Gaussian Process V0.2

May 14, 2021

1 System Setup

```
[1]: import sys
# !{sys.executable} -m pip install --upgrade pip
# !{sys.executable} -m pip install GPy
# !{sys.executable} -m pip install seaborn
```

```
[2]: import numpy as np
     import os
     import matplotlib.pyplot
     import pandas as pd
     import matplotlib.pyplot as plt
     import matplotlib as mpl
     import matplotlib.ticker as mticker
     import matplotlib.dates as mdates
     import datetime
     from tqdm import tqdm
     import GPy
     from collections import defaultdict
     from pathlib import Path
     import seaborn as sns
     import scipy.stats as stats
     mpl.rcParams['legend.frameon'] = False
     mpl.rcParams['figure.autolayout'] = True
     mpl.rcParams['figure.dpi'] = 300
     # mpl.rcParams['axes.spines.right'] = False
     # mpl.rcParams['axes.spines.top'] = False
     plt.rcParams.update({
         "text.usetex": True,
         "font.family": "sans-serif",
         "font.sans-serif": ["Helvetica"]})
     plt.rcParams.update({
         "text.usetex": True,
```

2 Data Wrangling

```
[3]: class AllData:
         """Load the data from the set path and prepare it in a useable format.
         def __init__(self):
             self.folder_name = "/bns_m3_3comp" # Change folder_name of data as_
      \rightarrow required.
         def load_path(self, path_to_dir):
              """ User defined path
              11 11 11
             self.folder_path = path_to_dir
             self.path = path_to_dir + self.folder_name
             return None
         def load_raw_data(self):
              """ Loads raw data from given path. Implimentation may different for \Box
      \rightarrow windows and mac/linux users.
             >>> data = AllData()
              >>> data.load_path("/Users/utkarsh/PycharmProjects/SURP2021")
             >>> data.load_raw_data()
              >>> print(data.raw_data.file_name.iloc[0])
              nph1.0e+06\_mejdyn0.001\_mejwind0.130\_phi45.txt
              >>> data.raw_data.file_name.iloc[192] == "nph1.0e+06_mejdyn0.
      \hookrightarrow 001_mejwind0.090_phi0.txt"
              True
```

```
>>> data.raw data.file name.iloc[192] == "nph1.0e+06 mejdyn0.
\hookrightarrow 005_mejwind0.110_phi0.txt"
       Fallse
       >>> data.raw data.file name.iloc[192] == "nph1.0e+06 mejdyn0.
\hookrightarrow 005_mejwind0.110_phi0.txt"
       False
       11 11 11
       resd = defaultdict(list)
       folder_path = Path(self.path)
       for file in folder_path.iterdir():
           with open(file, "r") as file_open:
               resd["file name"].append(file.name)
       temp df = pd.DataFrame(resd)
       self.raw_data = temp_df[temp_df.file_name != ".DS_Store"].
→reset index(drop=True)
       return None
  def process(self):
       """ Processes the data to a readable reference dataframe.
       >>> data = AllData()
       >>> data.load_path("/Users/utkarsh/PycharmProjects/SURP2021")
       >>> data.load raw data()
       >>> data.process()
       >>> print(data.reference_data.mejwind.iloc[68])
       0.03
       >>> print(data.reference data.mejdyn.iloc[173])
       0.02
       >>> data.reference data.phi.iloc[55] == 75
       False
       >>> data.reference_data.phi.iloc[57] == 75
       >>> data.reference_data.phi.iloc[56] == 75
       True
       split_series = self.raw_data.file_name.apply(lambda x: x.split('_'))
       temp_df = split_series.apply(pd.Series)
       temp df["file name"] = self.raw data.file name
       temp_df.columns = ["nph", "mejdyn", "mejwind", "phi", "filename"]
       temp_df["mejdyn"] = temp_df["mejdyn"].str.extract("(\d*\.?\d+)",__
→expand=True)
       temp_df["mejwind"] = temp_df["mejwind"].str.extract("(\d*\.?\d+)",_\_
→expand=True)
       temp_df["phi"] = temp_df["phi"].str.extract("(\d*\.?\d+)", expand=True)
       temp_df["nph"] = temp_df["nph"].apply(lambda x: float(x[3:]))
       temp_df[["mejdyn", "mejwind", "phi"]] = temp_df[["mejdyn", "mejwind", ___
→"phi"]].apply(pd.to_numeric)
```

```
self.reference_data = temp_df.reset_index(drop=True)
    return None
def save_reference(self):
    """ Saves the reference data into a file for future use.
    11 11 11
    try:
        self.reference_data.to_csv("reference.csv", index = False)
        print("[STATUS] Reference Saved")
    except Exception:
        print("[ERROR] Reference Unsaved")
def load_reference(self, name):
    """ Loads the saved dataframe to save on computing time.
    >>> data = AllData()
    >>> data.load_reference("reference.csv")
    >>> print(data.reference_data.mejwind.iloc[68])
    >>> print(data.reference_data.mejdyn.iloc[173])
    >>> data.reference_data.phi.iloc[55] == 75
    False
    >>> data.reference_data.phi.iloc[57] == 75
    >>> data.reference data.phi.iloc[56] == 75
    True
    self.reference_data = pd.read_csv(name)
```

3 Light Curve Selection

```
[4]: class LightCurve():
    """ The information regarding KNe light curves and data corresponding to
    →KNe light curves.
    """

def __init__(self, referenceName):
    """ Initializes class, reference is all the light curves, and selected
    →represents ones of interest to be narrowed.
    """

self.reference = pd.read_csv(referenceName)
    self.selected = self.reference.copy()

def _slice(self, typ, Min, Max):
```

```
sliced = self.selected[self.selected[typ] >= Min]
       sliced2 = sliced[sliced[typ] <= Max]</pre>
       return sliced2
   def select_curve(self, phiRange, mejdynRange, mejwindRange, nphRange = u
→[1e6]):
       """ Select a measurment based on the physics limits required.
       >>> data = LightCurve("reference.csv")
       >>> phi_range = [30]
       >>> mejdyn_range = [0.01]
       >>> mejwind_range = [0.11]
       >>> data.select_curve(phiRange = phi_range, mejdynRange = mejdyn_range, u
→mejwindRange = mejwind_range)
       >>> print(data.selected.filename.iloc[0])
       nph1.0e+06\_mejdyn0.010\_mejwind0.110\_phi30.txt
       self.selected = self._slice("nph", min(nphRange), max(nphRange))
       self.selected = self._slice("phi", min(phiRange), max(phiRange))
       self.selected = self._slice("mejdyn", min(mejdynRange),_
→max(mejdynRange))
       self.selected = self._slice("mejwind", min(mejwindRange),__
→max(mejwindRange))
       return None
   def _set_path(self):
       """ Sets the path to the file to be extracted. Chooses first file if_{\sqcup}
\hookrightarrow there are many.
       self.folder_path = os.getcwd() + "/bns_m3_3comp/"
       self.path = self.folder_path + self.selected.filename.iloc[0]
       if len(self.selected.filename) > 1:
           print(f"[WARNING] Many curves in data: First curve has been_
⇒selected. \n[CURVE] {self.selected.filename.iloc[0]}")
       return None
   def extract curve(self):
       """ Extracts curve based on selected data and converts it into \textbf{a}_{\!\!\perp}
\hookrightarrow readable format.
       >>> data = LightCurve("reference.csv")
       >>> phi_range = [60]
       >>> mejdyn_range = [0.02]
       >>> mejwind_range = [0.11]
       >>> data.select_curve(phiRange = phi_range, mejdynRange = mejdyn_range,_
→mejwindRange = mejwind_range)
       >>> data.extract_curve()
```

```
>>> data.curve.shape
       (11, 500)
       >>> zBand = 910
       >>> plotDf = data.curve.loc[:, [zBand]]
       >>> print(plotDf.loc[1,zBand][3])
       0.0028678
       >>> print(data.selected.filename.iloc[0])
       nph1.0e+06\_mejdyn0.020\_mejwind0.110\_phi60.txt
       # Obtain path to read curve from.
       self. set path()
       # Read txt file containing light curve information
       temp0 = pd.read_csv(self.path, header = None, names = ["data"])
       # Set parameters for viewing angles, numbers of wavelengths, and time_
\hookrightarrowstep.
       self.Nobs = int(temp0.data.iloc[0])
       self.Nwave = float(temp0.data.iloc[1])
       self.Ntime = list(map(float, temp0.data.iloc[2].split()))
       # Drop information header and reset index.
       temp1 = temp0.iloc[3:].reset_index(drop = True)
       # Convert data from string to float
       temp1["data"] = temp1["data"].apply(lambda x: list(map(float, x.
→split())))
       # Obtain wavelength from messy data list. Convert to nm
       temp1.loc[:, 'wavelength'] = temp1.data.map(lambda x: x[0]/10)
       # Remove wavelengths from data vector.
       temp1["data"] = temp1["data"].apply(lambda x: x[1:])
       # Pivot to order the table by wavelengths
       temp1 = temp1.pivot(columns = "wavelength", values = "data")
       # Concatenate all rows to remove NA values to get a neat, readable \Box
\rightarrow dataframe.
       final = pd.concat([temp1[col].dropna().reset index(drop=True) for col__
\rightarrowin temp1], axis=1)
       # Rename axis titles.
       final.index.name = "iobs"
       final.columns.name = "wavelength"
       self.curve = final
```

```
return None
   def _odd(self,x):
       """Rounds to nearest odd numbers
       >>> data = LightCurve("reference.csv")
       >>> data._odd(3)
       >>> data._odd(2.5)
       >>> data._odd(2)
       >>> data._odd(1.999)
       return 2 * int(x/2) + 1
   def simple_plot(self, wv):
       print("[STATUS] Plotting...")
       self.time_arr = np.linspace(int(self.Ntime[1]), int(self.Ntime[2]),__
→int(self.Ntime[0]), endpoint = True)
       self.wavelength = 10*self. odd(wv/10)
       viewing_angles = np.linspace(0, 1, data.Nobs, endpoint = True)
       plt.figure()
       plt.gca().set_prop_cycle("color", sns.color_palette("coolwarm_r",self.
→Nobs))
       for i,j in self.curve.loc[:, [self.wavelength]].iterrows():
           ang = round(np.degrees(np.arccos(viewing_angles[i])), 2)
           plt.plot(self.time_arr, j.values[0], label = f"{ang}"r"$^o$",_
\rightarrowlinewidth = 1)
       plt.xlabel("Time (Days)")
       plt.ylabel(r"Flux $Erg s^{-1} cm^{-2}A^{-1}$")
       plt.title(f"Lights curves for {self.Nobs} viewing angles at {self.
→wavelength}nm")
       utkarshGrid()
       plt.legend(title = r"$\Phi$")
       return None
```

