

# Financial Risk Analysis Project Milestone 2





# **Business Problem**

#### **Problem Statement**

Businesses or companies can fall prey to default if they are not able to keep up their debt obligations. Defaults will lead to a lower credit rating for the company which in turn reduces its chances of getting credit in the future and may have to pay higher interests on existing debts as well as any new obligations. From an investor's point of view, he would want to invest in a company if it is capable of handling its financial obligations, can grow quickly, and is able to manage the growth scale.

A balance sheet is a financial statement of a company that provides a snapshot of what a company owns, owes, and the amount invested by the shareholders. Thus, it is an important tool that helps evaluate the performance of a business.

Data that is available includes information from the financial statement of the companies for the previous year (2015). Also, information about the Networth of the company in the following year (2016) is provided which can be used to drive the labeled field.

#### 1.8 Build a Random Forest Model on the Train Set

# **Approach**

The same train and test datasets as used in Milestone 1 were used.

A Base model using the default values of the hyper-parameters was first built to be used as a reference. Grid search was then used to fine-tune the model hyper-parameter



#### **Base Model**

# • Train Dataset

The results of the Base Model on the Train dataset are shown below:

|              | precis | ion | recall | f1-score | support |
|--------------|--------|-----|--------|----------|---------|
| e            | ) 1    | .00 | 1.00   | 1.00     | 2143    |
| 1            | . 1    | .00 | 1.00   | 1.00     | 259     |
| accuracy     |        |     |        | 1.00     | 2402    |
| macro avg    | 1      | .00 | 1.00   | 1.00     | 2402    |
| weighted avg | 1      | .00 | 1.00   | 1.00     | 2402    |

Clearly, there could be a problem of over-fitting, which will be tested on the test dataset.

The confusion matrix is given below:



**Test Dataset Performance of the Base Model** 

The classification report of the Base Model on the Test Dataset is given below:

|          |      | precision | recall | f1-score | support |
|----------|------|-----------|--------|----------|---------|
|          | 0    | 0.98      | 0.99   | 0.99     | 1056    |
|          | 1    | 0.90      | 0.86   | 0.88     | 128     |
|          |      |           |        |          |         |
| accur    | racy |           |        | 0.97     | 1184    |
| macro    | avg  | 0.94      | 0.92   | 0.93     | 1184    |
| weighted | avg  | 0.97      | 0.97   | 0.97     | 1184    |







# **Observations**

- The model is overfitting, given that the Recall on Train dataset is 1 on Train dataset and only 0.86 on the Test dataset.
- The comparison of the other performance measures on train and test datasets are given below:

|           | RFC_Base_Train | RFC_Base_Test |
|-----------|----------------|---------------|
| Recall    | 1.0            | 0.859         |
| F1 Score  | 1.0            | 0.880         |
| Precision | 1.0            | 0.902         |
| Accuracy  | 1.0            | 0.975         |
| auc       | 1.0            | 0.991         |

# **GridSearch Model**

In the several iterations, the following hyperparameters emerged as the best:

```
{'criterion': 'entropy',
  'max_depth': 3,
  'max_features': 10,
  'min_samples_leaf': 8,
  'min_samples_split': 15,
  'n_estimators': 200,
  'oob_score': True,
  'random state': 1}
```



# **Training Data Performance**

The results of the model using these best hyperparameters are as follows (on the training dataset)

| -            | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.99      | 0.99   | 0.99     | 2143    |
| 1            | 0.93      | 0.89   | 0.91     | 259     |
| accuracy     |           |        | 0.98     | 2402    |
| macro avg    | 0.96      | 0.94   | 0.95     | 2402    |
| weighted avg | 0.98      | 0.98   | 0.98     | 2402    |

The confusion matrix on the train dataset is seen below:







The importance of the features (top-10) is given below in descending order (top variables):

|                                | lmp      |
|--------------------------------|----------|
| Book_Value_Unit_Curr           | 0.224802 |
| Capital_exp_in_forex           | 0.213173 |
| Networth                       | 0.171232 |
| PBDT                           | 0.047699 |
| ROG_Market_Capitalisation_perc | 0.044950 |
| Adjusted_PAT                   | 0.033388 |
| PBT                            | 0.028692 |
| PAT                            | 0.026291 |
| Capital_Employed               | 0.025657 |
| Retained_Earning               | 0.024905 |

# Impact of SMOTE on Random Forest Model performance

It is seen that though there is high Accuracy (0.98), the Recall is still around 0.89 for the GridSearch model. Since there is an imbalance in the data for the dependent variable 'default', SMOTE technique could be useful to improve model performance

Using SMOTE, the record count increased as follows:

```
The original dataset has 3586 records and 65 variables
The resampled dataset using SMOTE has 6398 records and 65 variables
```

The class imbalance for values of default = 1 and default = 0 on the treated dataset is as follows:

```
1 0.5
0 0.5
Name: default, dtype: float64
```

The resampled dataset was then split into train and test using the same criterion as given earlier (ratio of 67:33 and random\_state = 42). The results are as follows:

```
The resampled train dataset has 4286 records and the resampled test dataset has 2112 records
```

GridSearch was used to identify the best-fit hyper-parameters as follows:

```
RandomForestClassifier(criterion='entropy', max_depth=3, max_features=10,
min_samples_leaf=5, min_samples_split=15,
n_estimators=150, oob_score=True, random_state=1)
```

Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.



# **Performance on Train Dataset**

The classification report on the Resampled Train dataset is as follows:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.97      | 0.98   | 0.97     | 2143    |
| 1            | 0.98      | 0.97   | 0.97     | 2143    |
| accuracy     |           |        | 0.97     | 4286    |
| macro avg    | 0.97      | 0.97   | 0.97     | 4286    |
| weighted avg | 0.97      | 0.97   | 0.97     | 4286    |

The confusion matrix on the Resampled Train dataset is as follows:



The top 10 most-important features of the model on the resampled data are given below:

| Capital_exp_in_forex 0.232560  Book_Value_Unit_Curr 0.203648  Networth 0.125357 |
|---------------------------------------------------------------------------------|
|                                                                                 |
| Networth 0 125257                                                               |
| Networth 0.120307                                                               |
| PBDT 0.051759                                                                   |
| PBT 0.043254                                                                    |
| PAT 0.040495                                                                    |
| Market_Capitalisation 0.038161                                                  |
| Adjusted_PAT 0.034758                                                           |
| Retained_Earning 0.031004                                                       |
| Cash_Flow_From_Fin 0.029527                                                     |



# 1.9 Validate the Random Forest Model on test Dataset and state the performance matrices

#### **Base Model**

The performance of the Base model on the test datasets is given below:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.98      | 0.99   | 0.99     | 1056    |
| 1            | 0.90      | 0.86   | 0.88     | 128     |
| accuracy     |           |        | 0.97     | 1184    |
| macro avg    | 0.94      | 0.92   | 0.93     | 1184    |
| weighted avg | 0.97      | 0.97   | 0.97     | 1184    |

The confusion matrix is given below:



The ROC curve is as follows:





The comparison of the performance on the Train and Test data is summarized below:

|           | RFC_Base_Train | RFC_Base_Test |
|-----------|----------------|---------------|
| Recall    | 1.0            | 0.859         |
| F1 Score  | 1.0            | 0.880         |
| Precision | 1.0            | 0.902         |
| Accuracy  | 1.0            | 0.975         |
| auc       | 1.0            | 0.991         |

#### **Observations**

 As expected, the Base Model is overfitting with a significant difference in Recall and Precision scores on test data as compared to train dataset

#### **Grid Search**

The performance of the Grid Search model on Test Data is given below:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.98      | 0.99   | 0.99     | 1056    |
| 1            | 0.91      | 0.86   | 0.88     | 128     |
| accuracy     |           |        | 0.98     | 1184    |
| macro avg    | 0.95      | 0.92   | 0.93     | 1184    |
| weighted avg | 0.98      | 0.98   | 0.98     | 1184    |

The confusion matrix is given below:





The ROC curve is as follows:



The comparison with the Train dataset is given below:

|           | RFC_Grid_Train | RFC_Grid_Test |
|-----------|----------------|---------------|
| Recall    | 0.892          | 0.859         |
| F1 Score  | 0.911          | 0.884         |
| Precision | 0.931          | 0.909         |
| Accuracy  | 0.981          | 0.976         |
| auc       | 0.993          | 0.986         |

# **Observations**

It is seen that there is a slight problem of over-fitting. However, the performance on the test dataset is still fairly good.

