Datalog

P.J. McBrien

Imperial College London

Data is held as extensional predicates

branch				
<u>sortcode</u>	bname	cash		
56	'Wimbledon'	94340.45		
34	'Goodge St'	8900.67		
67	'Strand'	34005.00		

account						
no	type	cname	rate	sortcode		
100	'current'	'McBrien, P.'	NULL	67		
101	'deposit'	'McBrien, P.'	5.25	67		
103	'current'	'Boyd, M.'	NULL	34		
107	'current'	'Poulovassilis, A.'	NULL	56		
119	'deposit'	'Poulovassilis, A.'	5.50	56		
125	'current'	'Bailey, J.'	NULL	56		

movement				
<u>mid</u>	no	amount	tdate	
1000	100	2300.00	5/1/1999	
1001	101	4000.00	5/1/1999	
1002	100	-223.45	8/1/1999	
1004	107	-100.00	11/1/1999	
1005	103	145.50	12/1/1999	
1006	100	10.23	15/1/1999	
1007	107	345.56	15/1/1999	
1008	101	1230.00	15/1/1999	
1009	119	5600.00	18/1/1999	

```
branch(56, 'Wimbledon', 94340,45).
branch(34, 'Goodge St', 8900.67).
branch(67, 'Strand', 34005.00).
account(100, 'current', 'McBrien, P.'. null. 67).
account(101, 'deposit', 'McBrien, P.', 5.25, 67).
account (103, 'current', 'Boyd, M.', null, 34).
account(107, 'current', 'Poulovassilis, A.', null, 56).
account(119, 'deposit', 'Poulovassilis, A.', 5.50, 56).
account (125, 'current', 'Bailey, J.', null, 56).
movement(1000, 100, 2300.00, 5/1/1999).
movement (1001, 101, 4000.00, 5/1/1999).
movement(1002, 100, -223.45, 8/1/1999).
movement (1004, 107, -100.00, 11/1/1999).
movement(1005, 103, 145.50, 12/1/1999).
movement(1006, 100, 10.23, 15/1/1999).
movement(1007, 107, 345.56, 15/1/1999).
movement(1008, 101, 1230.00, 15/1/1999).
movement(1009, 119, 5600, 00, 18/1/1999).
```

Rules defined as intentional predicates

Datalog Rules

Datalog rules take the form Head: Body.

- Logical semantics: if Body the Head
- Head must be a single predicate
- Body may be any conjunction of predicates.

Naming of predicates and variables

- You cannot use the same name for intentional and extensional predicates
- Convention is the start predicate name with small letter
- Variables start with a capital letter
- A variable that only appears once can be replaced by '-'

Rules

Quiz 1: Valid Datalog Knowledgebase

```
single_male('Peter').
married_to('Paul', 'Jane').
male(M) := married_to(M, \_).
male(M) := single\_male(M).
female(F) := married\_to(\_, F).
female(F) := single\_female(F).
```

```
male('Peter').
male('Paul').
female('Jane').
married_to('Paul', 'Jane').
```

```
male('Peter').
married_to('Paul', 'Jane').
male(M) := married_to(M, \_).
female(F) := married\_to(\_, F).
```

```
D
married_to('Peter', null).
married_to('Paul', 'Jane').
male(M) := married\_to(M, \_), isNotNull(M).
female(F) := married\_to(\_, F), isNotNull(F).
```

Model-Theoretic Interpretation

deposit_account(No, Name, Rate, Sortcode):account(No, 'deposit', Name, Rate, Sortcode).
account(100, 'current', 'McBrien, P.', null, 67).
account(101, 'deposit', 'McBrien, P.', 5.25, 67)

 $\begin{array}{ll} {\sf account}(101, {\sf `deposit'}, {\sf `McBrien}, \ P.', 5.25, 67). \\ {\sf account}(103, {\sf `current'}, {\sf `Boyd}, \ M.', {\sf null}, 34). \end{array}$

account(107, 'current', 'Poulovassilis, A.', null, 56). account(119, 'deposit', 'Poulovassilis, A.', 5.50, 56).

account(125, 'current', 'Bailey, J.', null, 56).

Minimal Model

If we can assign any combination of values to the variables, what is the minimum set of predicates that must be true.

Minimal Model

deposit_account(101, 'McBrien, P.', 5.25, 67).

Is not a model, since it implies deposit_account(119, 'Poulovassilis, A.', 5.50, 56) is false, but deposit_account(119, 'Poulovassilis, A.', 5.50, 56) is true due to the rule for deposit_account.

