Importing required Libraries

import pandas as pd

import numpy as np

 ${\tt import\ matplotlib.pyplot\ as\ plt}$

import seaborn as sns

from sklearn.model_selection import train_test_split

 $from \ sklearn.metrics \ import \ classification_report, \ confusion_matrix, accuracy_score$

from sklearn.linear_model import LogisticRegression

import warnings

Importing and displaying dataset

titanic_data = pd.read_csv("Titanic-Dataset.csv")

titanic_data

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

titanic_data.size

10692

 $\verb|titanic_data.shape| \\$

(891, 12)

titanic_data.head(3)

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S

titanic_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890

Data columns (total 12 columns):

```
Pclass
                    891 non-null
                                  int64
     2
                    891 non-null
                                  object
     3
        Name
     4
        Sex
                    891 non-null
                                  object
     5
                    714 non-null
                                  float64
        Age
        SibSp
                    891 non-null
     6
                                  int64
                    891 non-null
                                  int64
     7
        Parch
     8
        Ticket
                    891 non-null
                                  object
                                 float64
     9 Fare
                   891 non-null
     10 Cabin
                    204 non-null
                                  object
     11 Embarked
                   889 non-null
                                 object
    dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
titanic_data.columns
    dtype='object')
titanic_data.isnull().sum()
    PassengerId
    Survived
                   0
    Pclass
                   0
    Name
                   0
    Sex
                 177
    Age
    SibSp
                   0
    Parch
                   0
    Ticket
                   0
    Fare
                   0
    Cabin
                 687
    Embarked
    dtype: int64
# Dropping the column "Cabin"
```

titanic_data = titanic_data.drop(columns='Cabin', axis=1)

titanic_data.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

Replacing missing values of "Age" and "Fare" with mean values titanic_data["Age"].fillna(titanic_data["Age"].mean(),inplace=True) titanic_data["Fare"].fillna(titanic_data["Fare"].mean(),inplace=True)

titanic_data.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	13.002015	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	22.000000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	29.699118	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	35.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

titanic_data.isnull().sum()

PassengerId Survived 0 Pclass 0 Name Sex 0 Age SibSp 0 Parch 0 Ticket Fare 0 Embarked 2 dtype: int64

Now working using "Embarked" column
print(titanic_data['Embarked'].mode())
titanic_data["Embarked"].fillna(titanic_data["Embarked"].mode()[0], inplace=True)

Name: Embarked, dtype: object

titanic_data.isnull().sum()

PassengerId Survived Pclass 0 Name 0 Sex 0 Age SibSp 0 Parch Ticket 0 Fare 0 Embarked 0 dtype: int64

Exploratory Data analysis

titanic_data.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	13.002015	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	22.000000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	29.699118	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	35.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

0 5491 342

Name: Survived, dtype: int64

Data visuliazation

prompt:

```
sns.countplot(x="Survived", data=titanic_data)
plt.xlabel("Survived")
plt.ylabel("Count")
plt.title("Count of Survived and Deceased Passengers")
plt.show()
```

Count of Survived and Deceased Passengers

prompt:

```
sns.countplot(x="Survived", hue="Sex", data=titanic_data)
plt.xlabel("Survived")
plt.ylabel("Count")
plt.title("Count of Survived and Deceased Passengers by Sex")
plt.show()
```

Count of Survived and Deceased Passengers by Sex

.. p. o...p . .

```
sns.countplot(x="Survived", hue="Pclass", data=titanic_data)
plt.xlabel("Survived")
plt.ylabel("Count")
plt.title("Count of Survived and Deceased Passengers by Passenger Class")
plt.show()
```

Count of Survived and Deceased Passengers by Passenger Class

prompt:

```
sns.countplot(x="Survived", hue="Embarked", data=titanic_data)
plt.xlabel("Survived")
plt.ylabel("Count")
plt.title("Count of Survived and Deceased Passengers by Embarked Location")
plt.show()
```

Count of Survived and Deceased Passengers by Embarked Location

Checking correlation using heatmap

```
corr = titanic_data.corr()
plt.figure(figsize=(15, 9))
sns.heatmap(corr, annot=True, cmap='ocean')
```

<ipython-input-46-aeb4f38af05d>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version
corr = titanic_data.corr()

<Axes: >

Dropping unnecessary columns
titanic_data = titanic_data.drop(columns=['Name','Ticket'])
titanic_data.head()

	PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	1	0	3	male	22.0	1	0	7.2500	S
1	2	1	1	female	38.0	1	0	71.2833	С
2	3	1	3	female	26.0	0	0	7.9250	S
3	4	1	1	female	35.0	1	0	53.1000	S
4	5	0	3	male	35.0	0	0	8.0500	S

Encoding the categorical values to numerical values titanic_data["Sex"].value_counts()

male 577 female 314

Name: Sex, dtype: int64

titanic_data["Sex"] = titanic_data["Sex"].astype('category')
titanic_data["Sex"] = titanic_data["Sex"].cat.codes

titanic_data["Sex"].value_counts()

1 577 0 314

Name: Sex, dtype: int64

```
titanic_data["Embarked"].value_counts()
     S
          646
     C
         168
          77
     Name: Embarked, dtype: int64
titanic_data["Embarked"] = titanic_data["Embarked"].astype('category')
titanic_data["Embarked"] = titanic_data["Embarked"].cat.codes
titanic_data["Embarked"].value_counts()
     2
         646
         168
          77
     1
     Name: Embarked, dtype: int64
Splitting the data into train and test sets
x = titanic_data.drop(columns=['PassengerId', "Survived"], axis=1)
y = titanic_data['Survived']
x_train,x_test,y_train,y_test = train_test_split(x,y,random_state=46,test_size=0.3)
print(x_train.shape, x_test.shape, y_train.shape, y_test.shape)
     (623, 7) (268, 7) (623,) (268,)
Training a model
model = LogisticRegression()
titanic_data.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 891 entries, 0 to 890
     Data columns (total 9 columns):
     # Column
                      Non-Null Count Dtype
     0 PassengerId 891 non-null
                                      int64
         Survived 891 non-null
                                     int64
         Pclass
                      891 non-null
                                      int64
                      891 non-null
                                     int8
      3 Sex
      4 Age
                      891 non-null
                                     float64
         SibSp
                      891 non-null
                                      int64
                      891 non-null
         Parch
                                     int64
         Fare
                      891 non-null
                                      float64
         Embarked
                      891 non-null
                                      int8
     dtypes: float64(2), int64(5), int8(2)
     memory usage: 50.6 KB
titanic_data.astype({'Age':'int', 'Fare':'int'}).dtypes
     PassengerId
                   int64
     Survived
                   int64
     Pclass
                   int64
     Sex
                    int8
                   int64
     Age
     SibSp
                   int64
     Parch
                   int64
                   int64
     Embarked
                    int8
     dtype: object
# prompt:
model.fit(x_train,y_train)
LogisticRegression()
     ▼ LogisticRegression
     LogisticRegression()
```

```
x_train_pred = model.predict(x_train)
training_data_accuracy = accuracy_score(y_train, x_train_pred)
print('Accuracy_score_of_training_data : ', training_data_accuracy)
     Accuracy_score_of_training_data : 0.797752808988764
x_test_pred = model.predict(x_test)
training_data_accuracy = accuracy_score(y_test, x_test_pred)
print('Accuracy_score_of_training_data : ', training_data_accuracy)
     Accuracy_score_of_training_data : 0.8283582089552238
cm = confusion_matrix(y_train,Y_pred)
plt.figure(figsize=(6,6))
sns.heatmap(data=cm, linewidths=.5, annot=True, square=True, cmap='PuBu')
plt.xlabel("Predicted value")
plt.ylabel("Actual value")
all_sample_title = 'Accuracy score :{0}'.format(model.score(x_test,y_test))
plt.title(all_sample_title,size=15)
plt.savefig("three.png")
```



```
y_pred = model.predict(x_test)
Y_pred = model.predict(x_train)
print("Classification report - \n",classification_report(y_test,y_pred))
```

Classification	report -			
	precision	recall	f1-score	support
0	0.83	0.89	0.86	160
1	0.82	0.73	0.77	108
accuracy			0.83	268
macro avg	0.83	0.81	0.82	268
weighted avg	0.83	0.83	0.83	268

 $print("\nClassification report- \n", classification_report(y_train, Y_pred))$

Classification	report- precision	recall	f1-score	support
0	0.82	0.87	0.84	389
1	0.76	0.68	0.72	234

accuracy			0.80	623
macro avg	0.79	0.77	0.78	623
weighted avg	0.80	0.80	0.80	623