

[TOP PAGE](#) | [QUERY](#) | [RESULTS](#) | [PROJECTS](#) | [VIEWS](#) | [DATABANKS](#) | [HELP](#)

[Reset](#)

[View](#) * Complete entries *

This entry is from: [DDBJRELEASE:AE000154](#)

[DDBJRELEASE](#)

[Save](#)

[Link](#)

[Launch](#)

[NClustalW](#)

[Printer Friendly](#)

LOCUS AE000154 11519 bp DNA linear BCT 01-DEC-2000
DEFINITION Escherichia coli K12 MG1655 section 44 of 400 of the complete genome.
ACCESSION AE000154 U00096
VERSION AE000154.1
KEYWORDS
SOURCE Escherichia coli K12
ORGANISM Escherichia coli K12
Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae; Escherichia.
REFERENCE
AUTHORS Blattner, F.R., Plunkett, G. III, Bloch, C.A., Perna, N.T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J.D., Rode, C.K., Mayhew, G.F., Gregor, J., Davis, N.W., Kirkpatrick, H.A., Goeden, M.A., Rose, D.J., Mau, B. and Shao, Y.
TITLE The complete genome sequence of Escherichia coli K-12
JOURNAL Science 277 (5331), 1453-1474 (1997)
MEDLINE 97426617
PUBMED 9278503
REFERENCE
AUTHORS Blattner, F.R.
TITLE Direct Submission
JOURNAL Submitted (16-JAN-1997) Guy Plunkett III, Laboratory of Genetics, University of Wisconsin, 445 Henry Mall, Madison, WI 53706, USA. Email: ecoli@genetics.wisc.edu Phone: 608-262-2534 Fax: 608-263-7459
REFERENCE
AUTHORS Blattner, F.R.
TITLE Direct Submission
JOURNAL Submitted (02-SEP-1997) Guy Plunkett III, Laboratory of Genetics, University of Wisconsin, 445 Henry Mall, Madison, WI 53706, USA. Email: ecoli@genetics.wisc.edu Phone: 608-262-2534 Fax: 608-263-7459
REFERENCE
AUTHORS Plunkett, G. III.
TITLE Direct Submission
JOURNAL Submitted (13-OCT-1998) Laboratory of Genetics, University of Wisconsin, 445 Henry Mall, Madison, WI 53706, USA
COMMENT This sequence was determined by the E. coli Genome Project at the University of Wisconsin-Madison (Frederick R. Blattner, director). Supported by NIH grants HG00301 and HG01428 (from the Human Genome Project and NCHGR). The entire sequence was independently determined from E. coli K12 strain MG1655. Predicted open reading frames were determined using GeneMark software, kindly supplied by Mark Borodovsky, Georgia Institute of Technology, Atlanta, GA, 30332 [e-mail: mark@amber.gatech.edu]. Open reading frames that have been correlated with genetic loci are being annotated with CG Site Nos., unique ID nos. for the genes in the E. coli Genetic Stock Center (CGSC) database at Yale University, kindly supplied by Mary Berlyn. A public version of the database is accessible (<http://cgsc.biology.yale.edu>). Annotation of the genome is an ongoing task whose goal is to make the genome sequence more useful by correlating it with other data. Comments to the authors are appreciated. Updated information will be available at the E. coli Genome Project's World Wide Web site (<http://www.genetics.wisc.edu>). *** The E. coli K12 sequence and its annotations are periodically updated; this is version M54. No sequence changes. Annotation updates: updated gene identifications and products; all new functional assignments courtesy of Monica Riley; added promoters, protein binding sites, and repeated sequences described in reference 1. The unique numeric identifiers

beginning with a lowercase 'b' assigned to each gene (protein- or RNA-encoding) are now designated as gene synonyms instead of labels. This should allow them to be searched for in Entrez as gene names.

