

PROGRAM MANAGER RMA CONTAMINATION CLEANUP FILE COPY

COMMITTED TO PROTECTION OF THE ENVIRONMENT —

11301141

TECHNICAL SUPPORT FOR ROCKY MOUNTAIN ARSENAL

Olorado final water remedial investigation report

(Version 3.3) Volume II DTIC ELECTE MAR 25 1994

Rocky Mountain Arsenal Information Center Commerce City, Colorado

EBASCO SERVICES INCORPORATED

Applied Environmental, Inc. CH2M HILL DataChem, Inc. R.L. Stollar & Associates, Inc.

94-092/4

REQUESTS FOR COPIES OF THIS DOCUMENT
SHOULD BE REFERRED TO THE PROGRAMMANAGER
FOR THE ROCKY MOUNTAIN ARSENAL CONTAMINATION CLEANUP,
AMXRM ABERDEEN REOVING GROUND, MARYLAND.

91324096

ROCKY MOUNTAIN ARSENAL • COMMERCE CITY, COLORADO • 80022-2180

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

Form Aggroved REPORT DOCUMENTATION PAGE OMB No. 1704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and combileting and reviewing the collection of information. Send comments regarding this burden stimete or a 4y other aspect of this collection of information, including suggestions for reducing this burden. Lowardington neededucters Services, Directorate for information Operation and Response 129 Jefferson Operating Services, Visite 124, Artington, VA 22202-4307, and to the Office of Management and Bildyet, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 2. REPORT DATE 1. AGENCY USE ONLY (Leave blank) 3. REPORT TYPE AND DATES COVERED 07/00/89 4. TITLE AND SUBTITLE WATER REMEDIAL INVESTIGATION REPORT, FINAL, VERSION 3.3 5. FUNDING NUMBERS 6. AUTHOR(S) DAAA11 84 D 0016 PERFORMING ORGANIZATION 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) REPORT NUMBER EBASCO SERVICES, INC. LAKEWOOD, CO 89186R01 10. SPONSORING / MONITORING 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) AGENCY REPORT NUMBER ROCKY MOUNTAIN ARSENAL (CO.). PHRMA COMMERCE CITY, CO 11. SUPPLEMENTARY NOTES 12b. DISTRIBUTION CODE 128. DISTRIBUTION / A 'AILABILITY STATEMENT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED 13. ABSTRACT (Maximum 200 words) THIS WATER REMEDIAL INVESTIGATION IS A COMPILATION, INTEGRATION, AND INTERPRETATION OF GROUND WATER AND SURFACE WATER STUDY RESULTS OBTAINED FROM SPECIFIC TASKS AND DESIGNED TO PROVIDE A COMPREHENSIVE ASSESSMENT OF CONTAMINATION EOTH ON- AND OFF-POST. THE RI IS DIVIDED INTO FIVE VOLUMES: 1. INTRODUCTION TO THE PROJECT, DESCRIPTION OF THE ENVIRONMENTAL SETTING, AND ASSESSMENT OF THE NATURE AND EXTENT OF CONTAMINATION 2. GEOLOGICAL AND HYDROLOGIC DATA, TASK 44 DATA, CHEMISTRY DATA, AND INFORMATION PERTAINING TO HYDROCHEMICAL PROPERTIES AND HYDROLOGIC CALCULATIONS 3. APPENDIX F WHICH IS A DETAILED DESCRIPTION OF GEOLOGY, HYDROLOGY, CONTAMINANT DISTRIBUTION, AND HISTORICAL GROUND WATER AND SURFACE WATER PROGRAMS 4. COMMENTS AND RESPONSES FOR THE DRAFT FINAL RI 5. PLATES REFERENCED IN VOLUMES I AND III. L'inches

14. SUBJECT TERMS
SOIL, BIOTA, GEOLOGY, HYDROLOGY, CONTAMINANT SOURCES

16. PRICE CODE

17. SECURITY CLASSIFICATION OF THIS PAGE
OF REPORT OF ABSTRACT
UNCLASSIFIED

Standard Form 298 (Rev. 2-89) Prescribed by ANSI (Id. 239-18

89186R01 VOLUME II ORIGINAL

FILE COPY

Rocky Mountain Arsenal
Information Center ROCKY MOUNTAIN ARSENAL
Commerce City, Colorado Final
Commerce City, Colorado Final
ROCKY MOUNTAIN ARSENAL

(Version 3.3) Volume II

July 1989

Contract Number DAAK11-84-D-0016 and DAAA-15-88-D-0024

Prepared By

EBASCO SERVICES INCORPORATED
R. L. Stollar & Associates, Inc.
Hunter/ESE, Inc.
Harding Lawson Associates

Prepared For

Rocky Mountain Arsenal Contamination Cleanup

U.S. Army Program Manager's Office for

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

By
Distribution/

Availability Codes

Distribution/
Special

THE INFORMATION AND CONCLUSIONS PRESENTED IN THIS REPORT REPRESENT THE OFFICIAL POSITION OF THE DEPARTMENT OF THE ARMY UNLESS EXPRESSLY MODIFIED BY A SUBSEQUENT DOCUMENT. THIS REPORT CONSTITUTES THE RELEVANT PORTION OF THE ADMINISTRATIVE RECORD FOR THIS CERCLA OPERABLE UNIT.

THE USE OF TRADE NAMES IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUL ALCOMMERCIAL PRODUCTS. THIS REPORT MAY NOT BE CITED FOR PURPOSES OF ADVERTISEMENT.

VOLUME I

TABLE OF CONTENTS

										•								PAGE
EXI	ECUT	IVE SUMN	MARY															
	7 h 177 f	00110710	N															
1.0	INIE	CODUCTIO	P.N	• • •		• •	•	•	• •	•	•	• •	•	•	•	• •	•	1-1
	1.1																	1-1
	1.2		Work															1-1
	1.3		ру															1-2
	1.4	Overview						•		٠			•	٠	•			1-3
	1.5	Problem I	Definition				•	•		•				٠	•		٠	1-5
	1.6	Previous I	nvestigations			• •	•	•		٠	•		٠	•	٠		•	1-5
2.0	ENV	IRONMEN	TAL SETTING							•								2-1
	2.1	Physiogram	ohy															2-1
	2.2	Surface W	ater Hydrology .															2-1
	2.3	Geology .															٠	2-4
	2.4	Unconfine	ed Flow System		• •			•		•	•			•				2-6
		2.4.1	Hydraulic Properti															2-7
		2.4.2	Potentiometric Sur															2-9
		2.4.3	Water Level Flucti															2-10
		2.4.4	Recharge and Disc	Tations	• •		•	•	• •	٠	•	•	•	•	•	•	٠	2-10
		2.7,7	Kecharge and Disc	mar 80			•	•	• •	•	• •	•	•	•	•	• •	•	2-11
	2.5	Denver A	quifer				•	•					•	•	•			2-14
		2.5.1	Hydraulic Properti	es														2-14
		2.5.2	Distribution of Hy															2-15
		2.5.3	Recharge and Disc	harge									Ċ	·			Ċ	2-15
	2.6	2011ace M	ater - Groundwate	rintera	ictioi	1.	•	•	• •	•	٠.	•	•	•	•	•	٠	2-16
3.0	NAT	URE AND	EXTENT OF CO	MAT	INA	rioi	N					•	•			•	•	3-1
	3.1	Surface W	ater Quality											_				3-3
	3.2	Groundwa	iter Quality				:										·	3-3
		3.2.1	Volatile Halogenat	-d O	!													2.4
		3.2.1	Dicyclopentadiene															3-4 3-5
		3.2.2																
		3.2.3	Volatile Aromatics	 	• •		٠	٠		•		٠	•	٠		•	٠	3-6
		3.2.4	Organosulfur Com	pounds	 		•	•	• •	•		•	٠	•		•	•	3-7
		3.2.5	Diisopropylmethyl	rnosp	no na i	e .	٠	•		•		•	٠	٠		•	•	3-10
		3.2.7	DBCP				•	•		•		٠	•	٠		•	•	3-11
			Organochlorine Pe															3-12
		3.2.8	Arsenic				٠	•		•		•	٠	•		•	٠	3-13
WR	i.Toc																	
	12/89			i														

		3.2.9	Fluoride	. 3-14
		3.2.10	Chloride	. 3-17
		3.2.11	GC/MS Analysis	. 3-19
		3.2.12	Vertical Extent of Contamination	. 3-19
4.0	CON	TAMINAT	TION ASSESSMENT	. 4-1
	4.1	Mad-d-1	ic Mechanisms for Contamination of Surface Water	. 4-1
	4.1 4.2		ic Mechanisms for Contamination of Surface water	
			ater	
	4.3	Hydrologi	ic Model of Groundwater Flow and Contaminant Migration .	
		40.	Consenses No. 151 of Co. and do not a Whom	. 4-7
		4.3.1	Conceptual Model of Groundwater Flow	
		4.3.2	Numerical Models of Groundwater Flow	. 4-10
		4.3.3	Conceptual Model of Contaminant Migration	. 4-14
	4.4	Chemical	Properties and Hydrochemical Processes Affecting Contamir	nant
		4.4.1	Physical and Chemical Properties	
		4.4.2	Attenuation of Target Analytes	. 4-30
	4.5	Contamin	ant Source Areas and Pathways	. 4-37
		4.5.1	South Plants Source Area and Pathways	. 4-37
		4.5.2	Basin A Source Area and Pathways	
		4.5.3	Basin F Source Area and Pathways	
		4.5.4	North Plants Source Area and Pathway	
		4.5.5	Western Tier Source Areas and Pathways	. 4-44
		4.5.6	Chemical Sewer	
		4.5.7	Other Source Areas and Pathways	
		4.5.7	Other Source Areas and Fathways	. 4-4/
	4.6	Contamin	ant Migration and Alteration Along Major Groundwater Pathwa	ays 4-48
		4.6.1	South Plants Pathways	. 4-49
		4.6.2	Basin A-Basin A Neck Pathways	. 4-50
		4.6.3	Central Pathways	. 4-52
		4.6.4	Basin F Pathway	. 4-53
		4.6.5	Western Tier Pathways	. 4-56
	4.7	Vertical C	Contaminant Migration	. 4-57
		4.7.1	South Plants	. 4-58
		4.7.2	Basins C and F	
		4.7.3	North Boundary Containment System	. 4-60
		٠,١,٥	Notice boundary Containment System	. 4-00
5.0	SUM	IMARY AN	ND CONCLUSIONS	. 5-1
6.0	REFE	RENCES		. 6-1

 (\red)

WRI.TOC 06/02/89

VOLUME I LIST OF TABLES

		PAGE
Table 2.1	Streamflow Statistics for Gaging Stations at RMA During Water Years 1986 and 1987	2-3
Table 2.2	Hydraulic Conductivity Estimates for Hydrogeologic Units of the Unconfined Flow System	2-8
Table 2.3	Estimated Recharge to the Unconfined Flow System	2-13
Table 3.1	Representative Concentrations for Naturally Occurring Constituents in RMA Upgradient Unconfined Wells	3-15
Table 4.1	Model Estimated Recharge and Discharge for the Unconfined Flow System	4-9
Table 4.2	Physiochemical Properties of Select RMA Contaminants	4-20
Table 4.3	First Order Biodegradation Constants and Half Lives for Environmental Processes Controlling Solvent Transformations ^a	4-34
Table 4.4	Mechanisms for the Introduction of Contaminants to Groundwater .	4-40

VOLUME II

APPENDIX A DENVER FM GEOLOGIC DATA

A.IDENVER ZONE SANDSTONE TOP AND BASE ELEVATIONS, AND

THICKNESS

A.2BEDROCK ELEVATIONS AND SCREENED DENVER FM ZONES OR

UNITS

APPENDIX B HYDROLOGIC DATA

B.ISURFACE WATER DATA

B.2ALLUVIAL WATER LEVEL DATA B.3DENVER FM WATER LEVEL DATA

B.4ALLUVIAL AND DENVER FM AQUIFER TEST DATA

APPENDIX C TASK 44

C.ISUMMARY OF TASK 44 ACTIVITIES

C.2WELL CONSTRUCTION DATA

C.3WATER CHEMISTRY DATA FOR 1ST, 2ND AND 4TH QUARTER, FY87

APPENDIX D CHEMISTRY DATA

D.13RD QUARTER FY87 CHEMISTRY DATA

D.2EPA CHEMISTRY DATA

D.3ALLUVIAL/UNCONFINED PLUME MAPS (D-1 TO D-9)

D.4ALLUVIAL/UNCONFINED POINT PLOTS (D-10 TO D-26)

D.5DENVER FM POINT PLOTS (D-27 TO D-168)

D 6TASK 4/44 GC/MS ANALYSIS NETWORK DETECTION (D-168 TO D-188)

D.7GC/MS DATA

APPENDIX E HYDROCHEMICAL PROPERTIES AND HYDROLOGIC CALCULATIONS

VOLUME II LIST OF FIGURES

C-1	Generalized Bedrock Aquifer Monitor Well Construction (Denver Fm Well Completed in First Sandstone, Alluvium Unsaturated, Sandstone at the Alluvial-Bedrock Contact, Sandstone Partially Saturated)	1
C-2	Generalized Bedrock Aquifer Monitor Well Construction (Denver Fm Well Completed in First Sandstone, Alluvium Unsaturated, Shale at the Alluvial-Bedrock Contact)	ı
C-3	Generalized Bedrock Aquifer Monitor Well Construction (Denver Fm Well Completed in First Sandstone, Alluvium Saturated, Sandstone at the Alluvial-Bedrock Contact)	
C-4	Generalized Bedrock Aquifer Monitor Well Construction (Denver Fm Well Completed in First Sandstone, Alluvium Saturated, Shale at the Alluvial-Bedrock Contact)	(
C-5	Generalized Bedrock Aquifer Monitor Well Construction (Denver Fm Well Completed in Second Sandstone, Alluvium Saturated, Shale at the Alluvial-Bedrock Contact)	(
C-6	Generalized Bedrock Aquifer Monitor Well Construction (Denver Fm Well Completed in Second Sandstone, Alluvium Unsaturated, Shale at the Alluvial-Bedrock Contact, First and Second Sandstone Saturated)	
C-7	Generalized Bedrock Aquifer Monitor Well Construction (Denver Fm Well Completed in Second Sandstone, Alluvium Unsaturated, Saturated Sandstone at the Alluvial- Bedrock Contact)	
C8	Generalized Aquifer Monitor Well Construction	
C-9	Schematic Drawing of a Typical Cluster Well Installation	
C-10	Well Development Data Form	
D-1	Oxathiane Plumes Unconfined Groundwater Flow System, 3rd Quarter FY87	
D-2	Dithiane Plumes Unconfined Groundwater Flow System, 3rd Quarter FY87	
D-3	CPMS Plumes Unconfined Groundwater Flow System, 3rd Quarter FY87	
D-4	CPMSO Plumes Unconfined Groundwater Flow System, 3rd Quarter FY87	
D-5	CPMSO ₂ Plumes Unconfined Groundwater Flow System, 3rd Quarter FY87	
D-6	1,1-Dichloroethylene Plumes Unconfined Groundwater Flow System, 3rd Quarter FY87	
D-7	T-1,2-Dichloroethylene Plumes Unconfined Groundwater Flow System, 3rd Quarter FY87	
WRI.TOC 06/02/89	v	

D-8	1,2-Dichloroethane Plumes Unconfined Groundwater Flow System, 3rd Quarter FY87
D-9	1,1,1-Trichloroethane Plumes Unconfined Groundwater Flow System, 3rd Quarter FY87
D-10	Aldrin Detections Unconfined Groundwater Flow System, 3rd Quarter FY87
D-11	Isodrin Detections Unconfined Groundwater Flow System, 3rd Quarter FY87
D-12	pp-DDT Detections Unconfined Groundwater Flow System, 3rd Quarter FY87
D-13	pp-DDE Detections Unconfined Groundwater Flow System, 3rd Quarter FY87
D-14	Hexachlorocyclopentudiene Detections Unconfined Groundwater Flow System, 3rd Quarter FY87
D-15	Chlordane Detections Unconfined Groundwater Flow System, 3rd Quarter FY87
D-16	DMDS Detections Unconfined Groundwater Flow System, 3rd Quarter FY87
D-17	Ethylbenzene Detections Unconfined Groundwater Flow System, 3rd Quarter FY87
D-18	Toluene Detections Unconfined Groundwater Flow System, 3rd Quarter FY87
D-19	m-Xylene Detections Unconfined Groundwater Flow System, 3rd Quarter FY87
D-20	o,p-Xylene Detections Unconfined Groundwater Flow System, 3rd Quarter FY87
D-21	Methylene Chloride Detections Unconfined Groundwater Flow System, 3rd Quarter FY87
D-22	1,1-Dichloroethane Detections Unconfined Groundwater Flow System, 3rd Quarter FY87
D-23	Carbon Tetrachloride Detections Unconfined Groundwater Flow System, 3rd Quarter FY87
D-24	1,1,2-Trichloroethane Detections Unconfined Groundwater Flow System, 3rd Quarter FY87
D-25	DMMP Detections Unconfined Groundwater Flow System, 3rd Quarter FY87
D-26	MIBK Detections Unconfined Groundwater Flow System, 3rd Quarter FY87
D-27	Aldrin Detections Denver Zone 1, 3rd Quarter FY87
WR1.TOC 06/02/89	vi

D-28	Dieldrin Detections Denver Zone VC/VCE, 3rd Quarter FY87
D-29	Dieldrin Detectons Denver Zone A, 3rd Quarter FY87
D-30	Dieldrin Detections Denver Zone 2, 3rd Quarter FY87
D-31	Dieldrin Detections Denver Zone 3, 3rd Quarter FY87
D-32	Endrin Detections Denver Zone 1, 3rd Quarter FY87
D-33	Endrin Detections Denver Zone 2, 3rd Quarter FY87
D-34	Endrin Detections Denver Zone 3, 3rd Quarter FY87
D-35	Isodrin Detections Denver Zone 2, 3rd Quarter FY87
D-36	pp-DDT Detections Denver Zone 2, 3rd Quarter FY87
D-37	DMDS Detections Denver Zone VC/VCE, 3rd Quarter FY87
D-38	DMDS Detections Denver Zone 1, 3rd Quarter FY87
D-39	DMDS Detections Denver Zone 2, 3rd Quarter FY87
D-40	Oxathiane Detections Denver Zone VC/VCE, 3rd Quarter FY87
D-41	Oxathiane Detections Denver Zone A, 3rd Quarter FY87
D-42	Oxathiane Detections Denver Zone 1u, 3rd Quarter FY87
D-43	Oxathiane Detections Denver Zone 1, 3rd Quarter FY87
D-44	Oxathiane Detections Denver Zone 2, 3rd Quarter FY87
D-45	Dithiane Detections Denver Zone VC/VCE, 3rd Quarter FY87
D-46	Dithiane Detections Denver Zone A, 3rd Quarter FY87
D-47	Dithiane Detections Denver Zone lu, 3rd Quarter FY87
D-48	Dithiane Detections Denver Zone 1, 3rd Quarter FY87
D-49	Dithiane Detections Denver Zone 2, 3rd Quarter FY87
D-50	Dithiane Detections Denver Zone 4, 3rd Quarter FY87
D-51	Oxathiane/Dithiane Detections Denver Zone VC/VCE 3rd Quarter FY87

WRI.TOC 06/02/89

vii

D-52	Oxathiane/Dithiane Detections Denver Zone A 3rd Quarter FY87
D-53	Oxathiane/Dithiane Detections Denver Zone 1u 3rd Quarter FY87
D-54	Oxathiane/Dithiane Detections Denver Zone 2 3rd Quarter FY87
D-55	Oxathiane/Dithiane Detections Denver Zone 4 3rd Quarter FY87
D-56	Benzothiazole Detections Denver Zone VC/VCE, 3rd Quarter FY8
D-57	Benzothiazole Detections Denver Zone A, 3rd Quarter FY87
D-58	Benzothiazole Detections Denver Zone Iu, 3rd Quarter FY87
D-59	Benzothiazole Detections Denver Zone 1, 3rd Quarter FY87
D-60	Benzothiazole Detections Denver Zone 2, 3rd Quarter FY87
D-61	Benzothiazole Detections Denver Zone 4, 3rd Quarter FY87
D-62	Benzothiazole Detections Zone 5, 3rd Quarter FY87
D-63	CPMS Detections Denver Zone VC/VCE, 3rd Quarter FY87
D-64	CPMS Detections Denver Zone A, 3rd Quarter FY87
D-65	CPMS Detections Denver Zone 1u, 3rd Quarter FY87
D-66	CPMS Detections Denver Zone 1, 3rd Quarter FY87
D-67	CPMS Detections Denver Zone 2, 3rd Quarter FY87
D-68	CPMSO Detections Denver Zone VC/VCE, 3rd Quarter FY87
D-69	CPMSO Detections Denver Zone 2, 3rd Quarter FY87
D-70	CPMSO ₂ Detections Denver Zone VC/VCE, 3rd Quarter FY87
D-71	CPMSO ₂ Detections Denver Zone A, 3rd Quarter FY87
D-72	CPMSO ₂ Detections Denver Zone 1u, 3rd Quarter FY87
D-73	CPMSO ₂ Detections Denver Zone 1, 3rd Quarter FY87
D-74	CPMSO ₂ Detections Denver Zone 2, 3rd Quarter FY87
D-75	Benzene Detections Denver Zone VC/VCE, 3rd Quarter FY87
WRLTOC	

WRI.TOC 06/02/89

D-76	Benzene Detections Denver Zone A, 3rd Quarter FY87
D-77	Benzene Detections Denver Zone 1u, 3rd Quarter FY87
D-78	Benzene Detections Denver Zone 1, 3rd Quarter FY87
D-79	Chlorobenzene Detections Denver Zone VC/VCE, 3rd Quarter FY87
D-80	Chlorobenzene Detections Denver Zone A, 3rd Quarter FY87
D-81	Chlorobenzene Detections Denve. Zone 1u, 3rd Quarter FY87
D-82	Chlorobenzene Detections Denver Zone 1, 3rd Quarter FY87
D-83	Chlorobenzene Detections Denver Zone 4, 3rd Quarter FY87
D-84	Chlorobenzene Detections Denver Zone 5, 3rd Quarter FY87
D-85	Ethylbenzene Detections Denver Zone VC/VCE, 3rd Quarter FY87
D-86	Ethylbenzene Detections Denver Zone 2, 3rd Quarter FY87
D-87	Ethylbenzene Detections Denver Zone 5, 3rd Quarter FY87
D-88	Toluene Detections Denver Zone VC/VCE, 3rd Quarter FY87
D-89	Toluene Detections Denver Zone 1, 3rd Quarter FY87
D-90	Toluene Detections Denver Zone 2, 3rd Quarter FY87
D-91	Toluene Detections Denver Zone 4, 3rd Quarter FY87
D-92	Toluene Detections Denver Zone 5, 3rd Quarter FY87
D-93	m-Xylene Detections Denver Zone VC/VCE, 3rd Quarter FY87
D-94	m-Xylene Detections Denver Zone 2, 3rd Quarter FY87
D-95	m-X/lene Detections Denver Zone 5, 3rd Quarter FY87
D-96	o,p-Xylene Detections Denver Zone VC/VCE, 3rd Quarter FY87
D-97	o,p-Xylene Detections Denver Zone 2, 3rd Quarter FY87
D-98	o,p-Xylene Detections Denver Zone 5, 3rd Quarter FY87
D-99	Chloroform Detections Denver Zone VC/VCE, 3rd Quarter FY87

D-100	Chloroform Detections Denver Zone A, 3rd Quarter FY87
D-101	Chloroform Detections Denver Zone 1u, 3rd Quarter FY87
D-102	Chloroform Detections Denver Zone 1, 3rd Quarter FY87
D-103	Chloroform Detections Denver Zone 2, 3rd Quarter FY87
D-104	Chloroform Detections Denver Zone 5, 3rd Quarter FY87
D-105	Chloroform Detections Denver Zone 6, 3rd Quarter FY87
D-106	Trichloroethylene Detections Denver Zone VC/VCE, 3rd Quarter FY87
D-107	Trichloroethylene Detections Denver Zone A, 3rd Quarter FY87
D-108	Trichloroethylene Detections Denver Zone lu, 3rd Quarter FY87
D-109	Trichloroethylene Detections Denver Zone 1, 3rd Quarter FY87
D-110	Trichloroethylene Detections Denver Zone 2, 3rd Quarter FY87
D-111	Trichloroethylene Detections Denver Zone 3, 3rd Quarter FY87
D-112	Trichloroethylene Detections Denver Zone 4, 3rd Quarter FY87
D-113	Tetrachloroethylene Detections Denver Zone VC/VCE, 3rd Quarter FY87
D-114	Tetrachloroethylene Detections Denver Zone A, 3rd Quarter FY87
D-115	Tetrachloroethylene Detections Denver Zone 1, 3rd Quarter FY87
D-116	Tetrachloroethylene Detections Denver Zone 2, 3rd Quarter FY87
D-117	Methylene Chloride Detections Denver Zone VC/VCE, 3rd Quarter FY87
D-118	Methylene Chloride Detections Denver Zone 2, 3rd Quarter FY87
D-119	Methylene Chloride Detections Denver Zone 6, 3rd Quarter FY87
D-120	1,1-Dichloroethylene Detections Denver Zone VC/VCE, 3rd Quarter FY87
D-121	1,1-Dichloroethylene Detections Denver Zone A, 3rd Quarter FY87
D-122	1,1-Dichloroethane Detections Denver Zone VC/VCE, 3rd Quarter FY87
D-123	1,1-Dichloroethane Detections Denver Zone A, 3rd Quarter FY87

WRI.TOC 06/02/89

X

D-124	1,1-Dichloroethane Detections Denver Zone 2, 3rd Quarter FY87
D-125	T-1,2-Dichloroothylene Detections Denver Zone VC/VCE, 3rd Quarter FY87
D-126	T-1,2-Dichloroethylene Detections Denver Zone A 3rd Quarter FY87
D-127	1,2-Dichloroethane Detections Denver Zone VC/VCE, 3rd Quarter FY87
D-128	1,2-Dichloroethane Detections Denver Zone A, 3rd Quarter FY87
D-129	1,2-Dichloroethane Detections Denver Zone 1, 3rd Quarter FY87
D-130	1,2-Dichloroethane Detections Denver Zone 2, 3rd Quarter FY87
D-131	1,2-Dichloroethane Detections Denver Zone 4, 3rd Quarter FY87
D-132	Carbon Tetrachloride Detections Denver Zone VC/VCE, 3rd Quarter FY87
D-133	Carbon Tetrachloride Detections Denver Zone A, 3rd Quarter FY87
D-134	1,1,2-Trichloroethane Detections Denver Zone VC/VCE, 3rd Quarter FY87
D-135	DBCP Detections Denver Zone VC/VCE, 3rd Quarter FY87
D-136	DBCP Detections Denver Zone A, 3rd Quarter FY87
D-137	DBCP Detections Denver Zone 1, 3rd Quarter FY87
D-138	DBCP Detections Denver Zone 2, 3rd Quarter FY87
D-139	DBCP Detections Denver Zone 4, 3rd Quarter FY87
D-140	DCPD Detections Denver Zone 1, 3rd Quarter FY87
D-141	DCPD Detections Denver Zone 2, 3rd Quarter FY87
D-142	Diisopropylmethyl Phosphonate Detections Denver Zone VC/VCE, 3rd Quarter FY87
D-143	Diisopropylmethyl Phosphonate Detections Denver Zone A, 3rd Quarter FY87
D-144	Diisopropylmethyl Phosphonate Detections Denver Zone 1u, 3rd Quarter FY87
D-145	Diisopropylmethyl Phosphonate Detections Denver Zone 1, 3rd Quarter FY87
D-146	Diisopropylmethyl Phosphonate Detections Denver Zone 2, 3rd Quarter FY87
D-147	Diisopropylmethyl Phosphonate Detections Denver Zone 3, 3rd Quarter FY87
WRI.TOC 06/02/89	хi

D-148	Diisopropylmethyl Phosphonate Detections Denver Zone 5, 3rd Quarter FY87	
D-149	DMMP Detections Denver Zone 1, 3rd Quarter FY87	
D-150	DMMP Detections Denver Zone 2, 3rd Quarter FY87	(
D-151	Chloride Detections Denver Zone B, 3rd Quarter FY87	
D-152	Chloride Detections Denver Zone VC/VCE, 3rd Quarter FY87	
D-153	Chloride Detections Denver Zone 1u, 3rd Quarter FY87	(
D-154	Chloride Detections Denver Zone 5, 3rd Quarter FY87	
D-155	Chloride Detections Denver Zone 6, 3rd Quarter FY87	
D-156	Chloride Detections Denver Zone 7, 3rd Quarter FY87	(
D-157	Fluoride Detections Denver Zone B, 3rd Quarter FY87	
D-158	Fluoride Detections Denver Zone VC/VCE, 3rd Quarter FY87	
D-159	Fluoride Detections Denver Zone 3, 3rd Quarter FY87	(
D-160	Fluoride Detections Denver Zone 6, 3rd Quarter FY87	
D-161	Fluoride Detections Denver Zone 7, 3rd Quarter FY87	
D-162	Arsenic Detections Denver Zone VC/VCE, 3rd Quarter FY87	(
D-163	Arsenic Detections Denver Zone A, 3rd Quarter FY87	
.c=114	Arsenic Detections Denver Zone lu, 3rd Quarter FY87	
D-165	Arsenic Detections Denver Zone 1, 3rd Quarter FY87	(
D-166	Arsenic Detections Denver Zone 2, 3rd Quarter FY87	
D-167	Arsenic Detections Derver Zone 4, 3rd Quarter FY87	
D-168	Arsenic Detections Denver Zone 5, 3rd Quarter FY87	ı
D-169	Task 4/44 GC/MS Analysis Network 1,1,2,2-Tetrachloroethane Detections	
D-170	Task 4/44 GC/MS Analysis Network 1,1,2-Trichloranthane Detections	
D-171	Task 4/44 GC/MS Analysis Network 2,6,10,14-Tetramethylhexedecane Detections	
WRI.TOC	vii	

D-172	Task 4/44 GC/MS Analysis Network 2,6,10-Trimethylpentadecane Detections
D-173	Task 4/44 GC/MS Analysis Network Bis(2-Ethylhexyl)phthalate Detections
D-174	Task 4/44 GC/MS Analysis Network Caprolactam Detections
D-175	Task 4/44 GC/MS Analysis Network Chlorobenzene Detections
D-176	Task 4/44 GC/MS Analysis Network Cyclopentanone Detections
D-177	Task 4/44 GC/MS Analysis Network Hexadecanoic Acid Detections
D-178	Task 4/44 GC/MS Analysis Network N-Eicosane Detection
D-179	Task 4/44 GC/MS Analysis Network N-Heneicosane Detections
D-180	Task 4/44 GC/MS Analysis Network N-Heptadecane Detections
D-181	Task 4/44 GC/MS Analysis Network N-Itexadecane Detections
D-182	Task 4/44 GC/MS Analysis Network N-Nonadecane Detections
D-183	Task 4/44 GC/MS Analysis Network N-Pentadecane Detections
D-184	Task 4/44 GC/MS Analysis Network Octadecane Detections
D-185	Task 4/44 GC/MS Analysis Network Tetradecane Detections
D-186	Task 4/44 GC/MS Analysis Network Octadecanoic Acid Detections
D-187	Task 4/44 GC/MS Analysis Network Tetrachloroethylene Detections
D-188	Task 4/44 GC/MS Analysis Network Tetrahydrofuran Detections
E-1	Contaminant Migration Distances in Selected Pathways

VOLUME III

APPENDIX F DETAILED DESCRIPTION OF ENVIRONMENTAL SETTING AND CONTAMINANT DISTRIBUTION

APPENDIX F TABLE OF CONTENTS

.0 II	NTRODUC	TION	•
1.1 1.2 1.3	Nature and Previous I	round	
1.4	Overview	of Recent Investigation	•
2.0 1	ENVIRON	MENTAL SETTING	
2.1	Introducti	on , , ,	
	2.1.1	Location	
	2.1.2	Physiography	
	2.1.3	Vegetation, Climate and Land Use	
2.2	Geology .		
	2.2.1	Regional Geologic Setting	
	2.2.2	Regional Hydrogeologic Setting	
	2.2.3	Stratigraphy	
	2.2.3 2.2.3		•
		2.2.3.2.1 Denver Formation 2.2.3.2.2 Quaternary Deposits	
	2.2.4	Structures	
	2.2.4	.1 Folds	
	2.2.4		
	2.2.4		
	2.2.5	Geologic History	
2.3	Surface W	ater	
	2.3.1	Local Hydrogeologic Setting	

WRI.TOC 06/02/89

			PAGE
		A. A	
	2.3.2.1	Streamflow	
	2.3.2.2	Lake Levels	2-36
	2.3.2.3	Precipitation and Evaporation	2-37
	2.3.2.4	Utilities	2-38
2.3.3	Wat	er Balance Results	2-38
	2.3.3.1	First Creek Drainage	
	2.3.3.2	Irondale Drainage	
	2.3.3.3	Basins A and F Drainage	
	2.3.3.4	Sand Creek Lateral and Northwest Drainages	2-42
	•		
2.4 Groui	ndwater .		2-42
2.4.1	Intr	oduction	2-42
	2.4.1.1	Previous Investigations	2-42
	2.4.1.2	General Features	2-43
	2.4.1.3	Objectives and Methods	2-44
2.4.2	Den	iver Aquifer	2-45
	2.4.2.1	Geologic Characteristics	2-45
	2.4.2.2	Hydraulic Characteristics	
	2.4.2.3	Recharge	
	2.4.2.4	Denver Aquifer Movement	
	2.4.2.5	Discharge	
2.4.3	Und	confined Flow System ,	2-53
	2.4.3.1	Geologic Characteristics	2-53
	2.4.3.2	Hydraulic Characteristics	
	2.4.3.3	Unconfined Flow System Recharge	2-64
	2.4.3.4	Unconfined Flow System Movement	2-70
	2.4.3.5	Unconfined Flow System Discharge	
	2.4.3.6	Vadose Zone	
	2.4.5.0	Vadose Lone	. 4-14
2.4.4	Inte	eractions Between Surface and Groundwater	. 2-74
	2.4.4.1	Upper Derby Lake , , ,	7.75
	2.4.4.2	Lower Derby Lake	
	2.4.4.3	Ladora Lake and Lake Mary	
2,4,4,4			
2,4,4,4		Pond	
	2,4,4.5	Basin A Drainage - Basin A	2-81 2-85
	2.4.4.6	Basin A Drainage - Basins B, C, D, and E	
	2.4.4.7	Bosin F	
	2.4.4.9	Sewage Treatment Plant	2-92
WRI.TOC			
06/02/89		w.v.	
00/02/02		XV	

			PAGE
	2.4.4	.10 First Creek and North Bog	2-93
3.0	SAMPLING	AND ANALYSIS PROGRAMS AT RMA	. 3-1
3.1	Methods o	of Investigation	3-1
3.2	Sampling	Programs	3-2
	3.2.1	Historical Sampling Programs	3-2
	3.2.1		3-2
	3.2.1		3-3
	3.2.1		3-3
	3.2.1		3-4
	3.2.1	The state of the s	
		Program	3-4
	3.2.2	Recent Sampling Programs	3-4
	3.2.2	2.1 Task 4 RMA Water Quantity/Quality Survey	3-6
	3.2.2		. 3-6
	3.2.2		
	3.5.5	Assessment	3-6
	3.2.2		3-7
	3.2.2		3-7
	3.2.2	· · · · · · · · · · · · · · · · · · ·	3-7
	3.2.2		3-7
3.3	Analytical	l Programs	3-8
	3.3.1	Historic Analytical Parameters	3-8
	3.3.2	Recent Program Analytical Parameters	3-12
4.0	NATURE A	AND EXTENT OF CONTAMINATION	4-1
4,1	Surface W	/ater Quality	4-1
4.2		ater Quality	4-14
	4.2.1	Investigative Approach	4-17
	4.2.1		4-17
	4.2.1		4-20
	4.2.1		4-20
	4.2.1		4-27
	4.2.1	1.5 Identification of Major Contaminant Pathways	4-34
	4,2.2	Dieldrin	4-34
	4.2.2	2.1 Historical Water-Quality Data	4-35
WR	I.TOC		
06/0	02/89	xvi	

xvi

			PAGE
4	.2.2.3	Denver Aquifer	. 4-40
4.2.3	En	ndrin	. 4-42
•	.2.3.1	Historical Water Quality Data	
	.2.3.2	Unconfined Flow System	4-43
4	.2.3.3	Denver Aquifer	. 4-47
4.2.4	Di	ithiane and Oxathiane	. 4-47
4	.2.4.1	Historical Water Quality Data	. 4-48
4.	.2.4.2	Unconfined Flow System	. 4-49
4	.2.4.3	Denver Aquifer	. 4-52
4.2.5	Ве	enzothiazole , , , , , , , , , , , , , , , , , , ,	. 4-53
4	.2.5.1	Historical Water Quality Data	. 4-53
	.2.5.2	Unconfined Flow System	
	.2.5.3	Denver Aquifer	
4.2.6		rganosulfur Compounds (chlorophenylmethyl sulfide,	
	ch	lorophenylmethyl sulfoxide, and chlorophenylmethyl sulfone).	. 4-57
	.2.6.1	Historical Water Quality Data	
4	.2.6.2	Unconfined Flow System	
4	.2.6.3	Denver Aquifer	. 4-63
4.2.7	Volatil	le Aromatic Organics Compounds	. 4-64
	.2.7.1	Total Volatile Aromatic Organic Compounds	. 4-64
4	.2.7.2	Benzene	
4	.2.7.3	Chiorobenzene	. 4-73
4.2.8	Vo	olatile Halogenated Organics	. 4-79
	.2.8.1	Total Volatile Halogenated Organics	
	.2.8.2	Chloroform	
	.2.8.3	Trichloroethylene	
4	.2.8.4	Tetrachloroethylene	. 4-95
4.2.9	DI	BCP	. 4-100
	.2.9.1	Historical Water-Quality Data	. 4-100
	.2.9.2	Unconfined Flow System	. 4-101
4	.2.9.3	Denver Aquifer	. 4-104
4.2.10	Di	icyclopentadiene	. 4-105

WRI.TOC 06/02/89

xvii

																			PAGE
		.10.1	Historical Wa	ter-Quality	Data						•		• •		•				4-106 4-107
		.10.3	Denver Aquif	er	• • •	•		:	• •	•	:		• •		•			:	
	4.2.11	Diis	opropylmethyl	Phosphonat	е.,												•		4-111
	4,2	.11.1	Historical Wa	ter Quality	Data					`.									4-111
	4.2	.11.2	Unconfined F	low System	١		_			_									4-112
		.11.3	Denver Aquif	er									•					•	4-117
	4.2.12	Arsenio	 .																4-118
	4.2	.12,1	Historical Wa	ter-Quality	Data														4-119
	4.2	.12.2	Unconfined F																
	4.2	.12.3	Denver Aquif	er			,	•		•	•	•		, ,			•	•	4-122
	4.2.13	Fluc	orid e .																4-123
	4.2	.13,1	Historical Wa																
	4.2	.13.2	Unconfined F	low System	ı .														4-125
	4.2	.13.3	Denver Aquit	er						•						•			4-129
	4.2.14	Chle	oride						. ,										4-134
		.14.1	Historical Wa	ter Quality	Data														4-134
		.14 2	Unconfined F	Flow System	١			٠											4-135
	4.2	.14.3	Denver Aquif	er		•	٠	•		•	•	•			•	•	•	•	4-140
4.3	Gas Chro	matog	raphy/Mass Sp	ectrometry	Resul	ts													4-144
	4.3.1		Selection																4-145
	4.3.2	GC,	MS Analytical	Methods .															4-145
	4.3.3	Qua	lity Assurance/	Quality Co.	ntrol .														4-150
	4.3.4	Con	firmation of To	arget Analy	tes an	id (C٥	nce	nt	rati	ion	5							4-154
	4.3.5	Non	itarget Compou	nd Analytic	ai Re	:su	lts	•		•	•	•	• •	٠. •	•	•	•		4-155
	4.3	.5.1	Uncertainties	in Nontarg	et Ide	nti	fic	ati	on										4-155
	4.3	.5.2	Nontarget Co.	mpound Ide	entific	ati	on									٠			4-156
	4.3	.5.3	Nontarget Co.																4-157

APPENDIX F LIST OF TABLES

		PAGE
Table 1.0-1	RI Tasks That Included Assessments of Water Data	1-2
Table 2.2-1	Nomenclature Comparison for the Denver Formation at RMA	2-7
Table 2.2-2	Wells/Borings with Sandstones in Contact	. 2-8
Table 2.2-3	Sandstone Occurrence in Denver Zones 5 Through 9	. 2-11
Table 2,2-4	Zone B Sandstone Occurrence	. 2-17
Table 2.3-1	Control Structures and Gaging Locations	. 2-30
Table 2,3-2	RMA Lake Staff Gage Data (in ft)	. 2-32
Table 2.3-3	Characteristic Flow Statistics for Stream Gaging Stations at RMA	. 2-34
Table 2.3-4	RMA Monthly Water Balance Summary	. 2-35
Table 2.4-1	Summary of Results for Pumping Tests in the Denver Formation	. 2-48
Table 2.4-2	Summary of Hydraulic Conductivity (K) of Denver Fm Zones	2-49
Table 2.4-3	Areas of Potential Hydrologic Interaction Between Sandstones in the Denver Fm	. 2-54
Table 2.4-4	Alluvial Slug Tests Using the Bouwer-Rice Method	. 2-61
Table 2.4-5	Summary of Hydraulic Conductivity Estimates	. 2-62
Table 2.4-6	Sources of Recharge to the Unconfined Aquifer	. 2-65
Table 2.4-7	Calculated Hydraulic Gradients	. 2-71
Table 2.4-8	1986 and 1987 Water-Level Data for South Lakes Wells	. 2-77
Table 2.4-9	1986 and 1987 Water-Level Data for Basin A Wells	. 2-83
Table 2.4-10	1986 and 1987 Water-Level Data for Basin B	. 2-86
Table 2.4-11	1986 and 1987 Water-Level Data for Basin C	. 2-88
Table 2.4-12	1986 and 1987 Water-Level Data for Basin F	. 2-91
Table 3.2-1	Summary of 1985 to 1987 RMA Sampling Programs	3-5

WRI.TOC 06/02/89

xix

APPENDIX F LIST OF TABLES (Continued)

Table 3.3-1	Target Analyte Lists for Tasks 25, 36, 38, 39 and 44	. 3-10
Table 4.1-1	Surface Water Sampling Sites and Sample Representation	. 4-3
Table 4.1-2	Surface Water Analyte Detections, Spring 1987	4-6
Table 4.1-3	Complete Organic Analyte Detections in Surface Water from Fall 1985 Through Fall 1987	4-9
Table 4.1-4	Arsenic Detections in Surface Water From Fall 1985 Through Fall 1987.	4-12
Table 4.2-1	Third Quarter FY87 Groundwater Sampling Network	4-15
Table 4.2-2	Comparison of CRL 1 by Laboratory $(ug/1)^2$	4-18
Table 4.2-3	Unconfined Denver Wells and Designation Justification	4-21
Table 4.2-3	Unconfined Denver Wells and Designation Justification	4-22
Table 4.2-4	Presentation of Third Quarter FY87 Data	4-24
Table 4.2-5	Analyte Summary for the Alluvium, Unconfined Denver Fm and Confined Denver Fm, Third Quarter FY87	4-28
Table 4.2-6	Summary of Analytical Results for Dieldrin for Wells in the Alluvium, Unconfined Denver Fm and Confined Denver Fm	4-36
Table 4.2-7	Summary of Analytical Results for Endrin for Wells in the Alluvium, Unconfined Denver Fm and Confined Denver Fm	4-44
Table 4.2-8	Summary of Analytical Results for Composite Dithiane/Oxathiane for Wells in the Alluvium, Unconfined Denver Fm and Confined Denver Fm	4-50
Table 4.2-9	Summary of Analytical Results for Benzothiazole for Wells in the Alluvium, Unconfined Denver Fm and Confined Denver Fm	4-55
Table 4.2-10	Summary of Analytical Results for Composite Organosulfurs for Wells in the Alluvium, Unconfined Denver Fm and Confined Denver Fm	4-60
Table 4.2-11	Summary of Analytical Results for Benzene for Wells in the Alluvium, Unconfined Denver Fm and Confined Denver Fm	4-70
Table 4.2-12	Summary of Analytical Results for Chlorobenzene for Wells in the Alluvium, Unconfined Denver Fm and Confined Denver Fm	4-75
Table 4.2-13	Summary of Analytical Results for Chloroform for Wells in the Alluvium, Unconfined Denver Fm and Confined Denver Fm	84-7
WRI.TOC 06/02/89	xx	

APPENDIX F LIST OF TABLES (Continued)

Table 4.2-14	Summary of Analytical Results for Trichloroethylene for Wells in the Alluvium, Unconfined Denver Fm and Confined Denver Fm 4-92	**/
Table 4.2-15	Summary of Analytical Results for Tetrachloroethylene for Wells in the Alluvium, Unconfined Denver Fm and Confined Denver Fm 4-97	•
Table 4.2-16	Summary of Analytical Results for DBCP for Wells in the Alluvium, Unconfined Denver Fm and Confined Denver Fm 4-102	
Table 4.2-17	Summary of Analytical Results for DCPD for Wells in the Alluvium, Unconfined Denver Fm and Confined Denver Fm 4-108	•
Table 4.2-18	Summary of Analytical Results for Dissopropylmethyl Phosphonate for Wells in the Alluvium, Unconfined Denver Fm and Confined Denver Fm 4-113	
Table 4.2-19	Summary of Analytical Results for Arsenic for Wells in the Alluvium, Unconfined Denver Fm and Confined Denver Fm 4-120	•
Table 4.2-20	Summary of Analytical Results for Fluoride for Wells in the Alluvium, Unconfined Denver Fm and Confined Denver Fm 4-126	
Table 4.2-21	Summary of Analytical Results for Chloride for Wells in the Alluvium, Unconfined Denver Fm and Confined Denver Fm 4-136	• •
Table 4.3-1	List of Wells from which Water Samples were Collected and Submitted for GC/MS Analysis	
Table 4.3-2	GC/MS Target Analytes	Þ
Table 4.3-3	Certified Reporting Limits for Target Analytes	

WRI.TOC 06/02/89

xxi

APPENDIX F LIST OF FIGURES

	PAGE
1,1-1	Location Map of Rocky Mountain Arsenal
1.3-1	Location of Basins, Containment Systems, Lakes, Chemical Sewers, Cultural Features, and Select Surface Features at RMA 1-12
1,4-1	SAR Location Map
1.4-2	RMA Groundwater Monitoring Tasks Study Areas
2.1-1	Monthly Mean Temperatures With Mean Maximum and Minimum Ranges for the RMA Vicinity
2.1-2	Monthly Total Snowfall and Precipitation for Stapleton Airport 2-98
2.1-3	Estimated Bianey - Criddle Evapotranspiration and Cherry Creek Lake Evaporation Values
2.2-1	Stratigraphic Column of the Denver Basin
2.2-2	Upper Stratigraphic Sections of the Denver Basin
2.2-3	Structural Features of the Denver Basin Area
2.2-4	RMA Stratigraphic Column
2.2-5	Thickness of Sandstone in Denver Zone 4
2.2-6	Thickness of Sandstone in Denver Zone 3
2.2-7	Thickness of Sandstone in Denver Zone 2
2.2-8	Thickness of Sandstone in Denver Zone 1
2.2-9	Thickness of Sandstone in Denver Zone lu
2.2-10	Thickness of Sandstone in Denver Zone A Emphasizing AL, AM, AS, and AU Sandstone Trends
2.2-11	Generalized East-West Cross Section From the South Platte River to the Northeast Corner of RMA
2.2-12	Quaternary Columnar Section
2.2-13	Geologic Map of Rocky Mountain Arsenal Area
2.2-14	Geological Interpretations for Part of Cross Section A-A'
2.2-15	Diagrammatic Depositional Environment of the Denver Fm at RMA2-114
WRI.TOC	vvII

PAGE

2.2-16	Bedrock Surface at RMA and Prominent Paleochannels
2.3-1	Infiltration Rates Associated With RMA Drainage Basins
2.3-2	Surface Water Monitoring Site Locations
2.3-3	Surface Water Features and Alluvial Wells in the Vicinity of the Lower Lakes
2.3-4	Monthly Evaporation, Precipitation and Net Evaporation Values for the RMA Vicinity
2.3-5	Groundwater Elevation Projection Upon Centerline of Lower Lakes at RMA
2.4-1	Potentiometric Surface of the Unconfined Flow System, Third Quarter FY1987
2.4-2	Time Averaged Water Table Contour Map (1981-1987)
2.4-3	Locations of Denver Formation Aquifer Tests
2.4-4	Hydraulic Conductivity Histogram, Slug Tests in Denver Sands
2.4-5	Direction of Vertical Hydraulic Gradients Between Alluvial/Unconfined and Denver Wells at Cluster Sites
2.4-6	Potentiometric Surface of Denver Zone 4, 3rd Quarter FY1987
2.4-7	Potentiometric Surface of Denver Zone 3, 3rd Quarter FY1987
2.4-8	Potentiometric Surface of Denver Zone 2, 3rd Quarter FY1987
2.4-9	Potentiometric Surface of Denver Zone 1, 3rd Quarter FY19872-129
2.4-10	Potentiometric Surface of Denver Zone IU, 3rd Quarter FY19872-130
2.4-11	Potentiometric Surface of Denver Zone A, 3rd Quarter FY19872-131
2.4 -12	Direction of Vertical Hydraulic Gradients Between Denver Wells at Cluster Sites
2.4-13	Areas of Potential Denver Zone Sandstone Interaction
2.4-14	Base of the Unconfined Flow System
WRI.TOC	wwiii

PAG	Ľ

2.4-15	Saturated Thickness Map For Unconfined Flow System
2.4-16	Saturated Thickness of the Alluvial Material
2.4-17	Location of Hydrographic Profiles and Well Locations for Seasonal Hydrographs
2.4-18	Seasonal Water Level Fluctuations for Wells Near North First Creek
2.4-19	Hydrographic Profile Upgradient of the NBCS (Line A-A')
2.4-20	Hydrographic Profile Through Sections 23 and 24, Across the NBCS (Line B-B')
2.4-21	Hydrographic Profile Upgradient of the NWBCS (Line C-C')
2.4-22	Hydrographic Profile Through NWBCS (Line D-D')
2.4-23	Seasonal Hydrographs for Wells 37308 and 37309
2.4-24	1986 Seasonal Hydrograph for Well 37335
2.4-25	Hydraulia Conductivity Histogram, Slug Tests in the Alluvium
2.4-26	Hydrogen baic Unit Map for Unconfined Flow System
2.4-27	Lower Derby Lake Stage Loss Relationship Based on 1986 and 1987 Mass Balance Calculations
2.4-28	Lake and Well Levels by Lakes Ladora and Mary
2.4-29	Pond Surface, Predicted and Observed Water Table Elevations With Monthly Precipitation for Havana Pond
2.4-30	Havana Pond Stage Loss Relationship Based on 1986 Weekly Mass Balance Calculations
2.4-31	Basins Location Map
2.4-32	Lake and Well Levels by Uvalda Interceptor
2.4-33	Sewage Treatment Plant Location and Associated Alluvial Well Locations
WRITOC	

WRI.TOC 06/02/89

xxiv

PAGE

2.4-34	First Creek Stream Bed Elevations Relative to Water Table Elevations
2.4-35	Comparison of First Creek Flows at the North and South Gages2-155
2.4-36	Estimated Groundwater Elevations Along First Creek From the Rocky Mountain Arsenal North Boundary to Highway 2
2.4-37	Comparison of First Creek Flows at RMA North Boundary and Highway 2
2.4-38	Change in First Creek Flows Off-post vs. Discharge at Highway 2 Station
2.4-39	Flow Frequency Histogram for First Creek at Highway 2 Station (July 1986 through August 1987)
4.1-1	Surface Water Quality Sample Sites at RMA
4.1-2	Spring 1987 Surface Water Compound Detections
4.1-3	Surface Water Quality Fall 85 - Fall 87 Multiple Detected Compounds
4.2-1	RMA Contaminant Migration Pathways
4.2-2	Dieldrin Plumes Unconfined Groundwater Flow System, 3rd Quarter FY1987
4.2-3	Dieldrin Plumes Confined Denver Fm Zone 1, 3rd Quarter FY19874-167
4.2-4	Endrin Plumes Unconfined Groundwater Flow System, 3rd Quarter FY1987
4.2-5	Dithiane/Oxathiane Plumes Unconfined Groundwater Flow System, 3rd Quarter FY1987
4.2-6	Dithiane/Oxathiane Composite Plumes Confined Denver Fm Zone 1, 3rd Quarter FY1987
4.2-7	Benzothiazole Plumes Unconfined Groundwater Flow System, 3rd Quarter FY1987
4.2-8	Organosulfur Compounds (CPMS, CPMSO, CPMSO ₂) Plumes Unconfined Groundwater Flow System, 3rd Quarter FY19874-172

WRI.TOC 06/02/89

XXV

PAGE

4.2-9	Summed Volatile Aromatic Plumes Unconfined Groundwater Flow System, 3rd Quarter FY1987
4.2-10	Benzene Plumes Unconfined Groundwater Flow System, 3rd Quarter FY1987
4.2-11	Benzene in Confined Portions of Denver Zones 2, 3, and 4
4.2-12	Chlorobenzene Plumes Unconfined Groundwater Flow System, 3rd Quarter FY1987
4.2-13	Chlorobenzene in Confined Portions of Denver Zones 2, 3 and 44-177
4.2-14	Summed Volatile Halogenated Organics Plumes Unconfined Groundwater Flow System, 3rd Quarter FY1987
4.2-15	Chloroform Plumes Unconfined Groundwater Flow System, 3rd Quarter FY1987
4.2-16	Trichloroethylene Plumes Unconfined Groundwater Flow System, 3rd Quarter FY1987
4.2-17	Tetrachloroethylene Plumes Unconfined Groundwater Flow System, 3rd Quarter FY1987
4.2-18	Dibromochloropropane Plumes Unconfined Groundwater Flow System, 3rd Quarter FY1987
4.2-19	Dicyclopentadiene Plumes Unconfined Groundwater Flow System, 3rd Quarter FY1987
4.2-20	Diisopropylmethyl Phosphonate Plumes Unconfined Groundwater Flow System, 3rd Quarter FY1987
4.2-21	Arsenic Plumes Unconfined Groundwater Flow System, 3rd Quarter FY1987
4.2-22	Fluoride Plumes Unconfined Groundwater Flow System, 3rd Quarter FY1987
4.2-23	Fluoride Plumes Confined Denver Fm Zone A, 3rd Quarter FY19874-187
4.2-24	Fluoride Plumes Confined Denver Fm Zone 1U, 3rd Quarter FY19874-188
4.2-25	Fluoride Plumes Confined Denver Fm Zone 1, 3rd Quarter FY19874-189

WRI.TOC 06/02/89

xxvi

PAGE

4.2-26	Fluoride Plumes Confined Denver Fm Zone 2, 3rd Quarter FY19874-190
4.2-27	Fluoride Plumes Confined Denver Fm Zone 4, 3rd Quarter FY19874-191
4.2-28	Fluoride Plumes Confined Denver Fm Zone 5, 3rd Quarter FY19874-192
4.2-29	Chloride Plumes Unconfined Groundwater Flow System, 3rd Quarter FY1987
4.2-30	Chloride Plumes Confined Denver Fm Zone A, 3rd Quarter FY19874-194
4.2-31	Chloride Plumes Confined Denver Fm Zone 1, 3rd Quarter FY19874-195
4.2-32	Chloride Plumes Confined Denver Fm Zone 2, 3rd Quarter FY19874-196
4.2-33	Chloride Plumes Confined Denver Fm Zone 3, 3rd Quarter FY19874-197
4.2-34	Chloride Plumes Confined Denver Fm Zone 4, 3rd Quarter FY19874-198
4.3-1	Task 4/44 Sampling Network and Wells Selected For GC/MS

WRI.TOC 06/02/89

xxvii

VOLUME IV

APPENDIX G COMMENTS AND RESPONSES TO THE WATER REMEDIAL INVESTIGATION, DRAFT FINAL REPORT (VERSION 2.2) MARCH 1989

APPENDIX G TABLE OF CONTENTS

	PAGE
U.S. Environmental Protection Agency Comments and Responses	1-1
Shell Oil Company Comments and Responses	1-30
Colorado Department of Health Comments and Responses	1-86
Additional Water Remedial Investigation Comments and Responses	1-100

VOLUME V

LIST OF PLATES

Plate 1	Hydrogeologic Cross-Section A-A'
Piate 2	Hydrogeologic Cross-Section C-C
Plate 3	RMA Unconfined Flow System Sampling Network, 3rd Quarter FY87
Plate 4	RMA Confined Denver Formation Sampling Network, 3rd Quarter FY87
Plate 5	Thickness of Alluvial and Eolian Deposits
Plate 6	Alluvial Deposits in Contact With the Bedrock Surface
Plate 7	Elevation of the Bedrock Surface and Three Dimensional Bedrock Surface Map
Plate 8	B-B' Cross Section
Plate 9	Denver Formation Subcrop Map
Plate 10	Elevation of Base of Lignite C
Plate 11	Third Quarter FY87 Water Table Contour Map
Plate 12	Time Averaged Water Table Contour Map (1981-1987)
Plate 13	Saturated Thickness of Alluvial Material
Plate 14	Base of the Unconfined Aquifer
Plate 15	Saturated Thickness Map for the Unconfined Flow System
Plate 16	Hydraulic Conductivity Map of Unconfined Flow System
Plate 17	Location of Cross-Sections A-A', B-B' and C-C'

ACRONYMS AND ABBREVIATIONS

ac-ft acre-feet

ac-ft/mo acre-feet per month

ac-ft/yr acre-feet per year

ACL alternative concentration limit

Al A lithologic zone - lower
Am A lithologic zone - middle

ARAR Applicable or Relevant and Appropriate Requirement

Army Department of the Army
As A lithologic zone - channel

ASTM American Society for Testing and Materials

ASY apparent specific yield

atm-m³/mole atmosphere-cubic meter per mole

Au A lithologic zone - upper
AWQC ambient water quality criteria

12DCLE 1,2 dichloroethane

BTZ benzothiazole

CC Contamination Control
CCC Colorado Climate Center
CCl₄ Carbon Tetrachloride

CDH Colorado Department of Health
CDM Camp Dresser & McKee, Inc.

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CF&I Colorado Fuel and Iron
cfs cubic feet per second
CH2Cl2 Methylene Chloride
cm/sec centimeters per second

CMP Comprehensive Monitoring Program

COE
U.S. Army Corps of Engineers
CPMS
chlorophenylmethyl sulfide
CPMSO
chlorophenylmethyl sulfoxide
CPMSO2
chlorophenylmethyl sulfone

WRI.TOC 06/02/89

xxx

ACRONYMS AND ABBREVIATIONS (Continued)

CRL certified reporting limits

CSU Colorado State University

CSU-GWFlow Colorado State University Groundwater Flow Model

CWP Composite Well Program

CWQ Clean Water Act

DBCP Dibromochloropropane
11DCE 1,1-dichloroethylane

11DCLE 1,1-dichloroethane

12DCE trans-1,2-dichloroethylene

DCPD Dicyclopentadiene

DIMP Diisopropylmethyl phosphonate

1,4-DITH 1,4-dithiane

DMDS dimethyldisulfide

DMMP dimethylmethyl phosphonate

DOJ Department of Justice

EA Endangerment Assessment

EDL elevated detection limit

EPA U.S. Environmental Protection Agency

ESE Environmental Science and Engineering, Inc.

FCP First Creek Paleochannel

Fm Formation

FRICO Farmer's Reservoir and Irrigation Company

FS Feasibility Study

ft feet

ft/day feet per day
ft/ft feet per foot
ft/sec feet per second
ft/yr feet per year
ft³ cubic feet

FY87 Fiscal Year 1987

gal/ft² gallons per square foot

GB nerve gas comprised of Sarin

WRI.TOC 06/02/89

xxxi

ACRONYMS AND ABBREVIATIONS (Continued)

GC gas chromatograph

G/ml gram per milliliter

GC/M\$ gas chromatography/mass spectrometry

gallons per day per foot gpd/ft²gallons per day per square foot gpd/ft

RDM gallons per minute Н Henry's Law Constant HCCPD or hexachlorocyclopentadiene

CL₆CP

HGU Hydrogeologic unit

HLA Harding Lawson Associates HSL Hazardous Substance List

ICAP inductively-coupled argon plasma

ICS Irondale Containment System

ID inside diameter in/hr inches per hour in/mo inches per month

IRA Interim Response Action ISP Initial Screening Program K hydraulic conductivity

organic carbon partition coefficient Koc

 K_d partition coefficient

Kow octanol/water partition coefficient

LA Lignite A LB Lignite B

lbs/ft3 pounds per cubic foot

10 Lignite C LD Lignite D

MCL maximum contaminant level MCLG maximum contaminant level goal

mg/l milligrams per liter

mi miles

MIBK methylisobutyl ketone

MKE Morrison-Knudsen Engineers, Inc.

WRI.TOC 06/02/89

xxxii

ACRONYMS AND ABBREVIATIONS (Continued)

mm	millimeter
mph	miles per hour
msi	mean sea level
NBCS	North Boundary Containment System
NBTP	North Boundary Treatment Plant
NBW	north boundary west
NTC	nontarget compounds
NWBCS	Northwest Boundary Containment System
NWBP	Northwest Boundary Paleochannel
O&M	operation and maintenance
O ₃	ozone
PAS	Parties and the State
OCP	organochlorine pesticide
OD	outside diameter
°F	degrees Farenheit
OXAT	oxathiane
OX/DITH	Combined oxathiane and dithiane
PCE	tetrachloroethylene
PI	plasticity index
PID	photoionization detector
PMO-RMA	U.S. Army Program Manager's Office for Rocky Mountain Arsenal Contamination Cleanup
PMSO	Program Manager Staff Office
p,p'-DDE	p,p'-1,1-dichloro-2,2-bis(4-chlorophenyl)-ethylene
p,p'-DDT	p,p'-dichlorodiphenyltrichloroethane
PPLV	Preliminary Pollutant Limit Value
ppm	parts per million
psi	pounds per square inch
PVC	polyvinyl chloride
QAI	Paleochannels in terrace gravels
QA2	Paleochannels in eolian deposits (w/gravels)
QA3	Silty terrace gravels and coarse sand
QA4	Paleochannels in eolian deposits (w/o gravels)
WRI.TOC	
06/02/89	xxxiii

ACRONYMS AND ABBREVIATIONS (Continued)

QAE Eolian deposits

QA/QC Quality Assurance/Quality Control

QC Quality control

QT Quarternary terrace gravels

RCI Resource Consultants, Inc.

RCRA Resource Conservation and Recovery Act

Rf Retardation factor

RI Remedial Investigation

RI/FS Remedial Investigation/Feasibility Study

RIC RMA Information Center
RMA Rocky Mountain Arsenal

RMACCPMT Rocky Mountain Arsenal Control Management Team

ROD Record of Decision

SACWSD South Adams County Water and Sanitation District

SAR Study Area Report

SARA Superfund Amendments and Reauthorization Act

SCC Shell Chemical Company
SCS Soil Conservation Service
SDWA Safe Drinking Water Act

Shell Chemical Oil Company

SO₂ Sulfur Dioxide sq mi square mile(s)

STP Sewage Treatment Plant
SW/GW surface water/groundwater

T transmissivity

111TCE 1,1,1-trichloroethane
112TCE 1,1,2-trichloroethane
TCLEE tetrachloroethylene

TIC tentatively identified compounds

TKd Denver Formation
TRCLE trichloroethylene

TSP total suspended particulates

WRI.TOC 06/02/89

02/89 xxxiv

ACRONYMS AND ABBREVIATIONS (Continued)

lu number one upper zone in the Denver Fm

ug/g micrograms per gram
ug/l micrograms per liter

UFS Unconfined Flow System

UNK unknown

USATHAMA U.S. Army Toxic and Hazardous Materials Agency

USCS Unified Soil Classification System
UTM Universal Transverse Morcator

VC volcaniclastic interval

VCE clay-rich zone stratigraphically equivalent to VC

VOA volatile organic aromatics
VOC volatile organic compounds
VOH volatile organohalogens

WES U.S. Army Corps of Engineers Waterways Experiment Station

WRI Water Remedial Investigation

WY87 Water Year 1987

WRI.TOC 06/02/89

XXXV

APPENDIX A DENVER FM GEOLOGIC DATA

APPENDIX A-1: DENVER ZONE SANDSTONE TOP AND BASE ELEVATIONS AND THICKNESS

DENYER_PM_SANDSTONE_TOP_AND_BASE_ELEVATIONS_AND_THICKNESS

EXPLANATION

The top and base elevations of the sandstones were picked at the top and base of an interval consisting predominantly of sandstone. In some cases, these sandstones contain stringers or lenses of siltstone, claystone, and/or shale. Where these finer grained sediments comprise a significant thickness, they are listed under "shale thickness" in the table. This shale thickness is subtracted from the gross sandstone thickness to obtain the net sandstone thickness.

For well 01046, the thickness of the sandstone in zone 2 was estimated from personal communication with Stollar and Associates, 1988.

In wells where the borehole did not penetrate the base of the sandstone the base sandstone elevation was estimated.

DENVER FM SANDSTONE TOP AND BASE ELEVATIONS AND THICKNESSES

COMMENTS																														1	ESTIMATED THICKNESS			
NET SANDSTONE THICKNESS	27.0	. ~	5.0	19.2	10.4	5.1	10.6	7.0	9.8	12.0	•	5.5	•	3.9	13.5	3.0	1.9	9.4		1.3	5.5	1.3	1.3	6.8	٠	7.9	3.1	2.4	1.2	5.5	49.0	•	7.3	1.5
SHALF THICKNESS		0.0	0.0	0.0	•	0.0	0.0	•	0.0	0.0	٠	٠	•		0.0	0.0	•	•	•	0.0	0-0	0.0	0.0	٠	•	٠	•	0.0	0.0	0.0	0.0	•		0.0
GROSS SANDSTONE THICKNESS	27.0	. r	5.0	19.2	10.4	5.1	10.6	7.0	9.8		7.0	5.5	7.0	3.9	13.5	•	1.9	6.4	5.4	1.3	5.5	1.3	1.3	8.9	1.5	7.9	3.1		1.2	5.2		•	7.3	1.5
BASE SANDSTONE ELEVATION	5174 G	5204.6	5176.2	5190.7	5206.1	5177.5	5183.1	5147.5	5162.9	2095.0	5166.9	5146.9	5190.2	5202.2	5142.7	5181.7	5206.2	5177.6	5168.6	5192.2	5156.5	5201.6	5160.6	5165.8	5191.4	5157.1	5170.3	5168.8	N	5106.8	0.0	5674.0	-	5156.3
TOP SANDSTONE ELEVATION	52016	5211.6	5181.2	5209.9	5216.5	5182.6			5171.5		5173.9		5197.2	5206.1	5156.2	5184.7	5208.1	5184.0	5174.0	5193.5	5162.0	5202.9	5161.9	5172.6	5192.9	5165.0	5173.4	5171.2	5202.2	5112.0		5093.8	47	-
ZONE OR UNIT	S.	P UV	¥	AM	ΝD	AM	ΝΩ	AM	AU	10	ΝΩ	AL	AS	ΝO	Y.	¥	ΝΩ	AM	W.	AU	AL	ΝO	V I	W	AU	AL	YH.	ΝΓ	NO.	,- -	7	_	10	ΑĽ
WELL	-	01005	01008	01008	01015	01017	01017	01022	01022	01023	01025	01026	01028	01028	01029	01029	01031	01032	01034	01034	01035	01036	01037	01037	01039	01040	01040	01042	01042	01043	-	-	104	0:047

DENVER FM SANDSTONE TOP AND BASE ELEVATIONS AND THICKNESSES

COMMENTS	
NET SANDSTONE THICKNESS	88 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
SHALE (
GROSS SANDSTONE THICKNESS	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6
BASE SANDSTONE ELEVATION	5182.6 51889.3 5189.3 5165.1 5208.9 5238.6 5070.6 5172.1 5103.7
TOP SANDSTONE ELEVATION	5185.6 5192.3 5203.0 5203.0 5203.0 5203.0 5002.6 5129.1 51029.1 5102.0 5105.7 5105.7 5105.0 5105.0 5106.0 5117.9 5117.9
ZONE OR UNIT	AN ARE 10
MELL	01047 01047 01068 01067 01067 01071 01071 01071 01071 01071 02010 02010 02012 02022 02022 02022 02022 02022 02023 02023 02030

DENVER FM SANDSTONE TOP AND BASE ELEVATIONS AND THICKNESSES

	DENVER	E	SANDSTONE TOP AND BASE ELEVATIONS AND THICKNESSES	E ELEVATION	IS AND THIC	KNESSES	
WELL	ZOWE OR UNIT	TOP SANDSTONE ELEVATION	BASE SANDSTONE ELEVATION	GROSS SANDSTONE THICKNESS	SHALE	NET SANDSTONE THICKNESS	COMMENTS
02031	10	5135.5	5128.6	6.9	0.0	6.9	
02032	Vľ.	5170.1	5164.1	0.9	0.0	0.9	
02032	NU	5190.1	5181.9	8.2	3.2	5.0	
02033	10	5127.2	5102.6	24.6		20.6	
02035	УĽ	5180.0	5177.8	2.2		2.2	
02035	¥	5197.5	5191.9	5.6		5.6	
02035	VΩ	5207.0	5202.5	4.5		4.5	
02038	M	5204.1	5190.6	13.5	0.9	7.5	
02039	10	5154.0	5147.0	7.0		7.0	
02039	NI.	5175.9	5159.7	16.2		16.2	
02041	Y.	5179.2	5167.7	11.5	0.0	11.5	
02041	AM	5200.0	5197.0	3.0	0.0		
02042	10	5164.0	5143.5	20.5	5.0	15.5	
02043	AU	5216.1	5206.2	6.6		5.9	
02044	10	5149.2	5134.2	15.0		15.0	
02044	AL	5185.2	5176.6	8.6	٠	9.8	
02045	Y.	5195.1	5184.0	11.1	•	1.2	
02045	AM.	2706.6	5194.1	12.5	4.5	12.5	
02045	ΝΩ	5227.1	5217.6	9.5		7.5	
02046	10	5154.6	5128.9	25.7		25.7	
02047	NS	5218.7	5174.7	44.0	0.0	44.0	
02048	10	5138.7	5136.0	2.7	•	2.7	
03003	٣	5058.0	5051.0	7.0	0.0	7.0	
03004	4	5027.0	5017.0	10.0	•	9.0	
93006	3 2	5136.0	5123.0	13.0	0.0	13.0	
03006	7	5085.0	5076.0	0.6	•	1.0	
03007	7	5008.0	5005.0	3.0	4	3.0	
03012	-	5097.4	5095.4	2.0	٠	2.0	
03012	10	5161.4	5135.4	26.0	0.0	26.0	
03012	7	5085.4	•	5.0	•	5.0	
04008	٣	5111.0	5095.0	16.0	•	12.0	
04009	'n	5044.0	5039.0	5.0	•	2.0	
04012	7	5106.0	5103.0	3.0	0.0		
04012	m	5094.0	5083.0	11.0	•	11.0	
04012	5	5040.0	5036.0	4.0	•		

DENVER FM SANDSTONE TOP AND BASE ELEVATIONS AND THICKNESSES

COMMENTS	
NET SANDSTONE THICKNESS	23.00 20
SHALE	
GROSS SANDSTONE THICKNESS	23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 24.00 25.00 26.00 27
BASE SANDSTONE ELEVATION	5009.0 51222.0 5123.0 5082.0 5081.0 5081.0 5084.0 5114.0 5084.0 5084.0 5084.0 5084.0 5084.0 5084.0 5102.0 5102.0 5102.0 5102.0 5102.0 5102.0 5103.0 5103.0 5103.0 5103.0 5103.0 5103.0 5103.0
TOP SANDSTONE ELEVATION	\$032.0 \$163.0 \$163.0 \$184.0 \$184.0 \$184.0 \$126.0 \$124.0 \$124.0 \$120.0 \$1
ZOWE OR UNIT	๑๓๔๔๓๛๛กกกกกกกกกกกกกกกกกกกกก กก
HELL	04012 05003 06004 08004 08004 09003 09004 1000 1000 1000 1000 1000 1000 100

THICKNESSES
AND
ELEVATIONS
BASE
200
TOP
SANDSTONE
E
DEMVER

	DENVER	DENVER FM SANDSTONE TOP AND BASE ELEVATIONS	TOP AND BAS	E ELEVATION	IS AND THICKNESSES	KNESSES	
WELL	ZONE OR UNIT	TOP SANDSTONE ELEVATION	BASE SANDSTONE ELEVATION	GROSS SANDSTONE THICKNESS	SHALE	NET SANDSTONE THICKNESS	COMMENTS
12004	æ	5205.7	5198.7	7.0	2.6	C.	
19015	2 0	5139.0	5118.0	21.0	9	15.0	
19015	m	5110.0	5096.0	14.0	0.0	14.0	
19016	4	5070.0	5052.0		0.0	18.0	
19017	_	5148.0	5140.5	٠	0.0	7.5	
19017	٣	5089.0	5087.0	2.0	0.0	2.0	
19017	*	5075.0	5059.0	•	0.0	16.0	
19018	7	5106.0	5102.0	4.0	0.0	4.0	
20001	-	5150.0	5129.0	21.0	0.0	21.0	
2003	AU	5205.0	5202.2	2.8	0.0	2.8	
22002	4	5054.0	5036.0	•	0.0	18.0	
22002	S	5018.0	5001.0	17.0	0.0	17.0	
22004	٣	5108.0	5097.0	•	0.0	11.0	
22009	4	2066.0	5063.0	3.0	0.0	3.0	
22023	4	5051.0	5046.0	•	0.0	5.0	
22027	٣	5095.0	5081.0	14.0	0.0	14.0	
22028	4	5055.0	5036.5	•	0.0	18.5	
22030	٣	5088.0	5072.0	٠	0.0	16.0	
22030	4	5045.0	5026.0	•	0.0	19.0	
22031	2	5020.0	5006.0	14.0	0.0	14.0	
22051	m	5085.0	5075.0	•	0.0	10.0	
22054	7	5109.0	5104.0		0.0	5.0	
22060	m	5107.0	5097.0	•	0.0	10.0	
22313	٣	5084.0	2080.0	•	0.0	4.0	
23006	_	5141.0	5136.0	5.0	0.0	2.0	
23007	_	5138.5	5133.0	5.5	0.0	5.5	
23016	-	5133.5	5129.5	4.0	٠	4.0	
23054	-	5139.0	5129.0	٠	0.0	10.0	
23056	,	5133.0	5125.0	•	0.0		
23161	7	5130.0	5100.0	30.0		26.0	
23161	רז	5088.0	5078.0	10.0			
23163	7	5105.0	5095.0	10.0	•	10.0	
23164	٣	2088.0	5072.0	16.0	٠	٠	
23167	7	5122.0	5096.0		0.0	•	
23168	٣	5080.0	071	9.0			

DENVER FM SANDSTONE TOP AND BASE ELEVATIONS AND THICKNESSES

COHHENTS	
NET SANDSTONE THICKNESS	22.0 17.0 17.0 17.0 17.0 17.0 17.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19
SHALE	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
GROSS SANDSTONE THICKNESS	222 17.0 222.0 222.0 222.0 14.0 16.0 222.0 202.0
BASE SANDSTONE ELEVATION	\$038.0 \$100.0 \$100.0 \$100.0 \$100.0 \$100.0 \$092.0 \$115.0 \$100.4 \$112.0 \$1112.0 \$112.0 \$112.0 \$112.0 \$110.0 \$110.0 \$110.0
TOP SANDSTONE ELEVATION	\$060.0 \$116.0 \$115.0 \$125.0 \$125.0 \$1125.0 \$1120.0 \$120.0 \$120.0 \$128.0
ZONE CR UNIT	母こうここころするこころ★~こうここうよう □
TIBA	23169 23170 23170 23171 23171 23171 23171 23188 23188 23188 23188 23188 23200 23200 23200 23200 23210 23210 23222 23222 23230 23222

DENVER FH SANDSTONE TOP AND BASE ELEVATIONS AND THICKNESSES

		COMMENTS																																			
NET	SANDSTONE	THICAMESS	15.0	14.0	9.0	12.0	25.0	10.0	32.0	0.9	23.0	10.0	22.0	17.0	11.0	16.0	4.0	8.0	15.0	8.0	10.0	15.0	9.0	32.0	8.0	8.0	11.0	•	11.0	9.0		10.0	20.0	14.0	14.0		12.0
	SHALE	THICKNESS	12.0	4.0	8.0	٠	0.0	0.0	0.0	0.0	٠	•	0.0	0.0	0.0	9.6	0.0	0.0	5.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	9.6	0.0	٠	•	0.0	٠	•	0.0	0.0	0.0
GROSS	SANDSTONE	THICKNESS	27.0	18.0	17.0	12.0	25.0	10.0	32.0	0.9	23.0	•	22.0	17.0	11.0	25.0	4.0	8.0		8.0	10.0	23.0	9.0	32.0	8.0	8.0	11.0	Ġ.		9.0	10.0	10.0		14.0	14.0	23.0	12.0
BASE	SANDSTONE	ELEVATION	5055.0	5030.0	5105.0	5078.0	5097.0	2086.0	5030. 0	5157.5	5095.0	20 58.0	2096.0	2096.0	5070.0	5095.0	5103.0	5082.0	5102.0	5076.0	5051.0	5098.0	5085.0	5030.0	5017.0	5114.0	5078.0		5128.0	5111.0	5088.0	5112.0			5142.0	5135.0	5136.0
10P	SANDSTONE	ELEVATION	5082.0	5048.0	5122.0	2090.0	5122.0	9605	5062.0	5163.5	5118.0		5118.0	5113.0	5081.0	5120.0	5107.0	2090.0	5122.0	5084.0	5061.0	5121.0	5094.0	5062.0	5025.0	5122.0	5089.0	5063.0	5139.0	5120.0	5098.0	5122.0	5170.0	5162.0	5156.0	5158.0	5148.0
ZOME	8		m	4	7	٣	7	m	4	,	7	m	7	7	m	7	7	m	7	m	4	7	m	•	S	7	m	4	, -	7	m	7	_		ţma		-
		WELL		323	323	23235	23236	m	m	m	m	m	m	~	m	m	3	3	23342	~	m	3	23401	23401	23401	23407	23407	23407	23504	24031	403	404	408	408	408	4	498

DENVER FM SANDSTONE TOP AND BASE ELEVATIONS AND THICKNESSES

COMMENTS	
NET SANDSTONE THICKNESS	26.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0
SHALE	
GROSS SANDSTONE THICKNESS	26.0 27.0 23.0 23.0 23.0 23.0 26.0 26.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 3
BASE SANDSTONE ELEVATION	5152.0 5142.0 5142.0 5154.0 5154.0 5153.0 5164.0 5097.0 5090.0 5080.0 5060.0
TOP SANDSTONE ELEVATION	5155.0 5138.0 5138.0 5138.0 5158.0 5158.0 5158.0 5108.0
ZOME OR UNIT	ここ3~--ころころころとのまままころころのまままままままままままままままままままままままま
MELL	24108 24120 24120 24120 24123 24123 24123 24123 24124 24131 24134 24171 24174 24177 24176 24176 24174 24177 24176 24174 24177 24176 24176 24176 24177 24176 24176 24176 24176 24176 24176 24177 24176 24177

DENVER FH SANDSTONE TOP AND BASE ELEVATIONS AND THICKNESSES

COMMENTS	ESTIMATED BASE	
NET SANDSTONE THICKNESS	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	
SHALE		
GROSS SANDSTONE THICKNESS	125.0 127.0	
BASE SANDSTONE ELEVATION	5044.0 5048.0 5048.0 5080.0 5082.0 5082.0 5139.0 5132.0 5132.0 5132.0 5132.0 5133.0 5133.0 5133.0 5133.0 5133.0 5133.0 5133.0 5133.0 5133.0 5133.0	
TOP SANDSTONE ELEVATION	5061.0 5090.0 5102.0 5102.0 5102.0 5102.0 5102.0 5102.0 5102.0 5102.0 5112.0 5112.0 5112.0 5112.0 5112.0 5112.0 5112.0 5112.0 5112.0 5112.0 5113.0 5133.5 5133.5 5133.5 5133.6 5133.6 5133.6 5134.0 5134.0 5134.0 5134.0	
ZOME OR UNIT	4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
WELL	24347 24348 24348 24349 24349 24351 24352 25004 25006 25009 25010	

COMMENTS	ESTIMATED BASE
NET SANDSTONE THICKNESS	3.9.1 3.9.1 3.9.0 3.0.0 3.
SHALE THICKNESS	96 W 9 C C C C C C C C C C C C C C C C C C
GROSS SANDSTONE THICKNESS	39.0 26.0 26.0 27.0
BASE SANDSTONE ELEVATION	51229.0 5132.0 5132.0 5132.0 5132.0 5132.0 5133.0 5133.0 5133.0 5133.0 5133.0 5133.0 5133.0 5133.0 5133.0 5133.0
TOP SANDSTONE ELEVATION	5245.0 5223.0 5223.0 5120.0 5130.0 5213.0 5213.0 5258.0 5150.0 5150.0 5134.0 5134.0 5134.0 5134.0 5134.0 5134.0 5134.0 5136.0 5130.5 5130.5 5130.5 5130.5 5130.5
ZONE OR UNIT	A
WELL	25031 25033 25033 25034 25036 25036 25036 25037 26000

(4)

COMMENTS	ESTIMATED BASE	
NET SANDSTONE TRICKNESS	36.0 37.0	
SHALE THICKNESS		
GROSS SANDSTONE THICKNESS	34.0 22.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	
BASE SANDSTONE ELEVATION	\$142.0 \$142.0 \$142.0 \$142.0 \$145.0 \$115.0 \$115.0 \$115.0 \$122.0 \$122.0 \$124.0 \$124.0 \$124.0 \$124.0 \$124.0 \$124.0 \$124.0 \$124.0 \$124.0 \$124.0 \$124.0 \$124.0 \$124.0 \$124.0 \$124.0 \$124.0 \$124.0 \$124.0 \$122.0 \$1	
TOP SANDSTONE ELEVATION	5129.0 5124.0 5124.0 5143.0 5143.0 5143.0 5124.0 5124.0 5124.0 5123.0 5123.0 5123.0 5123.0 5123.0 5123.0 5123.0 5123.0 5125.0	
ZONE OR UNIT	00-0-0-0-000-0-0-0-0-0-0-0-0-0-0-0-0-0	
WELL	26060 26061 26066 26067 26067 26069 26071 26071 26084 26087 26084 26084 26087 26084 26098 26090 26090 26099 26099 26099 26129 26129 26129 26129 26129 26129	

DENVER FM SANDSTONE TOP AND BASE ELEVATIONS AND TRICKNESSES

COMMENTS																																			
NET SANDSTONE THICKNESS	29.0	20.0	٠	19.0	11.0	10.0	25.0	1.0	8.0	20.0	3.0	22.0	26.5	•		12.0	19.0	28.8	15.0	13.0	22.0	10.8	٠	9	•	7.9	•	0.9	14.0	٠	•	6.5	•	2.0	8.0
SHALE	0.0	0.0	•	0.0	0.0	4.0	0.0	0.0	7.0	0.0	0.0	0.0	0.0	0.0	0.0	11.0	0.0	0.0	10.0	0.0	0.0	•	0.0	0.0	0.0	0.0	•	10.0	2.0	0.0	8.0	0.0	0.0	•	0.0
GROSS SANDSTONE THICKNESS	29.0	0	11.0	19.0	11.0	14.0	25.0	1.0	15.0	20.0	3.0	22.0	26.5	2.0	54.0		19.0	28.8	25.0	13.0	22.0	10.8	10.0	16.0	23.7	7.9	3.0	16.0	٠	12.5		6.5	11.0	5.0	8.6
BASE SANDSTONE ELEVATION	5103.0	5102.0	5081.C	5039.0	5105.0	5064.0	9.6005	4994.0	4959.0	5073.0	5025.0	5145.0	5095.0	5055.0	5120.0	5095.0	5065.0	5110.0	5071.0	5132.0	5110.0		5181.0	5132.8	5091.6	5673.9	5112.0	5077.0	5053.0	5145.7	5101.3	5058.7	5105.6	5074.0	5077.0
TOP SANDSTONE ELEVATION	5132.0	5122.0	5092.0	5058.0	5116.0	5078.0	5034.0	4995.0	4974.0	5093.0	5028.0	5167.0	5121.5	5057.0	5174.0	5113.0	5084.	5138.8	9605	5145.0	5132.0	5099.2	5191.0	5148.8	5115.3	8.1808	5115.0	5093.0	9.6905	5158.2	5127.2	5065.2	5116.0	5079.0	5085.0
ZONE OR UNIT	7	7	m	4	7	m	4	S	9	M	*	- -	7	m	_	7	٣	7	٣	,-	7	М	10	_	7	٣	7	٣	4	_	7	m	7	47	٣
WELL	26132	26135	26135	26135	26136	26136	26137	26137	26137	25138	26139	26140	26141	26142	26143	26146	26147	26:49	26149	26150	26150	26150	26150	26151	26151	26151	26153	26153	26153	26156	26156	26156	270	27001	27005

