11-442 / 11-642 / 11-742: Search Engines

Federated Search

Jamie Callan Carnegie Mellon University callan@cs.cmu.edu

1

What is Federated Search? Multiple Retrieval Methods

Search portals can have different strategies for handling different types of requests

- Search unstructured data
 - Send the query to search engines specialized for different content
 - » Autos, music, images, videos, ...
- Search <u>structured data</u> (databases)
 - E.g., zip codes, stock symbols, ...
- Invoke a service or process
 - E.g., calculator, stock prices, flight tracking, ...

© 2021, Jamie Cai

4

What is Federated Search? **Multiple Retrieval Methods** Google Q justice league Showtimes for Justice League **Movie times** Top stories News Justice League (film) - Wikipedia Wikipedia https://en.wikipedia.org/wiki/Justice_League_(film) ▼ Justice League is a 2017 American superhero film based on the DC Comics superhero team of the same name consisting of Batman, Superman, Wonder Steppenwolf (comics) · Ciarán Hinds · Mother Box · Ezra Miller Justice League Movie (@justiceleaguewb) · Twitter **Twitter** https://twitter.com/justiceleaguewb

5

What is Federated Search? **Multiple Retrieval Methods** Google united 134 Q Flight status United UA 134 Updated 13h 37m ago EWR -→ ZRH Newark - Tue, November 21 Zürich - Wed. November 22 8:57 am -7:00 pm C C138 Scheduled arrival 8:40 am United (UA) #134 FlightAware Web search https://flightaware.com/live/flight/UAL134 ▼ United (UA) #134 Flight Tracker (UAL134) (UA) United Airlines 134 Flight Status

8

What is Federated Search? Multiple Retrieval Methods

For simplicity, we consider everything a <u>retrieval method</u>

• E.g., a calculator "retrieves" the answer to a calculation query

Web search services have many retrieval methods

• At least a few dozen ... maybe many more

Big enterprise systems may also have multiple retrieval methods

We won't worry about what the retrieval methods are

- Use your experience and imagination
- Assume that they change constantly

© 2021, Jamie Callan

9

What is Federated Search? Important Constraints

Uncooperative environment

- No special support for federated search
- Resources are not trusted

Cooperative environment

- Resources support common protocols / APIs
- Resources are trusted to provide accurate information

Different environments require different types of solutions

10

2021, Jamie Callan

Components of a Federated Search System

Resource representation

• Gathering information about each resource

Resource selection

• Selecting a set of resources for a particular query

Result merging

- Combining results from several resources into a single ranking
 - Can be an easy problem or a hard problem, depending upon the types of resources
 - Not covered today due to lack of time

11 © 2021, Jamie Callan

Offline (indexing)

At query time

11

Outline

- Introduction
- Unsupervised approaches
 - Resource representation
 - Resource selection (CORI, ReDDE)
 - Evaluation
- Supervised approaches

12

© 2021, Jamie Callan

Federated Search Components: Resource Representation

Search Engines

What information needs do each of these engines satisfy?

- Often expressed as "What does each engine contain"?
- **Cooperative** environment
 - The engine tells you whatever you want to know
- <u>Uncooperative</u> environment
 - The engine provides no special services

13

Defining the Resource Representation

13

How should a resource's contents be represented?

- Bag of words: terms and frequencies
- Sample queries: Queries that this resource is good for
- Sample documents: Typical documents from this resource

Different representations support different types of solutions

© 2021, J

Defining the Resource Representation

© 2021 T----- C-II--

15

Defining the Resource Representation

Defining the Resource Representation

17 © 2021, Jamie Callar

17

Acquiring the Resource Representation

How is information about the resource contents acquired?

- Request from the resource via a protocol
 - E.g., STARTS [Gravano, et al., 1997]
- Request relevance assessments for a query log
- Query-based sampling: Submit a query, see what comes back

All are used, but we only cover query-based sampling today

18

2021, Jamie Callan

Acquiring a Resource Representation: Query-Based Sampling

The search engine is assumed to be uncooperative

- Maybe operated by an unaffiliated organization
- Maybe just a search engine that doesn't support a protocol

Procedure

- Pick an initial query (somehow)
- Repeat N times (e.g., N=100)
 - Submit a query to the search engine
 - Download a few result documents (e.g., 2-4)
 - Update the engine's representation (words and frequencies)
 - Select query term(s) randomly from the representation

