CS 240 - Data Structures and Data Management

Module 7: Dictionaries via Hashing

Armin Jamshidpey

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2023

Outline

- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Probe Sequences
 - Cuckoo hashing
 - Hash Function Strategies

Outline

- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Probe Sequences
 - Cuckoo hashing
 - Hash Function Strategies

Direct Addressing

The V

Special situation: For a known $M \in \mathbb{N}$, every key k is an integer with 0 < k < M.

We can then implement a dictionary easily: Use an array A of size M that stores (k, v) via $A[k] \leftarrow v$.

- search(k): Check whether A[k] is NIL
- insert(k, v): $A[k] \leftarrow v$
- delete(k): $A[k] \leftarrow NIL$

5/0

search(6)

M=

Direct Addressing

Special situation: For a known $M \in \mathbb{N}$, every key k is an integer with $0 \le k < M$.

We can then implement a dictionary easily: Use an array A of size M that stores (k, v) via $A[k] \leftarrow v$.

- search(k): Check whether A[k] is NIL
- insert(k, v): $A[k] \leftarrow v$
- delete(k): $A[k] \leftarrow NIL$

Each operation is $\Theta(1)$. Total space is $\Theta(M)$.

What sorting algorithm does this remind you of?

Direct Addressing

Special situation: For a known $M \in \mathbb{N}$, every key k is an integer with $0 \le k < M$.

We can then implement a dictionary easily: Use an array A of size M that stores (k, v) via $A[k] \leftarrow v$.

- search(k): Check whether A[k] is NIL
- insert(k, v): $A[k] \leftarrow v$
- delete(k): $A[k] \leftarrow NIL$

Each operation is $\Theta(1)$.

Total space is $\Theta(M)$.

What sorting algorithm does this remind you of? Bucket Sort

Hashing

Two disadvantages of direct addressing:

- It cannot be used if the keys are not integers.
- It wastes space if M is unknown or $n \ll M$.

Hashing idea: Map (arbitrary) keys to integers in range $\{0, ..., M-1\}$ and then use direct addressing.

Details:

- Assumption: We know that all keys come from some universe U. (Typically U = non-negative integers, sometimes |U| finite.)
- We design a hash function $h: U \to \{0, 1, ..., M-1\}$. (Commonly used: $h(k) = k \mod M$. We will see other choices later.)
- Store dictionary in **hash table**, i.e., an array T of size M.
- An item with key \underline{k} should ideally be stored in **slot** $\underline{h(k)}$, i.e., at $T[\underline{h(k)}]$.

Winter 2023

Hashing example

h: U -> (-,..., M-1)

 $U = \mathbb{N}$, M = 11, $h(k) = k \mod 11$.

The hash table stores keys 7, 13, 43, 45, 49, 92. (Values are not shown).

0	
1	45
~ ²	13
h(92) 34	
h(92)-74	92
5	49
6	
→ ⁷	7
8	
9	
h(43) 20	43

h(a) = h(b)

Collisions

- Generally hash function h is not injective, so many keys can map to the same integer.
 - ► For example, h(46) = 2 = h(13) if $h(k) = k \mod 11$.
- We get **collisions**: we want to insert (k, v) into the table, but T[h(k)] is already occupied.

Collisions

- Generally hash function h is not injective, so many keys can map to the same integer.
 - ► For example, h(46) = 2 = h(13) if $h(k) = k \mod 11$.
- We get **collisions**: we want to insert (k, v) into the table, but T[h(k)] is already occupied.
- There are many strategies to resolve collisions:

Outline

- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Probe Sequences
 - Cuckoo hashing
 - Hash Function Strategies

Hashing with Chaining

Simplest collision-resolution strategy: Each slot stores a **bucket** containing 0 or more KVPs.

- A bucket could be implemented by any dictionary realization (even another hash table!).
- The simplest approach is to use unsorted linked lists for buckets.
 This is called collision resolution by <u>chaining</u>.

Hashing with Chaining

Simplest collision-resolution strategy: Each slot stores a **bucket** containing 0 or more KVPs.

