

Sequence length 4052

CCAAGATTAAAGCCCGCAAGTTTGTCTTGAGACCAGCAGACTTAGCTCGATGCCGGAGGAAAGCCGACCTCCGA
TTTGGACATTAAAGAGCTGGGCTTGAACCTCGTGAGTTCGCTCTAAACTGCCCTGAAATGAAGCTGGACTTGGAGG
TGGCATGGAATATTACATGGGAGAGCCGCATGAGGCCGCCACCACGCTCCTGAAGGATGCCGTGAGAAGAATT
TGACGTGCCAGTGTCTCGTTCTACAGGGTGTCCATTCTCCGCAATCTCAGAAAAATGGACTAAAAGAAACTATTT
TGTAAAATAAGAAGACTCCATTAAATGACCAACATGTATTAAGATGGACACCTACTCTACGAAACACGAAGTTCTA

	M R M L	4 12
TGGTCTCGAAGAAGCCC GTGCC TGTAAACTGAT CCTAACTA AAAACAGACTT GAGT GGAT	ATG AGA ATG TTG	
V S G R R V K K W Q L I I Q L F A T C F	24 72	
GTT AGT GGC AGA AGA GTC AAA AAA TGG CAG TTA ATT ATT CAG TTA TTT GCT ACT TGT TTT		
L A S L M F F W E P I D N H I V S H M K	44 132	
TTA GCG AGC CTC ATG TTT TGG GAA CCA ATC GAT AAT CAC ATT GTG AGC CAT ATG AAG		
S Y S Y R Y L I N S Y D F V N D T L S L	64 192	
TCA TAT TCT TAC AGA TAC CTC ATA AAT AGC TAT GAC TTT GTG AAT GAT ACC CTG TCT CTT		
K H T S A G P R Y Q Y L I N H K E K C Q	84 252	
AAG CAC ACC TCA GCG GGG CCT CGC TAC CAA TAC TTG ATT AAC CAC AAG GAA AAG TGT CAA		
A Q D V L L L F V K T A P E N Y D R R	104 312	
GCT CAA GAC GTC CTC CTT TTA CTG TTT GTA AAA ACT GCT CCT GAA AAC TAT GAT CGA CGT		
S G I R R T W G N E N Y V R S Q L N A N	124 372	
TCC GGA ATT AGA AGG ACG TGG GGC AAT GAA AAT TAT GTT CGG TCT CAG CTG AAT GCC AAC		
I K T L F A L G T P N P L E G E E L Q R	144 432	
ATC AAA ACT CTG TTT GCC TTA GGA ACT CCT AAT CCA CTG GAG GGA GAA GAA CTA CAA AGA		
K L A W E D Q R Y N D I I Q Q D F V D S	164 492	
AAA CTG GCT TGG GAA GAT CAA AGG TAC AAT GAT ATA ATT CAG CAA GAC TTT GTT GAT TCT		
F Y N L T L K L L M Q F S W A N T Y C P	184 552	
TTC TAC AAT CTT ACT CTG AAA TTA CTT ATG CAG TTC AGT TGG GCA AAT ACC TAT TGT CCA		
H A K F L M T A D D D I F I H M P N L I	204 612	
CAT GCC AAA TTT CTT ATG ACT GCT GAT GAT GAC ATA TTT ATT CAC ATG CCA AAT CTG ATT		
E Y L Q S L E Q I G V Q D F W I G R V H	224 672	
GAG TAC CTT CAA AGT TTA GAA CAA ATT GGT GTT CAA GAC TTT TGG ATT GGT CGT GTT CAT		
R G A P P I R D K S S K Y Y V S Y E M Y	244 732	
CGT GGT GCC CCT CCC ATT AGA GAT AAA AGC AGC AAA TAC TAC GTG TCC TAT GAA ATG TAC		
Q W P A Y P D Y T A G A A A Y V I S G D V	264 792	
CAG TGG CCA GCT TAC CCT GAC TAC ACA GCC GGA GCT GCC TAT GTA ATC TCC GGT GAT GTA		
A A K V Y E A S Q T L N S S L Y I D D V	284 852	
GCT GCC AAA GTC TAT GAG GCA TCA CAG ACA CTA AAT TCA AGT CTT TAC ATA GAC GAT GTG		

