Tema 21: El TAD de los polinomios Informática (2019–20)

José A. Alonso Jiménez

Grupo de Lógica Computacional Departamento de Ciencias de la Computación e I.A. Universidad de Sevilla

Tema 21: El TAD de los polinomios

- Especificación del TAD de los polinomios Signatura del TAD de los polinomios Propiedades del TAD de los polinomios
- Implementación del TAD de los polinomios
 Los polinomios como tipo de dato algebraico
 Los polinomios como listas dispersas
 Los polinomios como listas densas
- Comprobación de las implementaciones con QuickCheck Librerías auxiliares
 Generador de polinomios
 Especificación de las propiedades de los polinomios
 Comprobación de las propiedades
- Operaciones con polinomios
 Operaciones con polinomios

Tema 21: El TAD de los polinomios

- Especificación del TAD de los polinomios Signatura del TAD de los polinomios Propiedades del TAD de los polinomios
- 2. Implementación del TAD de los polinomios
- 3. Comprobación de las implementaciones con QuickCheck
- 4. Operaciones con polinomios

Signatura del TAD de los polinomios

Signatura:

```
esPolCero :: Polinomio a -> Bool
consPol :: (Num a, Eq a) => Int -> a -> Polinomio a -> Poli
grado :: Polinomio a -> Int
```

restoPol :: (Num a, Eq a) => Polinomio a -> Polinomio a

Descripción de las operaciones:

polCero :: Polinomio a

- ▶ polCero es el polinomio cero.
- ▶ (esPolCero p) se verifica si p es el polinomio cero.
- \triangleright (consPol n b p) es el polinomio $bx^n + p$.

coefLider :: Num a => Polinomio a -> a

- ► (grado p) es el grado del polinomio p.
- (coefLider p) es el coeficiente líder del polinomio p.
- ▶ (restoPol p) es el resto del polinomio p.

Ejemplos de polinomios

Ejemplos de polinomios que se usarán en lo sucesivo.

▶ Definición:

```
ejPol1, ejPol2, ejPol3, ejTerm:: Polinomio Int
ejPol1 = consPol 4 3 (consPol 2 (-5) (consPol 0 3 polCero)
ejPol2 = consPol 5 1 (consPol 2 5 (consPol 1 4 polCero))
ejPol3 = consPol 4 6 (consPol 1 2 polCero)
ejTerm = consPol 1 4 polCero
```

Evaluación:

```
ejPol1 \rightsquigarrow 3*x^4 + -5*x^2 + 3
ejPol2 \rightsquigarrow x^5 + 5*x^2 + 4*x
ejPol3 \rightsquigarrow 6*x^4 + 2*x
ejTerm \rightsquigarrow 4*x
```

Tema 21: El TAD de los polinomios

- Especificación del TAD de los polinomios Signatura del TAD de los polinomios Propiedades del TAD de los polinomios
- 2. Implementación del TAD de los polinomios
- 3. Comprobación de las implementaciones con QuickCheck
- 4. Operaciones con polinomios

Propiedades del TAD de los polinomios

- 1. esPolCero polCero
- 2. n > grado p && b /= 0 ==>
 not (esPolCero (consPol n b p))
- 3. consPol (grado p) (coefLider p) (restoPol p) == p
- 4. n > grado p && b /= 0 ==>
 grado (consPol n b p) == n
- 5. n > grado p && b /= 0 ==>
 coefLider (consPol n b p) == b
- 6. n > grado p && b /= 0 ==> restoPol (consPol n b p) == p

IM Tema 21: El TAD de los polinomios

Implementación del TAD de los polinomios

Los polinomios como tipo de dato algebraico

Tema 21: El TAD de los polinomios

- 1. Especificación del TAD de los polinomios
- Implementación del TAD de los polinomios
 Los polinomios como tipo de dato algebraico
 Los polinomios como listas dispersas
 Los polinomios como listas densas
- 3. Comprobación de las implementaciones con QuickCheck
- 4. Operaciones con polinomios

Cabecera del módulo:

```
module PolRepTDA
  ( Polinomio,
   polCero, -- Polinomio a
   esPolCero, -- Polinomio a -> Bool
   consPol, -- (Num a, Eq a) => Int -> a -> Polinomio a
                            -> Polinomio a
   grado, -- Polinomio a -> Int
   coefLider, -- Num a => Polinomio a -> a
   restoPol -- (Num a, Eq a) => Polinomio a -> Polinomio a
  ) where
```

- Representamos un polinomio mediante los constructores ConsPol y PolCero.
- ► El tipo de los polinomios.