Model-Theoretic Interpretation

$$\begin{split} &\mathsf{deposit_account}(\mathsf{No}, \mathsf{Name}, \mathsf{Rate}, \mathsf{Sortcode}) :- \\ &\mathsf{account}(\mathsf{No}, \mathsf{'deposit'}, \mathsf{Name}, \mathsf{Rate}, \mathsf{Sortcode}). \\ &\mathsf{account}(\mathsf{100}, \mathsf{'current'}, \mathsf{'McBrien}, \ \mathsf{P.'}, \mathsf{null}, \mathsf{67}). \end{split}$$

account(101, 'deposit', 'McBrien, P.', 5.25, 67). account(103, 'current', 'Boyd, M.', null, 34).

account (107, 'current', 'Poulovassilis, A.', null, 56). account (119, 'deposit', 'Poulovassilis, A.', 5.50, 56).

account(125, 'current', 'Bailey, J.', null, 56).

Minimal Model

If we can assign any combination of values to the variables, what is the minimum set of predicates that must be true.

Minimal Model

deposit_account(101, 'McBrien, P.', 5.25, 67). deposit_account(119, 'Poulovassilis, A.', 5.50, 56). deposit_account(127, 'Poulovassilis, A.', 4.50, 56).

Is not a minimal model, since deposit_account(127, 'Poulovassilis, A.', 4.50, 56) could be made false, and the model still be consistent.

Model-Theoretic Interpretation

```
deposit_account(No, Name, Rate, Sortcode) :-
       account(No, 'deposit', Name, Rate, Sortcode).
account(100, 'current', 'McBrien, P.', null, 67).
account(101, 'deposit', 'McBrien, P.', 5.25, 67).
account(103, 'current', 'Boyd, M.', null, 34).
account(107, 'current', 'Poulovassilis, A.', null, 56).
account(119, 'deposit', 'Poulovassilis, A.', 5.50, 56).
account(125, 'current', 'Bailey, J.', null, 56).
```

Minimal Model

If we can assign any combination of values to the variables, what is the minimum set of predicates that must be true.

Minimal Model

deposit_account(101, 'McBrien, P.', 5.25, 67). deposit_account(119, 'Poulovassilis, A.', 5.50, 56).

Is a minimal model

Quiz 2: Datalog Queries

```
active_current_account(No):-
       account(No, 'current', _, _, _),
       movement(\_, No, \_, \_).
```

```
active_current_account(100).
active_current_account(101).
active_current_account(103).
active_current_account(107).
active_current_account(119).
active_current_account(125).
```

active_current_account(100). active_current_account(101). active_current_account(103). active_current_account(107). active_current_account(119).

```
active_current_account(100).
active_current_account(103).
active_current_account(107).
active_current_account(125).
```

D active_current_account(100). active_current_account(103). active_current_account(107).

Datalog[¬]: Datalog with Negation

Safe Negation

Use \neg infront of a predicate to mean that it must not hold.

Any variable that appears in a negated predicate must have previously appeared in a non-negated predicate.

✓ Find accounts without any movements

```
dormant_account(No) :-
    account(No, _, _, _, _),
    ¬movement(_, No, _, _).
```

XUnsafe

 $dormant_account(No) :- \\ \neg movement(_, No, _, _).$

Minimal Model

dormant_account(125).

Quiz 3: Safe Datalog Predicates

Which predicate uses safe negation?

A

```
non_current_accounts(No, Type) :-
account(No, Type, _, _, _, _),
¬Type = 'current'.
```

В

```
non_current_accounts(No, Type) :-
¬Type = 'current',
account(No, Type, _, _, _, _).
```

\mathbf{C}

```
non_current_accounts(No) :-
\neg \mathsf{Type} = \mathsf{`current'},
\mathsf{account}(\mathsf{No}, \mathsf{Type}, \_, \_, \_).
```

D

```
non_current_accounts(No, Type) :-
account(No, \_, \_, \_, \_),
\neg Type = 'current'.
```

Quiz 4: Datalog Queries (1)

```
\begin{split} & b ranch\_without\_recent\_debit(BName) :- \\ & b ranch(Sortcode, BName, \_), \\ & account(No, \_, \_, \_, Sortcode), \\ & \neg account\_with\_recent\_debit(No) :- \\ & account\_with\_recent\_debit(No) :- \\ & movement(\_, No, Value, TDate), \\ & Value < 0, \\ & TDate > 10/1/1999. \end{split}
```

What is the minimum model?

Α

2

 $branch_without_recent_debit('Wimbledon').$

C

branch_without_recent_debit('Goodge St'). branch_without_recent_debit('Strand').

\mathbf{D}

branch_without_recent_debit('Wimbledon').
branch_without_recent_debit('Goodge St').
branch_without_recent_debit('Strand').

