WO 2005/037851 PCT/IB2004/003426

FORMES CRISTALLINES DU CHLORHYDRATE DE 3-BETA-AMINO, 17-METHYLENE, ANDROSTANE-6-ALPHA, 7-BETA-DIOL

La présente invention a pour objet trois formes cristallines du chlorhydrate de 3-bêtaamino, 17-méthylène, androstane-6-alpha, 7-bêta-diol (composé de formule I), représenté par la structure :

5

10

15

20

25

30

La demande de brevet WO0183512 décrit le 3-bêta-amino, 17-méthylène, androstane-6alpha, 7-bêta-diol ainsi que ses sels pharmaceutiquement acceptables pour le traitement de maladies inflammatoires et notamment l'asthme:

Le composé 3-bêta-amino, 17-méthylène, androstane-6-alpha, 7-bêta-diol tel que décrit et préparé dans cette demande WO0183512 se trouve notamment sous forme de sel d'acétate. Ce sel sous forme acétate est hygroscopique, ce qui est un inconvénient majeur pour le développement industriel.

L'invention a pour objet de trouver une ou plusieurs nouvelles formes cristallines qui ne présentent pas les inconvénients de la forme précédemment décrite.

Les formes solides, et notamment les produits pharmaceutiques, peuvent présenter plus d'une forme cristalline. C'est ce qu'on appelle le polymorphisme. On entend par forme polymorphe toutes formes asolvatées d'une molécule cristallisée et pseudo-polymorphe toutes formes solvatées.

Les formes polymorphes et pseudo-polymorphes d'une même molécule montrent en général des propriétés physiques différentes telles que la solubilité, l'hygroscopicité et la stabilité. Il faut noter qu'il n'existe pas pour le moment de méthodes permettant de connaître (criblage expérimental) ou prédire (criblage théorique par modélisation moléculaire) avec certitude l'existence de tel ou tel polymorphe, de tel ou tel pseudopolymorphe, ni de prédire leurs propriétés physiques.

L'obtention de nouvelles formes polymorphes ou pseudopolymorphes de molécules ayant

10

15

20

25

30

une activité thérapeutique présente un grand intérêt pour l'industrie pharmaceutique notamment du point de vue de leur préparation à une échelle industrielle, leur mise en oeuvre au sein de compositions pharmaceutiques, la recherche d'une meilleure stabilité.

La demanderesse a mis en évidence trois nouvelles formes cristallines du chlorhydrate de 3-bêta-amino, 17-méthylène, androstane-6-alpha, 7-bêta-diol (forme A, forme B et forme C). La forme A qui est anhydre, la forme B qui est dihydratée, et la forme C qui est mono-hydratée. La forme cristalline A présente, outre les avantages cités plus haut, une absence d'hygroscopicité.

L'invention a donc d'abord pour objet une nouvelle forme cristalline du chlorhydrate de 3-bêta-amino, 17-méthylène, androstane-6-alpha, 7-bêta-diol anhydre que l'on appelle forme A. La forme cristalline A du chlorhydrate de 3-bêta-amino, 17-méthylène, androstane-6-alpha, 7-bêta-diol, selon l'invention, se présente sous forme d'une poudre cristalline, elle est stable de 0 à 90 % Humidité Relative (HR) et commence à se dégrader chimiquement vers 240°C pour se décomposer totalement au-delà de 280°C. Elle a été définie par l'indexation de son diagramme de rayons X par les poudres décrit ci-après.

L'invention a également pour objet une nouvelle forme cristalline du chlorhydrate de 3-bêta-amino, 17-méthylène, androstane-6-alpha, 7-bêta-diol hydraté que l'on appelle forme B. Elle peut être utilisée comme intermédiaire pour la préparation de la forme A. Il s'agit d'une forme dihydratée stable au-delà de 50 % HR. Elle est également définie ci-après par l'indexation de son diagramme de rayons X par les poudres.

L'invention a également pour objet une nouvelle forme cristalline du chlorhydrate de 3-bêta-amino, 17-méthylène, androstane-6-alpha, 7-bêta-diol hydraté que l'on appelle forme C. La forme C est apparue en mélange avec d'autres formes (formes anhydres D et E). La forme C a été obtenue pure grâce à un traitement complémentaire par maintien quelques jours en atmosphère humide à 97 % HR. Il s'agit d'une forme mono-hydratée stable de 0 à 90 % HR. Elle se transforme en anhydre D par chauffage au-delà de 60°C. Elle est également définie ci-après par l'indexation de son diagramme de rayons X par les poudres.

Les formes cristallines A, B ou C du composé de formule (I) présentent des activités thérapeutiques similaires que celles décrites pour le composé 3-bêta-amino, 17-méthylène, androstane-6-alpha, 7-bêta-diol dans la demande WO0183512.

Elles sont particulièrement utiles dans le traitement des maladies inflammatoires, et de l'asthme.

Diffraction des rayons X par les poudres

Les analyses sont effectuées sur diffractomètre Philips X'pert Pro possédant un tube à anticathode de cuivre équipé d'un monochromateur avant (longueur d'onde de la raie $K\alpha_1$ du cuivre : 1,54060 Å). Le montage est de type Bragg-Brentano, avec un détecteur Philips X'celerator. La plage angulaire balayée s'étend de 2 à 40 degrés en 2θ avec un pas de 0,02 degré en 2θ . Le temps de comptage est de 300 secondes par pas.