DENVER FM SANDSTONE TOP AND BASE ELEVATIONS AND THICKNESSES

	ZOKE	TOP	RASE	GROSS		MET	
WELL	ONIT	SANDSTONE	SANDSTONE	SANDSTONE	SHALE THICKNESS	SANDSTONE	COMMENTS
27006	m	5086.0	5084.0	2.0	0.0	2.0	
27007	٣	5082.5	5075.0	7.5	0.0	7.5	
27008	٣	5083.0	5077.5	5.5	0.0	5.5	
27020	p an	5148.0	146	2.0	٠	2.0	
27021	-	5146.0	5143.0	3.0	•	3.0	
27024	7	5120.0	5113.0	7.0		7.0	
27029	7	5120.0	5112.0	8.0	0.0	o. 8	
27033	7	5118.0	5113.0		0.0	5.0	
27041	7	5113.0	5107.0		0.0	0.9	
27042	4	5072.5	5069.0	3.5	0.0		
27050	7	5125.0	5109.0		0.0	16.0	
27051	m	9.6805	5070.0	19.0	0.0	•	
27052	٣	5090.0	5085.0	5.0	0.0	5.0	
27054	4	5061.0	5047.0	14.0	0.0	14.0	
27055	•	5026.0	5015.0		0.0	11.0	
27057	m	5081.0	5065.0	٠	•	6.0	
27058	4	5048.0	5041.0	7.0	0.0	7.0	
27060	7	5107.0	5084.0	23.0	3.0	23.0	
27061	٣	5067.0	5064.0	3.0	•		
27061	5	5029.0	5014.0	15.0		•	
27063	7	5068.0	5063.0	5.0	0.0	5.0	
27082	7	5109.0	5100.0	0.6	•	0.6	
274	7	5113.5	5106.0	7.5	0.0	7.5	
277	7	5115.0	5111.5	3.5	0.0	3.5	
279	7	5113.5	5105.0	8.5	0.0	8.5	
28025	2	5042.0	5026.0	•	0.0	•	
28026	9	5024.0	5018.0	0.9		3.0	
28028	4	5084.0	5073.0	11.0	0.0	11.0	
28029	5	5057.0	5038.0	19.0	2.0	17.0	
281	٣	5111.0	5106.5	4.5	0.0	4.5	
283	7	5114.0	5110.0		0.0	4.0	
29002	ΝΩ	5232.6	5206.9	•	٠	•	
29003	10	5146.6	135	11.6	0.0	11.6	
30004	AL	5189.8	5:85.8	4.0	0.0	4.0	
000	10	5164.1	5151.6	12.5	0.0	12.5	

DENVER FM SANDSTONE TOP AND BASE ELEVATIONS AND THICKNESSES

ENTS	
COMMENTS	
NET SANDSTONE THICKNESS	29 EL4 22
SHALE	
GROSS SANDSTONE THICKNESS	2 W E 4 4 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
BASE SANDSTONE ELEVATION	5174.2 5130.8 5054.9 5074.1 5220.7 5167.5 5167.5 5167.5 5082.0 5087.0 5085.0 5085.0 5085.0 5085.0 5085.0 5085.0 5085.0 5085.0 5085.0 5085.0 5085.0 5085.0
TOP SANDSTONE ELEVATION	5176.7 5068.4 5078.9 5078.9 5175.3 5175.3 5175.3 5084.0 5084.0 5084.0 5084.0 5084.0 5084.0 5084.0 5084.0 5082.7 5082.7 5162.3
ZONE OR UNIT	10 10 10 10 10 10 10 10 10 10 10 10 10 1
WELL	30006 30006 30008 310008 310008 310008 310008 33002 33023 33023 33023 33023 33023 33023 33023 33023 34001 34001 34003 34001 34003 34003 34003 34003 34003 34003 34003

DENVER FM SANDSTONE TOP AND BASE ELEVATIONS AND THICKNESSES

COMMENTS	
NET SANDSTONE THICKNESS	20.5 20.0 26.0 19.0 16.0 36.0 36.0 37.8 6.7 12.0 12.0 12.0 12.0 13.0 14.0 15.1 16.0 17.0 17.0 17.0 17.0 17.0
SHALE	
GROSS SANDSTONE THICKNESS	20.0 26.0 26.0 16.0 16.0 17.7 17.7 18.0 19.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10
BASE SANDSTONE ELEVATION	5172.5 5133.0 5133.0 5133.0 5181.0 5182.0 5129.3 5129.3 5129.0 5181.0 5181.0 5181.0 5181.0 5181.9 5181.9 5181.9 5181.9 5181.9 5181.9 5181.9 5181.0 5181.0 5181.0 5181.0 5181.0 5181.0 5181.0 5181.0 5181.0 5181.0 5181.0
TOP SANDSTONE ELEVATION	5178.0 5168.0 5175.0 5175.0 5175.0 5175.0 5188.0 5172.0 5172.0 5173.6 5173.0 5188.0 5188.0 5188.0 5188.0 5188.0 5188.0 5188.0 5188.0 5188.0 5188.0 5188.0 5188.0 5188.0 5188.0 5188.0 5188.0
ZOME OR UNIT	AL A
WELL	35004 35006 35006 35009 35009 35010 35012 35012 35012 35027 35030 35032 35032 35032 35032 35032 35032 35032 35032 35032 35032 35032 35032 35032 35032 35032 35032 35032

	DENVER	FM SANDSTONE	TOP AND BAS	AND BASE ELEVATIONS AND THICKNESSES	S AND THIC	KNESSES	
WELL	ZONE OR UNIT	TOP SANDSTONE ELEVATION	BASE SANDSTONE ELEVATION	GROSS SANDSTONE THICKNESS	SHALE THICKNESS	NET SANDSTONE THICKNESS	COMMENTS
		6,610		r	c	•	
35053	7	5105	5177 6			. יינ פייני	
35655) Y	5184.6	5182.2	2.6	0.5	2,5	
35055	N P	5212.9	5205.8	1.9	0.0	9	
35055	m	5250.4	5231.4	19.0	0.0	19.0	
35056	10	5151.0	5127.0	24.0	0.0	24.0	
35059	10	5162.0	5148.0	14.0	0.0	14.0	
35060	7	5128.0	5121.0	7.0	2.0	2.0	
35062	AL	5179.3	5166.5	12.8	4.3	•	
35063	10	5152.0	5131.0	21.0	0.0	•	
35066	AL	5191.0	5174.3	16.7	0.0	16.7	
35067	10	5169.0	5153.5	15.5	2.1	•	
35068	gan.	5136.0	5115.0	21.0	0.0	21.0	
35068	2	5115.0	5097.0	18.0	0.0	18.0	
35068	m	5093.0	5077.0	16.0	0.0	16.0	
35070	10	5156.3	5153.2	•	•	3.1	
35071	10	5135.7	5114.2	21.5	14.3	7.2	
35071	AS	5209.6	5181.0	28.6		28.6	
35072	-	5102.3	5093.0	9.3	0.0	an.	
35073	AS	5209.0	5181.9	27.1	0.9	21.1	
35074	AL	5175.9	5170.9	5.0	0.0	2.0	
35078	-	5125.0	5120.8	•	0.0	4.2	
35078	10	5170.0	5156.5	13.5	0.0	13.5	
35078	2	5108.0	5100.2	7.8	0.0	7.8	
35081	-	5136.7	5133.7	3.0	•	3.0	
35081	10	5170.7	5161.4	•	٠	9.3	
35081	7	5122.7	5101.0	21.7	•	21.7	
35082	_	5112.0	5106.0	6.0	0.0	0.9	
35082	10	5147.0	5136.0	11.0	•		
35082	7	5097.7	5091.0	6.7	•	6.7	
35082	м	5077.1	5044.0	33.1	•	•	
35082	ΝΓ	5184.0	5182.0	2.0	•	٠	
35082	AM	5208.0	5200.0	•	0.0	8.0	
35082	ΝO	5226.0	5224.0	2.0	٠	2.0	
35088		5119.0	5108.3	10.7	0.0	10.7	

THICKNESSES
AND
ELEVATIONS
BASE
SKO
10 P
SANDSTONE
E
DENVER

COMMENTS	
NET SANDETONE THICKNESS	91 8 E E 6 4 4 9 9 E 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
SHALE	
GROSS SANDSTONE THICKNESS	6 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7
BASE SANDSTONE ELEVATION	5147.3 5083.0 50846.5 5197.0 5211.8 5218.7 5201.3 5201.3 5201.3 5201.3 5201.3 5201.3 5201.3 5201.3 5201.3 5201.3 5201.3 5201.1 5191.1 5191.1 5191.1 5191.1
TOP SANDSTONE ELEVATION	5166.5 5077.5 5200.5 5217.8 5221.6 5221.6 5221.6 5219.2 5219.2 5219.2 5219.5 5219.6 5219.6 5219.7 5219.9 5218.9 5218.9 5218.9 5218.3
ZONE OR UNIT	AN A
MELL	35088 35088 35089 36002 36003 36003 36011 36020 36020 36020 36020 36033 36034 36036 36033 36036 36036 36036 36066 36066

THICKNESSES
AMD
ELEVATIONS
BASE
AED AED
10P
SANDSTONE
E
DEMVER

	COMMENTS																												TOP/BASE ARE APPROX.	TOP/BASE ARE APPROX.		TOP/BASE ARE APPROX.				
SANDSTONE	THICKNESS	14.1	18.2	9.9	10.0	5.0	5.0	10.0	9.4	7.7	16.9	7.5	3.1	9.5	3.0	0.1	20.0	26.0	13.0	14.5	8.0	18.3	5.8	6.7	1.2	7.4	6.6	1.5	20.0	16.0	17.4	34.0	19.0	10.4	4.1	12.0
SHALE		0.0	0.0	0.0	0.0	0.9	0.0	4.8	13.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	٠	4.2	0.0	•	0.0	2.6	0.0	0.0	0.0	٠	0.0
GROSS		14.1	18.2	9	10.0	2.0	5.0	14.8	22.6	7.7	16.9	7.5	3.1	0.5	3.0	1.0	20.0	26.0	13.0	14.5	8.0	18.3	5.8	6.7	1.2	7.4	2.5	1.5	20.0	16.0	20.0	34.0	19.0	10.4	4.1	12.0
BASE	ELEVATION	5170.7	5205.4	5208.0	5132.0	5158.0	5140.0	5166.9	5176.9	5162.2	5169.9	5201.7	5193.5	5167.5	5198.0	5206.3	5126.0	5100.0	5244.8	5209.8	5201.0	5158.6	5174.8	5151.9	5161.4	5204.9	5216.5	5222.7	5090.0	5074.0	5155.0	5110.0	5204.6		•	5231.3
TOP	ELEVATION	5184.8	5223.6		\sim			5181.7		5169.9	5186.8	5209.2	5196.6	5168.0	5201.0	5207.3	5146.0	5126.0	5257.8	5224.3	5209.0	5176.9	5180.6	5158.6	ς.	;	5219.0		•		5175.0		5223.6		5160.1	5243.3
ZOME	UNIT	AL	AU	AS	_	10	10	AL	AM	ΥΓ	AM	γΩ	AS	AL	¥	AS	-	7	PO	¥	AU	MA	AM	Z	10	ΥΓ	¥	ΝO	7	٣	10	_	NS	10	Νľ	മ
	WELL	36072	36076	36078	36079	36079	36081	36081	36104	36105	36105	36105	36110	36113	36113	36113	36114	36114	36116	36117	36118	36119	36121	36122	36147	36147	36147	36147	36148	36148	56149	36150	36150	36154	36155	36155

DENVER FM SANDSTONE TOP AND BASE ELEVATIONS AND THICKNESSES

Management Services

COMMENTS						•																												
NET SANDSTONE THICKNESS	7.5	28.3	4.0	19.0	3.0	22.0	5.0	٠	11.0	28.0	29.0	13.0	2.0	11.0	٠	18.0	9.0	₩	11.0	24.0	12.0	25.0	0.9	2.0	2.0	19.0	7.0	3,	21.0	12.0	٠	•	•	6.5
SHALE	0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	19.0	1.0	0.0		0.0	0.0	3.0	0.0	10.0	11.0	0.0	0.0	0.0	0.0	0.0	4.0	٠	•	8.0	•	٠			0.0
GROSS SANDSTONE THICKNESS	7.5	28.3		19.0	3.0	22.0	5.0	23.0	11.0	28.0	.	14.0	2.0	11.0	19.0	18.0	12.0	Ŧ	•	35.0	٠	25.0	0.9	0.6	2.0	23.0	٠	23.0	29.0	12.0	17.0	9	15.0	6.5
BASE SANDSTONE ELEVATION	5117.5	5153.0	5165.0	5095.0	5134.0	5073.0	5153.0			2030.0		5143.0		5077.0	5042.0	5105.0	5078.0	5032.0		5050.0	5078.0	5035.0	5085.0	5024.0	5082.0	5045.0	5095.0	4					031.	5032.5
TOP SANDSTONE ELEVATION	5125.0	5155.0	5169.0	5114.0	5137.0		5158.0		•	5118.0	5222.0	5157.0	5164.0	5088.0	5061.0	5123.0	5090.0	5056.0		2086.0	5090.0	2060.0	5091.0	5033.0		2069.0	5108.0	5095.0	5062.0	106.	2090.0		5046.0	5039.0
ZONE OR UNIT	10	2 2	7	-	10	7	AL	_	7.0	7	AS	ΥΓ	N.W.	m	4	7	m	₹	m	4	m	4	m	s.	m	4	7	٣	⋖*	7	٣	4	S	S
WELL	36156	36156 36156	36169	36170	36170	36170	36170	36179	36179	36179	36182	36183	36183	37305	37305	37307	37307	37307	37318	37320	37371	37372	37376	37377	37377	37377	37387	37387	37387	37389	37390	37391	37391	37392

	DENVER	FM SANDSTONE	TOP	AND BASE ELEVATIONS	AND	THICKNESSES	
WELL	ZONE OR UNIT	TOP SANDSTONE ELEVATION	BASE SANDSTONE ELEVATION	GROSS SANDSTONE THICKNESS	SHALE THICKNESS	NET SANDSTONE THICKNESS	COMMENTS
27303	•	9763	0 8303	•		-	
404	r	5143.0			0.0		ESTIMATED BASE
	-	5151.5	5141.0	10.5	0.0	10.5	
	7	5132.0	5126.0	12.0	0.0	12.0	ESTIMATED BASE
5007	_	5141.0	5121.0	20.0	0.0	20.0	
657	10	5169.0	5145.0	24.0	0.0	24.0	
70	7	5116.0	2096.0	20.0	3.0	17.0	ESTIMATED BASE
83	4	5080.0	5071.0	9.0	0.0	0.6	
84	4	2069.0	5063.0	0.9		0.9	
361	_	5140.0	5125.0	15.0	0.0	15.0	
862	-	5165.0	5158.0	7.0	0.0	7.0	
876	-	5167.5	5143.0	24.5	0.0	24.5	
878	_	5165.0	5154.0	11.0	0.0	11.0	
880	_	5163.0	5146.0	17.0	0.0	17.0	
881	_	5166.0	5146.0	20.0	0.0	20.0	
973	_	5138.0	5122.0	16.0	0.0	16.0	
973	7	5120.0	5106.0	14.0	0.0		
975	7	5123.0	5095.0	28.0	10.0		
975	ю	5080.0	5068.0	12.0	0.0	12	
975	4	5056.0	5042.0		9.0	5.0	
975	5	5022.4	5018.4	4.0	0.0	4.0	
975	9	4998.4	4988.4	10.0	3.0	7.0	
975	1	4954.4	4952.4	2.0	0.0	2.0	
975	œ	4934.4	4932.4	2.0		2.0	
975	6	4871.4	4869.4	2.0		2.0	
995	7	5123.0	5105.0	18.0	-	8.0	
995	ю	5088.0	2060.0	28.0		28.6	
995	4	5060.0	5032.0	28.0	10.0	18.0	
995	7	4978.0	4961.0			17.0	
995	œ	4930.0	4928.0	2.0		2.0	
995	6	4899.0	4893.0	0.9	•	0.9	
AX009	***	5152.0		2.0	0.0	2.0	
AX010	(ma	5145.5	5142.0	3.5	•	٠	
AX019	,-	5148.0		2.0	٠	•	
AX032	-	5164.0	5154.0	10.0	0.0	10.0	

THICKNESSES
2
ELEVATIONS
BASE
M
TOP
SANDSTONE
E
DENVER

COMMENTS	
NET SANDSTONE THICKNESS	20.0 20.0 10.0 7.0 7.0 7.0 12.0 13.0 12.0 12.0 18.0
SHALE	
GROSS SANDSTONE THICKNESS	3.0 20.0 10.0 7.0 7.0 7.0 11.0 13.0 18.0 18.0 18.0 18.0
BASE SANDSTONE ELEVATION	5159.0 5144.0 5147.0 5110.0 5110.0 5110.0 5104.0 5044.0 5085.0 5098.0 5098.0 5098.0 5017.0
TOP SANDSTONE ELEVATION	5162.0 5164.0 5157.0 5157.0 5114.0 5114.0 5083.0 5086.0 5080.0 5080.0 5080.0 5108.0
ZONE OR UNIT	0000m4m40m450-
WELL	AX033 AX034 AX034 AX040 AX042 AX068 B-05 E-69 E-69 E-75 E-75 EP-19 EP-19 EP-19 EP-19

APPENDIX A.2: BEDROCK ELEVATIONS AND SCREENED DENVER FM ZONES OR UNITS

BEDROCK_ELEVATIONS_AND_SCREENED_ZONES_OR_UNITS

EXPLANATION

An estimated bedrock elevation is listed where survey data were unavailable or where, due to the lithologic description from a boring log or other source, the elevation of the bedrock is tenuous.

Where both an estimated bedrock elevation and a bedrock elevation are listed, the estimated bedrock elevation was used to contour the bedrock surface elevation map, because the surveyed elevation was unavailable at the time of contouring.

Wells screened in the alluvium are not included on this list. See Water Chemistry Summary, 3rd Quarter, 1987 for bedrock depths.

WELL NUMBER	SCREENED ZONE OR UNIT	Bedrock Elevation	ESTIMATED BEDROCK ELEVATION
01007 01008 010013 01013 01014 01015 01016 01019 01023 010228 010228 010228 010228 010229 010230 010337 010337 010443 01045 0104 0104	VCCCUVVVANUULAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	9425755099374387143256699888331100000937716165555525555555555555555555555555555	5150.0 5150.0 5150.0 5150.0
01524	vc	5254.4	

Well Number	SCREENED ZONE OR UNIT	BEDROCK ELEVATION	ESTIMATED BEDROCK ELEVATION			
				•		4
01526	VC	5263.8			.*)	
01529	vc	5264.9				
01530	VC	5267.0				
01531	VC	5260.2 5267.7				
01532	VC	5267.7		•		•
01533 01 534	VC VC	5262.3				Ī
01535	νĊ	5261.3 5255.0				
01536	vč	5249.0				
01537	vč	5261.9				
01538	νč	5265.5				
01539	νč	5262.7		•		4
01540	νč	5261.0		•		•
01541	ŸĊ	5257.0				
01542	νč	5252.2				
01547	BVCE	5262.3				
01548	VC VCE	5265.0				
01549	vč	5260.6		_		_
01550	νc	5264.3		•		•
01551	vč	5259.7				
01552	vč	5260.1				
01553	νČ	5262.1				
01554	vč	5263.4				
01555	vč	5260.8			_	
01556	vč	5259.1		•		1
01557	vč	5259.4				
01558	vc	5251.8				
01559	ŸČ	5255.7				
01560	vč	5252.5				
01563	VCE	5259.0				
01564	vč	5250.3		•		•
01565	vc	5259.4				-
01566	νč	5265.5				
01567	vč	5268.4				
01568	νč	5266.1				
01569	VČ	5265.2				
01570	VČ	5268.5		•		4
01571	VČ	5264.6		•		•
01586	VC	5245.4				
01587	VČ	5253.5				
01588	VČ	5257.0				
01589	VC	5262.8				
01701	VC	0.0	5253. 0			4
01702	VC	0.0	5244.0	•		4
02003	VC	5264.6				
02004	λS	5264.6				
02005	vc	5266.5				
02006	VC	5262.7				
02007	VC	5245.1		_		
				•		4

WELL NUMBER	SCREENED ZONE OR UNIT	BEDROCK ELEVATION	ESTIMATED BEDROCK ELEVATION
	ZONE OR		BEDROCK
02582 02583 02584 02585	VC VC VC	5249.4 5245.4 5246.5 5246.4	

BEDROCK ELEVATIONS AND SCREENED ZONES OR UNITS

WELL NUMBER	SCREENED ZONE OR UNIT	BEDROCK ELEVATION	ESTIMATED BEDROCK ELEVATION
02594 03003 03004 03006 03006 03007 04009 04011 050003 06005 07005 08005 08005 09004 110003 110003 110003 111000	VC 34273556BBBAABVBAL SHU BAL VBAL VBAL VBAL VBAL VBAL VBAL VBAL	1.48 1.48	

WELL NUMBER	SCREENED ZONE OR UNIT	BEDROCK ELEVATION	ESTIMATED BEDROCK ELEVATION
NUMBER 23061 23062 23106 23125 23144 23155 23167 23168 23167 23168 23177 23188 23188 23188 23188 23188 23188 23189 23189 23199 23199 23200	0 N1T 1 1 2 SH 1 2 SH 2 SH 3 3 2 3 4 2 2 2 2 2 2 2 2 2 4 5 1 2 4 2 3 3 4 1 3 4 2 2 2 3 8 2 3 2 2 2 2 2 1	5147.8 5139.8 5139.8 5136.6 5128.0 0.0 5124.1 5124.1 5124.5 5124.1 5124.5 5124.5 5124.5 5124.5 5124.6 5127.6 6.6 6.5 6.5 6.5 6.5 6.5 6.5 6	5135.0 5125.0 5125.0
24080 24082 24083 24086 24087 24089	1 1 1 1	5160.9 5153.8 5158.9 5149.4 5156.1	

WELL NUMBER	SCREENED ZONE OR UNIT	BEDROCK ELEVATION	ESTIMATED BEDROCK ELEVATION
24090 24109 24109 24124 24125 24126 24126 24133 24133 24133 24133 24133 24133 24133 24133 24133 24133 24133 24133 24133 24133 24133 24133 24134 24146 24146 24147 24168 24177 24178 24177 24177 24178 24177	1 1 2 S H S H S S H S S S S S S S S S S S S	1000 1000	5120.0

WELL NUMBER	SCREENED ZONE OR UNIT	BEDROCK ELEVATION	ESTIMATED BEDROCK ELEVATION
9901345678901234567890112345678901123456789012234560055606060606060606060606060606060606	2 4 2 ALUUUUS S AS 1 VAL 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	777994411546877851949142433992546442717702555555555555555555555555555555555	

WELL Number	SCREENED ZONE OR UNIT	Bedrock Elevation	ESTIMATED BEDROCK ELEVATION
26071245790246792607790246077902460779024607790246077902460779024600994678226008992260099467333678990226613336789902266113345673390122222222222222222222222222222222222	2212U 1223221232211A 11221224463412312211224534255	74.00.00 0 86.688000 0 45.81.64889 417775500 0 66.6490 40.0188.001	

WELL NUMBER	SCREENED ZONE OR UNIT	BEDROCK ELEVATION	ESTIMATED BEDROCK ELEVATION
NUMBER 28026 28029 28030 29002 29003 30006 30006 30007 30008 300011 31006 31007 31008 31010 310012 31004 31007 31008 31010 31007 31008 31010 31007 31008 31010 31007 31008 31010 310011 32003 33031 33032 33034 33035 34004 34006 34007 34009 35010 35010 35010 35010 35010	ZONE OR	ELEVATION 5080.3 5091.7 5091.7 5241.6 5207.3 5187.7 51887.7 51887.7 51881.6 5242.1 5179.8 5179.8 5179.8 5179.8 5179.8 5106.2 5229.3 5095.4 5106.3 5106.3 5106.3 5106.3 5106.3 5106.3 5106.3 5106.3 5106.3 5106.3 5106.3 5106.3 5106.3 5106.3 5106.3 5106.3	BEDROCK
35015 35016 35017 35019 35021	AU 1 U 1 2 1 U	5245.0 5196.8 5196.8 5188.1 5192.4	

WELL NUMBER	SCREENED ZONE OR UNIT	BEDROCK ELEVATION	ESTIMATED BEDROCK ELEVATION
478023356891901456902367800000001120456793355003355003550056780077233550000001120456700000000000000000000000000000000000	AS SH 1UCE 1 2 U 1 1 2 U SH 1UCE 1 2 U SH 1UCE 1 1 2 U SH 1UCE 1 1 2 U SH 1 1 U SH 1 U	811411005557988407446011940044081319595662600985522779005555555555555555555555555555555	
36038	AS	5214.1	

WELL Number	SCREENED ZONE OR UNIT	BEDROCK ELEVATION	ESTIMATED BEDROCK ELEVATION
36039 36043 36044 36044 36045 36046 36055 36055 36056 36059 36059 36066 36069 36079 36099 36107 36110	A SH AM AS AS VC E H VC SH VC AL UCE AL	1 1 3 8 5 5 9 6	EBEVRIION
36148	1 2 & 3	5223.6	

WELL NUMBER	SCREENED ZONE OR UNIT	BEDROCK ELEVATION	ESTIMATED BEDROCK ELEVATION
36149	10	5224.0	
36151	VC	5257.2	
36152	VC	5232.6	
36153	VC	5228.7	
36154 36155	10	5246.8 5246.9	
36156	AL 1U	5246.9 5238.5	
36157	À	5238.5	
36160	î sh	5234.5	
36592	λSH	5230.6	
37316		5095.0	
37317	4	5095.0	
37318	3	5093.0	
37319	š	5094.0	
37321	ă	5095.0	
37322	5	5096.0	
37323	ž	5120.0	
37365	4	5076.9	
37371	3	5091.3	5090.0
37372	4	5091.5	5090.0
37376	3	5105.6	5108.7
37379	3	5091.3	5092.3
37380	4	5092.0	5092.3
37382	3	5077.8	5077.8
37387	5 4 3 6 4 5 2 4 3 4 3 2 4 3	5118.2	5117.4
37388	4	5118.4	5117.4
37390	3	5103.9	5100.0

APPENDIX B
HYDROLOGIC DATA

(

•

7

•

•

•

Ð

•

RATING CURVES FOR RMA STREAM GAGING STATIONS

(3)

(4)

(

•

(1)

9

(2)

(E)

•

STAGE DISCHARGE AND STAGE AREA TABULATION FOR RMA LOWER LAKES

ELEVATION (Ft., mel)	STAGE (feet)	AREA	VOLUME ELEVATION (ac-ft)(Ft.,msl)	STAGE (feet)	AREA	VOLUME (ac-ft)
5247.00	-2.25	0.2	0.1 5249.00	-0.25	6.2	6.3
5247.05	-2.20	0.3	0.1 5249.05	-0.20	6.4	6.7
5247.10	-2.15	0.5	0.2 5249.10	-0.15	6.6	7 - 1
5247.15	-2.10	0.6	0.3 5249.15	-0.10	6.8	7.5
5247.20	-2.05	0.8 0.9	0.4 5249.20 0.4 5249.25	-0.05	6.9 7.1	7.9
5247.25	-2.0D -1.95	1.0	0.4 5249.25	0.00 0.05	7.3	8.3 8.7
5247.30 5247.35	-1.90	1.2	0.6 5249.35	0.05	7.5 7.5	9.1
5247.40	-1.85	1.3	0.7 5249.40	0.15	7.7	9.5
5247.45	-1.80	1.5	0.8 5249.45	0.20	7.9	9.9
5247.50	-1.75	1.6	0.9 5249.50	0.25	8.1	10.3
5247.55	-1.70	1.7	0.9 5249.55	0.30	8.2	10.7
5247.60	-1.65	1.9	1.0 5249.60	0.35	8.4	11.1
5247.65	-1.60	2.0	1.1 5249.65	0.40	8.6	11.5
5247.70	-1.55	2.2	1.2 5249.70	0.45	8.8	11.9
5247.75	-1.50	2.3	1.3 5249.75	0.50	9.0	12.3
5247.80	-1.45	2.4	1.3 5249.80	0.55	9.2	12.7
5247.85	-1.40	2.6	1.4 5249.85	0.60	9.3	13.1
5247.90	-1.35	2.7	1.5 5249.90	0.65	9.5	13.5
5247.95	-1.30	2.9	1.6 5249.95	0.70	9.7	13.9
52 48 .00	-1.25	3.0	1.7 5250.00	0.75	9.9	14.3
5248.05	-1.20	3.2	1.9 5250.05	0.80	10.1	14.9
5248.10	-1.15	3.3	2.1 5250.10	0.85	10.4	15.5
5248.15	-1.10	3.5	2.3 5250.15	0.90	10.6	16.1
5248.20	-1.05	3.6	2.6 5250.20	0.95	10.9	16.8
5248.25	-1.00	3.8	2.8 5250.25	1.00	11.1	17.4
5248.30	-0.95	4.0	3.0 5250.30 3.3 5250.35	1.05	11.3	18.0
5248.35 5248.40	-0.90 -0.85	4.1 4.3	3.5 5250.40	1.10	11.6 11.8	18.6 19.2
5248.45	-0.80	4.4	3.7 5250.45	1.20	12.1	19.2
5248.50	-0.75	4.6	4.0 5250.50	1.25	12.3	20.5
5248.55	-0.70	4.8	4.2 5250.55	1.30	12.5	21.1
5248.60	-0.65	4.9	4.4 5250.60	1.35	12.8	21.7
5248.65	-0.60	5.1	4.6 5250.65	1.40	13.0	22.3
5248.70	-0.55	5.2	4.9 5250.70	1.45	13.3	22.9
5248.75	-0.50	5.4	5.1 5250.75	1.50	13.5	23.5
5248.80	-0.45	5.6	5.3 5250.80	1.55	13.7	24.1
5248.85	-0.40	5.7	5.6 5250.85	1.60	14.0	24.8
5248.90	-0.35	5.9	5.8 5250.90	1.65	14.2	25.4
5248.95	-0.30	6.0	6.0 5250.95	1.70	14.5	26.0

ELEVATION (Ft., ms1)	STAGE (feet)	AREA (acres)	VOLUME ELEVATION (ac-ft)(Ft., msl)	STAGE (feet)	AREA (acres)	VOLUME (ac-ft)
5251.00	1.75	14.7	26.6 5253.00	3.75	28.7	69.1
5251.05 5251.10	1.80 1.85	15.0	27.5 5253.05	3.80	29.1	70.7
5251.10	1.90	15.3 15.6	28.4 5253.10 29.3 5253.15	3.85	29.5	72.4
5251.20	1.95	15.9	30.2 5253.20	3.90 3.95	29.9	74.0
5251.25	2.00	16.2	31.0 5253.25	4.00	30.4 30.8	75.7
5251.30	2.05	16.5	31.9 5253.30	4.05	31.2	77.3
5251.35	2.10	16.0	32.8 5253.35	4.10	31.6	79.0 80.6
5251.40	2.15	17 1	33.7 5253.40	4.15	32.0	82.2
5251.45	2.20	17.4	34.6 5253.45	4.20	32.4	83.9
5251.50	2.25	17.8	35.5 5253.50	4.25	32.9	85.5
5251.55	2.30	18.1	36.4 5253.55	4.30	33.3	87.2
5251.60	2.35	18.4	37.3 5253.60	4.35	33.7	88.8
5251.65	2.40	18.7	38.1 5253.65	4.40	34.1	90.5
5251.70	2.45	19.0	39.0 5253.70	4.45	34.5	92.1
5251.75	2.50	19.3	39.9 5253.75	4.50	34.9	93.7
5251.80	2.55	19.6	40.8 5253.80	4.55	35.3	95.4
5251.35	2.60	19.9	41.7 5253.85	4.60	35.8	97.0
5251.90	2.65	20.2	42.6 5253.90	4.65	36.2	98.7
5251.95 5252.00	2.70	20.5	43.5 5253.95	4.70	36.6	100.3
5252.05	2.75 2.80	20.8	44.4 5254.00	4.75	37.0	102.0
5252.10	2.85	21.2	45.6 5254.05	4.80	37.4	104.0
5252.15	2.90	22.0	46.8 5254.10 48.1 5254.15	4.85 4.90	37.8	106.1
5252.20	2.95	22.4	49.3 5254.20	4.90	38.2 38.6	108.1
5252.25	3.00	22.8	50.5 5254.25	5.00	30.0 39.1	110.2 112.2
5252.30	3.05	23.2	51.8 5254.30	5.05	39.5	114.3
5252.35	3.10	23.6	53.0 5254.35	5.10	39.9	116.3
5252.40	3.15	24.0	54.3 5254.40	5.15	40.3	118.4
5252.45	3.20	24.4	55.5 5254.45	5.20	40.7	120.4
5252.50	3.25	24.8	56.7 5254.50	5.25	41.1	122.5
5252.55	3.30	25.1	58.0 5254.55	5.30	41.5	124.6
5252.60	3.35	25.5	59.2 5254.60	5.35	41.9	126.6
5252.65	3.40	25.9	60.4 5254.65	5.40	42.3	128.7
5252.70	3.45	26.3	61.7 5254.70	5.45	42.7	130.7
5252.75	3.50	26.7	62.9 5254.75	5.50	43.2	132.8
5252.80	3.55	27.1	64.2 5254.80	5.55	43.6	134.8
5252.85	3.60	27.5	65.4 5254.85	5.60	44.0	136.9
5252.90	3.65	27.9	66.6 5254.90	5.65	44.4	138.9
5252.95	3.70	28.3	67.9 5254.95	5.70	44.8	141.0

				_					736)	
ELEVATION (ft., msl)	STAGE (feet)	AREA	VOLUME ELEV (ac-ft)(Ft.		STAGE (feet)	AREA	VOLUME (ac-ft)	•	(5)	•
5255.00	5.75	45.2	143.1 525	7.00	7.75	61.0	249.4		(🕭)	
5255.05	5.80	45.6		7.05	7.80	61.4	249.4 252.6		~	
5255.10	5.85	46.0		7.10	7.85	61.8	255.9			
5255.15	5.90	46.4		7.15	7.90	62.2	259.1			
5255.20	5.95	46.8	152.9 525	7.20	7.95	62.6	262.4	•		•
5255.25	6.00	47.2		7.25	8.00	63.0	265.6			
5255.30	6.05	47.6		7.30	8.05	63.4	268.9			
5255.35	6.10	48.0		7.35	8.10	63.8	272.1			*
5255.40	6.15	48.4		7.40	8.15	64.2	275.4			
5255.45	6.20	48.8	165.2 525	7.45	8.20	64.6	278.6	_		
5255.50	6.25	49.2	167.7 525	7.50	8.25	65.0	281.9	•		•
5255.55	6.30	49.6		7.55	8.30	65.4	285.1			
5255.60	6.35	50.0	172.6 525	7.60	8.35	65.8	288.4			
5255.65	6.40	50.4	175.0 525	7.65	8.40	66.2	291.6			
5255.70	6.45	50.8	177.5 525	7.70	8.45	66.6	294.9			
5255.75	6.50	51.2	180.0 525	7.75	8.50	67.0	298.1			
5255.80	6.55	51.6	182.4 525	7.80	8.55	67.4	301.4	•		1
5255.85	6.60	52.0		7.85	8.60	67.8	304.6			
5255.90	6.65	52.4	187.3 525	7.90	8.65	68.2	307.9			
5255.95	6.70	52.8		7.95	8.70	68.6	311.1			
5256.00	6.75	53.2		8.00	8.75	69.0	314.4			
5256.05	6.80	53.6		8.05	8.80	69.4	218.0		_	
5256.10	6.85	54.0		8.10	8.85	69.8	321.6	•		•
5256.15 5256.20	6.90	54.4		8.15	8.90	70.2	325.3			
5256.25	6.95 7.00	54.8		8.20	8.95	70.6	328.9			
5256.30	7.05	55.2 55.5		8.25 8.30	9.00	71.0	332.6			
5256.35	7.10	55.9		8.35	9.05	71.4	336.2			
5256.40	7.15	56.3	215.1 525	8.40	9.10 9.15	71.8 72.2	339.9 343.5			
5256.45	7.20	56.7	217.9 525	8.45	9.15	72.6	347.2	•		•
5256.50	7.25	57.1		8.50	9.25	73.0	350.8			
5256.55	7.30	57.5		8.55	9.30	73.3	354.5			
5256.60	7.35	57.9		8.60	9.35	73.7	358.1			
5256.65	7.40	58.3		8.65	9.40	74.1	361.8			
5256.70	7.45	58.7		8.70	9.45	74.5	365.4			
5256.75	7.50	59.1	235.1 525	8.75	9.50	74.9	369.1			•
5256.80	7.55	59.4	237.9 525	8.80	9.55	75.3	372.7			
5256.85	7.60	59.8		8.85	9.60	75.7	376.4			
5256.90	7.65	60.2		8.90	9.65	76.1	380.0			
5256.95	7.70	60.6		8.95	9.70	76.5	383.7			
	5			4.77	J	,	505.7			

ELEVATION (Ft., msl)	STAGE (feet)	AREA	VOLUME ELEVATION (ac-ft)(Ft.,msl)	STAGE (feet)	AREA	VOLUME (ac-ft)
5259.00	9.75	76.9	387.3 5261.00	11.75	93.5	557.5
5259.05	9.80	77.3	391.3 5261.05	11.80	93.9	562.4
	9.85	77.7	395.4 5261.10	11.85	94.3	567.3
5259.10				11.90	94.7	572.1
5259.15	9.90	78.1	-		95.2	577.0
5259.20	9.95	78.5	403.5 5261.20	11.95		
5259.25	10.00	78.9	407.5 - 5261.25	12.00	95.6	581.9
5259.30	10.05	79.3	411.6 5261.30	12.05	96.0	586.8
5259.35	10.10	79.7	415.6 5261.35	12.10	96.4	591.7
5259.40	10.15	80.1	419.7 5261.40	12.15	96.8	596.6
		80.5	423.7 5261.45	12.20	97.2	601.4
5259.45	10.20		427.8 5261.50	12.25	97.7	606.3
5259.50	10.25	81.0		12.30	98.1	611.2
5259.55	10.30	81.4	431.8 5261.55			616.1
5259.60	10.35	81.8	435.9 5261.60	12.35	98.5	
5259.65	10.40	82.2	439.9 5261.65	12.40	98.9	621.0
5259.70	10.45	82.6	444.0 5261.70	12.45	99.3	625.9
5259.75	10.50	83.0	448.0 5261.75	12.50	99.7	630.7
		83.4	452.1 5261.80	12.55	100.1	635.6
5259.80	10.55			12.60	100.6	640.5
5259.85	10.60	83.8			101.0	645.4
5259.90	10.65	84.2	460.2 5261.90	12.65		
5259.95	10.70	84.6	464.2 5261.95	12.70	101.4	650.3
5260.00	10.75	85.0	468.3 5262.00	12.75	101.8	655.2

ELEVATION (Ft., msl)	STAGE (feet)	AREA		ELEVATION (Ft.,msl)	STAGE (feet)	AREA	VOLUME (ac-ft)
5231.00	0.00	0.9	0.2	5233.00	2.00	6.5	7.4
5231.05	0.05	1.0	0.3	5233.05	2.05	6.7	7.8
5231.10	0.10	1.2	0.4	5233.10	2.10	6.9	8.2
5231.15	0.15	1.3	0.5	5233.15	2.15	7.0	8.6
5231.20	0.20	1.4	0.6	5233.20	2.20	7.2	9.0
5231.25	0.25	1.6	0.7	5233.25	2.25	7.4	9.4
5231.30	0.30	1.7	0.8	5233.30	2.30	7.6	9.9
5231.35	0.35	1.8	1.0	5233.35	2.35	7.7	10.3
5231.40	0.40	1.9	1.1	5233.40	2.40	7.9	10.7
5231.45	0.45	2.1	1.2	5233.45	2.45	8.1	11.1
5231.50	0.50	2.2	1.3	5233.50	2.50	8.3	11.5
5231.55	0.55	2.3	1.4	5233.55	2.55	8.4	11.9
5231.60	0.60	2.5		5233.60	2.60	8.6	12.3
5231.65	0.65	2.6	1.6	5233.65	2.65	8.8	12.7
5231.70	0.70	2.7	1.7	5233.70	2.70	9.0	13.2
5231.75	0.75	2.9	1.8	5233.75	2.75	9.1	13.6
5231.80	0.80	3.0	1.9	5233.80	2.80	9.3	14.0
5231.85	0.85	3.1		5233.85	2.85	9.5	14.4
5231.90	0.90	3.2	2.2	5233.90	2.90	9.7	14.8
5231.95	0.95	3.4	2.3	5233.95	2.95 3.00	9.8 10.0	15.2
5232.00	1.00	3.5	2.4	5234.00	3.00	10.0	15.6
5232.05	1.05	3.7	2.6	5234.05	3.05	10.2	16.2
5232.10	1.10	3.8	2.9	5234.10	3.10	10.5	16.9
5232.15	1.15	4.0	3.1	5234.15	3.15	10.7	17.5
5232.20	1.20	4.1	3.4	5234.20	3.20		
5232.25	1.25	4.3		5234.25	3.25	11.2	18.7
5232.30	1.30	4.4	3.9	5234.30 5234.35	3.30		19.3
5232.35	1.35	4.6	4.1	5234.35	3.35	11.6	19.9
5232.40	1.40	4.7	4.4	5234.40	3.40	11.8	20.5
5232.45	1.45	4.9	4.6	5234.45	3.45	12.1	21.2
5232.50	1.50	5.0	4.9	5234.50	3.50	12.3	21.8
5232.55	1.55	5.2		5234.55	3.55	12.5	22.4
5232.60	1.60	5.3		5234.60	3.60	12.8	23.0
5232.65	1.65	5.5	5.6	5234.65	3.65	13.0	23.6
5232.70	1.70	5.6	5.9	5234.70	3.70	13.2	24.2
5232.75	1.75.	5.8		5234.75	3.75	13.5	24.8
5232.80	1.80	5.9	6.4	5234.80	3.80	13.7	25.4
5232.85	1.85	6.1	6.6	5234.85	3.85	13.9	26.1
5232.90	1.90	6.2	6.9	5234.90	3.90	14.1	26.7
5232.95	1.95	6.4	7.1	5234.95	3.95	14.4	27.3

