# Anillos de Fracciones (In a nutshell)

Álgebra Moderna II, Agosto 2020



YOU CAN PRESENT THE MATERIAL, BUT YOU CAN'T MAKE ME CARE.



2/18

# La regla de 3

• El anillo  $\mathbb{Z}$  no él mismo un campo, pero existe un campo [natural] donde está contenido, a saber,  $\mathbb{Q}$ .

# La regla de 3

- El anillo Z no él mismo un campo, pero existe un campo [natural] donde está contenido, a saber, Q.
- Cada racional de la forma  $X = \frac{n}{m}$ , con  $m \neq 0$ . Este racional representa al conjunto de soluciones  $X \in \mathbb{Q}$  para la ecuación

$$Xm = n$$
  $m, n \in \mathbb{Z}$ .

Anillos de Fracciones

3 / 18

# La regla de 3

- El anillo Z no él mismo un campo, pero existe un campo [natural] donde está contenido, a saber, Q.
- Cada racional de la forma  $X = \frac{n}{m}$ , con  $m \neq 0$ . Este racional representa al conjunto de soluciones  $X \in \mathbb{Q}$  para la ecuación

$$Xm = n$$
  $m, n \in \mathbb{Z}$ .

• Esto sugiere que  $\mathbb{Q}$  puede ser obtenido [formalmente] como conjuntos de soluciones a este tipo de ecuaciones.

## En el siguiente sentido:

Si  $\varphi: \mathbb{Z} \longrightarrow K$  es un morfismo de anillo inyectivo y K es un campo ocurre lo siguiente

## En el siguiente sentido:

Si  $\varphi: \mathbb{Z} \longrightarrow K$  es un morfismo de anillo inyectivo y K es un campo ocurre lo siguiente

• Si  $n \neq 0$ , entonces  $\varphi(n)$  es invertible.

Anillos de Fracciones

## En el siguiente sentido:

Si  $\varphi: \mathbb{Z} \longrightarrow K$  es un morfismo de anillo inyectivo y K es un campo ocurre lo siguiente

- Si  $n \neq 0$ , entonces  $\varphi(n)$  es invertible.
- Además,  $\varphi(n) = \varphi(n1) = \varphi(n)\varphi(1)$ .

## En el siguiente sentido:

Si  $\varphi: \mathbb{Z} \longrightarrow K$  es un morfismo de anillo inyectivo y K es un campo ocurre lo siguiente

- Si  $n \neq 0$ , entonces  $\varphi(n)$  es invertible.
- Además,  $\varphi(n) = \varphi(n1) = \varphi(n)\varphi(1)$ .
- La conclusión es que  $\varphi(1)=1_{\mathcal{K}}$

## En el siguiente sentido:

Si  $\varphi : \mathbb{Z} \longrightarrow K$  es un morfismo de anillo inyectivo y K es un campo ocurre lo siguiente

- Si  $n \neq 0$ , entonces  $\varphi(n)$  es invertible.
- Además,  $\varphi(n) = \varphi(n1) = \varphi(n)\varphi(1)$ .
- La conclusión es que  $\varphi(1) = 1_K$

Luego, vemos que hay una extensión natural de  $\varphi$  a  $\mathbb{Q}$ , a la que llamaremos  $\overline{\varphi}$ :

$$\overline{\varphi}(\frac{n}{m}) = \varphi(n)[\varphi(m)]^{-1}.$$

Resulta que  $\overline{\varphi}$  es un morfismo de campos inyectivo que se restringe a  $\varphi$  sobre  $\mathbb{Z}$ .

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ りへで

En otras palabras, si K tiene un subanillo que es esencialmente igual a  $\mathbb{Z}$ , ese subanillo estará contenido en un subcampo esencialmente igual a  $\mathbb{Q}$ .

5/18

En otras palabras, si K tiene un subanillo que es esencialmente igual a  $\mathbb{Z}$ , ese subanillo estará contenido en un subcampo esencialmente igual a  $\mathbb{Q}$ .