4 Script

```
[5]: # if __name__ == "__main__":
import doctest
doctest.testmod()
```

```
[6]: # Parse Data
     initial = AllData()
     # Only needs to be done the first time
     initial.load path("/Users/utkarsh/PycharmProjects/SURP2021")
     initial.load_raw_data()
     initial.process()
     initial.save_reference()
     initial.reference_data
    [STATUS] Reference Saved
[6]:
                nph mejdyn mejwind phi \
     0
          1000000.0
                      0.001
                                0.13
                                        45
                                 0.05
     1
          1000000.0
                      0.010
                                        15
     2
          1000000.0
                      0.001
                                0.01
                                       75
     3
          1000000.0
                      0.005
                                0.09
                                       75
     4
                      0.020
          1000000.0
                                0.11
                                        60
     191 1000000.0
                      0.005
                                0.11
                                        0
     192 1000000.0
                      0.001
                                0.09
                                        0
                                0.07
     193 1000000.0
                      0.020
                                        0
     194 1000000.0
                      0.010
                                0.05
                                        30
     195 1000000.0
                      0.001
                                0.13
                                        60
                                                filename
     0
          nph1.0e+06_mejdyn0.001_mejwind0.130_phi45.txt
     1
          nph1.0e+06_mejdyn0.010_mejwind0.050_phi15.txt
     2
          nph1.0e+06_mejdyn0.001_mejwind0.010_phi75.txt
          nph1.0e+06_mejdyn0.005_mejwind0.090_phi75.txt
     4
          nph1.0e+06_mejdyn0.020_mejwind0.110_phi60.txt
     . .
           nph1.0e+06_mejdyn0.005_mejwind0.110_phi0.txt
     191
           nph1.0e+06 mejdyn0.001 mejwind0.090 phi0.txt
     192
     193
           nph1.0e+06_mejdyn0.020_mejwind0.070_phi0.txt
     194
          nph1.0e+06_mejdyn0.010_mejwind0.050_phi30.txt
          nph1.0e+06_mejdyn0.001_mejwind0.130_phi60.txt
     195
     [196 rows x 5 columns]
[7]: # Selecting a singular light curve
     data = LightCurve("reference.csv")
     phi_range = [30,60]
     mejdyn_range = [0.01, 0.02]
```

[5]: TestResults(failed=0, attempted=45)

```
data.select_curve(phiRange = phi_range,
                    mejdynRange = mejdyn_range,
                    mejwindRange = mejwind_range)
    data.selected
[7]:
             nph mejdyn mejwind phi
    4
        1000000.0
                   0.02
                            0.11
                                  60
        1000000.0
                   0.01
                           0.11
    88
                                  60
    106 1000000.0
                   0.01
                           0.11
                                  45
                           0.11
    123 1000000.0
                   0.02
                                  30
    159
        1000000.0
                   0.01
                           0.11
                                  30
    186 1000000.0
                    0.02
                           0.11
                                  45
                                         filename
    4
        nph1.0e+06_mejdyn0.020_mejwind0.110_phi60.txt
        nph1.0e+06_mejdyn0.010_mejwind0.110_phi60.txt
    88
    106 nph1.0e+06_mejdyn0.010_mejwind0.110_phi45.txt
        nph1.0e+06_mejdyn0.020_mejwind0.110_phi30.txt
        nph1.0e+06_mejdyn0.010_mejwind0.110_phi30.txt
    159
        nph1.0e+06_mejdyn0.020_mejwind0.110_phi45.txt
    186
[8]: data.extract_curve()
    data.curve.head(2) # iobs goes from 0 --> 10 (11 rows)
    [WARNING] Many curves in data: First curve has been selected.
    [CURVE] nph1.0e+06_mejdyn0.020_mejwind0.110_phi60.txt
                                                    10.0
[8]: wavelength
    iobs
    0
               1
               30.0
    wavelength
                                                           \
    iobs
               0
    1
               wavelength
                                                    50.0
                                                           \
    iobs
               [4.0387e-15, 1.2203e-06, 2.4324e-07, 7.9271e-0...
    0
               [2.9736e-15, 1.3601e-06, 2.3303e-07, 8.1683e-0...
    wavelength
                                                    70.0
                                                           \
    iobs
               [1.4257e-12, 3.9016e-05, 1.2179e-05, 3.1122e-0...
    0
    1
               [2.43e-12, 3.9696e-05, 1.2017e-05, 3.0895e-06,...
```

mejwind_range = [0.11]

```
90.0
wavelength
iobs
           [3.2954e-10, 0.00017416, 0.00010168, 3.2372e-0...
           [5.3195e-10, 0.00017769, 0.00010233, 3.2907e-0...
1
                                                     110.0
                                                            \
wavelength
iobs
           [3.4215e-08, 0.0027166, 0.00045816, 0.00013985...
1
           [5.1259e-08, 0.0027128, 0.00046453, 0.00014821...
wavelength
                                                     130.0
                                                            \
iobs
           [1.2376e-06, 0.00091114, 0.00071721, 0.0004897...
0
1
           [1.769e-06, 0.00090998, 0.00073516, 0.00041236...
                                                     150.0
wavelength
                                                            \
iobs
           [2.0326e-05, 0.0029708, 0.0013356, 0.0011571, ...
0
           [2.2727e-05, 0.0030483, 0.0013946, 0.0011474, ...
wavelength
                                                     170.0
                                                           \
iobs
           [8.5044e-05, 0.0047244, 0.0021553, 0.0011496, ...
0
1
           [8.6299e-05, 0.0048463, 0.0020631, 0.0011407, ...
                                                     190.0
wavelength
iobs
           [0.00015567, 0.0015238, 0.0059957, 0.0013954, ...
0
           [0.00014803, 0.0015737, 0.0059852, 0.0017754, ... ...
1
                                                     9810.0 \
wavelength
iobs
           [0.0, 0.0, 0.0, 0.0, 0.0, 2.4802e-08, 0.0, 0.0...
           9830.0 \
wavelength
iobs
           [0.0, 0.0, 0.0, 0.0, 2.9992e-08, 0.0, 0.0, 0.0...
0
           [0.0, 0.0, 0.0, 0.0, 0.0, 1.2769e-08, 0.0, 0.0...
                                                     9850.0 \
wavelength
iobs
           [0.0, 0.0, 0.0, 0.0, 4.4778e-05, 0.0, 0.0, 0.0...
                                                     9870.0 \
wavelength
```

```
iobs
  0
          1
          wavelength
                                   9890.0 \
  iobs
  0
          [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.8119e-08...
  1
          [0.0, 0.0, 0.0, 0.0, 2.8966e-08, 0.0, 0.0, 0.0...
  wavelength
                                   9910.0 \
  iobs
  0
          [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7845e-08...
                                   9930.0 \
  wavelength
  iobs
          0
  1
          9950.0 \
  wavelength
  iobs
          0
          wavelength
                                   9970.0 \
  iobs
          [0.0, 0.0, 0.0, 3.1167e-08, 0.0, 0.0, 0.0, 0.0...
          wavelength
                                   9990.0
  iobs
  0
          [0.0, 0.0, 0.0, 0.0, 0.0, 3.827e-05, 0.0, 0.0, ...
          [0.0, 0.0, 0.0, 3.1445e-08, 0.0, 0.0, 0.0, 0.0.
  [2 rows x 500 columns]
[9]: zBand = 900.0
  1Band = 3450
  data.simple_plot(zBand)
```

[STATUS] Plotting...

