

最优化理论 Optimality Theory

目录(CONTENT)

- 01 课程简介(Introduction)
- 02 线性规划(Linear Programming)
- 03 非线性规划(Non-Linear Programming)
- 04 整数规划(Integer Programming)
- 05 动态规划(Dynamic Programming)

使用导数的最优化方法 Optimization Method Using Derivative

川巡守八

■主要内容

- 最速下降法
- 牛顿法
- 共轭梯度法
- 拟牛顿法
- 信赖域法

取还门中/云

■ 算法

算法描述

Step1,给定初始点 $x^{(k)} \in E^n$,允许误差 $\varepsilon > 0$,置k = 1Step2,计算搜索方向 $d^{(k)} = -\nabla f(x^{(k)})$ Step3,若 $\|d^{(k)}\| \le \varepsilon$,停止,否则,从 $x^{(k)}$ 出发,沿 $d^{(k)}$ 进行一维搜索, 求 λ_k ,使得 $f(x^{(k)} + \lambda_k d^{(k)}) = \min_{\lambda \ge 0} f(x^{(k)} + \lambda d^{(k)})$ Step4,令 $x^{(k+1)} = x^{(k)} + \lambda_k d^{(k)}$,置k := k + 1,转Step2

取还门中/公

■ 性质1

最速下降法存在锯齿现象

取还 I 中心

■ 性质2

容易证明,用最速下降法极小化目标函数时,相邻两个搜索方向是正交的.

令
$$\varphi(\lambda) = f(x^{(k)} + \lambda d^{(k)})$$
$$d^{(k)} = -\nabla f(x^{(k)})$$
则
$$\varphi'(\lambda) = \nabla f(x^{(k)} + \lambda_k d^{(k)})^T d^{(k)} = 0$$
$$\Rightarrow -\nabla f(x^{(k+1)})^T \nabla f(x^{(k)}) = 0$$
$$\Rightarrow d^{(k+1)} = -\nabla f(x^{(k+1)}) = 0$$

丁で火ん

■ 概念

设 $\nabla^2 f(x^{(k)})$ 可逆,则得牛顿法的迭代公式

$$x^{(k+1)} = x^{(k)} - \nabla^2 f(x^{(k)})^{-1} \nabla f(x^{(k)}) \qquad (10.2.2)$$

算法(Newton法)

Step1,给定初始点 $x^{(0)}$,允许误差 $\varepsilon > 0$,置k = 1;

Step 2, 若 $\nabla f(x^{(k)}) \le \varepsilon$, 停止, 得解 $x^{(k)}$; 否则, 令

$$x^{(k+1)} = x^{(k)} - \nabla^2 f(x^{(k)})^{-1} \nabla f(x^{(k)})$$
, $k = k+1, \ddagger 2$

十坝/云

■局部收敛性

定理(局部收敛定理)设函数 $f \in C^2(R^n)$, 它在 x^* 的 梯度 $\nabla f(x^*) = 0$, Hesse矩阵 $\nabla^2 f(x^*)$ 正定. 若初始点 x^0 充分靠近 x^* , 并且Hesse矩阵 $G(x) = \nabla^2 f(x)$ 满足 Lipschitz条件, 即存在L > 0, 使得 $\forall x, y \in R^n$, 有 $\|G(x) - G(y)\| \le L \|x - y\|$,

则对 \forall k,迭代格式(10.2.2)有意义,且迭代点序列(x^k)以二阶的收敛速度收敛到 x^* .

• 注意, 当初始点远离极小点时, 牛顿法可能不收敛

•阻尼牛顿法

基本思想:增加了沿牛顿方向的一维搜索.

迭代公式为

$$x^{(k+1)} = x^{(k)} + \lambda_k d^{(k)}$$

其中 $d^{(k)} = -\nabla^2 f(x^{(k)})^{-1} \nabla f(x^{(k)})$ 为牛顿方向, λ_k 是由

一维搜索所得的步长,即满足

$$f(x^{(k)} + \lambda_k d^{(k)}) = \min_{\lambda} f(x^{(k)} + \lambda d^{(k)})$$

十坝/云

• 算法(阻尼牛顿法)

Step1,给定初始点 $x^{(0)}$,允许误差 $\varepsilon > 0$, 置 =1;

$$Step 2$$
, 计算 $\nabla f(x^{(k)})$, $\nabla^2 f(x^{(k)})^{-1}$

Step 3, 若 $\|\nabla f(x^{(k)})\| \leq \varepsilon$, 停止, 得解 $^{(k)}$; 否则, 令

$$d^{(k)} = -\nabla^2 f(x^{(k)})^{-1} \nabla f(x^{(k)})$$

Step 4,从 $x^{(k)}$ 出发,沿方向 $d^{(k)}$ 作一维搜索:

$$\min_{\lambda} f(x^{(k)} + \lambda d^{(k)}) = f(x^{(k)} + \lambda_{k} d^{(k)})$$

$$\Rightarrow x^{(k+1)} = x^{(k)} + \lambda_k d^{(k)}$$

Step 5, 置k := k + 1, 转2

十坝/石

■ 存在问题

显然可能存在:

- 1) Hessian 矩阵∇ ²f(x⁽¹⁾)奇异-不可逆
- 2) 即使非奇异,Hessian 矩阵 $\nabla^2 f(x^{(1)})$ 也可能非正定

牛顿方向不一定是下降方向,算法失效!

十坝/云

■ 修正牛顿法

解决Hessian矩阵 $\nabla^2 f(x^{(k)})$ 非正定问题的基本思想修正 $\nabla^2 f(x^{(k)})$,构造一个对称正定矩阵 G_k ,在方程(d)中用 G_k 取代矩阵 $\nabla^2 f(x^{(k)})$:

$$G_k d^{(k)} = -\nabla f(x^{(k)})$$
 (f)

$$\Rightarrow d^{(k)} = -G_k^{-1} \nabla f(x^{(k)})$$
 (g)

再沿此方向作一维搜索

如何构造 G_k ?比如,可令

$$G_k = \nabla^2 f(x^{(k)}) + \varepsilon_k I \tag{h}$$

其中I是单位阵, ε_{k} 是一个适当的正数.

十坝/石

■修正牛顿法

定理(全局收敛定理) 设 $f: R^n \to R$ 在某开集D上二阶连续可微,且修正牛顿法的初始点 $x^0 \in D$ 使得f的水平集 $S_{f(x^0)} = \{x \in D \mid f(x) \leq f(x^0)$ 是紧集. 若矩阵序列满足有界分解特性,则 $\lim_{x \to \infty} \nabla f(x^k) = 0$.

大批(中)支/云

■共轭方向与扩张子空间定理

定义10.3.1 设A是 $n \times n$ 对称矩阵,若 R^n 中的两个方向 d^1 和 d^2 满足

$$(d^{1})^{T} A d^{2} = 0$$
 (10.3.1)

则称这两个方向关于A共轭,或称它们关于A正交.

若 $d^{(1)}$, $d^{(2)}$,..., $d^{(k)}$ 是 R^n 中k个方向,它们两两关于A共轭,即 $d^{(i)T}Ad^{(j)} = 0, i \neq j, \quad i, j = 1, 2, ...k. \quad (10.3.2)$

则称这组方向是A共轭,或称它们为A的k个共轭方向

大型的为这1万

■几何意义

设有二次函数

$$f(x) = \frac{1}{2}(x - \overline{x})^{T} A(x - \overline{x})$$
 (10.3.3)

其中A是 $n \times n$ 对称正定矩阵, \bar{x} 是一个定点.

f(x)的等值面

$$\frac{1}{2}(x-\overline{x})^T A(x-\overline{x}) = c$$

是以x为中心的椭球面,

由于

$$\nabla f(\overline{x}) = A(\overline{x} - \overline{x}) = 0$$

A正定,故 \bar{x} 是f(x)的极小值点.

大批(中)支/云

设x(1)是在某等值面上一点,此面在点x(1)处的法向量

$$\nabla f(x^{(1)}) = A(x^{(1)} - \overline{x})$$

又设d(1)是在该等值面在点x(1)处的一个切向量.

$$d^{(2)} = \overline{x} - x^{(1)}$$

显然, $d^{(1)}$ 与 $\nabla f(x^{(1)})$ 正交.即 $d^{(1)T}\nabla f(x^{(1)})=0$,于是

$$d^{(1)T}Ad^{(2)} = 0$$

即等值面上一点x⁽¹⁾处的切向量与由这点指向极小点的向量关于A共轭.