Procedimiento de escritura de los polinomios.

polCero es el polinomio cero. Por ejemplo, ghci> polCero 0

```
polCero :: Polinomio a
polCero = PolCero
```

```
esPolCero :: Polinomio a -> Boo.
esPolCero PolCero = True
esPolCero _ = False
```

polCero es el polinomio cero. Por ejemplo, ghci> polCero 0

```
polCero :: Polinomio a
polCero = PolCero
```

```
esPolCero :: Polinomio a -> Bool
esPolCero PolCero = True
esPolCero _ = False
```

polCero es el polinomio cero. Por ejemplo, ghci> polCero 0

```
polCero :: Polinomio a
polCero = PolCero
```

```
esPolCero :: Polinomio a -> Bool
esPolCero PolCero = True
esPolCero _ = False
```

```
\triangleright (consPol n b p) es el polinomio bx^n + p. Por ejemplo,
                         \rightarrow x^5 + 5*x^2 + 4*x
   ejPol2
   consPol 3 0 ejPol2 \rightsquigarrow x^5 + 5*x^2 + 4*x
   consPol 3 2 polCero → 2*x^3
   consPol 6 7 ejPol2 \rightsquigarrow 7*x^6 + x^5 + 5*x^2 + 4*x
   consPol 4 7 ejPol2 \rightarrow x^5 + 7*x^4 + 5*x^2 + 4*x
   consPol 5 7 ejPol2 \leftrightarrow 8*x^5 + 5*x^2 + 4*x
  consPol :: (Num a, Eq a) => Int -> a -> Polinomio a -> Polinomio a
  consPol _ 0 p = p
  consPol n b PolCero = ConsPol n b PolCero
  consPol n b (ConsPol m c p)
       | n > m = ConsPol n b (ConsPol m c p)
       | n < m = ConsPol m c (consPol n b p)
       | b+c == 0 = p
       | otherwise = ConsPol n (b+c) p
```

```
grado:: Polinomio a -> Int
grado PolCero = 0
grado (ConsPol n _ _) = n
```

(coefLider p) es el coeficiente líder del polinomio p. Por ejemplo,
coefLider eiPol3 ~ 6

```
coefLider:: Num t => Polinomio t -> t
coefLider PolCero = 0
coefLider (ConsPol _ b _) = b
```

```
grado:: Polinomio a -> Int
grado PolCero = 0
grado (ConsPol n _ _) = n
```

 (coefLider p) es el coeficiente líder del polinomio p. Por ejemplo,

coefLider ejPol3 → 6

```
coefLider:: Num t => Polinomio t -> t
coefLider PolCero = 0
coefLider (ConsPol _ b _) = b
```

```
grado:: Polinomio a -> Int
grado PolCero = 0
grado (ConsPol n _ _) = n
```

CoefLider p) es el coeficiente líder del polinomio p. Por ejemplo, coefLider ejPol3 → 6

```
coefLider:: Num t => Polinomio t -> t
coefLider PolCero = 0
coefLider (ConsPol _ b _) = b
```

(restoPol p) es el resto del polinomio p. Por ejemplo,

```
ejPol3 \leadsto 6*x^4 + 2*x restoPol ejPol3 \leadsto 2*x ejPol2 \leadsto x^5 + 5*x^2 + 4*x restoPol ejPol2 \leadsto 5*x^2 + 4*x
```

```
restoPol :: (Num a, Eq a) => Polinomio t -> Polinomio restoPol PolCero = PolCero restoPol (ConsPol _ _ p) = p
```

▶ (restoPol p) es el resto del polinomio p. Por ejemplo,

```
ejPol3 \rightsquigarrow 6*x^4 + 2*x restoPol ejPol3 \rightsquigarrow 2*x ejPol2 \rightsquigarrow x^5 + 5*x^2 + 4*x restoPol ejPol2 \rightsquigarrow 5*x^2 + 4*x
```

```
restoPol :: (Num a, Eq a) => Polinomio t -> Polinomio t
restoPol PolCero = PolCero
restoPol (ConsPol _ _ p) = p
```

Tema 21: El TAD de los polinomios

- 1. Especificación del TAD de los polinomios
- Implementación del TAD de los polinomios
 Los polinomios como tipo de dato algebraico
 Los polinomios como listas dispersas
 Los polinomios como listas densas
- 3. Comprobación de las implementaciones con QuickCheck
- 4. Operaciones con polinomios

Cabecera del módulo

```
module PolRepDispersa
  ( Polinomio,
   polCero, -- Polinomio a
   esPolCero, -- Polinomio a -> Bool
   consPol, -- (Num a, Eq a) => Int -> a -> Polinomio a
                            -> Polinomio a
   grado, -- Polinomio a -> Int
   coefLider, -- Num a => Polinomio a -> a
   restoPol -- (Num a, Eq a) => Polinomio a -> Polinomio a
  ) where
```

- ► Representaremos un polinomio por la lista de sus coeficientes ordenados en orden decreciente según el grado.
- Por ejemplo, el polinomio |6x^4 -5x^2 + 4x -7 se representa por la lista |[6,0,-2,4,-7]
- Los polinomios como listas dispersas.

