User Manual for

mrMLM.GUI

multi-locus random-SNP-effect Mixed Linear Model tools for genome-wide association study

(version 4.0.1)

Zhang Ya-Wen, Li Pei, Zhang Yuan-Ming (soyzhang@mail.hzau.edu.cn)

Last updated on September, 2020

Disclaimer: While extensive testing has been performed by Yuan-Ming Zhang's Lab at the Crop Information Center of College of Plant Science and Technology, Huazhong Agricultural University, the results are, in general, reliable, correct or appropriate. However, results are not guaranteed for any specific datasets. We strongly recommend that users validate the mrMLM.GUI results with other software packages, i.e., GEMMA, EMMAX, GAPIT v2 & PLINK.

Download website:

https://cran.r-project.org/web/packages/mrMLM.GUI/index.html or https://bigd.big.ac.cn/biocode/tools/BT007077

Method or softwar	e References
mrMLM	Wang et al. Scientific Reports 2016, 6:19444.
ISIS EM-BLASSO	Tamba et al. PLoS Computational Biology 2017, 13(1): e1005357.
pLARmEB	Zhang et al. <i>Heredity</i> 2017, 118: 517–524.
FASTmrEMMA	Wen et al. <i>Briefings in Bioinformatics</i> 2018, 19(4): 700–712. DOI: 10.1093/bib/bbw145.
pKWmEB	Ren et al. <i>Heredity</i> 2018, 120(3): 418–428.
FASTmrMLM	Tamba & Zhang, <i>bioRxiv</i> , 2018. doi: 10.1101/341784.
	Zhang et al. <i>Genomics, Proteomics & Bioinformatics</i> , Accept (bioRxiv, 2020.03.04.976464).
Software mrMLM	Zhang et al. <i>Genomics, Proteomics & Bioinformatics</i> , Accept (<i>bioRxiv</i> , 2020.03.04.976464).

Note: These references are listed in section of References.

This work was supported by the National Natural Science Foundation of China (32070557, 31571268, 31871242, and U1602261), Huazhong Agricultural University Scientific & Technological Self-innovation Foundation (Program No. 2014RC020), and State Key Laboratory of Cotton Biology Open Fund (CB2017B01 & CB2019B01).

INTRODUCTION

1.1 Why mrMLM.GUI?

mrMLM.GUI (multi-locus random-SNP-effect Mixed Linear Model with Graphical User Interface) program is an R package for multi-locus genome-wide association study (GWAS). At present this program (v4.0.1) includes six methods: 1) mrMLM, 2) FASTmrMLM (Fast multi-locus random-SNP-effect EMMA), 3) ISIS EM-BLASSO (Iterative Sure Independence Screening EM-Bayesian LASSO), 4) pLARmEB (polygenic-background-control-based least angle regression plus empirical Bayes), 5) pKWmEB (polygenic-background-control-based Kruskal-Wallis test plus empirical Bayes); and 6) FASTmrMLM (fast mrMLM).

The software package mrMLM.GUI 4.0.1 works well on Windows, Linux (desktop) and MacOS.

1.2 Getting started

The software package mrMLM runs only in the R software environment and can be freely downloaded from the R website (https://cran.r-project.org/web/packages/mrMLM.GUI/index.html), or the BioCode (https://bigd.big.ac.cn/biocode/tools/7077), or requested from the maintainer, Dr Yuan-Ming Zhang at College of Plant Science and Technology, Huazhong Agri Univ (soyzhang@mail.hzau.edu.cn).

Note: Users may need to install Rtools https://cran.r-project.org/bin/windows/Rtools/ and add it into the system of PATH (Fig 1). Our purpose is to ensure that the results can be written to the computer.

1.2.1 One-Click installation

Within R environment, the mrMLM.GUI software can be installed online using the below command:

install.packages("mrMLM.GUI")

Figure 1. Install Rtools

1.2.2 Step-by-step installation

1.2.2.1 Install the add-on packages

Offline installation Users may download the below 53 packages from CRAN (https://cran.r-project.org/), github (https://github.com/) and google search.

bigmemory, bigmemory.sri, calibrate, coin, colorspace, crayon, data.table, digest, doParallel, ellipsis, fastmap, foreach, ggplot2, glue, gtable, htmltools, httpuv, iterators, jsonlite, lars, later, libcoin, lifestyle, lpsolve, matrixStats, magrittr, mime, modeltools, mrMLM, multcomp, munsell, mvtnorm, ncvreg, pillar, pkgconfig, promises, qqman, R6, Rcpp, RcppArmadillo, RcppEigen, rlang, sampling, sbl, sandwich, scales, shiny, shinyjs, TH.data, tibble, vctrs, xtable, zoo.

