(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 10 January 2002 (10.01.2002)

PCT

(10) International Publication Number WO 02/02565 A2

(51) International Patent Classification7: C07D 491/04, A61K 31/435

(21) International Application Number: PCT/US01/20423

27 June 2001 (27.06.2001) (22) International Filing Date:

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 09/610,638 5 July 2000 (05.07.2000) US

(71) Applicants: ABBOTT LABORATORIES [US/US]; Dept. 377/AP6D-2, 100 Abbott Park Road, Abbott Park, IL 60064-6050 (US). LIGAND PHARMACEUTICALS INCORPORATED [US/US]; 10275 Science Center Drive, San Diego, CA 92121 (US).

(72) Inventors: COGHLAN, Michael, J; 307 Fairfax Lane, Grayslake, IL 60030 (US). EDWARDS, James, P; 8723 Hesby Court, San Diego, CA 92129 (US). ELMORE, Steven, W; 6405 Lone Tree Court, Gurnee, IL 60031 (US). JONES, Todd, K; 546 Marview Drive, Solana Beach, CA 92075 (US). KORT, Michael, E; 507 North Green Avenue, Lake Bluff, IL 60044 (US). KYM, Philip, R; 141 Hillside, Grayslake, IL 60030 (US). MOORE, Jimmie, L; 950 Redwood Shores, Parkway #M103, Redwood City, CA 94065 (US). PRATT, John, K; 8210 61st Avenue, Kenosha, WI 53142 (US). WANG, Alan, X; 1012 Tabbott Lane, Grayslake, IL 60030 (US).

- (74) Agents: COLLINS, Daniel, W et al.; Dept. 377/AP6D-2, 100 Abbott Park Road, Abbott Park, IL 60064-6050 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: GLUCOCORTIOCOID-SELECTIVE ANTIINFLAMMATORY AGENTS

(57) Abstract: Compounds having Formula I are useful for partially or fully antagonizing, repressing, agonizing, or modulating the glucocorticoid receptor and treating immune, autoimmune and inflammatory diseases in a mammal. Also disclosed are pharmaceutical compositions comprising compounds of Formula I and methods of inhibiting immune or autoimmune diseases in a mammal.

GLUCOCORTIOCOID-SELECTIVE ANTIINFLAMMATORY AGENTS

Technical Field

5

10

15

20

25

30

35

The present invention relates to glucocorticoid receptor-selective benzopyrano[3,4-f]quinolines that are useful for treating immune or autoimmune diseases, to pharmaceutical compositions comprising these compounds, and to methods of inhibiting inflammation, inflammatory disease, immune, and autoimmune diseases in a mammal.

Background of The Invention

Intracellular receptors (IR's) are a class of structurally related proteins involved in the regulation of gene expression. The steroid hormone receptors are a subset of this superfamily whose natural ligands are typically comprised of endogenous steroids such as estradiol, progesterone, and cortisol. Man-made ligands to these receptors play an important role in human health and, of these receptors, the glucocorticoid receptor (GR) has an essential role in regulating human physiology and immune response. Steroids which interact with GR have been shown to be potent antiinflammatory agents. Despite this benefit, steroidal GR ligands are not selective. Side effects associated with chronic dosing are believed to be the result of cross-reactivity with other steroid receptors such as estrogen, progesterone, androgen, and mineralocorticoid receptors which have somewhat homologous ligand binding domains.

Selective GR modulators (e.g. repressors, agonists, partial agonists and antagonists) of the present disclosure can be used to influence the basic, life-sustaining systems of the body, including carbohydrate, protein and lipid metabolism, and the functions of the cardiovascular, kidney, central nervous, immune, skeletal muscle, and other organ and tissue systems, In this regard, prior art GR modulators have proven useful in the treatment of inflammation, tissue rejection, auto-immunity, various malignancies, such as leukemias and lymphomas, Cushing's syndrome, acute adrenal insufficiency, congenital adrenal hyperplasia, rheumatic fever, polyarteritis nodosa, granulomatous polyarteritis, inhibition of myeloid cell lines, immune proliferation/apoptosis, HPA axis suppression and regulation, hypercortisolemia, modulation of the Th1/Th2 cytokine balance, chronic kidney disease, stroke and spinal cord injury, hypercalcemia, hypergylcemia, acute adrenal insufficiency, chronic primary adrenal insufficiency, secondary adrenal insufficiency, congenital adrenal hyperplasia, cerebral edema, thrombocytopenia, and Little's syndrome.

GR modulators are especially useful in disease states involving systemic inflammation such as inflammatory bowel disease, systemic lupus erythematosus, polyartitis nodosa, Wegener's granulomatosis, giant cell arteritis, rheumatoid arthritis, osteoarthritis, hay fever, allergic rhinitis, urticaria, angioneurotic edema, chronic obstructive pulmonary disease, asthma,

tendonitis, bursitis, Crohn's disease, ulcerative colitis, autoimmune chronic active hepatitis, organ transplantation, hepatitis, and cirrhosis. GR active compounds have also been used as immunostimulants and repressors, and as wound healing and tissue repair agents.

GR modulators have also found use in a variety of topical diseases such as inflammatory scalp alopecia, panniculitis, psoriasis, discoid lupus erythematosus, inflamed cysts, atopic dermatitis, pyoderma gangrenosum, pemphigus vulgaris, bullous pemphigoid, systemic lupus erythematosus, dermatomyositis, herpes gestationis, eosinophilic fasciitis, relapsing polychondritis, inflammatory vasculitis, sarcoidosis, Sweet's disease, type 1 reactive leprosy, capillary hemangiomas, contact dermatitis, atopic dermatitis, lichen planus, exfoliative dermatitus, erythema nodosum, acne, hirsutism, toxic epidermal necrolysis, erythema multiform, cutaneous T-cell lymphoma.

Selective antagonists of the glucocorticoid receptor have been unsuccessfully pursued for decades. These agents would potentially find application in several disease states associated with Human Immunodeficiency Virus (HIV), cell apoptosis, and cancer including, but not limited to, Kaposi's sarcoma, immune system activation and modulation, desensitization of inflammatory responses, IL-1 expression, anti-retroviral therapy, natural killer cell development, lymphocytic leukemia, and treatment of retinitis pigmentosa. Cogitive and behavioral processes are also susceptible to glucocorticoid therapy where antagonists would potentially be useful in the treatment of processes such as cognitive performance, memory and learning enhancement, depression, addiction, mood disorders, chronic fatigue syndrome, schizophrenia, stroke, sleep disorders, and anxiety.

Summary of The Invention

In one embodimentof the present invention are compounds represented by

Formula I

5

10

15

20

25

30

I,

or a pharmaceutically acceptable salt or prodrug thereof, where R_1 is -L₁-R_A where L₁ is selected from

- (1) a covalent bond,
 - (2) -O-,
 - (3) $-S(O)_{t}$ where t is 0, 1, or 2,
 - (4) -C(X)-,

-NR7- where R7 is selected from

(5)

(a) hydrogen, (b) aryl cycloalkyl of three to twelve carbons, (c) alkanoyl where the alkyl part is one to twelve carbons, (d) 5 alkoxycarbonyl where the alkyl part is one to twelve carbons, (e) alkoxycarbonyl where the alkyl part is one to twelve carbons and is (f) substituted by 1 or 2 aryl groups, alkyl of one to twelve carbons, (g) alkyl of one to twelve carbons substituted with 1 or 2 substituents 10 (h) independently selected from aryl and (i) (ii) cycloalkyl of three to twelve carbons, (i) alkenyl of three to twelve carbons, 15 provided that a carbon of a carbon-carbon double bond is not attached directly to nitrogen, alkynyl of three to twelve carbons, (j) provided that a carbon of a carbon-carbon triple bond is not attached directly to nitrogen, -NRgC(X)NR9- where X is O or S and Rg and R9 are independently 20 (6) selected from (a) hydrogen, (b) aryl, (c) cycloalkyl of three to twelve carbons, 25[°] (d) alkyl of one to twelve carbons, (e) alkyl of one to twelve carbons substituted with 1 or 2 substituents independently selected from aryl or cycloalkyl of three to twelve carbons, **(f)** alkenyl of three to twelve carbons, provided that a carbon of a carbon-carbon double bond is not attached directly to nitrogen, 30 alkynyl of three to twelve carbons, (g) provided that a carbon of a carbon-carbon triple bond is not attached directly to nitrogen, -X'C(X)- where X is previously defined and X' is O or S, (7) -C(X)X'-,35 (8) -X'C(X)X"- where X and X' are previously defined and X" is (9) provided that when X is O, at least one of X' or X" is O,

(10) $-NR_8C(X)$ -, (11) $-C(X)NR_8-$ (12)-NR8C(X)X'-, (13)-X'C(X)NR8-, 5 -SO₂NR₈-, (14)(15)-NR₈SO₂-, and -NR₈SO₂NR₉-(16)where (6)-(16) are drawn with their right ends attached to RA and RA is selected from -OH, 10 (1) -OG where G is a -OH protecting group, (2) (3) -SH, -CO₂R₂₀ where R₂₀ is hydrogen or alkyl of one to twelve carbons, (4) (5) alkoxylcarbonyl, 15 (6) -CN, (7) halo, haloalkoxy of one to twelve carbons, (8) (9) perfluoroalkoxy of one to twelve carbons, (10)-CHO, (11)-NR7R7' where R7 is defined previously and R7' is selected from 20 (a) hydrogen, (b) aryl, cycloalkyl of three to twelve carbons, (c) (d) alkanoyl where the alkyl part is one to twelve carbons, alkoxycarbonyl where the alkyl part is one to twelve carbons, 25 (e) (f) · alkoxycarbonyl where the alkyl part is one to twelve carbons and is substituted by 1 or 2 aryl groups, alkyl of one to twelve carbons, (g) alkyl of one to twelve carbons substituted with 1 or 2 substituents (h) independently selected from 30 (i) aryl and (ii) cycloalkyl of three to twelve carbons, (i) alkenyl of three to twelve carbons, provided that a carbon of a carbon-carbon double bond is not attached directly to nitrogen, 35 (j) alkynyl of three to twelve carbons,

provided that a carbon of a carbon-carbon triple bond is not

attached directly to nitrogen,

- (12) $-C(X)NR_8R_9$ (13)-OSO₂R₁₁ where R₁₁ is selected from (a) aryl, (b) cycloalkyl of three to twelve carbons, 5 alkyl of one to twelve carbons, alkyl of one to twelve carbons substituted with 1, 2, 3, or 4 halo (d) substituents, and (e) perfluoroalkyl of one to twelve carbons, (14)alkyl of one to twelve carbons, 10 (15)alkenyl of two to twelve carbons, provided that a carbon of a carbon-carbon double bond is not attached directly to L₁ when L₁ is other than a covalent bond, (16)alkynyl of two to twelve carbons, provided that a carbon of a carbon-carbon triple bond is not attached 15 directly to L₁ when L₁ is other than a covalent bond, where (14), (15), and (16) can be optionally substituted with 1, 2, or 3 substituents independently selected from alkoxy of one to twelve carbons, (a) (b) provided that no two -OH groups are attached to the same carbon, 20 -SH, (c) (d) thioalkoxy of one to twelve carbons, provided that no two -SH groups are attached to the same carbon, (e) -CN, 25 (f) halo, -CHO, (g) (h) -NO₂, (i) haloalkoxy of one to twelve carbons, perfluoroalkoxy of one to twelve carbons, (i) 30 (k) -NR7R7', **(l)** =NNR7R7r, -NR7NR7'R7" where R7 and R7' are defined previously and (m) R7" is selected from
 - (i) hydrogen,
 - (ii) aryl,

- (iii) cycloalkyl of three to twelve carbons,
- alkanoyl where the alkyl part is one to twelve carbons, (vi)
- alkoxycarbonyl where the alkyl part is one to twelve carbons, (v)

(vi) alkoxycarbonyl where the alkyl part is one to twelve carbons substituted by 1 or 2 aryl groups, (vii) alkyl of one to twelve carbons, (viii) alkyl of one to twelve carbons substituted with 1 or 2 substituents independently selected from aryl or 5 cycloalkyl of three to twelve carbons, alkenyl of three to twelve carbons, (ix) provided that a carbon-carbon double bond is not attached directly to nitrogen, and 10 (x) alkynyl of three to twelve carbons, provided that a carbon-carbon triple bond is not attached directly to nitrogen, (n) -CO₂R₁₀ where R₁₀ is selected from (i) (ii) 15 aryl substituted with 1, 2, or 3 alkyl of one to twelve carbon substituents, (ii) cycloalkyl of three to twelve carbons, (iii) alkyl of one to twelve carbons, and (iv) alkyl of one to twelve carbons substituted with aryl or cycloalkyl of three to twelve carbons, 20 (o) -C(X)NR8R9, (p) $=N-OR_{10}$, (q) $=NR_{10}$, (r) $-S(O)_{t}R_{10}$, 25 (s) $-X'C(X)R_{10}$, (t) (=X), and (u) -OSO₂R₁₁, (17)cycloalkyl of three to twelve carbons, (18)cycloalkenyl of four to twelve carbons, provided that a carbon of a carbon-carbon double bond is not attached 30 directly to L1 when L1 is other than a covalent bond, where (17) and (18) can be optionally substituted with 1, 2, 3, or 4 substituents independently selected from alkyl of one to twelve carbons, (a) aryl, 35 (b) (c) alkoxy of one to twelve carbons, (d)

alkoxycarbonyl where the alkyl group is one to twelve carbons, and

(e)

- (f) -OH, provided that no two -OH groups are attached to the same carbon,
- (19) perfluoroalkyl of one to twelve carbons,
- (20) aryl, and
- 5 (21) heterocycle

10

15

35

where (20) and (21) can be optionally substituted with 1, 2, 3, 4, or 5 substituents independently selected from

- (a) alkyl of one to twelve carbons,
- (b) alkanoyloxy where the alkyl part is one to twelve carbons,
- (c) alkoxycarbonyl where the alkyl part is one to twelve carbons,
- (d) alkoxy of one to twelve carbons,
- (e) halo,
- (f) -OH,
 - provided that no two -OH groups are attached to the same carbon,
- (g) thioalkoxy of one to twelve carbons,
 - (h) perfluoroalkyl of one to twelve carbons,
 - (i) -NR7R7',
 - (j) $-CO_2R_{10}$,
 - (k) -OSO₂R₁₁, and
- 20 (l) (=X);

R2, R3, and R4 are independently hydrogen or R1; or

R₁ and R₂ together are -X*-Y*-Z*- where X* is -O- or -CH₂-, Y* is -C(O)- or -(C(R₁₂)(R₁₃))_V - where R₁₂ and R₁₃ are independently hydrogen or alkyl of one to twelve carbons and v is 1, 2, or 3, and Z* is selected from -CH₂-, -CH₂S(O)_t-, -CH₂O-, -CH₂NR₇-, -NR₇-, and -O-;

- 30 L2 is selected from
 - (1) a covalent bond,
 - (2) alkylene of one to twelve carbons,
 - (3) alkylene of one to twelve carbons substituted with 1 or 2 substituents independently selected from
 - (a) spiroalkyl of three to eight carbon atoms,
 - (b) spiroalkenyl of five or eight carbon atoms,
 - (c) oxo,
 - (d) halo, and

(e) -OH,
provided that no two -OH groups are attached to the same carbon,
(4) alkynylene of two to twelve carbons,
(5) -NR7-,
(6) -C(X)-,
(7) -O-, and

R5 is selected from

 $-S(O)_{t}$ -; and

10 (1) halo,

(8)

5

25

30

35

- (2) hydrogen,
- (3) $-C(=NR7)OR_{10}$,
- (4) -CN,

provided that when R5 is (1), (2), or (3), L2 is a covalent bond,

- 15 (5) alkyl of one to twelve carbons,
 - (6) alkynyl two to twelve carbons, provided that a carbon of a carbon-carbon triple bond is not attached directly to L3 when L3 is other than a covalent bond,
 - (7) cycloalkyl of three to twelve carbons,
- 20 (8) heterocycle,
 - (9) aryl

where (5)-(9) can be optionally substituted with 1, 2, 3, 4, or 5 substituents independently selected from

(a) -OH, provided that no two -OH groups are attached to the same carbon,

- (b) -SH,provided that no two -SH groups are attached to the same carbon,
- (c) -CN,
- (d) halo,
- (e) -CHO,
- (f) $-NO_2$,
- (g) haloalkoxy of one to twelve carbons,
- (h) perfluoroalkoxy of one to twelve carbons,
- (i) -NRg'R9' where Rg' and R9' are selected from
 - (i) hydrogen,
 - (ii) alkanoyl where the alkyl part is one to twelve carbons,
 - (iii) alkoxycarbonyl where the alkyl part is one to twelve carbons,
 - (iv) alkoxycarbonyl where the alkyl part is one to twelve carbons

		and is substituted with 1 or 2 phenyl substituents,
	(v)	cycloalkyl of three to twelve carbons,
	(vi)	alkyl of one to twelve carbons,
•	(vii)	alkyl of one to twelve carbons substituted with 1, 2, or 3
5		substituents independently selected from
		alkoxy of one to twelve carbons,
		cycloalkyl of three to twelve carbons,
		aryl, and
		alkoxycarbonyl where the alkyl group is one to twelve
10		carbons,
	(viii)	alkenyl of three to twelve carbons,
		provided that a carbon of a carbon-carbon double bond is
		not directly attached to nitrogen,
	(ix)	alkynyl of three to twelve carbons,
15		provided that a carbon of a carbon-carbon triple bond is not
		directly attached to nitrogen,
	(x)	-C(O)NRXRY where RX and RY are independently selected
		from hydrogen and alkyl of one to twelve carbons,
	(xi)	alkoxy of one to twelve carbons,
20	(xii)	aryl, and
	(xiii)	aryl substituted with 1, 2, 3, 4, or 5 substituents
		independently selected from
		alkyl of one to twelve carbons,
		alkanoyloxy where the alkyl part is one to twelve carbons,
25		alkoxycarbonyl where the alkyl part is one to twelve carbons,
		alkoxy of one to twelve carbons,
		halo,
		-OH
		provided that no two -OH groups are attached to the same
30		carbon,
		thioalkoxy of one to twelve carbons,
		perfluoroalkyl of one to twelve carbons,
		-NR7R7',
22		-CO ₂ R ₁₀ ,
35		-OSO ₂ R ₁₁ , and
	Dec	(=X), or
		d R9' together with the nitrogen atom to which they are
	attach	ed form a ring selected from

f	
3,	
alkanoyloxy where the alkyl group is one to twelve carbons,	
•	
not bond,	
ot	
1	

```
where (i), (ii), and (iii) can be optionally substituted with
                              cycloalkyl of three to twelve carbons,
                              -OH.
                              provided that no two -OH groups are attached to the same
5
                              carbon,
                              halo,
                              alkoxy of one to twelve carbons,
                              thioalkoxy of one to twelve carbons,
                              -NR8'R9',
10
                               -O-(CH<sub>2</sub>)<sub>q</sub>-Z-R<sub>10</sub>,
                               alkoxycarbonyl where the alkyl group is one to twelve
                               carbons,
                               alkanoyloxy where the alkyl group is one to twelve
                               carbons,
15
                               -NR7SO2-(alkyl of one to twelve carbons),
                               -OSO2-(alkyl of one to twelve carbons),
                               aryl, and
                              heterocycle,
                       (iv)
                               aryl,
                       (v)
                               aryl substituted with 1, 2, 3, 4, or 5 substituents
20
                               independently selected from
                                      alkyl of one to twelve carbons,
                                      halo,
                                      -NO2, and
                                      -OH,
25
                                      provided that no two -OH groups are attached to the
                                      same carbon,
                       (vi)
                               heterocycle, and
                       (vii)
                              heterocycle substituted with 1, 2, 3, 4, or 5 substituents
30
                               independently selected from
                                      alkyl of one to twelve carbons,
                                      halo,
                                      -NO2, and
                                      -OH,
35
                                      provided that no two -OH groups are attached to the
                                      same carbon,
                       -X'C(X)X''R_{10},
               (x)
                       -NHC(O)NHNH2,
               (y)
```

(10)

10

15

20

25

30

- (z) alkenyl of two carbons,
- (aa) $-C(=NR7)OR_{10}$, and
- (bb) -NR7(X)NR8'R9',

$$R_{19}$$
 R_{21}

5 provided that when R5 is (9), L3 is other than -NR7- or -O-,

where the carbon-carbon double bond is in the Z or E configuration, and R₁₉, R₂₀, and R₂₁ are independently selected from

- (a) hydrogen,
- (b) halo,
- (c) alkoxycarbonyl where the alkyl group is of one to twelve carbons,
 - (d) alkyl of one to twelve carbons, and
 - (e) alkyl of one to twelve carbons substituted with
 - (i) alkoxy of one to twelve carbons,
 - (ii) -OH,
 provided that no two -OH groups are attached to the same carbon,
 - (iii) -SH,
 provided that no two -SH groups are attached to the same carbon,
 - (iv) -CN,
 - (v) halo,
 - (vi) -CHO,
 - (vii) -NO₂,
 - (viii) haloalkoxy of one to twelve carbons,
 - (ix) perfluoroalkoxy of one to twelve carbons,
 - (x) -NR8'R9'
 - $(xi) = NNR_8 R_9$
 - (xii) -NR7NR8'R9',
 - (xiii) -CO₂R₁₀,
 - (xiv) $-C(X)NR_8R_9$,
 - $(xv) = N-OR_{10}$
 - (xvi) = NR_{10} ,
 - (xvii) $-S(O)_tR_{10}$,
 - (xviii) $-X'C(X)R_{10}$,
- (xix) (=X),
 - (xx) $-O-(CH_2)_q-Z-R_{10}$,

- (xxi) $-OC(X)NR_8R_9$, (xxii) -LBR30, (xxiii) alkanoyloxy where the alkyl group is one to twelve carbons, (xxiv) -OSO₂R₁₁, and 5 (xxv) -NR7(X)NR8'R9', or R₂₀ and R₂₁ together are selected from (a) cycloalkyl of three to twelve carbon atoms, (b) cycloalkenyl of four to twelve carbon atoms, and (allene) where R22 and R23 are independently (c) hydrogen or alkyl of one to twelve carbons, and 10 cycloalkenyl of four to twelve carbons where the cycloalkenyl group or the ring formed by R20 and R21 together can be optionally substituted with one or two substituents independently selected from 15 alkoxy of one to twelve carbons, (a) (b) -OH, provided that no two -OH groups are attached to the same carbon, (c) -SH, provided that no two -SH groups are attached to the same carbon, 20 (d) -CN, (e) halo, (f) -CHO, (g) -NO₂, (h) haloalkoxy of one to twelve carbons, (i) perfluoroalkoxy of one to twelve carbons, 25
 - (j) -NR₈'R9'
 - (k) $=NNR_8R_9$,
 - (l) -NR7NR8'R9',
 - (m) $-CO_2R_{10}$,
- 30 (n) -C(X)NR₈'R₉',
 - (o) = $N-OR_{10}$,
 - (p) = NR_{10} ,
 - (q) $-S(O)_{t}R_{10}$,
 - (r) $-X'C(X)R_{10}$,
- 35 (s) (=X),
 - (t) $-O-(CH_2)_q-Z-R_{10}$,

- (u) $-OC(X)NR_8R_9$,
- (v) -LBR30,
- (w) alkanoyloxy where the alkyl group is one to twelve carbons,
- (x) $-OSO_2R_{11}$, and
- (y) -NR7(X)NR8'R9';

R6 is hydrogen or alkyl of one to twelve carbon atoms; or

-L2-R5 and R6 together are selected from

10 (1) =O,

5

20

25

30

35

(2) Where Dis 1, 2, 3, or 4 and A is selected from

- (a) -CH₂-,
- (b) -O-,
- (c) $-S(O)_t$, and
- 15 (d) -NR7-, and

= $^{R_{26}}$

- (3) R₂₆' where the carbon-carbon double bond can be in the E or Z configuration and R₂₆ and R₂₆' are independently selected from
 - (a) hydrogen,
 - (b) alkenyl of three to twelve carbons,
 - (c) aryl,
 - (d) heterocycle,
 - (e) alkyl of one to twelve carbons,
 - (f) cycloalkyl of three to twelve carbons,
- (g) cycloalkenyl of four to twelve carbons, and
 - (h) cycloalkenyl of four to twelve carbons where (a)-(f) can be optionally substituted with 1, 2, 3, 4, or 5 substituents independently selected from
 - (i) alkoxy of one to twelve carbons,
 - (ii) -OH, provided that no two -OH groups are attached to the same carbon,
 - (iii) -SH, provided that no two -SH groups are attached to the same carbon,

```
.-CN,
                        (iv)
                        (v)
                               halo,
                        (vi)
                               -CHO,
                               -NO<sub>2</sub>,
                        (vii)
                               haloalkoxy of one to twelve carbons,
5
                        (viii)
                        (ix)
                               perfluoroalkoxy of one to twelve carbons,
                        (x)
                                -NR8'R9'
                               =NNR_8R_9
                        (xi)
                        (xii)
                               -NR7NR8'R9',
10
                        (xiii) -CO<sub>2</sub>R<sub>10</sub>,
                        (xiv) -C(X)NR_8R_9,
                        (xv) = N-OR_{10}
                        (xvi) =NR_{10},
                        (xvii) -S(O)_tR_{10},
15
                        (xviii) -X'C(X)R_{10},
                        (xix) (=X),
                        (xx) -O-(CH_2)_q-Z-R_{10},
                        (xxi) -OC(X)NR_8'R_9',
                        (xxii) -LBR30,
                        (xxiii) alkanoyloxy where the alkyl group is one to twelve carbons,
20
                        (xxiii) -OSO<sub>2</sub>R<sub>11</sub>, and
                        (xxiv) -NR7(X)NR8'R9';
```

R₁₆ and R₁₆ are independently hydrogen or alkyl of one to six carbons; or R₁₆ and R₁₆ together are alkenyl of two carbons;

a broken line represents the optional presence of a double bond, provided that when R_{16} and R_{16} together are alkenyl of two carbons, the double bond is not present;

Y is selected from carbon, nitrogen, and N⁺(=O⁻);

25

30

35

R₁₇ is absent or hydrogen or alkyl of one to six carbons, provided that when the double bond is present, and Y is nitrogen or N⁺(=O⁻), R₁₇ is absent; and

R18 and R18' are independently hydrogen or alkyl of one to six carbons; or R18 and R18' together are a cycloheteroalkyl ring or a cycloalkyl ring of three to

eight carbons.

In another embodiment of the invention are disclosed compounds of Formula II

$$\begin{array}{c|c}
R_3 & L_2 & R_5 \\
R_2 & R_1 & R_6 \\
\hline
II, & H
\end{array}$$

or a pharmaceutically acceptable salt or prodrug thereof, where

R₁, R₂, R₃, R₄, R₅, R₆, and L₂, are defined above.

In another embodiment of the invention are disclosed compounds of Formula III

$$\begin{array}{c|c}
R_{3} & R_{4} & L_{2} & R_{5} \\
R_{2} & R_{1} & R_{6} & R_{6} \\
\hline
 & H & H
\end{array}$$

10

5

or a pharmaceutically acceptable salt or prodrug thereof, where

R1, R2, R3, R4, R5, R6, and L2, are defined above.

In another embodiment of the invention are discolsed compounds of Formula IV

15

20

$$\begin{array}{c|c}
R_4 & L & R_5 \\
R_3 & R_6 & & & \\
R_2 & R_1 & & & \\
\end{array}$$

or a pharmaceutically acceptable salt or prodrug thereof, where

Y is nitrogen or N⁺(=O⁻), and

R₁, R₅, R₆, and L₂, are defined above.

In another embodiment of the invention are disclosed compounds of Formula V

$$R_{3}$$
 R_{2}
 R_{1}
 R_{1}
 R_{1}
 R_{1}
 R_{1}
 R_{1}
 R_{1}
 R_{1}
 R_{1}
 R_{1}

or a pharmaceutically acceptable salt or prodrug thereof, where R1, R5, and L2, are defined above;

5

10

15

20

25

R₁₆ and R₁₇ are independently hydrogen or alkyl of one to six carbons; and

R₁₈ and R₁₈ are independently hydrogen or alkyl of one to six carbons; or R₁₈ and R₁₈ together are a cycloheteroalkyl ring or a cycloalkyl ring of three to eight carbons;

In another embodiment of the invention are disclosed methods of selectively partially

antagonizing, antagonizing, agonizing or modulating the glucocorticoid receptor.

In another embodiment of the invention are disclosed methods of treating diseases

comprising administering an effective amount of a compound having Formula I.

In yet another embodiment of the invention are disclosed pharmaceutical compositions containing compounds of Formula I.

Compounds of this invention include, but are not limited to,

- 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinoline-1H-[1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-2,2,4,N-tetramethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinolin-10-amine,
- methyl 2,5-dihydro-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline-10-carboxylate,
- 10-ethenyl-2,5-dihydro-2,2,4-trimethyl-5-(2-propenyl)-1H-
- [1]benzopyrano[3,4f]quinoline,
- 30 10-ethynyl-2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-
 - [1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinolin-10-ol,

- 10-(difluoromethoxy)-2,5-dihydro-2,2,4-trimethyl-5-(2-propenyl)-1H-
- [1]benzopyrano[3,4-f]quinoline,
- 10-ethoxy-2,5-dihydro-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-2,2,4-trimethyl-5-phenyl-1H-[1] benzopyrano [3,4-f] quino line-10-ol
- 5 acetate (ester),
 - 5-(3-bromo-5-methylphenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
 - [1]benzopyrano[3,4-f]quinoline,
 - 3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)-phenol,acetate (ester),
- 3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)-phenol,
 - 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[[3-(methylthio)methoxy]phenyl]-1H-[1]benzopyrano[3,4-f]quinoline,
 - [3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)-
- phenyl] dimethylcarbamate,

- 5-[3-(2-furanyl)-5-methylphenyl]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-methyl-5-(1-morpholinyl)phenyl]-1H-[1]benzopyrano[3,4-f]quinoline,
- 20 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(phenylmethylene)-1H-[1]benzopyrano[3,4-f]quinoline,
 - 5-(3,5-dichlorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
 - [1]benzopyrano[3,4-f]quinoline,
 - 5-butyl-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 25 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-(trifluoromethyl)phenyl]-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(4-methoxyphenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 5-(3-chlorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(3-methylphenyl)-1H-[1]benzopyrano[3,4-f]quinoline,
 - (\pm) -2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinoline,
- (±)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 5-(3,5-dimethylphenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

5-(4-chlorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

- 5-(3,4-dimethylphenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
- [1]benzopyrano[3,4-f]quinoline,
- 5 5-(4-fluorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 5-[3,5-bis(trifluoromethyl)phenyl]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - (-)-5-(3,5-dichlorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
- 10 [1]benzopyrano[3,4-f]quinoline,
 - (+)-5-(3,5-dichlorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 5-(3,5-difluorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-10-methoxy-2,2,4,N-tetramethyl-N-phenyl-1H-[1]benzopyrano[3,4-f]quinolin-5-amine,
 - (-)2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline,
 - (+)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-flquinoline,
 - 2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 4-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)-N,N-dimethylbenzenamine,
 - 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(5-methoxy-2-thienyl)-1H-
- 25 [1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(5-propyl-2-thienyl)-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[4-(1-morpholinyl)phenyl]-1H-[1]benzopyrano[3,4-f]quinoline,
- 1-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)-3,3-dimethyl-2-butanone,
 - 2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline-5-carbonitrile,
 - 1-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1] benzopyrano [3,4-f] quino lin-5-yl)-2-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1] benzopyrano [3,4-f] quino lin-5-yl]-2-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1] benzopyrano [3,4-f] quino lin-5-yl]-2-dihydro-10-methoxy-2,
- 35 propanone,

20

methyl-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline-5-acetate,

2-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)-1-phenylethanone,

- 5-[2-(chloromethyl)-2-propenyl]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 5 2,5-dihydro-10-methoxy-2,2,4-trimethyl-(-methylene-1H-[1]benzopyrano[3,4-f]quinoline-5-propanol, acetate (ester),
 - 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(4-methylphenyl)-1H-[1]benzopyrano[3,4-f]quinoline,
 - 5-(3-fluoro-4-methylphenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
- 10 [1]benzopyrano[3,4-f]quinoline,
 - 5-(3-bromophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(phenylmethyl)-1H-[1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-propyl-1H-[1]benzopyrano[3,4-f]quinoline, 5-(4-fluorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 5-(3-fluorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-10-methoxy-2,2,4,5-tetramethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(1-methylethyl)-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-methylpropyl)-1H-[1]benzopyrano[3,4-f]quinoline,
- 5-ethyl-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline-5-carboximidic acid ethyl ester,
 - 2,5-dihydro-10-methoxy-2,2,4-trimethyl-(-methylene 1H-[1]benzopyrano[3,4-f]quinoline-5-propanol,
- 2,5-dihydro-10-methoxy-2,2,4,N,N-pentamethyl-1H-[1]benzopyrano[3,4-f]quinoline-5-acetamide,
 - 2,5-dihydro-10-methoxy-2,2,4,N,N-pentamethyl-1H-[1]benzopyrano[3,4-f]quinoline-5-ethanamine,
 - N-cyclopropyl-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
- 35 f]quinoline-5-acetamide,
 - 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-propynyl)-1H-[1]benzopyrano[3,4-f]quinoline,

5-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)-2(5H)-furanone,

- 5-(3-butenyl)-2,5-dihdyro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline-5-propanol, 10-ethyl-2,5-dihydro-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-2,2,4,10-tetrametnyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinoline, 5-(3,5-dichlorophenyl)-10-ethyl-2,5-dihydro-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 5-(3,5-dichlorophenyl)-2,5-dihydro-2,2,4,N-tetramethyl-1H-[1]benzopyrano[3,4-f]quinolin-10-amine,
 - 5-(3,5-dichlorophenyl)-2,5-dihydro-2,2,4-trimethyl-N-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinolin-10-amine,
 - 2,5-dihydro-2,2,4-trimethyl-5-phenyl-10-(2-propynyloxy)-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-2,2,4-trimethyl-5-phenyl-10-(2-propenyloxy)-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline-10-methanol,
- 20 2,5-dihydro-2,2,4-trimethyl-5-(2propenyl)-1H-[1]benzopyrano[3,4-f]quinoline-10-carboxylic acid,
 - 5-(3,5-dichlorophenyl)-10-ethoxy-2,5-dihydro-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 5-(3,5-dichlorophenyl)-2,5-dihydro-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-10-ol,
 - 5-(3,5-dichlorophenyl)-2,5-dihydro-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-10-yl]methylcarbonate,
 - 2,5-dihydro-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinolin-10-ol, 10-(bromodifluoromethoxy)-2,5-dihyro-2,2,4-trimethyl-5-(2-propenyl)-1H-
- 30 [1]benzopyrano[3,4-f]quinoline,

15

- [3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)-phenyl] methylcarbonate,
- 2,5-dihydro-10-methoxy-5-(3-methoxyphenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-(2-propenyloxy)phenyl]-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-(phenylmethoxy)phenyl]-1H-[1]benzopyrano[3,4-f]quinoline,

5-[3-(cyclopropylmethoxy)phenyl]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-

- [1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-[2-(1-piperidinyl)ethoxy]pheny]-1H-[1]benzopyrano[3,4-f]quinoline,
- 5 5-(3-hexyloxyphenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 5-[3-(2,4-dinitrophenoxy)phenyl]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-(2-propynyloxy)phenyl]-1H-
- 10 [1]benzopyrano[3,4-f]quinoline,
 - 3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)phenol, 4-methylbenzenesulfonate (ester),
 - 4-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)phenolacetate (ester),
- 4-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)-phenol,
 - 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[[4-(methylthio)methoxy]phenyl]-1H-[1]benzopyrano[3,4-f]quinoline,
 - [4-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-
- 20 yl)phenyl] dimethylcarbamate,

- 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[4-(phenylmethoxy)phenyl]-1H-10-methoxy-2,2,4-trimethyl-5-[4-(phenylmethoxy)phenyl]-1H-10-methoxy-2,2,4-trimethyl-5-[4-(phenylmethoxy)phenyl]-1H-10-methoxy-2,2,4-trimethyl-5-[4-(phenylmethoxy)phenyl]-1H-10-methoxy-2,2,4-trimethyl-5-[4-(phenylmethoxy)phenyl]-1H-10-methoxy-2,2,4-trimethyl-5-[4-(phenylmethoxy)phenyl]-1H-10-methoxy-2,2,4-trimethyl-5-[4-(phenylmethoxy)phenyl]-1H-10-methoxy-2,2,4-trimethyl-5-[4-(phenylmethoxy)phenyl]-1H-10-methoxy-2,2,4-trimethyl-5-[4-(phenylmethoxy)phenyl]-1H-10-methoxy-2,2,4-trimethyl-5-[4-(phenylmethoxy)phenyl]-1H-10-methoxy-2,2,4-trimethyl-5-[4-(phenylmethoxy)phenyl]-1H-10-methoxy-2,2,4-trimethyl-5-[4-(phenylmethoxy)phenyl]-1H-10-methoxy-2,2,4-trimethyl-5-[4-(phenylmethoxy)phenyl]-1H-10-methoxy-2,2,4-trimethyl-5-[4-(phenylmethoxy)phenyl]-1H-10-methoxy-2,2,4-trimethyl-5-[4-(phenylmethoxy)phenyl]-1H-10-methoxy-2,2,4-trimethyl-5-[4-(phenylmethoxy)phenyl]-1H-10-methoxy-2,2,4-trimethyl-5-[4-(phenylmethoxy)phenyl]-1H-10-methoxy-2,4-trimethyl-5-[4-(phenylmethoxy)phenyl]-1H-10-methoxy-2,4-trimethyl-5-[4-(phenylmethoxy)phenyl]-1H-10-methoxy-2,4-trimethyl-5-[4-(phenylmethoxy)phenyl]-1H-10-methoxy-2,4-trimethyl-5-[4-(phenylmethoxy)phenyl]-1H-10-methoxy-2,4-trimethyl-5-[4-(phenylmethoxy)phenyl]-1H-10-methoxy-2,4-trimethyl-5-[4-(phenylmethoxy)phenyl-5-[4-(phenyl
- [1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-(methoxymethoxy)phenyl]-1H-
- [1]benzopyrano[3,4-f]quinoline,
- 25 [(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)phenyl] 1-morpholinecarboxylate,
 - 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-[(methylsulfinyl)methoxy]phenyl]-1H-[1]benzopyrano[3,4-f]quinoline,
 - O-[3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)phenyl] ester,
 - 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-(methylthio)phenyl]-1H-[1]benzopyrano[3,4-f]quinoline,
 - O-[3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)phenyl] methylcarbonothioate,
- 35 [3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl]-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)phenyl] trifluoromethanesulfonate,
 - 5-[3-(4,5-dihydro-4,4-dimethyl-2-oxazolyl)phenyl]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

ethyl 3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)benzoate,

- 3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)benzoic acid,
- 5 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-methyl-5-(2-propenyl)phenyl]-1H-[1]benzopyrano[3,4-f]quinoline,
 - 1-[3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)-5-methylphenyl]ethanone,
 - 3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)-5-trimethylbenzenemethanol,
 - 5-[3-(2-furanyl)phenyl]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-methyl-5-(1H-pyrrolidin-1-yl)phenyl]-1H-[1]benzopyrano[3,4-f]quinoline,
- 3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-methyl)-5,N-dimethylbenzenamine,
 - 3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)-5-methyl-N-(2-propenyl)benzamide,
- 20 (2-methoxyethyl)-5-methylbenzenamine,

- 3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)-N-(2-propenyl)benzenamine,
- N'-[3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)-5-methylphenyl]-N,N-dimethylurea,
- N-[3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)phenyl]benzenemethanamine,
 - 5-[(3,5-dichlorphenyl)methylene]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 5-[(4-chlorophenyl)methylene]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
- 30 [1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[[3-(trifluoromethyl)-phenyl]methylene]-1H-
 - [1]-benzopyrano[3,4-f]quinoline,
 - 5-[(2,6-difluorophenyl)methylene]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
 - [1]benzopyrano[3,4-f]quinoline,
- 5-[(2-chlorophenyl)methylene]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
 - [1]benzopyrano[3,4-f]quinoline,
 - 5-[(2,6-dichlorophenyl)methylene]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
 - [1]benzopyrano[3,4-f]quinoline,

5-[(2-fluorophenyl)methylene]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

- 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[(4,5-dihydro-4,4-dimethyl-2-oxazolyl)methylene]-1H-[1]benzopyrano[3,4-f]quinoline,
- 5 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-pyridinylmethylene)-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-thienyl)-1H-[1]benzopyrano[3,4-flquinoline,
 - 2,5-dihydro-9,10-dimethoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-
- 10 f]quinoline,
 - 5-(2-cyclohexen-1-yl)-2,5-dihydro-9,10-dimethoxy-2,2,4-trimethyl-1H-
 - [1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(3-methyl-3-butenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-10-methoxy-5-(5,5-dimethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - rel (5R,2'R) 2,5-dihydro-10-methoxy-5-(2-oxo-3-tetrahydropyranyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - anti(5R, 2'S) 2,5-dihydro-10-methoxy-5-(2-oxo-3-tetrahydropyranyl)-2,2,4-trimethyl-
- 20 1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(3-cyclopentenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 25 2,5-dihydro-10-methoxy-5-(3-butenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(1-ethenyl-1-cyclohexyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(4,4-dimethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-
- 30 [1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(1-methylene-2-cyclohexyl)-2,2,4-trimethyl-1H-
 - [1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(1-oxo-2-cyclohexyl)-2,2,4-trimethyl-1H-
 - [1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-10-methoxy-5-(3-cyclooctenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(3-cycloheptenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

2,5-dihydro-10-methoxy-5-(1-cyclohexenylmethyl)-2,2,4-trimethyl-1H-

- [1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-10-methoxy-5-(3,3-dimethyl-6-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-10-methoxy-5-(2-bromo-3-propenyl)-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline,

 rel(5R,3'R) 2,5-dihydro-10-methoxy-5-(1-hydroxymethyl-3-cyclohexenyl)-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- rel(5R,3'S) 2,5-dihydro-10-methoxy-5-(1-hydroxymethyl-3-cyclohexenyl)-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(3-hydroxymethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(3-indolyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- rel (5S,3'S) 2,5-dihydro-10-methoxy-5-(1-methyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - rel (5R,3'S) 2,5-dihydro-10-methoxy-5-(1-methyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - (-) (5S,3'S) 2,5-dihydro-10-methoxy-5-(1-methyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - (-) (5S, 3'R) 2,5-dihydro-10-methoxy-5-(1-hydroxymethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - (+) (5R, 3'S) 2,5-dihydro-10-methoxy-5-(1-hydroxymethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- (-)-(5S, 3'R) 2,5-dihydro-10-methoxy-5-(1-methyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - (+)-(5R, 3'S) 2,5-dihydro-10-methoxy-5-(1-methyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(1-chloromethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-
- 30 [1]benzopyrano[3,4-f]quinoline,

- rel (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-methoxymethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- rel (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-methylthiomethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- rel (5R, 3'S) 2,5-dihydro-10-methoxy-5-(1-acetoxymethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - rel (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-acetoxymethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

rel (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-methoxymethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

- rel (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-(N,N-dimethylamino)methyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- s rel (5R, 3'S) 2,5-dihydro-10-methoxy-5-(1-methylthiomethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 rel (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-(N-morpholino)methyl-3-cyclohexenyl)-
 - 2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - rel (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-(N-methyl-N-methylsulfonylamino)methyl-
- 3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, rel (5R, 3'S) 2,5-dihydro-10-methoxy-5-(1-(N,N dimethylamino)methyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, rel (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-(N-methylamino)methyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-10-methoxy-5-(2-methyl-3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(1,3-butadien-2-yl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(2-carbomethoxy-3-propenyl)-2,2,4-trimethyl-1H-
- 20 [1]benzopyrano[3,4-f]quinoline,

- 2,5-dihydro-10-methoxy-5-(1,2-dihydroxy-3-propyl)-2,2,4-trimethyl-1H-
- [1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-10-methoxy-5-(1,2-epoxy-3-propenyl)-2,2,4-trimethyl-1H-
- [1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-10-methoxy-5-(1-(N-phthalimido)-3-propyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(1-amino-3-propyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(1-(hydrazinocarbonylamino)-3-propyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - (E) 2,5-dihydro-10-methoxy-5-(2-carbomethoxy-1-ethenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - (Z)-2,5-dihydro-10-methoxy-5-(1-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-flquinoline,
- (E) 2,5-dihydro-10-methoxy-5-(3-hydroxy-1-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - (E) 2,5-dihydro-10-methoxy-5-(3-(N,N-dimethylaminocarbonyloxy)-1-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

(E) 2,5-dihydro-10-methoxy-5-(3-methoxymethoxy-1-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

- 2,5-dihydro-10-methoxy-5-(3-hydroxy-3-propenyl)-2,2,4-trimethyl-1H-
- [1]benzopyrano[3,4-f]quinoline,
- 5 methyl 2-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl) acetyl hydroxamate,
 - 2-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl) acetaldehyde,
 - 2,5-dihydro-10-methoxy-5-(2-cyclohexylidenylethyl)-2,2,4-trimethyl-1H-
- 10 [1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(2-cyclopentylidenylethyl)-2,2,4-trimethyl-1H-
 - [1]benzopyrano[3,4-f]quinoline,
 - 2, 5-dihydro-10-methoxy-5-(2-cycloheptylidenylethyl)-2, 2, 4-trimethyl-1 H-10-methoxy-5-(2-cycloheptylidenylethyl)-2, 4-trimethyl-1 H-10-methoxy-5-(2-cycloheptylidenylethyl-1 H-10-methoxy-5-(2-cycloheptylidenylet
 - [1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-10-methoxy-5-(3-methyl-2-butenyl)-2,2,4-trimethyl-1H-
 - [1]benzopyrano[3,4-f]quinoline,
 - trans 2,5-dihydro-10-methoxy-5-(2-butenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - trans 2,5-dihydro-10-methoxy-5-(2-penten-1-yl)-2,2,4-trimethyl-1H-
- 20 [1]benzopyrano[3,4-f]quinoline,

 - [1]benzopyrano[3,4-f]quinoline,
 - (E) methyl 2-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl) 2-butenoate,
- (E) 2,5-dihydro-10-methoxy-5-(4-hydroxy-2-buten-1-yl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - (E) 2,5-dihydro-10-methoxy-5-(4-(N,N-dimethylaminocarbonyloxy)-2-buten-1-yl)-
 - 2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - $(E)\ 2,5-{\rm dihydro-10-methoxy-5-(4-(N-methylaminocarbonyloxy)-2-buten-1-yl)-2,2,4-line (E)\ 2,5-{\rm dihydro-10-methylaminocarbonyloxy-1-yl)-2,2,4-line (E)\ 2,5-{\rm dihydro-10-methylaminocarbonyloxy-1-yl)-2,2,4-line (E)\ 2,5-{\rm dihydro-10-methylaminocarbonyloxy-1-yl)-2,2,3-{\rm dihydro-10-methylaminocarbonyloxy-1-yl)-2,2,3-{\rm dihydro-10-methylaminocarbonyloxy-1-yl)-2,2,3-{\rm$
- trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - (E) 2,5-dihydro-10-methoxy-5-(2-butenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(2-hydroxyethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-10-methoxy-5-(2-(N-benzylcarbonyloxy)ethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(2-(N-morpholinocarbonyloxy)ethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

2,5-dihydro-10-methoxy-5-(2-(N-(2-methoxyethyl)aminocarbonyloxy)ethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

- 2,5-dihydro-10-methoxy-5-(2-(N-methyaminocarbonyloxyoxy)ethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 5 2,5-dihydro-10-methoxy-5-(2-(N,N-dimethylaminocarbonyloxy)ethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(2-methoxymethoxyethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(2,2-dimethylethoxycarbonylamino)methyl)-2,2,4-trimethyl-
- 10 1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(aminomethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(ethoxycarbonylamino)methyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-10-methoxy-5-(carboethoxy)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(cyclopentyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(1-methylpropa-1,2-dienyl)-2,2,4-trimethyl-1H-
- 20 [1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(3,4,5-trifluorophenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(cyclohexyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 25 2,5-dihydro-10-methoxy-5-(2-pyridyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(3-pyridyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(4-pyridyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
- 30 flquinoline,
 - (10-chloro-9-hydroxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-
 - [1]benzopyrano[3,4-f]quinoline,
 - 10-chloro-9-hydroxy-5-phenyl-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline,
- 10-chloro-9-hydroxy-5-(3-trifluoromethylphenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline,
 - 10-chloro-9-hydroxy-5-(3,5-dimethylphenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline,

rel-(5S, 3³R)-9-hydroxy-10-methoxy-5-[1-hydroxymethyl-3-cyclohexenyl]-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline,

- (-) 2,5(S)-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(3S-cyclopenteny1)-1H-[1]benzopyrano[3,4-f]quinoline,
- (-) 2,5(S)-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(3R-cyclopenteny1)-1H-[1]benzopyrano[3,4-f]quinoline,
 10-chloro-9-hydroxy-5-(3,5-dichlorophenyl)-2,2,4-trimethyl-1H-2,5-dihydro[1]benzopyrano[3,4-f]quinoline,
 - (+)-(5R, 3'S) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(3-cyclopenteny1)-1H-
- 10 [1]benzopyrano[3,4-f]quinoline,
 - (+)-(5R, 3'R)2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(3-cyclopenteny1)-1H-[1]benzopyrano[3,4-f]quinoline,
 - 10-chloro-9-hydroxy-5-(3,4-difluorophenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline,
- 9-10-methylenedioxy-5-phenyl-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline,
 - 5-(3-propenyl)-9-chloro-10-ethenyl-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline,
 - 9-chloro-10-methoxy-5-phenyl-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-
- 20 f]quinoline,
 - 5-(3-propenyl)-9-chloro-10-difluoromethoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline,
 - 9-chloro-10-difluoromethoxy-5-phenyl-2,2,4-trimethyl-2,5-dihydro-1H-
 - [1]benzopyrano[3,4-f]quinoline,
- 8-fluoro-10-methoxy-5-phenyl-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline,
 - 5-(3-propenyl)-8-fluoro-10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-
 - [1]benzopyrano[3,4-f]quinoline,
 - (10-methoxy-9-fluoro-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-
- 30 [1]benzopyrano[3,4-f]quinoline,
 - 10-methoxy-9-hydroxy-5-(3-propenyl)-2, 2, 4-trimethyl-1 H-2, 5-dihydro-10-methoxy-9-hydroxy-5-(3-propenyl)-2, 2, 4-trimethyl-1 H-2, 5-dihydro-10-methoxy-9-hydroxy-1-methoxy-9-hydroxy-1-methoxy-9-hydroxy-1-methoxy-9-hydroxy-1-methoxy-9-hydroxy-1-methoxy-9-hydroxy-1-methoxy-9-hydroxy-1-methoxy-9-hydroxy-1-methoxy-9-hydroxy-1-methoxy-9-hydroxy-1-methoxy-9-hydroxy-1-methoxy-9-hydroxy-1-methoxy-9-hydroxy-1-methoxy-9-hydro
 - [1]benzopyrano[3,4-f]quinoline,
 - (+/-) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-cyclohexeny1)-1H-[1]benzopyrano[3,4-f]quinoline,
- (+/-) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(1-methylcyclohexen-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline,
 - (-) (5S, 3'S)-9-hydroxy-5-[1-methyl-3-cyclohexenyl]- 10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline,

(+) (5R,3'R)-9-hydroxy-5-[1-methyl-3-cyclohexenyl]- 10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline,

- (+) (5R,3'S)-9-hydroxy-5-[1-methyl-3-cyclohexenyl]- 10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline,
- (-) (5S,3'R)-9-hydroxy-5-[1-methyl-3-cyclohexenyl]- 10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline,

 rel-(5S,3'R)-9-hydroxy-5-[1-hydroxymethyl-3-cyclohexenyl]-10-methoxy-2,2,4
 trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline,

 (+/-) (5S,3'R) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(1-
- methylcyclohexen-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline,

 rel-(5S,3'R)-9-hydroxy-5-[1-methoxymethyl-3-cyclohexenyl]- 10-methoxy-2,2,4
 trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline,

 2,5-dihydro-9-hydroxy-10-methoxy-5-propyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- (-) (5S,3'S) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-cyclohepteny1)-1H-[1]benzopyrano[3,4-f]quinoline,
 - (-) (5S,3'R) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-cyclohepteny1)-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-hydroxy-10-methoxy -2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-flquinoline,
 - 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3,5-difluorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline,

20

- 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3,4,5-trifluorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline,
- 5-butyl-2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - (-) (5S,3'S) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-cyclopenteny1)-1H-[1]benzopyrano[3,4-f]quinoline,
 - (-) (5S,3'R) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-cyclopenteny1)-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3,4-difluorophenyl)-1H-
 - [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(4-fluorophenyl)-1H-
 - [1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-trifluoromethylphenyl)-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-5-bistrifluoromethylphenyl)-1H-[1]benzopyrano[3,4-f]quinoline,

2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-trifluoromethyl-4-chlorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline,

- 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-methylpropyl)-1 H-10-methylpropyl-1 H-10-methylpro
- [1]benzopyrano[3,4-f]quinoline,
- 5 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-fluoro-4-chlorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline,

 - [1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-hydroxy-10-methoxy-5-(phenylmethyl)-2,2,4-trimethyl-1H-
- 10 [1]benzopyrano[3,4-f]quinoline,
 - (-) (5S,3'R) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-[1-ethyl-3-cyclohexenyl]-1H-[1]benzopyrano[3,4-f]quinoline,
 - (-) (S) 5-cyclopentyl-2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- (+) (R) 5-cyclopentyl-2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2, 5-dihydro-9-hydroxy-10-methoxy-5-(3-propynyl)-2, 2, 4-trimethyl-1 H-10-methoxy-10-m
 - [1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-propyl)-1H-
- 20 [1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(5-methoxy-2-thienyl)-1H-[1]benzopyrano[3,4-f]quinoline,
 - (±) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2,3,4,5,6-pentafluorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline,
- 25 (+/-) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5(S)-(3(S)-1-hydroxymethylcyclopenten-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline, (+/-) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5(S)-(3(S)-1
 - methylcarboxylatecyclopenten-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline,
 - (-) (5S,3'S) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-cyclohexeny1)-1H-
- 30 [1]benzopyrano[3,4-f]quinoline,
 - (-) (5S,3'R) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-cyclohexeny1)-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-thienyl)-1H-
 - [1]benzopyrano[3,4-f]quinoline,
- (±) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-methylphenyl) -1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-acetoxymethyl-3-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline,

(+) (5R,3'S) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-[1-ethyl-3-cyclohexenyl]-1H-[1]benzopyrano[3,4-f]quinoline,

- 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-cyclohexyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 5 2,5,5-trihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-hydroxymethyl-3-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline,
 - methyl 2-[2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
- 10 f]-5-quinolinyl] acetate,
 - (Z) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-butenyl)-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-methyl-2-butenyl)-1H-[1]benzopyrano[3,4-f]quinoline,
- (+) (5S,3'S) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-cyclohexeny1)-1H-[1]benzopyrano[3,4-f]quinoline,
 - (+) (5R,3'R) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-cyclohexeny1)-1H-[1]benzopyrano[3,4-f]quinoline,
 - (+) (5R,3'S) 2,5(R)-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-
- 20 cyclopenteny1)-1H-[1]benzopyrano[3,4-f]quinoline,
 - (+) (5R,3'R) 2,5(R)-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-cyclopentenyl)-1H-[1]benzopyrano[3,4-f]quinoline,
 - rel-(5S)-9-hydroxy-5-[(3R)-(1-methoxycarbonyl)cyclohexen-3-yl]- 10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline,
- 25 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-methyl-3-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline,
 - 9,10-Dimethoxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline,
 - 9,10-Dimethoxy-5-[3-cyclohexenyl]-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-
- 30 [1]benzopyrano[3,4-f]quinoline,
 - 10-methoxy-9-ethoxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-
 - [1]benzopyrano[3,4-f]quinoline,
 - 10-methoxy-9-(3-propenyloxy)-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-
 - [1]benzopyrano[3,4-f]quinoline,
- 10-methoxy-9-(3-propynyloxy)-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-acetoxy-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-
 - [1]benzopyrano[3,4-f]quinoline,

2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-methoxy-2,2,4-trimethyl-

- 5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline,
- 7-bromo -5-[3-cyclohexenyl]- 10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-
- [1]benzopyrano[3,4-f]quinoline,
- 5 10-methoxy-7-bromo-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-
 - [1]benzopyrano[3,4-f]quinoline,
 - 7-bromo-5-[1-methyl-3-cyclohexenyl]- 10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-
 - [1]benzopyrano[3,4-f]quinoline,
 - 10-methoxy-9-bromo-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-
- 10 [1]benzopyrano[3,4-f]quinoline,
 - 7,9-Dibromo-10-methoxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-
 - [1]benzopyrano[3,4-f]quinoline,
 - 7,9-Dibromo-5-[cyclohexen-3-yl]- 10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-
 - [1]benzopyrano[3,4-f]quinoline,
- 7,9-Dibromo-5-[1-methyl-3-cyclohexenyl]-10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-
 - [1]benzopyrano[3,4-f]quinoline,
 - 10-methoxy-7-(2-ethenyl)-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-
 - [1]benzopyrano[3,4-f]quinoline,
 - 10-methoxy-7-methyl-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-
- 20 [1]benzopyrano[3,4-f]quinoline,
 - 10-methoxy-7-acetyl-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-
 - [1]benzopyrano[3,4-f]quinoline,
 - (+/-) 2,5-dihydro-9-methyl-10-methoxy-2,2,4-trimethyl-5-(1-methylcyclohexen-3-y1)-
 - 1H-[1]benzopyrano[3,4-f]quinoline,
- 25 10-methoxy-7-methyl-9-methyl-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-
 - [1]benzopyrano[3;4-f]quinoline,
 - 10-chloro-5-(3-propenyl)-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline,
 - (+/-) 2,5-dihydro-10-chloro-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-
- 30 f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(3-(N-methyl-N-
 - (carbomethoxymethyl)aminocarbonyloxy)phenyl)-2,2,4-trimethyl-1H-
 - [1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(3-(N-methyl-N-(N-
- methylcarbonyl)aminocarbonyloxy)phenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(3-(N-methylaminocarbonyloxy)phenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

- [1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-10-methoxy-5-(3-(2-methanesulfonyloxyethyl)phenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 5 2,5-dihydro-10-methoxy-5-(3-(2-methythioethyl)phenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(3-(2-(N,N-dimethylaminocarbonyloxy)ethyl)phenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(3-(2-(N,N-dimethylamino)ethyl)phenyl)-2,2,4-trimethyl-1H-
- 10 [1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-cyclopropyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-ethenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, trans 2,5-dihydro-10-methoxy-5-(2-phenylethenyl)-2,2,4-trimethyl-1H-
- 15 [1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-5-(2-phenylethynyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - cis 2,5-dihydro-10-methoxy-5-(2-phenylethenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 20 2,5-dihydro-10-methoxy-5-(2-methylpropenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - trans 2,5-dihydro-10-methoxy-5-(1-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-(2-furanyl)-5-(3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
- 25 flquinoline,
 - 2,5-dihydro-10-cyano-5-(3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-carboxy-5-(3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-10-(2-hydroxymethyl)-5-(3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-formyl-5-(3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-aminomethyl-5-(3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
- 35 f]quinoline,
 - 2,5-dihydro-10-methoxymethyl-5-(3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-ethenyl-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

2,5-dihydro-10-ethynyl-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, methyl 2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline-10-carboxylate,

- 2,5-dihydro-10-(hydroxymethyl)- 5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-10-formyl-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-(methoxymethyl)-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-10-ethenyl-5-oxo-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 5-(3-cyclohexenyl)-2,5-dihydro-10-ethenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

5

15

- 2,5-dihydro-10-ethenyl-5-[1-methyl-3-cyclohexenyl]-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-5-(3-propenyl)-10-methylthio-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-flquinoline,
- 2,5-dihydro-5-(3-propenyl)-10-methylthio-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- (+/-) 2,5-dihydro-9-(4-acetamidobutanoyloxy)-10-methoxy-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 10-(difluoromethoxy)-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 10-(bromodifluoromethoxy)-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 10-(bromodifluoromethoxy)-5-phenyl-2,2-dimethyl-4-methylene-2,3,4,5-tetrahydro-1H-chromeno[3,4-f]quinoline,
 - 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-((2-fluorophenyl)methyl) -1H-[1]benzopyrano[3,4-f]quinoline,
 - 10-methoxy-5-(5-methylisoxazol-3-yl)methyldene-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 10-methoxy-5-(3-methylisoxazol-5-yl)methyldene-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 10-methoxy-5-(4,5-dimethyl-1,3-oxazol-2-yl)methyldene-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 10-methoxy-5-(6-chloropyridin-2-yl) methyidene-2, 5-dihydro-5-phenyl-2, 2, 4-trimethyl-2, 3-trimethyl-2, 4-trimethyl-2, 3-trimethyl-2, 3-tr
- 1H-[1]benzopyrano[3,4-f]quinoline, 10-methoxy-5-(pyridin-2-yl)methyidene-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

10-methoxy-5-(but-3-enylidene)-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-

- [1]benzopyrano[3,4-f]quinoline,
- 10-methoxy-5-(1-methylpropylidene)-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-
- [1]benzopyrano[3,4-f]quinoline,
- 5 10-methoxy-5-(1-butylidene)-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-
 - [1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-2,2,4-trimethyl-3-oxide-5-phenyl-1H-[1]benzopyrano[3,4-f]quinazoline,
 - 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-
- 10 f|quinazoline,
 - 2,5-dihydro-10-methoxy-2,2-[spiro(tetrahydro-4-pyranyl)]-4-methyl-5-allyl-1H-
 - [1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-2,2-[spiro(hexyl)]-5-allyl-1H-[1]benzopyrano [3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-2,2-diethyl-4-methyl-5-allyl-1H-[1]benzopyrano[3,4-
- 15 flquinoline,
 - 2,5-dihydro-10-methoxy-2,2,3,4-tetramethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-2,2-dimethyl-4-ethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-10-methoxy-2,2,3-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 20 Z-5-(benzylidenyl)-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H-2,5-dihydro-
 - [1]benzopyrano[3,4-f]quinoline,
 - Z-5-(2,5-difluorobenzylidenyl)-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline,
 - Z-5-(3-fluorobenzylidenyl)-10-chloro-9-hydroxy-2,2,4-trimethyl-2,5-dihydro-1H-
- 25 [1]benzopyrano[3,4-f]quinoline,
 - Z-10-chloro-9-hydroxy-5-(2-picolinylidenyl)-2,2,4-trimethyl-2,5-dihydro-1H-
 - [1]benzopyrano[3,4-f]quinoline,
 - Z-9-hydroxy-10-methoxy-5-(2-picolinylidenyl)-2,2,4-trimethyl-2,5-dihydro-1H-
 - [1]benzopyrano[3,4-f]quinoline,
- 9-hydroxy-10-methoxy-5-(3,5-difluorophenyl)methylidene-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 9-hydroxy-10-methoxy-5-(3,4-difluorophenyl)methylidene-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - (Z) 9-hydroxy-10-methoxy-5-((4-fluorophenyl)methylene)-2,2,4-trimethyl-1H-2,5-
- 35 dihydro-[1]benzopyrano[3,4-f]quinoline,
 - (Z)-9-hydroxy-10-methoxy-5-([2,3-difluorophenyl]methylene)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline,

Z-5-(3-fluorobenzylidenyl)-10-methoxy-9-hydroxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline,

- rel-(5S,3'R)-9-hydroxy-5-[1-methoxymethyl-3-cyclohexenyl]-10-chloro-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline,
- 9-hydroxy-10-methoxy-5-ethyl-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline,
 - (+/-) 2,5-dihydro-9-cyanomethoxy-10-methoxy-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-(4-N,N-diethylamino-4-oxo-butanoyloxy)-10-methoxy-2,2,4-trimethyl-5-
- 10 (2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-(4-N-piperidino-4-oxo-butanoyloxy)-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-(4-N-morpholino-4-oxo-butanoyloxy)-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-methoxy-2,2,4-trimethyl-5-(3,4,5-trifluorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-5-difluorophenylmethyl)-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(2-thienyl)-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-cyclopentyl-1H-
 - [1]benzopyrano[3,4-f]quinoline,

- 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-((2-fluorophenyl)methyl)-1H-1-((2-fluorophenyl)methyl-1H-1-((2-fluorophenyl)methyl-1H-1-((2-fluorophenyl)methyl-1H-1-((2-fluorophenyl)methyl-1H-1-((2-fluorophenyl)methyl-1H-1-((2-fluorophenyl)methyl-1H-1-((2-fluorophenyl)methyl-1H-1-((2-fluorophenyl)methyl-1H-1-((2-fluorophenyl)methyl-1H-1-((2-fluorophenyl)methyl-1H-1-((2-fluorophenyl)methyl-1H-1-((2-fluorophenyl)methyl-1H-1-((2-fluorophenyl)methyl-1H-1-((2-fluorophenyl)methyl-1H-1-((2-fluorophenyl)methyl-1H-1-((2-fluorophenyl)methyl-1H-1
- [1]benzopyrano[3,4-f]quinoline,
- 25 2,5-dihydro-9-hydroxymethyl-10-methoxy-2,2,4-trimethyl-5-allyl-1H-
 - [1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(1-pentenyl)-1H-
 - [1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-methylcarboxylate-10-methoxy-2,2,4-trimethyl-5-allyl-1H-
- 30 [1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-allenyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - (-) (5S, 3'S) 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(cyclopenten-3-yl)-1H-[1]benzopyrano[3,4-f]quinoline,
- (-) (5S, 3'S) 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(cyclohexen-3-yl)-1H-[1]benzopyrano[3,4-f]quinoline,
 - (-) (5S, 3'R) 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(cyclohexen-3-yl)-1H-[1]benzopyrano[3,4-f]quinoline,

(-) (5S, 3'R) 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(cyclopenten-3-yl)-1H-

- [1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3(Z)-pentenyl) -1H-
- [1]benzopyrano[3,4-f]quinoline,
- 5 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-acetoxyphenyl) -1H-[1]benzopyrano[3,4-f]quinoline,
 - 10-difluoromethoxy-5-[[3-(methylthio)methoxy]phenyl]-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-7-bromo-9-hydroxy-10-chloro-2,2,4-trimethyl-5-allyl-1H-
- 10 [1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-hydroxyphenyl)-1H-
 - [1]benzopyrano[3,4-f]quinoline,
 - 2, 5-dihydro-9-methyl thiomethoxy-10-methoxy-2, 2, 4-trimethyl-5-(3-methyl-5-methy
 - (methylthio)methoxyphenyl)-1H-[1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-(methylthiomethoxy)phenyl)-1H-[1]benzopyrano[3,4-f]quinoline,
 - 9-hydroxy-10-chloro-5-(phenylmethylene)-2,2,4-trimethyl-1H-2,5-dihydro-
 - [1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-([2-N,N-
- dimethylcarbamoyloxy]phenyl)-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-N,N-dimethylcarbamoyloxy-10-methoxy-2,2,4-trimethyl-5-([2-N,N-dimethylcarbamoyloxy]phenyl)-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-ethyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 25 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-isopropyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 9-hydroxy-10-methoxy-5-(phenylmethylene)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline,
 - 2, 5-dihydro-9-hydroxy-10-chloro-2, 2, 4-trimethyl-5-butyl-1H-[1] benzopyrano [3, 4-trimethyl-5-butyl-1] benzopyrano [3, 4-trimethyl-
- 30 flquinoline,
 - 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(1-thiazol-2-yl)-1H-
 - [1]benzopyrano[3,4-f]quinoline,
 - 2, 5-dihydro-9-hydroxy-10-chloro-2, 2, 4-trimethyl-5-(2-methylpropyl)-1 H-10-chloro-2, 2, 4-trimethyl-5-(2-methylpropyl-2, 2-methylpropyl-2, 2-methylpropyl-2, 2-methylpropyl-2, 2-methylpropyl-2, 2-methylpropyl-2, 2-methylpropyl-2, 2-methylpropyl-2, 2-methylpr
 - [1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-9-hydroxymethyl-10-chloro-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-propyl-1H-[1]benzopyrano[3,4-f]quinoline,

9-hydroxy-10-methoxy-5-([3-fluorophenyl]methylene)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline,

- 9-hydroxy-10-chloro-5-([2-pyridyl]methylene)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline,
- rel-(5S)-9-hydroxy-5-[(3S)-(1-hydroxymethyl)cyclohexen-3-yl]- 10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, rel-(5S)-9-hydroxy-5-[(3S)-(1-methoxycarbonyl)cyclohexen-3-yl]- 10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3,5-dichlorophenyl)-1H-
- 10 [1]benzopyrano[3,4-f]quinoline,
 - (-) (5S,3'S) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(1-methylcyclohexen-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline,
 - (-) (5S,3'R) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(1-methylcyclohexen-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline,
- (+) (5R,3'S) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(1-methylcyclohexen-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline,
 - (+) (5R,3'R) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(1-methylcyclohexen-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline,
 - (+/-) 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-chloro-2,2,4-
- trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - (-) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-cyclopentyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-methoxy-2,2,4-trimethyl-5-(1-methylethyl)-1H-[1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-methoxy-5-(phenylmethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-methoxy-2,2,4-trimethyl-
 - 2,5-dihydro-9-(4-N,N-dimethylaminobutanoyloxy)-10-methoxy-2,2,4-trimethyl-5-(2-
- propenyl)-1H-[1]benzopyrano[3,4-f]quinoline,

5-(2-thienyl)-1H-[1]benzopyrano[3,4-f]quinoline,

- 9-(2-ethoxy-2-oxo-ethylaminocarbonyl)-oxy-10-methoxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline,
- (+/-) 2,5-dihydro-9-(3-acetamido-propanoyloxy)-10-methoxy-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline,
- (+/-) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-benzyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 9-hydroxy-10-methoxy-5-(phenylmethylene)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline,

9-(dimethylaminothiocarbonyl)-oxy-10-methoxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline,

- (+/-) 2,5-dihydro-9-(N-carbamoyl-2-aminoacetoxy)-10-methoxy-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline,
- 5 (+/-) 2,5-dihydro-9-(4-ethoxy-4-oxo-butoxy)-10-methoxy-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - (+/-) 2,5-dihydro-9-(4-oxo-pentanoyloxy)-10-methoxy-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(3,4,5-trifluorophenyl)-1H-
- 10 [1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-methylthiomethoxy-10-methoxy-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-(4-N,N-diethylamino-4-oxo-pentanoyloxy)-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline,
- 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-pentanoyloxy)-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-(4-N-piperidino-4-oxo-pentanoyloxy)-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-(4-N-morpholino-4-oxo-pentanoyloxy)-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline,
 - (-) 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-methoxy-2,2,4-trimethyl-5(S)-(3(S)-1-cyclopenten-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline, 10-methoxy-9-(allylaminocarbonyl)oxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline,
- 25 10-methoxy-9-(cyclohexylaminocarbonyl)-oxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline,
 - 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-thienyl)-1H-
 - [1]benzopyrano[3,4-f]quinoline, and
 - 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(4-(fluorophenyl)methyl)-1H-
- 30 [1]benzopyrano[3,4-f]quinoline.
 - Detailed Description of The Invention

Definition of Terms

20

The term "alkanoyl" refers to an alkyl group attached to the parent molecular group through a carbonyl group.

The term "alkanoyloxy" refers to an alkanoyl group attached to the parent molecular group through an oxygen atom.

The term "alkenyl" refers to a monovalent straight or branched chain group of two to twelve carbons derived from a hydrocarbon having at least one carbon-carbon double bond.

The term "alkoxy" refers to an alkyl group attached to the parent molecular group through an oxygen atom.

The term "alkoxycarbonyl" refers to an ester group, i.e. an alkoxy group attached to the parent molecular moiety through a carbonyl group.

The term "alkyl" refers to a monovalent straight or branched chain group of one to twelve carbons derived from a saturated hydrocarbon.

The term "alkylene" refers to a divalent straight or branched chain group of one to twelve carbons derived from an alkane.

The term "alkynyl" refers to a monovalent straight or branched chain hydrocarbon of two to twelve carbons with at least one carbon-carbon triple bond.

The term "alkynylene" refers to a divalent straight or branched chain group of two to twelve carbons derived from an alkyne.

The term "amino refers to -NH2.

5

10

15

20

25

30

35

The term "aryl" refers to a mono- or bicyclic carbocyclic ring system having one or two aromatic rings. The aryl group can also be fused to a cyclohexane, cyclohexene, cyclopentane or cyclopentene ring.

The term "carboxy" refers to -CO₂H.

The term "cycloalkenyl" refers to a monovalent group derived from a cyclic or bicyclic hydrocarbon of three to twelve carbons that has at least one carbon-carbon double bond.

The term "cycloalkyl" refers to a monovalent group three to twelve carbons derived from a saturated cyclic or bicyclic hydrocarbon.

The term "halo" refers to F, Cl, Br, or I.

The term "heterocycle" represents a represents a 4-, 5-, 6- or 7-membered ring containing one, two or three heteroatoms independently selected from the group consisting of nitrogen, oxygen and sulfur. The 4- and 5-membered rings have zero to two double bonds and the 6- and 7-membered rings have zero to three double bonds. The term "heterocycle" also includes bicyclic, tricyclic and tetracyclic groups in which any of the above heterocyclic rings is fused to one or two rings independently selected from an aryl ring, a cyclohexane ring, a cyclohexene ring, a cyclopentane ring, a cyclopentene ring or another monocyclic heterocyclic ring. Heterocycles include acridinyl, benzimidazolyl, benzofuryl, benzothiazolyl, benzothienyl, benzoxazolyl, biotinyl, cinnolinyl, dihydrofuryl, dihydroindolyl, dihydropyranyl, dihydrothienyl, dithiazolyl, furyl, homopiperidinyl, imidazolidinyl, imidazolinyl, imidazolyl, indolyl, isoquinolyl, isothiazolidinyl, isothiazolyl, isoxazolyl, morpholinyl,

oxadiazolyl, oxazolidinyl, oxazolyl, piperazinyl, piperidinyl, pyranyl, pyrazolidinyl, pyrazinyl, pyrazolyl, pyrazolinyl, pyridazinyl, pyridyl, pyrimidinyl, pyrimidyl, pyrrolidinyl, pyrrolinyl, quinolinyl, quinoxaloyl, tetrahydrofuryl, tetrahydroisoquinolyl, tetrahydroquinolyl, tetrazolyl, thiadiazolyl, thiazolidinyl, thiazolyl, thiomorpholinyl, triazolyl, and the like.

Heterocyclics also include bridged bicyclic groups where a monocyclic heterocyclic group is bridged by an alkylene group such as

5

10

15

20

25

30

Heterocyclics also include compounds of the formula

where X^* is selected from -CH₂-, -CH₂O- and -O-, and Y^* is selected from -C(O)- and -(C(R")₂)_V-, where R" is hydrogen or alkyl of one to four carbons, and v is 1-3. These heterocycles include 1,3-benzodioxolyl, 1,4-benzodioxanyl, and the like.

The term "heterocycloalkyl" as used herein, refers to a non-aromatic, partially unsaturated or fully saturated 4- to 8-membered ring having from one or two heteroatoms independently selected from oxygen, sulfur and nitrogen, in which the nitrogen and sulfur heteroatoms can optionally be oxidized and the nitrogen heteroatom can optionally be quaternized.

The term "N-protected amino" refers to groups intended to protect an amino group against undersirable reactions during synthetic procedures. Commonly used N-protecting groups are disclosed in Greene, "Protective Groups In Organic Synthesis," (John Wiley & Sons, New York (1981)). Preferred N-protecting groups are formyl, acetyl, benzoyl, pivaloyl, t-butylacetyl, phenylsulfonyl, benzyl, t-butyloxycarbonyl (Boc), and benzyloxycarbonyl (Cbz).

The term "O-protected carboxy" refers to a carboxylic acid protecting ester or amide group typically employed to block or protect the carboxylic acid functionality while the reactions involving other functional sites of the compound are performed. Carboxy protecting groups are disclosed in Greene, "Protective Groups in Organic Synthesis" (1981). Additionally, a carboxy protecting group can be used as a prodrug whereby the carboxy protecting group can be readily cleaved in vivo, for example by enzymatic hydrolysis, to release the biologically active parent. Such carboxy protecting groups are well known to those skilled in the art, having been extensively used in the protection of carboxyl groups in the penicillin and cephalosporin fields as described in U.S. Pat. No. 3,840,556 and 3,719,667.

The term "oxo" refers to (=O).

5

10

15

20

25

30

35

The term "pharmaceutically acceptable prodrugs" represents those prodrugs of the compounds of the present invention which are, within the scope of sound medical judgement, suitable for use in contact with the tissues of humans and lower animals with undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible, of the compounds of the invention.

The term "prodrug" represents compounds which are rapidly transformed in vivo to the parent compound of the above formula, for example, by hydrolysis in blood. A thorough discussion is provided in T. Higuchi and V. Stella, Pro-drugs as Novel Delivery Systems, Vol. 14 of the A.C.S. Symposium Series, and in Edward B. Roche, ed., Bioreversible Carriers in Drug Design, American Pharmaceutical Association and Pergamon Press, 1987, both of which are incorporated herein by reference.

The term "pharmaceutically acceptable salt" represents those salts which are, within the scope of sound medical judgement, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well known in the art. For example, S. M. Berge, et al. describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 1977, 66:1 -19. The salts can be prepared in situ during the final isolation and purification of the compounds of the invention, or separately by reacting the free base function with a suitable organic acid. Representative acid addition salts include acetate, adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphersulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, glucoheptonate, glycerophosphate, hemisulfate, heptonate, hexanoate, hydrobromide, hydrochloride, hydroiodide, 2hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, toluenesulfonate, undecanoate, valerate salts, and the like. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like, as well as nontoxic ammonium, quaternary ammonium, and amine cations, including, but not limited to ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, ethylamine, and the like.

Compounds of the present invention can exist as stereoisomers where asymmetric or chiral centers are present. These compounds are designated by the symbols "R" or "S," depending on the configuration of substituents around the chiral carbon atom. The

present invention contemplates various stereoisomers and mixtures thereof. Stereoisomers include enantiomers and diastereomers, and equal mixtures of enantiomers are designated ($\frac{+}{-}$). Individual stereoisomers of compounds of the present invention can be prepared synthetically from commercially available starting materials which contain asymmetric or chiral centers or by preparation of racemic mixtures followed by resolution well-known to those of ordinary skill in the art. These methods of resolution are exemplified by (1) attachment of a mixture of enantiomers to a chiral auxiliary, separation of the resulting mixture of diastereomers by recrystallization or chromatography and liberation of the optically pure product from the auxiliary or (2) direct separation of the mixture of enantiomers on chiral chromatographic columns.

Geometric isomers can also exist in the compounds of the present invention. The present invention contemplates the various geometric isomers and mixtures thereof resulting from the arrangement of substituents around a carbon-carbon double bond or arrangement of substituents around a ring. Substituents around a carbon-carbon double bond are designated as being in the Z or E configuration where the term "Z" represents substituents on the same side of the carbon-carbon double bond and the term "E" represents substituents on opposite sides of the carbon-carbon double bond. The arrangement of substituents around a ring are designated as cis or trans where the term "cis" represents substituents on the same side of the plane of the ring and the term "trans" represents substituents on opposite sides of the plane of the ring. Mixtures of compounds where the substitutients are disposed on both the same and opposite sides of plane of the ring are designated cis/trans.

Methods for Radioligand Binding Studies with Human Glucocorticoid and Progesterone Receptor Cytosol

The procedure described in Anal. Biochem. 1970, 37, 244-252, hereby incorporated by reference, was used. Briefly, cytosol preparations of human glucocorticoid receptor-□□GRX□isoform and human progesterone receptor-A [PRA] isoform were obtained from Ligand Pharmaceuticals (San Diego, CA). Both receptor cDNAs were cloned into baculovirus expression vectors and expressed in insect SF21 cells. [³H]-dexamethasone (Dex, specific activity 82-86 Ci/mmole) and [³H]-progesterone (Prog, specific activity 97-102 Ci/mmol) were purchased from Amersham Life Sciences (Arlington Heights, IL). Glass fiber type C multiscreen MAFC NOB plates were from Millipore (Burlington, MA). Hydroxyapatide Bio-Gel HTP gel was from Bio-Rad Laboratories (Hercules, CA). Tris(hydroxymethyl)aminomethane (Tris), ethylenediaminetetraacetic acid (EDTA), glycerol, dithiothreitol (DTT) and sodium moylybdate were obtained from Sigma Chemicals (St. Louis, MO). Microscint-20 scintillation fluid was from Packard Instrument (Meriden, CT).

Stock solutions (32 mM) of compounds were prepared in dimethylsulfoxide (DMSO), and 50X solutions of test compounds were prepared from the 32 mM solution with a 50:50 mixture of DMSO/ethanol. The 50X solution was then diluted with binding buffer that contained 10 mM Tri-HCl, 1.5 mM EDTA, 10% glycerol, 1 mM DTT, 20 mM sodium molybdate, pH 7.5 @ 4°C. 1% DMSO/ethanol was present in the binding assay.

GRX and PRA binding reactions were performed in Millipore Multiscreen plates. For GR binding assays, [3 H]-Dex (3 5,000 dpm (3 0.9 nM)), GRX cytosol (3 5 μ g protein), test compounds and binding buffer were mixed in a total volume of 200 μ L and incubated at 4 3 C overnight in a plate shaker. Specific binding was defined as the difference between binding of [3 H]Dex in the absence and in the presence of 1 4 M unlabelled Dex.

For PR binding assays, [3 H]Prog (\sim 36,000 dpm (\sim 0.8 nM)), PRA cytosol (\sim 40 μ g protein), test compounds and binding buffer were mixed in a total volume of 200 μ L and incubated at 4 $^{\circ}$ C at overnight in a plate shaker. Specific binding was defined as the difference between binding of [3 H]Prog in the absence and in the presence of 3 μ M unlabelled Prog.

After an overnight incubation, 50 μ L of hydroxyapatite (25 % weight/volume) slurry were added to each well and plates were incubated for 10 min at °C in a plate shaker. Plates were suctioned with a Millipore vacuum manifold and each well was rinsed with 300 μ L of ice-cold binding buffer. A 250 μ L aliquot of Packard Microscint-20 was added to each well and the wells were shaken at room temperature for 20 minutes. The amount of radioactivity was determined with a Packard TopCount plate reader.

25

30

5

10

15

20

Determination of Inhibition Constant (Ki)

The concentration of test compounds that inhibited 50% of specific binding (IC50) was determined from a Hill analysis of the competitive binding experiments. The Ki of test compounds was determined using the Cheng-Prusoff equation Ki =IC50 $/(1+[L^*]/[K_L])$

where L* is the concentration of radioligand and K_L is the dissociation constant of the radioligand determined from saturation analysis. For GRX, K_L was ~1.5 nM, and for PRA, K_L was ~4.5 nM. The inhibitory potencies of compounds of this invention and their selectivity for GR and PR receptors are shown in Table 1.

Example	GR	PR
Number		
, 1	8.6	10000
2 .	7.6	1702
3	4.8	2654
4	7	2960
5	357.5	10000
6	3.8	321
7	4.3	5676
8	167.9	6007
9	60.5·	10000
10	179.1	10925
11	4.4	288
12	8.6	10000
13	11.1	10000
14	5.2	10000
15	2.5	10000
16	8	10000
17	39	10000
18	10.5	1035
19	6.7	4967
20	3.7	1684
21 .	10.7	4017
22	6.5	10000
23	8.2	6153
24	3.5	14837
25	240.4	10000
26	2.1	13390
27	5.2	3580
28	4.7	3271
29	7.7	7763 ·
30	13	7924
31	12.2	10000
32	3.3 ·	1559
33	95.2	8318
34	4	4706

35	260	10000
36	1.4	1704
37	20	10000
38	207	10000
39	31	10000
40	18	18132
41	9.5	3303
42	99	10000
43	72	10000
44	190	19524
45	15	10000
46	2.7	3436
47	174	10000
48	5.8	2769
49	13	10000
50	4.9	9449
51	18	7333
. 52	3	2269
53	8.1	2912
54	6.6	7344
55	8.2	10000
56	6.2	10000
57	50	4275
58	9	8572
59	9.5	16582
60	14	10493
61	62	14393
62	12	10000
63	511	10000
64	62	1671
65	591	10000
66	2.7	502
67	21.7	10000
- 68	8	9054
69 [.]	15	17331
70	25.5	7301
• • • • • • • • • • • • • • • • • • • •		<u> </u>

71	7.7	484
72	17.8	1454
73	10.3	4500
74	. 11.9	4877
75	7.3	13800
76	152	10000
77	1.6	173
78	80.5	10000
79	19.2	10000
80	168.2	10000
81	155.3	10000
82	22.9	327
83 -	54.8	2210
84	17.3	10000
85	3.5	10000
86	2.1	10000
87	4.7	10000
88	6 .	15327
89	275	10000
90	7.6	10000
91	17	10000
92	12	10000
93	148	10000
94	43	10000
95	31	10000
96	10	9163
97	320	10000
98	9.8	10000
99	3.6	10000
100	7.8	10000
101	11.4	10000
102	17.7	10000
103	5.2	10000
104	8.9	10000
105	9	>10000
106	62	>10000

,	· · · · · · · · · · · · · · · · · · ·	
107	215	>10000
108	638	>10000
109	6.1	10000
110	5.6	10000
111	7.2	10000
112	31	10000
113	9.7	10000
114	12	10000
115	17	10000
116	7.2	10000
117	12	10000
118	43	10000
119	6.9	10000
. 120	30.3	6235
121	11.3	672
122	11.8	1409
123	6.1	9568
124	3.2	1611
125	36.6	10000
. 126	2.9	1407
127	29.3	10000
128	5.9	10000
129	5.5	3621
130	11.9	1054
131	7.71	996
132	230	9890
133	3.6	4867
134	238	10000
135		
136	37	2700
137	5.5	2410
138	2.2	5600
139	235	4800
140	13	10000
141	10	10000
142	51	10000

143	91	8100
144	7.7	10000
145	78	10000
146	8.3	8300
147	15	9300
148	2.8	10000
149	2.7	4063
150	106	10000
151	298	10000
152	1.8	10000
153	1.9	10000
154	0.7	10000
155	0.86	10000
156	0.9	4100
157	1.5	433
158	48	10000
159	3.8	1837
160	1.8	10000
161	3.3	10000
162	6.5	10000
163	2.6	10000
164.	36	10000
165	14	10000
166	8.16	5631
167	21	10000
168	2.5	10000
169	300	10000
170	82	10000
171	3,3	7429
172	7	9900
173	32	10000
174	270	10000
175	44	7700
· 176	88	>10000
178	468	10000
179	9.5	2750

180	18	722
	16	733
181	207	10000
182	23	10000
183	38	10000
184	40	10000
185	288	10000
186	90	10000
187	46	3900
188	4.9	5300
189	6.4	1700
190	6.25	1586
191	2.9	1190
192	3.1	10000
193	2.0	2184
194	7.7	10000
195	25	10000
196	_	
197	28	10000
198	0.65	2130
199	106	10000
200	45	10000
201	114	10000
202	134	10000
203	85	10000
204	74	10000 .
205	11.4	10000
206	201	10000
206A	4192	
207	22	10000
208	25	970
209	2.0	5462
210	21	710
211	5.3	10000
212	. 13	10000
213	67	10000
214	5.7	10000

215	20	10000
216	0.58	7.6
217	1	· 65.1
218	1.6	227
219	2.4	178
220	0.66	527
221	0.66	4.2
222	0.47	9.9
223	2.6	297
224	57	786
225	155	5010
226	2.6	220
227	8.4	. 1930
228	5.4	29.5
229	34.7	1338
230	2.4	50.3
231	30.2	1870
232	1.6	230
233	2.5	350
234	3.8	202
235	0.94	155
236	0.89	36.2
237	1.5	18
238 .	1.2	11.5
239	16.8	240
240	52.2	2173
241	0.69	61.1
242	0.53	3420
243	1.6	21.2
244	6.3	804
245	0.95	119
246	0.87	113
247	0.86	195
248	1	870
249	0.80	488
250	2.4	1475

252 253 254	0.39 0.38 2.2 1.5	102 42 1824
254	2.2	1824
31	1.5	
255		
255		1434
256	3.8	266
257	10	1624
258	10.7	879
259	1.2	938
260	3.3	250
261	0.75	161
262	1.1	150
263	2.2	59.6
264	0.51	307
265	767	1499
266	0.71	102
267	0.79	938
268	0.84	486
269	17.1	2467
270	0.66	4756
271	0.82	2288 .
272	0.39	66.4
273	0.56	35.8
274	0.69	386
275	11.7	2873
276		
277	11.3	272
278	1.1	533
279	12.4	1900
280	1.6	10000
281	0.84	526
282	0.5	42
283	1.1	60.4
284	110	2097
285	436	3757
286	64	3029

287	346	3502
288	0.86	4080
289	0.73	260
290	12.1	611
291	8.1	592
292	487	8338
293	12	3742
294	13.8	1807
295	0.67	59.3
296	0.63	476
297	4.7	4844
298	4.1	10000
298	4.1	10000
299	5.4	2900
300	5.3	34.4
301	16	113
302	5.9	99
303	4.9	58.5
304	34.5	681
305	2	6919
306	717	4455
307	4.6	27.8
308	50.8	960
309	1.9	60.7
310	4.4	382
311	15	10000
312	8.4	10000
313	6.4	10000
314	1.7	10000
315	13	10000
316	11	10000
317	6.5	10000
318	553	10000
319	16	492
320	49	3050
321	44	2880

322	107	2300
323	428	10000
324	. 24	10000
325	24	10000
326	228	10000
327	9.3	1457
329	2.2	192
330	2.2	53
331	142	10000
332	18	10000
333	5.6	3670
334	9.5	10000
335	652	10000
336	9.5	1564
337	3.3	702
338	61 .	· 10000
339	112	10000
340	1.8	254
341	2.5	10000
342	2586	10000
343	5.2	4700
344	0.46	76.7
345	8.7	3000
346	44	5110
347	128	10000
348	0.89	171
349	10.5	10000
350	6.22	10000
351	93	10000
352	58	10000
353	20	10000
354	32	1500
355	27	4280
356	15	2968
. 357	59.8	10000
358	4.2	8963
•	u	L

359	11.3	2219
360	33.7	10000
361	95.7	9143
362	6.5	3370
363	5	3942
364	424	10000
365	2.2	98
366	2.1	83.9
367	2.2	7.6
368	0.21	61
369	0.41	2528

372	1.8	164
373	3.1	279
374	9.0	222
375	3	1093
376	0.78	156
377	51	3085
378	1.1	440
379	1.4	175
380	1.2	204
381	7.1	9825
382	2.2	150
383	4.8	46
384	0.67	197
385	0.9	170
386	6.5	105
387	0.65	169
388	2.8	199
389	0.58	27.5
390	0.96	520
391	1.7	1087
392	1.2	487
393	0.76	589
394	0.89	109
395	2.1	1213
396	6.3	2125
397	2.3	22.8
398	6.7	1085
399	24.4	10000
400	3.5	5962
401	134	6083
402	3.3	10063
403	131	10000
404	1.3	49.7
405	1.1	75.1
406	2.3	97.9

407	1.8	16.4
408	112	14138
409	2.7	42
410	1.1	25.7
411	0.68	8.4
412	9	222
413	0.22	60.8
414	93.2	21805
415	9.9	3741
416	3.1	394
417	3	10.5
418	1.4	2.1
419	56.9	286
420	125	2396
421	0.66	11.6
422	0.28	2.9
423	0.67	8184
424	0.84	1952
425	0.35	3942
426	0.85	110
427	7.8	2205
428	0.91	204
429	4.1	29.1
430	4.8	281
431	113	10000
432	1.4	207
433	30.2	1413
434	0.96	123
435	120	734
436	18.8	5919
437	0.97	449
438	0.89	129
439	1.2	202
440	0.70	390
441	0.42	328
442	9.1	8863

443	63.5	10000
444	1.6	406
445	4	347

The present invention also provides pharmaceutical compositions which comprise compounds of the present invention formulated together with one or more non-toxic pharmaceutically acceptable carriers. The pharmaceutical compositions may be specially formulated for oral administration in solid or liquid form, for parenteral injection, or for rectal administration.

5

10

15

20

25

30

The pharmaceutical compositions of this invention can be administered to humans and other animals orally, rectally, parenterally, intracisternally, intravaginally, intraperitoneally, topically (as by powders, ointments, or drops), bucally, or as an oral or nasal spray. The term "parenteral" administration refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

Pharmaceutical compositions of this invention for parenteral injection comprise pharmaceutically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions as well as sterile powders for reconstitution into sterile injectable solutions or dispersions just prior to use. Examples of suitable aqueous and nonaqueous carriers, diluents, solvents or vehicles include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils (such as olive oil), and injectable organic esters such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants. Conversely, reduced particle size may maintain biological activity.

These compositions may also contain adjuvants such as preservative, wetting agents, emulsifying agents, and dispersing agents. Prevention of the action of microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents such as sugars, sodium chloride, and the like. Prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.

In some cases, in order to prolong the effect of the drug, it is desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution which, in turn, may depend upon crystal size and crystalline form.

Alternatively, delayed absorption of a parenterally administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle.

5

10

15

20

25

30

35

Injectable depot forms are made by forming microencapsule matrices of the drug in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides) Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissues.

The injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium just prior to use.

Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate, h) absorbents such as kaolin and bentonite clay, and i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof. In the case of capsules, tablets and pills, the dosage form may also comprise buffering agents.

Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.

The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes.

The active compounds can also be in micro-encapsulated form, if appropriate, with one or more of the above-mentioned excipients.

5

10

15

20

25

30

35

Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups and elixirs. In addition to the active compounds, the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethyl formamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.

Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.

Suspensions, in addition to the active compounds, may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar, and tragacanth, and mixtures thereof.

Compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at room temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.

Compounds of the present invention can also be administered in the form of liposomes. As is known in the art, liposomes are generally derived from phospholipids or other lipid substances. Liposomes are formed by mono- or multi-lamellar hydrated liquid crystals that are dispersed in an aqueous medium. Any non-toxic, physiologically acceptable and metabolizable lipid capable of forming liposomes can be used. The present compositions in liposome form can contain, in addition to a compound of the present invention, stabilizers, preservatives, excipients, and the like. The preferred lipids are the phospholipids and the phosphatidyl cholines (lecithins), both natural and synthetic.

Methods to form liposomes are known in the art. See, for example, Prescott, Ed., Methods in Cell Biology, Volume XIV, Academic Press, New York, N.Y. (1976), p. 33 et seq.

Dosage forms for topical administration of a compound of this invention include powders, sprays, ointments and inhalants. The active compound is mixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives,

buffers, or propellants which may be required. Opthalmic formulations, eye ointments, powders and solutions are also contemplated as being within the scope of this invention.

Actual dosage levels of active ingredients in the pharmaceutical compositions of this invention may be varied so as to obtain an amount of the active compound(s) that is effective to achieve the desired therapeutic response for a particular patient, compositions, and mode of administration. The selected dosage level will depend upon the activity of the particular compound, the route of administration, the severity of the condition being treated, and the condition and prior medical history of the patient being treated. However, it is within the skill of the art to start doses of the compound at levels lower than required for to achieve the desired therapeutic effect and to gradually increase the dosage until the desired effect is achieved.

Generally dosage levels of about 1 to about 50, more preferably of about 5 to about 20 mg of active compound per kilogram of body weight per day are administered orally to a mammalian patient. If desired, the effective daily dose may be divided into multiple doses for purposes of administration, e.g. two to four separate doses per day.

Abbreviations

5

10

15

20

25

Abbreviations that have been used in the descriptions of the scheme and the examples that follow are: BF3·OEt2 for boron trifluoride diethyl ether complex; DMF for N,N-dimethylformamide, DMSO for dimethylsulfoxide; and THF for tetrahydrofuran.

