

Challenge $4 - \varepsilon$ -NFAs

 ϵ -NFAs are very useful. For instance, when we have two or more regular languages (RLs), each one represented by an FA¹ (DFA, NFA, or even ϵ -NFA), one can easily obtain the FA representing the union or the concatenation of those languages. When considering an FA representing a language L it is also easy with the use of ϵ -transitions to obtain the FA representing L*.

- (a) Given the languages defined by $A_1 = \{0^k \mid k \equiv 0 \mod 2\}^2$ and $A_2 = \{0^k \mid k \equiv 0 \mod 3\}$, draw a DFA for each one and then an FA for $A_1 \cup A_2$, i.e., the language $\{0^k \mid k \equiv 0 \mod 2 \text{ or } k \equiv 0 \mod 3\}$.
- (b) Given the FAs for each of the languages L_1 , L_2 ,..., L_N , explain how you can obtain an FA representing: (1) $L_1 \cup L_2 \cup ... \cup L_N$, (2) $L_1.L_2...L_N$; and (3) L_1^* . Note: try to explain visually the three operations and considering the main elements of the individual FAs needed for applying these operations.

¹ Finite Automata.

² I.e., the language of the strings of os with length mutiple of 2.