Under the R environment, then, users find "Packages"—"Install package(s) from local files...", select all the above 53 packages, and install them offline.

1.2.2.2 Install mrMLM.GUI

Open R GUI, select "Packages"—"Install package(s) from local files..." and then find the mrMLM.GUI package in which you have downloaded on your desktop.

User Manual Users can decompress the mrMLM.GUI package and find the User Manual file (name: **Instruction.pdf**) in the folder of ".../mrMLM.GUI/inst/doc".

1.2.3 Run mrMLM.GUI

Once the software mrMLM.GUI is installed, users may run the software using two commands:

library("mrMLM.GUI") mrMLM.GUI()

If users re-use the software mrMLM.GUI, users also use the above two commands.

2. Dataset input

2.1 Genotypic dataset

The **Genotypic** file should be a *.csv or *.txt format file.

Numeric format for Genotypic dataset (Table 1) The first column, named "rs#", stands for marker ID, i.e., "PZB00859.1". The second column, named "chrom", stands for chromosome, i.e., numeric variable "1". The third column, named "pos", stands for the position (bp) of SNP on the chromosome. The fourth column, named "genotype for code 1", indicates reference base for code variable x = 1. Among the remaining columns, each column lists all the genotypes for one individual, and the first row shows the individual names. For each marker, homozygous genotypes are expressed by 1 and -1, respectively, and the heterozygous and missing genotypes are indicated by zero. If the base for the first individual is missing, the base firstly observed in this row is what we list. Note that the genotype with code 1 will be also listed in the Result files.

Table 1. The numeric format of the genotypic dataset

rs#	chrom	pos	genotype for code 1	33-16	Nov-38	A4226	A4722
PZB00859.1	1	157104	С	1	1	1	1
PZA01271.1	1	1947984	С	1	-1	1	-1
PZA03613.2	1	2914066	G	1	1	1	1
PZA03613.1	1	2914171	Т	1	1	1	1
PZA03614.2	1	2915078	G	1	1	1	1
PZA03614.1	1	2915242	Т	1	1	1	1
PZA02117.1	1	223466480	A	1	1	1	-1
PZA00403.5	1	223466873	Т	1	1	1	0
:	:	:	:	:	:	•	•

Character format for Genotypic dataset The first three columns in Table 2 are same as those in Table 1. The differences are that the marker values are characters,

such as **A**, **T**, **C**, **G** and **N**, and the other notations are heterozygous genotypes. The "**N**" indicates the missing of genotypes. The first row from the fourth to last columns lists the names of individuals, i.e., "33-16" and "Nov-38".

Table 2. The character format of the genotypic dataset

rs#	chrom	pos	33-16	Nov-38	A4226	A4722
PZB00859.1	1	157104	С	С	C	С
PZA01271.1	1	1947984	С	G	С	G
PZA03613.2	1	2914066	G	G	G	G
PZA03613.1	1	2914171	Т	T	Т	T
:	:	:	:	:	:	:

Hapmap format for Genotypic dataset

Please see the TASSEL software in details. Here we describe simply. The first eleven columns describe the specific information of markers and individuals, and their column names must be "rs#", "alleles", "chrom", "pos", "strand", "assembly#", "center", "protLSID", "assayLSID", "panelLSID" and "QCcode". In the "rs#" (1st), "chrom" (3rd) and "pos" (4th) columns, their information is described as the above in Table 3. The values of marker genotypes should be character, such as AA, TT, CC, GG, NN, AC and AG, where the "NN" indicates the missing or unknown of genotypes. In the 2nd and 5th to 11th columns, "NA" indicates no information available. All the individual genotypic information will be showed from the 12th to last columns. In each column, individual name is listed in the first row, i.e., "33-16", and the others are the genotypes (character).

