Fundamentele limbajelor de programare

Programare funcțională. λ -calcul. Confluență. Standardizare.

Traian Florin Şerbănuță și Andrei Sipoș

Facultatea de Matematică și Informatică, DL Info

Anul II, Semestrul II, 2024/2025

Sectiunea 1

Recapitulare din cursul trecut

Sintaxă

$$M, N ::= x \mid (M N) \mid (\lambda x. M)$$

Variabile libere

$$FV(x) = \{x\}$$

$$FV(MN) = FV(M) \cup FV(N)$$

$$FV(\lambda x. M) = FV(M) \setminus \{x\}$$

Substituție

Variabile

- x[x := N] := N;
- x[y := N] := x, dacă $y \neq x$;

Aplicație

• (PQ)[x := N] := (P[x := N])(Q[x := N]);

Abstractie

- $(\lambda x.P)[x := N] := \lambda x.P;$
- $(\lambda y.P)[x := N] := \lambda y.(P[x := N])$, dacă $y \neq x$ și $y \notin FV(N)$;
- $(\lambda y.P)[x := N] := \lambda z.(P[y := z][x := N])$, dacă $y \neq x$ și $y \in FV(N)$, unde $z \notin FV(P) \cup FV(N)$ este o variabilă "nouă"

Alfa-echivalență

•
$$\lambda x.M \equiv_{\alpha} \lambda y.(M[x:=y])$$
 dacă $y \notin FV(M)$

Echivalență

$$\frac{M \equiv_{\alpha} N}{N \equiv_{\alpha} M}$$

$$\frac{M \equiv_{\alpha} N \qquad N \equiv_{\alpha} P}{M \equiv_{\alpha} P}$$

Compatibilitate cu operațiile

$$M \equiv_{\alpha} N$$

$$\lambda x.M \equiv_{\alpha} \lambda x.N$$

$$\frac{M \equiv_{\alpha} N}{MP \equiv_{\alpha} NP}$$

$$\frac{M \equiv_{\alpha} N}{P M \equiv_{\alpha} P N}$$

Beta-reductie

• $(\lambda x.M)N \rightarrow_{\beta} M[x := N]$

Compatibilitate cu operațiile

$$\bullet \ \frac{M \to_{\beta} N}{\lambda x. M \to_{\beta} \lambda x. N}$$

$$\frac{M \to_{\beta} N}{MP \to_{\beta} NP}$$

$$\frac{M \to_{\beta} N}{PM \to_{\beta} PN}$$

Reductie în mai multi pasi (închiderea reflexiv-tranzitivă)

•
$$M \rightarrow_{\beta}^{*} N$$
 dacă $M \rightarrow_{\beta} N$ $M \rightarrow_{\beta}^{*} M$

$$M \rightarrow_{\beta}^{*} M$$

$$\frac{M \to_{\beta}^* N \qquad N \to_{\beta}^* P}{M \to_{\beta}^* P}$$

Formă normală

• Dacă $M \to_{\beta}^* N \not\to_{\beta}$, atunci N formă normală (pentru M)

Alfa-echivalența este compatibilă cu toate definițiile¹

- Dacă $M \equiv_{\alpha} N$ atunci FV(M) = FV(N)
- Dacă $M \equiv_{\alpha} M'$ și $N \equiv_{\alpha} N'$, atunci $M[x := N] \equiv_{\alpha} M'[x := N']$
- Dacă $M \rightarrow_{\beta} N$
 - pentru orice $M' \equiv_{\alpha} M$ există $N' \equiv_{\alpha} N$ astfel încât $M' \rightarrow_{\beta} N'$ • pentru orice $N' \equiv_{\alpha} N$ există $M' \equiv_{\alpha} M$ astfel încât $M' \rightarrow_{\beta} N'$
- Similar pentru $M \to_{\beta}^* N$
- Dacă N formă normală și $N' \equiv_{\alpha} N$ atunci N' formă normală

Alfa-Beta reductie

 $M \to_{\alpha,\beta}^* N \; dac \check{a} \; M \to_{\beta}^* N' \;$ si $N \equiv_{\alpha} N'$

- $\bullet \to_{\beta}^* \subseteq \to_{\alpha,\beta}^*$
- Dacă $M \xrightarrow{*}_{\alpha,\beta} N$, $M \equiv_{\alpha} M'$ și $N \equiv_{\alpha} N'$, atunci $M' \xrightarrow{*}_{\alpha,\beta} N'$

 $^{^1}$ În restul cursului vom lucra **modulo** lpha-echivalență.

Secțiunea 2

Confluență

Scop

În această secțiune vom argumenta că λ -calculul fără tipuri este confluent.

