Bias-Variance Decomposition

Song Liu (song.liu@bristol.ac.uk)

Reference

Today's class *roughly* follows Chapter 3.2.

Pattern Recognition and Machine Learning

Christopher Bishop, 2006

Poly. Feature with various b

• $y = g(x) + \epsilon, g(x) = \exp(1.5x - 1), \epsilon \sim N(0, .64)$

19

What Really Happened?

- We mentioned that $f(x; w_{LS})$ is too flexible to generalize well on unobserved dataset, but why?
- What is the mathematical explanation of OF?
- Why cross validation is a good measurement of the generalization of a prediction $f(x; w_{LS})$?
- We are introducing a frequentist analysis of explaining this phenomenon, called **Variance and Bias decomposition**.
 - To do so, we need an assumption on the generative model of y.

Generative Model Assumption

- First, assume an outcome y_i is generated by
- $y_i = g(\mathbf{x}_i) + \epsilon_i$.
 - $g(x): R^d \to R$ is some deterministic function.
 - \forall_i , ϵ_i is independent of x_i and $\mathbb{E}[\epsilon_i] = 0$
 - We call ϵ_i additive noise.

- This is only a generative model for y_i , what about x_i ?
 - We will talk about it later.
- For simplicity, let us assume x_i are fixed for now.
 - It means I have a set of fixed x_i , then I just generates y_i using the generative model above for each x_i .

From Testing Error to Expected Loss

- Split a dataset D into training D_0 and testing D_1 .
- $E(D_1, \mathbf{w}_{LS})$ is the **testing error** of $f(\mathbf{x}_i; \mathbf{w}_{LS})$.
 - $w_{\rm LS}$ is trained using D_0 .
 - $E(D_1, \mathbf{w}_{LS}) \coloneqq \sum_{i \in D_1} [y_i f(\mathbf{x}_i; \mathbf{w}_{LS})]^2$
- We do not care the testing error on a specific dataset, let us take expectation over D.

$$\mathbb{E}_{D}[E(D_{1}, w_{\mathrm{LS}})] = \mathbb{E}_{D}\left[\sum_{i}[y_{i} - f(\boldsymbol{x}_{i}; \boldsymbol{w}_{\mathrm{LS}})]^{2}\right]$$

$$= \sum_{i}\mathbb{E}_{D}[[y_{i} - f(\boldsymbol{x}_{i}; \boldsymbol{w}_{\mathrm{LS}})]^{2}|\boldsymbol{x}_{i}]$$

Decomposition of Expected Loss

•
$$\mathbb{E}_D[[y_i - f_{LS}(\boldsymbol{x}_i)]^2 | \boldsymbol{x}_i]$$

$$= \text{var}[\epsilon] + \left[g(\boldsymbol{x}_i) - \mathbb{E}[f_{\text{LS}}(\boldsymbol{x}_i)|\boldsymbol{x}_i]\right]^2 + \text{var}[f_{\text{LS}}(\boldsymbol{x}_i)|\boldsymbol{x}_i]$$
Irreducible error
bias
variance

- "Variance and Bias decomposition". Homework, prove it.
- Hint, by our data generating assumption:
- $\mathbb{E}_D[[y_i f_{LS}(\boldsymbol{x}_i)]^2 | \boldsymbol{x}_i] = \mathbb{E}_D[[g(\boldsymbol{x}_i) + \epsilon_i f_{LS}(\boldsymbol{x}_i)]^2 | \boldsymbol{x}_i]$

"Variance and Bias decomposition"

- $\operatorname{var}[\epsilon] + \left[g(\boldsymbol{x}_i) \mathbb{E}[f_{LS}(\boldsymbol{x}_i)|\boldsymbol{x}_i]\right]^2 + \operatorname{var}[f_{LS}(\boldsymbol{x}_i)|\boldsymbol{x}_i]$
 - 1st term measures the randomness of our data generating process, which is beyond our control.
 - 2nd term shows the accuracy of our expected prediction.
 - 3rd term shows how easily our fitted prediction function is affected by the randomness of the dataset.

