polynomial equations determining the bond percolation thresholds p_c under the homogeneity assumption (6) for $(n \times n)$: $(n \times n)$ subnet lattices in Table VI are as follows:

$$1 - 3p^{2} - 6p^{3} + 12p^{4} - 6p^{5} + p^{6} = 0, \quad (n = 1),$$

$$1 - 3p^{4} - 18p^{5} - 39p^{6} + 30p^{7} + 273p^{8} + 264p^{9} - 1785p^{10} - 126p^{11} + 8232p^{12}$$

$$-162326p^{13} + 16359p^{14} - 9948p^{15} + 3708p^{16} - 786p^{17} + 73p^{18} = 0, \quad (n = 2), \quad (33)$$

$$1 - 3p^{6} - 36p^{7} - 186p^{8} - 372p^{9} + 447p^{10} + 3558p^{11} + 4711p^{12} - 5274p^{13} - 30771p^{14}$$

$$- 110816p^{15} + 69828p^{16} + 1309302p^{17} - 242760p^{18} - 10117626p^{19} + 9190737p^{20}$$

$$+ 53446600p^{21} - 137597577p^{22} - 15101358p^{23} + 714425889p^{24} - 1897059306p^{25}$$

$$+ 2985201585p^{26} - 3337272356p^{27} + 2817156177p^{28} - 1840940730p^{29}$$

$$+ 938230487p^{30} - 371179194p^{31} + 112125462p^{32} - 25052124p^{33} + 3909120p^{34}$$

$$- 380880p^{35} + 17464p^{36} = 0, \quad (n = 3)$$

$$(34)$$

TABLE V: Critical properties of the Potts model on the $(4 \times 4) : (4 \times 4)$ kagome lattice. (H = Homogeneity Assumption, N = Numerical, T = Theoretical universality prediction.)

q	v_c (H)	v_c (N)	c (T)	c (N)	X_h (T)	X_h (N)
0.5	1.287715536704650	1.2877116(2)	-0.445833945	-0.4458340(1)	0.082757037	0.0827569(1)
1.0	1.669262339202358	1.6692593(3)	0	0	0.104166667	0.10417(1)
1.5	1.941284616762751	1.9412832(5)	0.288024142	0.288024(1)	0.116778423	0.11678(1)
2.0	2.160721132019555	2.160721132(1)	0.5	0.500000(1)	1/8	0.1250000(1)
2.5	2.348099505779181	2.3481001(2)	0.66584083	0.66585(1)	0.130338138	0.13034(1)
3.0	2.513467694176093	2.5134684(2)	4/5	0.800(1)	2/15	0.1333(1)
3.5	2.662592230189568	2.662594(3)	0.910294591	0.911(1)	0.133771753	0.134(1)
4.0	2.799129506399588	2.799132(5)	1	0.999(1)	1/8	0.13(1)