ELEVATION (Ft., msl)	STAGE (feet)	AREA	VOLUME EI	LEVATION Ft.,msl)	STAGE (feet)	ÄREA (acres)	VOLUME (ac-ft)
5235.00	4.00	14.6		5237.00	6.00	21.7	63.6
5235.05	4.05	14.7		5237.05	6.05	21.9	64.8
5235.10	4.10	14.9		5237.10	6.10	22.2	66.0
5235.15	4.15	15.0		5237.15	6.15	22.4	67.2
5235.20	4.20	15.2	31.1	5237.20	6.20	22.6	68.4
5235.25	4.25	15.3	31.9	5237.25	6.25	22.8	69.6
5235.30	4.30	15.5	32.7	5237.30	6.30	23.0	
	4.35	15.6	33.5	5237.35	6.35	23.3 23.5	72.0
5235.40	4.40	15.8	34.3	5237.40	6.40	23.5	73.2
5235.45	4.45	15.9	35.1	5237.45	6.45	23.7	/4.4
5235.50	4.50	16.1	36.0	5237.50	6.50	24.0	75.6
	4.55	16.2	36.8	5237.55 5237.60	6.55	24.2 24.4	76.7
5235.60	4.60	16.3 16.5	37.6	5237.60	6.60	24.4	77.9
5235.65	4.65	16.5	20.4	3631103	0.05	24.6	79.1
5235.70	4.70	16.6		5237.70	6.70	24.9 25.1	80.3
5235.75	4.75	16.8		5237.75	6.75	25.1	81.5
5235.80	4.80	16.9	40.8	5237.80	6.80	25.3	82.7
5235.85	4.85	17.1	41.6		6.85	25.5	83.9
	4.90	17.2	42.4	5237.90	6.90	25.8 26.0	85.1
5235.95	4.95	17.4	43.2	5237.90 5237.95	6.95	26.0	86.3
5236.00	5.00	17.5	44.0	3230.00	7.00	26.2	87.5
5236.05		17.7	45.0	5238.05	7.05	26.5	89.0
5236.10	5.10	17.9	46.0	5238.10	7.10	20.5	90.4
5236.15	5.15	18.1	46.9	5238.15	7.15	27.1	91.9
5236.20	5.20	18.3	4/.9	3430.40	7.20	27.3	93.3
5236.25	5.25	18.6	48.9 49.9	5238.25	7.25 7.30	27.6	94.8
5236.30	5.30	18.8	49.9	5238.30	7.30	27.9	96.2
5236.35	5.35	19.0	50.9	5238.35	7.35	28.2	97.7
5236.40	5.40		51.8	5238.40	7.40	28.5	99.1
5236.45	5.45	19.4	52.8	5238.45	7.45	28.8	100.6
5236.50	5.50	19.6	53.8	5238.50	7.50	29.1	102.1
5236.55	5.55		54.8	5238.55	7.55	29.3	103.5
5236.60	5.60	20.0	55.8	5238.60	7.60	29.6	105.0
5236.65	5.65	20.2	56.7	5238.60 5238.65	7.65	29.9	106.4
5236.70	5.70	20.4	3/./	3430.70	1.10	30.2	107.9
5236.75	5.75	20.7	58.7	5238.75	7.75	30.5	109.3
5236.80	5.80	20.9	59.7	5238.80	7.80	30.8	110.8
5236.85	5.85	21.1	60.7	5238.85	7.85	31.0	112.2
5236.90	5.90	21.3	61.6	5238.90	7.90	31.3	113.7
5236.95	5.95	21.5	62.6	5238.95	7.95	31.6	115.1

ELEVATION (Ft., msl)	STAGE (feet)	AREA		STAGE (feet)	AREA	VOLUME (ac-ft)
5239.00	8.00	31.9	116.6 5241.00	10.00	43.5	192.1
5239.05	8.05	32.2	118.3 5241.05	10.05	43.8	194.4
5239.10	8.10	32.5	120.1 5241.10	10.10	44.1	196.7
5239.15	8.15	32.8	121.8 5241.15	10.15	44.4	199.0
5239.20	8.20	33.1	123.6 5241.20	10.20	44.6	201.4
5239.25	8.25		125.3 5241.25	10.25	44.9	203.7
5239.30	8.30	33.7	127.0 5241.30	10.30		206.0
5239.35	8.35	34.0	128.8 5241.35	10.35	45.5	208.3
5239.40	8.40	34.3	130.5 5241.40		45.8	210.6
5239.45	8.45	34.6	132.3 5241.45		46.1	212.9
5239.50	8.50	34.9	134.0 5241.50	10.50	46.4	215.3
5239.55	8.55	35.1	135.7 5241.55	10.55	46.6	217.6
5239.60	8.60	35.4	137.5 5241.60	10.60	46.9	219.9
5239.65	8.65	35.7	139.2 5241.65	10.65		222.2
5239.70	8.70	36.0	141.0 5241.70	10.70		224.5
5239.75	8.75	36.3	142.7 5241.75	10.75	47.8	226.8
5239.80	8.80	36.6	144.4 5241.80	10.80	48.1	229.1
5239.85	8.85	36.9	146.2 5241.85	10.85	48.3	231.5
5239.90	8.90	37.2	147.9 5241.90	10.90	48.6	233.8
5239.95	8.95	37.5	149.7 5241.95	10.95	48.9	236.1
5240.00	9.00	37.8	151.4 5242.00	11.00		238.4
5240.05	9.05	38.1	153.4 5242.05	11.05	49.5	241.0
5240.10	9.10	38.4	155.5 5242.10	11.10	49.8	243.6
5240.15	9.15	38.7	157.5 5242.15	11.15	50.0	246.2
5240.20	9.20	38.9	159.5 5242.20	11.20	50.3	248.8
5240.25	9.25	39.2	161.6 5242.25	115	50.6	251.4
5240.30	9.30	39.5	163.6 5242.30		50.9	254.0
5240.35	9.35	39.8	165.6 5242.35	11.35	51.1	256.6
5240.40	9.40	40.1	167.7 5242.40		51.4	259.2
5240.45	9.45	40.4	169.7 5242.45	11.45	51.7	261.8
5240.50	9.50	40.7	171.8 5242.50	11.50	52.0	264.4
5240.55	9.55	40.9	173.8 5242.55	11.55	52.2	267.0
5240.60	9.60	41.2	175.8 5242.60	11.60	52.5	269.6
5240.65	9.65		177.9 5242.65	11.65	52.8	272.2
5240.70	9.70	41.8	179.9 5242.70	11.70	53.1	274.8
5240.75	9.75		181.9 5242.75	11.75	53.3	277.4
5240.80	9.80	42.4	184.0 5242.80	11.80	53.6	280.0
5240.B5	9.85	42.6	186.0 5242.85	11.85	53.9	282.6
5240.90	9.90	42.9	188.0 5242.90	11.90	54.2	285.2
5240.95	9.95	43.2	190.1 5242.95	11.95	54.4	287.8

ELEVATION (Ft., msl)	STAGE (feet)	AREA	VOLUME ELEVATION (ac-ft)(Ft.,ms1)	STAGE (feet)	AREA (acres)	VOLUME (ac-ft)
5243.00	12.00	54.7	290.4 5245.00	14.00	66.3	411.7
5243.05	12.05	55.0	293.3 5245.05	14.05	66.6	415.2
5243.10	12.10	55.3	296.2 5245.10	14.10	66.9	418.6
5243.15	12.15	55.6	299.1 5245.15	14.15	67.2	422.1
5243.20	12.20	55.9	301.9 5245.20	14.20	67.5	425.5
5243.25	12.25	56.2	304.8 5245.25	14.25	67.8	429.0
5243.30	12.30	56.5	307.7 5245.30	14.30	68.0	432.5
5243.35	12.35	56.8	310.6 5245.35	14.35	68.3	435.9
5243.40	12.40	57.1	313.5 5245.40	14.40	68.6	439.4
5243.45	12.45	57.4	316.4 5245.45	14.45	68.9	442.8
5243.50	12.50	57.8	319.3 5245.50	14.50	69.2	446.3
5243.55	12.55	58.1	322.1 5245.55	14.55	69.5	449.8
5243.60	12.60	58.4	325.0 5245.60	14.60	69.8	453.2
5243.65	12.65	58.7	327.9 5245.65	14.65	70.1	456.7
5243.70	12.70	59.0	330.8 5245.70	14.70	70.4	460.1
5243.75	12.75	59.3	333.7 5245.75	14.75	70.6	463.6
5243.80	12.80	59.6	336.6 5245.80	14.80	70.9	467.1
5243.85	12.85	59.9	339.4 5245.85	14.85	71.2	470.5
5243.90	12.90	60.2	342.3 5245.90	14.90	71.5	474.0
5243.95	12.95	60.5	345.2 5245.95	14.95	71.8	477.4
5244.00	13.00	60.8	348.1 5246.00	15.00	72.1	480.9
5244.05	13.05	61.1	351.3 5246.05	15.05	72.4	484.6
5244.10	13.10	61.3	354.5 5246.10	15.10	72.6	488.4
5244.15	13.15	61.6	357.6 5246.15	15.15	72.9	492.1
5244.20	13.20	61.9	360.8 5246.20	15.20	73.2	495.9
5244.25	13.25	62.2	364.0 5246.25	15.25	73.5	499.6
5244.30	13.30	62.5	367.2 5246.30	15.30	73.8	503.3
5244.35	13.35	62.7	370.4 5246.35	15.35	74.0	507.1
5244.40	13.40	63.0	373.5 5246.40	15.40	74.3	510.8
5244.45	13.45	63.3	376.7 5246.45	15.45	74.6	514.6
5244.50	13.50	63.6	379.9 5246.50	15.50	74.9	518.3
5244.55	13.55	63.8	383.1 5246.55	15.55	75.1	522.0
5244.60	13.60	64.1	386.3 5246.60	15.60	75.4	525.8
5244.65	13.65	64.4	389.4 5246.65	15.65	75.7	529.5
5244.70	13.70	64.6	392.6 5246.70	15.70	75.9	533.3
5244.75	13.75		395.8 5246.75	15.75	76.2	537.0
5244.80	13.80	65.2	399.0 5246.80	15.80	76.5 76.8	540.7 544.5
5244.85	13.85	65.5	402.2 5246.85	15.85		544.5 648.5
			400.3 3440.90			340.2 663 A
5244.90 5244.95	13.90 13.95	65.8 66.0	405.3 5246.90 408.5 5246.95	15.90 15.95	77.1 77.3	548.2 552.0

ELEVATION (Ft., ms1)	STAGE (feet)	AREA	VOLUME ELEVATION (ac-ft)(Ft.,msl)	STAGE (feet)	AREA	VOLUME (ac-ft)
5247.00 5247.05	16.00 16.05	77.6 77.9	555.7 5249.00 559.7 5249.05	18.00 18.05	89.4 89.7	722.5 727.1
5247.10	16.10	78.2	563.8 5249.10	18.10	90.0	731.7
5247.15	16.15	78.5	567.8 5249.15	18.15	90.2	736.3
5247.20	16.20	78.7	571.8 5249.20	18.20	90.5	740.9
5247.25	16.25	. 79.0	575.8 5249.25	18.25	90.8	745.6
5247.30	16.30	79.3	579.9 5249.30	18.30	91.1	750.2 754.8
5247.35	16.35	79.6	583.9 5249.35 587.9 5249.40	18.35 18.40	91.4 91.6	759.4
5247.40	16.40	79.9	587.9 5249.40 591.9 5249.45	18.45	91.9	764.0
5247.45	16.45	80.2 80.5	596.0 5249.50	18.50	92.2	768.6
5247.50	16.50 16.55	80.7	600.0 5249.55	18.55	92.5	773.2
5247.55 5247.60	16.60	81.0	604.0 5249.60	18.60	92.8	777.8
5247.65	16.65	81.3	608.0 5249.65	18.65	93.0	782.4
5247.70	16.70	81.6	612.1 5249.70	18.70	93.3	787.0
5247.75	16.75	81.9	616.1 5249.75	18.75	93.6	791.7
5247.80	16.80	82.2	620.1 5249.80	18.80	93.9	796.3
5247.85	16.85	82.4	624.1 5249.85	18.85	94.2	800.9
5247.90	16.90	82.7	628.2 5249.90	18.90	94.4	805.5
5247.95	16.95	83.0	632.2 5249.95	18.95	94.7	810.1
5248.00	17.00	83.3	636.2 5250.00	19.00	95.0	814.7
5248.05	17.05	83.6	640.5 5250.05	19.05	95.3 95.6	819.6 824.5
5248.10	17.10	83.9	644.8 5250.10	19.10 19.15	95.8	829.4
5248.15	17.15	84.2	649.1 5250.15 653.5 5250.20	19.13	96.1	834.3
5248.20	17.20	84.5	653.5 5250.20 657.8 5250.25	19.25	96.4	839.2
5248.25	17.25	84.8 85.1	662.1 5250.30	19.30	96.7	844.0
5248.30 5248.35	17.30 17.35	85.4	666.4 5250.35	19.35	96.9	848.9
5248.40	17.40	85.7	670.7 5250.40	19.40	97.2	853.8
5248.45	17.45	86.0	675.0 5250.45	19.45	97.5	858.7
5248.50	17.50	86.4	679.4 5250.50	19.50	97.8	863.6
5248.55	17.55	86.7	683.7 5250.55	19.55	98.0	868.5
5248.60	17.60	87.0	688.0 5250.60	19.60	98.3	873.4
5248.65	17.65	87.3	692.3 5250.65	19.65	98.6	878.3
5248.70	17.70	87.6	696.6 5250.70	19.70	98.9	893.2
5248.75	17.75		700.9 5250.75	19.75	99.1	888.1
5248.80	17.80	88.2	705.2 5250.80	19.80	99.4 99.7	892.9 897.8
5248.85	17.85	88.5	709.6 5250.85	19.85 19.90	99.7	902.7
5248.90	17.90	88.8	713.9 5250.90 718.2 5250.95	19.90	100.2	907.6
5248.95	17.95	89.1	718.2 5250.95	13.33	100.2	30110

ELEVATION (Ft., msl)	STAGE (feet)	AREA	VOLUME ELEVATION (ac-ft)(Ft., msl)	STAGE (feet)	AREA	VOLUME (ac-ft)
5251.05 5251.15 5251.15 5251.25 5251.30 5251.30 5251.30 5251.30 5251.30 5251.30 5251.30 5251.30 5251.45 5251.65 5251.65 5251.90 5252.30 525	050.050.050.050.050.050.050.050.050.050	100.8 100.8 100.1 101.4	912.5 5253.00 917.7 922.8 928.0 933.2 938.4 943.5 948.7 953.9 959.0 964.2 969.4 974.5 979.7 984.9 990.1 995.2 1000.4 1005.6 1010.7 1015.9 1021.4 1026.8 1032.3 1037.7 1043.2 1048.6 1054.1 1059.5 1065.0 1070.5 1070.5 1070.5 1070.5 1081.4 1086.8 1092.3 1097.7 1103.2 1108.6 1114.1 1119.5	22.0	112.0	1125.00

ELEVATION (Ft., ms1)	STAGE (feet)	AREA (acres)	VOLUME ELEVATIO		AREA	VOLUME (ac-ft)
5208.00	0.00	6.3	12.4 5210.00		11.1	28.7
5208.05	0.05	6.4	12.8 5210.05		11.2	29.4
5208.10	0.10	6.4	13.1 5210.10		11.4	30.0
5208.15	0.15	6.5	13.5 5210.15		11.5	30.6
5208.20	0.20	6.6	13.8 5210.20		11.7	31.2
5208.25	0.25	6.6	14.2 5210.25		11.8	31.9
520B.30	0.30	6.7	14.5 5210.30		12.0	32.5
5208.35	0.35	6.8	14.9 5210.35		12.1	33.1
5208.40	0.40	6.8	15.2 5210.40		12.3	33.8
5208.45	0.45	6.9	15.6 5210.45		12.4	34.4
5208.50	0.50	7.0	15.9 5210.50		12.6	35.0
5208.55	0.55	7.0 7.1	16.3 5210.55 16.6 5210.60		12.7 12.8	35.6 36.3
5208.60 5208.65	0.60 0.65	7.1	16.6 5210.60 16.9 5210.65		13.0	36.9
5208.70	0.70	7.2	17.3 5210.70		13.1	37.5
5208.75	0.75	7.3	17.6 5210.75		13.3	38.1
5208.80	0.80	7.3	18.0 5210.80		13.4	38.8
5208.85	0.85	7.4	18.3 5210.85		13.6	39.4
5208.90	0.90	7.5	18.7 5210.90		13.7	40.0
5208.95	0.95	7.5	19.0 5210.95		13.9	40.7
5209.00	1.00	7.6	19.4 5211.00		14.0	41.3
5209.05	1.05	7.8	19.8 5211.05		14.2	42.1
5209.10	1.10	8.0	20.3 5211.10		14.3	42.9
5209.15	1.15	8.1	20.8 5211.15		14.5	43.6
5209.20	1.20	8.3	21.3 5211.20	3.20	14.7	44.4
5209.25	1.25	8.5	21.7 5211.25		14.9	45.2
5209.30	1.30	8.7	22.2 5211.30		15.0	46.0
5209.35	1.35	8.8	22.7 5211.35		15.2	46.8
5209.40	1.40	9.0	23.1 5211.40		15.4	47.6
5209.45	1.45	9.2	23.6 5211.45	3.45	15.5	48.3
5209.50	1.50	9.4	24.1 5211.50		15.7	49.1
5209.55	1.55	9.5	24.5 5211.55		15.9	49.9
5209.60	1.60	9.7	25.0 5211.60		16.0	50.7
5209.65	1.65	9.9	25.5 5211.65		16.2	51.5
5209.70	1.70	10.1	25.9 5211.70		16.4	52.3
5209.75	1.75		26.4 5211.75		16.6	53.1
5209.80 5209.85	1.85	10.4 10.6	26.9 5211.80 27.3 5211.85		16.7 16.9	53.8 54.6
5209.85	1.90	10.8	27.8 5211.90		17.1	55.4
5209.95	1.95	10.9	28.3 5211.95		17.2	56.2

ELEVATION (Ft., ms1)	STAGE (feet)	AREA	VOLUME ELEVATION (ac-ft)(Ft.,msl)	STAGE (feet)	AREA	VOLUME (ac-ft)
(Ft.,ms1) 5212.00 5212.05 5212.10 5212.15 5212.20 5212.25 5212.30 5212.35 5212.40 5212.45 5212.50 5212.55 5212.60 5212.70 5212.70 5212.75 5212.80	(feet) 4.00 4.05 4.10 4.15 4.20 4.25 4.30 4.35 4.40 4.45 4.50 4.65 4.70 4.75 4.80	17.4 17.6 17.7 17.9 18.0 18.2 18.3 18.5 18.6 18.8 19.0 19.1 19.3 19.4 19.6 19.7	(ac-ft)(Ft.,ms1) 57.0 5214.00 57.9 5214.05 58.9 5214.10 59.8 5214.15 60.8 5214.20 61.7 5214.25 62.7 5214.30 63.6 5214.35 64.6 5214.40 65.5 5214.45 66.5 5214.50 67.4 5214.55 68.4 5214.60 69.3 5214.65 70.2 5214.70 71.2 5214.75 72.1 5214.80	6.05 6.10 6.15 6.25 6.30 6.35 6.45 6.45 6.55 6.65 6.70 6.75 6.80	25.0 25.2 25.5 25.7 25.9 26.2 26.4 26.6 26.8 27.1 27.3 27.5 27.8 28.0 28.2 28.5 28.7	98.7 100.0 101.4 102.8 104.1 105.5 106.9 108.2 109.6 111.0 112.3 113.7 115.1 116.4 117.8 119.2 120.5
5212.85 5212.90 5212.95 5213.00 5213.10 5213.15 5213.20 5213.25 5213.30 5213.35 5213.40 5213.45 5213.50 5213.50	4.85 4.90 5.05 5.10 5.125 5.35 5.35 5.45 5.55 5.55	20.0 20.2 20.3 20.5 20.7 21.0 21.2 21.4 21.6 21.8 22.1 22.3 22.5 22.8 23.0 23.2	73.1 5214.85 74.0 5214.90 75.0 5214.95 75.9 5215.00 77.1 5215.05 78.2 5215.10 79.3 5215.15 80.5 5215.20 81.6 5215.25 82.8 5215.30 83.9 5215.35 85.0 5215.40 86.2 5215.45 87.3 5215.50 88.4 5215.55	6.85 6.90 6.95 7.00 7.15 7.20 7.25 7.30 7.35 7.40 7.45 7.50 7.55	28.9 29.1 29.6 29.9 30.1 30.4 30.7 31.0 31.2 31.5 31.8 32.0 32.3	121.9 123.3 124.6 126.0 127.6 129.2 130.8 132.4 134.1 135.7 137.3 138.9 140.5 142.1 143.7 145.4
5213.65 5213.70 5213.75 5213.80 5213.85 5213.90 5213.95	5.65 5.70 5.75 5.80 5.85 5.90	23.4 23.7 23.9 24.1 24.3 24.6 24.8	90.7 5215.65 91.9 5215.70 93.0 5215.75 94.1 5215.80 95.3 5215.85 96.4 5215.90 97.5 5215.95	7.65 7.70 7.75 7.80 7.85 7.90 7.95	33.1 33.4 33.7 33.9 34.2 34.5 34.7	147.0 148.6 150.2 151.8 153.4 155.1 156.7

ELEVATION (Ft., msl)	STAGE (feet)	AREA	VOLUME ELEVATION (ac-ft)(Ft.,msl)	STAGE (feet)	AREA	VOLUME (ac-ft)
Ft., ms1) 5216.05 5216.10 5216.15 5216.20 5216.25 5216.30 5216.35 5216.40 5216.45 5216.55 5216.65 5216.65 5216.75 5216.85 5216.85 5216.90 5217.05 5217.10 5217.25 5217.30 5217.40 5217.45 5217.50	(fet) 8.05 8.10 8.15 8.25 8.35 8.45 8.45 8.65 8.65 8.65 8.75 8.85 8.95 9.15 9.25 9.25 9.25 9.35 9.35 9.35 9.35 9.35 9.35 9.35 9.3	35.0 35.3 35.5 35.8 36.1 36.3 36.6 36.9 37.1 37.7 37.9 38.2 38.4 39.0 39.2 39.5 39.2 40.3 40.6 40.9 41.2 41.6 41.9 42.2 42.5 42.8 43.1	(ac-ft)(Ft.,ms1) 158.3 5218.00 160.2 5218.05 162.0 5218.10 163.9 5218.15 165.8 5218.20 167.7 5218.25 169.6 5218.30 171.5 5218.35 173.3 5218.40 175.2 5218.45 177.1 5218.50 179.0 5218.55 180.9 5218.60 182.8 5218.65 184.6 5218.70 186.5 5218.75 188.4 5218.80 190.3 5218.80 190.3 5218.85 192.2 5218.90 194.0 5218.95 195.9 5219.00 198.1 5219.05 200.3 5219.10 202.4 5219.20 206.8 5219.25 209.0 5219.30 211.1 5219.35 213.3 5219.40 215.5 5219.45 217.7 5219.50	10.00 10.05 10.10 10.15 10.20 10.25 10.30 10.45 10.40 10.45 10.50 10.65 10.75 10.60 10.65 10.75 10.80 10.95 11.00 11.15 11.20 11.25 11.30 11.35 11.40 11.45 11.50	46.6 47.3 47.7 48.4 49.1 49.8 50.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5	239.4 241.9 244.4 246.9 249.4 251.9 254.4 256.9 266.9 264.9 267.0 277.5 282.0 284.5 287.0 289.3 295.2 298.1 300.9 303.8 309.5 312.4 315.3 318.1
5217.55 5217.60 5217.65 5217.70 5217.75 5217.80 5217.85 5217.90 5217.95	9.55 9.60 9.65 9.70 9.75 9.80 9.85 9.90	43.8 44.1 44.4 44.7 45.0 45.3 45.7 46.0	219.8 5219.55 222.0 5219.60 224.2 5219.65 226.3 5219.70 228.5 5219.75 230.7 5219.80 232.9 5219.85 235.0 5219.90 237.2 5219.95	11.55 11.60 11.65 11.70 11.75 11.80 11.85 11.90	57.7 58.0 58.4 58.8 59.2 59.5 59.5 60.3	321.0 323.9 326.7 329.6 332.5 335.3 338.2 341.1 343.9

\$220.00 12.00 61.0 346.8 5222.00 14.00 \$220.05 12.05 61.0 346.8 5222.05 14.05 \$220.10 12.10 61.0 346.8 5222.10 14.10 \$220.15 12.15 61.0 346.8 5222.15 14.15 \$220.20 12.20 61.0 346.8 5222.20 14.20 \$220.25 12.25 61.0 346.8 5222.25 14.25 \$220.30 12.30 61.0 346.8 5222.35 14.30 \$220.35 12.35 61.0 346.8 5222.35 14.35 \$220.40 12.40 61.0 346.8 5222.40 14.40 \$220.45 12.45 61.0 346.8 5222.45 14.45 \$220.50 12.50 61.0 346.8 5222.55 14.50 \$220.55 12.55 61.0 346.8 5222.65 14.60 \$220.65 12.65 61.0 346.8 5222.65 14.65	75.1 75.5 75.9 76.3 76.7 77.1 77.5 77.9 78.3 78.7 79.6 80.0	483.7 487.7 491.6 495.6 499.6 503.5 507.5 511.4 515.4 519.3 523.3
5220.65 12.65 61.0 346.8 5222.65 14.65	8 0.0	
5220.70 12.70 61.0 346.8 5222.70 14.70 5220.75 12.75 61.0 346.8 5222.75 14.75 5220.80 12.80 61.0 346.8 5222.80 14.80 5220.85 12.85 61.0 346.8 5222.85 14.85 5220.90 12.90 61.0 346.8 5222.90 14.90 5220.95 12.95 61.0 346.8 5222.95 14.95 5221.00 13.00 61.0 346.8 5223.00 15.00 5221.05 13.05 61.7 353.6 5223.05 15.05 5221.10 13.10 62.4 360.5 5223.10 15.10	80.4 80.8 81.2 81.6 82.0 82.4 82.8 83.2 83.6	531.2 535.2 539.1 543.1 551.0 555.0 558.9 562.9 567.2 571.6
5221.15 13.15 63.1 367.3 5223.15 15.15 5221.20 13.20 63.8 374.2 5223.20 15.20 5221.25 13.25 64.5 381.0 5223.25 15.25 5221.30 13.30 65.2 387.9 5223.30 15.30 5221.35 13.35 65.9 394.7 5223.35 15.35 5221.40 13.40 66.6 401.6 5223.40 15.40 5221.45 13.45 67.3 408.4 5223.45 15.45 5221.50 13.50 68.1 415.3 5223.50 15.50 5221.55 13.55 68.8 422.1 5223.55 15.55 5221.60 13.60 69.5 428.9 5223.60 15.60 5221.65 13.65 70.2 435.8 5223.70 15.70 5221.70 13.70 70.9 442.6 5223.75 15.75 5221.80 13.80 72.3 456.3 5223.85 15.80 5221.85 13.85 73.0 463.2 5223.8	013	575.9 580.3 584.6 589.0 593.3 597.6 602.0 610.7 615.0 619.4 623.7 628.1 632.4 636.7

ELEVATION	STAGE	AREA	VOLUME
(Ft.,msl)	(feet)	(acres)	(ac-ft)
5224.00	16.00	90.6	649.8
5224.05	16.05	91.4	654.7
5224.10	16.10	92.3	659.7
5224.15	16.15	93.1	664.6
5224.20	16.20	94.0	669.6
5224.25	16.25	94.8	674.5
5224.30	16.30	95.6	679.5
5224.35	16.35	96.5	684.4
5224.40	16.40	97.3	689.4
5224.45	16.45	98.2	694.3
5224.50	16.50	99.0	699.3
5224.55	16.55	99.8	704.2
5224.60	16.60	100.7	709.2
5224.65	16.65	101.5	714.1
5224.70	16.70	102.4	719.1
5224.75	16.75	103.2	724.0
5224.80	16.80	104.0	729.0
5224.85	16.85	104.9	733.9
5224.90	16.90	105.7	738.9
5224.95	16.95	106.6	743.8
5225.00	17.00	107.4	748.8

HAVANA FUND STAGE VOLUME AND STAGE AREA CURVES

ELEV. (FEET)	STACE (FEET)	SURFACE AREA	(ACRE	- (FEET)	STACE (FEET)	SURFACE AREA	(ACRE-
		(ACRES)	FEET))		(ACRES)	FEET)
5246.70	2.50	16.15	27.88	5249.20	5.00	31.05	87.56
5246.75	2.55	16.39	30.69	5249.23	5.05	31.38	89.12
5246.80	2.60	16.64	31.52	5249.00	5.10	31.72	90.70
5246.85	2.65	16.88	32.35	5249.35	5.15	32.05	92.29
5246.90	2.70	17.13	33.20	5249.40	5.20	32.38	93.91
5246.95	2.75	17.37	34.07	5247.45	5.25	32.71	98.50
5247.00	2.80	17.62	34.94	5249.50	5.30	37.05	97.18
5247.05	2.85	17.87	35.83	5249.55	5.35	33.38	93.84
5247.10	2.90	18.11	36.73	5249.60	5.40	33.71	100.52
5247.15	2.75	10.36	37.64	5249.65	5.45	34.05	102.21
5247.20	3.0 0	18.40	38.56	5249.70	5.50	34.38	103.92
5247.25	5.05	18.85	37.50	5249.75	5.55	34.66	105.65
5047.30	3.10	17.09	40.45	5249.80	5.60	34.94	107.39
5247.35	3.15	19.34	41.41	5249.85	5.65	35.22	109.14
5247.40	3.20	19.59	42.38	5249.90	5.70	35.51	110.91
5247.45	3.25	17.83	43.37	5247.95	5.75	35.79	112.69
5247.50 5247.55	3.30	20.08	44.37	5250.00	5.80	36.07	114.49
5247.55 5247.60	3.35	20.32	45.38	5250.05	5.85	36.35	114.30
5247.65	3.40 3.45	20.57	46.40	5250.10	5.90	36.63	118.12
5247.70	ა. <i>45</i> 3.50	20.81	47.43	5250.15	5.95	56.91	117.76
5247.75	3.50 3.55	21.06 21.39	48.48	5250.20	6.00	37,20	121.81
5247.80	3.60	21.73	49.54	5250.25	6.05	37.48	123.48
5247.85	3.65	22.06	50.62 51.71	5250.30	6.10	37.76	125.56
5247.90	3,70	22.39	52.83	5250.35 5250.40	٥.15	38.04	127.46
5247.95	3.75	22.72	53.75	5250.45	6.20 (25	38.32	129.37
5246.00	ິ. ຣ ັ	20.06	55.10	5250.50	6.25	୍ଷ ଅଟି. ୫୧ ୍ଷ ଅଟି. ୫୧	101.29
5248.05	7.85	23.39	56.26	5250.55	6.35	- 36.86 39.17	133.25
5248.10	3.90	23.72	57.44	5250.60	6.40		135.48 137.14
5246.15	3.95	24.05	58.63	5250.65	6.45	39.73	137.14
5248.20	4.00	24.39	59.84	5250.70	6.50		141.12
5248.25	4.05	24.72	61.07	5250.75	6.55	40.29	143.12
5248.30	4.10	25.04	62.31	5250.80	5.60	40.57	145.14
5248.35	4.15	25.39	63.58	5250.85	6.65	40.85	147.18
5243.40	4.20	25.72	64.85	5250.70	6.70	41.14	149.23
5248.45	4.25	26.05	66.15	5250. ಇತ	6.75	41.42	151.29
5248.50	4.30	26.39	67.46	ຣລຣາ.໐ິດ	6.80	41.70	150.07
5248.55 5248.60	4.35	26.72	48.79	5251.05	6.85	41.78	155.46
5248.65	4.40	27.05	70.13	5251.10	6.90	42.26	157.57
5248.70	4.45 4.50	27.39	71.49	5251.15	5.75	42.54	159.39
5246.75	4.55	27.72 28.05	72.87	5251.20	7.00		161.82
5248.80	3,60	28.05	74.26	5251.25	7.05		165.77
5248.05	4.60	28.72	75.69	5251.50	7.10		166.13
5248.70	4.70	29.05	77.10 78.55	5231.75	7.15		168.31
5248.75	4. 3	17.78	80.01	S251.40	7.20		170.50
5249.00	4.80	29.72	81.49	5251.45 5251.50	7.25		172.71
5249.05	4.65	30.05	82.98	5251.55	7.30 7.35		174.72
0049.10	4.90	ಪರಿ.ಪಕ	84.49	5251.60	7.40		177.16
5247.15	4 . 1919	30.72		5251.65	7.40 7.45		179.40 181.67

HAVANA POND STAGE VOLUME AND STAGE AREA CURVES

ELEV. (FEET)	STAGE (FEET)	SURFACE AREA (ACRES)	VOLUME (ACRE + FEET)	ELEV. (FEET)	STAGE (FEET)	SURFACE AREA (ACRES)	VOLUME (ADRE- FEET)
5241.70	-2.50	0.00	0.00	5244.20	0.00	4.67	4.27
5241.75	-2.45	0.06	0.00	5244.25	0.05	4.89	4.51
5241.80	-2.40	0.12	0.01	5244.50	0.10	5.11	4:76
3241.85	-2.35	0.19	0.01	5244.35	0.15	5.32	5.02
5241.90	-2.30	0.25	0.02	5244.40	0.20	5.54	5.27
5241.95	-2.25	0.51	0.04	5244.45	0.25	5.76	5.57
5242.00	-2.20	0.37	0.06	5244.50	0.50	5.78	ଅ.ଖ୍ୟ
5242.05	-2.15	0.40	0.08	5244.55	0.35	6.20	5.17
5242.10	-D.10	0.50	0.10	5244.60	0.40	6.42	
5242.15	-2.05	0.56	0.15	5244.65	0.45	6.64	6.31
5242.20	-2.00	0.62	0.16	5244.70	0.50	6.86	7.15
5242.25	-1.95	0.68	0.17	5244.75	0.55	7.07	7.50
5242.30	-1.90	0.74	0.22	5244.80	0.60	7.29	7.80
5242.35	-1.85	0.81	0.26	5244.85	0.65	7.51	8.22
5242.40	-1.80	0.87	0.30	5244.90	0.70	7.73	8.61
5242.45	-1.75	0.93	0.35	5244.95	0.75	7.95	9.00
5242.50	-1.70	0.99	0.40	5245.00	0.80	8.17	9.40
5242.55	-1.65	1.05	0.45	5245.05	ા. ૨૦	a.∵9	9.81
5242.60	-1.60	1.12	0.50	5245.10	0.90	8.61	10.24
5242.65	-1.55	1.18	0.56	5245.15	0.75	8.82	10.69
5242.70	-1.50	1.24	0.62	5245.20	1.00	9.04	11.12
5242.75	-1.45	1.30	0.68	5245.25	1.05	9.26	11.58
5242.80	-1.40	1.36	0.75	5245.30	1.10	9.48	12.05
5242.85	-1.35	1.43	0.82	5245.35	1.15	9.70	12.50
5242.90	-1.30	1.49	0.89	5245.40	1.20	9.72 -	
5242.95	-1.25	1.55		5245.45		10.14	10.52
5240.00			1.05	5245.50	1:30	10.36	
5243.05	-1.15	1.67	1.13	5245.55 5245.60	1.35		14.55 15.07
5243.10	-1.10 -1.05	1.74 1.80	1.22 1.30	5245.65	1.40 1.45	11.01	15.6%
5243.15 5243.20	-1.00	1.86	1.39	5245.70	1.50	11.23	15.55
5240.25	-0.95	1.92	1.49	5245.75	1.55	11.48	16.76
5243.30	-0.90	1.78	1.59	5045.90	1.60	11.72	17.54
5247.35	-0.85	2.05	1.67		1.65	11.77	17.55
5243.40	-0.80	2.11	1.79	5245.90	1.70	12.21	18.50
5243.45	-0.75	2.17	1.70	5245.73		12.46	19.15
3247.50	-0.70	2.00	2.01	5246.00	1.80	12.70	19.70
5243.55	-0.65	2.29	2.12	5246.05	1.85	12.75	20.42
5243.60	-0.60	2.36	2.24	5246.10	1.90	13.20	21.08
5247.65	-0.55	2.42	2.56	5246.15	1.93	13.44	21.74
5245.70	-0.50	2.48	2.48	5246.20	2.00	13.69	22.42
5247.75	-0.45	2.70	2.61	5246.25	2.05	13.93	23.11
5243.80	-0.40	2.92	2.75	5246.50	2.10	14.18	22.81
5245.85	-0.55	J. 14	2.90	5246.55	2.15	14.42	24.57
5245.90	-0.50	W. 76	5.06	5046.40	2.20	14.67	29.26
5247.95	-0.25	D. 57	5.24	U245.45	2.25	14.72	25, 29
5244.00	-0.20	7.77	3.40	5246.50	p. 50	10.16	នាស្នាត ភាព
5244.05	-0.15	4.01	ౌ. ట ి:	5248.55	2.75	15.41	17.51
5244.10	-0.10	4.23	ៈ នេះ	5346.60	2.40	15.65	26.05
5244.15	-0.05	4.40	1 1 1	5246.05	2.45	15.70	

HAVANA POND STAGE VOLUME AND STAGE AREA CURVES

ELEV. (FEET)	STAGE (FEET)	SURFACE AREA (ACRES)	VOLUME (ACRE FEET)
5251.70 5251.75	7.50 7.55	45.64 45.92	183.94
5251.80	7.60	46.19	106.23
5251.85	7.65	46.47	1 98.5 3 190.85
5251.90	7.70	46.75	193.16
5251.95	7.75	47.03	195.52
5252.00	7.80	47.30	197.88
5252.05	7.85	47.56	200.25
5252.10	7.90	47.86	202.64
5252.15	7.95	48.13	205.04
5252.20	a. 66	48.41	207.45
5252.25	8.05	48.69	209.88
5252.30	8.10	48.96	212.32
5252.35	3.15	49.24	214.78
5252.40	8.20	49.52	217.25
5252.48	8.25	49.79	219.73
5252.50	8.30	50.07	222.22
5252.55	9.35	50.35	224.74
5252.40	8.40	50.63	227.26
5252.65	8.45	50.90	229.80
5252.70	9.50	51.18	232.35
5252.75	8.55	51.46	234.92
5252.80	8.60	51.23	237.50
5232.85	8.65	52.01	240.09
5252.90	8.70	52.29	242.70
5252.95	8.75	52.57	245.32
5255.00	8.80	52.84	247.95
5253.05	8.85	53.12	250.60
5253.10	8.9Q	53.40	253.27
5255.15	8.95	53.67	255.94
5253.20	9.00	53.95	258.63
5253.25	9.05	34.23	261.34
9293.30	9.10	54.50	264.06
5253.36	9.15	54.78	266.79
5253.40	9.20	55.04	269.53
5253.45	7.25	55.33	272.29
5253.50	9.30	55.61	275.07
5257.55	9.35	55.89	277.85
5253.60	9.40	56.17	280.66
5253.45	9.45	56.44	203.47
5253.70	9.50	56.72	286.30

RMA MONTHLY LAKE STAGE AND METER READING DATA OCTOBER 1985-MOVEMBER 1987

LAKE STAGES AND NETER PEADINGS

	ATEOSPIERIC	2	4	AKE STA	LAKE STAGES (FEET)	윤	띘	HETER READINGS	
	Precip.	Evap	Upper	Lower	Ladora	Mary	Bavana	SIP	Ladora
Month	(Inches)	(Inches) (Inches)	Derby	Derby	Lake	Lake	Pond	(gal)	(gal)
10/85	.85	2.73	2.2	16.9	11.8	1.12	3.10	387,400	2,963,700
11/85	. 82	1.89	1.8	16.4	12.3	0.95	2-01	309,500	2,867,000
12/85	74.	.63	1.4	16.3	12.5	1.38	.35	206,000	2,288,300
98/10	.16	64.	1.4	16.0	12.4	1.54	0	188,400	2,845,300
98/70	.57	.63	1-1	15.8	12.5	1.61	0	95,000	309,600
93/86	94.	1.12	9.0	15.7	12.5	1.59	0	164,600	215,600
98/10	1.78	2.24	0	15.3	12.4	1.48	0	447.700	745,200
05/86	1.36	3.50	8.0	16.2	12.4	1.56	- 70	602,300	870,700
98/90	1.16	5.75	0	16.0	12.3	1.39	1.38	507,100	1.036,300
98/10	1.53	6.15	0	15.4	11.9	1.02	1.43	386,700	1,522,700
98/80	-82	5.45	•	16.4	9.11	0.67	2.07	266.100	1,209,100
99/86	.50	94.46	0	15.1	11.5	0.35	1.75	182.400	954,490
10/86	1.17	2.73	0	15.8	11.85	0.0	1.39	297,200	98,000
11/86	.85	1.89	0	15.4	11.9	0.21	3.01	446,400	211,700
12/86	.16	-63	0	15.0	12.2	0.45	1.07	534,300	394,800
01/87	.38	64-	0	14.7	12.3	0.45	0.40	240,400	394,800
02/87	.83	-63	0	14.4	12.3	0.60	0.82	205,300	1,138,800
03/87	96 ·	1.12	0	14.3	12.4	0.83	1.33	309,500	1.020,200
04/87	.74	2.24	0	14.2	12.4	96.0	1.44	400,400	499,100
05/87	4.13	3.50	•	14.2	12.3	6.91	1.60	338.000	411,900
06/87	2.90	99.9	0	14.4	12.3	0.80	3.31	128,400	missing
07/87	-80	6.78	1.3	16.9	12.4	1.00	4.33	327,600	missing
08/87	1.62	5.63	0	16.1	12.0	1.25	2.57	387,200	missing
09/87	74-	6.20	0	15.9	11.7	96.0	2.87	295,500	missing
10/87	1.03	3.60	0	15.3	11.6	0.67	1.89	310.200	missing
11/87	1.20	1.89	0	14.7	11.7	0.52	2.72	229.600	missing
12/87	1.30	0.63	o	14.6	12.0	0.62	2.15		

DAILY PRECIPITATION DATA FOR THE RMA VICINITY OCTOBER 1985-NOVEMBER 1987

AT 10H
_
-
-
=
=
=
•
=
=
~
_
_
==
=
=
BONTALT
-
_
IN STRAIG
-7
×
=
Ξ
-
-
=
8
¥
_
-
-
·

	**	=	•	=	=	2	=	2	2	2	=	8	2	2	<u> </u>	8	8	9.0	2	0.00	8	90.0	0.0	0.0 10.0	0.0	00	0. 0.	0.0	0.0	0.00	0.0 0.0	0.00	0.47	
	111161	-	<u>.</u>	<u>.</u>	6.6	9.0	0.0	0.0	9.05	0.0	6.0	8. 6.	8. 0.	0.02	0.19	<u></u>	0	<u>.</u>	ö	ح خ	ö	<u>.</u>	e.											
1985	DENTER	0.0	9.00	9.0	0.0	0.0	9.0	8. 6.	0.15	0.28	0.21	0.01	8. 0	0.0	0.00	0.0	9.0	0.0	0.0	0.0	0.0	800	8.0	0.01	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	99.0	
DECEMBER, 1985	SPEA	9.0	0.00	0.0	0.0	0.0	0.0	9.00	0.0	0.0	8	8. 0	0.0	9. 0.	0.26	0.0	0.0																0.33	
<u> </u>	BREA	9.0	0.0	0.01	9.0	9.00	0.0	0.01	0	0.00	8 0 0	9. 0	9.00	0.03	0.32	0.0	0.00	0.00	0.00	0.00	0.0	0.00	0.0	0.0	0.00	0.0	0.0	0.00	0.0	0.00	0.00	0.00	0.41	
	DAY	-	~	•	~	S	6	1	&	on.	2	=	21	=	=	22	91	11	<u>~</u>	61	20	21	22	23	72	52	92	13	82	53	30	31	TOTALS	
	AVERAGE	0.0	0.00	0.0	0.0	0.02	0.00	0.00	0.0	0.19	9.0	9.0	0.02	0.10	90.0	0.07	0.20	0.01	0.02	90.0	00.0	0.00	0.00	0.00	0.01	0.03	0.00	00.0	0.0	0.03	0.02		0.82	
1985	DENVER Airport	0.00	00.0	9.0	0.00	0.03	0.0	0.00	0.0	0.57	0.0	0.0	0.02	0.00	0.13	9.16	0.00	0.0	0.05	0.17	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	00.0	0.05	•	1.20	
MOVEMBER, 1985	SPRA	0.03	9.6	0.00	0.00	0.05	0.00	0.00	0.00	0.0	0.0	0.0	0.0	0.26	0.01	90.0	0.31	0.01	0.00	0.01	0.00	0.00	0.00	0.0	0.01	0.03	0.00	0.00	0.01	0.00	00.0	•	0.75	
	42 23 24 25 24 25 25 25 26 25 27 25	8	0.0	8.0	0.0	0.0	0.0	0.00	0.0	0.00	0.0	9.0	0.03	0.05	0.05	0.0	0.29	0.03	0.0	0.00	00.00	00.00		0.0	, 0.02	70.03	00.0	0.00	0.00	00.00	0,03		0.50	
	170		~	~	-	S	œ	-	~	œ	9	=	13	=	Ξ	15	9	11	=	13	92	11	22	23	74	\$ 7	36	23	6.3 63	67	30		TOTALS	
																																	-	
	Average	00 0	000	000	0.0	0.0	0.0	0.0	0.01	0.01	0.0	0.17	0.01	91.0	0.08	0.00	80. 9 7,	0.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.0	0.25	0.85	
5 2	DENTER	00 0	98	90	90.0	90.0	00.0	0.00	0.00	0.0	0.00	0.12	0.0	0.27	0.0	0.00	0.0	0.00	9.0	0.00	0.0	0.0	0.00	0.0	0.00	0.0	0.0	0.00	00.00	0.00	0.0	0.38	0.77	
OCTOBER, 1985	SBBA	00 0	60.0	9	000	000	8	0.0	0.05	6	0.11	0.19	0.05	11.0	9.16	80	800	0.40	0.0	0.0	0.0	0.00	0.0	0.00	0.00	0.0	0.0	0.00	00.0	0.00	00.0	0.21	1.27	
	1989										9.00	0.20	00.0	90	80	00.0	0	0.00	0	0	0.00	0.00	0.0	0.63	0.00	9.80	900	90.0	9.6	9.90	03 0	7.15	0.50	
	170	-	• ~		~	· •	4.0	-	80	с п	2	=	21	=======================================	=	22	5		2	<u> </u>	70	21	22	(-)	12	25	52	13	ec.	<u>ල</u>	53	. =	TOTALS	

