Math 321 Homework 8

For the next problem, we will need the following definition. Let $N \ge 1$ be an integer and let s, t be integers. We define the half-open square

$$S_{s,t;N} = \left[\frac{s}{N}, \frac{s+1}{N}\right) \times \left[\frac{t}{n}, \frac{t+1}{N}\right)$$

Observe that for each fixed N, \mathbb{R}^2 is a disjoint union of the half-open squares $\{S_{s,t;N}: s,t \in \mathbb{Z}\}$. We say a function $f: \mathbb{R}^2 \to \mathbb{C}$ or $\mathbb{R}^2 \to \mathbb{R}$ is "constant on half-open squares at resolution N" if f is constant on each $S_{s,t;N}$, i.e. f can be written as

$$f(x,y) = \sum_{s,t \in \mathbb{Z}} a_{s,t} \chi_{s,t;N}(x,y)$$

Problem 1

(a). Let $N \ge 1$ be an integer and let $f: \mathbb{R}^2 \to \mathbb{R}$ have compact support and be constant on half-open squares at resolution N. For each $x, y \in \mathbb{R}$, define

$$g(x) = \int_{-\infty}^{\infty} f(x, y) dy, \quad h(y) = \int_{-\infty}^{\infty} f(x, y) dx,$$

Prove that g and h are integrable on \mathbb{R} , and that

$$\int_{-\infty}^{\infty} g(x)dx = \int_{-\infty}^{\infty} h(y)dy$$

(and that both integrals converge).

(b). Let $f: \mathbb{R}^2 \to \mathbb{R}$ be continuous and have compact support. For each $x, y \in \mathbb{R}$, define

$$g(x) = \int_{-\infty}^{\infty} f(x, y) dy, \quad h(y) = \int_{-\infty}^{\infty} f(x, y) dx,$$

Prove that g and h are integrable on \mathbb{R} , and that

$$\int_{-\infty}^{\infty} g(x)dx = \int_{-\infty}^{\infty} h(y)dy$$

Remark 1. You have just proved that for $f: \mathbb{R}^2 \to \mathbb{R}$ continuous with compact support, we have

$$\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(x, y) dx \right) dy = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(x, y) dy \right) dx$$

(a). Solution. Since f has compact support, there exists some s', t' such that $a_{s,t} = 0$ when |s| > s' or |t| > t'. Alternatively, supp $(f) \subset [-M, M] \times [-M, M]$ for some $M \in \mathbb{R}$. Thus, using Rudin Theorem 6.12(a) (our sum

is finite, so there are no problems with using the theorem),

$$g(x) = \int_{-\infty}^{\infty} f(x,y)dy$$

$$= \int_{-M}^{M} \sum_{\substack{s,t \in \mathbb{Z} \\ |s| \le s', |t| \le t'}} a_{s,t}\chi_{s,t;N}(x,y)dy$$

$$= \sum_{\substack{s,t \in \mathbb{Z} \\ |s| \le s', |t| \le t'}} \int_{t/N}^{(t+1)/N} a_{s,t}\chi_{s,t;N}(x,y)dy$$

$$= \sum_{\substack{s,t \in \mathbb{Z} \\ |s| \le s', |t| \le t'}} a_{s,t} \int_{t/N}^{(t+1)/N} \chi_{s,t;N}(x,y)dy$$

$$= \sum_{\substack{s,t \in \mathbb{Z} \\ |s| \le s', |t| \le t'}} \frac{a_{s,t}}{N} \chi_{s,t;N}(x)$$

And the integral converges, via 6.12(a) as well. Similarly, we can do the same for h(y) to get

$$h(y) = \sum_{\substack{s,t \in \mathbb{Z} \\ |s| \le s', |t| \le t'}} \frac{a_{s,t}}{N} \chi_{s,t;N}(y)$$

