

Semi-Automatic Functional Conversion for microKanren

Igor Engel, Kate Verbitskaia

JetBrains Research, Programming Languages and Tools Lab

30.05.2023

Relational Programming

One relation to solve many problems

Nondeterminism

Completeness of search

Relational Conversion: Easy

Given a function

```
let rec add x y =
match x with
| 0 \rightarrow y
| S x' \rightarrow S (add x' y)
```

generate miniKanren relation

```
let rec add° x y z = conde [
(x \equiv 0 \land y \equiv z);
(fresh (x' z')
(x \equiv S x' \land add° x' y z' \land z \equiv S z')) ]
```

Principal Directions of MINIKANREN Relations

Every argument of a relation can be either in or out For addition relation $add^o \times y \times z$ there are 8 directions:

- Forward direction: addo in in out addition
- Backward direction: add^o out out in decomposition
- Predicate: add^o in in in
- Generator: addo out out out
- add^o in out in subtraction
- add^o out in in subtraction
- add^o out in out
- add o in out out

Each Direction is a Function

Each Direction is a Function (kinda)

Straightforward functions:

- Forward direction: addo in in out addition
- add^o in out in subtraction
- add^o out in in subtraction
- Predicate: addo in in in

Relations:

- Backward direction: add^o out out in decomposition
- Generator: addo out out out
- add^o out in out
- addo in out out

These relations are functions which return multiple answers (list monad)

MINIKANREN Comes with an Overhead

Unifications

Occurs-check

Scheduling complexity

Functional Conversion

Given a relation and a principal direction, construct a functional program which generates the same answers as ${
m MINIKANREN}$ would

Preserve completeness of the search

Both inputs and outputs are expected to be ground

Example: Addition in Forward Direction

```
let rec add° x y z = conde [
(x \equiv 0 \ \land \ y \equiv z);
(fresh (x' z')
(x \equiv S x' \ \land add° x' y z' \ \land z \equiv S z')) ]
```

```
addII0 :: Nat \rightarrow Nat \rightarrow Nat addII0 x y = case x of 0 \rightarrow y S x' \rightarrow S (addII0 x' y)
```

Addition in Backwards Direction: Nondeterminism

```
let rec add° x y z = conde [
(x \equiv 0 \ \land \ y \equiv z);
(fresh (x' z')
(x \equiv S x' \ \land add° x' y z' \ \land z \equiv S z')) ]
```

```
add00I :: Nat \rightarrow Stream (Nat, Nat)
add00I z =
return (0, z) 'mplus'
case z of
0 \rightarrow Empty
S z' \rightarrow do
(x', y) \leftarrow add00I z'
return (S x', y)
```

Free Variables in Answers: Generators

```
let rec add° x y z = conde [  (x \equiv 0 \ \land \ y \equiv z);  (fresh (x' z')  (x \equiv S \ x' \ \land \ z \equiv S \ z' \ \land \ add° \ x' \ y \ z') \ ) \ ]
```

genNat :: Stream Nat
genNat = Mature 0 (S <\$> genNat)

Predicates

```
let rec add° x y z = conde [
(x \equiv 0 \ \land \ y \equiv z);
(fresh (x' z')
(x \equiv S x' \ \land
add° x' y z' \ \land
z \equiv S z')) ]
```

```
addIII :: Nat \rightarrow Nat \rightarrow Nat \rightarrow Stream ()
addIII x y z =
case x of
0 \mid y == z \rightarrow \text{return ()}
\mid \text{otherwise } \rightarrow \text{Empty}
S x' \rightarrow
case z of
0 \rightarrow \text{Empty}
S z' \rightarrow \text{addIII } x' y z'
```

Conversion Scheme

- Normalization
- Mode analysis
- Functional conversion

Normalization: Flat Term

Flat terms: a var or a constructor which takes distinct vars as arguments:

$$\mathcal{FT}_{V} = V \cup \{C_{i}(x_{1}, \ldots, x_{k_{i}}) \mid x_{i} \in V\}$$

Examples:

$$C(x_1, x_2) \equiv C(C(y_1, y_2), y_3) \iff x_1 \equiv C(y_1, y_2) \land x_2 \equiv y_3$$

$$C\left(C\left(x_{1},x_{2}\right),x_{3}\right)\equiv C\left(C\left(y_{1},y_{2}\right),y_{3}\right)\iff x_{1}\equiv y_{1}\wedge x_{2}\equiv y_{2}\wedge x_{3}\equiv y_{3}$$

$$x \equiv C(y, y) \iff x \equiv C(y_1, y_2) \land y_1 \equiv y_2$$

Normalization: Goal

```
\mathcal{K}_{V}^{N} = \bigvee (c_{1}, \ldots, c_{n}), c_{i} \in \mathsf{Conj}_{V} normal form \mathsf{Conj}_{V} = \bigwedge (g_{1}, \ldots, g_{n}), g_{i} \in \mathsf{Base}_{V} normal conjunction \mathsf{Base}_{V} = V \equiv \mathcal{FT}_{V} flat unification R_{i}^{d}(x_{1}, \ldots, x_{k_{i}}), d \in \mathsf{Delay}, x_{j} \in V flat call \mathsf{Delay} = \{\mathsf{Delay}, \mathsf{NoDelay}\}
```