Forme A

5

10

15

La forme A cristallise dans un réseau monoclinique (groupe d'espace $P2_1$, Z=2) dont les paramètres de maille sont les suivants à T=295 K:

$$a = 16.058(2) \text{ Å},$$
 $\beta = 90.24(2)^{\circ}$
 $b = 6.995(1) \text{ Å},$ $V = 1012.2 \text{ Å}^{3}$
 $c = 9.011(2) \text{ Å}$ densité = 1.168

L'unité asymétrique se compose d'une molécule de chlorhydrate de 3-bêta-amino, 17-méthylène, androstane-6-alpha, 7-bêta-diol.

Comme toutes les raies présentes sur le diagramme de diffraction sont indexées, la forme A, telle qu'obtenue suivant le procédé de cristallisation décrit à l'exemple 1 ou l'exemple 2 décrits cidessous, est une forme physique pure.

L'indexation des 30 premières raies du diagramme de diffraction des rayons X par les poudres de la forme A du chlorhydrate de 3-bêta-amino, 17-méthylène, androstane-6-alpha, 7-bêta-diol à T = 295 K, en distances interréticulaires, ainsi qu'en positions 2θ « λ_{Cu} κ_{Cu} moyen » donne le résultat suivant :

h	k	1	Distance interreticulaire (Å)	2-theta « λ _{Cu Kα} moyen »1,54184 Å
1	0	0	16.058	5.50
0	0	1	9.011	9.82
2	0	0	8.029	11.02
-1	0	1	7.872	11.24
1	0	1	7.844	11.28
_1	1	0	6.413	13.81
-2	0	1	6.007	14.75
2	0	1	5.982	14.81
0	1	1	5.526	16.04
3	0	0	5.353	16.56
2	1	0	5.274	16.81
-1	1	1	5.229	16.96
1	1	1	5.221	16.98

-3	0	1	4.610	19.25
3	0	1	4.594	19.32
-2	1	1	4.557	19.48
2	1	1	4.546	19.53
0	0	2	4.506	19.70
-1	0	2	4.343	20.45
1	0	2	4.333	20.50
3	1	0	4.251	20.90
4	0	0	4.014	22.14
-2	0	2	3.936	22.59
2	0	2	3.922	22.67
-3	1	1	3.850	23.11
3	1	1	3.840	23.17
0	1	2	3.788	23.49
-1	1	2	3.690	24.12
1	1	2	3.684	24.16
-4	0	1	3.673	24.23

Forme B

5

10

WO 2005/037851

La forme B peut être utilisée comme intermédiaire pour la préparation de la forme A. La forme B est une forme di-hydrate qui cristallise dans un réseau triclinique (groupe d'espace P1, Z=1) dont les paramètres de maille sont les suivants à T=295 K:

$$a = 8.856(2) \text{ Å},$$
 $\alpha = 100.76(1)^{\circ}$
 $b = 18.482(1) \text{ Å},$ $\beta = 90.06(1)^{\circ}$
 $c = 6.904(2) \text{ Å}$ $\gamma = 78.35(1)^{\circ}$
 $V = 1086.5 \text{ Å}^{3}$
densité = 1.198

L'unité asymétrique se compose de deux molécules du chlorhydrate de 3-bêta-amino, 17-méthylène, androstane-6-alpha, 7-bêta-diol et de 4 molécules d'eau.

Comme toutes les raies présentes sur le diagramme de diffraction sont indexées, la forme B, telle qu'obtenue suivant le procédé de cristallisation décrit à l'exemple 3 décrit ci-dessous, est une forme physique pure.

L'indexation des 30 premières raies du diagramme de diffraction des rayons X par les poudres de la forme B du chlorhydrate de 3-bêta-amino, 17-méthylène, androstane-6-alpha, 7-bêta-diol à T=295 K, en distance interréticulaire, ainsi qu'en positions $2\theta \ll \lambda_{Cu K\alpha}$ moyen » donne le résultat suivant :

h	k	1	Distance	2-theta
			interreticulaire (Å)	« λ _{Cu Κα} moyen »1,54184 Å
0	1	0	17.770	4.97

0	2	0	8.885	9.96
1	0	0	8.667	10.21
1	1	0	8.509	10.40
-1	1	0	7.227	12.25
1	2	0	6.960	12.72
0	0	1	6.778	13.06
0	-1	1	6.777	13.06
0	1	1	5.966	14.85
0	-2	1	5.964	14.85
0	3	0	5.923	14.96
-1	2_	0	5.651	15.68
-1	-1	1	5.446	16.28
1	0	1	5.441	16.29
1	3	0	5.438	16.30
-1	0	1	5.243	16.91
1	-1	1	5.238	16.93
-1	-2	1	5.172	17.15
1	1	1	5.168	17.16
0	2	1	4.953	17.91
0	-3	1	4.952	17.91
-1	1	1	4.695	18.90
1	-2	1	4.690	18.92
-1	-3	1	4.594	19.32
1	2	1	4.591	19.33
-1	3	0	4.481	19.82
0	4	0	4.443	19.99
2	1	0	4.425	20.07
2	0	0	4.334	20.49
1	4	0	4.331	20.51

Forme C

5

La forme C est une forme mono-hydrate qui cristallise dans un réseau triclinique (groupe d'espace P1, Z=1) dont les paramètres de maille sont les suivants à T = 295 K:

$$a = 7.2328(5) \text{ Å},$$
 $\alpha = 97.135(6)^{\circ}$
 $b = 21.063 (2) \text{ Å},$ $\beta = 102.653(5)^{\circ}$
 $c = 7.1563(5) \text{ Å}$ $\gamma = 91.177(6)^{\circ}$
 $V = 1054.2 \text{ Å}^{3}$
densité = 1.178

L'unité asymétrique se compose de deux molécules de chlorhydrate de 3-bêta-amino, 17méthylène, androstane-6-alpha, 7-bêta-diol et de 2 molécules d'eau.