Procedimiento de escritura de los polinomios.

```
instance (Num a, Show a, Eq a) => Show (Polinomio a) where
 show pol
      | esPolCero pol
                           = "0"
      | n == 0 \&\& esPolCero p = show a
                           = concat [show a," + ",show p]
      | n == 0
      | n == 1 && esPolCero p = concat [show a,"*x"]
                              = concat [show a,"*x + ",show p]
      l n == 1
      | a == 1 && esPolCero p = concat ["x^",show n]
                          = concat [show a,"*x^",show n]
      | esPolCero p
      l a == 1
                              = concat ["x^", show n, " + ", show p]
      lotherwise
                              = concat [show a,"*x^",show n," + ",show p]
    where n = grado pol
          a = coefLider pol
          p = restoPol pol
```

polCero es el polinomio cero. Por ejemplo, | ghci> polCero | 0

```
polCero :: Polinomio a
polCero = Pol []
```

```
esPolCero :: Polinomio a -> Bool
esPolCero (Pol []) = True
esPolCero _ = False
```

polCero es el polinomio cero. Por ejemplo, ghci> polCero 0

```
polCero :: Polinomio a
polCero = Pol []
```

```
esPolCero :: Polinomio a -> Bool
esPolCero (Pol []) = True
esPolCero _ = False
```

polCero es el polinomio cero. Por ejemplo, ghci> polCero 0

```
polCero :: Polinomio a
polCero = Pol []
```

```
esPolCero :: Polinomio a -> Bool
esPolCero (Pol []) = True
esPolCero _ = False
```

▶ (consPol n b p) es el polinomio $bx^n + p$. Por ejemplo,

```
\triangleright (consPol n b p) es el polinomio bx^n + p. Por ejemplo,
   eiPol2
                       \rightarrow x^5 + 5*x^2 + 4*x
   consPol 3 0 ejPol2 \rightsquigarrow x^5 + 5*x^2 + 4*x
   consPol 3 2 polCero → 2*x^3
   consPol 6 7 ejPol2 \rightsquigarrow 7*x^6 + x^5 + 5*x^2 + 4*x
   consPol 4 7 ejPol2 \rightsquigarrow x^5 + 7*x^4 + 5*x^2 + 4*x
   consPol 5 7 ejPol2 \rightsquigarrow 8*x^5 + 5*x^2 + 4*x
  consPol :: (Num a, Eq a) => Int -> a -> Polinomio a -> Polinomio a
  consPol _ 0 p = p
  consPol n b p@(Pol xs)
       | esPolCero p = Pol (b:replicate n 0)
       \mid n \rangle m = Pol (b:(replicate (n-m-1) 0)++xs)
       | n < m = consPol m c (consPol n b (restoPol p))
       | b+c == 0 = Pol (dropWhile (==0) (tail xs))
       | otherwise = Pol ((b+c):tail xs)
       where
         c = coefLider p
         m = grado p
```

```
grado:: Polinomio a -> Int
grado (Pol []) = 0
grado (Pol xs) = length xs - 1
```

(coefLider p) es el coeficiente líder del polinomio p. Por ejemplo,
| coefLider eiPol3

```
coefLider:: Num t => Polinomio t -> t
coefLider (Pol []) = 0
coefLider (Pol (a:_)) = a
```

```
grado:: Polinomio a -> Int
grado (Pol []) = 0
grado (Pol xs) = length xs - 1
```

 (coefLider p) es el coeficiente líder del polinomio p. Por ejemplo,

coefLider ejPol3 → 6

```
coefLider:: Num t => Polinomio t -> '
coefLider (Pol []) = 0
coefLider (Pol (a:_)) = a
```

```
grado:: Polinomio a -> Int
grado (Pol []) = 0
grado (Pol xs) = length xs - 1
```

► (coefLider p) es el coeficiente líder del polinomio p. Por ejemplo, | coefLider ejPol3 ~~ 6

```
coefLider:: Num t => Polinomio t -> t
coefLider (Pol []) = 0
coefLider (Pol (a:_)) = a
```

► (restoPol p) es el resto del polinomio p. Por ejemplo,

```
ejPol3 \leadsto 6*x^4 + 2*x restoPol ejPol3 \leadsto 2*x ejPol2 \leadsto x^5 + 5*x^2 + 4*x restoPol ejPol2 \leadsto 5*x^2 + 4*x
```

```
restoPol :: (Num t, Eq t) => Polinomio t -> Polinomio t
restoPol (Pol []) = polCero
restoPol (Pol [_]) = polCero
restoPol (Pol (_:b:as))
    | b == 0 = Pol (dropWhile (==0) as)
    | otherwise = Pol (b:as)
```

