§6.4 The Gram-Schmidt Process

The Gram-Schmidt process is an algorithm for producing an orthogonal or orthonormal basis for any nonzero subspace of \mathbb{R}^n .

The Gram-Schmidt Process

Given a basis $\{\mathbf x_1, ..., \mathbf x_p\}$ for a nonzero subspace W of $\mathbb R^n$, define

$$v_{1} = x_{1}$$

$$v_{2} = x_{2} - \frac{x_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}$$

$$v_{3} = x_{3} - \frac{x_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1} - \frac{x_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}$$

$$v_{3} = x_{3} - \frac{x_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1} - \frac{x_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}$$

$$\vdots$$

$$v_{p} = x_{p} - \frac{x_{p} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1} - \frac{x_{p} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2} - \dots - \frac{x_{p} \cdot v_{p-1}}{v_{p-1} \cdot v_{p-1}} v_{p-1}$$

Then $\{\mathbf v_1, \dots, \mathbf v_p\}$ is an orthogonal basis for W.