සියලු ම හිමිකම් ඇවරුම් /(மුගුට பதிப்புரிமையுடையது/All Rights Reserved)

නව/පැරණි නිර්දේශය – புதிய/பழைய பாடத்திட்டம் – New/Old Syllabus

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

උසස් ගණිතය

உயர் கணிதம் П **Higher Mathematics** II

පැය තුනයි

மூன்று மணித்தியாலம் Three hours

මිනිත්තු 10 යි අමතර කියවීම් කාලය மேலதிக வாசிப்பு நேரம் 10 நிமிடங்கள் 10 minutes Additional Reading Time

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුබත්වය දෙන පුශ්න සංචිධානය කර ගැනීමටත් යොදාගන්න.

උපදෙස්:

විභාග අංකය

- මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ; A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).
- A කොටස

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

B කොටස

පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- නියමිත කාලය අවසන් වූ පසු ${f A}$ කොටසෙහි පිළිතුරු පතුය ${f B}$ කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- පුශ්න පතුයෙහි ${f B}$ කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙනයාමට ඔබට අවසර ඇත.
- සංඛාන වගු සපයනු ලැබේ.
- g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

කොටස	පුශ්න අංකය	ලකුණු
	1	
	2	
	3	712
	4	
A	5	
A	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	එකතුව	

<u> </u>		
ඉලක්කමෙන්		
අකුරෙන්	13.00	

සංකේත අංක			

A	L/2020/11/S-II(NEW/OLD) - 2 -
	A කොටස
1.	A,B හා C ලක්ෂා තුනක, O අචල මූලයකට අනුබද්ධයෙන් පිහිටුම් දෛශික පිළිවෙළින් $\mathbf{i}+\mathbf{j}-\mathbf{k},2\mathbf{i}-3\mathbf{j}+\mathbf{k}$ හ
	${f i}-2{f j}+3{f k}$ යැයි ගනිමු. \overrightarrow{AB} $ imes \overrightarrow{AC}$ සොයා ඒ නයින් , ABC තිකෝණයේ වර්ගඵලය සොයන්න.
2.	බල පද්ධතියක්, දෙකම O මූලයේ දී කි්යාකරන $\mathbf{F}_1=2\mathbf{i}+3\mathbf{j}-\mathbf{k}$ හා $\mathbf{F}_2=\mathbf{i}-\mathbf{j}+\mathbf{k}$ හා $(1,0,1)$ ලක්ෂායේ දී කි්යාකරන $\mathbf{F}_3=-3\mathbf{i}-2\mathbf{j}$ බලවලින් සමන්විත වේ. බල පද්ධතිය යුග්මයකට ඌනනය වන බව පෙන්වා එහි දෛශික
	සූර්ණය සොයන්න.

.....

3.	අරය a හා ඝනත්වය $ ho$ වූ ඒකාකාර අර්ධගෝලයක් අරය a , උස h හා ඝනත්වය $2 ho$ වූ
	ඒකාකාර සෘජුවෘත්තාකාර සිලින්ඩරයකට රුපයෙහි දැක්වෙන පරිදි සවි කිරීමෙන් S ඝන
	වස්තුවක් සාදා ඇත. ඝනත්වය $ ho_1$ වූ සමජාතීය දුවයක එහි අක්ෂය සිරස්ව ඇතිව S ගිල්වා
	ඇත. සිලින්ඩරය, අර්ධගෝලයට ඉහළින් ඇති විට එය අර්ධගෝලය පමණක් මුළුමනින්ම
	දුවයේ ගිලී පාවෙන අතර අර්ධගෝලය සිලින්ඩරයට ඉහළින් ඇති විට එය සිලින්ඩරය
	පමණක් මුළුමනින්ම දුවයේ ගිලී පාවෙයි.
	$h=rac{2a}{3}$ හා $ ho_1=3 ho$ බව පෙන්වන්න.

4.	t කාලයේ දී P අංශුවක පිහිටුම් දෙශිකය ${f r}=t{f i}+2\cos t{f j}-2\sin t{f k}$ මගින් දෙනු ලබයි. t කාලයේ දී P හි පුවේගය හා වේගය සොයා පුවේගය x —අක්ෂය සමග නියත කෝණයක් සාදන බව පෙන්වන්න. t කාලයේ දී P හි ත්වරණය ද සොයන්න.

