Course Code: V20CST06

V20

HTNO

SRI VASAVI ENGINEERING COLLEGE(Autonomous)

B.Tech IV SemesterRegular Examinations – July– 2022

DESIGN AND ANALYSIS OF ALGORITHMS

(Common to CSE, CST)

Time: 3:00 Hrs Max. Marks: 70Marks

Answer All the Questions. Each Questions Carry Equal Marks

1.				14 M	
	A.	i.	Explain recursive Merge sort algorithm and derive the time complexity.	CO1-K2-(7M)	
		ii.	Illustrate Asymptotic notations with an example.	CO1-K3-(7M)	
			OR		
	B.	i.	Explain Quick sort algorithm and analyse the algorithm for time complexity.	CO1-K2-(7M)	
		ii.	Explain recursive functions with an example.	CO1-K3-(7M)	
2.				14 M	
	A.	i.	Discuss Greedy Knapsack problem. Find an optimal solution to the Knapsack instance n=3,	CO2-K2-(7M)	
			knapsack size m=20, profit (P1, P2, P3) = (25, 24, 15) and weight (W1, W2, W3) = (18, 15, 10).		
		ii.	Explain the greedy technique for solving the Job Sequencing problem with example.	CO2-K3-(7M)	
			OR		
	В.	i.	Discuss the Dijkstra's single source shortest path algorithm and derive the time complexity of this algorithm.	CO2-K2-(7M)	
		ii.	Define Minimum cost spanning tree? Explain Kruskal's algorithm for generating minimum cost spanning tree	CO2-K3-(7M)	
2				1434	
3.	Α	i.	Fuelain Baliahilitu Basina Buahlan with suitahla ayananla	14 M	
	A.	ii.	Explain Reliability Design Problem with suitable example. Solve the knapsack problem by Dynamic Programming method n=6, profit (p1,p2,p6) = (80,	CO3-K2-(7M)	
		11.	55,25,15,10,5) weight (w1,w2,w6)=(100,50,20,10,7,3) and knapsack m=165.	CO3-K3-(/WI)	
	-		OR	G00 Y/2 (5) 6	
	В.	i.	Describe the algorithm to find minimum-cost binary search tree and also discuss its time complexity.	CO3-K2-(7M)	
		ii.	Explain Floyd–Warshall algorithm to find shortest path between all pairs of vertices	CO3-K3-(7M)	
4.		_		14 M	
	A.	i.	Solve the following instance using backtracking technique for the subset problem s=(1,3,4,5) and d=11.	CO4-K2-(7M)	
		ii.	Illustrate 8-queens problem using back tracking	CO4-K3-(7M)	
			OR		
	B.	i.	Explain Hamiltonian Cycle. Explain how to find Hamiltonian path and cycle using backtracking algorithm	CO4-K2-(7M)	
		ii.	Illustrate graph colouring technique using back tracking	CO4-K3-(7M)	
5.		<u> </u>		14 M	
	A.	i.	Explain the principles of Control Abstractions for LC-search.	CO5-K2-(7M)	
		ii.	Define 0/1 knapsack problem and design an algorithm of LC Branch and Bound to find the	CO5-K3-(7M)	
			solution for the knapsack instance with an example?		
	P		OR	COLUZ (Z) C	
	B.	i.	Explain the FIFO branch and bound solution with example	CO5-K2-(7M)	
		ii.	Explain what are P, NP, NP- complete and NP-hard problems	CO5-K3-(7M)	
			* * *		
				<u> </u>	

Page	2 of	2
------	-------------	---