Continuity

Definition: Continuous

Let $T: E_1 \to E_2$ be a mapping of normed spaces. To say that T is continuous at \vec{x} means $\forall (\vec{x}_n)$ in E_1 :

$$\vec{x}_n \to \vec{x} \implies T(\vec{x}_n) \to T(\vec{x})$$

To say that T is continuous means T is continuous at $\forall \vec{x} \in E_1$.

Theorem

Let E be a normed space. $\|\cdot\|:E\to\mathbb{R}$ is continuous.

Proof

Assume $\vec{x} \in E$.

Assume (\vec{x}_n) is a sequence in E such that $\vec{x}_n \to \vec{x}$.

$$|||\vec{x}_n|| - ||\vec{x}||| \le ||\vec{x}_n - \vec{x}|| \to 0$$

Therefore $\|\cdot\|$ is continuous.

Theorem

Let $L: E_1 \to E_2$ be a mapping of normed spaces and let $U \subseteq E_2$. TFAE:

- 1). L is continuous.
- 2). U open $\implies L^{-1}[U]$ open.
- 3). $U \operatorname{closed} \implies L^{-1}[U] \operatorname{closed}$.

Proof

 $1 \rightarrow 2$: Assume L is continuous.

Assume U is open.

Assume $\vec{x} \in L^{-1}[U]$.

Since U is open, $\exists \epsilon > 0, B(L\vec{x}, \epsilon) \subset U$.

But since L is continuous, $\exists \, \delta > 0$ such that $\forall \, \vec{x}_n \in E$:

$$\|\vec{x}_n - \vec{x}\| < \delta \implies \|L\vec{x}_n - L\vec{x}\| < \epsilon$$

But $L\vec{x}_n\in U$, so $\vec{x}_n\in L^{-1}[U]$. Therefore $B(\vec{x},\delta)\in L^{-1}[U]$ and thus $L^{-1}[U]$ is open.

 $2 \to 1$: Assume U open $\implies L^{-1}[U]$ open.

Assume $\vec{x} \in E_1$.

And so $L\vec{x} \in E_2$.

Assume $\epsilon > 0$.

Consider the open ball $U = B(L\vec{x}, \epsilon)$.

By assumption, $L^{-1}[U]$ is also open.

But $\vec{x} \in L^{-1}[U]$, so $\exists \, \delta > 0$ such that $B(\vec{x}, \delta) \subset L^{-1}[U]$.

Assume $\vec{x}_n \in E_1$ such that $||\vec{x}_n - \vec{x}|| < \delta$.

This means that $\vec{x}_n \in B(\vec{x}, \delta)$, and hence in $L^{-1}[U]$.

Thus, $L\vec{x}_n \in U$ and $||L\vec{x}_n - L\vec{x}|| < e$.

Therefore, L is continuous.

 $2 \implies 3$: Assume U open $\implies L^{-1}[U]$ open.

Assume U is closed.

Thus $E_2 \setminus U$ is open.

Note that $L^{-1}[U] \cap L^{-1}[E_2 \setminus U] = \emptyset$, otherwise L is not well-defined.

By assumption, $L^{-1}[E_2 \setminus U] = E_1 \setminus L^{-1}[U]$ is open.

Therefore $L^{-1}[U]$ is closed.

 $3 \implies 2$: Assume U closed $\implies L^{-1}[U]$ closed.

Assume U is open.

Thus $E_2 \setminus U$ is closed.

Note that $L^{-1}[U] \cap L^{-1}[E_2 \setminus U] = \emptyset$, otherwise L is not well-defined.

By assumption, $L^{-1}[E_2 \setminus U] = E_1 \setminus L^{-1}[U]$ is closed.

Therefore $L^{-1}[U]$ is open.

Theorem

Let $L: E_1 \to E_2$ be a linear map of normed spaces:

L is continuous (everywhere in E_1) iff it is continuous at some $\vec{x}_0 \in E_1$

Proof

Assume L is continuous everywhere in E_1 .

Therefore it must be continuous at some $\vec{x}_0 \in E_1$.

Assume L is continuous at some $\vec{x}_0 \in E_1$.

Assume $\vec{x} \in E_1$.

Assume (\vec{x}_n) is a sequence in E_1 such that $\vec{x}_n \to \vec{x}$.

Thus, the sequence $(\vec{x}_n - \vec{x} + \vec{x}_o)$ converges to \vec{x}_0 .

$$||L\vec{x}_n - L\vec{x}|| = ||L\vec{x}_n - L\vec{x} + L\vec{x}_0 - L\vec{x}_0|| = ||L(\vec{x}_n - \vec{x} + \vec{x}_0) - L\vec{x}_0|| \to 0$$

Therefore, L is continuous at \vec{x} , and thus is continuous everywhere in E_1 .

Theorem

Let $L: E_1 \to E_2$ be a linear map of normed spaces.

L is continuous iff L is bounded.

Proof

 \implies Assume L is continuous.

ABC: L is not bounded.

$$\forall M > 0, \exists \vec{x} \in E_1, ||L\vec{x}|| > M ||\vec{x}||$$

Let
$$M = n$$
.

So
$$||L\vec{x}|| > n ||\vec{x}||$$
 for some $\vec{x} \in E_1$.

Thus,
$$\left\|L\frac{\vec{x}}{n\|\vec{x}\|}\right\| > 1$$
.

Let
$$y_n = \frac{\vec{x}}{n \|\vec{x}\|}$$
.

$$||y_n|| = \left\| \frac{\vec{x}}{n \, ||\vec{x}||} \right\| = \frac{1}{n} \left\| \frac{\vec{x}}{||\vec{x}||} \right\| = \frac{1}{n} \cdot 1 = \frac{1}{n} \to 0.$$

But
$$||L\vec{y_n}|| > 1 \neq 0$$
.

Therefore L is not continuous.

CONTRADICTION!

Therefore, L is bounded.

 \iff Assume L is bounded.

Assume (\vec{x}_n) is a sequence in E_1 such that $\vec{x}_n \to \vec{0}$.

$$||L\vec{x}_n - L\vec{0}|| = ||L\vec{x}_n - \vec{0}|| = ||L\vec{x}_n|| \le ||L|| ||\vec{x}_n|| \to 0$$

Therefore L is continuous at $\vec{0} \in E_1$ and thus is continuous everywhere in E_1 .