

(11)Publication number:

09-326425

(43) Date of publication of application:

16.12.1997

(51)Int.CI.

H01L 21/66 G01B 7/34 GO1N 37/00 G01R 1/06 G01R 31/26 GO1R 31/302 H01L 21/3065 H01L 21/304

(21) Application number:

08-141353

(22) Date of filing:

04.06.1996

(71) Applicant:

HITACHI LTD

(72)Inventor: TOMIMATSU SATOSHI HASEGAWA TAKESHI

HOSOKI SHIGEYUKI **ARAKAWA FUMIKO** ASAYAMA MASAICHIRO MITSUI YASUHIRO **NAKAHARA HITOSHI** KAWANAMI YOSHIMI

(54) METHOD OF DEFECT INSPECTION AND ITS APPARATUS

(57) Abstract:

PROBLEM TO BE SOLVED: To detect a failure through the measurement of a local electrical characteristics of microstructure devices.

SOLUTION: By observing with scanning electronic microscope and with the aid of probe movement mechanism 14, 15, 16, and 17 controlled by the probe movement control circuit 18, a plurality of sharp tipped probe 1, 2, 3, and 4 are made to approach until their contact current saturate and contacted tightly the sample electrodes 5, 6, 7, and 8 respectively. When the contact of all probes used for the measurement are completed, the current-voltage characteristics among the probes is measured by the measuring circuit of electrical characteristics 19 and the local electrical characteristics of the device is obtained. Since the specific local position of the device is directly probed by the probe, the defective position is easily identified.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japanese Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-326425

(43)公開日 平成9年(1997)12月16日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	ΓI				技術表示箇所
H01L 21/6	3		H01L	21/66		В	
						С	
G01B 7/3	Į.		G 0 1 B	7/34		Z	
G01N 37/0)		G 0 1 N	37/00		Α	
G01R 1/0	;		G 0 1 R	1/06		E	
		審查請求	未請求 請求	マリス 数31	OL	(全 14 頁)	最終頁に続く
(21)出願番号 特願平8-141353			(71)出願人 000005108 株式会社日立製作所				
(22)出願日	平成8年(1996)6月4日			• • • • • •		製作所 区神田駿河台(四丁目6番地
			(72)発明			市東恋ケ窪ー	丁日280丞伽
						『アベルン 伝 製作所中央研	-
			(72)発明	者 長谷川	Mi		
				東京都	国分寺	市東恋ケ窪一	丁目280番地
				株式会	社日立	製作所中央研	究所内
			(72)発明	者 細木	茂行		
				東京都	国分寺	市東恋ケ窪一	丁目280番地
				株式会	社日立	製作所中央研	究所内
			(74)代理	人 弁理士	小川	勝男	
							最終頁に続く

(54) 【発明の名称】 不良検査方法および装置

(57) 【要約】

【課題】 微細構造を持つデバイスの局所的な電気特性 を測定し、不良を検出する。

【解決手段】 走査型電子顕微鏡で観察しながら、探針 移動制御回路18による制御で、探針移動機構14、1 5、16、17により、鋭利な先端を有する複数の探針 1、2、3、4を、それぞれ試料電極5、6、7、8に 接触電流が飽和するまで接近させ、確実に接触させる。 測定に用いるすべての探針の接触が完了したら、電気特・ 性測定回路19により探針間の電流電圧特性を測定し、 素子の局所的電気特性を得る。

【効果】 素子の局所的位置を直接探針であたることが できるため、不良位置同定が容易となる。

【特許請求の範囲】

【請求項1】真空容器と、該真空容器に探針と該探針移動機構と、試料を載置する試料台と、荷電粒子源と、該荷電粒子源からのビームを照射する照射手段と、試料からの荷電粒子を検出する検出器と、該探針と試料間、または該探針間に電圧印加をする手段と、試料の電気特性を測定する手段を有する不良検査装置。

【請求項2】真空容器と、該真空容器に探針と該探針移動機構と、試料を載置する試料台と、荷電粒子源と、該荷電粒子源からのビームを照射する照射手段と、試料からの荷電粒子を検出する検出器と、該探針と試料間、または該探針間に電圧印加をする手段と、試料の電気特性を測定する手段と、該測定手段からの測定値に基づいて不良を判定する判定手段を有する不良検査装置。

【請求項3】前記の試料の電気特性を測定する手段は、前記探針と試料の任意の組み合わせの間の電流電圧特性を測定することを特徴とする請求項1、2記載の不良検査装置。

【請求項4】前記の試料の電気特性を測定する手段は、 エネルギーフィルタを有する前記の荷電粒子を検出する 検出器による試料表面の電位測定であることを特徴とす る請求項1、2記載の不良検査装置。

【請求項 5 】真空容器と、該真空容器に探針と該探針移動機構と、試料を載置する試料台と、荷電粒子源と、該荷電粒子源からのビームを照射する照射手段と、試料からの荷電粒子を検出する検出器と、該探針、または試料の電位変化による荷電粒子の照射位置ずれを補正する機構と、該探針と試料間、または該探針間に電圧印加をする手段と、試料の電気特性を測定する手段を有する不良検査装置。

【請求項6】前記荷電粒子の照射位置ずれを補正する機構は、前記探針と試料の接触直前の観察像を記録する画像メモリと、観察像ずれが生じることで広領域観察に切換える機構と、該広領域観察像と前記画像メモリに記録された観察像を照合して、観察像中心位置の移動量を割り出し、該移動量だけ観察領域を移動させることでずれを補正することを特徴とする請求項5記載の不良検査装置。

【請求項7】前記観察像の照合において、前記探針へ変調電圧の印加を行い、荷電粒子検出器により検出される画像情報の中から該変調に同期した信号より探針形状を取得することを特徴とする請求項6記載の不良検査装置。

【請求項8】真空容器と、該真空容器に探針と該探針移動機構と、試料を載置する試料台と、荷電粒子源と、該荷電粒子源からのビームを照射する照射手段と、試料からの荷電粒子を検出する検出器と、該探針と試料間、または該探針間に電圧印加をする手段と、該探針と試料間を流れる接触電流が飽和することで該探針と試料の接触確認を行う機構と、試料の電気特性を測定する手段を有

