

Image from: http://www.kirkk.com/modularity/wp-content/uploads/2009/12/EncapsulatingDesign1.jpg

Example of Hill Climbing Application: Software Module Clustering (Algorithmic Design)

Leandro L. Minku

Design Variable

Design variable: allocation of units into modules.

- Consider that we have N units, identified by natural numbers in {1,2,...,N}.
- This means that we have at most N modules.
- Our design variable is a list L of N modules, where each module L_i , i \in $\{1,2,...,N\}$, is a set containing a minimum of 0 and a maximum of N units.

Constraints and Objective Function

Constraints: N/A

Objective function: quality of modularisation (to be maximised).

Quality(L) =
$$\sum_{i \in \{1,2,...,N\}} Quality(L_i)$$

(maximise) $i \in \{1,2,...,N\}$

$$= \frac{\#IntraEdges_i}{Quality(L_i)} = \frac{\#IntraEdges_i}{(maximise)} = \frac{\#IntraEdges_i}{\#IntraEdges_i} + \frac{1}{2} * \#InterEdges_i$$

Problem Formulation

Hill-Climbing (assuming maximisation)

1. current_solution = generate initial solution randomly

2. Repeat:

- 2.1 generate neighbour solutions (differ from current solution by a single element)
- 2.2 best_neighbour = get highest quality neighbour of current_solution
- 2.3 If quality(best_neighbour) <= quality(current_solution)
 - 2.3.1 Return current_solution
- 2.4 current_solution = best_neighbour

Until a maximum number of iterations

Design variable —> what is a candidate solution for us?

Objective —> what is quality for us?

Are there any constraints that need to be satisfied?

Designing Representation, Initialisation and Neighbourhood Operators

Hill-Climbing (assuming maximisation)

1. current_solution = generate initial solution randomly

2. Repeat:

- 2.1 generate neighbour solutions (differ from current solution by a single element)
- 2.2 best_neighbour = get highest quality neighbour of current_solution
- 2.3 If quality(best_neighbour) <= quality(current_solution)
 - 2.3.1 Return current_solution

2.4 current_solution = best_neighbour

Until a maximum number of iterations

Representation:

- How to store the design variable.
- E.g., boolean, integer or float variable or array.

Initialisation:

- Usually involve randomness.
- Neighbourhood operator:
 - How to generate neighbour solutions.

Representation

How to represent the design variable internally in the implementation?

• E.g., list of N modules, where each module is a list of integers in {1,2,...,N} identifying the existing units.

• E.g., if we have N=5, a possible allocation is $L = \{\{\},\{1\},\{2,4,5\},\{\},\{3\}\}\}$.

Representation

How to represent the design variable internally in the implementation?

• E.g., matrix A_{NxN} , where Aij = 1 if unit j is in module i, and 0 otherwise.

$$A = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

Initialisation

E.g.: place each unit into a randomly picked module.

For each unit $u \in \{1,...,N\}$ Add u to a module L_i , where $i \sim U\{1,N\}$

Neighbourhood Operator

- What would be a possible neighbourhood operator for the software clustering problem?
 - A neighbour in the software module clustering problem would be a solution where a single unit moves from one module to another. E.g.:

$$L = \{\{\},\{1\},\{2,4,5\},\{\},\{3\}\} \longrightarrow L = \{\{\},\{1,5\},\{2,4\},\{\},\{3\}\}\}$$

Module 1

Module 2

unit 1

Module 3

unit 2

unit 4

unit 5

Module 4

Module 4

unit 3

Neighbourhood

- Real world problems will frequently have more than two neighbours for each candidate solution.
- How many neighbours do we have for the candidate solution below, if we allow for equivalent neighbours?

5 units * 4 possible modules to move to = 20

Neighbourhood

 How many neighbours do we have for the candidate solution below, if we allow for equivalent neighbours?

Some neighbours will be equivalent. Duplicates could be eliminated.

Neighbourhood

 How many neighbours do we have for the candidate solution below, if we allow for equivalent neighbours?


```
For i \in \{1,...,N\} // module

For j \in \{1,...,size(L_i)\} // unit within module

For i' \in \{1,...,N\} \setminus i // another module

L' = clone of L

Move unit L'<sub>ij</sub> to module L'<sub>i'</sub>

Yield L' as a neighbour
```

Hill Climbing

Hill-Climbing (assuming maximisation)

- 1. current_solution = generate initial solution randomly
- 2. Repeat:
 - 2.1 generate neighbour solutions (differ from current solution by a single element)
 - 2.2 best_neighbour = get highest quality neighbour of current_solution
 - 2.3 If quality(best_neighbour) <= quality(current_solution)
 - 2.3.1 Return current_solution
 - 2.4 current_solution = best_neighbour

Until a maximum number of iterations

Simulated Annealing would also require a representation, initialisation procedure, and neighbourhood operator to solve a problem.

Summary

- Software Module Clustering problem formulation.
- Representation, initialisation and neighbourhood operators.

Next

Application of Simulated Annealing.