

Introduction

- Find strings that refer to same real-world entities
 - "David Smith" and "David R. Smith"
 - "1210 W. Dayton St Madison WI" and "1210 West Dayton Madison WI 53706"
- Play critical roles in many DI tasks
 - Schema matching, data matching, information extraction
- This chapter
 - Defines the string matching problem
 - Describes popular similarity measures
 - Discusses how to apply such measures to match a large number of strings

Outline

- Problem description
- Similarity measures
 - Sequence-based: edit distance, Needleman-Wunch, affine gap,
 Smith-Waterman, Jaro, Jaro-Winkler
 - Set-based: overlap, Jaccard, TF/IDF
 - Hybrid: generalized Jaccard, soft TF/IDF, Monge-Elkan
 - Phonetic: Soundex
- Scaling up string matching
 - Inverted index, size filtering, prefix filtering, position filtering, bound filtering

Problem Description

- Given two sets of strings X and Y
 - Find all pairs $x \in X$ and $y \in Y$ that refer to the same real-world entity
 - We refer to (x,y) as a match
 - Example

Set X	Set Y	Matches
x ₁ = Dave Smith	y ₁ = David D. Smith	(x ₁ , y ₁)
x_2 = Joe Wilson x_3 = Dan Smith	y ₂ = Daniel W. Smith	(x_3, y_2)
(a)	(b)	(c)

Two major challenges: accuracy & scalability

Accuracy Challenges

- Matching strings often appear quite differently
 - Typing and OCR errors: David Smith vs. Davod Smith
 - Different formatting conventions: 10/8 vs. Oct 8
 - Custom abbreviation, shortening, or omission:
 Daniel Walker Herbert Smith vs. Dan W. Smith
 - Different names, nick names: William Smith vs. Bill Smith
 - Shuffling parts of strings: Dept. of Computer Science, UW-Madison vs. Computer Science Dept., UW-Madison

Accuracy Challenges

- Solution:
 - Use a similarity measure $s(x,y) \in [0,1]$
 - ❖ The higher s(x,y), the more likely that x and y match
 - Declare x and y matched if $s(x,y) \ge t$
- Distance measure/cost measure have also been used
 - Same concept
 - But smaller values → higher similarities

Scalability Challenges

- Applying s(x,y) to all pairs is impractical
 - Quadratic in size of data
- Solution: apply s(x,y) to only most promising pairs, using a method FindCands
 - For each string $x \in X$ use method FindCands to find a candidate set $Z \subseteq Y$ for each string $y \in Z$ if $s(x,y) \ge t$ then return (x,y) as a matched pair
 - We discuss ways to implement FindCands later

Outline

- Problem description
- Similarity measures
 - Sequence-based: edit distance, Needleman-Wunch, affine gap,
 Smith-Waterman, Jaro, Jaro-Winkler
 - Set-based: overlap, Jaccard, TF/IDF
 - Hybrid: generalized Jaccard, soft TF/IDF, Monge-Elkan
 - Phonetic: Soundex
- Scaling up string matching
 - Inverted index, size filtering, prefix filtering, position filtering, bound filtering

Edit Distance

- Also known as Levenshtein distance
- d(x,y) computes minimal cost of transforming x into y, using a sequence of operators, each with cost 1
 - Delete a character
 - Insert a character
 - Substitute a character with another
- Example: x = David Smiths, y = Davidd Simth,
 d(x,y) = 4, using following sequence
 - Inserting a character d (after David)
 - Substituting m by i
 - Substituting i by m
 - Deleting the last character of x, which is s

Edit Distance

- Models common editing mistakes
 - Inserting an extra character, swapping two characters, etc.
 - So smaller edit distance → higher similarity
- Can be converted into a similarity measure
 - s(x,y) = 1 d(x,y) / [max(length(x), length(y))]
 - Example
 - \star s(David Smiths, Davidd Simth) = 1 4 / max(12, 12) = 0.67

