

Outline

- 1. Introduction
- 2. Design
- 3. Implementation
- 4. User Study
- 5. Results
- 6. Conclusion

Motivation

- Early-stage visual defects are hard to notice without proper testing.
- Missed diagnoses can lead to severe consequences:
 - loss of independence, employment, and quality of life.
- Traditional perimetry systems are expensive and not widely accessible.
- **VR** enables immersive environments for VFT that is much **cheaper** and **portable**.
- An open-source software reduces barriers and promotes innovation, especially in low-resource or academic settings.

Aims

- Goal: Build a VR-based visual field-testing platform as a practical, affordable alternative to traditional perimetry.
- Approach: Uses consumer VR with eye tracking to tackle cost and accessibility issues.
- Prototype Capabilities:
 - Displays randomised visual stimuli in VR
 - Records responses
 - Logs data for analysis
 - Generates PDF report
- Impact: Aims to support early detection of vision loss, with strong potential for use in remote or resource-limited settings.

Overview

Workflow:

- 1. Session Initialisation
- 2. Main Menu Navigation
- 3.Pre-Test Countdown
- 4. Stimulus Generation
- 5. Fixation Monitoring & Feedback
- 6. User Response Logging
- 7.Test Completion & Data Export
- 8. Report Generation

Repeated Fixed Intensity Strategy

- Instead of using complex thresholding algorithms like SITA, we implemented a non-threshold strategy based on fixedintensity stimuli.
- Due to hardware limitations preventing absolute brightness calibration on VR headsets, we used a single consistent brightness level for all stimuli.
- Each stimulus is shown multiple times at each test point in a randomized order.

- Participants indicate whether they see each flash, and the system classifies each location as:
 - Consistently Seen detected more than 3 times
 - Inconsistently Seen detected 1–2 times
 - Unseen 0 detections
- Simple and robust method, ideal for preliminary screening, when full sensitivity data isn't needed.

User Interfaces and Inputs

Report Generation

Report Generation Workflow

Report Generation Wireframe

Hardware and Software

HTC Vive Pro Eye Workstation:

• CPU: Intel Core i9-12900K

• GPU: NVIDIA RTX 3080 Ti

• RAM: 64 GB

Unity:

- Unity editor 2019
- SRanipal SDK
- Steam VR

Scripting:

- VS code
- Jupyter

Version Control:

Gitlab

Unity Environment Hierarchy

Environment

Menu Scene VFT scene

Generated Report

Visual Test Report

Name: REDACTED Age: REDACTED Test Duration: 233.70s

Fixation Monitor: Gaze Fixation Target: Central Flash Duration: 50.00ms Number of stimuli: 288 Stimulus: White 0.05
Background: RGB(32,32,32)
Canvas: Plane

2025-03-14 23:30:09

Strategy: Repeated Fixed-Intensity

Test Metrics

False Positive: 1/288 False Negative: 35/288

False Positive Error Rate: 0.35% False Negative Error Rate: 12.15% Average Reaction Time: 305.93ms Center Fixation Percentage: 98.87%

User Study (n=12)

Briefing & Calibration:

Participants were introduced to the system and completed eye-tracking calibration.

Counterbalancing

Latin square design varied eye (left/right) and feedback mode (on/off) to reduce bias.

Test conditions:

- > Condition A: with visual feedback
- > Condition B: without visual feedback

Data Collection

Reaction times, detection outcomes, and gaze data were logged. SSQ completed after each condition, followed by final form.

Participant	Condition 1	Condition 2	Condition 3	Condition 4	
Participant 1	Right w/ feedback	Left w/ feedback	Right w/ no feedback	Left w/ no feedback	
Participant 2	Left w/ feedback	Left w/ no feedback	Right w/ feedback	Right w/ no feedback	
Participant 3	Left w/ no feedback	Right w/ no feedback	Left w/ feedback	Right w/ feedback	
Participant 4	Left w/ no feedback	Right w/ feedback	Left w/ feedback	Right w/ no feedback	
Participant 5	Right w/ no feedback	Left w/ feedback	Right w/ feedback	Left w/ no feedback	
Participant 6	Right w/ no feedback	Left w/ no feedback	Right w/ feedback	Left w/ feedback	
Participant 7	Left w/ feedback	Right w/ no feedback	Left w/ no feedback	Right w/ feedback	
Participant 8	Left w/ feedback	Right w/ feedback	Left w/ no feedback	Right w/ no feedback	
Participant 9	Right w/ feedback	Left w/ feedback	Right w/ no feedback	Left w/ no feedback	
Participant 10	Right w/ feedback	Left w/ no feedback	Right w/ no feedback	Left w/ feedback	
Participant 11	Left w/ no feedback	Right w/ no feedback	Left w/ feedback	Right w/ feedback	
Participant 12	Left w/ no feedback	Right w/ feedback	Left w/ feedback	Right w/ no feedback	
Participant 13	Right w/ no feedback	Left w/ feedback	Right w/ feedback	Left w/ no feedback	
Participant 14	Right w/ no feedback	Left w/ no feedback	Right w/ feedback	Left w/ feedback	
Participant 15	Left w/ feedback	Right w/ no feedback	Left w/ no feedback	Right w/ feedback	
Participant 16	Left w/ feedback	Right w/ feedback	Left w/ no feedback	Right w/ no feedback	

Latin Square

Quantitative Data Analysis

Performed paired t-test:

Null hypothesis:

There is no difference in performance metrics between the two conditions.