Synthetic Methods

The compounds and processes of the present invention will be better understood in connection with the following synthetic schemes which illustrate the methods by which the compounds of the invention can be prepared.

Syntheses of the compounds of the present invention are described in Schemes 1-21.

As exemplified in Scheme 1, resorcinol dimethyl ether was metallated with a strong base such as n- or sec-butyllithium, treated with a trialkoxyborate such as trimethyl- or triisopropylborate and hydrolyzed with acid such as 2M HCl to provide boronic acid 1A. Treatment of 1A with methyl 5-nitro-2-bromobenzoate in the presence of a palladium catalyst such as tetrakis(triphenylphosphine)palladium(0) or dichlorobis(triphenylphosphine)palladium (II) provided biphenyl 1B. Demethylation of 1B was accomplished with reagents such as BBr3, to provide hydroxylactone 1C, which was treated with alkylating agents such as methyl iodide to provide 1D. Conversion of 1D to amine 1E was accomplished using hydrogen gas and a palladium catalyst such as 10% palladium on carbon. 1E was converted to quinoline 1F by a Skraup ring annulation reaction. Introduction of functionalization at the C-5 position of 1F to provide 1 was achieved through addition of organometallic reagents such as phenyllithium to the C-5 carbonyl to provide 1G, followed by deoxygenation with Lewis acids such as BF3·OEt3 and reducing agents such as triethylsilane to provide 1.

Scheme 2

A more preferred route to compounds of this invention is exemplified in Scheme 2. 1F was converted to methyl acetal 2B, via hemiacetal 2A, using a two-step procedure comprising conversion of 1F to 2A with reagents such as diisobutylaluminum hydride in an aprotic solvent such as dichloromethane followed by acid-catalyzed acetal formation with acids such as p-toluenesulfonic acid monohydrate and alcohols such as methanol to provide 2B. 2B was treated with nucleophiles such as allyltrimethylsilane in the presence of a Lewis acid such as boron trifluoride diethyl etherate to form C-5 allyl analogs such as Example 2. The Lewis acid/methyl acetal complex was also condensed with organomagnesium chlorides, bromides or iodides to provide compounds of this invention such as Example 11.

5

- 3: R=NHMe
- 4: R=CO₂Me
- 5: R=CH=CH₂
- 6: R=C≡CH

5

10

As exemplified in Scheme 3, the C-10 position of 1C was subjected the same reduction/Skraup conditions described in Scheme 1 to afford hydroxyquinoline 3B. 3B was converted to triflate derivative 3C with reagents such as trifluoromethanesulfonic anhydride then derivatized at the C-5 position as described in schemes 1 and 2 to provide analogs such as 3D. The functionalized C-10 triflates were used in coupling reactions mediated by palladium catalysts for aminations, carbonylations, Stille couplings and modified Sonagashira reactions and provided aminomethyl, carbomethoxy, vinyl and acetylenic derivatives of 3D such as the C-5 allyl-substituted examples 3, 4, 5, and 6, respectively.

As shown in Scheme 4, treatment of 3B with *tert*-butyl dimethylsilyl (TBS) ether and a base such as imidazole, triethylamine or diisopropylethylamine and functionalization of the C-5 position as described in schemes 1-3 provided silane 7B. Removal of the silane group with reagents such as tetra n-butylammonium fluoride in THF, to provide phenol 7, and treatment with R-X or RC(O)X, where R is an alkyl group and X is a leaving group such as halogen, provided alkoxy and carboxy compounds such as examples 9 and 10. Halo alkoxy analogs were prepared from 3B by nucleophillic displacement using a polyhalogenated alkylating agent such as CF2HCl to provide 8A followed by functionalization at the C-5 position of 8A, as described in Schemes 1-3, to provide 8.

5

As exemplified in Scheme 5, 1F was treated with lithiated, O-protected phenol reagents, such as 3-(methoxymethoxy)phenyllithium, to provide 12A. The protecting group was cleaved in acidic media, such as methanolic or aqueous HCl, to provide diol 12B which was converted to phenyl acetates 12C with reagents such as acetyl chloride and base such as pyridine, triethylamine or diisopropylethylamine. The tertiary alcohol was then reduced as described in Scheme 1, and the acetate group of Example 12 was removed to provide Example 13. Example 13 was alkylated or acylated as described in Scheme 4 to provide examples 14 and 15.

5

Scheme 6

As shown in Scheme 6, functionality in the meta position of the phenyl ring in the C-5 position was introduced using meta-halophenyl analogs such as Example 11, prepared as described in Scheme 2. Stille or Suzuki couplings or aminations with palladium catalysts such as [1,1-bis(diphenylphosphino)ferrocene]dichloropalladium(II) or tetrakis(triphenylphosphine)palladium(0) in the presence of ligands such as tributylstannylfuran or morpholine provided carbon- or nitrogen-bound groups in the meta position of the aromatic ring at the C-5 position as exemplified in examples 16 and 17, respectively.

5

As shown in Scheme 7, 1F was treated with magnesium halides, preferably bromides, to provide an intermediate hemiketal which was treated with acid catalysts such as para-toluenesulfonic acid, methanesulfonic acid or aqueous hydrochloric acid to provide optionally substituted analogs such as 18 as mixtures of E and Z isomers.

The chemistry shown in Scheme 1 was found to be general. Thus, a variety of tetracyclic cores could be prepared from an assortment of substituted anisoles via their corresponding boronic acids according to Scheme 8.

10

15

20

5

$$\begin{array}{c} \underline{\text{Scheme 8}} \\ R_2 & \\ \hline \\ R_1 \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ R_1 \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ R_1 \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ R_1 \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ R_1 \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ R_1 \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ R_1 \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ R_1 \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ R_1 \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ R_1 \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ R_1 \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ R_1 \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ R_1 \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ R_1 \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ R_1 \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ R_1 \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ R_1 \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ R_1 \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_1 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_1 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_1 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_1 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_1 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_1 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_1 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_1 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_1 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_1 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_1 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_1 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_1 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_1 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_1 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_1 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_1 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_1 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_1 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_1 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_1 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_1 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_2 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ R_1 \\ \hline \\ \end{array} \\ \begin{array}{c} OMe \\ COMe \\$$

Scheme 8 shows the applicability of the chemistry described in Scheme 1 and Examples 1-131 to the synthesis of new cores with substituents other than alkoxy at the C-10 position. Ortho metallation of substituted anisoles with a strong base such as n- or sec-butyllithium, followed by sequential treatment with a trialkoxyborate such as trimethyl- or triisopropylborate and hydrolysis with acid, as described in Scheme 1, provided the appropriately substituted boronic acids which were then elaborated to compounds of Formula I using chemistry described above. Further elaboration of the ring to provide Cores 1-17 is described below.

Examples of novel tetracyclic cores prepared using the chemistry described in Scheme 8 are shown below.

5

10

Scheme 9

HO OH Core 1

Core 7

Scheme 9

HO OMe HO

Further derivatization of Core 1 using methods well-known in the art provide additional tetracyclic coumarins for subsequent elaboration at the C-5 position, as shown in Scheme 9. For example, selective alkylation of the C-10 hydroxyl of Core 1 with alkylating agents (e.g., methyl iodide) and base, such as potassium carbonate, provided Core 7. Selective derivitization of Core 1 at the C-7 position with halogenating agents such as bromine or N-bromosuccinimide provided the compound of Formula I precursor Core 8.

Example 1F
$$\xrightarrow{\text{OMe}}$$
 $\xrightarrow{\text{NH}}$ $\xrightarrow{\text{OMe}}$ $\xrightarrow{\text{OMe}}$ $\xrightarrow{\text{NH}}$ $\xrightarrow{\text{OMe}}$ $\xrightarrow{\text{OMe}}$ $\xrightarrow{\text{OMe}}$ $\xrightarrow{\text{OMe}}$ $\xrightarrow{\text{OMe}}$ $\xrightarrow{\text{NH}}$ $\xrightarrow{\text{OMe}}$ $\xrightarrow{\text{OMe}}$ $\xrightarrow{\text{OMe}}$ $\xrightarrow{\text{OMe}}$ $\xrightarrow{\text{NH}}$ $\xrightarrow{\text{OMe}}$ $\xrightarrow{\text{OMe}}$ $\xrightarrow{\text{OMe}}$ $\xrightarrow{\text{OMe}}$ $\xrightarrow{\text{OMe}}$ $\xrightarrow{\text{OMe}}$ $\xrightarrow{\text{OMe}}$ $\xrightarrow{\text{OMe}}$ $\xrightarrow{\text{OMe}}$ $\xrightarrow{\text{NH}}$ $\xrightarrow{\text{OMe}}$ $\xrightarrow{$

Scheme 10 shows additional selective bromination chemistry. Regiochemical bromination of Example 1F, as directed by the C-10 methoxy group and choice of brominating agent, provided Cores 9, 10, and 11. These brominated rings were further derivatized at the brominated position(s) by transition metal-catalyzed introduction of a variety of functional groups.

As shown in Scheme 11, cores bearing phenolic hydroxyl functionality were either dehydroxylated (as shown for Core 2), acetylated, or alkylated by transformations well-known in the art. See Larock, "Comprehensive Organic Transformations. A Guide to Functional Group Preparations," VCH Publishers, New York (1989), hereby, incorporated by reference.

10

15

5

Scheme 12 shows the introduction of the substituted cyclohexenyl group by Lewis acid catalyzed addition of the tert-butyldimethylsilyl-protected enol ether to the C-5 position of Example 2B. Once introduced, the diastereomers and rearrangement products were separated, and the alkoxycarbonyl group was optionally reduced to a hydroxyalkyl group.

Example 147

5

10

Examples 171, 172 and 173

As shown in Scheme 13, the vinylic bromide group of compounds such as Example 147 were further derivatized at the brominated position(s) to provide a number of R₁₉ substituents by transition metal-catalyzed introduction of a variety of functional groups such as those described in Scheme 10.

Example 69 OCH3 Example 176 OCH3 H Example 177 Example 178

As shown in Scheme 14, Mitsunobu introduction of phthalimide to Example 69 and removal of the imide group with hydrazine provided alkylamino Example 177 which was further derivatized to Example 178 by treatment with di(tert-butyl)dicarbonate.

Example 44

Example 179

$$X_1$$
=CON(CH₃)₂ (Example 182)
 X_1 =CH₂OCH₃ (Example 183)

As shown in Scheme 15, elaboration of the C-5 nitrile of Example 44 to the \Box , \Box unsaturated ester Example 179 followed by selective reduction of the alkoxycarbonyl group to the alkeneyl alcohol (X₁ is H) provided precursors for carbamates and methoxymethyl ethers Examples 182 and 183, respectively.

Example 46

$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3
 CO_2CH_3
 CO_2CH_3

As shown in Scheme 16, conversion of ester Example 46 to its Weinreb amide derivative Example 185 and subsequent reduction to aldehyde Example 186 provided precursors for alkene Examples 187, 194, 195, and 200 by treatment of the aldehydes with a number of commercially available Wittig of Horner-Wadsworth-Emmons reagents.

As shown in Scheme 17, Example 1F was converted to a ring-opened aldehyde using a two-step sequence involving treatment with a reducing agent such as diisobutylaluminum hydride in an aprotic solvent such as dichloromethane followed by treatment with a silylating reagent such as *tert*-butyldimethylsilyl chloride in the presence of a base such as potassium *tert*-butoxide. Addition of organolithium reagents such as lithiopyridines to the aldehyde produced benzylic alcohols (R=pyridyl) which could then be converted to analogs such as Examples 213-215 using a two-step sequence comprising removal of the silicon group with reagents such as tetrabutylammonium fluoride and subsequent cyclization using reagent combinations such as triethylphosphine and 1,1'-(azodicarbonyl)dipiperidine.

5

Scheme 18

OH

OH

N

OTf

N

Example 333:
$$X_1$$
=-C=CH

Example 334: X_1 =-CH=CH₂

$$X_1$$

Example 335: X₁=-OCH₃ Example 337: X₁=H Example X_1 : R=H Example X_1 : R=Me

As shown in Scheme 18, Example 7 was converted to the triflate derivative with reagents such as trifluoromethanesulfonic anhydride, then derivatized at the C-10 position using the methods described in Scheme 3. Reduction of Example 335 with reagents such as diisobutylaluminum hydride provided Example 336. Treatment of Example 336 with oxidizing reagents such as tetrapropylammonium perruthenate afforded Example 337. Alkylation of Example 336 could be accomplished with reagents such as iodomethane in the presence of a base such as potassium bis(trimethylsilyl)amide to provide analogs such as Example 338.

5

Example 340: R=H Example 341: R=Me

As shown in Scheme 19, triflate 3C was also converted to a C-10 vinyl derivative Example 339 and subsequently to its methyl acetal using the methods described in Schemes 3 and 2, respectively. The acetal was treated with nucleophiles such as 3-(trimethylsilyl)cyclohexene or 3-(dimethylphenylsilyl)-3-methylcyclohexene in the presence of a Lewis acid such as boron trifluoride etherate to provide analogs such as Examples 340 and 341, respectively.

5

10

Scheme 20

OH

OH

(CH₃)₂N

(CH₃)₃N

Introduction of sulfur at C-10 position of Example 3B is shown in Scheme 20. Example 3B was treated with reagents such as dimethylcarbamoyl chloride to give a

thionocarbamate which underwent thermal rearrangement to provide the sulfur-carbon bond at C-10. The allyl group at C-5 was introduced as described in Scheme 2. Hydrolysis with a strong base such as potassium hydroxide and alkylation of sulfur with electrophiles such as iodomethane in the presence of a base such as cesium carbonate provided analogs bearing thioalkoxy functionality at C-10, such as Example 343.

5

10

15

20

A route to make Examples 320-323 is shown in Scheme 21. Example 2B was treated with nucleophiles such as tributylvinyltin in the presence of Lewis acids such as boron trifluoride diethyl etherate to provide Example 320 which was then coupled with aryl halides such as iodobenzene in the presence of catalysts such as palladium (II) acetate to provide trans isomer Example 321. The Lewis acid/methyl acetal complex was also condensed with tributylphenylacetylenyltin to provide Example 322 which was then partially hydrogenated in the presence of catalysts such as palladium on BaSO4 to provide cis isomer Example 323.

It is understood from the preceeding schemes and the following examples that the substituents R₁, R₂, R₃, R₄, R₅, R₆, R₁₆, R₁₆, R₁₇, R₁₈, R₁₈, Y, R₂, and L₂ can be determined by selection of the appropriate commercially available or known starting materials (e.g., substituted methoxybenzenes) or introduced synthetically by known chemical methods such as those disclosed in Larock, "Comprehensive Organic Transformations. A Guide to Functional Group Preparations," VCH Publishers, New York (1989), hereby incorporated by reference.

Also, it will be appreciated by one skilled in the art that selective protection and deprotection steps depending on the nature of R₁, R₂, R₃, R₄, R₅, R₆, R₁₆, R₁₆, R₁₇, R₁₈, R₁₈, Y, R₂, and L₂ can be carried out in varying order or number of steps to successfully complete the synthetic sequences. Commonly used protecting groups are disclosed in Greene, "Protective Groups In Organic Synthesis," John Wiley & Sons, New York (1981), hereby incorporated by reference.

Example 1

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinoline1H-[1]benzopyrano[3,4-f]quinoline

5

10

15

Example 1A

A solution of 1,3-dimethoxybenzene (33.2 g, 240 mmol) in hexanes (20 mL) at -20 °C was treated sequentially with n-butyllithium (100 mL of a 2.4 M solution in hexanes, 240 mmol) and N,N,N',N'-tetramethylethylenediamine (1.81 mL, 12 mmol), stirred at 23 °C for 1.5 hours, cooled to -78 °C, treated with triisopropylborate (60.9 mL, 264 mmol) in diethyl ether (60 mL) over 1.5 hours with additional diethyl ether (150 mL) added to maintain stirring, stirred at 23 °C for 2 hours, poured into ice (150 mL) and 3M HCl (150 mL), and extracted with ethyl acetate. The extract was dried (Na₂SO₄), filtered, and concentrated, during which a white solid precipitated from solution. The solid was collected by filtration and washed with hexanes to provide the desired compound.

MS (DCI/NH₃) m/z 200 (M+NH₄)⁺.

Example 1B

20

A mixture of Example 1A, methyl 5-nitro-2-bromobenzoate (25.8 g, 99.2 mmol), (21.7 g, 119 mmol), cesium carbonate (97.1 g, 298 mmol), and dichlorobis-(triphenylphosphine)palladium(II) (3.5 g, 5.0 mmol) in DMF (300 mL) was stirred for 24 hours at 80 °C, cooled to 23 °C, treated with water (600 mL), and extracted with ethyl acetate (800 mL). The extract was dried (Na₂SO₄) and concentrated, during which a light yellow solid precipitated from solution. The mixture was placed in a freezer (–20 °C) for 2 hours then filtered to provide the desired compound. MS (DCI/NH₃) m/z 318 (M+H)⁺ and 335 (M+NH₄)⁺.

Example 1C

30

35

25

A solution of Example 1B (11.1 g, 35.1 mmol) in dichloromethane (60 mL) at – 78 °C was treated with boron tribromide (25.0 g, 99.8 mmol), warmed to 23 °C for 1 hour, recooled to –78 °C, and treated with methanol (100 mL). The mixture was warmed to 0 °C, and the precipitate was collected by filtration and recrystallized from methanol to provide the desired compound.

MS (DCI/NH₃) m/z 275 (M+NH₄)⁺.

Example 1D

A mixture of Example 1C (10.7 g, 41.6 mmol) and Cs₂CO₃ (20.0 g, 61.4 mmol) in DMF (130 mL) at 23 °C was treated dropwise with methyl iodide (22.8 g, 161 mmol), stirred for 4 hours, treated with water, and extracted with 1:1 ethyl acetate/hexane. The extract was concentrated, and the resulting solid was filtered, washed with water (100 mL), and dried under vacuum to provide the desired compound.

MS (DCI/NH₃) m/z 289 (M+NH₄)⁺.

Example 1E

A suspension of Example 1D (11.2 g, 41.3 mmol) in dioxane (400 mL) at 23 °C was treated with 10% palladium on carbon (580 mg), heated at 65° C, treated with hydrogen, stirred under atmospheric pressure for 60 hours, filtered through powdered sea shells (Celite®) while hot, and concentrated during which a precipitate formed. The product was filtered and dried under vacuum to provide the desired compound. Concentration of the mother liquor to half of its original volume afforded a second crop of desired compound.

MS (DCI/NH₃) m/z 242 (M+H)⁺ and 259 (M+NH₄)⁺.

Example 1F

A solution of Example 1E (4.0 g, 16.6 mmol) and iodine (1.7 g, 6.64 mmol) in acetone (380 mL) in a 1L sealed ACE glass high pressure vessel at 105 °C was stirred for 48 hours, cooled to room temperature, and concentrated. The residue was purified by flash chromatography on silica gel with 0 to 12% ethyl acetate/hexanes to provide the desired compound.

MS (DCI/NH₃) m/z 322 (M+H)⁺.

25

30

5

10

15

20

Example 1G

A solution of Example 1F (1.02 g, 3.18 mmol) in THF (20 mL) at -78 °C was treated with a solution of phenyllithium (10.9 mL, 19.6 mmol) in cyclohexanes/diethyl ether, warmed to -50 °C, stirred for 2 hours, treated with saturated NH4Cl, warmed to 25 °C, and extracted with ethyl acetate The extract was dried (Na₂SO₄), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 20% ethyl acetate/hexanes to provide the desired compound.

MS (DCI/NH₃) m/z 400 (M+H)⁺.

35

Example 1

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinoline1H-[1]benzopyrano[3,4-f]quinoline

A solution of Example 1G (0.67 g, 1.67 mmol) in dichloromethane (30 mL) at -78 °C was treated with triethylsilane (2.91 g, 25.05 mmol) and BF3·OEt2 (0.95 g, 6.68 mmol), warmed to room temperature, stirred for 16 hours, and treated with saturated NaHCO3. The organic layer was dried (Na2SO4), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 5% ethyl acetate/hexanes to provide the desired compound.

MS (DCI/NH3) m/z 384 (M+H)+;

1H NMR (300 MHz, DMSO-d6) \Quad 8.00 (d, 1H), 7.19 (m, 5H), 6.9 (dd, 1H), 6.76 (s, 1H), 6.69 (dd, 1H), 6.55 (d, 1H), 6.43 (d, 1H), 6.2 (s, 1H), 5.38 (s, 1H), 3.8 (s, 3H), 1.83 (s, 3H), 1.22 (s, 3H), 1.14 (s, 3H);

Anal. calcd for C26H25NO2: C, 81.42; H, 6.58; N, 3.65. Found C, 81.28; H, 6.30; N, 3.47.

Example 2

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline

Example 2A

A solution of Example 1F (6.65 g, 20.69 mmol) in dichloromethane (500 mL) at -78 °C was treated dropwise with 1M diisobutylaluminum hydride in hexanes (47.6 mL, 47.6 mmol), stirred for 2 hours, treated sequentially with saturated aqueous sodium potassium tartrate (300 mL) and ethyl acetate (600 mL), and stirred vigorously for 4 hours. The extract was washed with brine, dried (Na₂SO₄), filtered, and concentrated to provide the desired compound.

25 MS (DCI/NH₃) m/z 306 (M-OH)⁺.

15

20

30

35

Example 2B

A solution of Example 2A (4.20 g, 12.99 mmol) in methanol (150 mL) at 0° C was treated with p-toluenesulfonic acid·H₂O (1.2 g, 20 wt %), stirred for 30 minutes, stirred at room temperature for 1 hour, cooled to 0 °C for 30 minutes, and filtered. The solid was rinsed with hexanes and dried under vacuum to provide the desired compound. The filtrate was poured into saturated NaHCO₃ and extracted with ethyl acetate. The extract was washed with brine, dried (Na₂SO₄), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 10-20% ethyl acetate/hexanes to provide additional desired compound.

MS (DCI/NH₃) m/z 306 (M-OCH₃)⁺.

Example 2

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline

A solution of Example 2B (2.50 g, 7.41 mmol) in dichloromethane (225 mL) was treated with allyltrimethylsilane (4.0 mL, 25.2 mmol), cooled to - 78 °C, treated dropwise with BF3·OEt2 (3.1 mL, 25.2 mmol), stirred for 15 minutes at -78 °C, warmed to 0 °C for 30 minutes, treated with saturated NaHCO3, and extracted with ethyl acetate. The extract was washed with brine, dried (MgSO4), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 5-20% ethyl acetate/hexanes to provide the desired compound.

MS (DCI/NH₃) m/z 348 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□7.96 (d, 1H), 7.07 (t, 1H), 6.71 (d, 1H), 6.60 (d, 1H),
6.52 (d, 1H), 6.12 (br s, 1H), 5.82 (m, 1H), 5.76 (dd, 1H), 5.44 (br s, 1H), 5.01 (m, 2H),
3.86 (s, 3H), 2.44 (m, 1H), 2.20 (m, 1H), 2.16 (s, 3H), 1.17 (s, 3H), 1.16 (s, 3H);
Anal. calcd for C₂₃H₂₅NO₂: C, 79.51; H, 7.25; N, 4.03. Found: C, 79.35; H, 7.30; N,
3.89.

Example 3 Claim 2,5-dihydro-2,2,4,N-tetramethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinolin-10-amine

20

5

10

15

Example 3A

A solution of Example 1C was processed as in Example 1E to provide the desired compound.

MS (DCI/NH₃) m/z 227 (M+H)⁺.

25

Example 3B

A solution of Example 3A was processed according to the procedure in Example 1F to provide the desired compound.

MS (DCI/NH₃) m/z 308 (M+H)⁺.

30

35

Example 3C

A solution of Example 3B (1.38 g, 4.49 mmol), triethylamine (1.92 mL, 13.77 mmol) and 4-dimethylaminopyridine (100 mg) in dichloromethane (50 mL) at -78°C, was treated dropwise with trifluoromethanesulfonic anhydride (1.39 g, 4.94 mmol), stirred 30 minutes at -78° C, warmed slowly to room temperature over 1.5 hours, poured into saturated NH4Cl, and extracted with ethyl acetate. The extract was washed with water, dried (MgSO4), filtered, and concentrated. The residue was purified by flash

chromatography on silica gel with 10% ethyl acetate/hexanes to provide the desired compound.

MS (DCI/NH₃) m/z 440 (M+H) $^+$.

5

Example 3D

Example 3C was processed according to the procedures in examples 2A, 2B and 2 to provide the desired compound.

MS (DCI/NH₃) m/z 466 (M+H)⁺.

10

15

20

25

Example 3

2,5-dihydro-2,2,4,N-tetramethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinolin-10-amine

A solution of Example 3D (0.165 g, 0.36 mmol), palladium(II) acetate (0.0016 g, 0.007 mmol), (S)-(-)-2,2'-bis(phenylphosphino)-1,1'-binapthyl (0.0055, 0.008 mmol), sodium tert-butoxide (0.051 g, 0.53 mmol), methylamine (0.44 mL of a 2.0M solution in THF, 0.88 mmol) in toluene (0.5 mL) was heated at 90 °C for 4 hours in a sealed ACE-glass high pressure vessel, cooled to 0 °C, diluted with ethyl acetate (5 mL), and washed with 0.5M HCl. The organic extract was dried (Na₂SO₄), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 5-12% ethyl acetate/hexanes to provide the desired compound.

MS (DCI/NH₃) m/z 347 (M+H)+;

¹H NMR (300 MHz, DMSO-d₆)□7.83 (d, 1H), 6.94 (dd, 1H), 6.62 (d, 1H), 6.28 (dd, 1H), 6.25 (dd, 1H), 6.05 (d, 1H), 5.86-5.74 (m, 2H), 5.67 (dd, 1H), 5.45 (s, 1H), 5.40 (q, 1H), 5.03 (dd, 1H), 4.98 (dd, 1H), 2.72 (d, 3H), 2.16 (s, 3H), 1.17, (s, 3H), 1.15 (s, 3H);

Example 4

HRMS m/z calcd for C₂₃H₂₆N₂O: 346.2045 (M+H)⁺. Found: 346.2049.

methyl 2,5-dihydro-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline-10-carboxylate

30

35

A solution of Example 3D (263 mg, 0.565 mmol), triethylamine (0.10 mL, 0.717 mmol), 1,3-bis(diphenylphosphino)propane (26 mg, 0.063 mmol) and DMSO (1.5 mL) in methanol (8 mL) was treated with palladium acetate (12.7 mg, 0.056 mmol), saturated with carbon monoxide, stirred under carbon monoxide (1 atm) for 20 minutes, heated at 65 °C for 3 hours, cooled, diluted with ethyl acetate (100 mL), and filtered. The filtrate was washed with brine, dried (MgSO4), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 5-10% ethyl acetate/hexanes to provide the desired compound.

MS (DCI/NH3) m/z 376 (M+H)+;

¹H NMR, □7.19 (m, 2H), 7.03 (dd, 1H), 6.78 (d, 1H), 6.60 (d, 1H), 6.30 (m, 1H), 5.85 (m, 2H), 5.46 (m, 1H), 5.05 (dm, 1H), 4.98 (dm, 1H), 3.77 (s, 3H), 2.30 (m, 2H), 2.19 (d, 3H), 1.21 (s, 3H), 1.15 (s, 3H);

HRMS m/z calcd for C₂₄H₂₅NO₃: 375.1834 (M+H)⁺. Found: 375.1841.

5

10

15

20

25

30

35

Example 5

10-ethenyl-2,5-dihydro-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline

A solution of Example 3D (103 mg, 0.221 mmol) and (1,3-

bis(diphenylphosphino)ferrocene)palladium (II) chloride-dichloromethane (22 mg, 0.027 mmol) in 1-methyl-2-pyrrolidinone (2 mL) was treated with vinyl tributylstannane (0.110 mL, 119 mg, 0.376 mmol), heated at 65 °C for 24 hours, cooled to room temperature, treated with saturated KF, and extracted with ethyl acetate. The extract was washed with brine, dried (MgSO4), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 5% ethyl acetate/hexanes to provide the desired compound.

MS (DCI/NH₃) m/z 344 (M+H)⁺;

¹H NMR □ 7.22 (d, 1H), 7.15 (m, 2H), 6.99 (dd, 1H), 6.83 (dd, 1H), 6.63 (d, 1H), 6.23 (m, 1H), 5.87 (ddm, 1H), 5.73 (dd, 1H), 5.76 (dd, 1H), 5.47 (m, 1H), 5.33 (dd, 1H), 5.03 (dd, 1H), 4.98 (dm, 1H), 3.77 (s, 3H), 2.44 (m, 1H), 2.28 (m, 1H), 2.18 (d, 3H), 1.21 (s, 3H), 1.15 (s, 3H);

HRMS m/z calcd for C24H26NO: 344.2014 (M+H)+. Found: 344.2011

Example 6

10-ethynyl-2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline

Example 6A

A solution of Example 3D (25 mg, 0.054 mmol), tetra-n-butylammonium iodide (40 mg, 0.108 mmol), bis(triphenylphosphine)palladium chloride (7.0 mg, 0.010 mmol), copper(I) iodide (3.8 mg, 0.020 mmol) and triethylamine (0.15 mL, 0.717 mmol) in DMF (0.75 mL) was treated with trimethylsilylacetylene (174 mg, 1.76 mmol), heated at 55 °C for 3 hours, diluted with ethyl acetate (20 mL), and filtered. The filtrate was washed with saturated NH4Cl, and the aqueous layer was extracted with ethyl acetate. The combined extracts were dried (MgSO4), filtered, and concentrated. The residue was applied to a 10 x 20 cm, 0.25 mm silica gel TLC plate and eluted twice with 10% ethyl acetate/hexane. Extraction of the silica gel with ethyl acetate provided the desired compound.

 $MS (DCI/NH_3) m/z 414 (M+H)^+;$

¹H NMR (300 MHz, DMSO-d₆) □ 8.36 (d, 1H), 7.07 (m, 2H), 6.90 (dd, 1H), 6.60 (d, 1H), 6.34 (m, 1H), 5.80 (m, 2H), 5.46 (m, 1H), 5.04 (dm, 1H), 4.97 (dm, 1H), 2.35 (m, 1H), 2.26 (m, 1H), 2.17 (d, 3H), 1.18 (s, 3H), 1.17 (s, 3H), 0.26 (s, 9H).

5

10

15

20

25

Example 6

10-ethynyl-2,5-dihydro-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline

A solution of Example 6A in THF (2.5 mL) was treated sequentially with glacial acetic acid (0.005 mL) and 1M tetra-n-butylammonium fluoride in THF (0.050 mL, 0.050 mmol), stirred at room temperature for 18 hours, and purified according to the procedure in Example 6A to provide the desired compound. MS (DCI/NH₃) m/z 342 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□ 8.27 (dd, 1H), 7.15 (t, 1H), 7.07 (d, 1H), 6.91 (dm, 1H), 6.62 (d, 1H), 6.34 (m, 1H), 5.80 (m, 1H), 5.46 (m, 1H), 5.03 (dm, 1H), 4.98 (dm, 1H), 4.41 (s, 1H), 2.44 (m, 2H), 2.17 (s, 3H), 1.18 (s, 6H); HRMS calcd m/z for C₂4H₂3NO: 341.1780 (M+H)⁺. Found: 341.1788.

Example 7

2,5-dihydro-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinolin-10-ol

Example 7A

A solution of Example 3B (569 mg, 1.85 mmol) in DMF (8 mL) at 23 °C was treated sequentially with imidazole (379 mg, 5.55 mmol) and t-butyldimethylsilyl chloride (418 mg, 2.78 mmol), stirred for 3 hours, poured into water, and extracted with 2:1 hexane/ethyl acetate (22 mL). The extract was washed with water and brine, dried (Na₂SO₄), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 25% ethyl acetate/hexanes to provide the desired compound. MS (DCI/NH₃) m/z 422 (M+H)⁺.

30

Example 7B

Example 7A was processed as in examples 1G and 1to provide the desired compound.

35

Example 7

2,5-dihydro-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinolin-10-ol A solution of Example 7B (0.90 g, 1.87 mmol) in THF (12 mL) at 0 °C was treated with 1M tetra-n-butylammonium fluoride in THF (3.37 mL, 3.37 mmol), warmed

to 23 °C with over 1 hour, treated with water, and extracted with ethyl acetate. The extract was washed with brine, dried (Na₂SO₄), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 10-30% ethyl acetate/hexanes to provide the desired compound.

5 MS (DCI/NH₃) m/z 370 (M+H) $^+$;

¹H NMR (300 MHz, DMSO-d₆)□9.63 (s, 1H), 9.16 (d, 1H), 7.13-7.24 (m, 5H), 6.74 (s, 1H), 6.70 (d,1H), 6.8 (d,1H), 6.39 (dd, 1H), 6.26 (dd, 1H), 6.11 (d, 1H), 5.37 (s, 1H), 1.85 (d, 3H), 1.22 (s, 3H), 1.11 (s, 3H);

HRMS calcd m/z for C₂₅H₂₃NO₂: 369.1729 (M+H)⁺. Found 369.1736.

10

Example 8

10-(difluoromethoxy)-2,5-dihydro-2,2,4-trimethyl-5-(2-propenyl)-1H[1]benzopyrano[3,4-f]quinoline

15

Example 8A

A solution of Example 3B (1.11 g, 3.6 mmol) in DMF (10 mL) at 0 °C was treated sequentially with sodium t-butoxide (0.38 g, 3.6 mmol) and bromodifluoromethane (10 mL), stirred at 0 °C for 6 hours, warmed to room temperature for 1 hour, treated with saturated NaHCO3, and extracted with ethyl acetate. The extract was dried (Na₂SO₄), filtered and concentrated. The residue was purified by flash chromatography on silica gel with 5% ethyl acetate/hexanes to provide the desired compound.

MS (DCI/NH₃) m/z 436 (M+H)⁺.

25

20

Example 8

10-(difluoromethoxy)-2,5-dihydro-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline

Example 8A was processed as in examples 2B and 2 to provide the desired compound.

30 MS (DCI/NH₃) m/z 384 (M+H) $^+$;

¹H NMR (300 MHz, DMSO-d₆)□7.75 (d, 1H), 7.20 (t, 1H), 7.15 (t, 1H), 6.83 (dd, 1H), 6.81 (dd, 1H), 6.63 (d, 1H), 6.28 (s, 1H), 5.89-5.75 (m, 2H), 5.46 (s, 1H), 5.04 (dd, 1H), 4.96 (dd, 1H), 2.48-2.40 (m, 1H), 2.29-2.20 (m, 1H), 2.18 (s, 3H), 1.17 (s, 6H); HRMS calcd for C₂₃H₂₃F₂NO₂: 383.1697 (M+H)⁺. Found 383.1693.

35

Example 9

10-ethoxy-2,5-dihydro-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 9A

A solution of Example 3B (28 mg, .09 mmol) in DMF (1.0 mL) at 0 °C was treated with sodium hydride (2.4 mg of a 60% dispersion in mineral oil, 0.01 mmol), stirred for 1 hour, treated with ethyl bromide (20 mg, .182 mmol), stirred for 30 minutes at room temperature, treated with saturated NaHCO3, and extracted with ethyl acetate. The extract was dried (Na2SO4), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 5% ethyl acetate/hexanes to provide the desired compound.

10

15

5

Example 9

10-ethoxy-2,5-dihydro-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 9A was processed as in examples 1G and 1to provide the desired compound.

 $MS (DCI/NH_3) m/z 398 (M+H)^+;$

¹H NMR (300 MHz, DMSO-d₆) \(\pi \)8.09 (d, 1H), 7.20-7.15 (m, 5H), 6.78 (dd, 2H), 6.77 (s, 1H), 6.69 (d, 1H), 6.53 (dd, 1H), 6.43 (dd, 1H), 6.18 (d, 1H), 5.39 (d, 1H), 3.99-4.06 (m, 1H), 1.85 (d, 3H), 1.38 (t, 3H), 1.22 (s, 3H), 1.16 (s, 3H);

HRMS calcd m/z for $C_{27}H_{27}NO_2$: 397.2042 (M+H)⁺. Found 397.2034.

Example 10

2,5-dihydro-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinoline-10-ol acetate (ester)

25

A solution of Example 7 (20 mg, 0.05 mmol) in pyridine (1 mL) at 0 °C was treated with acetic anhydride (0.1 mL, 1.05 mmol), stirred at room temperature 14 hours, and concentrated. The residue was purified by flash chromatography on silica gel with 20% ethyl acetate/hexanes to provide the desired compound.

¹H NMR (300 MHz, DMSO-d₆)□7.62 (d, 1H), 7.21-7.16 (m, 5H), 6.93 (t, 1H), 6.77 (s, 1H), 6.73 (d, 1H), 6.65 (dd, 1H), 6.62 (dd, 1H), 6.32 (s, 1H), 5.37 (s, 1H), 2.30 (s, 3H), 1.79 (s, 3H), 1.22 (s, 3H), 1.14 (s, 3H); HRMS calcd m/z for C₂7H₂5NO₃: 411.1834 (M+H)⁺. Found: 411.1842.

35

Example 11

5-(3-bromo-5-methylphenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

A solution of Example 2B and (0.520 g, 1.54 mmol) in dichloromethane (50 mL) was cooled to -10 °C, treated dropwise with BF3·OEt2 (0.57 mL, 4.62 mmol), stirred for 30 minutes at -10 °C, treated dropwise with a 0.49 M solution of 3-bromo-5-methylphenylmagnesium bromide in diethyl ether (12.6 mL), stirred for 15 minutes, treated with saturated NaHCO3, and extracted with ethyl acetate. The extract was washed with brine, dried (Na2SO4), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 5% ethyl acetate/hexanes to provide the desired compound.

¹H NMR (300 MHz, DMSO-d₆) \square 8.02 (d, 1H), 7.22 (s, 1H), 7.03 (br d,1H), 6.95 (t, 1H), 6.74 (s, 1H), 6.71 (d, 1H), 6.59 (d, 1H), 6.50 (d, 1H), 6.26 (d, 1H), 5.42 (s, 1H), 4.04 (s, 1H), 3.80 (s, 3H), 2.18 (s, 3H), 1.85 (s, 3H), 1.23 (s, 3H), 1.16 (s, 3H); HRMS m/z calculated for C₂7H₂6NO₂Br: 475.1147 (M+H)⁺. Found 475.1143.

Example 12

3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)phenol,acetate (ester)

Example 12A

A solution of 3-methoxymethoxyphenyl bromide (10.85 g, 50.00 mmol) in THF (300 mL) at -78 °C was treated with n-butyllithium (2.5 M in hexane, 20 mL), warmed to -30 °C, recooled to -78 °C, treated with Example 1F, warmed to -50 °C, quenched with saturated NH4Cl, warmed to ambient temperature, decanted, and concentrated. The residue was treated with water and extracted with ethyl acetate. The extract was washed with water and brine, dried (Na2SO4), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 20-25% ethyl acetate/hexanes to provide the desired compound.

MS (DCI/NH3) m/z 460 (M+H)⁺.

Example 12B

A solution of Example 12A (2.30 g, 5.00 mmol) in methanol (10 mL) was treated with HCl-saturated methanol (50 mL), stirred for 18 hours, poured into 1:1 ethyl acetate/saturated NH4Cl, and extracted with ethyl acetate. The extract was washed with water and brine, dried (Na₂SO₄), filtered, and concentrated to provide the desired compound.

MS (DCI/NH₃) m/z 416 (M+H) $^+$.

5

10

15

20

25

30

35

Example 12C

A solution of Example 12B (2.45 g, 5.89 mmol) and pyridine (2.33 g, 29.4 mmol) in THF (100 mL) was treated with acetyl chloride (0.51 g, 6.48 mmol), stirred for 4 hours, allowed to settle, decanted, and concentrated. The residue was treated with saturated NaHCO3 and extracted with ethyl acetate. The extract was washed with water and brine, dried (Na2SO4), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 25-33% ethyl acetate/hexanes to provide the desired compound.

MS (DCI/NH3) m/z 458 (M+H)⁺.

10

15

5

Example 12

3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)phenol,acetate (ester)

Example 12C was processed as in Example 1 to provide the desired compound. MS (DCI/NH3) m/z 442 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 8.01 (d, 1H), 7.26 (t, 1H), 7.07 (d, 1H), 6.98-6.90 (m, 2H), 6.85 (s, 1H), 6.77 (s, 1H), 6.71 (d, 1H), 6.58 (d, 1H), 6.46 (dd, 1H), 6.23 (s, 1H), 5.40 (s, 1H), 3.79 (s, 3H), 2.19 (s, 3H), 1.85 (s, 3H), 1.23 (s, 3H), 1.14 (s, 3H); Anal. calcd for C₂₈H₂₇NO₄·0.25H₂O: C, 75.40; H, 6.21; N, 3.14. Found: C, 75.76; H, 6.21; N, 2.84.

20

25

30

Example 13

3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)phenol

A solution of Example 12 (0.81 g, 1.84 mmol) in THF (20 mL) and methanol (20 mL) was treated with K₂CO₃ (2.00 g, 14.5 mmol) in water (6 mL), stirred for 12 hours, quenched with saturated NH₄Cl, decanted, concentrated, treated with saturated NaHCO₃, and extracted with ethyl acetate. The extract was washed with water and brine, dried (Na₂SO₄), filtered, and concentrated to provide the desired compound. MS (DCI/NH₃) m/z 400 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□9.26 (s, 1H), 8.00 (d, 1H), 7.00 (t, 1H), 6.92 (t, 1H), 6.71-6.66 (m, 2H), 6.63 (d, 1H), 6.58-6.51 (m, 3H), 6.44 (dd, 1H), 6.15 (s, 1H), 5.38 (s, 1H), 3.80 (s, 3H), 1.88 (s, 3H), 1.24 (s, 3H), 1.15 (s, 3H); Anal. calcd for C₂6H₂5NO₃: C, 78.17; H, 6.30; N, 3.50. Found: C, 77.82; H, 6.42; N, 3.26.

35

Example 14

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[[3-(methylthio)methoxy]phenyl]-1H[1]benzopyrano[3,4-f]quinoline

A solution of Example 13 (420 mg, 1.05 mmol) in DMF (40 mL) at 0 °C was treated with NaH (50 mg, 2.10 mmol) portionwise over 5 minutes, stirred for 10 minutes, treated with chloromethyl methyl sulfide (152 mg, 1.58 mmol), warmed to room temperature, treated with saturated NH4Cl, and extracted with ethyl acetate. The extract was washed sequentially with 1M NaOH and brine, dried (Na2SO4), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 5-17% ethyl acetate/hexanes to provide the desired compound.

MS (DCI/NH3) m/z 460 (M+H)+;

1H NMR (300 MHz, DMSO-d6) □ 8.01 (d, 1H), 7.14 (t, 1H), 6.92 (t, 1H), 6.83-6.68 (m, 5H), 6.56 (d, 1H), 6.47 (d, 1H), 6.21 (s, 1H), 5.40 (s, 1H), 5.13 (s, 2H), 3.80 (s, 3H), 2.09 (s, 3H), 1.97 (s 3H), 1.24 (s, 3H), 1.16 (s, 3H);

Anal. calcd for C28H29NO3S·0.5H2O: C, 71.76; H, 6.45; N, 2.98. Found: C, 71.93; H, 6.61; N, 2.68.

15

20

30

35

10

5

Example 15

[3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)phenyl] dimethylcarbamate

Example 13 and N,N-dimethylcarbamoyl chloride were processed as in Example 14 to provide the desired compound.

MS (DCI/NH₃) m/z 471 (M+H)⁺; ¹H NMR (300 MHz, DMSO-d₆)□8.01 (d, 1H), 7.22 (t, 1H), 7.05 (d, 1H), 6.93 (t, 2H), 6.83 (s, 1H), 6.77 (s, 1H), 6.71 (d, 1H), 6.57 (d, 1H), 6.48 (d, 1H), 6.23 (d, 1H), 5.40 (s, 1H), 3.80 (s, 3H), 2.97 (s, 3H), 2.85 (s, 3H), 1.86 (s, 3H), 1.24 (s, 3H), 1.14 (s, 3H); Anal. calcd for C₂₉H₃₀N₂O₄: C, 74.02; H, 6.42; N, 5.95. Found: C, 74.05; H, 6.36; N,

25 5.86.

Example 16

5-[3-(2-furanyl)-5-methylphenyl]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

A solution of Example 11 (0.253 g, 0.531 mmol) in 1-methyl-2-pyrrolidinone (25 mL) was deoxygenated with nitrogen, treated with 2-(tributylstannyl)furan (0.33 mL, 1.06 mmol), [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II) dichloromethane complex (0.045 g, 0.005 mmol), heated to 85 °C for 13 hours, cooled to room temperature, diluted with ethyl acetate and saturated KF, stirred for 3 hours, and extracted with ethyl acetate. The extract was washed with brine, dried (MgSO4), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 5-10% ethyl acetate/hexanes to provide the desired compound.

MS (DCI/NH3) m/z 464 (M+H);

¹H NMR (300 MHz, DMSO-d₆)□8.02 (d, 1H), 7.67 (m, 1H), 7.31 (d, 2H), 6.92 (t, 1H), 6.92 (s, 1H), 6.75 (m, 2H), 6.72 (d, 1H), 6.57-6.50 (m, 3H), 6.23 (m, 1H), 5.41 (s, 1H), 3.78 (s, 3H), 2.20 (s, 3H), 1.89 (s, 3H), 1.24 (s, 3H), 1.17 (s, 3H); Anal. calcd for C₃₁H₂₉NO₃: C, 80.32; H, 6.31; N, 3.02. Found: C, 80.08; H, 6.25; N, 2.83.

Example 17

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-methyl-5-(1-morpholinyl)phenyl]1H-[1]benzopyrano[3,4-f]quinoline

A solution of Example 11 (0.055 g, 0.115 mmol) in toluene (5 mL) was treated sequentially with bis(dibenzylideneacetone)palladium(0) (0.007 g, 0.012mmol), (S)-(-)-bis(diphenylphospino)-1,1'-binaphthyl (0.022 g, 0.035 mmol), morpholine (15 L, 0.173 mmol), and sodium tert-butoxide (0.028 g, 0.289 mmol), stirred at 85 °C for 4 hours, cooled to room temperature, diluted with ethyl acetate and water, and filtered through powdered sea shells (Celite®). The extract was washed with brine, dried (Na₂SO₄), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 10-33% ethyl acetate/hexanes to provide the desired compound.

MS (DCI/NH₃) m/z 483 (M+H);

1H NMR (300 MHz, DMSO-d₆) \(\pi 7.97 \) (d, 1H), 6.93 (t, 1H), 6.68 (m, 2H), 6.54-6.60 (m, 3H), 6.49 (d, 1H), 6.40 (s, 1H), 6.18 (br s, 1H), 5.40 (s, 1H), 3.78 (s, 3H), 3.65 (m, 4H), 2.91 (m, 4H), 2.09 (s, 3H), 1.89 (s, 3H), 1.21 (s, 3H), 1.16 (s, 3H);

Anal. calcd for C₃₁H₃₄N₂O₃·0.25H₂O: C, 76.44; H, 7.14; N, 5.75. Found: C, 76.61; H, 7.35; N, 5.47.

25

30

35

5

10

15

20

Example 18

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(phenylmethylene)-1H-[1]benzopyrano[3,4-f]quinoline

A solution of Example 1F (0.100 g, 0.31 mmol) in THF (5 mL) at -78 °C was treated with a solution of benzylmagnesium bromide (10 mL of 0.44 M solution in ether, 4.4 mmol) dropwise over 10 minutes, warmed to room temperature, stirred for 14 hours, treated with saturated NH4Cl, and extracted with ethyl acetate. The extract was dried (Na2SO4) and concentrated. The residue was dissolved in dichloromethane (10 mL), treated with p-toluenesulfonic acid·H2O (0.059 g, 0.31 mmol), stirred for 14 hours at room temperature, treated with 2% NaOH (10 mL), and extracted with ethyl acetate. The residue was purified by flash chromatography on silica gel with 10% ethyl acetate/hexanes to provide the desired compound as a mixture of regioisomers. The regioisomers were separated by HPLC (Microsorb, 5% acetone/hexanes) but rapidly interconverted at room temperature to a 1:1 regioisomeric mixture.

MS (DCI/NH₃) m/z $396 (M+H)^+$;

¹H NMR (300 MHz, DMSO-d6) isomer 1: □8.12 (d, 1H), 7.16-7.03 (m, 5H), 6.80-6.66 (m, 4H), 6.45 (s, 1H), 6.34 (s, 1H), 5.0 (s, 1H), 3.90 (s, 3H), 1.84 (s, 3H), 1.20 (s, 3H), 0.91 (s, 3H); isomer 2: □8.23 (d, 1H), 7.70 (d, 2H), 7.37 (t, 2H), 7.22 (m, 1H), 7.03-7.16 (m, 3H), 6.86 (d, 1H), 6.55 (s, 1H), 5.53 (s, 1H), 5.45 (s, 1H), 3.90 (s, 3H), 1.97 (s, 3H), 1.25 (s, 6H);

HRMS calcd m/z for C27H25NO2: 395.1885 (M+H)+. Found: 395.1884.

Example 19

10

15

20

25

30

5

5-(3,5-dichlorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

Example 1F and 3,5-dichlorophenyl magnesium bromide were processed as in examples 1G and 1 to provide the desired compound.

MS (DCI/NH₃) m/z 452 (M+H)⁺;

¹H NMR (300 MHz, DMSO)□8.10 (d, 1H), 7.51 (t, Hz, 1H), 7.19 (d, 2H), 7.03 (dd, 1H), 6.87 (s, 1H), 6.80 (d, 1H), 6.67 (d, 1H), 6.59 (d, 1H), 6.36 (s, 1H), 5.50 (s, 1H), 3.87 (s, 3H), 1.93 (s, 3H), 1.29 (s, 3H), 1.22 (s, 3H); ¹³C NMR (75 MHz, DMSO) 156.1, 151.1, 145.6, 143.8, 133.8, 133.8, 133.5, 128.1, 127.6, 127.3, 127.2, 127.1, 126.7, 126.7, 117.8, 116.9, 114.1. 113.4, 110.2, 105.9, 73.3, 55.6, 49.7, 29.2, 28.5, 23.2;

HRMS calcd for C₂₆H₂₃NO₂Cl₂: 451.1106 (M+H)⁺. Found 451.1113.

Example 20

5-butyl-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 1F and n-butyllithium were processed as in examples 1G and 1 to provide the desired compound.

MS (DCI/NH₃) m/z 364 (M+H)+;

¹H NMR (300 MHz, DMSO-d₆)□7.94 (d, 1H), 7.06 (dd,1H), 6.68 (dd, 1H), 6.58 (d, 1H), 6.54 (dd, 1H), 6.08 (s, 1H), 5.67 (m, 1H), 5.44 (s, 1H), 3.85 (s, 3H), 2.15 (s, 3H), 1.68 (m, 1H), 1.41-1.22 (m, 5H), 1.17 (s, 3H), 1.14 (s, 3H), 0.78 (t, 3H); Anal. calcd for C₂4H₂9NO₂:C, 79.30; H, 8.04; N, 3.85. Found C, 79.10; H, 8.14; N, 3.72.

35

Example 21

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-(trifluoromethyl)phenyl]-1H-[1]benzopyrano[3,4-f]quinoline

Example 1F and 3-trifluoromethylphenyl-magnesium bromide were processed as in examples 1G and 1 to provide the desired compound.

 $MS (DCI/NH3) m/z 452 (M+H)^+;$

¹H NMR (300 MHz, DMSO-d₆) □ 8.03 (d, 1H), 7.55 (m, 1H), 7.47 (m, 3H), 6.93 (dd, 1H), 6.88 (s, 1H), 6.73 (d, 1H), 6.58 (d, 1H), 6.48 (d, 1H), 6.29 (s, 1H), 5.43 (s, 1H), 3.79 (s, 3H), 1.85 (s, 3H), 1.23 (s, 3H), 1.17 (s, 3H); Anal. calcd for C₂₇H₂₄F₃NO₂: C, 71.82; H, 5.35; N, 3.10. Found: C, 71.73; H, 5.44; N, 3.05.

10

5

Example 22

2,5-dihydro-10-methoxy-5-(4-methoxyphenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and anisole were processed as in Example 2C to provide the desired compound.

MS (DCI/NH₃) m/z 414 (M+H) $^+$;

 1 H NMR (300 MHz, DMSO-d₆)□8.00 (d, 1H), 7.04 (d, 2H), 6.90 (dd, 1H), 6.78 (dd, 2H), 6.70 (dd, 2H), 6.60 (dd, 1H), 6.41 (dd, 1H), 6.18 (s, 1H), 5.37 (s, 1H), 3.79 (s, 3H), 3.65 (s, 3H), 1.83 (s, 3H), 1.22 (s, 3H), 1.13 (s, 3H); HRMS calcd m/z for C₂7H₂7NO₃: 413.1991 (M+H)⁺. Found: 413.1987.

20

25

30

35

Example 23

5-(3-chlorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 1F and 3-chlorophenylmagnesium bromide were processed as in examples 1G and 1 to provide the desired compound.

 $MS (DCI/NH_3) m/z 418 (M+H)^+;$

¹H NMR (300 MHz, DMSO-d₆)□8.01 (d, 1H), 7.23-7.12 (m, 4H), 6.90 (dd, 1H), 6.77 (s, 1H), 6.70 (d, 1H), 6.55 (dd, 1H), 6.44 (dd, 1H), 6.18 (d, 1H), 5.38 (s, 1H), 3.79 (s, 3H), 1.84 (s, 3H), 1.22 (s, 3H), 1.15 (s, 3H);

HRMS calcd m/z for C₂₆H₂₄NO₂Cl: 417.1496 (M+H)⁺. Found: 417.1490.

Example 24

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(3-methylphenyl)-1H-[1]benzopyrano[3,4-f]quinoline

Example 1F and 3-methylphenylmagnesium bromide were processed as in examples 1G and 1 to provide the desired compound.

MS (DCI/NH₃) m/z 398 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □7.94 (d, 1H), 7.01-6.91 (m, 4H), 6.84 (dd, 1H), 6.66 (s, 1H), 6.62 (d, 1H), 6.48 (dd, 1H), 6.38 (dd, 1H), 6.11 (d, 1H), 5.31 (d, 1H), 3.72 (s, 3H), 2.10 (s, 3H), 1.78 (d, 3H), 1.15 (s, 3H), 1.09 (s, 3H); Anal. calcd for C₂₈H₂₇NO₂: C, 81.58; H, 6.85; N, 3.52. Found: C, 81.23; H, 7.18; N, 3.36.

Example 25

(±)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano-[3,4-f]quinoline

Enantiomer of Example 1.

Spectral data are identical to Example 1.

 $[\Box]D = +85.1;$

Retention time = 11.68 minutes on a Chiralcel OJ 4.6 x 250 mm HPLC column;

Solvent: 95:5 hexane:ethanol;

15 Flow rate: 1 mL/minute.

Example 26

(±)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinoline

Enantiomer of Example 1. Spectral data are identical to Example 1. $[\Box]D = -84.9$;

Retention time = 15.27 minutes on a Chiralcel OJ 4.6 x 250 mm HPLC column;

Solvent: 95:5 hexane:ethanol;

Flow rate: 1 mL/minute.

25

30

35

20

5

10

Example 27

5-(3,5-dimethylphenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 1F (0.052 g, 0.162 mmol) in THF (5 mL) was cooled to 0 °C, treated dropwise with 0.38 M 3,5-dimethylphenyl magnesium bromide in dimethylether (4.4 mL, 1.68 mmol), warmed to room temperature, stirred for 14 hours, partitioned between saturated NH4Cl and ethyl acetate, and extracted with ethyl acetate. The extract was washed with brine, dried (MgSO4), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with a gradient from 10-25% ethyl acetate/hexanes to provide the desired lactol.

The lactol (0.043 g, 0.101 mmol) was dissolved in dichloromethane (7 mL), treated with triethylsilane (0.16 mL, 1.01 mmol), cooled to 0 °C, treated with BF3·OEt2 (0.12 mL, 1.01 mmol), warmed to room temperature, stirred for 19 hours, and treated

with NaHCO3, and extracted with ethyl acetate. The extract was washed with brine, dried (MgSO4), and concentrated. The residue was purified by flash chromatography on silica gel with 5-10% ethyl acetate/hexanes to provide the desired compound. MS (DCI/NH3) m/z 412 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□8.00 (d, 1H), 6.92 (t, 1H), 6.78 (m, 3H), 6.70 (d, 1H), 6.69 (s, 1H), 6.56 (dd, 1H), 6.47 (dd, 1H), 6.19 (d, 1H), 5.39 (s, 1H), 3.79 (s, 3H), 2.11 (s, 6H), 1.85 (s, 3H), 1.22 (s, 3H), 1.15 (s, 3H); Anal. calcd for C₂₈H₂₉NO₂: C, 81.72; H, 7.10; N, 3.40. Found: C, 81.59; H, 7.54; N, 3.16.

10

Example 28

5-(4-chlorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 1F and 4-chlorophenylmagnesium bromide were processed as in

examples 1G and 1 to provide the desired compound.

MS (DCI/NH3) m/z 418 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d6)□8.01 (d, 1H), 7.24 (q, 4H), 6.92 (t, 1H), 6.76 (s, 1H),

6.70 (d, 1H), 6.57 (d, 1H), 6.43 (d, 1H), 6.24 (br s, 1H), 5.20 (br s, 1H), 3.79 (s, 3H),

1.83 (s, 3H), 1.24 (s, 3H), 1.14 (s, 3H);

Anal. calcd for C26H24NO2Cl: C, 74.72; H, 5.79; N, 3.35. Found: C, 74.73; H, 5.68; N,

· Example 29

5-(3,4-dimethylphenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

25

3.29.

Example 1F and 3,4-dimethylphenylmagnesium bromide were processed as in examples 1G and 1 to provide the desired compound.

MS (DCI/NH₃) m/z 412 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□7.98 (d, 1H), 6.94 (s, 1H), 6.82 (q, 2H), 6.78 (d, 1H), 6.67 (d, 1H), 6.53 (d, 1H), 6.42 (d, 1H), 6.17 (s, 1H), 5.37 (s, 1H), 3.78 (s, 3H), 2.08 (s, 6H), 1.84 (s, 3H), 1.22 (s, 3H), 1.14 (s, 3H);

Anal. calcd for C₂₈H₂₉O₂N·0.5H₂O: C, 79.97; H, 7.19; N, 3.33. Found: C, 79.94; H, 7.25; N, 2.98.

35

30

Example 30

5-(4-fluorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and 4-fluorophenylmagnesium bromide were processed as in Example 11 to provide the desired compound.

MS (DCI/NH₃) m/z 402 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) \(\pi \)8.03 (d, 1H), 7.16 (m, 2H), 7.03 (t, 2H), 6.88 (t, 1H), 6.71 (s, 1H), 6.68 (d, 1H), 6.55 (d, 1H), 6.41 (d, 1H), 6.22 (s, 1H), 5.38 (s, 1H), 3.79 (s, 3H), 1.82 (s, 3H), 1.23 (s, 3H), 1.14 (s, 3H).

Example 31

5-[3,5-bis(trifluoromethyl)phenyl]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and 4-fluorophenylmagnesium bromide were processed as in Example 11 to provide the desired compound.

¹H NMR (300 MHz, DMSO-d₆) □ 8.02 (d, 1H), 7.98 (s, 1H), 7.00 (s, 1H), 6.93 (d, 1H), 6.75 (d, 1H), 6.59 (d, 1H), 6.49 (d, 1H), 6.38 (s, 1H), 5.46 (s, 1H), 3.79 (s, 3H), 1.87 (s, 3H), 1.21 (s, 3H), 1.19 (s, 3H);

HRMS calcd m/z for C₂₈H₂₃O₂F₆N: 519.1633 (M+H)⁺. Found: 519.1646; Anal. calcd for C₂₈H₂₃NO₂F₆·1.25H₂O: C, 62.05; H, 4.74; N, 2.58. Found: C, 61.96; H, 4.70; N, 2.35.

20

5

10

15

Example 32

(-)-5-(3,5-dichlorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Enantiomer of Example 19.

Spectal data are identical to Example 19.

25 $\square D = -208.0;$

Retention time = 6.89 minutes on a Regis (R,R)-WhelkO1 Kromasil 4.6x250mm HPLC column;

Solvent: 86:10:3 hexane:dichloromethane:ethanol;

Flow rate: 1 mL/minute.

30

35

Example 33

(+)-5-(3,5-dichlorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

-Enantiomer of Example 19. Spectal data are identical to Example 19.

 $[\Box]_D = +210.7;$

Retention time = 8.63 min on a Regis (R,R)-WhelkO1 Kromasil 4.6 x 250mm HPLC column;

Solvent: 86:10:3 hexane:dichloromethane:ethanol;

Flow rate: 1 mL/minute.

5.58; N, 3.06.

Example 34

5-(3,5-difluorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-

5

1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and 3,5-difluorophenylmagnesium bromide were processed as in Example 11 to provide the desired compound. 1 H NMR (300 MHz, DMSO-d₆) \Box 8.01 (d, 1H), 7.05 (m, 1H), 6.93 (t, 1H), 6.79 (s, 3H), 6.71 (d, 1H), 6.59 (9, 1H), 6.50 (d, 1H), 6.30 (s, 1H), 5.43 (s, 1H), 3.81 (s, 3H), 1.87 (s, 3H), 1.23 (s, 3H), 1.16 (s, 3H); HRMS calcd m/z for C₂6H₂3O₂F₂N: 419.1697 (M+H)⁺. Found: 419.1702; Anal. calcd for C₂6H₂3O₂F₂N·0.5H₂O: C, 72.88; H, 5.65; N, 3.27. Found: C, 72.62; H,

15

10

Example 35

2,5-dihydro-10-methoxy-2,2,4,N-tetramethyl-N-phenyl-1H-[1]benzopyrano[3,4-f]quinolin-5-amine

Example 1F and N-methylaniline were processed as in Example 2 to provide the desired compound.

20 MS (DCI/NH₃) m/z 306 (M-NMePh)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 8.03 (d, 1H), 7.25 (t, 2H), 7.08 (m, 2H), 6.99 (t, 1H), 6.86 (s, 1H), 6.80 (t, 1H), 6.70-6.65 (m, 2H), 6.41 (d, 1H), 6.26 (br s, 1H), 5.39 (br s, 1H), 3.87 (s, 3H), 2.47 (s, 3H), 1.74 (s, 3H), 1.24 (s, 3H), 1.11 (s, 3H).

25

Example 36

(-)2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline

Example 2 was purified by flash chromatography on Chiralcel OJ with 10% ethanol/hexanes to provide the desired compound.

30 $[\Box]D = -1.8$ (c 1.2, CHCl₃);

MS (DCI/NH₃) m/z 348 (M+H) $^+$;

 1 H NMR (300 MHz, DMSO-d6) \Box 7.96 (d, 1H), 7.07 (t, 1H), 6.71 (d, 1H), 6.60 (d, 1H), 6.52 (d, 1H), 6.12 (br s, 1H), 5.82 (m, 1H), 5.76 (dd, 1H), 5.44 (br s, 1H), 5.01 (m, 2H), 3.86 (s, 3H), 2.44 (m, 1H), 2.20 (m, 1H), 2.16 (s, 3H), 1.17 (s, 3H), 1.16 (s, 3H);

Anal. calcd for C₂₃H₂₅NO₂: C, 79.51; H, 7.25; N, 4.03. Found: C, 9.34; H, 7.00; N, 4.07.

Example 37

(+)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline

Example 2 was purified by flash chromatography on Chiralcel OJ with 10% ethanol/hexanes to provide the desired compound.

5 $[\Box]D=+2.1(c\ 1.1, CHCl_3);$

MS (DCI/NH₃) m/z 348 (M+H)+:

¹H NMR (300 MHz, DMSO-d₆) \$\sup 7.96\$ (d, 1H), 7.07 (t, 1H), 6.71 (d, 1H), 6.60 (d, 1H), 6.52 (d, 1H), 6.12 (br s, 1H), 5.82 (m, 1H), 5.76 (dd, 1H), 5.44 (br s, 1H), 5.01 (m, 2H), 3.86 (s, 3H), 2.44 (m, 1H), 2.20 (m, 1H), 2.16 (s, 3H), 1.17 (s, 3H), 1.16 (s, 3H);

Anal. calcd for C₂₃H₂₅NO₂: C, 79.51; H, 7.25; N, 4.03. Found: C, 79.29; H, 7.01; N, 3.92.

Example 38

2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and triethylsilane were processed as in Example 2 to provide the desired compound.

MS (DCI/NH₃) m/z $308 (M+H)^+$;

¹H NMR (300 MHz, DMSO-d₆) □ 7.82 (d, 1H), 7.05 (t, 1H), 6.72 (dd, 1H), 6.58 (d, 1H), 6.57 (dd, 1H), 6.13 (d, 1H), 5.39 (t, 1H), 5.10 (s, 2H), 3.84 (s, 3H), 2.02 (d, 3H), 1.18 (s, 6H);

Anal. calcd for C₂₀H₂₁NO₂·0.1H₂O: C, 77.69; H, 6.91; N, 4.53. Found: C, 77.60; H, 7.15; N, 4.33.

Example 39

4-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)-N,N-dimethylbenzenamine

Example 2B and N,N-dimethylaniline were processed as in Example 2 to provide the desired compound.

MS (DCI/NH₃) m/z $427 (M+H)^+$;

¹H NMR (300 MHz, DMSO-d₆) □ 7.98 (d, 1H), 6.95 (d, 2H), 6.88 (t, 1H), 6.57 (d, 1H), 6.64 (s, 1H), 6.53 (m, 3H), 6.39 (d, 1H), 6.14 (d, 1H), 5.35 (s, 1H), 3.79 (s, 3H), 2.80 (s, 6H), 1.84 (s, 3H), 1.21 (s, 3H), 1.13 (s, 3H); Anal. calcd for C₂8H₃0N₂O₂·0.25H₂O: C, 78.02; H, 7.13; N, 6.50. Found: C, 78.29; H, 7.38; N, 6.01.

35

15

20

25

Example 40

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(5-methoxy-2-thienyl)1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and 2-methoxythiophene were processed as in Example 2 to provide the desired compound.

MS (DCI/NH3) m/z 420 (M+H)+;

¹H NMR (500 MHz, DMSO-d₆)□7.98 (d, 1H), 6.97 (d, 1H), 6.73 (s, 1H), 6.67 (d, 1H), 6.63 (d, 1H), 6.46 (d, 1H), 6.20 (d, 1H), 6.18 (s, 1H), 5.96 (d, 4H), 5.39 (s, 1H), 3.82 (s, 3H), 3.72 (s, 3H), 1.98 (s, 3H), 1.21 (s, 3H), 1.13 (s, 3H); Anal. calcd for C₂₅H₂₅NO₃S: C, 71.57; H, 6.01; N, 3.34. Found: C, 71.54; H, 5.99; N, 3.17.

10

15

5

Example 41

$\underline{\textbf{2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(5-propyl-2-thienyl)-}}$

1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and 2-propylthiophene were processed as in Example 2 to provide the desired compound.

¹H NMR (300 MHz, DMSO-d₆)□8.01 (d, 1H), 6.95 (t, 1H), 6.84 (s, 1H), 6.67 (d, 1H), 6.61 (d, 1H), 6.51 (d, 1H), 6.46 (d, 1H), 6.41 (d, 1H), 6.18 (m, 1H), 5.39 (s, 1H), 3.82 (s, 3H), 2.59 (t, 2H), 1.96 (s, 3H), 1.50 (h, 2H), 1.20 (s, 3H), 1.14 (s, 3H), 0.83 (t, 3H); HRMS calcd m/z for C₂7H₂9NO₂S: 431.1919 (M+H)⁺. Found: 431.1911.

20 .

30

35

Example 42

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[4-(1-morpholinyl)phenyl]1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and 4-phenylmorpholine were processed as in Example 2 to provide the desired compound.

25 MS (DCI/NH₃) m/z 469 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 8.00 (d, 1H), 7.00 (d, 2H), 6.92 (t, 1H), 6.76 (d, 2H), 6.68 (d, 2H), 6.55 (d, 1H), 6.40 (d, 1H), 6.16 (m, 1H), 5.36 (s, 1H), 3.79 (s, 3H), 3.62 (m, 4H), 3.05 (m, 4H), 1.81 (s, 3H), 1.22 (s, 3H), 1.13 (s, 3H); Anal. calcd for C₃₀H₃₂N₂O₂·0.5H₂O: C, 75.45; H, 6.96; N, 5.87. Found: C, 75.46; H,

Anal. calcd for C30H32N2O2-0.5H2O: C, 75.45; H, 6.96; N, 5.87. Found: C, 75.46; F 6.69; N, 5.31.

Example 43

1-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)-3,3-dimethyl-2-butanone

Example 2B and (2,2-dimethyl-1-methylenepropoxy)trimethylsilane were processed as in Example 2 to provide the desired compound.

MS (DCI/NH₃) m/z 406 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□7.95 (d, 1H), 7.04 (t, 1H), 6.71 (d, 1H), 6.60 (d, 1H), 6.41 (d, 1H), 6.33 (d, 1H), 6.15 (br s, 1H), 5.43 (s, 1H), 3.87 (s, 3H), 3.26 (m, 1H), 2.36 (m, 1H), 2.13 (s, 3H), 1.16 (s, 3H), 1.15 (s, 3H), 0.89 (s, 9H); Anal. calcd for C₂6H₃1NO₃·0.33H₂O: C, 75.90; H, 7.76; N, 3.40. Found: C, 75.91; H, 8.17; N, 3.62.

Example 44

2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline-5carbonitrile

Example 2B and cyanotrimethylsilane were processed as in Example 2 to provide the desired compound.

MS (DCI/NH₃) m/z 333 (M+H)+;

¹H NMR (300 MHz, DMSO-d₆) □ 7.96 (d, 1H), 7.20 (t, 1H), 6.89 (d, 1H), 6.84 (s, 1H), 6.74 (d, 8H), 6.73 (d, 1H), 6.46 (s, 1H), 5.51 (s, 1H), 3.90 (s, 3H), 2.22 (s, 3H), 1.29 (s, 3H), 1.09 (s, 3H);

Anal. calcd for C₂₁H₂₀N₂O₂·0.25H₂O: C, 74.87; H, 6.13; N, 8.31. Found: C, 75.00; H, 6.23; N, 8.34.

Example 45

1-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)-2-propanone

Example 2B and 2-(trimethylsiloxy)-propene were processed as in Example 2 to provide the desired compound.

¹H NMR (300 MHz, DMSO-d₆) □ 7.96 (t, 1H), 7.04 (t, 1H,), 6.71 (d, 1H), 6.58 (d, 1H), 6.48 (d, 1H), 6.20 (dd, 1H), 6.16 (s, 1H), 5.4 (s, 1H), 3.87 (s, 3H), 2.91 (q, 1H), 2.16 (s, 3H), 2.04 (s, 3H), 1.15 (d, 6H);

HRMS calcd m/z for C₂₃H₂₅O₃N: 363.1834 (M+H)⁺. Found: 363.1843; Anal. calcd for C₂₃H₂₅NO₃·0.33H₂O: C, 74.79; H, 7.00; N, 3.79. Found: C, 74.77; H, 7.14; N, 3.67.

30

35

5

10

15

20

25

Example 46

methyl 2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline-5-acetate

Example 2B and 1-methoxy-1-(tert-butyldimethylsiloxy)ethylene were processed as in Example 2 to provide the desired compound.

MS (DCI /NH3) m/z 380 (M+H)+;

¹H NMR (300 MHz, DMSO-d₆)□8.01 (d, 1H), 7.11 (t, 1H), 6.78 (d, 1H), 6.66 (d, 1H), 6.53 (d, 1H), 6.27 (d, 1H), 6.22 (s, 2H), 5.52 (s, 1H), 3.93 (s, 3H), 3.67 (s, 3H), 2.70 (dd, 1H), 2.64 (d, 1H), 2.27 (s, 3H), 1.22 (d, 6H); Anal. calcd for C₂₃H₂₅O₄N·0.5H₂O: C, 71.12; H, 6.75; N, 3.61. Found: C, 71.46; H, 6.81; N, 3.45.

5

10

15

20

25

30

35

Example 47

2-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)-1-phenylethanone

Example 2B and 1-phenyl-1-(trimethylsiloxy)ethylene were processed as in Example 2 to provide the desired compound.

¹H NMR (300 MHz, DMSO-d₆)□8.01 (d, 1H), 7.72 (d, 2H), 7.59 (t, 1H), 7.40 (t, 2H), 6.93 (t, 1H), 6.70 (d, 1H), 6.61 (d, 1H), 6.43 (d, 1H), 6.25 (d, 1H), 6.18 (s, 1H), 5.44 (s, 1H), 3.90 (s, 3H), 3.66 (q, 1H), 2.95 (d, 1H), 2.16 (s, 3H), 1.16 (s, 6H); HRMS calcd m/z for C₂₈H₂₇O₃N: 425.1991 (M+H)⁺. Found: 425.2005.

Example 48

5-[2-(chloromethyl)-2-propenyl]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and 2-chloromethyl-3-trimethylsilyl-1-propene were processed as in Example 2 to provide the desired compound.

¹H NMR (300 MHz, DMSO-d6)□7.96 (d, 1H), 7.03 (t, 1H), 6.69 (d, 1H), 6.59 (d, 1H), 6.44 (d, 1H), 6.15 (s, 1H), 5.96 (dd, 1H), 5.45 (s, 1H), 5.27 (s, 1H), 4.95 (s, 1H), 4.17 (q, 2H), 3.87 (s, 3H), 2.55 (d, 1H), 2.26 (dd, 1H), 2.20 (s, 3H), 1.15 (d, 6H); HRMS m/z calcd for C24H26O2ClN: 395.1652 (M+H)⁺. Found: 395.1645; Anal. calcd for C24H26O2ClN·0.333H2O: C, 71.73; H, 6.69; N, 3.49. Found: C, 71.71; H, 6.32; N, 3.35.

Example 49

2,5-dihydro-10-methoxy-2,2,4-trimethyl-(-methylene-1H-[1]benzopyrano[3,4-f]quinoline-5-propanol, acetate (ester)

Example 2B and 2-[(trimethylsilyl)methyl]-2-propen-1-yl acetate were processed as in Example 2 to provide the desired compound. 1 H NMR (300 MHz, DMSO-d₆) \square 8.02 (d, 1H), 7.10 (t, 1H), 6.75 (dd, 1H), 6.65 (d, 1H), 6.50 (d, 1H), 6.18 (s, 1H), 5.98 (dd, 1H), 5.51 (s, 1H), 5.16 (s, 1H), 4.98 (s, 1H), 4.48 (q, 2H), 3.93 (s, 3H), 2.25 (s, 3H), 1.22 (s, 6H); HRMS calcd m/z for C₂6H₂9O₄N: 419.2097 (M+H)⁺. Found: 419.2095;

Anal. calcd for C₂₆H₂₉O₄N·0.25H₂O: C, 73.65; H, 7.01; N, 3.30. Found: C, 73.83; H, 6.91; N, 3.20.

Example 50

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(4-methylphenyl)-1H-[1]benzopyrano[3,4-f]quinoline

Example 1F and 4-methylphenylmagnesium bromide were processed as in examples 1G and 1 to provide the desired compound.

MS (DCI/NH₃) m/z 398 (M+H);

¹H NMR (300 MHz, DMSO-d₆) □ 8.00 (d, 1H), 7.02 (q, 4H), 6.89 (t, 1H), 6.72 (s, 1H), 6.69 (d, 1H), 6.55 (d, 1H), 6.41 (d, 1H), 6.18 (br s, 1H), 5.37 (br s, 1H), 3.79 (s, 3H), 2.18 (s, 3H), 1.83 (s, 3H), 1.23 (s, 3H), 1.14 (s, 3H); Anal. calcd for C₂7H₂7NO₂: C, 81.58; H, 6.85; N, 3.52. Found: C, 81.56; H, 7.25; N, 3.29.

15

25

30

35

5

10

Example 51

5-(3-fluoro-4-methylphenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and 3-fluoro-4-methylphenylmagnesium bromide were processed as in Example 11 to provide the desired compound.

MS (DCI/NH3) m/z 416 (M+H)+;

¹H NMR (300 MHz, DMSO-d₆)□8.01 (d, 1H), 7.11 (t, 1H), 6.95-6.84 (m, 3H), 6.74 (s, 1H), 6.71 (d, 1H), 6.57 (d, 1H), 6.46 (d, 1H), 6.23 (s, 1H), 5.39 (s, 1H), 3.79 (s, 3H), 2.11 (s, 3H), 1.85 (s, 3H), 1.22 (s, 3H), 1.14 (s, 3H);

Anal. calcd for C₂₇H₂₆NO₂F: C, 78.05; H, 6.31; N, 3.37. Found: C, 77.80; H, 6.51; N, 3.06.

Example 52

5-(3-bromophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 1F and 3-bromophenylmagnesium bromide were processed as in examples 1G and 1 to provide the desired compound.

MS (DCI/NH₃) m/z 462 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 8.02 (d, 1H), 7.36 (m, 1H), 7.30 (m, 1H), 7.17 (m, 2H), 6.02 (4.1H), 6.70 (4

2H), 6.93 (t, 1H), 6.79 (s, 1H), 6.72 (d, 1H), 6.58 (d, 1H), 6.48 (d, 1H), 6.24 (br s, 1H), 5.41 (br s, 1H), 3.80 (s, 1H), 1.85 (s, 3H), 1.23 (s, 1H), 1.16 (s, 1H).

Example 53

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(phenylmethyl)-1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and benzylmagnesium bromide were processed as in Example 11 to provide the desired compound.

5 MS (DCI/NH₃) m/z 398 (M+H);

10

15

30

35

¹H NMR (300 MHz, DMSO-d₆) □ 8.02 (d, 1H), 7.31 - 7.18 (m, 3H), 7.12 (m, 3H), 6.75 (d, 1H), 6.63 (d, 1H), 6.46 (d, 1H), 6.15 (d, 1H), 5.93 (dd, 1H), 5.43 (s, 1H), 3.89 (s, 3H), 2.98 (dd, 1H), 2.74 (dd, 1H), 2.23 (s, 3H), 1.16 (s, 3H), 1.15 (s, 3H); Anal. calcd for C₂7H₂7NO₂·0.25H₂O: C, 80.67; H, 6.89; N, 3.48. Found: C, 80.78; H, 7.08; N, 3.26.

Example 54

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-propyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and propylmagnesium bromide were processed as in Example 11 to provide the desired compound.

MS (DCI/NH₃) m/z 350 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□7.94 (d, 1H), 7.05 (t, 1H), 6.69 (d, 1H), 6.58 (d, 1H), 6.54 (d, 1H), 6.10 (d, 1H), 5.70 (m, 1H), 5.44 (s, 1H), 3.85 (s, 3H), 2.16 (s, 3H), 1.70 (m, 1H), 1.43 - 1.31 (m, 3H), 1.16 (s, 3H), 1.14 (s, 3H), 0.83 (t, 3H);

20 Anal. calcd for C₂₃H₂₇NO₂: C, 79.05; H, 7.79; N, 4.01. Found: C, 78.76; H, 7.86; N, 3.84.

Example 55

5-(4-fluorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-

25 <u>1H-[1]benzopyrano[3,4-f]quinoline</u>

Example 2B and 4-fluorophenylmagnesium bromide were processed as in Example 11 to provide the desired compound.

1H NMR (300 MHz, DMSO-d6)

7.99 (d, 1H), 7.11 (d, 1H), 6.92 (m, 2H), 6.71 (s, 1H),

6.68 (s, 1H), 6.55 (d, 1H), 6.43 (d, 1H), 6.21 (s, 1H), 5.39 (s, 1H), 3.99 (s, 3H), 2.11 (s, 3H), 1.84 (s, 3H), 1.22 (s, 3H), 1.14 (s, 3H);

HRMS calcd m/z for C₂₇H₂₆O₂NF: 415.1948 (M+H)⁺. Found: 415.1947.

Example 56

5-(3-fluorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-

flquinoline

Example 2B and 3-fluorophenylmagnesium bromide were processed as in Example 11 to provide the desired compound.

¹H NMR (300 MHz, DMSO-d₆) □ 8.03 (d, 1H), 7.22 (q, 1H), 6.90 (m, 4H), 6.78 (s, 1H), 6.73 (d, 1H), 6.56 (d, 1H), 6.46 (d, 1H), 6.24 (s, 1H), 5.40 (s, 1H), 3.79 (s, 3H), 1.85 (s, 3H), 1.20 (s, 3H), 1.15 (s, 3H);

HRMS calcd m/z for C₂₆H₂₄O₂NF: 402.1869 (M+H)⁺. Found: 402.1865;

5

10

15

20

25

30

35

Anal. calcd for C₂₆H₂₄O₂FN·2.25H₂O: C, 70.65; H, 6.50; N, 3.17. Found: C, 70.56; H, 6.18; N, 2.83.

Example 57

2,5-dihydro-10-methoxy-2,2,4,5-tetramethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and methylmagnesium iodide were processed as in Example 11 to provide the desired compound.

¹H NMR (300 MHz, DMSO-d₆)□7.91 (d, 1H), 7.02 (8, 1H), 6.67 (d, 1H), 6.54 (s, 1H), 6.52 (d, 1H), 6.08 (s, 1H), 5.87 (q, 1H), 5.43 (s, 1H), 3.85 (s, 3H), 2.16 (s, 3H), 1.25 (d, 3H), 1.18 (s, 3H), 1.13 (s, 3H);

HRMS calcd m/z for C₂₁H₂₃O₂N: 321.1729 (M+H)⁺. Found: 321.1728.

Example 58

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(1-methylethyl)-1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and 2-propylmagnesium chloride were processed as in Example 11 to provide the desired compound.

¹H NMR (300 MHz, DMSO-d₆) □ 7.99 (d, 1H), 7.03 (t, 1H), 6.57 (d, 1H), 6.45 (d, 1H), 6.53 (d, 1H), 6.18 (s, 1H), 5.45 (s, 1H), 5.31 (d, 1H), 3.85 (s, 1H), 2.16 (s, 3H), 1.79 (m, 1H), 1.30 (s, 3H), 1.01 (s, 3H), 0.93 (d, 3H), 0.62 (d, 3H);

HRMS calcd m/z for $C_{23}H_{27}O_{2}N$: 349.2042 (M+H)⁺. Found: 349.2041.

Example 59

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-methylpropyl)-1H[1]benzopyrano[3,4-f]quinoline

Example 2B and sec-butylmagnesium chloride were processed as in Example 11to provide the desired compound.

¹H NMR (300 MHz, DMSO-d₆) □ 7.93 (d, 1H), 7.03 (t, 1H), 6.67 (d, 1H), 6.51 (q, 2H), 6.08 (s, 1H), 5.77 (dd, 1H), 5.43 (s, 1H), 3.85 (s, 3H), 2.18 (s, 3H), 1.72 (m, 2H), 1.76 (d, 6H), 0.86 (d, 3H), 0.74 (d, 3H);

HRMS calcd m/z for C₂₄H₂₉O₂N: 363.2198 (M+H)⁺. Found: 363.2208; Anal. calcd for C₂₄H₂₉NO₂: C, 79.30; H, 8.04; N, 3.85. Found: C, 79.63; H, 7.83; N, 3.89.

Example 60

5-ethyl-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and ethylmagnesium bromide were processed as in Example 11 to provide the desired compound.

MS (DCI/NH₃) m/z 336 (M+H) $^+$;

¹H NMR (300 MHz, DMSO-d₆) [] 7.92 (d, 1H), 7.03 (t, 1H), 6.67 (d, 1H), 6.54 (t, 2H), 6.10 (s, 1H), 5.55 (dd, 1H), 5.44 (s, 1H), 3.84 (s, 3H), 2.16 (s, 3H), 1.63 (m, 1H), 1.44 (m, 1H), 1.15 (s, 6H), 0.84 (t, 3H);

Anal. calcd for C₂₂H₂₅O₂N·2.25 H₂O: C, 77.73; H, 7.56; N, 4.12. Found: C, 77.95; H, 7.60; N, 4.07.

Example 61

2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline-5-carboximidic acid ethyl ester

A solution of Example 44 (0.040 g, 0.120 mmol) in ethanol (5 mL) was cooled to -5 °C, saturated with hydrogen chloride gas, stirred for 10 minutes at -5 °C, stirred 14 hours at room temperature, neutralized with NaHCO3, and extracted with diethyl ether. The extract was dried (Na₂SO₄), filtered, and concentrated to provide the desired compound.

MS (DCI/NH3) m/z 379 (M+H);

¹H NMR (300 MHz, DMSO-d₆)□7.95 (d, 1H), 7.32 (s, 1H), 7.05 (t, 1H), 6.69 (t, 2H), 6.61 (d, 1H), 6.22 (s, 1H), 6.14 (s, 1H), 5.44 (s, 1H), 3.92 (m, 2H), 3.82 (s, 3H), 2.06 (s, 3H), 1.20 (s, 3H), 1.12 (s, 3H), 1.02 (t, 3H).

25

30

35

5

10

15

20

Example 62

2,5-dihydro-10-methoxy-2,2,4-trimethyl-(-methylene 1H-[1]benzopyrano[3,4-f]quinoline-5-propanol

A solution of Example 49 (0.060 g, 0.143 mmol) in 1:1 methanol/water (10 mL) was treated with K2CO3 (0.080 g, 1.0 mmol), stirred for 24 hours at room temperature, neutralized with 10% HCl, and extracted with ethyl acetate. The extract was washed with brine, dried (MgSO4), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 25% dichloromethane/ethyl acetate to provide the desired compound.

¹H NMR (300 MHz, DMSO-d₆) □ 8.01 (d, 1H), 7.72 (d, 2H), 7.59 (t, 1H), 7.40 (t, 2H), 6.93 (t, 1H), 6.70 (d, 1H), 6.61 (d, 1H), 6.43 (d, 1H), 6.25 (d, 1H), 6.18 (s, 1H), 5.44 (s, 1H), 3.90 (s, 3H), 3.66 (q, 1H), 2.95 (d, 1H), 2.16 (s, 3H), 1.16 (s, 6H); HRMS calcd m/z for C₂₈H₂₇O₃N: 425.1991 (M+H)⁺. Found: 425.2005.

Example 63

2,5-dihydro-10-methoxy-2,2,4,N,N-pentamethyl-1H-[1]benzopyrano[3,4-f]quinoline-5-acetamide

Example 46 was hydrolyzed with lithium hydroxide in THF to provide the corresponding acid which was then coupled to N,N-dimethylamine with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide to provide the desired compound.

¹H NMR (300 MHz, DMSO-d6) \$\mathbb{Q}\$7.94 (d, 1H), 7.04 (t, 1H), 6.70 (d, 1H), 6.59 (d, 1H), 6.46 (d, 1H), 6.26 (d, 1H), 6.15 (s, 1H), 5.44 (s, 1H), 3.86 (s, 3H), 2.88 (q, 1H), 2.81 (s, 3H), 2.55 (s, 3H), 2.25 (s, 1H), 2.19 (s, 3H), 1.15 (s, 6H); HRMS calcd m/z for C24H28O3N2: 392.2100 (M+H)+. Found: 392.2104; Anal. calcd for C24H28N2O3: C, 73.44; H 7.19, 7.35; N, 7.14. Found: C, 73.17; H, 7.19; N, 6.85.

15

10

5

Example 64

2,5-dihydro-10-methoxy-2,2,4,N,N-pentamethyl-1H-[1]benzopyrano[3,4-f]quinoline-5-ethanamine

A solution of Example 63 in diethyl ether was reduced at room temperature with lithium aluminum hydride to provide the desired compound.

¹H NMR (300 MHz, DMSO-d₆) □ 7.93 (d, 1H), 7.03 (t, 1H), 6.68 (8, 1H), 6.54 (t, 1H), 6.12 (s, 1H), 5.76 (dd, 1H), 5.44 (s, 1H), 3.85 (s, 3H), 2.18 (s, 3H), 2.05 (s, 6H), 1.18 (s, 3H), 1.14 (s, 3H);

HRMS m/z calcd for C₂₄H₃₀O₂N₂: 378.2307 (M+H)⁺. Found: 378.2307.

25

30

20

Example 65

N-cyclopropyl-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline-5-acetamide

Example 46 and cyclopropylmethylamine were processed as in Example 63 to provide the desired compound.

¹H NMR (300 MHz, DMSO-d₆) \Box 7.94 (d, 1H), 7.70 (d, 1H), 7.03 (t, 1H), 6.68 (d, 1H), 6.58 (d, 1H), 6.43 (d), 6.23 (dd, 1H), 6.13 (s, 1H), 5.43 (s, 1H), 3.85 (s, 3H), 2.51 (m, 2H), 2.07 (d, 1H), 2.03 (s, 3H), 1.17 (s, 3H), 1.13 (s, 3H), 0.60 (m, 2H), 0.31 (s, 2H); HRMS m/z calcd for C₂₅H₂₈O₃N₂: 404.2100 (M+H)⁺. Found: 404.2092.

35

Example 66

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-propynyl)-1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and 2-propynylmagnesium bromide were processed as in Example 11 to provide the desired compound.

¹H NMR (300 MHz, DMSO-d₆) □ 7.97 (d, 1H), 7.06 (t, 1H), 6.71 (d, 1H), 6.56 (q, 2H), 6.16 (s, 1H), 5.88 (q, 1H), 5.44 (s, 1H), 3.86 (s, 3H), 2.82 (q, 1H), 2.41 (q, 1H), 2.19 (s, 3H), 1.16 (s, 3H);

HRMS m/z calcd for C₂₃H₂₃O₂N: 345.1729 (M+H)⁺. Found: 345.1738.

Example 67

5-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)-2(5H)-furanone

Example 2B and 2-trimethylsiloxyfuran were processed as in Example 2C to provide the desired compound.

 $MS (DCI/NH_3) m/z 390 (M+H)^+;$

¹H NMR (300 MHz, DMSO-d₆) [□ 8.11 (d, 1H), 7.13 (dd, 1H), 6.75 (d, 1H), 6.72 (d, 1H), 6.64 (d, 1H), 6.37 (d, 1H), 6.25 (dd, 1H), 6.23 (d, 1H), 5.83 (d, 1H), 5.47 (s, 1H), 5.12 (dd, 1H), 3.87 (s, 3H), 2.03 (s, 3H), 1.30 (s, 3H), 1.09 (s, 3H); Anal. calcd for C₂₄H₂₃NO₄: C, 74.02; H, 5.95; N, 3.60. Found: C, 73.89; H, 5.94; N, 3.51.

20

25

30

35

5

10

15

Example 68

5-(3-butenyl)-2,5-dihdyro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and 3-butenylmagnesium bromide were processed as in Example 11 to provide the desired compound.

MS (DCI/NH₃) m/z $362 (M+H)^+$;

¹H NMR (300 MHz, DMSO-d₆) [7.94 (d, 1H), 7.05 (t, 1H), 6.68 (d, 1H), 6.58 (d, 1H), 6.57 (d, 1H), 6.10 (s, 1H), (5.78 (dddd, 1H), 5.65 (dd, 1H), 5.44 (s, 1H), 5.00 (dd, 1H), 4.93 (dd, 1H), 3.85 (s, 3H), 2.16 (s, 3H), 2.10 (m, 2H), 1.78 (m, 1H), 1.45 (bm, 1H), 1.16 (s, 3H), 1.14 (s, 3H);

HRMS calcd m/z for C₂₄H₂₇NO₂: 361.2042 (M+H)⁺. Found: 361.2039.

Example 69

2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline-5-propanol

Example 2 (52.0 mg, 0.15 mmol) in THF (4 mL) at 0 °C was treated dropwise with 0.5M 9-BBN (600 \square L, 0.30 mmol), stirred overnight at room temperature, cooled to 0 °C, treated sequentially with 2.5M NaOH (400 \square L, 1.0 mmol), and 30% H₂O₂ (250 \square L), stirred for 2 hours at room temperature, partitioned between 1:1 ethyl acetate/water, and extracted with ethyl acetate. The extract was washed with brine, dried (Na₂SO₄),

filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 30% ethyl acetate/hexanes to provide the desired compound. MS (DCI/NH₃) m/z 366 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) \Box 7.94 (d, 1H), 7.05 (t, 1H), 6.68 (d, 1H), 6.58 (d, 1H), 6.53 (d, 1H), 6.10 (s, 1H), 5.70 (dd, 1H), 5.44 (s, 1H), 4.36 (t, 1H), 3.85 (s, 3H), 3.33 (m, 2H), 2.16 (s, 3H), 1.40-1.75 (bm, 4H), 1.17 (s, 3H), 1.14 (s, 3H); HRMS calcd m/z for C₂₃H₂7NO₃: 365.1991 (M+H)⁺. Found: 365.1991

Example 70

10-ethyl-2,5-dihydro-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 70A

Example 3C (0.208 g, 0.493 mmol) and tetraethyltin (0,444 g, 1.89 mmol) were combined with (1,3-bis(diphenylphosphino)ferrocene)palladium(II)-chloride·dichloromethane (0.039 g, 0.047 mmol) in 1-methyl-2-pyrrolidinone (3 mL) at 80 °C for 16 hours and concentrated to provide the desired compound.

Example 70

10-ethyl-2,5-dihydro-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinoline Example 70A was processed as in examples 1F, 1G, and 1 to provide the desired compound.

MS (DCI/NH₃) m/z 382 (M+H)⁺;

5

10

15

20

25

35

MS

¹H NMR (300 MHz, DMSO)□7.37 (d, 1H), 7.21-7.16 (m, 5H), 6.85, (dd, 1H), 6.75 (s, 1H), 6.73 (dd, 1H), 6.68 d, 1H), 6.58 (dd, 1H), 6.21 (s, 1H), 5.39 (s, 1H), 3.02-2.75 (m, 2H), 1.79 (s, 3H), 1.24 (s, 3H), 1.15 (s, 3H), 1.15 (m, 3H); HRMS calcd for C₂₇H₂₇NO: 381.2093 (M+H)⁺. Found 381.2096.

Example 71

2,5-dihydro-2,2,4,10-tetrametnyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 3C and tetramethyltin were processed as in Example 70 to provide the desired compound.

MS (DCI/NH₃) m/z $368 (M+H)^+$;

¹H NMR (300 MHz, DMSO-d₆)□7.44 (d, 1H), 7.21-7.12 (m, 5H), 6.82 (dd, 1H), 6.74 (d, 1H), 6.71 (s, 1H), 6.69 (dd, 1H), 6.59 (dd, 1H), 6.21 (s, 1H), 5.39 (s, 1H), 2.51 (s, 3H), 1.80 (s, 3H), 1.25 (s, 3H), 1.16 (s, 3H); HRMS calcd m/z for C₂6H₂5NO: 367.1936 (M+H)⁺. Found: 367.1931.

Example 72

5-(3,5-dichlorophenyl)-10-ethyl-2,5-dihydro-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 70A and 3,5-dichlorophenylmagnesium bromide were processed as in examples 1G and 1 to provide the desired compound.

MS (DCI/NH3) m/z 450 (M+H)+;

¹H NMR (300 MHz, DMSO-d₆) □ 7.43 (d, 1H), 7.43 (t, 1H), 7.18 (d, 2H), 6.91 (dd, 1H), 6.80 (dd, 1H), 6.78 (d, 1H), 6.72 (s, 1H), 6.62 (dd, 1H), 6.35 (s, 1H), 5.42 (s, 1H), 3.15-2.75 (m, 2H), 1.79 (s, 3H), 1.27 (s, 3H), 1.14 (s, 3H), 1.13 (t, 3H);

HRMS calcd m/z for $C_{27}H_{25}NOCl_2$: 449.1313 (M+H)⁺. Found: 449.1330.

Example 73

5-(3,5-dichlorophenyl)-2,5-dihydro-2,2,4,N-tetramethyl-1H-[1]benzopyrano[3,4-f]quinolin-10-amine

15

20

25

10

5

Example 73A

Example 3C and 3,5-dichlorophenylmagnesium bromide were processed as in Example 72 to provide the desired compound.

MS (DCI/NH₃) m/z 539 (M+H) $^+$.

