Theorem 1. $\mathcal{B}: \mathcal{V}$ 圏とする. \mathcal{A} が \mathcal{B} の small full subcategory で $\mathcal{Z}: \mathcal{A} \hookrightarrow \mathcal{B}$ を inclusion であるとする. このとき, \mathcal{B} が cocomplete, \mathcal{B}_0 が finitely complete, \mathcal{B}_0 の各対 象は高々小集合の extremal-epimorphism quotients しか持たないなら, \mathcal{B} は \mathcal{A} の small colimit の閉包である.

Proof. C を \mathcal{B} における \mathcal{A} の全ての small colimit をとることで得られる閉包とする. $\mathcal{C} = \mathcal{B}$ を示せば良い.

任意の \mathcal{B}_0 の射 $f: C \to D$ で, $C \in \mathcal{C}$ なるものが与えられたとする. これに対し, 超限 再帰的に列 $\{C_\alpha \to D\}$ (α は順序数) と $\{p_{\beta\alpha}: C_\beta \twoheadrightarrow C_\alpha\}_{\beta \leq \alpha}$ を以下の方法で構成する. $p_{\alpha\alpha} = \mathrm{id}_{C_\alpha}$ とする.

- $f_{\alpha}: C_{\alpha} \to D$ に対して, $f_{\alpha+1}$ を定めるために, まず f_{α} の kernel pair を $u_{\alpha}, v_{\alpha}: E_{\alpha} \to C_{\alpha}$ でとる. u_{α}, v_{α} の coequalizer を $p_{\alpha,\alpha+1}: C_{\alpha} \to C_{\alpha+1}$ と し, coequalizer の普遍性から一意に生える射を, $f_{\alpha+1}: C_{\alpha+1} \to D$ で定める.

$$E_{\alpha} \xrightarrow{u_{\alpha}} C_{\alpha} \qquad E_{\alpha} \xrightarrow{v_{\alpha}} C_{\alpha} \xrightarrow{f_{\alpha}} D$$

$$\downarrow v_{\alpha} \qquad \downarrow f_{\alpha} \qquad \downarrow f_{\alpha}$$

$$C_{\alpha} \xrightarrow{f_{\alpha}} D$$

$$C_{\alpha+1}$$

 $p_{\beta,\alpha+1}: C_{\beta} \to C_{\alpha+1}$ を $p_{\alpha,\alpha+1} \circ p_{\beta\alpha}$ でとる.

• α が limit のときは, C_{α} は $\{p_{0\beta}\}_{\beta<\alpha}$ の pushout でとる. このときも, f_{α} を普遍性で一意に生える射でとる.

この $p_{\beta\alpha}$ も epic になることが diagram chase でわかる.

まず、このようにとった列に関して、 C_{α} が全て C に含まれることを示す。 $C_0 \in C$ はわかっており、 α が limit のときは C_{α} は C の図式の colimit で定義されるので明らか。 $C_{\alpha+1}$ のときは、 $C_{\alpha+1}$ は pushout で定義されはしたが、 E_{α} が C に存在するとは限らないので $C_{\alpha+1} \in C$ は自明ではない.

 \mathcal{B} は cocomplete なので任意の関手 $\mathcal{A}^{\mathrm{op}} \to \mathcal{V}$ に対して $F \star Z$ が存在する. いま, $\mathcal{B}(F \star Z, B) \cong [\mathcal{K}^{\mathrm{op}}, \mathcal{V}](F, \tilde{Z}B)$ となるので, $-\star Z \dashv \tilde{Z}$ が満たされている. $R = \tilde{Z} - \star Z$ と定めておく. [1] 3.4 節の最後の 2 段落での議論により, $(\tilde{Z})_0$ はいま conservative なので, ϵ_B は任意の $B \in \mathcal{B}$ に対して extremal epimorphism である.

これを使うと, 今 $\epsilon_{E_{\alpha}}: RE_{\alpha} \to E_{\alpha}$ は epic であるから,

$$RE_{\alpha} \xrightarrow[v_{\alpha} \circ \epsilon]{u_{\alpha} \circ \epsilon} C_{\alpha} \xrightarrow[p_{\alpha,\alpha+1}]{u_{\alpha} \circ \epsilon} C_{\alpha+1}$$

も coequalizer である. この RE_{α} は colimit で定義されていたので $\mathcal C$ に含まれるため、この図式は $\mathcal C$ の図式であり、これにより $C_{\alpha+1}$ も $\mathcal C$ に含まれることがわかる. よって超限帰納法により C_{α} は全ての α に対して $\mathcal C$ に含まれることが証明できた.

次に, $\{q_{\alpha} := p_{0\alpha} : C \rightarrow C_{\alpha}\}$ が任意の α に関して extremal epic であることを示そう. そのために,

なる monic m が与えられたとする. この m が split epic であることを示せば良い. ここで, 超限再帰的に $\{t_\beta:C_\beta\to X\}_{\beta\leq\alpha}$ を, $t_\beta\circ q_\beta=t$ を満たすように, 以下のように構成する.

- to は t でとる.
- t_B に対して、いま、下のようになっているものとする.

いま $m t_{\beta} q_{\beta} = m t_0 = q_{\alpha} = p_{\beta+1,\alpha} p_{\beta,\beta+1} q_{\beta}$ で q_{β} は epi なので $m t_{\beta} = p_{\beta+1,\alpha} p_{\beta,\beta+1}$ (すなわち図式の右上が可換). さらに, $m t_{\beta} u_{\beta} = p_{\beta+1,\alpha} p_{\beta,\beta} u_{\beta} = p_{\beta+1,\alpha} p_{\beta,\beta} u_{\beta}$

 $p_{\beta+1,\alpha} p_{\beta,\beta} v_{\beta} = m t_{\beta} v_{\beta}$. いま m が monic なので $t_{\beta} u_{\beta} = t_{\beta} v_{\beta}$ となる. よって $p_{\beta,\beta+1}$ は coequalizer で定義したから、この普遍性から取れる $C_{\beta+1} \to X$ があり、これを $t_{\beta+1}$ とする.

• β が limit のとき, $\gamma < \beta$ なる任意の γ に対して $t = t_{\gamma} q_{\gamma}$ となっているのだから, pushout の普遍性から条件を満たす t_{β} が一意に取れる.

このようにして t_{α} が取れるが, C_{α} を coequalizer で作っていても pushout で作っていても, どちらにせよ普遍性から $mt_{\alpha}=\mathrm{id}_{C_{\alpha}}$ を満たす. よって m は split epic.

次に、この列が terminate する条件を考えておくと、これは f_{α} の kernel pair が一致するとき. すなわち f_{α} が monic になるときである.

 $\{q_{\alpha}:C\to C_{\alpha}\}$ は C の extremal epimorphism の列であるから, C は高々小集合の extremal-epimorphism quotients しか持たないという条件から, これはある λ で停止する. いま, $f:C\to D$ として $\epsilon_D:RD\to D$ をとっておくと, これは extremal epimorphism だから, f_{λ} : monic は isomorphism になる. すなわち $D\cong C_{\lambda}\in\mathcal{C}$ となってしまうため, D も \mathcal{C} に含まれる. この D は任意にとったから, $\mathcal{B}=\mathcal{C}$.

参考文献

[1] Kelly, Gregory Maxwell, and Max Kelly. Basic concepts of enriched category theory. Vol. 64. CUP Archive, 1982.