Note del corso di Geometria 1

Gabriel Antonio Videtta

28 aprile 2023

Indipendenza e applicazioni affini

Fissato un origine O dello spazio affine, si possono sempre considerare due bigezioni:

- La bigezione $i_O: E \to V$ tale che $i(P) = P O \in V$,
- La bigezione $j_O: V \to E$ tale che $j(\underline{v}) = O + \underline{v} \in E$.

Si osserva inoltre che i_O e j_O sono l'una la funzione inversa dell'altra. Dato uno spazio vettoriale V su \mathbb{K} di dimensione n, si può considerare V stesso come uno spazio affine, denotato con le usuali operazioni:

- (a) $\underline{v} + \underline{w}$, dove $\underline{v} \in V$ è inteso come *punto* di V e $\underline{w} \in W$ come il vettore che viene applicato su \underline{w} , coincide con la somma tra \underline{v} e \underline{w} (e analogamente w v).
- (b) Le bigezioni considerate inizialmente sono in particolare due mappe tali che $i_{v_0}(\underline{v}) = \underline{v} \underline{v_0}$ e che $j_{v_0}(\underline{v}) = \underline{v_0} + \underline{v}$.

Definizione (spazio affine standard). Si denota con $\mathcal{A}_n(\mathbb{K})$ lo spazio affine standard costruito sullo spazio vettoriale \mathbb{K}^n . Analogamente si indica con A_V lo spazio affine costruito su uno spazio vettoriale V.

Osservazione.

- ▶ Una combinazione affine di A_V è in particolare una combinazione lineare di V. Infatti, se $\underline{v} = \sum_{i=1}^n \lambda_i \underline{v_i}$ con $\sum_{i=1}^n \lambda_i = 1$, allora, fissato $\underline{v_0} \in V$, $\underline{v} = \underline{v_0} + \sum_{i=1}^n \lambda_i (\underline{v_i} \underline{v_0}) = \underline{v_0} + \sum_{i=1}^n \lambda_i \underline{v_i} \underline{v_0} = \sum_{i=1}^n \lambda_i \underline{v_i}$.
- ▶ Come vi è una bigezione data dal passaggio alle coordinate da V a \mathbb{K}^n , scelta una base \mathcal{B} di V e un punto O di E, vi è anche una bigezione $\varphi_{O,\mathcal{B}}$ da E a $\mathcal{A}_n(\mathbb{K})$ data dalla seguente costruzione:

$$\varphi_{O,\mathcal{B}}(P) = [P - O]_{\mathcal{B}}.$$

Proposizione. Sia $D \subseteq E$. Allora D è un sottospazio affine di $E \iff$ fissato $P_0 \in D$, l'insieme $D_0 = \{P - P_0 \mid P \in D\} \subseteq V$ è un sottospazio vettoriale di V.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Siano $\underline{v_1},...,\underline{v_k}\in D_0$. Allora, per definizione, esistono $P_1,...,P_k\in D$ tali che $\underline{v_i}=P_i-P_0$ $\forall\,1\leq i\leq k$. Siano $\lambda_1,...,\lambda_k\in\mathbb{K}$. Sia inoltre $P=P_0+\sum_{i=1}^k\lambda_i\underline{v_i}\in E$. Sia infine $O\in D$. Allora $P=O+(P_0-O)+\sum_{i=1}^k\lambda_i\underline{v_i}=O+(P_0-O)+\sum_{i=1}^k\lambda_i(P_i-O+O-P_0)=O+(P_0-O)+\sum_{i=1}^k\lambda_i(P_i-O)=O+(1-\sum_{i=1}^k\lambda_i)(P_0-O)+\sum_{i=1}^k\lambda_i(P_i-O)$. In particolare P è una combinazione affine di $P_1,...,P_k\in D$, e quindi, per ipotesi, appartiene a D. Allora $P-P_0=\sum_{i=1}^k\lambda_i\underline{v_i}\in D_0$. Poiché allora D_0 è chiuso per combinazioni lineari, D_0 è un sottospazio vettoriale di V.

 (\Leftarrow) Sia $P = \sum_{i=1}^k \lambda_i P_i$ con $\sum_{i=1}^k \lambda_i = 1$, con P_1 , ..., $P_k \in D$ e λ_1 , ..., $\lambda_k \in \mathbb{K}$. Allora $P - P_0 = \sum_{i=1}^k \lambda_i (P_i - P_0) \in D_0$ per ipotesi, essendo combinazione lineare di elementi di D_0 . Pertanto, poiché esiste un solo punto P' tale che $P' = P_0 + \sum_{i=1}^k \lambda_i (P_i - P_0)$, affinché $\sum_{i=1}^k \lambda_i (P_i - P_0)$ appartenga a D_0 , deve valere anche che $P \in D$. Si conclude quindi che D è un sottospazio affine, essendo chiuso per combinazioni affini.