► (restoPol p) es el resto del polinomio p. Por ejemplo,

```
ejPol3 \rightsquigarrow 6*x^4 + 2*x restoPol ejPol3 \rightsquigarrow 2*x ejPol2 \rightsquigarrow x^5 + 5*x^2 + 4*x restoPol ejPol2 \rightsquigarrow 5*x^2 + 4*x
```

```
restoPol :: (Num t, Eq t) => Polinomio t -> Polinomio t
restoPol (Pol []) = polCero
restoPol (Pol [_]) = polCero
restoPol (Pol (_:b:as))
    | b == 0 = Pol (dropWhile (==0) as)
    | otherwise = Pol (b:as)
```

Tema 21: El TAD de los polinomios

- 1. Especificación del TAD de los polinomios
- Implementación del TAD de los polinomios
 Los polinomios como tipo de dato algebraico
 Los polinomios como listas dispersas
 Los polinomios como listas densas
- 3. Comprobación de las implementaciones con QuickCheck
- 4. Operaciones con polinomios

Cabecera del módulo.

```
module PolRepDensa
  ( Polinomio,
   polCero, -- Polinomio a
   esPolCero, -- Polinomio a -> Bool
   consPol, -- (Num a, Eq a) => Int -> a -> Polinomio a
                          -> Polinomio a
   grado, -- Polinomio a -> Int
   coefLider, -- Num a => Polinomio a -> a
   restoPol -- (Num a, Eq a) => Polinomio a -> Polinomio a
  ) where
```

 Representaremos un polinomio mediante una lista de pares (grado,coef), ordenados en orden decreciente según el grado. Por ejemplo, el polinomio

$$6x^4 - 5x^2 + 4x - 7$$

se representa por la lista de pares $[(4,6),(2,-5),(1,4),(0,-7)]$.

Los polinomios como listas densas.

Procedimiento de escritura de polinomios

```
instance (Num a, Show a, Eq a) => Show (Polinomio a) where
  show pol
                              = "0"
      | esPolCero pol
      | n == 0 \&\& esPolCero p = show a
      | n == 0
                              = concat [show a," + ",show p]
      | n == 1 && esPolCero p = concat [show a, "*x"]
      l n == 1
                               = concat [show a, "*x + ", show p]
      | a == 1 && esPolCero p = concat ["x^",show n]
      | esPolCero p
                            = concat [show a,"*x^",show n]
      l a == 1
                               = concat ["x^",show n," + ",show p]
      | otherwise
                               = concat [show a,"*x^",show n," + ",show p]
     where n = grado pol
           a = coefLider pol
           p = restoPol pol
```

polCero es el polinomio cero. Por ejemplo, ghci> polCero 0

```
polCero :: Polinomio a
polCero = Pol []
```

```
esPolCero :: Polinomio a -> Bool
esPolCero (Pol []) = True
esPolCero _ = False
```

```
polCero :: Polinomio a
polCero = Pol []
```

```
esPolCero :: Polinomio a -> Bool
esPolCero (Pol []) = True
esPolCero _ = False
```

polCero es el polinomio cero. Por ejemplo, ghci> polCero 0

```
polCero :: Polinomio a
polCero = Pol []
```

```
esPolCero :: Polinomio a -> Bool
esPolCero (Pol []) = True
esPolCero _ = False
```

```
\triangleright (consPol n b p) es el polinomio bx^n + p. Por ejemplo,
   eiPol2
                       \rightarrow x^5 + 5*x^2 + 4*x
   consPol 3 0 ejPol2 \rightsquigarrow x^5 + 5*x^2 + 4*x
   consPol 3 2 polCero → 2*x^3
   consPol 6 7 ejPol2 \rightsquigarrow 7*x^6 + x^5 + 5*x^2 + 4*x
   consPol 4 7 ejPol2 \rightsquigarrow x^5 + 7*x^4 + 5*x^2 + 4*x
   consPol 5 7 ejPol2 \rightsquigarrow 8*x^5 + 5*x^2 + 4*x
  consPol :: (Num a, Eq a) => Int -> a -> Polinomio a -> Polinomio a
  consPol _ 0 p = p
  consPol n b p@(Pol xs)
       \mid esPolCero p = Pol [(n,b)]
       \mid n \rangle m = Pol((n,b):xs)
       | n < m = consPol m c (consPol n b (Pol (tail xs)))
       | b+c == 0 = Pol (tail xs)
       | otherwise = Pol ((n,b+c):(tail xs))
       where
         c = coefLider p
         m = grado p
```

```
grado:: Polinomio a -> Int
grado (Pol []) = 0
grado (Pol ((n,_):_)) = n
```