5.	සුමට තිරස් ගෙබිමක් මත චලනය වන ස්කන්ධය m වූ සුමට ඒකාකාර A ගෝලයක් සුමට සිරස් බිත්තියක් සමග ගැටේ. ගැටුමට මොහොතකට පෙර A හි පුවේගයේ විශාලත්වය u වන අතර බිත්තිය සමග α කෝණයක් සාදයි. ගැටුමෙන් මොහොතකට පසු A හි පුවේගය බිත්තිය සමග β කෝණයක් සාදයි. $\tan \beta = e \tan \alpha$ බව පෙන්වන්න; මෙහි e යනු A හා බිත්තිය අතර පුතාහගති සංගුණකය වේ. ගැටුම නිසා සිදු වන A හි චාලක ශක්ති හානිය ද සොයන්න.	
		_
		۱
6.	ස්කන්ධය m වූ අංශුවක් B හි දී සවි කර ඇති ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක්, A තුළින් වූ සුමට	
6.	ස්කන්ධය m වූ අංශුවක් B හි දී සවි කර ඇති ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක්, A තුළින් වූ සුමට තිරස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. කුඩා දෝලනවල කාලාවර්ථය $\frac{8\pi}{3}\sqrt{\frac{a}{g}}$ බව පෙන්වන්න.	
6.	ස්කන්ධය m වූ අංශුවක් B හි දී සවි කර ඇති ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක්, A තුළින් වූ සුමට තිරස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. කුඩා දෝලනවල කාලාවර්ථය $\dfrac{8\pi}{3}\sqrt{\dfrac{a}{g}}$ බව පෙන්වන්න.	
6.	ස්කන්ධය m වූ අංශුවක් B හි දී සවි කර ඇති ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක්, A තුළින් වූ සුමට තිරස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. කුඩා දෝලනවල කාලාවර්ථය $\dfrac{8\pi}{3}\sqrt{\dfrac{a}{g}}$ බව පෙන්වන්න.	
6.	ස්කන්ධය m වූ අංශුවක් B හි දී සවි කර ඇති ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක්, A තුළින් වූ සුමට තිරස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. කුඩා දෝලනවල කාලාවර්ථය $\dfrac{8\pi}{3}\sqrt{\dfrac{a}{g}}$ බව පෙන්වන්න.	
6.	ස්කන්ධය m වූ අංශුවක් B හි දී සවි කර ඇති ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක්, A තුළින් වූ සුමට තිරස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. කුඩා දෝලනවල කාලාවර්ථය $\dfrac{8\pi}{3}\sqrt{\dfrac{a}{g}}$ බව පෙන්වන්න.	
6.	ස්කන්ධය m වූ අංශුවක් B හි දී සවි කර ඇති ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක්, A තුළින් වූ සුමට තිරස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. කුඩා දෝලනවල කාලාවර්ථය $\frac{8\pi}{3}\sqrt{\frac{a}{g}}$ බව පෙන්වන්න.	
6.	ස්කන්ධය m වූ අංශුවක් B හි දී සවි කර ඇති ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක්, A තුළින් වූ සුමට තිරස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. කුඩා දෝලනවල කාලාවර්ථය $\frac{8\pi}{3}\sqrt{\frac{a}{g}}$ බව පෙන්වන්න.	
6.	ස්කන්ධය m වූ අංශුවක් B හි දී සවි කර ඇති ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක්, A තුළින් වූ සුමට තිරස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. කුඩා දෝලනවල කාලාවර්ථය $\frac{8\pi}{3}\sqrt{\frac{a}{g}}$ බව පෙන්වන්න.	
6.	ස්කන්ධය m වූ අංශුවක් B හි දී සවි කර ඇති ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක්, A තුළින් වූ සුමට තිරස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. කුඩා දෝලනවල කාලාවර්ථය $\frac{8\pi}{3}\sqrt{\frac{a}{g}}$ බව පෙන්වන්න.	
6.	ස්කන්ධය m වූ අංශුවක් B හි දී සවි කර ඇති ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක්, A තුළින් වූ සුමට හිරස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. කුඩා දෝලනවල කාලාවර්ථය $\frac{8\pi}{3}\sqrt{\frac{a}{g}}$ බව පෙන්වන්න.	
6.	ස්කන්ධය m වූ අංශුවක් B හි දී සවි කර ඇති ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක්, A තුළින් වූ සුමට තිරස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. කුඩා දෝලනවල කාලාවර්ථය $\frac{8\pi}{3}\sqrt{\frac{a}{g}}$ බව පෙන්වන්න.	
6.	ස්කන්ධය m වූ අංශුවක් B හි දී සවි කර ඇති ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක්, A තුළින් වූ සුමට තිරස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. කුඩා දෝලනවල කාලාවර්ථය $\frac{8\pi}{3}\sqrt{\frac{a}{g}}$ බව පෙන්වන්න.	
6.	ස්කන්ධය m වූ අංශුවක් B හි දී සවි කර ඇති ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක්, A තුළින් වූ සුමට තිරස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. කුඩා දෝලනවල කාලාවර්ථය $\frac{8\pi}{3}\sqrt{\frac{a}{g}}$ බව පෙන්වන්න.	
6.	ස්කන්ධය m වූ අංශුවක් B හි දී සවි කර ඇති ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක්, A තුළින් වූ සුමට හිරස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. කුඩා දෝලනවල කාලාවර්ථය $\frac{8\pi}{3}\sqrt{\frac{a}{g}}$ බව පෙන්වන්න.	
6.	ස්කන්ධය m වූ අංශුවක් B හි දී සවි කර ඇති ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක්, A තුළින් වූ සුමට තිරස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. කුඩා දෝලනවල කාලාවර්ථය $\frac{8\pi}{3}\sqrt{\frac{a}{g}}$ බව පෙන්වන්න.	