# **SMOTE-based Model**

The classification report of the RF model built on the resampled test data is given below:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.96      | 0.98   | 0.97     | 1056    |
| 1            | 0.98      | 0.96   | 0.97     | 1056    |
| accuracy     |           |        | 0.97     | 2112    |
| macro avg    | 0.97      | 0.97   | 0.97     | 2112    |
| weighted avg | 0.97      | 0.97   | 0.97     | 2112    |



The confusion matrix on the Resampled Test Dataset is given below:



The ROC curve on the Resampled Test Dataset is given below:



The comparison of the RF Model on the resampled train and test datasets is given below:

|           | RFC_Grid_Resampled_Train | RFC_Grid_Resampled_Test |
|-----------|--------------------------|-------------------------|
| Recall    | 0.967                    | 0.961                   |
| F1 Score  | 0.974                    | 0.970                   |
| Precision | 0.981                    | 0.979                   |
| Accuracy  | 0.974                    | 0.970                   |
| auc       | 0.996                    | 0.994                   |



The ROC curves of both the Resampled Train and test datasets are shown below:



#### **Observations**

It is seen that the model is pretty stable in performance on both Train and Test datasets

The table below compares the performance of all the Random Forest models explored in this study:

|           | RFC_Base_Train | RFC_Base_Test | RFC_Grid_Train | RFC_Grid_Test | RFC_Grid_Resampled_Train | RFC_Grid_Resampled_Test |
|-----------|----------------|---------------|----------------|---------------|--------------------------|-------------------------|
| Recall    | 1.0            | 0.859         | 0.892          | 0.859         | 0.967                    | 0.961                   |
| F1 Score  | 1.0            | 0.880         | 0.911          | 0.884         | 0.974                    | 0.970                   |
| Precision | 1.0            | 0.902         | 0.931          | 0.909         | 0.981                    | 0.979                   |
| Accuracy  | 1.0            | 0.975         | 0.981          | 0.976         | 0.974                    | 0.970                   |
| auc       | 1.0            | 0.991         | 0.993          | 0.986         | 0.996                    | 0.994                   |

#### **Observations**

- The table clearly shows that the model performance on the Resampled data using SMOTE is vastly superior to the other RFC models explored in this study.
- It is seen that the Grid-based model is only very marginally better than the Base RFC model on F1 Score and Precision metrices.



#### 1.10 Build a LDA Model on Train Dataset

# **Base Model:**

This model was built using the default values for the hyper-

parameters. The results are as follows:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.93      | 0.98   | 0.95     | 2143    |
| 1            | 0.70      | 0.37   | 0.48     | 259     |
| accuracy     |           |        | 0.91     | 2402    |
| macro avg    | 0.81      | 0.68   | 0.72     | 2402    |
| weighted avg | 0.90      | 0.91   | 0.90     | 2402    |

The confusion matrix on the Train dataset is as follows:



The features in the descending order of importance are as follows (top 10):

|                                | Coeff     | Abs_coeff |
|--------------------------------|-----------|-----------|
| Debtors_Ratio_Latest           | -0.356345 | 0.356345  |
| Rev_exp_in_forex               | -0.049358 | 0.049358  |
| ROG_Market_Capitalisation_perc | -0.044368 | 0.044368  |
| Inventory_Vel_Days             | -0.033291 | 0.033291  |
| Market_Capitalisation          | 0.026563  | 0.026563  |
| Cash_Flow_From_Fin             | -0.022711 | 0.022711  |
| ROG_Gross_Block_perc           | -0.012592 | 0.012592  |
| ROG_Gross_Sales_perc           | 0.012352  | 0.012352  |
| ROG_Cost_of_Prod_perc          | -0.010405 | 0.010405  |
| PBIDTM_perc_Latest             | -0.009298 | 0.009298  |



Please note that they are sorted by absolute values of the coefficients. This is also seen visually below:



#### **Observations**

- Debtors\_Ratio\_Latest has the strongest influence (negative) on default this
  means that companies with low Debtors\_Ratio\_Latest will have the probability to
  default closer to 1, and are therefore, more likely to default (given that default = 1
  means default). Alternately, a high Debtors\_Ratio\_Latest value would mean a value
  closer to zero, and therefore, less likely to default.
- However, the model is not performing well on Recall, and is therefore, not a suitable model.

# Impact of SMOTE on LDA Model performance

There is a class imbalance in the original dataset, with only about 10.8% of the records having default = 1. So, it was explored whether SMOTE could improve model performance.

# LDA Model on Resampled Train Dataset:

The classification reports for Resampled Train dataset is given below:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 9            | 0.92      | 0.82   | 0.87     | 2143    |
| 1            | 0.84      | 0.93   | 0.88     | 2143    |
| accuracy     |           |        | 0.87     | 4286    |
| macro avg    | 0.88      | 0.87   | 0.87     | 4286    |
| weighted avg | 0.88      | 0.87   | 0.87     | 4286    |



The confusion matrix for the Resampled Test dataset is given below:





|                                | Coeff     | Abs_coeff |
|--------------------------------|-----------|-----------|
| Debtors_Ratio_Latest           | -0.249161 | 0.249161  |
| Inventory_Vel_Days             | -0.140323 | 0.140323  |
| ROG_Market_Capitalisation_perc | -0.078832 | 0.078832  |
| Rev_exp_in_forex               | -0.049034 | 0.049034  |
| Market_Capitalisation          | 0.030884  | 0.030884  |
| Cash_Flow_From_Fin             | -0.026436 | 0.026436  |
| ROG_Gross_Block_perc           | -0.024002 | 0.024002  |
| ROG_Gross_Sales_perc           | 0.020820  | 0.020820  |
| Curr_Ratio_Latest              | -0.018678 | 0.018678  |
| Interest_Cover_Ratio_Latest    | -0.018500 | 0.018500  |

It is seen in a graphical output below:



Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.



#### **Observations**

- The performance of the LDA model on the Resampled train dataset is vastly improved over the original dataset (Recall value improved from 0.37 to 0.93)
- While Debtors\_Ratio\_Latest continued to be the most influential, the order of the other coefficients are different in the two models. However, in both cases, the top 4 features / variable remain the same.

