Download DataFrame DataCamp

```
# Melt the data to long format
df_melted = df.melt(id_vars=["country_name", "continent"],
           value_vars=[str(year) for year in range(2010,
2022)],
           var_name="year",
value_name="unemployment_rate")
# Set the figure size and style
plt.figure(figsize=(14, 7))
sns.boxplot(data=df_melted, x="year",
y="unemployment_rate", hue="continent")
# Customize the plot
plt.title("Unemployment Rate Variation by Year for Each
Continent")
plt.xlabel("Year")
plt.ylabel("Unemployment Rate (%)")
plt.legend(title="Continent", bbox_to_anchor=(1.05, 1),
loc='upper left')
plt.tight_layout()
plt.grid(True, axis='y')
plt.show()
in this code not understand the following part -
df_melted = df.melt(id_vars=["country_name", "continent"],
           value_vars=[str(year) for year in range(2010,
2022)],
           var_name="year",
value_name="unemployment_rate")
```

Great question! Let's break down that df.melt(...) line in simple terms.

What does .melt() do?

The .melt() function reshapes a DataFrame from wide format to long format.

Your original DataFrame looks like this (wide format):

country_name	continent	2010	2011	2012	•••	2021
India	Asia	5.3	5.1	5.4		7.2
Brazil	America	6.1	6.4	6.8		9.1

Each year is a separate column — this is *wide* format.

After using melt, it becomes (long format):

country_name	continent	year	unemployment_rate
India	Asia	2010	5.3
India	Asia	2011	5.1
Brazil	America	2021	9.1

Now each **row** represents the unemployment rate for **one country in one year**, which is much better for plotting and analysis.

Sreaking down the melt line:

```
df_melted = df.melt(
   id_vars=["country_name", "continent"], # Columns to keep as they are
   value_vars=[str(year) for year in range(2010, 2022)], # Columns to unpivot
   (years)
   var_name="year", # New column name for the years
   value_name="unemployment_rate" # New column name for the rates
)
```

- id_vars: These columns stay fixed (won't be melted). We still want to know which country and continent each row belongs to.
- value_vars : The year columns that will be "unpivoted" each value becomes a row.
- var_name : Name of the new column that will store the years.
- value_name: Name of the new column that will store the unemployment rates.

Why this helps for plotting:

Most plotting libraries (like Seaborn) work best with **long-format data**, where each row represents one observation.

Would you like me to show how this transformation looks visually with example rows?

to wide to long, i think this process add more rows

Yes — you're **absolutely right**! Converting from **wide to long** format using .melt() increases the number of rows in your DataFrame. Here's how and why:

@ Example:

Suppose you start with this wide-format DataFrame:

country_name	continent	2010	2011	2012
India	Asia	5.3	5.1	5.4
Brazil	America	6.1	6.4	6.8

That's:

- 2 rows (countries)
- 3 year columns

Total data points = 2 countries × 3 years = 6 values

After .melt() (long format):

country_name	continent	year	unemployment_rate
India	Asia	2010	5.3
India	Asia	2011	5.1
India	Asia	2012	5.4
Brazil	America	2010	6.1
Brazil	America	2011	6.4
Brazil	America	2012	6.8

Now you have:

- **6 rows** (1 per country-year pair)
- Only 1 value column: unemployment_rate

Summary:

- Yes, rows increase.
- But columns decrease.
- This makes the data **tidy and easier to plot/analyze** especially for time series or categorical plots.

Would you like to practice this on your own small example to try it yourself?