FEATURES	Location/Qualifiers
<u>source</u>	1..11519 /organism="Escherichia coli K12" /strain="K12" /sub_strain="MG1655" /db_xref="taxon:83333"
<u>promoter</u>	<1..26 /note="factor Sigma70; predicted +1 start at 499276"
<u>promoter</u>	complement(2..30) /note="factor Sigma70; predicted +1 start at 499238"
<u>gene</u>	106..1410 /gene="gsk" /note="synonym: b0477"
<u>CDS</u>	106..1410 /gene="gsk" /EC_number="2.7.1.73" /function="enzyme; Salvage of nucleosides and nucleotides" /note="o434; 100 pct identical to GB: ECOGSK_1 ACCESSION:D00798; 98 pct identical (1 gap) to INGK_ECOLI SW: P22937" /codon_start=1 /transl_table=11 /product="inosine-guanosine kinase" /protein_id="AAC73579.1" /db_xref="GI:1786684" /translation="MKFPGKRKS KHYFPVNARDPLLQQFQOPENETSAAWVG1DQTLV DIEAKV DDEFI ERYGLSAGHSLVIEDDVAEALYQELKQKNL1THQFAGGT1GNTMHNY SVLADDRSVLLGV MCSNIE1GSYAYRYLCNTSSRTDLNYLQGV DGP1GRCFTLIGESG ERTFA1SPGHMNQLRAES1PEDVIAGASALVLT SYLVRCKPGEPMPEATMKA1EYAKK YNPVVLTLGK FVIAENPQWWQQFLKDHSV1LAMNEDEAEALTGESDPLLASDKALD WVDLVLC TAGPI GLY MAGFT EDEAKRKTQHPLLPG A1AEFNQYEF SRA MRHKDCQNPL RVYSHIAPYMG GPEK1MNTNGAGD GALA ALLHD1TANSYHRSNPNSKH KFTWL TYS SLAQVCKYANRV SYQV L NQHSPRLTRGL PEREDS LEE SYWDR"
<u>repeat_region</u>	1425..1508 /note="REP (repetitive extragenic palindromic) element; contains 2 REP sequences"
<u>gene</u>	complement(1543..3219) /gene="ybaL" /note="synonym: b0478"
<u>CDS</u>	complement(1543..3219) /gene="ybaL" /function="putative transport; Not classified" /note="f558; 100 pct identical to fragment YBAL_ECOLI SW:P39830 (70 aa) but has 6 additional C-terminal aa and 485 additional N-terminal residues" /codon_start=1 /transl_table=11 /product="putative transport protein" /protein_id="AAC73580.1" /db_xref="GI:1786685" /translation="MHHATPLITTIVGGLVLAF1LGMLANKL R1SPLVGYLLAGVLAG PFTPGFVADTKLAPELAELGV1LLMFGVGLHFSLKDLM AVKA1A1PG A1AQ1AVATLL GMALSAVLGWSLMTG1VFGCLCLSTASTVLLRALEERQL1DSQRGQ1A1GWL1VEDLV MVLTLVLLPAVAGMMEQGDVGFA TLAVDMG1T1GKVI A1F1A1MMLVGRRLVPW1MARS AATGSRELFTLSVLALALGVAFGA VELFDVSFALGAFFAGMVLNESEL SHRAAHD TLP LRDAFAVLFFVSGMLFDPL1L1QQPLA VLA T1A1LFGKSLAFLVRLFGHSQRTA LTIAASLAQ1GEFAF1LAGLGMALNLLPQAGQNLVLAGA ILS1MNPVLFA LLEKYL KTETLEEQTLEE A1EEEKQ1PVD1CNHALLVGYGRVGSLLGEKLLASDIPLVVIETSR TRVDEL RERGVRAVL GNAANEE1MQLAHL ECAKWL1L1PNGYEAGE1VASARAKNP 1E1IARAHYDDEVAY1TERGANQVVMGERE1ARTM LELLETPPAGEVVTG" complement(3328..3356)
<u>promoter</u>	/note="factor Sigma70; predicted +1 start at 502564"
<u>gene</u>	complement(3457..4677) /gene="fsr"
<u>CDS</u>	/note="synonym: b0479" complement(3457..4677) /gene="fsr"

/function="putative transport; Not classified"
/note="f406; 100 pct identical to FSR_ECOLI SW: P52067"
/codon_start=1
/transl_table=11
/product="fosmidomycin resistance protein"
/protein_id="AAC73581.1"
/db_xref="GI:1786686"
/translation="MAMSEQPQPVAGAAASTTKARTSGILGAISLSHLLNDM1QLSI
LA1YPLLQSEFSLTQM1GMITLTFQLASSLLQPVVGWTDKYPMPWSLP1GMCF1LS
GLVLLALAGSGAVLLAAALVGTGSSVFHPESSRVARMASGGRHGLAQS1FQVGGNFG
SSLGPLLA1V1IAPYGKGNVAWFVLAALLA1VVLQA1SRWYSAQHRMNKGKPATI1N
PLPRNKVVLAVS1LL1L1FSKYFYMAS1SSYYTFYLMQKFG1LS1QNAQLHLFAFLFAV
AA1TV1GGPVGDK1GRK1V1WGS1LG1VAPFTL1L1P1YASLHW1TGV1L1G1F1LASAFS
A1L1VY1A1Q1ELL1P1G1R1GMV1S1L1FFG1FA1GM1G1L1GA1V1L1G1I1ADHT1S1E1L1V1Y1K1C1A1F1L1P1L1
G1M1L1T1F1L1P1D1N1R1H1K1D1"
promoter
promoter
promoter
promoter
promoter
gene
CDS
gene
CDS
promoter
gene
CDS