Since our s',t' are the same as before, we still have $\operatorname{supp}(g) \subset [-M,M]$ and $\operatorname{supp}(h) \subset [-M,M]$. Hence, using Rudin Theorem 6.12(a) again, we see

$$\int_{-\infty}^{\infty} g(x)dx = \int_{-M}^{M} \sum_{\substack{s,t \in \mathbb{Z} \\ |s| \le s', |t| \le t'}} \frac{a_{s,t}}{N} \chi_{s,t;N}(x) dx$$

$$= \sum_{\substack{s,t \in \mathbb{Z} \\ |s| \le s', |t| \le t'}} \int_{s/N}^{(s+1)/N} \frac{a_{s,t}}{N} \chi_{s,t;N}(x) dx$$

$$= \sum_{\substack{s,t \in \mathbb{Z} \\ |s| \le s', |t| \le t'}} \frac{a_{s,t}}{N} \int_{s/N}^{(s+1)/N} \chi_{s,t;N}(x) dx$$

$$= \sum_{\substack{s,t \in \mathbb{Z} \\ |s| \le s', |t| < t'}} \frac{a_{s,t}}{N^2}$$

And again, the integral converges 6.12(a). Similarly,

$$\int_{-\infty}^{\infty} h(y)dy = \sum_{\substack{s,t \in \mathbb{Z} \\ |s| \le s', |t| \le t'}} \frac{a_{s,t}}{N^2}$$

These are equal, hence we have shown

$$\int_{-\infty}^{\infty} g(x)dx = \int_{-\infty}^{\infty} h(y)dy$$

(b). Solution. We first show that g(x) is integrable. Since f(x,y) has compact support, there is some $M \in \mathbb{N}$ such that $\operatorname{supp}(f) \subset [-M,M], [-M,M]$. Since f(x,y) continuous in a compact set, it is uniformly continuous on its support. Let $\varepsilon > 0$. Then for $\varepsilon' = \varepsilon/(4M)$, we have that there exists $\delta > 0$ such that for all $(x_1,y), (x_2,y) \in [-M,M] \times [-M,M]$ where $d((x_1,y),(x_2,y)) < \delta$ (the typical metric d), we have $|f(x_1,y) - f(x_2,y)| < \varepsilon'$. Thus by Theorem 6.13

$$|g(x_1) - g(x_2)| = \left| \int_{-M}^{M} f(x_1, y) - f(x_2, y) dy \right| \le \int_{-M}^{M} |f(x_1, y) - f(x_2, y)| dy \le \varepsilon' \int_{-M}^{M} dy = 2M\varepsilon' = \varepsilon/2 < \varepsilon$$

Therefore, g(x) is continuous. Furthermore, when $x \notin [-M, M]$, we have $\int_{-\infty}^{\infty} f(x, y) dy = \int_{-\infty}^{\infty} 0 dy = 0$ and so $\operatorname{supp}(g) \subset [-M, M]$, so g(x) has compact support as well. Thus, $\int_{-\infty}^{\infty} g(x) dx = \int_{-M}^{M} g(x) dx$ exists. In an identical manner, one can show that h(y) is integrable by showing that it is continuous with compact support. Let $a_{s,t;N}$ be the value of f(x,y) at the center of $S_{s,t;N}$. Define

$$f_N(x,y) = \sum_{s,t \in \mathbb{Z}} a_{s,t} \chi_{s,t;N}(x,y)$$

f(x,y) is uniformly continuous, so for any $\varepsilon > 0$, we get a $\delta > 0$ such that $|f(x_1,y_1) - f(x_2,y_2)| < \varepsilon$ for all $(x_1,y_1),(x_2,y_2) \in [-M,M] \times [-M,M]$ where $d((x_1,y_1),(x_2,y_2)) < \delta$. Note that we can choose N large enough so that all points in $S_{s,t;N}$ are within δ of the center (the furthest points at the corners are $\sqrt{2}/(2N)$ from the center, which we can obviously make arbitrarily small). Let all N written below be this N, or larger. Using the definitions we provided in part (a) (for s',t'), we have (with appropriate triangle inequality and Rudin 6.13):