Plot is based on viewing angle. The plot is also general for any wavelength.

5 Gaussian Process

```
=== NOT PROPER YET ===
```

```
[10]: gp = LightCurve("reference.csv")
      phi_range = [45]
      mejdyn_range = [0.01]
      mejwind_range = [0.11]
      gp.select_curve(phiRange = phi_range,
                        mejdynRange = mejdyn_range,
                        mejwindRange = mejwind_range)
      gp.extract_curve()
      z = gp.curve.T[gp.curve.T.index == 910]
      z = z.reset_index(drop = True)
      z = z.apply(pd.Series.explode).reset_index(drop = True)
      time_arr = np.linspace(gp.Ntime[1], gp.Ntime[2], int(gp.Ntime[0]), endpoint =__
      →True)
      z["time"] = time arr
      z.index.name = "time_step"
      print(z.shape)
      z
```

(100, 12)

0

1

2

3

[10]: iobs

```
time_step
                 0.000008
                          0.000075 0.000068 0.000074 0.000002
                                                                  0.000002
                 0.000821
                          0.000162
                                      0.0002
                                                0.00032 0.000109
      1
                                                                  0.000424
      2
                 0.001215
                          0.000896
                                      0.0011
                                              0.001182 0.001163
                                                                  0.000646
      3
                 0.002716
                          0.002916
                                    0.001421
                                               0.001165
                                                        0.002129
                                                                   0.003567
      4
                 0.001977
                          0.002169
                                    0.001102
                                              0.002042
                                                        0.003423
                                                                  0.002785
      95
                 0.000024
                          0.000023 0.000023
                                              0.000023 0.000022
                                                                  0.000023
      96
                 0.000018
                          0.000019
                                    0.000019
                                               0.000019
                                                        0.000019
                                                                  0.000019
      97
                 0.000016
                          0.000014
                                    0.000015
                                              0.000014 0.000016
                                                                  0.000018
                          0.000014 0.000014
      98
                 0.000014
                                              0.000016 0.000015
                                                                  0.000016
      99
                 0.000013
                          0.000012 0.000013
                                              0.000013 0.000013
                                                                  0.000014
      iobs
                       6
                                 7
                                           8
                                                     9
                                                               10
                                                                        time
      time step
                          0.000001 0.000001
                                              0.000001
                                                        0.00001
                                                                   0.000000
      0
                 0.000002
      1
                 0.000436
                           0.00078
                                    0.000874
                                              0.002856 0.000297
                                                                   0.202020
      2
                          0.001691
                                              0.001234
                 0.001896
                                    0.002209
                                                         0.00303
                                                                   0.404040
      3
                 0.003088
                          0.003888 0.005563
                                              0.004848
                                                        0.004608
                                                                   0.606061
      4
                 0.00437
                                     0.00737
                                              0.005397
                                                        0.003681
                                                                   0.808081
                          0.005405
                          0.000027 0.000025
      95
                 0.000024
                                              0.000027
                                                          0.00003
                                                                  19.191919
      96
                 0.000019
                          0.000021
                                    0.000025
                                               0.000028
                                                        0.000025
                                                                   19.393939
      97
                 0.000021
                          0.000023
                                    0.000022
                                               0.000022
                                                        0.000023
                                                                   19.595960
      98
                 0.000015
                          0.000014 0.000018
                                              0.000022 0.000026
                                                                   19.797980
                          0.000021
                                    0.000019
                                              0.000017
      99
                 0.000016
                                                        0.000021
                                                                  20.000000
      [100 rows x 12 columns]
[11]: # Q5
      # Get time closest to one day.
      time_ind = np.argmin(np.abs(time_arr-1)) # Not sure what to do with "one day"
      one_day = z.iloc[time_ind - delta: time_ind + delta + 1] # select around one day
      del one day["time"] # dont need time after choosing our time frame
      one_day
                                 1
                                          2
                                                     3
[11]: iobs
                      0
                                                               4
                                                                        5
                                                                            \
      time_step
                          0.002237 0.003472 0.003301 0.004151
                0.002709
                                7
                                          8
                      6
                                                    9
                                                               10
      iobs
      time_step
```

```
5
                 0.004041 0.005399 0.005223 0.005627 0.007347
[12]: # Q6, Q7
      # Median normalization
      def med norm(df):
          med = np.median(df)
          return df.divide(med) - 1
      def med_norm_arr(arr):
          med = np.median(arr)
          return arr/med - 1
      normed = med_norm(one_day)
      normed
[12]: iobs
                       0
                                1
                                          2
                                                    3
                                                         4
                                                                   5
     time_step
                -0.347282 -0.46114 -0.163462 -0.204852 0.0 0.222102 -0.02638
                       7
                                 8
                                          9
      iobs
                                                    10
     time_step
                 0.300713 0.258215 0.35557 0.770141
[13]: # Q8, Q9
      X = np.arange(0, gp.Nobs, 1)
      Y = np.array(normed.iloc[0])
      X = X.reshape(len(X), 1)
      Y = Y.reshape(len(Y), 1)
      kernel = GPy.kern.RBF(input_dim=1, variance = 1, lengthscale=1) # Variance
      m = GPy.models.GPRegression(X, Y, kernel)
[14]: # Q10
      predX = np.linspace(0,11,100).reshape(100, 1)
      → "random draw"
      # predY = med_norm_arr(predY)
      m.plot(samples = 3)
```

\

6

```
predY = m.predict(predX)[0] - m.predict(predX)[1] # What does it mean to plot <math>a_{\square}
plt.plot(predX,predY, color = "red", label = "prior")
# plt.ylim(-1,1)
# Y-Axis: Fractional distance of median flux
predY_mean, predY_var = m.predict(predX, full_cov=True)
print(predY_var) # plot covariance
# Multidmensional version of scipy normal
# Inject predY_var
```

```
# Random Draw from normal

mu = 0
sigma = 1
x = np.linspace(mu - 3*sigma, mu + 3*sigma, 100)
# plt.plot(x, stats.norm.pdf(x, mu, sigma), label = "Unit Gaussian")
```



```
[15]: # Q11, Q12 display(m)
```

```
# m.optimize(messages=True)
      m.optimize restarts(num restarts = 10)
     <GPy.models.gp_regression.GPRegression at 0x7f8c9f1aa130>
     Optimization restart 1/10, f = -1.3297537699107762
     Optimization restart 2/10, f = -1.3297537699106217
     Optimization restart 3/10, f = -1.3297537699096056
     Optimization restart 4/10, f = -1.3297537698897681
     Optimization restart 5/10, f = -1.3297537699114832
     Optimization restart 6/10, f = -1.329753769908617
     Optimization restart 7/10, f = -1.3297537699114308
     Optimization restart 8/10, f = -1.329753769784281
     Optimization restart 9/10, f = -1.3297537699114939
     Optimization restart 10/10, f = -1.32975376990992
[15]: [<paramz.optimization.optimization.opt lbfgsb at 0x7f8ca16d22e0>,
       <paramz.optimization.optimization.opt_lbfgsb at 0x7f8c9e3ca280>,
       <paramz.optimization.optimization.opt_lbfgsb at 0x7f8c9e3c4b20>,
       <paramz.optimization.optimization.opt_lbfgsb at 0x7f8c9e409e50>,
       <paramz.optimization.optimization.opt lbfgsb at 0x7f8c9e2365e0>,
       <paramz.optimization.optimization.opt_lbfgsb at 0x7f8c9e3d26d0>,
       <paramz.optimization.optimization.opt lbfgsb at 0x7f8c9e3caac0>,
       <paramz.optimization.optimization.opt_lbfgsb at 0x7f8ca16d2370>,
       <paramz.optimization.optimization.opt_lbfgsb at 0x7f8c9e409e80>,
       <paramz.optimization.optimization.opt_lbfgsb at 0x7f8c9e236d60>]
[16]: predX = np.linspace(0,11,100).reshape(100, 1)
      predY = m.predict(predX)[0] - m.predict(predX)[1] # Should I be applying a_
       → random variance in pred iteratively
      # predY = med_norm_arr(predY) # Why does turning this off make a difference?
      print(m)
      m.plot(samples = 3)
      plt.plot(predX,predY, color = "red", label = "Prediction")
      plt.ylim(-4,4)
      plt.legend()
     Name : GP regression
     Objective : -1.3297537699114939
     Number of Parameters : 3
     Number of Optimization Parameters : 3
     Updates : True
     Parameters:
       GP_regression.
                                                  value | constraints |
     priors
```

```
rbf.variance | 0.5048698656337448 | +ve | rbf.lengthscale | 10.237695206905478 | +ve | Gaussian_noise.variance | 0.019581530190045226 | +ve |
```

