Kppa Verification using KPP-generated code

```
Created: 2 June 2014

John C. Linford < jlinford@paratools.com>
Copyright (c) ParaTools, Inc.
```

Description

This notebook shows how differences in Kppa's default values vs. KPP impact the solution vector.

Instructions

- Compile and run the box_model_kppa_defaults and box_model_kpp221 codes
- 2. Execute all cells in this notebook.

```
In [20]: kppa_file = 'box_model_kppa_defaults/box_model.dat'
kpp_file = 'box_model_kpp221/box_model.dat'
```

Processing Script

Skip down for results

```
In [21]: %matplotlib inline
         import re
         from itertools import cycle
         from pylab import *
         from matplotlib.markers import MarkerStyle
         import matplotlib.pyplot as plt
         ATOL = 1.0e-3
         RTOL = 1.0e-4
         EPS = 2.2204460492503131E-016
         REGEX = re.compile('^([+\-]?)([0-9.]+)e?([+\-])([0-9.]+)$')
         def convert(s):
             Converts a number in Fortran E24.16 format to a Python float
             m = re.search(REGEX, s)
                 s = ''.join([m.group(1), m.group(2), 'e', m.group(3), m.group(4)])
             try:
                 fval = float(s)
             except ValueError:
                 print '=======> %s' % s
                 fval = 0.0
             if fval < EPS:</pre>
                 return 0.0
```

```
else:
        return fval
def read datfile(fname, tstart, cstart):
    Read data from fname beginning on line tstart with concentration data be
ginning in field cstart.
    Returns a tuple: (time, concentrations)
    Time data:
        [t0 t1 ... tN]
    Concentration data:
        [ [SPC 0(t0) SPC 1(t0) ... SPC N(t0)]
          [SPC_0(t1) SPC_1(t1) ... SPC_N(t1)]
          [SPC 0(tN) SPC 1(tN) ... SPC N(tN)]
    ,, ,, ,,
   t = []
    c = []
    with open(fname, 'r') as f:
        while tstart:
            f.readline()
            tstart -= 1
        for line in f:
            parts = line.split()
            t.append(convert(parts[0]))
            c.append([convert(x) for x in parts[cstart:]])
    return t, c
def plot dat(data, xlabel='Time', ylabel='Conc', names=None, titles=None):
    Draw a plot of data read from read datfile
    lines = ['-', '--', '-.', ':']
   markers = MarkerStyle.filled markers
    linecycler = cycle(lines)
   markercycler = cycle(markers)
    datastyles = ['%s%s' % (linecycler.next(), markercycler.next()) for in
datal
    ndat = len(data)
    nspec = len(data[0][1][0])
    x = data[0][0]
    for i in xrange(0, nspec):
        fig, ax = plt.subplots()
        for j, dat in enumerate(data):
            t, c = dat
            y = [ct[i]  for ct  in c]
            style = datastyles[j]
            if names:
                label = 's' % names[j]
            else:
                label = '%d' % j
            ax.plot(x, y, style, label=label)
        if ndat > 1:
            ax.legend(loc=2)
        ax.set xlabel(xlabel)
        ax.set_ylabel(ylabel)
```

```
if titles:
            ax.set title(titles[i])
        else:
            ax.set title('Species %d' % i)
        show()
def scaled err(x, y):
    if x or y:
        return abs(x-y)/max(x, y)
    elif x == y:
        return 0.0
    else:
        return float('inf')
def calc err(d0, d1):
    c0 = d0[1]
    c1 = d1[1]
    err = []
    nsteps = len(c0)
    nspec = len(c0[0])
    sigPow = 0.0
    errPow = 0.0
    errCount = 0.0
    for i in xrange(0, nsteps):
        e = []
        for j in xrange(0, nspec):
            x = c0[i][j]
            y = c1[i][j]
            sigPow += x*x
            errPow += (x-y)*(x-y)
            serr = scaled err(x,y)
            if serr > RTOL:
                print '%g > %g: %g, %g' % (serr, RTOL, x, y)
                errCount += 1
            e.append(serr)
        err.append(e)
    if errPow > 0:
        snr = 20 * log10(sigPow / errPow)
    else:
        snr = float('inf')
    print 'SNR: %fdb' % snr
    if errCount:
        print '%d samples with relative error > %g' % (errCount, RTOL)
    return d1[0], err
```

```
In [22]: kppa_dat = read_datfile(kppa_file, 0, 3)
kpp_dat = read_datfile(kpp_file, 1, 1)
```

