PHY 108: ELECTRICITY & MAGNETISM

EXPERIMENT 1: OHM'S LAW

Lab Report:

Date: 27.10.21	
Name of the Students and IDs	(1) Robena Akter Ynabna
4	(2) 2013813042
,	(3)

#1: Record the data from Table 3-1.

			R ₁	4		R ₂			R ₃	
For,	· / /	Nominal R	2.2 kΩ		Nominal R	: 4.7 kΩ		Nominal	R: 10 kΩ	
R ₁		Measured	R: 2.16 KJ	ቢ	Measured	R: 4.67	(U	Measure	d R: 0	
Plaleulated=		Measure	d Values	,	Measure	d Values		Meas	. Values	
-carpacies-		E _{Measured}	I _{Measured}	Calculated	E _{Measured}	I _{Measured}	I _{Calculated}	E, sured	I _{Measured}	I _{Calculated}
2.2 K.D.	1 V	1.037	0.47ms	0.45 mA	1.00 V	0.21 m)	0.21 m2	1.00 V	0.10 mg	0.1 mil
= 0.45	2 <i>V</i>	2.047	0.94 mA	Qm 10.0		0.42m2		2.03 V	^ ^^	0.2 mA
2 0.43	5 <i>V</i>	5.027	2.31 mA	2.27 mA	5.007	1.01 mg	Lim du	4.96 V		0.5 mA
	10 V	10.027	4.62 m)	4.55 mA	9.97 V	2.12	2.13 mil	9.97	1.02 mg	1.0 mJ
	15 <i>V</i>	15.027	6.96 ms	6.82 mD	15.00 7	3.91 mg	3.19 mil	15.044	1.53 mg	1-5 mj
	20 V	20.08Y	9.33 mg	D.09 m)	20.067	4.27 mA	4.26 m2	20.047	2.04 mA	2.0 mil
	25V	25.097	11.75 mA	11.36 mA		5.36 mA			A	2.5 mA

#2: Comment on the measured current compared to calculated currents.

Theosund = 0.94 m)

Tealeulated = 0.91 m)

Theorem = | Tealeulated - Impasured | X100% = | 0.91 - 0.94 | X100%

Tealeulated | Tealeulated | 2.3%

So, as calculated all other values of Impasured and Tealeulated

PHY 108: Lab. 1

The % of empore and minimal between masuased europent and calculated europent the export is minimal.

PHY 108: ELECTRICITY & MAGNETISM

EXPERIMENT 1: OHM'S LAW

#3: Use the data obtained in Table 3.1 to plot I_{measured} vs. E_{measured} graph.

#4: What does the inverse of the slope of your graphs represent? Illustrate using an example.

The inverse of the slope of my graphs appeared the resistance of the

RIMINERSO SLOPE =
$$\frac{41}{\sqrt{E}} = \frac{12 - 1}{E_R - E_1} = \frac{10.7 - 8.21}{23 - 18} = 0.408 \text{ K.D}^{-1} \text{ Op } 0.5 \text{ K.D}^{-1}$$

The slope is same as the slope of the curve.

#5: Using your graph, estimate the current that would flow through each resister at E = 12 volts and compare it with the calculated value (12 V/ $R_{Measured}$). Calculate the error.

For E = 12 V

Measured Resistance	Estimated Current from Graph	Calculated Current (12 V/ R _{Measured})	% of Error
R1 = 2.16 K.A	5.5 m)	5.56 m)	J8%
R2 = 4.67 KIL	2.6 ms	2.57 mA	1.17%
R3 = 9.82 KI	1.1 mA	1.22 m/s	9.84%

$$R_1 \Rightarrow \%0$$
 error = $\frac{5.56 - 5.5}{5.56}$ $100\% = 1.08\%$

PHY 108: Lab. 1
$$R_2 \Rightarrow \%$$
 " = $\begin{vmatrix} 2.57 - 2.6 \\ 2.57 \end{vmatrix} \times 100\% = |.17\%$ Page 4 of 4