•	එක්තරා කණ්ඩායමක් තරගයක් දිනීමේ සම්භාවිතාව 0.4 ක් වේ. මෙම කණ්ඩායම තරග 5 කින්,	
	(i) හරියටම තරග 4 ක්	
	(ii) තරග 4 කට වඩා අඩුවෙන්	
	දිනීමේ සම්භාවිතාව සොයන්න.	
_		
3.	එක්තරා රක්ෂණ සමාගමකට සාමානායෙන් දවසකට හිමිකම් ඉල්ලුම් 2 ක් ලැබෙන බව වාර්තා වේ. දවසකට ලැබෙන හිමිකම් ඉල්ලුම් සංඛාාව පොයිසොන් වාසප්තියක් අනුගමනය කරන බව උපකල්පනය කරමින්, සසම්භාවි ලෙස තෝරාගත දිනයක දී, හිමිකම් ඉල්ලුම්	3
3.	ලැබෙන හිමිකම් ඉල්ලුම් සංඛාාව පොයිසොන් වාාප්තියක් අනුගමනය කරන බව උපකල්පනය කරමින්, සසම්භාව ලෙස තෝරාගත දිනයක දී, හිමිකම් ඉල්ලුම්)
3.	ලැබෙන හිමිකම් ඉල්ලුම් සංඛාාව පොයිසොන් වාාප්තියක් අනුගමනය කරන බව උපකල්පනය කරමින්, සසම්භාව ලෙස තෝරාගත දිනයක දී, හිමිකම් ඉල්ලුම් (i) හරියටම 2 ක්	3
5.	ලැබෙන හිමිකම් ඉල්ලුම් සංඛාාව පොයිසොන් වාාප්තියක් අනුගමනය කරන බව උපකල්පනය කරමින්, සසම්භාව ලෙස තෝරාගත දිනයක දී, හිමිකම් ඉල්ලුම්	3
5.	ලැබෙන හිමිකම් ඉල්ලුම් සංඛාහව පොයිසොන් වහාප්තියක් අනුගමනය කරන බව උපකල්පනය කරමින්, සසම්භාව ලෙස තෝරාගත දිනයක දී, හිමිකම් ඉල්ලුම් (i) හරියටම 2 ක් (ii) අඩු තරමින් 1 ක් වත්	3
5.	ලැබෙන හිමිකම් ඉල්ලුම් සංඛාහව පොයිසොන් වහාප්තියක් අනුගමනය කරන බව උපකල්පනය කරමින්, සසම්භාව ලෙස තෝරාගත දිනයක දී, හිමිකම් ඉල්ලුම් (i) හරියටම 2 ක් (ii) අඩු තරමින් 1 ක් වත්	3
5.	ලැබෙන හිමිකම් ඉල්ලුම් සංඛාහව පොයිසොන් වහාප්තියක් අනුගමනය කරන බව උපකල්පනය කරමින්, සසම්භාව ලෙස තෝරාගත දිනයක දී, හිමිකම් ඉල්ලුම් (i) හරියටම 2 ක් (ii) අඩු තරමින් 1 ක් වත්	3
5.	ලැබෙන හිමිකම් ඉල්ලුම් සංඛාහව පොයිසොන් වහාප්තියක් අනුගමනය කරන බව උපකල්පනය කරමින්, සසම්භාව ලෙස තෝරාගත දිනයක දී, හිමිකම් ඉල්ලුම් (i) හරියටම 2 ක් (ii) අඩු තරමින් 1 ක් වත්	3
5.	ලැබෙන හිමිකම් ඉල්ලුම් සංඛාහව පොයිසොන් වහාප්තියක් අනුගමනය කරන බව උපකල්පනය කරමින්, සසම්භාව ලෙස තෝරාගත දිනයක දී, හිමිකම් ඉල්ලුම් (i) හරියටම 2 ක් (ii) අඩු තරමින් 1 ක් වත්	3
s.	ලැබෙන හිමිකම් ඉල්ලුම් සංඛාහව පොයිසොන් වහාප්තියක් අනුගමනය කරන බව උපකල්පනය කරමින්, සසම්භාව ලෙස තෝරාගත දිනයක දී, හිමිකම් ඉල්ලුම් (i) හරියටම 2 ක් (ii) අඩු තරමින් 1 ක් වත්	3
s.	ලැබෙන හිමිකම් ඉල්ලුම් සංඛාහව පොයිසොන් වහාප්තියක් අනුගමනය කරන බව උපකල්පනය කරමින්, සසම්භාව ලෙස තෝරාගත දිනයක දී, හිමිකම් ඉල්ලුම් (i) හරියටම 2 ක් (ii) අඩු තරමින් 1 ක් වත්	3
s.	ලැබෙන හිමිකම් ඉල්ලුම් සංඛාහව පොයිසොන් වහාප්තියක් අනුගමනය කරන බව උපකල්පනය කරමින්, සසම්භාව ලෙස තෝරාගත දිනයක දී, හිමිකම් ඉල්ලුම් (i) හරියටම 2 ක් (ii) අඩු තරමින් 1 ක් වත්)
s.	ලැබෙන හිමිකම් ඉල්ලුම් සංඛාහව පොයිසොන් වහාප්තියක් අනුගමනය කරන බව උපකල්පනය කරමින්, සසම්භාව ලෙස තෝරාගත දිනයක දී, හිමිකම් ඉල්ලුම් (i) හරියටම 2 ක් (ii) අඩු තරමින් 1 ක් වත්)
5.	ලැබෙන හිමිකම් ඉල්ලුම් සංඛාහව පොයිසොන් වහාප්තියක් අනුගමනය කරන බව උපකල්පනය කරමින්, සසම්භාව ලෙස තෝරාගත දිනයක දී, හිමිකම් ඉල්ලුම් (i) හරියටම 2 ක් (ii) අඩු තරමින් 1 ක් වත්	3
.	ලැබෙන හිමිකම් ඉල්ලුම් සංඛාහව පොයිසොන් වහාප්තියක් අනුගමනය කරන බව උපකල්පනය කරමින්, සසම්භාව ලෙස තෝරාගත දිනයක දී, හිමිකම් ඉල්ලුම් (i) හරියටම 2 ක් (ii) අඩු තරමින් 1 ක් වත්	3
	ලැබෙන හිමිකම් ඉල්ලුම් සංඛාහව පොයිසොන් වහාප්තියක් අනුගමනය කරන බව උපකල්පනය කරමින්, සසම්භාව ලෙස තෝරාගත දිනයක දී, හිමිකම් ඉල්ලුම් (i) හරියටම 2 ක් (ii) අඩු තරමින් 1 ක් වත්)