complement(4711..4738)
/note="factor Sigma70; predicted +1 start at 503947"
complement(4742..4770)
/note="factor Sigma70; predicted +1 start at 503978"
complement(4770..4797)
/note="factor Sigma70; predicted +1 start at 504006"
4833..4861
/note="factor Sigma70; predicted +1 start at 504111"
complement(4839..4865)
/note="factor Sigma70; predicted +1 start at 504075"
4895..6547
/gene="ushA"
/note="synonym: b0480"
4895..6547
/gene="ushA"
/EC_number="3.6.1.45"
/function="enzyme; Central intermediary metabolism:
Sugar-nucleotide biosynthesis, conversions"
/note="o550; 99 pct identical to USHA_ECOLI SW: P07024"
/codon_start=1
/transl_table=11
/product="UDP-sugar hydrolase (5'-nucleotidase)"
/protein_id="AAC73582.1"
/db_xref="GI:1786687"
/translation="MKLLQRGVALALLTTFLASETALAYEQDKTYK1TVLHTNDHHG
HFWRNEYGEYGLAAQKTLVDG1RKEVAEEGGSVLLSGGD1NTGV1PESDLQDAEPDFR
GMNLVGYDAMA1GNHEFDNPLTVLRQQEKWAKFPLLSAN1YQKSTGERLFKPWALFKR
QDLK1AV1GLTTDDAK1GNPEYFTD1EFRKPADEAKL1V1QELQQTEKPD111AATHM
GHYDNGE1HGSNAPGDVEMARALPAGSLAM1VGGHSQDPVCMAAENKKQV1D1VPGTPCK
PDQQNG1W1VQAHEWGKYVGRADFEFRNGEMKMVNYQL1PVNLKKVTWEDGKSERVL
YTPE1AENQQM1S1L1SPFQNK1GKAQLEV1K1GETN1GRLEGDRD1KVRFV1QTNMGR11LAA
QMDRTGADFAVMSGG1RDS1EAGD1SYKNVLKVQPF1GNVVVYADMTGKEV1DYL1AV
AQMKPD1SGAYPQF1ANVS1F1VAKD1G1L1N1L1K1G1E1P1D1A1K1T1Y1R1M1T1L1N1F1N1A1T1G1D1G1Y1P1R1
LDNKPGYVNTGF1DAEV1KAY1QKSSPLDVSVYEPKGEVSWQ"
complement(6584..7063)
/gene="ybaK"
/note="synonym: b0481"
complement(6584..7063)
/gene="ybaK"
/function="orf; Unknown"
/note="f159; 90 pct identical amino acid sequence and
equal length to YBAK_SALTY SW: P37174"
/codon_start=1
/transl_table=11
/product="orf, hypothetical protein"
/protein_id="AAC73583.1"
/db_xref="GI:1786688"
/translation="MTPAVKLLEKNK1SFQ1HTYEHDP1ETNFGDEVVK1GLNPDQV
YK1LLVAVNGDMKHLAVAVTPVAGQLD1KKVAKALGAKK1VEMADPMV1AQR1STG1LVGG
1SPLGQKKRLPT11D1A1P1A1Q1E1F1T1Y1V1S1G1K1R1G1L1D1E1A1G1D1A1K1L1D1F1A1R1D1R1D1"
complement(7211..7239)
/note="factor Sigma70; predicted +1 start at 506447"
complement(7267..8061)
/gene="ybaP"
/note="synonym: b0482"
complement(7267..8061)

