

General Description

The MAX9174/MAX9175 are 670MHz, low-jitter, lowskew 1:2 splitters ideal for protection switching, loopback, and clock and signal distribution. The devices feature ultra-low 1.0ps(RMS) random jitter (max) that ensures reliable operation in high-speed links that are highly sensitive to timing errors.

The MAX9174 has a fail-safe LVDS input and LVDS outputs. The MAX9175 has an anything differential input (CML/LVDS/LVPECL) and LVDS outputs. The outputs can be put into high impedance using the power-down inputs. The MAX9174 features a fail-safe circuit that drives the outputs high when the input is open, undriven and shorted, or undriven and terminated. The MAX9175 has a bias circuit that forces the outputs high when the input is open. The power-down inputs are compatible with standard LVTTL/LVCMOS logic. The power-down inputs tolerate undershoot of -1V and overshoot of VCC + 1V. The MAX9174/MAX9175 are available in 10-pin µMAX and 10-lead thin QFN with exposed pad packages, and operate from a single +3.3V supply over the -40°C to +85°C temperature range.

Applications

Protection Switching Loopback Clock Distribution

Functional Diagram and Pin Configurations appear at end of data sheet.

Features

- ♦ 1.0ps(RMS) Jitter (max) at 670MHz
- ♦ 80ps_(P-P) Jitter (max) at 800Mbps Data Rate
- ♦ +3.3V Supply
- **♦ LVDS Fail-Safe Inputs (MAX9174)**
- ♦ Anything Input (MAX9175) Accepts Differential CML/LVDS/LVPECL
- ♦ Power-Down Inputs Tolerate -1.0V and V_{CC} + 1.0V
- **♦ Low-Power CMOS Design**
- ♦ 10-Lead µMAX and Thin QFN Packages
- ♦ -40°C to +85°C Operating Temperature Range
- ♦ Conform to ANSI TIA/EIA-644 LVDS Standard
- ♦ IEC 61000-4-2 Level 4 ESD Rating

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9174EUB	-40°C to +85°C	10 μMAX
MAX9174ETB*	-40°C to +85°C	10 Thin QFN-EP**
MAX9175EUB	-40°C to +85°C	10 μMAX
MAX9175ETB*	-40°C to +85°C	10 Thin QFN-EP**

^{*}Future product—contact factory for availability.

Typical Application Circuit

NIXIN

Maxim Integrated Products 1

^{**}EP = Exposed paddle.

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND0.3V to +4.0V
IN+, IN- to GND0.3V to +4.0V
OUT_+, OUT to GND0.3V to +4.0V
PD0, PD1 to GND1.4V to (V _{CC} + 1.4V)
Single-Ended and Differential Output
Short-Circuit Duration (OUT_+, OUT)Continuous
Continuous Power Dissipation ($T_A = +70^{\circ}C$)
10-Pin µMAX (derate 5.6mW/°C above +70°C)444mW
10-Lead QFN (derate 24.4mW/°C above +70°C)1951mW
Maximum Junction Temperature+150°C

Storage Temperature Range65°C	c to +150°C
ESD Protection	
Human Body Model ($R_D = 1.5k\Omega$, $C_S = 100pF$)	
IN+, IN-, OUT_+, OUT	±2kV
Other Pins (VCC, PDO, PD1)	2kV
IEC 61000-4-2 Level 4 ($R_D = 330\Omega$, $C_S = 150pF$)	
Contact Discharge IN+, IN-, OUT_+, OUT	±8kV
Air-Gap Discharge IN+, IN-, OUT_+, OUT	
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3.0 \text{V to } +3.6 \text{V}, R_L = 100\Omega \pm 1\%, \overline{PD}_- = \text{high, differential input voltage } |V_{ID}| = 0.05 \text{V to } 1.2 \text{V, MAX9174 input common-mode voltage } |V_{CC}| = |V_{ID}|/2 \text{I to } (2.4 \text{V - } |V_{ID}|/2), MAX9175 input common-mode voltage } |V_{CM}| = |V_{ID}|/2 \text{I to } (V_{CC} - |V_{ID}|/2), T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at } |V_{CC}| = +3.3 \text{V, } |V_{ID}| = 0.2 \text{V, } |V_{CM}| = +1.25 \text{V, } |T_A| = +25 ^{\circ}\text{C.}) \text{ (Notes 1, 2, 3)}$

PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
DIFFERENTIAL INPUT (IN+, IN-)							
Differential Input High Threshold	VTH					+50	mV
Differential Input Low Threshold	VTL			-50			mV
Input Current	I _{IN+} , I _{IN} -	Figure 1		-20		+20	μΑ
		MAX9174	V _{CC} = 0V or open, Figure 1				
Power-Off Input Current	I _{IN+,} I _{IN} -	MAX9175	$V_{IN+} = 3.6 V$ or 0V, $V_{IN-} = 3.6 V$ or 0V, $V_{CC} = 0 V$ or open, Figure 1	-20		+20	μA
Fail-Safe Input Resistors	R _{IN1}	V 0.0V	0)/	60		108	L.O
(MAX9174)	R _{IN2}	VCC = 3.6V	, 0V or open, Figure 1	200		394	kΩ
Input Resistors (MAX9175)	RIN3	V _C C = 3.6V	, 0V or open, Figure 1	212		450	kΩ
Input Capacitance	CIN	IN+ or IN- to	o GND (Note 4)			4.5	рF
LVTTL/LVCMOS INPUTS (PDO, F	PD1)						
Input High Voltage	V _{IH}			2.0		V _{CC} +	V
Input Low Voltage	V _{IL}			-1.0		+0.8	V
		-1.0V ≤ PD_	_ ≤ 0V	-1.5			mA
Input Current	I _{IN}	$0V \le \overline{PD} \le$	Vcc	-20		+20	μΑ
		V _{CC} ≤ PD_:	≤ V _{CC} + 1.0V			+1.5	mA
LVDS OUTPUTS (OUT_+, OUT)						•
Differential Output Voltage	V _{OD}	Figure 2		250	393	475	mV
Change in Differential Output Voltage Between Logic States	ΔV _{OD}	Figure 2			1.0	15	mV
Offset Voltage	Vos	Figure 3		1.125	1.29	1.375	V

_____*NIXIN*

DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC}=+3.0V\ to\ +3.6V,\ R_L=100\Omega\ \pm1\%,\ \overline{PD}_=\ high,\ differential\ input\ voltage\ |V_{ID}|=0.05V\ to\ 1.2V,\ MAX9174\ input\ common-mode\ voltage\ V_{CM}=|V_{ID}|/2|\ to\ (2.4V-|V_{ID}|/2|),\ MAX9175\ input\ common-mode\ voltage\ V_{CM}=|V_{ID}|/2|\ to\ (V_{CC}-|V_{ID}|/2|),\ T_A=-40^{\circ}C\ to\ +85^{\circ}C,\ unless\ otherwise\ noted.$ Typical values are at $V_{CC}=+3.3V,\ |V_{ID}|=0.2V,\ V_{CM}=+1.25V,\ T_A=+25^{\circ}C.)$ (Notes 1, 2, 3)

