

Grau Enginyeria Matemàtica i Física FÍSICA DE FLUIDS

Tema 7: Flux al voltant d'objectes

Clara Salueña

Objectius

- Obtenir la força de Stokes sobre una esfera
- Estudiar els diferents règims de flux al voltant d'una esfera
- Definir els coeficients d'arrossegament i sustentació (drag i lift)
- Descriure l'efecte Magnus sobre un cos en rotació immers un flux.
- Resoldre numèricament amb ANSYS Fluent exemples de flux estacionari: al voltant d'un cilindre, duna esfera, d'un perfil aerodinàmic...

Flux al voltant d'objectes

 Tot i que a grans Reynolds se sol considerar el flux com invíscid, el flux mai és irrotacional (ni per tant potencial) prop de parets sòlides

https://slate.com/technology/2013/04/atmospheric-vortices-flow-past-an-island-seen-from-space.html

Un altre exemple

https://www.reddit.com/r/dataisbeautiful/comments/qgfz9r/oc_wind_gusts_over_north_america_for_25_months_a

- El flux potencial no pot satisfer la condició de no slip
- Quan Re →0, dominen les forces viscoses
- A nombres de Reynolds intermedis, tant la inèrcia, com les forces de pressió i les viscoses són significatives

Flux incompressible, estacionari, 2D: funció de corrent ψ

$$\nabla \cdot \vec{v} = 0$$

- Problemes 2D o reduïbles a 2 coordenades
- Trobem ψ de forma que $v_x = \frac{\partial \psi}{\partial y}$ $v_y = -\frac{\partial \psi}{\partial x}$ (cartesianes!)
- Així v_x i v_y satisfan automàticament la condició d'incompressibilitat, i a més a més,

la vorticitat satisfà
$$\vec{\Omega} = \nabla \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \partial_x & \partial_y & \partial_z \\ v_x & v_y & 0 \end{vmatrix} = \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y} \right) \vec{k} = -\left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} \right) \vec{k}$$
és a dir

• és a dir

$$\Omega = -\left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2}\right) \qquad \qquad \Omega = -\nabla^2 \psi$$

$$\Omega = -\nabla^2 \psi$$

Flux invíscid, incompressible, estacionari 2D

- El flux invíscid és irrotacional, $\nabla \times \vec{v} = 0$
- (Si és a més incompresible, $\nabla \cdot \vec{v} = 0$)

Com que la vorticitat s'anula en un camp de velocitats irrotacional,

$$\Omega = -\nabla^2 \psi$$

$$\nabla^2 \psi = 0$$

- El problema d'un flux ideal estacionari consisteix en integrar l'equació de Laplace amb condicions de contorn adequades per a la funció de corrent
- L'equació de Laplace és lineal i les seves solucions han estat molt estudiades,
- Però, i si es tracta d'un flux viscós?

Flux viscós, incompressible i estacionari 2D

 $\Omega = -\nabla^2 \psi$ però no coneixem $\Omega!$

El flux viscós no pot ser irrotacional prop de les parets!

- A partir de $\vec{v} \cdot \nabla \vec{v} = -\nabla p + \frac{1}{R_{\Theta}} \nabla^2 \vec{v}$
- Prenem el rotacional de tota l'equació: $\nabla \times \left(\vec{v} \cdot \nabla \vec{v} = -\nabla p + \frac{1}{Re} \nabla^2 \vec{v} \right)$
- El rotacional d'un gradient és zero, per això, en general podem escriure

$$\nabla \times (\vec{v} \cdot \nabla \vec{v}) = \frac{1}{\text{Re}} \nabla \times \nabla^2 \vec{v}$$
 SI el flux és molt viscós, Re \rightarrow 0 i el primer

$$0 = \nabla^2 \nabla \times \vec{v}$$

$$0 = \nabla^2 \nabla^2 \psi$$

$$0 = \nabla^2 \nabla \times \vec{v}$$
 membre és molt petit respecte del segon
$$0 = \nabla^2 \nabla^2 \psi$$

$$0 = \nabla^4 \psi$$

• Sense el terme convectiu, l'equació de la funció de corrent segueix sent lineal, però es de quart ordre, i cal especificar més condicions de contorn. Les seves solucions són molt més laborioses d'obtenir

