ROAR II

Ricerca Operativa Applicazioni Reali

Alessandro Gobbi Alice Raffaele Gabriella Colajanni Eugenia Taranto IIS Antonietti, Iseo (BS) 05 febbraio 2022

Introduzione

Chi siamo e i nostri contatti

Alessandro Gobbi (UniBS) alessandro.gobbi@unibs.it

Alice Raffaele (UniVR) alice.raffaele@univr.it

Gabriella Colajanni (UniCT) colajanni@dmi.unict.it

Eugenia Taranto (UniCT) eugenia.taranto@unict.it

Sondaggio iniziale

www.menti.com - Codice: 5322 8856

Lavoro di gruppo (30 minuti)

Parte 1:

Andiamo in università

L'11 febbraio prossimo siete attesi presso la sede di Ingegneria dell'Università degli Studi di Brescia per il 4° incontro del Project Work di quest'anno. Di seguito, è riportata una mappa con segnate alcune delle possibili tratte percorribili per arrivare in Via Branze 43. Ogni tratta è contrassegnata da un tempo (in minuti) e un verso di percorrenza.

Supposto che il punto di partenza sia il vostro Istituto, qual è il percorso che vi permetterebbe di risparmiare più tempo per giungere a destinazione?

Andiamo in università

Algoritmo di Dijkstra (I)

Calcola il cammino di costo minimo da un nodo sorgente s ad un nodo destinazione *d* in un grafo orientato.

Definizioni (intuitive):

arco uscente da un nodo *n*: ogni arco che ha come primo nodo *n*; **arco entrante** in un nodo *n*: ogni arco che ha come secondo nodo *n*. Notazione necessaria:

- $\Gamma(n) :=$ insieme di tutti i nodi direttamente collegati a n da un suo arco uscente
- $c_{i,j} := \text{costo dell'arco}(i,j)$
- · Data una sorgente s:
 - L(n) :=costo del cammino da s a n
 - pred(n) := il nodo che precede n nel cammino di costo <math>L(n)

Fase preliminare:

individuare il nodo sorgente s e il nodo destinazione *d* nel grafo in esame ed eliminare:

- tutti gli archi entranti in s;
- tutti gli archi uscenti da d.

0) Inizializzazione e tabella riepilogativa:

- Inizializzo L(s) = 0.

Nel nostro caso:

L(ant) = 0 (il costo del cammino minimo da ant a ant è 0: ovvio!)

- Inizializzo $L(v) = +\infty \quad \forall n \neq s$

Nel nostro caso:

$$L(A) = L(B) = L(C) = L(D) = L(E) = L(F) = L(G) = L(H) = L(I) = L(L) = L(M) = L(uni) = +\infty$$
 (il costo del cammino da *ant* a un qualsivoglia nodo che non sia *ant* è potenzialmente INFINITO, al momento non abbiamo informazioni sufficienti per dire altro)

Teniamo traccia dei valori di *L* e *pred* di ogni nodo in una tabella:

nodo	L	pred
ant (s)	0	-
Α	$+\infty$	-
В	$+\infty$	-
C	$+\infty$	-
D	$+\infty$	-
Ε	$+\infty$	-
F	$+\infty$	-
G	$+\infty$	-
Н	$+\infty$	-
1	$+\infty$	-
L	$+\infty$	-
Μ	$+\infty$	-
uni (d)	$+\infty$	-

La tabella dovrà essere costantemente aggiornata durante l'esecuzione dell'algoritmo. Evidenzieremo man mano le righe definitive, ossia che non dovranno essere più modificate.

Troviamo il valore minimo tra gli L di tutte le righe non defintive.

Nel nostro caso non ci sono righe definitive e quindi:

$$min(0, +\infty, +\infty, ...) = 0$$

Il nodo associato al valore minimo trovato diventa il *nodo corrente* che indichiamo con *nc.* Il nodo corrente varierà durante l'esecuzione dell'algoritmo.