Computing Edit Distance using Dynamic Programming

- Define $x = x_1x_2 \cdots x_n$, $y = y_1y_2 \cdots y_m$
 - d(i,j) = edit distance between $x_1x_2 \cdots x_i$ and $y_1y_2 \cdots y_j$, the i-th and j-th prefixes of x and
- $\begin{array}{lll} \blacksquare & \text{Recurrence equations} \\ d(i-1,j-1) & \text{if } x_i = y_j \text{ // copy} \\ d(i-1,j-1) + 1 & \text{if } x_i <> y_j \text{ // substitute} \\ d(i-1,j) + 1 & \text{// delete } x_i \\ d(i,j-1) + 1 & \text{// insert } y_j \end{array}$

$$d(i,j) = min \begin{cases} d(i-1,j-1) + c(x_i,y_j) & // \text{ copy or substitute} \\ d(i-1,j) + 1 & // \text{ delete } x_i \\ d(i,j-1) + 1 & // \text{ insert } y_j \end{cases}$$

$$c(x_i, y_j) = 0$$
 if $x_i = y_j$,
1 otherwise

Example

x = dva, y = dave

_		y0	y1	y2	y3	y4
			d	a	V	e
x 0		0	1	2	3	4
x 1	d	1	` 0←	- 1		
x2	V	2				
x 3	a	3				

		y0	y1	y2	y3	y4
			d	a	V	e
x0		0	1	2	3	4
x 1	d	1	0 ▼	- 1 -	- 2◀	- 3
x2	V	2	1	1	1	- 2
x 3	a	3	2	1+	$\frac{1}{2}$	2

$$x = d - v a$$

 $| | | |$
 $y = d a v e$

substitute a with e insert a (after d)

Cost of dynamic programming is O(|x||y|)

Needleman-Wunch Measure

- Generalizes Levenshtein edit distance
- Basic idea
 - defines notion of alignment between x and y
 - assigns score to alignment
 - return the alignment with highest score
- Alignment: set of correspondences between characters of x and y, allowing for gaps

Scoring an Alignment

- Use a score matrix and a gap penalty
- Example

	d	v	a	e
d	2	-1	-1	-1
v	-1	2	-1	-1
a	-1	-1	2	-1
e	-1	-1	-1	2

$$c_g = 1$$

- alignment score = sum of scores of all correspondences sum of penalties of all gaps
 - ◆ e.g., for the above alignment, it is 2 (for d-d) + 2 (for v-v) -1 (for a-e) -2 (for gap) = 1
 - this is the alignment with the highest score, it is returned as the Needleman-Wunch score for dva and deeve.

Needleman-Wunch Generalizes Levenshtein in Three Ways

- Computes similarity scores instead of distance values
- Generalizes edit costs into a score matrix
 - allowing for more fine-grained score modeling
 - e.g., score(o,0) > score(a,0)
 - e.g., different amino-acid pairs may have different semantic distance
- \blacksquare Generalizes insertion and deletion into gaps, and generalizes their costs from 1 to \textbf{C}_g

Computing Needleman-Wunch Score with Dynamic Programming

$$s(i,j) = \max \begin{cases} s(i-1,j-1) + c(xi,yj) \\ s(i-1,j) - c_g \\ s(i,j-1) - c_g \end{cases}$$

$$s(0,j) = -jc_g$$

$$s(i,0) = -ic_g$$

		d	e	e	v	e
	0 🖈	-1	-2	-3	-4	-5
d	-1	2 ←	—1 ←	0 🔻	-1	-2
v	-2	1	1	0	2	1
a	-3	0	0	0	1	1

The Affine Gap Measure: Motivation

- An extension of Needleman-Wunch that handles longer gap more gracefully
- E.g., "David Smith" vs. "David R. Smith"
 - Needleman-Wunch well suited here
 - opens gap of length 2 right after "David"

- Needlement-Wunch not well suited here, gap cost is too high
- If each char corrspondence has score 2, $\mathbf{c}_g = 1$, then the above has score 6*2 10 = 2