(Callan, et al., 1999)

© 2021, Jamie Callan

19

Acquiring a Resource Selection: Query-Based Sampling Random Description of **Oueries** Words and Search Engine X Counts Search Engine X Query-Contents Based Microsoft 152 Unknown Sampling Windows 118 2-4 Best Docs Office 97 Excel 89 Server 72 Word 71 (Callan, et al., 1999) 20

Acquiring a Resource Selection: Query-Based Sampling

A small sample of documents finds the <u>common</u> vocabulary terms

- E.g., 300-500 documents
- Characteristic of this corpus

0.0 1.0 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0 100 200 300 400 500 Number of documents examined

If the vocabulary is sorted by frequency, the sample order is similar to the actual order

21

Query-Based Sampling: Top Terms for 6 Document Collections

C10		C35		C23	
israeli	1,394	study	779	tax	1,582
palestinians	1,130	gene	772	budget	1,356
israel	1,060	dna	759	billion	918
arab	1,009	human	735	house	708
army	985	cell	703	bush	692
C66		C13		C50	
fair	3,121	court	2,071	systems	622
cloudy	2,127	law	815	system	490
rain	1,056	federal	720	software	463
snow	991	judge	622	computer	343
new	968	case	620	information	336
			22		

Acquiring a Resource Selection: Query-Based Sampling

Why does it work?

• Remember Heaps' Law

What if the first query is "bad"?

• E.g., "car" in a medical corpus

What is the effect of sample size?

• E.g., number of documents per query?

Random sampling in a cooperative environment

• Only a little better than query-based sampling (!)

© 2021, Jamie Callan

23

Outline

23

- Introduction
- Unsupervised approaches
 - Resource representation
 - Resource selection (CORI, ReDDE)
 - Evaluation
- Supervised approaches

24 © 2021, Jamie Cal

23

Unsupervised Resource Selection

Task: Given a query q, decide which resources to search

Unsupervised methods treat this as a resource ranking problem

- Estimate $p(r_i|q)$
 - $-r_i$: The ith resource
- Select (search) the top k resources
 - Typically k is given
 - Setting k dynamically is an open research problem

26

© 2021, Jamie Callar

Unsupervised Resource Selection

There are two main approaches

- Content-based methods
 - Rank resources based on the similarity of the query to the content contained in the resource
 - Different approaches are distinguished by
 - » Representation type: bag of words vs. sampled documents
 - » Ranking algorithm: many choices (e.g., CORI)
- Query-based methods
 - Rank resources based on the similarity of the query to past queries that the resource matched well
 - Not used much until recently due to lack of good query logs

27

© 2021, Jamie Callan

27

Unsupervised Resource Selection: CORI

CORI adapts BM25 to resource ranking

- Model each resource by a bag of words
 - A "big document"
- Rank resources by

$$P(q_i \mid R_j) = \frac{df}{df + 50 + 150 * \frac{coll_length_j}{avg_coll_length}} * \frac{\log\left(\frac{cf_i}{cf_i}\right)}{\log(C+1.0)}$$

df: Number of documents in R_j containing q_i

Collection Frequency

Inverse

cf: Number of resources containing q_i

(normalized to 1)

C: Number of resources

(Callan, et al., 1995)

Unsupervised Resource Selection: Other Term-Based Algorithms

You could use almost any ranking algorithm instead

• E.g., vector space, Kullback-Leibler Divergence, query likelihood, ...

The main idea

- Treat each resource as a (very large) bag of words
- Store only <u>vocabulary and frequency</u> information
 - Term positions are not recorded why?

29 © 2021, Jamie Calla

29

Unsupervised Resource Selection: Evaluation

What is the <u>desired</u> ("gold standard") order of resources?

- Order by number of relevant documents the resource <u>contains</u>?
 - Most common choice
- Order by the number of relevant documents the resource <u>returns</u>?
 - Some resources may have bad search engines
- ...

