Regression Analysis for Housing Prices in Ames, Iowa

By:

Eugene Khoo, Florian Combelles, Joanne Chong, Kenneth Goh, Tan Ming Jie

Agenda

- Background
- Problem Statement
- Existing Prediction Model
- Exploratory Data Analysis
- Recommended Prediction Model
- Conclusion and Recommendations

1. Background

Who we are and what we do

Who we are

- Reputable real estate agency established in 1990
- Top agency in Ames, Iowa for achieving high sales volume in the last 20 years
- Well-known for our proprietary **Prop-PriceEstimator** ©
 - What it is: A prediction model that provides customers with best estimated price for their property

How does Prop-Price Estimator[®] work?

Paid buyer's access

Data collection

(For price estimation)

Ames Property Group Home Feature Checklist

Importance of accurate price prediction

Strategic Pricing

- Price estimation based on most sought-after property features
- Maximise seller profit based on market demand

Listing Duration

- Accurate price lead to increased interest and faster sales
- Reduce listing management time
- Decrease buyers' bargaining power

Increase Engagement

- Remain go-to agency for clients
- Generate trust in our data-driven technology

2. Problem Statement

The challenge at hand

Problem statement & objective

- Increasingly competitive real estate market
 - Competitors offer higher-accuracy predictions
- Shrinking market share
 - More customers looking for better predictions

- Data scientists tasked to improve prediction accuracy
 - Enhance existing model or develop a new one
- Model must beat top competitors

3. Existing Prediction Model

The science behind the Prop-Price Estimator©

What we are currently using

Ridge Regression Model

- Designed by external vendor
- Deployed 2 years ago
- Retrains with new data every two months

Key Variables

- Overall Material Quality
- Living Area size
- Neighborhood
- 1st Floor area
- Garage Area
- Basement Quality

Current model performance

Variability

84%

Margin of error

\$29854

Highest coeff.

Overall Qual \$23107

Why we need to upgrade our model External Factors

- Rising number of competitors
- Shift of focus toward prediction accuracy
- Competitors error margin is 27.000\$

Increasing customer demands

- For more accurate selling price
- Fast and simple prediction
- Better recommendations to optimize property value

Why we need to upgrade our model Internal Factors

Brand

- Reputation as number 1 predictor in the market
- Defend market leader position in the housing market
- Client trust for over two generations

Cost management

- Run time of model
- Memory usage and technology management
- Better recommendation support for our agents

Exploratory Data Analysis

Deriving insights through new data set

Overall Quality positively correlated with Sale Price

- The average overall quality is 6.11
- Average sale price for top, mid and low quality:
 - Rated 10: \$417,397
 - Rated 6: \$134,964
 - Rated 1: \$28,725

Ground Living Area positively correlated with Sale Price^(1/3)

- The ground living area is 1,499 square feet
- Most ground living area range from 1,129to 1,728 square feet

Kitchen Quality positively correlated with Sale Price Ordinal values were scaled from 0-4

- The average housing prices based on kitchen quality:
 - Excellent \$336,424
 - Good \$211,639
 - Typical/Average \$139,502
 - Fair \$101,335
- Better-rated kitchen will result in higher price

Fireplace Quality positively correlated with Sale Price Ordinal values were scaled from 0-5

- The average housing prices based on kitchen quality:
 - Excellent \$331,481
 - Good \$233,578
 - Typical/Average \$204,894
 - Fair \$170,287
 - O Poor \$139,264
- Better-rated fireplaces will result in higher price

Garage Cars positively correlated with Sale Price

- The average housing prices based on number of cars in a garage:
 - o 5 cars \$126,500
 - 4 cars \$229,653
 - 3 cars \$309,383
 - 2 cars \$184,037
 - 1 car \$126,916
 - No garage \$105,669
 - Being able to fit more cars in a garage will result in higher price

Newer built homes have higher Sales Prices

- The average sale price of oldest homes:
 - 0 1872 \$122,000
 - 1875 \$94,000
 - 1879 \$185,000
- The average sale price of newer homes:
 - 0 2010 \$267,916
 - 2009 \$294,460
 - 2008 \$326,057

Applying cube root resolves right skewness of sale price distribution

The average sale price of a house in Ames, Iowa is \$181,469

The smallest transaction was \$79,259, while the largest price sold was \$611,657

5. Recommended Pricing Model

How we can regain our edge

Selected Features

Which features we want to use

Selected housing features

5 Ordinal

Overall Quality

Overall Condition

Kitchen Quality

Fireplace Quality

Basement Exposure

Year Built

Misc Value

Total Basement Area

No. of cars the garage can fit

Type 1 finished sf

Abv ground living area

Lot Area

Neighborhood (NorthRidge Heights)

Evaluation of Models

How we'll be measuring performance

How our new model is faring

	TRAINING SET R ² SCORE (%)	TEST SET R ² SCORE (%)	MARGIN OF ERROR (\$)	# OF HOUSING FEATURES
Current Model	83.22	83.75	29,854	6
Market Best	84.12	85.57	27,000	17
New Model	86.96	89.55	24,488	13

Predictive capabilities and reliability

Predicted values are within close proximity of actual values

Influence of each feature on pricing

Top 3 Predictors

- 1. Overall Quality
- Above ground living area (Sq. ft.)
- 3. Year Built

Conclusion & Recommendations Summing up our findings

32

In a nutshell

Current Price Predictors

- Overall Material Quality
- ☐ Living Area size
- Neighborhood
- ☐ 1st Floor area
- ☐ Garage Area
- Basement Quality

With our new prediction model

New Set of Variables

- Overall quality
- Living area size
- Year built
- Overall condition
- ☐ Kitchen quality
- Capacity of garage
- ☐ Fireplace quality
- Basement size
- Basement exposure / access
- Lot area
- Neighborhood

Prediction model limitations

Sensitivity

Model sensitivity to outliers whenever there's huge difference in features and/or price

Overlaps

Overlapping characters and input for categorical variables, e.g. quality ratings "Average" and "Fair" sound similar

Representation

Unrepresentative data from each neighbourhood

External Factors

Economical push that influence house prices such as the 2008 housing crisis in the US

Building more accurate prediction model

Thanks!

Any questions?

You can find us at:

intelligence@ameshousegrp.com

