Electronic Instrumentation

The Power of the Potential Divider

Dr Garry Lester BSc PhD MIET CEng

Outline

- The Circuits
 - Potential Dividers
 - Bridge Circuits
 - Cal Steps
- The Transducers
 - Strain Gauges
 - PRTs
 - Pressure Transducers
 - Load Cells
- The Application
 - Aircraft Qualification

Circuits - Potential Divider

- $Vm = Vs \times (Rs+dR)/(Rs+dR+Rref)$
- Make dR depend on measurand
- Rs≈Rref
- Measure change in Vm...
- But measuring small changes in a large voltage is difficult

Circuits - Quarter Bridge

- Add a potential divider to offset static value
- Take differential value
 Vm as output
- Bipolar Signal
- $Vm \approx Vs \times \frac{1}{4} \times dR/Rs$

Circuits - Half Bridge

- Add a second active potential divider
- Both Vm+ and Vmchange
- Take differential change in Vm as output
- $Vm \approx Vs \times \frac{1}{2} \times dR/Rs$

Circuits - Full Bridge

- Four elements with opposite sensitivities
- May only be possible in some installations
- $Vm \approx Vs \times 1 \times dR/Rs$
- ΔVs only changes sensitivity (slightly)

Circuits - Full Bridge (Temp)

- Vm+=Vm-=Vs/2
- No change in Vm due to temperature effect T
- Differential

 (mismatched)
 temperatures appear as error signal
- Put gauges in close (thermal) proximity

Circuits – Differential Amplifier

- Differential input, single ended output
- Output wrt 0V
- In practice
 - (buffers) followers
 between the bridge and diff. amp.
 - Well matched Rf, Ri.

Circuits - Full Bridge: Cal Step

- Simulate Strain \Rightarrow dRs
- dRs = Rs (Rs//Rcal)
- Choose Rcal for reqd. strain (within expected range).
- Switch in Rcal +ve or –ve for steps.
- Provides system check.

Circuits - Full Bridge: Cal Step

- Cal Step will show
 - Electronic faults
 - Change of impedance
 - Moisture
 - Wiring/connector change
- Cal Step won't show
 - Debonding
 - Incipient breakup
- Cal Step subject to external effects!

Transducers – Strain Gauges

- Res. = $\rho \times L/A$
- Strain = $\delta L/L$
- δA changes with δL
- Poisson ratio for steel ≈0.25.
- GF = $[\delta R/R]/[\delta L/L]$ typically around 2 for metallic gauges

Transducers – Strain Gauges

20mm

- Conductor Foil on Insulating Substrate bonded to strain surface
- Multiple gauges for connection in bridge configurations
- Configuration depends on measurand, strain, torque, bend.
- Typically $100-1000\Omega$

Transducers – Strain Gauges

- Geometry and Installation allows gauges with both positive and negative changes.
- Strain gauges wired in a bridge configuration
- Close Proximity so temperature is uniform

Transducers – Strain Gauge

- e.g.1 milli strain fs
- 1% sensitivity
- dR/Rs

$$\approx 2 \times 0.001 \times 0.01$$

$$= 20 E-6$$

•
$$Rs = 1k\Omega$$
, $dR = 20 \text{ m}\Omega$

 Large range in real terms

•
$$GF = 2$$

- Small changes in Rs
- Beware connector/wiring resistances!

Transducers – Strain Gauge

- $Rs = 1k\Omega$ $dR = 20 m\Omega$
- Vs = 10V

- $Vm = 10 \times 1 \times 20E-6$
- $\Rightarrow 200 \mu V$

- Large range in real terms
- Easy to maintain Vs within 1%

 Not impossible to measure, but not trivial!

Transducers – S.G. Cal Step

- $Rs = 1k\Omega$ $dR = 2 \Omega$
- Rs Rs//Rcal = 1.5Ω
- Rs//Rcal = 998.5Ω
- 1/Rtot = 1/Rs + 1/Rcal

Ideal Rcal = 665.7k Ω

- Use $670k\Omega$
- $dR=1.49\Omega$
- Strain step = 745μ str.

• Full scale 1 milli str.

