

Polygonal Meshes

COS 426, Spring 2022
Princeton University
Felix Heide

3D Object Representations

- Points
 - Range image
 - Point cloud
- Surfaces
 - ➤ Polygonal mesh
 - Parametric
 - Subdivision
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep
- High-level structures
 - Scene graph
 - Application specific

• Set of polygons representing a 2D surface embedded in 3D

The power of polygonal meshes

Set of polygons representing a 2D surface embedded in 3D

Platonic Solids Dodecahedron Icosahedron Tetrahedron Octahedron Cube

http://www.fxguide.com/featured/Comic_Horrors_Rocks_Statues_and_VanDyke/

- Why are they of interest?
 - Simple, common representation
 - Rendering with hardware support
 - Output of many acquisition tools

Outline

- Acquisition
- Representation
- Processing

- Interactive modeling
- Scanners
- Procedural generation
- Conversion
- Simulations

- Interactive modeling
- Scanners
- Procedural generation
- Conversion
- Simulations

Sketchup

Blender

- Interactive modeling
- Scanners
- Procedural generation
- Conversion
- Simulations

Digital Michelangelo Project Stanford

- Interactive modeling
- Scanners
- Procedural generation
- Conversion
- Simulations

- Interactive modeling
- Scanners
- Procedural generation
- Conversion
- Simulations

- Interactive modeling
- Scanners
- Procedural generation
- Conversion
- Simulations

Peter Maag, COS 426, 2010

- Interactive modeling
- Scanners
- Procedural generation
- Conversion
- Simulations

Marching cubes

- Interactive modeling
- Scanners
- Procedural generation
- Conversion
- Simulations

Lee et. al 2010

Outline

- Acquisition
- Representation

Processing

Polygon Mesh Representation

- Important properties of mesh representation?
 - Efficient traversal of topology
 - Efficient use of memory
 - Efficient updates

Large Geometric Model Repository Georgia Tech

Polygon Mesh Representation

Possible data structures

Independent Faces

- Each face lists vertex coordinates
 - Redundant vertices
 - No adjacency information

FACE TABLE

Vertex and Face Tables (Indexed Vertices)

- Each face lists vertex references
 - Shared vertices
 - Still no adjacency information

VERTEX TABLE V₁ X₁ Y₁ Z₁ V₂ X₂ Y₂ Z₂ V₃ X₃ Y₃ Z₃ V₄ X₄ Y₄ Z₄ V₅ X₅ Y₅ Z₅

FAG	FACE TABLE			
F ₁	٧1	٧2	٧3	
F_2	٧2	V_4	٧3	
F ₃	٧2	V_5	V_4	

Full Adjacency Lists

- Store all vertex, edge, and face adjacencies
 - Fast direct adjacency traversal
 - Extra storage

Full Adjacency Lists

Adjacency relationships visualized:

Partial Adjacency - Winged Edge

- Adjacency encoded in edges
 - All adjacencies in O(1) time
 - Little extra storage (fixed records)
 - Arbitrary polygons

Winged Edge

• Example:

VERTEX TABLE				
ν ₁	X ₁	Y ₁ Y ₂ Y ₃ Y ₄ Y ₅	Z ₁	e ₁
V ₂	X ₂	Y_2	Z_2	e ₆
٧3	Х3	Υ3	Z_3	ез
٧4	X ₄	Y_4	Z_4	e ₅
V ₅	X ₅	Υ ₅	Z ₅	e ₆

ED	EDGE TABLE				22			
e ₁	V ₁	٧3		F ₁	e ₂	e ₂	e ₄	e ₃
e ₂	V ₁	V ₂	F ₁		e ₁	e ₁	e ₃	e ₆
e ₃	V ₂	٧3	F ₁	F_2	e ₂	e ₅	e ₁	e_4
e ₄	V3	V_4		F_2	e ₁	ез	e ₇	e ₅
e ₅	٧2	V_4	F ₂	F_3	e ₃	e ₆	e_4	e ₇
e ₆	V ₂	V_5	F ₃		e ₅	e_2	e ₇	e ₇
e ₇	٧4	٧5		F ₃	e ₄	e ₅	e ₆	e ₆

	FACE TABLE		
F ₁	e ₁		
F ₂	e ₃		
F ₃	e ₅		

- traversals do not require "ifs" in code
- consistent orientation

Half Edge ... in more detail

- Each half-edge stores:
 - Its twin half-edge

- Each half-edge stores:
 - Its twin half-edge
 - The next half-edge

- Each half-edge stores:
 - Its twin half-edge
 - The next half-edge
 - The next vertex

- Each half-edge stores:
 - Its twin half-edge
 - The next half-edge
 - The next vertex
 - The incident face

- Each half-edge stores:
 - Its twin half-edge
 - The next half-edge
 - The next vertex
 - The incident face
- Each face stores:
 - 1 adjacent half-edge
- Each vertex stores:
 - 1 outgoing half-edge

- Queries. How do you find:
 - All faces incident to an edge?
 - All vertices of a face?
 - All faces incident to a face?
 - All vertices incident to a vertex?