Comme toutes les raies présentes sur le diagramme de diffraction sont indexées, la forme C, telle qu'obtenue suivant le procédé de cristallisation décrit à l'exemple 4 décrit ci-dessous, est une forme physique pure.

L'indexation des 30 premières raies du diagramme de diffraction des rayons X par les poudres de

10

la forme C du chlorhydrate de 3-bêta-amino, 17-méthylène, androstane-6-alpha, 7-bêta-diol à T = 295 K, en distance interréticulaire, ainsi qu'en positions $2\theta \ll \lambda_{\text{Cu K}\alpha}$ moyen » donne le résultat suivant :

h	k	1	Distance	2-theta	
			interreticulaire (Å)	«λ _{Cu Kα} moyen »1,54184 Å	
	1	_	20.076		
0	1	0	20.875	4.23	
0	2	0	10.437	8.47	
1	0	0	7.049	12.56	
0	3	0	6.958	12.72	
0	0	1	6.922	12.79	
0	-1	1	6.845	12.93	
-1	1	0	6.780	13.06	
1	1	0	6.581	13.46	
0	1_	1	6.325	14.00	
0	-2	1	6.155	14.39	
-1	2	0	5.980	14.81	
1	2	0	5.712	15.51	
-1	0	1	5.604	15.81	
-1	-1	1	5.506	16.10	
0	2	1	5.447	16.27	
-1	1	1	5.323	16.66	
0	-3	1	5.267	16.83	
0	4	0	5.219	16.99	
-1	-2	1	5.083	17.45	
-1	3	0	5.079	17.46	
1	3	0	4.834	18.35	
-1	2	1	4.804	18.47	
0	3	1	4.612	19.24	
-1	-3	1	4.516	19.66	
1	-1	1	4.474	19.84	
1	0	1	4.465	19.88	
0	-4	1	4.459	19.91	
-1	4	0	4.297	20.67	
1	-2	1	4.290	20.71	
1	1	1	4.266	20.82	

L'invention a donc pour objet les formes cristallines A,B ou C telles que décrites précédemment à titre de médicament.

Les formes cristallines A, B ou C du chlorhydrate de 3-bêta-amino, 17-méthylène, androstane-6-alpha, 7-bêta-diol peuvent être utilisées par voie orale, parentérale, topique par inhalation, ou via implants. Ils peuvent être prescrits sous forme de comprimés simples ou dragéifiés, de gélules, de granulés, de suppositoires, d'ovules, de préparations injectables, de pommades, de crèmes, de gels, de microsphères, d'implants, de patches, lesquels sont préparés selon les méthodes usuelles.

Les formes cristallines A,B ou C du chlorhydrate de 3-bêta-amino, 17-méthylène, androstane-6-alpha, 7-bêta-diol peuvent être mélangées avec les excipients, diluants et tous véhicules connus de l'homme du métier pour la fabrication de compositions pharmaceutiques. A titre d'exemple d'excipients habituellement employés dans ces compositions pharmaceutiques on peut citer le talc, la gomme arabique, le lactose, l'amidon, le stéarate de magnésium, le beurre de cacao, les véhicules aqueux ou non, les corps gras d'origine animale ou végétale, les dérivés paraffiniques, les glycols, les divers agents mouillants, dispersants ou émulsifiants, les conservateurs.

L'invention s'étend ainsi aux compositions pharmaceutiques renfermant comme principe actif au moins l'une des formes cristallines A, B ou C du chlorhydrate de 3-bêta-amino, 17-méthylène, androstane-6-alpha, 7-bêta-diol telles que définies ci-dessus et un ou plusieurs excipients, diluants ou supports pharmaceutiquement acceptables.

L'invention a également pour objet l'application des formes cristallines A,B ou C du chlorhydrate de 3-bêta-amino, 17-méthylène, androstane-6-alpha, 7-bêta-diol telles que définies ci-dessus pour la préparation d'un médicament destiné à traiter les maladies inflammatoires, telles que l'asthme.

Les exemples suivants illustrent l'invention sans toutefois la limiter.

EXEMPLE 1:

Chlorhydrate de 3-bêta-amino, 17-méthylène, androstane-6-alpha, 7-bêta-diol, Forme A.

20

25

30

5

10

15

250 mg de produit de formule I sont dissout à température ambiante dans le minimum de méthanol. De l'éther isopropylique est ajouté jusqu'à début de précipitation. Après essorage, on obtient 195 mg de produit I forme A.

EXEMPLE 2:

Chlorhydrate de 3-bêta-amino, 17-méthylène, androstane-6-alpha, 7-bêta-diol, Forme A.

250 mg du produit de formule I sont dissout à température ambiante dans le minimum d'éthanol. De l'eau est ajoutée jusqu'à début de cristallisation, on obtient le produit de formule I polymorphe B.

Puis après évaporation sous courant d'azote à température ambiante, on obtient le produit de formule I forme A.

WO 2005/037851 PCT/IB2004/003426

-8-

EXEMPLE 3:

Chlorhydrate de 3-bêta-amino, 17-méthylène, androstane-6-alpha, 7-bêta-diol, Forme B.

Le produit de formule I forme A laissé, durant 3 jours, sous une humidité relative supérieure à 95 % se transforme en forme B.

$\mathbf{EXEMPLE 4}:$

10

Chlorhydrate de 3-bêta-amino, 17-méthylène, androstane-6-alpha, 7-bêta-diol, Forme C.