$$\begin{aligned} \left| g(x) - \int_{-M}^{M} f_N(x,y) dy \right| &= \left| \int_{-M}^{M} f(x,y) dy - \int_{-M}^{M} f_N(x,y) dy \right| \\ &= \left| \int_{-M}^{M} f(x,y) - f_N(x,y) dy \right| \\ &= \left| \sum_{\substack{s,t \in \mathbb{Z} \\ |s| \le s', |t| \le t'}} \int_{t/N}^{(t+1)/N} f(x,y) - a_{s,t;N} dy \right| \\ &= \sum_{\substack{s,t \in \mathbb{Z} \\ |s| \le s', |t| \le t'}} \int_{t/N}^{(t+1)/N} |f(x,y) - a_{s,t;N}| dy \\ &\leq \sum_{\substack{s,t \in \mathbb{Z} \\ |s| \le s', |t| \le t'}} \varepsilon \int_{t/N}^{(t+1)/N} dy \\ &\leq \sum_{\substack{t \in \mathbb{Z} \\ |t| \le t'}} \frac{\varepsilon}{N} = \frac{T}{N} \varepsilon \end{aligned}$$

where T is the number of T = 2MN, the number of squares along the y direction that is inside [-M, M]. T is also the number of squares along the x direction inside [-M, M], by symmetry.

In the same method, we can get

$$\left| h(y) - \int_{-\infty}^{\infty} f_N(x, y) dx \right| < \frac{T}{N} \varepsilon$$

Since $f_N(x,y)$ is defined from part (a), we can interchange the order of integration to get equal integrals, which gives us

$$\left| \int_{-\infty}^{\infty} g(x)dx - \int_{-\infty}^{\infty} h(y)dx \right| = \left| \int_{-M}^{M} g(x)dx - \int_{-M}^{M} h(y)dx \right|$$

$$\leq \left| \int_{-M}^{M} g(x)dx - \int_{-M}^{M} \int_{-M}^{M} f_{N}(x,y)dydx \right|$$

$$+ \left| \int_{-M}^{M} h(x)dx - \int_{-M}^{M} \int_{-M}^{M} f_{N}(x,y)dxdy \right|$$

$$\leq \left| \int_{-M}^{M} \left(g(x)dx - \int_{-M}^{M} f_{N}(x,y)dy \right) dx \right|$$

$$+ \left| \int_{-M}^{M} \left(h(x)dx - \int_{-M}^{M} f_{N}(x,y)dx \right) dy \right|$$

$$< \left| \int_{-M}^{M} \frac{T}{N} \varepsilon dx \right| + \left| \int_{-M}^{M} \frac{T}{N} \varepsilon dy \right|$$

$$= 4M \frac{2MN}{N} \varepsilon$$

and since $\varepsilon > 0$ was abitrary, and the rest are constants determined before, we can make this bound arbitrarily small. Thus, the integrals are equal, i.e.

$$\int_{-\infty}^{\infty} g(x)dx = \int_{-\infty}^{\infty} h(y)dy$$

Problem 2

Let $f,g:\mathbb{R}\to\mathbb{R}$ be continuous and have compact support. Prove that

$$\int_{-\infty}^{\infty} |f * g(x)| dx \le \left(\int_{-\infty}^{\infty} |f(x)| dx \right) \left(\int_{-\infty}^{\infty} |g(x)| dx \right)$$

Hint: Problem 1 might be useful.

Solution. (Disclaimer: sorry for the f', g' notation below, I originally proved it for f, g, but realized I needed it for |f|, |g|, and so I wanted to minimize the amount of extra typing I'd need.)

