Consider a triangle with vertices

$$\mathbf{A} = \begin{pmatrix} -2\\1 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} -4\\-3 \end{pmatrix}, \ \mathbf{C} = \begin{pmatrix} -1\\-2 \end{pmatrix} \tag{1}$$

1 Vectors

parameters	values	description		
m ₁	$\begin{pmatrix} -2 \\ -4 \end{pmatrix}$	slope of AB		
\mathbf{m}_2	$\begin{pmatrix} 3 \\ 1 \end{pmatrix}$	slope of BC		
m ₃	$\begin{pmatrix} -1 \\ 3 \end{pmatrix}$	slope of CA		
A - B	4.47	length of AB		
B-C	3.16	length of BC		
C - A	3.16	length of CA		
	3	non-collinear		
n ₁	$\begin{pmatrix} -4\\2 \end{pmatrix}$	AB		
c_1	10			
n ₂	$\begin{pmatrix} 1 \\ -3 \end{pmatrix}$	BC		
c_2	5			
n ₃	$\begin{pmatrix} 3 \\ 1 \end{pmatrix}$	CA		
c_3	-5			
Area	5	Area of Triangle		
∠A	45°			
∠B	45°	Angles		
∠C	90°			

TABLE 1: Vectors.

Fig. 1: triangle plotted using python

2 Median

parameters	value	description		
D	$\begin{pmatrix} -2.5 \\ -2.5 \end{pmatrix}$	BC midpoint		
E	$\begin{pmatrix} -1.5 \\ -0.5 \end{pmatrix}$	CA midpoint		
F	$\begin{pmatrix} -3 \\ -1 \end{pmatrix}$	AB midpoint		
m ₄	$\begin{pmatrix} -0.5 \\ -3.5 \end{pmatrix}$	AD		
n ₄	$\begin{pmatrix} -3.5\\0.5 \end{pmatrix}$			
C4	7.5			
m ₅	(2.5) (2.5)	BE		
n ₅	$\begin{pmatrix} 2.5 \\ -2.5 \end{pmatrix}$			
c ₅	-2.5			
m ₆	$\begin{pmatrix} -2\\1 \end{pmatrix}$	CF		
n ₆	$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$	Cr		
c_6	-5			
G	$\begin{pmatrix} -2.33 \\ -1.33 \end{pmatrix}$	Centroid		
$\begin{array}{c} \underline{BG} \\ \underline{GE} \\ \underline{CG} \\ \underline{GF} \\ \underline{AG} \\ \underline{GD} \end{array}$	2	Division ratio by G		
$ \begin{array}{c cccc} & & & & & & & \\ & & & &$	2	collinear		

TABLE 2: Median.

Fig. 2: medians plotted using python

Fig. 3: altitudes plotted using python

4 Perpendicular Bisector

description

value

 $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$

parameters

3 ALTITUDE

			m ₁₀	$\begin{pmatrix} 1 \\ -3 \end{pmatrix}$	4 D
parameters	value	description	n ₁₀	$\begin{pmatrix} 3 \\ 1 \end{pmatrix}$	AD_1
	(-1)		C ₁₀	-10	
$\mathbf{D_1}$	$\left(-2\right)$	Foot of altitude from A	m ₁₁	(-3)	
E	(-1)	E4 -6 -14:4-1- 6 D	m ₁₁	(-1)	BE_1
$\mathbf{E_1}$	$\left(-2\right)$	Foot of altitude from B	n ₁₁	(1)	DL_1
TC .	(-3)	Foot of altitude from C	111	(-3)	
$\mathbf{F_1}$	$\left(-1\right)$	root of attitude from C	c_{11}	0	
m ₇	(1)	AD_1	\mathbf{m}_{12}	(4)	
1117	(-3)		12	(-2)	CF_1
$\mathbf{n_7}$	$\begin{pmatrix} -3 \\ -1 \end{pmatrix}$		n ₁₂	$\begin{pmatrix} 2 \\ 4 \end{pmatrix}$	
c_7	5		c_{12}	-10	
m ₈	$\begin{pmatrix} 3 \\ 1 \end{pmatrix}$		О	$\begin{pmatrix} -3 \\ -1 \end{pmatrix}$	Circumcentre
	(1)	BE_1	$\ \mathbf{O} - \mathbf{A}\ $		
n_8	$\left(-3\right)$		$ \mathbf{O} - \mathbf{B} $		
c_8	5		O - C	2.24	OA = OB = OC = R
	(-2)		R		
\mathbf{m}_{9}	$\left(\begin{array}{c} 1 \end{array} \right)$	CE	∠BOC	90°	ADOC 2 ADAC
n-	(1)	CF_1	∠BAC	45°	$\angle BOC = 2\angle BAC$
n ₉	(2)		∠AOC	90°	(AOC 2 (ABC
<i>C</i> 9	-5		∠ABC	45°	$\angle AOC = 2\angle ABC$
Н	$\begin{pmatrix} -1 \\ -2 \end{pmatrix}$	Orthocentre	∠AOB	180°	$\angle AOB = 2\angle BCA$
11			∠BCA	90°	

TABLE 3: Altitude.

TABLE 4: Perpendicular Bisector.

Fig. 4: perpendicular bisectors plotted using python

5 Angle Bisector

		<u> </u>		
parameters	value	description		
m ₁₃	$\binom{0.13}{1.84}$	AI		
n ₁₃	$\begin{pmatrix} 1.84 \\ -0.13 \end{pmatrix}$			
c_{13}	-3.82			
m ₁₄	$\begin{pmatrix} 1.40 \\ 1.21 \end{pmatrix}$	BI		
n ₁₄	$\begin{pmatrix} -1.21 \\ 1.40 \end{pmatrix}$			
c_{14}	0.65			
m ₁₅	$\begin{pmatrix} 1.26 \\ -0.63 \end{pmatrix}$	CI		
n ₁₅	$\begin{pmatrix} 0.63 \\ 1.26 \end{pmatrix}$			
c_{15}	-3.16			
I	$\begin{pmatrix} -2.17 \\ -1.41 \end{pmatrix}$	Incentre		
\mathbf{D}_3	$\begin{pmatrix} -1.88 \\ -2.29 \end{pmatrix}$	Point of contact with BC		
\mathbf{E}_3	$\begin{pmatrix} -1.29 \\ -1.12 \end{pmatrix}$	Point of contact with AC		
F ₃	$\begin{pmatrix} -3 \\ -1 \end{pmatrix}$	Point of contact with AB		
$ I-D_3 $				
$\ I-E_3\ $				
$ I-F_3 $	0.93	$ID_3 = IE_3 = IF_3 = r$		
r				
∠BAI		$\angle BAI = \angle CAI$		
∠CAI	22.5°			
$\angle ABI$	22.50	ANI CRI		
∠CBI	22.5°	$\angle ABI = \angle CBI$		
∠ACI	450			
∠BCI	45°	$\angle ACI = \angle BCI$		

TABLE 5: Angle Bisectors.

Fig. 5: Angle bisectors plotted using python