250 mg de produit de formule I sont dissout à température ambiante dans le minimum de méthyléthylcétone. Après transfert dans l'eau par distillation azéotropique à volume constant et équilibrage sous une humidité relative supérieure à 97 %, on obtient le produit de formule I forme C.

10

REVENDICATIONS

1) Forme cristalline A du chlorhydrate de 3-bêta-amino, 17-méthylène, androstane-6-alpha, 7-bêta-diol répondant à la structure :

caractérisée en ce que l'indexation des raies du diagramme de diffraction des rayons X par les poudres à 295 K donne le résultat suivant pour les 30 premières raies :

interreticulaire (Å) «λ _{Cu Kα} moyen »1,54184 Å	h	k	1	Distance	2-theta	
1 0 0 1 9.011 9.82 2 0 0 8.029 11.02 -1 0 1 7.872 11.24 1 0 1 7.844 11.28 1 1 0 6.413 13.81 -2 0 1 6.007 14.75 2 0 1 5.982 14.81 0 1 1 5.526 16.04 3 0 0 5.353 16.56 2 1 0 5.274 16.81 -1 1 1 5.229 16.96 1 1 1 5.221 16.98 -3 0 1 4.610 19.25 3 0 1 4.594 19.32 -2 1 1 4.546 19.53 0 0 2 4.546 19.53 0 0 2				interreticulaire (Å)	«λουκα moven»1.54184 Å	
0 0 1 9.011 9.82 2 0 0 8.029 11.02 -1 0 1 7.872 11.24 1 0 1 7.844 11.28 1 1 0 6.413 13.81 -2 0 1 6.007 14.75 2 0 1 5.982 14.81 0 1 1 5.526 16.04 3 0 0 5.353 16.56 2 1 0 5.274 16.81 -1 1 1 5.229 16.96 1 1 1 5.221 16.98 -3 0 1 4.610 19.25 3 0 1 4.594 19.32 -2 1 1 4.546 19.32 -2 1 1 4.546 19.53 0 0 2 4.343 <td>1</td> <td></td> <td>_</td> <td>16.059</td> <td colspan="2"></td>	1		_	16.059		
2 0 0 8.029 11.02 -1 0 1 7.872 11.24 1 0 1 7.844 11.28 1 1 0 6.413 13.81 -2 0 1 6.007 14.75 2 0 1 5.982 14.81 0 1 1 5.526 16.04 3 0 0 5.353 16.56 2 1 0 5.274 16.81 -1 1 1 5.229 16.96 1 1 1 5.229 16.96 1 1 1 5.221 16.98 -3 0 1 4.610 19.25 3 0 1 4.594 19.32 -2 1 1 4.546 19.53 0 0 2 4.546 19.53 0 0 2 4.343 20.45 1 0 2 4.333 20.50						
-1 0 1 7.872 11.24 1 0 1 7.844 11.28 1 1 0 6.413 13.81 -2 0 1 6.007 14.75 2 0 1 5.982 14.81 0 1 1 5.526 16.04 3 0 0 5.353 16.56 2 1 0 5.274 16.81 -1 1 1 5.229 16.96 1 1 1 5.221 16.98 -3 0 1 4.610 19.25 3 0 1 4.594 19.32 -2 1 1 4.546 19.53 0 0 2 4.546 19.53 0 0 2 4.343 20.45 1 0 2 4.333 20.50 3 1 0 4.251 <td></td> <td></td> <td></td> <td></td> <td></td>						
1 0 1 7.844 11.28 1 1 0 6.413 13.81 -2 0 1 6.007 14.75 2 0 1 5.982 14.81 0 1 1 5.526 16.04 3 0 0 5.353 16.56 2 1 0 5.274 16.81 -1 1 1 5.229 16.96 1 1 1 5.229 16.96 1 1 1 5.221 16.98 -3 0 1 4.610 19.25 3 0 1 4.594 19.32 -2 1 1 4.557 19.48 2 1 1 4.546 19.53 0 0 2 4.506 19.70 -1 0 2 4.343 20.45 1 0 2 4.333 20.50 3 1 0 4.251 20.90		_				
1 1 0 6.413 13.81 -2 0 1 6.007 14.75 2 0 1 5.982 14.81 0 1 1 5.526 16.04 3 0 0 5.353 16.56 2 1 0 5.274 16.81 -1 1 1 5.229 16.96 1 1 1 5.221 16.98 -3 0 1 4.610 19.25 3 0 1 4.594 19.32 -2 1 1 4.557 19.48 2 1 1 4.546 19.53 0 0 2 4.546 19.53 0 0 2 4.546 19.70 -1 0 2 4.343 20.45 1 0 2 4.333 20.50 3 1 0 4.251 20.90 4 0 0 4.014 22.14						
-2 0 1 6.007 14.75 2 0 1 5.982 14.81 0 1 1 5.526 16.04 3 0 0 5.353 16.56 2 1 0 5.274 16.81 -1 1 1 5.229 16.96 1 1 1 5.221 16.98 -3 0 1 4.610 19.25 3 0 1 4.594 19.32 -2 1 1 4.594 19.32 -2 1 1 4.546 19.53 0 0 2 4.546 19.53 0 0 2 4.343 20.45 1 0 2 4.343 20.45 1 0 2 4.333 20.50 3 1 0 4.251 20.90 4 0 0 4.014 22.14 -2 0 2 3.936 22.59					<u> </u>	
2 0 1 5.982 14.81 0 1 1 5.526 16.04 3 0 0 5.353 16.56 2 1 0 5.274 16.81 -1 1 1 5.229 16.96 1 1 1 5.221 16.98 -3 0 1 4.610 19.25 3 0 1 4.594 19.32 -2 1 1 4.594 19.32 -2 1 1 4.546 19.53 0 0 2 4.546 19.53 0 0 2 4.343 20.45 1 0 2 4.343 20.45 1 0 2 4.333 20.50 3 1 0 4.251 20.90 4 0 0 4.014 22.14 -2 0 2 3.936 22.59 2 0 2 3.922 22.67						
0 1 1 5.526 16.04 3 0 0 5.353 16.56 2 1 0 5.274 16.81 -1 1 1 5.229 16.96 1 1 1 5.221 16.98 -3 0 1 4.610 19.25 3 0 1 4.594 19.32 -2 1 1 4.557 19.48 2 1 1 4.546 19.53 0 0 2 4.506 19.70 -1 0 2 4.343 20.45 1 0 2 4.343 20.45 1 0 2 4.333 20.50 3 1 0 4.251 20.90 4 0 0 4.014 22.14 -2 0 2 3.936 22.59 2 0 2 3.922 22.67 -3 1 1 3.840 23.17						
3 0 0 5.353 16.56 2 1 0 5.274 16.81 -1 1 1 5.229 16.96 1 1 1 5.221 16.98 -3 0 1 4.610 19.25 3 0 1 4.594 19.32 -2 1 1 4.546 19.32 2 1 1 4.546 19.53 0 0 2 4.546 19.70 -1 0 2 4.343 20.45 1 0 2 4.343 20.45 1 0 2 4.333 20.50 3 1 0 4.251 20.90 4 0 0 4.014 22.14 -2 0 2 3.936 22.59 2 0 2 3.922 22.67 -3 1 1 3.850 23.11 3 1 1 3.840 23.17	2			5.982	14.81	
