Optimization to the Unification & Unified Focal Loss of UniMVSNet

Based on CVPR 2022:

Rethinking Depth Estimation for Multi-View Stereo: A Unified Representation

Outline

- > Introduction
- > Methodology
- Proposed Methods
- > Experiment Result
- Conclusion
- > Q&A

Unification

≈

Classification

+

Regression

R_1 Stage 1 Stage 2

Related Works - Cascade MVSNet

Method - Architecture

Cascade MVSnet + 2 additional modules + Unified Focal Loss

Method - Unity Generation

Algorithm 1: Unity Generation

```
Input: Ground-truth depth \mathbf{D}_{qt} \in \mathbb{R}^{H' \times W'}; Depth
                hypotheses \{\mathbf{d}_i \in \mathbb{R}^{H' \times W'}\}_{i=1}^M.
    Output: Ground-truth Unity \{\mathbf{U}_i \in \mathbb{R}^{H' \times W'}\}_{i=1}^{M}.
     Initialization: Depth interval r = 0.
 1 for i=1 to M do
           for (x, y) = (1, 1) to (H', W') do
                 if i < M then
                    r = \mathbf{d}_{i+1}^{x,y} - \mathbf{d}_{i}^{x,y};
                 end
                 if \mathbf{d}_i^{x,y} \leq \mathbf{D}_{gt}^{x,y} and \mathbf{d}_i^{x,y} + r > \mathbf{D}_{gt}^{x,y} then
                     \mathbf{U}_{i}^{x,y} = 1 - \frac{\mathbf{D}_{gt}^{x,y} - \mathbf{d}_{i}^{x,y}}{T};
                 else
                       \mathbf{U}_{i}^{x,y}=0;
10
                 end
           end
11
12 end
13 return \{\mathbf{U}_i\}_{i=1}^M.
```

Method - Unity Regression

Algorithm 2: Unity Regression

```
Input: Estimated unity \{\widehat{\mathbf{U}}_i \in \mathbb{R}^{H' \times W'}\}_{i=1}^M; Depth
               hypotheses \{\mathbf{d}_i \in \mathbb{R}^{H' \times W'}\}_{i=1}^M.
    Output: Regressed Depth \mathbf{D} \in \mathbb{R}^{H' \times W'}.
    Initialization: Depth interval r = 0.
 1 for (x,y) = (1,1) to (H',W') do
          Optimal hypothesis index o = \arg \max \widehat{\mathbf{U}}_{i}^{x,y};
                                                       i \in \{1, \cdots, M\}
          Optimal hypothesis d = \mathbf{d}_{o}^{x,y};
         if o < M then
             r = \mathbf{d}_{a+1}^{x,y} - \mathbf{d}_{a}^{x,y};
         else
 6
               // previous interval for the last hypothesis
             r = \mathbf{d}_{0}^{x,y} - \mathbf{d}_{0-1}^{x,y};
         end
          Offset of f = (1 - \widehat{\mathbf{U}}_{o}^{x,y}) \times r;
10
         Depth \mathbf{D}^{x,y} = d + off;
12 end
13 return D.
```

Data Imbalance: α Hard Sample: γ

$$\operatorname{FL}(u,q) = \begin{cases} -\alpha(1-u)^{\gamma} \log(u), & q=1\\ -(1-\alpha)u^{\gamma} \log(1-u), & \text{else} \end{cases}$$
 (6) (Discrete Label)

$$FL(u,q) = \begin{cases} -\alpha (1-u)^{\gamma} \log(u), & q=1\\ -(1-\alpha)u^{\gamma} \log(1-u), & \text{else} \end{cases}$$
 (6) (Discrete Label)

$$GFL(u,q) = \begin{cases} \alpha |q - u|^{\gamma} BCE(u,q), & q > 0\\ (1 - \alpha) u^{\gamma} BCE(u,q), & \text{else} \end{cases}$$
 (7) (Continuous Label)