する不良検査装置。

【請求項9】前記接触確認機構は、前記探針と試料間に 流れるトンネル電流の検出を介して該探針と試料の接触 を行うことを特徴とする請求項8記載の不良検査装置。

【請求項10】前記不良検査装置において、前記探針と 試料間の接触電流検出とトンネル電流検出には異なる電 流検出器を用い、トンネル電流検出の後、更に該探針と 試料を接近させるときに、該電流検出器を切換える切換 えスイッチを有することを特徴とする請求項9記載の不 良検査装置。

【請求項11】前記不良検査装置において、前記探針と 試料間の接触電流検出時は、該探針と試料間に閉回路を 形成し、試料の電気特性測定時には該探針間に閉回路を 形成するように切換える切換えスイッチを有することを 特徴とする請求項8~10記載の不良検査装置。

【請求項12】真空容器と、該真空容器に探針と該探針移動機構と、試料を載置する試料台と、荷電粒子源と、該荷電粒子源からのビームを照射する照射手段と、試料からの荷電粒子を検出する検出器と、該探針と試料間、または該探針間に電圧印加をする手段と、検査する試料表面の該探針が接触すべき位置の電位が、探針印加電圧により規定される電位になることで該探針と試料の接触確認を行う機構と、試料の電気特性を測定する手段を有する不良検査装置。

【請求項13】探針を試料表面に接触させ、試料特性を 計測する装置の該探針として、該探針と試料との接触時 において、試料表面に平行な方向の探針、試料間の相対 位置変化をばね構造により吸収する構造を持つことを特 徴とする探針。

【請求項14】前記探針として、請求項13記載の探針を有することを特徴とする請求項1~12記載の不良検査装置。

【請求項15】前記探針移動機構として、該探針と試料の接触後、更に一定距離だけ探針支持部と試料を接近させることを特徴とする請求項14記載の不良検査装置。

【請求項16】前記不良検査装置において、光照射手段を有することを特徴とする請求項1~12記載の不良検査装置。

【請求項17】前記荷電粒子照射手段において、前記電気特性測定中に、前記荷電粒子ビームを遮断する機構を有することを特徴とする請求項1~3、5~12記載の不良検査装置。

【請求項18】前記探針移動機構において、前記電気特性に用いるすべての前記探針を、試料表面に同時に接触させることを特徴とする請求項1~12記載の不良検査装置。

【請求項19】前記不良検査装置において、前記探針と 試料間に働く力を検出することで該探針と試料の接触確 認を行う機構を有することを特徴とする請求項1~7記 載の不良検査装置。 【請求項20】前記不良検査装置において、該探針と試料間に交流電圧を印加して該探針と試料間を流れる接触電流実効値が飽和することで該探針と試料の接触確認を行う機構を有することを特徴とする請求項1~11記載の不良検査装置。

【請求項21】前記接触確認機構は、前記探針と試料間に働く原子間力の検出を介して該探針と試料の接触を行うことを特徴とする請求項1~8、12記載の不良検査装置。

【請求項22】前記探針移動機構として、前記探針と試料間に流れるトンネル電流の検出位置からさらに1 mm以上該探針と試料を接近させることを特徴とする請求項1~7記載の不良検査装置。

【請求項23】前記探針において、該探針先端の曲率半径が100nm以下であることを特徴とする請求項1~12 記載の不良検査装置。

【請求項24】前記探針移動機構において、圧電素子による微動機構を有することを特徴とする請求項1~12 記載の不良検査装置。

【請求項25】荷電粒子ビーム、またはレーザを用いて、試料の回路切断、または配線形成、またはトレンチ埋め込み、または電極パッド形成、または保護層除去、または検査素子の上層除去を行った後、荷電粒子照射系を有する顕微手段を用いて該試料を観察しながら、探針を該試料に接触させ、該探針と試料間、または該探針間の電気特性を測定することで試料の素子特性評価を行う不良検査方法。

【請求項26】荷電粒子ビーム、またはレーザを用いて、試料の回路切断、または配線形成、またはトレンチ埋め込み、または電極パッド形成、または保護層除去、または検査素子の上層除去を行った後、荷電粒子照射系を有する顕微手段を用いて該試料を観察しながら、探針を該試料に接触させ、該探針と試料間、または該探針間に電圧を印加し、該試料表面からの荷電粒子を分光検出することにより得られる試料表面電位分布情報から該試料の素子特性評価を行う不良検査方法。

【請求項27】荷電粒子ビーム、または光を用いて、探針または試料表面上の絶縁性薄膜、または汚染物質の除去による表面清浄化処理を行った後、荷電粒子照射系を有する顕微手段を用いて該試料を観察しながら、該探針を該試料に接触させ、該探針と試料間、または該探針間の電気特性を測定することで試料の素子特性評価を行う不良検査方法。

【請求項28】荷電粒子ビーム、または光を用いて、探針または試料表面上の絶縁性薄膜、または汚染物質の除去による表面清浄化処理を行った後、荷電粒子照射系を有する顕微手段を用いて該試料を観察しながら、該探針を該試料に接触させ、該探針と試料間、または該探針間に電圧を印加し、該試料表面からの荷電粒子を分光検出することにより得られる試料表面電位分布情報から該試

料の素子特性評価を行う不良検査方法。

【請求項29】前記探針と試料の接触において、該探針と試料間を流れる接触電流が飽和することで該探針と試料の接触確認を行うことを特徴とする請求項25~28 記載の不良検査方法。

【請求項30】前記探針と試料の接触において、該探針と試料間に働く力を検出することで該探針と試料の接触確認を行うことを特徴とする請求項25~28記載の不良検査装置。

【請求項31】前記探針と試料の接触において、該探針と試料間に電圧を印加し、該試料表面の該探針が接触すべき位置からの荷電粒子を分光検出することにより得られる試料表面電位情報が、探針印加電圧により規定される電位になることで該探針と試料の接触確認を行うことを特徴とする請求項25~28記載の不良検査方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電子素子の性能を 評価、ないし不良を解析する装置に係わる。

[0002]

【従来の技術】従来、電子素子の特性評価は、プローバ、または電子ビームテスタを用いて行われていた。例えば、電子ビームテスタ法は、応用物理学会誌、第63巻、第6号、608頁から611頁に、その例がそれぞれ記載されている。