[16]: <matplotlib.legend.Legend at 0x7f8cb711da60>

Q13) Comments about fidelity of the emulator prediction.

```
[17]: #Q14
hist = []
vec = np.array(normed.iloc[0])
# print("Vector:",vec)

for i in range(11):
    # for i in range(1):
    loo = np.delete(vec, i)
    trueY = vec[i:i+1]
    if trueY in loo:
        print("[ERROR] Element left out is in your training data")
        break

X = np.arange(0, gp.Nobs - 1, 1)
    Y = loo
```

```
X = X.reshape(len(X), 1)
Y = Y.reshape(len(Y), 1)
kernel = GPy.kern.RBF(input_dim=1, variance = 1, lengthscale=1)
mLoo = GPy.models.GPRegression(X, Y, kernel)

mLoo.optimize #Maybe optimize researts is the correct thing to use here.

predX = np.linspace(0,10,100).reshape(100, 1)
predY_mean, predY_var = mLoo.predict(predX)
predY_mean = predY_mean.reshape(1, len(predY_mean))[0]
predY_var = predY_var.reshape(1, len(predY_var))[0]
print(predY_var) # Variances are the same?
hist.append((predY_mean - trueY)/np.sqrt(predY_var))
```

```
[1.44892176 1.43113568 1.41794277 1.40868383 1.40258386 1.39885663
1.39678959 1.395798
                      1.3954451 1.39543293 1.39557423 1.39575774
1.39591789 1.39601503 1.39602734 1.39595075 1.39580081 1.39561131
1.39542682 1.3952903 1.39522973 1.39524884 1.39532599 1.39542189
1.39549387 1.39551128 1.39546638 1.39537653 1.39527692 1.39520655
1.39519287 1.39524114 1.39533236 1.39543074 1.39549769 1.39550691
1.3954546 1.395361
                      1.39526247 1.39519733 1.39519091 1.39524572
1.3953404 1.39543809 1.39550074 1.39550395 1.39544648 1.39535071
1.39525392 1.39519382 1.3951938 1.39525389 1.3953507 1.39544659
1.39550429 1.39550147 1.39543942 1.39534254 1.39524883 1.39519505
1.39520234 1.39526798 1.39536634 1.39545894 1.3955095 1.3954984
1.39543081 1.39533546 1.3952545 1.39522822 1.39528056 1.39541039
1.39559187 1.39578296 1.39593863 1.39602359 1.39602029 1.39593093
1.39577562 1.39559203 1.39544247 1.3954324 1.3957399 1.39665041
1.39858599 1.40211693 1.40794488 1.41685209 1.42961917 1.44692182
1.46922331 1.49668228 1.5290936 1.56587464 1.60610069 1.64858449
1.69198722 1.73494344 1.77618165 1.81462434]
[1.44892176 1.43113568 1.41794277 1.40868383 1.40258386 1.39885663
1.39678959 1.395798
                      1.3954451 1.39543293 1.39557423 1.39575774
1.39591789 1.39601503 1.39602734 1.39595075 1.39580081 1.39561131
1.39542682 1.3952903 1.39522973 1.39524884 1.39532599 1.39542189
1.39549387 1.39551128 1.39546638 1.39537653 1.39527692 1.39520655
1.39519287 1.39524114 1.39533236 1.39543074 1.39549769 1.39550691
1.3954546 1.395361
                      1.39526247 1.39519733 1.39519091 1.39524572
1.3953404 1.39543809 1.39550074 1.39550395 1.39544648 1.39535071
1.39525392 1.39519382 1.3951938 1.39525389 1.3953507 1.39544659
1.39550429 1.39550147 1.39543942 1.39534254 1.39524883 1.39519505
1.39520234 1.39526798 1.39536634 1.39545894 1.3955095 1.3954984
1.39543081 1.39533546 1.3952545 1.39522822 1.39528056 1.39541039
1.39559187 1.39578296 1.39593863 1.39602359 1.39602029 1.39593093
1.39577562 1.39559203 1.39544247 1.3954324 1.3957399 1.39665041
```

```
1.39858599 1.40211693 1.40794488 1.41685209 1.42961917 1.44692182
1.46922331 1.49668228 1.5290936 1.56587464 1.60610069 1.64858449
1.69198722 1.73494344 1.77618165 1.81462434]
[1.44892176 1.43113568 1.41794277 1.40868383 1.40258386 1.39885663
1.39678959 1.395798
                     1.3954451 1.39543293 1.39557423 1.39575774
1.39591789 1.39601503 1.39602734 1.39595075 1.39580081 1.39561131
1.39542682 1.3952903 1.39522973 1.39524884 1.39532599 1.39542189
1.39549387 1.39551128 1.39546638 1.39537653 1.39527692 1.39520655
1.39519287 1.39524114 1.39533236 1.39543074 1.39549769 1.39550691
1.3954546 1.395361
                      1.39526247 1.39519733 1.39519091 1.39524572
1.3953404 1.39543809 1.39550074 1.39550395 1.39544648 1.39535071
1.39525392 1.39519382 1.3951938 1.39525389 1.3953507 1.39544659
1.39550429 1.39550147 1.39543942 1.39534254 1.39524883 1.39519505
1.39520234 1.39526798 1.39536634 1.39545894 1.3955095 1.3954984
1.39543081 1.39533546 1.3952545 1.39522822 1.39528056 1.39541039
1.39559187 1.39578296 1.39593863 1.39602359 1.39602029 1.39593093
1.39577562 1.39559203 1.39544247 1.3954324 1.3957399 1.39665041
1.39858599 1.40211693 1.40794488 1.41685209 1.42961917 1.44692182
1.46922331 1.49668228 1.5290936 1.56587464 1.60610069 1.64858449
1.69198722 1.73494344 1.77618165 1.81462434]
[1.44892176 1.43113568 1.41794277 1.40868383 1.40258386 1.39885663
1.39678959 1.395798
                      1.3954451 1.39543293 1.39557423 1.39575774
1.39591789 1.39601503 1.39602734 1.39595075 1.39580081 1.39561131
1.39542682 1.3952903 1.39522973 1.39524884 1.39532599 1.39542189
1.39549387 1.39551128 1.39546638 1.39537653 1.39527692 1.39520655
1.39519287 1.39524114 1.39533236 1.39543074 1.39549769 1.39550691
1.3954546 1.395361
                      1.39526247 1.39519733 1.39519091 1.39524572
1.3953404 1.39543809 1.39550074 1.39550395 1.39544648 1.39535071
1.39525392 1.39519382 1.3951938 1.39525389 1.3953507 1.39544659
1.39550429 1.39550147 1.39543942 1.39534254 1.39524883 1.39519505
1.39520234 1.39526798 1.39536634 1.39545894 1.3955095 1.3954984
1.39543081 1.39533546 1.3952545 1.3952822 1.39528056 1.39541039
1.39559187 1.39578296 1.39593863 1.39602359 1.39602029 1.39593093
1.39577562 1.39559203 1.39544247 1.3954324 1.3957399 1.39665041
1.39858599 1.40211693 1.40794488 1.41685209 1.42961917 1.44692182
1.46922331 1.49668228 1.5290936 1.56587464 1.60610069 1.64858449
1.69198722 1.73494344 1.77618165 1.81462434]
[1.44892176 1.43113568 1.41794277 1.40868383 1.40258386 1.39885663
1.39678959 1.395798
                     1.3954451 1.39543293 1.39557423 1.39575774
1.39591789 1.39601503 1.39602734 1.39595075 1.39580081 1.39561131
1.39542682 1.3952903 1.39522973 1.39524884 1.39532599 1.39542189
1.39549387 1.39551128 1.39546638 1.39537653 1.39527692 1.39520655
1.39519287 1.39524114 1.39533236 1.39543074 1.39549769 1.39550691
1.3954546 1.395361
                      1.39526247 1.39519733 1.39519091 1.39524572
1.3953404 1.39543809 1.39550074 1.39550395 1.39544648 1.39535071
1.39525392 1.39519382 1.3951938 1.39525389 1.3953507 1.39544659
1.39550429 1.39550147 1.39543942 1.39534254 1.39524883 1.39519505
1.39520234 1.39526798 1.39536634 1.39545894 1.3955095 1.3954984
```

```
1.39543081 1.39533546 1.3952545 1.39522822 1.39528056 1.39541039
1.39559187 1.39578296 1.39593863 1.39602359 1.39602029 1.39593093
1.39577562 1.39559203 1.39544247 1.3954324 1.3957399 1.39665041
1.39858599 1.40211693 1.40794488 1.41685209 1.42961917 1.44692182
1.46922331 1.49668228 1.5290936 1.56587464 1.60610069 1.64858449
1.69198722 1.73494344 1.77618165 1.81462434]
[1.44892176 1.43113568 1.41794277 1.40868383 1.40258386 1.39885663
1.39678959 1.395798
                      1.3954451 1.39543293 1.39557423 1.39575774
1.39591789 1.39601503 1.39602734 1.39595075 1.39580081 1.39561131
1.39542682 1.3952903 1.39522973 1.39524884 1.39532599 1.39542189
1.39549387 1.39551128 1.39546638 1.39537653 1.39527692 1.39520655
1.39519287 1.39524114 1.39533236 1.39543074 1.39549769 1.39550691
1.3954546 1.395361
                     1.39526247 1.39519733 1.39519091 1.39524572
1.3953404 1.39543809 1.39550074 1.39550395 1.39544648 1.39535071
1.39525392 1.39519382 1.3951938 1.39525389 1.3953507 1.39544659
1.39550429 1.39550147 1.39543942 1.39534254 1.39524883 1.39519505
1.39520234 1.39526798 1.39536634 1.39545894 1.3955095 1.3954984
1.39543081 1.39533546 1.3952545 1.3952822 1.39528056 1.39541039
1.39559187 1.39578296 1.39593863 1.39602359 1.39602029 1.39593093
1.39577562 1.39559203 1.39544247 1.3954324 1.3957399 1.39665041
1.39858599 1.40211693 1.40794488 1.41685209 1.42961917 1.44692182
1.46922331 1.49668228 1.5290936 1.56587464 1.60610069 1.64858449
1.69198722 1.73494344 1.77618165 1.81462434]
[1.44892176 1.43113568 1.41794277 1.40868383 1.40258386 1.39885663
1.39678959 1.395798
                     1.3954451 1.39543293 1.39557423 1.39575774
