Ekološko modeliranje i predviđanje

Udžbenik za studente ekologije, biologije i znanosti o okolišu

Autor

Sveučilište Fakultet Godina

Sadržaj

P	redgo	ovor		iii
Ι	Os	nove	ekološkog modeliranja	1
1	Uvo	od u ek	kološko modeliranje	3
	1.1	Što je	ekološko modeliranje?	. 3
		1.1.1	Definicija i opseg	. 3
		1.1.2	Matematički okvir	. 3
	1.2	Povije	esni razvoj ekološkog modeliranja	. 3
		1.2.1	Pioniri ekološkog modeliranja	
	1.3	Vrste	ekoloških modela	
		1.3.1	Klasifikacija prema pristupu	
		1.3.2	Klasifikacija prema vremenu	
	1.4		modeliranja u ekološkim istraživanjima	
	1.5		e i metodološke napomene	
		1.5.1	Odgovornost modelara	. 4
2	Ma	temati	čke osnove	5
	2.1	Linear	rna algebra u ekologiji	. 5
		2.1.1	Matrični modeli populacije	. 5
		2.1.2	Vlastite vrijednosti i vektori	. 5
	2.2	Difere	encijalne jednadžbe	. 5
		2.2.1	Obične diferencijalne jednadžbe	. 5
		2.2.2	Logistički rast	
	2.3	Teorija	a vjerojatnosti i statistika	
		2.3.1	Osnovni koncepti	
		2.3.2	Stohastičnost u ekološkim modelima	. 6
3	Tip	ovi eko	oloških modela	7
	3.1	Empir	rijski modeli	. 7
		3.1.1	Regresijski modeli	. 7
		3.1.2	Generalizirani linearni modeli (GLM)	. 7
	3.2	Mehar	nistički modeli	. 7
		3.2.1	Prednosti mehanističkih modela	. 7
		3 2 2	Izazovi	7

11	1 V .	lodeli	populacijske dinamike									9
4	Jed	nostavi	i populacijski modeli									11
	4.1	Ekspoi	encijalni rast		 							 11
		4.1.1	Diskretni eksponencijalni model		 		 					 11
	4.2	Logisti	čki rast		 							 11
		4.2.1	Stabilnost ravnotežnih točaka									
	4.3	Diskre	ni populacijski modeli		 							 11
		4.3.1	Generalizirani diskretni model									
		4.3.2	Ricker model									
		4.3.3	Beverton-Holt model									
5	Med	đuspeci	jske interakcije									13
	5.1	_	grabljivac-plijen			_	 	_	_	_		
	0.1	5.1.1	Lotka-Volterra model									
		5.1.2	Holling funkcijska odgovor									
	5.2	_	konkurencije									
	0.2	5.2.1	Lotka-Volterra konkurencija									
		5.2.1	Uvjeti koegzistencije									
111 6		od u pr Prosto 6.1.1	rni ekološki modeli ostorno modeliranje na heterogenost u ekologiji Skale prostorne heterogenosti aljinsko istraživanje		 							 17
		6.2.1	Geoinformacijski sustavi (GIS)									
		6.2.2	Daljinsko istraživanje									
A	Mat	tematiò	ki popis formula									19
	A.1	Osnovi	i populacijski modeli	•	 	•		•				 19
В			kodovi i skripte									21
	B.1	R kod	za logistički rast	•	 	•	 	•	•		•	 21
\mathbf{C}	Baz	-	taka i resursi									25
	C.1		baze podataka									
	C.2		ski paketi									
		C.2.1	R paketi		 	•						 25
D	Rje	čnik po	jmova									27

Popis slika

POPIS TABLICA iii

Popis tablica

1.1	Funkcije ekološkog modeliranja	4
6.1	Prostorne skale u ekologiji	17
A.1	Pregled osnovnih formula	19

iv POPIS TABLICA

Predgovor

Ekološko modeliranje predstavlja ključnu metodologiju za razumijevanje složenih procesa u prirodi i predviđanje budućih promjena u ekološkim sustavima. Ovaj udžbenik nastao je s ciljem pružanja sveobuhvatnog uvida u teorijske osnove i praktične aplikacije modeliranja u ekologiji.

Udžbenik je namijenjen studentima preddiplomskih i diplomskih studija ekologije, biologije, znanosti o okolišu te srodnih disciplina. Također može služiti kao referentni materijal za istraživače i praktičare koji se bave zaštitom okoliša i upravljanjem prirodnim resursima.

vi POPIS TABLICA

Dio I Osnove ekološkog modeliranja

Uvod u ekološko modeliranje

1.1 Što je ekološko modeliranje?

