Constructing Knowledge Graphs and Their Biomedical Applications

This manuscript (<u>permalink</u>) was automatically generated from <u>greenelab/knowledge-graph-review@1ba98f7</u> on February 24, 2020.

Authors

• David Nicholson

Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania · Funded by GBMF4552 and T32 HG000046

• Jane Roe

Department of Something, University of Whatever; Department of Whatever, University of Something

Abstract

1. Give high level description of review as it pertains to knowledge graphs (creation and application)

Introduction

Knowledge graphs are a practical resource for many real world applications. They have been used in social medial mining to classify nodes [1] or to create a recommendation system [2]. Knowledge graphs have also been used to understand natural language via interpreting simple questions and using relational information to provide answers [3,4]. In a biomedical setting these graphs have been used to prioritize genes relevant to disease [5,6,7,8], perform drug repurposing [9] and identify drugtarget interactions [10].

Despite their utility, precisely defining a knowledge graph is a difficult task because there are multiple conflicting definitions [11]. For this review, we define a knowledge graph as the following: a resource that integrates single or multiple sources of information into the form of a graph. This graph allows for the capacity to make semantic interpretation, continuously incorporate new information and uncover novel hidden knowledge through computational techniques and algorithms. Based on this definition resources like Hetionet [9] would be considered a knowledge graph. Hetionet integrates multiple sources of information into the form of a graph (example shown in Figure 1) and was used to derive novel information concerning unique drug treatments [9]. We do not consider databases like DISEASES [12] and DrugBank [13] to be knowledge graphs. These resources contain essential information, but do not represent their data in graph form.

Knowledge graphs are often constructed from manually curated databases [9,14,15,16]. These sources provide previously established information that can be incorporated into a graph. For example, a graph using DISEASES [12] as a resource would have genes and diseases as nodes, while edges would be added between nodes that have an association. This example shows a single type of relationship; however, there are graphs that use databases with multiple relationships. Other approaches have used natural language processing techniques to build knowledge graphs [17,18]. One example used a text mining system to extract sentences that indicated a protein interacting with another protein [19]. Once these sentences have been identified, they are incorporated as evidence for establishing edges in a knowledge graph.

In this review we describe various approaches for constructing and applying knowledge graphs in a biomedical setting. We discuss the pros and cons of constructing a knowledge graph via manually curated databases and via text mining systems. We also compare assorted approaches for applying knowledge graphs to solve biomedical problems. Lastly, we conclude on the practicality of knowledge graphs and point out future applications that have yet to be explored.

Figure 1: A metagraph (schema) of the heterogeneous network used in the Rephetio project [9]. This undirected network depicts pharmacological and biomedical information. The nodes (circles) represent entities and edges (lines) depict relational information between two entities.

Building Biomedical Knowledge Graphs

Knowledge graphs can be constructed in many ways using resources such as text or pre-existing databases. Usually, knowledge graphs are constructed using pre-existing databases. These databases are constructed by domain experts using approaches ranging from manual curation to automated techniques, such as text mining systems. Manual curation is a process that involves extensive use of domain experts to read papers and detect sentences that assert a relationship. Automated approaches involve the use of machine learning or natural language processing techniques to rapidly detect sentences of interest. We categorize these automated approaches into the following groups: rule-based extraction, unsupervised machine learning, and supervised machine learning. We discuss examples of each type of approach and synthesize the strengths and weaknesses of each.

Constructing Databases and Manual Curation

Database construction can date back all the way to 1956 where the first database contained a protein sequence of the insulin molecule [20]. This process involves gathering relevant text such as journal articles, abstracts, or web-based text. At this point curators can read gathered text and detect relationship asserting sentences (i.e. relationship extraction). An alternative to use a text mining system to filter out extraneous sentences, then incorporate curators to perfect the system's findings. This semi-automatic approach is way to augment curators throughout the curation process. We discuss the pros and cons of using manual curation for relationship extraction and mention databases that use this method to populate their fields.

Notable databases have been constructed via manual curation (Table {[???]}). For example, COSMIC [21] was constructed via a group of domain experts scanning the literature for key cancer related genes. This database has reached close to 35M entries in 2016 [21] and grew to a total of 45M entiries in 2019 [22]. Studies have shown that these databases contain relatively precise data, but in low quantities [23,24,25,26,27,28,29]. This happens because the high publication rate is too much for curators to keep up [30]. This findings highlight a critical need for future approaches to be fast enough to compete with an increasing publication rate.

Semi-automatic methods are a way to augment curators during the curation process [27,31,32,33,34,35,36]. First step in this context is to use an automatic system to initally extract sentences from text. This process filters out irrelevant sentences, which means less text for curators to sift through. After the pre-filtering step curators can approve or remove the identified sentences. This semi-automatic process was found to speed up the curation process compared to manual approach [31,37]. Curators in [37] saved an average of 2.8 hours of overall time while curators in [31] saved about the same amount of time (2 hours). Despite the speed up, this process is prone to produce bias results. As automated systems excel in identifying sentences for commonly occurring relationships, they miss out on lessor known relationships [31]. Plus, these systems have a hard time parsing ambiguous sentences that naturally occur in text. This complication results in curators have a difficult time correcting these systems [31]. Given these caveats, a future direction would be using or creating approaches that can mitigate the relationship bias. Furthermore, future approaches should look into using techniques that simplify sentences to solve the ambiguity issue [38,39].

Despite the negatives of manual curation, it is still an essential process for relationship extraction approaches. This process can be used to generate gold standard datasets that automated systems use for validation [40,41]. Furthermore, manual curation can be used during the training process of automated systems (i.e. active learning) [42]. It is important to remember that manual curation alone is precise, but results in low recall rates [29]. Future databases should consider initially relying on automated methods to obtain sentences at an acceptable recall level, then incorporate manual curation as a way to fix or remove irrelevant results.

Database [Reference]	Short Description	Number of Entries	Entity Types	Relationship Types	Method of Population
Entrez-Gene [<u>43</u>]	NCBI's Gene annotation database that contains information pertaining to genes, gene's organism source, phenotypes etc.	7,883,114	Genes, Species and Phenotypes	Gene-Phenotypes and Genes- Species mappings	Semi-automated curation
UniProt [<u>44</u>]	A protein protein interaction database that contains proteomic information.	560,823	Proteins, Protein sequences	Protein-Protein interactions	Manual and Automated Curation
PharmGKB [<u>45</u>]	A database that contains genetic, phenotypic, and clinical information related to pharmacogenomi c studies.	43,112	Drugs, Genes, Phenotypes, Variants, Pathways	Gene- Phenotypes, Pathway-Drugs, Gene-Variants, Gene-Pathways	Manual Curation and Automated Methods

Database [Reference]	Short Description	Number of Entries	Entity Types	Relationship Types	Method of Population
COSMIC [<u>21</u>]	A database that contains high resolution human cancer genetic information.	35,946,704	Genes, Variants, Tumor Types	Gene-Variant Mappings	Manual Curation
BioGrid [<u>46</u>]	A database for major model organisms. It contains genetic and proteomic information.	572,084	Genes, Proteins	Protein-Protein interactions	Semi-automatic methods
Comparative Toxicogenomics Database [47]	A database that contains manually curated chemical-genedisease interactions and relationships.	2,429,689	Chemicals (Drugs), Genes, Diseases	Drug-Genes, Drug-Disease, Disease-Gene mappings	Manual curation and Automated systems
Comprehensive Antibiotic Resistance Database [48]	Manually curated database that contains information about the molecular basis of antimicrobial resistance.	174,443	Drugs, Genes, Variants	Drug-Gene, Drug- Variant mappings	Manual curation
OMIM [49]	A database that contains phenotype and genotype information	25,153	Genes, Phenotypes	Gene-Phenotype mappings	Manual Curation

