

Learning Set Functions Under the Optimal Subset Oracle via **Equivariant Variational Inference**

Zijing Ou, Tingyang Xu, Qinliang Su, Yingzhen Li, Peilin Zhao, Yatao Bian Tencent AI Lab Sun Yat—sen University Imperial College London 2022-03-11

Set Function Learning Applications

Set Function Learning Applications

Data Generation Process:

$$S^* = \underset{S \in 2^V}{\operatorname{argmax}} F_{\theta^*}(S; V)$$
$$\sim p(S, V) =: \delta_{S = S^*|V}$$

Set Function Learning Applications

$$S^* = \operatorname*{argmax} F_{\theta^*}(S; V)$$

$$S \in 2^V$$

Set anomaly detection

$$F_{\theta^*}(S; V) = \sum_{s_i \in S} \mathbb{I}(s_i \text{ is male}) - \mathbb{I}(s_i \text{ is femail})$$

Compound selection

$$S^* = \operatorname*{argmax} F_{\theta^*}(S; V)$$

$$S \in 2^V$$

Goal: Learn a surrogate F_{θ} to approximate the oracle utility function F_{θ^*} .

$$S^* = \operatorname*{argmax} F_{\theta^*}(S; V)$$

$$S \in 2^V$$

Goal: Learn a surrogate F_{θ} to approximate the oracle utility function F_{θ^*} .

Setting 1, FV oracle:

$$\theta^* = \min_{\theta} \sum_{i} L(F_{\theta}(S_i; V); F_{\theta^*}(S_i; V))$$

$$S^* = \operatorname*{argmax} F_{\theta^*}(S; V)$$

$$S \in 2^V$$

Goal: Learn a surrogate F_{θ} to approximate the oracle utility function F_{θ^*} .

Setting 1, FV oracle:

$$\theta^* = \min_{\theta} \sum_{i} L(F_{\theta}(S_i; V); F_{\theta^*}(S_i; V))$$

$$S^* = \operatorname*{argmax} F_{\theta^*}(S; V)$$

$$S \in 2^V$$

Goal: Learn a surrogate F_{θ} to approximate the oracle utility function F_{θ^*} .

Setting 1, FV oracle:

$$\theta^* = \min_{\theta} \sum_{i} L(F_{\theta}(S_i; V); F_{\theta^*}(S_i; V))$$

Curse of amounts of supervision signals

 \Rightarrow Training data in form of $\{(S_i, F_{\theta^*}(S_i; V))\}$ for each V

Set Function Learning Optimal Subset (OS) Oracle

$$S^* = \operatorname*{argmax} F_{\theta^*}(S; V)$$

$$S \in 2^V$$

Goal: Learn a surrogate F_{θ} to approximate the oracle utility function F_{θ^*} .

Setting 2, OS oracle:

 \Rightarrow Training data in form of $\{(S^*, V)\}$

$$\underset{\theta}{\operatorname{argmax}} \mathbb{E}_{\mathbb{P}(S^*,V)}[\log p_{\theta}(S^*|V)]$$

$$s.t.p_{\theta}(S|V) \propto F_{\theta}(S;V), \forall S \in 2^V$$

$$\underset{\text{Monotonically grows with the utility function}$$

$$\text{argmax } \mathbb{E}_{\mathbb{P}(S^*,V)}[\log p_{\theta}(S^*|V)]$$

$$s. \ t. \ p_{\theta}(S|V) \propto F_{\theta}(S;V), \forall S \in 2^V$$

$$\uparrow$$
 Monotonically grows with the utility function

How to construct a proper set mass function $p_{\theta}(S|V)$?

$$\operatorname*{argmax}_{\theta} \mathbb{E}_{\mathbb{P}(S^*,V)}[\log p_{\theta}(S^*|V)]$$

$$s.t.p_{\theta}(S|V) \propto F_{\theta}(S;V), \forall S \in 2^{V}$$

Desiderata:

Permutation invariance

$$\operatorname*{argmax}_{\theta} \mathbb{E}_{\mathbb{P}(S^*,V)}[\log p_{\theta}(S^*|V)]$$

$$s.t.p_{\theta}(S|V) \propto F_{\theta}(S;V), \forall S \in 2^{V}$$

Desiderata:

Permutation invariance

Varying ground set

$$\operatorname*{argmax}_{\theta} \mathbb{E}_{\mathbb{P}(S^*,V)}[\log p_{\theta}(S^*|V)]$$

$$s.t.p_{\theta}(S|V) \propto F_{\theta}(S;V), \forall S \in 2^{V}$$

Desiderata:

Permutation invariance

Varying ground set

Differentiability; Minimum prior & Scalability

$$\underset{\theta}{\operatorname{argmax}} \mathbb{E}_{\mathbb{P}(S^*,V)}[\log p_{\theta}(S^*|V)]$$

$$s.t.p_{\theta}(S|V) \propto F_{\theta}(S;V), \forall S \in 2^{V}$$

Probabilistic greedy model (PGM):

$$p_{\theta}(S|V) = \sum_{\pi \in \Pi^{S}} p_{\theta}(\pi|V)$$

$$p_{\theta}(S|V) = \sum_{\pi \in \Pi^{S}} p_{\theta}(\pi|V)$$
The first j chosen elements: $S_{j} = \{s_{1}, s_{2}, \dots, s_{j}\}$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname*{argmax}_{\theta} \mathbb{E}_{\mathbb{P}(S^*,V)}[\log p_{\theta}(S^*|V)]$$

$$s.t.p_{\theta}(S|V) \propto F_{\theta}(S;V), \forall S \in 2^{V}$$

Probabilistic greedy model (PGM):

$$p_{\theta}(S|V) = \sum_{\pi \in \Pi^{S}} p_{\theta}(\pi|V)$$

$$p_{\theta}(S|V) = \sum_{\pi \in \Pi^{S}} p_{\theta}(\pi|V)$$
The first j chosen elements: $S_{j} = \{s_{1}, s_{2}, ..., s_{j}\}$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Training:

$$\theta^* = \underset{\theta}{\operatorname{argmax}} \sum_{(V,S^*)} \log \sum_{\pi \in \Pi^{S^*}} p_{\theta}(\pi|V)$$

Log-likelihood: approximate with sampling

DSF:

$$F_{\theta}(S; V) = \sum_{i} \rho_{i}(\sum_{s \in S} \kappa_{i}(s))$$

Concave function $\rho_i : \mathbb{R}_+ \to \mathbb{R}_+$

PGM:

$$p_{\theta}(S|V) = \sum_{\pi \in \Pi^S} p_{\theta}(\pi|V)$$

$$p_{\theta}(\pi|V) = \prod_{j=0}^{|S|-1} \frac{\exp(F_{\theta}(s_{j+1} \cup S_j)/\gamma)}{\sum_{s \in V \setminus S_j} \exp(F_{\theta}(s \cup S_j)/\gamma)}$$

Transform $\kappa_i: V \to \mathbb{R}_+$

	Permutation Invariance	Varying Ground Set	Differentiability	Minimum Prior	Scalability	FV/OS Oracle
DSF	✓	X	✓	-	-	FV
PGM	✓	X	✓	X	X	os
EquiVSet (Ours)	✓	✓	✓	✓	✓	OS

Energy-based Modeling

$$p_{\theta}(S|V) = \frac{\exp(F_{\theta}(S;V))}{Z \leftarrow \text{Partition function } Z := \sum_{S \subseteq V} \exp(F_{\theta}(S;V))}$$

Energy-based Modeling

$$p_{\theta}(S|V) = \frac{\exp(F_{\theta}(S;V))}{Z \leftarrow \text{Partition function } Z := \sum_{S \subseteq V} \exp(F_{\theta}(S;V))}$$

EBMs for Minimum Prior:

Energy-based modeling has maximum entropy

Energy-based Modeling

$$p_{\theta}(S|V) = \frac{\exp(F_{\theta}(S;V))}{Z \leftarrow \text{Partition function } Z := \sum_{S \subseteq V} \exp(F_{\theta}(S;V))}$$

DeepSet for Permutation Invariance:

Approximate MLE

$$p_{\theta}(S|V) = \frac{\exp(F_{\theta}(S;V))}{Z \leftarrow \text{Partition function } Z := \sum_{S \subseteq V} \exp(F_{\theta}(S;V))}$$

Training Discrete EBMs:

Contrastive Divergence ⇒ Hard to converge

Score Matching ⇒ NonDifferentiable

Ratio Matching ⇒ Unstable

Separate training and inference procedure

Approximate MLE

$$p_{\theta}(S|V) = \frac{\exp(F_{\theta}(S;V))}{Z \leftarrow \text{Partition function } Z := \sum_{S \subseteq V} \exp(F_{\theta}(S;V))}$$

