

- Consider tossing a coin with probability of heads equal to p a total of 6 times
- Q: What is the probability that we get exactly 3 heads?
- We could express all possible outcomes of tossing a coin 6 times using a tree diagram that goes on forever, but we all have lives
- Let's consider a few of the outcomes (sequences) where we get exactly 3 heads
- If A = Event of Exactly 3 Heads, then A = $\{HHHTTT, TTTHHHH, HTHTHT, \dots\}$
- For each outcome where A occurs, the probability is $F^3(1-p)^3$ because each coin flip is independent
- Q: How many such sequences exist where A occurs?

$$\binom{n}{k} = \frac{n!}{(n-k)! \, k!}$$

where
$$n! = n \times (n-1) \times (n-2) \cdots 3 \times 2 \times 1$$
 (n factorial)

• The numbers $\binom{n}{0}$, $\binom{n}{1}$, $\binom{n}{2}$, \cdots , $\binom{n}{n-1}$, $\binom{n}{n}$ are called binomial coefficients, since

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

• From coin example, P(Exactly 3 Heads) = P(A) = $\binom{6}{3}p^3(1-p)^3$

- From coin example, $P(\text{Exactly 3 Heads}) = P(A) = \binom{6}{3} p^3 (1 - p)^3$
- Bernouilli process is a repetition of fixed number of independent trials with a binary outcome where the probability of each outcome remains constant
- Each trial/experiment is called a Bernouilli trial
- For a Bernouilli process, the probability of k successes in n trials is $\binom{n}{k}p^n(1-p)^{n-k}$
- These probabilities build the binomial distribution
- Excel formula is = BINOM.DIST(n, k, p, FALSE)

- From coin example, $P(\text{Exactly 3 Heads}) = P(A) = {6 \choose 3} p^3 (1 - p)^3$
- Bernouilli process is a repetition of fixed number of independent trials with a binary outcome where the probability of each outcome remains constant
- Each trial/experiment is called a Bernouilli trial
- For a Bernouilli process, the probability of k successes in n trials is $\binom{n}{k}p^n(1-p)^{n-k}$
- These probabilities build the binomial distribution
- Excel formula is = BINOM.DIST(n, k, p, FALSE)

- Suppose we have a fair coin and two urns with six balls each
 - Urn 1 has 4 white balls and 2 red balls
 - Urn 2 has 5 red balls and 1 blue ball
- Experiment
 - Flip a fair coin
 - If heads, draw a ball from urn 1
 - If tails, draw a ball from urn 2

• Q: What are the possible colors of the ball we draw?

Probability tree to describe all possible outcomes

- List of all outcomes
 - Flip heads and grab red ball $(H \cap R)$
 - Flip heads and grab white ball $(H \cap W)$
 - Flip tails and grab red ball $(T \cap R)$
 - Flip tails and grab blue ball $(T \cap B)$

- Probability of all outcomes
 - $P(H \cap R) = \frac{1}{2} \times \frac{2}{6} = \frac{1}{6}$
 - $P(H \cap W) = \frac{1}{2} \times \frac{4}{6} = \frac{1}{3}$

 - $P(T \cap R) = \frac{1}{2} \times \frac{5}{6} = \frac{5}{12}$ $P(T \cap B) = \frac{1}{2} \times \frac{1}{6} = \frac{1}{12}$
- Sample space is $\Omega = \{H \cap R, H \cap W, T \cap R, T \cap B\} \& P(\Omega) = \frac{1}{6} + \frac{1}{3} + \frac{5}{12} + \frac{1}{12} = 1$
- Probabilities of each color

•
$$P(R) = \frac{1}{6} + \frac{5}{12} = \frac{7}{12}$$

• $P(W) = \frac{1}{3}$
• $P(B) = \frac{1}{12}$

•
$$P(W) = \frac{1}{3}$$

•
$$P(B) = \frac{1}{12}$$

- Q: What is probability of a white ball given we flip heads?
 P(W|H) =??
- Q: Given we have a white ball, what is the probability the coin flip was heads? P(H|W) = ??

Bayesian Analysis

$$P(X|Y) = \frac{P(X \cap Y)}{P(Y)}$$

Based off this formula,

$$P(Y|X) = \frac{P(X \cap Y)}{P(X)} \longrightarrow P(Y|X)P(X) = P(X \cap Y)$$

With simple substitution,

$$P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$$

- Since there are two events, $P(Y) = P(Y \cap X) + P(Y \cap X^c)$
- This last fact comes from the two branches of a probability tree

Bayesian Analysis

- $P(Y \cap X) = P(Y|X)P(X)$
- $P(Y \cap X^c) = P(Y|X^c)P(X^c)$
- Bayes' rule

$$P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)} = \frac{P(Y|X)P(X)}{P(Y|X)P(X) + P(Y|X^c)P(X^c)}$$

