NS-3 Simulation: Building Custom Topology Network Performance Evaluation

Ritika Thakur (2022408) — Swarnima Prasad (2022525)

1 Objective

To simulate a computer network using the NS-3 simulator and evaluate its performance. The network consists of multiple nodes, which include workstations, servers, and intermediate routers. Data packets are routed through the network, and links may have different capacities, delays, and noise levels.

2 Topology

The network consists of:

- 5 Workstations/Servers (N1, N2, N3, N4, N5)
- 4 Routers (R1, R2, R3, R4)
- Point-to-point links with varying capacities

The chosen topology for the simulation is shown below:

2.1 Network Topology

The network consists of 5 nodes (N1, N2, N3, N4, N5) and 4 routers (R1, R2, R3, R4). The links between them have the following capacities:

Link	Capacity
N1 – R1	1 Mbps
N2 - R2	1 Mbps
N3 – R3	3 Mbps
N4 – R4	1 Mbps
N5 – R3	1 Mbps
R1 - R2	3 Mbps
R1 – R3	2.5 Mbps
R2 - R4	1 Mbps
R3 – R4	1.5 Mbps

Table 1: Network Topology with Link Capacities

2.2 Traffic Matrix

The traffic matrix below shows the traffic rates between each pair of nodes (in Mbps).

	N1	N2	N3	N4	N5
N1	0	120	132	144	160
N2	100	0	132 190 0 262 285	111	154
N3	101	100	0	199	108
N4	150	156	262	0	159
N5	140	188	285	171	0

2.3 Node Information

Node	Node Number	Type
N1	0	Client/Server
N2	1	Client/Server
N3	2	Client/Server
N4	3	Client/Server
N5	4	Client/Server
R1	5	Router
R2	6	Router
R3	7	Router
R4	8	Router

Table 2: Node Details and Classification

3 Explanation of Packet Transmission and Routing

3.1 Packet Transmission

Each workstation (N1, N2, N3, N4, N5) is connected to a router (R1, R2, R3, R4) via point-to-point links. The workstations generate or consume data packets, while the routers handle routing packets to the appropriate destination.

Example of Packet Flow

• From N1 to N3:

- Packets from workstation N1 (Node 0) are sent to router R1 (Node 5) via the point-to-point link n1r1.
- Router R1 forwards the packets through one of its links (r1r3) to reach the destination router for N3 (Node 2), which is R3 (Node 7).

Figure 1: Example of packet flow towards N3 (node 2)

During the simulation, tracing was enabled for all network events, including packet transmission, reception, enqueuing, dequeuing, and drops. The trace data was logged in a .tr file for detailed analysis. The generated trace file was parsed to calculate various statistics including one-way end-to-end delay, queue length and packets dropped.

3.2 Routing Packets Between Routers

The routers (R1, R2, R3, R4) are connected by point-to-point links with varying capacities and delays. Routing decisions are made based on the global routing tables, which are populated using the function:

Ipv4GlobalRoutingHelper::PopulateRoutingTables();

Source	N1	N2	N3	N4	N5	R1	R2	R3	R4
N1	_	R1	R1	R1	R1	_	_	_	_
N2	R2	_	R2	R2	R2	_	_	_	_
N3	R3	R3	_	R3	R3	_	_	_	_
N4	R4	R4	R4	_	R4	_	_	_	_
N5	R3	R3	R3	R3	-	_	_	_	_
R1	N1	R2	R3	R2	R3	_	R2	R3	R2
R2	R1	N2	R4	N4	R4	R1	_	R1	R4
R3	R1	R4	N3	R4	N5	R1	R1	_	R4
R4	R2	R2	R3	N4	R5	R3	R2	R3	_

Routing Steps

- 1. The source router forwards the packet to the next-hop router based on the routing table.
- 2. The intermediate router examines the destination IP address and forwards the packet to the appropriate link.
- 3. This process continues until the packet reaches the destination workstation.

3.3 Queue Management

1837	Router 1	Time:	42.5336	Queue	Length:	35
1838	Router 3	Time:	42.5336	Queue	Length:	35
1839	Router 0	Time:	42.5346	Queue	Length:	35
1840	Router 0	Time:	42.5346	Queue	Length:	36
1841	Router 0	Time:	42.5346	Queue	Length:	35
1842	Router 1	Time:	42.5346	Queue	Length:	35
1843	Router 3	Time:	42.5346	Queue	Length:	35
1844	Router 4	Time:	42.5346	Queue	Length:	35
1845	Router 0	Time:	42.5375	Queue	Length:	35
1846	Router 0	Time:	42.5456	Queue	Length:	35
1847	Router 1	Time:	42.5456	Queue	Length:	35
1848	Router 3	Time:	42.5456	Queue	Length:	35
1849	Router 0	Time:	42.5466	Queue	Length:	35
1850	Router 1	Time:	42.5466	Queue	Length:	35
1851	Router 3	Time:	42.5466	Queue	Length:	35
1852	Router 0	Time:	42.5504	Queue	Length:	35
1853	Router 1	Time:	42.5504	Queue	Length:	35
1854	Router 3	Time:	42.5504	Queue	Length:	35
1855	Router 0	Time:	42.5514	Queue	Length:	35
1856	Router 1	Time:	42.5514	Queue	Length:	35
1857	Router 3	Time:	42.5514	Queue	Length:	35
1858	Router 0	Time:	42.5624	Queue	Length:	35
1859	Router 1	Time:	42.5624	Queue	Length:	35
1860	Router 3	Time:	42.5624	Queue	Length:	35
	<u> </u>					