CoefLider p) es el coeficiente líder del polinomio p. Por ejemplo,
□ coefLider eiPol3 → 6

```
coefLider:: Num t => Polinomio t -> t
coefLider (Pol []) = 0
coefLider (Pol ((_,b):_)) = b
```

```
grado:: Polinomio a -> Int
grado (Pol []) = 0
grado (Pol ((n,_):_)) = n
```

CoefLider p) es el coeficiente líder del polinomio p. Por ejemplo,
 coefLider ejPol3 → 6

```
coefLider:: Num t => Polinomio t -:
coefLider (Pol []) = 0
```

```
grado:: Polinomio a -> Int
grado (Pol []) = 0
grado (Pol ((n,_):_)) = n
```

CoefLider p) es el coeficiente líder del polinomio p. Por ejemplo, coefLider ejPol3 → 6

```
coefLider:: Num t => Polinomio t -> t
coefLider (Pol []) = 0
coefLider (Pol ((_,b):_)) = b
```

► (restoPol p) es el resto del polinomio p. Por ejemplo,

```
ejPol3 \leadsto 6*x^4 + 2*x restoPol ejPol3 \leadsto 2*x ejPol2 \leadsto x^5 + 5*x^2 + 4*x restoPol ejPol2 \leadsto 5*x^2 + 4*x
```

```
restoPol :: (Num t, Eq t) => Polinomio t -> Polinomio t
restoPol (Pol []) = polCero
restoPol (Pol [_]) = polCero
restoPol (Pol (_:xs)) = Pol xs
```

► (restoPol p) es el resto del polinomio p. Por ejemplo,

```
ejPol3 \rightsquigarrow 6*x^4 + 2*x restoPol ejPol3 \rightsquigarrow 2*x ejPol2 \rightsquigarrow x^5 + 5*x^2 + 4*x restoPol ejPol2 \rightsquigarrow 5*x^2 + 4*x
```

```
restoPol :: (Num t, Eq t) => Polinomio t -> Polinomio t
restoPol (Pol []) = polCero
restoPol (Pol [_]) = polCero
restoPol (Pol (_:xs)) = Pol xs
```

Comprobación de las implementaciones con QuickCheck

Librerías auxiliares

Tema 21: El TAD de los polinomios

- 1. Especificación del TAD de los polinomios
- 2. Implementación del TAD de los polinomios
- 3. Comprobación de las implementaciones con QuickCheck Librerías auxiliares

Generador de polinomios Especificación de las propiedades de los polinomios Comprobación de las propiedades

Operaciones con polinomios

Librerías auxiliares

Comprobación de las propiedades del TAD de los polinomios

Importación de la implementación a verificar.

```
import PolRepTDA
-- import PolRepDispersa
-- import PolRepDensa
```

Librerías auxiliares.

```
import Test.QuickCheck
import Test.Framework
import Test.Framework.Providers.QuickCheck2
```

IM Tema 21: El TAD de los polinomios

Comprobación de las implementaciones con QuickCheck

Generador de polinomios

Tema 21: El TAD de los polinomios

- 1. Especificación del TAD de los polinomios
- Implementación del TAD de los polinomios
- 3. Comprobación de las implementaciones con QuickCheck

Librerías auxiliares

Generador de polinomios

Especificación de las propiedades de los polinomios Comprobación de las propiedades

Operaciones con polinomios

Generador de polinomios

(genPol n) es un generador de polinomios. Por ejemplo,
ghci> sample (genPol 1)
7*x^9 + 9*x^8 + 10*x^7 + -14*x^5 + -15*x^2 + -10
-4*x^8 + 2*x

instance Arbitrary (Polinomio Int) where
 arbitrary = sized genPol

IM Tema 21: El TAD de los polinomios

Comprobación de las implementaciones con QuickCheck

Especificación de las propiedades de los polinomios

Tema 21: El TAD de los polinomios

- 1. Especificación del TAD de los polinomios
- 2. Implementación del TAD de los polinomios
- 3. Comprobación de las implementaciones con QuickCheck

Librerías auxiliares

Generador de polinomios

Especificación de las propiedades de los polinomios

Comprobación de las propiedades

Operaciones con polinomios

Especificación de las propiedades de los polinomios

polCero es el polinomio cero.

```
prop_polCero_es_cero :: Bool
prop_polCero_es_cero =
    esPolCero polCero
```

➤ Si n es mayor que el grado de p y b no es cero, entonces (consPol n b p) es un polinomio distinto del cero.

Especificación de las propiedades de los polinomios

polCero es el polinomio cero.

```
prop_polCero_es_cero :: Bool
prop_polCero_es_cero =
    esPolCero polCero
```

Si n es mayor que el grado de p y b no es cero, entonces (consPol n b p) es un polinomio distinto del cero.

polCero es el polinomio cero.

```
prop_polCero_es_cero :: Bool
prop_polCero_es_cero =
    esPolCero polCero
```

➤ Si n es mayor que el grado de p y b no es cero, entonces (consPol n b p) es un polinomio distinto del cero.

