[2024-2025 春夏] 线性代数 II(H) 期末考前复习

1 小测 1-吴志祥班

第 1 大题每问 6 分, 第 2-5 大题每题 10 分, 共计 100 分.

- 1. 设 $V = \mathbb{R}^3$,线性泛函 $P_1, P_2, P_3 \in V'$ 满足: $P_1(x_1, x_2, x_3) = x_1, P_2(x_1, x_2, x_3) = x_2, P_3(x_1, x_2, x_3) = x_3$,算子 $T \in \mathcal{L}(V), T(x_1, x_2, x_3) = (5x_1 \sqrt{3}x_2 2\sqrt{3}x_3, -\sqrt{3}x_1 + 7x_2 2x_3, 2\sqrt{3}x_1 + 2x_2 + 4x_3)$. 求:
 - (1) T' 在 (P_1, P_2, P_3) 下的矩阵;
 - (2) <math><math>f $(x_1, x_2, x_3) = x_1 + x_2 + x_3, <math>$ <math><math>T'(f);
 - (3) 求 T 的奇异值与极分解;
 - (4) 求 T^* 以及正算子 R_1 满足 $R_1^2 = TT^*$;
 - (5) 求算子 R_2 使得 $R_2^2 = T$;
 - (6) 求规范正交基使得 T 在该基下为对角矩阵;
 - (7) 求规范正交基使得 T 在该基下为对角线上为 1 阶矩阵或形如 $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ (b>0) 的二阶矩阵的准 对角矩阵;
 - (8) 求 T 的极小多项式;
 - (9) 求 T 的所有不变子空间;
 - (10) 验证 Cayley-Hamilton 定理.

2. 求多项式 $p(x) \in \mathcal{P}_3(\mathbb{R})$ 使得 $\int_{-\pi}^{\pi} |\sin x - p(x)|^2 dx$ 最小.

3. (P144 T14) 设 e_1,\dots,e_n 是 V 的规范正交基,并设 v_1,\dots,v_n 是 V 中的向量使得对每个 j 均有

$$||e_j-v_j||<\frac{1}{\sqrt{n}}.$$

证明 v_1, \ldots, v_n 是 V 的基.

4. (P90 T37)

设 U 是 V 的子空间, $\pi:V\to V/U$ 是通常的商映射,则 $\pi'\in \mathscr{L}((V/U)',V')$.

- (a) 证明 π' 是单的.
- (b) 证明 range $\pi' = U^0$.
- $(c)\pi'$ 是 (V/U)' 到 U^0 的同构.

注意 (c) 中的同构并不依赖于其中任何一个向量空间的基的选取,因而是自然的.事实上,这里并没有假定这些向量空间是有限维的.

5. (P89 T30)

设 V 是有限维的, $\varphi_1, \ldots, \varphi_m$ 是 V' 中的一个线性无关组. 证明

 $\dim ((\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m)) = (\dim V) - m.$

Tips: 黑板上有个提示: 空间直线与平面以及相互位置关系; 里斯表示定理.

2 小测 2-吴志祥班

- 1. 已知 $\pi_1: x-y+z=1, \pi_2: x+2y+z=3, L_2: \frac{x-1}{2}=\frac{y+3}{-1}=\frac{z-4}{0}.$ 求:
 - (1) 求 π_1 和 π_2 交线 L_1 的点方向式方程;
 - (2) 求 π_1, π_2 之间夹角的余弦;
 - (3) 求 L_2 的方向矢量的方向余弦;
 - (4) 求 L₁,L₂ 之间距离;
 - (5) 求过 L_1 和 3x+2y+4z=6 垂直的平面方程;
 - (6) 求点 (1,1,1) 到 L_2 的距离;
 - (7) 求 L_2 上 (-1,-2,4) 到点 (1,-3,4) 之间距离;

- 2. $\exists \exists \exists T \in \mathscr{L}(\mathbb{R}^4), T(x_1, x_2, x_3, x_4) = (-2x_2 + x_4, 2x_1 + x_3, x_2 + 2x_4, -x_1 + 2x_3).$
 - (1) 求 $R_1\in\mathcal{L}(\mathbb{R}^4)$ 使得 $R_1^2=T$; 怀疑是 $T,R_1\in\mathcal{L}(\mathbb{C}^4)$, 否则前两问的答案都应该为"不存在".
 - (2) 求规范正交基使得 T 在该基下为对角矩阵;
 - (3) 求规范正交基使得 T 在该基下为对角线上为一阶矩阵或二阶矩阵的准对角矩阵;
 - (4) 求 T 的奇异值与极分解;
 - (5) 求 T^* 以及正算子 R_2 满足 $R_2^2 = TT^*$;
 - (6) 求 T 的极小多项式;
 - (7) $\exists \exists f(x_1, x_2, x_3, x_4) = x_1 + x_2 + x_3 + x_4, \ \ \ \ \ \ \ \ \ T'(f)(x_1, x_2, x_3, x_4).$
 - (8) 设 $P_i(x_1,x_2,x_3,x_4) = x_i(i=1,2,3,4)$, 求 T' 在 (P_1,P_2,P_3,P_4) 下的矩阵;
 - (9) 求所有 T- 不变子空间.