The Affine Gap Measure: Solution

- In practice, gaps tend to be longer than 1 character
- Assigning same penalty to each character unfairly punishes long gaps
- Solution: define cost of opening a gap vs. cost of continuing the gap
 - cost (gap of length k) = \mathbf{c}_0 + (k-1) \mathbf{c}_r
 - \mathbf{c}_0 = cost of opening gap
 - \mathbf{c}_{r} = cost of continuing gap, $\mathbf{c}_{0} > \mathbf{c}_{r}$
- E.g., "David Smith" vs. "David Richardson Smith"
 - $\mathbf{c}_0 = 1$, $\mathbf{c}_r = 0.5$, alignment cost = 6*2 1 9*0.5 = 6.5

Computing Affine Gap Score using Dynamic Programming

$$\begin{split} s(i,j) &= \text{max } \left\{ M(i,j), \, I_x(i,j), \, I_y(i,j) \right\} \\ M(i,j) &= \text{max } \left\{ \begin{aligned} M(i-1,j-1) &+ c(x_i,y_j) \\ I_x(i-1,j-1) &+ c(x_i,y_j) \\ I_y(i-1,j-1) &+ c(x_i,y_j) \end{aligned} \right. \\ I_x(i,j) &= \text{max } \left\{ \begin{aligned} M(i-1,j) &- c_o \\ I_x(i-1,j) &- c_r \end{aligned} \right. \\ I_y(i,j) &= \text{max } \left\{ \begin{aligned} M(i,j-1) &- c_o \\ I_y(i,j-1) &- c_r \end{aligned} \right. \end{split}$$

The notes detail how these equations are derived

The Smith-Waterman Measure: Motivation

- Previous measures consider global alignments
 - attempt to match all characters of x with all characters of y
- Not well suited for some cases
 - e.g., "Prof. John R. Smith, Univ of Wisconsin" and "John R. Smith, Professor"
 - similarity score here would be quite low
- Better idea: find two substrings of x and y that are most similar
 - e.g., find "John R. Smith" in the above case → local alignment

The Smith-Waterman Measure: Basic Ideas

- Find the best local alignment between x and y, and return its score as the score between x and y
- Makes two key changes to Needleman-Wunch
 - allows the match to restart at any position in the strings (no longer limited to just the first position)
 - if global match dips below 0, then ignore prefix and restart the match
 - after computing matrix using recurrence equation, retracing the arrows from the largest value in matrix, rather than from lower-right corner
 - this effectively ignores suffixes if the match they produce is not optimal
 - ❖ retracing ends when we meet a cell with value 0 → start of alignment

Computing Smith-Waterman Score using Dynamic Programming

$$s(i,j) = max \begin{cases} 0 \\ s(i-1,j-1) + c(xi,yj) \\ s(i-1,j) - c_g \\ s(i,j-1) - c_g \end{cases}$$

$$s(0,j) = 0$$
$$s(i,0) = 0$$

		d	a	v	e
	0	0	0	0	0
a	0	0	2	1	0
v	0	0	1	4	3
d	0	2	1	3	3

The Jaro Measure

- Mainly for comparing short strings, e.g., first/last names
- To compute jaro(x,y)
 - find common characters x_i and y_j such that $x_i = y_j$ and $|i-j| \le \min \{|x|, |y|\}/2$
 - intuitively, common characters are identical and positionally "close to each other"
 - if the i-th common character of x does not match the i-th common character of y, then we have a transposition
 - return jaro(x,y) = 1 / 3[c/|x| + c/|y| + (c t/2)/c], where c is the number of common characters, and t is the number of transpositions

The Jaro Measure: Examples

- x = jon, y = john
 - c = 3 because the common characters are j, o, and n
 - t = 0
 - jaro(x,y) = 1 / 3(3/3 + 3/4 + 3/3) = 0.917
 - contrast this to 0.75, the sim score of x and y using edit distance
- x = jon, y = ojhn
 - common char sequence in x is jon
 - common char sequence in y is ojn
 - t = 2
 - jaro(x,y) = 0.81

