School of Mathematics and Statistics

MT5836 Galois Theory

Problem Sheet II: Field extensionions: Algebraic elements, minimum polynomials, simple extensions

- 1. Let K be an extension of the field F such that the degree |K:F| is a prime number. Show that there are no *intermediate* fields between F and K; that is, no fields L satisfying $F \subset L \subset K$.
- 2. For all values of $a, b \in \mathbb{Q}$, determine the minimum polynomial of $a + b\sqrt{2}$ over \mathbb{Q} .
- 3. (a) Show that \mathbb{C} is a simple extension of \mathbb{R} .
 - (b) What are the irreducible polynomials over \mathbb{C} ?
 - (c) Show that if α is algebraic over \mathbb{C} , then $\mathbb{C}(\alpha) = \mathbb{C}$.
- 4. Let α be algebraic over the base field F. Show that every element of the simple extension $F(\alpha)$ is algebraic over F.
- 5. Show that the polynomial $f(X) = X^4 16X^2 + 4$ is irreducible over \mathbb{Q} . Let α be a root of f(X) in some field extension of \mathbb{Q} . Determine the minimum polynomials of α^2 and of $\alpha^3 - 14\alpha$ over \mathbb{Q} .
- 6. Determine the following degrees of field extensions:
 - (a) $|\mathbb{Q}(\sqrt[5]{3}):\mathbb{Q}|$
 - (b) $|\mathbb{Q}(e^{2\pi i/5}):\mathbb{Q}|$
 - (c) $|\mathbb{Q}(\sqrt{2},i):\mathbb{Q}|$
 - (d) $|\mathbb{Q}(\sqrt{2}i):\mathbb{Q}|$
 - (e) $|\mathbb{Q}(\sqrt{2}, \sqrt{5}) : \mathbb{Q}|$
 - (f) $|\mathbb{Q}(\sqrt{6},i):\mathbb{Q}(i)|$
- 7. Let $\alpha \in \mathbb{C}$ be a root of the polynomial $X^2 + 2X + 5$. Express the element

$$\frac{\alpha^3 + \alpha - 2}{\alpha^2 - 3}$$

of $\mathbb{Q}(\alpha)$ as a linear combination of the basis $\{1, \alpha\}$.

8. Show that $\mathbb{Q}(\sqrt{2}, \sqrt{5}) = \mathbb{Q}(\sqrt{2} + \sqrt{5})$.

Determine the minimum polynomial of $\sqrt{2} + \sqrt{5}$ over the following subfields:

- (i) Q;
- (ii) $\mathbb{Q}(\sqrt{2})$;
- (iii) $\mathbb{Q}(\sqrt{5})$.
- 9. Let α and β be algebraic elements over the base field F. Suppose that the minimum polynomial of α over F has degree m, the minimum polynomial of β over F has degree n, and that m and n are coprime. Show that $|F(\alpha, \beta): F| = mn$.

- 10. Let α be transcendental over the field F. Show that there is an isomorphism ϕ from the field F(X) of rational functions in the indeterminate X over F to the simple extension $F(\alpha)$ satisfying $X\phi = \alpha$ and $b\phi = b$ for all $b \in F$.
- 11. (a) Show that the field \mathbb{A} of algebraic numbers over \mathbb{Q} is countable.
 - (b) Show that \mathbb{C} is an infinite degree extension of \mathbb{A} .
 - (c) Show that $\mathbb C$ contains elements that are transcendental over $\mathbb Q$.