- A bucket could be implemented by any dictionary realization (even another hash table!).
- The simplest approach is to use unsorted linked lists for buckets.
 This is called collision resolution by chaining.
- search(k): Look for key k in the list at T[h(k)]. Apply MTF-heuristic!
- insert(k, v): Add (k, v) to the front of the list at T[h(k)].
- delete(k): Perform a search, then delete from the linked list.

$$M=11, \qquad h(k)=k \bmod 11$$

$$M=11, \qquad h(k)=k \bmod 11$$

insert(41)

h(41) = 8

$$M=11, \qquad h(k)=k \bmod 11$$

Winter 2023

$$M=11, \qquad h(k)=k \bmod 11$$

insert(46)

h(46) = 2

$$M=11, \qquad h(k)=k \bmod 11$$

$$M=11, \qquad h(k)=k \bmod 11$$

insert(16)

h(16) = 5

$$M = 11, \qquad h(k) = k \bmod 11$$

insert(79)

h(79) = 2

Run-times: *insert* takes time $\Theta(1)$.

search and delete have run-time $\Theta(1 + \text{size of bucket } T[h(k)])$.

- The *average* bucket-size is $\frac{n}{M} = :\underline{\alpha}$. (α is also called the **load factor**.)
- However, this does not imply that the *average-case* cost of *search* and *delete* is $\Theta(1 + \alpha)$. (If all keys hash to the same slot, then the average bucket-size is still
 - (If all keys hash to the same slot, then the average bucket-size is still α , but the operations take time $\Theta(n)$ on average.)
- We need some assumptions on the hash-functions and the keys!

- To analyze what happens 'on average', switch to randomized hashing.
- How can we randomize?

- To analyze what happens 'on average', switch to randomized hashing.
- How can we randomize?
 Assume that the hash-function is chosen randomly.
- Uniform Hashing Assumption: Any possible hash-function is equally likely to be chosen as hash-function.

(This is not at all realistic, but the assumption makes analysis possible.)

- To analyze what happens 'on average', switch to randomized hashing.
- How can we randomize?
 Assume that the hash-function is chosen randomly.
- Uniform Hashing Assumption: Any possible hash-function is equally likely to be chosen as hash-function.

(This is not at all realistic, but the assumption makes analysis possible.)

- Can show:
 - ▶ $P(h(k) = i) = \frac{1}{M}$ for any key k and slot i,
 - ▶ Hash-values of any two keys are independent of each other.

- To analyze what happens 'on average', switch to randomized hashing.
- How can we randomize?
 Assume that the hash-function is chosen randomly.
- Uniform Hashing Assumption: Any possible hash-function is equally likely to be chosen as hash-function.

(This is not at all realistic, but the assumption makes analysis possible.)

- Can show:
 - ▶ $P(h(k) = i) = \frac{1}{M}$ for any key k and slot i,
 - Hash-values of any two keys are independent of each other.
- Under this assumption, each key in dictionary is expected to collide with $\frac{n-1}{M}$ other keys and the expected cost of search and delete is hence $\Theta(1+\alpha)$.

Load factor and re-hashing

- For all collision resolution strategies, the run-time evaluation is done in terms of the *load factor* $\alpha = n/M$.
- We keep the load factor small by rehashing when needed:
 - ▶ Keep track of *n* and *M* throughout operations
 - If α gets too large, create new (twice as big) hash-table, new hash-function(s) and re-insert all items in the new table.
- Rehashing costs $\Theta(M+n)$ but happens rarely enough that we can ignore this term when amortizing over all operations.
- We should also re-hash when α gets too small, so that $M \in \Theta(n)$ throughout, and the space is always $\Theta(n)$.

Summary: If we maintain $\alpha \in \Theta(1)$, then (under the uniform hashing assumption) the expected cost for hashing with chaining is O(1) and the space is $\Theta(n)$.

