Ústav fyziky a technologií plazmatu Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 1

Zpracoval: Lukáš Lejdar **Naměřeno:** 15. října 2024

Obor: F **Skupina:** Út 16:00 **Testováno:**

Úloha č. 8:

Měření parametrů zobrazovacích soustav

 $T=21,1~^{\circ}\mathrm{C}$ $p=101,35~\mathrm{kPa}$ $\varphi=47,7~\%$

1. Úvod

2. Postup měření

2.1. Měření ohniskové vzdálenosti

Budu používat zápornou znaménkovou konvenci na straně předmětu od čočky a kladnou čárkovanou na straně obrazu. Proměná a obecně označuje některou vzdálenost objektu od čočky, f ohniskovou vzdálenost a $\beta = \frac{y'}{y} = \frac{a'}{a}$ příčné zvětšení. Ze zobrazovací rovnice se nabízí několik způsobů měření ohniskové vzdálenosti spojky.

1 Přímá metoda: Měří se vzdálenosti obrazu a předmětu a platí

$$f' = \frac{aa'}{a - a'} \tag{1}$$

(2) Pomocí příčného zvětšení: Měří se příčné zvětšení β a některá ze vzdáleností od čočky

$$f' = \frac{a'}{1-\beta} = \frac{a\beta}{1-\beta} \tag{2}$$

③ Besselova metoda: Pro každou vzdálenost předmětu od stínítka d=|a|+|a'|>4f, existují 2 polohy čočky takové, že předmět je na stínítku ostrý. Phybuju čočkou namísto stínítka a hledám tyto 2 polohy. Jejich vzdálenost označím $\Delta=|a_1'|-|a_2'|=|a_2|-|a_1|$ a ohniskovou vzdálenost potom spočítám podle

$$f' = \frac{d^2 - \Delta^2}{4d} \tag{3}$$

V případě rozptylky je potřeba zobrazovat neskutečný předmět, aby šlo pozorovat skutečný obraz. Takový předmět zajistím spojkou, která bude mezi předmětem a rozptylkou. Znám-li polohu rozptylky R, polohu obrazu spojky A > R a polohu obrazu rozptylky A', můžu do vztahu (1) dosadit

$$a = A - R \qquad a' = A' - R \tag{4}$$

2.2. Měření křivosti kulové čočky

Poloměr křivosti r kulové čočky, budu měřit sférometrem. Je to zařízení s kruhovým výřezem o poloměru z a posuvným čidlem uprostřed, které dokáže s velkou přesností určit rozdíl výšek. Jeho přiložením na čočku vytnu kulovou výseč o výšce h a základně z, ze kterých dopočítám r podle

$$r = \frac{h^2 + z^2}{2h} \tag{5}$$

Obrázek 2: Určení poloměru křivosti kulové plochy

Z poloměrů křivosti obou stran a ohniskové vzdálenosti se v případě tenkých čoček dá vyjádřit index lomu materiálu ze vztahu

$$\frac{1}{f'} = (n-1)(\frac{1}{r_1} - \frac{1}{r_2}) \tag{6}$$

3. Výsledky měření

3.1. Stanovení ohniskové vzdálenosti tenké spojky

Na optickou lavici jsem za sebe postavil zdroj světla, spojku a stínítko. Našel jsem několik konfigurací této soustavy, kdy se obraz na stínítku jevil ostrý a pro každou odečetl vzdálenost a velikost předmětu i obrazu. Změřené hodnoty jsou uvedené v tabulce 1 spolu s výslednou ohniskovou vzdáleností f'_p podle vztahu (1), a $f'_{\beta 1} = f(\beta, a)$ a $f'_{\beta 2} = f(\beta, a')$ podle vztahu (2). Zprůměrováním hodnot jsem dostal

$$f'_{\beta 1} = 0.160 \pm 0.001 \text{ m}$$

 $f'_{\beta 2} = 0.169 \pm 0.009 \text{ m}$
 $f'_p = 0.165 \pm 0.005 \text{ m}$

a (m)	a' (m)	y (m)	y' (m)	f_p' (m)	$f'_{\beta 1}$ (m)	$f'_{\beta 2}$ (m)
-0.260	0.428	-0.050	0.078	0.161	0.158	0.167
-0.280	0.381	-0.050	0.068	0.161	0.161	0.161
-0.310	0.342	-0.050	0.053	0.162	0.159	0.166
-0.330	0.323	-0.050	0.047	0.163	0.159	0.166
-0.335	0.325	-0.050	0.046	0.164	0.160	0.169
-0.360	0.340	-0.050	0.040	0.174	0.160	0.188
-0.380	0.291	-0.050	0.036	0.164	0.159	0.169
-0.410	0.276	-0.050	0.033	0.164	0.163	0.166
-0.460	0.260	-0.050	0.027	0.166	0.161	0.168
-0.510	0.249	-0.050	0.023	0.167	0.160	0.170

