

UNIVERSIDADE FEDERAL DE UBERLÂNDIA INFIS – INSTITUTO DE FÍSICA FÍSICA MÉDICA LABORATÓRIO DE FÍSICA BÁSICA II

ELISA RODRIGUES DE SOUSA COUTINHO - 11811FMD021 RICARDO TADEU OLIVEIRA CATTA PRETA - 11911FMT028 ROGÉRIO BUSO DE ANDRADE - 12011FMT009 THAYNÁ CAROLINE SABINO DE ASSUMPÇÃO - 11811FMD013

> PÊNDULO SIMPLES Prof. Doutor José Roberto Tozoni

LISTA DE FIGURAS

Figura 1 - Esquema de um Pêndulo Simples de massa <i>m</i> e comprimento <i>l</i>				
LISTA DE TABELAS				
Tabela 1 - Dados coletados experimentalmente para o pêndulo simples variando o comprimento e o período)			
LISTA DE GRÁFICOS				
Gráfico 1 - Gráfico plotado a partir dos dados da tabela (1) para o sistema pendular)			

SUMÁRIO

1.	INTRODUÇÃO	
	OBJETIVOS	
	MATERIAIS E MÉTODOS	
4.	RESULTADOS E DISCUSSÕES	6
5.	CONCLUSÃO	10
	EFERÊNCIAS.	

1. INTRODUÇÃO

Muitos fenômenos naturais apresentam padrões temporais que se repetem. A repetição periódica de ida e volta do movimento dá origem ao movimento oscilatório ou movimento harmônico. Segundo Halliday, um oscilador harmônico é um sistema dinâmico que realiza movimentos periódicos, para frente e para trás, seguindo a mesma trajetória. (HALLIDAY, 1984).

Um dos exemplos mais clássicos de oscilação é o Pêndulo Simples, um sistema em que uma massa m é fixada em um extremo de uma haste de comprimento l, sendo essa última fixa em sua outra extremidade a uma superfície estável. Para esse caso de movimento harmônico simples consideramos que não há forças dissipativas atuando no pêndulo. Considere o sistema pêndulo num plano que se move num círculo vertical de raio r que tem mesmo módulo que l, como mostra a figura 1.

Figura 1 - Esquema de um Pêndulo Simples de massa m e comprimento l.

Na física, mais precisamente na mecânica ondulatória, esses sistemas, como o pêndulo simples em questão, estão suscetíveis a forças amortecedoras, a fim de que as energias e as amplitudes diminuem com o tempo e depois de um determinado tempo cessam. Quando um corpo executa um movimento periódico, ele é deslocado da posição de equilíbrio estável e liberado, surge, então, uma força ou um torque que o faz retornar à sua posição de equilíbrio. A amplitude do movimento harmônico é o deslocamento máximo do corpo a partir da posição de equilíbrio. O período (T) é o tempo correspondente a um ciclo, isto é, o tempo que dura uma repetição periódica. A frequência (f), dada em hertz) é o número de ciclos, ou oscilações, em uma unidade de tempo, um segundo, e se relaciona com o período pela equação (1).

$$f = \frac{1}{T} ou T = \frac{1}{f} .(1)$$

A frequência angular (ω) representa uma taxa de variação de uma grandeza angular, medida em radianos, e relaciona-se com a frequência (f) pela equação (2).

$$\omega = 2\pi f.(2)$$

Substituindo (1) em (2), obtemos:

$$T = \frac{2\pi}{\omega}.$$
 (3)

A componente da força restauradora, a qual atua na direção do ângulo θ que o pêndulo descreve com a normal da superfície estável, é simplesmente dada por

$$F(\theta) = -mg \sin\theta$$
. (4)

O pêndulo é um sistema não linear com uma força restauradora simétrica, mas se considerarmos somente desvios angulares pequenos $\theta < 1$ rad, podemos realizar uma aproximação linear da função que descreve a força restauradora $(F(\theta))$ do sistema . Aplicando a segunda lei de Newton à partícula sujeita ao movimento do pêndulo simples em relação ao ângulo θ , na equação (4), obtemos:

$$F = ma = - mg sen\theta$$
$$gsin\theta = l \frac{d^{2}\theta}{dt^{2}} (4)$$

Estamos considerando que $sin\theta \approx \theta$, portanto, para o caso do pêndulo simples:

$$\frac{d^2\theta}{dt^2} + \omega_0^2 \theta = 0$$
, desde que a seguinte relação seja feita $\omega_0 \equiv \sqrt{\frac{g}{l}}$.

Portanto, organizando e substituindo os termos com a relação da frequência angular acima na equação (3), obtém-se uma relação para o período em termos do comprimento do fio e a gravidade local:

$$T = 2\pi\sqrt{\frac{l}{g}}(5)$$

Esses conceitos serão utilizados a fim de observar as características do movimento vibratório em um pêndulo, determinar as condições para que se produza um movimento harmônico simples e determinar a medida da gravidade (g) do local, através da relação entre o período e o comprimento do fio, dada pela equação (5). A partir da introdução ao conteúdo, pôde-se, então, dar início ao experimento deste relatório.