Osservazione. Sia D un sottospazio affine di E.

- ▶ Vale la seguente identità $D_0 = \{P Q \mid P, Q \in D\}$. Sia infatti $A = \{P Q \mid P, Q \in D\}$. Chiaramente $D_0 \subseteq A$. Inoltre, se $P Q \in A$, $P Q = (P P_0) (Q P_0)$. Pertanto, essendo P Q combinazione lineari di elementi di D_0 , ed essendo D_0 spazio vettoriale per la proposizione precedente, $P Q \in D_0 \implies A \subseteq D_0$, da cui si conclude che $D_0 = A$.
- ▶ Pertanto D_0 è unico, a prescindere dalla scelta di $P_0 \in D$.
- ▶ Vale che $D = P_0 + D_0$, ossia D è il traslato di D mediante il punto P_0 .

Definizione (direzione di un sottospazio affine). Si definisce D_0 come la direzione del sottospazio affine D.

Definizione (dimensione un sottospazio affine). Dato D sottospazio affine di E, si dice dimensione di D, indicata con dim D, la dimensione della sua direzione D_0 , ossia dim D_0 . In particolare dim $E = \dim V$.

Definizione (sottospazi affini paralleli). Due sottospazi affini si dicono **paralleli** se condividono la stessa direzione.

Osservazione.

- \blacktriangleright I sottospazi affini di dimensione zero sono tutti i punti di E.
- ▶ I sottospazi affini di dimensione uno sono le *rette affini*, mentre quelli di dimensione due sono i *piani affini*.
- ▶ Si dice *iperpiano affine* un sottospazio affine di codimensione 1, ossia di dimensione n-1.

Definizione (punti affinemente indipendenti). I punti $P_1, ..., P_n \in E$ si dicono affinemente indipendenti se l'espressione $P = \sum \lambda_i P_i$ con $\sum \lambda_i = 1$ è unica $\forall P \in \text{Aff}(P_1, ..., P_n)$. Analogamente un sottoinsieme $S \subseteq E$ si dice affinemente indipendente se ogni suo sottoinsieme finito lo è.

Proposizione. $P_1, ..., P_n$ sono affinemente indipendenti $\iff \forall i = 1, ..., k$ i vettori $P_j - P_i$ con $j \neq i$ sono linearmente indipendenti $\iff \exists i = 1, ..., k$ i vettori $P_j - P_i$ con $j \neq i$ sono linearmente indipendenti $\forall i P_i \notin Aff\{P_1, ..., P_n\}$ con P_i escluso.

Dimostrazione.

Osservazione.

- \blacktriangleright Il numero massimo di punti affinemente indipendenti in E è dim E+1.
- ▶ Se $E = A_n(\mathbb{K})$ e $V = \mathbb{K}^n$. Allora $\underline{w_1}, ..., \underline{w_k} \in E$ sono aff. indip. \iff i vettori $\underline{w_1}, ..., \underline{w_k}$ immersi in \mathbb{K}^{n+1} aggiungendo una coordinata 1 in fondo sono linearmente indipendenti.

Osservazione. Sia E spazio affine con V di dimensione n. Si scelgano n+1 punti affinemente indipendenti $P_0, ..., P_n$. Allora $Aff(P_0, ..., P_n) = E$. Quindi $P \in E$ si scrive in modo unico come $P = \sum \lambda_i P_i$ con $\sum \lambda_i = 1$. Le λ_i si diranno allora le coordinate affini di P nel riferimento $P_0, ..., P_n$.

Se si impone $\lambda_i \geq 0$, si definisce che la combinazione è una combinazione convessa. Si definisce baricentro il punto con $\lambda_i = \frac{1}{n}$.

Definizione (inviluppo convesso). Si dice IC(S) di un insieme $S \subseteq E$ l'insieme delle combinazioni convesse di S (finite).

Definizione. Sia E uno spazio affine su V, E' spazio affine su V' (sullo stesso \mathbb{K}) un'applicazione $f: E \to E'$ si dice app. affine se conserva le combinazioni affini $(f(\sum \lambda_i P_i) = \sum \lambda_i f(P_i), \sum \lambda_i = 1)$.

Teorema. Sia $f: E \to E'$ affine. Allora \exists unica app. lineare $g: V \to V'$ lineare tale che valga $f(O + \underline{v}) = f(O) + g(\underline{v})$, per ogni scelta di $O \in E$.

Dimostrazione. Sia $O \in E$. L'applicazione $g_O : V \to V'$ data da $g_O(\underline{v}) = f(O + \underline{v}) - f(O)$. Si dimostra che g_O è lineare.