Part 1 Neural Network

- 1. Always connected with supervised learning
- 2. Application & network type

Input(x)	Output (y)	Application
Home features	Price	Real Estate Studie
Ad, user info	Click on ad? (0/1)	Online Advertising
Image	Object (1,,1000)	Photo tagging 3 CAN
Audio	Text transcript	Speech recognition \ KNN
English	Chinese	Machine translation
Image, Radar info	Position of other cars	Autonomous driving Custon/
1	是准的CNINI和RNINI结构里/	(standard nn: fc nn)

3. Data type:

Structured data: columns of features

Unstructured data: audio/image/text -> harder

4. Advantage of nn

Data are easier to collect nowadays

More data & bigger nn → better performance

(small amount of data -> little difference or even worse)

- 5. Activation function: from 'sigmoid' to 'relu' ---- sigmoid: small gradient -> training process slow
- 6. Image data → 特征向量

7. Loss function:

一般只找得到局部最优

Logistic regression: 一般不用目标与实际的差的平方和, 损失函数如下:

 $L\left(\hat{y},y\right)=-y\log(\hat{y})-(1-y)\log(1-\hat{y}) \quad (\ \text{ 损 失 函 数}:\ \ \text{针 对 单 个 样 本 },$ y=sigmoid(wx+b))

$$J(w,b) = \tfrac{1}{m} \sum_{i=1}^m L\left(\hat{y}^{(i)}, y^{(i)}\right) = \tfrac{1}{m} \sum_{i=1}^m \left(-y^{(i)} \log \hat{y}^{(i)} - (1-y^{(i)}) \log (1-\hat{y}^{(i)})\right) \quad \text{(代价函数: 针对训练集)}$$

求导:

原理:

8. 避免 bug 技巧:

一维数组(n,) 行/列向量(n,1)/(1,n)

尽量避免一维数组的使用

对于不确定结构的数据最好都是用 reshape

9. 神经网络表示技巧:

N 层神经网络: n 不包含输入层 第 n 层第 i 个参数: n-上标, i-下标

Eg: 2 层神经网络中隐藏层四个神经元的激活值

10. 激活函数:

函数	表达式	导数	产生	函数特点	缺点	优点	使用情景
Sigmoid	$\sigma(z)=rac{1}{1+e^{-z}}$	a(1-a)	和生物	(0,1)	1. Z 过大/过小时导数	1.满足输出结果在[0,1]	一般不用了
			学相似	经过(0,0.5)	过小->训练慢	之间的条件,常常用于	
					2. 输出都大于 0, 容易	输出层	
					出现 zigzag 现象		
Tanh	$tanh(z)=rac{e^z-e^{-z}}{e^z+e^{-z}}$	1-a^2	Sigmoid	(-1,1)	1. 和 sigmoid 一样容	1.训练效果好于 sigmoid	隐藏层,效
			平移放	经过(0,0)	易出现导数过小现象	2.均值为 0, 可以更好进	果都挺好
			缩得到			行优化	
ReLU	Max(0,z)	z>0:1		非饱和	1. 容易出现神经元坏	1. 不会出现 tanh 和	默认激活函
		z=0:未			死现象(z<0 时) → Ir	sigmoid 中饱和后梯度	数,不知道
		定义			不要太大	过小的问题	用什么的时
		z<0:0			2. 均值非 0	2. z<0 时为 0, 可以增加	候可以用
						稀疏程度,避免过拟合	
						3. 计算复杂度低	
Leaky	Max(az,z)(a	z>0:1	ReLU 变	Z<0 时有较		1.都存在斜率	很少使用
ReLU	是参数)	z=0:未	形得到	小的斜度			
		定义					
		z<0:a					

(有关 sigmoid 的 zigzag 解释:

https://www.zhihu.com/question/50396271?from=profile_question_card)

线性激活函数与非线性激活函数:

线性激活函数: 使得多层神经网络丧失意义

证明:

使用情况:不可在隐藏层使用,只能在输出层使用。 对于预测问题 (结果并非在 0, 1 之间的可以使用)

激活函数的导数的推导:

11. 参数的初始化

W:

不可全部初始化为0→ 所有的神经元相同,输出相同,更新相同

使用 $a*np.random.randn \rightarrow 高斯分布,a 一般为一个较小的数,如 0.01(避免 W 过大导致波动过大/在 <math>tanh$ 和 sigmoid 中达到饱和 \rightarrow 如果没有使用这两个激活函数可以大一点)

B: 可以全部直接初始化为 0

12. 前向传播和后向传播:

前向传播: input:a^[-1] → output:a^[], cache(z^[])(w^[], b^[])

Debug 技巧:

核对导数与原矩阵维度

- 13. 深度学习的理解:
 - 1. 深度(deep and shallow)增加的作用>>神经元(small and big)数量的增加(深度的增加==神经元成指数增加,通过增加深度能够更容易实现复杂函数的学习)
 - 2. 学习内容:

基本单元→逐渐组合→查找学习更大单元→得到结果

Eg: 人脸识别: edges→面部器官→部分脸→全脸

3. 越深≠越好:

4.

14. 超参数:

a) 什么是超参数? 影响了最后 W 与 b 的结果

Ir、iterations、隐藏层数量 L、隐藏单元数量 n、activation function 激活函数的选择

b) 如何寻找最佳超参数? 尝试尝试再尝试