Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

Системное программное обеспечение GNU/Linux

Отчёт по лабораторной работе $\mathbb{N}^{2}4$

Выполнил студент гр. в3530904/00030	В.С. Баганов
Руководитель ст. преподаватель, к.т.н.	С.А. Федорон
	«» 202 г

 ${
m Caнкт-}\Pi{
m erep}{
m fypr}$ 2023

Содержание

П	остановка задачи	3
1.	Разработка требований к целевой и инструментальной платформе	3
2.	Разработка ПО с однопоточным невекторизованным собственным (native	e)
	кодом согласно разработанному ТЗ	3
	2.1. Код программы	3
	2.2. Код программы исполняемого файла	4
	2.3. Код программы исполняемого файла 2	5
	2.4. Тестирование и отладка однопоточного кода	5
3.	Оценка влияния разных уровней оптимизации на эффективность раз-	
	работанного приложения	6
4.	Оценка влияния системных методов оптимизации на эффективность	
	разработанного приложения	6
	4.1. Межпроцедурные методы оптимизации	6
	4.2. Оптимизация времени компановки	7
	4.3. Межпроцедурная и Оптимизация времени компановки	7
	4.4. Оптимизация с обратной связью	7
	4.5. Применение межпроцедурной оптимизации, оптимизациеи времени ком-	
	поновки и оптимизации с обратной связью	7
5.	Оценка влияния векторизации на эффективность разработанного при-	
	ложения	8
6.	Оценка влияния выравнивания адресов на эффективность разработан-	
	ного приложения	8
За	аключение	9

Постановка задачи

Цель работы — перенесённое под целевую микроархитектуру ΠO с оптимальными опциями оптимизации

1. Разработка требований к целевой и инструментальной платформе

- Аппаратная платформа: Виртуальная машина Parallels Desktop 16 Версия 16.1.2 (49151) с конфигурацией 4 Гб ОЗУ, с 4-мя процессорами, на МасВоок, 2,6 GHz, 2-ядерный процессор Intel Core i5, 8 Гб ОЗУ. ⊠
- Программная платформа: Linux debian-gnu-linux-10-vm 4.19.0-16-amd64, ядро SMP Debian 4.19.181-1 (2021-03-19) x86 64 GNU/Linux
- За основу для ТЗ взята программа, ввыполняющая умножение матрицы размером 4000*4000, заполненной случайными числами с плавающей точкой с диапазоне от 1 до 15 саму на себя и выполняющая поиск максимального значения в полученной новой матрице.
- Код реализован на языке программирования Fortran

2. Разработка ПО с однопоточным невекторизованным собственным (native) кодом согласно разработанному ТЗ

2.1. Код программы

```
program laba_4 Baganov
1
        use Environment
2
3
        implicit none
        character(*), parameter :: input_file = "../data/input.txt",
            output_file = "output.txt"
                                  :: In = 0, Out = 0, N = 0, i = 0
        real(R_{-}), allocatable
                                  :: A(:, :), B(:, :)
        real(R_)
10
        open (file=input_file, newunit=in)
11
           read (in, *) N
12
           allocate (A(N, N))
13
           read (in, *) (A(i, :), i = 1, N)
        close (in)
15
16
        open (file=output_file, encoding=E_, newunit=Out)
17
           write (Out, \frac{('')}{N} (A(i, :), i = 1, N)
18
        close (Out)
19
20
        B = MATMUL(A, A)
22
```

```
open (file=output_file, encoding=E_, newunit=Out, position='append')
23
           write (Out, (''/N)/(f10.2)')' (B(i, :), i = 1, N)
24
        close (Out)
25
26
        M = MAXVAL(B)
27
28
       open (file=output_file, encoding=E_, newunit=Out, position='append')
29
           write (Out, "('MaxVal = ', f100.2)") M
        close (Out)
31
32
     end program laba_4 Baganov
33
```

2.2. Код программы исполняемого файла

```
#!/bin/bash
1
    for opt in "-03" "-0s" "-01" "-02" "-03" "-02 -march=native"
2
        "-03 -march=native" "-02 -march=native -funroll-loops"
        "-03 -march=native -funroll-loops"
    do
3
       4
       echo "Type: $opt"
       gfortran -Wall -std=f2008ts -static-libgfortran -flto -c
        → src/environment.f90 -J obj/ -o obj/environment.o
       gfortran -Wall -std=f2008ts -static-libgfortran -flto $opt
          -ftree-vectorize -fopt-info-vec -c src/main.f90 -I obj/ -o
           obj/main.o
       gfortran -Wall -std=f2008ts -static-libgfortran -flto $opt
           -ftree-vectorize -fopt-info-vec -o bin/app ./obj/environment.o
           obj/main.o
9
       cd ./bin;
10
       aver_size=0
11
       for run in First Second Third Fourth Fifth
12
       dο
13
       echo "=============================
          time=$( TIMEFORMAT="%U"; { time ./app; } 2>&1 )
15
          size=$(du -sk ./app | cut -f1)
16
          echo "$aver time"
17
          aver size=$(echo $(($aver size + $size)))
18
          echo "$run run; size: $size; time: $time"
19
       done
20
21
       echo "AVERAGE SIZE:"
22
       echo $(( $aver_size / 5 ))
23
24
       cd ..
25
       rm -rf obj/*
26
       rm -rf bin/*
27
    done
28
```

2.3. Код программы исполняемого файла 2

```
#!/bin/bash
1
     for opt in for opt in "-02 -march=native -fipa-pta"
2
         "-02 -march=native -flto" "-02 -march=native -fipa-pta -flto"
         "-02 -march=native -fprofile-generate"
         "-02 -march=native -fprofile-use"
         "-02 -march=native -fipa-pta -flto -fprofile-generate"
         "-02 -march=native -fipa-pta -flto -fprofile-use"
        "-02 -march=native -flto" "-02 -march=native -flto"
        "-02 -march=native -fipa-pta" "-02 -march=native -fipa-pta -flto"
        "-02 -march=native -fprofile-generate"
        "-02 -march=native -fprofile-use"
        "-02 -march=native -fipa-pta -flto -fprofile-generate"
        "-02 -march=native -fipa-pta -flto -fprofile-use"
        "-02 -march=native -ftree-vectorize"
    do
3
        echo "========="
4
        echo "Type: $opt"
5
        gfortran -Wall -std=f2008ts -static-libgfortran -flto -c

    src/environment.f90 -J obj/ -o obj/environment.o

        gfortran -Wall -std=f2008ts -static-libgfortran -flto $opt
        _{
ightarrow} -ftree-vectorize -fopt-info-vec -c src/main.f90 -I obj/ -o

→ obj/main.o

        gfortran -Wall -std=f2008ts -static-libgfortran -flto $opt
           -ftree-vectorize -fopt-info-vec -o bin/app ./obj/environment.o
           obj/main.o
9
        cd ./bin;
10
        aver size=0
11
        for run in First Second Third Fourth Fifth
12
13
        echo "=========="
14
          time=$( TIMEFORMAT="%U"; { time ./app; } 2>&1 )
15
          size=$(du -sk ./app | cut -f1)
16
          echo "$aver_time"
17
          aver_size=$(echo $(($aver_size + $size)))
18
          echo "$run run; size: $size; time: $time"
19
        done
20
21
        echo "AVERAGE SIZE:"
22
        echo $(( $aver size / 5 ))
23
24
        cd ...
25
        rm -rf obj/*
26
       rm -rf bin/*
27
    done
```

2.4. Тестирование и отладка однопоточного кода

Опорные данные: входящий файл input.txt содержащий размер квадратной матрицы и заполнение матрицы числами с плавающей точкой с диапазоне от 1 до 15. Размер файла 85.7M.

Время работы кода T6/o, осуществляющего обработку данных без использования оптимизации: 56.32~c

Эффективность кода Рб/о, осуществляющего обработку данных без использования оптимизации:10000/24*56.32) = 7,39

Под эффективностью принять показатель P = Perf * 10000 / Comp, где $P = \text{P$

3. Оценка влияния разных уровней оптимизации на эффективность разработанного приложения

В таблице ниже представлена компиляция разработанного приложения с ключами оптимизации: -O0, -Os, -O1, -O2, -O3, -O2 -march=native, -O3 -march=native, -O2 -march=native -funroll-loops, -O3 -march=native -funroll-loops. Для всех случаев оптимизация проводилась с отключенной векторизацией: -fno-tree-vectorize.

Различные уровни оптимизации

	0 1	'	
Уровень опт-ии	Время,с	Эффективность	Размер, кбайт
-O0	36,17	11,51	356
$-\mathrm{Os}$	$36,\!64$	11,37	356
-O1	$36,\!62$	11,37	356
-O2	$36,\!13$	$11,\!52$	356
-O3	36,02	$11,\!56$	356
-O2 march=native	34,81	11,96	356
-O3 -march=native	$36,\!41$	11,44	356
-O2 -march=native -funroll-loops	$36,\!65$	11,36	356
-O3 -march=native -funroll-loops	$36,\!11$	$11,\!53$	356

Вывод, дающий наибольшую производительность для разрабатываемого приложения явяется:-O2 march=native

4. Оценка влияния системных методов оптимизации на эффективность разработанного приложения

В дальнейшем будем использовать самый оптимальный уровень который получили :-O2 march=native и отключенной векторизацией.

4.1. Межпроцедурные методы оптимизации

Межпроцедурные методы оптимизации

Метод опт-ии	Время,с	Эффективность	Размер, кбайт
-fipa-pta	59,11	7,04	356

Таблина 3.1

4.2. Оптимизация времени компановки

Таблица 4.2

Оптимизация времени компановки

Метод опт-ии	Время,с	Эффективность	Размер, кбайт	
-flto	57,46	7,25	356	

4.3. Межпроцедурная и Оптимизация времени компановки

Таблица 4.3

Таблица 4.4

Межпроцедурная и Оптимизация времени компановки

Метод опт-ии	Время,с	Эффективность	Размер, кбайт	
-fipa-pta -flto	40,96	10,17	356	

4.4. Оптимизация с обратной связью

Оптимизация с обратной связью

Метод опт-ии	Время,с	Эффективность	Размер, кбайт
-fprofile-generate	40,85	10,19	356
-fprofile-use	50,64	8,22	356

4.5. Применение межпроцедурной оптимизации, оптимизациеи времени компоновки и оптимизации с обратной связью

Таблица 4.5 **Комбинация методов оптимизации**

Метод опт-ии	Время,с	Эффективность	Размер, кбайт
-fipa-pta -flto -fprofile-generate	43,63	9,54	356
-fipa-pta -flto -fprofile-use	36,96	11,27	356

Системные методы оптимизации

Метод опт-ии	Время,с	Эффективность	Размер, кбайт
-flto	37,40	11,13	356
$-{ m fipa-pta}$	34,80	11,97	356
-fipa-pta -flto	$34,\!51$	$12,\!07$	356
-fprofile-generate	$47,\!61$	8,75	356
-fprofile-use	$47,\!25$	8,81	356
-fipa-pta -flto -fprofile-generate	44,88	$9,\!28$	356
-fipa-pta -flto -fprofile-use	45,69	9,11	356

Вывод, лучшие по времени оптимизации -flto -fipa-pta -fipa-pta -flto .

5. Оценка влияния векторизации на эффективность разработанного приложения

Оптимизация проводилась с оптимальным уровнем оптимизации полученным в предыдущей главе: -O2 march=native и с явной векториризациейй.

Таблица 5.1

Векторизация

Метод опт-ии	Время,с	Эффективность	Размер, кбайт
-ftree-vectorize	43,22	9,63	356

6. Оценка влияния выравнивания адресов на эффективность разработанного приложения

Для применения этого метода необходимо дополнительно написать в исходном коде следующую строку:

Таблица 6.1

!dir\$ attribute align:n::array Выравнивание адресов

Это ведет к увеличению сложности кода (по количеству строк).

Метод опт-ии	Время,с	Эффективность	Размер, кбайт
-O3 -fno-tree-vectorize -fipa-pta -flto -fprofile-generate	75.95	5.28	356

Заключение

Целью работы было ознакомление с различными уровнями и методами оптимизации для разработки программы, эффективно задействующейсовременную целевую архитектуру.

Самая эффективная оптимизация -O2 march=native (-O2 большая часть доступных опций / march=native - оптимизация под используемую архитектуру). Лучшие по времени оптимизации. '-flto' (оптимизация по времени) '-fipa-pta' и '-fipa-pta -flto' . Векторизация не привела к снижению времени работы программымы.