Fig. 1A

F	M	G	L	C	A	N	K	I	G	I	V	P	Q	D	H	V	F	F	S	304
TTC	ATG	GGC	CTC	TGT	GCC	AAT	AAA	ATA	GGG	ATA	GTA	CCG	CAG	GAC	CAT	GTG	TTT	TTT	TCT	912
G	E	G	K	T	P	Y	H	P	C	I	Y	E	K	M	M	T	S	H	G	324
GGA	GAG	GGT	AAA	ACT	CCT	TAT	CAT	CCC	TGC	ATC	TAT	GAA	AAA	ATG	ATG	ACA	TCT	CAT	GGA	972
H	L	E	D	L	Q	D	L	W	K	N	A	T	D	P	K	V	K	T	I	344
CAC	TTA	GAA	GAT	CTC	CAG	GAC	CTT	TGG	AAG	AAT	GCT	ACA	GAT	CCT	AAA	GTA	AAA	ACC	ATT	1032
S	K	G	F	F	G	Q	I	Y	C	R	L	M	K	I	I	L	L	C	K	364
TCC	AAA	GGT	TTT	TTT	GGT	CAA	ATA	TAC	TGC	AGA	TTA	ATG	AAG	ATA	ATT	CTC	CTT	TGT	AAA	1092
I	S	Y	V	D	T	Y	P	C	R	A	A	F	I	*						379
ATT	AGC	TAT	GTG	GAC	ACA	TAC	CCT	TGT	AGG	GCT	TTT	ATC	TAA							1137

TAGTACTTGAATGTTGATGTTCACTGTCACTGAGTCACCTGGATGAAAAAACCTTTAAATGTTCGTCTATACC
 CTAAGTAAAATGAGGACGAAAGACAAATATTTGAAAGCCTAGTCATCAGAATGTTCTTGATTCTAGAAGCTGTT
 AATATCACTTATCTACTTCATTGCCTAAGTTCAAGAAATTGTATTAGAAAAGGTTATATTATTAGTAAAA
 CAAAAACTAAAGGGAAGTTCAAGTTCTCATGTAATGCCACATATATACTTGAGGTGTAGAGATGTTATTAAGAAGTTTG
 ATGTTAGAATAATTGCTTTGAAAATACCAAATGAACGTACAGTACAACATTCAAGGAAATGAATATATTGTTAGAC
 CAGGTAAGCAAGTTATTTGTTAAAGAGCACTGGTGGAGGTAGTAGGGGCAGGGAAAGGTCAAGCATAGGAGAGAAA
 GTTCATGAATCTGGTAAAACAGTCTCTTGTCTTAAGAGGAGATGTAGAAAATGTTACAATGTTATTATAAACAGAC
 AAATCACGTCTTACCATGCTACTGGTGTAGAGTCATTAAAATACCTTTGCATCTTTCAAAGT
 TTAATGTGAACTTTAGAAAAGTGTATTAAATGTTGCCCTAATACTTTATGTTAAATGGATTTTTAAAGTATTA
 GAAAATGACACATAACACGGGCAGCTGGTGTCTAGGGCCTCTAGGGAGAAACCATTGTTAAATCAAATAAGC
 TGATTTAAATGACGTTCAACTGGTTAAATTCATATTGGTCTGTGTTAAGTTGTTATTGAATGTAATTT
 ACATAGAGGAATATAATGGAGAGACTTCAAATGGAAAGACAGAACATTACAAGCCTAATGTCCTCATATT
 AAATGAAATCTTAGTGTCTAAATCCTGTACTGATTACTAAAATTAAACCCACTCCTCCCCAACAGGTCTTATAAACCA
 CAGCACTTGTCCAAGTTCAAGGTTAAAGCATTTCAGCTGCATGTTCTGTAATCAAAGAGATGTTGAGATCTAATAGAGT
 TTGCCAGTTGGGTTAAAGCATTTCAGCTGCATGTTCTGTAATCAAAGAGATGTTGAGATCTAATAGAGT
 AAGTTACATTATTTACAAAGCAGGATAAAAATGTGGCTATAATACACACTACCTCCCTCACTACAGAAAGAACTAG
 GTGGTGTCTACTGCTAGGGAGATTATGAAGGCCAAATAATGACTTCAGCAAGAGTGACTGAACACTCAAGGCC
 TTTGACTGCAGAGGCACCTGTTAGGGAAAATCAGATGTCTCATATAATAAGGTGATGTCGGAAACACGCAAAACAAAC
 GAAAAAAAGATTCTCAGTATAACACAACTGAATGATGATACTTACAATTAGCAGGTAGCTTTAAATGTTACAGAA
 ATTAAATTCTATTGAAATTGAGGCTTGTACATTGCTTAGATAATTAGAATTAACTAATGTCAA

