

COMP110: Principles of Computing

4: Session title here

Learning outcomes

- Distinguish the basic types of logic gate
- ▶ Use logic gates to build simple circuits
- ► Explain how computer memory works

Binary notation

Image credit: http://www.toothpastefordinner.com

► We write numbers in **base 10**

- ► We write numbers in base 10
- ► We have 10 **digits**: 0, 1, 2, ..., 8, 9

- We write numbers in base 10
- ► We have 10 **digits**: 0, 1, 2, ..., 8, 9
- ► When we write 6397, we mean:

- We write numbers in base 10
- ► We have 10 **digits**: 0, 1, 2, ..., 8, 9
- ▶ When we write 6397, we mean:
 - Six thousand, three hundred and ninety seven

- We write numbers in base 10
- ▶ We have 10 digits: 0, 1, 2, ..., 8, 9
- ▶ When we write 6397, we mean:
 - Six thousand, three hundred and ninety seven
 - (Six thousands) and (three hundreds) and (nine tens) and (seven)

- ▶ We write numbers in base 10
- ► We have 10 **digits**: 0, 1, 2, ..., 8, 9
- ▶ When we write 6397, we mean:
 - Six thousand, three hundred and ninety seven
 - (Six thousands) and (three hundreds) and (nine tens) and (seven)
 - $(6 \times 1000) + (3 \times 100) + (9 \times 10) + (7)$

- ▶ We write numbers in base 10
- ► We have 10 **digits**: 0, 1, 2, ..., 8, 9
- ▶ When we write 6397, we mean:
 - Six thousand, three hundred and ninety seven
 - (Six thousands) and (three hundreds) and (nine tens) and (seven)
 - $(6 \times 1000) + (3 \times 100) + (9 \times 10) + (7)$
 - $(6 \times 10^3) + (3 \times 10^2) + (9 \times 10^1) + (7 \times 10^0)$

▶ Binary notation works the same, but is base 2 instead of base 10

- Binary notation works the same, but is base 2 instead of base 10
- ▶ We have 2 digits: 0, 1

- Binary notation works the same, but is base 2 instead of base 10
- ▶ We have 2 digits: 0, 1
- ▶ When we write 10001011 in binary, we mean:

- Binary notation works the same, but is base 2 instead of base 10
- ▶ We have 2 digits: 0, 1
- ▶ When we write 10001011 in binary, we mean:

$$\begin{array}{l} (1\times2^7) + (0\times2^6) + (0\times2^5) + (0\times2^4) \\ + (1\times2^3) + (0\times2^2) + (1\times2^1) + (1\times2^0) \end{array}$$

- Binary notation works the same, but is base 2 instead of base 10
- ▶ We have 2 digits: 0, 1
- ▶ When we write 10001011 in binary, we mean:

$$\begin{array}{l} \left(1\times2^{7}\right)+\left(0\times2^{6}\right)+\left(0\times2^{5}\right)+\left(0\times2^{4}\right)\\ +\left(1\times2^{3}\right)+\left(0\times2^{2}\right)+\left(1\times2^{1}\right)+\left(1\times2^{0}\right)\\ =2^{7}+2^{3}+2^{1}+2^{0} \end{array}$$

- Binary notation works the same, but is base 2 instead of base 10
- ▶ We have 2 digits: 0, 1
- ▶ When we write 10001011 in binary, we mean:

$$(1 \times 2^7) + (0 \times 2^6) + (0 \times 2^5) + (0 \times 2^4) + (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) = 2^7 + 2^3 + 2^1 + 2^0 = 128 + 8 + 2 + 1 \text{ (base 10)}$$

- Binary notation works the same, but is base 2 instead of base 10
- ▶ We have 2 digits: 0, 1
- ▶ When we write 10001011 in binary, we mean:

$$(1 \times 2^7) + (0 \times 2^6) + (0 \times 2^5) + (0 \times 2^4) + (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) = 2^7 + 2^3 + 2^1 + 2^0$$

$$= 128 + 8 + 2 + 1$$
 (base 10)

▶ A bit is a binary digit

- A bit is a binary digit
 - ► Can store a 0 or 1 (i.e. a boolean value)

- A bit is a binary digit
 - ► Can store a 0 or 1 (i.e. a boolean value)
- ► A byte is 8 bits

- A bit is a binary digit
 - Can store a 0 or 1 (i.e. a boolean value)
- ► A byte is 8 bits
 - Can store a number between 0 and 255 in binary

- ▶ A bit is a binary digit
 - Can store a 0 or 1 (i.e. a boolean value)
- ► A byte is 8 bits
 - Can store a number between 0 and 255 in binary
- A word is the number of bits that the CPU works with at once

- ▶ A bit is a binary digit
 - ► Can store a 0 or 1 (i.e. a boolean value)
- ► A byte is 8 bits
 - Can store a number between 0 and 255 in binary
- A word is the number of bits that the CPU works with at once
 - ▶ 32-bit CPU: 32 bits = 1 word

- ▶ A bit is a binary digit
 - Can store a 0 or 1 (i.e. a boolean value)
- ► A byte is 8 bits
 - Can store a number between 0 and 255 in binary
- A word is the number of bits that the CPU works with at once
 - ▶ 32-bit CPU: 32 bits = 1 word
 - ▶ 64-bit CPU: 64 bits = 1 word

- ▶ A bit is a binary digit
 - ► Can store a 0 or 1 (i.e. a boolean value)
- ► A byte is 8 bits
 - Can store a number between 0 and 255 in binary
- A word is the number of bits that the CPU works with at once
 - ▶ 32-bit CPU: 32 bits = 1 word
 - ▶ 64-bit CPU: 64 bits = 1 word
- An *n*-bit word can store a number between 0 and $2^n 1$

- ▶ A bit is a binary digit
 - ► Can store a 0 or 1 (i.e. a boolean value)
- ► A byte is 8 bits
 - Can store a number between 0 and 255 in binary
- A word is the number of bits that the CPU works with at once
 - ▶ 32-bit CPU: 32 bits = 1 word
 - ▶ 64-bit CPU: 64 bits = 1 word
- An n-bit word can store a number between 0 and 2ⁿ − 1
 - $ightharpoonup 2^{16} 1 = 65,535$

- ▶ A bit is a binary digit
 - ► Can store a 0 or 1 (i.e. a boolean value)
- ► A byte is 8 bits
 - Can store a number between 0 and 255 in binary
- A word is the number of bits that the CPU works with at once
 - ▶ 32-bit CPU: 32 bits = 1 word
 - ▶ 64-bit CPU: 64 bits = 1 word
- An *n*-bit word can store a number between 0 and $2^n 1$
 - \triangleright 2¹⁶ 1 = 65,535
 - \triangleright 2³² 1 = 4,294,967,295

- ▶ A bit is a binary digit
 - ► Can store a 0 or 1 (i.e. a boolean value)
- ► A byte is 8 bits
 - Can store a number between 0 and 255 in binary
- A word is the number of bits that the CPU works with at once
 - ▶ 32-bit CPU: 32 bits = 1 word
 - ▶ 64-bit CPU: 64 bits = 1 word
- An *n*-bit word can store a number between 0 and $2^n 1$
 - \triangleright 2¹⁶ 1 = 65,535
 - \triangleright 2³² 1 = 4,294,967,295
 - \triangleright 2⁶⁴ 1 = 18,446,744,073,709,551,615

Computer memory

► This is called a NAND latch

- ► This is called a NAND latch
- ► It "remembers" a single boolean value

- ► This is called a NAND latch
- ▶ It "remembers" a single boolean value
- Put a few billion of these together (along with some control circuitry) and you've got memory!