Multivariable Calculus Exam 2

Practice Set # 3

- 1. Show that $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$ does not exist.
 - x = 0 path: $\lim_{(x,y)\to(0,0)} \frac{0 \cdot y^2}{0 + y^4} =$ • y = 0 path: $\lim_{(x,y)\to(0,0)} \frac{x \cdot 0}{x^2 + 0} =$ • y = 0 path: $\lim_{(x,y)\to(0,0)} \frac{x \cdot 0}{x^2 + 0} =$ • y = 0 path: $\lim_{(x,y)\to(0,0)} \frac{x \cdot 0}{x^2 + 0} =$ • y = 0 path: $\lim_{(x,y)\to(0,0)} \frac{x \cdot 0}{x^2 + 0} =$
 - $x = y^2$ path: $\lim_{(x,y)\to(0,0)} \frac{y^2 \cdot y^2}{y^4 + y^4} = \frac{y^4}{2y^4} = \frac{1}{2}$.

Since the limit is not the same along all paths, the limit does not exist.

2. $\frac{\partial^2}{\partial x \partial y} \left(x^3 y - y^3 \tan(xy) \right)$

$$\begin{split} \frac{\partial^2}{\partial x \partial y} \big(x^3 y - y^3 \tan(xy) \big) &= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial y} [x^3 y] - \frac{\partial}{\partial y} [y^3 \tan(xy)] \right] \\ &= \frac{\partial}{\partial x} \left[x^3 - (3y^2 \tan(xy) + xy^3 \sec^2(xy)) \right] \\ &= \frac{\partial}{\partial x} [x^3] - \frac{\partial}{\partial x} [3y^2 \tan(xy)] - \frac{\partial}{\partial x} [xy^3 \sec^2(xy)]. \end{split}$$

Splitting this into 3 partial derivatives:

$$\frac{\partial}{\partial x}[x^3] = 3x^2, \quad -\frac{\partial}{\partial x}[3y^2\tan(xy)] = -3y^3\sec^2(xy),$$

with the final derivative worked out:

$$-\frac{\partial}{\partial x} \left[xy^3 \sec^2(xy) \right] = y^3 \sec^2(xy) + \left[(xy^3) \cdot 2y \sec^2(xy) \tan(xy) \right]$$
$$= -y^3 \sec^2(xy) - 2xy^4 \sec^2(xy) \tan(xy).$$

Combining these results, we have:

$$3x^2 - 3y^3 \sec^2(xy) - y^3 \sec^2(xy) - 2xy^4 \sec^2(xy) \tan(xy)$$
.

Since three terms contain a factor of $y^3 \sec^2(xy)$, we can factor this out to get:

$$3x^2 - y^3 \sec^2(xy)(3 + 1 + 2xy\tan(xy)).$$

Adding and simplifying further, we get:

$$3x^2 - 2y^3 \sec^2(xy) (2 + xy \tan(xy)).$$

3. For the function $f(x,y,z) = \frac{x+\sin(xy)}{x^2+y^2+z^2+1}$, find $\nabla f(x,y,z)$. From the handout, we know that:

$$\nabla f(x,y,z) = \frac{\partial f}{\partial x}(x,y,z)\mathbf{i} + \frac{\partial f}{\partial y}(x,y,z)\mathbf{j} + \frac{\partial f}{\partial z}(x,y,z)\mathbf{k}.$$

Practice Set # 3 (cont.)

Determine the sign (+, -, 0) for each of the following partial derivatives.

4. $f_x(0,0)$ We see $f(0,0) \approx 6$. Aswe move right (positive x), f increases, toward value 8. Thus, +.

- 5. $f_y(0,0)$ As we move up f decreases twoard 4. Thus. –.
- 6. $f_{xx}(0,0)$ The countours are evenly spread in the x-direction through (0,0). We are increasing at a <u>constant rate</u>. Hence, 0.
- 7. $f_{yy}(0,0)$ As we move in positive y-direction, we decrease, but less rapidly. The amount by which we are changing is increasing (becoming less negative). Thus, +.
- \approx 6. As we move in postive x, the slope in the y-direction becomes more negative (i.e., decreases). Thus, -.