Quiz 5: Datalog Queries (2)

```
\begin{split} & b ranch\_without\_recent\_debit(BName) :-\\ & b ranch(Sortcode, BName, \_),\\ & \neg b ranch\_with\_recent\_debit(Sortcode).\\ & b ranch\_with\_recent\_debit(Sortcode) :-\\ & account(No, \_, \_, \_, Sortcode),\\ & movement(\_, No, Value, TDate),\\ & Value < 0,\\ & TDate > 10/1/1999. \end{split}
```

What is the minimum model?

Α

2

 $branch_without_recent_debit('Wimbledon').$

\mathbf{C}

branch_without_recent_debit('Goodge St'). branch_without_recent_debit('Strand').

D

branch_without_recent_debit('Wimbledon'). branch_without_recent_debit('Goodge St'). branch_without_recent_debit('Strand').

Projection

 π

RA projection is performed by only using a subset of rule body variables in the head of a rule.

π_{sortcode} account

 $account_sortcode(Sortcode) :- account(_, _, _, _, Sortcode).$

Minimal Model

account_sortcode(34).

account_sortcode(56).

account_sortcode(67).

Selection

σ

RA selection is performed by naming a variable more than once, or by putting a data value in the rule body.

$\sigma_{\rm amount>1000}$ movement

 $\begin{aligned} & \mathsf{big_credit}(\mathsf{Mid}, \mathsf{No}, \mathsf{Amount}, \mathsf{Date}) :- \\ & & \mathsf{movement}(\mathsf{Mid}, \mathsf{No}, \mathsf{Amount}, \mathsf{Date}), \\ & & \mathsf{Amount} > 1000. \end{aligned}$

Minimal Model

big_credit(1000, 100, 2300.00, 5/1/1999).

 $big_credit(1001, 101, 4000.00, 5/1/1999).$

 ${\tt big_credit}(1008, 101, 1230.00, 15/1/1999).$

big_credit(1009, 119, 5600.00, 18/1/1999).

Product

RA product is performed by naming two predicates in the rule body.

$branch imes \sigma_{rate>0}$ account

```
\begin{aligned} &\mathsf{product\_example}(\mathsf{BSortcode}, \mathsf{BName}, \mathsf{Cash}, \mathsf{No}, \mathsf{Type}, \mathsf{CName}, \mathsf{Rate}, \mathsf{ASortcode}) : \\ &\mathsf{branch}(\mathsf{BSortcode}, \mathsf{BName}, \mathsf{Cash}), \\ &\mathsf{account}(\mathsf{No}, \mathsf{Type}, \mathsf{CName}, \mathsf{Rate}, \mathsf{ASortcode}), \\ &\mathsf{Rate} > 0. \end{aligned}
```

Minimal Model

```
(56, 'Wimbledon', 94340.45, 101, 'deposit', 'McBrien, P.', 5.25, 67)
(56, 'Wimbledon', 94340.45, 119, 'deposit', 'Poulovassilis, A.', 5.50, 56)
(34, 'Goodge St', 8900.67, 101, 'deposit', 'McBrien, P.', 5.25, 67)
```

(34, 'Goodge St', 8900.67, 119, 'deposit', 'Poulovassilis, A.', 5.50, 56)

(67, 'Strand', 34005.00, 101, 'deposit', 'McBrien, P.', 5.25, 67)

(67, 'Strand', 34005.00, 119, 'deposit', 'Poulovassilis, A.', 5.50, 56)

Join

M

RA join is performed by naming two predicates in the rule body, and then comparing their attributes.

$\pi_{\mathsf{bname},\mathsf{cname}} \sigma_{\mathsf{branch}.\mathsf{sort}\mathsf{code} = \mathsf{account}.\mathsf{sort}\mathsf{code}}(\mathsf{branch} imes \mathsf{account})$

```
\begin{split} branch\_customers(BName, CName) :- \\ branch(BSortcode, BName, \_), \\ account(\_, \_, CName, \_, ASortcode), \\ BSortcode = ASortcode. \end{split}
```

 \equiv

```
\begin{aligned} branch\_customers(BName, CName) :- \\ branch(Sortcode, BName, \_), \\ account(\_, \_, CName, \_, Sortcode). \end{aligned}
```

Minimal Model

```
branch_customers('Wimbledon', 'Poulovassilis, A.'). branch_customers('Wimbledon', 'Bailey, J.'). branch_customers('Goodge St', 'Boyd, M.'). branch_customers('Strand', 'McBrien, P.').
```

Quiz 6: Translating RA to Datalog

 $\pi_{\mathsf{bname}} \, \sigma_{\mathsf{account.sortcode} = \mathsf{branch.sortcode} \land \mathsf{type} = `\mathsf{deposit}'} (\mathsf{account} \times \mathsf{branch})$