Table 3. The hapmap format of the genotypic dataset

rs#	alleles	chrom	pos	strand	assembly#	center	protLSID	assayLSID	panelLSID	QCcode	33-16	
PZB00859.1	A/C	1	157104	+	AGPv1	Panzea	NA	NA	maize282	NA	CC	:
PZA01271.1	C/G	1	1947984	+	AGPv1	Panzea	NA	NA	maize282	NA	CC	:
PZA03613.2	G/T	1	2914066	+	AGPv1	Panzea	NA	NA	maize282	NA	GG	:
PZA03613.1	A/T	1	2914171	+	AGPv1	Panzea	NA	NA	maize282	NA	TT	::
PZA03614.2	A/G	1	2915078	+	AGPv1	Panzea	NA	NA	maize282	NA	GG	
PZA03614.1	A/T	1	2915242	+	AGPv1	Panzea	NA	NA	maize282	NA	TT	
PZA02117.1	A/G	1	223466480	+	AGPv1	Panzea	NA	NA	maize282	NA	AA	
PZA00403.5	C/T	1	223466873	+	AGPv1	Panzea	NA	NA	maize282	NA	TT	
	•	•	:	:	:	•	•	•	•	•	•	

Before implementing GWAS, the above character genotypes should be transferred into numeric information. Here the homozygous genotype of each marker for the first individual is transferred into 1, another homozygous genotype for this marker is transferred into -1, and the heterozygous and missing genotypes are transferred into zero. If the base for the first individual is missing, the base firstly observed in this row is what we list.

2.2 Phenotypic dataset

The **Phenotypic** file with the *.csv or *.txt format is showed in Table 4. The first column lists individual ID, i.e., "B46", and "<Phenotype>" should be showed in the first row. Among the other columns, each column lists all the observations for one trait, and its trait name is showed in the first row, i.e., "trait1". "NA" indicates the missing or unknown phenotypes.

<Phenotype> trait1 trait2 trait3 42 43.02 44.32 **B46** B52 72.5 71.88 72.8 B57 41.42 41 41.7 B64 74.5 74.43 74.5

Table 4. The format of Phenotypic dataset

2.3 Kinship dataset

The Kinship file with the *.csv or *.txt format is showed in Table 5. In the first column, "263" is sample size (n), and "33-16", "Nov-38" and "A4226" are individual ID. Note that "n" is the number of common individuals between the phenotypic and genotypic datasets. All the kinship coefficients are listed as an $n \times n$ matrix.

263					
33-16	1.00809	0.45954	0.50677	0.42503	0.45591
Nov-38	0.45954	1.03352	0.43048	0.47044	0.39597
A4226	0.50677	0.43048	1.01717	0.45409	0.43775
A4722	0.42503	0.47044	0.45409	0.89002	0.34874
A188	0.45591	0.39597	0.43775	0.34874	1.0099
	:	:	:	:	:

Table 5. The format of the Kinship dataset

When users select "Calculate kinship (K) matrix by this software", these coefficients between pairs of the above common individuals in the phenotypic and genotypic datasets can be calculated. When users select to input and upload "Kinship (K)" matrix file, the number and order of individuals in the uploaded file may be not consistent with those in the phenotypic and genotypic datasets. At this case, our software can let the number and order of individuals in the uploaded K matrix file be consistent with those in the phenotypic and genotypic datasets.

2.4 Population Structure dataset

Dataset format of Q matrix The Q matrix dataset in Table 6 consists of a (n+2) × (k+1) matrix, where n is the number of the common individuals and k is the number of sub-populations. In the first column, "<PopStr>" and "<ID>" should present in the first and second rows, respectively; "33-16", "Nov-38" and "A4226" are individual ID. In the 2nd to (k+1)-th columns, " Q_1 " to " Q_k " indicate sub-populations. In the third row, "0.014", "0.972" and "0.014" are the posterior probabilities of the "33-16" individual from the first, second and third subpopulations, respectively. When the Q matrix is uploaded to the software, the software will automatically delete the column whose sum is the smallest.

Table 6. The format of the Population Structure dataset

<popstr></popstr>			
<id></id>	Q1	Q2	Q3
33-16	0.014	0.972	0.014
Nov-38	0.003	0.993	0.004
A4226	0.071	0.917	0.012
A4722	0.035	0.854	0.111
A188	0.013	0.982	0.005
A214N	0.762	0.017	0.221
A239	0.035	0.963	0.002
A272	0.019	0.122	0.859
A441-5	0.005	0.531	0.464
:	•	•	•

Dataset format of principal components The principal component dataset in Table 7 consists of a $(n+2) \times (k+1)$ matrix, where n is the number of the common

individuals and k is the number of principal components. In the first column, " $\langle PCA \rangle$ " and " $\langle ID \rangle$ " should present in the first and second rows, respectively; "33-16", "Nov-38" and "A4226" are individual ID. In the 2nd to (k+1)-th columns, " PC_1 " to " PC_k " indicate the first to k-th principal components. In the second column, "0.306", …, "0.216" are the scores of the first principal component for the 1st to 9-th individuals, respectively.

