US Patent & Trademark Office Patent Public Search | Text View

United States Patent Application Publication

Kind Code

August 07, 2025

Inventor(s)

August 07, 2025

Blair; Edward J. et al.

BATTERY-OPERATED WINDOW TREATMENT

Abstract

A motorized window treatment may include a roller tube, a flexible material attached to the roller tube, a motor drive unit, and mounting brackets configured to rotatably support respective ends of the roller tube. The roller tube may be operable between an operating position and an extended position. The extended position may include one or more ends of the roller tube being accessible while still attached to the mounting brackets. At least one of the mounting brackets may include a stationary portion, a sliding portion, and/or a translating portion. The translating portion and/or the sliding portion may be configured to translate the roller tube between the operating position and the extended position. The translating portion may define an attachment member and include an attachment aperture. The end of the roller tube may be accessible via the attachment aperture when the roller tube is in the extended position.

Inventors: Blair; Edward J. (Telford, PA), Block; Margaret A. (Allentown, PA), Bull; John

H. (Slatington, PA), Kirby; David A. (Zionsville, PA), Schmalz; Andrew P. (Macungie, PA), Steinmetz; John M. (Philadelphia, PA), Wiehe; Travis G.

(Sewickley, PA), Wu; Mailing Ren (Landsdale, PA)

Applicant: Lutron Technology Company LLC (Coopersburg, PA)

Family ID: 76624139

Assignee: Lutron Technology Company LLC (Coopersburg, PA)

Appl. No.: 19/188808

Filed: April 24, 2025

Related U.S. Application Data

parent US continuation 18374427 20230928 parent-grant-document US 12305445 child US 19188808

parent US continuation 17327680 20210522 parent-grant-document US 11788348 child US 18374427

us-provisional-application US 63170126 20210402 us-provisional-application US 63065813 20200814 us-provisional-application US 63028808 20200522

Publication Classification

Int. Cl.: E06B9/62 (20060101); E06B9/42 (20060101); E06B9/44 (20060101); E06B9/68 (20060101); E06B9/72 (20060101); H02J7/00 (20060101); H02K11/00 (20160101); H02K11/33 (20160101)

U.S. Cl.:

CPC **E06B9/62** (20130101); **E06B9/42** (20130101); **E06B9/44** (20130101); **H02K11/0094**

(20130101); **H02K11/33** (20160101); E06B2009/6809 (20130101); E06B9/72

(20130101); H02J7/0063 (20130101); H02J2207/20 (20200101)

Background/Summary

CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application is a continuation of U.S. non-provisional patent application Ser. No. 18/374,427, filed Sep. 28, 2023, which is a continuation of U.S. non-provisional patent application Ser. No. 17/327,680, filed May 22, 2021, which claims priority to U.S. provisional patent application No. 63/028,808, filed May 22, 2020, U.S. provisional patent application No. 63/065,813, filed Aug. 14, 2020, and U.S. provisional patent application No. 63/170,126, filed Apr. 2, 2021, which are incorporated herein by reference in their entirety.

BACKGROUND

[0002] A window treatment may be mounted in front of one or more windows, for example to prevent sunlight from entering a space and/or to provide privacy. Window treatments may include, for example, roller shades, roman shades, venetian blinds, or draperies. A roller shade typically includes a flexible shade fabric wound onto an elongated roller tube. Such a roller shade may include a weighted hembar located at a lower end of the shade fabric. The hembar may cause the shade fabric to hang in front of one or more windows over which the roller shade is mounted. [0003] A typical window treatment can be mounted to structure surrounding a window, such as a window frame. Such a window treatment may include brackets at opposed ends thereof. The brackets may be configured to operably support the roller tube, such that the flexible material may be raised and lowered. For example, the brackets may be configured to support respective ends of the roller tube. The brackets may be attached to structure, such as a wall, ceiling, window frame, or other structure.

[0004] Such a window treatment may be motorized. A motorized window treatment may include a roller tube, a motor, brackets, and electrical wiring. The components of the motorized window treatment, such as the brackets, the roller tube, electrical wiring, etc. may be concealed by a fascia or installed in a pocket out of view.

SUMMARY

[0005] As described herein, a motorized window treatment may include a roller tube, a flexible material attached to the roller tube, a motor drive unit, and mounting brackets configured to rotatably support respective ends of the roller tube. The roller tube may include a longitudinal axis. The roller tube may be operable between an operating position and an extended position. The operating position may include the roller tube being supported by and aligned with both mounting

brackets. The extended position may include one or more ends of the roller tube being accessible while still attached to the mounting brackets. The flexible material may be operable between a raised position and a lowered position. The motor drive unit may be disposed within a motor drive unit housing that is disposed within a cavity of the roller tube. The mounting brackets may be configured to be attached to a structure surrounding a window. At least one of the mounting brackets may include a stationary portion and a translating portion. The translating portion may be configured to translate the roller tube between the operating position and the extended position. The translating portion may include an attachment member and an attachment aperture. The attachment member may be configured to receive (e.g., captively receive) an end of the roller tube. The end of the roller tube may be accessible via the attachment aperture when the roller tube is in the extended position.

[0006] The motorized window treatment may include a plurality of batteries. The plurality of batteries may be accessible via the attachment aperture when the roller tube is in the extended position. The motorized window treatment may include a cap that is configured to be attached to the end of the roller tube (e.g., the motor drive unit housing). The cap may be configured to retain the plurality of batteries within the roller tube (e.g., the motor drive unit housing). The cap may include one or more wireless communication components (e.g., a radio-frequency (RF) transceiver) that are configured to communicate control messages with a remote control device. The motorized window treatment may include a ribbon cable that extends within the cavity of the roller tube (e.g., the motor drive unit housing). The ribbon cable may be attached to a control interface printed circuit board within the cap and/or a motor printed circuit board within the motor drive unit. The ribbon cable may include electrical conductors for power and/or control signals. The ribbon cable may be configured to conduct current from the plurality of batteries and/or transmit control messages between the one or more wireless communication components and the motor drive unit. The cap may include a disable actuator (e.g., button) that is configured to disable (e.g., deactivate) operation of the motor of the motor drive unit when the roller tube is not in the operating position. [0007] The motor drive unit may be configured to detect when one or more of the plurality of batteries has been removed. The motor drive unit may be configured to prevent rotation of the roller tube until the plurality of batteries have been installed and the roller tube is in the operating position. The motorized window treatment may include a battery holder that is configured to clamp the plurality of batteries together. The battery holder may be configured to be removed from the roller tube via the attachment aperture, for example, to replace the plurality of batteries. The battery holder may include a base and a head connected by an arm. The base may include an electrical contact. The head may include holder aperture that is configured to receive a nub of one of the plurality of batteries.

[0008] The motorized window treatment may include an inner bearing and an outer bearing captured between the roller tube and the at least one of the mounting brackets. The inner bearing may be configured to engage the motor drive unit housing such that the inner bearing is operatively coupled to the motor drive unit housing. The inner bearing may include a plurality of splines that are configured to be received by a plurality of grooves around a periphery of the motor drive unit housing. The outer bearing may be configured to engage the roller tube such that the outer bearing is operatively coupled to the roller tube.

[0009] A first bracket of the mounting brackets may be configured to slide out when the roller tube is in the extended position. A second bracket of the mounting brackets may be configured to remain stationary and define a fulcrum about which the roller tube pivots between the extended position and the operating position. The first mounting bracket may include a stationary portion, a sliding portion, and a translating portion. The stationary portion of the first bracket may include a base and an arm that extends from the base. The stationary portion may include one or more first slides that protrude from an inner surface of the arm. The sliding portion may be coupled between the stationary portion and the translating portion. The sliding portion may include one or more second

slides and one or more second channels that are configured to receive the one or more first slides of the stationary portion. The translating portion and the sliding portion may be configured to translate between the operating position and the extended position. The translating portion may include one or more first channels that are configured to receive the one or more second slides of the sliding portion. The sliding portion may include one or more locking tabs. The stationary portion may define one or more first cavities configured to receive a first locking tab of the one or more locking tabs. The arm may include a first operating position cavity that is configured to receive the first locking tab to hold the roller tube in the operating position. The arm may include a first extended position cavity that is configured to receive the first locking tab to lock the roller tube in the extended position. The first locking tab and the first operating position cavity may be configured to resist a threshold force in a radial direction (e.g., away from the structure). The first locking tab may be configured to release from the first operating position cavity when a force greater than the threshold force is applied in the radial direction such that the roller tube can be moved to the extended position. The first locking tab may be configured to slide along a first inner channel defined by the inner surface of the arm between the first operating position cavity and the first extended position cavity. The translating portion may define one or more second cavities that are configured to receive a second locking tab of the one or more locking tabs. The second locking tab may be configured to engage an inner surface of the translating portion when the roller tube is in the operating position. The translating portion may include a second operating position cavity that is configured to receive the second locking tab to hold the roller tube in the operating position. The translating portion may include a second extended position cavity that is configured to receive the second locking tab to hold the roller tube in the extended position. The second locking tab and the second operating position cavity are configured to resist a threshold force in the radial direction. The second locking tab may be configured to release from the second operating position cavity when a force greater than the threshold force is applied in the radial direction such that the roller tube can be moved to the extended position. The second locking tab may be configured to slide along a second inner channel defined by the translating portion between the second operating position cavity and the second extended position cavity.

[0010] The battery-powered motorized window treatment may include an idler shaft and an idler coupler. The idler shaft may be configured to support the idler end of the battery-powered motorized window treatment. The idler shaft may remain stationary as the roller tube rotates. The battery-powered motorized window treatment may include idler bearings. The idler bearings may be configured to support the roller tube while enabling the roller tube to rotate about the idler shaft. The idler coupler may be configured to operatively couple the roller tube to the idler bearings. [0011] The idler shaft may include an idler arm that extends within the first cavity of the roller tube. The idler shaft may include an idler base that is configured to be received within the second cavity of the second mounting bracket, wherein the idler base is the portion of the second end of the roller tube. The idler shaft may include a tapered portion between the idler arm and the idler base that defines an area with a reduced diameter. The idler base may be a polygon-shaped ball comprising a plurality of faces. Each of the plurality of faces may be curved along the longitudinal direction. The polygon-shaped ball may have eight faces having the same dimensions. The idler base may be polygon-shaped (e.g., square-shaped) and may comprise a plurality of faces (e.g., four). Each of the plurality of faces may be curved along the longitudinal direction. The idler base may define radius edges between each of the plurality of faces. The second cavity of the second mounting bracket may include a slot that is configured to receive a retaining clip. The retaining clip may be configured to retain the idler base within the second cavity. The retaining clip may be configured to prevent unmounting of the roller tube from the second mounting bracket in a longitudinal direction that is defined by the longitudinal axis.

[0012] The idler base may define a groove that is configured to receive a retaining ring. The second cavity may define a recess that is configured to partially receive the retaining ring to retain the idler

base within the second cavity. The retaining ring may be configured to prevent unmounting of the roller tube from the second mounting bracket in a longitudinal direction that is defined by the longitudinal axis. The second cavity may define a chamfered portion at an inner surface of the second mounting bracket. The chamfered portion may be configured to provide clearance for the idler shaft roller tube is operated between the extended position and the operating position. The chamfered portion may be configured to prevent the idler shaft from contacting the second mounting bracket when the roller tube is in the extended position.

[0013] The battery-powered motorized window treatment may include a spring assist assembly. The spring assist assembly may include a spring (e.g., a constant-force spring), a bracket coupling portion, and a roller tube coupling portion. The bracket coupling portion may be attached to the idler shaft such that the bracket coupling portion remains stationary as the roller tube rotates. The roller tube coupling portion may be operatively coupled to the roller tube such that the roller tube coupling portion rotates with the roller tube. The spring may be attached to the bracket coupling portion at one end and to the roller tube coupling portion at the other end. The spring may be configured to coil and uncoil as the roller tube rotates (e.g., depending on the direction of rotation). The spring assist assembly may be configured to assist the motor drive unit operate the battery-powered motorized window treatment. For example, the spring assist assembly may reduce the torque required from the motor drive unit to raise and/or lower the covering material of the battery-powered motorized window treatment.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] FIG. **1**A is an example motorized window treatment.

[0015] FIG. **1**B is a perspective view of an example battery-powered motorized window treatment with one end of the roller tube in a pivoted position.

[0016] FIG. **2**A is a perspective view of another example battery-powered motorized window treatment shown with the batteries removed.

[0017] FIG. **2**B is another perspective view of the example battery-powered motorized window treatment shown in FIG. **2**A with the batteries removed.

[0018] FIG. **3**A is a perspective view of another example battery-powered motorized window treatment where the batteries are removed one at a time.

[0019] FIG. **3**B is another perspective view of the example battery-powered motorized window treatment shown in FIG. **3**A.

[0020] FIG. **4**A is a perspective view of another example battery-powered motorized window treatment with a tube configured to retain the batteries.

[0021] FIG. **4**B is another perspective view of the example battery-powered motorized window treatment shown in FIG. **4**A.

[0022] FIG. **5**A is a perspective view of another example battery-powered motorized window treatment with a tube configured to retain the batteries.

[0023] FIG. **5**B is a perspective view of a battery holder of the example battery-powered motorized window treatment shown in FIG. **5**A.

[0024] FIG. **6** is a perspective view of another example battery-powered motorized window treatment with a motor housing partially removed from the roller tube to access the batteries. [0025] FIG. **7** is a perspective view of another example battery-powered motorized window treatment with both ends of the roller tube in a pivoted position.

[0026] FIG. **8**A is a front cross-section view of another example battery-powered motorized window treatment taken through the center of a roller tube of the motorized window treatment. [0027] FIG. **8**B is an enlarged partial view of the example battery-powered motorized window

- treatment shown in FIG. 8A.
- [0028] FIG. **9**A is an enlarged cross-section view of an idler end of the example battery-powered motorized window treatment shown in FIG. **8**A.
- [0029] FIG. **9**B is a top view of the enlarged cross-section view of the idler end of the example battery-powered motorized window treatment shown in FIG. **9**A.
- [0030] FIG. **9**C is a perspective view of the idler end of the example battery-powered motorized window treatment shown in FIG. **9**A
- [0031] FIG. **10** is a left-side view of the example battery-powered motorized window treatment shown in FIG. **8**A.
- [0032] FIG. **11** is a right-side view of the example battery-powered motorized window treatment shown in FIG. **8**A.
- [0033] FIG. **12**A is a front perspective view of an example mounting bracket for mounting a battery-powered motorized window treatment (e.g., to a vertical surface, such as a wall).
- [0034] FIG. **12**B is a rear perspective view of the example mounting bracket shown in FIG. **12**A.
- [0035] FIG. **13**A is a front perspective view of the example mounting bracket shown in FIG. **12**A in an extended position.
- [0036] FIG. **13**B is a rear perspective view of the example mounting bracket shown in FIG. **12**A in the extended position.
- [0037] FIG. **14**A is a front perspective view of another example mounting bracket for mounting a battery-powered motorized window treatment (e.g., to a horizontal surface, such as a ceiling).
- [0038] FIG. **14**B is a rear perspective view of the example mounting bracket shown in FIG. **14**A.
- [0039] FIG. **15**A is a front perspective view of the example mounting bracket shown in FIG. **14**A in an extended position.
- [0040] FIG. **15**B is a rear perspective view of the example mounting bracket shown in FIG. **15**A in the extended position.
- [0041] FIG. **16** is a front perspective view of another example mounting bracket for use with a battery-powered motorized window treatment.
- [0042] FIG. **17**A is a front perspective view of an example mounting bracket for mounting a battery-powered motorized window treatment (e.g., to a vertical surface, such as a wall).
- [0043] FIG. 17B is a rear perspective view of the example mounting bracket shown in FIG. 17A.
- [0044] FIG. **18**A is a front perspective view of the example mounting bracket shown in FIG. **17**A in an extended position.
- [0045] FIG. **18**B is a rear perspective view of the example mounting bracket shown in FIG. **17**A in the extended position.
- [0046] FIG. **19**A is a front exploded view of the mounting bracket shown in FIG. **17**A.
- [0047] FIG. **19**B is a rear exploded view of the mounting bracket shown in FIG. **17**A.
- [0048] FIG. **20**A is a front perspective view of another example mounting bracket for mounting a battery-powered motorized window treatment (e.g., to a horizontal surface, such as a ceiling).
- [0049] FIG. **20**B is a rear perspective view of the example mounting bracket shown in FIG. **20**A.
- [0050] FIG. **21**A is a front perspective view of the example mounting bracket shown in FIG. **20**A in an extended position.
- [0051] FIG. **21**B is a rear perspective view of the example mounting bracket shown in FIG. **20**A in the extended position.
- [0052] FIG. **22**A is a front exploded view of the mounting bracket shown in FIG. **20**A.
- [0053] FIG. **22**B is a rear exploded view of the mounting bracket shown in FIG. **20**A.
- [0054] FIG. **23**A is a front perspective view of another example mounting bracket for mounting a battery-powered motorized window treatment (e.g., to a vertical surface, such as a window jamb).
- [0055] FIG. **23**B is a rear perspective view of the example mounting bracket shown in FIG. **23**A.
- [0056] FIG. **24**A is a front perspective view of the example mounting bracket shown in FIG. **23**A in an extended position.

- [0057] FIG. **24**B is a rear perspective view of the example mounting bracket shown in FIG. **23**A in the extended position.
- [0058] FIG. **25**A is a front exploded view of the mounting bracket shown in FIG. **23**A.
- [0059] FIG. **25**B is a rear exploded view of the mounting bracket shown in FIG. **23**A.
- [0060] FIG. **26**A is a front perspective view of an example mounting bracket for mounting a battery-powered motorized window treatment (e.g., to a vertical surface, such as a wall).
- [0061] FIG. **26**B is a front perspective view of another example mounting bracket for mounting a battery-powered motorized window treatment.
- [0062] FIG. **26**C is a front perspective view of the example mounting bracket shown in FIG. **26**B in an extended position.
- [0063] FIG. **27**A is a front perspective view of an idler end of an example battery-powered motorized window treatment.
- [0064] FIG. **27**B is a front perspective view of another example mounting bracket for use with the example battery-powered motorized window treatment shown in FIG. **27**A.
- [0065] FIG. **27**C is a front cross-section view of the idler end of the example battery-powered motorized window treatment shown in FIG. **27**A.
- [0066] FIG. **28**A is a front perspective view of an idler end of an example battery-powered motorized window treatment.
- [0067] FIG. **28**B is a front perspective view of another example mounting bracket for use with the example battery-powered motorized window treatment shown in FIG. **28**A.
- [0068] FIG. **28**C is a front cross-section view of the idler end of the example battery-powered motorized window treatment shown in FIG. **28**A.
- [0069] FIG. **28**D is a right-side cross-section view of the idler end of the example battery-powered motorized window treatment shown in FIG. **28**A.
- [0070] FIG. **29** is a block diagram of an example motor drive unit of a battery-powered motorized window treatment.
- [0071] FIG. **30** is a flowchart depicting an example method for controlling a motor drive unit of a motorized window treatment.

DETAILED DESCRIPTION

[0072] FIGS. 1A and 1B depict an example motorized window treatment 100 (e.g., a batterypowered motorized window treatment system) that includes a roller tube 110 and a flexible material **120** (e.g., a covering material) windingly attached to the roller tube **110**. The motorized window treatment **100** may be a window treatment assembly that includes a roller tube assembly **111** and one or more mounting brackets **130**A, **130**B. The roller tube assembly **111** may include a roller tube **110**, a flexible material **120**, a motor drive unit **151** at a first end **112** of the roller tube assembly **111**, and an idler end (not shown) at a second end **114** of the roller tube assembly **111**. The mounting brackets **130**A, **130**B may be configured to be coupled to or otherwise mounted to a structure. For example, each of the mounting brackets **130**A, **130**B may be configured to be mounted to (e.g., attached to) a window frame (e.g., to a head jamb or side jambs of the window frame), a wall, a ceiling, or other structure, such that the motorized window treatment **100** is mounted proximate to an opening (e.g., over the opening or in the opening), such as a window for example. The mounting brackets **130**A, **130**B may be configured to be mounted to a vertical structure (e.g., wall-mounted to a wall as shown in FIG. 1A) and/or mounted to a horizontal structure (e.g., ceiling-mounted to a ceiling). For example, the mounting brackets **130**A, **130**B may be rotated 90 degrees from what is shown in FIG. 1A.

[0073] The roller tube **110** may operate as a rotational element of the motorized window treatment **100**. The roller tube **110** may be elongate along a longitudinal direction L and rotatably mounted (e.g., rotatably supported) by the mounting brackets **130**. The roller tube **110** may define a longitudinal axis **116**. The longitudinal axis **116** may extend along the longitudinal direction L. The mounting bracket **130**A may extend from the structure in a radial direction R, as shown in FIG. **1B**.

It should be appreciated that when the mounting brackets **130** are ceiling-mounted, the mounting bracket **130**A may extend from the structure in a transverse direction T. The radial direction R may be defined as a direction perpendicular to the structure and the longitudinal axis **116**. The flexible material **120** may be windingly attached to the roller tube **110**, such that rotation of the roller tube **110** causes the flexible material **120** to wind around or unwind from the roller tube **110** along a transverse direction T that extends perpendicular to the longitudinal direction L. For example, rotation of the roller tube **110** may cause the flexible material **120** to move between a raised (e.g., open) position (e.g., as shown in FIG. **1**A) and a lowered (e.g., closed) position along the transverse direction T.

[0074] The roller tube **110** may be made of aluminum. The roller tube **110** may be a low-deflection roller tube and may be made of a material that has high strength and low density, such as carbon fiber. The roller tube **110** may have, for example, a diameter of approximately two inches. For example, the roller tube **110** may exhibit a deflection of less than ¼ of an inch when the flexible material **120** has a length of 12 feet and a width of 12 feet (e.g., and the roller tube **110** has a corresponding width of 12 feet and the diameter is two inches). Examples of low-deflection roller tubes are described in greater detail in U.S. Patent Application Publication No. 2016/0326801, published Nov. 10, 2016, entitled LOW-DEFLECTION ROLLER SHADE TUBE FOR LARGE OPENINGS, the entire disclosure of which is hereby incorporated by reference.

[0075] The flexible material **120** may include a first end (e.g., a top or upper end) that is coupled to the roller tube **110** and a second end (e.g., a bottom or lower end) that is coupled to a hembar **140**. The hembar **140** may be configured, for example weighted, to cause the flexible material **120** to hang vertically. Rotation of the roller tube **110** may cause the hembar **140** to move toward or away from the roller tube **110** between the raised and lowered positions.

[0076] The flexible material **120** may be any suitable material, or form any combination of materials. For example, the flexible material **120** may be "scrim," woven cloth, non-woven material, light-control film, screen, and/or mesh. The motorized window treatment **100** may be any type of window treatment. For example, the motorized window treatment **100** may be a roller shade as illustrated, a soft sheer shade, a drapery, a cellular shade, a Roman shade, or a Venetian blind. As shown, the flexible material **120** may be a material suitable for use as a shade fabric, and may be alternatively referred to as a flexible material. The flexible material **120** is not limited to shade fabric. For example, in accordance with an alternative implementation of the motorized window treatment **100** as a retractable projection screen, the flexible material **120** may be a material suitable for displaying images projected onto the flexible material **120**.

[0077] The motorized window treatment **100** may include a drive assembly (e.g., such as the motor drive unit **690** shown in FIG. **8**A). The drive assembly may at least partially be disposed within the roller tube **110**. For example, the drive assembly may be retained within a motor drive unit housing (e.g., such as the motor drive unit housing **680** shown in FIG. **8**A) that is received within the roller tube **110**. The drive assembly may include a control circuit that may include a microprocessor and may be mounted to a printed circuit board. The drive assembly may be powered by a power source (e.g., an alternating-current or direct-current power source) provided by electrical wiring and/or batteries (e.g., as shown in FIGS. 2A-6). The drive assembly may be operably coupled to the roller tube **110** such that when the drive assembly is actuated, the roller tube **110** rotates. The drive assembly may be configured to rotate the roller tube **110** of the example motorized window treatment **100** such that the flexible material **120** is operable between the raised position and the lowered position. The drive assembly may be configured to rotate the roller tube **110** while reducing noise generated by the drive assembly (e.g., noise generated by one or more gear stages of the drive assembly). Examples of drive assemblies for motorized window treatments are described in greater detail in commonly-assigned U.S. Pat. No. 6,497,267, issued Dec. 24, 2002, entitled MOTORIZED WINDOW SHADE WITH ULTRAQUIET MOTOR DRIVE AND ESD PROTECTION, and U.S. Pat. No. 9,598,901, issued Mar. 21, 2017, entitled QUIET MOTORIZED

WINDOW TREATMENT SYSTEM, the entire disclosures of which are hereby incorporated by reference.

[0078] The motorized window treatment **100** may be configured to enable access to one or more ends of the roller tube **110** while remaining secured to the mounting brackets **130**A, **130**B. For example, the motorized window treatment **100** may be adjusted (e.g., pivoted or slid) between an operating position (e.g., as shown in FIG. **1A**) to an extended position (e.g., as shown in FIG. **1B**) while secured to the mounting brackets **130**A, **130**B. The operating position may be defined as a position in which the roller tube **110** is supported by and aligned with both mounting brackets **130**A, **130**B. The extended position may be defined as a position in which one or more ends of the roller tube **110** are accessible while still attached to the brackets **130**A, **130**B. Operation of the motorized window treatment **100** may be disabled when it is adjusted between the operating position and the extended position. For example, operation of the motorized window treatment **100** may be disabled at some point between the operating position and the extended position, for example, when the motorized window treatment **100** exits the operating position. Operation of the motorized window treatment **100** may be enabled when it enters the operating position.

