

ENGENHARIA INFORMÁTICA (deslizante) – 1º ano ANÁLISE MATEMÁTICA I

Teste 1

08-julho-2016 Duração:2h

Importante:

A resolução completa de cada pergunta inclui a justificação do raciocínio utilizado bem como a apresentação de todos os cálculos efetuados. Não é permitida utilizar máquina de calcular ou telemóvel durante a prova.

- 1. Considere a função $f(x) = 2 + 4\cos(\frac{3x \pi}{6})$.
 - a. Determine o domínio da função.
 - b. Calcule $f(4\pi)$.
 - c. Resolva a seguinte equação $f(x) = \frac{3}{\pi} \operatorname{arc} \cot g(-\frac{\sqrt{3}}{3}) 2$.
 - d. Caracterize a função inversa de $\,f\,$, indicando domínio, contradomínio e expressão analítica.
- 2. Considere a região E representada na figura seguinte:

- a. Usando integrais, calcule a área de E.
- b. Usando integrais, <u>indique expressões simplificadas</u> que lhe permitam calcular os volumes dos sólidos de revolução obtidos a partir da rotação da região *E* em torno:
 - I. do eixo OX;
 - II. do eixo OY.
- 3. Considere a região $B = \{(x, y) \in \Re^2 : y \ge e^{-x} \land x \ge (y-1)^2 \land x \le 1\}$.
 - a. Represente graficamente a região B.
 - b. Reescreva o domínio plano na forma: $B = \{(x, y) \in \Re^2 : g(x) \le y \le f(x) \land a \le x \le b\}$.
 - c. Utilizando o cálculo integral identifique, <u>sem calcular</u>, uma expressão simplificada que lhe permita determinar:
 - i. a medida da área do domínio B.
 - ii. a medida do volume do sólido de revolução que se obtém por rotação da região *B* em torno do eixo das ordenadas.
 - iii. a medida do perímetro da região B.

4. Considere os seguintes integrais:

I.
$$\int_{-\infty}^{0} \frac{e^{-x}}{9 + e^{-2x}} dx$$

II.
$$\int_{-1}^{0} \frac{3}{(x-1)\ln(1-x)} dx$$

- a. Identifique, justificando, cada um dos integrais.
- b. Qual o valor lógico das seguintes afirmações? Justifique.
 - i. "A natureza do integral de primeira espécie é convergente"
 - ii. "O integral impróprio de segunda espécie é convergente"
- c. Considere a seguinte região $A = \left\{ (x,y) \in \Re^2 : 0 \le y \le \frac{e^{-x}}{9 + e^{-2x}} \land x \ge 1 \right\}$. Determine a área da região A, caso seja possível.

(Cotação											
	1a	1b	1c	1d	2a	2b	3a	3b	3c	4a	4b	4c
	0,5	1	1,25	1,25	1,5	3	1	1	4,5	1	2,5	1,5

ENGENHARIA INFORMÁTICA (deslizante) – 1º ano ANÁLISE MATEMÁTICA I

Teste 2

08-julho-2016 Duração:2h

Importante:

A resolução completa de cada pergunta inclui a justificação do raciocínio utilizado bem como a apresentação de todos os cálculos efetuados. Não é permitida utilizar máquina de calcular ou telemóvel durante a prova.

- 1. Considere a seguinte equação diferencial $\ln(x)y' + \frac{1}{x}y = \frac{\ln(x)}{x^2}$
 - a. Justifique que se trata de uma equação linear de 1ª ordem e resolva-a.
 - b. Determine a solução particular que satisfaz a condição y(e) = 1.
 - c. Verifique se $y = ln(\sqrt{x})$ é solução da equação dada.
- 2. Resolva a seguinte equação diferencial $(xy y)y' (y^2 + 1)(x^2 1) = 0$.
- 3. Complete [..] com expressões por forma a obter primitivas imediatas, justificando quais as possíveis regras que podem ser aplicadas:

i.
$$\int \frac{sen(x)}{\sqrt{[...]^3}} dx$$

i.
$$\int \frac{sen(x)}{\sqrt{[...]^3}} dx$$
 ii.
$$\int \frac{sen(x)}{\sqrt{4-[...]}} dx$$

