Calcul diferențial și integral - Curs 6

Analiza curbelor parametrice

EVA KASLIK, RALUCA MUREŞAN

Curbe elementare în \mathbb{R}^2

O curbă elementară în \mathbb{R}^2 este o mulţime de puncte $C \subset \mathbb{R}^2$ pentru care există o funcţie de clasă $C^1 \varphi : [a,b] \to C$ care este bijectivă pe [a,b).

Capetele curbei $A=\varphi(a)$ şi $B=\varphi(b)$ se numesc punct iniţial şi, respectiv, punct final al curbei.

Funcţia $\varphi(t)=(f(t),g(t))$ se numeşte reprezentarea parametrică a curbei.

Ecuațiile parametrice:

$$C: \begin{cases} x = f(t) \\ y = g(t) \end{cases}, \ t \in [a, b]$$

unde f şi g sunt componentele scalare ale funcției φ .

Example

Curba dată de ecuațiile parametrice

$$x = t^2 - 2t \qquad y = t + 1$$

este parabola

$$x = y^2 - 4y + 3$$

t	х	у
-2	8	-1
-1	3	0
0	0	1
1	-1	2
2	0	3
3	3	4
4	8	5

Curbe elementare în \mathbb{R}^2

O curbă elementară închisă este o curbă cu reprezentarea parametrică φ a.î.

$$\varphi(a) = \varphi(b).$$

Remarci:

- Orice curbă elementară are o infinitate de reprezentări parametrice.
- Capetele unei curbe elementare sunt independente de reprezentarea parametrică a curbei.

Examplu: O reprezentare parametrică a cercului $x^2 + y^2 = 1$ este

$$\varphi: [0, 2\pi] \to \mathbb{R}^2, \quad \varphi(t) = (\cos t, \sin t).$$

Ecuaţiile parametrice:

$$C: \begin{cases} x = \cos t \\ y = \sin t \end{cases}, \ t \in [0, 2\pi]$$

Curbă închisă: $\varphi(0) = \varphi(2\pi) = (1,0)$.

Tangente

Pentru curba cu ecuațiile parametrice

$$x = f(t)$$
 $y = g(t)$

panta tangentei într-un punct arbitrar de pe curbă este

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{g'(t)}{f'(t)}$$
 (formula de derivare a unei funcţii compuse)

Vectorul $\varphi'(t) = (f'(t), g'(t))$ este un vector tangent în $\varphi(t)$.

Examplu: Curba C definită de

$$x = t^2 \qquad y = t^3 - 3t$$

are două tangente în punctul (3,0).

Găsiți punctele de pe C în care tangentele sunt orizontale sau verticale.

Arii

Aria de sub graficul curbei C dată explicit de y = F(x) de la a la b este:

$$\int_{a}^{b} F(x)dx$$

Dacă curba C are ecuațiile parametrice

$$x = f(t)$$
 $y = g(t)$, $t \in [\alpha, \beta]$

aria se obține folosind schimbarea de variabilă:

$$\mathcal{A} = \int_{a}^{b} y dx = \int_{\alpha}^{\beta} g(t) f'(t) dt$$

Lungimea unei curbe în \mathbb{R}^2

Lungimea curbei elementare $C\subset\mathbb{R}^2$ cu reprezentarea parametrică $\varphi:[a,b]\to\mathbb{R}^2$ este dată de:

$$l = \int_{a}^{b} \|\varphi'(t)\| dt = \int_{a}^{b} \sqrt{f'(t)^{2} + g'(t)^{2}} dt$$

unde $\varphi = (f, g)$.

Remarcă: Lungimea unei curbe C este independentă de reprezentarea sa parametrică!

Lungimea de arc a unei curbe elementare C cu reprezentarea parametrică φ este definită ca:

$$ds = \|\varphi'(t)\| dt = \sqrt{f'(t)^2 + g'(t)^2} dt$$

Examplu: lungimea cercului $x^2 + y^2 = 1$ este

$$\int_0^{2\pi} \sqrt{(-\sin t)^2 + (\cos t)^2} dt = \int_0^{2\pi} 1 dt = 2\pi.$$

Coordonate polare

Un sistem de coordonate reprezintă un punct în plan printr-o pereche ordonată de numere reale. Coordonate carteziene:

distanțele de la două axe perpendiculare.

Coordonate polare:

r - distanţa de la punctul P la polul O;

 θ - unghiul dintre axa polară şi dreapta OP (pozitiv dacă este măsurat în sens trigonometric de la axa polară şi negativ în sens invers).

Dacă punctul P are coordonatele carteziene (x,y) şi coordonatele polare (r,θ) , atunci au loc:

$$x = r\cos\theta$$
 $y = r\sin\theta$

$$r^2 = x^2 + y^2 \qquad \tan \theta = \frac{y}{x}$$

Curbe polare: exemple

Graficul unei ecuații polare $r=f(\theta)$ sau mai general $F(r,\theta)=0$ constă din toate punctele P care au cel puţin o reprezentare polară (r,θ) a căror coordonate satisfac ecuaţia.

Examplu: Trifoiul cu patru foi: $r = \cos(2\theta)$, $\theta \in [0, 2\pi]$

Curbe polare: exemple

Limaçoni: Familie de curbe polare $r=1+c\sin\theta$

Limaçonii apar în studiul miscării planetare. Traiectoria planetei Marte, vazută de pe Terra, a fost modelată de un limaçon cu o buclă (|c| > 1).