$$GFL(u,q) = \begin{cases} \alpha |q - u|^{\gamma} BCE(u,q), & q > 0\\ (1 - \alpha) u^{\gamma} BCE(u,q), & \text{else} \end{cases}$$
 (7) (Absolute error)

$$UFL(u,q) = \begin{cases} \alpha(\frac{|q-u|}{q^+})^{\gamma}BCE(u,q), & q > 0\\ (1-\alpha)(\frac{u}{q^+})^{\gamma}BCE(u,q), & \text{else} \end{cases}$$
 (8) (Relative error)

$$\mathrm{UFL}(u,q) = \begin{cases} \alpha(\frac{|q-u|}{q^+})^{\gamma}\mathrm{BCE}(u,q), & q > 0\\ (1-\alpha)(\frac{u}{q^+})^{\gamma}\mathrm{BCE}(u,q), & \text{else} \end{cases} \tag{8}$$

$$\text{UFL}(u,q) = \begin{cases} \alpha^{+} (S_b^{+}(\frac{|q-u|}{q^{+}}))^{\gamma} \text{BCE}(u,q), & q > 0 \\ \alpha^{-} (S_b^{-}(\frac{u}{q^{+}}))^{\gamma} \text{BCE}(u,q), & \text{else} \end{cases}$$
 (Relative error with sigmoid)

Our Proposed Improvements

Optimization of the Calculation of Unification & Unified Focal Loss

$$U_i^{x,y} = 1 - \frac{D_{gt}^{x,y} - d_i^{x,y}}{r}$$
 $off = (1 - \widehat{U}_o^{x,y}) * r$

$$U_i^{x,y} = 1 - \frac{D_{gt}^{x,y} - d_i^{x,y}}{2 * r}$$
 of $f = (1 - \widehat{U}_o^{x,y}) * (2 * r)$

Our Proposed Improvements

Optimization of the Calculation of Unification & Unified Focal Loss

$$\text{UFL}(u,q) = \begin{cases} \alpha^{+} (S_b^{+}(\frac{|q-u|}{q^{+}}))^{\gamma} \text{BCE}(u,q), \\ \alpha^{-} (S_b^{-}(\frac{u}{q^{+}}))^{\gamma} \text{BCE}(u,q), \end{cases}$$

$$S_5^+(x) = 4 \times (\frac{1}{1 + 5^{-x}} - 0.5) + 1$$
 [1,3)

$$S_5^-(x) = 2 \times (\frac{1}{1 + 5^{-x}} - 0.5)$$
 [0,1)

q: unity ground truth u: estimation depth

Expected Result

- Improve the problem of inaccurate prediction in the early training period.
- Conduct correction on balancing the positive and hard samples without sigmoid functions
- Obtain better results by trying out different activation functions

Metrics

• **Accuracy**: distance from the MVS reconstruction to the structured light reference, encapsulating the quality of the reconstructed MVS points.

 Completeness: distance from the reference to the MVS reconstruction, encapsulating how much of the surface is captured by the MVS reconstruction.

Result

	Baseline	Baseline + OUG	Opti. Baseline	Opti. Baseline w/o Sigmoid	Opti. Baseline w/o Sigmoid range [1, 3]	Baseline w/ ReLU	Baseline w/ Leaky ReLU
Accuracy	1.6048	0.4623	0.419	0.3886	0.4179	0.3915	0.4175
Completeness	1.1208	0.3322	0.3283	0.3229	0.3472	0.4722	0.5392
Overall	1.3628	0.3973	0.3737	0.3557	0.3826	0.4318	0.4783

Conclusion

 Outperform the baseline (original UniMVSNet), improve overall performance by 73.89%.

 Optimized Baseline converges faster, with training time per epoch reduced from 5 hours to 4 hours (on RTX 2080 Ti).

 The overall performance improved by 68% after replacing the loss function in the baseline model.

Thank you for your listening

Any Questions?