## Ejemplo.

R= anillo de funciones de  $\mathbb R$  en  $\mathbb R$  con la suma y el producto definidos puntualmente. Definimos, para cada  $n\in\mathbb Z$  a la función  $f_n$  que es la función constante n. Claramente  $f_n+f_m=f_{n+m}$  y  $f_nf_m=f_{nm}$ . Hay un subanillo de R que es isomorfo a  $\mathbb Q$  que contiene a todas las funciones  $f_n$ .

## Localización: Dominios enteros

Sea  ${\it R}$  un dominio entero [nuestros nuevos enteros].

Anillos de Fracciones

## Localización: Dominios enteros

Sea R un dominio entero [nuestros nuevos enteros].

#### Definición.

Un subconjunto S de  $D \setminus \{0\}$  es multiplicativo si

- $oldsymbol{0}$  para cada  $a,b\in S$ ,  $ab\in S$ ,
- **2**  $1_D \in S$ .

Anillos de Fracciones

## Localización: Dominios enteros

Sea R un dominio entero [nuestros nuevos enteros].

#### Definición.

Un subconjunto S de  $D \setminus \{0\}$  es multiplicativo si

- lacktriangle para cada  $a,b\in S$ ,  $ab\in S$ ,
- **2**  $1_D \in S$ .

A partir de ahora, supondremos un conjunto multiplicativo. Consideraremos la relación  $\sim \subset (D \times S) \times (D \times S)$  dada por  $(d_1, s_1) \sim (d_2, s_2)$  si y sólo si  $d_1s_2 = d_2s_1$ 

6/18

## Proposición.

Esta relación es de equivalencia

Anillos de Fracciones

7 / 18

## Proposición.

Esta relación es de equivalencia

#### Demostración.

Recordemos que, para la transitivadas usamos que D era un dominio entero

## Proposición.

Esta relación es de equivalencia

#### Demostración.

Recordemos que, para la transitivadas usamos que D era un dominio entero

#### Definición.

Entonces, 
$$S^{-1}D := (D \times S)/\sim$$
.

Para 
$$d \in D$$
 y  $s \in S$   $\frac{d}{s} := [(d,s)]_{\sim}$ 

$$+:S^{-1}D\times S^{-1}D\longrightarrow S^{-1}D \qquad \frac{d_1}{s_1}+\frac{d_2}{s_2}:=\frac{d_1s_2+d_2s_1}{s_1s_2}$$
$$\cdot:S^{-1}D\times S^{-1}D\longrightarrow S^{-1}D \qquad \frac{d_1}{s_1}\cdot\frac{d_2}{s_2}:=\frac{d_1d_2}{s_1s_2}$$

Anillos de Fracciones

8 / 18

$$+ :S^{-1}D \times S^{-1}D \longrightarrow S^{-1}D \qquad \frac{d_1}{s_1} + \frac{d_2}{s_2} := \frac{d_1s_2 + d_2s_1}{s_1s_2}$$
$$\cdot :S^{-1}D \times S^{-1}D \longrightarrow S^{-1}D \qquad \frac{d_1}{s_1} \cdot \frac{d_2}{s_2} := \frac{d_1d_2}{s_1s_2}$$

#### Cuiado!

No sabemos [a priori] que estas reglas de correspondencia definan funciones de facto. Cuando decimos que .están bien definidas nos referimos a que son funciones de facto. Por ejemplo, hay que ver que si  $\frac{d_1}{s_1} = \frac{\delta_1}{\sigma_1}$  y  $\frac{d_2}{s_2} = \frac{\delta_2}{\sigma_2}$ , Entonces,

$$\frac{d_1}{s_1} + \frac{d_2}{s_2} = \frac{\delta_1}{\sigma_1} + \frac{\delta_2}{\sigma_2}$$

es decir,

$$\frac{d_1s_2+d_2s_1}{s_1s_2}=\frac{\delta_1\sigma_2+\delta_2\sigma_1}{\sigma_1\sigma_2}$$

- **2** La función  $\iota: D \longrightarrow S^{-1}D$  dada por  $\iota(d) = \frac{d}{1_D}$  es un homomorfimso inyetivo de anillos que manda el uno de D en el uno de  $S^{-1}D$ .