Fig. 1B

ACTACAGTGTCAAACATTCTAGGTTGTTAGTTACTTCAGAGTAGATAACAGGGTTAGATCATTACAGTTAAGTTTC
TGACCAATTAAAAAACATAGAGAACAAAAGCATATTGACCAAGCAACAAGCTATAATTAAATTTTATTAGTTGATT
GATTAATGATGTATTGCCCTTGCCCCATATATACCCCTGTGTATCTATACTTGGAAAGTGTAAAGGTTGCCATTGGTTGA
AACACATAAGTGTCTGGCCATCAAAGTGATCTTGTACAGCAGTGCTTGTGAAACAATTATTGCTGAAAG
AGCTCTTCTGAACGTGTCCTTTAATTGGCTTAGAATAGAACAGTTAAATTCAAGGAAATATGAAGGC
ACTTCCTTTCTAAGAAGGAAGTGCTAGATGATTCCATCACACTTAAAGTACTGAGAACAGTATCTGT
AAATAAAAGGGTCCAACCTTTAAAAAGAAGGAAAAACTTTGTGGCTCCAGTGTAGGGCTATCTTTAAAAAA
TGTCAACAAAGGGAAAATAACTATCAGCTGGATGGTCACTTGAATAGAACAGTGTAAATACAGTGTATTGTTAAA
ATTTTTTACCTTTGGTTGGCTGCATCTTTCCATATTGTTAATTACCAAAATGTTAAATATTGTATTAC
TTGAATTGCTCTGTATGCCAAAATAATTAGTGAGTTAAAAAAATCTATAGTTCCAATAACAACTGAAAAATT
AAAAAAA

Fig. 1C

Analysis of 8797 (378 aa)

>8797
MRMLVSGRRVKKWQLIIQLFATCFLASLMFFWEPIDNHIVSHMKSYSYRLINSYDFVND
TLSLKHTSAGPRYQYLINHKEKCQAQDVLLLFVKTAPENYDRRSGIIRRRTWGNENYVRSQ
LNANIKTLFALGTPNPLEGEELQRKLAEDQRYNDIIQQDFVDSFYNLTLKLLMQFSWAN
TYCPHAKFLMTADDDIFIHMPNLIEYLQSLEQIGVQDFWIGRVHRGAPPIRDKSSKYVS
YEMYQWPAYPDYTAGAAYVISGDVAAKVYEASQTLNSSLYIDDVFMGLCANKIGIVPQDH
VFFSGEGKTPYHPCIYEKMMTSHGLEDLQDLWKNATDPKVKTISKGFFGQIYCRLMKII
LLCKISYVDTPCRAAFI

