Common subwords and subsequences

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 9

- Given two strings, find the (length of the) longest common subword
 - "secret", "secretary" "secret", length 6
 - "bisect", "trisect" "isect", length 5
 - "bisect", "secret" "sec", length 3
 - "director", "secretary" "ee", "re", length 2

- Given two strings, find the (length of the) longest common subword
 - "secret", "secretary" "secret", length 6
 - "bisect", "trisect" "isect", length 5
 - "bisect", "secret" "sec", length 3
 - "director", "secretary" "ee", "re", length 2
- Formally
 - $u = a_0 a_1 \dots a_{m-1}$
 - $\mathbf{v} = b_0 b_1 \dots b_{n-1}$

- Given two strings, find the (length of the) longest common subword
 - "secret", "secretary" "secret", length 6
 - "bisect", "trisect" "isect", length 5
 - "bisect", "secret" "sec", length 3
 - "director", "secretary" "ee", "re", length 2
- Formally
 - $u = a_0 a_1 \dots a_{m-1}$
 - $\mathbf{v} = b_0 b_1 \dots b_{n-1}$
 - Common subword of length k for some positions i and j, $a_i a_{i+1} a_{i+k-1} = b_j b_{j+1} b_{j+k-1}$

- Given two strings, find the (length of the) longest common subword
 - "secret", "secretary" "secret", length 6
 - "bisect", "trisect" "isect", length 5
 - "bisect", "secret" "sec", length 3
 - "director", "secretary" "ee", "re", length 2
- Formally
 - $= u = a_0 a_1 \dots a_{m-1}$
 - $\mathbf{v} = b_0 b_1 \dots b_{n-1}$
 - Common subword of length k for some positions i and j, $a_i a_{i+1} a_{i+k-1} = b_j b_{j+1} b_{j+k-1}$
 - \blacksquare Find the largest such k length of the longest common subword

Brute force

- $u = a_0 a_1 \dots a_{m-1}$
- $v = b_0 b_1 \dots b_{n-1}$
- Find the largest k such that for some positions i and j, $a_i a_{i+1} a_{i+k-1} = b_i b_{i+1} b_{i+k-1}$

Brute force

- $u = a_0 a_1 \dots a_{m-1}$
- $\mathbf{v} = b_0 b_1 \dots b_{n-1}$
- Find the largest k such that for some positions i and j, $a_i a_{i+1} a_{i+k-1} = b_j b_{j+1} b_{j+k-1}$
- Try every pair of starting positions i in u, j in v
 - Match $(a_i, b_j), (a_{i+1}, b_{j+1}), \ldots$ as far as possible
 - Keep track of longest match

Brute force

- $u = a_0 a_1 \dots a_{m-1}$
- $\mathbf{v} = b_0 b_1 \dots b_{n-1}$
- Find the largest k such that for some positions i and j, $a_i a_{i+1} a_{i+k-1} = b_j b_{j+1} b_{j+k-1}$
- Try every pair of starting positions i in u, j in v
 - Match $(a_i, b_j), (a_{i+1}, b_{j+1}), \ldots$ as far as possible
 - Keep track of longest match
- Assuming m > n, this is $O(mn^2)$
 - mn pairs of starting positions
 - From each starting position, scan could be O(n)

- $u = a_0 a_1 \dots a_{m-1}$
- $v = b_0 b_1 \dots b_{n-1}$
- Find the largest k such that for some positions i and j, $a_i a_{i+1} a_{i+k-1} = b_i b_{i+1} b_{i+k-1}$

- $u = a_0 a_1 \dots a_{m-1}$
- $v = b_0 b_1 \dots b_{n-1}$
- Find the largest k such that for some positions i and j, $a_i a_{i+1} a_{i+k-1} = b_j b_{j+1} b_{j+k-1}$
- LCW(i,j) length of longest common subword in $a_i a_{i+1} \dots a_{m-1}, b_j b_{j+1} \dots b_{m-1}$
 - If $a_i \neq b_j$, LCW(i,j) = 0
 - If $a_i = b_j$, LCW(i,j) = 1 + LCW(i+1,j+1)

