```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import ttest_ind,f_oneway,chi2_contingency

df = pd.read_csv('/content/bike_sharing.csv')
df
```

| <del>→</del> | datetime            | season | holiday                 | workingday | weather | temp  | atemp  | humidity | windspeed | casual | registered | count |     |  |  |
|--------------|---------------------|--------|-------------------------|------------|---------|-------|--------|----------|-----------|--------|------------|-------|-----|--|--|
| 0            | 2011-01-01 00:00:00 | 1      | 0                       | 0          | 1       | 9.84  | 14.395 | 81       | 0.0000    | 3      | 13         | 16    | ılı |  |  |
| 1            | 2011-01-01 01:00:00 | 1      | 0                       | 0          | 1       | 9.02  | 13.635 | 80       | 0.0000    | 8      | 32         | 40    | +/  |  |  |
| 2            | 2011-01-01 02:00:00 | 1      | 0                       | 0          | 1       | 9.02  | 13.635 | 80       | 0.0000    | 5      | 27         | 32    | _   |  |  |
| 3            | 2011-01-01 03:00:00 | 1      | 0                       | 0          | 1       | 9.84  | 14.395 | 75       | 0.0000    | 3      | 10         | 13    |     |  |  |
| 4            | 2011-01-01 04:00:00 | 1      | 0                       | 0          | 1       | 9.84  | 14.395 | 75       | 0.0000    | 0      | 1          | 1     |     |  |  |
|              |                     |        |                         |            |         |       |        |          | •••       |        |            |       |     |  |  |
| 10881        | 2012-12-19 19:00:00 | 4      | 0                       | 1          | 1       | 15.58 | 19.695 | 50       | 26.0027   | 7      | 329        | 336   |     |  |  |
| 10882        | 2012-12-19 20:00:00 | 4      | 0                       | 1          | 1       | 14.76 | 17.425 | 57       | 15.0013   | 10     | 231        | 241   |     |  |  |
| 10883        | 2012-12-19 21:00:00 | 4      | 0                       | 1          | 1       | 13.94 | 15.910 | 61       | 15.0013   | 4      | 164        | 168   |     |  |  |
| 10884        | 2012-12-19 22:00:00 | 4      | 0                       | 1          | 1       | 13.94 | 17.425 | 61       | 6.0032    | 12     | 117        | 129   |     |  |  |
| 10885        | 2012-12-19 23:00:00 | 4      | 0                       | 1          | 1       | 13.12 | 16.665 | 66       | 8.9981    | 4      | 84         | 88    |     |  |  |
| 10886 rd     | ows × 12 columns    |        | 10886 rows × 12 columns |            |         |       |        |          |           |        |            |       |     |  |  |

Next steps:

Generate code with df

View recommended plots

New interactive sheet

### **INITIALS OBSERVATIONS: \***

Dataset size: 10886 rows \* 12 columns column types:

Categorical variables: season,holiday,working\_day,weather

Numerical variables: temp,atemp,humidity,windspeed,casual,registered,count

# Histogram for count of rental bikes vs Frequency

```
plt.figure(figsize=(10, 5))
```

```
plt.title("Distribution of Rental Bike Counts")
plt.xlabel("Count of Bike Rentals")
plt.ylabel("Frequency")
plt.show()
```



# Distribution of Rental Bike Counts



The bike rental count (target variable) is right-skewed, meaning most rental counts are on the lower side, but there are some high-value rentals.

The peak occurs at lower rental values, indicating that demand is often moderate, with fewer high-rental instances.

```
# Boxplot working day vs Bike Rentals

plt.figure(figsize=(8, 5))
sns.boxplot(x='workingday', y='count', data=df, palette="coolwarm")
plt.title("Effect of Working Day on Bike Rentals")
plt.xlabel("Working Day (0 = No, 1 = Yes)")
plt.ylabel("Count of Bike Rentals")
plt.show()
```

