Chin. Ann. Math. 31B(4), 2010, 491–496 DOI: 10.1007/s11401-010-0591-6

Chinese Annals of Mathematics, Series B

© The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2010

The Infinite Dimensional Hyperbolic Space \mathbb{H}^{∞} Does Not Have Property A**

Zhaobo HUANG*

Abstract The author constructs a sequence of cubes in the infinitely dimensional hyperbolic space \mathbb{H}^{∞} which is equi-coarsely equivalent to \mathbb{Z}_2^n . As a corollary, it is proved that the infinitely dimensional hyperbolic space \mathbb{H}^{∞} does not have property A.

Keywords Coarse geometry, Property A, Hyperbolic space **2000 MR Subject Classification** 46B85, 54E40

1 Introduction

Yu [10] introduced the concept of property A for the metric spaces. It was proved that this property has important applications in the study of coarse Baum-Connes conjecture for the discrete metric spaces with bounded geometry, Novikov conjecture for the finite generated group (see [10]) and exactness of C^* -algebras (see [3, 7]).

Yu [10] proved that property A for the metric space X implies a coarse embedding of X into Hilbert space. Recently, Nowak [6] constructed a locally finite metric space which can coarsely embedded into Hilbert space but does not have property A.

In this note, we construct a sequence of cubes \mathbb{H}_2^n $(n = 1, 2, \cdots)$ in the infinite dimensional hyperbolic space \mathbb{H}^{∞} ,

$$\mathbb{H}^{\infty} = \left\{ (z, x_1, x_2, \dots) \colon z^2 - (x_1^2 + x_2^2 + \dots) = 1, \ z \ge 1 \right\},\,$$

which is equi-coarsely equivalent to the sequence of \mathbb{Z}_2^n . By using the result proved by Nowak [6] that $\lim_{n\to\infty} \operatorname{diam}_{\mathbb{Z}_2^n}(1,\varepsilon) = +\infty$, it follows that the hyperbolic space \mathbb{H}^{∞} does not have property A.

2 Preliminaries

For discrete metric spaces, we use the definition of property A given by Higson and Roe [4, 9].

Definition 2.1 A discrete metric space X is said to have property A if for any R > 0, $\varepsilon > 0$, there exist a map $\xi: X \to l_1(X)_{1,+}$ and a positive number S such that

Manuscript received September 14, 2009. Published online June 21, 2010.

^{*}School of Mathematical Sciences, Fudan University, Shanghai 200433, China. E-mail: zbhuang@fudan.edu.cn

^{**}Project supported by the National Natural Science Foundation of China (No. 10731020) and the Shanghai Pujiang Program (No. 08PJ14006).

492 Z. B. Huang

- (i) $\|\xi_x \xi_y\| \le \varepsilon$, if $d(x, y) \le R$,
- (ii) supp $\xi_x \subseteq B(x, S), \ \forall x \in X$.

Here $l_1(X)_{1,+} = \{\xi : \xi \in l_1(X), \|\xi\| = 1 \text{ and } \xi(x) \ge 0, \ \forall x \in X\}$, and B(x, S) is the ball centered at x with radius S in X.

For the metric spaces with bounded geometry, this definition is equivalent to the original one given in [10]. For general metric spaces, we have the following definitions.

Definition 2.2 (see [10]) A metric space X is said to have property A if there exists a discrete subspace Γ of X such that Γ is C-dense in X (i.e., $X = \{x \colon d(x,\Gamma) \leq C\}$) and Γ has property A.

Definition 2.3 (see [2]) Let X be a metric space, H be a separable and infinite-dimensional Hilbert space. A map $f: X \to H$ is said to be a coarse embedding if there exist non-decreasing functions ρ_1 and ρ_2 from $\mathbb{R}_+ = [0, +\infty)$ to \mathbb{R}_+ such that

- (i) $\rho_1(d(x,y)) \le ||f(x) f(y)|| \le \rho_2(d(x,y)), \ \forall x, y \in X,$
- (ii) $\lim_{r \to \infty} \rho_i(r) = +\infty$ for i = 1, 2.

For the metric spaces with property A, Nowak [6] introduced the following definition.

Definition 2.4 (see [6]) Let X be a discrete metric space, R > 0, $\varepsilon > 0$. We define $\operatorname{diam}_X(R, \varepsilon)$ to be

$$\inf\{S \colon \operatorname{supp} \xi_x \subseteq B(x,S), \ \forall x \in X\},\$$

where ξ is a map $\xi: X \to l_1(X)_{1,+}$ and satisfies Definition 2.1(i) if it exists, otherwise we set $\operatorname{diam}_X(R,\varepsilon) = +\infty$.

Remark 2.1 (1) X has property A if and only if $\operatorname{diam}_X(R,\varepsilon) < \infty$ for all R > 0, $\varepsilon > 0$.

- (2) If $R_1 \leq R_2$, then $\operatorname{diam}_X(R_1, \varepsilon) \leq \operatorname{diam}_X(R_2, \varepsilon)$.
- (3) Let X and Y be discrete metric spaces, $f: X \to Y$ be a coarse embedding. Suppose that Y has property A. Then for every R > 0, $\varepsilon > 0$, we have

$$\rho_{-}(\operatorname{diam}_{X}(R,\varepsilon)) \leq 3\operatorname{diam}_{Y}(\rho_{+}(R),\varepsilon).$$

- (4) Suppose that (X_n, d_n) is a sequence of metric spaces with property A. If there exist R > 0, $\varepsilon > 0$ such that $\lim_{n \to \infty} \operatorname{diam}_{X_n}(R, \varepsilon) = \infty$, we construct the disjoint union $X = \bigsqcup_{n=1}^{\infty} X_n$ with the metric d which satisfies the following conditions:
 - (a) d restricts to d_n on X_n ,
 - (b) $d(X_n, X_{n+1}) \ge n+1$,
 - (c) $d(X_n, X_{m+1}) = \sum_{k=n}^{m-1} d(X_k, X_{k+1})$ for n < m.

Then X does not have property A.

The third statement in the remark can be proved by combining Proposition 3.6 and Theorem 3.11 in [5]. The fourth statement can be proved by the same method of [6, Theorem 5.1].

Let (X, d_1) , (Y, d_2) be metric spaces. We will consider the Cartesian product $X \times Y$ with the metric

$$d((x_1, y_1), (x_2, y_2)) = d_1(x_1, x_2) + d_2(y_1, y_2), \quad \forall x_1, x_2 \in X, \ y_1, y_2 \in Y.$$

Especially for the case X = Y, this definition can be generalized to n-copies of X. For a finitely generated amenable group Γ , Nowak [6] proved the following theorem.

Theorem 2.1 Let Γ be a finitely generated amenable group. Then for any $0 < \varepsilon < 2$,

$$\lim_{n \to \infty} \operatorname{diam}_{\Gamma^n}(1, \varepsilon) = +\infty. \tag{2.1}$$

It follows from this theorem that for any non-trivial finite group Γ , the metric space $X = \bigcup_{n=1}^{\infty} \Gamma^n$ does not have property A and it can coarsely embedded into Hilbert space (see [6]). For the special case $\Gamma = \mathbb{Z}_2 = \{0,1\}$, we get the disjoint union $X = \bigcup_{n=1}^{\infty} \mathbb{Z}_2^n$ with a metric d which satisfies the following conditions:

- (1) $d(x,y) = \sum_{i=1}^{n} d(x_i, y_i), \ \forall x = (x_1, \dots, x_n), \ y = (y_1, \dots, y_n) \in \mathbb{Z}_2^n,$
- (2) $d(\mathbb{Z}_2^n, \mathbb{Z}_2^{n+1}) = n+1,$
- (3) For $n \le m$, $d(\mathbb{Z}_2^n, \mathbb{Z}_2^m) = \sum_{k=n}^{m-1} d(\mathbb{Z}_2^k, \mathbb{Z}_2^{k+1}) = \frac{m(m+1)}{2} \frac{n(n+1)}{2}$.

Then X does not have property \tilde{A} and it can coarsely embedded into Hilbert space.

3 Cubes in \mathbb{H}^{∞}

In this section, we will construct a sequence of cubes \mathbb{H}_2^n in \mathbb{H}^{∞} such that the sequence of the metric spaces \mathbb{Z}_2^n are equi-coarsely equivalent to the sequence of \mathbb{H}_2^n .

Definition 3.1 (see [1]) Let X_n, Y_n $(n = 1, 2, \cdots)$ be two sequences of discrete metric spaces. A sequence of map $F = \{f_n\}$ where $f_n \colon X_n \to Y_n$ $(n = 1, 2, \cdots)$ is said to be equicoarse embedding if there exist non-decreasing functions ρ_- and ρ_+ from $\mathbb{R}_+ = [0, +\infty)$ to \mathbb{R}_+ such that

- (i) $\rho_{-}(d(x,y)) \le d(f_n(x), f_n(y)) \le \rho_{+}(d(x,y)) \text{ for all } x, y \in X_n, \ n \in \mathbb{N},$
- (ii) $\lim_{r \to \infty} \rho_{\pm}(r) = +\infty$.

If there exists a constant C > 0 such that $f_n(X_n)$ are C-dense in Y_n , i.e., $Y_n = \{y : y \in Y_n, d(y, Y_n) \leq C\}$, for every n, then we say that the two sequences of metric spaces $\{X_n\}$ and $\{Y_n\}$ are equi-coarsely equivalent.

By Remark 2.1(3), we have the following lemma.

Lemma 3.1 Let X_n, Y_n $(n = 1, 2, \cdots)$ be two equi-coarsely equivalent sequences of discrete metric spaces. Suppose that Y_n has property A for every n and if there exist R > 0, $\varepsilon > 0$ such that $\lim_{n \to \infty} \operatorname{diam}_{X_n}(R, \varepsilon) = \infty$, then we have

$$\lim_{n\to\infty} \operatorname{diam}_{Y_n}(\rho_+(R),\varepsilon) = +\infty.$$

Let \mathbb{H}^{∞} be the infinite dimensional hyperbolic space. For convenience, we represent the coordinates of the points in \mathbb{H}^{∞} as the form $x=(z,y,x_1,x_2,\cdots)$, where $z^2-(y^2+x_1^2+x_2^2+\cdots)=1$ and $z\geq 1$. Let $O=(1,0,0,\cdots)$ be the vertex of \mathbb{H}^{∞} .

On the z-y plane in \mathbb{H}^{∞} , we consider the hyperbola $z^2 - y^2 = 1$ ($z \ge 1$). Suppose that the hyperbolic distance between the point $(z, y, 0, 0, \cdots)$ and the vertex $O = (1, 0, 0, \cdots)$ is t. Then we have the parameter representations of z and y as follows

$$z = \cosh t$$
, $y = \sinh t$.

494 Z. B. Huang

Theorem 3.1 There exists a sequence of cubes \mathbb{H}_2^n in the infinite dimensional hyperbolic space \mathbb{H}^{∞} which is equi-coarsely equivalent to \mathbb{Z}_2^n .

Proof Let $S(t) = \{x : x = (\cosh t, y, x_1, \dots) \in \mathbb{H}^{\infty}, d_H(x, O) = t\}$ be the sphere in \mathbb{H}^{∞} with radius t ($t \ge 1$). In the following, we shall construct an n-dimensional cube in the sphere S(t) $(t \ge n)$ based on the point $(\cosh t, \sinh t, 0, 0, \cdots)$.

(a) We first compute the coordinates of the points which are of the form $x = (\cosh t, y_1, 0_N,$ $(x_1, 0, \cdots) \in S(t)$ $(x_1 > 0)$, and have hyperbolic distance 1 with the base point $x_t = (\cosh t, t)$ $\sinh t, 0, \cdots$). Here, we use the notation $0_N = 0, 0, \cdots, 0 \ (N \ge 0)$ to denote the N-zeros, and $0_{\infty} = (0, 0, \cdots)$ to denote the infinite many zeros.

By the fact that $x \in S(t)$ and $d_H(x, x_t) = 1$, we have

$$y_1^2 + x_1^2 = \sinh^2 t, (3.1)$$

$$\cosh^2 t - y_1 \sinh t = \cosh 1. \tag{3.2}$$

From these equations, we get

$$y_1 = \sinh t - \frac{\cosh 1 - 1}{\sinh t},$$

$$x_1^2 = 2(\cosh 1 - 1) - \left(\frac{\cosh 1 - 1}{\sinh t}\right)^2.$$
(3.3)

$$x_1^2 = 2(\cosh 1 - 1) - \left(\frac{\cosh 1 - 1}{\sinh t}\right)^2.$$
 (3.4)

Hereinafter, we use the following notations:

 $a_0 = 2(\cosh 1 - 1)$ and $a^2 = a_0 \left(1 - \frac{\cosh 1 - 1}{2 \sinh^2 t}\right) = x_1^2 \ (a > 0)$ which depends on t. We have $a_0 = 2(\cosh 1 - 1) \approx 1.086 (< 1.087)$ and $a \le 1.043$ for $t \ge 1$.

(b) Next, we compute the second coordinates y (y > 0) of the points

$$(\cosh t, y, x_1, x_2 \cdots) \in S(t),$$

where $x_n = a$ or 0 and the multiplicity of $x_n = a$ is i. It is obvious that the y-coordinate does not depend on the positions of a, it depends only on the multiplicity of a. So, it is sufficient for us to compute y_i of the points as $(\cosh t, y_i, a, a, \dots, a, 0_\infty) \in S(t)$ $(y_i > 0)$, where the multiplicity of a is i.

From the equality

$$\cosh^2 t - (y_i^2 + ia^2) = 1,$$

we get

$$y_i^2 = \sinh^2 t - ia^2. (3.5)$$

(c) Now, we construct the n-dimensional cube \mathbb{H}_{2}^{n} in \mathbb{H}^{∞} . We set the vertices of the cube as following

$$\begin{cases} (\cosh t, y_0, 0, 0, \cdots, 0, 0_{\infty}), \\ (\cosh t, y_1, a, 0, \cdots, 0, 0_{\infty}), \\ \vdots \\ (\cosh t, y_i, a_1, a_2, \cdots, a_n, 0_{\infty}), \\ \vdots \\ (\cosh t, y_n, a, a, \cdots, a, 0_{\infty}), \end{cases}$$

where $a_n = a$ or 0. The multiplicities of $a_k = a$ $(1 \le k \le n)$ are denoted by the subscripts of y. There are 2^n -many vertices.

(d) We compute the hyperbolic distances between any two vertices in \mathbb{H}_2^n . Let

$$A = (\cosh t, y_{i+j_1}, a_1, a_2, \dots, a_n, 0_{\infty})$$
 and $B = (\cosh t, y_{i+j_2}, b_1, b_2, \dots, b_n, 0_{\infty})$

be two vertices in \mathbb{H}_2^n , where there exist $i+j_1$ numbers of $a_k=a$ in A and $i+j_2$ numbers of $b_k=a$ in B, and there exist i numbers a in A and B which have the same positions. We have

$$\cosh d(\mathbf{A}, \mathbf{B}) = \cosh^{2} t - (y_{i+j_{1}}y_{i+j_{2}} + ia^{2}) \\
= \cosh^{2} t - \left[\sqrt{\sinh^{2} t - (i+j_{1})a^{2}} \cdot \sqrt{\sinh^{2} t - (i+j_{2})a^{2}} + ia^{2}\right] \\
= \cosh^{2} t - \left[\sinh^{2} t \cdot \sqrt{1 - \frac{(i+j_{1})a^{2}}{\sinh^{2} t}} \cdot \sqrt{1 - \frac{(i+j_{2})a^{2}}{\sinh^{2} t}} + ia^{2}\right] \\
= \cosh^{2} t - \left\{\sinh^{2} t \cdot \left[1 - \frac{(i+j_{1})a^{2}}{2\sinh^{2} t} + r_{1}\right] \left[1 - \frac{(i+j_{2})a^{2}}{2\sinh^{2} t} + r_{2}\right] + ia^{2}\right\} \\
= \cosh^{2} t - \left\{\sinh^{2} t \cdot \left[1 - \frac{(2i+j_{1}+j_{2})a^{2}}{2\sinh^{2} t} + r_{3}\right] + ia^{2}\right\} \\
= 1 + \frac{(j_{1}+j_{2})}{2}a^{2} + r_{4} \\
= 1 + \frac{(j_{1}+j_{2})}{2}a_{0}\left\{1 - \frac{\cosh 1 - 1}{2\sinh^{2} t}\right\} + r_{4} \\
= 1 + \frac{(j_{1}+j_{2})}{2}a_{0} + r_{5}, \tag{3.6}$$

where r_1, r_2, r_3, r_4, r_5 are the errors and

$$r_3 = \frac{(i+j_1)(i+j_2)a^4}{4\sinh^4 t} - r_1 \frac{(i+j_2)a^2}{2\sinh^2 t} - r_2 \frac{(i+j_1)a^2}{2\sinh^2 t} + r_1 r_2, \tag{3.7}$$

$$r_4 = -r_3 \cdot \sinh^2 t,\tag{3.8}$$

$$r_5 = r_4 - \frac{(j_1 + j_2)a_0^2}{8\sinh^2 t}. (3.9)$$

Noticing $\max\{(i+j_1),(i+j_2)\} \le n \le t$, we have $\frac{(i+j_k)a^2}{\sinh^2 t} < 1$ (k=1,2). By a simple calculation and the simple inequality $0 \le \left(1-\frac{1}{2}x\right) - \sqrt{1-x} < \frac{1}{2}x^2$ $(0 \le x < 1)$, we get the following estimates:

$$|r_1| \le \frac{1}{2} \left[\frac{(i+j_1)a^2}{\sinh^2 t} \right]^2, \quad |r_2| \le \frac{1}{2} \left[\frac{(i+j_2)a^2}{\sinh^2 t} \right]^2, \quad |r_3| \le \frac{(i+j_1)(i+j_2)a^4}{\sinh^4 t},$$

$$|r_4| \le \frac{(i+j_1)(i+j_2)a^4}{\sinh^2 t}, \quad |r_5| \le \frac{5}{8} \left(\frac{n}{\sinh t} \right)^2 a_0^2.$$

From the last inequality, we get

$$|r_5| \le \frac{1}{4}a_0 \quad \text{for } t \ge n.$$
 (3.10)

By the equality (3.6) and the inequality (3.10), we get

$$\max\left\{1, 1 + \frac{2(j_1 + j_2) - 1}{4}a_0\right\} \le \cosh d(\mathbf{A}, \mathbf{B}) \le 1 + \frac{2(j_1 + j_2) + 1}{4}a_0. \tag{3.11}$$

496 Z. B. Huang

Therefore, we have

$$\max\left\{0, \ln\left[1 + \frac{2(j_1 + j_2) - 1}{2}a_0\right]\right\} \le d(A, B) \le \ln\left[2 + \frac{2(j_1 + j_2) + 1}{2}a_0\right]. \tag{3.12}$$

(e) Finally, we define the maps f_n from \mathbb{Z}_2^n to \mathbb{H}_2^n by

$$f_n(z_1, z_2, \dots, z_n) = (\cosh t, y_i, 0_N, a_1, a_2, \dots, a_n, 0, \dots),$$

where $(z_1, z_2, \dots, z_n) \in \mathbb{Z}_2^n$, $z_k = 1$ or 0, $a_k = a$ or 0 according to $z_k = 1$ or 0, and i is the multiplicity of $a_k = a$. It is obvious that f_n are one to one and surjective. By the equation (3.12), we have that the sequence of maps f_n is an equi-coarse embedding from \mathbb{Z}_2^n to \mathbb{H}_2^n . This completes the proof of the theorem.

We recall that the cubes \mathbb{H}_2^n are in the spheres S(t) $(t \ge n)$ of \mathbb{H}^{∞} . Set $t = \frac{n(n+1)}{2}$ for \mathbb{H}_2^n . Then we get a discrete subspace $Y = \bigsqcup_{n=1}^{\infty} \mathbb{H}_2^n$ of \mathbb{H}^{∞} . Similarly to the proof of Theorem 5.1 in [6], we get the following corollary.

Corollary 3.1 The infinite dimensional hyperbolic space \mathbb{H}^{∞} does not have property A.

Acknowledgement The author would like to thank Professors Xiaoman Chen, Qin Wang and Guoliang Yu for their stimulating conversations.

References

- [1] Dadarlat, M. and Guentner, E., Uniform embeddability of relatively hyperbolic groups, *J. Reine Angew. Math.*, **612**, 2007, 1–15.
- [2] Gromov, M., Asymptotic invariants for infinite groups, Geometric Group Theory, Vol. 2, Sussex, 1991,
 1–295; London Math. Soc. Lecture Note Ser., Vol. 182, Cambridge University Press, Cambridge, 1993.
- [3] Guentner, E. and Kaminker, J., Exactness and the Novikov conjecture, Topology, 41, 2002, 411–418.
- [4] Higson, N. and Roe, J., Amenable group actions and the Novikov conjecture, J. Reine Angew. Math., 519, 2000, 143–153.
- [5] Nowak, P., On exactness and isoperimetric properties of discrete groups, J. Funct. Anal., 234, 2007, 323–344.
- [6] Nowak, P., Coarsely embeddable metric spaces without property A, J. Funct. Anal., 252, 2007, 126–136.
- [7] Ozawa, N., Amenable actions and exactness for discrete groups, C. R. Acad. Sci. Paris Sér. I Math., 330, 2000, 691–695.
- [8] Roe, J., Lectures on coarse geometry, University Lecture Series, Vol. 31, A. M. S., Providence, RI, 2003.
- [9] Tu, J. L., Remarks on Yu's property A for discrete metric spaces and groups, Bull. Soc. Math. France, 129(1), 2001, 115–139.
- [10] Yu, G., The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, *Invent. Math.*, 139, 2000, 201–240.