EXAM OF STATISTICS (DESCRIPTIVE STATISTICS AND REGRESSION)

Pharmacy/Biotechnology 1st year

Version B

January 17, 2022

Duration: 1 hour.

(5 pts.) 1. The table below shows the age X (in years) and the maximum blood pressure Y (in mmHg) of a group of 5 girls and a group of 5 women.

	Girls			Women						
Age	7	8	10	8	9	55	41	70	34	61
Blood pressure	105	110	98	97	103	145	121	154	121	155

- (a) Is there a linear relation between the pressure and the age of women?
- (b) How much changes the blood pressure for every year that increases the age in women?
- (c) In which group the linear regression model explains a higher percentage of the variability of the blood pressure, in girls or in women? Below is the statistics summary of the linear regression model for girls.

Model equation

Blood.Pressure = 120.6923 + -2.1538 Age

Model coefficients

Coefficient	Estimation	Std.Error	t-statistic	p-value
Intercept	120.6923	20.2198	5.969016	0.00940878
Age	-2.153846	2.389573	-0.9013519	0.4338353

Model goodness of fit

R ²	R ² ajusted	F-statistic	p-value
0.2131014	-0.04919815	0.8124352	0.4338353

- (d) What is the expected blood pressure for a 55-year-old woman? And for a 9-year-old girl? Are these predictions reliable? Which one is more reliable?
- (e) Explain why the prediction for a 55-year-old woman is not 145 mmHg as appears in the data table.

Use the following sums for the computations:

Girls: $\sum x_i = 42$ years, $\sum y_i = 513$ mmHg, $\sum x_i^2 = 358$ years², $\sum y_i^2 = 52747$ mmHg² and $\sum x_i y_j = 4298$ years·mmHg.

Women: $\sum x_i = 261 \text{ years}$, $\sum y_i = 696 \text{ mmHg}$, $\sum x_i^2 = 14483 \text{ years}^2$, $\sum y_i^2 = 98048 \text{ mmHg}^2$ and $\sum x_i y_j = 37285 \text{ years} \cdot \text{mmHg}$.

Solution

(5 pts.) 2. A study tries to determine the relation between the skin color, quantified in the Von Luschan scale, and suffering a particular skin disease. The table below summarizes the number of healthy and sick individuals in each interval of the Von Luschan scale:

Skin color (Von Luschan)	Healthy	Sick
0 - 6	79	25
6 - 12	266	40
12 - 18	193	21
18 - 24	188	12
24 - 30	117	3
30 - 36	56	0

- (a) Compute the Von Luschan value such that 30% of individuals are above that value.
- (b) In which group is the mean more representative, in healthy or in sick persons?
- (c) Which distribution is more symmetric, the healthy or the sick persons distribution? And, which one is more peaked?
- (d) Which individual has a relatively higher Von Luschan value, a healthy person with a score 15 or a sick person with a score 10?
- (e) Taking the standard scores of healthy and sick persons, in which distribution is the mean of the standard scores more representative?

Use the following sums for the computations:

Healthy: $\sum x_i n_i = 14481$, $\sum x_i^2 n_i = 294867$, $\sum (x_i - \bar{x})^3 n_i = 169417.62$ and $\sum (x_i - \bar{x})^4 n_i = 9325428.37$.

Sick:
$$\sum x_i n_i = 1083$$
, $\sum x_i^2 n_i = 15669$, $\sum (x_i - \bar{x})^3 n_i = 15887.66$ and $\sum (x_i - \bar{x})^4 n_i = 440770.94$.

Solution