The Jaro-Winkler Measure

- Captures cases where x and y have a low Jaro score, but share a prefix → still likely to match
- Computed as
 - jaro-winkler(x,y) = (1 PL*PW)*jaro(x,y) + PL*PW
 - PL = length of the longest common prefix
 - PW is a weight given to the prefix

Outline

- Problem description
- Similarity measures
 - Sequence-based: edit distance, Needleman-Wunch, affine gap,
 Smith-Waterman, Jaro, Jaro-Winkler
 - Set-based: overlap, Jaccard, TF/IDF
 - Hybrid: generalized Jaccard, soft TF/IDF, Monge-Elkan
 - Phonetic: Soundex
- Scaling up string matching
 - Inverted index, size filtering, prefix filtering, position filtering, bound filtering

Set-based Similarity Measures

- View strings as sets or multi-sets of tokens
- Use set-related properties to compute similarity scores
- Common methods to generate tokens
 - consider words delimited by space
 - possibly stem the words (depending on the application)
 - remove common stop words (e.g., the, and, of)
 - ❖ e.g., given "david smith" → generate tokens "david" and "smith"
 - consider q-grams, substrings of length q
 - ❖ e.g., "david smith" → the set of 3-grams are {##d, #da, dav, avi, ..., h##}
 - special character # is added to handle the start and end of string

The Overlap Measure

- Let B_x = set of tokens generated for string x
- Let B_y = set of tokens generated for string y
- $O(x,y) = |B_x \cap B_y|$
 - returns the number of common tokens
- E.g., x = dave, y = dav
 - **B**_x = {#d, da, av, ve, e#}, \mathbf{B}_{y} = {#d, da, av, v#}
 - O(x,y) = 3

The Jaccard Measure

- E.g., x = dave, y = dav
 - **B**_x = {#d, da, av, ve, e#}, \mathbf{B}_{v} = {#d, da, av, v#}
 - J(x,y) = 3/6
- Very commonly used in practice

The TF/IDF Measure: Motivation

- uses the TF/IDF notion commonly used in IR
 - two strings are similar if they share distinguishing terms
 - e.g., x = Apple Corporation, CA
 y = IBM Corporation, CA
 z = Apple Corp
 - s(x,y) > s(x,z) using edit distance or Jaccard measure, so x is matched with y \rightarrow incorrect
 - TF/IDF measure can recognize that Apple is a distinguishing term, whereas Corporation and CA are far more common → correctly match x with z

Term Frequencies and Inverse Document Frequencies

- Assume x and y are taken from a collection of strings
- Each string is coverted into a bag of terms called a document
- Define term frequency tf(t,d) = number of times term t appears in document d
- Define inverse document frequency $idf(t) = N / N_d$, number of documents in collection devided by number of documents that contain t
 - note: in practice, idf(t) is often defined as $log(N / N_d)$, here we will use the above simple formula to define idf(t)

Example

$$x = aab$$
 \implies $B_x = \{a, a, b\}$
 $y = ac$ \implies $B_y = \{a, c\}$
 $z = a$ \implies $B_z = \{a\}$

$$tf(a, x) = 2$$
 $idf(a) = 3/3 = 1$
 $tf(b, x) = 1$ $idf(b) = 3/1 = 3$
... $idf(c) = 3/1 = 3$
 $tf(c, z) = 0$

