

数值分析

作者: Huang

目录

弗Ⅰ草	51122	1
1.1	数值运算的误差估计	1
1.2	有效数字与绝对误差、相对误差之间的关系	1
第2章	插值多项式	2
2.1	拉格朗日插值多项式及其余项	2
2.2	牛顿插值多项式	2
	2.2.1 差商的性质	
	2.2.1	_
第3章	数值积分与数值微分	3
3.1	牛顿-科特斯公式	3
3.2	复合求积公式	3
3.3	高斯求积公式	4
3.3	придопада	7
第4章	解线性方程组的直接方法	5
4.1	高斯消去法及高斯列主元消去法	5
4.2	矩阵的三角分解	5
4.3	条件数	
4.3	宋什奴	J
第5章	解线性方程组的迭代法	6
	三种迭代法的迭代公式	6
5.1		
第6章	非线性方程与方程组的数值解法	7
6.1	二分法二分次数与预定精度之间的关系	7
6.2	不动点迭代法收敛发散情况	7

第1章 引论

1.1 数值运算的误差估计

我们有如下相对误差限估计公式

$$|e_r^*(y)| = \left| \frac{e^*(y)}{f(x^*)} \right|$$

$$= \left| \frac{f(x^*) - f(x)}{x^* - x} \cdot \frac{x^*}{f(x^*)} \cdot \frac{x^* - x}{x^*} \right|$$

$$\approx \left| \frac{x^* \cdot f'(x^*)}{f(x^*)} \right| \cdot \left| e_r^*(x) \right|$$

若是多变量

1.2 有效数字与绝对误差、相对误差之间的关系

定理 1.1

若 x^* 有n位有效数字,则其相对误差 E_r^* 满足

$$\varepsilon_r^* \leq \frac{1}{2a_1} 10^{-(n-1)}$$

Ç

第2章 插值多项式

2.1 拉格朗日插值多项式及其余项

定义 2.1 (拉格朗日插值多项式)

$$\sum_{j=0}^{n} \prod_{i=0}^{n} \frac{(x-x_i)}{(x_j-x_i)}$$

$$i \neq i$$

定理 2.1 (误差余项)

设 f(x) 在区间 [a,b] 上 n+1 阶可微, $L_n(x)$ 为 f(x) 在 [a,b]上的n 次插值多项式,插值节点为 $\{x_i\}_{i=0}^n$ \subset [a,b],则 $\forall x \in [a,b]$,有

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x)$$

其中 $\omega_{n+1}(x) = \prod_{i=0}^{n} (x - x_i), \xi \in (a, b)$, 且依赖于x.

2.2 牛顿插值多项式

2.2.1 差商的性质

定理 2.2 (n 阶均差与导数的关系)

$$f[x_0, x_1, \dots, x_n] = \frac{f^{(n)}(\xi)}{n!}$$

 \Diamond

第3章 数值积分与数值微分

3.1 牛顿-科特斯公式

定义 3.1 (梯形公式,代数精度为1)

$$T = I_1 = \frac{1}{2}(b - a)[f(a) + f(b)]$$

余项为

$$R_T = -\frac{f^{(2)}(\xi)}{12}(b-a)^3 = O(b-a)^3$$

定义 3.2 (Simpson 公式, 代数精度为 3)

$$S = I_2 = \frac{1}{6}(b - a)[f(a) + 4f(\frac{a + b}{2}) + f(b)]$$

余项为

$$R_S = -\frac{b-a}{180} (\frac{b-a}{2})^4 f^{(4)}(\eta)$$

定义 3.3 (科特斯公式,代数精度为 5)

$$C = I_4 = \frac{1}{90}(b - a)[7f(x_0) + 32f(x_1) + 12f(x_2) + 32f(x_3) + 7f(x_4)]$$

余项为

$$R_C = R(I_4) = \int_a^b R_4(x)dx = -\frac{2(b-a)}{945} (\frac{b-a}{4})^6 f^{(6)}(\eta)$$