[0079] When in the extended position, the one or more ends of the roller tube **110** may be accessed, for example, to replace batteries, adjust one or more settings, make an electrical connection, repair one or more components, and/or the like. One or more of the mounting brackets **130**A, **130**B may enable an end of the roller tube **110** to be accessed when the motorized window treatment is in the extended position. One or more of the mounting brackets **130**A, **130**B may include a sliding portion to enable the end of the roller tube **110** to be accessible. For example, a first portion (e.g., sliding portion) of one or more of the mounting brackets **130**A, **130**B may extend from a second portion (e.g., fixed portion). For example, a sliding portion of one or more of the mounting brackets **130**A, **130**B may be adjusted with respect to a fixed portion, for example, to expose a respective end of the roller tube **110**.

[0080] One end of the roller tube may slide out when the motorized window treatment is in the extended position. For example, one of the mounting brackets (e.g., mounting bracket 130A) may be configured to slide out and the other one of the mounting brackets (e.g., mounting bracket 130B) may remain stationary when the motorized window treatment 100 (e.g., the roller tube 110) is in the extended position, for example, as shown in FIG. 1B. The extended position of the motorized window treatment 100 may include a first end 112 of the roller tube assembly 111 proximate to a first mounting bracket (e.g., mounting bracket 130A) being further from a window and/or the structure to which the first mounting bracket is anchored than when the motorized window treatment 100 is in the operating position. A second end 114 (e.g., opposite the first end 112) of the roller tube assembly 111 proximate to the second mounting bracket (e.g., mounting bracket 130B) may remain substantially fixed when the motorized window treatment 100 is in the extended position, for example, as shown in FIG. 1B. Stated differently, the roller tube 110 may pivot between the operating position and the extended position. The second end 114 of the roller tube 110 and the mounting bracket 130B may define a fulcrum about which the motorized window treatment 100 (e.g., the roller tube 110) pivots.

[0081] Alternatively, both ends of the roller tube may slide out when the motorized window treatment is in the extended position. For example, both of the mounting brackets **130**A, **130**B may be configured to slide out. That is, both of the mounting brackets **130**A, **130**B may include sliding portions. In this configuration, both the first end **112** and the second end **114** may be further from the window and/or the structure when the motorized window treatment **100** is in the extended position. Stated differently, the motorized window treatment **100** may slide between the operating position and the extended position. When both ends of the roller tube are configured to slide out, two people may be required to operate the motorized window treatment **100** between the operating

position and the extended position.

[0082] When the motorized window treatment **100** is in the extended position, a **(150** of the motor drive unit **151** (e.g., the cap **250** shown in FIGS. **2A** and **2B**) may be exposed (e.g., accessible). The motor drive unit housing end **150** may be located proximate to the first end **112** of the roller tube assembly **111**. The motor drive unit housing end **150** may cover a cavity of the roller tube **110**. The motor drive unit housing end **150** may be configured to be removably secured to the roller tube **110** (e.g., the first end **112** of the roller tube assembly **111**). For example, the motor drive unit housing end **150** may be configured to be secured within the cavity. The motor drive unit housing end **150** may be configured to retain one or more components (e.g., such as the batteries **260** shown in FIGS. **2A** and **2B**).

[0083] The motor drive unit housing end **150** may include a control button **152**. The control button **152** may be backlit. For example, the control button **152** may include a light pipe (e.g., may be translucent or transparent) that is illuminated by a light emitting diode (LED) within the motor drive unit housing. The control button **152** may be configured to enable a user to configure (e.g., change one or more settings, associate, etc.) the drive assembly of the motorized window treatment **100**. For example, the control button **152** may be configured to change one or more wireless communication settings and/or one or more drive settings. The control button **152** may be configured to enable a user to pair the motorized window treatment **100** with a remote control device to allow for wireless communication between the remote control device and a wireless communication circuit (e.g., an RF transceiver) in the motor drive unit housing end **150**. The control button **152** may be configured to provide feedback (e.g., a status indication) to a user. For example, the control button **152** may be configured to flash and/or change colors to provide the status indication to the user. The status indication may indicate when the motorized window treatment **100** is in a programming mode.

[0084] The motor drive unit housing end **150** may include a disable actuator **154** for detecting when the roller tube **110** is not in the operating position. The drive assembly may be deactivated (e.g., automatically deactivated) when the roller tube **110** is not in the operating position. For example, the disable actuator **154** may be configured to deactivate the drive assembly such that the covering material cannot be raised or lowered when the roller tube **110** is not in the operating position. The disable actuator **154** may disable the operation of a motor of the drive assembly, for example, when the roller tube **110** is pivoted (e.g., or slid) from the operating position to the extended position. The disable actuator **154** may enable the operation of the motor when the roller tube **110** reaches the operating position. For example, the disable actuator **154** may be a button, a switch, and/or the like.

[0085] In addition, the motor drive unit housing end **150** may also comprise a position detect circuit (not shown) for detecting when the roller tube **110** is not in the operating position and deactivating (e.g., automatically deactivating) the drive assembly (e.g., rather than including the disable actuator **154**). For example, the position detect circuit may comprise a magnetic sensing circuit (e.g., a Hall-effect sensor circuit) configured to detect when the motor drive unit housing end **150** is in the extended position and not in close proximity to a magnet (e.g., such as magnet **675** shown in FIG. **8**B) located inside of the mounting bracket **130**A. For example, the position detect circuit may detect proximity of the magnet to the motor drive unit housing end **150**. The position detect circuit may be configured to disable the drive assembly such that the covering material cannot be raised or lowered when the roller tube **110** is not in the operating position. The position detect circuit may disable a motor of the drive assembly, for example, when the roller tube **110** is pivoted (e.g., or slid) from the operating position to the extended position. The position detect circuit may enable the motor when the roller tube **110** reaches the operating position. For example, the position detect circuit may also comprise an IR sensor, a switch, and/or the like. [0086] FIGS. 2A and 2B depict an example battery-powered motorized window treatment 200 (e.g., such as the motorized window treatment 100 shown in FIGS. 1A and 1B). The batterypowered motorized window treatment **200** may include a roller tube **210** (e.g., such the roller tube 110 shown in FIG. 1A), a flexible material 220 (e.g., a covering material) windingly attached to the roller tube **210**, a drive assembly (e.g., such as the motor drive unit **690** shown in FIG. **8**A), and a plurality of batteries **260**. The battery-powered motorized window treatment **200** may further include a hembar **240** (e.g., such as the hembar **140** shown in FIGS. **1**A and **1**B) and one or more mounting brackets **230**A, **230**B (e.g., such as the mounting brackets **130**A, **130**B shown in FIGS. **1**A and **1**B). The battery-powered motorized window treatment **200** (e.g., the drive assembly) may be powered by the batteries **260**. Although the battery-powered motorized window treatment **200** is shown with four batteries **260**, it should be appreciated that the battery-powered motorized window treatment **200** may include a greater or smaller number of batteries. The roller tube **210** may define a longitudinal axis **216**. The longitudinal axis **216** may extend along a longitudinal direction L. [0087] The battery-powered motorized window treatment **200** may include a cap **250** that is configured to retain the batteries **260** within the roller tube **210**. The cap **250** may be a part of the drive assembly. The cap **250** may define an outer surface **252** with a button **254**. The button **254** may be backlit. For example, the button **254** may include a light pipe that is illuminated by an LED within the cap **250**. The cap **250** may include a wireless communication circuit (e.g., such as the wireless communication circuit **1542** shown in FIG. **29**). The button **254** may be configured to enable a user to configure (e.g., change one or more settings, associate, etc.) the drive assembly of the battery-powered motorized window treatment **200**. The button **254** may be configured to enable a user to pair the battery-powered motorized window treatment **200** with a remote control device to allow for wireless communication between the remote control device and the wireless communication circuit in the cap **250**. The button **254** may be configured to provide a status indication to a user. For example, the button **254** may be configured to flash and/or change colors to provide the status indication to the user. The button **254** may indicate when the battery-powered motorized window treatment **200** is in a programming mode, for example, via the status indication. [0088] The drive assembly may be at least partially received within the roller tube **210**. For example, the roller tube **210** may define a cavity **211** (e.g., a battery compartment) that is configured to receive one or more components of the drive assembly. The cavity **211** may be defined by the inner surface 213 of the roller tube 210. The cavity 211 may be accessible when the battery-powered motorized window treatment **200** is in the extended position (e.g., pivoted) and the cap **250** is removed.

[0089] The battery-powered motorized window treatment **200** may include a battery holder **270**. The battery holder **270** may be configured to keep the batteries **260** fixed in place securely while the batteries **270** are providing power to the drive assembly. The battery holder **270** may be configured to clamp the batteries **260** together (e.g., as shown in FIG. **2A**) such that the batteries **260** can be removed from the battery-powered motorized window treatment **200** at the same time (e.g., together). The battery holder **270** may include a head **272**, a base **274**, and an arm **276** connecting the head **272** and the base **274**. The battery holder **270** may create a spring tension to hold the batteries **260** together. For example, the head **272**, the base, **274**, and the arm **276** may be configured to apply a tension force to the batteries **260**.

[0090] The head **272** may define an aperture **273** that is configured to receive a nub **263** of one of the batteries **260**, for example, such that the nub **263** can be electrically connected to the cap **250**. For example, the nub **263** may extend beyond the head **272** when the batteries are clamped within the battery holder **270**. The base **274** may define an aperture configured to receive a spring (e.g., such as spring **682** shown in FIG. **8**A) to electrically connect the batteries **260** to a printed circuit board of the motor drive unit. For example, the spring may be located within the cavity **211** proximate to the motor drive unit. Additionally or alternatively, the base **274** may include an electrical contact (e.g., a negative contact). The electrical contact of the battery holder **270** may be electrically connected to the printed circuit board of the motor drive unit. The base **274** (e.g., the electrical contact) may be configured to abut the spring within the roller tube **210** (e.g., the motor

drive unit housing). One or more of the batteries **260** may be received (e.g., at least partially received) within the base **274**. The battery holder **270** may be configured to be removed from the roller tube **210** (e.g., the cavity **211** of the roller tube **210**) while clamping the batteries **260**. Although the battery holder **270** is shown having the arm **276**, it should be appreciated that the battery holder **270** may include alternate means for clamping and/or securing the batteries **260** together. For example, the battery holder **270** may include a sleeve between the head **272** and the base **274**. The sleeve may be configured to surround the batteries **260**.

[0091] The battery holder **270** may be configured to be removed (e.g., completely removed as shown in FIG. **2A**) from the roller tube **210**. When the battery holder **270** is removed from the roller tube **210**, the batteries **260** may be removed from the battery holder **270** (e.g., as shown in FIG. **2B**) while still clamped together. Replacement batteries may be installed in the battery holder **270** and the battery holder **270** may be installed within the cavity **211** of the roller tube **210**. When the battery holder **270** is installed within the roller tube **210** (e.g., the cavity **211**), the cap **250** may be removably secured to the roller tube **210** (e.g., the end **212**), for example, to secure the battery holder **270** within the roller tube **210**. Additionally or alternatively, the cap **250** may be configured to be removably secured to the motor drive unit housing.

[0092] FIGS. 3A and 3B depict an example battery-powered motorized window treatment 300 (e.g., such as the motorized window treatment 100 shown in FIGS. 1A and 1B and/or the battery-powered motorized window treatment 200 shown in FIGS. 2A and 2B). The battery-powered motorized window treatment 300 may include a roller tube 310 (e.g., such the roller tube 110 shown in FIGS. 1A and 1B and/or the roller tube 210 shown in FIGS. 2A and 2B), a flexible material 320 (e.g., a covering material) windingly attached to the roller tube 310, a drive assembly (e.g., such as the motor drive unit 690 shown in FIG. 8A), and a plurality of batteries 360. The battery-powered motorized window treatment 300 may further include a hembar 340 (e.g., such as the hembar 140 shown in FIGS. 1A and 1B and/or the hembar 240 shown in FIGS. 2A and 2B) and one or more mounting brackets 330A, 330B (e.g., such as the mounting brackets 130A, 130B shown in FIGS. 1A and 1B and/or the mounting brackets 230A, 230B shown in FIGS. 2A and 2B). The roller tube 310 may define a longitudinal axis 6. The longitudinal axis 316 may extend along a longitudinal direction L.

[0093] The battery-powered motorized window treatment **300** may include a battery holder **370** (e.g., such as the battery holder **270**) that is configured to be received in a cavity **311** (e.g., a battery compartment) of the roller tube **310**. The battery-powered motorized window treatment **300** may include a cap **350** (e.g., such as the cap **250** shown in FIGS. **2A** and **2B**) that is configured to retain the batteries **360** within the roller tube **310**. The cap **350** may be removably secured to the end **312** of the roller tube **310**. Alternatively, the cap **350** may be removably secured to the motor drive unit housing (e.g., such as the motor drive unit housing **680** shown in FIG. **8**A).

[0094] The batteries **360** may be configured to be removed from the cavity **311** along the longitudinal axis **316** of the roller tube **310**. For example, the cap **350** may be removed (e.g., disengaged from the roller tube **310** and/or the motor drive unit housing) such that the batteries **360** can be accessed. The battery holder **370** may be configured to be translated (e.g., along the longitudinal axis **316** of the roller tube **310**) until at least a portion is distal from the end **312** of the roller tube **310**. The battery holder **370** may not fully pull out of the roller tube **310**. Stated differently, a portion (e.g., an end) of the battery holder **370** may remain within the cavity **311** of the roller tube **310** when the batteries **360** are removed and/or replaced. In this case, one or more of the batteries **360** may be removed from the battery holder **370** while a portion of the battery holder **370** is retained within the roller tube **310** (e.g., the cavity **311**). Replacement batteries may be installed within the battery-powered motorized window treatment **300** while the portion of the battery holder **370** is retained within the roller tube **310**.

[0095] The battery holder **370** may include a head **372** and an arm **376**. The head **372** may define an aperture **373** that is configured to receive a nub **363** of one of the batteries **360**, for example,

```
such that the nub 363 can be electrically connected to the cap 350. For example, the nub 363 may
extend beyond the head 372 when the batteries 360 are clamped within the battery holder 370. The
battery holder 370 may be electrically connected to a printed circuit board of the motor drive unit.
For example, the battery holder 370 may be configured to abut a spring (e.g., such as spring 682
shown in FIG. 8A) within the roller tube 310 (e.g., the motor drive unit housing).
[0096] FIGS. 4A and 4B depict an example battery-powered motorized window treatment 400
(e.g., such as the motorized window treatment 100 shown in FIGS. 1A and 1B, the battery-powered
motorized window treatment 200 shown in FIGS. 2A and 2B, and/or the battery-powered
motorized window treatment 300 shown in FIGS. 3A and 3B) with a battery holder 470 configured
to retain the batteries 460. The battery holder 470 may be configured to be received in a cavity 411
(e.g., a battery compartment) of the roller tube 410. The battery-powered motorized window
treatment 400 may include a cap 450 (e.g., such as the cap 250 shown in FIGS. 2A and 2B) that is
configured to retain the batteries 460 and the battery holder 470 within the roller tube 410. The cap
450 may be removably secured to the end 412 of the roller tube 410. Alternatively, the cap 450 may
be removably secured to the motor drive unit housing (e.g., such as the motor drive unit housing
680 shown in FIG. 8A). The roller tube 410 may define a longitudinal axis 416. The longitudinal
axis 416 may extend along a longitudinal direction L.
[0097] The battery holder 470 may define a hollow tube with an outer surface 472, an inner surface
474, and a bore 471. The bore 471 may be configured to receive the batteries 460. For example, the
bore 471 may retain the batteries 460 within the battery holder 470. For example, the inner surface
474 may abut the batteries 460 when the batteries are installed within the battery holder 470. The
outer surface 472 may be configured to abut an inner surface 413 of the roller tube 410, for
example, when the battery holder 470 is installed within the roller tube 410. The battery holder 470
may be transparent or semi-transparent such that the batteries 460 are visible through the outer
surface 472. The battery holder 470 (e.g., the hollow tube) may be semi-rigid.
[0098] The batteries 460 and the battery holder 470 may be configured to be removed from the
cavity 411 along the longitudinal axis 416 of the roller tube 410. For example, the cap 450 may be
removed (e.g., disengaged from the roller tube 410 and/or the motor drive unit housing) such that
the batteries 460 and battery holder 470 can be accessed. The battery holder 470 may be configured
to be translated (e.g., along the longitudinal axis 416 of the roller tube 410) until it is removed from
the roller tube 410. The batteries 460 may remain within the battery holder 470 of the roller tube
410 when the battery holder 470 is removed from the cavity 411. The batteries 460 may be
removed from the battery holder 470 when it is removed from the cavity 411. Replacement
batteries may be installed within the battery holder 470 while it is removed from the cavity 411.
The battery holder 470 may be open at opposed ends, for example, such that the batteries 460 can
be electrically connected to a printed circuit board of the motor drive unit. For example, one of the
batteries 460 (e.g., the battery distal from the end 413 of the roller tube 410 when the battery holder
470 is installed within the cavity 411) may be configured to abut a spring (e.g., such as spring 682
shown in FIG. 8A) within the roller tube 410 (e.g., the motor drive unit housing). And, one of the
batteries 460 (e.g., the battery proximate to the end 413 of the roller tube 410 when the battery
holder 470 is installed within the cavity 411) may be configured to abut an electrical contact (e.g.,
the electrical contact 656 shown in FIG. 8A) within the cap 450.
[0099] FIG. 5A depicts an example battery-powered motorized window treatment 500 (e.g., such as
the motorized window treatment 100 shown in FIGS. 1A and 1B, the battery-powered motorized
window treatment 200 shown in FIGS. 2A and 2B, the battery-powered motorized window
treatment 300 shown in FIGS. 3A and 3B, and/or the battery-powered motorized window treatment
400 shown in FIGS. 4A and 4B) with a battery holder 570 configured to retain the batteries 560.
The battery holder 570 may be configured to be received in a cavity 511 (e.g., a battery
compartment) of the roller tube 510. The battery-powered motorized window treatment 500 may
include a cap 550 (e.g., such as the cap 250 shown in FIGS. 2A and 2B) that is configured to retain
```

the batteries **560** and the battery holder **570** within the roller tube **510**. The cap **550** may be removably secured to the end **512** of the roller tube **510**. Alternatively, the cap **550** may be removably secured to the motor drive unit housing (e.g., such as the motor drive unit housing **680** shown in FIG. **8**A). The roller tube **510** may define a longitudinal axis **516**. The longitudinal axis **516** may extend along a longitudinal direction L.

[0100] FIG. 5B is a perspective view of the battery holder 570 without the batteries 560 installed. The battery holder 570 may define a cylindrical compartment having a recess 571, an outer surface 572, and an inner surface 574. The cylindrical compartment may define a semi-circular cross-section that extends approximately 180 degrees. The recess 571 may be configured to receive the batteries 560. For example, the recess 571 may retain the batteries 560 within the battery holder 570. For example, the inner surface 574 may abut the batteries 560 when the batteries are installed within the battery holder 570. The outer surface 572 may be configured to abut an inner surface 513 of the roller tube 510, for example, when the battery holder 570 is installed within the roller tube 510.

[0101] The batteries **560** and the battery holder **570** may be configured to be removed from the cavity **511** along the longitudinal axis **516** of the roller tube **510**. For example, the cap **550** may be removed (e.g., disengaged from the roller tube **510** and/or the motor drive unit housing) such that the batteries **560** and battery holder **570** can be accessed. The battery holder **570** may be configured to be translated (e.g., along the longitudinal axis **516** of the roller tube **510**) until it is removed from the roller tube **510**. The batteries **560** may remain within the battery holder **570** of the roller tube **510** when the battery holder **570** is removed from the cavity **511**. The batteries **560** may be removed from the battery holder **570** when it is removed from the cavity **511**. Replacement batteries may be installed within the battery holder **570** while it is removed from the cavity **511**. The battery holder **570** may be open at opposed ends, for example, such that the batteries **560** can be electrically connected to a printed circuit board of the motor drive unit. For example, one of the batteries **560** (e.g., the battery distal from the end **513** of the roller tube **510** when the battery holder **570** is installed within the cavity **511**) may be configured to abut a spring (e.g., such as spring **682** shown in FIG. 8A) within the roller tube 510 (e.g., the motor drive unit housing). And, one of the batteries **560** (e.g., the battery proximate to the end **513** of the roller tube **510** when the battery holder **570** is installed within the cavity **511**) may be configured to abut an electrical contact (e.g., the electrical contact **656** shown in FIG. **8**A) within the cap **550**.

[0102] The battery holder **570** may comprise multiple sections **575**, which may each be configured to hold one of the batteries **560** (e.g., as shown in FIG. **5**A). The sections **575** may be connected together via flexible portions **576** and linking portions **578**. For example, the battery holder **570** may comprise one flexible portion **576** and two linking portions **578** between each pair of adjacent sections **575**. The flexible portions **576** and the linking portion **578** may extend along the longitudinal axis L of the roller tube 510 between the sections 575 of the battery holder 575, such that gaps **579** are formed between the flexible portion **576** and each respective linking portion **578**. The flexible portions **576** may be arranged towards a lower side of the battery holder **570** (e.g., as shown in FIG. 5B) and the linking portions 578 may be arranged on opposite sides of the recess **571** of the battery holder **570** (e.g., along the radial direction R). The linking portions **578** may be configured to hold the sections **575** together in rigid connection. For example, the linking portions **578** may prevent relative movement between the sections **575**. The linking portions **578** may be configured to be disconnected from respective sections 575. The linking portions 578 may be thinner than the flexible portions **576**, such that the linking portions **578** may be cut by a tool (e.g., wire cutters) to along the flexible portions **576** to flex (e.g., away from the longitudinal axis). When the linking portions **578** are disconnected (e.g., cut away) from respective sections **575**, the flexible portions **576** may flex, for example, to allow the batteries **560** to be removed from the cavity **511** when the mounting bracket **530**A is located near a wall. For example, the flexible portions **576** may be configured to bend (e.g., in response to an applied force) to allow the battery holder **570** to be

bent (e.g., curved) while being removed and/or installed from/into the roller tube **510**. The flexible portions **576** may be resilient such that the battery holder **570** are linear when the applied force is removed. For example, the sections **575** may be arranged linearly when no force is applied to the battery holder **570**.

[0103] The battery holder may comprise tabs **573** extending from opposed sides (e.g., along the radial direction R) of each of the sections 575. The tabs 573 may extend beyond 180 degrees (e.g., the semi-circular cross-section of the battery holder **570**). A pair of the tabs **573** in a specific section **575** may be configured to abut and apply a force to a respective battery of the batteries **560** to retain the respective battery within the cavity **571** in the transverse direction T. Each pair of the tabs **573** may be separated (e.g., in the longitudinal direction L) by less than a diameter of the batteries **560** both when no battery is installed in a respective section **575** and when a battery is installed in the respective section 575. The tabs 573 may be configured to be biased outward (e.g., flex outward from their resting position) to enable the batteries **560** to be installed within the battery holder **570** (e.g., the cavity **571**). The battery holder **570** may comprise lips **581**, **583** at respective ends of the battery holder **570**. The lips **581**, **583** may be configured to prevent the batteries **560** from translating out of the battery holder **570** (e.g., the cavity **571**) in the longitudinal direction L. For example, the lips **581**, **583** may be configured to abut and apply a force to a respective battery of the batteries **560** to retain the batteries **560** within the cavity **571** in the longitudinal direction L. [0104] FIG. **6** is a perspective view of an example battery-powered motorized window treatment **5500** (e.g., such as the motorized window treatment **100** shown in FIGS. **1**A and **1**B, the batterypowered motorized window treatment **200** shown in FIGS. **2**A and **2**B, and/or the battery-powered motorized window treatment 300 shown in FIGS. 3A and 3B). The battery-powered motorized window treatment 5500 may include a roller tube 5510 (e.g., such the roller tube 110 shown in FIGS. 1A and 1B, the roller tube 210 shown in FIGS. 2A and 2B, and/or the roller tube 310 shown in FIGS. 3A and 3B), a flexible material 5520 (e.g., a covering material) windingly attached to the roller tube **5510**, a motor drive unit **5590** (e.g., a drive assembly), and a plurality of batteries **5560**. The battery-powered motorized window treatment **5500** may further include a hembar **5540** (e.g., such as the hembar **140** shown in FIGS. **1**A and **1**B, the hembar **240** shown in FIGS. **2**A and **2**B, and/or the hembar 340 shown in FIGS. 3A and 3B) and one or more mounting brackets 5530A, **5530**B (e.g., such as the mounting brackets **130**A, **130**B shown in FIGS. **1**A and **1**B, the mounting brackets 230A, 230B shown in FIGS. 2A and 2B, the mounting brackets 330A, 330B shown in FIGS. 3A and 3B, and/or the mounting brackets 430A, 430B shown in FIGS. 4A and 4B). [0105] The motor drive unit **5590** may include a motor drive unit housing **5580**. The motor drive unit housing **5580** may be configured to be received within the roller tube **5510**. The motor drive unit housing **5580** may be a hollow shell that defines an outer surface **5581** and an inner surface **5584**. For example, the motor drive unit housing **5580** may be configured to house the components of the motor drive unit **5590** and the batteries **5560**. The motor drive unit housing **5580** may define a first portion **5585** that encloses assembly motor (e.g., such as the motor **696** shown in FIG. **8**A) and motor drive circuitry of the motor drive unit **5590**, a second portion **5582** that is configured to retain the batteries **5560** within the roller tube **5510**, and a third portion **5584** that is configured to receive the batteries **5560**. For example, the third portion **5584** may be a battery holder that is configured to retain the batteries **5560** therein. The third portion **5584** may define a trough **5583** (e.g., a battery compartment) that is configured to receive the batteries **5560**. The trough **5583** of the third portion **5584** may be defined by a cutout of an upper portion of the motor drive unit housing **5580** (e.g., between the first portion **5585** and the second portion **5582**). For example, the motor drive unit housing **5580** may include a cutout between the first portion **5585** and the second portion **5582** that defines the trough **5583**.