大批(中)文/云

■几何意义

沿着d (1)和d (2)进行一维搜索,经两次迭代必达到极小点

算法1 共轭方向法

步1(初始化),给定初始点 $x^0 \in R^n$,计算 $\nabla f(x^0)$,给定 一个搜索方向 $d^0 \neq 0$, 使得 $\nabla f(x^0)^T d^0 < 0$; $\Xi k = 0$ 步2(线搜索),求解一维极小化问题min $f(x^k + \alpha d^k)$; $x^{k+1} = x^k + \alpha_k d^k$, 若 $\nabla f(x^{k+1}) = 0$ 或k = n-1, 停止, 否则转步3 步3(计算共轭方向), 计算一个非零方向 $d^{k+1} \in \mathbb{R}^n$, 使得

定理10.3.1 设A是n阶对称正定矩阵, $d^{(1)}$, $d^{(2)}$,..., $d^{(k)}$ 是k个A共轭的非零向量,则这个向量组线性无关.

ナヤルタルダバム

定理10.3.2(扩张子空间定理)设有函数

$$f(x) = \frac{1}{2}x^T A x + b^T x + c$$

其中A是n阶对称正定矩阵, $d^{(1)}$, $d^{(2)}$,..., $d^{(k)}$ 是A共轭的非零向量. 以任意的 $x^{(1)} \in R^n$ 为初始点, 依次沿 $d^{(1)}$, $d^{(2)}$,..., $d^{(k)}$ 进行一维搜索,得到点列 $x^{(1)}$, $x^{(2)}$,..., $x^{(k+1)}$,则 $x^{(k+1)}$ 是函数f(x)在线性流形 $x^{(1)} + \Gamma_{\kappa}$ 上的唯一极小点.特别地,当k = n时, $x^{(k+1)}$ 是函数f(x)在是函数f(x)在f(x)

$$\Gamma_{\kappa} = \left\{ x \middle| x = \sum_{i=1}^{k} \lambda_{i} d^{(i)}, \lambda_{i} \in (-\infty, +\infty) \right\}$$

是 $d^{(1)}$, $d^{(2)}$,..., $d^{(k)}$ 生成的子空间.

大批(中)支/云

证明:由于f(x)严格凸,要证明 $x^{(k+1)}$ 是函数f(x)在线性流形 $x^{(1)} + \Gamma_{\kappa}$ 上的唯一极小点,只要证在 $x^{(k+1)}$ 点, $\nabla f(x^{(k+1)})$ 与子空间. Γ_{κ} 正交.

用归纳法证之,为方便,用 g_i 表示函数f(x)在 $x^{(i)}$ 处的梯度,即

证明 $g_{k+1} \perp \Gamma_k$,对k归纳 当k = 1,由一维搜索的定义知 $g_2 \perp \Gamma_1$. 假设k = m < n时 $g_{m+1} \perp \Gamma_m$,下证 $g_{m+2} \perp \Gamma_{m+1}$.

大小心アラム

(10.3.7)

由二次函数梯度的表达式和点x(k+1)的定义,有

$$g_{m+2} = Ax^{(m+2)} = A(x^{(m+1)} + \lambda_{m+1}d^{(m+1)}) + b$$
$$= g_{m+1} + \lambda_{m+1}Ad^{(m+1)}$$

利用上式可以将 g_{m+2} 和 $d^{(i)}$ 的内积写成

$$d^{(i)}g_{m+2} = d^{(i)T}g_{m+1} + \lambda_{m+1}d^{(i)T}Ad^{(m+1)}$$
 (10.3.8)

当i=m+1时,由一维搜索定义,知

$$d^{(m+1)T}g_{m+2} = 0 (10.3.9)$$

当 $1 \le i < m+1$ 时,由归纳假设知

$$d^{(i)T}g_{m+1} = 0 (10.3.10)$$

由于 $d^{(1)}, d^{(2)}, ..., d^{(m+1)}$ 关于A共轭,则

$$d^{(i)T}Ad^{(m+1)}=0 (10.3.11)$$

六批饰及达

由10.3.8-11,知

 $d^{(i)T}g_{m+2} = 0$

即

$$g_{m+2} \perp \Gamma_{m+1}$$
.