Fig. 2

Protein Family / Domain Matches, HMMer version 2

Searching for complete domains in PFAM

```
hmmpfam - search a single seq against HMM database
HMMER 2.1.1 (Dec 1998)
Copyright (C) 1992-1998 Washington University School of Medicine
HMMER is freely distributed under the GNU General Public License (GPL).

HMM file:          /prod/ddm/seqanal/PFAM/pfam5.4/Pfam
Sequence file:     /prod/ddm/wspace/orfanal/oa-script.19955.seq

Query: 8797

Scores for sequence family classification (score includes all domains):
Model      Description          Score   E-value   N
-----      -----          -----
Galactosyl_T  Galactosyltransferase    173.8  2.8e-48  1

Parsed for domains:
Model      Domain  seq-f  seq-t  hmm-f  hmm-t  score   E-value
-----      -----  ----  ----  ----  ----  -----  -----
Galactosyl_T  1/1    102    321    ..     1    249  []  173.8  2.8e-48

Alignments of top-scoring domains:
Galactosyl_T: domain 1 of 1, from 102 to 321: score 173.8, E = 2.8e-48
  *->arRnaiRkTWmnqnnsegvadgrikalFlvGl.sakgdqk1kk1vme
  +rR  ir+TW+n+n+++ ++ ik+lF +G++++++l++ + +
  8797  102    DRRSGIRRTWGNENYVRSQLNANIKTFLALGTpNPLEGELQRKLAW 148

  EakrtlyGDiivvDleDsYenLt1KT1tillygvskcpsakligKiDdDv
  E++  y Dii++D+ Ds++nLtlK l+ ++++++cp+ak+ + DdD+
  8797  149    EDQ--RYNDIIQQDFVDSFYNLTLKLLMQFSWANTYCPHAKFLMTADDI 196

  fvnpdkLls1LereniridpsessfyGyiikegepvrrkkskrdWYvppt
  f+ +++L++L+ i ++++++ G+++++ +p+r k sk Yv+++
  8797  197    FIHMPNLIEYLQSL-EQIGVQDFWI-GRVHRGAPPIRDKSSK--YYVSYE 242

  eYpcsrNgnkYPpYvsGpfYllsrdAApI1lkaskhrLr.flkiEDVlit
  Y + YP Y +G Y++s+d+A +++;as + ++ l i+DV++
  8797  243    MYQWPA---YPDYTAGAAVVISGDVAAKVYEASQTL-NsSLYIDDVFM- 286

  GilaedlgIsrinlprlsistnlfrfhhsqkdndgcdvfawhtahkndpe
  G +a+++gI +++ +f++ +++ h++ +
  8797  287    GLCANKIGIVPQDH-----VFFSGEGKTPY-----HPCIYE 317

  ylif<-*
  ++
  8797  318    KMMT    321
```

Fig. 3

Transmembrane Segments Predicted by MEMSAT

Start	End	Orient	Score
15	32	out-->ins	3.2

>8797

MRMLVSGRRVKKWQLIIQLFATCFLASLMFFWEPIDNHIVSHMKSYSYRYLINSYDFVND
TLSLKHTSAGPRYQYLINHKEKCQAQDVLLLLFVKTAPENYDRRSGIRRTWGNENYVRSQ
LNANIKTLFALGTPNPLEGEELQRKLAWEDQRYNDIIQQDFVDSFYNLTLKLLMQFSWAN
TYCPHAKFLMTADDDIFIHMPNLIYEYLQSLEQIGVQDFWIGRVHRGAPPIRDKSSKYYVS
YEMYQWPAYPDYTAGAAVISGDVAAKVYEASQTLNSSLYIDDVFMGLCANKIGIVPQDH
VFFSGEGKTPYHPCIYEKMMTSHGHLEDLQDLWKNATDPKVKTISKGFFGQIYCRLMKII
LLCKISYVDTYPCCRRAFI

Fig. 4

Fig. 5

Phase 1.3.3 Expression of 8797 w/f2

8

6

Expression

4

2

Fig. 6

8797 Expression in Oncology Phase II Plate

Fig.

7

8797 Expression in Lung Model Panel

Fig. 8

8797 Expression in the Breast Models Panel