Outline

- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Probe Sequences
 - Cuckoo hashing
 - Hash Function Strategies

Open addressing

Main idea: Avoid the links needed for chaining by permitting only one item per slot, but allowing a key k to be in multiple slots.

search and insert follow a **probe sequence** of possible locations for key k: $\langle h(k,0), h(k,1), h(k,2), \ldots \rangle$ until an empty spot is found.

delete becomes problematic:

- Cannot leave an empty spot behind; the next search might otherwise not go far enough.
- Idea 1: Move later items in the probe sequence forward.
- Idea 2: lazy deletion: Mark spot as *deleted* (rather than NIL) and continue searching past deleted spots.

Open addressing

Main idea: Avoid the links needed for chaining by permitting only one item per slot, but allowing a key k to be in multiple slots.

search and insert follow a **probe sequence** of possible locations for key k: $\langle h(k,0), h(k,1), h(k,2), \ldots \rangle$ until an empty spot is found.

delete becomes problematic:

- Cannot leave an empty spot behind; the next search might otherwise not go far enough.
- Idea 1: Move later items in the probe sequence forward.
- Idea 2: lazy deletion: Mark spot as *deleted* (rather than NIL) and continue searching past deleted spots.

Simplest method for open addressing: *linear probing* $h(k, i) = (h(k) + i) \mod M$, for some hash function h.

$$M = 11,$$

$$h(k) = k \mod 11$$

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k, i) = (h(k) + i) \mod 11.$

0	
1	45
2	13
3	
4	92
5	49
6	
7	7
8	
9	
LO	43

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k, i) = (h(k) + i) \mod 11.$

insert(41)

$$h(41,0) = 8$$

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k, i) = (h(k) + i) \mod 11.$

insert(84)

$$h(84,0)=7$$

$$M = 11$$
, $h(k) = k \mod 11$, $h(k, i) = (h(k) + i) \mod 11$.

$$h(k,i) = (h(k) + i) \bmod 11$$

0	
1	45
2	13
3	
4	92
5	49
6	
7	7
8	41
9	
10	43

insert(84)

$$h(84,1) = 8$$

$$M = 11$$
, $h(k) = k \mod 11$, $h(k, i) = (h(k) + i) \mod 11$.

insert(84)

$$h(84,2)=9$$

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k, i) = (h(k) + i) \mod 11.$

insert(20)

$$h(20,0)=9$$

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k, i) = (h(k) + i) \mod 11.$

insert(20)

h(20,1)=10

$$M = 11$$
,

$$h(k) = k \mod 11,$$

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k, i) = (h(k) + i) \mod 11.$

insert(20)

$$h(20,2)=0$$

0	20
1	45
2	13
3	
4	92
5	49
6	
7	7
8	41
9	84
0	43

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k, i) = (h(k) + i) \mod 11.$

delete(43)

h(43,0)=10

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k, i) = (h(k) + i) \mod 11.$

0	20
1	45
2	13
3	
4	92
5	49
6	
7	7
8	41
9	84
10	deleted

search(63)

h(63,0)=8

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k, i) = (h(k) + i) \mod 11.$

0	20
1	45
2	13
3	
4	92
5	49
6	
7	7
8	41
9	84
10	deleted

search(63)

h(63,1)=9

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k, i) = (h(k) + i) \mod 11.$

0	20
1	45
2	13
3	
4	92
5	49
6	
7	7
8	41
9	84
10	deleted

search(63)

$$h(63,2)=10$$

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k, i) = (h(k) + i) \mod 11.$

0	20
1	45
2	13
3	
4	92
5	49
6	
7	7
8	41
9	84
10	deleted

search(63)

h(63,3)=0

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k, i) = (h(k) + i) \mod 11.$

search(63)

$$h(63,4)=1$$

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k, i) = (h(k) + i) \mod 11.$

0	20
1	45
2	13
3	
4	92
5	49
6	
7	7
8	41
9	84
10	deleted

search(63)

$$h(63,5)=2$$

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k, i) = (h(k) + i) \mod 11.$

