PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-001465

(43)Date of publication of application: 08.01.2003

(51)Int.CI.

B23K 26/02 B23K 26/08 G02B 6/06

(21)Application number: 2001-187525

(71)Applicant: JAPAN ATOM ENERGY RES INST

KAWASAKI HEAVY IND LTD

FUJIKURA LTD

(22)Date of filing:

21.06.2001

(72)Inventor: OKA KIYOSHI

TAKEDA NOBUKAZU HAYAKAWA AKIRA TSUKINO TOKUYUKI

MORI SEIJI

TORITANI TOMOAKI
TSUMANUMA KOUJI

(54) LASER BEAM MACHINING SYSTEM USING COMPOSITE OPTICAL FIBER (57) Abstract:

PROBLEM TO BE SOLVED: To provide a laser beam machining system which uses a composite optical fiber, is used particularly in the field of welding and cutting using a laser and besides, is used in a medical treatment field using the laser and laser decontamination, such as surface cleaning, using the laser.

SOLUTION: This laser beam machining system has the composite optical fiber which is formed by bundling and integrating many fibers for image transmission to the circumference of a large-fiber for laser transmission for machining, an incident section which makes the laser beam for machining incident on the composite optical fiber, and exit section which emits the laser beam for machining transmitted by the composite optical fiber toward a workpiece, a laser synthesizing section which simultaneously makes the laser beam for illumination for illuminating the workpiece and the laser beam for machining incident on the composite optical fiber by watth.

on the composite optical fiber by utilizing a difference in wavelengths and an observation section for observing the image of the workpiece illuminated from the laser by separating the same from disturbance light, such as the light emitted in machining.

* NOTICES *

tartial English I ranslation For JP 2003 0014654 JPO and INPIT are not responsible for any

damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely. 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[Field of the Invention] Especially this system is used in laser decontamination of the surface cleaning which uses the therapy field of the medicine which uses laser, and laser about the laser-beam-machining system by which the compound-die optical fiber was used for this invention besides being used in the field of welding which uses laser, and

[0002]

[Description of the Prior Art] Conventionally, using a laser beam for processing of various ingredients as a non-contact tool is performed. And by having developed laser-beam-machining equipment using the optical fiber as optical system which transmits laser beam energy to a workpiece, the range which can apply laser beam machining spread much more and laser beam machining within piping of a minor diameter of it also became comparatively possible. For example, when the laser-beam-machining equipment using an optical fiber performs welding and cutting processing, the light guide of the laser beam for processing oscillated from laser can be carried out with an optical fiber, and various kinds of laser beam machining can be performed by condensing a laser beam on a workpiece using condensing optical

[0003] Moreover, similarly, the laser beam is used for medicine, in order to cut people's body tissue or to conduct the various operations including making it evaporate. And the range which can apply laser surgery came to be applied to breadth and endoscopic treatment much more by having developed the laser therapeutic device using the optical fiber as optical system which transmits laser beam energy to the inside of the body. For example, when you undergo an operation using an endoscope within organs, such as a digestive organ and a trachea, laser surgery can be performed by letting the light guide line for a racer therapy, i.e., an optical fiber, pass to the endoscope used now. [0004]

[Problem(s) to be Solved by the Invention] By laser beam machining in piping which must observe a processing location by fiberscope etc., it considers as the approach of making possible laser beam machining to the narrow part which cannot insert laser-beam-machining equipment and fiberscope in coincidence, and applies for "laser-beammachining equipment and the laser-beam-machining approach using this" (Japanese Patent Application No. No. 20260 [eight to]), and "laser-beam-machining equipment and the laser-beam-machining approach using this" (Japanese Patent Application No. No. 20261 [eight to]). If these equipments are applied, in the laser surgery in an endoscopic operation, it will become possible to constitute still more slimly the flexible arm introduced into the inside of the body. [0005] However, it also sets to this and is 1. During laser beam machining, it becomes the hindrance of image observation of strong luminescence accompanying processing. Moreover, when making the usual lights, such as a halogen lamp, transmit with a compound-die optical fiber and making them illuminate, since condensing nature is bad, the loss in the case of the incidence to this fiber is large.

[0006] 2) Since the illumination light is put in in the same Rhine as an image observation system, it becomes hindrance for the image information which the scattered light by optical system and the reflected light incorporate the middle. Which technical problem occurs.

[0007]

[Means for Solving the Problem] In order to solve said technical problem, in the laser-beam-machining system of this invention, together with the laser for processing, the core of a compound-die optical fiber is made to transmit, and the laser for lighting is irradiated at a workpiece. as this laser for lighting, the second harmonic (wavelength of 532nm) of LD excitation YAG laser etc. thinks -- having -- the difference in wavelength with the laser for processing -- using -both -- respectively -- an optical fiber -- a light guide -- carrying out -- wavelength selection optics, such as a die clo IKKU beam splitter, -- it is -- on the other hand (laser for processing) -- reflection -- on the other hand (laser for lighting), it can pile up as one beam correctly as transparency.