Results: Relative Error and SNR

The following cell shows the relative error per concentration for each time step written to the .dat files. A signal-to-noise ratio and relative error count are shown below. As a rule of thumb, SNR >= 250 indicates solution match to five decimal places. This is a **relative error calculation**, so concentrations close to zero are likely to have high relative error but low absolute error.

```
In [23]: err dat = calc err(kpp dat, kppa dat)
         0.00221674 > 0.0001: 2.05728, 2.05272
         0.0211062 > 0.0001: 0.000348496, 0.00034114
         0.150604 > 0.0001: 0.0747899, 0.0880506
         0.0277657 > 0.0001: 0.0598564, 0.0581944
         0.36951 > 0.0001: 3.30119e-06, 5.23591e-06
         0.00482968 > 0.0001: 2.1192, 2.10896
         0.05623 > 0.0001: 0.00032153, 0.00030345
         0.13959 > 0.0001: 0.0621093, 0.0721857
         0.0797873 > 0.0001: 0.0491468, 0.0452255
         0.383539 > 0.0001: 3.0591e-06, 4.96236e-06
         0.00579982 > 0.0001: 2.17601, 2.16339
         0.0832211 > 0.0001: 0.000299782, 0.000274834
         0.133312 > 0.0001: 0.0523327, 0.0603824
         0.120216 > 0.0001: 0.0409397, 0.0360181
         0.395384 > 0.0001: 2.83006e-06, 4.68075e-06
         0.00641395 > 0.0001: 2.23097, 2.21666
         0.104782 > 0.0001: 0.000282194, 0.000252625
         0.131085 > 0.0001: 0.0446299, 0.0513628
         0.152911 > 0.0001: 0.0345554, 0.0292715
         0.406407 > 0.0001: 2.6217e-06, 4.41667e-06
         0.00740289 > 0.0001: 2.28502, 2.2681
         0.122053 > 0.0001: 0.000267879, 0.000235184
         0.129698 > 0.0001: 0.0384707, 0.0442038
         0.179207 > 0.0001: 0.0295247, 0.0242337
         0.412249 > 0.0001: 2.4366e-06, 4.14564e-06
         0.00911115 > 0.0001: 2.33818, 2.31688
         0.136307 > 0.0001: 0.000256132, 0.000221219
         0.129835 > 0.0001: 0.0334825, 0.0384784
         0.200604 > 0.0001: 0.0255088, 0.0203916
         0.415482 > 0.0001: 2.27423e-06, 3.89078e-06
         0.0116235 > 0.0001: 2.39016, 2.36238
         0.147694 > 0.0001: 0.000246406, 0.000210013
         0.130086 > 0.0001: 0.029398, 0.0337941
         0.217504 > 0.0001: 0.0222636, 0.0174212
         0.413788 > 0.0001: 2.13271e-06, 3.63812e-06
         0.0149003 > 0.0001: 2.44058, 2.40422
         0.157512 > 0.0001: 0.000238279, 0.000200747
         0.13134 > 0.0001: 0.0260216, 0.029956
         0.231266 > 0.0001: 0.0196128, 0.015077
         0.410343 > 0.0001: 2.00973e-06, 3.4083e-06
```