8. $f_{xy}(0,0)$

9. Find an equation of the tangent plane to $f(x,y) = x^2y - \sqrt{x} + y$ at the point (3,1).

Solve for $f_x(x, y)$, then $f_x(3, 1)$, and $f_y(x, y)$, then $f_y(3, 1)$ to get the values of the partial derivatives at the point (3, 1):

$$z = f(3,1) + f_x(3,1)(x-3) + f_y(3,1)(y-1)$$

= $7 + \frac{23}{4}(x-3) + \frac{35}{4}(y-1)$

10. Consider the function $f(x,y) = x^2y - y^3$. Find the directional derivative for f, at (3,4), in the direction of $\mathbf{u} = 5\mathbf{i} - 2\mathbf{j}$.

$$f_x(x,y) = 2xy$$
, $f_y(x,y) = x^2 - 3y^2$.

Then, at the point (3,4):

$$f_x(3,4) = 2 \cdot 3 \cdot 4 = 24, \quad f_y(3,4) = 3^2 - 3 \cdot 4^2 = -39.$$

Then, we find the unit vector in the direction of (5, -2):

$$\frac{\langle 24, -39 \rangle \cdot \langle 5, -2 \rangle}{\sqrt{29}} = \frac{198}{\sqrt{29}}$$

Practice Set # 4

1. (3 points) Determine the absolute extrema for the function $f(x,y) = x^2 + 3y^2 - 2x - y - xy$ on the triangular region with vertices (0,0), (2,0), and (0,1). We first find the critical points of the function:

$$\nabla f(x,y) = \langle 2x - 2 - y, 6y - 1 - x \rangle = \mathbf{0}$$

$$\implies y = 2x - 2 \quad \text{and} \quad x = 6(2x - 2) - 1 - x$$

$$\implies y = \frac{4}{11} \quad \text{and} \quad x = \frac{13}{11}$$

This gives the critical point $(\frac{13}{11}, \frac{4}{11})$. We also need to check the boundary of the region. Thus:

- (ℓ_1) : $y = 0, 0 \le x \le 2 \implies f(x,y) = g(x) = x^2 + 3(0)^2 2x (0) x(0) = x^2 2x \implies g'(x) = 2x 2$. This gives (1,0).
- (ℓ_2): $x = 0, 0 \le y \le 1 \implies f(x, y) = h(y) = (0)^2 + 3y^2 (0) y 0 = 3y^2 y \implies h'(y) = 6y 1$. This gives $\left(0, \frac{1}{6}\right)$
- $(\ell_3): y = 1 \frac{1}{2}x, \ 0 \le x \le 2 \implies f(x,y) = k(x) = x^2 + 3\left(1 \frac{1}{2}x\right)^2 2x \left(1 \frac{1}{2}x\right) x\left(1 \frac{1}{2}x\right).$

$$k(x) = x^{2} + 3\left(1 - \frac{1}{2}x - \frac{1}{2}x + \frac{1}{4}x^{2}\right) - 2x - 1 + \frac{1}{2}x - x + \frac{1}{2}x^{2}$$

$$= \frac{1}{4}(9x^{2} - 22x + 8)$$

$$\implies k'(x) = \frac{1}{4} \cdot \frac{d}{dx}[9x^{2} - 22x + 8]$$

$$x = \frac{11}{2}$$

Using this x-value, we plug it back into our equation for y to get the critical point $(\frac{11}{9}, \frac{7}{18})$.

The vertices of the triangle give f(0,0) = 0, f(2,0) = -2, and f(0,1) = 2. We can do the same for the other points and add them to our table.

Point	f(x, y)	\mathbf{Type}
$\left(\frac{13}{11}, \frac{4}{11}\right)$	-1.364	Interior CP
(1,0)	-1	ℓ_1
$(0,\frac{1}{6})$	-0.083	ℓ_2
$\left(\frac{11}{9}, \frac{7}{18}\right)$	-1.361	ℓ_3
(0,0)	0	Vertex 1
(2,0)	-2	Vertex 2
(0, 1)	2	Vertex 3

Practice Set # 4 (cont.)

