NORMALIZATION – BCNF

CIS-673, LECTURE#16

BY RAJ PATIL

2 BCNF

- BCNF (3.5 NF)
 - Should be in 3NF
 - For all the dependencies, the LHS should be a super (candidate) key

	SUBSET OF CK → NPA (PD)	NPA → NPA (TD)	NPA → PA, PA → PA	CK → PA OR CK → NPA
2NF	NO	YES	YES	YES
3NF	NO	NO	YES	YES
BCNF (3.5NF)	NO	NO	NO	YES

3 BCNF EXAMPLE

- BCNF
 - Should be in 3NF
 - For all FDs, LHS should be a super key (SK)

• R(A, B, C), $FD = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$

CK = {A, B, C}, PA = {A, B, C}, NPA = {}

Depend encies	PD?	TD?	BCNF Violation?
$A \rightarrow B$	No	No	No
$B \rightarrow C$	No	No	No
$C \rightarrow A$	No	No	No

• R is in BCNF

4 BCNF EXAMPLE#2

- R(J, K, L)
- $F = \{ JK \rightarrow L, L \rightarrow K \}$
- CK = { (JK), (JL) }, PA = { J, K, L} , NPA = { }

Depend encies	PD?	TD?	BCNF Violation?
$JK \rightarrow L$	No	No	No
$L \rightarrow K$	No	No	YES

• R is in 3NF, but not in BCNF

Redundancy in 3NF

- Consider the schema R below, which is in 3NF
 - R = (J, K, L)
 - $F = \{JK \rightarrow L, L \rightarrow K\}$
 - And an instance table:

J	L	Κ
j_1	<i>I</i> ₁	<i>k</i> ₁
j_2	<i>I</i> ₁	<i>k</i> ₁
j ₃	<i>I</i> ₁	<i>k</i> ₁
null	<i>I</i> ₂	k ₂

- What is wrong with the table?
 - Repetition of information
 - Need to use null values (e.g., to represent the relationship l_2 , k_2 where there is no corresponding value for J)

5 DECOMPOSITION

- Eliminate redundancy by splitting the table, and creating a separate table for the dependency violating BCNF.
- Decompose R(J,K,L) into R1, R2.
- Dependency that violated BCNF: L → K
- R2(L, K)
- RI(J,L)

6 AFTER DECOMPOSITION

I	L
j ₁	I _I
j ₂	I ₁
j ₃	I _I

• RI(J, L)

•

Ī	К
I _I	k _I
l ₂	k_2

• RI is in BCNF

Is the decomposition lossless?

• R2(L, K)

•
$$FD = \{L \rightarrow K\}$$

•
$$PA = \{L\}, NPA = \{K\}$$

Dependencies	BCNF violation?	
$L \rightarrow K$	No	

• R2 is in BCNF

7 BCNF EXAMPLE#3

- dept_advisor(s_ID, i_ID, dept_name)
- FD = $\{i_ID \rightarrow dept_name, (s_ID, dept_name) \rightarrow i_ID\}$
- CK = { (s_ID, i_ID), (s_ID, dept_name) }
- PA = {s_ID, i_ID, dept_name}, NPA = {}

Dependencies	PD?	TD?	BCNF Violation?
i_ID → dept_name	No	No	Yes
$(s_ID, dept_name) \rightarrow i_ID$	No	No	No

Dept_advisor is in 3NF, but not in BCNF

8 AFTER DECOMPOSITION

- Eliminate redundancy by splitting the table, and creating a separate table for the dependency violating BCNF.
- Decompose dept_advisor(s_ID, i_ID, dept_name)
- Dependency that violated BCNF: i_ID → dept_name
- R2(i_ID, dept_name)
- RI(s_ID, i_ID)