0.0187687 > 0.0001: 2.48913, 2.44241

```
0.165275 > 0.0001: 0.000231429, 0.000193179
0.131744 > 0.0001: 0.023208, 0.0267295
0.241939 > 0.0001: 0.0174269, 0.0132106
0.401837 > 0.0001: 1.90294e-06, 3.18131e-06
0.0230849 > 0.0001: 2.53555, 2.47701
0.170962 > 0.0001: 0.000225604, 0.000187034
0.131473 > 0.0001: 0.0208472, 0.024003
0.249164 > 0.0001: 0.0156098, 0.0117204
0.388206 > 0.0001: 1.81018e-06, 2.9588e-06
0.027665 > 0.0001: 2.57966, 2.5083
0.175056 > 0.0001: 0.00022061, 0.000181991
0.1306 > 0.0001: 0.0188548, 0.0216871
0.253738 > 0.0001: 0.0140887, 0.0105139
0.370573 > 0.0001: 1.7295e-06, 2.74773e-06
0.0323264 > 0.0001: 2.62139, 2.53665
0.177513 > 0.0001: 0.000216294, 0.000177899
0.128746 > 0.0001: 0.0171647, 0.0197011
0.255791 > 0.0001: 0.0128081, 0.00953188
0.348427 > 0.0001: 1.65921e-06, 2.54647e-06
0.0368994 > 0.0001: 2.66068, 2.5625
0.178427 > 0.0001: 0.000212538, 0.000174615
0.125706 > 0.0001: 0.015725, 0.0179859
0.255583 > 0.0001: 0.0117245, 0.00872789
0.321896 > 0.0001: 1.59785e-06, 2.35635e-06
0.041232 > 0.0001: 2.69755, 2.58632
0.177843 > 0.0001: 0.000209244, 0.000172032
0.121278 > 0.0001: 0.0144939, 0.0164943
0.253298 > 0.0001: 0.0108037, 0.00806718
0.291038 > 0.0001: 1.54417e-06, 2.17807e-06
0.0451921 > 0.0001: 2.73205, 2.60858
0.175825 > 0.0001: 0.000206339, 0.000170059
0.115309 > 0.0001: 0.013438, 0.0151895
0.249111 > 0.0001: 0.0100187, 0.00752292
0.256141 > 0.0001: 1.49709e-06, 2.0126e-06
0.0486667 > 0.0001: 2.76425, 2.62973
0.172444 > 0.0001: 0.000203759, 0.000168622
0.10768 > 0.0001: 0.0125298, 0.0140418
0.243176 > 0.0001: 0.00934736, 0.00707431
0.217693 > 0.0001: 1.45571e-06, 1.86079e-06
0.0515615 > 0.0001: 2.79425, 2.65018
0.167789 > 0.0001: 0.000201455, 0.000167653
0.0983088 > 0.0001: 0.0117467, 0.0130274
0.235637 > 0.0001: 0.00877192, 0.00670494
0.176461 > 0.0001: 1.41923e-06, 1.72333e-06
0.053799 > 0.0001: 2.82216, 2.67033
0.161964 > 0.0001: 0.000199386, 0.000167093
0.0871375 > 0.0001: 0.0110701, 0.0121268
0.226639 > 0.0001: 0.00827775, 0.00640168
0.133514 > 0.0001: 1.38699e-06, 1.6007e-06
0.0553174 > 0.0001: 2.84807, 2.69052
0.15509 > 0.0001: 0.000197519, 0.000166886
0.074127 > 0.0001: 0.0104845, 0.0113239
0.216343 > 0.0001: 0.00785273, 0.00615385
0.0902213 > 0.0001: 1.35842e-06, 1.49313e-06
0.0560706 > 0.0001: 2.87211, 2.71107
0.147303 > 0.0001: 0.000195826, 0.00016698
```

```
0.0592384 > 0.0001: 0.00997678, 0.010605
0.20494 > 0.0001: 0.00748682, 0.00595247
0.0481962 > 0.0001: 1.33303e-06, 1.40053e-06
0.0560276 > 0.0001: 2.89438, 2.73222
0.138758 > 0.0001: 0.000194283, 0.000167325
0.0424093 > 0.0001: 0.009536, 0.00995832
0.192686 > 0.0001: 0.00717159, 0.00578972
0.00916745 > 0.0001: 1.31039e-06, 1.32252e-06
0.0551734 > 0.0001: 2.915, 2.75417
0.129621 > 0.0001: 0.000192872, 0.000167872
0.023522 > 0.0001: 0.00915284, 0.00937332
0.179926 > 0.0001: 0.00689994, 0.00565846
0.0245812 > 0.0001: 1.29016e-06, 1.25845e-06
0.0535099 > 0.0001: 2.93408, 2.77707
0.120076 > 0.0001: 0.000191576, 0.000168572
0.00236897 > 0.0001: 0.00881943, 0.00884037
0.167135 > 0.0001: 0.0066659, 0.00555179
0.0508008 > 0.0001: 1.27201e-06, 1.20739e-06
0.0510571 > 0.0001: 2.9517, 2.801
0.110314 > 0.0001: 0.00019038, 0.000169379
0.020928 > 0.0001: 0.00852902, 0.00835053
0.154933 > 0.0001: 0.00646437, 0.00546283
0.0696517 > 0.0001: 1.25569e-06, 1.16823e-06
SNR: 55.557451db
120 samples with relative error > 0.0001
```

Results: Concentration vs. Time

The following charts show concentrations from both files vs. time. The species name is not recored in the .dat file, but you can replace None in the plot_dat call with an ordered list of names to set the plot titles.

In [24]: plot_dat([kppa_dat, kpp_dat], names=[kppa_file, kpp_file], titles=None)

Results: Error vs. Time

The following charts show relative error between the two data files vs. time.

In [25]: plot_dat([err_dat], ylabel='Relative Error')

In [25]: