FNLP More About Classification

Yansong Feng fengyansong@pku.edu.cn

Wangxuan Institute of Computer Technology Peking University

March 5, 2025

Outline

Generative Models and Discriminative Models

2 Model Evaluation

Two Views

- Goal: find a function g: y = g(x)
- Probabilistically:
 - \bullet p(y|x)
 - $g(x) = \arg\max_{y} p(y|x)$
- Two views:
 - discriminative models: learn p(y|x) directly
 - generative models: learn p(x,y) first

Examples from Dan Jurafsky

Your task is to distinguish cat from dog images

[images from imagenet]

Build your model to describe what is a cat/dog image

- dense and soft fur, 0.3 0.5m in size
- color in blue-grey to brownish yellow.
- long whiskers, round eyes
- short snout, short limbs, vertical ears

Generative Models (from Dan)

Build your model to describe what is a cat/dog image

- dense and soft fur, 0.3 0.5m in size
- color in blue-grey to brownish yellow.
- long whiskers, round eyes
- short snout, short limbs, vertical ears

- dense fur in varied colors
- 0.5 1m in size, long limbs
- short whiskers, oval eyes
- long snout, drooping/vertical ears

Build your model to describe what is a cat/dog image

- dense and soft fur, 0.3 0.5m in size
- color in blue-grey to brownish yellow.
- long whiskers, round eyes
- short snout, short limbs, vertical ears

- dense fur in varied colors
- 0.5 1m in size, long limbs
- short whiskers, oval eyes
- long snout, drooping/vertical ears

Now, given a new image, run both models to see which is better

Build your model to distinguish cat from dog, e.g., whether it is a cat/dog compared to dog/cat

Discriminative Models (from Dan)

Build your model to distinguish cat from dog, e.g., whether it is a cat/dog compared to dog/cat

- cat: long whiskers, short snout, ...
- dog: short whiskers, long snout, ...

Discriminative Models (from Dan)

Build your model to distinguish cat from dog, e.g., whether it is a cat/dog compared to dog/cat

- cat: long whiskers, short snout, ...
- dog: short whiskers, long snout, ...
-
- collars!, dogs have collars!

Build your model to distinguish cat from dog, e.g., whether it is a cat/dog compared to dog/cat

- cat: long whiskers, short snout, ...
- dog: short whiskers, long snout, ...
-
- collars!, dogs have collars!

Now, given a new image, if there is a colloar, it is probably a dog!

Generative Models v.s. Discriminative Models

Generative Models - Naïve Bayes

•
$$g(x) = \arg \max_{y} p(y)p(x|y)$$

Discriminative Models - Log-Linear model

•
$$g(x) = \arg\max_{y} \sum_{i} \lambda_{f_i(x,y)} f_i(x,y)$$

Generative Models v.s. Discriminative Models

Generative Models - Naïve Bayes

• $g(x) = \arg \max_{y} p(y)p(x|y)$

Discriminative Models - Log-Linear model

•
$$g(x) = \arg\max_{y} \sum_{i} \lambda_{f_i(x,y)} f_i(x,y)$$

•
$$g(x) = \arg\max_{y} p(x|y) = \arg\max_{y} \frac{\exp\sum_{i} \lambda_{f_{i}(x,y)} f_{i}(x,y)}{\sum_{y'} \exp\sum_{i} \lambda_{f_{i}(x,y')} f_{i}(x,y')}$$

Y Feng (wict@pku) FNLP March 5, 2025 6/11

Outline

Generative Models and Discriminative Models

Model Evaluation

Model Evaluation

In most times, we are given **a set of training data**, and asked to build a classifier, which will be submitted to somewhere else and evaluated in **an unknown test set** .

Model Evaluation

In most times, we are given a set of training data, and asked to build a classifier, which will be submitted to somewhere else and evaluated in an unknown test set.

- design your main model
- implement your system
- test and optimize your system
- submit it for a close evaluation

Model Evaluation

In most times, we are given a **set of training data**, and asked to build a classifier, which will be submitted to somewhere else and evaluated in **an unknown test set**.