[0008] The image of the workpiece illuminated on single wavelength is transmitted with the fiber for picture

transmissions bundled with the perimeter of the fiber for laser transmission for processing in the compound-die optical fiber, returns through the incidence section (incident light study system) to a compound-die optical fiber, and carries out image formation with image observation equipment (monitoring device). Since the image which carries out ON light to image observation equipment in that case is observed through the interference filter which penetrates the light of the wavelength of the laser beam for lighting alternatively, disturbance, such as luminescence at the time of processing, can be removed very well, and a clear image is obtained. By fine tuning of the collimation optical system (lens system installed in the fiber outlet which transmits the laser beam for lighting) installed in outgoing radiation opening of the optical fiber transmitted from the body for lighting of laser, incidence of the laser beam for lighting can be correctly carried out to a compound-die optical fiber through the incident light study system for carrying out incidence of the laser for processing to a compound-die optical fiber, and the loss of the amount of illumination light hardly produces it.

[0009] Moreover, since it is made to transmit to a compound-die optical fiber, without once making laser for lighting into a ring beam using the optical system of a cone lens etc., and passing along the core of the condensing optical system of a compound-die optical fiber by other laser-beam-machining systems of this invention, it can prevent dispersion and the reflected light produced when letting the core of condensing optical system pass carrying out ON light to image observation equipment as a disturbance light. Moreover, a part of beam which carries out incidence of the laser for lighting to this fiber by carrying out incidence at an include angle almost equal to the angular aperture of the diameter fiber of macrostomia for laser transmission for processing falls out from the core of the diameter fiber of macrostomia for laser transmission for processing to a cladding layer, and it is spread as clad mode in which reflect the inside of a cladding layer and it progresses. Since outgoing radiation of the angular aperture is greatly carried out rather than what transmitted the core of a fiber, the illumination light spread as this clad mode has the effectiveness illuminated more to a large area to a workpiece.

[0010] Furthermore, in other laser-beam-machining systems of this invention, by making the numerical aperture of the diameter fiber of macrostomia for laser transmission for processing smaller than the numerical aperture of the fiber for picture transmissions, the rate of lighting transmission in clad mode can be enlarged more, and there is effectiveness which carries out wide range and equal lighting to a workpiece again. Moreover, by preparing the protective layer of a pure quartz between the cladding layer of the diameter fiber of macrostomia for laser transmission for processing, and the fiber for picture transmissions, it can hold down that a beam goes away outside from a cladding layer by higher order mode transformation to coincidence, and the effectiveness that more stable lighting can be performed is in it. [0011]

[Embodiment of the Invention] This invention shows the application which uses for it, carrying out a light guide to the compound-die optical fiber except being used in the field of welding and cutting in Table 1. [0012] (1) Laser surgery [0013]

[Table 1] 表 1. 治療の種類とその原理 (Optronics (1998) No. 8 p207より抜粋)

治療の種類	治臓の対象	主作用
レーザ角膜治療	網膜影響、止血	C
レーザ角膜形成術	园扮本城 正	A
レーザ血管形成構	冠状膨脹、下肢肋原狭窄	A SA P
レーザ資脈治療	剱康	CP
レーザ心筋治療	心前梗塞	A
レーザ血管吻合	動脈閉塞、狭窄外科治療手術	c
レーザ前立旅治療	前立原配大	AGF
レーザ砕石	尿路結石、胆石	M.P
レーザあざ取り	皮下血腫、母症	SAMC
レーザ吸収統治療	吸取道	٨
レーザ気管支統治療	肺進	CARP
レーザ胸腔鏡治療	気胸、肺臓胞	G.F
レーザ所化器内視鏡治療	早期實施、通行食道療、消化管出血	CAP
レーザ旋陸線治療	組織摘出 (組石症)	ACF
レーザ国際統治療	半月板損傷	AP
レーザ推画板治療	権団板ヘルニア	AF
レーザコルボ治療	子宫軍部癌 (頭部円錐切除)	A
レーザ曲料治療	う敵、保存、除病	A, C, P
シーザ製・鉄本番 54・2000年間	除 畫	Unknown

A: 熱毒散、SA: 選択的無数、C: 熱凝固、U: レーザ限射による機械的作用

P: 光化学的作用、P: ファイパの使用

[0014] The laser used for these laser surgery is shown in Table 2. Ultraviolet, visible, infrared rays, and various things can be used, time amount structure also has the thing of a continuous wave, and the thing of a pulse, and the wavelength of laser is used even to about [average output 100W] laser at the maximum. [0015]