Let |f| = f' and |g| = g'. Since f, g are continuous with compact support, f', g' both also have compact support and are continuous. We now show that f' * g'(x) is continuous and has compact support as well. Note that f' * g' has compact support. We have compact sets K_f, K_g such that $\operatorname{supp}(f') \subset K_f$ and $\operatorname{supp}(g') \subset K_g$. Heine-Borel says that both of these sets are bounded, and so there exists $M \in \mathbb{R}$ such that $K_f, K_g \subset [-M, M]$. See f' * g'(x) is defined for all $x \in \mathbb{R}$, since $f' * g'(x) = \int_{-\infty}^{\infty} f'(t)g'(x-t)dt = \int_{-M}^{M} f'(t)g'(x-t)dt$ (since f'(t) = 0 when $t \notin [-M, M]$), and f'(t)g'(x-t) is the product of two continuous functions, and so is integrable and exists on [-M, M] for any $x \in \mathbb{R}$. Furthermore, when $x \notin [-2M, 2M]$, we have that g'(x-t) = 0 since $t \in [-M, M]$, and so $\int_{-M}^{M} f'(t)g'(x-t)dt = 0$ as well (since f'(t) is bounded since it is continuous). Thus, f' * g'(x) has support contained in [-2M, 2M], and so has compact support.

We also note that f' * g'(x) is continuous. Since g' is continuous on a compact set [-2M, 2M], it is uniformly continuous on it. Let $\varepsilon > 0$. Let $\varepsilon' = \varepsilon \left(2 \int_{-2M}^{2M} f'(t) dt\right)^{-1}$. Then there exists $\delta > 0$ such that $|g'(x) - g'(y)| < \varepsilon'$

when $|x-y| < \delta$. So if $|x-y| < \delta$ (and so $|x-t-(y-t)| < \delta$, using Rudin Theorem 6.12 and 6.13 gives us

$$|f' * g'(x) - f' * g'(y)| \le \left| \int_{-2M}^{2M} f'(t)g'(x-t)dt - \int_{-2M}^{2M} f'(t)g'(y-t)dt \right|$$

$$= \left| \int_{-2M}^{2M} f'(t)(g'(x-t) - g'(y-t))dt \right|$$

$$\le \int_{-2M}^{2M} |f'(t)||g'(x-t) - g'(y-t)|dt$$

$$\le \varepsilon' \int_{-2M}^{2M} |f'(t)|dt$$

$$= \frac{\varepsilon}{2} < \varepsilon$$

Hence, f' * g'(x) is continuous.

Note that since f*g(x), is continuous, it is Riemann integrable, particularly since f*g(x) is compactly supported, we have $f*g(x) \in \mathcal{R}[-2M, 2M]$. Furthermore, clearly this means $\operatorname{supp}(|f*g(x)|) = \operatorname{supp}(f*g(x)) \subset [-2M, 2M]$ as well. Hence, Rudin Theorem 6.13 gives us

$$|f * g(x)| = \left| \int_{-\infty}^{\infty} f(t)g(x-t)dt \right| = \left| \int_{-2M}^{2M} f(t)g(x-t)dt \right| \le \int_{-2M}^{2M} |f(t)g(x-t)|dt = \int_{-\infty}^{\infty} |f(t)||g(x-t)|dt = f' * g'(x)$$

Now, we can invoke Rudin Theorem 6.12(b) with the inequality from above, and then use the result proven in Problem 1(b), since f'g'(x) is continuous and has compact support:

$$\int_{-\infty}^{\infty} |f * g(x)| dx \le \int_{-\infty}^{\infty} f' * g'(x) dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |f(t)| |g(x-t)| dx dt$$

$$= \int_{-\infty}^{\infty} |f(t)| \int_{-\infty}^{\infty} |g(x-t)| dx dt$$

$$= \int_{-\infty}^{\infty} |f(t)| \int_{-\infty}^{\infty} |g(x)| dx dt$$

$$= \int_{-\infty}^{\infty} |g(x) dx \int_{-\infty}^{\infty} |f(t)| dt$$

as desired. Note that above, we have used the fact that for, fixed t, we have $\int_{-\infty}^{\infty}|g(x-t)|dx=\int_{-\infty}^{\infty}|g(x)|dx$: since $\operatorname{supp}(|g(x)|)\subset [-M,M]$, we have $\int_{-\infty}^{\infty}|g(x-t)|dx=\int_{-M+t}^{M+t}|g(x-t)|dx=\int_{-M}^{M}|g(x)|dx=\int_{-\infty}^{\infty}|g(x)|dx$ (this technically uses Rudin Theorem 6.19, where $\phi(y)=y+t$, but this is also trivial to see as redefining x=x-t, and the integrator function x-t acts the same as x).