Which datalog rule for query is not equivalent to the above RA query?

```
query(BName) :-
                                              query(BName) :-
       account(_, 'deposit', _, _, Sortcode),
                                                     branch(Sortcode1, BName, _),
                                                     account(_, 'deposit', _, _, Sortcode2),
       branch(Sortcode, BName, _).
                                                     Sortcode1 = Sortcode2.
                                              D
query(BName) :-
                                              query(BName) :-
       branch(\_, BName, \_).
                                                     branch(Sortcode, BName, _),
query(BName) :-
                                                     deposit_branch(Sortcode).
       branch(Sortcode, BName, _),
                                              deposit_branch(Sortcode) :-
       account(_, 'deposit', _, _, Sortcode).
                                                     account(_, 'deposit', _, _, Sortcode).
```

Quiz 7: Self Joins

query(CName, CAcc, DAcc) :account(DAcc, 'deposit', CName, _, _), account(CAcc, 'current', CName, _, _).

	account		
no type	cname	rate	sortcode
100 'current	t''McBrien, P.'	NULL	67
101 'deposit	t' 'McBrien, P.'	5.25	67
103 'current	t' 'Boyd, M.'	NULL	34
107 'current	t' 'Poulovassilis, A	A.' NULL	56
119 'deposi	t' 'Poulovassilis, A	A.' 5.50	56
125 'current	t' 'Bailey, J.'	NULL	56

CName CAcc

DAcc

CName	CAcc	DAcc
'McBrien, P.'	100	101
'Poulovassilis A'	107	119

CAcc	DAcc	
101	100	
119	107	
	101	101 100

CName	CAcc	DAc
'McBrien, P.'	100	10
'Boyd, M.'	103	nu

'Poulovassilis, A.' 107 'Bailey, J.' 103

119

null

Union

U

RA union is performed by having more than one rule definition for an intentional predicate.

$\sigma_{\mathsf{amount}>1000}$ movement $\cup \sigma_{\mathsf{amount}<-100}$ movement

```
\begin{split} &\mathsf{big\_movement}(\mathsf{Mid}, \mathsf{No}, \mathsf{Amount}, \mathsf{Date}) :-\\ &\mathsf{movement}(\mathsf{Mid}, \mathsf{No}, \mathsf{Amount}, \mathsf{Date}),\\ &\mathsf{Amount} > 1000.\\ &\mathsf{big\_movement}(\mathsf{Mid}, \mathsf{No}, \mathsf{Amount}, \mathsf{Date}) :-\\ &\mathsf{movement}(\mathsf{Mid}, \mathsf{No}, \mathsf{Amount}, \mathsf{Date}),\\ &\mathsf{Amount} < -100. \end{split}
```

Minimal Model

```
\begin{array}{l} \mbox{big\_movement}(1000, 100, 2300.00, 5/1/1999). \\ \mbox{big\_movement}(1001, 101, 4000.00, 5/1/1999). \\ \mbox{big\_movement}(1002, 100, -223.45, 8/1/1999). \\ \mbox{big\_movement}(1008, 101, 1230.00, 15/1/1999). \\ \mbox{big\_movement}(1009, 119, 5600.00, 18/1/1999). \end{array}
```

Difference

-

RA difference is performed using a negation on the predicate being 'subtracted': need Datalog \neg .

π_{no} account $-\pi_{\mathsf{no}}$ movement

 $\begin{aligned} \mathsf{dormant_account}(\mathsf{No}) :- \\ & \mathsf{account}(\mathsf{No}, _, _, _, _), \\ & \neg \mathsf{movement}(_, \mathsf{No}, _, _). \end{aligned}$

Minimal Model

dormant_account(125).

Worksheet: Datalog

	branch	
sortcode	bname	cash
56	'Wimbledon'	94340.45
34	'Goodge St'	8900.67
67	'Strand'	34005.00

		movemen	t
mid	no	amount	tdate
1000	100	2300.00	5/1/1999
1001	101	4000.00	5/1/1999
1002	100	-223.45	8/1/1999
1004	107	-100.00	11/1/1999
1005	103	145.50	12/1/1999
1006	100	10.23	15/1/1999
1007	107	345.56	15/1/1999
1008	101	1230.00	15/1/1999
1009	119	5600.00	18/1/1999

		account		
<u>no</u>	type	cname	rate	sortcode
100	'current'	'McBrien, P.'	NULL	67
101	'deposit'	'McBrien, P.'	5.25	67
103	'current'	'Boyd, M.'	NULL	34
107	'current'	'Poulovassilis, A.'	NULL	56
119	'deposit'	'Poulovassilis, A.'	5.50	56
125	'current'	'Bailey, J.'	NULL	56

```
key branch(sortcode)
key branch(bname)
key movement(mid)
key account(no)
movement(no) \stackrel{fk}{\Rightarrow} account(no)
account(sortcode) \stackrel{fk}{\Rightarrow} branch(sortcode)
```