ANSWER KEY (AIPMT-2004)

Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans	3	1	4	2	1	3	3	2	1	3	1	4	4	4	4	1	4	2	3	1
Ques.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans	4	2	1	1	4	3	2	2	2	3	2	2	4	3	2	3	2	1	4	3
Ques.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans	1	4	1	2	4	3	3	2	3	2	2	3	4	2	2	4	3	2	3	3
Ques.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans	4	1	2	4	4	2	1	4	1	1	3	4	4	2	1	4	3	3	2	4
Ques.	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans	1	4	4	2	1	1	2	4	3	3	2	1	3	3	1,3	2	1	1	1	2
Ques.	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans	3	4	2	4	1	2	4	2	1	2	3	3	3	3	3	4	2	3	4	2
Ques.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
Ans	2	4	4	2	2	3	3	2	1	4	2	3	4	1	4	4	3	2	2	1
Ques.	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
Ans	1	4	3	4	2	4	3	2	2	1	4	3	4	3	2	4	2	4	1	1
Ques.	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
Ans	2	2	4	1	1	3	1	4	1	3	2	4	2	3	1	4	1	3	1	1
Ques.	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
Ans	1	1	1	4	1	3	4	3	1	4	2	3	3	3	4	2	2	4	4	4

HINTS & SOLUTIONS

1. If rated voltage = supply voltage then in series combination of bulbs

$$\frac{1}{P_{eq}} = \frac{1}{P_1} + \frac{1}{P_2} + \frac{1}{P_3} + \dots$$

For this question

$$\frac{1}{P_{eq}} = \frac{1}{60} + \frac{1}{60} + \frac{1}{60} = \frac{3}{60} = \frac{1}{20} \implies P_{eq} = 20$$
watt

2. Material same $\Rightarrow \rho$ unchanged

$$R = \frac{\rho \ell}{A} = \frac{\rho \ell}{\pi a^2} \Rightarrow R \propto \frac{\ell}{a^2}$$

therefore R'
$$\propto \frac{2\ell}{(2a)^2}$$

$$\Rightarrow$$
 R'= $\frac{R}{2}$

3. According to question $R = \frac{r}{n} \implies r = nR$ $R_{series} = nr = n^2 R$

4.
$$F = \frac{q_1 q_2}{4\pi \epsilon_0 r^2} \Rightarrow [\epsilon_0] = \frac{\text{Coulomb}^2}{\text{Newton Meter}^2}$$

5. Voltmeter
$$\rightarrow \bullet$$
 high R G

6. IN SHM if
$$v = v_{max}$$
 then $a = 0$ then $a = a_{max}$

7. In series
$$\frac{1}{k_{eff}} = \frac{1}{k_1} + \frac{1}{k_2} + ...$$

8. Diode is in FB if $V_1 > V_2$

$$\circ \hspace{-1em} \stackrel{V_1}{\longrightarrow} \hspace{-1em} V_2 \hspace{-1em} \stackrel{\bullet}{\longrightarrow} \hspace{-1em} \circ$$

Diode is in RB if $V_2 > V_1$

9. According to given condition

cliff is stationary source of freq. f' where

$$f' = \left(\frac{v}{v - v_{car}}\right) f$$

Freq. heard by the driver

$$f'' = \left(\frac{v + v_{car}}{v}\right) f' = \left(\frac{v + v_{car}}{v - v_{car}}\right) f = 2f$$

$$\Rightarrow$$
 v + v_{car} = 2v - 2v_{car} \Rightarrow 3v_{car} = v

$$\Rightarrow$$
 $v_{car} = v/3$

10.
$$g = \frac{GM}{R^2} = \frac{G\frac{4}{3}\pi R^3 \rho}{R^2} = \frac{4}{3}\pi G\rho R$$

Now according to question $g_{planet} = g_{earth}$

$$\Rightarrow \frac{4}{3}\pi G \rho_{planet} \times R_{planet} = \frac{4}{3}\pi G \rho_{earth} \times R_{earth}$$

$$\Rightarrow R_{\text{planet}} = \frac{R_{\text{earth}}}{2} \ (\because \rho_{\text{planet}} = 2\rho_{\text{earth}})$$

11.

Red and green rays emerge from two points, propagating in two different parallel directions.

