CSCI 347 Data Mining

Graph Data

Graph Data

- Data instances are often not entirely independent
- they can be interconnected through various types of relationships.
- Graph data or networks are a data structure where instances are depicted as nodes, and the connections between these instances are represented by edges.

Graph Data

G = (V, E) $V = set \ of \ vertices$ $E \subseteq V \times V, is \ the \ set \ of \ vertices \ in \ the \ graph$

Graph Data (Weighted graph)

- G = (V, E)
- V = Vertices or Nodes
- E = Unordered pairs of vertices with different weights (w_{ij})

Graph Data (Directed Graph)

- G = (V, E)
- V = Vertices or Nodes
- E = **ordered** pairs of vertices.

Graph Data

- G = (V, E)
- V = Vertices or Nodes
- *E* = *Unordered pairs of vertices*
- Simple graph = Undirected graph without loops
- Edge, $e = (v_i, v_j)$, v_i and v_j are adjacent or neighbors.
- Order: |V| = n, Size: |E| = m

Graph Data

- \bullet G = (V, E)
- V = Vertices or Nodes
- *E* = *Unordered pairs of vertices*
- Simple graph = Undirected graph without loops
- Edge, $e = (v_i, v_j)$, v_i and v_j are adjacent or neighbors.
- Order: |V| = n, Size: |E| = m
- A graph $H = (V_H, E_H)$ is called a subgraph of G = (V, E), if $V_H \subseteq V$ and $E_H \subseteq E$.

Degree of a node

• The degree of a node $v_i \in V$ is the number of edges incident with it and is denoted as $d(v_i)$ or just d_i .

Degree of a node

• The degree of a node $v_i \in V$ is the number of edges incident with it and is denoted as $d(v_i)$ or just d_i .

What is the degree of x9?

- 1. 3
- 2. 1
- 3. 4
- 4. 8

- Let N_k denote the number of vertices with degree k. The degree frequency distribution of a graph is given as $(N_0, N_1, ..., N_t)$
 - t is the maximum degree of a node in the graph.

- Let N_k denote the number of vertices with degree k. The degree frequency distribution of a graph is given as (N_0, N_1, \dots, N_t)
 - t is the maximum degree of a node in the graph.

What is the degree distribution of this graph?

- *1.* (4, 3, 4, 3, 4)
- *2.* (3, 3, 4, 4, 4)
- 3. (0,0,0,2,3)
- *4.* (2, 3)

- The probability that a given node is of degree k is $\frac{N_k}{n}$.
- Suppose you have a random process of picking a node in a graph, and random variable X that assigns the degree of the picked node.

$$P(X=k) = \frac{N_k}{n}$$

- The probability that a given node is of degree k is $\frac{N_k}{n}$.
- Suppose you have a random process of picking a node in a graph, and random variable *X* that assigns the degree of the picked node.

$$P(X=k) = \frac{N_k}{n}$$

• Given the node distribution (0,0,0,2,3) what is the probability that a

node is of degree 3?

- 1. 0
- 2. 2
- 3. 3/5
- 4. 3
- 5. 2/5
- 6. None of the above

Walk, Path, shortest path

• A walk in a graph G between nodes x and y is an ordered sequence of vertices, starting at x and ending at y. $Walk := \langle v_0, v_1, ..., v_t \rangle, v_0 = x, v_t = y, \forall i \in [0..t-1]: (v_i, v_{i+1}) \ exists$

- The length of the walk t, is the number of edges along the walk.
- A path is a walk with distinct vertices.

ullet A path of minimum length between nodes x and y is called a

shortest path.

Walk, Path, shortest path

 A path of minimum length between nodes x and y is called a shortest path.

What is the length of the shortest path between x2 and x10?

- 1.6
- 2. 3
- 3. 4
- 4. 1
- 5.0

Connectedness

- Two nodes v_i and v_j are said to be connected if there exists a path between them.
- A graph is connected if there is a path between all pairs of vertices.
- A connected component, or just component, of a graph is a maximal connected subgraph.
 - maximal means that the subgraph cannot be extended any further while still maintaining the property of being connected.

Connectedness

- Is this graph connected?
 - Yes
 - No

Connectedness

- Is this graph connected?
 - Yes
 - No

Adjacency Matrix

• A graph G = (V, E), with |V| = n vertices, can be conveniently represented in the form of an $n \times n$, symmetric binary adjacency matrix, A, defined as:

$$A(i,j) = \begin{cases} 1 & if \ v_i \ is \ adjacent \ to \ v_j \\ 0 & otherwise \end{cases}$$

• A weighted graph can be represented by $n \times n$ weighted adjacency matrix.

$$A(i,j) = \begin{cases} w_{ij} & if \ v_i \ is \ adjacent \ to \ v_j \\ 0 & otherwise \end{cases}$$

Adjacency matrix example.

	x_1	x_2	x_3	x_4	x_5
x_1	0	1	1	1	1
x_2	1	0	1	0	1
χ_3	1	1	0	1	1
χ_4	1	0	1	0	1
χ_5	1	1	1	1	0

Adjacency matrix (weighted) example.

	x_1	x_2	x_3	x_4	x_5
x_1	0	7	9	1	3
x_2	7	0	3	0	10
x_3	9	3	0	3	4
x_4	1	7	5	0	2
x_5	3	10	4	2	0

Adjacency matrix: directed graph

In a directed graph adjacency matrix is not symmetric.

	x_1	x_2	x_3	x_4	x_5
x_1	0	0	1	0	0
x_2	1	0	1	0	1
x_3	0	0	0	1	1
x_4	1	0	0	0	1
x_5	1	0	0	0	0

Given a dataset in the form of a matrix, can we create a graph?

But what can we do about the edges?

Given a dataset in the form of a matrix, can we create a graph?

How about we using a similarity measure and then use the similarity measure as the edge weights?

How to create a graph from matrix?

• Define a weighted graph G = (V, E).

$$V = \{v_i \mid v_i \text{ represents the entity } x_i\}$$

$$w_{ij} = sim(x_i, x_j)$$

$$sim(x_i, x_j)$$
 represents the similarity between points x_i and x_i

Gaussian similarity

$$w_{ij} = sim(x_i, x_j) = e^{\frac{\|x_i - x_j\|^2}{2\sigma^2}}$$

 σ is the spread parameter.

Gaussian similarity

- Similarity is defined as being inversely related to the Euclidean distance.
- If two vectors are far apart, then we say it's less similar.
 - Therefore, we can put lower weight between them.
- But why do we use this?
 - We can use something like $\frac{1}{\|x_i x_j\|}$

Gaussian similarity

Exponential Decay

- The similarity measure w_{ij} decays smoothly and asymptotically to 0 as the distance increases, ensuring that distant points contribute very little but not abruptly.
- It is bounded between 0 and 1, which simplifies interpretation and normalization in algorithms.

Inverse distance

- $\frac{1}{\|x_i x_j\|}$ decays too slowly as the distance increases, leading to non-negligible contributions from distant points.
- It has an unbounded range $(0, \infty)$, which can create numerical instability and make it harder to interpret.

Graph for 1/ | x |, $e^{-|x|^2/10}$

Gaussian similarity

- Handling zero distance:
 - When handling $||x_i x_j|| = 0$, w_{ij} simplifies to $e^0 = 1$, but if we use $\frac{1}{||x_i x_j||}$, then mathematically this is not defined.
- Sensitivity control
 - The parameter σ allows you to control the sensitivity to distance.
 - Smaller σ , similarity decays quickly.
 - Larger σ , similarity decays slowly.
 - We can tweak the graph by changing this parameter.
 - $\frac{1}{\|x_i x_j\|}$ does not have this property.

Gaussian similarity

- Robustness to outliers.
 - Gaussian similarity drops off quickly for large distances, effectively ignoring the outliers.
 - $\frac{1}{\|x_i x_j\|}$, even if far away, can have disproportionately large effect to slow decay of $\frac{1}{d}$.

• Gaussian similarity with $\sigma=25$

	X_1	X_2	X_3
x_1	0.2	1	12.3
x_2	1.3	4	89.23
x_3	5.6	5	56.1
x_4	4.5	7	47.3
x_5	7.3	12	45.23

0	0.008709	0.207862	0.359302	0.366178
0.008709	0	0.409967	0.241611	0.196716
0.207862	0.409967	0	0.936019	0.87281
0.359302	0.241611	0.936019	0	0.970737
0.366178	0.196716	0.87281	0.970737	0

• Gaussian similarity with $\sigma=25$

	X_1	X_2	X_3
x_1	0.2	1	12.3
x_2	1.3	4	89.23
x_3	5.6	5	56.1
χ_4	4.5	7	47.3
x_5	7.3	12	45.23

	x1	x2	х3	x4	x5
x1	0	0.008709	0.207862	0.359302	0.366178
x2	0.008709	0	0.409967	0.241611	0.196716
x3	0.207862	0.409967	0	0.936019	0.87281
x4	0.359302	0.241611	0.936019	0	0.970737
x5	0.366178	0.196716	0.87281	0.970737	0

• Gaussian similarity with $\sigma = 50$

	X_1	X_2	X_3
x_1	0.2	1	12.3
x_2	1.3	4	89.23
x_3	5.6	5	56.1
x_4	4.5	7	47.3
x_5	7.3	12	45.23

	x1	x2	х3	x4	x5
x1	0	0.30549	0.675218	0.774221	0.777899
x2	0.30549	0	0.800179	0.701098	0.665978
x3	0.675218	0.800179	0	0.983606	0.966562
x4	0.774221	0.701098	0.983606	0	0.992603
x5	0.777899	0.665978	0.966562	0.992603	0

Creating a graph from matrix

	X_1	X_2	X_3
x_1	0.2	1	12.3
x_2	1.3	4	89.23
χ_3	5.6	5	56.1
χ_4	4.5	7	47.3
x_5	7.3	12	45.23

	x1	x2	x3	x4	x5
x1	0	0.30549	0 675218	0.774221	0 777899
	0.00540				
x2	0.30549	0	0.800179	0.701098	0.665978
х3	0.675218	0.800179	0	0.983606	0.966562
x4	0.774221	0.701098	0.983606	0	0.992603
x5	0.777899	0.665978	0.966562	0.992603	0

τ	=	0.	9	4

	x1	x2	x3	x4	x5	
x1		0	0	0	0	0
x2		0	0	0	0	0
x3		0	0	0	1	1
x4		0	0	1	0	1
x5		0	0	1	1	0

$$sim(x_i, x_j) = e^{-\frac{\left\|x_i - x_j\right\|^2}{2\sigma^2}}$$

$$A(i,j) = \begin{cases} 1 & ifsim(x_i, x_j) \ge \tau \\ 0 & otherwise \end{cases}$$

Iris Similarity Graph: Gaussian Similarity

 $\sigma=\frac{1}{\sqrt{2}}$, edge exist if and only if $w_{ij}\geq 0.777$ Order: |V|=n=150, size: |E|=m=753

Figure 4.2: Iris Similarity Graph

Topological graph attributes

- **Topological graph attributes** refer to properties of a graph that describe its structure and connectivity without considering specific geometric or spatial embedding.
- We say a graph attribute is:
 - Local if they apply only to a single node.
 - Global if they refer to the entire graph.

- Degree
 - The degree of a node $v_i \in G$ is defined as:

$$d_i = \sum_j A_{ij}$$

- Clearly, this is a local attribute.
- The corresponding global attribute for the entire graph G is the average degree:

$$\mu_d = \frac{\sum_i d_i}{n}$$

- We can generalize this to weighted and directed graphs as well.
 - The in-degree of a node $v_i \in G$ is defined as:

$$id(v_i) = \sum_{j} A(j,i)$$
$$od(v_i) = \sum_{j} A(i,j)$$

• The average indegree and average outdegree can be obtained by summing them up and dividing by $n_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}$

$$\mu_{indeg} = \frac{\sum_{i} id(v_i)}{n}, \mu_{outndeg} = \frac{\sum_{i} od(v_i)}{n}$$

Average path length

 The average path length, also called the characteristic path length, of a connected graph is given as:

$$\mu_{L} = \frac{\sum_{i} \sum_{j>i} d(v_{i}, v_{j})}{\binom{n}{2}} = \frac{2}{n(n-1)} \sum_{i} \sum_{j>i} d(v_{i}, v_{j})$$

For directed graphs,

$$\mu_L = \frac{1}{n(n-1)} \sum_{i} \sum_{j>i} d(v_i, v_j)$$

For disconnected graphs, the average is taken over only the connected pairs of vertices.

Eccentricity

• The eccentricity of a node v_i is the maximum distance from v_i to any other node in the graph:

$$e(v_i) = \max_{j} \{d(v_i, v_j)\}$$

• The less eccentric a node is more central it is in the graph.

Example:

- What is the eccentricity of x3?
 - A. 2
 - B. 3
 - C. 4
 - D. 5

Example:

- What is the eccentricity of *x*6?
 - A. 2
 - B. 3
 - C. 4
 - D. 5

Radius and Diameter of a graph G

• The radius of a connected graph, denoted r(G), is the minimum eccentricity of any node in the graph.

$$r(G) = \min_{i} \{e(v_i)\} = \min_{i} \left\{ \max_{j} \{d(v_i, v_j)\} \right\}$$

• The diameter, denoted d(G), is the maximum eccentricity of any vertex in the graph

$$d(G) = \max_{i} \{e(v_i)\} = \max_{ij} \{d(v_i, v_j)\}$$

- For a disconnected graph, values are computed over the connected components of the graph.
- The diameter of a graph G is sensitive to outliers.

