Mixed Precision

Christoph Höppke, Daniel Tomaschewski

TU Dortmund

Version:23. Mai 2016

Content

- Mixedprecision Definition and history overview
 - Definition
 - Histroy overview
- 2 Floating point operations
 - Precision
 - Computational Precision vs Accuracy of Result
 - Floting Point Operations. A deeper analysis
- Example Calculation
 - Problem definition
 - Testresults

Content

- Mixedprecision Definition and history overview
 - Definition
 - Histroy overview
- Ploating point operations
 - Precision
 - Computational Precision vs Accuracy of Resul-
 - Floting Point Operations. A deeper analysis
- Example Calculation
 - Problem definition
 - Testresults

Definition:

An Algorithm that uses different precisions in its computation

Goal:

Obtain the **same** accuracy by using high precision but **better performance** by utilizing low precision computations

Performance Gains for bandwidth bound algorithms

- 64 bit = 1 double = 2 floats = 4 halfs
- More variables per bandwidth and variables per storage
- Applies to all memory levels: network, disc, main, device, local, register

Performance Gains for computation bound algorithms

- $lue{1}$ 1 double addition pprox 2 float additions pprox 4 half additions (linear)
- 1 double multip. \approx 4 float multip. \approx 16 half multip. (quadratic)
- → up to 16 times better computational efficiency

Definition:

An Algorithm that uses different precisions in its computation

Goal:

Obtain the **same accuracy** by using high precision but **better performance** by utilizing low precision computations

Performance Gains for bandwidth bound algorithms

- 64 bit = 1 double = 2 floats = 4 halfs
- More variables per bandwidth and variables per storage
- Applies to all memory levels: network, disc, main, device, local, register

Performance Gains for computation bound algorithms

- $lue{1}$ 1 double addition pprox 2 float additions pprox 4 half additions (linear)
- 1 double multip. \approx 4 float multip. \approx 16 half multip. (quadratic)
- → up to 16 times better computational efficiency

Definition:

An Algorithm that uses different precisions in its computation

Goal:

Obtain the **same accuracy** by using high precision but **better performance** by utilizing low precision computations

Performance Gains for bandwidth bound algorithms

- 64 bit = 1 double = 2 floats = 4 halfs
- More variables per bandwidth and variables per storage
- Applies to all memory levels: network, disc, main, device, local, register

Performance Gains for computation bound algorithms

- 1 double addition \approx 2 float additions \approx 4 half additions (linear)
- 1 double multip. \approx 4 float multip. \approx 16 half multip. (quadratic)
- → up to 16 times better computational efficiency

Definition:

An Algorithm that uses different precisions in its computation

Goal:

Obtain the **same accuracy** by using high precision but **better performance** by utilizing low precision computations

Performance Gains for bandwidth bound algorithms

- 64 bit = 1 double = 2 floats = 4 halfs
- More variables per bandwidth and variables per storage
- Applies to all memory levels: network, disc, main, device, local, register

Performance Gains for computaion bound algorithms

- 1 double addition \approx 2 float additions \approx 4 half additions (linear)
- 1 double multip. \approx 4 float multip. \approx 16 half multip. (quadratic)
- → up to 16 times better computational efficiency

Challenges when it comes to Mixedprecision

- Data has to be converted
- When using GPU accelleration Data has to be transferred from the Host to the device (usually) over the relativly slow PCIe bus
- We are being bottelnecked be memoryinterfaces
 - → a lot of time is wasted while waiting for data

Trends:

- Memoryclock speeds are increasing
 - GTX 980 Ti Memoryclock speed: 2x 1753 MHz
 - GTX 1080 Memoryclock speeds: 4x 2500 MHz (+185%)
- Alternative computing arcetectures
 - APU's
 - SOC's such as the NVIDIA Tegra K1 Chip
- NVIDIA pushing the use of half precision
 - half and half2 were announced as important new features in the CUDA Toolkit version 7.5
- → Sharing memory between CPU and GPU is becoming easyer and more common

Challenges when it comes to Mixedprecision

- Data has to be converted
- When using GPU accelleration Data has to be transferred from the Host to the device (usually) over the relativly slow PCIe bus
- We are being bottelnecked be memoryinterfaces
 - → a lot of time is wasted while waiting for data

Trends:

- Memoryclock speeds are increasing
 - GTX 980 Ti Memoryclock speed: 2x 1753 MHz
 - GTX 1080 Memoryclock speeds: 4x 2500 MHz (+185%)
- Alternative computing arcetectures
 - APU's
 - SOC's such as the NVIDIA Tegra K1 Chip
- NVIDIA pushing the use of half precision.
 - half and half2 were announced as important new features in the CUDA Toolkit version 7.5
- → Sharing memory between CPU and GPU is becoming easyer and more common

Challenges when it comes to Mixedprecision

- Data has to be converted
- When using GPU accelleration Data has to be transferred from the Host to the device (usually) over the relativly slow PCIe bus
- We are being bottelnecked be memoryinterfaces
 - \rightarrow a lot of time is wasted while waiting for data

Trends:

- Memoryclock speeds are increasing
 - GTX 980 Ti Memoryclock speed: 2x 1753 MHz
 - GTX 1080 Memoryclock speeds: 4x 2500 MHz (+185%)
- Alternative computing arcetectures
 - APU's
 - SOC's such as the NVIDIA Tegra K1 Chip
- NVIDIA pushing the use of half precision.
 - half and half2 were announced as important new features in the CUDA Toolkit version 7.5
- ightarrow Sharing memory between CPU and GPU is becoming easyer and more common

Past achievements:

Fig. 3 Scalability tests and performance comparisons on Tesla C2050 in single precision (-▲-), double precision (-●-), mixed precision (-●-), and CPU (single thread) code (-▼-). Sixth order spatial discretization employed. The iterative defect correction method has been left-preconditioned with a Gauss-Seidel V-cycle multigrid strategy on each architecture.

[1]

- ightarrow Logscale makes the performance benefits look smaller than they actually are
- → 38% performance increase

Content

- Mixedprecision Definition and history overview
 - Definition
 - Histroy overview
- 2 Floating point operations
 - Precision
 - Computational Precision vs Accuracy of Result
 - Floting Point Operations. A deeper analysis
- Example Calculation
 - Problem definition
 - Testresults

Roundoff and Cancellation

Definition Machine Precision

The smalles positive number ϵ for wich a floating point calculations evaluates the expression $1+\epsilon>1$ to be true.

Examples:

- $\epsilon_{double} \approx 2.220446049250313 \cdot 10^{-16}$
- $\epsilon_{float} \approx 1.1920929 \cdot 10^{-7}$
- $\epsilon_{half} \approx 9.765625 \cdot 10^{-4}$
- So more precision is usually better

Cancellation

additive roundoff
$$a = 1 + 0.00000004 = 1.00000004 = f_l \ 1$$
 multiplicative roundoff
$$b = 1.0002 \cdot 0.9998 = 0.999999996 = f_l \ 1$$
 cancellation
$$c \in \{a,b\} \qquad \pm 4 = (c-1) \cdot 10^8 = f_l \ 0$$
 oder of operations
$$1 + 0.00000004 - 1 = f_l \ 0$$

$$1 - 1 + 0.000000004 = f_l \ 0.00000004$$

Roundoff and Cancellation

Definition Machine Precision

The smalles positive number ϵ for wich a floating point calculations evaluates the expression $1+\epsilon>1$ to be true.

Examples:

- $\epsilon_{double} \approx 2.220446049250313 \cdot 10^{-16}$
- $\epsilon_{float} \approx 1.1920929 \cdot 10^{-7}$
- $\epsilon_{half} \approx 9.765625 \cdot 10^{-4}$
- So more precision is usually better

Cancellation

additive roundoff
$$a = 1 + 0.00000004 = 1.00000004 = fl \ 1$$
 multiplicative roundoff
$$b = 1.0002 \cdot 0.9998 = 0.999999996 = fl \ 1$$
 cancellation
$$c \in \{a,b\} \qquad \pm 4 = (c-1) \cdot 10^8 = fl \ 0$$
 oder of operations
$$1 + 0.00000004 - 1 = fl \ 0$$

$$1 - 1 + 0.00000004 = fl \ 0.00000004$$

Roundoff and Cancellation

Definition Machine Precision

The smalles positive number ϵ for wich a floating point calculations evaluates the expression $1+\epsilon>1$ to be true.