# 1.11 Validate the LDA Model on test Dataset and state the performance matrices

#### **Base LDA Model**

The classification report of the Base LDA model on test dataset is given below:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.93      | 0.98   | 0.95     | 1056    |
| 1            | 0.68      | 0.39   | 0.50     | 128     |
| accuracy     |           |        | 0.91     | 1184    |
| macro avg    | 0.80      | 0.68   | 0.72     | 1184    |
| weighted avg | 0.90      | 0.91   | 0.90     | 1184    |

The confusion matrix on the test dataset is given below:



The ROC curve is given below:







The comparison of the LDA model on the Train and Test datasets is given below:

|           | LDA_Train | LDA_Test |
|-----------|-----------|----------|
| Recall    | 0.371     | 0.391    |
| F1 Score  | 0.484     | 0.495    |
| Precision | 0.696     | 0.676    |
| Accuracy  | 0.915     | 0.914    |
| auc       | 0.912     | 0.903    |

## **Observations**

- The Base Model is stable across the Train and Test datasets, with no overfitting
- Recall performance is very poor, though overall Accuracy is good.

# **LDA Model on Resampled Train Dataset:**

The classification report of the LDA model on resampled test dataset is given below:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| Ø            | 0.91      | 0.81   | 0.86     | 1056    |
| 1            | 0.83      | 0.92   | 0.87     | 1056    |
| accuracy     |           |        | 0.87     | 2112    |
| macro avg    | 0.87      | 0.87   | 0.87     | 2112    |
| weighted avg | 0.87      | 0.87   | 0.87     | 2112    |

The confusion matrix on the resampled test dataset is given below:





The ROC curve on the resampled test/train dataset is given below:



The comparison of the performance of the resampled Train and Test datasets is given in the table below:

|   |           | LDA_Train | LDA_Test | LDA_Train_Resampled | LDA_Test_Resampled |
|---|-----------|-----------|----------|---------------------|--------------------|
| Ī | Recall    | 0.371     | 0.391    | 0.931               | 0.920              |
|   | F1 Score  | 0.484     | 0.495    | 0.881               | 0.873              |
|   | Precision | 0.696     | 0.676    | 0.837               | 0.831              |
| 9 | Accuracy  | 0.915     | 0.914    | 0.875               | 0.866              |
|   | auc       | 0.912     | 0.903    | 0.939               | 0.938              |

# **Observations**

- It is seen that Recall significantly improved on the Resampled Train dataset.
- The model is also stable with comparable performances on train and test datasets



## 1.12 Compare the performances Logistics, Random Forest and LDA models

In Milestone 1, the Logistic Regression Models were built using 2 approaches. The first one involved excluding the highly correlated independent variables using the VIF criterion (exclude if VIF > 5) and then building the models. Only those features whose p value < 0.05 were considered for the subsequent iterations. This was called Model A.

The second approach was to use all the independent variables and build the first model. Exclude all variables with p > 0.05 for the next iteration, and continue till all variables used in the model had p < 0.05. This was Model B.

The most important measure of model performance was Recall, followed by Precision and Accuracy. Accordingly, both the Models (A and B) were evaluated. Model B was found to be a simpler and better model. A cutoff value of 0.15 was arrived at as the best cutoff to maximize Recall with an acceptable Precision and Accuracy scores.

# **Comparison of Models**

The table below gives a comparison of the different models explored in this study on both the train and test datasets:

|                          | Recall | F1 Score | Precision | Accuracy | auc   |
|--------------------------|--------|----------|-----------|----------|-------|
| RFC_Base_Train           | 1.000  | 1.000    | 1.000     | 1.000    | 1.000 |
| RFC_Base_Test            | 0.859  | 0.880    | 0.902     | 0.975    | 0.991 |
| RFC_Grid_Train           | 0.892  | 0.911    | 0.931     | 0.981    | 0.993 |
| RFC_Grid_Test            | 0.859  | 0.884    | 0.909     | 0.976    | 0.986 |
| RFC_Grid_Resampled_Train | 0.967  | 0.974    | 0.981     | 0.974    | 0.996 |
| RFC_Grid_Resampled_Test  | 0.961  | 0.970    | 0.979     | 0.970    | 0.994 |
| LDA_Train                | 0.371  | 0.484    | 0.696     | 0.915    | 0.912 |
| LDA_Test                 | 0.391  | 0.495    | 0.676     | 0.914    | 0.903 |
| LDA_Train_Scaled         | 0.371  | 0.484    | 0.696     | 0.915    | 0.912 |
| LDA_Test_Scaled          | 0.375  | 0.482    | 0.676     | 0.913    | 0.904 |
| LDA_Train_Resampled      | 0.931  | 0.881    | 0.837     | 0.875    | 0.939 |
| LDA_Test_Resampled       | 0.920  | 0.873    | 0.831     | 0.866    | 0.938 |
| Log_Cutoff_0.15          | 0.914  | 0.665    | 0.522     | 0.900    | 1.000 |
| Log_Cutoff_0.28          | 0.859  | 0.794    | 0.738     | 0.950    | 0.960 |

### 1.13 State Recommendations from the above models

- It is interesting to see that Random Forest Classifier emerged as the best fitting model even without correcting for class imbalance in the dataset. With more datapoints, the model can become even stronger without the need for SMOTE
- In general, higher the value of the feature importance, more is its influence on the dependent variable. However, when the independent variables are highly

Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.



correlated with each other, interpreting this becomes difficult.

 On the other hand, Logistic Regression and LDA models are relatively simpler to interpret.

# 2.1 Draw Stock Price Graph (Stock Price vs Time) for any 2 given stocks

The dataset for this exercise is loaded as a time series dataset as seen below:

|            | Infosys | Indian Hotel | Mahindra & Mahindra | Axis Bank | SAIL | Shree Cement | Sun Pharma | Jindal Steel | Idea Vodafone | Jet Airways |
|------------|---------|--------------|---------------------|-----------|------|--------------|------------|--------------|---------------|-------------|
| Date       |         |              |                     |           |      |              |            |              |               |             |
| 2014-03-31 | 264     | 69           | 455                 | 263       | 68   | 5543         | 555        | 298          | 83            | 278         |
| 2014-04-07 | 257     | 68           | 458                 | 276       | 70   | 5728         | 610        | 279          | 84            | 303         |
| 2014-04-14 | 254     | 68           | 454                 | 270       | 68   | 5649         | 607        | 279          | 83            | 280         |
| 2014-04-21 | 253     | 68           | 488                 | 283       | 68   | 5692         | 604        | 274          | 83            | 282         |
| 2014-04-28 | 256     | 65           | 482                 | 282       | 63   | 5582         | 611        | 238          | 79            | 243         |

# There are no missing values

```
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 314 entries, 2014-03-31 to 2020-03-30
Data columns (total 14 columns):
                     Non-Null Count Dtype
# Column
                       -----
   Infosys 314 non-null
Indian Hotel 314 non-null
   Infosys
0
                                      int64
1
                                     int64
2 Mahindra & Mahindra 314 non-null
                                     int64
   Axis Bank
3
                       314 non-null
                                     int64
                      314 non-null
   SAIL
4
                                     int64
                      314 non-null
314 non-null
   Shree Cement
5
                                     int64
   Sun Pharma
                                     int64
    Jindal Steel
                      314 non-null
                                     int64
   Idea Vodafone
                      314 non-null int64
8
                      314 non-null int64
9
   Jet Airways
10 Year
                      314 non-null int64
11 Month
                      314 non-null int64
12 Month_abbr
                      314 non-null object
13 Week
                       314 non-null int64
dtypes: int64(13), object(1)
memory usage: 36.8+ KB
```