2 1 0 5.274 16.81 -1 1 1 5.229 16.96 1 1 1 5.221 16.98 -3 0 1 4.610 19.25 3 0 1 4.594 19.32 -2 1 1 4.557 19.48 2 1 1 4.546 19.53 0 0 2 4.506 19.70 -1 0 2 4.343 20.45 1 0 2 4.333 20.50 3 1 0 4.251 20.90 4 0 0 4.014 22.14 -2 0 2 3.936 22.59 2 0 2 3.922 22.67 -3 1 1 3.840 23.17 0 1 2 3.788 23.49 -1 1 2 3.690 24.12 1 1 2 3.684 24.16		1	1	5.526		
-1 1 1 1 5.229 16.96 1 1 1 5.221 16.98 -3 0 1 4.610 19.25 3 0 1 4.594 19.32 -2 1 1 4.557 19.48 2 1 1 4.546 19.53 0 0 2 4.506 19.70 -1 0 2 4.343 20.45 1 0 2 4.333 20.50 3 1 0 4.251 20.90 4 0 0 4.014 22.14 -2 0 2 3.936 22.59 2 0 2 3.922 22.67 -3 1 1 3.850 23.11 3 1 1 3.840 23.17 0 1 2 3.788 23.49 -1 1 2 3.684 24.16		0	0	5.353	16.56	
1 1 1 1 5.221 16.98 -3 0 1 4.610 19.25 3 0 1 4.594 19.32 -2 1 1 4.557 19.48 2 1 1 4.546 19.53 0 0 2 4.506 19.70 -1 0 2 4.343 20.45 1 0 2 4.333 20.50 3 1 0 4.251 20.90 4 0 0 4.014 22.14 -2 0 2 3.936 22.59 2 0 2 3.922 22.67 -3 1 1 3.850 23.11 3 1 1 3.840 23.17 0 1 2 3.788 23.49 -1 1 2 3.684 24.16	2	1	0	5.274	16.81	
-3 0 1 4.610 19.25 3 0 1 4.594 19.32 -2 1 1 4.557 19.48 2 1 1 4.546 19.53 0 0 2 4.506 19.70 -1 0 2 4.343 20.45 1 0 2 4.333 20.50 3 1 0 4.251 20.90 4 0 0 4.014 22.14 -2 0 2 3.936 22.59 2 0 2 3.922 22.67 -3 1 1 3.850 23.11 3 1 1 3.840 23.17 0 1 2 3.788 23.49 -1 1 2 3.684 24.16		1	1	5.229	16.96	
3 0 1 4.594 19.32 -2 1 1 4.557 19.48 2 1 1 4.546 19.53 0 0 2 4.506 19.70 -1 0 2 4.343 20.45 1 0 2 4.333 20.50 3 1 0 4.251 20.90 4 0 0 4.014 22.14 -2 0 2 3.936 22.59 2 0 2 3.922 22.67 -3 1 1 3.850 23.11 3 1 1 3.840 23.17 0 1 2 3.788 23.49 -1 1 2 3.684 24.12 1 1 2 3.684 24.16	1	1	1	5.221	16.98	
-2 1 1 4.557 19.48 2 1 1 4.546 19.53 0 0 2 4.506 19.70 -1 0 2 4.343 20.45 1 0 2 4.333 20.50 3 1 0 4.251 20.90 4 0 0 4.014 22.14 -2 0 2 3.936 22.59 2 0 2 3.922 22.67 -3 1 1 3.850 23.11 3 1 1 3.840 23.17 0 1 2 3.788 23.49 -1 1 2 3.684 24.12 1 1 2 3.684 24.16	-3	0	1	4.610	19.25	
2 1 1 4.546 19.53 0 0 2 4.506 19.70 -1 0 2 4.343 20.45 1 0 2 4.333 20.50 3 1 0 4.251 20.90 4 0 0 4.014 22.14 -2 0 2 3.936 22.59 2 0 2 3.922 22.67 -3 1 1 3.850 23.11 3 1 1 3.840 23.17 0 1 2 3.788 23.49 -1 1 2 3.690 24.12 1 1 2 3.684 24.16	3	0	1	4.594	19.32	
0 0 2 4.506 19.70 -1 0 2 4.343 20.45 1 0 2 4.333 20.50 3 1 0 4.251 20.90 4 0 0 4.014 22.14 -2 0 2 3.936 22.59 2 0 2 3.922 22.67 -3 1 1 3.850 23.11 3 1 1 3.840 23.17 0 1 2 3.788 23.49 -1 1 2 3.690 24.12 1 1 2 3.684 24.16	-2	1	1	4.557	19.48	
-1 0 2 4.343 20.45 1 0 2 4.333 20.50 3 1 0 4.251 20.90 4 0 0 4.014 22.14 -2 0 2 3.936 22.59 2 0 2 3.922 22.67 -3 1 1 3.850 23.11 3 1 1 3.840 23.17 0 1 2 3.788 23.49 -1 1 2 3.690 24.12 1 1 2 3.684 24.16	2	1	1	4.546	19.53	
1 0 2 4.333 20.50 3 1 0 4.251 20.90 4 0 0 4.014 22.14 -2 0 2 3.936 22.59 2 0 2 3.922 22.67 -3 1 1 3.850 23.11 3 1 1 3.840 23.17 0 1 2 3.788 23.49 -1 1 2 3.690 24.12 1 1 2 3.684 24.16	0	0	2	4.506	19.70	
3 1 0 4.251 20.90 4 0 0 4.014 22.14 -2 0 2 3.936 22.59 2 0 2 3.922 22.67 -3 1 1 3.850 23.11 3 1 1 3.840 23.17 0 1 2 3.788 23.49 -1 1 2 3.690 24.12 1 1 2 3.684 24.16	-1	0	2	4.343	20.45	
4 0 0 4.014 22.14 -2 0 2 3.936 22.59 2 0 2 3.922 22.67 -3 1 1 3.850 23.11 3 1 1 3.840 23.17 0 1 2 3.788 23.49 -1 1 2 3.690 24.12 1 1 2 3.684 24.16	1	0	2	4.333	20.50	
-2 0 2 3.936 22.59 2 0 2 3.922 22.67 -3 1 1 3.850 23.11 3 1 1 3.840 23.17 0 1 2 3.788 23.49 -1 1 2 3.690 24.12 1 1 2 3.684 24.16	3	1	0	4.251	20.90	
2 0 2 3.922 22.67 -3 1 1 3.850 23.11 3 1 1 3.840 23.17 0 1 2 3.788 23.49 -1 1 2 3.690 24.12 1 1 2 3.684 24.16	4	0	0	4.014	22.14	
-3 1 1 3.850 23.11 3 1 1 3.840 23.17 0 1 2 3.788 23.49 -1 1 2 3.690 24.12 1 1 2 3.684 24.16	-2	0	2	3.936	22.59	
-3 1 1 3.850 23.11 3 1 1 3.840 23.17 0 1 2 3.788 23.49 -1 1 2 3.690 24.12 1 1 2 3.684 24.16	2	0	2	3.922	22.67	
3 1 1 3.840 23.17 0 1 2 3.788 23.49 -1 1 2 3.690 24.12 1 1 2 3.684 24.16	-3	1	1	3.850		
-1 1 2 3.690 24.12 1 1 2 3.684 24.16	3	1	1	3.840	Y	
-1 1 2 3.690 24.12 1 1 2 3.684 24.16	0	1	2	3.788	23.49	
1 1 2 3.684 24.16	-1	1	2	3.690	 	
	1	1				
27.23	-4	0	1	3.673	24.23	

