Optimization Methods in Machine Learning Lectures 11-12: Proximal and Accelerated Gradient Methods

Katya Scheinberg

Lehigh University

Spring 2016

Logistic Regression, Gradient and Hessian

We come back to the optimization problem

$$\min f(w) = \frac{1}{m} \sum \log(1 + e^{-y_i x_i^T w}) + \frac{\lambda}{2} ||w||_2^2$$
 (1)

And we derive the gradient

$$\nabla f(w) = \frac{1}{m} \sum \frac{1}{e^{y_i x_i^T w} + 1} (-y_i x_i) + \lambda w$$
 (2)

And the Hessian

$$\nabla^2 f(w) = \frac{1}{m} \sum \frac{e^{y_i x_i^T w}}{(1 + e^{y_i x_i^T w})^2} (y_i x_i) (y_i x_i)^T + \lambda I$$
 (3)

Notice that the time complexity for computing the Hessian is d^2m , size of Hessian is $d \times d$, the complexity for computing the inverse of Hessian is d^3 . So computation can be very expensive for large Hessian!

Lipschitz continuity

Definition (Lipschitz Continuity)

Given an open set $B \subseteq \mathbb{R}^n$, we say that f has **Lipschitz continuous** gradient (Lipschitz smooth) on the open subset B if there exists a constant L > 0 such that

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \quad \forall x, y \in B.$$

L is called the **Lipschitz constant** of ∇f on *B*.

Example (10.1)

An example of functions with different Lipschitz constants for $\nabla f(x)$:

Figure: $L = +\infty$

Figure: L = 4

Figure: L = 0.2

Lipschitz smooth functions

Recall that our goal is the minimization problem

$$\min_{x\in\mathbb{R}^n} f(x),$$

where the objective function f is convex and the gradient $\nabla f(x)$ has a Lipschitz constant L.

• By convexity we have the linear under-estimator $f(y) \ge f(x) + \nabla f(x)^T (y-x)$. Instead of using the linear model, we use a quadratic model as our subproblem:

$$Q(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2\mu} ||y - x||^{2},$$

where if $\mu \leq \frac{1}{L}$, then $Q(y) \geq f(y)$.

Over-approximation of a smooth function

Linear lower approximation

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

Quadratic upper-approximation

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{1}{2\mu} ||y - x||^2 = Q(y), \quad \mu \le \frac{1}{L}$$

Rewrite

$$f(y) \le f(x) + \frac{1}{2\mu} ||x - \mu \nabla f(x) - y||^2 - \frac{1}{\mu^2} ||\nabla f(x^k)||^2 = Q(y)$$

Minimizing Q(y) gives $y = x - \mu \nabla f(x)$.

Basic Proximal Gradient Method

The proximal function of f is defined by:

$$\operatorname{prox}_{\mu}(x^k) = \operatorname{arg\,min}_{x} Q(x; x^k) = f(x^k) + \nabla f(x^k)^T (x - x^k) + \frac{1}{2\mu} ||x - x^k||^2.$$

Algorithm 1 Basic Proximal Gradient Method

```
Initialization: start with x^0.
```

end for

Basic Proximal Gradient Method

Rate of Convergence and Complexity Analysis

Theorem

If $f(x^{i+1}) \leq Q(x^{i+1}; x^i)$ for all i = 1, ..., k, then

$$f(x^k) - f(x^*) \le \frac{1}{2\mu k} ||x^0 - x^*||^2$$

Chosing $\mu=1/L$ ensures that $f(x^{i+1})\leq Q(x^{i+1};x^i)$. By setting $\|x^0-x^*\|=1$ and assuming the precision to be ϵ , the computational complexity is estimated to be $k\approx\frac{1}{2\mu\epsilon}\sim\mathcal{O}(\frac{L}{\epsilon})$. Then when $\epsilon\approx10^{-3}$, $k\approx1000$ if $L\approx1$. Compare this to $O(\log(1/\epsilon)$.

Proof

• From $f(x^{i+1}) \le Q(x^{i+1}; x^i)$, it can be shown (skipped here)

$$f(x^{i+1}) - f(x^*) \le \frac{1}{2\mu} (\|x^i - x^*\|^2 - \|x^{i+1} - x^*\|^2).$$

• By summing the above equations from i=0 to (k-1), and using $f(x^k) \le f(x^i)$, $\forall i \le k$

$$k(f(x^k) - f(x^*)) \le \sum_{i=0}^{k-1} f(x^{i+1}) - kf(x^*) \le \frac{1}{2\mu} (\|x^0 - x^*\|^2 - \|x^k - x^*\| \le \frac{1}{2\mu} \|x^0 - x^*\|^2.$$

• Hence $f(x^k) - f(x^*) \le \frac{1}{2\mu k} ||x^0 - x^*||^2$, which proves the algorithm convergence **sub-linearly**.

