

EECE321 Project

Testing Assembly Codes and Comparing to C++ Values

Ahmad Abbas Tamara Fakih Gabriel Manessa

May 2024

Contents

1	Testing Classical Gram-Schmidt						
	1.1	Figures for Q Matrix in Assembly	3				
	1.2	Figures for R Matrix in Assembly	3				
	1.3	C++ Code Results	4				
	1.4	Q and R Matrices from C++ Code	4				
2	Testing Modified Gram-Schmidt						
	2.1	Figures for Q Matrix in Assembly	5				
	2.2	Figures for R Matrix in Assembly	5				
	2.3	C++ Code Results	6				
	2.4	Q and R Matrices from C++ Code $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	6				
3	Ger	neralized Using Logbase2	7				
4	Uni	rolling	9				
	4.1	Unrolling One Loop	9				
	4.2	Unrolling Multiple Loops	11				
5	QR Extension						
	5.1	Transposed Q Matrix from C++ Code	14				
	5.2	y' Vector from C++ Code	15				
	5.3	x Vector from C++ Code	15				
6	Cao	ching	16				
7	Verifications						

7.1	First Identity: $Q \times R = A$	17
7.2	Second Identity: $Q^T \times Q = I$	18
7.3	Third Identity: $Q^T \times A = R$	19

1 Testing Classical Gram-Schmidt

1.1 Figures for Q Matrix in Assembly

Figure 1: Q Matrix in Assembly - Part 1 and Part 2

1.2 Figures for R Matrix in Assembly

Figure 2: R Matrix in Assembly - Part 1 and Part 2

1.3 C++ Code Results

```
Classical Gram-Schmidt Q Matrix:

[0.57735, 0.696311, -0.400099, 0.147442]

[0, 0.522233, 0.800198, -0.294884]

[0.57735, -0.348155, 0.444554, 0.589768]

[0.57735, -0.348155, -0.0444554, -0.73721]

Classical Gram-Schmidt R Matrix:

[1.73205, 1.1547, 4.33013, 3.4641]

[0, 1.91485, 1.30558, 2.35005]

[0, 0, 1.02247, -0.311188]

[0, 0, 0, 0, 1.62186]
```

Figure 3: C++ Code Results

1.4 Q and R Matrices from C++ Code

$$Q = \begin{bmatrix} 0.57735 & 0.696311 & -0.400099 & 0.147442 \\ 0 & 0.522233 & 0.800198 & -0.294884 \\ 0.57735 & -0.348155 & 0.444554 & 0.589768 \\ 0.57735 & -0.348155 & -0.044554 & -0.73721 \end{bmatrix}$$

$$R = \begin{bmatrix} 1.73205 & 1.1547 & 4.33013 & 3.4641 \\ 0 & 1.91485 & 1.30558 & 2.35005 \\ 0 & 0 & 1.02247 & -0.311188 \\ 0 & 0 & 0 & 1.62186 \end{bmatrix}$$

2 Testing Modified Gram-Schmidt

2.1 Figures for Q Matrix in Assembly

Figure 4: Q Matrix in Assembly - Part 1 and Part 2

2.2 Figures for R Matrix in Assembly

Figure 5: R Matrix in Assembly - Part 1 and Part 2

2.3 C++ Code Results

```
Modified Gram-Schmidt Q Matrix:

[0.57735, 0.696311, -0.400099, 0.147442]
[0, 0.522233, 0.800198, -0.294884]
[0.57735, -0.348155, 0.444554, 0.589768]
[0.57735, -0.348155, -0.0444554, -0.73721]

Modified Gram-Schmidt R Matrix:

[1.73205, 1.1547, 4.33013, 3.4641]
[0, 1.91485, 1.30558, 2.35005]
[0, 0, 1.02247, -0.311188]
[0, 0, 0, 0, 1.62186]
```

Figure 6: C++ Code Results

2.4 Q and R Matrices from C++ Code

$$Q = \begin{bmatrix} 0.57735 & 0.696311 & -0.400099 & 0.147442 \\ 0 & 0.522233 & 0.800198 & -0.294884 \\ 0.57735 & -0.348155 & 0.444554 & 0.589768 \\ 0.57735 & -0.348155 & -0.044554 & -0.73721 \end{bmatrix}$$

$$R = \begin{bmatrix} 1.73205 & 1.1547 & 4.33013 & 3.4641 \\ 0 & 1.91485 & 1.30558 & 2.35005 \\ 0 & 0 & 1.02247 & -0.311188 \\ 0 & 0 & 0 & 1.62186 \end{bmatrix}$$

