18. fejezet: Rang, lineáris egyenletrendszerek

2023. november 8.

Vektorrendszer rangja: a vektorrendszer összefüggőségének mértéke.

Vegyünk 3 darab \mathbb{R}^3 -beli vekort, melyek Ö rendszert alkotnak. Mikor érezzük "összefüggőbbnek" / "jobban összefüggőnek" őket, ha

- 1. egy síkban, de nem egyenesen vannak, vagy
- 2. ha egy egyenesen vannak?

Legyen V egy vektortér. Az $x_1,\ldots,x_k\in V$ vektorrendszer rangját az alábbi módon definiáljuk:

$$\operatorname{rang}(x_1,\ldots,x_k) := \operatorname{Span}(x_1,\ldots,x_k).$$

Megjegyzések.

- $ightharpoonup 0 \le \operatorname{rang}(x_1, \dots, x_k) \le k,$
- minél kisebb a rang, annál "összefüggőbb" a rendszer, annál kisebb a "szabad mozgástér", speciálisan:

$$\operatorname{rang}(x_1, \dots, x_k) = 0 \iff x_1 = \dots = x_k = 0,$$
$$\operatorname{rang}(x_1, \dots, x_k) = k \iff x_1, \dots, x_k(\widehat{\mathbf{F}}),$$

- rang = hány darab független vektor választható ki a vektorrendszerből.
- ▶ rangtartó átalakítások (bármelyik elemet nemnulla konstanssal megszorozva, bármelyik elemhez bármelyik elem konstanszorosát hozzáadva, nullelemeket elhagyva a rang nem változik)

Mátrix rangja

Legyen $A \in \mathbb{K}^{m \times n}$. Az A i-dik sorvektorát az i-dik sor elemei alkotják:

$$s_i := (a_{i1}, \dots, a_{in}) \in \mathbb{K}^n \qquad (i \in \{1, \dots, m\}).$$

A sorvektorok által generált \mathbb{K}^n -beli alteret az A sorvektorterének (sorterének) nevezzük. Jel.: S(A).

Legyen $A \in \mathbb{K}^{m \times n}$. Az A j-dik oszlopvektorát a j-dik oszlop elemei alkotják:

$$o_j := \begin{pmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{pmatrix} \in \mathbb{K}^m \qquad (j \in \{1, \dots, n\}).$$

A sorvektorok által generált \mathbb{K}^m -beli alteret az A oszlopvektorterének (oszlopterének) nevezzük. Jel.: O(A).

Megjegyzések.

- $ightharpoonup \dim(S(A)) \le m \text{ és } \dim(S(A)) \le n$
- $ightharpoonup \dim(O(A)) \le m \text{ és } \dim(O(A)) \le n$
- $ightharpoonup S(A^T) = O(A)$ és $O(A^T) = S(A)$.

Legyen $A \in \mathbb{K}^{m \times n}$. Ekkor $\dim(O(A)) = \dim(S(A))$.

Az $A \in \mathbb{K}^{m \times n}$ mátrix rangját az alábbi módon definiáljuk:

$$\operatorname{rang}(A) := \dim(S(A)) = \dim(O(A)).$$

Megjegyzések:

- $ightharpoonup \operatorname{rang}(A) = \operatorname{rang}(A^T),$
- $ightharpoonup 0 \le \operatorname{rang}(A) \le \min(m, n) \text{ és } \operatorname{rang}(A) = 0 \Longleftrightarrow A = \mathbf{0},$
- $ightharpoonup \operatorname{rang}(A) = m \iff \operatorname{sorvektorok}(\widehat{\mathbf{F}}),$
- $ightharpoonup \operatorname{rang}(A) = n \iff \operatorname{oszlopvektorok}(\overline{\mathcal{F}}),$
- rangtartó átalakítások
 - sor szorzása nemnulla konstanssal,
 - sorhoz másik sor konstans-szorosának hozzáadása
 - csupa 0 sor törlése (ha legalább két sor van)

Lineáris egyenletrendszerek

Legyen $0 < m, n \in \mathbb{Z}$, $a_{ij}, b_i \in \mathbb{K}$ $(i \in \{1, ..., m\}, j \in \{1, ..., n\})$. Az m ismeretlenes, n egyenletből álló lineáris egyenletrendszer (LER) általános alakja:

Elnevezések: a_{ij} együtthatók; b_i jobb oldali konstansok; a fenti alak: skalár alak (lesz még mátrixos és vektoros alak is).

Fő feladat: olyan x_1, \ldots, x_n értékek keresése, melyekkel mindegyik sor igaz.

