3 Neural Networks: Advanced Architectures

Leon Herrmann

Stefan Kollmannsberger

Chair of Data Engineering in Construction

Bauhaus-Universität Weimar

Deep Learning in Computational Mechanics – an introductory course,

Herrmann et al. 2025

Contents

- 3.1 Fully Connected Neural Network
- 3.2 Forward Propagation
- 3.3 Differentiation
- 3.4 Backpropagation
- 3.5 Activation Function
- 3.6 Learning Algorithm
- 3.7 Regularization of Neural Networks
- 3.8 Approximating the Sine Function
- 3.9.1 Convolutional Neural Networks
- 3.9.2 Graph Neural Networks
- 3.9.6 Recurrent Neural Networks
- 3.9.8 Physics-Inspired Architectures for Dynamics (Hamiltonian & Lagrangian Neural Networks)
- 4 Introduction to Physics-Informed Neural Networks

3.8 Approximating the Sine Function

Goal is to approximate

$$f(x) = \sin(2\pi x), x \in [-1, 1]$$

Neural network architecture

- 2 hidden layers
- 50 neurons each
- Activation function $\sigma(z_i) = \tanh(z_i)$

$$f_{NN} = w_3^T \sigma \left(W_2 \left(\sigma(w_1^T x + b_1) \right) + b_2 \right) + b_3 = \hat{y}$$

Data

- Training set contains 40 samples
- Validation set contains 40 samples
- Generated with $y=\sin(2\pi x)+\epsilon$, $\epsilon=0.1\cdot U(-1,1)$ where U(-1,1) is a uniform random distribution in the interval [-1,1]
- Test set is the analytical solution

3.8 Approximating the Sine Function

Goal is to approximate

$$f(x) = \sin(2\pi x), x \in [-1, 1]$$

Network architecture

$$f_{NN} = w_3^T \sigma \left(W_2 \left(\sigma(w_1^T x + b_1) \right) + b_2 \right) + b_3 = \hat{y}$$

Cost function used for training

$$C = \mathcal{L}_D^{(\text{train})} = \frac{1}{m_D^{(\text{train})}} \sum_{i=1}^{m_D^{(\text{train})}} \left(\tilde{y}_i^{(\text{train})} - \hat{y}_i^{(\text{train})} \right)^2$$

- Neural network parameter initialization with a uniform distribution with special bounds
- Optimization with Adam for 10'000 epochs

3.8 Approximating the Sine Function – PyTorch

Neural network definition

```
modules = []
modules.append(torch.nn.Linear(1, 50))
modules.append(torch.nn.Tanh())
modules.append(torch.nn.Linear(50, 50))
modules.append(torch.nn.Tanh())
modules.append(torch.nn.Linear(50, 1))

modules.append(torch.nn.Linear(50, 1))

Training data
x = torch.nn.Sequential(*modules)

Training data
y = torch.rand((40, 1)) * 2 - 1
noise = torch.rand(x.shape) * 0.2 - 0.1
y = torch.sin(2 * torch.pi * x) + noise
```

3.8 Approximating the Sine Function – PyTorch

Cost function definition

```
def costFunction(y, yPred):
    return torch.mean((y - yPred) ** 2)
```

Prediction and cost function evaluation

```
yPred = model(x)
cost = costFunction(y, yPred)
cost.backward()
```

Optimizer definition

```
epochs = 10000
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
```

3.8 Approximating the Sine Function – PyTorch

Training loop

```
for epoch in range(epochs):
    optimizer.zero_grad()
    yPred = model(x)
    cost = costFunction(y, yPred)
    cost.backward()
    optimizer.step()
```

3.8 Approximating the Sine Function – Results

3.8 Approximating the Sine Function – Results

20'000 epochs with regularization

20'000 epochs without regularization

3.8 Approximating the Sine Function – Results

5'000 epochs with SGD

3.8 Approximating the Sine Function – Sobolev

- Derivatives of predictions are typically inaccurate
- **Sobolev training** increases accuracy by incorporating derivatives in training data (higher order derivatives also improve)

```
def costFunction(y, yPred, dy, dyPred):
    lossy = torch.mean((y - yPred) ** 2)
    lossdy = torch.mean((dy - dyPred) ** 2)
return lossy + lossdy
```


Exercises

E.7 Approximating the Sine Function (C)

• In PyTorch, build a fully connected neural network, that approximates the sine function.

