

Escuela Superior de Ingeniería Mecánica y Eléctrica UZ

Departamento Académico de ICE Academia de Física

EXAMEN EXTRAORDINARIO DE MECÁNICA CUÁNTICA Y ESTADÍSTICA

Indicaciones: Se calificarán: solo los 7 primeros reactivos resueltos.

2 puntos cada reactivo, total 14 puntos.

Los desarrollos teóricos y matemáticos deben ser completos.

- 1. Para un fotón de 1.00 keV de energía, ¿cuál es: (a) su longitud de onda λ en Å, y (b) su impulso p en keV/c (momento lineal)?
- 2. La función de trabajo ω₀ de cierta superficie metálica es de 2.50 eV. Si al iluminar la superficie con cierta radiación, la energía cinética K_{máx} de los fotoelectrones desprendidos es de 1.60 eV. Calcular: (a) la longitud de onda λ (en Å) de la radiación con la que fue iluminada la superficie y (b) la velocidad v (en m/s) de los fotoelectrones desprendidos.
- 3. Considere un fotón con una energía inicial E = 100 keV que al interaccionar con electrones libres, experimenta dispersión Compton a un ángulo de 60.0°. Encuentre: (a) la energía E' (en keV) para el fotón dispersión, y (b) la energía cinética K (en keV) para el electrón dispersado.
- 4. Para un electrón, con energía cinética de 1.50 eV; calcular: (a) la longitud de onda de De Broglie asociada λ_e (en Å); y (b) el momento lineal (cantidad de movimiento) p_e (en eV/c).
- 5. Por sustitución directa, verifica que la función de onda: $\Psi(x,t) = Ae^{i(kt-\omega x)}$, en done A es una constante; es solución de la ecuación de onda para partícula libre:

$$-\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2}=i\hbar\frac{\partial\Psi}{\partial t}\quad \textit{Ecuación de onda para la particula libre}.$$
 Considerar que: $p=\hbar k \;\; \gamma \;\; E=\hbar\omega$

- 6. Sea una barrera de potencial con las siguientes características: altura U₀ = 4.00 eV, y anchura a = 1.00 Å; sobre la que inciden electrones con energía total E = 3.90 eV. (a) Calcular la probabilidad de transmisión de los electrones a través de la barrera (coeficiente de transmisión T) y (b) Si sobre esta barrera incide una corriente I_i = 120 nA, ¿Cuál es la magnitud de la corriente transmitida I_t?
- 7. En un átomo de hidrógeno, un electrón en el estado excitado n = 5; decae al nivel n = 2 y de este al estado base, emitiendo un fotón en cada transición. Calcular la energía (en eV) de los fotones emitidos durante los decaimientos: (a) E_{5→2}; y (b) E_{2→1}.
- 8. (a) ¿Qué estudia la Mecánica cuántica no relativista? (b) Escribe el nombre de algún científico impulsor de la mecánica cuántica y sobre todo ¿cuál fue su importante aporte?
- 9. (a) ¿Qué es la Mecánica estadística? (b) ¿A qué tipo de objetos se aplica?
- 10. Calcula la energía del Nivel de Fermi u_f (en eV) para el Oro metálico.

Nota: Puedes trabajar con todos los dígitos de tu calculadora, pero 4 es el máximo número de cifras significativas en las cantidades resultado.

Escuela Superior de Ingeniería Mecánica y Eléctrica UZ Departamento Académico de Ingeniería en Comunicaciones y Electrónica Academia de Física

Examen Extraordinario de Mecánica Cuántica y Estadística

Vargas	Betancourt	Jesus	4CV10
APELLIDO PATERNO	APELLIDO MATERNO	NOMBRES	GRUPO

Ejercicio 1

$$\alpha)_{\lambda} = ?$$

Datos

$$E = 1 \text{keV} = 1 \times 10^3 \text{ eV}$$

Sustituado

$$\lambda = \frac{hc}{E} = \frac{12400 \text{ eVA}}{1 \times 10^3 \text{ eV}} = 12.4 \text{ a}$$
 a) $\lambda = 12.4 \text{ A}$

b) p=? (monerto lineal)

Datos

Formula

F=1 KeV

P= E

C= 3x108 m

Sustituado

$$p = \frac{E}{c} = \frac{1 \text{ keV}}{c}$$
 of c

Escuela Superior de Ingeniería Mecánica y Eléctrica UZ Departamento Académico de Ingeniería en Comunicaciones y Electrónica Academia de Física

Examen Extraordinario de Mecánica Cuántica y Estadística

Vargas	Betancourt	Jesus	4CV10
APELLIDO PATERNO	APELLIDO MATERNO	NOMBRES	GRUPO
Ejercicio 2			
Datos			
Wo= 2.50 eV			
Kmcx= 1.60 eV			
Kwex = 1.00 8 A			
` .			
a) V = {			
Fornula			
E = Wot Kmax		sustifusado on (1)	
Sabonas auc	perperado nos queda	la la ca ki	0
he III ble way	nepperado nos queda N= hc Wotkness	λ= 12400 eVA = 3024.3°	102 A
1 = Ma Fic mor	Wotknex	L. Dev 7 1.000	
		a) \ = 3024.3902 A1	
		M V - 705 102 10	