Table 7. The format of the Principal components dataset

<pca></pca>			
<id></id>	PC1	PC2	PC3
33-16	0.306	0.029	0.226
Nov-38	-0.708	-2.071	1.413
A4226	-2.330	0.116	-0.824
A4722	1.059	0.470	-1.315
A188	-2.376	1.087	-0.135
A214N	-2.346	0.516	0.666
A239	-0.099	-0.318	-0.473
A272	-0.053	0.093	-0.275
A441-5	0.216	-0.535	-0.159
:		:	:

Table 8. The format of the Evolutionary population structure dataset

<evolpopstr></evolpopstr>	
<id></id>	EvolType
33-16	A
Nov-38	A
A4226	A
A4722	В
A188	A
A214N	A
A239	В
•	•

Dataset format of evolutionary population structure The evolutionary population structure dataset in Table 8 consists of a $(n+2) \times 2$ matrix, where n is the

number of the common individuals. In the first column, "**EvolPopStr**>" and "**ID**>" should present in the first and second rows, respectively; "33-16", "Nov-38" and "A4226" are individual ID. In the second column, "EvolType" indicates the evolutionary type, i.e., the evolutionary types for individuals "33-16" and "A4722" are "A" and "B", respectively.

"Not included in the model" indicates no inclusion of population structure in the genetic model. On the contrary, it should be "Included". At this case, users should upload the population structure file. If the number and order of individuals in the uploaded file aren't consistent with those in the phenotypic and genotypic datasets, our software may change the population structure matrix in order that the number and order of individuals are consistent with those in the above common individuals.

2.5 Covariate dataset

The "Covariate" dataset in Table 9 consists of the $(n+2) \times (k+1)$ matrix, where n is the number of the common individuals and k is the number of covariates. In the first column, "<Covariate>" and "<ID>" should present in the first and second rows, respectively. The 2nd to (k+1)-th columns are covariates. If covariate is categorical, it should be named as Cate_covariate*. If covariate is continuous, it should be named as Con covariate*.

Table 9. The format of the fileCov dataset

<covariate></covariate>				
<id></id>	Cate_covariate1	Cate_covariate2	Con_covariate1	Con_covariate2
33-16	A	С	349.5	374
Nov-38	В	С	205	452
A4226	A	D	300	374
A4722	A	D	190	452
A188	В	С	213	374
•	•	•	•	•

"Not included in the model" indicates no inclusion of covariates in the genetic model.

On the contrary, it should be "Included". At this case, users should upload the

covariate file. If the number and order of individuals in the uploaded file aren't consistent with those in the above common individuals, our software may change the number and order of individual in order to match the original datasets.