3.9.1 Convolutional Neural Networks

- Originally designed for image processing
- Identify relative positions of features
- Operate with convolutional layers

Convolutional layers

consist of filters/kernels K(w) that are applied to an input field I and defined by

- Kernel size
- Number of kernels
- Stride length: how large is the shift of the kernel per step
- Padding: do you embed the input field?

5																								
	1	0	0	1	1	1	Ì	``																
	1	0	1	0	1	1	1		``	` ` `	` ` `								3	D	4	3	3	
	0	1	0	1	1	0	0		1	1	1]	() [0			$\overline{1}$	3	2-	⁻ 3	3	
	1	1	0	Ì	,1,	1	1		0	1	1			[()	1	=	3	3	3	2	4	2	
	0	1	1	0	1	0	`1.		1	1	0		() [0		_	2	1	3	1	4	
	1	0	0	0	0	1	0			loca	al	 		Ker	nel		1		2	1	0	2	0	
	0	0	0	0	0	0	1		red	cept	tive						J							
				\overline{I}				L	field $m{K}$							$\boldsymbol{I}*\boldsymbol{K}$								

In neural networks: The values in the kernel are not preset. They are learnt by the network and represent the weights.

3.9.1 Convolutional Neural Networks

1	0	0	1	1	1	Ì				
1	0	1	0	1	1	1				3 0 4 3 3
0	1	0	1	1	0	0	$1 \mid 1 \mid 1$	$0 \mid 1 \mid 0$		1 3 2 3 3
1	1	0	Ì	<u>,1</u> ,	1	1	$0 \mid 1 \mid 1$	$\cdot \boxed{1} \boxed{0} \boxed{1}$	=	3 3 3 2 4 2
0	1	1	0	1	0	`1.	1 1 0	$0 \mid 1 \mid 0$,	2 1 3 1 4
1	0	0	0	0	1	0				$\begin{bmatrix} 2 & 1 & 0 & 2 & 0 \end{bmatrix}$
0	0	0	0	0	0	1	V_{ij}	K_{ij}		O_{kl}

The convolution * is computed as a combination of the multidimensional dot product, also known as tensordot product:

$$o = V_{ij} \cdot K_{ij}$$

Example (2D convolutional filter applied with a stride length of s=1 and no padding)

$$1 \cdot 0 + 1 \cdot 1 + 1 \cdot 0 + 0 \cdot 1 + 1 \cdot 0 + 1 \cdot 1 + 1 \cdot 0 + 1 \cdot 1 + 0 \cdot 0 = 3$$

This operation is then repeated by shifting the view V_{ij} with the stride s

$$O_{kl} = \sum_{i,j} V_{(i+k)(j+l)} \cdot K_{ij} = V * K$$

3.9.1 Convolutional Neural Networks – Filters

Example filters

Identity filter

$$K = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, s = 1$$

Gaussian filter

$$K = \frac{1}{16} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}, s = 1$$

Sobel filter in x-direction

$$\mathbf{K} = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix}, s = 1$$

Averaging filter

$$K = \frac{1}{9} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, s = 3$$

For other filters for gradient computation, see Chapter 9.

finite difference approximation	convolutional filter
$f'(x) = \frac{f(x+\Delta x)-f(x)}{\Delta x}$	$\frac{1}{\Delta x}[-1,1]$
$f''(x) = \frac{f(x+\overline{\Delta x})-2f(x)+f(x-\Delta x)}{\Delta x^2}$	$\frac{1}{\Delta x^2}[1, -2, 1]$

3.9.1 Convolutional Neural Networks – Pooling

Pooling layers reduce the spatial size by extracting relevant features (filtering!)

- Pooling types
 - Max Pooling
 - Average Pooling
- Pooling layers are defined by
 - Kernel size
 - Stride length
 - Padding

• Example "max pooling" (2D convolutional filter applied with a stride length of s=1 and no padding) $\max\{1,2,1,2\}=2$

What if we want two features O from one input?