(consPol (grado p) (coefLider p) (restoPol p)) es igual a p.

```
prop_consPol :: Polinomio Int -> Bool
prop_consPol p =
    consPol (grado p) (coefLider p) (restoPol p) == p
```

Si n es mayor que el grado de p y b no es cero, entonces el grado de (consPol n b p) es n.

```
prop_grado :: Int -> Int -> Polinomio Int -> Property
prop_grado n b p =
    n > grado p && b /= 0 ==>
    grado (consPol n b p) == n
```

Especificación de las propiedades de los polinomios

(consPol (grado p) (coefLider p) (restoPol p)) es igual a p.

```
prop_consPol :: Polinomio Int -> Bool
prop_consPol p =
    consPol (grado p) (coefLider p) (restoPol p) == p
```

Si n es mayor que el grado de p y b no es cero, entonces el grado de (consPol n b p) es n.

```
prop_grado :: Int -> Int -> Polinomio Int -> Property
prop_grado n b p =
    n > grado p && b /= 0 ==>
    grado (consPol n b p) == n
```

Especificación de las propiedades de los polinomios

Especificación de las propiedades de los polinomios

(consPol (grado p) (coefLider p) (restoPol p)) es igual a p.

Si n es mayor que el grado de p y b no es cero, entonces el grado de (consPol n b p) es n.

```
prop_grado :: Int -> Int -> Polinomio Int -> Property
prop_grado n b p =
    n > grado p && b /= 0 ==>
    grado (consPol n b p) == n
```

Especificación de las propiedades de los polinomios

Si n es mayor que el grado de p y b no es cero, entonces el coeficiente líder de (consPol n b p) es b.

```
prop_coefLider :: Int -> Int -> Polinomio Int -> Property
prop_coefLider n b p =
    n > grado p && b /= 0 ==>
    coefLider (consPol n b p) == b
```

Si n es mayor que el grado de p y b no es cero, entonces el resto de (consPol n b p) es p.

```
prop_restoPol :: Int -> Int -> Polinomio Int -> Property
prop_restoPol n b p =
    n > grado p && b /= 0 ==>
```

Especificación de las propiedades de los polinomios

➤ Si n es mayor que el grado de p y b no es cero, entonces el coeficiente líder de (consPol n b p) es b.

```
prop_coefLider :: Int -> Int -> Polinomio Int -> Property
prop_coefLider n b p =
    n > grado p && b /= 0 ==>
    coefLider (consPol n b p) == b
```

➤ Si n es mayor que el grado de p y b no es cero, entonces el resto de (consPol n b p) es p.

```
prop_restoPol :: Int -> Int -> Polinomio Int -> Property
prop_restoPol n b p =
    n > grado p && b /= 0 ==>
    restoPol (consPol n b n) == n
```

➤ Si n es mayor que el grado de p y b no es cero, entonces el coeficiente líder de (consPol n b p) es b.

```
prop_coefLider :: Int -> Int -> Polinomio Int -> Property
prop_coefLider n b p =
    n > grado p && b /= 0 ==>
    coefLider (consPol n b p) == b
```

Si n es mayor que el grado de p y b no es cero, entonces el resto de (consPol n b p) es p.

```
prop_restoPol :: Int -> Int -> Polinomio Int -> Property
prop_restoPol n b p =
    n > grado p && b /= 0 ==>
    restoPol (consPol n b p) == p
```

IM Tema 21: El TAD de los polinomios

Comprobación de las implementaciones con QuickCheck

Comprobación de las propiedades

Tema 21: El TAD de los polinomios

- 1. Especificación del TAD de los polinomios
- Implementación del TAD de los polinomios
- 3. Comprobación de las implementaciones con QuickCheck

Generador de polinomios

Especificación de las propiedades de los polinomi-

Comprobación de las propiedades

Operaciones con polinomios

Procedimiento de comprobación

 compruebaPropiedades comprueba todas las propiedades con la plataforma de verificación. Por ejemplo,

Comprobación de las propiedades

Total

Comprobación de las propiedades de los polinomios

```
ghci> compruebaPropiedades
Propiedades del TAD polinomio::
  P1: [OK, passed 100 tests]
  P2: [OK, passed 100 tests]
  P3: [OK, passed 100 tests]
  P4: [OK, passed 100 tests]
  P5: [OK, passed 100 tests]
  P6: [OK, passed 100 tests]
         Properties
                     Total
 Passed
         6
                     6
 Failed
```

Tema 21: El TAD de los polinomios

- 1. Especificación del TAD de los polinomios
- 2. Implementación del TAD de los polinomios
- Comprobación de las implementaciones con QuickCheck
- 4. Operaciones con polinomios