© 2021, Jamie Calla

__

Unsupervised Resource Selection: Sample Documents Methods

Bag of words methods (e.g., CORI) select resources that are similar to the query

- This really isn't the goal
- These methods favor resources that have high $p(q_i|R_i)$
 - Often that means homogeneous (often small) resources
 - This is not necessarily what we want

The goal is to select resources that <u>return more relevant documents</u> for this query

• Sampled documents methods address this goal more directly

© 2021, Jamie Calla

32

Unsupervised Resource Selection: ReDDE

Centralized **Sample Index**

Combine samples in a centralized Resources index

• Keep track of which resource supplied each document

33

(Si and Callan, 2003)

© 2021, Jamie Callar

33

Unsupervised Resource Selection: ReDDE

Given a query

- Search the centralized sample index
- Consider all documents above rank T to be relevant
- Examine which resources supplied the relevant documents
- Estimate the number of relevant documents in each resource

(Si and Callan, 2003)

34

Unsupervised Resource Selection: ReDDE

Estimating the number of relevant documents in the i'th resource

- Count the number of documents from resource i above threshold T
- Multiply this value by resource_size / sample_size

(Si and Callan, 2003)

© 2021, Jamie Callan

35

35

Unsupervised Resource Selection: Voting Methods

ReDDE can be viewed as a sample-based voting method

• Each top-ranked document votes for its collection

ReDDE can be generalized to create resource selection algorithms that satisfy explicit optimization goals

- High Recall: Select resources that contain many relevant documents
- **High Precision:** Select resources that <u>return</u> many relevant documents <u>at the top of a merged set of results</u>

Framing resource selection in terms of optimization goals allows development of more sophisticated resource selection algorithms

- E.g., Returned Utility Maximization

(Si and Callan, 2004)

© 2021, Jamie Callan

36

Unsupervised Resource Selection: Voting Methods

ReDDE can be viewed as a sample-based voting method

• Each top-ranked document votes for its collection

There are many variants of the algorithm

- Samples from more reliable resources get more votes
- Samples that are more relevant get more votes
- •

No variant outperforms others on all experimental testbeds

© 2021, Jamie Callan

37

ReDDE vs. CORI

ReDDE is a little more accurate

• It never does worse; often it does better

ReDDE outperforms CORI when the distribution of collection sizes is skewed

- CORI is biased towards small collections
 - They are more likely to be homogeneous
 - It misses large, heterogeneous collections
- ReDDE has a (weaker) bias towards large collections

CORI is more efficient than ReDDE

• 1 "document" per resource vs. many documents per resource

38

© 2021, Jamie Callan

ReDDE vs. CORI: Efficiency

What is resource selection cost for the query 'apple'?

- Assume *v* verticals
- Assume s sampled documents per vertical
 - -E.g., s=300

CORI: Maximum inverted list length is *v*

- One posting per vertical that contains 'apple'
- A <u>count</u> of how many documents in v_i contain 'apple'

ReDDE: Maximum inverted list length is $s \times v$

- One posting per sampled document that contains 'apple'
- Sample documents from each v_i that contain apple

39

2021, Jamie Callan

39

Unsupervised Resource Selection: Bag of Words Methods

Characteristics of bag of words ("large documents") approaches

- Large documents dominate a resource representation
- Favors resources with a larger proportion of relevant content
 - i.e., small or homogeneous resources

Bag of words resource selection is surprisingly effective

- The state-of-the-art from 1994 until about 2003
- Very efficient
- Still very competitive

40

© 2021, Jamie Callan

Outline

- Introduction
- Unsupervised approaches
 - Resource representation
 - Resource selection (CORI, ReDDE)
 - Evaluation
- Supervised approaches

41 © 2021, Jamie Calla

41

Resource Selection: Learning to Rank Resources (L2R)

A standard learning-to-rank architecture can be applied to resource ranking

- Algorithm: SVM^{Rank}
- Standard pairwise training

$$h(\boldsymbol{\Phi}(q,s_i)) > h(\boldsymbol{\Phi}(q,s_j))$$

h: learned model

 Φ : feature generator

- Search engine s_i should be ranked higher for query q than search engine s_i
- E.g., $h(\Phi(\text{``iron man''}, \text{imdb.com})) > h(\Phi(\text{``iron man''}, \text{pubmed.gov}))$

(Dai, et al., 2017)

42

Resource Selection: Learning to Rank Resources (L2R)

Example features

- Query-independent information
 - $-p(s_i)$: popularity of s_i
 - » The percentage of queries in a search log that went to search engine s_i

(Dai, et al., 2017)

43

43

Resource Selection: Learning to Rank Resources (L2R)

Example features

- Term-based statistics
 - Two features derived from the Taily resource selection algorithm, f (q, s_i)
 - » Inverse rank
 - » Binned rank (bins of size 10)
 - Ignore differences between ranks 4 and 5, but not 4 and 14
 - Champion list features: Top k documents contributed by each shard for term t
 - Query likelihood of the query with the shard language model
 - Query term statistics: $max_{t \in a} ctf(t, s_i)$ and $min_{t \in a} ctf(t, s_i)$
 - Bigram log frequency: $\sum_{b \in q} log(ctf(b, s_i))$ for bigrams with ctf > 50

(Dai, et al., 2017)

44

© 2021, Jamie Callan

Resource Selection: Learning to Rank Resources (L2R)

Example features (continued)

- Sample-document (CSI features)
 - ReDDE and Rank-S scores, inverse ranks, binned ranks (bins of 10)
 - Average distance to the shard centroid
 - » Distance of the top-k CSI documents to their shards' centroids using cosine & **KLD**
 - » Are these documents representative of their shards?

(Dai, et al., 2017)

45

Resource Selection: Learning to Rank Resources (L2R)

45

Datasets

- ClueWeb09-B: 50 million web pages clustered into 123 shards
 - Clustering produces topic-oriented index shards
 - Unusual application: Use federated search to improve distributed search efficiency
- Gov2: 25 million web pages clustered into 199 shards
 - Same comments

Parameters

- Centralized sample index: 1% sample
- Search engine: Indri with SDM queries

(Dai, et al., 2017)

Resource Selection: Learning to Rank Resources (L2R)

How well does it work?

	CW09-B (123 shards)						Gov2 (199 shards)					
Method		T=4			T=8		T=6			T=12		
	P	NDCG	MAP	P@10	NDCG	MAP	P	NDCG	MAP	P	NDCG	MAP
	@10	@30	@1000		@30	@1000	@10	@30	@1000	@10	@30	@1000
Redde	0.355	0.262	0.176	0.363*	0.275^{*}	0.187	0.580*	0.445	0.267	0.587*	0.4600^*	0.289
Rank-S	0.350	0.259	0.175	0.360*	0.268	0.183	0.570	0.440	0.263	0.585*	0.461^{*}	0.286
Taily	0.346	0.260	0.172	0.346	0.260	0.175	0.518	0.403	0.235	0.530	0.418	0.256
Jnt	0.370*	0.269	0.178	0.367*	0.277^{*}	0.192	0.582*	0.459	0.278	0.588*	0.465^{*}	0.292
L2R-TREC	0.374^{*}	0.281^{*}	0.192▲	0.377*	0.286▲*	0.202▲*	0.593*	0.469^{*}	0.299▲	0.591*	0.475▲*	0.313▲*
L2R-AOL	0.374*	0.281▲*	0.191	0.375*	0.287▲*	0.202▲*	0.593*	0.470▲*	0.291	0.587*	0.470^{*}	0.307▲*
L2R-MQT	0.382*	0 <u>.2</u> 8 <u>5</u> ▲*	<u>0.193</u> ▲	0.3 <u>75</u> *	<u>0.286</u> ^{▲*}	0.202▲*	0.586*	0.465*	<u>0.29</u> 2▲	0.593*	<u>0.47</u> 4 ^{▲*}	0 <u>.3</u> 09 [▲] *
Exh	0.372	0.288	0.208	0.372	0.288	0.208	0.585	0.479	0.315	0.585	0.479	0.315

TREC, -AOL, and -MQT are different types of training data

T=4, 6, 8, 12 is how many top-ranked index shards (search engines) are searched

(Dai, et al., 2017)

© 2021, Jamie Callan

47

Vertical Search: Federated Search in Web Search Engines

How would these ideas be applied in a web search environment?

- "Federated search" → "vertical search"
 - Different people use different terminology
- Typically a more diverse set of information services
 - Some aren't search engines
 - Some don't return text
 - » E.g., maps, images, ...
 - Some aren't topically coherent
 - » E.g., local search
- There may be much training data

48

Resource Selection: Query Features

Queries may contain clues about which verticals are appropriate

• "Pittsburgh <u>weather</u>", "United <u>flight</u> 1243", "washing machine repair <u>videos</u>", "Daniel Craig <u>pictures</u>", "Cajun shrimp <u>recipes</u>", ...

Query features

- Boolean: keywords and regular expressions
 - E.g., "weather", "news", "videos", ...
- Geographic: Probabilities associated with geographic entities
 - E.g., "Pittsburgh pizza"
- Category: query's affinity to a set of topic categories
 - E.g., "Cancun vacations"

(Arguello, et al., 2009)

© 2021, Jamie Callan

49

Resource Selection: Corpus Features

49

Methods that predict the effectiveness of a query on a given corpus

- Typical resource selection algorithms
 - E.g., CORI, ReDDE, Taily
- Query difficulty prediction algorithms
 - E.g., Clarity

(Arguello, et al., 2009)

© 2021, Jamie Callan

50

Resource Selection: Query Log Features

Where do query log features come from?

• Manual assessments? Clickthrough?

Some vertical search engines can be accessed directly by users

51

- The <u>user</u> believed that the engine was a good choice for the query
- The <u>vertical search engine's</u> query log is a good source of training data

(Arguello, et al., 2009)

© 2021, Jamie Callan

51

Resource Selection: Query Log Features

The qlog feature

- Use the queries from the query log to form a language model for vertical *v*
- Use a typical query likelihood model

$$p(q|v) = \prod_{t \in q} p(t|v)$$

- p(t|v) is a smoothed MLE
 - E.g., Jelinek-Mercer or Dirichlet

Query log for vertical v

: : : : : hotels in cancun cheap flights tickets to miami chicago hotels hotel deals tokyo attractions flights to los angeles broadway tickets : : : :

(Arguello, et al., 2009)

© 2021, Jamie Call

52

Resource Selection: Query Log Features

The Soft.ReDDE feature

- Use the queries from the query log to form a language model for vertical v
- Use the query to retrieve the top n documents from an external collection
 - E.g., wikipedia
 - High-quality documents related to the query
- Use a voting algorithm such as ReDDE
 - The vote of document d_i is KLD $(d_i || v)$
 - Documents that are similar to the query log have higher votes

(Arguello, et al., 2009)

© 2021, Jamie Callan

53

Supervised Resource Selection

53

Supervised resource selection is similar to LTR for document ranking

- Similar architecture
 - E.g., SVM^{Rank} with pairwise or listwise training
- Different features
 - Older heuristic algorithms are some of the strongest features
 - Features based on search logs are very important

The state-of-the-art algorithms are close to exhaustive search

- Search a fraction of the available information without losing Precision
 - It is harder to maintain Recall

Outline

- Introduction
- Unsupervised approaches
 - Resource representation
 - Resource selection (CORI, ReDDE)
 - Evaluation
- Supervised approaches

55

© 2021, Jamie Callan

55

Summary

Integration of diverse information resources is an increasingly important problem

Components of a distributed / federated / vertical search system

- Resource representation
- Resource selection
- Result merging (not covered)

Problem requirements that affect the type of solution

- Cooperative vs. uncooperative
- Unsupervised vs. supervised

56

© 2021, Jamie Callan

Next Semester...

This course will be offered next semester

I will need Teaching Assistants

• 8-12 hours/week × 7 weeks ("grading weeks")

• 3-5 hours/week × 9 weeks (office hours, piazza)

Please send me email if you are interested in being a TA

• I will start TA interviews <u>after</u> grades are posted (probably Monday, May 10 or Tuesday, May 11)

57 © 2021, Jamie Callan

57

For More Information

- J. Arguello, J. Callan, and F. Diaz. Classification-based resource selection. CIKM 2009. 2009.
- J. Arguello, J. Callan, F. Diaz, and J.-F. Crespo. Sources of evidence for vertical selection. SIGIR 2009. 2009.
- J. Callan and M. Connell. Query-based sampling of text databases. TOIS. 2001.
- Z. Dai, Y. Kim and J. Callan. Learning to rank resources (short paper). In Proceedings of the 40th International ACM SIGIR
 Conference on Research & Development in Information Retrieval. ACM. 2017.
- J. P. Callan, Z. Lu, and W.B. Croft. Searching distributed collections with inference networks. SIGIR 1995. 1995.
- L. Si and J. Callan. Relevant document distribution estimation method for resource selection. SIGIR 2003. 2003.
- L. Si and J. Callan. A semi-supervised learning method to merge search engine results. TOIS. 2003.

58

2021, Jamie Callan