- 4-Resolva a seguinte primitiva $\int \frac{e^{\sqrt{x}} 2e^{2\sqrt{x}}}{(e^{2\sqrt{x}} + 1)\sqrt{x}} dx$ utilizando:
 - a. A técnica da decomposição e a primitivação imediata;
 - b. A mudança de variável $x = \ln^2(t)$ com $t \in [1,+\infty[$
- 5-Resolva a primitiva $\int \frac{x^3}{(1+x^2)^3} dx$ utilizando para o efeito a técnica de primitivação por partes.
- 6-Determine as seguintes primitivas:

a.
$$\int \frac{2tg(\sqrt{x})}{\sqrt{x}} dx$$

b.
$$\int \frac{tg^3(x)}{\sqrt{sec(x)}} dx$$

c.
$$\int \frac{2}{(x+1)(x^2+2x-3)} dx$$

Cotação

_	Ottaque	_									
	1a	1b	1c	2a	3	4a	4b	5	6a	6b	6c
	1,25	0,5	1	1,25	3	2	2	2	2	2	2

ENGENHARIA INFORMÁTICA (deslizante) – 1º ano ANÁLISE MATEMÁTICA I

Exame

08-julho-2016 Duração:2h

Importante:

A resolução completa de cada pergunta inclui a justificação do raciocínio utilizado bem como a apresentação de todos os cálculos efetuados. Não é permitida utilizar máquina de calcular ou telemóvel durante a prova.

- 1. Considere a função $f(x) = 2 + 4\cos(\frac{3x \pi}{6})$.
 - a. Calcule $f(4\pi)$.
 - b. Caracterize a função inversa de f, indicando domínio, contradomínio e expressão analítica.
- 2. Considere a região $B = \{(x, y) \in \Re^2 : y \ge e^{-x} \land x \ge (y-1)^2 \land x \le 1\}$.
 - a. Represente graficamente a região B.
 - b. Reescreva o domínio plano da forma: $B = \{(x, y) \in \Re^2 : g(x) \le y \le f(x) \land a \le x \le b\}$.
 - c. Utilizando o cálculo integral identifique, <u>sem calcular</u>, uma expressão simplificada que lhe permita determinar:
 - i. a medida da área do domínio B.
 - ii. a medida do volume do sólido de revolução que se obtém por rotação da região *B* em torno do eixo das ordenadas.
 - iii. a medida do perímetro da região B.
- 3. Considere os seguintes integrais:

I.
$$\int_{-\infty}^{0} \frac{e^{-x}}{9 + e^{-2x}} dx$$

II.
$$\int_{-1}^{0} \frac{3}{(x-1)ln(1-x)} dx$$

- a. Identifique, justificando, cada um dos integrais.
- b. Justifique o valor lógico da seguinte afirmação: "A natureza do integral de primeira espécie é convergente"
- 4. Resolva a seguinte equação diferencial $\ln(x)y' + \frac{1}{x}y = \frac{\ln(x)}{x^2}$, sujeita à condição inicial y(e) = 1.
- 5. Calcule $\int \frac{e^{\sqrt{x}} 2e^{2\sqrt{x}}}{(e^{2\sqrt{x}} + 1)\sqrt{x}} dx$ recorrendo à mudança de variável $x = \ln^2(t)$ com $t \in [1, +\infty[$.
- 6. Determine as seguintes primitivas:

a.
$$\int \frac{2tg(\sqrt{x})}{\sqrt{x}} dx$$

b.
$$\int \frac{x^3}{(1+x^2)^3} dx$$

c.
$$\int \frac{tg^3(x)}{\sqrt{sec(x)}} dx$$

d.
$$\int \frac{2}{(x+1)(x^2+2x-3)} dx$$

C	ota	cão	
$\mathbf{-}$	ou	Çuv	

_		_										
	1a	1b	2a	2b	2c	3	4	5	6a	6b	6c	6d
	0,75	1,25	1	1	4	2	2	2	1,5	1,5	1,5	1,5