目录

layer 模块	. 1
data 类	
fusion_layer 类	
fully_connected_layer 类	. 2
activation_layer 类	
loss_layer 类	
function_for_layer 模块	
激活函数:	
损失函数:	
初始化函数:	
update_method 模块	
学习率变化机制函数:	
权值更新机制:	

layer 模块

data 类

属性:

data_sample: 用于保存样本集,为 $S \times N$ 的二维数组,S表示样本数,N表示一个样本的分量个数。

data_sample: 用于保存样本标签,为 $S \times N$ 的二维数组,S 表示样本数,N 表示样本中总的类别数,例如样本集中类别总数为 10,其中一个样本属于每 4 类,则它的标签为: [0,0,0,1,0,0,0,0,0,0]。

output_sample:用于保存下次训练使用的样本,为 $b \times N$ 的二维数组,b等于 batch_size 的大小,N表示一个样本的分量个数。

output_label: 用于保存下次训练使用的样本标签。

方法:

__init__(self): 构造函数。

get_data(self, sample, label): 获得样本集与对应的标签。

shuffle(self): 对样本集进行洗牌,即打乱它们的顺序。

pull_data(self): 用于从训练集中推出下一次训练使用的样本与标签。

fusion_layer 类

属性:

num_dimension: 一个样本的分量个数 N。

inputs1: 保存特征 1 的样本集 I_1 ; $b \times N$ 的二维数组, b 表示 batch_size 的大小, N 表示样本分量。

inputs2: 保存特征 2 的样本集I,。

inputs3: 保存特征3的样本集I3。

outputs: 三种特征加权融合后的特征o。

weights: 保存加权系数; 1×2 的一维数组。为什么是 2 个权系数呢,因为设定了这三个加权系数和为 1。

previous_direction: 保存两个加权系数上一次的下降方向,用于带加动量向的权值更新; 1×2的一维数组。

grad_weights: 保存加权系数的梯度; b×2的二维数组, b表示 bach_size 的大小。

grad_outputs_now: 保存本层输出的梯度; $b \times N$ 的二维数组, N 表示本层输出的神经元个数,即样本分量了。 **方法**:

__init__(self, num_dimension): 构造函数。

initialize_weights(self, weight1, weight2): 初始化加权系数。

get_inputs_for_forward(self, input1, input2, input3): 获取正向传播的输入。

forward(self): 对三种输入进行加权求和,得到输出。

$$\mathbf{O} = w_1 \cdot \mathbf{I}_1 + w_2 \cdot \mathbf{I}_2 + (1 - w_1 - w_2) \cdot \mathbf{I}_3$$

get_inputs_for_backward(self, grad_outputs): 获取反向传播的输入。

backward(self): 求两个加权系数的梯度。

$$\frac{\partial J}{\partial k_1} = \sum_{i=1}^{N} \left[\frac{\partial J}{\partial O_i^{(\text{$^{\frac{1}{N}}$},\text{$\text{$\text{gh}$}$})}} \cdot \left(x_i^1 - x_i^3 \right) \right] + \lambda \cdot k_1$$

$$\frac{\partial J}{\partial k_2} = \sum_{i=1}^{N} \left[\frac{\partial J}{\partial O_i^{(4 \log \log \log M)}} \cdot \left(x_i^2 - x_i^3 \right) \right] + \lambda \cdot k_2$$

其中 x_i^1 表示 I_1 的第i个分量, λ 表示权值衰减系数。

update(self): 计算多个样本的平均梯度,更新权值。

fully_connected_layer 类

属性:

num_neuron_inputs: 输入层的神经元个数 *M*。num_neuron_outputs: 本层的神经元个数 *N*。

inputs: 本层输入 I; $b \times M$ 的二维数组。 b 表示 batch_size 的大小。

outputs: 本层的输出 O; $b \times N$ 的二维数组。

weights: 权值 W; $M \times N$ 的二维数组。

bias: 偏置 b; $1 \times N$ 的一维数组。

weights_previous_direction: 上一次的下降方向; $M \times N$ 的二维数组。

bias_previous_direction: 上一次的下降方向; 1×N的一维数组。

 $grad_weights:$ 权值的梯度; $b \times M \times N$ 的三维数组。

 $grad_bias$: 偏置的梯度; $b \times N$ 的二维数组。 $grad_inputs$: 输入的梯度; $b \times M$ 的二维数组。 $grad_outputs$: 输出的梯度; $b \times N$ 的二维数组。

方法:

__init__(self, num_neuron_inputs, num_neuron_outputs): 构造函数。

initialize_weights(self): 初始化权值。

get_inputs_for_forward(self, inputs): 获取正向传播输入。

forward(self): 计算输出值。 $\textbf{\textit{O}} = \textbf{\textit{I}} \bullet \textbf{\textit{W}} + \begin{bmatrix} \textbf{\textit{b}} \\ \vdots \\ \textbf{\textit{b}} \end{bmatrix}$, 其中 \bullet 表示矩阵乘法

get_inputs_for_backward(self, grad_outputs): 获取反向传播输入。

backward(self): 求权值与偏置的梯度。

$$\begin{split} \frac{\partial J}{\partial w_{ij}^{(L)}} &= \frac{\partial J}{\partial O_{j}^{(L)}} \cdot \frac{\partial O_{j}^{(L)}}{\partial w_{ij}^{(L)}} + \lambda \cdot w_{ij}^{(L)} = I_{i}^{(L)} \cdot \frac{\partial J}{\partial O_{j}^{(L)}} + \lambda \cdot w_{ij}^{(L)} \\ &\frac{\partial J}{\partial b_{j}^{(L)}} = \frac{\partial J}{\partial O_{j}^{(L)}} \cdot \frac{\partial O_{j}^{(L)}}{\partial b_{j}^{(L)}} = \frac{\partial J}{\partial O_{j}^{(L)}} \\ &\frac{\partial J}{\partial I_{i}^{(L)}} = \sum_{j=1}^{N_{L}} \left[\frac{\partial J}{\partial O_{j}^{(L)}} \cdot \frac{\partial O_{j}^{(L)}}{\partial I_{i}^{(L)}} \right] = \sum_{j=1}^{N_{L}} \left[\frac{\partial J}{\partial O_{i}^{(L)}} \cdot w_{ij}^{(L)} \right] \end{split}$$

update(self): 计算样本的平均梯度,更新权值与偏置。

activation_layer 类

属性:

activation function: 使用的激活函数。

der_activation_function: 使用的激活函数的导数。

inputs: 输入。 outputs:输出。

grad_inputs: 输入的梯度。 grad_outputs: 输出的梯度。

方法:

__init__(self, activation_function_name): 构造函数。

get_inputs_for_forward(self, inputs): 获取正向传播输入。

forward(self): 利用激活函数求输出的值。

$$\mathbf{O} = f(\mathbf{I})$$

get_inputs_for_backward(self, grad_outputs): 获取反向传播输入。

backward(self): 利用激活函数的导数求输入的导数。

$$\frac{\partial J}{\partial I} = \frac{\partial J}{\partial O} \cdot \frac{\partial O}{\partial I} = \frac{\partial J}{\partial O} \cdot f'(I)$$

loss_layer 类

属性:

inputs: 训练样本的输入。

loss: 训练误差。 accuracy: 正确率。

label: 训练样本的标签。 grad_inputs: 输入的梯度。

loss_function: 使用的损失函数。 der_loss_function: 损失函数的导数。

方法:

__init__(self, loss_function_name): 构造函数。

get_labe_for_loss(self, label): 获取训练样本的标签。

get_inputs_for_loss(self, inputs): 获取输入。

compute_loss_and_accuracy(self): 计算训练误差与正确率。

compute_gradient(self): 计算输入的梯度。

function_for_layer 模块

激活函数:

sigmoid(x): sigmoid 函数。

$$f(x) = \frac{1}{1 + \mathrm{e}^{-x}}$$

der_sigmoid(x): sigmoid 函数的导数。

$$f'(x) = f(x) \cdot [1 - f(x)]$$

tanh(x): tanh 函数。

$$f(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

der_tanh(x): tanh 函数的导数。

$$f(x) = 1 - [f(x)]^2$$

relu(x): relu 函数。

$$f(x) = \begin{cases} x, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

der_relu(x): 函数的数。

$$f'(x) = \begin{cases} 1, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

损失函数:

softmaxwithloss(inputs, label):

$$J = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{j=1}^{k} I\{T^{(i)} = j\} \ln \frac{e^{y_j^{(i)}}}{\sum_{l=1}^{k} e^{y_l^{(i)}}} \right]$$

der_softmaxwithloss(inputs, label):

$$\frac{\partial J_{1}}{\partial O_{z}^{(L)}} = -\frac{\partial \log(\frac{e^{O_{a}^{(L)}}}{\sum_{l=1}^{4} e^{O_{l}^{(L)}}})}{\partial O_{z}^{(L)}} = \frac{e^{O_{z}^{(L)}}}{\sum_{l=1}^{4} e^{O_{l}^{(L)}}} - \delta_{az}, \quad \sharp \vdash \delta_{az} = \begin{cases} 1 & z = a \\ 0 & z \neq a \end{cases}$$

上式中, a 表示样本的标签为第 a 类, z 表示每 z 个输出。

初始化函数:

xavier(num_neuron_inputs, num_neuron_outputs): 按 xavier 方法初始化。

权值服从均匀:
$$W \sim U \left[-\frac{\sqrt{6}}{\sqrt{n_j + n_{j+1} + 1}}, \frac{\sqrt{6}}{\sqrt{n_j + n_{j+1} + 1}} \right]$$

update_method 模块

学习率变化机制函数:

inv(gamma = 0.0005, power = 0.75):

$$l r = l r_0 \times (1 + \gamma \times n)^{-p}$$

式中, lr_0 表示初始学习率, n 表示迭代次数, gamma 与 p 为参数。 fixed():

$$l r = l r_0$$

权值更新机制:

batch_gradient_descent(weights, grad_weights, previous_direction): 基于批量的随机梯度下降法。