CS 55500 : Lecture 10

Recap

Diffic - Hellman Construction:

Trapdoor Funcidefor

Afunction (family) F= &F, \$ne H W Fn itself a collection of function & Fn = &Fi: &0,13" - &0,13 mon) &ceIn is trepdoor OUF if:

n. easy to sample function index wil a trapdoor

beasy to compute Filx) given i and x

trapdoor vale

c. easy to compute inverse of Fi (x) given to

d. one-way Grevery PPT A when all but to revealed

Trapdoor Permutation to IND-secure Pub. Key encryption Constriction Try

Gen: rand. index i w ti release i

Enc: output C. F. (m)

DCC: output Fi (c) which can be done using knowledge of ti

Khaving a OWF does not gurantee all bits are secret -> can have an anapput bit that is not hardone -> in this case a out is not IND-CPA secure be you could use that bit to dist blin in put messages

Not IND-CPA secure be OHF of trappoor can leak some info from ingut m in a preaks IND-CPA distinguishability

Ty 2: BUT the only encypts Gen: Same as above Enc: Pick random r : Output c= (Fi(r), HCB(r) & m) Dec: recover & from Filit using ti -> calc HCB(1) + xOR WIM 5) This is IND-CPA -> hybrid argument Trapdoor Permutation: Candidates 2 candidates (both rely on factoring being hard) a.RSA b. Rabin /Blum- Williams **BSA.-**. num thy review: · N=pq : prd. of two large prines · Zn = {a EZn | gcd (a, M)=13 is a grp group op is mult mod N invexist + easy to compute ·中(n)=(p-1)(q-1)=ord(老,~) ·given (p,q)-> pq easy $pq \rightarrow (p,q)$ hard Trapacos const. Let cEZ N gcd(e, p(n)) = 1. Then map Fn. = (x) = x (mod n) is a trapdoor permutation. b) given d > ed=1 (mod p(n)), it's easy to comput x given xe Proof: (Xe) = X = X E | X RSA trapdoor: for eEZ with gcd Ce, O(n))=1. Then, the map Fne (x)=xe mod N is a troppdoor permutation. -given Nie and xe mod Ni hard to compute x * if factoring is easy RSA is broken

Quadratic Residues Mod p
· Let p be prime
exactly half of Zp" are squares
· define Legendre symbol $\left(\frac{x}{\rho}\right) = \begin{cases} 1 & \text{if } x \text{ if not a squere} \\ -1 & \text{if } x \text{ is not a squere} \end{cases}$ $0 & \text{if } x \in D \text{ cm-d } \rho$
Lp) - }-1 if x is not a squere
O if x = O con-d p)
$80 \left(\frac{\times}{P}\right) = \times^{P^{-1}/2}$
-) it is easy to compute square roots mad P
-for P=3 cmod 4) -> square roots of x mod p = ± x
$\left(\mp \times \right) = \times $
Quadrenic Res mod N=pg
S to a sounce must be it it is some mode of and sounce mode
J x is a square mod N iff x is squere mod p and square mod q
$J_{q cobi} symbol: \left(\frac{x}{N}\right) = \left(\frac{x}{P}\right) \left(\frac{x}{Q}\right)$
lit both square or both non-square
*We can find (X) in poly time who knowing porq
square mod p and q -> QRN
to, all 3ac+, 5
for all Jac+, 3 non-squere mad p end 9 -> QNRN
Given N, no PPT can distinguish between QRN and QNR
Twhis
support you know pig:
a squeet y med p and q
Rud suspend A mad bundd X=Ab (mag b) X=Ab mag d
N-C-4 + C-4 -> A C1 A C O A C
y=Cpyp+Cqyq -> a Cp=1 modp and Cp=0 modq b. Cq=0 modp and Cq=1 modq

suppose you have an alg that am comp any ux
× > T -> y 3 y2 = x mod N
2
feed box x = 22 (mod n) for a rand z
then m/ prob 1/2, gcd (Zty, N) is a non-mixical factor of M