We sketch the proof of (i) <=> (ii) assuming that s(A) = 0 . If 0 is a first order pole, then the residue P is a positive projection satisfying PE = ker A , P'E' = ker A' (see A-III,3.6) . Thus given 0 < f \in ker A and any 0 \leq ϕ \in E' such that <f, ϕ >> 0 , we have for Ψ := P' ϕ : <f, Ψ > = <f, Ψ > = <f, Ψ > = <f, Ψ > = <f, Φ > > 0 . To prove the reverse direction we first observe that the highest coefficient Q_k of the Laurent expansion is a positive operator. Thus if 0 is a pole of order k \geq 2 we choose 0 < h \in E such that f := Q_k h > 0 . Then Af = AQ_k h = 0 and for every Ψ \in ker A' we have <f, Ψ > = <Q_kh, Ψ > = <h, Q_k ' Ψ > = 0 .

- (b) If a linear operator S on $C_O(X)$ is weakly compact, then S^2 is compact (see B-IV,Prop.2.4(b)). Therefore every non-zero spectral value of a weakly compact operator is a pole of the resolvent. This shows that Thm.2.9 is applicable if either $T(t_O)$ is weakly compact for some t_O or $R(\lambda,A)$ is weakly compact for some $\lambda \in \rho(A)$. We quote two criteria for weak compactness:
- (2.31) If $T \in L(C(K))$, K compact, is positive, then it is weakly compact if and only if its biadjoint T" maps the bounded Borel functions into C(K) (see B-IV, Prop. 2.4).
- (c) Stronger results than Thm.2.9 will be proved in Chapter C-III . Actually, assuming only that s(A) is a pole of finite algebraic multiplicity one can show that $\sigma_b(A)$ contains only poles of finite multiplicity (C-III,Thm.3.13). In C-III,Cor.2.12 we will show that $\sigma_b(A)$ is cyclic whenever s(A) is a pole of the resolvent.
- (d) Example 2.14 (b) can be extended to systems of functional differential equations even the infinite dimensional case. For details we refer to Sec.3 of Chapter B-IV.