1. Convert the rectangular point (-5,1) to polar coordinates.

$$r = \sqrt{(-5)^2 + 1^2} = \sqrt{26}$$

$$\theta = \arctan\left(\frac{1}{-5}\right) = \arctan\left(-\frac{1}{5}\right) = \frac{7\pi}{6} + \pi \text{ (2nd quadrant)}$$

The polar coordinates are $\left(\sqrt{26}, \frac{7\pi}{6} + \pi\right)$

2. Convert the cylindrical point $(5, \frac{7\pi}{6}, 2)$ to rectangular.

$$x = 5\cos\left(\frac{7\pi}{6}\right) = 5\left(-\frac{\sqrt{3}}{2}\right) = -\frac{5\sqrt{3}}{2}$$
$$y = 5\sin\left(\frac{7\pi}{6}\right) = 5\left(-\frac{1}{2}\right) = -\frac{5}{2}$$
$$z = 2$$

The rectangular coordinates are $\left(-\frac{5\sqrt{3}}{2}, -\frac{5}{2}, 2\right)$

3. Convert the rectangular point (-2, 4, -1) to spherical.

$$\rho = \sqrt{(-2)^2 + 4^2 + (-1)^2} = \sqrt{21}$$

$$\theta = \arctan\left(\frac{4}{-2}\right) = \arctan(-2)$$

$$\phi = \arccos\left(\frac{-1}{\sqrt{21}}\right) = \arccos\left(-\frac{1}{\sqrt{21}}\right)$$

Since the point (-2,4) is in the second quadrant, we add π to the arctan value. Hence, the spherical coordinates are $\left(\sqrt{21}, \pi + \arctan(-2), \arccos\left(-\frac{1}{\sqrt{21}}\right)\right)$

4. Convert the spherical point $(4, \frac{11\pi}{6}, \frac{3\pi}{4})$ to cylindrical. The conversion from spherical to cylindrical follows the following equations:

$$r = \rho \sin \phi$$
, $\theta = \theta$, and $z = \rho \cos \phi$.

Thus, we have:

$$r = 4\sin\left(\frac{3\pi}{4}\right) = 4\left(\frac{\sqrt{2}}{2}\right) = 2\sqrt{2}$$
$$\theta = \frac{11\pi}{6}$$
$$z = 4\cos\left(\frac{3\pi}{4}\right) = 4\left(-\frac{\sqrt{2}}{2}\right) = -2\sqrt{2}$$

Therefore, we get the cylindrical coordinates $\left(2\sqrt{2}, \frac{11\pi}{6}, -2\sqrt{2}\right)$

Practice Set # 4 (cont.)

1. $\iint_D (x^2 + 6xy) dA$ where D is the triangle with vertices (0,0), (4,0), and (0,12)

Solution. We can see that this triangle is bounded by three lines:

This gives us the limits of integration as follows:

$$\{(x,y): 0 \le x \le 4, \quad 0 \le y \le -3x + 12\}.$$

Thus, we can write the double integral as:

$$\iint_{D} (x^{2} + 6xy) dA = \int_{0}^{4} \int_{0}^{-3x+12} (x^{2} + 6xy) dy dx$$

$$= \int_{0}^{4} \left[x^{2}y + 3xy^{2} \right]_{0}^{-3x+12} dx$$

$$= \int_{0}^{4} \left[x^{2}(-3x+12) + 3x(-3x+12)^{2} \right] dx$$

$$= 6 \left[x^{4} - \frac{34}{3}x^{3} + 36x^{2} \right]_{0}^{4}$$

$$= 48 \left[32 - \frac{34}{3}(8) + 36(2) \right]$$

$$= \boxed{640}$$

General Regions

Suppose we have a general region D. Then,

• Type I Region – we say that D is a Type I region provided there exists constants a, b and continuous functions $g_1, g_2 : \mathbb{R} \to \mathbb{R}$ so that

$$D = \{(x, y) : a \le x \le b, \text{ and } g_1(x) \le y \le g_2(x)\}.$$

• Type II Region – we say that D is a Type II region provided there exists constants c, d and continuous functions $h_1, h_2 : \mathbb{R} \to \mathbb{R}$ so that

$$D = \{(x, y) : h_1(y) \le x \le h_2(y), \text{ and } c \le y \le d\}.$$

0.0.1 Type I Regions

Suppose that D is a type I region:

$$\iint_D f(x,y) dA = \iint_R F(x,y) dA$$
$$= \int_b^a \int_{g_1(x)}^{g_2(x)} f(x,y) dy dx.$$

The "see below" line is true since F(x, y) = 0 if $y > g_2(x)$ or $y < g_1(x)$.

0.0.2 Type II Regions

In the same way, if D is type II, we have

$$\iint_D f(x,y) \, dA = \int_d^c \int_{h_1(y)}^{h_2(y)} f(x,y) \, dx \, dy.$$

How do you tell? DRAW A PICTURE! (In practice, you don't typically explicitly note what type an integral is.)