1101
177
PRECIPI
BONTELY
ARSTRAL
HOUNTAIN
POCLY

	1386E	9.0	80.0	8 .0	0.0	0.0	0.0	0.0	0.00	0.0	0.00	0.0	90.0	0.00	0.0	0.01	0.04	0.21	0.01	0.13	0.01	0.0	0.0	0.0	0.0	8. 0	0.00	0.00	00.0	\$ 83°	Se .5	30° ù	0.48
98	DENVER AIRPORT	0.90	6.0 6.0	0.0	0.0	0.00	9. O	0.0	0.00	0.00	0.0	0.0	0.05	0.0	0.0	0.0	90.0	0.16	0.03	0.12	0.0	0.0	6. 0	0.0	0.0	8.0	0.00	0.0	0.00	8, 60	ر دع دع	6.00	0.43
MABCH, 1986	SARA																																0.00
	KRBA	0.0	9.0	6. 6.	0.0	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.07	0.00	0.01	0.00	0.02	0.25	0.00	0.13	0.00	0.00	0.0	0.00	0.00	8. 0	0.00	0.0	0.09	0.30	0.03	0.00	0.48
	DAY	(7	m	→	S.	တ	1	∞	on.	01	=	12	2	=	15	92	11	18	13	20	21	22	23	74	25	26	27	28	67	30	31	TOTALS
	ina Ur	80	99	95	6	0.04	95	5	0.01	0.04	3	0.00	0.00	0.00	0.00	20	0.00	8	00	01	3 8	00.00	8	00	00	0.00	00	10	00				0.57
	Average	6	e e	e e	<u>-</u>	<u>.</u>	Ö	Ö	<u>.</u>	င်	Ö	Ö	ë	<u>.</u>	Ö	္	Ö	Ö	6	ö	Ö	ö	Ö	<u>.</u>	<u> </u>	<u> </u>	<u> </u>	<u>.</u>					9
1986	DERFER Airport	0.00	9 9 9	0.0	9.0	0.05	0.10	0.02	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.31	0.00	0°.00	0.00	0.00	0.0	00.00	0.01	00.0				0.65
Februrary, 1986	SRNA Gags																																0.00
_	RPRA	9.00	≘ .	9.9	0.00	0.03	0.0	9.00	0.00	0.00	0.08	0.00	0.00	0.00	0.0	0.0	0.00	0.00	0.00	90.0	0.21		0.0	00.0	0.00	0.00	0.00	0.00	0.00				0.48
	DAY	6	?	~	-	دم	æ	-	&	øn	2	=	11	13	*	15	16	11	82	19	20.	-	73	23	7.7	52	97	1.7	82 23				TOTALS
	AFERAGE	0.00	6. 6.	0. 0.	0.00	0.00	0.14	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.0	√. 0.01		0.00	0.00	0.0	0.00	0.0	0.0	0.00	0.00	0.00	00.0	00.0	0.00	0.00	0.69	0.00	0.15
1986	DENTER	0.0	3. 0	0.0	0.0	0.00	0.20	0.03	0.00	0.0	0.00	0.0	0.00	00.0	0.00		••	0.00	0.00	0.0	0.0	0.00	0.0	0.0	0.0	e. 0	00.0	0.00	0.00	0.00	0.03	0.00	0.22
JANUART, 1986	SPRA																								-								0.00
•		9.00	80.0	8. 6	9.00	0.0	0.08	9.91	0.0	0.0	0.00	0.0	0.00	0.00	9.0	0.0	0.00	0.00	0.0	0.00	0.00	0.0	9.6	0.00	9.0	8.0	0.00	9.00	0.0	00'0	00.3	6.33	0.10
	140	(~	m	~	S	æ	7	&	თ	2	=	11	2	=	13	92	11	<u>«</u>	6	20	21	22	23	24	52	58	21	53	62	£;	-:	TOTALS

BOCKY BOURTLIN ABSENT, HONTRLY PRECIPITATION

		1991114	90.0	0.01	98.0	3	9.00	8.0	9.02	9.05	0.22	97.0	9.0	0.00	0.01	9.0	0.0	0.16	0.00	0.10	8	9.0	9.00	0.00	0.00	0.00	00.00	00.0	0.00	00.00	0.01	0.00		1.16
		DENTER	9.08	0.0	9.0	0.0	0.00	0.0	0.01	0.09	0.12	0.38	0.0	0.0	0.01	0.00	0.00	9.10	0.0	0.19	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.01	0.00		1.07
	JUNE, 1966	SRBA	0.03	9.14	0.0	0.03	0.0	0.00	0.01	0.05																								0.30
	7	HRUA	0.02	0.02	9.00	0.05	9.0	00.0	0.03	0.00	0.32	0.53	0.00	0.00	0.00	0.00	0.00	0.21	0.00	0.00	9.00	0.00	0.00	0.00	9.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00		1.18
		DAY		7	63	~	urs	9	-	ac >	on.	2	11	12	=======================================	=	15	<u>9</u>	11	82	19	07	21	22	23	54	52	97	27	28	53	30		TOTALS
		ATERAGE	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.29	0.00	0.00	0.00	0.00	0.00	0.01	0.37	0.61	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	9.00	0.00	0.02	00.0	0.00	0.01	1.36
	986	DENTER AIRPORT	0.0	0.00	0.0	0.00	0.00	0.00	0.05	0.29	0.00	0.00	0.00	0.00	0.00	0.01	0.20	9.64	0.01	0.00	0.00	0.00	00.0	0.00	0.00	0.00	00.0	0.00	0.00	90.0	0.00	0.00	0.04	1.30
	MAY, 1986	SRNA GAGE	0.00	0.00	0.0	0.0	0.00	0.00	0.0	0.34	0.0	0.0	0.00	0.00	0.00	0.01	0.27	0.67	0.01	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	00.0	0.00	00.00	1.35
		RRRA	0.00	0.0	0.0	0.00	0.0	0.00	90.0	0.23	0.00	0.00	0.00	0.00	00.0	0.00	0.63	0.52	0.00	0.00	00.0	00.0	00.00	0.00	0	0.00	0.00	00.0	0.00	0.00.	00.0	0.00	0.00	1.4
		DAY		2	m	-	S	9	-	&	o	2	11	12	13	7.	15	16	11	18	19	20	21	22	23	24	25	56	. 27	82	53	30	31	TOTALS
<u> </u>		<u>pas</u>	9	_	يو	<u></u>	•	0	-	2	0	9	60	•	0	0	0	0	_			-	0	0	0	0	-	ø,	0	0	0	•		6 0
7 1 1 2 2 1 1 1		Average						0.00																										1.78
	1986	DENTER	0.00	0.43	0.97	0.0	0.00	0.0	0.0	0.03	0.23	0.0	0.12	0.0	0.00	00.0	0.0	0.00	0.51	0.02	0.0	0.10	0.02	0.00	0.0	0.00	0.0	0.16	0.00	0.00	00.0	0.00		2.59
	APRIL, 19	SBRA	0.0	9.00	0.00	0.0	9.0	9.0	9.0	8. 6.	0.0	0.0	0.00	0.0	0.0	0.0	0.0	8 0	0.28	9.00	0.03	0.0	0.19	8.0	0.0	0.0	9.00	9.0	9.0	0.0	0.00	0.00		0.56
785 1101	_	CAGE	9.0	0.99	0.41	9.0	0.0	0.00	0 0	0.0	9.0	<u>.</u>	0.15	9.0	9.00	0.00	0.0	0.00	0.22	9.6	90.0	0.11	60.0	0.0 0	9 9 9	9. 0. 0.	0.0	6	0.0	0.0	00.00	0.00		2.19
othi ncompat satara notalesi tascillissilos		Y VO		~	~	-	S	4	_	\$	တ	2	=	21	=	*	15	9	11		2	20	=======================================	22	23	74	22	92	21	28	53	ຄ		107815

TATION
\simeq
••
=
_
PREIP
ت
=
-
<u></u>
E
E
-
APSTRAL
=
22
=
_
=
=
<u> </u>
ਣ
-
~

		111161	8.	1.02	6	3	3	0.09	6.13	0.01	3.83	0.00	9.09	0.00	6.00	0.00	0.00	9.00	0.00	0.00	0.00	0.00	0.03	9.16	9.00	9.08	0.90	0.00	0.00	0.00	0.00	00 0	<u>.</u>	0.50
	9861	DESTRIBATE AND	9.00	0.02	6.0	90.0	9.0	1.13	0.13	0.0	0.00	9.00	0.0	9.00	0.09	0.00	0.0	9 .00	9. 60 0. 60	0.00	9.0	0.00	0.00 0	0.05	0.0	6.08	0.0	0.00	0.00	0.00	0.01	00 0	3	0.43
	September, 1966	SPEA DI								9.00	9.0	0.0	0.0	0.0	9.6	9.00	9.00	0.00	0.0	0.90	9.0	0.0	9.0	6.19	0.0	0.05	9.00	0.0	0.00	0.00	0.00	00 0		0.24
	S	FREA	9.0	0.0	0.0	00.0	9.00	0.05	0.13	0.0	0.0	0.00	0.0	0.00	0.0	90.0	0.00	9.00	0.00	0.0	9.0	0.0	0.03	0.25	0.01	90.0	0.0	0.00	0.0	0.0	0.00			0.59
		DAY		~	~	-	s.	œ	-		5	2	=	13	=	Ξ	15	91		€.	5	50	21	22	23	75	25	97	23	87	53	33		TOTALS
		5=0	0	-		· øn			g.			0	0		-	0	0	0	0	2	2		0	œ.	-	2	2	æ		0	0	· c		2
		AVERAGE	0.0	0.27	0.01	0.0	0.01	0.0	90.0	0.01	0.01	0.00	0.00	0.01	0.0	0.00	0.00	0.0	0.00	0.0	0.0	0.0	0.10	0.06	0.01	0.03	0	0.08	0.00	0.00	0.00	000	0.03	0.82
	986	DENTER	9.0	9.0	0.0		0.00	0.02	9.04	0.01	0.0	0.00	0.00	0.01	0.00	0.01	6.0 0	0.00	0.00	90.0	0.01	0.00	0.00	0.17	0.02	0.00	0.03	0.00	0.00	00.00	0.00	00 0	0.00	0.53
	AUGUST, 1986	SPRA	0.00	0.61	0.0	0.08	0.01	0.00	0.01	0.0	9.0	0.0	0.0	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.0	0.00	0.00	0.00								11.0
	~	RREGE	9.0	9.16	0.0	9.08	0.01	0.0	0.13	0.02	0.0	9.0	0.00	0.02	0.12	0.00	0.0	00.0	0.00	0.01	0.0	0.05		ر 0.01	€ 0.00	00.0	0.00	0.13	0.00	0.00	0.00	00 0	0.00	1.08
		DAT		7	~	-	S	ص	-	•	o	2	=	13	=	Ξ	12	9	=	=	2	50	21		23	75	22	38	21	38	67	33	3 6	TOTALS
PITATION		PERSE	00.0	0.03	9.00	9.0	9.22	0.03	9.3	0.00	0.08	9.02	0.91	0.0	0.01	0.00	0 .0	ن _ا ل 13	0.61	0.02	0.0	0.30	0.04	0.01	00.0	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	1.53
ILT PREII	مِ	DENTER	9.09	9.0	0.0	0.01	0.21	0.03	0.0	9.00	0.0	1 0.0	0.0	6.0	98.0	90.0	9.0	0.08	0.99	9.90	0.0	0.38	0.03	8.33	9.00	8 0 0	9.0	0.00	0.00	00 J	00.0	0.00	0 0	1.69
TE TOT	JOLY. 1986	29 79																6 .15	9.78	0.03	9.00	6. 29	8.00	1.05	00'0	80.8	9 .	60.0	9.63	9.00	0.83	03.0	9,55	1.33
TAIB APSE	~	1949 1848	=	9 .	3	=	0.22	1 .	3.0	8 . 8	5 .	=	9.61	3	9.1	8.0	6	9 . 16	6.35	0.02	6 .63	9 .33	6.03	9.46	2	2	9.91	9.5	0,00	9.69	e e c	3,63	60 6	1.33
BOCLY BOURTAIN ANSELL BOUTHLY PRICIPITATION		PAG	~	~	~	-	∽	•	~	•	•	=	=	21	=	=	22	9	=	*	2	92	=======================================	22	23	7	\$3	5 2	17	23	Ęj	33	F 3	TOTALS

BOCAT BOARDALD ABSEAL BOATBAY PRECIPITATION

	_	•	-	-	-	_	•	4	~	~	-	•	•	-	•	•	•	•	•	•	•	•	•	_	•	-	0	~	6	_	-	0	L E
	14114	-				-		3.	0.0	8.04	9.00	9.08	9.0	10.0	0.0	9.0	6.0	0.00	0.0	<u> </u>	<u></u>	<u>.</u>	0.0	0.0	0.0	9.0	0.0	0.0	0.0	ට <u></u>	0.0	0.0	9.16
1986	DENTER Alpport	=	3 .0	6.0	9.9	9.10	9.9	0.11	9.19	0.09	0.9	0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0	9.0	0.00	9.0	0.0	0.00	0.0	0.00	0.31
DECEMBER, 1986	SPEA	0.0	9.0	9.0	0.49	90.0	0.0	0.07	0.0	0.03	0.00	9.00	9.0	80.0	0.0	0.0	0.00	0.00	0.0	0.00	0.00	0.00	0.0	9.0	0.0	0.00	0.0	8.0	0.00	0.0	0.00	0.00	0.14
	1989 C9CE	0.0	0.0	0.0	0.0	0.00	0.0	0.01	0.01	0.00	0.0	0.00	0.00	0.00	0.0	00.0	0.0	0.00	0.00	00.00	0.00	0.00	0.00	0.0	0.00	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.02
	DAT	-	2	•	-	\$	40	-	•	gn.	91	==	12	13	14	15	16	17	28	13	20	21	22	53	24	25	97	11	28	29	39	31	TOTALS
	A72365	0.24	9.08	0.01	0.00	0.00	0.07	6.09	0.11	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	00.0	0.00	00.0	0.00	0.00	12.0		0.85
1986	DENTER	0.30	0.0	0.0	0.00	0.00	0.13	0.17	9.0	0.00	0.00	0.00	0 0	0.00	0.00	0.00	0.0	0.00	9. 0.	0.01	0.0	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	₹.0		1.05
Hovenber, 1986	SPRA	0.17	9.70	0.0	0.0	0.00	0.00	0.00	0.22	0.04	0.00	0.00	9.0	0.00	0.00	0.00	0.0	0.00	9.0	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	00.0	00.0	0.15		0.75
_	SAGE										0.00	00.0	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.0	1.0.00	60 0	8 0	8	8.8	0.00	0.00	0.08	06.0	9.1		0.14
	DAY	-	~	m	7	√ O	49	-	•••	60	10	=	12	13	*	15	16	17	8 2	13	20	21	22	23	24	25	28	27	28	29	30		10116
	19161	8.0	9.03	9.24	3 .0	9.0	9.00	9.0	8.8	0.03	9.36	0.11	0.03	0.02	0.00	00.0	00	0.0	0.00	0.01	90.0	0.00	0.05	0.17	0.01	0.00	0.0	0.00	0.00	0.00	03.0	63.0	1.17
*	BERTE	3.	3.	1.2	=	8	=	2	-	9.03	6.43	9.21	9.80	9.30	2.	0.00	8.09	6 .00	0.0	0.0	0.05	0.00	0 02	9.39	90.0	00.0	60 6	9.60	90.0	0.00	S	53	1.23
octo919, 1916	2347 6461	9.00	5.	9.78	3.0	1 .	9. G	9.0	1.15	6.93	0.23	0.0	5.5	9.5	9.99	3 .	9 . 9	6.9	6.6	6.01	9.6	0.60	9.17	≃	=	- 33	3	9.83	00.0	6.30	9	5. 9.	1.04
_	1913																																00.0
	DAT		~	~	~	5	6	~	~	on.	2		2	=	=	2	92		<u> </u>	<u>e</u>	2	~	22	~	54	52	52	17	69° r 1		F.	***	TOTALS

BOCKY BOUSTALS ADSIDAL BOSTREY PARCIPITATION

	ATERACE	=	===	=	3.0	===	===	9.0	97.0	9.08	8 60	0.00	9.0	0.00	9.0	£.02	0.18	0.0	9.0	0.00	90.0	0.05	0.16	9.0	9.0	0.0	0.0	0.12	0.0	0.03	0.0	0.00	96.0
=	DENTE AIRPORT	9.9	9.0	9.0	9.9	9.90	0.00	9.00	0.39	0.03	0.00	9.00	0.00	0.0	0.00	9.0	0.27	0.00	0.0	0.00	0.04	0.04	0.21	0.0	0.00	0.00	0.00	0.32	0.02	0.03	0.0	0.00	1.34
BARCH, 1987	2887 6461	8.	0.0	9.0	9 .0	8 .	0.0	0.0	0.15	0.11	9.0	6 .0	0.0	0.00	0.0	9.0	0.0	0.0	9.0	00.0	0.03	0.0	0.E	0.00	0.00	0 0	0.00	9.01	00.0	0.00	0.00	0.00	0.52
	RESE	8.0	9.00	9.00	0.00	0.00	0.00	9.00	0.24	0.12	90.0	0.00	0.0	0.00	0.00	0.05	0.23	0.00	00.0	0.00	0.12	90.0	0.12	0.00	0.00	0.00	0.00	0.04	0.00	0.04	00 0	0.00	1.02
	DAT		7	e	•	Ś	•	~	•	On.	=	=	12	13	=	15	91	11	e	61	20	77	22	23	17	22	97	23	28	53	33	Ħ	TOTALS
	AVERAGE	9.6	0.0	0.0	0.03	0.00	0.00	0.00	0.0	0.00	0.00	0.01	9.0	0.0	0.14	0.19	0.03	0.00	0.11	0.11	0.03	0.00	0.00	0.0	0.00	0.00	0.12	0.04	00.0				0.83
1981	DINTER	0.0	9.00	9.00	90.0	0.00	0.00	0.00	0.00	0.00	0.00	0.02	8. 0	0.00	0.41	0.00	0.03	0.00	0.27	0.09	0.03	0.00	0.0	0.0	0.0	0.0	0.30	0.01	0.00				1.21
FEBRUARY, 1987	SPNA	0.00	0.0	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.0	0.00	6 .0	0.0	0.00	0.25	0.03	0.00	0.03	0.19	0.07	0.00	0.0	0.00	0.00	0.0	0.00	0.01	0.00				0.62
	1979 CYCI	9.0	9.0	0.03	9.00	0.00	9.0	0.0	0.0	0.0	0.0	0.00	0.0	9.00	0.00	0.33	0.04	0.00	9.05	. 0.05	0.00	0.0	0.0	00.0	00.00	0.0	0.05	0.10	0.00				0.65
	DAT	-	~ 4	~	-	Š	ø	-	•••	on.	=	=	12	=	Ξ	22	16	11	= 2	61	20	21	22	23	24	5 2	32	11	e5 27				TOTALS
	191114	9.0	3.	9.0	9.0	8.	5 .0	9.0	0.12	0.05	9.00	0.00	8.0	8 0	0.00		0.00	0.00	0.03	0.05	0.01	0.0	9.6	0.0	0.0	0.0	0.00	00.00	0.00	00'0	0.00	00.0	0 38
1917	BENTER	8.8	8.8	9 .	3 .	0.68	9.05	0.82	0.17	6 .0	80	0.0	8 .0	0.0	9.9	0.30	0.0	0.0	6. 6.	0.14	0.0	0.0	0.0	0.0	0.9	0.0	0.00	0.00	00'0	00 0	0.30	0).00	89.0
JAPANT. 1987	SPEA 645E		3 .	=	3.	3.	0.03	9.6	. .	9.65	8. 0	8 6	8	8 9	9.0	9.6	00.0	0.0	9.05	9.0	6.9	9.05	6.02	9.0	8.0	0.0	9.0	0.00	0.0	9.0	0.00	0.00	0.23
~	1979	=	=	=	=	=	1.03	=	1.1	=	5 .	3 .	=	=	2.	2.	3 .	9.8	=	9.89	9.82	2	8	8	8	0.00	9.0	8.9	00.0	6.9	9 .63	6,93	9.16
	76	~	~	•	-	S	\$	-	-	en.	2	=	2	2	=	22	2	=	=	<u>•</u>	26	77	22	€	73	23	52	1.7	28	53	en Fr		FOTALS

PHEIPITATION
SOTTE: P
I INSTALL
1171100
100

	178168	3.0	9.0	8.6	9.00	0.0	0.0	0.00	0.92	0.42	0.02	0.00	0.0	0.00	0.0	0.00	0.00	0.0	0.18	0.0	0.0	0.0	0.00	9.00	0.00	9.60	0.00	0.00	0.45	0.10	9.19		2.90
	DESTER AISPORT	9.0	0.0	9.00	9.0	9.00	00.0	90.0	1.76	0.12	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.0	0.70	0.00	0.0	0.0	0.00	0.00	0.0	0.00	9.0	0.0	0.53	0.80	00.00		3.42
1888 1987	SPEA	00.0	8.6	0.00	9. 0.	9. 0. 0.	0.0	0.00	9.94	0.07	0.0	0.0	0.0	8. 0	0.0	0.00	0.00	0.00	0.22	0.00	0.00	0.0	0.00	0.00	0.00	0.0	0.00	0.00	0.47	0.35	0.55		2.60
	HEND CAGE	90.0	0.0	0.0	0.0	0.0	0.0	0.00	0.05	1.07	0.01	0.00	0.0	0.0	0.00	0.00	0.00	0.03	0.13	0.00	0.00	9.00	0.00	0.00	0.0	0.0	0.00	0.0	0.36	96.0	0.03		2.67
	PAG		7	m	-	S	ဖ	7	6 0	5	10		12	13	1	15	16	17	18	13	20	21	22	23	24	52	76	27	28	53	30		TOTALS
	844 CD -40 04 846 5-	0.11	0.41	0.51	0.05	0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.02	0.00	0.00	6.11	0.00	0.16	0.38	0.46	0.00	1.19	0.43	0.00	0.09	0.00	0.00	0.01	0.07	0.00	4.13
72	DENVER	0.20	¥.0	0.55	0.05	0.12	0.01	0.00	0.00	0.0	0.00	0.01	0.03	0.00	0.0	0.00	0.00	0.16	0.00	0.10	0.49	0.48	0.01	1.33	0.57	0.00	0.00	0.00	0.00	0.01	0.04	00.00	4.64
MAY. 1987	SPRA	9.08	0.36	0.38	0.03	0.13	0.00	0.00	0.00	9.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.10	0.00	0.07	0.35	0.40	0.00	1.27	0.27	0.01	0.28	0.00	0.00	19.0	0.14	0.00	3.91
	FREA	0.08	Ð.4	0.59	90.0	0.0	0.00	0.00	0.01	0.0	0.01	0.00	0.0	0.0	0.00	0.00	0.00	90.0	0.00	0.30	0.29	1. 0.51	0.00	0.96	0.45	10.00	0.00	0.00	0.00	00.00	0.03	00.00	3.84
	DAY	-	7	•	~	s	\$	-	6 0	on.	10	=	12	13	14	15	16	11	18	19	20	21	22	23	24	25	97	21.	28	59	30	31	TOTALS
	746765	0.01	90.0	0.00	0°0	0.00	0.00	0.00	0.00	9.0 0	0.0	0.0	0.32	0.0	0.00	0.00	00 · D _C	0.00	0.00	0.03	0.27	0.0	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00		14.0
-	DESTER ATPORT	9.20	0.0	0.0	9 .0	9.00	0.00	9.00	0.00	0.0	0.0	0.0	0.49	0.0	0.00	0.00	0.00	0.00	0.0	0.08	0.25	0.0	00.0	0.0	0.00	0.0	00.0	0.00	0.00	00.0	00.00		1.03
IPPIL 1987	SPBA	9.0	9.08	9.0	=	9.0	0.0	9.0	90.0	9.0	0.0	9.0	0.25	0.0	0.0	9.6	0.60	0.0	0.0	0.0	0.23	0.0	0.0	9.00	9.0	0.0	0.0	0.00	0.00	0.00	9.03		0.56
	1973 1983	3	0.13	0.0	9.0	3.0	9.0	6.9	9.0	9 .00	0.0	8.8	0.21	8. 0	0.00	0.09	0.0	0.00	0.00	0.00	0.32	6 .0	0.0	9.0	9.0	9.0	0.00	0.9	0.00	0.00	0.00		0.62
	M		~	~	~	S	6	-	•	on.	2	=	13	=	=	15	9	11	<u> </u>	61	20	21	22	23	24	52	38	27	8 2	53	33		TOTALS

CET MOUNTAIN ANSENAL MONTHLY PRECIPITATION

	191	•		9 6	96.0		00.0	0.0	0.0	0.01	0.02	0.00	00	00	0.24	0.01	0.01	0.12	00	0.00	00	0.00	00	0.00	0.00	0.00	0.00	90	00	0.00	00		
	47 E 2 A G E	•	·	ie	-	6	<u> </u>	<u> </u>	<u>.</u>	Ö	Ö	Ö	<u> </u>	Š	6	Ö	Ö	ë	<u>.</u>	6	ö	<u> </u>	Ö	Ö	<u>.</u>	Ġ	Ċ.	Ö	ċ	<u></u>	e.		
1987	DERVER	C	0 0	2	90.0	0.02	0.00	0.0	0.00	9.00	10.0	0.00	9.0	0.0	0.39	0.01	0.01	0.19	9.00	0.00	0.00	0.00	0.0	0.00	0.00	0.0	0.00	0.0	0.0	0.0	0.00		
SEPTEMBER, 1967	SPHA	e	2	8	0.02	0.0	9.01	0.00	0.0																	0.00	00.0	0.00	0.00	0.00	0.00		
S	HRMA GAGB	6	800	2	0.0	0.0	0.0	0.0	0.00	0.01	0.02	0.0	0.00	0.0	0.09	0.01	00.0	0.04	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00		
	DAT		• 6		•	S	မ	-	•	o,	10	=	12	13	Ξ	15	16	11	82	13	20	21	22	23	54	25	26	27	28	67	30		
	Average	00	000	000	00.0	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.01	0.00	00.0	00.0	0.00	0.00	0.15	0.63	0.13	0.05	0.18	0.30	0.13	0.00	00.00	0.00	00.0	
987	DENTER	00	00	00.0	0.0	9.0	0.0	90.0	0.00	0.00	9. 0.	0.0	0.00	0.03	0.00	0.05	9.0	0.00	0.0	0.00	9.00	0.27	0.76	0.11	0.09	0.30	0.37	0.00	00.0	00.0	0.00	00.0	
AUGUST, 1987	SRMA	000	00.0	00.0	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.0	0.00	0.0	0.00	0.00	0.00	8. 0	0.0	0.00	0.0	0.11	¥.0	0.03									
_	MRMA	8	00.0	000	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05		0.00	0.00	0.0	6. 6.	0.00	0.0	0.08	.0.68	9 . 19	00.0	90,0	0, 23	0.25	00.0	.00 0	00.0	0.00	
	DAY		~ ~	.	•	S	g	P	6 0	on.	2	=	12	13	=	15	16	11	18	19	20	23	22	23	74	52	26	27	28	53	30	31	
	A PER SA CO	00.0	0.03		0.01	0.00	0.00	0.00	0.0	0.00	0.00	0.02	0.26	0.00	0.01	0.02		0.00	0.00	0.00	69.0	0.00	0.00	9.14	0.13	0.00	0.02	00.0	0.07	90.0	0°0	20.0	
_	DENTER	00.00	0.03	0.00	0.00	0.0	0.00	0.00	0.00	0.0	0.0	0.0	0.23	0.60 0	0.00	0.0	8	0.0	8	0.00	0.0	0.00	0.0	0.42	0.00	0.0	00.0	00'0	0.03	0.61	0.00	0.99	
JOLT, 1987	SPRA	00.0	0.05	0.0	0.0	0.00	0.00	0.0	9.00	0.0	0°0	0.03	0.30	9. 0.	09.0	8 0	8	3	0.0	0.0	0.0	0.0	9.6	0.00	8 0 0	9.0	90.0	0.00	9.16	0.12	0.30	0.01	,
-	EAGE.	00.0	0.0	9.0	0.01	9.60	0.00	0.00	0.08	0.0	9.0	8 0	0.26	0.01	0.02	93.0	0,03		8.0		9. 0	0.0	0.0	0.0	9.38	8 0 0	6.6 0	0.0	0.03	9.0	9.00	9.68	į
	110		~	~	~	'n	ø	-	•	on ·	2	=	13	2	=	22	9		SO	<u> </u>	20	7	22	23	74	52	<u>5</u> 8	27	25	67	30	-	

POCET BOUNTAIN ABSENAL BONTRLY PRECIPITATION

		AVERAGE	0.00	0.00	0.0	8. 0	0.0	0.05	0.19	0.01	0.0	0.0	0.0 0	0.0	9.0	0.35	0.31	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.29	0.03	00.0	0.00	0.00		1.20
	1987	DENTER AIRPORT	0.00	0.0	0.0	0.0	0.0	0.0	0.27	0.01	0.00	0.0	0.00	0.00	0.0	0.38	0.57	0 0	0.00	0.0	0.00	0.00	0.00	00.00	0.00	0.00	00.00	0.34	0.01	00'0	00.0	0.00		1.62
	NOVEMBER, 1987	SRMA		0.0	0.00	0.0	0.0	0.08	0.14	0.01	0.00	0.0	0.0	0.00	0.00	0.35	0.02	0.00														0.00		0.60
	_	HRMA		0.00	0.00	90.0	0.00	0.02	0.17	0.0	0.00	0.00	0.00	0.00	0.00	0.31	0.33	0.00	0.00	0.00	0.00	0.00	0.0	9.00 C	00,0	0010	00.0	0.23	0.05	0.00	0.00	0.00		1.08
		DAY		2	m	~	S	9	-	6 0	တ	10	=	12	13	*	15	16	17	18	19	20	55	22	23	24	52	97	27	28	53	30		TOTALS
FITATION.		AVERAGE	0.00	00.00	0.00	0.00	00.0	00.0	0.00	0.00	0.00	0.00	0.00	00.0	0.39	0.02	00.0	0.01	0,00	0.00	00.0	00.0	00.0	0.00	0.00	00.00	00.0	0.00	00.00	0.00	00.0	0.61	00.0	1.03
ILT PRICE	187	Denter Airport	0.0	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.58	0.0	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	00.00	0.00	0.00	0.61	0.00	1.24
INGE BORT	OCTOBER, 1987	SPRA	0.00	0.0	0.0	9.0	0.00	0.0	0.0	0.0	0.00	0.0	0.0	0.00																				0.00
TAIL AISI		ENER CACE	80.0	0.00	0.0	0°.0	0.0	9.60	0.0	0.00	0.00	9.0	0.00	0.00	0.21	0.00	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00							0.21
WOCKY GOGSTALE ANDMED GOTTELY YEACHTLETICS		140		~	~	-	S	œ		&	on	2	=	13	2	=	15	16	11	<u>ee</u>	13	50	21	22	23	54	52	38	21	28	23	99	## \$**>	TOTALS

MONTHLY CHERRY CREEK PAN EVAPORATION DATA 1959-1987

y Creek Dam

F... Evaporation In Inches

Table Assumes Daily Lake Evaporation will be .7 of the pan valve

j D

	Ameral	66.2	9.19	61.1	66.3	63.6	62.4	6.84	50.4	45.7	55.5	49.7	53.2	51.8	51.7	50.9	52.8	53.2	51.1	57.2	61.7	51.7	59.5	53.7	49.6	55.2	6.64					54.98		38.83
	December	1.40	1.20	0.79	1.50	.88	86.	96 .	1.07	1.00	1.10	1.20	1.70	3.8	.75	.80	-86	.80	-80	1.30	96	06 ·	1.00	₽.	.90	8.	96.	%	96.	96.		1.01	<u>;</u>	.71
	November	2.00	2.90	1.10	3.00	3.16	2.40	2.30	1.49	1.90	2.20	2.30	1.90	2.30	2.50	1.80	1.80	2.0	2.0	2.10	2.70	2.00	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70		2.28	1	1.60
	October	3.00	4.10	4.60	6.30	06.4	5.80	2.60	2.80	3.72	5.00	3.60	3.00	3.90	4.27	4.10	4.00	6.43	3.54	6.13	2.60	4.46	5.8	4.00	3.67	8.07	4.10	3.90	3.90	5.14*		4.51	1	3.16
	September	6.92	8.50	5.55	8-40	6.50	7.60	5.50	6.10	07-9	6.10	5.74	6-30	9.00	5-25	5.37	5.69	6.23	5.40	8-15	8.64	9-48	7.6	47.4	5.79	8.85	6.07	96-9	6.37	8.86		6.59	,	4.61
	August S	11.60	12.30	10.80	12.20	9.20	8.80	8.80	8.80	7.00	7.20	9 - 64	8.20	8.31	8.70	8-34	7.90	8.33	7.72	7.35	8.96	7.97	8.45	7.17	7.30	8-59	7.34	8-17	7.78	8.04#		8-67	; ;	6.07
	July	12.10	11.90	10.80	11.80	10.80	10.00	8-60	8.40	6.80	9.80	7.80	8.60	7.97	8.75	8.22	9.70	9.45	69-6	9.03	10.54	9.33	11.05	9.53	8.81	10.41	10.48	11.80	8.97	69.6		9.71		6-80
	Јиће	9.50	10.30	9.20	9.20	10.00	11.70	7.40	8.05	6.10	9.40	9.60	8.80	8.77	7.94	8.57	7.50	7.88	8.80	9.05	8.76	8.20	10.33	8.72	7.26	4.29	6.93	9.72	8.22	9.54		8-47		5-93
	May	7.00	8.20	7.69	7.80	7.10	06.9	. 4 	G.	5.83	6.50	6.31	7.20	6.70	6.61	6.80	8.32	9.00	5.82	8.06	69.9	9.00	6.75	5.46	5.90	5.00	5.8	7.00	5.0	2.0		6.70		69-4
	April	7.00	04 - 40	5.77	3.33	2.60	4.00	3.40	2.70	3.75	5.35	5.70	4.50	3.50	3.80	3.50	4.00	3.5	3.6	3.1	9.6	3.20	3.20	5.14	۱ . 90	3.20	3.20	3.20	3.2	3.2		4.12		2.88
	March	3.90	1.40	2.40	1.55	2.50	2.00	1.70	1.50	1.70	1.40	55.	1.50	1.80	1.58	1.80	1.5	1.0	1.9	1.6	1.6	1.60	1.60	-4-	1.70	1.60	1.60	1.60	1.6	1.6		1.71		1.20
	February	1.10	1.00	1.20	09-	1.70	1.30	1.20	11.	-85	-80	3	.75	-80	-80	96.	-80	-80	1.2	. 76	06.	96	96.	06.	0 6.	96.	96.	06.	06.	<u>8</u>		.93		.65
inth	January		1.40	1.24	09-	1.30	.88	.73	.76	.	.61	-63	.70	. 70	98.	. 70	.80	.80	09-	.69	.70	- 70	.70	-80	. 70	. 70	. 70	. 70	. 70	٠.70	740	7.75	8	.53
Year/Month		1959	1960	1961	1962	1963	1964	1965	1966	1961	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	27 Year	1959-85	Evap in/	•

NOTE: Pan valves inside border lines are actual readings: outside are estimated values * Obtained via phone corversation 1/08/88 by Kevin Pierson

Source: COE. 1987

DAILY STREAM DISCHARGE DATA FOR RMA GAGING STATIONS OCTOBER 1985-NOVEMBER 1987

**** WILL STREE DISCINCE SOREST (CFS) *****

Statista: Perm latticept

E=8 E38 = 2 **** ******** **** 2 Ħ -----≂ Ħ 2 ≂ = ≈ = 2 = = = = ~ = = ≃ =

.... Dalle senta Dischaft Spuner (ces)

STATION: BATARA INTROCEPT

1000 1000 1000 (100/11)

=

=

≂

13 28

=

=

=

=

=

=

 \simeq

=

=

11/15/55 11/

sone balle status Discused souther (cfs) terts

STATION: LABORA MELD

1011 1011 (4C/71		22
- =		
=		
~		
=		
Ħ		****
*		
×		
z		
=		
æ		
=		****
=		
=		
=		
=		
=		***
=		***
=		
=		
=		
=		
=		and the second second
-		
-		-
- ·		
•		
_		
_		
~		
VAT 1		
출	17/15/15/15/15/15/15/15/15/15/15/15/15/15/	川川はんれいの

***** Daily Statal Discusses Souther (CPS) *****

STATION: SOUTH PTALBA

2

∺

=

2

=

=

=

⋍

=

= ~

=

=

BAT BIR TOTAL BAT BIR TOTAL (CFS) (CFS)(AC/FT) 4 4 44 2 44 4 4 4 = 法法法法 法保护证据公司法院公司法 经公司计算证据证证 = 2 = ****** = ************************ × × = ************ ≈ ************ **૱૱૱૱૱ૡૡ૱૱ઌૡ૱ઌ૽ઌઌઌઌઌઌઌઌઌઌઌઌઌઌઌઌઌઌઌ**

.... BLILT STRIAB DISCRAPER SUBLANT (CFS)

STATION: NOTTE STALDA

HORTE BOSTELY SIB TOTAL (CFS)(AC/FT)

=

=

2

=

≈

Ħ

2

≍

2

22

≂

=

=

=

=

 \simeq

=

=

=

=

=

まりなる しゃんしょくしょうけんけん *<u>*</u>************* ******************

corne Baill Steam Disceased Semant (CFS) crees

	MOTT NOTTH MOSTELY EAI HIS TOTAL (CTS) (CFS)(AC/FT)
	=
	=
	22
	21 2
	28
	22
	. ≈
	=
	æ
	=
	=
	=
	=
	=
	*
	=
	=
	=
	=
	=
	=
	•
	-
	-
=	∽
	-
TATION: BICKLES LATERA	-
: 16	~
11101	-
55	VDAT 1 BOSTB\

	` ` `≅	23	-, -,	-, -,	•		====	•
		= =	- : - :	- , -, .			·	
	77.3	- ; <u>-</u> ;	- ; -;	- , -, .			-	
		- ; -;	- , -,					
		- ; -:				• • •		
			₹.	- , -, -	-,, -			
		- ,	- , -,	•	-, -, -		~ =	
	-, -, -,	- ; -;				= =	===	

	===	- , -,						
~ ~ ~ ~ ~ ~ ~	=						-, -	
		- - ·				- ا شد .	; =	
					• • •			• • •

		 					-, - ,	
		_≃.			•			
		_ = ·					~ ~	
		`≓ •~•]a					
*****		`~i =, =, ∈	- ·	· ·			= _	
10/15 11/15 12/15 1/16 1/16 1/16 1/16	555	\$\$: 5 5	55	55	\$ <u>\$ 5 5</u>