1.39591789 1.39601503 1.39602734 1.39595075 1.39580081 1.39561131
1.39542682 1.3952903 1.39522973 1.39524884 1.39532599 1.39542189
1.39549387 1.39551128 1.39546638 1.39537653 1.39527692 1.39520655
1.39519287 1.39524114 1.39533236 1.39543074 1.39549769 1.39550691
1.3954546 1.395361
                     1.39526247 1.39519733 1.39519091 1.39524572
1.3953404 1.39543809 1.39550074 1.39550395 1.39544648 1.39535071
1.39525392 1.39519382 1.3951938 1.39525389 1.3953507 1.39544659
1.39550429 1.39550147 1.39543942 1.39534254 1.39524883 1.39519505
1.39520234 1.39526798 1.39536634 1.39545894 1.3955095 1.3954984
1.39543081 1.39533546 1.3952545 1.39522822 1.39528056 1.39541039
1.39559187 1.39578296 1.39593863 1.39602359 1.39602029 1.39593093
1.39577562 1.39559203 1.39544247 1.3954324 1.3957399 1.39665041
1.39858599 1.40211693 1.40794488 1.41685209 1.42961917 1.44692182
1.46922331 1.49668228 1.5290936 1.56587464 1.60610069 1.64858449
1.69198722 1.73494344 1.77618165 1.81462434]
[1.44892176 1.43113568 1.41794277 1.40868383 1.40258386 1.39885663
1.39678959 1.395798
                     1.3954451 1.39543293 1.39557423 1.39575774
1.39591789 1.39601503 1.39602734 1.39595075 1.39580081 1.39561131
1.39542682 1.3952903 1.39522973 1.39524884 1.39532599 1.39542189
1.39549387 1.39551128 1.39546638 1.39537653 1.39527692 1.39520655
1.39519287 1.39524114 1.39533236 1.39543074 1.39549769 1.39550691
1.3954546 1.395361
                      1.39526247 1.39519733 1.39519091 1.39524572
1.3953404 1.39543809 1.39550074 1.39550395 1.39544648 1.39535071
```

```
1.39525392 1.39519382 1.3951938 1.39525389 1.3953507 1.39544659
1.39550429 1.39550147 1.39543942 1.39534254 1.39524883 1.39519505
1.39520234 1.39526798 1.39536634 1.39545894 1.3955095 1.3954984
1.39543081 1.39533546 1.3952545 1.39522822 1.39528056 1.39541039
1.39559187 1.39578296 1.39593863 1.39602359 1.39602029 1.39593093
1.39577562 1.39559203 1.39544247 1.3954324 1.3957399 1.39665041
1.39858599 1.40211693 1.40794488 1.41685209 1.42961917 1.44692182
1.46922331 1.49668228 1.5290936 1.56587464 1.60610069 1.64858449
1.69198722 1.73494344 1.77618165 1.81462434]
[1.44892176 1.43113568 1.41794277 1.40868383 1.40258386 1.39885663
1.39678959 1.395798
                     1.3954451 1.39543293 1.39557423 1.39575774
1.39591789 1.39601503 1.39602734 1.39595075 1.39580081 1.39561131
1.39542682 1.3952903 1.39522973 1.39524884 1.39532599 1.39542189
1.39549387 1.39551128 1.39546638 1.39537653 1.39527692 1.39520655
1.39519287 1.39524114 1.39533236 1.39543074 1.39549769 1.39550691
1.3954546 1.395361 1.39526247 1.39519733 1.39519091 1.39524572
1.3953404 1.39543809 1.39550074 1.39550395 1.39544648 1.39535071
1.39525392 1.39519382 1.3951938 1.39525389 1.3953507 1.39544659
1.39550429 1.39550147 1.39543942 1.39534254 1.39524883 1.39519505
1.39520234 1.39526798 1.39536634 1.39545894 1.3955095 1.3954984
1.39543081 1.39533546 1.3952545 1.39522822 1.39528056 1.39541039
1.39559187 1.39578296 1.39593863 1.39602359 1.39602029 1.39593093
1.39577562 1.39559203 1.39544247 1.3954324 1.3957399 1.39665041
1.39858599 1.40211693 1.40794488 1.41685209 1.42961917 1.44692182
1.46922331 1.49668228 1.5290936 1.56587464 1.60610069 1.64858449
1.69198722 1.73494344 1.77618165 1.81462434]
[1.44892176 1.43113568 1.41794277 1.40868383 1.40258386 1.39885663
1.39678959 1.395798
                     1.3954451 1.39543293 1.39557423 1.39575774
1.39591789 1.39601503 1.39602734 1.39595075 1.39580081 1.39561131
1.39542682 1.3952903 1.39522973 1.39524884 1.39532599 1.39542189
1.39549387 1.39551128 1.39546638 1.39537653 1.39527692 1.39520655
1.39519287 1.39524114 1.39533236 1.39543074 1.39549769 1.39550691
1.3954546 1.395361
                      1.39526247 1.39519733 1.39519091 1.39524572
1.3953404 1.39543809 1.39550074 1.39550395 1.39544648 1.39535071
1.39525392 1.39519382 1.3951938 1.39525389 1.3953507 1.39544659
1.39550429 1.39550147 1.39543942 1.39534254 1.39524883 1.39519505
1.39520234 1.39526798 1.39536634 1.39545894 1.3955095 1.3954984
1.39543081 1.39533546 1.3952545 1.3952822 1.39528056 1.39541039
1.39559187 1.39578296 1.39593863 1.39602359 1.39602029 1.39593093
1.39577562 1.39559203 1.39544247 1.3954324 1.3957399 1.39665041
1.39858599 1.40211693 1.40794488 1.41685209 1.42961917 1.44692182
1.46922331 1.49668228 1.5290936 1.56587464 1.60610069 1.64858449
1.69198722 1.73494344 1.77618165 1.81462434]
[1.44892176 1.43113568 1.41794277 1.40868383 1.40258386 1.39885663
1.39678959 1.395798
                      1.3954451 1.39543293 1.39557423 1.39575774
1.39591789 1.39601503 1.39602734 1.39595075 1.39580081 1.39561131
1.39542682 1.3952903 1.39522973 1.39524884 1.39532599 1.39542189
1.39549387 1.39551128 1.39546638 1.39537653 1.39527692 1.39520655
```

```
1.39519287 1.39524114 1.39533236 1.39543074 1.39549769 1.39550691
      1.3954546 1.395361
                           1.39526247 1.39519733 1.39519091 1.39524572
      1.3953404 1.39543809 1.39550074 1.39550395 1.39544648 1.39535071
      1.39525392 1.39519382 1.3951938 1.39525389 1.3953507 1.39544659
      1.39550429 1.39550147 1.39543942 1.39534254 1.39524883 1.39519505
      1.39520234 1.39526798 1.39536634 1.39545894 1.3955095 1.3954984
      1.39543081 1.39533546 1.3952545 1.39522822 1.39528056 1.39541039
      1.39559187 1.39578296 1.39593863 1.39602359 1.39602029 1.39593093
      1.39577562 1.39559203 1.39544247 1.3954324 1.3957399 1.39665041
      1.39858599 1.40211693 1.40794488 1.41685209 1.42961917 1.44692182
      1.46922331 1.49668228 1.5290936 1.56587464 1.60610069 1.64858449
      1.69198722 1.73494344 1.77618165 1.81462434]
[17]: [array([0.0957874842623965, 0.09580452804680838, 0.09721731854528112,
             0.09994137848940067, 0.10384378384800697, 0.10875381565022894,
             0.11447577257285446, 0.12080262475029287, 0.12752957791356143,
             0.1344668797235158, 0.14145124174975443, 0.14835516221375272,
             0.15509339611826164, 0.16162597265041412, 0.16795752435134284,
             0.1741331620626198, 0.1802315407249045, 0.18635598586325983,
             0.19262455563984532, 0.19915975857601517, 0.20607843913285345,
             0.21348218003536426, 0.22144850465041185, 0.23002319623199052,
             0.2392141454295228, 0.24898723346850882, 0.25926478920564955,
             0.2699270637270147, 0.28081691237253903, 0.29174747962793846,
             0.3025122367827274, 0.31289637245140867, 0.3226884278469986,
             0.331691264555836, 0.3397318755523363, 0.34667000083279287,
             0.35240575835761334, 0.35688641160230694, 0.36011200222540113,
             0.36213908323007127, 0.3630814734109174, 0.3631070352991583,
             0.3624299974000339, 0.3612991335918752, 0.3599828893948974,
             0.35875303739486486, 0.357868526860057, 0.3575609172888874,
             0.3580223211979594, 0.35939631383481097, 0.36177192305935824,
             0.36518063489684033, 0.36959631820191197, 0.3749380297917048,
             0.38107573843326525, 0.38783902402424036, 0.3950286918136238,
             0.40243094361971443, 0.40983328851740997, 0.4170408684695324,
             0.4238915124519135, 0.4302678123857297, 0.4361049289005703,
             0.4413935977997278, 0.44617866668551176, 0.4505541392953523,
             0.45465593031340684, 0.45865331478976734, 0.4627395619284114,
             0.4671217401205842, 0.472009411178363, 0.47760201489734305,
             0.4840751369687404, 0.49156638248169904, 0.5001620255997938,
             0.5098857941950338, 0.5206909890458071, 0.5324566483041229,
             0.5449877637300313, 0.5580188348758527, 0.5712195699162462,
             0.5842015621746216, 0.5965254328649578, 0.6077091499693561,
             0.6172396404264378, 0.6245907896281516, 0.6292507544989531,
             0.630759663343639, 0.6287552380875673, 0.6230195388389819,
             0.6135166826478349, 0.6004110633725798, 0.5840593460616235,
             0.5649763519121735, 0.5437820767545785, 0.5211414283997599,
```