- **2** La función  $\iota: D \longrightarrow S^{-1}D$  dada por  $\iota(d) = \frac{d}{1_D}$  es un homomorfimso inyetivo de anillos que manda el uno de D en el uno de  $S^{-1}D$ .

- **2** La función  $\iota: D \longrightarrow S^{-1}D$  dada por  $\iota(d) = \frac{d}{1_D}$  es un homomorfimso inyetivo de anillos que manda el uno de D en el uno de  $S^{-1}D$ .
- **1** Si A es un anillo conmutativo unitario y si  $\varphi:D\longrightarrow A$  es un homomorfismo de anillos conmutativos unitarios tal que  $\varphi(1_D)=1_A$  y que que  $\varphi(S)\subset \mathcal{U}(A)$ , entonces existe exactamente un morfismo de anillos  $\overline{\varphi}:S^{-1}D\longrightarrow A$  tal que el diagrama conmuta

- **2** La función  $\iota: D \longrightarrow S^{-1}D$  dada por  $\iota(d) = \frac{d}{1_D}$  es un homomorfimso inyetivo de anillos que manda el uno de D en el uno de  $S^{-1}D$ .
- **3** Para cada  $s \in S$ ,  $\iota(s) \cdot \frac{1}{s} = 1 = \frac{1}{s} \cdot \iota(s)$
- **3** Si A es un anillo conmutativo unitario y si  $\varphi: D \longrightarrow A$  es un homomorfismo de anillos conmutativos unitarios tal que  $\varphi(1_D) = 1_A$  y que que  $\varphi(S) \subset \mathcal{U}(A)$ , entonces existe exactamente un morfismo de anillos  $\overline{\varphi}: S^{-1}D \longrightarrow A$  tal que el diagrama conmuta



Si D es un dominio entero,  $|D| \ge 1$  y  $S = D \setminus \{0\}$ , el anillo  $S^{-1}D$  recube el nombre de campo de cocientes (o de fracciones) de D. Se suele denotar por Q(D)



Si D es un dominio entero,  $|D| \ge 1$  y  $S = D \setminus \{0\}$ , el anillo  $S^{-1}D$  recube el nombre de campo de cocientes (o de fracciones) de D. Se suele denotar por Q(D)

## Ejemplo.

$$D = \mathbb{Z}$$
 y  $S = \mathbb{Z} \setminus 2\mathbb{Z}$ . Entonces

$$S^{-1}D = \{ \frac{a}{b} : a, b \in \mathbb{Z}, b \text{ impar} \}$$



10 / 18

Si D es un dominio entero,  $|D| \ge 1$  y  $S = D \setminus \{0\}$ , el anillo  $S^{-1}D$  recube el nombre de campo de cocientes (o de fracciones) de D. Se suele denotar por Q(D)

## Ejemplo.

$$D = \mathbb{Z}$$
 y  $S = \mathbb{Z} \setminus 2\mathbb{Z}$ . Entonces

$$S^{-1}D = \{\frac{a}{b} : a, b \in \mathbb{Z}, b \text{ impar}\}$$

## Ejemplo.

$$D = \mathbb{Z}$$
 y  $S = \mathbb{Z} \setminus p\mathbb{Z}$  con  $p$  primo. Entonces

$$S^{-1}D = \{ \frac{a}{b} : a, b \in \mathbb{Z}, p \text{ no divide a } b \}$$

4 D > 4 A D > 4 B > 4 B > 9 Q P

## Demostración del Teorema 1

Parte (1): Veamos que es dominio entero.