Example 73

5-(3,5-dichlorophenyl)-2,5-dihydro-2,2,4,N-tetramethyl-

1H-[1]benzopyrano[3,4-f]quinolin-10-amine

Example 73A was processed as in Example 3 to provide the desired compound. MS (DCI/NH3) m/z 451 (M+H)+;

¹H NMR (300 MHz, DMSO-d₆) [7.91 (d, 1H), 7.45 (dd, 1H), 7.20 (m, 2H), 6.83 (dd, 1H), 6.75 (d, 1H), 6.71 (s, 1H), 6.22 (dd, 1H), 6.18 (s, 1H), 6.17 (dd, 1H), 5.57 (d, 1H), 5.44 (s, 1H), 2.65 (d, 3H), 1.85 (s, 3H), 1.24 (s, 3H), 1.15 (s, 3H); HRMS calcd m/z for C₂6H₂4N₂OCl₂: 450.1266 (M+H)⁺. Found: 450.1267.

30

Example 74

5-(3,5-dichlorophenyl)-2,5-dihydro-2,2,4-trimethyl-N-(2-propenyl)-1H[1]benzopyrano[3,4-f]quinolin-10-amine

Example 73A and allylamine were processed as in Example 3 to provide the desired compound.

MS (DCI/NH₃) m/z 477 (M+H)+;

¹H NMR (300 MHz, DMSO-d₆)□7.99 (d, 1H), 7.49 (dd, 1H), 7.27 (d, 2H), 6.82 (dd, 1H), 6.77 (d, 1H), 6.75 (s, 1H),), 6.25 (dd, 1H), 6.21 (s, 1H), 6.20 (dd, 1H), 5.95-5.86 (m, 1H), 5.69-5.65 (m, 1H), 5.48 (s, 1H), 5.18-5.12 (m, 1H), 5.11-5.06 (m, 1H), 3.78-3.70 (m, 2H), 1.88 (s, 3H), 1.30 (s, 3H), 1.20 (s, 3H);

HRMS calcd m/z for C₂₈H₂₆N₂OCl₂: 476.1422 (M+H)⁺. Found: 476.1428.

10

20

25

30

5

Example 75

2,5-dihydro-2,2,4-trimethyl-5-phenyl-10-(2-propynyloxy)-1H-[1]benzopyrano[3,4-f]quinoline

Example 7 and propargyl bromide were processed as in Example 9A to provide the desired compound.

15 MS (DCI/NH₃) m/z 408 (M+H) $^+$;

¹H NMR (300 MHz, DMSO-d₆)□1.12 (s, 3H), 1.23 (s, 3H), 1.83 (s, 3H), 3.59 (t, 1H₁), 4.81 (d, 2H), 5.39 (br s, 1H), 6.19 (br s, 1H), 6.47 (d, 1H), 6.61 (d, 1H), 6.71 (d, 1H), 6.78 (s, 1H), 6.90 (t, 1H), 7.14-7.22 (m, 5H), 8.02 (d, 1H);

Anal. calcd for C₂₈H₂₅NO₂: C, 82.53; H, 6.18; N, 3.44. Found: C, 82.64; H 6.31; N, 3.38.

Example 76

2,5-dihydro-2,2,4-trimethyl-5-phenyl-10-(2-propenyloxy)-1H-[1]benzopyrano[3,4-f]quinoline

Example 7 and allyl bromide were processed as in Example 9A to provide the desired compound.

MS (DCI) m/z 410 $(M+H)^+$;

¹H NMR (300 MHz, DMSO-d₆) □ 1.15 (s, 3H), 1.23 (s, 3H), 1.84 (s, 3H), 4.51-4.64 (m, 2H), 5.26 (dq, 1H), 5.39 (br s, 1H), 5.40 (dq, 1H), 6.12 (ddt, 1H), 6.21 (br s, 1H), 6.44 (dd, 1H), 6.55 (dd, 1H), 6.69 (d, 1H), 6.77 (s, 1H), 6.88 (t, 1H), 7.15-7.24 (m, 5H), 8.06 (d, 1H);

HRMS calcd m/z for $C_{28}H_{27}NO_{2}$: 409.2042 (M+H)⁺. Found: 409.2039.

Example 77

35

2,5-dihydro-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline-10-methanol

A solution of Example 4 (32 mg, 0.085 mmol) in dichloromethane (3 mL) under argon, at -78° C, was treated dropwise with dissobutylaluminum hydride (1.0 M) in .

cyclohexanes (0.400 mL, 0.40 mmol), warmed to 0 °C for 3.5 hours, treated with Rochelle's salt, separated, and extracted with ethyl acetate. The extract was dried (MgSO4), filtered, and concentrated. The residue was applied to two 10 x 20 cm, 0.25 mm thick silica gel plates which were eluted three times with hexane, then ethyl acetate/hexanes (10:90). The product band was scraped off and extracted with ethyl acetate to provide the desired compound.

MS (DCI/NH₃) m/z 348 (M+H)⁺;

¹H NMR \Box 7.47 (d, 1H), 7.14 (m, 2H), 6.80 (dd, 1H), 6.64 (d, 1H), 6.17 (m, 1H), 5.81 (ddm, 1H), 5.73 (dd, 1H), 5.46 (m, 1H), 5.32 (dd, 1H), 5.02 (dm, 1H), 4.94 (dm, 1H), 4.62 (m, 2H), 2.30 (m, 2H), 2.17 (s, 3H), 1.19 (s, 3H), 1.16 (s, 3H); HRMS Calcd m/z for C₂₃H₂₅NO₂: 347.1885 (M+H)⁺. Found: 347.1897.

Example 78

2,5-dihydro-2,2,4-trimethyl-5-(2propenyl)-1H-[1]benzopyrano[3,4-f]quinoline-10-carboxylic acid

Example 74 and chlorotris(triphenylphosphate)rhodium(I) chloride were processed as in Example 3 to provide the desired compound.

MS (DCI/NH₃) m/z 437 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) [7.91 (d, 1H), 7.44 (dd, 1H), 7.19 (d, 2H), 6.74 (d, 1H), 6.70 (s, 1H), 6.69 (dd, 1H), 6.26 (dd, 1H), 6.22 (s, 1H), 6.11 (dd, 1.0 Hz, 1H), 5.43 (s, 1H), 5.15 (s, 2H), 1.84 (s, 3H), 1.23 (s, 3H), 1.15 (s, 3H).

Example 79

5-(3,5-dichlorophenyl)-10-ethoxy-2,5-dihydro-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 9A and 3,5-dichlorophenylmagnesium bromide were processed as in examples 1G and 1 to provide the desired compound.

MS (DCI) m/z 466 $(M+H)^+$;

5

10

15

20

25

30

35

¹H NMR (300 MHz, DMSO-d₆) \square 8.10 (d, 1H), 7.46 (t, 1H), 7.13 (d, 2H), 6.95 (dd, 1H), 6.81 (s, 1H), 6.72 (d, 1H), 6.60 (d, 1H), 6.51 (d, 1H), 6.32 (d, 1H), 5.44 (s, 1H), 3.99-4.12 (m, 1H), 1.87 (s, 3H), 1.37 (t, 3H), 1.23 (s, 3H), 1.20 (s, 3H); HRMS calcd m/z for C₂7H₂5NO₂Cl₂: 465.1262 (M+H)⁺. Found 465.1277.

Example 80

5-(3,5-dichlorophenyl)-2,5-dihydro-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-10-ol

Example 7A and 3,5-dichlorobenzylmagnesium bromide were processed as in examples 7B and 7 to provide the desired compound.

MS (DCI) m/z 438, 440 (M+H)+;

5

10

15

20

25

¹H NMR (300 MHz, DMSO-d₆)□9.79 (s, 1H), 8.18 (d, 1H), 7.44 (t, 1H), 7.12 (dd, 2H), 6.79 (d, 1H), 6.77 (s, 1H), 6.73 (d, 1H), 6.45 (d, 1H), 6.28 (dd, 1H), 6.23 (d, 1H), 5.43 (s, 1H), 1.87 (d, 3H), 1.22 (s, 3H), 1.16 (s, 3H);

HRMS calcd m/z for C₂₅H₂₁Cl₂NO₂: 437.0949 (M+H)⁺. Found: 437.0955.

Example 81

5-(3,5-dichlorophenyl)-2,5-dihydro-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-10-yl]methylcarbonate

Example 80 and methylchloroformate were processed as in examples 7B and 7 to provide the desired compound.

 $MS (DCI/NH_3) m/z 496 (M+H)^+;$

¹H NMR (300 MHz, DMSO-d₆) □ 7.58 (d, 1H), 7.45 (t, 1H), 7.24 (m, 2H), 7.02 (t, 1H), 6.82 (s, 1H), 6.80 (dd, 1H), 6.75 (dd, 1H), 6.74 (d, 1H), 6.48 (s, 1H), 5.43 (s, 1H), 3.79 (s, 3H), 1.79 (s, 3H), 1.25 (s, 3H), 1.13 (s, 3H);

Anal. calcd for C₂₇H₂₃NO₄C₁₂ C, 65.33; H, 4.67; N, 2.82. Found: C, 65.12; H, 4.55, N, 2.79.

Example 82

2,5-dihydro-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinolin-10-ol

Example 7A and allylmagnesium bromide were processed as in examples 7B and 7 to provide the desired compound.

MS (DCI/NH₃) m/z 334 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□9.77 (s, 1H), 8.10 (d, 1H), 6.88 (t, 1H), 6.58 (d, 1H), 6.53 (d, 1H), 6.35 (d, 1H), 6.05 (s, 1H), 5.89-5.72 (m, 2H), 5.44 (s, 1H), 5.03 (d, 1H), 4.99 (d, 1H), 2.50-2.40 (m, 1H), 2.25-2.18 (m, 1H), 2.16 (s, 3H), 1.16, (s, 3H), 1.15 (s, 3H).

HRMS calcd m/z for C₂₂H₂₃NO₂: 333.1729 (M+H)⁺. Found 333,1734.

30 Example 83

10-(bromodifluoromethoxy)-2,5-dihyro-2,2,4-trimethyl-5-(2-propenyl)-1H[1]benzopyrano[3,4-f]quinoline

Example 82 and dibromodifluoromethane were processed as in examples 7B and 7 to provide the desired compound.

35 MS (DCI/NH₃) m/z 462 (M+H) $^+$;

¹H NMR (300 MHz, DMSO-d₆) □ 7.60 (d, 1H), 7.21 (t, 1H), 7.0 (m, 1H), 6.95 (dd, 1H), 6.64 (d, 1H), 6.35 (s, 1H), 5.89-5.76 (m, 2H), 5.46 (s, 1H), 5.04 (dd, 1H), 4.96 (dd, 1H), 2.55-2.44 (m, 1H), 2.33-2.25 (m, 1H), 2.18 (s, 3H), 1.19, (s, 3H), 1.17 (s, 3H);

HRMS calcd m/z for C23H22F2NO2Br: 461.0802 (M+H)+. Found 461.0815.

Example 84

[3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)phenyl] methylcarbonate

Example 13 and methylchloroformate were processed as in Example 10 to provide the desired compound.

MS (DCI/NH₃) m/z 458 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 8.01 (d, 1H), 7.25 (t, 1H), 7.12 (d, 1H), 7.01 (q, 1H), 6.90 (q, 2H), 6.78 (s, 1H), 6.72 (d, 1H), 6.57 (q, 1H), 6.44 (q, 1H), 6.20 (d, 1H), 5.39 (s, 1H), 3.80 (s, 3H), 3.63 (s, 3H), 1.83 (s, 3H), 1.22 (s, 3H), 1.16 (s, 3H); Anal. calcd for C₂₈H₂₇NO₅: C, 73.50; H, 5.94; N, 3.06. Found: C, 73.63; H, 6.20; N, 2.86.

15

25

30

35

10

5

Example 85

2,5-dihydro-10-methoxy-5-(3-methoxyphenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 13 and methyl iodide were processed as in Example 14 to provide the desired compound.

20 MS (DCI/NH₃) m/z 414 (M+H) $^+$;

¹H NMR (300 MHz, DMSO-d₆)□8.01 (d, 1H), 7.13 (t, 1H), 6.92 (t, 1H), 6.75-6.67 (m, 5H), 6.57 (dd, 1H), 6.46 (dd, 1H), 6.20 (d, 1H), 5.39 (s, 1H), 3.80 (s, 3H), 3.63 (s, 3H), 1.88 (s, 3H), 1.22 (s, 3H), 1.16 (s, 3H);

Anal. calcd for C₂₇H₂₇NO₃: C, 78.42; H, 6.58; N, 3.38. Found: C, 78.58; H, 6.55; N, 3.23.

Example 86

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-(2-propenyloxy)phenyl]-1H-[1]benzopyrano[3,4-f]quinoline

Example 13 and allyl bromide were processed as in Example 14 to provide the desired compound.

MS (DCI/NH₃) m/z 440 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 8.02 (d, 1H), 7.13 (t, 1H), 6.92 (t, 1H), 6.78-6.67 (m, 5H), 6.56 (d, 1H), 6.46 (d, 1H), 6.20 (d, 1H), 5.95 (m, 1H), 5.40 (s, 1H), 5.31 (dd, 1H), 5.21 (dd, 1H), 4.42 (d, 2H), 2.80 (c, 2H), 4.05 (d, 2H), 4.07 (d, 2H), 4.07

5.21 (dd, 1H), 4.42 (d, 2H), 3.80 (s, 3H), 1.86 Cs, 3H), 1.23 (s, 3H), 1.16 Cs, 3H); Anal. calcd for C₂₉H₂₉NO₃: C, 79.24; H, 6.64; N, 3.18. Found: C, 78.87; H, 6.46; N, 3.07.

Example 87

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-(phenylmethoxy)phenyl]-1H-[1]benzopyrano[3,4-f]quinoline

Example 13 and benzyl bromide were processed as in Example 14 to provide the desired compound.

 $MS (DCI/NH_3) m/z 490 (M+H)^+;$

¹H NMR (300 MHz, DMSO-d₆) □ 8.06 (d, 1H), 7.40 (m, 5H), 7.18 (t, 1H), 6.97 (t, 1H), 6.90-6.85 (m, 2H), 6.80-6.74 (m, 3H), 6.62 (d, 1H), 6.48 (d, 1H), 6.24 (d, 1H), 5.45 (s, 1H), 5.03 (d, 2H), 3.85 (s, 3H), 1.92 (s, 3H), 1.29 (s, 3H), 1.21 (s, 3H);

Anal. calcd for C33H31NO3: C, 80.95; H, 6.38; N, 2.86. Found: C, 80.81; H, 6.24; N, 2.96.

Example 88

5-[3-(cyclopropylmethoxy)phenyl]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 13 and cyclopropylmethyl bromiode were processed as in Example 14 to provide the desired compound.

MS (DCI/NH₃) m/z 454 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 8.01 (d, 1H), 7.12 (t, 1H), 6.92 (t, 1H), 6.74-6.68 (m, 5H), 6.55 (d, 1H), 6.46 (d, 1H), 6.20 (s, 1H), 5.39 (s, 3H), 3.79 (s, 3H), 3.66 (d, 2H), 1.86 (s, 3H), 1.23 (s, 3H), 1.16 (s, 3H), 1.12 (m, 1H), 0.50 (q, 2H), 0.24 (q, 2H); Anal. calcd for C₃₀H₃₁NO₃: C, 79.44; H, 6.88; N, 3.08. Found: C, 79.12; H, 6.72; N, 2.99.

25

5

10

15

20

Example 89

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-[2-(1-piperidinyl)ethoxy]pheny]-1H-[1]benzopyrano[3,4-f]quinoline

Example 13 and 1-(2-chloroethyl)piperidine were processed as in Example 14 to provide the desired compound.

30 MS (DCI/NH₃) m/z 511 (M+H) $^+$;

¹H NMR (300 MHz, DMSO-d₆) □ 8.01 (d, 1H), 7.12 (t, 1H), 6.92 (t, 1H), 6.77-6.68 (m, 5H), 6.57 (d, 1H), 6.46 (d, 1H), 6.20 (d, 1H), 5.39 (s, 1H), 3.91 (t, 2H), 3.80 (s, 3H), 2.55 (t, 2H), 2.35 (b, 4H), 1.92 (s, 3H), 1.46 (b, 4H), 1.36 (b, 2H), 1.22 (s, 3H), 1.16 (s, 3H); Anal. calcd for C₃₃H₃₈N₂O₃·0.5H₂O: C, 76.27; H, 7.56; N, 5.39. Found: C, 76.26; H, 7.50 N, 5.39.

35 7.38; N, 5.28.

Example 90

5-(3-hexyloxyphenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-

1H-[1]benzopyrano[3,4-f]quinoline

Example 13 and hexyl iodide were processed as in Example 14 to provide the desired compound.

 $MS (DCI/NH_3) m/z 484 (M+H)^+;$

¹H NMR (300 MHz, DMSO-d₆) □ 8.01 (d, 1H), 7.09 (t, 1H), 6.92 (t, 1H), 6.75-6.67 (m, 5H), 6.56 (dd, 1H), 6.46 (dd, 1H), 6.18 (d, 1H), 5.40 (s, 1H), 3.81 (t, 2H), 3.79 (s, 3H), 1.87 (s, 3H), 1.60 (m, 2H), 1.36-1.23 (b, 6H), 1.22 (s, 3H), 1.16 (s, 3H), 0.86 (t, 3H); HRMS calcd m/z for C₃₂H₃₇NO₃: 483.2773 (M+H)⁺. Found: 483.2776.

10

5

Example 91

5-[3-(2,4-dinitrophenoxy)phenyl]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 13 and 1-fluoro-2,4-dinitrobenzene were processed as in Example 14 to provide the desired compound.

MS (DCI/NH₃) m/z $566 (M+H)^+$;

¹H NMR (300 MHz, DMSO-d₆) □ 8.87 (d, 1H), 8.38 (dd, 1H), 7.88 (d, 1H), 7.40 (t, 1H), 7.20-7.08 (m, 2H), 7.20-7.08 (m, 2H), 6.81 (s, 1H), 6.72 (d, 1H), 6.68 (d, 1H), 6.62 (d, 1H), 6.46 (dd, 1H), 6.24 (d, 1H), 5.40 (s, 1H), 3.78 (s, 3H), 1.90 (s, 3H), 1.19 (s, 3H), 1.13 (s, 3H);

20 Anal. calcd for C₃₂H₂₇N₃O₇: C, 67.95; H, 4.81; N, 7.42. Found: C, 68.20; H, 5.05; N, 7.20.

Example 92

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-(2-propynyloxy)phenyl]-

25

30

35

1H-[1]benzopyrano[3,4-f]quinoline

Example 13 and propargyl bromide were processed as in Example 14 to provide the desired compound.

 $MS (DCI/NH_3) m/z 566 (M+H)^+;$

¹H NMR (300 MHz, DMSO-d₆) D8.00 (d, 1H), 7.13 (t, 1H), 6.92 (t, 1H), 6.80-6.68(m, 5H), 6.56 (d, 1H), 6.48 (d, 1H), 6.18 (d, 1H), 5.39 (s, 1H), 4.67 (d, 2H), 3.80 (s, 3H), 3.50 (t, 1H), 1.87 (s, 3H), 1.23 (s, 3H), 1.16 (s, 3H);

Example 93

3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)phenol 4-methylbenzenesulfonate (ester)

Example 13 and p-toluenesulfonyl chloride were processed as in Example 15 to provide the desired compound.

MS (DCI/NH3) m/z 554 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) [7.99 (d, 1H), 7.47 (d, 2H), 7.36 (d, 4H), 7.22 (t, 1H), 7.13 (d, 1H), 6.97 (t, 1H), 6.85-6.78 (m, 2H), 6.70 (d, 1H), 6.68 (s, 1H), 6.59 (dd, 1H), 6.37 (dd, 1H), 6.24 (d, 1H), 5.39 (s, 1H), 3.80 (s, 3H), 2.43 (s, 3H), 1.74 (s, 3H), 1.24 (s, 3H), 1.18 (s, 3H);

5 Anal. calcd for C33H31NO5S: C, 71.58; H, 5.64; N, 2.52. Found: C, 71.49; H, 5.75; N, 2.40.

Example 94

4-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)phenolacetate (ester)

Example 1F and 4-methoxymethoxyphenyl bromide were processed as in examples 12A-C to provide the desired compound.

MS (DCI/NH₃) m/z 442 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) \(\pi \) 8.02 (d, 1H), 7.19 (d, 2H), 6.99 (d, 2H), 6.91 (t, 1H), 6.79 (s, 1H), 6.71 (d, 1H), 6.58 (d, 1H), 6.46 (dd, 1H), 6.21 (d, 1H), 5.39 (s, 1H), 3.79 (s, 3H), 2.19 (s, 3H), 1.83 (s, 3H), 1.22 (s, 3H), 1.15 (s, 3H); Anal. calcd for C₂₈H₂₇NO₄: C, 76.16; H, 6.16; N, 3.17. Found: C, 75.79; H, 6.24; N,

20

3.03.

10

15

Example 95

4-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)phenol

Example 94 was processed as in Example 13 to provide the desired compound. MS (DCI/NH₃) m/z 400 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□9.29 (s, 1H), 8.05 (d, 1H), 7.00 (d, 2H), 6.95 (t, 1H), 6.74 (d, 2H), 6.72 (s, 1H), 6.63-6.58 (m, 3H), 6.44 (dd, 1H), 6.15 (s, 1H), 5.41 (s, 1H), 3.83 (s, 3H), 1.90 (s, 3H), 1.28 (s, 3H), 1.20 (s, 3H); Anal. calcd for C₂₆H₂₅NO₃: C, 78.17; H, 6.30; N, 3.50. Found: C, 78.59; H, 6.20; N, 3.12.

30

.35

25

Example 96

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[[4-(methylthio)methoxy|phenyl]-1H-[1]benzopyrano[3,4-f]quinoline

Example 95 was processed as in Example 14 to provide the desired compound. MS (DCI/NH₃) m/z 460 (M+H)⁺; ¹H NMR (300 MHz, DMSO-d₆) \Box 8.01 (d, 1H), 7.17 (d, 2H), 6.90 (t, 1H), 6.82 (d, 2H),

6.72 (s, 1H), 6.69 (d, 1H), 6.56 (d, 1H), 6.42 (d, 1H), 6.17 (s, 1H), 5.38 (s, 1H), 5.16 (s, 2H), 3.80 (s, 3H), 2.11 (s, 3H), 1.85 (s 3H), 1.23 (s, 3H), 1.16 (s, 3H);

Anal. calcd for C₂₈H₂₉NO₃S: C, 73.17; H, 6.35; N, 3.04. Found: C, 72.86; H, 6.62; N, 2.69.

Example 97

[4-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)phenyl] dimethylcarbamate

Example 95 and dimethylcarbanoylchloride were processed as in Example 15 to provide the desired compound.

MS (DCI/NH₃) m/z $471 (M+H)^+$;

¹H NMR (300 MHz, DMSO-d₆) □ 8.01 (d, 1H), 7.15 (d, 2H), 6.98 (d, 2H), 6.90 (d, 1H), 6.76 (s, 1H), 6.70 (d, 1H), 6.57 (d, 1H), 6.44 (d, 1H), 6.22 (d, 1H), 5.40 (s, 1H), 3.80 (s, 3H), 2.98 (s, 3H), 2.85 (s, 3H), 1.86 (s, 3H), 1.23 (s, 3H), 1.15 (s, 3H).

Example 98

· 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[4-(phenylmethoxy)phenyl]-1H-[1]benzopyrano[3,4-f]quinoline

Example 95 and benzyl bromide were processed as in Example 14 to provide the desired compound.

 $MS (DCI/NH_3) m/z 490 (M+H)^+;$

¹H NMR (300 MHz, DMSO-d₆)□8.02 (d, 1H), 7.40-7.28 (m, 4H), 7.08 (d, 2H), 6.90 (t, 1H), 6.84 (d, 2H), 6.72 (s, 1H), 6.70 (d, 1H), 6.55 (d, 1H), 6.41 (d, 1H), 6.15 (s, 1H), 5.37 (s, 1H), 4.96 (s, 2H), 3.80 (s, 3H), 1.85 (s, 3H), 1.23 (s, 3H), 1.15 (s, 3H); Anal. calcd for C₃₃H₃₁NO₃: C, 80.95; H, 6.38; N, 2.86. Found: C, 81.02; H, 6.25; N, 2.76.

25

30

15

5

Example 99

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-(methoxymethoxy)phenyl]-1H-[1]benzopyrano[3,4-f]quinoline

Example 13 and methoxymethyl chloride were processed as in Example 14 to provide the desired compound.

MS (DCI/NH₃) m/z 444 (M+H)+;

¹H NMR (300 MHz, DMSO-d₆) Q 8.01 (d, 1H), 7.14 (t, 1H), 6.92 (t, 1H), 6.83-6.75 (m, 4H), 6.70 (d, 1H), 6.58 (d, 1H), 6.47 (q, 1H), 6.21 (s, 1H), 5.40 (s, 1H), 5.06 (s, 2H), 3.80 (s, 3H), 3.30 (s, 3H), 1.89 (s, 3H), 1.24 (s, 3H), 1.16 (s, 3H);

HRMS calcd m/z for $C_{28}H_{29}NO_4$: 443.2097 (M+H)⁺. Found: 443.2098.

Example 100

[(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5yl)phenyl] 1-morpholinecarboxylate

Example 13 and morpholine were processed as in Example 15 to provide the desired compound.

MS (DCI/NH₃) m/z 513 (M+H) $^+$; 5

> ¹H NMR (300 MHz, DMSO-d₆) \Box 8.01 (d, 1H), 7.22 (t, 1H), 7.05 (d, 1H), 6.93 (t, 2H), 6.83 (s, 1H), 6.77 (s, 1H), 6.71 (d, 1H), 6.57 (d, 1H), 6.48 (q, 1H), 6.23 (d, 1H), 5.40 (s, 1H), 3.80 (s, 3H), 3.60 (t, 4H), 3.50 (b, 4H), 1.86 (s, 3H), 1.24 (s, 3H), 1.14 (s, 3H); HRMS calcd m/z for C₃₁H₃₂N₂O₅: 512.2311 (M+H)⁺. Found: 512.2328.

10

15

Example 101

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-[(methylsulfinyl)methoxy]phenyl]-1H-[1]benzopyrano[3,4-f]quinoline

A solution of Example 14 (12 mg, 0.005 mmol) in methanol (1 mL) at 0 °C was treated sequentially with TeO2 (1.6 mg, 0.01 mmol) and acetic acid (50 mg, 0.83 mmol), stirred at ambient temperature overnight, treated with saturated NaHCO3 and extracted with dichloromethane. The extract was washed with water and brine, dried (MgSO₄). filtered, and concentrated to vield

MS (DCI/NH₃) m/z $476 (M+H)^+$;

20 ¹H NMR (300 MHz, DMSO-d₆) \Box 8.01 (dd, 1H), 7.15 (dt, 1H), 6.92 (m, 3H), 6.78 (t, 1H), 6.74 (s, 1H), 6.70 (d, 1H), 6.58 (d, 1H), 6.47 (d, 1H), 6.19 (d, 1H), 5.40 (d, 1H), 5.12 (dd, 1H), 4.93 (q, 1H), 3.79 (d, 3H), 2.57 (d, 3H), 1.87 (d 3H), 1.24 (d, 3H), 1.16 (d, 3H);

HRMS calcd m/z for C₂₈H₂₉NO₄S: $475.1817 (M+H)^{+}$. Found: 475.1819.

25

Example 102

O-[3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4f]quinolin-5-yl)phenyl] ester

Example 13 and thiocarbanoyl chloride were processed as in Example 16 to provide the desired compound. 30 MS (DCI/NH₃) m/z 487 (M+H) $^+$; ¹H NMR (300 MHz, DMSO-d₆) □ 8.01 (d, 1H), 7.22 (t, 1H), 7.13 (d, 1H), 6.92 (t, 1H), 6.85 (d, 1H), 6.78 (s, 1H), 6.72 (s, 1H), 6.59 (d, 1H), 6.57 (d, 1H), 6.45 (d, 1H), 6.21 (s, 1H), 5.39 (s, 1H), 3.80 (s, 3H), 3.29 (s, 3H), 3.22 (s, 3H), 1.86 (s, 3H), 1.24 (s, 3H), 1.14 35 (s, 3H).

Example 103

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-(methylthio)phenyl]-1H[1]benzopyrano[3,4-f]quinoline

Example 103A

A solution of 3-bromophenylmethoxymethyl ether (3.50 g, 15.0 mmol) in THF (150 mL) at -78 °C was treated with n-butyllithium (2.5 M in hexanes, 6.00 mL) over 5 minutes, warmed to -30 °C, cooled to -78 °C, treated with Example 1F in one portion, warmed to -40 °C, quenched with saturated NH4Cl, warmed to ambient temperature, and allowed to settle. The supernatant was decanted and concentrated, and the residue was partitioned between water and ethyl acetate. The organic layer was washed sequentially with water and brine, dried (Na₂SO₄) and concentrated. Flash chromatography of the residue on silica gel with 20-25% ethyl acetate/hexane provided the desired compound. MS (DCI/NH₃) m/z 476 (M+H)⁺

15

20

10

5

Example 103

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-(methylthio)phenyl]-1H[1]benzopyrano[3,4-f]quinoline

A solution of Example 103A (20 mg, 0.042 mmol) and triethylsilane (49 mg, 0.42 mmol) in dichloromethane (1 mL) at ambient temperature was treated with BF3·OEt2 (60 mg, 0.42 mmol), stirred for 24 hours, and treated with saturated NaHCO3. The aqueous layer was extracted with dichloromethane, and the combined extracts were washed sequentially with 1M NaOH and brine, dried (Na2SO4), filtered, and concentrated. Flash chromatography of the residue on silica gel with 10-25% ethyl acetate/hexane provided the desired compound.

25 MS (DCI/NH₃) m/z 430 (M+H) $^+$;

¹H NMR (300 MHz, DMSO-d₆) □ 8.01 (d, 1H), 7.15 (t, 1H), 7.05 (s, 1H), 7.03 (d, 1H), 6.93 (t, 1H), 6.89 (s, 1H), 6.74 (s, 1H), 6.70 (d, 1H), 6.57 (d, 1H), 6.46 (d, 1H), 6.19 (d, 1H), 5.40 (s, 1H), 3.78 (s, 3H), 3.33 (s, 3H), 1.88 (s, 3H), 1.22 (s, 3H), 1.16 (s, 3H); HRMS calcd m/z for C₂7H₂7NO₂S: 429.1763 (M+H)⁺. Found: 429.1764.

30

35

Example 104

O-[3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)phenyl] methylcarbonothioate

Example 95 and methyl thiochloroformate were processed as in Example 15 to provide the desired compound.

MS (DCI/NH₃) m/z 474 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) \Box 8.00 (d, 1H), 7.26 (t, 1H), 7.12 (d, 1H), 7.01 (q, 1H), 6.89 (t, 1H), 6.87 (s, 1H), 6.78 (s, 1H), 6.72 (d, 1H), 6.57 (q, 1H), 6.44 (q, 1H), 6.20 (d, 1H), 5.39 (s, 1H), 3.78 (s, 3H), 2.35 (s, 3H), 1.83 (s, 3H), 1.22 (s, 3H), 1.16 (s, 3H); Anal. calcd for C₂₈H₂₇NO₄S: C, 71.01; H, 5.74; N, 2.95. Found: C, 70.77; H, 5.74; N, 2.79.

5

10

15

20

25

30

35

Example 105

[3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl]-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)phenyl] trifluoromethanesulfonate

A solution of Example 13 (100 mg, 0.25 mmol), triethylamine (70 uL, 0.5 mmol), and 4-dimethylaminopyridine (catalytic) in dichloromethane (10 mL) at -78 °C was treated dropwise with trifluoromethanesulfonic anhydride (50 □L, 0.30 mmol), stirred for 30 minutes at -78 °C, poured into saturated NaHCO3, and extracted with ethyl acetate. The extract was washed sequentially with water and brine, dried (Na₂SO₄), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 15-85% ethyl acetate/hexanes to provide the desired compound.

MS (DCI/NH₃) m/z 532 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 8.02 (d, 1H), 7.44 (t, 1H), 7.30 (m, 2H), 7.17 (s, 1H), 6.93 (t, 1H), 6.83 (s, 1H), 6.71 (d, 1H), 6.57 (d, 1H), 6.43 (d, 1H), 6.28 (d, 1H), 5.40 (s, 1H), 3.78 (s, 3H), 1.83 (s, 3H), 1.22 (s, 3H), 1.15 (s, 3H);

Anal. calcd for C₂₇H₂₄NO₅SF₃: C, 61.01; H, 4.55; N, 2.64. Found: C, 61.17; H, 4.60; N, 2.51.

Example 106,

5-[3-(4,5-dihydro-4,4-dimethyl-2-oxazolyl)phenyl]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 52 (92.9 mg, 0.20 mmol), 2-trimethylstannyl-4,4-dimethyloxazoline (210 mg, 0.80 mmol), and [1,1'-is(diphenylphosphino)-ferrocene]dichloropalladium(II) (16 mg, 0.02 mmol) in 1-methyl-2-pyrrolidinone (2 mL) were purged with N2, heated at 85 °C for 3 hours, partitioned between ethyl acetate (50 mL) and saturated KF (30 mL), stirred for 1 hour, and filtered through a pad of powdered sea shells (Celite®). The filtrate was washed with water, brine, dried (Na2SO4), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 0-30% ethyl acetate/hexanes to provide the desired compound.

MS (DCI/NH₃) m/z 481 (M+H)⁺; ¹H NMR (300 MHz, DMSO-d₆) \(\pi\) 8.02 (d, 1H), 7.64 (d, 1H), 7.62 (s, 1H), 7.41 (d, 1H), 7.32 (t, 1H), 6.92 (t, 1H), 6.82 (s, 1H), 6.71 (d, 1H), 6.56 (dd, 1H), 6.47 (dd, 1H), 6.25

(d, 1H), 5.40 (s, 1H), 4.02 (s, 2H), 3.78 (s, 3H), 1.84 (s, 3H), 1.25 (s, 3H), 1.22 (s, 6H), 1.16 (s, 3H);

Anal. calcd for C₃₁H₃₂N₂O₃·0.7H₂O: C, 75.49; H, 6.85; N, 5.68. Found: C, 75.83; H, 6.88; N, 5.29.

5

10

15

Example 107

ethyl 3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)benzoate

Example 106 (48 mg, 0.1 mmol) in 1.5 M sulfuric acid in ethanol (5 mL) was refluxed for 16 hours, cooled, poured into saturated NaHCO3, and extracted with ethyl acetate. The extract was washed with brine, dried (Na₂SO₄), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 30% ethyl acetate/hexanes to provide the desired compound.

MS (DCI/NH₃) m/z 456 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 8.02 (d, 1H), 7.76 (m, 2H), 7.48 (d, 1H), 7.38 (t, 1H), 6.91 (t, 1H), 6.85 (s, 1H), 6.72 (d, 1H), 6.56 (dd, 1H), 6.46 (dd, 1H), 6.26 (d, 1H), 5.40 (s, 1H), 4.23 (q, 2H), 3.78 (s, 3H), 1.84 (s, 3H), 1.25 (t, 3H), 1.24 (s, 3H), 1.16 (s, 3H); HRMS m/z calcd for C₂9H₃0NO₄: 456.2175 (M+H)⁺. Found: 456.2175

20

25

30

Example 108

3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)benzoic acid

Example 107 (20 mg, 0.04 mmol) and LiOH·H₂O (16.8 mg, 0.4 mmol) in 1:1:1 THF/methanol/water (3 mL) was stirred for 48 hours, and concentrated. The residue was dissolved in 1M NaOH (2 mL), washed with diethyl ether, treated with 1M HCl to pH 3, and extracted with ethyl acetate. The extract was dried (Na₂SO₄), filtered, and concentrated to provide the desired compound.

MS (DCI/NH₃) m/z 428 (M+H)+;

¹H NMR (300 MHz, DMSO-d₆) \Box 8.02 (d, 1H), 7.73 (m, 2H), 7.46 (d, 1H), 7.35 (t, 1H), 6.91 (t, 1H), 6.83 (s, 1H), 6.71 (d, 1H), 6.55 (dd, 1H), 6.46 (dd, 1H), 6.22 (d, 1H), 5.40 (s, 1H), 3.78 (s, 3H), 1.83 (s, 3H), 1.24 (s, 3H), 1.16 (s, 3H); Anal. calcd for C₂₇H₂₅NO₄: C, 72.86; H, 5.89; N, 3.28. Found: C, 72.89; H, 6.00; N, 2.94.

35

Example 109

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-methyl-5-(2-propenyl)phenyl]1H-[1]benzopyrano[3,4-f]quinoline

Example 52 and allyltributyltin were processed as in Example 16 to provide the desired compound.

MS (DCI/NH3) m/z 438 (M+H);

¹H NMR (300 MHz, DMSO-d₆)□7.99 (d, 1H), 6.91 (t, 1H), 6.80 (m, 3H), 6.70 (s, 1H), 6.68 (d, 1H), 6.56 (dd, 1H), 6.44 (dd, 1H), 6.16 (d, 1H), 5.78 (ddt, 1H), 5.39 (s, 1H), 4.94 (dq, 1H), 4.88 (dq, 1H), 3.78 (s, 3H), 3.17 (d, 2H), 2.13 (s, 3H), 1.86 (s, 3H), 1.22 (s, 3H), 1.16 (s, 3H);

Anal. calcd for C₃₀H₃₁NO₂: C, 82.35; H, 7.14; N, 3.20. Found: C, 81.99; H, 7.14; N, 2.98.

10

20

25

30

35

5

Example 110

$\frac{1-[3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)-}{5-methylphenyl]ethanone}$

Example 52 and tributyl(1-ethoxyvinyl)tin in dichloroethane (20 mL) was treated with silica gel (1.0 g) and formic acid (10 drops), heated to 40 °C for 6 hours, treated with water, and extracted with ethyl acetate. The extract was washed with brine, dried (MgSO4), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 5-10% ethyl acetate/hexanes to provide the desired compound. MS (DCI/NH3) m/z 440 (M+H);

¹H NMR (300 MHz, DMSO-d₆) D8.01 (d, 1H), 7.61 (s, 1H), 7.51 (s, 1H), 7.28 (s, 1H), 6.92 (t, 1H), 6.80 (s, 1H), 6.72 (d, 1H), 6.56 (dd, 1H), 6.49 (dd, 1H), 6.24 (m, 1H), 5.40 (s, 1H), 3.78 (s, 3H), 2.44 (s, 3H), 2.26 (s, 3H), 1.84 (s, 3H), 1.23 (s, 3H), 1.16 (s, 3H).

Example 111

$\underline{3\text{-}(2,5\text{-}dihydro\text{-}10\text{-}methoxy\text{-}2,2,4\text{-}trimethyl\text{-}1H\text{-}[1]benzopyrano}[3,4\text{-}f]quinolin\text{-}5\text{-}yl)\text{-}}{5\text{-}trimethylbenzenemethanol}$

A solution of Example 110 (0.022 g, 0.050 mmol) in THF (5 mL) at 0 °C was treated with methylmagnesium chloride (3M in THF, 0.83 \square L), warmed to room temperature, stirred for 1 hour, treated with saturated NH4Cl, separated, and extracted with ethyl acetate. The extract was washed with brine and dried (MgSO4), filtered, and concentrated to provide the desired compound.

MS (DCI/NH₃) m/z 456 (M+H);

¹H NMR (300 MHz, DMSO-d₆) □ 7.98 (d, 1H), 7.11 (s, 1H), 7.08 (s, 1H), 6.91 (t, 8H), 6.78-6.63 (m, 3H), 6.55 (d, 1H), 6.46 (d, 1H), 6.18 (m, 1H), 5.39 (s, 1H), 4.84 (s, 1H), 3.73 (s, 3H), 2.14 (s, 3H), 1.88 (s, 3H), 1.24 (s, 3H), 1.23 (s, 3H), 1.22 (s, 3H), 1.16 (s,

3H).

Example 112

5-[3-(2-furanyl)phenyl]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 52 and 2-(tributylstannyl)furan were processed as in Example 16 to provide the desired compound.

5 MS (DCI/NH₃) m/z 456, 450 (M+H)⁺; ¹H NMR (300 MHz, DMSO-d₆) □ 8.0 (d, 1H), 7.69 (s, 1H), 7.48 (d, 1H), 7.23 (t, 1H), 7.05 (d, 1H), 6.88 (t, 1H), 6.81 (s, 2H), 6.70 (d, 1H), 6.54 (m, 2H), 6.47 (d, 1H), 6.23 (s, 1H), 5.41 (s, 1H), 3.78 (s, 3H), 1.88 (s, 3H), 1.24 (s, 3H), 1.16 (s, 3H); Anal. calcd for C₃₀H₂₇NO₃·H₂O: C, 77.07; H, 6.25; N, 3.00. Found: C, 77.27; H, 5.97; N, 3.23.

Example 113

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-methyl-5-(1H-pyrrolidin-1-yl)phenyl]-1H-[1]benzopyrano[3,4-f]quinoline

Example 11 and pyrrolidine were processed as in Example 17 to provide the desired compound.

MS (DCI/NH3) m/z 467 (M+H)+;

¹H NMR (300 MHz, DMSO-d₆) □ 7.97 (d, 1H), 6.93 (t, 1H), 6.67 (s, 1H), 6.67 (d, 1H),

6.56 (d, 1H), 6.49 (d, 1H), 6.22 (s, 1H), 6.14 (m, 3H), 5.39 (s, 1H), 3.79 (s, 3H), 3.04 (m, 4H), 2.07 (s, 3H), 1.92 (s, 3H), 1.87 (m, 4H), 1.21 (s, 3H), 1.17 (s, 3H).

15

20

35

Example 114

3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-methyl)-5,N-dimethylbenzenamine

Example 11 and methylamine were processed as in Example 17 to provide the desired compound.

MS (DCI/NH3) m/z 427 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 7.98 (d, 1H), 6.92 (t, 1H), 6.67 (d, 1H), 6.61 (s, 1H), 6.56 (d, 1H), 6.46 (d, 1H), 6.18 (br s, 2H), 6.14 (br s, 1H), 6.10 (s, 1H), 5.58 (q, 1H), 5.38 (br s, 1H), 3.79 (s, 3H), 2.50 (d, 3H), 2.04 (s, 3H), 1.90 (s, 3H), 1.22 (s, 3H), 1.15 (s, 3H);

Anal. calcd for C₂₈H₃₀N₂O₂·0.5H₂O: C, 77.21; H, 7.17; N, 6.43. Found: C, 77.65; H, 7.13; N, 5.97.

Example 115

 $\frac{3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)-5-methyl-N-(2-propenyl)benzamide}{}$

Example 11 and allylamine were processed as in Example 17 to provide the desired compound.

MS (DCI/NH₃) m/z 453 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□7.98 (d, 1H), 6.92 (t, 1H), 6.67 (d, 1H), 6.56 (d, H), 6.45 (d, 1H), 6.24 (br s, 1H), 6.14 (m, 3H), 5.76 (m, 1H), 5.63 (t, 1H), 5.37 (br s, 1H), 5.10 (qd, 1H), 5.02 (qd, 1H), 3.79 (s, 3H), 3.50 (m, 2H), 2.02 (s, 3H), 1.89 (s, 3H), 1.22 (s, 3H), 1.15 (s, 3H);

Anal. calcd for C₂₃H₂₅NO₂: C, 79.51; H, 7.25; N, 4.03. Found: C, 79.35; H, 7.30; N, 3.89.

10

15

5

Example 116

3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)-N-(2-methoxyethyl)-5-methylbenzenamine

Example 11 and 2-methoxyethylamine were processed as in Example 17 to provide the desired compound.

¹H NMR (300 MHz, DMSO-d₆) □ 7.98 (d, 1H), 6.95 (t, 1H), 6.65 (d, 1H), 6.60 (s, 1H), 6.54 (d, 1H), 6.44 (d, 1H), 6.22 (s, 1H), 6.17 (s, 2H), 6.13 (s, 1H), 5.41 (t, 10H), 5.38 (s, 1H), 3.79 (s, 3H), 3.26 (q, 2H), 3.20 (s, 3H,), 2.98 (q, 2H), 2.03 (s, 3H), 1.90 (s, 3H), 1.22 (s, 3H), 1.15 (s, 3H).

20

25

30

Example 117

3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)-N-(2-propenyl)benzenamine

Example 52 and allylamine were processed as in Example 17 to provide the desired compound.

MS (DCI/NH₃) m/z 439 (M+H) $^+$;

.¹H NMR (300 MHz, DMSO-d6) □7.99 (d, 1H), 6.91 (t, 1H), 6.86 (t, 1H), 6.67 (d, 1H), 6.63 (s, 1H), 6.55 (d, 1H), 6.44 (m, 2H), 6.33 (m, 2H), 6.14 (d, 1H), 5.78 (m, 2H), 5.37 (s, 1H), 5.12 (qd, 1H), 5.03 (qd, 1H), 3.79 (s, 3H), 3.51 (m, 2H), 1.88 (s, 3H), 1.22 (s, 3H), 1.14 (s, 3H);

Anal. calcd for C₂₉H₃₀N₂O₂: C, 79.42; H, 6.89; N, 6.39. Found: C, 79.03; H, 7.05; N, 6.17.

Example 118

N'-[3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)-5-methylphenyl]-N,N-dimethylurea

A solution of Example 115 (0.112 g, 0.247 mmol) in 10% ethanol/water (10 mL) was treated with 1,4-diazabicyclo[2.2.2]octane (0.056 g, 0.495 mmol) and

chlorotris(triphenylphosphine)rhodium(I) (0.115 g, 0.124 mmol), refluxed for 15 hours, poured into 5% HCl, stirred 20 minutes, neutralized with NaHCO3, and extracted with ethyl acetate. The extract was washed with brine, dried (Na₂SO₄), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 20-33% ethyl acetate/hexanes to provide the desired aniline.

The aniline (0.030 g, 0.073 mmol) was dissolved in 2:1/toluene:THF (7 mL), treated sequentially with diisopropylethylamine (38 □L, 0.218 mmol) and N,N-dimethylcarbamoyl chloride (20 □L, 0.218 mmol), refluxed for 18 hours, cooled, treated with water, and extracted with ethyl acetate. The extract was washed with brine, dried (MgSO4), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 25-50% ethyl acetate/hexanes to provide the desired compound.

¹H NMR (300 MHz, DMSO-d₆) □ 8.15 (s, 1H), 7.98 (d, 1H), 7.10 (br s, 2H), 6.91 (t, 1H), 6.69 (d, 1H), 6.63 (s, 1H), 6.56 (d, 1H), 6.54 (s, 1H), 6.46 (d, 1H), 6.16 (br s, 1H), 5.38 (s, 1H), 2.85 (s, 6H), 2.09 (s, 3H), 1.86 (s, 3H), 1.24 (s, 3H), 1.14 (s, 3H); HRMS m/z calcd for C₃₀H₃₉N₃O₃: 484.2600 (M+H)⁺. Found: 484.2601.

Example 119

N-[3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)phenyl]benzenemethanamine

Example 11 and benzylamine were processed as in Example 17 to provide the desired compound.

¹H NMR (300 MHz, DMSO-d₆) \(\pi 7.97\) (d, 1H), 7.23 (m, 5H), 6.80 (m, 2H), 6.65 (d, 1H), 6.59 (s, 1H), 6.53 (d, 2H), 6.49 (s, 1H), 6.20 (m, 3H), 6.16 (t, 1H), 6.12 (s, 1H), 5.35 (s, 1H), 4.10 (b, 2H), 3.78 (s, 3H), 1.83 (s, 3H), 1.22 (s, 3H), 1.14 (s, 3H); HRMS m/z calcd for C₃₃H₃₂O₂N₂: 488.2464 (M+H)⁺. Found: 488.2468.

Example 120

5-[(3,5-dichlorphenyl)methylene]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 1F and 3,5-dichlorobenzylmagnesium bromide were processed as in Example 1B to provide the desired compound.

MS (DCI/NH₃) m/z 464 (M+H) $^+$;

5

10

15

20

25

30

35

¹H NMR (300 MHz, DMSO-d6) isomer 1:□8.17 (d, 1H), 7.32 (s, 1H), 6.96 (s, 2H), 6.81-6.74 (m, 4H), 6.45 (s, 2H), 5.11 (s, 1H), 3.93 (s, 3H), 1.88 (s, 3H), 1.22 (s, 3H), 0.89 (s, 3H); isomer 2:□8.29 (d, 1H), 7.78 (s, 2H), 7.45 (s, 1H), 7.23 (t, 1H), 7.18 (d, 1H), 7.16 (d, 1H), 6.84 (d, 1H), 6.66 (s, 1H), 5.59 (s, 1H), 5.47 (s, 1H), 3.93 (s, 3H), 1.96 (s, 3H), 1.27 (s, 6H);

HRMS calcd m/z for C₂₇H₂₃Cl₂NO₂: 463.1106 (M+H)⁺. Found: 463.1112.

Example 121

5-[(4-chlorophenyl)methylene]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

5

Example 1F and 4-chlorobenzylmagnesium bromide were processed as in Example 1B to provide the desired compound.

MS (DCI/NH₃) m/z $430 (M+H)^+$;

¹H NMR (300 MHz, DMSO-d6) isomer 1:□8.26 (d, 1H), 7.75 (d, Hz, 2H), 7.42 (d, 2H), 7.18 (t, 2H), 6.89 (d, 1H), 6.74 (d, 1H), 6.61 (s, 1H), 5.54 (s, 1H), 5.46 (s, 1H), 3.91 (s, 3H), 1.97 (s, 3H), 1.26 (s, 6H); isomer 2:□8.13 (s, 1H), 7.18 (t, 1H), 7.04 (d, 2H), 6.82-6.71 (m, $\bar{5}$ H), 6.46 (s, 1H), 6.41 (s, 1H), 5.04 (s, $\bar{1}$ H), 3.91 (s, 3H), 1.84 (s, 3H), 1.22 (s, 3H), 0.90 (s, 3H);

HRMS calcd m/z for C₂₇H₂₄ClNO₂: 429.1496 (M+H)⁺. Found: 429.1500.

15

20

25

10

Example 122

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[[3-

(trifluoromethyl)phenyl]methylene]-1H-[1]-benzopyrano[3,4-f]quinoline

Example 1F and 3-trifluoromethylmagnesium bromide were processed as in Example 1B to provide the desired compound.

 $MS (DCI/NH_3) m/z 464 (M+H)^+;$

¹H NMR (300 MHz, DMSO-d₆) isomer 1:□8.28 (d, 1H), 8.13 (s, 1H), 7.98 (d, 1H), 7.65-7.56 (m, 1H), 7.33-7.39 (m, 1H), 7.21 (t, 1H), 6.83-6.78 (m, 2H), 6.75 (t, 1H), 6.64 (s, 1H), 5.68 (s, 1H), 5.48 (s, 1H), 3.92 (s, 3H), 1.99 (s, 3H), 1.27 (s, 6H); isomer 2:□8.17 (d, 1H), 7.65-7.56 (m, 1H), 7.45 (d, 1H), 7.39-7.33 (m, 1H), 7.27 (d, 1H), 7.17 (t, 1H), 6.83-6.78 (m, 2H), 6.75 (t, 1H), 6.56 (s, 1H), 6.40 (s, 1H), 5.01 (s, 1H), 3.92 (s, 3H), 1.88 (s, 3H), 1.19 (s, 3H), 0.78 (s, 3H);

HRMS calcd m/z for C₂₈H₂₄F₃NO₂: 463.1759 (M+H)⁺. Found: 463.1762.

30

Example 123

5-[(2,6-difluorophenyl)methylene]-2,5-dihydro-10-methoxy-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 1F and 2,6-difluorobenzylmagnesium bromide were processed as in Example 1B to provide the desired compound.

35 MS (DCI/NH₃) m/z 432 (M+H) $^+$;

¹H NMR (300 MHz, DMSO-d6) isomer 1: □8.32 (d, 1H), 7.19 -7.08 (m, 3H), 6.92 (t, 1H), 6.81 - 6.76 (m, 2H), 6.64 (s, 1H), 6.54 (d, 1H), 5.49 (s, 1H), 5.46 (s, 1H), 3.92 (s, 3H), 2.11 (s, 3H), 1.25 (s, 6H); isomer 2: □8.18 (d, 1H), 7.38 (t, 1H), 7.19-7.08 (m, 3H),

6.81-6.76 (m, 2H), 6.67 (d, 1H), 6.21 (s, 1H), 6.19 (s, 1H), 4.96 (s, 1H), 3.93 (s, 3H), 1.91 (s, 3H), 1.16 (s, 3H), 0.61 (s, 3H); HRMS calcd m/z for C₂7H₂3F₂NO₂: 431.1697 (M+H)⁺. Found: 431.1704.

5

10

15

Example 124

5-[(2-chlorophenyl)methylene]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 1F and 2-chlorobenzylmagnesium bromide were processed as in Example 1B to provide the desired compound.

MS (DCI/NH₃) m/z 430 (M+H) $^+$;

¹H NMR (300 MHz, DMSO-d₆) isomer 1:□8.11 (d, 1H), 7.47 (d, 1H), 7.40 (d, 1H), 7.23-7.10 (m, 3H), 6.84-6.74 (m, 2H), 6.71 (s, 1H), 6.66 (s, 1H), 6.01 (s, 1H), 5.47 (s, 1H), 3.93 (s, 3H), 2.02 (s, 3H), 1.25 (s, 6H); isomer 2:□8.27 (d, 1H), 8.18 (d, 1H), 7.41 (t, 1H), 7.26 (d, 1H), 7.01 (t, 1H), 6.84-6.74 (m, 4H), 6.47 (s, 1H), 6.37 (s, 1H), 5.00 (s, 1H), 3.93 (s, 3H), 1.88 (s, 3H), 1.18 (s, 3H), 0.73 (s, 3H);

HRMS calcd m/z for C₂₇H₂₄ClNO₂: 429.1496 (M+H)⁺. Found: 429.1497.

Example 125

5-[(2,6-dichlorophenyl)methylene]-2,5-dihydro-10-methoxy-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

20

25

Example 1F and 2,6-dichlorobenzylmagnesium bromide were processed as in Example 1B to provide the desired compound.

MS (DCI/NH₃) m/z 464 (M+H) $^+$;

¹H NMR (300 MHz, DMSO-d6) isomer 1:□8.27 (d, 1H), 7.16 (m, 2H), 7.07 (t, 1H), 6.81-6.76 (m, 3H), 6.68 (d, 1H), 6.30 (s, 1H), 5.47 (s, 1H), 4.90 (s, 1H), 3.93 (s, 3H), 1.96 (s, 3H), 1.15 (s, 3H), 0.59 (s, 3H); isomer 2:□8.37 (d, 1H), 7.45 (d, 2H), 7.31 (t, 1H), 7.16 (m, 2H), 6.77 (m, 1H), 6.65 (s, 1H), 6.44 (d, 1H), 6.34 (s, 1H), 5.60 (s, 1H), 3.91 (s, 3H), 2.20 (s, 3H), 1.25 (s, 6H);

HRMS calcd m/z for C₂₇H₂₃Cl₂NO₂: 463.1106 (M+H)⁺. Found: 463.1114.

30

35

Example 126

5-[(2-fluorophenyl)methylene]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 1F and 2-fluorobenzylmagnesium bromide were processed as in Example 1B to provide the desired compound.

 $MS (DCI/NH_3) m/z 414 (M+H)^+;$

¹H NMR (300 MHz, DMSO-d₆) isomer 1: □8.30 (d, 1H), 8.23 (m, 1H), 7.28 (m, 1H), 7.19 (t, 1H), 7.18 (d, 1H), 6.93 -6.75 (m, 3H), 6.76 (d, 1H), 6.65 (s, 1H), 5.77 (s, 1H),

5.49 (s, 1H), 3.93 (s, 3H), 2.01 (s, 3H), 1.25 (s, 6H); isomer 2: \$\subseteq\$ 8.17 (d, 1H), 7.28 (m, 2H), 7.18 (d, 1H), 7.14-7.06 (m, 2H), 6.79 (m, 2H), 6.72 (d, 1H), 6.41 (s, 1H), 6.38 (s, 1H), 5.00 (s, 1H), 3.93 (s, 3H), 1.87 (s, 3H), 1.18 (s, 3H), 0.76 (s, 3H); HRMS calcd m/z for \$C_{27}H_{24}FNO_{2}\$: 413.1791 (M+H)⁺. Found: 413.1788.

5

10

15

Example 127

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[(4,5-dihydro-4,4-dimethyl-2-oxazolyl)methylene]-1H-[1]benzopyrano[3,4-f]quinoline

Example 1F and 4,4-dimethyl-2-oxazoline-2-methyllithium were processed as in Example 1B to provide the desired compound.

MS (DCI/NH3) m/z 417 (M+H)+;

¹H NMR (300 MHz, DMSO-d6) isomer 1: \$\Pi\$8.34 (d, 1H), 7.19 (t, 1H), 6.83-6.78 (m,

2H), 6.74-6.70 (m, 2H), 5.48 (s, 1H), 5.08 (s, 1H), 3.98 (s, 2H), 3.92 (s, 3H), 1.99 (s, 3H), 1.22 (s, 3H), 1.20 (s, 9H); isomer 2: \square 8.06 (d, 1H), 7.14 (m, 1H), 6.80 (m, 1H), 6.76 (m, 1H), 6.72 (m, 1H), 6.42 (s, 1H), 5.96 (s, 1H), 5.35 (s, 1H), 3.90 (s, 3H), 3.72 (m, 2H), 1.93 (s, 3H), 1.32 (s, 3H), 1.20 (s, 6H), 1.11 (s, 3H); HRMS calcd m/z for C₂6H₂8N₂O₃: 417.2178 (M+H)⁺. Found: 417.2176.

Example 128

20

25

30

35

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-pyridinylmethylene)-1H[1]benzopyrano[3,4-f]quinoline

Example 1F and 2-methylpyridyllithium were processed as in Example 1B to provide the desired compound.

 $MS (DCI/NH_3) m/z 397 (M+H)^+;$

¹H NMR (300 MHz, DMSO-d6) isomer 1: \square 8.50 (m, 1H), 8.31 (d, 1H), 8.25 (d, 1H), 7.83 (t, 1H), 7.20 (d, 1H), 7.19 (m, 1H), 6.95 (d, 1H), 6.83 (d, 1 H,), 6.78 (d, 1H), 6.64 (s, 1H), 5.77 (s, 1H), 5.49 (s, 1H), 3.92 (s, 3H), 2.00 (s, 3H), 1.27 (s, 6H). isomer 2: \square 8.43 (m, 1H), 8.15 (d, 1H), 7.48 (t, 1H), 7.22 (d, 1H), 7.15 (d, 1H), 7.08 (m, 1H), 6.88 (d, 1H), 6.78 (d, 1H), 6.77 (t, 1H), 6.46 (s, 1H), 6.38 (s, 1H), 4.99 (s, 1H), 3.92 (s, 3H), 1.87 (s, 3H), 1.21 (s, 3H), 0.89 (s, 3H); HRMS calcd m/z for C₂6H₂4N₂O₂: 397.1916 (M+H)⁺. Found: 397.1923.

Example 129

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-thienyl)-1H-[1]benzopyrano[3,4-f]quinoline

Example 1F and 2-thienyllithium were processed as in Example 1B to provide the desired compound.

MS (DCI/NH₃) m/z 391 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 8.01 (d, 1H), 7.38 (d, 1H), 6.95 (dd, 1H), 6.93 (s, 1H), 6.81 (dd, 1H), 6.68 (d, 1H), 6.65 (d, 1H), 6.64 (d, 1H), 6.46 (d, 1H), 6.21 (d, 1H), 5.39 (s, 1H), 3.81 (s, 3H), 1.95 (d, 3H), 1.21 (s, 3H), 1.15 (s, 3H).

5

Example 130

2,5-dihydro-9,10-dimethoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline

1,2,4-trimethoxybenzene was processed as described in Schemes 1 and 2 to provide the desired compound.

MS (DCI/NH₃) m/e 378 (M+H) $^{+}$;

¹H NMR (300 MHz, DMSO-d₆) [7.93 (d, 1H), 6.82 (d, 1H), 6.61 (dd, 2H), 6.22 (d, 1H), 5.81 (ddt, 1H), 5.70 (dd, 1H), 5.44 (s, 1H), 5.01 (m, 2H), 3.76 (s, 3H), 3.67 (s, 3H), 2.35 (m, 2H), 2.16 (s, 3H), 1.17 (s, 3H), 1.16 (s, 3H).

15

20

10

Example 131

5-(2-cyclohexen-1-yl)-2,5-dihydro-9,10-dimethoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

1,2,4-trimethoxybenzene was processed as described in Example 130 but substituting 3-trimethylsilylcyclohexene for allyltrimethylsilane to provide the desired compound.

 $MS (DCI/NH_3) \text{ m/e } 418 (M+H)^+;$

 1 H NMR (300 MHz, DMSO d₆) \Box 8.03 (d, 1H), 8.01 (d, 1H), 6.83 (d, 1H), 6.82 (d, 1H), 6.60 - 6.69 (m, 4H), 6.31 (d, 1H), 6.27 (d, 1H), 5.6-5.8 (m, 4H), 5.35-5.52 (m, 4H), 5.11 (m, 1H), 5.09 (m, 1H), 3.77 (s, 6H), 3.69 (s, 3H), 3.68 (s, 3H), 2.25 (m, 4H), 2.13 (s, 3H), 2.10 (s, 3H), 1.95 (m, 4H), 1.6 (m, 4H),1.31 (s, 3H), 1.29 (s, 3H), 1.07 (s, 3H), 1.04

Example 132

2,5-dihydro-10-methoxy-5-(3-methyl-3-butenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

30

35

25

(s, 3H).

Example 2B and 3-methyl-1-trimethylsilyl-2-butene (prepared according to Fleming, et. al. Synthesis 1979, 446.) were processed as in example 2 to provide the desired compound.

MS (DCI/NH₃) m/e (M+H)⁺ 376;

¹H NMR (300 MHz, DMSO-d₆) □ 8.10 (d, J=8 Hz, 1H), 7.01 (t, J=8 Hz, 1H), 6.65 (d, J=8 Hz, 1H), 6.62 (d, J=8 Hz, 1H), 6.49 (d, J=8 Hz, 1H), 6.25 (br s, 1H), 5.57 (s, 1H),

5.55 (dd, J=17, 11 Hz, 1H), 5.41 (s, 1H), 4.64-4.56 (m, 2H), 3.83 (s, 3H), 2.14 (s, 3H), 1.31 (s, 3H), 1.01 (s, 3H), 0.86 (s, 3H), 0.83 (s, 3H); 13C NMR (100 MHz, DMSO-d₆) □ 156.31, 153.48, 145.02, 143.74, 133.05, 128.73, 127.10, 126.82, 126.27, 119.20, 118.15, 114.05, 113.11, 110.85, 109.36, 105.24, 78.33, 55.69, 49.12, 44.84, 29.53, 26.14, 23.53, 23.43, 23.35; Anal. calcd for C₂5H₂9NO₂•1/4H₂O: C, 79.02; H, 7.82; N, 3.69. Found: C, 79.09; H, 7.94; N, 3.59.

Example 133

2,5-dihydro-10-methoxy-5-(5,5-dimethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

Example 2B and 5,5-dimethyl-1-trimethylsilyl-2-cyclohexene (prepared from 5,5-dimethyl-2-cyclohexene-1-ol by the method of Tsuji, et. al. J. Org. Chem. 1996, 61, 5779) were processed as in example 2 to provide the desired compound as a 1.8:1 inseparable mixture of diastereomers.

MAJOR:

5

10

15

20

30

35

MS (DCI/NH₃) m/e (M+H)⁺ 416;

¹H NMR (300 MHz, DMSO-d₆)□8.08 (d, J=8 Hz, 1H), 7.07 (t, J=8 Hz, 1H), 6.69 (d, J=8 Hz, 1H), 6.64 (d, J=8 Hz, 1H), 6.25 (br s, 1H), 5.85 (m, 1H), 5.62-5.71 (m, 1H), 5.46 (s, 1H), 5.45 (d, J=10 Hz, 1H), 3.86 (s, 3H), 2.41-2.33 (m, 1H), 2.11 (s, 3H), 1.84-1.72 (m, 1H), 1.68-1.48 (m, 2H), 1.30 (s, 3H), 1.35-1.21 (m, 1H), 1.01 (s, 3H), 0.76 (s, 3H), 0.53 (s, 3H);

Anal. calcd for C₂₈H₃₃NO₂•1/2H₂O: C, 79.21; H, 8.07; N, 3.30. Found: C, 79.31; H, 7.75; N, 3.11.

25 MINOR:

¹H NMR (300 MHz, DMSO-d₆) □ 8.02 (d, J=8 Hz, 1H), 7.09 (t, J=8 Hz, 1H), 6.70 (d, J=8 Hz, 1H), 6.64 (d, J=8 Hz, 1H), 6.57 (d, J=8 Hz, 1H), 6.20 (br s, 1H), 5.60-5.52 (m, 1H), 5.50 (d, J=10 Hz, 1H), 5.14 (m, 1H), 5.41 (m, 1H), 3.86 (s, 3H), 2.41-2.33 (m, 1H), 2.09 (s, 3H), 1.91-1.78 (m, 1H), 1.68-1.48 (m, 2H), 1.35-1.21 (m, 1H), 1.28 (s, 3H), 1.07 (s, 3H), 0.92 (s, 3H), 0.51 (s, 3H).

Example 134

<u>rel</u> (5R,2'R) 2,5-dihydro-10-methoxy-5-(2-oxo-3-tetrahydropyranyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and 3,4-dihydro-6-(trimethylsiloxy)-2H-pyran were processed as in Example 2 to give 41% Example 134 and 48% Example 135.

MS (DCI/NH₃) m/e 406 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□8.12 (d, J=8 Hz, 1H), 7.05 (t, J=8 Hz, 1H), 6.67 (d, J=8 Hz, 1H), 6.63 (d, J=9 Hz, 1H), 6.49 (d, J=8 Hz, 1H), 6.42 (d, J=5 Hz, 1H), 6.21 (d, J=2 Hz, 1H), 5.44 (br s, 1H), 4.35-4.00 (m, 2H), 3.86 (s, 3H), 2.77-2.67 (m, 1H), 2.17 (s, 3H), 2.01-1.50 (m, 4H), 1.27 (s, 3H), 1.01 (s, 3H);

¹³C NMR (100 MHz, DMSO-d₆)□169.93, 156.40, 152.16, 145.53, 133.80, 128.46, 127.75, 127.20, 126.66, 117.38, 116.74, 113.45, 112.07, 109.23, 109.19, 105.44, 98.19, 72.79, 69.09, 55.62, 49.44, 46.37, 29.45, 27.13, 23.20, 21.46, 20.22, 19.61; Anal. calcd for C₂5H₂7NO₄•1/2H₂O: C, 72.44; H, 6.81; N, 3.38. Found: C, 72.66; H, 6.92; N, 2.91.

10

5

Example 135

anti (5R, 2'S) 2,5-dihydro-10-methoxy-5-(2-oxo-3-tetrahydropyranyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and 3,4-dihydro-6-(trimethylsiloxy)-2H-pyran were processed as in Example 2 to give 41% Example 135 and 48% Example 135A.

15 MS (DCI/NH₃) m/e 406 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□8.12 (d, J=8 Hz, 1H), 7.05 (t, J=8 Hz, 1H), 6.67 (d, J=8 Hz, 1H), 6.63 (d, J=9 Hz, 1H), 6.49 (d, J=8 Hz, 1H), 6.42 (d, J=5 Hz, 1H), 6.21 (d, J=2 Hz, 1H), 5.44 (br s, 1H), 4.35-4.00 (m, 2H), 3.86 (s, 3H), 2.77-2.67 (m, 1H), 2.17 (s, 3H), 2.01-1.50 (m, 4H), 1.27 (s, 3H), 1.01 (s, 3H);

¹³C NMR (100 MHz, DMSO-d₆)□169.93, 156.40, 152.16, 145.53, 133.80, 128.46, 127.75, 127.20, 126.66, 117.38, 116.74, 113.45, 112.07, 109.23, 109.19, 105.44, 98.19, 72.79, 69.09, 55.62, 49.44, 46.37, 29.45, 27.13, 23.20, 21.46, 20.22, 19.61; Anal. calcd for C₂5H₂7NO₄•1/2H₂O: C, 72.44; H, 6.81; N, 3.38. Found: C, 72.66; H, 6.92; N, 2.91.

25

20

Example 135A

anti (5R, 2°S) 2,5-dihydro-10-methoxy-5-(2-oxo-3-tetrahydropyranyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH3) m/e 406 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□8.06 (d, J=9 Hz, 1H), 7.06 (t, J=8 Hz, 1H), 6.70 (d,

- J=8 Hz, 1H), 6.65 (d, J=9 Hz, 1H), 6.50 (d, J=8 Hz, 1H), 6.27 (d, J=8 Hz, 1H), 6.21 (d, J=2 Hz, 1H), 5.46 (s, 1H), 4.01-4.10 (m, 2H), 3.87 (s, 3H), 2.81 (m, 1H), 2.14 (m, 3H), 1.68 -1.61 (m, 2H), 1.27 (s, 3H), 1.16-1.36 (m, 2H), 1.03 (s, 3H); 13C NMR (100 MHz, DMSO-d_☉)□172.14, 156.33, 150.95, 145.21, 134.18, 127.71,
 - 127.38, 127.20, 126.73, 118.09, 116.66, 113.53, 112.78, 110.56, 105.45, 71.40, 66.76,
- 35 55.52, 49.49, 29.46, 27.38, 23.69, 21.05, 20.79;
 - Anal. calcd for C₂₅H₂₇NO₄•1/4H₂O: C, 73.24; H, 6.76; N, 3.42. Found: C, 72.89; H, 7.07; N, 3.05.

Example 136

2,5-dihydro-10-methoxy-5-(3-cyclopentenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and cyclopenten-2-yltrimethylsilane were processed as in Example 2 to provide the desired compound as an inseparable mixture of two diastereomers (1.5:1). MS (DCI/NH3) m/z 374 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)

5

10

15

20

25

30

35

Major diastereomer: \Box 8.05 (d, 1H), 7.09 (t, 1H), 6.72 (d, 1H), 6.66 (d, 1H), 6.58 (d, 1H), 6.19 (s, 1H), 5.77 (ddd, 1H), 5.50 (d, 1H), 5.43 (s, 1H), 5.19 (ddd, 1H), 3.87 (s, 3H), 2.90 (m, 1H), 2.43-2.15 (m, 2H), 2.09 (s, 3H), 1.97-1.70 (m, 2H), 1.31 (s, 3H), 1.09 (s, 3H); Minor diastereomer: \Box 8.07 (d, 1H), 7.08 (t, 1H), 6.70 (d, 1H), 6.66 (d, 1H), 6.61 (d, 1H), 6.22 (s, 1H), 5.82-5.70 (m, 2H), 5.48 (d, 1H), 5.41 (d, 1H), 3.88 (s, 3H), 2.92 (m, 1H), 2.30 (m, 1H), 2.20 (m, 1H), 2.15 (s, 3H), 1.50 (m, 2H), 1.33 (s, 3H), 1.05 (s, 3H); HRMS calcd m/z for C25H27NO2: 373.2042. Found: 373.2049.

Example 137

2,5-dihydro-10-methoxy-5-(3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and cyclohexen-2-yltrimethylsilane were processed as in Example 2 to provide the desired compound as an inseparable mixture of two diastereomers (1.1:1). MS (DCI/NH3) m/z 388 (M+H)⁺; ¹H NMR (300 MHz, DMSO-d₆)

Major diastereomer: \$\square\$ 8.05 (d, 1H), 7.06 (t, 1H), 6.67 (d, 1H), 6.64 (d, 1H), 6.59 (d, 1H), 6.19 (s, 1H), 5.82 (m, 1H), 5.72 (m, 1H), 5.41 (s, 1H), 5.40 (d, 1H), 3.87 (s, 3H), 2.29 (m, 1H), 2.13 (s, 3H), 1.95-1.80 (m, 2H), 1.72-1.50 (m, 2H), 1.38-1.10 (m, 2H), 1.30 (s, 3H), 1.02 (s, 3H);

Minor diastereomer: \$\square\$ 8.03 (d, 1H), 7.07 (t, 1H), 6.68 (d, 1H), 6.63 (d, 1H), 6.57 (d, 1H), 6.15 (s, 1H), 5.62 (m, 1H), 5.54 (m, 1H), 5.46 (s, 1H), 5.09 (m, 1H), 3.85 (s, 3H), 2.29 (m, 1H), 2.10 (s, 3H), 1.95-1.80 (m, 2H), 1.72-1.50 (m, 2H), 1.38-1.10 (m, 2H), 1.28 (s, 3H), 1.05 (s, 3H);

HRMS calcd m/z for C26H29NO2: 387.2198. Found: 387.2206.

Example 138

2,5-dihydro-10-methoxy-5-(3-butenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and 2-butenyltrimethylsilane were processed as in Example 2 to provide the desired compound as an inseparable mixture of two diastereomers (1.3:1).

 $MS (DCI/NH_3) m/z 362 (M+H)^+;$

¹H NMR (300 MHz, DMSO-d6) Major diastereomer: □8.04 (d, 1H), 7.05 (t, 1H), 6.69 (d, 1H), 6.64 (d, 1H), 6.47 (d, 1H), 6.16 (s, 1H), 5.88 (ddd, 1H), 5.54 (d, 1H), 5.46 (s, 1H), 4.93 (ddd, 1H), 4.74 (ddd, 1H), 3.86 (s, 3H), 2.37 (bm, 1H), 2.17 (s, 3H), 1.30 (s, 3H), 1.02 (s, 3H), 0.71(d, 3H); Minor diastereomer: □8.03 (d, 1H), 7.08 (t, 1H), 6.67 (d, 1H), 6.64 (d, 1H), 6.58 (d, 1H), 6.10 (s, 1H), 5.51 (ddd, 1H), 5.47 (d, 1H), 5.40 (s, 1H), 4.78 (ddd, 1H), 4.74 (ddd, 1H), 3.86 (s, 3H), 2.38 (bm, 1H), 2.11 (s, 3H), 1.28 (s, 3H), 1.05 (s, 3H), 1.01(d, 3H);

Anal. calcd for C₂₄H₂₇N O₂: C, 79.74; H, 7.53; N, 3.87. Found: C, 79.41; H, 7.63; N, 3.43.

Example 139

2,5-dihydro-10-methoxy-5-(1-ethenyl-1-cyclohexyl)-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

Example 2B and 2-cyclohexylideneethyl trimethylsilane were processed as in Example 2 to provide the desired compound.

MS (DCI/NH₃) m/z 416 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□8.10 (d, 1H), 7.00 (t, 1H), 6.63 (d, 1H), 6.60 (dd, 1H), 6.47(dd, 1H), 6.20 (dd, 1H), 5.45 (s, 1H), 5.40 (s, 1H), 5.14 (dd, 1H), 4.81 (dd, 1H), 4.53 (dd, 1H), 3.85 (s, 3H), 2.15 (s, 3H), 1.78 (m, 1H), 1.45-0.80 (m, 9H), 1.32 (s, 3H), 1.03 (s, 3H);

Anal. calcd for C₂₈H₃₃NO₂: C, 80.93; H, 8.00; N, 3.37. Found: C, 80.57; H, 8.02; N, 3.22.

25

30

35

20

5

10

15

Example 140

2,5-dihydro-10-methoxy-5-(4,4-dimethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

Example 2B and (4,4-dimethylcyclohexen-2-yl)trimethylsilane were processed as in Example 2 to provide the desired compound as an inseparable mixture of diastereomers (2:1).

MS (DCI/NH₃) m/z 416 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d6)

Major diastereomer □ 8.07 (d, 1H), 6.99 (t, 1H), 6.63 (d, 1H), 6.62 (d, 1H), 6.48 (d, 1H), 6.23 (s, 1H), 5.72 (d, 1H), 5.48 (m, 1H), 5.40 (m, 2H), 3.84 (s, 3H), 2.16 (s, 3H), 2.05 (m, 1H), 1.75 (bm, 2H), 1.30 (s, 3H), 1.12 (m, 2H), 1.02 (s, 6H), 0.51 (s, 3H);

Minor diastereomer [3.04(d, 1H), 7.06 (t, 1H), 6.68 (d, 1H), 6.62 (d, 1H), 6.57 (d, 1H), 6.19 (s, 1H), 5.68 (dd, 1H), 5.50-5.38 (m, 3H), 3.86 (s, 3H), 2.14 (s, 3H), 2.08 (m, 1H),

1.71 (m, 1H), 1.42 (m, 1H), 1.30 (s, 3H), 1.07 (m, 2H), 1.02 (s, 3H), 0.91 (s, 3H), 0.84 (s, 3H);

HRMS calcd m/z for C₂₈H₃₃NO₂: 415.2511. Found: 415.2527.

5

10

15

25

30

35

3H):

Example 141

2,5-dihydro-10-methoxy-5-(1-methylene-2-cyclohexyl)-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

Example 2B and 1-(trimethylsilylmethyl)cyclohexene were processed as in Example 2 to provide the desired compound as an inseparble mixture of diastereomers (4:1).

 $MS (DCI/NH_3) m/z 402 (M+H)^+;$

¹H NMR (300 MHz, DMSO-d₆)

Major diastereomer \square 8.07 (d, 1H), 7.03 (t, 1H), 6.65 (d, 1H), 6.63 (d, 1H), 6.40 (d, 1H), 6.22 (s, 1H), 5.89 (d, 1H), 4.75 (d, 1H), 4.56 (d, 1H), 3.87 (s, 3H), 2.38 (m, 1H), 2.23 (m, 1H), 2.21 (s, 3H), 1.97 (bm, 2H), 1.55-1.05 (m, 6H), 1.34 (s, 3H), 1.01 (s, 3H); Minor diastereomer \square 8.09 (d, 1H), 7.05 (t, 1H), 6.68 (d, 1H), 6.57 (d, 1H), 6.56 (d, 1H), 6.11 (s, 1H), 5.86 (d, 1H), 5.40 (s, 1H), 4.33 (d, 1H), 3.91 (d, 1H), 3.87 (s, 3H), 2.48 (m, 1H), 2.22 (m, 1H), 2.20 (s, 3H), 1.94 (bm, 1H), 1.75-1.05 (m, 6H), 1.29 (s, 3H), 0.97 (s,

20 HRMS calcd m/z for C₂₇H₃₁NO₂: 401.2355. Found: 401.2351.

Example 142

2,5-dihydro-10-methoxy-5-(1-oxo-2-cyclohexyl)-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

Example 2B and 1-(trimethylsilyloxy)cyclohexene were processed as in Example 2 to provide the desired compound as single diastereomer.

MS (DCI/NH₃) m/z 404 (M+H)+;

¹H NMR (300 MHz, DMSO-d₆) □ 8.04 (d, 1H), 7.02 (t, 1H), 6.67 (d, 1H), 6.63 (d, 1H), 6.39 (d, 1H), 6.37 (d, 1H), 6.17 (s, 1H), 5.44 (s, 1H), 3.80 (s, 3H), 2.70 (ddd, 1H), 2.25 (m, 2H), 2.15 (s, 3H), 1.84 (bm, 1H), 1.62-1.25 (m, 4H), 1.28 (s, 3H), 1.09 (m, 1H), 1.00 (s, 3H).

HRMS calcd m/z for C₂₆H₂₉NO₃: 403.2147. Found: 403.2142.

Example 143

2,5-dihydro-10-methoxy-5-(3-cyclooctenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and cycloocten-2-yltrimethylsilane were processed as in Example 2 to provide the desired compound as an inseparable mixture of two diastereomers (7:5).

MS (DCI/NH₃) m/z 416 (M+H)+;

¹H NMR (300 MHz, DMSO-d₆)

Major diastereomer: \$\Q\$8.03 (dd, 1H), 7.07 (t, 1H), 6.62 (d, 1H), 6.57 (d, 1H), 6.39 (d, 1H), 6.17 (s, 1H), 5.59 (m, 2H), 5.44 (s, 1H), 5.14 (dd, 1H), 3.88 (s, 3H), 2.18 (s, 3H), 2.04-0.84 (m, 17H);

Minor diastereomer: □8.00 (d, 1H), 7.00 (t, 1H), 6.70 (d, 1H), 6.66 (d, 1H), 6.58 (d, 1H), 6.12 (s, 1H), 5.59 (m, 2H), 5.48 (s, 1H), 5.38 (dd, 1H), 3.88 (s, 3H), 2.18 (s, 3H), 2.04-0.84 (m, 17H);

HRMS calcd m/z for C₂₈H₃₃NO₂: 415.2511. Found: 415.2498.

10

15

5

Example 144

2,5-dihydro-10-methoxy-5-(3-cycloheptenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and cyclohepten-2-yltrimethylsilane were processed as in Example 2 to provide the desired compound as an inseparable mixture of two diastereomers (1:1). MS (DCI/NH₃) m/z 402 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)

diastereomer A: \$\square\$ 8.04 (d, 1H0, 7.04 (t, 1H), 6.68 (d, 1H), 6.63 (d, 1H), 6.51 (d, 1H), 6.22 (s, 1H), 5.97 (m, 1H), 5.73 (m, 1H), 5.58 (m, 1H), 5.47 (s, 1H), 3.87 (s, 3H), 2.42-0.98 (m, 18H);

diastereomer B: \Box 8.01 (d, 1H), 7.08 (t, 1H), 6.70 (d, 1H), 6.62 (d,1H), 6.56 (d, 1H), 6.21 (s, 1H), 5.58 (m, 2H), 5.49 (s, 1H), 5.32 (m, 1H), 3.87 (s, 3H), 2.42-0.98 (m, 18H); HRMS calcd m/z for C₂₇H₃₁NO₂: 401.2355. Found: 401.2351,

25

20

Example 145

2,5-dihydro-10-methoxy-5-(1-cyclohexenylmethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and 2-methylenecyclohexyldimethylphenylsilane were processed as in Example 2 to provide the desired compound.

30 MS (DCI/NH₃) m/z 402 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) [7.96 (d, 1H), 7.05 (t, 1H), 6.68 (d, 1H), 6.58 (d, 1H), 6.45 (d, 1H), 6.10 (s, 1H), 5.85 (dd, 1H), 5.43 (s, 1H), 5.18 (bs, 1H), 3.85 (s, 3H), 2.45-1.12 (m, 19H);

HRMS calcd m/z for C27H31NO2: 401.2355. Found: 401.2342;

35 Anal. calcd for C₂₇H₃₁NO₂: C, 80.76; H, 7.78; N, 3.49. Found: C, 80.76; H, 8.00; N, 3.25.

Example 146

2,5-dihydro-10-methoxy-5-(3,3-dimethyl-6-cyclohexenyl)-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

Example 2B and (6,6-dimethylcyclohexen-2-yl)dimethylphenylsilane were processed as in Example 2 to provide the desired compound as an inseparable mixture of diastereomers (5:1).

MS (DCI/NH₃) m/z 416 (M+H)⁺;

5

10

25

30

35

¹H NMR (300 MHz, DMSO-d6) major diastereomer: □8.04 (d, 1H), 7.06 (t, 1H), 6.68 (d, 1H), 6.63 (d, 1H), 6.58 (d, 1H), 6.21 (s, 1H), 5.67 (dd, 1H), 5.49-5.38 (m, 3H), 3.86 (s, 3H), 2.29-0.82 (m, 20H); minor diastereomer: □8.01 (d, 1H), 7.07 (t, 1H), 6.68 (d, 1H), 6.63 (d, 1H), 6.57 (d, 1H), 6.16 (s, 1H), 5.56-5.33 (m, 3H), 4.97 (dd, 1H), 3.86 (s, 3H), 2.29-0.82 (m, 20H);

HRMS calcd m/z for C₂₈H₃₃NO₂: 415.2511. Found: 415.2527;

15 Anal. calcd for C₂₈H₃₃NO₂: C, 80.93; H, 8.00; N, 3.37. Found: C, 80.92; H, 7.98; N, 3.25.

Example 147

2,5-dihydro-10-methoxy-5-(2-bromo-3-propenyl)-2,2,4-trimethyl-1H-

20 [1]benzopyrano[3,4-f]quinoline

Example 2B and (2-bromoallyl)trimethylsilane were processed as in Example 2 to provide the desired compound.

MS (DCI/NH₃) m/z 426 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□8.00 (d, 1H), 7.08 (t, 1H), 6.72 (d, 1H), 6.62 (d, 1H), 6.47 (d, 1H), 6.17 (s, 1H), 6.02 (dd, 1H), 5.51 (d, 1H), 5.47 (s, 1H), 5.42 (s, 1H), 3.87 (s, 3H), 2.89 (dd, 1H), 2.44 (dd, 1H), 2.26 (s, 3H), 1.17 (s, 3H), 1.15 (s, 3H). Anal. calcd for C₂₃H₂₄NO₂Br: C, 64.79; H, 5.67; N, 3.29. Found: C, 64.70; H, 5.65; N, 3.09.

Examples 148-150

Example 2B (1.25g, 3.70 mmol) and 1-[1'-t-butyldimethylsiloxy-1'-methoxyalkylidene]-2-cyclohexene were processed as in example 2 to provide a diastereomeric mixture of unsaturated ester adducts (1.21 g, 73%) that was carried on to the next step.

The mixture above (1.20 g, 2.69 mmol) was dissolved in THF (100 ml), cooled to 0 °C, treated slowly with Dibal-H (13.5 ml of 1M/hex solution, 13.5 mmol) by syringe, stirred 30 minutes, diluted with 250 ml saturated aqueous sodium pottasium tartrate and 300 ml ethyl acetate and stirred overnight. The layers were separated, aqueous phase extracted twice with ethyl acetate, combined organics washed with brine and dried

(MgSO₄). The resulting residue was purified by silica gel chromatography eluting with from 20% to 30% methyl t-butylether in hexanes to give Examples 148-150.

Example 148

rel (5R,3'R) 2,5-dihydro-10-methoxy-5-(1-hydroxymethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH₃) m/e 418 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) \square 8.01 (d, J=8 Hz, 1H), 7.07 (t, J=8 Hz, 1H), 6.69 (d, J=8 Hz, 1H), 6.63 (d, J=9 Hz, 1H), 6.57 (d, J=8 Hz, 1H), 6.17 (d, J=2 Hz, 1H), 5.50 (d,

J=10 Hz, 1H), 5.39 (br s, 1H), 5.05 (br s, 1H), 4.42 (t, 1H), 3.85 (s, 3H), 3.64 (d, J=6 Hz, 2H), 2.27 (n, 1H), 2.05 (s, 3H), 1.95-1.86 (m, 2H), 1.78-1.21 (m, 4H), 1.28 (s, 3H), 1.09 (s, 3H);

Anal. calcd for C₂₇H₃₁NO₃•1/2H₂O: C, 76.03; H, 7.56; N, 3.28. Found: C, 76.34; H, 7.71; N, 3.20.

15

35

10

5

Example 149

<u>rel</u> (5R,3'S) 2,5-dihydro-10-methoxy-5-(1-hydroxymethyl-3-cyclohexenyl)-2,2,4-<u>trimethyl-1H-[1]benzopyrano[3,4-f]quinoline</u>

MS (DCI/NH3) m/e 418 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 8.40 (d, J=9 Hz, 1H), 7.07 (t, J=8 Hz, 1H), 6.67 (d, J=8 Hz, 1H), 6.63 (d, J=8 Hz, 1H), 6.59 (d, J=8 Hz, 1H), 6.20 (d, J=8 Hz, 1H), 6.20 (s, 1H), 5 (78, J=s Hz, 1H), 5.45 (s, 1H), 5.37 (d, J=10 Hz, 1H), 4.60 (dd, J=5 Hz, 1H), 3.85 (s, 3H), 3.75 (s, 2H), 2.37 (m, 1H), 2.12 (s, 3H), 1.70 (m, 2H), 1.60 (m, 1H), 1.30 (s, 3H), 1.15 (m, 2H), 1.02 (s, 3H);

¹³C NMR (75 MHz, DMSO-d₆) □156.3, 151.5, 145.0, 139.6, 133.7, 130.2, 128.0, 127.1, 126.9, 120.8, 120.3, 118.5, 116.5, 113.0, 110.2, 105.2, 105.2, 76.2, 65.1, 55.6, 49.4, 36.9, 29.6, 26.8, 23.7, 21.3.

Example 150

30 <u>2,5-dihydro-10-methoxy-5-(3-hydroxymethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-</u> [1]benzopyrano[3,4-f]quinoline

MS (DCI/NH3) m/e 418 (M+H)+;

¹H NMR (300 MHz, DMSO-d₆) \Box 8.06 (d, J=8 Hz, 1H), 7.01 (t, J=8 Hz, 1H), 6.59 (d, J=8 Hz, 1H), 6.52 (d, J=8 Hz, 1H), 6.27 (s, 1H), 6.03 (s, 1H), 5.38 (s, 1H), 5.23 (m, 1H), 4.75 (m, 2H), 3.81 (s, 3H), 3.47 (m, 1H), 2.95 (m, 1H), 2.19 (s, 3H), 1.70-1.35 (m, 6H),

1.31 (s, 3H), 1.03 (s, 3H); ¹³C NMR (75 MHz, DMSO-d₆) □156.4, 154.4 (145.1), 132.9,

129.2, 128.0, 127.6, 126.9, 126.1, 119.3, 118.6, 114.3, 113.1, 109.0, 105.5, 73.5, 64.4, 55.9, 49.2, 48.6, 29.7, 26.5, 25.6, 24.3, 23.5, 18.3; Anal. calcd for C₂₇H₃₁NO₃·1/4H₂O: C, 76.84; H, 7.52; N, 3.32. Found: C, 76.93; H, 7.73; N, 3.18.

5

10

15

20

25

30

Example 151

2,5-dihydro-10-methoxy-5-(3-indolyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and indole were processed as in Example 2 to provide the desired compound.

MS (DCI/NH₃) m/e $423 (M+H)^+$;

¹H NMR (300 MHz, DMSO-d₆)□10.89 (d, 1H), 8.01 (d, 1H), 7.83 (dd, 1H), 7.27 (dd, 1H), 7.04 (m, 3H), 6.80 (t, 1H), 6.68 (d, 1H), 6.54 (s, 1H), 6.53 (d, 1H), 6.28 (d, 1H), 6.12 (s, 1H), 5.35 (s, 1H), 3.83 (s, 3H), 1.89 (s, 3H), 1.22 (s, 3H), 1.14 (s, 3H) Anal. calcd for C₂₈H₂₆N₂O₂: C, 79.59; H, 6.20; N, 6.62. Found: C, 79.58; H, 6.28; N, 6.36.

Example 152

<u>rel (5S,3'S) 2,5-dihydro-10-methoxy-5-(1-methyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-</u> [1]benzopyrano[3,4-f]quinoline

Example 148 (0.512 g, 1.23 mmol) was dissolved in CH₂Cl₂ (5 ml), cooled to 0 °C, treated with (i-Pr)₂NEt (0.32 ml, 1.84 mmol), methanesulfonyl chloride (0.11 ml, 1.47 mmol) and stirred for 1 hour. The reaction mixture was treated dropwise with lithium triethylborohydride (4.70 ml of 1M/THF solution, 4.70 mmol), stirred 60 minutes, treated with 10 ml 1M NaOH, 0.6 ml 30 % H₂O₂, stirred 2 hours and extracted with ethyl acetate. The organic layer was washed with H₂O, saturated aqueous NaHCO₃, brine, dried (MgSO₄) and concentrated. The residue was purified by silica gel chromatography eluting with 5 % then 7 % ethyl acetate in hexanes to give 0.362 g (74%) of the desired product as a colorless foam.

MS (DCI/NH₃) m/e 402 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 8.02 (d, J=8 Hz, 1H), 7.06 (t, J=8 Hz, 1H), 6.68 (d, J=8 Hz, 1H), 6.64 (d, J=8 Hz, 1H), 6.56 (d, J=8 Hz, 1H), 6.16 (s, 1H), 5.49 (d, J=10 Hz, 1H), 5.41 (br s, 1H), 4.83 (br s, 1H), 3.85 (s, 3H), 2.31-2.17 (m, 1H), 2.06 (s, 3H), 1.99-1.21 (m, 6H), 1.49 (s, 3H), 1.29 (s, 3H), 1.08 (s, 3H).

Example 153

<u>rel</u> (5R,3'S) 2,5-dihydro-10-methoxy-5-(1-methyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 149 was processed as in Example 152 to provide the desired compound. MS (DCI/NH₃) m/e 402 (M+H)+; 1H NMR (300 MHz, DMSO-d₆) \Box 8.04 (d, J=9 Hz, 1H), 7.07 (t, J=8 Hz, 1H), 6.68 (d, J=8 Hz, 1H), 6.63 (d, J=9 Hz, 1H), 6.61 (d, J=8 Hz, 1H), 6.22 (d, J=2 Hz, 1H), 5.55 (br s, 1H), 5.45 (br s, 1H), 5.35 (d, J=10 Hz, 1H), 3.86 (s, 3H), 2.34-2.18 (m, 1H), 2.12 (s, 3H), 1.97-0.88 (m, 6H), 1.61 (s, 3H), 1.30 (s, 3H), 1.02 (s, 3H); Anal. calcd for C₂₇H₃₁NO₂•1/4H₂O: C, 79.87; H, 7.82; N, 3.45. Found: C, 79.81; H,

Example 154

(-) (5S,3'S) 2,5-dihydro-10-methoxy-5-(1-methyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 152 was subjected to HPLC on an (R,R) WHELK-O 1 column eluting with 2% EtOH in hexanes to provide the desired compound.

[\Box]D²⁰-155.9° (c 0.85, CHCl₃);

MS (DCI/NH₃) m/e 402 (M+H)⁺; ¹H NMR (300 MHz, DMSO-d₆) \Box 8.02 (d, J=9 Hz, 1H), 7.06 (t, J=8 Hz, 1H), 6.68 (d, J=8 Hz, 1H), 6.64 (d, J=9 Hz, 1H), 6.57 (d, J=8 Hz, 1H), 6.20 (d, J=2 Hz, 1H), 5.49 (d, J=10 Hz, 1H), 5.42 (br s, 1H), 4.83 (br s, 1H), 3.85 (s, 3H), 2.30-2.18 (m, 1H), 2.06 (s, 3H), 1.97-1.20 (m, 6H), 1.49 (s, 3H), 1.29 (s, 3H), 1.08 (s, 3H);

Anal. calcd for C₂₇H₃₁NO₂•1/4H₂O: C, 79.87; H, 7.82; N, 3.45. Found: C, 79.80; H, 8.15; N, 3.41.

Example 155

(-) (5S, 3'R) 2,5-dihydro-10-methoxy-5-(1-hydroxymethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 149 was subjected to HPLC on an (R,R) WHELK-O 1 column eluting with 6% EtOH in hexanes to provide the desired product. $\Box D^{20}$ -233.9° (c 1.27, CHCl₃);

MS (DCI/NH₃) m/e 418 (M+H)⁺;

5

10

15

20

30

8.28; N, 3.39.

¹H NMR (300 MHz, DMSO-d₆) Q 8.05 (d, J=9 Hz, 1H), 7.08 (d, J=8 Hz, 1H), 6.68 (d, J=8 Hz, 1H), 6.63 (d, J=9 Hz, 1H), 6.61 (d, J=8 Hz, 1H), 6.23 (br s, 1H), 5.78 (br s, 1H), 5.46 (br s, 1H), 5.37 (d, J=10 Hz, 1H), 4.65 (t, J=6 Hz, 1H), 3.86 (s, 3H), 3.76 (m, 2H),

2.36-2.22 (m, 2H), 2.12 (s, 3H), 1.87-1.77 (m, 2H), 1.65-1.53 (m, 1H), 1.30 (s, 3H), 1.27-0.92 (m, 2H), 1.02 (s, 3H).

Example 156

(+) (5R, 3'S) 2,5-dihydro-10-methoxy-5-(1-hydroxymethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 149 was subjected to HPLC on an (R,R) WHELK-O 1 column eluting with 6% EtOH in hexanes to provide the desired product.