2 channels

Example with 1D convolutional filters

- Stride length s = 1
- Without a bias
- Input (given)

$$I = [0, 1, 3, 2, 5]$$

• Weights from input layer I to first hidden layer $H^{(1)}$ (given)

$$\mathbf{w}_{11}^{(1)} = [0, 2, 1], \mathbf{w}_{12}^{(1)} = [1, 0, 3]$$

Forward pass to first hidden layer $extbf{ extit{H}}_{j}^{(1)} = \sum_{i} extbf{ extit{I}}_{i} * extbf{ extit{W}}_{ij}^{(1)}$

$$H_1^{(1)} = [0 \cdot 0 + 1 \cdot 2 + 3 \cdot 1, 1 \cdot 0 + 3 \cdot 2 + 2 \cdot 1, 3 \cdot 0 + 2 \cdot 2 + 5 \cdot 1] = [5, 8, 9]$$

$$H_2^{(1)} = [0 \cdot 1 + 1 \cdot 0 + 3 \cdot 3, 1 \cdot 1 + 3 \cdot 0 + 2 \cdot 3, 3 \cdot 1 + 2 \cdot 0 + 5 \cdot 3] = [9, 7, 18]$$

Example with 1D convolutional filters

- Stride length s=1
- Without a bias
- Hidden layer $\pmb{H}^{(1)}$ (given)

$$H_1^{(1)} = [5, 8, 9]$$

 $H_2^{(1)} = [9, 7, 18]$

Weights from first hidden layer $m{H}^{(1)}$ to output layer $m{O}_k = \sum_i m{H}_i^{(1)} * m{w}_{ik}^{(2)}$ (given)

$$\mathbf{w}_{11}^{(2)} = [1, 0, 0], \mathbf{w}_{21}^{(2)} = [2, 1, 0]$$

 $\mathbf{w}_{12}^{(2)} = [0, 0, 3], \mathbf{w}_{22}^{(2)} = [0, 1, 1]$

Forward pass to output layer

$$\mathbf{0}_1 = [(5 \cdot 1 + 8 \cdot 0 + 9 \cdot 0) + (9 \cdot 2 + 7 \cdot 1 + 18 \cdot 0)] = 30$$

 $\mathbf{0}_2 = [(5 \cdot 0 + 8 \cdot 0 + 9 \cdot 3) + (9 \cdot 0 + 7 \cdot 1 + 18 \cdot 1)] = 52$

3.9.1 Convolutional Neural Networks – Depth

ImageNet Classification with Deep Convolutional Neural Networks, (Alex) Krizhevsky et al. 2012

Comparison to fully connected neural network

- Channels are analogous to neurons
- Filters are analogous to linear transformations (connections)
- Number of parameters in fully connected neural network: $1 \cdot (2 \cdot 3 + 3 \cdot 1) + (3 + 1)$
- Number of parameters in convolutional neural network: $(K \cdot K) \cdot (2 \cdot 3 + 3 \cdot 1) + (3 + 1)$

Number of parameters per weight/kernel
Number of connections (weights)

Number of biases

Fully connected neural network

Convolutional neural network

3.9.1 Convolutional Neural Networks – Padding

Padding counteracts the shrinking of the output, padding can be used

- Padding types
 - Valid padding (No padding)
 - Zero padding
 - Reflection padding
- The output dimension O after a convolutional layer

$$O = \left\lfloor \frac{I - K + 2P}{S} \right\rfloor + 1$$

- Input dimension I
- Kernel size *K*
- Padding size P
- Stride length s

3.9.1 Convolutional Neural Networks – PyTorch

```
class CNN(torch.nn.Module):
     def __init__(self, inputImages, hiddenImages, outputImages):
          super(CNN, self). init ()
          self.cnn1 = torch.nn.Conv2d(inputImages, hiddenImages, kernel_size=3,
                                              stride=1, padding=1)
          self.cnn2 = torch.nn.Conv2d(hiddenImages, outputImages, kernel size=3,
                                              stride=1, padding=1)
          self.activation = torch.nn.ReLU()
     def forward(self, x):
          y = self.activation(self.cnn1(x))
          y = self.cnn2(y)
                                                                        \boldsymbol{w} \in \mathbb{R}^{K \times K} \boldsymbol{w} \in \mathbb{R}^{K \times K}
          return y
                                                                         b \in \mathbb{R}
                                                                                         b \in \mathbb{R}
                                                                     \boldsymbol{x}_0
                                                                                                  oldsymbol{y}_0
model = CNN(2, 3, 1) # input has size
                                                                     \boldsymbol{x}_1
                          (1, 2, imageSize, imageSize)
                                                                 input layer
                                                                                              output layer
                                                               with 2 channels
                                                                                             with 1 channels
                                                                               hidden laver
                                                                              with 3 channels
```

Exercises

E.11 Convolutional Neural Network (P & C)

• Familiarize yourself with convolutional neural networks through pen-and-paper forward propagation and through the application of different convolutional filters to images (using PyTorch).