Egy lineáris egyenletrendszert konzisztensnek nevezünk, ha van megoldása, inkonzisztensnek, ha nincs megoldása.

LER vektoros alakja

ahol

$$a_1 := \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}, \quad a_2 := \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix}, \quad \dots, \quad a_n := \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}, \quad b := \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

Kérdés: Előállítható-e a b vektor az oszlopvektorok lineáris kombinációjaként. (Másként megfogalmazva?)

LER mátrixos alakja

$$a_{11}x_1 + \dots + a_{1n}x_n$$

 $a_{21}x_1 + \dots + a_{2n}x_n$
 $\vdots \qquad \vdots$
 $a_{m1}x_1 + \dots + a_{mn}x_n$
 $=: Ax = b,$

ahol

$$A := \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \in \mathbb{K}^{m \times n}, \qquad b := \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}.$$

Megoldáshalmaz

Az Ax = b LER összes megoldásából álló halmazt a LER megoldáshalmazának nevezzük:

$$\mathcal{M} := \{ x \in \mathbb{K}^n : Ax = b \}$$

Két lineáris egyenletrendszert ekvivalensnek nevezünk, ha megoldáshalmazuk ugyanaz.

"Megoldáshalmaz-tartó" átalakítások (azaz ekvivalens megoldáshalmazt adó átalakítások):

- 1. Egy egyenletet megszorzunk egy nemnulla konstanssal,
- 2. Az egyik egyenlethez hozzáadjuk egy másik egyenlet konstans-szorosát,
- 3. A rendszerből elhagyunk egy csupa 0, azaz egy

$$0x_1 + 0x_2 + \ldots + 0x_n = 0$$

alakú sort.

Homogén LER

Az Ax = b-hez tartozó homogén LER: Ax = 0. Ennek megoldáshalmaza:

$$\mathcal{M}_h := \{ x \in \mathbb{K}^n : Ax = 0 \}.$$

Minden $A \in \mathbb{K}^{m \times n}$ esetén \mathcal{M}_h altér \mathbb{K}^n -ben.

Bizonyítás. $0 \in \mathcal{M}_h$, hiszen $A \cdot 0 = 0$, így $\mathcal{M}_h \neq \emptyset$.

 \mathcal{M}_h zárt az összeadásra: ha $x, y \in \mathcal{M}_h$, akkor $x + y \in \mathcal{M}_h$, hiszen

$$A(x+y) = Ax + Ay = 0 + 0 = 0.$$

 \mathcal{M}_h zárt a skalárral való szorzásra: ha $x \in \mathcal{M}_h$, $\lambda \in \mathbb{K}$, akkor $\lambda x \in \mathcal{M}_h$, hiszen

$$A(\lambda x) = \lambda \cdot Ax = \lambda \cdot 0 = 0.$$

Legyen $A \in \mathbb{K}^{m \times n}$. Az Ax = 0 LER-hez tartozó \mathcal{M}_h megoldáshalmazt az A mátrix nullterének, vagy magterének nevezzük. Jel.: $\operatorname{Ker}(A)$.

Ax = b megoldáshalmaza

Feltesszük: $\operatorname{rang}(A) = r$ (azaz $\dim(O(A)) = r$), és $b \in O(A)$.

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1r} & a_{1,r+1} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2r} & a_{2,r+1} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{21} & a_{22} & \dots & a_{2r} & \underbrace{a_{2,r+1} & \dots & a_{2n}}_{\in O(A)} \end{bmatrix}$$

$$\textcircled{B} \Longrightarrow b = \sum_{i=1}^{n} c_{i} a_{i}$$

$$x_B := \begin{pmatrix} c_1 & c_2 & \dots & c_r & 0 & \dots & 0 \end{pmatrix}$$

Az egyenletrendszer megoldáshalmaza:

$$\mathcal{M} = \{ x_B + \sum_{i=r+1}^n x_i v_i : x_i \in \mathbb{K}, i \in \{r+1, \dots, n\} \}.$$

Sőt:

$$\mathcal{M}_h = \operatorname{Span}(v_{r+1}, \dots, v_n) \subseteq \mathbb{K}^n, \quad \dim(\mathcal{M}_h) = n - r, \quad \mathcal{M} = x_B + \mathcal{M}_h.$$

Elnezevések, megjegyzések:

- $ightharpoonup x_1, \ldots, x_r$: kötött ismeretlenek, rangnyi darab van mindig
- $\triangleright x_{r+1}, \ldots, x_n$: szabad ismeretlenek, n-rang darab van mindig
- \triangleright az egyenletrendszer szabadsági foka: n-rang,
- $ightharpoonup r = n \Longrightarrow$
- $ightharpoonup r < n \Longrightarrow$
- ightharpoonupmindig igaz: $\dim(\operatorname{Ker}(A)) + \dim(O(A)) = \dim(\mathbb{K}^n) = n.$

LER megoldása: Gauss-Jordan módszer

Tulajdonképpen O(A) bázisát keressük, azaz az oszlopok közül kell a lehető legtöbb, $(\widehat{\mathbf{F}})$ rendszert alkotó vektort kiválasztanunk.