Figure 2: Queue lengths at a given time instance for various routers

3.4 Tracing a packet

Below are series of images that simulate the path followed by a packet from Node 1 (N2) to Node 2 (N3):


```
Packet Drops:
          0. 270.
                           0.]
    0.
                     0.
    0.
                           0.]
          0. 280.
                     0.
                           0.]
    0.
          0.
               0.
                     0.
          0. 275.
    0.
                     0.
          0. 250.
    0.
                     0.
```

Figure 3: Packet Drop Matrix

3.5 Packet Dropping

Packets have been forced to drop with a 0.5% probability:

3.6 One way end-to-end Delay

```
Node: 0, Time: +1s, Local time: +1s, Ipv4StaticRouting table
Destination Gateway Genmask Flags Metric Ref
                  0.0.0.0
                                      255.255.255.0
  Priority: -10 Protocol: ns3::Ipv4GlobalRouting
 Priority: 0 Protocol: ns3::Ipv4StaticRouting
Node: 1, Time: +1s, Local time: +1s, Ipv4StaticRouting table
                  Gateway
0.0.0.0
                                     Genmask
                                                                                Use Iface
                                                        Flags Metric Ref
                  Gateway
                                     Genmask
Node: 2, Time: +1s, Local time: +1s, Ipv4StaticRouting table
Destination Gateway Genmask Flags Metric
                   0.0.0.0
                                      255.255.255.0
 Priority: -10 Protocol: ns3::Ipv4GlobalRouting
                                                                                Use Iface
```

Figure 4: Average Delay and Variance of Delay

4 Simulation Parameters and Assumptions

4.1 Propagation Delay

In this simulation:

- A fixed propagation delay of 1 ms is assumed for each point-to-point link.
- This delay is explicitly enforced in the code using the following configuration:

```
p2p.SetChannelAttribute("Delay", StringValue("1ms"));
```

• Every link in the topology is configured with this propagation delay, ensuring consistent timing behavior throughout the network.

4.2 Packet Generation Using Poisson Distribution

The arrival of packets in the simulation follows a **Poisson distribution**. Key characteristics of this distribution include:

- Mean Interarrival Time (λ): The average time between the generation of two consecutive packets.
- The Poisson process is defined as:

$$P(k;\lambda) = \frac{\lambda^k e^{-\lambda}}{k!}$$

where $P(k; \lambda)$ is the probability of k packet arrivals in a given interval, and λ is the rate of packet arrivals which is determined using the traffic matrix.

Figure 5: Poisson distribution for packet generation

• Packets are generated using an exponential inter-arrival time derived from the Poisson process:

```
ExponentialRandomVariable expRandomVariable;
double interArrivalTime = expRandomVariable.GetValue(meanArrivalRate);
```

5 Other Visualizations

Figure 6: Reading .pcap files in wireshark

	t Table From Id	To Id	Tx	Meta
889 7		2	21.2002	Meta
890 7		5	21.2002	
891 2	-	7	21.2012	
892 5		0	21.2018	7
893 7	_	5	21.2022	
894 5		0	21.2034	
895 7		2	21.2042	-
896 2		7	21.2052	3
897 7		2	21.2058	
898 7		8	21.2062	
899 7		4	21.2064	
900 2		7	21.2068	7
901 7		2	21.2008	
902 8		3	21.2075	
903 2		7	21.2084	-
904 7		8	21.2094	2
905 7		4	21.2095	
906 8		3	21.2107	-
907 7		2	21.2114	
908 2		7	21.2124	7
909 7	_	2	21.213	
910 7		5	21.2136	
911 2		7	21.214	-
912 5		6	21.2147	
913 7		5	21.2151	
914 6		1	21.2159	
915 5		6	21.2163	
916 7		2	21.217	7
917 6		1	21.2175	
918 2		7	21.2175	
919 7		2	21.221	
920 2		7	21.222	
921 7		2	21.2226	
922 7		2	21.2242	
923 2		7	21.2242	
924 2		7	21.2276	7
925 7	5	2	21.2282	
926 2		7	21.2292	
927 7		2	21.2292	-
928 2		7	21.2332	
928 2		-	21.2332	
929 /		2	21.2336	

Figure 7: Communication Log table in NetAnim

Figure 8: Sequence Diagram in NetAnim