Feature Vectors

- Each document d is converted into a feature vector v_d
- v_d has a feature $v_d(t)$ for each term t
 - value of v_d(t) is a function of TF and IDF scores
 - here we assume $v_d(t) = tf(t,d) * idf(t)$

$$x = aab$$
 \Longrightarrow $B_x = \{a, a, b\}$
 $y = ac$ \Longrightarrow $B_y = \{a, c\}$
 $z = a$ \Longrightarrow $B_z = \{a\}$

$$tf(a, x) = 2$$
 $idf(a) = 3/3 = 1$
 $tf(b, x) = 1$ $idf(b) = 3/1 = 3$
... $idf(c) = 3/1 = 3$
 $tf(c, z) = 0$

	a	b	с
v _x	2	3	0
$\mathbf{v}_{\mathbf{y}}$	3	0	3
v _z	3	0	0

TF/IDF Similarity Score

- Let p and q be two strings, and T be the set of all terms in the collection
- Feature vectors v_p and v_q are vectors in the |T|-dimensional space wher each dimension corresponds to a term
- TF/IDF score of p and q is the cosine of the angle between \mathbf{v}_{p} and \mathbf{v}_{q}
 - $s(p,q) = \sum_{t \in T} v_p(t) * v_q(t) / [\sqrt{\sum_{t \in T} v_p(t)^2} * \sqrt{\sum_{t \in T} v_q(t)^2}]$

TF/IDF Similarity Score

- Score is high if strings share many frequent terms
 - terms with high TF scores
- Unless these terms are common in other strings
 - i.e., they have low IDF scores
- Dampening TF and IDF as commonly done in practice
 - use v_d(t) = log(tf(t,d) + 1) * log(idf(t)) instead of v_d(t) = tf(t,d) * idf(t)
- Normalizing feature vectors

•
$$v_d(t) = v_d(t) / \sqrt{\sum_{\{t \in T\}} v_d(t)^2}$$

Outline

- Problem description
- Similarity measures
 - Sequence-based: edit distance, Needleman-Wunch, affine gap,
 Smith-Waterman, Jaro, Jaro-Winkler
 - Set-based: overlap, Jaccard, TF/IDF
 - Hybrid: generalized Jaccard, soft TF/IDF, Monge-Elkan
 - Phonetic: Soundex
- Scaling up string matching
 - Inverted index, size filtering, prefix filtering, position filtering, bound filtering

Generalized Jaccard Measure

- Jaccard measure
 - considers overlapping tokens in both x and y
 - a token from x and a token from y must be identical to be included in the set of overlapping tokens
 - this can be too restrictive in certain cases
- Example:
 - matching taxonomic nodes that describe companies
 - "Energy & Transportation" vs. "Transportation, Energy, & Gas"
 - in theory Jaccard is well suited here, in practice Jaccard may not work well if tokens are commonly mispelled
 - e.g., energy vs. energg
 - generalized Jaccard measure can help such cases

Generalized Jaccard Measure

- Let $\mathbf{B}_{x} = \{\mathbf{x}_{1}, ..., \mathbf{x}_{n}\}, \, \mathbf{B}_{y} = \{\mathbf{y}_{1}, ..., \mathbf{y}_{m}\}$
- Step 1: find token pairs that will be in the "softened" overlap set
 - apply a similarity measure s to compute sim score for each pair (x_i, y_i)
 - keep only those score \geq a given threshold α , this forms a bipartite graph G
 - find the maximum-weight matching M in G
- Step 2: return normalized weight of M as generalized
 Jaccard score
 - $GJ(x,y) = \sum_{(xi,yj) \in M} s(x_i,y_j) / (|B_x| + |B_y| |M|)$

An Example

• Generalized Jaccard score: (0.7 + 0.9)/(3 + 2 - 2) = 0.53

The Soft TF/IDF Measure

- Similar to generalized Jaccard measure, except that it uses TF/IDF measure as the "higher-level" sim measure
 - e.g., "Apple Corporation, CA", "IBM Corporation, CA", and "Aple Corp", with Apple being mispelt in the last string
- Step 1: compute close(x,y,k): set of all terms $t \in \mathbf{B}_x$ that have at least one close term $u \in \mathbf{B}_y$, i.e., $s'(t,u) \ge k$
 - s' is a basic sim measure (e.g., Jaro-Winkler), k prespecified
- Step 2: compute s(x,y) as in traditional TF/IDF score, but weighing each TF/IDF component using s'
 - $s(x,y) = \sum_{t \in close(x,v,k)} v_x(t) * v_v(u^*) * s'(t,u^*)$
 - $u^* \in \mathbf{B}_y$ maximizes $s'(t,u) \forall u \in \mathbf{B}_y$