根据上述证明, $x^{(k+1)}$ 是f(x)在 $x^{(1)} + \Gamma_k$ 上的极小点由于 f(x)严格凸,故必为此流形上的唯一极小点 当 $k = n, d^{(1)}, d^{(2)}, ..., d^{(n)}$ 是 E^n 的一组基,此时必有 $g_{n+1} = 0$,从而 $x^{(n+1)}$ 是函数在 E^n 上的唯一极小点.

推论:在Th10.3.2的条件下, $g_{k+1}^T d^{(j)} = 0$, $\forall j \leq k$

大批(中)支/云

■线性共轭梯度法与二次终止性

上述定理表明,对于二次凸函数,若沿一组共轭方向(非零向量)搜索,经有限步迭代必到达极小点.

•基本思想:把共轭性与最速下降法相结合,利用已知点处的梯度构造一组共轭方向,并沿着这组方向进行搜索,求出目标函数的极小点

六 犯 净 浸 / 云

先讨论对于二次凸函数的共轭梯度法,考虑问题

$$\min f(x) = \frac{1}{2}x^{T}Ax + b^{T}x + c$$
 (10.3.12)

 $x \in E^n$, A对称正定, c是常数.

求解方法

首先,任意给定一初始点x⁽¹⁾,计算出目标函数在

该点的梯度, 若 $\|g_1\| = 0$, 则停止计算, 否则, 令

$$d^{(1)} = -\nabla f(x^{(1)}) = -g_1 \qquad (10.3.13)$$

沿 $d^{(1)}$ 搜索,得点 $x^{(2)}$.计算在 $x^{(2)}$ 处的梯度,若 $\|g_2\| \neq 0$ 则利用 $-g_2$ 和 $d^{(1)}$ 构造搜索方向 $d^{(2)}$,再沿 $d^{(2)}$ 搜索.

ナマヤビアルダノム

一般地, 若已知点 $x^{(k)}$ 和搜索方向 $d^{(k)}$, 则从 $x^{(k)}$ 出发,

沿d⁽¹⁾进行搜索,得

$$x^{(k+1)} = x^{(k)} + \lambda_k d^{(k)} \qquad (10.3.14)$$

其中步长ル満足

$$f(x^{(k)} + \lambda_k d^{(k)}) = \min f(x^{(k)} + \lambda d^{(k)})$$

下求礼的表达式

记
$$\varphi(\lambda) = f(x^{(k)} + \lambda d^{(k)})$$
 $\Rightarrow \varphi'(\lambda) = \nabla f(x^{(k+1)})^{\mathrm{T}} d^{(k)} = 0$ (10.3.15)

即 $(Ax^{(k+1)} + b)^{\mathrm{T}} d^{(k)} = 0$

フマヤビ(ア)又/ム

$$\Rightarrow (A(x^{(k)} + \lambda_k d^{(k)}) + b)^{T} d^{(k)} = 0$$

$$\Rightarrow (g_k + \lambda_k A d^{(k)})^{T} d^{(k)} = 0 \qquad (10.3.16)$$

$$\Rightarrow \lambda_k = -\frac{g_k^{T} d^{(k)}}{d^{(k)T} A d^{(k)}} \qquad (10.3.17)$$

$$\text{计算} f(x) 在 x^{(k+1)} 处的梯度,若 \|g_{k+1}\| = 0,则停止证$$

计算f(x)在 $x^{(k+1)}$ 处的梯度,若 $\|g_{k+1}\|=0$,则停止计算,否则,利用 $-g_{k+1}$ 和 $d^{(k)}$ 构造下一搜索方向 $d^{(k+1)}$,并使 $d^{(k+1)}$ 和 $d^{(k)}$ 关于A共轭,按此设想. 令

$$d^{(k+1)} = -g_{k+1} + \beta_k d^{(k)} \qquad (10.3.18)$$

プラゼロアルタノム

上式两端左乘 $d^{(k)T}A$,并令

$$d^{(k)T}Ad^{(k+1)} = -d^{(k)T}Ag_{k+1} + \beta_k d^{(k)T}Ad^{(k)} = 0$$

$$\Rightarrow \beta_k = \frac{d^{(k)T} A g_{k+1}}{d^{(k)T} A d^{(k)}}$$
 (10.3.19)

再从 $x^{(k+1)}$ 出发,沿方向 $d^{(k+1)}$ 搜索.

综上分析,在第一个搜索方向取负梯度的前提下, 重复使用公式3.14,3.17-3.19就能伴随计算点的增加,构造出一组搜索方向. (Fletcher-Reeves法)

大部分为这/云

定理10.3.3 对于正定二次函数(10.3.12),具有精确一维搜索的Fletcher-Reeves法在 $m \le n$ 次一维搜索后即终止,并且对所有 $i(1 \le i \le m)$,下列关系成立:

$$1, d^{(i)T} A d^{(j)} = 0, \quad j = 1, 2, ..., i-1$$

$$2, g_i^T g_j = 0,$$
 $j = 1, 2, ..., i-1$

$$3, g_i^T d^{(i)} = -g_i^T g_i$$
 (蕴涵 $d^{(i)} \neq 0$)

证明:显然m≥1,下用归纳法(对i)证之.

当i = 1时,由于 $d^{(1)} = -g_1$,从而3)成立,对i = 2时,

关系1)和2)成立,从而3)也成立.

ナヤ和的中域バム

设对某个i < m,这些关系均成立,我们证明对于i+1 也成立.先证2),

$$x^{(i+1)} = x^{(i)} + \lambda_i d^{(i)}$$

由迭代公式两端左乘A,再加上b,得

$$g_{i+1} = g_i + \lambda_i A d^{(i)}$$
 (10.3.20)

其中心 由式(10.3.17)确定,即

$$\lambda_{i} = -\frac{g_{i}^{T} d^{(i)}}{d^{(i)T} A d^{(i)}} = \frac{g_{i}^{T} g_{i}}{d^{(i)T} A d^{(i)}} \neq 0 \quad (10.3.21)$$

フマヤビアルス/ム

考虑到(10.3.20)和(10.3.18),则

$$g_{i+1}^{T}g_{j} = \left[g_{i} + \lambda_{i}Ad^{(i)}\right]^{T}g_{j}$$

$$= g_{i}^{T}g_{j} + \lambda_{i}d^{(i)T}A(-d^{(j)} + \beta_{j-1}d^{(j-1)}) \qquad (10.3.22)$$

(注:j=1时上式为
$$g_{i+1}^T g_1 = g_i^T g_1 - \lambda_i d^{(i)T} A d^{(1)}$$
)
当 $j = i$ 时,由归纳假设 $d^{(i)T} A d^{(i-1)} = 0$,根据(10.3.21)

$$-\lambda_i d^{(i)T} A d^{(i)} = -g_i^T g_i$$

$$\Rightarrow g_{i+1}^T g_i = 0$$

ナヤルがアジング

当j<i时,根据归纳假设,式(10.3.22)等号右端各项均为0

故
$$g_{i+1}^T g_j = 0$$

再证1),运用(10.3.18)和(10.3.20),则

$$d^{(i+1)T} A d^{(j)} = \left[-g_{i+1} + \beta_i d^{(i)} \right]^T A d^{(j)}$$

$$= -g_{i+1}^T \frac{g_{j+1} - g_j}{\lambda_i} + \beta_i d^{(i)T} A d^{(j)}$$

当j=i时,把(10.3.19)代入上式第一个等号的右端,立得

六 犯 净 浸 / 云

当j<i时,由前面已经证明的结论和归纳假设,式中第2个等号右端显然为0,因此

$$d^{(i+1)T}Ad^{(j)} = 0$$

最后证3), 易知

$$g_{i+1}^{T}d^{(i+1)} = g_{i+1}^{T} \left[-g_{i+1} + \beta_{i}d^{(i)} \right] = -g_{i+1}^{T}g_{i+1}$$

综上,对i+1,上述三种关系成立

由上可知, Fletcher – Reeves 共轭梯度法所产生的搜索方向 $d^{(1)}.d^{(2)},...,d^{(m)}$ 是A共轭的,根据Th10.3.2,经有限步迭代必达极小点.

ナマ和ビアル文/ム

 注意,初始搜索方向选择最速下降方向十分重要,如果选择别的方向作为初始方向,其余方向均按 FR方法构造,则极小化正定二次函数时,这样构 造出来的一组方向并不能保证共轭性.

例 考虑下列问题

min
$$x_1^2 + \frac{1}{2}x_2^2 + x_3^2$$

取初始点和初始搜索方向分别为

$$x^{(1)} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, d^{(1)} = \begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix}$$

大切がわえば

显然, $d^{(1)}$ 不是目标函数在 $x^{(1)}$ 处的最速下降方向. 下面,我们用FR法构造两个搜索方向.

从 $x^{(1)}$ 出发,沿方向 $d^{(1)}$ 进行搜索,求步长 λ ,使满足:

$$f(x^{(1)} + \lambda_1 d^{(1)}) = \min_{\lambda \ge 0} f(x^{(1)} + \lambda d^{(1)})$$

得
$$\lambda_1 = \frac{2}{3}$$

$$\Rightarrow x^{(2)} = x^{(1)} + \lambda_1 d^{(1)} = \begin{pmatrix} 1/3 \\ -1/3 \\ 1 \end{pmatrix}, g_2 = \begin{pmatrix} 2/3 \\ -1/3 \\ 1 \end{pmatrix}$$

$$d^{(2)} = -g_2 + \beta_1 d^{(1)}$$

大批协反方

根据公式(10.3.19),有

$$\beta_1 = \frac{d^{(1)T} A g_2}{d^{(1)T} A d^{(1)}} = \frac{-2/3}{6} = -\frac{1}{9}$$

因此

$$d^{(2)} = -\begin{pmatrix} 2/3 \\ -1/3 \\ 1 \end{pmatrix} - \frac{1}{9} \begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix} = \begin{pmatrix} -5/9 \\ 5/9 \\ -1 \end{pmatrix}$$

从 $x^{(2)}$ 出发,沿方向 $d^{(2)}$ 进行搜索,求步长 λ_2 ,使满足:

$$f(x^{(1)} + \lambda_2 d^{(1)}) = \min_{\lambda \ge 0} f(x^{(2)} + \lambda d^{(2)})$$

得
$$\lambda_2 = \frac{21}{26}$$

$$\Rightarrow x^{(3)} = x^{(2)} + \lambda_2 d^{(2)} = \begin{pmatrix} -9/78 \\ 9/78 \\ 5/26 \end{pmatrix}, g_3 = \begin{pmatrix} -18/78 \\ 9/78 \\ 5/26 \end{pmatrix}$$

$$d^{(3)} = -g_3 + \beta_2 d^{(2)}$$

根据公式(10.3.19),有

$$\beta_2 = \frac{d^{(2)T} A g_3}{d^{(2)T} A d^{(2)}} = \frac{45}{676}$$

因此

$$d^{(3)} = -\begin{pmatrix} -18/78 \\ 9/78 \\ 5/26 \end{pmatrix} + \frac{45}{676} \begin{pmatrix} -5/9 \\ 5/9 \\ -1 \end{pmatrix} = \frac{1}{676} \begin{pmatrix} 131 \\ -53 \\ -175 \end{pmatrix}$$

可以验证, $d^{(1)}$ 与 $d^{(2)}$ 关于A共轭, $d^{(3)}$ 与 $d^{(2)}$ 关于A共轭, 但 $d^{(1)}$ 与 $d^{(3)}$ 不关于A共轭,于是 $d^{(1)}$, $d^{(2)}$, $d^{(3)}$ 不关于A共轭.

· 注意,在FR法中,初始搜索方向必须取最速下降方向

大部のかえて

• 可以证明,对于正定二次函数,运用FR法时不作 矩阵运算就能求出因子 β_i

定理10.3.4 对于正定二次函数,FR法中因子 β ,具有 下述表达式

$$\beta_{i} = \frac{\|g_{i+1}\|^{2}}{\|g_{i}\|^{2}}, \qquad (i \ge 1, g_{i} \ne 0) \qquad (10.3.24)$$
证明:

$$\beta_{i} = \frac{d^{(i)T} A g_{i+1}}{d^{(i)T} A d^{(i)}} = \frac{g_{i+1}^{T} A (x^{(i+1)} - x^{(i)}) / \lambda_{i}}{d^{(i)T} A (x^{(i+1)} - x^{(i)}) / \lambda_{i}}$$

$$= \frac{g_{i+1}^{T}(g_{i+1} - g_i)}{d^{(i)T}(g_{i+1} - g_i)} = \frac{\|g_{i+1}\|^2}{-d^{(i)T}g_i}$$
(10.3.23)

根据定理 $10.3.3, d^{(i)T}g_i = -\|g_i\|^2$.因此

$$\beta_i = \frac{\|g_{i+1}\|^2}{\|g_i\|^2},$$
 (10.3.24)

大批(わ)文/云

- FR法(对二次凸函数)
 - 1,给定初点 $x^{(1)}$,置k=1.
 - 2, 计算 $g_k = \nabla f(x^{(k)})$. 若 $\|g_k\| = 0$, 停止计算, 得点 $\overline{x} = x^{(k)}$; 否则,进行下一步.
 - 3,构造搜索方向.令

$$d^{(k)} = -g_k + \beta_{k-1}d^{(k-1)}$$

其中,当k = 1时, $\beta_{k-1} = 0$,

当k > 1时按公式(10.3.24)计算 β_{k-1} .

4,令
$$x^{(k+1)} = x^{(k)} + \lambda_k d^{(k)}$$
 其中按公式(10.3.17)计算步长 λ_k .

5, 若
$$k = n$$
, 则停止计算, 得点 $\bar{x} = x^{(k+1)}$ 否则, 置 $k := k + 1$, 转2

ナマ和心伊及バス

例3.2 用FR法求解下列问题

min
$$f(x) = x_1^2 + 2x_2^2$$
 $\Im \, \text{A} x^{(1)} = (5,5)^T$

目标函数f(x)在点x处的梯度

$$\nabla f(x) = \begin{bmatrix} 2x_1 \\ 4x_2 \end{bmatrix}$$

第一次迭代,

$$d^{(1)} = -g_1 = \begin{bmatrix} -10 \\ -20 \end{bmatrix}$$

从x⁽¹⁾出发,沿方向d⁽¹⁾进行一维搜索,求步长\(\lambda\):

大批(わ)文/云

$$\lambda_{1} = -\frac{g_{1}^{T} d^{(1)}}{d^{(1)T} A d^{(1)}} = \frac{(-10, -20) \begin{pmatrix} -10 \\ -20 \end{pmatrix}}{(-10, -20) \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} -10 \\ -20 \end{pmatrix}} = \frac{5}{18}$$

$$x^{(2)} = x^{(1)} + \lambda_1 d^{(1)} = \begin{bmatrix} 5 \\ 5 \end{bmatrix} + \frac{5}{18} \begin{pmatrix} -10 \\ -20 \end{pmatrix} = \begin{pmatrix} 20/9 \\ -5/9 \end{pmatrix}$$

第2次迭代

目标函数在点 $\mathbf{x}^{(2)}$ 处的梯度 $g_2 = \begin{pmatrix} 40/9 \\ -20/9 \end{pmatrix}$

六 把 伊 浸 / 云

构造搜索方向d⁽²⁾.先计算因子β₁

$$\beta_1 = \frac{\|g_2\|^2}{\|g_1\|^2} = \frac{(40/9)^2 + (-20/9)^2}{10^2 + 20^2} = \frac{4}{81}$$

\$

$$d^{(2)} = -g_2 + \beta_1 d^{(1)} = \frac{100}{81} \begin{bmatrix} -4\\1 \end{bmatrix}$$

从 $x^{(2)}$ 出发,沿方向 $d^{(2)}$ 作一维搜索,求 λ_2 :

$$\lambda_{2} = -\frac{g_{2}^{T} d^{(2)}}{d^{(2)T} A d^{(2)}} = \frac{-\frac{20}{9} \cdot \frac{100}{81} (2, -1) \begin{pmatrix} -4\\1 \end{pmatrix}}{\left(\frac{100}{81}\right)^{2} (-4, 1) \begin{pmatrix} 2 & 0\\0 & 4 \end{pmatrix} \begin{pmatrix} -4\\1 \end{pmatrix}} = \frac{9}{20}$$