/gene="ybaP"
/function="putative enzyme; Not classified"
/note="f264; This 264 aa ORF is 25 pct identical (10 gaps)
to 174 residues of an approx. 976 aa protein SLA2_YEAST
SW: P33338"
/codon_start=1
/transl_table=11
/product="putative ligase"
/protein_id="AAC73584.1"
/db_xref="GI:1786689"
/translation="MDLLYRVKTLWAALRGNHYTWPайдитЛГНРХФЛІГСІХМГС
ХДМАЛПТРЛЛККЛКНАДАЛІВЕАДВСТSDTPFANLPACEALEERІSEEQLQNLQHIS
QEМGІSPSLFSTQPLWQIAMVLQATQAQKLGRLAEYGIDYQLLQAAKQQHKPVIELEG
AENQIAMLLQLPDKGALLDDTLTHWHTNARLLQQMMSWWLNAPPQNNDITLPNTFSQ
SLYDVLMHQRNLAWRDKLRAMPPGRYVVAVGALHLYGEGNLPQMLR"
7980..8007
/note="factor Sigma70; predicted +1 start at 507257"
8056..8085
/note="factor Sigma70; predicted +1 start at 507335"
8145..8540
/gene="ybaQ"
/note="synonym: b0483"
8145..8540
/gene="ybaQ"
/function="orf; Unknown"
/note="o131; This 131 aa ORF is 38 pct identical (0 gaps)
to 59 residues of an approx. 80 aa protein YSY1_SYN7 SW:
P37371"
/codon_start=1
/transl_table=11
/product="orf, hypothetical protein"
/protein_id="AAC73585.1"
/db_xref="GI:1786690"
/translation="MIQYVLASLFLTRKQQLKTMQATRKPTTPGDILLYEYLEPLDLK
ІNELAELLHVHRNSVSALІNNNRKLTTEMAFLAKVFDTTVDFWLNLQAAVDLWEVEN
NMRTQEELGRIETVAEYLARREERAKKVA"
complement(8153..8179)
/note="factor Sigma70; predicted +1 start at 507389"
8563..8798
/note="REP (repetitive extragenic palindromic) element;
contains 5 REP sequences"
complement(8856..11360)
/gene="ybaR"
/note="synonym: b0484"
complement(8856..11360)
/gene="ybaR"
/function="putative enzyme; Not classified"
/note="f834; This 834 aa ORF is 44 pct identical (16 gaps)
to 735 residues of an approx. 752 aa protein ATCS_SYN7
SW: P37279"
/codon_start=1
/transl_table=11
/product="putative ATPase"
/protein_id="AAC73586.1"
/db_xref="GI:1786691"
/translation="MSQTIDLTLGGLSCGHCVKRVKESLEQRPDVEQADVSITEAHVT
GTASAEQLIETIKQAGYDASVSHPKAKPLAESSIPSEALTAVSEALPAATADDDDSQQ
LLLSGMSCASCVTRVQNALQSVPGVTQARVNLAERTALVMGSASPQDLVQAVEKAGYG
AEAIEDDAKRERQQETAVATMKRFRWQAVALAVGIPVMVWGMIGDNMMVTADNRL
WLVIGLITLAVMVFAGGHFYRSAWKSLLNGAATMDTVALGTGVAWLYSMSVNLPQW
FPMEARHLYYEASAMIIGLINLGHMLEARARQRSSKALEKLLDLTPPTARLVTDEGEK
SVPLAEVQPGMLLRLTTGDRVPDGEITQGEAWLDEAMLTGEPIPQQKGEQGDSVHAGT
VVQDGSVLFRASAVGSHTTLSIIRMVRQAQSSKPEIGQLADKISAVFVPPVVVIALV
SAAIWYFFGPAPQIVYTLVIATTVLIAACPCALGLATPMSISGVGRAAEFGVLVRDA
DALQRRASTLDTVVFDTGTLTEGKPQVVAVKTFAVDDEAQALRLAALEQGSSHPLAR
AILDKAGDMQLPQVNGFRTLRLGVSGEAEGHALLGNQALLNEQQVGTKAIEAEITA
QASQGATPVLLAVDGKAVALLAVRDPLRSDSAALQRLHKAGYRLVMLTGDNPTTANA
IAKEAGIDEVIAGVLPGKAEAIKHLQSEGRQVAMVGDGINDAPALAQADVGIAAMGGG
SDVAIETAAITLMRHSLMGVADALAIISRATLHNMKQNLLGAFIYNSIGIPVAAGILWP
FTGTLLNPVVAGAAMALSSITVVSANRLLRFKPKE"
complement(11401..11431)