【0003】従来知られているプローバでは、大気中で 光学顕微鏡により観察しながら、検査試料の電気特性を 測定したい位置に探針を接触させる。この装置では、2 本の探針を用いることが可能であり、これにより回路の 特定部分の電流電圧特性等の素子特性を評価することが 出来る。またこの装置では、YAGレーザにより配線切 断等の加工が可能であり、素子の一部を孤立させて特性 測定を行うことができる。

【0004】電子ビームテスタは、走査型電子顕微鏡像のコントラストから動作状態の電子素子の配線電位を得るものである。これは、エネルギーフィルタを用いることで、10mVの精度の電位コントラストを得ることができるため、良品電子素子から得られた基準データと比較することによって、故障を検出し、その箇所を同定することができる。

[0005]

【発明が解決しようとする課題】上記第1の手法(プローバ)では、試料観察に光学顕微鏡を用いるため、サブミクロン配線の観察に限界があり、将来電子素子が0.1 μ m線幅になれば、観察できなくなるので、このような微細配線への探針のコンタクトは不可能になる。また、電子素子の加工にYAGVーザを用いているため、0.1 μ m以下の微細加工はVーザ波長(この装置では0.355 μ m)から困難となる。また、接触させる電子素子の配線等が0.1 μ m のように微細化してくると、これとコンタク

トを取るために、探針先端も細くする必要があるため、 探針が損傷しやすくなり、また、配線も微細であるため に破壊されやすくなるといった問題が生じる。このた め、探針や配線が損傷せず、かつ確実な接触を取るため には、接触手法では従来よりも格段に高い精度が要求さ れる。また、従来のように大きい接触領域を取れる場合 には、探針と試料の相対的なドリフトは大して問題には ならなかったが、接触領域の微細化の伴い、ドリフトに よる接触状態の変化が大きな問題となってくる。しか し、従来法では、このようなドリフト対策は実施されて いない。また、従来法では大気中において探針と配線等 の接触を行うため、将来、接触面積の微細化が進むと、 配線上や探針先端の酸化膜や汚染物質等による接触抵抗 が大きな問題となってくる。また、素子の電気特性測定 のための加工も、切断したり、剥離したりするだけでな く、パッドを形成したり、配線形成をしたりという金属 堆積を行う加工も必要となるが、大気中での加工を用い る従来法では不可能であった。

【0006】一方、上記第2の手法(電子ビームテスタ)では、電子ビームを用いるため、高い面分解能で表面電位情報を得ることが出来るが、回路へ与える入力パタンは電子素子の入力端子から行うため、特定の局所的位置に任意の電圧を印加することはできなかった。このため、特定位置だけの電気特性、例えば電流電圧特性等を計測することはできなかった。このため、電子ビームテスタによる不良解析には、多くのテストパタンを試す必要があり、これで場所が同定できたとしても、不良の原因を特定することは難しかった。

[0007]

【課題を解決するための手段】上記課題を解決するために、第一に、探針先端と、該探針を接触させるべき試料内の特定の位置を観察するための顕微手段として、電子照射系、またはイオン照射系と2次電子検出系により構成される顕微手段を設ける。この顕微手段は、nmレベルの分解能を有する。

【0008】また、探針先端を試料に接触させるために位置合せ用の移動機構と、接近機構を設ける。ここで、探針と試料の間の接触は確実に電気的導通がとれ、かつ探針や試料が損傷しないようにする必要がある。このため本発明では、接触手法として、探針・試料間の接触電流が飽和することで接触確認を行い、確実な電気的は、接触時の接近速度を小さくする必要があるためには、接触時の接近速度を小さくする必要があることがのは、トンネル電流や原子間力を検出することがのもいるでは、トンネル電流や原子間力を検出することがのように接触電流が流れない場所への接触には、力検出による接触電流が流れない場所への接触には、力検出による接触電流が流れない場所への接触には、力検出による接触電流が流れない場所への接触には、力検出による接触電流を開では、試料表面の探針を接触させるべき位置の電位を

モニタすることで、正確な接触確認を行うこともでき る。つまり、探針と試料間にバイアスを与えた状態で、 探針と試料を接触させると、探針・試料間に接触抵抗が ある場合には、この接触抵抗により電圧降下が起きるた め、探針が接触した位置の試料電位はこの電圧降下の分 だけ探針電位より小さくなる(探針側がプラスの場 合)。そこで、この探針が接触した位置の試料電位が探 針に印加した電圧と、ある誤差範囲で等しくなること で、接触抵抗が小さくなったと判断できる。こうして、 接触確認を行うことができる。本発明では、上記の試料 電位モニタには、エネルギーフィルタを有する2次電子 検出器を用いているしかし、本発明では、観察に電子や イオンといった荷電粒子を用いているため、探針と試料 の接触時に試料表面の電位が変化するため、この1次荷 電粒子ビームが電界変化により曲げられ、観察位置がず れるといった問題が生じる。これを補正するために、本 発明では接触直前の探針先端位置を顕微鏡像のパタン情 報としてメモリに記録し、探針接触により観察位置ずれ が生じたら、観察領域を広げてメモリのパタン情報との パタン照合を行い探針先端位置を割り出して、その位置 を中心にして高倍観察に戻すという手法を用いる。

【0009】また、探針と試料の相対的なドリフトによ る接触状態の変化を防ぐためには、ドリフトによるずれ を補うか、接触から電気特性測定終了までの時間を短く するかが必要となる。そこで、1つの手法としては、探 針にばね効果を持たせて、変位を吸収させることが考え られる。従来にも、縦方向にばね効果を持つ探針は存在 した。しかし、この従来の目的は、探針接触時の衝撃を 緩和するためのものであり、ドリフトのような微小変位 を補うことを目的とはしていなかった。また、従来法 は、横方向(試料表面に水平な方向)には、ばね効果を 持たないため、この方向のドリフトには全く対応できな かった。本発明では、探針に縦、横両方向共にばね効果 を有する探針を用いることで、全方向のドリフトによる ずれをばね構造部で吸収できるようにしている。また、 電気的特性測定に用いるすべての探針を接触直前の状態 (トンネル電流または原子間力検出状態) で一時保持し た後、すべての探針を同時に接触させることで、すぐに 電気特性測定に入ることができるため、接触時間を短く することができ、ドリフトによる影響を最小にすること ができる。

【0010】探針と試料の接触面積の微細化に伴って増大する配線上や探針先端の酸化膜や汚染物質等による接触抵抗問題に対して、本発明では、測定を真空中で行うため、汚染を少なく抑えることができる。また、探針接触の前に探針や試料の表面をイオンビームや、電子ビームや、光を照射することで、これら酸化膜や汚染物質等を除去できるようにしている。