Table. A table of databases that used a form of manual curation to populate entries. Reported number of entities and relationships are relative to time of publication. {#tbl:manual-curated-databases}

Text Mining for Relationship Extraction

Rule-Based Relationship Extraction

Rule-based extraction consists of identifying sentences that contain important keywords or grammatical patterns that allude to relationships of interest. Keywords are established via expert knowledge or though the use of pre-existing ontologies. Grammatical patterns are constructed via experts curating parse trees, which are tree data structures that depict a sentence's grammatical structure. Parse trees come into two forms a constituency parse tree and a dependency parse trees. Both trees use part of speech tags, labels that dictate the grammatical role of a word such as noun, verb, adjective, etc, for construction. A constituency parse trees breaks a sentence down into a subphrases (Figure 3) while dependency path trees analyzes the grammatical structure of a sentence (Figure 2). Many text mining approaches [50,51,52] use such trees to generate features for machine learning algorithms. These approaches are discussed in later sections. For this section we focus on approaches that mainly use rule based extraction to detect sentences that assert a relationship.

Grammatical patterns can simplify sentences for easy extraction [39,53]. Jonnalagadda et al. used a set of grammar rules inspired by constituency trees to reshape complex sentences with simpler versions [39]. These simplified versions were manually curated to determine the presence of a relationship. By simplyfing sentences this approach achieved high recall, but had low precision [39]. Other approach used simplification techniques to make extraction easier [54,55,56,57]. Tudor et al., simplified sentences to detect protein phosphorylation events [56]. The sentence simplifier broke complex sentences that contain multiple protein events into smaller sentences that contain only one distinct event. By breaking these sentences down the authors were able to increase their recall. However, sentences that contained ambigious directionality or multiple phosphroylation events were too complex for the simplifier. As a consequence the simplifier produced errors in recall [56]. These errors highlight a crucial need for future algorithms to be generalizable enough to handle various forms of complex sentences.

Pattern matching is a fundamental approach used to detect relationship asserting sentences. In this context patterns can consist of phrases from constituency trees, a set of keywords or some combination of both to detect sentences [27,58,59,60,61,62]. Xu et al. designed a pattern matcher system to detect sentences in PubMed abstracts that indicate drug-disease treatments [61]. This system matched drug-disease pairs from clinicaltrails.gov to drug-disease pairs mentioned in abstracts. This matching process aided the authors in identifying sentences that were used to create simple patterns, such as "Drug in the treatment of Disease" [61], to match sentences in a wide variety of abstracts. The authors hand curated two datasets for evalution and achieved a high precision score of 0.904 and a low recall score of 0.131 [61]. This low recall score was based on constructed patterns being very specific to top occurring drug paris. This flaw resulted in rarely occurring pairs having a high likelihood of being missed. Following approaches using constituency trees, some approaches used dependency trees to construct patterns [50,63]. Depending upon the nature of the algorithm, dependency trees could be more appropiate than constituency trees and vise versa. The performance difference between the two approaches still remains as an open question for future exploration.

Rules based methods provide a basis for many relationship extraction systems. Approaches in this category range from simplifing sentences for easy extraction to identifing sentences based on matched key phrases or grammatical patterns. Both require a significant amount of manual effort and expert knowledge to perform well. A future direction is to develop ways to automatically construct these hand-crafted patterns, which would accelerate the process of creating new rule-based systems.

Figure 2: A visualization of a dependency parse tree using the following sentence as in example: "BRCA1 is associated with breast cancer" [64]. For these type of trees the root begins at the main verb of a sentence. Each arrows depicts the dependency shared between two words. For example, the dependency between BRCA1 and associated is nsubjpass, which stands for passive nominal subject. This means that BRCA1 is the subject of the sentences and it is being referred to by the word associated.

Figure 3: A visualization of a constituency parse tree using the following sentence: "BRCA1 is associated with breast cancer" [65]. This type of tree has the root beginning at the start of the sentence. Each word is grouped into subphrases depending on the part of speech tags of a word. For example, the word "associated" is a past particple verb (VBN) that belongs to the verb phrase (VP) subgroup.

Extracting Relationships Without Labels

Unsupervised methods of extraction involve drawing inferences from data without the use of labels. These methods involve some form of clustering or statistical calculations. In this section we discuss methods that use unsupervised learning to detect relationship asserting sentences from text.

An unsupervised method to extract relationships exploits the fact that two entities can appear together in text. This kind of event is called co-occurrence and studies that use this phenomenon can be found in table 1. Two databases DISEASES [12] and STRING [66] were populated using a co-occurrence scoring method on PubMed abstracts. Both databases used the same scoring method that measured the frequency of co-mention pairs within individual sentences as well as the abstracts themselves. This method assumes independence between each individual occurrence. Under this assumption mention pairs that occur more than expected were presumed to indicate the presence of an association or interaction. This approach was able to identify 543,405 disease gene associations [12] and 792,730 high confidence protein protein interactions [66], but is limited to only using PubMed abstracts.

Full text articles are able to drastically amplify text mining power to detect relationships [67,68]. Westergaard et al. used a co-occurrence approach, similar to DISEASES [12] and STRING [66], to mine full articles for protein-protein interactions and other protein related information [67]. The authors discovered that full text provided better prediction power than using abstracts alone. This improvement suggests that future text mining approaches should consider using full text to increase detection power.

Unsupervised methods have been focused on treating multiple biomedical relationships as multiple isolated problems. These methods repeatedly use the same model for each biomedical relationship type. An alternative to this persepctive is to capture all different relationship types at once. Clustering is an approach that accomplish this concept of simultaneous extraction. Percha et al. used a biclustering algorithm on generated dependency parse trees to group PubMed abstract sentences [69]. Each cluster was manually curated to determine which relationship they represented. This approach captured 4,451,661 dependency paths for 36 different groups [69]. Despite the success, this approach suffered from technical issues such as dependency tree parsing errors. This type of error

resulted in sentences not being grouped by the clustering algorithm [69]. Future clustering approaches should consider simplifying sentences to prevent this type of issue.

Overall unsupervised methods provide a means to rapidly find relationship asserting sentences without the need of annotated text. Approaches in this category range from using co-occurrence scores to clustering sentences. These methods provide a generalizable framework that can be used on large repositories of text. Future methods can improve detection power by considering the use of methods that simplify sentences and use datasets that include full text articles.

Table 1: Table of approaches that mainly use a form of co-occurrence.