Supongamos que  $\frac{d_1}{s_1}, \frac{d_2}{s_2} \in S^{-1}D$  son tales que  $\frac{d_1}{s_1} \cdot \frac{d_2}{s_2} = \frac{0}{1_D}$ . Entonces  $(d_1d_2)1_D = (0)(s_1s_2)$ . Como D mismo es dominio entero, tenemos que  $d_1 = 0$  o  $d_2 = 0$ . Por lo tanto  $\frac{d_1}{s_1} = \frac{0}{1_D}$  o  $\frac{d_2}{s_2} = \frac{0}{1_D}$ .

¿lo demás? Ejercicio para ustedes.

Parte (2): Que  $\iota(1_D)=\frac{1_D}{1_D}=1$  es obvio. Luego

$$\iota(a+b) = \frac{a+b}{1_D} = \frac{a1_D + b1_D}{1_D 1_D} = \frac{a}{1_D} + \frac{b}{1_D} = \iota(a) + \iota(b),$$
 $\iota(ab) = \frac{ab}{1_D} = \frac{ab}{1_D 1_D} = \frac{a}{1_D} \cdot \frac{b}{1_D} = \iota(a) \cdot \iota(b).$ 

4日ト 4個ト 4 差ト 4 差ト 差 めなべ

11 / 18

Finalmente, si  $\iota(a) = \frac{0}{1_D}$ , tendríamos que  $\frac{0}{1_D} = \frac{a}{1_D}$ . Entonces  $01_D = a1_D$ . Así a = 0 y  $\iota$  es inyectiva.

**Parte (3)**: Sea  $s \in S$ . Entonces,

$$\iota(s) \cdot \frac{1}{s} = \frac{s}{1_D} \cdot \frac{1}{s} = \frac{s1_D}{1_D s} = \frac{1_D}{1_D} = 1.$$

**Parte (4)**: Supongamos un morfismo de anillo unitarios  $\varphi:D\longrightarrow A$  tal que  $\varphi(1_D)=1_A$ . Para proponer hay  $\overline{\varphi}$  hay un candidato obvio ¿quíen es?

$$\overline{\varphi}\left(\frac{d}{s}\right) = \varphi(d)[\varphi(s)]^{-1}$$

P.D:  $\overline{\varphi}$  está bien definida, es morfismo y hace conmutar al diagrama.

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ 夕へで

 $\overline{\varphi}$  está bien definida: [es decir, es una función de facto] Sean  $\frac{d}{s}, \frac{d}{\tilde{s}} \in S^{-1}D$  tales que  $\frac{d}{s} = \frac{\tilde{d}}{\tilde{s}}$  [por lo tanto  $d\tilde{s} = \tilde{d}s$ ]. Luego  $\varphi(d\tilde{s}) = \varphi(\tilde{d}s)$ , usamos que es morfismo y obtenemos

$$\varphi(d)\varphi(\tilde{s})=\varphi(\tilde{d})\varphi(s).$$

Usamos que  $\varphi(\tilde{s}), \varphi(s) \in \mathcal{U}(A)$  y por lo tanto, multiplicando por lo inversos en la ecuación anterior conseguimos

$$\varphi(d)[\varphi(s)]^{-1} = \varphi(\tilde{d})[\varphi(\tilde{s})]^{-1}.$$

Esto nos dice que

$$\overline{\varphi}\left(\frac{d}{s}\right) = \overline{\varphi}\left(\frac{\tilde{d}}{\tilde{s}}\right).$$