• 75% full scale

- Can't buy ideal value.
- Use nearest available.
- Check result

Transducers - PRTs

- Platinum resistance temp coeff well characterised
- $\delta R/R \approx 0.4\%/K$
- Well characterised→ standard tables/eqns.
- Available in standard resistances, 100, 1k, etc.

Transducers - PRTs

 Construction based on Platinum wire

 Various designs to reduce spurious effects such as self-heating, strain, vibration

Transducers – Load Cells

- S-Beam Load Cell sensitive to tension/compression
- other configurations available, torque, compression, shear...
- Strain Gauge element wired as a bridge configuration

Transducers – Pressure

- Strain Gauged aneroid barometer
- May include internal signal conditioning amplifiers
- Open/Closed chamber for Relative / Absolute Measurement

Transducers – Pressure

- Robust housing with pressure fitting(s).
- May be passive bridge, 4-20mA or 1-5V output.
- Ideally no change due to temperature

Applications – Aircraft Testing

- Explore Performance Envelope
 - Measure actual loads during manoeuvers
- Validate Model
 - Model predicts component loading
 - Confirm anticipated loading
 - Refine models/life components
- Calibrate Systems
 - Aircraft Air Data vs Instrumentation Air Data
- Certification
 - CAA/FAA/EASA require documented testing

Applications – Aircraft Testing

- Gauged Blades
 - Main and Tail, rotating components
- Gauged Airframe Components
 - Lifting Frames, Tail Cone
 - Undercarriage
- Air data Pressure and Temp Transducers
 - Pitot Airspeed
 - Static Pressure Altitude
 - OAT Outside Air Temperature

Blade Gauging

- Strain Gauged Blades
- Flap, Lag, Torsion at each station
- Record and Map Blade Motion During Flight
- Determine blade life

Blade Data

Blade Data: Typical Faults

- Moisture
 - Change in CalStep
 - Zero drift
 - Unpredictable/variable
- Breakup
 - Spikes in traces
 - Often only in certain flight conditions

Air Data Instrumentation

- Air data boom
 - Clear (as possible) from disturbing airflow

Air Data Instrumentation

- Air data boom
 - Clear (as possible)from disturbing airflow
 - Instrumentation is orange
- Pitot-Static System
 - Differential/Air Speed
- Static Pressure
 - Absolute/Altitude
- PRT/Air Temperature

Air Data Instrumentation

- Angle of Attack (α)
 - Potentiometer
- Angle of Sideslip (β)
 - Potentiometer
- Travel
 - Electrical 340°
 - Mechanical 360°
 - Deadstop
- Multiple Pots
- Resolver

Applications – Videos

- Ground Running
 - New Design of Tail Rotor
 - 30 hours ground run
 - Fully Instrumented
 - Visual and NDT checks between runs
 - Wireless AirCraft Demonstrator (WACD)
 - Ride along to rotor tests
 - Zigbee(WiFi) link between rotor and airframe

Application - Videos

New Tail Rotor - Ground Run

Application – Videos

- Aircraft Pacing
 - Fill in a matrix of speeds, headings and heights
 - Road Vehicle sets ground speed
 - Aircraft matches ground speed
 - Aircraft heading set to required angle
 - Require low wind for accurate data
 - Early morning no mixing of lower/upper winds
 - Early in the day to avoid runway thermal activity

Application - Videos

AW159 WildCat - Paced

Application – Videos

- Tethered Hover
 - Aircraft tethered to fixed anchor point
 - Load Cell measures lifting force directly
 - Instrumention measures aircraft loads
 - Different length tethers
 - Require low wind for accurate data and safety!
 - Lateral force on aircraft changes cable loading
 - Early morning no mixing of lower/upper winds
 - Early in the day to avoid ground thermal activity

Application - Videos

AW159 WildCat - Tethered Hover

Application - Pics

Some of the Flight Trials Team

Acknowledgements

Aircraft Testing

- Slides and Video reproduced with kind permission of AgustaWestland (Yeovil) Ltd.
- Tethered hover video by Gary Howell,
 Instrumentation, AgustaWestland.

• Other Stuff

Manufacturers' data, Vishay, Druck, Jumo,
 Space Age Control, etc.

Conclusion

- Even elementary circuits have an important place in real world applications.
- However glitzy and fancy the displays, the numbers are only as good as the original measurement.
- The original measurement depends on application of fundamental principles.