promoter

promoter /note="factor Sigma70; predicted +1 start at 510637"
promoter complement(11438..11466)
promoter /note="factor Sigma70; predicted +1 start at 510674"
11466..11495
promoter /note="factor Sigma70; predicted +1 start at 510745"
11504..>11519
promoter /note="factor Sigma70; predicted +1 start at 510782"
BASE COUNT 2883 a 3112 c 2969 g 2555 t
ORIGIN
1 gaaaatgcga tcccgcctgc tgatattgaa actggctgcg tctcgccgc tcccgta
61 ttgtgttaac attcgccgct cagttaccca cccgtaaaaa caaccatgaa attccccgt
121 aaacgttaat ccaaacatta cttcccccgtt aacgcacgcg atccgctgt tcagcaattc
181 cagccagaaa acgaaaccag cgctgcctgg gtagtggta tcgatcaaac gctggtcgat
241 attgaagcga aagtggatga tgaatttattt gaggcgatgt gattaagcgc cggccatcca
301 ctggtgattt agggatgtt agccgaagcg ctttacgcgg aactaaaca gaaaaacctg
361 attaccatc agtttgcggg tggcaccatt ggtaacacca tgcacaacta ctccgtgc
421 gcgacgacc gttcggtgt gcgtggcgatgtt atgtcagca atattgaat tggcagttat
481 gcctatcggtt acctgtttaa cacttccagc cgtaccgatc ttaactatct acaaggcgat
541 gatggcccgaa ttggicgttg ctttacgcgtt attggcgatgtt ccggggaaacg tacctttgt
601 atcagtccag gccacatgaa ccagctgcgg gctgaaaagca ttccggaaaga tggattgccc
661 ggagcctcggtt cactgggttccat cttttttttt gcaagccggg tgaacccatg
721 ccggaagcaa ccatgaaagc catttgcgtt gcaagaaaat ataaacgttacc ggtgggtgt
781 acgctggca ccaagtttgcgtt cttttttttt gcaagggatgtt ccggggaaacg taaaacccat
841 gatcacgttctt cttttttttt gatgaacgaa gatgaagccg aagcggttgcg cggagaaacg
901 gatccgttgcgtt tggcatttttgcgtt gactgggtatgtt atctgggtgtt gtgcaccgc
961 gggccaaatcg gctttttttt ggcgggtttt accgaagacg aagcgaaacg taaaacccat
1021 catccgcgttccat tttttttttt gatggcgatgtt atggatgttccat ccggccatgt
1081 cggccacaagg atttccatccat tttttttttt gatggcgatgtt atggatgttccat
1141 gggccggaaa aatcatgaa cactaatggaa gggggggatgtt ggcgtttttt gatggatgt
1201 catgacatccat cccggccatccat tttttttttt gatggcgatgtt atggatgttccat
1261 ttcacccgttccat tttttttttt gatggcgatgtt atggatgttccat
1321 tttttttttt gatggcgatgtt atggatgttccat tttttttttt gatggcgatgtt
1381 agccgttccat tttttttttt gatggcgatgtt atggatgttccat tttttttttt gatggcgatgt
1441 gttcacggccat tttttttttt gatggcgatgtt atggatgttccat
1501 atgccttccat tttttttttt gatggcgatgtt atggatgttccat
1561 acccgccgttccat tttttttttt gatggcgatgtt atggatgttccat
1621 cactacccgttccat tttttttttt gatggcgatgtt atggatgttccat
1681 ggcaataatccat tttttttttt gatggcgatgtt atggatgttccat
1741 ataaccgttccat tttttttttt gatggcgatgtt atggatgttccat
1801 aatttccat tttttttttt gatggcgatgtt atggatgttccat
1861 aacacgggttccat tttttttttt gatggcgatgtt atggatgttccat
1921 ccccgccgttccat tttttttttt gatggcgatgtt atggatgttccat
1981 tggatgttccat tttttttttt gatggcgatgtt atggatgttccat
2041 ctttcggccat tttttttttt gatggcgatgtt atggatgttccat
2101 cggccgttccat tttttttttt gatggcgatgtt atggatgttccat
2161 tcccgccgttccat tttttttttt gatggcgatgtt atggatgttccat
2221 cgtacgttccat tttttttttt gatggcgatgtt atggatgttccat
2281 cagaataatccat tttttttttt gatggcgatgtt atggatgttccat
2341 aaacaacatccat tttttttttt gatggcgatgtt atggatgttccat
2401 atcggtggccat tttttttttt gatggcgatgtt atggatgttccat
2461 accgaggatccat tttttttttt gatggcgatgtt atggatgttccat
2521 cggccgttccat tttttttttt gatggcgatgtt atggatgttccat
2581 ccacggccat tttttttttt gatggcgatgtt atggatgttccat
2641 gatggatgttccat tttttttttt gatggcgatgtt atggatgttccat
2701 tcctggccat tttttttttt gatggcgatgtt atggatgttccat
2761 ccaaccgttccat tttttttttt gatggcgatgtt atggatgttccat
2821 cagaataatccat tttttttttt gatggcgatgtt atggatgttccat
2881 cggccgttccat tttttttttt gatggcgatgtt atggatgttccat
2941 gatggatgttccat tttttttttt gatggcgatgtt atggatgttccat
3001 accgacggccat tttttttttt gatggcgatgtt atggatgttccat
3061 atcggtggccat tttttttttt gatggcgatgtt atggatgttccat
3121 cagaataatccat tttttttttt gatggcgatgtt atggatgttccat
3181 cggccgttccat tttttttttt gatggcgatgtt atggatgttccat
3241 ttatgttccat tttttttttt gatggcgatgtt atggatgttccat
3301 ttatgttccat tttttttttt gatggcgatgtt atggatgttccat
3361 agccgttccat tttttttttt gatggcgatgtt atggatgttccat
3421 cggccgttccat tttttttttt gatggcgatgtt atggatgttccat
3481 cggccgttccat tttttttttt gatggcgatgtt atggatgttccat
3541 gatggatgttccat tttttttttt gatggcgatgtt atggatgttccat
3601 agccgttccat tttttttttt gatggcgatgtt atggatgttccat
3661 gatggatgttccat tttttttttt gatggcgatgtt atggatgttccat

