PERCOBAAN 10

TRANSISTOR COLLECTOR-FEEDBACK BIASING

10.1 **Tujuan**:

Pembuktian tegangan dan arus pada rangkaian bias collector-feedback sebagaimana perencanaannya dengan garis beban untuk menentukan titik kerja rangkaian (Q). Rangkaian bias collector-feedback berbeda dengan rangkaian bias yang lain. Perbedaannya adalah, tegangan collector memberikan bias untuk junction base-emitter. Hasilnya adalah titik Q sangat stabil, sehingga akan mengurangi efek dari penguatan arus (β).

10.2 Dasar Teori:

Pada gambar 10.1, resistor base R_B tidak dihubungkan ke V_{CC} , seperti pada rangkaian bias sebelumnya, melainkan dihubungkan ke collector. Tegangan collector memberikan bias untuk junction base-emitter. Model feedback negatip seperti ini akan membuat titik Q menjadi stabil. Apabila I_C bertambah, maka tegangan pada R_C meningkat, yang menyebabkan tegangan collector (V_C) berkurang. Ketika V_C berkurang, maka tegangan yang melalui R_B juga berkurang, sehingga arus base (I_B) menjadi berkurang. Berkurangnya arus I_B ini mengakibatkan arus I_C menjadi berkurang.

Gambar 10.1: Rangkaian bias collector feedback

10.2.1 Analisa Collector Feedback

Dengan menggunakan hukum Ohm, arus base dapat dinyatakan sebagai

$$I_{B} = \frac{V_{C} - V_{BE}}{R_{B}} \tag{10-1}$$

Dengan mengasumsikan bahwa $I_C >> I_B$, maka tegangan collector dapat dituliskan

$$V_C \cong V_{CC} - I_C \cdot R_C$$

Dan karena

$$I_B = \frac{I_C}{\beta}$$

Maka dengan mensubstitusi I_B dan V_C kedalam persamaan (9-1), didapat

$$\frac{I_C}{\beta} = \frac{V_{CC} - I_C \cdot R_C - V_{BE}}{R_R}$$

atau disusun kembali menjadi

$$\frac{I_C \cdot R_B}{\beta} + I_C \cdot R_C = V_{CC} - V_{BE}$$

Sehingga penyelesaian untuk I_C adalah sebagai berikut,

$$I_C \cdot \left(R_C + \frac{R_B}{\beta}\right) = V_{CC} - V_{BE}$$

$$I_C = \frac{V_{CC} - V_{BE}}{R_C + \frac{R_B}{\beta}}$$
(10-2)

Karena emitter di ground, maka $V_{CE} = V_C$.

$$V_{CF} = V_{CC} - I_C \cdot R_C \tag{10-3}$$

10.2.2 Stabilitas over Temperature

Persamaan (10-2) memperlihatkan bahwa nilai arus collector bergantung kepada nilai β dan V_{BE} . Kebergantungan ini tentunya dapat diminimisasi dengan membuat $R_C >> R_B/\beta$ dan $V_{CC} >> V_{BE}$.

Telah diketahui bersama bahwa variasi nilai β berbanding lurus dengan temperature, sedangkan variasi nilai V_{BE} berbanding terbalik dengan temperature. Perhatikan gambar 10.2. Rangkaian bias collector feedback mempunyai nilai awal I_B , I_C dan V_{CE} , seperti ditunjukkan pada gambar 10.2(a). Pada bagian (b), memperlihatkan temperature meningkat,

sehingga nilai β meningkat dan nilai V_{BE} menurun. Pertambahan nilai β menyebabkan pertambahan nilai pada I_C . Sedangkan penurunan nilai V_{BE} akan menyebabkan pertambahan pada nilai I_B , yang pada gilirannya akan menyebabkan pertambahan nilai pada I_C juga. Bertambahnya nilai I_C ini akan berakibat meningkatnya tegangan pada R_C . Hal ini membuat tegangan collector (V_C) berkurang, sehingga tegangan yang melalui R_B juga berkurang, yang berakibat berkurangnya arus base (I_B) . Berkurangnya arus I_B ini mengakibatkan arus I_C menjadi berkurang. Sehingga dapat disimpulkan bahwa rangkaian collector feedback menjaga kestabilan titik Q, seperti ditunjukkan pada gambar (c).