- Adjacency encoded in edges
 - All adjacencies in O(1) time
 - Little extra storage (fixed records)
 - Arbitrary polygons
 - Assumes 2-Manifold surfaces

Outline

- Acquisition
- Representation
- Processing

- Analysis
 - Normals
 - Curvature
- Warps
 - Rotate
 - Deform
- Filters
 - Smooth
 - Sharpen
 - Truncate
 - Bevel

- Analysis
 - **≻**Normals
 - Curvature
- Warps
 - Rotate
 - Deform
- Filters
 - Smooth
 - Sharpen
 - Truncate
 - Bevel

- Analysis
 - **≻**Normals
 - Curvature
- Warps
 - Rotate
 - Deform
- Filters
 - Smooth
 - Sharpen
 - Truncate
 - Bevel

Face normals: (use cross product)

- Analysis
 - **≻**Normals
 - Curvature
- Warps
 - Rotate
 - Deform
- Filters
 - Smooth
 - Sharpen
 - Truncate
 - Bevel

Vertex normals:

- Analysis
 - **≻**Normals
 - Curvature
- Warps
 - Rotate
 - Deform
- Filters
 - Smooth
 - Sharpen
 - Truncate
 - Bevel

Vertex normals:

- Analysis
 - **≻**Normals
 - Curvature
- Warps
 - Rotate
 - Deform
- Filters
 - Smooth
 - Sharpen
 - Truncate
 - Bevel

Vertex Normals:

for each face

- calculate face normal
- add normal to each connected vertex normal

- Analysis
 - **≻**Normals
 - Curvature
- Warps
 - Rotate
 - Deform
- Filters
 - Smooth
 - Sharpen
 - Truncate
 - Bevel

Vertex Normals:

$$N_V = \frac{\sum_{k=1}^n N_k}{\left|\sum_{k=1}^n N_k\right|}$$

for each face

- calculate face normal
- add normal to each connected vertex normal

for each vertex normal

normalize

- Analysis
 - Normals
 - **≻**Curvature
- Warps
 - Rotate
 - Deform
- Filters
 - Smooth
 - Sharpen
 - Truncate
 - Bevel

color-coded curvature
(red → higher curvature)

Figure 32: curvature of curve at P is 1/k

- Analysis
 - Normals
 - Curvature
- Warps
 - **≻**Rotate
 - Deform
- Filters
 - Smooth
 - Sharpen
 - Truncate
 - Bevel

- Analysis
 - Normals
 - Curvature
- Warps
 - Rotate
 - **≻** Deform
- Filters
 - Smooth
 - Sharpen
 - Truncate
 - Bevel

- Analysis
 - Normals
 - Curvature
- Warps
 - Rotate
 - Deform
- Filters
 - **≻**Smooth
 - Sharpen
 - Truncate
 - Bevel

Thouis "Ray" Jones

How?

Mesh formulation:

$$\delta_i = \frac{1}{d_i} \sum_{j \in N(i)} (\mathbf{v}_i - \mathbf{v}_j)$$

$$d_i = |N(i)|$$
 is the number of neighbors.

The Laplacian operator Δ

$$L(v_i) = \Delta(v_i) = \frac{\sum_{j \in 1_{ring_i}} v_j - v_i}{\#1_{ring_i}}$$

• In matrix form:

$$L_{ij} = \begin{cases} -w_{ij} & i \neq j \\ \Sigma_{j \in 1_{ring_i}} w_{ij} & i = j \\ 0 & else \end{cases}$$

4	-1	-1		-1	-1				
-1	3	-1	-1						
-1	-1	5	-1		-1	-1			
	-1	-1	4			-1			-1
-1					-1				
-1		-1		-1	5	-1	-1		
		-1	-1		-1	6	-1	-1	-1
				-1	-1	-1	5	-1	-1
						-1	-1	3	-1
			-1			-1	-1	-1	4

The Laplacian operator Δ

$$L(v_i) = \Delta(v_i) = \frac{\sum_{j \in 1_{ring_i}} v_j - v_i}{\#1_{ring_i}}$$

However, Meshes are irregular

$$L(v_i) = \Delta(v_i) = \frac{\sum_{j \in 1_{ring_i}} v_j - v_i}{\#1_{ring_i}}$$

- However, Meshes are irregular
 - Cotangent weights:

$$L(p_i) = \frac{\sum_{j \in 1_{ring_i}} \mathbf{w_{ij}} \cdot p_j}{\sum_{j \in 1_{ring_i}} \mathbf{w_{ij}}} - p_i$$

$$w_{ij} = \frac{\cot(\alpha_{ij}) + \cot(\beta_{ij})}{2}$$

Solve Constrained Laplacian Optimization

- Applicable to:
 - Deformation, by adding constraints

Solve Constrained Laplacian Optimization

The Laplacian operator Δ

$$L(v_i) = \Delta(v_i) = \frac{\sum_{j \in 1_{ring_i}} v_j - v_i}{\#_{1_{ring_i}}}$$

