Fibonacci Words

Por ICPC 2012 World Finals — Poland

Timelimit: 5

The Fibonacci word sequence of bit strings is defined as:

$$F(n) = \begin{cases} 0 & \mathbf{if} n = 0\\ 1 & \mathbf{if} n = 1\\ F(n-1) + F(n-2) & \mathbf{if} n \ge 2 \end{cases}$$

Here + denotes concatenation of strings. The first few elements are:

n	F(n)
0	0
1	1
2	10
3	101
4	10110
5	10110101
6	1011010110110
7	101101011011010110101
8	101101011011010110110110110110
9	101101011011010110110110110110110110110

Given a bit pattern p and a number n, how often does p occur in F(n)?

Entrada

The first line of each test case contains the integer \mathbf{n} ($0 \le \mathbf{n} \le 100$). The second line contains the bit pattern \mathbf{p} . The pattern \mathbf{p} is nonempty and has a length of at most 100 000 characters.

Saída

For each test case, display its case number followed by the number of occurrences of the bit pattern**p** in $F(\mathbf{n})$. Occurrences may overlap. The number of occurrences will be less than 2^{63} .

Case 1: 5
Case 2: 8
Case 3: 4
Case 4: 4
Case 5: 7540113804746346428