0	20
1	45
2	13
3	
4	92
5	49
6	
7	7
8	41
9	84
10	deleted

search(63)

h(63,6)=3not found

Probe sequence operations

```
probe-sequence::insert(T,(k,v))

1. for (j = 0; j < M; j++)

2. if T[h(k,j)] is NIL or "deleted"

3. T[h(k,j)] = (k,v)

4. return "success"

5. return "failure to insert" // need to re-hash
```

```
probe-sequence-search(T, k)

1. for (j = 0; j < M; j++)

2. if T[h(k,j)] is NIL

3. return "item not found"

4. else if T[h(k,j)] has key k

5. return T[h(k,j)]

6. // ignore "deleted" and keep searching

7. return "item not found"
```

Independent hash functions

- Some hashing methods require *two* hash functions h_0 , h_1 .
- These hash functions should be *independent* in the sense that the random variables $P(h_0(k) = i)$ and $P(h_1(k) = j)$ are independent.
- Using two modular hash-functions may often lead to dependencies.

Independent hash functions

- Some hashing methods require *two* hash functions h_0 , h_1 .
- These hash functions should be *independent* in the sense that the random variables $P(h_0(k) = i)$ and $P(h_1(k) = j)$ are independent.
- Using two modular hash-functions may often lead to dependencies.
- Better idea: Use *multiplication method* for second hash function: h(k) = |M(kA |kA|)|,
 - A is some floating-point number with 0 < A < 1
 - \blacktriangleright kA |kA| computes fractional part of kA, which is in [0,1)
 - ▶ Multiply with *M* to get floating-point number in [0, *M*)
 - ▶ Round down to get integer in $\{0, ..., M-1\}$

Independent hash functions

- Some hashing methods require *two* hash functions h_0 , h_1 .
- These hash functions should be *independent* in the sense that the random variables $P(h_0(k) = i)$ and $P(h_1(k) = j)$ are independent.
- Using two modular hash-functions may often lead to dependencies.
- Better idea: Use *multiplication method* for second hash function: h(k) = |M(kA |kA|)|,
 - A is some floating-point number with 0 < A < 1
 - \blacktriangleright kA |kA| computes fractional part of kA, which is in [0,1)
 - ▶ Multiply with M to get floating-point number in [0, M)
 - ▶ Round down to get integer in $\{0, ..., M-1\}$
- Some observations/suggestions:
 - ▶ Multiplying with *A* is used to scramble the keys.
 - ▶ Good scrambling is achieved with $A=\varphi=\frac{\sqrt{5}-1}{2}\approx 0.618033988749...$.
 - We should use at least $\log |U| + \log |M|$ bits of A.

Double Hashing

- Assume we have two hash independent functions h_0 , h_1 .
- Assume further that $h_1(k) \neq 0$ and that $h_1(k)$ is relative prime with the table-size M for all keys k.
 - ► Choose *M* prime.
 - ▶ Modify standard hash-functions to ensure $h_1(k) \neq 0$ E.g. modified multiplication method: $h(k) = 1 + \lfloor (M-1)(kA - \lfloor kA \rfloor) \rfloor$
- Double hashing: open addressing with probe sequence

$$h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M$$

 search, insert, delete work just like for linear probing, but with this different probe sequence.

$$M = 11$$
,

$$h_0(k) = k \bmod 11$$

$$M = 11,$$
 $h_0(k) = k \mod 11,$ $h_1(k) = |10(\varphi k - |\varphi k|)| + 1$

0	
1	45
2	13
3	
4	92
5	49
6	
7	7
8	
9	
0	43

$$M = 11,$$
 $h_0(k)$
 $insert(41)$
 $h_0(41) = 8$
 $h(41, 0) = 8$

$$M = 11,$$
 $h_0(k) = k \mod 11,$ $h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$

8 9 10

45
13
92
49
7
41
43

$$M = 11,$$
 $h_0(k) = k \mod 11,$ $h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$

$$h_1(k) = |10(\varphi k - |\varphi k|)| + 1$$

	0	
	1	45
insert(194)	2	13
$h_0(194) = 7$	3	
,	4	92
h(194,0)=7	5	49
$h_1(194) = 9$	6	
h(194,1)=5	7	7
	8	41
	9	
	10	43

$$M = 11,$$
 $h_0(k) = k \mod 11,$ $h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$

$$h_1(k) = |10(\varphi k - |\varphi k|)| + 1$$

insert(194)
$h_0(194) = 7$
h(194,0) = 7
$h_1(194) = 9$
h(194,1)=5
h(194,2)=3

0	
1	45
2	13
3	194
4	92
5	49
6	
7	7
8	41
9	
10	43

Outline

- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Probe Sequences
 - Cuckoo hashing
 - Hash Function Strategies

Cuckoo hashing

We use two independent hash functions h_0 , h_1 and two tables T_0 , T_1 .