2) Forme cristalline A du chlorhydrate de 3-bêta-amino, 17-méthylène, androstane-6-alpha, 7-bêta-diol caractérisée en ce qu'elle cristallise dans un réseau monoclinique (groupe d'espace $P2_1$, Z=2) dont les paramètres de maille T = 295 K sont:

$$a = 16.058(2) \text{ Å},$$
 $\beta = 90.24(2)^{\circ}$
 $b = 6.995(1) \text{ Å},$ $V = 1012.2 \text{ Å}^3$
 $c = 9.011(2) \text{ Å}$ densité = 1.168

3) Forme cristalline B di-hydrate du chlorhydrate de 3-bêta-amino, 17-méthylène, androstane-6-alpha, 7-bêta-diol, caractérisée en ce que l'indexation des raies du diagramme de diffraction des rayons X par les poudres à 295 K donne le résultat suivant :

h	k	1	Distance	2-theta	
			interreticulaire (Å)	 « λ _{Cu Κα} moyen »1,54184 Å	
0	1	0	17.770	4.97	
0	2	0	8.885		
1	0	0	8.667	9.96	
1	1	0	8.509	10.21	
-1	1	0	7.227	10.40	
1	2	0	6.960	12.25	
0	0	1	6.778	12.72	
0	-1	1	6.777	13.06	
0	1	1	5.966	13.06	
0	-2	1	5.964	14.85	
0	3	0		14.85	
-1	2	0	5.923 5.651	14.96	
-1	-1	1		15.68	
1	0	1	5.446	16.28	
$\frac{1}{1}$	3	0	5.441	16.29	
-1		_	5.438	16.30	
	0	1	5.243	16.91	
1	-1	1	5.238	16.93	
-1	-2	1	5.172	17.15	
1	1	1	5.168	17.16	
0	2	1	4.953	17.91	
0	-3	1	4.952	17.91	
-1	1	1	4.695	18.90	
1	-2	1	4.690	18.92	
-1	-3	1	4.594	19.32	
1	2	1	4.591	19.33	
-1	3	0	4.481	19.82	
0	4	0	4.443	19.99	
2	1	0	4.425	20.07	
2	0	0	4.334	20.49	
1	4	0	4.331	20.51	