What is the radius and diameter of the following graph?

- 1. 2
- 2. 3
- 3. 4
- 4. 5

• What is the radius and diameter of the following graph?

- 1. 2
- 2. 3
- 3. 4
- 4. 5

Clustering coefficient of a node

- The clustering coefficient of a node v_i is a measure of the density of edges in the neighborhood of v_i .
- Let $G_i = (V_i, E_i)$ be the subgraph induced by the neighbors of vertex v_i . Note that $v_i \notin V_i$, since we assume that G is simple. Let $|V_i| = n_i$ be the number of neighbors of v_i , and $|E_i| = m_i$ be the number of edges among the neighbors of v_i . The clustering coefficient of v_i is defined as:

$$C(v_i) = \frac{\# of \ edges \ in \ G_i}{maximum \ number \ of \ edges \ in \ G_i} = \frac{m_i}{\binom{n_i}{2}} = \frac{2 \cdot m_i}{n_i(n_i - 1)}$$

What is the clustering coefficient of v_3 ?

- 1. 1
- 2. 1/3
- 3. 1/2
- 4. 1/6
- 5. 6/10

What is the clustering coefficient of v_5 ?

- 1. 1
- 2. 1/3
- 3. 1/2
- 4. 1/6
- 5. 6/10

What is the clustering coefficient of v_6 ?

- 1. 1
- 2. 1/3
- 3. 1/2
- 4. 1/6
- 5. 6/10
- 6. Not defined

Clustering coefficient of a node

- Note: Clustering coefficient of a node is not defined for nodes with degree less than 2.
- Therefore, if we need, we can consider 0 for the clustering coefficient for nodes with degree less than 2.

Clustering coefficient of a node

- How to interpret this value?
 - $C(v_i) = 1 \rightarrow \text{All neighbors}$ are connected to each other.
 - $C(v_i) = 0 \rightarrow \text{None of the neighbors are connected to each other.}$
 - A higher clustering coefficient indicates a more tightly knit local community around the node.
- Example:
 - Fraud Detection in Financial Networks
 - In a bank transaction network, accounts are nodes, and transactions form edges.
 - Fraud rings often have a high clustering coefficient since fraudulent accounts transfer money within a small, well-connected group.

Clustering coefficient of a graph

• The clustering coefficient of a graph G is simply the average clustering coefficient over all the nodes, given as:

$$C(G) = \frac{1}{n} \cdot \sum_{i} C(v_i)$$

Clustering coefficient of a graph

• The clustering coefficient of a graph G is simply the average clustering coefficient over all the nodes, given as:

$$C(G) = \frac{1}{n} \cdot \sum_{i} C(v_i)$$

What is the clustering coefficient of this graph?

- 1.3/8
- 2.3/16
- 3.5/16
- 4.1/2

$$C(G) = \frac{1}{8} \cdot \left(\frac{3}{\binom{4}{2}} + \frac{1}{\binom{3}{2}} + 1 + \frac{2}{\binom{4}{2}} + \frac{2}{\binom{4}{2}} + 0 + 0 + 0 \right) = \frac{2.5}{8} = \frac{5}{16}$$

Clustering coefficient of a graph

• The clustering coefficient of a graph G is simply the average clustering coefficient over all the nodes, given as:

$$C(G) = \frac{1}{n} \cdot \sum_{i} C(v_i)$$

What is the clustering coefficient of this graph?

- 1.3/8
- 2.3/16
- 3.5/16
- 4.1/2

Efficiency

- The efficiency for a pair of nodes v_i and v_j is defined as $\frac{1}{d(v_i,v_j)}$
- If v_i and v_j are not connected, then efficiency between these two vertices is $\frac{1}{\infty} \approx 0$.
- Smaller the distance between two nodes, these nodes are efficient in communicating between them.
- The efficiency of a graph is defined as G is defined as the average efficiency of over all pairs of nodes.

$$\frac{2}{n\cdot(n-1)}\cdot\sum_{i}\sum_{j>i}\frac{1}{d(v_i,v_j)}$$

Measure of centrality

- The notion of centrality is used to rank the vertices of a graph in terms of how "central" or important they are.
- A centrality can be formally defined as a function:

$$c: V \to \mathbb{R}$$

that induces a total order on V

- We say that v_i is at least as central as v_j if $c(v_i) \ge c(v_j)$.
- A set has a total order if it has a partial order and every pair of elements in the set are comparable.