7981 ggtgatatcg atggcaggcc aggtgtaatg attaccgcgc agcgcggccc aaagcgttt
8041 taccgggtac aacagatcca tacgacccccc ctttgtaaa tatcatgcta gcgcgcggtg
8101 agggatggcg caaatggagt tggagacttg ttaatgtgt ttgtatgatt cagtatgttc
8161 ttgcacatcgctt attcacaagg aagcaacagt taaaaccat gaaacaggca acaagaaaac
8221 cgacgacacc cggagatatt cttctctatg aatatctggaa accgctcgat ttgaaaatca
8281 atgagtttagc agagttgctg catgttcatc gtaatagcgt cagtgcactg atcaataaca
8341 atcgtaaact cactactgag atggcatttc gtcggcgaa agttttgtat accacagtgc
8401 attttggctt aaaccctccag gcggcgggtg atcttggga agttgaaaac aacatgcgc
8461 cccaggaaga attggacgg attgaaacag tggctgaata ttggcacgc cgtgaagagc
8521 gtgcaaaaaaa ggtcgctaa ggcacaaaaca tcgcctcatc tcgttaggccc gataaggcgt
8581 tcacggccca tccggcatcc gaggcaccatt gcctgatgcg acgcttaccc gtcttatcag
8641 gcctacaaac ttgtgcctga accgttagggc ggataaggcg ttacgcgc atccggcattc
8701 cgagcaccat tgcctgatgc gacgcttacg cgtcttatca ggcctacaaa cctgtgcctg
8761 aaccgttaggc cggataaggc gttacgcgc catccggcag tcacgcgc atgccaatag
8821 cggccaccctaa aagcagcgca tccgcaatga tgtacttatt ctttcgggtt aaaccgcagc
8881 aaccggttgg cgttactcac tacggtaatc gacgagagcg ccattgcgc tccggcaact
8941 accgggttaa gcagtttcc agtgaacggc cacaatatac cggcggcgc cggaaataccg
9001 atactgtgt agataaacgc accgagcagg ttctgcctca tttttgcag cgttgcgcgg
9061 gaaatagcga ggcacccgc aacgcggcattc aggctatggc gcatcagggt aatcgccgc
9121 gttcaatgg caacatcaact ggcggccaccc atcgcacatgc cgacatccgc ctgagccagc
9181 gctggcgcgt cgtaatgcc gtcggccaccatttgcac gacacccggc cgatcacccatc atcaatccct
9241 tttttgtatcg cttcggctt accgtccggc agcacccggc cgatcacccatc atcaatccct
9301 gcttccttgg cgatgcatt ggcgggtttt gggttatccc cggtcaacat caccagacga
9361 tatccgcctt tatgcaggcg ttgcaggcc ggcacgctat cactacgca cggatgcgcgt
9421 actgcgcagca gggctaccgc ttccgcgtca accgcgcagca gcacaggcgt tggcccttgc
9481 gatgcctgag cagtaatctc cgcttcgata gcttggtaac caacctgttgc ctcatttaac
9541 agcgcctgtat tggccagcaa taacgcata ccttcagctt caccgcctac gcccagcccg
9601 cgcaatgtgc gggaaaccgtt gacccgcgtt agctgcata caccgcgtt atcgaggatc
9661 gctcgccca gggatggctt gggaaaccgtt cccatgcgc cccgcgcgcg caatgcctgc
