Theory of Computation

Homework 4

Qing-Cheng Li R01922024

December 9, 2012

1 Problem 1

If there is a reduction from language L to another language $L' \in BPP$ runs in polynomial time. It clearly that $L \in BPP$ because it is decided by the following precise machine N: Run reduction function on input x, then run the machine N' which decides L' on the transformed input. N decides L and fullfills the accepting condiction required for BPP, so $L \in BPP$. Thus BPP is closed under reductions.

2 Problem 2

Let M_1 decides L_1 , M_2 decides L_2 , L_1 , $L_2 \in RP$, we can build a machine M_{\cap} to decide a input x belongs to a intersection language, for input x, we first simulate $M_1(x)$, if M_1 rejects, M_{\cap} rejects x, else simulate $M_2(x)$, if $M_2(x)$ rejects, M_{\cap} rejects, otherwise accepts input. M_{\cap} accepts input $x \in L_1 \cap L_2$ with probability $\geq \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$, rejects $x \notin L_1 \cap L_2$ with probability 1. Running $M_{\cap}(x)$ 3 times, the accepting probability is $1 - (1 - \frac{1}{4})^3 = \frac{37}{64} \geq \frac{1}{2}$, so $L_1 \cap L_2 \in RP$. So, RP is closed under intersection.