

SRM Institute of Science and Technology Ramapuram Campus

Department of Mathematics

18MAB101T - Calculus And Linear Algebra

Year/Sem: I/I

Branch: Common to ALL B.Tech. except B.Tech. (Business Systems)

Unit - V

SEQUENCE AND SERIES

Part - C

Question 1

Show that the series $\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \cdots$ is convergent.

Solution

$$u_n = \frac{1}{n(n+1)(n+2)} = \frac{1}{nn\left(1+\frac{1}{n}\right)n\left(1+\frac{2}{n}\right)}$$
, and let $v_n = \frac{1}{n^3}$.

Now
$$\frac{u_n}{v_n} = \frac{1}{\left(1 + \frac{1}{n}\right) \left(1 + \frac{2}{n}\right)}$$

 $\lim_{n\to\infty} \frac{u_n}{v_n} = 1, \text{ which is finite and non - zero.}$

∴ Both Σ u_n and Σ v_n converge or diverge together.

But $\sum v_n = \sum \frac{1}{n^3}$ is convergent by Harmonic series test or p-series test.

Hence by comparison test, $\sum u_n$ is convergent.

Question 2:

Show that the series $1 + \frac{1}{2^2} + \frac{2^2}{3^3} + \frac{3^3}{4^3} + \cdots$ is divergent.

Solution

Neglect the first term. Then the series is $\frac{1}{2^2} + \frac{2^2}{3^3} + \frac{3^3}{4^3} + \cdots$

$$u_n = \frac{n^n}{(n+1)^{n+1}} = \frac{n^n}{n^{n+1} \left(1 + \frac{1}{n}\right)^n \left(1 + \frac{1}{n}\right)^1}$$
 and let $v_n = \frac{1}{n}$.

Now
$$\frac{u_n}{v_n} = \frac{1}{\left(1 + \frac{1}{n}\right)^n \left(1 + \frac{1}{n}\right)}$$

 $\lim_{n\to\infty} \frac{u_n}{v_n} = \frac{1}{e}$, which is finite and non – zero.

∴ Both Σ u_n and Σ v_n converge or diverge together.

But $\sum v_n = \sum \frac{1}{n}$ is divergent by Harmonic series test or p-series test.

Hence by comparison test, $\sum u_n$ is divergent.

Question 3:

Show that the series $\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right)$ is divergent.

Solution

$$u_n = \sin\left(\frac{1}{n}\right)$$

Let
$$v_n = \frac{1}{n}$$

Now
$$\frac{u_n}{v_n} = \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}}$$

$$\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to 0} \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}} = 1, \text{ which is finite and non - zero.}$$

Formula: $\lim_{x\to 0} \frac{\sin x}{x} = 1$

∴ Both Σ u_n and Σ v_n converge or diverge together.

 $\sum v_n = \sum \frac{1}{n}$ is divergent by Harmonic series test or p-series test.

Hence by comparison test, $\sum u_n$ is divergent.

Question 4:

Show that the series $1 + \frac{2^p}{2!} + \frac{3^p}{3!} + \frac{4^p}{4!} + \cdots$ is convergent for all values of p.

Solution

$$u_n = \frac{n^p}{n!}, \quad u_{n+1} = \frac{(n+1)^p}{(n+1)!}$$

$$\frac{u_n}{u_{n+1}} = \frac{n^p}{n!} \times \frac{(n+1)!}{(n+1)^p} = \frac{n+1}{\left(1 + \frac{1}{n}\right)^p} = \frac{n\left(1 + \frac{1}{n}\right)}{\left(1 + \frac{1}{n}\right)^p}$$

$$\lim_{n\to\infty}\frac{u_n}{u_{n+1}}=\infty>1$$

Hence by Ratio test, Σu_n is convergent.

Question 5:

Establish the convergence of the series $\frac{1}{3} + \left(\frac{2}{5}\right)^2 + \left(\frac{3}{7}\right)^3 + \cdots$

Solution

$$u_n = \left(\frac{n}{2n+1}\right)^n$$

$$\lim_{n \to \infty} (u_n)^{1/n} = \lim_{n \to \infty} \frac{n}{2n+1} = \frac{1}{2} < 1$$

Hence by Cauchy's root test, $\sum u_n$ is convergent.

Question 6:

Test the convergence of the series $\sum_{n=2}^{\infty} \frac{1}{n \log n}$.

Solution

 $f(n) = \frac{1}{n \log n}$ Clearly f(n) is a monotonic decreasing sequence.

$$\int_{2}^{\infty} f(x)dx = \int_{2}^{\infty} \frac{1}{x \log x} dx = \int_{2}^{\infty} \frac{1/x}{\log x} dx = \left(\log(\log(x))\right)_{2}^{\infty} = \infty$$

By Cauchy's integral test, the given series is divergent.

Question 7:

Test the convergence of the series $1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \cdots$

Solution

$$u_n = \frac{1}{\sqrt{n}}$$

$$u_{n+1} = \frac{1}{\sqrt{n+1}}$$

(i) Clearly $u_n > u_{n+1}$.

(ii)
$$\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$$

∴By Leibnitz's test, the given series is convergent.

Question 8:

Test the convergence of the series $\frac{1}{1.2} - \frac{1}{3.4} + \frac{1}{5.6} - \cdots$

Solution

$$u_n = \frac{1}{(2n-1)(2n)}$$

$$u_{n+1} = \frac{1}{(2n+1)(2n+2)}$$

(i) Since
$$\frac{1}{(2n-1)(2n)} > \frac{1}{(2n+1)(2n+2)}$$
 always, clearly $u_n > u_{n+1}$.

(ii)
$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{1}{n \left(2 - \frac{1}{n}\right) 2n} = 0$$

∴By Leibnitz's test, the given series is convergent.

Question 9:

Prove that the series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$ is conditionally convergent.

Solution

$$u_n = \frac{1}{n} \qquad \qquad u_{n+1} = \frac{1}{n+1}$$

(i) Clearly $u_n > u_{n+1}$.

(ii)
$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{1}{n} = 0$$

∴ By Leibnitz's test, the given series is *convergent*.

Also $\Sigma \mid u_n \mid = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots = \sum \frac{1}{n}$ is *divergent* by Harmonic series test (or) p-series test. Hence the given series is conditionally convergent.

Question 10:

Test the convergence of the series $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$

Solution

The series of absolute terms $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \sum \frac{1}{n^2}$ is clearly *convergent* by Harmonic series test (or) p-series test.

... The series is absolutely convergent.

Since every absolutely convergent series is convergent, the given series is convergent.

* * * * *