Anmerkungen:

Laborversuch 2

Versuch Fach Semester Fachsemester Labortermine Abgabe bis spätestens		Simulink Ereignisdiskrete SS 2024 TIN 4 25.04.2024 02.05.2024 10.05.2024	e Systeme	
Versuchsteilnehmer				
Name:	Vorname:			
Semester:	Matrikelnummer:			
Bewertung des Versuches				
Aufgabe:	1	2	3	4
Punkte maximal:	10	20	35	35
Punkte erreicht:				
Gesamtpunktezahl:	Note:		Zeichen:	

Aufgabe 1: (2.5+2.5+2.5+2.5=10 Punkte)

Thema: Simulink-Grundlagen

Die nachfolgenden Abbildungen (a) bis (d) zeigen die gemessenen Übergangsfunktionen (d.h. Antworten auf den Einheitssprung) h(t) von vier unterschiedlichen regelungstechnischen Übertragungsgliedern:

Lösen Sie für die einzelnen Übergangsfunktionen a) bis d) die folgenden Aufgaben:

- I) Um welchen Typ Übertragungsglied handelt es sich jeweils (z.B. I-, PT_1T_t -, PT_2T_t -, PD-, PT_2 -, PT_t -, PID- oder DT_1 -Glied)?
- II) Schätzen Sie die jeweils relevanten Parameter des Übertragungsglieds (z.B. K_P und T_1 für ein PT_1 -Glied)!

 Hinweis: Die weißen Hilfslinien bzw. Pfeile entsprechen den (etwa mit einem Lineal) zu messenden Größen. Siehe auch Skript.
- III) Überprüfen Sie Ihre Wahl durch Simulation der Sprungantwort unter Simulink mit dem nachfolgend aufgeführten Simulink-Modell.

Aufgabe 2: (4+6+10 = 20 Punkte)

Thema: Optimierung eines einfachen Regelkreises mit Simulink

Das dynamische Verhalten eines Lageregelkreises soll untersucht werden. Die Regelstrecke wird durch den Antrieb $G_A(s)$ und die Umsetzung der Geschwindigkeit v_x des Antriebes in den Weg x gebildet. Der eingesetzte P-Regler $G_R(s) = K_P$ soll angepasst/optimiert werden.

a) Bestimmen Sie das Übertragungsverhalten der Umsetzung der Geschwindigkeit $v_x(t)$ in den Weg x(t) und deren Transformation in den Bildbereich (Frequenzbereich):

$$v_x(t) = \frac{dx(t)}{dt} \circ - v_x(s) = \dots \cdot x(s) \qquad \Rightarrow \qquad G_U(s) := \frac{x(s)}{v_x(s)} = \dots$$

b) Der Antrieb sei in 1. Näherung als Verzögerungsglied 1. Ordnung über

$$G_A(s) = \frac{1}{1 + T_A s} \quad \text{mit} \quad T_A = 0.1$$

dargestellt:

- 1) Erstellen Sie den Lageregelkreis in Simulink mit $K_P = 1$.
- 2) Optimieren Sie dann den geschlossenen Regelkreis über K_P auf leichtes Überschwingen der Übergangsfunktion.
- 3) Wie groß ist $K_{P,opt}$?
- c) Der Antrieb sei nun als Verzögerungsglied 2.Ordnung durch

$$G_A(s) = \frac{1}{1 + 2DT_a s + T_a^2 s^2}$$

mit D = 0.5 und $T_a = 0.1$ approximiert.

- 1) Verändern Sie den Lageregelkreis nach b) in Simulink entsprechend.
- 2) Ermitteln Sie nun $K_{P,\text{opt}}$ nach der Stabilitätsrand-Methode (siehe Skript S.23).
- 3) Die kritische Verstärkung $K_{P,\text{krit}}$ erhält man nach der Stabilitätsrand-Methode durch stetiges Erhöhen von K_P . Wenn die Übergangsfunktion in der Amplitude gleichbleibend periodisch schwingt ist

$$K_P = K_{P,\text{krit}} = 2K_{P,\text{opt}}$$
 bzw. $K_{P,\text{opt}} = 0.5K_{P,\text{krit}} = \dots$.

Aufgabe 3: (6+7+9+9+4=35 Punkte)

Thema: Optimierung mit Übergangsfunktions-Methode nach Ziegler/Nichols

Unter Anwendung der Übergangsfunktions-Methode nach Ziegler und Nichols (Skript S.23) sollen die Einstellparameter eines Standardreglers für eine Regelstrecke 2.Ordnung ermittelt werden.

Die Übergangsfunktion (Sprungantwort) h(t) der Regelstrecke 2.Ordnung $G_A(s)$ ist durch folgende Skizze gegeben,

und die Übertragungsfunktion $G_A(s)$ obiger Regelstrecke durch

$$G_A(s) = \frac{2}{3s^2 + 4s + 1} = \frac{2}{(s+1)(3s+1)}$$
.