大和的护技/云

$$x^{(3)} = x^{(2)} + \lambda_2 d^{(2)} = \begin{bmatrix} 20/9 \\ -5/9 \end{bmatrix} + \frac{9}{20} \cdot \frac{100}{81} \begin{pmatrix} -4 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

显然点
$$x^{(2)}$$
处目标函数的梯度 $g_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$,已达极小点 $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

■一般函数的共轭梯度法一非线性共轭梯度法

一般迭代格式

$$\begin{cases} x^{k+1} = x^k + \alpha_k d^k \\ d^{k+1} = -g^{k+1} + \beta_k d^k \end{cases} k=0,1,...$$
 (10.3.3.1)

其中初始方向 $d^0 = -g^0$,步长参数 α_k 由一维搜索得到, β_k 的计算公式通常有如下几种:

1,
$$\beta_k = \frac{(g^{k+1})^T g^{k+1}}{(g^k)^T g^k}$$
 (Fletcher-Reeves(FR))

2,
$$\beta_k = \frac{g_{k+1}^T(g_{k+1} - g_k)}{g_k^T g_k} ----PRP(Polak-Ribiere-Polyar)$$

3,
$$\beta_k = \frac{g_{k+1}^T (g_{k+1} - g_k)}{(d^k)^T (g_{k+1} - g_k)}$$
 -----SW(Sorenson-Wolfe)

4,
$$\beta_k = \frac{(d^k)^T \nabla^2 f(x^{k+1}) g_{k+1}}{(d^k)^T \nabla^2 f(x^{k+1}) d^k}$$
 ---- Daniel

5,
$$\beta_k = \frac{g_{k+1}^T g_{k+1}}{(d^k)^T g_k}$$
 -----Dixon

FR共轭梯度法

1,给定初始点 $x^{(1)}$,允许误差 $\varepsilon > 0$.置

$$y^{(1)} = x^{(1)}, d^{(1)} = -\nabla f(y^{(1)}), k = j = 0.$$

2,若 $\|\nabla f(y^{(j)})\|$ < ε ,则停止计算,否则作一维搜索,

求
$$\lambda_j$$
满足
$$f(y^{(j)} + \lambda_j d^{(j)}) = \min_{\lambda} f(y^{(j)} + \lambda d^{(j)})$$

$$\Rightarrow \qquad y^{(j+1)} = y^{(j)} + \lambda_j d^{(j)}$$

ナマヤビアル文/ム

3,如果j < n,转步4,否则,转5

4,
$$\Leftrightarrow d^{(j+1)} = -\nabla f(y^{(j+1)}) + \beta_j d^{(j)}$$

其中
$$\beta_j = \frac{\|\nabla f(y^{(j+1)})\|^2}{\|\nabla f(y^{(j)})\|^2}$$

置j := j + 1,转步2.

5,
$$\Leftrightarrow x^{(j+1)} = y^{(n+1)}, y^{(1)} = x^{(k+1)}, d^{(1)} = -\nabla f(y^{(1)})$$

置j = 1, k := k + 1,转步2.

可以证明,对一般函数,共轭梯度法在一定条件下是收敛的,

大部パカラバ

FR算法中使用精确线搜索,我们有如下收敛性结果 定理 假设函数 $f: \mathbb{R}^n \to \mathbb{R}$ 有下界,梯度 $\nabla f(x)$ 是 Lipschitz连续的.在FR共轭梯度法中,步长参数 α_{ν} 是 由精确线搜索确定的,并且满足充分下降条件(即 Armijo条件). 若 $\forall k \geq 0, g^k \neq 0$,则

$$\liminf_{k\to+\infty} \|g^k\| = 0$$

(Armijo条件:选择步长λ满足

$$f(x^k + \lambda_k d^k) \le f(x^k) + c_1 \lambda_k \nabla f(x^k)^T d^k$$

最优性条件

■ 小结

- > 使用导数基本概念
- ▶ 最速下降法
- > 牛顿法
- > 共轭梯度法
- > 拟牛顿法
- ▶ 信赖域方法

小结和作业

■ 作业

▶ 习题 3、4、5、10、14、17、18、19