Marginal-based Loss:

$$\psi \in [0,1]^{|V|} : \text{odds that } s \in V \text{ shall be selected in the OS } S^*$$

$$\psi^* = \underset{\psi}{\operatorname{argmax}} \operatorname{D}(q(S; \psi) || p_{\theta}(S))$$

$$L(\theta; \psi^*) = \sum_{i=1}^N [-\sum_{j \in S_i^*} \log \psi_j^* - \sum_{j \in V_i \setminus S_i^*} \log (1 - \psi_j^*)]$$

Cohesive training and inference procedure

Approximate MLE

$$p_{\theta}(S|V) = \frac{\exp(F_{\theta}(S;V))}{Z \leftarrow \text{Partition function } Z := \sum_{S \subseteq V} \exp(F_{\theta}(S;V))}$$

Marginal-based Loss:

$$\psi \in [0,1]^{|V|} : \text{ odds that } s \in V \text{ shall be selected in the OS } S^*$$

$$\psi^* = \underset{\psi}{\operatorname{argmax}} \ \mathbb{D}(q(S; \psi) || p_{\theta}(S))$$

$$L(\theta; \psi^*) = \sum_{i=1}^N [-\sum_{j \in S_i^*} \log \psi_j^* - \sum_{j \in V_i \setminus S_i^*} \log (1 - \psi_j^*)]$$

$$\uparrow$$

Require ψ^* is differentiable w.r.t. θ

Variational distribution
$$q(S; \psi) = \prod_{i \in S} \psi_i \prod_{j \notin S} (1 - \psi_j), \psi \in [0,1]^{|V|}$$

$$\min_{\psi} \mathbb{KL}(q(S; \psi) || p_{\theta}(S))$$

$$\Leftrightarrow \max_{\psi} f_{mt}^{F_{\theta}}(\psi) + \mathbb{H}(q(S; \psi)) =: \text{ELBO}$$

$$\uparrow \quad \text{multilinear extension } f_{mt}^{F_{\theta}}(\psi) \coloneqq \sum_{S \subseteq V} F_{\theta}(S) \prod_{i \in S} \psi_i \prod_{j \notin S} (1 - \psi_j)$$

Variational distribution
$$q(S; \psi) = \prod_{i \in S} \psi_i \prod_{j \notin S} (1 - \psi_j), \psi \in [0,1]^{|V|}$$

$$\min_{\psi} \mathbb{KL}(q(S; \psi) || p_{\theta}(S))$$

$$\Leftrightarrow \max_{\psi} f_{mt}^{F_{\theta}}(\psi) + \mathbb{H}(q(S; \psi)) =: \text{ELBO}$$

$$\min_{\psi} \text{multilinear extension } f_{mt}^{F_{\theta}}(\psi) \coloneqq \sum_{S \subseteq V} F_{\theta}(S) \prod_{i \in S} \psi_i \prod_{j \notin S} (1 - \psi_j)$$

RNN-like fixed-point iteration:

$$\psi^{(0)} \leftarrow \text{Initialize in } [0,1]^{|V|}$$

$$\psi_{\theta}^{(k)} \leftarrow \left(1 + \exp\left(-\nabla_{\psi^{(k-1)}} f_{mt}^{F_{\theta}}(\psi^{(k-1)})\right)\right)^{-1}$$

$$\psi_{\theta}^{(K)} \leftarrow \psi_{\theta}^{(K)}$$

$$MFVI(\psi^{(0)}, V, K)$$

$$\psi_{\theta}^* = \text{MFVI}(\psi^{(0)}, V, K)$$
 is differentiable w.r.t. θ

$$L(\boldsymbol{\theta}; \boldsymbol{\psi}^*) = \sum_{i=1}^{N} \left[-\sum_{j \in S_i^*} \log \boldsymbol{\psi}_j^* - \sum_{j \in V_i \setminus S_i^*} \log (1 - \boldsymbol{\psi}_j^*) \right]$$

Algorithm DiffMF(V, S*):

Initialize variational parameter ψ

$$\psi^{(0)} \leftarrow 0.5 * 1$$

Compute the variational marginals

$$\psi^* \leftarrow \mathsf{MFVI}(\psi^{(0)}, V, K)$$

Update parameter θ

$$\theta \leftarrow \theta - \eta \nabla_{\theta} L(\theta; \psi^*)$$

$$L(\boldsymbol{\theta}; \boldsymbol{\psi}^*) = \sum_{i=1}^{N} \left[-\sum_{j \in S_i^*} \log \boldsymbol{\psi}_j^* - \sum_{j \in V_i \setminus S_i^*} \log (1 - \boldsymbol{\psi}_j^*) \right]$$

Training:

Initialize variational parameter ψ

$$\psi^{(0)} \leftarrow 0.5 * 1$$

Compute the variational marginals

$$\psi^* \leftarrow \mathsf{MFVI}(\psi^{(0)}, V, K)$$

Update parameter θ

$$\theta \leftarrow \theta - \eta \nabla_{\theta} L(\theta; \psi^*)$$

Inference:

$$S = \text{topN}(\psi^*)$$
$$\psi^* = \text{MFVI}(\psi^{(0)}, V, K)$$

Amortizing MFVI Open problems of DiffMF

Expensive computation complexity

$$\psi_{\theta}^{(k)} \leftarrow \left(1 + \exp\left(-\nabla_{\psi^{(k-1)}} f_{mt}^{F_{\theta}}(\psi^{(k-1)})\right)\right)^{-1}$$

expensive sampling loop per data point

Discard interaction pattern

$$q(S; \boldsymbol{\psi}) = \prod_{i \in S} \boldsymbol{\psi}_i \prod_{j \notin S} (1 - \boldsymbol{\psi}_j), \boldsymbol{\psi} \in [0, 1]^{|V|}$$

Independent assumption

Amortizing MFVI Reduce computational complexity

$$\psi_{\theta}^{(k)} \leftarrow \left(1 + \exp\left(-\nabla_{\psi^{(k-1)}} f_{mt}^{F_{\theta}} (\psi^{(k-1)})\right)\right)^{-1}$$

expensive sampling loop per data point

Approximate with neural networks:

neural network
$$q_{\phi} : \mathbb{R}^{|V|} \to \mathbb{R}^{|V|}$$

$$L = \mathbb{KL}(q_{\phi}(S; \psi) || p_{\theta}(S))$$

$$= f_{mt}^{F_{\theta}}(\psi) + \mathbb{H}\left(q_{\phi}(S; \psi)\right) + const$$

 $q_{\phi}(S; \psi)$ should satisfy equivariant

Amortizing MFVI Reduce computational complexity

$$\psi_{\theta}^{(k)} \leftarrow \left(1 + \exp\left(-\nabla_{\psi^{(k-1)}} f_{mt}^{F_{\theta}} (\psi^{(k-1)})\right)\right)^{-1}$$

expensive sampling loop per data point

EquiNet($V; \phi$) with permutation equivariance

Amortizing MFVI Induce interaction pattern

$$q(S; \boldsymbol{\psi}) = \prod_{i \in S} \boldsymbol{\psi}_i \prod_{j \notin S} (1 - \boldsymbol{\psi}_j), \boldsymbol{\psi} \in [0, 1]^{|V|}$$

Independent assumption

Correlation-aware inference:

Amortizing MFVI Induce interaction pattern

$$q(s_1, s_2, ..., s_{|V|}) = c(Q_1(s_1), Q_2(s_2), ..., Q_{|V|}(s_{|V|})) \prod_{i=1}^{|V|} q_i(s_i)$$

Apply Gaussian copula here

Induce Gaussian copula:

Sample an auxiliary noise

$$g \sim N(0, \Sigma) \rightarrow \frac{\text{Covariance matrix,}}{\text{parameterized by neural network}}$$

Apply element-wise Gaussian CDF

$$u = \Phi_{diag(\Sigma)}(g)$$

Obtain binary sample

$$S = \mathbb{I}(\psi \leq u) \rightarrow \text{Original logits of Bernoulli}$$

Amortizing MFVI

$$\phi^* = \operatorname*{argmax} f_{mt}^{F_{\theta}}(\psi) + \mathbb{H}\left(q_{\phi}(S; \psi)\right) \coloneqq \operatorname{ELBO}$$

$$\theta^* = \operatorname*{argmin} \sum_{i=1}^{N} \left[-\sum_{j \in S_i^*} \log \psi_j^* - \sum_{j \in V_i \setminus S_i^*} \log(1 - \psi_j^*)\right]$$

$$\psi^* = \operatorname{MFVI}(\psi^{(0)}, V, K)$$

Algorithm EquiVSet(V, S^*):

Update parameter
$$\phi$$

$$\phi \leftarrow \phi + \eta \nabla_{\phi} \text{ELBO}(\phi) \qquad \rightarrow \text{Optimize } \phi$$
Initialize variational parameter
$$\psi^{(0)} \leftarrow \text{EquiNet}(V; \phi)$$
One step fixed point iteration
$$\psi^* \leftarrow \text{MFVI}(\psi^{(0)}, V, K = 1)$$
Update parameter θ

$$\theta \leftarrow \theta - \eta \nabla_{\theta} L(\theta; \psi^*) \qquad \rightarrow \text{Optimize } \theta$$

Cooperative training

EquiVSet is a cooperative training framework

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{N} [-\sum_{j \in S_i^*} \log \psi_j^* - \sum_{j \in V_i \setminus S_i^*} \log (1 - \psi_j^*)]$$

Application: Product Recommender

Table 2: Product recommendation results in the MJC metric on the Amazon dataset.