Study	Relationship of Interest
[<u>70</u>]	Protein-Protein Interactions, Disease-Gene and Tissue- Gene Associations
[71]	Drug Disease Treatments
[72]	Drug, Gene and Disease interactions
[67]	Protein-Protein Interactions
[12]	Disease-Gene associations
[73]	Protein-Protein Interactions
[74]	Genotype-Phenotype Relationships

Supervised Machine Learning

- 1. Mention the availablility of publically available data
 - 1. PPI 5 datasets
 - 1. 10.1016/j.artmed.2004.07.016
 - 2. 10.1186/1471-2105-8-50
 - 3. Learning language in logic genic interaction extraction challenge
 - 4. 10.1093/bioinformatics/btl616
 - 5. http://helix-web.stanford.edu/psb02/ding.pdf
 - 2. DaG 3 datasets
 - 1. 10.1016/j.jbi.2012.04.004
 - 2. 10.1186/s12859-015-0472-9
 - 3. 10.1186/1471-2105-14-323
 - 4. 10.1186/1471-2105-13-161
 - 3. CiD
 - 4. 10.1093/database/baw068
 - 5. CbG
 - 6. Biocreative VI track 5 raw citation
 - 7. more if exists talk about deep learning methods
- 2. Mention the use of Support Vector Machines and other non deep learning classifiers
 - 1. Will have to mention that field has moved to deep learning.
 - 2. 10.1186/s13326-017-0168-3
 - 3. 10.1371/journal.pcbi.1004630
- 3. Mention deep learning methods
 - 1. 1901.06103v1
 - 2. 10.1016/j.knosys.2018.11.020
 - 3. 10.1177/0165551516673485
 - 4. 1706.01556v2
 - 5. ^^ A few papers here but a lot more will be put into place
 - 6. Mention caveat which is the need for large annotated datasets

7. Mention a direction the field is moving to which is weak supervision and more that info that will come in time.

Applying Knowledge Graphs to Biomedical Challenges

- 1. Mention that these graphs can be used for discovery
- 2. Mention representation learning (aka representing a graph as dense vectors for nodes and/or edges)

3.

Unifying Techniques

Mapping high dimensional data into a low dimensional space has greatly improved modeling performance in fields such as natural language processing [75,76] and image analysis [77]. The success of these approaches provides rationale for projecting knowledge graphs into a low dimensional space as well [78]. Techniques that perform this projection often require information on how nodes are connected with one another [79,80,81,82], while other approaches can work directly with the edges themselves [83]. We group methods for producing low-dimensional representations of knowledge graphs into the following three categories: matrix factorization, translational methods, and deep learning.

Matrix Factorization

1. Mention techniques for these with some papers

Translational Distance Models

Translational distance models treat edges in a knowledge graph as linear transformations. As an example, one such algorithm, TransE [84], treats every node-edge pair as a triplet with head nodes represented as \mathbf{h} , edges represented as \mathbf{r} , and tail nodes represented as \mathbf{t} . These representations are combined into an equation that mimics the iconic word vectors translations ($\mathbf{king} - \mathbf{man} + \mathbf{woman} \approx \mathbf{queen}$) from the Word2vec model [76]. The equation is shown as follows: $\mathbf{h} + \mathbf{r} \approx \mathbf{t}$. Starting at the head node (\mathbf{h}), add the edge vector (\mathbf{r}) and the result should be the tail node (\mathbf{t}). TransE optimizes embeddings for \mathbf{h} , \mathbf{r} , \mathbf{t} , while guaranteeing the global equation ($\mathbf{h} + \mathbf{r} \approx \mathbf{t}$) is satisfied [84]. A caveat to the TransE approach is that it the training steps force relationships to have a one to one mapping, which may not be appropriate for all types of relationships.

Wang et al. [85] attempted to resolve the one to one mapping issue by developing the TransH model. TransH treats relations as hyperplanes rather than a regular vector and projects the head (\mathbf{h}) and tail (\mathbf{t}) nodes onto the hyperplane. Following this projection, a distance vector (\mathbf{d}_r) is calculated between the projected head and tail nodes. Finally, each vector is optimized while preserving the global equation ($\mathbf{h} + \mathbf{d}_r \approx \mathbf{t}$) [85]. Other approaches [86,87] have built off of the TransE and TransH models. In the future, it may be beneficial for these models is to incorporate other types of information such as edge confidence scores, textual information, or edge type information when optimizing these embeddings.

Deep Learning

Deep learning is a paradigm that uses multiple non-linear transformations to map high dimensional data into a low dimensional space. Many techniques that use deep learning for knowledge graphs are based on word2vec [75,76], a set of approaches that are widely used for natural language processing. The goal of word2vec is to project words into a low dimensional space that preserves their semantic

meaning. Strategies for training word2vec models use one of two neural network architectures: skipgram and continuous bag of words (CBOW). Both models are feed-forward neural networks, but CBOW models are trained to predict a word given it's context while skip-gram models are trained to predict the context given a word [75,76]. Once training has finished, words are now associated with dense vectors that downstream models, such as feed forward networks or recurrent networks, can use for input.

Deepwalk [88] is an early method designed to project a knowledge graph into a low dimensional space. The first step of this method is to perform a random walk along a knowledge graph. During the random walk, every generated sequence of nodes is recorded and treated like a sentence in word2vec [75,76]. After every node has been processed, a skip-gram model is trained to predict the context of each node thereby projecting a knowledge graph into a low dimensional space [88]. A limitation of this method is that the random walk cannot be controlled, so every node has an equal chance to be reached. Grover and Leskovec [89] demonstrated that this limitation can hurt performance when classifying edges between nodes and developed node2vec as a result. Node2vec [89] operates the in the same fashion as deepwalk; however, this algorithm specifies a parameter that lets the random walk be biased when traversing nodes. A caveat to both deepwalk and node2vec is that both algorithms ignore information such as edge type and node type. Various approaches have evolved to fix this limitation by incorporating node, edge and even path types when projecting nodes into a low dimensional space [90,91,92,93]. These approaches primarily capture a network's local structure. An emerging area of work is to develop approaches that capture both the local and global structure of a network when projecting knowledge graphs into a low dimensional space.

Some deep learning approaches use an adjacency matrix as input [75,76] instead of using the word2vec framing. Algorithms such as auto-encoders can also generate network embeddings [94,95,96]. Autoencoders [97,98] are neural networks that map input such as an adjacency matrices into a low dimensional space and then learns how to construct this space by reconstructing the same input. The generated low dimensional space captures the node connectivity structure of the knowledge graph and every node is mapped onto this space [94,95,96]. Despite the high potential of this approach, this method relies on an adjacency matrix for input. If a knowledge graph asymptotically increases in size, these approaches could run into scalability issues as discovered by Khosla et al. [99]. Plus, Khosla et al.[99] discovered that approaches akin to node2vec outperformed algorithms using autoencoders when undergoing link prediction and node classification. Overall, the performance of these models largely depends upon the structure of nodes and edges within a knowledge graph [99]. Future approaches should consider creating hybrid models that use both node2vec and autoencoders to construct complementary low dimensional representations of knowledge graphs.

Unifying Applications

Knowledge graphs have been used in many biomedical applications ranging from identifying protein functions [100] to prioritizing cancer genes [101] to recommending safer drugs to patients [102,103]. In this section we discuss how knowledge graphs are being applied in biomedical settings. We put particular emphasis on an emerging set of techniques: those that project knowledge graphs into a low dimensional space.