Kebalikan dari peristiwa diatas, yaitu ketika terjadi penurunan temperature, di-ilustrasikan pada gambar 10.2(d) dan (e).

(a) Stabilized at initial temperature, T_1

(b) Initial response to temperature rise

(c) Stabilized at higher temperature, T_2

(d) Initial response to temperature drop

Gambar 10.2: Kestabilan titik Q collector feedback over temperature

10.3 Peralatan yang digunakan:

- 1) Modul praktikum, breadboard dan komponennya
- 2) Mikro dan Mili-Ammeter dc
- 3) Voltmeter dc
- 4) DC Power Supply

10.4 Rangkaian Percobaan:

Gambar 10.3: Rangkaian bias collector-feedback

10.5 Prosedur Percobaan dan Tugas:

- Rangkaikan seperti pada gambar 10.3 yang bersesuaian dengan modul praktikum atau dengan menggunakan breadboard.
- 2) Dengan menggunakan voltmeter dc, ukurlah tegangan pada resistor R_B , kemudian dengan menggunakan hukum Ohm carilah I_{BQ} , dan catatlah hasilnya pada tabel 10.1.
- 3) Dengan menggunakan voltmeter dc, ukurlah tegangan pada resistor R_C , kemudian dengan menggunakan hukum Ohm carilah $(I_{BQ} + I_{CQ})$, dan catatlah hasilnya (I_{CO}) pada tabel 10.1.
- 4) Dari nilai-nilai yang didapat dari langkah (2) dan (3) diatas, tentukan nilai penguatan arus transistor :

$$\beta = \frac{I_{CQ}}{I_{BO}}$$

kemudian catatlah hasilnya pada tabel 10.1.

- 5) Dengan menggunakan nilai V_{BE} yang umum (0,7 V) dan hasil β dari langkah (4), hitunglah nilai I_{BQ} , I_{CQ} , dan V_{CEQ} dengan persamaan dan catatlah hasilnya pada tabel 10.1.
- 6) Bandingkan hasil yang didapat dari pengukuran dan perhitungan. Error yang terjadi tidak lebih dari 10%.
- 7) Hitunglah titik saturasi $[I_{C(sat)}]$ pada garis beban dari rangkaian percobaan ini dengan persamaan

$$I_{C(sat)} \cong \frac{V_{CC}}{R_C}$$

Dan catatlah hasilnya pada tabel 10.2.

8) Hitunglah titik cut-off $[V_{CE(off)}]$ pada garis beban dari rangkaian percobaan ini dengan persamaan

$$V_{\scriptscriptstyle CE(off)} = V_{\scriptscriptstyle CC}$$

Dan catatlah hasilnya pada tabel 10.2.

- 9) Dari hasil pada langkah (7) dan (8), gambarkan garis beban dc pada kertas grafik (millimeter), kemudian letakkan titik kerja transistor (Q) yang didapat dengan pengukuran dan perhitungan.
- 10) Dengan menggunakan transistor nomor seri yang berbeda, ulangi langkah (2) sampai dengan (9).
- 11) Dari hasil pengukuran dan perhitungan pada tabel 10.1 dan 10.2, berikan kesimpulan yang didapat dari percobaan ini.

Tabel 10.1: Data pengukuran dan perhitungan parameter transistor

Parameter	Transistor 1		Transistor 2	
	Pengukuran	Perhitungan	Pengukuran	Perhitungan
I_B				
I_C				
β				
V_B		0,7 V		0,7 V
V_{CE}				

Tabel 10.2: Data untuk kondisi saturasi dan cut-off

Parameter	Perhitungan	
$I_{C(sat)}$	mA	
$V_{CE(sat)}$	V	