Федеральное государственное автономное образовательное учреждение

высшего образования

«Национальный исследовательский университет ИТМО» Факультет Программной Инженерии и Компьютерной Техники

Вариант №76 Лабораторная работа №7

по теме

Метод наименьших квадратов и сглаживание эксперементальных зависимостей

по дисциплине

Математическая статистика

Выполнил Студент группы Р3212 Кобелев Р.П. Балин А.А.

Пархоменко К.А.

к. т. н. Преподаватель:

Милованович Е.А.

Содержание

1	Цель работы	2
2	Данные	2
3	Решение при помощи обратной функции	2
4	Решение при помощи дробных функций	3
5	Решение при помощи степенной и експоненицальной формулы	5
6	Вывод	5

1 Цель работы

Используя метод наименьших квадратов, требуется сгладить предложенную табличную зависимость их при помощи формул. Помимо этого, следует вычислить невязки с точностью до сотых и отобразить на графике табличные данные и сглаживающую кривую. Предварительно зависимость следует линеаризовать.

2 Данные

Закон: Закон распределения прямоугольного треугольника

Выборка X: 9.0 15.0 22.0 27.0 34.0 39.0 48.0 57.0 66.0

Выборка Y: $-6.9\ -7.4\ -11.7\ -14.3\ -19.3\ -24.4\ -36.6\ -40.1\ -41.1$

3 Решение при помощи обратной функции

Требуется сгладить при помощи формулы и вычислить невязки до тысячных.

$$z = \frac{1}{a + bt}$$

Линеаризуем формулу:

$$\frac{1}{z} = a + bt$$

$$y = \frac{1}{z}, \quad x = t$$

3	r	9	15	22	27	34	39	48	57	66
į	J	-0.145	-0.135	-0.085	-0.07	-0.052	-0.041	-0.027	-0.025	-0.024

На основе полученной таблицы найдём точечную оценку линейной модели.

$$y = \tilde{a} + \tilde{b}x$$

Метод наименьших квадратов:

$$S(a_0, a_1) = \sum_{i=1}^{n} (y_i - \tilde{y}(x_i))^2 = \sum_{i=1}^{9} (y_i - \tilde{a} - \tilde{b}x_i)^2 - > min$$

Найдём экстремум:

$$\begin{cases} \frac{\partial S}{\partial a} = -2\left(\sum_{i=1}^{9} y_i - 9\tilde{a} - \tilde{b}\sum_{i=1}^{9} x_i\right) = 0\\ \frac{\partial S}{\partial ab} = -2\left(\sum_{i=1}^{9} x_i y_i - \tilde{a}\sum_{i=1}^{9} x_i - \tilde{b}\sum_{i=1}^{9} x_i^2\right) = 0\\ \sum_{i=1}^{9} x_i = 317\\ \sum_{i=1}^{9} y_i = -0.604\\ \sum_{i=1}^{9} x_i^2 = 14105\\ \sum_{i=1}^{9} x_i y_i = -14.8 \end{cases}$$

После подсчёта сумм получили систему:

$$\begin{cases} 9\tilde{a} + 317\tilde{b} = -0.604 \\ 317\tilde{a} + 14105\tilde{b} = -14.8 \end{cases}$$

Подсчитали неизвестные:

$$\begin{cases} \tilde{a} \approx -0.14468 \\ \tilde{b} \approx 0.0022 \end{cases}$$

Подставили коэффиценты и получили точечную оценку:

$$\tilde{y} = -0.14468 + 0.0022x$$

В итоге получили точечную оценку

$$\tilde{z} = \frac{1}{-0.14468 + 0.0022t}$$

Вычисленные значения полученной оценки и невязки.

t	9	15	22	27	34	39	48	57	66
z	-6.9	-7.4	-11.7	-14.3	-19.3	-24.4	-36.6	-40.1	-41.1
\tilde{z}	-8.01	-8.95	-10.4	-11.7	-14.3	-17.	-25.6	-51.9	1923
ϵ	1.11	1.55	-1.31	-2.57	-4.99	-7.42	-11.	11.8	-1964

График 1. Обратная модель

4 Решение при помощи дробных функций

Требуется сгладить при помощи формулы и вычислить невязки до тысячных.

$$z = \frac{t}{a + bt}$$

Линеаризуем формулу:

$$z = \frac{t}{a + bt}$$

$$\frac{1}{z} = \frac{a+bt}{t} = \frac{a}{t} + b$$
$$z^{-1} = at^{-1} + b$$
$$y = z^{-1}, \ x = t^{-1}$$

	0.111		1						
y	-0.145	-0.135	-0.085	-0.07	-0.052	-0.041	-0.027	-0.025	-0.024

На основе полученной таблицы найдём точечную оценку линейной модели.

$$y = \tilde{b} + \tilde{a}x$$

Метод наименьших квадратов:

$$S(a, b) = \sum_{i=1}^{n} (y_i - \tilde{y}(x_i))^2 = \sum_{i=1}^{9} (y_i - \tilde{b} - \tilde{a}x_i)^2 - min$$

Найдём экстремум:

$$\begin{cases} \frac{\partial S}{\partial a} = -2 \left(\sum_{i=1}^{9} y_i - 9\tilde{b} - \tilde{a} \sum_{i=1}^{9} x_i \right) = 0 \\ \frac{\partial S}{\partial b} = -2 \left(\sum_{i=1}^{9} x_i y_i - \tilde{b} \sum_{i=1}^{9} x_i - \tilde{a} \sum_{i=1}^{9} x_i^2 \right) = 0 \end{cases}$$

$$\sum_{i=1}^{9} x_i = 0.369$$

$$\sum_{i=1}^{9} y_i = -0.604$$

$$\sum_{i=1}^{9} x_i^2 = 0.0227$$

$$\sum_{i=1}^{9} x_i y_i = -0.0355$$

После подсчёта сумм получили систему:

$$\begin{cases} 9\tilde{b} + 0.369\tilde{a} = -0.604\\ 0.369\tilde{b} + 0.0227\tilde{a} = -0.0355 \end{cases}$$

Подсчитали неизвестные:

$$\begin{cases} \tilde{b} \approx -1.12 \\ \tilde{a} \approx 25.68 \end{cases}$$

Подставили коэффиценты и получили точечную оценку:

$$\tilde{y} = -1.12 + 25.68x$$

В итоге получили точечную оценку

$$\tilde{z} = \frac{t}{-1.12 + 25.68t}$$

Вычисленные значения полученной оценки и невязки.

t	9	15	22	27	34	39	48	57	66
z	-6.9	-7.4	-11.7	-14.3	-19.3	-24.4	-36.6	-40.1	-41.1
\tilde{z}	0.00435	0.0026	0.00177	0.00144	0.00115	0.001	0.000812	0.000684	0.00059
ϵ	-6.9	-7.4	-11.7	-14.3	-19.3	-24.4	-36.6	-40.1	-41.1

График 2. Дробная модель

5 Решение при помощи степенной и експоненицальной формулы

Эти методы мы применить не можем, так как значения Y все отрицательные.

6 Вывод

Используя метод наименьших квадратов, сгладили предложенную табличную зависимость при помощи формул. Помимо этого, вычислили невязки с точностью до сотых и отобразить на графике табличные данные и сглаживающую кривую.