PRINTABLE VERSION

Quiz 5

You scored 44.44 out of 100

0 " 1		
Question 1		
Your answer is CORRECT.		
An outline for a proof or	f an implication $P \Rightarrow Q$ is provided below:	
	Proposition. $P \Rightarrow Q$	
	Proof. Suppose P. Missing standing P. and O. and any manipular stablished facts	
	Missing steps involving P and Q and any previously established facts Therefore Q . \square	
What type of proof was	described in the outline?	
··		
a) A proof by introspection is described in this outline.		
b) Wait a minute The proof described in this outline isn't a valid proof technique!		
c) A proof by contrapositive is described in this outline.		
d) A direct proof is described in this outline.		
e) A proof by contradiction is described in this outline.		
Question 2		
Your answer is INCORRECT.		
Suppose a mathematician wants to prove a statement of the form P . However, they wish to do so using a proof by contradiction. Of the following options which could be used as a first step in this proof?		
a) ○ Suppose ¬P ∨ -	¬Q .	
b) \odot Suppose $\neg P \land \neg Q$.		
c) OSuppose ¬Q		
d) \bigcirc Suppose $\neg P$.		
e) ○ Suppose ¬P ∧	Q .	
Question 3		
Your answer is INCORRECT.		
Given two sets A and I	B one can prove $B \subseteq A$ by	
a) \bigcirc First supposing $x \in A$, and then showing $x \in B$.		
b) \bigcirc First supposing $x \in B$, and then showing $x \in A$.		
c) \odot First supposing $x \notin A$, and then showing $x \in B$.		
d) \bigcirc First supposing $x \in A$, and then showing $x \notin B$.		

e) \bigcirc First supposing $x \notin B$, and then showing $x \in A$.		
Question 4		
Your answer is CORRECT.		
Given two sets A and B one can prove $A \subseteq B$ by		
a) \bigcirc First supposing $x \notin A$, and then showing $x \notin B$.		
b) \bigcirc First supposing $x \notin A$, and then showing $x \in B$.		
c) \bigcirc First supposing $x \in A$, and then showing $x \notin B$.		
d) \bigcirc First supposing $x \notin B$, and then showing $x \notin A$.		
e) \bigcirc First supposing $x \notin B$, and then showing $x \in A$.		
Question 5		
Your answer is INCORRECT.		
A lovely little proof is presented below:		
	Proposition. If $2 + x$ is odd, then x is odd.	
	Proof. Suppose $2 + x$ is even. (We will show x is even.)	
	By definition of even this means $2+x=2m$ for some $m\in\mathbb{Z}.$	
	By subtracting 2 from both sides it follows that $x = 2m - 2 = 2(m - 1)$.	
	Because this expression is even the proof is complete. \Box	
Determine the type of proof used.		
a) A proof by indoctrination was used.		
b) A proof by contradiction was used.		
c) A direct proof was used.		
d) A proof by contrapositive was used.		
e) Wait a minute This so-called "proof" did not actually show the Proposition was true. Whoever wrote this deserves 0 points.		
Question 6		
Your answer is CORRECT.		
A proposition and an at	ttempt at its proof are presented below.	
P	Proposition. The sum of an odd integer and an even integer is odd.	
P	Proof. (Direct)	
	1) Suppose $x,y\in\mathbb{Z}$ are integers.	
	2) We can assume x is odd and that y is even.	
	3) Since x is odd, it follows that $\exists y \in \mathbb{Z}, x = 2y + 1.$	
	4) Since y is even, it follows that $\exists m \in \mathbb{Z}, \ y = 2m$.	
(;	5) We now have $x+y=(2y+1)+y=3y+1=3(2m)+1=2(3m)+1$.	

(6) Because x+y has the form of an odd number it is odd. \square

Identify the mistake, if any, in this proof.

- a) There is an error in Line (4) since where the definition of "even" is misapplied.
- b) There is an error in Line (3) where the variable name "y" is used when this name already refers to a different variable.
- c) There is an error in Line (2) since we do not know which integer is odd or even.
- d) \bigcirc There is an error in Line (1) since we cannot simply assume $x, y \in Z$.
- e) There is an algebraic mistake in Line (5).

Question 7

Your answer is INCORRECT.

A proposition and an attempt at its proof are presented below.

Proposition. x is a multiple of $3 \iff (x+1)(x+2)-2$ is also a multiple of 3.

Proof. There are two parts or cases to prove.

- $(\Rightarrow Direct)$
- (1) Suppose x = 3m for some $m \in \mathbb{Z}$.
- (2) Since 3 is prime this means x is a multiple of a prime.
- (3) It follows that $(x+1)(x+2) 2 = (x^2 + 3x + 2) 2 = x^2 + 3x = (3m)^2 + 3 \cdot 3m = 9m^2 + 9m = 3(3m^2 + 3m)$, which is a multiple of 3.
- (⇐ By Contradiction)
- (4) For a contradiction suppose (x+1)(x+2)-2 is multiple of 3, but that x is not a multiple of 3.
- (5) Multiplying out this expression and combining like terms tells us (x+1)(x+2)-2= $x^2+3x=3b$ for some $b\in\mathbb{Z}$.
- (6) From this equation we find $x^2 = 3b 3x = 3(b x)$ and so x^2 is a multiple of 3.
- (7) Since x is not a multiple of 3, it follows that x^2 is not a multiple of 3.
- (8) Therefore x^2 is a multiple of 3 and x^2 is not a multiple of 3. $\Rightarrow \Leftarrow$

One or more lines in this proof are not needed -- the proof works perfectly well without them (in fact, it works better without them). Which lines are not needed?

- a) Only line (4) is not needed. All other lines are needed.
- **b)** Only line (2) is not needed. All other lines are needed.
- c) Only line (5) is not needed. All other lines are needed.
- d) Only line (3) is not needed. All other lines are needed.
- e) All lines are needed.

Ouestion 8

Your answer is INCORRECT.

Suppose we want to write a proof by contradiction of the proposition below:

$$\forall a, b, c \in [0, \infty), (ab = c) \Rightarrow (a \le \sqrt{c} \lor b \le \sqrt{c}).$$

Which of the following statements or properties do we need to use when composing this proof?

- a) \odot The fact that for real numbers x, y, if x > y then $\sqrt{xy} = \sqrt{x} \cdot \sqrt{y}$.
- **b)** The fact that for real numbers $x, y \sqrt{x} < \sqrt{y}$.
- c) Suppose ab = c and that both $a < \sqrt{c}$ and $b < \sqrt{c}$.
- d) Suppose ab = c and that both $a > \sqrt{c}$ and $b > \sqrt{c}$.

Question 9

Your answer is CORRECT.

A proposition is stated below. Take a few moments to carefully read it, and make sure you understand what, exactly, it claims to be true.

$$\exists n \in \mathbb{N}, \ 1+2+\dots+n = \frac{n(n+1)}{2}.$$

Of the following options, which one best describes what needs to be done in order to prove this claim?

- a) \odot We need to show the claim is true for an abitrary natural, saying something like "Let $n \in \mathbb{N}$."
- b) We need only check that the claim is true for one, single natural number.
- c) The proposition is a famous, unsolved problem. No one knows if it is true or false, and so it is not clear how to describe a proof for this.