Nel nostro caso: nc = ant.

Evidenzio la riga del nodo corrente nella tabella: i valori su quella riga non saranno più cambiati.

nodo	L	pred
ant (s)	0	-
Α	$+\infty$	-
В	$+\infty$	-
С	$+\infty$	-
D	$+\infty$	-
Е	$+\infty$	-
F	$+\infty$	-
G	$+\infty$	-
Н	$+\infty$	-
1	$+\infty$	-
L	$+\infty$	-
Μ	$+\infty$	-
uni (d)	$+\infty$	-

2) Aggiornamento dei costi e dei precedessori

Aggiorno il valore di L in tabella per ogni nodo i

- appartenente a $\Gamma(nc)$
- · che non è mai stato nodo corrente

tramite il seguente assegnamento:

$$L(i) = min(L(i), L(nc) + c_{nc,i})$$

L(i) a destra dell'uguale è il valore attuale di L(i), segnato in tabella.

Il confronto di *min* può generare tre casi, che portano ad un diverso aggiornamento della colonna *pred* in tabella:

- se $L(i) < L(nc) + c_{nc,i} \rightarrow pred(i)$ rimane inalterato;
- se $L(i) > L(nc) + c_{nc,i} \rightarrow pred(i) = nc;$
- se $L(i) == L(nc) + c_{nc,i} \rightarrow pred(i) = pred(i) \cup \{nc\}.$

Nel nostro caso: il nodo corrente è ant.

Determiniamo
$$\Gamma(nc) = \Gamma(ant) = \{A, B, H\}.$$

Nessun nodo appartenente a $\Gamma(ant)$ è stato mai *nodo corrente*: è quindi necessario aggiornare il valore di L di tutti e tre i nodi:

$$L(A) = min(L(A), L(ant) + c_{ant,A}) = min(+\infty, 0 + 5) = min(+\infty, 5) = 5$$

 $L(B) = min(L(B), L(ant) + c_{ant,B}) = min(+\infty, 0 + 18) =$

$$min(+\infty, 18) = 18$$

$$L(H) = min(L(H), L(ant) + c_{ant,H}) = min(+\infty, 0+3) = min(+\infty, 3) = 3$$

Aggiorniamo la tabella con i nuovi valori.

nodo	L	pred
ant (s)	0	-
Α	5	ant
В	18	ant
C	$+\infty$	-
D	$+\infty$	-
Ε	$+\infty$	-
F	$+\infty$	-
G	$+\infty$	-
Н	3	ant
1	$+\infty$	-
L	$+\infty$	-
M	$+\infty$	-
uni (d)	$+\infty$	-

Cosa leggo dalla tabella correttamente aggiornata? Ad esempio che ho trovato che esiste un cammino che arriva ad A partendo da *ant* di costo 5 e che il nodo predecessore di A in questo cammino è (ovviamente) *ant*. Analogamente queste considerazioni posso farle per gli altri nodi.

L'algoritmo prosegue con l'esecuzione in sequenza delle fasi 1) e 2) fino a quando nella fase 1) il nodo identificato come destinazione diventa nodo corrente.

 \downarrow

Nella riga del nodo destinazione trovo il costo del cammino minimo che lo collega con il nodo sorgente. Ma quale è questo cammino?

$$s \rightarrow \cdots \rightarrow pred(pred(pred(d))) \rightarrow pred(pred(d)) \rightarrow pred(d) \rightarrow d$$

Vediamo quindi come procede l'algoritmo nel nostro caso:

$$min(5,18,3,+\infty,+\infty,...)=3$$
 (lo 0 non è stato incluso perché è ora in una riga $definitiva$)

$$nc = H$$

nodo	L	pred
ant (s)	0	-
А	5	ant
В	18	ant
С	$+\infty$	-
D	$+\infty$	-
Е	$+\infty$	-
F	$+\infty$	-
G	$+\infty$	-
Н	3	ant
1	$+\infty$	-
L	$+\infty$	-
M	$+\infty$	-
uni (d)	$+\infty$	-

