birdhouse: a collection of web processing services for climate data

Carsten Ehbrecht¹, Nils Hempelmann² et. al.

- 1. German Climate Computing Center, Germany
- 2. Le Laboratoire des Sciences du Climat et de l'Environnement, France

Climate Data volume grows quickly

But on client side: Limited storage/compute capacities

Web Processing Service

Submit jobs on a Server close to the data

Server-Client Side

Birdhouse - Ecosystem

Client Side

Web Browser **GUI**

Authentication with OAuth or OpenID

Script language **Terminal Call**

Token autentication

[nhempel@lsce3199 ~]\$ export WPS_SERVICE=htt

[nhempel@lsce3199 ~]\$ birdy -h

usage: birdy [<options>] <command> [<args>]

Flyingpigeon: Processes for climate data, indices and extrem events

optional arguments

show this help message and exit --debua

enable debug mode

List of available commands (wps processes)

{visualisation,sdm,segetalflora,indices_single,subset_countries,eobs_t

Run "birdy <command> -h" to get additional help.

visualisation

Visualisation of netcdf files: Species distribution model:

segetalflora Segetal Flora:

indices_single Calculation of climate indice (single variable): subset countries Subset netCDF files:

eobs_to_cordex EOBS to CORDEX: Calculation of the robustness of an ensemle

analogs Days with analog pressure pattern:

fetch Download Resources: execute = wps.execute(

identifier="niceprocess",

inputs=[("parameter_1", "argument"),

("parameter 2", "42"),

("parameter_3", "0.987"), # use the default value

("file identifier", "https://thredds/fileServer1/test/file1.nc"), ("file identifier", "https://thredds/fileServer1/test/file2.nc"),

("file_identifier", "https://thredds/fileServer2/test/file3.nc")],

output=[("output", True)])

time for a coffee

for o in execute.processOutputs:

print o.reference

https://mouflon.dkrz.de:8090/wpsoutputs/flyingpigeon/output_graphic-697dee76-d722-93ae-9789bf75cf44.png https://mouflon.dkrz.de:8090/wpsoutputs/flyingpigeon/output_netCDF-697dee76-d722-93ae-9789bf75cf44.nc https://mouflon.dkrz.de:8090/wpsoutputs/flyingpigeon/output_text-697dee76-d722-93ae-9789bf75cf44.txt

Just testing a nice script to visualise some variables

Species distribution model

Species biodiversity of segetal flora. Imput files: variable:tas, domain: EUR-

This process calculates climate indices based on one single variable. This process returns only the given polygon from input netCDF files.

downloads EOBS data in adaped CORDE format Calculates the robustness as the ratio of noise to

signal in an ensemle of timeseries Search for day with analog pressure pattern

This process downloads resources (limited to 50GB) to the local file system

and returns a textfile with appropriate pathe

Security

Security Token

Wizard

Monitor

Map

Help

Generate Token

Nils Hempelmann

Profile

Personal access token

ESGF access token

Group Permission

Personal access token

Twitcher access token

13e9a83b1ac843bb90891a730c1f26d7

Expires

2016-08-25 05:04:40 UTC

Powered by Birdhouse | Get the code on GitHub | Version v0.6

Python Call

```
from owslib.wps import WebProcessingService, monitorExecution
wps = WebProcessingService(url="https://mouflon.dkrz.de/wps", \
                 verbose=False, skip caps=False,)
execute = wps.execute(
  identifier="niceprocess",
  inputs=[
  ("parameter_1", "argument"),
  ("parameter_2", "42"),
# ("parameter 3", "0.987"), # use the default value
  ("file_identifier", "https://thredds/fileServer1/test/file1.nc"),
  ("file_identifier", "https://thredds/fileServer1/test/file2.nc"),
  ("file_identifier", "https://thredds/fileServer2/test/file3.nc")],
  output=[("output", True)])
# time for a coffee
### output
for o in execute.processOutputs:
  print o.reference
https://mouflon.dkrz.de:8090/wpsoutputs/flyingpigeon/output_graphic-697dee76-d722-93ae-9789bf75cf44.png
https://mouflon.dkrz.de:8090/wpsoutputs/flyingpigeon/output_netCDF-697dee76-d722-93ae-9789bf75cf44.nc
https://mouflon.dkrz.de:8090/wpsoutputs/flyingpigeon/output_text-697dee76-d722-93ae-9789bf75cf44.txt
```


Terminal Call

[nhempel@lsce3199 ~]\$ conda install -c birdhouse birdhouse-birdy [nhempel@lsce3199 ~]\$ export WPS_SERVICE=http://your.computeprovider.de:8093/wps

[nhempel@lsce3199 ~]\$ birdy -h usage: birdy [<options>] <command> [<args>]

Flyingpigeon: Processes for climate data, indices and extreme events

optional arguments:

-h, --help show this help message and exit

--debug enable debug mode

--token TOKEN, -t TOKEN

Token to access the WPS service.

command:

List of available commands (wps processes)

Terminal Call

[nhempel@lsce3199 ~]\$ birdy –token 0c6d305b0f42452cbdcf31c7ac74f1e1 \ analogs_detection --experiment 'NCEP_slp'

INFO:Execution status: ProcessAccepted

INFO:Execution status: ProcessStarted

INFO:Execution status: ProcessSucceeded

INFO:Output:

Deployment with conda and buildout

http://conda.pydata.org/docs/

http://www.buildout.org/en/latest/

Using conda package manager to setup an environment with all used software components (python, R, matplotlib, PyWPS, ...)

Using buildout to setup PyWPS with all services (supervisor, gunicorn, nginx) and configuration files.

To install a *Bird* just run:

- \$ git clone ...
- \$ make install
- \$ make start

http://birdhouse.readthedocs.io/en/latest/installation.html

Earth System Grid Federation

ESGF - search

Next

Solr Index for Thredds Data Catalogs

hummingbird

CF Checker by NCAS Computational Modelling Services (NCAS-CMS) 2.0.9-0

CF Checker by DKRZ 0.5.13

Quality Assurance Checker by DKRZ 0.5.13

IOOS Compliance Checker 2.1.0

flyingpigeon

Weather regimes

Analogues of atmospheric Circulation

non climate Data

Sharing biodiversity data for re-use

Learn about GBIF
Publish your data through GBIF
Technical infrastructure

Providing evidence for research and decisions

Using data through GBIF
Enabling biodiversity science
Supporting global targets

Collaborating as a global community

Current Participants
How GBIF is funded
Enhancing capacity

Tree Species distribution model

Web Mapping Server

- https://github.com/bird-house
- http://birdhouse.readthedocs.org/en/latest/
- https://gitter.im/bird-house/birdhouse
- https://lists.dkrz.de/mailman/listinfo/wps
- https://lists.dkrz.de/mailman/listinfo/wps-dev
- DEMO GUI: https://mouflon.dkrz.de

Contact:

ehbrecht[a]dkrz.de info[a]nilshempelmann.de

Thanks to:

Carmen Alvarez-Castro, Patrick Brockmann, Carsten Ehbrecht, Wolfgang Falk, Nils Hempelmann, Heinz-Dieter Hollweg, Jörg Hoffmann, Nikolay Kadygrov, Stephan Kindermann, Florian Klemme, Nikolay Koldunov, Ben Koziol, Cathy Nangini, Sabine Radanovics, Seckmag, Robert Vautard, Pascal Yiou,, et. al.