Ekološko modeliranje predstavlja interdisciplinarnu znanstvenu metodologiju koja koristi matematičke, statističke i računalne alate za opisivanje, razumijevanje i predviđanje ekoloških procesa i obrazaca.

1.1.1 Definicija i opseg

Model u ekologiji možemo definirati kao pojednostavljenu reprezentaciju stvarnog ekološkog sustava koja nam omogućuje:

- Testiranje hipoteza o funkcioniranju ekoloških procesa
- Predviđanje odgovora sustava na promjene
- Integraciju znanja iz različitih izvora
- Identifikaciju ključnih procesa i varijabli

1.1.2 Matematički okvir

Osnovni matematički pristup ekološkom modeliranju možemo izraziti kao:

$$\frac{dN}{dt} = f(N, t, \theta, \epsilon) \tag{1.1}$$

gdje je N varijabla stanja (npr. broj jedinki), t vrijeme, θ parametri modela, a ϵ stohastička komponenta.

1.2 Povijesni razvoj ekološkog modeliranja

1.2.1 Pioniri ekološkog modeliranja

Malthus (1798) Prvi eksponencijalni model rasta populacije

Verhulst (1838) Logistički model rasta

Lotka-Volterra (1925-1926) Modeli grabljivac-plijen

Leslie (1945) Matrični modeli populacije

1.3 Vrste ekoloških modela

1.3.1 Klasifikacija prema pristupu

- 1. Empirijski modeli temelje se na statističkim odnosima u podacima
- 2. Mehanistički modeli uključuju eksplicitne ekološke procese
- 3. Fenomenološki modeli opisuju obrasce bez eksplicitnih mehanizama

1.3.2 Klasifikacija prema vremenu

- Statički modeli
- Dinamički modeli
- Stohastički modeli

1.4 Uloga modeliranja u ekološkim istraživanjima

Modeliranje u ekologiji služi nekoliko ključnih funkcija:

Tablica 1.1: Funkcije ekološkog modeliranja

Funkcija	Opis
Deskriptivna	Opisivanje postojećih obrazaca
Eksplanatorna	Objašnjavanje uzročno-posljedičnih veza
Prediktivna	Predviđanje budućih stanja
Preskriptivna	Preporučivanje upravljačkih mjera

1.5 Etičke i metodološke napomene

1.5.1 Odgovornost modelara

Znanstvenici koji razvijaju ekološke modele trebaju:

- Jasno komunicirati ograničenja modela
- Transparentno prikazivati nesigurnosti
- Izbjegavati prekompliciranje bez opravdanja
- Validirati modele na nezavisnim podacima

Matematičke osnove

2.1 Linearna algebra u ekologiji

2.1.1 Matrični modeli populacije

Leslie matrica za strukturirane populacije:

$$\mathbf{n}_{t+1} = \mathbf{L}\mathbf{n}_t \tag{2.1}$$

gdje je:

$$\mathbf{L} = \begin{pmatrix} F_1 & F_2 & F_3 & \cdots & F_n \\ P_1 & 0 & 0 & \cdots & 0 \\ 0 & P_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & P_{n-1} & 0 \end{pmatrix}$$
 (2.2)

2.1.2 Vlastite vrijednosti i vektori

Dominantna vlastita vrijednost λ_1 predstavlja asimptotsku stopu rasta populacije:

$$\lambda_1 = \lim_{t \to \infty} \frac{N_{t+1}}{N_t} \tag{2.3}$$

2.2 Diferencijalne jednadžbe

2.2.1 Obične diferencijalne jednadžbe

Osnovni oblik:

$$\frac{dy}{dt} = f(t, y) \tag{2.4}$$

2.2.2 Logistički rast

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right) \tag{2.5}$$

Rješenje:

$$N(t) = \frac{K}{1 + \left(\frac{K - N_0}{N_0}\right)e^{-rt}}$$
 (2.6)

2.3 Teorija vjerojatnosti i statistika

2.3.1 Osnovni koncepti

- Slučajne varijable i distribucije
- Bayesovska vs. frekventistička statistika
- Maximum likelihood procjena
- Interval povjerenja vs. kredibilni interval

2.3.2 Stohastičnost u ekološkim modelima

Tri tipa stohastičnosti:

- 1. Demografska stohastičnost varijabilnost na razini pojedinaca
- 2. Okolišna stohastičnost varijabilnost parametara kroz vrijeme
- 3. Stohastičnost katastrofa rijetki događaji velikog utjecaja

Tipovi ekoloških modela

3.1 Empirijski modeli

Empirijski modeli oslanjaju se primarno na statističke odnose u podacima bez eksplicitnog modeliranja ekoloških procesa.

