

Soluções para criptografia no backbone da DATAPREV

Diego Perini (DSIG) Felipe Arcieri (DSIG) Michel Teixeira (DSIG) Pedro Rozas Moreira (DSIG)

27 de maio de 2014

Resumo

Este artigo descreve superficialmente as soluções prospectadas que poderão ser usadas para a implementação da criptografia no backbone da Dataprev.

Tags: Criptografia, Backbone, GET-VPN, IPSEC

Introdução

Os Centros de Processamento da Dataprev são interligados atualmente por circuitos Gigabit *Ethernet* com taxa de transmissão de 300 Mbps. Os contratos atuais preveem atualização da taxa de transmissão para até 3 Gbps. Os circuitos são fornecidos por 2 operadoras distintas formando um triângulo duplo conforme figura abaixo.

Figura 1. Topologia lógica de rede do backbone da Dataprev

Para manter a comunicação segura e a confidencialidade dos dados trafegados entre os Centros de Processamento, foram estudadas as possíveis soluções de criptografia e foi avaliado se estas soluções são adequadas, escaláveis e resilientes para o ambiente do backbone interno da Dataprev.

Dentre as soluções encontradas e avaliadas, podemos separá-las em 2 grupos:

- Solução de camada 3 (criptografia na camada de rede IPSEC) (L3);
- Solução de camada 2 (criptografia no enlace) (L2).

Foram realizadas Provas de Conceito com os 2 tipos de solução. Seguem abaixo os fabricantes que apresentaram as soluções e participaram das PoCs:

- Solução de camada 3: Cisco, com equipamento ASR 1004;
- Solução de camada 2: Safenet, com equipamento SEE 650.

Nos tópicos 2 e 3 serão apresentados as soluções da Cisco e da Safenet, respectivamente. No tópico 4 serão feitas considerações a respeito das duas soluções, incluindo os pontos positivos e negativos de cada solução, levando em consideração o ambiente da Dataprev e o objetivo a ser alcançado (criptografia dos enlaces de *backbone*). Finalmente, no tópico 5, a conclusão deste trabalho com a indicação da solução mais adequada para a Dataprev.

Desafios

O desafio da prospecção foi identificar uma tecnologia de criptografia para o backbone que seja confiável, estável e menos impactante de se integrar no ambiente produtivo da Dataprev.

Benefícios

O benefício do emprego da criptografia no backbone é fornecer a confidencialidade dos dados que estão sob responsabilidade da Dataprev quando estes passam pelos provedores do backbone.

2. Solução Layer 3 – Group Encrypted Transport Virtual Private Network – GETVPN

2.1 Visão Geral da Tecnologia

O Group Encrypted Transport VPN da Cisco (GET VPN) introduz o conceito de um grupo de confiança para eliminar túneis ponto-a-ponto. Todos os membros do grupo (GMs) compartilham uma associação de segurança comum (SA), também conhecido como um grupo SA. Isso permite que os GMs possam descriptografar o tráfego que foi criptografado por qualquer outro GM. Em redes GET VPN, não há necessidade de negociar túneis IPSEC ponto-a-ponto entre os membros de um grupo, já que GET VPN é uma solução "tunnel-less".

A solução GET VPN é baseada tanto em padrões abertos quanto em tecnologia patenteada pela Cisco, que ajuda a utilizar os benefícios de redes IP / MPLS roteáveis, quando os

equipamentos de camada de rede envolvidos permitem a ativação desta tecnologia. A solução GET VPN se baseia em seguir blocos de construção para fornecer a funcionalidade necessária. São utilizados vários mecanismos no GET-VPV, dentre os quais podemos elencar:

- GDOI (Group Domain of Interpretation RFC 6407)
- Servidores de chave (Key Servers KSs)
- GMs (Group Members)
- Preservação do cabeçalho IP
- Grupo de associação de segurança
- Mecanismo Rekey

GDOI é o protocolo de gerenciamento de chaves do grupo e é usado para fornecer um conjunto de chaves criptográficas e políticas para um grupo de dispositivos. Em uma rede GET VPN, o protocolo GDOI é utilizado para distribuir chaves comuns IPsec para um grupo de gateways VPN (GMs) que precisam se comunicar com segurança. Estas chaves são atualizadas periodicamente e são redistribuídas em todos os gateways VPN, tal processo é denominado de "rekey".

O protocolo GDOI é protegido pela fase 1 do Internet Key Exchange (IKE) SA. Todos os gateways VPN participantes devem autenticar-se ao dispositivo de fornecimento de chaves (Key Server) usando IKE. Todos os métodos de autenticação IKE, como as chaves pré-compartilhadas (PSKs) e a infraestrutura de chave pública (PKI) são suportados para autenticação inicial. Depois que os gateways VPNs estão autenticados e munidos com as chaves de segurança adequadas obtidas via IKE SA, o IKE SA expira e o protocolo GDOI é usado para atualizar as chaves de segurança dos GMs.

