Matemática Discreta – EP6 – 2007/2

Observações: Observações: Caro aluno, aqui está o EP6, referente as aulas 12 e 13 do Módulo 1. Este EP6 contém:

- um sumário dos conteúdos mais importantes;
- alguns comentários sobre o texto das aulas;
- alguns comentários sobre os exercícios propostos;
- alguns exercícios extras para você fixar a sua aprendizagem.

Sobre o conteúdo:

Os conteúdos mais importantes tratados nas Aula 12 e 13 —os quais você deve dominar tanto conceitualmente quanto na prática— são:

- O Triângulo de Pascal;
- Propriedades básicas do Triângulo de Pascal;
- A relação entre o Triângulo de Pascal e a expansão das potências $(x+y)^n$;
- O Teorema Binomial.

Sobre a Aula 12:

• **Página 111:** No primeiro parágrafo, o que os autores queriam dizer é sem ter que calcular os números binomiais C(n,r) usando a fórmula $C(n,r) = \frac{n!}{(n-r)!r!}$. **Página 116:** Você não precisa estudar a **Demonstração da propriedade 5**.

Sobre os exercícios do Módulo:

Exercícios que merecem uma atenção especial:

- Todos os exercícios apresentados nas Aulas 12 e 13 são essenciais. Você deve estudar detalhadamente todo o conteúdo e tentar resolver todos eles.
- Preste a máxima importância no Exemplo 74 da Aula 13 e no respectivo Exercício 8.

Alguns exercícios para fixação:

- 1. Resolver a equação A(n,3) = 3C(n,4).
- 2. Calcule a e b, sabendo que

$$a^{3} + C(3,1)a^{2}b + C(3,2)ab^{2} + b^{3} = 64$$

e que

$$a^{5} - C(5,1)a^{4}b + C(5,2)a^{3}b^{2} - C(5,3)a^{2}b^{3} + C(5,4)ab^{4} - b^{5} = 32.$$

3. Calcule o termo independente de x no desenvolvimento de $(x^{-\frac{1}{2}} - \sqrt[4]{x})^{18}$.

- 4. (a) Desenvolva o binômio $(2-x)^4$.
 - (b) Use o desenvolvimento obtido no item (a), fazendo $x = \frac{1}{100}$, para calcular $(1,99)^4$ com oito casas decimais

Soluções comentadas:

- 1. Como $A(n,3) = \frac{n!}{(n-3)!}$ e $C(n,4) = \frac{n!}{(n-4)!4!}$, temos que $\frac{n!}{(n-3)!} = \frac{3n!}{(n-4)!4!}$. Simplificando temos, $\frac{1}{n-3} = \frac{3}{4!}$, ou seja, $n-3=4\times 2$ e daí n=11.
- 2. Observe que, pela fórmula do Teorema Binomial:

$$a^{3} + C(3,1)a^{2}b + C(3,2)ab^{2} + b^{3} = (a+b)^{3}$$

е

$$a^{5} - C(5,1)a^{4}b + C(5,2)a^{3}b^{2} - C(5,3)a^{2}b^{3} + C(5,4)ab^{4} - b^{5} = (a-b)^{5}$$

Assim, temos $(a+b)^3 = 64$ e $(a-b)^5 = 32$. Daí, obtemos a+b=4 e a-b=2. Finalmente, resolvendo o sistema linear, temos a=3 e b=1.

3. O termo geral do desenvolvimento de $(A - B)^n$ é dado por:

$$T_{i+1} = (-1)^i C(n,i) A^{n-i} B^i$$

No caso considerado, temos $n=18, A=x^{-\frac{1}{2}}$ e $B=x^{\frac{1}{4}}$. Substituindo, temos:

$$T_{i+1} = (-1)^{i}C(18, i)(x^{-\frac{1}{2}})^{18-i}(x^{\frac{1}{4}})^{i}$$
$$= (-1)^{i}C(18, i)x^{\frac{3i-36}{4}}$$

Como estamos procurando o termo independente de x, devemos ter $\frac{3i-36}{4}=0$, ou seja i=12. Logo, o termo procurado é $T_{13}=(-1)^{12}C(18,12)=C(18,12)$.

4. Esta caiu na AP3 do semestre passado. O item (a) é fácil. Você saberia resolver o item (b) a partir da dica: Fazendo $x = \frac{1}{100}$, em (a), obtemos: $(1,99)^4 = \left(\frac{199}{100}\right)^4 = \left(2 - \frac{1}{100}\right)^4 = \dots$

Qualquer sugestão ou observação que você queira fazer, por favor, entre em contato pelo email petrucio@cos.ufrj.br.

 ${\it Jorge~Petr\'ucio~Viana}$ Coordenador da Disciplina MD/IM–UFF