Learning strain distributions from data

- Goal is to make the neural network predict the strain of a 2D domain under a uni-axial load
- Domain is defined by fiber material (red) and matrix material (white) with the elastic properties

$$E_f = 85'000, v_f = 0.22$$

 $E_m = 3'000, v_m = 0.4$

- To reduce the complexity of the task, the domain is discretized in 32×32 grid
- Strain prediction from the underlying material distribution
- As neural network architecture, a U-Net (see Chapter 8) is used

U-Net: Convolutional Networks for Biomedical Image Segmentation, Ronneberger et al. 2015

When training a surrogate model, the breakeven threshold τ must be considered

$$\tau = \frac{T_{\rm data} + T_{\rm train}}{T_{\rm simulation} + T_{\rm surrogate}}$$

- *T* is the time of
 - Data collection ($T_{\rm data}$)
 - Training (T_{train})
 - 1 Simulation ($T_{\text{simulation}}$)
 - 1 Surrogate evaluation ($T_{
 m surrogate}$)

60000

40000

Young's modulus E

Model selection (make sure that model can learn the training data by heart)

- NN 1: U-net with 5 convolutional layers: 94'978 parameters
- NN 2: feed-forward convolutional neural network with 4 layers: 38'405 parameters
- NN 3: U-net followed by 3 convolutional layers: 154'471 parameters

Training with 1 datapoint

Ground truth

With selected model (NN 2), increase the training data (and potentially tune the architecture & optimizer)

Prediction on unseen data (i.e., validation data)

3.9.1 Convolutional Neural Networks – TensorBoard

TensorBoard is a visualization tool for TensorFlow (& other machine learning libraries, e.g., PyTorch)

- Beneficial for debugging and hyperparameter tuning/model selection
- Includes features such as graphs, histograms, output visualization

3.9.1 Convolutional Neural Networks – TensorBoard

Track the progress in prediction quality by comparing outputs with labels

3.9.1 Convolutional Neural Networks – TensorBoard

Compare different architectures and hyperparameters through different training runs

Exercises

E.12 Learning Strain Distributions (C)

• Train a convolutional neural network as a surrogate, that maps the Young's modulus distribution to strain distributions. Experiment with different hyperparameters and different network architectures. For this, use TensorBoard.

Normalization

Normalization helps the optimization procedure

Ensures, that features have similar scales

Input normalization centering the mean to zero and establishing a unit standard deviation

$$\widehat{x_i} = \frac{x_i - \mu}{\sigma}$$

where

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$
, $\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2}$

Batch Normalization

Batch Normalization normalizes the activations between the layers to help the optimization

$$y = \frac{x - \mu(x)}{\sigma(x) + \epsilon} \cdot \gamma + \beta$$

Batch Normalization is composed of two parts

a) Centering the mean around zero and normalizing the standard deviation to a unit standard deviation

$$\tilde{x} = \frac{x - \mu(x)}{\sigma(x) + \epsilon}$$

b) scaling and shifting by an element-wise modification with the trainable parameters γ , β

$$y = \tilde{x} \cdot \gamma + \beta$$

 This increases the model capacity further and makes it possible for the network to learn an optimal normalization

Batch normalization is:

- typically applied after the activation function, but before is also possible
- Almost always encountered when using convolutional neural networks (alternate normalizations possible)

In PyTorch it can be defined with torch.nn.BatchNorm1d or torch.nn.BatchNorm2d

3.9.2 Graph Neural Networks

- Convolutional neural networks are limited to data aligned on rectangular & uniform grids
- Graph neural networks are a generalization to general graphs
- Graph
 - Nodes/vertices v_i
 - Edges e_i
 - Global attribute u

- Many different architectures exist, (message passing networks, graph convolutional networks, graph transformers...)
- We will focus on **message passing networks**, which consider the following invariant

$$v_i^s \xrightarrow{e_i} v_i^r$$

Relational inductive biases, deep learning, and graph networks, Battaglia et al. 2018