3. Operation process

3.1 The Graphical User Interface of mrMLM.GUI

mrMLM Start

Multi-locus GWAS methods

- 1. Zhang YM, Mao Y, Xie C, Smith H, Luo L, Xu S*. Mapping quantitative trait loci using naturally occurring genetic variance among commercial inbred lines of maize (Zea mays L.). Genetics 2005;169:2267-2275
- 2. Wang SB, Feng JY, Ren WL, Huang B, Zhou L, Wen YJ, Zhang J, Jim M Dunwell, Xu S*, Zhang YM*. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Scientific Reports 2016;6:19444. (mrMLM)
- 3. Tamba CL, Ni YL, Zhang YM*, Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies. PLoS Computational Biology 2017;13(1):e1005357. (ISIS EM-BLASSO)
- 4. Zhang J, Feng JY, Ni YL, Wen YJ, Niu Y, Tamba CL, Yue C, Song QJ, Zhang YM*, pLARmEB: integration of least angle regression with empirical Bayes for multi-locus genome-wide association studies. Heredity 2017;118(6):517-524. (pLARmEB)
- Ren WL, Wen YJ, Jim M Dunwell, Zhang YM*. pKWmEB: integration of Kruskal-Wallis test with empirical Bayes under polygenic background control for multi-locus genome-wide association study. Heredity 2018;120(3):208-218. (pKWmEB)
- 6. Wen YJ, Zhang H, Ni YL, Huang B, Zhang J, Feng JY, Wang SB, Jim M Dunwell, Zhang YM*, Wu R*. Methodological implementation of mixed linear models in multi-locus genome-wide association studies. Briefings in Bioinformatics 2018;19(4):700-712. (FASTmrEMMA)
- 7. Tamba CL, Zhang YM. A fast mrMLM algorithm for multi-locus genome-wide association studies. bioRxiv, 2018. doi: 10.1101/341784.
- 8. Zhang Yuan-Ming, Jia Zhenyu, Jim M. Dunwell. Editorial: The applications of new multi-locus GWAS methodologies in the genetic dissection of complex traits. Frontiers in Plant Science 2019, 10: 100.
- 9. Zhang Ya-Wen, Tamba Cox Lwaka, Wen Yang-Jun, Li Pei, Ren Wen-Long, Ni Yuan-Li, Gao Jun, Zhang Yuan-Ming*. mrMLM v4.0: An R platform for multi-locus genome-wide association studies. Genomics, Proteomics & Bioinformatics 2020; Accept (bioRxiv, 2020.03.04.976464)

Authors: Zhang Ya-Wen, Li Pei, Zhang Yuan-Ming Maintainer: Zhang Yuan-Ming (soyzhang at mail.hzau.edu.cn) mrMLM.GUI version 4.0.1, Realeased September 2020

Figure 2. The Graphical User Interface of mrMLM.GUI

3.2 Input dataset

Users must upload the genotypic and phenotypic files (Figs 3 & 4), while the Kinship, Population-Structure and Covariate files are optional. In Kinship module, users should upload the Kinship matrix if users select "Input Kinship (K) matrix file" (Fig 5). Users don't need to upload this file if users select "Calculate Kinship (K) matrix by this software", at this case, the K matrix can be calculated automatically. In Population Structure module, users should upload the Population Structure file if users select "Included" (Fig 6). There is no inclusion of population structure information in the genetic model if users select "Not included in the model". In Covariate module, users should upload the covariate file if users select "Included" (Fig 7). There is no inclusion of covariates in the genetic model if users select "Not included in the model".

Figure 3. Input genotypic dataset

Figure 4. Input Phenotypic dataset

Figure 5. Input kinship dataset

Figure 6. Input Population Structure dataset

Figure 7. Input Covariate dataset

3.3 Method select & Parameter setting (Fig 8)

Method selection: There are six multi-locus GWAS methods available in the mrMLM.GUI. Users may select one to six methods.

Search radius of candidate gene (kb) (mrMLM & FASTmrMLM): This parameter is only for mrMLM and FASTmrMLM, indicating Search Radius (kb) in search of potentially associated QTN. If users set it as 20 kb, only one potentially associated QTN within the radius of 20 kb may be selected into multi-locus model.

Likelihood function (FASTmrEMMA): This parameter is only for FASTmrEMMA, including restricted maximum likelihood (REML) and maximum likelihood (ML).

No. of potentially associated variables selected by LARS (pLARmEB): This parameter is only for pLARmEB. If users set it as 50, 50 potentially associated variables can be selected from each chromosome. Users may change this number in real data analysis in order to obtain the best results.

Bootstrap (pLARmEB): This parameter is only for pLARmEB, including FALSE & TRUE. FALSE indicates only the analysis of real dataset; TRUE indicates the analyses of both real and four resampling datasets.

Save path: Save path in your computer in order to output the results in this path.

Traits analyzed: Traits analyzed may be from number n_1 to number n_2 . For example, "1:3" indicates that users analyze the first to third traits.

Draw plot (All the methods): Including FALSE and TRUE. FALSE indicates no figure output; TRUE indicates the output of figures, including the Manhattan and QQ plots.

Plot format (All the methods): Including *.jpeg, *.png, *.tiff and *.pdf for all the figure files.

Figure 8. Method select & Parameter setting

3.4 Run the software (Fig 9)

After uploading all the needed files and setting all the parameters, users can run the software. The result files will be saved to the path that users set up.

Figure 9. Run the software mrMLM.GUI

4. Result

Once the running of the software mrMLM v4.0.1 is ended, the "results" files will appear on the Directory, which was set up by users before running the software. The results for each trait include "*_intermediate result.csv", "*_Final result.csv", and the Manhattan and QQ plots.

In the *_intermediate result.csv file, there are thirteen columns, including Trait ID, Trait name, reference sequence number (rs#, marker name), chromosome, marker's position (bp) on the chromosome, SNP effect (γ_k , Effect) (mrMLM, FASTmrMLM, and FASTmrEMMA), -log₁₀(P) (mrMLM, FASTmrMLM, FASTmrEMMA, and pKWmEB), and genotype for code 1.

In the **Final result** file, there are fourteen columns, including Trait ID, Trait name, method, reference sequence number (rs#, marker names), chromosome, marker's position (bp) in the chromosome, QTN effect, LOD score, -log₁₀(P), the proportion of phenotypic variance explained by significant QTN (r²), minor allelic frequency, genotype for code 1, residual error variance, and total phenotypic variance.

In the Manhattan plot, each marker -log₁₀(P) median among the -log₁₀(P) values from the mrMLM, FASTmrMLM, FASTmrEMMA and pKWmEB approaches is used to

draw the Manhattan plot. If users do not select one of the above four approaches, the software program does not produce the Manhattan plot. All the dots in Manhattan plot are indicated by light colors. All the QTNs commonly identified by multiple approaches are indicated by the pink dots that are shown above dotted vertical lines, while all the QTNs identified by one single approach are indicated by the light color dots that are shown above dotted vertical lines (Fig 10). This plot is high-resolution. If the users want to change the plot resolution, please see the fifth section (Re-draw the plot according to user's requirement).

The setups for the resolution of the Manhattan plot are default. If users select the format of *.pdf, the Figure width is 16 [with the unit of inches], Figure height is 4 [with the unit of inches], and Word resolution is 20 [with the unit of 1/72 inch, ppi]. If users select the other three format, Figure width is 28000, Figure height is 7000 [with the unit of pixel (px)], word resolution is 60 [with the unit of 1/72 inch, being pixels per inch (ppi)], and Figure resolution is 600 [with the unit of pixels per inch (ppi)].

Figure 10. Manhattan plot

Using the P-values in Figure 10, it is easy to draw the QQ plot (Fig 11). If users do not select one of the above four approaches, the software program does not produce the QQ plot. The setups for the resolution of the QQ plot are default. If users select the format of *.pdf, the Figure width is 7 [with the unit of inches], Figure height is 7 [with the unit of inches], and Word resolution is 25 [with the unit of 1/72 inch, ppi]. If users select the other three format, Figure width is 10000, Figure height is 10000 [with the unit of pixel (px)], word resolution is 60 [with the unit of 1/72 inch, being pixels per inch (ppi)], and Figure resolution is 600 [with the unit of pixels per inch (ppi)].

Figure 11. QQ plot

5 Re-draw the plot according to user's requirement

Once users run the software package, users can obtain two result file, named *_intermediate result.csv and *_Final result.csv, which are used to redraw the Manhattan and QQ plots.

5.1 The Manhattan plot

To redraw the Manhattan plot, users first upload two Result files (*_intermediate result.csv and * Final result.csv), and then set up the below parameters:

Manhattan plot format with four frequently used image formats: *.png, *.tiff, *.jpeg and *.pdf;

If users select the *.png, *.tiff or *.jpeg formats, users need to set up four parameters:

1) **Figure width** [with the unit of pixel (px)], 2) **Figure height** [with the unit of pixel (px)], 3) **Word resolution** [with the unit of 1/72 inch, being pixels per inch (ppi)], and 4) **Figure resolution** [with the unit of pixels per inch (ppi)].

If users select the *.pdf format, users need to set up three parameters: 1) **Figure width** [with the unit of inches], 2) **Figure height** [with the unit of inches], and 3) **Word resolution** [with the unit of 1/72 inch, ppi].

Here we give two setups for the plot resolution in the below table.

Plot	D 1.4	High resolution		General resolution	
	Resolution	*.png, *.jpeg & *.tiff	*.pdf	*.png, *.jpeg & *.tiff	*.pdf
	Figure width	28000	16	700	8
36.1.4	Figure height	7000	4	170	2
Manhattan	Word resolution	60	20	18	10
	Figure resolution	600		72	
	Figure width	10000	7	600	3
	Figure height	10000	7	600	3
QQ	Word resolution	60	25	20	12
	Figure resolution	600		100	

Size of all the three labels: The sizes of all the vertical and horizontal labels.

Width of all the three axes: The thickness of all the vertical and horizontal axes. When the resolution is changed from high into general, smaller thickness should be set up.

Length of tick marks: Length of axis tick marks.

Size of scale values: Size of scale values on axes.

Magnification of {-log₁₀(P-value)}: Magnification of scale values of left vertical axis.

Magnification of {LOD score}: Magnification of scale values of right vertical axis.

Mark Genes or not: If users want to mark candidate or known genes in the Manhattan plot, "TRUE" should be selected. If not, "FALSE" should be selected. Under the "TRUE" situation, please input *x* axis, *y* axis, and gene name for each gene in three text-input boxes. If multiple candidate or known genes are input, their corresponding contents are simultaneously input, *i.e.*, "15, 14.5" (*y* axis, two genes). Note that only one color may be set up, such as "blue", if multiple genes are marked.

Save path: Directory in your computer to save the figure.

Finally, click the "Draw Manhattan plot" button and the Manhattan plot will be produced in the Directory, which is set up by users.

Figure 12. Manhattan plot module

5.2 The QQ plot

To redraw the QQ plot, users first upload one Result files (*_intermediate result.csv), and then set up the parameters, which are the same as those in the Manhattan plot. The default value for **critical P-value of deleting points** in QQ plot is set up 0.90. Finally, click the "Draw QQ plot" button and the plot will be produced in the Directory, which is set up by users.

Figure 13. QQ plot module

6. References

- 1 Zhang Yuan-Ming, Mao Yongcai, Xie Chongqing, Howie Smith, Luo Lang, Xu Shizhong. Mapping quantitative trait loci using naturally occurring genetic variance among commercial inbred lines of maize (*Zea mays* L.). *Genetics* 2005, 169: 2267–2275.
- Wang Shi-Bo, Feng Jian-Ying, Ren Wen-Long, Huang Bo, Zhou Ling, Wen Yang-Jun, Zhang Jin, Jim M. Dunwell, Xu Shizhong*, Zhang Yuan-Ming*. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. *Scientific Reports* 2016, 6: 19444.
- Tamba Cox Lwaka, Ni Yuan-Li, Zhang Yuan-Ming*. Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies. *PLoS Computational Biology* 2017, 13(1): e1005357.
- 4 Zhang Jin[#], Feng Jian-Ying[#], Ni Yuan-Li, Wen Yang-Jun, Niu Yuan, Tamba Cox Lwaka, Yue Chao, Song Qijian, Zhang Yuan-Ming^{*}. pLARmEB: Integration of least angle regression with empirical Bayes for multi-locus genome-wide association studies. *Heredity* 2017, 118: 517–524.
- 5 Ren Wen-Long*, Wen Yang-Jun*, Jim M. Dunwell, Zhang Yuan-Ming*. pKWmEB: Integration of Kruskal-Wallis test with empirical Bayes under polygenic background control for multi-locus genome-wide association study. *Heredity* 2018, 120: 208–218.
- 6 Wen Yang-Jun, Zhang Hanwen, Ni Yuan-Li, Huang Bo, Zhang Jin, Feng Jian-Ying, Wang Shi-Bo, Jim M. Dunwell, Zhang Yuan-Ming*, Wu Rongling*. Methodological implementation of mixed linear models in

- multi-locus genome-wide association studies. *Briefings in Bioinformatics* 2018, **19**(4): 700–712.
- 7 Tamba CL, Zhang YM. A fast mrMLM algorithm for multi-locus genome-wide association studies. *bioRxiv*, 2018. doi: 10.1101/341784.
- 8 Zhang Yuan-Ming, Jia Zhenyu, Jim M. Dunwell. Editorial: The applications of new multi-locus GWAS methodologies in the genetic dissection of complex traits. Frontiers in Plant Science 2019, 10: 100.
- 9 Zhang Ya-Wen, Tamba Cox Lwaka, Wen Yang-Jun, Li Pei, Ren Wen-Long, Ni Yuan-Li, Gao Jun, Zhang Yuan-Ming*. mrMLM v4.0: An R platform for multi-locus genome-wide association studies. *Genomics*, *Proteomics & Bioinformatics*, Accept. (*bioRxiv*, 2020.03.04.976464).