3 Generalized Using Logbase2

Figure 7: Generalized Logbase2 - Figure 1

```
logbase2: ## final value in x11, input in x14
addi sp,sp,-12
sw x10,0(sp)
sw x6,4(sp)
sw x1,8(sp)
li \times 10,1 ## inital , maybe its 2 so logbase2(2)=1
li x6,2 ## start with 2
d1:
beq x6,x14,doned1
slli x6,x6,1
addi x10,x10,1
j d1
doned1:
addi x11,x10,0
lw x10,0(sp)
lw x6,4(sp)
lw x1,8(sp)
jalr x0,0(x1)
```

Figure 8: Generalized Logbase2 - Figure 2

4 Unrolling

4.1 Unrolling One Loop

```
lop5: ## x20=&R[k][j]
bge x16,x13,end_lop5
slli x19,x16,2 ## x19=i*4
add x22,x19,x15 ## x20=i*4+k
slli x22,x22,2 ## [i][k]
add x21,x19,x30 ## x21=i*4+j
slli x21,x21,2 ## [i][j]
add x22,x22,x11 ## &Q[i][k]
add x21,x21,x11 ## &Q[i][j]
flw f0,0(x21) ## f0=Q[i][j]
flw f1,0(x22) ## f1=Q[i][k]
flw f2,0(x20) ## f2=R[k][j]
fmul.s f0,f0,f1 ## Q[i][k]*Q[i][j]
fadd.s f2,f0,f2 ## R[k][j]+Q[i][k]*Q[i][j]
fsw f2,0(x20) ## R[k][j] += Q[i][k] * Q[i][j]
addi x16,x16,1
j lop5
end_lop5:
```

Figure 9: Before Unrolling Loop

```
li x19,0 ## [0]
add x22,x19,x15 ## 0+k
slli x22,x22,2 ## [0][k] single precision
add x21,x19,x30 ## 0+j
slli x21,x21,2 ## [0][j]
add x22,x22,x11 ## &Q[0][k]
add x21,x21,x11 ## &Q[0][j]
flw f0,0(x22) ## f0=Q[0][k]
flw f1,0(x21) ## f1=Q[0][j]
flw f2,0(x20) ## f2=R[k][j]
fmul.s f0,f0,f1 ## Q[0][k]*Q[0][j]
fadd.s f2,f0,f2 ## R[k][j]+Q[0][k]*Q[0][j]
fsw f2,0(x20) ## R[k][j] += Q[0][k] * Q[0][j]
li x19,4 ## [1]
add x22,x19,x15 ## 4+k
slli x22,x22,2 ## [1][k] single precision
add x21,x19,x30 ## 1+j
slli x21,x21,2 ## [1][j]
add x22,x22,x11 ## &Q[1][k]
add x21,x21,x11 ## &Q[1][j]
flw f0,0(x22) ## f0=Q[1][k]
flw f1,0(x21) ## f1=Q[1][j]
flw f2,0(x20) ## f2=R[k][j]
fmul.s f0,f0,f1 ## Q[1][k]*Q[1][j]
fadd.s f2,f0,f2 ## R[k][j]+Q[1][k]*Q[1][j]
fsw f2,0(x20) ## R[k][j] += Q[1][k] * Q[1][j]
```

Figure 10: After Unrolling Loop

4.2 Unrolling Multiple Loops

```
lopp6: ## x20=& R[k][j]
bge x16,x13,end_lopp6
slli x22,x16,2 ## i*4
add x22,x22,x30 ## i*4+j
slli x22,x22,2 ## [i][j]
slli x21,x16,2 ## i*4
add x21,x21,x15 ## i*4+k
slli x21,x21,2 ## [i][k]
add x22,x22,x11 ## &Q[i][j]
add x21,x21,x11 ## &Q[i][k]
flw f0,0(x21) ## Q[i][k]
flw f1,0(x22)## Q[i][j]
flw f2,0(x20) ## R[k][j]
fmul.s f2,f0,f2 ## R[k][j] * Q[i][k]
fsub.s f1,f1,f2 ## Q[i][j] - R[k][j] * Q[i][k]
fsw f1,0(x22) ## Q[i][j] -= R[k][j] * Q[i][k]
addi x16,x16,1
j lopp6
```

