UNIT- 4 PROBABILITY DISTRIBUTIONS

Let 'S' be a sample space of a random experiment.

Suppose to each

element s of 'S', a unique real number X is associated according to some rule.

Then X, is called a random variable on S

Example:

Consider a random experiment of tossing three coins together.

The corresponding sample space is S = {HHH,HHT,HTH,THH,HTT,THT,TTT} which has 8 possible outcomes. Suppose we define the mapping $f: S \rightarrow R$ by f(s)= number of heads in an outcome s i.e.,

As s varies over the set S, X varies over the set $\{0,1,2,3\}$ belongs to R.

Note: One can define infinitely many random variable on a given sample space.

Discrete Random Variables:

A random variable which can take some specified values only is called as Discrete Random Variables.

(Varying only over integral values)

Ex: Tossing a coin and observing the number of heads turning up.

Continuous Random Variables:

A random variable which can take any value in a specified range is called Continuous Random Variable.

(can assume any value in the interval of real numbers)

Example: Speed, time etc.....

Discrete Probability Distributions:

If for each value x_i of a discrete random variable X, a real number $p(x_i)$ is assigned such that $a)p(x_i) \ge 0$ $b)\sum_i p(x_i) = 1$

Then the function p(x) is called Probabilty Function

The set of values $[x_i, p(x_i)]$ is called a discrete probability distribution of discrete random variable X.

The function p(x) is called the probability density function(pdf).

The distribution function f(x) is defined by $f(x) = P(X \le x) = \sum_{i=1}^{x} p(x_i)$, x being an integer is called the cumulative distribution function(cdf).

Note:

$$Mean(\mu) = \sum_{i} x_i . p(x)_i$$

Variance
$$(V) = \sum_{i} (x_i - \mu)^2 \cdot p(x_i)$$

= $\sum_{i} x_i^2 \cdot p(x_i) - \mu^2$

Standard deviation $(\sigma) = \sqrt{V}$