PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLIS	HED U	NDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification 6:		(11) International Publication Number: WO 99/03	929
C09C 1/30	A1	(43) International Publication Date: 28 January 1999 (28.0	1.99)
 (21) International Application Number: PCT/US (22) International Filing Date: 9 December 1997 (1997) (30) Priority Data: 08/892,152 14 July 1997 (14.07.97) (71) Applicant: MINNESOTA MINING AND MANUFING COMPANY [US/US]; 3M Center, P.O. Bosaint Paul, MN 55133-3427 (US). (72) Inventor: FAROOQ, Omar; P.O. Box 33427, Saint Information of State of State of State of Intellectual Counsel, P.O. Box 33427, Saint Paul, MN 551 (US). 	O9.12.9 FACTUI ox 3342 Paul, M a Minin	BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM BY, KG, KZ, MD, RU, TJ, TM), European patent (AT CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, ML, MR, NE, SN, TD, TG). Published With international search report.	, GE, , LK, , NO, , TR, , GM, , AZ, , BE, , NL,
(57) Abstract Microporous fluorinated silica agglomerates are discl particle sizes with an alkylamine (or a hindered amine) and	losed an	HERATE AND METHOD OF PREPARING AND USING SAME It their method of preparation from a reaction of colloidal silica of their acid or with alkylammonium fluroride, under convenient labor interact with dispersants surrounding inkjet ink pigment particles	small atory

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
M	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
T	Austria	FR	France	LU	Luxembourg	SN	Senegal
U	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
Z	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
A	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
В	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
E	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
F	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
G	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
J	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
R	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
Y	Belarus	IS	Iceland	MW	Malawi	US	United States of America
A.	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
F	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
G	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
H	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
I	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	277	Zilibaowe
M	Cameroon		Republic of Korea	PL	Poland		
N	China	KR	Republic of Korea	PT	Portugal		
U	Cuba	KZ	Kazakstan	RO	Romania		
Z	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
E	Germany	LI	Liechtenstein	SD	Sudan		
K	Denmark	LK	Sri Lanka	SE	Sweden		
E	Estonia	LR	Liberia	SG	Singapore		

Microporous Fluorinated Silica Agglomerate and Method of Preparing and Using Same

5 Field of Invention

20

25

30

This application relates to preparation of microporous fluorinated silica particles.

Background of Invention

10 Fluorinated silica supports containing organo-chromium compound or organomagnesium complexes were disclosed as a catalysts for the polymerization of ethylene and its copolymerization with other olefins in U.S. Pat. Nos. 4,100,337 and 4,359,403. The catalysts were prepared by mixing particles of reactive silica carrying superficial active -OH or oxide groups with a fluorine compound e.g., ammonium fluoride, ammonium tetrafluoroborate or ammonium hexafluorosilicate and heating the mixture at 50°-700°C in presence of a solvent.

Japanese Patent Publication J03279209-A disclosed a procedure of fluorination of white silica particle from tetraethylorthosilicate with hydrogen fluoride and heating the mixture to 600°C to obtain fluorinated black silica particle.

U.S. Pat. No. 5,064,796 disclosed an olefin polymerization catalyst produced by reacting a fluorinated silica support with a vanadium compound. The fluorinated silica is produced by mixing silica with a fluorine compound e.g., hydrogen fluoride, ammonium fluoride or a metal fluoride at 200-1000°C.

U.S. Pat. No. 4,822,903 disclosed a fluorinated siliceous catalyst for the catalytic synthesis of aromatic/aliphatic nitriles and is comprised of a plurality of silica particulates with the fluorine content ranging from about 0.1 to about 1% by weight based upon silica. The product gel was comminuted to grains which has a specific surface area ranging from about 200-250 m²/g, an average pore volume ranging from about 1-1.3 cm³/g and an average pore diameter ranging from about 100-150 A⁰. The fluorinated silica was characterized as a microporous acid silica at a pH 1-3 for use as a catalyst.

Summary of Invention

10

15

20

What is needed is a method of preparing microporous fluorinated silica agglomerate. The present invention solves that problem by utilizing a structuring agent for the preparation of microporous fluorinated silica agglomerate in a fluoride-ion medium. Whereas such procedure is known to have been used for the preparation of silica-rich zeolite (U.S. Pat. Nos. 3,702,886; 4,061,724; 4,073,865; and French Patent Publications 2,564,451 and 2,567,868), the present invention concerns the making of fluorinated silica in agglomerated form.

