Proofs of
$$f: \pm \sqrt{2\pm 12}$$
.

Let $\alpha = 2+\sqrt{2}$, $\beta = 2-\sqrt{2}$. Then

 $E = \mathbb{Q}(\alpha, \beta, -\alpha, -\beta) \Rightarrow E/\mathbb{Q}$ is Galois and $|Gal(E/\mathbb{Q})| = 4$. So, $Gal(E/\mathbb{Q}) \cong C_1$ or $C_2 \times C_2$.

Since $\alpha \beta = 2$, we have $\beta = \frac{2}{\alpha}$. Hence

 $E = \mathbb{Q}(\mathbb{Q})$.

Now, $E = \mathbb{Q}(\alpha) = \mathbb{Q}(\beta)$.

 $E = \mathbb{Q}(\sqrt{2}) = \mathbb{Q}(\sqrt{2} + \sqrt{2}) = \mathbb{Q}(2-\sqrt{2})$
 $E = \mathbb{Q}(\sqrt{2}) = \mathbb{Q}(\sqrt{2} + \sqrt{2}) = \mathbb{Q}(2-\sqrt{2})$
 $E = \mathbb{Q}(\sqrt{2}) = \mathbb{Q}(\sqrt{2} + \sqrt{2}) = \mathbb{Q}(2-\sqrt{2})$
 $E = \mathbb{Q}(\sqrt{2}) = \mathbb{Q}(\sqrt{2} + \sqrt{2}) = \mathbb{Q}(2-\sqrt{2})$
 $E = \mathbb{Q}(\sqrt{2}) = \mathbb{Q}(\sqrt{2} + \sqrt{2}) = \mathbb{Q}(2-\sqrt{2})$
 $E = \mathbb{Q}(\sqrt{2}) = \mathbb{Q}(\sqrt{2} + \sqrt{2}) = \mathbb{Q}(2-\sqrt{2})$
 $E = \mathbb{Q}(\sqrt{2}) = \mathbb{Q}(\sqrt{2} + \sqrt{2}) = \mathbb{Q}(2-\sqrt{2})$
 $E = \mathbb{Q}(\sqrt{2}) = \mathbb{Q}(\sqrt{2} + \sqrt{2}) = \mathbb{Q}(2-\sqrt{2})$
 $E = \mathbb{Q}(\sqrt{2}) = \mathbb{Q}(\sqrt{2} + \sqrt{2}) = \mathbb{Q}(2-\sqrt{2})$
 $E = \mathbb{Q}(\sqrt{2}) = \mathbb{Q}(\sqrt{2} + \sqrt{2}) = \mathbb{Q}(2-\sqrt{2})$
 $E = \mathbb{Q}(\sqrt{2}) = \mathbb{Q}(\sqrt{2} + \sqrt{2}) = \mathbb{Q}(2-\sqrt{2})$
 $E = \mathbb{Q}(\sqrt{2}) = \mathbb{Q}(\sqrt{2} + \sqrt{2}) = \mathbb{Q}(2-\sqrt{2})$
 $E = \mathbb{Q}(\sqrt{2}) = \mathbb{Q}(\sqrt{2} + \sqrt{2}) = \mathbb{Q}(2-\sqrt{2})$
 $E = \mathbb{Q}(\sqrt{2}) = \mathbb{Q}(\sqrt{2}) = \mathbb{Q}(\sqrt{2})$
 $E = \mathbb{Q}(\sqrt{$

VB is a root of

$$f''(x) = I_{rr}(J_B, K_{,x}) = \chi^2 - \sigma(x) = \chi^2 - (2-\sqrt{2})$$
where $\sigma \in Aut(K/Q)$
and $\sigma(2+\sqrt{2}) = 2-\sqrt{2}$.

So, there is a unique
$$\tau \in Aut(E/\alpha)$$

for which $\tau(\pi) = \sqrt{\beta}$ and $\tau(x) = \sigma$.
Now, $\tau(\pi) = \sqrt{\beta}$ and $\tau(x) = x - \sqrt{\alpha}$.
 $\tau(\sqrt{\beta}) = \frac{\sqrt{2}}{\sqrt{\alpha}} = \frac{-\sqrt{2}}{\sqrt{\beta}} = -\sqrt{\alpha}$.
Hence $|\tau| \notin \{1, 2\}$. So, $|\tau| = 4$.
 $\Rightarrow Gal(E/\alpha) = \langle \tau \rangle$
 $\cong \frac{\pi}{4\pi}$.