[0106] The motor drive unit housing **5580** may be configured to be removed (e.g., at least partially removed) from the roller tube **5510**. When the motor drive unit housing **5580** is partially removed from the roller tube **5510**, the batteries **5560** may accessible, for example, for replacement. For

example, a user may adjust the battery-powered motorized window treatment **5500** to an extended position (e.g., slid or pivoted position) and may translate the motor drive unit housing **5580** along the longitudinal axis **5516** such that the third portion **5584** (e.g., the trough **5583**) is external to the roller tube **5510**. The batteries **5560** may be accessible when the third portion **5584** is external to the roller tube **5510**. The batteries **5560** may rest within the trough **5583** or may be placed within a battery holder and then installed within the trough **5583**.

[0107] The battery-powered motorized window treatment **5500** may include a spring **5586**. The spring **5586** may extend from the first portion **5585** (e.g., an end **5587**) of the motor drive unit housing **5580**, for example, into the trough **5583**. The spring **5586** may be configured to abut and apply a force to one of the batteries **5560**, for example, such that the batteries **5560** remain in contact with one another while installed within the motor drive unit housing **5580**. The spring **5586** may be configured to apply a force to the batteries **5560** to maintain electrical connection of the batteries **5560** with the spring **5586** and an electrical contact on the second portion **5582** of the motor drive unit housing **5580**. The spring **5586** may be configured as another electrical contact (e.g., the negative electrical contact). The spring **5586** and the electrical contact on the second portion **5582** may be electrically connected to the motor drive circuitry of the motor drive unit **5590** (e.g., a motor drive printed circuit board of the motor drive unit **5590**).

[0108] The mounting brackets **5530**A, **5530**B may be keyed to the respective end **5512**, **5514** of the roller tube **5510**. For example, the motor drive unit housing **5580** may define an outer surface **5581** that may include one or more splines **5588**. The splines **5588** may extend along the length of the motor drive unit housing **5580**, for example, from the first portion **5585** to the second portion **5582**. The splines **5588** (e.g., on the second portion **5582**) may engage with the mounting brackets **5530**A, **5530**B (e.g., corresponding features of the mounting brackets **5530**A, **5530**B). For example, the mounting brackets **530**A, **530**B may define one or more grooves (e.g., as shown in FIGS. **10** and **11**) that are configured to receive the splines **5588**. The splines **5588** may be configured to enable the motor drive unit **5590** to torque against one or more of the mounting brackets **5530**A, **5530**B. For example, the motor drive unit **5590** may drive against one or more of the mounting brackets **5530**A, **5530**B as the covering material **5520** is operated between a raised (e.g., open) position and a lowered (e.g., closed) position

[0109] FIG. 7 depicts the example motorized window treatment 100 in an extended position. The mounting bracket 130B may include a sliding portion. The sliding portion of the mounting bracket 130B may enable a second end 114 of the roller tube 110 to be accessible. For example, when the motorized window treatment 100 is in the extended position the second end 114 of the roller tube 110 may be further from a window and/or the structure to which the mounting bracket 130B is anchored than when the motorized window treatment 100 is in an operating position. Stated differently, both mounting brackets 130A, 130B of the motorized window treatment 100 may be configured to slide out when the motorized window treatment is operated to the extended position. [0110] The extended position may define a translated position, for example, as shown in FIG. 7, where both of the mounting brackets 130A, 130B extend such that both ends of the roller tube 110 are accessible (e.g., at the same time).

[0111] FIGS. **8**A-**11** depict an example battery-powered motorized window treatment **500** (e.g., such as the motorized window treatment **100** shown in FIGS. **1**A and **1**B, the battery-powered motorized window treatment **200** shown in FIGS. **2**A and **2**B, the battery-powered motorized window treatment **300** shown in FIGS. **3**A and **3**B, the battery-powered motorized window treatment **500** shown in FIGS. **4**A and **4**B, the battery-powered motorized window treatment **500** shown in FIG. **5**A, and/or the battery-powered motorized window treatment **500** shown in FIG. **6**) in an operating position. The battery-powered motorized window treatment **600** may include a roller tube **610**, a motor drive unit **690**, a plurality of batteries **660**, and one or more mounting brackets **630**, **631**. The operating position may be defined as a position in which the roller tube **610** is supported by and aligned with both of the mounting brackets **630**, **631**. The battery-powered

motorized window treatment **600** may be configured to be operated between the operating position and an extended position, for example, to enable access to replace the batteries **660**. The extended position may be defined as a position in which one or more ends of the roller tube **610** are accessible while still attached to the mounting brackets **630**, **631**. The extended position may define a pivoted position, for example, as shown in FIGS. **1**B-**6**, where one of the mounting brackets **630**, **631** extends such that the batteries **660** are accessible via the end of the roller tube **610**. Although not shown in FIGS. **8**A-**11**, the battery-powered motorized window treatment **600** may include a flexible material windingly attached to the roller tube **610** and a hembar that is coupled to a bottom or lower end of the flexible material.

[0112] The mounting bracket **630** may be configured to attach the battery-powered motorized window treatment **600** to a horizontal structure (e.g., such as a ceiling). The mounting bracket **630** may define a base **638** and an arm **632**. The base **638** and the arm **632** may define a stationary portion of the mounting bracket **630**. The mounting bracket **630** may define a translating portion **634**. The translating portion **634** may include an attachment member **633** that is configured to receive an end of the roller tube **610** and/or a motor drive unit housing **680**. The attachment member **633** may define an aperture. The base **638** may be configured to attach the mounting bracket **630** to a structure. The structure may include a window frame (e.g., a head jamb or side jambs of a window frame), a wall, a ceiling, or other structure, such that the battery-powered motorized window treatment **600** is mounted proximate to an opening (e.g., over the opening or in the opening), such as a window for example. When the mounting bracket **630** is attached to a vertical structure, such as a wall, the arm **632** of the mounting bracket **630** may extend horizontally (e.g., in the radial direction R) from the base **638**.

[0113] The translating portion **634** may be configured to translate the roller tube **610** between the operating position (e.g., as shown in FIGS. 12A and 12B) and the extended position (e.g., as shown in FIGS. **13**A and **13**B). The translating portion **634** may be proximate to the base **638** when in the operating position and distal from the base **638** when in the extended position. The end of the roller tube **610** and/or the motor drive unit housing **680** may be accessible via the aperture (e.g., to replace the batteries **660**) when the translating portion **634** is in the extended position. [0114] The arm **632** may define one or more features that enable the translating portion **634** to be translated between the operating position and the extended position while remaining attached thereto. The translating portion **634** may define one or more corresponding features that are configured to cooperate with the one or more features on the arm 632. The arm 632 may define one or more slides **635** (e.g., an upper slide and a lower slide). The slides **635** may protrude from an inner surface of the arm **632**. The translating portion **634** may define one or more channels (e.g., an upper channel and a lower channel) that are configured to receive the slides **635**. The translating portion **634** may define a middle slide **636**, for example, between the channels. The arm **632** may define a channel (e.g., a middle channel) that is configured to receive the middle slide **636**. The slides 635, 636 and the channels may define angled edges (e.g., tapered edges) such that the attachment of the translating position **634** to the arm **632** defines an interlocking slide, eg., such as a dovetail slide. The translating portion **634** may translate along the slides **635** between the operating position and the extended position. For example, the translating portion **634** may translate along the slides **635** in the radial direction R.

[0115] The mounting bracket **630** may be configured to be secured (e.g., locked) in the operating position and the extended position. The mounting bracket **630** (e.g., the translating portion) may define a locking tab (e.g., such as the locking tab **722** shown in FIGS. **12**B and **13**B). In addition, the mounting bracket **630** may comprise a release button (not shown) that may need to be actuated by a user in order to be released the mounting bracket **630** from the operating position and be moved into the extended position.

[0116] The motor drive unit **690** may include a motor drive printed circuit board **692**, an intermediate storage device **694**, a motor **696**, and a gear assembly **698**. The intermediate storage

device 694 may include one or more capacitors (e.g., super capacitors) and/or one or more rechargeable batteries. The intermediate storage device **694** may be configured to power the motor **696** when one or more of the batteries **660** are not installed within the roller tube **610**, for example, such that position data is retained (e.g., on the motor drive printed circuit board **692**). The motor drive unit **690** may be operatively coupled to the roller tube **610**, for example, via a coupler **695** (e.g., a drive coupler). The coupler **695** may be an output gear that is driven by the motor **696** and transfers rotation of the motor **696** to the roller tube **610**. For example, the coupler **695** may define a plurality of grooves 697 about its periphery. An inner surface of the roller tube 610 may be splined. That is, the inner surface of the roller tube **610** may define a plurality of splines **612**. The grooves 697 may be configured to engage respective splines 612 such that rotation of the motor **696** is transferred to the roller tube **610**, for example, via the coupler **695**. The motor drive unit **690** may be configured to detect when one or more batteries **660** are not installed, for example, when the roller tube **610** is in the operating position. When the motor drive unit **690** detects that one or more batteries **660** are not installed and the roller tube **610** is in the operating position, the motor drive unit **690** may prevent rotation of the roller tube **610**. In doing so, the motor drive unit **690** may prevent depletion of the intermediate storage device **694**.

[0117] The battery-powered motorized window treatment **600** (e.g., the motor drive unit **690**) may include an inner bearing **620** and an outer bearing **640** that are located external to the roller tube **610**. The inner bearing **620** and the outer bearing **640** may be non-metallic (e.g., plastic) sleeve bearings. The inner bearing **620** and the outer bearing **640** may be captured between the roller tube **610** and the mounting bracket **630**. The inner bearing **620** may engage the motor drive unit housing **680**. The inner bearing **620** may be operatively coupled to the motor drive unit housing **680**. For example, the inner bearing 620 may define splines (not shown) that are configured to be received by grooves **688** around the periphery of the motor drive unit housing **680**. The inner bearing **620** may be press fit onto the motor drive unit housing **680**. The outer bearing **640** may engage the roller tube **610**. The outer bearing **640** may be operatively coupled to the roller tube **610**. The outer bearing **640** may rotate with the roller tube **610**. The outer bearing **640** may be press fit into engagement with the roller tube **610**. For example, the outer bearing **640** may engage the plurality of splines **612** of the roller tube **610**. The inner bearing **620** may remain stationary with the motor drive unit housing **680** as the roller tube **610** rotates. Stated differently, the roller tube **610** and the outer bearing **640** may rotate about the inner bearing **620** and the motor drive unit housing **680**. [0118] The batteries **660** may be configured to be removed from the roller tube **610**, for example, while the motor drive unit housing **680** remains engaged with the mounting brackets **630**. That is, the batteries **660** may be configured to be removed from the roller tube **610** when the batterypowered motorized window treatment **600** is in the pivoted position. An inside diameter of the inner bearing **620** may be greater than an outer diameter of the batteries **660** and/or the battery holder **670**.

[0119] The battery-powered motorized window treatment **600** (e.g., the motor drive unit **690**) may include a battery holder **670** and a cap **650**. For example, the motor drive unit **690** may include the battery holder **670** and the cap **650**. The battery holder **670** and the cap **650** may keep the batteries **660** fixed in place securely while the batteries **670** are providing power to the motor drive unit **690** and/or the cap **650**. The battery holder **670** may be configured to clamp the batteries **660** together (e.g., as shown in FIG. **8**A) such that the batteries **660** can be removed from the battery-powered motorized window treatment **600** at the same time (e.g., together).

[0120] The battery holder **670** may be received in a motor drive unit cavity **689** of the motor drive unit **690**. The motor drive unit **690** (e.g., the motor drive unit housing **680**) to an internal wall **683** of the motor drive unit **690**. The motor drive unit cavity **689** may be open at the end **681**. The motor drive unit **690** may be received within a roller tube cavity **615**. The roller tube cavity **615** may be open proximate to an end of the roller tube **610**. The roller tube cavity **615** may extend in the

longitudinal direction L along the entire length of the roller tube **610**. The cap **650** may be configured to cover the end **681** to the motor drive unit cavity **689**. For example, the cap **650** may be received (e.g., at least partially) within the motor drive unit cavity **689**. The cap **650** may include one of more wireless communication components, such as a wireless communication circuit (e.g., a control interface printed circuit board **654**) and/or an antenna (e.g., such as the antenna **1545** shown in FIG. 29). The wireless communication circuit and/or the antenna may be configured to communicate (e.g., transmit and receive messages to/from) external control devices via wireless signals, such as radio-frequency (RF) signals. The cap **650** may include a button **652**, one or more wireless communication circuits mounted to the control interface printed circuit board **654**, and an electrical contact **656** electrically coupled to the control interface printed circuit board **654**. The electrical contact **656** may be a positive electrical contact, for example, as shown in FIG. **8**A. Alternatively, the electrical contact **656** may be a negative electrical contact. The cap **650** may include a switch 655 (e.g., a mechanical tactile switch) mounted to the control interface printed circuit board **654** and configured to be actuated in response to actuations of the button **652**. The button **652** may operate as a light pipe (e.g., may be translucent or transparent), and may be illuminated by an LED (not shown) mounted to the control interface printed circuit board 654. [0121] The cap **650** may include a switch or button (e.g., button **154** shown in FIG. **1**B) that is configured to disable (e.g., automatically disable) operation of the motor **696** by the motor drive unit **690** when the roller tube **610** is not in the operating position. The switch or button may disable the operation of the motor **696** of the motor drive unit **690**, for example, when the roller tube **610** is pivoted (e.g., or slid) from the operating position to the extended position. The switch or button may enable the operation of the motor **696** when the roller tube **610** reaches the operating position. [0122] The cap **650** may also comprise a position detect circuit (e.g., such as the position detect circuit 1546 shown in FIG. 29) for detecting when the roller tube 610 is not in the operating position and deactivating (e.g., automatically deactivating) operation of the motor 696 by the motor drive unit **690** (e.g., rather than including the switch or button for deactivating the motor drive unit). For example, the position detect circuit may comprise a magnetic sensing circuit (e.g., a Halleffect sensor circuit) configured to detect when the cap **650** is in the extended position and not in close proximity to a magnet **675** located inside of the arm **632** of the mounting bracket **630**. For example, the position detect circuit may detect proximity of the cap **650** to the magnet **675**. The motor drive unit **690** may disable operation of the motor **696** in response to a signal from the position detect circuit such that the covering material cannot be raised or lowered when the roller tube **610** is not in the operating position. The operation of the motor **696** of the motor drive unit **690** may be disabled, for example, when the roller tube **610** is pivoted (e.g., or slid) from the operating position to the extended position. The operation of the motor **696** of the drive assembly **690** may be enabled in response to the position detect circuit when the roller tube **610** is in the operating position. For example, the position detect circuit may also comprise an IR sensor, a switch, and/or the like.

[0123] The batteries **660** may be located between the cap **650** (e.g., the wireless communication circuits of the motor drive unit **690** of the battery-powered motorized window treatment **600**) and a motor drive printed circuit board **692** of the motor drive unit **690**. For example, the wireless communication circuits in the cap **650** may be located at a first end of the batteries **660** installed in the roller tube **610** and the motor drive unit **690** may be located at an opposed second end of the batteries **660**.

[0124] The wireless communication circuit may be electrically coupled to the antenna within the cap **650**. The antenna may be a loop antenna that is located on (e.g., around a periphery of) the control interface printed circuit board **654**. Alternatively, the antenna may be a monopole. The antenna may be located proximate to a gap **605** between the bracket **630** and the roller tube **610**. For example, the antenna may be aligned with the gap **605**. The antenna may transmit and/or receive RF signals through the gap **605**. The gap **605** includes non-metal components such that

radio-frequency interference and/or shielding is minimized. For example, the battery-powered motorized window treatment **600** may not include metal components at the gap **605**. The inner bearing **620** and/or the outer bearing **640** may be disposed within or proximate to the gap **605**. [0125] The gap **605** between the roller tube **610** and the bracket **630** may also be configured to enable a predetermined tolerance (e.g., angular misalignment tolerance) between the roller tube **610** and the bracket **630** in a pivoted position. For example, when the battery-powered motorized window treatment **600** is in the pivoted position, the gap **605** may enable a portion of the roller tube **610** to be closer to the bracket **630** (e.g., without contacting the bracket **630**) than another portion of the roller tube **610**. When the battery-powered motorized window treatment **600** is in the pivoted position, the gap **605** may be configured such that the roller tube **610** does not abut the bracket **630**. [0126] The motor drive unit **690** may include a spring **682**, which may extend from the internal wall **683** of the motor drive unit **690**. The spring **682** may be configured to abut and apply a force to one of the batteries **660**, for example, such that the batteries **660** remain in contact with one another while installed within the motor drive unit cavity **689**. The spring **682** may be electrically coupled to the motor drive printed circuit board 692 via a wire 684. The spring 682 may be a negative electrical contact, for example, as shown in FIG. 8A. Alternatively, the spring 682 may be a positive electrical contact. The spring **682** may be configured to apply a force to the batteries **660** to maintain electrical connection of the batteries **660** with the spring **682** and the electrical contact **656** of the cap **650**.

[0127] The electrical contact **656** may be electrically connected to the control interface printed circuit board **654**. The button **652** may be backlit. For example, the button **652** may include a light pipe that is illuminated by the LED within the cap **650** and mounted to the control interface printed circuit board **654**. The button **652** may be configured to enable a user to configure (e.g., change one or more settings, associate, etc.) the motor drive unit **690** of the battery-powered motorized window treatment **600**. For example the button **652** may enable the user to configure the control interface printed circuit board **654** and/or a motor drive printed circuit board **692**. The button **652** may be configured to enable a user to pair the battery-powered motorized window treatment **600** with a remote control device to allow for wireless communication between the remote control device and the wireless communication circuit mounted to the control interface printed circuit board **654** in the cap **650**. The button **652** may be configured to provide a status indication to a user. For example, the control button **652** may be configured to flash and/or change colors to provide the status indication to the user. The button **652** may be configured to indicate (e.g., via the status indication) whether the motor drive unit **690** is in a programming mode.

[0128] The control interface printed circuit board **654** and the motor drive printed circuit board **692** may be electrically connected. For example, the battery-powered motorized window treatment **600** may include a ribbon cable **686**. The ribbon cable **686** may be attached to the control interface printed circuit board **654** and the motor drive printed circuit board **692**. The ribbon cable **686** may be configured to electrically connect the control interface printed circuit board 654 and the motor drive printed circuit board **692**. The ribbon cable **686** may terminate at the control interface printed circuit board **654** and the motor printed circuit board **692**. For example, the ribbon cable **686** may extend within the cavity **615**. The ribbon cable **686** may include electrical conductors for providing power from the batteries **660** to the control interface printed circuit board **654** and/or the motor drive printed circuit board **692**. The ribbon cable **686** may include electrical conductors for conducting control signals (e.g., for transmitting one or more messages) between the control interface printed circuit board **654** and the motor drive printed circuit board **692**. For example, the ribbon cable **686** may be configured to conduct power and/or control signals between the control interface printed circuit board **654** and the motor drive printed circuit board **692**. The motor control unit **690** may include a retainer **685** that is configured to retain the ribbon cable **686** within the motor drive unit cavity **689**. For example, the retainer **685** may prevent the ribbon cable **686** from being pressed into the motor drive unit cavity 689 when the battery holder 670 and/or batteries 660

are installed therein. Alternatively, the wireless communication circuits may be mounted to the motor drive printed circuit board **692** (e.g., rather than the control interface printed circuit board **654**), while the antenna may be located on the control interface printed circuit board **654**. For example, the antenna on the control interface printed circuit board **654** may be electrically coupled to the wireless communication circuits on the motor drive printed circuit board **692** via a coaxial cable (e.g., which may replace the ribbon cable **686** and/or be included in addition to the ribbon cable **686**).

[0129] FIGS. **9**A, **9**B, and **9**C depict an idler end of the example battery-powered motorized window treatment **600**. FIG. **9**A is a side view and FIG. **9**B is a top view of the idler end of the example battery-powered motorized window treatment **600**. FIG. **9**C is a perspective view of the idler end of the roller tube **610**. The mounting bracket **631** (e.g., with the mounting bracket **630**) may be configured to attach the battery-powered motorized window treatment **600** to a horizontal structure (e.g., such as a ceiling). The mounting bracket **631** may define a base **639** and an arm **637**. The mounting bracket **631** may be stationary or may be configured to transition between an operating position and an extended position (e.g., such as the mounting bracket **630**). The arm **637** may include an attachment member **619** that is configured to receive an end of the roller tube **610**. The arm **637** (e.g., the attachment member **619**) may define a cavity **612**. The base **639** may be configured to attach the mounting bracket **631** to the structure. The structure may include a window frame (e.g., a head jamb or side jambs of a window frame), a wall, a ceiling, or other structure, such that the battery-powered motorized window treatment **600** is mounted proximate to an opening (e.g., over the opening or in the opening), such as a window for example. When the mounting bracket 631 is attached to a vertical structure, such as a wall, the arm 637 of the mounting bracket **631** may extend horizontally (e.g., in the radial direction R) from the base **639**. When the mounting bracket **631** is attached to a horizontal structure, such as a ceiling, the arm **637** of the mounting bracket **631** may extend vertically (e.g., in the transverse direction T) from the base **639**.

[0130] The battery-powered motorized window treatment **600** may include an idler assembly **601**. The idler assembly **601** may include an idler shaft **614** and an idler coupler **643**. The idler shaft **614** may be configured to support the idler end of the battery-powered motorized window treatment **600**. The idler shaft **614** may define an idler arm **613** and an idler base **611**. The idler shaft **614** may be received by the roller tube **610**. For example, the idler arm **613** may extend within the roller tube **610** (e.g., the cavity **615**). For example, the cavity **615** of the roller tube **610** may be open at both ends. The cavity **615** at the idler end of the battery-powered motorized window treatment **600** may be covered by a cover **642**. The idler shaft **614** (e.g., the idler arm **613**) may extend through the cover **642**. The idler shaft **614** (e.g., the idler base **611**) may be received (e.g., captively received) by the cavity **612** in the mounting bracket **631**.

[0131] The idler shaft **614** (e.g., the idler base **611**) may define a pivot surface **609** that is proximate to the mounting bracket **631**, when the idler end of the roller tube is supported by the mounting bracket **631**. The pivot surface **609** may be curved to enable the roller tube **610** to pivot about its idler end between the operating position and the pivoted position. For example, the pivot surface **609** may define a convex surface. The pivot surface **609** may be configured to enable a predetermined tolerance (e.g., angular misalignment tolerance) between the idler base **611** and the cavity **612**, for example, when the roller tube **610** is in a pivoted position. For example, when the battery-powered motorized window treatment **600** is in the pivoted position, the pivot surface **609** may enable the idler base **611** to remain engaged (e.g., secured) within the cavity **612** of the mounting bracket **631**. Different portions of the pivot surface **609** may be configured to abut an inner surface **607** of the cavity **612**, for example, as the battery-powered motorized window treatment **600** is moved between the operating position and the pivoted position.

[0132] The idler base **611** may define a disk portion **691** and an extension **693** that extends from the disk portion **691**. The pivot surface **609** may be located on the extension **693**. The extension **693**

may define edges **623**, **625** and a tab **699**. The tab **699** may be configured to extend in the transverse direction T beyond an outer perimeter of the disk portion **691**. The tab **699** may define a curved bottom edge **621**. The curved bottom edge **621** may extend between the edges **623**, **625**. The tab **699** may be configured to secure the idler end of the roller tube **610** within the mounting bracket **631**. For example, the tab **699** may be configured to be received within a notch **627** (e.g., such as the notch **934** shown in FIG. **16**) in the mounting bracket **631** (e.g., in the cavity **612**). The notch **627** may be located within the cavity **612** distal from the base **639**. The tab **699** may be configured to prevent unmounting of the roller tube **610** from the mounting bracket **631**, for example, in the longitudinal direction L. The tab **699** may be configured to rest within the notch **627** when the roller tube **610** is in the operating position, in the pivoted position, and between the operating position and the pivoted position. The notch **627** may be configured to prevent movement of the roller tube in the longitudinal direction L.

[0133] The idler shaft **614** may remain stationary as the roller tube **610** rotates. The battery-powered motorized window treatment **600** may include idler bearings **644**. The idler bearings **644** may be configured to support the roller tube **610** while enabling the roller tube **610** to rotate about the idler shaft **614**. The idler bearings **644** may be roller bearings (e.g., such as ball bearings, cylindrical bearings, and/or the like). The idler coupler **643** may be configured to operatively couple the roller tube **610** to the idler bearings **644**. For example, the idler coupler **643** may be configured to engage (e.g., mesh with) the plurality of splines **612** on the roller tube **610** such that the idler coupler **643** rotates with the roller tube **610**. The idler coupler **643** may be configured to transfer the weight of the roller tube **610** to the idler shaft **614**.