【0011】電気的特性は、試料に接触させた探針間の 電流電圧特性等を測定することで得られる。本発明で は、探針を用いているため、電子ビームテスタでは不可能であった試料表面の任意位置への電圧印加も可能である。ここで、顕微手段に用いる荷電粒子ビーム(電子、またはイオンビーム)が、電流電圧特性に影響を与える場合に、この電気特性測定中のみこの荷電粒子ビームを遮断することができる照射系を持つ。また、本発明では、荷電粒子照射系と2次電子検出系を装備しているため、この2次電子検出系にエネルギーフィルタを付加することで、電子ビームテスタのように、試料表面電位分布を観察することができる。このため、探針で、試料表面の任意位置に電圧を印加しながら、その時の試料表面電位分布を計測することも可能となる。

【0012】素子特性測定前の試料加工では、本発明で は、集束イオンビームを用いることで、0.1μπ以下の微 細加工を行うことが出来る。電子ビームの場合も反応性 アシストガスと組み合わせることで、微細加工が可能と なる。このため、電子素子の一部分を孤立化させること が出来るため、不良位置同定が容易となる。また、本発 明では、加工を真空中で行うため、堆積性ガスと照射ビ ーム (イオン、または電子、またはレーザ)の使用によ り金属膜の堆積が可能であり、探針接触のための電極パ ッドの形成が可能となる。また、表面に出ていない下層 の素子や配線に探針のコンタクトを行いたい場合には、 従来のようにその上面をすべて剥離しなくとも、本発明 では、配線へのコンタクトホールを表面からあけた後、 この孔を上記のように堆積ガスと照射ビームを用いて金 属で埋め込むことにより、表面からの電気的接触が可能 となる。

[0013]

【発明の実施の形態】本発明の目的は、電子素子の不良位置同定と、その特性測定のために電子素子の局所的な電気特性を測定することにある。本発明では、走査型電子顕微鏡のようなnmオーダの分解能を持つ顕微手段で観察しながら、探針先端をこの探針を接触させるべき微小領域に接触させる。ここで、この接触電流の飽和等により正確な接触確認を行う。その後、これら探針間の電流電圧特性を測定することで、素子の局所情報を得ることができる。こうして、不良位置同定を行うことができる。また、この電気特性測定系に判別回路を付加することで、良品、不良品の選別を行うこともできる。

【0014】以下〈実施例1〉~〈実施例9〉に、具体的実施例を示す。

【0015】〈実施例1〉図1に、本発明の全体システムを示す。ここでは4つの探針1、2、3、4を用いて電極5、6、7、8間の電気特性を測定することを目的とする。これらの探針1、2、3、4は、試料9の0.1 μ mレベルの微小領域にも接触できるように、先端の曲率半径が0.1 μ m以下であることが望ましい。まず、試料9表面と探針1、2、3、4を走査型電子顕微鏡で観察する。この走査型電子顕微鏡は、電子源10、偏向レン

ズ11、2次電子検出器13から構成されており、20が1次電子ビーム、21が試料表面から放出される2次電子である。こうして観察しながら探針1、2、3、4をそれぞれ接触させるべき電極5、6、7、8の上まで移動させる。この移動は、探針1、2、3、4それぞれの探針移動機構14、15、16、17を探針移動制御回路18で制御することにより行う。ここで、本実施例では、探針移動機構14、15、16、17には、高い位置分解能を有する圧電素子を用いている。

【0016】次に、図2を用いて接触法を述べる。この 図では、探針1の接触のみを取り上げて説明する。この 接触において重要なことは、探針1と電極5を確実に接 触させ、かつ両者が損傷しないように最低限の接触にす ることである。このように両者を損傷しないためには、 探針の接近速度を小さくする必要がある。しかし、全体 的に接近速度を小さくすると、接近にかかる時間が長く なりすぎるという問題が生じる。これを解決するために は、接触直前の位置を検知し、この位置までは接近速度 を大きくし、この直前位置から接触完了位置までの接近 速度のみを小さくすればよい。このためには、接触直前 位置を検知する方法が必要となる。例えば、この図2で 用いるようなトンネル電流検出による方法がある。図2 (a)の50は、トンネル電流検出用のプリアンプであ り、通常pAからnA程度の電流を検出できる。51は切換 えスイッチであり、トンネル電流検出用プリアンプ50 と接触電流検出用電流計30の切換えを行う。52、5 3は、探針接近時と電気特性測定時で閉ループを切換え るためのスイッチである。図2(b)は探針1を接近させ るときの接近距離Ztと電流(トンネル電流、接触電 流) Iの関係を示した図である。まず、切り替えスイッ チ51をプリアンプ50側に、52を電源31側に、5 3を切換えスイッチ51側に接続して、電源31によ り、探針1、試料9間にバイアスを掛けて、探針1を電 極5に接近させて行くと、Zsiでトンネル電流が流れ る。このときの探針1と電極5間の距離は約1nm以下に なる。これにより、接触直前位置の検出ができる。ただ し、トンネル電流検出位置 251で単に接近を止めるだけ では、探針移動機構14の応答速度やクリープ現象のた めに、探針1が電極5に接近して勝手に接触してしまう ことがあるので、トンネル電流が一定になるように探針 移動機構14に探針移動制御回路18からフィードバッ クを掛けた方が良い。その後、切換えスイッチ51を電 流計30側に接続し、接近速度を小さくして、探針1を 電極9に接近させる。すると、探針1と電極5が接触し たところ(Z52)で接触電流が流れはじめる。このまま 探針1を接近させていくと、接触面積の増加等により接 触電流 I が図5(b)に示すように増加していく。そし て、この接触電流Iが接触状態変化による影響を受けな くなった状態、すなわち接触電流が飽和した状態になる ことで接触完了として、探針1を接近距離Z53の位置で

図1の探針移動機構14を探針移動制御回路18からの 制御で止める。こうすることで、探針1と電極5の確実 な接触をとることができる。

【0017】こうして、すべての探針1、2、3、4の接触が完了すると、切換えスイッチ52、53により試料9と探針1が電気特性測定回路19に接続され、探針1、2、3、4間の電流電圧特性が測定される。こうすることで素子の局所的電気特性を得ることができる。