Figure 11: Before Unrolling second Loop - Figure 3

```
li x22,0 ## i=0
add x22,x22,x30 ## i*0+j
slli x22,x22,2 ## [0][j]
li x21,0
add x21,x21,x15 ## i*0+k
slli x21,x21,2 ## [0][k]
add x22,x22,x11 ## &Q[0][j]
add x21,x21,x11 ## & Q[0][k]
flw f0,0(x21) ## Q[0][k]
flw f1,0(x22) ## Q[0][j]
flw f2,0(x20) ## R[k][j]
fmul.s f2,f0,f2 ## R[k][j] * Q[0][k]
fsub.s f1,f1,f2 ## Q[0][j] - R[k][j] * Q[0][k]
fsw f1,0(x22) ## Q[0][j] -= R[k][j] * Q[0][k]
li x22,4 ## i=1
add x22,x22,x30 ## 4+j
slli x22,x22,2 ## [1][j]
li x21,4
add x21,x21,x15 ## 4+k
slli x21,x21,2 ## [1][k]
add x22,x22,x11 ## &Q[1][j]
add x21,x21,x11 ## & Q[1][k]
flw f0,0(x21) ## Q[1][k]
flw f1,0(x22)## Q[1][j]
flw f2,0(x20) ## R[k][j]
fmul.s f2,f0,f2 ## R[k][j] * Q[1][k]
fsub.s f1,f1,f2 ## Q[1][j] - R[k][j] * Q[1][k]
fsw f1,0(x22) ## Q[1][j] -= R[k][j] * Q[1][k]
```

Figure 12: After Unrolling second Loop - Figure 4

5 QR Extension

```
solveforx: ## given y is in x8, H is in x24
## where modified takes A in x10,
addi x10,x24,0 ## A---> H
call modified_granny ## now x11--> Q, x14-> R
addi x10,x23,0 ## result in Q_t
addi x26,x11,0 ## input Q in x26
call transposeMatrix ## our result in x10
addi x11,x25,0 ## now x11 holds new addres for y_prime
addi x24,x8,0 ## now x24--> holds y
addi x27,x10,0
call multiplyMatrixVector
addi x18,x11,0 ## y_prime --> x18
addi x10,x28,0
call backwardSubstitution ## our result in x10
li a0,10
ecal1
```

Figure 13: QR Extension - Assembly Code for Function

Address	+0	+1	+2	+3					
0x10000180	BD	16	36	BD					
0x1000017C	A1	9C		3E					
0x10000178	C0	D9	4C	3F					
0x10000174	BA	D9	CC	BE					
0x10000170	69	41	B2	BE					
0x1000016C	69	41	B2	BE					
0x10000168	0F	B1	05	3F					
0x10000164	6A	41	32	3F	0x10000190	C7	B9	3C	BF
0x10000160	3A	CD		3F	0x1000018C	06	FB	16	3F
0x1000015C	3A	CD		3F	0x10000188	06	FB	96	BE
0x10000158	00	00	00	00	0x10000184	OB	FB	16	3E
0x10000154	3A	CD		3F	0x10000180	BD	16	36	BD

Figure 14: QR Extension - Transposing Q Matrix

0x10000140	A2	1B	84	BF
0x1000013C	8E	3E	33	40
0x10000138	C6	D1	5E	3F
0x10000134	30	3A	СВ	40

Figure 15: QR Extension - Result of MultiplyMatrix Vector (y')

Address	+0	+1	+2	+3	
0x10000150	В6	E8	22	BF	
0x1000014C	C0	E8	22	40	
0x10000148	13	00	00	BF	
0x10000144	00	A3	8B	BF	

Figure 16: QR Extension - Result of Backward Substitution (x)

```
Transposed Q Matrix:
[0.57735, 0, 0.57735, 0.57735]
[0.696311, 0.522233, -0.348155, -0.348155]
[-0.400099, 0.800198, 0.444554, -0.0444554]
[0.147442, -0.294884, 0.589768, -0.73721]

Result of Q_T * y (y_prime):
[6.35085, 0.870388, 2.80069, -1.03209]

Result of backward substitution (x):
[-1.09091, -0.5, 2.54545, -0.636364]
```

Figure 17: QR Extension - C++ Code Results

5.1 Transposed Q Matrix from C++ Code

$$Q^T = \begin{bmatrix} 0.57735 & 0 & -0.400099 & 0.147442 \\ 0.57735 & 0.522233 & 0.800198 & -0.294884 \\ 0.57735 & -0.348155 & 0.444554 & 0.589768 \\ 0.57735 & -0.348155 & -0.044554 & -0.73721 \end{bmatrix}$$

5.2 y' Vector from C++ Code

$$y' = \begin{bmatrix} 6.35085 \\ 0.870388 \\ 2.80069 \\ -1.03209 \end{bmatrix}$$

5.3 x Vector from C++ Code

$$x = \begin{bmatrix} -1.09091 \\ -0.5 \\ 2.54545 \\ -0.636364 \end{bmatrix}$$

6 Caching

```
loop2:
         bge x16, x13, end_loop2
         slli x19, x16, 2
19
20
         add x19, x17, x19
                             # &q[i]
21
         slli x20, x16, 2 #
22
         add x20, x20, x15
23
         slli x20, x20, 2
         add x20, x20, x10
24
                             # &A[i][k]
         flw f1, 0(x20)
25
         fsw f1, 0(x19) # q[i] = A[i][k]
26
27
         addi x16, x16, 1
28
         j loop2
29
     end_loop2:
```

