Notes on Categories

${\rm Apiros3}$

First Version : September 16, 2025 Last Update : --, 2025

Contents

1	Intr	oducti	ion	2	
2	Basics				
	2.1	Object	t Definitions	3	
		2.1.1	Functor	3	
		2.1.2	Natural Transformation	4	
		2.1.3	Monos, Epis, Zeros	Ę	
		2.1.4	Equivalence		
		2.1.5	Examples to keep in mind	6	
	2.2	Constr	ructing Categories	6	
		2.2.1	Contravariance	6	
3	Universals, Limits, and Adjoints				
	3.1 Universals				
	3.2	Limits	and Colimits	6	

1 Introduction

This note aims to put an uncondensed summary of concepts related to Category Theory I've come across. Hopefully full of examples, as this should have what I needed to gain an intuition of the concepts. The notes here are (so far) based off of:

- 1. C2.7: Category Theory by Pavel Safronov (Oxford Maths Cateogry Theory Course Notes)
- 2. Introduction to Categories and Categorical Logic by Samson Abramsky and Nikos Tzevelekos (Oxford CS Category Proofs and Processes Course Notes)
- 3. Categories for the Working Mathematician (Second Edition, only sections 1 to 6) by Saunders Mac Lane
- 4. Category Theory by Steve Awodey

2 Basics

2.1 Object Definitions

Definition 2.1.1. A category C consists of the following data:

- A collection ob C of objects of C
- For every $x, y \in \text{ob } \mathcal{C}$ a collection $\text{Hom}_{\mathcal{C}}(x, y)$ of morphisms
- For every $x \in \text{ob } \mathcal{C}$, the identity morphism $\text{id}_x \in \text{Hom}_{\mathcal{C}}(x,x)$
- For every $x, y, z \in \text{ob } C$, the composition map

$$\circ : \operatorname{Hom}_{\mathcal{C}}(y, z) \times \operatorname{Hom}_{\mathcal{C}}(x, y) \to \operatorname{Hom}_{\mathcal{C}}(x, z)$$

These then must satisfy the following axioms:

• For any two $x, y \in \text{ob } \mathcal{C}$ and any morphism $f \in \text{Hom}_{\mathcal{C}}(x, y)$ we have

$$f \circ \mathrm{id}_x = f$$
 $\mathrm{id}_y \circ f = f$

• Morphisms under composition are associative

Notation 2.1.2. We write $x \in C$ for $x \in ob \ C$ and omit the subscript in Hom when the category is clear. We may sometimes write C(x,y) for $Hom_{C}(x,y)$. We also write $Hom_{C}(x)$ for $Hom_{C}(x,x)$ and call these endomorphisms.

2.1.1 Functor

Definition 2.1.3. A functor $F: \mathcal{C} \to \mathcal{D}$ between two categories \mathcal{C}, \mathcal{D} consists of the following data:

- $a \ map \ F : ob \ \mathcal{C} \to ob \ \mathcal{D}$
- For any two objects $x, y \in \mathcal{C}$, a map of sets $F : \operatorname{Hom}_{\mathcal{C}}(x, y) \to \operatorname{Hom}_{\mathcal{D}}(F(x), F(y))$

Such that they satisfy

- Unit: for any $x \in \mathcal{C}$, $F(\mathrm{id}_x) = \mathrm{id}_{F(x)}$
- For any objects $x, y, z \in \mathcal{C}$ and morphisms $f \in \operatorname{Hom}_{\mathcal{C}}(x, y)$ and $g \in \operatorname{Hom}_{\mathcal{C}}(y, z)$, we have

$$F(q \circ f) = F(q) \circ F(f)$$

We say that a functor $F: \mathcal{C} \to \mathcal{D}$ is **faithful** if the map $\operatorname{Hom}_{\mathcal{C}}(x,y) \to \operatorname{Hom}_{\mathcal{D}}(F(x),F(y))$ is injective for any objects x and y. We say that F is **full** if this map is surjective, and that it is **fully faithful** if it is both full and faithful.

We say that F is a **contravariant functor** from C to D if it is a functor $C^{op} \to D$. A functor C to D is also referred to as a covariant functor.

Note we use the same F to refer to the map between both objects and morphisms.

