LINEAR ALGEBRA II

Ch. III LINEAR MAPPINGS

• Linear Mapping: Let V, V' be VSs over the field K. A linear mapping

$$F: V \to V'$$

is a mapping satisfying:

LM 1. $\forall u, v \in V, F(u+v) = F(u) + F(v).$

LM 2. $\forall c \in K \text{ and } v \in V, F(cv) = cF(v).$

- When V' = K, F is called a linear functional.
- When $V = K^n$, V' = K, F is a linear function.
- The identity map id_V , I_V (id, I): $v \mapsto v$ is a linear mapping.
- The zero map $O: v \mapsto O$ is a linear mapping.

- Composite mapping $G \circ F : U \ni u \mapsto G(F(u)) \in W$ of $G : V \to W$ and $F : U \to V$.
- $\bullet \ H \circ (G \circ F) = (H \circ G) \circ F.$
- The composite map $GF = G \circ F$ of linear maps is also a linear map.
- For linear maps, $(H+G) \circ F = H \circ F + G \circ F$; $G \circ (F+T) = G \circ F + G \circ T$; $(cG) \circ F = c(G \circ F)$.

- A mapping $F: S \to S'$ is called injective if $x \neq y \Rightarrow F(x) \neq F(y)$ $(F(x) = F(y) \Rightarrow x = y)$.
 - A linear mapping $F: V \to V'$ is injective \Leftrightarrow Ker $F = \{O\}$.
 - Ker $F = \{O\} \Rightarrow \text{If } v_1, \dots v_n \text{ are L.I.}$, then $F(v_1), \dots F(v_n)$ are L.I.
 - Ker $F = \{v \in V | F(v) = O\}$ is the kernel of F, a subspace of V.
- A mapping $F: S \to S'$ is called surjective if Im F = S'
 - Im $F = \{F(v) | v \in V\}$ is the image of F, a subspace of V'.
- bijective=injective+surjective.

- $\dim V = \dim \operatorname{Ker} L + \dim \operatorname{Im} L$.
- Let $L: V \to W$ be a linear map. Assume that

$$\dim V = \dim W$$
.

If Ker $L = \{O\}$, or if Im L = W, then L is bijective.

• We say that the mapping $F: S \to S'$ has an inverse if there exists a mapping $G: S' \to S$ such that

$$G \circ F = I_S$$
, and $F \circ G = I_{S'}$.

• The inverse of a linear map is a linear map.

• The mapping $F: S \to S'$ has an inverse $\Leftrightarrow F$ is bijective.

All mappings from S (a set) into V (a VS over K) is a vector space over K.

• $\mathcal{L}(V, V')$, all linear maps from V into V' (V and V' are VSs over K) is a vector space over K.

• Let *V* be a finite dimensional space over *K*, and let $\{v_1, \ldots, v_n\}$ be a basis of *V*. We define a map

$$F: V \to K^n$$

by associating to each element $v \in V$ its coordinate vector X with respect to the basis. Thus if

$$v = x_1 v_1 + \cdots, x_n v_n,$$

with $x_i \in K$, we let

$$F(v) = (x_1, \ldots, x_n).$$

Then, *F* is a linear map.

- $G: K^n \to V, G(x_1, \dots, x_n) = v$ a linear map.
- GF = I, FG = I.
- F is a isomorphism between V and K^n .

• Let $F: S \to K^n$ be a mapping, then

$$F(v) = (f_1(v), \ldots, f_n(v)).$$

 f_i 's are coordinate (component) function(al)s of F.

• $F: V \to K^n$ (V is a VS) is a linear map $\Leftrightarrow f_i$'s are linear function(al)s.

- Let V be the VS of functions having derivatives of all orders on the interval 0 < t < 1, then the derivative D = d/dt is a linear mapping from V into V.
- Let V be the VS of functions having derivatives of all orders, then $a_m D^m + a_{m-1} D^{m-1} + \cdots + a_1 I$ is a linear mapping from VS into V. It is also a linear operator on any one of the following finite dimensional vector spaces:

$$\bullet \ P_n = \left\{ \sum_{k=0}^n a_k t^k \big| a_k \in K \right\}.$$

$$\bullet E_n = \left\{ \sum_{k=0}^n a_k e^{kt} \big| a_k \in K \right\}.$$

$$\bullet T_n = \left\{ \sum_{k=0}^n \left[a_k \cos(kt) + b_k \sin(kt) \right] | a_k, b_k \in K \right\}.$$

• Let A be an $m \times n$ matrix in a field K.

$$L_A: K^n \ni X \mapsto AX \in K^m$$

is a linear map from K^n to K^m .

 \bullet $F: K^n \to K^r$

$$F(x_1,\ldots,x_n)=(x_1,\ldots,x_r).$$

- Operator: linear mapping $F: V \to V$ from a VS V to itself.
- $F^r = F \circ \cdots \circ F$.

- Homework:
 - P65, 14 and 15
 - Prove: D = d/dt is a linear mapping from P_n to P_n .