Disease and Gene Interactions

- 1. Mention disease gene prioritization
- 2. Mention Disease gene associations

Protein Protein Interactions

1. Mention predicting genes interacting genes

Drug Interactions

- 1. Talk about drug side effects
- 2. Drug repurposing
- 3. Drug-Disease Interations

Clinical applications

- 1. Can mention EHR use and other related applications
- 2. Mention Tiffany's work on private data embeddings

Conclusion

- 1. Summarize discussed positives and pitfalls
- 2. Leave some open ended questions yet to be explored
- 3. Will come into play as I write this review paper

References

1. Node Classification in Social Networks

Smriti Bhagat, Graham Cormode, S. Muthukrishnan *Social Network Data Analytics* (2011) https://doi.org/fjj48w

DOI: 10.1007/978-1-4419-8462-3 5

2. Network Embedding Based Recommendation Method in Social Networks

Yufei Wen, Lei Guo, Zhumin Chen, Jun Ma

Companion of the The Web Conference 2018 on The Web Conference 2018 - WWW '18 (2018)

https://doi.org/gf6rtt

DOI: 10.1145/3184558.3186904

3. Open Question Answering with Weakly Supervised Embedding Models

Antoine Bordes, Jason Weston, Nicolas Usunier *arXiv* (2014-04-16) https://arxiv.org/abs/1404.4326v1

4. Neural Network-based Question Answering over Knowledge Graphs on Word and Character Level

Denis Lukovnikov, Asja Fischer, Jens Lehmann, Sören Auer *Proceedings of the 26th International Conference on World Wide Web - WWW '17* (2017) https://doi.org/gfv8hp

DOI: 10.1145/3038912.3052675

5. Towards integrative gene prioritization in Alzheimer's disease.

Jang H Lee, Graciela H Gonzalez

Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing (2011)

https://www.ncbi.nlm.nih.gov/pubmed/21121028

DOI: 10.1142/9789814335058 0002 · PMID: 21121028

6. PhenoGeneRanker: A Tool for Gene Prioritization Using Complete Multiplex Heterogeneous Networks

Cagatay Dursun, Naoki Shimoyama, Mary Shimoyama, Michael Schläppi, Serdar Bozdag *Cold Spring Harbor Laboratory* (2019-05-27) https://doi.org/gf6rtr

DOI: <u>10.1101/651000</u>

7. Biological Random Walks: Integrating heterogeneous data in disease gene prioritization

Michele Gentili, Leonardo Martini, Manuela Petti, Lorenzo Farina, Luca Becchetti 2019 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) (2019-07) https://doi.org/gf6rts

DOI: <u>10.1109/cibcb.2019.8791472</u>

8. Semantic Disease Gene Embeddings (SmuDGE): phenotype-based disease gene prioritization without phenotypes

Mona Alshahrani, Robert Hoehndorf

Bioinformatics (2018-09-01) https://doi.org/gd9k8n

DOI: <u>10.1093/bioinformatics/bty559</u> · PMID: <u>30423077</u> · PMCID: <u>PMC6129260</u>

9. Systematic integration of biomedical knowledge prioritizes drugs for repurposing

Daniel Scott Himmelstein, Antoine Lizee, Christine Hessler, Leo Brueggeman, Sabrina L Chen, Dexter Hadley, Ari Green, Pouya Khankhanian, Sergio E Baranzini

eLife (2017-09-22) https://doi.org/cdfk

DOI: 10.7554/elife.26726 · PMID: 28936969 · PMCID: PMC5640425

10. Assessing Drug Target Association Using Semantic Linked Data

Bin Chen, Ying Ding, David J. Wild

PLoS Computational Biology (2012-07-05) https://doi.org/rn6

DOI: 10.1371/journal.pcbi.1002574 · PMID: 22859915 · PMCID: PMC3390390

11. Towards a definition of knowledge graphs

Lisa Ehrlinger, Wolfram Wöß SEMANTiCS (2016)

12. DISEASES: Text mining and data integration of disease-gene associations

Sune Pletscher-Frankild, Albert Pallejà, Kalliopi Tsafou, Janos X. Binder, Lars Juhl Jensen *Methods* (2015-03) https://doi.org/f3mn6s

DOI: 10.1016/j.ymeth.2014.11.020 · PMID: 25484339

13. DrugBank 5.0: a major update to the DrugBank database for 2018

David S Wishart, Yannick D Feunang, An C Guo, Elvis J Lo, Ana Marcu, Jason R Grant, Tanvir Sajed, Daniel Johnson, Carin Li, Zinat Sayeeda, ... Michael Wilson

Nucleic Acids Research (2017-11-08) https://doi.org/gcwtzk

DOI: 10.1093/nar/gkx1037 · PMID: 29126136 · PMCID: PMC5753335

14. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information

Yunan Luo, Xinbin Zhao, Jingtian Zhou, Jinglin Yang, Yanqing Zhang, Wenhua Kuang, Jian Peng, Ligong Chen, Jianyang Zeng

Nature Communications (2017-09-18) https://doi.org/gbxwrc

DOI: <u>10.1038/s41467-017-00680-8</u> · PMID: <u>28924171</u> · PMCID: <u>PMC5603535</u>

15. Inferring new indications for approved drugs via random walk on drug-disease heterogenous networks

Hui Liu, Yinglong Song, Jihong Guan, Libo Luo, Ziheng Zhuang

BMC Bioinformatics (2016-12) https://doi.org/gf6v27

DOI: 10.1186/s12859-016-1336-7 · PMID: 28155639 · PMCID: PMC5259862

16. Finding disease similarity based on implicit semantic similarity

Sachin Mathur, Deendayal Dinakarpandian

Journal of Biomedical Informatics (2012-04) https://doi.org/b7b3tw

DOI: 10.1016/j.jbi.2011.11.017 · PMID: 22166490

17. KnowLife: a versatile approach for constructing a large knowledge graph for biomedical sciences

Patrick Ernst, Amy Siu, Gerhard Weikum

BMC Bioinformatics (2015-05-14) https://doi.org/gb8w8d

DOI: <u>10.1186/s12859-015-0549-5</u> · PMID: <u>25971816</u> · PMCID: <u>PMC4448285</u>

18. Constructing biomedical domain-specific knowledge graph with minimum supervision

Jianbo Yuan, Zhiwei Jin, Han Guo, Hongxia Jin, Xianchao Zhang, Tristram Smith, Jiebo Luo

Knowledge and Information Systems (2019-03-23) https://doi.org/gf6v26

DOI: 10.1007/s10115-019-01351-4

19. Feature assisted stacked attentive shortest dependency path based Bi-LSTM model for protein-protein interaction

Shweta Yadav, Asif Ekbal, Sriparna Saha, Ankit Kumar, Pushpak Bhattacharyya *Knowledge-Based Systems* (2019-02) https://doi.org/gf4788

DOI: 10.1016/j.knosys.2018.11.020

20. Biological Databases- Integration of Life Science Data

Nishant Toomula, Arun Kumar, Sathish Kumar D, Vijaya Shanti Bheemidi Journal of Computer Science & Systems Biology (2012) https://doi.org/gf8qcb

DOI: <u>10.4172/jcsb.1000081</u>

21. COSMIC: somatic cancer genetics at high-resolution

Simon A. Forbes, David Beare, Harry Boutselakis, Sally Bamford, Nidhi Bindal, John Tate, Charlotte G. Cole, Sari Ward, Elisabeth Dawson, Laura Ponting, ... Peter J. Campbell