0.49770833686259147, 0.4740824316381018, 0.4507816134299545,

0.4282296318447147], dtype=object),

```
array([0.2328391677229179, 0.23248099478615236, 0.2327977859281036,
      0.2337757620748258, 0.23537978787651556, 0.237553258510815,
      0.2402208381035329, 0.24329408788866408, 0.24667946928174594,
      0.250287744761149, 0.25404349174708607, 0.2578933541791912,
      0.261811832246524, 0.26580384376366295, 0.26990388218886413,
      0.27417217737341504, 0.2786886660132618, 0.28354570465948453,
      0.28884032534535253, 0.29466655017653387, 0.30110799002471555,
      0.3082307738342701, 0.3160768473475297, 0.32465782954991873,
      0.3339498492143592, 0.34388999801148856, 0.3543751251268906,
      0.3652635840220758, 0.3763802035307714, 0.38752424958543846,
      0.39847960932071436, 0.4090260536409301, 0.4189503778176636,
      0.4280565251582154, 0.4361743431923089, 0.44316715338273155,
      0.4489385697321868, 0.45343883742783647, 0.45667044256258177,
      0.4586921181033174, 0.4596199674218175, 0.45962449526821025,
      0.4589229224594566, 0.45776707399993743, 0.456428033724732,
      0.4551793328920307, 0.45428052876313196, 0.45396268311532106,
      0.45441666715992923, 0.45578463037207095, 0.4581545494097271,
      0.461557593670391, 0.4659680871853567, 0.47130602821202533,
      0.47744232853665886, 0.4842070272496168, 0.4914006145272732,
      0.498808224863983, 0.5062158767548681, 0.5134273081778308,
      0.5202795231823629, 0.5266551495262425, 0.5324902029176242,
      0.5377767418885805, 0.542560876500777, 0.5469373101759484,
      0.5510418087341327, 0.555042688555813, 0.5591317977155564,
      0.5635148446052454, 0.568400594944136, 0.5739885533207854,
      0.5804552211579103, 0.5879396733475905, 0.5965297518900945,
      0.6062504118820197, 0.6170555648862984, 0.6288241768513827,
      0.6413605471837076, 0.6543978751639519, 0.6676037157842059,
      0.6805860171415719, 0.692899247660476, 0.7040515372772044,
      0.7135153404315986, 0.7207451980982068, 0.7252059642790323,
      0.7264127986644533, 0.7239803239964757, 0.7176735686287733,
      0.7074496012272045, 0.6934783357322649, 0.6761350018115236,
      0.6559642036626506, 0.6336232806899172, 0.6098174852049031,
      0.5852396533006486, 0.5605233459378703, 0.536213172012093,
      0.5127514157285477], dtype=object),
array([-0.05686957968524405, -0.0671463857778855, -0.07642451258782954,
      -0.08450003685613611, -0.09120457592879096, -0.09640680135001306,
      -0.10001073362193699, -0.10195276752080358, -0.10219895194214917,
      -0.10074319716306925, -0.09760625061989421, -0.09283478679165846,
       -0.08649990520047732, -0.07869463207784314, -0.06953046121747633,
      -0.05913331919494085, -0.04763946015088752, -0.03519168660950219,
       -0.021936072420301787, -0.008019185065639832, 0.006414232408410854,
      0.021223058556056523, 0.036270867900573225, 0.051426031499016304,
      0.0665607197947936, 0.08154897347040063, 0.09626435073745246,
      0.11057790367578996, 0.12435726185069472, 0.1374673783149022,
      0.1497730985510805, 0.16114330090243933, 0.17145608862587233,
      0.18060447745904934, 0.18850218622378206, 0.19508936277270672,
      0.20033819340510806, 0.20425824507033793, 0.20690109846307278,
```

```
0.20730369977566201, 0.20586745081101307, 0.20431614226040612,
       0.2029146289918886, 0.20191389266311963, 0.20153758075658026,
       0.20197032524804495, 0.2033484938849295, 0.20575382308241413,
       0.20921021428673547, 0.21368382361679705, 0.21908643167157346,
       0.2252819566998868, 0.23209587091564823, 0.23932716681531307,
       0.24676234666129465, 0.25419064378129147, 0.26141936769151297,
       0.26828801522707485, 0.27467975836121933, 0.2805292012543096,
       0.28582585776330827, 0.29061346356626383, 0.2949857743893747,
       0.29907974282656635, 0.3030668815533302, 0.3071433255036798,
       0.3115187905761001, 0.31640446222655694, 0.3219999114348592,
       0.32847939249082725, 0.3359782110537459, 0.34458012560310874,
       0.35430685502928494, 0.36511065646211904, 0.3768706085896292,
       0.3893927357765642, 0.40241354979268584, 0.41560615159067504,
       0.4285879434492626, 0.44092941357270876, 0.4521643574631937,
       0.46180302276020524,\ 0.469350491626871,\ 0.4743325182088421,
       0.47632952562416003, 0.4750165195901107, 0.47020305418652725,
       0.4618646272248202, 0.4501567253781819, 0.4354060488329364,
       0.41807934347324344, 0.39873632387045393, 0.3779767713137003,
       0.3563918107199267, 0.334526296693964, 0.31285501555460515,
       0.29177179733316017], dtype=object),
array([-0.02294234878425054, -0.032789348761149265, -0.041598921152543294,
       -0.04915127029273281, -0.055262591863942105, -0.059788811231479326,
       -0.06262582548930652, -0.0637079588979189, -0.06300604207468098,
       -0.06052578216101227, -0.056306336027635163, -0.050418548545302797,
       -0.04296228246606391. -0.03406255545930529. -0.02386460375882669.
       -0.012528296783556492, -0.00022241621083936842,
       0.012880792658515642, 0.02661056745030582, 0.04080195686040496,
       0.05529939572871716, 0.06995928079628609, 0.0846512120149215,
       0.09925761775070846, 0.11367172594705537, 0.1277942194716161,
       0.14152928399571474, 0.15478096851482392, 0.16745073713136704,
       0.17943680157225203, 0.1906353927339825, 0.20094371939686242,
       0.21026412302059538, 0.21850893497188148, 0.2256057225148944,
       0.23150282275555212, 0.2361751419013897, 0.23963004682749484,
       0.2419128335943621, 0.24311088146280097, 0.2433553984906278,
       0.24281978883768943, 0.24171413717719517, 0.24027597315393298,
       0.23875812287322842, 0.23741487515404613, 0.23648780430321448,
       0.23619244761242159, 0.2367067601175829, 0.23816198253308024,
        \hbox{\tt 0.24063632572686333, 0.24415170407132172, 0.2486736217443951.} 
       0.2541142152165682, 0.2603383740095305, 0.2671727829748219,
       0.27441761212840626, 0.2818603741665613, 0.28929115695516183,
       0.2965180750249857, 0.3033815065087031, 0.3097656517337022,
       0.3156062610994055, 0.3208939845555313, 0.32567350203158313,
       0.33003915642670867, 0.3341280482447061, 0.33811143632618873,
       0.34218494950772715, 0.34655775733481037, 0.35144066078208697,
       0.3570331328475724, 0.3635096265662429, 0.37100584616301013,
       0.3796059909935429, 0.38933210939844165, 0.4001365797317396,
```

