Imię i nazwisko ucznia	
Pełna nazwa szkoły	
i chia hazwa szkory	Liczba uzwekanych punktów

Kuratorium Oświaty w Lublinie

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ZESTAW ZADAŃ KONKURSOWYCH ROK SZKOLNY 2018/2019

ETAP DRUGI

Instrukcja dla ucznia

1. Zestaw konkursowy zawiera 9 zadań.

2. Przed rozpoczęciem pracy sprawdź, czy zestaw zadań jest kompletny.

Jeżeli zauważysz usterki, zgłoś je Komisji Konkursowej.

- 3. Zadania czytaj uważnie i ze zrozumieniem.
- 4. Obliczenia zapisane w brudnopisie nie będą oceniane.
- 5. Rozwiązania zapisuj długopisem lub piórem. Rozwiązania zapisane ołówkiem nie będą oceniane.
- 6. W nawiasach obok numerów zadań podano liczbę punktów możliwych do uzyskania za dane zadanie.
- 7. Nie używaj kalkulatora.
- 8. Nie używaj korektora.

Pracuj samodzielnie. POWODZENIA! Czas pracy:

90 minut

Liczba punktów możliwych do uzyskania: 40. Do następnego etapu przejdziesz, gdy uzyskasz co najmniej 36 punktów.

Zatwierdzam

Przewodnicząca Wejewódzkiej Komisji Konkursowej Ewre Zalws welne mgr Ewa Zakościelna

Kurator Oświaty w Lubline mgr Heresa Misiuk

Zadanie 1. (**0-5.**)

Oceń prawdziwość zdań. Wybierz P, jeśli zdanie jest prawdziwe lub F – jeśli jest fałszywe.

a)	Liczby: 0,125 ¹⁰⁰ i 1:2 ³⁰⁰ są równe.	P	F
b)	Liczba $\frac{5+\sqrt{5}}{\sqrt{5}}$ jest większa od liczby $\frac{6-\sqrt{6}}{\sqrt{6}}$.	Р	F
c)	Średnia arytmetyczna trzech różnych liczb jest równa 15, zaś średnia arytmetyczna dwóch innych liczb jest równa 10. Średnia arytmetyczna zestawu tych liczb jest równa 13.	Р	F
d)	Jeśli cena netto 1 kg jabłek jest równa 3,20 zł, a cena brutto jest równa 4,00 zł, to podatek VAT wynosi 8% ceny netto.	Р	F
e)	Licznik pewnego ułamka jest połową jego mianownika. Licznik tego ułamka zwiększono o 2, a mianownik zmniejszono o 2, to otrzymano ułamek $\frac{2}{3}$. Ten ułamek jest równy $\frac{1}{2}$.	Р	F

Zadanie 2. (0-5p.)

Na boisko szkolne uczniowie wpuszczani są kolejno i ustawiani w trzech rzędach: pierwszy uczeń w rzędzie I, drugi w II, trzeci w III, czwarty w I, piąty w II itd. Łącznie na boisko wpuszczono x uczniów. Napisz wyrażenie algebraiczne opisujące, ilu uczniów jest w rzędzie pierwszym, ilu w rzędzie drugim i ilu w rzędzie trzecim. Rozpatrz wszystkie możliwości, biorąc pod uwagę reszty z dzielenia liczby x przez 3.

Zadanie 3. (0-3p.)

Wybierano prezydenta miasta. W wyborach wzięło udział 80% uprawnionych do głosowania.

Na pana Nowaka głosowało 40% osób głosujących, a na pana Kowalskiego reszta głosujących.

Na podstawie powyższej treści odpowiedz na pytania:

a) Ile procent wszystkich uprawnionych głosowało na pana Kowalskiego?

.....

b) Jaki jest stosunek liczby osób, które oddały głos na pana Kowalskiego do liczby głosów, które otrzymał pan Nowak?

.....

c) O ile procent mniej osób głosowało na pana Nowaka niż na pana Kowalskiego?

.....