A Visualization of V-B Decomposition

Variance and Bias Tradeoff

•
$$\operatorname{var}[\epsilon] + \left[g(\mathbf{x}_i) - \mathbb{E}[f_{LS}(\mathbf{x}_i)|\mathbf{x}_i]\right]^2 + \operatorname{var}[f_{LS}(\mathbf{x}_i)|\mathbf{x}_i]$$

- As we increase b, $f_{\rm LS}$ becomes more **complex** and can adapt to more complex underlying function, thus $2^{\rm nd}$ term keeps reducing.
- As we increase b, $f_{\rm LS}$ becomes more **sensitive** to the noise in our dataset, thus $3^{\rm rd}$ term keeps increasing.
- A **balance** between 2nd and 3rd term gives the minimum expected error.

Variance and Bias Tradeoff

Variance and Bias Tradeoff

• As the flexibility decreases (λ increase), bias increases and the variance decreases.

In-Sample Error

- $\mathbb{E}[(y_i f_{LS}(x_i))^2 | x_i]$ is conditional on x_i .
- To calculate the collective error, we can average over all x_i in my training set:
 - $\bullet \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[(y_i f_{LS}(\boldsymbol{x}_i))^2 | \boldsymbol{x}_i]$
 - is called in sample error

• In practice, can we use in sample error to measure the performance of our $f_{\rm LS}$?

Out-Sample Error

- In sample error is not useful in practice.
 - We cannot calculate $\mathbb{E}[(y f_{LS}(x_i))^2 | x_i]$
 - We do not know g(x) and the distribution of ϵ .
- Instead, we use **out-sample error**:
 - Error over the entire distribution of x.
 - $\mathbb{E}_{\mathbf{x}}\mathbb{E}[(y f_{\mathrm{LS}}(\mathbf{x}))^2 | \mathbf{x}]$
 - Now, I am treating x as a random quantity.

•
$$\mathbb{E}_{x}\mathbb{E}[(y - f_{LS}(x))^{2}|x] = \mathbb{E}_{x}\mathbb{E}_{D_{1}}\mathbb{E}_{D_{0}}[(y - f_{LS}(x))^{2}|x]$$

 $= \mathbb{E}_{x}\mathbb{E}_{D_{1}}\mathbb{E}_{D_{0}}[(y - f_{LS}(x))^{2}|x]$
 $= \mathbb{E}_{p(x)}\mathbb{E}_{p(y|x)}\mathbb{E}_{D_{0}}[(y - f_{LS}(x))^{2}]$
 $= \mathbb{E}_{D_{0}}\mathbb{E}_{p(y,x)}[(y - f_{LS}(x))^{2}]$

Can we approximate out-sample error?

Approx. Out-Sample Error

- Suppose we have datasets $D^{(1)}$, $D^{(2)}$, $D^{(3)}$... $D^{(K)}$ containing pairs (x, y) from p(x, y).
 - $D^{(k)} := D_0^{(k)} \cup D_1^{(k)}$.
- The following hold under mild conditions.
- $\mathbb{E}_{D_0} \mathbb{E}_{p(y,x)} [(y f_{LS}(x))^2]$
- $\approx \frac{1}{K} \sum_{k=1...K} \frac{1}{n'} \sum_{(y,x) \in D_1^{(k)}} \left(y f_{LS}^{(k)}(x) \right)^2$
 - where $f_{LS}^{(k)}$ is the prediction func. trained on $D_0^{(k)}$.
- Suppose $D_0^{(k)}$ is the k-th split of an iid dataset and $D_1^{(k)}$ is the rest of the dataset.
 - The result above justifies the K-fold cross validation!

Conclusion

- The phenomenon of OF can be explained by decomposition of expected error.
- Two types of expected errors can be used for measuring the performance of $f_{\rm LS}$:
 - In-sample error, cannot be computed, unless we know g and dist. of ϵ .
 - Out-sample error, can be approximated by the cross validation error.

Homework

- Prove variance and bias decomposition.
 - Page 23