Sleepless SFO

Megan Leung & Christine So

Which communities have been most impacted by airplane noises from SFO?

SFO Data

- Source: SFO
- Timeframe: 2008 to 2018
- Datasets:
 - Air Traffic Passenger Statistics
 - Aircraft Noise Complaints
 - SFO Runway Usage
 - Airline Noise Exceedance Rating

From 2008 to 2018, the Number of SFO Passengers Increased Year Over Year


```
#Plot bar graphs with Deplaned and Enplaned passengers for a comparison

year = ["2008", "2009", "2010", "2011", "2012", "2013", "2014", "2015", "2016", "2017", "2018"]

deplaned = sfo_passenger_summary.loc["Deplaned"]

enplaned = sfo_passenger_summary.loc["Enplaned"]

transit = sfo_passenger_summary.loc["Thru / Transit"]

x_axis = np.arange(len(year))

tick_locations = []

for x in x_axis:
    tick_locations.append(x)

plt.title("SFO Inbound/Outbound Passenger Data")
```

23 ax.bar(x_axis-0.2, transit, facecolor = "r", width=0.2, align="center", label="Transit")
24 ax.bar(x_axis, enplaned, facecolor="y", width=0.2, align="center", label="Outbound")
25 ax.bar(x axis+0.2, deplaned, facecolor="g", width=0.2, align="center", label="Inbound")

16 plt.xticks(x axis, ("2008", "2009", "2010", "2011", "2012", "2013", "2014", "2015", "2016", "2017", "2018"))

14 plt.xlabel("Year")

18 plt.xlim(-1, len(year))

22 ax = plt.subplot(111)

27 plt.show()

26 plt.legend(loc="upper left")

17

20

28

15 plt.ylabel("Number of Passengers")

19 plt.ylim(0, max(deplaned) + 1000000)

Cities w/ the Most SFO Noise Complaints in 2008

Rank	City	# of Complaints
1	Brisbane	3.849
2	Daly City	1,757
3	San Carlos	590
4	Redwood City	332
5	Foster City	319
6	Pacifica	306
7	San Francisco	146
8	Palo Alto	113
9	S. San Francisco	70
10	Woodside	67

Cities w/ the Most SFO Noise Complaints in 2018

Rank	City	# of Complaints
1	Palo Alto	610,745
2	Los Altos	275,434
3	Los Gatos	256,522
4	Santa Cruz	248,581
5	Scotts Valley	143796
6	Los Altos Hills	108,978
7	Soquel	96,981
8	Oakland	94,871
9	Portola Valley	80,912
10	Pacifica	67,112

In 2015, the Highest Number of Complaints Shifted from Brisbane to Los Galtos/Palo Alto

Year	Community	Number of Complaints
2008	Brisbane	3,849
2009	Brisbane	2,768
2010	Brisbane	5,150
2011	Brisbane	5,319
2012	Brisbane	3,630
2013	Brisbane	5,324
2014	Brisbane	9268
2015	Los Gatos	213,850
2016	Palo Alto	863,149
2017	Palo Alto	610,940
2018	Palo Alto	610,745

```
1 new complaint df['State'] = 'CA'
 2 new complaint df['Lat'] = ''
 3 new complaint df['Lng'] = ''
   new complaint df = new complaint df[['Community', 'State', 'Lat', 'Lng', '2008', '2009', '2010', '2011', '2012', '20
                    '2017', '2018'11
1 # create a params dict that will be updated with new city each iteration
params = {"key": gkey}
   # Loop through the cities pd and run a lat/long search for each city
5 for index, row in new complaint df.iterrows():
       # update address key value
       base url = "https://maps.googleapis.com/maps/api/geocode/json"
       # make request
10
       city = row["Community"]
11
       state = row["State"]
```

new_complaint_df.loc[index, "Lat"] = cities_lat_lng["results"][0]["geometry"]["location"]["lat"]
new complaint df.loc[index, "Lng"] = cities lat lng["results"][0]["geometry"]["location"]["lng"]

12 13

14 15

17 18

19 20

16 #

params["address"] = (f"{city}, {state}")

cities lat lng = cities lat lng.json()

print(cities lat lng.url)

new complaint df

cities lat lng = requests.get(base url, params = params)

FAA Changes the Flight Paths in 2015

https://www.bizjournals.com/sanfrancisco/news/2018/09/07/sfo-airplane-noise-complaints-are-skyrocketing.html