Categories	Random	PGM	DeepSet (NoSetFn)	DiffMF (ours)	$\mathtt{EquiVSet}_{ind}\;(\mathtt{ours})$	EquiVSet _{copula} (ours)
Toys	0.0832	0.4414 ± 0.0036	0.4287 ± 0.0047	0.6147 ± 0.0102	0.6491 ± 0.0152	0.6762 ± 0.0221
Furniture	0.0651	0.1746 ± 0.0069	0.1758 ± 0.0072	0.1744 ± 0.0121	$\textbf{0.1775} \pm \textbf{0.0108}$	0.1724 ± 0.0091
Gear	0.0771	0.4712 ± 0.0037	0.3806 ± 0.0019	0.5622 ± 0.0171	0.6103 ± 0.0193	0.6973 ± 0.0119
Carseats	0.0659	$\textbf{0.2330} \pm \textbf{0.0115}$	0.2121 ± 0.0096	0.2229 ± 0.0104	0.2141 ± 0.0073	0.2149 ± 0.0123
Bath	0.0763	0.5638 ± 0.0077	0.4241 ± 0.0058	0.6901 ± 0.0061	0.6457 ± 0.0200	0.7567 ± 0.0095
Health	0.0758	0.4493 ± 0.0024	0.4481 ± 0.0041	0.5650 ± 0.0092	0.6315 ± 0.0153	0.7003 ± 0.0159
Diaper	0.0839	0.5802 ± 0.0092	0.4572 ± 0.0050	0.7011 ± 0.0112	0.7344 ± 0.0199	0.8275 ± 0.0136
Bedding	0.0791	0.4799 ± 0.0061	0.4824 ± 0.0081	0.6408 ± 0.0093	0.6287 ± 0.0195	0.7688 ± 0.0121
Safety	0.0648	0.2495 ± 0.0060	0.2211 ± 0.0044	0.2007 ± 0.0527	0.2250 ± 0.0287	0.2524 ± 0.0285
Feeding	0.0925	0.5596 ± 0.0081	0.4295 ± 0.0021	0.7496 ± 0.0114	0.6955 ± 0.0063	0.8101 ± 0.0074
Apparel	0.0918	0.5333 ± 0.0050	0.5074 ± 0.0036	0.6708 ± 0.0225	0.6465 ± 0.0150	0.7521 ± 0.0114
Media	0.0944	0.4406 ± 0.0092	0.4241 ± 0.0105	0.5145 ± 0.0105	0.5506 ± 0.0072	0.5694 ± 0.0105

Metric: MJC :=
$$\frac{1}{|\mathcal{D}_t|} \sum_{(V,S^*) \in \mathcal{D}_t} \frac{|S^* \cap S|}{|S^* \cup S|}$$

Application: Anomaly Detection

Bangs & No. Beard

Big Lips & Male

Big Lips & Male

Smiling & Brown Hair

Bangs & No. Beard

Big Lips & Male

Smiling & Brown Hair

Big Nose

Table 3: Set anomaly detection results in the MJC metric.

Double MNIST	CelebA
0.0816	0.2187
0.3031 ± 0.0118	0.4812 ± 0.0064
0.1108 ± 0.0031	0.3915 ± 0.0133
0.6064 ± 0.0133	0.5455 ± 0.0079
0.4054 ± 0.0122	0.5310 ± 0.0123
0.5878 ± 0.0068	0.5549 ± 0.0053
	0.0816 0.3031 ± 0.0118 0.1108 ± 0.0031 0.6064 ± 0.0133 0.4054 ± 0.0122

Application: Compound Selection

Application: Compound Selection

Table 4: Compound selection results in the MJC metric.

Method	PDBBind	BindingDB	
Random	0.0725	0.0267	
PGM	0.3499 ± 0.0087	0.1760 ± 0.0055	
DeepSet (NoSetFn)	0.3189 ± 0.0034	0.1615 ± 0.0074	
DiffMF (ours)	0.3534 ± 0.0143	0.1894 ± 0.0021	
EquiVSet _{ind} (ours)	0.3553 ± 0.0049	0.1904 ± 0.0034	
EquiVSet _{copula} (ours)	0.3536 ± 0.0083	0.1875 ± 0.0032	

Thank you!