The present invention discloses the preparation of microporous fluorinated silica particles by reaction of colloidal silica of small particle sizes with an alkylamine (or a hindered amine) and hydrofluoric acid or with alkylammonium fluoride, under convenient laboratory conditions at an atmospheric pressure.

The materials in the dry form are microcrystalline or amorphous depending on the type of alkylamine used. The microporous characteristics of the silica agglomerate were established by scanning electron microscope (SEM), transmission electron micrography (TEM) and BET surface areas analyses.

The fluorinated silica agglomerate can be used as a pigment management system in the preparation of inkjet receptor media.

A feature of the fluorinated silica agglomerate is its functionalized character to permit interaction with dispersants that surround pigment particles of an inkiet ink.

An advantage of the fluorinated silica agglomerate is its ease of preparation under convenient and conventional laboratory and manufacturing conditions.

Further features and advantages emerge from a discussion of embodiments of the invention.

Embodiments of Invention

The use of fluoride ion as a flux component for the crystal growth
from a melt is as well known as its mineralizing role in hydrothermal synthesis.
But it is only recently that the role of fluoride ion was established in the

development of silica-rich microporous materials for the silica-rich zeolites discussed above. In this process the replacement of hydroxide anion by the fluoride ion as mineralizers make it possible to obtain silica-rich zeolite in acid pH.

In the present invention, the starting silica source is colloidal silica (commercially available under the brand of "Nalco 2326" from Nalco Chemical Co.) of very small particle size (~2-5 nm) stabilized at pH ~12 wherein the mobilizing ions are the OH ions.

5

10

15

20

25

30

This silica sol can be diluted with water and mixed with varying amount of alkylamine at ambient temperature. Use of hydrofluoric acid to fluorinate the silica can be arranged in a concentration of from about 40% to about 50% and preferably about 48% in water and prior to use, was further diluted to 20-24 % with deionized water.

Addition of the diluted hydrofluoric acid to the mechanically stirred mixture of silica and alkylamine at ambient temperature is likely to cause a mild exothermicity which can be further cooled down by adding deionized water as required.

After the addition of all the hydrofluoric acid, the system can be stirred for half an hour to disperse the formed gel and then heated to vigorous water-reflux under mechanical stirring at about 100-200 rpm. The pH in the system was ~4-6 in the beginning of the reaction and at this pH, F ions are the mobilizing agents from both hydrofluoric acid as well as from *in-situ*-generated alkylammonium fluoride.

In an alternative embodiment, pre-prepared alkylammonium fluorides can be used as the mobilizing F ion source. At the end of the reaction, the pH of the medium is about 7-8.

In the present invention, colloidal silica of very small particle size is used ranging from about 5 to about 10 nm and preferably from about 2 to about 5 nm. Numerous sources of silicon having a degree of oxidation of +4 can be used. Examples of suitable silica sources can include, but are not limited to those selected from silica hydrogels, aerogels, xerogels, and colloidal suspensions

thereof; precipitated silica; alkylorthosilicates; hydrolyzable tetravalent silicon compound, (such as silicon halides) and the like.

In order to make agglomeration of the silica particles, a structuring agent such as an alkylammonium cation was used. Fluorinated silica particles form agglomeration around the cation, wherein the cation acts as a templating cation. Structuring agents suitable for use according to the present invention are:

(a) quaternary alkylammonium Fluoride of formula I for the cation:

$$\begin{bmatrix} R_4 & & \\ & &$$

wherein R₁ to R₄ may be H or alkyl group or hybrid thereof representing primary, secondary, tertiary and quaternary alkylammonium cations.

(b) alkylamines of formula II:

wherein R₁ to R₄ may vary between H and alkyl groups representing primary, secondary and tertiary alkylamine. The R₁-R₃ may altogether represent such alkyl groups as to form cyclic group(s) to give a hindered amine.

(c) any compound in Formula I or II in which nitrogen atom may be replaced by phosphorus atom.

Examples of suitable structuring agents consisting of alkylamines and the corresponding quaternary salts may include but are not limited to those selected from alkylamines such as methyl-, ethyl-, propyl- butyl-, amyl-, cycloalkyl-, alkylaryl-, aralkyl-, dialkyl-, trialkylamines. In the preferred

25

embodiment of the inventions, the structuring agents are the propylammonium cations including primary, secondary and tertiary propylammonium cations. More specifically the structuring agents are the isopropylammonium cations including isopropyl-, diisopropyl- and triisopropylammonium cations. And even more specifically, isopropylammonium cation. The structuring agents may also a hindered amine e.g., a quinuclidine. The structuring agents may be introduced in the form of a base or a salt both being aqueous soluble, which determines the pH range of the reaction medium.

