Introducción a la Teoría de Grafos Parte I

S. Bianchi P. Fekete F. Domingo

Deptartamento de Matemática
Escuela de Ciencias Exactas y Naturales
 UNR

17 de agosto de 2021

OUTLINE

- BIBLIOGRAFÍA
- DEFINICIONES Y EJEMPLOS
- CAMINOS
- 4 GRAFOS CONEXOS
- **5** SUBGRAFOS Y COMPLEMENTOS DE GRAFOS

Introducción

EJEMPLO

Representación de un mapa de una ciudad, sentido de las calles

Introducción

EJEMPLO

Representación de una red de distribución desde un centro de producción a un depósito.

DEFINICIONES

DEFINICIÓN

Sea V un conjunto no vacío y finito, y sea $E \subset V \times V$. El par (V,E) es un *grafo dirigido* sobre V o *digrafo* sobre V.

Notación: G = (V, E).

Ejemplo:

En el ejemplo, $V = \{a, b, c, d, e\}$ y la arista que empieza en b y termina en a se la menciona como $(b, a) \in E$.

Se dice que b es el *origen* de la arista y a es el *destino*. También se dice que b es el *extremo inicial* y a el *extremo final* de la arista.

DEFINICIONES

Ejemplo (cont.):

La arista (a,a) se la denomina *lazo* y el vértice e es un vértice aislado.

DEFINICIÓN

Se dice que una arista $e \in E$ es incidente a un vértice $v \in V$ si v es uno de los extremos de la arista.

En el ejemplo (b, a) es incidente a b (y a a también).

EJEMPLO

Supongamos una reunión de n personas, queremos representar la relación de amistad que existe entre ellas.

En este caso, no importa la dirección entre las aristas. Entonces decimos que el grafo G=(V,E) es un grafo *no dirigido*. En este caso la arista que conecta a con b se la indica $\{a,b\}$.

Ejemplo:

Para indicar un lazo en un grafo no dirigido usamos la notación $e=\{v,v\}$ aunque el significado con (v,v) es el mismo.

Observación: Si no se especifica lo contrario, G es siempre un grafo no dirigido y sin lazos.

Nota: Sea G=(V,E) grafo dirigido. Se llama grafo *no dirigido asociado* a G al grafo que se obtiene de G cuando no se consideran las direcciones de sus aristas.

DEFINICIÓN

Sea G=(V,E) no dirigido y $x,y\in V$. Un camino x-y en G es una sucesión alternada finita sin lazos de vértices y aristas en G que comienza en el vértice x y termina en el vértice y.

Es decir

$$x = x_0, e_1, x_1, e_2, x_2, \dots, e_{n-1}, x_{n-1}, e_n, x_n = y,$$

donde $e_i = \{x_{i-1}, x_i\}$ para i = 1, ..., n.

La *longitud* de tal camino es el número de aristas que pertenecen a él. En este caso la longitud es n.

Si n = 0 entonces x = y y el camino se denomina *trivial*.

Si n > 0 y x = y el camino se denomina *cerrado*.

Si n > 0 y $x \neq y$ el camino se denomina *abierto*.

Veamos el siguiente ejemplo:

Camino a - b de longitud 6:

$$a, \{a,b\}, b, \{b,d\}, d, \{d,c\}, c, \{c,e\}, e, \{e,d\}, d, \{d,b\}, b$$

También es camino b-a de longitud 6.

Observación: a-b es abierto y se repiten los vértices b y d y la arista $\{b,d\}$ en él.

Veamos otro ejemplo:

Camino b-f de longitud 5, participan las aristas:

$$\{b,c\},\{c,d\},\{d,e\},\{e,c\},\{c,f\}$$

También es camino f - b de longitud 5.

Observación: b-f es abierto y se repite el vértice c en él.

Veamos el ejemplo 3:

Camino f - a de longitud 4, participan las aristas:

$$\{f,c\},\{c,e\},\{e,d\},\{d,a\}$$

También es camino a-f de longitud 4.

Observación: a-f es abierto y no se repiten vértices ni aristas en él.

Veamos el ejemplo 4:

Camino c - c de longitud 3, participan las aristas:

$$\{c,e\}, \{e,d\}, \{d,c\}$$

También es camino d-d y camino e-e de longitud 3.

Observación: c-c es cerrado y no se repiten vértices ni aristas en él.

Veamos el ejemplo 5:

Camino a - a de longitud 6, participan las aristas:

$${a,b},{b,d},{d,c},{c,e},{e,d},{d,a}$$

También es camino v - v con $v \in \{b, c, d, e\}$ de longitud 6.

Observación: a - a es cerrado y se repite el vértice d en él.

Veamos por último el ejemplo 6:

Camino a - a de longitud 4, participan las aristas:

$$\{a,b\},\{b,c\},\{c,d\},\{d,a\}$$

También es camino v-v con $v\in\{b,c,d\}$ de longitud 4.

Observación: a - a es cerrado y no se repiten vértices ni aristas en él.

DEFINICIÓN

Sea G = (V, E) no dirigido y sea un x - y camino en G.

- Si no se repiten aristas en el camino x-y, el camino se llama *recorrido* x-y. Un recorrido x-x es un *circuito*.
- Si no se repiten vértices en el camino x y, el camino se llama *camino* simple x y. Un camino simple x x se llama *ciclo*.

Convención. Si el camino x-y es un circuito, suponemos que tiene al menos una arista. Si existe una sola arista, entonces se trata de un lazo. El término ciclo implica que existen al menos dos aristas distintas que lo

- Por ejemplo, el camino a-b en el grafo G no es un recorrido (se repite la arista $\{b,d\}$).
- El camino b-f en el grafo G es un recorrido, pero no es simple (se repite el vértice c).

- ullet Por ejemplo, el camino a-f en el grafo G es un camino simple.
- El camino c-c en el grafo G es un ciclo y también un circuito.

- El camino a a en el grafo G es un circuito pero no es un ciclo (se repite el vértice d).
- El camino a-a en el grafo G es un ciclo y también un circuito.

En el caso de grafos dirigidos, existen los conceptos de *camino dirigido*, *caminos simples dirigidos* y *ciclos dirigidos*.

En el ejemplo

$$a \rightarrow b \rightarrow c \rightarrow e \rightarrow z$$

es un camino simple dirigido.

Además

$$c \rightarrow d \rightarrow b \rightarrow c$$

es un ciclo dirigido.

PRELIMINARES

Teorema Sea G=(V,E) un grafo no dirigido, con $a,b\in V$ y $a\neq b$. Si existe un a-b recorrido en G entonces existe un camino simple a-b en G.

Demostración:

Sabemos que existe un a-b recorrido en G. Consideremos aquel a-b recorrido que tenga la menor longitud posible.

Sea *W* un tal recorrido $\{a, x_1\}, \{x_1, x_2\}, \dots, \{x_n, b\}.$

Si este recorrido es un camino simple, hemos demostrado el teorema.

Supongamos que no lo es, es decir existe un vértice que se repite en el camino W. Es decir existen $0 \le k < i \le n$ tal que $x_i = x_k$

PRELIMINARES

Demostración(cont.):

- Si k=0 entonces $a=x_k=x_i$ y el camino $\{a,x_{i+1}\},\ldots,\{x_n,b\}$ es un a-b camino más corto que W.
- Si i = n entonces $x_{n+1} = b$, el camino $\{a, x_1\}, \dots, \{x_k, b\}$ es un a b camino más corto que W.

Veamos el caso en que $k \neq 0$ e $i \neq n$, entonces como $x_k = x_i$ podemos construir un a - b camino de la forma:

$${a,x_1},...,{x_{k-1},x_k},{x_k,x_{i+1}},...,{x_n,b}.$$

Este nuevo camino es más corto que el camino W. El teorema queda demostrado.

El teorema anterior es fundamental para la próxima definición.

DEFINICIÓN

Un grafo G=(V,E) no dirigido es conexo si existe un a-b camino simple para cualquier $a,b\in V$. Un grafo G=(V,E) dirigido es conexo si su grafo no dirigido asociado es conexo. Si G no es conexo se dice que es disconexo.