Main idea: An item with key k can *only* be at $T_0[h_0(k)]$ or $T_1[h_1(k)]$.

- search and delete then take constant time.
- insert always initially puts a new item into $T_0[h_0(k)]$ If $T_0[h_0(k)]$ is occupied: "kick out" the other item, which we then attempt to re-insert into its alternate position $T_1[h_1(k)]$ This may lead to a loop of "kicking out". We detect this by aborting

after too many attempts.

In case of failure: rehash with a larger M and new hash functions.

insert may be slow, but is expected to be constant time if the load factor is small enough.

Cuckoo hashing insertion

```
cuckoo::insert(k, v)

1. i \leftarrow 0

2. do at most 2n times:

3. if T_i[h_i(k)] is NIL

4. T_i[h_i(k)] \leftarrow (k, v)

5. return "success"

6. swap((k, v), T_i[h_i(k)])

7. i \leftarrow 1 - i

8. return "failure to insert" // need to re-hash
```

After 2n iterations, there definitely was a loop in the "kicking out" sequence (why?)

In practice, one would stop the iterations much earlier already.

$$M = 11$$
,

M = 11, $h_0(k) = k \mod 11,$ $h_1(k) = |11(\varphi k - |\varphi k|)|$

	T_0
0	44
1	
2	
3	
4	59
5	
6	
7	
8	
9	
10	

	\mathcal{T}_1
0	
1	
2	
1 2 3 4	
5	
6	
7	
8	
9	92
10	

$$M = 11$$
,

$$h_0(k) = k \bmod 11,$$

$$h_0(k) = k \mod 11, \qquad h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$$

insert(51)

$$i = 0$$
$$k = 51$$

$$h_0(k) = 7$$

$$h_1(k) = 5$$

	T_0
0	44
1	
2	
3	
4	59
5	
6	
7	
8	
9	
10	

	T_1
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	92
10	

$$M = 11$$
,

$$h_0(k) = k \bmod 11,$$

$$h_0(k) = k \mod 11, \qquad h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$$

insert(51)

$$i = 0$$
$$k = 51$$

$$h_0(k) = 7$$

 $h_1(k) = 5$

	T_0
0	44
1	
2	
3	
4	59
5	
6	
7	51
8	
9	
10	

	T_1
0	
1	
2	
3	
2 3 4 5	
6	
7	
8	
9	92
10	

$$M = 11$$
,

$$h_0(k) = k \bmod 11,$$

$$h_0(k) = k \mod 11, \qquad h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$$

insert(95)

$$i = 0$$
$$k = 95$$

$$h_0(k) = 7$$

$$h_1(k) = 7$$

	T_0
0	44
1	
2	
3	
4	59
5	
6	
7	51
8	
9	
10	

	\mathcal{T}_1
0	
1	
1 2 3	
3	
4	
5	
6	
7	
8	
9	92
10	

$$M = 11$$
,

$$h_0(k) = k \bmod 11,$$

$$h_0(k) = k \mod 11, \qquad h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$$

insert(95)

$$i = 1$$
$$k = 51$$

$$h_0(k) = 7$$

$$h_1(k) = 5$$

$$M = 11$$
,

$$h_0(k) = k \bmod 11,$$

$$h_0(k) = k \mod 11, \qquad h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$$

insert(95)

$$i = 1$$
$$k = 51$$

$$h_0(k) = 7$$

 $h_1(k) = 5$

	T_0
0	44
1	
2	
3	
4	59
5	
6	
7	95
8	
9	
10	

	T_1
0	
1	
2	
3	
4	
5	51
6	
7	
8	
9	92
10	

$$M = 11$$
,

$$h_0(k) = k \bmod 11,$$

$$h_0(k) = k \mod 11, \qquad h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$$

