Announcements

- Assignment I
 - To be returned this afternoon
- Progress Meeting
 - October 6, 8, and 10
 - A 15-minute meeting to discuss your progress and learning goals
- Assignment 2
 - Posted today, due October 10
 - Simulation: Building an accumulator-based system

Lecture 12

Representation of Programs

CPSC 275
Introduction to Computer Systems

Intel x86 Processors

- Dominate laptop/desktop/server market
- Evolutionary design
 - Backwards compatible up until 8086, introduced in 1978
 - Added more features as time goes on
- Complex instruction set computer (CISC)
 - Many different instructions with many different formats
 - Hard to match performance of Reduced Instruction Set Computers (RISC)
 - Mainly used for supercomputers. Now for mobile systems

Intel x86 Evolution: Milestones

Name	Date	Transistors	MHz
8086	1978	29K	5-10
 First 16-bit Intel processor. Basis for IBM PC & DOS 			
 IMB addre 	ss space		
386	1985	275K	16-33
 First 32 bit Intel processor, referred to as IA32 			
 Added flat addressing, capable of running Unix 			
Pentium 4E	2004	125M	2800-3800
 First 64-bit Intel x86 processor, referred to as x86-64 			
Core 2	2006	291M	1060-3500
 First multi-core Intel processor 			
Core i7	2008	73 I M	1700-3900
 Four cores 			
•••			
Core i9	2023	25B	3200-5800
 24 cores 			

Some Definitions

- Instruction set architecture (ISA)
 - Parts of a processor design that one needs to understand to write assembly code.
 - Examples: instruction set specification, registers.
- Microarchitecture: Implementation of the ISA
 - Examples: cache sizes and core frequency.
- Example ISAs (Intel): x86, IA-32

Programmer's View on Computer System

- PC: Program counter
 - Address of next instruction
 - Called EIP (IA32)
- Register file
 - Heavily used to store program/data
- Condition codes
 - Store status information about most recent arithmetic operation
 - Used for conditional branching

Memory

- Byte addressable array
- Code, user data, (some) OS data
- Includes stack used to support procedures (or functions)

Turning C into Object Code

- Source prog.c
- Compile with command: gcc -m32 -o prog prog.c

Compiling Into Assembly

C Code

```
int sum(int x, int y)
{
  int t = x + y;
  return t;
}
```

Generated IA-32 Assembly

```
sum:
   pushl %ebp
   movl %esp,%ebp
   movl 12(%ebp),%eax
   addl 8(%ebp),%eax
   popl %ebp
   ret
```

Obtain with command

```
gcc - m32 - O1 - S code.c
```

Produces file code.s where -01 indicates level-one optimization.