Aggiornamento dei pesi e dei predecessori (il *nodo corrente* è diventato *H*):

$$\Gamma(H) = \{I, G\}$$

$$L(I) = min(L(I), L(H) + c_{H,I}) = min(+\infty, 3 + 10) = 13$$

$$L(G) = min(L(G), L(H) + c_{H,G}) = min(+\infty, 3 + 12) = 15$$

nodo	L	pred
ant (s)	0	-
Α	5	ant
В	18	ant
C	$+\infty$	-
D	$+\infty$	-
E	$+\infty$	-
F	$+\infty$	-
G	15	Н
Н	3	ant
	13	Н
L	$+\infty$	-
M	$+\infty$	-
uni (d)	$+\infty$	-

$$min(5,18,15,13,+\infty,+\infty,...)=5$$
 (to 0 e il 3 **non** sono stati inclusi perché sono ora in righe *definitive*)

$$nc = A$$

nodo	L	pred
ant (s)	0	-
Α	5	ant
В	18	ant
C	$+\infty$	-
D	$+\infty$	-
E	$+\infty$	-
F	$+\infty$	-
G	15	Н
Н	3	ant
l	13	Н
L	$+\infty$	-
M	$+\infty$	-
uni (d)	$+\infty$	-

Aggiornamento dei pesi e dei predecessori (il *nodo corrente* è diventato *A*):

$$\Gamma(A) = \{G, E\}$$

$$L(G) = min(L(G), L(A) + c_{A,G}) = min(15, 5 + 9) = 14$$

$$L(E) = min(L(E), L(A) + c_{A,E}) = min(+\infty, 5 + 6) = 11$$

nodo	L	pred
ant (s)	0	-
Α	5	ant
В	18	ant
C	$+\infty$	-
D	$+\infty$	-
Е	11	Α
F	$+\infty$	-
G	14	Α
Н	3	ant
	13	Н
L	$+\infty$	-
M	$+\infty$	-
uni (d)	$+\infty$	-

Il predecessore di G era H ed ora diventa A perché 15 > 5+9: ho trovato che c'è un cammino che parte da ant e arriva a G che costa 5+9=14 e il nodo che precede G in questo cammino è A

$$min(18, 11, 14, 13, +\infty, ...) = 11$$

 $nc = E$

nodo	L	pred
ant (s)	0	-
Α	5	ant
В	18	ant
C	$+\infty$	-
D	$+\infty$	-
Е	11	Α
F	$+\infty$	-
G	14	Α
Н	3	ant
l	13	Н
L	$+\infty$	-
M	$+\infty$	-
uni (d)	$+\infty$	-

Aggiornamento dei pesi e dei predecessori (il *nodo corrente* è diventato *E*):

$$\Gamma(E) = \{F, G\}$$

$$L(F) = min(L(F), L(E) + c_{E,F}) = min(+\infty, 11 + 6) = 17$$

$$L(G) = min(L(G), L(E) + c_{E,G}) = min(14, 11 + 9) = 14$$

nodo	L	pred
ant (s)	0	-
Α	5	ant
В	18	ant
C	$+\infty$	-
D	$+\infty$	-
E	11	Α
F	17	Е
G	14	А
Н	3	ant
1	13	Н
L	$+\infty$	-
M	$+\infty$	-
uni (d)	$+\infty$	-

Il predecessore di G non è cambiato perché 14 < 11 + 9: non conviene passare per il nodo E per raggiungere G.

$$min(18, 17, 14, 13, +\infty, ...) = 13$$

 $nc = I$

nodo	L	pred
ant (s)	0	-
Α	5	ant
В	18	ant
C	$+\infty$	-
D	$+\infty$	-
Е	11	Α
F	17	Е
G	14	Α
Н	3	ant
1	13	H
L	$+\infty$	-
M	$+\infty$	-
uni (d)	$+\infty$	-