Alternative hypothesis:

There is a difference between the two conditions (two-sided test).

Performance metrics:

- Centre fixation percentage
- Reaction time
- False Positive rate
- Negative rate

Center Fixation Percentage

Test Condition	CF %	m_D	s_d	SEM	t	p	d
Without Feedback	60.31 %	14.71 %	16.98 %	5.12 %	2.87	0.017	0.87
With Feedback	75.01 %						

- Hypothesis: Real-time feedback improves centre fixation
- Results (All Participants):
 - > Slight improvement with feedback (p \approx 0.071), **not statistically significant**.
- After Removing Outlier (Participant 8):
 - ➤ Significant improvement (p \approx 0.017), large effect size (d \approx 0.87).
- Supports the hypothesis that visual feedback enhances fixation.

Reaction Time

Test Condition	RT (ms)	m_D	s _d	SEM	t	p	d
Without Feedback	306.31 ms	12.28 ms	14.39 ms	4.34 ms	2.83	0.018	0.85
With Feedback	318.59 ms						0.03

- Hypothesis: Feedback would lead to faster responses.
- Results:
 - ➤ With feedback: 318.59 ms
 - > Without feedback: 306.31 ms
 - Participants were ~12 ms slower with feedback $(p \approx 0.018, d \approx 0.85)$.
 - > Feedback had a statistically significant but opposite effect than expected.

False Positive Rate

Test Condition	FP %	m_D	s _d	SEM	t	p	d
Without Feedback	16.87 %	-12.19 %	13.86 %	4.18 %	-2.92	0.015	0.88
With Feedback	4.69 %						0.00

- Hypothesis: Feedback reduces button presses when not fixating.
- Results:
 - > -12.19% decrease in false positives with feedback.
 - > Statistically significant (p \approx 0.015), moderately large effect (d \approx 0.88).
 - > Feedback improves response accuracy.

Negative Rate

Test Condition	N %	m_D	s _d	SEM	t	p	d
Without Feedback	15.25 %	2.29 %	5.35 %	1.61 %	1.42	0.19	0.43
With Feedback	17.54 %						

- Hypothesis: Feedback has no negative effect on detection accuracy.
- Results:
 - Negative rate slightly increased with feedback.
 - Not statistically significant (p \approx 0.124), medium effect (d \approx 0.43).
 - Suggests a potential trade-off: improved accuracy but at the cost of **missing some stimuli**.

SSQ

- Visual and cognitive load was present but well-tolerated
- No participants discontinued the test
- Design features (neutral background, short sessions, rest breaks) effectively minimised simulator sickness

Average Severity of Symptoms

Average Severity

NASA TLX

- The task was moderately demanding, but welltolerated
- Participants felt successful, focused, and committed
- Supports the test's suitability for short-term use in VR environments

Qualitative Feedback

- Instruction Clarity
 - > 100% found the instructions very clear
- Focusing on Centre Target
 - > 33% found it easy
 - > 50% were neutral
 - > 17% found it difficult
- Visual Feedback Usefulness
 - > 75% found it helpful for maintaining focus
 - > 25% found it distracting, preferring fewer visual cues
- Overall Experience
 - > Most participants found the test interesting and engaging
 - > 41.6% also reported it to be tiring

Summary

- Developed a VR-based visual field-testing system using consumer-grade hardware with built-in eye tracking.
- Aimed to provide a cost-effective, accessible
 alternative to traditional clinical perimetry tools like
 the Humphrey Field Analyser.
- Built using Unity's Model-View-Controller pattern, integrating:
 - User interface
 - Stimulus generation
 - Real-time fixation feedback
 - Structured data logging

Key Findings

Quantitative

- Real-time visual feedback
 - \rightarrow improved fixation (+14.71%, p = 0.017)
 - \triangleright reduced false positives (-12.19%, p = 0.015).
- Reaction time slightly increased (+12.28 ms, p = 0.018), suggesting possible cognitive load.
- Negative rate increased slightly but were not statistically significant.

User Experience

- Participants rated the system as comfortable and tolerable.
- Low simulator sickness, with moderate eye strain and fatigue.
- Users reported feeling successful and engaged throughout testing.

Further Research

- Advance Testing Algorithms
 - ➤ Integrate dynamic methods like **ZEST** to estimate detection thresholds
- Brightness Calibration
 - > Develop hardware-based brightness calibration using photometers or sensors
- Advanced Eye-Tracking Features
 - > Add dynamic gaze correction and gaze-based fatigue analysis
- In-App Tutorial & User Guidance
 - > Use adaptive training sessions to reduce early testing errors
- Clinical Validation Studies
 - > Conduct trials comparing performance with clinical standards
- Visual Field Remapping Modules
 - Develop corrective tools for users with deficits, enabling rehabilitation and visual correcting

