Physical Chemistry (Chem 132A)

Lecture 13 Monday, October 30

Homework #5 will be due November 4

Additional Problems you should look at in the text, from Topic 5C. (not for credit but important for midterm 2 and final.

Exercises: 5c.3a, 5c.3b, 5c.4a, 5c.7a

Problems: 5c.5, 5c.7

Midterm Exam #1

Average = 50.1 Standard deviation = 12

MIXING

WHAT HAPPENS TO G AND S? $\Delta_{mix}G$ and $\Delta_{mix}S$??

$\Delta_{mix}G$ is negative

$\Delta_{mix}S$ is positive

Ideal solution definition: $\mu_j = \mu_j^* + RT \ln(x_j)$

Pressure above a mixed solution

$$p_a = x_a p$$
 note: $p = total pressure$

Definition of partial pressure.

Empirically: $p_a = x_a p_a^*$ Where p_a^* is the vapor pressure of pure A

Roult's law

Pressure above a mixed solution: Roult's Law

$p_a = x_a p$ note: p = total pressureDefinition of partial pressure.

Mole fraction of A, x_A

Empirically: $p_a = x_a p_a^*$ Where p_a^* is the vapor pressure of pure A

Non-Ideal Solution

Dilute Solutions that don't obey Roult's Law-

 $p_B = x_B K_B$ Henry's Law---Dilute solutions

Note: K_B is not the pure solute vapor pressure.

Colligative Properties

Boiling point elevation: $\Delta T_b = K_b b = K_b m$ Note: b subscript refers to "boiling point" b (non-subscript) is the molality of the solution

Freezing point depression: $\Delta T_f = K_f b$

Note: These are empirical relationships valid for low concentrations.

PHASE DIAGRAMS

Pure substance, e.g. water

Phase Diagrams for Binary Mixtures

- 1. Vapor pressure diagrams (pressure / composition)
- 2. Temperature / composition diagrams
- 3. Temperature / composition for partially miscible systems
- 4. Temperature / composition for liquid/solid systems

Example of a Vapor Pressure Diagram

Boiling point of pure M

TEMPERATURE / COMPOSITION

DISTILLATION

IDEAL SOLUTION

Mole fraction of A, z_{Δ}

300

AZEOTROPE

Favorable interactions between A and B Lead to reduced vapor pressure compared to ideal solution behavior

Azeotrope showing unfavorable interactions between A and B

THE END

SEE YOU WEDNESDAY