ECE 311 Lab 4

Jacob Hutter

March 27, 2017

```
function [ ] = filters (N, wc, w0)
       d = zeros(1,N*2 + 1);
       d(N+1) = 1; % delta function
       n = N*2+1;
       w \, = \, \, \mathtt{fft} \, \mathtt{s} \, \mathtt{h} \, \mathtt{ift} \, \left( \, (\, 0 \, \colon \! n \! - \! 1) / n \! * \! 2 \! * \! \, \mathtt{pi} \, \right) \, ;
       w(1:n/2) = w(1:n/2) - 2*pi;
       N = linspace(-N, N, (N*2)+1); \% create -N to N array
       lpi = (wc/pi).*sinc(wc.*N./pi);
       lpm = fftshift(fft(lpi));
       hpi = d-lpi;
       hpm = fftshift(fft(hpi));
       bpi = \cos(w0.*N).*lpi;
       bpm = fftshift(fft(bpi));
13
        figure;
        subplot (211);
        stem(N, lpi);
        title ('Low Pass Filter impulse Response');
        ylabel('h[n]');
        xlabel('n');
        subplot (212);
21
        plot(w, abs(lpm));
        title ('Low Pass Filter Magnitude Response');
23
        ylabel('|Hd(w)|');
        xlabel('w');
25
        figure;
27
        subplot (211);
        stem(N, hpi);
        title('High Pass Filter impulse Response');
ylabel('h[n]');
        xlabel('n');
        subplot (212);
33
        plot(w, abs(hpm));
        title ('High Pass Filter Magnitude Response'); ylabel('|Hd(w)|');
        xlabel('w');
37
        figure;
39
        subplot (211);
        stem(N, bpi);
        title ('Band Pass Filter impulse Response');
```

 ${\it filters.m}$

Notice that the magnitude response shows some attenuation and non-vertical edges that would not be present in an ideal model of a filter. This is not possible in a setting with a discrete amount of samples because the jump from low to high or vice versa happens instantaneously.


```
load impulseresponse.mat
  % variable name is h
  figure;
  subplot
  subplot(311);
  stem(h);
  n = 74;
  w = fftshift((0:n-1)/n*2*pi);
  w(1:n/2) = w(1:n/2) - 2*pi;
  title ('Impulse Response of h');
  xlabel('n');
  ylabel('h[n]');
  subplot(312);
  h_m = abs(fftshift(fft(h)));
h_m = mag2db(h_m);
  plot (w, h_m);
title ('Magnitude Response of h');
  xlabel('w');
ylabel('db');
  subplot (313);
_{21} h_{-p} = angle(fftshift(fft(h)));
  plot(w, h_p);
  title ('Phase Response of h');
  xlabel('w');
  ylabel ('angle of Hd(w)');
  %find pass band ripple
  top = \max(h_m);
  bottom_range = h_m(28:48);
  bottom = min(bottom_range);
  passband_ripple = top - bottom;
  \% result is 8.0126
  %passband edge is approximately .75 rad to 1.25 rad so .5 rad
```

impresp.m

The transition bandwidth is around .5 radians wide. I calculated the maximum passband ripple(max - min) to be around 8db. The stopband ripple(max - min) seems to be around 20db.

```
N = 25:
_{2}|_{M} = (N-1)/2;
  w = fftshift((0:N-1)/N*2*pi); % 1. define omega as you would for
  w(1:N/2) = w(1:N/2) - 2*pi;
  i=sqrt(-1);
  for j=1:N
      if(abs(w(j)) < pi/3), \% 2.
          g_{-w}(j) = 1 * exp(-i*M*w(j));
           g_{-}w(j) = 0;
      end
  end
12
  g_n = ifft(fftshift(g_w)); \% 3. find g[n], should be shifted
  w_n = hamming(N); % window (transposed)
_{16} h_n = g_n .* w_n;\% h_n is impulse response
  figure;
  subplot (311);
18
  plot(abs(h_n));
  title ('Magnitude of h[n]');
  xlabel('n');
  ylabel('abs(h[n])');
  subplot(312);
plot(w, mag2db(abs(fftshift(fft(h_n)))));
  title ('Magnitude of Hd(w)');
  xlabel('w');
  ylabel('db');
  subplot (313);
  plot(w, angle(fftshift(fft(h_n))));
  title ('Phase of Hd(w)');
  xlabel('w');
  ylabel('radians');
```