[0134] The battery-powered motorized window treatment **600** may include a spring assist assembly **616** (e.g., a torsion spring assembly). The spring assist assembly **616** may include a spring **617** (e.g., a torsion spring), a bracket coupling portion **618**, and a roller tube coupling portion **608**. The bracket coupling portion **618** may be attached to the idler shaft **614** (e.g., the idler arm **613**) such that the bracket coupling portion **618** remains stationary as the roller tube **610** rotates. The roller tube coupling portion **608** may be operatively coupled to the roller tube **610** (e.g., the splines **612**) such that the roller tube coupling portion **608** rotates with the roller tube **610**. The spring **617** may be attached to the bracket coupling portion **618** at one end and to the roller tube coupling portion **608** at the other end. The spring **617** may be configured to coil and uncoil as the roller tube **610** rotates (e.g., depending on the direction of rotation). For example, the torque applied by the spring **617** to the roller tube **610** may change as the roller tube rotates.

[0135] The spring assist assembly **616** may be configured to assist the motor drive unit **690** to operate the battery-powered motorized window treatment **600**. For example, the spring assist assembly **616** may reduce the torque required from the motor drive unit **690** to raise and/or lower the covering material of the battery-powered motorized window treatment **600**. The spring assist assembly **616** may prolong the life of the batteries **660**, for example, by assisting the motor drive unit **690**. The spring assist assembly **616** may be coupled to the roller tube **610** for providing a constant torque on the roller tube **610** in a direction opposite a direction of the torque provided on the roller tube **610** by the motor drive unit **690**. For example, the spring assist assembly **616** may provide a torque on the roller tube **610** opposite a torque provided by the motor drive unit **690** to raise the covering material to a position approximately midway between the fully-closed and fullyopen position without substantial energy being provided by the motor unit **690**. The torque applied by the spring assist assembly **616** on the roller tube **610** may increase as the covering material is lowered. This increasing torque applied by the spring assist assembly **616** may balance the increasing torque created be more of the covering material hanging from the roller tube **610**. The balance between the torque applied by the spring assist assembly 616 and the torque applied by the covering material may result in a substantially constant torque on the motor drive unit **690**. For example, the spring assist assembly **616** may be configured such that the motor drive unit **690** can operate at a substantially constant torque as the covering material is raised and lowered (e.g.,

operated between a raised position and a lowered position).

[0136] The spring assist assembly **616** may assist the motor drive unit **690** when raising the covering material above the midway position to the fully-open position, and the spring assist assembly **616** may provide a torque on the drive shaft resisting downward motion of the covering material when the covering material is lowered from the fully-open position to the fully-closed position. The motor drive unit **690** may provide a torque that is configured to wind up the spring assist assembly **616** when the covering material is lowered from the midway position to the fully-closed position.

[0137] FIGS. **12**A and **12**B depict an example mounting bracket **700** for use with a batterypowered motorized window treatment (e.g., such as the motorized window treatment 100 shown in FIGS. 1A and 1B, the battery-powered motorized window treatment 200 shown in FIGS. 2A and **2**B, the battery-powered motorized window treatment **300** shown in FIGS. **3**A and **3**B, the batterypowered motorized window treatment **400** shown in FIGS. **4**A and **4**B, the battery-powered motorized window treatment **500** shown in FIG. **5**A, the battery-powered motorized window treatment **5500** shown in FIG. **6**, and/or the battery-powered motorized window treatment **600** shown in FIGS. 8A-11) in an operating position. FIGS. 13A and 13B depict the mounting bracket **700** in an extended position. The mounting bracket **700** may be configured to be attached to a structure, eg., such as a wall or other vertical surface (e.g., as shown in FIGS. 1A-7). [0138] The mounting bracket **700** may be configured to secure, without requiring a tool, a roller tube in a first direction parallel to a longitudinal axis (e.g., the longitudinal direction L), in a second direction that is parallel to the structure and perpendicular to the longitudinal axis (e.g., the transverse direction T), and in a third direction perpendicular to the structure and the longitudinal axis (e.g., the radial direction R). As shown, the mounting bracket **700** may include a stationary portion **710**, a translating portion **720**, and a sliding portion **740**. The stationary portion **710** may include a base **712** (e.g., a foot) and an arm **714**. The translating portion **720** may include an attachment member **730** that is configured to receive an end of the roller tube and/or a motor drive unit housing. The attachment member 730 may define an aperture 732 (e.g., an attachment aperture). The base **712** may be configured to attach the mounting bracket **700** to the structure. The structure may include a window frame (e.g., a head jamb or side jambs of a window frame), a wall, a ceiling, or other structure, such that the motorized window treatment is mounted proximate to an opening (e.g., over the opening or in the opening), such as a window for example. When the mounting bracket **700** is attached to a vertical structure, such as a wall, the arm**714** of the mounting bracket **700** may extend horizontally (e.g., in the radial direction R) from the base **712**. [0139] The sliding portion **740** may be coupled (e.g., slidably coupled) between the stationary portion **710** and the translating portion **720**. The translating portion **720** and the sliding portion **740** may be configured to translate the roller tube between the operating position (e.g., as shown in FIGS. 12A and 12B) and the extended position (e.g., as shown in FIGS. 13A and 13B). The translating portion **720** may be proximate to the base **712** when in the operating position and distal from the base **712** when in the extended position. The end of the roller tube and/or the motor drive unit housing may be accessible via the aperture 732 (e.g., to replace the batteries) when the translating portion **720** is in the extended position.

[0140] The stationary portion **710**, the translating portion **720**, and the sliding portion **740** may define one or more features that enable the translating portion **720** to be translated between the operating position and the extended position. The translating portion **720** and the sliding portion **740** may be configured to move in the radial direction R from the operating position to the extended position (e.g., in the same direction as the arm **714** extends from the base **712**). The translating portion **720** may define one or more corresponding features that are configured to cooperate with the one or more features on the sliding portion **740**, and the sliding portion **740** may define one or more corresponding features that are configured to cooperate with the one or more features on the stationary portion **710**.

[0141] The arm **714** of the stationary portion **710** may define one or more slides (e.g., an upper slide **711** and a lower slide **713**). The upper slide **711** and the lower slide **713** may protrude from an inner surface **715** of the arm **714**. The sliding portion **740** may define one or more channels (e.g., an upper channel **741** and a lower channel **743**). The upper channel **741** may be configured to receive the upper slide **711** and the lower channel **743** may be configured to receive the lower slide **713**. The sliding portion **740** may translate along the upper slide **711** and the lower slide **713** when the translating portion **720** is moving between the operating position and the extended position. In addition, the sliding portion **740** may define one or more slides (e.g., a middle slide **749**), and the arm **714** may define one or more channels (e.g., a middle channel **719**). The middle slide **729** may protrude from the sliding portion **740** between the upper channel **721** and the lower channel **723**. The middle channel **719** may be located between the upper slide **711** and the lower slide **713**. The middle channel **719** may be configured to receive the middle slide **729**. The sliding portion **740** may translate along the middle slide **729** when the translating portion **720** is moving between the operating position and the extended position.

[0142] The sliding portion **740** may define one or more slides (e.g., an upper slide **742** and a lower slide **744**). The upper slide **742** and the lower slide **744** may protrude from the sliding portion **740**. The translating portion 720 may define one or more channels (e.g., an upper channel 722 and a lower channel **724**). The upper channel **722** may be configured to receive the upper slide **742** and the lower channel **724** may be configured to receive the lower slide **744**. The translating portion **720** may translate along the upper slide **742** and the lower slide **744** when the translating portion **720** is moving between the operating position and the extended position. In addition, the translating portion 720 may define one or more slides (e.g., a middle slide 727), and the sliding portion 740 may define one or more channels (e.g., a middle channel 747). The middle slide 727 may protrude from the translating portion **720** between the upper channel **722** and the lower channel **724**. The middle channel **747** may be located between the upper slide **742** and the lower slide **744**. The middle channel 747 may be configured to receive the middle slide 727. The translating portion 720 (e.g., the middle channel 747) may translate along the middle slide 727 when the translating portion **720** is moving between the operating position and the extended position. [0143] The mounting bracket **700** may be configured to be secured (e.g., locked) in the operating position and the extended position. The mounting bracket **700** (e.g., the sliding portion **740**) may define one or more locking tabs (e.g., locking tab **745** and locking tab **760**). The stationary portion **710** may define one or more indentations configured to receive the locking tab **745**. For example, the arm **714** may define an operating position cavity **762** and an extended position cavity **764**. The operating position cavity **762** may define a recess (e.g., detent) that receives the locking tab **745** when the roller tube is in the operating position. The operating position cavity **762** may be configured to receive the locking tab **745** to hold (e.g., lock) the roller tube in the extended position. The extended position cavity **764** may define a recess that receives the locking tab **745** when the roller tube is in the extended position. The extended position cavity **764** may be configured to receive the locking tab 745 to hold (e.g., lock) the roller tube in the extended position. For example, the extended position cavity **764** and the locking tab **745** may be configured to prevent the roller tube from sliding out of engagement with the mounting bracket **700**. [0144] The locking tab **745** may be configured to engage the operating position cavity **762** when the roller tube is in the operating position. The locking tab **745** may be configured to engage the extended position cavity **764** when the roller tube is in the extended position. For example, the locking tab 745 (e.g., a distal portion of the locking tab 745) may be configured to abut the inner surface **715** of the arm **714** between the operating position cavity **762** and the extended position cavity **764**. Stated differently, the locking tab **745** may slide along the inner surface **715** as the roller tube is operated between the operating position and the extended position. The arm **714** (e.g., the inner surface **715**) may define an inner channel **717** that is configured to receive the locking tab 745. For example, the locking tab 745 may be received within and slide along the inner channel

717 as the roller tube is operated between the operating position and the extended position. The inner channel **717** may be configured to prevent the roller tube from being pulled out of engagement with the mounting bracket **745** when in the operating position. For example, the inner channel **717** may define a wall (not shown) distal from the base **712**. The wall may be configured to prevent the roller tube from being translated beyond the extended position. For example, the locking tab **745** may abut the wall when the roller tube is in the extended position and/or when a radial force is applied to the roller tube when in the extended position.

[0145] The locking tab **760** may be configured to engage an inner surface **734** of the translating portion **730**. The inner surface **734** may define the aperture **732**. The locking tab **760** may be configured to engage the translating portion **730** (e.g., the inner surface **734**) when the roller tube is in the operating position. The translating portion **730** may define one or more indentations configured to receive the locking tab **760** as the roller tube is operated between the operating position and the extended position.

[0146] The locking tab **745** and the locking tab **760** may be configured to secure the roller tube in the operating position. The locking tab **745** and the locking tab **760** may be configured to prevent accidental disengagement of the roller tube from the operating position. For example, the locking tab **745** and the operating position cavity **762** may be configured to resist a first threshold force in the radial direction. In addition, the locking tab **760** may be configured to resist a second threshold force in the radial direction. The first threshold force and the second threshold force may be the same. When a force greater than the first threshold force is applied in the radial direction, the locking tab 745 may release (e.g., disengage) from the operating position cavity 762 such that the roller tube can be moved to the extended position. The locking tab **745** may slide along the inner surface until it reaches the extended position cavity **764**. For example, the locking tab **745** may be configured to slide along the inner surface between the operating position cavity **762** and the extended position cavity **764**. When a force greater than the second threshold force is applied in the radial direction, the locking tab **760** may release (e.g., disengage) from the translating portion **730** (e.g., the inner wall **734**) such that the roller tube can be moved to the extended position. [0147] The locking tab **745** may be configured to secure the roller tube in the extended position. The locking tab **745** and the extended position cavity **764** may provide a positive lock that prevents the roller tube from being extended beyond the extended position. The locking tab **745** and the extended position cavity **764** may be configured to enable the roller tube to be released from the extended position and translated back toward the operating position. The locking tab **745** and the extended position cavity **762** may be configured to prevent the roller tube from being pulled out of engagement with the mounting bracket **700**, for example, when the roller tube is in the extended position. The mounting bracket **700** may include a release button (not shown) that enables release of the translating portion **720** from the operating position such that it can be moved to the extended position. The mounting bracket **700** may include a disengagement button (e.g., the end portion **1078** shown in FIG. **26**A) that enables disengagement of the translating portion **720** from the stationary portion **710**. For example, operation of the disengagement button may decouple the translating portion **720** from the stationary portion **710**.

[0148] The mounting bracket **700** may be used at both sides of a roller tube, for example, such that the roller tube slides away from the structure. For example, the mounting bracket **700** on the opposite end of the roller tube may be flipped 180 degrees such that the base **712** is also attached to the structure. Alternatively, the mounting bracket **700** may be used at one end of a roller tube such that the roller tube pivots away from the structure. The mounting bracket **700** may be configured as an end bracket (e.g., as shown) that receives a single roller tube. Alternatively, the mounting bracket **700** may be configured as a center bracket that receives two roller tubes. Although the mounting bracket is shown as accepting a roller tube from one side of the arm **714**, it should be appreciated that the mounting bracket **700** may be configured to accept one roller tube at a first side of the arm **714** and another roller tube at an opposed second side of the arm **714**. The center bracket

may define translating portions and/or sliding portions (e.g., such as the translating portion **720** and/or the sliding portion **740**) slidably coupled to both sides of the arm **714**. The center bracket may define slides (e.g., such as the upper slide **711** and lower slide **713**) on both sides of the arm **714**. Each of the translating portions and/or the sliding portions may slide independently, for example such that an end of one of the roller tubes can be accessed (e.g., in the extended position) while the other roller tube remains in the operating position.

[0149] FIGS. 14A and 14B depict an example mounting bracket 800 for use with a battery-powered motorized window treatment (e.g., such as the motorized window treatment 100 shown in FIGS. 1A and 1B, the battery-powered motorized window treatment 200 shown in FIGS. 2A and 2B, the battery-powered motorized window treatment 300 shown in FIGS. 3A and 3B, the battery-powered motorized window treatment 400 shown in FIGS. 4A and 4B, the battery-powered motorized window treatment 500 shown in FIG. 5A, the battery-powered motorized window treatment 600 shown in FIGS. 8A-11) in an operating position. FIGS. 15A and 15B depict the mounting bracket 800 in an extended position. The mounting bracket 800 may be configured to be attached to a structure, eg., such as a ceiling, a head jamb of a window frame, or other horizontal structure (e.g., as shown in FIGS. 8A, 8B, and 9).

[0150] The mounting bracket **800** may be configured to secure, without requiring a tool, a roller tube in a first direction parallel to a longitudinal axis (e.g., the longitudinal direction L), in a second direction that is parallel to the structure and perpendicular to the longitudinal axis (e.g., the transverse direction T), and in a third direction perpendicular to the structure and the longitudinal axis (e.g., the radial direction R). As shown, the mounting bracket 800 may include a stationary portion **810**, a translating portion **820**, and a sliding portion **840**. The stationary portion **810** may include a base 812 (e.g., a foot) and an arm 814. The translating portion 820 may include an attachment member **830** that is configured to receive an end of the roller tube and/or motor drive unit housing. The attachment member **830** may define an aperture **832** (e.g., an attachment aperture). The base **812** may be configured to attach the mounting bracket **800** to the structure. The structure may include a window frame (e.g., a head jamb or side jambs of a window frame), a wall, a ceiling, or other structure, such that the motorized window treatment is mounted proximate to an opening (e.g., over the opening or in the opening), such as a window for example. When the mounting bracket **800** is attached to a horizontal structure, such as a ceiling or a head jamb of a window frame, the arm 814 of the mounting bracket 800 may extend vertically (e.g., in the transverse direction T) from the base 812.

[0151] The sliding portion **840** may be coupled (e.g., slidably coupled) between the stationary portion **710** and the translating portion **720**. The translating portion **820** may be configured to translate between an operating position (e.g., as shown in FIGS. **14**A and **14**B) and an extended position (e.g., as shown in FIGS. **15**A and **15**B). The translating portion **820** may be proximate to (e.g., aligned with) the base **812** when in the operating position and distal from the base **812** when in the extended position. The end of the roller tube and/or the motor drive unit housing may be accessible via the aperture **832** (e.g., to replace the batteries) when the translating portion **820** is in the extended position.

[0152] The stationary portion **810**, the translating portion **820**, and the sliding portion **840** may define one or more features that enable the translating portion **820** to be translated between the operating position and the extended position. The translating portion **820** and the sliding portion **840** may be configured to move in the radial direction R from the operating position to the extended position (e.g., in a direction that is 90° from the direction that the arm **814** extends from the base **812**). The stationary portion **810** may define a first slide **811**. The first slide **811** may be configured to engage the sliding portion **840**. The sliding portion **840** may define a first channel **842** that is configured to receive the first slide **811**. The translating portion **820** may define one or more corresponding features that are configured to cooperate with the one or more features on the

stationary portion **810**. The first slide **811** may protrude from an inner surface **815** of the arm **814**. The sliding portion **840** may define a second slide **844** that is configured to engage the translating portion **820**. The translating portion **820** may define a second channel **822** that is configured to receive the second slide **844**. The translating portion **820** may translate along the second slide **844** and the sliding portion **840** may translate along the first slide **811** between the operating position and the extended position.

[0153] The mounting bracket **800** may be configured to be secured (e.g., locked) in the operating position and the extended position. The mounting bracket **800** may define one or more locking tabs (not shown). For example, the sliding portion **840** may define a first locking tab and the translating portion **820** may define a second locking tab. The stationary portion **820** may define an indentation configured to receive the first locking tab on the sliding portion **840**. For example, the arm **814** may define an operating position arm cavity (not shown), an extended position arm cavity and the slide may define a first slide cavity **846** and a second slide cavity **848**. The operating position arm cavity may define a recess (e.g., detent) that receives the first locking tab and the first slide cavity **846** may define a recess that receives the second locking tab to hold the roller tube in the operating position. The second slide cavity **848** may define a lock that prevents the roller tube from sliding out of engagement with the mounting bracket **800**.

[0154] The first locking tab on the slide may engage the extend position arm cavity and the second locking tab on the translating portion **820** may be configured to engage the second slide cavity **848** when the roller tube is in the operating position. For example, the first locking tab on the slide may be configured to abut the inner surface **815** of the arm **814** between the operating position arm cavity and the extended position arm cavity. Stated differently, the first locking tab may slide along the inner surface **815** as the roller tube is operated between the operating position and the extended position.

[0155] The first and second locking tabs may be configured to secure the roller tube in the operating position. The first and second locking tabs may be configured to prevent accidental disengagement of the roller tube from the operating position. For example, the first locking tab and the operating position arm cavity and the second locking tab and the first slide cavity **846** may be configured to resist a threshold force in the radial direction. When a force greater than the threshold force is applied in the radial direction, the first locking tab may release from the operating position arm cavity and the second locking tab may release from the first slide cavity **846** such that the roller tube can be moved to the extended position. The first locking tab may slide along the inner surface **815** until it reaches the extended position arm cavity. The second locking tab may slide along the sliding portion **840** until it reaches the second slide cavity **848**.

[0156] The first and second locking tabs may be configured to secure the roller tube in the extended position. The first locking tab and the extended position arm cavity may be configured to prevent the sliding portion **840** from being pulled out of engagement with the mounting bracket **800**, for example, when the roller tube is in the extended position. The second locking tab and the second slide cavity **848** may be configured to prevent the translating portion **820** from being pulled out of engagement with the sliding portion **840** and the mounting bracket **800**, for example, when the roller tube is in the extended position. The mounting bracket **800** may include one or more release buttons (not shown) that enable release of the translating portion **820** from the operating position such that it can be moved to the extended position. The mounting bracket **800** may include a disengagement button (not shown) that enables disengagement of the translating portion **820** from the sliding portion **840** and/or the sliding portion **840** from the stationary portion **810**.

[0157] The mounting bracket **800** may be used at both sides of a roller tube, for example, such that

the roller tube slides away from a window. For example, the mounting bracket **800** on the opposite end of the roller tube may be flipped 180 degrees such that it mirrors the other mounting bracket. Alternatively, the mounting bracket **800** may be used at one end of a roller tube such that the roller tube pivots away from the window. The mounting bracket **800** may be configured as an end bracket

(e.g., as shown) that receives a single roller tube. Alternatively, the mounting bracket **800** may be configured as a center bracket that receives two roller tubes. Although the mounting bracket **800** is shown as accepting a roller tube from one side of the arm **814**, it should be appreciated that the mounting bracket **800** may be configured to accept one roller tube at a first side of the arm **814** and another roller tube at an opposed second side of the arm **814**. The center bracket may define translating portions (e.g., such as translating portion 820) and slides (e.g., such as sliding portion **840**) on both sides of the arm **814**. Each of the translating portions and/or slides may slide independently, for example such that an end of one of the roller tubes can be accessed (e.g., in the extended position) while the other roller tube remains in the operating position. [0158] FIG. **16** depicts an example mounting bracket **900** for use with a battery-powered motorized window treatment (e.g., such as the motorized window treatment **100** shown in FIGS. **1**A and **1**B, the battery-powered motorized window treatment **200** shown in FIGS. **2**A and **2**B, the batterypowered motorized window treatment **300** shown in FIGS. **3**A and **3**B, the battery-powered motorized window treatment **400** shown in FIGS. **4**A and **4**B, the battery-powered motorized window treatment **500** shown in FIG. **5**A, the battery-powered motorized window treatment **5500** shown in FIG. **6**, and/or the battery-powered motorized window treatment **600** shown in FIGS. **8**A-11). The mounting bracket 900 may be configured to receive an idler end of the battery-powered motorized window treatment. The mounting bracket **900** may be configured to be attached to a wall or other vertical structure (e.g., as shown in FIGS. 1A-7). The mounting bracket 900 may be configured to be attached to a ceiling or other horizontal structure (e.g., as shown in FIGS. **8**A, **8**B,

[0159] The mounting bracket **900** may be configured to secure, without requiring a tool, a roller tube in a first direction parallel to a longitudinal axis (e.g., the longitudinal direction L), in a second direction that is parallel to the structure and perpendicular to the longitudinal axis (e.g., the transverse direction T), and in a third direction perpendicular to the structure and the longitudinal axis (e.g., the radial direction R).

and**-9**).

[0160] The mounting bracket 900 may include a base 912 (e.g., a foot), an arm 914, and an attachment member **930** that is configured to receive an end of the roller tube and/or motor drive unit housing. The attachment member **930** may define an aperture **932** (e.g., such as the cavity **612** shown in FIGS. 9A and 9B) and one or more notches 934 (e.g., such as the notch 627 shown in FIG. **9**A). The aperture **932** may be referred to as an attachment aperture. The notches **934** may be configured to retain and prevent disengagement (e.g., accidental disengagement) of the roller tube from the mounting bracket **900**. For example, one of the notches **934** may receive a tab (e.g., such as the tab **699** shown in FIGS. **9**A and **9**C) of an idler shaft (e.g., such as the idler shaft **614** shown in FIGS. **9**A, **9**B, and **9**C) that is installed within the roller tube. The base **912** may be configured to attach the mounting bracket **900** to the structure. The structure may include a window frame (e.g., a head jamb or side jambs of a window frame), a wall, a ceiling, or other structure, such that the motorized window treatment is mounted proximate to an opening (e.g., over the opening or in the opening), such as a window for example. When the mounting bracket 900 is attached to a vertical structure, such as a wall, the arm **914** of the mounting bracket **900** may extend horizontally (e.g., in the radial direction R) from the base **912**. A base cover **916** may be configured to be detachably mounted over the base 912 of the mounting bracket 900. The base cover 916 may be configured to cover and/or conceal the base **912**.

[0161] The translating portion **920** may be configured to translate between an operating position (e.g., as shown in FIG. **16**) and an extended position. The translating portion **920** may be proximate to (e.g., aligned with) the base **912** when in the operating position and distal from the base **912** when in the extended position. The end of the roller tube (e.g., the idler end) may be accessible via the aperture **932** when the translating portion **920** is in the extended position.

[0162] The mounting bracket **900** may be configured as an end bracket (e.g., as shown) that receives a single roller tube. Alternatively, the mounting bracket **900** may be configured as a center

bracket that receives two roller tubes. Although the mounting bracket **900** is shown as accepting a roller tube from one side of the arm **914**, it should be appreciated that the mounting bracket **900** may be configured to accept one roller tube at a first side of the arm **914** and another roller tube at an opposed second side of the arm **914**. The center bracket may define a translating portion (e.g., such as the translating portion **720**) on one side of the arm **914**. The translating portion may slide, for example such that an end of one of the roller tubes can be accessed (e.g., in the extended position).

[0163] FIGS. 17A and 17B depict an example mounting bracket 1000 for use with a battery-powered motorized window treatment (e.g., such as the motorized window treatment 100 shown in FIGS. 1A and 1B, the battery-powered motorized window treatment 200 shown in FIGS. 2A and 2B, the battery-powered motorized window treatment 300 shown in FIGS. 3A and 3B, the battery-powered motorized window treatment 400 shown in FIGS. 4A and 4B, the battery-powered motorized window treatment 500 shown in FIG. 5A, the battery-powered motorized window treatment 5500 shown in FIG. 6, and/or the battery-powered motorized window treatment 600 shown in FIGS. 8A-11) in an operating position. FIGS. 18A and 18B depict the mounting bracket 1000 in an extended position. FIGS. 19A and 19B are exploded views of the mounting bracket 1000. The mounting bracket 1000 may be configured to be attached to a structure, e.g., such as a wall or other vertical surface (e.g., as shown in FIGS. 1A-7).

[0164] The mounting bracket **1000** may be configured to secure, without requiring a tool, a roller tube in a first direction parallel to a longitudinal axis (e.g., the longitudinal direction L), in a second direction that is parallel to the structure and perpendicular to the longitudinal axis (e.g., the transverse direction T), and in a third direction perpendicular to the structure and the longitudinal axis (e.g., the radial direction R). As shown, the mounting bracket **1000** may include a stationary portion **1010**, a translating portion **1020**, and a sliding portion **1040**. The stationary portion **1010** may include a base **1012** (e.g., a foot) and an arm **1014**. The translating portion **1020** may include an attachment member **1030** that is configured to receive an end of the roller tube and/or a motor drive unit housing. The attachment member **1030** may define an aperture **1032** (e.g., an attachment aperture) surrounded by a rim **1034**. The attachment member **1030** may comprise a plurality of teeth **1036** configured to engage corresponding features of the end of the roller tube and/or the motor drive unit housing.

[0165] The base **1012** may be configured to attach the mounting bracket **1000** to the structure. The structure may include a window frame (e.g., a head jamb or side jambs of a window frame), a wall, a ceiling, or other structure, such that the motorized window treatment is mounted proximate to an opening (e.g., over the opening or in the opening), such as a window for example. When the mounting bracket **1000** is attached to a vertical structure, such as a wall, the arm **1014** of the mounting bracket **1000** may extend horizontally (e.g., in the radial direction R) from the base **1012**. The base **1012** may include holes (e.g., such as holes **1152**) configured to receive a fastener (not shown) for securing the mounting bracket **1000** to the structure. The mounting bracket **1000** may comprise a base cover **1050** may be configured to be detachably mounted over the base **1012**, eg., for covering and/or concealing the base **1012**.

[0166] The sliding portion **1040** may be coupled (e.g., slidably coupled) between the stationary portion **1010**, and the translating portion **1020**. The translating portion **1020** and the sliding portion **1040** may be configured to translate the roller tube between the operating position (e.g., as shown in FIGS. **17A** and **17B**) and the extended position (e.g., as shown in FIGS. **18A** and **18B**). The translating portion **1020** may be proximate to the base **1012** when in the operating position and distal from the base **1012** when in the extended position. The end of the roller tube and/or the motor drive unit housing may be accessible via the aperture **1032** (e.g., to replace the batteries) when the translating portion **1020** is in the extended position.

[0167] The stationary portion **1010**, the translating portion **1020**, and the sliding portion **1040** may define one or more features that enable the translating portion **1020** to be translated between the

operating position and the extended position. The translating portion **1020** and the sliding portion **1040** may be configured to move in the radial direction R from the operating position to the extended position (e.g., in the same direction as the arm **1014** extends from the base **1012**). The translating portion **1020** may define one or more corresponding features that are configured to cooperate with the one or more features on the sliding portion **1040**, and the sliding portion **1040** may define one or more corresponding features that are configured to cooperate with the one or more features on the stationary portion **1010**.

[0168] The arm **1014** of the stationary portion **1010** may define one or more slides (e.g., an upper slide **1011** and a lower slide **1013**). The upper slide **1011** and the lower slide **1013** may protrude from an inner surface **1015** of the arm **1014**. The sliding portion **1040** may define one or more channels (e.g., an upper channel **1041** and a lower channel **1043**). The upper channel **1041** may be configured to receive the upper slide 1011 and the lower channel 1043 may be configured to receive the lower slide **1013**. The sliding portion **1040** may translate along the upper slide **1011** and the lower slide **1013** when the translating portion **1020** is moving between the operating position and the extended position. In addition, the sliding portion 1040 may define one or more slides (e.g., a middle slide 1049), and the arm 1014 may define one or more channels (e.g., a middle channel **1019**). The middle slide **1029** may protrude from the sliding portion **1040** between the upper channel **1021** and the lower channel **1023**. The middle channel **1019** may be located between the upper slide **1011** and the lower slide **1013**. The middle channel **1019** may be configured to receive the middle slide **1029**. The sliding portion **1040** may translate along the middle slide **1029** when the translating portion **1020** is moving between the operating position and the extended position. [0169] The sliding portion **1040** may define one or more slides (e.g., an upper slide **1042** and a lower slide **1044**). The upper slide **1042** and the lower slide **1044** may protrude from the sliding portion **1040**. The translating portion **1020** may define one or more channels (e.g., an upper channel **1022** and a lower channel **1024**). The upper channel **1022** may be configured to receive the upper slide **1042** and the lower channel **1024** may be configured to receive the lower slide **1044**. The translating portion **1020** may translate along the upper slide **1042** and the lower slide **1044** when the translating portion **1020** is moving between the operating position and the extended position. In addition, the translating portion 1020 may define one or more slides (e.g., a middle slide **1027**), and the sliding portion **1040** may define one or more channels (e.g., a middle channel **1047**). The middle slide **1027** may protrude from the translating portion **1020** between the upper channel **1022** and the lower channel **1024**. The middle channel **1047** may be located between the upper slide **1042** and the lower slide **1044**. The middle channel **1047** may be configured to receive the middle slide **1027**. The translating portion **1020** may translate along the middle slide **1027** when the translating portion **1047** is moving between the operating position and the extended position. [0170] The mounting bracket **1000** may be configured to be secured (e.g., locked) in the operating position and the extended position. The mounting bracket **1000** (e.g., the sliding portion **1040**) may define a first locking tab **1060** and a second locking tab **1065**. The stationary portion **1010** and the translating portion 120 may each define one or more indentations configured to receive the first locking tab **1060**. For example, the stationary portion **1010** (e.g., the arm **1014**) may define an operating position cavity **1062** and an extended position cavity **1064**, and the translating portion **1020** may define an operating position cavity **1066** and an extended position cavity **1068**. The operating position cavity **1062** of the stationary portion **1010** and the operating position cavity **1066** of the translating portion **1020** may each define a recess (e.g., detent) that is configured to receive the first locking tab **1060** and the second locking tab **1065**, respectively, when the roller tube is in the operating position. The extended position cavity **1064** of the stationary portion **1010** and the extended position cavity **1068** of the translating portion **1020** may each define a recess (e.g., detent) that is configured to receive the first locking tab **1060** and the second locking tab **1065**, respectively, when the roller tube is in the extended position. The operating position cavity **1062** of the stationary portion **1010** and the operating position cavity **1066** of the translating portion

1020 may be configured to receive the respective locking tabs **1060**, **1065** to hold (e.g., lock) the roller tube in the operating position. The extended position cavity **1064** of the stationary portion **1010** and the extended position cavity **1068** of the translating portion **1020** may be configured to receive the respective locking tabs **1060**, **1065** to hold (e.g., lock) the roller tube in the extended position. For example, the extended position cavities **1064**, **1068** and the respective locking tabs **1060**, **1065** may be configured to prevent the roller tube from sliding out of engagement with the mounting bracket **1000**.

[0171] The first and second locking tabs **1060**, **1065** may be configured to engage the respective operating position cavities **1062**, **1066** when the roller tube is in the operating position. The first and second locking tab **1060**, **1065** may be configured to engage the respective extended position cavities **1064**, **1068** when the roller tube is in the extended position. For example, the first and second locking tab **1060**, **1065** (e.g., a distal portion of the locking tabs) may be configured to be received in (e.g., and slide along) an inner channel **1016** in the stationary portion **1010** and an inner channel **1026** in the translating portion **1020**, respectively, as the mounting bracket **1000** is transitioned between the operating position and the extended position. The inner channels **1016**, **1026** may be configured to prevent the roller tube from being pulled out of engagement with the mounting bracket **1000**. For example, the inner channels **1016**, **1026** may define respective walls **1018**, **1028** configured to abut the respective locking tabs **1060**, **1065** to prevent the roller tube from being translated beyond the extended position.

[0172] The first and second locking tabs 1060, 1065 may be configured to secure the roller tube in the operating position. The first and second locking tabs 1060, 1065 may be configured to prevent accidental disengagement of the roller tube from the operating position. For example, the first locking tab 1060 and the operating position cavity 1062 of the stationary portion 1010 may be configured to resist a threshold force in the radial direction, and the second locking tab 1065 and the operating position cavity 1066 of the translating portion 1020 may be configured to resist a threshold force in the opposing radial direction. When a force greater than the threshold force is applied in the radial direction and the opposing radial direction, the first and second locking tabs 1060, 1065 may release (e.g., disengage) from the operating position cavities 1062, 1066, respectively, such that the roller tube can be moved to the extended position. The first and second locking tabs 1060, 1065 may slide through the respective channels 1016, 1026 until reaching the respective extended position cavity 1064, 1068.

[0173] The first and second locking tabs **1060**, **1065** may be configured to secure the roller tube in the extended position. The walls **1018**, **1028** of the respective channels **1016**, **1026** may provide a positive lock with the respective locking tabs **1060**, **1065** to prevent the roller tube from being extended beyond the extended position. For example, the locking tabs 1060, 1065 may abut the respective walls **1018**, **1028** when the roller tube is in the extended position and/or when a radial force is applied to the roller tube when in the extended position. The first and second locking tabs **1060**, **1065** and the respective extended position cavities **1064**, **1068** may be configured to enable the roller tube to be released from the extended position and translated back toward the operating position. The first and second locking tabs **1060**, **1065** and the respective extended position cavities **1064**, **1068** may be configured to prevent the roller tube from being pulled out of engagement with the mounting bracket **1000**, for example, when the roller tube is in the extended position. The mounting bracket **1000** may include a release button (not shown) that enables release of the translating portion **1020** and/or the sliding portion **1040** from the operating position such that the mounting bracket **1000** can be translated to the extended position. The mounting bracket **1000** may include a disengagement button (not shown) that enables disengagement of the translating portion **1020** and/or the sliding portion **1040** from the stationary portion **1010**.

[0174] The mounting bracket **1000** may be used at both sides of a roller tube, for example, such that the roller tube slides away from the structure. For example, the mounting bracket **1000** on the opposite end of the roller tube may be flipped 180 degrees such that the base **1012** is also attached

to the structure. Alternatively, the mounting bracket **1000** may be used at one end of a roller tube such that the roller tube pivots away from the structure. The mounting bracket **1000** may be configured as an end bracket (e.g., as shown) that receives a single roller tube. Alternatively, the mounting bracket **1000** may be configured as a center bracket that receives two roller tubes. Although the mounting bracket **1000** is shown as accepting a roller tube from one side of the arm **1014**, it should be appreciated that the mounting bracket **1000** may be configured to accept one roller tube at a first side of the arm **1014** and another roller tube at an opposed second side of the arm **1014**. The center bracket may define translating portions and/or sliding portions (e.g., such as translating portion **1020** and/or the sliding portion **1040**) on both sides of the arm **1014**. The center bracket may define slides (e.g., such as upper slide **1011** and lower slide **1013**) on both sides of the arm **1014**. Each of the translating portions and/or sliding portions may slide independently, for example such that an end of one of the roller tubes can be accessed (e.g., in the extended position) while the other roller tube remains in the operating position.

[0175] FIGS. **20**A and **20**B depict an example mounting bracket **1100** for use with a battery-powered motorized window treatment **100** shown in FIGS. **1**A and **1**B, the battery-powered motorized window treatment **200** shown in FIGS. **2**A and **2**B, the battery-powered motorized window treatment **300** shown in FIGS. **3**A and **3**B, the battery-powered motorized window treatment **400** shown in FIGS. **4**A and **4**B, the battery-powered motorized window treatment **500** shown in FIG. **5**A, the battery-powered motorized window treatment **600** shown in FIGS. **8**A-**11**) in an operating position. FIGS. **21**A and **21**B depict the mounting bracket **1100** in an extended position. FIGS. **22**A and **22**B are exploded views of the mounting bracket **1100** in an extended position. The mounting bracket **1100** may be configured to be attached to a structure, eg., such as a ceiling, a head jamb of a window frame, or other horizontal surface (e.g., as shown in **8**A, **8**B, and **9**).

[0176] The mounting bracket **1100** may be configured to secure, without requiring a tool, a roller tube in a first direction parallel to a longitudinal axis (e.g., the longitudinal direction L), in a second direction that is parallel to the structure and perpendicular to the longitudinal axis (e.g., the transverse direction T), and in a third direction perpendicular to the structure and the longitudinal axis (e.g., the radial direction R). As shown, the mounting bracket **1100** may include a stationary portion **1110**, a translating portion **1120**, and a sliding portion **1140**. The stationary portion **1010** may include a base **1112** (e.g., a foot) and an arm **1114**. The translating portion **1120** may include an attachment member **1130** that is configured to receive an end of the roller tube and/or a motor drive unit housing. The attachment member **1130** may define an aperture **1132** (e.g., an attachment aperture) surrounded by a rim **1134**. The attachment member **1130** may comprise a plurality of teeth **1136** configured to engage corresponding features of the end of the roller tube and/or the motor drive unit housing.

[0177] The base **1112** may be configured to attach the mounting bracket **1100** to the structure. The structure may include a window frame (e.g., a head jamb or side jambs of a window frame), a wall, a ceiling, or other structure, such that the motorized window treatment is mounted proximate to an opening (e.g., over the opening or in the opening), such as a window for example. When the mounting bracket **1100** is attached to a horizontal structure, such as a ceiling, the arm **1114** of the mounting bracket **1100** may extend vertically (e.g., in the transverse direction T) from the base **1112**. The base **1112** may include holes **1152** configured to receive a fastener (not shown) for securing the mounting bracket **1100** to the structure. The mounting bracket **1100** may comprise a base cover **1150** may be configured to be detachably mounted over the base **1112**, e.g., for covering and/or concealing the base **1112**.

[0178] The sliding portion **1140** may be coupled (e.g., slidably coupled) between the stationary portion **1110** and the translating portion **1120**. The translating portion **1120** and the sliding portion **1140** may be configured to translate the roller tube between the operating position (e.g., as shown

in FIGS. **20**A and **20**B) and the extended position (e.g., as shown in FIGS. **21**A and **21**B). The translating portion **1120** may be proximate to the base **1112** when in the operating position and distal from the base **1112** when in the extended position. The end of the roller tube and/or the motor drive unit housing may be accessible via the aperture **1132** (e.g., to replace the batteries) when the translating portion **1120** is in the extended position.

[0179] The stationary portion **1110**, the translating portion **1120**, and the sliding portion **1140** may define one or more features that enable the translating portion **1120** to be translated between the operating position and the extended position. The translating portion **1120** may be configured to move in the radial direction R from the operating position to the extended position (e.g., in a direction that is 90° from the direction that the arm **1114** extends from the base **1112**). The translating portion **1120** may define one or more corresponding features that are configured to cooperate with the one or more features on the sliding portion **1140**, and the sliding portion **1140** may define one or more corresponding features that are configured to cooperate with the one or more features on the stationary portion **1110**.

[0180] The stationary portion **1110** may define one or more slides (e.g., an upper slide **1111** and a lower slide **1113**). The upper slide **1111** and the lower slide **1113** may protrude from an inner surface **1115** of the arm **1114**. The sliding portion **1140** may define one or more channels (e.g., an upper channel **1141** and a lower channel **1143**). The upper channel **1141** may be configured to receive the upper slide **1111** and the lower channel **1143** may be configured to receive the lower slide **1113**. The sliding portion **1140** may translate along the upper slide **1111** and the lower slide **1113** when the translating portion **1120** is moving between the operating position and the extended position. In addition, the sliding portion 1140 may define one or more slides (e.g., a middle slide 1149), and the stationary portion 1110 may define one or more channels (e.g., a middle channel **1119**). The middle slide **1129** may protrude from the sliding portion **1140** between the upper channel **1121** and the lower channel **1123**. The middle channel **1119** may be located between the upper slide **1111** and the lower slide **1113**. The middle channel **1119** may be configured to receive the middle slide **1129**. The sliding portion **1140** may translate along the middle slide **1129** when the translating portion **1120** is moving between the operating position and the extended position. [0181] The sliding portion **1140** may define one or more slides (e.g., an upper slide **1142** and a lower slide 1144). The upper slide 1142 and the lower slide 1144 may protrude from the sliding portion **1140**. The translating portion **1120** may define one or more channels (e.g., an upper channel **1122** and a lower channel **1124**). The upper channel **1122** may be configured to receive the upper slide **1142** and the lower channel **1124** may be configured to receive the lower slide **1144**. The translating portion **1120** may translate along the upper slide **1142** and the lower slide **1144** when the translating portion **1120** is moving between the operating position and the extended position. In addition, the translating portion 1120 may define one or more slides (e.g., a middle slide 1127), and the sliding portion 1140 may define one or more channels (e.g., a middle channel 1147). The middle slide **1127** may protrude from the translating portion **1120** between the upper channel **1122** and the lower channel **1124**. The middle channel **1147** may be located between the upper slide **1142** and the lower slide **1144**. The middle channel **1147** may be configured to receive the middle slide **1127**. The translating portion **1120** may translate along the middle slide **1127** when the translating portion **1147** is moving between the operating position and the extended position. [0182] The mounting bracket **1100** may be configured to be secured (e.g., locked) in the operating position and the extended position. The mounting bracket **1100** (e.g., the sliding portion **1140**) may define a first locking tab **1160** and a second locking tab **1165**. The stationary portion **1110** and the translating portion **120** may each define one or more indentations configured to receive the first locking tab **1160**. For example, the stationary portion **1110** (e.g., the arm **1114**) may define an operating position cavity **1162** and an extended position cavity **1164**, and the translating portion **1120** may define an operating position cavity **1166** and an extended position cavity **1168**. The operating position cavity **1162** of the stationary portion **1110** and the operating position cavity **1166**

of the translating portion 1120 may each define a recess (e.g., detent) that is configured to receive the first locking tab 1160 and the second locking tab 1165, respectively, when the roller tube is in the operating position. The extended position cavity 1164 of the stationary portion 1110 and the extended position cavity 1168 of the translating portion 1120 may each define a recess (e.g., detent) that is configured to receive the first locking tab 1160 and the second locking tab 1165, respectively, when the roller tube is in the extended position. The operating position cavity 1162 of the stationary portion 1110 and the operating position cavity 1166 of the translating portion 1120 may be configured to receive the respective locking tabs 1160, 1165 to hold (e.g., lock) the roller tube in the operating position. The extended position cavity 1164 of the stationary portion 1110 and the extended position cavity 1168 of the translating portion 1120 may be configured to receive the respective locking tabs 1160, 1165 to hold (e.g., lock) the roller tube in the extended position. For example, the extended position cavities 1164, 1168 and the respective locking tabs 1160, 1165 may be configured to prevent the roller tube from sliding out of engagement with the mounting bracket 1100.

[0183] The first and second locking tabs **1160**, **1165** may be configured to engage the respective operating position cavities **1162**, **1166** when the roller tube is in the operating position. The first and second locking tab **1160**, **1165** may be configured to engage the respective extended position cavities **1164**, **1168** when the roller tube is in the extended position. For example, the first and second locking tab **1160**, **1165** (e.g., a distal portion of the locking tabs) may be configured to be received in (e.g., and slide along) an inner channel **1116** in the stationary portion **1110** and an inner channel **1126** in the translating portion **1120**, respectively, as the mounting bracket **1100** is transitioned between the operating position and the extended position. The inner channels **1116**, **1126** may be configured to prevent the roller tube from being pulled out of engagement with the mounting bracket **1100**. For example, the inner channels **1116**, **1126** may define respective walls **1118**, **1128** configured to abut the respective locking tabs **1160**, **1165** to prevent the roller tube from being translated beyond the extended position.

[0184] The first and second locking tabs **1160**, **1165** may be configured to secure the roller tube in the operating position. The first and second locking tabs **1160**, **1165** may be configured to prevent accidental disengagement of the roller tube from the operating position. For example, the first locking tab **1160** and the operating position cavity **1162** of the stationary portion **1110** may be configured to resist a threshold force in the radial direction, and the second locking tab **1165** and the operating position cavity **1166** of the translating portion **1120** may be configured to resist a threshold force in the opposing radial direction. When a force greater than the threshold force is applied in the radial direction and the opposing radial direction, the first and second locking tabs **1160**, **1165** may release (e.g., disengage) from the operating position cavities **1162**, **1166**, respectively, such that the roller tube can be moved to the extended position. The first and second locking tabs **1160**, **1165** may slide through the respective inner channels **1116**, **1126** until reaching the respective extended position cavity **1164**, **1168**.

[0185] The first and second locking tabs **1160**, **1165** may be configured to secure the roller tube in the extended position. The walls **1118**, **1128** of the respective channels **1116**, **1126** may provide a positive lock with the respective locking tabs **1160**, **1165** to prevent the roller tube from being extended beyond the extended position. For example, the locking tabs **1160**, **1165** may abut the respective walls **1118**, **1128** when the roller tube is in the extended position and/or when a radial force is applied to the roller tube when in the extended position. The first and second locking tabs **1160**, **1165** and the respective extended position cavities **1164**, **1168** may be configured to enable the roller tube to be released from the extended position and translated back toward the operating position. The first and second locking tabs **1160**, **1165** and the respective extended position cavities **1164**, **1168**′may be configured to prevent the roller tube from being pulled out of engagement with the mounting bracket **1100**, for example, when the roller tube is in the extended position. The mounting bracket **1100** may include a release button (not shown) that enables release of the

translating portion **1120** and/or the sliding portion **1140** from the operating position such that the mounting bracket **1100** can be translated to the extended position. The mounting bracket **1100** may include a disengagement button (not shown) that enables disengagement of the translating portion **1120** and/or the sliding portion **1140** from the stationary portion **1110**.

[0186] The mounting bracket **1100** may be used at both sides of a roller tube, for example, such that the roller tube slides away from the structure. For example, the mounting bracket **1100** on the opposite end of the roller tube may be flipped 180 degrees such that the base **1112** is also attached to the structure. Alternatively, the mounting bracket **1100** may be used at one end of a roller tube such that the roller tube pivots away from the structure. The mounting bracket **1100** may be configured as an end bracket (e.g., as shown) that receives a single roller tube. Alternatively, the mounting bracket **1100** may be configured as a center bracket that receives two roller tubes. Although the mounting bracket **1100** is shown as accepting a roller tube from one side of the arm **1114**, it should be appreciated that the mounting bracket **1100** may be configured to accept one roller tube at a first side of the arm **1114** and another roller tube at an opposed second side of the arm **1114**. The center bracket may define translating portions and/or sliding portions (e.g., such as translating portion 1120 and/or the sliding portion 1140) on both sides of the arm 1114. The center bracket may define slides (e.g., such as upper slide 1111 and lower slide 1113) on both sides of the arm **1114**. Each of the translating portions and/or sliding portions may slide independently, for example such that an end of one of the roller tubes can be accessed (e.g., in the extended position) while the other roller tube remains in the operating position.

[0187] FIGS. 23A and 23B depict an example mounting bracket 1200 for use with a battery-powered motorized window treatment (e.g., such as the motorized window treatment 100 shown in FIGS. 1A and 1B, the battery-powered motorized window treatment 200 shown in FIGS. 2A and 2B, the battery-powered motorized window treatment 300 shown in FIGS. 3A and 3B, the battery-powered motorized window treatment 400 shown in FIGS. 4A and 4B, the battery-powered motorized window treatment 500 shown in FIG. 5A, the battery-powered motorized window treatment 600 shown in FIGS. 8A-11) in an operating position. FIGS. 24A and 24B depict the mounting bracket 1200 in an extended position. FIGS. 25A and 25B are exploded views of the mounting bracket 1200 in an extended position. The mounting bracket 1200 may be configured to be attached to a structure, eg., such as a side jamb of a window frame or other vertical surface.

[0188] The mounting bracket **1200** may be configured to secure, without requiring a tool, a roller tube in a first direction parallel to a longitudinal axis (e.g., the longitudinal direction L), in a second direction that is parallel to the structure and perpendicular to the longitudinal axis (e.g., the transverse direction T), and in a third direction perpendicular to the structure and the longitudinal axis (e.g., the radial direction R). As shown, the mounting bracket **1200** may include a stationary portion **1210**, a translating portion **1220**, and a sliding portion **1240**. The stationary portion **1010** may include a rear portion **1212** (e.g., a base or foot) and a front portion **1214** (e.g., an arm). The translating portion **1220** may include an attachment member **1230** that is configured to receive an end of the roller tube and/or a motor drive unit housing. The attachment member **1230** may define an aperture **1232** (e.g., an attachment aperture) surrounded by a rim **1234**. The attachment member **1230** may comprise a plurality of teeth **1236** configured to engage corresponding features of the end of the roller tube and/or the motor drive unit housing.

[0189] The stationary portion **1210** (e.g., the rear portion **1212**) may be configured to attach the mounting bracket **1200** to the structure. The structure may include a window frame (e.g., a head jamb or side jambs of a window frame), a wall, a ceiling, or other structure, such that the motorized window treatment is mounted proximate to an opening (e.g., over the opening or in the opening), such as a window for example. The mounting bracket **1200** may be attached to a vertical structure, such as a side jamb of a window frame, such that the front portion **1214** of the mounting bracket **1200** extends horizontally (e.g., in the radial direction R) from the rear portion **1212**. The stationary

portion **1210** (e.g., the rear portion **1212**) may include holes **1252** configured to receive a fastener (not shown) for securing the mounting bracket **1200** to the structure.