***** DAILT STRIAB DISCEADER SWELLET (CFS) *****

STATIOR: SOUTH PIRST CREEK

10077 10071 200781.5 10. 119 1070. (CTS) (CTS)(AC/IT) 52 = == * * = 11 11 = = = = ≃ = = 11 11 11

=	22	116.1	2	Ξ	3	=	=	=	Ξ	=	=	2	3	=	=	=	=	=	≅	33	=	•		=	2
-	₹.	~;	~;	=	~;	~	Ξ	=	=	- .	=	~;	₹.	∽.	Ξ	Ξ	Ξ	∽.	~:	=	=	- .	=	~	- .
3.1	<u>-</u>	7.	7.6	3 :	1.1	-	=	=	<u>~</u>	3	-	~	=	<u>-</u>	<u>.</u>	~	=	- :	⊒ ⊒	===	<u>.</u>	7.	~	<u>.</u>	13.4
																								=	
	-	=			- .	<u>.</u>	_		- ;	•	~	- .	=	Ξ	<u>~</u> :		Ξ	╼.	<u>~</u>	7.3	- .	=	~	Ξ	-
																								- -	
																								~	
Ξ	~	7.	≂	~:	-	. :	<u>~</u>	- :	- .	=	- :	-	-;	Ξ	7.	~	=	~:	~	~	₹.	-	~!	┺-,	Ξ
																								-	
																								Ξ.	
																									Ξ
Ξ	=	- :	Ξ	<u>~</u>	Ξ	=	~	₹.	~	₹.	~;	- -	-	Ξ	9 .	<u>~</u>	Ξ	Ξ	. .	~-	-:	-:	~	₹.	<u> </u>
Ξ	_	3 .2	Ξ	<u>~</u>	Ξ	:	=	٠.	~:	Ξ	~:	٠.	- .	=	-	<u>~</u>	Ξ		<u>.</u>	- .	₹.	-	~	-	
Ξ	<u>~</u>	3 .2	=	~	Ξ	: :	Ξ	=	~	=	~	₹.	~	<u>~</u>	Ξ	<u>~</u>	Ξ	Ξ		₩.	•	=	~	-	1.5
Ξ	~	5 .5	~	~	<u>:</u>	_	~	- ,	=	=	~	₹.	~.	~	Ξ	<u>~</u>	Ξ	Ξ	=	-	=	-	=	-	_
Ξ	Ξ.	5 .0	<u>.</u>	<u>.</u>	<u>:</u>	-	<u>~</u>	•	-	=	-:	-	-	<u></u>	∵	?		Ξ	?:	=	•	-	=	•	=
Ξ	<u>=</u>	2.	-:	<u>~</u>	<u>~</u>	7.	_	- -	₹.	=	=	₹.		<u>~</u>	∵	_	<u>~</u>	Ξ	~	Ξ.	=	=	=	-	-
Ξ	<u>~</u>	5.1	<u>~</u>	~	<u>:</u>	7.	7.	- .	=	₹.	=	₹.	~	<u>:</u>	Ξ	~	<u>~</u> :	=	Ξ	•	٥.	=	-	-	1.2
Ξ	<u>-</u> :	. :	~	~	Ξ	=	~	- -	=	•	=	-	Ξ	<u>~</u>	=	<u>.</u>	<u> </u>	Ξ	-	Ξ		=	=	~.	
Ξ	<u>=</u>	7.	<u>~</u>	<u></u>	=	7.	=	•	=	=	=	-	Ξ	<u>~</u>	:	=	<u>~</u>	Ξ	~:	<u>-</u> :	_	-	₹.	**	=
Ξ	=	~:	~	<u>~</u>	=	7:	<u>:</u>	~:	₹.	₹.	=	- .	Ξ	Ξ	₹.	Ξ	<u>~</u>	~	Ξ	=	•	=	₹.	<u>~</u>	7.7
Ξ	≃:	<u>~</u>	~	~	Ξ	::	-	₹.	- .	=	=	- .	-	Ξ	<u> </u>	Ξ	<u>~</u>	- :	~	~	ż	=	=	٠-	Ξ
Ξ	<u>~</u>	Ξ	~	- :	Ξ	~ :	<u>~</u>	=	₹.	=	- .	₹.	~ ;	Ξ	<u>.</u> .	Ξ	<u>~</u>	Ξ	~	•	₹.	٥.	=	₹.	=
Ξ																									
Ξ		=		~			<u>~</u>	.	=	=	-	~	-	=	~	=	~	Ξ	÷	<u>-</u> ;	<u>۔</u> نــ	<u>.</u>	.	=	Ξ,
=	- :	~		~	Ξ		~	<u>=</u>	=	=	-	~	=	Ξ	<u>~</u>	Ξ	~:	Ξ	=	Ξ	_	•	=	~:	Ξ
~	-2	7.	~:	~	Ξ		<u></u>	=	=	₹.	=	~	Ξ	•	<u>~</u>	Ξ	~:	Ξ	Ξ	~	~	=	=:	₹.	9.
=	-	7.7	~	~	-	3	<u>~</u>			=	=	~	Ξ	- -	~	Ξ	<u>~</u>	Ξ		=	•	•	=	7	Ξ
Ξ	- :	<u>:</u>	<u>.</u>	. :	=	= 3	<u>~</u> :	Ξ	₹.	=	₹.	~	Ξ	=	<u>~</u>	=	~	Ξ	<u>~</u>	•	•	=	~	~	_
=																									
₹.		_	<u>~</u>	~	=	39.7	~	=	=	~:	=	~:	Ξ	- -	<u>.</u>		~	=	7.	=	=	•	٥.	~	=
=																									
~																									
~	-	~	≂	~ :	=	-	~		~	₹.	₹.	~		- -	~	_	<u>~</u>	<u>.</u>	- ,	=		~	•	~	=
3/1	=\ <u>1</u>	13/18	9	5 /2	3/16	*	× ×	3	1/8	*	3/16	38/01	38 /II	12/16	<u>:/:</u>	7/87	3/3	4/3	5/11	?/ 9	1/1	1/1	3/3	11/11	11/11

erere batte Strug bischaft sonnat (CFS) erere

STATIOE: POITE FIRST CORIL

TOTAL SCOTT)	85585688 88885
- =	
# 3 K	
Ē 3 Ē	
=	
x	
22	
	
~ ≈	
*	
~	
æ	
æ	
23	
2	
=	
=	
=	
=	
~	
=	
=	
=	
=	
=	
-	
_	
•	
<u>~</u>	
-	
~	
-	
VAV 1	

tites bailt streng discuser sugart (cts) tites

STATION: SOUTH PLANTS BITCH

-		=	– ; •	-	-	=	-	-	=	=	=	-	-	-	=	=	-	-	■.	-,	•	-	•
•		-	- , -	· -	: =	=	-	-	-	-	-	-	-	-	=	=	-	- ,	- :	=	=	-	•
•		-	- -		=	- :	- :	-	-	=	- ,	- .	-	-	=	=	=	=	- .	- ,	=	-	4
=	-	=	•	•	•		- ,	=		-		-	-		- .		- :		- .	- ;		-	
=	- , -,	-	•	-	-,	=	-	=	=	=	=	=	-		=	•	=	•	=	=	=	=	-
₹,		-	•	-	-	=	=	~	=	=	=	-	=		=	=	=	=	=	-	=	-	•
=, •	- , -,	•	~ •	•	•	=	=	=	=:	-	=	=	=	=	=	=	=	=	=	₹.	=	-	•
•		-	-, -	•	=	•	•	•		=	₹.	=	=	=	=	=	=	-	=	=	₹.	=	•
₹.		=:		•	=	=	₹.	=	-	=	=	=	=	=	•	=	₹.	-	=	=	=	-	•
₹.		=		: =	•	=	=	=	₹.	•	=	=	-	=	=	=	=	•	=	-	-	=	•
= •		-		-	-	=	=	=	-	=	=	=	=	•	=	-	-	-	-	=	₹.	=	•
		=:																					
		- •																					
		- •																					
		- •																					
		-:																					
		-																					
		-:																					
		-, -																					
-, -																							
-, -	: - :			=	- ;	- •	- •	-	-	-	_	- ,	- .	- .	- .	=	- ,	- .	=	- .	=	- .	-
-; -	: =:	-: •	-	-	=:	-	- : •	- ,	- .	-	- .	- .	- .	- .	- ,	- .	-	رۍ	-	=	=	-	-
	: =:	-	-	=	=:	- •	- , •	=	=	- ,	-	-	- .	- .	- ,	=	=	- .	=	- .	- .	-	-
-: -	-	- , -	-	-	- , ·	-	- . •	- .	-	- .	- ,	- .	=	- .	=	- .	- .	=	- .	- .	- .	-	-
-; -	: - :		-	-	= •	- •	- , •	=:	-	=.	-	- .	∽ .	╼.	=	=	- .	=	-	- .	- ,	- .	-
-, -																							
	-		•	-	=:	•	•	•	-	•	=	•	=	=	•	=	•	₹.	=	-	-	₹.	-
=; =											_												
-; -																							
-:-																							
-:-	•	- : -	; =	=	•	•	-	-	-	•	-	-	-	=	-	- .	₹.	•	-	-	=	=	-
27/31 27/31	12/82	7. 7. 7.	* * *	34/3	3				3/16			3 (2)	=	1	2/2		5	5			1/1	11/11	11/11

.... Bailt stelle Bisclaber souther (ers)

STATIOF: BASIB A

	5		R :	-	= :		= ;	=	=	=	F	=	=	-		=	= =		: :	•		7	=	3	¥	7	3	~
	3		į	= :	= :	= :	= :	= :	= :	Ę	=	=	=	=	3	=	: =	:	; :	•		=	=	=	=	5	=	=
	1 92	3	•	£ :	:	:	= :	= :	3:		5	.75	=	=	*	: =	=		; =	:	•	7	2	5 .	7	=	=	*
									-																		=	
	=	2	; :		2	:	=	= :	= :	= :	=	=	=	3	=	=	=	•	=		= :	= :	=	=	=	=	=	=
	=	2	:	= =	2	:	2 :	= :	= :	= :	=	=	=	=	=	=	=	:	=	:		= :	=	≃.	=	=	=	=
	=	3				2	= =	= :	= :	= :	=	=	=	=	=	3	=	:	;		=	= :	£	=	=	=	=	=
	=	=	:	:		=	•	=	=	= :	=	=	=	=	=	=	=	:		:	:	= :	=	=	=	=	=	=
	=	3		•	;	•	=	= :	= :	= :	=	=	#	=	=	=	=	:	: =			= :	=	=	=	=	=	=
	Ξ	=	=	:	:	:		= =	===	= =	=	3	2	2	=	=	=	=	:	:			=	=	=	=	=	=
	Ξ	=	=	: 2		:	:	*	==		Ξ	=	=	=	Ξ	=	=	=	=	: :	:	2 :	=	Ξ.	~	=	=	=
	=	=	=			: =		-	= =		=	=	=	13	=	=	3	=	=	: =	:	•	=	=	2	=	Ξ	=
	=	=	=				:	=	==		= 1	€.	≃.	=	=	=	=	=	=	=			~	=	₹.	=	=	=
																						٠,	-			-	-	=
																											=	
																											=	
																											=	_
																											=	
																											₹.	
																											=	
																											∓. =:	
																											=	
																											 =	
																											=	
																								-	-	-	=	
																											=	
:	=	=	=	=	=	=	=	=	=	=	: :	= :	=	2	Ξ.	3	=	=	=	=	=	=		= :	=	=	=	2
:	=	=	=	=	=	=	2	=	=	=		= :	=	2	=	=	Ξ.	=	=	=	=	=		= :	=	=	=	=
;	=	=	=	5	=	=	=	2	=	2	: 3	5	=	=	=	Ξ.	8	8	2	2	2	=		= :	2	=	=	=
;	=	=	=	=	=	=	77	=	=	=		= :	=	=	=	=	=	=	3	=	43	=	:	= :	=	= :	=	=
																											= :	
:	=	=	=	=	=	=	=	=	=	=	=	2	=	=	=	=	=	=	=	=	S	=	:	= :	= :	= :	= :	=
•	= :	=	=	=	=	=	=	=	2	=	:	; :	= :	=	=	~	=	=	=	=	=	=		7	= :	= :	= :	=
	?	3	2/15	1/16	31/2	3 /3	*	3/86	91/9	1/15	34/4			*	<u>/</u>	2/16	7	1/11	3/13	!!	2/13	11/1				Ē.		<u>=</u>

***** DAILY STREAM DISCRARCE SOMBARY (CFS) *****

BOSTS BOSTS BOSTBLY BAS BIS TOTAL (CPS) (CPS)(AC/FT) = = 2 = 5 × 2 ≈ 2 ~ = = = = = = \simeq = = = = = STATION: PIRST CM. OFF POST \B47 1 B0171\ ******** = = == 5 8 5 ----***** **** **计算证明证据证据证明证明证明证明** ------***** **电阻器通讯器图图图图图图图图** -----**** 282888888888888 28224422222 55558865555555

CATPILLS

€

WATER QUALITY DATA FOR RMA SURFACE WATER SAMPLING SITES 1ST QUARTER FY1986-4TH QUARTER FY1987

ENTIRONMENTAL SCIENCE AND ENGINEERING, INC. DATE: 05/19/08 PARE 1

	*	K/A			=	24601				Ž	12788		1200	: : :	=======================================	1436	14677	14.21				1691	15101	1	1661			15.141		235				=======================================	1638	1568	=======================================	18181	1350	1633			22818	22300		186	4 8317
•	3	2/2			=	1111				20(00)	28184		82688	3								1	72511	23.0	1271			18787		16.21				=======================================	36.44	355	1510	2698		25731		;	= :		2 ;	1872C	9900 6
•	32	į			=	. 13			;	=	(28.1		E .	× ×		~:	= ;			=======================================		2	=	33.5	=======================================			138.1	7	; ;	•		,	2.7			7	430.1	1.3	9.9		:	<u>.</u>			= = = = = = = = = = = = = = = = = = =	1.47)
	93	•			2	411.6			:	1.	9 80		<18.5	÷	÷					=======================================		9.80	11.6	û. 1.	418.6			3 117						9.	7 117	7	9	£1.6	9.6	\$.E			÷	9	5.5		
	114400	•			=	d. X			•	X	47.94			3 .5	2 :	.	` .					5	2.5	7.7	4.5									₹.			5	2.5	3. €	€.			3 .	3 . 5	2 :	X :	X .5
	ទន្ទ	È			=	.S. 35			•	£	65.36		÷.	. 7	= :	=======================================				: z	=	=======================================	(S. 35	65.36	16.1			*		2 5	•			3 .3	* *		5	65.36	\$. \$	65.96			%	S	80°	\$.	1.3
	CANTH				=	\$.16			•	4 .c	65.16		\$. 2.5		₹ :	<u>.</u>					2 5	6.16	\$1.5	(5.16	6.15			31.57	2 2	2 2	•			\$. =	31.37	. · · ·	5	\$.36	cs. 16	65.16			\$. = :	<u>+</u>	\$. ₩:	÷ :	2 . C
	3				3	3			****		9 1.7		2		:	1171	5		2	135	353	130	5010	===	(660			1347		1678	•		;	3678	*36*	1531	(126)	3940	3600	38.40			5	3	33	2164	
	APSTRIC REAL				2.56	÷.			:	?	0.0		3	2 :	= :	7 5		: 5	= =	2	=======================================	2.2	2.38	0.8	⊒.			65 67		5	•		:	<u>=</u>	-		0	10.0	0.0	4.0			2.	5	2:	5	3 .0
HSH	um sm ma		5	100	DICE		2				111	27.5	=	Ē	===					2	100	E				7:					2	DICE	25		3 5		200	111	Ħ		STEE	STEE					910
	E	3	3:	3	-	=	-	= :		::	=	<u> </u>	= :	= :			: :	=	: =	=	=	=	=	=	=	= :		: :	=	=	-	=	-				-	0.	-	=	=	=	-	-	-	o .	₽ .
	SAMPLE		# 5	: =	=	=	= :	= :	: :	:=	=	# :	= :	₹ :	1 :	=	: =	: =	: =	: =	=	=	=	=	= :	# :	= =	: =	: =	=	=	Ħ	= :	# :	==	: =	=	=	Ħ	=	=	=	= :	= :	= =	= :	1
	S TICE		4	• •	9	•			. u		9		•	•	•	• 4		• 4				•	•	•			P 44				ند.	.	ه مو ند	ے م			•	9	u.	ı	C	9	، م	.	ه د		ھ
	SAN TIPE		2 2	. S.	25	5 .	5 5	7.5		5	5.	5 .	5, 1	5 5	5 2			3 27	. 3	5	8	2	5	5	.	ة ة •		5	3	5	5	5	.	5 3		. 5.	3	5.	\$	5	3	5 .	5	ች ፡	58	7 8	# C
		=======================================	3 :	2 2	E : E	<u>=</u>	~:			? =	200	2 :				=	=	=	=	=======================================	3:3	12:38	===	2:2	2	=======================================			1.52	=	11:31	5:	= : = :	7 :	= =	=	13:53	13:31	12:51	==	S :	2	2 :		7 :	- :	5:2
		1111	3/2/10	19/11/18	19/11/51	10/30/13	91/20/10	37/47		31/21/11	18/26/83	12/14/15	91/11/1	11/7/1	13/16/66	11/36/11	16/16/17	10/16/11	14/11/16	18/17/16	31/11/61	12/16/16	13/38/61	16/15/11	10/16/11	5/21/21)/(//	15/20/87	19/33/17	16/31/87	31/11/11	17/02/06	3/0/6	19/11/68	5/27/83	18/53/81	16/30/17	10/32/11	16/25/17	16/30/17	1/24/85	31/11/11	//(!/(10/67/41	31/36/10	19/11/98	14/11/41
		SHPLE 19					21-12												100	_	33(16		- DXC	336			12-11							741-71	_		12.116			_					88390		
	ننے	_						- ~	• •	·=	ž	2				-	_	-	~	~	~	~	~	~	~ •	~ ~	•	-	~	~	=	- ;	= ;	2 2	: =	=	-	=	~		: ::	= :	2 :	٠ ≃		• •	•
	PARAMETER:	10.62	14-58	181	1445113	131	15-Y		CHST74	14543	HSH:	1000		1361	13077	14052	144053	141054	PS-0	OPSII	0753	14051	11652	11003	14054	74-58	14593	1(51)	144584	14(5)1	12-5	145#2			1450)	14511	TASES	TIST!	1451	1450	N-5.	757		1000	L SALLS	11000	-

22			Ç.	SIL 5	5			41.5	÷.	5.5	9	GI.S	(18.5	GB.S	5	÷.			5	5	5.5	410.5	÷	=	5		÷	÷	=	2		÷	÷	÷:	-		÷	=======================================	-	÷	÷	÷		
CHARBAR				£.5				d.152																		40 152					ch. 152		4.152							÷ 152				
<u> </u>	3	3		¥ :		7	3	2			3	÷.	3	3	2				2	3	£.	3	3	3		*	2	3 .5	3		2		2	2			2	7	÷	¥.	÷	÷	¥	:
	34	6.52	4.052	3 5	Z 2	2	d. 82	9	= ;	2	Ġ.62	ct. 152	d. 652	5.5	6.52 5.52 5.52	20.5		2	4 652	1 62	ca. 652	ca. 83	£.152	÷ 5	75.5		¢0.052	4.152	2	7.0	9.6	ct. 152	=	÷		2	C B 2	5	4 BS2	£.	4.152	?	2 2 7 1	72.
1739 1847 187	3	ŝ		£ 5	=	5	1.913	£ 85	2	1	÷.	÷.	÷.	3			¥		3	÷	19.19	ê.K	÷	3:		555	.a. 968	ê. K	÷		52	3	~	£:				3	÷	€ ÷	07.00		3 5	944 8,
1/34 1/34		÷.	4.878			. 53	4.1	=			ć. 11	÷.13	£.								ca. 678	÷.	÷.				£.13	£. 13	=		=======================================	1.11	~						111	â. B	£ .	÷		
P. P 198 1/20	43.05	4.05	3.5			ê. 265	cl. 153	÷.			40.053	d. 153	ê. 5					6 651	0.63	4.153	4.153	5	÷. 53	5		=======================================	4 153	÷.153				. 153	=	5.5			3	5.5	£. 153	ê. E	÷ 185	÷	2	700.0
P. P 1917 1671.	÷.	4.13	÷.		Ē	430	ê. E	£ :			d.153	÷.5	÷.						4.03	6.13	4.11	÷.	-			0.15	ch. 030	9	= :		651	6.13	159				=	÷.15	111	÷ 159	£.5	Ē	= = =	
1 /38	6.13	÷.				1.38	ê. 03				6.03	÷						=	G. 171	0.11	=======================================	ê.93	E :	= = =			¢B. 878	4.1			=	6.11	=				120	=	÷.	· 170	ê. 13	÷		A . A .
# X	÷.	41.9	2		÷	412.9	÷	÷		•	412.9	÷.	6 5				6.25	42.9	(12.9	412.9	(12.9	6.2.3	67.2	3.5	42.5	6.29	412.9	€.5°			¢	6.219	62.9		-		÷.	0.00	(12.9	(12.9	42.9	£.5	<u></u>	.11.
62 1/38 86 1/38	£.	9. 3	5		3	.9. 31	٠. ت	7.5		5	£.	2			3 5		9.3	6.1	6.3	÷.	£.	5 5	= :	7 7	5	(16.2	£.2	÷	= = = = = = = = = = = = = = = = = = =		5	£.			5			3.3	9.3	÷.	# F	5	:	:
27 75 28 28	6 .13	÷.	÷ ;		÷	1.33				÷.	£ 13	= =				•	6.13		6 .138	. .	= =	£ .5	•	5. E	: = :	÷.13	÷.				÷.13	= :				=	÷.	÷.	÷.	÷	÷.	=		
IIDCIII K/L			3, 4	7			•	(. 33	(9.28)		0.20	2 :					ê.20	40.240	60.20	÷.	÷.	2 :	5 .			(8.359	#. T	=======================================			(4.159				17.	÷ 2				÷	2 :	2:		*
2 7/X			=	2					655		822						6621	138	19186	=======================================						67200	=	-	شد	•		-		12.	1631	333	===							
	101/20/10 104-10	11/27/16	1 61-901 93/83/16 93.5)	10/11/11	11/2/11	11/12/16 11	10 31/11/SO	20 71 31/21/34 [00-10][]	10/36/11	12/11/15 19	8 92/6/10	00:00 30:00:00 00:00 1	17/16/16 19	11/26/11	11 (1/31/31	10/31/01	11/11/16	98/15/98	19/11/16	31/31/21		2 01DC 10/10/01 10:30	71/1/1	13-11	19/13/16	11/62/50		86 FT 19/8F/98 F88-28 F	11/0/16		15/27/11	71 02-050 03/13/15 12.41		12-006 16/30/17		48 02-089 18/26/87 12:51	83-862 88/38/87	2	= :		15.10.10/23/01.10.56 25	0 11 92/15/20 90 An 0 9		
PREMETER FOLIS	25.2	<u> </u>		153	2.5	2		182	14514	=			744651	11462	1385	111054	25	₩25	2	<u> </u>	3 2 2	797	12-17	14507	14583	1650			14502	1151)	146513			14893	11314;	1651	14593	25.2			¥	11.50	1.55	

ये इ	i	9 0,13	ĭ	3	5	3	7.00	2		1000	1	25				×	200	25.28 25.28	20.00			725	3	200				į	18581	138	15408		5	63:68	2 :		1458	57631	23.5	233	#33	3		
E 3	i	D. C.	ت ت	₽ ;		~	7.0	₩.	5 5 6 5	7		47.0	5.5	= t	÷ 5	7	4.0	2.C	₩.	;; t	÷ 5		2.0	47.0	÷:	5 t	= == = ===============================	~	4.4	₩.	= = = = = =	; c	2.0	÷	= : ∵ :	; ;	5 5	5	~	₽	÷	= :	2 5 2 5	•
£3		÷.	Z :	≈ *	2 2	2	£.	÷ :	C 7	, T	d.x	£.	÷.	R X	- T	÷	4.15	Z.	<u>ئ</u> ت	5 5 5 7	3 5	: T	4.15	÷ ;		? ;	2 2	÷.	41.35	£.5	# # T T	2	4.35	£.5	# F	3 5	: ×	÷	£ 5	÷	-1 35	≈ :	5 5 5 5	•
THE LOCAL				# # T T					4			## T			7				# :		7 7			3 .	자 F 당 7	5		2			₹, ₹ ∵ 7			≂	7.	= =	=======================================	=	£. 1	₽.	¥.1.×	≂:	2 2	;
NOTES TOTAL		Z.;	=	¥ = =	=	=======================================	=	= :		7	z T	£.	₹ :	. .	3	£.£	¥.1	# : T	= :	= =	7	7	7	£.5	X 7	= =	* =	7	17.7	X :	# F	7	÷ ;	≍ :	7.7 7.7	= =	: = : =	7	7.0	₹.	÷	<u>ج</u> :	# # T T	;
1915 17.31	•	=	= :	= =	=======================================	÷.2	= :	= = =	=======================================	£	4.2	# T	≈ : = :	= = = = = = =	=======================================	4.2	£.	Ę.	. .	3 Z	; ;	=======================================	4.21	₽.7	≂ ;	= =	= =	7.7	7.7	≂ ;	=======================================	=======================================	C 13	₹	= :	; ;	: =	÷.	4.2	4.21	æ.₽	≂ :	: : :	:
1,4.0119 PG/L		2	≅ : ~ :	E %	~	₩.	= : ;;	2 :	7.7	2.2	# C	₹.	2 7	# # C	2	47.0	3.7	÷.	2 5	2 %	2	2	43.B	2. E	2 : 7 :	3 =	; *	7	. .	2:	2 5	.	41.35	2 :	2 :	: :	~	= ~	42.11	€.	# Z	=:	2	•
1.4-3171	: :	= :	= :		=======================================	÷	= :	= =	=======================================	÷	÷.:	=	=======================================	=======================================	-	4.1	= ;	=	= =	= =	=======================================	-	4.1	= :	= =	3 5		=	₽.E	= :	= =	=	÷ 53	= :	= =	= =	: =	=	÷.:	2 5	=======================================	= :	=======================================	<u>.</u>
<u> </u>	. ;	₹ :	. .	=======================================	2.5	÷.	= :	3	-	2.5	£.	Ę.	3 5		-	c1.33	# T	= ;	2 5		7	7	€ .0	7	# F		=======================================	£.1	£.5	7.	7 T		8 .5	÷:	7 :	=======================================	=======================================	-	5	=	£,15	# : T :		:
2 2 2 4	:	2 :	= =		£.2	3	=======================================		=======================================	£.3	2.5	2 : T	3 5	: = : =	£.2	4.2	2 ;	₹ ;	2 2	: Z	2	# ÷	4.2	2	2 5		: = :	£.2	2.5	÷:	3 5	7	9.0	≂:	2 2		2.3	=======================================	1.20	÷.	4.2	2:	2.2	
CP1502 17.74	;	₽ :	= :	7 7	÷.	≅ ;	= :	Ē	Ę	£.5	= ;	= :			£.7	£.3	= :	= =	= = =	2	=	£.13	£.73	= :	2 S	7 5	Ę	£.73	₹. 7	2 :	2 7	÷.	2.2	= :	= =	= =	=	=======================================	2.3		£.	2 :	= =	
3 %		•		=======================================	÷::	;	= =	=======================================	=	£.		•	=======================================	=	÷.	= :	=	:	: :	=	=	÷.:	3 .0	•	=======================================	2	=	3 .5	;	7 7	2 2	=======================================	9 .7	= :	= =	=======================================	=		1.1	£.15	#7	= :	=======================================	•
# 5				÷.	# ~			=	:	₹.				₩.5	 ∑	# : **				2. C	÷.	÷ =	₹.7			=		42.68	,		200	: 	= : = :	3 :	= = :-0	2	= ~		•	=======================================	2 . 2		3 2	
15		?	? ?	÷		~ :		?	÷ 5	÷5 2	÷.	2 :	? ?		15.2	~ ;	2.5	5	3 3	- S	45.2	415.2	45.2	~ :	415.2	25.2	c15.2	<15.2	~ :	2.5	25.5	415.2	~; ;	÷	7 5	~ < ;	415.2	415.2	(15.2	~ ~	÷;	7 ()	35	
	Ξ;		: =	65/13/17 14 M	2	= :	07,02/36 TG 50	=	=	=	2	14/11/16 13 34 A4/13/16 13 34	Ξ	=	=	=:		=	=					01 - 11 - 11 - 11 - 11	11-21 97/29/60					10.11 31/31/19			15/27/11 14 11	10/23/01 13:15		16/25/11 12 51	46/39/17 19 65	12/25/15 19 35	87/01/16 12 15	15/15/17 13 25		73/74/16 11 34 06/16/17 11 11	10/12/17 13 20	
																		_								12-191 15	13.111	12-113-15	E2-994 E1	10 144 -74	2-111 15			11 CH-71										
=		•	-	-			-	~	=	= :	٠.		-	-	-	 .		•	• ~	~	~	~	~ •	~ -		_			_	- =	: =	=	= :	= =	=	=	•	~		≏ :	≃ •		• •	
PALASTES FRETS	2	201	1691	2620	100			1150	16207				2	74463	14462	2002			S	Tersi	114652	71055	200	2 5	100	14(5))	14534	1 (S)	13-12		THESTS	1631			1150	THEST	11011	5 ;	îs:			1000	11054	

혈호	= =	=	÷;	==	2. T	= =	=	= =	÷	2	=======================================	2 : T	=======================================	= = =	=======================================	41.1	=======================================	=======================================	= =	=======================================	= :	 	= =		= :		=	= =	=======================================	=======================================	= :	# F	= =	: ≃ : ₹	:)
TING KA	# 5	2	3 5	# # # # #	7	2 Z	2	2.2	2	2 2	2.2	# E	7.7	R	2.7	47.5	2.T	2	2. 5	2 Z	2 : T	7.7	2. 5	2	₹ ;	2 7	₹.5	7.7	2	4.2	4.2	2.5	5.5	# T	£.2	₽ ₽ . ₩
<u> </u>	15.	5.5		÷	÷		3.5				3.61	35	÷.	3.5	5	9.61	35	9.51	5.5 • •		5.5		£.	=	5		9.51	5.5		113.15	11.61			4.61	19.0	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.	3.	2 2 7 7	-	2 :	E 2	2 : T	; .		\$ 3		= =	7	3 5	; ;	÷.	2 2	÷	= = = =	=	= :	; -	==	=	# 2	=======================================	# T	=======================================	=======================================	. .	= :	= : = :	=======================================	=	#. . .	# # # #
1111 121	£.5	÷;	2.5	÷	= :	-	- - :	÷ =			1.7	= = = =	2.7	E 5	; ; ; ; ; ;	£.	÷ =	2.5	# # T	÷.	E :	=======================================	2.5	=	= =	=	£.5	F	=======================================	4.7	. .	₽. F.	= =	: . .	2 .5	2 5 5
11KB 1K/L	<u>-</u>	.	=======================================	= :	= =	=======================================	===	=======================================	5	=======================================	=======================================	=======================================	=======================================	=======================================	=======================================		= =	-	=======================================	-	=======================================	=======================================	=======================================	=	= =	=======================================	0.10	= = = =	=======================================	€	= :	E :	=======================================	= = =	= :	# # # # # # # # # # # # # # # # # # #
HICH KA	4.28	2 ;		2	. .	# ## # ##	2.5 T	2	=		£.2	7. 7.	4.2	# # = =	0.2	£.2	7 7	4.28	7. T	d. 28	2 2	0.2	# F	2.0	# F	2	67.7	8 .5	2	41.28	4.2	1 .7	5.5 5.5	2.5	47.78	c1.20
1/34 18/1	4.3	## 		===	2 2	==	# # = = =	÷	25	3 =	# T	Z ::	2.5	=======================================	7	F. :	7 7	2.3	2 2	7	7 7	=======================================	# # T T	=	2 2	=======================================	£.1	7 5	2	01 10	8 .5	7. F	R. F.	: 2	Q.3	5.5 5.5
EMTC.	3.5	E 2	3 3 3 3	₩.	= =	5		5	a		S.	5 5 5 5	S.E	# # 0 0	5	Ş;	5 5 5 5	S. H.	2 2	(S.H	= = 0 <	\$.	\$ \$	\$	5.5 2.5 3.5 4.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	\$.	6. E	= = : :	÷ 5	S.#	ۍ = :	3 .5	= = C <	: .	₽.Ç.	\$ \$ \$ \$
SEC. 1/38	4.58	3.5 5.5		÷.		3	33	÷	3.5 T. T.	5	£.5		6.50			÷.	2 E	6.58		15.		2			5 5 5 5	18.	9.5		. SBB	ca. 588				¢ 51	60.580	.0.580 .9.580
2 × ×	÷.÷	===	==	= =	=======================================	=	=======================================	=	=======================================	=	= :	= =	÷.	3 5	=	÷:	= =	9 .5	= =	9.0	3 5	=	=======================================	=	= =	÷	3 :	= =	÷.	e1.13	= :	= :	3 S	=	5	i e
8 % 8 %	4.0	÷:	==	= =	; ~	=	= = ~ ~	÷.	= = ~ ~	4.5	÷:	= = = = =	÷:	# = 2		= :	= =	= :	= =	=	= =	=	= =	=	==	=	= :	= =	=	=	= :	‡ =	# - -	42.4	42.40	2.4
₹ 5	;		_												~	÷ :	2 2	÷.	3 3	Ξ.	3 2	~	~ ~		2 2	Ç	Ċ.	3 3		<u>a</u> .	U :	• •				
	:			=======================================	1611	361		## ## ## ## ## ## ## ## ## ## ## ## ##	13.186	241111	3648		13600									74909			29588 (2		103008 (2	29169	10001	29 11185		12001	12540	129808	3:	191806
# ¥	_		_	1190		_	_											3330		3311		1488		18611	- 16060 - 16060	111000						-				500161 0221>
	0021) S to 50/20/10	67/82/16 11:39 <1200 69/83/18 69 51 <1200	85/19/87 14:00 - 4720 - 1	10/33/87 83 13 1190 1 BI/82/AK 11:12 (338)	#7/02/16 GE 54 1540	69/13/16 60:17 2660	09/12/66 14:32 1489 3	10/26/01 13:50 41220	12/14/85 99:15 1330 04/87/15 89:39 <1280	66/12/16 13 38 <1200	09/81/86 49:20 41240 13/15/15 13:50	03/26/87 13:30 <1206	16/16/07 11:04 (0220	1776 18:30 (1780	66/12/86 13:40 <1200 104088	00/07/06 00:50 c./20 00:00 00:	03/25/11/2:30 (120 13/10)	96/16/87 19:38 <1228 39300	12/12/05 13:30 (1200	81/82/85 12:48 <1200 93000	85/20/47 11.17 <1228 8768	10/29/37 11:52 41220 74800	45/41/11/48 <1250 19308 <1914198/19/19/19/19/19/19/19/19/19/19/19/19/19/	07/02/26 00:50 <1200 > 16600	85/27/87 07:42 <1228 % 3658	09/03/46 12:47 <1200 J11000	18/27/87 14 11 (1220	66/30/17 13.57 <1220	19/26/87 13 21 41220	10/26/07 12 51 41220	56/38/57 19 85 (1728 13/38/86 88 36 (1388)	11/18/13 St 21 31/19/10 11/19/10 St 21 31/19/10	05/15/47 13 25 <1228	10/29/47 98 51 (1220	09/64/16 11 50 (1200	19/12/17 13 29 <1229
•	00217 15 20 30/20/10 100-10	67/82/16 11:39 <1200 69/83/18 69 51 <1200	85/19/87 14:00 - 4720 - 1	10/33/87 88 19 1190 1 BI/82/AK 11-12 (1388	150	69/13/16 60:17 2660	09/12/66 14:32 1489 3	10/26/11 13:50 41220	99:15 1530 49:30 (120	66/12/16 13 38 <1200	19:20 c1200	03/26/87 13:30 <1206	11:01 0120	1776 18:30 (1780	66/12/86 13:40 <1200 104088	00120 0020 00100	03/25/17 12:30 <1200 131900	96/16/87 19:38 (1228 3930)	12/12/05 13:30 (1200	12:40 <1200 93000	. 82-891 85/20/11 11 - 11 - 1128 85/20/10 11 - 11	10/29/37 11:52 41220 74800	13-18 <1220 19309 19-28 <1286	07/02/26 00:50 <1200 > 16600	13 31 <1200 \ (16000 07:42 <1220 \(\frac{1}{4}\) 30500	09/03/46 12:47 <1200 J11000	14 11 (1220	66/30/17 13.57 <1220	19/26/87 13 21 41220	10/26/07 12 51 41220	18 15 (1728	11/18/13 St 21 31/19/10 11/19/10 St 21 31/19/10	05/15/47 13 25 <1228	10/29/47 98 51 (1220	11 50 <1200	19/12/17 13 29 <1229

E 2	=======================================		:						3	-: -:		=:		1.37	1.15	7. 17	3.2	1.55	3.			7.95	1.1	1.63	1.31	1.26			:	? =	•				¥.	.	5	•						;	€.		•	7.91		
S COO TIES M	MEGS/CE 579		:	6				•	2		;	55		131	11	2	::	1210	1420			3	229	SS	316	Ξ			133	2					. 218	€,	(19)		-				-	ţ	=		;	₹		
2	K/L 15 1				•	≈ :	₹			;	≅		~ ~		<u>=</u>	35	215	213	=	£	125	Ĭ	136	163	222	13	=======================================	2440			3 5	5	=======================================			:	5	383	=	=	<u>.</u>	Ξ	₹ 5.		:		<u> </u>	22	22	26
				_		= :			Ξ.			≈ =		_		#: E			2:2			-	### ### ###	_	_	-		\$: 2 :					=	11:21	5		13-71	=======================================			13:31	12:51	2:	?	22	2:	≅ :	5	= :	2:5
				94/21/14		10/11/ca		///	/20/16		2/2/5	7. 2. 2. 3.	11/32/11	12/11/65	11/11/16	3 /2:/ 3	#/i/#	12/16/1	13/32/03	11/31/34	11/11/11	#\S\#	K /2/ X	#/II/K	12/16/1	17/35/11	1/31/9	11/16/11	11/11/11 11/11/11		12/23/11	10/23/01	11/11/11	11/29/11	1/2/1	13/13/1		\$5/27/37	11/62/11	11/11/11	10/36/01	11/36/11	18/11/36	2/02/21	11/11/11	1 / C / C	10/62/81	3/61/1		11/21/11
			7 -		B :	Ĭ				- 60	~	-	Ĭ-			<u>=</u>				<u>=</u>		X		Ħ	100	Ē	=	¥ ;			13.E	101-20	-	16-50	7-11	Ĭ:		75-115	12.115	12·HE	12-117	12-111	13-03					2		1276
		-	•		-	- -	٠.		-	~ (~;	Ξ.	Ξ	~		-	-	-	-	-	-	~	~	~	~	~	~	~ •	• -		-	_	~	=	- ;	= =	: ::	=	=	-	=	=	•	S :	2 ;	2 :	≃ `	•	•	•
	E :	2		Ž	3			7 1							2	E	2	714651	110052	Z = 200	734654	\$	Ş	2		2¥2						1331	14513	2.5			168		762			151		7 .				Ç.		14731

ENTINOMETRIC SCIENCE AND ENCINEERING, 19C. DATE: 15/19/48 PAGE 6

* 4			152 158 158			1138					1111	32	1161	==			1221		H626			44777			1180				14862	1828	1911	21600	2010			5	9350			396	1618		}
3 5						335	252		111000	1628	Z Z	1386	24691	63786						100					112011					=======================================	10129	34.00				12610	34200		,		1360		
×≥		į	E (j		6	5		ē		5	×	E	5		6	FI (R	5	R	5				₹			ž i	5 6	K	5	5	5			2	Ę		1	3	Ę	•	
32		;				418.6	===		3 117		î.S	9 95	3.8 0	ûl.6	;	÷.	÷:	=======================================	=	÷.		5.5			9,110		;	=		=	9.0	÷.	6			418.6	÷		•				
267.27 17.78		•	Z Z			4.8	4.1		**	5	÷.	4.5	£.5	€. £	:	₹	3 5	Z :	Z :	÷	3 :	<u>.</u>			2.5		;	Z :		3 3	7.7	47.5	¥.			20.36	2.5		:	2			
2 % %		•		•		36.50	18.2		= ==	=======================================	=	12.1	16.2	6.98	:		= :	= :	=	5.5		=			65.35		;	= :	= =	5	5.36	6.36	12.5			36 \$)	\$ 36		:	.	35		
1/94 1818419		;	2 . S			c5.18	€. 1€		7 11	5.23	\$ 3	c§. 16	\$. IS	5 .16	:	₽.;	₹. 0	₹:	\$. T	\$:	= : :	= :			.S. 16		:	₹. •	7 7	2 5	2	ć§. 16	cs. 16			65.36	5.		;	2 2	2 2	•	
1/34				•		35	36		111	=	35	111	3	235	•		.		236	=		=			3638		• • • •	= =	3 5		3	2469	224			933	Ē		;			:	
198131C 16.7L		•				42.58	÷.		5	=	=	2.	.2.S	2.€	:	= :	<u>.</u>	= :	6.25	2.5	2	3.5			0.0		;	3.5		5	(2.58	0.0	€. 5			19 7	9.5		;	2.5	5 5	•	
1111 1111 1111 1111 CO	Ę	2		E	EE	Ē	2			Ë	2111	E	=	5							2				Ē	E	=			5	Ë		=				DICE	DICE	101				910
E 2	=	= :	===	-	==	=	-	::	: =	: :	=	=	=	= :	3:	-	-	3 :	-	= :	:	::	: :	-	=	-	= :	= :	::	=	=	=	-	-			-	-	-		=======================================	-	. <u></u>
Sunt	E :	= :	=	=	= =	z	z :	= =	=	! =	=	=	=	= :	: :	= :	≓ ;	€ :	= :	≝ :	= :	= 2	= =	=	=	# :	= :	:	=	: =	=	=	= :	= :	==	: =	=	=	= :	= =	: =	=	=
5 1103	•		φ •	•	. .	•	•	.	• •	•	ø	•	•		•		. د	•	•			•	.	• 4		•		ه د ن				•		.	, u			٠	. ب	ي و	·u		
Su m	3.	R 3	: 5	Z.	3. 5.	3	Z :	7 E	. a	a	5	55	ا کا	5 t	* 5	7. 5	Z :	7	Z 8	Z :	2 5	7 5	7 B			5 .	Z (2 5	. 5	. 5	2	5	5 3	Z 5	. 5	. 5	3	5.	5 . 3	2 5	. 5	. 3	5
:	==:	2	=	₽:	2 =	=	=:	= =	=	7	Ξ	=	=	= =				= =	= :	2 :	3	1	2 %	=	=	=:	2	2 :	=	5	=	=	Ξ:	- :	=	=	=	=	= :	2 =	=	=	=
	-	-	=	=	= =	2	= : = :	= Z	=	: = : =	=======================================	= :	= :	= : = :	::	= =	:	- : : :	= :	= : = :	: : : :	= =		:	=======================================	5	= : : :	= =	= =	= 2	=======================================	=	= : = :	2 : 2 :	: = : =	=	11 11	= : 9:	= : = :		=======================================	=======================================	==
•	27/8/11 S1/8/12)///A		13/22/15	#/E/#	12/12/21	11/27/11	11/21/15	1/2/1	¥/21/	13/14/15	12/16/16	17/2/6	16/16/11								77/1/1	17/11/18	3/(1/6)	16/31/17	11/22/05	\$1/12/21		31/33/68	12/16/36	13/35/01	11/31/31	10/16/11	\$8/82/20	3/(1/6	13/13/11	11/62/11	11/11/18	3/13/18	18/18/18	18/18/8	91/10/10	9/11/18
•					~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~														776.1																					_			
1			==	Ė	= =	=======================================	= :	=	2	5	Ξ	=	= :	Ē				: :		= :	Š			18-182	11-112	= :			=	=	=	=	= :			-	11-93	11-112	11-12	711-11		=	11-13
	-			-	-	-	-:	= =	, ~	~	~	~ .	^ .	^ =	; -					• •			• =	: ::	=	z :	2 :	= =	: =	=	=	= :	= :	= :	: =	: ≃	~	= :	2:	2 =	: =	=	×
PREATOR OF THE PERSON OF THE P	2 2			¤ :	E E	7(CB)		Ē	2	Ē	£	- F	200		1	ž					1	5		1621	11(511)	Ē		e (a)	Ş	135	714652	2				11(51)	11511	14502		74624	7657	14502	1631