Tab	le 2] 医療用	
表2.	医療用	レーザ

、 レーガ	颖	励起方法		放長 1	m	市里名	th 7	1-9 元	_	1	-	Tara
				1		1100				63		医療応用
200000000000000000000000000000000000000				1		華大出		7		1	v, w	1
Examer		放電局配1 7/		0.308		-				121	<u> </u>	
(XeCI)			•	0.556		# 100	mJ/	Pulse		可無	è	血管形成析-
Dye		ランプ 勘起液体	· 4°	0.504		Pulse				↓_		· PAK
(Coumar	(n)			0.55		R 100	TLY	Pulso		可能	:	動石政府衛
Nd : YA	3 +	Nd : YAG Ø		0.532		20W		3		_		
КТР		第2高級數						甲CW fi		可能		外科・内視験
A		放電局配が 20-	3,	0.488/0.5	14	4W	_	CW	WA)	P) an	_	W
Dye		ランプ 励起液体V	4.	0.585/0.5	90	2J/Puls		Puise				
(Rhodam	inel		I					· urad		可能		业管理
Dye .		シンプ 助配被体)・	4	0.63	7	献 10mJ	,	Pulse		W/46.		
(Ahodami	ne)	-	1		- 1	Putse	.	- 650	- [可能	- 1	POT
Ruby	- 1	プリ 副記画体/-	9" (0.694	_	8J/Puts	.	Pulsa	\dashv	5745	-+	0.00
Alexandrit		バ 助起国件ト・			-	2J/Pulse	-	Pulse	\rightarrow	可能		色素系皮膚促進
			- [ſ		' '	CASE	- 1	可能	- 1	色素系皮膚疾患
Lear Dio	10	作事体レーザ	10).55 ~ Q.8		IOW	٦,	w	-+	740		语石酸种情
Leser Diod	20 4	中学体レーザ	-	.78 ~ 0.8	-	wo	-+	w		可能		דםי
i	1		- 1		٦ [~~~	- [744	Т	可能		5科·内视镜下
			1		-1		- [- 1		*	所・低出力レー
Laser Diod	e 4	4件レーザ	10	.94 ~ 0.9		ow .	-		-4-		-	治療
					٦	~~	١	W	1	i E	9	料・内視鏡下
Nd : YAG	37	プの配出体ルーチ	٠,	.064	٦,	00W	+		4		1	
					-["	4444	- 1	W (Pulse	10	T in the	1	料・内視鏡下
Tm : YAG	177	プ島民国体ルヴ	12	01	-	東製品		120	4		- 146	
			1	••		ル製品	P	62 t	17	经	12	L
Ho : YAG	77	プ·助起副体》-1	2	06	21		+-		4		4	
	1	•	-				- 1	/se	गु	胞	,	料・内提展下手
Er : YAG	927	が 励起国体レーザ	2.6	M	114	Lee (80M	`		+_		折	
	1_				ł	186(20W		ise	*	गु		料・皮膚再維術
co.	被1	(DEST 21-4,	10.	.84	_	DW DW	+-	V (C)	+-		+	
					1		可 F	Y (Pulse	不	₽j	181	料平衡
Excimer	故	を物配が スレーザ	0.3	08	24	100mJ/	1		+		+-	
XeC1)				-	Pu		Pu	12 9	ग्र	E	1	B成情·TMR
Dye	7>7	防起放体レーザ	0.5	04	-	100114/	Put		-		+	RK
Coumarin)	L				1	86	"		1072	Ľ	相交	5破砕術
W : YAG .		: YAG Ø	0.5	12	207		100	W (Ex	-	b	-	
(TP	# 2	英国政					•	のn* 4ス)	্ য	5		・内復義下手
NF		助起ビルー	0.46	8/0.514	4W		CW		可能	-	拼	1
ye	זנל	助起製体シ・ザ	0.58	5/0.590	2.1/P	ealu	Puis		可能	_	_	
Prodemine)									~		44	-
ye	777	改起数体レーザ	0.63		R 10	Om./	Puls	•	71 00		_	
(hodamine)				1	Puls			Ĭ	可炮		POT	[
uby	177	発起団体レ・ デ	0.69		BJ/P							40.00

[0016] Application of a compound-die optical fiber is [in / except for two examples made impossible / use of the quartz fiber of Table 2 / all cases] possible. Moreover, the application to the operation under the endoscope with which the flexible nature of a light guide section and narrow diameter-ization become important can be considered. [0017] (2) Laser decontamination is raised as other applications of a laser decontamination compound-die optical fiber. The surface cleaning technique using laser accomplished progress with development of a laser technique, and has been established technically. They are surface affix removal of a supersonic fighter, surface contamination object removal of the surface washing of a classic masterpiece, and an important classic architecture object, etc. These are the techniques which can remove the pollutant which has adhered to the front face firmly and intricately, without hardly affecting the delicate substrate. Current and surface cleaning equipment already using laser are produced commercially, and [0018] Laser output 10-40W and 50 or less ns of pulse width, a fiber light guide is possible. [0018] Laser decontamination uses an ablation operation (operation which the part is changed [operation] into an explosively by condensing a laser beam on a target front face). When the rate of ablation in a laser pulse is compared, supposing the rate of ablation is proportional to decontamination efficiency, a laser pulse with more short pulse width is

effective in decontamination.

[0019] However, there is a problem that transmission of the laser power in a fiber becomes difficult, as a technical problem in that case. In an ultrashort pulse, it becomes high peaking capacity and own lightfastness of a fiber becomes a problem. Then, surface decontamination, such as a work of art with which comparatively low peak power is also effective also in decontamination, etc. is the concrete applications of a compound-die optical fiber. Hereafter, this [0020]

[Example] (Example 1) One example of this invention is explained based on drawing 1. the YAG laser beam of the laser for processing oscillated from the YAG laser oscillator should pass an optical fiber -- the compound-die optical fiber after having been introduced into the dike lock beam splitter which is the laser composition section, being reflected with the splitter, being introduced into the incident light study system to a compound-die optical fiber and being processed by the compound-die optical fiber possible [passage] -- ** -- it obtains and carries out, and it is introduced into the outgoing radiation section, condensing processing is carried out there, and a workpiece irradiates. [0021] the compound-die optical fiber after passing the optical fiber for an illumination-light guide, introducing the laser beam for lighting into the dike lock beam splitter, being added to the core of the above-mentioned laser for processing and enabling condensing optical processing of the optical fiber passage by the incident light study system -- it obtains and carries out, and is introduced into the outgoing radiation section, condensing processing is carried out with the laser for processing there, and a workpiece irradiates.

[0022] As the reflected light of the laser for an exposure after irradiating a workpiece, with the direction of radiation, an exposure image goes back, and is reached and projected on a monitoring device through the outgoing radiation section, a compound-die optical fiber, an incident light study system, a beam splitter, and an interference filter.

