ampir: an R package for fast genome-wide prediction of antimicrobial peptides

Legana C H W Fingerhut ™, David J Miller, Jan M Strugnell, Norelle L Daly, Ira R Cooke ™

Bioinformatics, Volume 36, Issue 21, 1 November 2020, Pages 5262–5263, https://doi.org/ /10.1093/bioinformatics/btaa653

Published: 19 July 2020 Article history ▼

Shortcomings of other AMP predictors

- Designed to handle relatively small numbers of sequences
- Most lack a programming interface
- Trained on data not resembling whole genome data

ampir: precursor and mature models

- Mature: comparable with previous approaches
- Precursor: trained on full-length precursors

AMP datasets

- Sequences from APD, dbAMP, DRAMP and SwissProt
- Precursor:
 - UniProt proteins annotated as 'antimicrobial'
 - Exclude all mature and unreviewed (unless also present in APD, DRAMP or dbAMP)
 - Remove proteins shorter than 50 aa and longer than 500 aa
 - Remove identical sequences and those containing nonstandard aa
 - CD-HIT 90%

Mature

- All AMPs from APD, DRAMP, dbAMP and mature peptides from SwissProt with lengths 11-59
- Remove identical sequences and containing nonstandard aa
- CD-HIT 90%

Negative datasets

• Precursor:

- UniProt proteins after CD-HIT 90%
- Remove annotated as 'antimicrobial' and with nonstandard aa
- Remove proteins shorter than 50 aa and longer than 500 aa
- Sample data so the AMP:nonAMP ratio is 1:10

Mature

- UniProt proteins after CD-HIT 90%
- Remove annotated as 'antimicrobial' and with nonstandard aa
- Remove proteins shorter than 10 aa and longer than 40

Feature selection

- Physicochemical properties
- Pseudo-amino acid composition

Model architecture

- SVMs with radial kernel
- Sigma and c parameters were tuned

Mature: sigma = 0.06, c = 1

Precursor: sigma = 0.1, c = 4

Benchmark

• 20% hold-out and Xiao et al. 2013 benchmark datasets were used for evaluation

Metric	ampir_mature	ampir_precursor	ampscanner v2	amPEP	iAMPpred
Xiao et al. 2013 benchmark set					
Accuracy	0.97	0.61	0.83	1.00	0.64
F1 score	0.97	0.44	0.85	1.00	0.73
AUROC	0.99	0.80	0.94	1.00	0.86
ampir_mature test set					
Accuracy	0.91	0.58	0.73	0.76	0.70
F1 score	0.91	0.39	0.56	0.58	0.53
AUROC	0.97	0.66	0.79	0.90	0.74
ampir_precursor test set					
Accuracy	0.50	0.94	0.70	0.46	0.47
F1 score	0.17	0.92	0.26	0.06	0.16
AUROC	0.84	1.00	0.82	0.52	0.50

Performance on whole proteome data

Numbers of known AMPs in proteomes:

• Arabidopsis: 291

• Human: 101

Summary

- ampir is a fast tool for genome-wide search of AMPs
- Model based on precursor proteins achieves the best performance on whole proteome data
- The AMP prediction in whole genomes is still imperfect