ST. BEDE'S ACADEMY SENIOR SECONDARY SCHOOL,

SANTHOME, CHENNAI – 600 004

PRACTICAL

DATE: 15/10/2020

SUBJECT: Physics

EXPERIMENT NO 3: Compare the EMF of two given primary cells using

a potentiometer.

AIM:

To compare the EMF of two given primary cells using a potentiometer.

MATERIALS REQUIRED:

A potentiometer, one way key, an ammeter, a rheostat, a galvanometer, two way key, a voltmeter, two primary cells, a battery, connecting wires, sand paper.

THEORY & FORMULAE:

Principle of potentiometer is that, for a constant current flowing through a wire of uniform area of cross-section, the fall of potential along the wire is directly proportional to its length.

 $V \alpha l$

Consider that a cell of emf E_1 gives balance point for a length l_1 of the wire. According to principle of potentiometer,

$$E_1 \propto l_1$$

Or

$$E_1 = k l_1 - \dots (1)$$

Where k is constant of proportionality.

Similarly, if a cell of e.m.f E2 gives balance point for a length l2 then

$$E_2=kl_2$$
 ----- (2)

Dividing (1) by (2) we get

$$\frac{E_1}{E_2} = \frac{l_1}{l_2}$$

CIRCUIT DIAGRAM:

PROCEDURE:

- 1. Draw the circuit diagram as shown in the figure.
- 2. Make the connections as shown and test that the deflections of the galvanometer are in the opposite directions.
- 3. Insert key k.
- 4. Include the cell E_1 in the circuit and find the null deflection point. Measure the length l_1 of the wire from A to J_1 .
- 5. Include the cell E_2 in the circuit and find the null deflection point. Find the balance point l_2 on the potentiometer wire. Measure the length l_2 of the wire from A to J_2 .
- 6. Take such three or four set of observations by changing the value of current using rheostat.
- 7. Measure the emf of both cells by voltmeter.

TABULATION:

To determine $\frac{E_1}{E_2}$

Trial No	Balancing length of	Balancing length	$E_1 _l_1$
	Lechlanche cell	of Daniel cell	${E_2} - {l_2}$
	$1_1 \times 10^{-2} \text{ m}$	$1_2 \times 10^{-2} \mathrm{m}$	
	I I X IU III	12 X 10 III	
1	789.5	568.5	1.39
2	809.5	583.5	1.39
3	829.5	597	1.39
4	849	611.5	1.39
5	868.5	625.5	1.39

Mean
$$\frac{E_1}{E_2} = 1.39$$
 (No unit)

Calculation:

(i) Emf of Leclanche cell $E_1 = 1.5 \text{ V}$

Emf of Daniel cell $E_2 = 1.08 \text{ V}$

Ratio of Emf $\frac{E_1}{E_2}$ = 1.39 (No unit)

(ii)
$$\frac{E_1}{E_2} = \frac{l_1}{l_2}$$

- (a) 789.5/568.5 = 1.39
 - (b) 809.5/583.5=1.39
 - (c) 829.5/597=1.39
 - (d) 849/611.5=1.39
 - (e) 868.5/625.5=1.39

$$\frac{1.39+1.39+1.39+1.39}{5} = 1.39 \text{ (No unit)}$$

Result:

- (i) The ratio of emf of two cells $\frac{E_1}{E_2} = 1.39$ (No unit)
- (ii) The value of $\frac{E_1}{E_2}$ measured by voltmeter = 1.39 (No unit)

Precautions:

- 1. All the connections must be clean and tight.
- 2. For one complete set of reading, the value of current should remain constant.
- 3. The emf of auxiliary battery must be greater than the primary cells.
- 4. Press the jockey gently. It should not be rubbed along the wire.

Sources of error:

The heading of potentiometer wire may introduce some error.