NZM 2: Congruence

Michael Lee

1 Congruences

Definition If an integer m, not zero, divides the difference a-b, we say that a is congruent to b modulo m and write $a \equiv b \pmod{m}$. If a-b is not divisible by m say that a is not conguent to b modulo $m \not\equiv b \pmod{m}$.

Theorem 1.1 Let a, b, c, d, x, y denote integers

- 1. $a \equiv b \pmod{m}$, $b \equiv a \pmod{m}$, and $(a-b) \equiv 0 \pmod{m}$ are equivalent statements.
- 2. If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$.
- 3. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ax + by \equiv bx + dy \pmod{m}$.
- 4. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$.
- 5. If $a \equiv b \pmod{m}$ and $d \mid m, d > 0$, then $a \equiv b \pmod{m}$.
- 6. If $a \equiv b \pmod{m}$ then $ac \equiv bc \pmod{mc}$, for c>0.

Theorem 1.2 Let f denote a polynomial with integral coefficients. If $a \equiv b \pmod{m}$ then $f(a) \equiv f(b) \pmod{m}$.

Theorem 1.3 1. $ax \equiv ay \pmod{m}$ if and only if $x \equiv y \pmod{\frac{m}{(a.m)}}$

2. If $ax \equiv ay \pmod{m}$ and (a, m) = 1, then $a \equiv y \pmod{m}$.

Definition If $x \equiv y \pmod{m}$ then y is called a residue of x modulo m. A set $x_1, x_2, \ldots x_m$ is called a complte residue system modulo m if for every integer y, there is one and only one x_j such that $y \equiv x_j \pmod{m}$.

Theorem 1.4 If $x \equiv y \pmod{m}$, then (x, m) = (y, m).

Proof We have x - y = mz for some integer z. Since $(x, m) \mid x$ and $(x, m) \mid m$, we have $(x, m) \mid y$ and hend $(x, m) \mid (y, m)$, therefore (x, m) = (y, m).

Definition A reduced residue system modulo m is a set of integers r_i such that $(r_i, m) = 1$, $r_i \not\equiv r_j \pmod{m}$ if $i \neq j$, and such that every x prime to m is congruent modulo m to some member r_i of the set.

Theorem 1.5 The number $\phi(m)$ is the number of positive integers less than or equal to m that are relatively prime to m.

Theorem 1.6 Let (a, m) = 1. Let r_1, r_2, \ldots, r_n be a complete, or a reduced, residue system modulo m. Then ar_1, ar_2, \ldots, ar_n is a complete, or a reduced, residue system, modulo m.

Theorem 1.7 Fermat's Theorem. Let p denote a prime. If $p \nmid a$ then $a^{p-1} \equiv 1 \pmod{p}$. For every integer a, $a^p \equiv a \pmod{p}$.

Theorem 1.8 Euler generalization of Fermat's theorem. If (a, m) = 1, then

$$a^{\phi(m)} \equiv 1 \pmod{m}$$

Corollary 1.9 If (a, m) = 1, then $ax \equiv b \pmod{m}$ has a solution $x = x_1$. All solutions are given by $x = x_1 + jm$ where $j = \pm 1, \pm 2, \ldots$

Theorem 1.10 Wilson's Theorem. If p is a prime, then $(p-1)! \equiv -1 \pmod{p}$.

Theorem 1.11 Let p denote a prime. Then $x^2 \equiv -1 \pmod{p}$ has solutions if and only if p = 2 or $p \equiv 1 \pmod{4}$.

Assignment NZM 2.1: 3, 9, 10, 14, 17, 18, 19, 24, 26

2 Solutions of Congruences

Definition Let r_1, r_2, \ldots, r_m denote a complete residue system modulo m, The number of solutions $f(x) \equiv 0 \pmod{m}$ is the number of the r_i such that $f(r_i) \equiv 0 \pmod{m}$.

Definition Let $f(X) = a_0 x^n + a_1 x^{n-1} + \dots a_n$. If $a_0 \equiv 0 \pmod{m}$ the degree of the congruence $f(x) \equiv 0 \pmod{m}$ is n. If $a_0 \equiv 0 \pmod{m}$, let j be the smallest positive integer such that $a_j \not\equiv 0 \pmod{m}$; then the degree of the congurance is n - j. If there is no such integer j, thiat is all the coefficients of f(x) are multiples of m, no degree is assigned to the congruence.

Theorem 2.1 If $d \mid m$, and if u is a solution of $f(x) \equiv 0 \pmod{m}$, then u is a solution of $f(x) \equiv 0 \pmod{d}$.

Assignment None

3 Chinese Remainder Theorem

Theorem 3.1 The congumece $ax \equiv b \pmod{m}$ has exactly one solution if (a,m) = 1. More generally, if g denotes the greatest common divisor (a,m), the congruence is solvable if and only if $g \mid b$. If $g \mid b$ the cognuence has exactly g solutions $x \equiv x_0 + tm \pmod{m}$ for $t = 0, 1, \ldots, g - 1$, where x_0 is any solution of $(\frac{a}{g})x \equiv \frac{b}{g} \pmod{\frac{m}{g}}$

Theorem 3.2 Given a cognruence $ax \equiv b \pmod{m}$, reduce it to $my \equiv -b \pmod{a}$. If y_0 is a solution of the reduced congruence, then x_0 defined by $x_0 = \frac{my_0 + b}{a}$ is a solution of the original congruence.

Theorem 3.3 Chinese remainder theorem. Let m_1, m_2, \ldots, m_r denote r positive integers that a rrelatively prime in pairs, and let a_1, a_2, \ldots, a_r denote any r integers. Then the congruences $x \equiv a_i \pmod{m_i}$, $i = 1, 2, \ldots, r$ have common solutions. Any two solutions are congruent modulo $m_1 m_2 \ldots m_r$.