

Auxiliar 4:

Inducción y Relaciones

Profesores: Alejando Hevia, Federico Olmedo

Auxiliares: Ismael Correa, Nahuel Gómez, Nelson Marambio, Javier Oliva, Fernanda Sanchirico, Lucas Torrealba, Ayudantes: Felix Avilés, Daniel Báez

Definición 1 (Conjunto de palabras sobre un alfabeto Σ) El conjunto Σ^* de palabras sobre el alfabeto finito Σ , se define inductivamente como sique:

- Caso Base: $\epsilon \in \Sigma^*$ (con ϵ la palabra vacía).
- Caso Inductivo: Dado un símbolo $x \in \Sigma$, y una palabra $w \in \Sigma^*$, luego $wx \in \Sigma^*$.

P1.-

1.

De una definición recursiva del operador potencia sobre strings, donde dada una palabra $w \in \Sigma^*$, se denota como w^i a la concatenación i veces del string w.

Solución:

Dado un alfabeto finito Σ , y una palabra arbitraria $w \in \Sigma^*$, definimos el operador potencia de strings recursivamente como sigue:

- Regla Base: $w^0 = \epsilon$ (donde ϵ es la palabra vacía).
- Regla Recursiva: Para i > 0, se define $w^i = w \cdot w^{i-1}$ (donde · es el operador de concatenación de strings).

2.

Dada una palabra $w \in \Sigma^*$, denotamos como l(w) al largo del string w. De una definición recursiva para el largo de strings.

Solución:

Dado un alfabeto finito Σ , definimos el operador largo de strings recursivamente como sigue:

Auxiliar 4:

• Regla Base: $l(\epsilon) = 0$ (con ϵ la palabra vacía)

• Regla Recursiva: Dada $w \in \Sigma^*$ y $x \in \Sigma$, l(wx) = 1 + l(w)

3.

Muestre por inducción estructural que, $\forall w_1, w_2 \in \Sigma^*, l(w_1 \cdot w_2) = l(w_1) + l(w_2).$

Solución:

- Caso Base: Sea $w \in \Sigma^*$, $l(\epsilon \cdot w) = l(w) = 0 + l(w) = l(\epsilon) + l(w)$
- Caso Inductivo: Sean $w_1, v \in \Sigma^*$ y $x \in \Sigma$ tales que $vx = w_2$ y l(wv) = l(w) + l(v). Tenemos que:

$$l(w_1 \cdot w_2) = l(w_1 \cdot vx) = l((w_1v) \cdot x)$$

= $l(w_1v) + 1 = l(w_1) + l(v) + 1$
= $l(w_1) + l(vx) = l(w_1) + l(w_2)$

4.

Muestre por inducción matemática que, $\forall i \in \mathbb{N} \text{ y } \forall w \in \Sigma^*, l(w^i) = i \cdot l(w).$

Solución:

- Caso Base: Sea $w \in \Sigma^*$, $l(w^0) = l(\epsilon) = 0 = 0 \cdot l(w)$
- Caso Inductivo: Suponiendo que $l(w^i) = i \cdot l(w)$, mostremos que $l(w^{i+1}) = (i+1) \cdot l(w)$:

$$l(w^{i+1}) = l(w \cdot w^{i}) = l(w) + l(w^{i})$$

= $l(w) + i \cdot l(w) = l(w) \cdot (1+i)$
= $(i+1) \cdot l(w)$

Definición 2 (Relación Euclidiana) Una relación R sobre un conjunto A se dice euclidiana si satisface que:

$$\forall \alpha, \beta, \gamma \in A, \ \alpha R \beta \wedge \alpha R \gamma \Rightarrow \beta R \gamma$$

P2.-

Demuestre que R es relación de equivalencia si y solo si R es reflexiva y euclidiana.

Solución:

 \Rightarrow

Si R es relación de equivalencia tenemos por definición que es reflexiva, mostremos así que es euclidiana.

Tomando $(\alpha, \beta) \in R$ y $(\alpha, \gamma) \in R$, tendremos por simetría de R (nuevamente, R es de equivalencia por premisa) que si $(\alpha, \beta) \in R \Rightarrow (\beta, \alpha) \in R$, luego:

$$(\alpha, \beta) \in R \land (\alpha, \gamma) \in R$$

$$\Rightarrow (\beta, \alpha) \in R \land (\alpha, \gamma) \in R$$

$$\Rightarrow (\beta, \gamma) \in R$$

Donde la última implicancia sigue por transitividad de R. de esta manera tenemos que $(\alpha, \beta) \in R \land (\alpha, \gamma) \in R \Rightarrow (\beta, \gamma) \in R$, con lo cual podemos concluir que si R es relación de equivalencia, luego será reflexiva y euclidiana.

 \leftarrow

Para mostrar que R es de equivalencia es necesario que sea simétrica, reflexiva y transitiva. Puesto que la reflexividad de R es premisa de la demostración, procedemos a mostrar que también debe ser simétrica y transitiva:

Simetría: Sea $\alpha \in A$, por reflexividad de R tenemos que $\alpha R\alpha$. Además, puesto que R es euclidiana, reemplazando en la definición tendremos que para todo $\beta \in A$, $\alpha R\beta \wedge \alpha R\alpha \Rightarrow \beta R\alpha$, con lo cual tenemos la simetría.

Transitividad: Sean $\alpha, \beta, \gamma \in A$ tales que $\alpha R\beta$ y $\alpha R\gamma$. Como ya demostramos que R es simétrica podemos usar aquello, más la definición de relación euclidiana, para concluir que:

Auxiliar 4:

$$\alpha R\beta \wedge \alpha R\gamma \Rightarrow \beta R\gamma$$

$$\Rightarrow \beta R\alpha \wedge \alpha R\gamma \Rightarrow \beta R\gamma$$

Lo cual no es nada más que la definición de transitividad.

Tenemos así que si R es reflexiva y euclidiana, luego tiene que ser de equivalencia, con lo cual concluimos la demostración hacia la izquierda.

Podemos concluir así, teniendo ambas implicancias, que R es relación de equivalencia si y solo si R es reflexiva y euclidiana.

Auxiliar 4: