

MOOC Econometrics

Training Exercise P.2

Questions

1. For a standard normal distributed variable y, the following rules of thumb apply:

$$P(-1 \le y \le 1) \approx 0.68$$

$$P(-2 \le y \le 2) \approx 0.95$$
.

Transform these rules of thumb for a random variable $x \sim N(\mu, \sigma)$.

- 2. Let $z \sim \chi^2(n)$. Derive the variance of z.
- 3. Let z_1 and z_2 be two independent χ^2 random variables with degrees of freedom k_1 and k_2 . Show that $z_1 + z_2 \sim \chi^2(k_1 + k_2)$.
- 4. Let x be an $(n \times 1)$ random vector that follows the multivariate normal distribution with mean vector μ and covariance matrix Σ . Let L be an invertible matrix such that $LL' = \Sigma$.
 - (a) What is the distribution of $y = L^{-1}(x \mu)$.
 - (b) Show that $z = (x \mu)' \Sigma^{-1} (x \mu)$ follows the $\chi^2(n)$ distribution.
- 5. Let y be a $(n \times 1)$ random vector, $y \sim N(0, I)$. Let z be a random variable, $z \sim \chi^2(k)$, independent from y. The variable x is defined by $x = \frac{1}{\sqrt{z/k}}y$. Derive the distribution of x'x/n.

Ezafus,