Coheir independence II

Advanced Model Theory

March 20, 2022

This document continues the previous notes on coheir independence.

- 1. We give an alternative proof that any two A-invariant types commute in a stable theory.
- 2. We show that the relation $\bar{a} \downarrow_M^u \bar{b}$ is closely related to Morley products.

1 Finitely satisfiable types commute with definable types

Work in a monster model \mathbb{M} of a complete theory T, not necessarily stable. Recall that if $M \leq N \leq \mathbb{M}$, then

$$N \bigcup_{M}^{u} \bar{a} \iff \operatorname{tp}(\bar{a}/N) \supseteq \operatorname{tp}(\bar{a}/M).$$

Therefore, the following lemma generalizes the fact that definable types have unique heirs (Proposition 15 in the February 24th notes).

Lemma 1. Let M be a small model. Suppose $\operatorname{tp}(\bar{a}/M)$ is definable and $\bar{b} \downarrow_M^u \bar{a}$. Then $\operatorname{tp}(\bar{a}/M\bar{b})$ is $p \upharpoonright M\bar{b}$, where p is the M-definable global type extending $\operatorname{tp}(\bar{a}/M)$ (see Proposition 15 in the March 10th notes).

Proof. Similar to Proposition 15 in the February 24th notes. But for completeness, here is the proof. We must show that for any L-formula $\varphi(\bar{x}, \bar{y}, \bar{z})$ and any $\bar{c} \in M$,

$$\varphi(\bar{x}, \bar{b}, \bar{c}) \in \operatorname{tp}(\bar{a}/M\bar{b}) \iff \mathbb{M} \models (d_p\bar{x})\varphi(\bar{x}, \bar{b}, \bar{c}).$$

Otherwise, these things are true:

$$\left(\mathbb{M} \models \varphi(\bar{a}, \bar{b}, \bar{c})\right) \iff \left(\mathbb{M} \models (d_p \bar{x}) \varphi(\bar{x}, \bar{b}, \bar{c})\right) \\
\mathbb{M} \models \left(\varphi(\bar{a}, \bar{b}, \bar{c}) \iff (d_p \bar{x}) \varphi(\bar{x}, \bar{b}, \bar{c})\right) \\
(\varphi(\bar{a}, \bar{y}, \bar{c}) \iff (d_p \bar{x}) \varphi(\bar{x}, \bar{y}, \bar{c})) \in \operatorname{tp}(\bar{b}/M\bar{a}).$$

As $\bar{b} \downarrow_M^u \bar{a}$, the type $\operatorname{tp}(\bar{b}/M\bar{a})$ is finitely satisfiable in M, so there is $\bar{b}' \in M$ such that these things are true:

$$\mathbb{M} \models \left(\varphi(\bar{a}, \bar{b}', \bar{c}) \not\leftrightarrow (d_p \bar{x}) \varphi(\bar{x}, \bar{b}', \bar{c}) \right)$$

$$\left(\mathbb{M} \models \varphi(\bar{a}, \bar{b}', \bar{c}) \right) \not\longleftrightarrow \left(\mathbb{M} \models (d_p \bar{x}) \varphi(\bar{x}, \bar{b}', \bar{c}) \right)$$

$$\left(\varphi(\bar{x}, \bar{b}', \bar{c}) \in \operatorname{tp}(\bar{a}/M) \right) \not\longleftrightarrow \left(\mathbb{M} \models (d_p \bar{x}) \varphi(\bar{x}, \bar{b}', \bar{c}) \right).$$

This contradicts the choice of the formula $(d_p\bar{x})\varphi(\bar{x},\bar{y},\bar{z})$.

Lemma 2. Let $p \in S_n(\mathbb{M})$ be finitely satisfiable in a small model M. If $\bar{a} \models p \upharpoonright (M\bar{b})$, then $\bar{a} \downarrow_M^u \bar{b}$.

Proof. Trivial. \Box

Theorem 3. Let p, q be global types. Suppose p is definable over some small set A.¹ Suppose q is finitely satisfiable in some small set B.² Then p and q commute: $(p \otimes q)(\bar{x}, \bar{y}) = (q \otimes p)(\bar{y}, \bar{x})$.

Proof. Otherwise, there is an $L(\mathbb{M})$ -formula $\varphi(\bar{x}, \bar{y})$ such that

$$(p \otimes q)(\bar{x}, \bar{y}) \vdash \varphi(\bar{x}, \bar{y})$$
$$(q \otimes p)(\bar{y}, \bar{x}) \vdash \neg \varphi(\bar{x}, \bar{y}).$$

The formula $\varphi(\bar{x}, \bar{y})$ uses only finitely many parameters \bar{c} from M. By Löwenheim-Skolem there is a small model M containing $AB\bar{c}$. Then $\varphi(\bar{x}, \bar{y})$ is an L(M)-formula. Also, p is M-definable (a weaker condition than being A-definable) and q is finitely satisfiable in M (a weaker condition than being finitely satisfiable in B). Note that p, q, and the products $p \otimes q$ and $q \otimes p$ are M-invariant global types. Take $(\bar{a}, \bar{b}) \models (p \otimes q) \upharpoonright M$. By definition of \otimes , this means that $\bar{a} \models p \upharpoonright M$ and $\bar{b} \models q \upharpoonright M\bar{a}$. By Lemma 2,

$$\bar{b} \models q \upharpoonright M\bar{a} \implies \bar{b} \bigcup_{M}^{u} \bar{a}.$$

Now $\operatorname{tp}(\bar{a}/M)$ is the definable type $p \upharpoonright M$, so by Lemma 1,

$$\bar{a}\models p\restriction M\bar{b}.$$

So $\bar{b} \models q \upharpoonright M$ and $\bar{a} \models p \upharpoonright M\bar{b}$, which means

$$(\bar{b},\bar{a}) \models (q \otimes p) \upharpoonright M.$$

It follows that $(q \otimes p)(\bar{y}, \bar{x})$ and $(p \otimes q)(\bar{x}, \bar{y})$ have the same restriction to M. (Both restrictions are $\operatorname{tp}(\bar{a}, \bar{b}/M)$.) But $\varphi(\bar{x}, \bar{y})$ is an L(M)-formula that is in $(p \otimes q)(\bar{x}, \bar{y})$ but not $(q \otimes p)(\bar{y}, \bar{x})$, a contradiction.

¹In particular, p is A-invariant by Remark 14 in the March 10th notes.

²In particular, q is B-invariant by (the proof of) Theorem 17(1) in the March 10th notes.

2 Types commute in stable theories

Assume the theory T is stable.

Proposition 4 (Assuming stability). Let $p \in S_n(\mathbb{M})$ be a global type and M be a small model. The following are equivalent:

- 1. p is finitely satisfiable in M.
- 2. p is M-invariant.
- 3. p is M-definable.

Proof. (1) \Longrightarrow (2): Theorem 17(1) in the March 10th notes.

- $(2) \Longrightarrow (3)$: Lemma 19 in the March 10th notes.
- (3) \Longrightarrow (1). Suppose p is M-definable. By Proposition 15 in the March 10th notes, p is the heir of some definable type $q \in S_n(M)$. By Corollary 21 in the March 10th notes, p is a coheir of q, which means p is finitely satisfiable in M.

Theorem 5 (Assuming stability). Let $p(\bar{x}), q(\bar{y})$ be two invariant global types. Then p and q commute: $(p \otimes q)(\bar{x}, \bar{y}) = (q \otimes p)(\bar{y}, \bar{x})$.

Proof. The types p and q are invariant over small sets A and B, respectively. Take a small model M containing $A \cup B$. Then p and q are M-invariant. By Proposition 4, p is M-definable and q is finitely satisfiable in M. Therefore p and q commute by Theorem 3.

3 Morley products and \bigcup^u

Let M be a small model. If p, q are M-definable types, then the Morley product $p \otimes q$ is also M-definable by Proposition 26 in the March 10th notes. Since M-definable global types correspond to (M-)definable types over M (Proposition 15 in the March 10th notes), we can regard \otimes as an operation on definable types over M.

If T is stable, then all types over M are definable, and we get an operation

$$S_n(M) \times S_n(M) \to S_{m+n}(M)$$

 $(p,q) \mapsto p \otimes q$

The following theorem shows that, at least in stable theories, there is a very close connection between the Morley product $p \otimes q$ and the coheir independence relation $\bar{a} \bigcup_{M}^{u} \bar{b}$.

Theorem 6. Assume T is stable. Let $M \leq \mathbb{M}$ be a small model and \bar{a}, \bar{b} be tuples in \mathbb{M} . Then

$$\left(\bar{a} \underset{M}{\overset{u}{\downarrow}} \bar{b}\right) \iff \left(\operatorname{tp}(\bar{b}, \bar{a}/M) = \operatorname{tp}(\bar{b}/M) \otimes \operatorname{tp}(\bar{a}/M)\right)$$

