Deep Learning Modeling of Transcription Factor Binding Specificity Using DNA Biophysical Properties

Manish Bhattarai^{1,} Raviteja Vangara¹, Sheng Qian², Tsu-Pei Chiu³, Kim O. Rasmussen¹, Alan R. Bishop¹, Jubao Duan ^{2,4}, Remo Rohs³, Xin He², Boian S. Alexandrov¹ ¹Los Alamos National Laboratory, ² University of Chicago, ³University of Southern California, ⁴NorthShore University HealthSystem

1. Background and Motivation

Active transcription is initiated and assisted by transcription factors (TF) binding to DNA.

- Important for TF-DNA binding are DNA sequence and local biophysical properties of DNA such as DNA breathing and local 3D structure (shape) of DNA.
- We integrate biophysical properties with sequence into modeling of TF binding specificity in a Deep Attention DNA machine learning model (DADm).
- We demonstrate that DADm, outperforms Support Vector Regressor (SVR), Deep-Sea, and DeepBind. and that DNA average opening, variation of the openings breathing and shape characteristics-augmented models compared favorably to models solely based on sequence.

2. DNA breathing: local transient **bubbles**

DNA Bubble Modeling: "Statistical mechanics of a nonlinear model for DNA denaturation", 1989, PRL

Observations:

"Watching DNA breath one molecule at a time". 2013, PNAS.

"Observation of coherent delocalized phonon-like modes in DNA under physiological conditions." 2016, Nature Communications.

3. Data: HT-SELEX; gcPBM; Chip-Seq

"High-throughput SELEX determination of DNA sequences bound by transcription factors in vitro ", 2012, Methods Mo. Biol. (HT-Selex: 215 TFs)

"Quantitative modeling of transcription factor binding specificities using DNA shape".PNAS,2015 (gcPBM:3 TFs)

"Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning." 2015, Nature Bio-technology (Chip-Seq:506 experiments; Encode)

4. Input Features to DADm

DNA Sequence: A,T,G,C

DNA Shape: MGW, Roll, ProT, HelT, and Electrostatic potential.

"The role of DNA shape in protein-DNA recognition", 2009, Nature

DNA bubbles: Probability for flipping,

"DNA dynamically directs its own transcription initiation", 2004, NAR

6. HT-Selex: 215 TFs

6a. Sequence only DADm vs SVR:

DADm performs significantly better compared to SVR on sequences only.

6c. DADm vs Deep-Sea:

DADm performs significantly better compared to modified DeepSea on sequences only.

5. Schematics of DADm

Fig: Proposed DADm model for short sequence(N=100). The model and data parameters are shown and vary for different input lengths. Augmentation of DNA features with sequences

7. SVR: qcPBM improve the prediction for SVR.

R²/AUC are

regression/clas

used for

sification

scores

	Data	$Seq(R^2)$	seq+breath. (R^2)	$seq+shape(R^2)$	seq+shape+breath. (R^2)
	Mad	.90	.915	.93	.94
	Max	.84	.88	.92	.93
_	Myc	.83	.87	.88	.89

8. DADM: gcPBM Augmentation of DNA features improve With sequences improve the prediction for DADm.

Data S	$Seq(R^2)$	seq+breath. (R^2)	$seq+shape(R^2)$	seq+shape+breath. (R^2)
Mad	.95	.96	.945	.95
Max	.92	.93	.922	.94
Myc	.89	.91	.895	.914

6d. DADm: Seq. + Shuffled Breath. vs Seq. + Breath.

6b. DADm: Sequence +

Breathing vs Sequence:

DADm performs better on sequence and

breathing features compared to sequences only

Demonstrate feature significance as DADm performance degrades with shuffled features compared against original features.

9. Chip-Seq:

DADm DeepBind

Comparison of performance between DeepBind and DADm on held-out Encode Chip-Seq data taken from Deep-Bind supplementary materials. For Chip-Seq, DADm achieves better overall classification AUC compared to Deep-Bind.

