High Performance Computing Term 4 2018/2019

Lecturer: Associate Professor Sergey Rykovanov

Teaching Assistant: Daniil Stefonishin

Course logistics

- Tuesdays/Thursdays 12:30-15:30 lectures/hands-on sessions
- Fridays 12:30-15:30 seminars/computer labs

Activity Type	Activity Weight, %
Attendance	10
Essay	10
Homework Assignments	10
Computer Labs	40
Final Project	30

Recommended textbooks:

- Sterling, Anderson, Brodowicz. High Performance Computing. Modern Systems and Practices. Morgan Kaufmann Publishers, 2018
- В.П. Гергель. Высокопроизводительные вычисления для многоядерных многопроцессорных систем. Издательство Нижегородского госуниверситета, 2010
- В.Л. Баденко. Высокопроизводительные вычисления. Учебное пособие. Издательство Политехнического университета, Санкт-Петербург. 2010
- High Performance Computing for Dummies.

Video resources:

- Coursera: Введение в параллельное программирование с использованием OpenMP и MPI
- Udacity: Introduction to High Performance Computing

Course logistics

Prerequisites:

- Knowledge of Unix-like systems (working in terminal)
- C/C++ programming language and preferably Python
- Basic undergrad mathematics (calculus, linear algebra, ODEs and PDEs)
- Laptop
 - we will work in terminal
 - gcc, openmp, openmpi

Please fill out the questionnaire before the end of today's lecture.

You will need to get account on Skoltech's Pardus supercomputer: through IT helpdesk

Please fill out the User Agreement

Instructors

Associate Professor Sergey Rykovanov

2000-2006 Lomonosov Moscow State University, Physics Faculty 2006-2009 PhD from Ludwig-Maximilians University Munich, Germany (Theoretical and computational plasma physics) 2009-2018 Postdoc at Ludwig-Maximilians University Munich, Lawrence Berkeley National Laboratory USA, Group Leader at Helmholtz Institute Jena, Germany July 2018-... Skoltech

Research Intern
Daniil Stefonishin

2009-2014 Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics 2014-2019 PhD student, MSU and Institute of Numerical Mathematics, Russian Academy of Sciences

Goals of the course

Not to be afraid of supercomputers.

Be able to write parallel programs on modern multi-core CPUs and GPUs.

Learn how to use large computing infrastructure.

Have fun learning.

Four paradigms of modern science

2. Theory

Limitations:

- experiments/theory too complicated
- experiments too expensive (car/airplane construction)
- experiments too slow (evolution of galaxies)
- experiments too dangerous (explosives, chemicals, climate)
- experiments not possible at the moment

Four paradigms of modern science

1. Experiment

3. Modeling

2. Theory

Mathematical models
Numerical methods
Computers and supercomputers

Four paradigms of modern science

1. Experiment

3. Modeling

2. Theory

4. Big Data and AI

High Performance Computing is a strategic necessity

- Main players like USA, China, European Union are investing billions of dollars into HPC
- HPC drives scientific discovery (plasma physics, computational chemistry, novel materials, artificial intelligence).
- HPC has entered almost all areas of human activity, for example:
 - new perfumes development
 - automobile tires development
 - entertainment industry, movies (Disney had collaboration with plasma physicists on particle simulations using GPUs), cybersport
 - PayPal saved ~1 billion dollars detecting online fraud with HPC
- HPC is one of the main drivers of the modern world innovation.

HPC share compared to the country **GDP**

Russia's position on the global HPC arena

^{*} https://www.top500.org/ list of the most powerful supercomputers in the world

Units for measuring supercomputer performance

- High Performance Computing (HPC) units are:
 - Flop: floating point operation, usually double precision unless noted
 - Flop/s: floating point operations per second
 - Bytes: size of data (a double precision floating point number is 8 bytes)
- Typical sizes are millions, billions, trillions...