Proof. First suppose $\bar{a} \downarrow_M^u \bar{b}$. Then $\operatorname{tp}(\bar{a}/M\bar{b})$ is finitely satisfiable in M. By Lemma 4 in the March 10th notes, there is a global type p which is finitely satisfiable in M and extends $\operatorname{tp}(\bar{a}/M\bar{b})$. By Proposition 4 above, p is M-definable. Then p is the unique M-definable global extension of the definable type $\operatorname{tp}(\bar{a}/M)$. Let q be the unique M-definable global extension of the definable type $\operatorname{tp}(\bar{b}/M)$. Then

$$\bar{b} \models q \upharpoonright M \text{ and } \bar{a} \models p \upharpoonright M\bar{b}$$

because p extends $\operatorname{tp}(\bar{a}/M\bar{b})$. Therefore

$$(\bar{b}, \bar{a}) \models (q \otimes p) \upharpoonright M,$$

or equivalently, $\operatorname{tp}(\bar{b}, \bar{a}/M) = (q \otimes p) \upharpoonright M$. By how we defined \otimes on types over M, this means

$$\operatorname{tp}(\bar{b}, \bar{a}/M) = \operatorname{tp}(\bar{b}/M) \otimes \operatorname{tp}(\bar{a}/M).$$

Conversely, suppose $\operatorname{tp}(\bar{b}, \bar{a}/M) = \operatorname{tp}(\bar{b}/M) \otimes \operatorname{tp}(\bar{a}/M)$. Let q be the unique M-definable global extension of the definable type $\operatorname{tp}(\bar{b}/M)$ and let p be the unique M-definable global extension of the definable type $\operatorname{tp}(\bar{a}/M)$. Then

$$(\bar{b}, \bar{a}) \models (q \otimes p) \upharpoonright M,$$

or equivalently,

$$\bar{b} \models q \upharpoonright M \text{ and } \bar{a} \models p \upharpoonright M\bar{b}.$$

By Proposition 4, p is finitely satisfiable in M, and so

$$\bar{a} \models p \upharpoonright M\bar{b} \implies \bar{a} \bigcup_{M}^{u} \bar{b}$$

by Lemma 2. \Box

In stable theories, any two types commute, either by Theorem 16 in the March 17th notes or Theorem 5 above. Then

$$\operatorname{tp}(\bar{a}, \bar{b}/M) = \operatorname{tp}(\bar{a}/M) \otimes \operatorname{tp}(\bar{b}/M) \iff \operatorname{tp}(\bar{b}, \bar{a}/M) = \operatorname{tp}(\bar{b}/M) \otimes \operatorname{tp}(\bar{a}/M).$$

By Theorem 6, this means

$$\bar{a} \underset{M}{\overset{u}{\downarrow}} \bar{b} \iff \bar{b} \underset{M}{\overset{u}{\downarrow}} \bar{a}.$$

This gives another proof of symmetry of \bigcup^u in stable theories (Theorem 17 in the previous notes on coheir independence).

4 Onwards

Suppose T is stable and A is a small set. Recall that the algebraic closure of A, written $\operatorname{acl}(A)$, is the union of all finite A-definable sets. It turns out that any type over $\operatorname{acl}(A)$ has a unique $\operatorname{acl}(A)$ -definable global extension.³ This yields a bijection between types over $\operatorname{acl}(A)$ and $\operatorname{acl}(A)$ -definable global types. Analogous to what happens with models, this gives an operation \otimes on types over $\operatorname{acl}(A)$. The general definition of non-forking independence (\downarrow) in stable theories is that

$$\left(\bar{a} \underset{A}{\downarrow} \bar{b}\right) \iff \left(\operatorname{tp}(\bar{a}, \bar{b}/\operatorname{acl}(A)) = \operatorname{tp}(\bar{a}/\operatorname{acl}(A)) \otimes \operatorname{tp}(\bar{b}/\operatorname{acl}(A))\right),$$

by analogy to Theorem 6. (In particular, $\bar{a} \downarrow_M \bar{b} \iff \bar{a} \downarrow_M^u \bar{b}$, when M is a small model.) And if $A \subseteq B \subseteq M$ and $\bar{c} \in \mathbb{M}^n$, then $\operatorname{tp}(\bar{c}/B)$ is a non-forking extension of $\operatorname{tp}(\bar{c}/A)$, written $\operatorname{tp}(\bar{c}/B) \supseteq \operatorname{tp}(\bar{c}/A)$, iff $\bar{c} \downarrow_A B$. This is analogous to how for $M \preceq N \preceq \mathbb{M}$ and $\bar{c} \in \mathbb{M}^n$,

- $\operatorname{tp}(\bar{c}/N)$ is a coheir of $\operatorname{tp}(\bar{c}/M)$ if and only if $\bar{c} \downarrow_M^u N$.
- $\operatorname{tp}(\bar{c}/N)$ is an heir of $\operatorname{tp}(\bar{c}/M)$ if and only if $N \downarrow_M^u \bar{c}$.

In particular, if $q \in S_n(N)$ and $p \in S_n(M)$, then q is an heir of p iff q is a coheir of p iff q is a non-forking extension of p. Non-forking generalizes the (co)heir relation from types over models to types over arbitrary sets.

³Technically this only works if T has elimination of imaginaries, and we need to pass to T^{eq} otherwise.