

Problem BinSearch

Input file stdin
Output file stdout

```
bool binary_search(int n, int p[], int target){
   int left = 1, right = n;
   while(left < right){
      int mid = (left + right) / 2;
      if(p[mid] == target)
           return true;
      else if(p[mid] < target)
           left = mid + 1;
      else
           right = mid - 1;
   }
   if(p[left] == target) return true;
   else return false;
}</pre>
```

Відомо, що, якщо масив р відсортований, тоді цей код повертає true, тоді і тільки тоді, коли target є в масиві р. З іншої сторони, якщо р не буде відсортованим, то цей код не завжди буде працювати правильно.

Вам дано ціле додатнє число n і послідовність $b_1, \ldots, b_n \in \{\text{true}, \text{false}\}$. Гарантується, що $n = 2^k - 1$ для певного цілого додатнього числа k.

Вам потрібно згенерувати перестановку p чисел $\{1,\ldots,n\}$, для яких виконуються певні обмеження. Нехай S(p) — кількість індексів $i\in\{1,\ldots,n\}$, для яких binary_search(n, p, i) **не** повертає b_i . Ви маєте згенерувати таке p, щоб S(p) було малим (точніше у розділі "Restrictions").

(Зверніть увагу: перестановка з чисел $\{1,\ldots,n\}$ — це послідовність з n цілих чисел, які містять кожне ціло число від 1 до n рівно один раз.)

Input data

Вхідні дані містить кілька тестів. Перший рядок містить одне ціле число T — кількість тестів. Далі описуються самі тести.

Перший рядок кожного тесту містить одне ціле число n.

Другий рядок містить рядок довжини n з символів '0' та '1'. Такі символи не розділені пробілами. Якщо i-й символ '1', тоді $b_i = \text{true}$, а якщо '0', то $b_i = \text{false}$.

Output data

Для кожного з T тестів виведіть перестановку p.

Restrictions

- Нехай $\sum n$ сума всіх n у вхідних даних.
- $1 \le \sum n \le 100\,000$.
- $1 \le T \le 7000$.
- $n = 2^k 1$ для певного $k \in \mathbb{N}$, k > 0.
- Якщо $S(p) \leq 1$ для всіх тестів підзадачі, то ви отримаєте 100% балів за цю підзадачу.
- Інакше, якщо $0 \le S(p) \le \lceil \log_2 n \rceil$ (тобто $1 \le 2^{S(p)} \le n+1$) для всіх тестів підзадачі, то ви отримаєте 50% балів за цю підзадачу.

#	Points	Restrictions
1	3	$b_i = { t true}.$
2	4	$b_i = { t false}.$
3	16	$1 \le n \le 7$.
4	25	$1 \le n \le 15$.
5	22	$n=2^{16}-1$ і кожен b_i вибирається випадково і незалежно з $\{ {\sf true}, {\sf false} \}.$
6	30	Без додаткових обмежень.

Examples

Input file	Output file
4	1 2 3
3	1 2 3 4 5 6 7
111	3 2 1
7	7 6 5 4 3 2 1
1111111	
3	
000	
7	
00000000	
2	3 2 1
3	7 3 1 5 2 4 6
010	
7	
0010110	

Explanations

Приклад 1. У перших двох тестах у нас S(p) = 0.

У третьому тесті У нас S(p)=1. Це через те, що binary_search(n, p, 2) повертає true, хоча $b_2=\mathtt{false}.$

У четвертому тесті у нас S(p)=1. Це через те, що binary_search(n, p, 4) повертає true, хоча $b_4=\mathtt{false}.$

Приклад 2. У нас S(p) = 0 для обох тестів.