Quantum Computing (量子计算)

Get ready to grasp the leading edge technologies

Driss BOUTAT

Institut National des Sciences Appliquées Centre Val de Loire .

Light: photons & particles¹

Einstein believed light is a particle (photon) and the flow of photons is a wave (电磁波).

Einstein: 1905

Its energy is given by

$$E = h\nu = \hbar\omega$$

where $h=6.626 \times 10^{-34} Js$ (joule-seconds) is the Planck constant, $\hbar=\frac{h}{2\pi}$ and $2\pi\nu=\omega$.

• Light has also a momentum (动量)

$$p = \frac{\hbar}{\lambda}$$

Where λ is wave length.

¹光的波粒二象性

Light: photons & particles

https://galileo-unbound.blog/2020/01/13/who-invented-the-quantum-einstein-vs-planck/

Light: photons & particles

Light travels carried by an electromagnetic waves.

Tiny particle waves

Experimentally Observed: Electrons behave as waves

De Broglie: The tiny bits of matter(微小的物质), such as electrons (电子), behave like particles in some situations and like waves in others: wave-particle duality (波粒二象性).

De Broglie in his 1924 PhD thesis

- Tiny particle has a wave length $\lambda = \frac{\hbar}{p} = \frac{\hbar}{mv}$ where p = mv is the momentum(动量) of the particle.
- Its energy is given by : $E=h\nu=\hbar\omega$

The Schrödinger equation

The wave function of a particle can be described as follows:

$$\psi(x,t) = e^{i(kx - \omega t)}$$

where the momentum is $p=\hbar k$ with $k=\frac{1}{\lambda}$ and energy $E=\hbar\omega=\frac{p^2}{2m}+V(x).$ Therefore, by applying the momentum operator $\hat{p}=-i\hbar\frac{\partial}{\partial x}$ to ψ we obtain

$$-i\hbar \frac{\partial}{\partial x}\psi = p\psi$$

thus ψ is an eigenstate (eigenfunction 特征函数) of the operator \hat{p} with the momentum p as eigenvalue (特征值).

The Schrödinger equation

Moreover, if we apply $i\hbar \frac{\partial}{\partial t}$ to the wave function we get

$$i\hbar \frac{\partial}{\partial t}\psi = E\psi$$

because $\hbar\omega$ is the total energy $E=E_K+E_P=rac{p^2}{2m}+V(x)$.

Therefore if we apply the operator $\hat{p}^2=-\hbar^2\frac{\partial^2}{\partial^2 x}$, we get the time independent Schrödinger equation given by:

$$\hat{H}\psi = E\psi, \quad \hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x})$$

Combine the above equations, we get the time depending Schrödinger equation:

$$i\hbar \frac{\partial}{\partial t}\psi = \hat{H}\psi$$

Quantum postulates²1, 2

Postulate 1

A quantum system is describe by a wave function $\psi(x,t)$ that contain everything known about a system that depends upon on position and time. It has the property that $\|\psi(x,t)\|dx$ represents the density probability the particle lies in an interval element dx at time t. Therefore, it must fulfill: $\int_{-\infty}^{+\infty} \|\psi(x,t)\|^2 dx = 1$

Postulate 2

Each observable (可观察量) A (measurement) on a wave function (system) is an eigenvalue of an operator \hat{A} . As the measurement are real the operators associated with the observable are Hermitian. If the outcome of a measurement of an operator \hat{A} is a real number a then $\hat{A}\psi=a\psi$ where ψ is an eigenstate (eigenfunction).

²量子力学公设

Quantum postulate 3

If a quantum system is describe by a wave function ψ then the expectation value (期望值) of any observable A is given

$$\langle A \rangle = \left\langle \psi \left| \hat{A} \right| \psi \right\rangle$$
, if $\hat{A} \psi = a \psi$ then $\langle A \rangle = a$.

If $\psi = \sum\limits_{i=1}^n c_i \psi_i$, where $\hat{A} \psi_i = a_i \psi_i$ and then the expectation is given by

$$\langle A \rangle = \langle \psi | \hat{A} | \psi \rangle = \left\langle \sum_{i=1}^{n} c_i \psi_i \middle| \hat{A} \middle| \sum_{i=1}^{n} c_i \psi_i \right\rangle = \sum_{i=1}^{n} a_i |c_i|^2$$

Therefore we measure a_i with probability $P(a_i) = |c_i|^2$ and the wave function collapses (波函数坍缩) into ψ_i

Quantum postulate 4

The time evolution of the wave function(波函数) is given by the time dependent Schrodinger equation:

$$i\hbar \frac{\partial}{\partial t}\psi = \hat{H}\psi$$

where \hat{H} is the hamiltonian of the system (kinetic energy(动能) + potential energy(势能)). If ψ is an eigenstate of \hat{H} then

$$\psi = \psi(x,0)e^{\frac{-iEt}{\hbar}}$$

where $\hat{H}\psi = E\psi$.

