L5: Resistive RAM I

Recap

Outline

- Introduction
 - History
 - pros and cons
 - device structure
- Unipolar vs. bipolar
- Switching mechanisms
- Cation switching
- Anion switching
- Forming, set and reset

History of RRAM

Resistive Switching

Top electrode (TE)

D. Ielmini et al., Semicon. Sci. & Tech., 2016

- E-field and Joule heating induced ionic movement
- Formation and dissolution of a conductive filament (CF)
- Compliance needed to prevent breakdown

RRAM Pros and Cons

- Simple structure
 - two-terminal device
 - not limited by transistor scaling
- Ultra-high density
 - Cell size 4F²
 - 3D stackable
 - terabit potential
 - Multi-level cell
- Large connectivity
- memory, logic and neuromorphic applications

RRAM Activation Energy

<u>Unipolar vs. Bipolar</u>

Unipolar

Bipolar

- Unipolar: both set and reset are achieved by applying voltages of the same polarity
- Bipolar: set and reset are achieved by applying voltages of *different* polarity

<u>Unipolar</u>

Thermally accelerated redox transitions

 Set: chemical reduction of metal(a) oxides and CF re-connection

- Reset: oxidation of metallic filament and CF disconnection
- Preferred due to simple circuit and selection design in memory array
- Suffers from lower uniformity and low endurance

<u>Bipolar</u>

- Depends on both temperature and E-field
- Reset: migration of ionized defects towards the –ve electrode → depletion region in the CF
- Set: injection of these defects back to the CF
- Better reliability and endurance
 - ionized defects are conserved during programming
- Current focus of most researches

RRAM Switching Mechanisms

ITRS_ERD workshop, April 2010

Cation Switching

- Forming and dissolution of metallic filament inside a dielectric medium
- Mostly unipolar → thermally accelerated redox reaction
- Key parameters:
 - ion mobility μ
 - redox reaction rate R

- High ion mobility µ and high redox rate R
- cations can reach anode (-ve) without reducing
- Filament growth starts at anode
- With large ion supplies (high R), inverted cone shaped filament

Yang et al., Nat. Comm., 2014

- High ion mobility µ and low redox rate R
- Ions are reduced at anode electrode
- With limited ion supply (low R), reduction occurs at the edge → branched growth towards cathode

In-situ TEM of Filament Movements

- High ion mobility µ and low redox rate R
- Yang et al., Nat. Comm., 2012
- With limited ion supply (low R), reduction occurs at the edge
 - → branched growth towards cathode

- Low ion mobility µ and high redox rate R
- lons nucleate inside dielectric
- Incoming ions are reduced at the site of nucleation due to high redox rate
- First bridging the gap between nucleation and cathode
- Then filament growth towards anode

- Low ion mobility µ and low redox rate R
- lons nucleate inside the dielectric
- Further growth through cluster displacement and repeated splitting-merging process

Cation Summary

	High µ	Low µ
High R	Inverted Cone from anode	Nucleate from middle, grows towards cathode and then anode
Low R	Branched growth from anode	graduate cluster displacement and splitting-merging

- High μ: growth starts at anode side
- low μ: growth starts inside dielectric
- high R: cone filament
- Low R: branched growth

Anion Switching

- Movement of oxygen vacancies (HfO_x, TiO_x, TaO_x ...)
- Mostly bipolar

Forming

- First SET/soft breakdown process
- Requires higher voltage to form the filament pathway for the first time
- Current compliance is needed to prevent thermal runaway

- E-field induced soft breakdown
- Conductive filament made of oxygen vacancy
- Abrupt SET

- Gradual RESET
- Change of polarity for O₂ ions to move in the other direction
- Breaking of conductive filament

Gradual SET Process

- Gradual SET for (top) TiN/HfO_x/AlO_x/Pt (bottom)
- Possible reasons: multiple CF formed and/or stronger CF formed with larger diameter