[0023] (Example 2) Other examples of this invention are explained based on drawing 2. the YAG laser beam of the laser for processing oscillated from the YAG laser oscillator should pass an optical fiber -- the compound-die optical fiber after having been introduced into the dike lock beam splitter, being reflected with the splitter, being introduced into the incident light study system to a compound-die fiber and enabling condensing optical processing of the passage to a compound-die optical fiber -- ** -- it obtains and carries out, and it is introduced into the outgoing radiation section, condensing processing is carried out there, and a workpiece irradiates.

[0024] The laser beam for lighting oscillated from the laser oscillation machine for lighting It is introduced into a cone lens system through the optical fiber for an illumination-light guide, and is changed into ring beam light, the compound-die optical fiber after being introduced into the dike lock beam splitter, being added to the laser for processing with the gestalt of ring light and being processed possible [optical fiber passage] by the incident light study system -- ** -- it obtains and carries out, and is introduced into the outgoing radiation section, condensing processing is carried out with the laser for processing there, and a workpiece irradiates. Since the laser beam for lighting is changed into ring beam light by the cone lens system, it can prevent dispersion produced when letting the core of an incident light study system pass, and the reflected light carrying out ON light to an image monitoring device as a disturbance light.

[0025] As the reflected light of the laser for an exposure after irradiating a workpiece, with the direction of radiation, an exposure image goes back, and is reached and projected on a monitoring device through the outgoing radiation section, a compound-die optical fiber, an incident light study system, a beam splitter, and an interference filter.

[0026] (Example 3) The compound-die optical fiber of this invention is explained based on <u>drawing 3</u>. The compound-die optical fiber consists of the core layers, the cladding layers, the protective layers, and the fibers for picture transmissions for laser transmission for processing. This laser for processing is transmitted through a core layer, and the laser beam for lighting is transmitted to a workpiece and a monitoring device through the fiber for picture transmissions.

[0027] Since the numerical aperture of this core layer is smaller than the numerical aperture of the fiber for picture transmissions, as a result of being able to enlarge the transmission rate of the laser beam for lighting, wide range lighting **** monitor processing can be carried out to a workpiece.

[0028] Moreover, since the protective layer is prepared between the core layer and the fiber for picture transmissions, it is prevented that the laser beam of a core layer invades into the fiber for picture transmissions.

[Effect of the Invention] In the laser-beam-machining system of this invention, make the core of a compound-die optical fiber transmit, irradiate the laser for lighting together with the laser for processing, at a workpiece, and the image of the illuminated workpiece Return with the fiber for picture transmissions bundled with the perimeter of the fiber for laser transmission for processing in the compound-die optical fiber, and image formation is carried out with image observation equipment (monitoring device). And since the image which carries out ON light to image observation equipment is observed through the interference filter which penetrates the light of the wavelength of the laser beam for lighting alternatively, it can remove disturbance, such as luminescence at the time of processing, very

well, and produces remarkable effectiveness peculiar to this invention that a clear image is obtained. In this case, since the laser beam for lighting can adjust the parallelism of a beam, the direction of outgoing radiation, and an outgoing radiation location by fine tuning of collimation optical system and they can carry out incidence to a compound-die optical fiber correctly through an incident light study system with the laser beam for processing, it produces remarkable effectiveness peculiar to this invention that the loss of the amount of illumination light hardly arises. . [0030] Moreover, in this invention, since it is made to transmit to a compound-die optical fiber, without once making laser for lighting into a ring beam using the optical system of a cone lens etc., and passing along the core of the condensing optical system of a compound-die optical fiber, remarkable effectiveness peculiar to this invention that it can protect produces that dispersion and the reflected light produced when letting the core of condensing optical system pass carry out ON light to image observation equipment as a disturbance light. [0031] Furthermore, there is remarkable effectiveness peculiar to this invention that the rate of lighting transmission of a cladding layer can be enlarged and wide range and equal lighting can be carried out to a workpiece again, by making the numerical aperture of the diameter fiber of macrostomia for laser transmission for processing smaller than the

numerical aperture of the fiber for picture transmissions in this invention.

[Translation done.]

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号 特開2003-1465

(P2003-1465A)

(43)公開日 平成15年1月8日(2003.1.8)

(51) Int.CL.7		臘別配号	ΡI		5	·-73-}*(多考)
B 2 3 K	•		B23K	26/02	С	2H046
	26/08			26/08	K.	4E068
G 0 2 B	6/06		G02B	6/08	Α	

審査請求 未請求 請求項の数3 OL (全 7 頁)

(21)出廣番号	特置2001-187525(P2001-187525)	(71)出職人	000004097
> .4			日本原子力研究所
22) 出顧日	平成13年8月21日(2001.6.21)		東京都千代田区内睾町2丁目2番2号
		(71)出版人	000000974
			川崎重工業株式会社
			兵庫原神戸市中央区東川崎町3丁目1番1
	i		号
		(71)出職人	000005186
			株式会社フジクラ
			東京都江東区木場1丁目5番1号
		(74)代理人	100089705
	·		弁理士 社本 一夫 (外5名)
			黑蛇 面 1 + 44

最終質に続く

(54) 【発明の名称】 複合型光ファイバを用いたレーザ加工システム

(57)【要約】

【課題】 複合型光ファイバを用いたレーザ加工システムに関するものであり、このシステムは、特に、レーザを使用する溶接、切断の分野において使用される以外に、レーザを使用する医療用の治療分野、及びレーザを使用する表面クリーニング等のレーザ除染において使用されている。

