a Given a BT. Calculate the no of nodes at distance

K from root!

int count Nodes (Node opot, int k).

If (8001 = = NULL) redunn 0; (8001 = = 0) (8001 = = 0) (8001 = = 0) (8001 = = 0)

int I & count Nodes (sout. left, k-1);
int T & cont Nodes (sout. right, k-1);

return 1+8;

Tc: O(N) $O(2^{k})$ k=100Tc $\neq O(\min(N, 2^{k}));$ SC $\neq O(\min(h, k))$

a Given a BT. Calculate the no of nodes at distance

K from a given node!

int Count All Nodes (Node 2008ce, Node 8001, int R) d.
list (Node > path > find Path (Source, rost); reverse (path);
int count => count Nodes (path (0), k);
for (inti=1; i < path.size(); i++) L.
if (path [i]. left == path [i-i])
Count = count + count Nodes (path (i). vight, 12-i-1)
ر ایم
Count = count + count Nodes (path (i). left,
R-i- <u>1</u>)
reduan a cound.
3 SC:0(H)

Distinct Element 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Pac: 8 6 5 15 19 9 18 75 4 7 41 30 39 In: 15 5 19 6 18 9 25 8 7 41 4 39 30 ind ps+1, ps+lenst (8) ind - is + 1 - 1 In: 15 5 19 6 18 9 25 In: 7 41 4 39 30 48 Re: 6 5 15 19 9 18 75 Pre: 4 7 41 30 39 48 In: 15 5 19 18 9 25 Pre: 5 15 19 9 18 25 In: 19 In: 15 De 15 Poc; 19

null null

Node construct Tree (in [], pre[], int ps, int pe, int is int ie) L if (ps > pe)
deturn null; int root-val => pre [ps]; Node x = new Node (8061-val); int ind = -1; for (int i = is; $i \le ie$; i++) $\begin{cases} i \\ if \\ (in Li] = = 8001 - val) \end{cases}$ ind = val; 10(1)
Using a int 1st-length > ind-is; X. loft = construct Tree (In, pro, ps+1, ps+1st-length is, ind-1); X. dight = construct Tree (in, pre, ps+lst-length+1, pe ind+1, ie); Tc: O(n) Sc: O(n) > Osing redus X:

														Ma	D!!
0		D	1	2	3	4	5	6	7	8	9	lo		12	
Pre	į	8	6	5	15	19	9	18	25	4	7	41	30	39	48
	Balanced BT														
									h	st ·	_ h	Rs-	Γ	۷.	1
	<u> </u>			7											
<	6	<u></u>	15	19	19	18	₹ ~	S <u>1</u>			_				
		- V 05	yler	<u>S</u>) 65.	لمال	leg		
LST Root RST															