An Example

The Monge-Elkan Measure

- Break strings x and y into multiple substrings
 - $x = A_1 ... A_n , y = B_1 ... B_m$
- Compute
 - $s(x,y) = 1/n * \sum_{i=1}^{n} max_{j=1}^{m} s'(A_i,B_j)$
 - s' is a secondary sim measure, such as Jaro-Winkler
 - Intuitively, we ignore the order of the matching of substrings and only consider the best match for substrings of x in y
- E.g., match two strings
 "Comput. Sci. and Eng. Dept., University of California, San Diego"
 "Department of Computer Science, Univ. Calif., San Diego"

Outline

- Problem description
- Similarity measures
 - Sequence-based: edit distance, Needleman-Wunch, affine gap,
 Smith-Waterman, Jaro, Jaro-Winkler
 - Set-based: overlap, Jaccard, TF/IDF
 - Hybrid: generalized Jaccard, soft TF/IDF, Monge-Elkan
 - Phonetic: Soundex
- Scaling up string matching
 - Inverted index, size filtering, prefix filtering, position filtering, bound filtering

Phonetic Similarity Measures

- Match strings based on their sound, instead of appearances
- Very effective in matching names, which often appear in different ways that sound the same
 - e.g., Meyer, Meier, and Mire; Smith, Smithe, and Smythe
- Soundex is most commonly used

The Soundex Measure

- Used primarily to match surnames
 - maps a surname x into a 4-letter code
 - two surnames are judged similar if share the same code
- Algorithm to map x into a code:
 - Step 1: keep the first letter of x, subsequent steps are performed on the rest of x
 - Step 2: remove all occurences of W and H. Replace the remaining letters with digits as follows:
 - replace B, F, P, V with 1, C, G, J, K, Q, S, X, Z with 2, D, T with 3, L with 4, M, N with 5, R with 6
 - Step 3: replace sequence of identical digits by the digit itself
 - Step 4: Drop all non-digit letters, return the first four letters as the soundex code

The Soundex Measure

- Example: x = Ashcraft
 - after Step 2: A226a13, after Step 3: A26a13, Step 4 converts this into A2613, then returns A261
 - Soundex code is padded with 0 if there is not enough digits
- Example: Robert and Rupert map into R163
- Soundex fails to map Gough and Goff, and Jawornicki and Yavornitzky
 - designed primarily for Caucasian names, but found to work well for names of many different origins
 - does not work well for names of East Asian origins
 - which uses vowels to discriminate, Soundex ignores vowels

Outline

- Problem description
- Similarity measures
 - Sequence-based: edit distance, Needleman-Wunch, affine gap,
 Smith-Waterman, Jaro, Jaro-Winkler
 - Set-based: overlap, Jaccard, TF/IDF
 - Hybrid: generalized Jaccard, soft TF/IDF, Monge-Elkan
 - Phonetic: Soundex
- Scaling up string matching
 - Inverted index, size filtering, prefix filtering, position filtering, bound filtering

Scalability Challenges

- Applying s(x,y) to all pairs is impractical
 - Quadratic in size of data
- Solution: apply s(x,y) to only most promising pairs, using a method FindCands
 - For each string $x \in X$ use method FindCands to find a candidate set $Z \subseteq Y$ for each string $y \in Z$ if $s(x,y) \ge t$ then return (x,y) as a matched pair
 - This is often called a blocking solution
 - Set Z is often called the umbrella set of x
- We now discuss ways to implement FindCands
 - using Jaccard and overlap measures for now

Inverted Index over Strings

- Converts each string y\in Y into a document, builds an inverted index over these documents
- Given term t, use the index to quickly find documents of Y that contain t

Set X

1: {lake, mendota}

2: {lake, monona, area}

3: {lake, mendota, monona, dane}

Set Y

4: {lake, monona, university}

5: {monona, research, area}

6: {lake, mendota, monona, area}

(a)

Terms in Y	ID Lists
area	5
lake	4,6
mendota	6
monona	4, 5, 6
research	5
university	4

(b)

Limitations

- The inverted list of some terms (e.g., stop words) can be very long → costly to build and manipulate such lists
- Requires enumerating all pairs of strings that share at least one term. This set can still be very large in practice.