• Each edge e_i has a sender v_i^s and receiver node v_i^r

3.9.2 Graph Neural Networks

- Edges are updated through the **first** fully connected neural network $e'_i = f^e(e_i, v_i^s, v_i^r, u)$
- Nodes are updated by aggregating connecting edges \bar{e}_i (e.g., max or sum): **second** fully connected neural network $v_i' = f^v(\bar{e}', v_i, u)$
- The global attribute is updated by aggregating all edges and nodes: third fully connected neural network

$$u' = f^u(\bar{e}', \bar{v}', u)$$

Algorithm 8 Graph block in a message passing neural network

Require: Graph consisting of nodes v, edges e and a global attribute u.

for all edges e_i do

Update edges: $e'_i = f^e(e_i, v_i^s, v_i^r, u; \boldsymbol{\Theta}_e)$

end for

Application to mesh-

based simulation

Learning Mesh-Based Simulation with

Graph Networks, Pfaff et al. 2020

for all nodes v_i do

Find all edges connecting to node v_i : e'_i

Aggregate adjacent edges: $\bar{e}'_i = \rho^{e \to v}(e'_i)$

Update nodes: $v'_i = f^v(\bar{e}'_i, v_i, u; \Theta_v)$

end for

Aggregate all edges $e: \bar{e}' = \rho^{e \to u}(e)$

Aggregate all nodes \boldsymbol{v} : $\bar{v}' = \rho^{v \to u}(\boldsymbol{v})$

Update global attribute: $u' = f^u(\bar{e}', \bar{v}', u; \Theta_u)$

3.9.6 Recurrent Neural Networks

Recurrent Neural Networks reuse information from previous states by

looping over itself to generate sequences.

- Equivalent to using multiple copies of the same network with a hidden state h_t (unrolled recurrent neural network) $h_t = \sigma(W_r x_t + b_r + W_h h_{t-1} + b_h)$
- W_x , W_h are the weights and b_x , b_h the biases
- y_t is obtained by a (learnable) mapping between h_t and y_t
- Useful for applications with sequential data, such as speech recognition, language modeling, translation
- In practice, only able to connect recent information with each other, e.g., "We used too many lemons for our lemonade ... We did not like the lemonade, it was too sour" poses a problem, as the cause for the is too far from the outcome
- Overcome by long short-term memory networks (LSTMs), gated recurrent units (GRUs), and transformers Leon Herrmann & Stefan Kollmannsberger | Deep Learning in Computational Mechanics | Bauhaus-Universität Weimar

3.9.6 Recurrent Neural Networks - PyTorch

model = CNN(inputSize, hiddenStateSize, outputSize)

```
class RNN(torch.nn.Module):
    def __init__(self, inputSize, hiddenStateSize, outputSize):
        super(RNN, self). init ()
         self.rnn = torch.nn.RNN(inputSize, hiddenStateSize, nonlinearity='relu',
num layers=2)
        self.linear = torch.nn.Linear(hiddenStateSize, outputSize)
    def forward(self, x):
        h, = self.rnn(x) # unrolls the RNN
        y = self.linear(h) # transforms hidden layer to output layer
                                                                        Recurrent neural networks do not
        return y
                                                                        only have to be combined with
                                                                        fully connected neural networks,
                                                                        convolutional neural networks
inputSize = 1
hiddenStateSize = 500
                                                                        are for example also possible
outputSize = 1
```

3.9.8 Physics-Inspired Architectures for Dynamics

- The previous architecture learn physical behavior only from data
- Governing laws can be incorporated into neural networks
 - Through training (via penalty terms in the cost function, i.e., weak enforcement/regularization; see Chapters 4 & 5)
 - Via the neural network architecture (by constraining the learnable space, i.e., strong enforcement; see Chapter 7)
- Strong enforcement of physics
 - Dynamics
 - Hamiltonian neural networks
 - Lagrangian neural networks
 - Constitutive modeling
 - Input-convex neural networks (see Chapter 7)
 - Boundary conditions
 - Strong enforcement of boundary conditions (see Chapters 4 & 5)

3.9.8 Physics-Inspired Architectures for Dynamics

Consider a one-dimensional mass-spring model

Desribed by the ordinary differential equation

$$m\ddot{x}(t) + kx(t) = 0$$

And the solution

$$x(t) = A\sin(\omega t + \phi)$$

Where $\omega = \sqrt{k/m}$ is the natural frequency and A, ϕ are determined by the initial conditions $x(0), \dot{x}(0)$