# The description of the dataset is given below

|       | infosys | Indian<br>Hotel | Mahindra &<br>Mahindra | Axis<br>Bank | SAIL   | Shree<br>Cement | Sun<br>Pharma | Jindal<br>Steel | Idea<br>Vodafone | Jet<br>Airways | Year    | Month  | Week   |
|-------|---------|-----------------|------------------------|--------------|--------|-----------------|---------------|-----------------|------------------|----------------|---------|--------|--------|
| count | 314.00  | 314.00          | 314.00                 | 314,00       | 314.00 | 314.00          | 314.00        | 314.00          | 314,00           | 314.00         | 314,00  | 314.00 | 314.00 |
| mean  | 511.34  | 114,56          | 636.68                 | 540.74       | 59.10  | 14808.41        | 633.47        | 147.63          | 53.71            | 372.66         | 2016,75 | 6.52   | 26.54  |
| std   | 135.95  | 22.51           | 102.88                 | 115.84       | 15.81  | 4288.28         | 171.86        | 65.88           | 31,25            | 202.26         | 1,77    | 3.45   | 15.08  |
| min   | 234.00  | 64.00           | 284,00                 | 263.00       | 21.00  | 5543.00         | 338.00        | 53.00           | 3.00             | 14.00          | 2014.00 | 1.00   | 1.00   |
| 25%   | 424,00  | 96.00           | 572.00                 | 470.50       | 47.00  | 10952.25        | 478.50        | 88.25           | 25.25            | 243.25         | 2015.00 | 4.00   | 14.00  |
| 50%   | 466.50  | 115,00          | 625.00                 | 528.00       | 57.00  | 16018.50        | 614.00        | 142.50          | 53.00            | 376.00         | 2017.00 | 7.00   | 26.50  |
| 75%   | 630.75  | 134.00          | 678.00                 | 605.25       | 71.75  | 17773.25        | 785.00        | 182.75          | 82.00            | 534.00         | 2018.00 | 9.75   | 39.75  |
| max   | 810.00  | 157.00          | 956.00                 | 808.00       | 104.00 | 24806.00        | 1089.00       | 338.00          | 117.00           | 871.00         | 2020.00 | 12.00  | 53.00  |

#### **Observations**



- There are 314 records from 31-03-2014 to 30-03-2020
- The data is at a weekly frequency
- Based on absolute stock prices, Shree Cement seems to be having the maximum price of 24806 and the minimum stock price was for Idea Vodafone which was 3



**Observations** 



It is seen that overall, the stock price is increasing over the years. Its value is appreciating, though the most recent prices do show a large variation (or high volatility in 2020)

In 2017 also, the stock prices had decreased, but then, started increasing in 2018.

The boxplot of the year for Stock prices of Infosys is shown below:



The boxplot clearly shows the increased volatility of the stock in 2020.

# **Stock Price Graph for SAIL**

The stock price movement for SAIL is given below:



The stock prices seem to be on a downward trend after a high in 2018, with a very sharp erosion in the stock price in 2020.

Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.



The Yearly Boxplot of SAIL stocks is seen below:



The yearly boxplot also shows the erosion in stock price of SAIL. It also shows the relatively high volatility in 2020, with a left-skewed distribution.

Some outliers are seen in 2017, which means the stock prices had reached very high prices compared to its median.

#### 2.3 Calculate Returns for all stocks

# Approach:

- A subset of the original dataset containing only the stock prices of all the companies is created
- Then, the log of the stock prices is taken on this subset
- The difference is then calculated.

# **Results**

Subset of the original dataset containing only the stock prices:

|            | Infosys | Indian Hotel | Mahindra & Mahindra | Axis Bank | SAIL | Shree Cement | Sun Pharma | Jindal Steel | Idea Vodafone | Jet Airways |
|------------|---------|--------------|---------------------|-----------|------|--------------|------------|--------------|---------------|-------------|
| Date       |         |              |                     |           |      |              |            |              |               |             |
| 2014-03-31 | 264     | 69           | 455                 | 263       | 68   | 5543         | 555        | 298          | 83            | 278         |
| 2014-04-07 | 257     | 68           | 458                 | 276       | 70   | 5728         | 610        | 279          | B4            | 303         |
| 2014-04-14 | 254     | 68           | 454                 | 270       | 68   | 5649         | 607        | 279          | 83            | 280         |
| 2014-04-21 | 253     | 68           | 488                 | 283       | 68   | 5692         | 604        | 274          | 83            | 282         |
| 2014-04-28 | 256     | 65           | 482                 | 282       | 63   | 5582         | 611        | 238          | 79            | 243         |



The top 5 records of the returns are shown below:

|            | infosys   | Indian Hotel | Mahindra & Mahindra | Axis Bank | SAIL      | Shree Cement | Sun Pharma | Jindal Steel | Idea Vodafone | Jet Airways |
|------------|-----------|--------------|---------------------|-----------|-----------|--------------|------------|--------------|---------------|-------------|
| Date       |           |              |                     |           |           |              |            |              |               |             |
| 2014-03-31 | NaN       | NaN          | NaN                 | NaN       | NaN       | NaN          | NaN        | NaN          | NaN           | NaN         |
| 2014-04-07 | -0.026873 | -0.014599    | 0.006572            | 0.048247  | 0.028988  | 0.032831     | 0.094491   | -0.065882    | 0.011976      | 0.086112    |
| 2014-04-14 | -0.011742 | 0.000000     | -0.008772           | -0.021979 | -0.028988 | -0.013888    | -0.004930  | 0.000000     | -0.011976     | -0.078943   |
| 2014-04-21 | -0.003945 | 0.000000     | 0.072218            | 0.047025  | 0.000000  | 0.007583     | -0.004955  | -0.018084    | 0.000000      | 0.007117    |
| 2014-04-28 | 0.011788  | -0.045120    | -0.012371           | -0.003540 | -0.076373 | -0.019515    | 0.011523   | -0.140857    | -0.049393     | -0.148846   |

As expected, the first record is NaN (due to the definition of difference). This has not been dropped to illustrate this effect.

# 2.4 Calculate Stock Means and Standard Deviation for all stocks

#### **Stock Means**

This is the average returns that the stock is making on a week-to-week basis. Since the dataset is already on a weekly basis, the mean can be derived directly from the column means. Higher the Stock mean, means Higher Return. The results in descending order of means are as follows:

|                     | Mean Return |
|---------------------|-------------|
| Shree Cement        | 0.003681    |
| Infosys             | 0.002794    |
| Axis Bank           | 0.001167    |
| Indian Hotel        | 0.000266    |
| Sun Pharma          | -0.001455   |
| Mahindra & Mahindra | -0.001506   |
| SAIL                | -0.003463   |
| Jindal Steel        | -0.004123   |
| Jet Airways         | -0.009548   |
| Idea Vodafone       | -0.010608   |
|                     |             |

# **Observations**

- Shree Cement gives the highest Average Returns, followed by Infosys and Axis Bank.
   All three have positive Average returns, meaning that these stocks are appreciating over time.
- Idea Vodafone has the least Average Returns, followed by Jet Airways and Jindal Steel. All three have negative returns, meaning that their stock prices are decreasing with time. These stocks are depreciating.



#### **Standard Deviation**

Standard Deviation is a measure of volatility of the stock prices. Higher the value of the standard deviation, more is the variation of the stock's returns from its average returns. Higher Standard Deviation means Higher Risk.