Aggiornamento dei pesi e dei predecessori (il *nodo corrente* è diventato *I*):

$$\Gamma(I) = \{G, L\}$$

$$L(G) = min(L(G), L(I) + c_{I,G}) = min(14, 13 + 4) = 14$$

$$L(L) = min(L(L), L(I) + c_{I,L}) = min(+\infty, 13 + 12) = 25$$

nodo	L	pred
ant (s)	0	-
Α	5	ant
В	18	ant
C	$+\infty$	-
D	$+\infty$	-
E	11	Α
F	17	Е
G	14	Α
Н	3	ant
1	13	Н
L	25	
M	$+\infty$	-
uni (d)	$+\infty$	-

Il predecessore di *G* ancora una volta non è cambiato perché 14 < 13 + 4: non conviene passare per il nodo I per raggiungere G.

$$min(18, 17, 14, 25, +\infty, ...) = 14$$

 $nc = G$

nodo	L	pred
ant (s)	0	-
Α	5	ant
В	18	ant
C	$+\infty$	-
D	$+\infty$	-
Е	11	Α
F	17	Е
G	14	Α
Н	3	ant
1	13	H
L	25	I
M	$+\infty$	-
uni (d)	$+\infty$	-

Aggiornamento dei pesi e dei predecessori (il *nodo corrente* è diventato *G*):

$$\Gamma(G) = \{I, L, F\}$$

Il nodo I è in una riga definitiva della tabella: non deve essere aggiornato!

$$L(L) = min(L(L), L(G) + c_{G,L}) = min(25, 14 + 15) = 25$$

 $L(F) = min(L(F), L(G) + c_{G,F}) = min(17, 14 + 13) = 17$

nodo	L	pred
ant (s)	0	-
Α	5	ant
В	18	ant
C	$+\infty$	-
D	$+\infty$	-
E	11	Α
F	17	Е
G	14	Α
H	3	ant
1.0	13	H
L	25	Ţ
M	$+\infty$	-
uni (d)	$+\infty$	-

La tabella è rimasta inalterata!

$$min(18, 17, 25, +\infty, ...) = 17$$

 $nc = F$

nodo	L	pred
ant (s)	0	-
Α	5	ant
В	18	ant
C	$+\infty$	-
D	$+\infty$	-
Е	11	Α
F	17	E
G	14	Α
Н	3	ant
1	13	Н
L	25	1
M	$+\infty$	-
uni (d)	$+\infty$	-

Aggiornamento dei pesi e dei predecessori (il *nodo corrente* è diventato *F*):

$$\Gamma(F) = \{G, C, L\}$$

Il nodo G è in un riga definitiva della tabella: non deve essere aggiornato.

$$L(C) = min(L(C), L(F) + c_{F,C}) = min(+\infty, 17 + 4) = 21$$

$$L(L) = min(L(L), L(F) + c_{F,L}) = min(25, 17 + 9) = 25$$

nodo	L	pred
ant (s)	0	-
Α	5	ant
В	18	ant
C	21	F
D	$+\infty$	-
E	11	Α
F	17	E
G	14	Α
H	3	ant
1.0	13	H
L	25	- 1
M	$+\infty$	-
uni (d)	$+\infty$	-

$$min(18, 21, 25, +\infty, ...)$$

 $nc = B$

nodo	L	pred
ant (s)	0	-
Α	5	ant
В	18	ant
С	21	F
D	$+\infty$	-
Е	11	Α
F	17	E
G	14	Α
Н	3	ant
1	13	Н
L	25	1
M	$+\infty$	-
uni (d)	$+\infty$	-

