Теорема (свойства дисперсии)

1)
$$D[C] = 0$$
, $\sigma[C] = 0$, $C - const$

2)
$$D[\xi] = M[\xi^2] - M^2[\xi]$$

Следствие

$$D[\xi] = \begin{cases} \sum_{i} x_{i}^{2} p_{i} - M^{2}[\xi], & \xi - JICB \\ + \infty & \int_{-\infty}^{+\infty} x^{2} \cdot f_{\xi}(x) dx - M^{2}[\xi], & \xi - HCB \end{cases}$$

Доказательство.

2)
$$D[\xi] = M\left[\left(\xi - M[\xi]\right)^2\right] =$$

$$=M\left[\xi^2-2\xi\cdot M[\xi]+M^2[\xi]\right]=$$

$$=M\left[\xi^{2}\right]-2M[\xi]\cdot M[\xi]+M^{2}[\xi]=$$

$$=M\left[\xi^2\right]-M^2[\xi]$$

Замечание

Наряду со СВ ξ рассматривают т.н. нормированную СВ

$$T = \frac{\xi - M[\xi]}{\sigma[\xi]}.$$

При этом

$$M[T] = 0, D[T] = 1.$$

Дисперсия функции СВ

$$D[\varphi(\xi)] = \begin{cases} \sum_{i} (\varphi(x_i) - M[\eta])^2 p_i \\ \int_{-\infty}^{+\infty} (\varphi(x) - M[\eta])^2 \cdot f_{\xi}(x) dx \end{cases} =$$

$$= \begin{cases} \sum_{i} \varphi^{2}(x_{i}) p_{i} - M^{2}[\eta], & \xi - \text{ДСВ} \\ \int_{-\infty}^{+\infty} \varphi(x)^{2} \cdot f_{\xi}(x) dx - M^{2}[\eta], & \xi - \text{HCB} \end{cases}$$

Мода и медиана

Опр. Модой ДСВ ξ называется ее значение, принимаемое с наибольшей вероятностью.

Для НСВ $M_o[\xi]$ – точка locmax плотности вероятности f(x).

Если $M_o[\xi]$ единственна, то распределение называется унимодальным.

В противном случае – полимодальным.

Опр. Медианой $M_e[\xi] = x_p$ НСВ ξ называется такое ее значение, что $P(\xi < x_p) = P(\xi > x_p) = \frac{1}{2}$, т.е. одинаково вероятно, окажется ξ больше x_p или меньше x_p .

С помощью функции распределения можно записать

$$F(x_p) = 1 - F(x_p) \Rightarrow F(x_p) = F(M_e) = 0,5$$

Метод производящих функций вычисления ЧХ ДСВ

Рассмотрим ДСВ ξ , имеющую ряд распределения

Ĕ	0	1	2	***	k	***
P	p_0	p_1	p_2		p_k	***

Производящей функцией для ДСВ ξ называется

$$\varphi(z) = \sum_{k=0}^{\infty} p_k \cdot z^k = p_0 + p_1 z + p_2 z^2 + \dots + p_k z^k + \dots$$

z – произвольный параметр, $0 < z \le 1$.

Дифференцируя по z производящую функцию, получим

$$\varphi'(z) = \sum_{k=0}^{\infty} k \cdot p_k \cdot z^{k-1}$$

$$\varphi'(1) = \sum_{k=0}^{\infty} k \cdot p_k = M[\xi] = \alpha_1 \Rightarrow$$

$$\alpha_1 = M[\xi] = \varphi'(1)$$

Примеры основных распределений и их ЧХ

1. Биномиальная СВ (обозначение $\xi \in Bi(n, p)$).

СВ ξ —число успехов в серии из n испытаний.

<u>Значения</u> *5*: 0, 1, 2, ..., n

Вероятности значений: $p_m = P_n(m) = C_n^m p^m q^{n-m}$

(ф-ла Бернулли)

Условие нормированности:

$$\varphi(z) = \sum_{m=0}^{n} p_m \cdot z^m = \sum_{m=0}^{n} C_n^m p^m q^{n-m} z^m =$$

$$= (q + pz)^n \qquad \text{(бином Ньютона)}$$
 $M[\xi] = \varphi'(1) = \left((q + pz)^n \right)'|_{z=1} =$

$$= pn(q + pz)^{n-1}|_{z=1} =$$

$$= np(q + p)^{n-1} = np = \alpha_1$$

Числовые характеристики

$$M[\xi] = np$$

$$D[\xi] = npq$$

Таблица распределения вероятностей имеет вид

					k		
P	q^n	npq≈¹	$C_n^2 p^2 q^{n-2}$	7+4	$C_n^k p^k q^{n-k}$	perq	p^n