	X සන්තතික සසම්භාවි විචලාායක සම්භාවිතා ඝ z	ාත් ව ශිතය	•						
	$f(x) = \left\{ egin{array}{ll} ax - bx^2 & , & 0 \le x \le 2 \ \ 0 & , & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$, ®,							
(මගින් දෙනු ලැබේ; මෙහි a හා b යනු නියතයක්	වේ. <i>E(X)</i> :	$=rac{1}{3}$ බව	දී ඇත.	a හා <i>l</i>	් හි අ ග	ායන් මෙ	ම සායන්	්න.
		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	
		••••••		•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••	•••••	•••••	•••••	•••••
		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • •	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •
,		•••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • •	••••••	•••••		• • • • • • • •
		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	• • • • • • •
		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • •	••••••	•••••	•••••	• • • • • • • •
•		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • •	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •	• • • • • •	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • •
		•••••					• • • • • • •	• • • • • • • •	
•									• • • • • • •
	ා සල්ලම් කාර් නිෂ්පාදනය කරන සමාගමක් මගින	ත් මෙ හෙයරි	වනු ලබන	ා තත්ත්ව		 න කිුිිිය	ාාවලිය	කින්, දි ැ	න 30 ෘ
	බාලසීමාවක දී එකතු කරගන්නා ලද දත්ත පහත	දැක්වෙන T	පරිදි සා	රාංශගත ———	කොර) ඇත.			න 30 ෘ
	කාලසීමාවක දී එකතු කරගන්නා ලද දත්ත පහත පුතික්ෂේප කරන ලද සෙල්ලම් කාර් සංඛාාව	දැක්වෙන 0	පරිදි සාං	රාංශගත	කොර 2	ට ඇත. 	3	4	න 30 ෘ
2	කාලසීමාවක දී එකතු කරගන්නා ලද දත්ත පහත පුතික්ෂේප කරන ලද සෙල්ලම් කාර් සංඛාාව දින ගණන	දැක්වෙන 0 4	පරිදි සා <u>1</u> 6	රාංශගත	කොර 2 7	ට ඇත. 3	3 0	4 3	
2	කාලසීමාවක දී එකතු කරගන්නා ලද දත්ත පහත පුතික්ෂේප කරන ලද සෙල්ලම් කාර් සංඛාාව	දැක්වෙන 0 4 ්මේප කරන	පරිදි සා 1 6 ා ලද දෙ	රාංශගත සල්ලම් ස	කොර 2 7	ට ඇත. 3	3 0	4 3	
t	කාලසීමාවක දී එකතු කරගන්නා ලද දත්ත පහත පුතික්ෂේප කරන ලද සෙල්ලම් කාර් සංඛ්‍යාව දින ගණන සෙම්භාව් ලෙස තෝරාගන්නා ලද දිනකදී පුතික්	දැක්වෙන 0 4 ්මේප කරන	පරිදි සා 1 6 ා ලද දෙ	රාංශගත සල්ලම් ස	කොර 2 7	ට ඇත. 3	3 0	4 3	
