Goal: Detect all instances of objects

EEE422/6082 Computational Vision

Object Category Detection

Ling Shao

Some slides from Derek Hoiem

Demo: face detection

http://demo.pittpatt.com/

Influential Works in Detection

- Sung-Poggio (1994, 1998) : ~1450 citations
 - Basic idea of statistical template detection (I think), bootstrapping to get "face-like" negative examples, multiple whole-face prototypes (in 1994)
- Rowley-Baluja-Kanade (1996-1998) : ~2900
 - "Parts" at fixed position, non-maxima suppression, simple cascade, rotation, pretty good accuracy, fast
- Schneiderman-Kanade (1998-2000,2004): ~1250
 - Careful feature engineering, excellent results, cascade
- Viola-Jones (2001, 2004) : ~6500
 - Haar-like features, Adaboost as feature selection, hyper-cascade, very fast, easy to implement
- Dalal-Triggs (2005) : 1025
 - Careful feature engineering, excellent results, HOG feature, online code
- Felzenszwalb-McAllester-Ramanan (2008)? 105 citations
 - Excellent template/parts-based blend

Sliding window detection

What the Detector Sees

Statistical Template

 Object model = log linear model of parts at fixed positions

Non-object

$$+4+1+0.5+3+0.5=10.5 > 7.5$$
Object

Design challenges

- · Part design
 - How to model appearance
 - Which "parts" to include
 - How to set part likelihoods
- · How to make it fast
- · How to deal with different viewpoints
- Implementation details
 - Window size
 - Aspect ratio
 - Translation/scale step size
 - Non-maxima suppression

Schneiderman and Kanade

Parts model

 Part = group of wavelet coefficients that are statistically dependent

L1 L1 L1 HL L1 L1 LH HH Level 2 LH	Level 2 HL Level 2 HH	Level 3 HL
Level 3		Level 3
LH		HH

Schneiderman and Kanade. A Statistical Method for 3D Object Detection. (2000)

Parts: groups of wavelet coefficients

Fixed parts within/across subbands

Intra-subband Inter-orientati

Inter-orientation Inter-frequency

Inter-frequency

- 17 types of "parts" that can appear at each position
- Discretize wavelet coefficient to 3 values
- E.g., part with 8 coefficients has 3^8 = 6561 values

Training

- 1) Create training data
 - a) Get positive and negative patches
 - b) Pre-process (optional), compute wavelet coefficients, discretize
 - c) Compute parts values
- 2) Learn statistics
 - a) Compute ratios of histograms by counting for positive and negative examples
 - b) Reweight examples using Adaboost, recount, etc.
- Get more negative examples (bootstrapping)

Training multiple viewpoints

Train new detector for each viewpoint.

Results: faces

Table 1. Face detection with out-of-plane rotation					
γ	Detection (all faces)	Detection (profiles)	False Detections		
0.0	92.7%	92.8%	700		
1.5	85.5%	86.4%	91		
2.5	75.2%	78.6%	12		

208 images with 441 faces, 347 in profile

Testing

- 1) Processing:
 - a) Lighting correction (optional)
 - b) Compute wavelet coefficients, quantize
- Slide window over each position/scale (2 pixels, 2^{1/4} scale)
 - a) Compute part values
 - b) Lookup likelihood ratios
 - c) Sum over parts
 - d) Threshold
- 3) Use faster classifier to prune patches (cascade...more on this later)
- 4) Non-maximum suppression

Results: cars

Table 3. Car detection					
γ	Detections	False Detections			
1.05	83%	7			
1.0	86%	10			
0.9	92%	71			

Viola and Jones

Fast detection through two mechanisms

Integral Images

- "Haar-like features"
 - Differences of sums of intensity
 - Thousands, computed at various positions and scales within detection window

Two-rectangle features

Three-rectangle features

Etc.

Viola and Jones. Rapid Object Detection using a Boosted Cascade of Simple Features (2001).

Integral Images

• ii = cumsum(cumsum(Im, 1), 2)

ii(x,y) = Sum of the values in the grey region

How to compute B-A?

How to compute A+D-B-C?

Adaboost as feature selection

- Create a large pool of parts (180K)
- "Weak learner" = feature + threshold + parity

$$h_j(x) = \begin{cases} 1 & \text{if } p_j f_j(x) < p_j \theta_j \\ 0 & \text{otherwise} \end{cases}$$

- Choose weak learner that minimizes error on the weighted training set
- Reweight

Adaboost

Cascade for Fast Detection

- · Choose threshold for low false negative rate
- Fast classifiers early in cascade
- Slow classifiers later, but most examples don't get there

Viola-Jones details

- 38 stages with 1, 10, 25, 50 ... features
 - 6061 total used out of 180K candidates
 - 10 features evaluated on average
- Examples
 - 4916 positive examples
 - 10000 negative examples collected after each stage
- Scanning
 - Scale detector rather than image
 - Scale steps = 1.25, Translation 1.0*s to 1.5*s
- Non-max suppression: average coordinates of overlapping boxes
- Train 3 classifiers and take vote

Viola Jones Results

MIT + CMU face dataset

Schneiderman later results

Schneiderman 2004

Viola-Jones 2001 Roth et al. 1999 Schneiderman-Kanade 2000

	89.7%	93.1%	94.4%	94.8%	95.7%	
Bayesian Network	1	8	19	36	56	
Semi- Naïve Bayes*	6	19	29	35	46	
[6]	31	65				
[7]*				78		
[16]*			65			
Table 2. False alarms as a function of recognition rate on the MIT-CMU Test Set for Frontal Face Detection. * indicates exclusion of the 5 images of hand-drawn faces.						

Speed: frontal face detector

• Schneiderman-Kanade (2000): 5 seconds

• Viola-Jones (2001): 15 fps

Strengths and Weaknesses of Statistical Template Approach

Strengths

- Works very well for non-deformable objects: faces, cars, upright pedestrians
- · Fast detection

Weaknesses

- · Not so well for highly deformable objects
- · Not robust to occlusion
- · Requires lots of training data

SK vs. VJ

Schneiderman-Kanade

- Wavelet features
- Log linear model via boosted histogram ratios
- Bootstrap training
- Two-stage cascade
- NMS: Remove overlapping weak boxes
- Slow but very accurate

Viola-Jones

- · Similar to Haar wavelets
- Log linear model via boosted stubs
- Bootstrap training
- Multistage cascade, integrated into training
- NMS: average coordinates of overlapping boxes
- Less accurate but very fast

Things to remember

- Excellent results require careful feature engineering
- · Sliding window for search
- Features based on differences of intensity (gradient, wavelet, etc.)
- Boosting for feature selection (also L1-logistic regression)
- Integral images, cascade for speed
- Bootstrapping to deal with many, many negative examples

