lecture2.md 2/25/2021

Polygonal Model

- Oldest and most known model for graphical presentation
- Resolution → Number of polygons
- More polygons mmore data for storage
- Model is saved in many resolutions for use in different cases
- Smallest polygon is a triangle
- Polygons are defined by vertexes (at least three)
- Vertex is defined by \$x\$,\$y\$,\$z\$ coordinates
- Distance between two vertexes is a Vector \$|V|=\sqrt{dx^2+dy^2+dz^2}\$
- To make two vectors with an angle \$\alpha\$ between them into a triangle we need a vertical vector with its vertex, it is calculated so: \$|V|=|V_1||V_2|\cos(\alpha)\$
- The normal vector of a vertex is the vector that is vertical to the surface of the vertex
- If we want a normal for a vertex with more than one vector we calculate the vertical vectors in pairs (e.g. 4 vectors from one vertex → \$V_{12}\$, \$V_{23}\$, \$V_{34}\$ and \$V_{41}\$)

Simple Polygonal Model

• Is comprised of three triangles at least and has a Face Table and Vertex Table

Face Table

Faces	Vectors
\$F_1\$	\$V_1\$ \$V_2\$ \$V_3\$
\$F_2\$	\$V_2\$ \$V_3\$ \$V_4\$
\$F_3\$	\$V_2\$ \$V_4\$ \$V_5\$

Vector Table

Vector	Vertexes
\$V_1\$	\$x_1\$ \$y_1\$ \$z_1\$
\$V_2\$	\$x_2\$ \$y_2\$ \$z_2\$
\$V_3\$	\$x_3\$ \$y_3\$ \$z_3\$