A Gauss-Jordan módszer tulajdonképpen ezt csinálja, de egyúttal a LER össze megoldását is megadja (abban az alakban, amit az előbb láttunk).

Az eljárás lényege: minden lépésben az aktuális $\widehat{\mathbf{F}}$ rendszerhez hozzáveszünk egy darab oszlopvektort, miközben rangtartó átalakításokat végzünk a sorokkal úgy, hogy a kijelölt oszlopban a kijelölt elemet 1-gyé, a többit 0-vá transzformáljuk (eliminációs lépések). A bázist így r darab \mathbb{K}^n -beli kanonikus egységvektor fogja alkotni, így a megoldást könnyedén fel fogjuk tudni írni.

Inicializáció

azaz: előkészületek.

- $lackbox{a}_{ij}^1 := x_j$ együtthatója az i. sorban, $b_i^1 :=$ az i. egyenlet jobb oldalán lévő konstans;
- \blacktriangleright felírjuk az $A\,|\,b$ mátrixot, ez m sorból és n+1 oszlopból áll (ennek elemei az algoritmus során változni fognak)
- ▶ minden elemet/sort/oszlopot/ismeretlent jelöletlennek állítunk be;
- gondolatban létrehozunk egy "generáló elem" változót, jelöljük GE-vel. Ennek kezdetben nincsen értéke, később minden egyes ciklus alkalmával az aktuális mátrix egy elemét adjuk neki értékül

(generáló elem olyan nemnulla elem lehet, ami jelöletlen sorban és jelöletlen oszlopban van)

Az algoritmus lépései

l. ciklus: kezdőtábla

x_1	x_2	 x_j	 x_n	
a_{11}^{l}	a_{12}^{l}	 a_{1j}^l	 a_{1n}^l	b_1^l
a_{21}^l	a_{22}^l	 a_{2j}^l	 a_{2n}^l	b_2^l
÷	:	:	:	:
a_{k1}^l	a_{k2}^l	 a_{kj}^l	 a_{kn}^l	b_k^l
:	:	:	:	:
a_{i1}^l	a_{i2}^l	 a_{ij}^l	 a_{in}^l	b_i^l
:	:	:	:	:
a_{m1}^l	a_{m2}^l	 a_{mj}^l	 a_{mn}^l	b_m^l

$$GE:=a_{ij}^l$$
, $GS:=i$, $GO:=j$, $GI:=j$

x_1	x_2	 x_{j}	 x_n	
a_{11}^l	a_{12}^{l}	 $\begin{array}{c} a_{1j}^l \\ a_{2j}^l \end{array}$	a_{1n}^l	b_1^l
a_{21}^{l}	a_{22}^l	 a_{2j}^l	 a_{2n}^l	b_2^l
:	:		:	:
a_{k1}^l	a_{k2}^l	 $a_{kj}^{\dot{l}}$	 a_{kn}^l	b_k^l
:	:	:	:	:
a_{i1}^l	a_{i2}^l	 a_{ij}^l	 a_{in}^l	b_i^l
:	:		:	:
a_{m1}^l	a_{m2}^l	 a_{mj}^l	 a_{mn}^l	b_m^l

$$\frac{GS}{GE} = \frac{\text{i. sor}}{a_{ij}^l}$$

x_1	x_2	 x_{j}	 x_n	
a_{11}^l	a_{12}^{l}	 a_{1j}^l	 a_{1n}^l	b_1^l
a_{21}^{l}	a_{22}^{l}	 a_{2j}^l	 a_{2n}^l	b_2^l
:	:	:	:	:
a_{k1}^l	a_{k2}^l	 a_{kj}^l	 a_{kn}^l	b_k^l
÷	:	:	:	:
$rac{a_{i1}^l}{a_{ij}^l}$	$\frac{a_{i2}^l}{a_{ij}^l}$	 1	 $rac{a_{in}^l}{a_{ij}^l}$	$egin{aligned} rac{b_i^l}{a_{ij}^l} \end{aligned}$
÷	:	:	:	:
a_{m1}^l	a_{m2}^l	 a_{mj}^l	 a_{mn}^l	b_m^l

