

JINJA JOINT EXAMINATIONS BOARD

MOCK EXAMINATIONS 2022

P425/2 MATHEMATICS

MARKING GUIDE

3.5m

(T):
$$T_1 + 2T_1 = 36$$
 M1
 $T_1 = 12$ B1
 $T_2 = 24$ M(A): $T_2 = 24$ M1

05

A1

2.
$$P(P \cap Q) = P(P) \times P(Q/P)$$

= 0.6 x 0.9
= 0.54

0.14

(i) P (P or Q but not both P and Q) =
$$0.06 + 0.26$$

= 0.32 A1

(ii)
$$P(P(Q))$$

$$= \frac{P(P \cap Q)}{P(Q)}$$

$$= \frac{0.54}{0.8}$$
 M1
$$= \frac{54}{80}$$
 A1

05

3. (a)
$$\frac{20-15}{13.6-12} = \frac{20-D}{13.6-12.8}$$
 B1M1

$$D = 17.5$$

A1

(b)
$$\frac{34.7 - 31}{F - 12}$$
 = $\frac{31 - 25}{5.0 - 10.5}$ MI

$$F = 16.08\overline{3}$$

A1

05

4. (a)

$$V_R^2 = 100^2 + 60^2 - 2 \times 60 \times 100 \times \cos 135^0$$

$$V_R = 148.6112 \, ms^{-1}$$

(b)
$$\frac{148.6112}{\sin 135^0} = \frac{60}{\sin \theta}$$

$\theta = 16.6^{0}$	B 1
∴ Direction is <i>N</i> 73.4 $^{\circ}E$	A1
	05

5.
$$P = 0.46$$
, $q = 0.54$, $n = 100$

$$\mu = np = 100 \times 0.46$$

$$\sigma = \sqrt{100 \times 0.46 \times 0.54}$$

$$= 4.98397$$
B1
$$P(X < 50) = P(Y < 49.5)$$

$$P\left(\frac{Z < 4.5 - 46}{4.98397}\right)$$

$$P(Z < 0.702)$$

$$0.5 + 0.2586$$
M1

05

A1

6.
$$h = \frac{\frac{\pi}{3} - 0}{4} = \frac{\pi}{12}$$

B1

$$\begin{bmatrix}
x & y_0, y_4 & y_1, \dots y_3 \\
0 & 1.000 & \\
\hline{\frac{\pi}{12}} & 1.255 \\
\hline{\frac{\pi}{4}} & 1.462 & \\
\hline{\frac{\pi}{3}} & 1.425 & 1.551 \\
\hline{Sum} & 2.425
\end{bmatrix}$$
B1

= 0.7586

$$\int_0^{\frac{\pi}{3}} e^x \cos x \, dx = \frac{1}{2} \times \frac{\pi}{12} \times [2.425 \times 2 (4.268)] \quad \mathbf{M1}$$
$$= 1.434$$

1.43 (3*s*. *f*) **A**1

4.268

7.

Rx	3	6	7	1	8	4.5	2	4.5
Ry	2	5	6	1	8	7	4	3
d	1	1	1	0	0	-2.5	-2	1.5

B1

B1

$$\sum d^2 = 15.5$$

B1

$$r_s = 1 - \frac{6 \times 15.5}{8 \times 63}$$

M1

$$= 0.8155$$

A1

05

8.
$$\boldsymbol{v} = e^t \boldsymbol{i} + 2e^{-2t} \boldsymbol{i} - \sin t \boldsymbol{k}$$

$$\boldsymbol{a} = e^t \boldsymbol{i} - 4e^{-2t} \boldsymbol{j} - \cos \boldsymbol{k}$$

M1

$$\therefore force, \mathbf{F} = 2 \left(e^t \mathbf{i} - 4e^{-2t} \mathbf{j} - cost \mathbf{k} \right)$$

$$= 2e^t \mathbf{i} - 8e^{-2t} \mathbf{j} - \cos t \mathbf{k}$$

B1

Power =
$$\mathbf{F} \cdot \mathbf{V}$$

$$= \begin{pmatrix} 2e^t \\ -8e^{-2t} \\ -2cost \end{pmatrix} \cdot \begin{pmatrix} e^t \\ 2e^{-2t} \\ -sint \end{pmatrix}$$

$$= 2e^{2t} + -16e^{-4t} + \sin 2t$$

M1

When
$$t = 4$$
; power = $2e^{2t} - 16e^{-4(4)} + sin^2(4)$

M1

<u>A1</u>

9. (a)
$$\mu = 52$$
, $\sigma = 16$
(i) $P(X < 40) = P\left(Z < \frac{40-52}{16}\right)$ M1
$$= P(Z < -0.75)$$

$$= 0.5 - 0.2734$$

$$= 0.2266$$
 B1

∴ Number of candidates in the school = $\frac{20}{0.2266}$ M1

$$= 88.2613$$
 A1

(ii)
$$P(X \ge 68) = P\left(Z \ge \frac{68-}{16}\right)$$
 M1
= $P(Z \ge 1.000)$
= $0.5 - 0.3413$
= 0.1587 B1

: Number who got distinctions.