- 3. (1) 求多项式 $q(x) \in \mathscr{P}_2(\mathbb{R})$ 使得对 $\forall p(x), \int_0^1 p(x) \sin(\pi x) \mathrm{d}x = \int_0^1 p(x) q(x) \mathrm{d}x;$
 - (2) 求多项式 $h(x) \in \mathscr{P}_2(\mathbb{R})$ 使得 $\int_0^1 |\mathbf{e}^x h(x)|^2 dx$ 最小.

4. (P89 T30)

设 V 是有限维的, $\varphi_1, \ldots, \varphi_m$ 是 V' 中的一个线性无关组. 证明

$$\dim ((\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m)) = (\dim V) - m.$$

5. (P109 T36)

找出一个向量空间 V 和一个算子 $T\in\mathcal{L}(V)$,以及 V 的在 T 下不变的子空间 U,使得 T/U 的某个本征值不是 T 的本征值.

3 复习题-刘康生班

- 1. 列断下列命题的真伪, 若命题为真, 给出简要证明; 若命题为伪, 举出反例.
 - (1) $T \in \mathcal{L}(V), W \subset V$ 是 T-不变子空间,则存在补空间 W' 也是 T-不变的.
 - (2) 设 V,W 都是内积空间,对 $\alpha \in V, \beta \in W$ 定义 $T \in \mathcal{L}(V,W)$, $Tv = \langle v, \alpha \rangle \beta, \forall v \in V$. 则 $T^*w = \langle w, \beta \rangle \alpha, \forall w \in W$.
 - (3) 设 V 为 \mathbb{R} 上 n 维线性空间,T 为 V 上的非幂零变换,且满足 $\operatorname{Ker} T^{n-1} \neq \operatorname{Ker} T^{n-2}$. 则 T 的极小多项式为 $m(\lambda) = \lambda^{n-1}(\lambda a)$, 其中 $0 \neq a \in \mathbb{R}$.
 - (4) 设 $A \in \mathbb{R}^{n \times n}$, $S_1 = A^T + A$, $S_2 = A^T A$, 则 A 是正规矩阵的充要条件是 $S_1S_2 = S_2S_1$.
 - (5) 设 $A \in \mathbb{C}^{n \times n}$ 是正规的,则 A 的实部和虚部矩阵都是 $\mathbb{R}^{n \times n}$ 中的对称矩阵.

2. 求下列矩阵的 Jordan 型:

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 & 1 & 3 \end{bmatrix}$$

- 3. 设 V 是 $\mathbb C$ 上的线性空间, $\dim V=n,\ T\in \mathcal L(V),\ r(T)=n-3>0,\ 分别对下面两种情况求 <math>T$ 的 Jordan 型,并判断 T 的平方根的存在性.
 - (1) $T^{n-4} \neq 0, T^{n-3} = 0.$
 - (2) $T^{n-3} \neq 0, T^{n-2} = 0.$

4. 求下列变换的所有不变子空间:

$$(1) \ \sigma_{A} \in \mathcal{L}(\mathbb{R}^{2}), A = \begin{bmatrix} 0 & 1 \\ a & 0 \end{bmatrix};$$

(2) $T \in \mathcal{L}(V)$, $\dim V = n$, $T^n = 0$, $T^{n-1} \neq 0$;

(2)
$$T \in \mathcal{L}(V)$$
, $\dim V = n$, $T^n = 0$, $T^{n-1} \neq 0$;
(3) $\sigma_A \in \mathcal{L}(\mathbb{C}^5)$, $A = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 1 & 3 \end{bmatrix}$.

5. 设

$$A = \begin{bmatrix} 0 & 20 & 23 & 0 \\ 0 & 0 & 6 & 28 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

证明:不存在复矩阵 B 使得 $B^2 = A$.

证明: T 是一个镜面映像.

7. 设 $V = \mathbb{R}^3$, $X = (x_1, x_2, x_3)$, $Y = (y_1, y_2, y_3) \in V$, 定义

$$\langle X, Y \rangle_V = a(x_2 - x_1)(y_2 - y_1) + bx_2y_2 + x_3y_3 \quad (a, b > 0)$$

- (1) 证明: $\langle X,Y\rangle_V$ 是 \mathbb{R}^3 上的一个内积;
- (2) 求 V 的一组标准正交基 (按照内积 $\langle \cdot, \cdot \rangle_V$);
- (3) 设 $f(X) = x_1 + x_2 + x_3$, 求 $\beta \in V$, 使得

$$f(X) = \langle X, \beta \rangle_V, \quad \forall X \in V.$$

8. 考虑二直线

$$L_1: \begin{cases} x = t \\ y = -t - 1 \\ z = 3t \end{cases}, L_2: \begin{cases} ax + 2y + z = 0 \\ x - y - z + d = 0 \end{cases}$$

求 a,d 满足的条件, 使得二直线

- (1) 平行;
- (2) 重合;
- (3) 相交;
- (4) 异面.

9. 设 $\dim V = 7, T \in \mathcal{L}(V), N(T^4) < N(T^5)$, 求 T 的极小多项式.

10. 设
$$A = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ -1 & 1 & 2 \end{bmatrix}$$
.

- (a) 证明 A 是正规的;
- (b) 求正交矩阵 S 使得 $A^T = SA$;
- (c) 将 S 表为镜面像的乘积.

11. 尽可能多地给出正规算子的刻画. 例如,基于极分解的刻画.