- The simplest notion of centrality is the degree d_i of a vertex v_i .
- the higher the degree the more important or central the vertex.
- For directed graphs, one may further consider the indegree centrality and outdegree centrality of a vertex.

$$d(v_i) = \sum_{j}^{n} A(i,j)$$

$$d(x_3) = \sum_{1}^{n} A(3,j) = 4$$

$$d(v_i) = \sum_{j}^{n} A(i,j)$$

$$d(x_5) = \sum_{1}^{n} A(5, j) = 1$$

$$d(x_3) = \sum_{1}^{n} A(3, j) = 4$$

$$d(x_5) = \sum_{1}^{n} A(5, j) = 1$$

x3 has higher importance than x5 according to degree centrality.

Eccentricity Centrality

Eccentricity centrality is thus defined as follows

$$c(v_i) = \frac{1}{e(v_i)} = \frac{1}{\max_{j} \{d(v_i, v_j)\}}$$

The less eccentric a node is the more central it is.

What is the eccentric centrality

of *x*3?

1.1/2

2.1/3

3.4

4.2

5.3

• The closeness centrality uses the sum of all the distances to rank how central a node is.

$$c(v_i) = \frac{1}{\sum_j d(v_i, v_j)}$$

A node v_i with the smallest total distance, $\sum_j d(v_i, v_j)$ is called the **median node**.

Why is this important?

• Closedness centrality tries to minimize the total distance over all the other nodes, and thus, a median node, which has the highest closedness centrality, is the optimal one to, say, locate a facility that minimizes the distance to all other points.

What is the **closedness centrality** of x3?

- 1. 1/8
- 2. 1/3
- 3. 3
- 4. 4
- 5. 8

What is the **eccentricity centrality** of x3?

- 1.1/2
- 2.1/3
- 3.4
- 4.2
- 5.3

Betweenness centrality

- For a given vertex v_i the betweenness centrality measures how many shortest paths between all pairs of vertices include v_i .
- This gives an indication as to the central "monitoring" role played by v_i for various pairs of nodes.

Betweenness centrality

- Let η_{jk} denote the number of shortest paths between vertices v_j and v_k , and let
- $\eta_{jk}(v_i)$ denote the number of such paths that include or contain v_i , then the fraction of paths through v_i is denoted as

$$\gamma_{jk}(v_i) \frac{\eta_{jk}(v_i)}{\eta_{jk}}.$$

• If the two vertices v_j and v_k are not connected, we assume $\gamma_{jk} = 0$.

$$c(v_i) = \sum_{j \neq i} \sum_{\substack{k \neq i \\ k > j}} \gamma_{jk}$$

What is the betweenness centrality centrality of v_5 ?

	Shortest paths	Shortest paths through v_5 $\eta_{jk}(v_5)$
η_{12}	1	0
η_{13}	1	0
η_{14}	1	0
η_{16}	1	0
η_{17}	1	0
η_{18}	1	1
η_{23}	1	0
η_{24}	2	1
η_{26}	1	0
η_{27}	3	2
η_{28}	1	1
η_{34}	1	0
•••		

What is the betweenness centrality centrality of v_5 ?

$$c(v_5) = \gamma_{18} + \gamma_{24} + \gamma_{27} + \gamma_{28} + \gamma_{38} + \gamma_{46} + \gamma_{48} + \gamma_{67} + \gamma_{68}$$
$$c(v_5) = 1 + \frac{1}{2} + \frac{2}{3} + 1 + \frac{2}{3} + \frac{1}{2} + \frac{1}{2} + \frac{2}{3} = 6.5$$

Centrality	<i>V</i> ₁	V ₂	V3	V4	V ₅	<i>V</i> ₆	V ₇	<i>V</i> 8
Degree	4	3	2	4	4	1	2	2
Eccentricity	0.5	0.33	0.33	0.33	0.5	0.25	0.25	0.33
$e(v_i)$	2	3	3	3	2	4	4	3
Closeness	0.100	0.083	0.071	0.091	0.100	0.056	0.067	0.071
$\sum_j d(v_i, v_j)$	10	12	14	11	10	18	15	14
Betweenness	4.5	6	0	5	6.5	0	0.83	1.17

