UNIVERSIDADE FEDERAL DE VIÇOSA Campus Florestal

Trabalho Prático II Valor: 14 pontos

Disciplina: Meta-heurísticas - CCF-480

Curso: Ciência da Computação Data: 19/08/2021

Professor: Marcus Henrique Soares Mendes

O trabalho é em dupla. A entrega do trabalho será via PVANet Moodle até o dia 18/09/21 às 23:59.

Implementar um Algoritmo Genético (AG) com codificação real para resolver os seguintes problemas de otimização:

1) Problema função cúbica G6 com 2 variáveis de decisão (x_1 e x_2).

Minimizar:

$$G6(x) = (x_1 - 10)^3 + (x_2 - 20)^3$$

Sujeito às seguintes restrições:

$$g_1(x) = -(x_1 - 5)^2 - (x_2 - 5)^2 + 100 \le 0$$

$$g_2(x) = (x_1 - 6)^2 + (x_2 - 5)^2 + 82.81 \le 0$$

Restrições de domínio:

$$13 \le x_1 \le 100$$

$$0 \le x_2 \le 100$$

2) Problema do despacho econômico com efeito do ponto de válvula para o sistema com **13 unidades geradoras** (maiores detalhes em [1])

Minimizar o custo de combustível:

$$\widetilde{F}_i(P_i) = a_i P_i^2 + b_i P_i + c_i + \left| e_i sen \left(f_i \left(P_i^{\min} - P_i \right) \right) \right|$$

onde P_i é a saída para a unidade geradora i (em MW); n é o número de geradores presente no sistema;

Sujeito às seguintes restrições de igualdade de balanço de potência e capacidade de geração de potência de cada unidade geradora:

$$\sum_{i=1}^{n} P_i - P_L - P_D = 0$$

$$P_i^{min} \le P_i \le P_i^{max}$$

 P_D é a demanda de carga total (em MW); P_L são as perdas de transmissão (em MW) e P_i^{min} e P_i^{max} são respectivamente as saídas de operação mínimas e máximas da unidade geradora i (em MW). O custo total de combustível deve ser minimizado **Assuma que não exista perdas de transmissão**, portanto, assuma $P_L = 0$.

Para 13 unidades geradoras tem-se os seguinte valores:

Tabela 5. Dados para o estudo de caso 2, onde as potências P_i^{min} e P_i^{max} são em MW.

unidade geradora	P_i^{min}	P_i^{max}	а	b	с	е	f
1	0	680	0,00028	8,10	550	300	0,035
2	0	360	0,00056	8,10	309	200	0,042
3	0	360	0,00056	8,10	307	150	0,042
4	60	180	0,00324	7,74	240	150	0,063
5	60	180	0,00324	7,74	240	150	0,063
6	60	180	0,00324	7,74	240	150	0,063
7	60	180	0,00324	7,74	240	150	0,063
8	60	180	0,00324	7,74	240	150	0,063
9	60	180	0,00324	7,74	240	150	0,063
10	40	120	0,00284	8,60	126	100	0,084
11	40	120	0,00284	8,60	126	100	0,084
12	55	120	0,00284	8,60	126	100	0,084
13	55	120	0,00284	8,60	126	100	0,084

Execute o algoritmo genético proposto 30 vezes de modo independente para cada função objetivo utilizando uma configuração A e uma configuração B (valores dos parâmetros definidos pela dupla usando qualquer critério). E baseado no valor final da função objetivo retornado em cada uma das 30 execuções faça uma tabela que mostre: média, valor mínimo, valor máximo e desvio padrão do valor da função objetivo retornada pelo algoritmo. Mostre também o resultado graficamente com boxplot. Faça um relatório que explique como os algoritmos foram implementados (pode ser feito em qualquer linguagem de programação), quais foram as configurações A e B utilizadas e como foi feito o tratamento das restrições de cada problema. Envie também o código fonte. Para a melhor solução encontrada para cada problema com cada configuração especifique os valores das variáveis de decisão. Apresente as seguintes tabelas e discuta os resultados obtidos.

Problema com função objetivo 1

Algoritmo	Mínimo	Máximo	Média	Desvio-padrão
AG configuração A				
AG configuração B				

Problema com função objetivo 2

Algoritmo	Mínimo	Máximo	Média	Desvio-padrão
AG configuração A				
AG configuração B				

Bom Trabalho!

[1] COELHO, L. S.; MARIANI, V. C. Otimização de despacho econômico com ponto de válvula usando a estratégia evolutiva Quase-Newton. **Learning and nonlinear models -** Revista da Sociedade Brasileira de Redes Neurais: (SBRN), Vol. 4, No. 1, pp. -1-12, 2006 http://abricom.org.br/wp-content/uploads/sites/4/2016/07/vol4-no1-art1.pdf