Size Filtering

- Retrieves only strings in Y whose sizes make them match candidates
 - given a string x\in X, infer a constraint on the size of strings in Y that can possibly match x
 - uses a B-tree index to retrieve only strings that satisfy size constraints
- E.g., for Jaccard measure $J(x,y) = |x \cap y| / |x \cup y|$
 - assume two strings x and y match if $J(x,y) \ge t$
 - can show that given a string $x \in X$, only strings y such that $|x|/t \ge |y| \ge |x|^*t$ can possibly match x

Set X

1: {lake, mendota}

2: {lake, monona, area}

3: {lake, mendota, monona, dane}

Set Y

4: {lake, monona, university}

5: {monona, research, area}

6: {lake, mendota, monona, area}

(a)

Terms in Y	ID Lists
area	5
lake	4,6
mendota	6
monona	4, 5, 6
research	5
university	4

(b)

- Consider x = {lake, mendota}. Suppose t = 0.8
- If $y \in Y$ matches x, we must have
 - $-2/0.8 = 2.5 \ge |y| \ge 2*0.8 = 1.6$
 - no string in Set Y satisfies this constraint → no match

Prefix Filtering

- Key idea: if two sets share many terms → large subsets of them also share terms
- Consider overlap measure $O(x,y) = |x \cap y|$
 - if $|x \cap y| \ge k$ → any subset $x' \subseteq x$ of size at least |x| (k-1) must overlap y
- To exploit this idea to find pairs (x,y) such that $O(x,y) \ge k$
 - given x, construct subset x' of size |x| (k-1)
 - use an inverted index to find all y that overlap x'

Set X

1: {lake, mendota}

2: {lake, monona, area}

3: {lake, mendota, monona, dane}

Set Y

4: {lake, monona, university}

5: {monona, research, area}

6: {lake, mendota, monona, area}

7: {dane, area, mendota}

т.	и -	184
а.		- 18
и.		
я.	100	

Terms in Y	ID Lists
area	5, 6, 7
lake	4, 6
mendota	6,7
monona	4, 5, 6
research	5
university	4
dane	7

(c)

- Consider matching using $O(x,y) \ge 2$
- $\mathbf{x}_1 = \{\text{lake, mendota}\}, \text{ let } \mathbf{x}_1' = \{\text{lake}\}$
- Use inverted index to find $\{y_4, y_6\}$ which contain at least one token in x_1'

Selecting the Subset Intelligently

- Recall that we select a subset x' of x and check its overlap with the entire set y
- We can do better by selecting a particular subset x' and checking its overlap with only a particular subset y' of y
- How?
 - impose an ordering O over the universe of all possible terms
 e.g., in increasing frequency
 - reorder the terms in each $x \in X$ and $y \in Y$ according to O
 - refer to subset x' that contains the first n terms of x as the prefix of size n of x

Selecting the Subset Intelligently

- How? (continued)
 - can prove that if $|x \cap y| \ge k$, then x' and y' must overlap, where x' is the prefix of size |x| (k-1) of x and y' is the prefix of size |y| (k-1) of y (see notes)

Algorithm

- reorder terms in each $x \in X$ and $y \in Y$ in increasing order of their frequencies
- for each $y \in Y$, create y', the prefix of size |y| (k-1) of y
- build an inverted index over all prefixes y'
- for each $x \in X$, create x', the prefix of size |x| (k 1) of x, then use above index to find all y such that x' overlaps with y'