The preparation of fluorinated silica of the present invention may be effected by heating the reaction mixture to a temperature of from approximately 60° to 200°C, preferably from 60° to 150°C over a period of time of approximately 1 to 5 days depending on the alkylamine used under a constant mechanical stirring at 100 to 200 rpm. The system is operated under one atmospheric pressure (no closed system e.g., autoclave, no autogenic pressure) under commonly used laboratory conditions easily adaptable for industrial scale up, unlike those closed systems required for the preparation of siliceous zeolites in a fluoride ion-medium.

After stipulated time, there is obtained a dispersion of white opaque material in about 14-17% solid. The system may further be concentrated to obtain solid in the range of 18-23%. The dispersion thus obtained are suitable for use as coatings after appropriate admixing with suitable binder(s) onto various substrates without further precipitation, isolation, separation or modification or treatment. The general procedure of preparation of the developed fluorinated silica agglomerate is outlined below in Formula III

25

5

10

15

20

Formula III

SiO₂ +
$$[R-NH_3]^+$$
 F⁻ $\xrightarrow{\Delta}$ F-Silica-Agglomerate

$$R = i-C_3H_7-$$

$$n-C_3H_7-$$

$$n-C_4H_9-$$

$$n-C_6H_{13}-$$

$$CH_3-$$
Or $R N^+H_3 = N^+H$

In the preparation of the fluorinated silica in the present invention, hydrofluoric acid or its alkylammonium salt was used as a dilute aqueous solution and when added to the mixture of silica source and/or alkylamine at ambient temperature, no observable corrosion was detected in the glassware or glass-stirrer which were repeatedly used. The hydrofluoric acid was therefore, found to be rapidly reacting with the amine in a reaction where it is used as such.

10 Examples

5

15

20

Example-1:

(a) SiO_2 -i-pr-NH₂-HF system:

To 100g (15% solid, 15g, 0.245 mole) of a colloidal silica sol (Nalco 2326, average particle size ~ 4 nm) in a three-neck flask fitted with a reflux condenser and a mechanical stirrer was added 45g (0.75 mole) isopropylamine under stirring at room temperature. To the mixture was dropwise added, at room temperature, after dilution with 100g de-ionized water, 30g (50% in water, 15g, 0.75 mole) hydrofluoric acid under stirring. The system was somewhat exothermic and during the addition of acid, 50g de-ionized water was added under stirring to disperse the formed gel. After the addition of all the acid, the system was heated to vigorous refluxing of water under mechanical stirring of about 150-200 rpm. After 3-5 days a white colloidal system resulted.

The material in combination with a binder copolymer of n-vinylpyrrolidone and dimethylaminoethylmethacrylate (copolymer-958, from ISP) was coated onto a polyvinyl chloride (PVC) base and dried at 100°C for 4 mins. The dry coating was subjected to SEM which showed a highly microporous surface. The sample had a surface porosity of 0.1-0.7µm.

The colloidal material in very dilute suspension was then subjected to TEM analysis which shows a microcrystalline morphology. Transmission electron micrograph of the sample, further, show that the material exists in cluster or agglomerate form - fluorinated silica agglomerate.

Part of the resulting sol was dried at 110°C to obtain a white powder which was analyzed for elements. The elemental analysis was as follows: %C 17.4, %H 5.1, %N 6.6, %Si 24.0, %F 26.0

15

10

5

X-ray diffraction pattern (Cu-Kα radiation, Philips vertical diffractometer) indicated that some of the developed materials are crystalline while some of them are amorphous. As carbon-chain length in the amine is decreased, crystallinity is decreased. Thus, amine of C₆-carbon gives more crystalline material than that of C₁-carbon. Material with cyclic amine e.g., with nuclidine gives completely amorphous material. The x-ray reflection peaks in any of the sample does not match with either mica or crystalline silica or pure-silica zeolite. The sharp x-ray diffraction pattern indicates ordered crystalline phase but the slopy and broad reflection at higher 2θ indicates some degree of disordered structures in the bulk.

25

Some of the fluorinated silica from isopropylammonium fluoride has been subjected to thermogravimatric analysis from ambient to 600°C in a platinum pan. About 14% weight loss was observed at about 225°C. The volatile components as identified by their mass spectra are found to be isopropylamine,

30 isopropylammonium fluoride and water.

BET specific surface area measurement shows that the sample has a SSA of about $210-250\text{m}^2/\text{g}$ with a pore volume of 0.12cc/g and a pore diameter of $110-140\text{A}^0$.