The results are sorted in ascending order, i.e. least volatile stocks are on the top, and the volatility increases as one goes down the list. This indicates that the returns on the stocks at the top of the list are more stable than the ones below.

|                     | Std Deviation |
|---------------------|---------------|
| Infosys             | 0.035070      |
| Shree Cement        | 0.039917      |
| Mahindra & Mahindra | 0.040169      |
| Sun Pharma          | 0.045033      |
| Axis Bank           | 0.045828      |
| Indian Hotel        | 0.047131      |
| SAIL                | 0.062188      |
| Jindal Steel        | 0.075108      |
| Jet Airways         | 0.097972      |
| Idea Vodafone       | 0.104315      |

# **Observations**

- Infosys has the least standard deviation, and therefore, has the least volatility in stock returns. It gives the most stable returns amongst all the stocks explored in this dataset. This has the lowest risk.
- Shree Cement and Mahindra & Mahindra provide the next most-stable returns
- Idea Vodafone has the maximum Std Deviation, and therefore, the maximum volatility in stock returns. It is followed by Jet Airways and Jindal Steel.



# 2.5 Draw a plot of Stock Means vs Standard Deviation

The plot is seen below:



This is also summarized in the table below (sorted in descending order by Mean Return)

|                     | Mean Return | std      |
|---------------------|-------------|----------|
| Shree Cement        | 0.003681    | 0.039917 |
| Infosys             | 0.002794    | 0.035070 |
| Axis Bank           | 0.001167    | 0.045828 |
| Indian Hotel        | 0.000266    | 0.047131 |
| Sun Pharma          | -0.001455   | 0.045033 |
| Mahindra & Mahindra | -0.001506   | 0.040169 |
| SAIL                | -0.003463   | 0.062188 |
| Jindal Steel        | -0.004123   | 0.075108 |
| Jet Airways         | -0.009548   | 0.097972 |
| Idea Vodafone       | -0.010608   | 0.104315 |

# 2.6 Conclusions and Recommendations

# **High Risk Stocks**

Stocks with low Mean Return and high Standard deviation fall in this category. These are the stocks on the top half of the graph (high std deviation – y axis and represent High Risk Stocks.

In the present case, Idea Vodafone, Jet Airways, Jindal Steel and SAIL all have relatively high Standard Deviation but negative Mean Return. These are especially High Risk with

Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.



average low mean returns, and could be dropped from the portfolio.

On the other hand, Sun Pharma and Mahindra & Mahindra have a negative mean return, but a relatively lower standard deviation. From a pure Risk perspective, Sun Pharma is good, followed by Mahindra & Mahindra.

It is recommended that these stocks be kept in the portfolio if there is an appetite of High Risk.

# **High Returns Stocks**

Stocks with high Mean return and low Standard Deviation are preferred in this strategy. They not only appreciate in value over time, but are also very stable and have a relatively higher predictable return. These are stocks which are on the bottom right of the graph.

In the current portfolio, Shree Cement is the best performing stock with the highest Mean Return and second-lowest Standard Deviation ( behind Infosys ). Infosys is the second best, followed by Axis Bank and Indian Hotel.

It is recommended that more funds be allotted to these stocks, and the stock portfolio be enhanced by stocks from other similar performing stocks.





# Appendix:

# FRA: Milestone-1

```
df.duplicated().sum()

# Drop Co_Name, Co_Code since it is not required
df.drop(['Co_Name', 'Co_Code'], axis = 1, inplace = True)
df.info()
```

#### **Outlier Treatment**

```
# Identify Outliers

Q1 = df.quantile(0.25)
Q3 = df.quantile(0.75)
IQR = Q3 - Q1

d = {'lower': (df < Q1 - 1.5 * IQR).sum(), 'upper': ((df > Q3 + 1.5 * IQR).sum())}
outlier = pd.DataFrame(data = d)
outlier['total'] = outlier['upper'] + outlier['lower']
outlier
```

```
print("Outlier = 1.5 * (75th - 25th)")
print()
print('No of Lower Outliers = ', outlier['lower'].sum())
print('No of Upper Outliers = ', outlier['upper'].sum())
```

```
# Identify Outliers

Q1 = df.quantile(0.10)
Q3 = df.quantile(0.90)
IQR = Q3 - Q1

d = {'lower': (df < Q1 - 1.5 * IQR).sum(), 'upper': ((df > Q3 + 1.5 * IQR).sum())}
outlier2 = pd.DataFrame(data = d)
outlier2['total'] = outlier2['upper'] + outlier2['lower']
outlier2
```

```
print("Outlier = 1.5 * (90th - 10th)")
print()
print('No of Lower Outliers = ', outlier2['lower'].sum())
print('No of Upper Outliers = ', outlier2['upper'].sum())
```

Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.



```
# Identify Outliers

Q1 = df.quantile(0.05)
Q3 = df.quantile(0.95)
IQR = Q3 - Q1

d = {'lower': (df < Q1 - 1.5 * IQR).sum(), 'upper': ((df > Q3 + 1.5 * IQR).sum())}
outlier3 = pd.DataFrame(data = d)
outlier3['total'] = outlier3['upper'] + outlier3['lower']
outlier3
```

```
print("Outlier = 1.5 * (95th - 5th)")
print()
print('No of Lower Outliers = ', outlier3['lower'].sum())
print('No of Upper Outliers = ', outlier3['upper'].sum())
```

```
# Check how many records remain if we drop outliers of all variables without any transformation

df1 = df.copy()

Q1 = df1.quantile(0.25)
Q3 = df1.quantile(0.75)

IQR = Q3 - Q1

for col in df1.columns:
    low = Q1[col] - 1.5 * IQR[col]
    upper = Q3[col] + 1.5 * IQR[col]
    df1.drop(df1[df1[col] < low].index, inplace = True)
    df1.drop(df1[df1[col] > upper].index, inplace = True)

len(df1)
```

```
# Cap the outliers at 5th and 95th percentile

df1 = df.copy()

Q05 = df1.quantile(0.05)
Q95 = df1.quantile(0.95)

Q25 = df1.quantile(0.25)
Q75 = df1.quantile(0.75)
IQR = Q75 - Q25

for col in df1.columns:
    low = Q25[col] - 1.5 * IQR[col]
    upper = Q75[col] + 1.5 * IQR[col]
    df1[col] = np.where(df1[col] < low, Q05[col], df1[col])
    df1[col] = np.where(df1[col] > upper, Q95[col], df1[col])

# Check if all values are within the limits

len(df1)
```

```
# Check that median does not change

Q50_outliers = df1.quantile(0.50)
Q50_originals = df.quantile(0.50)
(Q50_outliers != Q50_originals).sum().sum()
```

