Sublinear Algorithms for Big Datasets

Exam Problems

Cristian Rosa

Jose Luis Diaz

August 20, 2014

Problem 1: Modified Chernoff Bound

Let X_1, \ldots, X_t be independent and identically distributed r.vs with range [0, c] and expectation μ . Then if $X = \frac{1}{t} \sum_i X_i$ and $1 > \delta > 0$,

$$Pr[|X - \mu| \ge \delta \mu] \le 2e^{\left(-\frac{t\mu\delta^2}{3c}\right)}$$

Proof.

$$0 \le X_i \le c, i \in 1 \dots t \Rightarrow 0 \le \frac{X_i}{c} \le 1$$

Let $Z = \frac{X}{c}$, then by Chernoff Bound 1

$$Pr[|Z - \mathbb{E}[Z]| \ge \delta \mathbb{E}[Z]] \le 2e^{\left(-\frac{t\mathbb{E}[Z]\delta^2}{3}\right)}$$

definition of Z

$$Pr[|\frac{X}{c} - \mathbb{E}[\frac{X}{c}]| \geq \delta \mathbb{E}[\frac{X}{c}]] \leq 2e^{\left(-\frac{t\mathbb{E}[\frac{X}{c}]\delta^2}{3}\right)}$$

linearity of expectation

$$Pr[|\tfrac{X}{c} - \tfrac{1}{c}\mathbb{E}[X]| \geq \delta \tfrac{1}{c}\mathbb{E}[X]] \leq 2e^{\left(-\frac{t\frac{1}{c}\mathbb{E}[X]\delta^2}{3}\right)}$$

simplification and definition of $\mu = \mathbb{E}[X]$

$$Pr[|X - \mu| \ge \delta \mu] \le 2e^{\left(-\frac{t\mu\delta^2}{3c}\right)}$$

Problem 2: Modified Chebychev

Let X be a random variable with finite expectation $\mathbb{E}[X]$. For every c' > 0,

$$Pr[|X - \mathbb{E}[X]| \ge c' \mathbb{E}[X]] \le \frac{Var[X]}{(c' \mathbb{E}[X])^2}$$

Proof. Let X be a random variable with finite expectation $\mathbb{E}[X]$ and c > 0, then by Chebychev bound

$$Pr[|X - \mathbb{E}[X]| \ge c\sqrt{Var[X]}] \le \frac{1}{c^2}$$

Let
$$c = \frac{c'\mathbb{E}[X]}{\sqrt{Var[X]}}$$
 with $c' > 0$, then

$$Pr[|X - \mathbb{E}[X]| \ge \frac{c' \mathbb{E}[X]}{\sqrt{Var[X]}} \sqrt{Var[X]}] \le \frac{1}{\left(\frac{c' \mathbb{E}[X]}{\sqrt{Var[X]}}\right)^2}$$

Simplification

$$Pr[|X - \mathbb{E}[X]| \ge c' \mathbb{E}[X]] \le \frac{Var[X]}{(c' \mathbb{E}[X])^2}$$