CSC 481: Expressing Knowledge

Rodrigo Canaan
Assistant Professor
Computer Science Department
Cal Poly, San Luis Obispo
rcanaan@calpoly.edu

Goal

Review the knowledge engineering process by going over the First-Order Logic statements that make up the "Soap Opera" world

 At the end of this class, you should be able to represent simple english sentences in FOL

Vocabulary Types of objects

Types of objects (Named individuals, or constants)

- People
- Animals
- Corporations
- Locations
- Physical objects (knives, earrings...)

Vocabulary Properties

Properties (1-ary predicates)

"Types"	"Attributes"
 Person Man Place Company 	 Beautiful HappilyMarried ClosedFor Repairs Bloody

What's the conceptual difference between "Types" and "Attributes"?

Vocabulary Relationships

Relationships (n-ary predicates)

- MarriedTo
- DaughterOf
- LivesAt
- HasCEO
- HadAnAffairWith
- LoveTriangle (3-ary)
- OccursInTimeInterval (3-ary: event, start time, end time)

Basic Facts

Basic Facts

- Man(john)
- Rich(john)
- Company(faultyInsuranceCompany)
- HappilyMarried(jim)
- bestFriendOf(jim)=john
- fic=faultyInsuranceCompany
- ceoOf(fic) = john
- Married(Alice, Bob)

Complex Facts

Complex Facts

- $\forall y[Rich(y) \land Man(y) \rightarrow Loves(y, jane)]$
- $\forall y[Woman(y) \land y \neq jane \rightarrow Loves(y, john)]$
- $\forall x, y[Loves(x, y) \rightarrow \neg Blackmails(x, y)]$
- $Loves(jane, john) \lor Loves(jane, jim)$
- $\exists x [Adult(x) \land Blackmails(x, john)]$
- $\forall x[Lawyer(x) \rightarrow x = jane \lor x = jack \lor x = jim \lor \ldots]$
- $jane \neq john \ jane \neq john$

How would you write "every CEO is rich"?

Terminological Facts

Terminological Facts

- $\forall x[Man(x) \rightarrow \neg Woman(x)]$ (disjointness)
- $\forall x[Surgeon(x) \rightarrow Doctor(x)]$ (subtypes)
- $\forall x [Adult(x) \rightarrow Man(x) \lor Woman(x)]$ (exhaustiveness)
- $\bullet \quad \forall x [MarriedTo(x,y) \rightarrow MarriedTo(y,x)] \text{ (symmetry)}^{\scriptscriptstyle 1}$
- $\forall x [ChildOf(x,y) \rightarrow ParentOf(y,x)]$ (inverses)
- $\forall x, y [MarriedTo(x, y) \rightarrow Person(x) \land Person(y)]$ (type restriction)
- $\bullet \quad \forall x [RichMan(x) \equiv Rich(x) \land Man(x)] \text{ (full definition)}$

How would you write a sentence indicating that a predicate (e.g. TallerThan) is transitive?

Order of quantifiers

- Careful when mixing existential and universal quantifiers!
 - $\forall x \exists y : loves(x, y)$ "everybody loves someone" (possibly themselves)
 - $\exists y \forall x : loves(x, y)$ "someone is loved by everyone" (including themselves)
 - $\forall x \exists y : loves(x, y) \land x \neq y$ "everybody loves someone **else**"
 - $\exists y \forall x : x \neq y \rightarrow loves(x, y)$ "someone is loved by everyone (possibly excluding themselves)"
- If you're using only one type of quantifier, order doesn't matter

"Is there a company whose CEO loves Jane?"

$$KB \models \exists x [Company(x) \land Loves(ceoOf(x), jane)]?$$

Basic Facts

- Man(john)
- Rich(john)
- Company(faultyInsuranceCompany)
- ¬HappilyMarried(jim)
- bestFriendOf(jim)=john
- fic=faultyInsuranceCompany
- ceoOf(fic) = john

Complex Facts

- $\forall y[Rich(y) \land Man(y) \rightarrow Loves(y, jane)]$
- $\forall y[Woman(y) \land y \neq jane \rightarrow Loves(y, john)]$
- $\forall x, y[Loves(x, y) \rightarrow \neg Blackmails(x, y)]$
- $Loves(jane, john) \lor Loves(jane, jim)$
- \bullet $\exists x [Adult(x) \land Blackmails(x, john)]$
- $\forall x[Lawyer(x) \rightarrow x = jane \lor x = jack \lor x = jim \lor \ldots]$
- $jane \neq john \ jane \neq john$

Terminological Facts

- $\forall x[Man(x) \rightarrow \neg Woman(x)]$ (disjointness)
- $\forall x[Surgeon(x) \rightarrow Doctor(x)]$ (subtypes)
- $\forall x [Adult(x) \rightarrow Man(x) \lor Woman(x)]$ (exhaustiveness)
- $\forall x [MarriedTo(x,y) \rightarrow MarriedTo(y,x)]$ (symmetry)¹
- $\forall x [ChildOf(x,y) \rightarrow ParentOf(y,x)]$ (inverses)
- $\forall x, y [MarriedTo(x, y) \rightarrow Person(x) \land Person(y)]$ (type restriction)
- $\forall x [RichMan(x) \equiv Rich(x) \land Man(x)]$ (full definition)