Ejemplos: Grafo Grafo conexo disconexo

Veamos nuevamente el grafo disconexo anterior:

Vemos que el conjunto de vértices puede particionarse en dos conjuntos V_1 y V_2 de modo que no existen arcos de la forma $\{x,y\}$ con $x\in V_1$ e $y\in V_2$. Cada uno de esos conjuntos determina en este grafo una *componente conexa*. Es decir, si consideramos un par de vértices en V_1 (o V_2) existe un camino simple que los une.

Observación: Un grafo es conexo si y solo si tiene una sola componente conexa.

NOTACIÓN

Dado el grafo G=(V,E), el número de componentes conexas de G se denota con $\kappa(G)$

En los ejemplos anteriores vale:

$$\kappa(G) = 1$$

$$\kappa(G) = 1$$
 $\kappa(G) = 2$

DEFINICIÓN

Un grafo G=(V,E) es un multigrafo si existen $a,b\in V$ con $a\neq b$, tales que la arista $\{a,b\}$ se encuentra dos o más veces en el grafo si G es no dirigido y la arista (a,b) se encuentra dos o más veces el grafo si G es dirigido.

Ejemplos:

multigrafo no dirigido

multigrafo dirigido

DEFINICIÓN

Sea G=(V,E) un grafo. El grafo $G_1=(V_1,E_1)$ es un subgrafo de G si $V_1\neq\emptyset$, $V_1\subset V$, $E_1\subset E$ y cada arista de E_1 es incidente con los vértices de V_1 .

Ejemplos:

grafo G

subgrafo de G

Más ejemplos:

grafo G

subgrafo de G

Cuando se trata de grafos dirigidos:

subgrafo de ${\cal D}$

DEFINICIÓN

Sea G=(V,E) un grafo. El grafo $G_1=(V_1,E_1)$ es un subgrafo generador de G si $V_1=V$.

En el ejemplo anterior:

grafo G

subgrafo de

G

El subgrafo de G es un subgrafo generador.

Mientras que en este otro ejemplo:

El subgrafo de ${\it G}$ no es un subgrafo generador.

DEFINICIÓN

Sea G=(V,E) un grafo. Sea $U\subset V$ no vacío, el *subgrafo de G inducido* por U, es el subgrafo de G cuyo conjunto de vértices es U y cuyo conjunto de aristas corresponde al conjunto de aristas en E incidentes en los vértices de U.

Notación: G_U es el subgrafo de G inducido por los vértices en U. Ejemplo:

grafo G

subgrafo de G

El subgrafo corresponde al subgrafo de G inducido por los vértices $\{1,2,3,5\}$.

DEFINICIÓN

Sea G=(V,E) un grafo y sea $v\in V$. El grafo denotado por G-v es el grafo cuyo conjunto de vértices es $V-\{v\}$ y el conjunto de aristas es el subconjunto de aristas de E que no tienen al vértice v como uno de sus extremos. Es decir G-v es un subgrafo particular de G inducido por V-v. De forma similar, si $e\in E$, el subgrafo G-e consiste en el grafo cuyo conjunto de vértices es V y cuyo conjunto de aristas es E-e.

Ejemplo:

grafo G

subgrafo G-4

Otro ejemplo:

subgrafo G - e

DEFINICIÓN

Dado un conjunto V de n vértices, se llama *grafo completo* sobre V y se denota K_n al grafo no dirigido sin lazos, tal que para todo $a,b \in V$ existe la arista $\{a,b\}$.

Así K_1 resulta un único vértice y K_2 una única arista.

Más ejemplos de grafos completos: grafo K_4

subgrafo K_5

GRAFO COMPLEMENTO: DEFINICIÓN Y EJEMPLOS

DEFINICIÓN

Sea G=(V,E) un grafo no dirigido sin lazos y n vértices. Sea K_n sobre V. El grafo complemento de G denotado por \bar{G} , es un subgrafo de K_n tal que el conjunto de vértices es V y tal que contiene a todas las aristas que no están en G.

Observación Si $G = K_n$, entonces \bar{G} contiene n vértices y ninguna arista. A este grafo se lo llama *grafo nulo*.

Ejemplo:

