Johns Hopkins Engineering for Professionals

Mathematical Methods for Applied Biomedical Engineering EN. 585.409

Taylor and Laurent series

A Taylor power series expression for a functions of a complex variables can derived starting with Cauchy's integral formula.

Starting with
$$f(z) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(\xi)}{\xi - z} d\xi = \frac{1}{2\pi i} \oint_{\gamma} \frac{1}{\xi - z} f(\xi) d\xi$$

Take $\frac{1}{\xi - z} = \frac{1}{(\xi - z_o) + (z_o - z)} = \frac{1}{\xi - z_o} \frac{1}{\underline{[(\xi - z_o) + (z_o - z)]}} = \frac{1}{\xi - z_o} \frac{1}{\underline{[(\xi - z_o) + (z_o - z)]}} = \frac{1}{\xi - z_o} \frac{1}{(\xi - z_o)} + \frac{(z_o - z)}{(\xi - z_o)} = \frac{(z - z_o)}{(\xi - z_o)}$

Therefore
$$\frac{1}{\xi - z} = \frac{1}{\xi - z_0} (1 - r)^{-1}$$

Now we will use a formula for geometric progression

$$\sum_{n=0}^{\infty} a_1 r^n = \frac{a_1}{1-r} \text{ with } a_1 = 1 \text{ we have } (1-r)^{-1} = \sum_{n=0}^{\infty} r^n$$

Therefore
$$\frac{1}{\xi - z} = \frac{1}{\xi - z_0} \sum_{n=0}^{\infty} r^n = \frac{1}{\xi - z_0} \sum_{n=0}^{\infty} \left(\frac{z - z_0}{\xi - z_0} \right)^n$$

Substitution of our geometric expression gives

$$f(z) = \frac{1}{2\pi i} \oint_{\gamma} \frac{1}{\xi - z} f(\xi) d\xi = \frac{1}{2\pi i} \oint_{\gamma} \frac{1}{\xi - z_{o}} \sum_{n=0}^{\infty} \left(\frac{z - z_{o}}{\xi - z_{o}} \right)^{n} f(\xi) d\xi = \frac{1}{2\pi i} \oint_{\gamma} \sum_{n=0}^{\infty} \frac{(z - z_{o})^{n}}{(\xi - z_{o})^{n+1}} f(\xi) d\xi = \frac{1}{2\pi i} \sum_{n=0}^{\infty} (z - z_{o})^{n} \oint_{\gamma} \frac{f(\xi)}{(\xi - z_{o})^{n+1}} d\xi$$

Finally using Cauchy's integral theorem for derivatives $\oint_{\gamma} \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi = \frac{2\pi i}{n!} f^{(n)}(z_0)$

to substitute for our integral we have

$$f(z) = \frac{1}{2\pi i} \sum_{n=0}^{\infty} (z - z_0)^n \frac{2\pi i}{n!} f^{(n)}(z_0) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n = \sum_{n=0}^{\infty} a_n (z - z_0)^n \text{ and } a_n = \frac{f^{(n)}(z)}{n!} \bigg|_{z = z_0}$$

Therefore we have an expression for the Taylor series of a function of a complex variable!

What happens if our function f(z) is not analytic and has a singularity at $z = z_o$?

Start with
$$f(z) = \frac{g(z)}{(z-z_0)^p}$$
 or $g(z) = f(z)(z-z_0)^p$ where $g(z)$ is analytic,

that is
$$g(z) = \sum_{n=0}^{\infty} b_n (z - z_0)^n$$

Therefore
$$f(z) = \frac{1}{(z-z_0)^p} \sum_{n=0}^{\infty} b_n (z-z_0)^n = \sum_{n=0}^{\infty} b_n (z-z_0)^{n-p}$$

Reindex $n \rightarrow n+p$ gives

$$f(z) = \sum_{n=0}^{\infty} b_{n+p} (z - z_0)^{n+p-p} = \sum_{n=-p}^{\infty} b_{n+p} (z - z_0)^n$$

We can make the following associations $a_n = b_{n+p}$ and $a_{-p} = b_0$

Therefore this defines an extension of a Taylor series for f(z) as

$$f(z) = \frac{a_{-p}}{(z - z_0)^p} + \dots + \frac{a_{-1}}{(z - z_0)^1} + \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 where $a_{-p} \neq 0$

Now using Cauchy's integral theorem for derivatives again we have

$$b_{n} = \frac{g^{(n)}(z_{o})}{n!} = \frac{1}{2\pi i} \oint_{\gamma} \frac{g(z)}{(z-z_{o})^{n+1}} dz$$

Therefore
$$a_n = b_{n+p} = \frac{1}{2\pi i} \oint_{\gamma} \frac{g(z)}{(z-z_o)^{n+p+1}} dz = \frac{1}{2\pi i} \oint_{\gamma} \frac{g(z)}{(z-z_o)^p} \frac{1}{(z-z_o)^{n+1}} dz =$$

Finally
$$a_n = \frac{1}{2\pi i} \oint_{\gamma} f(z) \frac{1}{(z-z_0)^{n+1}} dz$$
, n positive or negative

For $n \ge 0$ terms in Laurent series are analytic n < 0 remaining terms consist of inverse powers of $(z-z_0)$ called principle points

Then the Laurent series is value of the coefficient a_{-1} $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ where we define the **residue** to be the