Tabulka 1: Změřené vzdálenosti a velikosti předmětu a ostrého obrazu

3.2. Stanovení ohniskové vzdálenosti tenké spojky Besselovou metodou

V případě Besselovy metody umístím zdroj světla a stínítko do vzdálenosti d > 4f, kde ohniskovou vzdálenost f přibližně znám z předchozího měření. Zjistím vzdálenost obou poloh čočky Δ , kdy je obraz na stínítku ostrý a výpočet provedu podle vztahu (3).

$$f_B' = 0.165 \pm 0.001 \text{ m} \tag{7}$$

Δ (m)	d(m)	f'(m)
0.477	0.910	0.164
0.412	0.860	0.165
0.343	0.810	0.166
0.288	0.760	0.162
0.186	0.710	0.165
0.242	0.735	0.163
0.310	0.785	0.165
0.378	0.835	0.165
0.441	0.885	0.166
0.385	0.840	0.165

Tabulka 2: Měření ohniskové vzdálenosti Besselovou metodou

3.3. Stanovení ohniskové vzdálenosti tenké rozptylky

Na optické lavici jsem nejdřív nechal jen spojku a stínítko a vždy našel polohu obrazu A. Někam mezi tuto polohu a spojku potom umístím rozptylku a odečtu její vzdálenost R. Tentokrát hledám polohu obrazu A', odkud už můžu podle vztahů (4) a (1) počítat ohniskovou vzdálenost.

$$f_p' = -0.30 \pm 0.03 \text{ m}$$

R (m)	A (m)	A' (m)	f' (m)
0.549	0.720	0.918	-0.319
0.562	0.720	0.872	-0.322
0.591	0.720	0.804	-0.327
0.572	0.684	0.759	-0.279
0.545	0.684	0.811	-0.291
0.565	0.698	0.794	-0.317
0.591	0.698	0.760	-0.292
0.629	0.725	0.777	-0.273
0.600	0.725	0.815	-0.299

Tabulka 3: Měření ohniskové vzdálenosti rozptylky

3.4. Měření křivosti kulové čočky

Sférometrem jsem změřil poloměr křivosti každé čočky podle vztahu (5) a z ní dopočítal jejich index lomu podle vztahu (6).

rozp	tylka	spojka		
$h_1 \text{ (mm)}$	$h_2 \text{ (mm)}$	$h_1 \text{ (mm)}$	$h_2 \text{ (mm)}$	
0.508	0.507	-1.837	0.004	
0.504	0.507	-1.835	0.003	
0.507	0.507	-1.837	0.003	
0.504	0.510	-1.835	0.002	
0.508	0.507	-1.836	0.003	
0.505	0.507	-1.837	0.001	
0.507	0.511	-1.838	0.001	
0.508	0.507	-1.836	0.001	
0.509	0.509	-1.834	0.002	
0.505	0.512	-1.835	0.002	

Tabulka 4: Měření výšky vrchlíku čoček sférometrem

čočka	strana	r (mm)	f' (mm)	\overline{n}
			p	1.58 ± 0.01
spojka	1	-95.0 ± 0.2	$\beta 1$	1.59 ± 0.004
	2	∞	eta 2	1.56 ± 0.03
			B	1.57 ± 0.03
rozptylka	1	301 ± 3	m	1.50 ± 0.05
	2	300 ± 3	p	1.00 ± 0.00

Tabulka 5: Výpočet indexu lomu čoček podle vztahu (6) pro každou změřenou ohniskovou vzdálenost

4. Závěr

Změřil jsem ohniskovou vzdálenost spojky přímou metodou, z příčného zvětšení a Besselovou metodou s výsledkem přibližně $f'\approx 0.16$ pro všechny metody. Přesnou hodnotu neznám, takže ji nemůžu porovnávat. Vím ale, že všechny metody jsou zatížené nějakou hrubou chybou skrze teoretické approximace. Jedním z předních úskalí je, že čočka ve skutečnosti není tenká, ale má tloušťku a je těžké říct, kde přesně měřit její polohu. Besselova metoda má výhodu, že ve výrazu Δ měření polohy čočky odečítám, čímž se vyruší tato nejednoznačnost a měla by i dávat nejspolehlivější výsledky.

Měřil jsem i ohniskovou vzdálenost rozptylky a dostal hodnotu $f'=-0.30\pm0.03$ m. Pro obě použité čočky jsem zjistil poloměr křivosti pro obě strany a odtud podle vztahu (6) dopočítal index lomu. Pro spojku vyšlo $n\approx1.55$ a pro rozptylku $n\approx1.50$, obě čísla odpovídající přibližně sklu.