

LYCÉE LA MARTINIÈRE MONPLAISIR LYON

SCIENCES INDUSTRIELLES POUR L'INGÉNIEUR

CLASSE PRÉPARATOIRE M.P.S.I. ET M.P.I.I.

Année 2025 - 2026

C2: MODÉLISATION DES SYSTÈMES ASSERVIS

TD 4 - Représentation des SLCI par les transformées de Laplace (C2-2)

Compétences

- Analyser
 - o Identifier la structure d'un système asservi.
- Modéliser
 - o Établir un modèle de connaissance par des fonctions de transfert.
 - o Modéliser le signal d'entrée.
 - o Modéliser un système par schéma-blocs.
- Résoudre
 - o Déterminer la réponse temporelle.
 - o Déterminer les performances d'un système asservi.

Exercice 1 : Modélisation du cycle de chauffe d'une imprimante 3D

Source: Emilien DURIF

1 Présentation du problème

On souhaite modéliser le cycle de chauffe d'une imprimante 3D utilisant le système FDM (Fused Deposition Modeling). Cette technique consiste à déposer un fil de matière synthétique (en matériau ABS). On peut alors construire un volume par addition de matière.

Les grandeurs d'entrée et de sortie du problème sont définies par :

- e(t): température de consigne;
- s(t): température effective dans la buse transportant le fil d'ABS;

Le comportement thermique au niveau de la tête de dépose de fil peut être décrit par l'équation différentielle suivante :

$$2\frac{d^2s(t)}{dt^2} + 6a\frac{ds(t)}{dt} + 4a^2s(t) = be(t)$$
 (1)

- a et b sont des constantes réelles positives.
- On suppose les conditions initiales nulles (cela revient à considérer que e(t) et s(t) sont les écarts de température par rapport à la température ambiante).

2 Analyse temporelle du problème vis-à-vis d'une entrée à un échelon.

- Q1: Déterminer la transformée de Laplace de l'équation 1.
- **Q 2 : Déterminer** e(t) puis E(p).
- **Q3: En déduire** S(p).
- **Q 4 : Déterminer l'expression de la fonction de transfert** $H(p) = \frac{S(p)}{E(p)}$.
- Q 5: La mettre sous forme canonique et en déduire son gain sa classe et son ordre.
- Q 6 : Déterminer les limites de s(t) en 0 et à l'infini.
- Q7: déterminer la pente de la tangente à l'origine.
- Q8: Que faut-il faire pour que système soit précis?
- **Q 9 : Tracer l'allure de** s(t).

3 Modification de la consigne : utilisation d'une rampe puis d'une stabilisation

Imposer une entrée de type échelon peut s'avérer brutal pour les composants du système. On souhaite pour cela imposer une consigne progressive. On utilise alors l'évolution de e(t) donnée par la figure 1 (a).

- Q 10 : Proposer une décomposition du signal ci-dessus à l'aide de signaux canoniques (échelon, rampe) en complétant la figure 1 (a).
 - **Q 11 : Déterminer l'expression de** E(p).
 - **Q 12 :** En déduire l'expression de S(p)
 - Q 13 : Vérifier le comportement asymptotique de s(t).
- Q 14: On donne la réponse obtenue par simulation sur la courbe (figure 1 (b)). Que pouvez-vous en dire concernant la réponse du système. Déterminer les écarts entre performances attendues et réelles.
 - On peut noté un retard dynamique égal à 10 s;

• Le comportement obtenu est bien conforme aux calculs effectués précédemment. On obtient un valeur de $450^{\circ}C$ en régime permanent pour s(t) qui est bien conforme au cahier des charges.

(a) Décomposition de la consigne d'entrée

(b) Réponse à une montée progressive en consigne obtenue par simulation

FIGURE 1