[0190] The sliding portion **1240** may be coupled (e.g., slidably coupled) between the stationary portion **1210**, and the translating portion **1220**. The translating portion **1220** and the sliding portion **1240** may be configured to translate the roller tube between the operating position (e.g., as shown in FIGS. **23**A and **23**B) and the extended position (e.g., as shown in FIGS. **24**A and **24**B). The translating portion **1220** may be proximate to the rear portion **1212** when in the operating position and distal from the rear portion **1212** when in the extended position. The end of the roller tube and/or the motor drive unit housing may be accessible via the aperture **1232** (e.g., to replace the batteries) when the translating portion **1220** is in the extended position.

[0191] The stationary portion **1210**, the translating portion **1220**, and the sliding portion **1240** may define one or more features that enable the translating portion **1220** to be translated between the operating position and the extended position. The translating portion **1220** may be configured to move in the radial direction R from the operating position to the extended position (e.g., in the same direction as the front portion **1214** extends from the rear portion **1212**). The translating portion **1220** may define one or more corresponding features that are configured to cooperate with the one or more features on the sliding portion **1240**, and the sliding portion **1240** may define one or more corresponding features that are configured to cooperate with the one or more features on the stationary portion **1210**.

[0192] The stationary portion 1210 may define one or more slides (e.g., an upper slide 1211 and a lower slide 1213). The upper slide 1211 and the lower slide 1213 may protrude from an inner surface 1215 of the stationary portion 1210. The sliding portion 1240 may define one or more channels (e.g., an upper channel 1241 and a lower channel 1243). The upper channel 1241 may be configured to receive the upper slide 1211 and the lower channel 1243 may be configured to receive the lower slide 1213. The sliding portion 1240 may translate along the upper slide 1211 and the lower slide 1213 when the translating portion 1220 is moving between the operating position and the extended position. In addition, the sliding portion 1240 may define one or more slides (e.g., a middle slide 1249), and the stationary portion 1210 may define one or more channels (e.g., a middle channel 1219). The middle slide 1229 may protrude from the sliding portion 1240 between the upper channel 1221 and the lower channel 1223. The middle channel 1219 may be configured to receive the middle slide 1229. The sliding portion 1240 may translate along the middle slide 1229 when the translating portion 1220 is moving between the operating position and the extended position.

[0193] The sliding portion **1240** may define one or more slides (e.g., an upper slide **1242** and a lower slide 1244). The upper slide 1242 and the lower slide 1244 may protrude from the sliding portion **1240**. The translating portion **1220** may define one or more channels (e.g., an upper channel 1222 and a lower channel 1224). The upper channel 1222 may be configured to receive the upper slide **1242** and the lower channel **1224** may be configured to receive the lower slide **1244**. The translating portion **1220** may translate along the upper slide **1242** and the lower slide **1244** when the translating portion **1220** is moving between the operating position and the extended position. In addition, the translating portion **1220** may define one or more slides (e.g., a middle slide **1227**), and the sliding portion **1240** may define one or more channels (e.g., a middle channel **1247**). The middle slide **1227** may protrude from the translating portion **1220** between the upper channel **1222** and the lower channel **1224**. The middle channel **1247** may be located between the upper slide **1242** and the lower slide **1244**. The middle channel **1247** may be configured to receive the middle slide **1227**. The translating portion **1220** may translate along the middle slide **1227** when the translating portion **1247** is moving between the operating position and the extended position. [0194] The mounting bracket **1200** may be configured to be secured (e.g., locked) in the operating position and the extended position. The mounting bracket 1200 (e.g., the sliding portion 1240) may

define a first locking tab **1260** and a second locking tab **1265**. The stationary portion **1210** and the translating portion **1220** may each define one or more indentations configured to receive the first locking tab **1260**. For example, the stationary portion **1210** may define an operating position cavity **1262** and an extended position cavity **1264**, and the translating portion **1220** may define an operating position cavity **1266** and an extended position cavity **1268**. The operating position cavity **1262** of the stationary portion **1210** and the operating position cavity **1266** of the translating portion **1220** may each define a recess (e.g., detent) that is configured to receive the first locking tab **1260** and the second locking tab **1265**, respectively, when the roller tube is in the operating position. The extended position cavity 1264 of the stationary portion 1210 and the extended position cavity 1268 of the translating portion **1220** may each define a recess (e.g., detent) that is configured to receive the first locking tab **1260** and the second locking tab **1265**, respectively, when the roller tube is in the extended position. The operating position cavity **1262** of the stationary portion **1210** and the operating position cavity **1266** of the translating portion **1220** may be configured to receive the respective locking tabs **1260**, **1265** to hold (e.g., lock) the roller tube in the operating position. The extended position cavity 1264 of the stationary portion 1210 and the extended position cavity 1268 of the translating portion 1220 may be configured to receive the respective locking tabs 1260, 1265 to hold (e.g., lock) the roller tube in the extended position. For example, the extended position cavities **1264**, **1268** and the respective locking tabs **1260**, **1265** may be configured to prevent the roller tube from sliding out of engagement with the mounting bracket **1200**.

[0195] The first and second locking tabs **1260**, **1265** may be configured to engage the respective operating position cavities **1262**, **1266** when the roller tube is in the operating position. The first and second locking tab **1260**, **1265** may be configured to engage the respective extended position cavities **1264**, **1268** when the roller tube is in the extended position. For example, the first and second locking tab **1260**, **1265** (e.g., a distal portion of the locking tabs) may be configured to be received in (e.g., and slide along) an inner channel **1216** in the stationary portion **1210** and an inner channel **1226** in the translating portion **1220**, respectively, as the mounting bracket **1200** is transitioned between the operating position and the extended position. The inner channels **1216**, **1226** may be configured to prevent the roller tube from being pulled out of engagement with the mounting bracket **1200**. For example, the inner channels **1216**, **1226** may define respective walls **1218**, **1228** configured to abut the respective locking tabs **1260**, **1265** to prevent the roller tube from being translated beyond the extended position.

[0196] The first and second locking tabs **1260**, **1265** may be configured to secure the roller tube in the operating position. The first and second locking tabs **1260**, **1265** may be configured to prevent accidental disengagement of the roller tube from the operating position. For example, the first locking tab **1260** and the operating position cavity **1262** of the stationary portion **1210** may be configured to resist a threshold force in the radial direction, and the second locking tab **1265** and the operating position cavity **1266** of the translating portion **1220** may be configured to resist a threshold force in the opposing radial direction. When a force greater than the threshold force is applied in the radial direction and the opposing radial direction, the first and second locking tabs **1260**, **1265** may release (e.g., disengage) from the operating position cavities **1262**, **1266**, respectively, such that the roller tube can be moved to the extended position. The first and second locking tabs **1260**, **1265** may slide through the respective inner channels **1216**, **1226** until reaching the respective extended position cavity **1264**, **1268**.

[0197] The first and second locking tabs **1260**, **1265** may be configured to secure the roller tube in the extended position. The walls **1218**, **1228** of the respective channels **1216**, **1226** may provide a positive lock with the respective locking tabs **1260**, **1265** to prevent the roller tube from being extended beyond the extended position. For example, the locking tabs **1260**, **1265** may abut the respective walls **1218**, **1228** when the roller tube is in the extended position and/or when a radial force is applied to the roller tube when in the extended position. The first and second locking tabs **1260**, **1265** and the respective extended position cavities **1264**, **1268** may be configured to enable

the roller tube to be released from the extended position and translated back toward the operating position. The first and second locking tabs **1260**, **1265** and the respective extended position cavities **1264**, **1268**'may be configured to prevent the roller tube from being pulled out of engagement with the mounting bracket **1200**, for example, when the roller tube is in the extended position. The mounting bracket **1200** may include a release button (not shown) that enables release of the translating portion **1220** and/or the sliding portion **1240** from the operating position such that the mounting bracket **1200** can be translated to the extended position. The mounting bracket **1200** may include a disengagement button (not shown) that enables disengagement of the translating portion **1220** and/or the sliding portion **1240** from the stationary portion **1210**.

[0198] The mounting bracket **1200** may be used at both sides of a roller tube, for example, such that the roller tube slides away from the structure. For example, the mounting bracket **1200** on the opposite end of the roller tube may be flipped 180 degrees. Alternatively, the mounting bracket **1200** may be used at one end of a roller tube such that the roller tube pivots away from the structure. The mounting bracket **1200** may be configured as an end bracket (e.g., as shown) that receives a single roller tube.

[0199] FIG. 26A depicts an example mounting bracket 1000' for use with a battery-powered motorized window treatment (e.g., such as the motorized window treatment 100 shown in FIGS. 1A and 1B, the battery-powered motorized window treatment 200 shown in FIGS. 2A and 2B, the battery-powered motorized window treatment 300 shown in FIGS. 3A and 3B, the battery-powered motorized window treatment 400 shown in FIGS. 4A and 4B, the battery-powered motorized window treatment 500 shown in FIG. 5A, the battery-powered motorized window treatment 5500 shown in FIG. 6, and/or the battery-powered motorized window treatment 600 shown in FIGS. 8A-11) in an operating position. The mounting bracket 1000' may be configured to be attached to a structure, eg., such as a wall or other vertical surface (e.g., as shown in FIGS. 1A-7). The mounting bracket 1000' may be an alternate version of the mounting bracket 1000 shown in FIGS. 17A-19B, and may have many of the same features and elements.

[0200] The mounting bracket 1000' shown in FIG. 26A may comprise a locking tab 1070 (e.g., rather than the first locking tab 1060 shown in FIGS. 18B, 19A, and 19B) that may allow for releasable attachment of the stationary portion 1010 to the translating portion 1020 and the stationary portion 1040. The locking tab 1070 may be located in the middle channel 1047 of the sliding portion 1040. The locking tab 1070 may be received in the operating position cavity 1062 of the stationary portion 1010 when the roller tube is in the operating position, and received in the extended position cavity 1064 of the stationary portion 1010 when the roller tube is in the extended position. The operating position cavity 1062 and the extended position cavity 1064 may be configured to receive the locking tab 1070 to hold the roller tube in the operating position and the extended position, respectively.

[0201] As shown in FIG. 26A, the locking tab 1070 may comprise an arm 1072 that extends into an opening 1074 in the middle channel 1074 of the sliding portion 1040. The arm 1072 of the locking tab 1070 may define a distal portion 1075 of the locking tab 1070) that may be received in (e.g., and slide along) the inner channel 1016 in the stationary portion 1010 as the mounting bracket 1000' is transitioned between the operating position and the extended position. The distal portion 1075 of the locking tab 1070 may abut the wall 1018 of the inner channel 1016 when the mounting bracket 1000' is in the extended position to prevent the roller tube from being pulled out of engagement with the mounting bracket 1000'.

[0202] The opening **1074** may be formed between opposing extensions **1076** that extend towards an end portion **1078** of the middle channel **1074**. The end portion **1078** may be spaced apart from the adjacent structure of the sliding portion **1040** by a gap **1079** (e.g., not connected to the upper slide **1042** and the lower slide **1044**). The end portion **1078** may be configured to disengage the sliding portion **1040** and/or the translating portion **1020** from the stationary portion **1010**. When the end portion **1078** is depressed by a user, the extensions **1076** may flex to allow the end portion

1078 to move into the inner channel 1016 of the stationary portion 1010 and allow the distal portion 1075 of the arm 1072 to disengage with the wall 1018 of the middle channel 1016, thus allowing the translating portion 1020 and the sliding portion 1040 to be disengaged from the stationary portion 1010 of the mounting bracket 1000′. For example, the user may depress the end portion 1078 to adjust the roller tube from the operating position to the extended position. The user may also depress the end portion 1078 to adjust the roller tube from the extended position to the operating position.

[0203] The mounting bracket **1000**′ may be used to mount the battery-powered motorized window treatment to the structure. For example, the stationary portion 1010 of the mounting bracket 1000' may be mounted to the structure. An idler bracket (e.g., the mounting bracket **631** shown in FIGS. **9**A, **9**B, the mounting bracket **1330** shown in FIG. **27**B, **27**C and/or the mounting bracket **1430** shown in FIGS. **28**B-**28**D) may be mounted to the structure. An idler end of a roller tube (e.g., roller tube **110**, **210**, **310**, **410**, **510**, **5510**, **610**, **1310**, **1410**) of the battery-powered motorized window treatment may be inserted into the idler bracket. The translating portion **1020** of the mounting bracket **1000**′ may be attached to a motor end of the roller tube. The sliding portion **1040** may be connected to the translating portion 1020. The sliding portion 1040 may be inserted into the stationary portion **1010** of the mounting bracket **1000**′ until the roller tube is in the operating position. For example, the roller tube may be pivoted as the idler end remains attached to the idler bracket to insert the sliding portion **1040** within the stationary portion **1010**. Although mounting of the battery-powered motorized window treatment to the structure is described with respect to the mounting bracket **1000**′, it should be appreciated that the battery-powered motorized window treatment may be similarly mounted to the structure using any of the other mounting brackets (e.g., mounting brackets 130A, 130B, 230A, 330A, 430A, 530A, 5530A, 630, 700, 800, 900, 1000, 1100, **1200**) described herein having a stationary portion, a sliding portion, and a translating portion. [0204] It should be appreciated that the locking tab **1070** shown in FIG. **26**A may also be used in any of the other mounting brackets shown and described herein (e.g., mounting brackets 130A, **130**B, **230**A, **330**A, **430**A, **530**A, **5530**A, **630**, **700**, **800**, **900**, **1000**, **1100**, **1200**) having a stationary portion, a sliding portion, and a translating portion.

[0205] FIGS. 26B and 26C depict an example mounting bracket 1000" for use with a battery-powered motorized window treatment (e.g., such as the motorized window treatment 100 shown in FIGS. 1A and 1B, the battery-powered motorized window treatment 200 shown in FIGS. 2A and 2B, the battery-powered motorized window treatment 300 shown in FIGS. 3A and 3B, the battery-powered motorized window treatment 400 shown in FIGS. 4A and 4B, the battery-powered motorized window treatment 500 shown in FIG. 5A, the battery-powered motorized window treatment 5500 shown in FIG. 6, and/or the battery-powered motorized window treatment 600 shown in FIGS. 8A-11) in an operating position (e.g., shown in FIG. 26B) and an extended position (e.g., shown in FIG. 26C). The mounting bracket 1000" may be configured to be attached to a structure, eg., such as a wall or other vertical surface (e.g., as shown in FIGS. 1A-7). The mounting bracket 1000" may be an alternate version of the mounting bracket 1000 shown in FIGS. 17A-19B, and may have many of the same features and elements.

[0206] The mounting bracket 1000" shown in FIG. 26A may comprise a strap 1080 that is configured to extend around the attachment member 1030. The strap 1080 may define a tab 1082 that is configured to secure the mounting bracket 1000" in the operating position and the extended position, respectively. The tab 1082 may be configured to abut the outer surface 1035 of the attachment member 1030 to secure the mounting bracket 1000" in the operating position. The strap 1080 may be a thin piece of metal and the tab 1082 may be formed by a small loop of the metal. [0207] The attachment member 1030 may define a notch 1090 proximate to the aperture 1032. The notch 1090 may be located in the inner channel 1026 of the translating portion 1020. The tab 1082 may be configured to be received within the notch 1090 when the roller tube is in the extended position. The strap 1080 may be secured to the structure using fasteners 1085. The strap 1080 may

define apertures **1084** at respective distal portions. The apertures **1084** may be configured to be on opposed sides of the base **1012** when the strap **1080** extends around the attachment member **1030**. The fasteners **1085** may be configured to extend through the apertures **1084**, for example, to secure the strap to the structure. The strap **1080** and the notch **1090** (e.g., rather than the first locking tab **1060** shown in FIGS. **18**B, **19**A, and **19**B) may allow for releasable attachment of the stationary portion **1010** to the translating portion **1020**, for example, via the notch **1090** and/or the outer surface **1035** of the attachment member **1030**.

[0208] While the mounting brackets 130A, 130B, 230A, 230B, 330A, 330B, 430A, 430B, 530A, 530B, 5530A, 5530B, 630, 700, 800, 900, 1000, 1000', 1100, 1200 shown and described herein have circular front surfaces, the mounting brackets 130A, 130B, 230A, 230B, 330A, 330B, 430A, 430B, 530A, 5530B, 5530A, 5530B, 630, 700, 800, 900, 1000, 1000', 1100, 1200 may also have differently-shaped front surfaces. For example, mounting brackets 130A, 130B, 230A, 230B, 330A, 330B, 430A, 430B, 530A, 530B, 5530A, 5530B, 630, 700, 800, 900, 1000, 1000', 1100, 1200 may have front surfaces of another shape, such as, for example, a rectangular shape, a square shape, a triangular shape, an oval shape, or any suitable shape. In addition, the side surfaces of the mounting brackets 130A, 130B, 230A, 230B, 330A, 330B, 430A, 430B, 530A, 530B, 5530A, 5530B, 630, 700, 800, 900, 1000, 1000', 1100, 1200 may have different shapes and may be planar or non-planar. Further, the surfaces of the mounting brackets 130A, 130B, 230A, 230B, 330A, 330B, 430A, 430B, 530A, 530B, 5530A, 5530B, 630, 700, 800, 900, 1000, 1000', 1100, 1200 may be characterized by various colors, finishes, designs, patterns, etc.

[0209] Although the mounting brackets **700**, **800**, **900**, **1000**, **1000**′, **1100**, **1200** are shown in FIGS. **12**A-**26** and described herein with a stationary portion **710**, **810**, **910**, **1010**, **1110**, **1210**; a translating portion **720**, **820**, **920**, **1020**, **1120**, **1220**; and a sliding portion **740**, **840**, **940**, **1040**, **1140**, **1240** may be omitted. For example, the translating portion **720**, **820**, **920**, **1020**, **1120**, **1220** of the mounting brackets **700**, **800**, **900**, **1000**, **1100**, **1200** may operably engage with a respective stationary portion **710**, **810**, **910**, **1010**, **1110**, **1210** to operate the roller tube between an operating position and an extended position.

[0210] FIGS. **27**A-**27**C depict another example idler end of an example motorized window treatment **1300** (e.g., such as the battery-powered motorized window treatment **100** shown in FIGS. 1A and 1B, the battery-powered motorized window treatment 200 shown in FIGS. 2A and 2B, the battery-powered motorized window treatment **300** shown in FIGS. **3**A and **3**B, the battery-powered motorized window treatment **400** shown in FIGS. **4**A and **4**B, the battery-powered motorized window treatment **500** shown in FIG. **5**A, the battery-powered motorized window treatment **5500** shown in FIG. **6**, and/or the battery-powered motorized window treatment **600** shown in FIGS. **8**A-11). FIG. 27A is a perspective view of the idler end of a roller tube 1310 of the battery-powered motorized window treatment **1300**. FIG. **27**B is a perspective view of an example mounting bracket 1330 configured to receive the idler end of the roller tube 1310 shown in FIG. 27A. FIG. 27C is a front cross-section view of the idler end of the example battery-powered motorized window treatment **1300**. The mounting bracket **1330** may be configured (e.g., with one or more other mounting brackets) to attach the battery-powered motorized window treatment **1300** to a structure. For example, mounting bracket **1300** may be configured to be attached to a wall or other vertical structure (e.g., as shown in FIGS. 1A-7), and/or may be configured to be attached to a ceiling, a head jamb of a window frame, or other horizontal structure (e.g., as shown in FIGS. 8A, 8B, and 9).

[0211] The mounting bracket **1300** may be configured to secure, without requiring a tool, the roller tube **1310** in a first direction parallel to a longitudinal axis (e.g., the longitudinal direction L), in a second direction that is parallel to the structure and perpendicular to the longitudinal axis (e.g., the transverse direction T), and in a third direction perpendicular to the structure and the longitudinal axis (e.g., the radial direction R). The mounting bracket **1330** may define a base **1331** (e.g., a foot),

an arm **1332**. The arm **1332** may include an attachment member **1333** that is configured to receive the idler end of the roller tube **1310**. The arm **1332** (e.g., the attachment member**1333**) of the mounting bracket **1330** may define a cavity **1334**.

[0212] The base **1331** may be configured to attach the mounting bracket **1330** to the structure. The structure may include a window frame (e.g., a head jamb or side jambs of a window frame), a wall, a ceiling, or other structure, such that the battery-powered motorized window treatment **1300** is mounted proximate to an opening (e.g., over the opening or in the opening), such as a window for example. When the mounting bracket **1330** is attached to a vertical structure, such as a wall, the arm **1332** of the mounting bracket **1330** may extend horizontally (e.g., in the radial direction R) from the base **1331**. When the mounting bracket **1330** may extend vertically (e.g., in the transverse direction T) from the base **1331**. A base cover (e.g., such as the base cover **916** shown in FIG. **16**) may be configured to be detachably mounted over the base **1331** of the mounting bracket **1330**. The base cover may be configured to cover and/or conceal the base **1331**.

[0213] The battery-powered motorized window treatment **1300** may include an idler shaft **1314** and an idler coupler **1343**. The idler shaft **1314** may be configured to support the idler end of the battery-powered motorized window treatment **1300**. The idler shaft **1314** may define an idler base **1311** and an idler arm **1313**. The idler shaft **1314** may be received by the roller tube **1310**. For example, the idler arm **1313** may extend within the roller tube **1310**. For example, the idler arm **1313** may be configured to be received within a cavity **1315** of the roller tube **1310**. The cavity **1315** at the idler end of the battery-powered motorized window treatment **1300** may be covered by a cover **1342**. The idler shaft **1314** (e.g., the idler arm **1313**) may extend through the cover **1342**. The idler shaft **1314** (e.g., the idler base **1311**) may be received (e.g., captively received) by the cavity **1334** in the mounting bracket **1330**.

[0214] The idler shaft **1314** may define a tapered portion **1316** between the idler arm **1313** and the idler base **1311**. The tapered portion **1316** may have a diameter that is less than a diameter of the idler base **1311** and a diameter of the idler arm **1313**. The tapered portion **1316** may be configured to enable the battery-powered motorized window treatment **1300** to be pivoted to the pivoted position. For example, the cavity **1334** may define a chamfered portion **1335**. The chamfered portion **1335** may define a chamfered edge proximate to (e.g., at) an inner surface **1336** of the attachment member **1333**. The chamfered portion **1335** may be configured to provide clearance (e.g., approximately 10 degrees) for the idler shaft **1314** as the battery-powered motorized window treatment **1300** is operated between the pivoted position and the operating position. For example, the chamfered portion **1335** may be configured to prevent the idler shaft **1314** from contacting the attachment member **1333** of the mounting bracket **1330** when the battery-powered motorized window treatment **1300** is in the pivoted position. The cavity **1330** (e.g., the chamfered portion **1335**) may be configured to guide the idler base **1311** into the cavity **1334**. It should be appreciated that the chamfered portion **1335** may be alternatively shaped. For example, the chamfered portion **1335** may be beveled, filleted, and/or the like.