Kilo	Kflop/s = 10^3 flop/sec	Kbyte = $10^3 \sim 2^{10} = 1024$ bytes (KiB)
Mega	$Mflop/s = 10^6 flop/sec$	Mbyte = $10^6 \sim 2^{20}$ bytes (MiB)
Giga	Gflop/s = 10^9 flop/sec	Gbyte = $10^9 \sim 2^{30}$ bytes (GiB)
Tera	Tflop/s = 10^{12} flop/sec	Tbyte = $10^{12} \sim 2^{40}$ bytes (TiB)
Peta	Pflop/s = 10^{15} flop/sec	Pbyte = $10^{15} \sim 2^{50}$ bytes (PiB)
Exa	Eflop/s = 10^{18} flop/sec	Ebyte = $10^{18} \sim 2^{60}$ bytes (EiB)
Zetta	$Zflop/s = 10^{21} flop/sec$	Zbyte = $10^{21} \sim 2^{70}$ bytes (ZiB)
Yotta	Yflop/s = 10^{24} flop/sec	Ybyte = $10^{24} \sim 2^{80}$ bytes (YiB)

- Current fastest (public) machines are petaflop systems
 - Up-to-date list at www.top500.org

~ 10 Mflop/Watt

Top 500 – list of most powerful supercomputers

Currently only 3 Russian supercomputers are in the list

Top 500 – list of most powerful supercomputers

Operating system Family System Share

Accelerator/Co-Processor System Share

Vendors Performance Share

Summit (#1 machine) System Overview

System Performance

- Peak performance of 200 petaflops for modeling & simulation
- Peak of 3.3 ExaOps for data analytics and artificial intelligence

Each node has

- 2 IBM POWER9 processors
- 6 NVIDIA Tesla V100 GPUs
- 608 GB of fast memory
- 1.6 TB of NVMe memory

The system includes

- 4608 nodes
- Dual-rail Mellanox EDR InfiniBand network
- 250 PB IBM
 Spectrum Scale
 file system
 transferring data at
 2.5 TB/s

Russia in Top 500

3 entries found.

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
79	Lomonosov 2 - T-Platform A-Class Cluster, Xeon E5-2697v3 14C 2.6GHz,Intel Xeon Gold 6126, Infiniband FDR, Nvidia K40m/P-100, T-Platforms Moscow State University - Research Computing Center Russia	64,384	2,478.0	4,946.8	
283	Cray XC40, Xeon E5-2697v4 18C 2.3GHz, Aries interconnect, Cray Inc./T-Platforms Main Computing Center of Roshydromet Russia	35,136	1,200.3	1,293.0	
487	Lomonosov - T-Platforms T-Blade2/1.1, Xeon X5570/X5670/E5630 2.93/2.53 GHz, Nvidia 2070 GPU, PowerXCell 8i Infiniband QDR, T-Platforms Moscow State University - Research Computing Center Russia	78,660	901.9	1,700.2	2,800

Functioning of a single compute node

- Von Neumann Principle
 - CPU loads data from memory, operates on it and puts the result back to memory: classical PC

Bottleneck is memory transfer CPU-memory which limits the computation

speed

- Specialized accelerator
 - Applications need to be rewritten
 - Example: GPU computing (CUDA, OpenCL);
 - "Fast" memory inside the GPU;
 - Memory volume is bounded

(V100: 16 ГБ)

Memory hierarchy

Measuring the cluster performance

• Benchmarck for performance measurement (LINPACK): Ax = b

where A is an N x N matrix, N is large (10⁶)

Performance: benchmark $-R_{max}$; theoretical or peak $-R_{peak}$

Системы на ключевых местах в списке ТОП-500

Nº	Cluster	Country	Rmax [Pflop/s]	Rpeak [Pflop/s]	Power [MW]
1	Summit - IBM	USA	122,3	187,6	8,8
2	Sunway TaihuLight	China	93	125,4	15,3
	····	···			
500	CSCS Cray	Switzerland	0,7	0,84	0,3
	Zhores - Dell	Russia, Skoltech	0,5	0,8	0,1

