

FIG. 2

FIG. 3

FIG. 4

5/12

FIG. 5

FIG. 6

FIG. 7

$$mf = \frac{P_f 2 A_f}{\sqrt{R_f T_f 2}} \sqrt{\frac{2 \kappa_f}{\kappa_{f-1}} \left\{ \left(\frac{P_{a1}}{P_f 2} \right)^{\frac{2}{\kappa_f}} - \left(\frac{P_{a1}}{P_f 2} \right)^{\frac{\kappa_f + 1}{\kappa_f}} \right\}}$$

$$ma = \frac{P_{a0} A_a}{\sqrt{R_a T_{a0}}} \sqrt{\frac{2 \kappa_a}{\kappa_{a-1}} \left\{ \left(\frac{P_{a0}}{P_{a1}} \right)^{\frac{2}{\kappa_a}} - \left(\frac{P_{a0}}{P_{a1}} \right)^{\frac{\kappa_a + 1}{\kappa_a}} \right\}}$$

P_{f0} : FUEL CONTROL VALVE INLET PRESSURE [Pa]
 P_{f2} : ORIFICE INLET PRESSURE [Pa]
 P_{V1} : FUEL CONTROL VALVE THROAT PRESSURE [Pa]
 P_{a0} : VENTURI INLET AIR PRESSURE [Pa]
 P_{a1} : VENTURI THROAT PRESSURE [Pa]
 T_{f0} : FUEL CONTROL VALVE INLET TEMPERATURE [K]
 T_{f2} : ORIFICE INLET TEMPERATURE [K]
 T_{a0} : VENTURI INLET AIR TEMPERATURE [K]

mf : FUEL MASS FLOW RATE [kg/sec]
 ma : AIR MASS FLOW RATE [kg/sec]
 AVL_V : FUEL CONTROL VALVE EFFECTIVE OPENING AREA [m²]
 Af : ORIFICE INLET EFFECTIVE OPENING AREA [m²]
 Aa : VENTURI THROAT EFFECTIVE OPENING AREA [m²]
 R_f : FUEL GAS CONSTANT [kJ/kg K]
 R_a : AIR GAS CONSTANT [kJ/kg K]
 κ_f : FUEL GAS SPECIFIC HEAT
 κ_a : AIR SPECIFIC HEAT

FIG. 8

FIG. 9

$$mf_v = \frac{Pf0 AVLV}{\sqrt{RTf0}} M \sqrt{\kappa_f} \left(1 + \frac{\kappa_{f-1}}{2} M^2 \right)^{\frac{\kappa_{f+1}}{2(\kappa_{f-1})}}$$

$$mf_0 = \frac{Pf2 A_f}{\sqrt{RTf2}} \sqrt{\left[\frac{2 \kappa_f}{\kappa_{f-1}} \left\{ \left(\frac{P_{a1}}{P_{f2}} \right) \frac{2}{\kappa_f} - \left(\frac{P_{a1}}{P_{f2}} \right) \frac{\kappa_{f+1}}{\kappa_f} \right\} \right]}$$

SINCE VALVE IS CHOKE-FLOW RATE VALVE,
MACH IS 1, THIS YIELDS FOLLOWING

$$= \left\{ \frac{Pf0 AVLV \sqrt{f f2}}{\sqrt{f0} Pf2 A_f} \sqrt{\kappa_f} \left(1 + \frac{\kappa_{f-1}}{2} \right)^{\frac{\kappa_{f+1}}{2(\kappa_{f-1})}} \right\}$$

$$ma = \frac{Pa0 A_a}{\sqrt{Ra Ta0}} \sqrt{\left[\frac{2 \kappa_a}{\kappa_{a-1}} \left\{ \left(\frac{Pa0}{Pa1} \right) \frac{2}{\kappa_a} - \left(\frac{Pa0}{Pa1} \right) \frac{\kappa_{a+1}}{\kappa_a} \right\} \right]}$$

8/12

32

$Pf0$: FUEL CONTROL VALVE INLET PRESSURE [Pa]
 $Pf2$: ORIFICE INLET PRESSURE [Pa]
 $PVLV$: FUEL CONTROL VALVE THROAT PRESSURE [Pa]
 $Pa0$: VENTURI INLET AIR PRESSURE [Pa]
 $Pa1$: VENTURI THROAT PRESSURE [Pa]
 $Tf0$: FUEL CONTROL VALVE INLET TEMPERATURE [K]
 $Tf2$: ORIFICE INLET TEMPERATURE [K]
 $Ta0$: VENTURI INLET AIR TEMPERATURE [K]

mf : FUEL MASS FLOW RATE [kg/sec]
 ma : AIR MASS FLOW RATE [kg/sec]
 $AVLV$: FUEL CONTROL VALVE EFFECTIVE OPENING AREA [m^2]
 Af : ORIFICE INLET EFFECTIVE OPENING AREA [m^2]
 A_a : VENTURI THROAT EFFECTIVE OPENING AREA [m^2]
 R_f : FUEL GAS CONSTANT [$\text{kJ}/\text{kg K}$]
 R_a : AIR GAS CONSTANT [$\text{kJ}/\text{kg K}$]
 κ_f : FUEL GAS SPECIFIC HEAT
 κ_a : AIR SPECIFIC HEAT

FIG. 10

SAMPLES	SPECIFIC HEAT
a	1.309
b	1.251
c	1.274
d	1.296

FIG. 11

FIG. 12

FIG. 13

