NOTES ON MATHEMATICAL ANALYSIS

YANNAN MAO

22ND NOVEMBER 2024

CONTENTS

1	easures	1
1.1	Topological Spaces	1
1.2	σ-Algebras	1

MEASURES

1.1 TOPOLOGICAL SPACES

DEFINITION 1. Let S be a set. Then $\mathcal{T} \subseteq \mathcal{P}(S)$ is a **topology on** S if and only if

- (a) $\emptyset \in \mathcal{F}$;
- (b) $S \in \mathcal{F}$;
- (c) \mathcal{T} is closed under finite intersections; and
- (d) \mathcal{T} is closed under unions.

A *topological space* is an ordered pair (S, \mathcal{T}) wherein S is a set and \mathcal{T} is a topology thereon, and a subset of S is an *open set* if it is in \mathcal{T} .

1.2 σ -ALGEBRAS

DEFINITION 2. Let *S* be a set. Then $\Sigma \subseteq \mathcal{P}(S)$ is a σ -algebra on *S* if and only if

- (a) $\Sigma \neq \emptyset$;
- (b) Σ is closed under complementation; and
- (c) Σ is closed under countable unions.

A *measurable space* is an ordered pair (S, Σ) wherein S is a set and Σ is a σ -algebra thereon, and a subset of S is a *measurable set* if it is in Σ .

It follows that $S \in \Sigma$ and $\emptyset \in \Sigma$ for each σ -algebra on S and that each σ -algebra is closed under countable intersections. Hence, the smallest σ -algebra on S is $\{S, \emptyset\}$ and the largest thereon is $\mathcal{P}(S)$.

Each σ -algebra on S is also closed under monotone limits.

The intersection of any set of σ -algebras is also a σ -algebra. For each $P \in \mathcal{P}(S)$, there exists a smallest σ -algebra on S containing P, referred to as the σ -algebra generated by P and denoted by $\sigma(P)$, which is obtained as the intersection of all σ -algebras containing P.

DEFINITION 3. Let (S, \mathcal{T}) be a topological space. The **Borel** σ -algebra of (S, \mathcal{T}) , denoted by $\mathcal{B}(S, \mathcal{T})$, is the σ -algebra generated by \mathcal{T} .

A **Borel set of** (S, \mathcal{T}) is an element of $\mathcal{B}(S, \mathcal{T})$.

A π -system on S is a set of subsets of S which is closed under finite intersections. A **Dynkin system on** S is a set of subsets of S which contains S and is closed under both proper differences and increasing limits.