Teoremă (Church-Rosser)

Fie M, M_1 , M_2 λ -termeni astfel încât $M \to_{\beta}^* M_1$ și $M \to_{\beta}^* M_2$ Atunci există un λ -termen M' astfel încât (modulo α -echivalență) $M_1 \to_{\beta}^* M'$ și $M_2 \to_{\beta}^* M'$

Proprietatea diamant (confluență într-un pas)

Definitie

O relație binară \to are **proprietatea diamant** dacă, oricând $a \to b$ și $a \to c$, există d astfel încât $b \to d$ și $c \to d$

Proprietăți

- \bullet Teorema Church-Rosser este echivalentă cu faptul că relația \to_β^* are proprietatea diamant.
- Dacă \to are proprietatea diamant, atunci și \to^* are proprietatea diamant.

Reducție paralelă

Se definește relația \rightarrow_{\parallel} pe λ -termeni folosind regulile:

- \bullet $M \rightarrow_{||} M$
- $\bullet \ \frac{M \to_{\parallel} M'}{\lambda x.M \to_{\parallel} \lambda x.M'}$
- $\bullet \ \frac{M \to_{\parallel} M' \qquad N \to_{\parallel} N'}{M N \to_{\parallel} M' N'}$
- $\bullet \ \frac{M \to_{\parallel} M' \qquad N \to_{\parallel} N'}{(\lambda x.M) \ N \to_{\parallel} M'[x := N']}$

Reducția paralelă vs β -reducția

Proprietăți (demonstrabile prin inducție)

- $\bullet \rightarrow_{\beta} \subseteq \rightarrow_{\parallel}$
- $\bullet \rightarrow_{\parallel} \subseteq \rightarrow_{\beta}^*$

Corolar

$$\bullet \to_{\parallel}^* = \to_{\beta}^*$$

Condiție suficientă pentru Teorema Church Rosser

E suficient să arătăm că \rightarrow_{\parallel} are proprietatea diamant.

Proprietăți

Lemă (Comutativitatea Substituției)

Fie N, N, P termeni. Dacă $x \neq y$ și $x \notin FV(P)$, atunci

$$M[x := N][y := P] = M[y := P][x := N[y := P]]$$

Leme

- 1. Dacă $\lambda x.M \rightarrow_{\parallel} N$ atunci $N = \lambda x.M'$ și $M \rightarrow_{\parallel} M'$
- 2. Dacă $M N \rightarrow_{\parallel} L$ atunci fie
 - L = M' N'', $M \rightarrow_{\parallel} M'$ si $N \rightarrow_{\parallel} N'$; sau
 - $M = \lambda x.P$, $L = \ddot{P}'[x := N']$, $\ddot{P} \rightarrow_{\parallel} P'$ și $N \rightarrow_{\parallel} N'$
- 3. Dacă $N \rightarrow_{\parallel} N'$ atunci $M[x := N] \rightarrow_{\parallel} M[x := N']$
- 4. Dacă $M \rightarrow_{\parallel} M'$ și $N \rightarrow_{\parallel} N'$. Atunci $M[x := N] \rightarrow_{\parallel} M'[x := N']$

Teorema Church-Rosser

Teoremă (proprietatea diamant)

 \rightarrow_{\parallel} are proprietatea diamant

Corolar (Teorema Church-Rosser)

 $ightarrow_{eta}^{*}$ are proprietatea diamant

Secțiunea 3

Teorema de standardizare

Scop

În această secțiune vom argumenta veridicitatea următorului rezultat.

Teorema de standardizare

Dacă M are o formă normală N atunci N poate fi obținut din M folosind strategia normală de reducție, adică, reducând la fiecare pas redex-ul cel mai din stânga dintre cele exterioare.

Identificarea redex-ului într-o β -reducție

Definim relația \xrightarrow{n}_{β} prin următoarele reguli:

•
$$(\lambda x.M) N \xrightarrow{1}_{\beta} M[x := N]$$

•
$$\frac{M \xrightarrow{n}_{\beta} N}{MP \xrightarrow{n}_{\beta} NP}$$
 dacă M nu este o abstracție

$$\frac{M \xrightarrow{n}_{\beta} N}{M P \xrightarrow{n+1}_{\beta} N P} dac \breve{a} M \text{ este o abstracție}$$

•
$$\frac{M \stackrel{n}{\rightarrow}_{\beta} N}{P M \stackrel{n+\#r(P)}{\longrightarrow}_{\beta} P N} dac \tilde{a} P$$
 nu este o abstracție ²

$$PM \xrightarrow{n+\#r(P)}_{\beta} PN$$

$$\frac{M \stackrel{n}{\to}_{\beta} N}{P M \stackrel{n+\#r(P)+1}{\longrightarrow}_{\beta} P N} \ \ \textit{dacă} \ P \ \text{este o abstracție}$$

$$M \xrightarrow{n}_{\beta} N$$

$$\bullet \ \frac{}{\lambda x.M \xrightarrow{n}_{\beta} \lambda x.N}$$

²Pentru un termen M, fie #r(M) numărul de β -redexuri din M.