$$= 0.1587 \times 88.2613$$
 M1
= 14.0071 A1

(b)
$$S.E = \frac{16}{\sqrt{16}} = 4$$
 $M1 M1$

$$\therefore (46 < \overline{X} < 58) = P\left(\frac{46-52}{4} < Z < \frac{58-52}{4}\right)$$

$$= P(-1.5 < Z < 1.5)$$

$$= 2 \times 0.4332$$

$$= 0.8664 A1$$

If the particle is projected with speed u, at an angle \propto to the horizontal, then,

$$\dot{x} = u \cos \propto ----- (1)$$
 B1

$$\dot{y} = u \sin \propto -gt - - - - (2)$$
 B1

$$\Rightarrow x = u \cos \propto t - - - - (3)$$
 B1

$$y = usin \propto t - \frac{1}{2} gt^2 - - - (4)$$
 B1

Substituting (3) into (4) for t,

$$y = u \sin \propto \left(\frac{x}{u\cos \propto}\right) - \frac{gx^2}{2u^2\cos^2 \propto}$$
 M1

$$y = x \tan \propto -\frac{gx^2}{2u^2} (1 + \tan \propto)$$
 B1

(b)
$$y = 9$$
, $x = 72$

(i) using
$$y = x \tan \alpha - \frac{gx^2}{2u^2} (1 + \tan \alpha)$$

$$9 = 72 \tan \propto -\frac{10 (72)^2}{2(30)^2} - (1 + \tan \propto)$$
 M1

$$16tan^2 \propto -40 \ tan \propto +21 = 0$$
 B1

$$tan \propto = \frac{40 \pm 16}{32}$$
 M1

$$\frac{56}{32}$$
 or $\frac{24}{32}$

$$\therefore tan \propto = \frac{3}{4} \text{ or } \frac{7}{4}$$

$\Rightarrow \alpha = 36.9^{\circ}$	and 60.2°
-------------------------------------	--------------------

M1 A1 A1

12

11. (a) (i)

(a) (ii) $x_0 = 0.9$ **A1**

(b)
$$f(x) = x^{2} - \sin x$$

$$f(x) = 2x - \cos x$$

$$M1$$

$$x_{1} = 0.9 - \frac{(0.9^{2} - \sin 0.9)}{2(0.9) - \cos 0.9}$$

$$= 0.8774$$

$$e_{1} = 0.0226$$

$$B1$$

$$x_{2} = 0.8774 - \frac{(0.8774^{2} - \sin 0.8774)}{2(0.8774) - \cos(0.8774)}$$

$$= 0.8767$$

$$e_{2} = 0.0007$$

$$B1$$

$$\therefore root = 0.877$$

$$A1$$

12.

(a)
$$V_t = \int (e^{-2t} \mathbf{i} - 2\cos t \mathbf{j} + 4\sin 2t \mathbf{k}) dt$$

$$= \frac{-1}{2} e^{-2t} \mathbf{i} - 2\sin t \mathbf{j} - 2\cos 2t \mathbf{k} + \mathbf{C} \qquad \mathbf{M1}$$

$$V_t = 0 = \mathbf{i} = 2\mathbf{j} + 4\mathbf{k}$$

$$\Rightarrow \mathbf{i} - 2\mathbf{j} + 4\mathbf{k} = \frac{-1}{2} e^{-2(0)} \mathbf{i} - 2\sin 0\mathbf{j} - 2\cos 2(0)\mathbf{k} + \mathbf{C} \mathbf{M1}$$

$$\mathbf{C} = \frac{3}{2} \mathbf{i} - 2\mathbf{j} + 6\mathbf{k} \qquad \mathbf{B1}$$

$$\therefore V_t = \begin{pmatrix} \frac{-1}{2} e^{-2t} & +\frac{3}{2} \\ -2\sin t & -2 \end{pmatrix}$$

$$\Rightarrow \mathbf{A1}$$

(b)
$$V_t = \frac{\pi}{2} = \begin{pmatrix} \frac{-1}{2}e^{-\pi} & + & \frac{3}{2} \\ -2\sin\frac{\pi}{2} & - & 2 \\ -2\cos\pi & + & 6 \end{pmatrix}$$

$$\begin{pmatrix} 1.4784 \\ -4 \\ 8 \end{pmatrix}$$

Speed =
$$\sqrt{(1.4784)^2 + (-4)^2 + 8^2}$$
 M1
= 9.06563 A1
(c) $\mathbf{r}_t = \int \left(\frac{-1}{2}e^{-2t} + 3\right)\mathbf{i} - (2 + 2sint)\mathbf{j} + (\mathbf{6} - 2cos2t)\mathbf{k} dt$
= $\left(\frac{1}{4}e^{-2t} + \frac{3}{2}t\right)\mathbf{i} - (2t + 2cost)\mathbf{j} + (6t - 4sin2t)\mathbf{k} + \mathbf{C}_1\mathbf{M}\mathbf{1}$
when $t = 0$;
 $2\mathbf{i} - \mathbf{j} + 4\mathbf{k} = \frac{1}{4}\mathbf{i} - 2\mathbf{i} + 0\mathbf{k} + \mathbf{C}_1$ M1
 $\mathbf{C}_1 = \frac{7}{4}\mathbf{i} + \mathbf{j} + 4\mathbf{k}$ B1

$$\therefore \mathbf{r}_t = \left(\frac{1}{4}e^{-2t} + \frac{3}{2}t + \frac{7}{4}\right)\mathbf{i} + (2t + 2cost + 1)\mathbf{i} + (6t - 2sin2t + 4)\mathbf{k} \mathbf{M}\mathbf{1}$$
 A1

