

Art of Problem Solving 2003 Canada National Olympiad

Canada National Olympiad 2003

1	Consider a standard twelve-hour clock whose hour and minute hands move continuously. Let m be an integer, with $1 \le m \le 720$. At precisely m minutes after 12:00, the angle made by the hour hand and minute hand is exactly 1° .
	Determine all possible values of m .
2	Find the last three digits of the number $2003^{2002^{2001}}$.
3	Find all real positive solutions (if any) to
	$x^{3} + y^{3} + z^{3} = x + y + z$, and $x^{2} + y^{2} + z^{2} = xyz$.
4	Prove that when three circles share the same chord AB , every line through A different from AB determines the same ratio $XY:YZ$, where X is an arbitrary point different from B on the rst circle while Y and Z are the points where AX intersects the other two circles (labeled so that Y is between X and Z).
5	Let S be a set of n points in the plane such that any two points of S are at least 1 unit apart. Prove there is a subset T of S with at least $\frac{n}{7}$ points such that any two points of T are at least $\sqrt{3}$ units apart.