◆ロト ◆個ト ◆差ト ◆差ト を めんぐ

#### $\overline{\varphi}$ es morfimos de anillos:

$$\begin{split} \overline{\varphi} \left( \frac{d_1}{s_1} + \frac{d_2}{s_2} \right) &= \overline{\varphi} \left( \frac{d_1 s_2 + d_2 s_1}{s_1 s_2} \right) = \varphi(d_1 s_2 + d_2 s_1) [\varphi(s_1 s_2)]^{-1} \\ &= [\varphi(d_1) \varphi(s_2) + \varphi(d_2) \varphi(s_1)] [\varphi(s_1) \varphi(s_2)]^{-1} \\ &= [\varphi(d_1) \varphi(s_2) + \varphi(d_2) \varphi(s_1)] [\varphi(s_1)]^{-1} [\varphi(s_2)]^{-1} \\ &= \varphi(d_1) [\varphi(s_1)]^{-1} + \varphi(d_2) [\varphi(s_2)]^{-1} \\ &= \overline{\varphi} \left( \frac{d_1}{s_1} \right) + \overline{\varphi} \left( \frac{d_2}{s_2} \right), \end{split}$$

$$\overline{\varphi}\left(\frac{d_1}{s_1} \cdot \frac{d_2}{s_2}\right) = \overline{\varphi}\left(\frac{d_1 d_2}{s_1 s_2}\right) = \varphi(d_1 s d_2) [\varphi(s_1 s_2)]^{-1}$$
$$= \left[\varphi(d_1) [\varphi(s_1)]^{-1}\right] \left[\varphi(d_2) [\varphi(s_2)]^{-1}\right]$$

4 D > 4 A > 4 B > 4 B > B 900

14 / 18

## $\overline{\varphi}$ hace conmutar al diagrama: ¿Qué diagrama?



P.D:  $\varphi = \overline{\varphi} \circ \iota$  Sea  $d \in D$ . Entonces

$$\overline{arphi}\circ\iota(d)=\overline{arphi}\left(rac{d}{1_D}
ight)=arphi(d)[arphi(1_D)]^{-1}=arphi(d)[1_A]^{-1}=arphi(d).$$

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めなぐ

15 / 18

## Observaciones:

- Si  $S = R \setminus \{0\}$ , a propiedad **4** del Teorema 1 sobre  $\iota : D \longrightarrow S^{-1}D$  se suele expresar diciendo que  $\iota$  es *universal* entre todos los morfismo de  $D \longrightarrow K$  a un campo.
- Uno suele ïdentificarçada elemento de D con su imagen bajo  $\iota$ . Así, en lugar de escribir  $\frac{d}{1_d}$  simplemente escribimos d, como elemento de  $S^{-1}D$ .
- Esto nos dice que un dominio entero D siempre es subanillo de un campo Q(D).

## Ejemplos:

- $Q(\mathbb{Z}) = \mathbb{Q}$ .
- ullet Ya sabemos que  $\mathbb{Z}[i]$  es dominio entero. Ocurre que  $Q(\mathbb{Z}[i])=\mathbb{Q}[i]$
- el campo de cocientes de  $\mathbb{Z}[\sqrt{2}]$  es  $\mathbb{Q}[\sqrt{2}]$ .

4 D > 4 D > 4 E > 4 E >

16 / 18

# Ejercicios.

- **1** Si K es un campo, muestre que Q(K) es isomorfo a K.
- ② Muestre que si D y  $\tilde{D}$  son isomorfos entonces, Q(D) y son  $Q(\tilde{D})$  son isomorfos.
- **3** Cualquier morfismo inyectivo  $D \longrightarrow \tilde{D}$  se extiende a un correspondiente morfismo inyectivo  $Q(D) \longrightarrow Q(\tilde{D})$ .

#### Fin

and amount respected a ou.

nte  $\mu > 0$  tal que la forma bilineal  $B[\cdot, \cdot]$  asociada a ma de Lax-Milgram si  $c(x) > -\mu$  para todo  $x \in U$ .

 $u \in H^2_0(U)$  es una solución débil de la ecuación ontera de Dirichlet

$$U, \qquad u = \partial_{\nu} u = 0 \quad \text{sobre } \partial U$$

 $\int v \ dx$  para todo  $v \in H_0^2(U)$ .

1) tiene una única solución débil  $u \in H_0^2(U)$ .

na función  $u \in H^1(U)$  es una solución débil del

### Gracias