(b) SiO₂-i-pr-NH₃+F system:

To 100g (15% solid, 15g, 0.245 mole) of a colloidal silica sol (Nalco 2326, average particle size ~ 4 nm) in a three-neck flask fitted with a reflux condenser and a mechanical stirrer was added 59.3g (0.75 mole) isopropylammonium fluoride [prepared from 45g (0.75 mole) isopropylamine in 50g water and 30g (50% in water, 0.75 mole) hydrofluoric acid in 50g water at room temperature] under stirring at room temperature. The system was somewhat exothermic and during the addition of the ammonium salt 100g de-ionized water was added under stirring to disperse the formed gel. The system was heated to vigorous refluxing of water under mechanical stirring of about 200 rpm. After 5-6 days a white colloidal system resulted.

15

20

25

Example-2:

SiO₂-(i-pr)₂-NH-HF system:

To 100g (15% solid, 15g, 0.245 mole) of a colloidal silica sol (Nalco 2326, average particle size ~ 4 nm) in a three-neck flask fitted with a reflux condenser and a mechanical stirrer was added 75.8g (0.75 mole) diisopropylamine under stirring at room temperature. To the mixture was dropwise added, at room temperature, 30g (50% in water, 15g, 0.75 mole) hydrogen fluoride under stirring. The system was somewhat exothermic and during the addition of acid 100g de-ionized water was added. After the addition of all the acid, the system was heated to vigorous refluxing of water under mechanical stirring of about 200 rpm. After 3-5 days a white colloidal system resulted.

Example-3:

 SiO_2 -n-pr-NH₂-HF system:

To 100g (15% solid, 15g, 0.245 mole) of a colloidal silica sol (Nalco 2326, average particle size ~ 4 nm) in a three-neck flask fitted with a reflux condenser and a

mechanical stirrer was added 45g (0.75 mole) *n*-opropylamine under stirring at room temperature. To the mixture was dropwise added, at room temperature, 30g (50% in water, 15g, 0.75 mole) hydrogen fluoride under stirring. The system was somewhat exothermic and during the addition of acid 100g de-ionized water was added. After the addition of all the acid, the system was heated to vigorous refluxing of water under mechanical stirring of about 200 rpm. After 5-6 days a white colloidal system resulted.

Example-4:

5

25

30

The procedure in Example-3 was repeated replacing n-propylamine by n-butylamine and n-hexylamine to obtain the dispersion of aggregated silica particles.

Example-5:

15 To 40g (15% solid, 6g, 0.10 mole) of a colloidal silica sol (Nalco 2326, average particle size ~ 4 nm) in a three-neck flask fitted with a reflux condenser and a mechanical stirrer was added 10g (0.08 mole) quinuclidine under stirring at room temperature. To the mixture was dropwise added, at room temperature, after dilution with 110g de-ionized water, 8g (50% in water, 4g, 0.20 mole) hydrofluoric acid under stirring. After the addition of all the acid, the system was heated to vigorous refluxing of water under mechanical stirring of about 100-200 rpm for 18 hrs. After this period of time an opaque colloidal dispersion resulted.

The material in combination with a binder copolymer of n-vinylpyrrolidone and dimethylaminoethylmethacrylate (copolymer-958, from ISP) was coated onto a polyvinyl chloride (PVC) base and dried at 100°C for 4 mins. The dry coating was subjected to SEM analysis which showed a highly microporous surface. The sample had a surface porosity ranging from 0.1 to 1.2μm.

Preferred fluorinated silica agglomerates are those fluorinated silica wherein the silicon center is hexacoordinated.

Fluorinated silica agglomerates can be used in any mechanism that requires both a microporous particulate regime and a functional surface for interaction with other compositions favorably with fluorinated surfaces of the particles of the agglomerates. One preferred usage is as a pigment management system in association with a fluid management system in the formation of inkjet receptor media for pigment-based and dye-based inkjet inks.

5

The invention is not limited to the above embodiments. The claims follow.

What is claimed is:

10

25

1. A composition of matter, comprising:

fluorinated silica, SiO₂, RNH₃*F⁻ and H₂O wherein other materials

except the fluorinated silica are occluded in the bulk of material, wherein R is
selected from the group consisting of i-C₃H₇; n-C₃H₇; i-C₄H₉; i-C₄H₇; and CH₃.