t	කාලසීමාවක දී එකතු කරගන්නා ලද දත්ත පහත පුතික්ෂේප කරන ලද සෙල්ලම් කාර් සංඛ්‍යාව දින ගණන සෙම්භාව් ලෙස තෝරාගන්නා ලද දිනකදී පුතික්	දැක්වෙන 0 4 ්මේප කරන	පරිදි සා 1 6 ා ලද දෙ	රාංශගත සල්ලම් ස	කොර 2 7	ට ඇත. 3	3 0	4 3	
t	කාලසීමාවක දී එකතු කරගන්නා ලද දත්ත පහත පුතික්ෂේප කරන ලද සෙල්ලම් කාර් සංඛ්‍යාව දින ගණන සෙම්භාව් ලෙස තෝරාගන්නා ලද දිනකදී පුතික්	දැක්වෙන 0 4 ්මේප කරන	පරිදි සා 1 6 ා ලද දෙ	රාංශගත සල්ලම් ස	කොර 2 7	ට ඇත. 3	3 0	4 3	
2	කාලසීමාවක දී එකතු කරගන්නා ලද දත්ත පහත පුතික්ෂේප කරන ලද සෙල්ලම් කාර් සංඛ්‍යාව දින ගණන සෙම්භාව් ලෙස තෝරාගන්නා ලද දිනකදී පුතික්	දැක්වෙන 0 4 ්මේප කරන	පරිදි සා 1 6 ා ලද දෙ	රාංශගත සල්ලම් ස	කොර 2 7	ට ඇත. 3	3 0	4 3	
2	කාලසීමාවක දී එකතු කරගන්නා ලද දත්ත පහත පුතික්ෂේප කරන ලද සෙල්ලම් කාර් සංඛ්‍යාව දින ගණන සෙම්භාව් ලෙස තෝරාගන්නා ලද දිනකදී පුතික්	දැක්වෙන 0 4 ්මේප කරන	පරිදි සා 1 6 ා ලද දෙ	රාංශගත සල්ලම් ස	කොර 2 7	ට ඇත. 3	3 0	4 3	
2	කාලසීමාවක දී එකතු කරගන්නා ලද දත්ත පහත පුතික්ෂේප කරන ලද සෙල්ලම් කාර් සංඛ්‍යාව දින ගණන සෙම්භාව් ලෙස තෝරාගන්නා ලද දිනකදී පුතික්	දැක්වෙන 0 4 ්මේප කරන	පරිදි සා 1 6 ා ලද දෙ	රාංශගත සල්ලම් ස	කොර 2 7	ට ඇත. 3	3 0	4 3	
2	කාලසීමාවක දී එකතු කරගන්නා ලද දත්ත පහත පුතික්ෂේප කරන ලද සෙල්ලම් කාර් සංඛ්‍යාව දින ගණන සෙම්භාව් ලෙස තෝරාගන්නා ලද දිනකදී පුතික්	දැක්වෙන 0 4 ්මේප කරන	පරිදි සා 1 6 ා ලද දෙ	රාංශගත සල්ලම් ස	කොර 2 7	ට ඇත. 3	3 0	4 3	
2	කාලසීමාවක දී එකතු කරගන්නා ලද දත්ත පහත පුතික්ෂේප කරන ලද සෙල්ලම් කාර් සංඛ්‍යාව දින ගණන සෙම්භාව් ලෙස තෝරාගන්නා ලද දිනකදී පුතික්	දැක්වෙන 0 4 ්මේප කරන	පරිදි සා 1 6 ා ලද දෙ	රාංශගත සල්ලම් ස	කොර 2 7	ට ඇත. 3	3 0	4 3	
t	කාලසීමාවක දී එකතු කරගන්නා ලද දත්ත පහත පුතික්ෂේප කරන ලද සෙල්ලම් කාර් සංඛ්‍යාව දින ගණන සෙම්භාව් ලෙස තෝරාගන්නා ලද දිනකදී පුතික්	දැක්වෙන 0 4 ්මේප කරන	පරිදි සා 1 6 ා ලද දෙ	රාංශගත සල්ලම් ස	කොර 2 7	ට ඇත. 3	3 0	4 3	
t	කාලසීමාවක දී එකතු කරගන්නා ලද දත්ත පහත පුතික්ෂේප කරන ලද සෙල්ලම් කාර් සංඛ්‍යාව දින ගණන සෙම්භාව් ලෙස තෝරාගන්නා ලද දිනකදී පුතික්	දැක්වෙන 0 4 ්මේප කරන	පරිදි සා 1 6 ා ලද දෙ	රාංශගත සල්ලම් ස	කොර 2 7	ට ඇත. 3	3 0	4 3	

