Surname	
Name	
Matricola ID	

Exercise 1

Find the minimum weight perfect matching on the following graph starting from the perfect matching represented by thick arcs.

Exercise 2

Evaluate the optimal solution to the following linear program

min 51
$$x_1 + 34$$
 $x_2 + 27$ $x_3 + 16$ $x_4 + 25$ $x_5 + 19$ x_6 s.t.
$$x_1 + x_4 \ge 25$$

$$x_2 + x_3 + x_5 \ge 23$$

$$x_1 + x_2 + x_3 + x_5 \ge 21$$

$$x_2 + x_5 \ge 14$$

$$x_1 + x_2 + x_4 + x_5 \ge 39$$

$$x \ge 0$$

Surname	
Name	
Matricola ID	

Exercise 3 Evaluate the min cost flow on the following graph. $[(c_{ij}.u_{ij})]$ are the figures represented on the arcs

Network Design	[Network Flows]
May, 24th 2018	

Surname	
Name	
Matricola ID	

Bonus question

A company has 2 types of employees: part-time (5 hour workshift) and full-time (7 hour workshift). An employee can start working at {8:00, 9:00, 12:00, 13:00}. For each hourly slot the request of personnel is the following:

0.00	9:00 10:00					14:00 15:00				
12	15	17	16	12	13	7	6	5	5	2

Given a cost of 250 Euro/day for part time employees and 370 Euro/day for full time employees, find the mix of employees that fulfills the request minimizing the total cost.

Is it useful to allow full time employees start working at 11:00?