【解決手段】 加工用レーザ伝送用の大口径ファイバの周囲に多数の画像伝送用ファイバが集束され一体化されている複合型光ファイバと、加工用レーザ光を前記複合型光ファイバに入射する入射部と、複合型光ファイバにより伝送された加工用レーザ光を被加工物に向けて出射する出射部と、被加工物を照明する照明用レーザ光を前記複合型光ファイバに加工用レーザ光と波長の違いを利用して同時に入射するためのレーザ合成部と、レーザにより照明された被加工物の画像を加工時の発光等の外乱光と分離して観察するための観察部を備えている、レーザ加工システム。

【特許請求の範囲】

【請求項1】 加工用レーザ伝送用の大口径ファイバの 周囲に多数の画像伝送用ファイバが集束され一体化され ている複合型光ファイバと、加工用レーザ光を前記複合 型光ファイバに入射する入射部と、複合型光ファイバに より伝送された加工用レーザ光を被加工物に向けて出射 する出射部と、被加工物を照明する照明用レーザ光を前 記複合型光ファイバに加工用レーザ光と波長の違いを利 用して同時に入射するためのレーザ合成部と、レーザに より照明された被加工物の画像を加工時の発光等の外乱 10 用いたレーザ加工方法」(特顯平8-20260号)と 光と分離して観察するための観察部を備えていることを 特徴とするレーザ加工システム。

【請求項2】 請求項1記載の照明用レーザ光を一旦リ ングビームとし、加工用レーザ伝送用の大口径ファイバ の開口角とほぼ等しい角度で入射することを特徴とする 請求項1記載のレーザ加工システム。

【請求項3】 請求項1記載の複合型光ファイバの加工 用レーザ伝送用の大口径ファイバの開口数を面像伝送用 ファイバの開口数より小さくするとともに、加工用レー ザ伝送用の大口径ファイバのクラッド層と画像伝送用フ 20 ァイバの間に純粋石英の保護層を設けることを特徴とす る請求項1記載のレーザ加工システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、複合型光ファイバ を用いたレーザ加工システムに関するものであり、この システムは、特に、レーザを使用する溶接、切断の分野 において使用される以外に、レーザを使用する医療の治 療分野、及びレーザを使用する表面クリーニング等のレ ーザ除染において使用されている。

[0002]

【従来の技術】従来より、レーザ光を非接触の工具とし て各種材料の加工に利用することが行なわれている。そ して、レーザ光エネルギーを被加工物へ伝送する光学系 として光ファイバを用いたレーザ加工装置が開発された ことにより、レーザ加工の適用可能な範囲が一段と広が り、比較的小径の配管内でのレーザ加工も可能となっ た。例えば、光ファイバを用いたレーザ加工装置により 溶接や切断加工を行なう場合には、レーザから発振され た加工用レーザ光を光ファイバで導光し、集光光学系を 40 用いて被加工物上にレーザ光を集光することによって各 種のレーザ加工を行なうことができる。

【0003】また、同様にレーザ光は人の生体組織を切 断したり気化させたりすることを含む種々の手術を行う ために医療に利用されている。そして、レーザ光エネル ギーを体内へ伝送する光学系として光ファイバを用いた レーザ治療装置が開発されたことにより、レーザ治療の 適用可能な範囲が一段と広がり、内視鏡的治療に応用さ れるようになった。例えば、消化器、気管などの臓器内

いる内視鏡にレーサ治療用の導光路、すなわち光ファイ バを通すことにより、レーザ治療を行なうことができ ъ.

2

[0004]

【発明が解決しようとする課題】加工位置の観察をファ イバスコープ等で行わなければならないような配管内等 のレーザ加工で、レーザ加工装置とファイバスコープを 同時に挿入できないような狭隘な部位へのレーザ加工を 可能にする方法として、「レーザ加工装置およびこれを 「レーザ加工装置およびこれを用いたレーザ加工方法」 (特願平8-20261号)が出願されている。 これら の装置を応用すれば、内視鏡下手術におけるレーザ治療 において、体内に導入するフレキシブルアームをさらに スリムに構成することが可能となる。

【0005】但し、これにおいても、

1) レーザ加工中は、加工にともなう強い発光が画像 観察の妨げになる。また、ハロゲンランプ等の通常の可 視光を複合型光ファイバで伝送させて照明させる場合、 集光性が悪いため同ファイバへの入射の際のロスが大き

【0006】2) 照明光を画像観察系と同じラインで 入れているので途中光学系による散乱光、反射光が取り 込む画像情報にとって妨げとなる。などの課題がある。 [0007]

【課題を解決するための手段】前記課題を解決するため に、本発明のレーザ加工システムでは、加工用レーザと 一緒に、照明用レーザを複合型光ファイバの中心部を伝 送させ、被加工物に照射する。この照明用レーザとして 30 はLD励起YAGレーザの第二高調波(波長532n m)等が考えられ、加工用レーザとの波長の違いを利用 し、両者はそれぞれ光ファイバで導光してきて、ダイク ロイックビームスプリッター等の波長選択光学部品で、 一方(加工用レーザ)は反射、一方(照明用レーザ)は 透過として正確に一本のビームとして重ねることができ

