UNIVERSIDADE FEDERAL DO ABC - UFABC

Bacharelado em Ciência e Tecnologia

Gustavo de Souza Gonçalves - 11201721371

ANÁLISE E MODELAGEM DE PRECIFICAÇÃO CARROS USADOS NO REINO UNIDO

Santo André – SP

1. DADOS

O projeto busca entender como funciona a precificação de carros usados, baseando-se em uma base disponível no <u>kaggle</u> com 100 mil dados coletados no Reino Unido, com uma amostra na figura 1, com as seguintes variáveis:

- Model Modelo do Carro (155 Categorias, não será utilizado pela alta cardinalidade)
- Year Ano de Fabricação
- **Preço** Preço de Venda
- Transmission Transmissão (4 Categorias)
- Mileage Milhagem do Carro
- **fuelType** Tipo de combustível (5 Categorias)
- tax Road Tax, taxa paga para rodar com o carro nas estradas
- mpg Milhas por galão
- Engine Size Volume de combustível e ar suportado no motor
- **Car** Marca/Montadora (7 Categorias)

model	year	price	transmission	mileage	fuelType	tax	mpg	engine Size	car
Passat	2017	12100	Semi-Auto	62776	Diesel	30	60.1	2.0	vw
Kuga	2014	9990	Manual	61590	Diesel	160	47.9	2.0	ford
T-Cross	2019	17666	Manual	3905	Petrol	145	47.9	1.0	vw
Astra	2017	9998	Manual	17579	Diesel	150	74.3	1.6	vauxhall
Fiesta	2013	7000	Manual	49138	Petrol	0	65.7	1.0	ford

Figura 1 – Amostra da base de dados de carros usados vendidos no reino unido

A base não conta com valores nulos, pela figura 2, foram considerados outliers: year, valores fora da faixa [2009,2021], engineSize iguais a 0. Ao utilizar a correlação entre as variáveis numéricas é possível verificar que em relação ao nosso target (price) o engineSize se destaca com um coeficiente de 0.64 e que em geral em módulo nenhuma fica perto de 0, o que pode significar que todas tem alguma influência mesmo que média sobre o target, algo que poderia ser

esperado e que é confirmado pela correção é quão mais novo o carro menor a milhagem, sendo o coeficiente mais forte encontrado entre as variáveis, mas se definirmos um limite de 0.9 para eliminar variáveis semelhantes, nenhuma seria descartada.

Figura 2 – Gráficos de boxplot para cada variável numérica

Figura 3 – Mapa de calor da correlação entre as variáveis numéricas

Para as variáveis categorias foi escolhido um pré-tratamento com OneHotEnconding e ao verificar a figura 4 é notável que carros com a transmissão automática ou semi-automática, veículos que funcionam a base de Diesel ou modelo híbrido e que são das marcas Audi ou Merc, tem preço mais elevado.

Figura 4 – Gráfico de barras entre o preço e cada variável categórica

2. MODELAGEM

Na tentativa de encontrar os padrões das variáveis combinadas para prever o preço, foi adotado uma estratégia de usar modelos de machine learning, sendo escolhidos 2 modelos com abordagem linear, 1 k-vizinhos e 3 baseados em árvore de decisão, com a métrica de R² para regressão.

Como estratégia de validação de dados, foram escolhidos 80% dos dados para treino e validação, e 20% para teste, dentro dos dados de treino para avaliação foi utilizado um kfold com 3 separações que contemplam a busca dos melhores hiper parâmetros com o GridSearchCV e a validação cruzada, a figura 5 e na tabela 1 demostram que nos resultados de treino e validação modelos de árvore de decisão em conjunto tiveram melhores resultados em comparação a outras abordagens.

Figura 5 – Resultados de treino e validação após a melhoria de hiper parâmetros e validação cruzada em 3 partes randomizadas

	Tı	reino	Valid	lação	Teste		
Modelo	Score Médio	Desvio Padrão	Score Médio	Desvio Padrão	Score Médio	Desvio Padrão	
GradientBoostingRegressor	0,96	0,001	0,93	0,002	0,892	0,009	
LinearSVR	0,765	0,001	0,765	0,001	0,73	0,016	
RandomForestRegressor	0,989	0	0,933	0,002	0,9	0,015	
ElasticNet	0,788	0,001	0,788	0,002	0,79	0,019	
DecisionTreeRegressor	0,934	0,004	0,91	0,005	0,873	0,021	
KNeighborsRegressor	0,935	0,001	0,909	0,003	0,889	0,015	

Tabela 1 – Resultados de treino e validação após a melhoria de hiper parâmetros e validação cruzada em 3 partes randomizadas

O RandomForest se sagrou como melhor modelo pelo maior R² em todas as etapas, então para compreender melhor como funcionam as relações entre o preço e as outras variáveis em termos de importância, é possível utilizar o feature importance, e também para ver se o efeito é positivo ou negativo utilizar os coeficientes do melhor modelo linear, aqui no caso, o ElasticNet.

Figura 6 – Importância e coeficientes das variáveis utilizando RandomForest e Elasticnet

As Váriaveis mais importantes são a transmissão manual, mpg, engineSize, year e mileage, portanto para a precificação carros que não tenham transmissão manual, que tenham menos milhas por galão, que tenham o maior volume de combustível, sejam mais recentes e com menor milhagem são os carros mais caros, salta aos olhos que para os modelos o tipo de combustível e a marca não influenciam de maneira significativa.

Diante do exposto, foi possível alcançar um R² de 0.9 em todas as etapas com o RandomForest que expõe que é possível fazer uma boa previsão com os dados obtidos para precificação de carros usados sem ocorrer overfitting nem underfitting e que é possível melhorar os resultados nos dados de treino se reduzirmos o número de varíavel buscando escolher as mais importantes além de necessitar de menos features.