151

ರ	Î	Ĭ	į	3	3	3	3	3.5	#	<u> </u>	3			8	•	Ī	3	¥	23	<u>¥</u>	Ī	Ē	=		= ;		5 S		31.5	3	338	X	2			3	=	2	=	3628	3	=======================================	=	=	=	22	.	
			•										•																_			_		_														
111-140 123	Ì	4.4	~	20	2	2.0	4.0	<u>5</u>	÷.	5	~	3 7	5 6	7	2.4	2.0	2.4	ċ.≏	~	2 .4	2	~ ·	-	≎ :	 	= =	2 5	2 2	=	\$	4.4	~; ;	~	÷ :	,	5	~. -	÷.	\$.	<u>~</u>	÷.	₹.	= : ~ :	= ` ∵	~	- 5	~:	₹ **
1.11		(1, 15	5	5	÷.	÷.	0.3	£.3	6.3	÷	2.3	3 5		2.15	£.3	41.35	41.35	£.35	£.35	÷.5	÷.	£.	÷.	2 2 3	2 2	2 2		2 2	=	÷.	41.35	â.35	£.5	£ ;		5 5	4.3	4.35	£.35	4.35	£.35	£.35	÷.	÷.	£ :	÷.	۵: ت	€
1111111		1.0	2	17.	2.2	=======================================	₹.7	- -	₹ ;	E.2	.	;	= =	7	£.2	ći.?	£.7		₹.	7	₹.	÷.	7 .5	₹:	7 7	= =	9.5	2.5			(1.28	₩. T	₹.	R .	; ;	=======================================	=======================================	4.2	£.2	=	₽. Ţ	41.2	7	≈ :	₹. ₽	₩.	≂ :	1. 7
319159E E1		2.2	7	=	÷	£.15	£.	÷.	₹.	=	7 7	; ;	; =	=======================================	÷.	4.5	.	÷.	-	=	7	X :	# :	7 7	3 3	= =	5 7	7	=	£.	4.2	÷.	-	.	=======================================	7	7.	<u>.</u> .	<u>-</u>	₹. 7	=	4.±	= :	= :	₹	# :	=	7.7
10111	1	£.2	÷.	÷	<u>-</u>	£.	===	=	÷.	= = = = = = = = = = = = = = = = = = =	= =	=======================================	=======================================	£.2	4.2	4.23	€.2	£.2	. .	÷.	= :	₹ :	= :	= =	7 7	= =	7 7	7	=	===	₫.2	£.2	= :	= = = = = = = = = = = = = = = = = = =	; ;	=======================================	17.10	5.2	4.2	₽.2	cl.21	4.21	£ 5	<u>-</u>	4.21	₹. 7	= : = :	≂:
1,4-0149	•	 €.	÷.	£.5		. .	 	= :		8.2 2.8	3 :		2	2.	(2.11	47.10	43.8	=	÷.	2 :	3 :	2 :	3 :		: :	3 5	7 ~	2	=	47.0	€	2°	÷.	2 5		ć. 18		ć2.88	ć2.89	£.3	42.00	€. 4	1109/01	÷.	4.4	d.35	5.5 5.5	÷.
1,4-1171	•	÷.	÷	2.5	÷.:	.	=	= :	÷ ;	= :	=======================================	: =		-	<u>-</u> -	. .	===	= :	÷	= :	= :	= :	= :	= :	= =		=======================================	=======================================	=	£.	¢11.3	÷.	= :	= =	=======================================	=======================================	41.18	â. î	. .	2.5	=======================================	61.16	13/611	÷	÷.	25	÷.:	=======================================
2 / S		£.5	÷.	= :	€ .5	=	=	7	= :	= :	=======================================	=		=======================================	÷.	÷.	÷.	=	<u>=</u>	= :	= :		= :	= =	7 7	;		=	=	=======================================	<u>:</u>	= :	<u>ج</u>	= =	=	=	£.5	÷.	£	2 .	. .	£.	1103/01	3	<u>-</u>	÷.	7	=======================================
S 2		£.2	₹. 7	÷.	£.2	€.2	₹	₹. 5	# :	= =	₹. ₹	=======================================	2.2	£.2	€.2	CT.23	₹.	= :	₹.	₹: •	- -	3 3	= :	= =			7	4.28	2	(4.28	c4.23	£.2	7. T	7.5	7	7	C.23	CI.23	£.2	5 .0	£.2	CT.28	1109/01	5	C.23	3	2 .5	5
CP11502 96/L	•	£.	£.	~	£.	.	- -	= :	Z.:	-	= =	=	2.5	€.3	£.	£.2	£,	= :	= :	= : = :	÷ ;	= =	= :				=======================================	=	=	£.3	4.7	÷.	2 :		=	=======================================	4.3	£.7	£.3	₹.7	£.	₽ .	1103/11	₹.	£.7	₹.	÷.	=
X X			<u>=</u>	==	===		= :	= :	= =		=======================================		<u>.</u>	₽.5	.	=======================================	=		:	= :	= =	= =	= =	=======================================	6	=	=	=				= :	= :	=======================================	=	=		= :	∓ .	<u>-</u> ₩	=:	= :	113/	÷.	= :	÷.	= :	=
# 1/ <u>9</u>				<u>=</u>	2. E			:	= =	=					2.8	ć.	₹.				•	;						47.11				,	. 7		. E	÷.		.		13.4	÷.		;	= :	 9	3 .		
# %		c13. 2	15.2	÷3.7	(15.2	÷	~ :	~ :	? ?		3.5	(1)	45.2	(15.2	(15.2	÷5.2	÷	2 :	2.5	?:	7.2	· · ·	7.5		; ; ;		5	(15.2	415.2	c15.2	(15.2	÷.	7.5	3 5	3	415.2	(15.2	÷5.2	÷	€	c15.2		= ;	~ :	~ ::	(52	÷:	1.5.7
	Ξ	==	==	=	= ~	\$ =	≈ : ≃ :	:	= =	2 2		5	2:3	13:11	=	2	= :			2 :				2 2	: :		=	₹	13:1	15:15	=	= :		==	2	12:33	\$ C	= :	= =	= 5	7.2	= :	= :	- : = :	= :	= : = :	2 : 2 :	≈ =
	Z								10/0//04					_		_					_												12/11/11					-	_	_		_		12/61/61	10/29/87	15/15/17	17/11/16	19/11/16
	Sura :	17·18	======================================	=======================================	=======================================	~	24:		71.				1111	1111								27111		1733		=======================================	= =	11-112	=	=======================================	3				600	=	11-11	=	=	=	=======================================	11 692	=======================================	201 ::	=======================================	2 : = :		Ξ
	•	~	-	-	-	 -	~	-	~ -	• :	==	~	•	~	•	•	^ :	3 -	•			-		-	•	=	=	=	5	3	= :	= :	= =	: =	=	=	=	≃ :	=	=	~	= :	2:	2 :	= :	= :	= :	5
IIIS TITLE	Ę	Z =	<u> </u>	3	3	Z.	Ž				Ē	2	ŝ	£	<u> </u>	₹ 1				Š	3	3	7	1605	25.5	150	33	111513	Ē	=	Š	Š	Ş	23	T 105	111651	≅ =				E :	121						2

	_																																														
			=			1.3	=			X .		≃ :	= :	<u>.</u>		_			5.5	3		7				1.1	=			=======================================	2	7	-		·_	.		= :	=		=	===	•			<u>=</u>	1.3
SP COOD FIRE TO DESCRIPTION TO			<u>.</u>			Ξ	=		;	Ξ	;	3	2	= ;		Ē			: :	: 5	Ě	2	•			33	=		5	=	Š	5		23			;	≘ :	፷		=	<u> </u>	•			Ξ	Ξ
K K K	•		3	7 T				3	2		•	= :	≅ :				3	9410	9	2	2828	=	Ξ	25			į	191		183	.	2	₹	23	Ξ	33			:	= ;	•		31.5		=		
	-	= :	2:	2		=			2 £				2:			: 3	=	: =	2	=	=	-	16:21	12:38	11: IS	2:32	I :		<u> </u>	2	=======================================	# :: :::	15:21	=	3.7.	12:37	≎ : 2 :	=======================================				=	2	==	===	2	1:3
	EX	11/11/18	M/24/E	10/22/21	11/11/13	30/10/10	M/23/23					#/2E/H		3/4/L	7777		11,71,715	1,787/BE	M/11/16	97/11/16	12/16/16	11/11/11	11/31/91	11/11/11	43/20/15	1/11/18	3/11/11		12/21/15	(/12/46	66/12/16	31/11/6	12/16/16	3/26/11			\$1/2/21			19/11/61	32/19//	3/(2/	11/11/1	1/33/11	11/61/9	/81/16	11/11
	Sums				11-112	¥ :	ZM - 13										_						_	_		~		= =		_	_	_	_		_	2	E :				=	11-112	11-112 15	11-002	11:12:13		11-11
ė.	-	~ •	• •	•	-	•	~ •	-	•	: :	? -	^ -	~ ~	•			. 3	-	-	-	-	-	-	-	~	= :	= :	= 5	: 3	=	=	=	= :	= :	= :	= :	=:	2 :	: :	: =	=	=	=	=	=	= ;	5
Parametric Street	5	2		2	¤ ≠	2						9			2	2485	Ē	S	25	\$	73.05	7.1452	1000	7.00	Z :			Š	Ē	Ş	5	£		1					74691	11650	11537	11511	111513	132			

ř.

.

€

ŧ

ertibonistic sciece and excisering, inc. Date 85/19/00 Pact 11

	R Z	3	*	5	ž						3	22	#317	1	×		3	248			3	1398	E :		=			1881	111		21611	5369	
	35	81	9922	3	3	3			35	#25 ************************************	3,2	11:1	1361	M(1)	3	##	13500	## E	3		15 15 15 15 15 15 15 15 15 15 15 15 15 1	17:01	25	2118	=			33788	31511		13211	96209	
	# 2	8	.	Ħ	2			<u> </u>		2 %	×	=	*	5	=	25	1.8 3	2.2	÷.	5 8	17.12	20.1	÷.	- 	=			=	36.9		(28.1	29 (
	35	410.6	÷.	41.6	41.6	9.5		=======================================	÷	÷	41.6	3.	7	=	=	41.5	41.5	5	9 .		=	411.5	===	9	=			9.80	411.6		418.6	9.80	• • • • • • • • • • • • • • • • • • • •
	200 CATE	4.9	2.5	4.8	1.1	2.5 2.5		X	2.5		4. H	 	5		£.	4.5	4.3	£.	Z :		. . .	ď.3	S. :		~			₽.5	47.91		16.50	# # # # # # # # # # # # # # # # # # #	5
	2 4	18.38	5.36	6.8	6.8	2. S.		.	.		=	 	=	5	6.36	3	÷.	£.	5 5	5	÷	÷.	= :	5.5	2			65.36	(5.36		6.35	\$. \$.	66.5
	1/34 Re(1867)	4.16	45.16	4.16	6.16	6. 50 5. 30 5. 30	9 15	5	9	2 ±	\$.E	3.	6. 23	65.16	65.16	(S.2	\$.2	2 :	<u>2</u> :	5	6.2	6.23	₹.	2 5	=			65.16	65.16		65.16	S. 5	6.19
	8 /2	3189	1667	888	1510	### ### ### ### ### ### ### ### ### ##	17	2	161	333	1120	5	1538	29	25	22	=======================================	2368		\$1 \$2	=	27.5	=======================================	1320	7			5130	130		6389	368	
	ANSTAIC NG/A	9.0	7.H	43.81	3.3	2.5 5.5	5	~	2 5 2 5		0.83	3 .5	5		3.5	3.3	3.	2	2:		0.3	2.5	÷.		2			28.7	18.7		5.61	5.75	-
	-									_	_			-			<u>, , , , , , , , , , , , , , , , , , , </u>				-	_			_			_	- 1	c		0 0	•
X	in ne	£ £ £		555	255	25	EE	E	E	E	11		3 5	5	5 5	5	5	≅ 8	5 8	5	Ξ	3	3 3	: 3	3		7 5	25	5	2 2	5	202	2
Z Z	MIT SITS ITM CO	22:	1.0 1.0 1.0 1.0 1.0 1.0	 552	1.1 1.1 1.1 1.1 1.1	9.0	1.0						1.0													S 4 4		0.0	0.0		9.0	#02 0.0	A. P
W.	SUPLE OF STREET	223	11 11 11 11 11 11 11 11 11 11 11 11 11	333	333	:::	===	:2:	==	::		33		=	==	::	-				183	=	• •	: 2	9.0		• •	6.0		e e	2		•
MSM		223	3333	333	333	:::	===	:2:	==	::		33		=	==	::	-				183		• •	: 2	2.0		• •	0.0		e e	2		•
RSH	18311	2 H H	3333	222 KKK						17	9.0			1.0	2 2 2		2.			111	. 6 M 853	11			9 0 W			6.0 11 3			0.0		
HSH	SIN THE S THEN LISTLE	22: ##:						300		9 ES	5.0 M			3 AS	2 2 2	0.0	0.0 19 3.0			9 3 35	ST . 6 M 853	9.		6.00 US	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0.0 III 3 W			0 0 M		
HSH	SIN THE S THEN LISTLE	10/19/11 10:11 53 65 11:11 10:10 10:	10 11 5 12 17 17 17 17 17 17 17 17 17 17 17 17 17	19/72/16 14:59 ST 6.0 19/72/17 13:40 SF 6 FT 0.0 12/72/18 11:55 SF 6 FT 0.0	03/03/06 19:17 SN 6 NI 0.0 05/19/07 10:11 SN 6 NI 0.0 01/02/06 11:05 SN 6 NI 0.0	19/39/17 51 58 6 11 9.0	11/19/45 14:15 ST C BI 0.1 66/16/16 12:45 ST S ST D.1	9.00 18 9 38 15:21 9750/68	12/11/00 (1:15) SE 65 ME 40.00 (1:15) SE 65	96/17/87 11:34 SW G NI 9:0	99/24/87 11:23 58 6 81	11/22/85 09:45 S S S S 11/22/85	12/20/85 11:00 SH G HI 0.0	81/26/87 14:14 SW G RE 6.1	06/17/07 12:52 SW G PI 0.0	14/02/16 14:41 SN G NE	0.6 1g 5 12:46 14:46 14:46	# 10 11 19 10 10 10:31 en/of/21		10/12/21 16:49 SH % G HI	84/15/16 19:45 ST 6 91 853	0.0 10 5. 85 60.01 91/91/91	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	96/17/87 09:26 SW ?G RR 0.9	10/23/27 09:41 SW G PR 0.0			60 16 2 E 11 0 0			0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
HSH	SANTING STATE ISSUES	9 BS 11:01 12/62/61	10 11 5 12 17 17 17 17 17 17 17 17 17 17 17 17 17	19/72/16 14:59 ST 6.0 19/72/17 13:40 SF 6 FT 0.0 12/72/18 11:55 SF 6 FT 0.0	03/03/06 19:17 SN 6 NI 0.0 05/19/07 10:11 SN 6 NI 0.0 01/02/06 11:05 SN 6 NI 0.0	10-17 Su 6 m 9.0	11/19/45 14:15 ST C BI 0.1 66/16/16 12:45 ST S ST D.1	9.00 18 9 38 15:21 9750/68		96/17/87 11:34 SW G NI 9:0	99/24/87 11:23 58 6 81	11/22/85 09:45 S S S S 11/22/85	11:00 SH G HE 00 HE 00 HE 00 HE 00 HE	93/26/87 14:14 SW G RE 6.1	12:52 SW G BI 9:00	14/02/16 14:41 SN G NE	0.6 1g 5 12:46 14:46 14:46			10/12/21 16:49 SH % G HI	84/15/16 19:45 ST 6 91 853	0.0 10 5. 85 60.01 91/91/91		86/11/81 09:26 Su ?G Rg 0.9	19/23/87 99:41 SW G PR	0.00 20 0 50 50 50 10 10 10 10 10 10 10 10 10 10 10 10 10	90 01/20 18 01 01 01 01 01 01 01 01 01 01 01 01 01	6.0 18 6 5 8 6 81 0 0 0	14/12/04 69:00 St G 91 0:00	03/92/16 10:11 SX 6 91	0.0 Ja 5 AS 6+ 00 149	05/15/47 (9.25 5% 6. 10.25/15/47 (9.35 5% 6. 10.25/15/47 49.55 5% 6. 10.25/15/47 49.55	
BYSH	SAFTER STATE ISSUED	11-04 11/12/11 10:31 52 6 11 6:00 11 0:00 11 0:00 11 0:00 11 11 0:00 1	12-001 01/01/01 12:00 21 0 11 0.0 11	12-002 09/02/36 14:59 ST 6.0 M 0.0 12-002 19/22/37 13:00 ST 6.0 M 0.0 M 0.	12-004 03/03/46 19-17 ST 6 31 0.0 12-094 05/19/47 10-41 ST 6 31 0.0 12-005 07/02/46 11:05 ST 6 11 0.0	12-005 05/19/11 13:17 SW 6 11 0.0	1288 96/16/16 12:45 SW C BW 0.0	9.00 18 9 38 15:21 9750/68	12/11/00 (1:15) SE 65 ME 40.00 (1:15) SE 65	96/17/87 11:34 SW G NI 9:0	99/24/87 11:23 58 6 81	130C 11/22/85 48:45 ST 6 NF 9.0	12/20/85 11:00 SH G HI 0.0	81/26/87 14:14 SW G RE 6.1	06/17/07 12:52 SW G PI 0.0	14/02/16 14:41 SN G NE	0.6 1g 5 12:46 14:46 14:46	# 10 11 19 10 10 10:31 en/of/21		10/12/21 16:49 SH % G HI	84/15/16 19:45 ST 6 91 853	0.0 10 5. 85 60.01 91/91/91	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	96/17/87 09:26 SW ?G RR 0.9	22C48 19/23/87 89:41 SW G RE 8.0		24-001 03/02/20 10:40 SX C . NO. 0. 0. 0. 0.	24-681 05/15/87 09:30 SW G BL 0.0	24-661 18/72/87 69:66 SE G 81 0.0	24-963 69/02/15 18:11 SX 6 91 6 6	24-097 05/15/87 08:40 SW	(9.25 SX 65 995 0-00 0-00 0-00 0-00 0-00 0-00 0-00	
RSH	SANTING STATE ISSUES	14 11-94 11/2//11 10:11 5/1 6 11 0.0	15 12-01 07/2/61 14:29 51 6 11 0.0 15 12-01 07/2/61 14:29 51 6 11 0.0 15 12-01 07/2/7/71 18:14 51 6 11 0.0 16 12-02 07/2/7/71 18:12 51 6 11 0.0	16 12-002 05/02/07 13:09 ST 6 PE 0.0 16 12-002 10/22/07 13:09 ST 6 PE 0.0 17 12-005 11:55 ST 00:00	03/03/06 19:17 SN 6 NI 0.0 05/19/07 10:11 SN 6 NI 0.0 01/02/06 11:05 SN 6 NI 0.0	19 12-095 05/19/07 13-17 Su 6 IN 0.0 19 12-005 19/30/17 07:51 Sn 6 31 0.0	11/19/45 14:15 ST C BI 0.1 66/16/16 12:45 ST S ST D.1	9.00 18 9 38 15:21 9750/68		3 12110 66/17/07 11:31 SW G II 9.0	99/24/87 11:23 58 6 81	(9 130C 11/22/55 65:45 SB 6 NR 0.0	12/20/85 11:00 SH G HI 0.0	16 13PCC 01/26/17 16:14 SW 6 HE 0.0	06/17/07 12:52 SW G PI 0.0	11009 11/02/16 14:00 SH C HI	0.0 14.00 06/16/16 14:40 Sw 0.0	# 10 11 19 10 10 10:31 en/of/21		9 14.090 10/12/01 16:49 SH 6: G HI	7 22630 94/15/16 19:45 SW 6 DE 853	0.0 10 5. 85 60.01 91/91/91	20 Miles 20	7 22C38 86/17/87 09:26 SW 7G RE 9.9	7 22C18 18/23/87 89:41 SW G PE 8.0	0.0 IN D EO	28 24-081 09/02/28/10-10 S8 C PH 0-9	28 24-668 05/15/67 09:30 SW G NI 0.0	14/12/04 69:00 St G 91 0:00	22 24-993 99/92/46 10:11 SW G 91 0.0	33 24-007 05/15/87 00:40 SW G RE 0.0	05/15/47 (9.25 5% 6. 10.25/15/47 (9.35 5% 6. 10.25/15/47 49.55 5% 6. 10.25/15/47 49.55	

12

	16 /2	3 87	=	41.5	÷.	5.5	<u> </u>			41.5	êl.S	(10.5	(18.5		= :		<u>.</u>			Ę	5	=	=	÷.	÷.	(18.5	 	- ·	\$? =	2	ž	41.5	C.B.	C = 1	- - -	5.	4.10.0	(1)	₹	<10.5	: :	.	c18.5	. =		}
ISOME I CELADAM	×				***	(1.152					d 152		4.152																												(9.152				£ 152	361.W)	
Isomera	7	99.00	3	÷.				3		0.66	4.056	4.16	£.156					100			99	130	9.0	0.00	.0.969	.1.069	÷.				=	9.6	ê. 6	9.00			99.0	(0.96B	.0.68	<0.060	(0.4§6	¢0.059	90.0	(0.060	4.056	6.63	
1100	×	(0, 052	÷ 55	6.6 2	9.52		4 852	22		(d. 852	â. 15	<0.152	9	(1.15z		70.5		65			(4.852		6.151	(1.152	(0.052	ce. 152	. 151				(1.152	(1.152	(0.652		70.00		(0.152	451.45	6.53	c4.452	. 160				98.65	ca 852	4.4.4
HENRIE	Š	ć. 160	£.	÷.			3	=		î.	a.155	j. 15	÷.55					-	3	9	98.0	=	(9, 16)	÷.	â. 16		9	7 90 7			9	÷.	÷ 161				198.0	(1, 160	1.936	1 .117	1.15	60.0	5	50.0	60.65		A
	K /1	6.63	=	÷.			=	-	:	4.11	= . = .	£. 13	= :								£ 13	6.13	9.219	(0.01	6.0.0	(1.13)					÷.	£1.11	=				6.01	9.08	2.3	865.0	9.361	9.248	=	9.11	2 5		# : # : # :
P.P 331	1 /2	d.053	6.150	÷.5			\$ 5	6.153		6.63	=======================================	.e. es	÷	66.6	, A AC1		9	(8 853	6 153	(0.053	.0.33			(0.053	c0.053	4.153	•				6.153	(0.153	4.153			: :	(8.83	0.05	(0.53)	<0.03	910.00	(0.053	.0.0S	ce.053	97.00	(0.00)	
1,9.99	*	4.17	6.15	5.5			=	÷ 11		6.11	69.03	¢0.03	5		100	100			.0.03	(0.010	(0.053			cd. B53	cB, 070	c0.03	•				(0.01	(1.17)	6.63			6 67	0.010	(0, 01)	60.700	c0.030	<0.059	¢0.010	(0.03 0.03	(8.878	(0.459	(8.05)	A (A (A)
SC S		0.00	=					÷.		G. E.	÷	÷.			41 678			-	6.13		(0.03)			÷.13	ć6, 178				÷	(B. 878	6.17	ê. 3		=		(0.17)	2	60.70	40.07	(B.178	679.0	=	200	Ē. :	(8. 27	A . A .
# 1	Ž	412.9	<u>=</u>	÷	=======================================	5	÷	47.9	(13.	÷	÷.	÷	£.5		• 617	=	5 2 3	(12.9	612.9	(12.9	412.9			(12.9	42.9	(12.9	•		42.9	÷	412.9	41.9	= :	13.5		62.5	41.9	(E)	412.9	cd2.9	=	(12.9	÷.	(12.9 13.9	(12.3	02.9	116.8
63	è	4.1	=======================================		7 7	5	5	6.33	9.3	5	÷.		5 5	=======================================		5	6	6.3	9.3	6.9	6.3		(3 .31	£.	£.	÷.	= =			5	6.3	6.3	= :		5	5	69.31	6.3	£.	(8.3)	=	£.	5	÷	5 •	: :	:
200	5	4.13	=======================================				÷.36	4.13	.0.2		3							6.13	(4,130	÷.13	. 130	£13	4.13	=======================================	7	÷:			=	6.13	.	÷.5	5.		6.13	5	6.138	6 .130	ê. 13	. 0.13	5.15	5	<u> </u>	7. F			
FIRCEST	Ê	4.24			(4, 359			(1 , 24)			500	436.47	9.03		0.24	97.0	9.5	(0.359	(0.24)	6. 48	(0.24)			÷ 7.	6.359	(9.2(B	11, 3,0		9.5	(F.35)	17.	97.0	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		933	.0.2 C	=				6.35	(0.240		436.4	48.437	6.24	
= §	2	538			17500			3120			11262	9638	90618		\$139	1391		120101	10607	13400	11200		•		1220	159851	213888	1170	26100	157800	18101	253060		68704	83008	58800	=				65100	£3960		10700	231088	230000	,
		_										2:12																																	=		:
		=														2113 19/15/16					_					JPC 46/11/67							22(11 14/15/16 22(11 16/16/16			18 46/11/87								13 69/05/16			
	I SAFEE ID											21-71		•		=======================================	221	_	121	_		_			_ •		==	=					777	77022	22C11	22011				₹ :		24-101		24-113	240-72		
PRESTO	<u>.</u> :			21 (12)				1145Ht 16	_ :	1451				OF01# 42		0753	141051	144052 3	144053				11 1100		14652 10	Office As	0.51	OPSEZ	14051	144052 9		144054	675	0.53	144052 7	744053 7			14587 20	1631 70		7.50	16:38 28 18:31	27 (1831)	744583 34	1415814 49	

NSN

ರ	¥	444	910353	ŝ	=======================================	7100	=	= = =		3	=	25188	=======================================			4178	11200	103	36211	19388	53986	3 22	513		3683	10107	151810	29501	286000	14790	13188	101511	5118	2150	10500	2005	2015	44461	20579	69508	20109	95800	286300	65700	247000	302900
111-140	<u> </u>	17.77	4.43	47.41	43.43	æ	~ :	÷ 5	; ;	5.5	¢.4	47.41	÷.	- :	; ;	=	5	£.5	17.7	€.4	. .	=	÷.	(2.4	= :	÷ ;	- - -	2	~ ~	43.43	€.£	5°5	÷ 5	₽	47.43	÷.	- -	; ;	7 7	2	2.6	43.41	47.43	€.5		18.7)
111-1	7/34	41.35	57	4.3	£. £	÷.	÷ :	2 2 3 3	=======================================	; ;	÷.	4.3	÷.	? ; ;	? ×	: ÷		€.3	£.35	4.3	÷.	=	÷ :	÷.	3 3	? ;	: : : : : : : : : : : : : : : : : : :		4.3	4.3	£.5	£ ;	- - -	5	0.35	÷.	# # #	2 2	 	5	£.5	41.35	4.35	£.35	# F	3.5
1118111	*	41.28	÷	41.28	.	## T	₹ :	7 .7		2	£.7	£.£	# :	8 7	1, 21	7	7	2.2	4.3	41.28	41.28		;	7	7 .	9 7.13	21 21	7	£	û.2	4.2	7.	3 7	17	(1.28	÷.	7.7		7 7	7	4.2	41.00	41.28	4.2	. .	47.D
	Ž	₹.5	÷.	∓. ÷	<u>-</u>	₹ :	.	*		- -	÷.	¥.÷	۳. ت	. .		7	7	-	₹.÷	.	<u>ج</u> ت	2	. :	. .	7 7		; =	=	7	₹.	₹ :	# # = :		=======================================	41.34	= :	7 7 7 7			=======================================	÷	7.7	₫. ₽	4. F	<u>ਜ</u> :	7. 1.
101101	*	4.21	<u></u>	4.2	£.7	÷.	= =			=======================================	4.2	41.21	= =	=======================================	=======================================	77	=======================================	41.11	₽.₽	₩.	= =	=	= :	7. T	= F	; ;		17.10	4.1	£.1	4.2		7.7	4.2	4.2	₹.	= =	= =	7.5		÷	41.21	4.11	4.2	<u>.</u>	(1.21
1,4-0111	2	43.8	 2	4.	₹.	÷ ;	3	# #	•	42.8	0.35	42.00	÷ ;	2 5		-5	2.0	(2.00	47.18	ć2. 18		₫ :	3 (200	2 5		200	2	42.0	47.8	3 .7	3 .	2.7	(2.0	=	5 .8	3 S	3 5	5. S	25	ć2.00	(2.00	42.00	1.35	÷ ;	43.00
1,4-9,11	9/20	.	÷.	÷.	= :	S :	= =	=======================================	•	÷.	÷.5	÷.:	. :	= =	=======================================	=	÷	â.:	. .	<u>=</u>		= :	= :	<u>.</u>	= =	= =		7.7	2.16		= :	2 5	=======================================	÷	=	= :	= =	2 5	2 5	5	-	4.10	41.10	S. 1.5	\$:	er. E
CPMS		0.3	÷.	7	= :	3 ;	7 7	7	•	÷.	₩.	<u>.</u>	2 5			5	=======================================	£.5	£.	-	- :	= :	7.	= :	7 7		- T	£.5	41.30	£. £.	7	= =		<u>-</u>	2	= :	F. F.		3.5		1.3	41.30	4.3	5	3 :	₹.5
	•	£.2	₹.5	## **	₹ :		5.5	2 2	•	G.23	€.5	(1.28		7.7	7	£.2	4.2	4.2	€.29	Z.	₹;	= :	7.5	9.5	17.13	7	67.3	4.2	4.2	4.2	= = = = = = = = = = = = = = = = = = =	3.5	77.0	c4.28	=	2.3	2.2		2.5	2	2.2	(4.20	(4.20	£.5	÷ :	64.20
CPHS02	•	6.3	=	= :	= :	7.7		2		£.7	€2.2¢	2.5	7. 7. 7. 7. 7. 7. 7. 7.		-	£.3	£.3	ć . 78	=	= :	2 ;	= :	= = =	= =		=======================================	<u>.</u>	£.5	5.21	=======================================	= : = :		2 2	= .	=	2				27	=======================================	2.5	£.7	≈ :	₹.°	£.10
	•	₽ .		= :	= :	= =	=======================================	=======================================		₹.	÷.	= :	= =	;	8.0	===	₽.₽	ć. 18	2	2 .				:				₽.₽	3. 1.	= :	= :	:	11 10 2	1 TV	2	= :	:			5	£.		2 .	2 :	# :	CI.88
171 1671		3.E			;	=		43.0			÷.	•		•			47.8	42.8	3 .	5 .2				18 67		•			4. €	5 .5	2.5	A			2	3 :	86.73		•	±.±	(2.00			- :	= 8	04.77
	}	413.2	(IS.2	(3.2 (3.2	7.5	7.67	(15.1	÷.		(15.2	(12.2 (15.2	(JS.2	7.5	(S)	(15.2	(15.2	(15.2	(15.2	€.	÷	2.5	7.5	7.63	1.5	15.4		(15.2	(15.2	c15.2	÷5.2	(3.2	3.5	15.2	(15.2	(5 .2	2.5	2.50	·	5 5	(15.2	(15.2	(15.2	÷.	3.5	7.65	7.617
				= :			15.51	=		11:11	= :	£ :		15.15	12:45	12:51	====	<u> </u>	=	2:5			2				==	11:48	12:21	2:5	7:2		2	= :=			===	1		69:30	90:60	11:20		2 :	3 5 2 2	. co
	1110	18/52/81	12/21/15	31/11/10		11/11/11	19/11/16	10/22/01	12/20/85	11/11/16	15/19/17	38/29/10	18/18/61	11/19/85	98/31/98	31/50/60	11/11/16	13/21/11	11/11/90	19/52/60	11/10/30	CB/77/11	58/69/78	10/70/10	17/11/11	12/11/15	11/22/16	98/11/30	12/16/86	17/26/11	11/11/11	11/3/16	38/31/90	91/59/69	04/01/11	10/11/00	\$1/2//	9E/30/RE	98/20/60	05/15/87	10/22/01	12/11/85	09/05/06	18/13/18	18/27/81	10/17/0
	SIPLE ID	=======================================			-							£::				12113										2							_							24-901					004-17	
ننے	_			≏ :				=	=	=	= :		2 =	: =	-	~	~	~	~ •	~ •	٠ :		= =		: =	=	•	~	~	~ •	-	• ~	-	-		- •	=			20			≈ :	= =	: :	2
Pubantus:	13.67	146814	Z :	1881		44517	14583	741517	₹		1650	7887	7177	07918	OPS N	0.53	144051	14052	14053	14051	2010			11000	144053	01010	OPSI	01512	144051	144052	14405	ops.	OPSWZ	orsa	144052		14-54	745112	1683	1115113	144514	Z :	1831		746541	

HSN

THE I	73	=	===	=======================================	=	=======================================	ê.:	= :	÷ ;	= =		=	<u>-</u>	÷.	\$.5	÷.	2 :	= :	= =	= =	= =	= =	=======================================	=======================================	=======================================	÷.	1.	. .	đ.18	= :	= :	# F	2 0	÷.	41.19	2 :	2 5	2 2	9	2	4.1	9.10	\$ 50	9	: =	-]
112001	1 /1	17 17	; ;	2.5	£.2	41.20	4.2	₹	2	7 7	2 7	2.2	d.2	41.20	£.	=======================================	2 :	= :	3 5	7	2 7	: =	=======================================	7	7	d.2	41.20	4.2	41.20	d.2	2 3	5.5	2	41.20	41.21	÷.	2.5	2 7	7	7	(1.29	41.20	2 .2	€	₹.	2:	87.D
13901	1/34			9	9.6	4.611	3.5				=	9.6	4.51	÷.												619.45		ê. E	0.610	3.				0.6	0.618	3:		4 618	6 510	60.619	c0.518	¢0,618	619 .610	60.618 0.618	9.616	079°8	019.0>
11276	-/ 2	=======================================	=	=	<u>=</u> :	<u></u>	= :	= =		=======================================	=	÷.	<u>.</u> .	<u>=</u>	:	= :	2 :	= =	=======================================	=======================================	=======================================	•		=	=	î		3 .5	£.5	= :	= :		=	£.5	= :	= :	2 :	2	100	2	£.	41.00	6 . 1 .	8 . D	÷.	2 :	41.08
11116	K/	4.1	=======================================	===	<u>=</u>	£.;	= :	= =	=======================================	2	=======================================	4.3	4.3	<u>=</u>	:	= :	₹:	= =				•		-	÷.	£.7		<u>-</u>	2.5	= :	= :	2 5	2	41.70	÷.	2 :	2 :		2		€.7	£		<u>=</u> :	£.	2 :	91.10
100	1/24	= :	=	=======================================	-	= :	= =	= =	=======================================	=======================================	=======================================	=======================================	9 .5	€.	•	= :	= =	=======================================	=======================================		=======================================	:		= =	-	. .		==	1 .0	= :	= =	=======================================	=======================================	£	= :	= :	₹ 5 5 5		=	=======================================	€	.	-	4.18	£.	= :	d.10
i) Dett	1/38	41.28	£.	41.28	£.2	#. 	7 7	3.5	=======================================	2.2	1.2	4.2	4.2	₹.	;	7	7.5		7	=======================================	7			(1.2)	£.2	:1.20		€	41.28	2. 5	7 5	5.5	27.0	41.20	4.2	2 5	3 5	27 L	20 70	52	47.29	c1.20	£.7	€.2	£.2	2 .5	47.19
נרנו	1/2	÷.	4.3	£.	£.	7	= =		=======================================	-	(1.38		 	2	7	3 5	Ž	; ;		7	2	=	£	÷.3	£.5	£.13	2 .	÷.	# :	R	3 5	3 5	÷	£.£	£.	7 7	? ?		2	£.	÷.	£.5	£.13	£.1	=======================================	F. :	S
STTTLCL	3	6.8	S.E	\$.	≅.	3 :	5 5	2	5	\$	65.00	(S. 0	\$. 5.	=	*	3 •	3 5	=	=	5	5			\$. 2.	(S. 00	5 .8	;	€.	S :	5 5	S 5	2 2	5.8	69.9	3 :	3		2	1 5	\$.0	65.00	S.8	5.00	65.88	8 .5	S. 8	65.88
STORES	2	€.5E	4.58	CB. 580	÷.	3 : • :			25	ce. 588	(1.580	. S. S.	6.58		100 E		4.36		15.0	6 511	538	=	(8.58)	ê.S	(d. 58)	(6.58	G. 58					(0.589	60.580	<0.589	£.58	- S	* 50 %	6.58	085 00	(0.580	ce. 580	c0.580	#85.E	.0.580	28 6	6.580	0.530
(1010	2	⊕ .	₽.₩	= =	= :	=======================================	=======================================	=======================================	2	=======================================	÷.÷	=	= :	= =	3 5	2 5	=======================================	=	=======================================	=	=	=	=======================================	9 .	û. 69	÷:	- :	= :	= :	= =	=======================================	=======================================	₽ .₽	= :	= :	= =	=======================================	=======================================	# T	3 .	=	₽ . ₩	₹	-	-	ᠸ :	d.,
1133	•	3.6	₹ .	=	= :	# : ::	; ;	# *	7	6 7.€	5. €	-	2 :	3 5	3 5		: 0	2	2.2	€.5		=	43.4	÷.	¢2.41		~; ;	2 :		2.5	2 5	2.5	43.40	47.	- 5	; ;			c2.49	. (2.40	€2.4	÷.	47.7	÷.	* :	0 :	41.5
S 2	3	- T			1648			1000		1730	16800	2	32618		84788	16188	19101	19391	12.5	19981	12100			3108	261111	25400		*****	10000	128080	20000	369696	104620	11800	107089	99569	12768		00066	12900	49200	31200		60009	21000	20047	# P P P P P P P P P P P P P P P P P P P
7 2	Ì	(1228	(12B)	- 1588 - 1588		6 7713	120	3	131	(1200	=	(1200		277		121	982	(120)	1220	(123)	412B	(120	(120)	18 20	1121	- (123	Ē :			1388	1240	9.61	<1200	420	1021)	8 ((()	177	(1200	1280	<1200	c1220	(123)	200		9 22()	2	₽
	•	=	_		~ ;	67/13/61 19:04	=	-	_	=	= :	= :	5/13/11 13:11	=	=	-	: =	=	=	=	=	=	=	=	=	= :	= 2	= :	12/16/16 14:40	=	=	=	= :	= :	03/03/86 11:10	= =	=	12/12/05 11:44	06/30/06 14:05	=	5	= :	= :	= :	3 :	57:01 /0/61/60	6
		-		12.101 17		17.110 61							CO CON-21						30 81121			1300	-	•	_	-	21 66531				_			22C11 16.					24-001 06/		_	'			/co na - 17		
PADMETED:	_	14.5% C		S :: :::				14584 16	11-51 17	\$1 (KS)	14583 18	£2 2001	71581 18	00019 42	OPS#2 3	0.653	144051	141052 3	14(05) 3	14054 3	1 NS40	61 43	11 11010	- ISO	14052 10	144653 14		A (178	(1021)	144052 9	4 (50)	11051 9	OPS# 7	7 120	1 (307)	14053 7	111051 7	11-SW 19	T45W2 20	T(SW) 20	16583 20		2 25.71	27 1801	141383 33	7,157, 10	:
	200	=	-	 •	- :	= =	<u>. ت</u>	Ž	<u>~</u>	-	ž i	-		: =	5		Ξ	Ξ	Ξ	Ξ	_	5	5		Ž.	= =	3 -	- 2	5 <u>2</u>	Ξ	Ξ	Ξ	∵ ;	5 °	1	: Ξ	Ξ	Ξ	Ξ	= ;	ž,	₹:	Ξ.	= =	= =	Ξ	Ξ

