MTH 331 – Statement 54

Robert Ritchie

September 10, 2015

Statement 54. Let x be a non-zero real number. If x + 1/x is an integer, then for all integers n with $n \ge 0$, $x^n + 1/x^n$ is an integer.

Proof. (i) $n = 0, x^0 + 1/x^0 = 2$ is an integer

- (ii) $n = 1, x^1 + 1/x^1 = x + 1/x$
- (iii) Let x + 1/x be an integer. For all $n \ge 2$, if, for all $0 \le k \le n 1$, $x^k + 1/x^k$ is an integer then $x^n + 1/x^n$ is an integer. Suppose for all k, $x^k + 1/x^k$ is an integer.

$$\begin{split} (x+1/x)(x^{k-1}+1/x^{k-1}) &= x^k + x^{2-k} + x^{k-2} + x^{-k} \\ &= x^k + x^{-k} + x^{k-2} + x^{-(k-2)} \\ &= x^k + 1/x^k + x^{k-2} + 1/x^{k-2} \\ &\to x^{k-2} + 1/x^{k-2} = (x+1/x)(x^{k-1} + 1/x^{k-1}) - (x^k + 1/x^k) \end{split}$$

We know that x + 1/x, $x^k + 1/x^k$ and $x^{k-1} + 1/x^{k-1}$ are integers and they imply that $x^{k-2} + 1/x^{k-2}$ is an integer thus $x^n + 1/x^n$ is an integer.