12.
$$\therefore E = \frac{P^2}{2m} \therefore E \propto \frac{1}{m} \text{ if } m_1 > m_2 \text{ then } E_1 < E_2$$

13. According to question from snaell's law

1.
$$\sin i = \mu \sin 30^{\circ} \Rightarrow \sin i = \sqrt{2} \times \frac{1}{2} = \frac{1}{\sqrt{2}}$$

$$\Rightarrow$$
 i = 45°

14.

Magnitude of change in velocity = $|\vec{V}_p - \vec{V}_A|$ = $\sqrt{V_p^2 + V_A^2}$ (: angle between \vec{V}_p and \vec{V}_A is 90°)

$$= \sqrt{u^2 - 2g\ell + u^2} = \sqrt{2(u^2 - g\ell)}$$

16. For half wave diode rectifier (HWR)

$$V_{dc} = \frac{V_0}{\pi} = \frac{10}{\pi} \text{ volts}$$

According to question

$$\frac{1}{2} \text{mv}^2 = \frac{1}{2} \text{kx}^2 \Rightarrow \text{x} = \text{v} \sqrt{\frac{\text{m}}{\text{k}}} = 1.5 \sqrt{\frac{0.5}{50}} = 0.15 \text{m}$$

18. Product is more stable so that its mass is less than the sum of masses of reactants i.e. $m_3 < (m_1 + m_2)$

19.
$$hv = \phi + KE_{max} \Rightarrow KE_{max}$$

20. Z = number of protons In ${}_{\mathbf{Z}}^{\mathbf{A}}\mathbf{X}$

A-Z = number of neutrons

22. Use power $\left(P = \frac{V^2}{R}\right)$ and get required result

23.
$$I = \frac{e}{R} = \frac{1}{R} \left(\frac{\Delta \phi}{\Delta t} \right) = \frac{\Delta Q}{\Delta t} \implies Q = \frac{\Delta \phi}{R}$$

24. Use $qV_{acc} = \frac{1}{2}mv^2$ and get required result

25. PV =
$$\mu$$
RT where $\mu = \frac{5}{32}$ moles

27.

26. Wien's displacement law $\lambda_m T = b$

$$I_{disk} = \frac{5}{4}MR^{2} = MK_{disk}^{2}$$

$$I_{ring} = \frac{3}{2}MR^{2} = MK_{ring}^{2}$$

$$\Rightarrow \frac{K_{disk}}{K_{ring}} = \sqrt{\frac{5}{6}}$$

form conservation of angular momentum

$$I_1\omega = (I_1 + I_2)\omega' \Rightarrow \omega' = \frac{I_1\omega}{I_1 + I_2}$$

28.

Here
$$V_1 = V_2 = \sqrt{2gh}$$

$$\frac{KE_1}{KE_2} = \frac{\frac{1}{2}m_1v_1^2}{\frac{1}{2}m_2v_2^2} = \frac{m_1}{m_2} = \frac{2}{4} = \frac{1}{2}$$

30.
$$\begin{aligned} \mathbf{M}_0 &= 100 \, \text{g (initial mass)} \\ \mathbf{M} &= 25 \, \text{g (active mass)} \end{aligned} \Rightarrow \frac{\mathbf{N}_0}{\mathbf{N}} = \frac{100}{25}$$
$$\Delta = 2^2 \Rightarrow \mathbf{n} = 2$$

Therefore required time = $2 \times T_{1/2} = 3200 \text{ yrs}$

31. Mass of nucleus is slightly less than sum of masses of its constituents. This mass difference is equivalent to binding energy.

$$\Delta m = \frac{E}{C^2} = (ZM_P + NM_n) - M(N,Z)$$

Hence M(N, Z) = NM_n + ZM_P -
$$\frac{B}{C^2}$$

(Note: - exact relation
$$\theta = \frac{1.22}{a} \lambda$$
)

$$\frac{d}{D} = \frac{\lambda}{a} \Rightarrow d = \frac{\lambda D}{a}$$

$$\Rightarrow d = \frac{5000 \times 10^{-10} \times 10^3}{10 \times 10^{-2}} = 5 \text{ mm}$$

33.

$$y_1 = 10^{-6} \sin \left\{ 100t + \frac{x}{50} + 0.5 \right\}$$

$$y_2 = 10^{-6} \cos \left\{ 100t + \frac{x}{50} \right\}$$

$$= 10^{-6} \sin \left\{ \frac{\pi}{2} + 100t + \frac{x}{50} \right\}$$

Phase difference between $y_1 & y_2 = \frac{\pi}{2} - 0.5$ = 1.58 - 0.5 = 1.08 radians.

