<u>Claim</u>	[0, b) open in A [but not in X]
<u>Pf</u>	[0, b) = A cap (-1, b)
<u>Claim</u>	if a > 0, then [a, b) not open in A
<u>Pf</u>	must show: no V open in X s.t. [a, b) = A cap V
if V exists, then there is $\delta > 0$ s.t. B(a, δ) sub V after shrinking δ , can assume B(a, δ) sub A but then B(a, δ) sub A cap V = [a, b)	

U open in A iff U = A cap V for some V open in X

take X = R and $A = [0, \infty)$ analytic

Warmup X topological space, x in X
 Df Y sub X is a neighborhood of x iff x in U sub Y for some open U sub X
 Df the interior of Y sub X is the set

Int(Y) = bigcup_{U sub Y, open in X} U = {x in X | Y is a nbd of x} [why?]

in the analytic topology on R, compute:

Int([0, 1)) = (0, 1) Int($\{0, 1, 2, ...\}$) = \emptyset Int($R - \{0, 1, 2, ...\}$) = $R - \{0, 1, 2, ...\}$ Int($\{1/n \mid n \text{ is a positive integer}\}$) = \emptyset

[draw picture]

(Munkres §20–21) recall from real analysis:

 \underline{Df} Z sub X is closed iff X – Z is open in X

Df a metric on a set X is a function $d: X \times X$ to $[0, \infty)$

<u>Df</u> the closure of Y sub X is the set

s.t., for all x, y, z in X,

$$\bar{Y} = Cl(Y) = bigcap_{Z supset Y, closed in X} Z$$

= X - bigcup_{V sub X - Y, open in X} Y

1)
$$d(x, y) = 0$$
 implies $x = y$
2) $d(x, y) = d(y, x)$

$$= X - Int(X - Y)$$

3) $d(x, y) + d(y, z) \ge d(x, z)$

in analytic R, compute:

given $\delta > 0$, let B $d(x, \delta) = \{y \text{ in } X \mid d(x, y) < \delta\}$

CI([0, 1)) = [0, 1] $CI(\{0, 1, 2, ...\}) = \{0, 1, 2, ...\}$ $CI(R - \{0, 1, 2, ...\}) = R$ $CI(\{1/n \mid n \text{ is a positive integer}\}) = \{1/n\}_n \text{ cup } \{0\}$ [note that x in B_d(x, δ), because d(x, x) = 0 < δ]

<u>Df</u> the metric topology on X induced by d:

U is open in the metric topology iff for all x in U, there is a $\delta > 0$ s.t. B_d(x, δ) sub U

<u>Idea</u> metric topology on X generalizes analytic topology on R^n

Thm the metric topology really is a topology

Pf exactly like the proof thatthe anlytic topology is a topology

[so how much weirder can it be?]

<u>Ex</u> in any X: the discrete metric defined by

d(x, x) = 0, d(x, y) = 1 when $x \neq y$

1) and 2) easy

3) [how many cases to check? 5 but can combine]

if
$$x = z$$
:
 $d(x, y) + d(y, z) \ge 0 = d(x, z)$

[because $d(-, -) \ge 0$]

if $x \neq z$:

either $y \neq x$ or $y \neq z$

so $d(x, y) + d(y, z) \ge 1 = d(x, z)$

observe $B_d(x, 1) = \{x\}$ for all x. thus:

<u>Prop</u>	metric topology from the discrete metric
	is the discrete topology

we say a topology or topological space is metrizable iff

the topology is induced by some metric

sometimes, different metrics induce the same topology

 $\begin{tabular}{lll} \underline{Lem} & suppose & d induces T on X, \\ & d' induces T' on X \end{tabular}$

<u>Df</u>

then T' is finer than T iff for all x in X and $\epsilon > 0$, there is $\delta > 0$ s.t. B_{d'}(x, δ) sub B_d(x, ϵ). Pf exercise (Munkres Lem 20.2)

<u>Ex</u> [picture of B_d(x, δ) versus B_ρ(x, δ)]

euclidean metric: $d(x, y) = \operatorname{sqrt}((x \ 1 - y \ 1)^2 + ... + (x \ n - y \ n)^2)$

square metric: $\rho(x, y) = \max(|x_1 - y_1|, ..., |x_n - y_n|)$

observe:

$$d(x, y) \leq \operatorname{sqrt}(\operatorname{n} \operatorname{max}_{i} (x_{i} - y_{i})^{2})$$

$$= \operatorname{sqrt}(\operatorname{n}) \rho(x, y)$$

$$\rho(x, y) = \operatorname{sqrt}(\operatorname{max}_{i} |x_{i} - y_{i}|^{2})$$

$$\leq d(x, y)$$

shows:

$$B_\rho(x, \epsilon/sqrt(n))$$
 sub $B_d(x, \epsilon)$ $B_d(x, \epsilon)$ sub $B_\rho(x, \epsilon)$

Rem converse is

converse is false: given a metric d, let

$$d'(x, y) = d(x, y)/(1 + d(x, y))$$

[in general:]

then 1) d' is still a metric

2) metric topologies for d, d' coincide

3) d and d' need not be equivalent

[reason: equivalence involves uniformity in x, y]

<u>Lem</u> if two metrics are equivalent, then their metric topologies coincide

Ex $R^{\omega} = \{(x_1, x_2, ...) \mid x_i \text{ is in } R\}$ $R^{\infty} = \{(x_1, x_2, ...) \mid x_i \text{ eventually } 0\}$

Euclidean and square metrics still work on R^{∞} , but not on R^{∞}

<u>Cor</u> Euclidean and square metrics both induce the analytic topology on R^n

but $u(x, y) = min \{1, sup_i | x_i - y_i \}$ works...