Nucleic Acids Research (2016-11-28) https://doi.org/f9v865

DOI: <u>10.1093/nar/gkw1121</u> · PMID: <u>27899578</u> · PMCID: <u>PMC5210583</u>

22. COSMIC: the Catalogue Of Somatic Mutations In Cancer

John G Tate, Sally Bamford, Harry C Jubb, Zbyslaw Sondka, David M Beare, Nidhi Bindal, Harry Boutselakis, Charlotte G Cole, Celestino Creatore, Elisabeth Dawson, ... Simon A Forbes *Nucleic Acids Research* (2018-10-29) https://doi.org/gf9hxg

DOI: 10.1093/nar/gky1015 · PMID: 30371878 · PMCID: PMC6323903

23. Recurated protein interaction datasets

Lukasz Salwinski, Luana Licata, Andrew Winter, David Thorneycroft, Jyoti Khadake, Arnaud Ceol, Andrew Chatr Aryamontri, Rose Oughtred, Michael Livstone, Lorrie Boucher, ... Henning Hermjakob *Nature Methods* (2009-12) https://doi.org/fgvkmf

DOI: 10.1038/nmeth1209-860 · PMID: 19935838

24. Literature-curated protein interaction datasets

Michael E Cusick, Haiyuan Yu, Alex Smolyar, Kavitha Venkatesan, Anne-Ruxandra Carvunis, Nicolas Simonis, Jean-François Rual, Heather Borick, Pascal Braun, Matija Dreze, ... Marc Vidal *Nature Methods* (2008-12-30) https://doi.org/d4i62p

DOI: <u>10.1038/nmeth.1284</u> · PMID: <u>19116613</u> · PMCID: <u>PMC2683745</u>

25. Curation accuracy of model organism databases

I. M. Keseler, M. Skrzypek, D. Weerasinghe, A. Y. Chen, C. Fulcher, G.-W. Li, K. C. Lemmer, K. M. Mladinich, E. D. Chow, G. Sherlock, P. D. Karp

Database (2014-06-12) https://doi.org/gf63jz

DOI: <u>10.1093/database/bau058</u> · PMID: <u>24923819</u> · PMCID: <u>PMC4207230</u>

26. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders

Joanna S. Amberger, Carol A. Bocchini, François Schiettecatte, Alan F. Scott, Ada Hamosh *Nucleic Acids Research* (2014-11-26) https://doi.org/gf8qb6

DOI: <u>10.1093/nar/gku1205</u> · PMID: <u>25428349</u> · PMCID: <u>PMC438</u>3985

27. Textpresso Central: a customizable platform for searching, text mining, viewing, and curating biomedical literature

H.-M. Müller, K. M. Van Auken, Y. Li, P. W. Sternberg

BMC Bioinformatics (2018-03-09) https://doi.org/gf7rbz

DOI: 10.1186/s12859-018-2103-8 · PMID: 29523070 · PMCID: PMC5845379

28. Text mining and expert curation to develop a database on psychiatric diseases and their genes

Alba Gutiérrez-Sacristán, Àlex Bravo, Marta Portero-Tresserra, Olga Valverde, Antonio Armario, M. C. Blanco-Gandía, Adriana Farré, Lierni Fernández-Ibarrondo, Francina Fonseca, Jesús Giraldo, ... Laura I. **Furlong**

Database (2017-01-01) https://doi.org/gf8qb5

DOI: 10.1093/database/bax043 · PMID: 29220439 · PMCID: PMC5502359

29. Manual curation is not sufficient for annotation of genomic databases

William A. Baumgartner Jr, K. Bretonnel Cohen, Lynne M. Fox, George Acquaah-Mensah, Lawrence Hunter

Bioinformatics (2007-07-01) https://doi.org/dtck86

DOI: 10.1093/bioinformatics/btm229 · PMID: 17646325 · PMCID: PMC2516305

30. The rate of growth in scientific publication and the decline in coverage provided by Science **Citation Index**

Peder Olesen Larsen, Markus von Ins

Scientometrics (2010-03-10) https://doi.org/c4hb8r

DOI: <u>10.1007/s11192-010-0202-z</u> · PMID: <u>20700371</u> · PMCID: <u>PMC2909426</u>

31. Semi-automatic semantic annotation of PubMed queries: A study on quality, efficiency, satisfaction

Aurélie Névéol, Rezarta Islamaj Doğan, Zhiyong Lu

Journal of Biomedical Informatics (2011-04) https://doi.org/bq34sj

DOI: <u>10.1016/j.jbi.2010.11.001</u> · PMID: <u>21094696</u> · PMCID: <u>PMC3063330</u>

32. Assisting manual literature curation for protein-protein interactions using BioQRator

D. Kwon, S. Kim, S.-Y. Shin, A. Chatr-aryamontri, W. J. Wilbur

Database (2014-07-22) https://doi.org/gf7hm3

DOI: 10.1093/database/bau067 · PMID: 25052701 · PMCID: PMC4105708

33. Argo: an integrative, interactive, text mining-based workbench supporting curation

R. Rak, A. Rowley, W. Black, S. Ananiadou

Database (2012-03-20) https://doi.org/h5d

DOI: 10.1093/database/bas010 · PMID: 22434844 · PMCID: PMC3308166

34. **CurEx**

Michael Loster, Felix Naumann, Jan Ehmueller, Benjamin Feldmann

Proceedings of the 27th ACM International Conference on Information and Knowledge Management -CIKM '18 (2018) https://doi.org/gf8qb8

DOI: 10.1145/3269206.3269229

35. Re-curation and rational enrichment of knowledge graphs in Biological Expression

Charles Tapley Hoyt, Daniel Domingo-Fernández, Rana Aldisi, Lingling Xu, Kristian Kolpeja, Sandra Spalek, Esther Wollert, John Bachman, Benjamin M Gyori, Patrick Greene, Martin Hofmann-Apitius Database (2019-01-01) https://doi.org/gf7hm4

DOI: <u>10.1093/database/baz068</u> · PMID: <u>31225582</u> · PMCID: <u>PMC6587072</u>

36. LocText: relation extraction of protein localizations to assist database curation

Juan Miguel Cejuela, Shrikant Vinchurkar, Tatyana Goldberg, Madhukar Sollepura Prabhu Shankar, Ashish Baghudana, Aleksandar Bojchevski, Carsten Uhlig, André Ofner, Pandu Raharja-Liu, Lars Juhl Jensen, Burkhard Rost

BMC Bioinformatics (2018-01-17) https://doi.org/gf8qb9

DOI: <u>10.1186/s12859-018-2021-9</u> · PMID: <u>29343218</u> · PMCID: <u>PMC5773052</u>

37. Evaluating the impact of pre-annotation on annotation speed and potential bias: natural language processing gold standard development for clinical named entity recognition in clinical trial announcements

Todd Lingren, Louise Deleger, Katalin Molnar, Haijun Zhai, Jareen Meinzen-Derr, Megan Kaiser, Laura Stoutenborough, Qi Li, Imre Solti

Journal of the American Medical Informatics Association (2014-05) https://doi.org/f5zggh

DOI: 10.1136/amiajnl-2013-001837 · PMID: 24001514 · PMCID: PMC3994857

38. iSimp in BioC standard format: enhancing the interoperability of a sentence simplification system

Y. Peng, C. O. Tudor, M. Torii, C. H. Wu, K. Vijay-Shanker

Database (2014-05-21) https://doi.org/gf9hxf

DOI: 10.1093/database/bau038 · PMID: 24850848 · PMCID: PMC4028706

39. BioSimplify: an open source sentence simplification engine to improve recall in automatic biomedical information extraction.