13. (a)

Height	f	X	Xf	X^2f	f.d
147 - 156	12	151. 5	1818	275427	1.2
157 - 161	8	154	1272	202248	1.6
162 - 166	8	164	1312	215168	1.6
167 - 171	9	169	1521	257049	1.8
172 - 176	7	174	1218	211932	1.4
177 - 186	6	181.5	1089	197653.5	0.6
Sum	50		8230	1,359,477.5	

12

B1 B1 B1

(b) (i) Mean height
$$=\frac{8230}{50}$$
 M1 $= 164.6$

(ii) Standard deviation =
$$\left[\frac{1.359,477.5}{50} - (164.6)^2\right]^{\frac{1}{2}}$$
M1

= 9.8178

A1

14. (a) $\frac{\Delta l}{L} \times 100 = 5$ $\frac{\Delta w}{w} \times 100 = 4.2$

$$\Delta L = \frac{5 \times 5.25}{100} \quad \Delta w = \frac{4.2 \times 0.44}{100}$$
= 0.0625 B1 = 0.01848 B1

A max= (1.25 + 0.0625) × (0.44 + 0.01848) M1
= 0.602
= 0.60 A1

A min = (1.25 - 0.0625) × (0.44 - 0.01848)M1
= 0.500 M1
= 0.50 M1
= 0.50 M1
= 0.50 M1
= $\frac{(a + e_1)^2}{(b + e_2)} - \frac{a^2}{b}$ M1
$$= \frac{(a + e_1)^2}{(b + e_2)} - \frac{a^2}{b}$$

$$= \frac{b(a^2 + 2ae_1 + e_1^2) - a^2(b + e_2)}{b(b + e_2)}$$

$$= \frac{2abe_1 + e_1^2b - a^2e_2}{b(b + e_2)^2}$$

$$= \frac{2abe_1 + e_1^2b - a^2e_2}{b(b + e_2)^2}$$
If $|e_1| < < |A|$ and $|e_2| < < |B|$ B1
$$\frac{e_2}{b} \approx 0$$
 and $e_1^2 \approx 0$

$$\therefore e = \frac{2abe_1 - a^2e_2}{b^2}$$

$$= \frac{a^2}{b^2} \begin{vmatrix} 2e_1 - a^2e_2 \\ b \end{vmatrix}$$

12

M1

B1

 $|e| \leq \frac{a^2}{b} \left[\left| \frac{2e_1}{a} \right| + \left| \frac{e_2}{b} \right| \right]$

(erel) max = $2 \left| \frac{e_1}{a} \right| + \left| \frac{e_2}{b} \right|$

erel = $\frac{|e|}{\left|\frac{a^2}{b}\right|} \le \frac{a^2}{b} \times \frac{b}{a^2} \left[\left|\frac{2e_1}{a}\right| + \left|\frac{e_2}{b}\right| \right]$

15.(a)

(b) (i)
$$\frac{1}{2} \times 1 \times k + 3k = 1$$
 $K = \frac{2}{7}$

M1 A1

(ii)
$$E(x) = \int_0^1 x \cdot \frac{2}{7} x dx + \int_1^4 x \cdot \frac{2}{7} dx$$

$$= \frac{2}{21} [x^3]_0^1 + \frac{1}{7} [x^2]_1^4$$
$$= \frac{2}{21} + \frac{1}{7} (16 - 1)$$

M1

$$=\frac{47}{25}$$
 or 2.2381

A1

(i)
$$\int_0^1 \frac{2}{7} x dx = \frac{1}{7} [x^2]_0^1$$

$$=\frac{1}{7}<\frac{1}{2}$$

B1

$$\therefore median = \frac{1}{7} + \int_{1}^{m} \frac{2}{7} dx = \frac{1}{7}$$
$$\Longrightarrow \frac{2}{7} [x]_{1}^{m} = \frac{5}{4}$$

M1

$$\implies \frac{2}{7}[m-1] = \frac{5}{4}$$

M1

$$m = \frac{9}{4} \text{ or } 2.25$$

A1

$$= 0.7$$
 A1

(
$$\triangle$$
) : $R = 2g \cos 25^{\circ}$ M1
= $2 \times 9.8 \cos 25^{\circ}$
= $17.7636 N$
 $F_{max} = \mu R$ M1
= $0.7 \times 17.7636 = 12.435NB1$

Particle will remain at rest if the friction force is large enough to balance the component of its weight down the plane.

Component weight
$$= 2 \times 9.8 \times cos65^0$$

 $= 8.2833 N$ M1

Since $F_{max} > 8.28 N$, particle will remain at rest. **B1**

E N D