【0018】図3(a)に、MOSデバイスを測定試料とする場合の探針接触例を示す。ここでは3つの探針1、2、3のみを使用し、それぞれソース電極35、ゲート電極36、ドレイン電極37に接触させる。例えば、出力特性を測定する場合には、探針1によりソース電極35をグランドレベルに落とし、探針2によりゲート電極36の電圧 V_c をパラメータとして振りながら、探針3によりドレイン電極37に印加するドレイン電圧 V_c と、探針1、3間(ソース、ドレイン間)を流れるドレイン電流 I_D の関係を測定することで、このMOSの出力特性を得ることができる。例えばこれが I_D のサ性が計測されることになる。

【0019】このように、探針を試料に接触させ、その部分から測定される局所的な素子特性を良品と不良品で比較して行くことで、不良位置を同定することが可能となる。この手法では、不良と考えられる位置に直接電圧を印加して電気特性を得られるので、電子素子の入力端子からテストパタンを入力して不良位置を同定する手法と比較して、不良位置の同定が容易であり、またその不良状態も詳細に計測することが可能である。

【0020】 (実施例2) 本実施例では、試料からの2 次電子により試料表面情報を得る方法について説明す る。ここでは、簡略化のために探針1だけを示している が、実際には図1に示すように、複数探針で行う。図4 の100はエネルギーフィルタであり、101は電位計 測器である。ここでは始めに、この検出系を用いた接触 法を説明する。実施例1で図2を用いて説明した、接触 電流飽和による接触確認は、あくまでも接触状態が安定 になることを目的とした接触法であり、接触抵抗を素子 特性に対して、誤差範囲まで下げることを保証しない。 すなわち、図2の接触法で、良品と不良品の特性を相対 比較して、不良検知を行うことは可能であるが、得られ た素子特性が、絶対的なものであるかどうかについては 明確には判断できない。このため、絶対的な特性が重要 となる測定を行うためには、本実施例で図4を用いて述 べるような接触確認を用いる必要がある。ここでも探針 1の接触のみを抽出して説明する。まず、電子源10か ら出た1次電子ビーム20を偏向レンズ11により探針 1が接触すべき電極5に照射する。このとき、この電極 5から放出される2次電子21をエネルギーフィルタ1 00を通して2次電子検出器13で検出する。この2次 電子のエネルギー分布情報から電位計測器101で電極5の電位Vを知ることができる。例えば、探針1に電位Vtのバイアスを加えて接近させたとすると、接近距離2tと電極5電位Vの関係は、図4(b)のようになる。2101は探針1が電極5に接触した位置にあたるが、この近傍では接触抵抗による電圧降下が大きいため、まだ電位が探針電圧Vtまで上がりきっておらず、まだ接触が悪い状態であり、接触抵抗が素子抵抗に対して無視できない状態であることを示している。すなわち、確実な接触を取るためには、電極5電位が、ある誤差レベルVt'以上になる位置2102まで来ることで接触完了として接近を止める。これは、すなわち接触抵抗による電圧降下が無視できるレベル(例えば1%等)以下の誤差になったときを接触完了として判断していることになる。こうして確実な接触確認を行うことが可能になる。

【0021】また、この図4(a)の装置を用いることで、エネルギーフィルタ100により従来の電子ビームテスタと同様に、配線電位をモニタできるため、これにより得られる試料表面電位分布を観察することが可能であり、これを不良解析に用いることもできる。ただし、従来の電子ビームテスタと異なり、この場合は探針を有するため、探針で局所的に電圧を加えながら試料表面電位分布を得ることができるため、不良位置同定が容易となる。

【0022】ところで、探針と試料の接触に際して、以 下に述べるような問題が、観察において生じる。本実施 例では電子ビームを用いているが、バイアスを掛けた探 針1が電極5に接触し、電極電位Vが図4(b)で説明し たように変化することで、図5のように、この1次電子 ビーム110が曲げられ、観察像の位置ずれが生じる。 この場合、他の探針2、3、4の接触が完了していない と、これらの探針の接触位置を観察できなくなり、正し い接触ができなくなる。また、上記したように、配線電 位モニタによる不良解析を行う場合には、この像ずれが 致命的なものとなる。このため、この像ずれを補正する 手法が必要となる。これについて、図6により説明す る。図6(a)の131は本来観察すべき領域であり、1 32は探針1が電極5に接触したためにずれた観察領域 である。図6の(b)から(g)は観察像である。図6(b) は、探針1が電極5に接触する直前の低倍観察像であ り、この観察像を画像メモリ133に取り込み、探針の パタン認識を行う。次に、探針1を電極5に正確に接触 させるために高倍観察を行う(図6(c))。この図6 (c)の観察領域は、図6(a)の領域131に相当する。 ここで、探針1が電極5に接触すると、観察領域が図6 (a)の領域132のようにずれるため、観察像が図6 (d)のように、探針も電極も見えない状態になる。そこ で、図6(a)の像ずれ補正回路130により、偏向レン ズ11で1次電子ビーム20を広領域走査に切換えて、 観察をする (図6(e))。ここで、画像メモリ133に 取り込んでおいた初期画像(図 6(b))と現在の画像(図 6(e))を像ずれ補正回路 130 で照合し、パタン認識から初期中心位置を割り出す。この割り出された中心位置のずれの量だけ、像ずれ補正回路 130 により偏向レンズ 11 にオフセットを加え、1 次電子ビーム 20 のずれを補正し、初期中心位置に戻す(図 6(f))。こうして、この補正された位置を中心にして、高倍観察に戻す(図 6(g))ことで、像ずれを補正することができる。

【0023】上記の手法では、バタン認識による探針形状の取込みを用いたが、簡単に探針形状を取込む手法について、図7を用いて説明する。102は探針1、試料9間に電圧を与える電源であるが、変調を掛けられるようになっている。すなわち、まだ探針1が試料に接触していない状態では、この電源102による変調で、探針1電位は変化するが、試料9表面電位は変化しない。このため、この変調間に、2次電子による観察像を得ると、図7(b)、(c)に示すように、探針コントラストのみが変化することになる。こうして、探針形状を画像メモリ133に取り込むことが可能になる。

