Question number	Answer	Notes	Marks
11 (a)	substitution into $p_1 \times V_1 = p_2 \times V_2$ OR rearrangement; evaluation of volume; correctly expressed in standard form; e.g. $100 \times 0.0043 = 270 \times V_2$ OR $V_2 = p_1 \times V_1 / p_2$ ($V_2 = 0.0016$ (m^3) ($V_2 = 1.6 \times 10^{-3}$ (m^3)	allow 0.00159 (m³) allow 1.59×10 ⁻³ (m³)	3
(b) (i)	idea that particles move more slowly at lower temp;	allow RA if clear allow lower kinetic energy (KE) reject no KE	3
	particles collide with walls less often; particles collide with walls less force;	allow particles colliding less hard note: with walls/eq must be mentioned once	
(ii)	dimensionally correct substitution into $p_1 / T_1 = p_2 / T_2$; conversion of either temperature into kelvin; rearrangement; correct subsequent evaluation of p_2 with consistent conclusion;	ignore units can be implied	4
	e.g. $270 / 293 = p_2 / 275$ 293 or 275 used anywhere in calculation $p_2 = 270 \times 275 / 293$ $(p_2 =) 253$ (kPa) so light will not show	27 (kPa) so light will show scores 3 marks 243 (kPa) so light will show scores 2 marks	

Total for Question 11 = 10 marks