CMPS 102 — Quarter Spring 2017 – Homework 2

VLADOI MARIAN

April 28, 2017

I have read and agree to the collaboration policy. Vladoi Marian Colaborators None

Solution to Problem 5: Optional

The temperatures ranges from 1 to n degrees. I choose the temperature s . He is wiling to let the temperature at some t temperature or any lower temperature.

a. Change my mind exactly once.

The strategy I use.

- 1. Choose s to be n .
 2. Set integer i = 0;
 3. While (s == too warm)
 { 4. chose s to be = $n-2^i$. (choose $n-2^0$, $n-2^1$, $n-2^2$, ...)
 5. increase i by one.
 (At the end of the while loop I know that t has to be in the interval $n-2^i$ to $n-2^{i-1}$) (I can find this interval in logn choices)
 }
- 6. Now that I know the interval. I change my mind.
- 7. I start againg from 2^{i-1} to choose, one by one value, until I would go lower than t and he would agree with s.

(the last round of negociations is constant, and I claim that I finish the process after log(n) negociations)

b. Change my mind k times , where k > 1.

The strategy I use.

- Choose s to be n .
 Set integer i = 0;
- 3. While (k > 1)
- 4. While (s == too warm) $\{$
- 5. chose s to be = $n k^i$. (choose $n k^0, n k^1, n k^2, ...$)
- 6. increase i by one.

(At the end of the while loop I know that t has to be in the interval $n - k^i$ to $n - k^{i-1}$)

7. Now that I know the interval, t has to be in the interval $n - k^i$ to $n - k^{i-1}$, I will change my mind. 8. Repeat the outer while loop with k - 1 and looking in the interval $n - k^i$ to $n - k^{i-1}$. This means that $now n = n - k^{i-1}$

7. When k = 1 I exit the loops, and I found the range where t is. In constant time I cheeck one by one solution

(Each round of negociation $f_k(n)$ takes $log_k(n)$ negociations, for k>1.) (The total negociations = $\sum_{i=1}^k log_i(n) + constant\ time\ when\ i=1$.