Worksheet 15

Limits of Sequences

Problem 1. Let $\vec{\mathbf{a}} = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. Find $\vec{\mathbf{a}}^{//}$ and $\vec{\mathbf{a}}^{\perp}$ such that $\vec{\mathbf{a}} = \vec{\mathbf{a}}^{//} + \vec{\mathbf{a}}^{\perp}$, where $\vec{\mathbf{a}}^{//}$ is parallel to $\vec{\mathbf{b}}$ and $\vec{\mathbf{a}}^{\perp}$ is perpendicular to $\vec{\mathbf{b}}$.

Problem 2. Let $\vec{\mathbf{a}} = \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}$ and $\vec{\mathbf{b}} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. Find $\vec{\mathbf{a}}^{//}$ and $\vec{\mathbf{a}}^{\perp}$ where $\vec{\mathbf{a}} = \vec{\mathbf{a}}^{//} + \vec{\mathbf{a}}^{\perp}$ as described in the previous problem.

Problem 3. Consider the line defined by the equation 2x + 3y = 5.

- (a) Write out a parametric equation for the line.
- **(b)** Write out $\vec{\mathbf{a}} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ as $\vec{\mathbf{a}} = \vec{\mathbf{a}}^{//} + \vec{\mathbf{a}}^{\perp}$, where $\vec{\mathbf{a}}^{//}$ is parallel to the line, and $\vec{\mathbf{a}}^{\perp}$ is perpendicular to the line.

Problem 4. Consider the plane containing the points $(1,0,0)$, $(1,0,1)$, and $(0,1,0)$.	
(a)	Write out an equation for the plane.
(b)	Which of the following points are on the plane: $(1, 0, -3)$, $(-1, 2, 1)$, and $(2, 0, 1)$?
(c)	Consider the line through the points $(1, 2, 1)$ and $(0, 1, 1)$. Where does this line intersect the plane?
(d)	What is the distance of the point (1, 2, 1) from the plane?

Problem 5. Simplify the following expressions:

(a)
$$\vec{i} \times (\vec{i} - \vec{j})$$

(e)
$$\vec{i} \cdot (\vec{i} - \vec{j})$$

(b)
$$(\vec{a} + \vec{b}) \times (\vec{a} + \vec{b})$$

(f)
$$(\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b})$$

$$(c) \hspace{0.5cm} (\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})$$

$$(\mathbf{g}) \qquad (\vec{\mathbf{a}} + \vec{\mathbf{b}}) \cdot (\vec{\mathbf{a}} - \vec{\mathbf{b}})$$

(d)
$$\vec{a} \cdot [\vec{b} \times (\vec{a} + \vec{b})]$$

$$(\mathbf{h}) \quad \left\| \, \vec{\mathbf{a}} + 2\vec{\mathbf{b}} \, \right\|^2$$

Problem 6. Determine if the following lines intersect or not. If so, determine their point of intersection and find the angle between the two lines:

$$\vec{\mathbf{I}}(t) = \begin{pmatrix} 2\\1\\-4 \end{pmatrix} + t \begin{pmatrix} 1\\2\\0 \end{pmatrix},$$

$$\vec{\mathbf{m}}(s) = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} + s \begin{pmatrix} -2 \\ 0 \\ 3 \end{pmatrix}.$$