【0024】本実施例で用いた装置では、2次電子検出系にエネルギーフィルタを持つため、接触位置の電位モニタにより、正確な探針接触確認を行うことができる。また、探針による電圧印加と組み合わせた、試料表面電位分布測定による不良解析が可能であり、不良位置同定が容易となる。また、像ずれ補正により、観察場所を一定に保つことができる。

【0025】〈実施例3〉本実施例では、電気特性測定 (探針接触)の前に行う測定試料の加工手段を有する装置について、図8を用いて説明を行う。この装置では、 図1の電子照射系の代わりに、イオン源150、静電レンズ151、153、偏向器152により構成されるイオンビーム照射系を持ち、イオンビーム154を試料9 に照射することができる。

【0026】LSIを測定試料として不良検出を行うた めには、測定したい配線や電極に、ただ探針を接触させ るだけでは、その部分の電気特性を得ることはできな い。なぜなら、これらの配線は様々な場所で閉ループを 形成しており、実際に測定したい部分(例えば、1つの MOSFET等) 以外の電気特性を含んでしまうからで ある。このため、実際に測定したい部分だけの電気特性 を得るためには、その部分を孤立させる必要がある。こ のために、試料の加工手段が必要になる。この加工手段 としてイオンビーム照射系を付加したものが、図8に示 す装置である。この場合は、加工のみならず、観察手段 としてもこのイオンビーム154を用いる。すなわち、 イオンビーム154を試料9表面上で走査し、試料9か ら放出される2次電子を2次電子検出器13で検出する ことにより、いわゆる走査型イオン顕微鏡として観察す ることができる。もちろんこの場合には、試料9表面が できるだけ損傷を受けないようにするため、加工する場合よりイオン電流量を絞る必要がある。それでも、イオンビームによる損傷が問題になる場合には、図8では電子照射系を取り除いてイオン照射系を導入しているが、電子照射系も併存させて電子ビームによる観察を行うこともできる。

【0027】ここから、試料加工の種類について、図9 により説明する。図9(a)の素子160の電気特性を測 定したい場合には、上記したように測定部分が他の場所 で閉ループを形成しないように、この素子160につな がる配線、例えば161をイオンビーム154を用いて 溝162を掘ることで、回路を遮断しこの素子160だ けを孤立化させるようにする。こうして、探針により電 気特性を測定すれば、この素子160のみの特性を得る ことが可能となる。また、測定したい素子が、必ず試料 表面に出ているとは限らない。例えば、保護膜が形成さ れている場合や、多層配線で下層に埋まっている場合が 有り得る。しかし、このままでは、探針を接触させるこ とができないので、この場合には、図9(b)に示すよう に、測定したい素子163の上の層をイオンビーム15 4 で削り取り、素子163に探針が接触できるように加 工する必要がある。また、探針を配線に直接接触させる ことが難しい場合には、図9(c)に示すように、ガスノ ズル165により堆積性ガス166を導入しながらイオ ンビーム154を照射することで、金属膜を形成するこ とができるため、配線167と導通が取れる探針接触用 パッド164を形成することが可能である。また、図9 (b)のように広範囲を削りとらなくても、図9(d)に示 すように下層の素子163を測定したい場合には、配線 168までイオンビーム154でコンタクトホール16 9をあけ、図9(c)と同様に、図9(d')のように金属 膜170によりコンタクトホール169を埋め込み、こ の埋め込み金属部170に探針を接触させることで、素 子163の特性を測定することも可能になる。

【0028】ここでは、イオンビームによる加工を説明したが、加工にレーザを用いることも可能である。ただしこの場合は、レーザ波長で決まる加工精度(例えば、YAGレーザなら0.4μm程度)が限度となる。このため微細加工には集束イオンビームのほうが有効である。また、反応性アシストガスを用いればイオンビームやレーザビームの場合にも加工速度を速めることができ、電子ビームでも加工することが可能となる。

【0029】また、図8では、加工機能を有する装置として説明したが、必ずしも加工手段と探針による電気特性測定装置が1つの装置になっている必要はなく、別の加工装置で図9に示したような加工を行い、図1に示す不良検査装置で測定を行うこともできる。

【0030】本実施例で説明したような試料加工を行う ことで、素子の特定部のみの電気特性が測定可能で、素 子の不良位置の絞り込みができるので、不良同定が容易 になる。

【0031】(実施例4)本実施例では、探針と試料を 接触させる前の、清浄化処理について図10を用いて説 明する。探針と試料の間の接触不良の多くは、これらの 間に絶縁性の物質が混入することにより起こる。例え ば、酸化膜や、汚染物質がこの原因となる。従来のテス タでは、ボンディングパッドのような大きな電極に探針 を接触させていたため、接触面積を大きくとることがで きたので、これらの絶縁性物質が、あまり問題とはなら なかった。しかし、現在の素子のように配線が微小化 し、この配線に直接探針を接触させる必要が出てくる と、接触面積を大きくとることができないため、このよ うな絶縁性物質が接触不良に大きく影響を与えることに なる。本発明は、従来と異なり、真空中で電気特性測定 を行うため、探針接触前に試料や探針の表面を清浄化し てやれば、このような接触不良を抑えることができる。 【0032】例えば、図10(a)のように、素子160 を測定するために探針を接触させるべき配線167の上 に汚染物質172が存在する場合には、図8に示すよう な装置でイオンビーム154を照射することにより17 3のように汚染物質を除去することが可能である。

【0033】また、図10(b)のように、探針表面の汚染物質の場合も、図10(a)と同様に、イオンビーム154を照射することで、175のように除去することができる。また、探針の場合には、様々な試料を測定すると、前に測定した試料物質が付着している可能性があるので、この手法により毎回探針を清浄化する必要がある。

【0034】また、この清浄化は、イオンビームだけでなく、電子ビームや光の照射でも可能である。

【0035】本実施例では、真空中で清浄化させることで、探針と試料の確実な接触が可能となり、正確な素子特性を測定できるようになる。

【0036】〈実施例5〉探針を用いた電気特性測定手 法で、最も重要なことは、探針と試料の接触を確実に保 つことである。しかし、通常の場合、探針と試料の間に は、熱的、または機械的なドリフトが存在するために、 相対位置の変化が起こるため、接触状態を一定に保つこ とは難しい。これを補うためには、例えば、図11に示 すようなばね効果を有する探針を用いればよい。この探 針40を電極43に接触させた状態で、探針ホルダ42 と電極43の相対位置が、図11(a)から図11(b)の ように A x 変化した場合でも、コの字型のばね構造部 4 1がばね効果によりこの相対変位を吸収し、接触を良好 に保つことができる。ほかにも、図4(c)、(d)のよう な形状を持つ探針44、45も、同様にドリフトをばね 構造部46、47で吸収することができる。この場合、 探針40先端と電極43が摩擦力を持つ必要があるた め、ばね構造部41が微小な力で圧縮された状態で接触 するようにしておく。図12は探針接近距離Ztと、探