Definition 2.1.4. A morphism $f \in \text{Hom}(x,y)$ in a category is an **isomorphism** if there is a morphism $f^{-1} \in \text{Hom}(y,x)$ such that $f^{-1} \circ f = \text{id}_x$ and $f \circ f^{-1} = \text{id}_y$. We also say that f is **invertible**. If two objects $x, y \in \mathcal{C}$ are isomorphic, we write $x \cong y$.

Remark 2.1.5. As usual, inverses are unique. Suppose that $f \in Hom(x, y)$ and we have $g \circ f = id_x$ and $f \circ h = id_y$. Then,

$$g = g \circ id_y = g \circ (f \circ h) = (g \circ f) \circ h = id_x \circ h$$

Definition 2.1.6. A category C is called a **groupoid** if every morphism is invertible. We say that a groupoid is **connected** if any two objects are isomorphic.

Remark 2.1.7. Consider a groupoid with a single object. The data required to specify such a groupoid is the monoid of endomorphisms in which every object has an inverse. This is just a group.

2.1.2 Natural Transformation

Definition 2.1.8. Let $F, G : \mathcal{C} \to \mathcal{D}$ be two functors. A natural transformation $\eta : F \Rightarrow G$ consists of morphisms $\eta_x \in \operatorname{Hom}_{\mathcal{D}}(F(x), G(x))$ for every object $x \in \mathcal{C}$ such that the diagram

$$F(x) \xrightarrow{F(f)} F(y)$$

$$\uparrow_{\eta_x} \qquad \qquad \downarrow^{\eta_y}$$

$$G(x) \xrightarrow{G(f)} G(y)$$

commutes for every morphism $f \in \text{Hom}_{\mathcal{C}}(x, y)$.

We say a natural transformation $\eta: F \Rightarrow G$ is a **natural isomorphism** if the morphisms η_x are isomorphisms for any $x \in C$.

Equivalently, we can also write something like:

Given two categories \mathcal{C} and \mathcal{D} , one can construct a category $\operatorname{Fun}(\mathcal{C}, \mathcal{D})$ of functors between \mathcal{C} and \mathcal{D} . It's objects are functors $\mathcal{C} \to \mathcal{D}$ and morphisms are given by natural transformations. Then we can view natural isomorphisms as isomorphisms in the functor category.

Notation 2.1.9. We write natural transformations as

$$\mathcal{C} \stackrel{F}{\underset{G}{\bigoplus}} \mathcal{D}$$

1. Consider

$$\mathcal{C} \xrightarrow{\overset{F}{\biguplus \eta}} \mathcal{D}$$

This gives vertical composition $F \Rightarrow H$ with components given by the composition $F(x) \xrightarrow{\eta_x} G(x) \xrightarrow{\epsilon_x} H(x)$ for all $x \in \mathcal{C}$.

2. Consider

$$\mathcal{C} \underbrace{ \left(igcup_{G_1}^{F_1} \mathcal{D} \left(igcup_{G_2}^{F_2} \mathcal{E} \right) \right) \right)}_{G_1} \mathcal{E}$$

This gives horizontal composition $F_2F_1 \Rightarrow G_2G_1$ given by composition

$$F_2F_1(x) \overset{F_2(\eta_x)}{\overset{}{\rightarrow}} F_2G_1(x) \overset{\epsilon(G_1(x))}{\overset{}{\rightarrow}} G_2G_1(x)$$

for every $x \in \mathcal{C}$. Picking η or ϵ to be the identity functor, we can compose by functors as well.

Example 2.1.10. Define $\det_K(M)$ be the determinant of the $n \times n$ matrix with entries in the commutative ring K, and let K^* denote the group of units of K. Thus M is non-singular when $\det_K(M)$ is a unit, so this gives a morphism $\operatorname{GL}_n(K) \to K^*$ of groups. Then, for any morphism $f: K \to K'$ this gives a commutative diagram:

$$\begin{array}{ccc}
\operatorname{GL}_n(K) & \xrightarrow{\det_K} & K^* \\
\operatorname{GL}_n f \downarrow & & \downarrow^{f^*} \\
\operatorname{GL}_n(K') & \xrightarrow{\det_{K'}} & K'^*
\end{array}$$

Showing that the transformation $\det\{K: \mathbf{CRng}\}: \mathrm{GL}_n(K) \to K^*$ between the two functors $\mathbf{CRng} \to \mathbf{Grp}$.

