CL=CSCI 160

CLASS 5

JUSTIFY THE SUBTRACTION ALGORITHM USING THE r'th COMPLEMENT NUMBER REPRESENTATION WE GAVE IN CLASS

In our base r representation, where we allocate n digits to the integer part and m digits to the fraction part, we define the r's complement of a number N as follows:

$$N_{rc} = r^n - N$$

Show that in the above representation, given two non-negative numbers M and N as inputs, the algorithm below computes the value of M-N, in the same representation. Compute all steps of the algorithm below in the boxes, as indicated. Justify each step in its box. Compare M-N to 0 in each of the branches of step 2) below, and show the exact inequality covered by each branch in the places indicated.

ALGORITHM to compute M-N:

- 1) Compute $M + N_{rc}$
- 2) (a) If there is an e.a.c. then ignore it. Stop.
 - (b) If there is no e.a.c. then compute:

$$-(M+N_{rc})_{rc}$$

where $(M + N_{rc})$ is already computed at step 1) above. Stop.

$$N_{rc} = r^n - N$$

n, m = number of locations

ALGORITHM to compute M-N:

- 1) Compute $M + N_{rc}$
- 2) (a) If there is an e.a.c. then ignore it. Stop.
 - (b) If there is no e.a.c. then compute:

$$-(M+N_{rc})_{rc}$$

where $(M + N_{rc})$ is already computed at step 1) above. Stop.

Justification

- 1) $M + N_{rc} = M + r^n N$
- 2) e. a. c. has the magnitude r^n . On <u>branch a</u>) there is an e. a. c., which means we have:

 $M + r^n - N \ge r^n \leftarrow M - N \ge 0$. Branch a) says: "if there is an e.a.c. ignore it".

This means we have to subtract the value of the e.a.c., r^n , from the value found at 1); the answer is

$$M + r^n - N - r^n = M - N \ge 0$$

Branch b) is taken when there is no e.a.c., and we know that then M - N < 0. Following the algorithm

the answer is:
$$-(M + N_{rc})_{rc} = -(M + r^n - N)_{rc} = -(r^n - (M + r^n - N)) =$$

$$= -(r^n - M - r^n + N) = -(N - M) = -|M - N| < 0$$
 since $N - M > 0$.

<u>Note</u> In the algorithm using r's complement representation 0 appears in branch (a) as 0, and not in branch (b), as -0, as it appears in the algorithm using (r-1)'s complement representation.

Addendum to Q1.2

Answer this **Addendum to Q1.2** before you answer the other Quiz 1.2 questions.

Suppose M = N.

After we apply the two subtraction algorithms we studied:

- 1. (r-1)'s complement representation, and
- 2. r's complement representation,

which sign (+, or –) should the exact result have in each of the above two algorithms?

Encircle the appropriate sign in spaces below:

1.
$$(r-1)$$
's complement

$$M - N = + (-)0$$

$$M - N = + - 0$$

1.24 Formulate a weighted binary code for the decimal digits, using weights

b) 6, 4, 2, 1

TableFour Different Binary Codes for the Decimal Digits

Solution

	<u>6311</u>	<u>6421</u>
<u>0</u>	0000	0000
<u>1</u>	0001(*	0001
2	0011	0010
<u>3</u>	0100	0011
<u>4</u>	0 1 1 0(*	0100
<u>5</u>	0111	0101
<u>6</u>	1000	0 1 1 0(*
<u>7</u>	1010(*	1001(*
<u>8</u>	1011	1010
<u>9</u>	1100	1011

Decimal Digit	BCD 8421	2421	Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
Unused	1011	0110	0001	0010
bit	1100	0111	0010	0011
combi-	1101	1000	1101	1100
nations	1110	1001	1110	1101
	1111	1010	1111	1110

(* Here we have a choice

<u>Note</u> None of these codes is <u>self-complementary</u>, i.e. ((r-1)s complements correspond to each other, that is decimal digits complementary in 9's compl. have binary representations that are 1's complements of each other.

Problem of the Independent Switches: example of a Boolean function

There is a staircase leading to n floors, all being lit by one lamp, which is independently operated by any of n switches, which are placed one at each of the n floors.

To simplify, consider n = 3; that is there are 3 floors and 3 switches. Design a function f of the 3 switches. f represents this lamp. Find its truth table.

X 1	X 2	X 3	f 1	f ₂
0	0	0	0	1
0	0	1	1	0
0	1	0		0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	0

Say: on = 1 and off =
$$0$$

Note: the value of **f** for any initial state of the switches is arbitrary, as we can start with any configuration; however once we choose one initial state, the values of **f** for every other configuration of the switches are <u>determined</u> by this initial state.

f₁ and f₂ are complementary

Hamming Distance (d_H) between two strings equals the number of locations in which the two strings differ.

ex:
$$d_H(1 \ \underline{0} \ 0, 1 \ \underline{1} \ 0) = 1; d_H(\underline{0} \ \underline{0} \ \underline{1}, \underline{1} \ \underline{1} \ \underline{0}) = 3$$

X 1	X 2	X 3	_	f ₁	f ₂
0	0	0	_ -	0	1
0	0	1		1	0
0	1	0	=[1	0
0	1	1		0	1
1	0	0	=[1	0
1.	0	1	_[0	1
1	1	0		0	1
1	1	1	_[1	0

Hamming Distance (d_H) between two strings equals the number of locations in which the two strings differ.

Note: When the H distance between two $x_1 x_2 x_3$ values is <u>odd</u> then the corresponding values for **f** are <u>different</u>. Conversely, when the H distance is even then the corresponding values for f are the same.

Let's represent the problem of the 3 independent switches using a 3-D cube.

The vertices of the cube have as coordinates all possible inputs for the 3 switches, while the color of each vertex shows the state of the lamp (f).

$$\bullet$$
 = on <--> **f** = 1;

$$\bullet$$
 = on <--> **f** = 1; \bullet = off <--> **f** = 0

<u>HW</u>: Solve the problem of the independent switches for n = 4, which means: 1) Truth table

2) Draw the 4-D cube

Boolean Algebra - Definition

A Boolean algebra is a 6-tuple:

that follows the next 6 axioms:

- 1) <u>Closure</u> for +, if $x, y \in B$, then $x \cdot y$, $x + y \in B$, $\forall x, y \in B$
- 2) Identity elements:

$$x + 0 = 0 + x = x$$

 $x \cdot 1 = 1 \cdot x = x, \forall x \in B$

3) +, · Commutative:

$$x+y=y+x$$

 $x\cdot y=y\cdot x, \forall x,y\in B$

4) + . · Distributive: one relative to the other

$$(x \cdot y) + z = (x + z)(y + z)$$

 $(x + y) \cdot z = x \cdot z + y \cdot z \quad \forall x,y,z \in B$

5) $\forall x \in B, \exists x' \text{ or } x \in B \text{ such that:}$

$$x + x' = 1$$
$$x \cdot x' = 0$$

6) There are at least 2 elements:

<u>HW</u>: Write all axioms and properties for the B. algebra of sets:

$$S = set, S \neq \emptyset$$

 $(P(S), \cup, \cap, \emptyset; \emptyset, S).$
Set of all subsets of S

[Remember: if S has n elements then P(S) has 2^n]

Axioms of the Boolean Algebra (B, +, ·, '; 0,1)

1) +, · are <u>closed operations in B:</u>
 x + y ∈ B
 x · y ∈ B, ∀x, y ∈ B

$$x + 0 = 0 + x = x$$

 $x \cdot 1 = 1 \cdot x = x, \forall x \in B$

3) +, · are commutative:

$$x + y = y + x$$

 $x \cdot y = y \cdot x, \forall x, y \in B$

4) +, • are **distributive** one relative to the other one:

$$(x + y) \cdot z = x \cdot z + y \cdot z$$

 $(x \cdot y) + z = (x + z)(y + z), \forall x, y, z \in B$

5) $\forall x \in B, \exists x' \in B$, the **complement** of x, such that:

$$x + x' = 1$$
 and $x x' = 0$

6) There are at least two elements in B:

$$0 \neq 1$$

Properties of Boolean Algebras (B)

7) +, • are <u>idempotent:</u> x + x = x

$$x \cdot x = x, \forall x \in B$$

8) x + 1 = 1, $x \cdot 0 = 0$, $\forall x \in B$

9)
$$x'' = x$$
, $\forall x \in B$

10) DeMorgan's Law:

$$(x + y)' = x'y',$$

 $(x \cdot y)' = x' + y', \forall x, y \in B$

11) +, · are associative:

$$x + (y + z) = (x + y) + z$$
,
 $x \cdot (y \cdot z) = (x \cdot y) \cdot z$, $\forall x, y, z \in B$

12) Absorption for +, · :

$$\overline{x + xy = x}$$

 $x (x + y) = x$, $\forall x, y \in B$

Axioms + Properties for Boolean Algebra (B, +, ·, '; 0,1)

- 1) +, · are closed in B
- 2) <u>identity elements:</u>

$$x + 0 = x = 1 \cdot x, \forall x$$

- 3) +, · are commutative
- 4) +, · are distributive one relative to the other one:

$$(x + y) \cdot z = x \cdot z + y \cdot z$$

 $(x \cdot y) + z = (x + z)(y + z), \forall x, y, z$

5) $\forall x \in B, \exists x' \in B$, the **complement** of x, such that:

$$x + x' = 1$$
 and $x \cdot x' = 0$

- 6) **0 ≠ 1**
- 7) +, · are idempotent:

$$x + x = x$$
 and $x \cdot x = x$, $\forall x$

- 8) x + 1 = 1 and $x \cdot 0 = 0$, $\forall x$
- 9) x'' = x, $\forall x$
- 10) **DeMorgan's Law**:

$$(x + y)' = x'y'$$
, and $(x \cdot y)' = x' + y'$, $\forall x, y$

- 11) +, · are associative
- 12) Absorption for +, ·:

$$x + xy = x$$

$$x (x + y) = x$$
, $\forall x, y$

HW 3-D The solutions to the quadratic equation

$$x^2 - 11x + 22 = 0$$

are x = 3 and x = 6.

Determine the base of the numbers in the equation.

Solution

Use Sd. X = 3; $3^2 - 11_r \cdot 3 + 22_r = 0 \iff base 10$ (=) $9 - (r+1)3 + 2r + 2 = 0 \iff r = 8$ [one could use other solution r = 6 and otheric the same].

HW 3-E Convert the hexadecimal number 68BE to binary, and then convert it from binary to octal and then to base 32.

Solution

