Type equation here.

Министерство образования Российской Федерации

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. БАУМАНА

Факультет: Информатика и системы управления Кафедра: Информационная безопасность (ИУ8)

Методы оптимизации

Домашнее задание №2 на тему: «Исследование генетических алгоритмов в задачах поиска экстремумов»

Вариант 5

Преподаватель:

Коннова Н.С.

Студент:

Девяткин Е.Д.

Группа:

ИУ8-34

Репозиторий работы: https://github.com/ledibonibell/MO-lab05

Москва 2023

Цель работы

Ознакомление с основными понятиями «игр с природой»; получение навыков применения различных критериев (Бернулли, Вальда, максимума, Гурвица, Сэвиджа) для выбора стратегии в условиях полной неопределенности.

Постановка задачи

В «игре с природой» вторым игроком является природа, которая действует («выбирает» стратегии) случайным образом (т.е. она может или улучшать положение первого игрока, или ухудшать его). Поэтому существует несколько критериев оценки результатов исследования игровой модели.

Ход работы Рассмотрим нашу матрицу стратегий (таблица 1):

Стратегии	b_1	b_2	b_3	b_4
a_1	8	12	4	17
a_2	1	6	19	19
a_3	17	11	11	6
a_4	8	10	15	17
a_5	1	16	2	16

Таблица 1.

Критерий Бернулли (принцип недостаточного основания)

Если воспользоваться критерием Бернулли, то следует руководствоваться стратегией a_4 . Соответствующее математическое ожидание выигрыша при этом максимально и равно 12,5

Критерий Вальда (пессимистический)

$$a = \max_{i} \min_{j} a_{ij} = 8$$

Пессимистическая стратегия определяет выбор a_4 , где нижняя цена игры будет равна 8

Критерий максимума (оптимистический)

$$a = \max_{i} \max_{j} a_{ij} = 19$$

Оптимистическая стратегия соответствует выбору a_4 , где максимально возможный выигрыш равняется 19

Критерий Гурвица

$$a = \max_{i} \left(\alpha \min_{j} a_{ij} + (1 - \alpha) \max_{j} a_{ij} \right) = 12,5$$

Критерий Гурвица определим из условия равновероятной реализации пессимистической и оптимистической гипотез (пусть $\alpha=0.5$). Наилучшая стратегия a_2 , где ожидаемый выигрыш равен 12,5

Критерий Сэвиджа (критерий рисков)

Составим таблицу рисков (таблица 2)

Стратегии	b_1	b_2	b_3	b_4
a_1	9	4	15	2
a_2	16	10	0	0
a_3	0	5	8	13
a_4	9	6	4	2
a_5	16	0	17	3

Таблица 2.

Исходя из данной таблицы можно сделать следующие выводы для оптимума:

$$c = \min_{i} \max_{j} \left(\max_{i} c_{ij} - c_{ij} \right) = \min[15; 16; 13; 9; 17] = 9$$

Таким образом оптимальная стратегия - a_4

Поиск оптимума

Для удобства получения конечных итогов сделаем еще одну таблицу с результатами вычислений (таблица 3)

Реализуемые методы	Цена игры	Оптимальная стратегия	
Бернулли	12,5	a_4	
Вальда	8	a_4	
Максимума	19	a_4	
Гурвица	12,5	a_2	
Сэвиджа	9	a_4	

Таблица 3.

Вывод

В ходе выполнения работы были проделаны расчеты с игрой с природой для нахождения оптимальной стратегии (оптимальной цены игры) пятью разными способами.

При расчетах, данные показали, что 4 из 5 методов назвали четвертую стратегию оптимальной, из чего можно сделать вывод, что данная стратегия с большей долей вероятности является оптимальной.

```
Приложение А
Файл 'Main.py':
import numpy as np
def bernoulli(matrix):
  row with max mean = np.argmax(np.mean(matrix, axis=1))
  \max \text{ mean} = \text{np.max}(\text{np.mean}(\text{matrix}, \text{axis}=1))
  return row with max mean + 1, max mean
def wald(matrix):
  min values = np.min(matrix, axis=1)
  max min value = np.max(min values)
  row with max min value = np.argmax(min values)
  return row with max min value + 1, max min value
def max(matrix):
  max values = np.max(matrix, axis=1)
  \max \max value = np.\max(\max values)
  row with max max value = np.argmax(max values)
  return row with max max value + 1, max max value
def hurwicz(matrix, a):
  min values = np.min(matrix, axis=1)
  max values = np.max(matrix, axis=1)
  row with best value = np.argmax(a * min values + (1 - a) * max values)
  hurwicz = np.max(a * min values + (1 - a) * max values)
  return row with best value + 1, hurwicz
def savage(matrix):
  max values = np.max(matrix, axis=1)
  min max value = np.min(max values)
  row with min max value = np.argmin(max values)
  return row with min max value + 1, max values, min max value
Подсчет значений
#######""
game_matrix = np.array([[8, 12, 4, 17],
```

[1, 6, 19, 19],

```
[17, 11, 11, 6],
[8, 10, 15, 17],
[1, 16, 2, 16]])
```

risk_table = np.max(game_matrix, axis=0) - game_matrix alpha = 0.5

Вывод результатов

#######""

print("Начальная матрица стратегий:", "\n", game_matrix)

ргіпt(f"\nМетод Бернулли (принцип недостаточного основания): \nНомер стратегии игрока - {bernoulli(game_matrix)[0]} \nМатематическое ожидание - {bernoulli(game_matrix)[1]}")

print(f"\nМетод Вальда (пессимистический): \nНомер стратегии игрока - {wald(game matrix)[0]} \nНижняя цена игры - {wald(game matrix)[1]}")

print(f"\nМетод максимума (оптимистический): \nНомер стратегии игрока - $\{\max(\text{game_matrix})[0]\}\$ \nМаксимальный выигрыш - $\{\max(\text{game_matrix})[1]\}$ ")

print(f"\nМетод Гурвица: \nНомер стратегии игрока - {hurwicz(game_matrix, alpha)[0]} \nОптимальное значение - {hurwicz(game_matrix, alpha)[1]}")

print(f"\nМетод Севиджа (критерий риска): \n{risk_table} \n\nНомер стратегии игрока - {savage(risk_table)[0]} \nТаблица максимумов - {savage(risk_table)[1]} \nОптимальное значение - {savage(risk_table)[2]}")

Приложение Б