1. (20 points) Show that the following the epigraph problem form is equivalent to the standard problem by using KKT conditions.

(Standard problem) minimize
$$f_0(x)$$

(Epigraph problem) minimize
$$t$$
 subject to $f_0(x) \le t$

- 2. (40 points) We have the following norm approximation problem: maximize ||Ax b||
 - (a) For $||Ax b|| = ||Ax b||_{\infty}$, show that the following LP is an equivalent problem.

minimize
$$t$$
 subject to $-t\mathbf{1} \le Ax - b \le t\mathbf{1}$

where
$$x \in R^n$$
, $t \in R$, $A \in R^{m \times n}$, and $\mathbf{1} = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$.

(b) For $||Ax - b|| = ||Ax - b||_1$, show that the following LP is an equivalent problem. minimize $\mathbf{1}^T y$ subject to $-y \le Ax - b \le y$

where
$$x \in \mathbb{R}^n$$
, $y \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$, and $\mathbf{1} = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$.

3. (20 points) Suppose that f(x) is *concave* of $x = (x_1, ..., x_k)$ when x is a probability vector (probability mass function). Consider the following optimization problem.

$$\max_{x} \text{mize } f(x)$$

subject to
$$\sum_{i=1}^{k} x_i = 1$$
, $x_i \ge 0$ for $1 \le i \le k$

Then, derive the following condition for the optimal x^* by using KKT conditions:

$$\frac{\partial f(x)}{\partial x_i} = v$$
 for i such that $x_i > 0$;

$$\frac{\partial f(x)}{\partial x_i} \le v$$
 for i such that $x_i = 0$;

4. (20 points) For an underdetermined linear equation: Ax = b where $A \in \mathbb{R}^{p \times n}$ where p < n and $\operatorname{rank}(A) = p$. In order to transform an equality-constrained optimization problem into an unconstrained optimization problem, we parametrize the affine feasible set: $\{x \mid Ax = b\} = \{Fz + \hat{x} \mid z \in \mathbb{R}^{n-p}\}$.

Suppose that the first p columns of A are independent, i.e., $A = [A_1 \ A_2]$ where $A_1 \in R^{p \times p}$ is nonsingular. Then, show that $F = \begin{bmatrix} -A_1^{-1}A_2 \\ I \end{bmatrix}$ and $\hat{x} = \begin{bmatrix} A_1^{-1}b \\ 0 \end{bmatrix}$.

5. (Optional) Boyd 10.1 (a) (p. 557) [Nonsingularity of the KKT matrix]