GO többi elemének eliminálása, most a k. elem eliminálását írjuk fel példaként k. sor - a_{kj}^l · j. sor

	x_1	x_2	 x_{j}	 x_n	
_	a_{11}^l	a_{12}^l	 a_{1j}^l	 a_{1n}^l	b_1^l
	a_{21}^l	a_{22}^l	 $a_{2j}^{l^*}$	 a_{2n}^l	b_2^l
	:	:	÷	:	:
	$a_{k1}^l - a_{kj}^l \cdot \frac{a_{i1}^l}{a_{ij}^l}$	$a_{k2}^l - a_{kj}^l \cdot \frac{a_{i2}^l}{a_{ij}^l}$	 $a_{kj}^l {-} a_{kj}^l {\cdot} 1$	 $a_{kn}^l - a_{kj}^l \cdot \frac{a_{in}^l}{a_{ij}^l}$	$b_k^l - a_{kj}^l \cdot \frac{b_i^l}{a_{ij}^l}$
	:	:	÷	:	:
	$\frac{a_{i1}^{\iota}}{a_{ij}^{l}}$	$rac{a_{i2}^l}{a_{ij}^l}$	 1	 $rac{a_{in}^{l}}{a_{ij}^{l}}$	$\dfrac{b_i^l}{a_{ij}^l}$
111/2	:	÷	:	:	:
	a_{m1}^l	a_{m2}^l	 a_{mj}^l	 a^l_{mn}	b_m^l

x_1	x_2	 x_{j}	 x_n	
$a_{11}^l - a_{1j}^l \cdot \frac{a_{i1}^l}{a_{ij}^l}$	$a_{12}^l - a_{1j}^l \cdot \frac{a_{i2}^l}{a_{ij}^l}$	 0	 $a_{1n}^l - a_{1j}^l \cdot \frac{a_{in}^l}{a_{ij}^l}$	$b_1^l - a_{1j}^l \cdot \frac{b_i^l}{a_{ij}^l}$
$a_{21}^l - a_{2j}^l \cdot \frac{a_{i1}^l}{a_{ij}^l}$	$a_{22}^l - a_{2j}^l \cdot \frac{a_{i2}^l}{a_{ij}^l}$	 0	 $a_{1n}^{l} - a_{1j}^{l} \cdot \frac{a_{in}^{l}}{a_{ij}^{l}}$ $a_{2n}^{l} - a_{2j}^{l} \cdot \frac{a_{in}^{l}}{a_{ij}^{l}}$	$b_2^l - a_{2j}^l \cdot \frac{b_i^l}{a_{ij}^l}$
:	:	:	:	:
$a_{k1}^l - a_{kj}^l \cdot \frac{a_{i1}^l}{a_{ij}^l}$	$a_{k2}^l - a_{kj}^l \cdot \frac{a_{i2}^l}{a_{ij}^l}$	 0	 $a_{kn}^l - a_{kj}^l \cdot \frac{a_{in}^l}{a_{ij}^l}$	$b_k^l - a_{kj}^l \cdot \frac{b_i^l}{a_{ij}^l}$
:	:	:	÷	:
$rac{a_{i1}^l}{a_{ij}^l}$	$rac{a_{i2}^l}{a_{ij}^l}$	 1	 $\frac{a_{in}^l}{a_{ij}^l}$	$\frac{b_i^l}{a_{ij}^l}$
:	:	:	:	:
$a_{m1}^l - a_{mj}^l \cdot \frac{a_{i1}^l}{a_{ij}^l}$	$a_{m2}^l - a_{mj}^l \cdot \frac{a_{i2}^l}{a_{ij}^l}$	 0	 $a_{mn}^l - a_{mj}^l \cdot \frac{a_{in}^l}{a_{ij}^l}$	$b_m^l - a_{mj}^l \cdot \frac{b_i^l}{a_{ij}^l}$

(l+1). ciklus kezdőtáblája

x_1	x_2	 x_j	 x_n	
a_{11}^{l+1}	a_{12}^{l+1}	 a_{1j}^{l+1}	 a_{1n}^{l+1}	b_1^{l+1}
a_{21}^{l+1}	a_{22}^{l+1}	 a_{2j}^{l+1}	 a_{2n}^{l+1}	b_2^{l+1}
:	:	:	:	:
a_{k1}^{l+1}	a_{k2}^{l+1}	 a_{kj}^{l+1}	 a_{kn}^{l+1}	b_k^{l+1}
÷	:	:	:	:
a_{i1}^{l+1}	a_{i2}^{l+1}	 a_{ij}^{l+1}	 $a_{in}^{l+1} \\$	b_i^{l+1}
÷	:	:	:	:
a_{m1}^{l+1}	a_{m2}^{l+1}	 a_{mj}^{l+1}	 a_{mn}^{l+1}	b_m^{l+1}

Leálláskor a táblázat alakja

Tegyük fel, hogy r darab megjelölt elem van.