Convergence depending on choice of μ

Slides from L. Vandenberghe http://www.ee.ucla.edu/ vandenbe/ee236c.html

Quadratic example

$$f(x_1,x_2)=(x_1^2+Lx_2^2)/2;$$
 left: $t_k=1.8/L;$ right: $t_k=0.8/L$

Accelerated Gradient Method

Algorithm 2 Accelerated Generalized Gradient Method

```
Initialization: start with x^0 and y^1=x^0.

for k=0 to maximum iterations do

repeat

z \leftarrow \operatorname{prox}_{\mu}(y^k-\mu \nabla f(y^k)), and decrease \mu,

until f(z) \leq Q(z;x^k).

x^k \leftarrow z,

y^{k+1} \leftarrow x^k + \frac{k-1}{k+2}(x^k-x^{k-1}).

end for
```

FISTA (fast iterative shrinkage-thresholding algorithm)

Algorithm 3 FISTA (fast iterative shrinkage-thresholding algorithm)

Initialization: start with x^0 , $y^1=x^0$ and $t^1=1$. **for** k=0 to maximum iterations **do repeat** $z \leftarrow \mathbf{prox}_{\mu}(y^k-\mu\nabla f(y^k)), \text{ and decrease } \mu,$ **until** $f(z) \leq q(z;x^k)$. $x^k \leftarrow z,$ $t^{k+1} = (1+\sqrt{1+4(t^k)^2})/2,$ $y^{k+1} \leftarrow x^k + \frac{t^k-1}{t^{k+1}}(x^k-x^{k-1}).$ **end for**

Complexity Result for Algorithms 2 & 3

For Algorithms 2 & 3, the convergence result for smooth function is

$$|f(x^k) - f(x^*)| \le \frac{1}{2\mu k^2} ||x^0 - x^*||^2,$$

If we pick $\mu = 1/L$ then $f(x^k) \le f(x^*) \le \epsilon$ when $k \ge \mathcal{O}(\sqrt{\frac{L}{\epsilon}})$.

For example, when $\epsilon \approx 10^{-3}$, and $L \approx 1$ then the complexity is approximately $\frac{1}{\sqrt{10^{-3}}} \approx 2^5 = 32$. Compare this to $\mathcal{O}(\frac{L}{\epsilon})$.

• The complexity of standard sub gradient method for non-smooth functions is $\mathcal{O}(\frac{1}{c^2})$.

For example, when $\epsilon \approx 10^{-3}$, the complexity is approximately $\frac{1}{(10^{-3})^2} \approx 10^6$.

• We can use accelerated algorithm to have an algorithm for non smooth functions with complexity $\mathcal{O}(\frac{1}{\epsilon})$.

Dealing with the non-smooth function

- Our strategy to reduce the computational complexity is to approximate the function with a smooth function.
- For a non-smooth function, consider a smooth approximation function with the Lipschitz constant of the gradient $L \approx \frac{1}{\epsilon}$. Then $\mu \sim \frac{1}{l} \approx \epsilon$. From the previous slide, $\frac{L}{2k^2} \sim \epsilon$, so $k \sim \frac{1}{\epsilon}$, which means that we can reduce the complexity for non-smooth case from $\mathcal{O}(\frac{1}{\epsilon^2})$ to $\mathcal{O}(\frac{1}{\epsilon})$.

Dealing with the non-smooth function

Example (10.2)

An example of approximation for non-smooth function $f(x) = \frac{1}{\mu}|x|$ is the smooth function:

$$\phi_{\mu}(x) = \begin{cases} \frac{x^2}{2\mu} & \text{if } |x| \le \mu \\ |x| - \frac{\mu}{2} & \text{if } |x| > \mu \end{cases}$$

Figure: Non-smooth function and corresponding smooth function with $\mu=1$

$$|x| - \mu \le \phi_{\mu}(x) \le |x|, \quad \phi''_{\mu}(x) = \frac{1}{\mu}$$

Unconstrained SVM

Given a training set $S = \{(x_1, y_1), \dots, (x_n, y_n)\}, x_i \in R^d, y \in \{+1, -1\}$

$$\min_{w} f(w) = \frac{\lambda}{2} ||w||^{2} + \frac{1}{n} \sum_{i=1}^{n} \ell(w, (x_{i}, y_{i}))$$

where

$$\ell(w,(x,y)) = \max\{0, 1 - y(w^Tx)\}$$

We want to find $f(w) \le f(w^*) + \epsilon - \epsilon$ -optimal solution.

Smoothed SVM

Given a training set $S = \{(x_1, y_1), \dots, (x_n, y_n)\}, x_i \in R^d, y \in \{+1, -1\}$

$$\min_{w} f_{\mu}(w) = \frac{\lambda}{2} \|w\|^{2} + \frac{1}{n} \sum_{i=1}^{n} \phi_{\mu}(w, (x_{i}, y_{i}))$$

where

$$\phi_{\mu}(w,(x,y)) = \left\{ egin{array}{ll} 0 & y(w^{ op}x) \geq 1 \ rac{(y(w^{ op}x)-1)^2}{2\mu} & 1-\mu < y_i(w^{ op}x) < 1 \ 1-y(w^{ op}x) - rac{\mu}{2} & y(w^{ op}x) \leq 1-\mu \end{array}
ight.$$

Find $f(w) \leq f(w^*) + \epsilon$ - ϵ -optimal solution. Set $\mu = \epsilon/2$ and find $f_{\mu}(w) \leq f_{\mu}(w^*) + \epsilon/2$ with an accelerated method. The L for $f_{\mu}(w)$ is $2/\epsilon$, hence we find the solution in $O(\sqrt{\frac{4}{\epsilon^2}})$ iterations.