 Operaciones con polinomios

Operaciones con polinomios

Importación de la implementación a utilizar.

```
import PolRepTDA
-- import PolRepDispersa
-- import PolRepDensa
```

Importación de librerías auxiliares.

```
import Test.QuickCheck
import Test.Framework
import Test.Framework.Providers.QuickCheck2
```

Funciones sobre términos

► (creaTermino n a) es el término ax^n . Por ejemplo, creaTermino 2 5 \rightsquigarrow 5*x^2

```
creaTermino:: (Num t, Eq t) => Int -> t -> Polinomio t
creaTermino n a = consPol n a polCero
```

```
termLider:: (Num t, Eq t) => Polinomio t -> Polinomio t
termLider p = creaTermino (grado p) (coefLider p)
```

Funciones sobre términos

► (creaTermino n a) es el término ax^n . Por ejemplo, creaTermino 2 5 \rightsquigarrow 5*x^2

```
creaTermino:: (Num t, Eq t) => Int -> t -> Polinomio t
creaTermino n a = consPol n a polCero
```

```
termLider:: (Num t, Eq t) => Polinomio t -> Polinomio t
termLider p = creaTermino (grado p) (coefLider p)
```

Funciones sobre términos

► (creaTermino n a) es el término ax^n . Por ejemplo, creaTermino 2 5 \rightsquigarrow 5*x^2

```
creaTermino:: (Num t, Eq t) => Int -> t -> Polinomio t
creaTermino n a = consPol n a polCero
```

```
termLider:: (Num t, Eq t) => Polinomio t -> Polinomio t
termLider p = creaTermino (grado p) (coefLider p)
```

Suma de polinomios

▶ (sumaPol p q) es la suma de los polinomios p y q. Por ejemplo,

```
ejPol1 \rightarrow 3*x^4 + -5*x^2 + 3
ejPol2 \rightarrow x^5 + 5*x^2 + 4*x
sumaPol ejPol1 ejPol2 \rightarrow x^5 + 3*x^4 + 4*x + 3
```

Suma de polinomios

```
\rightarrow x^5 + 5*x^2 + 4*x
ejPol2
sumaPol ejPol1 ejPol2 \leftrightarrow x^5 + 3*x^4 + 4*x + 3
sumaPol:: (Num a, Eq a) => Polinomio a -> Polinomio a -> Polinomio a
sumaPol p q
    | esPolCero p = q
    | esPolCero q = p
    | n1 > n2 = consPol n1 a1 (sumaPol r1 q)
    | n1 < n2 = consPol n2 a2 (sumaPol p r2)
    | otherwise = consPol n1 (a1+a2) (sumaPol r1 r2)
    where n1 = grado p
          a1 = coefLider p
          r1 = restoPol p
          n2 = grado q
          a2 = coefLider q
          r2 = restoPol q
```

Propiedades de la suma de polinomios

El polinomio cero es el elemento neutro de la suma.

```
prop_neutroSumaPol :: Polinomio Int -> Bool
prop_neutroSumaPol p =
    sumaPol polCero p == p
```

La suma es conmutativa.

Propiedades de la suma de polinomios

El polinomio cero es el elemento neutro de la suma.

```
prop_neutroSumaPol :: Polinomio Int -> Bool
prop_neutroSumaPol p =
    sumaPol polCero p == p
```

La suma es conmutativa.

Propiedades de la suma de polinomios

El polinomio cero es el elemento neutro de la suma.

```
prop_neutroSumaPol :: Polinomio Int -> Bool
prop_neutroSumaPol p =
    sumaPol polCero p == p
```

La suma es conmutativa.

Producto de polinomios

 (multPorTerm t p) es el producto del término t por el polinomio p. Por ejemplo,

```
ejTerm \leadsto 4*x 
ejPol2 \leadsto x^5 + 5*x^2 + 4*x 
multPorTerm ejTerm ejPol2 \leadsto 4*x^6 + 20*x^3 + 16*x^2
```

ejTerm

ejPol2

Producto de polinomios

► (multPorTerm t p) es el producto del término t por el polinomio p. Por ejemplo,

```
| multPorTerm ejTerm ejPol2 \times 4*x^6 + 20*x^3 + 16*x^2
| multPorTerm :: (Num t, Eq t) => Polinomio t -> Polinomio t -
```

 \rightarrow x^5 + 5*x^2 + 4*x

Producto de polinomios

▶ (multPol p q) es el producto de los polinomios p y q. Por ejemplo,

```
| ghci> ejPol1

| 3*x^4 + -5*x^2 + 3

| ghci> ejPol2

| x^5 + 5*x^2 + 4*x

| ghci> multPol ejPol1 ejPol2

| 3*x^9 + -5*x^7 + 15*x^6 + 15*x^5 + -25*x^4 + -20*x^3

| + 15*x^2 + 12*x
```

```
multPol :: (Num a, Eq a) => Polinomio a -> Pol
```

Producto de polinomios

 $+ 15*x^2 + 12*x$

(multPol p q) es el producto de los polinomios p y q. Por ejemplo,
 ghci> ejPol1
 3*x^4 + -5*x^2 + 3
 ghci> ejPol2
 x^5 + 5*x^2 + 4*x
 ghci> multPol ejPol1 ejPol2
 3*x^9 + -5*x^7 + 15*x^6 + 15*x^5 + -25*x^4 + -20*x^3

Propiedades del producto polinomios

▶ El producto de polinomios es conmutativo.