3.2 复合求积公式

定义 3.4 (复合梯形公式,代数精度为1)

$$T = I_1 = \frac{h}{2} [f(a) + 2 \sum_{k=1}^{n-1} f(x_k) + f(b)]$$

余项为

$$R_{T} = -\frac{f^{(2)}(\xi)}{12}(b-a)(h)^{2} = O(b-a)^{3}$$

定义 3.5 (Simpson 公式, 代数精度为 3)

$$S = [f(a) + 4\sum_{k=0}^{n-1} f(x_{k+\frac{1}{2}}) + 2\sum_{k=0}^{n-1} f(x_{k+1}) + f(b)]$$

余项为

$$R_S = -\frac{b-a}{180} (\frac{h}{2})^4 f^{(4)}(\eta)$$

3.3 高斯求积公式

这个刷题为主

第4章 解线性方程组的直接方法

4.1 高斯消去法及高斯列主元消去法

高斯消去法的计算量

$$\frac{n^3}{3} + n^2 - \frac{1}{3}n$$

4.2 矩阵的三角分解

定理 4.1

A 的顺序主子式全都不为零,则 A 可以分解为单位下三角矩阵 L 与上三角矩阵 U 的乘积,且这种分解是唯一的。

类似的, 我们也有

定理 4.2

设A为对称正定矩阵。则一定存在一个主对角元全是正数的下三角阵L,使得

$$A = LL^T$$

且这种分解是唯一的

4.3 条件数

定义 4.1

设 A 为非奇异阵,称数 $cond(A)_{v} = \left\|A^{-1}\right\|_{v} \|A\|_{v} (v = 1, 2$ 或 ∞) 为矩阵 A 的条件数。

第5章 解线性方程组的迭代法

5.1 三种迭代法的迭代公式

定义 5.1 (雅克比迭代法)

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(-\sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} + b_i \right)$$

用矩阵表示即为

$$X^{(k+1)} = BX^{(k+1)} + f, B = D^{-1}(L+U), f = D^{-1}b$$

定义 5.2 (高斯-赛德尔迭代法)

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left[b_i - \sum_{i=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{i=i+1}^n a_{ij} x_j^{(k)} \right]$$

用矩阵表示即为

$$X^{(k+1)} = BX^{(k+1)} + f, B = (D-L)^{-1}U, f = (D-L)^{-1}b$$

定义 5.3 (SOR 迭代法)

用矩阵表示即为

$$X^{(k+1)} = BX^{(k+1)} + f, B = (D - \omega L)^{-1}((1 - \omega)L + \omega U), f = \omega(D - \omega L)^{-1}b$$

定理 5.1

若线性方程组 AX=b 的系数矩阵 A 为严格对角占优矩阵,则解该方程组的 Jacobi 迭代法和 G-S 迭代法均收敛

定理 5.2

迭代格式 $X^{(k+1)} = BX^{(k)} + f$ 收敛的充要条件为: $\rho(B) < 1$

定理 5.3

设A可逆,且 $a_{ii} \neq \mathbf{0}$,松弛法从任意 $\bar{x}^{(0)}$ 出发收敛 $\Rightarrow 0 < \omega < 2$ 。

第6章 非线性方程与方程组的数值解法

6.1 二分法二分次数与预定精度之间的关系

$$|x^* - x_k| \le \frac{b_k - a_k}{2} = \frac{b - a}{2^{k+1}}$$

6.2 不动点迭代法收敛发散情况

定理 6.1 (不动点迭代法解的存在唯一性定理)

设 $\varphi(x)$ ∈ $\mathbb{C}[a,b]$ 满足以下两个条件:

- (1) 对任意 $x \in [a,b]$ 有 $a \le \varphi(x) \le b$
- (2) 存在正数L < 1, 使对任意的 $x \in [a,b]$, 有

$$|\varphi(x) - \varphi(y)| \le L|x - y|$$

则 $\varphi(x)$ 在[a,b]上存在唯一的不动点 x^*

且存在下述误差估计

$$|x^* - x_k| \le \frac{L^k}{1 - L} |x_1 - x_0|$$

定理 6.2

设 x^* 为 $\varphi(x)$ 的不动点, $\varphi'(x)$ 在 x^* 的某个邻域连续,且 $|\varphi'(x^*)| < 1$,则迭代格式局部收敛。

~

第7章 常微分方程初值问题数值解法