Classification Methods

- Classification is the process of categorizing the data into some known class-labels.
- It is a supervised process since the class labels are known in advance
- Some major classification algorithms are as follows:
 - Decision Tree classifier
 - Nearest Neighbor Classifier
 - Naïve Bayes Classifier
 - Artificial Neural Network (ANN) Based Classifier
 - Support Vector Machine (SVM)
 - Ensemble Based Classifiers

Measures for Performance Evaluation

Accuracy, sensitivity and specificity

Confusion matrix

		Predicted Class	
		Yes	No
Actual Class	Yes	TP	FN
	No	FP	TN

The true positives (TP) and true negatives (TN) are the correct classifications

A false positive (FP) is when a 'no' sample of a class is incorrectly classified as a 'yes' sample

A false negative (FN) is when a 'yes' sample of a class is classified as 'no' sample.

Measures for Performance Evaluation

We define the following measures:

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Sensitivity = \frac{TP}{TP + FN}$$

$$Specificity = \frac{TN}{TN + FP}$$

Decision Tree

- A decision tree is a hierarchical structure consisting of nodes and directed edges
- The non leaf node contain attribute test conditions
- Each leaf node is assigned a class label
- Each recursive step of the tree growing process must select an attribute test condition to divide the records into smaller subsets
- Measures used to select the best split are entropy, gain, etc.

Decision Tree Induction: An Example

Attribute Selection Measure: Information Gain

- Select the attribute with the highest information gain
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- **Expected information** (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

■ Information needed (after using A to split $\overset{i=1}{D}$ into v partitions) to classify D:

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

Attribute Selection: Information Gain

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$
 $+\frac{5}{14}I(3,2) = 0.694$

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Class P: buys_computer = "yes"
$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$$

Class N: buys_computer = "no" $Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$
 $Info_{age}(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$
 $Info_{age}(D) = \frac{5}{14}I(3,2) = 0.694$

$$\frac{5}{14}I(2,3)$$
 means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's. Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Similarly,

$$Gain(income) = 0.029$$

 $Gain(student) = 0.151$
 $Gain(credit_rating) = 0.048$