[D]D²⁰ +234.6° (c 1.10, CHCl₃);

MS (DCI/NH₃) *m/e* 418 (M+H)⁺; ¹H NMR (300 MHz, DMSO-d₆) □ 8.05 (d, J=9 Hz, 1H), 7.07 (t, J=8 Hz, 1H), 6.68 (d, J=8 Hz, 1H), 6.63 (d, J=9 Hz, 1H), 6.61 (d, J=8 Hz, 1H), 6.22 (br s, 1H), 5.78 (br s, 1H), 5.45 (br s, 1H), 5.37 (d, J=10 Hz, 1H), 4.63 (t, J=6 Hz, 1H), 3.86 (s, 3H), 3.78-3.73 (m, 2H), 2.36-2.22 (m, 2H), 2.12 (s, 3H), 1.87-1.77 (m, 2H), 1.65-1.52 (m, 1H), 1.34-0.93 (m, 2H), 1.30 (s, 3H), 1.02 (s, 3H).

Example 157

(-)-(5S, 3'R) 2,5-dihydro-10-methoxy-5-(1-methyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 155 was processed as in Example 152 to provide the desired compound. MS (DCI/NH₃) *m/e* (M+H)⁺ 402;

¹H NMR (300 MHz, DMSO-d₆) □ 8.04 (d, J=8 Hz, 1H), 7.07 (t, J=8 Hz, 1H), 6.68 (d, J=8 Hz, 1H), 6.63 (d, J=8 Hz, 1H), 6.62 (d, J=8 Hz, 1H), 6.23 (br s, 1H), 5.55 (br s, 1H), 5.45 (br s, 1H), 5.35 (d, J=10 Hz, 1H), 3.86 (s, 3H), 2.33-2.18 (m, 1H), 2.12 (s, 3H), 1.95-1.45 (m, 4H), 1.61 (s, 3H), 1.34-0.88 (m, 2H), 1.30 (s, 3H), 1.02 (s, 3H); □□□□²0 - 224.1° (c 0.73, CHCl₃);

Anal. calcd for C₂7H₃1NO₂•1/2H₂O: C, 78.99; H, 7.86; N, 3.41. Found: C, 79.14; H, 8.07; N, 3.03.

Example 158

5

10

15

30

35

(+)-(5R, 3'S) 2,5-dihydro-10-methoxy-5-(1-methyl-3-cyclohexenyl)-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

Example 156 was processed as in Example 152 to provide the desired compound. MS (DCI/NH₃) m/e 402 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 8.04 (d, J=9 Hz, 1H), 7.07 (d, J=8 Hz, 1H), 6.67 (d, J=8 Hz, 1H), 6.63 (d, J=9 Hz, 1H), 6.59 (d, J=8 Hz, 1H), 6.22 (br s, 1H), 5.55 (m, 1H), 5.45 (br s, 1H), 5.35 (d, J=10 Hz, 1H), 3.86 (s, 3H), 2.27 (m, 1H), 2.12 (s, 3H), 1.94-1.05 (m, 6H), 1.61 (s, 3H), 1.30 (s, 3H), 1.02 (s, 3H).

Example 159

2,5-dihydro-10-methoxy-5-(1-chloromethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

5

10

15

20

25

30

35

1.30 (s, 3H), 1.10 (s, 3H).

Example 148 (0.110 g, 0.264 mmol) was combined with methanesulfonyl chloride (49 μl, 0.632 mmol), (i-Pr)2NEt (53 μL, 0.695 mmol), Lithium chloride (11 mg, 0.264 mmol) in 2 mL of THF containing 2 drops of DMF and the reaction mixture was stirred at room temperature for several hours. The reaction mixture was diluted with ethyl acetate and washed with saturated aqueous bicarbonate, brine, dried over MgSO4 and purified by silica gel chromatography eluting with 20% ethyl acetate in hexane to give 106 mg (92%) of the desired compound as a foam.

MS (DCI/NH3) *m/e* 436 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 8.03 (d, J=8 Hz, 1H), 7.08 (t, J=8 Hz, 1H), 6.66 (dd, J=8 Hz, 2H), 6.55 (d, J=8 Hz, 1H), 6.25 (br s, 1H), 5.53 (d, J=10 Hz, 1H), 5.39 (s, 1H), 5.25 (s, 1H), 3.91 (s, 2H), 3.84 (s, 3H), 2.30 (m, 1H), 2.05 (s, 3H), 1.35-2.00 (m, 6H),

Example 160

<u>rel</u> (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-methoxymethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 148 was processed according to Example 152 using sodium methoxide instead of lithium triethylborohydride to give the desired compound.

MS (DCI/NH₃) *m/e* 432 (M+H)⁺;

¹H NMR (400 MHz, DMSO-d₆)□8.02 (d, J=9 Hz, 1H), 7.07 (t, J=8 Hz, 1H), 6.69 (d, J=9 Hz, 1H), 6.64 (d, J=9 Hz, 1H), 6.57 (d, J=9 Hz, 1H), 5.53 (d, J=10 Hz, 1H), 5.11 (s, 1H), 3.85 (s, 3H), 3.58 (dd, J=12+32 Hz, 1H), 3.06 (s, 3H), 2.30 (br m, 1H), 2.07 (s, 3H), 1.50-2.00 (br m, 4H), 1.35 (m, 1H), 1.30 (s, 3H), 1.10 (s, 3H);

¹³C NMR (100 MHz, DMSO-d₆)□156.2, 150.9, 145.0, 137.0, 133.7, 133.6, 130.4, 128.1, 127.1, 123.5, 117.9, 116.4, 113.5, 113.1, 110.1, 105.4, 105.3, 105.0, 76.2, 75.4, 56.4, 55.6, 49.5, 36.9, 29.7, 23.4, 25.5, 25.3, 25.2, 24.2, 20.2.

Example 161

<u>rel (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-methylthiomethyl-3-cyclohexenyl)-2,2,4-</u> trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 148 was processed according to Example 152 using sodium thiomethoxide instead of lithium triethylborohydride to give the desired compound as a white foam.

MS (DCI/NH₃) m/e 448 (M+H)⁺;

 1 H NMR (300 MHz, DMSO-d₆) \Box 8.02 (d, J=8 Hz, 1H), 7.08 (t, J=8 Hz, 1H), 6.69 (d, J=8 Hz, 1H), 6.65 (d, J=9 Hz, 1H), 6.57 (d, J=9 Hz, 1H), 6.23 (s, 1H), 5.49 (d, J=10 Hz, 1H), 5.40 (s, 1H), 5.00 (s, 1H), 3.86 (s, 2H), 2.30 (br m, 2H), 2.07 (s, 3H), 1.81 (s, 3H), 1.40-1.78 (br m, 6H), 1.30 (s, 3H), 1.09 (s, 3H);

¹³C NMR (100 MHz, DMSO-d₆) □ 156.2, 151.0, 145.0, 135.7, 133.8, 130.3, 128.2, 127.1, 127.1, 123.5, 118.1, 116.5, 113.4, 113.1, 110.1, 105.3, 75.7, 55.5, 49.5, 40.8, 37.5, 29.7, 27.3, 26.2, 25.7 (24.2), 20.6, 13.7.

10

15

20

30

35

5

Example 162

<u>rel (5R, 3'S) 2,5-dihydro-10-methoxy-5-(1-acetoxymethyl-3-cyclohexenyl)-2,2,4-</u> trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 149 (0.100 g, 0.239 mmol) was combined with acetic anhydride (27 μ L, 0.288 mmol), DMAP (2 mg, catalytic), (i-Pr)₂NEt (50 μ L, 0.288 mmol) in dichloromethane (6 ml). The reaction mixture was stirred for 1 hour at room temperature, diluted with ethyl acetate and washed with saturated aqueous bicarbonate, brine, dried (MgSO4)and purified by silica gel chromatography eluting with 20% ethyl acetate in hexane to give 89 mg (81%) of the desired compound as a white solid. MS (DCI/NH3) m/e 460 (M+H)⁺:

¹H NMR (300 MHz, DMSO-d₆) □ 8.05 (d, J=8 Hz, 1H), 7.08 (t, J=8 Hz, 1H), 6.68 (d, J=8 Hz, 1H), 6.64 (d, J=8 Hz, 1H), 6.62 (d, J=8 Hz, 1H), 6.23 (s, 1H), 5.82 (s, 1H), 5.46 (s, 1H), 5.40 (d, J=10 Hz, 1H), 4.38 (s, 2H), 3.86 (s, 3H), 2.33 (br m, 1H), 2.12 (s, 3H), 2.03 (s, 3H), 1.85 (br m, 2H), 1.60 (br m, 1H), 1.30 (s, 3H), 1.02-1.28 (br m, 3H), 1.02 (s, 3H);

Anal. calcd for C₂₉H₃₃NO₄: C, 75.79; H, 7.24; N, 3.05. Found: C, 76.14; H, 7.47; N, 3.02.

Example 163

<u>rel</u> (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-acetoxymethyl-3-cyclohexenyl)-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 148 was processed as in Example 162 to provide the desired compound as a white solid.

MS (DCI/NH₃) m/e 460 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 8.02 (d, J=8 Hz, 1H), 7.08 (t, J=8 Hz, 1H), 6.70 (d, J=8 Hz, 1H), 6.65 (d, J=8 Hz, 1H), 6.58 (d, J=8 Hz, 1H), 6.18 (s, 1H), 5.55 (d, J=10 Hz, 1H), 5.39 (s, 1H), 5.16 (s, 1H), 4.22 (s, 2H), 3.85 (s, 3H), 2.40 (br, J=8 Hz, 1H), 2.06 (s, 3H), 1.96 (s, 3H), 1.32-1.95 (br m, 3H), 1.28 (s, 3H), 1.06 (s, 3H);

Anal. calcd for C₂₉H₃₃NO₄: C, 75.79; H, 7.24; N, 3.05. Found: C, 75.53; H, 7.32; N, 2.84.

Example 164

<u>rel</u> (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-methoxymethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

5

15

20

25

30

35

Example 149 was processed according to Example 152 using sodium methoxide instead of lithium triethylborohydride to give the desired compound as a white foam.

MS (DCI/NH3) m/e 432 (M+H)⁺;

Anal. calcd for C₂₈H₃₃NO₃·1/4H₂O: C, 77.12; H, 7.74; N, 3.21. Found: C, 77.17; H, 7.55; N, 3.15.

Example 165

<u>rel (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-(N,N-dimethylamino)methyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline</u>

Example 148 was processed according to Example 152 using dimethylamine instead of lithium triethylborohydride to give the desired compound as a white foam. MS (DCI/NH₃) m/e 445 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 8.01 (d, J=8 Hz, 1H), 7.07 (t, J=8 Hz, 1H), 6.69 (d, J=8 Hz, 1H), 6.64 (d, J=8 Hz, 1H), 6.57 (d, J=8 Hz, 1H), 6.22 (s, 1H), 5.50 (d, J=10 Hz, 1H), 5.39 (s, 1H), 5.03 (s, 1H), 3.85 (s, 3H), 2.62 (d, J=11 Hz, 1H), 2.50 (d, J=11 Hz, 1H), 2.25 (br s, 1H), 2.06 (s, 6H), 1.98 (s, 3H), 1.40-1.95 (br m, 6H), 1.30 (s, 3H), 1.25 (br m, 1H), 1.11 (s, 3H);

Anal. calcd for C₂₉H₃₆N₂O₂·3/4H₂O: C, 76.03; H, 8.25; N, 6.11. Found: C, 75.90; H, 7.81; N, 5.90.

Example 166

<u>rel</u> (5R, 3'S) 2,5-dihydro-10-methoxy-5-(1-methylthiomethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 149 was processed according to Example 152 using sodium thiomethoxide instead of lithium triethylborohydride to give the desired compound as a white foam.

MS (DCI/NH₃) m/e 448 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 8.05 (d, J=9 Hz, 1H), 7.07 (t, J=8 Hz, 1H), 6.68 (d, J=8 Hz, 1H), 6.63 (d, J=8 Hz, 1H), 6.61 (d, J=8 Hz, 1H), 6.24 (s, 1H), 5.71 (s, 1H), 5.46 (s, 1H), 5.39 (d, J=10 Hz, 1H), 3.86 (s, 3H), 3.02 (s, 2H), 2.17-2.41 (br m, 2H), 2.11 (s, 3H), 1.91-2.10 (br m, 2H), 1.88 (s, 3H), 1.30 (s, 3H), 1.25 (s, 3H), 1.05-1.25 (br m, 3H), 1.02 (s, 3H);

Anal. calcd for C₂₈H₃₃NO₂S·1/2H₂O: C, 73.65; H, 7.50; N, 3.07. Found: C, 73.37; H, 7.46; N, 2.97.

10

15

20

25

30

35

5

Example 167

<u>rel</u> (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-(N-morpholino)methyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 148 was processed according to Example 152 using morpholine instead of lithium triethylborohydride to give the desired compound as a white foam.

MS (DCI/NH₃) m/e 487 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 8.01 (d, J=9 Hz, 1H), 7.07 (t, J=8 Hz, 1H), 6.68 (d, J=8 Hz, 1H), 6.65 (d, J=8 Hz, 1H), 6.56 (d, J=8 Hz, 1H), 6.22 (s, 1H), 5.49 (d, J=11 Hz, 1H), 5.41 (s, 1H), 5.04 (s, 1H), 3.85 (s, 3H), 3.52 (br s, 3H), 2.68 (d, J=12 Hz, 1H), 2.56 (d, J=12 Hz, 1H), 2.25 (br s, 1H), 2.15 (br s, 2H), 2.05 (s, 3H), 1.40-2.00 (br m, 6H), 1.32 (s, 3H), 1.20-1.28 (br m, 6H), 1.17 (s, 3H);

Anal. calcd for C₃₁H₃₈N₂O₃: C, 76.51; H, 7.87; N, 5.76. Found: C, 76.24; H, 8.05; N, 5.52.

. Example 168

<u>rel</u> (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-(N-methyl-N-methylsulfonylamino)methyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 170 (0.80 g, 0.186 mmol) was combined with methanesulfonyl chloride (15 μ L, 0.195 mmol), (i-Pr)₂NEt (48 μ l, 0.279 mmol) and THF at 0 °C for 1.5 hours.

The product was added directly to a silica gel plug and eluted with hexane then 40% ethyl acetate in hexane to give 88 mg (93%) of the desired compound as a white solid. MS (DCI/NH₃) m/e 509 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□8.02 (d, J=9 Hz, 1H), 7.08 (t, J=8 Hz, 1H), 6.69 (d, J=8 Hz, 1H), 6.65 (d, J=9 Hz, 1H), 6.58 (d, J=9 Hz, 1H), 6.20 (s, 1H), 5.53 (d, J=5 Hz, 1H), 5.41 (s, 1H), 5.11 (s, 1H), 3.85 (s, 3H), 3.46 (d, J=13 Hz, 1H), 3.24 (d, J=13 Hz, 1H), 2.82 (s, 3H), 2.53 (s, 3H), 2.30 (br, 1H), 2.08 (s, 2H), 1.5-2.0 (br, m, 6H), 1.35 (br, m

1H), 2.82 (s, 3H), 2.53 (s, 3H), 2.30 (br, 1H), 2.08 (s, 2H), 1.5-2.0 (br m, 6H), 1.35 (br m, 1H), 1.30 (s, 3H), 1.25 (m, 1H), 1.11 (s, 3H);

Anal. calcd for C₂₉H₃₆N₂O₄S: C, 68.47; H, 7.13; N, 5.51. Found: C, 68.20; H, 7.09; N, 5.36.

Example 169

rel (5R, 3'S) 2,5-dihydro-10-methoxy-5-(1-(N,N dimethylamino)methyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 149 was processed according to Example 152 using dimethylamine instead of lithium triethylborohydride to give the desired compound as a white foam. MS (DCI/NH₃) m/e 445 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 8.05 (d, J=9 Hz, 1H), 7.05 (t, J=8 Hz, 1H), 6.67 (d, J=8 Hz, 1H), 6.63 (d, J=8 Hz, 1H), 6.60 (d, J=8 Hz, 1H), 6.213 (s, 1H), 5.69 (s, 1H), 5.46 (s, 1H), 5.42 (d, J=10 Hz, 1H), 3.86 (s, 3H), 2.70 (br, 1H), 2.30 (br m, 1H), 2.11 (s, 3H), 2.05 (br, 4H), 1.85 (br, 2H), 1.56 (m, 1H), 1.30 (s, 3H), 1.10-1.25 (m, 3H), 1.02 (s, 3H); Anal. calcd for C₂9H₃6N₂O₂·1/2H₂O: C, 76.79; H, 8.22; N, 6.18. Found: C, 76.49; H, 8.23; N, 5.95.

Example 170

rel (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-(N-methylamino)methyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 148 was processed according to Example 152 using methylamine instead of lithium triethylborohydride to give the desired compound as a white foam. MS (DCI/NH3) m/e 431 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 8.00 (d, J=8 Hz, 1H), 7.05 (t, J=8 Hz, 1H), 6.68 (d, J=7 Hz, 1H), 6.63 (d, J=7 Hz, 1H), 6.57 (d, J=7 Hz, 1H), 6.22 (s, 1H), 5.76 (s, 1H), 5.53 (d, J=10 Hz, 1H), 5.41 (s, 1H), 5.14 (br s, 1H), 3.85 (s, 3H), 3.02 (s, 2H), 2.30 (br m, 1H), 2.22 (s, 3H), 2.07 (s, 3H), 1.74 (br m, 2H), 1.80-1.4 (br m, 4H), 1.30 (s, 3H), 1.25 (s, 1H), 1.10 (s, 3H);

Anal. calcd for C₂₈H₃₃N₂O₂·1.25H₂O: C, 74.22; H, 8.12; N, 6.18. Found: C, 74.05; H, 7.81; N, 6.00.

30

35

5

10

15

20

25

Example 171

2,5-dihydro-10-methoxy-5-(2-methyl-3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

A solution of Example 147 (51 mg, 0.12 mmol) and tetramethyltin (66.5 μ l, 0.048 mmol) in 1ml HMPA was degassed with N2 for 20 minutes.

Dichlorobis(triphenylphosphine)palladium(II) (9.8 mg, 0.012 mmol) was added and the reaction mix was heated at 85°C for 60 hours, cooled to room temperature, and stirred

vigorously with 30 ml of ethyl acetate and 30 ml of saturated KF aqueous solution for 3 hours. The mixture was then filtered through a plug of celite and the layers were separated. The organic layer was washed with water, brine and dried (Na₂SO₄).

Concentration followed by silica gel chromatography (15% ethyl acetate/hexanes) provided the desired compound.

MS (DCI/NH₃) m/z 362 (M+H)+;

5

10

15

20

25

30

35

¹H NMR (300 MHz, DMSO-d₆) □ 7.94 (d, 1H), 7.05 (t, 1H), 6.68 (d, 1H), 6.58 (d, 1H), 6.42 (d, 1H), 6.12 (d, 1H), 5.91 (dd, 1H), 5.44 (s, 1H), 4.77 (s, 1H), 4.54 (s, 1H), 3.87 (s, 3H), 2.43 (m, 1H), 2.20 (s, 3H), 2.09 (m, 1H), 1.74 (s, 3H), 1.16 (s, 3H).

HRMS calcd m/z for C₂₄H₂₇NO₂: 361.2042. Found: 361.2047.

Example 172

2,5-dihydro-10-methoxy-5-(1,3-butadien-2-yl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 147 and tributyl(vinyl)tin were processed as in the previous example to give the desired compound.

MS (DCI/NH₃) m/z 374 (M+H)+;

¹H NMR (300 MHz, DMSO-d₆) □ 8.00 (d, 1H), 7.05 (t, 1H), 6.70 (dd, 1H), 6.60 (d, 1H), 6.47 (dd, 1H), 6.36 (dd, 1H), 6.18 (d, 1H), 5.95 (dd, 1H), 5.43 (s, 1H), 5.16 (s, 1H), 5.12 (s, 1H), 5.05 (d, 1H), 5.00 (d, 1H), 3.87 (s, 3H), 2.55 (dd, 1H), 2.22 (dd, 1H), 2.10 (s, 3H), 1.20 (s, 3H), 1.12 (s, 3H).

Example 173

2,5-dihydro-10-methoxy-5-(2-carbomethoxy-3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

A mixture of Example 147 (64 mg, 0.15 mmol),

bis(triphenylphosphine)dicarbonylnickel (144 mg, 0.225 mmol) and triethylamine (42uL, 0.30 mmol) in 5 mL of MeOH was refluxed for 16 hours, cooled, and partitioned between ethyl acetate and water. The organic layer was washed with brine, dried (Na₂SO₄) and concentrated. The residue was purified by flash silica gel chromatography (15% ethyl acetate/hexanes) to give the desired compound. MS (DCI/NH₃) m/z 406 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□8.01 (d, 1H), 7.06 (t, 1H), 6.70 (dd, 1H), 6.60 (d, 1H), 6.41 (dd, 1H), 6.12 (dd, 1H), 6.01 (dd, 1H), 5.43 (s, 1H), 5.36 (s, 1H), 3.87 (s, 3H), 3.68 (s, 3H), 2.60 (dd, 1H), 2.43 (dd, 1H), 2.21 (s, 3H), 1.20 (s, 3H), 1.12 (s, 3H); Anal. calcd for C₂₅H₂₇NO₄: C, 74.05; H, 6.71; N, 3.45. Found: C, 73.81; H, 6.61; N, 3.38.

Example 174

2,5-dihydro-10-methoxy-5-(1,2-dihydroxy-3-propyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

A solution of Example 2 (50 mg, 0.144 mmol) in pyridine (3 mL) at 0 °C was 5 treated with OsO4 (370 uL, 0.144 mmol), stirred at ambient temperature for 48 hours, treated with saturated aqueous sodium bisulfite (3 mL), stirred for 4 hours and filtered through Celite. The Celite plug was washed repeatedly with EtOAc. The organic filtrate was washed with water, brine, dried (Na2SO4) and concentrated. The residue was purified by flash silica gel chromatography (95:5 methylene chloride/methanol) to give the desired compound as an inseparable mixture of two diastereomers (2:1). MS (DCI/NH₃) m/z 382 (M+H) $^+$; ¹H NMR (300 MHz, DMSO-d₆); Major diastereomer: \$\pi 7.94\$ (d, 1H), 7.05 (t, 1H), 6.67 (d, 1H), 6.57 (d, 1H), 6.53 (d, 1H), 6.13-6.05 (m, 2H), 5.42 (s, 1H), 4.80 (d, 1H), 4.38 (t, 1H), 3.85 (s, 3H), 3.65 (bm, 1H), 3.19-3.00 (m, 2H), 2.21 (s, 3H), 1.83 (m, 2H), 1.19 (s, 3H), 1.11 (s, 3H); Minor diastereomer: \$\pi 7.96 (d, 1H), 7.07 (t, 1H), 6.68 (d, 1H), 6.58 (d, 1H), 6.55 (d, 1H), 6.13 (s, 1H), 5.97 (dd, 1H), 5.42 (s, 1H), 4.50 (t, 1H), 4.45 (d, 1H), 3.85 (s, 3H), 3.45-3.30 (m, 3H), 2.23 (s, 3H), 1.80-1.58 (m, 2H), 1.21 (s, 3H), 1.09 (s, 3H); Anal. calcd for C23H27NO4•0.35 H2O: C,71.24; H, 7.20; N, 3.61. Found: C, 71.24; H, 7.28; N, 3.49.

10

15

20

Example 175

2,5-dihydro-10-methoxy-5-(1,2-epoxy-3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

A mixture of Example 174 (50 mg, 0.13 mmol), triphenylphosphine (38 mg, 0.14 25 mmol), diethyl azodicarboxylate (25 mg, 0.14 mmol) and 3 angstrom molecular sieves (50 mg) in benzene (5 mL) was refluxed for 48 hours, cooled and partitioned between EtOAc and water. The organic layer was washed with water, brine, dried (Na2SO4) and concentrated. The residue was purified by flash silica gel chromatography (8:2 hexane/EtOAc) to give the desired compound as an inseparable mixture of two 30 diastereomers (1.3:1). MS (DCI/NH₃) m/z 364 (M+H)⁺; ¹H NMR (300 MHz, DMSO-d₆); Major diastereomer: 7.93 (d, 1H), 7.09 (t, 1H), 6.72 (d, 1H), 6.60 (d, 1H), 6.58 (d, 1H), 35 6.14 (s 1H), 5.95 (m, 1H), 5.44 (s, 1H), 3.85 (s, 3H), 3.04 (m, 1H), 2.72 (dd, 1H), 2.35

(dd, 1H), 2.17 (s, 3H), 2.05-1:35 (m, 2H), 1.16 (s, 3H), 1.14 (s, 3H);

Minor diastereomer: \$\tilde{1}7.95\$ (d, 1H), 7.08 (t, 1H), 6.71 (d, 1H), 6.59 (d, 1H), 6.57 (d, 1H), 6.15 (s 1H), 5.93 (m, 1H), 5.44 (s, 1H), 3.85 (s, 3H), 2.90 (m, 1H), 2.65 (dd, 1H), 2.28 (m, 1H), 2.17 (s, 3H), 2.05-1.58 (m, 2H), 1.17 (s, 3H), 1.13 (s, 3H); HRMS calcd m/z for \$C_{23}H_{35}NO_{3}: 363.1834. Found: 363.1846.

5

10

Example 176

2,5-dihydro-10-methoxy-5-(1-(N-phthalimido)-3-propyl)-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

Example 69 (250 mg, 0.68 mmol), phthalimide (103 mg, 0.7 mmol), triphenylphosphine (184 mg, 0.7 mmol) and diethyl azodicarboxylate (110 uL, 0.7 mmol) in THF (15 mL) was stirred for 24 hours and partitioned between EtOAc and water. The organic layer was washed with water, brine, dried (Na₂SO₄) and concentrated. The residue was purified by flash silica gel chromatography (3:1 hexane/EtOAc) to give the desired compound.

15 MS (DCI/NH₃) m/z 495 (M+H) $^+$;

¹H NMR (300 MHz, DMSO-d₆) □ 7.88 (d, 1H), 7.81 (s, 4H), 6.82 (t, 1H), 6.58 (d, 1H), 6.42 (d, 1H), 6.40 (d, 1H), 6.10 (s, 1H), 5.61 (dd, 1H), 5.40 (s, 1H), 3.78 (s, 3H), 3.48 (t, 2H), 2.16 (s, 3H), 1.75-1.40 (bm, 4H), 1.22 (s, 3H), 1.16 (s, 3H); HRMS calcd m/z for C₃₁H₃₀N₂O₄: 494.2206. Found: 494.2198.

20

25

30

H, 7.78; N, 7.31.

Example 177

2,5-dihydro-10-methoxy-5-(1-amino-3-propyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 176 (118 mg, 0.24 mmol) was treated with hydrazine (12.8 mg, 0.4 mmol) in refluxing ethanol (8 mL) for 16 hours, cooled and filtered to remove a solid. The filtrate was concentrated and purified by flash silica gel chromatography (9.5:0.5 methylene chloride/methanol) to give the desired compound.

MS (DCI/NH3) m/z 365 (M+H)+;

1H NMR (300 MHz, DMSO-d6) \$\pi\$7.94 (d, 1H), 7.05 (t, 1H), 6.68 (d, 1H), 6.57 (d, 1H), 6.54(d, 1H), 6.08 (s, 1H), 5.66 (dd, 1H), 5.43 (s, 1H), 3.85 (s, 3H), 2.43 (t, 2H), 2.17 (s, 3H), 1.80-1.22 (m, 4H), 1.16 (s, 3H), 1.15 (s, 3H);

Anal. calcd for C23H28N2O2 • 0.30 H2O: C,74.69; H, 7.79; N, 7.57. Found: C, 74.50;

Example 178

2,5-dihydro-10-methoxy-5-(1-(hydrazinocarbonylamino)-3-propyl)-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

Example 177 (65 mg, 0.178 mmol) was treated with triphosgene (19 mg, 0.0646 mmol) and triethylamine (50 uL, 0.36 mmol) in refluxing THF (6 mL) for 3 hours, cooled and concentrated to give the crude isocyanate.

The crude isocyanate (0.089 mmol) in THF (10 mL) was treated with hydrazine (4.5 mmol), stirred for 2 hours under nitrogen, concentrated and the resulting residue was purified by flash silica gel chromatography(9:1 dichloromethane / methanol) to give the desired compound.

MS (DCI/NH₃) m/z 423 (M+H)⁺;

5

10

15

20

25

30

35

¹H NMR (300 MHz, DMSO-d₆) □ 7.94 (d, 1H), 7.06 (t, 1H), 6.79 (bs, 1H), 6.68 (dd, 1H), 6.57 (d, 1H), 6.54 (dd, 1H), 6.22 (bt, 1H), 6.10 (d, 1H), 5.63 (dd, 1H), 5.44 (s, 1H), 3.96 (bs, 2H), 3.85 (s, 3H), 2.92 (m, 2H), 2.15 (s, 3H), 1.58-1.20 (m, 4H), 1.16 (s, 3H), 1.15 (s, 3H);

HRMS $(M+H)^+$ calcd m/z for C₂₄H₃₀N₄O₃: 423.2396 . Found: 423.2413.

Example 179

(E) 2,5-dihydro-10-methoxy-5-(2-carbomethoxy-1-ethenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 44 (0.087 g, 0.26 mmol) was dissolved in CH₂Cl₂ (10ml), cooled to-23 °C, treated dropwise with 0.52 ml 1M Dibal-H / heptane solution (0.52 mmol) and stirred for 1 h. The reaction mixture was poured into 30 ml 0.5 M HCl, stirred 30 min, extracted with ethyl acetate, the combined organics washed with brine and dried (Na₂SO₄) to give the intermediate aldehyde as a yellow foam.

The resulting yellow foam was dissolved in THF (8 ml), cooled to 0 °C, treated with methyl (triphenylphosphoranylidene)acetate (0.130 g, 0.39 mmol), stirred overnight at room temperature and then at 45 °C for 1 hour. The reaction mixture was allowed to cool, diluted with saturated aqueous NH4Cl, extracted with ethyl acetate, and the combined organics washed with brine and dried (MgSO4). The resulting residue was purified by column chromatography on silica gel eluting with 90:10-hexane:ethyl acetate to give 0.043 g (42%) the desired compound as a yellow foam.

MS (DCI/NH3) m/e 392 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□7.99 (d, J=9 Hz, 1H), 7.05 (t, J=8 Hz, 1H), 6.86 (dd, J=4, 16 Hz, 1H), 6.69 (d, J=7 Hz, 1H), 6.67 (d, J=9 Hz, 1H), 6.61 (d, J=8 Hz, 1H), 6.41 (dd, J=2, 4 Hz, 1H), 6.26 (d, J=2 Hz, 1H), 5.63 (dd, J=2, 16 Hz, 1H), 5.45 (br s, 1H), 3.84 (s, 3H), 3.56 (s, 3H), 2.08 (s, 3H), 1.19 (s, 3H), 1.15 (s, 3H);

¹³C NMR (100 MHz, DMSO-d₆) □165.19, 156.18, 151.64, 146.45, 145.59, 133.53, 128.39, 127.17, 123.57, 117.17, 116.54, 113.85, 109.82, 105.78, 71.93, 55.80, 55.59, 51.57, 49.75, 29.56, 29.15, 28.70, 23.45; Anal. calcd for C₂4H₂5NO₄•1/4H₂O: C, 72.80; H, 6.49; N, 3.54. Found: C, 73.00; H, 6.56; N, 3.34.

5

10

15

25

30

35

Example 180

(Z)-2,5-dihydro-10-methoxy-5-(1-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

The intermediate aldehyde from Example 179 and ethyltriphenylphosphonium iodide were processed according to Example 187 to provide the desired compound. MS (DCI/NH3) *m/e* 348 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□7.90 (d, J=8 Hz, 1H), 6.97 (t, J=6 Hz, 1H), 6.67 (d, J=8 Hz, 1H), 6.52 (d, J=8 Hz, 1H), 6.48 (d, J=12 Hz, 1H), 6.26 (d, J=7 Hz, 1H), 6.10 (s, 1H), 5.59 (m, 1H), 5.41 (s, 2H), 3.83 (s, 3H), 2.08 (s, 3H), 1.79 (d, J=7 Hz, 3H), 1.23 (s, 3H), 1.11 (s, 3H);

¹³C NMR (125 MHz, DMSO-d₆)□156.1, 152.4, 145.4, 132.4, 131.0, 130.2, 127.7, 127.2, 127.0, 126.7, 116.9, 116.4, 113.7, 113.0, 109.9, 105.4, 69.4, 55.6, 49.7, 29.6, 28.3, 23.0, 13.8:

Anal. calcd for C₂₃H₂₅O₂N•1.0H₂O: C, 75.59; H, 7.45; N, 3.83. Found: C, 75.53; H, 7.20; N, 3.62.

Example 181

(E) 2,5-dihydro-10-methoxy-5-(3-hydroxy-1-propenyl)-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

A 20 ml ethereal suspension of LiAlH4 (0.200 g, 5.17 mmol) was treated dropwise at room temperature with a 15 ml ethereal solution of AlCl3 (0.230 g, 1.72 mmol), stirred for 15 minutes and treated dropwise with a 20 ml ethereal solution of Example 179. After stirring 1 hour at room temperature, 2 ml H₂O was carefully added followed by the dropwise addition of 15 % NaOH until a white paste deposited on the bottom of the vessel. The ether solution was decanted, the paste washed several times with ether and the combined organics washed with brine and dried (MgSO₄). The residue was purified by column chromatography on silica gel eluting with 25% then 33% ethyl acetate in hexanes to give 0.195 g (78%) of the desired compound as a colorless foam.

¹H NMR (300 MHz, DMSO-d₆)□7.95 (d, J=8 Hz, 1H), 7.01 (t, J=8 Hz, 1H), 6.64 (d, J=9 Hz, 1H), 6.61 (d, J=9 Hz, 1H), 6.52 (d, J=8 Hz, 1H), 6.18 (br d, J=4 Hz, 1H), 6.08 (s,

1H), 5.73-5.66 (m, 1H), 5.51 (5.43, J=m Hz, 1H), 5.41 (s, 1H), 4.65 (t, J=5 Hz, 1H), 3.83 (s, 3H), 3.77 (t, J=5 Hz, 2H), 2.12 (s, 3H), 1.19 (s, 3H), 1.13 (s, 3H); MS (FAB) *m/e* calcd for C23H25NO3: 363.183. Found 363.1839.

5

10

15

20

Example 182

(E) 2,5-dihydro-10-methoxy-5-(3-(N,N-dimethylaminocarbonyloxy)-1-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 181 (0.035 g, 0.096 mmol) was dissoved in DMF (5 ml), treated with NaH (0.012 g 60% dispersion in oil, 0.289 mmol) at room temperature, stirred for 10 minutes, treated dropwise with N,N-dimethylcarbamoyl chloride (44□l, 0.481 mmol) and stirred for 30 minutes. The reaction mixture was diluted with 10 ml saturated aqueous NH4Cl, extracted with ethyl acetate, the organic layers washed with H2O, brine, dried (MgSO4), concentrated, and purified by silica gel chromatography eluting with 25% then 33% ethyl acetate in hexanes to give 0.033 g (79%) of the desired compound

as a colorless foam.:

MS (DCI/NH₃) m/e 509 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□7.94 (d, J=9 Hz, 1H), 7.02 (t, J=8 Hz, 1H), 6.66 (d, J=8 Hz, 1H), 6.63 (d, J=9 Hz, 1H), 6.53 (d, J=8 Hz, 1H), 6.17 (m, 2H), 5.82 (dd, J=16, 4 Hz, 1H), 5.49-5.42 (m, 1H), 5.42 (s, 1H), 4.31 (d, J=6 Hz, 2H), 3.82 (s, 3H), 2.71 (m, 6H), 2.09 (s, 3H), 1.20 (s, 3H), 1.12 (s, 3H);

¹³C NMR (100 MHz, DMSO-d₆)□156.1, 155.1, 151.8, 145.4, 133.0, 131.5, 130.0, 129.8, 127.6, 127.0, 126.8, 117.3, 116.9, 113.7, 113.5, 110.0, 105.6, 72.9, 63.8, 55.7, 55.6, 49.7, 29.3, 28.5, 28.4, 23.3;

MS (FAB) m/e calcd for C₂₆H₃₀N₂O₄: 434.2206. Found 434.2209.

25

30

35

Example 183

(E) 2,5-dihydro-10-methoxy-5-(3-methoxymethoxy-1-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 181 (0.026 g, 0.072 mmol) was dissolved in dichloroethane (5 ml), cooled to 0 °C, treated with (i-Pr)₂NEt (62 \square 1, 0.358 mmol) followed by chloromethyl methyl ether (16 \square 1, 0.215 mmol) the bath removed and the mixture heated to 55 °C for 14 hours. The mixture was partitioned between ethyl acetate and saturated aqueous NH₄Cl, the organic layer washed with brine, dried (MgSO₄) and purified by silica gel chromatography eluting with 10 % ethyl acetate in hexanes to give 0.012 g (41%) of the desired compound as an amber oil.

¹H NMR (300 MHz, DMSO-d₆)□7.94 (d, J=8 Hz, 1H), 7.02 (t, J=8 Hz, 1H), 6.66 (d, J=9 Hz, 1H), 6.63 (d, J=9 Hz, 1H), 6.53 (d, J=8 Hz, 1H), 6.19 (br d, J=3 Hz, 1H), 6.14

(d, J=2 Hz, 1H), 5.78 (dd, J=16, 4 Hz, 1H), 5.42 (s, 1H), 4.31 (ABq, J=8, 6 Hz, 2H), 3.84 (m, 2H), 3.82 (s, 3H), 3.09 (s, 3H), 2.11 (s, 3H), 1.20 (s, 3H), 1.13 (s, 3H); MS (FAB) m/e calcd for C25H29NO4: 407.2097. Found 407.2090.

5

10

15

30

35

Example 184

2,5-dihydro-10-methoxy-5-(3-hydroxy-3-propenyl)-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

Example 44 (0.58 g, 1.74 mmol) was dissolved in CH2Cl2 (40 ml), cooled to-45 °C, treated dropwise with 2.09 ml 1M Dibal-H / heptane solution (2.09 mmol) and stirred for 1 h. The reaction mixture was poured into 75 ml 0.5 M HCl, stirred 30 min, extracted with ethyl acetate, the combined organics washed with brine, dried (Na2SO₄) and concentrated to give 0.55 g crude aldehyde as a yellow foam.

The resulting aldehyde (0.048 g, 0.143 mmol) was dissolved in THF (5 ml) cooled to 0 °C, and treated slowly with vinylmagnesium bromide (0.72 ml 1M/THF, 0.72 mmol).

After stirring 15 minutes, the mixture was partitioned between ethyl acetate and brine, the aqueous layer extracted with ethyl acetate and combined organics washed with brine, dried (Na₂SO₄), concentrated and purified by silica gel chromatography eluting with 20 % ethyl acetate in hexanes to give the desired compound (0.027 g, 53%) as an inseparable 1:1 mixture of diastereomers.

20 MAJOR:

¹H NMR (300 MHz, DMSO-d₆) □ 7.97 (d, J=8 Hz, 1H), 7.04 (t, J=8 Hz, 1H), 6.68 (d, J=8 Hz, 1H), 6.59 (d, J=8 Hz, 1H), 6.48 (d, J=8 Hz, 1H), 6.03 (br s, 1H), 5.61 (s, 1H), 5.46 (m, 1H), 5.36 (m, 1H), 4.97-5.10 (m, 1H), 4.87 (m, 1H), 3.94 (m, 1H), 3.85 (s, 3H), 2.19 (s, 3H), 1.23 (s, 3H), 1.10 (s, 3H);

25 MINOR:

MS (DCI/NH₃) *m/e* 364 (M+H)⁺; ¹H NMR (300 MHz, DMSO-d₆) □ 8.02 (d, J=8 Hz, 1H), 7.07 (t, J=8 Hz, 1H), 6.68 (d, J=8 Hz, 1H), 6.62 (d, J=8 Hz, 1H), 6.61 (d, J=8 Hz, 1H), 6.16 (br s, 1H), 5.95 (m, 1H), 5.58 (s, 1H), 5.41 (s, 1H), 4.97-5.10 (m, 2H), 3.94 (m, 1H), 3.85 (s, 3H), 2.11 (s, 3H), 1.27 (s, 3H), 1.01 (s, 3H); MS (DCI/NH₃) *m/e* (M+H)⁺ 364; Anal. calcd for C₂₃H₂₅NO₃•3/4H₂O: C, 73.29; H, 7.09; N, 3.72. Found: C, 73.67; H, 6.80; N, 3.81.

Example 185

methyl 2-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl) acetyl hydroxamate

Example 46 (0.150 g, 0.395 mmol) was added dropwise to a solution of N,O-dimethylhydroxylamine hydrochloride (0.192 g, 1.98 mmol) and trimethylaluminium (1.0 mL, 2.0 mmoland the resulting mixture heated at 40 °C for 2 hours, quenched with

methanol and partitioned between methylene chloride and saturated aqueous Rochelle's salt. The organic layer was washed with saturated aqueous sodium bicarbonate, brine, and dried (MgSO4). The crude product was purified by flash chromatography on silica gel eluting with 4% then 10% ethyl acetate in methylene chloride to give the desired compound (62 %) as a white foam.

MS (DCI/NH₃) m/e 409 (M+H)⁺;

5

10

15

20

30

35

¹H NMR (300 MHz, DMSO-d₆) □ 7.79 (d, J=8 Hz, 1H), 7.05 (dd, J=8 Hz, 1H), 6.73 (d, J=8 Hz, 1H), 6.61 (d, J=8 Hz, 1H), 6.48 (d, J=8 Hz, 1H), 6.25 (dd, J=2+10 Hz, 1H), 6.16 (s, 1H), 5.43 (s, 1H), 3.87 (s, 3H), 3.25 (br s, 3H), 3.04 (br s, 3H), 2.34 (m, 1H), 2.18 (s, 3H), 1.17 (s, 6H);

Anal. calcd for C₂₄H₂₈N₂O₄: C, 70.57; H, 6.91; N, 6.86. Found: C, 70.74; H, 7.11; N, 6.59.

Example 186

2-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl) acetaldehyde

Example 185 (0.334 g, 0.817 mmol) was dissolved in THF (20 ml), cooled to -78 °C, and treated with 1M Dibal-H in toluene (1.71 mL, 1.71 mmol) over 5 minutes and stirred for 1 hour. The reaction mixture was poured into saturated potassium sodium tartrate, the layers separated, the aqueous phase extracted with CH₂Cl₂, the combined organics washed with saturated aqueous sodium bicarbonate, brine, dried (MgSO₄), and purified by silica gel chromatography eluting with 30% ethyl acetate in hexane to give 0.265 g (93%) of the desired product as a colorless foam.

MS (DCI/NH₃) m/e 350 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 9.65 (s, 1H), 7.95 (d, J=9 Hz, 1H), 7.05 (dd, J=8 Hz, 1H), 6.73 (d, J=8 Hz, 1H), 6.60 (d, J=8 Hz, 1H), 6.45 (d, J=8 Hz, 1H), 6.35 (dd, J=3+10 Hz, 1H), 6.20 (s, 1H), 5.45 (s, 1H), 3.85 (s, 3H), 2.85 (m, 1H), 2.60 (m, 1H), 2.15 (s, 3H), 1.17 (s, 3H), 1.15 (s, 3H);

Anal. calcd for C₂₂H₂₃NO₃•1/4H₂O: C, 74.66; H, 6.69; N, 3.96. Found: C, 74.32; H, 6.30; N, 3.86.

Example 187

2,5-dihydro-10-methoxy-5-(2-cyclohexylidenylethyl)-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

Cyclohexyltriphenylphosphonium bromide (Grim, S. O.; Ambrus, J. H.; *J.Org. Chem.* 1968, 33, 2993-2994.) (0.234 g,0.55 mol) was suspended in (5:3) THF:Ether (8.0 ml), cooled to-10 °C, treated with 220 \(\text{D}\)1 of 2.5 M n-butyl lithium, stirred for 10 minutes. Example 186 was added as a solution in THF and the reaction was allowed to stir at

room temperature 12 hours, refluxed for 15 minutes and allowed to cool. Diethyl ether was added and the reaction was filtered and concentrated. The resulting residue was purified by silica gel chromatography eluting with 10:1 to 5:1 hexanes:ethyl acetate to afford 0.033 g (51%) desired compound. : m.p. 130-135 C°;

- MS (DCI/NH₃) *m/e* 416 (M+H)⁺; ¹H NMR (300 MHz, DMSO-d₆) ¹D7.03 (t, J=9 Hz, 1H), 6.67 (d, J=8 Hz, 1H), 6.57 (d, J=9 Hz, 1H), 6.50 (d, J=8 Hz, 1H), 6.11 (s, 1H), 5.64 (dd, J=10, 10 Hz, 1H), 5.43 (s, 1H), 5.04 (t, J=7 Hz, 1H), 3.85 (s, 3H), 2.10 (s, 3H), 2.0 (b, 2H), 1.81 (t, J=7 Hz, 2H), 1.45 (b, 3H), 1.3 (b, 3H), 1.17 (s, 3H), 1.15 (s, 3H);
- 10 13C NMR (100 MHz, DMSO-d₆) □ 165.0, 151.1, 145.4, 140.5, 133.41, 132.2, 127.5, 127.0, 126.8, 116.5, 116.3, 116.0, 113.0, 110.3, 105.3, 73.9, 55.5, 49.6, 36.6, 30.5, 28.9, 28.7, 28.1, 27.9, 27.0, 26.2, 23.8.

Example 188

2,5-dihydro-10-methoxy-5-(2-cyclopentylidenylethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 186 and cyclopentyltriphenylphosphonium bromide (Ramirez, F.; Levy, S. *JACS* 1957, 79, 67-69.) were processed according to Example 187 to provide the desired compound.

¹H NMR (300 MHz, DMSO-d₆) □7.94 (d, J=9 Hz, 1H), 7.02 (t, J=8 Hz, 1H), 6.67 (d, J=8 Hz, 1H), 6.57 (d, J=9 Hz, 1H), 6.48 (d, J=7 Hz, 1H), 6.10 (s, 1H), 5.56 (dd, J=10, 8 Hz, 1H), 5.43 (s, 1H), 5.22 (b, 1H), 3.85 (s, 3H), 2.14 (s, 6H), 1.77 (b, 2H), 1.49 (b, 4H), 1.17 (s, 3H), 1.14 (s, 3H); ¹³C NMR (75 MHz, DMSO-d₆) □156.1, 151.2, 145.4, 144.6, 133.4, 132.3, 127.6, 127.0, 126.8, 116.4, 116.1, 115.3, 113.3, 113.1, 110.3, 105.3, 73.6, 55.6, 49.6, 33.1, 29.0, 28.7, 28.0, 25.8, 25.7, 23.8;

HRMS (FAB)m/e calcd for C27H32O2N: 401.2355. Found 401.2342.

Example 189

2,5-dihydro-10-methoxy-5-(2-cycloheptylidenylethyl)-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

Example 186 and cycloheptyltriphenylphoshonium bromide (Albright, T. A.; Freeman, W. J.; Schweizer, E.E. *JACS* 1974, 97, 2942-2943.) were processed according to example 186 to provide the desired compound.

MS (DCI/NH₃) m/e 430 (M+H)⁺;

15

30

¹H NMR (300 MHz, DMSO-d₆) □ 7.94 (d, J=9 Hz, 1H), 7.02 (t, J=8 Hz, ¹H), 6.67 (d, J=8 Hz, 1H), 6.57 (d, J=9 Hz, 1H), 6.49 (d, J=8 Hz, 1H), 6.12 (s, 1H), 5.69 (dd, J=10, 9)

Hz, 1H), 5.43 (s, 1H), 5.12 (t, J=7 Hz, 1H), 3.85 (s, 3H), 2.13 (s, 6H), 1.90 (b, 2H), 1.38 (b, 3H), 1.27 (m, 4H), 1.17 (s, 3H), 1.14 (s, 3H), 0.82 (m, 3H); 13C NMR (75 MHz, DMSO-d₆) □156.1, 151.1, 145.4, 142.2, 133.4, 132.2, 128.6, 127.6, 127.0, 126.8, 120.0, 116.3, 116.0, 113.0, 110.3, 105.3, 73.6, 65.7, 55.6, 49.6, 37.3, 33.2, 31.1, 29.8, 29.3, 29.2, 29.0, 28.6, 28.5, 26.2, 23.8, 23.2; Anal. calcd for C₂9H₃5O₂N₂•3/4H₂O: C, 72.70; H, 8.52; N, 2.92. Found: C, 72.50; H, 8.11; N, 2.47.

5

10

15

20

25

30

Example 190

2,5-dihydro-10-methoxy-5-(3-methyl-2-butenyl)-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

Example 186 and isopropyltriphenylphosphonium iodide were processed according to Example 187 to provide the desired compound.

1H NMR (300 MHz, DMSO-d₆) \$\pi\$7.94 (d, J=8 Hz, 1H), 7.37 (s, 1H), 7.03 (t, J=8 Hz, 1H), 6.67 (d, J=7 Hz, 1H), 6.57 (d, J=8 Hz, 1H), 6.49 (d, J=8 Hz, 1H), 6.11 (s, 1H), 5.65 (dd, J=10, 9 Hz, 1H), 5.43 (s, 1H), 5.12 (t, J=7 Hz, 1H), 3.85 (s, 3H), 2.14 (s, 3H), 1.63 (s, 3H), 1.31 (s, 3H), 1.17 (s, 3H), 1.15 (s, 3H);

13C NMR (100 MHz, DMSO-d₆) \$\pi\$156.1, 151.1, 145.4, 133.4, 132.8, 132.2, 127.6, 127.0, 126.9, 119.8, 116.4, 116.1, 113.3, 113.1, 110.3, 105.3, 73.7, 55.6, 49.6, 31.5, 29.0, 28.7, 25.6, 23.8, 17.5;

HRMS (FAB)m/e calc'd for C25H29O2N: 375.2198. Found 375.2189.

Example 191

trans 2,5-dihydro-10-methoxy-5-(2-butenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 186 and ethyltriphenylphosphonium bromide were processed according to example 186 to provide the desired compound.

MS (DCI/NH₃) m/e 362 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 7.96 (d, J=8 Hz, 1H), 7.05 (dd, J=8 Hz, 1H), 6.70 (d, J=8 Hz, 1H), 6.60 (d, J=8 Hz, 1H), 6.51 (d, J=8 Hz, 1H), 6.10 (s, 1H), 5.72 (dd, J=4+10 Hz, 1H), 5.45 (m, 3H), 3.86 (s, 3H), 2.43 (m, 1H), 2.20 (m, 1H), 2.15 (s, 3H), 1.30 (d, J=5 Hz, 3H), 1.17 (s, 3H), 1.15 (s, 3H).

Example 192

trans 2,5-dihydro-10-methoxy-5-(2-penten-1-yl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 186 (0.050 g, 0.143 mmol) and propyltriphenylphosphonium bromide (165.6 mg, 0.429 mmol) were processed as in example 187 to give the desired compound.

MS (DCI/NH₃) m/e 376 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□7.95 (d, J=9 Hz, 1H), 7.05 (dd, J=8 Hz, 1H), 6.70 (d, J=8 Hz, 1H), 6.60 (d, J=8 Hz, 1H), 6.50 (d, J=8 Hz, 1H), 6.09 (s, 1H), 5.70 (dd, J=3, 10 Hz, 1H), 5.44 (s, 1H), 5.38 (ss, J=5 Hz, 2H), 3.86 (s, 3H), 2.41 (m, 1H), 2.19 (m, 1H), 2.15 (s, 3H), 1.70 (m, 2H), 1.15 (s, 6H), 0.75 (t, J=7 Hz, 3H).

Example 193

2,5-dihydro-10-methoxy-5-(1,1-difluoro-1-propen-3-yl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 186 (0.050 g, 0.143 mmol) and diphenylphosphoranyl difluromethane (Edwards, M.L., et. al. *Tet. Let.* 1990,31, 5571-74) were processed as in example 187 to give the desired compound.

¹H NMR (300 MHz, DMSO-d₆) □ 7.98 (d, J=8 Hz, 1H), 7.08 (t, J=8 Hz, 1H), 6.71 (d, J=9 Hz, 1H), 6.62 (d, J=9 Hz, 1H), 6.57 (d, J=9 Hz, 1H), 6.17 (s, 1H), 5.73 (dd, J=4,10 Hz, 1H), 5.46 (s, 1H), 4.53 (m, 1H), 3.86 (s, 3H), 2.32 (m, 1H), 2.16 (s, 3H), 2.11 (m, 1H), 1.17 (s, 3H), 1.15 (s, 3H);

HRMS (FAB)m/e calc'd 383.1697. Found 383.1689.

25

35

5

10

15

20

Example 194

(E) methyl 2-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl) 2-butenoate

Example 186 (0.040 g, 0.115 mmol) and methyl

(triphenylphosphoranylidene)acetate (115 mg, 0.344 mmol, Aldrich) were processed according to example 179 to give 0.037 g (80%) of the desired compound as a white foam.

MS (DCI/NH₃) m/e 406 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 7.95 (d, J=9 Hz, 1H), 7.07 (dd, J=8 Hz, 1H), 6.85 (m, 1H), 6.72 (d, J=8 Hz, 1H), 6.60 (d, J=8 Hz, 1H), 6.50 (d, J=8 Hz, 1H), 6.15 (s, 1H), 5.87 (dd, J=3+10 Hz, 1H), 5.80 (d, J=14 Hz, 1H), 5.45 (s, 1H), 3.88 (s, 3H), 3.65 (s, 3H), 2.60 (m, 1H), 2.45 (m, 1H), 2.15 (s, 3H), 1.15 (br s, 6H); ¹³C NMR (75 MHz, DMSO-

d₆) □ 165.8, 156.2, 150.5, 145.6, 144.8, 133.6, 131.3, 127.4, 127.2, 122.7, 116.3, 115.9, 113.4, 113.1, 110.2, 105.7, 72.4, 55.6, 51.3, 49.7, 34.9, 29.0, 28.9, 28.9, 23.9; Anal. calcd for C₂₅H₂₇NO₄·1/2H₂O: C, 72.44; H, 6.81; N, 3.38. Found: C, 72.55; H, 6.71; N, 3.22.

5

10

15

Example 195

(E) 2,5-dihydro-10-methoxy-5-(4-hydroxy-2-buten-1-yl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 194 (0.063 g, 0.155 mmol) in Et₂O was treated dropwise with a slurry containing LiAlH4 (0.044 g, 1.16 mmol) and AlCl₃ (0.041 g, 0.308 mmol) for 1 hour. The reaction mixture was diluted with Et₂O and treated with 2 drops of H₂O followed by 15% NaOH until a white paste formed. The Et₂O was decanted and the paste washed 2 times with Et₂O. The combined organics were washed with saturated aqueous sodium bicarbonate, brine, dried (MgSO₄), and purified by silica gel chromatography eluting with 6% then 10% ethyl acetate in methylene chloride to give 0.031 g (53%) of the desired compound.

MS (DCI/NH₃) m/e 378 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 7.94 (d, J=9 Hz, 1H), 7.07 (dd, J=8 Hz, 1H), 6.70 (d, J=8 Hz, 1H), 6.60 (d, J=8 Hz, 1H), 6.54 (d, J=8 Hz, 1H), 6.12 (s, 1H), 5.70 (dd, J=3+10 Hz, 1H), 5.4-5.69 (m, 3H), 4.63 (dd, J=6 Hz, 1H), 3.87 (m, 5H), 3.31 (s, 3H), 2.40 (m, 1H), 2.15 (s, 3H), 1.15 (s, 6H);

Anal. calcd for C₂₄H₂₇NO₃•1/4H₂O: C, 75.47; H, 7.26; N, 3.67. Found: C, 75.62; H, 7.40; N, 3.59.

25

30

35

20

Example 196

(E) 2,5-dihydro-10-methoxy-5-(4-(N,N-dimethylaminocarbonyloxy)-2-buten-1-yl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 195 and disuccinimidyl carbonate were processed as in Example 200 to give the an intermediate succinate ester.

The intermediate succinate ester and N,N-dimethylamine were processed as in Example 200 to give the desired compound.

MS (DCI/NH₃) m/e 449 (M+H)⁺;

¹H NMR (400 MHz, DMSO-d₆) □ 7.95 (d, J=9 Hz, 1H), 7.07 (t, J=8 Hz, 1H), 6.70 (d, J=8 Hz, 1H), 6.59 (d, J=8 Hz, 1H), 6.52 (d, J=8 Hz, 1H), 6.09 (s, 1H), 5.74 (dd, J=3,10 Hz, 1H), 5.65 (m, 1H), 5.48 (m, 1H), 5.43 (s, 1H), 3.85 (s, 3H), 3.79 (d, J=5 Hz, 2H), 2.45 (m, 1H), 2.20 (m, 1H), 2.15 (s, 3H), 1.17 (s, 3H), 1.16 (s, 3H); ¹³C NMR (100

MHz, DMSO-d₆) \$\partial 156.1, 150.9, 145.5, 133.6, 132.0, 129.0, 128.6, 127.4, 127.1, 127.0, 116.2, 115.9, 113 (3), 113.2, 110.3, 105.4, 73.5, 72.0, 56.9, 55.6, 49.7, 35.0, 28.9, 23.3; Anal. calcd for \$C_{27}H_{32}N_{2}O_{4}\$: C, 72.30; H, 7.19; N, 6.25. Found: C, 72.10; H, 7.11; N, 5.98.

5

10

15

20

25

30

35

Example 197

(E) 2,5-dihydro-10-methoxy-5-(4-(N-methylaminocarbonyloxy)-2-buten-1-yl)-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

The intermediate succinate ester from Example 196 and methylamine were processed as in Example 200 to give the desired compound.

MS (DCI/NH3) *m/e* 435 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d6)□7.95 (d, J=8 Hz, 1H), 7.05 (t, J=8 Hz, 1H), 6.95 (m, 1H), 6.70 (d, J=8 Hz, 1H), 6.57 (d, J=8 Hz, 1H), 6.52 (d, J=8 Hz, 1H), 6.08 (s, 1H), 5.70 (m, 2H), 5.50 (m, 1H), 5.43 (s, 1H), 4.35 (d, J=5 Hz, 2H), 3.85 (s, 3H), 2.56 (d, J=5 Hz, 3H), 2.42 (m, 1H), 2.20 (m, 1H), 2.15 (s, 3H), 1.15 (s, 6H);

Anal. calcd for C₂₆H₃₀N₂O₄: C, 71.87; H, 6.96; N, 6.45. Found: C, 71.66; H, 7.25; N, 6.07.

Example 198

(E) 2,5-dihydro-10-methoxy-5-(2-butenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 195 (0.080 g, 0.212 mmol) was dissolved in CH2Cl2 (10 ml), cooled to -10 °C, treated with (i-Pr)2NEt (55 □L, 0.318 mmol) followed by methanesulfonyl chloride (20 \Box L, 0.255 mmol), stirred for 1hr and allowed to warm to room temperature. The mixture was recooled to -10 °C and treated dropwise with lithium triethylborohydride (635 DL, 0.635 mmol), stirred for 1 hr, allowed to warm to room temperature, treated with 5.0 ml of 1N NaOH followed by 0.11 ml of 30% H2O2 and stirred for 30 minutes. The mixture was partitioned between water and ethyl acetate, the aqueous extacted with ethyl acetate and the combined organics washed with water, brine, and dried (Na2SO4). Purification by silica gel chromatography eluting with 15:1 then 7:1 hexanes:ethyl acetate provided 0.029 g (38%) desired compound. 1 H NMR (360 MHz, DMSO-d₆) \Box 7.93 (d, J=9 Hz, 1H), 7.04 (t, J=8 Hz, 1H), 6.68 (d, J=8 Hz, 1H), 6.57 (d, J=8 Hz, 1H), 6.51 (d, J=7 Hz, 1H), 6.11 (s, 1H), 5.67 (dd, J=10 Hz, 1H), 5.41 (t, J=9 Hz, 1H), 5.34 (t, J=11 Hz, 1H), 3.85 (s, 3H), 2.34 (m, 1H), 2.15 (s, 3H), 1.59 (dd, J=5 Hz, 3H), 1.17 (s, 3H), 1.15 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆)□156.2, 151.0, 145.4, 133.4, 132.1, 127.1, 127.0, 126.9, 126.6, 125.5, 115.9, 113.2, 110.0, 105.3, 73.7, 55.5, 49.6, 35.4, 28.9, 28.8, 23.9, 17.8;

HRMS (FAB) calc'd for C₂₄H₂₈O₂N: m/e 362.2120. Found 362.2119.

Example 199

2,5-dihydro-10-methoxy-5-(2-hydroxyethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 46 (0.100 g, 0.264mmol) was treated with 1M Dibal-H in toluene (0.544 ml, 0.544mmol) at -78° C, warmed to room temperature, quenched with methanol and the partitioned between methylene chloride and saturated aqueous Rochelle's salt. The organic layer was washed with 1N HCl, saturated aqueous sodium bicarbonate, brine, and dried (MgSO4). The resulting crude product was purified by flash chromatography on silica gel eluting with 10% ethyl acetate in methylene chloride to give (87%) of the desired compound as a white solid.

MS (DCI/NH3) *m/e* 352 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d6) \Box 7.95 (d, J=8 Hz, 1H), 7.05 (dd, J=8 Hz, 1H), 6.69 (d, J=8 Hz, 1H), 6.59 (d, J=8 Hz, 1H), 6.55 (d, J=8 Hz, 1H), 6.91 (dd, J=2,10)

Hz, 1H), 5.43 (s, 1H), 4.61 (t, J=6 Hz, 1H), 3.84 (s, 3H), 3.52 (m, 1H), 2.20 (s, 3H), 1.80 (m, 1H), 1.50 (m, 1H), 1.19 (s, 3H), 1.16 (s, 3H).

Example 200

2,5-dihydro-10-methoxy-5-(2-(N-benzylcarbonyloxy)ethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 199 (0.200 g, 0.57 mmol) was combined with N,N'-disuccinimidyl carbonate (0.217 g, 0.85 mmol), (i-Pr)2NEt (0.30 ml, 1.71 mmol), and acetonitrile (2mL), stirred at room temperature 2 hours and partitioned between CH2Cl2 and saturated aqueous sodium bicarbonate. The organic layer was washed with brine, dried (MgSO4), and purified by silica gel chromatography eluting with 6% ethyl acetate in dichloromethane to give 0.252 g (90%) of the succinate ester as a white foam.

The succinate ester (0.020 g, 0.041mmol), benzyl amine (6.6 µl, 0.061mmol), and CH₂Cl₂ (3 ml) were combined and stirred for 20 minutes at room temperature. The reaction mixture was diluted with CH₂Cl₂ and the organic layers washed with H₂O, saturated aqueous sodium bicarbonate, brine, dried (MgSO₄) and purified by silica gel chromatography eluting with 20% ethyl acetate in hexane to give 19 mg (97%) of the desired compound as a white solid.

MS (DCI/NH₃) m/e 485 (M+H)⁺;

5

10

15

20

25

30

35

¹H NMR (400 MHz, DMSO-d₆)□7.95 (d, J=9 Hz, 1H), 7.68 (t, J=6 Hz, 1H), 7.25 (m, 3H), 7.07 (t, J=8 Hz, 1H), 6.71 (d, J=8 Hz, 1H), 6.59 (dd, J=8 Hz, 1H), 6.11 (s, 1H), 5.86

(d, J=8 Hz, 1H), 5.40 (s, 1H), 4.18 (m, 2H), 4.00 (m, 2H), 3.85 (s, 3H), 2.12 (s, 3H), 1.90 (m, 1H), 1.71 (m, 1H), 1.17 (s, 3H), 1.15 (s, 3H);

13°C NMR (100 MHz, DMSO-d₆)□156.3, 156.1, 150.7, 145.6, 139.7, 133.5, 131.9,

128.2, 127.5, 127.2, 127.1, 127.0, 126.7, 116.3, 115.9, 113.2, 113.2, 110.2, 110.1, 105.6,

70.3, 60.2, 55.6, 49.6, 43.7, 31.5, 28.8, 28.7, 23.8;

Anal. calcd for C₃₀H₃₂N₂O₅·H₂O: C, 71.69; H, 6.82; N, 5.57. Found: C, 71.45; H,

6.83; N, 5.56.

Example 201

2,5-dihydro-10-methoxy-5-(2-(N-morpholinocarbonyloxy)ethyl)-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

The intermediate succinate ester from Example 200 and morpholine were processed as in Example 200 to give the desired compound.

MS (DCI/NH₃) m/e 465 (M+H)⁺;

¹H NMR (400 MHz, DMSO-d₆)□7.95 (d, J=9 Hz, 1H), 7.07 (t, J=8 Hz, 1H), 6.71 (d, J=8 Hz, 1H), 6.60 (d, J=8 Hz, 1H), 6.57 (d, J=8 Hz, 1H), 6.10 (s, 1H), 5.88 (dd, J=3+10 Hz, 1H), 5.44 (s, 1H), 4.05 (m, 2H), 3.85 (s, 3H), 3.75 (m, 4H), 2.16 (s, 3H), 1.85 (m, 1H), 1.78 (m, 1H), 1.16 (s, 3H), 1.15 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆)□156.2, 154.4, 150.6, 145.6, 133.5, 131.8, 127.3,

20 127.2, 127.1, 116 (1), 115.9, 113.2, 113.2, 110.1, 105.6, 70.3, 65.8, 61 (2), 55.6, 49.7, 43.7, 43.6, 31.3, 29.0, 28.9, 23..8;
Anal. calcd for C₂₇H₃₂N₂O₅·1/4H₂O: C, 69.14; H, 6.98; N, 5.97. Found: C, 68.96; H,

7.05; N, 5.94.

5

10

15

25

30

35

Example 202

2,5-dihydro-10-methoxy-5-(2-(N-(2-methoxyethyl)aminocarbonyloxy)ethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

The intermediate succinate ester from Example 200 and 2-methoxyethyl aminewere processed as in Example 200 to give the desired compound.

MS (DCI/NH₃) m/e 453 (M+H)⁺;

¹H NMR (500 MHz, DMSO-d₆)□7.95 (d, J=8 Hz, 1H), 7.13 (m, 1H), 7.04 (t, J=8 Hz, 1H), 6.70 (d, J=8 Hz, 1H), 6.60 (d, J=8 Hz, 1H), 6.56 (d, J=8 Hz, 1H), 6.08 (s, 1H), 5.85d (10, 1H), 5.45 (s, 1H), 3.95 (m, 2H), 3.85 (s, 3H), 3.25 (s, 3H), 3.12 (m, 2H), 2.15 (s, 3H), 1.92 (m, 1H), 1.72 (m, 1H), 1.15 (d, 6H);

¹³C NMR (125 MHz, DMSO-d₆)□156.1, 156.1, 150.7, 145.6, 133.5, 131.9, 127.6, 127.1, 127.1, 116.3, 116.0, 113.2, 113.2, 110.2, 105.6, 70.7, 70.3, 60.0, 57.8, 55.6, 49.6, 31.5, 28.8, 28.8, 23.8.

Example 203

2,5-dihydro-10-methoxy-5-(2-(N-methyaminocarbonyloxyoxy)ethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

The intermediate succinate ester from Example 200 and methylamine were processed as in Example 200 to give the desired compound.

MS (DCI/NH₃) m/e 409 (M+H)⁺;

¹H NMR (500 MHz, DMSO-d6)□7.95 (d, J=8 Hz, 1H), 7.04 (t, J=8 Hz, 1H), 6.93 (m,

5

10

15

20

25

30

35

1H), 6.70 (d, J=8 Hz, 1H), 6.60 (d, J=8 Hz, 1H), 6.56 (d, J=8 Hz, 1H), 6.08 (s, 1H), 5.85d (10, 1H), 5.45 (s, 1H), 3.95 (m, 2H), 3.85 (s, 3H), 2.59 (d, 3H), 2.15 (s, 3H), 1.92 (m, 1H), 1.72 (m, 1H), 1.15 (d, 6H);

13C NMR (125 MHz, DMSO-d₆)□156.6, 156.1, 150.7, 145.6, 133.5, 131.9, 127.5, 127.2, 127.1, 116.3 (116.0), 113.2, 113.2, 113.2, 105.6, 70.3, 60.0, 55.6, 49.6, 31.5, 28.8, 28.8, 26.9, 23.7;

Anal. calcd for C₂₄H₂₈N₂O₄: C, 70.57; H, 6.91; N, 6.86. Found: C, 70.30; H, 6.91; N, 6.58.

Example 204

2,5-dihydro-10-methoxy-5-(2-(N,N-dimethylaminocarbonyloxy)ethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

The intermediate succinate ester from Example 200 and N,N-dimethylamine were processed as in Example 200 to give the desired compound as a white solid. MS (DCI/NH3) *m/e* 423 (M+H)⁺; ¹H NMR (300 MHz, DMSO-d₆) □ 7.95 (d, J=8 Hz, 1H), 7.05 (t, J=8 Hz, 1H), 6.69 (d,

J=8 Hz, 1H), 6.56 (dd, J=8 Hz, 2H), 6.12 (s, 1H), 5.86 (dd, J=3+10 Hz, 1H), 5.44 (s, 1H), 3.96 (m, 2H), 3.85 (s, 3H), 2.86 (s, 3H), 2.83 (s, 3H), 2.18 (s, 3H), 1.95 (m, 1H), 1.76 (m, 1H), 1.15 (s, 6H).

Example 205

2,5-dihydro-10-methoxy-5-(2-methoxymethoxyethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 199 (0.040 g, 0.114 mmol) was combined with chloromethyl methyl ether (13 μ L, 0.171 mmol), (i-Pr)₂NEt (40 μ L, 0.228 mmol), and methylene chloride (5ml) and heated to reflux for 3 hours. The reaction was partitioned between H₂O and ethyl acetate, the aqueous layer extracted with ethyl acetate and the combined organic layers washed with saturated aqueous sodium bicarbonate, brine, dried over MgSO₄, and purified by silica gel chromatography eluting with 2% then 5% ethyl acetate in methylene chloride to give 45 mg (40%) of the desired product.

MS (DCI/NH₃) m/e 396 (M+H)⁺; ¹H NMR (300 MHz, DMSO-d₆) \Box 7.95 (d, J=9 Hz, 1H), 7.05 (t, J=8 Hz, 1H), 6.70 (d, J=8 Hz, 1H), 6.60 (d, J=8 Hz, 1H), 6.55 (d, J=8 Hz, 1H), 6.14 (s, 1H), 5.89 (dd, J=3+10 Hz, 1H), 5.45 (s, 1H), 4.55 (s, 2H), 3.85 (s, 3H), 3.58 (m, 1H), 3.25 (s, 3H), 2.18 (s, 3H), 1.85 (m, 1H), 1.65 (m, 1H), 1.19 (s, 3H), 1.13 (s, 3H); Anal. calcd for C₂₄H₂9NO₄·1/4H₂O: C, 72.07; H, 7.43; N, 3.50. Found: C, 71.90; H, 7.33; N, 3.24.

5

15

20

25

30

35

Example 206

2,5-dihydro-10-methoxy-5-(2,2-dimethylethoxycarbonylamino)methyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 206A

2,5-dihydro-10-methoxy-5-(aminomethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

A 10 ml ethereal suspension of LiAlH $_{\square}$ (0.050 g, 1.31 mmol) was treated dropwise at room temperature with a 5.0 ml ethereal solution of AlCl $_{\square}$ (0.59 g, 4.4 mmol), strirred for 30 minutes and treated dropwise with a 4.0 ml ethereal solution of Example 44. After stirring for 1 hour at room temperature, 2.0 ml of H $_{\square}$ O carefully added followed by dropwise addition of 15 % NaOH until a white paste formed. The ether solution was decanted, the paste washed several times with ether and combined organics washed with brine and dried (Na $_{\square}$ SO $_{\square}$). The residue was purified by silica gel column chromatography eluting with CH $_{\square}$ Cl $_{\square}$:CH $_{\square}$ OH (8:1) to give 0.031 g (69 %) aminomethyl analog that was carried directly to the next step.

Example 206

2,5-dihydro-10-methoxy-5-(2,2-dimethylethoxycarbonylamino)methyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

The aminomethyl analog above (0.065 g, 0.19 mmol) was dissolved in dichloromethane (6.0 ml),cooled to 0 °C, treated with BoC $_{\square}$ O (0.93 g, 0.42 mmol). Allowed to warm to room temperature overnight. 10 ml H $_{\square}$ O was added and the phases separated. The organic layer was washed with brine and dried (Na $_{\square}$ SO $_{\square}$). The residue was purified by silica gel column chromatography eluting with CH $_{\square}$ Cl $_{\square}$:CH $_{\square}$ OH (8:1) to give 0.080 g (95 %) desired compound: m.p. 130-135 °C;

¹H NMR (400 MHz, DMSO-d₆)□7.98 (d, J=9 Hz, 1H), 7.70 (t, J=9 Hz, 1H), 6.79 (t, J=5 Hz, 1H), 6.67 (d, J=9 Hz, 1H), 6.60 (d, J=9 Hz, 1H), 6.53 (d, J=8 Hz, 1H), 6.12 (s, 1H), 5.80 (dd, J=10, 10 Hz, 1H), 5.42 (s, 1H), 3.85 (s, 3H), 3.14 (m, 1H), 2.86 (m, 1H), 2.19 (s, 3H), 1.47 (s, 3H), 1.21 (s, 3H), 1.12 (s, 3H), .84 (m, 1H); ¹³C NMR (100 MHz, DMSO-d₆)□156.1, 155.5, 150.9, 145.4, 133.4, 131.5, 129.5, 128.6, 127.8, 126.9, 117.1, 116.4, 113.4, 112.7, 110.5, 105.3, 77.7, 72.3, 67.4, 55.6, 49.5, 41.5, 29.8, 29.2, 28.3, 28.2, 23.4, 23.2, 22.3; HRMS (FAB) *m/e* calc'd for C₂6H₃2N₂O₄: 436.2362. Found 436.2360.

10

15

20

25

30

35

5

Example 207

2,5-dihydro-10-methoxy-5-(ethoxycarbonylamino)methyl)-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

Example 206A (0.047 g, 0.14mmole) in THF (10 ml) was treated with triethylamine (21.0 \square L, 0.14 mmol). Followed by dropwise addition of ethyl chloroformate (14.1 \square L, 0.14 mmol.). After 30 minutes the reaction was poured into H \square O, the aqueous layer extracted with ethyl acetate and the combined organic layers washed 1X with H₂O, 1X with brine, and dried (Na \square SO \square). The residue was purified by silica gel column chromatography eluting with 3:2 hexanes:ethyl acetate to give 0.047 g (80%) of the desired compound as a solid.

¹H NMR (300 MHz, DMSO-d₆)□7.98 (d, J=8 Hz, 1H), 7.13 (t, 1H), 7.03 (t, J=8 Hz, 1H), 6.67 (d, J=8 Hz, 1H), 6.57 (d, J=8 Hz, 1H), 6.54 (d, J=8 Hz, 1H), 6.13 (s, 3H), 5.83 (dd, 1H), 5.43 (s, 1H), 3.94 (m, 2H), 3.85 (s, 3H), 3.13 (m, 1H), 2.94 (m, 1H), 2.21 (s, 3H), 1.20 (s, 3H), 1.17 (s, 3H), 1.11 (s, 3H); ¹³C NMR (75 MHz, DMSO-d₆)□156.1, 150.8, 145.5, 133.4, 129.4, 127.7, 127.0, 117.0, 116.4, 113.5, 112.7, 110.6, 105.4, 72.2, 59.7, 55.6, 49.6, 41.8, 29.2, 28.3, 23.5, 14.6; HRMS *m/e* calc'd for C₂4H₂8N₂O₄: 408.2049. Found 408.2044.

Example 208

2,5-dihydro-10-methoxy-5-(carboethoxy)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

To Example 61 was added 2.0 ml of 5 % aqueous HCl, 5.0 ml H $_{\square}$ O, and enough ethanol to make the solution homogenous. This was warmed at 35 °C for 1 hour, quenched with saturated aqueous sodium bicarbonate to a pH of 7.0. The reaction was extracted with ethyl acetate. The organics were washed with H $_{\square}$ O, brine, and dried (Na $_{\square}$ SO $_{\square}$). The residue was purified by silca gel column chromatography eluting with 7:1-5:1-3:2 hexanes:ethyl acetate to give 0.041 g (48 %) of the desired compound as a solid.

MS (DCI/NH₃) m/e 380 (M+H)⁺; ¹H NMR (300 MHz, DMSO-d₆) \Box 7.90 (d, J=9 Hz, 1H), 7.04 (t, J=8 Hz, 1H), 6.64 (d, J=8 Hz, 1H), 6.61 (m, 2H), 6.32 (s, 1H), 6.21 (s, 1H), 5.45 (s, 1H), 3.90 (m, 2H), 3.84 (s,

J=8 Hz, 1H), 6.61 (m, 2H), 6.32 (s, 1H), 6.21 (s, 1H), 5.45 (s, 1H), 3.90 (m, 2H) 3H), 1.17 (s, 3H), 1.15 (s, 3H), .93 (t, J=7 Hz, 3H);

¹³C NMR (100 MHz, DMSO-d₆)□169.4, 156.2, 152.5, 145.4, 133.1, 127.6, 126.9, 126.0, 118.2, 117.7, 114.7, 109.8, 105.7, 73.0, 60.7, 55.6, 49.9, 28.9, 28.7, 22.8, 13.7; Anal. calcd for C₂₃H₂₅NO₄•1/4H₂O: C, 71.95; H, 6.68; N, 3.65. Found: C, 72.21; H, 6.41: N, 3.85.

10 <u>Example 209</u>

2,5-dihydro-10-methoxy-5-(cyclopentyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and cyclopentylmagnesium bromide were processed as in Example 11 to provide the desired compound.

MS (DCI/NH₃) m/e 376 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□8.01 (d, J=8 Hz, 1H), 7.03 (t, J=8 Hz, 1H), 6.65 (d, J=8 Hz, 1H), 6.59 (d, J=9 Hz, 1H), 6.52 (d, J=8 Hz, 1H), 6.20 (s, 1H), 5.46 (s, 3H), 3.85 (s, 3H), 2.16 (s, 3H), 1.50 (m, 5H), 1.30 (s, 3H), 1.16 (m, 3H), 1.01 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆)□156.2, 151.7, 145.0, 133.7, 131.6, 128.1, 126.7, 117.7, 116.4,

113.3, 112.6, 109.9, 105.0, 76.5, 49.2, 42.5, 29.8, 29.5, 27.5, 26.6, 24.8, 24.6, 23.6; Anal. calcd for C₂₅H₂₉O₂N•1/2H₂O: C, 78.09; H, 7.86; N, 3.64. Found: C, 78.09; H, 7.52; N, 3.42.

Example 210

2,5-dihydro-10-methoxy-5-(1-methylpropa-1,2-dienyl)-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

Example 2B and propargylmagnesium bromide (Gaoni, Y.; Leznoff, C. C.; Sondheimer, F. J. Am. Chem. Soc. 1968, 90, 4940-4945.) were processed as in example 11 to provide the desired compound.

30 m.p. 59-63°;

5

15

20

25

¹H NMR (300 MHz, DMSO-d₆) □ 7.84 (d, J=8 Hz, 1H), 7.03 (t, J=6 Hz, 1H), 6.68 (d, J=6 Hz, 1H), 6.55 (d, J=8 Hz, 2H), 6.04 (s, 1H), 5.97 (s, 1H), 5.40 (s, 1H), 4.94 (m, 1H), 4.23 (m, 1H), 3.82 (s, 3H), 2.11 (s, 3H), 1.70 (s, 3H), 1.21 (s, 3H), 1.10 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) □ 156.1, 151.2, 150.5, 145.1, 132.6, 130.5, 127.9, 127.1,

127.0, 126.7, 126.5, 117 (5), 117.1, 114.7, 113.3, 112.9, 110.1, 106.3, 98.6, 76.2, 75.6, 55.9, 49.6, 29.4, 28.4, 22.5, 16.0;

MS m/e calc'd for C24H25O2N: 359.1885. Found 359.1893.

Example 211

2,5-dihydro-10-methoxy-5-(3,4,5-trifluorophenyl)-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

Example 2B and 3,4,5-trifluorophenylmagnesium bromide were processed as in Example 11 to provide the desired compound.

MS (DCI/NH₃) m/e 438 (M+H)⁺;

5

10

15

25

30

35

¹H NMR (300 MHz, DMSO-d₆)□8.04 (d, J=8 Hz, 1H), 6.94 -7.02 (m, 3H), 6.77 (s, 1H), 6.74 (d, J=9 Hz, 1H), 6.62 (d, J=8 Hz, 1H), 6.51 (d, J=8 Hz, 1H), 6.31 (br s, 1H), 5.43 (s, 1H), 3.81 (s, 3H), 1.85 (s, 3H), 1.23 (s, 3H), 1.15 (s, 3H);

Anal. calcd for C₂₆H₂₂N0₂F₃•1/4H₂O: C, 70.66; H, 5.13; N, 3.17. Found: C, 70.89; H, 5.19; N, 2.93.

Example 212

2,5-dihydro-10-methoxy-5-(cyclohexyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and cyclohexylmagnesium bromide were processed as in Example 11 to provide the desired compound.

MS (DCI/NH₃) m/e 308 (M+H)⁺;

20 MAJOR: ¹H NMR (300 MHz, DMSO-d₆)□8.03 (d, J=9 Hz, 1H), 7.05 (t, J=8 Hz, 1H), 6.72 (d, J=8 Hz, 1H), 6.61 (d, J=9 Hz, 1H), 6.59 (s, 1H), 6.15 (d, J=8 Hz, 1H), 5.40 (m, 2H), 3.86 (s, 3H), 2.01 (s, 3H), 1.61 (m, 1H), 1.56-1.41 (m, 2H), 1.35-0.96 (m, 6H), 1.29 (s, 3H), 1.18 (s, 3H), 0.95-0.77 (m, 2H);

Anal. calcd for C₂₆H₃₁NO₂•1/2H₂O: C, 78.36; H, 8.09; N, 3.51. Found: C, 78.24; H, 7.72; N, 3.70.

Example 213 2,5-dihydro-10-methoxy-5-(2-pyridyl)-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

Example 213A

2,5-dihydro-10-methoxy-5-(2-pyridyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

To a solution of Example 2A (1.42 g, 4.39 mmol) in THF (40 mL) at 0 °C was added a solution of potassium *tert*-butoxide (1.48 g, 13.2 mmol) in THF (13 mL). The mixture was stirred 45 min at 0 °C then a solution of TBSCl (1.46 g, 9.66 mmol) in THF (9.5 mL) was introduced in dropwise fashion. The solution was stirred at 0 °C for 30 min then was quenched by addition of saturated aqueous NH4Cl (10 mL) and was extracted with EtOAc (2 x 30 mL). The combined organic portions were washed with brine (8 mL) and were dried (Na₂SO₄). Filtration and concentration gave a brown

residue which was purified via flash chromatography (elution with 2% EtOAc/CH₂Cl₂) to give the desired product as a yellow solid (994 mg, 2.28 mmol, 52%). MS (DCI/NH₃) m/z 438 (M+H)⁺.

Example 213

5

10

15

20

25

30

2,5-dihydro-10-methoxy-5-(2-pyridyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

A solution of the 2-lithiopyridine (nominally 1 M in THF) was formed by addition of *n*-BuLi (680 \Box L of a 2.5 M solution in hexane, 1.70 mmol) to a solution of 2-bromopyridine (285 mg, 1.80 mmol) in THF (17 mL) at -78 °C. This solution was stirred for 20 min then a solution of the aldehyde prepared above (211 mg, 0.480 mmol) in THF (2.0mL) was added in drop wise fashion at -78 °C. The solution was stirred at -78 °C for 30 min then was quenched by addition of saturated aqueous NH4Cl (7 mL) and was extracted with EtOAc (2 x 30 mL). The combined organic portions were washed with brine (10 mL) and were dried (Na2SO4). Filtration and concentration gave a brown residue which was used without further purification.

The crude material prepared above was dissolved in THF (10 mL) at 23 °C and was treated with tetrabutylammonium fluoride (500 □L of a 1 M solution in THF, 0.500 mmol). After 1 h, the reaction mixture was concentrated in vacuo, was resuspended in EtOAc (20 mL) and then was washed with water (5 mL) and brine (5 mL), and was dried (Na₂SO₄). Filtration and concentration gave a brown residue which was used without further purification.

This crude residue was dissolved in THF (10 mL), and the solution was cooled to 0 °C. To this solution was added triethylphosphine (48 mg, 0.410 mmol) followed by a solution of 1,1'-(azodicarbonyl)dipiperidine (103 mg, 0.410 mmol) in THF (1.5 mL). The solution was stirred for 30 min at 0 °C then at 23 °C for 7 h. The reaction mixture was concentrated and was purified by flash chromoatography (elution with 25% EtOAc/hexane) to give the desired product (13 mg, 0.034 mmol, 8%) as a colorless solid. MS (DCI/NH₃) m/z 385 (M+H)⁺;

¹H NMR (300 MHz, DMSO) □8.45 (br d, J=6.6 Hz, 1 H), 7.98 (d, J=8.0 Hz, 1 H), 7.61 (td, J=6.5, 1.8 Hz, 1 H), 7.19-7.13 (m, 2 H), 6.91 (t, J=6.6 Hz, 1 H), 6.72 (s, 1 H), 6.68 (d, J=7.9 Hz, 1 H), 6.57 (br d, J=6.7 Hz, 1 H), 6.44 (dd, J=6.5, 1.0 Hz, 1 H), 6.17 (br s, 1 H), 5.37 (br s, 1 H), 3.80 (s, 3 H), 1.80 (s, 3 H), 1.23 (s, 3 H), 1.13 (s, 3 H); HRMS (FAB) calcd (M+H)⁺ for C₂5H₂5N₂O₂: 385.1916 . Found: 385.1910.

Example 214

2,5-dihydro-10-methoxy-5-(3-pyridyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

The desired compound was prepared as described in Example 213 in 49% yield. MS (DCI/NH₃) m/z 385 (M+H)⁺;

5

10

20

25

30

¹H NMR (300 MHz, DMSO) □ 8.38 (d, *J*=2.4 Hz, 1 H), 8.35 (dd, *J*=5.6, 2.0 Hz, 1 H), 8.02 (d, *J*=8.0 Hz, 1 H), 7.49 (br d, *J*=6.9 Hz, 1 H), 7.25 (dd, *J*=6.9, 5.5 Hz, 1 H), 6.92 (t, *J*=6.9 Hz, 1 H), 6.86 (s, 1 H), 6.72 (d, *J*=8.1 Hz, 1 H), 6.58 (d, *J*=6.7 Hz, 1 H), 6.45 (d, *J*=6.4 Hz, 1 H), 6.38 (br s. 1 H), 5.41 (br s. 1 H), 3.80 (s. 3 H), 1.83 (s. 3 H), 1.23 (s. 3 H),

J=6.4 Hz, 1 H), 6.38 (br s, 1 H), 5.41 (br s, 1 H), 3.80 (s, 3 H), 1.83 (s, 3 H), 1.23 (s, 3 H), 1.15 (s, 3 H);

¹³C NMR (125 MHz, DMSO) □ 156.0, 151.2, 149.4, 148.8, 145.6, 135.7, 134.7, 133.2, 128.5, 127.3, 127.2, 127.0, 123.2, 117.7, 117.2, 113.9, 113.7, 110.2, 105.7, 73.0, 55.5, 49.8, 29.5, 28.5, 23.4;

HRMS (FAB) calcd m/z for C₂₅H₂₅N₂O₂: 385.1916 (M+H)⁺. Found: 385.1915. Anal. calcd for C₂₅H₂₄N₂O₂: C, 78.09; H, 6. 29; N, 7.28. Found: C, 76.98; H, 6.60; N, 6.93.

Example 215

2,5-dihydro-10-methoxy-5-(4-pyridyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

The desired compound was prepared as described in Example 213 in 20% yield. MS (DCI/NH₃) m/z 385 (M+H)⁺;

¹H NMR (300 MHz, DMSO) □ 8.43 (br d, *J*=4.3 Hz, 2 H), 8.04 (d, *J*=8.0 Hz, 1 H), 7.15 (d, *J*=4.2 Hz, 2 H), 6.96 (t, *J*=6.7 Hz, 1 H), 6.81 (s, 1 H), 6.75 (d, *J*=7.9 Hz, 1 H), 6.59 (d, *J*=6.8 Hz, 1 H), 6.53 (d, *J*=6.8 Hz, 1 H), 6.37 (br s, 1 H), 5.43 (br s, 1 H), 3.79 (s, 3 H), 1.88 (s, 3 H), 1.26 (s, 3 H), 1.18 (s, 3 H);

¹³C NMR (125 MHz, DMSO)□156.1, 151.4, 149.4 (2), 148.2, 145.6, 133.4, 133.3, 128.3, 127.3 (2), 127.0, 122.9, 117.9, 117.0, 113.9, 110.2, 105.6, 105.0, 103.0, 73.4, 49.8, 29.4, 28.6, 23.2;

HRMS (FAB) calcd m/z for C25H25N2O2: 385.1916 (M+H)+. Found: 385.1906.

The chemistry described in Schemes 1-21 and Examples 1-215 was used with Core 2 to prepare Examples 216-226.

Example 216

10-chloro-9-hydroxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-

[1]benzopyrano[3,4-f]quinoline

5 MS (DCI/NH₃) m/z 368 (M+H) $^+$;

¹H NMR (300 MHz, DMSO) □9.34 (s, 1 H), 7.87 (d, *J*=8 Hz, 1 H), 6.72 (d, *J*=8 Hz, 1 H), 6.66 (d, *J*=8 Hz, 1 H), 6.58 (d, *J*=8 Hz, 1 H), 6.21 (br s, 1 H), 5.81-5.71 (m, 1 H), 5.62 (dd, *J*=10, 3 Hz, 1 H), 5.41 (br s, 1 H), 4.98 (dd, *J*=10, 2 Hz, 1 H), 4.93 (dd, *J*=17, 2 Hz, 1 H), 2.42-2.34 (m, 1 H), 2.26-2.20 (m, 1 H), 2.11 (s, 3 H), 1.16 (s, 3 H), 1.11 (s, 3 H);

HRMS (FAB) calcd m/z for C22H22ClNO2: 367.1339. Found: 367.1336.

Example 217 10-chloro-9-hydroxy-5-phenyl-2,2,4-trimethyl-1H-2,5-dihydro[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH₃) m/z 404 (M+H)⁺;

¹H NMR (300 MHz, DMSO) \square 9.46 (s, 1 H), 7.96 (d, J=8 Hz, 1 H), 7.26-7.12 (m, 3 H), 7.14-7.07 (m, 1 H), 6.87 (dd, J=8, 2 Hz, 1 H), 6.72 (d, J=8 Hz, 1 H), 6.68 (s, 1 H), 6.58 (app s, 2 H), 6.37 (br s, 1 H), 5.40 (br s, 1 H), 1.80 (s, 3 H), 1.26 (s, 3 H), 1.17 (s, 3 H); HRMS (FAB) calcd m/z for C25H22CINO2: 403.1339. Found: 403.1344.

20

10

Example 218 10-chloro-9-hydroxy-5-(3-trifluoromethylphenyl)-2,2,4-trimethyl-1H-2,5-dihydro-

[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH₃) m/z 472 (M+H)⁺;

25 1H NMR \(\partial 9.45\) (s, 1H), 7.98 (d, 1H, J=8.5Hz), 7.54 (m, 4H), 6.85 (d, 1H, J=8.5Hz), 6.75 (m, 2H), 6.57 (d, 1H, J=8.5Hz), 6.42 (m, 1H), 5.39 (m, 1H), 1.91 (s, 3H), 1.24 (s, 3H), 1.11 (s, 3H);

Anal. calcd for C₂₆H2₁ClF₃NO₂: 471.1213. Found: 471.1216.

30

35

Example 219

10-chloro-9-hydroxy-5-(3,5-dimethylphenyl)-2,2,4-trimethyl-1H-2,5-dihydro-

[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH₃) m/z 432 (M+H)⁺;

1H NMRQ9.52 (s, 1H), 7.95 (d, 1H, J=8.5Hz), 6.82 (m, 2H), 6.71 (m, 2H), 6.61 (s, 2H), 6.36 (m, 1H), 6.42 (m, 1H), 5.40 (m, 1H), 2.31 (s, 6H), 1.92 (d, 3H, J=1.4Hz), 1.24 (s, 2H), 1.14 (s, 2H);

HRMS (FAB) calcd m/z for C27H26ClNO2: 421.1652. Found: 431.1650.

Example 220

<u>rel-(5S, 3'R)-9-hydroxy-10-methoxy-5-[1-hydroxymethyl-3-cyclohexenyl]-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline</u>

5 MS (DCI/NH₃) m/z 438 (M+H) $^+$;

¹H NMR (300 MHz, DMSO)□9.56 (s, 1 H), 8.01 (d, *J*=8 Hz, 1 H), 6.77 (app s, 2 H), 6.67 (d, *J*=8 Hz, 1 H), 6.39 (br s, 1 H), 5.48 (d, *J*=10 Hz, 1 H), 5.42 (br s, 1 H), 5.10 (br s, 1 H), 4.42 (t, *J*=6 Hz, 1 H), 3.65 (br d, *J*=6 Hz, 2 H), 2.28-2.18 (m, 2 H), 2.05 (br s, 3 H), 1.94-1.87 (m, 2 H), 1.75-1.64 (m, 1 H), 1.52-1.42 (m, 1 H), 1.36-1.27 (m, 1 H), 1.29 (s, 3 H), 1.10 (s, 3 H);

HRMS (FAB) calcd m/z for C26H28ClNO3: 437.1758. Found: 437.1756.

The C-5 lactol-9-tert-butyldimethylsilyl ether of Core 2 and 3-cyclopentenyl trimethylsilane were processed as above to give a 2:1 diastereomeric product mixture which was subjected to HPLC on an (R,R) WHELK-O 1 column eluting with 2% ETOH in hexanes to provide the individual enantiomers.

Example 221

(-) 2,5(S)-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(3S-cyclopenteny1)-1H-[1]benzopyrano[3,4-f]quinoline

 $[\Box]^{23}$ D=-220° (c 0.012, CHCl₃);

MS (DCI/NH₃) m/z 394 (M+H)+;

¹H NMR (300 MHz, DMSO-d₆) Пр.55 (s, 1H), 8.00 (d, 1H), 6.75 (d, 1H), 6.72 (d,

25 1H), 6.63 (d, 1H), 6.36 (s, 1H), 5.73 (ddd, 1H), 5.44 (d, 1H), 5.40 (s, 1H), 5.17 (ddd, 1H), 2.78 (m, 1H), 2.35 (m, 1H), 2.15 (m, 1H), 2.05 (s, 3H), 1.80 (m, 1H), 1.72 (m, 1H), 1.27 (s, 3H), 1.05 (s, 3H);

¹³C NMR (400 MHz, DMSO-d₆) □ 148.7, 146.0, 144.0, 134.0, 133.6, 132.7, 129.9, 127.9, 127.0, 123.7, 116.6, 115.8, 115.4, 114.2, 112.4, 76.1, 49.6, 48.2, 31.7, 29.8, 27.8,

30 27.3, 24.4.

10

15

20

Example 222 (-) 2,5(S)-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(3R-cyclopenteny1)-1H-[1]benzopyrano[3,4-f]quinoline

 $[\Box]^{23}$ D=-232° (c 0.010, CHCl₃);

35 MS (DCI/NH₃) m/z 394 (M+H) $^+$;

¹H NMR (300 MHz, DMSO-d₆) □ 9.50 (bs, 1H), 8.02 (d, 1H), 6.75 (d, 1H), 6.72 (d,

1H), 6.63 (d, 1H), 6.39 (s, 1H), 5.74 (ddd, 1H), 5.60 (ddd, 1H), 5.46 (s, 1H), 5.39 (d, 1H), 2.83 (m, 1H), 2.26 (m, 1H), 2.14 (m, 1H), 2.09 (s, 3H), 1.55-1.40 (m, 2H), 1.27 (s, 3H), 1.01 (s, 3H);

¹³C NMR (400 MHz, DMSO-d₆)□148.7, 146.0, 144.6, 134.1, 132.8, 132.0, 131.7,

5 127.8, 126.8, 123.6, 117.4, 115.9, 115.8, 115.5, 114.2, 112.3, 76.4, 49.4, 48.0, 31.7, 29.5, 27.2, 24.5, 23.8.

