Problem 1F. Determine all functions $f: \mathbb{R} \to \mathbb{R}$ satisfying

$$f(x - f(y)) = f(f(y)) + xf(y) + f(x) - 1$$

for all $x, y \in \mathbb{R}$.

Problem 2F. Determine all functions $f: \mathbb{R} \to \mathbb{R}$ satisfying

$$f(f(x) + y) = f(f(x) - y) + 4f(x)y$$

for all $x, y \in \mathbb{R}$.

Problem 3F. Determine all functions $f: \mathbb{R} \to \mathbb{R}$ satisfying

$$f(x + f(x + y)) + f(xy) = x + f(x + y) + yf(x)$$

for all $x, y \in \mathbb{R}$.

Problem 4F. Determine all functions $f:[1,\infty)\to[1,\infty)$ satisfying

- (1) $f(x) \le 2(1+x)$ for all $x \in [1, \infty)$;
- (2) $xf(x+1) = f(x)^2 1$ for all $x \in [1, \infty)$.

Problem 5F. Prove that there does not exist a function $f: \mathbb{R}^+ \to \mathbb{R}^+$ satisfying

$$f(x)^2 \geqslant f(x+y)(f(x)+y)$$

for all $x, y \in \mathbb{R}^+$.

Problem 6F. Determine all functions $f: \mathbb{N} \to \mathbb{N}$ such that for all $x, y \in \mathbb{N}$ there is a non-degenerated triangle with side lengths

$$x$$
, $f(y)$ and $f(y+f(x)-1)$.

Problem 7F. Let $f: \mathbb{R} \to \mathbb{R}$ be a function satisfying

$$f(x+y) \leqslant yf(x) + f(f(x))$$

for all $x, y \in \mathbb{R}$. Prove that f(x) = 0 for all $x \leq 0$.