Flux estacionari, incompressible, invíscid al voltant d'una esfera

 $\vec{r} = (r, \theta, \phi)$

amb simetria azimutal. el problema es redueix a 2 coordenades (r,θ) (esfèriques polars)

```
\dot{U} camp llunyà
flux invíscid
```

```
>> U = 1
>> R = 1
>> x = -4:0.1:4;
                           %ho fem en cartesianes
                           %projectant la funció de
>> z = x;
>> [X,Z] = meshgrid(X,Z); %corrent sobre el pla xz
>> F = U/2 * X.^2 .* (1 - R^3 ./ (sqrt(X.^2 + Z.^2)).^3);
>> v = 0:0.1:1;
>> contour(Z, X, F, v, 'showtext', 'on')
>> axis square; grid on;
```


Flux estacionari, incompressible, invíscid al voltant d'una esfera

- El camp de velocitat que s'obté de la solució invíscida no és realista:
- El flux és totalment simètric (davant darrera), 😂
- la velocitat sobre l'esfera no s'anul·la (no podem imposar cap altra condició de contorn sobre la velocitat que la que ha de satisfer a l'infinit),

Flux viscós, incompressible estacionari al voltant d'una esfera,

$Re \rightarrow 0$

$$\nabla \cdot \vec{v} = 0$$

$$\vec{v} \cdot \nabla \vec{v} = -\nabla p + \frac{1}{\text{Re}} \nabla^2 \vec{v}$$

$$\text{Re} \rightarrow 0 \rightarrow \nabla^4 \psi = 0$$

$$\vec{v} \cdot (r \rightarrow \infty) = \vec{U} \quad \text{condicions}$$

$$\vec{v} \cdot (r = R) = 0 \quad \text{de contorn}$$

Solució

$$\psi = \frac{U}{2} r^2 \operatorname{sen}^2 \theta \left(1 + \frac{1}{2} \frac{R^3}{r^3} - \frac{3}{2} \frac{R}{r} \right)$$

en canvi...

- prop de l'esfera, les línies de corrent estan més separades que al flux invíscid
- la velocitat del flux sobre l'esfera es 0 (condició de no-slip)
- la solució de Stokes del flux viscós prediu correctament la força d'arrossegament, 🙂

$$\vec{F} = 6\pi\mu R\vec{U}$$

Arrossegament: drag

La força d'arrossegament té dues contribucions:

- la diferència de pressió que el flux viscós genera entre les parets anterior i posterior de l'objecte,
- la fricció, deguda al gradient de velocitat sobre l'esfera que generen els esforços tangencials.

Coeficient de drag, C

$$C_D = \frac{F_D}{\frac{1}{2}\rho U^2 A} \rightarrow \frac{6\pi\mu UR}{\frac{1}{2}\rho U^2 A} = \frac{24}{\text{Re}}$$

https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/drag-of-a-sphere/

Sustentació: lift

$$C_L = \frac{F_L}{\frac{1}{2} \rho U^2 A}$$

- Es genera a partir de la diferència de pressions que origina la asimetria de las línies de corrent entre la cara superior i inferior de superfícies amb forma aerodinàmica
- Depèn de la forma de l'objecte i la seva orientació respecte del flux (angle d'atac)
- No s'anul·la en la solució invíscida (al contrari que C_D)

https://www.youtube.com/watch?v=E3i_XHIVCeU

Aquí trobaràs un video amb explicacions entenedores sobre l'origen de la força de lift

Sustentació dinàmica: efecte Magnus

- La rotació crea asimetría del flux (a dalt / a baix),
- ► la capa límit se separa abans per sota de l'objecte (en aquesta figura, perquè depèn del sentit de gir),
- crea una força neta sobre l'aire cap avall
- i una força neta sobre l'esfera cap amunt (a la figura) per la tercera llei de Newton
- ► En general, les forces degudes al flux poden prendre qualsevol direcció, ja que depenen del sentit de gir de l'objecte

https://www.youtube.com/watch?v=8kVuKAgy 2k

aquí, un video amb un experiment molt enginyós per visualitzar l'efecte Magnus, amb explicacions entenedores (i correctes!)

Amb Fluent

Es poden examinar exemples de flux estacionari al voltant d'objectes que són exemples

clàssics de la MF:

Al voltant d'un cilindre,

• d'una esfera,

• o d'un perfil aerodinàmic

• També es pot resoldre el camp de velocitats NO estacionari, al voltant d'un cilindre per exemple, i observar la formació del carrer de vòrtex de Von Karman

Fi de la presentació