FIR_FILTER.m

The passband ripple apears to be about 5db, stopband, about 25db. The passband edge frequency is 0.9 radians and the stopband edge frequency is about 1.2 radians.

```
clc, clear all, close all
f = [54,64];
a = [1,0];
rp = [2];
rs = 50;
fs = 300;
dev = [(10^(rp/20)-1)/(10^(rp/20)+1) 10^(-rs/20)];
[n,fo,mo,w] = firpmord(f, a, dev, fs);
b = firpm(n,fo,mo,w);
freqz(b,1);
figure
impz(b,1);
```

report4.m


```
\label{eq:function} \begin{array}{lll} \text{function} & [\,a\,,\ b\,,\ c\,] &= \, \text{mySTDFT}(\,x\,,\ M,\ D,\ P\,,\ f\_s\ ) \end{array}
  a_{\text{dim}}1 = \text{ceil}(P/2);
  a_{-}dim2 = floor(((length(x) - M)/D) + 1);
  dft_mat = zeros(a_dim1, a_dim2);
   time\_shifts = zeros(1, a\_dim2);
  for i=1:a\_dim2,
        time\_shifts(i) = (i*D)/f\_s; \% vector of shifts
        \label{eq:line_slice} {\tt time\_slice} \ = \ x((1+D*(i-1)):(((i-1)*D)+M)); \ \% \ {\tt get} \ {\tt time} \ {\tt slice}
        time_slice = fft(time_slice,P); % dft zero padded to P
        time_slice = time_slice(1,1:a_dim1); % only take half of P
        dft_mat(:,i) = time_slice; %assign column in dft_mat
  end
        a = dft_mat; \% output 1
        b = linspace(0, f_s, a_dim1); \% output 2
14
        c = time\_shifts; \% output 3
        imagesc(c,b,abs(a));
16
        ylabel('Frequency');
        xlabel('time shifts');
18
        str = sprintf('Spectrogram at M = %f',M);
        title(str);
  end
```

mySTDFT.m

By the spectrogram we can see that (M=5) there are frequencies ranging from 10 to 50 hz at 2.5 to 4 seconds. Then there are also 80 to 100 hz at 6 to 10 seconds. With M=30, We see frequencies 10hz at 1:2 seconds, 20hz at 2.5:4 seconds, 10hz at 4:6 seconds, and 50 and 85 hz at 6:10 seconds. When we increase M to 30 our minimum frequency to be distinguished goes down and therefore the frequency bands are more distinguishable. Note that $N\Delta t = 1/fmin, increasing Nwill decrease fmin$.

```
[y fs] = audioread('sound1.wav');
_{4}|_{N} = length(y);
  w = fftshift((0:N-1)/N*2*pi); % define omega as you would for FFT
|w(1:N/2)| = w(1:N/2) - 2*pi;
  y_w = fftshift(fft(y));
8 figure;
  plot(w, abs(y_w));
  ylabel('magnitude');
xlabel('radians');
title ('magnitude spectrum of sound1.wav before filter');
  f = [0 .4 .5 1];
a = [1 \ 1 \ 0 \ 0];
  b = firpm(50, f, a);
18 b_w = fftshift(fft(b,length(y))); % get filter
y_w = b_w .* y_w; \% apply filter
  figure;
22 plot (w, abs (y_w));
  ylabel('magnitude');
xlabel('radians');
  title ('magnitude spectrum of sound1.wav after filter');
  y = ifft(ifftshift(y_w));
  soundsc(y);
filename = 'filtered1.wav';
30 audiowrite (filename, y, fs);
```

report6.m


```
[y fs] = audioread('sound2.wav');
2 Soundsc(y);
  N = length(y);
 |w| = |\text{fftshift}((0:N-1)/N*2*pi); \% \text{ define omega as you would for FFT}
  w(1:N/2) = w(1:N/2) - 2*pi;
  yw = fftshift(fft(y));
|ys| = spectrogram(y);
  figure;
10 plot (w, abs (yw));
title('sound2.wav magnitude response prior to filtering');
xlabel('radians');
  ylabel ('magnitude');
14 figure;
  imagesc(abs(ys));
16
  a = [1 \ 0 \ 0 \ 0];
  b = firpm(50, f, a);
|b_w| = |fftshift(fft(b, length(y)))|; % get filter
22 | yw = b_-w .* yw; \% apply filter
  figure;
24 plot (w, abs (yw));
ylabel('magnitude');
z6 xlabel('radians');
   title ('magnitude spectrum of sound2.wav after filter');
y = ifft(ifftshift(yw));
  ys = spectrogram(y);
32 figure;
  imagesc(abs(ys));
  soundsc(y);
filename = 'filtered2.wav';
36 audiowrite (filename, y, fs);
```

report7.m


```
y = load('speechsig.mat');
  x = y.x;
4 xnoise = y.xnoise;
_{6}|_{N = length(xnoise)};
  w = fftshift((0:N-1)/N*2*pi); % define omega as you would for FFT
|w(1:N/2)| = w(1:N/2) - 2*pi;
xnoisew = fftshift(fft(xnoise));
_{12} h = hamming(N);
  xnoisewh = xnoisew .* h;
  {\tt xnoise} \; = \; {\tt ifft} \; (\; {\tt ifftshift} \; (\; {\tt xnoisewh} \;) \; , N) \; ; \\
16 %soundsc(real(xnoise));
r = zeros(N,1);
  r(2000:4999,1) = rectwin(3000);
20
   xnoisewr = xnoisew .* r;
plot(abs(xnoisew));
  xnoise = ifft(ifftshift(xnoisewr));
24
26 %soundsc(real(xnoise));
```

report 8.m