Here
$$N \cos\theta = mg \Rightarrow N = \frac{mg}{\cos\theta}$$

34.

35.

38.

$$I_{AX} = m\ell^2 + m\left(\frac{\ell}{2}\right)^2 = m\ell^2 + \frac{m\ell^2}{4} = \frac{5}{4}m\ell^2$$

36. Energy of photon =
$$E_3 - E_2$$

= $\frac{-13.6}{9} - \left(\frac{-13.6}{4}\right) = \frac{5}{36} \times 13.6 = 1.9 \text{ eV}$

37. From $\tau = I\alpha$ and $\omega = \omega_0 + \alpha t$ Here $\omega_0 = \frac{60 \times 2\pi}{60}$ rad/sec. = 2π rad/sec.

$$\tau = I\left(\frac{\omega_0}{I}\right) = 2 \times \frac{2\pi}{60} = \frac{\pi}{15} \text{ N-m}$$

$$\begin{array}{c|c} m_1 & CM & m_2 \\ \hline m_1 & CM & m_2 \\ \hline \end{array}$$

$$m_1 r_1 = m_2 r_2 ...(1)$$

 $m_1 (r_1 - d) = m_2 (r_2 - d')(2)$

from (1) and (2) we get d' =
$$\frac{m_1}{m_2}$$
 d

39.
$$|\overrightarrow{A} \times \overrightarrow{B}| = \sqrt{3} \overrightarrow{A} \cdot \overrightarrow{B}$$

 $\Rightarrow AB\sin\theta = \sqrt{3} AB\cos\theta$
 $\Rightarrow \tan\theta = \sqrt{3}$

therefore
$$|\overrightarrow{A} + \overrightarrow{B}| = \sqrt{A^2 + B^2 + 2AB\cos\theta}$$

= $\sqrt{A^2 + B^2 + 2AB\cos60^\circ}$

$$= \sqrt{A^2 + B^2 + AB}$$

 $\theta = 60^{\circ}$

$$\mu = 0.2$$
 A B m_B

According to question

40.

$$T = m_B g = \mu(m_A g)$$

$$\Rightarrow m_B = \mu m_A = 0.2 \times 2 = 0.4 \text{ kg}$$

- 41. Photo emf

 Current through cell
 But current

 Intensity
 so photo emf

 Intensity of light falling on the cell.
- **42.** Bohr model of atoms assumes that the angular momentum of electrons is quantised.
- **43.** The output of OR gate is 1 if either or both inputs are 1.

44.
$$F = p \frac{dE}{dr} = 0 \ (\because E = constant)$$
$$u = -\overrightarrow{p} \cdot \overrightarrow{E} = -PE \ (minimum)$$

45. Time constant = $\frac{L}{R} = \frac{40}{8} = 5$ seconds.

46.
$$\Delta U = \mu C_V \Delta T \text{ and } 0 = W + \Delta U$$

$$\Rightarrow \Delta U = -6R \ (\because W = 6R)$$
Therefore $-6R = 1 \left(\frac{R}{\gamma - 1}\right) \Delta T = \frac{3}{2} R \Delta T$

$$= \Delta T = -4 \Rightarrow T_{final} = (T - 4)K$$

% Watt hour efficiency =
$$\frac{E_{out}}{E_{in}} \times 100$$

= $\frac{(14)(5)(15)}{(15)(10)(8)} \times 100 = 87.5\%$

48. Given circuit can be reduced to

required current = $\frac{V}{2R}$

49.
$$\stackrel{I}{\longrightarrow} \stackrel{R}{\longrightarrow} \stackrel{R_g}{\longrightarrow} \stackrel{R_g}{\longrightarrow}$$

According to question 25 = I (R + Rg)= $(4 \times 10^{-4} \times 25) (R + 50)$ $\Rightarrow R + 50 = 2500 \Rightarrow R = 2450\Omega$

50.

Voltage on 50 cm. = $\frac{6}{300} \times 50 = 1$ volt.