Data Science Project – Customer Segmentation using Machine Learning in R

- Overview: Customer Segmentation is a key application of unsupervised learning that allows companies to identify different customer segments for targeted marketing.
- Project Goal: To implement Customer Segmentation using K-means clustering in R.
- **Dataset:** Mall_Customers.csv: Contains demographic data of mall visitors.

Photo by Digitawise Agency on Unsplash

Data Exploration

- Importing Packages: Use the necessary R packages for data analysis and visualization.
- Reading Data: Load the 'Mall_Customers.csv' dataset and inspect its structure using str() and head() functions.
- Data Summary: Generate summary statistics and visualize data distribution using summary() and other descriptive statistics functions.

Photo by Ilija Boshkov on Unsplash

Customer Gender Visualization

- Bar Plot: Code: a=table(customer_data\$Gender) barplot(a, main='Using BarPlot to display Gender Comparison', ylab='Count', xlab='Gender', col=rainbow(2), legend=rownames(a))
- Pie Chart: Code: pct=round(a/sum(a)*100) lbs=paste(c('Female','Male'), ' ', pct, '%', sep=' ') library(plotrix) pie3D(a, labels=lbs, main='Pie Chart Depicting Ratio of Female and Male')
- **Insights:** The bar plot and pie chart show that the percentage of females is 56%, whereas the percentage of males is 44%.

Using Barplot to display Gender Distribution

Pie Chart Depicting Ratio of Female and Male

Age Distribution Visualization

- Histogram: Code: hist(customer_data\$Age, col='blue', main='Histogram to Show Count of Age Class', xlab='Age Class', ylab='Frequency', labels=TRUE)
- Box Plot: Code: boxplot(customer_data\$Age, col='ff0066', main='Boxplot for Descriptive Analysis of Age')
- **Insights:** Most customers are between 30 and 35 years old. The minimum age is 18, and the maximum age is 70.

Histogram to show Count of Age Class

Boxplot to show Count of Age Class

Annual Income Analysis

- Histogram: Code: hist(customer_data\$Annual.Income..k.., col='#660033', main='Histogram for Annual Income', xlab='Annual Income Class', ylab='Frequency', labels=TRUE)
- Density Plot: Code: plot(density(customer_data\$Annual.Income..k..), col='yellow', main='Density Plot for Annual Income', xlab='Annual Income Class', ylab='Density') polygon(density(customer_data\$Annual.Income..k..), col='#ccff66')
- **Insights:** The minimum annual income is 15k, and the maximum is 137k. The average income is 60.56k, with a normal distribution observed in the density plot.

Histogram of Annual Income

Spending Score Analysis

xPlot for Descriptive Analysis of Spending Sco

- Box Plot: Code: boxplot(customer_data\$Spending.Score..1.100., horizontal=TRUE, col='#990000', main='BoxPlot for Descriptive Analysis of Spending Score')
- Histogram: Code:
 hist(customer_data\$Spending.Score..1.100.,
 main='Histogram for Spending Score',
 xlab='Spending Score Class', ylab='Frequency',
 col='#6600cc', labels=TRUE)
- **Insights:** The minimum spending score is 1, the maximum is 99. Most customers have a median spending score of 50.

HistoGram for Spending Score

K-means Algorithm

- **Optimal Clusters:** Use the elbow method to determine the optimal number of clusters by plotting the total intracluster sum of squares for different values of k.
- Code Implementation: Code: library(purrr) set.seed(123) iss <- function(k) {kmeans(customer_data[,3:5],k,iter.max=100,nstart=100,a lgorithm='Lloyd')\$tot.withinss} k.values <- 1:10 iss_values <- map_dbl(k.values, iss) plot(k.values, iss_values, type='b', pch=19, frame=FALSE, xlab='Number of clusters K', ylab='Total intra-clusters sum of squares')
- **Insights:** The elbow plot shows that 4 is the optimal number of clusters as it appears at the bend in the graph.

Number of clusters K

Average Silhouette Method

- Introduction: The silhouette method is used to determine the optimal number of clusters by computing the average silhouette width for different numbers of clusters.
- Code Implementation: Code: library(cluster) k2<-kmeans(customer_data[,3:5],2,iter.max=100,nstart=50,al gorithm='Lloyd') s2<-plot(silhouette(k2\$cluster,dist(customer_data[,3:5],'eucli dean'))) k3<-kmeans(customer_data[,3:5],3,iter.max=100,nstart=50,al gorithm='Lloyd') s3<-plot(silhouette(k3\$cluster,dist(customer_data[,3:5],'eucli dean')))
- **Insights:** The optimal number of clusters is determined by the highest average silhouette width.

Silhouette plot of (x = k2\$cluster, dist

Gap Statistic Method

- Introduction: The gap statistic method is used to estimate the optimal number of clusters by comparing the total within intra-cluster variation for different numbers of clusters with their expected values under null reference distribution.
- Code Implementation: Code: library(cluster) stat_gap <- clusGap(customer_data[,3:5], FUN=kmeans, nstart=25, K.max=10, B=50) plot(stat_gap)
- **Insights:** The optimal number of clusters is determined by the value of k that maximizes the gap statistic.

Visualizing Clustering Results

- **Principal Component Analysis (PCA):** Perform PCA to reduce dimensionality and visualize the clustering results.
- Cluster Visualization: Code:
 pcclust=prcomp(customer_data[,3:5],scale=FALSE)
 ggplot(customer_data, aes(x=Annual.Income..k..,
 y=Spending.Score..1.100.)) + geom_point(stat='identity',
 aes(color=as.factor(k6\$cluster))) +
 scale_color_discrete(name=", breaks=c('1', '2', '3', '4', '5','6'),
 labels=c('Cluster 1', 'Cluster 2', 'Cluster 3', 'Cluster 4', 'Cluster
 5','Cluster 6')) + ggtitle('Segments of Mall Customers',
 subtitle='Using K-means Clustering')
- **Insights:** The visualization shows a clear separation of the six clusters based on their annual income and spending score.
 - Cluster 6 and 4 These clusters represent the customer_data with the medium income salary as well as the medium annual spend of salary.
 - Cluster 1 This cluster represents the customer_data having a high annual income as well as a high annual spend.
 - Cluster 3 This cluster denotes the customer_data with low annual income as well as low yearly spend of income.
 - Cluster 2 This cluster denotes a high annual income and low yearly spend.
 - Cluster 5 This cluster represents a low annual income but its high yearly expenditure.

K-means

Summary and Conclusion

- Project Recap: Recapped the key steps: data exploration, visualizations, and K-means clustering to segment customers.
- **Key Insights:** Identified key insights: different customer segments based on demographic and spending patterns.
- Future Work: Potential future improvements: incorporating more features, exploring other clustering algorithms, and applying the model to other datasets.