- $u = a_0 a_1 \dots a_{m-1}$
- $v = b_0 b_1 \dots b_{n-1}$
- Find the largest k such that for some positions i and j, $a_i a_{i+1} a_{i+k-1} = b_j b_{j+1} b_{j+k-1}$
- LCW(i,j) length of longest common subword in $a_i a_{i+1} \dots a_{m-1}, b_j b_{j+1} \dots b_{m-1}$
 - If $a_i \neq b_i$, LCW(i,j) = 0
 - If $a_i = b_i$, LCW(i,j) = 1 + LCW(i+1,j+1)
 - Base case: LCW(m, n) = 0

- $u = a_0 a_1 \dots a_{m-1}$
- $v = b_0 b_1 \dots b_{n-1}$
- Find the largest k such that for some positions i and j, $a_i a_{i+1} a_{i+k-1} = b_j b_{j+1} b_{j+k-1}$
- LCW(i,j) length of longest common subword in $a_i a_{i+1} \dots a_{m-1}, b_j b_{j+1} \dots b_{m-1}$
 - If $a_i \neq b_i$, LCW(i,j) = 0
 - If $a_i = b_i$, LCW(i,j) = 1 + LCW(i+1,j+1)
 - Base case: LCW(m, n) = 0
 - In general, LCW(i, n) = 0 for all $0 \le i \le m$

- $u = a_0 a_1 \dots a_{m-1}$
- $\mathbf{v} = b_0 b_1 \dots b_{n-1}$
- Find the largest k such that for some positions i and j, $a_i a_{i+1} a_{i+k-1} = b_j b_{j+1} b_{j+k-1}$
- LCW(i,j) length of longest common subword in $a_i a_{i+1} \dots a_{m-1}, b_i b_{i+1} \dots b_{m-1}$
 - If $a_i \neq b_i$, LCW(i,j) = 0
 - If $a_i = b_i$, LCW(i,j) = 1 + LCW(i+1,j+1)
 - Base case: LCW(m, n) = 0
 - In general, LCW(i, n) = 0 for all $0 \le i \le m$
 - In general, LCW(m, j) = 0 for all $0 \le j \le n$

■ Subproblems are LCW(i,j), for $0 \le i \le m$, $0 \le j \le n$

- Subproblems are LCW(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b							
1	i							
2	s							
3	е							
4	С							
5	t							
6	•							

- Subproblems are LCW(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- LCW(i,j) depends on LCW(i+1,j+1)

		0	1	2	3	4	5	6
		s	е	С	r	е	t	•
0	b							
1	i				K			
2	S							
3	е			K				
4	С						K	
5	t							
6	•			4 D b				

- Subproblems are LCW(i,j), for 0 < i < m. 0 < i < n
- Table of $(m+1) \cdot (n+1)$ values
- LCW(i, j) depends on LCW(i+1, j+1)
- Start at bottom right and fill row by row or column by column

		0	1	2	3	4	5	6
		s	е	С	r	е	t	•
0	b							0
1	i							0
2	s							0
3	е							0
4	С							0
5	t							0
6	•							0

- Subproblems are LCW(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- LCW(i,j) depends on LCW(i+1,j+1)
- Start at bottom right and fill row by row or column by column

		0	1	2	3	4	5	6
		s	е	С	r	е	t	•
0	b						0	0
1	i						0	0
2	s						0	0
3	е						0	0
4	С						0	0
5	t						1	0
6	•						0	0

- Subproblems are LCW(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- LCW(i,j) depends on LCW(i+1,j+1)
- Start at bottom right and fill row by row or column by column

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b					0	0	0
1	i					0	0	0
2	S					0	0	0
3	е					1	0	0
4	С					0	0	0
5	t					0	1	0
6	•					0	0	0