Example 2.1.11. For each group G the projection $p_G: G \to G/[G,G]$ defines a transformation from the identity functor on \mathbf{Grp} to the factor-commutator functor $\mathbf{Grp} \to \mathbf{Ab} \to \mathbf{Grp}$. Then p is natural, as for any group homomorphism $f: G \to H$ we have the evident homomorphism f' for which the following commutes:

$$G \xrightarrow{p_G} G/[G,G]$$

$$f \downarrow \qquad \qquad \downarrow f'$$

$$H \xrightarrow{p_H} H/[H,H]$$

2.1.3 Monos, Epis, Zeros

TODO!!!: S1.5

2.1.4 Equivalence

Definition 2.1.12. An equivalence of categories C, D is a pair of functors $F : C \to D$, $G : D \to C$ along with natural isomorphisms $e : \mathrm{id}_{C} \Rightarrow GF$ and $\epsilon : FG \Rightarrow \mathrm{id}_{D}$.

Definition 2.1.13. An adjoing equivalence of categories C, D is an equivalence (F, G, e, ϵ) satisfying the following:

1. The composite natural transformation

$$F \cong F \circ \operatorname{id}_{\mathcal{C}} \overset{\operatorname{id}_F \circ e}{\Rightarrow} FGF \overset{\epsilon \circ \operatorname{id}_F}{\Rightarrow} \operatorname{id}_{\mathcal{D}} \circ F \cong F$$

is the identity natural transformation on F.

2. The composite natural transformation

$$G\cong \operatorname{id}_{\mathcal{C}}\circ G\stackrel{e\circ\operatorname{id}_{G}}{\Rightarrow}GFG\stackrel{\operatorname{id}_{G}\circ\epsilon}{\Rightarrow}G\circ\operatorname{id}_{\mathcal{D}}\cong G$$

is the identity natural transformation on G

2.1.5 Examples to keep in mind

Example 2.1.14. Groups form a category **Grp** with morphisms by homomorphisms of groups. We can restrict groups to be abelian, which forms a category **Ab**.

We consider some functors:

- The forgetful functor from **Ab** to **Grp** is fully faithful.
- The abelianization $G \mapsto G/[G,G]$ gives a functor $\mathbf{Grp} \to \mathbf{Ab}$. It is neither full nor faithful.

Example 2.1.15. If k is a field, k-vector spaces form a category \mathbf{Vect}_k with morphisms given by linear maps.

Example 2.1.16. (Small) categories form a category Cat where morphisms are given by functors.

Example 2.1.17. A set X can be regarded as a category \mathcal{C} with $ob \ \mathcal{C} = X$ where $Hom_{\mathcal{C}}(x,y) = \emptyset$ for $x \neq y$ and $End_{\mathcal{C}}(x) = \{id_x\}$. These categories are called a **discrete category**.

Given a set and viewing it as a discrete category, this gives a fully faithful functor $\mathbf{Set} \to \mathbf{Cat}$.

2.2 Constructing Categories

2.2.1 Contravariance

Definition 2.2.1. Given a category C, we have the **opposite category** C^{op} , which has the same objects and $\operatorname{Hom}_{C^{op}}(x,y) = \operatorname{Hom}_{C}(y,x)$.

3 Universals, Limits, and Adjoints

3.1 Universals

Definition 3.1.1. If $F: \mathcal{D} \to \mathcal{C}$ is a functor and $c \in \mathcal{C}$, a **universal arrow** from c to F is a pair $\langle r, u \rangle$ consisting of an object $r \in \mathcal{D}$ and an arrow $u: c \to F(r)$ of \mathcal{C} such that for every pair $\langle d, f \rangle$ with an object $d \in \mathcal{D}$ and an arrow $f: c \to F(d)$ of \mathcal{C} , there is a unique arrow $f': r \to d$ of \mathcal{D} with $F(f' \circ u) = f$. Alternatively, every arrow f to G factors uniquely through the universal arrow G is

$$\begin{array}{ccc}
c & \xrightarrow{f} & S(d) \\
\downarrow & & & \\
\downarrow & & & \\
S(f') & & & \\
S(f) & & & & \\
\end{array}$$

3.2 Limits and Colimits