ELL201 Lab Project

Saket Kandoi

 $2021\mathrm{MT}60265$

Sequence to be generated: $\{1,1,0,1,0,1\}$

Mealy FSM

Idle state: A (000) Unused state: A (000)

Minimum number of flip-flops needed = $\lceil \log_2 6 \rceil = 3$

A	000
В	001
C	010
D	011
E	100
F	101

Truth table

Cu	rrent Sta	ite	Input	Output	Next State		D Flipflops		S	
\mathbf{Q}_{2}	$\mathbf{Q_1}$	Q_0	X	Υ	$\mathbf{Q_2}^{+}$	Q_1^+	Q_0^+	D_2	D_1	D_0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	1	0	0	1
0	0	1	0	1	0	1	0	0	1	0
0	0	1	1	1	0	1	0	0	1	0
0	1	0	0	0	0	1	1	0	1	1
0	1	0	1	0	0	1	1	0	1	1
0	1	1	0	1	1	0	0	1	0	0
0	1	1	1	1	1	0	0	1	0	0
1	0	0	0	0	1	0	1	1	0	1
1	0	0	1	0	1	0	1	1	0	1
1	0	1	0	1	0	0	0	0	0	0
1	0	1	1	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

Note: Any stray states are redirected to idle state.

States are represented by $Q_2Q_1Q_0.D_0$ is the LSB and D_2 is the MSB.

Karnaugh Maps

$$D_0 = Q_2 Q_1' Q_0' + Q_2' Q_1 Q_0' + X Q_2' Q_0'$$

$$D_1 = Q_2' Q_1' Q_0 + Q_2' Q_1 Q_0'$$

$$D_2 = Q_2' Q_1 Q_0 + Q_2 Q_1' Q_0'$$

$$Y = Q_2'Q_0 + Q_2'Q_1'X + Q_2Q_1'Q_0$$

$Q_2Q_1\backslash Q_0X$	00	01	11	10
00	0	1	0	0
01	1	1	0	0
11	0	0	0	0
10	1	1	0	0

Figure 1: K-map for D_0

$Q_2Q_1\backslash Q_0X$	00	01	11	10
00	0	0	0	0
01	0	0	1	1
11	0	0	0	0
10	1	1	0	0

Figure 3: K-map for D_2

$Q_2Q_1\backslash Q_0X$	00	01	11	10
00	0	0	1	1
01	1	1	0	0
11	0	0	0	0
10	0	0	0	0

Figure 2: K-map for D_1

$Q_2Q_1\backslash Q_0X$	00	01	11	10
00	0	1	1	1
01	0	0	1	1
11	0	0	0	0
10	0	0	1	1

Figure 4: K-map for Y

D Flipflop

Positive edge triggered

```
module D_FF(
   input clk,
   input D,
   output Q,
   input reset);
   reg 0;
   assign Q = 0;
   always @(posedge clk)
   begin
   if (reset == 1)
   begin
     0 = 0;
   end
   else
   {\tt begin}
       0 = D;
    end
    end
endmodule
```

FSM Implementation

Using 3 D Flipflops (code for simulation)

```
module FSM(
                  input x,
                  input clk,
                  input reset,
                  output y,
                  output clk_out);
                  wire D2,D1,D0;
                  wire [2:0] Q;
                  assign D2 = (^{\sim}Q[2] & Q[1] & Q[0])|(Q[2] & ^{\sim}Q[1] & ^{\sim}Q[0]);
                  assign D1 = (^{\circ}Q[2] & ^{\circ}Q[1] & Q[0]) | (^{\circ}Q[2] & Q[1] & ^{\circ}Q[0]);
                  assign D0 = (Q[2] \& ~Q[1] \& ~Q[0]) | (~Q[2] \& Q[1] \& ~Q[1] \& ~Q[1] | (~Q[2] \& ~Q[1] \& ~Q[2] | (~Q[2] \& ~Q[
                                          ~Q[0] & x);
                  assign clk_out = clk;
                  D_FF D_FF2(clk,D2,Q[2],reset);
                  D_FF D_FF1(clk,D1,Q[1],reset);
                  D_FF D_FF0(clk,D0,Q[0],reset);
endmodule
```

Testbench Code

```
'timescale 1ns / 1ps
module tb_FSM();
  reg clk;
  reg x;
  reg reset;
  wire y;
  wire clk_out;
  FSM f(x,clk,reset,y,clk_out);
  initial begin
      clk = 1'b0;
      forever #1 clk = ~clk;
  end
  initial begin
      reset = 1'b1;
      #20
      reset = 1'b0;
      x = 1, b0;
```

```
#20
       x = 1'b1;
       #20
       x = 1,b0;
       #20
       x = 1'b1;
       #20
       x = 1,b0;
       #2
       x = 1,b1;
       #2
       x = 1,b0;
       #2
       x = 1,b0;
   end
endmodule
```

Output Waveform

Reset is set to 1 at the beginning to initialize all the variables correctly. Once Reset is set to 0, the sequence 1,1,0,1,0,1 prints as soon it gets serial input as 1 at falling edge of clock. It prints a complete cycle. The next cycle is also printed since x remains 1, and is fully printed despite setting x=0 mid-sequence. Similarly x is toggled high/low to show that the wave follows necessary requirements.

Circuit Diagram

