

A personalized Smart Tourism Recommender System based on social media data

D. Ferone, E. Fersini, E. Messina

3 Airo Young Workshop, 28th March 2019

Department of Informatics, Systems and Communication, University of Milano-Bicocca

Empowerment of the tourism offer of a region based on the preferences and needs of the modern tourist

Empowerment of the tourism offer of a region based on the preferences and needs of the modern tourist

Sites managers

- sentiment analysis about POIs;
- viral marketing.

Empowerment of the tourism offer of a region based on the preferences and needs of the modern tourist

Sites managers

- sentiment analysis about POIs;
- viral marketing.

Tourists

- visit plan on one or more days;
- integration with public transportation.

The idea

Recommender system

The goal of a recommender system (RS) is to find and suggest interesting and relevant elements, based on users' tastes and preferences

I like sea!

I like sea!

I like sea!

I like sea!

I like sea!

Sentiment Analysis on media data

 Perform sentiment analysis on reviews and calculate a sentiment score

Sentiment Analysis on media data

- Perform sentiment analysis on reviews and calculate a sentiment score
- Mediate the user preferences with sentiment score

Understand the preferences

Ratings matrix

Ratings matrix

Tourist	Number	Tourist	Description
Category	of POIs	Profile	Description
Abbeys,			
Hermitages	36	Religious	A type of tourist mainly interested in
and Monasteries		nengious	visiting religious-related places,
Cathedrals,		1	such as cathedrals and churches.
Churches	34		
and Shrines			
Architecture and	29		
Landscape	20	1	A type of tourist mainly interested in
Excellences	13	Historical	visiting historical-related places,
in Art	10	111310111011	such as headlights, castles and bridges.
Historical	2	1	such as headinghes, casties and bridges.
Headlights	_]	
Itineraries	6]	
Historical	6		
Bridges			
Archaeology	17]	A type of tourist mainly interested in
Places of Art	10	Artistic	visiting art-related places.
Museums	58	11111111111	such as museums and theatres.
Theatres	24		
Historical	31	Food	A type of tourist mainly interested in
Places		Lover	visiting food-related places, such as bars.
Restaurants	35	2000	
Public	12		
Gardens		1	
Lakes	8		A type of tourist mainly interested in
Parks	10	Nature and	visiting nature-related and
Amusement	11	Relax Lover	relax-related places,
Parks		1	such as lakes, parks and gardens.
Cycle Paths	2	1	
Thermal Baths	3	l	
Tourist Trains	3		
Total: 20	Total: 350	Total: 5	

Latent Factor Model

R: Ratings matrix

U: User latent features

 P^T : Tourist categories latent features

$$\min_{u,p} \sum_{i,j \in R} (R_{i,j} - u_i p_j^T)^2 + \gamma \left(\sum_{i=1}^n ||u_i||^2 + \sum_{j=1}^m ||p_j||^2 \right)$$

Learning to Rank

The user is more interest in the top-k POIs

Learning to Rank

The user is more interest in the top-k POIs

RankSVM is a LtR model:

input: latent features

output: ranking of POIs

Sentiment analysis

Time changes sentiment

Time changes sentiment

$$w(R) \equiv M \cdot e^{kD},$$

- M: max value;
- D: number of days;
- k < 0: decay constant.

Time changes sentiment

$$w(R) \equiv M \cdot e^{kD},$$

- M: max value;
- D: number of days;
- k < 0: decay constant.

 $FS = \alpha \cdot \text{category score} + (1 - \alpha) \cdot \text{sentiment score}$

Experiments

Dataset

- 350 POIs;
- TripAdvisor reviews;
- Ratings matrix with 5000 simulated users and 20 categories
- 25000 rating values
- 75 reals users

Results

Conclusions and future work

- Recommender system is able to predict relevant POIs
- System in production
- Introduce the concept of Serendipity

01000101 01001110 01000100 (E N D)

Thank you.

Latent Factor Model

- Probabilistic Matrix Factorization (Stochastic Gradient Descent);
- Bayesian PMF (Markov Chain Monte Carlo);
- Alternating Least Squares Weighted Regularization (Alternating Least Squares).

Latent Factor Model