$$i = 0$$
$$k = 26$$

$$h_0(k) = 4$$

$$h_1(k) = 0$$

	T_0
0	44
1	
2	
3	
4 5	59
5	
6	
7	95
8	
9	
10	

	T_1
0	
1	
2	
2 3 4 5	
4	
5	51
6	
7	
8	
9	92
10	

$$M = 11$$
,

$$h_0(k) = k \bmod 11,$$

$$h_0(k) = k \mod 11, \qquad h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$$

$$i = 1$$
$$k = 59$$

$$h_0(k) = 4$$

 $h_1(k) = 5$

$$M = 11$$
,

$$h_0(k) = k \bmod 11,$$

$$h_0(k) = k \mod 11, \qquad h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$$

$$i = 0$$
$$k = 51$$

$$h_0(k) = 7$$

$$h_1(k) = 5$$

$$M = 11$$
,

$$h_0(k) = k \bmod 11,$$

$$h_0(k) = k \mod 11, \qquad h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$$

$$i = 1$$
$$k = 95$$

$$h_0(k) = 4$$

 $h_1(k) = 7$

$$M = 11$$
,

$$h_0(k) = k \bmod 11,$$

$$h_0(k) = k \mod 11, \qquad h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$$

$$i = 1$$
$$k = 95$$

$$h_0(k) = 4$$

$$h_1(k) = 7$$

	T_0
0	44
1	
2	
3	
4	26
5	
6	
7	51
8	
9	
10	

	\mathcal{T}_1
0	
1	
2	
3	
2 3 4 5	
5	59
6	
7	95
8	
9	92
10	

$$M = 11$$
,

$$h_0(k) = k \bmod 11,$$

$$h_0(k) = k \mod 11, \qquad h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$$

search(59)

$$h_0(59) = 4$$

 $h_1(59) = 5$

	
	T_0
0	44
1	
2	
3	
7	26
5	
6	
7	51
8	
9	
10	

	T_1
0	
1	
1 2 3	
3	
4	
5	59
6	
7	95
8	
9	92
10	

$$M = 11$$
,

$$h_0(k) = k \bmod 11,$$

$$h_0(k) = k \mod 11, \qquad h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$$

delete(59)

$$h_0(59) = 4$$

 $h_1(59) = 5$

	T_0
0	44
1	
2	
7	26
5	
6	
7	51
8	
9	
10	

	T_1
0	
1	
1 2 3	·
4	
5	
6	
7	95
8	
9	92
10	

Cuckoo hashing discussions

- The two hash-tables need not be of the same size.
- Load factor $\alpha = n/(\text{size of } T_0 + \text{size of } T_1)$
- One can argue: If the load factor α is small enough then insertion has O(1) expected run-time.
- This crucially requires $\alpha < \frac{1}{2}$.

Cuckoo hashing discussions

- The two hash-tables need not be of the same size.
- Load factor $\alpha = n/(\text{size of } T_0 + \text{size of } T_1)$
- One can argue: If the load factor α is small enough then insertion has O(1) expected run-time.
- This crucially requires $\alpha < \frac{1}{2}$.

There are many possible variations:

- The two hash-tables could be combined into one.
- Be more flexible when inserting: Always consider both possible positions.
- Use k > 2 allowed locations (i.e., k hash-functions).

Complexity of open addressing strategies

For any open addressing scheme, we *must* have $\alpha < 1$ (why?). Cuckoo hashing requires $\alpha < 1/2$.

$\begin{array}{c} {\sf Expected} \\ \# \ {\sf probes} \le \end{array}$	search (unsuccessful)	insert	search (successful)
Linear Probing	$\frac{1}{(1-\alpha)^2}$	$\frac{1}{(1-\alpha)^2}$	$\frac{1}{1-\alpha}$
			(on avg. over keys)
Double Hashing	$\frac{1}{1-\alpha}+o(1)$	$\frac{1}{1-\alpha}+o(1)$	$\frac{1}{1-\alpha} + o(1)$
Cuckoo Hashing	1 (worst-case)	$\frac{\alpha}{(1-2\alpha)^2}$	1 (worst-case)

Summary: All operations have O(1) expected run-time if hash-function chosen uniformly and α is kept sufficiently small.