[0215] The idler base **1311** may define a polygon-shaped (e.g., octagonal-shaped) ball with a plurality of faces **1318**. Each of the plurality of faces **1318** may be curved along the longitudinal direction L, for example, to provide angular compliance between the idler shaft **1314** and the mounting bracket **1330**. For example, the idler base **1311** may enable angular misalignment with the cavity **1334** in the transverse direction T and/or the radial direction R. The cavity **1334** may define a polygon-shaped (e.g., octagonal-shaped) cross-section with a plurality of walls **1337**. Each of the plurality of walls **1337** may define a side of the polygon formed by the cross section of the cavity **1334**. Each of the plurality of walls **1337** may correspond to adjacent faces of the idler base **1311**. Each of the plurality of faces **1318** may be identical (e.g., have the same dimensions). When the idler base **1311** is fully inserted into the cavity **1334**, two of the faces **1318** may be aligned with (e.g., substantially parallel to) and abut the walls **1337** of the cavity **1334**. A butment of two or

more of the faces **1318** against respective walls **1337** of the cavity **1334** may prevent rotation of the idler base **1311** as the roller tube **1310** rotates. The idler base **1311** and the cavity **1334** may define a ball joint. The chamfered portion **1335** may define sections that correspond to the plurality of walls **1337**. For example, the chamfered portion **1335** may define a plurality of evenly shaped sections that correspond to the plurality of walls 1337. It should be appreciated that although the chamfered portion 1335 is shown separated into sections in FIG. 27A, the chamfered portion 1335 may alternatively be configured as a continuous chamfer about the cavity 1334. [0216] The idler base **1311** may define a pivot surface **1309** located distal from the idler arm **1313**. The pivot surface **1309** may be proximate to the inner wall **1336** of the cavity **1334** when the idler end of the roller tube **1310** is supported by the mounting bracket **1330**. The pivot surface **1309** may be flat or curved to enable the roller tube **1310** to pivot about its idler end between the operating position and the pivoted position. The pivot surface **1309** may be configured to abut an inner wall 1338 of the cavity 1334, for example, when the roller idler base 1311 is fully inserted into the cavity **1334**. The idler base **1311** and the cavity **1330** may be configured to enable a predetermined tolerance (e.g., angular misalignment tolerance) between the roller tube 1310 and the mounting bracket **1330**, for example, when the roller tube **1310** is in a pivoted position. [0217] The mounting bracket **1330** may define a slot **1320** that is configured to receive a retaining clip **1325**. The slot **1320** may be located within the cavity **1334**, for example, between the chamfered portion **1335** and the inner wall **1336** of the cavity **1330**. The slot **1320** may extend from the cavity **1330** into the mounting bracket **1330** in a direction along a plane defined by the transverse direction T and the radial direction R (e.g., wherein the longitudinal axis is normal to the plane defined by the transverse direction T and the radial direction R). The retaining clip **1325** may be configured to secure the idler base 1311 within the cavity 1334 (e.g., retain and prevent accidental disengagement of the roller tube **1310** from the mounting bracket **1300**). For example, the retaining clip **1325** may couple the idler base **1311** to the mounting bracket **1330**. The retaining clip **1325** may be configured to abut the idler base **1311**, for example, to prevent unmounting of the idler base **1311** from the mounting bracket **1330**. Stated differently, the retaining clip **1325** may be configured to prevent unmounting of the roller tube 1310 from the mounting bracket 1330, for example, in the longitudinal direction, L. For example, the retaining clip 1325 may be placed within the slot **1320** before the idler base **1311** is moved within the cavity **1334**. The retaining clip **1325** may be configured to extend radially as the idler base **1311** is pressed into the cavity **1334**. The retaining clip **1325** may return to its normal shape when the idler base **1311** is fully installed within the cavity **1334**. For example, the retaining clip **1325** may flex to accept the idler base **1311** and provide positive feedback (e.g., to an installer) that the idler base **1311** is fully installed within the cavity **1334**. [0218] The idler shaft **1314** may remain stationary as the roller tube **1310** rotates. The batterypowered motorized window treatment **1300** may include idler bearings **1344**. The idler bearings

powered motorized window treatment **1300** may include idler bearings **1344**. The idler bearings **1344** may be configured to support the roller tube **1310** while enabling the roller tube **1310** to rotate about the idler shaft **1314**. The idler bearings **1344** may be roller bearings (e.g., such as ball bearings, cylindrical bearings, and/or the like). The idler coupler **1343** may be configured to operatively couple the roller tube **1310** to the idler bearings **1344**. For example, the idler coupler **1343** may be configured to engage (e.g., mesh with) the roller tube **1310** such that the idler coupler **1343** rotates with the roller tube **1310**. The idler coupler **1343** may be configured to transfer the weight of the roller tube **1310** to the idler shaft **1314**. The idler shaft **1314** may be configured to transfer the weight of the roller tube **1310** to the mounting bracket **1331**. [0219] The mounting bracket **1330** may be configured as an end bracket (e.g., as shown) that

receives a single roller tube. Alternatively, the mounting bracket **1330** may be configured as a center bracket that receives two roller tubes. Although the mounting bracket **1330** is shown as accepting a roller tube from one side of the arm **1332**, it should be appreciated that the mounting bracket **1330** may be configured to accept one roller tube at a first side of the arm **1332** and another

roller tube at an opposed second side of the arm **1332**.

[0220] While the mounting bracket **1330** shown and described herein has a circular profile and attachment member **1333**, the mounting bracket **1330** may also have a differently-shaped profile and/or attachment member. For example, the mounting bracket **1330** may have a profile and/or attachment member of another shape, such as, for example, a rectangular shape, a square shape, a triangular shape, an oval shape, or any suitable shape. In addition, the side surfaces of the mounting bracket **1330** may have different shapes and may be planar or non-planar. Further, the surfaces of the mounting bracket **1330** may be characterized by various colors, finishes, designs, patterns, etc. [0221] It should be appreciated that the retaining clip **1325** may be a retaining ring (e.g., such as the retaining ring **1422** shown in FIGS. **28**A and **28**C). For example, the retaining clip **1325** may comprise an o-ring and may have a circular-shaped cross-section. The retaining clip **1325** may be placed within the slot **1320** before the idler base **1311** is moved within the cavity **1334**. The retaining clip **1325** may return to its normal shape when the idler base **1311** is fully installed within the cavity **1334** and may prevent the unmounting of the roller tube **1310** from the mounting bracket **1330**.

[0222] FIGS. 28A-28D depict another example idler end of an example motorized window treatment **1400** (e.g., such as the battery-powered motorized window treatment **100** shown in FIGS. **1**A and **1**B, the battery-powered motorized window treatment **200** shown in FIGS. **2**A and **2**B, the battery-powered motorized window treatment **300** shown in FIGS. **3**A and **3**B, the battery-powered motorized window treatment **400** shown in FIGS. **4**A and **4**B, the battery-powered motorized window treatment **500** shown in FIG. **5**A, the battery-powered motorized window treatment **5500** shown in FIG. 6, and/or the battery-powered motorized window treatment 600 shown in FIGS. 8A-11). FIG. 28A is a perspective view of the idler end of a roller tube 1410 of the battery-powered motorized window treatment **1400**. FIG. **28**B is a perspective view of an example mounting bracket **1430** configured to receive the idler end of the roller tube **1410** shown in FIG. **28**A. FIG. **28**C is a front cross-section view of the idler end of the example battery-powered motorized window treatment **1400**. The mounting bracket **1430** may be configured (e.g., with one or more other mounting brackets) to attach the battery-powered motorized window treatment **1400** to a structure. For example, mounting bracket **1400** may be configured to be attached to a wall or other vertical structure (e.g., as shown in FIGS. 1A-7), and/or may be configured to be attached to a ceiling, a head jamb of a window frame, or other horizontal structure (e.g., as shown in FIGS. 8A, 8B, and 9).

[0223] The mounting bracket **1400** may be configured to secure, without requiring a tool, a roller tube in a first direction parallel to a longitudinal axis (e.g., the longitudinal direction L), in a second direction that is parallel to the structure and perpendicular to the longitudinal axis (e.g., the transverse direction T), and in a third direction perpendicular to the structure and the longitudinal axis (e.g., the radial direction R). The mounting bracket **1430** may define a base **1431** (e.g., a foot), an arm **1432**. The arm **1432** may include an attachment member **1433** that is configured to receive the idler end of the roller tube **1410**. The arm **1432** (e.g., the attachment member **1433**) of the mounting bracket **1430** may define a cavity **1434**.

[0224] The base **1431** may be configured to attach the mounting bracket **1430** to the structure. The structure may include a window frame (e.g., a head jamb or side jambs of a window frame), a wall, a ceiling, or other structure, such that the battery-powered motorized window treatment **1400** is mounted proximate to an opening (e.g., over the opening or in the opening), such as a window for example. When the mounting bracket **1430** is attached to a vertical structure, such as a wall, the arm **1432** of the mounting bracket **1430** may extend horizontally (e.g., in the radial direction R) from the base **1431**. When the mounting bracket **1430** may extend vertically (e.g., in the transverse direction T) from the base **1431**. A base cover **1439** may be configured to be detachably mounted

over the base **1431** of the mounting bracket **1430**. The base cover may be configured to cover and/or conceal the base **1431**.

[0225] The battery-powered motorized window treatment **1400** may include an idler shaft **1414** and an idler coupler **1443**. The idler shaft **1414** may be configured to support the idler end of the battery-powered motorized window treatment **1400**. The idler shaft **1414** may define an idler base **1411** and an idler arm **1413**. The idler shaft **1414** may be received by the roller tube **1410**. For example, the idler arm **1413** may extend within the roller tube **1410**. For example, the idler arm **1413** may be configured to be received within a cavity **1415** of the roller tube **1410**. The cavity **1415** at the idler end of the battery-powered motorized window treatment **1400** may be covered by a cover **1442**. The idler shaft **1414** (e.g., the idler arm **1413**) may extend through the cover **1442**. The idler shaft **1414** (e.g., the idler base **1411**) may be received (e.g., captively received) by the cavity **1434** in the mounting bracket **1430**.

[0226] The idler shaft **1414** may define a tapered portion **1416** between the idler arm **1413** and the idler base **1411**. The tapered portion **1416** may have a diameter that is less than a diameter of the idler base **1411** and a diameter of the idler arm **1413**. The tapered portion **1416** may be configured to enable the battery-powered motorized window treatment **1400** to be pivoted to the pivoted position. For example, the cavity **1434** may define a chamfered portion **1435**. The chamfered portion **1435** may define a chamfered edge proximate to (e.g., at) an inner surface **1436** of the attachment member **1433**. The chamfered portion **1435** may be configured to provide clearance (e.g., approximately 10 degrees) for the idler shaft **1414** as the battery-powered motorized window treatment **1400** is operated between the pivoted position and the operating position. For example, the chamfered portion **1435** may be configured to prevent the idler shaft **1414** from contacting the attachment member **1433** of the mounting bracket **1430** when the battery-powered motorized window treatment **1400** is in the pivoted position. The cavity **1430** (e.g., the chamfered portion **1435**) may be configured to guide the idler base **1411** into the cavity **1434**. It should be appreciated that the chamfered portion **1435** may be alternatively shaped. For example, the chamfered portion **1435** may be beveled, filleted, and/or the like.

[0227] The idler base **1411** may define a polygon-shaped (e.g., square-shaped) with a plurality of faces 1418 (e.g., four). The idler base 1411 may define radius edges 1417 between each of the plurality of faces **1418**. Each of the plurality of faces **1418** may be curved, for example, to provide angular compliance between the idler shaft **1414** and the mounting bracket **1430**. For example, the idler base **1411** may enable angular misalignment with the cavity **1434** in the transverse direction T and/or the radial direction R. The cavity **1434** may define a polygon-shaped (e.g., square-shaped) cross-section with a plurality of walls **1437**. Each of the plurality of walls **1437** may define a side of the polygon formed by the cross section of the cavity **1434**. Each of the plurality of walls **1437** may correspond to adjacent faces of the idler base **1411**. Each of the plurality of faces **1418** may be identical (e.g., have the same dimensions). When the idler base 1411 is fully inserted into the cavity **1434**, two of the faces **1418** may be aligned with (e.g., substantially parallel to) and abut the walls **1437** of the cavity **1434**. The idler base **1411** and the cavity **1434** may define a ball joint. The chamfered portion **1435** may define sections that correspond to the plurality of walls **1437**. For example, the chamfered portion **1435** may define a plurality of evenly shaped sections that correspond to the plurality of walls **1437**. It should be appreciated that although the chamfered portion **1435** is shown separated into sections in FIG. **28**A, the chamfered portion **1435** may alternatively be configured as a continuous chamfer about the cavity **1434**.

[0228] The idler base **1411** may define a pivot surface **1409** located distal from the idler arm **1413**. The pivot surface **1409** may be proximate to the inner wall **1436** of the cavity **1434** when the idler end of the roller tube **1410** is supported by the mounting bracket **1430**. The pivot surface **1409** may be configured to abut an inner wall **1438** of the cavity **1434**, for example, when the roller idler base **1411** is fully inserted into the cavity **1434**. The idler base **1411** and the cavity **1430** may be configured to enable a predetermined tolerance (e.g., angular misalignment tolerance) between the

roller tube **1410** and the mounting bracket **1430**, for example, when the roller tube **1410** is in a pivoted position.

[0229] The idler shaft **1414** may define a groove **1420** that is configured to receive a retaining ring **1422**. The groove **1420** may be located within the idler base **1411**, for example, between the tapered portion **1416** and the pivot surface **1409**. The groove **1420** may extend in a plane defined by the transverse direction T and the radial direction R (e.g., wherein the longitudinal axis is normal to the plane defined by the transverse direction T and the radial direction R). The retaining ring **1422** may be configured to secure the idler base **1411** within the cavity **1434** (e.g., retain and prevent accidental disengagement of the roller tube **1410** from the mounting bracket **1400**). For example, the retaining ring **1422** may couple the idler base **1411** to the mounting bracket **1430**. The retaining ring **1422** may be configured to abut the idler base **1411**, for example, to prevent unmounting of the idler base **1411** from the mounting bracket **1430**. Stated differently, the retaining ring 1422 may be configured to prevent unmounting of the roller tube 1410 from the mounting bracket **1430**, for example, in the longitudinal direction, L. For example, the retaining ring **1422** may comprise an o-ring. The retaining ring 1422 may have a circular-shaped cross-section as shown in FIG. 28C. It should be appreciated that the retaining ring 1422 may have a differently shaped cross-section. For example, the retaining ring **1422** may have an x-shaped cross-section, a square cross-section, a u-shaped cross-section, etc. In addition, the retaining 1422 may be circular in a plane defined by the transverse direction T and the radial direction R, as shown in FIG. 28D. It should be appreciated that the retaining ring **1422** may have alternate shapes in the plane defined by the transverse direction T and the radial direction R. For example, the retaining ring may define an oval, a square, a polygon, etc. in the plane defined by the transverse direction T and the radial direction R. Moreover, the idler shaft 1414 and/or the cavity 1434 may define alternate cross sections (e.g., in a plane through the idler shaft 1414 and/or the cavity 1434 defined by the transverse direction T and the radial direction R) such that a different amount (e.g., more) of the retaining ring **1422** is deformed when the idler shaft **1414** is inserted into the mounting bracket 1430 when compared to the geometry shown in FIGS. 28A-28D for the idler shaft 1414 and the cavity **1434**.

[0230] The retaining ring 1422 may be compressible and may be made from rubber (e.g., nitrile, neoprene, ethylene propylene diene monomer (EPDM), viton, etc.), polytetrafluoroethylene (PTFE), Silicone, and/or the like. The retaining ring 1422 may be placed within the groove 1420 before the idler base 1411 is moved within the cavity 1434. The retaining ring 1422 may be configured to be deformed as the idler base 1411 is pressed into the cavity 1434. The cavity 1434 may comprise a recess 1423 that extend around the perimeter of the cavity 1434. The retaining ring 1422 may be configured to be located in the recess 1423 of the cavity 1434 after the idler base 1411 is inserted into the cavity 1434. For example, the recess 1423 may be configured to partially receive the retaining ring 1422 when the idler base 1411 is received within the cavity 1434. The retaining ring 1422 may return to its normal shape when the idler base 1411 is fully installed within the cavity 1434. For example, while deforming to accept the idler base 1411, the retaining ring 1422 may provide positive feedback (e.g., to an installer) that the idler base 1411 is fully installed within the cavity 1434.

[0231] The idler shaft **1414** may remain stationary as the roller tube **1410** rotates. The battery-powered motorized window treatment **1400** may include idler bearings **1444**. The idler bearings **1444** may be configured to support the roller tube **1410** while enabling the roller tube **1410** to rotate about the idler shaft **1414**. The idler bearings **1444** may be roller bearings (e.g., such as ball bearings, cylindrical bearings, and/or the like). The idler coupler **1443** may be configured to operatively couple the roller tube **1410** to the idler bearings **1444**. For example, the idler coupler **1443** may be configured to engage (e.g., mesh with) the roller tube **1410** such that the idler coupler **1443** rotates with the roller tube **1410**. The idler coupler **1443** may be configured to transfer the weight of the roller tube **1410** to the idler shaft **1414**. The idler shaft **1414** may be configured to

transfer the weight of the roller tube **1410** to the mounting bracket **1430**.

[0232] The mounting bracket **1430** may be configured as an end bracket (e.g., as shown) that receives a single roller tube. Alternatively, the mounting bracket **1430** may be configured as a center bracket that receives two roller tubes. Although the mounting bracket **1430** is shown as accepting a roller tube from one side of the arm **1432**, it should be appreciated that the mounting bracket **1430** may be configured to accept one roller tube at a first side of the arm **1432** and another roller tube at an opposed second side of the arm **1432**.

[0233] While the mounting bracket **1430** shown and described herein has a circular profile and attachment member **1433**, the mounting bracket **1430** may also have a differently-shaped profile and/or attachment member. For example, the mounting bracket **1430** may have a profile and/or attachment member of another shape, such as, for example, a rectangular shape, a square shape, a triangular shape, an oval shape, or any suitable shape. In addition, the side surfaces of the mounting bracket **1430** may have different shapes and may be planar or non-planar. Further, the surfaces of the mounting bracket **1430** may be characterized by various colors, finishes, designs, patterns, etc. [0234] It should be appreciated that the retaining ring **1422** may be a retaining clip (e.g., such as the retaining clip 1325 shown in FIGS. 27A and 27C). For example, the retaining ring 1422 may be placed within the recess **1423** before the idler base **1411** is moved within the cavity **1434**. The retaining ring **1422** may be configured to extend radially as the idler base **1411** is pressed into the cavity **1434**. The retaining ring **1422** may return to its normal shape when the idler base **1411** is fully installed within the cavity **1434**. Alternatively, the retaining ring **1422** may be extended radially and/or may be compressed between the idler base **1411** and the cavity **1434** when the idler base **1411** is fully installed within the cavity **1434**. The retaining ring **1422** may be received within the groove **1420** when the idler base **1411** is fully installed within the cavity **1434**. For example, the retaining ring **1422** may flex to accept the idler base **1411** and provide positive feedback (e.g., to an installer) that the idler base **1411** is fully installed within the cavity **1434**.

[0235] FIG. **28** is a block diagram of an example motor drive unit **1500** (e.g., the motor drive unit **5590** shown in FIG. **6** and/or the motor drive unit **690** of the motorized window treatment **600** shown in FIGS. **8**A, **8**B, and **9**) of a battery-powered motorized window treatment (e.g., such as the motorized window treatment 100 shown in FIGS. 1A, 1B, and 7, the battery-powered motorized window treatment 200 shown in FIGS. 2A and 2B, the battery-powered motorized window treatment **300** shown in FIGS. **3**A and **3**B, the battery-powered motorized window treatment **400** shown in FIGS. **6**A and **6**B, the battery-powered motorized window treatment **500** shown in FIG. **5**A, the battery-powered motorized window treatment **5500** shown in FIG. **6**, the battery-powered motorized window treatment **600** shown in FIGS. **8**A-**11**, and/or the battery-powered motorized window treatment **1200** shown in FIGS. **17**A and **17**B). The motor drive unit **1500** may comprise a motor **1510** (e.g., a direct-current (DC) motor) that may be coupled for raising and lowering a covering material. For example, the motor **1510** may be coupled to a roller tube (e.g., roller tube **610** shown in FIGS. **8**A and **9**) of the motorized window treatment for rotating the roller tube for raising and lowering a flexible material (e.g., a shade fabric). The motor drive unit 1500 may comprise a load control circuit, such as a motor drive circuit **1520** (e.g., an H-bridge drive circuit) that may generate a pulse-width modulated (PW M) voltage V PwM for driving the motor 1510 (e.g., to move the covering material between a fully-open and fully-closed position). In addition, the control circuit **1530** may be configured to generate a direction signal for controlling the direction of rotation of the motor **1510**.

[0236] The motor drive unit **1500** may comprise a control circuit **1530** for controlling the operation of the motor **1510**. The control circuit **1530** may comprise, for example, a microprocessor, a programmable logic device (PLD), a microcontroller, an application specific integrated circuit (A SIC), a field-programmable gate array (FPGA), or any suitable processing device or control circuit. The control circuit **1530** may be configured to generate a drive signal V DRV for controlling the motor drive circuit **1520** to control the rotational speed of the motor **1510** (e.g. the motor drive

circuit **1520** receives the drive signal V DRV and controls, for example, an H-bridge circuit with appropriate PWM signals in response to the drive signal). In examples, the drive signal V DRV may comprise a pulse-width modulated signal, and the rotational speed of the motor **1510** may be dependent upon a duty cycle of the pulse-width modulated signal. In examples, the control circuit **1530** may directly control the motor **1510** (e.g. in a configuration with no separate motor drive circuit **1520**). For example, the control circuit may generate two PWM signals for controlling the duty cycle and the polarity (e.g. controlling the speed and direction) of the motor **1510**. In addition, the control circuit **1530** may be configured to generate a direction signal V DIR for controlling the motor drive circuit **1520** to control the direction of rotation of the motor **1510**. The control circuit **1530** may be configured to control the motor **1510** to adjust a present position P.sub.PRES of the covering material of the motorized window treatment between a fully-open position P.sub.OPEN and a fully-closed position P.sub.CLOSED.

[0237] The motor drive unit **1500** may include a rotational sensing circuit **1540**, eg., a magnetic sensing circuit, such as a Hall effect sensor (HES) circuit, which may be configured to generate two signals V.sub.s1, V.sub.s2 (e.g., Hall effect sensor signals) that may indicate the rotational position and direction of rotation of the motor **1510**. The rotational sensing circuit **1540** (e.g., HES circuit) may comprise two internal sensing circuits for generating the respective signals V.sub.s1, V.sub.s2 (e.g., HES signals) in response to a magnet that may be attached to a drive shaft of the motor **1510**. The magnet may be a circular magnet having alternating north and south pole regions, for example. For example, the magnet may have two opposing north poles and two opposing south poles, such that each sensing circuit of the rotational sensing circuit **1540** is passed by two north poles and two south poles during a full rotation of the drive shaft of the motor **1510**. Each sensing circuit of the rotational sensing circuit 1540 may drive the respective signal V.sub.s1, V.sub.s2 to a high state when the sensing circuit is near a north pole of the magnet and to a low state when the sensing circuit is near a south pole. The control circuit **1530** may be configured to determine that the motor **1510** is rotating in response to the signals V.sub.s1, V.sub.s2 generated by the rotational sensing circuit **1540**. In addition, the control circuit **1530** may be configured to determine the rotational position and direction of rotation of the motor **1510** in response to the signals V.sub.s1, V.sub.s2. [0238] The motor drive unit **1500** may include a communication circuit **1542** (e.g., such as the control interface printed circuit board **654** shown in FIGS. **8**A and **8**B) that may allow the control circuit 1530 to transmit and receive communication signals, e.g., wired communication signals and/or wireless communication signals, such as radio-frequency (RF) signals. For example, the motor drive unit **1500** may be configured to communicate messages (e.g., digital messages) with external control devices (e.g., other motor drive units) via the communication circuit **1542** and an antenna 1545 via wireless signals, such as RF signals. The communication circuit 1542 and/or the antenna **1545** may be communicatively coupled (e.g., electrically connected) to the control circuit **1530**. The communication circuit **1542** may be disposed within a cap (e.g., such as the cap **150** shown in FIGS. 1B and 7, the cap 250 shown in FIGS. 2A and 2B, the cap 350 shown in FIGS. 3A and 3B, the cap 450 shown in FIGS. 4A and 4B, the cap 550 shown in FIG. 5A, and/or the cap 650 shown in FIGS. **8**A and **8**B) of the motor drive unit **1500**. Additionally or alternatively, the communication circuit **1542** may be internal to a housing of the motor drive unit **1500**. The motor drive unit **1500** may also, or alternatively, be coupled to an external RF communication circuit (e.g., located outside of the motor drive unit) for transmitting and/or receiving the RF signals. [0239] The motor drive unit **1500** may communicate with one or more input devices, eg., such as a remote control device, an occupancy sensor, a daylight sensor, and/or a shadow sensor. The remote control device, the occupancy sensor, the daylight sensor, and/or the shadow sensor may be wireless control devices (e.g., RF transmitters) configured to transmit messages to the motor drive unit **1500** via the RF signals. For example, the remote control device may be configured to transmit digital messages via the RF signals in response to an actuation of one or more buttons of the remote control device. The occupancy sensor may be configured to transmit messages via the RF signals in response to detection of occupancy and/or vacancy conditions in the space in which the motorized window treatment is installed. The daylight sensor may be configured to transmit digital messages via RF signals in response to a measured amount of light inside of the space in which the motorized window treatment is installed. The shadow sensor may be configured to transmit messages via the RF signals in response to detection of a glare condition outside the space in which the motorized window treatment is installed.

[0240] The motorized window treatment may be configured to control the covering material according to a timeclock schedule. The timeclock schedule may be stored in the memory. The timeclock schedule may be defined by a user (e.g., a system administrated through a programming mode). The timeclock schedule may include a number of timeclock events. The timeclock events may have an event time and a corresponding command or preset. The motorized window treatment may be configured to keep track of the present time and/or day. The motorized window treatment may transmit the appropriate command or preset at the respective event time of each timeclock event.

[0241] The motor drive unit **1500** may further comprise a user interface **1544** having one or more actuators (e.g., mechanical switches) that allow a user to provide inputs to the control circuit 1530 during setup and configuration of the motorized window treatment (e.g., in response to actuations of one or more buttons (e.g., the control button **152** shown in FIG. **1**B). The control circuit **1530** may be configured to control the motor **1510** to control the movement of the covering material in response to a shade movement command received from the communication signals received via the communication circuit **1542** or the user inputs from the buttons of the user interface **1544**. The control circuit 1530 may be configured to enable (e.g., via the control button 152 and/or the user interface **1544**) a user to pair the motorized window treatment with a remote control device and/or other external devices to allow for wireless communication between the remote control device and/or other external devices and the communication circuit 1542 (e.g., an RF transceiver). The user interface **1544** (e.g., the control button **152**) may be configured to provide a status indication to a user. For example, user interface **1544** (e.g. the control button **152**) may be configured to flash and/or change colors to provide the status indication to the user. The status indication may indicate when the motorized window treatment is in a programming mode. The user interface **1544** may also comprise a visual display, e.g., one or more light-emitting diodes (LEDs), which may be illuminated by the control circuit **1530** to provide feedback to the user of the motorized window treatment system.

