A3.1

Graph G has vertices $\{C_1, C_2, ..., C_7\}$ and edges between C_i and C_j if $C_i \cap C_j \neq \emptyset$ for $\{i, j \in [1, 7], i \neq j\}$. If G can be coloured with 4 or less colours then all classes can be timetabled on the same day.

A3.2 Vertices are visited in the order C_1 , C_2 , C_3 , C_5 , C_4 , C_6 , C_7 using algorithm A2

A3.3

Vertex	C_1	C_2	C_3	C_4	$C_{\scriptscriptstyle{5}}$	C_6	C_7
Colour	1	2	3	1	2	4	1

A3.4

- $_{x}(G) \neq 1$ since any two vertices with a connecting edge need to be different colours. $_{x}(G) \neq 2$ since C_{1} , C_{2} and C_{3} require 3 different colours as they are all connected to each other.
- $_{x}(G) \neq 3$ since C_1 , C_2 , C_3 and C_6 require 4 different colours as they are all connected to each other.
- $_{x}(G)$ = 4 as shown by A3.3.