

Reporte #2

Entrenamiento y evaluación de regresión

Nombre: Armando Alexis Sepúlveda Cruz

Grupo: <u>003</u>

Matricula: <u>1565746</u>

Unidad de aprendizaje: Aprendizaje Automático

Profesor: JOSE ANASTACIO HERNANDEZ SALDAÑA

1. Objetivos	2
2. Descripción de datos	2
3. Modelos de regresión	3
3.1 Regresión lineal	3
3.2 Regresión lineal con Ridge	4
3.3 Regresión lineal con Ridge	5
3.4 Regresión polinomial	6
3.5 Regresión polinomial con Ridge	7
3.6 Regresión polinomial con Lasso	8
3.6 Regresión KNN	9
3.7 Regresión Árbol de decisión	10

1. Objetivos

Selecciona entre los diversos modelos de regresión (lineal, polinomial, KNN, decision tree), aplicando regularización o normalización cuando corresponda, para desarrollar un modelo utilizando un conjunto de datos de tu preferencia. Emplea la validación cruzada con un criterio de tu elección (R2, RMSE, MSE) para seleccionar el modelo óptimo de acuerdo a tu criterio.

2. Descripción de datos

Este documento presenta un análisis de diferentes modelos de regresión aplicados a datos bursátiles provenientes de la plataforma Investing, con el objetivo de examinar las relaciones y patrones entre diferentes activos financieros, commodities y acciones tecnológicas.

Sector	Grupo	Activos
	Índices bursátiles	S&P 500, Nasdaq 100
Activos financieros	Criptomonedas	Bitcoin, Ethereum
	Energía	Natural Gas, Crude Oil
Commodities	Metales	Copper, Gold, Silver, Platinum
Acciones tecnológicas	FAANG+	Apple, Google, Amazon, Netflix, Meta, Nvidia, Microsoft, Tesla
Otros	Otros	Berkshire Hathaway

3. Modelos de regresión

3.1 Regresión lineal

Etapa	Métrica	Valor
Entrenamiento	MSE	71.51
Entrenamiento	RMSE	2.90
Entrenamiento	R2	0.67
Validación cruzada	MSE	214.76
Validación cruzada	RMSE	3.71
Validación cruzada	R2	-29.01

3.2 Regresión lineal con Ridge

Etapa	Métrica	Valor
Entrenamiento	MSE	71.52
Entrenamiento	RMSE	2.90
Entrenamiento	R2	0.67
Validación cruzada	MSE	214.90
Validación cruzada	RMSE	3.70
Validación cruzada	R2	-28.45

3.3 Regresión lineal con Ridge

Etapa	Métrica	Valor
Entrenamiento	MSE	71.61
Entrenamiento	RMSE	2.90
Entrenamiento	R2	0.67
Validación cruzada	MSE	219.47
Validación cruzada	RMSE	3.70
Validación cruzada	R2	-27.88

3.4 Regresión polinomial

Métrica	Entrenamiento	Prueba
MSE	36.2928	96.3926
RMSE	6.0244	9.8180
R2	0.8268	0.7909

3.5 Regresión polinomial con Ridge

Métrica	Entrenamiento	Prueba
MSE	36.3115	97.7088
RMSE	6.0259	9.8848
R2	0.8267	0.7880

3.6 Regresión polinomial con Lasso

Métrica	Entrenamiento	Prueba
MSE	36.3130	97.8032
RMSE	6.0260	9.8895
R2	0.8267	0.7878

3.6 Regresión KNN

Métrica	Entrenamiento	Prueba
MSE	26.4467	180.8783
RMSE	5.1426	13.4491
R2	0.8738	0.6076

3.7 Regresión Árbol de decisión

Métrica	Entrenamiento	Prueba
MSE	0.0000	102.4044
RMSE	0.0000	10.1195
R2	1.0000	0.7778

4. Evaluación

El análisis de regresión polinomial sobre los precios de las acciones de Apple muestra un desempeño notable, con un R² de 0.8268 en el conjunto de entrenamiento y 0.7909 en el conjunto de prueba, lo que indica una alta precisión del modelo. A pesar de un incremento en el error en el conjunto de prueba (RMSE de 9.8180), el modelo captura eficazmente la relación no lineal entre el precio de las acciones y el tiempo. Estos resultados sugieren que el modelo es adecuado para predecir futuros precios de las acciones de Apple basándose en datos históricos, proporcionando una herramienta valiosa para el análisis financiero.