2. OBJETIVOS

O objetivo do presente relatório é determinar a gravidade, g, por meio do comprimento do fio e do período de oscilação.

3. MATERIAIS E MÉTODOS

Para este experimento foram utilizados os seguintes itens:

- Esfera de aço presa a um barbante;
- haste de fixação para o pêndulo;
- cronômetro;
- transferidor;
- trena.

Realizamos as medições dos períodos de dez oscilações, visando calcular a gravidade, *g*. Primeiramente, para começar o experimento, o suporte do pêndulo e o comprimento foram ajustados para 0,20 metros. Após o ajuste iniciou-se o movimento, deslocando a esfera em 20° a partir do ponto de repouso do pêndulo. Foram medidas 10 oscilações e repetido 5 vezes para cada comprimento. O experimento foi realizado utilizando 6 comprimentos, sempre aumentando de 0,20 em 0,20 centímetros, e medindo 5 vezes para cada comprimento. Cada período de 10 oscilações foi dividido por 10 com o intuito de encontrar o período de uma única oscilação para os comprimentos em questão. Todos os dados obtidos foram anotados e estão dispostos na tabela (1), apresentada no tópico de Resultados e Discussões.

4. RESULTADOS E DISCUSSÕES

A tabela, abaixo, apresenta os dados coletados do movimento pendular:

Nº medições	Comprimento (m)	Período 10 oscilações (T ₁₀)(s)	Período 1 oscilação (T ₁)(s)
1	0,0200±0,0005	8,15	0,815±0,0005
2	0,0200±0,0005	8,17	0,817±0,0005
3	0,0200±0,0005	8,14	0,814±0,0005
4	0,0200±0,0005	8,18	0,818±0,0005
5	0,0200±0,0005	8,13	0,813±0,0005
MÉDIA E ERRO ASSOCIADO	0,0200±0,0005	8,15	0,815±0,009
1	0,0400±0,0005	12,41	1,241 ±0,0005
2	0,0400±0,0005	12,45	$1,245 \pm 0,0005$
3	0,0400±0,0005	12,42	$1,242 \pm 0,0005$
4	0,0400±0,0005	12,42	$1,242 \pm 0,0005$
5	0,0400±0,0005	12,36	$1,236 \pm 0,0005$
MÉDIA E ERRO ASSOCIADO	0,0400±0,0005	12,41	1, 24±0, 01
1	0,0600±0,0005	15,38	$1,538 \pm 0,0005$
2	0,0600±0,0005	15,21	$1,521 \pm 0,0005$
3	0,0600±0,0005	15,38	$1,538 \pm 0,0005$
4	0,0600 \pm 0,0005 15,30 1,530 \pm 0,0005		$1,530 \pm 0,0005$

5	0,0600±0,0005	15,52	1.552 ± 0.0005
	0,0000±0,0005	13,34	1,552 ± 0,0005
MÉDIA E ERRO ASSOCIADO	0,0600±0,0005	15,36	1,54±0,05
1	0,0800±0,0005	17,77	1,777±0,0005
2	0,0800±0,0005	17,80	1,780±0,0005
3	0,0800±0,0005	17,74	1,774±0,0005
4	0,0800±0,0005	18,57	1,857±0,0005
5	0,0800±0,0005	17,91	1,791±0,0005
MÉDIA E ERRO ASSOCIADO	0,0800±0,0005	17,96	1,8±0,1
1	0,1000±0,0005	19,82	1,982 ±0,0005
2	0,1000±0,0005	20,03	$2,003 \pm 0,0005$
3	0,1000±0,0005	20,08	$2,008 \pm 0,0005$
4	0,1000±0,0005	19,82	1,982 ± 0,0005
5	0,1000±0,0005	20,04	2,004 ± 0,0005
MÉDIA E ERRO ASSOCIADO	0,1000±0,0005	19,96	1,99±0,05
1	0,1200±0,0005	21,84	$2,184 \pm 0,0005$
2	0,1200±0,0005	21,62	$2,162 \pm 0,0005$
3	0,1200±0,0005	21,73	$2,173 \pm 0,0005$
4	0,1200±0,0005	21,68	$2,1680 \pm 0,0005$
5	0,1200±0,0005	22,04	2,204 ± 0,0005
MÉDIA E ERRO ASSOCIADO	0,1200±0,0005	21,78	2, 18±0, 07

Tabela 1 - Dados coletados experimentalmente para o pêndulo simples variando o comprimento e o período.

O gráfico da tabela (1) foi plotado, utilizando o código desenvolvido e disponibilizado em < https://github.com/ricardocatta/relatorio1>, e está presente abaixo:

Gráfico 1 - Gráfico plotado a partir dos dados da tabela (1) para o sistema pendular.

