Züchtungslehre - Quantitative Genetik

Peter von Rohr

30 September 2016

Gene und Genotypen

Frequenzen

Genotypen

$$f(G_1G_1) = \frac{4}{10} = 0.4$$

 $f(G_1G_2) = \frac{3}{10} = 0.3$
 $f(G_2G_2) = \frac{3}{10} = 0.3$

Allele

$$f(G_1) = f(G_1G_1) + 1/2f(G_1G_2) = 0.4 + 0.15 = 0.55$$

 $f(G_2) = f(G_2G_2) + 1/2f(G_1G_2) = 0.3 + 0.15 = 0.45$

Begriffe

- Phänotyp: messbare oder beobachtbare Eigenschaft oder Leistung eines Tieres (Milchleistung, Zuwachs, Körpergrösse, usw)
- ► **Genom**: totale genetische Information eines Individuums
- ► Genort: (auch Locus) definierte Position auf dem Genom
- Genotyp: bestimmte Kombination von Genvarianten an einem Locus
- ▶ Allel: mögliche Genvariante an einem Locus
- **homozygot**: Allele an Locus sind gleich (G_1G_1)
- **heterozygot**: Allele an Locus sind verschieden (G_1G_2)

Genotypische Werte

Zusammenfassung Genotypische Werte

Genotyp	genotypischer Wert
G_1G_1	$V_{11}=a$
G_1G_2	$V_{12}=d$
G_2G_2	$V_{22}=-a$

Populationsmittel als Erwartungswert

Definition

$$\mu = E[V] = f(G_1G_1) * V_{11} + f(G_1G_2) * V_{12} + f(G_2G_2) * V_{22}$$

Frequenzen

Genotyp	Frequenzen	
G_1G_1	$p*p=p^2$	
G_1G_2	p*q+q*p=2pq	
G_2G_2	$q*q=q^2$	

Kombiniert

$$\mu = p^{2} * a + 2pq * d - q^{2} * a$$

$$= (p^{2} - q^{2})a + 2pqd$$

$$= (p + q)(p - q)a + 2pqd$$

$$= (p - q)a + 2pqd$$

Zuchtwert - Definition

Der **Zuchtwert** eines bestimmten Tieres i ist definiert als die doppelte Abweichung des erwarteten Mittelwertes der Nachkommen von Tier i vom Populationsmittel.

Zuchtwert - Herleitung

- ▶ Mutter mit Genotyp G₁ G₁
- zufällige Anpaarung an Väter aus Population
- ► Frequenzen der Nachkommen

	Vater		
	$f(G_1)=p$	$f(G_2)=q$	
Mutter			
$f(G_1)=1$	$f(G_1G_1)=p$	$f(G_1G_2)=q$	

Zuchtwert - Berechnung

$$ZW_{11} = 2 * (\mu_{11} - \mu)$$

$$= 2(pa + qd - [(p - q)a + 2pqd])$$

$$= 2(pa + qd - (p - q)a - 2pqd)$$

$$= 2(qd + qa - 2pqd)$$

$$= 2(qa + qd(1 - 2p))$$

$$= 2q(a + d(1 - 2p))$$

$$= 2q(a + (q - p)d)$$

Zuchtwert - Zusammenfassung

Genotyp	Zuchtwert	
G_1G_1	$2q\alpha$	
G_1G_2	$(q-p)\alpha$	
G_2G_2	$-2p\alpha$	

wobei:

$$\alpha = a + (q - p)d$$

Allelsubstitution

$$ZW_{12} - ZW_{22} = (q - p)\alpha - (-2p\alpha)$$

$$= (q - p)\alpha + 2p\alpha$$

$$= (q - p + 2p)\alpha$$

$$= (q + p)\alpha$$

$$= \alpha$$

$$ZW_{11} - ZW_{12} = 2q\alpha - (q - p)\alpha$$
$$= (2q - (q - p))\alpha$$
$$= \alpha$$

Dominanzabweichung

$$V_{11} - ZW_{11} = a - 2q\alpha$$

$$= a - 2q [a + (q - p)d]$$

$$= a - 2qa - 2q(q - p)d$$

$$= a(1 - 2q) - 2q^2d + 2pqd$$

$$= [(p - q)a + 2pqd] - 2q^2d$$

$$= \mu + D_{11}$$

$$V_{12} - ZW_{12} = d - (q - p)\alpha$$

= $d - (q - p)[a + (q - p)d]$
= $[(p - q)a + 2pqd] + 2pqd$
= $\mu + D_{12}$

Dominanzabweichung II

$$V_{22} - ZW_{22} = -a - (-2p\alpha)$$

$$= -a + 2p[a + (q - p)d]$$

$$= [(p - q)a + 2pqd] - 2p^{2}d$$

$$= \mu + D_{22}$$
(1)

→ Allgemeine Zerlegung

$$V_{ij} = \mu + ZW_{ij} + D_{ij}$$

Zusammenfassung

Genotyp	genotypischer Wert	Zuchtwert	Dominanzabweichung
G_iG_j	V_{ij}	ZW _{ij}	D_{ij}
G_1G_1	а	$2q\alpha$	$-2q^2d$
G_1G_2	d	$(q-p)\alpha$	2pqd
G_2G_2	-a	$-2p\alpha$	$-2p^2d$

Varianz

Allgemeine Definition der Varianz

$$\sigma_G^2 = Var[V] = (V_{11} - \mu)^2 * f(G_1G_1) + (V_{12} - \mu)^2 * f(G_1G_2) + (V_{22} - \mu)^2 * f(G_2G_2)$$

Frequenzen eingesetzt und $V_{ij}\mu = ZW_{ij} + D_{ij}$

$$\sigma_G^2 = (ZW_{11} + D_{11})^2 * p^2 + (ZW_{12} + D_{12})^2 * 2pq + (ZW_{22} + D_{22})^2 * q^2$$

Varianz - Resultat

Herleitung in Anhang

$$\sigma_G^2 = 2pq\alpha^2 + (2pqd)^2$$
$$= \sigma_A^2 + \sigma_D^2$$

wobei:

- $ightharpoonup \sigma_A^2$: genetisch additive Varianz
- σ_D^2 : Dominanzvarianz

Erweiterung auf mehrere Genorte

- Abhängigkeit zwischen Genorten: $f(A_1A_1B_1B_1) \neq f(A_1A_1) * f(B_1B_1)$
- Interaktionen

$$g + \mu = V_{ij}^{(A)} + V_{kl}^{(B)} + I_{ijkl}^{(A) \cdot (B)}$$

= $\mu^{(A)} + ZW_{ij}^{(A)} + D_{ij}^{(A)} + \mu^{(B)} + ZW_{kl}^{(B)} + D_{kl}^{(B)} + I_{ijkl}^{(A) \cdot (B)}$

Polygenes Modell

- unendlich viele Genorte
- Modellierung des genotypischen Wertes als

$$g = a+d+i$$

- ► Zuchtwert als additiv genetischer Teil a: als normalverteilte Zufallsvariable
- ▶ Dominanzabweichung d: häufig ignoriert
- ► Epistasis *i*: häufig ignoriert

Phänotypische Beobachtung

- ightharpoonup Genotypische Werte nicht beobachtbar ightarrow Verwendung von phänotypischen Messungen
- Modell

$$y = \mu + g + e$$

Varianz

$$Var[y] = \sigma_p^2 = \sigma_g^2 + \sigma_e^2 + 2Cov[g, e]$$

▶ Ohne Genotyp-Umwelt Interaktion

$$Var[y] = \sigma_p^2 = \sigma_g^2 + \sigma_e^2$$