【0008】単一波長で照明された被加工物の画像は、 複合型光ファイバの中で加工用レーザ伝送用のファイバ の周囲にバンドルされた画像伝送用ファイバで伝送さ れ、複合型光ファイバへの入射部 (入射光学系) を通し て戻ってきて西像観察装置(モニタ装置)で結像する。 その際、画像観察装置に入光する画像は、照明用レーザ 光の波長の光を選択的に透過する干渉フィルタを通して 観察されるので、加工時の発光等の外乱を非常によく除 去でき、鮮明な画像が得られる。照明用レーザ光は、照 明用レーザ本体から伝送してきた光ファイバの出射口に 設置する、コリメート光学系(照明用レーザ光を伝送す るファイバ出口に設置されるレンズ系) の微調整によ り、加工用レーザを複合型光ファイバに入射するための で内視鏡を用いて手術を行う場合には、現在用いられて 50 入射光学系を通して複合型光ファイバに正確に入射する

ことができ、照明光量のロスがほとんど生じない。 【0009】また、本発明の他のレーザ加工システムで は、照明用レーザをコーンレンズ等の光学系を用いて一 旦リングビームとし、複合型光ファイバの集光光学系の 中心を通ることなく複合型光ファイバに伝送させるの で、集光光学系の中心を通す場合に生じる散乱・反射光 が画像観察装置に外乱光として入光するのを防ぐことが 出来る。また、照明用レーザを、加工用レーザ伝送用の 大口径ファイバの開口角とほぼ等しい角度で入射するこ とにより、同ファイバに入射するビームの一部は加工用 10 る。 レーザ伝送用の大口径ファイバのコアからクラッド層に 抜け、クラッド層内を反射して進むクラッドモードとし、 て伝搬する。このクラッドモードとして伝搬した照明光 は、ファイバのコアを伝送したものよりも開口角が大き く出射されるので、被加工物に対してより広範囲に照明 する効果がある。

【0010】更にまた、本発明の他のレーザ加工システ*

4
*ムでは、加工用レーザ伝送用の大口径ファイバの開口数を画像伝送用ファイバの開口数より小さくすることにより、よりクラッドモードの照明伝送の割合を大きくでき、被加工物に対してより広範囲でかつ均等な照明をする効果がある。また、同時に、加工用レーザ伝送用の大口径ファイバのクラッド層と画像伝送用ファイバの間に純粋石英の保護層を設けることにより、より高次のモード変換によりクラッド層から外側にビームが出て行くのを抑えることができ、より安定な照明を行える効果がある

[0011]

【発明の実施の形態】本発明は、溶接、切断の分野において使用される以外の複合型光ファイバに導光して使用する応用例を表1に示す。

【0012】(1) レーザ治療 【0013】

【表1】

表 1. 治療の確衡とその課題 (Optronics (1998) No. 8 p207より抜粋)

· 集集	除 企	Unkrows
レーザ音科治療 レーザ酸	う触、保存、除痕	ACP
レーザコル水治療	子宫囊部癌(藥部円錐切除)	A
レーザ推同板治療	作団収ヘルニア	AY
レーザ国際統治会	华月板换摄	AF
レーザ施設的金	取無機出 (数石症)	ACF
レーザ派化器内視鏡治療	早期胃癌、进行食道癌、消化管出血	CAP
レーザ胸腔動治療	気膚、肺腫胞	CF
レーザ気管支援治療	跡痕	CAPF
レーザ機関競技療	ALDON	٨
レーザあざ取り	皮下血腫、鼻椎	SA M. C
レーザの石	原築館石、銀石	X.P
レーザ前立原治療	的立施肥大	ACP
レーザ血管物合	動脈副塞、狭窄外科治療甲術	c
レーザ心筋治療	心放便高	۸
レーザ展集治療	模聚	CP
レーザ血管形成柄	遊炊鄉鄉,下肢熟頭後帶	A SA P
レーザ角膜形成領	周钥率減正	A
レーザ角膜治療	新版·SSR、止血	C
治療の智慧	治療の対象	主作用

A:熱薬散、SA:盛択的蒸散、C:熱凝固、M:レーザ限射による破板的作用

【0014】これらのレーザ治療に使用するレーザを表 2に示す。レーザの波長は、紫外、可視、赤外とさまざ まなものが利用でき、時間構造も連続波のものとパルス のものとがあり、最大で平均出力100W程度のレーザ※

※まで利用される。

[0015]