Alternatively the system can be described by

- Hamiltonian Mechanics
- Euler-Lagrange Equation

3.9.8.2 Hamiltonian Mechanics

In Hamiltonian mechanics, systems are described by coordinate pairs (position & momentum, i.e., $p(t) = m\dot{x}(t)$) [x(t), p(t)]

Scalar Hamiltonian $\mathcal{H}(x(t), p(t))$ represents the system's total energy Π_{tot} and fulfills

$$\frac{dx}{dt} = \frac{\partial \mathcal{H}}{\partial p},$$
$$\frac{dp}{dt} = -\frac{\partial \mathcal{H}}{\partial x}$$

Given the Hamiltonian, the time evolution of x, p can be computed via integration

$$x(t + \Delta t) = x(t) + \int_{t}^{t + \Delta t} \frac{\partial \mathcal{H}}{\partial \mathbf{p}} \bigg|_{\tau} d\tau$$
$$\mathbf{p}(t + \Delta t) = \mathbf{p}(t) - \int_{t}^{t + \Delta t} \frac{\partial \mathcal{H}}{\partial \mathbf{x}} \bigg| d\tau$$

Which can, e.g., be discretized with a forward Euler scheme

$$x(t + \Delta t) = x(t) + \frac{\partial \mathcal{H}}{\partial \mathbf{p}} \Big|_{t} \Delta t, \qquad \mathbf{p}(t + \Delta t) = \mathbf{p}(t) - \frac{\partial \mathcal{H}}{\partial \mathbf{x}} \Big|_{t} \Delta t$$

3.9.8.3 Hamiltonian Neural Networks

For the one-dimensional mass-spring model, the Hamiltonian is known as

$$\mathcal{H}=\Pi_{\rm tot}=\Pi_{\rm kin}+\Pi_{\rm pot}=\frac{1}{2}m\dot{x}^2+\frac{1}{2}kx^2$$
 But what if the Hamiltonian is unknown, but the system must obey Hamiltonian mechanics?

Hamiltonian neural networks

- Data triplets $\{\widetilde{\boldsymbol{x}}(t_i), \widetilde{\dot{\boldsymbol{x}}}(t_i), \widetilde{\dot{\boldsymbol{x}}}(t_i)\}_{i=1}^m$ (enable computation of $\widetilde{\boldsymbol{p}}(t_i), \widetilde{\dot{\boldsymbol{p}}}(t_i)$)
- Mapping to the Hamiltonian is to be learned $\widehat{\mathcal{H}} = \mathcal{H}(x(t), p(t); \Theta)$ From $\widehat{\mathcal{H}}$, $d\widehat{x}/dt$ and $d\widehat{p}/dt$ can be computed $\frac{dx}{dt} = \frac{\partial \mathcal{H}}{\partial p}, \frac{dp}{dt} = -\frac{\partial \mathcal{H}}{\partial x}$
- A comparison of $d\hat{x}/dt$ and $d\hat{p}/dt$ to the corresponding data in the data triplets, enables a cost function

$$C = \frac{1}{m} \sum_{i=1}^{m} \left(\left\| \frac{d\widetilde{\boldsymbol{x}}(t_i)}{dt} - \frac{\partial \widehat{\mathcal{H}}(\widetilde{\boldsymbol{x}}, \widetilde{\boldsymbol{p}}(t_i); \boldsymbol{\Theta})}{\partial \widetilde{\boldsymbol{p}}(t_i)} \right\|^2 + \left\| \frac{d\widetilde{\boldsymbol{p}}(t_i)}{dt} + \frac{\partial \widehat{\mathcal{H}}(\widetilde{\boldsymbol{x}}(t_i), \widetilde{\boldsymbol{p}}(t_i); \boldsymbol{\Theta})}{\partial \widetilde{\boldsymbol{x}}(t_i)} \right\|^2 \right)$$

Prediction of the trajectory $\hat{x}(t)$ beyond the datapoints seen in the data triplets, possible through forward Euler

$$x(t + \Delta t) = x(t) + \frac{\partial \mathcal{H}}{\partial p}\Big|_{t} \Delta t, \qquad p(t + \Delta t) = p(t) - \frac{\partial \mathcal{H}}{\partial x}\Big|_{t} \Delta t$$

3.9.8.3 Hamiltonian Neural Networks - Results

Hamiltonian neural network

Standard neural network

$$\begin{pmatrix} \hat{x} \\ \hat{p} \end{pmatrix} = f(x, p; \mathbf{\Theta})$$

$$\begin{pmatrix} \hat{x} \\ \hat{p} \end{pmatrix} = f(x, p; \mathbf{\Theta})$$

$$C = \frac{1}{m} \sum_{i=1}^{m} (\tilde{x} - \hat{x})^2 + (\tilde{p} - \hat{p})^2 = 0.25$$

3.9.8.4 Euler-Lagrange Equation

The **Lagrangian framework** offers a more general framework than Hamiltonian mechanics
The **Lagrangian** of the mass-spring system is defined as

$$L = \Pi_{kin} - \Pi_{pot} = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}kx^2$$

Which obeys the Euler-Lagrange equation (ensuring the principle of least action)

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} = \frac{\partial L}{\partial x}$$

The acceleration \ddot{x} can be obtained by rewriting the Euler-Lagrange equation

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} = \frac{\partial^2 L}{\partial x \partial \dot{x}} \dot{x} + \frac{\partial^2 L}{\partial \dot{x}^2} \ddot{x} = \frac{\partial L}{\partial x}$$

$$\ddot{x} = \left(\frac{\partial^2 L}{\partial \dot{x}^2}\right)^{-1} \left(\frac{\partial L}{\partial x} - \frac{\partial^2 L}{\partial x \partial \dot{x}} \dot{x}\right)$$

Similar as for the Hamiltonian mechanics, the evolution of x(t) can be computed by integrating \dot{x}, \ddot{x}

3.9.8.5 Lagrangian Neural Networks

- Data triplets $\left\{ \widetilde{x}(t_i), \widetilde{x}(t_i), \widetilde{x}(t_i) \right\}_{i=1}^m$
- Mapping to the Lagrangian is to be learned $\hat{L} = L(x(t), \dot{x}(t); \Theta)$
- The acceleration $\hat{\vec{x}}$ can be computed from

$$\ddot{x} = \left(\frac{\partial^2 L}{\partial \dot{x}^2}\right)^{-1} \left(\frac{\partial L}{\partial x} - \frac{\partial^2 L}{\partial x \partial \dot{x}} \dot{x}\right)$$

• With the predicted acceleration a cost function can be formulated as

$$C = \frac{1}{m} \sum_{i=1}^{m} \left\| \tilde{x}(t_i) - \hat{x}\left(\hat{L}; \tilde{x}(t_i), \tilde{x}(t_i)\right) \right\|^2$$

3.9.8.5 Lagrangian Neural Networks - Results

Lagrangian neural network

The Lagrangian is not unique

Standard neural network

$$\begin{pmatrix} \hat{x} \\ \hat{p} \end{pmatrix} = f(x, p; \mathbf{\Theta})$$

$$\begin{pmatrix} \hat{x} \\ \hat{p} \end{pmatrix} = f(x, p; \mathbf{\Theta})$$

$$C = \frac{1}{m} \sum_{i=1}^{m} (\tilde{x} - \hat{x})^2 + (\tilde{p} - \hat{p})^2 = 0.25$$

Exercises

E.13 Hamiltonian & Lagrangian Neural Networks (C)

• Implement a Hamiltonian and a Lagrangian neural network and apply it to the mass-spring model. Compare the generalization capabilities to a standard neural network.

Contents

- 3.1 Fully Connected Neural Network
- 3.2 Forward Propagation
- 3.3 Differentiation
- 3.4 Backpropagation
- 3.5 Activation Function
- 3.6 Learning Algorithm
- 3.7 Regularization of Neural Networks
- 3.8 Approximating the Sine Function
- 3.9.1 Convolutional Neural Networks
- 3.9.2 Graph Neural Networks
- 3.9.6 Recurrent Neural Networks
- 3.9.8 Physics-Inspired Architectures for Dynamics (Hamiltonian & Lagrangian Neural Networks)
- 4 Introduction to Physics-Informed Neural Networks

3 Neural Networks: Advanced Architectures

Leon Herrmann

Stefan Kollmannsberger

Chair of Data Engineering in Construction

Bauhaus-Universität Weimar

Deep Learning in Computational Mechanics – an introductory course,

Herrmann et al. 2025