Mode of a Variable

Mode of a variable: mapping between its instantiations

Ground term has no variables

Free variable: fresh variable, no info about its instantiation

Once we know that a variable is *ground*, it stays *ground* in subsequent

conjuncts

Mode in: ground \rightarrow ground Mode out: free \rightarrow ground

Mercury uses more complicated modes

Modded Goal

Assign mode to every variable, make sure they are consistent

Modded Unification

- Assignments: $x^{\text{out}} \equiv \mathcal{T}^{\text{in}}$ and $x^{\text{in}} \equiv y^{\text{out}}$
- Guards: $x^{\text{in}} \equiv \mathcal{T}^{\text{in}}$
- Match: $x^{\text{in}} \equiv \mathcal{T} \ (\mathcal{T} \ \text{contains both } in \ \text{and } out \ \text{variables})$
- Generators: $x^{\text{out}} \equiv \mathcal{T}$

Mode Inference: Initialization

- For all input variables: ground →?
- For all other variables: $free \rightarrow$?

```
let rec add° (x, g \rightarrow g) (y, g \rightarrow g) (z, f \rightarrow g) = conde [ ((x, g \rightarrow g) \equiv 0 \land (y, g \rightarrow g) \equiv (z, f \rightarrow g)); (((x, g \rightarrow g) \equiv S (x', f \rightarrow ?) \land add^{\circ} (x', f \rightarrow ?)) (y, g \rightarrow g) (z', f \rightarrow ?) \land (z, f \rightarrow g) \equiv S (z', f \rightarrow ?))) ]
```

Mode Inference: Disjunction

Run inference on each disjunct independently

$$((\mathtt{x},\ \mathtt{g} \rightarrow \mathtt{g})\ \equiv \mathtt{0}\ \land\ (\mathtt{y},\ \mathtt{g} \rightarrow \mathtt{g}) \equiv (\mathtt{z},\ \mathtt{f} \rightarrow \mathtt{g}))$$

$$\begin{array}{l} (((\texttt{x},\ \texttt{g}\rightarrow \texttt{g})\equiv \texttt{S}\ (\texttt{x}',\ \texttt{f}\rightarrow ?)\ \land\\ \texttt{add}^o\ (\texttt{x}',\ \texttt{f}\rightarrow ?)\ (\texttt{y},\ \texttt{g}\rightarrow \texttt{g})\ (\texttt{z}',\ \texttt{f}\rightarrow ?)\ \land\\ (\texttt{z},\texttt{f}\rightarrow \texttt{g})\equiv \texttt{S}\ (\texttt{z}',\ \texttt{f}\rightarrow ?))) \end{array}$$

Mode Inference: Unification

Propagate the groundness information according to the 4 types of modded unifications

$$(((\texttt{x}, \texttt{g} \rightarrow \texttt{g}) \equiv \texttt{S} (\texttt{x'}, \texttt{f} \rightarrow ?)) \Rightarrow ((\texttt{x}, \texttt{g} \rightarrow \texttt{g}) \equiv \texttt{S} (\texttt{x'}, \texttt{f} \rightarrow \texttt{g})))$$

$$(((z,f \rightarrow g) \equiv S (z', f \rightarrow ?)) \Rightarrow ((z,f \rightarrow g) \equiv S (z', f \rightarrow g)))$$

Mode Inference: Conjunction

Pick a conjunct according to the priority, propagate groundness

- Guards
- Assignments
- Matches
- Calls with at least one ground argument
- Generators