0



```
# Confirm presence of missing values
df1.isna().sum().sum()
118
missing = pd.DataFrame(df1.isna().sum(), columns = ['No of Missing Values'])
miss_data = list(missing[missing > 0].index)
missing.dropna(inplace = True)
missing[missing['No of Missing Values'] > 0].sort_values(by = 'No of Missing Values', ascending = False)
# Use median to impute the values
cols = list(df2)
imputer = SimpleImputer(missing_values=np.nan, strategy='median')
df2 = pd.DataFrame(imputer.fit_transform(df2))
df2.columns = cols
df2.isna().sum().sum()
df2.isna().sum().sum()
df2['default'] = np.where(df2['Networth_Next_Year'] < 0,1,0)</pre>
print('The distribution of the default values is ')
print(df2['default'].value counts())
sep_median = df2.groupby( by = 'default').median().T
sep_median
cols = list(df2)
j = 0
fig, ax = plt.subplots(len(cols), figsize=(8,250))
for i, col name in enumerate(cols):
    sns.boxplot(y = col_name, x = 'default', data = df2, ax = ax[i])
    ax[i].set_title('Box plot - {}'.format(col_name), fontsize=10)
    ax[i].set_xlabel('default', fontsize=8)
    plt.tight_layout()
```



```
cols = list(df2)
j = 0
fig, ax = plt.subplots(len(cols), figsize=(8,150))

for i, col_name in enumerate(cols):
    sns.barplot(y = col_name, x = 'default', data = df2, ax = ax[i])
    ax[i].set_title('Bar plot - {}'.format(col_name), fontsize=10)
    ax[i].set_xlabel('default', fontsize=8)
    #plt.tight_layout()
```

```
# Bivariate Plots
plt.figure(figsize = (15,15))
#sns.pairplot(df2)

<Figure size 1080x1080 with 0 Axes>

<Figure size 1080x1080 with 0 Axes>

plt.figure(figsize = (10,10))
sns.heatmap(df2.corr())

corr = df2.corr()
cornw = pd.DataFrame(corr['Networth Next Year'])
```

```
corr = df2.corr()
cornw = pd.DataFrame(corr['Networth_Next_Year'])
cornw['Abs_Corr'] = abs(cornw['Networth_Next_Year'])
cornw.sort_values(by = 'Abs_Corr', ascending = False, inplace = True)
cornw1 = cornw.drop('Networth_Next_Year', axis = 1)
plt.figure(figsize = (10,8))
plt.xlabel('Abs_Corr_Value')
sns.heatmap(cornw1)
```

### Train\_Test Split

```
x = df2.drop(['Networth_Next_Year', 'default'], axis = 1)
y = df2['default']
x_train, x_test, y_train, y_test = tts(x,y,test_size=0.33,random_state=42,stratify = y)
train = pd.concat([x_train,y_train], axis=1)
test = pd.concat([x_test,y_test], axis=1)
train.shape, test.shape
```

```
def vif_calc(X):
    vif_table = pd.DataFrame()
    vif_table["Variables"] = X.columns
    vif_table["VIF"] = [vif(X.values, i) for i in range(X.shape[1])]
    return(vif_table)
```

```
vif_table = vif_calc(x_train).sort_values( by = 'VIF')
var_drop = vif_table[vif_table['VIF'] > 5]
var_retain = vif_table[vif_table['VIF'] <= 5]
# calc_vif(X_train).sort_values(by='VIF', ascending = True)</pre>
```



```
print('No of Variables with VIF > 5 and therefore not used for model-building is ', len(var_drop))
print('No of Variables with VIF <= 5 and therefore used for model-building is ', len(var retain))
var_1 = list(var_retain['Variables'])
var_1[1]
'ROG_Rev_earn_in_forex_perc'
range(len(var_1)); var_1[0]
'ROG_CP_perc'
f1 = 'default ~ '
for i in range(len(var_1)):
    f1 = f1 + ' + ' + var_1[i]
print('The independent variables considered for the first iteration are as follows ', '\n')
print(f1)
The independent variables considered for the first iteration are as follows
default ~ + ROG_CP_perc + ROG_Rev_earn_in_forex_perc + ROG_Capital_Employed_perc + ROG_Market_Capitalisation_perc + ROG_Rev_ex
p_in_forex_perc + Debtors_Vel_Days + Fixed_Assets_Ratio_Latest + Creditors_Vel_Days + APATM_perc_Latest + Inventory_Ratio_Latest + Total_Asset_Turnover_Ratio_Latest + ROG_Net_Sales_perc + Cash_Flow_From_Fin + Cash_Flow_From_Inv + CP + Rev_exp_in_forex + Equity_Paid_Up + Selling_Cost + Other_Income + Rev_earn_in_forex + Cash_Flow_From_Opr + Book_Value_Adj_Unit_Curr + ROG_Cost_of_
Prod_perc + ROG_Net_Worth_perc + Market_Capitalisation + Total_Debt + Net_Working_Capital + CEPS_annualised_Unit_Curr
model1 = sm.logit(formula = f1, data=train).fit()
model1.summary()
Optimization terminated successfully.
             Current function value: 0.226718
             Iterations 10
p_values1 = pd.DataFrame(model1.pvalues, columns = ['p value'])
p values1[p values1['p value'] > 0.05].sort values(by = 'p value', ascending = False)
var_2 = p_values1[p_values1['p_value'] < 0.05]</pre>
iter_2 = list(var_2.index[1:])
var_2[1:]
f2 = 'default ~ '
for i in range(len(iter_2)):
    f2 = f2 + ' + ' + iter_2[i]
'default ~ + ROG_Capital_Employed_perc + ROG_Market_Capitalisation_perc + Debtors_Vel_Days + APATM_perc_Latest + Inventory_Rat
io Latest + Total Asset Turnover Ratio Latest + ROG_Net_Sales_perc + Cash_Flow_From_Fin + Book_Value_Adj_Unit_Curr + Market_Cap
italisation + Total_Debt + Net_Working_Capital'
model2 = sm.logit(formula = f2, data=train).fit()
model2.summary()
Optimization terminated successfully.
             Current function value: 0.233598
             Iterations 9
```



```
vif_table_2 = vif_calc(train[iter_2]).sort_values( by = 'VIF')
print('VIF values for Variables used in Iteration 2')
vif_table_2
VIF values for Variables used in Iteration 2
print('The adjusted pseudo R-square value of Iteration 2 is', round((1 - ((model2.1lf - model2.df_model)/model2.llnull)),4))
The adjusted pseudo R-square value of Iteration 2 is 0.3023
# Plot of fitted values
sns.distplot(model2.fittedvalues)
plt.title('Plot of Fitted Values');
  # Cutoff of 0.11
  y_class_predict = np.where(y_train_predict > 0.11,1,0)
 y_train_predict[:5]
  3221
          0.000020
  2699
          0.005311
  881
          0.198663
  100
          0.181214
  867
          0.137535
  dtype: float64
  tn1, fp1, fn1, tp1 = confusion_matrix(y_train,y_class_predict).ravel()
  sns.heatmap((confusion_matrix(y_train,y_class_predict)),annot=True,fmt='.5g', cbar = False);
  plt.xlabel('Predicted');
  plt.ylabel('Actuals',rotation=0)
  plt.title('Confusion Matrix for Train for cutoff = 0.11');
  round((tn1 + tp1)/(tn1 + tp1 + fn1 + fp1),2)
 print(classification_report(y_train, y_class_predict))
 # Cutoff of 0.13
 y_class_predict_2 = np.where(y_train_predict > 0.13,1,0)
 tn2, fp2, fn2, tp2 = confusion_matrix(y_train,y_class_predict_2).ravel()
 sns.heatmap((confusion_matrix(y_train,y_class_predict_2)),annot=True,fmt='.5g', cbar = False);
 plt.xlabel('Predicted');
 plt.ylabel('Actuals',rotation=0)
 plt.title('Confusion matrix on train for cutoff = 0.13');
 # Cutoff of 0.15
 y_class_predict_3 = np.where(y_train_predict > 0.15,1,0)
 tn3, fp3, fn3, tp3 = confusion_matrix(y_train,y_class_predict_3).ravel()
  sns.heatmap((confusion_matrix(v_train,y_class_predict_3)),annot=True,fmt='.5g', cbar = False);
 plt.xlabel('Predicted');
  plt.ylabel('Actuals',rotation=0)
 plt.title('Confusion matrix on Train for cutoff = 0.15');
```



```
# Cutoff of 0.17
y_class_predict_4 = np.where(y_train_predict > 0.17,1,0)
tn4, fp4, fn4, tp4 = confusion_matrix(y_train,y_class_predict_4).ravel()
sns.heatmap((confusion_matrix(y_train,y_class_predict_4)),annot=True,fmt='.5g', cbar = False);
plt.xlabel('Predicted');
plt.ylabel('Actuals',rotation=0)
plt.title('Confusion matrix on train for cutoff = 0.17');
 # Cutoff of 0.19
 y_class_predict_5 = np.where(y_test_predict > 0.19,1,0)
tn5, fp5, fn5, tp5 = confusion_matrix(y_test,y_class_predict_5).ravel()
 sns.heatmap((confusion_matrix(y_test,y_class_predict_5)),annot=True,fmt='.5g', cbar = False);
 plt.xlabel('Predicted');
 plt.ylabel('Actuals',rotation=0)
 plt.title('Confusion Matrix for Test for threshold = 0.19');
FRA: Milestone-2
# con will contain all the models on the training dataset
 index=['Recall', 'F1 Score', 'Precision', 'Accuracy', 'auc']
 #columns = ['Cutoff_1', 'Cutoff_2', 'Cutoff_3']
con = pd.DataFrame(index = index)
con
    Recall
  F1 Score
  Precision
  Accuracy
 # test will contain all the models on the test dataset
index=['Recall', 'F1 Score', 'Precision','Accuracy', 'auc']
 #columns = ['Cutoff_1', 'Cutoff_2', 'Cutoff_3']
 test = pd.DataFrame(index = index)
test
  # models will contain the test performances of all models
 models = test.copy()
 models
# Base Model
rfc1 = rfc(random_state = 1)
rfc_model_base = rfc1.fit(x_train, y_train)
rfc_model_base
RandomForestClassifier(random_state=1)
y_train_predict_base = rfc_model_base.predict(x_train)
y_test_predict_base = rfc_model_base.predict(x_test)
y_train_prob_base = rfc_model_base.predict_proba(x_train)[:,1]
y_test_prob_base = rfc_model_base.predict_proba(x_test)[:,1]
```

