Registrador de Deslocamento

Por Fábio Dias Moreira, PUC-Rio 🔯 Brazil

Timelimit: 4

Um Registrador de Deslocamento é um circuito que desloca de uma posição os elementos de um vetor de bits. O registrador de deslocamento tem uma entrada (um bit) e uma saída (também um bit), e é comandado por um pulso de relógio. Quando o pulso ocorre, o bit de entrada se transforma no bit menos significativo do vetor, o bit mais significativo é jogado na saída do registrador, e todos os outros bits são deslocados de uma posição em direção ao bit mais significativo do vetor (em direção à saída).

Um Registrador de Deslocamento com Retroalimentação Linear (em inglês, LFSR) é um registrador de deslocamento no qual o *bit* de entrada é determinado pelo valor do OU-EXCLUSIVO de alguns dos *bits* do registrador antes do pulso de relógio. Os *bits* que são utilizados na retroalimentação do registrador são chamados de torneiras. A figura abaixo mostra um LFSR de 8 *bits*, com três torneiras (*bits* 0, 3 e 5).

Neste problema, você deve escrever um programa que, dados o número de *bits* de um LFSR, quais *bits* são utilizados na retroalimentação, um estado inicial e um estado final do LFSR, determine quantos pulsos de relógio serão necessários para que, partindo do estado inicial, o LFSR chegue ao estado final (ou determinar que isso é impossível).

Entrada

A entrada contém vários casos de teste. Cada caso de teste é composto por três linhas. A primeira linha contém dois números inteiros \mathbf{N} , \mathbf{T} , indicando respectivamente o número de *bits* ($2 \le \mathbf{N} \le 32$) e o número de torneiras ($2 \le \mathbf{T} \le \mathbf{N}$). Os *bits* são identificados por inteiros de 0 (*bit* menos significativo) a $\mathbf{N} - 1$ (*bit* mais significativo). A segunda linha contém \mathbf{T} inteiros, separados por espaços, apresentando os identificadores dos *bits* que são torneiras, em ordem crescente. O *bit* 0 sempre é uma torneira. A terceira linha contém dois números em notação hexadecimal $\mathbf{I} = \mathbf{F}$, separados por um espaço em branco, representando respectivamente o estado inicial e o estado final do LFSR.

O final da entrada é indicado por uma linha que contém dois zeros separados por espaços em branco.

Saída

Para cada caso de teste da entrada seu programa deve imprimir uma única linha. Se for possível chegar ao estado final a partir do estado inicial dado, a linha da saída deve conter apenas um inteiro, o menor número de pulsos de relógio necessários para o LFSR atingir o estado final. Caso não seja possível, a linha deve conter apenas o caractere '*'.

Exemplo de Entrada	Exemplo de Saída
8 3	3
0 3 5	*
a9 35	61
5 2	
0 4	
1b 2	
7 3	
0 2 3	
4d 1a	
0 0	

XIV Maratona de Programação da SBC 2009