3.1.1 Regresijski modeli

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \epsilon \tag{3.1}$$

3.1.2 Generalizirani linearni modeli (GLM)

$$g(\mu_i) = \mathbf{x}_i^T \boldsymbol{\beta} \tag{3.2}$$

gdje je g link funkcija, $\mu_i = E[Y_i]$, a \mathbf{x}_i vektor kovarijata.

3.2 Mehanistički modeli

Mehanistički modeli eksplicitno uključuju ekološke procese kao što su rođenje, smrt, migracija i interakcije između vrsta.

3.2.1 Prednosti mehanističkih modela

- Bolje razumijevanje uzročno-posljedičnih veza
- Mogućnost ekstrapolacije izvan raspon podataka
- Testiranje različitih scenarija
- Identificiranje ključnih procesa

3.2.2 Izazovi

- Složenost parametrizacije
- Potreba za detaljnim podacima
- Računalna zahtjevnost

• Nesigurnost parametara

Dio II Modeli populacijske dinamike

Jednostavni populacijski modeli

4.1 Eksponencijalni rast

Najjednostavniji model kontinuiranog rasta populacije:

$$\frac{dN}{dt} = rN\tag{4.1}$$

Rješenje:

$$N(t) = N_0 e^{rt} (4.2)$$

4.1.1 Diskretni eksponencijalni model

$$N_{t+1} = \lambda N_t \tag{4.3}$$

gdje je $\lambda=e^r$ konačna stopa rasta.

4.2 Logistički rast

Model koji uključuje nosivost staništa:

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right) \tag{4.4}$$

4.2.1 Stabilnost ravnotežnih točaka

- $N^* = 0$ (nestabilna ravnoteža)
- $N^* = K$ (stabilna ravnoteža)

4.3 Diskretni populacijski modeli

4.3.1 Generalizirani diskretni model

$$N_{t+1} = f(N_t) \tag{4.5}$$

4.3.2 Ricker model

$$N_{t+1} = N_t e^{r(1 - N_t/K)} (4.6)$$

4.3.3 Beverton-Holt model

$$N_{t+1} = \frac{\lambda N_t}{1 + \frac{\lambda - 1}{K} N_t} \tag{4.7}$$

Međuspecijske interakcije

5.1 Modeli grabljivac-plijen

Lotka-Volterra model 5.1.1

Sustav jednadžbi:

$$\frac{dN}{dt} = rN - aNP \tag{5.1}$$

$$\frac{dN}{dt} = rN - aNP$$

$$\frac{dP}{dt} = eaNP - mP$$
(5.1)

gdje su:

- $\bullet~N$ gustoća plijena
- P gustoća grabljivca
- \bullet r intrinzična stopa rasta plijena
- \bullet a stopa napada
- \bullet e efikasnost konverzije
- \bullet *m* stopa smrtnosti grabljivca

5.1.2Holling funkcijska odgovor

Tip I (linearan):

$$f(N) = aN (5.3)$$

Tip II (zasićen):

$$f(N) = \frac{aN}{1 + ahN} \tag{5.4}$$

Tip III (sigmoidni):

$$f(N) = \frac{aN^2}{1 + ahN^2} \tag{5.5}$$

5.2 Modeli konkurencije

5.2.1 Lotka-Volterra konkurencija

$$\frac{dN_1}{dt} = r_1 N_1 \left(1 - \frac{N_1 + \alpha_{12} N_2}{K_1} \right) \tag{5.6}$$

$$\frac{dN_2}{dt} = r_2 N_2 \left(1 - \frac{N_2 + \alpha_{21} N_1}{K_2} \right) \tag{5.7}$$

5.2.2 Uvjeti koegzistencije

Koegzistencija je moguća kada:

$$\alpha_{12} < \frac{K_1}{K_2} \quad i \quad \alpha_{21} < \frac{K_2}{K_1}$$
 (5.8)

Dio III Prostorni ekološki modeli

Uvod u prostorno modeliranje

6.1 Prostorna heterogenost u ekologiji

Prostorna heterogenost ključna je karakteristika ekoloških sustava koja utječe na:

- Distribuciju vrsta
- Populacijsku dinamiku
- Međuspecijske interakcije
- Procese na razini zajednice

