Rhizobium

Comamonadaceae

Grupowanie

Gallionellaceae

Bradyrhizobium

Jarosław Jasiewicz Eksploracja danych i Uczenie maszynowe

> Geoinformacja program magisterski Specjalność Geoinformatyka

Dlaczego klasyfikujemy dane

- Klasyfikacja danych ma na celu zredukowanie złożoności danych.
 Zamiast wielu obiektów, każdy opisany kilku-kilkunastoma
 parametrami mamy kilka klas, a każdy obiekt jest przypisany do
 jednej (niekiedy więcej) klas
- Klasyfikacje nadzorowane polegają na przypisaniu nowego obiektu do już istniejącego zestawu klas
- Klasyfikacje nienadzorowane mają na celu wykrycie w danych ukrytych, nieoczywistych struktur. Krokiem w klasyfikacji danych jest grupowanie lub analiza skupień (*clustering*)
- Problem terminologiczny: w języku angielskim termin *classify data* jest niejednoznaczny. Może oznaczać zarówno proces klasyfikacji jak i **utajniania** danych.

Grupowanie/Analiza skupień

- Analiza skupień to proces przypisywania obiektów do niezdefiniowanych a priori grup na podstawie analizy struktury danych
- Obiekty w skupieniach wykazują tendencję do wzajemnego podobieństwa, a obiekty w różnych skupieniach wykazują tendencję do niepodobieństwa
- Podstawą analizy skupień jest koncepcja niepodobieństwa pomiędzy obiektami

Koncepcja niepodobieństwa

- Koncepcja podobieństwa/niepodobieństwa jest kluczowa dla analizy skupień, tak aby podobne obiekty były klasyfikowane do tych samych skupień, a niepodobne do różnych
- Pojęcie intuicyjnie zrozumiałe, ale trudne do wyrażenia matematycznie
- Niepodobieństwo jest proste to wyrażenia pomiędzy obiektami opisanymi jako punkty w przestrzeni dwulub trójwymiarowej poprzez pojęcie odległości

Koncepcja odległości

- W przestrzeni fizycznej odległość pomiędzy dwoma punktami to najkrótsza droga pomiędzy dwoma punktami
- Przy założeniu braku przeszkód odległość liczymy jako najkrótszą możliwą odległość w przestrzeni – generalizowaną jako odległość euklidesową (euclidean)
- Przy istnieniu przeszkód odległość liczymy jako najkrótszą możliwą drogę pomiędzy dwoma punktami – generalizowaną jako odległość miejską (manhattan).
- Odległość może być liczona w przestrzeni lub na dowolnej płaszczyźnie (np. na sferze jako tzw wielkie koło)

Odległość euklidesowa i miejska

- Odległość euklidesowa pomiędzy dwoma punktami to długość linii łącząca te dwa punkty
 - Dla dwóch wymiarów: $d_{eucl} = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$
 - Postać ogólna: $d_{eucl} = \sqrt{\sum (x_i y_i)^2}$
- Odległość miejska pomiędzy dwoma punktami to suma odległości w każdym z wymiarów z osobna
 - Dla dwóch wymiarów: $d_{manh}=|x_2-x_1|+|y_2-y_1|$
 - Postać ogólna $d_{manh} = \sum |x_i y_i|$

Niepodobieństwo a przekleństwo wymiarowości

 Cechy miary euklidesowej powodują że wraz ze wzrostem wymiarowości wpływ kolejnych wymiarów jest coraz mniejszy, przy dużej liczbie wymiarów należy rozważyć stosowanie odległości miejskiej

Metryka

- Przestrzeń metryczna to przestrzeń w której odległości pomiędzy wszystkimi obiektami są zdefiniowane, Zbór wszystkich odległości zwane są metryką zbioru
- Koncepcja metryki jest generalizacją odległości euklidesowa w 3-wymiarowej przestrzeni euklidesowej
- Każda metryka musi spełniać następujące aksjomaty:
 - Nieujemność: d(a,b)≥0
 - Identyczność: d(a,b)==0 <=> a==b
 - Symetria: d(a,b) == d(b,a)
 - Nierówność trójkątna $d(a,b) \le d(a,c)+d(b,c)$

Wektory i Normy

- Definiując obiekt jako zbiór cech opisanych wartościami możemy przedstawić go jako punkt w wielowymiarowej (n-wymiarowej) przestrzeni
- Norma to funkcja, która przypisuje długość do wektora wyznaczonego przez ten punkt (stąd wektor cech)
- W przestrzeni n-wymiarowej norma Euklidesowa (L2) to najkrótsza odległość pomiędzy początkiem okładu a punktem:

Gdzie $x_1 \dots x_2$ kolejne wymiary

$$||x||_2 := \sqrt{x_1^2 + x_2^2 + \dots x_n^2}$$

Norma miejska - Manhattan (L1) suma współrzędnych

$$||x||_1 := x_1 + x_2 + \dots + x_n$$

P-norma

$$||x||_p := \sum (|x_1|^p + |x_2|^p + ... |x_n|^p)^{1/p}$$

$$||x||_{inf} := max(x_1 + x_2 + ... x_n)$$

Odległość a niepodobieństwo

- Jeżeli w analizie danych obiekty opisane są poprzez ich wektory cech, niepodobieństwo pomiędzy nimi utożsamia się z odległością – metryką euklidesową. W żargonie termin distance używa się jako synonimu niepodobieństwa
- Nie wszystkie miary niepodobieństwa dają się wyrazić jako odległość
- W Spatial Data Science pojęcie odległości jest ambiwalentne: odległość pomiędzy obiektami to odległość w przestrzeni geograficznej czy niepodobieństwo?
- Bezpieczne terminy:

Przestrzeń Geograficzna i kartezjańska	Odległość Distance	Bliskość <i>Proximity</i>
Przestrzeń	Niepodobieństwo	Podobieństwo
Informacyjna	Dissimilarity	Similarity

Inne miary niepodobieństwa

- Istnieje ponad 200 miar podobieństwa i niepodobieństwa.
- Dobór miar zależy od:
 - Ilości wymiarów
 - Rodzaju atrybutów (komplementarne, binarne itp.)
 - Rodzaju problemu
- Źródłem miar jest:
 - Norma
 - Przecięcie zbiorów
 - Ilość informacji (entropia)
 - Iloczyn skalarny
 - Test statystyczny
- Jeżeli wartość miary niepodobieństwa może być interpretowana ilościowo, mówimy że miara ma semantykę (np. odległość euklidesowa da się interpretować ilościowo)

Wybrane miary

Miara	Rodzaj	Opis	Wzór
Współczynnik korelacji	S	Współczynnik korelacji Pearsona	
Kosinusowa	D	Kąt pomiędzy wektorami o niezerowej długości. Pokazuje orientację a nie natężenie. Stosuje się do wielowymiarowych zbiorów np. tekstów	$cosine(x, y) = \frac{\sum x_i, y_i}{\sqrt{\sum X^2} \sqrt{\sum Y^2}}$
Mahalanobis	D	Miara dostosowuje się do liniowej kombinacji wymiarów, określa ile odchyleń standardowych jest obiekt od średniej dla każdego z wymiarów	$d_{mah} = \sqrt{(X-Y)S^{-1}(X-Y)^T}$
Canberra	D	Standaryzowana [0,1] odmiana odległości miejskiej	$d_{canb} = \sum \frac{ x_i - y_i }{(x_i + y_i)}$
Trójkątna	D	Standaryzowana [0,1] odmiana odległości euklidesowej, wysoka zgodność z JSD	$d_{tri} = \sqrt{\frac{1}{2} \sum \frac{(x_i - y_i)^2}{(x_i + y_i)}}$
Jensen-Shannon	D	Współdzielona ilość informacji dla dwóch rozkładów zmiennej kategoryzowanej, entropia wzajemna	$d_{jsd} = \sqrt{H(\frac{X+Y}{2}) - \frac{1}{2}[H(X) + H(Y)]}$
Jaccard	S	Miara wielkości przecięcia dwóch zbiorów, stosowana dla atrybutów binarnych	$s_{jacard} = \sum \frac{ X \cdot Y }{X} + Y - X \cdot Y $
Rużicka	D	Miara niezgodności rozkładów	$s_{roz} = \frac{\sum min(X, Y)}{\sum max(X, Y)}$

Macierz niepodobieństwa

- Macierz niepodobieństwa zestawienie każdy z każdym wartości niepodobieństwa pomiędzy obiektami. W praktyce macierz dwu- wymiarowa, na przekątnej wartości 0 (aksjomat identyczności) i symetryczna (aksjomat symetryczności metryki)
- W przypadku nawet niewielkich zbiorów macierze przedstawia się w formie wizualizacji graficznej zamiast zbioru liczb
 - Skalowanie wielowymiarowe
 - Mapy ciepła
 - Grafy

Mapy ciepła

 Mapy ciepła to wizualizacja macierzy gdzie niepodobieństwo wyrażone jest kolorem. Uporządkowanie mapy wg niepodobieństwa ciepła pozwala wykryć struktury w danych

Skalowanie wielowymiarowe

- To forma prezentowania niepodobieństwa pomiędzy obiektami poprzez rzutowanie ich do przestrzeni 2-u lub trójwymiarowej, w taki sposób aby minimalizować różnice niepodobieństwa pomiędzy wartościami z oryginalnej wielowymiarowej przestrzeni a nowej przestrzeni zredukowanej
- Skalowanie wielowymiarowe stosuje się również do konwersji pomiędzy atrybutami komplementarnymi a wektorami cech

Grafy

 Grafy to forma prezentacji (nie)podobieństwa w formie obiektów rozmieszczonych w przestrzeni (wierzchołki albo węzły) a łączących je linii (krawędzie), których waga reprezentuje podobieństwo między obiektami

Algorytmy grupowania

- Grupowanie to podział zbioru danych na grupy rozłączne i wewnętrznie spójne
- Stosuje się kilka różnych metod
 - Metody hierarchiczne
 - Metody rozdzielające (partitioning)
 - Metody rozmyte
 - Grupowanie probablistyczne
 - Metody gęstościowe
 - Ulepszony hierarchiczny (BIRCH)

Grupowanie hierarchiczne

- Metoda analizy skupień, której celem jest zbudowanie hierarchii grup
- Stosuje metody aglomeracyjne lub dzielące (rzadziej)
- Algorytm zachłanny, szybki ale niepotymalny globalnie
- Nadaje się do małych zbiorów danych, gdzie struktura (hierarchia) jest ważniejsza niż same skupienia
- Strategie łączenia: pojedyncze, całkowite, średnie

Pojedyncze łączenie

- Jako pierwsze zostaną połączone dwa obiekty o najmniejszym niepodobieństwie
- W następnych krokach będą łączone te obiekty lub grupy, gdzie niepodobieństwo pomiędzy dwoma najbardziej podobnymi obiektami jest najmniejsze
- Metoda wykrywania obiektów odstających

Całkowite łączenie

- Jako pierwsze zostaną połączone dwa obiekty o najmniejszym niepodobieństwie
- W następnych krokach będą łączone te obiekty lub grupy, gdzie niepodobieństwo pomiędzy dwoma najmniej podobnymi obiektami jest najmniejsze

Klasyczna metoda budowania hierarchii, nie wykrywa obiektów odstających

Średnie Łączenie

- Jako pierwsze zostaną połączone dwa obiekty o najmniejszym niepodobieństwie
- W następnych krokach będą łączone te obiekty lub grupy, gdzie średnie niepodobieństwo pomiędzy obiektami jest najmniejsze
- Klasyczna metoda budowania hierarchii, z wykrywaniem obiektów odstających

Grupowanie hierarchiczne Warda

- Minimalizacja wariancji wewnątrz skupień, maksymalizacja wariancji między skupieniami
- Nie buduje rzeczywistych hierarchii ale pozwala określić naturalną liczbę skupień
- Nie wykrywa obiektów odstających

Metoda hierarchicznego rozdzielania

- Rozpoczyna od jednego skupienia obejmującego wszystkie obiekty
- Rozdziela skupienie tak aby maxymalizować wariancję między nimi
- Kontynuuje proces aż do końca
- Nie wykrywa obiektów odstających

Zalety i wady metod hierarchicznych

Zalety

- Szybki algorytm
- Deterministyczny algorytm (powtarzalność wyników)
- Buduje intuicyjnie zrozumiałą hierarchię

Wady

- Algorytm zachłanny, optymalizowany na poziomie kroku a nie całości wyniku
- Każda decyzja nie może być zmieniona
- Skupienia rozmieszczone są liniowo, tracimy informację o relacjach pomiędzy skupieniami

Metody partycjonujące

- K-średnie
- K-medoidy
- Propagacja afiniczności
- Rozmyte k-średnie

Jako przykład zostaną użyte dane z poprzedniego wykładu

Metoda k-średnich

- 1) Algorytm stochastyczny rozpoczyna losowo położonymi punktami (centroidami)
- 2) Przypisuje obiekty do centroidów na zasadzie minimalnego niepodobieństwa
- 3) Wyznacza nową lokalizację na podstawie zasięgu skupienia
- 4) Powtarza (2) aż do momentu gdy położenie centroidów nie zmieni się
- Ze względu na duży wpływ początkowej konfiguracji algorytm rozpoczyna proces wielokrotnie, wybierając najbardziej powtarzalne wyniki

Zastosowanie dla danych geoprzestrzennych

- Metoda wymaga podania liczby skupień
- Wynik podziału jest zgodny z kryterium Voronoi
- Zagęszczenia w rozkładzie nie mają znaczenia dla procesu wyznaczania skupień
- Niepewność przynależności nie jest brana pod uwagę

Metoda k-medoidów

- Algorytm podobny do k-średnich. Nie używa abstrakcyjnych centroidów ale rzeczywiste obiekty ze zbioru (medoidy)
- 1)Algorytm stochastyczny rozpoczyna losowo wybranymi obiektami (medoidami)
- 2) Pozostałe kroki jak w k-means
- Ze względu na duży wpływ początkowej konfiguracji algorytm rozpoczyna proces wielokrotnie, wybierając najbardziej powtarzalne wyniki
- W przeciwieństwie do kmeans dużo bardziej odporny na obiekty odstające
 jeżeli występują

Zastosowanie dla danych geoprzestrzennych

- Metoda wymaga podania liczby skupień
- Zagęszczenia w rozkładzie mają znaczenie dla wyznaczania skupień
- Mały wpływ obiektów odstających

Porównanie skupień

- Wyniki bardzo podobne
- K medoids daje wyraźniejsze skupienia
- Obie metody zaliczane są do suboptymalnych tj wynik nie jest najlepszy z możliwych ale akceptowalny

Propagacja powinowatości

- Affinity propagation metoda polegająca na iteracyjnym "przekazywaniu wiadomości" pomiędzy obiektami. Ma na celu wybór obiektów – egzemplarów
- Jako egzemlary wskazywane są te obiekty, które wykazują dodatni bilans pomiędzy byciem egzemplarem, a posiadaniem egzemplara
- Metoda wyszukiwania naturalnych liderów. Bardziej "pasuje do wszystkich" niż "mistrz w jednym"

Zastosowanie dla danych geoprzestrzennych

- Metoda nie wymaga podania liczby skupień jedynie kryterium selekcji egzemplarów
- Zagęszczenia w rozkładzie mają znaczenie dla wyznaczania skupień
- Obiekty odstające tworzą nowe skupienia
- Niepewność przynależności nie jest brana pod uwagę

Centroid – Medoid - Egzemplar

- Centroid: współrzędne w przestrzeni wielowymiarowej oznaczające geometryczny środek skupienia. Nie jest to fizyczny obiekt. Może być poza obszarem skupienia
- Medoid: obiekt najbardziej podobny do innych obiektów. Z reguły występuje w największym zagęszczeniu skupienia.
- Egzemplar: naturalny przedstawiciel skupienia, najbardziej reprezentatywny dla innych obiektów

Łączenie metod partycjonujące i hierarchicznych

- Metody partycjonujące i hierarchiczne można łączyć, ale nie wszystkie implementacje używają tej możliwości
- Metody hierarchiczne jako szybsze, ale mniej dokładne używa się do wstępnego podziału zbioru na skupienia, przed uruchomieniem metody k-means/k-medoids w celu uniknięcia losowej konfiguracji startowej
- W przypadku dużych zbiorów danych metody partycjonujące używa się do wyznaczenia dużej liczby małych zwartych skupień, a następnie małe skupienia łączy się w hierarchie

Metody rozmyte (k- means i kmedoids)

- Metoda bierze pod uwagę niepewność przynależności
- Każdy obiekt jest przypisywany do więcej niż jednej z klas
- zastosowaniem metod rozmytych jest sytuacja, gdy interesują nas jedynie wybrane skupienia i chcemy określić dla nich tolerancję przynależności kosztem innych skupień.
- Koncepcja krytykowana:
 - w ostateczności obiekt musi przynależeć to jakiegoś skupienia,
 - do określenia niepewności przynależności służą inne metody
 - metody rozmyte mają problemy z prawidłowym klasyfikowaniem punktów na obrzeżach.
 - problemy z wizualizacją skupień, gdyż wymagają osobnego diagramu dla każdego skupienia.