<ipython-input-9-979834ab3f25>:4: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the s sns.boxplot(x='workingday', y='count', data=df, palette="coolwarm")



```
# Boxplot : Season vs Bike Rentals

plt.figure(figsize=(8,5))
sns.boxplot(x="season",y="count",data=df,palette="coolwarm")
plt.xlabel("Season(1=spring,2=summer,3=fall,4=winter)")
plt.ylabel("Count of Bike Rentals")
plt.title("Effect of season on Bike Rentals")
plt.show()
```

<ipython-input-11-47c2a27ef0a9>:4: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the s sns.boxplot(x="season",y="count",data=df,palette="coolwarm")



```
# Boxplot : Weather vs Bike Rentals

plt.figure(figsize=(8,5))
sns.boxplot(x="weather",y="count",data=df,palette="coolwarm")
plt.xlabel("weather (1: Clear, 2: Misty, 3: Light Rain/Snow, 4: Heavy Rain/Snow)")
plt.ylabel("Count of Bike Rentals")
plt.title("Effect of weather on Bike Rentals")
plt.show()
```

<ipython-input-14-6880dea65975>:4: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the s sns.boxplot(x="weather",y="count",data=df,palette="coolwarm")



## **KEY INSIGHTS ON BOXPLOTS:**

1. Working days vs Rentals

Median rentals on working days are slightly higher than non-working days.

2. Season vs Rentals

Fall season has the highest median bike rentals while spring has the lowest median bike rentals.

3. Weather vs Rentals

Clear weather has highest bike rentals and heavy rain/snow has lowest bike rentals

## **HYPOTHESIS TESTING SETUP:**

## 1. Working days vs Bike Rentals (2 Sample t-test)

H0 (Null Hypothesis): Working day has no effect on the number of electric cycles rented (mean rentals are the same on working and non-working days).

Ha (Alternate Hypothesis): Working day affects the number of electric cycles rented (mean rentals are different).

```
workingday_0 = df[df['workingday'] == 0]['count']
workingday_1 = df[df['workingday'] == 1]['count']

t_stat,p_value = ttest_ind(workingday_0,workingday_1,equal_var = True)
p_value

$\iffsize 0.22644804226361348$
```

p\_value for working days bike rentals is 0.22 which is higher than 0.05 we fail to reject null hypothesis.

Meaning bike rentals remain same on all days irrespective of working day or non-working days

## **ANOVA for season vs Bike Rentals**

H0: All seasons have same mean number of bike rentals

Ha: Atleast one season have significantly different number of rentals

```
season_groups = [df[df["season"] == i]["count"] for i in df["season"].unique()]
f_stat,p_value = f_oneway(*season_groups)
p_value
```

→ 6.164843386499654e-149

p\_value is less than 0.05 so we have to reject null hypothesis that means rentals differ significantly across seasons

### **ANOVA** weather vs Bike Rentals

H0: Mean number of Bike Rentals is same for all weather types

Ha: Atleast one weather conditions has significantly different number of rentals

```
weather_groups = [df[df["weather"] == i]["count"] for i in df['weather'].unique()]
f_stat,p_value = f_oneway(*weather_groups)
p value
```

```
→ 5.482069475935669e-42
```

p\_value is less than 0.05 so we have to reject null hypothesis. Bike rentals differ significantly across weather.

## **Chi-Square Test for weather vs Season**

H0: weather is independent on the season.

Ha: weather is dependent on the season.

```
contingency_table = pd.crosstab(df['weather'],df['season'])
chi2_stat,p_value,dof,expected = chi2_contingency(contingency_table)
p_value
```

1.5499250736864862e-07

p\_value is less than 0.05 so we reject null hypothesis.

weather is dependent on season.

### RECOMMENDATIONS

- 1. working day affects rentals, Yulu can adjust pricing or promotions for weekends vs. weekdays.
- 2. season affects rentals, Yulu can increase or decrease fleet size accordingly.
- 3. weather affects rentals, Yulu can introduce weather-based pricing, discounts, or protective gear rental services.
- 4. weather depends on season, Yulu can use seasonal forecasts to predict demand trends and optimize bike availability.

Double-click (or enter) to edit

Double-click (or enter) to edit

Start coding or generate with AI.