$\begin{array}{c} \text{MATH 752} \\ \text{OPTIONAL PROBLEM SET } \# \ 1 \end{array}$

MARIO L. GUTIERREZ ABED

Problem 1. Let C be a category with congruence \sim . Let $C' = C/\sim$ denote the quotient category. Show that there is a functor from C to C' which takes each morphism of C to its equivalence class.

Proof. Let us define $F: \mathcal{C} \to \mathcal{C}'$ as F(A) = A for every $A \in \operatorname{obj}(\mathcal{C})$. For $A, B \in \operatorname{obj}(\mathcal{C})$, and for a morphism $f: A \to B$, denote the equivalence class of f by [f]. Define F(f) to be [f]. Then $F(f) \in \operatorname{Hom}_{\mathcal{C}}(A, B)$. By the definition of the quotient category, $[g] \circ [f] = [g \circ f]$ if $f \in \operatorname{Hom}_{\mathcal{C}}(A, B)$ and $g \in \operatorname{Hom}_{\mathcal{C}}(B, C)$. Thus $F(g) \circ F(f) = F(g \circ f)$. If 1_A is the identity morphism $A \to A$ in the category \mathcal{C} , then $F(1_A) = [1_A]$ is the identity morphism $A \to A$ in the category \mathcal{C}' . Thus F is a functor.

Problem 2. For an abelian group G, let

$$tG = \{x \in G \mid x \text{ has finite order}\}$$

denote its torsion subgroup.

- a) Show that t defines a functor from **Ab** to **Ab** if one defines $t(f) = f|_{tG}$ for every homomorphism f.
- b) Show that if f is injective, then t(f) is injective.
- c) Give an example of a surjective homomorphism f for which t(f) is not surjective.

Proof of a). To show that t defines a functor, we need to demonstrate the following:

- Let G be an abelian group. Since all subgroups of abelian groups are abelian, it follows that tG is abelian.
- Let G and G' be abelian groups and assume $f: G \to G'$ is a homomorphism. Let $x \in tG$. Then by definition $x^n = e$ for some $n \in \mathbb{N}$, where e denotes the identity element of G. Since f is a homomorphism, it follows that $f(x)^n = f(x^n) = f(e) = e'$, where e' denotes the identity element of G'. Thus $f(tG) \subset tG'$, and it follows that the restriction homomorphism $t(f): tG \to tG'$ is well defined.
- Let G_1 , G_2 , and G_3 be abelian groups and let $f: G_1 \to G_2$ and $g: G_2 \to G_3$ be homomorphisms. Then for every $x \in G_1$, we have

$$(t(g) \circ t(f))(x) = t(g)(t(f)(x)) = t(g)(f(x)) = g(f(x))$$

= $(g \circ f)(x) = t(g \circ f)(x)$.

Thus, we have that $t(g) \circ t(f) = t(g \circ f)$.

• Finally, let G be an abelian group, and let $1_G: G \to G$ be the identity homomorphism. Then the restriction of 1_G to tG is the identity homomorphism $tG \to tG$, i.e., $t(1_G) = 1_{tG}$.

Proof of b). Restrictions of injective maps are injective. Thus $t(f): tG \to tG'$ is injective if $f: G \to G'$ is injective.

Solution of c). Consider \mathbb{S}^1 , which is an abelian group when equipped with complex multiplication. The set \mathbb{R} of all real numbers equipped with addition is also an abelian group. Define

$$f: \mathbb{R} \to \mathbb{S}^1$$
 such that $x \mapsto e^{ix}$.

Then f is a surjective group homomorphism. Now, $t\mathbb{R} = \{0\}$ and $\{-1,1\} \subset t\mathbb{S}^1$. It follows that $t(f) \colon t\mathbb{R} \to t\mathbb{S}^1$ cannot be surjective.

Problem 3. Show that there is no functor from **Group** to **Ab** sending each group G to its center.¹ (Consider $S_2 \to S_3 \to S_2$, where S_2 and S_3 denote symmetric groups.)