9721 gcttcataa catcagcaaa ttttttactt ggcaccaac ggcgcgttcc ttcatgcgc
9781 gtcgggtttt tatcgaacac tacagtgtcg agtgtactgg cgcgttgcag cgcgtcagcg
9841 tccgcacca gcaacccaaa ctcagccccc cggccgcgc cggaaataat cgacatcgcc
9901 gtcgcgcagcc ccagcgacca cggacaggca ataatcgta ccgtggtgcc aatcaccagg
9961 gtatagacaa tctgcgggtc cggacccaaag aaataccaga ttgcgcact gacaagcgca
10021 ataaccacca ctaccggcac aaatacggtt gagattttt ccgcgcactt accgatttct
10081 ggcttgcgc tctggccctt ggcgcaccatg cgaatgattt gtcacgcgt agtgcgcgt
10141 ccaaccgcac tggcacggaa cagcacactt cccgttgcgtt ccactgcggc ggcacggc
10201 ctatgcctt cgcctttttt ctcggggatt gtttcgcggc tcagcatgc ttcatccgc
10261 catgccttcgc cctgggtat ctcgcctactt accggcgcgc gatgcggcgt cgtcaggcgc
10321 agcaacatac ctggcgtcac ttctgcaga ggcacgcgtt ttccatgcgc gtcagtaacc
10381 aggcgtgcgc tcggcgggtt taaatcgagt aactttccca ggcgcctttaga agaacgcgtgg
10441 cgtgcgcgc cttccagcat atggccgaga ttgcacgcgac cgataatcat cgcgcgtggc
10501 tcgttaataaa gatgtgcgc ttccatcggtt aaccactgcg ggcacagggtt gacgcgcac
10561 gaatagagcc acgcccacgc agtacccagc ggcacccgcg tatccatgcgt cggccaccc
10621 ttcaagcggc tttccatgc actgcggtaaa aaatggccgc cggcgaaaac catcaactgc
10681 aggttatca ggccgataac caaccacagg ctgcgggtt cagcgggtgac catcatgtt
10741 tcgcgcgtca tccccagac catcaccggg ataccaccc cccatgcgc acatgcgc
10801 cagcggaaagc gcttcatgtt agcgcacggc gtttcgttgc ggcgcgcgc gcttttagcg
10861 tcatcttcaa tcgcctccgc ggcgttagccc gctttttccca cccatgcgc taaatcttgc
10921 gggggggcac tggccatcac cagcgcgcgtt cgcctccgc ggtttacccg tggctgagtg
10981 acgcccggta cgccttcgc cgcattttgtt acgcgggtt gacgcgttgc gacgcgc
11041 cccgcgtca gcaactgcgt gctgtcatgc tcacgcgc gtcgcgcgg aacgcgcctca
11101 gaaaccgcgtc tcagtgcctt cgcacgggattt gatgactccg ccacgcgtt agcccttgg
11161 tggcttacag atgcgtcata acccgcttgc ttgtatggttt cgcacgcgtt ttctgcactt
11221 gcaatgcgc ttcgtgtata gacacatccg cctgcgtcaac atccggacgc
11281 ttttcaagac tttccatgc ggcgtttaacg cagtgaccgc aggacaggcc gtcagggtt
11341 aggtcgatag tttgtgacat aaaacactcc tttaagacag ttttgactgg cttgtataaa
11401 ggttaaacct tccagcaagg ggaagggtcaa gaaattaata aaccaggcgg gtaaaaagtcc
11461 gtaaagatta aaaaatcgcc tcgatttgc tcaggatttgc acatttatctt tttttttt
//