Mode Inference: Conjunction

```
\begin{array}{l} (((\texttt{x}, \texttt{g} \rightarrow \texttt{g}) \equiv \texttt{S} \ (\texttt{x'}, \texttt{f} \rightarrow ?) \ \land \\ \texttt{add}^o \ (\texttt{x'}, \texttt{f} \rightarrow ?) \ (\texttt{y}, \texttt{g} \rightarrow \texttt{g}) \ (\texttt{z'}, \texttt{f} \rightarrow ?) \ \land \\ (\texttt{z}, \texttt{f} \rightarrow \texttt{g}) \equiv \texttt{S} \ (\texttt{z'}, \texttt{f} \rightarrow ?))) \end{array}
```

```
\begin{array}{l} (((\texttt{x},\ \texttt{g} \rightarrow \texttt{g}) \equiv \texttt{S}\ (\texttt{x'},\ \texttt{f} \rightarrow \texttt{g})\ \land\\ \texttt{add}^o\ (\texttt{x'},\ \texttt{f} \rightarrow \texttt{g})\ (\texttt{y},\ \texttt{g} \rightarrow \texttt{g})\ (\texttt{z'},\ \texttt{f} \rightarrow ?)\ \land\\ (\texttt{z},\texttt{f} \rightarrow \texttt{g}) \equiv \texttt{S}\ (\texttt{z'},\ \texttt{f} \rightarrow ?))) \end{array}
```

```
\begin{array}{c} (((\texttt{x},\ \texttt{g} \rightarrow \texttt{g}) \equiv \texttt{S}\ (\texttt{x'},\ \texttt{f} \rightarrow \texttt{g})\ \land\\ \texttt{add}^{\circ}\ (\texttt{x'},\ \texttt{f} \rightarrow \texttt{g})\ (\texttt{y},\ \texttt{g} \rightarrow \texttt{g})\ (\texttt{z'},\ \texttt{f} \rightarrow \texttt{g})\ \land\\ (\texttt{z},\texttt{f} \rightarrow \texttt{g}) \equiv \texttt{S}\ (\texttt{z'},\ \texttt{f} \rightarrow \texttt{g}))) \end{array}
```

Order in Conjunctions

Order in Conjunctions: Slow Version

```
\mathtt{multII0'} :: Nat \rightarrow Nat \rightarrow Stream Nat
multIIO' (S x') y = do
  (r', r) \leftarrow addX y
  multIII x'y r'
  return r
\mathtt{multIII} :: \mathtt{Nat} \to \mathtt{Nat} \to \mathtt{Nat} \to \mathtt{Stream} \ ()
multIII (S x') y z = do
  z' \leftarrow multIIO' x' y
  addIII y z'z
multIII _ _ _ = Empty
```

Order in Conjunctions: Faster Version

Functional Conversion: Intermediate Language

Functional Conversion into Intermediate Language

- Disjunction \rightarrow Sum $[\mathcal{F}_V]$
- Conjunction \rightarrow Bind $[([V], \mathcal{F}_V)]$
- Relation call $\rightarrow R_i^d([V],[G]), d \in \mathsf{Delay}$
- Unification o Return $[{\mathcal T}_V]$ or Match $_V({\mathcal T}_V,{\mathcal F}_V)$ or Guard (V,V) or Gen_G

Functional Conversion into Haskell

- TemplateHaskell to generate code
- Stream monad
- do-notation

Functional Conversion into OCaml

- Hand-crafted (not so) pretty-printer
- Stream monad
- let*
- Taking extra care to employ laziness

Evaluation (last year)

We manually converted relational interpreters and measured execution time

- Topologic sort
 - A verifier verifies that a vertex mapping sorts vertices topologically
 - Sort a DAG with an edge in between every pair of vertices
 - Two different representations: vertices sorted by their number, and with a reverse order
 - Sorting a graph with up to 6 vertices
- Logic formulas generation
 - Inverse computation of a logic formulas interpreter
 - Generate 10000 formulas which evaluate to true
 - Different substitution lengths

Evaluation: Topologic Sort (last year)

Evaluation: Logic Formulas Generation (last year)

Evaluation: Addition Relation (Time in Seconds)

- addIIO x = 10000, y = 0
 - Fun: 0.007
 - Rel: 1.533
- addOII y = 0, z = 10000
 - Fun: 0.009
 - Rel: 1.547
- addIOI $\times = 10000$, z = 10000
 - 0.009
 - 3.029
- addIII x = 10000, y = 0, z = 10000
 - 0.008
 - 3.041
- addIOO x = 0, n = 1000
 - Fun: 0.143
 - Rel: 0.000
- addOOO n = 1000
 - Fun: 0.074
 - Rel: 0.585

Evaluation: Proposition Evaluator (Time in Seconds)

• evalo [true; false; true] fm true

Fun: 0.759Rel: 0.308

Data Types

We generate weird data type declarations:

```
elem° i st v = 

fresh (h t i') conde [

(i \equiv Zero \land st \equiv Cons (v, t));

(i \equiv Succ i' \land st \equiv Cons (h, t) \land elem° i' t v)]
```

Need for Determinism Check

- Replacing Stream with Maybe improves performance about 10 times for relations on natural numbers
- Functional (no monad) version is still faster
- Use determinism check to figure out when replacing Stream is feasible
- How to combine different monads naturally?

Need for Partial deduction

 $\ensuremath{\mathrm{MINIKANREN}}$ can run a verifier backwards to get solver

run q (eval^o q true)

Augmenting functional conversion with partial deduction must be beneficial

Conclusion

Conclusion

- We presented a functional conversion scheme as a series of examples
- The conversion speeds up implementations considerably
- We implemented the conversion scheme in Haskell
- Found some way to order conjuncts

Future work

- Integration with partial deduction
- Integration into a relational interpreters for solving framework