0.0.3 Area

Suppose that D is a region. Then, the area of D is given by

$$area(D) = \iint_D 1 \, dA.$$

0.0.4 Average Value

The $average \ value \ of f \ over D \ is given by$

$$\operatorname{ave}(f) = \frac{1}{\operatorname{area}(D)} \iint_D f(x, y) dA.$$

Max and Min

The statement that (x_0, y_0) is a **critical point** of f means that either:

- both $f_x(x_0, y_0) = 0$ and $f_y(x_0, y_0) = 0$, or
- one or both partials does not exist.

0.1 Maxima and Minima

0.1.1 Local Extrema

The function f has a **local maximum** at (x_0, y_0) provided that $f(x_0, y_0) \ge f(x, y)$ for all choices of (x, y) in some disk centered at (x_0, y_0) – that is, in some neighborhood of (x_0, y_0) .

Note that if there is a local extrema, $\nabla f = \mathbf{0}$. This is because the gradient points in the direction of greatest increase, and if we are at a maximum or minimum, the function does not change.

0.1.2 Second Derivative Test

Calculus I Version: In Calculus I, the sign of the second derivative tells you whether a critical point is a local max/min, or inconclusive: Suppose that $g: \mathbb{R} \to \mathbb{R}$ is a function of one variable, and x_0 is a critical point.

- if $g''(x_0) > 0$, then x_0 is a local minimum
- if $g''(x_0) < 0$, then x_0 is a local maximum
- if $g''(x_0) = 0$, this test is inconclusive it could be a max, min, or neither.

Multivariable Calculus Version: We have a similar test for $f: \mathbb{R}^2 \to \mathbb{R}$, where (x_0, y_0) is a critical point. Define

$$D = f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - (f_{xy}(x_0, y_0))^2.$$

- if D > 0 and $f_{xx}(x_0, y_0) > 0$, then f has a local minimum
- if D > 0 and $f_{xx}(x_0, y_0) < 0$, then f has a local maximum
- if D < 0, then f has a saddle point
- if D=0, then the test is inconclusive

Tangent Planes

For functions $f: \mathbb{R}^2 \to \mathbb{R}$ we have a similar idea. If the surface generated by such a function has no sharp corners or edges, you might see that as you zoom in, the surface becomes flatter and flatter – and will eventually resemble a plane. In fact, we define the **tangent plane** as the unique plane at $(x, y) = (x_0, y_0)$ which satisfies

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

Recall from Calculus I that if f is differentiable at x_0 and x is close to x_0 then

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0).$$

This is the *linear approximation* of f at x_0 . In the same way, if $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable at (x_0, y_0) and (x, y) is near (x_0, y_0) , then

$$f(x,y) \approx f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

This is the *linearization* of f at (x_0, y_0) .

0.2 Examples

 $f(x,y) = x\cos(\pi x)\sin(\pi y), (x_0,y_0) = (\frac{1}{3},\frac{1}{2}).$ Our point of interest is $(\frac{1}{3},\frac{1}{2}),\frac{1}{6}$, because we can just plug in the values of x_0 and y_0 into the function to get the height.

To find the equation of the tangent plane, we need to find the partial derivatives to fill out the following equation:

$$z = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} \left(x - \frac{1}{3} \right) + \underline{\hspace{1cm}} \left(y - \frac{1}{2} \right).$$

We found z_0 to be $\frac{1}{6}$, and the partial derivatives are

$$f_x(x,y) = \cos(\pi x)\sin(\pi y) - \pi x\sin(\pi x)\sin(\pi y),$$

and

$$f_x\left(\frac{1}{3}, \frac{1}{2}\right) = \frac{1}{2} - \frac{\pi}{3}\left(\frac{\sqrt{3}}{2}\right)(1) = \frac{1}{2} - \frac{\pi\sqrt{3}}{3}.$$

Similarly, we have

$$f_y(x, y) = \pi x \cos(\pi x) \cos(\pi y)$$

and

$$f_y\left(\frac{1}{3}, \frac{1}{2}\right) = 0.$$

Now, we can fill out the rest of our equation:

$$z = \frac{1}{6} + \left(\frac{1}{2} - \frac{\pi\sqrt{3}}{3}\right) \left(x - \frac{1}{3}\right) + 0\left(y - \frac{1}{2}\right).$$