Problem 3

Let $f: \mathbb{R} \to \mathbb{R}$, and suppose f can be uniformly approximated by polynomials. Prove that f must be a polynomial. Hint: If $P_n \to f$ uniformly, consider the sequence $P_{n+1} - P_n$.

Solution. By the Cauchy Criterion (Rudin Theorem 7.8), we have that for any $\varepsilon > 0$, there exists some N such that for all $m, n \ge N$ and all $x \in \mathbb{R}$, $|P_m(x) - P_n(x)| < \varepsilon$. Note that $P_m - P_n$ must be a constant. To see this, note that the difference of polynomials is also a polynomial, and if the difference were not a constant, then our polynomial has some degree $l \ge 1$, and so there is some $a \in \mathbb{R}^*$ such that $P_m(x) - P_n(x) = ax^l + q(x)$ where q(x) is the rest of the polynomial, and has degree less than l; then as $x \to \infty$, we know that $ax^l + q(x) \to \pm \infty$ (the sign is the same as a). (This is a standard result, if you really want a proof: let A be the max of the coefficients of q(x), then for

x > 1, $ax^l + q(x) \ge ax^l - lAx^{l-1} = (ax^l - lA)x^{l-1} \ge ax^l - nA$, which very clearly diverges to $\pm \infty$ as $x \to \infty$, so the original polynomial does as well.) But this contradicts that $|P_m(x) - P_n(x)| = |ax^l + q(x)| < \varepsilon$ for all $x \in \mathbb{R}$. Thus, $P_m(x) - P_n(x)$ is a constant.

Let $c_n = P_n(x) - P_N(x)$ where n > N from before. We then have for m > N, and all $x \in \mathbb{R}$ that

$$|c_m - c_n| = |P_m - P_N - P_n + P_N| = |P_m - P_n| < \varepsilon$$

thus $\{c_n\}$ is a real valued sequence that is Cauchy. Hence, since \mathbb{R} is complete, we get that $\{c_n\}$ converges, say to some $c \in \mathbb{R}$.

Now, for all $\varepsilon > 0$, there is some $N' \in \mathbb{N}$ such that for all $n \geq N_1$, we have $|c_n - c| < \varepsilon/2$. Also, since $P_n \to f$ uniformly, we have that there exists some $N_2 \in \mathbb{N}$ such that for all $n \geq N_2$, we have $|f(x) - P_n| < \varepsilon/2$ for all $x \in \mathbb{R}$. So when $n \geq \max\{N_1, N_2\}$, we have that for all $x \in \mathbb{R}$,

$$|f(x) - P_N(x) - c| \le |f(x) - P_n(x)| + |P_n(x) - P_N(x) - c| < \frac{\varepsilon}{2} + |c_n - c| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Hence, we get that $f(x) - P_N(x) - c = 0$ for all $x \in \mathbb{R}$, thus $f(x) = P_N(x) + c$, which is a polynomial, so f(x) is a polynomial.

For the next problem, we need the following definition. Let (X, d) be a metric space and let $\alpha > 0$. We say that a function $f \in \mathcal{C}(X)$ is "Hölder's continuous of exponent α " if the quantity

$$N_{\alpha}(f) = \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x, y)^{\alpha}}$$

is finite.

Problem 4

- (a). Prove that if X is compact then $\{f \in \mathcal{C}(X) : ||f|| \le 1 \text{ and } N_{\alpha}(f) \le 1\}$ is a compact subset of $\mathcal{C}(X)$.
- (b). Prove that $\{f \in C([0,1]): ||f|| \leq 1\}$ is not a compact subset of C([0,1]).
- (a). Solution. Recall from Problem 3 of Homework 7 that it is sufficient to show that $\mathcal{F} = \{f \in \mathcal{C}(X) : |f| \le 1 \text{ and } N_{\alpha}(f) \le 1\}$ is closed, bounded, and equicontinuous.