සියලු ම හිමිකම් ඇවරිණි/(\wp (\wp)பதிப்புரிமையுடையது/All~Rights~Reserved)

(නව/පැරණි නිර්දේශය – புதிய/பழைய பாடத்திட்டம் – New/Old Syllabus)

ල් ලෙඩැක්ල විශ්වාල දෙදා පිතුමින් නිව්ධාන දෙපාර්තමේන්තුව ලී ලංකා වනග දෙපාර්තමේන්තු දෙපාර්තමේන්තුව ලේකා ප්රවේධාන දෙපාර්තමේන්තුව ලිනුවේ දෙපාර්තමේන්තුව ලේකා වන දෙපාර්තමේන්තු

අධාායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

උසස් ගණිතය

உயர் கணிதம் Higher Mathematics II II

B කොටස

* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

11. පිළිවෙළින් ${f r}_{_1},{f r}_{_2}$ හා ${f r}_{_3}$ පිහිටුම් දෛශික සහිත ලක්ෂාවල දී කිුයාකරන ${f F}_{_1},{f F}_{_2}$ හා ${f F}_{_3}$ බල තුනක් පහත දෙනු ලබයි:

තියාකරන ලක්ෂපය	වලය
$r_1 = i + k$	$\mathbf{F}_1 = \mathbf{j} - \mathbf{k}$
$\mathbf{r}_2 = \mathbf{i} + \mathbf{j}$	$\mathbf{F}_2 = -\mathbf{i} + \mathbf{k}$
$\mathbf{r}_3 = \mathbf{j} + \mathbf{k}$	$\mathbf{F}_3 = \mathbf{i} - \mathbf{j}$

මෙම බල පද්ධතිය යුග්මයකට තුලා බව පෙන්වා එහි ඝූර්ණ දෛශිකය සොයන්න.

දැන් ${f F}_3$ බලය ${f F}_4$ බලයක් මගින් පුතිස්ථාපනය කරනු ලබන්නේ ${f F}_1,\,{f F}_2$ හා ${f F}_4$ න් සමන්විත බල පද්ධතිය සමතුලිතතාවයේ වන පරිදි ය. ${f F}_4$ හා එහි කිුයා රේඛාව ${f r}={f r}_0+\lambda{f F}$ ආකාරයෙන් සොයන්න. මෙහි ${f r}_0$ හා ${f F}$ නිර්ණය කළ යුතු අතර λ පරාමිතියකි.