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS
Change in Offset Voltage Between Logic States	ΔV _{OS}	Figure 3			1.0	15	mV
Fail-Safe Differential Output Voltage (MAX9174)	V _{OD}	Figure 2		250	393	475	mV
Differential Output Resistance	RDIFF	V _{CC} = 3.6V or 0V		86	119	160	Ω
Power-Down Single-Ended	lpD	PD_ = low	V _{OUT_+} = open, V _{OUT} = 3.6V or 0V	-1.0	+0.03	+1.0	μА
Output Current	IPD	FD_ = 10W	$V_{OUT\} = open,$ $V_{OUT_+} = 3.6V \text{ or } 0V$	-1.0	±0.03	+1.0	μΑ
Power-Off Single-Ended Output	loff	$\overline{PD0}$, $\overline{PD1} = low$,	V _{OUT_+} = open, V _{OUT} = 3.6V or 0V	-1.0	±0.03	+1.0	
Current	IOFF	V _{CC} = 0V or open	V _{OUT} = open, V _{OUT_+} = 3.6V or 0V	-1.0	±0.03	+1.0	μА
Output Short-Circuit Current	Ios	Vcc	mV , $V_{OUT_+} = 0V$ or	-15		+15	mA
		$V_{ID} = +50$ mV or -50r	mV, V _{OUT} = 0V or V _{CC}				
Differential Output Short-Circuit Current Magnitude	I _{OSD}	$V_{ID} = +50$ mV or -50r	mV, V _{OD} = 0V (Note 4)			15	mA
Supply Current	Icc	$\overline{PD0} = V_{CC}, \overline{PD1} = 0$ $\overline{PD0} = 0V, \overline{PD1} = V_{0}$			17	26	mA
		$\overline{PD0} = Vcc, \overline{PD1} = V$	/cc		25	35	1
Power-Down Supply Current	ICCPD	PD1, PD0 = 0V			0.5	20	μΑ
Output Capacitance	Co	OUT_+ or OUT to	GND (Note 4)			5.2	pF

AC ELECTRICAL CHARACTERISTICS

 $(V_{CC}=+3.0V\ to\ +3.6V,\ R_L=100\Omega\pm1\%,\ C_L=5pF,\ differential\ input\ voltage\ |V_{ID}|=0.15V\ to\ 1.2V,\ MAX9174\ input\ common-mode\ voltage,\ V_{CM}=|V_{ID}/2|\ to\ (2.4V\ -\ |V_{ID}/2|),\ MAX9175\ input\ common-mode\ voltage\ V_{CM}=|V_{ID}/2|\ to\ (V_{CC}\ -\ |V_{ID}/2|),\ PD_=\ high,\ T_A=-40^{\circ}C$ to +85°C, unless otherwise noted. Typical values are at $V_{CC}=+3.3V,\ |V_{ID}|=0.2V,\ V_{CM}=+1.25V,\ T_A=+25^{\circ}C.)$ (Notes 5, 6, 7)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
High-to-Low Propagation Delay	tphL	Figures 4, 5	1.33	2.38	3.23	ns
Low-to-High Propagation Delay	tplh	Figures 4, 5	1.33	2.39	3.23	ns
Added Deterministic Jitter	t _D J	Figures 4, 5 (Note 8)			80	ps(P-P)
Added Random Jitter	t _{RJ}	Figures 4, 5			1.0	ps(RMS)
Pulse Skew tplh - tphl	tskp	Figures 4, 5		10	141	ps
Output-to-Output Skew	tskoo	Figure 6		14	45	ps
Part-to-Part Skew	tskpp1	Figures 4, 5 (Note 9)		0.4	1.3	20
Part-to-Part Skew	tSKPP2	Figures 4, 5 (Note 10)			1.9	ns
Rise Time	t _R	Figures 4, 5	110	257	365	ps
Fall Time	tF	Figures 4, 5	110	252	365	ps
Power-Down Time	t _{PD}	Figures 7, 8		10	13	ns
		$\overline{PD0}$, $\overline{PD1} = L \rightarrow H$, Figures 7, 8		18	35	μs
Power-Up Time	tpu	$\overline{\text{PD0}} = \text{H}, \overline{\text{PD1}} = \text{L} \rightarrow \text{H}, \text{ Figures 7, 8}$		92	103	20
		$\overline{\text{PD1}} = \text{H}, \overline{\text{PD0}} \text{L} \rightarrow \text{H}, \text{Figures 7, 8}$		92	103	ns
Maximum Data Rate	D _{RMAX}	Figures 4, 5, V _{OD} ≥ 250mV (Note 11)	800			Mbps
Maximum Switching Frequency	f _{MAX}	Figures 4, 5, V _{OD} ≥ 250mV (Note 11)	670			MHz
Switching Supply Current	laggu	$f_{IN} = 670MHz$		55	65	- mA
Switching Supply Current	Iccsw	$f_{IN} = 155MHz$		35	44	MA
PRBS Supply Current	ICCPR	D _R = 800Mbps, 2 ²³ - 1 PRBS input		37	46	mA

- Note 1: Current into a pin is defined as positive. Current out of a pin is defined as negative. All voltages are referenced to ground except V_{TH} , V_{TL} , V_{ID} , V_{OD} , and ΔV_{OD} .
- **Note 2:** Maximum and minimum limits over temperature are guaranteed by design and characterization. Devices are 100% tested at $T_A = +25$ °C.
- Note 3: Tolerance on all external resistors (including figures) is $\pm 1\%$.
- Note 4: Guaranteed by design.
- Note 5: AC parameters are guaranteed by design and characterization and are not production tested. Limits are set at ±6 sigma.
- **Note 6:** C_L includes scope probe and test jig capacitance.
- Note 7: Pulse-generator output for differential inputs IN+, IN- (unless otherwise noted): f = 670MHz, 50% duty cycle, R_O = 50Ω, t_R = 700ps, and t_F = 700ps (0% to 100%). Pulse-generator output for single-ended inputs PDO, PD1: t_R = t_F = 1.5ns (0.2V_{CC} to 0.8V_{CC}), 50% duty cycle, V_{OH} = V_{CC} + 1.0V settling to V_{CC}, V_{OL} = -1.0V settling to zero, f = 10kHz.
- **Note 8:** Pulse-generator output for t_{DJ} : $IV_{OD}I = 0.15V$, $V_{OS} = 1.25V$, data rate 800Mbps, 2^{23} 1 PRBS, $R_O = 50\Omega$, $t_R = 700$ ps, and $t_F = 700$ ps (0% to 100%).
- **Note 9:** tsKPP1 is the magnitude of the difference of any differential propagation delays between devices operating under identical conditions.
- Note 10: tskPP2 is the magnitude of the difference of any differential propagation delays between devices operating over rated conditions.
- Note 11: Meets all AC specifications.

Typical Operating Characteristics

 $((MAX9174) V_{CC} = +3.3V, |V_{ID}| = 0.15V, V_{CM} = 1.25V, T_{A} = +25^{\circ}C, R_{L} = 100\Omega \pm 1\%, C_{L} = 5pf, \overline{PD}_{L} = V_{CC}, unless otherwise noted.)$

Typical Operating Characteristics (continued)

 $((MAX9174) V_{CC} = +3.3V, |V_{ID}| = 0.15V, V_{CM} = 1.25V, T_A = +25^{\circ}C, R_L = 100\Omega \pm 1\%, C_L = 5pf, \overline{PD}_{-} = V_{CC}, unless otherwise noted.)$

OUTPUT-TO-OUTPUT SKEW vs. INPUT COMMON-MODE VOLTAGE

OUTPUT-TO-OUTPUT SKEW vs. INPUT COMMON-MODE VOLTAGE

Pin Description

	PIN	NAME	FUNCTION
μМΑХ	QFN	INAIVIE	FUNCTION
1	1	IN+	Noninverting Differential Input
2	2	IN-	Inverting Differential Input
3	3	GND	Ground
4	4	PD1	LVTTL/LVCMOS Input. OUT1+, OUT1- are high impedance to ground when PD1 is low. Internal pulldown resistor to GND.
5	5	PD0	LVTTL/LVCMOS Input. OUT0+, OUT0- are high impedance to ground when PD0 is low. Internal pulldown resistor to GND.
6	6	OUT0-	Inverting LVDS Output 0
7	7	OUT0+	Noninverting LVDS Output 0
8	8	Vcc	Power Supply
9	9	OUT1-	Inverting LVDS Output 1
10	10	OUT1+	Noninverting LVDS Output 1
_	EP	Exposed Pad	Exposed Pad. Solder to ground.

Detailed Description

The MAX9174/MAX9175 are 670MHz, low-jitter, low-skew 1:2 splitters ideal for protection switching, loop-back, and clock and signal distribution. The devices feature ultra-low $80psp_p$ deterministic jitter (max) that ensures reliable operation in high-speed links that are highly sensitive to timing error.

The MAX9174 has a fail-safe LVDS input and LVDS outputs. The MAX9175 has an anything differential input (CML/LVDS/LVPECL) and LVDS outputs. The outputs can be put into high impedance using the power-down inputs. The MAX9174 features a fail-safe circuit that drives the outputs high when the input is open, undriven and shorted, or undriven and terminated. The MAX9175 has a bias circuit that forces the outputs high when the input is open. The power-down inputs are compatible with standard LVTTL/LVCMOS logic.

The power-down inputs tolerate undershoot of -1V and overshoot of VCC + 1V. The MAX9174/MAX9175 are available in 10-pin μ MAX and 10-lead thin QFN packages, and operate from a single +3.3V supply over the -40°C to +85°C temperature range.

Current-Mode LVDS Outputs

The LVDS outputs use a current-steering configuration. This approach results in less ground bounce and less output ringing, enhancing noise margin and system speed performance.

A differential output voltage is produced by steering current through the parallel combination of the integrated differential output resistor and transmission line impedance/termination resistor. When driving a 100Ω termination resistor, a differential voltage of 250mV to 475mV is produced. For loads greater than 100Ω , the output voltage is larger, and for loads less than 100Ω , the output voltage is smaller. See the Differential Output Voltage vs. Load Resistance curve in Typical Operating Characteristics for more information. The outputs are short-circuit current limited for single-ended and differential shorts.

MAX9174 Input Fail-Safe

The fail-safe feature of the MAX9174 sets the outputs high when the differential input is:

- Open
- Undriven and shorted
- Undriven and terminated

Without a fail-safe circuit, when the input is undriven, noise at the input may switch the outputs and it may appear to the system that data is being sent. Open or undriven terminated input conditions can occur when a cable is disconnected or cut, or when a driver output is in high impedance. A shorted input can occur because of a cable failure.

When the input is driven with a differential signal of IV_{IDI} = 50mV to 1.2V within a voltage range of 0 to 2.4V, the fail-safe circuit is not activated. If the input is open, undriven and shorted, or undriven and terminated, an internal resistor in the fail-safe circuit pulls the input above VCC - 0.3V, activating the fail-safe circuit and forcing the outputs high (Figure 1).

Overshoot and Undershoot Voltage Protection

The MAX9174/MAX9175 are designed to protect the power-down inputs (PD0 and PD1) against latchup due to transient overshoot and undershoot voltage. If the input voltage goes above VCC or below GND by up to 1V, an internal circuit limits input current to 1.5mA.

Applications Information

Power-Supply Bypassing

Bypass the V_{CC} pin with high-frequency surface-mount ceramic $0.1\mu F$ and $0.001\mu F$ capacitors in parallel as close to the device as possible, with the smaller valued capacitor closest to V_{CC}.

Differential Traces

Input and output trace characteristics affect the performance of the MAX9174/MAX9175. Use controlled-impedance differential traces (100Ω typ). To reduce radiated noise and ensure that noise couples as common mode, route the differential input and output signals within a pair close together. Reduce skew by matching the electrical length of the two signal paths that make up the differential pair. Excessive skew can result in a degradation of magnetic field cancellation. Maintain a constant distance between the differential traces to avoid discontinuities in differential impedance. Minimize the number of vias to further prevent impedance discontinuities.

Cables and Connectors

Interconnect for LVDS typically has a controlled differential impedance of 100Ω . Use cables and connectors that have matched differential impedance to minimize impedance discontinuities.

Avoid the use of unbalanced cables such as ribbon or simple coaxial cable. Balanced cables such as twisted pair offer superior signal quality and tend to generate less EMI due to magnetic field canceling effects. Balanced cables pick up noise as common mode, which is rejected by the LVDS receiver.

Termination

The MAX9174/MAX9175 require external input and output termination resistors. For LVDS, connect an input

Table 1. Input Function Table

	INPUT	OUTPUTS		
(II)	N+) - (IN-)	(OUT_+) - (OUT)		
≥	: +50mV	Н		
<u> </u>	≤-50mV	L		
-50mV <	< VID < +50mV	Indeterminate		
MAX9175	Open			
MAX9174	Open, undriven short, or undriven parallel termination	н		

Table 2. Power-Down Function Table

PD1	PD0	OUT_+, OUT
Н	Н	Both outputs enabled
L or open	L or open	Shutdown to minimum power, outputs high impedance to ground
L or open	High	OUT0 enabled, OUT1 high impedance to ground
High	L or open	OUT1 enabled, OUT0 high impedance to ground

Figure 1. Input Structure

termination resistor across the differential input and at the far end of the interconnect driven by the LVDS outputs. Place the input termination resistor as close to the receiver input as possible. Termination resistors should match the differential impedance of the transmission line. Use 1% surface-mount resistors.

Figure 2. V_{OD} Test Circuit

Figure 3. Vos Test Circuit

Figure 4. Transition Time, Propagation Delay, and Output-to-Output Skew Test Circuit

The MAX9174/MAX9175 feature an integrated differential output resistor. This resistor reduces jitter by damping reflections produced by a mismatch between the transmission line and termination resistor at the far end of the interconnect.

Board Layout

Separate the differential and single-ended signals to reduce crosstalk. A four-layer printed circuit board with separate layers for power, ground, differential signals, and single-ended logic signals is recommended. Separate the differential signals from the logic signals with power and ground planes for best results.

IEC 61000-4-2 Level 4 ESD Protection

The IEC 61000-4-2 standard (Figure 9) specifies ESD tolerance for electronic systems. The IEC 61000-4-2 model specifies a 150pF capacitor that is discharged into the device through a 330 Ω resistor. The MAX9174/ MAX9175 differential inputs and outputs are rated for IEC 61000-4-2 level 4 (±8kV Contact Discharge and ±15kV Air-Gap Discharge). The Human Body Model (HBM, Figure 10) specifies a 100pF capacitor that is discharged into the device through a 1.5k Ω resistor. IEC 61000-4-2 level 4 discharges higher peak current and more energy than the HBM due to the lower series resistance and larger capacitor.

Figure 5. Transition Time and Propagation Delay Timing

Figure 6. Output-to-Output Skew

Figure 7. Power-Up/Down Delay Waveform

Figure 8. Power-Up/Down Delay Test Circuit

Figure 9. IEC 61000-4-2 Contact Discharge ESD Test Model

Figure 10. Human Body ESD Test Model

Pin Configurations

_Functional Diagram

Chip Information

TRANSISTOR COUNT: 693

PROCESS: CMOS

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

	ON DIME]					
SYMBOL	MIN.	MAX.						
A	0.70	0.80	-					
D F	2.90	3.10	-					
A1	0.00	3.10	-					
AI	0.00	0.05	1					
k		25 MIN.	1					
A2	_	0 RFF.	1					
PACKAGE VAR	N N	D2	E2	е	JEDEC SPEC	b	[(N/2)-1] x e	
PACKAGE VAF	IATIONS							
PKG. CODE	N	D2		-		-		
PKG. CODE T633-1	N 6	D2 1.50±0.10	2.30±0.10	0.95 BSC	MO229 / WEEA	0.40±0.05	1.90 REF	
PKG. CODE T633-1 T833-1	N 6 8	D2 1.50±0.10 1.50±0.10	2.30±0.10 2.30±0.10	0.95 BSC 0.65 BSC	MO229 / WEEA MO229 / WEEC	0.40±0.05 0.30±0.05	1.90 REF 1.95 REF	
PKG. CODE T633-1	N 6	D2 1.50±0.10	2.30±0.10	0.95 BSC	MO229 / WEEA	0.40±0.05	1.90 REF	

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

14 _____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600