Examples:

- $\epsilon_{double} \approx 2.220446049250313 \cdot 10^{-16}$
- $\epsilon_{float} \approx 1.1920929 \cdot 10^{-7}$
- $\epsilon_{half} \approx 9.765625 \cdot 10^{-4}$
- So more precision is usually better

Cancellation

$$\begin{array}{lll} \mbox{additive roundoff} & a = 1 + 0.00000004 = 1.00000004 & =_{fl} \ 1 \\ \mbox{multiplicative roundoff} & b = 1.0002 \cdot 0.9998 = 0.999999996 & =_{fl} \ 1 \\ \mbox{cancellation} & c \in \{a,b\} & \pm \ 4 = (c-1) \cdot 10^8 & =_{fl} \ 0 \\ \mbox{oder of operations} & 1 + 0.00000004 - 1 =_{fl} \ 0 \\ & 1 - 1 + 0.000000004 =_{fl} \ 0.00000004 \end{array}$$

Computational Precision vs Accuracy of Result

Instructive Example [S.M. Rump, 1988]

$$f(x,y) = (333.75 - x^2)y^6 + x^2(11x^2y^2 - 121y^4 - 2) + 5.5y^8 + 0.5x/y$$

 $x_0 = 77617, y_0 = 33096$

float s23e8
$$1.1726$$
 double s52e11 1.17260394005318

The correct result is

-0.82739605994682136814116509547981629

Computational Precision vs Accuracy of Result

Instructive Example [S.M. Rump, 1988]

$$f(x,y) = (333.75 - x^2)y^6 + x^2(11x^2y^2 - 121y^4 - 2) + 5.5y^8 + 0.5x/y$$

 $x_0 = 77617, y_0 = 33096$

float s23e8
$$1.1726$$
 double s52e11 1.17260394005318

The correct result is:

-0.82739605994682136814116509547981629

Floating Point Operations. A deeper analysis

Number representation— almost all numbers have to be truncated

half s10e5 a	1 bit sign s_a	10 bit mantissa m_a	\mid 5 bit exp. e_a
float s23e8 b	1 bit sign s_b	23 bit mantissa m_b	8 bit exp. e_b
double s52e11 c	1 bit sign s_c	52 bit mantissa m_c	11 bit exp. e_c

Multiplication		
Precision	Exactformat	Mantissa truncation:
half(a) · half(b)	s20e6	from 20 to 10 bit
float(a) · float(b)	s46e9	from 46 to 23 bit
double(a) · double(b)	s104e12	from 104 to 52 bit
Addition	j	
Precision	Exactformat	Mantissa truncation:
half(a) · half(b)	s41e5	from 41 to 10 bit
float(a) · float(b)	s278e8	from 278 to 23 bit
double(a) · double(b)	s2099e11	from 2099 to 52 bit

Content

- Mixedprecision Definition and history overview
 - Definition
 - Histroy overview
- Ploating point operations
 - Precision
 - Computational Precision vs Accuracy of Result
 - Floting Point Operations. A deeper analysis
- Example Calculation
 - Problem definition
 - Testresults

Example Calculation

Problem

Solve the Poission problem $-\Delta u=1,\ x\in\Omega$ with dirichlet boundry conditions $u\equiv0,\ x\in\partial\Omega$ using conforming quadrilateral elements for the finite-element discretization of the unit square $\Omega=(-1,1)^2$

- Method 1: Using a V-cycle MG Solver
- Method 2: Using a V-cycle MG Solver inside of an iterative refinement loop

Algorithm 1 Iterative refinement

- 1: while $||r_{m-1}|| \cdot ||r_0||^{-1} > TOL$ do
- 2: $r_m = b Ax_m$
- 3: $Ad_m = r_m$ solve in high precision
- 4: $x_{m+1} = x_m + d_m$
- 5: end while

Testresults

- 58% up to 151% increase in performance on a 980 Ti GPU
- 77% up to 111% increase in performance on a Tegra K1 SOC

Discussion and Future work

Future work

 Try using half precision in order to achieve an even greater performance increase

Thank you for your attention

Bibliography

Madsen M. Glimberg S. L., Engsig-Karup A. P.

A fast gpu-accelecrated mixed-precision strategy for full nonlinear water wave computation.

Technical report, ResearchGate, January 2013.