Zadanie 4. (**0-6p.**)

W każdym zadaniu A) – C) wybierz <u>wszystkie</u> prawidłowe odpowiedzi.

Wiedzac, że prawdziwy jest wzór: c = a(y + b) oraz $a, c \ne 0$, to można A) również zapisać, że $b) \ \ y = \frac{c - ab}{a}$ a) $a = \frac{y+b}{c}$ c) $b = \frac{c - ay}{}$ d) a = c - (y+b)B) Suma trzech kolejnych liczb naturalnych może być równa: a) 21 b) 15 c) 100 d) 11 Stosunek liczb dodatnich x i y jest równy 2 : 7, zatem C) a) 2x = 7y b) 7x = 2y c) $x = \frac{2}{7}(x+y)$ d) $y = \frac{7}{9}(x+y)$

Zadanie 5. (0-5p.)

Pan Jan miał pewną kwotę pieniędzy (w złotych). Jedną piątą tej kwoty przeznaczył żonie.

 $\frac{3}{4}$ reszty rozdzielił w stosunku 5 : 4 między córkę i syna. Za pozostałą kwotę kupił 600 euro.

Ile euro za pieniądze otrzymane od ojca mogłaby kupić córka, gdyby za każde euro płaciła tyle samo co ojciec?

Zadanie 6. (0-4p.)

W trójkącie prostokątnym ACD, w którym kąt ACD jest kątem prostym, zaś $| \langle CAD | = 30^{\circ}$ obrano na przyprostokątnej AC punkt B, w taki sposób, że $| \langle CBD | = 60^{\circ}$ i |AB| = 10cm (jak na rysunku).

Oblicz długość odcinka AC.

Zadanie 7. (**0-4p.**)

Na rysunku przedstawiony jest trójkąt równoboczny. Wykorzystując podane zależności, oblicz długość boku tego trójkąta.

Zadanie 8. (**0-5p.**)

W każdym zadaniu A) – E) wybierz prawidłową odpowiedź.

A)	Dana jest suma liczb $3^{11} + 5^{13}$. Najmniejszym dzielnikiem, różnym od 1 tej sumy jest			ielnikiem, różnym od 1	
	a) 2	b) 3	c) 5	d) 8	
B)	Stosunek pola koła opisanego na kwadracie ABCD do pola koła wpisanego w ten kwadrat wynosi:				
	a) 4	b) $\sqrt{2}$	c) 2	d) $\pi\sqrt{2}$	
C)	Ramiona kata o mierze 48° są styczne od okręgu. Kat α ma miarę:				
	realmona kąta o inierze 40 są styczne od okręgu. Rąt a ina iniarę.				
	a) 48 ⁰	b) 42°	c) 56 ⁰	d) 32 ⁰	
D)	Dany jest sześciokąt foremny, którego odwód jest równy 24 cm. Pole tego sześciokąta jest równe:				
	a) 16 <i>cm</i> ²	b) 12 <i>cm</i> ²	c)12√3 <i>cr</i>	n^2 d) $24\sqrt{3}cm^2$	
E)	Student w ciągu 5 lat studiów musi zdać 31 egzaminów. W każdym kolejnym roku liczba egzaminów jest większa niż w roku poprzednim. W piątym roku studiów liczba egzaminów jest trzy razy większa niż w pierwszym roku studiów. Ile egzaminów musi zdać student w czwartym roku studiów? a) 6 b) 7 c) 8 d) 9				

Zadanie 9. (**0-3p.**)

Dany jest prostokąt ABCD. Prosta k dzieli ten prostokąt na dwie części.

Prawdą jest, że:

(zakreśl prawidłową odpowiedź)

a)	Obwód czworokąta ABCE jest równy: $\sqrt{145} + 29$	TAK	NIE
b)	Stosunek pola czworokąta ABCE do pola trójkąta AED jest równy: 16 : 9	TAK	NIE
c)	Pole trójkąta AED stanowi 30% pola prostokąta ABCD.	TAK	NIE

BRUDNOPIS.