- However, Meshes are irregular
 - Cotangent weights:

$$L(p_i) = \frac{\sum_{j \in 1_{ring_i}} \mathbf{w_{ij}} \cdot p_j}{\sum_{j \in 1_{ring_i}} \mathbf{w_{ij}}} - p_i$$

$$\mathbf{w_{ij}} = \frac{\cot(\alpha_{ij}) + \cot(\beta_{ij})}{2}$$

Solve:

$$\left(\frac{L}{\omega I_{m \times m} \mid 0}\right) \mathbf{x} = \begin{pmatrix} \delta^{(x)} \\ \omega c_{1:m} \end{pmatrix}$$

$$\tilde{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} \left(\|L\mathbf{x} - \delta^{(x)}\|^2 + \sum_{j \in C} \omega^2 |x_j - c_j|^2 \right)$$

Deformation

- Applicable to:
 - Deformation, by adding constraints

- Applicable to:
 - Deformation, by adding constraints
 - Blending, by concatenating rows
 - Hole filling, by 0's on the RHS

- Applicable to:
 - Deformation, by adding constraints
 - Blending, by concatenating rows
 - Hole filling, by 0's on the RHS
 - Coating (or detail transfer), by copying RHS values (after filtering)

- Applicable to:
 - Deformation, by adding constraints
 - Blending, by concatenating rows
 - Hole filling, by 0's on the RHS
 - Coating (or detail transfer), by copying RHS values (after filtering)
 - Spectral mesh processing, through eigen analysis

- Analysis
 - Normals
 - Curvature
- Warps
 - Rotate
 - Deform
- Filters
 - Smooth
 - **≻**Sharpen
 - Truncate

Desbrun

Olga Sorkine

- Analysis
 - Normals
 - Curvature
- Warps
 - Rotate
 - Deform
- Filters
 - Smooth
 - Sharpen
 - **≻**Truncate

Archimedean Polyhedra

http://www.uwgb.edu/dutchs/symmetry/archpol.htm

- Remeshing
 - Subdivide
 - Resample
 - Simplify
- Topological fixup
 - Fill holes
 - Fix self-intersections
- Boolean operations
 - Crop
 - Subtract

Remeshing

- Subdivide
- Resample
- Simplify
- Topological fixup
 - Fill holes
 - Fix self-intersections
- Boolean operations
 - Crop
 - Subtract

- Remeshing
 - **≻**Subdivide
 - Resample
 - Simplify
- Topological fixup
 - Fill holes
 - Fix self-intersections
- Boolean operations
 - Crop
 - Subtract

Zorin & Schroeder

- Remeshing
 - **≻**Subdivide
 - Resample
 - Simplify
- Topological fixup
 - Fill holes
 - Fix self-intersections
- Boolean operations
 - Crop
 - Subtract

- Remeshing
 - **≻**Subdivide
 - Resample
 - Simplify
- Topological fixup
 - Fill holes
 - Fix self-intersections
- Boolean operations
 - Crop
 - Subtract

Dirk Balfanz, Igor Guskov, Sanjeev Kumar, & Rudro Samanta,

- Remeshing
 - Subdivide
 - ➤ Resample
 - Simplify
- Topological fixup
 - Fill holes
 - Fix self-intersections
- Boolean operations
 - Crop
 - Subtract

Stanford

- more uniform distribution
- triangles with nicer aspect

- Remeshing
 - Subdivide
 - Resample
 - **>**Simplify
- Topological fixup
 - Fill holes
 - Fix self-intersections
- Boolean operations
 - Crop
 - Subtract

- Remeshing
 - Subdivide
 - Resample
 - Simplify
- Topological fixup
 - ➤ Fill holes
 - Fix self-intersections
- Boolean operations
 - Crop
 - Subtract

- Remeshing
 - Subdivide
 - Resample
 - Simplify
- Topological fixup
 - Fill holes
 - ➤ Fix self-intersections
- Boolean operations
 - Crop
 - Subtract

- Remeshing
 - Subdivide
 - Resample
 - Simplify
- Topological fixup
 - Fill holes
 - Fix self-intersections
- Boolean operations
 - **≻**Crop
 - **≻**Subtract
 - >Etc.

Mesh separation processed by a boolean operation.

Several Boolean operations with 3DReshaper®

Summary

- Polygonal meshes
 - Most common surface representation
 - Fast rendering
- Processing operations
 - Must consider irregular vertex sampling
 - Must handle/avoid topological degeneracies
- Representation
 - Which adjacency relationships to store depend on which operations must be efficient

3D Polygonal Meshes

Properties

- ? Efficient display
- ? Easy acquisition
- ? Accurate
- ? Concise
- ? Intuitive editing
- ? Efficient editing
- ? Efficient intersections
- ? Guaranteed validity
- ? Guaranteed smoothness
- ? etc.

3D Polygonal Meshes

- Properties
 - ©Efficient display
 - ©Easy acquisition
 - **Accurate**
 - **©**Concise
 - Intuitive editing
 - **®**Efficient editing
 - **©**Efficient intersections
 - **⊗Guaranteed validity**
 - ⊗Guaranteed smoothness

