Parcours Datascientist: projet 7

Indexation automatique d'images

issues de la banque d'images Standford Dogs Dataset

François BANGUI

Problem classification type

Standford dogs database

M.L vs D.L: Global benchmark scheme

M.L.: Features extraction with SIFT

Key Points Extraction

- Connected pixels detection (blob)
 - Scaling image
 - Gaussian diff

Scale (next octave)

Scale (first octave)

Difference of Gaussian (DOG)

Key Points

Geometric invariant properties Scaled invariant

Vector 128

2 differents vectors → Same KP

M.L.: Filters exploration

Aim: Most efficient SIFT extraction

M.L.: KP extraction efficiency

SIFT KP density per splitted image

Filtered SIFT key points matching

Filtered SIFT key points matching

SIFT descriptors t-SNE

ISOMAP dimension reduction

Bag Of Features

GMM clustering

M.L.: model building

M.L.: binary classification

Standford Dogs Database

M.L.: binary classification: no KP filter

3 breeds from Standford dogs database

M.L.: benchamrk of 3 breeds

M.L. conclusions

- Binary classification : better than a random classifier
- Multi-class classification : weeker then a random classifier
- Feature engineering based on SIFT : need to be improved
- Linear algorithm can't efficiently deals multi-class problem
- Hypothesis made over breeds lead to a biased solution

Neural Network experience

Neural Networks

Multi-layer perceptron

Built CNN

Pre-trained CNN

CNN Transfer learning: partial tuning

CNN Transfer learning: fine-learning

M.L.P & Softmax: Architecture feed forward

- More layers ⇒ More sophisticated classification
- W²₂₁: weight belonging to neuron 2 into layer 2 coming from neuron 1 into layer 1
- Training with batch of
- Multi-class classification ⇒ Use of Softmax

N.N.: background propagation

B.P. algorithm: iterative method in order to update Weights and Bias

- 1. Last layer: Compute error on thanks to Cost function and activation function A:
 - $\varepsilon^{Last} = \frac{\partial Cost}{\partial X^{Last}} * A'((X * \omega + b)^{Last})$ With $Cost(A) = \frac{-1}{node} \sum_{1}^{node} Y \ln(A) = \sum_{1}^{node} p \ln(A)$
- 2. Compute error on Layer L thanks to error on layer Layer L+1
 - $\varepsilon^{layer} = (\omega^{layer+1})^T * \varepsilon^{layer+1} \odot Act'((X*\omega+b)^{layer})$ where $X \odot Y$ is Hadamard product vector between X with Y
- 3. Compute gradient components for Cost function, for any neuron J into any layer
 - $\bullet \qquad \frac{\partial Cost}{\partial b_j^{layer}} = \varepsilon_j^{layer}$
 - For any neuron $j \in any \ layer : \frac{\partial Cost}{\partial \omega_{jk}^{layer}} = X_k^{layer-1} \varepsilon_j^{layer} = (\nabla_\omega Cost)_{jk}$

← average over all layer nodes

- 4. Thanks to cost gradient, update weight from neuron J in any layer:
 - For any neuron $j \in any \ layer : \omega_j^{next} = \omega_j^{now} \eta * \nabla_{\omega_i} Cost$ For any neuron $j \in any \ layer : b_j^{next} = b_j^{now} - \eta * \nabla_{b_i} Cost$

MLP

- 3 layers
- 461 Images / 3 breeds / 322 trained images / 139 tested images
- Accuracy : → 60 %
- Over-fitting issue

MLP: overfitting reduction L2 regularization

- 3 layers
- 461 Images / 3 breeds / 322 trained images / 139 tested images
- Accuracy : → 50 %
- Over-fitting issue decreased, better decrease of loss function

MLP: overfitting reduction droping neurons

- 461 Images / 3 breeds / 414 trained images / 47 tested images
- Accuracy : → Asymptoticaly 55 %
- Test loss: sticked on training less
- Learning issue ⇒ more iterations

CNN architecture

Hidden Layers

Convolution layers

Built CNN using Keras

Layer (type)	Output Shape	Param #
conv2d_7 (Conv2D)	(None, 224, 224, 64)	1792
conv2d_8 (Conv2D)	(None, 222, 222, 64)	36928
max_pooling2d_4 (MaxPooling2	(None, 111, 111, 64)	0
conv2d_9 (Conv2D)	(None, 111, 111, 64)	36928
conv2d_10 (Conv2D)	(None, 109, 109, 64)	36928
max_pooling2d_5 (MaxPooling2	(None, 54, 54, 64)	0
conv2d_11 (Conv2D)	(None, 54, 54, 64)	36928
conv2d_12 (Conv2D)	(None, 52, 52, 64)	36928
max_pooling2d_6 (MaxPooling2	(None, 26, 26, 64)	0
flatten_2 (Flatten)	(None, 43264)	0
dense_3 (Dense)	(None, 414)	17911710
dense_4 (Dense)	(None, 414)	171810

Total params: 18,269,952
Trainable params: 18,269,952
Non-trainable params: 0

CNN: 8 layers

• 6 convolution layers

• 2 classification layers

Accuracy : → 70 % Overfitting issue

Built CNN using Keras adressing overfitting issue

Layer (type) ====================================	Output	Shape 	Param # =======
conv2d_1 (Conv2D)	(None,	224, 224, 64)	1792
conv2d_2 (Conv2D)	(None,	222, 222, 64)	36928
max_pooling2d_1 (MaxPooling2	(None,	111, 111, 64)	0
conv2d_3 (Conv2D)	(None,	111, 111, 64)	36928
conv2d_4 (Conv2D)	(None,	109, 109, 64)	36928
max_pooling2d_2 (MaxPooling2	(None,	54, 54, 64)	0
conv2d_5 (Conv2D)	(None,	54, 54, 64)	36928
conv2d_6 (Conv2D)	(None,	52, 52, 64)	36928
max_pooling2d_3 (MaxPooling2	(None,	26, 26, 64)	0
flatten_1 (Flatten)	(None,	43264)	0
dense_1 (Dense)	(None,	414)	17911710
dropout_1 (Dropout)	(None,	414)	0
dense_2 (Dense)	(None,	414)	171810

Total params: 18,269,952 Trainable params: 18,269,952 Non-trainable params: 0

CNN 5 layers + drop layer Accuracy : → 70 % Overfitting issue

Use of pre-trained VGG16

Layer (type)	Output Shape	Param #
input_2 (InputLayer)	(None, 224, 224, 3)	0
block1_conv1 (Conv2D)	(None, 224, 224, 64)	1792
block1_conv2 (Conv2D)	(None, 224, 224, 64)	36928
block1_pool (MaxPooling2D)	(None, 112, 112, 64)	0
block2_conv1 (Conv2D)	(None, 112, 112, 128) 73856
block2_conv2 (Conv2D)	(None, 112, 112, 128) 147584
block2_pool (MaxPooling2D)	(None, 56, 56, 128)	0
block3_conv1 (Conv2D)	(None, 56, 56, 256)	295168
block3_conv2 (Conv2D)	(None, 56, 56, 256)	590080
block3_conv3 (Conv2D)	(None, 56, 56, 256)	590080
block3_pool (MaxPooling2D)	(None, 28, 28, 256)	0
block4_conv1 (Conv2D)	(None, 28, 28, 512)	1180160
block4_conv2 (Conv2D)	(None, 28, 28, 512)	2359808
block4_conv3 (Conv2D)	(None, 28, 28, 512)	2359808
block4_pool (MaxPooling2D)	(None, 14, 14, 512)	0
block5_conv1 (Conv2D)	(None, 14, 14, 512)	2359808
block5_conv2 (Conv2D)	(None, 14, 14, 512)	2359808
block5_conv3 (Conv2D)	(None, 14, 14, 512)	2359808
block5_pool (MaxPooling2D)	(None, 7, 7, 512)	0
flatten (Flatten)	(None, 25088)	0
fc1 (Dense)	(None, 4096)	102764544
fc2 (Dense)	(None, 4096)	16781312
predictions (Dense)	(None, 1000)	4097000

Use of VGG16 « off the shelf » Average Acc : 80 % /Min=70 % / Max : 93 %

Transfer learning: partial tuning of VGG16

- Frozen convolution layers
- 461 Images / 3 breeds / 322 trained images / 139 tested images
- Accuracy : 71 %