Instituto Politécnico Nacional

Escuela Superior de Ingeniería Mecánica y Eléctrica UZ Departamento Académico de Ingeniería en Comunicaciones y Electrónica Academia de Física

Examen Extraordinario de Mecánica Cuántica y Estadística

Vargas APELLIDO PATERNO	Betancourt APELLIDO MATERNO	Jesus NOMBRES	4CV10
Ejercicio 3		TOTAL LEG	GNOFO
E0 = 100 KeV		Para (b) Eo = E' + 16	
0=60° a) E' = ? (keV) Foto	dispapo	Eo = E' + K	
6) K = ? (KeV) Elect	n dispose	5017	
Resolvo (a)		K=100 KeV - 91.17keV	
E1= yo 000 (1)		K= 8.8235 keV	
λ' = λο+λc (1-co) 6) (2)	6/k=8-8235 keV	
Sacado "Xo"			
$lo = \frac{hc}{E_0} = \frac{12400 \text{ eV} \text{Å}}{100 \text{ keV}}$	= O.124Å		
abones auc le=0.0	144		
ust en (2)			
1= 00124 \$ + (0.024)	8)(1-cos 60°)		
: N'= 0.136 Å			
ost on (1)			
$z^{1} = \frac{hc}{\lambda^{1}} = \frac{12400 \text{ eVA}}{0.136 \text{ A}}$	= 91.176.47 eV = 91.17 KeV		
a) E	1=91.17 KeV		

Escuela Superior de Ingeniería Mecánica y Eléctrica UZ Departamento Académico de Ingeniería en Comunicaciones y Electrónica Academia de Física

Examen Extraordinario de Mecánica Cuántica y Estadística

Vargas	Betancourt	Jesus	4CV10
APELLIDO PATERNO	APELLIDO MATERNO	NOMBRES	GRUPO

Ejercicio 4

Resolvado (a)

$$\lambda_{e} = \frac{hc}{\sqrt{2 m c^{2} K_{c}}} = \frac{12400 \text{ eV Å}}{\sqrt{2 (0.511 \times 10^{6} \text{eV})(1.50 \text{ eV})}} = 10.0149 \text{ Å}$$

$$\Delta \lambda_{e} = 10.0149 \text{ Å}$$

Rexluda (6)

$$pe = \sqrt{2mK} \cdot \frac{C}{C} = D \sqrt{\frac{2mC^1K}{C}}$$

Sostil 4do

Escuela Superior de Ingeniería Mecánica y Eléctrica UZ Departamento Académico de Ingeniería en Comunicaciones y Electrónica Academia de Física

Examen Extraordinario de Mecánica Cuántica y Estadística

Vargas	Betancourt	Jesus	4CV10
APELLIDO PATERNO	APELLIDO MATERNO	NOMBRES	GRUPO

Ejercicio 8

a) ¿ Que estudia la mecanica cuantica no relativista?

R=la mecanica cuantica no veletivista es la vama de la fisica que estadia la naturaleza a escalas espaciales pequeñas, los sistemas atomicos y subatomicos y sus intracciones con la radiación electromosnetica, en bermos de cartidades obserbables.

6) Escribe el nombre de algun crontifico impulsor de la recemera cuentica, y sobre todo écuel fue su importnte apate?

R= Cientifico Louis-Victor de Broglie :

¿ Cuel fue su importete aparto?

R=Rostulo que los electrones a movimiento estan asociados a lonsitodes de anda que estan dadas por la constate de Planck "h" dividida por el monantum de mu=10 del electron $\lambda = \frac{h}{mv} = \frac{h}{p}$

Escuela Superior de Ingeniería Mecánica y Eléctrica UZ Departamento Académico de Ingeniería en Comunicaciones y Electrónica Academia de Física

Examen Extraordinario de Mecánica Cuántica y Estadística

 Vargas
 Betancourt
 Jesus
 4CV10

 APELLIDO PATERNO
 APELLIDO MATERNO
 NOMBRES
 GRUPO

Ejercicio 9

a) ¿ Que es la me conica estadistica?

R= La mecanica estadistica es la parte de la fisica auc treta de relacionar distritos niueles de descripción o procediondo desde las escelas monores alas mayores es capaz de deducir el compartemieto de las sistemas físicas macroscopicos constituidos por una contidad estedisticamento sisnificativa de componento.

6) ¿ A aux tipo de Obretos se aplica?

La aplicación pinapal consiste en ligar el comportamiento micioseopico de los sistemas con su comportamiento macioscopico o colectivo, de mado que conociado el comportamiento de uno puedos eversuarse detallas del conscitanto del otro plante describir numbosos compos dela naturalera como las reacciones nucleares.

Escuela Superior de Ingeniería Mecánica y Eléctrica UZ Departamento Académico de Ingeniería en Comunicaciones y Electrónica Academia de Física

Examen Extraordinario de Mecánica Cuántica y Estadística

Vargas	Betancourt	Jesus	4CV10
APELLIDO PATERNO	APELLIDO MATERNO	NOMBRES	GRUPO

Ejercicio 10

Sustr

$$\eta = \frac{\left(19.320 \frac{\text{ks}}{\text{m}^3}\right) \left(6.021 \times 10^{16} \frac{\text{atoms}}{\text{kmol}}\right)}{196.967 \frac{\text{Ks}}{\text{kmol}}} = 5 \circ 9068 \times 10^{28} \text{m}^{-3}$$