0.20836349259114165, 0.20878801667418737, 0.20836050196479838,

```
0.4118983710847787, 0.42442319038534637, 0.4374470276474007,
       0.45064216704614063, 0.4636246646464876, 0.47596276156005585,
       0.48718667490630074, 0.4968013954393533, 0.504304981695804,
       0.5092147278897049, 0.51110199309639, 0.5096333989666383,
       0.5046123207823903, 0.4960117057706372, 0.483989057541334,
       0.46887783351512996, 0.4511556131233487, 0.4313956911153729,
       0.4102125182006351, 0.38821136439711185, 0.3659494198987087,
       0.3439111799601304, 0.3224972117033642], dtype=object),
array([-0.19227868151975694, -0.20280244653116866, -0.21199957575613412,
       -0.2197000615903952, -0.22578883819056092, -0.23020223455406147,
       -0.2329216921651019, -0.2339674608510429, -0.2333938628578896,
       -0.23128630723251198, -0.22775913260999994, -0.22295288707630573,
       -0.21702985328594646, -0.210167291725178, -0.20254867694257633,
       -0.19435382779703966, -0.18574910347755924, -0.17687875154519236,
       -0.1678581889543976, -0.15876964982909378, -0.14966037365415197,
       -0.14054337182934448, -0.1314007564056681, -0.12218956317940953,
       -0.1128498835545433, -0.10331490715941397, -0.09352218957533626,
       -0.08342515728813717, -0.07300363239011, -0.06227209478076663,
       -0.05128456444728733, -0.040135381958493206, -0.02895570969083772,
       -0.017906125902630833, -0.007166096137036308, 0.003078688289004233,
       0.012650082154306578, 0.02139137960997866, 0.029180340466769917,
       0.03594030705459752, 0.041648333578253434, 0.04633935033261204,
       0.05010569978541285, 0.053091887114709316, 0.055484963349011464,
       0.057501452795047286, 0.05937204622357698, 0.06132539543091422,
       0.06357231810648355, 0.06629161730255233, 0.06961856317600834,
       0.07363686479803512. 0.07837466464361804. 0.08380474106658835.
       0.08984876452029991, 0.09638518194806038, 0.1032601186787775,
       0.11030055246615617, 0.11732887382537752, 0.12417777951172507,
       0.1307043001774503, 0.13680173840344562, 0.14240847514329263,
       0.14751299440601415, 0.15215497725611482, 0.15642276869988958,
       0.16044779321371108, 0.16439654860213435, 0.16846070812356104,
       0.1728457267051923, 0.17775828365199992, 0.18339294378665721,
       0.18991855517142853, 0.1974650603373888, 0.2061115168259211,
       0.21587616156407974, 0.22670928851452898, 0.23848952037954763,
       0.2510237339843771, 0.26405048132614073, 0.2772463496396298,
       0.29023450982926396, 0.3025948911747226, 0.3138760395738186,
       0.32360958486475166, 0.33132893644314576, 0.3365937923668201,
       0.3390208359842775, 0.3383185716364437, 0.3343212648673889,
       0.3270147199821594, 0.31654662024753216, 0.303217077472953,
       0.28745009605990446, 0.26975175856461386, 0.2506638811443606,
       0.2307216742344094, 0.2104212139755832, 0.19019887896815282,
       0.1704218308394889], dtype=object),
array([-0.3770840302679547, -0.3887729842530343, -0.3988359848655284,
       -0.4071278592264397, -0.41357065630029693, -0.4181422456646152,
       -0.42086343524713443, -0.4217875619479661, -0.42099451191444726,
       -0.41858896107085997, -0.4147010524321799, -0.40948711510171576,
       -0.4031283672046111, -0.395826528272727, -0.3877964410618521,
```

```
-0.35262202727452524, -0.3439823607321, -0.33567929050317535,
       -0.327793739427114, -0.3203720354654128, -0.3134267420700621,
       -0.3069391907991976, -0.3008639137598219, -0.2951349775247827,
       -0.2896738762815021, -0.2843982485507011, -0.2792303657363256,
       -0.2741042233258779, -0.26897022192964043, -0.2637968465967751,
       -0.2585693329945315, -0.25328587640824596, -0.24795232566109335,
       -0.2425764147530237, -0.23716243384276503, -0.23170693099323783,
       -0.22619570544398854, -0.22060211829586754, -0.21488666197605538,
       -0.20899777710084555, -0.2028740076991577, -0.19644764305591172,
       -0.18964992504917713, -0.18241767543680046, -0.17470085890065026,
       -0.16647024656450468, -0.15772411220351, -0.14849289015560366,
       -0.138840987764319, -0.12886541086808187, -0.11869137795380492,
       -0.10846549811270512, -0.09834726505255212, -0.0884995820932551,
       -0.0790788859025114, -0.07022531190826893, -0.06205332407289235,
       -0.05464330795470443, -0.04803471713550746, -0.04222137308448762,
       -0.0371493988937679, -0.032718043114712665, -0.02878339579421291,
       -0.0251647866095514, -0.021653512677265258, -0.01802345268441502,
       -0.014043051123337813, -0.00948808932623356, -0.004154617603383605,
       0.0021285675731501476, 0.009488454330908051, 0.017997828342760345,
       0.02766719985821386, 0.038439089981278436, 0.050185145335733976,
       0.06270649362735277, 0.07573754350036681, 0.08895309274738473,
       0.10197828155073095, 0.114400814385584, 0.12578510987055205,
       0.1356885615480214, 0.14368060493627927, 0.14936533619180675,
       0.15240762381734135, 0.15256094076358867, 0.14969301625633752,
       0.14380388365927227, 0.13503109460270019, 0.1236392641249656,
       0.10999503067327791, 0.09453232316912998, 0.07771487247423738,
       0.060002509651488414, 0.04182552799526711, 0.023568510365693116.
       0.0055626751943684246], dtype=object),
array([-0.1706703330384252, -0.18106383505543358, -0.1901403906332812,
       -0.1977191820010065, -0.2036728104010832, -0.2079252074354304,
       -0.21044680482809394, -0.21124955441058027, -0.21038335377714384,
       -0.20793408661814722, -0.20402240504795568, -0.19880189794382142,
       -0.19245544896336697, -0.18518919790067412, -0.17722426218185397,
       -0.16878695061532917, -0.16009844324295214, -0.15136483270073,
       -0.14276816891007713, -0.1344588944798595, -0.12654991288672937,
       -0.11911250339284293, -0.1121743172718795, -0.10571967394287023,
       -0.09969227396974312, -0.09400026377235002, -0.08852336625157722,
       -0.08312158039580339, -0.07764478694548654, -0.07194250105331851,
       -0.06587300904547043, -0.05931123280952446, -0.052154877884859445,
       -0.044328696274429334, -0.03578695313929676, -0.026514346137339447,
       -0.01652564750967265, -0.0058642509220598596, 0.00540030686180154,
       0.017175819231548862, 0.02935176537082703, 0.04180426090177809,
       0.05440114672546172, 0.06700670757876584, 0.07948563677987258,
       0.09170613034299623, 0.10354228678894051, 0.11487617246019584,
       0.12559990080418124, 0.1356178790380835, 0.144849101018806,
       0.15322915777198567, 0.16071161185727806, 0.1672685600685958,
```