- design your main model
- implement your system
- test and optimize your system
- submit it for a close evaluation

Training and Test Sets

- Training dataset: the resource that we can estimate parameters of a model
 - p(s) and p(v|s) in Naïve Bayes models
 - λs in Log-linear models
- Test dataset:
 - a held-out part
 - for evaluating our models
 - NOT part of training data: we should set our models done BEFORE
 we see the test data

Y Feng (wict@pku) FNLP March 5, 2025 8/11

Training and Test Sets

- Training dataset: the resource that we can estimate parameters of a model
 - p(s) and p(v|s) in Naïve Bayes models
 - λs in Log-linear models
- Test dataset:
 - a held-out part
 - for evaluating our models
 - NOT part of training data: we should set our models done BEFORE we see the test data

Example (Evaluate a Log-linear Classifier)

- use Training dataset to estimate those λ s
- compute F-1 scores on the Test dataset

FNLP March 5, 2025 8/11 Y Feng (wict@pku)

Training and Test Sets

- Training dataset: the resource that we can estimate parameters of a model
 - p(s) and p(v|s) in Naïve Bayes models
 - λs in Log-linear models
- Test dataset:
 - a held-out part
 - for evaluating our models
 - NOT part of training data: we should set our models done BEFORE
 we see the test data

Example (Evaluate a Log-linear Classifier)

- use Training dataset to estimate those λ s
- compute F-1 scores on the Test dataset

a proper evaluation protocol

Y Feng (wict@pku) FNLP March 5, 2025 8 / 11

We still have problems: How to choose from tens of feature templates in log-linear models?

Choosing Hyper-Parameters

- hold out part of training data as a validation set
- also called development set
- ullet creat several combinations of feature templates, $CF_1, CF_2, ..., CF_n$
- train the log-linear model with different feature templates on the training set, resulting in different models, e.g., $\mathcal{M}_1, \mathcal{M}_2, ..., \mathcal{M}_n$
- evaluate all models $\mathcal{M}_{1:n}$ on the validation set
- choose CF_* where the corresponding \mathcal{M}_* obtains the best score (e.g., F_1) on the validation set

We still have problems: How to choose from tens of feature templates in log-linear models?

Choosing Hyper-Parameters

- hold out part of training data as a validation set
- also called development set
- ullet creat several combinations of feature templates, $CF_1, CF_2, ..., CF_n$
- train the log-linear model with different feature templates on the training set, resulting in different models, e.g., $\mathcal{M}_1, \mathcal{M}_2, ..., \mathcal{M}_n$
- evaluate all models $\mathcal{M}_{1:n}$ on the validation set
- choose CF_* where the corresponding \mathcal{M}_* obtains the best score (e.g., F_1) on the validation set
- Finally, report your results on the test set.

Cross Validation

Not sure at all: How will our models perform on a magic test set?

Cross Validation

Not sure at all: How will our models perform on a magic test set? We expect:

the model performance should be stable and generalizable

Not sure at all: How will our models perform on a magic test set? We expect:

the model performance should be stable and generalizable

- K-fold cross-validation
 - \bullet partition the training set into K non-overlapping folds: $X_1,X_2,...,X_K$
 - for $i \in \{1, ..., K\}$:
 - ullet train your model on $X_{1:K}\backslash X_i$, using X_i as the development set
 - estimate the model performance on X_i , e.g., F_1^i
 - report the average and often the standard error:

$$F_1 = \frac{1}{K} \sum_{i=1}^{K} F_1^i$$

Not sure at all: How will our models perform on a magic test set? We expect:

the model performance should be stable and generalizable

- K-fold cross-validation
 - \bullet partition the training set into K non-overlapping folds: $X_1,X_2,...,X_K$
 - for $i \in \{1, ..., K\}$:
 - train your model on $X_{1:K}\backslash X_i$, using X_i as the development set
 - estimate the model performance on X_i , e.g., F_1^i
 - report the average and often the standard error:

$$F_1 = \frac{1}{K} \sum_{i=1}^{K} F_1^i$$

• often, you can setup your model (hyper-)parameters through CV

Cross Validation

Testing

Test Set

[Jurafsky and Martin, SLP3]