El producto es distributivo respecto de la suma.

Propiedades del producto polinomios

El producto de polinomios es conmutativo.

El producto es distributivo respecto de la suma.

Propiedades del producto polinomios

El producto de polinomios es conmutativo.

El producto es distributivo respecto de la suma.

Polinomio unidad

polUnidad es el polinomio unidad. Por ejemplo, ghci> polUnidad 1

```
polUnidad:: (Num t, Eq t) => Polinomio t
polUnidad = consPol 0 1 polCero
```

El polinomio unidad es el elemento neutro del producto.

```
prop_polUnidad :: Polinomio Int -> Bool
prop_polUnidad p =
   multPol p polUnidad == p
```

Polinomio unidad

polUnidad es el polinomio unidad. Por ejemplo, | ghci> polUnidad | 1

```
polUnidad:: (Num t, Eq t) => Polinomio t
polUnidad = consPol 0 1 polCero
```

► El polinomio unidad es el elemento neutro del producto.

```
prop_polUnidad :: Polinomio Int -> Bool
prop_polUnidad p =
   multPol p polUnidad == p
```

Polinomio unidad

polUnidad es el polinomio unidad. Por ejemplo, ghci> polUnidad

```
polUnidad:: (Num t, Eq t) => Polinomio t
polUnidad = consPol 0 1 polCero
```

▶ El polinomio unidad es el elemento neutro del producto.

```
prop_polUnidad :: Polinomio Int -> Bool
prop_polUnidad p =
    multPol p polUnidad == p
```

Valor de un polinomio en un punto

 (valor p c) es el valor del polinomio p al sustituir su variable por c. Por ejemplo,

```
ejPol1 \rightsquigarrow 3*x^4 + -5*x^2 + 3 valor ejPol1 0 \rightsquigarrow 3 valor ejPol1 1 \rightsquigarrow 1 valor ejPol1 (-2) \rightsquigarrow 31
```

Valor de un polinomio en un punto

 (valor p c) es el valor del polinomio p al sustituir su variable por c. Por ejemplo,

```
ejPol1 \rightsquigarrow 3*x^4 + -5*x^2 + 3

valor ejPol1 0 \rightsquigarrow 3

valor ejPol1 1 \rightsquigarrow 1

valor ejPol1 (-2) \rightsquigarrow 31
```

Verificación de raices de polinomios

 (esRaiz c p) se verifica si c es una raiz del polinomio p. por ejemplo,

```
ejPol3 \leadsto 6*x^4 + 2*x esRaiz 1 ejPol3 \leadsto False esRaiz 0 ejPol3 \leadsto True
```

```
esRaiz:: (Num a, Eq a) => a -> Polinomio a -> Bool esRaiz c p = valor p c == 0
```

Verificación de raices de polinomios

 (esRaiz c p) se verifica si c es una raiz del polinomio p. por ejemplo,

```
ejPol3 \leadsto 6*x^4 + 2*x esRaiz 1 ejPol3 \leadsto False esRaiz 0 ejPol3 \leadsto True
```

```
esRaiz:: (Num a, Eq a) => a -> Polinomio a -> Bool esRaiz c p = valor p c == 0
```

Derivación de polinomios

```
ejPol2 \rightsquigarrow x^5 + 5*x^2 + 4*x derivada ejPol2 \rightsquigarrow 5*x^4 + 10*x + 4
```

Derivación de polinomios

```
ejPol2 \rightsquigarrow x^5 + 5*x^2 + 4*x derivada ejPol2 \rightsquigarrow 5*x^4 + 10*x + 4
```

Propiedades de las derivadas de polinomios

La derivada de la suma es la suma de las derivadas.

```
prop_derivada :: Polinomio Int -> Polinomio Int -> Bool
prop_derivada p q =
    derivada (sumaPol p q) ==
    sumaPol (derivada p) (derivada q)
```

Propiedades de las derivadas de polinomios

La derivada de la suma es la suma de las derivadas.

```
prop_derivada :: Polinomio Int -> Polinomio Int -> Bool
prop_derivada p q =
    derivada (sumaPol p q) ==
    sumaPol (derivada p) (derivada q)
```