Proof. Let $\bar{n} = \{1, ..., n\}$, for $n \geq 2$. Let S_n denote the group of permutations of elements of \bar{n} . Let $\sigma \in S_n$. Then σ is a bijection $\bar{n} \to \bar{n}$. The number of inversions of σ means the number of pairs of elements $x, y \in \bar{n}$ such that x < y but $\sigma(x) > \sigma(y)$. The sign of a permutation σ is

$$\operatorname{sgn}(\sigma) = (-1)^{N(\sigma)},$$

where $N(\sigma)$ denotes the number of inversions in σ . Identify the group S_2 with the multiplication group $\{-1,1\}$. Then

$$\operatorname{sgn}: S_n \to S_2$$
 such that $\sigma \mapsto \operatorname{sgn}(\sigma)$

is a group homomorphism. Denote the center of a group G by Z(G). Then $Z(S_2) = S_2$ while $Z(S_3)$ is trivial. Let $f: S_2 \to S_3$ be the group homomorphism taking the nontrivial element of S_2 to the element of S_3 that permutes the numbers 1 and 2. Then $\operatorname{sgn} \circ f: S_2 \to S_2$ is the identity homomorphism. Assume there is a functor F from **Group** to **Ab** sending each group G to its center. Then $\operatorname{sign}: S_3 \to S_2$ induces the (trivial) homomorphism $F(\operatorname{sgn}): \{e\} \to S_2$. Since F is a functor, it follows that

$$1_{S_2} = F(1_{S_2}) = F(\operatorname{sgn} \circ f) = F(\operatorname{sign}) \circ F(f).$$

But this is impossible since $F(\operatorname{sgn})F(f)$ is the trivial homomorphism. $(\Rightarrow \Leftarrow)$

Hence such a functor F cannot exist.

Problem 4. Let X be a topological space. Let $x_0, x_1 \in X$ and let $f_i \colon X \to X$ for i = 0, 1 denote the constant map at x_i . Prove that $f_0 \simeq f_1$ if and only if there is a continuous $F \colon I \to X$ with $F(0) = x_0$ and $F(1) = x_1$.

Proof. (\Rightarrow) Assume first that there is a homotopy $H: f_0 \simeq f_1$, i.e., a continuous map $H: X \times I \to X$ with $H(x,0) = f_0(x) = x_0$ and $H(x,1) = f_1(x) = x_1$ for all $x \in X$. Let

$$F: I \to X$$
 such that $t \mapsto H(x_0, t)$.

Then $F(0) = H(x_0, 0) = x_0$ and $F(1) = H(x_0, 1) = x_1$. Since the map

$$h_0: I \to I \times \{x_0\}$$
 such that $t \mapsto (t, x_0)$

is continuous and $F = H \circ h_0$, it follows that F is continuous.

¹Recall that the center of a group G is the set of elements that commute with every element of G.

(\Leftarrow) Conversely, assume that there is a continuous $F: I \to X$ with $F(0) = x_0$ and $F(1) = x_1$. Let $\pi_I: X \times I \to I$ be the projection and let $H = F \circ \pi_I: X \times I \to X$. Then H is continuous, and $H(x,0) = F(0) = x_0$ and $H(x,1) = F(1) = x_1$ for all $x \in X$. Thus $f_0 \simeq f_1$, as desired.

Problem 5. Let X and Y be subspaces of a Euclidean space. Assume X is convex and X and Y have the same homotopy type. Show that Y does not need to be convex.

Proof. Let $X = \{(x,0) \mid x \in \mathbb{R}\}$ and let $Y = \{(x,x^2) \mid x \in \mathbb{R}\}$. Then X and Y are both subsets of \mathbb{R}^2 . Clearly, X is convex but Y is not convex. Let

$$f: X \to Y$$
 such that $(x,0) \mapsto (x,x^2)$,

and let

$$g: Y \to X$$
 such that $(x, x^2) \mapsto (x, 0)$.

Then f is a bijection and g is its inverse function. Let $\pi \colon \mathbb{R}^2 \to \mathbb{R}$ denote the projection $(x,y) \mapsto x$, and let $\pi|_Y$ denote the restriction of π to Y. Take the inclusion $\iota \colon \mathbb{R} \to \mathbb{R}^2$ that send $x \mapsto (x,0)$, so that $g = \iota \circ \pi|_Y$. Since both ι and $\pi|_Y$ are continuous, it follows that g is continuous. Similarly, f is continuous. Thus the sets X and Y are homeomorphic, which implies that they have the same homotopy type.