Compte-rendu de travaux pratiques de chimie

Dosages acido-basique de l'eau de Perrier

Benjamin LOISON et Alice MILFORD ASSEO (MPSI 1)

30 mars 2019

Exploitation 2

2.1 Courbe n°1

La réaction de dosage est la suivante: $H_2CO_3 + OH^- \rightleftharpoons HCO_3^- + H_2O$

v (en mL)	pН
0	5.34
1	5.4
2	5.53
3	5.64
4	5.74
5	5.83
6	5.91
7	6.01
8	6.07
9	6.16
10	6.24
11	6.34
12	6.39
13	6.49
14	6.59
15	6.72
16	6.85
17	7.01
18	7.24
19	7.63
20	8.24
21	8.67
22	8.91
23	9.08
24	9.22
25	9.35
26	9.45
27	9.55
28	9.65
29	9.74
30	9.82

On trouve $V_1 = 19.5$ mL.

A l'équivalence, on a: $[H_2CO_3]V_{Perrier} = [OH^-]V_1$ D'où: $[H_2CO_3] = \frac{[OH^-]V_1}{V_{Perrier}}$ AN: $x = [H_2CO_3] = \frac{0.1*19.5*10^{-3}}{50*10^{-3}} = 3.9*10^{-2} \text{ mol/L}.$

Courbe n°2 2.2

La réaction de dosage est la suivante: $HCO_3^- + Cl^- \rightleftharpoons CO_3^2$

On trouve $V_2 = 4.5 \text{ mL}$.

A l'équivalence, on a: $[HCO_3^-]V_{Perrier} = [Cl^-]V_2$

D'où: $[HCO_3^-] = \frac{[Cl^-]V_2}{V_{Perrier}}$ AN: $y = [HCO_3^-] = \frac{0.1*4.5*10^{-3}}{50*10^{-3}} = 9.0*10^{-3} mol/L.$

2.3 pH de l'eau de Perrier

On a: $pH = pKa + log(\frac{y}{x})$

On trouve un écart relatif entre la valeur expérimentale et celle théorique de 6 %.

15

2.4 "Raccorder" les deux courbes précédentes

211 114000	, ac.	ies deux courses procedentes
v (en mL)	pН	_
-15	2.02	_
-14	2.05	_
-13	2.09	_
-12	2.13	_
-11	2.17	_
-10	2.22	_
-9	2.28	_
-8	2.36	_
-7	2.47	_
-6	2.65	_ 10 -
-5	3.25	
-4	4.65	- 8
-3	5	_
-2	5.21	
-2 -1	5.33	- H 6
0	5.34	- CT
1	5.4	- 4
2	5.53	- · · · · · · · · · · · · · · · · · · ·
3	5.64	-
4	5.74	2 - **********
5	5.83	10 0 10 20 30
6	5.91	$\leftarrow V_{HCl} \text{ (en mL)} \qquad \qquad V_{NaOH} \text{ (en mL)}$
7	6.01	$\leftarrow v_{HCl}$ (en init) v_{NaOH} (en init)
8	6.07	_
9	6.16	_
10	6.24	_
11	6.34	_
12	6.39	_
13	6.49	_
14	6.59	_
15	6.72	_
16	6.85	_
17	7.01	_
18	7.24	_
19	7.63	_
	8.24	_
21	8.67	_
	8.91	_
23	9.08	_
24	9.22	_
25	9.35	_
26	9.45	-
27	9.55	_
28	9.65	_
29	9.74	_
30	9.82	

La première acidité de l'ion H_2CO^3 étant faible, on lit le pKa à la demi-équivalence donc pour $V_{NaOH} = 9.75$ mL. On trouve donc pKa = 6.21.

On trouve donc pKa = 6.21. Ce qui est proche de la valeur théorique qui est 6.3, l'écart relative est $\frac{6.3-6.21}{6.21} = 1.4 \%$

2.5 Si l'on poursuivait l'ajout de soude, quelle forme aurait la prolongation de la courbe 3 vers la droite ?

Ceci revient à considérer un jerrican de soude ajouté à un dé à coudre de solution. Donc le pH tendrait alors vers le pH de l'hydroxyde de sodium, c'est-à-dire 13.

2.6 Quel est le précipité qui apparaît et trouble la solution vers pH pprox 10 ?

ion	mg/L	g/mol	$\mathrm{mmol/L}$
Ca^{2+}	150	40.1	3.74
Mg^{2+}	3.9	24.3	$1.70*10^{-1}$
HCO_3^+	420	52.0	8.1

Pour pH ≈ 10

Equations de dissolution:

$$\begin{split} &Ca(OH)_2 \rightleftarrows Ca^{2+} + 2OH^- \\ &K = [Ca^{2+}][OH^-]^2 = 3.74*10^{-3}*10^{-8} \approx 10^{-10.42} < Ks = 10^{-5.26} \\ &\text{On considère que le pH vaut 10 et } [OH^-] = \frac{Ke}{[H_3O^+]} = \frac{Ke}{10^{-10}} = 10^{-4} \text{ mol/L}. \end{split}$$

$$Mg(OH)_2 \rightleftharpoons Mg^{2+} + 2OH^-$$

 $[Mg^{2+}][OH^-]^2 = 1.70 * 10^{-4} * 10^{-8} \approx 1.70 * 10^{-12} < Ks = 10^{-9.22}$

$$CaCO_3 \rightleftharpoons Ca^{2+} + CO_3^{2-}$$

 $K = [Ca^{2+}][CO_3^{2-}] = 3.74*10^{-3}*8.1*10^{-3} \approx 3.0*10^{-5} > Ks = 10^{-8.32}$
Donc cette espèce précipite.

$$\begin{split} MgCO_3 &\rightleftharpoons Mg^{2+} + CO_3^{2-} \\ [Mg^{2+}][CO_3^{2-}] &= 1.70*10^{-4}*8.1*10^{-3} \approx 1.4*10^{-6} < Ks = 10^{-4.67} \end{split}$$

Le seul produit de solubilité atteint est celui du carbonate de calcium, se forme donc qu'un précipité de carbonate de calcium. Effectivement expérimentalement on en observe un blanc.