We have that \mathcal{F} is bounded, since $0 \in \mathcal{F}$ and for all $f \in \mathcal{F}$, we have $d(0, f) \le 1 < 2$, since $||f|| \le 1$.

We show now that \mathcal{F} is equicontinuous. Note that for $f \in \mathcal{F}$, since $N_{\alpha}(f) \leq 1$,

$$|f(x) - f(y)| \le N_{\alpha}(f)d(x,y)^{\alpha} \le d(x,y)^{\alpha}$$

Let $\varepsilon > 0$. Then we can choose $\delta = \varepsilon^{1/\alpha}$ to get that for any $f \in \mathcal{F}$ that when $d(x,y) < \delta$, we have

$$|f(x) - f(y)| < \delta^{\alpha} = \varepsilon$$

hence \mathcal{F} is equicontinuous.

We now show that \mathcal{F} is closed. That is, every limit point of \mathcal{F} is also in \mathcal{F} . That is, for any f such that there is some sequence $f_n \in \mathcal{F}$ where $f_n \to f$ uniformly (the metric of $C(\mathcal{X})$), then $f \in \mathcal{F}$ as well. Since C(X) with this metric is a complete metric space (Rudin Theorem 7.15), we have $f \in C(X)$. Also, for all $\varepsilon > 0$, there exists some $N_1 \in \mathbb{N}$ such that for all $n \geq N_1$, we have $||f - f_n|| < \varepsilon$. Thus

$$||f|| \le ||f - f_n|| + ||f_n|| \le 1 + \varepsilon$$

But since ε can be made arbitrarily small, we get the nonstrict inequality $||f|| \le 1$ as well. Finally, there exists $N_2 \in \mathbb{N}$ such that for all $n \ge N_2$, we have $||f - f_n|| < \varepsilon/2$, and for any $x, y \in X$ where $x \ne y$, we have

$$|f(x) - f(y)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)| \le 2||f - f_n|| + d(x, y)^{\alpha} \le \varepsilon + d(x, y)^{\alpha}$$

Since ε can be made arbitrarily small, we get the nonstrict inequality $|f(x) - f(y)| \le d(x, y)^{\alpha}$. $d(x, y) \ne 0$, so we get $N_{\alpha}(f) = \frac{|f(x) - f(y)|}{d(x, y)^{\alpha}} \le 1$. Thus, this verifies all the conditions on \mathcal{F} , thus $f \in \mathcal{F}$, and so \mathcal{F} is closed.

Finally, this shows that \mathcal{F} is a compact subset of $\mathcal{C}(X)$.

(b). Solution. Define for $a \in \mathbb{R}^+$.

$$f_a = \begin{cases} ax & x \in [0, 1/a] \\ 1 & x \in (1/a, 1] \end{cases}$$

Note that for any $a, f_a \in \mathcal{C}(X)$. When $x \in [0, 1/a)$ and $x \in (1/a, 1]$, f_a are functions which are known to be continuous. If x = 1/a, then $\lim_{x \nearrow \frac{1}{a}} f_a(x) = 1 = \lim_{x \searrow \frac{1}{a}} f_a(x)$, so it is continuous at $\frac{1}{a}$, and so continuous everywhere. Also, clearly $||f_a|| = 1$, hence $f_a \in \{f \in \mathcal{C}([0,1]) : ||f|| \le 1\}$ for all $a \in \mathbb{R}^+$.

We now show that $\{f \in \mathcal{C}([0,1]): ||f|| \leq 1\}$ is not compact. We do this by showing that the set is not equicontinuous, and so by Problem 3 of Homework 7, the set is not compact in $\mathcal{C}([0,1])$. Let $\varepsilon = 1$. Then for all $\delta > 0$, let $x = \delta/2, y = 0$ so $d(x,y) < \delta$, and $f = f_{2/\delta}$, so we get

$$|f(x) - f(y)| = |f_{2/\delta}(\delta/2)| = 1 \ge \varepsilon$$

This shows that $\{f \in \mathcal{C}([0,1]): ||f|| \leq 1\}$ is not equicontinuous, and hence not compact.