Siddhartha Jonnalagadda, Graciela Gonzalez

AMIA ... Annual Symposium proceedings. AMIA Symposium (2010-11-13)

https://www.ncbi.nlm.nih.gov/pubmed/21346999

PMID: 21346999 · PMCID: PMC3041388

40. The EU-ADR corpus: Annotated drugs, diseases, targets, and their relationships

Erik M. van Mulligen, Annie Fourrier-Reglat, David Gurwitz, Mariam Molokhia, Ainhoa Nieto, Gianluca Trifiro, Jan A. Kors, Laura I. Furlong

Journal of Biomedical Informatics (2012-10) https://doi.org/f36vn6

DOI: <u>10.1016/j.jbi.2012.04.004</u> · PMID: <u>22554700</u>

41. Comparative experiments on learning information extractors for proteins and their interactions

Razvan Bunescu, Ruifang Ge, Rohit J. Kate, Edward M. Marcotte, Raymond J. Mooney, Arun K. Ramani, Yuk Wah Wong

Artificial Intelligence in Medicine (2005-02) https://doi.org/dhztpn

DOI: 10.1016/j.artmed.2004.07.016 · PMID: 15811782

42. A Unified Active Learning Framework for Biomedical Relation Extraction

Hong-Tao Zhang, Min-Lie Huang, Xiao-Yan Zhu

Journal of Computer Science and Technology (2012-11) https://doi.org/gf8qb4

DOI: 10.1007/s11390-012-1306-0

43. Entrez Gene: gene-centered information at NCBI

D. Maglott, J. Ostell, K. D. Pruitt, T. Tatusova

Nucleic Acids Research (2010-11-28) https://doi.org/fsjcqz

DOI: 10.1093/nar/gkq1237 · PMID: 21115458 · PMCID: PMC3013746

44. UniProt: a worldwide hub of protein knowledge *Nucleic Acids Research* (2018-11-05)

https://doi.org/gfwqck

DOI: <u>10.1093/nar/gky1049</u> · PMID: <u>30395287</u> · PMCID: <u>PMC6323992</u>

45. Pharmacogenomics Knowledge for Personalized Medicine

M Whirl-Carrillo, EM McDonagh, JM Hebert, L Gong, K Sangkuhl, CF Thorn, RB Altman, TE Klein

Clinical Pharmacology & Therapeutics (2012-10) https://doi.org/gdnfzr DOI: 10.1038/clpt.2012.96 · PMID: 22992668 · PMCID: PMC3660037

46. The BioGRID interaction database: 2013 update

Andrew Chatr-aryamontri, Bobby-Joe Breitkreutz, Sven Heinicke, Lorrie Boucher, Andrew Winter, Chris Stark, Julie Nixon, Lindsay Ramage, Nadine Kolas, Lara O'Donnell, ... Mike Tyers

Nucleic Acids Research (2012-11-30) https://doi.org/f4jmz4

DOI: <u>10.1093/nar/gks1158</u> · PMID: <u>23203989</u> · PMCID: <u>PMC3531226</u>

47. The Comparative Toxicogenomics Database: update 2019

Allan Peter Davis, Cynthia J Grondin, Robin J Johnson, Daniela Sciaky, Roy McMorran, Jolene Wiegers, Thomas C Wiegers, Carolyn J Mattingly

Nucleic Acids Research (2018-09-24) https://doi.org/gf8qb7

DOI: 10.1093/nar/gky868 · PMID: 30247620 · PMCID: PMC6323936

48. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database

Baofeng Jia, Amogelang R. Raphenya, Brian Alcock, Nicholas Waglechner, Peiyao Guo, Kara K. Tsang, Briony A. Lago, Biren M. Dave, Sheldon Pereira, Arjun N. Sharma, ... Andrew G. McArthur *Nucleic Acids Research* (2016-10-26) https://doi.org/f9wbjs

DOI: 10.1093/nar/gkw1004 · PMID: 27789705 · PMCID: PMC5210516

49. OMIM.org: leveraging knowledge across phenotype-gene relationships.

Joanna S Amberger, Carol A Bocchini, Alan F Scott, Ada Hamosh

Nucleic acids research (2019-01-08) https://www.ncbi.nlm.nih.gov/pubmed/30445645

DOI: <u>10.1093/nar/gky1151</u> · PMID: <u>30445645</u> · PMCID: <u>PMC6323937</u>

50. LPTK: a linguistic pattern-aware dependency tree kernel approach for the BioCreative VI CHEMPROT task

Neha Warikoo, Yung-Chun Chang, Wen-Lian Hsu

Database (2018-01-01) https://doi.org/gfhjr6

DOI: <u>10.1093/database/bay108</u> · PMID: <u>30346607</u> · PMCID: <u>PMC6196310</u>

51. DTMiner: identification of potential disease targets through biomedical literature mining

Dong Xu, Meizhuo Zhang, Yanping Xie, Fan Wang, Ming Chen, Kenny Q. Zhu, Jia Wei

Bioinformatics (2016-08-09) https://doi.org/f9nw36

DOI: <u>10.1093/bioinformatics/btw503</u> · PMID: <u>27506226</u> · PMCID: <u>PMC5181534</u>

52. Exploiting graph kernels for high performance biomedical relation extraction

Nagesh C. Panyam, Karin Verspoor, Trevor Cohn, Kotagiri Ramamohanarao *Journal of Biomedical Semantics* (2018-01-30) https://doi.org/gf49nn

DOI: 10.1186/s13326-017-0168-3 · PMID: 29382397 · PMCID: PMC5791373

53. iSimp in BioC standard format: enhancing the interoperability of a sentence simplification system.

Yifan Peng, Catalina O Tudor, Manabu Torii, Cathy H Wu, K Vijay-Shanker *Database: the journal of biological databases and curation* (2014-05-21)

https://www.ncbi.nlm.nih.gov/pubmed/24850848

DOI: 10.1093/database/bau038 · PMID: 24850848 · PMCID: PMC4028706

54. BELMiner: adapting a rule-based relation extraction system to extract biological expression language statements from bio-medical literature evidence sentences

K. E. Ravikumar, Majid Rastegar-Mojarad, Hongfang Liu

Database (2017-01-01) https://doi.org/gf7rbx

DOI: 10.1093/database/baw156 · PMID: 28365720 · PMCID: PMC5467463

55. A generalizable NLP framework for fast development of pattern-based biomedical relation extraction systems

Yifan Peng, Manabu Torii, Cathy H Wu, K Vijay-Shanker *BMC Bioinformatics* (2014-08-23) https://doi.org/f6rndz

DOI: <u>10.1186/1471-2105-15-285</u> · PMID: <u>25149151</u> · PMCID: <u>PMC4262219</u>

56. Construction of phosphorylation interaction networks by text mining of full-length articles using the eFIP system

Catalina O. Tudor, Karen E. Ross, Gang Li, K. Vijay-Shanker, Cathy H. Wu, Cecilia N. Arighi *Database* (2015-01-01) https://doi.org/gf8fpt

DOI: <u>10.1093/database/bav020</u> · PMID: <u>25833953</u> · PMCID: <u>PMC4381107</u>

57. miRTex: A Text Mining System for miRNA-Gene Relation Extraction

Gang Li, Karen E. Ross, Cecilia N. Arighi, Yifan Peng, Cathy H. Wu, K. Vijay-Shanker *PLOS Computational Biology* (2015-09-25) https://doi.org/f75mwb

DOI: 10.1371/journal.pcbi.1004391 · PMID: 26407127 · PMCID: PMC4583433

58. LimTox: a web tool for applied text mining of adverse event and toxicity associations of compounds, drugs and genes

Andres Cañada, Salvador Capella-Gutierrez, Obdulia Rabal, Julen Oyarzabal, Alfonso Valencia, Martin Krallinger

Nucleic Acids Research (2017-05-22) https://doi.org/gf479h

DOI: 10.1093/nar/gkx462 · PMID: 28531339 · PMCID: PMC5570141

59. DiMeX: A Text Mining System for Mutation-Disease Association Extraction

A. S. M. Ashique Mahmood, Tsung-Jung Wu, Raja Mazumder, K. Vijay-Shanker *PLOS ONE* (2016-04-13) https://doi.org/f8xktj

DOI: <u>10.1371/journal.pone.0152725</u> · PMID: <u>27073839</u> · PMCID: <u>PMC4830514</u>

60. Automated extraction of mutation data from the literature: application of MuteXt to G protein-coupled receptors and nuclear hormone receptors

F. Horn, A. L. Lau, F. E. Cohen

Bioinformatics (2004-01-22) https://doi.org/d7cjgj

DOI: <u>10.1093/bioinformatics/btg449</u> · PMID: <u>14990452</u>

61. Large-scale extraction of accurate drug-disease treatment pairs from biomedical literature for drug repurposing

Rong Xu, QuanQiu Wang

BMC Bioinformatics (2013-06-06) https://doi.org/gb8v3k

DOI: <u>10.1186/1471-2105-14-181</u> · PMID: <u>23742147</u> · PMCID: <u>PMC3702428</u>

62. RLIMS-P 2.0: A Generalizable Rule-Based Information Extraction System for Literature Mining of Protein Phosphorylation Information

Manabu Torii, Cecilia N. Arighi, Gang Li, Qinghua Wang, Cathy H. Wu, K. Vijay-Shanker *IEEE/ACM Transactions on Computational Biology and Bioinformatics* (2015-01-01) https://doi.org/gf8fpv

DOI: <u>10.1109/tcbb.2014.2372765</u> · PMID: <u>26357075</u> · PMCID: <u>PMC4568560</u>

63. PKDE4J: Entity and relation extraction for public knowledge discovery

Min Song, Won Chul Kim, Dahee Lee, Go Eun Heo, Keun Young Kang

Journal of Biomedical Informatics (2015-10) https://doi.org/f7v7jj

DOI: 10.1016/j.jbi.2015.08.008 · PMID: 26277115

64. Spacy 2: Natural language understanding with bloom embeddings, convolutional neural networks and incremental parsing

Matthew Honnibal, Ines Montani *To appear* (2017)

65. PhpSyntaxTree tool

A Eisenbach, M Eisenbach (2006)

66. STRING v9.1: protein-protein interaction networks, with increased coverage and integration

Andrea Franceschini, Damian Szklarczyk, Sune Frankild, Michael Kuhn, Milan Simonovic, Alexander Roth, Jianyi Lin, Pablo Minguez, Peer Bork, Christian von Mering, Lars J. Jensen

Nucleic Acids Research (2012-11-29) https://doi.org/gf5kcd

DOI: 10.1093/nar/gks1094 · PMID: 23203871 · PMCID: PMC3531103

67. A comprehensive and quantitative comparison of text-mining in 15 million full-text articles versus their corresponding abstracts

David Westergaard, Hans-Henrik Stærfeldt, Christian Tønsberg, Lars Juhl Jensen, Søren Brunak *PLOS Computational Biology* (2018-02-15) https://doi.org/gcx747

DOI: <u>10.1371/journal.pcbi.1005962</u> · PMID: <u>29447159</u> · PMCID: <u>PMC5831415</u>

68. STITCH 4: integration of protein-chemical interactions with user data

Michael Kuhn, Damian Szklarczyk, Sune Pletscher-Frankild, Thomas H. Blicher, Christian von Mering, Lars J. Jensen, Peer Bork

Nucleic Acids Research (2013-11-28) https://doi.org/f5shb4

DOI: 10.1093/nar/gkt1207 · PMID: 24293645 · PMCID: PMC3964996

69. A global network of biomedical relationships derived from text

Bethany Percha, Russ B Altman

Bioinformatics (2018-02-27) https://doi.org/gc3ndk

DOI: 10.1093/bioinformatics/bty114 · PMID: 29490008 · PMCID: PMC6061699

70. CoCoScore: context-aware co-occurrence scoring for text mining applications using distant supervision

Alexander Junge, Lars Juhl Jensen

Bioinformatics (2019-06-14) https://doi.org/gf4789

DOI: 10.1093/bioinformatics/btz490 · PMID: 31199464 · PMCID: PMC6956794

71. A new method for prioritizing drug repositioning candidates extracted by literature-based discovery

Majid Rastegar-Mojarad, Ravikumar Komandur Elayavilli, Dingcheng Li, Rashmi Prasad, Hongfang Liu 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (2015-11) https://doi.org/gf479

DOI: 10.1109/bibm.2015.7359766

72. Literature Mining for the Discovery of Hidden Connections between Drugs, Genes and Diseases

Raoul Frijters, Marianne van Vugt, Ruben Smeets, René van Schaik, Jacob de Vlieg, Wynand Alkema *PLoS Computational Biology* (2010-09-23) https://doi.org/bhrw7x

DOI: <u>10.1371/journal.pcbi.1000943</u> · PMID: <u>20885778</u> · PMCID: <u>PMC2944780</u>

73. STRING v10: protein-protein interaction networks, integrated over the tree of life

Damian Szklarczyk, Andrea Franceschini, Stefan Wyder, Kristoffer Forslund, Davide Heller, Jaime Huerta-Cepas, Milan Simonovic, Alexander Roth, Alberto Santos, Kalliopi P. Tsafou, ... Christian von Mering

Nucleic Acids Research (2014-10-28) https://doi.org/f64rfn

DOI: <u>10.1093/nar/gku1003</u> · PMID: <u>25352553</u> · PMCID: <u>PMC4383874</u>

74. Text Mining Genotype-Phenotype Relationships from Biomedical Literature for Database Curation and Precision Medicine

Ayush Singhal, Michael Simmons, Zhiyong Lu

PLOS Computational Biology (2016-11-30) https://doi.org/f9gz4b

DOI: <u>10.1371/journal.pcbi.1005017</u> · PMID: <u>27902695</u> · PMCID: <u>PMC5130168</u>

