Player Position Classifier based on Stats

Vinh Tran

Spring '24

Purpose and Metadata

- To predict the primary position of soccer players based on their attributes
- EA Sports FC 24 complete datasets
 - Specifically, 'female_players.csv' and 'male_players.csv'
- Both datasets had 108 columns
 - Female players dataset had 5,035 rows
 - Male players dataset had 180,021 rows

Data Cleaning

- Data Summary:
 - Rows: 185,056 (after cleaning)
 - Columns: 7 (after cleaning)
- Data Cleaning:
 - Dropped unnecessary columns for the purpose from both datasets
- Concatenate

nlavers head()

prayers.neau()								
4								
	player_positions	pace	shooting	passing	dribbling	defending	physic	
0	ST, LW	97.0	90.0	80.0	92.0	36.0	78.0	
1	ST	89.0	93.0	66.0	80.0	45.0	88.0	
2	CM, CAM	72.0	88.0	94.0	87.0	65.0	78.0	
3	CF, CAM	80.0	87.0	90.0	94.0	33.0	64.0	
4	CF, ST	79.0	88.0	83.0	87.0	39.0	78.0	

Data Preparation

- Too many unique values in 'player_positions' column
- Simplified into primary categories
 - Forward ST, CF, LW, and RW
 - Midfielder CM, CAM, CDM, LM, and RM
 - Defender CB, LB, RB, LWB, and RWB
 - Goalkeeper
- 'player_positions' also listed secondary position
 - Only used their primary position

```
# Simplify positions into primary categories
position_mapping = {
    'ST': 'Forward', 'CF': 'Forward', 'LW': 'Forward', 'RW': 'Forward',
    'CM': 'Midfielder', 'CAM': 'Midfielder', 'CDM': 'Midfielder', 'LW': 'Midfielder', 'RW': 'Midfielder',
    'CB': 'Defender', 'LB': 'Defender', 'RB': 'Defender', 'RWB': 'Defender',
    'GK': 'Goalkeeper'
}

# Apply mapping
players['primary_position'] = players['player_positions'].apply(lambda x: position_mapping.get(x.split(',')[0], 'Other'))
# Filter out 'Other' positions for simplicity
players = players[players['primary_position'] != 'Other']
```


Data Visualizations

Pair Plot of Features Colored by Position

Feature Engineering

- Selected Features:
 - Pace
 - Shooting
 - Passing

- Dribbling
- Defending
- Physical
- Target Variable Primary position of players
- Data Preprocessing:
 - Filled missing values with the mean
 - Split data (80% training, 20% testing)
 - Normalized features using StandardScaler

```
# Step 3: Feature Selection/Engineering
# Feature Selection/Engineering
features = ['pace', 'shooting', 'passing', 'dribbling', 'defending', 'physic']
X = players[features]
y = players['primary_position']
X.fillna(X.mean(), inplace=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Normalize/Standardize the features
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```


Model Selection & Justification

- Models Tried:
 - K-Nearest Neighbors Simple, non-parametric method
 - Logistic Regression Good baseline for classification
 - SVM (linear kernel) Effective in high-dimensional spaces

K-Nearest Neighbor

Logistic Regression

Support Vector Machine

Parameter Tuning & Resul

- KNN: Selected number of neighbors (k=5) through experimentation.
- Logistic Regression: Maximum iterations set to 1000.
- SVM: Used linear kernel for interpretability.

```
# K-Nearest Neighbors
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
knn pred = knn.predict(X test)
print("KNN Accuracy:", accuracy score(y test, knn pred))
print(classification report(y test, knn pred))
```

				• •	
KNN Accuracy:	0.858208148 precision		f1-score	support	
Defender	0.89	0.89	0.89	12163	
Forward	0.85	0.79	0.82	7195	
Goalkeeper	1.00	1.00	1.00	4182	
Midfielder	0.80	0.82	0.81	13472	
accuracy			0.86	37012	
macro avg	0.88	0.88	0.88	37012	
weighted avg	0.86	0.86	0.86	37012	

```
# Loaistic Rearession
log_reg = LogisticRegression(max_iter=1000)
log_reg.fit(X_train, y_train)
log reg pred = log reg.predict(X test)
print("Logistic Regression Accuracy:", accuracy_score(y_test, log_reg_pred))
print(classification_report(y_test, log_reg_pred))
Logistic Regression Accuracy: 0.7330865665189669
                          recall f1-score support
              precision
    Defender
                                       0.88
                                               12163
     Forward
                   0.83
                             0.83
                                       0.83
                                                7195
  Goalkeeper
                   0.00
                                       0.00
                                                 4182
  Midfielder
                  0.61
                                       0.68
                                               13472
                                       0.73
                                                37012
    accuracy
                                       0.60
                                               37012
  macro ave
                             0.62
weighted avg
                                                37012
```

Support Vector Machine svm = SVC(kernel='linear',probability=True) svm.fit(X_train, y_train) svm pred = svm.predict(X test) print("SVM Accuracy:", accuracy_score(y_test, svm_pred)) print(classification_report(y_test, svm_pred))

SVM Accuracy: 0.7442721279585

C:\Users\vinht\anaconda3\Lib\site-packages\sklearn\metrics_ re are ill-defined and being set to 0.0 in labels with no pre

_warn_prf(average, modifier, msg_start, len(result))

	precision	recall	f1-score	support	
Defender	0.88	0.89	0.88	12163	
Forward	0.86	0.80	0.83	7195	
Goalkeeper	0.00	0.00	0.00	4182	
Midfielder	0.61	0.82	0.70	13472	
accuracy			0.74	37012	
macro avg	0.59	0.63	0.60	37012	
weighted avg	0.68	0.74	0.71	37012	

Predictive Errors

Feature Importance