Az oszlopok átrendezésével elérhető, hogy a táblázat bal felső $r\times r$ méretű része egységmátrix legyen.

x_{i_1}	x_{i_2}		x_{i_r}	$x_{i_{r+1}}$				x_{i_n}	
1	0		0			a_1^r			b_1^r
0	1		0			a_2^r			b_2^r
:		٠				÷			:
0	0		1			a_r^r			b_r^r
0			0	0				0	b_{r+1}^r
:	٠.	٠	÷	:	٠	٠	٠	:	:
0			0	0				0	b_m^r

A megoldás(ok) felírása

A táblázat sorait újra egyenletrendszerként írjuk fel.

Az alsó n-r darab sor mindegyike így néz ki egyenletrendszerként felírva:

$$0 \cdot x_{i_1} + \ldots + 0 \cdot x_{i_n} = b_j^r,$$

így:

▶ ha $\exists j \in \{r+1,\ldots,n\}$, melyre $b_j^r \neq 0$, akkor ez a sor

$$0 = b_j^r \neq 0$$

alakú, aminek nincs megoldása, így magának a LER-nek sincs megoldása ($\mathcal{M}=\emptyset$);

▶ ha $\forall j \in \{r+1,\ldots,n\}$ esetén $b_j^r=0$, akkor ezek a sorok tetszőleges x_i értékek esetén igazak, hiszen

$$0 = 0$$

alakúak; ebben az esetben a LER-nek biztosan van megoldása.

Ha van megoldás, akkor a 0 sorokat kitöröljük, a megmaradt táblázat neve: redukált táblázat.

Redukált táblázat ⇒ LER

x_{i_1}	x_{i_2}		x_{i_r}	$x_{i_{r+1}}$	x_{i_n}	
1	0		0	a^{i}	r 1	b_1^r
0	1		0	a^{2}	r 2	b_2^r
:		٠.		:		:
•		•				•
0	0		1	a_i^{i}	r r	b_r^r
				'	'	•

$$\begin{cases} x_{i_1} + & a_{1,r+1}^r x_{i_{r+1}} + \dots + a_{1n}^r x_{i_n} = b_1^r \\ x_{i_2} + & a_{2,r+1}^r x_{i_{r+1}} + \dots + a_{2n}^r x_{i_n} = b_2^r \end{cases}$$

$$\vdots \quad \vdots \quad \vdots = \vdots$$

$$x_{i_r} + a_{r,r+1}^r x_{i_{r+1}} + \dots + a_{rn}^r x_{i_n} = b_r^r$$

$LER \Longrightarrow \mathcal{M}$

$$\begin{cases} x_{i_1} & + \sum_{j=r+1}^{n} a_{1j}^r x_{i_j} = b_1^r \\ x_{i_2} & + \sum_{j=r+1}^{n} a_{2j}^r x_{i_j} = b_2^r \\ & \ddots & + \vdots = \vdots \\ x_{i_r} & + \sum_{j=r+1}^{n} a_{rj}^r x_{i_j} = b_r^r \end{cases} \longrightarrow \begin{cases} x_{i_1} = b_1^r - \sum_{j=r+1}^{n} a_{1j}^r x_{i_j} \\ x_{i_2} = b_2^r - \sum_{j=r+1}^{n} a_{2j}^r x_{i_j} \\ \vdots \\ x_{i_r} = b_r^r - \sum_{j=r+1}^{n} a_{rj}^r x_{i_j} \end{cases}$$

kötött ismeretlenek:
$$x_{i_1}, \ldots, x_{i_r},$$
 rang $(A) = \dim(O(A)) = r,$

▶ szabad ismeretlenek: $x_{i_{r+1}}, \ldots, x_{i_n}$, a LER szabadsági foka: n-r,

$$x_{i_1} = b_1^r - \sum_{j=r+1}^n a_{1j}^r x_{i_j}$$

$$x_{i_2} = b_2^r - \sum_{j=r+1}^n a_{2j}^r x_{i_j}$$

$$\vdots$$

$$x_{i_r} = b_r^r - \sum_{j=r+1}^n a_{rj}^r x_{i_j}$$

$$x_{i_{r+1}}, \dots, x_{i_n} \in \mathbb{K}$$