"Is there a company whose CEO loves Jane?"

$$KB \models \exists x [Company(x) \land Loves(ceoOf(x), jane)]?$$

Basic Facts

- Man(john)
- Rich(john)
- Company(faultyInsuranceCompany)
- HappilyMarried(jim)
- bestFriendOf(jim)=john
- fic=faultyInsuranceCompany
- ceoOf(fic) = john

Yes

Complex Facts

- $\forall y[Rich(y) \land Man(y) \rightarrow Loves(y, jane)]$
- $\forall y[Woman(y) \land y \neq jane \rightarrow Loves(y, john)]$
- $\forall x, y[Loves(x, y) \rightarrow \neg Blackmails(x, y)]$
- $Loves(jane, john) \lor Loves(jane, jim)$
- $\exists x [Adult(x) \land Blackmails(x, john)]$
- $\bullet \quad \forall x [Lawyer(x) \to x = jane \lor x = jack \lor x = jim \lor \ldots]$
- $jane \neq john \ jane \neq john$

Terminological Facts

- $\forall x[Man(x) \rightarrow \neg Woman(x)]$ (disjointness)
- $\forall x[Surgeon(x) \rightarrow Doctor(x)]$ (subtypes)
- $\forall x [Adult(x) \rightarrow Man(x) \lor Woman(x)]$ (exhaustiveness)
- $\forall x [MarriedTo(x,y) \rightarrow MarriedTo(y,x)]$ (symmetry)¹
- $\forall x [ChildOf(x,y) \rightarrow ParentOf(y,x)]$ (inverses)
- $\forall x, y [MarriedTo(x,y) \rightarrow Person(x) \land Person(y)]$ (type restriction)
- $\forall x [RichMan(x) \equiv Rich(x) \land Man(x)]$ (full definition)

"If no man is blackmailing John, is he being blackmailed by someone he loves?"

$$KB \models \forall x[Man(x) \rightarrow \neg Blackmails(x, john)] \rightarrow \exists y[Loves(john, y) \land Blackmails(y, john)]?$$

Basic Facts

- Man(john)
- Rich(john)
- Company(faultyInsuranceCompany)
- HappilyMarried(jim)
- bestFriendOf(jim)=john
- fic=faultyInsuranceCompany
- ceoOf(fic) = john

Complex Facts

- $\forall y[Rich(y) \land Man(y) \rightarrow Loves(y, jane)]$
- $\forall y[Woman(y) \land y \neq jane \rightarrow Loves(y, john)]$
- $\forall x, y [Loves(x, y) \rightarrow \neg Blackmails(x, y)]$
- $Loves(jane, john) \lor Loves(jane, jim)$
- $\exists x[Adult(x) \land Blackmails(x, john)]$
- $\forall x[Lawyer(x) \rightarrow x = jane \lor x = jack \lor x = jim \lor \ldots]$
- $jane \neq john \ jane \neq john$

Terminological Facts

- $\forall x[Man(x) \rightarrow \neg Woman(x)]$ (disjointness)
- $\forall x[Surgeon(x) \rightarrow Doctor(x)]$ (subtypes)
- $\forall x [Adult(x) \rightarrow Man(x) \lor Woman(x)]$ (exhaustiveness)
- $\bullet \quad \forall x [MarriedTo(x,y) \rightarrow MarriedTo(y,x)] \text{ (symmetry)}^{\scriptscriptstyle 1}$
- \bullet $\forall x [ChildOf(x,y) \rightarrow ParentOf(y,x)]$ (inverses)
- $\forall x, y [MarriedTo(x, y) \rightarrow Person(x) \land Person(y)]$ (type restriction)
- $\forall x [RichMan(x) \equiv Rich(x) \land Man(x)]$ (full definition)

Entailments

"If no man is blackmailing John, is he being blackmailed by someone he loves?"

$$KB \models \forall x[Man(x) \rightarrow \neg Blackmails(x, john)] \rightarrow \exists y[Loves(john, y) \land Blackmails(y, john)]?$$

Yes!

What if we don't assume that no man is blackmailing John?

Then no!

Reification

Turning a predicate or statement into an addressable object

- Expressing statements at an arbitrary level of granularity
- Handling incompatible statements,
- Handling intentions, beliefs, etc held by different actors
- Representing values that can be expressed in many different units

Shortcomings of FOL

It is hard to represent:

- Statistical and probabilistic facts ("Jane is 50% likely to go to the party)
- "Fuzzy" degrees of truth ("John is somewhat tall", "Bob is very tall")
- Default and prototypical facts ("Most CEOs are rich")
- Temporal events
- Intentional facts (Beliefs, desires, beliefs about beliefs, etc.)
 - Some of these are somewhat addressable with reification

Next chapter - Resolution

- So far, we have done inference "by hand"
- Reasoning with FOL is usually done by asking questions of the form:

$$KB \models \alpha$$
?

- This is the equivalent of asking if α is satisfied in every interpretation where KB is satisfied.
- We want to mechanize the process of answering this question with the rule of Resolution