Algorithms and data structures for read mapping

Based on
Lecture notes from Ron Shamir (Tel aviv Univ.)
And
Carl Kingsford (CMU)

Read mapping problem

• Input:

- Reference genome R (human: 3*109 bp)
- Set of reads S_1 , S_2 , ..., S_m (m = 10^9 , $|S_i|$ = 100)

Output

For each read S_i, the position in R that matches S_i
 (possibly allowing for a small number of mismatches (SNPs, errors))

Solutions

- · Naïve:
 - For each S_i
 - For each position p=l,...,|R|
 - Try matching S_i to the substring R[p-l+1,...,p]

• Complexity: O(lm|R|) exact or inexact matching

Solutions (2)

- · Less Naïve:
 - For each S_i
 - Match S_i to R using KMP [Knuth-Morris-Pratt]
- · Complexity:

$$O(m(l+|R|)) = O(ml+m|R|)$$
 exact matching

Solutions (3)

- Suffix tree approach:
 - Build suffix tree for R
 - For each S_i
 - Find matches of S_i to R by tree traversal from the root
- Time complexity: O(lm+|R|) exact matching
- Space Complexity: $O(|R|\log|R|)$ vs $|R|\log|\Sigma|$ for the text
- Can store Human Genome text in 750M bytes (6G bits) but, need ~64G bytes for the tree
 - large constants, hard to implement

Suffix Tries

SufTrie(s) = suffix trie representing string s.

Edges of the suffix trie are labeled with letters from the alphabet \sum (say {A,C,G,T}).

Every path from the root to a solid node represents a suffix of s.

Every suffix of s is represented by some path from the root to a solid node.

How many leaves will there be?

Searching Suffix Tries

Is "baa" a substring of s?

Follow the path given by the query string.

After we've built the suffix trees, queries can be answered in time:

O(|query|)

regardless of the text size.

Applications of Suffix Tries (1)

Check whether q is a **substring** of T:

Follow the path for q starting from the root. If you exhaust the query string, then q is in T.

Check whether q is a **suffix** of T:

Follow the path for q starting from the root.

If you end at a leaf at the end of q, then q is a suffix of T

Count # of occurrences of q in T:

Follow the path for q starting from the root. The number of leaves under the node you end up in is the number of occurrences of q.

Find the longest repeat in T:

Find the deepest node that has at least 2 leaves under it.

Find the lexicographically (alphabetically) first suffix:

Start at the root, and follow the edge labeled with the lexicographically (alphabetically) smallest letter.

Applications of Suffix Tries (II)

Find the longest common substring of T and q:

- Walk down the tree following q.
- If you hit a dead end, save the current depth, and follow the suffix link from the current node.
- When you exhaust q, return the longest substring found.

T = abaabaq = bbaa

q = abbaaa

Suppose we want to build suffix trie for string:

Building a suffix trie

s = abbacabaa

We will walk down the string from left to right:

building suffix tries for s[0], s[0..1], s[0..2], ..., s[0..n]

To build suffix trie for s[0..i], we will use the suffix trie for s[0..i-1] built in previous step

To convert $SufTrie(S[0..i-I]) \rightarrow SufTrie(s[0..i])$, add character s[i] to all the suffixes:

abbacabaa i=4

Need to add nodes for the suffixes:

abbac bbac bac

ac

C

Purple are suffixes that will exist in

SufTrie(s[0..i-1]) Why?

How can we find these suffixes quickly?

abbacabaa i=4

Need to add nodes for the suffixes:

abbac bbac bac ac c Purple are suffixes that will exist in SufTrie(s[0..i-1]) Why?

How can we find these suffixes quickly?

SufTrie(abba)

Where is the new deepest node? (aka longest suffix)

How do we add the suffix links for the new nodes?

How many nodes can a suffix trie have?

- $s = a^n b^n$ will have
 - I root node
 - n nodes in a path of "b"s
 - n paths of n+1 "b" nodes
- Total = $n(n+1)+n+1 = O(n^2)$ nodes.
- This is not very efficient.
- How could you make it smaller?

Suffix trees

A More Compact Representation

 Compress paths where there are no choices.

 Represent sequence along the path using a range [i,j] that refers to the input string s.

Space usage:

- In the compressed representation:
 - # leaves = O(n) [one leaf for each position in the string]
 - Every internal node is at least a binary split.
 - Each edge uses O(1) space.
- Therefore, # number of internal nodes is about equal to the number of leaves.
- And # of edges ≈ number of leaves, and space per edge is O(1).
- Hence, linear space.

Constructing Suffix Trees -Ukkonen's Algorithm

- The same idea as with the suffix trie algorithm.
- Main difference: not every trie node is explicitly represented in the tree.
- Solution: represent trie nodes as pairs (u, α), where u is a real node in the tree and α is some string leaving it.
- Some additional tricks to get to O(n) time.

 $suffix_link[v] = (u, ab)$

Suffix Arrays

- Even though Suffix Trees are O(n) space, the constant hidden by the big-Oh notation is somewhat "big": ≈ 20 bytes / character in good implementations.
- If you have a 10Gb genome, 20 bytes / character = 200Gb to store your suffix tree. "Linear" but large.
- Suffix arrays are a more efficient way to store the suffixes that can do most of what suffix trees can do, but just a bit slower.
- Slight space vs. time tradeoff.

Example Suffix Array

s = attcatg\$

- Idea: lexicographically sort all the suffixes.
- Store the starting indices of the suffixes in an array.

```
I attcatg$
2 ttcatg$
3 tcatg$
4 catg$
5 atg$
6 tg$
7 g$
8
```

sort the suffixes alphabetically

the indices just "come along for the ride"

8 \$
5 atg\$
1 attcatg\$
4 catg\$
7 g\$
3 tcatg\$
6 tg\$
2 ttcatg\$

index of suffix

suffix of s

Another Example Suffix Array

s = cattcat\$

- Idea: lexicographically sort all the suffixes.
- Store the starting indices of the suffixes in an array.

sort the suffixes alphabetically

the indices just "come along for the ride"

index of suffix

suffix of s

Search via Suffix Arrays

s = cattcat\$

- Does string "at" occur in s?
- Binary search to find "at".
- What about "tt"?

Counting via Suffix Arrays

```
s = cattcat$
```

```
8 $
6 at$
2 attcat$
5 cat$
I cattcat$
7 t$
4 tcat$
3 ttcat$
```

- How many times does "at" occur in the string?
- All the suffixes that start with "at" will be next to each other in the array.
- Find one suffix that starts with "at" (using binary search).
- Then count the neighboring sequences that start with at.

Constructing Suffix Arrays

- Easy O(n² log n) algorithm:
 sort the n suffixes, which takes O(n log n) comparisons, where each comparison takes O(n).
- There are several direct O(n) algorithms for constructing suffix arrays that use very little space.
- The Skew Algorithm is one that is based on divide-and-conquer.
- An simple O(n) algorithm: build the suffix tree, and exploit the relationship between suffix trees and suffix arrays (next slide)

Relationship Between Suffix Trees & Suffix Arrays

Red #s = starting position of the suffix ending at that leaf

Leaf labels left to right: 86251743

Edges leaving each node are sorted by label (left-to-right).

8 \$
6 at\$
2 attcat\$
5 cat\$
1 cattcat\$
7 t\$
4 tcat\$

3 ttcat\$