75. Efficient Estimation of Word Representations in Vector Space

Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean *arXiv* (2013-01-16) https://arxiv.org/abs/1301.3781v3

76. Distributed Representations of Words and Phrases and their Compositionality

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean *arXiv* (2013-10-16) https://arxiv.org/abs/1310.4546v1

77. Deep Residual Learning for Image Recognition

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun *arXiv* (2015-12-10) https://arxiv.org/abs/1512.03385v1

78. Representation Learning on Graphs: Methods and Applications

William L. Hamilton, Rex Ying, Jure Leskovec *arXiv* (2017-09-17) https://arxiv.org/abs/1709.05584v3

79. Signed laplacian embedding for supervised dimension reduction

Chen Gong, Dacheng Tao, Jie Yang, Keren Fu

Proceedings of the twenty-eighth aaai conference on artificial intelligence (2014)

http://dl.acm.org/citation.cfm?id=2892753.2892809

80. A Semi-NMF-PCA Unified Framework for Data Clustering

Kais Allab, Lazhar Labiod, Mohamed Nadif

IEEE Transactions on Knowledge and Data Engineering (2017-01-01) https://doi.org/f9hm9g

DOI: 10.1109/tkde.2016.2606098

81. Partially supervised graph embedding for positive unlabelled feature selection

Yufei Han, Yun Shen

Proceedings of the twenty-fifth international joint conference on artificial intelligence (2016)

http://dl.acm.org/citation.cfm?id=3060832.3060837

ISBN: 978-1-57735-770-4

82. GraRep

Shaosheng Cao, Wei Lu, Qiongkai Xu

Proceedings of the 24th ACM International on Conference on Information and Knowledge Management - CIKM '15 (2015) https://doi.org/gf8rgf

DOI: <u>10.1145/2806416.2806512</u>

83. Improved Knowledge Base Completion by Path-Augmented TransR Model

Wenhao Huang, Ge Li, Zhi Jin

84. Translating embeddings for modeling multi-relational data

Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, Oksana Yakhnenko *NIPS* (2013)

85. Knowledge graph embedding by translating on hyperplanes

Zhen Wang, Jianwen Zhang, Jianlin Feng, Zheng Chen *Proceedings of the twenty-eighth aaai conference on artificial intelligence* (2014) http://dl.acm.org/citation.cfm?id=2893873.2894046

86. Learning entity and relation embeddings for knowledge graph completion

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, Xuan Zhu *Proceedings of the twenty-ninth aaai conference on artificial intelligence* (2015) http://dl.acm.org/citation.cfm?id=2886521.2886624

ISBN: <u>0-262-51129-0</u>

87. PrTransH: Embedding Probabilistic Medical Knowledge from Real World EMR Data

Linfeng Li, Peng Wang, Yao Wang, Jinpeng Jiang, Buzhou Tang, Jun Yan, Shenghui Wang, Yuting Liu *arXiv* (2019-09-02) https://arxiv.org/abs/1909.00672v1

88. DeepWalk: Online Learning of Social Representations

Bryan Perozzi, Rami Al-Rfou, Steven Skiena *arXiv* (2014-03-26) https://arxiv.org/abs/1403.6652v2

DOI: 10.1145/2623330.2623732

89. node2vec: Scalable Feature Learning for Networks

Aditya Grover, Jure Leskovec *arXiv* (2016-07-03) https://arxiv.org/abs/1607.00653v1

90. struc2vec: Learning Node Representations from Structural Identity

Leonardo F. R. Ribeiro, Pedro H. P. Savarese, Daniel R. Figueiredo *arXiv* (2017-04-11) https://arxiv.org/abs/1704.03165v3

DOI: 10.1145/3097983.3098061

91. metapath2vec

Yuxiao Dong, Nitesh V. Chawla, Ananthram Swami Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD '17 (2017) https://doi.org/gfsqzn

DOI: 10.1145/3097983.3098036

92. edge2vec: Representation learning using edge semantics for biomedical knowledge discovery

Zheng Gao, Gang Fu, Chunping Ouyang, Satoshi Tsutsui, Xiaozhong Liu, Jeremy Yang, Christopher Gessner, Brian Foote, David Wild, Qi Yu, Ying Ding arXiv (2018-09-07) https://arxiv.org/abs/1809.02269v3

93. Learning Graph Embeddings from WordNet-based Similarity Measures

Andrey Kutuzov, Mohammad Dorgham, Oleksiy Oliynyk, Chris Biemann, Alexander Panchenko *arXiv* (2018-08-16) https://arxiv.org/abs/1808.05611v4

94. Learning to Make Predictions on Graphs with Autoencoders

Phi Vu Tran

arXiv (2018-02-23) https://arxiv.org/abs/1802.08352v2

DOI: 10.1109/dsaa.2018.00034

95. Variational Graph Auto-Encoders

Thomas N. Kipf, Max Welling arXiv (2016-11-21) https://arxiv.org/abs/1611.07308v1

96. Adversarially Regularized Graph Autoencoder for Graph Embedding

Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, Chengqi Zhang *arXiv* (2018-02-13) https://arxiv.org/abs/1802.04407v2

97. Deep Learning in Neural Networks: An Overview

Juergen Schmidhuber

arXiv (2014-04-30) https://arxiv.org/abs/1404.7828v4

DOI: <u>10.1016/j.neunet.2014.09.003</u>

98. Autoencoders, unsupervised learning and deep architectures

Pierre Baldi

Proceedings of the 2011 international conference on unsupervised and transfer learning workshop - volume 27 (2011)

99. A Comparative Study for Unsupervised Network Representation Learning

Megha Khosla, Vinay Setty, Avishek Anand

arXiv(2019-03-19) https://arxiv.org/abs/1903.07902v5

DOI: 10.1109/tkde.2019.2951398

100. Neural networks for link prediction in realistic biomedical graphs: a multi-dimensional evaluation of graph embedding-based approaches

Gamal Crichton, Yufan Guo, Sampo Pyysalo, Anna Korhonen

BMC Bioinformatics (2018-05-21) https://doi.org/ggkm7q

DOI: <u>10.1186/s12859-018-2163-9</u> · PMID: <u>29783926</u> · PMCID: <u>PMC5963080</u>

101. Network-based integration of multi-omics data for prioritizing cancer genes

Christos Dimitrakopoulos, Sravanth Kumar Hindupur, Luca Häfliger, Jonas Behr, Hesam Montazeri, Michael N Hall, Niko Beerenwinkel

Bioinformatics (2018-03-14) https://doi.org/gc6953

DOI: <u>10.1093/bioinformatics/bty148</u> · PMID: <u>29547932</u> · PMCID: <u>PMC6041755</u>

102. Safe Medicine Recommendation via Medical Knowledge Graph Embedding

Meng Wang, Mengyue Liu, Jun Liu, Sen Wang, Guodong Long, Buyue Qian *arXiv* (2017-10-16) https://arxiv.org/abs/1710.05980v2

103. GAMENet: Graph Augmented MEmory Networks for Recommending Medication Combination

Junyuan Shang, Cao Xiao, Tengfei Ma, Hongyan Li, Jimeng Sun

Proceedings of the AAAI Conference on Artificial Intelligence (2019-07-17) https://doi.org/ggkm7r

DOI: 10.1609/aaai.v33i01.33011126