- Subproblems are LCW(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- LCW(i,j) depends on LCW(i+1,j+1)
- Start at bottom right and fill row by row or column by column

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b				0	0	0	0
1	i				0	0	0	0
2	s				0	0	0	0
3	е				0	1	0	0
4	С				0	0	0	0
5	t				0	0	1	0
6	•				0	0	0	0

- Subproblems are LCW(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- LCW(i,j) depends on LCW(i+1,j+1)
- Start at bottom right and fill row by row or column by column

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b			0	0	0	0	0
1	i			0	0	0	0	0
2	s			0	0	0	0	0
3	е			0	0	1	0	0
4	С			1	0	0	0	0
5	t			0	0	0	1	0
6	•			0	0	0	0	0

- Subproblems are LCW(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- LCW(i,j) depends on LCW(i+1,j+1)
- Start at bottom right and fill row by row or column by column

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b		0	0	0	0	0	0
1	i		0	0	0	0	0	0
2	s		0	0	0	0	0	0
3	е		2	0	0	1	0	0
4	С		0	1	0	0	0	0
5	t		0	0	0	0	1	0
6	•		0	0	0	0	0	0

- Subproblems are LCW(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- LCW(i,j) depends on LCW(i+1,j+1)
- Start at bottom right and fill row by row or column by column

			I	I	I	I	I	I
		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b	0	0	0	0	0	0	0
1	i	0	0	0	0	0	0	0
2	S	3	0	0	0	0	0	0
3	е	0	2	0	0	1	0	0
4	С	0	0	1	0	0	0	0
5	t	0	0	0	0	0	1	0
6	•	0	0	0	0	0	0	0

- Subproblems are LCW(i, j), for 0 < i < m. 0 < i < n
- Table of $(m+1) \cdot (n+1)$ values
- LCW(i, j) depends on LCW(i+1, j+1)
- Start at bottom right and fill row by row or column by column

Reading off the solution

Find entry (i, j) with largest LCW value

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b	0	0	0	0	0	0	0
1	i	0	0	0	0	0	0	0
2	S	3	0	0	0	0	0	0
3	е	0	2	0	0	1	0	0
4	С	0	0	1	0	0	0	0
5	t	0	0	0	0	0	1	0
6	•	0	0	0	0	0	0	0

- Subproblems are LCW(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- LCW(i,j) depends on LCW(i+1,j+1)
- Start at bottom right and fill row by row or column by column

Reading off the solution

- Find entry (i,j) with largest LCW value
- Read off the actual subword diagonally

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b	0	0	0	0	0	0	0
1	i	0	0	0	0	0	0	0
2	S	3	0	0	0	0	0	0
3	е	0	3	0	0	1	0	0
4	С	0	0	1	0	0	0	0
5	t	0	0	0	0	0	1	0
6	•	0	0	0	0	0	0	0
				4 🗆 🕨	∢ 🗗 ト	< <u>=</u> ▶ ∢	≣ ト	≣ ჟ

- Subproblems are LCW(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- LCW(i,j) depends on LCW(i+1,j+1)
- Start at bottom right and fill row by row or column by column

Reading off the solution

- Find entry (i,j) with largest LCW value
- Read off the actual subword diagonally

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b	0	0	0	0	0	0	0
1	i	0	0	0	0	0	0	0
2	S	3	0	0	0	0	0	0
3	е	0	3	0	0	1	0	0
4	С	0	0	1	0	0	0	0
5	t	0	0	0	0	0	1	0
6	•	0	0	0	0	0	0	0

```
def LCW(u,v):
  import numpy as np
  (m,n) = (len(u), len(v))
 lcw = np.zeros((m+1,n+1))
 maxlcw = 0
 for c in range(n-1,-1,-1):
    for r in range(m-1,-1,-1):
      if u[r] == v[c]:
        lcw[r,c] = 1 + lcw[r+1,c+1]
      else:
       lcw[r,c] = 0
      if lcw[r,c] > maxlcw:
        maxlcw = lcw[r,c]
 return(maxlcw)
```

```
def LCW(u,v):
  import numpy as np
  (m,n) = (len(u), len(v))
 lcw = np.zeros((m+1,n+1))
 maxlcw = 0
 for c in range(n-1,-1,-1):
    for r in range(m-1,-1,-1):
      if u[r] == v[c]:
        lcw[r,c] = 1 + lcw[r+1,c+1]
      else:
        lcw[r,c] = 0
      if lcw[r,c] > maxlcw:
        maxlcw = lcw[r,c]
 return(maxlcw)
```