Metody probablistyczne

- Gaussowskie modele mieszane
- Jeżeli rozkład gęstości nie ma jakiejś konkretnej postaci można przyjąć założenie że jest sumą wielu rozkładów normalnych
- Znalezienie rozwiązania jest problemem optymalizacyjnym, szuka się optymalnej liczny skupeń oraz właściwych dla nich rozkładów

Expectation-maximisation

- Jest to proces iteracyjny, składający się z dwóch kroków: E
 (expectation) czyli znalezienia najlepszego rozkładu oraz M
 (maximisation) polegającego na uaktualnieniu parametrów modelu
 poprzez maksymalizację funkcji wiarygodności (likelihood)
- Wybór rozwiązania opiera się na minimalizacji parametru BIC (Bayes inf. criterion), które powinno być najmniejsze

Zastosowanie dla danych geoprzestrzennych

- Zagęszczenia w rozkładzie mają duży wpływ na ostateczny wynik
- Niepewność jest brana pod uwagę
- Znikomy wpływ obiektów odstających
- Bardzo wolny czas obliczeń
- Wynik jest optymalny dla podzbioru danych

Parametry skupień

- Ocena jakości skupień służy do określenia na ile prawidłowo dobrano liczbę skupień oraz do jakiego stopnia obiekty zostały zakwalifikowane do właściwych skupień
- Najpobularnijesze wskaźniki to:
 - Zwartość (compactness) jak podobne względem siebie są obiekty w tym samym skupieniu – wzajemne średnie/maksymalne niepodobieństwo pomiędzy obiektami
 - Oddzielność (separation) jak niepodobne są obiekty w różnych skupieniach: wzajemne minimalne/średnie niepodobieństwo obiektów w różnych skupieniach
 - Łączność (conectivity) do jakiego stopnia obiekty położone blisko siebie znajdują się w tych samych skupieniach

Diagramy sylwetkowe

 Sylwetki – ocena w jak bardzo obiekty w skupieniu są podobne do pozostałych obiektów w skupieniu względem obiektów w innym (najbardziej podobnym) skupieniu, im większa wartość parametry sylwetki tym lepsze skupienia

- S bliskie 1; dobre skupienie
- S bliskie 0; przynależność niejasna
- S < 0 błędna przynależność, zmiana przynależności podniesie jakość skupień

Wybór algorytmu grupowania

Brak jednolitej reguły

Samo-organizujące się mapy

Koncepcja SOM

- Sieć neuronowa, narzędzie wizualizacji danych wielowymiarowych w postaci mapy topologicznej
- Metoda nienadzorowana, nie wymaga wzorców (w przeciwieństwie do klasycznych sieci neuronowych)
- Polega na obliczaniu odległości pomiędzy wektorami docelowymi a próbkami i przypisywaniu próbek do wektorów docelowych, jednocześnie je zmieniając. Stąd pojęcie "samoorganizujące"

Wektor kodowy

SOM jako narzędzie redukcji wymiarowości

Dane miejskie

Codebook a dane oryginalne

SOM w klasyfikacjach nienadzorowanych

SOM a dane geoprzestrzenne

Grupowanie a klasyfikacja

- Grupowanie jest procesem budowania optymalnych skupień, proces klasyfikacji to nadawanie skupieniom znaczenia (labeling) a posteriori
- Optymalne skupienia nie muszą odpowiadać optymalnym klasom – klasy są pochodnymi badanego problemu: np. zróżnicowanie pokrywy roślinnej jest statystyczne większe; ale mniej istotne punktu widzenia człowieka niż np. zróżnicowanie pokrycia zabudowy
- W przypadku klasyfikacji danych uporządkowanych (np. geoprzestrzennych) do interpretacji klasy ma znaczenie nie tylko charakterystyka obiektów ale również ich położenie

Nienadzorowana klasyfikacja bardzo dużych zbiorów danych

- Klasyfikacje nienadzorowane oparte o macierze niepodobieństwa działają dobrze na małych zbiorach danych (do 10 tyś obiektów)
- W dużych zbiorach proces klasyfikacji wykonujemy na podzbiorze, wyznaczając prototypy skupień a następnie pozostałe obiekty przypisywane są do zdefiniowanych prototypów
- W przypadku danych uporządkowanych (rastrowych) musimy dodatkowo usuwać wartości puste a następnie odtwarzać oryginalną uporządkowaną strukturę danych

Najczęstsze błędy w klasyfikacjach nienadzorowanych

- Brak transformacji danych (standaryzacji/normalizacji)
- Nieodpowiednie miary niepodobieństwa (nadużywanie metryki euklidesowej)
- Brak redukcji wymiarów i obiektów odstających
- Wymuszanie skupień w jednorodnych danych
- Stosowanie metod hierarchicznych do dużych zbiorów danych
- Sugerowanie się klasami a priori (zamiast metod nadzorowanych)

