Analisi e Progetto di Algoritmi

UniShare

Davide Cozzi @dlcgold

Gabriele De Rosa @derogab

Federica Di Lauro @f_dila

Indice

1	ntroduzione	2
2	ntroduzione al corso	3
	.1 Argomenti	3
	.2 Ripasso Algoritmi 1	4
	2.2.1 Equazioni di Ricorrenza	
3	Programmazione Dinamica	9
	3.0.1 Programmazione Dinamica	2
	3.0.2 Un Problema di Sequenze	3
	3.0.3 Longest Common Substring	3

Capitolo 1

Introduzione

Questi appunti sono presi a lezione. Per quanto sia stata fatta una revisione è altamente probabile (praticamente certo) che possano contenere errori, sia di stampa che di vero e proprio contenuto. Per eventuali proposte di correzione effettuare una pull request. Link: https://github.com/dlcgold/Appunti.

Grazie mille e buono studio!

Capitolo 2

Introduzione al corso

2.1 Argomenti

Si hanno diversi tipi di problemi:

- problemi di ottimo dove si cercano singole soluzioni efficienti (massimi o minimi) tra molte soluzioni possibili. Si usa anche la programmazione greedy, dove si sceglie in base ai costi locali per ottenere massimi e minimi senza però guardare i costi complessivi.
- problemi non risolubili in tempi accettabili, per i quali si usa la programmazione dinamica, che cerca di individuare sottostrutture ottime per risolvere il problema, cercando la soluzione migliore memorizzando le altre soluzioni e utilizzandole. Si cerca comunque la soluzione meno dispendiosa in termini di tempo.
- **problemi NP-completi**, ovvero problemi per cui non si può trovare un algoritmo o non si può trovare un algoritmo con una complessità asintotica polinomiale. Si useranno anche tecniche non deterministiche. Si cercherà di studiare uno dei 10 problemi più difficili della matematica: $P \subseteq NP$?

Studieremo poi i grafi non pesati con gli algoritmi BFS (per cercare in ampiezza) e DFS (per cercare in profondità). Studieremo anche i grafi pesati con problemi di cammino minimo.

2.2 Ripasso Algoritmi 1

Innazitutto due algoritmi con lo stesso scopo si possono confrontare in base a tempo e spazio, scegliendo anche in base alle esigenze hardware. Per lo spazio si calcola quanto spazio viene richiesto da variabili e strutture dati, soprattutto queste ultime che dipendono dalla dimensione dell'input. Per quanto riguarda il tempo si usano le tecniche di conto soprattutto basate sui cicli e, in generale, su tutte operazioni da effettuare. Il tempo si basa sull'input n e si indica con T(n) e si esprime in forma asintotica, interessandoci quindi unicamente all'ordine di grandezza. Si hanno il caso peggiore, indicato con l'O-grande e quello migliore indicato con l'o-piccolo a seconda di n.

Si ricorda poi la tecnica della ricorsione con algoritmi che si muovono su se stessi mediante dei "passi" arrivando ad un caso base di uscita. Per calcolare i tempi di un algoritmo ricorsivo si ha T(n) = F(n) + T(n-1) con F che rappresenta le istruzioni delle subroutines. Questa equazione di ricorrenza non è facilmente calcolabile ma può essere espansa muovendosi sui passi fino a che non si arriva a qualcosa di calcolabile grazie al caso 0, questo è il metodo iterativo (anche se si ha anche il metodo per sostituzione). Per gli algoritmi ricorsivi si hanno anche i divide et impera (dove il problema P è diviso in sottoproblemi risolti separatemente, con la divide, e poi combinati alla fine, con la combina) dove i tempi non sono sempre calcolabili ma se lo sono si usa il metodo dell'esperto (studiando le tre possibili casistiche).