【表2】

^{?:} 光化学的作用、F: ファイパの使用

6

ZX 2. M	無用レーザ				•				v
レープ機	質 除起方法	放貨	lm tra	tent	1-7 92		码	医療床用	_
1				は他の			שאו מ		
			ALC:	进力	1		使用		
Excimer	放電局限9.31	9 0.306	R 1	00mJ/	Pulse		可愛	AWDOW.	=
(NaCo)		L	Put			ı	-74	血管形成術・ ・PAK	п
Dye	ランプ 聯起被件)-9° 0.504	R 1	COTTLY	Pulsa	-	可能		_
(Coumers	יט		Puls		1		-146	的石號沖和	
NO : YAG	Nd:YAGO	0.532	80W	,	TOW (, 1	78	45	=
КТР	第2萬四波		- 1		Id-Iz OA	- 1	-1762	外科 - 內提到	lΈ
*	放電路記5 73	T 0.484/0	514 W	_	cw		TAC T	W street co	
Dye	ランプ 新起被体	-9' 0.585/0.	590 21/	uls e	Pulse	-	Tán .	現底集団	-
(Ahodamir	10)					- 1	7.00	血管器	
Dye	ランプ 動紀波体)	·· 9° 0.63	表 10	my V	Putee		T##	POT	_
(Ahodamir	(8)		Pulpe			- 1	•	I POI	
Ruby	ランプ 島配置体と	7 0.884	8J/P	rise .	Pulse	-	TAR	A	_
Alexandrite	ランプ聯起選件)	9 0.755	2VA	_	Pulso	-+-	TAR .	色素茶庄海奥	
				1		1		自肃系皮度的 能召献孙妍	
Leaser Diod		0.86 0	69 10W		cw	-		POT	_
Leser Diod	半導体レーザ	0.70 ~ 0	.62 60W	-	w	_	_	外件・内閣機	-
		1		1		1		僧・低出力レー	-
		L	- 1	- 1				™・Wロリレー 一治療	-7
Leser Diode	半等体レーザ	0.94 ~ 0.	98 BOW	- 6	w	1		サード ・ 内製菓子	-=
						1		16. 16. sept (7
DAY: bM	ランプ 単紀団体ト	1.084	100W	c	W (Pulse	7		N.A.·内视镜下	_
				- 1	ilib)	1		li .⊶. Norac i	+
Tm : YAG	ランプ 助配団体レー	2.01	市版製		Lása .	107	_	ži.	_
			126			1"	•	20	
to : YAG	ウンア島起館体 戸(2.08	21/	P	dse	774		(d . d . d . d . d	_
			Puise(8			"		料・内投機下	7
r: YAG	ランプ 政犯配体レート	2.94	14		dae	不		界・皮膚再慮	
	ļ		Putse(2	ow)			· •	44. 医周神经	"
XX.	数据数据3.35-4.	10.84	100W	C	V (Pulse	*	, la	科学術	4
					(E)	1	' ''	· ** 	-
xximer	数電別起ビスト・デ	0.308	Dt 100m	_	130	可能	-	會B成領 · TM	Ⅎ
(eCI)			Pulse		•	'`	-	PRIK	"
70	ランプ 除起液体レード	0.504	₩ t00m	4 20	00	ग्रह		石龍戸橋	4
coumartn)			Pulse		•	'-	-	N SECTION	ı
P DAY:	Nd : YAG Ø	0.532	20W	13.0	CW (Bt	an.	- 01	· 内提集下标	.1
	第2萬原設			W	ON' \$2)		海	Francisc L-4	1
	放電局配ドストイ	0.458/0.514		CW		可能	_	E U &	1
	シブ 発起要体レイ	0.565/0.500	2.VPulse	Put	14	可能			1
hodernine)		ļ							ı
	ランプ 政起政体シ・デ	0.53 ·	東 10mJ/	Put	10	可能	PD	T	ł
rodamine)			Pulse	,			1-		П
by	ンプ島記述体レイ	0.694	8J/Pulps	n.b	•	可整	61	系皮膚疾患	1
									1

【0016】表2の石英ファイバの使用が不可とした2 用が可能である。また、導光部のフレキシブル性や細径 化が重要となる内視鏡下の手術への応用が考えられる。 【0017】(2) レーザ除染

複合型光ファイバの他の応用例としてレーザ除染があげ られる。レーザを用いた表面クリーニング技術は、レー ザ技術の発達とともに進展を遂げ、技術的に確立されて きた。それは、超音速戦闘機の表面付着物除去や、古典 的名画の表面洗浄、重要古典建築物の表面汚染物除去等 である。これらは表面に強固かつ複雑に付着している汚

染物質を、その繊細な基板にほとんど影響を与えずに取*50 【0019】但し、その場合の課題として、ファイバで

* り去ることができる技術である。現在、既にレーザを用 例を除き、全てのケースにおいて複合型光ファイバの適 40 いた表面クリーニング装置は製品化されており、レーザ 出力10-40W、パルス幅50nsec以下である が、ファイバ導光可能なものである。

【0018】レーザ除染はアブレーション作用(レーザ 光をターゲット表面に集光することにより、その箇所を 高温、溶融状態にし、その表面のみを爆発的に蒸発気化 させる作用)を使用する。レーザパルスにおけるアブレ ーション率の比較をした場合、アブレーション率が除染 率に比例するとすると、よりパルス幅の短いレーザパル スが、除染に有効である。

のレーザパワーの伝送が困難になるという問題がある。 極短パルスでは、高いピーク出力となってしまい、ファ イバ自身の耐光性が問題になる。そこで、除染の中でも 比較的、低いピークパワーでも効果のある美術品等の表 面除染等は、複合型光ファイバの具体的な応用例であ る。以下、本発明を実施例に基づいて説明する。 【0020】

【実施例】(実施例1)本発明の一実施例を図1に基づいて説明する。YAGレーザ発振器から発振された加工用レーザのYAGレーザビームは、光ファイバを経てレーザ合成部であるダイクロックビームスプリッターに導入され、そのスプリッターで反射され、複合型光ファイバへの入射光学系に導入されて複合型光ファイバに通過可能に処理された後、複合型光ファイバをとうして出射部に導入され、そこで集光処理されて被加工物に照射される。

【0021】照明用レーザ光は、照明光ガイド用光ファイバを通過してダイクロックビームスプリッターに導入され、上記加工用レーザの中心部に加えられ、入射光学系で光ファイバ通過可能に集光光学処理された後、複合 20型光ファイバをとうして出射部に導入され、そこで加工用レーザとともに集光処理されて被加工物に照射される。

【0022】照射画像は、被加工物を照射した後の照射 用レーザの反射光として、照射方向とは逆行して出射 部、複合型光ファイバ、入射光学系、ビームスプリッタ 一及び干渉フィルターを経てモニタ装置に到達して映し 出される。