Pre-trained VGG16 over Imagenet weights

Convolutional layers: 16 layers

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	(None, 224, 224, 3)	0
block1_conv1 (Conv2D)	(None, 224, 224, 64)	1792
block1_conv2 (Conv2D)	(None, 224, 224, 64)	36928
block1_pool (MaxPooling2D)	(None, 112, 112, 64)	0
block2_conv1 (Conv2D)	(None, 112, 112, 128)	73856
block2_conv2 (Conv2D)	(None, 112, 112, 128)	147584
block2_pool (MaxPooling2D)	(None, 56, 56, 128)	0
block3_conv1 (Conv2D)	(None, 56, 56, 256)	295168
block3_conv2 (Conv2D)	(None, 56, 56, 256)	590080
block3_conv3 (Conv2D)	(None, 56, 56, 256)	590080
block3_pool (MaxPooling2D)	(None, 28, 28, 256)	0
block4_conv1 (Conv2D)	(None, 28, 28, 512)	1180160
block4_conv2 (Conv2D)	(None, 28, 28, 512)	2359808
block4_conv3 (Conv2D)	(None, 28, 28, 512)	2359808
block4_pool (MaxPooling2D)	(None, 14, 14, 512)	0
block5_conv1 (Conv2D)	(None, 14, 14, 512)	2359808
block5_conv2 (Conv2D)	(None, 14, 14, 512)	2359808
block5_conv3 (Conv2D)	(None, 14, 14, 512)	2359808
block5_pool (MaxPooling2D)	(None, 7, 7, 512)	0

Total params: 14,714,688 Trainable params: 14,714,688 Non-trainable params: 0

Fully connected layers : 2 layers

Layer (type)	Output Shape	Param #
vgg16 (Model)	(None, 7, 7, 512)	14714688
flatten_1 (Flatten)	(None, 25088)	0
dense_1 (Dense)	(None, 512)	12845568
dropout_1 (Dropout)	(None, 512)	0
dense_2 (Dense)	(None, 3)	1539
Tatal name: 07 F64 70F		

Total params: 27,561,795 Trainable params: 27,561,795 Non-trainable params: 0

Transfer learning: fine tuning of VGG16

- Free convolution layers
- 461 Images / 3 breeds / 322 trained images / 139 tested images
- Accuracy : 75 %
- Over-fitting issue

Benchmark results over 3 breeds / 461 dogs

Conclusions & perspectives

- M.L. algorithms:
 - SIFT features extraction may be limited
 - Grey scale ⇒ loss of information
 - Failed for multi-class problem : require non linear objective functions for separation
- D.L.
 - M.L. Perceptron provides better results than any M.L. algorithm
 - CNN provide better results then M.L. perceptron
 - Building efficient CNN requires huges ressources for RAM and computation
 - Using pre-trained CNN require computation resources
 - Cloud computing along with pre-trained C.N. may provide accuracy > 90 %
 - More training data ⇒ increase train accuracy & increase or not test accuracy.
 - Miss of training data : use of data augmentation
 - · Apply noise filters as input of CNN

Annexe 1: source files organization

Notebooks:

- P7 DataAnalysis.ipynb : data analysis
- P7_DataBreed.ipynb : used for building oDataBreed component
- P7 ClusteringDescriptors.ipynb : used to study clustering of descriptors
- P7 FilterExploration.ipynb : used to explore filters
- P7 KerasCNN.ipynb: used to build CNN with Keras
- P7_KerasMLP.ipynb : used to build multi-layers « perceptron »
- P7_Keras_Pretrained.ipynb : used to build pre-trained CNN
- P7_KerasPretrained_FullTuning.ipynb: used to buid pre-trained CNN
- P7_TestDataBreed.ipynb: used to test oDataBreed with multiple classifiers

Python source files: src

- P7_DataBreed.py: implementation for using multiple classifiers
- p7_util.py : functions for P7 project
- p6_util.py: functions issued from P6 project
- p6_util_plot.py : functions for plot issued from P6 project
- p5_util.py : functions issued from P5 project
- p3_util.py : functions issued from P3 project

Report: report

Openclassrooms_ParcoursDatascientist_P7-V1.pdf: project slides