Figure 18: Code Before Caching

Figure 19: Code After Caching

7 Verifications

7.1 First Identity: $Q \times R = A$

```
0x1000010C
0x10000108
                          0D
                                             [1, 2, 3, 4]
0x10000104
0x10000100
                   00
                                             [0, 1, 1.5, 0.5]
0x100000FC
                                             [1, 0, 2.5, 2]
0x100000F0
                   00
                          00
0x100000EC
                          00
                                            Original A Matrix:
0x100000E8
                   FF
                   00
                          00
0x100000E4
                                             [0, 1, 1.5, 0.5]
0x100000E0
                   00
0x100000DC
                                             [1, 0, 2.5, 2]
0x100000D8
                                             [1, 0, 2, 0]
```

Figure 20: First Identity: $Q \times R = A$ - Assembly (left) and C++ (right)

Figure 21: Mean Squared Error for $Q \times R = A$ - Assembly (left) and C++ (right)

7.2 Second Identity: $Q^T \times Q = I$

```
0x10000150
0x1000014C
                             87
                                        90
                             43
                                        48
                                                  02
0x10000148
0x10000144
                             ЗА
                                       CD
                                                  13
0x10000140
                             87
                                        90
                                                  ΑB
                                                            32
0x1000013C
0x10000138
                                                            3F
33
                             00
                                        00
                                                  80
                             82
                                       E3
                                                  41
0x10000134
                                       2D
                                                  F0
                                                                   [1, -2.22045e-16, -4.96131e-16, -2.77556e-16]
                                                            33
0x10000130
                             43
                                       48
                                                  02
                                                                   [-2.22045e-16, 1, -1.78677e-16, -5.55112e-16]
[-4.96131e-16, -1.78677e-16, 1, 6.93889e-18]
[-2.77556e-16, -5.55112e-16, 6.93889e-18, 1]
0x1000012C
                             82
                                       E3
                                                  41
                                                            33
0x10000128
                             00
                                       00
                                                  80
                                                            3F
0x10000124
                             ЗА
                                       CD
                                                            33
                                                                   Q_T * A Matrix:
0x10000120
                                                            33
                             ЗА
                                       CD
                                                                   [1.73205, 1.1547, 4.33013, 3.4641]
0x1000011C
                             7E
                                       2D
                                                  F0
                                                                   [-3.33067e-16, 1.91485, 1.30558, 2.35005]
0x10000118
                             ЗА
                                       CD
                                                  13
                                                            33
                                                                    [-8.88178e-16, -9.99201e-16, 1.02247, -0.311188]
                                                                    [-5.55112e-16, -1.44329e-15, -1.9984e-15, 1.62186]
0x10000114
```

Figure 22: Second Identity: $Q^T \times Q = I$ - Assembly (left) and C++ (right)

Figure 23: Mean Squared Error for $Q^T \times Q = I$ - Assembly (left) and C++ (right)

7.3 Third Identity: $Q^T \times A = R$

```
0x1000018C
0x10000188
                         00
                                   00
                                           C0
                         00
F7
                                           80
9F
                                                    33
BE
0x10000184
                                  00
0x10000180
                                                    3F
0x1000017C
                         78
                                  ΕO
                                           82
0x10000178
                         00
                                           80
                                  00
                                                          Q_T * A Matrix:
0x10000174
                                                          [1.73205, 1.1547, 4.33013, 3.4641]
0x10000170
                         32
                                  67
                                           16
                                                    40
                                                          [-3.33067e-16, 1.91485, 1.30558, 2.35005]
0x1000016C
                                                          [-8.88178e-16, -9.99201e-16, 1.02247, -0.311188]
0x10000168
                                                          [-5.55112e-16, -1.44329e-15, -1.9984e-15, 1.62186]
0x10000164
                         00
                                                    33
                                  00
                                           80
0x10000160
                         D7
                                  В3
                                           5D
0x1000015C
                                  90
                                                          [1.73205, 1.1547, 4.33013, 3.4641]
[0, 1.91485, 1.30558, 2.35005]
0x10000158
                                           93
                                                    3F
                         ЗА
                                 CD
0x10000154
                         D7
                                  ВЗ
                                           DD
                                                          [0, 0, 1.02247, -0.311188]
0x10000150
```

Figure 24: Third Identity: $Q^T \times A = R$ - Assembly (left) and C++ (right)

Figure 25: Mean Squared Error for $Q^T \times A = R$ - Assembly (left) and C++ (right)