Линейная алгебра на ПМИ

2017 год

Содержание

Лекция 22	2
Лекция 26	2

Лекция 22

V – векторное пространство над $\mathbb R$

 $Q:V\mapsto\mathbb{R}$ – квадратичная форма

Q положительно определена $\Leftrightarrow Q(x) > 0 \forall x \neq 0$

Q отрицательно определена $\Leftrightarrow Q(x) < 0 \forall x \neq 0$

Q неотрицательно определена $\Leftrightarrow Q(x) \geq 0 \forall x \neq 0$

Q неположительно определена $\Leftrightarrow Q(x) \leq 0 \forall x \neq 0$

Q неопределена $\Leftrightarrow \exists x: Q(x) > 0$ и $\exists x: Q(x) < 0$

Примечание:

$$f:\mathbb{R}^n\mapsto\mathbb{R}$$
 $x_0\in\mathbb{R}^n$ $y\in R^n$ - «малое приращение»

Пусть
$$f(x_0 + y) = f(x_0) + \underbrace{a_1 y_1 + \ldots + a_n y_n}_{l(y)$$
 – линейная форма $+ \underbrace{\sum_{i=1}^n b_i y_i^2 + \sum_{i,j} 2b_{ij} y_i y_j}_{$ квадратичная форма

Лекция 26

Линейные многообразия и аффинные системы координат

СЛУ $Ax = b, x \in \mathbb{R}^n$

Пусть система совместна и $x_{\rm q}$ – частное решение.

 $L \subseteq \mathbb{R}^n$ – множество всех решений.

 $\Rightarrow L=x_{^{_{\! 4}}}+S,$ где $S\subseteq \mathbb{R}^n$ – множество решений однородной СЛУ Ax=0(*) // Сделать звёздочку активной

Определение 1. Линейное многообразие в \mathbb{R}^n – это множество решений некоторой совместной СЛУ.

Примеры:

 $\bullet \ ax + by = c$

$$egin{pmatrix} rac{c}{a} \ 0 \end{pmatrix} + \lambda egin{pmatrix} 1 \ rac{b}{a} \end{pmatrix}$$
 — прямая в \mathbb{R}^2

• ax + by + cz = d — задаёт плоскость в \mathbb{R}^3

•
$$\begin{cases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \end{cases}$$
 — задаёт прямую (пересечение плоскостей) в \mathbb{R}^3

Предложение 1. $L \subseteq \mathbb{R}^n$ – непустое множество $\Rightarrow L$ – линейное многообразие $\Leftrightarrow L = v_0 + S$ для некоторых $v_0 \in L$ и подпространства $S \subseteq \mathbb{R}^n$.

Доказательство. Докажем в обе стороны:

- [⇒] Прямое следствие из (∗).
- $[\Leftarrow]$ $L = v_0 + S$. Так как S подпространство, то \exists ОСЛУ Ax = 0, такое что S есть её множество решений. Тогда v_0 есть частное решение СЛУ $Ax = Av_0$, следовательно L является множеством решений СЛУ $Ax = Av_0$.

Пусть $L_1 = v_1 + S_1$ и $L_2 = v_2 + S_2$ – два линейных многообразия.

Предложение 2.
$$L_1 = L_2 \Leftrightarrow \begin{cases} S_1 = S_2 \ (=S) \\ v_1 - v_2 \in S \end{cases}$$

Доказательство. Докажем в обе стороны:

- [←] Очевидно, исходя из теоретико-множественных соображений.
- $[\Rightarrow]$ $v_1=v_1+0\in v_2+S_2\Rightarrow v_1-v_2\in S_2$. Аналогично показывается $v_1-v_2\in S_2$ $\Rightarrow v_1-v_2\in S_1\cap S_2$. $v\in S_1\Rightarrow v_1+v\in v_2S_2\Rightarrow v\in (v_2-v_1)+S_2\subseteq S_2\Rightarrow S_1\subseteq S_2$. Аналогично доказывается $S_2\subseteq S_1$ $\Rightarrow S_1=S_2$ (=S) и $v_1-v_2\in S$.

Следствие. Если $L = v_0 + S$ – линейное многообразие, то подпространство S определено однозначно.

Определение 2. S называется направляющим подпространством линейного многообразия L

Определение 3. Размерностью линейного многообразия L называется размерность направляющего подпространства.

Пусть n – размерность, тогда линейное мнообразие размерности

- 0 это точка
- 1 прямая
- 2 плоскость
- k k-мерная плоскость
- n-1 гиперплоскость

L – линейное многообразие с направляющим подпространством $S, k = \dim L = \dim S$.

Определение 4. Набор (v_0, e_1, \dots, e_k) , где $v_0 \in L$ u (e_1, \dots, e_k) – базис в S, называется репе́ром.

Всякий репер задаёт аффинную систему координат на L.

 $L = v_0 + S \Rightarrow \forall \ v \in L$ однозначно представим в виде $v = v_0 + \alpha_1 e_1 + \dots \alpha_k e_k$. Числа $\alpha_1, \dots \alpha_k$ называются координатами точки v в данной аффинной системе координат (или по отношению к данному реперу).

Теорема 1. а) Через любые k+1 точки в \mathbb{R}^n проходит плоскость размерности $\leq k$.

