

PLASMA DISPLAY PANEL MANUFACTURING METHOD AND HEAT TREATMENT APPARATUS Inventor: Junji KOGURE, et al. Art Unit: 2879 Filing Date: 12/16/2003 Attorney Docket: Q78969 Application No.: 10/735,640 Confirmation No.: 3525 Sughrue Telephone No. 202-293-7060 Replacement Sheet 1 of 9

1/9

FIG. 1 PRIOR ART

PLASMA DISPLAY PANEL MANUFACTURING METHOD AND HEAT TREATMENT APPARATUS Inventor: Junji KOGURE, et al. Art Unit: 2879 Filing Date: 12/16/2003 Attorney Docket: Q78969 Application No.: 10/735,640 Confirmation No.: 3525 Sughrue Telephone No. 202-293-7060 Replacement Sheet 2 of 9

2/9

FIG. 2 PRIOR ART

FIG. 3 PRIOR ART

3/9

FIG. 4

FIG. 5

FIG. 6

FIG. 8 (a)

FIG. 8 (b)

NO.	SUBSTANCE NAME	CHEMICAL FORMULA	CONCENTRATION (ppm)	SPACE VELOCITY (h-1)		
1		H ₂	1%	60,000		
2		CO	1,000	60,000		
3		CH ₃ OH	100	30,000		
4		C2H4	5,000	60,000		
5		C6H10O	550	60,000		
6		C6H5CH3	550	60,000		
7		C2H5COCH3	650	60,000		
8		(CH3)2S	10	30,000		
9		C6H4(CH3)2	550	60,000		
10		NH3	300	30,000		
11		(CH3)3N	30	30,000		
12		CH ₃ CHO	140	30,000		
13		C ₂ H ₅ OH	300	30,000		
14		CH3C6H4OH + C6H5OH	660 + 440	60,000		
15		(C2H5)3N	300	30,000		
16		CH3COOH	100	30,000		
17		HCON(CH3)2	740	60,000		

					,	<u>,</u>	,		
PELLET CATALYST		Y-Al ₂ O ₃	SMALL	0.4 TO 0.8	LARGE	10,000 TO 30,000 h ⁻¹	41.5	MODERATE	MODERATE
CERAMIC HONEYCOMB CATALYST		SiOz-Al2O3-MgO	SMALL	0.6 TO 0.7	MODERATE	20,000 TO 40,000 h ⁻¹	7.1	WEAK	WEAK
METAL HONEYCOMB CATALYST		Fe-Cr-Al	LARGE	0.4 TO 0.6	SMALL	30,000 TO 60,000 h ⁻¹	5.5	STRONG	STRONG
CATALYST TYPE	CATALYST TYPE	BASIC COMPOSITION	COEFFICIENT OF HEAT CONDUCTIVITY	FILLED SPECIFIC GRAVITY	HEAT CAPACITY	STANDARD SV. VALUE	PRESSURE LOSS (*)	MECHANICAL STRENGTH	THERMAL SHOCK RESISTANCE

(*: MEASURED VALUE UNDER AN ATMOSPHERE OF 200°C AND 1 Nm/s.)