But for fixed hash-function the worst-case run-time is (usually) $\Theta(n)$.

Outline

- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Probe Sequences
 - Cuckoo hashing
 - Hash Function Strategies

Choosing a good hash function

- Satisfying the uniform hashing assumption is impossible: There are too many hash functions; we would not know how to look up h(k).
- We need to compromise:
 - Choose a hash-function that is easy to compute.
 - ▶ But aim for $P(h(k) = i) = \frac{1}{M}$ w.r.t. key-distribution.

Choosing a good hash function

- Satisfying the uniform hashing assumption is impossible: There are too many hash functions; we would not know how to look up h(k).
- We need to compromise:
 - Choose a hash-function that is easy to compute.
 - ▶ But aim for $P(h(k) = i) = \frac{1}{M}$ w.r.t. key-distribution.
- If all keys are used equally often, then this is easy. But in practice keys are not used equally often.
- We can get good performance by choosing a hash-function that is
 - unrelated to any possible patterns in the data, and
 - depends on all parts of the key.
- We saw two basic methods for integer keys:
 - ▶ Modular method: $h(k) = k \mod M$. We should choose M to be a prime.
 - ▶ Multiplicative method: $h(k) = \lfloor M(kA \lfloor kA \rfloor) \rfloor$, for some constant floating-point number A with 0 < A < 1.

Carter-Wegman's universal hashing

Even better: Randomization that uses easy-to-compute hash-functions.

- Requires: all keys are in $\{0, \dots, p-1\}$ for some (big) prime p.
- Choose M < p arbitrarily, power of 2 is ok.
- Choose two *random* numbers a, b in $\{0, \dots p-1\}$, $a \neq 0$
- Use as hash-function

$$h(k) = ((ak + b) \bmod p) \bmod M$$

Carter-Wegman's universal hashing

Even better: Randomization that uses easy-to-compute hash-functions.

- Requires: all keys are in $\{0, \dots, p-1\}$ for some (big) prime p.
- Choose M < p arbitrarily, power of 2 is ok.
- Choose two *random* numbers a, b in $\{0, \dots p-1\}$, $a \neq 0$
- Use as hash-function

$$h(k) = ((ak + b) \bmod p) \bmod M$$

- Clearly h(k) can be computed in O(1) time.
- Choosing h in this way does not satisfy uniform hashing assumption, but we can prove that two keys collide with probability at most $\frac{1}{M}$.
- This is enough to prove the expected run-time bounds for chaining.

Multi-dimensional Data

What if the keys are multi-dimensional, such as strings in Σ^* ?

Standard approach is to *flatten* string w to integer $f(w) \in \mathbb{N}$, e.g.

$$A \cdot P \cdot P \cdot L \cdot E \rightarrow (65, 80, 80, 76, 69)$$
 (ASCII)
 $\rightarrow 65R^4 + 80R^3 + 80R^2 + 76R^1 + 69R^0$
(for some radix R , e.g. $R = 255$)

We combine this with a modular hash function: $h(w) = f(w) \mod M$

To compute this in O(|w|) time without overflow, use Horner's rule and apply mod early. For exampe, h(APPLE) is

$$\left(\left(\left(\left(\left(65R+80\right) \bmod M\right)R+80\right) \bmod M\right)R+76\right) \bmod M\right)R+69\right) \bmod M$$

Hashing vs. Balanced Search Trees

Advantages of Balanced Search Trees

- $O(\log n)$ worst-case operation cost
- Does not require any assumptions, special functions, or known properties of input distribution
- Predictable space usage (exactly n nodes)
- Never need to rebuild the entire structure
- Supports ordered dictionary operations (rank, select etc.)

Advantages of Hash Tables

- ullet O(1) operation cost (if hash-function random and load factor small)
- We can choose space-time tradeoff via load factor
- ullet Cuckoo hashing achieves O(1) worst-case for search & delete