6.1.1 Skale prostorne heterogenosti

Tablica 6.1: Prostorne skale u ekologiji

Skala	Razmjer	Procesi
Lokalna Krajobrazna	< 1 km 1-100 km	Mikroklima, konkurencija Metapopulacije, fragmentacija
Regionalna	1-100 km	Biogeografija, migracije
Kontinentalna	> 1000 km	Filogenetska raznolikost

6.2 GIS i daljinsko istraživanje

6.2.1 Geoinformacijski sustavi (GIS)

GIS omogućuje:

- Prostornu analizu ekoloških podataka
- Integraciju različitih tipova podataka
- Vizualizaciju prostornih obrazaca
- Modeliranje prostornih procesa

6.2.2 Daljinsko istraživanje

Ključni izvori podataka:

- $\bullet \;$ Landsat sateliti
- MODIS (Moderate Resolution Imaging Spectroradiometer)
- Sentinel programi
- LIDAR podaci

Dodatak A

Matematički popis formula

A.1 Osnovni populacijski modeli

Tablica A.1: Pregled osnovnih formula

Model	Formula
Eksponencijalni rast Logistički rast Ricker model Beverton-Holt	$\frac{\frac{dN}{dt} = rN}{\frac{dN}{dt} = rN(1 - N/K)}$ $N_{t+1} = N_t e^{r(1 - N_t/K)}$ $N_{t+1} = \frac{\lambda N_t}{1 + (\lambda - 1)N_t/K}$

Dodatak B

Softverski kodovi i skripte

B.1 R kod za logistički rast

Listing B.1: Implementacija logističkog modela u R

```
# Parametri modela
1
                                    # Intrinzicka stopa rasta
                     r < -0.1
2
                                    # Nosivost stani ta
                     K <- 1000
3
                                    # Pocetna velicina populacije
                     NO <- 10
4
                     t_max <- 100 # Maksimalno vrijeme
5
6
                     # Vremenska serija
7
                     t < - seq(0, t_max, by = 0.1)
8
9
                     # Analiticko rjesenje
10
                     N_{analytical} \leftarrow K / (1 + ((K - N0) / N0) * exp(-
11
                        r * t))
12
                     # Numericka integracija
13
                     library(deSolve)
14
                     logistic_model <- function(t, state, parameters)</pre>
                         {
                              with(as.list(c(state, parameters)), {
17
                                       dN < -r * N * (1 - N / K)
18
                                       return(list(dN))
19
                              })
20
                     }
21
22
                     parameters <- c(r = r, K = K)
23
                     state <-c(N = N0)
24
                     N_numerical <- ode(y = state, times = t,</pre>
                     func = logistic_model,
27
                     parms = parameters)
28
29
                     # Vizualizacija
30
                     plot(t, N_analytical, type = "l", col = "blue",
31
```

Dodatak C

Baze podataka i resursi

C.1 Online baze podataka

- GBIF (Global Biodiversity Information Facility)
- WorldClim klimatski podaci
- IUCN Red List
- \bullet eBird
- Ocean Biogeographic Information System (OBIS)

C.2 Softverski paketi

C.2.1 R paketi

- deSolve rješavanje diferencijalnih jednadžbi
- popbio populacijska biologija
- dismo modeli distribucije vrsta
- vegan analiza zajednica
- adehabitat analiza staništa

Dodatak D

Rječnik pojmova

Bioraznolikost Varijabilnost živih organizama na genskoj, vrstarskoj i ekosistemskoj razini

Nosivost staništa Maksimalna veličina populacije koju određeno stanište može podržati

Metapopulacija Skup lokalnih populacija povezanih migracijama

Ekološka niša Multidimenzionalni prostor uvjeta i resursa potrebnih vrsti za preživljavanje

Stohastičnost Slučajnost u ekološkim procesima

Bibliografija

- [1] Caswell, H. (2001). Matrix Population Models: Construction, Analysis, and Interpretation. Sinauer Associates.
- [2] Gotelli, N. J. (2008). A Primer of Ecology. Sinauer Associates.
- [3] Hastings, A. (1997). Population Biology: Concepts and Models. Springer-Verlag.
- [4] Hilborn, R., & Mangel, M. (1997). The Ecological Detective: Confronting Models with Data. Princeton University Press.
- [5] May, R. M. (2001). Stability and Complexity in Model Ecosystems. Princeton University Press.
- [6] Odum, E. P. (1971). Fundamentals of Ecology. W.B. Saunders Company.
- [7] Roughgarden, J. (1998). Primer of Ecological Theory. Prentice Hall.
- [8] Tilman, D. (1982). Resource Competition and Community Structure. Princeton University Press.