O GDOI possui duas chaves de criptografia diferentes. Uma chave para o plano de controle do GET VPN, e a outra chave para a criptografia do tráfego de dados. A chave usada

para proteger o plano de controle é comumente chamada de chave de criptografia de chave (KEK) e a chave usada para criptografar o tráfego de dados é conhecida como chave de criptografia de tráfego (TEK).

No IPsec tradicional os endereços da extremidade do túnel são usados como nova origem e destino e o pacote é então encaminhado através da infraestrutura pública IP. No caso do GET VPN, os pacotes de dados IPsec protegidos são encapsulados e os endereços IPs de origem e de destino permanecem inalterados no novo cabeçalho.

Figura 2: Preservação do Cabeçalho IP Original - GETVPN

As vantagens da preservação do cabeçalho no túnel são: capacidade de rotear os pacotes criptografados utilizando a infraestrutura de roteamento da rede subjacente, manutenção do QoS, utilização de MPLS VPN e a engenharia de tráfego.

Na Figura 3 pode-se visualizar como ficaria a integração da solução GET-VPN no backbone da Dataprev.

Figura 3. Topologia lógica da solução GET VPN integrada na rede da Dataprev.

3. Solução Layer 2 - Safenet Ethernet Encryptor

3.1 Visão Geral da Tecnologia

O equipamento apresentado foi o Safenet Ethernet Encryptor SEE 650, que possui duas interfaces de 10 Gbps em fibra para a criptografia dos dados e uma interface de 100 Mbps em cobre para a gerência. As interfaces de 10 Gbps são denominadas como Local (interface voltada para o lado da rede interna) e Network (interface voltada para o lado da operadora). O SEE 650 possui duas fontes redundantes, uma interface serial RS-232, uma porta USB e um painel frontal que pode ser usado para realizar as configurações de rede e colocar o equipamento em modo de ativação, onde é iniciado o processo de geração e assinatura da chave pública do equipamento.

Os SEEs são gerenciados pelo Security Management Center (SMC), uma aplicação Web que é instalada em um servidor, e que pode ser acessada pelo browser através da URL HTTPS://LOCALHOST:8443 localmente ou HTTPS://IP-SERVIDOR:8443 remotamente. O SMC também é uma CA que assina a chave pública de cada SEE, e emite o certificado

digital para ele.

Uma vez que os SEEs possuem as configurações de rede (IP, máscara e gateway), e o SMC estiver instalado, os processos de ativação dos SEEs podem ser iniciados. Durante este processo, o SEE deve ser colocado no modo de ativação através do seu painel frontal, e no SMC deverá ser informado o IP e a senha do SEE que será ativado. Neste momento o SEE envia para o SMC a sua chave pública para que ela seja assinada e para a criação do certificado digital.

Quando os SEEs possuírem as suas chaves assinadas pelo SMC, eles negociam entre si através de criptografia assimétrica uma chave simétrica para a criptografia dos dados. A chave simétrica é trocada de com frequência definida de 1 a 60 minutos.

A solução usa o algoritmo assimétrico RSA para a geração do par de chaves (pública e privada) dos SEEs, e para estabelecer uma conexão segura entre eles. Cada SEE é responsável por gerar seu par de chaves. A chave privada é mantida internamente no SEE, e é apagada no caso de abertura do equipamento. Os SEEs trocam as chaves públicas entre si, e eles devem confirmar que essas chaves foram assinadas pela mesma CA. Os SEEs suportam certificados 1024 bits V1, 2048 bits V2 e x509 V3. A solução permite trabalhar com uma CA externa, com o protocolo OSCP e permite o download do CRL para a validação do certificado.

Os dados que trafegam pela rede são criptografados através de uma chave de tópico usando o protocolo AES 256 bits. A chave é estabelecida através de um canal seguro usando a criptografia assimétrica através das chaves públicas dos SEEs.

A comunicação IP entre a estação de gerência e o encriptador é criptografada com uma chave simétrica usando o algoritmo AES 256 bits. A troca da chave simétrica é baseada no algoritmo *Diffie-Hellman*.

Esta solução pode ser usada de forma ponto a ponto ou multiponto.

Existem três formas de configurar os SEEs:

• Encrypt ALL – Todo o tráfego é criptografado e encaminhado

- Discard ALL Todo o tráfego é descartado
- Bypass Nenhum tráfego é criptografado, mas todo tráfego é encaminhado

A solução permite preservar as informações de VLAN ID, QinQ, MPLS, jumbo frames.

Na Figura 4 é possível visualizar como ficaria a integração do criptografador no backbone da Dataprev.

Figura 4. Integração do criptografador no backbone da Dataprev

4. Considerações

Neste tópico serão apontados os pontos positivos e negativos de cada solução.