針試料間を流れる接触電流 I cの関係を示したものである。上記までの接触法では、接触電流が飽和する位置 Z_{24} を接触完了としたが、このばね探針ではさらに Z_{24} まで接近させ、探針 4 O 先端と電極 4 3 が摩擦力を持つ様にする。この探針停止位置 Z_{24} は、当然のことながら、探針 1 と電極 4 が破損しない位置である必要があるが、このばね探針の場合には、縦方向にもばね効果を持つために、ばね効果を持たない探針と比較して、探針、試料等が破損しない接近領域が広いため、 Z_{24} の設定は容易である。また、測定に必要な時間とドリフト速度から見積もると、変位距離 Δ x は高々 Δ 1 Δ 1 Δ 2 Δ 2 Δ 3 は試料表面に垂直方向のドリフトも吸収することができるため、接触状態を一定に保つことができる。

【0037】本実施例によれば、探針と試料のドリフトによる相対位置変化をばね構造部で吸収することが可能であり、接触を良好に保つことができる。

【0038】〈実施例6〉上記実施例では観察手段に電子ビームを用いているため、この照射電子が電極や探針に吸収される。探針間の電圧電流特性の測定で流れる素子電流が、この電子ビームによる電流を無視できるくれませんによる電流が無視できない場合には、この電子ビームによる電流が無視できない場合には、この場合には、この電子ビームを遮断する必要がある。この場合には、この電子ビーム照射系に図13に示すように、ブランキング電極140と遮蔽板141を付加すればよい。すなわち、探針接触のための観察時には、図13(a)に示すようにブランキング電極140を働かせずに1次電子ビーム20を通し、探針による電気特性測定時には図13(b)に示すようにブランキング電極140に電圧を掛け、1次電子ビーム20を曲げて、遮蔽板141で遮られるようにする。

【0039】本実施例によれば、電子照射の影響を受けずに、正しい電気特性を得ることができる。

【0040】〈実施例7〉本実施例では、実施例2に示したように探針接触時に像ずれが生じても、像ずれ補正に頼らずに確実に探針を接触させる方法について述べる。この接触法を図14に示す。ここでは、簡単のために2つの探針1、2だけ抽出している。始めは、探針1、2ともまだ接触すべき電極5、6から離れた状態すである(図14(a))。まず、探針1をトンネル電流によるフィードバック制御状態まで接近させる(図14(b))。ここで、深針2を接近させ、同様にトンネル電流によるフィードバック制御状態に保つ。次に、探針2を接近させ、同様にトンネル電流によるフィードがック制御状態に保つ、次に、探針2を接近させ、同様にトンネル電流によるフィードがック制御状態に保つ、で14(c))。こうして2本ともトンネル状態に保った後、同時に2本の探針1、2を接近させ、それぞれ電極5、6に接触させる。これにより、観察像がずれて、探針1、2先端と電極5、6の接触位置が見えなくなったとしても、正しく接触させることがで

きる。ここでは2本の探針の場合を説明したが、これ以上の複数の探針を用いる場合にも、一旦すべての探針をトンネル状態に保った後、同時にすべての探針を接近させて接触させることで、同様に像移動の影響を受けることなく正しく接触させることができる。

【0041】また、この場合には、すべての探針を同時に接触させるため、探針接触から電気特性計測までの時間を短縮することができるため、実施例6で述べたようなドリフトによる接触状態の変化も起きにくいという利点がある。

【0042】本実施例によれば、すべての探針を同時に接触させるため、観察像の像ずれの影響を受けることなく接触を行うことができ、またドリフトによる影響も抑えることが可能となる。

【0043】〈実施例8〉実施例1では、接触の直前位 置検出として、トンネル電流検出を用いたが、本実施例 で説明するように、接触直前位置検出に探針1先端と電 極5間に働く原子間力を用いる方法もある。図15(a) の60は原子間力検出用のカンチレバーであり、原子間 力によるこのカンチレバー60の変形により力を受ける 圧電素子62、63の圧電起電力を電圧計64で検知す る。すなわち電圧計64で計測される起電力から探針1 と電極5の間の原子間力を知ることができる。図15 (b)は探針1を接近させるときの接近距離Ztと探針1 と電極5の間に働く原子間力Faの関係を示した図であ る。まず、切り替えスイッチ65を電圧計64側に接続 して、探針1を電極5に接近させて行くと、 261から原 子間力 Faが急激に大きくなる。ここで、ある力 Fa2に なったところ262で接近を中止する。これにより、接触 直前位置の検出ができる。ただし、原子間力検出位置2 80で単に接近を止めるだけでは、図2でも説明したよう に、探針移動機構14の応答速度やクリープ現象のため に、探針1が電極5に接近して勝手に接触してしまうこ とがあるので、原子間力がF₆₂で一定になるように探針 移動機構14に探針移動制御回路18からフィードバッ クを掛けた方が良い。その後、切換えスイッチ65を電 流計30側に接続し、接近速度を小さくして、探針1を 電極5に接近させる。図15(c)は、探針1を接近させ るときの接近距離Ztと接触電流Icの関係を示した図で ある。この後は、図2の説明と同じであり、 Z63で探針 1と電極5が接触し、この接触電流が飽和する位置 Z64 で探針1の接近を止め、接触完了とする。

【0044】本実施例の接触法では、探針先端が誤って 絶縁物の上に接近したとしても、原子間力による直前位 置検出を用いているため、探針先端を破損することがな い。

【0045】〈実施例9〉上記実施例で説明してきたように、接触させる電極等に必ず接触電流が流れるとは限らない。例えば、電極がゲート等の電極であれば、試料基板とは基本的に絶縁されているので、接触電流が検出