Intuiție si proprietăți pentru \to_{eta}^n

 $M \xrightarrow{n}_{\beta} N$ reprezintă faptul că N a fost obținut din M aplicând o β -reducție pe al n-ulea redex din M în ordinea leftmost-outermost.

Proprietăți

- $M \to_{\beta} N$ dacă și numai dacă există n astfel încât $M \stackrel{n}{\to}_{\beta} N$
- $M \xrightarrow{1}_{\beta} N$ reprezintă o reducție folosind strategia normală

Secvențe de reducție standard

Definitie

O secvență $M_0 \xrightarrow{n_1} M_1 \xrightarrow{n_2} \cdots \xrightarrow{n_k} M_k$ se numește **standard** dacă $n_1 \leq n_2 \leq \cdots \leq n_k$

Observații

- Într-o secvență standard de reducție, toți redecșii cu index mai mic decât cel folosit la un pas nu vor fi modificați de nici unul din pașii următori.
- ullet O secvență folosind strategia normală este standard (fiecare n_i este 1)

Secvențe de reducție standard și forme normale

Următorul rezultat ne arată că pentru a arăta că strategia normală ajunge mereu la o formă normală (dacă aceasta există) e suficient să arătăm că orice secvență de reducție poate fi convertită la una standard.

Propoziție

Orice secvență standard care ajunge într-o formă normală este conform strategiei normale

Demonstratie

Ne uităm la ultimul pas de reducție $M_{k-1} \xrightarrow{n_k} M_k$.

Deoarece M_k este formă normală, înseamnă că nu are nici un redex, de unde înseamnă că $n_k = 1$.

Din definiția sevcenței standard, înseamnă că toți n_i sunt 1.

Reducția la începutul unei aplicații

Vom defini recursiv o relație care generează secvențe folosind strategia normală.

Definiție

$$(\lambda x.M)N \rightarrow_h M[x := N]$$
 și $\frac{M \rightarrow_h M'}{MN \rightarrow_h M'N}$

Lemă

Dacă $M \to_h^* N$ atunci $M \xrightarrow{1}_{\beta}^* N$

Reductia standard

Vom defini recursiv o relație care generează secvențe standard de reducție.

Definitie

- $L \rightarrow_{st} x \ daca \ L \rightarrow_h^* x$ • $\frac{A \xrightarrow{s_t} C \qquad B \xrightarrow{s_t} D}{L \xrightarrow{s_t} C D} \quad dac\check{a} L \xrightarrow{*}_h A B$ • $\frac{A \xrightarrow{s_t} B}{L \xrightarrow{s_t} \lambda x.B} \quad dac\check{a} L \xrightarrow{*}_h \lambda x.A$

Lemă

Dacă $M \rightarrow_{st} N$ atunci există o secvență standard de la M la N.

Proprietăți

Următoarele proprietăți se demonstrează ușor prin inducție:

- \bullet $M \rightarrow_{st} M$
- Dacă $M \rightarrow_h^* N$ atunci $MP \rightarrow_h^* NP$
- Dacă $L \to_h^* M \to_{st} N$ atunci $L \to_{st} N$
- Dacă $M \to_h^* N$ atunci $M[x := P] \to_h^* N[x := P]$
- Dacă $M \to_{st} N$ și $P \to_{st} Q$, atunci $M[x := P] \to_{st} N[x := Q]$

Lemă

Dacă $L \rightarrow_{st} (\lambda x.M) N$, atunci $L \rightarrow_{st} M[x := N]$.

Demonstratie

Explicitând definițiile și folosind proprietățile de mai sus.

Beta-reducțiile pot fi absorbite în reducții standard

Lemă

Dacă $L \rightarrow_{st} M \rightarrow_{\beta} N$ atunci $L \rightarrow_{st} N$

Demonstratie

Demonstrăm proprietatea

$$\forall M \forall N \ M \rightarrow_{\beta} N \implies \forall L \ L \rightarrow_{st} M \implies L \rightarrow_{st} N$$

prin inducție pe regulile de definire ale lui $M \rightarrow_{\beta} N$

Corolar

Dacă $M \to_{\beta}^* N$ atunci $M \to_{st} N$

Teorema de standardizare

Teoremă (standardizare)

Dacă $M \to_{\beta}^* N$ atunci există o secvență standard de β -reducție de la M la N.

Demonstratie

Evident din lema de mai sus și proprietățile reducției standard.

Secțiunea 4

Bibliografie

Referinte

Teorema Church-Rosser

Gregor Richards. CS442 – Principles of Programming Languages. Lecture Notes. University of Waterloo.

 $https://student.cs.uwaterloo.ca/\sim cs442/W25/extras/c-r-thm-proof.pdf$

Teorema de standardizare

Ryo Kashima. A Proof of the Standardization Theorem in λ -Calculus. Research Reports on Mathematical and Computing Sciences, C-145, Tokyo Institute of Technology, 2000.

https://www.is.c.titech.ac.jp/users/kashima/pub/C-145.pdf