 $m{O}$ මූලයෙහි දී ඌනනය කළ විට, පිළිවෙළින් $m{r}_1,m{r}_2$ හා $m{r}_3$ හි දී කිුයාකරන $m{F}_1,2m{F}_2$ හා $3m{F}_3$ න් සමන්විත බල පද්ධතිය ${f R}$ තනි බලයක් සමග දෛශික ඝූර්ණය ${f G}$ වූ යුග්මයකට ඌනනය වේ. ${f R}$ හා ${f G}$ සොයන්න.

ඒ නයින්, මෙම බල පද්ධතිය තනි සම්පුයුක්ත බලයකට ඌනනය වන බව පෙන්වන්න.

12. අරය a වූ වෘත්තාකාර තැටියක් එහි කේන්දුය, සමජාතිය දුවයක් තුළ දුවයේ නිදහස් පෘෂ්ඨයට පහළින් h(>a)ගැඹුරකින් පිහිටන පරිදි ගිල්වනු ලබයි. නැටියේ පීඩන කේන්දුය එහි සිරස් විෂ්කම්භය මත කේන්දුයට $rac{a^2}{4h}$ දුරකින් වන බව පෙන්වන්න.

පියනෙහි පරිධිය මත වූ A ලක්ෂෳයකින් සුමට ලෙස අසව් කළ අරය a වූ වෘත්තාකාර පියනක් සහිත අරය aවූ සෘජු වෘත්තාකාර සිලින්ඩරාකාර ටැංකියක් ඝනත්වය ho වූ සමජාතීය දුවයකින් පුරවා වසා තබා ඇත්තේ A ට විෂ්කම්භීයව පුතිවිරුද්ධ B ලක්ෂායෙහි වූ සුමට අගුලක් මගිනි. AB සිරස්ව ද B ට ඉහළින් A ද එහි අක්ෂය තිරස්ව ඝනත්වය $rac{P}{2}$ වූ සමජාතීය දුවයක දුවයේ නිදහස් පෘෂ්ඨයේ සිට d(>a) ගැඹුරකින් ද ඇතිව මෙම ටැංකිය ගිල්වනු

ලබයි. (රූපය බලන්න)

දැන් අගුල නිදහස් කරනු ලබයි.

 $d>rac{9a}{4}$ නම්, පියන වැසී තිබෙන බව පෙන්වන්න.

More Past Papers at

tamilguru.lk

13. ස්කන්ධය m වූ P අංශුවක් O ලක්ෂායක සිට සිරස්ව උඩු අතට u වේගයෙන් පුක්ෂේප කරනු ලබයි. එය විශාලත්වය mkv^2 වූ පුතිරෝධී බලයකට යටත් වේ; මෙහි v යනු අංශුවේ වේගයයි.

P හි උඩු අක් චලිතය සඳහා $rac{\mathrm{d} v}{\mathrm{d} t} + g + k v^2 = 0$ බව පෙන්වන්න.

P අංශුව මගින් O සිට එහි උපරිම උස Hට ළඟා වීමට ගන්නා කාලය $\dfrac{1}{\sqrt{gk}} an^{-1} igg(\sqrt{\dfrac{k}{g}} uigg)$ බව ද $H = \dfrac{1}{2k} \ln igg(1 + \dfrac{ku^2}{g}igg)$ බව ද පෙන්වන්න.

O වෙත නැවත පැමිණෙන විට P හි පුවේගය u,k හා g ඇසුරෙන් සොයන්න.

14. සුමට ගෙබිමක් මත චලිත වන ස්කන්ධ සමාන හා අරයන් සමාන සුමට ඒකාකාර A හා B ගෝල දෙකක් එකිනෙක සමග ගැටේ. ගැටුමට මොහොතකට පෙර A හා B හි පුවේගයන් පිළිවෙළින් u ($3\mathbf{i}$ + $4\mathbf{j}$) හා u ($-\mathbf{i}$ + $\frac{1}{2}\mathbf{j}$) වන අතර A හා B හි කේන්දු යා කරන රේඛාව \mathbf{i} ට සමාන්තර වේ. A හා B අතර පුතාහගති සංගුණකය $\frac{\sqrt{3}}{2}$ වේ. ගැටුමට මොහොතකට පසු A හා B හි පුවේග සොයා, ඒවා එකිනෙකට ලම්බ වන බව පෙන්වන්න.

A මගින් B මත ආවේගය හා ගැටුම නිසා සිදු වන චාලක ශක්ති හානිය ද සොයන්න.