4.1 Cisco GETVPN

Pontos positivos da solução apresentada pela Cisco (L3):

- A solução pode ser estendida no futuro para a Rede de Acesso. Entretanto, a necessidade de criptografia do tráfego do backbone com este tipo de solução obriga à um posicionamento do equipamento de criptografia que não é o ideal, introduzindo muita complexidade à solução. Caso esta solução de L3 fosse utilizada apenas para a Rede de Acesso, o equipamento teria o posicionamento ideal (substituindo os atuais 7200 na função de roteador de concentração de acesso), sendo transparente ao roteamento da rede;
- A solução permite seleção do tráfego a ser criptografado através de ACLs;

Pontos negativos da solução apresentada pela Cisco (L3):

- A implementação é de alta complexidade e disruptiva, pelo fato da solução participar de todo roteamento de tráfego que entra/sai do CP;
- Com o projeto de implementação de MPLS no *backbone*, a escalabilidade deste tipo de solução de criptografia fica comprometida, devido à relação 1 para 1 de VRFs no ASR e VPNs no *Backbone*;
- Devido à necessidade de posicionar o ASR1004 entre o 6500 e o Firewall, todo tráfego que entra/sai do CP passa pelo equipamento de criptografia, inclusive o tráfego que não será criptografado. Neste contexto, uma política que define as redes a serem criptografadas deverá ser precisa. Do contrário, ocorrerão problemas de comunicação entre as redes que não estiverem mapeadas corretamente;
- Necessidade de manutenção da política que define as redes que serão criptografias;
- O bypass da solução é complexo, dependente de intervenção manual e de risco elevado;
- O IPSEC introduz *overhead* nos pacotes devido à necessidade de cabeçalho adicional. Esse overhead varia de 5% a 50% em relação ao tráfego original.

4.2 Safenet Ethernet Encryptor

Pontos positivos da solução apresentada pela Safenet (L2):

- Fácil implementação, pois não existe a necessidade de alterar o roteamento da rede;
- Gerenciamento, configuração e bypass da solução são simples;
- Não introduz overhead no tráfego criptografado;
- Baixa latência (inferior a 7 µs) no processo de criptografia;
- Quaisquer alterações no roteamento da rede são transparentes para a solução de criptografia;
- O equipamento pode ser posicionado nos enlaces de *backbone* (L2), de forma que todo o tráfego que se deseja criptografar passará pelo encriptador. O tráfego que não será criptografado (ex: rede de acesso) não passará pelo encriptador;
- Preserva as informações de VLAN ID, QinQ, MPLS e jumbo frames;

Pontos negativos da solução apresentada pela Safenet (L2):

- A solução não permite a seleção do tráfego a ser criptografado com base em endereço L3 (IP);
- A falha de um equipamento terá como consequência imediata a indisponibilidade dos circuitos que estarão sendo criptografados pelo mesmo. A disponibilidade do ambiente será dada pelos circuitos remanescentes, com redução de capacidade, até que seja aplicada a solução de bypass (que pode ser executada de forma rápida, em menos de 1 minuto, por exemplo).

Conclusão

Após a realização das provas de conceitos, das referências bibliográficas e do levantamento dos pontos positivos e negativos de cada solução levando em consideração os objetivos da Dataprev, recomenda-se para solução de criptografia dos enlaces de backbone a aquisição de solução de Encriptador Layer 2 com interfaces de 10G.

Adicionalmente, na topologia presente na Figura 5, propõe-se o modo de interligação dos equipamentos de criptografia Layer 2 ao backbone da Dataprev. Nesta topologia, cada encriptador atuará em 2 links de backbone, de forma a poupar recursos financeiros e ao mesmo tempo ser escalável a 20 Gbps de capacidade de criptografia no backbone por CP.

Figura 5. Integração do criptografador no backbone da Dataprev

Referências

CISCO. Cisco Vlan Mapping,2012. Disponível em: http://www.cisco.com/c/en/us/td/docs/switches/l 2SX/configuration/guide/book/vlans.html. Acesso em 28/03/2014

CISCO. Group Encrypted Transport VPN (GETVPN) Design and Implementation Guide,2012. Disponível em: http://www.cisco.com/c/dam/en/us/products/collateral/security/group-encrypted-transport-vpn/GETVPN_DIG_version_1_0_External.pdf. Acesso em 28/03/2014

CISCO. Troubleshooting GETVPN Deployments (BRKSEC-3051) - Cisco Live 2012, 2012.Disponível em: https://www.ciscolive.com/online/connect/sessionDetail.ww?SESSION_ID=4383 Acesso em 28/03/2014

NETWORKCOMPUTING. When To Encrypt At Layer 2 Or Layer 3, 2010. Disponível em: http://www.networkcomputing.com/wan-security/when-to-encrypt-at-layer-2-or-layer-3/229501254. Acesso em 28/03/2014.

RIT DEPARTMENT OF INFORMATION TECHNOLOGY. Data Encryption Performance: Layer 2 vs. Layer 3 Encryption in High Speed Point-to-Point Networks, 2009. Disponível em: https://ritdml.rit.edu/bitstream/handle/1850/992/Layer2_vs_Layer3-v2.doc. Acesso em 28/03/2014

SAFENET. Safenet Ethernet Encryptor 10G, 2011. Disponível em: http://www.safenet-inc.com/WorkArea/DownloadAsset.aspx?id=8589939056&LangType=1033. Acesso em 28/03/2014.

WEIS, Brian RFC et al. 6407 - The Group Domain of Interpretation, 2011. Disponível em: http://tools.ietf.org/html/rfc6407. Acesso em 28/03/2014