Some quantum operators

1 Position operator : \hat{x} that acts on a state (wave function)

$$\hat{x}\psi = x\psi(x)$$

② Momentum operator (动量算符):

$$\hat{p} = -i\hbar \frac{\partial}{\partial x}$$

⑤ The Hamiltonian operator(哈密顿算符):

$$\hat{H} = -\hbar \frac{\partial^2}{\partial x^2} + V(x)$$

■ The angular momentum operators (角动量算符):

$$\hat{L}_{x} = \hat{y}\hat{p}_{z} - \hat{z}\hat{p}_{y}, \hat{L}_{y} = \hat{z}\hat{p}_{x} - \hat{x}\hat{p}_{z}, \hat{L}_{z} = \hat{x}\hat{p}_{y} - \hat{y}\hat{p}_{x}$$

 \bullet Position operator: \hat{x} that acts on a state (wave function)

Operators: commutation

① The commutator operator of the \hat{X} and \hat{p} is defined by

$$\left[\hat{X},\hat{p}\right] = \hat{X}\hat{p} - \hat{p}\hat{X} = i\hbar\mathbf{1} \neq 0$$

Properties of angular momentum operator:

$$\[\hat{L}_x, \hat{L}_y\] = i\hbar \hat{L}_z, \quad \left[\hat{L}_y, \hat{L}_z\right] = i\hbar \hat{L}_x, \quad \left[\hat{L}_z, \hat{L}_x\right] = i\hbar \hat{L}_y$$

① One of the three angular momentums $(\hat{L}_x,\,\hat{L}_y,\,\hat{L}_z)$ can be measured with $\hat{L}^2=\hat{L}_x^2+\hat{L}_y^2+\hat{L}_z^2$

$$\left[\hat{L}_x, \hat{L}^2\right] = \left[\hat{L}_y, \hat{L}^2\right] = \left[\hat{L}_z, \hat{L}^2\right] = 0$$

Schrödinger equation: harmonic oscillator³

$$i\hbar\frac{\partial\psi\left(x,t\right)}{\partial t}=\widehat{H}\psi\left(x,t\right),\quad\widehat{H}=\frac{\widehat{p}^{2}}{2m}+\frac{m}{2}\omega^{2}\widehat{x}^{2}$$

$$\hat{H} = \frac{m\omega^2}{2} \left(\hat{x} + \frac{i}{m\omega} \hat{p} \right) \left(\hat{x} - \frac{i}{m\omega} \hat{p} \right) - \frac{\hbar\omega}{2}$$

Then it can be written as

$$\hat{H} = \hbar\omega \left(N - \frac{1}{2} \right) = \hbar\omega \left(N^{\dagger} + \frac{1}{2} \right)$$

$$N = aa^{\dagger}, \ a = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} + \frac{i}{m\omega} \hat{p} \right), a^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} - \frac{i}{m\omega} \hat{p} \right)$$

³量子谐振子

harmonic oscillator: ladder operator concept

The lowering and raising operators as $a = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} + \frac{i}{m\omega} \hat{p} \right), a^\dagger = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} - \frac{i}{m\omega} \hat{p} \right)$. we have

$$\left[a, a^{\dagger}\right] = 1.$$

Let recall the following formula: $\left[\hat{A}\hat{B},\hat{C}\right]=\hat{A}\left[\hat{B},\hat{C}\right]+\left[\hat{A},\hat{C}\right]\hat{B}$, then we have [N,a]=-a and $\left[N,a^{\dagger}\right]=a^{\dagger}$. There for if ψ is an eigenstate of the operator N with the eigenvalue n then $a\psi$ is also an eigenstate with the eigenvalue n-1 indeed

$$Na\psi = aN\psi - a\psi.$$

Thereby if $\hat{H}\psi=E\psi$ we have $N\psi=(\frac{1}{\hbar\omega}E+\frac{1}{2})\psi$

$$\hat{H}a\psi = (E - \hbar\omega)a\psi$$

Thus the operator decreases the energy by an integer amount (-1).

harmonic oscillator: ladder operator concept

Therefore, if ψ_0 is a state of minimal energy then

$$\sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} + \frac{i}{m\omega} \hat{p} \right) \psi_0 = 0,$$

therefore

$$\frac{i}{m\omega}\hat{p}\psi_0 = -\hat{x}\psi_0 \quad \Rightarrow \quad \frac{\partial}{\partial x}\psi_0 = \frac{-m\omega x}{\hbar}\psi_0$$

we obtain

$$\psi_0(x) = Ke^{\frac{-\hbar x^2}{2m\omega}}$$

where $k=\sqrt{\frac{\hbar}{2\pi m\omega}}$ is the constant normalization.