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

play an important

Key: If f(z) is not analytic at $z = z_0$ there are two possible cases:

- Possible to find integer p such that $a_{-n} \neq 0$ but for $\forall_{k>0} a_{-n-k} = 0$ there is min p
- (ii) It is not possible to find a lowest value -p

Example for finding Laurent series

Take
$$f(z) = \frac{1}{z(z-2)^3} = \frac{1}{(z-0)^1(z-2)^3}$$
 This function has $z_0 = 0$ of order 1 Singularities (poles) at $z_0 = 2$ of order 3

First look at expansion of of f(z) as function of z, that is singularity at $z_0 = 0$

$$f(z) = \frac{1}{z(z-2)^3} = \frac{1}{z \left[2\left(\frac{z}{2}-1\right) \right]^3} = \frac{1}{8z \left(\frac{z}{2}-1\right)^3} = \frac{-1}{8z} \frac{1}{\left(1-\frac{z}{2}\right)^3} = \frac{-1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2} =$$

This form is needed to take expansion as powers of z (geometric series), that is

$$\left(1-\frac{z}{2}\right)^{-3} = 1 + \frac{3}{1!} \left(\frac{z}{2}\right)^{1} + \frac{3 \cdot (3+1)}{2!} \left(\frac{z}{2}\right)^{2} + \frac{3 \cdot (3+1) \cdot (3+2)}{3!} \left(\frac{z}{2}\right)^{3} + \dots = \frac{1}{2!} \left(\frac{z}{2}\right)^{2} + \frac{3 \cdot (3+1) \cdot (3+2)}{2!} \left(\frac{z}{2}\right)^{2} + \dots = \frac{1}{2!} \left(\frac{z}{2}\right)^{2} + \dots = \frac{1}{2!$$

$$1 + \frac{3}{1!} \left(\frac{1}{2}\right)^{1} z + \frac{3 \cdot 4}{2} \left(\frac{1}{2}\right)^{2} z^{2} + \frac{3 \cdot 4 \cdot 5}{3!} \left(\frac{1}{2}\right)^{3} z^{3} + \dots = 1 + \frac{3}{2} z + \frac{3}{2} z^{2} + \frac{5}{4} z^{3} + \dots$$

Finally

$$f(z) = \frac{-1}{8z} \frac{1}{\left(1 - \frac{z}{2}\right)^3} = \frac{-1}{8z} \left(1 + \frac{3}{2}z + \frac{3}{2}z^2 + \frac{5}{4}z^3 + \cdots\right) = \frac{1}{8z} \frac{3}{16} - \frac{3}{16}z - \frac{5}{32}z^2 + \cdots$$

Therefore a₋₁=-1/8 lowest index value and also residue for pole of order n=1

Next let's look for pole at $z_0 = 2$

Let
$$z = \xi + 2 \rightarrow \xi = z - 2$$
 Therefore $f(z) = \frac{1}{z(z-2)^3} \rightarrow f(\xi) = \frac{1}{(2+\xi)(\xi)^3}$

Then
$$f(\xi) = \frac{1}{(2+\xi)(\xi)^3} = \frac{1}{\xi^3 2 \left[1 + \frac{\xi}{2}\right]} = \frac{1}{\xi^3 2} \left(1 + \frac{\xi}{2}\right)^{-1}$$

Similar to the previous series expansion used but with 1+r, $r=\frac{\xi}{2}$ and n=-1

Explicitly
$$(1+r)^{-n} = 1 - \frac{n}{1!}r^1 + \frac{n \cdot (n+1)}{2!}r^2 - \frac{n \cdot (n+1) \cdot (n+2)}{3!}r^3 + \cdots$$
 and in our case

$$\left(1+\frac{\xi}{2}\right)^{-1} = 1 - \frac{1}{1!} \left(\frac{\xi}{2}\right)^{1} + \frac{1 \cdot (1+1)}{2!} \left(\frac{\xi}{2}\right)^{2} - \frac{1 \cdot (1+1) \cdot (1+2)}{3!} \left(\frac{\xi}{2}\right)^{3} + \dots = 1 - \frac{1}{2}\xi + \frac{1}{4}\xi^{2} - \frac{1}{8}\xi^{3} + \dots$$

Therefore
$$f(\xi) = \frac{1}{\xi^3 2} \left(1 + \frac{\xi}{2} \right)^{-1} = \frac{1}{\xi^3 2} \left[1 - \frac{1}{2} \xi + \frac{1}{4} \xi^2 - \frac{1}{8} \xi^3 + \cdots \right] = \frac{1}{2\xi^3} - \frac{1}{4\xi^2} + \frac{1}{8\xi} - \frac{1}{16} + \cdots$$

Finally with
$$\xi = z - 2$$
 we have $f(z) = \frac{1}{2(z-2)^3} - \frac{1}{4(z-2)^2} + \frac{1}{8(z-2)} - \frac{1}{16} + \cdots$

Therefore $a_{-1}=1/8$ is the residue and lowest index value $a_{-3}=1/2$ with order of pole 3.

A final quick unproven result for residues

If a function
$$f(z) = \frac{g(z)}{h(z)}$$
 has a simple pole at z_o then the residue is $\operatorname{Res}(z_o) = \frac{g(z_o)}{h'(z_o)}$