- a) Ermitteln Sie grafisch aus der Sprungantwort h(t) die Verzugszeit T_u , die Ausgleichszeit T_g und den Proportionalbeiwert (Verstärkung) K_S .
- b) Wählen Sie einen P- und dann noch einen PI-Regler und parametrisieren Sie diese entsprechend der folgenden Tabelle nach dem Ziegler-Nichols-Einstellkriterium (Skript S.23):

Regler	$\mid K_p \mid$	T_n	T_v
P	$T_g/(K_s \cdot T_u)$		
PI	$0.9 \cdot T_g/(K_s \cdot T_u)$	$3.3T_u$	
PID	$1.2 \cdot T_g/(K_s \cdot T_u)$	$2.0T_u$	$0.5 T_u$

D.h. ermitteln Sie für den P-Regler einen passenden Wert für K_P , und für den PI-Regler passende Werte für K_P und T_n .

c) Erstellen Sie das Blockschaltbild des Regelkreises mit dem gewählten P-Regler und der Regelstrecke $G_A(s)=\frac{2}{3s^2+4s+1}$ in Simulink.

Untersuchen Sie das Führungsverhalten: Ermitteln Sie dazu durch Sprung $\epsilon(t)$ - und Stoß $\delta(t)$ - Anregung des erstellten Regelkreises die Übergangsfunktion h(t), und die Gewichtungsfunktion g(t).

- d) Erweitern Sie das Blockschaltbild des Regelkreises auf den gewählten PI-Regler. Ermitteln Sie wieder durch Sprung $\epsilon(t)$ - und Stoß $\delta(t)$ - Anregung des erstellten Regelkreises die Übergangsfunktion h(t), und die Gewichtungsfunktion g(t).
- e) Welcher grundsätzliche Unterschied besteht zwischen den Übergangsfunktionen nach c) und d) ?

Aufgabe 4: (11+7+7+10 = 35 Punkte)

Thema: Regelverhalten von P-, I- und PID-Reglern

Es soll das Regelverhalten eines P-Reglers, I-Reglers und PID-Reglers in der Regelung einer "4-te Ordnung-Strecke" untersucht werden.

Mit Simulink soll die Störübergangsfunktion $h_z(t)$ des Regelkreises der folgenden Figur (vgl. Skript S.20) mit dem optimalen P-Regler, dem optimalen I-Regler und dem optimalen PID-Regler und einer "4-te Ordnung Strecke" (d.h. $4 \times PT1$) nachgewiesen werden.

Im folgenden Schaubild ist die Störübergangsfunktion $h_z(t)$ der normierten Regelgröße $x/(z_0K_s)$ für eine sprungförmige Störung $z(t)=z_0\epsilon(t)$ für verschiedene Reglertypen $G_R(s)$ dargestellt. Hierbei liege die Störung z(t) am Eingang der Regelstrecke G(s) mit (siehe Skizze des Regelkreises)

$$G(s) = \frac{K_S}{(1+TS)^4}$$
 mit $K_S = 1; T = 1; z_0 = 1$.

In den Regelkreisen wurden die optimierten I-, P-, PD-, PI-, PID-Regler mit den optimierten Parametern $K_{P,\text{opt}}$, $T_{n,\text{opt}}$, $T_{v,\text{opt}}$ (siehe Tabelle) eingebaut.

a) Erstellen Sie in Simulink den Regelkreis aus der Regelstrecke $G_S(s) = K_S/(1+TS)^4$ mit $K_S = 1$; T = 1 und einem optimierten **P-Regler**. Ermitteln Sie hierfür den optimalen Parameter $K_{P,\text{opt}}$ aus obiger Tabelle. Ermitteln Sie dann durch Simulation die Störübergangsfunktion $h_z(t)$ aus der sprungförmigen Störung $z(t) = z_0 \epsilon(t)$ mit $z_0 = 1$ am Eingang der Regelstrecke.

- b) Erstellen Sie in Simulink den Regelkreis aus der Regelstrecke $G_S(s) = K_S/(1+TS)^4$ mit $K_S = 1$; T = 1 und einem optimierten **I-Regler**. Ermitteln Sie hierfür den optimalen Parameter $T_{n,\text{opt}}$ aus obiger Tabelle. Ermitteln Sie dann durch Simulation die Störübergangsfunktion $h_z(t)$ aus der sprungförmigen Störung $z(t) = z_0 \epsilon(t)$ mit $z_0 = 1$ am Eingang der Regelstrecke.
- c) Erstellen Sie in Simulink den Regelkreis aus der Regelstrecke $G_S(s) = K_S/(1+TS)^4$ mit $K_S = 1$; T = 1 und einem optimierten **PID-Regler**. Ermitteln Sie hierfür die optimalen Parameter $K_{P,\text{opt}}$; $T_{n,\text{opt}}$ und $T_{v,\text{opt}}$ aus obiger Tabelle. Ermitteln Sie dann durch Simulation die Störübergangsfunktion $h_z(t)$ aus der sprungförmigen Störung $z(t) = z_0 \epsilon(t)$ mit $z_0 = 1$ am Eingang der Regelstrecke.
- d) Geben Sie die Störübergangsfunktionen $h_z(t)$ der Regelkreise mit P-, I-, PID-Regler nach a), b) und c) gemeinsam auf ein Scope und erstellen Sie eine obigem Schaubild entsprechende Abbildung.