■ $x = \{mendota, lake\} \rightarrow x' = \{mendota\}$

Terms in Y	ID Lists
area	5, 6, 7
mendota	6
monona	4, 6
research	5
university	4
dane	7

(a)

Terms in Y	ID Lists
area	5, 6, 7
lake	4, 6
mendota	6, 7
monona	4, 5, 6
research	5
university	4
dane	7

(b)

 See the notes for applying prefix filtering to Jaccard measure

Position Filtering

- Further limits the set of candidate matches by deriving an upper bound on the size of overlap between x and y
- e.g., x = {dane, area, mendota, monona, lake} y = {research, dane, mendota, monona, lake}
- Suppose we consider $J(x,y) \ge 0.8$, in prefix filtering we consider $x' = \{dane, area\}$ and $y' = \{research, dane\}$ (see notes)
- But we can do better than this. Specifically, we can prove that $O(x,y) \ge [t/(1+t)]^*(|x| + |y|) = 4.44$ (see notes)
 - so can immediately discard the above (x,y) pair

Bound Filtering

- Used to optimize the computation of generalized Jaccard similarity measure
- Recall that
 - $GJ(x,y) = \sum_{(xi,yj) \in M} s(x_i,y_j) / (|B_x| + |B_y| |M|)$
- Algorithm
 - for each (x,y) compute an upper bound UB(x,y) and a lower bound LB(x,y) on GJ(x,y)
 - if UB(x,y) ≤ t → (x,y) can be ignored, it is not a match if LB(x,y) ≥ t → return (x,y) as a match otherwise compute GJ(x,y)

Computing UB(x,y) and LB(x,y)

- For each $\mathbf{x}_i \in \mathbf{B}_{\mathsf{x}}$, find $\mathbf{y}_j \in \mathbf{B}_{\mathsf{y}}$ with the highest element-level similarity, such that $\mathbf{s}(\mathbf{x}_i, \mathbf{y}_j) \geq \alpha$. Call this set of pairs \mathbf{S}_1 .
- For each $\mathbf{y}_j \in \mathbf{B}_y$, find $\mathbf{x}_i \in \mathbf{X}$ with the highest element-level similarity, such that $\mathbf{s}(\mathbf{x}_i, \mathbf{y}_j) \geq \alpha$. Call this set of pairs \mathbf{S}_2 .
- Compute
 - UB(x,y) = $\sum_{(xi,yj)\in S_1\cup S_2} s(x_i,y_j) / (|B_x| + |B_y| |S_1\cup S_2|)$
 - LB(x,y) = $\sum_{(xi,yj)\in S_1\cap S_2} s(x_i,y_j) / (|B_x| + |B_y| |S_1\cap S_2|)$

- **S**₁ = {(a,q), (b,q)}, **S**₂ = {(a,p), (b,q)}
- UB(x,y) = (0.8+0.9+0.7+0.9)/(3+2-3) = 1.65
- LB(x,y) = 0.9/(3+2-1) = 0.225

Extending Scaling Techniques to Other Similarity Measures

- Discussed Jaccard and overlap so far
- To extend a technique T to work for a new similarity measure s(x,y)
 - try to translate s(x,y) into constraints on a similarity measure that already works well with T
- The notes discuss examples that involve edit distance and TF/IDF

Summary

- String matching is pervasive in data integration
- Two key challenges:
 - what similarity measure and how to scale up?
- Similarity measures
 - Sequence-based: edit distance, Needleman-Wunch, affine gap,
 Smith-Waterman, Jaro, Jaro-Winkler
 - Set-based: overlap, Jaccard, TF/IDF
 - Hybrid: generalized Jaccard, soft TF/IDF, Monge-Elkan
 - Phonetic: Soundex
- Scaling up string matching
 - Inverted index, size/prefix/position/bound filtering

Acknowledgment

 Slides in the scalability section are adapted from http://pike.psu.edu/p2/wisc09-tech.ppt