Aggiornamento dei pesi e dei predecessori (il *nodo corrente* è diventato *B*):

$$\Gamma(B) = \{C, D\}$$

$$L(C) = min(L(C), L(B) + c_{B,C}) = min(21, 18 + 23) = 21$$

$$L(D) = min(L(D), L(B) + c_{B,D}) = min(+\infty, 18 + 20) = 38$$

nodo	L	pred
ant (s)	0	-
Α	5	ant
В	18	ant
С	21	F
D	38	В
Е	11	Α
F	17	E
G	14	Α
H	3	ant
1	13	Н
L	25	- 1
Μ	$+\infty$	-
uni (d)	$+\infty$	-

$$min(21, 38, 25, +\infty, +\infty) = 21$$

 $nc = C$

nodo	L	pred
ant (s)	0	-
Α	5	ant
В	18	ant
C	21	F
D	38	В
Е	11	Α
F	17	Ε
G	14	Α
Н	3	ant
1	13	Н
L	25	I
M	$+\infty$	-
uni (d)	$+\infty$	-

Aggiornamento dei pesi e dei predecessori (il *nodo corrente* è diventato *C*):

$$\Gamma(C) = \{F, D\}$$

$$L(D) = min(L(D), L(C) + c_{C,D}) = min(38, 21 + 5) = 26$$

nodo	L	pred
ant (s)	0	-
Α	5	ant
В	18	ant
С	21	F
D	26	С
Е	11	Α
F	17	Е
G	14	Α
H	3	ant
1	13	Н
L	25	I
M	$+\infty$	-
uni (d)	$+\infty$	-

$$min(26, 25, +\infty, +\infty) = 25$$
 $nc = L$

nodo	L	pred
ant (s)	0	-
Α	5	ant
В	18	ant
C	21	F
D	26	С
Е	11	Α
F	17	Ε
G	14	Α
Н	3	ant
1	13	Н
L	25	1
М	$+\infty$	-
uni (d)	$+\infty$	-

Aggiornamento dei pesi e dei predecessori (il nodo corrente è diventato L):

$$\Gamma(L) = \{M, uni\}$$

$$L(M) = min(L(M), L(L) + c_{L,M}) = min(+\infty, 25 + 7) = 32$$

$$L(uni) = min(L(uni), L(L) + c_{L,uni}) = min(+\infty, 25 + 15) = 40$$

nodo	L	pred
ant (s)	0	-
Α	5	ant
В	18	ant
C	21	F
D	26	С
Е	11	Α
F	17	Е
G	14	Α
Н	3	ant
1	13	H
L	25	1
M	32	L
uni (d)	40	L

$$min(26, 32, 40) = 26$$

 $nc = D$

nodo	L	pred
ant (s)	0	-
Α	5	ant
В	18	ant
С	21	F
D	26	С
Е	11	Α
F	17	Е
G	14	Α
Н	3	ant
1	13	Н
L	25	1
М	32	L
uni (d)	40	L

Aggiornamento dei pesi e dei predecessori (il nodo corrente è diventato D):

$$\Gamma(D) = \{C, uni\}$$

 $L(uni) = min(L(uni), L(D) + c_{D,uni}) = min(40, 26 + 20) = 40$

nodo	L pred		
ant (s)	0	-	
Α	5 ant		
В	18	ant	
С	21	F	
D	26	C	
Е	11	Α	
F	17	E	
G	14	Α	
H	3	ant	
1	13	Н	
L	25	1	
М	32	L	
uni (d)	40	L	

La tabella è rimasta inalterata.

Determinazione del nodo corrente:

$$min(32, 40) = 32$$

 $nc = M$

nodo	L	pred	
ant (s)	0	-	
Α	5	ant	
В	18	ant	
C	21	F	
D	26	С	
E	11	Α	
F	17	Е	
G	14	Α	
Н	3	ant	
1	13	Н	
L	25	1	
M	32	L	
uni (d)	40	L	

Aggiornamento dei pesi e dei predecessori (il *nodo corrente* è diventato *M*):

$$\Gamma(M) = \{uni\}$$

$$L(uni) = min(L(uni), L(M) + c_{M,uni}) = min(40, 32 + 11) = 40$$

nodo	L	pred	
ant (s)	0	-	
Α	5	ant	
В	18	ant	
С	21	F	
D	26	С	
Е	11	Α	
F	17	Е	
G	14	Α	
H	3	ant	
1	13	H	
L	25	1	
M	32	L	
uni (d)	40	L	

La tabella è rimasta inalterata.