Secțiuni conice

Parabolele, elipsele şi hiperbolele se numesc secţiuni conice, sau conice, deoarece rezultă din intersecţia unui con cu un plan.

Parabola

O parabolă este o mulţime de puncte în plan ce sunt echidistante faţă de un punct fix F (numit focar) şi de o dreaptă fixă (numită dreapta directoare).

- În secolul 16, Galileo a arătat că traiectoria unui proiectil ce este lansat în aer sub un anumit unghi este o parabolă.
- Parabolele au fost folosite în design-ul farurilor de automobile, telescoapelor de reflecţie, podurilor de suspensie, etc.

Ecuația unei parabole

Se consideră parabola cu focarul F(0,p) și dreapta directoare d: y=-p.

• distanța de la P la focarul F:

$$|PF| = \sqrt{x^2 + (y-p)^2}$$

 distanţa de la P la dreapta directoare d: y = -p:

$$d(P,d) = |y + p|$$

Cum cele două distanțe sunt egale, se deduce că:

$$\sqrt{x^2 + (y - p)^2} = |y + p|$$

ceea ce este echivalent cu

$$x^2 = 4py.$$

Dacă interschimbăm x cu y (focarul F(p,0) şi dreapta directoare x=-p) se obţine:

$$y^2 = 4px$$

Parabola

Examplu: Determinați focarul și dreapta directoare pentru parabola $y^2 + 10x = 0$.

Elipsa

O elipsă este o mulţime de puncte în plan a.î. suma distanţelor la două puncte fixe F_1 şi F_2 (numite focare) este constantă.

 Una dintre legile lui Kepler afirmă că orbitele planetelor în sistemul nostru solar sunt elipse cu Soarele într-unul dintre focare.

Punând focarele pe axa Ox în punctele (-c,0) şi (c,0), a.î. originea axelor este la jumătatea distanței dintre cele două focare, şi considerând că suma distanțelor de la un punct de pe elipsă la focare este 2a>0, se obține:

$$|PF_1| + |PF_2| = 2a$$
 \iff $(a^2 - c^2)x^2 + a^2y^2 = a^2(a^2 - c^2)$

Elipsa

Notând $b^2 = a^2 - c^2$, are loc b < a și se obţine:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Vårfurile elipsei sunt punctele (a, 0) şi (-a, 0).

Segmentul care unește cele două vârfuri se numește axa mare.

Segmentul care unește punctele (0,-b) și (0,b) se numește axa mică.

Hiperbola

O hiperbolă este o mulţime de puncte în plan a.î. diferenţa distanţelor de la aceste puncte la două puncte fixe F_1 şi F_2 (focare) este constantă.

Ecuația unei hiperbole se deduce în mod similar cu cea a unei elipse, astfel încât are loc:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

pentru o hiperbolă cu focarele $(\pm c, 0)$, $c^2 = a^2 + b^2$.

Hiperbola

O hiperbolă constă din două părţi ($x \ge a$ şi $x \le -a$), numite ramuri.

Vårfurile hiperbolei sunt punctele (a, 0) şi (-a, 0).

Asimptotele unei hiperbole sunt dreptele $y = \pm \frac{b}{a}x$

Conice în coordonate polare

Theorem

Fie F un punct fix (numit focar) şi l o dreaptă fixă (numită dreapta directoare) în plan. Fie e un număr fixat pozitiv (numit eccentricitatea). Mulţimea tuturor punctelor P din plan astfel încât

$$\frac{|PF|}{|Pl|} = e$$

(i.e, raportul distanţelor de la P la F şi respectiv la d este constanta e) este o secţiune conică.

Conica este:

- (a) o elipsă dacă e < 1;
- (b) o parabolă dacă e = 1;
- (c) o hiperbolă dacă e > 1.

Conice în coordonate polar

Demonstraţie:

Dacă $e = 1 \iff |PF| = |Pl|$ se obţine o parabolă.

Focarul F se plasează în origine şi dreapta directoare l se consideră paralelă cu axa Oy, astfel încât l:x=d.

Dacă P are coordonatele polare (r, θ) , atunci:

$$|PF| = r$$
 $|Pl| = d - r\cos\theta$

și ecuația $\frac{|PF|}{|Pl|} = e$ devine:

$$r = e(d - r\cos\theta) \iff r = \frac{ed}{1 + e\cos\theta}$$

Ridicând la pătrat și convertind la coordonate carteziene (x,y) se obţine:

$$\left(x + \frac{e^2d}{1 - e^2}\right)^2 + \frac{y^2}{1 - e^2} = \frac{e^2d^2}{(1 - e^2)^2}$$

Dacă e < 1 se obţine o elipsă. Dacă e > 1 se obţine o hiperbolă.

Legile lui Kepler

- O planetă se roteşte în jurul Soarelui pe o orbită eliptică, având Soarele într-unul dintre focare.
- Oreapta care uneşte Soarele cu o planetă trasează arii egale în perioade de timp egale.
- Pătratul perioadei de revoluţie a unei planete este proporţional cu cubul lungimii axei mari a orbitei sale.

Poziţiile unei planete care sunt cea mai apropiată şi cea mai îndepărtată de Soare se numesc periheliu şi afeliu.

Fie a semiaxa mare.

Distanţa dintre periheliu şi Soare este a(1-e), iar cea dintre afeliu şi Soare este a(1+e).

Pentru Pământ, $a=1.495\times 10^8$ km şi e=0.017. Deci distanţa perihelică este aprox. 1.47×10^8 km (începutul lunii ianuarie) şi distanţa afelică este 1.52×10^8 (începutul lunii iulie).