Complexity

```
def LCW(u,v):
  import numpy as np
  (m,n) = (len(u), len(v))
 lcw = np.zeros((m+1,n+1))
 maxlcw = 0
 for c in range(n-1,-1,-1):
    for r in range(m-1,-1,-1):
      if u[r] == v[c]:
        lcw[r,c] = 1 + lcw[r+1,c+1]
      else:
        lcw[r,c] = 0
      if lcw[r,c] > maxlcw:
        maxlcw = lcw[r,c]
 return(maxlcw)
```

Complexity

Recall that brute force was $O(mn^2)$

6/11

```
def LCW(u,v):
  import numpy as np
  (m,n) = (len(u), len(v))
  lcw = np.zeros((m+1,n+1))
 maxlcw = 0
 for c in range(n-1,-1,-1):
    for r in range(m-1,-1,-1):
      if u[r] == v[c]:
        lcw[r,c] = 1 + lcw[r+1,c+1]
      else:
       lcw[r,c] = 0
      if lcw[r,c] > maxlcw:
        maxlcw = lcw[r,c]
 return(maxlcw)
```

Complexity

- Recall that brute force was $O(mn^2)$
- Inductive solution is O(mn), using dynamic programming or memoization

```
def LCW(u,v):
  import numpy as np
  (m,n) = (len(u), len(v))
  lcw = np.zeros((m+1,n+1))
 maxlcw = 0
 for c in range(n-1,-1,-1):
    for r in range(m-1,-1,-1):
      if u[r] == v[c]:
        lcw[r,c] = 1 + lcw[r+1,c+1]
      else:
        lcw[r,c] = 0
      if lcw[r,c] > maxlcw:
        maxlcw = lcw[r,c]
 return(maxlcw)
```

Complexity

- Recall that brute force was $O(mn^2)$
- Inductive solution is O(mn), using dynamic programming or memoization
 - Fill a table of size O(mn)
 - Each table entry takes constant time to compute

Longest common subsequence

- Subsequence can drop some letters in between
- Given two strings, find the (length of the) longest common subwsequence
 - "secret", "secretary" —
 "secret", length 6
 - "bisect", "trisect" —
 "isect", length 5
 - "bisect", "secret" —
 "sect", length 4
 - "director", "secretary" —
 "ectr", "retr", length 4

PDSA using Python Week 9

Longest common subsequence

- Subsequence can drop some letters in between
- Given two strings, find the (length of the) longest common subwsequence
 - "secret", "secretary" —
 "secret", length 6
 - "bisect", "trisect" —
 "isect", length 5
 - "bisect", "secret" —
 "sect", length 4
 - "director", "secretary" —
 "ectr", "retr", length 4
- LCS is the longest path connecting non-zero LCW entries, moving right/down

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b	0	0	0	0	0	0	0
1	i	0	0	0	0	0	0	0
2	S	3	0	0	0	0	0	0
3	е	0	2	0	0	1	0	0
4	С	0	0	1	0	0	0	0
5	t	0	0	0	0	0	1	0
6	•	0	0	0	0	0	0	0
			4 □	1 ▶ ∢ 🗇	▶ ∢ 🗏	▶ 4 =	▶ ≣	2000