できない。この場合には、以下に述べるような接触法を 用いる。

【0046】絶縁物を介している場合でも、交流バイアスを印加すれば交流電流を流すことができる。この交流バイアス印加を用いる方法について図16により説明する。まず、探針1と試料9の間に交流電源80により交流電圧を印加して、接触により流れる交流電流の実効値を電流計30で計測する(図16(a))。このときの、接近距離2tと接触電流実効値1cの関係を示したものが図16(b)であり、接近距離が 2_{81} のときに探針1と電極5接触し、接近距離が 2_{82} のときに電流1cが飽和する。この飽和を接触確認とし、探針移動制御回路18が探針移動機構14を接近距離 2_{82} 止める。こうして、接触を完了することができる。この交流電流を用いる場合も、トンネル電流検出を介して接触させることもできる。

【0047】また、図17に示すように接触電流の代わ りに、探針1と電極5の間に働く力を用いて接触を確認 することができる。この場合には、図15の原子間力を 計測する場合と異なり、板ばね90は接触による力を検 出するので、通常原子間力測定に用いられるnNオーダの カより充分大きな力を計測する必要があるため、図15 (a)のカンチレバー60より剛性の強いものを使用す る。こうして、探針1を接近させると、接近距離乙tと 探針1・電極5間に働く力Fの関係は、図17(b)に示 すようになるので、特定の力Fg1になったところで探針 移動制御回路18の命令で探針移動機構14を止めるこ とで、接触を行うことができる。ここで、この接触力F は、探針先端形状、探針先端材質(強度)、接触電極の 大きさ、接触電極の材質等により決定される。例えば、 図17(b)のFmin以下では、接触が弱く、接触抵抗が 大きかったり、オーミック接触になっていなかったりと いう問題が生じる。また、Fmax以上の力になると、探 針が破壊されたり、配線が倒れたりといった問題が生じ る。つまり、確実な接触を行うためには、Fmin、Fmax に対応した接近距離ZminとZmaxの間まで接近させる必 要がある。

【0048】本実施例によれば、ゲート電極のような絶 緑物を介した電極にも正しく探針を接触させることがで きる。

[0049]

【発明の効果】本発明によれば、高分解能の荷電粒子照射による顕微手段と高い位置精度をもつ探針移動機構を有するので、0.1 μ m以下の微細構造を持つ電子素子においても、任意の位置に探針を接触させることが出来るため、任意の位置の電気的特性を測定することが出来る。また、トンネル電流等による接触直前検出を介して接触電流が飽和するまで探針を接近させることによる接触確認等を用いることで確実な接触が行えるため、正確な素子特性の測定が可能となる。また、真空中でのイオン等

を用いた清浄化装置により、探針や試料表面の汚染物質等を除去できるため、正確な素子特性の測定が可能となる。また、イオンビーム等を用いた加工では、0.1μm以下の微細加工も可能であり、電子素子の特定位置を孤立化させることが出来るため、不良位置同定が容易となる。また、本発明では真空中で加工を行うため、堆積性ガスとイオンビーム等の使用により金属膜の堆積が可能であり、電極パッド形成により探針接触が容易になり、またコンタクトホール形成により下層配線への電気的接触も可能になる。このため、電子素子内部の局所的電気特性も計測可能となる。

【図面の簡単な説明】

- 【図1】本発明の一実施例を示す図。
- 【図2】探針電流検出系を示す図.
- 【図3】 実デバイスでの測定例を示す図。
- 【図4】試料電位検出系を示す図。
- 【図5】探針接触による試料電位変化により曲げられる 電子ビームを示す図。
- 【図6】観察像ずれの補正法を示す図.
- 【図7】探針マーキング法を示す図、
- 【図8】イオンビーム照射系を有する不良検査装置を示す図,
- 【図9】試料加工を示す図。
- 【図10】清浄化法を示す図。
- 【図11】ばね効果を有する探針を示す図。
- 【図12】ばね探針における接触状態を示す図.
- 【図13】電子ビームの遮断法を示す図。
- 【図14】複数探針の同時接触手法を示す図。
- 【図15】原子間力検出を介する接触法を示す図
- 【図16】交流電圧印加によるゲート電極への接触法を

示す図,

【図17】力検出によるゲート電極への接触法を示す 図.

【符号の説明】

1、2、3、4…探針、5、6、7、8…電極、9…試 料、10…電子源、11…偏向レンズ、13…2次電子 検出器、14、15、16、17…探針移動機構、18 …探針移動制御回路、19…電気特性測定回路、20… 1次電子ビーム、21…2次電子、30…電流計、31 …電源、35…ソース電極、36…ゲート電極、37… ドレイン電極、40…探針、41…ばね構造部、42… 探針ホルダ、44、45…探針、46、47…ばね構造 部、50…プリアンプ、51、52、53…切換えスイ ッチ、60…カンチレバー、62、63…圧電素子、6 4…電圧計、65…切換えスイッチ、70…絶縁層、7 1…スイッチ、80…交流電源、90…板ばね、100 …エネルギーフィルタ、101…電位計測器、102… 交流電源、110…曲げられた電子ビーム、130…像 ずれ補正回路、131…初期観察領域、132…像ずれ した観察領域、133…画像メモリ、140…ブランキ ング電極、141…遮蔽板、150…イオン源、151 …静電レンズ、152…偏向器、153…静電レンズ、 154…イオンビーム、160…測定素子、161…配 線、162…加工溝、163…下層測定素子、164… 電極パッド、165…ノズル、166…堆積性ガス、1 67、168…配線、169…コンタクトホール、17 0…埋め込み金属部、172…汚染物質、173…除去 された汚染物質、174…汚染物質、175…除去され た汚染物質。

[図10] 【図12】

【図9】

【図17】

図17

【図13】

図13

【図15】

【図16】

フロントページの続き

31/319

HO1L 21/3065

21/304 3 4 1

(72) 発明者 荒川 史子 東京都小平市上水本町五丁目20番1号 株 式会社日立製作所中央研究所内

(72) 発明者 朝山 匡一郎 東京都小平市上水本町五丁目20番 1 号 株 式会社日立製作所中央研究所内 FI 技術表示箇所

G 0 1 R 31/26 J H 0 1 L 21/304 3 4 1 D G 0 1 R 31/28 L R H 0 1 L 21/302 E

(72)発明者 三井 泰裕

東京都小平市上水本町五丁目20番1号 株式会社日立製作所中央研究所内

(72)発明者 中原 仁

東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内

(72)発明者 川浪 義実

東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内