【0023】(実施例2)本発明の他の実施例を図2に基づいて説明する。YAGレーザ発振器から発振された 30加工用レーザのYAGレーザビームは、光ファイバを経てダイクロックビームスプリッターに導入され、そのスプリッターで反射され、複合型ファイバへの入射光学系に導入されて複合型光ファイバに通過可能に集光光学処理された後、複合型光ファイバをとうして出射部に導入され、そこで集光処理されて被加工物に照射される。

【0024】照明用レーザ発掘器から発振された照明用レーザ光は、照明光ガイド用光ファイバを経てコーンレンズ系に導入されてリングビーム光に変換され、ダイクロックビームスプリッターに導入され、リング光の形態 40で加工用レーザに加えられ、入射光学系で光ファイバ通過可能に処理された後、複合型光ファイバをとうして出射部に導入され、そこで加工用レーザとともに集光処理されて被加工物に照射される。照明用レーザ光は、コーンレンズ系でリングビーム光に変換されるので、入射光学系の中心を通す場合に生ずる散乱、反射光が外乱光として画像モニタ装置に入光するのを防ぐことができる。【0025】照射画像は、被加工物を照射した後の照射用レーザの反射光として、照射方向とは逆行して出射 複合型光ファイバ 1射光学器 ドークファイバ 1

一及び干渉フィルターを経てモニタ装置に到達して映し 出される。

【0026】(実施例3)本発明の複合型光ファイバを図3に基づいて説明する。複合型光ファイバは、加工用レーザ伝送用のコア層、クラッド層、保護層、及び画像伝送用ファイバから構成されている。この加工用レーザはコア層を経て伝送され、照明用レーザ光は画像伝送用ファイバを経て被加工物及びモニタ装置に伝送される。

用レーザのYAGレーザビームは、光ファイバを経てレ 10 の開口数が画像伝送用ファイバーザ合成部であるダイクロックビームスプリッターに導入され、そのスプリッターで反射され、複合型光ファイ たきくできる結果、被加工物に対して広範囲な照明及ぶ ドニタ処理をすることができる。

【0028】又、コア層と画像伝送用ファイバの間に保護層が設けられているので、コア層のレーザ光が画像伝送用ファイバに侵入することが防止されている。 【0029】

【発明の効果】本発明のレーザ加工システムでは、加工 用レーザと一緒に、照明用レーザを複合型光ファイバの 中心部を伝送させて被加工物に照射し、照明された被加 工物の画像は、複合型光ファイバの中で加工用レーザ伝 送用のファイバの周囲にバンドルされた画像伝送用ファ イバで戻ってきて画像観察装置(モニタ装置)で結像 し、且つ画像観察装置に入光する画像は、照明用レーザ 光の波長の光を選択的に透過する干渉フィルタを通して 観察されるので、加工時の発光等の外乱を非常によく除 去でき、鮮明な画像が得られる、という本発明に特有の 顕著な効果を生ずる。この場合には、照明用レーザ光 は、コリメート光学系の微調整によりビームの平行度、 出射方向、出射位置を調整し、加工用レーザ光とともに 入射光学系を通して複合型光ファイバに正確に入射する ことができるので、照明光量のロスがほとんど生じな い、という本発明に特有の顕著な効果を生ずる。。

【0030】又、本発明においては、照明用レーザをコーンレンズ等の光学系を用いて一旦リングビームとし、複合型光ファイバの集光光学系の中心を通ることなく複合型光ファイバに伝送させるので、集光光学系の中心を通す場合に生じる散乱・反射光が画像観察装置に外乱光として入光するのを防ぐことが出来る、という本発明に特有の顕著な効果が生する。

【0031】更に又、本発明においては、加工用レーザ 伝送用の大口径ファイバの開口数を画像伝送用ファイバの開口数より小さくすることにより、クラッド層の照明 伝送の割合を大きくでき、被加工物に対してより広範囲 でかつ均等な照明をすることができる、という本発明に 特有の顕著な効果がある。

【図面の簡単な説明】

【図1】 本発明の複合型光ファイバを用いたレーザ加 エシステムの実施例である。

が、複合型光ファイバ、入射光学系、ビームスプリッタ 50 エシステムの他の実施例である。

10

【図3】 本発明の複合型ファイバの断面を示す図であ る

【図3】

フロントページの続き

(72)発明者 岡 凛

茨城県那珂郡東海村白方字白根2番地の4 日本原子力研究所東海研究所内

(72)発明者 武田 信和

茨城県那珂郡東海村白方字白根2番地の4

日本原子力研究所東海研究所内

(72)発明者 早川 明良

千葉県野田市二ツ塚118番地 川崎重工業

株式会社野田工場内

(72)発明者 月野 徳之

東京都江東区南砂2丁目6番5号 川崎重

工業株式会社東京設計事務所內

(72)発明者 森 清治

東京都江東区南砂2丁目6番5号 川崎重

工業株式会社東京設計事務所內

(72)発明者 鳥谷 智晶

千葉県佐倉市六崎1440番地 株式会社フジ

クラ佐倉事業所内

(72)発明者 妻沼 孝司

千葉県佐倉市六崎1440番地 株式会社フジ

クラ佐倉事業所内

Fターム(参考) 2H046_AA03_AA14 AA15 AA62 AD00

AD03 AD18

4E068 AH01 CA17 CC02 CE08