Теория вероятностей

- 1. Парадокс Бертрана. В круге радиуса R случайно проводится хорда. Обозначим через ξ ее длину. Найти вероятность $Q_x = \mathsf{P}(\xi > x)$. Вычислить вероятности Q_R и $Q_{R\sqrt{3}}$ того, что длина хорды больше стороны правильного вписанного шестиугольника и треугольника соответственно. Дать подробное решение в каждом из следующих случаев:
- 1. Считать, что слово "случайно" означает, что середина хорды равномерно распределена в круге.
- 2. Считать, что слово "случайно" означает, что направление хорды фиксировано, а середина равномерно распределена на диаметре окружности.
- 3. Считать, что слово "случайно" означает, что один из концов хорды закреплен, а другой равномерно распределен на окружности.

В качестве ответа на каждый из пунктов принимается формула для Q_x , выражающая искомую вероятность через R и параметр x, а также два значения, вычисленные по этой формуле: при x=R и при $x=R\sqrt{3}$.

- 2. *Игла Бюффона*. Иглу длиной 1 бросают на пол, разлинованный параллельными прямыми, нахоядящимися на расстоянии 1 друг от друга. Найти вероятность того, что игла пересечет одну из линий. Дать подробное решение.
- 3. Pаспределение порядковых статистик. Пусть $\xi_1, ..., \xi_n$ независимые случайные величины из одного и того же распределения. В предположении, что распределение каждой из ξ_k абсолютно непрерывно с функцией распределения F(x) и плотностью p(x), найдите распределение k-той порядковой статистики $\xi_{(k)}$. Дать подробное решение.
 - 4. Используя результат предыдущей задачи, найти в зависимости от n интеграл

$$I(n) = \int_{[0,1]^n} f(x_1, ..., x_n) d^n x,$$

где $f(x_1,...,x_n)$ равно второму по величине сверху из чисел $x_1,...,x_n$.