2.2.1 Equazioni di Ricorrenza

Le equazioni di ricorrenza hanno solitamente la seguente forma:

$$\begin{cases} T(n) = T(n-1) + f(n) \\ T(1) = \Theta(1) \end{cases}$$

Esistono tre metodi per risolvere le equazioni di ricorrenza:

- Iterativo (detto anche Albero di ricorsione)
- Sostituzione
- Esperto (detto anche Principale)

Metodo Iterativo

Si può usare sia per algoritmi ricorsivi e per Divide et Impera. Ad ogni passo si prende il valore a destra dell'uguaglianza e lo si sostituisce, arrivando, dopo k passi ad una formula generale. Sempre k ci darà il caso base. Posso rappresentare questo metodo con l'albero delle chiamate ricorsive, guardando quanto è alto l'albero e quanto impiega ad ogni livello

Esempio 1. Calcolo i tempi di:

$$\begin{cases} T(N) = T(n-1) + 8 \\ T(1) = 6 \end{cases}$$

procedo nella seguente maniera:

$$T(n) = T(n-1) + 8 = [T(n-2) + 8] + 8 = T(n-2) + 2 \cdot 8$$

$$= [T(n-3) + 8] + 2 \cdot 8 = T(n-3) + 3 \cdot 8$$

$$= [T(n-4) + 8] + 3 \cdot 8 = T(n-4) + 4 \cdot 8$$

$$= T(n-k) + k \cdot 8$$

per k = n - 1 si ha:

$$T[n - (n-1)] + (n-1) \cdot 8 = T(1) + (n-1) \cdot 8 = 6 + (n-1) \cdot 8 = \Theta(n)$$

Altri esempi su sito e appunti di Chiodini

Metodo per Sostituzione

Si ipotizza un tempo di calcolo (si possono usare gli asintotici con Oe Ω lo si dimostra per induzione

Esempio 2.

$$\begin{cases} T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n & n > 1 \\ T(1) & n = 1 \end{cases}$$

Ipotizzo $O(n \cdot \log n)$ e dimostro per induzione:

$$T(n) = O(n \cdot \log n) \le c \cdot n \cdot \log n$$

Serve una dimostrazione forte: ipotizzo T(m) vera per $1 \le m \le n-1$ quindi si ha:

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n \le 2 \cdot \left[c \cdot \frac{n}{2} \cdot \log \frac{n}{2}\right] + n$$
$$= c \cdot n \cdot \log \frac{n}{2} + n = c \cdot n \cdot (\log_2 n - \log_2 2) + n$$
$$= c \cdot n \cdot \log_2 n - c \cdot n + n \le c \cdot n \cdot \log n \text{ se } c \ge 1$$

Analizzo ora il caso base:

T(1)=1 quindi voglio $1 \le c \cdot \log_2 1$ ovvero $1 \le c \cdot 0$ ovvero mai. testo fino a che non trovo $T(3)=2 \cdot T(1)+3=29+3=5$ che mi va bene, infatti $5 \le c \cdot 3 \cdot \log_2 3$

Metodo dell'Esperto

Posso usare questo metodo solo nel caso di un'equazione di ricorrenza di questo tipo:

$$\begin{cases} T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n) \\ T(1) = \Theta(1) \end{cases}$$

dove:

- $a \cdot T\left(\frac{n}{b}\right)$ è l'Impera ed è $\sim n^{\log_b a}$
- f(n) è il divide e il combina (ovvero la parte iterativa)

Si definiscono tre casi:

- caso 1: $n^{\log_b a} > f(n)$ quindi $T(n) \sim n^{\log_b a}$. Si hanno le seguenti condizioni necessarie: $f(n) = O(n^{\log_b a \epsilon})$ (con $\epsilon > 0$) e quindi $T(n) = \Theta(n^{\log_b a \epsilon})$
- caso 2: $n^{\log_b a} \cong f(n)$ quindi $T(n) \sim f(n) \cdot \log n$. Si hanno le seguenti condizioni necessarie $f(n) = \Theta(n^{\log_b a})$ e quindi $T(n) = \Theta(n^{\log_b a})$
- caso 3: $n^{\log_b a} < f(n)$ quindi $T(n) \sim f(n)$. Si hanno le seguenti condizioni necessarie: $f(n) = \Omega(n^{\log_b a + \epsilon})$ (con $\epsilon > 0$) e $a \cdot f\left(\frac{n}{b}\right) \le k \cdot f(n)$ (con k < 1) quindi $T(n) = \Theta(f(n))$

Esempio 3. Risolvo:

$$T(n) = 9 \cdot T\left(\frac{n}{3}\right) + n$$

Si ha: f(n) = n, a = 9 e b = 3.

Ho che $n^{\log_3 9} = n^2$ quindi ho il primo caso:

 $f(n) = O(n^{\log_b a - \epsilon}) = O(n^{2 - \epsilon})$ Posso dire che $\exists \epsilon : O(n^{2 - \epsilon}) = n$?

 $Si \forall \epsilon < 1$, per esempio $\epsilon = \frac{1}{2}$. Quindi il Metodo dell'esperto è applicabile (nel primo caso) e si ha quindi $T(n) = \Theta(n)$

Esempio 4. Si può analizzare meglio il MergeSort:

$$T(n) \cong 2 \cdot T\left(\frac{n}{2}\right) + \Theta(n)$$

Si ha: $f(n) = \Theta(n)$ e $n^{\log_b a} = n^{\log_2 2} = n$

Posso applicare il Metodo dell'esperto nel secondo caso avendo così:

$$T(n) = \Theta(n \cdot \log n)$$

Esempio 5.

$$T(n) = 3 \cdot T\left(\frac{n}{4}\right) + n \cdot \log n$$

Si ha: $f(n) = n \cdot \log n$ e $n^{\log_b a} = n^{\log_4 3}$ e siamo nel terzo caso:

$$f(n) = \Omega(n^{\log_4 3 + \epsilon})$$

se pongo $\epsilon = 1 - \log_4 3$ ottengo n. Il terzo caso richiede una doppia verifica:

$$3 \cdot \frac{n}{4} \cdot \log \frac{n}{4} \le k \cdot n \log n$$

che vale per $k = \frac{3}{4}$ infatti si ha:

$$\frac{3}{4} \cdot n \cdot \log \frac{n}{4} \le \frac{3}{4} \cdot n \cdot \log n$$

Si hanno quindi entrambi i requisiti e si può asserire che $T(n) = \Theta(n \cdot \log n)$

Esempio 6. Calcolo i tempi di:

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n \cdot \log n$$

Si ha: $n^{\log_b a} = n^{\log_2 2} = n$ e $f(n) = n \cdot \log n$. Provo a procedere col terzo caso, dimostrando che:

$$n \cdot \log n = \Omega(n^{\log_b a + \epsilon}) = \Omega(n^{1 + \epsilon}) = \Omega(n \cdot n^{\epsilon})$$

Ma tale ϵ non esiste in quanto $n^{\epsilon} > \log n$ infatti:

$$\lim_{n \to \infty} \frac{n \cdot \log n}{n \cdot n^{\epsilon}} = 0, \ \forall \, \epsilon > 0$$

 $Bisogna\ quindi\ applicare\ un\ altro\ metodo\ per\ risolvere\ l'equazione\ di\ ricorrenza$

Esempio 7. Calcolo la seguente equazione di ricorrenza:

$$\begin{cases} T(n) = 1 & n = 1 \\ T(n) = 2 \cdot T(\frac{n}{2}) + 1 & n > 1 \end{cases}$$

Quindi avrò un albero binario di soli 1 di profonfità 2^k Quindi $T(n) = \sum_{i=0}^k 2^i = 2^{k+1} - 1$ con $k = \log n$ in quanto si avranno in totale $n = 2^k = 2 \cdot 2^k - 1$. Quindi ottengo 2n - 1 quindi avrò $\Theta(n)$.

Abbiamo poi visto alcune strutture dati: array, list, stack, queue, tree (e binary-tree) e heap.

Capitolo 3

Programmazione Dinamica

Partiamo dall'algoritmo che calcola la lista di Fibonacci:

```
function FIB(n)

if n=1 then

return\ n

else

return\ FIB(n-1)+FIB(n-2)

end if

end function
```

Si vede che non sappiamo calcolarne la compplessità, che non è polinomiale ma magari esponenziale o addirittura fattoriale.

Sia T(n) il costo della chiamata alla funzione. Se n=0 o n=1 ho T(n)=1. Andando avanti avrò T(n)=1+T(n-1)+T(n-2) che non è risolvibile con le tecniche che conosciamo. Vediamo come risolverla: riscriviamo l'equazione non omogenea:

$$T(n) - T(n-1) - T(n-2) = 1$$

e facciamo una piccola approssimazione:

$$T(n) - T(n-1) - T(n-2) = 0$$

ottenendo un'equazione lineare omogenea a cui sommerò qualcosa per ottenre il risultato della non omogenea. Quindi risolvo l'omogenea ipotizzando un valore per T(n), per esempio $T(n) = r^n$, e testiamolo, diventa:

$$r^n - r^{n-1} - r^{n-2} = 0$$

moltiplico da entrambe le parti per r^2 perché posso:

$$r^2 \cdot r^n - r \cdot r^n - r^n = 0$$
$$r^2 - r - 1 = 0$$

che è un'equazione di secondo grado con soluzioni $r = \frac{1 \pm \sqrt{5}}{2}$ Quindi

$$T(n) - T(n-1) - T(n-2) = 0$$

ha due soluzioni:

$$C_1 \left(\frac{1+\sqrt{5}}{2}\right)^n$$

$$C_2 \left(\frac{1-\sqrt{5}}{2}\right)^n$$

quindi:

$$T_0(n) = C_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + C_2 \left(\frac{1-\sqrt{5}}{2}\right)^n$$

Ora cerco la soluzione particolare, sostituisco in:

$$T(n) - T(n-1) - T(n-2) = 1$$

Tutte le $T(\cdot)$ con k ottenendo $k-k-k=1 \to k=-1.$ Quindi la soluzione finale è:

$$T(n) = C_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + C_2 \left(\frac{1-\sqrt{5}}{2}\right)^n - 1 = \Theta\left(\left(\frac{1+\sqrt{5}}{2}\right)^n\right)$$

che è la sezione aurea

Miglioriamo l'algoritmo introducendo un array di n celle F, inizializzarlo

$$F[1 \dots n]$$

for $i \leftarrow 1$ to n do

$$F[i] \leftarrow empty$$

end for

e procedere con la ricorsione con annotazione, che scrive i vari step su un array (sprecando quindi memoria) e modificando fibonacci per ottenre la versione con annotazione:

```
\begin{aligned} & \textbf{function } FIBANN(n) \\ & \textbf{if } f[i] == empty \textbf{ then} \\ & \textbf{if } n \leq 1 \textbf{ then} \\ & F[n] \leftarrow n \\ & \textbf{else} \\ & F[n] = FIBANN(n-1) + FIBANN(n-2) \\ & \textbf{end if} \\ & return \ F[n] \\ & \textbf{end if} \\ & \textbf{end function} \end{aligned}
```

Quindi se si richiede qualcosa di già usato lo si ritorna prendendolo dall'array. Questo è esponenziale Iterativamente sarebbe:

```
function FIBIT(n)
F[0] \leftarrow 0
F[1] \leftarrow 1
for i \leftarrow 2 \text{ to } n \text{ do}
F[i] \leftarrow F[i-1] + F[i-2]
end for
return \ F[n]
end function
```

questo è polinomiale

Un Nuovo Problema

Abbiamo una serie di task che possono essere svolte con un certo costo v_i , che partono in tempi diversi e non possono essere svolte contemporaneamente:

Per ogni attività si ha quindi un s_i , tempo di inizio, un f_i , tempo di fine, e un v_i , il costo, con $i \dots n$ che indica l'attività. Definiamo $A \subseteq \{1, \dots, n\}$ come l'insieme che contiene attività mutualmente compatibili sse:

$$\forall i, j \in A \ [s_i, f_i) \cap [s_j, f_j) \neq \emptyset$$

definiamo anche comp(A):

$$\begin{cases} \text{true} & \text{se mutualmente compatibili} \\ \text{false} & \text{altrimenti} \end{cases}$$

che verifica se dei task sono mutualmente compatibili.

Inoltre $V(A) = \sum_{i \in A} v_i$ per vedere il costo totale di una serie di task, con:

$$P(\{1,\ldots,n\}) \to \{true, false\}$$

 $V: [P(\{1,\ldots,n\}) \to \mathbb{R}$

Quindi la soluzione sarà un insieme di task tale che:

$$S \subseteq \{1, \dots, n\} \to comp(S) = true, \ V(S) = \max\{v(A)\}\$$

Attendere fine lezione settimana prossima

3.0.1 Programmazione Dinamica

Un problema di decisione prevede unicamente 2 tipi di risultato: vero e falso. Si ha una distinzione dei problemi:

> • **problemi intrattabili**, che potrebbero avere una risposta calcolabile in un tempo idnefinito o addirrittura che non possono essere dimostrati

- problemi di ricerca, che si occupano di trovare una soluzione positiva ad una certa istanza (per esempio dei problemi che trattano i percorsi)
- **problemi di ottimo**, dove si cerca una e una sola soluzione che massimizza o minimizza una certa funzione costo

Si parla di **algoritmi euristici** quando si una un algoritmo che ci da una soluzione che magari non è la migliore. A questi si aggiungono **algortitmi di approssimazione** che si occupano di cercare l'ordine di una soluzione rispetto a quella "migliore".

3.0.2 Un Problema di Sequenze

Prendiamo una stringa $X = \langle x_1, \ldots, x_n \rangle$. Una sottosequenza di X è un insieme di indici con $i_1 \ldots i_k$ con $k \leq n$ e indici strettamente crescenti ma non necessariamente consecutivi. Quindi data una sequenza $X = \langle x_1, \ldots, x_n \rangle$ e una sottosequenza $Z = \langle z_1, \ldots, z_n \rangle$ diciamo che:

$$\exists i_1, \dots i_k \to x_{i_1} < x_{i_2} < \dots < x_{i_k}, \ i_i > i_{i-1}$$

Si assuma che gli indici partano da 1.

Quindi, per esempio, per la stringa $X = \langle A, B, C, B, D, A, B \rangle$ si possono avere le sottosequenze $A_1 = \langle B, C, D, B \rangle$ (con indici 2, 3, 5, 7), $A_2 = \langle A, B, A, B \rangle$ (con indici 1, 2, 6, 7 oppure 1, 4, 6, 7) etc. . . .

3.0.3 Longest Common Substring

Si definisce una **sottosequenza comune** Z a due sequenze X e Y se Z è sottosequenza sia di X che di Y (non è necessario che gli indici siano nello stesso ordine).

Cerchiamo ora un algoritmo che trovi la più grande sottostringa comune, appunto **long common substring (LCS)**, con però elementi ordinati in grandezza, quindi *longest increasing subsequence (LIS)*.

Con una soluzione iterativa avremmo $O(2^n)$ quindi pensiamo ad una soluzione con la programmazione dinamica.

Cerchiamo quindi un problema associato, cercando la sottoesequenza di X più lunga che termina in una certa posizione i. In questo studio delle sequenze gli indici aumentano solo se il valore che indicizzano è superiore a quello rpecedente, altrimenti diminuisocno di una unità (a meno che non sia l'indice 1 che resta uguale), quindi, per esempio, la stringa $X = \langle A, B, C, B, D, A, B \rangle$ avrà indici 1, 2, 3, 2, 4, 3, 4.

Definiamo L[i] la lunghezza massim della LIS che termina col carattere in posizione i.

Procedo salvando la lunghezza della sottosequenza iù lunga fino a i.

Si definisce X_i la restrizione della sequenza considerando solo i primi i caratteri. Chiamiamo Z_i la più lunga sottosequenza di X che termina con X_i . Salviamo le varie Z in un array L[1..N] con L[i] che è la lunghezza massima della sottosequenza di X che termina con X_i

Si ha il caso base:

$$L[1] = 1$$

e il caso generale:

$$L[i] = 1 + \max_{1 \le j \le i-1} \{ L[j] | X_j < X_i \}, \ 1 < i \le N$$

ricordando che $\max \emptyset = 0$.

La soluzione sarà quindi:

$$\max_{1 \le i \le N} \{L[i]\}$$

Scriviamo quindi l'algoritmo:

```
\begin{aligned} & \textbf{function} \ LIS(X[1..N]) \\ & L[1..N] \\ & X[0] = -1 \\ & L[1] = 1 \\ & L[0] = 0 \\ & \textbf{for} \ i \leftarrow 2 \ \textbf{to} \ N \ \textbf{do} \\ & R \leftarrow maxAcc(l[], i, i-1, X[i]) \\ & L[i] = R+1 \\ & \textbf{end for} \\ & RT \leftarrow \max(L[i], 1, N) \\ & \textbf{return} \ RT \end{aligned}
```

Con la funzione $\max Acc$ che calcola il massimo degli accettabili. Questo algoritmo è $O(n^2)$