- 2. The composition of claim 1 prepared by digesting colloidal silica of very small particle size with a source of fluoride ion under heating and mechanical agitation and wherein the preparative conditions involve vigorous water-reflux and mechanical agitation of about 100-200 revolutions per minute.
- 3. The composition of claims 1 or 2 wherein the F⁻ comprises alkylammonium fluoride, which is derived from an alkylamine of C₆-C₁ carbon and
 HF.
- The composition of any of claims 1-3 wherein the composition is in the form of a colloidal dispersion in aqueous medium or in the form of a fluorinated silica agglomerate impregnated with alkylamine, alkylammonium
 fluoride, silica and water which are occluded in the bulk of the material and wherein occluded labile compounds can be removed by thermal/vacuum means.
 - 5. The composition of claim 4 wherein the fluorinated silica is in the form of microcrystals with crystallite sizes in the range of 100-500A⁰.
 - 6. The composition of claim 4 wherein the fluorinated silica is in agglomerated form and has a BET SSA in the range of 210-240 m^2/g .
- 7. A method of making the fluorinated silica agglomerate of composition of claim 1, comprising the steps of

WO 99/03929

10

(a) reacting colloidal silica with a fluorinated compound according the following equation:

SiO₂ + [R-NH₃]⁺ F⁻
$$\xrightarrow{\Delta}$$
 F-Silica-Agglomerate

R- = i-C₃H₇-
n-C₃H₇-
n-C₄H₉-
n-C₆H₁₃-
CH₃-
Or R N⁺ H₃ = N⁺H

- 5 (b) forming a dispersion of the F-Silica Agglomerate.
 - 8. The method of claim 7, wherein the reacting step comprises digesting colloidal silica of very small particle size with a source of fluoride ion under heating and mechanical agitation.

9. The method of claim 7, wherein the reacting step comprises adding dilute hydrofluoric acid solution to a mixture of colloidal silica and an alkylamine at ambient temperature followed by aqueous refluxation.

INTERNATIONAL SEARCH REPORT

In ational Application No -PCT/US 97/22464

			· · · · · · · · · · · · · · · · · · ·
A. CLASS IPC 6	IFICATION OF SUBJECT MATTER C09C1/30		
According t	o International Patent Classification (IPC) or to both national classifi	cation and IPC	
	SEARCHED		
IPC 6	ocumentation searched (classification system followed by classifica C09C		
	tion searched other than minimum documentation to the extent that		
	ata base consulted during the international search (name of data b	ase and, where practical, search terms used)	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the re	levant passages	Relevant to claim No.
X	US 5 320 822 A (G.A. OZIN ET AL. 1994 see column 6, line 33-50 see column 10, line 10-39; claim 1,4,12,16		1,3,4,7,
Α	US 4 054 689 A (D.W. CALVIN) 18 1977 see claim 1	October	1,7
Α	EP 0 249 524 A (RHONE-POULENC CH December 1987 see claims 1,15,20	IMIE) 16	1,7
Furth	er documents are listed in the continuation of box C.	Patent family members are listed in	n annex.
"A" docume conside	egories of cited documents : nt defining the general state of the art which is not ared to be of particular relevance	"T" later document published after the interior priority date and not in conflict with the cited to understand the principle or the invention	the application but
filing de "L" documer	nt which may throw doubts on priority claim(s) or	"X" document of particular relevance; the cl cannot be considered novel or cannot i involve an inventive step when the doc	be considered to
citation	s cited to establish the publication date of another or other special reason (as specified) nt referring to an oral disclosure, use, exhibition or leans	"Y" document of particular relevance; the ct- cannot be considered to involve an inv document is combined with one or more	aimed invention entive step when the re other such docu-
"P" documer	nt published prior to the international filing date but an the priority date claimed	ments, such combination being obvious in the art. "&" document member of the same patent for	
Date of the a	ctual completion of theinternational search	Date of mailing of the international search	ch report
	/ March 1998	08/04/1998	
Name and m	ailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Van Bellingen, I	-

INTERNATIONAL SEARCH REPORT

Information on patent family members

h .attonal Application No PCT/US 97/22464

Patent of cited in se	documen earch rep	•	Publication date	Patent family member(s)	Publication date
US 532	20822	Α	14-06-94	AT 143652 T DE 69214294 D DE 69214294 T EP 0613450 A JP 7503693 T WO 9310044 A	15-10-96 07-11-96 27-02-97 07-09-94 20-04-95 27-05-93
US 405	54689	Α	18-10-77	NONE	
EP 249	9524	A .	16-12-87	FR 2599748 A FR 2614031 A BR 8703378 A CA 1300821 A CN 1027173 B DE 3776416 A JP 5022645 B JP 63040715 A JP 9175811 A MX 169545 B	11-12-87 21-10-88 15-03-88 19-05-92 28-12-94 12-03-92 30-03-93 22-02-88 08-07-97 12-07-93