Determinazione del nodo corrente:

$$min(40) = 40$$
 $nc = uni$
 \downarrow
STOP

nodo	L	pred		
ant (s)	0	-		
Α	5	ant		
В	18	ant		
C	21	F		
D	26	C		
Е	11	Α		
F	17	Ε		
G	14	Α		
Н	3	ant		
	13	Н		
L	25	1		
M	32	L		
uni (d)	40	L		

Il cammino trovato lo costruiamo a ritroso, partendo da pred(uni) = L:

$$\rightarrow pred(L) \rightarrow L$$

$$\rightarrow pred(I) \rightarrow I \rightarrow L$$

$$\rightarrow pred(H) \rightarrow H \rightarrow I \rightarrow L$$

$$ant \rightarrow H \rightarrow I \rightarrow L$$

Algoritmo di Dijkstra

Note:

- Non è detto che il nodo destinazione diventi nodo corrente quanto tutti gli altri lo sono già stati: l'algoritmo si ferma in ogni caso.
- · Potrebbero esserci più cammini minimi ad egual costo.

Parte 2: Lavoro di gruppo (30 + 30 minuti)

Un treno da prendere

Per Remo è arrivato il giorno di lasciare Grafopoli e di tornare a casa. Il treno di ritorno partirà dalla Stazione Centrale alle 11:03 ma Remo, come sempre in ritardo, riesce a lasciare l'Hotel solo alle 10:50. Considerando affidabili i tempi di percorrenza (in minuti) riportati nel grafo, rappresentante la rete cittadina, si sfrutti l'esecuzione dell'algoritmo di Dijkstra per rispondere ai quesiti seguenti.

- a. Quale è il percorso che permetterebbe a Remo di risparmiare più tempo possibile? Ce n'è solo uno o più di uno? Perché?
- b. Remo avrebbe quindi una possibilità di arrivare in tempo in stazione per prendere il treno delle 11:03? Se sì, con quanti minuti di anticipo potrebbe arrivare? Se no, con quanti minuti di ritardo?

Grafopoli

Visitare la città

Si supponga che Remo, scoraggiato dal ritardo, decida di trascorrere ancora qualche ora a visitare la città di Grafopoli. In particolare, ogni nodo del grafo rappresenta un punto di interesse da visitare (un museo, una piazza, un monumento, etc.). In tabella sono riportati i tempi stimati di visita per ogni attrazione e gli eventuali orari di chiusura, oltre il quale non è più possibile accedervi (se c'è il '-', allora l'attrazione è sempre aperta):

	А	В	C	D	Е	F
Tempo di visita						
Orari di chiusura	12:00	-	13:00	13:30	-	-

Supponendo che Remo parta dall'hotel alle ore 11:00, quale cammino può fare per visitare quante più attrazioni possibili e non arrivare in stazione dopo le 14:00?

Visitare la città

- Formulare e descrivere passo per passo un algoritmo che risolva il problema proposto.
- Trovare una possibile soluzione per il problema, sfruttando l'algoritmo formulato.

Conclusione

Compiti per mercoledì 09 febbraio 2022

- 1. Trovare e descrivere un'applicazione del problema del cammino minimo non menzionata oggi.
- Risolvere il problema "Al concerto!". In particolare, vi si chiede di:
 - disegnare il grafo orientato associato al problema e attribuire a ciascun lato il corretto costo.
 - sfruttare l'algoritmo di Dijkstra per trovare la soluzione al problema.

Sondaggio finale

www.menti.com - Codice: 2298 4958