Com intuito de encontrar o valor da aceleração da gravidade, supomos inicialmente a equação $T = \rho m^n$. Para podermos encontrar os valores de ρ e n, inicialmente aplicamos o logaritmo natural na equação proposta, e posteriormente aplicamos o MMQ (Método dos Mínimos Quadrados), que irá nos fornecer os valores dos coeficientes linear e angular da equação linearizada.

$$ln(T) = ln(\rho) + nln(m)$$

A equação analítica que relaciona o período de oscilação com a massa, é dada pela equação (7). Aplicando-a a linearização, obtém-se

$$ln(T) = ln \frac{2\pi}{\sqrt{g}} + \frac{1}{2}ln(l)$$
 (8),

Assim, a tabela (2) apresenta os valores linearizados:

Nº	$l\left(m\right)$	$(T_{10})(s)$	$(T_1)(s)$	ln(l)	$ln(T_1)$	$ln(l)ln(T_1)$	ln(l)ln(l)
1	0,2000	8,15	0,815	-1,6094	-0,2040	0,3284	2,5902
2	0,4000	12,412	1,2412	-0,9162	0,2160	-0,1979	0,8395
3	0,6000	15,358	1,5358	-0,5108	0,4290	-0,2191	0,2609
4	0,8000	17,958	1,7958	-0,2231	0,5854	-0,1306	0,0497
5	1,0000	19,958	1,9958	0	0,6910	0	0
6	1,2000	21,782	2,1782	0,1823	0,7784	0,1419	0,0332

Tabela 2 - Dados coletados e linearizados para o pêndulo simples.

Através dos valores dispostos na tabela (2), construiu-se o gráfico (2), abaixo, por meio do código desenvolvido e disponibilizado em < https://github.com/ricardocatta/relatorio1>.

Gráfico 2 - Gráfico plotado a partir dos dados da tabela (2) para o sistema do pêndulo simples.

Sabe-se que, por meio do MMQ, é possível encontrar os coeficientes linear e angular das equações linearizadas. Portanto, os valores encontrados para o experimento estão dispostos abaixo, onde a é o coeficiente angular e b o coeficiente linear:

$$a = 0,54\pm0,01$$
 e $b = 0,69\pm0,02$

Após encontrar esses valores, pode-se, então, obter a gravidade, g, aplicando o exponencial na equação (8):

$$ln(T) = ln \frac{2\pi}{\sqrt{g}} + \frac{1}{2} ln(l)$$

$$b = ln \frac{2\pi}{\sqrt{g}}$$

$$e^b = e^{ln \frac{2\pi}{\sqrt{g}}} \rightarrow e^b = \frac{2\pi}{\sqrt{g}}$$

$$g = (\frac{2\pi}{e^b})^2 (9)$$

$$g = 9,8 \text{ m/s}^2$$

Para calcular a propagação de incerteza da gravidade, utilizou-se a equação (10) abaixo:

$$\Delta g = \sqrt{\left(\frac{\partial g}{\partial l}\right)^2 \Delta l^2 + \left(\frac{\partial g}{\partial T}\right)^2 \Delta T^2}$$
 (10)

Utilizando as equações (9) e (10) para calcular g e sua incerteza, foram obtidos os valores das constantes para os dois experimentos, onde g é a aceleração da gravidade local. Os valores e suas incertezas encontrados são:

$$g = 9,8\pm0,7 \, m/s^2$$

5. CONCLUSÃO

Conclui-se que, no experimento do pêndulo simples, o período não depende da variação da massa, fixada no barbante, como é visto na teoria e de acordo com as equações, aqui, apresentadas. Este mesmo período, na verdade, depende apenas da variação do comprimento l. Ao calcular o módulo da gravidade local g, foi visto que o resultado encontrado, $g = 9,8\pm0,7$ m/s^2 , é bastante satisfatório quando comparado ao valor teórico da gravidade fornecido nas literaturas ($g\approx9,81$ m/s^2). Portanto, este relatório foi de suma importância para fixação e melhor entendimento sobre oscilações.

REFERÊNCIAS

- [1] David Halliday, Robert Resnick e Jearl Walker, Fundamentos de Física vol.2 (Gravitação, Ondas e Termodinâmica), 9^a. Edição (2011) Editora LTC.
- [2] H. M. Nussenzveig, Curso de Física Básica 2 (Fluidos, Oscilações e Ondas, Calor), Editora Edgard Blücher.
- [3] Paul Tipler, Gene Mosca, **Física vol.1 (Mecânica, Oscilações e Ondas, Termodinâmica)**, Editora LTC.
- [4] Wellington Akira, Cristiano Guarany, Mauricio Foschini, Antonino Di Lorenzo, **Guias e roteiros para Laboratório de Física Experimental I**, 1ª Edição (2014), Universidade Federal de Uberlândia, Uberlândia, Minas Gerais.
- [5] Hirt, C., Claessens, S., Fecher, T., Kuhn, M., Pail, R., and Rexer, M. (2013), **New ultrahigh-resolution picture of Earth's gravity field**, *Geophys. Res. Lett.*, 40, 4279–4283, doi:10.1002/grl.50838.