Linear Algebra 4.3 Homework

Michael Brodskiy

Instructor: Prof. Knight

1. W is a subspace of \mathbf{V}

- (a) W contains the origin, and is therefore not empty \checkmark
- (b) $W < \mathbf{V} \checkmark$
- (c) $(x_1, x_2, x_3, 0) + (y_1, y_2, y_3, 0) = (x_1 + y_1, x_2 + y_2, x_3 + y_3, 0)$ closed under addition
- (d) $c(x_1, x_2, x_3, 0) = (cx_1, cx_2, cx_3, 0)$ closed under multiplication \checkmark

4. W is a subspace of \mathbf{V}

- (a) W contains the origin, and is therefore not empty \checkmark
- (b) $W \leq \mathbf{V} \checkmark$

(c)
$$w_1 = \begin{bmatrix} a_1 & b_1 \\ a_1 - 2b_1 & 0 \\ 0 & c_1 \end{bmatrix}$$
 and $w_2 = \begin{bmatrix} a_2 & b_2 \\ a_2 - 2b_2 & 0 \\ 0 & c_2 \end{bmatrix}$, then
$$w_1 + w_2 = \begin{bmatrix} a_1 + a_2 & b_1 + b_2 \\ a_1 + a_2 - 2(b_1 + b_2) & 0 \\ 0 & c_1 + c_2 \end{bmatrix}$$
, where $b = b_1 + b_2$ $c = c_1 + c_2$

closed under addition ✓

(d)
$$cw_1 = c\begin{bmatrix} a_1 & b_1 \\ a_1 - 2b_1 & 0 \\ 0 & c_1 \end{bmatrix} = \begin{bmatrix} ca_1 & cb_1 \\ ca_1 - 2cb_1 & 0 \\ 0 & cc_1 \end{bmatrix}$$
, where $b = cb_1$ closed under multiplication \checkmark

5. W is a subspace of V

- (a) W contains the origin, and is therefore not empty \checkmark
- (b) $W \leq \mathbf{V} \checkmark$
- (c) f + g is closed under addition \checkmark
- (d) cf is closed under multiplication \checkmark

- 8. It is not closed under multiplication. Given some vector $c\langle 2, x_1, x_2, \text{ where } c \neq 1$, the value changes, so it is not a subspace
- 12. It is not closed under addition. Given $v_1 = x + 1$ and $v_2 = 1 x$, the sum is 2, which is not a linear function of the form ax + b
- 15. It is not closed under multiplication. Given a value $c \neq 1$, cW is not in the vector space \mathbf{V}
- 16. It is not closed under addition. Given another $M_{3,1}$ matrix, for example, $[\sqrt{a} \ 0 \ a]$, and adding it to the original matrix generates a matrix that is not in \mathbf{V}
- 21. No, it does not contain the origin
- 23. Yes, because it contains the origin, and is closed under multiplication and addition
- 27. Yes, because it contains the origin, and is closed under multiplication and addition
- 30. Yes, because it is not empty, and is closed under multiplication and addition
- 31. No, because it is not closed under multiplication
- 33. No, because it is not closed under addition
- 43. (a) True This is one of the four axioms that a subspace must follow
 - (b) True If V and W are subspaces of the same vector space, then anything contained within V and W must also be a subspace
 - (c) False Although this is possible, it is not definite, as \mathbf{U} could be smaller than \mathbf{V} , which is smaller than \mathbf{U}
- 44. (a) True The origin must exist in a vector space, and a subspace can be equal to the vector space itself
 - (b) True The origin must always be contained in a subspace
 - (c) True This is one of 4 axioms that a subspace must follow
 - (d) False It is possible that something contained within a vector space is not itself a vector space
- 47. (a) $C(-\infty, \infty)$ is a subspace of $F(-\infty, \infty)$
 - i. $C(-\infty, \infty)$ contains the origin \checkmark
 - ii. $C(-\infty, \infty) \leq F(-\infty, \infty)$
 - iii. f + g is closed under addition \checkmark
 - iv. cf is closed under multiplication \checkmark
- 48. (a) S contains the origin \checkmark
 - (b) $S \leq C[0,1] \checkmark$
 - (c) f+g is continuous because it is integrable and therefore closed under addition \checkmark

- (d) cf is still continuous, and, therefore, closed under multiplication \checkmark
- 51. W is a subspace of \mathbf{V}
 - (a) Because W is a subspace, it is closed under multiplication. Since $a\mathbf{x}$ and $b\mathbf{y}$ are in W, so is $a\mathbf{x} + b\mathbf{y}$.
 - (b) If a = 1 and b = 0, $a\mathbf{x}$ is in W. Therefore, if a = 1 and b = 1, $a\mathbf{x} + b\mathbf{y}$ is in W, meaning W is closed under addition and scalar multiplication.
- 52. W is a subspace of \mathbf{V}
 - (a) W is not empty \checkmark
 - (b) $W \leq \mathbf{V} \checkmark$

(c)
$$\overrightarrow{\mathbf{x}}_1 = ax_1 + by_1 + cz_1$$
 and $\overrightarrow{\mathbf{x}}_2 = ax_2 + by_2 + cz_2$, then $\overrightarrow{\mathbf{x}}_1 + \overrightarrow{\mathbf{x}}_2 = a(x_1 + x_2) + x = x_1 + x_2$
 $b(y_1 + y_2) + c(z_1 + z_2)$, where $y = y_1 + y_2$ closed under addition \checkmark
 $z = z_1 + z_2$

(d)
$$k\overrightarrow{\mathbf{x}}_1 = kax_1 + kby_1 + kcz_1$$
, where $\begin{array}{c} x = kx_1 \\ y = ky_1 \\ z = kz_1 \end{array}$ closed under multiplication \checkmark

- 54. W is a subspace \mathbf{V}
 - (a) W contains the origin $(0,0,\ldots,0)$
 - (b) $W \leq \mathbb{R}^n \checkmark$
 - (c) $A\mathbf{x}_1 + A\mathbf{x}_2 = \mathbf{0} + \mathbf{0} = \mathbf{0}$ closed under addition \checkmark
 - (d) $c(A\mathbf{x}) = cA\mathbf{x} = c\dot{0} = 0$ closed under multiplication \checkmark