- Bayesian analysis
 - Focus on finding posterior probability P(X|Y)
 - Prior probability is found in P(X)
 - The term P(Y|X) and is typically the likelihood based off gathered data

• Q: Given we have a white ball, what is the probability the coin flip was heads?

$$P(H|W) = \frac{P(W|H)P(H)}{P(W|H)P(H) + P(W|T)P(T)} = \frac{\binom{4}{6}\binom{1}{2}}{\binom{4}{6}\binom{1}{2} + (0)\binom{1}{2}} = 1$$

Q: Given we have a red ball, what is the probability the coin flip was heads?

$$P(H|R) = \frac{P(R|H)P(H)}{P(R|H)P(H) + P(R|T)P(T)} = \frac{\binom{2}{6}\binom{1}{2}}{\binom{2}{6}\binom{1}{2} + \binom{5}{6}\binom{1}{2}} = \frac{2}{7}$$

Random Variables

$$X(s): S \to \mathbb{R}$$

- Examples
 - Tossing a 6-sided die, $X = Result \ of \ Die, \ X \in \{1,2,3,4,5,6\}$
 - Observe weather tomorrow, $X = \begin{cases} 1, & \text{if it rains} \\ 0, & \text{if it doesn't rain'} \end{cases} X \in \{0,1\}$
 - Wait for the bus, $X = Time\ Spent\ Waiting,\ X \in [0, \infty)$
 - Flip a coin 12 times, $X = Number\ of\ Heads,\ X \in \{0,1,2,3,\cdots,12\}$
- Two types
 - A discrete random variable can take on at most a countable number of values
 - A continuous random variable has an uncountable number of values

Random Variables

- Examples of discrete random variables
 - Outcome of a toss of a die (Recoded to binary)
 - Response to a survey question (1 to 5)
 - Number of heads in first 10 tosses
 - Number of cars that pass in front of the Old Well between 8AM and 6PM
 - Grade in school
 - Spread between scores in a basketball game
- Examples of continuous random variables
 - Weight of a baby
 - Height of a giraffe
 - Time a person spends walking per day
 - Age of person
- Q: Can you count the set of integers $\mathbb{Z} = \{0,1,2,3,\cdots\}$?

Discrete Random Variable

• The probability mass function p(x) (pmf) is a function that assigns a probability to every possible value of a discrete random variable X

$$p(x): \{x_1, x_2, \dots\} \to [0,1]$$

- Since p(x) is a probability law, $\sum_{i=1}^{\infty} p(x_i) = 1$
- Although p(x) is a function, we interpret it as p(x) = P(X = x)
- For any $A \subseteq \{x_1, x_2, \dots\}$, we have $P(X \in A) = \sum_{x_i \in A} p(x_i)$
- The cumulative distribution function $F(x) = P(X \le x)$
- For a discrete random variable, $F(x) = P(X \le x) = \sum_{x_i \le X} p(x_i)$

Ex: Tossing Coin

- We toss a fair coin 10 times
 - Q: What is the probability there will be at most 2 heads?
 - The random variable $X = number \ of \ heads$
 - The variable *X* is a binomial random variable

$$p(x) = {10 \choose x} (0.5)^x (0.5)^{10-x}$$
 where $x \in \{0,1,2,\dots,10\}$

• We want to compute $F(2) = P(X \le 2)$

$$F(2) = P(X \le 2) = p(0) + p(1) + p(2)$$

$$= (0.5)^{10} + {10 \choose 1} (0.5)^{1} (0.5)^{9} + {10 \choose 2} (0.5)^{2} (0.5)^{8}$$

$$= {1 \choose 2}^{10} (1 + 10 + 45) = {7 \over 2^{7}} \approx 0.0547$$

• In Excel, F(2) = BINOM.DIST(2,10,0.5,TRUE)= BINOM.DIST(0,10,0.5,FALSE)+ BINOM.DIST(1,10,0.5,FALSE)+ BINOM.DIST(2,10,0.5,FALSE)

Ex: Rolling Die

- Toss a fair die until the first 6 shows up
 - Q: What is the probability we will need to toss the die at least 4 times?
 - The random variable $X = number \ of \ tosses \ to \ get \ the \ first \ 6$
 - The variable *X* is a geometric random variable

$$p(x) = \left(\frac{5}{6}\right)^{x-1} \left(\frac{1}{6}\right) \text{ where } x \in \{1, 2, 3, \dots\}$$

• We want to compute $P(X \ge 4) = 1 - P(X < 4) = 1 - F(3)$

$$1 - P(X < 4) = 1 - [p(1) + p(2) + p(3)] = 1 - p(1) - p(2) - p(3)$$
$$= 1 - \frac{1}{6} - \frac{5}{6} \times \frac{1}{6} - \left(\frac{5}{6}\right)^2 \times \frac{1}{6} = \frac{5^3}{6^3} \approx 0.5787$$

- In Excel, there is not a "GEOM.DIST" function that can be used
- Can be calculated using Excel's calculator functions

The End