Factors influencing the performance

Technology of semiconductors

- CMOS technology;
- Decreasing the size of the semiconductor structures leads to better performance:
 size, energy consumption, clock rate, price

Compute node architecture

 Connection of CPUs and GPUs to memory, memory bandwidth, interconnect bandwidth

Infrastructure architecture

- Energy efficiency;
- Cooling efficiency (influences the clock rate)
- Computational density (less path for the signal to take)

Processor technology overview

Why the Fastest Computers are Parallel Computers

Including laptops and cell phones

Think parallel!

Highly recommended book (google for pdf)

Visionary quotes about computers and HPC

Thomas Watson (chairman of IBM), 1943:

"I think there is a world market for maybe five computers."

Ken Olson (chairman of DEC), 1977:

"There is no reason for any individual to have a computer in his home."

Bill Gates, 1981:

"640K ought to be enough for anybody"

Popular mechanics 1949:

«Where a calculator on the ENIAC is equipped with 18,000 vacuum tubes and weighs 30 tons, computers in the future may have only 1,000 vacuum tubes and weigh only 1.5 tons.»

Abacus, 5 BC

17th century, Pascaline (1642)

Leibniz's Stepped reckoner (1671)

History of HPC 19th century

Arithmometer, Charles de Calmar (1820)

Punched card + calculator, Herman Holerith (1890)

Punched card for weaving (1801)

History of HPC 19th century

Punched card for weaving (1801)

Charles Babbage, concept of fully automated calculation by mechanical means

Ada Lovelace, first programmer, first algorithm

Konrad Zuse 1938, Z1 – first programmable mechanical computer

Harvard Mark I

• Electronic computing developed to meet military needs in WWII

- Colossus, Bletchley Park, 1943 ... code breaking, dedicated function
- ENIAC, U. Pennsylvania, 1945 ... ballistics tables, plugboard programming
- Von Neumann
 - Initiated 1946 at Institute for Advanced Studies (IAS)
 - Vacuum tubes, oscilloscopes, assembly language ... many operational challenges
 - But momentous flexible stored program, reliability architecture, hydrogen bomb
 - IAS, Princeton, 1951
 - MANIAC, LANL, 1952
 - ORACLE, ORNL, 1953

Women's Royal Naval Service operating Colossus during World War II

Cray-1, 1976, specialized supercomputer 133 MFlops

Scalable "Beowulf" cluster made of similar compute nodes interconnected between each other.

1994, NASA (Thomas Sterling)

Flagship supercomputer "Zhores" for AI, Big data and HPC

Hybrid energy-efficient architecture

- 74 compute nodes
- 26 nodes with powerful graphic cards Nvidia Tesla V100 (NVLink + RDMA)
- tensor cores for deep learning;
- 90 kWatt power consumption;
- 1PFlops peak performance;
- 0.5 Pbytes storage system
- #6 in Russia
- was installed by our own small team

«Zhores» is a unique for Russia supercomputer capable of solving a wide range of interdisciplinnary problems in machine learning, data science and mathematical modeling in such areas as: biomedicine, image classification, Digital Pharma, Photonics, predictive maintenance, new X- and gamma-ray sources

Other supercomputers

General purpose cluster "Arkuda"

"Arkuda" is a general purpose supercomputer administered by CDISE HPC&Big Data team:

- 54 regular compute blades
- 3 big memory nodes
- 12 nodes with powerful GPUs (NVidia K80 and NVidia M40)
- Performance ~150 TFLOP/s
- Storage system 0.9 PBytes

General purpose cluster "Pardus"

"Pardus" is a general purpose supercomputer administered by CDISE HPC&Big Data team:

- 27 compute nodes in total
- 1 node with powerful GPU (NVidia K80)
- Performance ~25 TFLOP/s
- Storage system 70 Tbytes

We will add a node with 10 GTX 1080 Ti this week.

You should get an account!