-0.379256729979858, -0.3704199355947856, -0.3614834404610538,

```
0.17289050484914004, 0.17758591802517867, 0.181380974126968,
      0.18431979978545202, 0.18646528278145366, 0.18790014194305185,
      0.18872772750087635, 0.18907199895342822, 0.1890763147735622,
      0.1889009702468263, 0.18871969492223206, 0.18871545384418967,
      0.18907585096756663, 0.18998826055697055, 0.1916346154475056,
      0.19418565867841606, 0.19779447079892226, 0.20258921553260756,
      0.20866525677219713, 0.21607703236278697, 0.2248302750547842,
      0.234875309202541, 0.2461021847564183, 0.2583382971077424,
      0.271348861072913, 0.2848402000845311, 0.2984654107366343,
      0.31183177334521645, 0.32450948839840726, 0.33604196915658463,
      0.3459588134383349, 0.3537932701266426, 0.35910594177078153,
      0.36151517154873125, 0.3607320267882891, 0.356594685300979,
      0.34909471092768346, 0.33838768243812106, 0.3247836373347122,
      0.3087179941004201, 0.2907088701257688, 0.2713097498263489,
      0.2510662535602715, 0.2304829652057653, 0.2100025331229485,
      0.1899961029465658], dtype=object),
array([-0.44239210092397746, -0.45446308234209054, -0.46480254200014065,
       -0.47327657174274296, -0.47982344589854314, -0.4844394228565098,
      -0.48716347097379653, -0.48806529606789983, -0.48723873892874553,
      -0.4848001785432051, -0.48088984195506695, -0.4756732674158897,
      -0.46934056106939553, -0.46210218938772857, -0.45418136102808965,
      -0.44580409196354764, -0.4371885199548639, -0.4285349095214823,
      -0.42001726771419434, -0.41177687831545295, -0.4039176216232174,
      -0.39650280886477174, -0.38955340087100554, -0.3830477642060181,
       -0.37692336960751893, -0.37108091394839005, -0.3653911806690747,
       -0.3597045658815479, -0.353862686508311, -0.3477110038270782,
      -0.34111110585039595, -0.33395131924469135, -0.32615468826443733,
      -0.31768395210654216, -0.3085437560523563, -0.2987807167038731,
      -0.28848199695390264, -0.2777727646574872, -0.2668124883268508,
      -0.25578969810338154, -0.24491478865795238, -0.23441070134172526,
      -0.2245017831049028, -0.21540157891383047, -0.207300590339887,
       -0.2003550491669522, -0.19467755981801318, -0.1903301788512306,
       -0.1873202351712986, -0.18559899909886804, -0.18506316800763434,
       -0.1855590161049166, -0.1868889424992702, -0.18882006176291283,
      -0.19109443543842675, -0.1934405308433422, -0.19558546452097092,
      -0.19726748286781978, -0.19824793848070774, -0.19832180621540574,
      -0.19732568328700748, -0.19514236557219433, -0.1917015296558996,
      -0.18697668094437542, -0.1809791498580221, -0.17375032080854308,
       -0.16535335086150457, -0.15586541218911437, -0.14537112495252716,
      -0.1339575139203783, -0.12171064080018987, -0.10871404294960388,
       -0.09504915597330292, -0.08079788005554618, -0.06604727104212467,
       -0.05089599227835871, -0.03546174720364481, -0.019888580376368824,
      -0.0043528296388277935, 0.010933304373961037, 0.02572119746118043,
      0.039728421738731826, 0.05264443311795936, 0.0641392340988519,
      0.07387520063497974, 0.0815225479916461, 0.08677881976635188,
      0.0893919934081922, 0.08918527748004405, 0.08607987941372253,
      0.08011083168815993, 0.07143131194233572, 0.06030313623775126,
```

```
0.04707459291166793, 0.03215006810419925, 0.01595758321718359,
       -0.0010801071838632042, -0.01856726848154973, -0.03614872946234837,
       -0.05351617184724368], dtype=object),
array([-0.40708590981578796, -0.41893816167513076, -0.42911275999077586,
       -0.43746976438412727, -0.4439389952269931, -0.4485074083342271,
       -0.45120517654739534, -0.45209462305360926, -0.4512640077107745,
       -0.44882587607454605, -0.44491803103685545, -0.4397045551258015,
       -0.4333746749145807, -0.42613829723184943, -0.41821828467796673,
       -0.4098405180123106, -0.401223235654015, -0.3925670222158986,
       -0.38404633246654246, -0.37580287151269176, -0.3679407502195916,
       -0.3605232112320316, -0.35357084604445504, -0.3470614683564772,
       -0.34093201488104563, -0.33508288747593395, -0.3293849763505877,
       -0.32368923733554517, -0.3178382269232962, -0.311678561923637,
       -0.30507301355185273, -0.2979109796649892, -0.290116422713908,
       -0.28165291087611327, -0.27252595586614337, -0.2627831931165222,
       -0.25251298089927976, -0.24184173912563564, -0.2309299745677946,
       -0.21996666448322671, -0.20916165445011886, -0.1987359944143489,
       -0.18891057455297566, -0.17989383915547072, -0.17186958850192924,
       -0.16498586797152326, -0.15934574962981254, -0.15500055327986373,
       -0.1519458299663531, -0.15012027114635132, -0.1494075810671728,
       -0.1496412156718089, -0.15061173798484465, -0.1520763963907626,
       -0.1537704353268079, -0.15541960118700876, -0.15675326709864104,
       -0.157517511176675, -0.15748732666069135, -0.15647697949698755,
       -0.15434748281914512, -0.1510103463367862, -0.14642721123566504,
       -0.1406055978174637, -0.13359158111216163, -0.12546058081846934,
       -0.11630751860465936, -0.10623740671043502, -0.0953571301450052,
       -0.08376892189782618, -0.07156588758372161, -0.05882989312440146,
       -0.04563209220524129, -0.03203623398072158, -0.018104603879304945,
       -0.003906045973521503, 0.010474895806400026, 0.024928958994312005,
       0.039314544988594415, 0.053452550629945327, 0.06712428204012563,
       0.08007265865540734, 0.09200667604176394, 0.10260915563803932,
       0.11154810627611374, 0.11849229495324214, 0.12313148995310044,
       0.1252009732072973, 0.1245082928061226, 0.12095830118507613,
       0.11457121930150667, 0.1054887695746371, 0.09396573305057053,
       0.08034795469743185, 0.065041332620484, 0.04847818049674617,
       0.031086955330820513, 0.013269241747025056, -0.0046147551436710055,
       -0.022253095249663738], dtype=object),
array([-0.4879646622729152, -0.5003180133817281, -0.5108704186046749,
       -0.5194957848297838, -0.5261433265817759, -0.530821334830933,
       -0.5335801502622011, -0.5344990181573201, -0.5336789799940336,
       -0.531241342014131, -0.5273294166716613, -0.5221105497989453,
       -0.5157758789810649, -0.5085364529557342, -0.50061574845479,
       -0.4922397388179096, -0.48362617917465395, -0.4749746396668051,
       -0.4664582517057595, -0.4582174586656272, -0.4503555717194477,
       -0.442935774428904, -0.43597937996766184, -0.429465478162747,
       -0.4233324198184261, -0.41748170491232045, -0.41178468409648206,
       -0.40609206673530945, -0.40024566277613555, -0.3940912420017463,
```

```
-0.38749106104148884, -0.3803346269381013, -0.37254666226041494,
       -0.36409188721321883, -0.35497689966412355, -0.3452498614801131,
       -0.3349987426788513, -0.3243485646474597, -0.3134576105005972,
       -0.30251219022676856, -0.2917194606131213, -0.281298059111314,
       -0.2714668066359497, -0.2624322544764598, -0.2543761904761411,
       -0.2474442784942345, -0.2417368143177936, -0.23730225772249863,
       -0.23413386682846596, -0.23216948752691344, -0.23129434933006113,
       -0.23134657470596506, -0.23212501339918268, -0.23339896975513777,
       -0.23491939315549953, -0.23643111085376253, -0.23768563421710007,
       -0.23845391304404523, -0.2385381625027607, -0.23778164580541586,
       -0.23607522187768185, -0.2333596946080765, -0.2296235488410829,
       -0.22489639869317438, -0.21923917635210793, -0.2127325351238028,
       -0.20546502502570377, -0.19752236978143337, -0.1889787838557126,
       -0.17989088772756434, -0.17029451772690254, -0.16020459603051726,
       -0.14961815845946647, -0.13852053130621025, -0.12689442487390717,
       -0.1147313550888584, -0.10204437622133812, -0.08888072911125963,
       -0.07533282213964891, -0.06154606942757554, -0.047722516259535906,
       -0.03411976080740955, -0.021045215186001304, -0.0088460291765494,
       0.0021050413116705793, 0.011427748195886019, 0.018756409728977658,
       0.02376536862241314, 0.026196109834292176, 0.025882711309806693,
       0.02277108358346477, 0.016927516732468412, 0.008533869896409238,
       -0.002130128785795364, -0.014713813828515863,
       -0.028826201387738577, -0.04406481319767244, -0.06003887603114627,
       -0.07638534245829347, -0.09277813951334844], dtype=object),
array([-0.8323747494457912, -0.8468615779765332, -0.8590223466368938,
       -0.8687899327728172. -0.8761961499795468. -0.8813401635173472.
       -0.8843582290302008, -0.8854016983657268, -0.884626102468098,
       -0.8821901297568889, -0.8782606455315319, -0.8730189967685358,
       -0.8666645742531424, -0.8594134103905159, -0.8514917164014189,
       -0.8431259675680958, -0.8345319443986825, -0.8259049405399719,
       -0.8174124373482625, -0.8091894119354026, -0.8013355765582075,
       -0.793913548076557, -0.7869472566346657, -0.7804206133241199,
       -0.7742772117057051, -0.7684222832403347, -0.7627280423837762,
       -0.7570429307831626, -0.7512042923742476, -0.7450530115650874,
       -0.7384479880104876, -0.7312782725509115, -0.7234713065938249,
       -0.714996784570471, -0.7058667887974313, -0.696133591145197,
       -0.6858866065535868, -0.675249435502018, -0.664377030756048,
       -0.6534521882451878, -0.6426801667761254, -0.6322804607486079,
       -0.6224754929911189, -0.6134769546622512, -0.6054713182649862,
       -0.5986064065632879, -0.5929807321249104, -0.588636742538063,
       -0.5855583400209474, -0.5836723283911467, -0.5828529574730846,
       -0.5829285823398087, -0.5836896327384143, -0.5848974965666869,
       -0.5862943758150374, -0.5876144551439192, -0.5885966587994399,
       -0.588998814069526, -0.588612314340913, -0.5872756595008093,
       -0.5848848798378239, -0.581399064842381, -0.576840038058972,
       -0.5712863950717838, -0.5648632363222081, -0.5577295865635966,
       -0.5500655110076078, -0.5420604021625678, -0.533903115360831,
```

```
[18]: plt.figure()
  plt.hist(hist, bins = 2)
  mu = 0
  sigma = 1
  x = np.linspace(mu - 3*sigma, mu + 3*sigma, 100)
  plt.plot(x, stats.norm.pdf(x, mu, sigma), label = "Unit Gaussian")
  plt.legend()
  plt.show()
```