- б) Если k+1 точек не лежат в плоскости размерности, то через них проходит ровно одна плоскость размерности k.
- Доказательство. а) Пусть v_0, v_1, \dots, v_k наши точки. Тогда они все лежат в плоскости $P = v_0 + \langle v_1 v_0, v_2 v_0, \dots, v_k v_0 \rangle \Rightarrow \dim P = \dim S \leq k$.
 - б) В этом случае $\dim P = k \Rightarrow \dim S = k \Rightarrow v_1 v_0, \dots v_k v_0$ линейно независимы. $v_1 v_0, \dots v_k v_0$ лежат в направляющем подпространстве любой плоскости, проходящий через $v_0, v_1, \dots, v_k \Rightarrow P$ единственная плоскость размерности k с требуемым свойством. (Более строгое доказательство единственности можно построить, предположив, что существует другая плоскость, проходящая через те же точки и далее прийти к противоречию с помощью предложения 2).

Следствие 1. Через любые 2 различные точки проходит ровно 1 прямая.

Следствие 2. Через любые 3 точки, нележащие на одной прямой прямой, проходит ровно 1 плоскость.

Взаимное расположение двух линейных многообразий

Замечание. L_1, L_2 – линейное многообразие и $L_1 \cap L_2 \neq \emptyset$, то $L_1 \cap L_2$ – линейное многообразие.

$L_1 \cap L_2 \neq \varnothing$	$L_1 \cap L_2 = \varnothing$
1) $L_1 = L_2$ совпадают $(L_1 = L_2 \Leftrightarrow S_1 = S_2)$	1) L_1 параллельно $L_2 \stackrel{\mathrm{def}}{\Leftrightarrow} S_1 \subseteq S_2$ или $S_2 \subseteq S_1$
$2) L_1 \subseteq L_2 \Leftrightarrow S_1 \subseteq S_2$	2) L_1 и L_2 скрещиваются $\stackrel{\text{def}}{\Leftrightarrow} S_1 \cap S_2 = \{0\}$
3) Остальное	3) Остальное

Линейные многообразия в \mathbb{R}^2

Нетривиальный случай dim = 1(прямая) Способы задания:

1. Уравнение в координатах:

$$Ax + By + C = 0$$
, $(A, B) \neq (0, 0)$

2. Векторное уравнение через вектор нормали:

$$(n, v - v_0) = 0$$

3. Параметрическое уравнение в векторном виде:

$$v = v_0 + at$$

где $a=(a_1,a_2)$ – напрявляющий вектор, $v_0=(x_0,y_0)$ – фикисированная точка на прямой.

То же уравнение в скалярном виде:

$$\begin{cases} x = x_0 + a_1 t \\ y = y_0 + a_2 t \end{cases}$$

4. Матричная форма:

$$\begin{vmatrix} x - x_0 & y - y_0 \\ x_1 - x_0 & y_1 - y_0 \end{vmatrix} = 0$$

Линейные многообразия в \mathbb{R}^3

- 1. $\dim = 1$ (прямые в \mathbb{R}^3) Способы задания:
 - 1.1) Система линейных уравнений:

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

Причем,
$$rk\begin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{pmatrix}=2$$

1.2) Векторное уравнение:

$$[v - v_0, a] = 0$$

где a – направляющий вектор.

1.3) Параметрическое уравнение в векторном виде:

$$v = v_0 + at$$

где $a=(a_1,a_2,a_3)$ – напрявляющие векторы, $v_0=(x_0,y_0,z_0)$ – фиксированная точка на плоскости.

То же уравнение в скалярном виде:

$$\begin{cases} x = x_0 + a_1 t \\ y = y_0 + a_2 t \\ z = z_0 + a_3 t \end{cases}$$

1.4) Каноническое уравнение:

$$\frac{x - x_0}{a_1} = \frac{y - y_0}{a_2} = \frac{z - z_0}{a_3}$$

Если $a_1 = 0$, то вместо $\frac{x - x_0}{a_1}$ пишут уравнение $x = x_0$. Аналогично для a_2 и a_3 .

1.5) Прямая, проходящая через две различных точки $(x_0, y_0, z_0), (x_1, y_1, z_1).$

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} = \frac{z - z_0}{z_1 - z_0}$$

2. dim = 2(плоскость) Способы задания:

2.1) Уравнение в координатах:

$$Ax + By + Cz + D = 0, (A, B, C) \neq (0, 0, 0)$$

2.2) Векторное уравнение через вектор нормали:

$$(n, v - v_0) = 0$$

5

2.3) Параметрическое уравнение в векторном виде:

$$v = v_0 + at + bu$$

где $a=(a_1,a_2,a_3), b=(b_1,b_2,b_3)$ – напрявляющие векторы, $v_0=(x_0,y_0,z_0)$ – фиксированная точка на плоскости.

То же уравнение в скалярном виде:

$$\begin{cases} x = x_0 + a_1 t + b_1 u \\ y = y_0 + a_2 t + b_2 u \\ z = z_0 + a_3 t + b_3 u \end{cases}$$

2.4) Матричная форма:

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ x_1 - x_0 & y_1 - y_0 & z_1 - z_0 \\ x_2 - x_0 & y_2 - y_0 & z_2 - z_0 \end{vmatrix} = 0$$