San Francisco Business Times

Bay Area residents push back against SFO airport noise

Airport noise has been a longstanding gripe from residents living near San Francisco International Airport, but complaints from San Francisco, San Mateo, Santa Clara and Santa Cruz counties have skyrocketed in recent years. (113 kB) ▼

The Runway with the Highest Number of Flight Usage from 2008 to 2018 was 28L/R


```
#Plot bar graphs with Deplaned and Enplaned passengers for a comparison

year = ["2008", "2009", "2010", "2011", "2012", "2013", "2014", "2015", "2016", "2017", "2018"]

zero_one = sfo_runway_final.loc["01L/R_Total"]

ten = sfo_runway_final.loc["19L/R_Total"]

nineteen = sfo_runway_final.loc["19L/R_Total"]

twenty_eight = sfo_runway_final.loc["28L/R_Total"]

x_axis = np.arange(len(year))

tick_locations = []

for x in x_axis:
    tick_locations.append(x)

plt.title("SFO Runway Usage")
```

20 plt.bar(x_axis, zero_one, facecolor = "b", width=0.35, label="01L/R")

21 plt.bar(x axis, ten, facecolor="r", width=0.35, bottom=zero one, label="10L/R")

17 plt.xticks(x axis, ("2008", "2009", "2010", "2011", "2012", "2013", "2014", "2015", "2016", "2017", "2018"))

22 plt.bar(x axis, nineteen, facecolor="y", width=0.35, bottom=np.array(ten)+np.array(zero one), label="19L/R")

23 plt.bar(x axis, twenty eight, facecolor="g", width=0.35, bottom=np.array(nineteen)+np.array(ten)+np.array(zero one),

15 plt.xlabel("Year")

18 19

24 25

28

16 plt.ylabel("Total Usage Count")

label="28L/R")

26 plt.legend(loc="best")

27 plt.show()

Recommendations for Bay Area Residents

- File more complaints to SFO (<u>sfocop@flysfo.com</u>) and city government officials to take action
- Avoid living in cities like Palo Alto, Los Altos, and Los Gatos
- Buy noise cancelling headphones
- Use ear plugs
- Take melatonin

Current Airlines to Consider/Avoid

Airlines to Consider	Airlines to Avoid
Virgin Atlantic Airways	Qantas Airways
All Nippon Airways	Philippine Airlines
China Eastern Airlines	Asiana Airlines
KLM Royal Dutch Airlines	Fiji Airways
Air France	China Airlines
Japan Airlines	Eva Airways
Westjet	Korean Airlines
Turkish Airlines	Air India
Emirates	Singapore Airlines
Swiss International Airlines	Air New Zealand


```
31 #top 10 airlines in 2014
32 df 2014 = noise quality newdf.nlargest(10, ['2014'])
33 df 2014 = df 2014[['Airline Code']]
34 df 2014
35
36 #top 10 airlines in 2015
37 df 2015 = noise quality newdf.nlargest(10, ['2015'])
38 df_2015 = df_2015[['Airline Code']]
39 df 2015
40
41 #top 10 airlines in 2016
42 df 2016 = noise quality newdf.nlargest(10, ['2016'])
43 df 2016 = df 2016[['Airline Code']]
44 df 2016
45
46 #top 10 airlines in 2017
47 df 2017 = noise quality newdf.nlargest(10, ['2017'])
48 df 2017 = df 2017[['Airline Code']]
49 df 2017
50
51 #top 10 airlines in 2018
52 df 2018 = noise quality newdf.nlargest(10, ['2018'])
53 df_2018 = df_2018[['Airline Code']]
54 df 2018
55
56 top 10 = pd.concat([df 2008, df 2009, df 2010, df 2010, df 2011, df 2012, df 2013, df 2014, df 2015, df 2016,
                      df 2017, df 2018], keys = ['2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015',
57
                                                 '2016', '2017', '2018'],
58
```

axis=1, sort=False)

61 top 10 = top 10.apply(lambda x: pd.Series(x.dropna().values))

62 top 10.columns = top 10.columns.droplevel(-1)

59

60

63 | 64 top_10

Project Roadblocks

- Identifying consistency in data sets:
 - Crime data
 - Business data
 - Eviction data
 - Housing data
 - Aircraft type data
- Selecting the best visualizations
- No airport domain knowledge

Q&A?