15. ඒකාකාර රෝදයකට අරය a, හා කේන්දුය O වූ තැටියකින් අරය $\frac{a}{4}$ වූ සර්වසම කුඩා තැටි හතරක් ඉවත් කිරීමෙන් ලැබෙන හැඩය ඇත. ඉවත් කළ කුඩා තැටි හතරෙහිම කේන්දු එකිනෙකට ලම්බ රෝදයෙහි විෂ්කම්භ දෙකක් මත O සිට $\frac{a}{2}$ දුරින් රූපයේ දැක්වෙන පරිදි පිහිටා ඇත.

O තුළින් වූ රෝදයෙහි තලයට ලම්බ අක්ෂය වටා එහි අවස්ථිති ඝූර්ණය $rac{55}{96}Ma^2$ බව පෙන්වන්න; මෙහි M යනු රෝදයෙහි ස්කන්ධය වේ.

රඑ ති්රස් ගෙබිමක් මත රෝදය තබා ති්රස් ආවේගයක් දෙනු ලබන්නේ එය කෝණික වේගයක් රහිතව u වේගයෙන් ලිස්සා යාමට පටන් ගන්නා පරිදි ය.

රෝදය, T කාලයක් පුරා පෙරලෙමින් ද ලිස්සමින් ද චලනය වී ඉන්පසු සම්පූර්ණයෙන්ම පෙරලීම පමණක් ආරම්භ කරයි. T යන්න u,g හා μ ඇසුරෙන් සොයන්න. මෙහි μ යනු රෝදය හා ගෙබිම අතර ඝර්ෂණ සංගුණකය වේ.

 ${f 16.}\ \ X$ යන විවික්ත සසම්භාවී විචලාසයකට පහත දී ඇති සම්භාවිතා වාහප්තිය ඇත:

x	0	1	2	3	4
P(X=x)	p	q	r	0.2	0.1

මෙහි p,q හා r යනු නියත වේ.

$$E(X) = 1.5$$
 හා $E(X^2) = 4.1$ බව දී ඇත.

පහත එක එකක් සොයන්න:

- (i) p, q හා r හි අගයන්,
- (ii) $P\left(\frac{1}{2} < X < \frac{7}{2}\right),$
- (iii) Var(X),
- (iv) E(3-2X) so Var(3-2X),

 X_1 හා X_2 යනු ඉහත දී ඇති Xහි සම්භාවිතා වහාප්තියම ඇති ස්වායත්ත විවික්ත සසම්භාවී විචලා දෙකක් ද $Y=X_1\,+\,2X_2$ යැයි ද ගනිමු.

- (v) k=0,1,2,3,4 සඳහා P(Y=k) මසායා, **ඒ නයින්**, $P(Y\geq 5)$ මසායන්න.
- (vi) E(Y) හි අගය ලියා දක්වන්න.

 $17.(a)\ X$ යන සන්තතික සසම්භාවී විචලායකට

$$f(x) = \left\{ \begin{array}{ll} \frac{15}{2} x^2 (1 - x^2) & , & 0 \le x \le 1 \ \text{සඳහා,} \\ 0 & , & \text{එසේ නොවන විට,} \end{array} \right.$$

මගින් දෙනු ලබන සම්භාවිතා ඝනත්ව ශිුතයක් ඇත. $\mathrm{E}(X)$ හා $\mathrm{Var}(X)$ සොයන්න.

තවද, $P\left(\frac{1}{2} < X < 1\right)$ සොයන්න.

Yයනු Y=3X-2 මගින් අර්ථ දක්වනු ලබන සසම්භාවී විචලාස යැයි ගනිමු.

 $\mathrm{E}(Y)$ හා $\mathrm{Var}(Y)$ සොයන්න.

- (b) එක්තරා සමාගමක සේවකයන්ගේ උස, මධානාසය $160~{
 m cm}$ ක් ද සම්මත අපගමනය $5~{
 m cm}$ ක් ද ඇතිව පුමථව වාසාප්තව ඇත.
 - (i) සසම්භාවීව තෝරාගත් සේවකයෙකුගේ උස 165 cm ට වඩා වැඩි හා 170 cm ට වඩා අඩු වීමේ සම්භාවිතාව සොයන්න.
 - (ii) සසම්භාවීව තෝරාගත් සේවකයෙකුගේ උස 165 cm ට වඩා වැඩි බව දී ඇති විට සේවකයාගේ උස 170 cm ට වඩා වැඩි වීමේ සම්භාවිතාව සොයන්න.

* * *