MA 45401-H01 – Galois Theory Honors Homework 7 (Mar 14)

Exercise 7.1. Let $K=\mathbb{Q},\ M=\mathbb{Q}(2^{1/3})$ and $L=\mathbb{Q}(2^{1/3},\sqrt{3},i)$. Prove that L:K and L:M are normal but M:K is not normal.

Solution. We know that a field extension $F_1: F_2$ is normal iff it is a splitting field extension for some $f \in F_2[t]$.

Exercise 7.2.1. Let K-L be algebraic, $\alpha \in L$ and $\sigma : K \to \overline{K}$ be a homomorphism. Prove that μ_{α}^K is separable over K iff $\sigma(\mu_{\alpha}^K)$ is separable over $\sigma(K)$.

Solution. Since we have a homomorphism from $K \to \overline{K}$, we know that the extension $\overline{K}: K$ exists. Moreover, it is obviously algebraic by definition of \overline{K} . Thus there exists some homomorphism $\overline{\sigma}: \overline{K} \to \overline{K}$ extending σ , and we note that $\overline{\sigma}|_K = \sigma$. Since K - L is algebraic we know that μ_{α}^K exists. Further, since all coefficients of μ_{α}^K are in K and $K \subseteq \overline{K}$, we can say $\mu_{\alpha}^K(t) \in \overline{K}[t]$. By definition of algebraic closure, observe that we can split μ_{α}^K over $\overline{K}[t]$ in the following form:

$$\mu_{\alpha}^{K}(t) = \prod_{i=1}^{d} (t - \alpha_{i})^{r_{i}}, \quad r \in \mathbb{N}$$

Josh Park Prof. Shkredov

MA 45401-H01 – Galois Theory Honors Homework 7 (Mar 14)

Spring 2025 Page 3

Exercise 7.2.2. Let L: K be a splitting field for $f \in K[t]$. Prove that if f is separable, then L: K is separable.

Solution.

Josh Park MA 45401-H01 – Galois Theory Honors Prof. Shkredov Homework 7 (Mar 14) Spring 2025 Page 4

Exercise 7.3. Let L: K be a splitting field extension for a polynomial $f \in K[t]$. Then L: K is separable iff f is separable over K.

 \Box

Josh Park Prof. Shkredov

MA 45401-H01 – Galois Theory Honors Homework 7 (Mar 14)

Spring 2025 Page 5

Exercise 7.4. Let K-M-L be an algebraic extension. Prove that K-L is separable iff K-M and M-L are separable.

Solution.