II

> fit.stl %>% seasadj() %>% naive()

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95 Apr 2012 89.87878 85.24780 94.50976 82.79631 96.96125

> fit %>% forecast(method="naive")

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95 Apr 2012 83.89895 79.26798 88.52993 76.81648 90.98143

> tail(fit.stl\$time.series, 12)

seasonal trend remainder Apr 2011 -5.979828 95.69042 -0.2605893

> 89.87878 - 5.979828

[1] 83.89895

Naive forecasts of seasonally adjusted data

- To consider more sophisticated models, you should know some extra notion.
- The mean function of a time series is defined to be

$$\mu(t) = \mathbb{E}\left[Y_t\right]$$

and the autocovariance function is defined to be

$$\gamma(s,t) = \operatorname{cov}\left[Y_s, Y_t\right]$$

T different mean and variance + T(T-1)/2 number of covariance

- Notice there are 2T + T(T-1)/2 parameters associated with a given time series $Y_1, \dots Y_T$, which means it is not possible to estimate all of them.
- A key idea in time series is that of stationary, roughly speaking, a time series
 is stationary if its values always tend to vary about the same level and that
 their variability is constant over time.
- Stationary series have a rich theory and their behaviour is well understood.
- A time series with any trend-cycle, or seasonal component is not stationary!

• Formally, a time series is said to be strictly stationary if for any k > 0 and any $t_1, \ldots, t_k \in \mathbb{Z}$, the distribution of

$$(Y_{t_1}, Y_{t_2}, \ldots, Y_{t_k})$$

is the same as that for

garanteed that variance is finite

$$(Y_{t_1+u}, Y_{t_2+u}, \dots, Y_{t_k+u})$$

for every value of $u \in \mathbb{Z}$.

 It says that the behaviour of a stationary time series does not change over time, which means the following must be true if it is strictly stationary

$$\mu(t) = \mu(0)$$

and

$$\gamma(s,t) = \gamma(s-t,0)$$

 The two results of strictly stationary are often enough, people define a time series a <u>weakly stationary</u> if

$$\mu(t) = \mu(0)$$

$$\gamma(t+u,t) = \gamma(u,0)$$

$$\mathbb{E}\left[Y_t\right]^2 < \infty \longrightarrow \text{variance is finite}$$

for all t and u.

- In the case of Gaussian time series, the two definitions are equivalent.
- When time series are stationary, it is possible to simply the parametrisation,

$$\mu(t) = \mu$$
 and $\gamma(u) = \operatorname{cov}\left[Y_{t+u}, Y_t\right]$

from which we can consider so-called, autocorrelation function

$$\rho(u) = \frac{\gamma(u)}{\gamma(0)}$$