[0242] The motor drive unit **1500** may also comprise a position detect circuit **1546** for detecting when a roller tube of the motorized window treatment is not in the operating position. The position detect circuit **1546** may be located in a motor drive unit housing end (e.g., the first end **112** and/or the cap **150** shown in FIG. **1**B) which may be attached to a mounting bracket (e.g., mounting brackets 130A, 130B, 230A, 330A, 430A, 530A, 5530A, 630, 700, 800, 900, 1000, 1100, 1200). For example, the position detect circuit **1546** may comprise a magnetic sensing circuit (e.g., a Halleffect sensor circuit) configured to detect when the mounting bracket is in an extended position and the position detect circuit **1546** is not in close proximity to a magnet located inside of an arm (e.g., arms **632**, **714**, **814**, **914**, **1014**, **1114**, and/or front portion **1214**) of the mounting bracket. The position detect circuit **1546** may be configured to generate a position detect signal V.sub.POS, which may be received by the control circuit **1530**. The control circuit **1530** may be configured to disable (e.g., automatically disable) the operation of the motor **1510** of the motor drive unit **1500** in response to the position detect signal V.sub.POS, such that the covering material cannot be raised or lowered when the roller tube is not in an operating position (e.g., in the extended position). The control circuit **1530** may be configured to enable the operation of the motor **1510** in response to the position detect signal V.sub.POS when the roller tube is in the operating position. [0243] The motor drive unit **1500** may comprise a memory (not shown) configured to store the present position P.sub.PRES of the covering material and/or the limits (e.g., the fully-open position

P.sub.OPEN and the fully-closed position P.sub.CLOSED), association information for associations with other devices and/or instructions for controlling the motorized window treatment. The memory may be implemented as an external integrated circuit (IC) or as an internal circuit of the control circuit **1530**.

[0244] The motor drive unit **1500** may comprise a compartment **1564** (e.g., which may be an example of the battery compartment **211** of the window treatment **200** shown in FIGS. **2A** and **2B**) that is configured to receive a DC power source. In some examples, the compartment **1564** may be internal to the motor drive unit **1500**. In other examples, the compartment **1564** may be external to the motor drive unit **1500**. In the example shown in FIGS. **2A** and **2B**, the DC power source is one or more batteries **1560**. In addition, alternate DC power sources, such as a solar cell (e.g., a photovoltaic cell), an ultrasonic energy source, and/or a radio-frequency (RF) energy source, may be coupled in parallel with the one or more batteries **1560**, or in some examples be used as an alternative to the batteries **1560**. The alternate DC power source may be used to perform the same and/or similar functions as the one or more batteries **1560**. In this example, the compartment **1564** may be configured to receive one or more batteries **1560** (e.g. four "D" batteries), such as the batteries **260**, **360**, **460**, **560**, **5560** of FIGS. **2A**, **2B**, **3A**, **3B**, **4A**, **4B**, **5A**, **6**. The batteries **1560** may provide a battery voltage V.sub.BATT to the motor drive unit **1500**.

[0245] The control circuit **1530** may be configured to determine when one or more of the batteries **1560** are not installed in the compartment **1564** when in the operating position. For example, the control circuit **1530** may be configured to determine that one or more of the batteries **1560** are missing when the magnitude of the battery voltage V.sub.BATT drops to approximately zero volts (e.g., there is an open circuit between the battery contacts). The control circuit **1530** may be configured to determine the magnitude of the battery voltage V.sub.BATT in response to a scaled battery voltage V.sub.BATT-S received via a scaling circuit **1566** (e.g., a resistive divider circuit). The scaling circuit **1566** may receive the battery voltage V.sub.BATT and may generate the scaled battery voltage V.sub.BATT-S. The control circuit **1530** may be configured to disable (e.g., automatically disable) the operation of the motor **1510** of the motor drive unit **1500** in response to the scaled battery voltage V.sub.BATT-S, such that the covering material cannot be raised or lowered when one or more of the batteries **1560** are not installed in the battery compartment **1564**, which may prevent depletion of the intermediate storage element **1554**. The control circuit **1530** may be configured to enable the operation of the motor **1510** in response to the scaled battery voltage V.sub.BATT-S when all of the batteries **1560** are installed.

[0246] The motor drive unit **1500** may comprise a filter circuit **1570**, a current limiting circuit, such as a power converter circuit **1552**, and an energy storage element **1554** (e.g., an intermediate energy storage element such as the intermediate storage device **694** shown in FIG. **8**A). In some examples, the motor drive unit **1500** may include a second power converter, such as a boost converter circuit **1558**. Also, in some examples, the second power converter may be omitted from the motor drive circuit **1500**. The energy storage element **1554** may comprise any combination of one or more super capacitors, one or more rechargeable batteries, and/or other suitable energy storage devices. [0247] The filter circuit **1570** may receive the battery voltage V.sub.BATT. The power converter circuit **1552** may draw a battery current I.sub.BATT from the batteries **1560** through the filter circuit **1570**. The filter circuit **1570** may filter high and/or low frequency components of the battery current I.sub.BATT. In some examples, the filter circuit **1570** may be a low-pass filter. Also, in some examples, the filter circuit **1570** may be omitted from the motor drive circuit **1500**. [0248] The power converter circuit **1552** may be configured to limit the current drawn from the batteries **1560** (e.g. allowing a small constant current to flow from the batteries **1560**). The power converter circuit **1552** may receive the battery voltage V.sub.BATT (e.g. VIN) via the filter circuit 1570. In some examples, the power converter circuit 1552 may comprise a step-down power converter, such as a buck converter. The power converter circuit **1552** may be configured to charge the energy storage element **1554** from the battery voltage V.sub.BATT to produce a storage voltage

```
V.sub.S across the energy storage element 1554 (e.g., approximately 3.5 volts). The motor drive
circuit 1520 may draw energy from the energy storage element 1554 (e.g., via the boost converter
circuit 1558) to drive the motor 1510. As such, the power converter circuit 1552 may be configured
to limit the current drawn from the batteries 1560, for example, by producing a storage voltage
V.sub.S and driving the motor 1510 using the storage voltage V.sub.S stored across the energy
storage element 1554. In most cases, for instance, the motor drive circuit 1520 may drive the motor
1510 by drawing current from the energy storage element 1554 and not drawing any current
directly from the batteries 1560. Further, it should be appreciated that, in some examples, the power
converter circuit 1552 may be omitted for another current limiting circuit, such as in instances
where the battery voltage V.sub.BATT is the same as the storage voltage V.sub.S and power
conversion (e.g., a step-up or step-down) is not needed to drive the motor 1510.
[0249] The motor drive unit 1500 may be configured to control when and how the energy storage
element 1554 charges from the batteries 1560. The control circuit 1530 may control when and how
the energy storage element 1554 charges from the batteries 1560 based on the storage voltage
V.sub.S of the energy storage element 1554, such as when the storage voltage V.sub.S of the energy
storage element 1554 falls below a low-side threshold value (e.g., approximately 2.8 volts). For
example, the control circuit 1530 may be configured to receive a scaled storage voltage V.sub.SS
via a scaling circuit 1556 (e.g., a resistive divider circuit). The scaling circuit 1556 may receive the
storage voltage V.sub.S and may generate the scaled storage voltage V.sub.SS. The control circuit
1530 may determine the magnitude of the storage voltage V.sub.S of the energy storage element
1554 based on the magnitude of the scaled storage voltage V.sub.SS. When the control circuit 1530
determines that the magnitude of the storage voltage V.sub.S of the energy storage element 1554
falls below the low-side threshold value, the control circuit 1530 may control a charging enable
signal V.sub.EN (e.g., drive the charging enable control signal V.sub.EN high) to enable the power
converter circuit 1552. When the power converter circuit 1552 is enabled, the power converter
circuit 1552 may be configured to charge the energy storage element 1554 (e.g. from the batteries
1560). When the power converter circuit 1552 is disabled, the power converter circuit 1552 may be
configured to cease charging the energy storage element 1554 (e.g. from the batteries 1560).
[0250] The motor drive unit 1500 may utilize the energy storage element 1554 to draw a small
constant current from the batteries 1560 over a long period of time to extend the lifetime (e.g., and
increase the total energy output) of the batteries 1560. For example, the motor drive unit 1500 (e.g.,
the power converter circuit 1552 and/or the motor drive circuit 1520) may limit the current drawn
by the power converter circuit 1552. The motor drive unit 1500 may draw current from the
batteries 1560 that is less than the limit, but not more.
[0251] When enabled, the power converter circuit 1552 may be configured to conduct an average
current I.sub.AVE (e.g., having a magnitude of approximately 15 milliamps) from the batteries
```

1560. The magnitude of the average current LAVE may be much smaller than a magnitude of a drive current required by the motor drive circuit 1520 to rotate the motor 1510. When the motor drive circuit 1520 is driving the motor 1510, the magnitude of the storage voltage V.sub.S of the energy storage element 1554 may decrease with respect to time. When the motor drive circuit 1520 is not driving the motor 1510 and the power converter circuit 1552 is charging the energy storage element 1554, the magnitude of the storage voltage V.sub.S may increase (e.g., slowly increase). When the storage voltage V.sub.S of the energy storage element 1554 falls below a low-side threshold value (e.g. approximately 2.8V), the control circuit 1530 may enable the power converter circuit 1552 to begin charging the energy storage element 1554. The storage voltage V.sub.S may fall below the low-side threshold value after powering movements of the covering material, powering low-voltage components, and/or due to leakage currents over time. When the storage voltage V.sub.S of the energy storage element 1554 rises above a high-side threshold value (e.g., approximately 3.5 volts), the control circuit 1530 may cease driving the charging enable signal V.sub.EN high to disable the power converter circuit 1552 and stop the charging of the energy

storage element **1554** from the batteries **1560**.

[0252] The motor drive unit **1500** may further comprise the boost converter circuit **1558** that receives the storage voltage V.sub.S and generates a motor voltage V MOTOR (e.g., approximately 5 volts) for powering the motor **1510**. The motor voltage V MOTOR may be larger than the storage voltage Vs. In some examples, a switch (e.g., a single pole double throw switch) may connect the batteries 1560 and the energy storage element 1554 to the boost converter 1558 (e.g., if the required motor voltage level exceeds the present battery voltage VBAT). When the control circuit **1530** controls the motor drive circuit **1520** to rotate the motor **1510**, the boost converter circuit **1558** may conduct current from the energy storage element **1554** to generate the motor voltage V MOTOR. AS noted above, in some examples, the motor drive unit **1500** may not include the boost converter circuit **1558**, for example, based on the voltage requirements of the motor **1510**. [0253] The motor drive unit **1500** may also comprise a controllable switching circuit **1562** coupled between the batteries **1560** and the motor drive circuit **1520**. The control circuit **1530** may generate a switch control signal V.sub.SW for rendering the controllable switching circuit **1562** conductive and non-conductive. The control circuit **1530** may be configured to render the controllable switching circuit **1562** conductive to bypass the filter circuit **1570**, the power converter circuit **1552**, the energy storage element **1554**, and/or the boost converter circuit **1558** to allow the motor drive circuit **1520** to draw current directly from the batteries (e.g., when the energy storage element **1554** is depleted). For example, the control circuit **1530** may render the controllable switching circuit **1562** conductive when the control circuit **1530** determines that the magnitude of the storage voltage V.sub.S of the energy storage element 1554 (e.g., based on the magnitude of the scaled storage voltage V.sub.SS) is depleted below a threshold and the control circuit 1530 has received an input or command to operate the motor **1510** and, for example, does not have enough energy to complete a movement or an amount of movement of the covering material). For example, the control circuit may determine if the energy storage element **1554** has enough energy to complete a movement or an amount of movement of the covering material by comparing a present storage level of the energy storage element **1554** (e.g., the storage voltage V.sub.S) to a threshold. The threshold may indicate a storage level sufficient to complete a full movement of the covering material from the fully-closed position to the fully-open position (e.g., a fixed threshold). The threshold may be constant or may vary, for example, depending on the amount of movement of the covering material required by the received command, such that the threshold (e.g., a variable threshold) may indicate a storage level sufficient to complete the movement required by the received command.

[0254] If the energy storage element **1554** is not sufficiently charged (e.g., does not have enough energy to move the covering material), the control circuit **1530** may close the controllable switching circuit **1562** at to allow the electrical load (e.g., the motor) to draw current directly from the batteries **1560**. Closing the controllable switching circuit **1562** may bypass the energy storage element **1554**, such that the stored energy of the energy storage element **1554** is not used for driving the motor **1510** to move the covering material.

[0255] The control circuit **1530** may be configured to determine when one or more of the batteries **1560** are not installed in the compartment **1564** when in the operating position. For example, the control circuit **1530** may be configured to determine that one or more of the batteries **1560** are missing when the magnitude of the battery voltage V.sub.BATT drops to approximately zero volts (e.g., there is an open circuit between the battery contacts). The control circuit **1530** may be configured to determine the magnitude of the battery voltage V.sub.BATT in response to a scaled battery voltage V.sub.BATT-S received via a scaling circuit **1566** (e.g., a resistive divider circuit). The scaling circuit **1566** may receive the battery voltage V.sub.BATT and may generate the scaled battery voltage V.sub.BATT-S. The control circuit **1530** may be configured to disable (e.g., automatically disable) the operation of the motor **1510** of the motor drive unit **1500** in response to the scaled battery voltage V.sub.BATT-S, such that the covering material cannot be raised or

lowered when one or more of the batteries **1560** are not installed in the battery compartment **1564**, which may prevent depletion of the intermediate storage element **1554**. The control circuit **1530** may be configured to enable the operation of the motor **1510** in response to the scaled battery voltage V.sub.BATT-S when all of the batteries **1560** are installed.

[0256] The motor drive unit **1500** may comprise a power supply **1580** (e.g., a low-voltage power supply). The power supply **1580** may receive the battery voltage V.sub.BATT. The power supply **1580** may be configured to produce a low-voltage supply voltage V.sub.CC (e.g., approximately 3.3 volts) for powering low-voltage circuitry of the motor drive unit **1500**, such as the user interface **1544**, the communication circuit **1542**, and the control circuit **1530**. Further, in some examples, the power supply **1580** may be omitted from the motor drive unit **1500** (e.g. if the low-voltage circuitry of the motor drive unit **1500** is able to be powered directly from the storage voltage V.sub.S). Additionally or alternatively, the motor drive unit **1500** may comprise a power supply (not shown) that may receive the storage voltage V.sub.S and generate the low voltage V.sub.CC (e.g., approximately 3.3V) for powering the control circuit **1530** and other low-voltage circuitry of the motor drive unit **1500**, eg., the user interface **1544**, the communication circuit **1542**, and the control circuit **1530**.

[0257] The user interface **1544**, the communication circuit **1542**, the antenna **1545**, and the position detect circuit **1546** may be part of a cap circuit **1590**, which may be mounted to a first printed circuit board (e.g., the control interface printed circuit board **654** shown in FIG. **8**B) located in an end portion of the motor drive unit **1500** (e.g., such as the motor drive unit end portion **150** shown in FIGS. 1B and 7 and/or the cap 250 shown in FIGS. 2A and 2B). The other circuitry of the motor drive unit 1500 may be mounted to a second printed circuit board (e.g., the motor drive printed circuit board **692**). Although the communication circuit **1542** is shown in FIG. **29** as part of the cap circuit **1590**, it should be appreciated that the communication circuit **1542** may not be part of the cap circuit **1590** and may be mounted to the second printed circuit board, while the antenna **1545** may be part of the cap circuit **1590** and located on the first printed circuit board. [0258] FIG. **30** is a flowchart depicting an example method **1600** for controlling a motor drive unit of a motorized window treatment (e.g., the motor drive unit 151 of the motorized window treatment **100** shown in FIG. **1**B, the motor drive unit **5590** of the motorized window treatment **5500** shown in FIG. **6**, the motor drive unit **690** of the motorized window treatment **600** shown in FIGS. 8A and 8B, and/or the motor drive unit 1500 shown in FIG. 29). The motorized window treatment may have a window treatment assembly (e.g., the roller tube assembly 111 that may be changed from an operating position (e.g., in which a covering material of the motorized window treatment may be moved) to an extended position (e.g., in which one or more batteries of the motor drive unit may be accessed). The method **1600** may be implemented by one or more devices. The method **1600** may be executed by a control circuit of the motor drive unit (e.g., the control circuit **1530** shown in FIG. **29**). For example, the method **1600** may be executed by the control circuit of the motor drive unit to enable and/or disable operation of a motor of the motor drive unit. The method **1600** may be executed at **1602**, for example, periodically (e.g., every one second). [0259] At **1604**, the control circuit may determine if the window treatment assembly is in the extended position (e.g., and not in the operating position). For example, the motor drive unit may comprise a position detect circuit (e.g., the position detect circuit **1546** shown in FIG. **29**) for detecting when the window treatment assembly is not in the operating position. The position detect circuit may be located in a motor drive unit housing end (e.g., the first end 112 and/or the cap 150 shown in FIG. **1**B) which may be attached to a mounting bracket (e.g., mounting brackets **130**A, **130**B, **230**A, **330**A, **430**A, **530**A, **5530**A, **630**, **700**, **800**, **900**, **1000**, **1100**, **1200**). For example, the position detect circuit may comprise a magnetic sensing circuit (e.g., a Hall-effect sensor circuit) configured to detect when the mounting bracket is in an extended position. The position detect circuit may determine when it is not in close proximity to a magnet located inside of an arm (e.g., arms **632**, **714**, **814**, **914**, **1014**, **1114**, and/or front portion **1214**) of the mounting bracket. The

position detect circuit may be configured to generate a position detect signal (e.g., the position detect signal V.sub.POS), which may be received by the control circuit. The control circuit may determine if the window treatment assembly is in the extended position (e.g., not in the operating position) in response to the position detect signal at **1604**. If the window treatment assembly is in the extended position at **1604**, the control circuit may disable the operation of the motor of the motor drive unit at **1610**, such that the covering material cannot be raised or lowered when the window treatment assembly is not in the operating position (e.g., in the extended position). The method **1600** may end at **1612**.

[0260] If the window treatment assembly is in the operating position at **1604**, the control circuit may determine if one or more of the batteries are not installed in a battery compartment of the motor drive unit at **1606**. For example, the control circuit may be configured to determine that one or more of the batteries are not installed when the magnitude of a battery voltage received from the batteries (e.g., the battery voltage V.sub.BATT) is approximately zero volts. The control circuit may be configured to determine the magnitude of the battery voltage in response to a scaled battery voltage (e.g., the scaled battery voltage V.sub.BATT-S that may be received via the scaling circuit **1566**). The control circuit may determine that one or more of the batteries are not installed in response to a scaled battery voltage at **1606**. If the control circuit determines that one or more of the batteries are not installed at **1606**, the control circuit may disable the operation of the motor of the motor drive unit at **1610**, such that the covering material cannot be raised or lowered when one or more of the batteries are not installed in the battery compartment, for example, to prevent depletion of an intermediate storage element of the motor drive unit (e.g., the intermediate storage element **1554**). The method **1600** may end at **1612**.

[0261] If the roller tube assembly is determined at **1604** to be in the operating position and all of the batteries are determined at **1606** to be installed, the control circuit may enable the operation of the motor at **160**, such that the covering material may be raised and lowered. The method **1600** may end at **1612**. Alternatively, block **1606** may be omitted from the method **1600**, such that the control circuit may enable the operation of the motor at **1608** when the roller tube assembly is in the operation position at **1604**.

Claims

1. A motorized window treatment comprising: a roller tube having a longitudinal axis and a cavity; a flexible material that is attached to the roller tube; a motor drive unit disposed within the cavity of the roller tube, the motor drive unit comprising a motor drive unit housing, a motor configured to rotate the roller tube to operate the flexible material between the raised position and the lowered position, and a battery compartment that is configured to hold a plurality of batteries for powering the motor drive unit; a first mounting bracket configured to be attached to a structure and to support a first end of the roller tube, wherein the first mounting bracket comprises a stationary portion and a translating portion, the translating portion defining an aperture configured to receive a portion of the motor drive unit housing, the translating portion configured to translate the motorized window treatment between an operating position and an extended position, such that the portion of the motor drive unit housing is accessible via the aperture of the translating portion when the motorized window treatment is in the extended position and the plurality of batteries are configured to be removed from the battery compartment of the motor drive unit via the aperture of the translating portion when the motorized window treatment is in the extended position; and a second mounting bracket configured to be attached to the structure and to support a second end of the roller tube; wherein, when the motorized window treatment is in the operating position, the motor drive unit housing is aligned with the stationary portion of the first mounting bracket and the second mounting bracket, and wherein, when the motorized window treatment is in the extended position, the portion of the motor drive unit housing is accessible via the aperture while the roller

tube is supported by the first mounting bracket and the second mounting bracket.

- **2.** The motorized window treatment of claim 1, wherein the motor drive unit further comprises a cap that is configured to be removably secured to an end of the motor drive unit and to retain the plurality of batteries within the battery compartment.
- **3.** The motorized window treatment of claim 2, wherein the motor drive unit further comprises a motor drive unit control circuit mounted to a first printed circuit board and configured to control operation of the motor, and an antenna electrically coupled to a wireless communication circuit located on a second printed circuit board housed in the cap, the wireless communication circuit configured to receive wireless signals from one or more control devices external to the motorized window treatment via the antenna, the wireless communication circuit coupled in communication with the motor drive unit control circuit for controlling the operation of the motor based on the received wireless signals.
- **4.** The motorized window treatment of claim 3, wherein the first printed circuit board is located at a first end of the batteries and the second printed circuit board is located at a second end of the batteries when the batteries are received within the battery compartment of the motor drive unit.
- **5**. The motorized window treatment of claim 4, further comprising: a ribbon cable that extends within the cavity of the roller tube and is attached to the first printed circuit board and the second printed circuit board of the motor drive unit, the ribbon cable comprising electrical conductors for conducting power and control signals.
- **6**. The motorized window treatment of claim 2, wherein the plurality of batteries are accessed by removing the cap from the end of the motor drive unit.
- 7. The motorized window treatment of claim 6, further comprising a battery holder configured to retain the plurality of batteries, the battery holder configured to be removed from the cavity such that the plurality of batteries can be replaced.
- **8.** The motorized window treatment of claim 2, wherein the cap comprises a user interface comprising one or more actuators that are configured to enable a user to configure the motor drive unit.
- **9.** The motorized window treatment of claim 8, wherein the one or more actuators comprises a control button configured to provide a status indication to a user.
- **10**. The motorized window treatment of claim 9, wherein the control button is illuminated by a light source.
- **11**. The motorized window treatment of claim 10, wherein the control button is configured to flash or change colors to provide the status indication to the user.
- **12**. The motorized window treatment of claim 1, wherein the stationary portion of the first mounting bracket comprises a base and an arm that extends from the base.
- **13**. The motorized window treatment of claim 12, wherein the stationary portion comprises one or more first slides that protrude from an inner surface of the arm.
- **14.** The motorized window treatment of claim 13, wherein the first mounting bracket comprises a sliding portion that is coupled between the stationary portion and the translating portion, the sliding portion comprising one or more second slides and one or more second channels that are configured to receive the one or more first slides of the stationary portion.
- **15.** The motorized window treatment of claim 14, wherein the translating portion and the sliding portion are configured to translate the motorized window treatment between the operating position and the extended position, the translating portion comprising one or more first channels that are configured to receive the one or more second slides of the sliding portion.
- **16.** The motorized window treatment of claim 15, wherein the sliding portion comprises one or more locking tabs; and wherein the stationary portion defines one or more first cavities configured to receive a first locking tab of the one or more locking tabs.
- **17**. The motorized window treatment of claim 16, wherein the arm comprises: a first operating position cavity that is configured to receive the first locking tab to hold the motorized window

treatment in the operating position; and a first extended position cavity that is configured to receive the first locking tab to lock the motorized window treatment in the extended position.

- **18**. The motorized window treatment of claim 17, wherein the first locking tab and the first operating position cavity are configured to resist a threshold force in a radial direction, and wherein the first locking tab is configured to release from the first operating position cavity when a force greater than the threshold force is applied in the radial direction such that the motorized window treatment can be moved to the extended position.
- **19**. The motorized window treatment of claim 18, wherein the first locking tab is configured to slide along a first inner channel defined by the inner surface of the arm between the first operating position cavity and the first extended position cavity.
- **20**. The motorized window treatment of claim 19, wherein the translating portion defines one or more second cavities configured to receive a second locking tab of the one or more locking tabs, and wherein the second locking tab is configured to engage an inner surface of the translating portion when the motorized window treatment is in the operating position.
- **21**. The motorized window treatment of claim 20, wherein the translating portion comprises: a second operating position cavity that is configured to receive the second locking tab to hold the motorized window treatment in the operating position; and a second extended position cavity that is configured to receive the second locking tab to lock the motorized window treatment in the extended position.
- **22**. The motorized window treatment of claim 21, wherein the second locking tab and the second operating position cavity are configured to resist a threshold force in the radial direction; and wherein the second locking tab is configured to release from the second operating position cavity when a force greater than the threshold force is applied in the radial direction such that the motorized window treatment can be moved to the extended position.
- **23**. The motorized window treatment of claim 22, wherein the second locking tab is configured to slide along a second inner channel defined by the translating portion between the second operating position cavity and the second extended position cavity.
- **24**. The motorized window treatment of claim **24**, wherein the sliding portion comprises a disengagement button that is configured to enable disengagement of the sliding portion from the stationary portion.
- **25**. The motorized window treatment of claim 1, wherein the translating portion comprises an attachment member that defines the aperture, the attachment member configured to receive a portion of the motor drive unit housing.