Schrödinger equation: harmonic oscillator

Now, using the raising operator a^\dagger to obtain the highest of energies: the solutions of the Schrödinger's equation

$$\psi_1 = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} - \frac{i}{m\omega} \hat{p} \right) \psi_0 = K_1 2x \psi_0$$

The general form is

$$\psi_n = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} - \frac{i}{m\omega} \hat{p} \right) \psi_0 = K_n P_n(x) \psi_0$$

where P_n is called a Hermite polynomial and has n zeros.

The Hamiltonian operator is

$$\hat{H} = \frac{m\omega^2}{2} \left(\hat{x} + \frac{i}{m\omega} \hat{p} \right) \left(\hat{x} - \frac{i}{m\omega} \hat{p} \right) - \frac{\hbar\omega}{2}$$

$$\hat{H} = \hbar\omega \left(N - \frac{1}{2} \right) = \hbar\omega \left(N^{\dagger} + \frac{1}{2} \right)$$

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m}{2}\omega^2 \hat{x}^2$$

Then the time independent schrödinger equation is given by

$$\hat{H}\psi = E\psi$$

$$-\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} + \frac{m}{2}\omega^2 x^2 \psi = E\psi$$

First the time independent schrödinger equation can be simplified by setting : $y=\sqrt{\frac{m\omega}{\hbar}}x$

$$\frac{\partial^2 \psi}{\partial y^2} + (\varepsilon - y^2)\psi = 0$$

$$\varepsilon = \frac{2E}{\hbar \omega}$$

We know that $\psi \to 0$ as $|y| \to +\infty$, therefore the equation $\frac{\partial^2 \psi}{\partial y^2} + (\varepsilon - y^2)\psi = 0$ become $\frac{\partial^2 \psi}{\partial y^2} - y^2\psi = 0$ near ∞ .

$$\frac{\partial^2 \psi}{\partial y^2} = y^2 \psi$$

$$\psi = Ce^{-\frac{y^2}{2}}$$

Let plug this solution in the differential equation to get

$$\begin{array}{c} \frac{\partial \psi}{\partial y} = -Cye^{-\frac{y^2}{2}} \text{ and } \frac{\partial^2 \psi}{\partial y^2} = Cy^2e^{-\frac{y^2}{2}} - Ce^{-\frac{y^2}{2}} \\ \\ Cy^2e^{-\frac{y^2}{2}} - Ce^{-\frac{y^2}{2}} + C(\varepsilon - y^2)e^{-\frac{y^2}{2}} &= 0 \\ \\ \varepsilon - 1 &= 0 \\ \\ E &= \frac{\hbar \omega}{2} \end{array}$$

But we can chose $\psi=P(y)e^{-\frac{y^2}{2}}$ where $P(y)=\sum\limits_{k=0}^{+\infty}a_ky^k$

$$\begin{array}{rcl} \frac{\partial \psi}{\partial y} & = & P'(y)e^{-\frac{y^2}{2}} - yP(y)e^{-\frac{y^2}{2}} \\ \frac{\partial^2 \psi}{\partial y^2} & = & P"(y)e^{-\frac{y^2}{2}} - 2yP'(y)e^{-\frac{y^2}{2}} + (y^2 - 1)P(y)e^{-\frac{y^2}{2}} \end{array}$$

where

$$P'(y) = \sum_{k=0}^{+\infty} k a_k y^{k-1} \Longrightarrow -2y P'(y) = -2 \sum_{k=0}^{+\infty} k a_k y^k$$
$$P''(y) = \sum_{k=2}^{+\infty} k (k-1) a_k y^{k-2} = \sum_{k=0}^{+\infty} (k+1) (k+2) a_{k+2} y^k$$

Let plug above terms in the differential equation to get

$$\sum_{k=0}^{+\infty} (k+1) (k+2) a_{k+2} y^k - 2 \sum_{k=0}^{+\infty} k a_k y^k + (\varepsilon - 1) \sum_{k=0}^{+\infty} a_k y^k = 0$$
$$\sum_{k=0}^{+\infty} [(k+1) (k+2) a_{k+2} + (\varepsilon - 2k - 1) a_k] y^k = 0$$

where

$$a_{k+2} = \frac{(\varepsilon - 2k - 1)}{(k+1)(k+2)} a_k$$

$$\varepsilon = 2k + 1 \Longrightarrow E_k = (2k+1) \frac{\hbar\omega}{2} = E_0 + k\hbar\omega$$

$$E_{k+1} = E_k + \hbar\omega$$