1 Описание метода

1.1 Градиентный метод 1-го порядка наискорейшего спуска

Input: Eps > 0 - необходимая точность вычисления, f(x), nullPoint - начальное приближение.

Output: $x_m in$ - значение аргумента, такое, что $\|\nabla f(x_k)\|^2 < Eps^2$.

Алгоритм по шагам:

- 1) $x_0 = \text{nullPoint}, k = 0;$
- 2) while $(\|\nabla f(x_k)\|^2 > Eps^2)$ {

3)вычислим α_k : $f(\mathbf{x}) = f(x_k - \alpha_k \nabla f(x_k))$ -> min. Для этого будем использовать метод волотого сечения

$$4)x_{k+1} = x_k - \alpha_k \nabla f(x_k), \ \mathbf{k} = \mathbf{k} + 1.$$

Таким образом на момент завершения цикла мы получим $x_k = x_m i n$.

Замечания:

1) Обоснование выбора условия окончания вычисления для метода одномерной минимизации

Для нахождения \aleph_k решаем задачу одномерной минимизации, с помощью метода золотого сечения, необходимо уменьшить интервал неопределенности так, чтобы добиться выполнения условия $||\nabla f(x_k)|| <= \mathrm{Eps}$. Воспользуемся условием Липшица, задав точность для поиска параметра равную $\frac{Eps}{L}$. Таким образом, движение идёт п онаправлению к $\nabla f = 0$, что позволит достичь условие окончания цикла.

2) Использование квадрата нормы в условии выхода из цикла:

Выбор усовия оправдан тем, что вычисление квадратного корня на каждой итерации значительно повышает время работы приложения. Возводя в квадрат обе части условие остаётся аналогичным.

1.2 Метод Ньютона

В данном методе улучшено представление приближения f(x), удерживая в e1 разложении квадратичные члены:

$$f_k(x) \approx f(x_k) + \nabla f(x_k)(x - x_k) + \frac{(x_k - x)^T H(x_k)(x_k - x)}{2}$$

Рассмотрим вектор $d_k = x_{k+1} - x_k$. Определяется из :

$$d_k = -(H(x_k))^{-1} \nabla f(x_k)$$

Тогда следующее приближение:

$$x_{k+1} = x_k + \alpha_k d_k$$

Данный метод называют методом Ньютона, потому что $x_{k+1} = x_k + \alpha_k d_k =$ это примененный к СЛАУ $grad(f(x_k)) = 0$ метод Ньютона, из-за этого получается регулярный шаг $\alpha = 1$.

Input: Eps > 0 - необходимая точность вычисления, f(x), nullPoint - начальное приближение.

```
Output: x_min - значение аргумента,такое, что \|\nabla f(x_k)\|^2 < Eps^2. Алгоритм: 1)x_0 = \text{nullPoint}, \ \mathbf{k} = 0. 2) while (\|\nabla f(x_k)\|^2 > Eps^2) { 3)Вычисляем d_k 4) x_{k+1} = x_k + \alpha_k d_k. Переходим к следующей итерации, \mathbf{k} = \mathbf{k} + 1. }
```

Таким образом на момент завершения цикла мы получим $x_k = x_m i n$.

2 Результаты

```
Для обоих алгоритмов:  \begin{aligned} &\text{Для обоих алгоритмов:} \\ &1)\text{Начальное приближение} = [0.00,\,0.00] \\ &2)\text{Eps} = 0.01 \\ &\text{Метод наискорейшег оспуска сошёлся к точке} \, [0.54;\,-0.72] \,\,\text{за} \,\,649 \,\,\text{шагов.} \\ &\text{Метод Ньютона сошёлся к точке} \, [0.17;\,-0.97] \,\,\text{за} \,\,3 \,\,\text{шага.} \end{aligned}
```

Оба метода применимы к нашей задаче в некоторой окрестности и выдают решения с требуемой точностью.

Метод Ньютона требовал меньшего числа шагов, чем метод наискорейшего спуска. Но сравнивать скорость работы этих методов лишь по числу итераций было бы некорректно, так как в одном случае нам приходится решать СЛАУ, а в другом - задачу одномерной минимизации.

3 Оценка достоверности результатов

Исходя из условий сходимости, алгоритм наискорейшего спуска и алгоритм Ньютона всегда сходятся к точке, где $||\nabla f(x_k)|| <= \epsilon$.

Проведём дополнительный эксперимент для метода наискорейшего спуска: несколько раз запустим алгоритм с разными начальными приближениями.

Таблица 1: Метод наискорейшего спуска

стартовая точка	$x1_{stop}$	$x2_{stop}$	число итераций
[0.0; 0.0]	0.54	-0.72	649
[2.0; 5.0]	0.54	-0.72	913
[-1.0; -1.0]	-0.23	-1.23	542
[-5.0; 5.0]	-0.23	-1.23	925
[-0.25; -1.25]	-0.23	-1.23	76

По итогам данного эксперимента можем видеть, что метод наискорешего спуска для различных начальнах приближений сходится к разным точкам оптимума, и всякий раз достигает точки минимума функции.