⁴⁾ Forme cristalline B di-hydrate du chlorhydrate de 3-bêta-amino, 17-méthylène, androstane-6-

alpha, 7-bêta-diol caractérisée en ce qu'elle cristallise dans un réseau triclinique (groupe d'espace P1, Z=1) dont les paramètres de maille à T=295 K sont:

$$a = 8.856(2) \text{ Å},$$
 $\alpha = 100.76(1)^{\circ}$
 $b = 18.482(1) \text{ Å},$ $\beta = 90.06(1)^{\circ}$
 $c = 6.904(2) \text{ Å}$ $\gamma = 78.35(1)^{\circ}$
 $V = 1086.5 \text{ Å}^{3}$
densité = 1.198

5) Forme cristalline C mono-hydrate du chlorhydrate de 3-bêta-amino, 17-méthylène, androstane-6-alpha, 7-bêta-diol, caractérisée en ce que l'indexation des raies du diagramme de diffraction des rayons X par les poudres à 295 K donne le résultat suivant pour les 30 premières raies:

h	k	1	Distance	2-theta	
			interreticulaire (Å)	«λ _{Cu} Kα moyen »1,54184 Å	
0	1	0	20.875	4.23	
0	2	0	10.437	8.47	
1	0	0	7.049	12.56	
0	3	0	6.958	12.72	
0	0	1	6.922	12.79	
0	-1	1	6.845	12.93	
-1	1	0	6.780	13.06	
1	1	0	6.581	13.46	
0	1	1	6.325	14.00	
0	-2	1	6.155	14.39	
-1	2	0	5.980	14.81	
1	2	0	5.712	15.51	
-1	0	1	5.604	15.81	
-1	-1	1	5.506	16.10	
0	2	1	5.447	16.27	
-1	1	1	5.323	16.66	
0	-3	1	5.267	16.83	
0	4	0	5.219	16.99	
-1	-2	1	5.083	17.45	
-1	3	0	5.079	17.46	
1	3	0	4.834	18.35	
-1	2	1	4.804	18.47	
0	3	1	4.612	19.24	
-1	-3	1	4.516	19.66	
1	-1	1	4.474	19.84	
1	0	1	4.465	19.88	
0	-4	1	4.459	19.91	
-1	4	0	4.297	20.67	
1	-2	1	4.290	20.71	
1	1	1	4.266	20.82	

6) Forme cristalline C mono-hydrate du chlorhydrate de 3-bêta-amino, 17-méthylène, androstane-

WO 2005/037851 PCT/IB2004/003426

-12-

6-alpha, 7-bêta-diol caractérisée en ce qu'elle cristallise dans un réseau triclinique (groupe d'espace P1, Z=1) dont les paramètres de maille à T = 295 K sont :

$$a = 7.2328(5) \text{ Å},$$
 $\alpha = 97.135(6)^{\circ}$
 $b = 21.063 (2) \text{ Å},$ $\beta = 102.653(5)^{\circ}$
 $c = 7.1563(5) \text{ Å}$ $\gamma = 91.177(6)^{\circ}$
 $V = 1054.2 \text{ Å}^{3}$
densité = 1.178

7) Procédé de préparation de la forme A, selon la revendication 1 ou 2, caractérisé en ce que la cristallisation s'effectue dans un mélange d'alcool et d'éther et notamment dans le mélange méthanol/éther isopropylique.

5

10

15

20

- 8) Procédé de préparation de la forme C selon la revendication 5 ou 6, caractérisé en ce que 250 mg de produit de formule I sont dissout à température ambiante dans un solvant tel que le méthyléthylcétone, puis sont transférés dans l'eau par distillation azéotropique à volume constant et équilibrage sous une humidité relative supérieure à 97 %.
- 9) A titre de médicament les formes cristallines A, B ou C telles que définies aux revendications 1 à 8.
- 10) Composition pharmaceutique caractérisée en ce qu'elle comprend la forme A du chlorhydrate de 3-bêta-amino, 17-méthylène, androstane-6-alpha, 7-bêta-diol à l'état pur ou éventuellement en combinaison avec l'une et/ou l'autre des autres formes cristallines B ou C et/ou sous forme de combinaison avec tout adjuvant ou diluant inerte, compatible et pharmaceutiquement acceptable.
- 11) Application des formes cristallines telles que définies à l'une quelconque des revendications 1 à 8, pour la préparation d'un médicament destiné à traiter les maladies inflammatoires.

INTERNATIONAL SEARCH REPORT

International Application No

		PC1/182004/003426						
A. CLASSIF IPC 7	a. classification of subject matter IPC 7 C07J41/00 A61K31/568							
According to	According to International Patent Classification (IPC) or to both national classification and IPC							
B. FIELDS S	SEARCHED							
Minimum doo IPC 7	Minimum documentation searched (classification system followed by classification symbols)							
	on searched other than minimum documentation to the extent that su							
	ata base consulted during the International search (name of data bas	e and, where practical,	search terms used)					
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT							
Category °	Citation of document, with indication, where appropriate, of the rele	evant passages	Relevar	nt to claim No.				
X	WO 01/83512 A (INFLAZYME PHARMACE LTD; RAYMOND JEFFERY R (CA); SHE (C) 8 November 2001 (2001-11-08) cited in the application claims 1,11; examples 53,54,89		1-11					
Furth	ner documents are listed in the continuation of box C.	X Patent family m	nembers are listed in annex.					
T later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention invention that the considered to be of particular relevance *E* earlier document but published on or after the International filing date *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) *O* document referring to an oral disclosure, use, exhibition or other means *P* document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such document is combined with one or more other such document, such combination being obvious to a person skilled in the art. *X* document member of the same patent family								
Date of the	actual completion of the international search	Date of mailing of th	ne international search report					
12 January 2005 19/01/2005								
Name and n	Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Authorized officer Sams am Bakhtiary, M							

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/IB2004/003426

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
WO 0183512 A	08-11-2001	AU	5208401 A	12-11-2001
WO 0100012		BG	107289 A	31-07-2003
		BR	0110419 A	25-02-2004
		WO	0183512 A1	08-11-2001
		CA	2418748 A1	08-11-2001
		CN	1430625 T	16-07-2003
		EE	200200613 A	15-04-2004
		EP	1278763 A1	29-01-2003
		HR	20020944 A2	29-02-2004
		HU	0300908 A2	28-07-2003
		JP	2003531916 T	28-10-2003
		MA	25808 A1	01-07 - 2003
		NO	20025106 A	18-12-2002
		SK	15692002 A3	04-11-2003
		US	2004034216 A1	19-02-2004
		US	2004138186 A1	15-07-2004
		US	2002072510 A1	13-06-2002
		ZA	200208631 A	23-02-2004

RAPPORT DE RECHERCHE INTERNATIONALE

Denande Internationale No
PCT/1B2004/003426

		101,10200-	., 000 120					
A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 7 C07J41/00 A61K31/568								
Selon la clas	Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CiB							
B. DOMAIN	IES SUR LESQUELS LA RECHERCHE A PORTE							
Documentati CIB 7	ion minimale consultée (système de classification suivi des symboles de CO7J A61K	e classement)						
Documentat	ion consultée autre que la documentation minimale dans la mesure où	ces documents relèvent des domaines su	r lesquels a porté la recherche					
	nnées électronique consultée au cours de la recherche internationale (n ternal, WPI Data, CHEM ABS Data	om de la base de données, et si réalisabl	e, termes de recherche utilisés)					
C DOCUM	ENTS CONSIDERES COMME PERTINENTS							
Calégorie *	identification des documents cités, avec, le cas échéant, l'indication d	es passages pertinents	no. des revendications visées					
g	,,	. •						
X	WO 01/83512 A (INFLAZYME PHARMACEU LTD; RAYMOND JEFFERY R (CA); SHEN (C) 8 novembre 2001 (2001-11-08) cité dans la demande revendications 1,11; exemples 53,5	1-11						
		Les documents de familles de brev	vets sont Indiqués en annexe					
"A" docume consic "E" docume ou apriorità utre docume priorità utre d' O" docume une ex "P" docume postér	ent définissant l'état général de la technique, non déré comme particulièrement pertinent ent antérieur, mais publié à la date de dépôt international rès cette date ent pouvant jeter un doute sur une revendication de é ou cité pour déterminer la date de publication d'une citation ou pour une raison spéciale (telle qu'indiquée) ent se référant à une divulgation orale, à un usage, à exposition ou tous autres moyens ent publié avant la date de dépôt international, mais rieurement à la date de priorité revendiquée "8	document ultérieur publié après la date date de priorité et n'appartenenant par technique pertinent, mais cité pour coi ou la théorie constituant la base de l'il étre considérée comme nouveile ou cinventive par rapport au document coi document particulièrement pertinent; l'in ne peut être considérée comme Impliciorsque le document est associé à un documents de même nature, cette cor pour une personne du métier	s à l'état de la mprendre le principe ivention revendiquée ne peut omme impliquant une activité saidéré isolément en revendiquée nu pusition revendiquée quant une activité inventive ou plusieurs autres mbinaison étant évidente mille de brevets					
Date à laquelle la recherche internationale a été effectivement achevée 12 janvier 2005 Date d'expédition du présent rapport de recherche internationale 19/01/2005								
Nom et adre	esse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentlaan 2	Fonctionnaire autorisé						
	NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo ni, Fax: (+31–70) 340–3016	Samsam Bakhtiary,	M					

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs membres de familles de brevets

Dermide internationale No PCT/IB2004/003426

Document brevet cité au rapport de recherche		Date de publication		Membre(s) de la famille de brevet(s)	Date de publication
WO 0183512	A	08-11-2001	AU	5208401 A	12-11-2001
			BG	107289 A	31-07-2003
			BR	0110419 A	25-02-2004
			WO	0183512 A1	08-11-2001
1			CA	2418748 A1	08-11-2001
			CN	1430625 T	16-07-2003
			EE	200200613 A	15-04-2004
1			EP	1278763 A1	29-01-2003
			HR	20020944 A2	29-02-2004
1			HU	0300908 A2	28-07-2003
			JP	2003531916 T	28-10-2003
			MA	25808 A1	01-07-2003
			NO	20025106 A	18-12-2002
			SK	15692002 A3	04-11-2003
1			US	2004034216 A1	19-02-2004
			US	2004138186 A1	15-07-2004
			US	2002072510 A1	13-06-2002
			ZA	200208631 A	23-02-2004