Longest common subsequence

- Subsequence can drop some letters in between
- Given two strings, find the (length of the) longest common subwsequence
 - "secret", "secretary" —
 "secret", length 6
 - "bisect", "trisect" —
 "isect", length 5
 - "bisect", "secret" —
 "sect", length 4
 - "director", "secretary" —
 "ectr", "retr", length 4
- LCS is the longest path connecting non-zero LCW entries, moving right/down

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b	0	0	0	0	0	0	0
1	i	0	0	0	0	0	0	0
2	S	3	0	0	0	0	0	0
3	е	0	2	0	0	1	0	0
4	С	0	0	Y	0	0	0	0
5	t	0	0	0	0	0	1	0
6	•	0	0	0	0	0	0	0
				1 ▶ ∢ 🗇	▶ ∢ 🖹	▶ ∢ 🖹	▶ ∃	9990

Applications

- Analyzing genes
 - DNA is a long string over A, T, G, C
 - Two species are similar if their DNA has long common subsequences

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b	0	0	0	0	0	0	0
1	i	0	0	0	0	0	0	0
2	s	3	0	0	0	0	0	0
3	е	0	2	0	0	1	0	0
4	С	0	0	Y	0	0	0	0
5	t	0	0	0	0	0	1	0
6	•	0	0	0	0	0	0	0

Applications

- Analyzing genes
 - DNA is a long string over A, T, G, C
 - Two species are similar if their DNA has long common subsequences
- diff command in Unix/Linux
 - Compares text files
 - Find the longest matching subsequence of lines
 - Each line of text is a "character"

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b	0	0	0	0	0	0	0
1	i	0	0	0	0	0	0	0
2	S	3	0	0	0	0	0	0
3	е	0	2	0	0	1	0	0
4	С	0	0	1	0	0	0	0
5	t	0	0	0	0	0	1	0
6	•	0	0	0	0	0	0	0

- $u = a_0 a_1 \dots a_{m-1}$
- $\mathbf{v} = b_0 b_1 \dots b_{n-1}$

- $u = a_0 a_1 \dots a_{m-1}$
- $v = b_0 b_1 \dots b_{n-1}$
- LCS(i,j) length of longest common subsequence in $a_i a_{i+1} \dots a_{m-1}, b_j b_{j+1} \dots b_{n-1}$

- $u = a_0 a_1 \dots a_{m-1}$
- $v = b_0 b_1 \dots b_{n-1}$
- LCS(i,j) length of longest common subsequence in $a_i a_{i+1} \dots a_{m-1}, b_j b_{j+1} \dots b_{n-1}$
- If $a_i = b_j$, LCS(i,j) = 1 + LCS(i+1,j+1)
 - Can assume (a_i, b_i) is part of *LCS*

- $u = a_0 a_1 \dots a_{m-1}$
- $v = b_0 b_1 \dots b_{n-1}$
- LCS(i,j) length of longest common subsequence in $a_i a_{i+1} \dots a_{m-1}, b_j b_{j+1} \dots b_{n-1}$
- If $a_i = b_j$, LCS(i, j) = 1 + LCS(i+1, j+1)
 - Can assume (a_i, b_i) is part of *LCS*
- If $a_i \neq b_i$, a_i and b_i cannot both be part of the LCS

- $u = a_0 a_1 \dots a_{m-1}$
- $\mathbf{v} = b_0 b_1 \dots b_{n-1}$
- LCS(i,j) length of longest common subsequence in $a_i a_{i+1} \dots a_{m-1}, b_j b_{j+1} \dots b_{n-1}$
- If $a_i = b_j$, LCS(i,j) = 1 + LCS(i+1,j+1)
 - Can assume (a_i, b_i) is part of *LCS*
- If $a_i \neq b_j$, a_i and b_j cannot both be part of the LCS
 - Which one should we drop?

- $u = a_0 a_1 \dots a_{m-1}$
- $v = b_0 b_1 \dots b_{n-1}$
- LCS(i,j) length of longest common subsequence in $a_i a_{i+1} \dots a_{m-1}$, $b_j b_{j+1} \dots b_{n-1}$
- If $a_i = b_j$, LCS(i,j) = 1 + LCS(i+1,j+1)
 - Can assume (a_i, b_j) is part of *LCS*
- If $a_i \neq b_j$, a_i and b_j cannot both be part of the LCS
 - Which one should we drop?
 - Solve LCS(i, j+1) and LCS(i+1, j) and take the maximum

- $u = a_0 a_1 \dots a_{m-1}$
- $\mathbf{v} = b_0 b_1 \dots b_{n-1}$
- LCS(i,j) length of longest common subsequence in $a_i a_{i+1} \dots a_{m-1}, b_j b_{j+1} \dots b_{n-1}$
- If $a_i = b_i$, LCS(i,j) = 1 + LCS(i+1,j+1)
 - Can assume (a_i, b_i) is part of *LCS*
- If $a_i \neq b_j$, a_i and b_j cannot both be part of the LCS
 - Which one should we drop?
 - Solve LCS(i,j+1) and LCS(i+1,j) and take the maximum
- Base cases as with LCW
 - LCS(i, n) = 0 for all $0 \le i \le m$
 - LCS(m, j) = 0 for all $0 \le j \le n$

■ Subproblems are LCS(i,j), for $0 \le i \le m$, $0 \le j \le n$

- Subproblems are LCS(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b							
1	i							
2	s							
3	е							
4	С							
5	t							
6	•							

- Subproblems are LCS(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- LCS(i,j) depends on LCS(i+1,j+1), LCS(i,j+1),LCS(i+1,j),

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b							
1	i				槟			
2	S							
3	е			た				
4	С						槟	_
5	t							
6	•							

- Subproblems are LCS(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- LCS(i,j) depends on LCS(i+1,j+1), LCS(i,j+1),LCS(i+1,j),
- No dependency for LCS(m, n) start at bottom right and fill by row, column or diagonal

		0	1	2	3	4	5	6
		s	е	С	r	е	t	•
0	b							0
1	i							0
2	s							0
3	е							0
4	С							0
5	t							0
6	•							0

- Subproblems are LCS(i, j), for 0 < i < m. 0 < i < n
- Table of $(m+1) \cdot (n+1)$ values
- LCS(i, i) depends on LCS(i+1, i+1). LCS(i, i+1), LCS(i+1, i).
- No dependency for LCS(m, n) start at bottom right and fill by row, column or diagonal

		0	1	2	3	4	5	6
		s	е	С	r	е	t	•
0	b						1	0
1	i						1	0
2	s						1	0
3	е						1	0
4	С						1	0
5	t						1	0
6	•						0	0

- Subproblems are LCS(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- LCS(i,j) depends on LCS(i+1,j+1), LCS(i,j+1),LCS(i+1,j),
- No dependency for LCS(m, n) start at bottom right and fill by row, column or diagonal

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b					2	1	0
1	i					2	1	0
2	s					2	1	0
3	е					2	1	0
4	С					1	1	0
5	t					1	1	0
6	•					0	0	0

- Subproblems are LCS(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- LCS(i,j) depends on LCS(i+1,j+1), LCS(i,j+1),LCS(i+1,j),
- No dependency for LCS(m, n) start at bottom right and fill by row, column or diagonal

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b				2	2	1	0
1	i				2	2	1	0
2	s				2	2	1	0
3	е				2	2	1	0
4	С				1	1	1	0
5	t				1	1	1	0
6	•				0	0	0	0

- Subproblems are LCS(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- LCS(i,j) depends on LCS(i+1,j+1), LCS(i,j+1),LCS(i+1,j),
- No dependency for LCS(m, n) start at bottom right and fill by row, column or diagonal

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b			2	2	2	1	0
1	i			2	2	2	1	0
2	s			2	2	2	1	0
3	е			2	2	2	1	0
4	С			2	1	1	1	0
5	t			1	1	1	1	0
6	•			0	0	0	0	0

- Subproblems are LCS(i, j), for 0 < i < m. 0 < i < n
- Table of $(m+1) \cdot (n+1)$ values
- LCS(i, i) depends on LCS(i+1, i+1). LCS(i, i+1), LCS(i+1, i).
- No dependency for LCS(m, n) start at bottom right and fill by row, column or diagonal

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b		3	2	2	2	1	0
1	i		3	2	2	2	1	0
2	s		3	2	2	2	1	0
3	е		3	2	2	2	1	0
4	С		2	2	1	1	1	0
5	t		1	1	1	1	1	0
6	•		0	0	0	0	0	0

- Subproblems are LCS(i, j), for 0 < i < m. 0 < i < n
- Table of $(m+1) \cdot (n+1)$ values
- LCS(i, i) depends on LCS(i+1, i+1). LCS(i, i+1), LCS(i+1, i).
- No dependency for LCS(m, n) start at bottom right and fill by row, column or diagonal

		0	1	2	3	4	5	6
		s	е	С	r	е	t	•
0	b	4	3	2	2	2	1	0
1	i	4	3	2	2	2	1	0
2	s	4	3	2	2	2	1	0
3	е	3	3	2	2	2	1	0
4	С	2	2	2	1	1	1	0
5	t	1	1	1	1	1	1	0
6	•	0	0	0	0	0	0	0

- Subproblems are LCS(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- LCS(i,j) depends on LCS(i+1,j+1), LCS(i,j+1), LCS(i+1,j),
- No dependency for LCS(m, n) start at bottom right and fill by row, column or diagonal

Reading off the solution

Trace back the path by which each entry was filled

- Subproblems are LCS(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- LCS(i,j) depends on LCS(i+1,j+1), LCS(i,j+1),LCS(i+1,j),
- No dependency for LCS(m, n) start at bottom right and fill by row, column or diagonal

Reading off the solution

- Trace back the path by which each entry was filled
- Each diagonal step is an element of LCS


```
def LCS(u,v):
  import numpy as np
  (m.n) = (len(u).len(v))
  lcs = np.zeros((m+1,n+1))
  for c in range(n-1,-1,-1):
   for r in range(m-1,-1,-1):
      if u[r] == v[c]:
        lcs[r,c] = 1 + lcs[r+1,c+1]
      else:
        lcs[r,c] = max(lcs[r+1,c],
                       lcs[r,c+1])
  return(lcs[0,0])
```

```
def LCS(u,v):
  import numpy as np
  (m.n) = (len(u).len(v))
  lcs = np.zeros((m+1,n+1))
  for c in range(n-1,-1,-1):
   for r in range(m-1,-1,-1):
      if u[r] == v[c]:
        lcs[r,c] = 1 + lcs[r+1,c+1]
      else:
        lcs[r,c] = max(lcs[r+1,c],
                       lcs[r,c+1])
  return(lcs[0,0])
```

Complexity

```
def LCS(u,v):
  import numpy as np
  (m.n) = (len(u).len(v))
  lcs = np.zeros((m+1,n+1))
  for c in range(n-1,-1,-1):
    for r in range(m-1,-1,-1):
      if u[r] == v[c]:
        lcs[r.c] = 1 + lcs[r+1.c+1]
      else:
        lcs[r,c] = max(lcs[r+1,c],
                       lcs[r.c+1])
  return(lcs[0,0])
```

Complexity

Again O(mn), using dynamic programming or memoization

```
def LCS(u,v):
  import numpy as np
  (m.n) = (len(u).len(v))
  lcs = np.zeros((m+1,n+1))
  for c in range(n-1,-1,-1):
    for r in range(m-1,-1,-1):
      if u[r] == v[c]:
        lcs[r.c] = 1 + lcs[r+1.c+1]
      else:
        lcs[r,c] = max(lcs[r+1,c],
                       lcs[r.c+1])
  return(lcs[0,0])
```

Complexity

- Again O(mn), using dynamic programming or memoization
 - Fill a table of size O(mn)
 - Each table entry takes constant time to compute