print(classification\_report(y\_train, y\_train\_predict\_base))



```
# Train dataset metrics
rfc_metrics_base = classification_report(y_train, y_train_predict_base, output_dict = True)
recall_base = round(rfc_metrics_base['1']['recall'],3)
f1score_base = round(rfc_metrics_base['1']['f1-score'],3)
precision_base = round(rfc_metrics_base['1']['precision'],3)
accuracy_base = rfc_model_base.score(x_train, y_train).round(3)
roc_base = round(roc_auc_score(y_train, y_train_prob_base),3)
con['RFC_Base_Train'] = [recall_base, f1score_base, precision_base, accuracy_base, roc_base]
sns.heatmap((confusion_matrix(y_train,y_train_predict_base)),annot=True,fmt='.5g', cbar = False);
plt.xlabel('Predicted');
plt.ylabel('Actuals',rotation=0)
plt.title('Confusion Matrix for Train for Base Random Forest Model');
rfc_train_fpr, rfc_train_tpr, rfc_train_thresholds = roc_curve(y_train,y_train_prob_base)
#rfc_test_fpr, rfc_test_tpr, rfc_test_thresholds = roc_curve(y_test,y_test_prob)
plt.plot(rfc_train_fpr, rfc_train_tpr,color='black', linestyle = '--', label = 'train')
#plt.plot(rfc_test_fpr, rfc_test_tpr,color='green', linestyle = '--', label = 'test')
plt.plot([0, 1], [0, 1])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC for Base Random Forest')
plt.legend(loc = 'best');
# Test dataset metrics
rfc_metrics_base_test = classification_report(y_test, y_test_predict_base, output_dict = True)
recall_base_test = round(rfc_metrics_base_test['1']['recall'],3)
flscore_base_test = round(rfc_metrics_base_test['1']['f1-score'],3)
precision_base_test = round(rfc_metrics_base_test['1']['precision'],3)
accuracy_base_test = rfc_model_base.score(x_test, y_test).round(3)
roc_base_test = round(roc_auc_score(y_test, y_test_prob_base),3)
\verb|con['RFC_Base_Test'|| = [recall\_base\_test, f1score\_base\_test, precision\_base\_test, accuracy\_base\_test, roc\_base\_test]|
rfc_train_fpr, rfc_train_tpr, rfc_train_thresholds = roc_curve(y_train,y_train_prob_base)
\label{eq:rfc_test_fpr} rfc\_test\_tpr, \ rfc\_test\_thresholds = roc\_curve(y\_test\_y\_test\_prob\_base)
plt.plot(rfc_train_fpr, rfc_train_tpr,color='black', linestyle = '--', label = 'train')
plt.plot(rfc test fpr, rfc test tpr,color='green', linestyle = '--', label = 'test')
plt.plot([0, 1], [0, 1])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC for Base Random Forest')
plt.legend(loc = 'best');
features = pd.DataFrame(rfc_model_base.feature_importances_, columns = ["Imp"],
                             index = x_train.columns).sort_values('Imp',ascending=False)
features.head(20)
```



```
rfc1 = rfc()
params = { 'n_estimators' : [100, 200, 250],
            n_estimators : [100, 200, 250],
'criterion' : ['gini', 'entropy'],
'max_depth' : [3, 5],
'min_samples_leaf' : [8, 15, 20],
'min_samples_split' : [20, 35, 50],
'max_features' : [10, 20, 30],
'oob_score' : [True],
'random_state' : [1]
rfcgrid = GS(estimator = rfc1, param_grid = params, cv = 3)
rfc_model1 = rfcgrid.fit(x_train, y_train)
rfc_model1.best_params_
rfc_model = rfc_model2.best_estimator_
rfc model
n_estimators=200, oob_score=True, random_state=1)
y_train_predict_rfc = rfc_model.predict(x_train)
y_test_predict_rfc = rfc_model.predict(x_test)
y_train_prob_rfc = rfc_model.predict_proba(x_train)[:,1]
y_test_prob_rfc = rfc_model.predict_proba(x_test)[:,1]
 print(classification_report(y_train, y_train_predict_rfc))
sns.heatmap((confusion_matrix(y_train,y_train_predict_rfc)),annot=True,fmt='.5g', cbar = False);
plt.xlabel('Predicted');
plt.ylabel('Actuals',rotation=0)
plt.title('Confusion Matrix for Train for Grid Search Random Forest Model');
 rfc_train_fpr, rfc_train_tpr, rfc_train_thresholds = roc_curve(y_train,y_train_prob_rfc)
 \#rfc\_test\_fpr, rfc\_test\_tpr, rfc\_test\_thresholds = roc\_curve(y\_test,y\_test\_prob)
plt.plot(rfc_train_fpr, rfc_train_tpr,color='black', linestyle = '--', label = 'train')
#plt.plot(rfc_test_fpr, rfc_test_tpr,color='green', linestyle = '--', label = 'test')
plt.plot([0, 1], [0, 1])
plt.xlabel('False Positive Rate')
 plt.ylabel('True Positive Rate')
 plt.title('ROC for Random Forest using GridSearch on Train dataset')
 plt.legend(loc = 'best');
 # Test Data
 print(classification_report(y_test, y_test_predict_rfc))
sns.heatmap((confusion_matrix(y_test,y_test_predict_rfc)),annot=True,fmt='.5g', cbar = False);
plt.xlabel('Predicted');
plt.ylabel('Actuals',rotation=0)
plt.title('Confusion Matrix for Test for Grid Search Random Forest Model');
```



```
rfc_train_fpr, rfc_train_tpr, rfc_train_thresholds = roc_curve(y_train,y_train_prob_rfc)
rfc_test_fpr, rfc_test_tpr, rfc_test_thresholds = roc_curve(y_test,y_test_prob_rfc)
plt.plot(rfc_train_fpr, rfc_train_tpr,color='black', linestyle = '--', label = 'train')
plt.plot(rfc_test_fpr, rfc_test_tpr,color='green', linestyle = '--', label = 'test')
plt.plot([0, 1], [0, 1])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC for Random Forest using GridSearch')
plt.legend(loc = 'best');
features = pd.DataFrame(rfc_model.feature_importances_,
                         columns = ["Imp"], index = x_train.columns).sort_values('Imp',ascending=False)
features.head(20)
x_train.shape, x_test.shape, y_train.shape, y_test.shape
((2402, 64), (1184, 64), (2402,), (1184,))
y_train.value_counts(normalize = True)
      0.892173
      0.107827
Name: default, dtype: float64
y_test.value_counts(normalize = True)
   0.891892
     0.108108
Name: default, dtype: float64
x.shape, y.shape
((3586, 64), (3586,))
from imblearn.over_sampling import SMOTE
sm = SMOTE(random_state=42)
x_res, y_res = sm.fit_sample(x, y.ravel())
x_res=pd.DataFrame(x_res)
#Renaming column name of Target variable
y_res=pd.DataFrame(y_res)
y_res.columns = ['default']
df_res = pd.concat([x_res,y_res], axis=1)
df_res['default'].value_counts(normalize = True)
    0.5
    0.5
Name: default, dtype: float64
```



#### **RFC Model on Resampled Dataset**

```
rfc1 = rfc()
params = { 'n_estimators' : [100,150, 200],
           'criterion' : ['entropy'],
'max_depth' : [1,2,3],
          'min_samples_leaf' : [5, 8, 10],
'min_samples_split' : [15, 20, 25],
'max_features' : [5, 7, 10],
'oob_score' : [True],
'nandom_state' : [1]
          'random_state' : [1]
rfcgrid = GS(estimator = rfc1, param grid = params, cv = 3)
rfc_model_res = rfcgrid.fit(x_train_res, y_train_res)
rfc_model_res = rfc_model_res.best_estimator_
rfc model res
RandomForestClassifier (criterion='entropy', \ max\_depth=3, \ max\_features=10,
                       min_samples_leaf=5, min_samples_split=15,
                       n_estimators=150, oob_score=True, random_state=1)
 y_train_predict_rfc = rfc_model_res.predict(x_train_res)
 y_test_predict_rfc = rfc_model_res.predict(x_test_res)
 y_train_prob_rfc = rfc_model_res.predict_proba(x_train_res)[:,1]
 y_test_prob_rfc = rfc_model_res.predict_proba(x_test_res)[:,1]
 print(classification_report(y_train_res, y_train_predict_rfc))
```

```
sns.heatmap((confusion_matrix(y_train_res,y_train_predict_rfc)),annot=True,fmt='.5g', cbar = False);
plt.xlabel('Predicted');
plt.ylabel('Actuals',rotation=0)
plt.title('Confusion Matrix for Resampled Train for Grid Search Random Forest Model');
```

## **Build a LDA Model on Train Dataset**

```
lda_model1 = LinearDiscriminantAnalysis()
lda_model1 = lda_model1.fit(x_train, y_train)

y_train_predict_lda = lda_model1.predict(x_train)
y_test_predict_lda = lda_model1.predict(x_test)

y_train_prob_lda = lda_model1.predict_proba(x_train)[:,1]
y_test_prob_lda = lda_model1.predict_proba(x_test)[:,1]

lda_metrics = classification_report(y_train, y_train_predict_lda, output_dict = True)

recall = round(lda_metrics['1']['recall'],3)
f1score = round(lda_metrics['1']['f1-score'],3)
precision = round(lda_metrics['1']['precision'],3)
accuracy = lda_model1.score(x_train, y_train).round(3)
roc = round(roc_auc_score(y_train, y_train_prob_lda),3)

con['LDA_Train'] = [recall, f1score, precision, accuracy, roc]
```



```
abs\_coeff = pd.DataFrame(data = abs(lda\_model1.coef\_[\theta]), index = x\_train.columns, columns = ['Abs\_coeff']) \\ abs\_coeff
```

```
coef = pd.DataFrame(lda_model1.coef_[0], columns = ['Coeff'], index = x_train.columns)
coef['Abs_coeff'] = abs_coeff
coef.sort_values(by = 'Abs_coeff', ascending = False, inplace = True)

top_15 = coef.head(15)
top_15
```

```
plt.figure(figsize=(10,5))
sns.barplot(top_15['Coeff'],top_15.index,palette='rainbow')
plt.ylabel('Feature Name')
plt.xlabel('Feature Importance in %')
plt.title('Feature Importance Plot for LDA - Base Model')
plt.show()
```

# Market Risk Dataset



#### Stock Prices vs Time

```
df['Infosys'].plot(figsize = (12,6), color = 'c')
plt.title('Stock Price Movement for Infosys')
plt.xlabel('Year')
plt.ylabel('Stock Price')
plt.grid()
```

```
plt.figure(figsize = (12,6))
plt.scatter(df.index, df['Infosys'])
plt.xlabel('Year')
plt.ylabel('Infosys')
plt.title('Scatter Plot of Infosys Stock Price');
```

```
plt.figure(figsize = (10,5))
sns.barplot(x = 'Year', y = 'Infosys', data = df );
plt.title('Yearly Avg Stock Price of Infosys')
plt.xlabel('Year')
plt.ylabel('Stock Price');
```

```
plt.figure(figsize = (10,5))
sns.boxplot(x = 'Year', y = 'Infosys', data = df)
plt.title('Yearly Boxplot for Stock Price of Infosys')
plt.xlabel('Year')
plt.ylabel('Stock Price');
```

```
df['SAIL'].plot(figsize = (12,6), color = 'c')
plt.title('Stock Price Movement for SAIL')
plt.xlabel('Year')
plt.ylabel('Stock Price')
plt.grid();
```



# Returns for all Stocks

```
df1 = df.drop(['Year', 'Month', 'Month_abbr', 'Week'], axis = 1)
df_log = np.log(df1)

df_returns = df_log.diff(axis = 0, periods = 1)
df_returns.shape
```

#### Stock Means and Std Dev

```
df_returns_mean = pd.DataFrame(df_returns.mean(), columns = ['Mean Return'])
df_returns_mean.sort_values(by = 'Mean Return', ascending = False)
```

```
df_returns_std = pd.DataFrame(df_returns.std(), columns = ['Std Deviation'])
df_returns_std.sort_values(by = 'Std Deviation')
```

# Draw a plot of Stock Means vs Standard Deviation

```
plt.scatter(x = df_returns_mean, y = df_returns_std)
plt.xlabel('Mean Stock Returns')
plt.ylabel('Stocks Std Deviation')
plt.title('Plot of Mean Stock Returns vs Std Deviation of Stock Returns');
```

```
df_returns_mean['std'] = df_returns_std['Std Deviation']
df_returns_mean.sort_values(by = 'Mean Return', ascending = False)
```

```
plt.scatter(df_returns_mean['Mean Return'], df_returns_mean['std'], label = df_returns_mean.index);
#plt.legend(loc = 'best')
```