Example 223 10-chloro-9-hydroxy-5-(3,5-dichlorophenyl)-2,2,4-trimethyl-1H-2,5-dihydro-

[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH₃) m/z 472 (M+H)+;

10

25

1H NMR Q9.40 (s, 1H), 8.01 (d, 1H, J=8.5Hz), 7.43 (m, 4H), 6.85 (d, 1H, J=8.5Hz), 6.71 (m, 1H), 6.57 (d, 1H, J=8.5Hz), 6.42 (m, 1H), 5.47 (m, 1H), 1.81 (s, 3H), 1.29 (s, 3H), 1.09 (s, 3H);

15 HRMS (FAB) calcd m/z for C25H20Cl3NO2: 471.0559. Found: 471.0556.

Example 224

(+)-(5R, 3'S) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(3-cyclopenteny1)-1H[1]benzopyrano[3,4-f]quinoline

20 $[\Box]^{23}D=+256^{\circ}$ (c 0.046, CHCl₃).

MS (DCI/NH₃) m/z 394 (M+H)+;

¹H NMR (300 MHz, DMSO-d₆) □ 9.50 (bs, 1H), 8.02 (d, 1H), 6.75 (d, 1H), 6.72 (d, 1H), 6.63 (d, 1H), 6.39 (s, 1H), 5.74 (ddd, 1H), 5.60 (ddd, 1H), 5.46 (s, 1H), 5.39 (d, 1H), 2.83 (m, 1H), 2.26 (m, 1H), 2.14 (m, 1H), 2.09 (s, 3H), 1.55-1.40 (m, 2H), 1.27 (s, 3H), 1.01 (s, 3H);

¹³C NMR (400 MHz, DMSO-d₆)□148.7, 146.0, 144.6, 134.1, 132.8, 132.0, 131.7, 127.8, 126.8, 123.6, 117.4, 115.9, 115.8, 115.5, 114.2, 112.3, 76.4, 49.4, 48.0, 31.7, 29.5, 27.2, 24.5, 23.8.

30 <u>Example 225</u>

(+)-(5R, 3'R) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(3-cyclopenteny1)-1H-[1]benzopyrano[3,4-f]quinoline

 $[\Box]^{23}D=+244^{\circ}$ (c 0.165, CHCl₃); MS (DCI/NH₃) m/z 394 (M+H)⁺;

1H NMR (300 MHz, DMSO-d6) Ф9.55 (s, 1H), 8.00 (d, 1H), 6.75 (d, 1H), 6.72 (d,

1H), 6.63 (d, 1H), 6.36 (s, 1H), 5.73 (ddd, 1H), 5.44 (d, 1H), 5.40 (s, 1H), 5.17 (ddd, 1H), 2.78 (m, 1H), 2.35 (m, 1H), 2.15 (m, 1H), 2.05 (s, 3H), 1.80 (m, 1H), 1.72 (m, 1H), 1.27 (s, 3H), 1.05 (s, 3H);

¹³C NMR (400 MHz, DMSO-d₆)□148.7, 146.0, 144.0, 134.0, 133.6, 132.7, 129.9,

5 127.9, 127.0, 123.7, 116.6, 115.8, 115.4, 114.2, 112.4, 76.1, 49.6, 48.2, 31.7, 29.8, 27.8, 27.3, 24.4.

Example 226 10-chloro-9-hydroxy-5-(3,4-difluorophenyl)-2,2,4-trimethyl-1H-2,5-dihydro-

[1]benzopyrano[3,4-f]quinoline

 $MS (DCI/NH_3) m/z 440 (M+H)^+;$

1H NMR [] 9.41 (s, 1H), 7.94 (d, 1H, J=8.5Hz), 6.96 (m, 3H), 6.75 (m, 3H), 6.57 (d, 1H, J=8.5Hz), 6.45 (m, 1H), 5.47 (m, 1H), 1.81 (s, 3H), 1.29 (s, 3H), 1.09 (s, 3H); HRMS (FAB) calcd m/z for C25H20ClF2NO2: 429.1150. Found: 429.1152.

15

10

The chemistry described in Schemes 1-21 and Examples 1-215 was used with Core 3 to prepare Example 227.

Example 227

9-10-methylenedioxy-5-phenyl-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH3) m/z 298 (M+H)+;

1H NMR (200 MHz, DMSO-d6) 7.72 (d, J=8.1 Hz, 1H), 7.20 (m, 5H), 6.82 (s, 1H), 6.75 (d, J=8.8 Hz, 1H), 6.50 (d, J=8.1 Hz, 1H), 6.26 (s, 1H). 6.27 (d, J=8.8 Hz, 1H), 6.05 (s, 1H), 5.98 (s, 1H), 5.4 (s, 1H), 1.87 (s, 2H), 1.20 (s, 2H), 1.17 (s, 2H).

25

20

The chemistry described in Schemes 1-21 and Examples 1-215 was used with Core 4 to prepare Examples 228-231.

Example 228 5-(3-propenyl)-9-chloro-10-ethenyl-2,2,4-trimethyl-2,5-dihydro-1H[1]benzopyrano[3,4-f]quinoline

¹H NMR [] 7.93 (d, 1H, J=8.5Hz), 7.20 (d, 1H, J=8.5Hz), 6.70 (d, 1H, J=8.5Hz), 6.64 (d, 1H, J=8.5Hz), 6.34 (m, 1H), 5.81 (m, 2H), 5.46 (m, 1H), 5.03 (dm, 1H, J=10.5Hz), 4.98 (dm, 1H, J=17.1Hz), 3.65 (s, 3H), 2.44 (m, 1H), 2.28 (m, 1H), 2.18 (s, 3H), 1.17 (s, 3H);

35 1.17 (s, 3H);

HRMS (ESI) m/z calc'd for C23H25ClNO2: 381.1495. Found: 381.1490.

Example 229

9-chloro-10-methoxy-5-phenyl-2,2,4-trimethyl-2,5-dihydro-1H-

[1]benzopyrano[3,4-f]quinoline

¹H NMR □ 7.9 (d, 1H, J=8.5Hz), 7.42 (m, 1H), 7.21 (m, 5H), 7.00 (d, 1H, J=8.5Hz), 6.75 (m, 1H), 6.57 (d, 1H, J=8.5Hz), 6.42 (m, 1H), 5.47 (m, 1H), 3.65 (s, 3H), 1.81 (s, 3H), 1.29 (s, 3H), 1.09 (s, 3H); HRMS (ESI) m/z calc'd for for C₂6H₂4ClNO₂: 417.1495. Found: 417.1497.

10

15

Example 230

5-(3-propenyl)-9-chloro-10-difluoromethoxy-2,2,4-trimethyl-2,5-dihydro-1H[1]benzopyrano[3,4-f]quinoline

¹H NMR Q7.58 (d, 1H, J=8.5Hz), 7.14 (m, 2H), 6.80 (dd, 1H, J=7.3Hz), 6.64 (d, 1H, J=8.5Hz), 6.24 (m, 1H), 5.81 (m, 2H), 5.46 (m, 1H), 5.02 (dm, 1H, J=10.5Hz), 4.94 (dm, 1H, J=17.1Hz), 2.30 (m, 2H), 2.17 (s, 3H), 1.19 (s, 3H), 1.16 (s, 3H); mass spectrum (ESI) m/z: 418 (M+H); Calcd for C₂₃H₂₂ClF₂NO₂: 417.1307. Found: 417.1304.

Example 231

9-chloro-10-difluoromethoxy-5-phenyl-2,2,4-trimethyl-2,5-dihydro-1H[1]benzopyrano[3,4-f]quinoline

20

¹H NMR □ 7.77 (d, 1H, J=8.5Hz), 7.44 (m, 1H), 7.22 (m, 5H), 7.12 (d, 1H, J=8.5Hz), 6.84 (s, 1H), 6.76 (t, 1H, J=75Hz), 6.74 (d, 1H, J=8.5Hz), 6.51 (m, 1H), 5.39 (m, 1H), 1.78 (s, 3H), 1.26 (s, 3H), 1.14 (s, 3H); mass spectrum (ESI) m/z: 454 (M + 1); Calcd for C₂6H₂2ClF₂NO₂: 453.1307. Found: 453.1304.

25

The chemistry described in Schemes 1-21 and Examples 1-215 was used with Core 5 to prepare Examples 232-233.

Example 232

30

8-fluoro-10-methoxy-5-phenyl-2,2,4-trimethyl-2,5-dihydro-1H-

[1]benzopyrano[3,4-f]quinoline

1H NMRQ7.95 (d, 1H, J=8.5Hz), 7.30 (m, 2H), 7.20 (m, 5H), 7.00 (d, 1H, J=8.5Hz), 6.82 (s, 1H), 6.43 (m, 1H), 5.38 (m, 1H), 3.56 (s, 3H), 2.17 (s, 3H), 1.25 (s, 3H), 1.13 (s, 3H); mass spectrum (ESI) m/z: 402 (M+H); Calcd for $C_{26}H_{24}FNO_2$: 401.1791. Found: 401.1795.

35 401.1795

Anal. Calcd for C₂₆H₂₄FNO₂: C, 77.78; H, 6.02; N, 2.49. Found: C, 77.66; H, 5.90; N, 2.28.

Example 233

5-(3-propenyl)-8-fluoro-10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-

[1]benzopyrano[3,4-f]quinoline

¹H NMR [7.95 (d, 1H, J=8.5Hz), 7.30 (m, 2H), 7.20 (m, 5H), 7.00 (d, 1H, J=8.5Hz), 6.82 (s, 1H), 6.43 (m, 1H), 5.38 (m, 1H), 3.56 (s, 3H), 2.17 (s, 3H), 1.25 (s, 3H), 1.13 (s, 3H); mass spectrum (ESI) m/z: 402 (M+1); Calcd for C₂₆H₂₄FNO₂: 401.1791. Found: 401.1795.

The chemistry described in Schemes 1-21 and Examples 1-215 was used with Core 6 to prepare Example 234.

Example 234

10-methoxy-9-fluoro-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-

[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH₃) m/z 366 (M+H)⁺;

¹H NMR (300 MHz, DMSO) □ 7.87 (d, *J*=8.5 Hz, 1 H), 7.00 (dd, *J*=8.8, 2.2 Hz, 1 H), 6.64 (d, *J*=8.1 Hz, 1 H), 6.63 (d, *J*=8.8 Hz, 1 H), 6.31 (d, *J*=1.1 Hz, 1 H), 5.90-5.80 (m, 1 H), 5.79-5.75 (m, 1 H), 5.46 (s, 1 H), 5.05-4.95 (m, 2 H), 3.79 (s, 3 H), 2.17 (d, *J*=1.1 Hz, 1 H), 1.17 (c, 6 H)

Hz, 1 H), 1.17 (s, 6 H); HRMS calcd for C₂₃H₂₄FNO₂ is 366.1869. Found 366.1869.

The chemistry described in Schemes 1-21 and Examples 1-215 was used with Core 7 to prepare Examples 235-296.

25

35

5

10

15

20

Example 235

10-methoxy-9-hydroxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-

[1]benzopyrano[3,4-f]quinoline

¹H NMR (300 MHz, DMSO) □ 8.69 (s, 1 H), 7.92 (d, *J*=8.5, 1 H), 6.62 (d, *J*=8.5 Hz, 1 H), 6.62 (d, *J*=8.5 Hz, 1 H), 6.62 (d, *J*=8.5 Hz, 1 H), 6.16 (d, *J*=1.7 Hz, 1 H), 5.81 (ddt, *J*=17.3, 10.3, 6.6 Hz, 1 H), 5.67 (dd, *J*=9.8, 3.3 Hz), 5.44 (s, 1 H), 5.02 (dd, *J*=10.3, 1.8 Hz, 1 H), 4.98 (dd, *J*=17.3, 1.8 Hz, 1 H), 2.47-2.41 (m, 1 H), 2.34-2.27 (m, 1 H), 2.16 (s, 3 H), 1.18 (s, 3 H), 1.16 (s, 3 H);

13C NMR (75 MHz, DMSO) 145.8, 145.1, 143.9, 142.9, 134.4, 133.4, 132.7, 127.5, 126.5, 117.8, 117.0, 116.3, 116.1, 114.3, 113.6, 112.4, 73.3, 59.3, 49.7, 36.4, 29.2, 28.9, 23.9.

MS (DCI/NH₃) m/z 364 (M+H)⁺;

Anal. calcd for C₂₃H₂₄N₂O₂: C, 76.01; H, 6.93; N, 3.85. Found C, 75.85; H, 7.18; N, 3.66.

Example 236 (+/-) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-cyclohexenyl)-1H-[1]benzopyrano[3,4-f]quinoline

 $MS (DCI/NH_3) m/z 404 (M+H)^+;$

5

10

15

25

¹H NMR (300 MHz, DMSO-d₆) □ 8.70 (s, 1H), 8.01 (d, 1H), 6.65 (d, 1H), 6.62 (d, 1H), 6.53 (d, 1H), 6.27 (d, 1H), 5.82-5.65 (m, 2H), 5.45 (s, 1H), 5.33 (d, 1H), 3.65 (s, 3H), 2.28 (m, 1H), 2.12 (s, 3H), 1.86 (m, 2H), 1.55 (m, 1H), 1.31 (s, 3H), 1.26-1.14 (m, 3H), 1.03 (s, 3H);

¹³C NMR (400 MHz, DMSO-d₆) □ 145.4, 145.0, 144.1, 143.5, 133.6, 130.7, 128.1, 127.9, 127.7, 126.1, 118.4, 117.8, 116.5, 114.4, 113.4, 112.1, 75.9, 59.3, 49.4, 37.2, 29.6, 27.1, 24.7, 24.6, 23.7, 21.2.

Example 237 (+/-) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(1-methylcyclohexen-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH₃) m/z 718 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) \Box 8.66 (s, 1 H), 8.00 (d, J= 8.5 Hz, 1 H), 6.65 (d, J= 8.5 Hz, 1 H), 6.62 (d, J= 8.5 Hz, 1 H), 6.55 (d, J= 8.5 Hz, 1 H), 6.24 (d, J= 1.5 Hz, 1

20 H), 5.51 (br s, 1 H), 5.44 (br s, 1 H), 5.30 (d, J = 9.5 Hz, 1 H), 3.65 (s, 3 H), 2.30 - 2.20 (m, 1 H), 2.11 (s, 3 H), 1.80 -1.54 (m, 3 H), 1.60, (s, 3 H), 1.30 (s, 3 H), 1.28 - 1.08 (m, 3 H), 1.03 (s, 3 H);

¹³C NMR (75 MHz, DMSO-d₆) □ 145.3, 144.9, 144.0, 143.6, 134.7, 133.5, 130.9, 128.0, 126.1, 121.8, 118.3, 117.9, 116.5, 114.3, 113.3, 112.1, 76.2, 59.3, 49.4, 37.5, 29.6, 29.5, 27.1, 24.5, 23.8, 23.7, 21.6.

Example 238

(-) (5S, 3'S)-9-hydroxy-5-[1-methyl-3-cyclohexenyl]- 10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline

30 [□]D=-158.8°;

MS (DCI/NH₃) m/z 718 (M+H)⁺;

¹H NMR (300 MHz; DMSO-d₆) \Box 8.66 (s, 1 H), 8.00 (d, *J*=8.5 Hz, 1 H), 6.65 (d, *J*=8.5 Hz, 1 H), 6.62 (d, *J*=8.5 Hz, 1 H), 6.55 (d, *J*=8.5 Hz, 1 H), 6.24 (d, *J*=1.5 Hz, 1 H), 5.51 (br s, 1 H), 5.44 (br s, 1 H), 5.30 (d, *J*=9.5 Hz, 1 H), 3.65 (s, 3 H), 2.30-2.20 (m, 1 H), 2.11 (c, 2 H), 1.60 (c, 2 H), 1.20 (c, 2

2.11 (s, 3 H), 1.80 -1.54 (m, 3 H), 1.60, (s, 3 H), 1.30 (s, 3 H), 1.28-1.08 (m, 3 H), 1.03 (s, 3 H);

13C NMR (75 MHz, DMSO-d₆) □ 145.3, 144.9, 144.0, 143.6, 134.7, 133.5, 130.9, 128.0, 126.1, 121.8, 118.3, 117.9, 116.5, 114.3, 113.3, 112.1, 76.2, 59.3, 49.4, 37.5, 29.6, 29.5, 27.1, 24.5, 23.8, 23.7, 21.6.

Anal. calcd for C₂₇H₃₁NO₃: C, 77.67; H, 7.48; N, 3.35. Found C, 77.65; H, 7.67; N, 3.36.

Example 239

(+) (5R,3'R)-9-hydroxy-5-[1-methyl-3-cyclohexenyl]- 10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline

10 [□]D=+157.9°

5

25

30

MS (DCI/NH₃) m/z 718 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) \square 8.66 (s, 1 H), 8.00 (d, *J*=8.5 Hz, 1 H), 6.65 (d, *J*=8.5 Hz, 1 H), 6.62 (d, *J*=8.5 Hz, 1 H), 6.55 (d, *J*=8.5 Hz, 1 H), 6.24 (d, *J*=1.5 Hz, 1 H), 5.51 (br s, 1 H), 5.44 (br s, 1 H), 5.30 (d, *J*=9.5 Hz, 1 H), 3.65 (s, 3 H), 2.30-2.20 (m, 1 H),

2.11 (s, 3 H), 1.80 -1.54 (m, 3 H), 1.60, (s, 3 H), 1.30 (s, 3 H), 1.28-1.08 (m, 3 H), 1.03 (s, 3 H);

¹³C NMR (75 MHz, DMSO-d₆) □145.3, 144.9, 144.0, 143.6, 134.7, 133.5, 130.9, 128.0, 126.1, 121.8, 118.3, 117.9, 116.5, 114.3, 113.3, 112.1, 76.2, 59.3, 49.4, 37.5, 29.6, 29.5, 27.1, 24.5, 23.8, 23.7, 21.6.

Anal. calcd for C₂₇H₃₁NO₃: C, 77.67; H, 7.48; N, 3.35. Found C, 77.65; H, 7.67; N, 3.36.

Example 240

(+) (5R,3'S)-9-hydroxy-5-[1-methyl-3-cyclohexenyl]- 10-methoxy-2,2,4-trimethyl-2,5-[D]D=+78.0°

MS (DCI/NH₃) m/z 718 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) \Box 8.74 (s, 1 H), 7.99 (d, *J*=8.8 Hz, 1 H), 6.66 (d, *J*=8.8 Hz, 1 H), 6.62 (d, *J*=8.5 Hz, 1 H), 6.52 (d, *J*=8.5 Hz, 1 H), 6.24 (d, *J*=1.5 Hz, 1 H), 5.41 (br s, 1 H), 5.41 (d, *J*=10.3 Hz, 1 H), 4.84 (br s, 1 H), 3.63 (s, 3 H), 2.34-1.35 (m, 7 H), 2.06 (s, 3 H), 1.49, (s, 3 H), 1.30 (s, 3 H), 1.09 (s, 3 H);

13C NMR (75 MHz, DMSO-d₆) □145.3, 145.0, 144.0, 143.2, 135.5, 133.3, 131.3, 128.4, 126.2, 120.5, 118.1, 117.9, 116.5, 114.4, 113.5, 112.0, 75.3, 59.3, 49.5, 36.8, 29.4, 27.5, 25.0, 24.1, 23.7, 20.2.

HRMS calcd for C₂₇H₃₁NO₃ 417.2304. Found: 417.2305.

Example 241

(-) (5S,3'R)-9-hydroxy-5-[1-methyl-3-cyclohexenyl]- 10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline

5 [□]D=-79.4°

15

30

MS (DCI/NH₃) m/z 718 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) \Box 8.74 (s, 1 H), 7.99 (d, *J*=8.8 Hz, 1 H), 6.66 (d, *J*=8.8 Hz, 1 H), 6.62 (d, *J*=8.5 Hz, 1 H), 6.52 (d, *J*=8.5 Hz, 1 H), 6.24 (d, *J*=1.5 Hz, 1 H), 5.41 (br s, 1 H), 5.41 (d, *J*=10.3 Hz, 1 H), 4.84 (br s, 1 H), 3.63 (s, 3 H), 2.34-1.35 (m, 7 H),

2.06 (s, 3 H), 1.49, (s, 3 H), 1.30 (s, 3 H), 1.09 (s, 3 H);

13C NMR (75 MHz, DMSO-d₆) □ 145.3, 145.0, 144.0, 143.2, 135.5, 133.3, 131.3, 128.4, 126.2, 120.5, 118.1, 117.9, 116.5, 114.4, 113.5, 112.0, 75.3, 59.3, 49.5, 36.8, 29.4, 27.5, 25.0, 24.1, 23.7, 20.2.

Anal. calcd for C₂₇H₃₁NO₃: C, 77.67; H, 7.48; N, 3.35. Found C, 77.55; H, 7.56; N, 3.34.

Example 242

rel-(5S,3'R)-9-hydroxy-5-[1-hydroxymethyl-3-cyclohexenyl]-10-methoxy-2,2,4trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline

20 MS (DCI/NH₃) m/z 434 (M+H)⁺; ¹H NMR (300 MHz, DMSO-d₆) \Box 8.72 (s, 1 H), 7.98 (d, J=8.8 Hz, 1 H), 6.65 (d, J=8.8 Hz, 1 H), 6.62 (d, J=8.8 Hz, 1 H), 6.52 (d, J=8.8 Hz, 1 H), 6.23 (br s, 1 H), 5.43-5.39 (m, 2 H), 5.06 (br s, 1 H),), 4.44 (t, J=5.1 Hz, 1 H), 3.69-3.67 (m, 1 H), 3.67 (s, 3 H), 2.32-2.22 (m, 1 H), 2.05 (s, 3 H), 1.94-1.88 (m, 2 H), 1.74-1.61 (m, 2 H), 1.55-1.45 (m, 2 H), 1.29 (s, 3 H), 1.10 (s, 3 H);

13C NMR (75 MHz, DMSO-d6) [145.4, 145.0, 144.0, 143.1, 140.4, 133.5, 131.2, 128.2, 126.2, 120.5, 118.0, 118.0, 116.5, 114.4, 113.5, 112.1, 75.4, 65.6, 59.4, 49.5, 37.0, 29.8, 27.8, 25.8, 25.1, 24.3, 20.3.

Anal. calcd for C₂₇H₃₁NO₄: C, 74.80; H, 7.21; N, 3.23. Found: C, 74.59; H, 7.21; N, 3.22.

Example 243

(+/-) (5S,3'R) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(1-methylcyclohexen-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline

35 MS (DCI/NH₃) m/z 718 (M+H)⁺; ¹H NMR (300 MHz, DMSO-d₆) \Box 8.66 (s, 1 H), 8.00 (d, J = 8.5 Hz, 1 H), 6.65 (d, J = 8.5 Hz, 1 H), 6.62 (d, J = 8.5 Hz, 1 H), 6.55 (d, J = 8.5 Hz, 1 H), 6.24 (d, J = 1.5 Hz, 1

H), 5.51 (br s, 1 H), 5.44 (br s, 1 H), 5.30 (d, J = 9.5 Hz, 1 H), 3.65 (s, 3 H), 2.30 - 2.20 (m, 1 H), 2.11 (s, 3 H), 1.80 -1.54 (m, 3 H), 1.60, (s, 3 H), 1.30 (s, 3 H), 1.28 - 1.08 (m, 3 H), 1.03 (s, 3 H);

¹³C NMR (75 MHz, DMSO-d₆) □ 145.3, 144.9, 144.0, 143.6, 134.7, 133.5, 130.9, 128.0, 126.1, 121.8, 118.3, 117.9, 116.5, 114.3, 113.3, 112.1, 76.2, 59.3, 49.4, 37.5, 29.6, 29.5, 27.1, 24.5, 23.8, 23.7, 21.6.

Example 244

<u>rel-(5S,3'R)-9-hydroxy-5-[1-methoxymethyl-3-cyclohexenyl]- 10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline</u>

MS (DCI/NH₃) m/z 448 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□8.75 (s, 1 H), 8.00 (d, *J*=8.5 Hz, 1 H), 6.67 (d, *J*=8.5 Hz, 1 H), 6.62 (d, *J*=8.5 Hz, 1 H), 6.54 (d, *J*=8.5 Hz, 1 H), 6.27 (d, *J*=1.5 Hz, 1 H), 5.46 (d, *J*=9.9 Hz, 1 H), 5.38 (br s, 1 H), 5.21 (br s, 1 H), 4.33-4.29 (m, 1 H), 3.66-3.63 (m, 1 H), 3.65 (s, 3 H), 3.64 (s, 3 H), 2.32-1.45 (m, 7 H), 2.04 (s, 3 H), 1.29 (s, 3 H), 1.07 (s, 3 H);

Anal. calcd for C₂₈H₃₃NO₄: C, 75.14; H, 7.43; N, 3.13. Found C, 74.81; H, 7.35; N, 3.05.

20

25

30

35

15

5

10

Example 245

2,5-dihydro-9-hydroxy-10-methoxy-5-propyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

The C-5 lactol-9-TBS ether of core 7 and *n*-propylmagnesium chloride were processed as in example 251 to provide the desired compound:

¹H NMR (300 MHz, DMSO-d₆) □ 8.66 (s, 1H), 7.90 (d, J=9 Hz, 1H), 6.60 (d, J=8 Hz, 1H), 6.59 (s, 1H), 6.49 (d, J=9 Hz, 1H), 6.14 (br s, 1H), 5.57 (m, 1H), 5.44 (br s, 1H), 3.63 (s, 3H), 2.15 (s, 3H), 1.79-1.61 (m, 1H), 1.48-1.08 (m, 5H), 1.16 (s, 6H), 0.78 (t, J=7 Hz, 3H); ¹³C NMR (75 MHz, DMSO-d₆) □ 145.7, 144.9, 143.9, 143.1, 133.5, 127.5, 126.4, 117.9, 116.3, 116.2, 114.2, 113.4, 112.1, 73.6, 59.3, 49.7, 31.9, 29.1, 28.8, 27.7, 23.8, 21.7, 13.9; MS (DCI/NH₃) *m/e* (M+H)⁺ 380; Anal. calcd for

C₂₄H₂₉NO₃•1/4H₂O: CC, 75.07; H, 7.74; N, 3.65. Found: C, 74.78; H, 7.86; N, 3.29.

The C-5 lactol-9-TBS ether of core 7 and 3-cycloheptenyl trimethylsilane were processed as above to give a 5:1 diastereomeric product mixture which was subjected to HPLC on an (R,R) WHELK-O 1 column eluting with 2% ETOH in hexanes to provide two levarotary enantiomers.

Example 246

(-) (5S,3'S) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-cyclohepteny1)-1H-[1]benzopyrano[3,4-f]quinoline

- 5 MS (DCI/NH₃) m/z 418 (M+H)⁺; ¹H NMR (300 MHz, DMSO-d₆) □8.70 (s, 1H), 7.96 (d, 1H), 6.65 (d, 1H), 6.64 (d, 1H), 6.21 (s, 1H), 5.55 (ddd, 1H), 5.53 (d, 1H), 5.46 (s, 1H), 5.31 (ddd, 1H), 3.65 (s, 3H), 2.45 (m, 1H), 2.14 (m, 3H), 2.05-1.84 (m, 4H), 1.46 (m, 1H), 1.29 (s, 3H), 1.27-1.15 (m, 4H), 1.04 (s, 3H);
- 13C NMR (400 MHz, DMSO-d₆)□145.3, 144.9, 144.0, 143.1, 133.7, 132.1, 131.6, 131.2, 128.1, 126.1, 118.3, 117.9, 116.5, 114.4, 113.3, 112.1, 74.5, 59.3, 49.5, 38.9, 29.5, 29.0, 28.7, 27.8, 27.2, 26.3, 23.8;

HRMS calcd m/z for $C_{27}H_{31}NO_3$: 417.2304 (M⁻)⁺. Found: 417.2319. $|\Box|^{23}D=-134^{\circ}$ (c 1.15, CHCl₃).

15

35

Example 247

(-) (5S,3'R) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-cyclohepteny1)-1H-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH₃) m/z 418 (M+H)⁺;

- ¹H NMR (300 MHz, DMSO-d₆) □8.66 (s, 1H), 7.97 (d, 1H), 6.65 (d, 1H), 6.59 (d, 1H), 6.45 (d, 1H), 6.22 (s, 1H), 5.93 (ddd, 1H), 5.72 (ddd, 1H), 5.50 (d, 1H), 5.45 (s, 1H), 3.65 (s, 3H), 2.38 (m, 1H), 2.13 (s, 3H), 2.04 (m, 1H), 1.82-1.70 (m, 2H), 1.50-1.05 (m, 5H), 1.30 (s, 3H), 1.02 (s, 3H);
 - ¹³C NMR (400 MHz, DMSO-d₆) □ 145.2, 144.8, 143.8, 143.2, 133.9, 133.6, 131.1,
- 25 130.8, 128.0, 126.1, 118.6, 118.0, 116.5, 114.4, 113.4, 112.2, 75.3, 59.2, 49.4, 41.9, 30.0, 29.6, 28.3, 28.0, 27.3, 26.1, 23.9;
 - HRMS calcd m/z for C₂₇H₃₁NO₃: 417.2304 (M')⁺. Found: 417.2288. \Box ²³D=-122° (c 0.74, CHCl₃).

Example 248 2,5-dihydro-9-hydroxy-10-methoxy -2,2,4-trimethyl-5-phenyl-1H[1]benzopyrano[3,4-f]quinoline

¹H NMR (300 MHz, DMSO), □8.53 (s, 1 H), 7.93 (d, J=8.7 Hz, 1 H), 7.20-7.14 (m, 5 H), 6.73 (d, J=8.7 Hz, 1 H), 6.66 (s, 1 H), 6.42 (d, J=8.9 Hz, 1 H), 6.33 (d, J=8.7 Hz, 1 H), 6.22 (d, J=1.7 Hz, 1 H), 5.37 (s, 1 H), 3.55 (s, 3 H), 1.80 (s, 3 H), 1.24 (s, 3 H), 1.14 (s, 3 H); 13C NMR (300 MHz, DMSO), □145.7, 144.8, 143.8, 143.6, 139.3, 133.1, 132.7, 130.2, 128.3, 127.8, 127.6, 127.5, 126.4, 126.1, 123.8, 118.4, 117.8, 114.1, 114.0,

112.8, 112.2, 74.9, 59.0, 49.7, 29.7, 28.4, 23.2; MS ESI m/z 400 (M+H)+; HRMS calcd for C₂₆H₂5NO₂ is 399.1834. Found 399.1839.

Example 249 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3,5-difluorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline

1H NMR (300 MHz, DMSO), \$\partial 8.68 (s, 1 H), 7.95 (d, J=8.4 Hz, 1 H), 7.06 (tt, J=9.2, 2.2 Hz, 1 H), 6.82 (dd, J=8.1, 1.8 Hz, 2 H); 6.77 (d, J=8.4 Hz, 1 H), 6.70 (s, 1 H), 6.48 (d, J=8.4 Hz, 1 H), 6.42 (d, J=8.4 Hz, 1 H), 6.32 (d, J=1.5 Hz), 5.42 (s, 1 H), 3.56 (s, 3 H), 1.84 (d, J=1.1 Hz, 3 H), 1.25 (s, 3 H), 1.15 (s, 3 H); 13C NMR (300 MHz, DMSO), \$\partial 163.6 (d, J=12.81 Hz), 160.4 (d, J=12.81 Hz), 145.9, 145.2, 144.5, 144.4 (t, J=7.93 Hz), 143.6, 143.3, 133.1, 129.0, 127.3, 126.6, 118.2, 117.9, 117.2, 114.5 (d, J=6.1 Hz), 112.4, 111.4, 103.5, 73.8, 64.9, 59.1, 49.9, 29.6, 28.5, 23.2; MS ESI m/z 436 (M+H)+;

HRMS calcd for C₂6H₂2F₂NO₂ is 435.1646. Found 435.1657.

15

20

25

30

35

10

5

Example 250 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3,4,5-trifluorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline

1H NMR (300 MHz, DMSO), D8.76 (s, 1 H), 8.02 (d, J=8.4 Hz, 1 H), 7.08 (dd, J=6.98, 1.8 Hz, 1 H), 6.86 (dd, J=7.3, 2.2 Hz, 1 H), 6.83 (d, J=8.8 Hz, 1 H), 6.73 (s, 1 H), 6.55 (d, J=8.8 Hz, 1 H), 6.47 (d, J=8.8 Hz, 1 H), 6.38 (d, J=1.5 Hz, 1 H), 5.46 (s, 1 H), 3.62 (s, 3 H), 1.88 (d, J=1.1 Hz, 3 H), 1.30 (s, 3 H), 1.13 (s, 3 H); 13C NMR (300 MHz, DMSO), D146.0, 145.3, 143.6, 143.1, 133.1, 128.7, 127.3, 126.7, 118.1 (d, J=15.87 Hz), 117.1, 116.0, 115.9, 115.8, 114.05 (d, J=9.16 Hz), 113.0, 112.7, 112.4, 73.5, 59.1, 49.8, 29.7, 28.4, 23.3,

MS ESI m/z 454 (M+H)+; HRMS calcd for C₂₆H₂₂F₂NO₂ is 453.1552. Found 453.1571.

Example 251

5-butyl-2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

The C-5 lactol-9-tert-butyldimethylsilyl ether of core 7 (0.057 g, 0.122 mmol) was dissolved in 1,2-dichloroethane (5 ml), cooled to -10°C, and treated dropwise with BF3•OEt2 (46 mL, 0.366 mmol). The resulting deep green solution was treated dropwise with an ethereal solution of *n*-butylmagnesium chloride (0.19 ml of a 2M / Et2O solution, 0.380 mmol). The color changed to yellow-brown. The reaction mixture was partitioned between saturated aqueous sodium bicarbonate and ethyl acetate, the aqueous layer extracted with ethyl acetate, the combined organics washed with brine, dried (MgSO₄), and concentrated to a yellow oil.

The resulting yellow oil was dissolved in THF (5 ml), cooled to 0°C, and treated with tetrabutylammonium fluoride solution (0.14 ml of a 1M / THF solution, 0.14 mmol). After 10 minutes, the mixture was quenched by the addition of saturated aqueous ammonium chloride and pH 7.0 buffer, and the layers were separated. The aqueous layer was extracted with ethyl acetate, the combined organics washed with brine, dried (MgSO4), and concentrated. The residue was purified by silica gel chromatography eluting with 25% ethyl acetate in hexanes to give 0.032 g (72%) of the desired compound.

¹H NMR (300 MHz, DMSO-d6)□8.70 (s, 1H), 7.90 (d, J=8 Hz, 1H), 6.60 (d, J=8 Hz, 1H), 6.59 (s, 1H), 6.49 (d, J=8 Hz, 1H), 6.16 (br s, 1H), 5.61 (m, 1H), 5.44 (br s, 1H), 3.63 (s, 3H), 2.16 (s, 3H), 1.77-1.63 (m, 1H), 1.47-1.26 (m, 3H), 1.17 (s, 3H), 1.16 (s, 3H), 0.83 (m, 3H); ¹³C NMR (75 MHz, DMSO-d6)□145.7, 144.9, 143.9, 143.1, 133.5, 133.3, 127.5, 126.4, 117.9, 116.3, 114.2, 113.4, 112.1, 73.2, 59.3, 49.7, 34.1, 29.1, 28.9,

5

10

20.

30

15 C23H27NO3•1.25H2O: C, 71.20; H, 7.66; N, 3.61. Found: C, 71.48; H, 7.32; N, 3.52.

23.9, 18.6, 13.4; MS (DCI/NH₃) m/e (M+H)⁺ 366; Anal. calcd for

The C-5 lactol-9-TBS ether of core 7 and 3-cyclopentenyl trimethylsilane were processed as above to give a 1:1 diastereomeric product mixture which was subjected to HPLC on an (R,R) WHELK-O 1 column eluting with 2% ETOH in hexanes to provide the individual enantiomers.

Example 252

(-) (5S,3'S) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-cyclopenteny1)-1H-[1]benzopyrano[3,4-f]quinoline

25 MS (DCI/NH3) m/z 390 (M+H)⁺; ¹H NMR (300 MHz, DMSO-d₆) □8.68 (s, 1H), 8.01 (d, 1H), 6.65 (d, 1H), 6.62 (d, 1H), 6.51 (d, 1H), 6.22 (s, 1H), 5.72 (dd, 1H), 5.41 (d, 1H), 5.40 (s, 1H), 5.17 (dd, 1H), 3.63 (s, 3H), 2.90-2.80 (m, 1H), 2.41-2.32 (m, 1H), 2.23-2.10 (m, 1H), 2.06 (s, 3H), 1.89-1.71 (m, 2H), 1.30 (s, 3H), 1.08 (s, 3H);

¹³C NMR (400 MHz, DMSO-d₆) □ 145.5, 145.0, 143.9, 143.4, 133.5, 132.3, 132.2, 130.2, 128.1, 126.4, 117.8, 116.9, 116.4, 114.4, 113.4, 111.9, 75.7, 59.3, 49.5, 48.7, 31.6, 29.8, 27.6, 27.1, 24.2;

HRMS calcd m/z for C25H27NO3: 389.1991 (M^{*})⁺. Found: 389.1994. \Box^{23}_{D} =-120° (c 0.800, CHCl₃).

Example 253

(-) (5S,3'R) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-cyclopenteny1)-1H-[1]benzopyrano[3,4-f]quinoline

- 5 MS (DCI/NH₃) m/z 390 (M+H)⁺; ¹H NMR (300 MHz, DMSO-d₆) □ 8.67 (s, 1H), 8.02 (d, 1H), 6.65 (d, 1H), 6.62 (d, 1H), 6.53 (d, 1H), 6.25 (s, 1H), 5.77 (ddd, 1H), 5.69 (ddd, 1H), 5.47 (s, 1H), 5.37 (s, 1H), 3.66 (s, 3H), 2.90 (m, 1H), 2.34-2.13 (m, 2H), 2.10 (s, 3H), 1.55-1.41 (m, 2H), 1.3
 - 1H), 3.66 (s, 3H), 2.90 (m, 1H), 2.34-2.13 (m, 2H), 2.10 (s, 3H), 1.55-1.41 (m, 2H), 1.31 (s, 3H), 1.04 (s, 3H);

 13C NMR (400 MHz, DMSO-d6)□145.5, 144.9, 144.0, 143.9, 133.6, 132.0, 131.7,
- 13C NMR (400 MHz, DMSO-d₆)□145.5, 144.9, 144.0, 143.9, 133.6, 132.0, 131.7, 131.5, 127.9, 126.2, 117.7, 117.6, 116.5, 114.4, 113.3, 111.9, 76.1, 59.3, 49.4, 48.6, 31.7, 29.5, 27.1, 24.6, 23.7; HRMS calcd m/z for C₂5H₂7NO₃: 389.1991. Found: 389.1998.

 $[\Box]^{23}$ D=-132° (c 0.76, CHCl₃).

Example 254 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3,4-difluorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline

1H NMR (300 MHz, DMSO-d6), □8.65 (s, 1 H), 7.96 (d, J=8.8 Hz, 1 H), 7.31-7.17 (m, 2 H), 6.98-6.95 (m, 1 H), 6.76 (d, J=8.8 Hz, 1 H), 6.67 (s, 1 H), 6.48 (d, J=8.4 Hz, 1 H),

- 6.38 (d, J=8.4 Hz, 1 H), 6.29 (d, J=1.5 Hz), 5.40 (s, 1 H), 3.57 (s, 3 H), 1.82 (d, J=1.5 Hz), 1.25 (s, 3 H), 1.14 (s, 3 H);

 12C-NMR (75 MHz, DMSO-d6)□145.9, 145.1, 143.6, 143.3, 137.3, 132.9, 129.5, 127.4,
 - 126.6, 125.2, 118.3, 117.8, 117.3, 117.1, 117.0, 116.8, 114.4, 114.3, 112.3, 73.8, 59.1, 49.8, 29.7, 28.4, 23.3;
- 25 HRMS calcd for C₂₆H₂₂NO₂F₂ is 435.1646. Found 435.1638.

Example 255 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(4-fluorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH3) 418 (M+H)+;

. 15

1H NMR (300 MHz, DMSO-d6), \$\partil{Q}\$.58 (s, 1 H), 7.95 (d, J=8.8 Hz, 1 H), 7.23-7.19 (m, 2 H), 7.03 (dd, J=8.8, 8.8 Hz, 2 H), 6.74 (d, J=8.8 Hz, 1 H), 6.66 (s, 1 H), 6.44 (d, J=8.8 Hz, 1 H), 6.34 (d, J=8.8 Hz, 1 H), 6.24 (d, J=1.5 Hz), 5.38 (s, 1 H), 3.57 (s, 3 H), 1.80 (d, J=1.5 Hz), 1.24 (s, 3 H), 1.14 (s, 3 H);

HRMS calcd for C26H24NO2F is 417.1740. Found 417.1745.

Example 256

2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-trifluoromethylphenyl)-1H[1]benzopyrano[3,4-f]quinoline

5 MS APCI m/z 468 (M+H)+;

¹H NMR (300 MHz, DMSO), □8.62 (s, 1 H), 7.97 (d, J=8.8 Hz, 1 H), 7.61-7.41 (m, 3 H), 7.36 (s, 1 H), 6.75 (s, 1 H), 6.44 (d, J=8.4 Hz, 1 H), 6.35 (d, J=8.4, 1 H), 6.30 (d, J=1.5 Hz, 1 H), 5.40 (s, 1 H), 3.52 (s, 3 H), 1.80 (d, J=1.5 Hz, 3 H), 1.24 (s, 3 H), 1.15 (s, 3 H); 13C NMR (300 MHz, DMSO), □145.9, 145.0, 143.5, 140.9 (d, J=17.01 Hz), 140.9, 133.0, 132.6, 129.3, 129.2, 127.4, 126.6, 124.4, 118.3, 118.0, 117.4, 114.5 (d, J=7.32 Hz), 112.3, 74.2, 58.9, 49.8, 29.5, 29.4, 23.3.

HRMS calcd for C₂₇H₂₄F₂NO₂ is 467.1708. Found 467.1708.

Example 257 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-5-bistrifluoromethylphenyl)-1H-[1]benzopyrano[3,4-f]quinoline

MS APCI m/z 536 (M+H)+;

1H NMR (300 MHz, DMSO), □8.69 (s, 1 H), 8.00 (d, J=8.8 Hz, 1 H), 7.96 (s, 1 H), 7.80 (s, 2 H), 6.90 (s, 1 H), 6.79 (d, J=8.4 Hz, 1 H), 6.46 (d, J=8.8 Hz, 1 H), 6.39 (d, J=1.3 Hz, 1 H), 6.37 (d, J=8.4 Hz, 1 H), 5.43 (s, 1 H), 3.51 (s, 3 H), 1.80 (d, J=0.73 Hz, 3 H), 1.24 (s, 3 H), 1.15 (s, 3 H); 13C NMR (300 MHz, DMSO), □146.1, 145.3, 143.6, 142.9, 133.2, 130.1, 129.7, 129.5, 127.2, 126.7, 124.9, 118.2, 117.2, 114.8, 112.3, 73.5, 58.8, 49.8, 29.4, 28.3, 23.3.

HRMS calcd for C₂₈H₂₂F₆NO₂ is 535.1582. Found 535.1573.

25

30

10 .

15

20

Example 258

2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-trifluoromethyl-4-chlorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline

MS (APCI) m/z 502 (M+H)+;

1H NMR (300 MHz, DMSO), \$\partial 8.70 (s, 1 H), 7.97 (d, J=8.8 Hz, 1 H), 7.70-7.60 (m, 3 H), 6.78 (s, 1 H), 7.55 (s, 1 H), 6.46 (d, J=8.8 Hz, 1 H), 6.38 (s, 1 H), 6.36 (d, J=8.8 Hz, 1 H), 5.41 (s, 1 H), 3.53 (s, 3 H), 1.79 (s, 3 H) 1.28 (s, 3 H), 1.14 (s, 3 H); \$^{13}C\$ NMR (300 MHz, DMSO), \$\partial 166.9\$, 146.0, 145.2, 143.6, 143.1, 139.6, 134.1, 133.0, 131.7, 131.5, 128.6, 127.3, 126.7, 114.6, 112.3, 73.7, 59.0, 49.8, 67.4, 29.6, 29.8, 28.3, 23.3, 23.2, 22.4, 13.8, 10.8.

35 HRMS calcd for C₂₇H₂₂ClF₂NO₂ 501.1319. Found 501.1326.

Example 259

2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-methylpropyl)-1H[1]benzopyrano[3,4-f]quinoline

The C-5 lactol-9-*tert*-butyldimethylsilyl ether of core 7 and *iso*-butylmagnesium chloride were processed as in example 251 to provide the desired compound: ¹H NMR (300 MHz, DMSO-d₆) \partial 8.69 (s, 1H), 7.90 (d, J=8 Hz, 1H), 6.61 (d, J=8 Hz, 1H), 6.59 (d, J=8 Hz, 1H), 6.48 (d, J=8 Hz, 1H), 6.16 (br s, 1H), 5.71 (m, 1H), 5.44 (br s, 1H), 3.63 (s, 3H), 2.17 (s, 3H), 1.82-1.60 (m, 2H), 1.43-1.18 (m, 1H), 1.17 (s, 3H), 1.16 (s, 3H), 0.97 (d, J=7 Hz, 3H), 0.76 (d, J=7 Hz, 3H); ¹³C NMR (75 MHz, DMSO-d₆) \partial 145.8, 144.8, 143.8, 143.0, 133.5, 133.3, 127.5, 126.4, 117.9, 116.3, 116.1, 114.2, 113.4, 112.1, 71.8, 59.3, 49.6, 29.1, 28.9, 24.6, 24.0, 23.3, 21.2; MS (FAB Hi Res) *m/e* calc'd for C24H29NO3: 379.2147. Found 379.2159.

15

20

5

10

Example 260

2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-fluoro-4-chlorophenyl)-1H[1]benzopyrano[3,4-f]quinoline

The C-5 lactol-9-tert-butyldimethylsilyl ether of core 7 and 3-fluoro-4-chlorophenyl magnesium bromide were processed according to Example 251 to provide the desired compound.

¹H NMR (300 MHz, DMSO-d₆) □ 8.72 (s, 1H), 7.91 (d, J=8 Hz, 1H), 6.59 (d, J=8 Hz, 1H), 6.59 6.48 (d, J=8 Hz, 1H), 6.16 (br s, 1H), 5.71 (m, 1H), 5.44 (br s, 1H), 3.63 (s, 3H), 2.17 (s, 3H), 1.82-1.60 (m, 2H), 1.43-1.18 (m, 1H), 1.17 (s, 3H), 1.16 (s, 3H), 0.97 (d, J=7 Hz, 3H), 0.76 (d, J=7 Hz, 3H).

25

30

35

Example 261 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-butenyl)-1H[1]benzopyrano[3,4-f]quinoline

The C-5 lactol-9-tert-butyldimethylsilyl ether of core 7 and 1-butenyl-4-magnesium bromide were processed according to Example 251 to provide the desired compound.

Example 262 2,5-dihydro-9-hydroxy-10-methoxy-5-(phenylmethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

The C-5 lactol-9-TBS ether of core 7 and benzylmagnesium bromide were processed as in example 251 to provide the desired compound:

¹H NMR (300 MHz, DMSO-d6)□8.77 (s, 1H), 7.97 (d, J=9 Hz, 1H), 7.34-7.13 (m, 3H),

7.11 (s, 1H), 7.10 (d, J=7 Hz, 1H), 6.67 (m, J=8 Hz, 1H), 6.65 (m, J=8 Hz, 1H), 6.42 (d, J=9 Hz, 1H), 6.20 (br s, 1H), 5.86 (dd, J=10, 3 Hz, 1H), 5.42 (br s, 1H), 3.69 (s, 3H),

2.99 (dd, J=10, 14 Hz, 1H), 2.77 (dd, J=3, 15 Hz, 1H), 2.23 (s, 3H), 1.16 (s, 3H), 1.15 (s, 3H); ¹³C NMR (125 MHz, DMSO-d₆) \(\pi\)145.8, 145.0, 144.0, 142.8, 138.0, 133.3, 132.4, 128.9 (2C), 121.1 (2C), 127.4, 126.4, 126.1, 117.9, 116.3, 116.2, 114.4, 113.7, 112.5, 74.5, 59.4, 49.7, 37.9, 29.2, 29.0, 24.3; MS (DCI/NH₃) m/e (M+H)⁺ 414; Anal. calcd for C27H27NO3•1/4H2O: C, 77.58; H, 6.63; N, 3.35. Found: C, 77.70; H, 7.07; N, 3.19.

5

10

15

20

25

30

35

Example 263 (-) (5S,3'R) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-[1-ethyl-3-cyclohexenyl]-1H-[1]benzopyrano[3,4-f]quinoline

The mixture of diastereomers from example 277 were resolved on a Chiracel OJ HPLC column eluting with hexane:2-propanol (95:5) to give the desired product. ¹H NMR (300 MHz, DMSO-d₆)□8.67 (s, 1H), 7.99 (d, J=9 Hz, 1H), 6.65 (d, J=9 Hz, 1H), 6.62 (d, J=9 Hz, 1H), 6.53 (d, J=8 Hz, 1H), 6.22 (s, 1H), 5.44 (d, J=12 Hz, 2H), 5.30 (d, J=10 Hz, 1H), 3.62 (s, 3H), 3.50-2.26 (m, 1H), 2.11 (s, 3H), 1.89-1.72 (m, 3H), 1.25-1.17 (m, 2H), 1.03 (2, 3H), .088 (t, J=7 Hz, 3H); ¹³C NMR (75 MHz, DMSO-d₆)□145.4, 144.9, 144.0, 143.7, 140.1, 133.6, 130.9, 127.9, 126.1, 120.0, 118.2, 117.8, 116.6, 114.3, 113.3, 112.0, 76.2, 59.3, 49.4, 37.7, 30.2, 29.6, 27.7, 27.2, 24.9, 23.7, 21.6, 12.3.

Example 264 (-) (S) 5-cyclopentyl-2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

The C-5 lactol-9-TBS ether of core 7 and cyclopentylmagnesium chloride were processed as in Example 25₁. The resulting racemic product was resolved into its constituent enantiomers by HPLC on a (R, R)-WHELK-O₁ column eluting with 2% EtOH in hexanes to give the desired compound as the first eluent: 1 H NMR (300 MHz, DMSO-d₆) \Box 8.66 (s, 1H), 8.00 (d8, 1H), 6.63 (d8, 1H), 6.61 (d, J=8 Hz, 1H), 6.48 (d, J=8 Hz, 1H), 6.24 (br s, 1H), 5.45 (br s, 1H), 5.35 (d, J=10 Hz, 1H), 3.65 (s, 3H), 2.15 (s, 3H), 2.12-1.97 (m, 1H), 1.60-1.43 (m, 4H), 1.42-1.22 (m, 2H), 1.19-1.07 (m, 2H), 1.31 (s, 3H), 1.02 (s, 3H); MS (DCI/NH₃) m/e (M+H)⁺ 392.

Example 265 (+) (R) 5-cyclopentyl-2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

The racemic product from Example 264 was resolved into its constituent enantiomers by HPLC on a (R, R)-WHELK-O₁ column eluting with 2% EtOH in hexanes to give the desired compound as the second eluent: 1 H NMR (300 MHz, DMSO-d₆) \square 8.66 (s, 1H), 8.00 (d8, 1H), 6.63 (d8, 1H), 6.61 (d, J=8 Hz, 1H), 6.48 (d, J=8 Hz, 1H), 6.24 (br s, 1H), 5.45 (br s, 1H), 5.35 (d, J=10 Hz, 1H), 3.65 (s, 3H), 2.15 (s, 3H), 2.12-1.97 (m, 1H), 1.60-1.43 (m, 4H), 1.42-1.22 (m, 2H), 1.19-1.07 (m, 2H), 1.31 (s, 3H), 1.02 (s, 3H); MS (DCI/NH₃) m/e (M+H)⁺ 392.

Example 266 2,5-dihydro-9-hydroxy-10-methoxy-5-(3-propynyl)-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

The C-5 lactol-9-TBS ether of core 7 and propargylmagnesium bromide (Gaoni,Y:, Leznoff, C.C:,Sondheimer. *J. Am. Chem. Soc.* 1968, 90, 4940-4945.) were processed as in Example 251to give the desired compound. ¹H NMR (300 MHz, DMSO-d₆)□8.77 (s, 1H), 7.92 (d, J=9 Hz, 1H), 6.63 (dd, J=9, 8 Hz, 2H), 6.54 (m, 1H), 6.17 (s, 1H), 5.82 (dd, J=9, 9 Hz, 1H), 5.44 (s, 1H), 3.68 (s, 3H), 2.78 (t, 1H), 2.44-2.36 (m, 2H), 2.18 (s, 3H), 1.17 (d, J=5 Hz, 6H); ¹³C NMR (75 MHz, DMSO-d₆)□145.9, 145.5, 145.4, 145.2, 143.9, 142.3, 133.5, 132.6, 131.4, 127.4, 126.5, 117.4, 116.5, 115.8, 114.5, 114.0, 112.6, 91.4, 80.7, 72.5, 59.4, 49.8, 29.3, 29.0, 23.9, 23.3, 22.4.

Example 267 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-propyl)-1H[1]benzopyrano[3,4-f]quinoline

The C-5 lactol-9-TBS ether of core 7 and *iso*-propylmagnesium chloride were processed as in Example 251 to provide the desired compound.

¹H NMR (300 MHz, DMSO-d₆)□8.65 (s, 1H), 7.99 (d8, 1H), 6.64 (d, J=8 Hz, 1H), 6.61 (d, J=8 Hz, 1H), 6.51 (d, J=8 Hz, 1H), 6.22 (br s, 1H), 5.44 (br s, 1H), 5.26 (d, J=10 Hz, 1H), 3.64 (s, 3H), 2.16 (s, 3H), 1.85-1.67 (m, 1H), 1.30 (s, 3H), 1.02 (s, 3H), 0.93 (d, J=6 Hz, 3H), 0.64 (7, 3H); ¹³C NMR (75 MHz, DMSO-d₆)□145.3, 144.8, 144.0, 143.7, 133.5, 131.6, 128.2, 126.1, 118.4, 117.9, 116.5, 114.3, 113.2, 112.0, 77.7, 59.3, 49.4, 30.7, 29.7, 27.2, 23.9, 19.5, 17.9; MS (DCI/NH₃) *m/e* (M+H)⁺ 366; Anal. calcd for C23H27NO3•1/4H2O: C, 74.67; H, 7.49; N, 3.79. Found: C, 74.81; H, 7.39; N, 3.67.

Example 268

5

10

15

20

25

30

35

2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(5-methoxy-2-thienyl)-1H[1]benzopyrano[3,4-f]quinoline

The C-5 lactol-9-TBS ether of core 7 and 2-methoxythiophene were processed according to Example 276 to provide the desired compound. 1 H NMR (300 MHz, DMSO-d₆) \Box 8.63 (s, 1H), 7.93 (d, J=8 Hz, 1H), 6.70 (d, J=8 Hz, 1H), 6.65 (s, 1H), 6.50 (d, J=8 Hz, 1H), 6.39 (d, J=9 Hz, 1H), 6.28 (d, J=3 Hz, 1H), 6.23 (br s, 1H), 5.97 (d, J=3 Hz, 1H), 5.38 (br s, 1H), 3.72 (s3), 3.59 (s, 3H), 1.97 (s, 3H), 1.22 (s, 3H), 1.13 (s, 3H); 13 C NMR (75 MHz, DMSO-d₆) \Box 166.2, 145.7, 145.1, 143.6, 143.5, 132.9, 130.2, 128.7, 127.6, 126.4, 126.0, 118.3, 117.2, 117.2, 114.2, 112.4, 102.7, 71.5, 59.7, 59.1, 49.8, 29.8, 28.6, 22.9; MS (DCI/NH₃) m/e (M+H)⁺ 436; Anal. calcd for C25H25NO4S•1/4H2O: C, 68.24; H, 5.84; N, 3.18. Found: C, 68.52; H, 6.19; N, 3.00.

Example 269 (±) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2,3,4,5,6-pentafluorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline

The C-5 lactol-9-TBS ether of core 7 and pentafluorophenylmagnesium bromide

were processed to give the desired compound which was purified by flash
chromatography eluting with 4:1 hexane/EtOAc.

MS (DCI/NH3) m/z 490 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d6) □8.75 (s, 1H), 7.83 (d, 1H), 6.82 (S, 1H), 6.67 (d, 1H),
6.44 (d, 1H), 6.33 (d, 1H), 6.19 (s, 1H), 5.37 (s, 1H), 3.53 (s, 3H), 1.77 (s, 3H), 1.17 (s,
3H), 1.06 (s, 3H);

¹³C NMR (400 MHz, DMSO-d6) □146.1, 145.8, 143.8, 142.9, 133.4, 128.4, 127.0,
126.2, 118.6, 118.1, 117.6, 114.5, 114.2, 113.3, 112.2, 105.0, 68.6, 58.9, 49.9, 29.8, 28.3,
23.1;

Anal. calcd for C₂₆H₂₀NO₃F₅ • 0.5 H₂O: C, 62.65; H, 4.25; N, 2.81. Found: C, 62.4; H, 4.28; N, 2.73.

Example 270 (+/-) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5(S)-(3(S)-1-hydroxymethylcyclopenten-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline MS (DCI/NH3) m/z 420(M+H)+;

1H NMR (400 MHz, DMSO-d6) 1H NMR (200 MHz, DMSO-d6) □8.77 (s, 1H), 8.04 (d, 1H), 6.67 (d, 1H), 6.62 (d, 1H), 6.52 (d, 1H), 6.24 (bs, 1H), 6.12 (dd, 1H), 5.50 (d, 1H), 5.42 (bs, 1H), 2.64 (s, 2H), 2.57 (s, 2H), 2.75-1.09 (m, 14H).

Example 271 (+/-) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5(S)-(3(S)-1-methylcarboxylatecyclopenten-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline

The C-5 lactol-9-TBS ether of core 7 and 3-cyclohexenyl trimethylsilane were processed as above to give a 3:2 diastereomeric product mixture which was subjected to HPLC on an (R,R) WHELK-O 1 column eluting with 2% EtOH in hexanes to provide the individual enantiomers.

30

35

15

20

25

Example 272 (-) (5S,3'S) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-cyclohexeny1)-1H-[1]benzopyrano[3,4-f]quinoline

 $MS (DCI/NH_3) m/z 404 (M+H)^+;$

¹H NMR (300 MHz, DMSO-d₆) □8.70 (s, 1H), 7.99 (d, 1H), 6.65 (d, 1H), 6.62 (d, 1H), 6.52 (d, 1H), 6.20 (d, 1H), 5.61 (ddd, 1H), 5.46 (d, 1H), 5.41 (s, 1H), 5.10 (dd, 1H), 3.66 (s, 3H), 2.27 (m, 1H), 2.10 (s, 3H), 1.99-1.72 (m, 2H), 1.70-1.55 (m, 3H), 1.35 (m,

1H), 1.29 (s, 3H), 1.06 (s, 3H);

¹³C NMR (400 MHz, DMSO-d₆)□145.4, 145.0, 143.4, 143.0, 133.5, 131.0, 128.9, 128.1, 126.4, 126.3, 117.9, 116.5, 114.4, 113.5, 112.1, 75.2, 59.3, 49.5, 36.9, 29.7, 27.6, 25.5, 24.6, 24.3, 20.0; □□²³□=-162° (c 0.11, CHCl₃).

5

10

15

20

25

30

Example 273 (-) (5S,3'R) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-cyclohexeny1)-1H-[1]benzopyrano[3,4-f]quinoline

 $MS (DCI/NH_3) m/z 404 (M+H)^+;$

¹H NMR (300 MHz, DMSO-d6) □8.70 (s, 1H), 8.01 (d, 1H), 6.65 (d, 1H), 6.62 (d, 1H), 6.53 (d, 1H), 6.27 (d, 1H), 5.82-5.65 (m, 2H), 5.45 (s, 1H), 5.33 (d, 1H), 3.65 (s, 3H), 2.28 (m, 1H), 2.12 (s, 3H), 1.86 (m, 2H), 1.55 (m, 1H), 1.31 (s, 3H), 1.26-1.14 (m, 3H), 1.03 (s, 3H);

¹³C NMR (400 MHz, DMSO-d6) □145.4, 145.0, 144.1, 143.5, 133.6, 130.7, 128.1, 127.9, 127.7, 126.1, 118.4, 117.8, 116.5, 114.4, 113.4, 112.1, 75.9, 59.3, 49.4, 37.2, 29.6, 27.1, 24.7, 24.6, 23.7, 21.2;

□1²³D=-158° (c 0.50, CHCl₃).

Example 274 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-thienyl)-1H[1]benzopyrano[3,4-f]quinoline

A 0.24 M solution of 2-thienylzinc chloride was prepared by diluting 2-thienyl lithium (1.0 ml of a 1M/THF solution, 1.0 mmol) with ethyl ether (2 ml), cooling to 0°C, treating with ZnCl₂ (1.1 ml of a 1M/Et₂O solution, 1.10 mmol), and allowing to come to room temperature. The resulting heterogeneous mixture was stirred vigorously.

The C-5 lactol-9-TBS ether of core 7 and the 2-thienylzinc chloride from above were processed according to Example 251 to provide the desired compound: 1 H NMR (300 MHz, DMSO-d₆) \Box 8.65 (s, 1H), 7.95 (d, J=9 Hz, 1H), 7.39 (dd, J=5, 1 Hz, 1H), 6.85-6.82 (m, 2H), 6.74 (m, 1H), 6.72 (d, J=8 Hz, 1H), 6.48 (d, J=8 Hz, 1H), 6.37 (d, J=9 Hz, 1H), 6.28 (br s, 1H), 5.39 (br s, 1H), 3.59 (s, 3H), 1.93.(s, 3H), 1.22 (s, 3H), 1.14 (s, 3H); 13 C NMR (75 MHz, DMSO-d₆) \Box 145.7, 145.1, 143.7, 143.6, 143.5, 133.0, 130.8, 127.9, 127.5, 127.0, 126.5, 126.4, 118.3, 117.1, 114.4, 114.2, 112.4, 70.9, 59.0, 49.8, 29.7, 28.6, 23.0; MS (DCI/NH₃) m/e (M+H)⁺ 406; Anal. calcd for C24H23NO3S: C, 71.09; H, 5.72; N, 3.45. Found: C, 70.93; H, 6.00; N, 3.27.

Example 275 (±) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-methylphenyl) -1H-[1]benzopyrano[3,4-f]quinoline

The C-5 lactol-9-TBS ether of core 7 and o-tolylmagnesium bromide were

processed to give the desired product which was purified by flash chromatography eluting with 4:1 hexane/EtOAc.

MS (DCI/NH3) m/z 414 (M+H)+;

¹H NMR (300 MHz, DMSO-d6) □8.43 (s, 1H), 7.79 (d, 1H), 7.02 (d, 1H), 6.92 (dt, 1H),

6.72 (t, 1H), 6.59 (d, 1H), 6.55 (s, 1H), 6.54 (d, 1H), 6.24 (d, 1H), 6.12 (d, 1H), 6.07 (s,

10 1H), 5.20 (s, 1H), 3.48 (s, 3H), 2.44 (s, 3H), 1.54 (s, 3H), 1.09 (s, 3H), 0.98 (s, 3H);

¹³C NMR (400 MHz, DMSO-d6)□145.9, 145.0, 143.9, 143.6, 137.5, 136.6, 132.6,

130.6, 130.5, 128.8, 128.1, 127.6, 126.4, 124.9, 118.7, 118.2, 117.8, 114.1, 114.0, 111.7,

73.7, 59.2, 49.8, 30.0, 28.3, 22.5, 19.3;

Anal. calcd for C27H27NO3: C, 78.42; H, 6.58; N,3.39. Found: C, 78.07; H, 6.85; N,

3.09.

Example 276 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-acetoxymethyl-3-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline

The C-5 lactol-9-TBS ether of core 7 (0.150 g, 0.321 mmol) was dissolved in dichloromethane (15 ml), treated with 2-[(trimethylsilyl)methyl]-2-propene-1-yl acetate (0.180 g, 0.962 mmol), cooled to -78°C, treated dropwise with BF3•Et₂O and allowed to warm to 0°C. After 10 minutes, the reaction mixture was partitioned between saturated aqueous bicarbonate and ethyl acetate, layers separated, aqueous layer extracted with ethyl acetate, the combined organics washed with brine, dried (MgSO₄) and concentrated.

20

25

30

35

The resulting yellow oil was dissolved in THF (10 ml), cooled to 0°C, and treated with tetrabutylammonium fluoride solution (0.35 ml of a 1M / THF solution, 0.35 mmol). After 10 minutes, the mixture was quenched by the addition of saturated aqueous ammonium chloride and pH 7.0 buffer, and the layers were separated. The aqueous layer was extracted with ethyl acetate, the combined organics washed with brine, dried (MgSO₄), and concentrated. The residue was purified by silica gel chromatography eluting with 25% ethyl acetate in hexanes to provide 0.125 g (89%) of the desired compound.

1H NMR (300 MHz, DMSO-d₆) \(\pi \text{8.74}\) (s, 1H), 7.92 (d, J=8 Hz, 1H), 6.63 (d, J=8 Hz, 1H), 6.62 (d, J=8 Hz, 1H), 6.41 (d, J=9 Hz, 1H), 6.21 (br s, 1H), 5.85 (dd, J=2, 10 Hz, 1H), 5.44 (s, 1H), 5.08 (s, 1H), 4.92 (s, 1H), 4.58 (ABq, J=13, 30 Hz, 2H), 3.65 (s, 3H), 2.23 (m, 2H), 2.17 (s, 3H), 1.99 (s, 3H), 1.18 (s, 3H), 1.15 (s, 3H); MS (DCI/NH₃) m/e

(M+H)⁺ 436; Anal. calcd for C₂₆H₂₉NO₅: C, 71.71; H, 6.71; N, 3.22. Found: C, 71.34; H, 6.98; N, 3.12.

Example 277 (+) (5R,3'S) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-[1-ethyl-3-cyclohexenyl]-1H-[1]benzopyrano[3,4-f]quinoline

5

10

15

20

25

30

35

To 77 ml of a 0.36 M THF solution of dimethylphenylsilyl methyl cuprate (27.7 mmol) (Fleming,I.; Newton, T. W.J. Chem. Soc. Perkin Trans. I, 1984, 1805.) at -23°C was added 3-ethyl-cyclohex-2-ene-1-one (2.73 g, 27.0 mmol). The mixture was stirred for 1 hr at -23°C, then for 2 hr at 0°C, treated with N-phenyl-bis-(trifluoromethanesulfonimide) (4.43 g, 26.4 mmol), allowed to warm to room temperature and stirred for 18 hr. The reaction mixture was quenched with saturated aqueous sodium bicarbonate, filtered through celite, and the layers were separated. The organic layer was washed with saturated aqueous sodium bicarbonate, brine, and dried (Na₂SO₄). The product was purified by silica gel column chromatography eluting with hexanes to give the intermediate triflate as a light yellow oil.

The above triflate (0.70 g, 1.28 mmol) was combined with tributyltin hydride (0.92 g, 2.13 mmol) in THF and added dropwise to a THF solution of tetrakistriphenylphosphinepalladium(0) (0.44 g, 3.5 mmol) and LiCl (0.45 g, 10.7 mmol) at room temperature. After the addition, the reaction was refluxed for 24 hr, cooled, filtered through a pad of celite, and stirred vigorously with saturated potassium fluoride solution for 2 hours. The mixture was filtered through celite, diluted with ethyl acetate, and the layers were separated. The organic layer was washed with saturated aqueous sodium bicarbonate, brine, and dried (Na₂SO₄). The product was purified by silica gel column chromatography eluting with hexanes to give 3-ethyl-3-dimethylphenylsilyl-cyclohexene as a colorless oil.

The C-5 lactol-9-TBS ether of core 7 and 3-ethyl-3-dimethylphenylsilyl-cyclohexene were processed according to example 276 to give the product as a mixture of diastereomers that was separated on a (R,R,)-Whelk-O1 HPLC column eluting with hexane:ethanol (98:2) to give the desired compound. : ¹H NMR (500 MHz, DMSO-d6)□8.01 (d, J=8 Hz, 1H), 6.63 (d, J=8 Hz, 1H), 6.61 (d, J=9 Hz, 1H), 6.53 (d, J=9 Hz, 1H), 6.20 (s, 1H), 5.48 (s, 1H), 5.44 (s, 1H), 5.32 (d, J=9 Hz, 1H), 3.64 (s, 3H), 2.26 (m, 1H), 1.90-1.73 (m, 3H), 1.60 (m, 1H), 1.26-1.18 (m, 2H), 1.03 (s, 3H), .088 (t, J=7 Hz, 3H); ¹³C NMR (50 MHz, DMSO-d6)□145.3, 144.8, 144.0, 143.6, 140.3, 133.5, 130.8, 127.8, 126.0, 120.0, 118.1, 117.8, 116.5, 114.2, 113.2, 111.9, 76.1, 59.2, 49.4, 37.5, 30.1, 29.5, 27.7, 27.1, 24.8, 23.6, 21.6, 12.2; MS *m/e* calc'd for C28H33O3N: 431.2460. Found 431.2467.

The C-5 lactol-9-TBS ether of core 7 and cyclohexylmagnesium chloride were processed to give a mixture of Examples 278 and 279 which were separated by flash chromatography eluting with 4:1 hexane/EtOAc.

Example 278 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-cyclohexyl-1H-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH₃) m/z 406 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 8.66 (s, 1H), 7.96 (d, 1H), 6.61 (d, 1H), 6.59 (d, 1H), 6.47 (d, 1H), 6.18 (d, 1H), 5.42 (s, 1H), 5.30 (d, 1H), 3.64 (s, 3H), 2.13 (s, 3H), 1.87 (m, 1H), 1.60-1.48 (m, 3H), 1.28 (s, 3H), 1.20-0.80 (m, 7H), 1.00 (s, 3H);

¹³C NMR (400 MHz, DMSO-d₆) □ 145.3, 144.8, 144.1, 143.8, 133.5, 131.1, 128.1, 126.1, 118.5, 117.9, 116.6, 114.4, 113.2, 112.0, 76.8, 59.3, 49.4, 29.7, 29.5, 28.0, 27.2, 25.8, 25.6, 25.3, 23.8;

Example 279 2,5,5-trihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH₃) m/z 324 (M+H)⁺;

5

10

15

20

25

30

35

¹H NMR (300 MHz, DMSO-d₆) □8.78 (s, 1H), 7.81 (d, 1H), 6.62 (d, 1H), 6.57 (d, 1H), 6.53 (d, 1H), 6.22 (s, 1H), 5.40 (s, 1H), 5.05 (s, 2H), 3.62 (s, 3H), 2.01 (s, 3H), 1.19 (s, 6H);

¹³C NMR (400 MHz, DMSO-d₆) □ 146.6, 145.4, 145.3, 144.0, 131.5, 130.8, 128.1, 126.2, 118.2, 118.0, 117.2, 113.9, 113.2, 111.2, 67.1, 59.4, 49.9, 29.0, 22.9;

Example 280 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-hydroxymethyl-3-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline

Example 276 (0.032g, 0.074 mmol) was dissolved in THF/MeOH/H₂O (5ml/1ml/0.5ml), cooled to 0°C, treated with K₂CO₃ (0.051 g, 0.367 mmol), and allowed to warm to room temperature and stir for 12 h. The mixture was partitioned between saturated aqueous ammonium chloride and ethyl acetate, the aqueous layer extracted with ethyl acetate, the combined organics washed with brine, dried (MgSO₄), and concentrated. The residue was purified by silica gel chromatography eluting with 25% then 50% ethyl acetate in hexanes to give 0.022 g (76%) of the desired compound. 1H NMR (300 MHz, DMSO-d₆) \(\pi 8.71 \) (s, 1H), 7.92 (s, J=9 Hz, 1H), 6.62 (d, J=9 Hz, 1H), 6.61 (d, J=8 Hz, 1H), 6.41 (d, J=8 Hz, 1H), 6.18 (d, J=1 Hz, 1H), 5.86 (dd, J=11, 1 Hz, 1H), 5.43 (br s, 1H), 5.02 (m, 1H), 4.80 (t, J=6 Hz, 1H), 4.74 (br s, 1H), 3.90-3.78 (m, 2H), 3.65 (s, 3H), 2.50-2.36 (m, 1H), 2.23-2.10 (m, 1H), 2.19 (s, 3H), 1.17 (s, 3H), 1.16 (s, 3H); \(^{13}C NMR (125 MHz, DMSO-d₆)\(\pi 145.9, 145.8, 144.9, 143.8, 142.8,

133.2, 132.8, 127.6, 126.4, 117.7, 116.2, 116.2, 114.2, 113.6, 112.6, 110.6, 72.1, 63.7, 59.4, 49.7, 35.4, 29.2, 28.9, 23.9; MS (DCI/NH₃) *m/e* (M+H)⁺ 394.

Example 281 methyl 2-[2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]-5-quinolinyl] acetate

The C-5 lactol-9-TBS ether of core 7 was processed as in example 46 to provide the intermediate silylated product.

5

10

15

20

25

30

35

¹H NMR (300 MHz, DMSO-d₆) □ 7.94 (d, J=9 Hz, 1H), 6.64 (dd, J=9, 3 Hz, 1H), 6.49 (d, J=9 Hz, 1H), 6.27 (s, 1H), 6.14 (dd, J=10, 3 Hz, 1H), 4.45 (s, 1H), 3.63 (s, 3H), 3.61 (s, 3H), 2.76-2.55 (m, 2H), 2.20 (s, 3H), 1.18 (s, 3H), 1.16 (s, 3H), 1.00 (s, 9H), 0.21 (s, 3H), 0.16 (s, 3H); MS (APCI) *m/e* (M+H)⁺ 510, (M-H)⁻ 508.

The intermediate silylated compound above (0.030 g, 0.058) was dissolved THF (1 ml) cooled to 0°C, and treated with tetrabutylammonium fluoride (58μL of a 1M/THF solution, 0.058 mmol). After 5 minutes, the mixture was poured over saturated aqueous NH4Cl and extracted with ethyl acetate. The combined organic layers were washed with brine and dried (MgSO4). The product was purified by silica gel chromatography eluting with 40% methyl *t*-butyl ether in hexane to provide the desired compound (0.019 g, 82%) as a white solid. ¹H NMR (300 MHz, DMSO-d₆)□8.80 (s, 1H), 7.93 (d, J=9 Hz, 1H), 6.64 (d, J=9 Hz, 1H), 6.61 (d, J=9 Hz, 1H), 6.43 (d, J=9 Hz, 1H), 6.25 (s, 1H), 6.10 (dd, J=10, 3 Hz, 1H), 5.45 (s, 1H), 3.66 (s, 3H), 3.60 (s, 3H), 2.77-2.52 (m, 2H), 2.21 (s, 3H), 1.18 (s, 3H), 1.16 (s, 3H); MS (APCI) *m/e* (M+H)⁺ 396, (M-H)⁻ 394.

Example 282

(Z) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-butenyl)-1H[1]benzopyrano[3,4-f]quinoline

The intermediate silylated product from example 281 (0.445 g, 0.87 mmol) was dissolved in THF (4 ml), cooled to 0° C, treated dropwise with Dibal-H (2.69 mL of a 1M/THF solution, 2.69mmol), and stirred for 30 minutes. The reaction mixture was poured over a rapidly stirring mixture of 100 mL of saturated aqueous potassium sodium tartrate and 100 mL of ethyl acetate and stirred for 1 hour. The layers were separated, the aqueous layer extracted with ethyl acetate, the combined organic layers washed with saturated aqueous sodium bicarbonate, brine and dried (MgSO4). The residue was purified by silica gel chromatography eluting with 20% then 30% methyl *t*-butyl ether in hexane followed by 6% ethyl acetate in dichloromethane to give the primary alcohol (0.293 g, 70%) as a white solid. ¹H NMR (300 MHz, DMSO-d6) □7.92 (d, J=9 Hz, 1H), 6.65 (d, J=9 Hz, 1H), 6.61 (d, J=9 Hz, 1H), 6.57 (d, J=9 Hz, 1H), 6.21 (s, 1H), 5.88 (dd, J=10, 3 Hz, 1H), 5.43 (s, 1H), 4.62 (t, J=5 Hz, 1H), 3.61 (s, 3H), 2.19 (s, 3H), 1.90-1.75

(m, 2H), 1.62-1.47 (m, 2H), 1.17 (s, 3H), 1.15 (s, 3H), 0.99 (s, 9H), 0.20 (s, 3H), 0.15 (s, 3H); MS (APCI) m/e (M+H)⁺ 482, (M-H)⁻ 480.

A stirring solution of oxalyl chloride (22 μ L, 0.249 mmol) in THF (2 mL) was cooled to -78°C, treated with DMSO (24 μ L, 0.332 mmol), stirred for 5 minutes and treated dropwise with a solution of the above primary alcohol (0.080 g, 0.166 mmol) in 2 mL of THF. The resulting mixture was stirred for 40 minutes, treated with triethylamine (92.5 μ L, 0.664 mmol) stirred a further 10 minutes and allowed to warm to 0° C. After 30 minutes at 0°C the reaction mixture was partitioned between water and dichloromethane, the aqueous layer extracted with dichloromethane, and the combined organic layers dried (MgSO4). The product was purified by silica gel chromatography eluting with 20% then 30% ethyl acetate in hexane to give the aldehyde (0.059 g, 73%) as a white solid. 1 H NMR (300 MHz, DMSO-d6) \Box 9.65 (s, 1H), 7.93 (d, J=9 Hz, 1H), 6.67 (d, J=9 Hz, 1H), 6.65 (d, J=9 Hz, 1H), 6.48 (d, J=9 Hz, 1H), 6.33 (m, 2H), 5.46 (s, 1H), 3.63 (s, 3H), 2.87 (m, 1H), 2.65 (m, 1H), 2.18 (s, 3H), 1.19 (s, 3H), 1.14 (s, 3H), 1.00 (s, 9H), 0.21 (s, 3H), 0.15 (s, 3H); MS (APCI) m/e (M+H)⁺ 480, (M-H)⁻ 478.

A solution of ethyltriphenylphosphonium bromide (0.130 g, 0.351 mmol) in THF:Et2O (3 ml, 3:2) was cooled to 0°C and treated dropwise with n-BuLi (140 μ L of a 2.5 M/hexanes, 0.351 mmol). The resulting deep red solution was stirred for 30 minutes at 0°C, cooled to -78°C and treated with the above aldehyde (0.056 g, 0.117 mmol) in THF (2 mL). The reaction mixture was stirred for 5 minutes at -78° C, warmed to 0°C for 40 minutes and quenched by the addition of water. The layers were separated, the aqueous layer extracted with dichoromethane, the combined organic layers washed with brine and dried (MgSO4). The product was purified by silica gel chromatography eluting with a gradient from 5% to 20% ethyl acetate in hexane to provide the intermediate silyl ether (0.050 g, 87%) as a white solid. 1 H NMR (300 MHz, DMSO-d6) \Box 7.92 (d, J=9 Hz, 1H), 6.65 (d, J=9 Hz, 1H,), 6.63 (d, J=9 Hz, 1H), 6.20 (s, 1H,), 5.68 (dd, J=10, 3 Hz, 1H), 5.43 (m, 3H), 3.64 (s, 3H), 2.15 (s, 3H), 1.26 (d, J=5 Hz, 3H), 1.17 (s, 6H), 1.00 (s, 9H), 0.20 (s, 3H), 0.15 (s, 3H); MS (APCI) m/e (M+H)⁺ 492, (M-H)⁻ 490.

The intermediate silyl ether (0.038 g, 0.077 mmol) was dissolved in THF (3 ml), cooled to 0°C, treated with tetrabutylammonium fluoride (80 ml of a 1 M/THF solution, 0.080 mmol), and the mixture was partitioned between ethyl acetate and saturated ammonium chloride. The aqueous layer was extracted with ethyl acetate, the combined organics were washed with brine, dried (MgSO₄) and purified by silica gel chromatography eluting with 25 % ethyl acetate in hexanes to give the desired compound (0.024 g, 83%). ¹H NMR (300 MHz, DMSO-d₆)□8.71 (s, 1H), 7.93 (d, J=9 Hz, 1H), 6.62 (d, J=9 Hz, 1H), 6.60 (d, J=9 Hz, 1H), 6.47 (d, J=9 Hz, 1H), 6.18 (s, 1H), 5.62 (dd, J=10, 3 Hz, 1H), 5.43 (m, 3H), 3.64 (s, 3H), 2.45-2.18 (m, 2H), 2.15 (s, 3H),

1.30 (d, J=5 Hz, 3H), 1.15 (s, 6H); MS (APCI) m/e calc'd for : 377.20. Found ; (M+H)⁺ 378, (M-H)⁻ 376.

Example 283

2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-methyl-2-butenyl)-1H[1]benzopyrano[3,4-f]quinoline

The intermediate aldehyde from Example 282 and isopropyltriphenylphosphonium iodide were processed according to Example 282 to give the desired compound. ¹H NMR (300 MHz, DMSO-d₆)□8.65 (s, 1H), 7.91 (d, J=9 Hz, 1H), 6.62 (d, J=9 Hz, 1H), 6.60 (d, J=9 Hz, 1H), 6.46 (d, J=9 Hz, 1H), 6.14 (s, 1H), 5.60 (dd, J=9, 3 Hz, 1H), 5.43 (s, 1H), 5.15 (m, 1H), 3.64 (s, 3H), 2.45-2.18 (m, 2H), 2.15 (s, 3H), 1.63 (s, 3H), 1.32 (s, 3H), 1.17 (s, 3H), 1.16 (s, 3H); MS (APCI) *m/e* (M+H)⁺ 392, (M-H)⁻ 390.

Example 284 (+) (5S,3'S) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-cyclohexeny1)-1H-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH₃) m/z 404 (M+H)⁺;

5

10

 $^{1}\text{H NMR}$ (300 MHz, DMSO-d₆) \Box 8.70 (s, 1H), 8.01 (d, 1H), 6.65 (d, 1H), 6.62 (d,

1H), 6.53 (d, 1H), 6.27 (d, 1H), 5.82-5.65 (m, 2H), 5.45 (s, 1H), 5.33 (d, 1H), 3.65 (s,

3H), 2.28 (m, 1H), 2.12 (s, 3H), 1.86 (m, 2H), 1.55 (m, 1H), 1.31 (s, 3H), 1.26-1.14 (m, 3H), 1.03 (s, 3H);

¹³C NMR (400 MHz, DMSO-d₆)□145.4, 145.0, 144.1, 143.5, 133.6, 130.7, 128.1, 127.9, 127.7, 126.1, 118.4, 117.8, 116.5, 114.4, 113.4, 112.1, 75.9, 59.3, 49.4, 37.2, 29.6, 27.1, 24.7, 24.6, 23.7, 21.2;

25 $[\Box]^{23}D=+184^{\circ}$ (c 0.33, CHCl₃).

Example 285 (+) (5R,3'R) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-cyclohexeny1)-1H-[1]benzopyrano[3,4-f]quinoline

 $MS (DCI/NH_3) m/z 404 (M+H)^+;$

¹H NMR (300 MHz, DMSO-d₆) □8.70 (s, 1H), 7.99 (d, 1H), 6.65 (d, 1H), 6.62 (d, 1H), 6.52 (d, 1H), 6.20 (d, 1H), 5.61 (ddd, 1H), 5.46 (d, 1H), 5.41 (s, 1H), 5.10 (dd, 1H), 3.66 (s, 3H), 2.27 (m, 1H), 2.10 (s, 3H), 1.99-1.72 (m, 2H), 1.70-1.55 (m, 3H), 1.35 (m, 1H), 1.29 (s, 3H), 1.06 (s, 3H);

¹³C NMR (400 MHz, DMSO-d₆)□145.4, 145.0, 143.4, 143.0, 133.5, 131.0, 128.9,

128.1, 126.4, 126.3, 117.9, 116.5, 114.4, 113.5, 112.1, 75.2, 59.3, 49.5, 36.9, 29.7, 27.6, 25.5, 24.6, 24.3, 20.0;

 $[\Box]^{23}$ D=+170° (c 0.23, CHCl₃).

Example 286 (+) (5R,3'S) 2,5(R)-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-cyclopenteny1)-1H-[1]benzopyrano[3,4-f]quinoline

 $MS (DCI/NH_3) m/z 390 (M+H)^+;$

¹H NMR (300 MHz, DMSO-d₆) □8.67 (s, 1H), 8.02 (d, 1H), 6.65 (d, 1H), 6.62 (d, 1H), 6.53 (d, 1H), 6.25 (s, 1H), 5.77 (ddd, 1H), 5.69 (ddd, 1H), 5.47 (s, 1H), 5.37 (s, 1H), 3.66 (s, 3H), 2.90 (m, 1H), 2.34-2.13 (m, 2H), 2.10 (s, 3H), 1.55-1.41 (m, 2H), 1.31 (s, 3H), 1.04 (s, 3H);

13C NMR (400 MHz, DMSO-d₆) □ 145.5, 144.9, 144.0, 143.9, 133.6, 132.0, 131.7,

131.5, 127.9, 126.2, 117.7, 117.6, 116.5, 114.4, 113.3, 111.9, 76.1, 59.3, 49.4, 48.6, 31.7, 29.5, 27.1, 24.6, 23.7;

 $[\Box]^{23}$ D=+136° (c 0.355, CHCl₃).

Example 287 (+) (5R,3'R) 2,5(R)-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-cyclopentenyl)-1H-[1]benzopyrano[3,4-f]quinoline

 $MS (DCI/NH_3) m/z 390 (M+H)^+;$

¹H NMR (300 MHz, DMSO-d₆) □8.68 (s, 1H), 8.01 (d, 1H), 6.65 (d, 1H), 6.62 (d, 1H), 6.51 (d, 1H), 6.22 (s, 1H), 5.72 (dd, 1H), 5.41 (d, 1H), 5.40 (s, 1H), 5.17 (dd, 1H), 3.63 (s, 3H), 2.90-2.80 (m, 1H), 2.41-2.32 (m, 1H), 2.23-2.10 (m, 1H), 2.06 (s, 3H),

1.89-1.71 (m, 2H), 1.30 (s, 3H), 1.08 (s, 3H); ¹³C NMR (400 MHz, DMSO-d₆) □ 145.5, 145.0, 143.9, 143.4, 133.5, 132.3, 132.2, 130.2, 128.1, 126.4, 117.8, 116.9, 116.4, 114.4, 113.4, 111.9, 75.7, 59.3, 49.5, 48.7, 31.6, 29.8, 27.6, 27.1, 24.2;

 $[\Box]^{23}D=+116^{\circ}$ (c 0.800, CHCl₃).

25

30

15

20

Example 288 rel-(5S)-9-hydroxy-5-[(3R)-(1-methoxycarbonyl)cyclohexen-3-yl]- 10methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline MS (DCI/NH3) 462 (M+H)+;

1H NMR (200 MHz, DMSO-d6), □8.81 (s, 1 H), 8.07 (d, J=8.5 Hz, 1 H), 6.72 (d, J=8.5 Hz, 1 H), 6.70 (d, J=8.5 Hz, 1 H), 6.60 (d, J=8.5 Hz, 1 H), 6.42-6.41 (m, 1 H), 6.21 (d, J=1.2 Hz), 5.57 (d, J=10.2 Hz, 1 H), 1 H), 5.45 (s, 1 H), 2.71 (s, 2 H), 2.58 (s, 2 H), 2.56-2.48 (m, 2 H), 2.20-2.16 (m, 2 H), 2.08 (d, J=1.2 Hz), 1.80-1.40 (m, 4 H), 1.25 (s, 2 H), 1.18 (s, 2 H);

HRMS calcd for C₂8H₂1NO₅ is 461.2202. Found 461.2212.

Example 289 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-methyl-3-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline

Example 276 (0.040 g, 0.092 mmol) and

dichlorobis(triphenylphosphine)palladium(II) (0.006 g, 0.009 mmol) were dissolved in dioxane (5 ml), heated to 100 °C and treated with sodium borohydride (0.017 g, 0.460 mmol). The resulting black solution was allowed to cool to room temperature, diluted with water and ethyl acetate and filtered through celite. The layers were separated, the aqueous layer was extracted with ethyl acetate, the combined organics were washed with brine, dried (MgSO₄), and concentrated. Purification by silica gel chromatography eluting with 25% ethyl acetate in hexanes provided the desired product (0.028 g, 80%) as a colorless foam.

¹H NMR (300 MHz, DMSO-d6)□8.71 (s, 1H), 7.92 (d, J=8 Hz, 1H), 6.62 (d, J=8 Hz, 1H), 6.61 (d, J=8 Hz, 1H), 6.41 (d, J=8 Hz, 1H), 6.18 (d, J=1 Hz, 1H), 5.83 (dd, J=3, 10 Hz, 1H), 5.44 (br s, 1H), 4.75 (br s, 1H), 4.56 (br s, 1H), 3.65 (s, 3H), 2.50-2.41 (m, 1H), 2.19 (s, 3H), 2.16-2.07 (m, 1H), 1.73 (s, 3H), 1.18 (s, 3H), 1.15 (s, 3H); ¹³C NMR (125

Hz, 1H), 5.44 (br s, 1H), 4.75 (br s, 1H), 4.56 (br s, 1H), 3.65 (s, 3H), 2.50-2.41 (m, 1H) 2.19 (s, 3H), 2.16-2.07 (m, 1H), 1.73 (s, 3H), 1.18 (s, 3H), 1.15 (s, 3H); ¹³C NMR (125 MHz, DMSO-d₆) □145.8, 144.9, 143.8, 142.8, 141.6, 133.3, 132.7, 127.5, 126.4, 117.8, 116.3, 116.2, 114.2, 113.6, 112.8, 112.7, 72.0, 59.4, 49.7, 29.2, 28.8, 24.0, 22.4; MS (DCI/NH₃) *m/e* (M+H)⁺ 378; Anal. calcd for C₂4H₂7NO₃: C, 76.36; H, 7.21; N, 3.71.

20 Found: C, 76.06; H, 7.17; N, 3.39.

Example 290 9,10-Dimethoxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline

MS (ESI) m/z 378 (M+H)⁺;

¹H NMR (300 MHz, DMSO) □ 7.93 (d, *J*=8.5 Hz, 1 H), 6.82 (d, *J*=8.8 Hz, 1 H), 6.61 (dd, *J*=4.4, 4.4 Hz, 2 H), 6.22 (d, *J*=1.4 Hz, 1 H), 5.83 (ddt, *J*=16.9, 10.3, 3.1 Hz, 1 H), 5.70 (dd, *J*=10.3, 3.3 Hz, 1 H), 5.44 (s, 1 H), 5.44-4.96 (m, 2 H), 3.77 (s, 3 H), 3.67 (s, 3 H), 2.16 (s, 3 H), 1.17 (s, 3 H), 1.16 (s, 3 H); HRMS calcd for C₂4H₂7NO₃ 377.1991. Found 377.2001.

30

35

5

10

15

Example 291 9,10-Dimethoxy-5-[3-cyclohexenyl]-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline

MS (ESI) m/z 418 (M+H)⁺;

¹H NMR (300 MHz, DMSO), isomer 1:□8.02 (d, *J*=8.8 Hz, 1 H), 6.84 (d, *J*=1.7 Hz, 1 H), 6.70 -6.60 (m, 2 H), 6.27 (d, *J*=0.6 Hz, 1 H), 5.80 -5.60 (m, 2 H), 5.16-5.15 (m, 1 H), 3.77 (s, 3 H), 3.69 (s, 3 H), 2.13 (s, 3 H), 1.31 (s, 3 H), 1.07 (s, 3 H); isomer 2:□8.01 (d, *J*=8.81 Hz, 1 H), 6.80 (d, *J*=0.7 Hz, 1 H), 6.64 (m, 2 H), 6.26 (d, *J*=0.7 Hz, 1 H), 5.60 -

5.30 (m, 2 H), 5.09 (s, 1 H), 3.77 (s, 3 H), 3.68 (s, 3 H), 2.10 (s, 3 H), 1.29 (s, 3 H), 1.04 (s, 3 H);

HRMS calcd for C₂₇H₃₁NO₃ 417.2304. Found 417.2299.

5 Example 292 10-methoxy-9-ethoxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro[1]benzopyrano[3,4-f]quinoline

¹H NMR (300 MHz, DMSO) □ 7.94 (d, *J*=8.8 Hz, 1 H), 6.79 (d, *J*=8.8 Hz, 1 H), 6.60 (d, *J*=8.8 Hz, 1 H), 6.55 (d, *J*=8.8, 1 H), 6.45 (s, 1 H), 5.85 (ddt, *J*=17.3, 10.3, 6.6 Hz, 1 H), 5.43 (d, *J*=9.2 Hz), 5.16 (s, 1 H), 5.09 (dd, *J*=10.3, 1.1 Hz, 1 H), 5.06 (dd, *J*=17.3, 1.1

10 Hz, 1 H), 4.91 (s, 1 H), 4.06-3.97 (m, 2 H), 2.62-2.52 (m, 1 H), 2.31-2.15 (m, 1 H), 2.24 (s, 3 H), 1.35 (t, *J*=7.0 Hz, 3 H), 1.26 (s, 3 H), 1.07 (s, 3 H);

MS (DCI/NH₃) m/z 392 (M+H)⁺;

HRMS calcd for C₂₆H₂₇NO₃ 391.2147. Found 391.2138.

Example 293 10-methoxy-9-(3-propenyloxy)-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH₃) m/z 404 (M+H)⁺.

¹H NMR (300 MHz, DMSO) □ 7.93 (d, *J*=9.0 Hz, 1 H), 6.83 (d, *J*=8.8 Hz, 1 H), 6.61 (d, *J*=9.0 Hz, 1 H), 6.59 (d, *J*=8.8 Hz, 1 H), 6.23 (d, *J*=1.5 Hz, 1 H), 6.15-6.02 (m, 1 H),

5.81 (ddt, *J*=17.3, 10.3, 6.6 Hz, 1 H), 5.67 (dd, *J*=9.8, 3.3 Hz), 5.45 (s, 1 H), 5.44 (dd, *J*=16.0, 2.0 Hz, 1 H), 5.27 (dd, 10.6, 2.0 Hz, 1 H), 5.03 (dd, *J*=10.3, 1.8 Hz, 1 H), 4.98 (dd, *J*=17.3, 1.8 Hz, 1 H), 4.56-4.53 (m, 1 H), 2.47-2.41 (m, 1 H), 2.34-2.27 (m, 1 H), 2.16 (s, 3 H), 1.17 (s, 3 H), 1.16 (s, 3 H);

HRMS calcd for C₂₆H₂₉NO₃ 403.2147. Found 403.2150.

25

20

Example 294 10-methoxy-9-(3-propynyloxy)-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH₃) m/z 402 (M+H)⁺;

¹H NMR (300 MHz, DMSO)□7.92 (d, *J*=8.8 Hz, 1 H), 6.88 (d, *J*=8.8 Hz, 1 H), 6.62 (d, *J*=8.8 Hz, 1 H), 6.61 (d, *J*=8.8, 1 H), 6.24 (d, *J*=1.7 Hz, 1 H), 5.81 (ddt, *J*=17.3, 10.3, 6.6 Hz, 1 H), 5.72 (dd, *J*=9.8, 3.3 Hz), 5.44 (s, 1 H), 5.03 (dd, *J*=10.3, 1.8 Hz, 1 H), 4.99 (dd, *J*=17.3, 1.8 Hz, 1 H), 4.79 (d, *J*=2.3 Hz, 2 H), 3.57 (t, *J*=2.3 Hz, 1 H), 2.47-2.41 (m, 1 H), 2.34-2.27 (m, 1 H), 2.16 (s, 3 H), 1.17 (s, 3 H), 1.16 (s, 3 H); HRMS calcd for C₂6H₂7NO₃ 401.1991. Found 401.1978

35

30

Example 295 2,5-dihydro-9-acetoxy-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H[1]benzopyrano[3,4-f]quinoline

¹H NMR (400 MHz, DMSO-d6) □7.78 (d, J=8.5, 1H), 6.81 (d, J=8.5, 1H), 6.60 (d, J=8.5, 1H), 6.57 (d, J=8.9, 1H), 6.18 (d, J=1.7, 1H), 5.80-5.70 (m, 2H), 5.39 (s, 1H), 4.99-4.90 (m, 2H), 3.55 (s, 3H), 2.39 (br dd, 2H), 2.23 (s, 3H), 2.10 (d, J=0.9, 3H), 1.11 (s, 3H), 1.10 (s, 3H); ¹³C NMR (100 MHz, DMSO-d6) □169.3, 148.5, 148.0, 146.4, 138.6, 134.1, 133.7, 132.2, 127.4, 126.3, 120.8, 118.3, 117.4, 116.3, 115.1, 113.9, 112.7, 73.7, 60.0, 49.9, 36.7, 29.4, 29.1, 23.9, 20.6; MS (DCI/NH3) m/e 406(M+H)+; Anal. Calcd for C25H27NO4: C 74.05, H 6.71, N 3.45. Found: C 73.91, H 6.79, N 3.31.

Example 296 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline

1H NMR (300 MHz, DMSO-d6) □7.86 (d, J=8.8, 1H), 6.85 (d, J=8.8, 1H), 6.68-6.62 (m, 2H), 6.25 (d, J=1.5, 1H), 5.89-5.75 (m, 2H), 5.46 (s, 1H), 5.06-4.96 (m, 2H), 3.62 (s, 3H), 3.00 (s, 3H), 2.85 (s, 3H), 2.83-2.67 (m, 4H), 2.48 (m, 1H), 2.26 (m, 1H), 2.17 (s, 3H), 1.18 (s, 3H), 1.17 (s, 3H); 13C NMR (75 MHz, DMSO-d6) □171.5, 170.4, 148.3, 148.0, 146.2, 138.5, 134.1, 133.5, 132.1, 127.3, 126.2, 120.8, 118.1, 117.2, 116.2, 115.0, 113.8, 112.5, 73.6, 60.0, 49.8, 36.6, 36.5, 34.9, 29.3, 29.0, 27.6, 23.8; MS (DCI/NH3) m/e 491(M+H)+, 508(M+NH4)+; Anal. Calcd for C29H24N2O5: C 71.00, H 6.99, N 5.71. Found: C 70.88, H 7.10, N 5.49.

The chemistry described above was used with Core 9 to prepare Examples 297-299.

Example 297 7-bromo -5-[3-cyclohexenyl]- 10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline

MS (APCI) m/z 466 (M+H)⁺;

5

10

15

35

¹H NMR (300 MHz, DMSO), isomer 1:□8.03 (d, *J*=8.8 Hz, 1 H), 7.33 (d, *J*=9.2 Hz, 1 H), 6.65 (dd, *J*=8.8, 1.7 Hz, 2 H), 6.35 (d, *J*=1.3 Hz, 1 H), 5.91-5.43 (m, 4 H), 3.86 (s, 3 H), 2.14 (s, 3 H), 1.99 (s, 3 H), 1.31 (s, 3 H), 1.06 (s, 3 H); isomer 2:□8.00 (dd, *J*=8.8 Hz, 1 H), 7.33 (d, *J*=9.2 Hz, 1 H), 6.65 (dd, *J*=8.8, 1.7 Hz, 1 H), 6.35 (d, *J*=1.3 Hz, 1 H), 6.31 (d, *J*=1.3 Hz, 1 H), 5.91-5.43 (m, 4 H), 2.12 (s, 3 H), 1.28 (s, 3 H), 1.03 (s, 3 H); 13 C NMR (300 MHz, DMSO)□155.5, 145.5, 133.9, 133.7, 129.5, 129.4, 128.5, 127.9, 127.7, 127.2, 127.0, 125.6, 118.1, 115.5, 113.2, 113.1, 106.9, 102.3, 77.2, 76.5, 55.8, 49.4, 37.6, 36.7, 29.6, 29.5, 27.4, 26.9, 25.6, 24.6, 24.2, 23.6, 21.1, 19.8; HRMS cald for C26H28NO2⁷⁹Br 465.1303. Found 465.1284; Cald for C26H28NO2⁸¹Br 467.1283. Found 467.1281.

Anal. calcd for C₂₆H₂₈BrNO₂: C, 66.95; H, 6.05; N, 3.00; found C, 66.77; H, 6.20; N, 2.88.

Example 298 10-methoxy-7-bromo-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline

MS (APCI) m/z 426 (M+H)⁺;

¹H NMR (300 MHz, DMSO) □ 7.93 (d, *J*=8.8 Hz, 1 H), 7.33 (d, *J*=9.2 Hz, 1 H), 6.71 (d, *J*=9.2 Hz, 1 H), 6.60 (d, *J*=8.5 Hz, 1 H), 6.25 (d, *J*=1.5 Hz, 1 H), 5.94-5.80 (m, 2 H), 5.45 (s, 1 H), 5.0 (m, 2 H), 3.86 (s, 3 H), 2.17 (d, *J*=1.5 Hz, 3 H), 1.17 (s, 6 H). ¹³C NMR (300 MHz, DMSO) 155.3, 147.0, 146.0, 133.8, 133.6, 131.8, 129.5, 127.3, 127.2, 117.4, 116.0, 115.1, 113.2, 107.1, 102.6, 74.8, 55.9, 49.8, 29.0, 23.8.

HRMS calcd for C₂₃H₂₄⁷⁹BrNO₂ 426.3502. Found 426.3496.

Anal. calcd for C₂₃H₂₄BrNO₂: C, 64.79; H, 5.67; N, 3.29; found C, 65.08; H, 5.73; N, 3.18.

Example 299 7-bromo-5-[1-methyl-3-cyclohexenyl]- 10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline

MS (APCI) m/z 480 (M+H)⁺;

10

15

20

25

30

35

¹H NMR (300 MHz, DMSO) isomer 1: □8.02 (d, J=8.5 Hz, 1 H), 7.55 (d, J=5.9 Hz, 1 H), 7.37 (d, J=2.6 Hz, 1 H), 7.31 (d, J=1.8 Hz, 1 H), 6.67 (dd, J=14.7, 8.8 Hz, 1 H), 6.35 (d, J=1.5 Hz, 1 H), 5.63 (d, J=5.9 Hz, 1 H), 5.56-5.45 (m, 2 H), 3.86 (s, 3 H), 2.13 (s, 3 H), 1.61 (s, 3 H), 1.30 (s, 3 H), 1.02 (s, 3 H); isomer 2: □8.00 (d, J=8.5 Hz, 1 H), 7.54 (d, J=5.9 Hz, 1 H), 7.35 (d, J=1.8 Hz, 2 H), 6.67 (dd, J=14.7, 8.8 Hz, 2 H), 6.31 (d, J=1.5 Hz, 1 H), 5.51 (m, 2 3.86 (s, 3 H), 2.08 (s, 3 H), 1.50 (s, 3 H), 1.09 (s, 3 H), 0.92 (s, 3 H);

HRMS calcd for C₂₇H₃₀NO₂⁷⁹Br 479.1460. Found 479.1463; HRMS calcd for C₂₇H₃₀NO₂⁸¹Br 481.1439. Found 481.1456.

Anal. calcd for C₂₇H₃₀NO₂⁷⁹Br: C, 67.5; H, 6.29; N, 2.92; found C, 67.08; H, 6.38; N, 2.54.

The chemistry described above was used with Core 10 to prepare Example 300.

Example 300 10-methoxy-9-bromo-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH₃) m/z 428 (M+H)⁺; 426;

 1 H NMR (300 MHz, DMSO) □7.93 (d, J=8.8 Hz, 1 H), 7.33 (d, J=8.5 Hz, 1 H), 6.67 (d, J=8.5 Hz, 1 H), 6.65 (d, J=8.5 Hz, 1 H), 6.36 (d, J=1.1 Hz, 1 H), 5.88-5.74 (m, 2 H), 5.46 (s, 1 H), 5.05-4.95 (m, 2 H), 3.62 (s, 3 H), 2.18 (d, J=1.1 Hz, 3 H), 1.19 (s, 3 H), 1.16 (s, 3 H); 13 C NMR (300 MHz, DMSO) □152.7, 150.8, 146.5, 134.0, 133.6, 132.1,

130.0, 127.3, 126.1, 119.3, 117.4, 116.2, 115.0, 114.6, 114.0, 109.5, 73.7, 59.6, 49.9, 36.7, 29.4, 29.1, 23.9;

HRMS calcd for $C_{23}H_{24}NO_{2}^{79}Br$ 425.0990. Found 425.0998; HRMS calcd for $C_{23}H_{24}NO_{2}^{81}Br$ 427.0970. Found 427.0974.

5 Anal. calcd for C₂₃H₂₄BrNO₂: C, 64.79; H, 5.67; N, 3.29; found C, 64.99; H, 5.98; N, 3.13.

The chemistry detailed above was used with Core 11 to prepare Examples 301-303.

Example 301 7,9-Dibromo-10-methoxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline

MS (ESI) m/z 504 (M+H)⁺;

10

20

35

¹H NMR (300 MHz, DMSO) □7.57 (d, *J*=8.9 Hz, 1 H), 7.65 (s, 1 H), 6.66 (d, *J*=8.8 Hz, 1 H), 6.44 (s, 1 H), 5.95 (dd, *J*=10.1, 3.1 Hz, 1 H), 5.97-5.78 (m, 2 H), 5.47 (s, 1 H),

5.08-4.99 (m, 2 H), 3.62 (s, 3 H), 2.19 (s, 3 H), 1.20 (s, 3 H), 1.17 (s, 3 H); ¹³C NMR (300 MHz, DMSO) □152.1, 147.4, 147.0, 133.6, 132.7, 132.0, 131.7, 128.3, 127.1, 126.3, 120.5, 117.6, 115.9, 115.3, 114.0, 113.8, 110.0, 106.6, 75.2, 59.7, 49.9, 36.8, 29.6, 29.2, 23.7;

HRMS calcd for C₂₃H₂₃⁷⁹Br₂NO₂ 503.0096. Found 503.0086; HRMS calcd for C₂₃H₂₃⁷⁹Br⁸¹BrNO₂ 505.0075. Found 505.0075.

Example 302 7,9-Dibromo-5-[cyclohexen-3-yl]- 10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline

MS (ESI) m/z 544 (M+H)⁺;

1H NMR (300 Mhz, DMSO), 1st isomer: □8.81 (d, 1H, J=8.83 Hz), 7.67 (s, 1H), 6.70 (d, 1H, J=8.83 Hz), 6.59 (s, 1H), 5.82-5.59 (m, 4H), 5.50 (s, 1H), 3.61 (s, 3H), 2.49-2.27 (m, 2H), 2.15 (s, 3H), 2.04-1.81 (m, 2H), 1.79-1.41 (m, 2H), 1.32 (s, 3H), 1.08 (s, 3H); 2nd isomer □7.9 (d, 1H, J=8.83 Hz), 7.66 (s, 1H), 6.69 (d, 1H, J=8.83 Hz), 6.54 (s, 1H), 5.82-5.59 (m, 4H), 5.45 (s, 1H), 3.60 (s, 3H), 2.49-2.27 (m, 2H), 2.13 (s, 3H), 2.04-1.81 (m, 2H), 1.79-1.41 (m, 2H), 1.30 (s, 3H), 1.05 (s, 3H); HRMS calcd for C26H27 PBr2NO2 is 543.0409. Found 543.0385; HRMS calcd for

HRMS calcd for $C_{26}H_{27}^{79}Br_{2}NO_{2}$ is 543.0409. Found 543.0385; HRMS calcd for $C_{26}H_{27}^{79}Br_{81}^{81}Br_{81}NO_{2}$ 545.0388. Found 545.0396.

Example 303 7,9-Dibromo-5-[1-methyl-3-cyclohexenyl]-10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline MS (ESI) m/z 560 (M+H)⁺;

1H NMR (300 MHz, DMSO), isomer 1: \square 8.83 (d, J=8.0 Hz, 1 H), 7.37 (s, 1 H), 6.70 (d, J=8.8 Hz, 1 H), 6.58 (s, 1 H), 5.58 (d, J=9.2 Hz, 1 H), 5.49 (s, 1 H), 3.61 (s, 3 H), 2.51-2.49 (m, 4 H), 2.14 (s, 3 H), 1.31 (s, 3 H), 1.29-1.20 (m, 4 H), 1.26 (s, 3 H); isomer 2: \square 7.99 (d, J=8.0 Hz, 1 H), 7.37 (s, 1 H), 6.71 (d, J=8.8 Hz, 1 H), 6.55 (s, 1 H), 5.57 (d, J=9.2 Hz, 1 H), 5.45 (s, 1 H), 3.59 (s, 3 H), 2.51-2.49 (m, 4 H), 2.09 (s, 3 H), 1.30 (s, 3 H), 1.29-1.20 (m, 4 H), 1.21 (s, 3 H); HRMS calcd for C₂₇H₂9Br₂NO₂ 557.0565. Found 557.0548.

The chemistry described above was used with Cores 12-17 to prepare Examples 304-310.

Example 304 10-methoxy-7-(2-ethenyl)-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-

[1]benzopyrano[3,4-f]quinoline

15 MS (ESI) m/z 373 (M+H)⁺;

5

- ¹H NMR (300 MHz, DMSO) □ 7.82 (d, *J*=8.9 Hz, 1 H), 7.23 (d, *J*=8.9 Hz, 1 H), 6.78 (dd, *J*=11.0, 6.8 Hz, 1 H), 6.61 (d, *J*=8.9 Hz, 1 H), 6.49 (d, *J*=8.5 Hz, 1 H), 5.99 (d, *J*=1.7 Hz, 1 H), 5.74 (dd, *J*=7.6, 3.0 Hz, 1 H), 5.71-5.63 (m, 1 H), 5.57 (dd, *J*=7.6, 1.7 Hz, 1 H), 5.32 (s, 1 H), 5.00 (dd, *J*=9.3, 1.7 Hz, 1 H), 4.92 (dd, *J*=10.2, 1.7 Hz, 1 H), 4.83 (dd,
- J=16.9, 1.7 Hz, 1 H), 3.75 (s, 3 H), 2.06 (s, 3 H), 1.53-1.41 (m, 2 H), 1.24-1.15 (m, 3 H), 1.05 (d, J=2.1 Hz, 1 H); ¹³C NMR (300 MHz, DMSO)□155.66, 147.91, 145.55, 134.17, 133.45, 131.98, 130.77, 127.37, 127.28, 123.88, 119.52, 117.21, 115.99, 115.80, 113.20, 113.18, 112.12, 105.59, 74.01, 55.59, 49.69, 36.40, 29.03, 28.83, 27.67, 26.19, 23.83, 13.55;
- 25 HRMS calcd for C₂₅H₂₇NO₂ 373.2042. Found 373.2048.

Example 305 10-methoxy-7-methyl-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline

MS (ESI) m/z 362 (M+H)⁺;

- ¹H NMR (300 MHz, DMSO)□7.92 (d, *J*=8.5 Hz, 1 H), 6.93 (d, *J*=8.5 Hz, 1 H), 6.59 (dd, *J*=5.5, 2.6 Hz, 1 H), 6.10 (s, 1 H), 5.90-5.76 (m, 2 H), 5.44 (s, 1 H), 5.07-4.90 (m, 2 H), 3.82 (s, 3 H), 2.17 (s, 3 H), 2.08 (s, 3 H), 1.99 (s, 3 H), 1.16 (s, 3 H), 1.15 (s, 3 H); ¹³C NMR (300 MHz, DMSO), 154.2, 148.5, 145.4, 134.5, 133.4, 131.9, 127.8, 127.4, 127.1, 118.2, 117.0, 116.3, 116.0, 113.1, 112.9, 104.8, 73.6, 55.5, 49.6, 36.5, 28.9, 28.8, 23.8, 15.0;
- HRMS calcd for C₂₄H₂₇NO₂ 361.2042. Found 361.2045.

Example 306 10-methoxy-7-acetyl-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline

MS (ESI) m/z 390 (M+H)⁺.

¹H NMR (300 MHz, DMSO), 7.88 (d, *J*=8.8 Hz, 1 H), 7.59 (d, *J*=8.8 Hz, 1 H), 6.84 (d, *J*=8.8 Hz, 1 H), 6.62 (d, *J*=8.8 Hz, 1 H), 6.01-5.97 (m, 1 H), 5.90-5.69 (m, 1 H), 5.46 (s, 1 H), 5.03-4.83 (m, 2 H), 3.93 (s, 3 H), 2.53 (s, 3 H), 2.20 (d, *J*=1.5 Hz, 3 H), 1.19 (s, 3 H), 1.16 (s, 3 H).

Example 307 (+/-) 2,5-dihydro-9-methyl-10-methoxy-2,2,4-trimethyl-5-(1-methylcyclohexen-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH3) m/z 416 (M+H)⁺.

Example 308 10-methoxy-7-methyl-9-methyl-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH₃) m/z 376 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□7.95 (d, J=8.5 Hz, 1 H), 6.81 (s, 1 H), 6.62 (d, J=8.5 Hz, 1 H), 6.17 (d, J=1.5 Hz, 1 H), 5.89-5.76 (m, 2 H), 5.44 (br s, 1 H), 5.04 (dd, J=10.3, 1.8 Hz, 1 H), 4.94 (dd, J=17.3, 1.8 Hz, 1 H), 3.52 (s, 3 H), 2.46-2.40 (m, 1 H), 2.28-2.24 (m, 1 H), 2.18 (s, 3 H), 2.17 (s, 3 H), 2.07 (s, 3 H), 1.19 (s, 3 H), 1.14 (s, 3 H); HRMS calcd for C₂5H₂9NO₂ 375.2198. Found: 375.2214.

Example 309 10-chloro-5-(3-propenyl)-2,2,4-trimethyl-2,5-dihydro-1H[1]benzopyrano[3,4-f]quinoline

25 MS (DCI/NH₃) m/z 352 (M+H) $^+$;

¹H NMR (300 MHz, DMSO) \Box 7.93 (d, *J*=8 Hz, 1 H), 7.12-7.10 (m, 2 H), 6.90-6.84 (m, 1 H), 6.65 (10, 2 Hz, 1 H), 4.97 (dd, *J*=17, 2 Hz, 1 H), 2.47-2.26 (m, 2 H), 2.16 (s, 3 H), 1.23 (s, 3 H), 1.17 (s, 3 H); HRMS (FAB) calcd m/z for C₂₂H₂₂ClNO: 351.1390 (M)⁺. Found: 351.1385.

30

35

5

10

15

20

Example 310 (+/-) 2,5-dihydro-10-chloro-2,2,4-trimethyl-5-phenyl-1H-

[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH3) m/z 288 (M+H)+;

1H NMR (200 MHz, DMSO) \$\square\$ 7.98 (d, \$J=8\$ Hz, 1 H), 7.27-7.14 (m, 5 H), 6.97-6.80 (m, 2 H), 6.81 (br s, 1 H), 6.78-6.72 (m, 2 H), 6.44 (br s, 1 H), 5.40 (br s, 1 H), 1.81 (br s, 2 H), 1.26 (s, 2 H), 1.16 (s, 2 H);

HRMS (FAB) calcd m/z for C25H23ClNO: 387.1390 (M)+. Found: 287.1286.

Example 311

2,5-dihydro-10-methoxy-5-(3-(N-methyl-N-

(carbomethoxymethyl)aminocarbonyloxy)phenyl)-2,2,4-trimethyl-1H-

[1]benzopyrano[3,4-f]quinoline

Example 13 and N-methyl-N-(methylglycinate)carbamoyl chloride were processed as in Example 14 to provide the desired compound.

MS (DCI/NH3) m/e 529 (M+H)⁺

¹H NMR (300 MHz, DMSO-d₆) \Box 8.00(d, 1H), 7.21(m, 1H), 7.03(d, 1H), 6.92(m, 3H), 6.72(m, 3H), 6.55(d, 1H), 6.45(t, 1H), 5.40(s, 1H), 4.15(s, 1H), 4.05(s, 1H), 3.78(s, 3H), 3.65(s, 3H), 3.00(s, 1H), 2.88(s, 2H), 1.84(s, 3H), 1.22(s, 3H), 1.13(s, 3H). Anal. calcd for C₃₁H₃₂N₂O₆: C, 70.43; H, 6.10; N, 5.29. Found: C, 70.98; H, 6.33; N, 4.85

15

20

25

30

35

10

5

Example 312

2,5-dihydro-10-methoxy-5-(3-(N-methyl-N-(N-

methylcarbonyl)aminocarbonyloxy)phenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 13 and methylisocyanate were processed as in Example 14 to provide the desired compound.

MS (DCI/NH₃) m/e 514 $(M+H)^+$

¹H NMR (300 MHz, DMSO-d6)□8.18(q, 1H), 8.01(d, 1H), 7.27(t, 1H), 7.06(t, 2H), 6.98(s, 1H), 6.91(t, 1H), 6.77(s, 1H), 6.70(d, 1H), 6.56(d, 1H), 6.46(d, 1H), 6.19(s, 1H), 5.38(s, 1H), 3.78(s, 3H), 3.19(s, 3H), 2.70(d, 3H), 1.84(s, 3H), 1.22(s, 3H), 1.14(s, 3H). Anal. calcd for C30H31N3O5·2H2O: C, 65.55; H, 6.41; N, 7.60. Found: C, 65.71; H, 6.20; N, 7.05

Example 313

2,5-dihydro-10-methoxy-5-(3-(N-methylaminocarbonyloxy)phenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 13 and methylisocyanate were processed as in Example 14 to provide the desired compound.

MS (DCI/NH₃) m/e 457 (M+H)⁺

¹H NMR (300 MHz, DMSO-d₆)□8.01(d, 1H), 7.50(q, 1H), 7.21(t, 1H), 7.02(d, 1H), 6.92(dd, 2H), 6.80(s, 1H), 6.77(s, 1H), 6.70(dd, 1H), 6.56(d, 1H), 6.46(d, 1H), 6.18(s, 1H), 5.40(s, 1H), 3.80(s, 3H), 2.60(d, 3H), 1.86(s, 3H), 1.23(s, 3H), 1.15(s, 3H) Anal. calcd for C₂₈H₂₈N₂O₄·0.50H₂O: C, 72.33; H, 6.27; N, 6.01. Found: C, 72.20; H, 6.38; N, 5.78

Example 314

2,5-dihydro-10-methoxy-5-(3-(2-hydroxyethyl)phenyl)-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

A solution of 3-(2'-methoxymethoxy)ethylphenyl bromide (3.55 g, 14.5 mmol) in THF (150 ml) at -78 °C was treated with n-butyllithium (2.5 M in hexane, 5.80 ml) over 15 minutes, warmed to -30 °C, cooled down to -78 °C, treated with compound <u>1F</u> in one portion, warmed to -50 °C, quenched with saturated ammonium chloride, and allowed to warm to ambient temperature and settle. The supernatant was decanted and concentrated, and the residue was partitioned between water and ethyl acetate. The organic layer was washed sequentially with water and brine, dried (Na₂SO₄) and concentrated. Flash chromatography of the residue on silica gel with 20-35% ethyl acetate/hexane provided 0.82 g (56%) of the title 5-(3'-MOMO-phenyl)hemiketal.

MS (DCI/NH₃) m/e 489 (M+H)⁺

A solution of of the hemiketal prepared above (0.70 g, 1.43 minol) in methanol (10 ml) was treated with saturated hydrogen chloride in methanol (20 ml) at ambient temperature, stirred for 18 hours, poured into 1:1 ethyl acetate/saturated ammonium chloride. The separated aqueous layer was extracted with ethyl acetate, and the combined acetate layers were sequentially washed with water and brine, dried (Na₂SO₄) and concentrated to provide 0.52 g (82%) of the unmasked hemiketal.

MS (DCI/NH₃) m/e 444 (M+H)⁺.

A solution of the unmasked hemiketal prepared above (0.45 g, 1.00 mmol) and triethylsilane (1.16 g, 10 mmol) in dichloromethane (20 mL) was treated with boron trifluoride etherate (1.42 g, 10 mmol) at ambient temperature, stirred for 18 hours, and poured into 1:1 ethyl acetate/saturated NaHCO3. The separated aqueous layer was extracted with ethyl acetate, and the combined extracts were washed sequentially with water and brine, dried (Na2SO4) and concentrated. Flash chromatography of the residue on silica gel with 25-45% ethyl acetate in hexane provided 0.342 of the title compound. MS (DCI/NH3) m/e 428 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□8.00(d, 1H), 7.00(m, 5H), 6.74(s, 1H), 6.70(d, 1H), 6.55(d, 1H), 6.45(d, 1H), 6.16(s, 1H), 5.39(s, 1H), 4.54(t, 1H), 3.79(s, 3H), 3.44(q, 4H), 2.59(t, 2H), 1.86(s, 3H), 1.22(s, 3H), 1.11(s, 3H); Anal. calcd for C₂₈H₂₉NO₃: C, 78.66; H,6.83; N, 3.27. Found: C, 78.48; H, 6.85; N, 3.29.

5

10

15

20

25

30

Example 315

2,5-dihydro-10-methoxy-5-(3-(2-methanesulfonyloxyethyl)phenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

A solution of Example 314 (200 mg, 0.47 mmole) and triethylamine (94 mg, 0.94 mmol) in CH₂Cl₂ (6 ml) at 0 °C was treated with methanesulfonyl chloride (64 mg, 0.56 mmol), stirred for 30 minutes, and quenched with saturated NaHCO₃. The separated aqueous layer was extracted with CH₂Cl₂, and the combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated. Flash chromatography of the residue on silica gel with 10-30% ethyl acetate/hexane provided 0.30 g (97%) of the title compound.

MS (DCI/NH₃) m/e 506 $(M+H)^+$;

5

10

15

20

25

30

35

¹H NMR (300 MHz, DMSO-d₆) □ 8.00(d, 1H), 7.18(s, 1H), 7.14(d, 1H), 7.09(d, 1H), 6.96(d, 1H), 6.90(t, 1H), 6.75(s, 1H), 6.70(d, 1H), 6.55(d, 1H), 6.45(d, 1H), 6.21(s, 1H), 5.39(s, 1H), 4.27(t, 2H), 3.79(s, 3H), 2.88(s, 3H), 2.87(t, 2H), 1.84(s, 3H), 1.24(s, 3H), 1.14(s, 3H)

Anal. calcd for C₂₉H₃₁NO₅S: C, 68.88; H,6.17; N, 2.77. Found: C, 69.08; H, 6.14; N, 2.63.

Example 316

2,5-dihydro-10-methoxy-5-(3-(2-methythioethyl)phenyl)-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

A solution of Example 315 (10 mg, 0.02 mmol) in DMF (1 ml) was treated with NaSMe (14 mg, 0.20 mmol) at ambient temperature, stirred for 2 hr, quenched with saturated NaHCO3, and extracted with ethyl acetate. The organic layer was washed with brine, dried (Na2SO4) and concentrated. Flash chromatography of the residue on silica gel with 10-30% ethyl acetate/hexane provided 9 mg (99%) of the title compound. MS (DCI/NH3) m/e 458 (M+H)⁺

1H NMR (300 MHz, DMSO-d6) Q8.00(d, 1H), 7.11(t, 1H), 7.07(s, 1H), 7.02(d, 1H), 6.96(d, 1H), 6.90(t, 1H), 6.75(s, 1H), 6.70(d, 1H), 6.54(d, 1H), 6.44(d, 1H0, 6.16(s, 1H), 5.39(s, 1H), 3.77(s, 3H), 2.70(t, 2H), 2.54(t, 2H), 1.91(s, 3H), 1.95(s, 3H), 1.21(s, 3H), 1.15(s, 3H)

Example 317

2,5-dihydro-10-methoxy-5-(3-(2-(N,N-dimethylaminocarbonyloxy)ethyl)phenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 314 and N,N-dimethylcarbamoyl chloride were processed as in Example 14 to provide the desired compound.

MS (DCI/NH3) m/e 499 (M+H)⁺

¹H NMR (300 MHz, DMSO-d₆)□8.01(d, 1H), 7.00(m, 5H), 6.76(s, 1H), 6.70(d, 1H), 6.55(s, 1H), 6.44(d, 1H), 6.15(s, 1H), 5.39(s, 1H), 4.01(t, 2H), 3.78(s, 3H), 2.79(t, 2H), 2.77(s, 3H), 2.65(s, 3H), 1.84(s, s, 3H), 1.23(s, 3H), 1.15(s, 3H) Anal. calcd for C₃₁H₃₄N₂O₄: C, 74.67; H, 6.87; N, 5.61. Found: C, 74.45; H, 6.73; N, 5.45.

Example 318

2,5-dihydro-10-methoxy-5-(3-(2-(N,N-dimethylamino)ethyl)phenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 315 and dimethylamine were processed as in Example 316 to provide the desired compound.

MS (DCI/NH₃) m/e 455 (M+H)⁺

¹H NMR (300 MHz, DMSO-d₆) \Box 8.00(d, 1H), 7.09(t, 1H), 7.01(d, 1H), 6.97(m, 2H), 6.90(t, 1H), 6.73(s, 1H), 6.69(d, 1H), 6.55(d, 1H), 6.44(d, 1H), 6.16(s, 1H), 5.39(s, 1H), 3.79(s, 3H), 2.54(t, 2H), 2.25(t, 2H), 2.08(s, 6H), 1.87(s, 3H), 1.22(s, 3H), 1.17(s, 3H).

Example 319

2,5-dihydro-10-methoxy-5-cyclopropyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

20

25

30

35

5

10

15

Example 319A

A mixture of Example1F (4.43 g, 13.7 mmol), 4-chlorophenol (9.28 g, 72.1 mmol) and MgSO4 (8.69 g, 72.1 mmol) in CH₂Cl₂ (100 ml) at ambient temperature was stirred for 12 hr, diluted with ethyl acetate (200 ml), washed with 1M aq NaOH twice and brine respectively, dried (Na₂SO₄) and concentrated. The residue was triturated with hot ethyl acetate (25 ml) to provide the desired phenyl acetal.

MS (DCI/NH₃) m/e 306 (M-4-Cl-ph)⁺

Example 319B

A solution of the Example 319A (131 mg, 0.30 mmol) in toluene (20 ml) at 0 °C was treated with cyclopropylmagnesium bromide made by refluxing cyclopropyl bromide (363 mg, 3.0 mmol) and Mg (73 mg, 3.0 mmol) in THF (1.5 ml) for 30 min. The final solution was allowed to warm to ambient temperature and stirred for 12 hr, quenched with sat. NH4Cl. The organic layer was washed with 1M aq NaOH twice and brine respectively, dried (Na₂SO₄) and concentrated. Flash chromatography of the residue on silica gel with 5-15% ethyl acetate/hexane provided 18 mg (17%) of the title compound.

MS (DCI/NH₃) m/e 348 (M+H)⁺

 1 H NMR (300 MHz, DMSO-d6) [18.01(d, 1H), 7.04(t, 1H), 6.67(d, 1H), 6.60(d, 1H), 6.57(d, 1H), 6.16(s, 1H), 5.44(s, 1H), 5.42(d, 1H), 3.85(s, 3H), 2.12(s, 3H), 1.26(s, 3H), 1.05(s, 3H), 0.28(m, 4H), 0.08(m, 1H).

5

10

15

Example 320

2,5-dihydro-10-methoxy-5-ethenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline A solution of 2B (34 mg, 0.1 mmol) and tributylvinyltin (96 mg) in CH2Cl2 (2 ml) was treated with boron trifluoride etherate (43 mg, 0.3 mmol) at -78 °C, and allowed to warm to ambient temperature with stirring for 2 hr. The reaction was then quenched with sat. NaHCO3, and the organic layer was washed with sat. NaHCO3 and brine respectively, dried (Na2SO4) and concentrated. Flash chromatography of the residue on silica gel with 5-15% ethyl acetate/hexane provided 27 mg (81%) of the title compound. MS (DCI/NH₃) m/e 334 (M+H) $^{+}$ ¹H NMR (300 MHz, DMSO-d₆) □ 7.93(d, 1H), 7.02(t, 1H), 6.63(dd, 2H), 6.54(d, 1H),

6.19(d, 1H), 6.10(s, 1H), 5.93(m, 1H), 5.42(s, 1H), 5.16(dt, 1H), 4.91(dt, 1H), 3.83(s, 3H), 2.11(s, 3H), 1.21(s, 3H), 1.13(s, 3H).

Example 321

trans 2,5-dihydro-10-methoxy-5-(2-phenylethenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

20

25

A mixture of Example 320 (13 mg, 0.039 mmol), iodobenzene (12 mg, 0.058 mmol), palladium (II) acetate (18 mg, 0.008 mmol), tri(o-tolyl)phosphine (3.6 mg, 0.012 mmol), triethylamine (12 mg, 0.12 mmol) in CH3CN (1 ml) was heated to 80 °C for 4 hr in a sealed tube. After solvent removal, flash chromatography of the residue on silica gel with 5-15% ethyl acetate/hexane provided 7 mg (44%) of the title compound. MS (DCI/NH₃) m/e 410 (M+H)⁺

¹H NMR (300 MHz, DMSO-d₆) □ 7.99(d, 1H), 7.22(m, 4H), 7.19(m, 1H), 7.00(t, 1H), 6.67(d, 1H), 6.63(d, 1H), 6.57(d, 1H), 6.38(q, 1H), 6.34(d, 1H), 6.27(d, 1H), 6.14(s, 1H), 5.43(s, 1H), 3.82(s, 1H), 2.12(s, 3H), 1.22(s, 3H), 1.13(s, 3H).

30

35

Example 322

2,5-dihydro-10-methoxy-5-(2-phenylethynyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4flquinoline

Example 2B and tributylphenylacetylenyltin were processed as in Example 320 to provide the desired compound. MS (DCI/NH₃) m/e 408 (M+H)⁺

¹H NMR (300 MHz, DMSO-d₆) □7.92(d, 1H), 7.29(m, 3H), 7.16(m, 2H), 7.10(d, 1H), 6.78(d, 1H), 6.65(dd, 1H), 6.59(s, 1H), 6.23(s, 1H), 5.45(s, 1H), 3.87(s, 3H), 2.33(s, 3H), 1.28(s, 3H), 1.12(s, 3H)

5

10

15

20

Example 323

cis 2,5-dihydro-10-methoxy-5-(2-phenylethenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

A mixture of Example 322 (20 mg, 0.049 mmol), palladium/BaSO4 (20 mg) in pyridine (2 ml) was stirred at ambient temperature for 12 hr, quenched with water, and extracted with ethyl acetate. The organic layer was washed with brine, dried(Na₂SO₄), and concentrated. Flash chromatography of the residue on silica gel with 5-15% ethyl acetate/hexane provided 13 mg (75%) of the title compound.

MS (DCI/NH3) m/e 410 $(M+H)^+$

¹H NMR (300 MHz, DMSO-d₆)□7.97(d, 1H), 7.62(d, 2H), 7.48(t, 2H), 7.39(t, 1H), 7.03(t, 1H), 6.72(d, 1H), 6.63(d, 1H), 6.61(d, 1H), 6.52(d, 1H), 6.12(d, 1H), 6.10(s, 1H), 5.70(dd, 1H), 5.27(s, 1H), 3.87(s, 3H), 1.55(s, 3H), 1.17(s, 3H), 1.079s, 3H)

Example 324

2,5-dihydro-10-methoxy-5-(2-methylpropenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 2B and tributyl-(2-methylpropenyl)tin were processed as in Example 320 to provide the desired compound.

MS (DCI/NH₃) m/e $362 (M+H)^+$

¹H NMR (300 MHz, DMSO-d₆)□7.92(d, 1H), 6.99(t, 1H), 6.65(d, 1H), 6.58(d, 1H), 6.44(d, 1H), 6.24(d, 1H), 6.21(s, 1H), 5.40(s, 1H), 5.18(d, 1H), 3.85(s, 3H), 2.07(s, 3H), 1.84(s, 3H), 1.58(s, 3H), 1.23(s, 3H), 1.10(s, 3H)

Anal. calcd for C₂4H₂7NO₂: C, 79.74; H, 7.52; N, 3.87. Found: C, 79.34; H, 7.25; N, 3.68

30

35

25

Example 325

trans 2,5-dihydro-10-methoxy-5-(1-cyclohexenyl)-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

Example 2B and tributyl-(1-cyclohexenyl)tin were processed as in Example 320 to provide the desired compound.

MS (DCI/NH₃) m/e 388 (M+H) $^+$

¹H NMR (300 MHz, DMSO-d₆)□7.91(d, 1H), 7.00(t, 1H), 6.64(d, 1H), 6.60(d, 1H), 6.49(d, 1H), 6.02(s, 1H), 5.85(s, 1H), 5.39(s, 1H), 5.14(s, 1H), 3.81(s, 3H), 2.18(m, 1H),

2.03(s, 3H), 1.98(m, 1H), 1.81(m, 1H), 1.64(m, 1H), 1.42(m, 3H), 1.24(m, 1H), 1.22(s, 3H), 1.13(s, 3H)

Anal. calcd for C₂₆H₂₉NO₂·1.25H₂O: C, 76.15; H, 7.74; N, 3.41. Found: C, 76.12; H, 7.34; N, 3.21

5

10

15

20

25

30

35

Example 326

2,5-dihydro-10-(2-furanyl)-5-(3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-flquinoline

A magnetically stirred mixture of triflate 3C [from the original patent application] (196 mg, 0.421 mmol) and 2-(tributylstannyl)furan (0.250 mL, 0.79 mmol) and [1,1'-bis(diphenylphosphino)ferrocene]dicloropalladium(II) methylene chloride complex (25 mg, 0.031 mmol) and tetrabutylammonium iodide (25 mg, 0.068 mmol) in dry NMP (6.5 mL) was heated at 70°C for 5h under argon. The reaction was allowed to cool to room temperature, was diluted with satd an NaCl and extracted with ethyl acetate (5 x 20 mL). The combined organic layer was dried (MgSO4), filtered, and concentrated. The crude material was chromatographed on silica gel (16g) using ethyl acetate-hexane (10:90) to give product contaminated with starting material. The material was applied to three 10 x 20 cm, 0.25 mm thick silica gel plates which were eluted four times with EtOAc-hexane (5:95). The product band was scraped off and extracted with ethyl acetate to furnish 23 mg (0.044 mmol, 14%) of desired furan as a viscous syrup: ¹H NMR \ 7.67 (d, 1H, J=1.0Hz), 7.18 (t, 1H, J=7.8Hz), 7.08 (m, 1H), 6.91 (dd, 1H, J=8.1Hz, J=1.4Hz), 6.64 (m, 2H), 6.35 (d, 1H, J=8.5Hz), 6.25 (d, 1H, J=8.5Hz), 6.14 (m, 1H), 5.82 (m, 2H), 5.43 (s, 1H), 5.05 (dd, 1H, J=10.5Hz, J=1.5Hz), 4.99 (dd, 1H, J=17.3Hz, J=1.5Hz), 2.40 (m, 2H), 2.19 (s, 3H), 1.20 (s, 3H), 1.12 (s, 3H); mass spectrum (DCI) m/z 384 (M + 1). Anal. Calcd for C26H25NO2: C, 81.43; H, 6.57; N, 3.65. Found: C, 81.24; H, 6.62; N, 3.66.

Example 327

2,5-dihydro-10-cyano-5-(3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

A magnetically stirred mixture of triflate 3C (195 mg, 0.419 mmol), 36 mg (0.031 mmol) of tetrakis(triphenylphosphine)palladium(0) and zinc cyanide (36 mg, 0.31 mmol) in dry dioxane (4.0 mL) and water (1.0 mL) was heated at 80°C for 48h under argon. The reaction was allowed to cool to room temperature, was diluted with ethyl acetate (25 mL) and washed with satd aq NaCl. The aqueous layer was extracted with ethyl acetate (2 x 20 mL). The combined organic layer was dried (MgSO4), filtered, and concentrated. The crude material was chromatographed on silica gel (20 g) using ethyl acetate-hexane (10:90) to give product contaminated with starting triflate. The partially

pure nitrile was applied to two 10×20 cm, 0.25 mm thick silica gel plates which were eluted five times with EtOAc-hexane (5:95). The product band was scraped off and extracted with ethyl acetate to furnish 17.3 mg (0.0505 mmol, 12%) of desired nitrile: 1 H NMR \Box 7.87 (d, 1 H, 1 Hz.5Hz), 7.46 (dd, 1 H, 1 Hz.5Hz, 1 Hz.5Hz), 7.27 (t, 1 H, 1 Hz.7.8Hz), 7.19 (dd, 1 H, 1 Hz.1Hz, 1 Hz.4Hz), 6.71 (d, 1 H, 1 Hz.5Hz), 6.57 (m, 1 H), 5.90 (dd, 1 H, 1 Hz.3Hz), 5.82 (m, 1 H), 5.49 (m, 1 H), 5.04 (dm, 1 H, 1 Hz.5Hz), 4.98 (dm, 1 H, 1 Hz.3Hz), 2.38 (m, 1 H), 2.30 (m, 1 H), 2.19 (s, 3 H), 1.20 (s, 3 H), 1.19 (s, 3 H); mass spectrum (APCI) m/z 343 (M + 1); Calcd for C23H22N2O: 342.1732. Found: 342.1730.

10

15

20

5

Example 328

2,5-dihydro-10-carboxy-5-(3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-flquinoline

A magnetically stirred mixture of the Example 4 (31 mg, 0.082 mmol) and sodium cyanide (51 mg, 0.78 mmol) in dry dimethylsulfoxide (2.5 mL) was heated at 110°C for 5h under argon. The reaction was allowed to cool to room temperature, was diluted with satd aq NaCl and extracted with ethyl acetate (5 x 20 mL). The combined organic layer was dried (MgSO4), filtered, and concentrated. The crude material was applied to two 10 x 20 cm, 0.25 mm thick silica gel plates which were eluted twice with EtOAc-hexane (10:90), then EtOAc-hexane (50:50) three times. The product band was scraped off and extracted with ethyl acetate to furnish 16 mg (0.044 mmol, 54%) of desired carboxylic acid as a viscous syrup: ¹H NMR \(\pi 7.16 \) (m, 2H), 7.02 (d, 1H, J=8.5Hz), 6.98 (dd, 1H, J=5.5Hz, J=3.7Hz), 6.58 (d, 1H, J=8.5Hz), 6.29 (m, 1H), 5.82 (m, 2H), 5.45 (s, 1H), 5.05 (dd, 1H, J=10.5Hz, J=1.5Hz), 4.98 (dd, 1H, J=17.3Hz, J=1.5Hz), 2.30 (m, 2H), 2.18 (s, 3H), 1.20 (s, 3H), 1.16 (s, 3H); mass spectrum (APCI) m/z 362 (M + 1).

Anal. Calcd for C23H23NO3: C, 76.43; H, 6.41; N, 3.88. Found: C, 76.24; H, 6.46; N, 3.66.

30

35

25

Example 329

2,5-dihydro-10-(2-hydroxymethyl)-5-(3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

To a magnetically stirred solution of example 4 (32 mg, 0.085 mmol) in dry methylene chloride (3 mL), cooled to -78°, was added dropwise 1.0M diisobutylaluminum hydride in cyclohexane (0.400 mL, 0.40 mmol) under dry argon. The temperature of the reaction was allowed to rise to 0°C. After 3.5h, the reaction was quenched by addition to aqueous Rochelle's salt and the layers were separated. The aqueous layer was extracted with ethyl acetate (3 x 40 mL). The combined organic layer

was dried (MgSO₄), filtered, and concentrated. The crude material was applied to two 10 x 20 cm, 0.25 mm thick silica gel plates which were eluted with hexane, then EtOAchexane (10:90) three times. The product band was scraped off and extracted with ethyl acetate to furnish 27 mg (0.078 mmol, 91%) of desired alcohol as a viscous syrup: ¹H NMRQ7.47 (d, 1H, J=8.5Hz), 7.14 (m, 2H), 6.80 (dd, 1H, J=7.3Hz, J=1.8Hz), 6.64 (d, 1H, J=8.5Hz), 6.17 (m, 1H), 5.81 (ddm, 1H, J=10.5Hz, J=17.1Hz), 5.73 (dd, 1H, J=3.4Hz, J=10.5Hz), 5.46 (m, 1H), 5.32 (dd, 1H, J=6.3Hz, J=4.2Hz), 5.02 (dm, 1H, J=10.5Hz), 4.94 (dm, 1H, J=17.1Hz), 4.62 (m, 2H), 2.30 (m, 2H), 2.17 (s, 3H), 1.19 (s, 3H), 1.16 (s, 3H); mass spectrum (ESI) m/z: 348 (M+1); Calcd for C₂₃H₂₅NO₂: 347.1885. Found: 347.1897.

5

10

15

20

25

30 ·

35

Example 330

2,5-dihydro-10-formyl-5-(3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

A magnetically stirred mixture of the Example 329 (185 mg, 0.532 mmol) and tetrapropylammonium perruthenate (205 mg, 0.583 mmol) in dry methylene chloride (10 mL) was stirred for 1.5h under argon. The reaction was filtered through celite, the filter pad was washed with ethyl acetate and the filtrate was concentrated. The crude material was chromatographed on silica gel (20 g) using EtOAc-hexane (10:90) to furnish 144 mg (0.417 mmol, 78%) of desired aldehyde: ¹H NMR [] 10.11 (s, 1H), 7.45 (dd, 1H, J=7.8Hz, J=1.2Hz), 7.29 (t, 1H, J=7.8Hz), 7.16 (dd, 1H, J=7.8Hz, J=1.4Hz), 6.84 (d, 1H, J=8.5Hz), 6.70 (d, 1H, J=8.5Hz), 6.53 (m, 1H), 5.91 (dm, 1H, J=10.0Hz), 5.84 (m, 1H), 5.51 (s, 1H), 5.05 (dm, 1H, J=10.5Hz), 4.97 (dm, 1H, J=17.3Hz), 2.40 (m, 2H), 2.21 (s, 3H), 1.22 (s, 3H), 1.18 (s, 3H); mass spectrum (APCI) m/z 346 (M + 1); Calcd for C23H23NO2: 345.1729. Found: 345.1732.

Example 331

2,5-dihydro-10-aminomethyl-5-(3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

To a magnetically stirred solution of Example 330 (40 mg, 0.116 mmol) and ammonium acetate (77 mg, 1.0 mmol) in dry methanol (10 mL) was added sodium cyanoborohydride (14 mg, 0.23 mmol) under nitrogen. After 5h, the reaction was quenched by addition to 10% sodium carbonate and extracted with ethyl acetate (3 x 40 mL). The combined organic layer was dried (MgSO4), filtered, and concentrated. The crude material was applied to two 10 x 20 cm, 0.25 mm thick silica gel plates which were eluted with hexane, then EtOAc-hexane (20:80) four times. The product band was scraped off and extracted with ethyl acetate to furnish 8.0 mg (0.023 mmol, 20%) of desired amine as a viscous syrup: ¹H NMRQ7.55 (d, 1H, J=8.5Hz), 7.14 (m, 2H), 6.80

(dd, 1H, J=7.3Hz, J=1.8Hz), 6.64 (d, 1H, J=8.5Hz), 6.17 (m, 1H), 5.81 (ddm, 1H, J=10.5Hz, J=17.1Hz), 5.73 (dd, 1H, J=3.4Hz, J=10.5Hz), 5.46 (m, 1H), 5.02 (dm, 1H, J=10.5Hz), 4.94 (dm, 1H, J=17.1Hz), 4.62 (m, 2H), 3.88 (m, 2H), 2.30 (m, 2H), 2.17 (s, 3H), 1.19 (s, 3H), 1.16 (s, 3H); mass spectrum (ESI) m/z: 347 (M+1); Calcd for C23H26N2O: 346.2045. Found: 346.2047.

5

10

15

20

25

30

35

Example 332

2,5-dihydro-10-methoxymethyl-5-(3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

To a magnetically stirred solution of Example 329 (26 mg, 0.075 mmol) in dry THF (2.0 mL), cooled in an ice bath, was added 0.14 mL of 1M potassium hexamethyldisilazide in hexane under argon. Methyl iodide (13.8 mg, 0.097 mmol) was added and the reaction was allowed to slowly come to room temperature. The reaction was quenched with satd aq NH4Cl and extracted with ethyl acetate (3 x 10 mL). The extracts were dried (MgSO4), filtered, and concentrated. The crude material was applied to three 10 x 20 cm, 0.25 mm thick silica gel plates which were eluted four times with EtOAc-hexane (5:95). The product band was extracted using EtOAc to furnish 25 mg (0.069 mmol, 92%) of desired methyl ether: ¹H NMR \p7.34 (d, 1H, J=8.5Hz), 7.11 (m, 2H), 6.85 (dd, 1H, J=7.1Hz, J=2.4Hz), 6.64 (d, 1H, J=8.5Hz), 6.20 (m, 1H), 5.81 (dm, 1H, J=10.2Hz), 5.75 (m, 1H), 5.46 (s, 1H), 5.02 (dm, 1H, J=10.2Hz), 4.93 (dm, 1H, J=17.3Hz), 4.61 (d, 1H, J=11.2Hz), 4.43 (d, 1H, J=11.2Hz), 3.37 (s, 3H), 2.33 (m, 1H), 2.27 (m, 1H), 2.17 (s, 3H), 1.19 (s, 3H), 1.17 (s, 3H); mass spectrum (ESI) m/z 362 (M+1); Calcd for C24H27NO2: 361.2042. Found: 361.2047.

Example 333 2,5-dihydro-10-ethenyl-5-phenyl-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

Example 333A

2,5-dihydro-10-ethenyl-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline
Example 7 and trifluoromethanesulfonic anhydride were processed as in Example
3C to provide the desired triflate.

MS (ESI) m/z 502 (M+H) +.

Example 333

2,5-dihydro-10-ethenyl-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline
Example 333A and vinyl tributylstannane were processed as in Example 5 to
provide the desired compound.
MS (DCI/NH3) m/z 380 (M+H)+;

¹H NMR (300 MHz, CDCl₃)□7.30-7.11 (m, 6 H), 7.02-6.89 (m, 3 H), 6.78 (s, 1 H), 6.76-6.68 (m, 2 H), 6.32 (br s, 1 H), 5.72 (br d, *J*=11.4 Hz, 1 H), 5.40 (br s, 1 H), 5.30 (br d, *J*=15.9 Hz, 1 H), 1.81 (s, 3 H), 1.26 (s, 3 H), 1.15 (s, 3 H);

¹³C NMR (125 MHz, DMSO)□151.3, 145.7, 138.8, 137.3, 133.3, 133.0, 131.2, 128.5 (2), 128.3, 128.2, 128.0 (2), 127.8, 127.4, 126.6, 123.9, 120.8, 118.1, 116.2, 114.5, 113.6, 75.3, 50.0, 30.0, 28.7, 23.2;

HRMS (FAB) calcd m/z for C₂₇H₂₅NO: 379.1936 (M)⁺. Found: 379.1924.

Example 334 2,5-dihydro-10-ethynyl-5-phenyl-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

Example 333A and (trimethylsilyl)acetylene were processed as in Example 6A and Example 6 to provide the desired compound.

MS (DCI/NH₃) m/z 378 (M+H)⁺;

¹H NMR (300 MHz, DMSO)□8.32 (d, *J*=8.8 Hz, 1 H), 7.27-7.16 (m, 5 H), 7.01 (dd, *J*=8.7, 1.8 Hz, 1 H), 6.83 (t, *J*=8.6 Hz, 1 H), 6.84-6.79 (m, 1 H), 6.81 (br s, 1 H), 6.74 (d, *J*=8.6 Hz, 1 H), 6.42 (br s, 1 H), 5.41 (br s, 1 H), 4.38 (s, 1 H), 2.03 (s, 3 H), 1.24 (s, 3 H), 1.18 (s, 3 H);

¹³C NMR (125 MHz, DMSO)□150.9, 146.4, 138.8, 133.1, 130.7, 128.6, 128.2 (2), 128.0 (2), 127.9, 127.4, 126.6, 126.5, 126.4, 126.3, 118.3, 117.6, 117.5, 115.7, 113.4, 84.3, 75.1, 50.0, 30.0, 28.8, 23.2;

HRMS (FAB) calcd m/z for C₂₇H₂₃NO: 377.1780 (M)⁺. Found: 377.1779.

Example 335 methyl 2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline-10-carboxylate

Example 333A was processed as in Example 4 to provide the desired compound. mp 150-2 °C;

MS (DCI/NH₃) m/z 412 (M+H)⁺;

5

10

15

20

25

30

35

¹H NMR (300 MHz, DMSO) [7.36-7.30 (m, 2 H), 7.28-7.17 (m, 3 H), 7.12-7.01 (m, 2 H), 6.93-6.88 (m, 2 H), 6.84 (d, *J*=8.7 Hz, 1 H), 6.70 (d, *J*=8.9 Hz, 1 H), 6.40 (br s, 1 H), 5.40 (br s, 1 H), 3.79 (s, 3 H), 1.81 (s, 3 H), 1.26 (s, 3 H), 1.17 (s, 3 H);

¹³C NMR (125 MHz, DMSO)□169.9, 151.2, 146.1, 138.3, 132.5, 130.3, 128.8 (2), 128.1, 128.0 (2), 127.7, 127.4, 127.0, 126.6, 124.9, 122.9, 119.6, 117.7, 117.5, 114.2, 75.7, 52.2, 50.0, 30.0, 28.6, 23.2;

Anal. calcd for C₂₇H₂₅NO₃: C, 78.81; H, 6.12; N, 3.40. Found: C, 78.84; H, 6.25; N, 3.24.

Example 336 2,5-dihydro-10-(hydroxymethyl)- 5-phenyl-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

5

10

15

20

25

.30

35

3.41.

To a solution of Example 335 (136 mg, 0.330 mmol) in anhydrous CH2Cl2 (12 mL) at -50 °C was added Dibal-H (1.65 mL of a 1.0 M solution in heptane, 1.65 mmol). The resulting orange solution was warmed gradually to 0 °C over a 30 min period, then was stirred at 0 °C for 2 h. EtOAc (5 mL) was then added to the solution at 0 °C to quench the excess Dibal-H reagent (indicated by a color change of the solution from orange to light yellow) and the reaction mixture was then treated with saturated aqueous NH4Cl (5 mL). The reaction mixture was partitioned between EtOAc (40 mL) and saturated aqueous Rochelle's salt (sodium potassium tartrate; 35 mL) and the resulting mixture was stirred vigorously until a clear separation of layers was observed (ca. 1 h). The layers were partitioned and the aqueous layer was extracted with EtOAc (15 mL). The organics were combined and were washed with brine (10 mL) and then were dried (Na₂SO₄). Filtration and concentration gave the desired compound (116 mg, 0.302) mmol, 92%) as a colorless foamy solid. MS (DCI/NH₃) m/z 384 (M+H) $^{+}$; ¹H NMR (300 MHz, DMSO) \Box 7.58 (d, J=8.9 Hz, 1 H), 7.23-7.11 (m, 5 H), 6.98 (dd, J=8.7, 1.7 Hz, 1 H), 6.84 (t, J=8.7 Hz, 1 H), 6.76 (br s, 1 H), 6.75 (d, J=8.6 Hz, 1 H), 6.69 (dd, J=8.7, 1.8 Hz, 1 H), 6.26 (br s, 1 H), 5.40 (br s, 1 H), 5.37 (dd, J=6.0, 4.0 Hz, 1 H), 4.65 (dd, J=11.5, 6.0 Hz, 1 H), 4.54 (dd, J=11.6, 4.4 Hz, 1 H), 1.80 (s, 3 H), 1.24 (s, 3 H), 1.17 (s, 3 H); ¹³C NMR (125 MHz, DMSO) [151.0, 145.6, 139.0, 137.0, 133.1, 131.4, 128.4 (2), 128.1, 128.0 (2), 127.7, 127.6, 126.2, 124.8, 123.7, 118.6, 118.0, 116.0, 113.9, 75.1, 61.9, 49.9, 29.9, 28.7, 23.3; Anal. calcd for C₂₆H₂₅NO₂: C, 81.43; H, 6.57; N, 3.65. Found: C, 81.53; H, 6.86; N,

Example 337 2,5-dihydro-10-formyl-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

To a solution of Example 336 (50 mg, 0.130 mmol) in CH₂Cl₂ (6 mL) at 23 °C was added a solution of tetrapropylammonium perruthenate (60 mg, 0.16 mmol) in CH₂Cl₂ (14 mL). After 15 min, the reaction mixture was filtered through a small plug of silica gel, rinsing with CH₂Cl₂ followed by 1:1 EtOAc-hexanes. The filtrate was concentrated to give a gold syrup which was purified by preparative thin layer chromatography (elution with 3% EtOAc/toluene) to afford the desired product (19 mg, 0.050 mmol, 38%) as a pale yellow foam.

MS (DCI/NH₃) m/z 382 (M+H)⁺;

¹H NMR (300 MHz, DMSO)□10.13 (s, 1 H), 7.31 (dd, *J*=8.8, 1.9 Hz, 1 H), 7.28-7.16 (m, 5 H), 7.12 (d, *J*=8.7 Hz, 1 H), 7.05 (dd, *J*=8.7, 2.0 Hz, 1 H), 6.95 (d, *J*=8.8 Hz, 1 H), 6.92 (br s, 1 H), 6.81 (d, *J*=8.8 Hz, 1 H), 6.59 (br s, 1 H), 5.43 (br s, 1 H), 1.85 (s, 3 H), 1.27 (s, 3 H), 1.18 (s, 3 H);

5 13C NMR (125 MHz, DMSO)□191.4, 151.9, 146.8, 138.3, 133.2, 131.5, 131.4, 130.8, 128.6 (2), 128.1 (2), 128.0, 127.2, 126.6, 121.5, 121.4, 118.1, 115.5, 114.2 (2), 75.8, 50.2, 30.1, 29.0, 23.1;

HRMS (FAB) calcd m/z for C₂₆H₂₄NO: 382.1807 (M+H)⁺. Found: 382.1816.

10

15

20

30

35

Example 338

2,5-dihydro-10-(methoxymethyl)-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

To a solution of Example 336 (22 mg, 0.057 mmol) in THF (2.0 mL) at 0 °C was added KHMDS (110 mL of a 0.5 M solution in toluene, 0.057 mmol). After 15 min, a solution of iodomethane was added as a solution in DMF (100 mL of a solution of 81 mg iodomethane in 1.0 mL DMF, 0.057 mmol) was added and the solution was stirred additionally at 0 °C for 30 min, the cooling bath was removed, and the reaction was stirred additionally at 23 °C for 1.5 h. The reaction was then quenched with water (3 mL) and was extracted with EtOAc (2 x 20 mL). The combined organic layers were washed with brine (5 mL), then were dried (MgSO4), and were concentrated in vacuo to provide a brown oil. Purification of this residue by preparative thin layer chromatography (elution with 10% EtOAc/hexanes) afforded the desired product (15 mg, 0.038 mmol, 66%) as a colorless foam.

MS (DCI/NH3) m/z 98 (M+H)+;

¹H NMR (300 MHz, DMSO) □ 7.40 (d, *J*=8.9 Hz, 1 H), 7.19-7.10 (m, 5 H), 6.97-6.92 (m, 1 H), 6.94 (s, 1 H), 6.77-6.70 (m, 3 H), 6.29 (br s, 1 H), 5.39 (br s, 1 H), 4.58 (d, *J*=11.1 Hz, 1 H), 4.39 (d, *J*=11.1 Hz, 1 H), 3.28 (s, 3 H), 1.81 (s, 3 H), 1.26 (s, 3 H), 1.17 (s, 3 H);

¹³C NMR (125 MHz, DMSO)□151.0, 145.7, 138.8, 132.9, 132.6, 131.5, 128.4 (2), 127.8 (2), 127.8, 127.7, 127.5, 126.1, 125.7, 124.4, 118.3, 117.9, 116.6, 113.9, 75.2, 72.5, 57.2, 49.9, 29.9, 28.7, 23.3; HRMS (FAB) calcd m/z for C₂7H₂7NO₂: 397.2042 (M)⁺. Found: 397.2039.

Example 339

2,5-dihydro-10-ethenyl-5-oxo-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 3C and vinyl tributylstannane were processed as in Example 5 to
provide the desired compound.

mp 218-224 °C;

MS (DCI/NH₃) m/z 318 (M+H) $^+$, 335 (M+NH₄) $^+$;

¹H NMR (300 MHz, DMSO) \Box 7.88 (d, J=8.8 Hz, 1 H), 7.38 (dd, J=8.8, 6.6 Hz, 1 H), 7.29 (s, 1 H), 7.28 (d, J=8.6 Hz, 1 H), 7.19 (dd, J=17.3, 11.1 Hz, 1 H), 7.13 (d, J=8.7 Hz, 1 H), 7.03 (br s, 1 H), 5.75 (dd, J=17.3, 1.2 Hz, 1 H), 5.52-5.47 (m, 2 H), 1.97 (s, 3 H), 1.24 (s, 6 H);

¹³C NMR (125 MHz, CDCl₃) \Box 160.1, 150.0, 145.4, 138.5, 136.3, 132.2, 131.0, 127.1, 126.7, 126.6, 125.5, 124.1, 119.9, 118.5, 117.2, 115.9, 115.7, 50.0, 27.9 (2), 21.0; Anal. calcd for C₂₁H₁9NO₂: C, 79.47; H, 6.03; N, 4.41. Found: C, 79.28; H, 5.97; N, 4.20.

10

15

20

5

Example 340 5-(3-cyclohexenyl)-2,5-dihydro-10-ethenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

To a magnetically stirred solution of Example 339 (100 mg, 0.300 mmol) and 3-(trimethylsilyl)cyclohexene (139 mg, 0.900 mmol) in CH₂Cl₂ (6 mL) at -78 °C was added freshly distilled BF3. OEt2 (80 mL, 0.600 mmol). The resulting greenish brown solution was stirred at -78 °C for 15 min then slowly warmed to 23 °C with continued stirring over a period of 1 h. The reaction mixture was poured into 10% NaHCO3 solution (10 mL) and extracted with EtOAc (2 x 20 mL). The combined organic portions were washed with brine (8 mL) and were dried (Na2SO4). Filtration and concentration gave a brown residue which was purified via flash chromatography (elution with 5% EtOAc/hexanes) to give the desired product as a tan foam (356 mg, 0.186 mmol, 62%). $MS (DCI/NH_3) m/z 384 (M+H)^+;$ ¹H NMR (300 MHz, DMSO) (data for major syn diastereomer) \Box 7.30 (d, J=8.0 Hz, 1 H), 7.16-6.97 (m, 3 H), 6.95-6.88 (m, 1 H), 6.67 (d, J=8.0 Hz, 1 H), 6.42 (br s, 1 H), 5.82-5.60 (m, 3 H), 5.52-5.44 (m, 2 H), 5.33 (d, *J*=7.6 Hz, 1 H), 2.40-2.26 (m, 1 H), 2.17 (s, 3

25 H), 2.05-1.82 (m, 2 H), 1.70-1.53 (m, 2 H), 1.32 (s, 3 H), 1.31-1.07 (m, 2 H), 1.05 (s, 3 H):

 13 C NMR (125 MHz, CDCl₃) \Box 138.8, 134.2, 129.3 (2), 128.1 (2), 127.9 (2), 126.7, 121.3, 116.4, 114.1, 37.2, 37.0, 34.7, 31.6, 30.2, 27.2, 26.1, 25.2, 24.7, 22.6, 24.1, 21.8 (2), 20.5, 14.1;

Anal. calcd for C₂₇H₂₉NO: C, 83.57; H, 7.66; N, 3.60. Found: C, 83.55; H, 7.38; N, 3.45.

Example 341

35

30

2,5-dihydro-10-ethenyl-5-[1-methyl-3-cyclohexenyl]-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 339 and 3-(dimethylphenylsilyl)-3-methylcyclohexene were processed as in Example 339 to provide the desired compound.

mp 198-201 °C;

MS (DCI/NH₃) m/z 398 (M+H)⁺;

¹H NMR (300 MHz, DMSO) (data for major *syn* diastereomer) \Box 7.30 (d, J=7.9 Hz, 1 H), 7.16-7.00 (m, 3 H), 6.92 (dd, J=7.1, 2.6 Hz, 1 H), 6.66 (d, J=8.0 Hz, 1 H), 6.39 (br s, 1 H), 5.73 (d, J=12.4 Hz, 1 H), 5.52-5.41 (m, 3 H), 5.32 (d, J=10.2 Hz, 1 H), 2.33-2.22 (m, 1 H), 2.14 (s, 3 H), 1.91-1.70 (m, 1 H), 1.87-1.65 (m, 1 H), 1.63-1.51 (m, 1 H), 1.60 (s, 3 H), 1.34-1.15 (m, 2 H), 1.31 (s, 3 H), 1.13-0.98 (m, 1 H), 1.04 (s, 3 H); Anal. calcd for C₂₈H₃₁NO: C, 84.59; H, 7.85; N, 3.52. Found: C, 84.46; H, 7.81; N, 3.37.

10

15

20

25

30

35

5

Example 342

2,5-dihydro-5-(3-propenyl)-10-methylthio-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

To a magnetically stirred solution of Example 3B (120 mg, 0.390 mmol) in anhydrous DMF (1.0 mL) at 0 °C was added sodium hydride (17 mg of a 60% dispersion in mineral oil, 0.430 mmol). The mixture was stirred under an atmosphere of nitrogen until evolution of hydrogen had ceased (1 h). Solid dimethylthiocarbamoyl choride (64 mg, 0.520 mmol) was then introduced in a single portion and stirring was continued at 0 °C for 30 min. The cooling bath was removed and the mixture heated at 80 °C for 45 min. The reaction mixture was then poured into 1% NaOH (10 mL) and extracted with EtOAc (2 x 25 mL). The combined organics portions were washed with water (3 x 5 mL) and with brine (3 mL) then dried (MgSO4), filtered and concentrated. The resulting brown residue was purified flash chromatography (elution with 25% EtOAc/hexanes) to provide the resulting thionocarbamate (43 mg, 0.109 mmol, 28%) as a yellow solid. MS (DCI/NH3) m/z 348 (M+H)⁺.

The compound prepared above (113 mg, 0.280 mmol) was placed in an open vial and immersed in a Woods metal bath heated to 270-280 °C for 6 min. The reaction was cooled and the resulting dark brown residue was purified flash chromatography (gradient elution: 20%Æ40% EtOAc/hexanes) to provide the thermally rearranged thiocarbamate product (67 mg, 0.165 mmol, 59%) as a yellow solid.

MS (DCI/NH3) m/z 348 (M+H)⁺.

To a solution of the rearranged product (500 mg, 1.26 mmol) in anhydrous toluene (70 mL) at -78 °C under N₂ was added dropwise Dibal-H (2.02 mL of a 1.0 M solution in heptane, 2.02 mmol) maintaining the temperature at -78 °C. The resulting orange-red solution was stirred at -78 °C for 1.5h at which time a TLC of an aliquot (quenched with satd. ammonium chloride) indicated conversion to desired product.. Some lower R_f material (diol resulting from over-reduction) was also observed. EtOAc (10 mL) was added to the solution at -78 °C to quench the excess DIBAL-H reagent

(indicated by a color change of the solution from orange-red to light yellow), followed by addition of saturated aqueous NH4Cl solution (15 mL). The reaction mixture was partitioned between EtOAc (150 mL) and aqueous Rochelle's salt (sodium potassium tartrate, 40 mL) and the resulting mixture was stirred vigorously until a clear separation of layers was observed. The layers were separated and the organic layer was washed with brine (20 mL), was dried (Na₂SO₄), and was filtered. Removal of solvent gave the lactol as a light yellow foam (512 mg) which was used without further purification.

The lactol was dissolved in MeOH (30 mL) at 23 °C and p-TsOH•H₂0 (50 mg, 25% w/w) was added portionwise as a solid. The mixture was stirred for 14 h at 23 °C and then was quenched with saturated aqueous sodium bicarbonate (10 mL) and was extracted with EtOAc (2 x 50 mL). The organics portions were combined and were washed with brine (20 mL) and were dried (Na₂SO₄). Filtration and concentration provided a yellow residue which was purified by flash chromatography (elution with 5% EtOAc/CH₂Cl₂) to provide the product methylacetal (157 mg, 0.416 mmol, 33% over two steps) as a yellow foam.

MS (DCI/NH₃) m/z 379 (M-OCH₃)⁺.

The lactol prepared above and allyltrimethylsilane were processed as in Example 2 to give a C-5 allyl compound.

MS (DCI/NH3) m/z 421 (M+H)⁺.

20

25

30

35

5

10

15

Example 343

2,5-dihydro-5-(3-propenyl)-10-methylthio-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-flquinoline

A suspension of the thiocarbamate (249 mg, 0.590 mmol) and KOH (90 mg, 1.20 mmol) in ethylene glycol (6 mL) containing water (1.5 mL) was heated at reflux (homogeneous solution) for 1.5 h. The solution was cooled and poured onto ice (10 g). The mixture was acidified (pH 4) with 10% HCl and was then extracted with CH₂Cl₂ (2 x 20 mL). The extracts were dried (Na₂SO₄), were filtered, and were concentrated. The resulting residue was purified by flash chromatography (elution with 5% EtOAc/CH₂Cl₂) to provide nearly homogeneous thiophenol adduct (183 mg) as an off-yellow solid that was used immediately: 1 H NMR (300 MHz, DMSO- 2 6) \Box 7.72 (d, 2 8.0 Hz, 1 H), 7.08 (dd, 2 7.6, 1.1 Hz, 1 H), 6.96 (t, 2 7.5 Hz, 1 H), 6.67 (d, 2 8.1 Hz, 1 H), 6.63 (dd, 2 7.5, 1.2 Hz, 1 H), 6.28 (br s, 1 H), 5.88-5.70 (m, 2 H), 5.47 (br s, 1 H), 5.41 (s, 1H), 5.03 (dd, 2 7.3 Hz, 1 H), 4.98 (dd, 2 7.4 Hz, 1 H), 2.48-2.21 (m, 2 H), 2.17 (s, 3 H), 1.20 (s, 3 H), 1.17 (s, 3 H); MS (DCI/NH₃) 2 8.50 (M+H)+.

A solution of the crude thiophenol (183 mg) in DMF (10 mL) at 0 °C was treated with cesium carbonate (50 mg, 0.153 mmol). After 10 min, a solution of iodomethane (25 mg, 0.176 mmol) in DMF (0.7 mL) was added, and the solution was stirred at 0 °C

for 30 min then at 23 °C for 2 h. The mixture was diluted with 1:1 EtOAc-hexane (100 mL) and was washed with water (3 x 25 mL) then washed with brine (25 mL). The organic portion was dried (Na₂SO₄), was filtered, and was concentrated. The resulting residue was purified by flash chromatography (elution with 5% EtOAc/hexanes) to provide the thioether (65 mg, 0.179 mmol, 34%) as an off-yellow solid: ¹H NMR (300 MHz, DMSO-d₆)□7.82 (d, J=8.1 Hz, 1 H), 7.11 (t, J=7.6 Hz, 1 H), 6.98 (br d, J=7.7 Hz, 1 H), 6.72 (br d, J=7.6 Hz, 1 H), 6.62 (d, J=8.0 Hz, 1 H), 6.27 (br s, 1 H), 5.88-5.70 (m, 2 H), 5.47 (br s, 1 H), 5.03 (dd, J=13.3, 1.1 Hz, 1 H), 4.99 (dd, J=18.3, 1.1 Hz, 1 H), 2.47 (s, 3 H), 2.46-2.33 (m, 1 H), 2.32-2.22 (m, 1 H), 2.18 (s, 3 H), 1.21 (s, 3 H), 1.17 (s, 3 H); MS (CI/NH₃) m/e 364 (M+H)⁺.

Example 344 (+/-) 2,5-dihydro-9-(4-acetamidobutanoyloxy)-10-methoxy-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline

MS (APCI) m/z 491 (M+H)+;

1H NMR (200 MHz, DMSO-d6) \$\mathrightarrow{\text{7.94}}\$ (t, 1H), 7.84 (d, 1H), 6.88 (d, 1H), 6.67 (d, 1H), 6.64 (d, 1H), 6.21 (s, 1H), 5.87-5.78 (m, 2H), 5.46 (s, 1H), 5.06-4.96 (m, 2H), 2.60 (s, 2H), 2.16 (dt, 2H), 2.62 (t, 2H), 2.21-2.27 (m, 2H), 2.18 (s, 2H), 1.82 (s, 2H), 1.79 (m, 2H), 1.18 (s, 2H), 1.17 (s, 2H).

20

5

10

15

Example 345

10-(difluoromethoxy)-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 7 and bromodifluoromethane were processed as in Example 8A to provide the desired compound.

MS (CI/NH₃) m/z 420 (M+H) $^+$;

¹H NMR (300 MHz, DMSO-d₆) □ 7.80 (s, J=8.8 Hz, 1 H), 7.26-7.15 (m, 5 H), 7.16-7.13 (m, 1 H), 6.97 (t, J=8.1 Hz, 1 H), 6.82 (br s, 1 H), 6.74 (d, J=8.9 Hz, 1 H), 6.72-6.67 (m, 1 H), 6.38 (br s, 1 H), 5.39 (br s, 1 H), 1.82 (s, 3 H), 1.24 (s, 3 H), 1.15 (s, 3 H); HRMS (FAB) calcd m/z for C₂6H₂3F₂NO₂: 419.1697 (M)⁺. Found: 419.1714.

30

35

25

Example 346

10-(bromodifluoromethoxy)-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

MS (ESI) m/z 498 (M+H) +.

¹H NMR (300 MHz, DMSO-d₆)□7.68 (s, J=8.8 Hz, 1 H), 7.25-7.14 (m, 5 H), 7.03 (t, J=8.2 Hz, 1 H), 6.89-6.84 (m, 1 H), 6.85 (br s, 1 H), 6.83-6.79 (m, 1 H), 6.74 (d, J=8.6 Hz, 1 H), 6.46 (br s, 1 H), 5.40 (br s, 1 H), 1.81 (s, 3 H), 1.25 (s, 3 H), 1.15 (s, 3 H);

¹³C NMR (125 MHz, DMSO-d₆)□152.34, 146.44, 145.97, 138.38, 133.02, 130.51, 128.61 (2), 128.07, 127.92 (2), 127.33, 126.86 (2), 119.16, 117.82, 116.68, 115.84, 115.32, 114.28, 114.12, 75.60, 49.93, 29.90, 28.72, 23.26; HRMS (FAB) calcd m/z for C₂6H₂2⁷⁹BrF₂NO₂: 497.0802 (M+H)⁺. Found: 497.0790. HRMS (FAB) calcd m/z for C₂6H₂2⁸¹BrF₂NO₂: 499.0782 (M+H)⁺. Found: 499.0793.

Example 347

10-(bromodifluoromethoxy)-5-phenyl-2,2-dimethyl-4-methylene-2,3,4,5-tetrahydro-1H-chromeno[3,4-f]quinoline

MS (ESI) m/z 498 (M+H) +.

¹H NMR (300 MHz, CDCl₃) \(\pi 7.88\) (s, J=8.4 Hz, 1 H), 7.31-7.26 (m, 2 H), 7.19-7.12 (m, 3 H), 6.95 (t, J=8.1 Hz, 1 H), 6.86-6.78 (m, 2 H), 6.64 (br s, 1 H), 6.58 (d, J=8.5 Hz, 1 H), 4.94 (s, 1 H), 4.61 (s, 1 H), 4.17 (br s, 1 H), 2.45 (br d, J=12.0 Hz, 1 H), 2.19 (d, J=12.4 Hz, 1 H), 1.35 (s, 3 H), 1.14 (s, 3 H);

HRMS (FAB) calcd m/z for $C_{26}H_{22}^{79}BrF_2NO_2$: 497.0802 (M+H)⁺. Found: 497.0790. HRMS (FAB) calcd m/z for $C_{26}H_{22}^{81}BrF_2NO_2$: 499.0782 (M+H)⁺. Found: 499.0771.

Example 348

2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-((2-fluorophenyl)methyl) -1H[1]benzopyrano[3,4-f]quinoline

Example 349

10-methoxy-5-(5-methylisoxazol-3-yl)methyldene-2,5-dihydro-5-phenyl-2,2,4-trimethyl-

25

30

20

5

10

1H-[1]benzopyrano[3,4-f]quinoline

Example 1F and the lithium anion of 3,5-dimethylisoxazole were processed as in Example 1B to provide the desired compound.

MS (DCI/NH₃) m/z 401 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□8.33 (d, 1H, J=8.83 Hz), 7.7-7.5 (m, 1H), 7.22 (t, 1H, J=8.09), 7.05 (d, 1H, J=1.1 Hz), 6.85 (s, 1H), 6.79 (d, 1H, J=8.82 Hz), 5.61 (s, 1H), 5.5 (s, 1H), 3.93 (s, 3H), 2.45 (s, 3H), 1.96 (d, 3H, J=1.1 Hz), 1.20-1.30 (s, 6H).

Example 350

10-methoxy-5-(3-methylisoxazol-5-yl)methyldene-2,5-dihydro-5-phenyl-2,2,4-trimethyl-

5

1H-[1]benzopyrano[3,4-f]quinoline

Example 1F and the lithium anion of 3,5-dimethylisoxazole were processed as in Example 1B to provide the desired compound.

MS (DCI/NH₃) m/z 401 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆), isomer 1:□8.38 (d, 1H, J=8.83 Hz), 7.22 (t, 1H, J=8 Hz), 7.09 (s, 1H), 6.87-6.81 (m, 2H), 6.56 (s, 1H), 5.65 (s, 1H), 5.51 (s, 1H), 3.93 (s, 3H), 2.28 (s, 3H), 1.95 (s, 3H), 1.29 (s, 3H), 1.26 (s, 3H); isomer 2:□8.16 (d, 1H, J=8.83 Hz), 7.18 (t, 2H, J=8 Hz), 7.06 (s, 1H), 6.80-6.76 (m, 2H), 6.46 (s, 1H), 5.90 (s, 1H), 5.21 (s, 1H), 3.91(s, 3H), 2.08 (s, 3H), 1.84 (s, 3H), 1.26 (s, 3H), 1.12 (s, 3H).

15

20

25

30

35

10

Example 351

10-methoxy-5-(4,5-dimethyl-1,3-oxazol-2-yl)methyidene-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 1F and the lithium anion of 2,4,5-trimethyloxazole were processed as in Example 1B to provide the desired compound.

MS (DCI/NH₃) m/z 415 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆), isomer 1: □8.36 (d, 1H, J=8.82 Hz), 7.24-7.20 (m, 1H), 6.82 (m, 3H), 6.25 (s, 1H), 5.49 (s, 1H), 3.92 (s, 3H), 2.31 (s, 3H), 2.09 (s, 3H), 1.28 (s, 3H), 1.2 (m, 6H); 2nd isomer □8.09 (d, 1H, J=8.82 Hz), 7.16 (m, 1H), 6.78-6.73 (m, 2H), 5.41 (s, 1H), 5.21 (s, 1H), 3.91 (s, 3H), 2.03 (s, 3H), 1.89 (s, 3H), 1.88 (s, 3H), 1.25-1.15 (m, 6H).

Example 352

10-methoxy-5-(6-chloropyridin-2-yl)methyidene-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 1F and the lithium anion of 6-chloro-2-methylpyridine were processed as in Example 1B to provide the desired compound.

MS (DCI/NH₃) m/z 431 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 8.35 (d, 1H, J=4.7 Hz), 8.25 (d, 1H, J=8.1 Hz), 7.9 (t, 1H, J=7.7 Hz), 7.30 (d, 1H, J=7.7 Hz), 7.21 (d, 1H, J=8 Hz), 7.00 (d, 1H, J=8.1 Hz), 6.8 (dd, 2H, J=8.4, 2.6 Hz), 6.72 (s, 1H), 5.65 (s, 1H), 5.51 (s, 3H), 3.93 (s, 3H), 1.99 (s, 3H), 1.2 (s, 6H).

Example 353

10-methoxy-5-(pyridin-2-yl)methyidene-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 1F and the 4-picolinyllithium were processed as in Example 1B to provide the desired compound.

MS (DCI/NH₃) m/z 397 (M+H)⁺;

5

10

15

20

25

¹H NMR (300 MHz, DMSO-d₆), isomer 1:□8.52 (d, 2H, J=6.1 Hz), 8.17 (d, 1H, J=8.8 Hz), 7.2 (t, 1H, J=8.2 Hz), 6.96 (s, 1H), 6.7 (m, 3H), 6.66 (s, 2H), 5.55 (s, 1H), 4.53 (s, 1H), 3.93 (s, 3H), 1.81 (d, 3H, J=1.4 Hz), 1.27 (s, 6H); isomer 2:□8.32 (d, 2H, J=6.1 Hz), 8.19 (d, 1H, J=8.8 Hz), 7.17 (t, 1H, J=8.2 Hz), 6.99 (s, 1H), 6.77 (m, 3H), 6.45 (s, 2H), 5.48 (s, 1H), 5.05 (s, 1H), 3.93 (s, 3H), 1.81 (d, 3H, J=1.4 Hz), 1.27 (s, 6H).

Example 354

10-methoxy-5-(but-3-enylidene)-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 1F and the lithium anion of cylopropylmethylbromide were processed as in Example 1B to provide the desired compound.

MS (DCI/NH3) m/z 360 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□8.16 (d, 1H, J=8.8 Hz), 7.10 (t, 1H, J=7.7 Hz), 6.8-6.6 (m, 4H), 6.47 (s, 1H), 5.89-5.75 (m, 1H), 5.41 (s, 1H), 5.10-4.93 (m, 2H), 4.67 (t, 1H, J=7.5 Hz), 3.88 (s, 3H), 1.97 (d, 3H, J=1.3 Hz), 1.20 (s, 6H).

Example 355

10-methoxy-5-(1-methylpropylidene)-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 1F and the sec-butyllithium were processed as in Example 1B to provide the desired compound.

MS (DCI/NH₃) m/z 362 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 8.01 (d, 1H, J=8.09 Hz), 7.09 (t, 2H, J=8.09 Hz), 6.7 (dd, 2H, J=8.5, 2.6 Hz), 6.65 (d, 1H, J=8.46 Hz), 6.37 (d, 1H, J=0.8 Hz), 5.4 (s, 1H), 3.87 (s, 3H), 1.86 (d, 3H, J=1.1 Hz), 1.48 (s, 3H), 1.33 (s, 3H), 1.08 (s, 3H), 0.9 (t, 3H, J=7.3 Hz).

Example 356

10-methoxy-5-(1-butylidene)-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H[1]benzopyrano[3,4-f]quinoline

Example 1F and the *n*-butyllithium were processed as in Example 1B to provide the desired compound.

MS (DCI/NH₃) m/z 362 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □8.14 (d, 1H), 7.07 (t, 1H), 6.67 (m, 3H), 6.07 (s, 1H), 5.40 (s, 1H), 4.71 (t, 1H), 3.88 (s, 3H), 2.29 (q, 1H), 2.00 (s, 3H), 1.43-1.36 (m, 2H), 1.21 (s, 6H), 0.88 (t, 3H).

Example 357 2,5-dihydro-10-methoxy-2,2,4-trimethyl-3-oxide-5-phenyl-1H[1]benzopyrano[3,4-f]quinazoline

15

20

25

30

35

10

5

Example 357A

8-amino-7-bromo-1-methoxy-6H-benzo[c]chromen-6-one

A solution of Example 1E (3.0 g, 12.0 mmol) in DMF (100 mL) was treated with N-bromosuccinimide (2.2 g, 12.0 mmol), stirred for 40 minutes, poured into 900 mL of water, stirred for 5 minutes and the resulting solid was collected by filtration and dried to give the desired compound.

Example 357B

7-bromo-1-methoxy-6-phenyl-6H-benzo[c]chromen-8-ylamine
Example 357A (2.0 g, 6.25 mmol) and phenyllithium were processed as in
Examples 1G and 1 to provide the desired compound.

Example 357C

1-(7-bromo-1-methoxy-6-phenyl-6H-benzo[c]chromen-8-yl)ethan-1-one
Example 357B (1.23 g, 3.22 mmol), tributyl(1-ethoxyvinyl)tin, (1.4 g, 3.86 mmol), and dichlorobis(triphenylphosphine)palladium (II) (263 mg, 0.322 mmol) in NMP (30 mL) were heated at 85 °C for 24 hours under nitrogen. The mixture was partitioned between EtOAc and saturated aqueous sodium bicarbonate and filtered through Celite. The EtoAc layer was concentrated and the residue was dissolved in acetonitrile, washed 5 X 20 mL with hexanes and concentrated. The resulting residue was treated with a 1:1 volume of 1N HCl / THF, stirred for 30 minutes, poured into cold, saturated sodium bicarbonate and extracted with EtOAc (5 X 25 mL). The organics were washed with brine, dried (Na2SO4) and flash chromatographed on silica eluting with 4:1 hexane/EtOAc to give the desired compound.

Example 357D

1-(7-bromo-1-methoxy-6-phenyl-6H-benzo[c]chromen-8-yl)ethan-1-one oxime

A solution of Example 357C (700 mg, 2.03 mmol) and hydroxylamine hydrochloride (2.45 g, 30.4 mmol) in a mixture of EtOH (70 mL) and pyridine (70 mL) was refluxed for 8 hours, cooled and concentrated. The residue was dissolved in EtOAc, washed with water, brine, dried (Na₂SO₄) and concentrated to provide the desired compound without purification.

10

15

20

5

Example 357

2,5-dihydro-10-methoxy-2,2,4-trimethyl-3-oxide-5-phenyl-1H-[1]benzopyrano[3,4-f]quinazoline

Example 357D (700 mg, 1.94 mmol), CuSO4 (105 mg) and acetic acid (3 drops) were combined in acetone (30 mL) and refluxed for 8 hours. The mixture was cooled, poured into water and extracted with EtOAc (3 X 50 mL). The organics were combined, washed with brine, dried (Na₂SO₄) and concentrated. The residue was triturated with EtOAc (30 mL) and the yellow solid was collected by filtration to provide the desired compound.

 $MS (DCI/NH_3) m/z 401 (M+H)^+;$

¹H NMR (300 MHz, DMSO-d₆) □ 8.21 (d, 1H), 7.30 (s, 1H), 7.29-7.16 (m, 5H), 7.00-6.92 (m, 2H), 6.61 (d, 1H), 6.57 (s, 1H), 6.44 (d, 1H), 3.72 (s, 3H), 2.01 (s, 3H), 1.55 (s, 3H), 1.28 (s, 3H);

HRMS calcd m/z for C₂₄H₂₇NO₂: 400.1787 (M^{*})⁺. Found: 400.1786

25

30

35

Example 358 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinazoline

A solution of Example 357E (80 mg, 0.2 mmol) in MeOH under 4 atmospheres of hydrogen was treated with Raney nickel and stirred for 24 hours. The mixture was filtered through Celite, concentrated and the resulting residue was flash

chromatographed on silica eluting with 99:1 EtOAc/MeOH to provide the desired compound.

MS (DCI/NH₃) m/z 385 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 8.22 (d, 1H), 7.26-7.15 (m, 5H), 6.93 (t, 1H), 6.79 (s, 1H), 6.76 (d, 1H), 6.73 (s, 1H), 6.57 (d, 1H), 6.44 (d, 1H), 3.81 (s, 3H), 2.00 (s, 3H),

1.36 (s, 3H), 1.21 (s, 3H).

HRMS calcd m/z for C25H24N2O2: 385.1916 (M+H)⁺. Found: 385.1930.

Example 359 2,5-dihydro-10-methoxy-2,2-[spiro (tetrahydro-4-pyranyl)]-4-methyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 359A

5

10

15

20

25

30

35

3.64.

Example 357A (1.3 g, 4.08 mmol), isopropenyltrimethyltin (3.3 g, 16.3 mmol) and dichlorobis(triphenylphosphine)palladium (II) (330 mg, 0.40 mmol) in NMP (30 mL) were heated at 85 °C for 24 hours under nitrogen. The mixture was partitioned between EtOAc and saturated aqueous potassium fluoride, stirred for 3 hours and filtered through Celite. The EtOAc layer was washed 5 X 50 mL with water, 5 x 50 mL with brine, dried (Na₂SO₄) and concentrated. Flash chromatography on silica eluting with 3:1 hexane/EtOAc provided the desired product.

Example 359

A mixture of the 2-isopropenyl aniline (56 mg, 0.2 mmol), tetrahydro-4H-pyran-4-one (160 mg, 1.6 mmol) and iodine (25 mg, 0.1 mmol) in 5 mL of toluene in an ACE sealed tube was heated at 80 °C for 1 hour, cooled and the mixture was partitioned between EtOAc and 10% aqueous Na₂S₂O₃. The EtOAc layer was washed with water, brine, dried (Na₂SO₄) and concentrated. Flash chromatography on silica eluting with 3:2 hexane/EtOAc provided the desired coumarin as a bright yellow powder. This resulting coumarin was processed as in Example 2 to provide the desired compound. MS (DCI/NH₃) m/z 390 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □ 7.92 (d, 1H), 7.07 (t, 1H), 6.75 (d, 1H), 6.70 (d, 1H), 6.52 (d, 1H), 6.24 (s, 1H), 5.87-5.73 (m, 2H), 5.71 (s, 1H), 5.01 (dd, 1H), 4.96 (dd, 1H), 3.86 (s, 3H), 3.75-3.39 (m, 4H), 2.51-2.14 (m, 2H), 2.20 (s, 3H), 1.69-1.49 (m, 4H); HRMS calcd m/z for C₂5H₂7NO₃: 389.1991 (M)⁺. Found: 389.1974.

Anal. calcd for C₂5H₂7NO₃: C, 77.07; H, 6.99; N, 3.60. Found: C,76.92; H, 7.28; N,

Example 360 2,5-dihydro-10-methoxy-2,2-[spiro(hexyl)]-5-allyl-1H[1]benzopyrano[3,4-f]quinoline

Example 357A was treated sequentially with isopropenyltributyltin and cyclohexanone as in the previous example to give the desired compound.

MS (DCI/NH₃) m/z 388 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆)□7.95 (d, 1H), 7.06 (t, 1H), 6.74 (d, 1H), 6.70 (d, 1H), 6.52 (d, 1H), 6.05 (s, 1H), 5.85-5.72 (m, 2H), 5.58 (s, 1H), 5.02 (dd, 1H), 4.97 (dd, 1H), 3.86 (s, 3H), 2.42 (m, 1H), 2.18 (s, 3H), 2.16 (m, 1H), 1.56-1.25 (m, 10H);

HRMS calcd m/z for C₂6H₂9NO₂: 387.2198 (M)⁺. Found: 387.2196.

Example 361

2,5-dihydro-10-methoxy-2,2-diethyl-4-methyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 357A was treated sequentially with isopropenyltributyltin and 3-pentanone as in the previous example to give the desired compound.

MS (DCI/NH₃) m/z 376 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d6) □7.92 (d, 1H), 7.05 (t, J=8 Hz, 1H), 6.68 (d, 1H), 6.59 (d, 1H), 6.51 (d, 1H), 5.98 (s, 1H), 5.86-5.77 (m, 2H), 5.27 (s, 1H), 5.04-4.95 (m, 2H), 3.85 (s, 3H), 2.42 (m, 1H), 2.21 (s, 3H), 2.15 (m, 1H), 1.42-1.35 (m, 4H), 0.83 (t, 3H), 0.82 (t, 3H);

HRMS calcd m/z for C₂₅H₂₉NO₂: 375.2198 (M^{*})⁺. Found: 375.2191. Anal. calcd for C₂₅H₂₉NO₂: C, 79.96; H, 7.78; N, 3.73. Found: C, 79.74; H, 7.89; N, 3.54.

15

20

10

5

Example 362

2,5-dihydro-10-methoxy-2,2,3,4-tetramethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 357A was treated sequentially with 1-methyl-1-propenyltributyltin and acetone as in the previous example to give the desired compound MS (DCI/NH3) m/z 362 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d6) □7.97 (d, 1H), 7.07 (t, 1H), 6.70 (d, 1H), 6.62 (d, 1H), 6.53 (d, 1H), 5.90 (s, 1H), 5.76 (m, 1H), 5.61 (dd, 1H), 5.01-4.90 (m, 2H), 3.87 (s, 3H), 2.47 (m, 1H), 2.18 (m, 1H), 2.04 (s, 3H), 1.76 (s, 3H), 1.13 (s, 3H), 1.09 (s, 3H); HRMS calcd m/z for C₂4H₂7NO₂: 361.2042 (M) + Found: 361.2055.

25

30

35

Example 363

2,5-dihydro-10-methoxy-2,2-dimethyl-4-ethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 357A was treated sequentially with 1-methylenepropyltributyltin and acetone as in the previous example to give the desired compound.

MS (DCI/NH₃) m/z 362 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆) □7.98 (d, 1H), 7.07 (t, 1H), 6.70 (dd, 1H), 6.63 (d, 1H), 6.53 (dd, 1H), 6.12 (bs, 1H), 5.78 (m, 1H), 5.59 (dd, 1H), 5.50 (bs, 1H), 5.03-4.92 (m, 2H), 3.86 (s, 3H), 2.54-2.41 (m, 3H), 2.11 (m, 1H), 1.20 (s, 3H), 1.10 (s, 3H), 1.03 (t, 3H);

HRMS calcd m/z for C₂₄H₂₇NO₂: 361.2042 (M^{*})⁺. Found: 361.2034.

Example 364

2,5-dihydro-10-methoxy-2,2,3-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline

Example 357A was treated sequentially with (Z)-1-propenyltributyltin and acetone as in the previous example to give the desired compound.

MS (DCI/NH₃) m/z 348 (M+H)+;

¹H NMR (300 MHz, DMSO-d₆) □7.89 (d, 1H), 7.04 (t, 1H), 6.68 (d, 1H), 6.52 (d, 1H), 6.47 (d, 1H), 6.21 (s, 1H), 5.96 (s, 1H), 5.88 (m, 1H), 5.43 (dd, 1H), 5.03 (m, 1H), 4.96 (m, 1H), 3.84 (s, 3H), 2.35 (m, 1H), 2.08 (m, 1H), 1.83 (s, 3H), 1.23 (s, 6H);

10 HRMS calcd m/z for C₂₃H₂₅NO₂: 347.1885 (M^{*})⁺. Found: 347.1879.

Example 365

Z-5-(benzylidenyl)-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H-2,5-dihydro-MS (DCI/NH₃) 412 (M+H)⁺;

¹H NMR (300 MHz, DMSO-d₆), \square 8.93 (s, 1 H), 8.13 (d, J=8.8 Hz, 1 H), 7.63 (d, J=8.8 Hz, 2 H), 7.32-7.15 (m, 3 H), 6.77 (d, 1 H), 6.69 (d, 1 H), 6.66 (d, 1 H), 6.52 (s, 1 H), 5.46 (s, 1 H), 5.39 (s, 1 H), 3.65 (s, 3 H), 1.90 (s, 3 H), 1.20 (s, 6 H); HRMS calcd for C₂₇H₂₅NO₃ is 411.1834. Found 411.1821.

20

25

5

Example 366

Z-5-(2,5-difluorobenzylidenyl)-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH3) m/e (M+H)+ 448.

¹H NMR (300 MHz, DMSO-d₆) \Box 9.06 (s, 1H), 8.29 (d, J=9 Hz, 1H), 7.96 (m, 1H), 7.24 (m, 1H), 7.11 (m, 1H), 6.86 (d, J=9 Hz, 1H), 6.82 (d, J=9 Hz, 1H), 6.78 (d, J=9 Hz, 1H), 6.72 (br s, 1H), 5.75 (s, 1H), 5.48 (s, 1H), 3.75 (s, 3H), 1.99 (s, 3H), 1.26 (br s, 6H); Anal. calcd for C₂₇H₂₃NO₃F₂ : C, 72.47; H, 5.18; N, 3.13. Found: C, 72.21; H, 5.31; N, 3.09.

30

35

Example 367

Z-5-(3-fluorobenzylidenyl)-10-chloro-9-hydroxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH₃) m/z 434 (M+H)⁺;

¹H NMR (300 MHz, DMSO) [] 9.86 (br s, 1 H), 8.40 (d, *J*=8.5 Hz, 1 H), 7.61 (dt, *J*=8.6, 1.8 Hz, 1 H), 7.60-7.52 (m, 1 H), 7.46-7.38 (m, 1H), 7.15-7.02 (m, 1 H), 7.09 (d, *J*=8.4 Hz, 1 H), 6.85 (d, *J*=8.6 Hz, 1 H), 6.84 (s, 1 H), 6.78 (d, *J*=8.6 Hz, 1 H), 5.68 (s, 1 H), 5.48 (br s, 1 H), 1.97 (br s, 3 H), 1.16 (br s, 6 H);

¹³C NMR (125 MHz, DMSO)□163.8, 160.6, 149.9, 149.2, 148.2, 146.4, 132.0, 130.3, 128.1, 127.3, 126.2, 125.3, 124.5, 118.7, 117.7, 117.3, 116.1, 115.5, 114.6, 114.3, 114.0, 113.7, 62.1, 29.8, 28.2, 21.2;

HRMS (FAB) calcd m/z for C₂₆H₂₁ClFNO₂: 433.1245 (M)⁺. Found: 433.1237.

5

Example 368

Z-10-chloro-9-hydroxy-5-(2-picolinylidenyl)-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH₃) m/z 417 (M+H)+;

¹H NMR (300 MHz, DMSO)□9.79 (br s, 1 H), 8.51 (ddd, *J*=5.9, 1.6, 1.0 Hz, 1 H), 8.43 (d, *J*=8.6 Hz, 1 H), 8.24 (dt, *J*=7.8, 1.0 Hz, 1 H), 7.53 (td, *J*=7.8, 1.7 Hz, 1 H), 7.22 (ddd, *J*=7.7, 5.8, 1.2 Hz, 1 H), 7.00 (d, *J*=8.5 Hz, 1 H), 6.88 (d, *J*=8.6 Hz, 1 H), 6.81 (d, *J*=8.5 Hz, 1 H), 6.63 (br s, 1 H), 5.71 (s, 1 H), 5.51 (br s, 1 H), 2.00 (br s, 3 H), 1.28 (br s, 6 H); ¹³C NMR (125 MHz, DMSO-d₆)□153.5, 149.7, 146.4, 145.7, 136.5, 136.1, 132.7, 128.7, 128.2, 123.0, 122.4, 121.5, 118.3, 117.7, 117.6, 116.5, 115.5, 114.8, 114.4, 114.1, 113.9, 49.5, 29.7, 28.1, 21.2;

HRMS (FAB) calcd m/z for C₂₅H₂₁ClN₂O₂: 416.1291 (M)⁺. Found: 416.1288.

Example 369

20

25

30

Z-9-hydroxy-10-methoxy-5-(2-picolinylidenyl)-2,2,4-trimethyl-2,5-dihydro-1H[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH₃) m/z 413 (M+H) $^+$;

¹H NMR (300 MHz, DMSO) □9.08 (br s, 1 H), 8.55 (ddd, *J*=5.3, 1.4, 1.0 Hz, 1 H), 8.32 (d, *J*=8.6 Hz, 1 H), 8.30 (br t, *J*=7.7 Hz, 1 H), 7.83 (td, *J*=7.8, 1.4 Hz, 1 H), 7.21 (ddd,

J=7.6, 5.3, 1.2 Hz, 1 H), 6.97 (d, *J*=8.6 Hz, 1 H), 6.86 (d, *J*=8.5 Hz, 1 H), 6.81 (d, *J*=8.6 Hz, 1 H), 6.73 (br s, 1 H), 5.80 (s, 1 H), 5.54 (br s, 1 H), 3.78 (s, 3 H), 2.03 (br s, 3 H), 1.31 (br s, 6 H);

¹³C NMR (125 MHz, DMSO-d₆) □158.4, 149.1, 148.2, 146.6, 139.5, 136.0, 133.1, 128.8, 125.7, 124.6, 122.9, 121.0, 119.4, 118.2, 117.3, 116.9, 115.8, 115.1, 114.7, 114.0, 111.5, 73.3, 50.2, 29.9, 28.1, 22.3;

HRMS (FAB) calcd m/z for $C_{26}H_{25}N_{2}O_{3}$: 413.1865 (M+H)⁺. Found: 413.1849. Anal. calcd for $C_{26}H_{24}N_{2}O_{3}$: C, 75.71; H, 5.86; N, 6.79. Found: C, 75.61; H, 6.05; N, 6.75.

Example 370

9-hydroxy-10-methoxy-5-(3,5-difluorophenyl)methylidene-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

1H NMR (300 MHz, DMSO-d6) □ 9.05 (s, 1H), 8.24 (d, J=9 Hz, 1H), 7.41 (m, 2H), 7.07 (m, 1H), 6.85 (d, J=8 Hz, 1H), 6.80 (d, J=9 Hz, 1H), 6.76 (d, J=9 Hz, 1H), 6.70 (br s, 1H), 5.57 (s, 1H), 5.46 (s, 1H), 3.72 (s, 3H), 1.96 (s, 3H), 1.27 (br s, 6H); 12C NMR (75 MHz, DMSO-d6) □ 164.0 (d), 160.8 (d), 150.1, 146.2, 146.1, 144.6, 144.4, 132.1, 128.8, 125.2, 125.0, 117.9, 117.8, 115.2, 115.0, 114.8, 112.1, 110.9, 110.8, 110.5, 101.9, 101.6, 101.2, 29.3, 49.5, 21.1 (2xC); MS (DCI/NH3) *m/e* (M+H)+ 448.

Example 371

9-hydroxy-10-methoxy-5-(3,4-difluorophenyl)methylidene-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline

 1 H NMR (300 MHz, DMSO-d₆)□9.03 (s, 1H), 8.22 (d, J=9 Hz, 1H), 7.79 (m, 1H), 7.52 (m, 1H), 7.41 (m, 1H), 6.86 (d, J=9 Hz, 1H), 6.77 (d, J=9 Hz, 1H), 6.74 (d, J=9 Hz, 1H), 6.68 (br s, 1H), 5.53 (s, 1H), 5.45 (s, 1H), 3.33 (s, 3H), 1.95 (s, 3H), 1.27 (br s, 6H); MS (DCI/NH3) m/e (M+H)+ 448. FAB HRMS calculated for C₂7H₂3NO₃F₂.

Example 372 (Z) 9-hydroxy-10-methoxy-5-((4-fluorophenyl)methylene)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline

¹H NMR (300 MHz, DMSO-d₆) \Box 9.01 (s, 1H), 8.19 (d, *J*=9 Hz, 1H), 7.77 (d, *J*=9 Hz, 1H), 7.76 (d, *J*=9 Hz, 1H), 7.22 (d, *J*=9 Hz, 1H), 7.18 (d, *J*=9 Hz, 1H), 6.84 (d, *J*=8 Hz, 1H), 6.75 (d, *J*=9 Hz, 1H), 6.72 (d, *J*=9 Hz, 1H), 6.66 (s, 1H), 5.53 (s, 1H), 5.45 (s, 1H), 3.71 (s, 3H), 1.96 (s, 3H), 1.26 (s, 6H); ¹³C NMR (75 MHz, DMSO-d₆) \Box 161.8, 159.4, 147.4, 146.0, 145.1, 144.4, 132.0, 131.4, 130.2, 130.1, 129.0, 126.2, 125.0, 117.8, 115.4, 115.3, 115.2, 114.6, 114.5, 113.3, 111.0, 59.3, 59.2, 49.5, 21.0; . MS (DCI/NH₃) m/z 430 (M+H)⁺; Anal. calcd for C₂7H₂4NO₃F: C, 75.51; H, 5.63; N, 3.26. Found: C, 75.64; H, 5.97; N, 3.03.

Example 373

5

10

15

20

25

30

35

(Z)-9-hydroxy-10-methoxy-5-([2,3-difluorophenyl]methylene)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline

¹H NMR (300 MHz, DMSO-d₆) \Box 9.09 (s, 1H), 8.27 (d, *J*=9 Hz, 1H), 8.04 (d, *J*=9 Hz, 1H), 7.33-7.20 (m, 2H), 6.87 (d, *J*=9 Hz, 1H), 6.82 (d, *J*=9 Hz, 1H), 6.76 (s, 1H), 6.75 (d, *J*=9 Hz, 1H), 5.75 (s, 1H), 5.49 (s, 1H), 3.73 (s, 3H), 1.99 (s, 3H), 1.26 (s, 6H); MS (DCI/NH₃) m/z 448 (M+H)⁺; Anal. calcd for C₂7H₂3NO₃F₂: C, 72.47; H, 5.18; N, 3.13. Found: C, 72.17; H, 5.03; N, 2.95.

Example 374

Z-5-(3-fluorobenzylidenyl)-10-methoxy-9-hydroxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline

¹H NMR (300 MHz, DMSO-d₆)□9.04 (s, 1H), 8.22 (d, 1H), 7.62-7.37 (m, 3H), 7.10-7.02 (m, 1H), 6.86 (d, 1H), 6.78 (d, 1H), 6.73 (d, 1H), 6.70 (s, 1H), 5.56 (s, 1H), 5.46 (s, 1H), 3.72 (s, 3H), 1.96 (s, 3H), 1.27 (s, 3H). MS (DCI/NH₃) m/z 430 (M+H)⁺; Anal. calcd for C₂7H₂4NO₃F• 0.25 H₂O: C, 75.51; H, 5.63; N, 3.26. Found: C, 74.84; H, 6.17; N,2.91.

10

5

Example 375

rel-(5S,3'R)-9-hydroxy-5-[1-methoxymethyl-3-cyclohexenyl]-10-methoxy-2,2,4trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline MS (DCI/NH₃) m/z 452 (M + H)⁺;

¹H NMR (300 MHz, DMSO) \square 8.02 (d, J= 8.6 Hz, 1 H), 6.93 (app s, 2 H), 6.68 (d, J= 8.3 Hz, 1 H), 6.48 (br s, 1 H), 5.52 (d, J= 10.3 Hz, 1 H), 5.42 (br s, 1 H), 5.10 (br s, 1 H), 4.46 (t, J= 5.5 Hz, 1 H), 3.81 (s, 3 H), 3.65 (br d, J= 5.5 Hz, 2 H), 2.26-2.16 (m, 1 H), 2.08 (br s, 3 H), 1.95-1.88 (m, 2 H), 1.77-1.62 (m, 2 H), 1.57-1.44 (m, 1 H), 1.37-1.28 (m, 1 H), 1.30 (s, 3 H), 1.11 (s, 3 H);

¹³C NMR (125 MHz, DMSO) □150.4, 146.0, 144.9, 140.7, 133.9, 132.7, 127.9, 127.0, 124.3, 119.8, 117.7, 116.7, 115.7, 115.4, 112.5, 110.7, 75.9, 65.5, 56.4, 49.6, 36.6, 29.7, 27.9, 25.9, 25.0, 24.4, 20.3;

HRMS (FAB) calcd m/z for C₂₇H₃₀ClNO₃: 451.1915 (M)⁺. Found: 451.1922.

25

30

Example 376

9-hydroxy-10-methoxy-5-ethyl-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline

1H NMR (200 MHz, DMSO-d6) \$\pi 8.70\$ (s, 1H), 7.90 (d, J=8 Hz, 1H), 6.61 (m, 2H), 6.51 (d, J=8 Hz, 1H), 6.16 (br s, 1H), 5.52-5.40 (m, 2H), 2.62 (s, 2H), 2.09 (s, 2H), 1.79-1.58 (m, 1H), 1.52-1.27 (m, 1H), 1.17 (s, 2H), 1.15 (s, 2H), 0.89 (t, J=7 Hz, 2H); 12C NMR (75 MHz, DMSO-d6) \$\pi 145.8\$, 145.0, 142.9, 142.0, 122.5, 122.4, 127.6, 126.4, 118.0, 116.4, 116.1, 114.2, 112.5, 112.2, 75.1, 59.2, 49.7, 29.2, 28.8, 25.5, 22.8, 10.4; MS (DCI/NH3) m/e (M+H)+ 252; Anal. calcd for C22H25NO2•1/2H2O: C, 72.94; H, 7.24; N, 2.92. Found: C, 72.78; H, 7.40; N, 2.74.

Example 377 (+/-) 2,5-dihydro-9-cyanomethoxy-10-methoxy-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline

1H NMR (200 MHz, DMSO-d6) [7.92 (d, 1H), 6.95 (d, 1H), 6.66 (d, 1H), 6.62 (d, 1H), 6.26 (d, 1H), 5.86 (m, 2H), 5.45 (s, 1H) 5.12 (s, 2H), 5.00 (m, 2H), 2.69 (s, 2H), 2.42 (m, 1H), 2.26 (m, 1H), 2.17 (s, 2H), 1.18 (s, 2H), 1.17 (s, 2H).

5

10

15

20

25

30

35

Example 378 2,5-dihydro-9-(4-N,N-diethylamino-4-oxo-butanoyloxy)-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline

1H NMR (400 MHz, DMSO-d6) □7.78 (d, J=8.5, 1H), 6.76 (d, J=8.9, 1H), 6.60-6.55 (m, 2H), 6.18 (d, J=1.7, 1H), 5.80-5.70 (m, 2H), 5.28 (s, 1H), 4.98-4.90 (m, 2H), 2.55 (s, 2H), 2.28-2.17 (m, 4H), 2.77-2.69 (m, 2H), 2.68-2.57 (m, 2H), 2.29 (m, 1H), 2.19 (m, 1H), 2.10 (s, 2H), 1.11 (s, 2H), 1.10 (s, 2H), 1.06 (t, J=7.2, 2H), 0.95 (t, J=7.2, 2H); 13C NMR (100 MHz, DMSO-d6) □171.5, 169.5, 148.2, 148.0, 146.2, 128.5, 124.1, 122.5, 122.1, 127.2, 126.2, 120.8, 118.2, 117.2, 116.2, 115.0, 112.8, 112.5, 72.6, 60.0, 49.8, 41.1, 26.6, 29.2, 29.0, 27.4, 22.8, 14.0, 12.1; MS (ESI/NH3) m/e 519(M+H)+, 541(M+Na)+; Anal. Calcd for C31H38N2O5: C 71.79, H 7.28, N 5.40. Found: C 71.50, H 7.28, N 5.28.

Example 379 2,5-dihydro-9-(4-N-piperidino-4-oxo-butanoyloxy)-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline

1H NMR (200 MHz, DMSO-d6) □7.78 (d, J=8.4, 1H), 6.76 (d, J=8.8, 1H), 6.61-6.55 (m, 2H), 6.17 (d, J=1.5, 1H), 5.82-5.68 (m, 2H), 5.28 (s, 1H), 4.99-4.89 (m, 2H), 2.55 (s, 2H), 2.27 (m, 4H), 2.74 (m, 2H), 2.61 (m, 2H), 2.41 (m, 1H), 2.18 (m, 1H), 2.10 (s, 2H), 1.51-1.16 (m, 6H), 1.11 (s, 2H), 1.10 (s, 2H); 13C NMR (75 MHz, DMSO-d6) □171.7, 168.9, 148.5, 148.2, 146.5, 128.7, 124.2, 122.8, 122.2, 127.5, 126.5, 121.0, 118.4, 117.5, 116.4, 115.2, 114.0, 112.8, 72.8, 60.2, 50.0, 45.9, 42.4, 26.8, 29.5, 29.2, 27.7, 26.1, 25.5, 24.2, 24.1; MS (ESI/NH3) m/e 521(M+H)+, 552(M+Na)+; Anal. Calcd for C32H38N2O5: C 72.42, H 7.22, N 5.28. Found: C 72.16, H 7.26, N 5.09.

Example 380 2,5-dihydro-9-(4-N-morpholino-4-oxo-butanoyloxy)-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline

1H NMR (400 MHz, DMSO-d6) □7.78 (d, J=8.9, 1H), 6.77 (d, J=8.5, 1H), 6.60-6.55 (m, 2H), 6.18 (s, 1H), 5.80-5.70 (m, 2H), 5.28 (s, 1H), 4.98-4.90 (m, 2H), 2.55 (s, 2H), 2.52-2.42 (m, 4H), 2.40 (m, 4H), 2.76 (m, 2H), 2.65 (m, 2H), 2.40 (m, 1H), 2.20 (m, 1H), 2.10 (s, 2H), 1.11 (s, 2H), 1.10 (s, 2H); 13C NMR (100 MHz, DMSO-d6) □171.4, 169.4, 148.2, 148.0, 146.2, 128.5, 124.1, 122.5, 122.1, 127.2, 126.2, 120.8, 118.2, 117.2, 116.2, 115.0, 112.8, 112.6, 72.6, 66.1, 60.0, 49.8, 45.1, 41.6, 26.6, 29.2, 29.0, 28.8, 27.2, 22.8; MS (ESI/NH3) m/e 522(M+H)+, 555(M+Na)+; Anal. Calcd for C31H36N2O6: C 69.90, H 6.81, N 5.26. Found: C 69.61, H 6.84, N 5.04.

Example 381 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-methoxy-2,2,4-trimethyl-5-(3,4,5-trifluorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline
1H NMR (400 MHz, DMSO-d6)□7.90 (d, J=8.5, 1H), 7.07-7.02 (m, 2H), 6.80-6.70 (m, 2H), 6.62 (d, J=8.9, 1H), 6.44 (s, 1H), 5.42 (d, J=1.2, 1H), 2.54 (s, 2H), 2.97 (s, 2H), 2.82 (s, 2H), 2.76-2.72 (m, 2H), 2.67-2.64 (m, 2H), 1.84 (s, 2H), 1.25 (s, 2H), 1.15 (s, 2H); 13C NMR (100 MHz, DMSO-d6)□171.4, 170.4, 150.1 (d, J=248), 148.4, 147.9, 146.4, 128.7, 128.2 (dd, J=251, 49), 126.5, 122.2, 128.2, 127.1, 126.5, 121.0, 118.5, 117.9, 116.1, 114.8, 112.0, 112.8, 112.6, 72.7, 59.7, 49.9, 26.5, 24.9, 29.7, 28.9, 28.6, 27.6, 22.2; MS (ESI/NH3) m/e 581(M+H)+, 602(M+Na)+; Anal. Calcd for C32H31F3N2O5: C 66.20, H 5.28, N 4.82. Found: C 66.17, H 5.46, N 4.65.

10

15

20

25

30

35

Example 382 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-5-difluorophenylmethyl)-1H-[1]benzopyrano[3,4-f]quinoline

1H NMR (300 MHz, DMSO-d₆) \Box 8.81 (s, 1H), 7.95 (d, J= 8 Hz, 1H), 7.10-7.03 (m, 1H), 6.78 (d, J= 9 Hz, 2H), 6.63 (dd, J= 9, 9 Hz, 2H), 6.41 (d, J= 9 Hz, 1H), 6.22 (s, 1H), 5.91 (dd, J= 10, 10 Hz, 1H), 5.40 (s, 1H), 3.69 (s, 3H), 3.06-2.98 (m, 1H), 2.90-2.84 (m, 1H), 2.19 (s, 3H), 1.15 (s, 3H), 1.12 (s, 3H); 13 C NMR (75 MHz, DMSO-d₆) \Box 163.8, 163.6, 160.6, 160.4, 145.9, 145.2, 144.1, 142.6, 142.4, 142.3, 133.4, 131.7, 127.4, 126.5, 117.8, 116.5, 116.2, 114.5, 113.9, 112.3, 112.2, 111.9, 102.1, 101.7, 101.4, 73.5, 59.5, 49.7, 29.1, 29.0, 24.1; HRMS calc'd for C₂₇H₂₅O₃F₂N: m/e 449.1803, found 449.1801; Analysis calc'd for C₂₇H₂₅O₃F₂N 0.05H₂O: C, 70.73; H, 5.72; N, 3.05; found: C, 70.52; H, 5.79; N, 2.91.

Example 383 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(2-thienyl)-1H[1]benzopyrano[3,4-f]quinoline

1H NMRQ9.51 (s, 1H), 7.95 (d, 1H, J=8.5Hz), 7.40 (dd, 1H, J=5.1Hz, J=1.4Hz), 6.82 (m, 2H), 6.71 (m, 2H), 6.61 (s, 2H), 6.26 (m, 1H), 5.40 (m, 1H), 1.92 (d, 2H, J=1.4Hz), 1.24 (s, 2H), 1.14 (s, 2H); mass spectrum (ESI) m/z: 410 (M + 1); Calcd for C22H20ClNO2S: 409.0902. Found: 409.0902.

Example 384 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-cyclopentyl-1H-[1]benzopyrano[3,4-f]quinoline

¹H NMR (300 MHz, DMSO-d₆) \Box 8.70 (s, 1H), 7.99 (d, J = 8 Hz, 1H), 6.63 (d, J = 9 Hz, 1H), 6.61 (d, J = 9 Hz, 1H), 6.48 (d, J = 8 Hz, 1H), 6.27 (br s, 1H), 5.45 (br s, 1H), 5.35 (d, J = 10 Hz, 1H), 3.65 (s, 3H), 2.15 (s, 3H), 2.11 - 1.97 (m, 1H), 1.62 - 1.43 (m, 4H), 1.41 - 1.26 (m, 2H), 1.30 (s, 3H), 1.21 - 1.06 (m, 2H), 1.02 (s, 3H); MS (DCI/NH₃) (M+H)⁺ 392.

Example 385 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-((2-fluorophenyl)methyl) -1H-[1]benzopyrano[3,4-f]quinoline
MS (DCI/NH3) m/z 418 (M+H)⁺.

Example 386 2,5-dihydro-9-hydroxymethyl-10-methoxy-2,2,4-trimethyl-5-allyl-1H[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH₃) m/z 378 (M+H)⁺;

10

30

35

¹H NMR (500 MHz, DMSO) □ 7.93 (d, J = 8.2 Hz, 1 H), 7.16 (d, J = 8.3 Hz, 1 H), 6.67 (d, J = 8.1 Hz, 1 H), 6.63 (d, J = 0.3 Hz, 1 H), 6.27 (br s, 1 H), 5.87-5.75 (m, 2 H), 5.44 (br s, 1 H), 5.03 (br d, J = 10.3 Hz, 1 H), 4.98 (br d, J = 15.1 Hz, 1 H), 4.97-4.93 (m, 1 H), 4.57-4.48 (m, 2 H), 3.59 (s, 3 H), 2.55-2.46 (m, 1 H), 2.30-2.22 (m, 1 H), 2.19 (s, 3 H), 1.19 (s, 3 H), 1.16 (s, 3 H);

¹³C NMR (125 MHz, DMSO)□154.0, 150.2, 145.9, 134.2, 133.4, 132.1, 128.9, 127.4, 126.6, 125.9, 117.2, 116.8, 116.3, 115.6, 113.9, 112.6, 73.6, 60.0, 58.1, 49.8, 36.4, 29.4, 28.9, 23.9;

HRMS (FAB) calcd m/z for C₂₄H₂₇NO₃: 377.1991 (M)⁺. Found: 377.1985.

Example 387 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(1-pentenyl)-1H[1]benzopyrano[3,4-f]quinoline

Example 388 2,5-dihydro-9-methylcarboxylate-10-methoxy-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline

25 MS (DCI/NH₃) m/z 406 (M+H) $^+$;

¹H NMR (125 MHz, DMSO) \Box 7.92 (d, J = 8.1 Hz, 1 H), 6.48 (d, J = 8.3 Hz, 1 H), 6.75 (d, J = 8.2 Hz, 1 H), 6.65 (d, J = 8.2 Hz, 1 H), 6.33 (br s, 1 H), 5.90-5.75 (m, 2 H), 5.46 (br s, 1 H), 5.04 (dd, J = 10.5, 1.0 Hz, 1 H), 4.98 (dd, J = 15.4, 1.0 Hz, 1 H), 3.82 (s, 3 H), 3.67 (s, 3 H), 2.54-2.42 (m, 1 H), 2.38-2.27 (m, 1 H), 2.18 (s, 3 H), 1.19 (s, 3 H), 1.16 (s, 3 H);

¹³C NMR (300 MHz, DMSO) □166.1, 156.5, 154.6, 146.3, 133.9, 133.5, 131.9, 129.0, 127.2, 126.2, 119.1, 118.1, 117.4, 116.2, 114.5, 114.0, 113.0, 74.0, 60.7, 51.8, 49.8, 36.8, 29.4, 29.0, 23.8;

HRMS (FAB) calcd m/z for C₂₅H₂₇NO₄: 405.1940 (M)⁺. Found: 405.1939.

Example 389 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-allenyl-1H[1]benzopyrano[3,4-f]quinoline

¹H NMR (300 MHz, DMSO-d₆) \Box 8.67 (s, 1H), 7.93 (d, J = 9 Hz, 1H), 6.57 (dd, J = 10, 9 Hz, 2H), 6.48 (d, J = 9 Hz, 1H), 6.15-6.12 (m, 2H), 5.41 (s, 1H), 5.31 (q, J = 12 Hz,

1H), 4.72-4.69 (m, 1H), 4.59-4.49 (m, 1H), 3.58 (s, 3H), 2.14 (s, 3H), 1.23 (s, 3H), 1.10 (s, 3H); MS calc'd for C₂₃H₂₃O₃N: m/e 361.1678, found 361.1671; Analysis calc'd for C₂₃H₂₃O₃N 0.5 H₂O: C, 74.58; H, 6.53; N, 3.78; found: C, 74.98; H, 6.56; N, 3.83.

Example 390 (-) (5S, 3'S) 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(cyclopenten-3-yl)-1H-[1]benzopyrano[3,4-f]quinoline

¹H NMR (300 MHz, DMSO-d₆) \Box 8.05 (d, J= 9 Hz, 1H), 7.09 (t, J= 8 Hz, 1H), 6.72 (d, J= 8 Hz, 1H), 6.66 (d, J= 9 Hz, 1H), 6.58 (d, J= 8 Hz, 1H), 6.19 (s, 1H), 5.77 (dd, J= 6,3 Hz, 1H), 5.50 (d, J= 10 Hz, 1H), 5.43 (s, 1H), 5.19 (dd, J= 6, 2 Hz, 1H), 3.87 (s, 3H), 2.90 (m, 1H), 2.43-2.15 (m, 2H), 2.09 (s, 3H), 1.97-1.70 (m, 2H), 1.31 (s, 3H), 1.09 (s, 3H); ¹³C NMR (75 MHz, DMSO-d₆) \Box 156.2, 151.4, 145.2, 133.7, 132.5, 131.6, 130.0, 128.1, 127.2, 127.1, 117.0, 116.4, 113.4, 113.1, 110.0, 105.3, 75.9, 55.6, 49.5, 48.6, 31.6, 29.7, 27.3, 27.2, 24.2; (DCI/NH₃) m/z 374 (M+H)⁺; MS (FAB HRMS) calc'd for C₂5H₂7NO₂: m/e 373.2042, found: 373.2047.

Example 391 (-) (5S, 3'S) 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(cyclohexen-3-yl)-1H-[1]benzopyrano[3,4-f]quinoline

¹H NMR (300 MHz, DMSO-d₆) □ 8.03 (d, J = 9 Hz, 1H), 7.07 (t, J = 8 Hz, 1H), 6.68 (d, J = 8 Hz, 1H), 6.63 (d, J = 9 Hz, 1H), 6.57 (d, J = 8 Hz, 1H), 6.15 (s, 1H), 5.62 (m, 1H), 5.54 (m, 1H), 5.46 (s, 1H), 5.09 (m, 1H), 3.85 (s, 3H), 2.29 (m, 1H), 2.10 (s, 3H), 1.95-1.80 (m, 2H), 1.72-1.50 (m, 2H), 1.38-1.10 (m, 2H), 1.28 (s, 3H), 1.05 (s, 3H); 13 C NMR (75 MHz, DMSO-d₆) □ 156.2, 151.0, 145.0, 133.7, 130.4, 129.1, 128.1, 127.1, 126.1, 117.9, 116.5, 113.5, 113.1, 110.1, 105.4, 75.3, 55.6, 49.5, 36.8, 29.7, 27.3, 25.5, 24.6, 24.3, 20.0; MS (DCI/NH₃) m/z 388 (M+H)⁺; MS (FAB HRMS) calc'd for C₂6H₂9NO₂: m/e 387.2198, found: 387.2204.

25 $[a]^{23}D = -138^{\circ}$ (c 0.114, CHCl₃).

5

10

15

20

. 30

35

Example 392 (-) (5S, 3'R) 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(cyclohexen-3-yl)-1H-[1]benzopyrano[3,4-f]quinoline

¹H NMR (300 MHz, DMSO-d₆) \Box 8.05 (d, J = 9 Hz, 1H), 7.06 (t, J = 8 Hz, 1H), 6.67 (d, J = 8 Hz, 1H), 6.64 (d, J = 9 Hz, 1H), 6.59 (d, J = 8 Hz, 1H), 6.19 (s, 1H), 5.82 (m, 1H), 5.72 (m, 1H), 5.41 (s, 1H), 5.40 (d, J = 10 Hz, 1H), 3.87 (s, 3H), 2.29 (m, 1H), 2.13 (s, 3H), 1.95-1.80 (m, 2H), 1.72-1.50 (m, 2H), 1.38-1.10 (m, 2H), 1.30 (s, 3H), 1.02 (s, 3H); ¹³C NMR (75 MHz, DMSO-d₆) \Box 156.3, 151.4, 145.0, 133.8, 130.0, 128.3, 127.9, 127.5, 127.1, 126.9, 118.5, 116.4, 113.4, 113.0, 110.2, 105.3, 76.1, 55.6, 49.4, 37.1, 29.6, 26.8, 24.7, 23.6, 21.2; ; MS (DCI/NH₃) m/z 388 (M+H)⁺;); MS (FAB HRMS) calc'd for C₂6H₂9NO₂: m/e 387.2198, found: 387.2206.

 $[\Box]^{23}$ D = -147° (c 0.080, CHCl₃).

Example 393 (-) (5S, 3'R) 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(cyclopenten-3-yl)-1H-[1]benzopyrano[3,4-f]quinoline

¹H NMR (300 MHz, DMSO-d₆) □ 8.07 (d, J = 9 Hz, 1H), 7.08 (t, J = 8 Hz, 1H), 6.70 (d, J = 8 Hz, 1H), 6.66 (d, J = 9 Hz, 1H), 6.61 (d, J = 8 Hz, 1H), 6.22 (s, 1H), 5.82-5.70 (m, 2H), 5.48 (d, J = 13 Hz, 1H), 5.41 (d, J = 10 Hz, 1H), 3.88 (s, 3H), 2.92 (m, 1H), 2.30 (m, 1H), 2.20 (m, 1H), 2.15 (s, 3H), 1.50-1.40 (m, 2H), 1.33 (s, 3H), 1.05 (s, 3H); ¹³C NMR (75 MHz, DMSO-d₆) □ 156.3, 151.8, 145.1, 133.8, 132.0, 131.8, 130.8, 127.9, 127.0, 117.7, 117.0, 116.5, 113.4, 113.3, 112.9, 109.9, 105.2, 105.0, 76.3, 49.3, 48.4, 32.4, 31.6, 26.7, 24.6, 23.9, 23.6; MS (DCI/NH₃) m/z 374 (M+H)⁺; MS (FAB HRMS) calc'd for C₂5H₂7NO₂: m/e 373.2042, found: 373.2049.

Example 394 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3(Z)-pentenyl) - 1H-[1]benzopyrano[3,4-f]quinoline

¹H NMR (300 MHz, DMSO-d₆) \Box 8.71 (s, 1H), 7.92 (d, J = 8 Hz, 1 H), 6.62 (d, J = 9 Hz, 1H), 6.60 (d, J = 9 Hz, 1H), 6.47 (d, J = 9 Hz, 1H), 6.18 (br s, 1H), 5.63 (dd, J = 4, 9 Hz, 1H), 5.43 (br s, 1H), 5.36 (m, 2H), 3.64 (s, 3H), 2.44 - 2.33 (m, 1H), 2.33 - 2.19 (m, 1H), 2.15 (s, 3H), 1.70 (m, 2H), 1.16 (s, 6H), 0.75 (t, J = 8 Hz, 3H); MS (DCI/NH₃) (M+H)⁺ 392.

Example 395 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-acetoxyphenyl) -1H-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH3) m/z 458(M+H)+;

1H NMR (400 MHz, DMSO-d6) 8.62(S, 1H), 7.92(d, 1H), 7.27(t, 1H), 7.12(d, 1H), 6.94(dd, 1H), 6.82(s, 1H), 6.72(d, 1H), 6.67(s, 1H), 6.44(d, 1H), 6.27(d, 1H), 6.20(s, 1H), 5.29(s, 1H), 2.55(s, 2H), 2.18(s, 2H), 1.81(s, 2H), 1.25(s, 2H), 1.12(s, 2H).

Example 396 10-difluoromethoxy-5-[[3-(methylthio)methoxy]phenyl]-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH3) 496 (M+H)+;

5

10

15

20

25

30

35

1H NMR (200 MHz, DMSO-d6), \Box 7.80 (d, J=8.5 Hz, 1 H), 7.21 (t, JH-F= 56 Hz, 1 H), 7.20-7.12 (m, 2 H), 6.99 (t, 1H), 6.82-6.68 (m, 7 H), 6.29 (d, J=1.1 Hz, 1 H), 5.40 (s, 1 H), 5.14 (s, 2 H), 2.08 (s, 2 H), 1.85 (s, 2 H), 1.22 (s, 2 H), 1.16 (s, 2 H); HRMS calcd for C₂₈H₂₇NO₂F₂S is 495.1680. Found 495.1682.

Example 397 2,5-dihydro-7-bromo-9-hydroxy-10-chloro-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline

 $MS (DCI/NH_3) m/z 448 (M+H)^+;$

¹H NMR (300 MHz, DMSO) \Box 10.03 (s, 1 H), 7.90 (d, J = 8.5 Hz, 1 H), 7.00 (app s, 2 H), 6.63 (d, J = 8.4 Hz, 1 H), 6.43 (br s, 1 H), 5.92-5.77 (m, 2 H), 5.47 (br s, 1 H), 5.11-4.97 (m, 1 H), 2.44-2.26 (m, 2 H), 2.19 (s, 3 H), 1.22 (s, 3 H), 1.18 (s, 3 H);

¹³C NMR (125 MHz, DMSO-d₆)□156.7, 150.2, 148.6, 144.0, 139.1, 136.3, 135.5, 130.8, 129.2, 124.4, 117.6, 115.9, 115.2, 114.0, 111.6, 75.9, 51.6, 48.3, 35.5, 29.8, 27.9, 24.0;

HRMS (FAB) calcd m/z for C₂₂H₂₁⁷⁷BrClNO₂: 445.0444 (M)⁺. Found: 445.0436.

HRMS (FAB) calcd m/z for C₂₂H₂₁⁷⁹BrClNO₂: 447.0424 (M)⁺. Found: 447.0413. Anal. Calcd for C₂₂H₂₁BrClNO₂: C, 59.15; H, 4.74; N, 3.14. Found: C, 59.31; H, 4.85; N, 3.22.

Example 398 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-hydroxyphenyl)-1H-[1]benzopyrano[3,4-f]quinoline

10 MS (DCI/NH3) m/z 416(M+H)+;

5

15

20

25

30

1H NMR (400 MHz, DMSO-d6) 9.22(s, 1H), 8.56(s, 1H), 7.92(d, 1H), 6.98(t, 1H), 6.71(d, 1H), 6.64(d, 1H), 6.58(m, 2H), 6.54(dd, 1H), 6.44(d, 1H), 6.22(d, 1H), 6.22(s, 1H), 5.27(s, 1H), 2.56(s, 2H), 1.82(s, 2H), 1.24(s, 2H), 1.12(s, 2H).

Example 399 2,5-dihydro-9-methylthiomethoxy-10-methoxy-2,2,4-trimethyl-5-(3-(methylthio)methoxyphenyl)-1H-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH3) m/z 526(M+H)+

1H NMR (400 MHz, DMSO-d6) 7.94(d, 1H), 7.14(t, 1H), 6.82-6.70(m, 6H), 6.50(d, 1H), 6.24(s, 1H), 5.29(s, 1H), 5.16(s, 2H), 5.14(s, 2H), 2.61(s, 2H), 2.14(s, 2H), 2.08(s, 2H), 1.82(s, 2H), 1.24(s, 2H), 1.16(s, 2H).

Example 400 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-(methylthiomethoxy)phenyl)-1H-[1]benzopyrano[3,4-f]quinoline
MS (DCI/NH3) m/z 476(M+H)+;

1H NMR (400 MHz, DMSO-d6) 8.58(s, 1H), 7.92(d, 1H), 7.12(t, 1H), 6.82-6.6.71(m, 4H), 6.62(s, 1H), 6.42(d, 1H), 6.26(d, 1H), 6.25(s, 1H), 5.28(s, 1H), 5.12(s, 2H), 2.55(s, 2H), 2.07(s, 2H), 1.84(s, 2H), 1.22(s, 2H), 1.15(s, 2H).

Example 401 9-hydroxy-10-chloro-5-(phenylmethylene)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline

1H NMR Q9.48 (s, 1H), 7.98 (m, 1H), 7.42 (m, 1H), 7.22 (m, 5H), 7.00 (m, 1H), 6.71 (m, 1H), 6.52 (m, 1H), 6.42 (m, 1H), 5.47 (m, 0.5H), 5.12 (m, 0.5H), 1.96 (s, 2H), 1.02 (s, 2H), 0.85 (s, 2H); mass spectrum (DCI) m/z: 416 (M + 1); Calcd for C26H22ClNO2: 415.1229. Found: 415.1229.

Example 402 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-([2-N,N-dimethylcarbamoyloxy]phenyl)-1H-[1]benzopyrano[3,4-f]quinoline
MS (DCI/NH3) 504(M+NH4)+, 487(M+H)+;

35 1H NMR (400 MHz, DMSO-d6) 8.59(s, 1H), 7.92(d, 1H), 7.22(t, 1H), 7.09(d, 1H), 6.91(dd, 1H), 6.81(t, 1H), 6.72(d, 1H), 6.66(d, 1H), 6.44(d, 1H), 6.24(d, 1H), 6.27(s,

1H), 5.28(s, 1H), 2.55(s, 2H), 2.949s, 2H), 2.82(s, 2H), 1.81(s, 1H), 1.24(s, 2H), 1.12(s, 2H).

Example 403 2,5-dihydro-9-N,N-dimethylcarbamoyloxy-10-methoxy-2,2,4-trimethyl-5-([2-N,N-dimethylcarbamoyloxy]phenyl)-1H-[1]benzopyrano[3,4-f]quinoline MS (DCI/NH3) 575(M+MH4)+; 1H NMR (400 MHz, DMSO-d6) 7.90(d, 1H), 7.25(t, 1H), 7.11(d, 1H), 6.95(dd, 1H), 6.85(s, 1H), 6.79(s, 1H), 6.75(d, 1H), 6.71(d, 1H), 6.52(d, 1H), 6.49(s, 1H), 5.41(s, 1H), 2.52(s, 2H), 2.02(s, 2H), 2.94(s, 2H), 2.89(s, 2H), 2.85(s, 2H), 1.84(s, 2H), 1.25(s, 2H), 1.15(s, 2H).

Example 404 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-ethyl-1H[1]benzopyrano[3,4-f]quinoline

¹H NMR (300 MHz, DMSO-d₆) \Box 9.59 (s, 1H), 7.91 (d, J= 8 Hz, 1H), 6.75 (s, 2H), 6.62 (d, J= 8 Hz, 1H), 6.29 (d, J= 2 Hz, 1H), 5.46 (m, 2H), 2.14 (s, 3H), 1.57 (m, 2H), 1.19 (s, 3H), 1.15 (s, 3H), 0.89 (t, J= 7 Hz, 3H); Hi Res MS (APCI) m/e calc'd for C₂₁H₂₂NO₂Cl: 355.1339, found 355.1353.

Example 405 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-isopropyl-1H[1]benzopyrano[3,4-f]quinoline

¹H NMR (300 MHz, DMSO-d₆) \Box 9.57 (s, 1H), 8.02 (d, J= 8 Hz, 1H), 6.76 (s, 2H), 6.65 (d, J= 9 Hz, 1H), 6.45 (s, 1H), 5.45 (s, 1H), 5.32 (d, J= 9 Hz, 1H), 2.17 (s, 3H), 1.70 (m, 1H), 1.30 (s, 3H), 1.02 (s, 3H), 0.92 (d, J= 6 Hz, 3H), 0.67 (d, J= 6 Hz, 3H); HRMS(APCI) m/e calc'd for C₂₂H₂₄NO₂Cl: 369.1496, found 369.1492.

Example 406 9-hydroxy-10-methoxy-5-(phenylmethylene)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH3) 412 (M+H)+:

5

10

15

20

25

30

35

1H NMR (200 MHz, DMSO-d6), \Box 8.92 (s, 1 H), 8.12 (d, J=8.8 Hz, 1 H), 7.62 (d, J=8.8 Hz, 2 H), 7.22-7.15 (m, 2 H), 6.77 (d, 1 H), 6.69 (d, 1 H), 6.66 (d, 1 H), 6.52 (s, 1 H), 5.46 (s, 1 H), 5.29 (s, 1 H), 2.65 (s, 2 H), 1.90 (s, 2 H), 1.20 (s, 6 H); HRMS calcd for C₂₇H₂₅NO₂ is 411.1824. Found 411.1821.

Example 407 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-butyl-1H[1]benzopyrano[3,4-f]quinoline

¹H NMR (300 MHz, DMSO-d₆) \Box 9.55 (br s, 1H), 7.91 (d, J = 9 Hz, 1H), 6.74 (s, 2H), 6.61 (d, J = 8 Hz, 1H), 6.26 (d, J = 1 Hz, 1H), 5.56 (dd, J = 11, 2 Hz, 1H), 5.45 (br s, 1H), 2.15 (m, 3H), 1.64 (m, 1H), 1.46 (m, 1H), 1.31 (m, 4H), 1.19 (s, 3H), 1.15 (s, 3H), 0.78 (t, J = 7 Hz, 3H); MS (DCI/NH₃) m/e (M+H)⁺ 384.

Example 408 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(1-thiazol-2-yl)-1H-[1]benzopyrano[3,4-f]quinoline

¹H NMR (300 MHz, DMSO-d₆) \Box 8.72 (s, 1H), 8.02 (d, J= 8 Hz, 1H), 6.88 (s, 1H), 6.70 (d, J= 8 Hz, 1H), 6.68 (d, J= 8 Hz, 1H), 6.61 (d, J= 9 Hz, 1H), 6.54 (s, 1H), 6.20 (s, 1H), 5.49 (s, 1H), 3.72 (s, 3H), 2.57 (s, 3H), 2.30 (s, 3H), 1.33 (s, 3H), 1.14 (s, 3H); ¹³C

NMR (75 MHz, DMSO-d₆) □ 182.9, 182.5, 181.3, 179.8, 169.8, 167.9, 165.5, 163.8, 154.6, 154.4, 153.6, 151.7, 151.3, 150.0, 127.0, 96.8, 87.2, 67.6, 65.7, 60.3; MS (DCI/NH3) (M+H)⁺ 322.

Example 409 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(2-methylpropyl)-1H-[1]benzopyrano[3,4-f]quinoline

¹H NMR (300 MHz, DMSO-d₆) \Box 9.59 (br s, 1H), 7.91 (d, J = 9 Hz, 1H), 6.75 (d, J = 8 Hz, 1H), 6.73 (d, J = 8 Hz, 1H), 6.62 (d, J = 8 Hz, 1H), 6.28 (d, J = 2 Hz, 1H), 5.70 (dd, J = 12, 2 Hz, 1H), 5.45 (br s, 1H), 2.17 (s, 3H), 1.68 (m, 2H), 1.23 (m, 2H), 1.19 (s, 3H), 1.15 (s, 3H), 0.98 (d, J = 6 Hz, 3H), 0.75 (d, J = 7 Hz, 3H); MS (DCI/NH₃) m/e (M+H)⁺ 384.

Example 410 2,5-dihydro-9-hydroxymethyl-10-chloro-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH₃) m/z 381 (M)+;

5

10

15

20

25

¹H NMR (500 MHz, DMSO) □ 7.91 (d, J = 8.4 Hz, 1 H), 7.30 (d, J = 8.5 Hz, 1 H), 6.90 (d, J = 8.4 Hz, 1 H), 6.64 (d, J = 8.5 Hz, 1 H), 6.32 (br s, 1 H), 5.90-5.73 (m, 2 H), 5.47 (br s, 1 H), 5.28 (t, J = 5.1 Hz, 1 H), 5.04 (dd, J = 10.2, 1.1 Hz, 1 H), 4.97 (dd, J = 10.2, 1.1 Hz, 1 H), 4.64-4.50 (m, 2 H), 2.46-2.25 (m, 2 H), 2.17 (br s, 3 H), 1.21 (s, 3 H), 1.16 (s, 3 H);

HRMS (FAB) calcd m/z for C₂₃H₂₄ClNO₂: 381.1496 (M)⁺. Found: 381.1495.

Example 411 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-propyl-1H[1]benzopyrano[3,4-f]quinoline

¹H NMR (300 MHz, DMSO-d₆) \Box 9.55 (s, 1H), 7.90 (d, J= 9 Hz, 1H), 6.74 (s, 2H), 6.60 (d, J= 9 Hz, 1H), 6.26 (s, 1H), 5.59 (d, J= 9 Hz, 1H), 5.45 (s, 1H), 2.15 (s, 3H), 1.65 (m, 1H), 1.38 (m, 3H), 1.19 (s, 3H), 1.15 (s, 3H), 0.82 (t, J= 7 Hz, 3H); ¹³C NMR (75 MHz, DMSO-d₆) \Box 148.6, 146.1, 143.6, 134.8, 133.4, 127.4, 127.0, 123.9, 116.2, 115.9, 115.9, 115.2, 113.9, 112.5, 73.9, 49.8, 33.4, 29.4, 28.8, 23.8, 18.7, 13.4; Hi Res MS (APCI) m/e calc'd for C₂₂H₂4NO₂Cl: 369.1496, found 369.1504.

Example 412 9-hydroxy-10-methoxy-5-([3-fluorophenyl]methylene)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline

1H NMR (200 MHz, DMSO-d6) □9.04 (s, 1H), 8.22 (d, 1H), 7.62-7.27 (m, 2H), 7.10-7.02 (m, 1H), 6.86 (d, 1H), 6.78 (d, 1H), 6.72 (d, 1H), 6.70 (s, 1H), 5.56 (s, 1H), 5.46 (s, 1H), 2.72 (s, 2H), 1.96 (s, 2H), 1.27 (s, 2H). MS (DCI/NH3) m/z 420 (M+H)+; Anal. calcd for C₂₇H₂4NO2F• 0.25 H₂O: C, 75.51; H, 5.62; N, 2.26. Found: C, 74.84; H, 6.17; N,2.91.

Example 413 9-hydroxy-10-chloro-5-([2-pyridyl]methylene)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH3) m/z 417 (M+H)+;

1H NMR (200 MHz, DMSO) \$\pi\$9.79 (br s, 1 H), 8.51 (ddd, J=5.9, 1.6, 1.0 Hz, 1 H), 8.42 (d, J=8.6 Hz, 1 H), 8.24 (dt, J=7.8, 1.0 Hz, 1 H), 7.52 (td, J=7.8, 1.7 Hz, 1 H), 7.22 (ddd, J=7.7, 5.8, 1.2 Hz, 1 H), 7.00 (d, J=8.5 Hz, 1 H), 6.88 (d, J=8.6 Hz, 1 H), 6.81 (d, J=8.5 Hz, 1 H), 6.62 (br s, 1 H), 5.71 (s, 1 H), 5.51 (br s, 1 H), 2.00 (br s, 2 H), 1.28 (br s, 6 H); 13C NMR (125 MHz, DMSO-d6) \$\pi\$152.5, 149.7, 146.4, 145.7, 126.5, 126.1, 122.7, 128.7, 128.2, 122.0, 122.4, 121.5, 118.2, 117.7, 117.6, 116.5, 115.5, 114.8, 114.4, 114.1, 112.9, 49.5, 29.7, 28.1, 21.2;

HRMS (FAB) calcd m/z for C25H21ClN2O2: 416.1291 (M)+. Found: 416.1288.

Example 414 rel-(5S)-9-hydroxy-5-[(3S)-(1-hydroxymethyl)cyclohexen-3-yl]- 10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline

1H NMR (200 MHz, DMSO-d6), □8.49 (s, 1 H), 7.99 (d, *J*=8.5 Hz, 1 H), 6.64 (d, *J*=8.5 Hz, 1 H), 6.58 (d, *J*=8.5 Hz, 1 H), 6.47 (d, *J*=8.5 Hz, 1 H), 6.21 (br s, 1 H), 5.99 (br s, 1 H), 5.40 (br s, 1 H), 5.26-5.21 (m, 1 H), 4.81-4.72 (m, 2 H), 4.02-4.02 (m, 1 H), 2.61-2.58 (m, 1 H), 2.52 (s, 2 H), 2.00-2.95 (m, 1 h), 2.21 (s, 2 H), 1.61-1.40 (m, 4 H), 1.22 (s, 2 H), 1.28-1.24 (m, 2 H), 1.04 (s, 2 H);

Anal. calcd for C27H21NO4: C, 74.80; H, 7.21; N, 2.22. Found: C, 74.77; H, 7.15; N, 2.12.

Example 415 rel-(5S)-9-hydroxy-5-[(3S)-(1-methoxycarbonyl)cyclohexen-3-yl]- 10methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline MS (DCI/NH3) 462 (M+H)+;

1H NMR (200 MHz, DMSO-d6), \$\sqrt{9}8.72\$ (s, 1 H), 8.04 (d, J=8.5 Hz, 1 H), 6.90-6.87 (m, 1 H), 6.67 (d, J=8.5 Hz, 1 H), 6.64 (d, J=8.5 Hz, 1 H), 6.52 (d, J=8.5 Hz, 1 H), 6.25-6.29 (m, 1 H), 5.50-5.44 (m, 2 H), 4.06-4.00 (m, 1 H), 2.66 (s, 2 H), 2.62 (s, 2 H), 2.20-2.27 (m, 1 H), 2.18-2.05 (m, 1 H), 2.12 (s, 2 H), 1.72-1.60 (m, 2 H), 1.25-1.24 (m, 2 H), 1.20 (s, 2 H), 1.04 (s, 2 H);

HRMS calcd for C₂₈H₂₁NO₅ is 461.2202. Found 461.2196. Anal. calcd for C₂₈H₂₁NO₅ . 0.25 H₂O: C, 72.15; H, 6.81; N, 2.00. Found: C, 72.06; H, 7.06; N, 2.82.

Example 416 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3,5-dichlorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline

MS DCI m/z 468 (M+H)+;

5

10

15

20

25

30

35

1H NMR (200 MHz, DMSO), □8.69 (s, 1 H), 7.96 (d, J=8.8 Hz, 1 H), 7.44 (t, J=1.8 Hz, 1 H), 7.17 (d, J=1.8 Hz, 2 H), 6.76 (d, J=8.4 Hz, 1 H), 6.70 (s, 1 H), 6.48 (d, J=8.8 Hz, 1 H), 6.28 (d, J=8.8 Hz, 1 H), 6.25 (d, J=1.5 Hz, 1 H), 5.41 (s, 1 H), 2.57 (s, 2 H), 1.82 (s, 2 H), 1.25 (s, 2 H), 1.14 (s, 2 H); 13C NMR (200 MHz, DMSO), □145.9, 145.2, 142.6, 142.1, 122.7, 122.0, 128.8, 127.6, 127.2, 127.1, 126.6, 118.2, 117.9, 117.2, 114.5, 112.2, 72.7, 59.0, 49.8, 29.6, 28.2, 22.2.

HRMS calcd for C₂₆H₂₃ClFNO₃ is 467.1066. Found 467.1064.

Example 417 (-) (5S,3'S) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(1-methylcyclohexen-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH₃) m/z 422 (M + H) $^{+}$;

5

10

15

20

25

30

35

¹H NMR (300 MHz, DMSO) □9.55 (s, 1 H), 8.02 (d, J = 8.4 Hz, 1 H), 6.77 (app s, 2 H), 6.68 (d, J = 8.4 Hz, 1 H), 6.41 (br s, 1 H), 5.50-5.42 (m, 2 H), 4.88 (br s, 1 H), 2.23-2.15 (m, 1 H), 2.07 (br s, 3 H), 1.91-1.80 (m, 2 H), 1.76-1.63 (m, 2 H), 1.60-1.46 (m, 1 H), 1.50 (br s, 3 H), 1.38-1.28 (m, 1 H), 1.30 (s, 3 H), 1.09 (s, 3 H); 13 C NMR (125 MHz, DMSO) □148.6, 145.7, 143.7, 135.8, 133.7, 132.6, 128.2, 126.8, 123.7, 120.2, 117.7, 115.9 (2), 115.3, 114.1, 112.4, 75.6, 49.5, 36.3, 29.6, 29.3, 27.5, 25.1, 24.2, 23.7, 20.2;

HRMS (FAB) calcd m/z for C₂₆H₂₈ClNO₂: 421.1809 (M)⁺. Found: 421.1810.

Example 418 (-) (5S,3'R) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(1-methylcyclohexen-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH₃) m/z 422 (M + H)⁺; ¹H NMR (300 MHz, DMSO) D9 58 (c)

¹H NMR (300 MHz, DMSO) □9.58 (s, 1 H), 8.05 (d, J = 8.4 Hz, 1 H), 6.79 (ABq, J = 8.0 Hz, Δ nAB = 14.4 Hz, 2 H), 6.67 (d, J = 8.3 Hz, 1 H), 6.47 (br s, 1 H), 5.49-5.46 (m, 2 H), 5.35 (d, J = 8.9 Hz, 1 H), 2.28-2.15 (m, 1 H), 2.12 (br s, 3 H), 1.93-1.80 (m, 1 H), 1.78-1.63 (m, 2 H), 1.64-1.51 (m, 1 H), 1.62 (br s, 3 H), 1.31 (s, 3 H),1.25-1.13 (m, 2 H), 1.04 (s, 3 H);

¹³C NMR (125 MHz, DMSO) □ 148.7, 145.8, 144.2, 135.1, 134.0, 132.1, 127.9, 126.7, 123.7, 121.4, 118.0, 116.0 (2), 115.4, 114.2, 112.4, 103.4, 76.4, 49.5, 37.1, 29.5, 27.2, 24.5, 23.8 (2), 21.6;

HRMS (FAB) calcd m/z for C₂₆H₂₈ClNO₂: 421.1809 (M)⁺. Found: 421.1816.

Example 419 (+) (5R,3'S) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(1-methylcyclohexen-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline

 $[\Box]D^{25}$ +237.8 ° (c = 0.5, CHCl₃);

MS (DCI/NH₃) m/z 422 (M + H)⁺;

¹H NMR (300 MHz, DMSO) \Box 9.58 (s, 1 H), 8.05 (d, J = 8.4 Hz, 1 H), 6.79 (ABq, J = 8.0 Hz, Δ n_{AB} = 14.4 Hz, 2 H), 6.67 (d, J = 8.3 Hz, 1 H), 6.47 (br s, 1 H), 5.49-5.46 (m,

2 H), 5.35 (d, J = 8.9 Hz, 1 H), 2.28-2.15 (m, 1 H), 2.12 (br s, 3 H), 1.93-1.80 (m, 1 H), 1.78-1.63 (m, 2 H), 1.64-1.51 (m, 1 H), 1.62 (br s, 3 H), 1.31 (s, 3 H),1.25-1.13 (m, 2 H), 1.04 (s, 3 H);

¹³C NMR (125 MHz, DMSO) □ 148.7, 145.8, 144.2, 135.1, 134.0, 132.1, 127.9, 126.7, 123.7, 121.4, 118.0, 116.0 (2), 115.4, 114.2, 112.4, 103.4, 76.4, 49.5, 37.1, 29.5, 27.2, 24.5, 23.8 (2), 21.6;

HRMS (FAB) calcd m/z for C₂₆H₂₈ClNO₂: 421.1809 (M)⁺. Found: 421.1806.

Example 420 (+) (5R,3'R) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(1-methylcyclohexen-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline

 $[\Box]D^{25} + 147.5 \circ (c = 0.2, CHCl_3);$

MS (DCI/NH₃) m/z $422 (M + H)^{+}$;

¹H NMR (300 MHz, DMSO)□9.55 (s, 1 H), 8.02 (d, *J* = 8.4 Hz, 1 H), 6.77 (app s, 2 H), 6.68 (d, *J* = 8.4 Hz, 1 H), 6.41 (br s, 1 H), 5.50-5.42 (m, 2 H), 4.88 (br s, 1 H), 2.23-2.15 (m, 1 H), 2.07 (br s, 3 H), 1.91-1.80 (m, 2 H), 1.76-1.63 (m, 2 H), 1.60-1.46 (m, 1 H), 1.50 (br s, 3 H), 1.38-1.28 (m, 1 H), 1.30 (s, 3 H), 1.09 (s, 3 H);
¹³C NMR (125 MHz, DMSO)□148.6, 145.7, 143.7, 135.8, 133.7, 132.6, 128.2, 126.8, 123.7, 120.2, 117.7, 115.9 (2), 115.3, 114.1, 112.4, 75.6, 49.5, 36.3, 29.6, 29.3, 27.5, 25.1, 24.2, 23.7, 20.2;

HRMS (FAB) calcd m/z for C₂₆H₂₈ClNO₂: 421.1809 (M)⁺. Found: 421.1794.

Example 421 (+/-) 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-chloro-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline

MS (ESI) m/z 495 (M+H)+;

15

20

25

30

35

1H NMR (200 MHz, DMSO-d6) \$\pi 7.90\$ (d, 1H), 6.99 (d, 1H), 6.92 (d, 1H), 6.64 (d,1H), 6.42 (s, 1H), 5.81-5.76 (m, 2H), 5.48 (s, 1H), 5.07-4.94 (m, 2H), 2.99 (s, 2H), 2.84 (s, 2H), 2.82-2.68 (m, 4H), 2.41-2.27 (m, 2H), 2.18 (s, 2H), 1.20 (s, 2H), 1.17 (s, 2H).

Example 422 (-) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-cyclopentyl-1H[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH3) m/z 296(M+H)+;

1H NMR (400 MHz, DMSO-d6) 1H NMR (200 MHz, DMSO-d6) \$\prightarrow\$ 9.50 (bs, 1H), 8.04 (s, 1H), 6.77 (d, 1H), 6.72 (d, 1H), 6.65 (d, 1H), 6.42 (d, 1H), 5.50 (s, 1H), 5.42 (d, 1H) 2.18-1.08 (m, 18H).

Example 423 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-methoxy-2,2,4-trimethyl-5-(1-methylethyl)-1H-[1]benzopyrano[3,4-f]quinoline

¹H NMR (400 MHz, DMSO-d6) □7.92 (d, J=8.5, 1H), 6.83 (d, J=8.5, 1H), 6.71-6.65 (m, 2H), 6.31 (d, J=1.7, 1H), 5.46 (br m, 1H), 5.37 (d, J=9.7, 1H), 3.61 (s, 3H), 3.00 (s, 3H), 2.84 (s, 3H), 2.80 (m, 2H), 2.70 (m, 2H), 2.17 (s, 3H), 1.80 (m, 1H), 1.31 (s, 3H), 1.03 (s, 3H), 0.95 (d, J=6.4, 3H), 0.65 (d, J=6.8, 3H); 13C NMR (125 MHz, DMSO-d6) □171.5, 170.4, 149.0, 148.0, 145.6, 138.3, 133.6, 131.0, 127.9, 125.8, 120.7, 118.2, 118.2, 115.4, 113.4, 112.1, 78.0, 60.0, 49.4, 36.4, 34.9, 30.9, 29.6, 28.9, 27.6, 27.3, 23.8, 19.4, 17.8; MS (ESI/NH3) m/e 493(M+H)+, 515(M+Na)+; HRMS calcd m/z for C29H26N2O5: 492.2624. Found: 492.2613.

Example 424 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-methoxy-5-(phenylmethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline
1H NMR (500 MHz, DMSO-d6) \(\pri \) 7.90 (d, J=8.8, 1H), 7.29-7.26 (m, 2H), 7.21
(m, 1H), 7.09 (d, J=7.0, 2H), 6.89 (d, J=8.8, 1H), 6.66 (d, J=8.8, 1H), 6.60 (d, J=8.8, 1H),

6.25 (d, J=1.8, 1H), 5.98 (dd, J=10.1, 2.5, 1H), 5.42 (s, 1H), 2.67 (s, 2H), 2.01 (s, 2H), 2.97 (m, 1H), 2.85 (s, 2H), 2.84-2.81 (m, 2H), 2.72-2.69 (m, 2H), 2.22 (s, 2H), 1.17 (s, 2H), 1.14 (s, 2H); 13C NMR (125 MHz, DMSO-d6)□171.5, 170.4, 148.2, 148.1, 146.2, 128.4, 127.6, 122.4, 121.9, 128.9, 128.2, 127.2, 126.2, 126.2, 120.8, 118.2, 116.2, 115.2, 112.9, 112.6, 74.8, 60.1, 49.7, 28.2, 24.9, 29.2, 29.1, 28.9, 27.6, 24.2; MS (ESI/NH3) m/e 541(M+H)+, 562(M+Na)+; Anal. Calcd for C33H36N2O5: C 72.21, H 6.71, N 5.18. Found: C 72.87, H 6.97, N 4.90.

5

10

15

20

25

30

35

Example 425 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-methoxy-2,2,4-trimethyl-5-(2-thienyl)-1H-[1]benzopyrano[3,4-f]quinoline

¹H NMR (500 MHz, DMSO-d6) □ 7.90 (d, J=8.4, 1H), 7.40 (dd, J=5.0, 1.3, 1H), 6.96 (s, 1H), 6.86 (m, 1H), 6.80 (m, 1H), 6.74-6.71 (m, 2H), 6.57 (d, J=8.4, 1H), 6.32 (d, J=1.8, 1H), 5.41 (s, 1H), 3.58 (s, 3H), 2.98 (s, 3H), 2.83 (s, 3H), 2.77-2.74 (m, 2H), 2.68-2.65 (m, 2H), 1.95 (d, J=1.1, 3H), 1.23 (s, 3H), 1.15 (s, 3H); 13C NMR (125 MHz, DMSO-d6) □ 171.1, 170.2, 148.6, 147.5, 146.0, 142.8, 138.4, 132.8, 130.1, 128.0, 127.2, 126.3, 126.1, 125.9, 125.8, 120.4, 118.4, 116.8, 115.8, 114.3, 112.3, 70.9, 59.5, 49.7, 36.2, 34.7, 29.5, 28.7, 28.5, 27.4, 22.8; MS (ESI/NH₃) m/e 533(M+H)+, 555(M+Na)+; Anal. Calcd for C₂₀H₂₂N₂O₅S: C 67.65, H 6.06, N 5.26. Found: C 67.48, H 6.16, N 5.07.

Example 426 2,5-dihydro-9-(4-N,N-dimethylaminobutanoyloxy)-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline

1H NMR (500 MHz, DMSO-d6) □7.85 (d, J=8.4, 1H), 6.86 (d, J=8.4, 1H), 6.68-6.61 (m, 2H), 6.25 (d, J=1.5, 1H), 5.86-5.78 (m, 2H), 5.46 (s, 1H), 5.06-4.98 (m, 2H), 2.61 (s, 2H), 2.62 (t, J=7.1, 2H), 2.47 (m, 1H), 2.22 (t, J=7.0, 2H), 2.25 (m, 1H), 2.18 (s, 2H), 2.16 (s, 6H), 1.80 (m, 2H), 1.18 (s, 2H), 1.17 (s, 2H); 13C NMR (125 MHz, DMSO-d6) □171.8, 148.4, 147.9, 146.2, 128.5, 124.0, 122.5, 122.1, 127.2, 126.2, 120.7, 118.2, 117.2, 116.2, 115.0, 112.8, 112.6, 72.6, 59.9, 58.0, 45.1, 26.6, 21.1, 29.2, 29.0, 22.8, 22.5; MS (ESI/NH3) m/e 477(M+H)+; Anal. Calcd for C29H36N2O4: C 72.08, H 7.61, N 5.88. Found: C 72.77, H 7.74, N 5.64.

Example 427 9-(2-ethoxy-2-oxo-ethylaminocarbonyl)-oxy-10-methoxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro- [1]benzopyrano[3,4-f]quinoline MS (DCI/NH3) 510 (M+NH4)+, 492 (M+H)+, 264;

1H NMR (200 MHz, DMSO-d6), \$\bar{\pi}\$ 8.21 (t, J=6.0 Hz, 1 H), 7.86 (d J=8.5 Hz, 1 H), 6.86 (d, J=8.5 Hz, 1 H), 6.64 (d, J=8.5 Hz, 1 H), 6.62 (d, J=8.5 Hz, 1 H), 6.29 (d, J=1.1 Hz, 1 H), 5.90-5.76 (m, 2 H), 5.45 (br s, 1 H), 5.04 (dd, J=10.2, 1.8 Hz, 1 H), 4.99 (dd, J=17.2, 1.8 Hz, 1 H), 4.12 (q, J=7.0 Hz, 2 H), 2.85 (d, J=6.0 Hz, 2 Hz), 2.65 (s, 2 H), 2.20-2.22 (m, 2 H), 2.17 (d, J=1.1 Hz, 2 H), 1.21 (t, J=7.0 Hz, 2 H), 1.18 (s, 2 H), 1.17 (s, 2 H); Anal. calcd for C28H22N2O6: C, 68.28; H, 6.55; N, 5.69. Found: C, 67.97; H, 6.59; N, 5.62.

Example 428 (+/-) 2,5-dihydro-9-(3-acetamido-propanoyloxy)-10-methoxy-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline

MS (APCI) m/z 477 (M+H)+;

5

10

15

20

1H NMR (200 MHz, DMSO-d6) Q8.04 (t, 1H), 7.85 (d, 1H), 6.90 (d, 1H), 6.68 (d, 1H), 6.64 (d, 1H), 6.26 (s, 1H), 5.87-5.77 (m, 2H), 5.46 (s, 1H), 5.04 (dd, 1H), 4.98 (dd, 1H), 2.61 (s, 2H), 2.40 (q, 2H), 2.76 (t, 2H), 2.52-2.44 (m, 1H), 2.20-2.24 (m, 1H), 2.18 (s, 2H), 1.84 (s, 2H), 1.18 (s, 2H), 1.17 (s, 2H).

Example 429 (+/-) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-benzyl-1H[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH3) m/z 418(M+H)+;

1H NMR (400 MHz, DMSO-d6) 1H NMR (200 MHz, DMSO-d6) ☐ 9.70 (bs, 1H), 7.99 (s, 1H), 7.20-7.08 (m, 5H), 6.79 (d, 1H), 6.67 (d, 1H), 6.62 (d, 1H), 6.19 (d, 1H), 5.86 (dd, 1H), 5.44 (s, 1H) 2.98-2.84 (m, 2H), 2.22 (s, 2H), 1.19 (s, 2H), 1.17 (s, 2H).

Example 430 9-hydroxy-10-methoxy-5-(phenylmethylene)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline

 $(DCI/NH_3) 412 (M + H)^+;$

¹H NMR (300 MHz, DMSO-d6), \Box 8.93 (s, 1 H), 8.13 (d, J = 8.8 Hz, 1 H), 7.63 (d, J = 8.8 Hz, 2 H), 7.32 - 7.15 (m, 3 H), 6.77 (d, 1 H), 6.69 (d, 1 H), 6.66 (d, 1 H), 6.52 (s, 1 H), 5.46 (s, 1 H), 5.39 (s, 1 H), 3.65 (s, 3 H), 1.90 (s, 3 H), 1.20 (s, 6 H); HRMS calcd for C₂₇H₂₅NO₃ is 411.1834, found 411.1821.

Example 431 9-(dimethylaminothiocarbonyl)-oxy-10-methoxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH3) 451 (M+H)+;

- 1H NMR (200 MHz, DMSO-d6), 7.84 (d J=8.8 Hz, 1 H), 6.80 (d, J=8.8 Hz, 1 H), 6.65 (d, J=8.8 Hz, 1 H), 6.62 (d, J=8.8 Hz, 1 H), 6.26 (d, J=1.7 Hz, 1 H), 5.90-5.76 (m, 2 H), 5.46 (br s, 1 H), 5.04 (dd, J=10.2, 1.8 Hz, 1 H), 4.98 (dd, J=17.2, 1.8 Hz, 1 H), 2.64 (s, 2 H), 2.29 (s, 2 H), 2.26 (s, 2 H), 2.22-2.22 (m, 2 H), 2.18 (d, J=1.7 Hz, 2 H), 1.18 (s, 2 H), 1.16 (s, 2 H);
- Anal. calcd for C₂₆H₂₀N₂O₂S.0.5 H₂O: C, 67.94; H, 6.79; N, 6.09. Found: C, 68.06; H, 6.80; N, 6.12.

Example 432 (+/-) 2,5-dihydro-9-(N-carbamoyl-2-aminoacetoxy)-10-methoxy-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline

MS (APCI) m/z 464 (M+H)+;

1H NMR (200 MHz, DMSO-d6) □7.78 (d, 1H), 6.79 (d, 1H), 6.60 (d, 1H), 6.57 (d, 1H), 6.27 (t, 1H), 6.18 (bs, 1H), 5.80-5.70 (m, 2H), 5.67 (s, 2H), 5.28 (s, 1H), 4.97 (dd, 1H), 4.92 (dd, 1H), 4.01 (d, 2H), 2.55 (s, 2H), 2.42-2.27 (m, 1H), 2.22-2.16 (m, 1H), 2.10 (s, 2H), 1.11 (s, 2H), 1.10 (s, 2H).

Example 433 (+/-) 2,5-dihydro-9-(4-ethoxy-4-oxo-butoxy)-10-methoxy-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline

1H NMR (200 MHz, DMSO-d6) \$\pi\$7.92 (d, 1H, J=8Hz), 6.79 (d, 1H), 6.62 (d, 1H, J=8Hz), 6.58 (d, 1H, J=8Hz), 6.18 (d, 1H, J=2Hz), 5.82 (m, 1H), 5.72 (dd, 1H, J=2Hz, J=9Hz) 5.45 (s, 1H), 5.05-4.97 (m, 2H), 4.08 (q, 2H, J=5Hz), 4.02-2.91 (m, 2H), 2.70 (s, 2H), 2.50 (t, 2H, J=5Hz), 2.45 (m, 1H), 2.21 (m, 1H), 2.16 (s, 2H), 2.00 (quin, 2H, J=5Hz), 1.19 (t, 2H, J=5Hz), 1.17 (s, 6H).

Example 434 (+/-) 2,5-dihydro-9-(4-oxo-pentanoyloxy)-10-methoxy-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline

MS (APCI) m/z 462 (M+H)+; 1H NMR (200 MHz, DMSO-d6) □7.78 (d, 1H), 6.77 (d, 1H), 6.59 (d, 1H), 6.57 (d, 1H), 6.18 (s, 1H), 5.80-5.68 (m, 2H), 5.28 (s, 1H), 4.96 (dd, 1H), 4.92 (dd, 1H), 2.54 (s, 2H), 2.79 (dd, 2H), 2.70 (dd, 2H), 2.41-2.16 (m, 2H), 2.10 (s, 2H), 2.09 (s, 2H), 1.11 (s, 2H),

1.10 (s, 2H).

5

10

15

20

25

30

35

Example 435 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(3,4,5-trifluorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline

1H NMRQ9.20 (s, 1H), 7.91 (d, 1H, J=8.5Hz), 6.92 (m, 2H), 6.88 (m, 2H), 6.57 (d, 1H, J=8.5Hz), 6.28 (m, 1H), 5.45 (m, 1H), 1.81 (s, 2H), 1.29 (s, 2H), 1.09 (s, 2H); mass spectrum (DCI) m/z: 458 (M + 1); Calcd for $C_{25}H_{19}CIF_{2}NO_{2}$: 457.1056. Found: 457.1054.

Example 436 2,5-dihydro-9-methylthiomethoxy-10-methoxy-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH3) m/z 424(M+H)+;

1H NMR (400 MHz, DMSO-d6) 7.92(d, 1H), 6.88(d, 1H), 6.62(d, 1H), 6.60(d, 1H), 6.20(s, 1H), 5.81(m, 1H), 5.74(dd, 1H), 5.45(s, 1H), 5.24(s, 1H), 5.02(d, 1H), 4.99(d, 1H), 2.70(s, 2H), 2.45 (m, 2H), 2.22(s, 2H), 2.18(s, 2H), 1.18(s, 2H), 1.17(s, 2H).

Example 437 2,5-dihydro-9-(4-N,N-diethylamino-4-oxo-pentanoyloxy)-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline

¹H NMR (400 MHz, DMSO-d6) □7.84 (d, J=8.5, 1H), 6.88 (d, J=8.9, 1H), 6.68-6.62 (m, 2H), 6.26 (br s, 1H), 5.85-5.77 (m, 2H), 5.45 (br s, 1H), 5.05-4.97 (m, 2H), 3.60 (s, 3H), 3.34-3.21 (m, 4H), 2.65 (t, J=7.4, 2H), 2.45-2.41 (m, 3H), 2.27 (m, 1H), 2.17 (s, 3H), 1.90 (m, 2H), 1.18 (s, 3H), 1.17 (s, 3H), 1.12 (t, J=7.0, 3H), 1.02 (t, J=7.2, 3H); 13C NMR (100 MHz, DMSO-d6) □171.7, 170.3, 148.4, 147.9, 146.3, 138.4, 134.0, 133.5, 132.1, 127.3, 126.1, 120.7, 118.2, 117.2, 116.2, 114.9, 113.8, 112.6, 73.6, 59.9, 49.8, 41.2, 36.6, 32.7, 30.9, 29.3, 29.0, 23.8, 20.4, 14.2, 13.1; MS (ESI/NH2) m/e 533(M+H)+, 555(M+Na)+; Anal. Calcd for C22H40N2O5: C 72.15, H 7.57, N 5.26. Found: C 72.16, H 7.76, N 5.06.

Example 438 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-pentanoyloxy)-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline

1H NMR (400 MHz, DMSO-d6) □7.77 (d, J=8.5, 1H), 6.81 (d, J=8.9, 1H), 6.61-6.56 (m, 2H), 6.19 (d, J=1.7, 1H), 5.80-5.70 (m, 2H), 5.28 (s, 1H), 4.98-4.90 (m, 2H), 2.71 (s, 2H), 2.90 (s, 2H), 2.76 (s, 2H), 2.58 (t, J=7.4, 2H), 2.28-2.25 (m, 2H), 2.20 (m, 1H), 2.10 (s, 2H), 1.84 (m, 2H), 1.11 (s, 2H), 1.10 (s, 2H); 13C NMR (100 MHz, DMSO-d6) □171.7, 171.2, 148.4, 147.9, 146.2, 128.4, 124.1, 122.5, 122.1, 127.2, 126.2, 120.7, 118.2, 117.2, 116.2, 114.9, 112.8, 112.6, 72.6, 59.9, 49.8, 26.6, 24.8, 22.8, 21.2, 29.2, 29.0, 22.8, 20.2; MS (ESI/NH3) m/e 505(M+H)+, 527(M+Na)+; Anal. Calcd for C30H36N2O5: C 71.40, H 7.19, N 5.55. Found: C 71.20, H 7.19, N 5.29.

Example 439 2,5-dihydro-9-(4-N-piperidino-4-oxo-pentanoyloxy)-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline

1H NMR (400 MHz, DMSO-d6) □7.78 (d, J=8.9, 1H), 6.81 (d, J=8.5, 1H), 6.61-6.55 (m, 2H), 6.19 (d, J=1.7, 1H), 5.80-5.70 (m, 2H), 5.28 (s, 1H), 4.98-4.90 (m, 2H), 2.52 (s, 2H), 2.25 (m, 4H), 2.58 (t, J=7.2, 2H), 2.29-2.25 (m, 2H), 2.20 (m, 1H), 2.10 (s, 2H), 1.82 (m, 2H), 1.51 (m, 2H), 1.42 (m, 2H), 1.26 (m, 2H), 1.11 (s, 2H), 1.10 (s, 2H); 13C NMR (100 MHz, DMSO-d6) □171.7, 169.6, 148.4, 147.9, 146.2, 128.4, 124.0, 122.5, 122.1, 127.2, 126.1, 120.7, 118.2, 117.2, 116.2, 114.9, 112.8, 112.6, 72.6, 59.9, 49.8, 45.8, 41.9, 26.6, 22.8, 21.2, 29.2, 29.0, 26.0, 25.2, 24.0, 22.8, 20.4; MS (ESI/NH3) m/e 545(M+H)+, 567(M+Na)+; Anal. Calcd for C33H40N2O5: C 72.77, H 7.40, N 5.14. Found: C 72.50, H 7.42, N 4.99.

Example 440 2,5-dihydro-9-(4-N-morpholino-4-oxo-pentanoyloxy)-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline

1H NMR (400 MHz, DMSO-d6) □7.77 (d, J=8.5, 1H), 6.81 (d, J=8.5, 1H), 6.61-6.56 (m, 2H), 6.19 (s, 1H), 5.78-5.70 (m, 2H), 5.28 (s, 1H), 4.98-4.90 (m, 2H), 2.52 (s, 2H), 2.50 (m, 4H), 2.29 (t, J=4.7, 4H), 2.59 (t, J=7.4, 2H), 2.41-2.27 (m, 2H), 2.20 (m, 1H), 2.10 (s, 2H), 1.82 (m, 2H), 1.11 (s, 2H), 1.10 (s, 2H); 13C NMR (100 MHz, DMSO-d6) □171.6, 170.2, 148.4, 147.9, 146.2, 128.4, 124.0, 122.5, 122.1, 127.2, 126.1, 120.7, 118.2, 117.2, 116.2, 114.9, 112.8, 112.6, 72.6, 66.1, 60.0, 49.8, 45.2, 41.4, 26.6, 22.7, 21.0, 29.2, 29.0, 22.8, 20.2; MS (ESI/NH3) m/e 547(M+H)+, 569(M+Na)+; Anal. Calcd for C32H38N2O6: C 70.21, H 7.01, N 5.12. Found: C 69.99, H 7.06, N 4.91.

Example 441 (-) 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-methoxy-2,2,4-trimethyl-5(S)-(3(S)-1-cyclopenten-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline

MS (APCI) m/z 517 (M+H)+;

5

.10

15

20

25

30

35

1H NMR (200 MHz, DMSO-d6) \$\pi 7.94\$ (d, 1H), 6.84 (d, 1H), 6.69 (d, 1H), 6.67 (d, 1H), 6.22 (s, 1H), 5.75 (dd, 1H), 5.52 (d, 1H), 5.42 (s, 1H), 5.17 (dd, 1H), 2.62 (s, 2H), 2.99 (s, 2H), 2.90-2.85 (m, 1H), 2.84 (s, 2H), 2.80 (t, 2H), 2.68 (t, 2H), 2.29-2.21 (m, 1H), 2.25-2.12 (m, 1H), 2.08 (s, 2H), 1.92-1.74 (m, 2H), 1.20 (s, 2H), 1.08 (s, 2H).

Example 442 10-methoxy-9-(allylaminocarbonyl)oxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH3) 464 (M+NH4)+, 447 (M+H)+, 264.

5

10

15

20

25

30

35

1H NMR (200 MHz, DMSO-d6), \Box 7.96 (t, J=5.9 Hz, 1 H), 7.86 (d, J=8.5 Hz, 1 H), 6.86 (d, J=8.5 Hz, 1 H), 6.62 (d, J=8.5 Hz, 2 H), 6.28 (d, J=1.5 Hz, 1 H), 5.90-5.76 (m, 2 H), 5.45 (br s, 1 H), 5.27-4.97 (m, 4 H), 2.71 (m, 1 H), 2.64 (s, 2 H), 2.41-2.22 (m, 2 H), 2.17 (d, J=1.5 Hz, 2 H), 1.18 (s, 2 H), 1.17 (s, 2 H); Anal. calcd for C27H20N2O4 . 0.25 H2O: C, 71.89; H, 6.81; N, 6.21. Found: C, 72.18; H, 7.08; N, 5.98.

Example 443 10-methoxy-9-(cyclohexylaminocarbonyl)-oxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline

MS (DCI/NH3) 506 (M+NH4)+, 489 (M+H)+, 264.

1H NMR (200 MHz, DMSO-d6), \Box 7.86 (d J=8.8 Hz, 1 H), 7.67 (d, J=7.8 Hz, 1 H), 6.84 (d, J=8.8 Hz, 1 H), 6.62 (d, J=8.8 Hz, 1 H), 6.61 (d, J=8.8 Hz, 1 H), 6.25 (d, J=1.0 Hz, 1 H), 5.90-5.76 (m, 2 H), 5.45 (br s, 1 H), 5.04 (dd, J=10.2, 1.8 Hz, 1 H), 4.99 (dd, J=17.2, 1.8 Hz, 1 H), 4.02 (br s, 1 H), 2.62 (s, 2 H), 2.20-2.22 (m, 2 H), 2.17 (d, J=1.0 Hz, 2 H), 1.86-1.52 (m, 5 H), 1.21-1.22 (m, 5 H), 1.18 (s, 2 H), 1.17 (s, 2 H); HRMS calcd for C₂₀H₂₆N₂O₄ is 488.2675. Found 488.2670.

Example 444 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-thienyl)-1H[1]benzopyrano[3,4-f]quinoline

¹H NMR (300 MHz, DMSO-d₆)□8.57 (s, 1H), 7.91 (d, J= 9 Hz, 1H), 7.35 (dd, J= 5, 5 Hz, 1H), 6.99 (d, J= 5 Hz, 1H), 6.92 (s, 1H), 6.68 (d, J= 9 Hz, 1H), 6.64 (s, 1H), 6.44 (d, J= 9 Hz, 1H), 6.34 (d, J= 9 Hz, 1H), 6.21 (s, 1H), 5.38 (s, 1H), 3.57 (s, 3H), 1.87 (s, 3H), 1.23 (s, 3H), 1.13 (s, 3H); ¹³C NMR (125 MHz, DMSO-d₆)□183.2, 182.4, 181.4, 181.1, 170.3, 168.8, 165.3, 165.2, 164.1, 163.9, 163.5, 163.4, 162.6, 155.8, 154.7, 151.6, 149.6, 108.9, 96.6, 87.3, 67.3, 66.0, 60.6; MS (DCI/NH3) (M+H)⁺406.

Example 445 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(4-(fluorophenyl)methyl)-1H-[1]benzopyrano[3,4-f]quinoline 1H NMR (300 MHz, DMSO-d6) \[\subseteq 8.47 (s, 1H), 7.94 (d, J = 8 Hz, 1H), 7.33-7.31 (m,

1H), 7.13-7.04 (m, 3H), 6.62 (dd, J = 9, 8 Hz, 2H), 6.41 (d, J = 9 Hz, 1H), 6.41 (s, 1H), 5.82 (dd, J = 10, 9 Hz, 1H), 5.40 (s, 1H), 3.69 (s, 3H), 3.01-2.93 (m, 1H), 2.81-2.76 (m, 1H), 2.20 (s, 1H), 1.15 (s, 3H), 1.13 (s, 3H); ¹³C NMR (75 MHz, DMSO-d₆) \Box 162.5, 159.2, 145.8, 145.1, 144.0, 142.8, 134.1, 133.4, 132.2, 130.8, 130.7, 127.4, 126.4, 117.9,

116.4, 116.2, 115.0, 114.7, 114.4, 113.8, 112.5, 74.4, 59.5, 49.7, 37.1, 29.2, 29.0, 24.3; MS calc'd for C₂₇H₂₆O₃NF: m/e 431.1897, found 431.1905; Analysis calc'd for C₂₇H₂₆O₃NF 0.30 H₂O: C, 74.23; H, 6.14; N, 3.21; found: C, 74.16; H, 6.44; N, 2.96.

WHAT IS CLAIMED IS:

1. A compound having Formula I

5

15

20

25

I,

or a pharmaceutically acceptable salt or prodrug thereof, where R₁ is -L₁-R_A where L₁ is selected from

- (1) a covalent bond,
- (2) -O-,
- 10 (3) -S
 - (3) $-S(O)_{t}$ where t is 0, 1, or 2,
 - (4) -C(X)-,
 - (5) -NR7- where R7 is selected from
 - (a) hydrogen,
 - (b) aryl
 - (c) cycloalkyl of three to twelve carbons,
 - (d) alkanoyl where the alkyl part is one to twelve carbons,
 - (e) alkoxycarbonyl where the alkyl part is one to twelve carbons,
 - (f) alkoxycarbonyl where the alkyl part is one to twelve carbons and

is

substituted by 1 or 2 aryl groups,

- (g) alkyl of one to twelve carbons,
- (h) alkyl of one to twelve carbons substituted with 1 or 2

substituents

independently selected from

- (i) aryl and
 - (ii) cycloalkyl of three to twelve carbons,
 - (i) alkenyl of three to twelve carbons, provided that a carbon of a carbon-carbon double bond is not attached directly to nitrogen,
- 30 (j) alkynyl of three to twelve carbons,
 provided that a carbon of a carbon-carbon triple bond is not
 attached directly to nitrogen,

(6) -NR8C(X)NR9- where X is O or S and R8 and R9 are independently selected from hydrogen, (a) (b) aryl, 5 (c) cycloalkyl of three to twelve carbons, alkyl of one to twelve carbons, (d) (e) alkyl of one to twelve carbons substituted with 1 or 2 substituents independently selected from aryl or cycloalkyl of three to twelve carbons, 10 **(f)** alkenyl of three to twelve carbons, provided that a carbon of a carbon-carbon double bond is not attached directly to nitrogen, alkynyl of three to twelve carbons, (g) 15 provided that a carbon of a carbon-carbon triple bond is not attached directly to nitrogen, (7) -X'C(X)- where X is previously defined and X' is O or S, (8) -C(X)X'-,(9) -X'C(X)X"- where X and X' are previously defined and X" is 20 O or S, provided that when X is O, at least one of X' or X" is O, (10) $-NR_8C(X)-,$ (11)-C(X)NR8-, (12) $-NR_8C(X)X'-$ -X'C(X)NR8-, 25 (13)-SO2NR8-, (14)(15) -NR₈SO₂-, and -NR₈SO₂NR₉-(16)where (6)-(16) are drawn with their right ends attached to RA and 30 RA is selected from (1) -OH, (2) -OG where G is a -OH protecting group, (3) -SH, (4) -CO₂R₂₀ where R₂₀ is hydrogen or alkyl of one to twelve carbons, alkoxylcarbonyl, 35 (5) (6) -CN, (7) halo, (8) haloalkoxy of one to twelve carbons,

WO 02/02565 PCT/US01/20423 (9) perfluoroalkoxy of one to twelve carbons, (10)-CHO. (11)-NR7R7' where R7 is defined previously and R7' is selected from hydrogen, (a) 5 (p) aryl, cycloalkyl of three to twelve carbons, (c) alkanoyl where the alkyl part is one to twelve carbons, (d) (e) alkoxycarbonyl where the alkyl part is one to twelve carbons, **(f)** alkoxycarbonyl where the alkyl part is one to twelve carbons and 10 is substituted by 1 or 2 aryl groups, alkyl of one to twelve carbons, (g) (h) alkyl of one to twelve carbons substituted with 1 or 2 substituents independently selected from 15 (i) aryl and (ii) cycloalkyl of three to twelve carbons, (i) alkenyl of three to twelve carbons, provided that a carbon of a carbon-carbon double bond is not 20 attached directly to nitrogen, **(j)** alkynyl of three to twelve carbons, provided that a carbon of a carbon-carbon triple bond is not attached directly to nitrogen, (12)-C(X)NR8R9,25 (13)-OSO2R11 where R11 is selected from (a) cycloalkyl of three to twelve carbons, (b) (c) alkyl of one to twelve carbons, (d) alkyl of one to twelve carbons substituted with 1, 2, 3, or 4 halo 30 substituents, and (e) perfluoroalkyl of one to twelve carbons, (14)alkyl of one to twelve carbons, (15)alkenyl of two to twelve carbons, provided that a carbon of a carbon-carbon double bond is not attached 35 directly to L1 when L1 is other than a covalent bond, (16)alkynyl of two to twelve carbons,

directly to L1 when L1 is other than a covalent bond,

provided that a carbon of a carbon-carbon triple bond is not attached

where (14), (15), and (16) can be optionally substituted with 1, 2, or 3 substituents

independently selected from

- (a) alkoxy of one to twelve carbons,
- (b) -OH, provided that no two -OH groups are attached to the same

carbon,

5

10

20

25

30

35

attached

- (c) -SH,
- (d) thioalkoxy of one to twelve carbons, provided that no two -SH groups are attached to the same

carbon,

- (e) -CN,
- (f) halo,
- (g) -CHO,

15 (h) -NO₂,

- (i) haloalkoxy of one to twelve carbons,
- (j) perfluoroalkoxy of one to twelve carbons,
- (k) -NR7R7',
- (l) =NNR7R7',
- (m) -NR7NR7'R7" where R7 and R7' are defined previously and R7" is selected from
 - (i) hydrogen,
 - (ii) aryl,
 - (iii) cycloalkyl of three to twelve carbons,
 - (vi) alkanoyl where the alkyl part is one to twelve carbons,
 - (v) alkoxycarbonyl where the alkyl part is one to twelve carbons,
 - (vi) alkoxycarbonyl where the alkyl part is one to twelve carbons substituted by 1 or 2 aryl groups,
 - (vii) alkyl of one to twelve carbons,
 - (viii) alkyl of one to twelve carbons substituted with 1 or 2 substituents independently selected from aryl or cycloalkyl of three to twelve carbons,
 - (ix) alkenyl of three to twelve carbons, provided that a carbon-carbon double bond is not

directly to nitrogen, and

(x) alkynyl of three to twelve carbons,

-252-

provided that a carbon-carbon triple bond is not attached directly to nitrogen,

- (n) -CO₂R₁₀ where R₁₀ is selected from
 - (i) aryl,
- 5 (ii) aryl substituted with 1, 2, or 3 alkyl of one to twelve

carbon

10

15

25

35

substituents,

- (ii) cycloalkyl of three to twelve carbons,
- (iii) alkyl of one to twelve carbons, and
- (iv) alkyl of one to twelve carbons substituted with aryl or cycloalkyl of three to twelve carbons,
 - (o) $-C(X)NR_8R_9$,
 - (p) = $N-OR_{10}$,
 - (q) = NR_{10} ,
 - (r) $-S(O)_tR_{10}$,
 - (s) $-X'C(X)R_{10}$,
 - (t) (=X), and
 - (u) $-OSO_2R_{11}$,
 - (17) cycloalkyl of three to twelve carbons,
- 20 (18) cycloalkenyl of four to twelve carbons,
 provided that a carbon of a carbon-carbon double bond is not attached directly to L₁ when L₁ is other than a covalent bond,
 - where (17) and (18) can be optionally substituted with 1, 2, 3, or 4 substituents independently selected from
 - (a) alkyl of one to twelve carbons,
 - (b) aryl,
 - (c) alkoxy of one to twelve carbons,
 - (d) halo,
 - (e) alkoxycarbonyl where the alkyl group is one to twelve carbons,
- 30 and

carbon,

- (f) -OH, provided that no two -OH groups are attached to the same
- (19) perfluoroalkyl of one to twelve carbons,
 - (20) aryl, and
 - (21) heterocycle
- where (20) and (21) can be optionally substituted with 1, 2, 3, 4, or 5 substituents

independently selected from

- (a) alkyl of one to twelve carbons,
- (b) alkanoyloxy where the alkyl part is one to twelve carbons,
- (c) alkoxycarbonyl where the alkyl part is one to twelve carbons,
- (d) alkoxy of one to twelve carbons,
- (e) halo,
- (f) -OH,

provided that no two -OH groups are attached to the same

carbon,

5

10

- (g) thioalkoxy of one to twelve carbons,
 - (h) perfluoroalkyl of one to twelve carbons,
 - (i) -NR7R7',
 - (j) $-CO_2R_{10}$,
 - (k) -OSO₂R₁₁, and
- 15 (l) (=X);

R2, R3, and R4 are independently hydrogen or R1; or

R1 and R2 together are -X*-Y*-Z*- where X* is -O- or -CH2-, Y* is -C(O)- or -(C(R12)(R13))_V - where R12 and R13 are independently hydrogen or alkyl of one to twelve carbons and v is 1, 2, or 3, and Z* is selected from -CH2-, -CH₂S(O)_t-, -CH₂O-, -CH₂NR7-, -NR7-, and -O-;

L2 is selected from

- 25 (1) a covalent bond,
 - (2) alkylene of one to twelve carbons,
 - (3) alkylene of one to twelve carbons substituted with 1 or 2 substituents independently selected from
 - (a) spiroalkyl of three to eight carbon atoms,
 - (b) spiroalkenyl of five or eight carbon atoms,
 - (c) oxo,
 - (d) halo, and
 - (e) -OH,

provided that no two -OH groups are attached to the same

35 carbon,

30

- (4) alkynylene of two to twelve carbons,
- (5) -NR7-,
- (6) -C(X)-,

(7) -O-, and (8) $-S(O)_{t-}$; and R5 is selected from (1) 5 halo, (2) hydrogen, (3) $-C(=NR7)OR_{10}$, (4) -CN, provided that when R5 is (1), (2), or (3), L2 is a covalent bond, 10 alkyl of one to twelve carbons, (5) alkynyl two to twelve carbons, (6) provided that a carbon of a carbon-carbon triple bond is not attached directly to L3 when L3 is other than a covalent bond, 15 (7) cycloalkyl of three to twelve carbons, (8) heterocycle, (9) aryl where (5)-(9) can be optionally substituted with 1, 2, 3, 4, or 5 substituents independently selected from 20 (a) -OH, provided that no two -OH groups are attached to the same carbon, (b) -SH, provided that no two -SH groups are attached to the same 25 carbon, -CN, (c) (d) halo, (e) -CHO, (f) -NO₂, 30 haloalkoxy of one to twelve carbons, (g) (h) perfluoroalkoxy of one to twelve carbons, (i) -NRg'R9' where Rg' and R9' are selected from (i) hydrogen, (ii) alkanoyl where the alkyl part is one to twelve carbons, (iii) alkoxycarbonyl where the alkyl part is one to twelve 35 carbons, (iv) alkoxycarbonyl where the alkyl part is one to twelve

carbons

WO 02/02565 PCT/US01/20423 and is substituted with 1 or 2 phenyl substituents, (v) cycloalkyl of three to twelve carbons, (vi) alkyl of one to twelve carbons, (vii) alkyl of one to twelve carbons substituted with 1, 2, or 3 5 substituents independently selected from alkoxy of one to twelve carbons, cycloalkyl of three to twelve carbons, aryl, and alkoxycarbonyl where the alkyl group is one to twelve 10 carbons, (viii) alkenyl of three to twelve carbons, provided that a carbon of a carbon-carbon double bond is not directly attached to nitrogen, (ix) alkynyl of three to twelve carbons, 15 provided that a carbon of a carbon-carbon triple bond is not directly attached to nitrogen, (x) -C(O)NRXRY where RX and RY are independently selected 20 from hydrogen and alkyl of one to twelve carbons, (xi) alkoxy of one to twelve carbons, (xii) aryl, and (xiii) aryl substituted with 1, 2, 3, 4, or 5 substituents independently selected from 25 alkyl of one to twelve carbons, alkanoyloxy where the alkyl part is one to twelve carbons, alkoxycarbonyl where the alkyl part is one to twelve carbons, 30 alkoxy of one to twelve carbons, halo, -OH provided that no two -OH groups are attached to the same 35 carbon, thioalkoxy of one to twelve carbons, perfluoroalkyl of one to twelve carbons, -NR7R7',

```
-CO<sub>2</sub>R<sub>10</sub>,
                                            -OSO<sub>2</sub>R<sub>11</sub>, and
                                            (=X), or
                                    Rg' and R9' together with the nitrogen atom to which they are
  5
                                    attached form a ring selected from
                                            aziridine,
                                    (i)
                                    (ii)
                                            azetidine,
                                    (iii)
                                            pyrrolidine,
                                            piperidine,
                                    (iv)
 10
                                    (v)
                                            pyrazine,
                                    (vi)
                                            morpholine,
                                    (vii)
                                            phthalimide,
                                    (viii)
                                            thiomorpholine, and
                                            thiomorpholine sulfone
                                    (ix)
15
                                    where (i)-(ix) can be optionally substituted with 1, 2, or 3 alkyl
          of
                                    one to twelve carbon substituents,
                           (j)
                                    =NNR_8'R_9'
                           (k)
                                    -NR7NR8'R9',
20
                           (1)
                                    -CO2R8,
                                    -C(X)NRg'R9',
                           (m)
                                    =N-OR_8,
                           (n)
                                    =NR_8
                           (o)
                           (p)
                                    -S(O)_{t}R_{10},
25
                           (q)
                                    -X'C(X)R_8,
                           (r)
                                    (=X),
                           (s)
                                    -O-(CH<sub>2</sub>)<sub>q</sub>-Z-R<sub>10</sub> where R<sub>10</sub> is defined previously, q is 1, 2, or
          3,
                                    and Z is O or -S(O)t-,
30
                                    -OC(X)NR8'R9',
                           (t)
                           (u)
                                    -OSO<sub>2</sub>R<sub>11</sub>,
                                    alkanovloxy where the alkyl group is one to twelve carbons,
                           (v)
                           (w)
                                    -LBR30 where LB is selected from
                                            a covalent bond,
                                    (i)
35
                                    (ii)
                                            -O-,
                                    (iii)
                                            -S(O)_{t-}, and
                                    (iv)
                                            -C(X)- and
                                   R<sub>30</sub> is selected from
```

WO 02/02565			PCT/US01/20423
		(i)	alkyl of one to twelve carbons,
		(ii)	alkenyl of one to twelve carbons,
			provided that a carbon of a carbon-carbon double bond is
5	not		attached directly to LB when LB is other than a covalent
•	bond,		attached directly to DD when DD is other than a covarent
	bona,	(iii)	alkynyl of one to twelve carbons,
		(111)	provided that a carbon of a carbon-carbon triple bond is
	not		provided that a smooth of a smooth supposition is
10			attached directly to LB when LB is other than a covalent
	bond,		
	•	where	(i), (ii), and (iii) can be optionally substituted with
			cycloalkyl of three to twelve carbons,
			-ОН,
15			provided that no two -OH groups are attached to the same
			carbon,
	•		halo,
			alkoxy of one to twelve carbons,
			thioalkoxy of one to twelve carbons,
20			-NRg'R9',
			$-O-(CH_2)_q-Z-R_{10},$
			alkoxycarbonyl where the alkyl group is one to twelve carbons,
			alkanoyloxy where the alkyl group is one to twelve
25			carbons,
			-NR7SO ₂ -(alkyl of one to twelve carbons),
			-OSO2-(alkyl of one to twelve carbons),
			aryl, and
			heterocycle,
30		(iv)	aryl,
		(v)	aryl substituted with 1, 2, 3, 4, or 5 substituents
			independently selected from
			alkyl of one to twelve carbons,
			halo,
35			-NO ₂ , and
			-ОН,
			provided that no two -OH groups are attached to
	the		

same carbon,

- (vi) heterocycle, and
- (vii) heterocycle substituted with 1, 2, 3, 4, or 5 substituents independently selected from

5

15

20

25

30

35

alkyl of one to twelve carbons,

halo,

-NO2, and

-OH,

provided that no two -OH groups are attached to

10 the

same carbon,

- (x) $-X'C(X)X''R_{10}$,
- (y) -NHC(O)NHNH2,
- (z) alkenyl of two carbons,
- (aa) $-C(=NR7)OR_{10}$, and
- (bb) -NR7(X)NR8'R9',

$$R_{19}$$

(10)

provided that when R5 is (9), L3 is other than -NR7- or -O-,

where the carbon-carbon double bond is in the Z or E configuration, and R₁₉, R₂₀, and R₂₁ are independently selected from

- (a) hydrogen,
- (b) halo,
- (c) alkoxycarbonyl where the alkyl group is of one to twelve

carbons,

(d) alkyl of one to twelve carbons, and

- (e) alkyl of one to twelve carbons substituted with
 - (i) alkoxy of one to twelve carbons,
 - (ii) -OH, provided that no two -OH groups are attached to the same carbon,

(iii) -SH,

provided that no two -SH groups are attached to the same carbon,

- (iv) -CN,
- (v) halo,
- (vi) -CHO,

		((vii)	-NO ₂ ,
		((viii)	haloalkoxy of one to twelve carbons,
		((ix)	perfluoroalkoxy of one to twelve carbons,
		((x)	-NR8'R9'
5		((xi)	=NNR8'R9',
		((xii)	-NR7NR8'R9',
		((xiii)	-CO ₂ R ₁₀ ,
		((xiv)	-C(X)NR8'R9',
	•	((xv)	=N-OR ₁₀ ,
10		((xvi)	=NR ₁₀ ,
		((xvii)	$-S(O)_tR_{10}$,
		((xviii)	$-X'C(X)R_{10}$,
		((xix)	(=X),
		((xx)	$-O-(CH_2)_q-Z-R_{10}$,
15		((xxi)	-OC(X)NRg'R9',
		((xxii)	-L _B R ₃₀ ,
		((xxiii)	alkanoyloxy where the alkyl group is one to twelve
	carbons,			
		((xxiv)	-OSO ₂ R ₁₁ , and
20		((xxv)	-NR7(X)NR8'R9', or
•		R ₂₀ and	l R21 t	ogether are selected from
		(a) (cycloal	kyl of three to twelve carbon atoms,
		(b) (cycloal	kenyl of four to twelve carbon atoms, and
			·==	K ₂₂
		(c))	R ₂₃ (allene) where R ₂₂ and R ₂₃ are independently
25				(whole) whose regg and regg are independently
25	(11)		_	en or alkyl of one to twelve carbons, and
	(11) where	-	-	f four to twelve carbons of group or the ring formed by R20 and R21 together can
	be	uio cy oic	, cancon,	regroup of the ring formed by 1020 and 1021 together can
	be	ontional	llyr gyrh	stituted with one or two substituents independently
30	selected	optional	uy sub	stituted with one of two substituents independently
30	scicolou	from		
		•	alkovy	of one to twelve carbons,
		` '	OH,	of one to twerve carbons,
		` '	-	ed that no two -OH groups are attached to the same
35	carbon,	1	P10 11d	and no two on groups are atmended to the same
33		(c) -	-SH,	·
		(-)	~,	

provided that no two -SH groups are attached to the same

carbon,

5

- (d) -CN,
- (e) halo,
- (f) -CHO,
- (g) -NO₂,
- (h) haloalkoxy of one to twelve carbons,
- (i) perfluoroalkoxy of one to twelve carbons,
- (j) -NR8'R9'
- 10 (k) = NNRg'Rg',
 - (l) -NR7NR8'R9',
 - (m) -CO₂R₁₀,
 - (n) -C(X)NR8'R9',
 - (o) = $N-OR_{10}$,
 - (p) = NR_{10} ,
 - (q) $-S(O)_tR_{10}$,
 - (r) $-X'C(X)R_{10}$,
 - (s) (=X),
 - (t) $-O-(CH_2)_q-Z-R_{10}$,
 - (u) $-OC(X)NR_8R_9$,
 - (v) -LBR30,
 - (w) alkanoyloxy where the alkyl group is one to twelve carbons,
 - (x) $-OSO_2R_{11}$, and
 - (y) -NR7(X)NR8'R9';

25

15

20

R6 is hydrogen or alkyl of one to twelve carbon atoms; or

-L2-R5 and R6 together are selected from

(1) = 0,

, () (),

(2) T where □ is 1, 2, 3, or 4 and A is selected from

- (a) -CH₂-,
- (b) -O-,
- (c) $-S(O)_t$, and
- (d) -NR7-, and

35

30

,R₂₆ $m \stackrel{`}{R}_{26}$ where the carbon-carbon double bond can be in the E or Z (3) configuration and R₂₆ and R₂₆ are independently selected from (a) hydrogen, (b) alkenyl of three to twelve carbons, 5 (c) aryl, (d) heterocycle, alkyl of one to twelve carbons, (e) (f) cycloalkyl of three to twelve carbons, cycloalkenyl of four to twelve carbons, and (g) 10 (h) cycloalkenyl of four to twelve carbons where (a)-(f) can be optionally substituted with 1, 2, 3, 4, or 5 substituents independently selected from alkoxy of one to twelve carbons, (i) (ii) -OH, 15 provided that no two -OH groups are attached to the same carbon, (iii) -SH, provided that no two -SH groups are attached to the same carbon, 20 (iv) -CN, (v) halo, (vi) -CHO, (vii) -NO₂, (viii) haloalkoxy of one to twelve carbons, 25 perfluoroalkoxy of one to twelve carbons, (ix) (x) -NR8'R9' (xi) =NNRg'R9'-NR7NR8'R9', (xii) (xiii) $-CO_2R_{10}$, 30 (xiv) -C(X)NR8'R9', (xv) $=N-OR_{10}$, $(xvi) = NR_{10},$ (xvii) $-S(O)_tR_{10}$, (xviii) -X'C(X)R₁₀, (xix) 35 (=X), (xx) $-O-(CH_2)_q-Z-R_{10}$

(xxi) $-OC(X)NR_8R_9$,

(xxii) -LBR30,

(xxiii) alkanoyloxy where the alkyl group is one to twelve

carbons,

double

(xxiii) -OSO2R11, and

(xxiv) -NR7(X)NR8'R9';

R₁₆ and R₁₆ are independently hydrogen or alkyl of one to six carbons; or R₁₆ and R₁₆ together are alkenyl of two carbons;

10

5

a broken line represents the optional presence of a double bond, provided that when R16 and R16' together are alkenyl of two carbons, the

bond is not present;

15

20

25

Y is selected from carbon, nitrogen, and $N^+(=0^-)$;

R₁₇ is absent or hydrogen or alkyl of one to six carbons, provided that when the double bond is present, and Y is nitrogen or N⁺(=O⁻), R₁₇ is absent; and

R18 and R18' are independently hydrogen or alkyl of one to six carbons; or R18 and R18' together are a cycloheteroalkyl ring or a cycloalkyl ring of three

to

eight carbons.

2. A compound according to Claim 1 of Formula II

$$\begin{array}{c|c}
R_3 & R_4 & L & R_5 \\
R_2 & R_1 & R_6 & R_6 \\
\hline
\mathbf{H}, & \mathbf{H}, & \mathbf{H}
\end{array}$$

30

or a pharmaceutically acceptable salt or prodrug thereof, where R₁, R₂, R₃, R₄, R₅, R₆, and L₂, are defined above.

3. A compound according to Claim 2 where R₁ is -L₁-R_A, L₁ is -O- or -S-, and R_A is alkyl of one to twelve carbons that can be optionally substituted, or R₁ and R₂ together are -X*-Y*-Z*-.

```
5
       4.
               A compound according to Claim 3 selected from
               2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-
               f]quinoline1H-[1]benzopyrano[3,4-f]quinoline,
               2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-
        [1]benzopyrano[3,4-
10
               flquinoline,
               10-(difluoromethoxy)-2,5-dihydro-2,2,4-trimethyl-5-(2-propenyl)-1H-
               [1]benzopyrano[3,4-f]quinoline,
               10-ethoxy-2,5-dihydro-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-
               flquinoline,
15
               5-(3-bromo-5-methylphenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
               [1]benzopyrano[3,4-f]quinoline,
               3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
        5-
               yl)phenol,acetate (ester),
               3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
20
        5-
               yl)phenol,
               2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[[3-(methylthio)methoxy]phenyl]-
        1H-
25
               [1]benzopyrano[3,4-f]quinoline,
               [3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
       f]quinolin-5- yl)phenyl] dimethylcarbamate,
               5-[3-(2-furanyl)-5-methylphenyl]-2,5-dihydro-10-methoxy-2,2,4-trimethyl
               1H-[1]benzopyrano[3,4-f]quinoline,
30
               2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-methyl-5-(1-
       morpholinyl)phenyl]-
               1H-[1]benzopyrano[3,4-f]quinoline,
               2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(phenylmethylene)-1H-
               [1]benzopyrano[3,4-f]quinoline,
35
               5-(3,5-dichlorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
               [1]benzopyrano[3,4-f]quinoline,
               5-butyl-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
               flquinoline,
```

```
2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-(trifluoromethyl)phenyl]-1H-
              [1]benzopyrano[3,4-f]quinoline,
              2,5-dihydro-10-methoxy-5-(4-methoxyphenyl)-2,2,4-trimethyl-1H-
              [1]benzopyrano[3,4-f]quinoline,
              5-(3-chlorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
5
              [1]benzopyrano[3,4-f]quinoline,
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(3-methylphenyl)-1H-
              [1]benzopyrano[3,4-f]quinoline,
              (±)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-
10
              flquinoline,
              (±)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-
              flquinoline,
              5-(3,5-dimethylphenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
              [1]benzopyrano[3,4-f]quinoline,
15
              5-(4-chlorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
              [1]benzopyrano[3,4-f]quinoline,
              5-(3,4-dimethylphenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
              [1]benzopyrano[3,4-f]quinoline,
              5-(4-fluorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
20
              [1]benzopyrano[3,4-f]quinoline,
              5-[3,5-bis(trifluoromethyl)phenyl]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
              [1]benzopyrano[3,4-f]quinoline,
              (-)-5-(3,5-dichlorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
              [1]benzopyrano[3,4-f]quinoline,
25
              (+)-5-(3,5-dichlorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
              [1]benzopyrano[3,4-f]quinoline,
              5-(3,5-difluorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
              [1]benzopyrano[3,4-f]quinoline,
              2,5-dihydro-10-methoxy-2,2,4,N-tetramethyl-N-phenyl-1H-
30
       [1]benzopyrano[3,4- f]quinolin-5-amine,
              (-)2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-
              [1]benzopyrano[3,4-f]quinoline,
              (+)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-
              [1]benzopyrano[3,4-f]quinoline,
35
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline.
              4-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
       5-
              yl)-N,N-dimethylbenzenamine.
```

2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(5-methoxy-2-thienyl)-1H-[1]benzopyrano[3,4-flquinoline, 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(5-propyl-2-thienyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[4-(1-morpholinyl)phenyl]-1H-5 [1]benzopyrano[3,4-f]quinoline, 1-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)-3,3-dimethyl-2-butanone, 2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline-5-10 carbonitrile, 1-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)-2-propanone, methyl-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4f]quinoline-5-acetate, 15 2-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl)-1-phenylethanone, 5-[2-(chloromethyl)-2-propenyl]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-2,2,4-trimethyl-(-methylene-1H-[1]benzopyrano[3,4f]quinoline-5-propanol, acetate (ester), 20 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(4-methylphenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 5-(3-fluoro-4-methylphenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 25 5-(3-bromophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(phenylmethyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-propyl-1H-[1]benzopyrano[3,4-30 flquinoline, 5-(4-fluorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 5-(3-fluorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 35 2,5-dihydro-10-methoxy-2,2,4,5-tetramethyl-1H-[1]benzopyrano[3,4f]quinoline, 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(1-methylethyl)-1H-[1]benzopyrano[3,4-f]quinoline,

```
2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-methylpropyl)-1H-
               [1]benzopyrano[3,4-f]quinoline,
               5-ethyl-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
               f]quinoline,
 5
               2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline-5-
               carboximidic acid ethyl ester,
               2,5-dihydro-10-methoxy-2,2,4-trimethyl-(-methylene 1H-[1]benzopyrano[3,4-
               f]quinoline-5-propanol,
               2,5-dihydro-10-methoxy-2,2,4,N,N-pentamethyl-1H-[1]benzopyrano[3,4-
10
               flquinoline-5-acetamide,
               2,5-dihydro-10-methoxy-2,2,4,N,N-pentamethyl-1H-[1]benzopyrano[3,4-
               f]quinoline-5-ethanamine,
              N-cyclopropyl-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
       [1]benzopyrano[3,4-
15
               flquinoline-5-acetamide,
               2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-propynyl)-1H-
       [1]benzopyrano[3,4-
               flquinoline,
               5-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
20
       5-
               yl)-2(5H)-furanone,
               5-(3-butenyl)-2,5-dihdyro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
               flquinoline,
               2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline-5-
25
              propanol,
               5-(3,5-dichlorophenyl)-10-ethoxy-2,5-dihydro-2,2,4-trimethyl-1H-
               [1]benzopyrano[3,4-f]quinoline,
               10-(bromodifluoromethoxy)-2,5-dihyro-2,2,4-trimethyl-5-(2-propenyl)-1H-
               [1]benzopyrano[3,4-f]quinoline,
30
              [3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
       5-
              yl)phenyl] methylcarbonate,
              2,5-dihydro-10-methoxy-5-(3-methoxyphenyl)-2,2,4-trimethyl-1H-
              [1]benzopyrano[3,4-f]quinoline,
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-(2-propenyloxy)phenyl]-1H-
35
               [1]benzopyrano[3,4-f]quinoline,
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-(phenylmethoxy)phenyl]-1H-
               [1]benzopyrano[3,4-f]quinoline,
               5-[3-(cyclopropylmethoxy)phenyl]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-
```

```
1H-[1]benzopyrano[3,4-f]quinoline,
               2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-[2-(1-piperidinyl)ethoxy]pheny]-
               1H-[1]benzopyrano[3,4-f]quinoline,
               5-(3-hexyloxyphenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
 5
               [1]benzopyrano[3,4-f]quinoline,
               5-[3-(2,4-dinitrophenoxy)phenyl]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-
               1H-[1]benzopyrano[3,4-f]quinoline,
               2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-(2-propynyloxy)phenyl]-1H-
               [1]benzopyrano[3,4-f]quinoline,
               3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
10
               5-yl)phenol-4-methylbenzenesulfonate (ester),
               4-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
               5-yl)phenolacetate (ester),
               4-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
15
               5-yl)phenol,
               2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[[4-(methylthio)methoxy]phenyl]-
               1H-[1]benzopyrano[3,4-f]quinoline,
               [4-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
               5-yl)phenyl] dimethylcarbamate,
               2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[4-(phenylmethoxy)phenyl]-1H-
20
               [1]benzopyrano[3,4-f]quinoline,
               2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-(methoxymethoxy)phenyl]-1H-
               [1]benzopyrano[3,4-f]quinoline,
               [(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
25
       5-
               yl)phenyl] 1-morpholinecarboxylate,
               2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-
        [(methylsulfinyl)methoxy]phenyl]-
               1H-[1]benzopyrano[3,4-f]quinoline,
               O-[3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
30
               f]quinolin-5-yl)phenyl] ester,
               2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-(methylthio)phenyl]-1H-
               [1]benzopyrano[3,4-f]quinoline,
               O-[3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
              flquinolin-5-yl)phenyl] methylcarbonothioate,
35
              [3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl]-1H-[1]benzopyrano[3,4-
       f]quinolin-
               5-yl)phenyl] trifluoromethanesulfonate,
```

```
5-[3-(4,5-dihydro-4,4-dimethyl-2-oxazolyl)phenyl]-2,5-dihydro-10-methoxy-
                2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline.
                ethyl 3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
                f]quinolin-5-yl)benzoate,
                3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
  5
         5-
                yl)benzoic acid,
                2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-methyl-5-(2-propenyl)phenyl]-
                1H-[1]benzopyrano[3,4-f]quinoline,
 10
                1-[3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
                       5-yl)-5-methylphenyl]ethanone,
         flquinolin-
                3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
         5-
                yl)-5-trimethylbenzenemethanol,
15
                5-[3-(2-furanyl)phenyl]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
                [1]benzopyrano[3,4-f]quinoline,
                2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-methyl-5-(1H-pyrrolidin-1-
                yl)phenyl]-1H-[1]benzopyrano[3,4-f]quinoline,
                3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
 20
                5-methyl)-5,N-dimethylbenzenamine,
                3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
         5-
                yl)-5-methyl-N-(2-propenyl)benzamide,
                3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
 25
                5-yl)-N-(2-methoxyethyl)-5-methylbenzenamine,
                3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
                5-yl)-N-(2-propenyl)benzenamine,
                N'-[3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
                f]quinolin-5-yl)-5-methylphenyl]-N,N-dimethylurea,
 30
                N-[3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
                flquinolin-5-yl)phenyl]benzenemethanamine,
                5-[(3,5-dichlorphenyl)methylene]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
                [1]benzopyrano[3,4-f]quinoline,
                5-[(4-chlorophenyl)methylene]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
 35
                [1]benzopyrano[3,4-f]quinoline,
                2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[[3-
                (trifluoromethyl)phenyl]methylene]-1H-[1]-benzopyrano[3,4-f]quinoline,
```

5-[(2,6-difluorophenyl)methylene]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 5-[(2-chlorophenyl)methylene]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 5 5-[(2,6-dichlorophenyl)methylene]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 5-[(2-fluorophenyl)methylene]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 10 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[(4,5-dihydro-4,4-dimethyl-2oxazolyl)methylene]-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-pyridinylmethylene)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-thienyl)-1H-[1]benzopyrano[3,4-15 f]quinoline, 2,5-dihydro-9,10-dimethoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 5-(2-cyclohexen-1-yl)-2,5-dihydro-9,10-dimethoxy-2,2,4-trimethyl-1H-20 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(3-methyl-3-butenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(5,5-dimethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, rel (5R,2'R) 2,5-dihydro-10-methoxy-5-(2-oxo-3-tetrahydropyranyl)-2,2,4-25 trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, anti(5R, 2'S) 2,5-dihydro-10-methoxy-5-(2-oxo-3-tetrahydropyranyl)-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(3-cyclopentenyl)-2,2,4-trimethyl-1H-30 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(3-butenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4flquinoline, 2,5-dihydro-10-methoxy-5-(1-ethenyl-1-cyclohexyl)-2,2,4-trimethyl-1H-35 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(4,4-dimethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

2,5-dihydro-10-methoxy-5-(1-methylene-2-cyclohexyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(1-oxo-2-cyclohexyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(3-cyclooctenyl)-2,2,4-trimethyl-1H-5 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(3-cycloheptenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(1-cyclohexenylmethyl)-2,2,4-trimethyl-1H-10 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(3,3-dimethyl-6-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(2-bromo-3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 15 rel(5R,3'R) 2,5-dihydro-10-methoxy-5-(1-hydroxymethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, rel(5R,3'S) 2,5-dihydro-10-methoxy-5-(1-hydroxymethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(3-hydroxymethyl-3-cyclohexenyl)-2,2,4-trimethyl-20 1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(3-indolyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4flauinoline, rel (5S,3'S) 2,5-dihydro-10-methoxy-5-(1-methyl-3-cyclohexenyl)-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 25 rel (5R,3'S) 2,5-dihydro-10-methoxy-5-(1-methyl-3-cyclohexenyl)-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (-) (5S,3'S) 2,5-dihydro-10-methoxy-5-(1-methyl-3-cyclohexenyl)-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (-) (5S, 3'R) 2,5-dihydro-10-methoxy-5-(1-hydroxymethyl-3-cyclohexenyl)-30 2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (+) (5R, 3'S) 2,5-dihydro-10-methoxy-5-(1-hydroxymethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (-)-(5S, 3'R) 2,5-dihydro-10-methoxy-5-(1-methyl-3-cyclohexenyl)-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (+)-(5R, 3'S) 2,5-dihydro-10-methoxy-5-(1-methyl-3-cyclohexenyl)-2,2,4-35 trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(1-chloromethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

rel (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-methoxymethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, rel (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-methylthiomethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, rel (5R, 3'S) 2,5-dihydro-10-methoxy-5-(1-acetoxymethyl-3-cyclohexenyl)-5 2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, rel (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-acetoxymethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, rel (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-methoxymethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 10 rel (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-(N,N-dimethylamino)methyl-3cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, rel (5R, 3'S) 2,5-dihydro-10-methoxy-5-(1-methylthiomethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, rel (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-(N-morpholino)methyl-3-15 cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, rel (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-(N-methyl-Nmethylsulfonylamino)methyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, rel (5R, 3'S) 2,5-dihydro-10-methoxy-5-(1-(N,N dimethylamino)methyl-3-20 cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, rel (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-(N-methylamino)methyl-3cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(2-methyl-3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 25 2,5-dihydro-10-methoxy-5-(1,3-butadien-2-yl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(2-carbomethoxy-3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 30 2,5-dihydro-10-methoxy-5-(1,2-dihydroxy-3-propyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(1,2-epoxy-3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(1-(N-phthalimido)-3-propyl)-2,2,4-trimethyl-1H-35 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(1-amino-3-propyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

2,5-dihydro-10-methoxy-5-(1-(hydrazinocarbonylamino)-3-propyl)-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (E) 2,5-dihydro-10-methoxy-5-(2-carbomethoxy-1-ethenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 5 (Z)-2,5-dihydro-10-methoxy-5-(1-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (E) 2,5-dihydro-10-methoxy-5-(3-hydroxy-1-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (E) 2,5-dihydro-10-methoxy-5-(3-(N,N-dimethylaminocarbonyloxy)-1-10 propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (E) 2,5-dihydro-10-methoxy-5-(3-methoxymethoxy-1-propenyl)-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(3-hydroxy-3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 15 methyl 2-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4flquinolin-5-yl) acetyl hydroxamate, 2-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl) acetaldehyde, 2,5-dihydro-10-methoxy-5-(2-cyclohexylidenylethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 20 2,5-dihydro-10-methoxy-5-(2-cyclopentylidenylethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(2-cycloheptylidenylethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 25 2,5-dihydro-10-methoxy-5-(3-methyl-2-butenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, trans 2,5-dihydro-10-methoxy-5-(2-butenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, trans 2,5-dihydro-10-methoxy-5-(2-penten-1-yl)-2,2,4-trimethyl-1H-30 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(1,1-difluoro-1-propen-3-yl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (E) methyl 2-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4f]quinolin-5-yl) 2-butenoate, 35 (E) 2,5-dihydro-10-methoxy-5-(4-hydroxy-2-buten-1-yl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline. (E) 2,5-dihydro-10-methoxy-5-(4-(N,N-dimethylaminocarbonyloxy)-2-buten-1-

yl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

(E) 2,5-dihydro-10-methoxy-5-(4-(N-methylaminocarbonyloxy)-2-buten-1-yl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (E) 2,5-dihydro-10-methoxy-5-(2-butenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 5 2,5-dihydro-10-methoxy-5-(2-hydroxyethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(2-(N-benzylcarbonyloxy)ethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(2-(N-morpholinocarbonyloxy)ethyl)-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 10 2,5-dihydro-10-methoxy-5-(2-(N-(2-methoxyethyl)aminocarbonyloxy)ethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(2-(N-methyaminocarbonyloxyoxy)ethyl)-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(2-(N,N-dimethylaminocarbonyloxy)ethyl)-2,2,4-15 trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(2-methoxymethoxyethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(2,2-dimethylethoxycarbonylamino)methyl)-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 20 2,5-dihydro-10-methoxy-5-(aminomethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4flquinoline, 2,5-dihydro-10-methoxy-5-(ethoxycarbonylamino)methyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 25 2,5-dihydro-10-methoxy-5-(carboethoxy)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(cyclopentyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(1-methylpropa-1,2-dienyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 30 2,5-dihydro-10-methoxy-5-(3,4,5-trifluorophenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(cyclohexyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(2-pyridyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-35 f]quinoline, 2,5-dihydro-10-methoxy-5-(3-pyridyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4f]quinoline,

2,5-dihydro-10-methoxy-5-(4-pyridyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4flquinoline, 9-10-methylenedioxy-5-phenyl-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 5-(3-propenyl)-9-chloro-10-ethenyl-2,2,4-trimethyl-2,5-dihydro-1H-5 [1]benzopyrano[3,4-f]quinoline, 9-chloro-10-methoxy-5-phenyl-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 5-(3-propenyl)-9-chloro-10-difluoromethoxy-2,2,4-trimethyl-2,5-dihydro-1H-10 [1]benzopyrano[3,4-f]quinoline, 9-chloro-10-difluoromethoxy-5-phenyl-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 8-fluoro-10-methoxy-5-phenyl-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 15 5-(3-propenyl)-8-fluoro-10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, (10-methoxy-9-fluoro-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 10-methoxy-9-hydroxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-20 [1]benzopyrano[3,4-f]quinoline, (+/-) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-cyclohexeny1)-1H-[1]benzopyrano[3,4-f]quinoline, (+/-) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(1methylcyclohexen-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline, 25 (-) (5S, 3'S)-9-hydroxy-5-[1-methyl-3-cyclohexenyl]- 10-methoxy-2,2,4trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, (+) (5R,3'R)-9-hydroxy-5-[1-methyl-3-cyclohexenyl]- 10-methoxy-2,2,4trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, (+) (5R,3'S)-9-hydroxy-5-[1-methyl-3-cyclohexenyl]- 10-methoxy-2,2,4trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 30 (-) (5S,3'R)-9-hydroxy-5-[1-methyl-3-cyclohexenyl]- 10-methoxy-2,2,4trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, rel-(5S,3'R)-9-hydroxy-5-[1-hydroxymethyl-3-cyclohexenyl]-10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 35 (+/-) (5S,3'R) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(1methylcyclohexen-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline, rel-(5S,3'R)-9-hydroxy-5-[1-methoxymethyl-3-cyclohexenyl]- 10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline,

2,5-dihydro-9-hydroxy-10-methoxy-5-propyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (-) (5S,3'S) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3cyclohepteny1)-1H-[1]benzopyrano[3,4-f]quinoline, (-) (5S,3'R) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-5 cyclohepteny1)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy -2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3,5-difluorophenyl)-1H-10 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3,4,5-trifluorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 5-butyl-2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 15 (-) (5S,3'S) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3cyclopenteny1)-1H-[1]benzopyrano[3,4-f]quinoline, (-) (5S,3'R) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3cyclopenteny1)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3,4-difluorophenyl)-1H-20 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(4-fluorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3trifluoromethylphenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 25 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-5bistrifluoromethylphenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-trifluoromethyl-4chlorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-methylpropyl)-1H-[1]benzopyrano[3,4-f]quinoline, 30 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-fluoro-4chlorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-butenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 35 2,5-dihydro-9-hydroxy-10-methoxy-5-(phenylmethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline. (-) (5S,3'R) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-[1-ethyl-3cyclohexenyl]-1H-[1]benzopyrano[3,4-f]quinoline,

(-) (S) 5-cyclopentyl-2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (+) (R) 5-cyclopentyl-2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-5-(3-propynyl)-2,2,4-trimethyl-1H-5 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-propyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(5-methoxy-2-thienyl)-1H-[1]benzopyrano[3,4-f]quinoline, 10 (±) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2,3,4,5,6pentafluorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline, (+/-) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5(S)-(3(S)-1hydroxymethylcyclopenten-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline, 15 (+/-) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5(S)-(3(S)-1methylcarboxylatecyclopenten-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline, (-) (5S,3'S) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3cyclohexeny1)-1H-[1]benzopyrano[3,4-f]quinoline, (-) (5S,3'R) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3cyclohexeny1)-1H-[1]benzopyrano[3,4-f]quinoline, 20 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-thienyl)-1H-[1]benzopyrano[3,4-f]quinoline, (±) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-methylphenyl) -1H-[1]benzopyrano[3,4-f]quinoline, 25 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-acetoxymethyl-3propenyl)-1H-[1]benzopyrano[3,4-f]quinoline, (+) (5R,3'S) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-[1-ethyl-3cyclohexenyl]-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-cyclohexyl-1H-30 [1]benzopyrano[3,4-f]quinoline, 2,5,5-trihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4flquinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-hydroxymethyl-3propenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 35 methyl 2-[2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]-5-quinolinyl] acetate, (Z) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-butenyl)-1H-[1]benzopyrano[3,4-f]quinoline,

2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-methyl-2-butenyl)-1H-[1]benzopyrano[3,4-f]quinoline, (+) (5S,3'S) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3cyclohexeny1)-1H-[1]benzopyrano[3,4-f]quinoline, (+) (5R,3'R) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-5 cyclohexeny1)-1H-[1]benzopyrano[3,4-f]quinoline, (+) (5R,3'S) 2,5(R)-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3cyclopenteny1)-1H-[1]benzopyrano[3,4-f]quinoline, (+) (5R,3'R) 2,5(R)-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-10 cyclopenteny1)-1H-[1]benzopyrano[3,4-f]quinoline, rel-(5S)-9-hydroxy-5-[(3R)-(1-methoxycarbonyl)cyclohexen-3-yl]- 10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-methyl-3-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 15 9,10-Dimethoxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 9,10-Dimethoxy-5-[3-cyclohexenyl]-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 10-methoxy-9-ethoxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 20 10-methoxy-9-(3-propenyloxy)-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 10-methoxy-9-(3-propynyloxy)-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-acetoxy-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-25 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-methoxy-2,2,4trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 7-bromo -5-[3-cyclohexenyl]- 10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-30 [1]benzopyrano[3,4-f]quinoline, 10-methoxy-7-bromo-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 7-bromo-5-[1-methyl-3-cyclohexenyl]- 10-methoxy-2,2,4-trimethyl-2,5dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 35 10-methoxy-9-bromo-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 7,9-Dibromo-10-methoxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline,

7,9-Dibromo-5-[cyclohexen-3-yl]- 10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 7,9-Dibromo-5-[1-methyl-3-cyclohexenyl]-10-methoxy-2,2,4-trimethyl-2,5dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 10-methoxy-7-(2-ethenyl)-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-5 [1]benzopyrano[3,4-f]quinoline, 10-methoxy-7-methyl-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 10-methoxy-7-acetyl-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-10 [1]benzopyrano[3,4-f]quinoline, (+/-) 2,5-dihydro-9-methyl-10-methoxy-2,2,4-trimethyl-5-(1-methylcyclohexen-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline, 10-methoxy-7-methyl-9-methyl-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 15 2,5-dihydro-10-methoxy-5-(3-(N-methyl-N-(carbomethoxymethyl)aminocarbonyloxy)phenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(3-(N-methyl-N-(Nmethylcarbonyl)aminocarbonyloxy)phenyl)-2,2,4-trimethyl-1H-20 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(3-(N-methylaminocarbonyloxy)phenyl)-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(3-(2-hydroxyethyl)phenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 25 2,5-dihydro-10-methoxy-5-(3-(2-methanesulfonyloxyethyl)phenyl)-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(3-(2-methythioethyl)phenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(3-(2-(N,N-30 dimethylaminocarbonyloxy)ethyl)phenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(3-(2-(N,N-dimethylamino)ethyl)phenyl)-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-cyclopropyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4f]quinoline, 35 2,5-dihydro-10-methoxy-5-ethenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4f]quinoline,

trans 2,5-dihydro-10-methoxy-5-(2-phenylethenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(2-phenylethynyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, cis 2,5-dihydro-10-methoxy-5-(2-phenylethenyl)-2,2,4-trimethyl-1H-5 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(2-methylpropenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, trans 2,5-dihydro-10-methoxy-5-(1-cyclohexenyl)-2,2,4-trimethyl-1H-10 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-5-(3-propenyl)-10-methylthio-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-5-(3-propenyl)-10-methylthio-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 15 (+/-) 2,5-dihydro-9-(4-acetamidobutanoyloxy)-10-methoxy-2,2,4-trimethyl-5allyl-1H-[1]benzopyrano[3,4-f]quinoline, 10-(difluoromethoxy)-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 10-(bromodifluoromethoxy)-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-20 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-((2-fluorophenyl)methyl) -1H-[1]benzopyrano[3,4-f]quinoline, 10-methoxy-5-(5-methylisoxazol-3-yl)methyldene-2,5-dihydro-5-phenyl-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 25 10-methoxy-5-(3-methylisoxazol-5-yl)methyldene-2,5-dihydro-5-phenyl-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 10-methoxy-5-(4,5-dimethyl-1,3-oxazol-2-yl)methyidene-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 10-methoxy-5-(6-chloropyridin-2-yl)methyidene-2,5-dihydro-5-phenyl-2,2,4-30 trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 10-methoxy-5-(pyridin-2-yl)methyidene-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 10-methoxy-5-(but-3-enylidene)-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 10-methoxy-5-(1-methylpropylidene)-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-35 [1]benzopyrano[3,4-f]quinoline, 10-methoxy-5-(1-butylidene)-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

Z-5-(benzylidenyl)-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, Z-5-(2,5-difluorobenzylidenyl)-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H-2,5dihydro-[1]benzopyrano[3,4-f]quinoline, 5 Z-9-hydroxy-10-methoxy-5-(2-picolinylidenyl)-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 9-hydroxy-10-methoxy-5-(3,5-difluorophenyl)methylidene-2,5-dihydro-5phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 9-hydroxy-10-methoxy-5-(3,4-difluorophenyl)methylidene-2,5-dihydro-5phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 10 (Z) 9-hydroxy-10-methoxy-5-((4-fluorophenyl)methylene)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, (Z)-9-hydroxy-10-methoxy-5-([2,3-difluorophenyl]methylene)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 15 Z-5-(3-fluorobenzylidenyl)-10-methoxy-9-hydroxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 9-hydroxy-10-methoxy-5-ethyl-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, (+/-) 2,5-dihydro-9-cyanomethoxy-10-methoxy-2,2,4-trimethyl-5-allyl-1H-20 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-(4-N,N-diethylamino-4-oxo-butanoyloxy)-10-methoxy-2,2,4trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-(4-N-piperidino-4-oxo-butanoyloxy)-10-methoxy-2,2,4trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-(4-N-morpholino-4-oxo-butanoyloxy)-10-methoxy-2,2,4-25 trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-methoxy-2,2,4trimethyl-5-(3,4,5-trifluorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-5-30 difluorophenylmethyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-cyclopentyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-((2-fluorophenyl)methyl) -1H-[1]benzopyrano[3,4-f]quinoline, 35 2,5-dihydro-9-hydroxymethyl-10-methoxy-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(1-pentenyl)-1H-[1]benzopyrano[3,4-f]quinoline,

2,5-dihydro-9-methylcarboxylate-10-methoxy-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-flquinoline. 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-allenyl-1H-[1]benzopyrano[3,4-f]quinoline, 5 (-) (5S, 3'S) 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(cyclopenten-3-yl)-1H-[1]benzopyrano[3,4-f]quinoline, (-) (5S, 3'S) 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(cyclohexen-3-yl)-1H-[1]benzopyrano[3,4-f]quinoline, (-) (5S, 3'R) 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(cyclohexen-3-yl)-1H-10 [1]benzopyrano[3,4-f]quinoline, (-) (5S, 3'R) 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(cyclopenten-3-yl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3(Z)-pentenyl) -1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-acetoxyphenyl) -1H-15 [1]benzopyrano[3,4-f]quinoline, 10-difluoromethoxy-5-[[3-(methylthio)methoxy]phenyl]-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-hydroxyphenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 20 2,5-dihydro-9-methylthiomethoxy-10-methoxy-2,2,4-trimethyl-5-(3-(methylthio)methoxyphenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-(methylthiomethoxy)phenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 25 2,5-dihydro-9-N,N-dimethylcarbamoyloxy-10-methoxy-2,2,4-trimethyl-5-([2-N,N-dimethylcarbamoyloxy]phenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 9-hydroxy-10-methoxy-5-(phenylmethylene)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 9-hydroxy-10-methoxy-5-([3-fluorophenyl]methylene)-2,2,4-trimethyl-1H-2,5-30 dihydro-[1]benzopyrano[3,4-f]quinoline, rel-(5S)-9-hydroxy-5-[(3S)-(1-methoxycarbonyl)cyclohexen-3-yl]- 10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3,5-dichlorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-methoxy-2,2,4-35 trimethyl-5-(1-methylethyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-methoxy-5-(phenylmethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-methoxy-2,2,4trimethyl-5-(2-thienyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-(4-N,N-dimethylaminobutanoyloxy)-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 5 9-(2-ethoxy-2-oxo-ethylaminocarbonyl)-oxy-10-methoxy-5-(3-propenyl)-2,2,4trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, (+/-) 2,5-dihydro-9-(3-acetamido-propanoyloxy)-10-methoxy-2,2,4-trimethyl-5allyl-1H-[1]benzopyrano[3,4-f]quinoline, 9-hydroxy-10-methoxy-5-(phenylmethylene)-2,2,4-trimethyl-1H-2,5-dihydro-10 [1]benzopyrano[3,4-f]quinoline, 9-(dimethylaminothiocarbonyl)-oxy-10-methoxy-5-(3-propenyl)-2,2,4trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, (+/-) 2,5-dihydro-9-(N-carbamoyl-2-aminoacetoxy)-10-methoxy-2,2,4trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline, 15 (+/-) 2,5-dihydro-9-(4-ethoxy-4-oxo-butoxy)-10-methoxy-2,2,4-trimethyl-5allyl-1H-[1]benzopyrano[3,4-f]quinoline, (+/-) 2,5-dihydro-9-(4-oxo-pentanoyloxy)-10-methoxy-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-methylthiomethoxy-10-methoxy-2,2,4-trimethyl-5-allyl-1H-20 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-(4-N,N-diethylamino-4-oxo-pentanoyloxy)-10-methoxy-2,2,4trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-pentanoyloxy)-10-methoxy-2,2,4trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 25 2,5-dihydro-9-(4-N-piperidino-4-oxo-pentanoyloxy)-10-methoxy-2,2,4trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-(4-N-morpholino-4-oxo-pentanoyloxy)-10-methoxy-2,2,4trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline, (-) 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-methoxy-30 2,2,4-trimethyl-5(S)-(3(S)-1-cyclopenten-3-y1)-1H-[1]benzopyrano[3,4f quinoline, 10-methoxy-9-(allylaminocarbonyl)oxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5dihydro-[1]benzopyrano[3,4-f]quinoline, 10-methoxy-9-(cyclohexylaminocarbonyl)-oxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 35 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-thienyl)-1H-[1]benzopyrano[3,4-f]quinoline, and

2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(4-(fluorophenyl)methyl)-1H-[1]benzopyrano[3,4-f]quinoline.

- 5. A compound according to Claim 2 where R₁ is -L₁-R_A, L₁ is a covalent bond and R_A is -NR₇R₇.
 - 6. A compound according to Claim 5 selected from 2,5-dihydro-2,2,4,N-tetramethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinolin-10-amine,
- 5-(3,5-dichlorophenyl)-2,5-dihydro-2,2,4,N-tetramethyl-1H[1]benzopyrano[3,4-f]quinolin-10-amine,
 5-(3,5-dichlorophenyl)-2,5-dihydro-2,2,4-trimethyl-N-(2-propenyl)-1H[1]benzopyrano[3,4-f]quinolin-10-amine, and
 2,5-dihydro-2,2,4-trimethyl-5-(2propenyl)-1H-[1]benzopyrano[3,4f]quinoline-10-carboxylic acid.

5

20

25

30

- 7. A compound according to Claim 2 where R₁ is -L₁-R_A, L₁ is -C(X)X'-, X and X' are -O-, and R_A is alkyl of one to twelve carbons that can be optionally substituted.
- 8. A compound according to Claim 7 selected from methyl 2,5-dihydro-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline-10-carboxylate and methyl 2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline- 10-carboxylate.
- 9. A compound according to Claim 2 where R₁ is -L₁-R_A, L₁ is -X'C(X)-, X and X' are -O-, and R_A is alkyl of one to twelve carbons that can be optionally substituted.
- 10. A compound according to Claim 9 that is 2,5-dihydro-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinoline-10-ol acetate (ester).
- A compound according to Claim 2 where R₁ is -L₁-R_A, L₁ is a covalent bond and R_A is alkyl of two to twelve carbons that can be optionally substituted.
 - 12. A compound according to Claim 11 selected from

 $10\hbox{-ethyl-2,5-dihydro-2,2,4-trimethyl-5-phenyl-1H-[1]} benzopyrano \cite{Gamma-10-ethyl-2,5-dihydro-2,2,4-trimethyl-5-phenyl-1H-[1]} benzopyrano \cite{Gamma-10-ethyl-2,5-dihydro-2,2,4-trimethyl-2,5-dihydro-2,2,4-trimethyl-2,5-dihydro-2,2,4-trimethyl-2,5-dihydro-2,2,4-trimethyl-2,5-dihydro-2,2,4-trimethyl-2,5-dihydro-2,2,4-trimethyl-2,5-dihydro-2,2,4-trimethyl-2,5-dihydro-2,2,4-trimethyl-2,5-dihydro-2,2$

2,5-dihydro-2,2,4,10-tetrametnyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinoline,

5-(3,5-dichlorophenyl)-10-ethyl-2,5-dihydro-2,2,4-trimethyl-1H-

[1]benzopyrano[3,4-f]quinoline,

2,5-dihydro-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline-

10-methanol,

2,5-dihydro-10-(2-hydroxymethyl)-5-(3-propenyl)-2,2,4-trimethyl-1H-

10 [1]benzopyrano[3,4-f]quinoline,

2,5-dihydro-10-aminomethyl-5-(3-propenyl)-2,2,4-trimethyl-1H-

[1]benzopyrano[3,4-f]quinoline,

2,5-dihydro-10-methoxymethyl-5-(3-propenyl)-2,2,4-trimethyl-1H-

[1]benzopyrano[3,4-f]quinoline,

2,5-dihydro-10-(hydroxymethyl)- 5-phenyl-2,2,4-trimethyl-1H-

[1]benzopyrano[3,4-f]quinoline, and

2,5-dihydro-10-(methoxymethyl)-5-phenyl-2,2,4-trimethyl-1H-

[1]benzopyrano[3,4-f]quinoline.

20 13. A compound according to Claim 2 where R₁ is -L₁-R_A, L₁ is a covalent bond, and

RA is alkenyl of two to twelve carbons that can be optionally substituted.

- 14. A compound according to Claim 13 selected from
- 25 10-ethenyl-2,5-dihydro-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline.

2,5-dihydro-10-ethenyl-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

2,5-dihydro-10-ethenyl-5-oxo-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-

30 flquinoline,

5-(3-cyclohexenyl)-2,5-dihydro-10-ethenyl-2,2,4-trimethyl-1H-

[1]benzopyrano[3,4-f]quinoline, and

2,5-dihydro-10-ethenyl-5-[1-methyl-3-cyclohexenyl]-2,2,4-trimethyl-1H-

[1]benzopyrano[3,4-f]quinoline.

35

5

15

15. A compound according to Claim 2 where R₁ is -L₁-R_A, L₁ is a covalent bond and R_A is alkynyl of two to twelve carbons that can be optionally substituted.

16. A compound according to Claim 15 selected from 10-ethynyl-2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline and 2,5-dihydro-10-ethynyl-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline.

5

30

- 17. A compound according to Claim 2 where R₁ is -L₁-R_A, L₁ is a covalent bond and R_A is -OH, halo, heterocycle, -CN, -CO₂H, or -CHO.
- 18. A compound according to Claim 17 selected from

 2,5-dihydro-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinolin-10-ol,

 5-(3,5-dichlorophenyl)-2,5-dihydro-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-10-ol,

 2,5-dihydro-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quin

 olin-10-ol,

 (10-chloro-9-hydroxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro
 [1]benzopyrano[3,4-f]quinoline,

 10-chloro-9-hydroxy-5-phenyl-2,2,4-trimethyl-1H-2,5-dihydro
 [1]benzopyrano[3,4-f]quinoline,

 10-chloro-9-hydroxy-5-(3-trifluoromethylphenyl)-2,2,4-trimethyl-1H-2,5-
- dihydro-[1]benzopyrano[3,4-f]quinoline,
 10-chloro-9-hydroxy-5-(3,5-dimethylphenyl)-2,2,4-trimethyl-1H-2,5-dihydro[1]benzopyrano[3,4-f]quinoline,

 rel-(5S, 3'R)-9-hydroxy-10-methoxy-5-[1-hydroxymethyl-3-cyclohexenyl]25 2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline,
 - (-) 2,5(S)-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(3S-cyclopenteny1)-1H-[1]benzopyrano[3,4-f]quinoline, (-) 2,5(S)-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(3R-cyclopenteny1)-
 - 1H-[1]benzopyrano[3,4-f]quinoline,
 10-chloro-9-hydroxy-5-(3,5-dichlorophenyl)-2,2,4-trimethyl-1H-2,5-dihydro-
- [1]benzopyrano[3,4-f]quinoline, (+)-(5R, 3'S) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(3-cyclopentenyl)-1H-[1]benzopyrano[3,4-f]quinoline,
 - (+)-(5R, 3'R)2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(3-
- cyclopenteny1)-1H-[1]benzopyrano[3,4-f]quinoline,
 10-chloro-9-hydroxy-5-(3,4-difluorophenyl)-2,2,4-trimethyl-1H-2,5-dihydro[1]benzopyrano[3,4-f]quinoline,

10-chloro-5-(3-propenyl)-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4flauinoline. (+/-) 2,5-dihydro-10-chloro-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4f]quinoline, 5 2,5-dihydro-10-(2-furanyl)-5-(3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-cyano-5-(3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4flquinoline, 2,5-dihydro-10-carboxy-5-(3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-10 f]quinoline, 2,5-dihydro-10-formyl-5-(3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4flquinoline, 2,5-dihydro-10-formyl-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4flquinoline, 15 Z-5-(3-fluorobenzylidenyl)-10-chloro-9-hydroxy-2,2,4-trimethyl-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 1H-Z-10-chloro-9-hydroxy-5-(2-picolinylidenyl)-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, rel-(5S,3'R)-9-hydroxy-5-[1-methoxymethyl-3-cyclohexenyl]-10-chloro-2,2,4-20 trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(2-thienyl)-1H-[1]benzopyrano[3,4-f]quinoline, 9-hydroxy-10-chloro-5-(phenylmethylene)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, and 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(3,4,5-trifluorophenyl)-1H-25 [1]benzopyrano[3,4-f]quinoline. 2,5-dihydro-7-bromo-9-hydroxy-10-chloro-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-([2-N,N-30 dimethylcarbamoyloxy]phenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-ethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-isopropyl-1H-[1]benzopyrano[3,4-f]quinoline, 35 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-butyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(1-thiazol-2-yl)-1H-[1]benzopyrano[3,4-f]quinoline,

2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(2-methylpropyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxymethyl-10-chloro-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline, 5 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-propyl-1H-[1]benzopyrano[3,4-f]quinoline, 9-hydroxy-10-chloro-5-([2-pyridyl]methylene)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, rel-(5S)-9-hydroxy-5-[(3S)-(1-hydroxymethyl)cyclohexen-3-yl]-10-chloro-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 10 (-) (5S,3'S) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(1methylcyclohexen-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline, (-) (5S,3'R) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(1methylcyclohexen-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline. 15 (+) (5R,3'S) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(1methylcyclohexen-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline, (+) (5R,3'R) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(1methylcyclohexen-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline, (+/-) 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-chloro-20 2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline, (-) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-cyclopentyl-1H-[1]benzopyrano[3,4-f]quinoline, and (+/-) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-benzyl-1H-

25

- 19. A compound according to Claim 2 where R₁ is -L₁-R_A, L₁ is O and R_A is alkenyl of three to twelve carbons that can be optionally substituted.
- 20. A compound according to Claim 19 that is
 2,5-dihydro-2,2,4-trimethyl-5-phenyl-10-(2-propenyloxy)-1H[1]benzopyrano[3,4- f]quinoline.

[1]benzopyrano[3,4-f]quinoline.

21. A compound according to Claim 2 where R₁ is -L₁-R_A, L₁ is O and R_A is alkynyl of three to twelve carbons that can be optionally substituted.

35

22. A compound according to Claim 21 that is 2,5-dihydro-2,2,4-trimethyl-5-phenyl-10-(2-propynyloxy)-1H-[1]benzo pyrano[3,4-f]quinoline.

23. A compound according to Claim 2 where R_1 is -L₁-R_A, L₁ is -X'C(X)X"-, X,

- X' and X" are O.
- 5 24. A compound according to Claim 23 that is 5-(3,5-dichlorophenyl)-2,5-dihydro-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-10-yl]methylcarbonate.
 - 25. A compound according to Claim 1 of Formula III

10

$$R_3$$
 R_4
 R_5
 R_6
 R_2
 R_1
 R_1
 R_5
 R_6

or a pharmaceutically acceptable salt or prodrug thereof, where R1, R2, R3, R4, R5, R6, and L2, are defined above.

15

- 26. A compound according to Claim 25 where R₁ is -L₁-R_A, L₁ is -O-, and R_A is alkyl of one to twelve carbons that can be optionally substituted.
- 27. A compound according to Claim 26 that is
 10-(bromodifluoromethoxy)-5-phenyl-2,2-dimethyl-4-methylene-2,3,4,5tetrahydro-1H-chromeno[3,4-f]quinoline.
 - 28. A compound according to Claim 1 of Formula IV

$$\begin{array}{c|c}
R_4 & L_2 & R_5 \\
R_3 & R_6 & R_6 \\
R_2 & R_1 & N \\
\hline
IV, & & \\
\end{array}$$

25

or a pharmaceutically acceptable salt or prodrug thereof, where

Y is nitrogen or N⁺(=O⁻), and

R₁, R₂, R₃, R₄, R₅, R₆, and L₂, are defined above.

29. A compound according to Claim 28 where R₁ is -L₁-R_A, L₁ is -O-, and R_A is alkyl of one to twelve carbons that can be optionally substituted.

- 30. A compound according to Claim 29 selected from 2,5-dihydro-10-methoxy-2,2,4-trimethyl-3-oxide-5-phenyl-1H-[1]benzopyrano[3,4-f]quinazoline and 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinazoline.
 - 31. A compound according to Claim 1 of Formula V

$$R_{3}$$
 R_{2}
 R_{1}
 R_{1}
 R_{1}
 R_{1}
 R_{1}
 R_{1}
 R_{1}
 R_{1}
 R_{1}

15

10

or a pharmaceutically acceptable salt or prodrug thereof, where

 R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , and L_2 , are defined above.

20

R₁₆ and R₁₇ are independently hydrogen or alkyl of one to six carbons; and

R18 and R18' are independently hydrogen or alkyl of one to six carbons; or R18 and R18' together are a cycloheteroalkyl ring or a cycloalkyl ring of three

25 to

eight carbons;

32. A compound according to Claim 31 where R₁ is -L₁-R_A, L₁ is -O-, and R_A is alkyl of one to twelve carbons that can be optionally substituted.

30

33. A compound according to Claim 32 selected from 2,5-dihydro-10-methoxy-2,2-[spiro (tetrahydro-4-pyranyl)]-4-methyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline,

```
2,5-dihydro-10-methoxy-2,2-[spiro(hexyl)]-5-allyl-1H-[1]benzopyrano[3,4-
              flquinoline,
              2,5-dihydro-10-methoxy-2,2-diethyl-4-methyl-5-allyl-1H-[1]benzopyrano[3,4-
              flquinoline,
              2,5-dihydro-10-methoxy-2,2,3,4-tetramethyl-5-allyl-1H-[1]benzopyrano[3,4-
5
              flauinoline,
              2,5-dihydro-10-methoxy-2,2-dimethyl-4-ethyl-5-allyl-1H-[1]benzopyrano[3,4-
              f]quinoline, and
              2,5-dihydro-10-methoxy-2,2,3-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-
              flquinoline.
10
       34.
              A compound selected from
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-
              f]quinoline1H-[1]benzopyrano[3,4-f]quinoline,
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-
15
       [1]benzopyrano[3,4-
              flquinoline,
              2,5-dihydro-2,2,4,N-tetramethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-
              flquinolin-10-amine,
              methyl 2,5-dihydro-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-
20
             flquinoline-10-carboxylate,
              10-ethenyl-2,5-dihydro-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-
              f]quinoline,
              10-ethynyl-2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-
              [1]benzopyrano[3,4-f]quinoline,
25
              2,5-dihydro-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinolin-10-ol,
              10-(difluoromethoxy)-2,5-dihydro-2,2,4-trimethyl-5-(2-propenyl)-1H-
              [1]benzopyrano[3,4-f]quinoline,
              10-ethoxy-2,5-dihydro-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-
30
              flquinoline,
              2,5-dihydro-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinoline-10-ol
              acetate (ester),
              5-(3-bromo-5-methylphenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
              [1]benzopyrano[3,4-f]quinoline,
35
              3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
       5-
              yl)phenol,acetate (ester),
```

```
3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
       5-
              yl)phenol,
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[[3-(methylthio)methoxy]phenyl]-
       1H-
5
              [1]benzopyrano[3,4-f]quinoline,
              [3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
       f]quinolin-5- yl)phenyl] dimethylcarbamate,
              5-[3-(2-furanyl)-5-methylphenyl]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-
              1H-[1]benzopyrano[3,4-f]quinoline,
10
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-methyl-5-(1-
       morpholinyl)phenyl]-
              1H-[1]benzopyrano[3,4-f]quinoline,
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(phenylmethylene)-1H-
15
              [1]benzopyrano[3,4-f]quinoline,
              5-(3,5-dichlorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
              [1]benzopyrano[3,4-f]quinoline,
              5-butyl-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
              flquinoline,
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-(trifluoromethyl)phenyl]-1H-
20
                     [1]benzopyrano[3,4-f]quinoline,
              2,5-dihydro-10-methoxy-5-(4-methoxyphenyl)-2,2,4-trimethyl-1H-
              [1]benzopyrano[3,4-f]quinoline,
              5-(3-chlorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
25
              [1]benzopyrano[3,4-f]quinoline,
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(3-methylphenyl)-1H-
              [1]benzopyrano[3,4-f]quinoline,
              (±)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-
              f]quinoline,
              (±)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-
30
              flquinoline,
              5-(3,5-dimethylphenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
              [1]benzopyrano[3,4-f]quinoline,
              5-(4-chlorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
              [1]benzopyrano[3,4-f]quinoline,
35
              5-(3,4-dimethylphenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
              [1]benzopyrano[3,4-f]quinoline,
              5-(4-fluorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
```

```
[1]benzopyrano[3,4-f]quinoline,
               5-[3,5-bis(trifluoromethyl)phenyl]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
               [1]benzopyrano[3,4-f]quinoline,
               (-)-5-(3,5-dichlorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
 5
               [1]benzopyrano[3,4-f]quinoline,
               (+)-5-(3,5-dichlorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
               [1]benzopyrano[3,4-f]quinoline,
               5-(3,5-difluorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
               [1]benzopyrano[3,4-f]quinoline,
10
               2,5-dihydro-10-methoxy-2,2,4,N-tetramethyl-N-phenyl-1H-
        [1]benzopyrano[3,4- f]quinolin-5-amine,
               (-)2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-
               [1]benzopyrano[3,4-f]quinoline,
              (+)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-
15
               [1]benzopyrano[3,4-f]quinoline,
               2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline.
               4-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
       5-
              yl)-N,N-dimethylbenzenamine,
20
               2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(5-methoxy-2-thienyl)-
               1H-[1]benzopyrano[3,4-f]quinoline,
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(5-propyl-2-thienyl)-
               1H-[1]benzopyrano[3,4-f]quinoline,
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[4-(1-morpholinyl)phenyl]-
25
               1H-[1]benzopyrano[3,4-f]quinoline,
               1-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
               5-yl)-3,3-dimethyl-2-butanone,
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline-5-
              carbonitrile,
               1-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
30
              5-yl)-2-propanone,
              methyl-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
              flquinoline-5-acetate,
              2-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
35
              5-yl)-1-phenylethanone,
              5-[2-(chloromethyl)-2-propenyl]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-
              1H-[1]benzopyrano[3,4-f]quinoline,
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-(-methylene-1H-[1]benzopyrano[3,4-
```

```
flquinoline-5-propanol, acetate (ester),
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(4-methylphenyl)-1H-
              [1]benzopyrano[3,4-f]quinoline,
              5-(3-fluoro-4-methylphenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
5
              [1]benzopyrano[3,4-f]quinoline,
              5-(3-bromophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
              [1]benzopyrano[3,4-f]quinoline,
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(phenylmethyl)-1H-
              [1]benzopyrano[3,4-f]quinoline,
10
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-propyl-1H-[1]benzopyrano[3,4-
              flquinoline,
              5-(4-fluorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
              [1]benzopyrano[3,4-f]quinoline,
              5-(3-fluorophenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
15
              [1]benzopyrano[3,4-f]quinoline,
              2,5-dihydro-10-methoxy-2,2,4,5-tetramethyl-1H-[1]benzopyrano[3,4-
       f]quinoline,
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(1-methylethyl)-1H-
              [1]benzopyrano[3,4-f]quinoline,
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-methylpropyl)-1H-
20
              [1]benzopyrano[3,4-f]quinoline,
              5-ethyl-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
              f]quinoline,
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline-5-
25
              carboximidic acid ethyl ester,
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-(-methylene 1H-[1]benzopyrano[3,4-
              f]quinoline-5-propanol,
              2,5-dihydro-10-methoxy-2,2,4,N,N-pentamethyl-1H-[1]benzopyrano[3,4-
              flquinoline-5-acetamide,
30
              2,5-dihydro-10-methoxy-2,2,4,N,N-pentamethyl-1H-[1]benzopyrano[3,4-
              f]quinoline-5-ethanamine,
              N-cyclopropyl-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-
       [1]benzopyrano[3,4-
              f]quinoline-5-acetamide,
35
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-propynyl)-1H-
       [1]benzopyrano[3,4-
              f]quinoline,
```

```
5-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
       5-
              yl)-2(5H)-furanone,
              5-(3-butenyl)-2,5-dihdyro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
5
              flauinoline,
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline-5-
              propanol,
              10-ethyl-2,5-dihydro-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-
       f]quinoline,
10
              2,5-dihydro-2,2,4,10-tetrametnyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinoline,
              5-(3,5-dichlorophenyl)-10-ethyl-2,5-dihydro-2,2,4-trimethyl-1H-
       [1]benzopyrano
              [3,4-f]quinoline,
              5-(3,5-dichlorophenyl)-2,5-dihydro-2,2,4,N-tetramethyl-1H-
15
              [1]benzopyrano[3,4-f]quinolin-10-amine,
              5-(3,5-dichlorophenyl)-2,5-dihydro-2,2,4-trimethyl-N-(2-propenyl)-1H-
              [1]benzopyrano[3,4-f]quinolin-10-amine,
              2,5-dihydro-2,2,4-trimethyl-5-phenyl-10-(2-propynyloxy)-1H-[1]benzo
              pyrano[3,4-f]quinoline,
              2,5-dihydro-2,2,4-trimethyl-5-phenyl-10-(2-propenyloxy)-1H-[1]benzo-
20
       pyrano[3,4-
              flquinoline,
              2,5-dihydro-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-
       f]quinoline-
25
              10-methanol,
              2,5-dihydro-2,2,4-trimethyl-5-(2propenyl)-1H-[1]benzopyrano[3,4-
              flquinoline-10-carboxylic acid,
              5-(3,5-dichlorophenyl)-10-ethoxy-2,5-dihydro-2,2,4-trimethyl-1H-
              [1]benzopyrano[3,4-f]quinoline,
30
              5-(3,5-dichlorophenyl)-2,5-dihydro-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
              f]quinolin-10-ol,
              5-(3,5-dichlorophenyl)-2,5-dihydro-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
              f|quinolin-10-yl|methylcarbonate,
              2,5-dihydro-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quin
              olin-10-ol,
35
              10-(bromodifluoromethoxy)-2,5-dihyro-2,2,4-trimethyl-5-(2-propenyl)-1H-
              [1]benzopyrano[3,4-f]quinoline,
```

```
[3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
       5-
              yl)phenyl] methylcarbonate,
              2,5-dihydro-10-methoxy-5-(3-methoxyphenyl)-2,2,4-trimethyl-
              1H-[1]benzopyrano[3,4-f]quinoline,
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-(2-propenyloxy)phenyl]-
5
              1H-[1]benzopyrano[3,4-f]quinoline,
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-(phenylmethoxy)phenyl]-
              1H-[1]benzopyrano[3,4-f]quinoline,
              5-[3-(cyclopropylmethoxy)phenyl]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-
10
              1H-[1]benzopyrano[3,4-f]quinoline,
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-[2-(1-piperidinyl)ethoxy]pheny]-
              1H-[1]benzopyrano[3,4-f]quinoline,
              5-(3-hexyloxyphenyl)-2,5-dihydro-10-methoxy-2,2,4-trimethyl-
              1H-[1]benzopyrano[3,4-f]quinoline,
              5-[3-(2,4-dinitrophenoxy)phenyl]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-
15
              1H-[1]benzopyrano[3,4-f]quinoline,
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-(2-propynyloxy)phenyl]-
              1H-[1]benzopyrano[3,4-f]quinoline,
              3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
              5-yl)phenol 4-methylbenzenesulfonate (ester),
20
              4-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
              5-yl)phenolacetate (ester),
              4-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
              5-yl)phenol,
25
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[[4-(methylthio)methoxy]phenyl]-
              1H-[1]benzopyrano[3,4-f]quinoline,
              [4-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
              5-yl)phenyl] dimethylcarbamate,
               2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[4-(phenylmethoxy)phenyl]-
30
              1H-[1]benzopyrano[3,4-f]quinoline,
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-(methoxymethoxy)phenyl]-1H-
              [1]benzopyrano[3,4-f]quinoline,
              [(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
       5-
              yl)phenyl] 1-morpholinecarboxylate,
35
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-
       [(methylsulfinyl)methoxy]phenyl]-
              1H-[1]benzopyrano[3,4-f]quinoline,
```

```
O-[3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
              f]quinolin-5-yl)phenyl] ester,
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-(methylthio)phenyl]-1H-
              [1]benzopyrano[3,4-f]quinoline,
 5
              O-[3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
              flquinolin-5-yl)phenyl] methylcarbonothioate,
              [3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl]-1H-[1]benzopyrano[3,4-
       f]quinolin-
              5-yl)phenyl] trifluoromethanesulfonate,
10
              5-[3-(4,5-dihydro-4,4-dimethyl-2-oxazolyl)phenyl]-2,5-dihydro-10-methoxy-
              2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
              ethyl 3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
              f]quinolin-5-yl)benzoate,
              3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
15
       5-
              yl)benzoic acid,
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-methyl-5-(2-propenyl)phenyl]-
              1H-[1]benzopyrano[3,4-f]quinoline,
              1-[3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
                      5-yl)-5-methylphenyl]ethanone,
20
       flquinolin-
              3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
       5-
              yl)-5-trimethylbenzenemethanol,
              5-[3-(2-furanyl)phenyl]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-
25
              1H-[1]benzopyrano[3,4-f]quinoline,
              2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[3-methyl-5-(1H-pyrrolidin-1-
              yl)phenyl]-1H-[1]benzopyrano[3,4-f]quinoline,
              3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
              5-methyl)-5,N-dimethylbenzenamine,
              3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
30
       5-
              yl)-5-methyl-N-(2-propenyl)benzamide,
              3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
              5-yl)-N-(2-methoxyethyl)-5-methylbenzenamine,
35
              3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-
              5-yl)-N-(2-propenyl)benzenamine,
              N'-[3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
              f]quinolin-5-yl)-5-methylphenyl]-N,N-dimethylurea,
```

N-[3-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4f]quinolin-5-yl)phenyl]benzenemethanamine, 5-[(3,5-dichlorphenyl)methylene]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 5-[(4-chlorophenyl)methylene]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-5 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[[3-(trifluoromethyl)phenyl]methylene]-1H-[1]-benzopyrano[3,4-f]quinoline, 5-[(2,6-difluorophenyl)methylene]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-10 1H-[1]benzopyrano[3,4-f]quinoline, 5-[(2-chlorophenyl)methylene]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 5-[(2,6-dichlorophenyl)methylene]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-15 1H-[1]benzopyrano[3,4-f]quinoline, 5-[(2-fluorophenyl)methylene]-2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-[(4,5-dihydro-4,4-dimethyl-2-20 oxazolyl)methylene]-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-pyridinylmethylene)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(2-thienyl)-1H-[1]benzopyrano[3,4f]quinoline, 25 2,5-dihydro-9,10-dimethoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 5-(2-cyclohexen-1-yl)-2,5-dihydro-9,10-dimethoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(3-methyl-3-butenyl)-2,2,4-trimethyl-1H-30 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(5,5-dimethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, rel (5R,2'R) 2,5-dihydro-10-methoxy-5-(2-oxo-3-tetrahydropyranyl)-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, anti(5R, 2'S) 2,5-dihydro-10-methoxy-5-(2-oxo-3-tetrahydropyranyl)-2,2,4-35 trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(3-cyclopentenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

2,5-dihydro-10-methoxy-5-(3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-flquinoline, 2,5-dihydro-10-methoxy-5-(3-butenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4flquinoline, 5 2,5-dihydro-10-methoxy-5-(1-ethenyl-1-cyclohexyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(4,4-dimethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(1-methylene-2-cyclohexyl)-2,2,4-trimethyl-1H-10 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(1-oxo-2-cyclohexyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(3-cyclooctenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(3-cycloheptenyl)-2,2,4-trimethyl-1H-15 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(1-cyclohexenylmethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(3,3-dimethyl-6-cyclohexenyl)-2,2,4-trimethyl-1H-20 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(2-bromo-3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, rel(5R,3'R) 2,5-dihydro-10-methoxy-5-(1-hydroxymethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, rel(5R,3'S) 2,5-dihydro-10-methoxy-5-(1-hydroxymethyl-3-cyclohexenyl)-25 2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(3-hydroxymethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(3-indolyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-30 f]quinoline, rel (5S,3'S) 2,5-dihydro-10-methoxy-5-(1-methyl-3-cyclohexenyl)-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, rel (5R,3'S) 2,5-dihydro-10-methoxy-5-(1-methyl-3-cyclohexenyl)-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 35 (-) (5S,3'S) 2,5-dihydro-10-methoxy-5-(1-methyl-3-cyclohexenyl)-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (-) (5S, 3'R) 2,5-dihydro-10-methoxy-5-(1-hydroxymethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

(+) (5R, 3'S) 2,5-dihydro-10-methoxy-5-(1-hydroxymethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline. (-)-(5S, 3'R) 2,5-dihydro-10-methoxy-5-(1-methyl-3-cyclohexenyl)-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (+)-(5R, 3'S) 2,5-dihydro-10-methoxy-5-(1-methyl-3-cyclohexenyl)-2,2,4-5 trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(1-chloromethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, rel (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-methoxymethyl-3-cyclohexenyl)-10 2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, rel (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-methylthiomethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, rel (5R, 3'S) 2,5-dihydro-10-methoxy-5-(1-acetoxymethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 15 rel (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-acetoxymethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, rel (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-methoxymethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, rel (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-(N,N-dimethylamino)methyl-3cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 20 rel (5R, 3'S) 2,5-dihydro-10-methoxy-5-(1-methylthiomethyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, rel (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-(N-morpholino)methyl-3cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 25 rel (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-(N-methyl-Nmethylsulfonylamino)methyl-3-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, rel (5R, 3'S) 2,5-dihydro-10-methoxy-5-(1-(N,N dimethylamino)methyl-3cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, rel (5R, 3'R) 2,5-dihydro-10-methoxy-5-(1-(N-methylamino)methyl-3-30 cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(2-methyl-3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(1,3-butadien-2-yl)-2,2,4-trimethyl-1H-35 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(2-carbomethoxy-3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

2,5-dihydro-10-methoxy-5-(1,2-dihydroxy-3-propyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(1,2-epoxy-3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(1-(N-phthalimido)-3-propyl)-2,2,4-trimethyl-1H-5 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(1-amino-3-propyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(1-(hydrazinocarbonylamino)-3-propyl)-2,2,4-10 trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (E) 2,5-dihydro-10-methoxy-5-(2-carbomethoxy-1-ethenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (Z)-2,5-dihydro-10-methoxy-5-(1-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 15 (E) 2,5-dihydro-10-methoxy-5-(3-hydroxy-1-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (E) 2,5-dihydro-10-methoxy-5-(3-(N,N-dimethylaminocarbonyloxy)-1propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (E) 2,5-dihydro-10-methoxy-5-(3-methoxymethoxy-1-propenyl)-2,2,4-20 trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(3-hydroxy-3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, methyl 2-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4f]quinolin-5-yl) acetyl hydroxamate, 25 2-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-5-yl) acetaldehyde, 2,5-dihydro-10-methoxy-5-(2-cyclohexylidenylethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(2-cyclopentylidenylethyl)-2,2,4-trimethyl-1H-30 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(2-cycloheptylidenylethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(3-methyl-2-butenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 35 trans 2,5-dihydro-10-methoxy-5-(2-butenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, trans 2,5-dihydro-10-methoxy-5-(2-penten-1-yl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

2,5-dihydro-10-methoxy-5-(1,1-difluoro-1-propen-3-yl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (E) methyl 2-(2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4f]quinolin-5-yl) 2-butenoate, 5 (E) 2,5-dihydro-10-methoxy-5-(4-hydroxy-2-buten-1-yl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (E) 2,5-dihydro-10-methoxy-5-(4-(N,N-dimethylaminocarbonyloxy)-2-buten-1yl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (E) 2,5-dihydro-10-methoxy-5-(4-(N-methylaminocarbonyloxy)-2-buten-1-yl)-10 2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (E) 2,5-dihydro-10-methoxy-5-(2-butenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(2-hydroxyethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(2-(N-benzylcarbonyloxy)ethyl)-2,2,4-trimethyl-1H-15 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(2-(N-morpholinocarbonyloxy)ethyl)-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(2-(N-(2-methoxyethyl)aminocarbonyloxy)ethyl)-20 2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(2-(N-methyaminocarbonyloxyoxy)ethyl)-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(2-(N,N-dimethylaminocarbonyloxy)ethyl)-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(2-methoxymethoxyethyl)-2,2,4-trimethyl-1H-25 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(2,2-dimethylethoxycarbonylamino)methyl)-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(aminomethyl)-2,2,4-trimethyl-1H-[1]benzopyrano-30 [3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(ethoxycarbonylamino)methyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(carboethoxy)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 35 2,5-dihydro-10-methoxy-5-(cyclopentyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(1-methylpropa-1,2-dienyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

2,5-dihydro-10-methoxy-5-(3,4,5-trifluorophenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(cyclohexyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 5 2,5-dihydro-10-methoxy-5-(2-pyridyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4flquinoline, 2,5-dihydro-10-methoxy-5-(3-pyridyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4flquinoline, 2,5-dihydro-10-methoxy-5-(4-pyridyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-10 f]quinoline, (10-chloro-9-hydroxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 10-chloro-9-hydroxy-5-phenyl-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 15 10-chloro-9-hydroxy-5-(3-trifluoromethylphenyl)-2,2,4-trimethyl-1H-2,5dihydro-[1]benzopyrano[3,4-f]quinoline, 10-chloro-9-hydroxy-5-(3,5-dimethylphenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, rel-(5S, 3'R)-9-hydroxy-10-methoxy-5-[1-hydroxymethyl-3-cyclohexenyl]-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 20 (-) 2,5(S)-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(3S-cyclopenteny1)-1H-[1]benzopyrano[3,4-f]quinoline, (-) 2,5(S)-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(3R-cyclopentenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 10-chloro-9-hydroxy-5-(3,5-dichlorophenyl)-2,2,4-trimethyl-1H-2,5-dihydro-25 [1]benzopyrano[3,4-f]quinoline, (+)-(5R, 3'S) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(3cyclopenteny1)-1H-[1]benzopyrano[3,4-f]quinoline, (+)-(5R, 3'R)2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(3-30 cyclopenteny1)-1H-[1]benzopyrano[3,4-f]quinoline, 10-chloro-9-hydroxy-5-(3,4-difluorophenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 9-10-methylenedioxy-5-phenyl-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 35 5-(3-propenyl)-9-chloro-10-ethenyl-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 9-chloro-10-methoxy-5-phenyl-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline,

5-(3-propenyl)-9-chloro-10-difluoromethoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline. 9-chloro-10-difluoromethoxy-5-phenyl-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 5 8-fluoro-10-methoxy-5-phenyl-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 5-(3-propenyl)-8-fluoro-10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, (10-methoxy-9-fluoro-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-10 [1]benzopyrano[3,4-f]quinoline, 10-methoxy-9-hydroxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, (+/-) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-cyclohexeny1)-1H-[1]benzopyrano[3,4-f]quinoline, 15 (+/-) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(1methylcyclohexen-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline, (-) (5S, 3'S)-9-hydroxy-5-[1-methyl-3-cyclohexenyl]- 10-methoxy-2,2,4trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, (+) (5R,3'R)-9-hydroxy-5-[1-methyl-3-cyclohexenyl]- 10-methoxy-2,2,4-20 trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, (+) (5R,3'S)-9-hydroxy-5-[1-methyl-3-cyclohexenyl]- 10-methoxy-2,2,4trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, (-) (5S,3'R)-9-hydroxy-5-[1-methyl-3-cyclohexenyl]- 10-methoxy-2,2,4trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 25 rel-(5S,3'R)-9-hydroxy-5-[1-hydroxymethyl-3-cyclohexenyl]-10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, (+/-) (5S,3'R) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(1methylcyclohexen-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline, rel-(5S,3'R)-9-hydroxy-5-[1-methoxymethyl-3-cyclohexenyl]-10-methoxy-30 2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline. 2,5-dihydro-9-hydroxy-10-methoxy-5-propyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (-) (5S,3'S) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3cyclohepteny1)-1H-[1]benzopyrano[3,4-f]quinoline, 35 (-) (5S,3'R) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3cyclohepteny1)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy -2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-f]quinoline,

2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3,5-difluorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3,4,5-trifluorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 5-butyl-2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H-5 [1]benzopyrano[3,4-f]quinoline, (-) (5S,3'S) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3cyclopenteny1)-1H-[1]benzopyrano[3,4-f]quinoline, (-) (5S,3'R) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-10 cyclopenteny1)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3,4-difluorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(4-fluorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-15 trifluoromethylphenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-5bistrifluoromethylphenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-trifluoromethyl-4-20 chlorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-methylpropyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-fluoro-4chlorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 25 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-butenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-5-(phenylmethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (-) (5S,3'R) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-[1-ethyl-3-30 cyclohexenyl]-1H-[1]benzopyrano[3,4-f]quinoline, (-) (S) 5-cyclopentyl-2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (+) (R) 5-cyclopentyl-2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-5-(3-propynyl)-2,2,4-trimethyl-1H-35 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-propyl)-1H-[1]benzopyrano[3,4-f]quinoline,

2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(5-methoxy-2-thienyl)-1H-[1]benzopyrano[3,4-f]quinoline, (±) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2,3,4,5,6pentafluorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline, (+/-) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5(S)-(3(S)-1-5 hydroxymethylcyclopenten-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline, (+/-) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5(S)-(3(S)-1methylcarboxylatecyclopenten-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline, (-) (5S,3'S) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-10 cyclohexeny1)-1H-[1]benzopyrano[3,4-f]quinoline, (-) (5S,3'R) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3cyclohexeny1)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-thienyl)-1H-[1]benzopyrano[3,4-f]quinoline, 15 (±) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-methylphenyl) -1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-acetoxymethyl-3propenyl)-1H-[1]benzopyrano[3,4-f]quinoline, (+) (5R,3'S) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-[1-ethyl-3-20 cyclohexenyl]-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-cyclohexyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5,5-trihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4flquinoline, 25 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-hydroxymethyl-3propenyl)-1H-[1]benzopyrano[3,4-f]quinoline, methyl 2-[2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]-5-quinolinyl] acetate, (Z) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-butenyl)-1H-30 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-methyl-2-butenyl)-1H-[1]benzopyrano[3,4-f]quinoline, (+) (5S,3'S) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3cyclohexeny1)-1H-[1]benzopyrano[3,4-f]quinoline, 35 (+) (5R,3'R) 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3cyclohexeny1)-1H-[1]benzopyrano[3,4-f]quinoline, (+) (5R,3'S) 2,5(R)-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3cyclopenteny1)-1H-[1]benzopyrano[3,4-f]quinoline,

(+) (5R,3'R) 2,5(R)-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3cyclopenteny1)-1H-[1]benzopyrano[3,4-f]quinoline, rel-(5S)-9-hydroxy-5-[(3R)-(1-methoxycarbonyl)cyclohexen-3-yl]- 10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(2-methyl-3-propenyl)-5 1H-[1]benzopyrano[3,4-f]quinoline, 9,10-Dimethoxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 9,10-Dimethoxy-5-[3-cyclohexenyl]-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 10 10-methoxy-9-ethoxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 10-methoxy-9-(3-propenyloxy)-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 15 10-methoxy-9-(3-propynyloxy)-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-acetoxy-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-methoxy-2,2,4trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 20 7-bromo -5-[3-cyclohexenyl]- 10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 10-methoxy-7-bromo-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 7-bromo-5-[1-methyl-3-cyclohexenyl]- 10-methoxy-2,2,4-trimethyl-2,5-25 dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 10-methoxy-9-bromo-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 7,9-Dibromo-10-methoxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 30 7,9-Dibromo-5-[cyclohexen-3-yl]- 10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 7,9-Dibromo-5-[1-methyl-3-cyclohexenyl]-10-methoxy-2,2,4-trimethyl-2,5dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 10-methoxy-7-(2-ethenyl)-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-35 [1]benzopyrano[3,4-f]quinoline, 10-methoxy-7-methyl-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline,

	10-methoxy-7-acetyl-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-
	[1]benzopyrano[3,4-f]quinoline,
	(+/-) 2,5-dihydro-9-methyl-10-methoxy-2,2,4-trimethyl-5-(1-methylcyclohexen-
	3-y1)-1H-[1]benzopyrano[3,4-f]quinoline,
5	10-methoxy-7-methyl-9-methyl-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-
	[1]benzopyrano[3,4-f]quinoline,
	10-chloro-5-(3-propenyl)-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-
	f]quinoline,
	(+/-) 2,5-dihydro-10-chloro-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4-
10	f]quinoline,
	2,5-dihydro-10-methoxy-5-(3-(N-methyl-N-
	(carbomethoxymethyl)aminocarbonyloxy)phenyl)-2,2,4-trimethyl-1H-
	[1]benzopyrano[3,4-f]quinoline,
	2,5-dihydro-10-methoxy-5-(3-(N-methyl-N-(N-
15	methylcarbonyl)aminocarbonyloxy)phenyl)-2,2,4-trimethyl-1H-
	[1]benzopyrano[3,4-f]quinoline,
	2,5-dihydro-10-methoxy-5-(3-(N-methylaminocarbonyloxy)phenyl)-2,2,4-
	trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
	2,5-dihydro-10-methoxy-5-(3-(2-hydroxyethyl)phenyl)-2,2,4-trimethyl-1H-
20	[1]benzopyrano[3,4-f]quinoline,
•	2,5-dihydro-10-methoxy-5-(3-(2-methanesulfonyloxyethyl)phenyl)-2,2,4-
	trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
	2,5-dihydro-10-methoxy-5-(3-(2-methythioethyl)phenyl)-2,2,4-trimethyl-1H-
	[1]benzopyrano[3,4-f]quinoline,
25	2,5-dihydro-10-methoxy-5-(3-(2-(N,N-
	dimethylaminocarbonyloxy)ethyl)phenyl)-2,2,4-trimethyl-1H-
	[1]benzopyrano[3,4-f]quinoline,
	2,5-dihydro-10-methoxy-5-(3-(2-(N,N-dimethylamino)ethyl)phenyl)-2,2,4-
	trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,
30	2,5-dihydro-10-methoxy-5-cyclopropyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
	f]quinoline,
	2,5-dihydro-10-methoxy-5-ethenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-
	f]quinoline,
	trans 2,5-dihydro-10-methoxy-5-(2-phenylethenyl)-2,2,4-trimethyl-1H-
35	[1]benzopyrano[3,4-f]quinoline,
	2,5-dihydro-10-methoxy-5-(2-phenylethynyl)-2,2,4-trimethyl-1H-
	[1]benzopyrano[3,4-f]quinoline,

cis 2,5-dihydro-10-methoxy-5-(2-phenylethenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-5-(2-methylpropenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 5 trans 2,5-dihydro-10-methoxy-5-(1-cyclohexenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-(2-furanyl)-5-(3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-cyano-5-(3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-10 flauinoline, 2,5-dihydro-10-carboxy-5-(3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4flquinoline, 2,5-dihydro-10-(2-hydroxymethyl)-5-(3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 15 2,5-dihydro-10-formyl-5-(3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4f]quinoline, 2,5-dihydro-10-aminomethyl-5-(3-propenyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxymethyl-5-(3-propenyl)-2,2,4-trimethyl-1H-20 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-ethenyl-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4flquinoline, 2,5-dihydro-10-ethynyl-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4f]quinoline, 25 methyl 2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4flquinoline-10-carboxylate, 2,5-dihydro-10-(hydroxymethyl)- 5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-formyl-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-30 flquinoline, 2,5-dihydro-10-(methoxymethyl)-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-ethenyl-5-oxo-2,2,4-trimethyl-1H-[1]benzopyrano[3,4f]quinoline, 5-(3-cyclohexenyl)-2,5-dihydro-10-ethenyl-2,2,4-trimethyl-1H-35 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-ethenyl-5-[1-methyl-3-cyclohexenyl]-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline,

2,5-dihydro-5-(3-propenyl)-10-methylthio-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-5-(3-propenyl)-10-methylthio-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (+/-) 2,5-dihydro-9-(4-acetamidobutanoyloxy)-10-methoxy-2,2,4-trimethyl-5-5 allyl-1H-[1]benzopyrano[3,4-f]quinoline, 10-(difluoromethoxy)-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 10-(bromodifluoromethoxy)-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 10 10-(bromodifluoromethoxy)-5-phenyl-2,2-dimethyl-4-methylene-2,3,4,5tetrahydro-1H-chromeno[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-((2-fluorophenyl)methyl) -1H-[1]benzopyrano[3,4-f]quinoline, 15 10-methoxy-5-(5-methylisoxazol-3-yl)methyldene-2,5-dihydro-5-phenyl-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 10-methoxy-5-(3-methylisoxazol-5-yl)methyldene-2,5-dihydro-5-phenyl-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 10-methoxy-5-(4,5-dimethyl-1,3-oxazol-2-yl)methyidene-2,5-dihydro-5-phenyl-20 2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 10-methoxy-5-(6-chloropyridin-2-yl)methyidene-2,5-dihydro-5-phenyl-2,2,4trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 10-methoxy-5-(pyridin-2-yl)methyidene-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 25 10-methoxy-5-(but-3-enylidene)-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 10-methoxy-5-(1-methylpropylidene)-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 10-methoxy-5-(1-butylidene)-2,5-dihydro-5-phenyl-2,2,4-trimethyl-1H-. 30 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-2,2,4-trimethyl-3-oxide-5-phenyl-1H-[1]benzopyrano[3,4-f]quinazoline, 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano[3,4flquinazoline, 2,5-dihydro-10-methoxy-2,2-[spiro(tetrahydro-4-pyranyl)]-4-methyl-5-allyl-1H-35 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-10-methoxy-2,2-[spiro(hexyl)]-5-allyl-1H-[1]benzopyrano[3,4f]quinoline,

2,5-dihydro-10-methoxy-2,2-diethyl-4-methyl-5-allyl-1H-[1]benzopyrano[3,4flauinoline, 2,5-dihydro-10-methoxy-2,2,3,4-tetramethyl-5-allyl-1H-[1]benzopyrano[3,4flquinoline, 2,5-dihydro-10-methoxy-2,2-dimethyl-4-ethyl-5-allyl-1H-[1]benzopyrano[3,4-5 flauinoline, 2,5-dihydro-10-methoxy-2,2,3-trimethyl-5-allyl-1H-[1]benzopyrano[3,4flquinoline, Z-5-(benzylidenyl)-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H-2,5-dihydro-10 [1]benzopyrano[3,4-f]quinoline, Z-5-(2,5-difluorobenzylidenyl)-9-hydroxy-10-methoxy-2,2,4-trimethyl-1H-2,5dihydro-[1]benzopyrano[3,4-f]quinoline, Z-5-(3-fluorobenzylidenyl)-10-chloro-9-hydroxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 15 Z-10-chloro-9-hydroxy-5-(2-picolinylidenyl)-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, Z-9-hydroxy-10-methoxy-5-(2-picolinylidenyl)-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-flquinoline, 9-hydroxy-10-methoxy-5-(3,5-difluorophenyl)methylidene-2,5-dihydro-5-20 phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 9-hydroxy-10-methoxy-5-(3,4-difluorophenyl)methylidene-2,5-dihydro-5phenyl-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, (Z) 9-hydroxy-10-methoxy-5-((4-fluorophenyl)methylene)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 25 (Z)-9-hydroxy-10-methoxy-5-([2,3-difluorophenyl]methylene)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, Z-5-(3-fluorobenzylidenyl)-10-methoxy-9-hydroxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, rel-(5S,3'R)-9-hydroxy-5-[1-methoxymethyl-3-cyclohexenyl]-10-chloro-2,2,4-30 trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 9-hydroxy-10-methoxy-5-ethyl-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, (+/-) 2,5-dihydro-9-cyanomethoxy-10-methoxy-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline, 35 2,5-dihydro-9-(4-N,N-diethylamino-4-oxo-butanoyloxy)-10-methoxy-2,2,4trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-(4-N-piperidino-4-oxo-butanoyloxy)-10-methoxy-2,2,4trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline,

2,5-dihydro-9-(4-N-morpholino-4-oxo-butanoyloxy)-10-methoxy-2,2,4trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-methoxy-2,2,4trimethyl-5-(3,4,5-trifluorophenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 5 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-5difluorophenylmethyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(2-thienyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-cyclopentyl-1H-[1]benzopyrano[3,4-f]quinoline, 10 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-((2-fluorophenyl)methyl) -1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxymethyl-10-methoxy-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(1-pentenyl)-1H-15 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-methylcarboxylate-10-methoxy-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-allenyl-1H-[1]benzopyrano[3,4-f]quinoline, 20 (-) (5S, 3'S) 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(cyclopenten-3-yl)-1H-[1]benzopyrano[3,4-f]quinoline, (-) (5S, 3'S) 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(cyclohexen-3-yl)-1H-[1]benzopyrano[3,4-f]quinoline, (-) (5S, 3'R) 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(cyclohexen-3-yl)-1H-25 [1]benzopyrano[3,4-f]quinoline, (-) (5S, 3'R) 2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(cyclopenten-3-yl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3(Z)-pentenyl) -1H-30 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-acetoxyphenyl) -1H-[1]benzopyrano[3,4-f]quinoline, 10-difluoromethoxy-5-[[3-(methylthio)methoxy]phenyl]-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 35 2,5-dihydro-7-bromo-9-hydroxy-10-chloro-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-hydroxyphenyl)-1H-[1]benzopyrano[3,4-f]quinoline,

2,5-dihydro-9-methylthiomethoxy-10-methoxy-2,2,4-trimethyl-5-(3-(methylthio)methoxyphenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-(methylthiomethoxy)phenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 9-hydroxy-10-chloro-5-(phenylmethylene)-2,2,4-trimethyl-1H-2,5-dihydro-5 [1]benzopyrano[3,4-flquinoline, 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-([2-N,Ndimethylcarbamoyloxy]phenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-N,N-dimethylcarbamoyloxy-10-methoxy-2,2,4-trimethyl-5-([2-N,N-dimethylcarbamoyloxy]phenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 10 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-ethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-isopropyl-1H-[1]benzopyrano[3,4-f]quinoline, 15 9-hydroxy-10-methoxy-5-(phenylmethylene)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-butyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(1-thiazol-2-yl)-1H-20 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(2-methylpropyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxymethyl-10-chloro-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline, 25 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-propyl-1H-[1]benzopyrano[3,4-f]quinoline, 9-hydroxy-10-methoxy-5-([3-fluorophenyl]methylene)-2,2,4-trimethyl-1H-2,5dihydro-[1]benzopyrano[3,4-f]quinoline, 9-hydroxy-10-chloro-5-([2-pyridyl]methylene)-2,2,4-trimethyl-1H-2,5-dihydro-30 [1]benzopyrano[3,4-f]quinoline, rel-(5S)-9-hydroxy-5-[(3S)-(1-hydroxymethyl)cyclohexen-3-yl]-10-chloro-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, rel-(5S)-9-hydroxy-5-[(3S)-(1-methoxycarbonyl)cyclohexen-3-yl]- 10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3,5-dichlorophenyl)-1H-35 [1]benzopyrano[3,4-f]quinoline, (-) (5S,3'S) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(1methylcyclohexen-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline,

(-) (5S,3'R) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(1methylcyclohexen-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline, (+) (5R,3'S) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(1methylcyclohexen-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline, 5 (+) (5R,3'R) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(1methylcyclohexen-3-y1)-1H-[1]benzopyrano[3,4-f]quinoline, (+/-) 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-chloro-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline, (-) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-cyclopentyl-1H-[1]benzopyrano[3,4-f]quinoline, 10 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-methoxy-2,2,4trimethyl-5-(1-methylethyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-methoxy-5-(phenylmethyl)-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-methoxy-2,2,4-15 trimethyl-5-(2-thienyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-(4-N,N-dimethylaminobutanoyloxy)-10-methoxy-2,2,4-trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 9-(2-ethoxy-2-oxo-ethylaminocarbonyl)-oxy-10-methoxy-5-(3-propenyl)-2,2,4trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 20 (+/-) 2,5-dihydro-9-(3-acetamido-propanoyloxy)-10-methoxy-2,2,4-trimethyl-5allyl-1H-[1]benzopyrano[3,4-f]quinoline, (+/-) 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-benzyl-1H-[1]benzopyrano[3,4-f]quinoline, 9-hydroxy-10-methoxy-5-(phenylmethylene)-2,2,4-trimethyl-1H-2,5-dihydro-25 [1]benzopyrano[3,4-f]quinoline, 9-(dimethylaminothiocarbonyl)-oxy-10-methoxy-5-(3-propenyl)-2,2,4trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, (+/-) 2,5-dihydro-9-(N-carbamoyl-2-aminoacetoxy)-10-methoxy-2,2,4-30 trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline, (+/-) 2,5-dihydro-9-(4-ethoxy-4-oxo-butoxy)-10-methoxy-2,2,4-trimethyl-5allyl-1H-[1]benzopyrano[3,4-f]quinoline, (+/-) 2,5-dihydro-9-(4-oxo-pentanoyloxy)-10-methoxy-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-hydroxy-10-chloro-2,2,4-trimethyl-5-(3,4,5-trifluorophenyl)-1H-35 [1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-methylthiomethoxy-10-methoxy-2,2,4-trimethyl-5-allyl-1H-[1]benzopyrano[3,4-f]quinoline,

2,5-dihydro-9-(4-N,N-diethylamino-4-oxo-pentanoyloxy)-10-methoxy-2,2,4trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-pentanoyloxy)-10-methoxy-2,2,4trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-(4-N-piperidino-4-oxo-pentanoyloxy)-10-methoxy-2,2,4-5 trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline, 2,5-dihydro-9-(4-N-morpholino-4-oxo-pentanoyloxy)-10-methoxy-2,2,4trimethyl-5-(2-propenyl)-1H-[1]benzopyrano[3,4-f]quinoline, (-) 2,5-dihydro-9-(4-N,N-dimethylamino-4-oxo-butanoyloxy)-10-methoxy-10 2,2,4-trimethyl-5(S)-(3(S)-1-cyclopenten-3-y1)-1H-[1]benzopyrano[3,4flquinoline, 10-methoxy-9-(allylaminocarbonyl)oxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5dihydro-[1]benzopyrano[3,4-f]quinoline, 10-methoxy-9-(cyclohexylaminocarbonyl)-oxy-5-(3-propenyl)-2,2,4-trimethyl-1H-2,5-dihydro-[1]benzopyrano[3,4-f]quinoline, 15 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(3-thienyl)-1H-[1]benzopyrano[3,4-f]quinoline, and 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(4-(fluorophenyl)methyl)-1H-[1]benzopyrano[3,4-f]quinoline.

20

- 35. A method of selectively modulating the activation, repression, agonism, and antagonism effects of the glucocorticoid receptor in a mammal comprising administering an effective amount of a compound of Claim 1.
- 25 36. A method of treating inflammation and immune, autoimmune and inflammatory diseases in a mammal comprising administering an effective amount of a compound of Claim 1.