ASSIGNMENT 10. DUE IN CLASS DEC 1, 2017.

The goal of this multi-part assignment is to learn about *semi-direct* products of groups.

- 1. Let N and H be groups. Write down the definition of the automorphism group, Aut(N), of N.
- 2. Let $\phi: H \to \operatorname{Aut}(N)$ be a group homomorphism. Let \cdot_{ϕ} denote the binary operation on the *set* of ordered pairs $N \times H$ defined by:

$$(n_1, h_1) \cdot_{\phi} (n_2, h_2) = (n_1 \phi(h_1)(n_2), h_1 h_2).$$

Prove that the binary operation \cdot_{ϕ} gives a structure of a group on the *set* of ordered pairs $N \times H$. (We denote this group by $N \rtimes_{\phi} H$ (semi-direct product of N and H). Notice that the group structure depends on the homomorphism ϕ , and different homomorphisms can produce non-isomorphic groups. Notice also the assymmetric nature of the symbol \rtimes indicating the different roles of N and H (in contrast with the case of the ordinary direct product).)

- 3. Prove that the subset $\{(n,e) \in N \times H \mid n \in N\}$ is a normal subgroup of $N \rtimes_{\phi} H$.
- 4. Prove that if ϕ is the trivial homomorphism, then $N \rtimes_{\phi} H$ is isomorphic to the ordinary direct product $N \times H$ of the groups N and H that we have discussed in class.
- 5. Let $N = Z_4$ and $H = Z_2$.
 - (a) Identify the group Aut(N).
 - (b) How many distinct homomorphisms $\phi: H \to \operatorname{Aut}(N)$ are there in this case?
 - (c) Realize the two non-isomorphic groups, $Z_4 \times Z_2$ and D_8 , as semi-direct products of Z_4 and Z_2 (by choosing different homomorphisms ϕ).