Algèbre linéaire - Chapitre 3 Familles de vecteurs

1 Combinaisons linéaires

- Dans \mathbb{R}^2 , u=(1,2) est-il combinaison linéaire de $e_1=(1,-2)$ et $e_2=(2,3)$?
- Dans \mathbb{R}^2 , u = (1,2) est-il combinaison linéaire de $e_1 = (1,-2), e_2 = (2,3), e_3 = (-4,5)$?
- Dans \mathbb{R}^3 , u = (2,5,3) est-il combinaison linéaire de $e_1 = (1,3,2)$ et $e_2 = (1,-1,4)$?
- Dans \mathbb{R}^3 , u = (3, 1, m) est-il combinaison linéaire de $e_1 = (1, 3, 2)$ et $e_2 = (1, -1, 4)$? (discuter suivant la valeur de m)

Si oui, donner toutes les combinaisons linéaires possibles.

2 Sous-espace engendré

Dans \mathbb{R}^3 , on pose $u_1 = (1, -1, 2)$ et $u_2 = (1, 1, -1)$.

- Les vecteurs $v_1 = (3, 1, 0)$ et $v_2 = (1, 5, -1)$ sont-ils combinaison linéaire de u_1 et u_2 ?
- Soit $a, b, c \in \mathbb{R}$. Démontrer que v = (a, b, c) est combinaison linéaire de u_1 et u_2 si et seulement si -a + 3b + 2c = 0.
- En déduire un vecteur de \mathbb{R}^3 qui n'est pas combinaison linéaire de u_1 et de u_2 .

Familles

3 Familles libres

Les familles suivantes sont-elles libres dans \mathbb{R}^3 ?

- -(u, v) avec u = (1, 2, 3) et v = (-1, 4, 6);
- -(u, v, w) avec u = (1, 2, -1), v = (1, 0, 1) et w = (0, 0, 1);
- -(u, v, w) avec u = (1, 2, -1), v = (1, 0, 1) et w = (-1, 2, -3);

Sans calcul supplémentaire, dire si elles sont génératrices.

4 Dimension

On considère, dans \mathbb{R}^4 , les vecteurs :

$$v_1 = (1, 2, 3, 4), \quad v_2 = (1, 1, 1, 3), \quad v_3 = (2, 1, 1, 1), \quad v_4 = (-1, 0, -1, 2), \quad v_5 = (2, 3, 0, 1).$$

Soit F l'espace vectoriel engendré par $\{v_1, v_2, v_3\}$ et soit G celui engendré par $\{v_4, v_5\}$. Calculer les dimensions respectives de $F, G, F \cap G$.

Dimension

5 Dimension

Déterminer la dimension des espaces vectoriels suivants. La dimension d'un espace vectoriel correspond au nombre de paramètres scalaires nécessaires pour décrire un vecteur.

- 1. L'ensemble des polynômes de degré inférieur ou égal à n sur \mathbb{R} .
- 2. L'ensemble des matrices 2×3 à coefficients réels.
- 3. L'ensemble des fonctions continues de \mathbb{R} dans \mathbb{R} .
- 4. L'ensemble des suites réelles $(u_n)_{n\in\mathbb{N}}$.
- 5. L'ensemble des polynômes de degré inférieur ou égal à n qui s'annulent en 0.
- 6. L'ensemble des vecteurs de \mathbb{R}^n dont la somme des coordonnées est nulle.

6 Bases

Les familles de vecteurs suivantes sont-elles libres? sont-elles génératrices?

- Dans \mathbb{R}^2 :
 - La famille $\{(1,0),(0,1)\}$ dans l'espace \mathbb{R}^2
 - La famille $\{(1,2),(2,4)\}$ dans l'espace \mathbb{R}^2
 - La famille $\{(1,0)\}$ n'est pas génératrice de \mathbb{R}^2
- Dans \mathbb{R}^3 :
 - La famille $\{(1,0,0),(0,1,0),(0,0,1)\}$ dans l'espace \mathbb{R}^3
 - La famille $\{(1,1,1),(1,2,3)\}$ dans l'espace \mathbb{R}^3
 - La famille $\{(1,0,0),(0,1,0),(1,1,0)\}$ dans l'espace \mathbb{R}^3
- Dans l'espace des polynômes de degré inférieur ou égal à 2 :
 - La famille $\{1, X, X^2\}$ dans l'espace des polynômes de degré inférieur ou égal à 2
 - La famille $\{1+X,X+X^2,1+X^2\}$ dans l'espace des polynômes de degré inférieur ou égal
 - La famille $\{1, X, X\}$ dans l'espace des polynômes de degré inférieur ou égal à 2

Auteur: M. Berger p. 2