S. S. S. S. S. S. S. S.		<u></u>				101	SP COED	1160 71	
14.554 41 11.00 11/2/45 11.50 11/2/4		•	101	-	1	2	E-/c/22A		
12-00 17/20/26 11:10 13 13 13 13 13 13 13	; -	. =		: ?		=			
5 12-001 07/01/06 10-20 175 19-21 15-20 17/01/06 10-20 17/01/06 10-20 17/01/06 10-20 17/01/06 10-20 17/01/06 10-20 17/01/06 10-20 17/01/06 10-20 17/01/06 10-20 17/01/06 10-20 17/01/06 10-20 17/01/06 10-20 17/01/06 10-20 17/01/06 10-20 17/01/06 10-20 17/01/06 10-20 17/01/06 10-20 17/01/06 10-20 17/01/06	5	: =	2.2	:₹		:			
15 12-001 09/02/66 14-20 14-20 15-30	-	: ≏	-	₹	=======================================		==	-	
15 12-00 05/19/07 10-10 10-3 155 15-11	74ST3	~	13-101	Ξ	14:3		==		
	1450	=		Ξ	=	=======================================			
12-02 10/22/07 13-49	25 E	= :		₹	2 :		2 :		
		2 =		Ĕŝ			3	R .	_
12-84 69/61/86 18:17 129 8.6.5 12 12-84 65/19/87 18:17 12 12-84 65/19/87 18:17 13 12-84 65/19/87 18:17 13 12-84 65/19/87 18:17 13 12-84 65/19/87 18:17 13 12-84 65/19/87 18:17 13 12-84 65/19/87 18:17 13 12-84 65/19/87 18:17 13 12-84 65/19/87 18:18 12-84 65/19/87 18:18 12-84 65/19/87 18:18 12-84 65/19/87 18:18 12-84 65/19/87 18:18 12-84 65/19/87 18:18 13 12-84 65/19/87 18:18 13 12-84 65/19/87 18:18 13 12-84 65/19/87 18:18 13 12-84 65/19/87 18:18 13 12-84 65/19/87 18:18 13 12-84 65/19/87 18:18 13 13 13 13 13 13 13	74-51	=	12.111	3.5					
12 - 0.0 4 05/19/07 10.41 250 2.5 12.0	33	=	13. 13.	19/11/16			112	=======================================	_
12-10-5 67/82/86 11-05 13-10-10-5 13-10-10-5 13-10-10-5 13-10-10-5 13-10-10-5 13-10-10-5 13-10-5	14(511)	=	12:11	18/13/81	-	150			
19 12-00 5/19/07 13:17 3150 12-00 19/3/47 07:51 486 12-00 19/3/47 07:51 486 3 1244 66/16/66 12:45 1230 3 1244 66/16/66 12:45 1230 3 1244 66/16/66 12:45 1230 3 1244 66/16/66 12:45 1230 3 1244 66/16/67 11:23 1230 3 1244 66/16/67 11:23 1230 3 1244 66/16/67 11:23 1230 4 1200 12/26/87 11:23 1230 4 1200 12/26/87 11:23 1230 4 1200 12/26/87 11:23 1230 4 1200 12/26/87 11:23 1230 4 1200 12/26/87 11:23 1230 4 1200 12/26/87 11:23 1230 4 1200 12/26/87 11:23 1230 4 1200 12/26/87 11:23 1230 5 1200 12/26/87 11:31 11:3 1230 5 1200 12/26/87 11:31 11:3 1230 5 1200 12/26/87 11:31 11:30 13:3 6:3 1230 7 2201 12/26/87 11:31 11:30 13:3 6:3 1230 7 2201 12/26/87 11:31 11:30 13:3 6:3 12:3 12:3 12:3 12:3 12:3 12:3 12:3 12	TASPZ	=	=	11/07/16	_		200	1 .5	
12-05 19/30/47 07-51 4869 954 7-81 9587 9-81 9-	1383	<u>=</u>	=	15/11/17	=======================================				
00537 3 12848 11/19/45 14:15 0558 7.14 00537 3 12848 06/76/76 12:45 1559 938 7.14 00537 3 12848 06/76/76 12:45 1559 938 7.15 14052 3 12848 12/77/76 11:51 1820 633 7.15 14053 3 12848 12/74/76 11:53 1559 938 7.15 14054 3 12848 12/74/77 11:34 1897 633 14054 3 12848 09/74/77 11:34 1897 633 14054 3 12848 09/74/77 11:34 1897 00538 3 12848 09/74/77 11:34 1897 00538 1 12848 09/74/77 11:34 1897 00538 1 12848 09/74/77 11:34 1897 00538 1 12848 09/74/77 11:34 1897 00538 1 12848 09/74/77 11:32 14050 11/24/77 11:32 14050 11/24/77 11:32 14050 11/74/77 11:32 14050 11/74/77 11:32 14050 11/74/77 11:32 14050 11/74/77 11:32 14050 11/74/77 11:32 14050 11/74/77 11:34 14051 11/74/77 11:34 14052 1 12/24 11:34 11:34 14052 1 12/24 11:34 11:34 14053 1 12/24 11:34 11:34 14053 1 12/24 11:34 11:34 14053 1 12/24/77 11:34 14053 1 12/24/7	111511	-	Ŧ.	11/31/11					
0P527 3 12848 06/16/46 12:45 1239 415 7.55 0P527 3 12848 16/16/46 12:51 3050 938 7.54 14051 3 12848 12/17/46 11:51 3050 938 7.75 14052 3 12848 12/17/46 11:51 1320 1110 0.01 14052 3 12848 12/17/47 11:34 1809 0.053 3 12848 06/17/47 11:34 1809 0.053 3 12848 06/17/47 11:34 1809 0.053 3 12848 06/17/47 11:34 1809 0.053 3 12848 06/17/47 11:34 1809 0.053 10.00 0.053 10.00 0.053 10.00 0.053 10.00 0.053 10.00 0.053 10.00 0.053 10.00 0.053 10.00 0.053 10.00 0.074 10.00 0.053 10.00	100	~	1311	11/13/15			Ö	=	_
0.653 3 12848 99/65/46 12:51 3656 938 7.56 (4052 3 12848 95/74/746 11:15 1429 683 7.55 (4052 3 12848 95/74/747 11:34 1849 96/54/747 11:34 1849 96/54/74 11:34 1849 96/74/74 11:34 1849 96/74/74 11:34 1849 96/74/74 11:34 1849 96/74/74 11:34 1849 96/74/74 11:34 1849 96/74/74 11:34 1849 96/74/74 11:34 1849 96/74/74 11:35 1849 96/74/74 11:35 1849 96/74/74 11:35 1849 96/74/74 11:35 1849 96/74/74 11:35 1849 96/74/74 11:35 1849 96/74/74 11:35 1849 96/74/74 11:35 1849 96/74/74 11:35 1849 96/74/74 11:35 1849 96/74/74 11:35 1849 96/74/74 11:35 1849 96/74/74 11:36 1849 96/	075#2	~	1777	31/31/30		12	=		
1248 1248 1271746 11:15 1829 683 7.55 14052 3 1248 1271746 11:15 1829 683 7.55 14053 3 1248 12724 11:10 12224 1110 12224 1248 2.55 2.55 1248 2.55 2		~	13113	19/10/18	: ::		2		
14052 3 12448 03/27/47 10-31 2320 1110 6.86 14054 3 12448 03/27/47 11-34 1100 14054 3 12448 03/27/47 11-34 1100 14054 3 12448 03/24/47 11-35 1910 685 7.5 1506418 77 1390C 11/22/85 11-00 15062 10 1390C 04/26/46 12-30 (10-0 1300 8.7) 14052 10 1390C 04/26/47 11-14 (16 1260 8.7) 14052 10 1390C 04/26/47 11-15 249 14052 10 1390C 04/76/48 11-00 860 1490 8.3) 14050 12/14/45 10-00 860 1490 8.3) 14050 12/14/45 10-00 860 1490 8.3) 14051 2 14050 12/26/47 15-20 (10-0 15/20 8.6) 14052 3 14050 12/26/47 15-20 (10-0 15/20 8.6) 14053 3 14050 12/26/47 11-11 1100 850 9.3) 14052 7 22044 04/19/46 11-00 339 6.36 14053 7 22044 04/19/48 11-11 1100 850 9.3 14052 7 22044 04/19/48 11-11 1100 850 9.3 14559 2 24-001 12/22/48 11-00 14559 2 24-001 16/22/47 19-00 2910 14559 3 24-001 16/22/47 19-00 2910 14559 3 24-001 16/22/47 19-00 2910 14559 3 24-001 16/22/47 19-00 2910 14559 3 24-001 16/22/47 19-00 2910 14559 3 24-001 16/22/47 19-00 2910 14559 3 24-001 16/22/47 19-00 2910 14559 3 24-001 16/22/47 19-00 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 10-20 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 19-20 2910 14559 3 24-001 16/22/47 10-20 2910 14559	-	~	12118	12/11/16	<u>=</u>		693	_	_
10.52 3 12.84 04/17/47 11:34 1888 1888 18.84	~	_	1218	13/23/83	Ξ		=	=	
14054 3 12448 99/24/47 11:23 2336 00787 3 12448 99/24/47 11:23 2336 00787 13 1248 61/7/46 12:45 1919 685 7:5 00787 13 139CC 11/22/26 12:36 (19.0 1309 8.7) 14052 10 139CC 04/22/46 12:36 (19.0 1309 8.7) 14052 10 139CC 04/22/46 12:35 249 8.7) 14052 10 139CC 04/22/46 12:35 249 8.7) 14052 10 139CC 04/22/46 12:35 249 8.7) 14052 10 139CC 04/22/46 12:35 240 8.7) 14052 2 148DD 12/24/45 10:36 11:5 1319 8.7) 14052 3 148DD 12/24/46 10:36 11:3 13:19 8.7) 14052 3 148DD 12/24/47 13:29 (10.0 13)9 635 8.5 14052 3 148DD 16/11/47 13:29 8.6 14053 7 22C4A 04/15/46 10:00 339 635 8.5 14554 20 24-001 12/22/47 09:40 230 230 24-001 05/22/47 09:40 230 24-001 05/22/47 09:40 230 24-001 05/22/47 09:40 230 24-001 05/22/47 09:40 230 230 24-001 05/22/47 09:40 230 230 24-001 05/22/47 09:40 230 230 230 24-001 05/22/47 09:40 230 230 24-001 05/22/47 09:40 230 230 230 24-001 05/22/47 09:40 230 230 24-001 05/22/47 09:40 230 230 230 24-001 05/22/47 09:40 230 230 24-001 05/22/47 09:40 230 230 230 24-001 05/22/47 09:40 230 230 24-001 05/22/47 09:40 230 230 230 24-001 05/22/47 09:40 230 230 24-001 05/22/47 09:40 230 230 230 24-001 05/22/47 09:40 230 230 230 24-001 05/22/47 09:40 230 230 24-001 05/22/47 09:40 230 230 24-001 05/22/47 09:40 230 230 230 24-001 05/22/47 09:40 230 230 24-001 05/22/47 09:40 230 230 230 24-001 05/22/47 09:40 230 230 24-001 05/22/47 09:40 230 230 230 24-001 05/22/47 09:40 230 230 24-001 05/22/47 09:40 230 230 230 24-001 05/22/47 09:40 230 230 24-001 05/22/47 09:40 230 230 230 24-001 05/22/47 09:40 230 230 24-001 05/22/47 09:40 230 230 230 24-001 05/22/47 09:40 230 230 24-001 05/22/47 09:40 230 230 230 24-001 05/22/47 09:40 230 230 24-001 05/22/47 09:40 230 230 230 24-001 05/22/47 09:40 230 230 24-001 05/22/47 09:40 230 230 230 24-001 05/22/47 09:40 230 230 24-001 05/22/47 09:40 230 230 230 24-001 05/22/47 09:40 230 230 24-001 05/22/47 09:40 230 230 2	_	~	12118	16/11/91	=				
0058 3 1288 64/87/86 12:45 1010 685 7.5 07008 45 1300 1300 1300 1300 1300 1300 1300 130	-	~	~	13/24/83	≅	2			
PUGUE 45 139CC 11/22/85 98.45 PUGUE 77 139CC 64/72/86 12:30 (10.0 1240 17.7 PUGUE 77 139CC 64/72/86 12:30 (10.0 1200 17.7 PUGUE 40 139CC 64/72/86 12:30 (10.0 1200 17.7 PUGUE 40 139CC 64/74/85 10:00 160 1490 18.3 PUGUE 40 148D0 12/74/85 10:00 11.5 2010 18.4 PUGUE 5 148D0 12/74/85 10:00 11.5 2010 18.4 PUGUE 5 148D0 12/74/87 15:20 (10.0 15.20 15.20 16.5) PUGUE 5 148D0 12/74/87 15:20 (10.0 15.20 15.20 16.5) PUGUE 5 148D0 16/74/87 15:20 (10.0 15.20 15.20 16.5) PUGUE 5 148D0 16/74/87 10:00 15.9 (10.0 15.20 16.5) PUGUE 7 22CAA 16/74/87 10:00 15.9 (10.0 15.20 16.5) PUGUE 7 22CAA 16/74/87 10:00 15.9 (10.0 17.6 640 17.6 17.6 17.6 17.7 PUGUE 7 22CAA 16/74/87 10:00 17.6 640 17.6 17.6 17.7 PUGUE 7 22CAA 16/74/87 10:00 17.6 640 17.6 17.6 17.7 PUGUE 7 22CAA 16/74/87 10:00 17.6 640 17.6 17.6 17.7 PUGUE 7 22CAA 16/74/87 10:00 17.6 640 17.6 17.6 17.7 PUGUE 7 22CAA 16/74/87 10:00 17.6 10.0 17.6 17.6 17.7 PUGUE 7 22CAA 16/74/87 10:00 17.6 10.0 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6	S-S-S	~	12188		\$: €	=	_	Š	_
0 0 5 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0	=	200				:	•	
0.0788 10 139CC 04/27/8 12:30 48:0 1309 8.7 44052 10 139CC 03/26/37 14:14 416 1260 8.13 64053 10 139CC 03/26/37 14:14 416 12:60 14:30 0.0788 3 148DD 04/27/6 14:00 660 14:30 8.3 64051 3 148DD 04/27/6 14:00 11:5 2010 8.4 64052 3 148DD 04/27/6 14:00 12:0 15:10 8.4 64052 3 148DD 04/27/6 14:00 15:20 8.6 64053 3 148DD 12/27/6 16:40 13:9 8.8 64053 7 22CAA 04/15/6 10:00 13:9 636 9:0 64053 7 22CAA 04/17/7 09:26 485 64053 7 22CAA 04/17/7 09:26 485 64053 7 22CAA 04/17/7 09:26 10:00 13:0 64053 7 22CAA 04/17/7 09:26 10:00 13:0 64054 4:5 24:001 12/22/6 10:00 29:0 64581 20 24:001 05/22/6 10:00 29:0 64581 21:001 05/15/6 10:00 29:0 64581 21:001 05/15/6 10:00 29:0 64581 21:001 05/15/6 10:00 29:0 64581 21:001 05/15/6 10:00 29:0 64581 21:001 05/15/6 10:00 29:0 64581 21:001 05/15/6 10:00 29:0 64581 21:001 05/15/6 10:00 29:00 29:0 64581 21:001 05/15/6 10:00 29:0	0101	= :	3			•	2	- -	 .
14022 10 119CC 64/16/14 14:14 116 1269 8.13 14053 10 119CC 66/17/41 12:52 243 14059 14050 64/16/16 14:00 660 14:00 8.3 14050 12/14/45 16:00 660 14:00 8.3 14050 12/14/45 16:00 660 14:00 8.3 14051 3 14050 64/16/16 13:21 (10.6 1510 8.4 14052 3 14050 16/16/16 13:21 (10.6 1510 8.4 14052 3 14050 16/16/16 13:22 (10.6 1510 8.4 14052 3 14050 16/17/17 13:20 13:3 14052 1 22CAA 64/15/16 16:45 450 63.5 14053 7 22CAA 64/15/16 16:45 450 63.5 14053 7 22CAA 64/16/16 11:00 778 640 9.0 14052 7 22CAA 64/16/16 11:01 778 14:57 7 22CAA 64/17/17 09:26 405 14:57 2 24-001 16/12/17 09:40 29:0 14:58 2 24-001 16/12/17 09:40 29:0 14:58 3 24-001 16/12/17 09:00 29:0 14:58 3 24-001 16/12/17 09:00 29:0 14:58 3 24-001 16/12/17 09:00 29:0 14:58 3 24-001 16/12/17 09:00 29:0 14:58 3 24-001 16/12/17 09:00 29:0 14:58 3 24-001 16/12/17 09:00 29:0 14:58 3 24-001 16/12/17 09:00 29:0 14:58 3 24-001 16/12/17 09:00 29:0 14:58 3 24-001 16/12/17 09:00 29:0 14:58 3 24-001 16/12/17 09:00 29:0 14:58 3 24-001 16/12/17 09:00 29:0 14:58 3 24-001 16/12/17 09:00 29:0			3360	1/1/10	12.30	= :		-	
14023 19 1202 04/11/45 10:20	744052		ביינים	9/26	= :	= :	1260	•	_
0.05	1407		36	2		-		•	
00587 3 14800 04/2/26 14-40 11.5 2010 8-4 44051 9 14800 05/16/66 14-40 11.5 2010 8-4 44052 9 14800 05/16/66 13-21 (10.0 1510 8-4 44052 9 14800 05/16/47 15-20 (10.0 1510 8-4 44054 9 14800 19/16/47 15-20 35-9 44054 9 14800 19/16/47 15-20 35-9 64058 7 22CAA 04/15/46 10-45 458 (3.3 8-5 00553 7 22CAA 04/15/46 10-45 458 (3.3 8-5 00553 7 22CAA 04/16/46 11.01 1100 85/0 44052 7 22CAA 04/16/46 11.01 1100 85/0 44053 7 22CAA 04/16/47 11.11 1100 85/0 44053 7 22CAA 04/16/47 11.11 1100 85/0 44053 7 22CAA 04/16/47 11.11 1100 85/0 44053 7 22CAA 04/16/47 10-26 485 44554 7 22CAA 05/16/47 09-41 037 44554 20 24-001 10/22/47 09-40 2910 44554 32 24-001 10/22/47 09-40 2910 44554 32 24-001 10/22/47 09-00 2910 44559 32 24-001 85/15/47 09-00 2910 44559 32 24-001 85/15/47 09-00 2910 44559 31 24-001 85/15/47 10-25 21.8		-				•	2 :	-	
10.52.7 3 148DD 04/16/06 13-21 (10.0 1510 0.44052 148DD 12/16/06 13-21 (10.0 1510 0.44052 148DD 12/16/06 13-21 (10.0 1510 0.44052 148DD 16/16/17/17/13-20 15.9 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	E CLO				= : = :	• :			
44052 9 148DD 12/16/86 13-21 (10.8 1518 8-14052 9 148DD 62/26/27 15-20 (10.0 1520 8-6 14053 9 148DD 62/26/27 15-20 (10.0 1520 8-6 14053 9 148DD 62/26/27 15-20 35-9 (10.0 1520 8-6 14053 7 22CAA 62/16/16 10-10 339 6-36 8-5 6-36 8-2 7 22CAA 62/16/16 10-10 339 6-36 8-5 6-36 8-2 7 22CAA 62/16/17 10-10 170 6-36 9-3 6-36 8-2 7 22CAA 62/16/27 11-11 1100 8-36 9-3 8-2 6-36 11-36 9-3 11-34 8-3 12-4-30 12/12/27 11-3 11-3 11-3 11-3 11-3 11-3 11-3 11-	-					= :	0102	-	
14002 3 14800 04/24/31 15:20 410.0 15:20 6.6 44051 3 14800 06/14/41 13:20 35:9 44052 7 22CAA 04/54/6 10:00 339 636 8:5 0PSR 7 22CAA 04/56/6 10:00 339 636 8:5 0PSR 7 22CAA 04/08/67 11:11 1100 85p, 9:0 44052 7 22CAA 04/08/67 11:11 1100 85p, 9:0 44053 7 24-001 10/22/87 10:40 85p, 9:0 44583 20 24-001 10/22/87 10:00 29:0 44583 22 24-001 95/15/87 08:00 29:0 44583 22 24-001 95/15/87 08:00 29:0 44583 32 24-001 95/15/87 08:00 29:0 44583 32 24-001 95/15/87 08:00 29:0 44583 32 24-001 95/15/87 08:00 29:0	144051				= = = = = = = = = = = = = = = = = = =	3			
44054 9 14800 80/1/47 15.20 55.3 44054 9 14800 10/12/47 16.49 RA 55.0 44052 7 22CAA 86/15/46 10.45 458 453 45.5 0PS3 7 22CAA 86/15/46 10.00 319 634 9.0 44052 7 22CAA 86/17/47 11.11 1100 859, 9.1 44053 7 22CAA 86/17/47 99.26 485 44053 7 22CAA 86/17/47 99.46 485 44054 7 22CAA 10/21/47 99.46 485 44054 7 22-4-001 95/12/46 11.05 985 7.7 44572 20 24-001 95/12/46 10.05 986 44573 20 24-001 95/12/46 10.05 986 44574 45 24-001 10/22/47 99.00 2910 44573 21 24-001 10/22/47 99.00 2910 44573 21 24-001 85/15/47 19.00 2910 44573 31 24-001 85/15/47 10.25 21.8	144052		14800		2 :	Ξ,	1251	-	_
14058 7 14050 1472/41 10:49 84 635 635 7 20248 64/15/46 10:45 458 633 635 635 7 20248 64/15/46 10:05 319 635 635 635 7 20248 64/16/46 10:00 319 635 635 8 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1405				2 :	•			
0.0758 7 22CLB 04/13/06 10:00 319 635 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.	•		1000						
00537 7 22CLB 09/05/66 11:00 178 640 9:00 00537 7 22CLB 09/05/66 11:00 178 640 9:00 44052 7 22CLB 04/00/67 11:11 1100 850, 9:18 44553 7 22CLB 04/10/67 11:11 1100 850, 9:18 14:58 7 22CLB 04/10/71 09:26 405 14:58 7 22CLB 04/10/71 09:41 037 7 14:58 20 24-001 05/23/46 10:40 505 7:18 14:58 20 24-001 05/23/47 09:00 20:00 14:58 20 24-001 05/15/47 09:00 20:00 14:58 31 24-001 05/15/47 09:00 20:00 14:58 31 24-001 05/15/47 10:25 21:8			22011		2 3	\$		-	
14652 7 22CLA 04/00/87 11:10 859 9.1 14652 7 22CLA 04/00/87 11:11 1100 859 9.1 14652 7 22CLA 04/00/87 11:11 1100 859 9.1 14652 7 22CLA 04/10/87 92.5 405 72CLA 04/10/87 92.5 405 72CLA 04/10/87 92.5 405 72.6 405			1177			3:	2	-	٠.
14052 1 2244 04/09/8 11:11 1100 059, 3:14 14053 7 2244 06/17/87 09:26 148 14054 7 2244 06/17/87 09:41 037 14159 20 24-001 05/03/86 10:40 506 14589 20 24-001 05/03/86 10:40 506 14589 20 24-001 05/03/86 10:40 506 14589 20 24-001 05/03/86 10:40 506 14589 31 24-001 05/15/87 09:00 29:00 19:40 18:40	•		1177		= :	- :			
44554 7 2244 09/11/781 93:20 445 44554 7 2244 19/23/781 11:44 985 7.77 4587 20 24-001 19/22/85 10:40 505 7.8 4587 20 24-001 09/02/86 10:40 505 7.8 44584 30 24-001 09/22/87 09:30 3660 505 7.8 44584 45 24-001 19/22/87 09:30 2910 44584 31 24-001 09/12/87 09:00 2910 44589 31 24-001 09/12/87 09:40 2910 44589 31 24-001 09/15/87 09:40 2910 44589 31 24-001 09/15/87 10:25 21.8	7001	- •	1177	90/30	= 2	= -	n co	-	_
14.59.7			11366		3	2 2	•		
14582 20 24-001 05/02/06 14:05 985 7.7 14582 20 24-001 05/02/06 10:05 986 7.8 17.8 12.0 24-001 05/02/06 10:05 98.0 98.5 7.8 14583 20 24-001 05/02/07 09:00 2910 16/02/07 16/02	: =	_	24.001	2	: =	3			
14592 20 24-001 95/25/66 10-10 566 7.8 1.8 14592 20 24-001 95/25/66 10-10 566 4582 20 24-001 95/25/87 99:00 2910 16/28 45 24-001 10/22/87 109:00 2910 16/28 20 24-002 12/12/85 11:20 1910 1910 1910 16/28 20 24-002 12/12/85 11:20 1910 1910 1910 1910 14583 31 24-001 195/15/87 10-25 21:8 124-002 12/12/87 10-25 21:8 12/12/87 1	117.00	• •	24.001		=		10		_
4583 20 24-001 07/22/87 09:30 3660 4584 45 24-001 10/22/87 09:30 29:00 29:00 4689 22 24-002 12/12/85 11:20 29:00 29:00 4689 23 24-002 09/22/85 10:11 1940 8:00 4689 23 24-002 09/22/87 10:25 21:8			- 4	04/07	=		•		
44584 45 24 001 10/22/77 09:00 2910 14:58 20 24:002 10/22/77 09:00 2910 14:58 22 24:003 09/02/46 10:11 1940 8:00 44583 33 24:007 09/15/47 00:40 230 23:00 23:00 20	=		=	: 5	5	366		:	
14-58 20 24-002 12/12/85 11:20 14583 22 24-003 09/02/86 10:11 1940 8:0 14583 33 24-007 05/15/87 08:40 230 14583 34 24-008 05/15/87 10:25 21:8	=		-	777	50	=		•	
14583 22 24-003 09/02/46 10-11 1940 8.0 14583 33 24-007 05/15/17 08:40 230 23.8 14583 34 24-000 05/15/17 10-25 21.8	Ė	2	=	?	~	:			
4(SW) 33 24-007 05/15/87 08:40 230 4(SW) 34 24-000 05/15/87 10:25 21.8	- 43	7	: :	/07/8	-		_	-	_
14583 34 24-008 05/15/87 10:25 21	S	: =	=	115/8	-	=	•	•	
AND	153	=	-		•	_			
	:	•		-					

Untidouterful Science ard engineering, inc. Oute: 85/19/40 Page 16

HSH.

3 2			91000				3144	3			11788	717		1338	3	Ī	3	13	128	161	1	•			31015	24918		1376
ಶಕ್ಷ			11711	1588			CINE				97960	23		1659	3	13188	12101	9	3130	1598	13600				55611	10113		3318
1/36 36/1			1 167				(3)	2			(78.1	2		(28.1	7 5	(20.1	71.3	3.	2	- F	- R				1 10	5	•	:3 .1
1798			1 10	=			9.10	=			3	(I) 6		\$ TI \$		(II.5	9.10	9.0	9.11	5	9				3 11.5	9 10		
1/30			200	=			4.5	=			16.15	2	•	6 T	÷.	C. 5	£.	. S.	2.5	. N.	11 5				1 P	=	•	1.92
1/38			38.50	5	•		.S. 96	.S. 36			S. 38	3.35		8 .9	£.	E.	£	S. 35	65.36	3.	65.36				38 50	65.96		·5.56
1/56 02/1			65.15	5	•		\$. <u>16</u>	.€	;		cs. 16	.\$.16		€.2	(5.28	€.3	65.16	65.16	S. 16	ć§. 16	\$ 16				31.50	65.16		6 .12
1/56			=======================================	153			33	=			=======================================	3		203	2300	=======================================	+03	424	2161	=	11500				1020	39.0		113
415181C 96/L			42.58	0.0			¢2.5	9.0			1.21	3.8		₩.C.	÷.	€.C	3.3	<2.58	C. E.	3.13	2				366	382	•	13:10
111 111		Ē	STI	115	1016	MCI			212	STIE	STE		===	111	111	1113	1111	===	Ξ	Ξ	131	1576	84SI	BASI	DICI	910		8151
DEPTE SITE TIPE CB		9.0				_								_							_					_		
IRSTAL BAPTE SITE TIPE SABPLE CB			=	=	=	=	3	=	=	=	<u>:</u>	=	-	:	-	:	<u>.</u>	•	-	-	=	=	-	9.	0	9.6		.
			=	=	=	=	3	=	=	=	<u>:</u>	=	-	:	-	:	<u>.</u>	•	-	-	=	=	-		0	9.6	0.0	.
IRSTAL SABPLE			9.6 II 9.0	9.0	0.6	9	0.0 II 9.0	- H		9	9	3	0.0	9.6	- T	1.1 H	- 1. E	6.6	0.6	- 1.1 H 5	0.6 11 5	0.4	9	9.6 14 5	0.0 14 5	0.0	0.0 34 3	6. RE 0.0
SAR TTPE S TECH INSTILL SABPLE	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		St 6 II 9.0	0.0 M 9 MS	SH 6 N 9.0	9.0 3E 9.0 NS	St 6 Bt 6.0		2.0 12 5 AS	0.0 M 9 NS	0.0 M 9 MS	0.4 M 5 NS	0.0 M 9 MS	0.6 II 9.	0.0 M 5 W			0.6 M 5 NS	0.0 H 9 NS		0.0 14 5 KS	0.0 M 9 MS	0.0 M 9 MS	9 14 5 KS	:21 SM G PI 0:0	0.0 18 9 NS	SW 6 PK 0.0	9 2
SAR TTPE S TECH INSTILL SABPLE	20 M	11:13 5# 6 11:10	12:35 Sf G M 9.0	10:20 SN G NE 0.0	12:37 SM G N1 9.0	6.9 36 5 NS 6:31	13:11 St 6 11 0.0	11:00 Sr 6:11	11:50 57 6:11	11:51 SW 6 PR 9.0	12:57 ST 6 M 9.0	11:30 SW 6:11			12:00 SW G DE 6.0			12:11 SN 6. 91 9.0	- 0.0 11 5 NS 81:01	10:55 SH 6 110 110 110 110 110 110 110 110 110 1	14:36 SN G NI 0.0	18:12 SW G PI 9:0	69:20 SW G BK 0:0	13:10 SW G PE	09:21 SM G PI 0.0	09:31 SW G BE 0.0	13:39 SW 6 PK 0.0	10:11 SW G RI 0.0
SAM TIPE S TRCH INSTALL SAMPLE	06/12/12/13/13/13/13/13/13/13/13/13/13/13/13/13/	99/02/06 11:13 SH G 11:13	05/20/87 12:35 SW G BK 9.0	10/22/11 10:20 SN G NI 0.0	12/12/15 12:37 SN G NX 9.0	66/38/88 15:00 SM G BE 6:0	15/28/87 12:11 ST G RL 0.0	19/22/01 11:00 SW G PE 0.0	0.0 M 2 S 82 6:11 91/10/10	19/12/86 11:51 SW G RR 9.0	15/21/47 12:51 SW G M 0.0	10/22/47 11:30 SW G 11 0.0	12/12/85 10:00 SH G HE 0.0	14/15/86 bt:30 SK G BK 9.0	16/16/16 12:10 SW G BE 0.0	19/45/15 11:40 SN G 11:11 91/59/61	12/11/16 09:48 SH G H	14/80/01 12:31 SM G BE 9.0	16/17/87 10:48 SW G BE 9.0	10/23/47 10:55 SH G HE 0.0	15/21/17 10:36 SN G NT 0.0	12/19/85 19:12 SN G BK 9.0	17/82/86 69:20 SW G BK 0.0	00/12/86 13:10 SM G PE 0.0	05/21/81 09:21 SM G PL 0.0	10/30/67 09:31 SW G BE 0.0	88/12/86 13:39 SW G PK 0.0	05/21/81 10:11 SW G RI 0.0
SAM TIPE S TRCH INSTALL SAMPLE	06/12/12/13/13/13/13/13/13/13/13/13/13/13/13/13/	99/02/06 11:13 SH G 11:13	05/20/87 12:35 SW G BK 9.0	10/12/11 10:20 SN G DE 0.0	12/12/15 12:37 SN G NX 9.0	66/38/88 15:00 SM G BE 6:0	15/28/87 12:11 ST G RL 0.0	19/22/01 11:00 SW G PE 0.0	0.0 M 5 NS 6:11 91/10/10	19/12/86 11:51 SW G RR 9.0	12:57 ST 6 M 9.0	10/22/47 11:30 SW G 11 0.0	12/12/85 10:00 SH G HE 0.0	14/15/86 bt:30 SK G BK 9.0	16/16/16 12:10 SW G BE 0.0	19/45/15 11:40 SN G 11:11 91/59/61	12/11/16 09:48 SH G H	14/80/01 12:31 SM G BE 9.0	16/17/87 10:48 SW G BE 9.0	10/23/47 10:55 SH G HE 0.0	15/21/17 10:36 SN G NT 0.0	12/19/85 19:12 SN G BK 9.0	17/82/86 69:20 SW G BK 0.0	13:10 SW G PE	09:21 SM G PI 0.0	10/30/67 09:31 SW G BE 0.0	88/12/86 13:39 SW G PK 0.0	10:11 SW G RI 0.0
SAR TTPE S TECH INSTALL SARPEL	06/12/12/13/13/13/13/13/13/13/13/13/13/13/13/13/	35 30-002 09/02/06 11:13 SH G H 9.0	27 30-802 65/20/87 12:35 SW G NE 9.8	50 30-802 19/22/87 10:29 SN G PE 0.9	27 31-801 12/12/45 12:37 SM G NR 9.0	28 31-901 66/36/36 15:00 SN G N 0:0	28 31-001 05/20/07 13:11 ST G RI 0.0	28 31-401 19/22/01 11:48 SW G PE 0.0	29 31-902 91/10/11:59 58 6 31 9.0	29 31-802 89/82/86 11:51 SN G PL 9.0	15/21/47 12:51 SW G M 0.0	29 31-002 10/22/01 11:30 SH G NI 0.0	47 33188 12/12/15 10:00 SH G BE 0.0	13188 84/15/86 48:30 SM G NE 9.4	9 3318 96/16/16 12:00 SH C BE 0.0	0.0 M 2 N S 01:11 91/50/60 ERICC B	8 3318B 12/11/16 09:40 SM G NE 0.0	5 23188 04/80/01 12:11 SH 6.9	8 33488 06/17/87 10:48 SM G BE 0.0	8 33188 10/23/47 10:55 SH C DE 0.0	39 35-803 85/20/87 10:36 SM G NE 0.0	31 36-801 12/89/85 18:12 SN G RE 8.0	32 36-041 07/82/86 69:20 SW G BE 0.0	32 35-801 08/12/86 13:10 SM G BE 9.8	05/21/81 09:21 SM G PL 0.0	10/30/67 09:31 SW G BE 0.0	88/12/86 13:39 SW G PK 0.0	05/21/81 10:11 SW G RI 0.0

EFFIFOREPRE SCIENCE AND ENGINEERING, 19C. DATE: 95/19/80 PAGE 17

		1/3	4 817		Ę	5	5		5	5	(19. 5	5		5	5	=	5	\$ 6 00	9	5.00	5.00	CIE.S	11.5	21	32.1	(18.5		(10.5	S.E.S	£10.5	11.6
	317610713	1 1/2				ce, 152	:			ca. 152				cd. 152										4.133				9.0			(15.2
	111005	1/36	94	9	9	950	÷.	19.6	£. 65	4.156		÷.	÷.	£ 150	5.5	191	9		9	£. 161	=	. E	(1.068	÷.	÷	ê. 601	4.60	2.5	41.20	ca. 691	5
		1/34	(8, 85)	4.152	cd 152	5	(1.152	÷.151	(1,152	÷.6	<0.052	(1.152	(1.152	â. 6	(1.152	=	(1.152	cd. 852	4.152	0.152	=	(1.152	(1,152	<u>₹</u>	\$.	1.5	==	5.16	<u>-</u>	Ξ.	9.6
	MEMIE	1/3	130	98.	5	0.155	9.0	90.0	1.16	d. 155	4.06	19. (5	÷.	6.155	÷	÷ 188	9	â. 15	=======================================	÷.	=	131. 151	ê. 65	=:	===	7.2	\$.5 \$.5	==	×28.8	£	1.9
	11011	1/34	(1, 17)		0.03	=======================================	£.	==	£.11	ê.E	6.171	6.03	4,070	÷.	÷.13	= -	÷.		. 0.11	41.11	=	(1,11	ê. 13	÷ 136	= .5	7.1	1.93	c (.15	6 110	5 .	4.3
	161 - 1°4	1/54	<0.050	6.05	4,153	91.0	(4,183)	(1.15	6.053	() 1(C	ca. 453	3.5	4.153	£, £,	ce 153		£ 153	4.153	(1.15)	(1.153)	=	4.153	4.153	£.53	₹ .	6.530	4.53	€.7	36 ∵	6.53	4.6
	P.P101	1/30	cd. 878	4.11	(0.13)	(B. 059	61.07b	£. E.	4.13	4.159	ći. 178	60.03	4.03	0.159	6.13		6.153	4.11	171.00	(1.17)	2	6.53	6.01	£.137	=.	.1.18	÷.78	<2.95	â.a	49 .789	65.30
	ICC)	1/50	=	4.13	(0.07)	(9, 93)	(1.81	2	G. 33	=======================================	î.	<u>=</u>	.	÷.	÷.13		4.11	G. 03	(0.11	(1.01)	Z	4.11	6.13	4. 211	=	2.45	- 23	4.15	<u>=</u>	€ .38	÷.
HSH	1111	. *	43.6	412.9	(12.9	412.9	42.9	£3.	(17.1	47.1	(17.9	€ <u>₹</u>	(12.9	(12.9	(17.9		=	(12.9	(12.9	(12.9	412.8	(13. 9	41.9	(12.3	33	3	Ē	ž	158	(17.)	412.9
	â	¥	6.3	9.3	÷.	(16.2	G.23	6.3	. .	(15.2	<u>.</u>	===	÷.	9.3	÷.	€.	=	€ .3	G.2	69.31	€ .	3.	÷.	2.	1 .2	=	6.3	31.5	9 .E	.€. H.	÷.
		1/34	(0.130	÷.	÷.33	0.13	÷.13	÷	÷.	÷.	=	÷.	ê. <u>:</u>	÷. 13	.	(,);	÷.5	â. 138	(1.13	÷.		ê. 13	(0.138	÷.	Ξ	¥7.28	€.7	6.9	4.35	ê. II	. 138
	HICH	; }				(4,35)	0.31							¢.35	9.78		(d. 26)	(1.24	(0.24)	6.5	49.359	69. ZE	d. 28	(9.359				(1.359	(0.24)		(4,359
	=	1 /2				2 2 3 3 4 3 3 3 3 3 3 3 3 3 3	11100			=	123			######################################	18881		3	4214	12388	===	1	25000	65896	426010				=======================================	136181		242111
	£	SAMPLE 19 DATE	=	27 30-902 96/30/86 10	35 38-862 89/02/86 11	11 19-002 65/20/67 13	18 30-862 10/22/87 11	11 \$1/21/21 101-112 12	1 31/06/30 101-16 05/30/85 1	1 20 31-001 05/20/01 11	1 20 21-01 10/25/01 1	29 31-062 03/91/16 11	29 31-002 09/02/16 11	19 31-101 65/21/01 11	25 31-802 10/22/87 11	47 33488 32/12/85 11	1 33733 94/12/36 91	13779 66/16/16 13	11 31/50/60 20705 1	1 33481 12/17/46 09	1 13138 04/48/47 17	1 137179 06/11/61 11	1 3318 10/23/67 10	15 15-001 05/22/87 10	31 36-881 12/39/85 11	32 36-101/01/02/16 19	32 36-161 40/12/16 13	35 36-801 85/37/81 81	12 36-101 10/30/47 91	33 36-903 60/12/16 13	17 16-101 65/27/47 10
	THIRT .		14.S	14512	TSI)	1((51)	135	≥	151	1651			1651		131	079	S	250	5	202	1405	1405	200	T (ST	5-1-1 1-1-1	7537	1(5)	13.	T SE	T(SE	16.51

HS1

5	į	15,164	11288	125	\$7500	300	112H	1			#353	1210	3	6518	3	5138	31691	5530	97888	5578	24200	5348	62100	1631	16401		12511	13200		252000
MP-171.		17 77	~	2	5 6	2	9	2.5	2.0	2.4	2.5	5.0	0.4	17.0	2	17.13	42.43	C .	43.43	£7.73	4.4	€.	₽.£	382	797	13.3	× = 1.	=======================================	42.43	47.43
113	È	21.35	2	5.3	1.35	£.5	57.0	5.5	÷.3	1.35	£.3	4.35	4.35	2.3	41.35	0.35	51.15	2.35	£.5	4.35	4.35	£.5	ć.35	41.35	÷	£.35	4.35	(13.5	4.35	4.33
111131111		=======================================	77	41.2	27	¢1.2	=	÷.	€.2	<u>1.2</u>	=======================================	÷.	cl.23	£.73		(1.28	ci.21	cl.28	£.5	(1.21	41.28	₹.	4.28	2.3	201	41.28	×	×13.6	47.73	47.7
111111		4.0	7	=	£.13	7.0	7	-	÷.	<u>-</u>	÷.	÷.	£.5	÷.	÷.	7.7	7	¥.	₹.	£.5	±.5	÷.	£.5	=	21.7	1.13	136	1.3	£.	₹. .
101818	2	0.21	77	===	17.13	£.2	£.	£.2	£ 5	1.1	41.21	41.21	:1.11	4.21	41.21	(1.21	4.2	41.21	0.3	£.5	ā.2	£.	4.2	T :	41.7	=	×1.15	(12.1	4.7	4.21
1,4-0119	•	6.1	€.		£.5	€.1	 	2.E	4.35	47.8	€	₩.	€.5	≎.=	₩.2		4.1	₩.	47.₩	=	9.E	€. E	4.35	ć2. 81	(2.00	£.5	d.35	(2.00	47.11	4.35
1,4-9111	•	===	÷.	÷.	£.5	<u> </u>	÷.	<u>=</u>	£.5	₹.5	<u></u>	<u>=</u> :=	0.5	÷.	<u></u>	= -	£.5	÷.	÷.	=	===	= .	£.5	. .	<u>.</u> .	<u></u>	4.5	1.46	£	3.51
		÷.	÷.	€.5	=======================================	₽.5	4.1	÷.	<u></u>	<u></u>	÷.	£.	<u>-</u>	€.5	₹	===	£.5	£	€.13	=	Ξ.	€.13	3 .5	38.1	1.7	=	=======================================	,25.3	÷.	3 .0
CP 150	•	£.3	£.2	£.2	÷.	CT.20	4.2	4.3	£.£	£.2	£.2	C4.2	4.5	£.2	ct.23	€.2	c4.20	€7.5	£.2	=	4.2	c4.2	16.1	26.1	1.1	21. 5	1.1	3. 3.	12.7	25.5
CPBS02 96/L	•	€.3	€.5	£.3	4.7	£.3	÷.	4.3	47.7	£.3	£.	£.3	0.7	4.3	£.5	€.3	4.3	£.7	€.3	=	£.	₹ .	291	Ę	200	25	181	=	201	S
26 T	:		÷.	<u>-</u>	<u>.</u> .	<u>.</u>		-	÷.	÷.	==	<u>-</u>	÷.÷	= :			=	<u>-</u>	÷	=	=	<u>=</u>	÷.;		= .	÷	û. 15	÷.	÷.	9
111	•				÷.	£.8			-	÷.			÷.	(Z. II					æ.æ	=	₹.	3.	=:-				£.:	ć2.		4.1₹
3/50 06/6		(15.2	c18.2	(15.2	(15.2	c15.2	:3:3	(15.2	(15.2	415.2	(15.2	(15.2	(15.2	(15.2	(15.2	415.2	45.2	(15.2	cis. 2	(15.2	(15.2	65.1	(15.2	c15.2	1.1	(15.2	(15.2	(15.2	45.2	c15.2
	11 11	_	Ξ	_	_	_	_	12:11	_	_	-	_	~	_	_	•	-	_	•	_	_				•	_	•	-	_	
	=	12/11/51	16/38/1	13/15/61	12/2/51	10/22/01	721/21	16/31/16	12/51	200	7.5/1	13/13/	12/2/50	10/22/2	12/12/	******	791798	13/18/	12/11/18	?	717/30	18/23/	12/58/	12/09/18	31/85/88	727				15/27/11
	SHPLE 19	21:13	38-162	38-115	~ = =	31-115	= :: ::]: E	=-::	=======================================	≅ ==	7:12	21:E	≃:-:				=======================================	22.5		=======================================	137	35·B	Ξ×	2-5	Ì	<u> </u>	=======================================	36-12 36-12	36-003
<u></u>	_	=	=	×	=	3	=	=	≈	~	=	≈	2	2	=	-	-	-	-		-	-	2	=	~	~	2	~	=	=
PATAITTE:	73. CEP.	Z-2	14517	1631	1455 1	14511	≅ ≅	7.512	1451	131	152	138	74573	133	200	es es	0PS12	25	7.05 1.05	141052	1105	74.05	14513	₹	14547		14(5)	13 E	155	74683

ì

EPFEDDREFFEL SCIENCE AND ENGINEERING, INC. DATE: 05/19/10 PACE 19

	101		= :		=======================================	=	=======================================	£.	7	÷.	=======================================	=======================================	41.18	£.	=======================================	=======================================	-	- - -	-	£.	1	#. 	4.11	23	18.7	2.	=======================================	E.3	÷.	4.1
	112001		R 2	: :	7.7	2.5	2.2	2	2.7	2.7	4.2	£.2	4.2	2.2	47.79	4.23	÷	£.2	7.7	4.2	4.2	£.	₩.	=	=	7.4	12.7	41.28	€.2	4.2
	12961					ê.6	9.6	4.61	£.6	£.5	9 .5	61.E18	ê.51	4.51		4.61	4.61	4.53	£.53	£.5	3.6	â.	đ.61	ca.618	d.61	ê. S.	ca. 618	119.00	£.61	6.14
	EAA.			; ;	2	#.	£	÷.	£.	3 .	<u>.</u>	÷.	÷.	₽.£		÷.	÷.	£.	₩.	Ē.	<u>-</u>	÷.	-	=	5.3	2.13	3 .2	£.£	<u>-</u>	£.85
	111708				=	£.5	4.3	1 .3	£.5	<u>-</u>	4.7	. .	£.5	₹.;		₽.5	£.5	£.5	£.5	<u></u>	£.5	<u>=</u> .=	£.	2.1 <u>3</u>	 2.	£.1	3 . 2	£.5	£.	4.7
	11903		= =	=======================================	=	÷.	-	÷.	÷.	-	===	4.1		= =	4.1	=	c. :	= =	<u>=</u> .=	- -	===	=	2.3	=:	2.3	-	=	÷.
	110011				~	41.18	£.5	€.5	4.2	₽. ₽.	4.2	đ.2	€ .	£.2		ći.2	4.2	47.19	ci.2	47.7	€.2 •	4.2	4.2	£.2	€.7	£.7	d.2	ê.2	⊕ .2	47.3
	10111 16/1	: :		=======================================	-	±.	£.	÷.	<u>-</u> -	≂	£.	Ξ.	<u>-</u>	÷.	£.5	÷.	£.5	£.	£.5	£.5	£.	4.3	7	≘	Ξ.	=	2.2	9.9	<u>=</u>	4.3
	1/39			=	.S.	€.	=:	\$.	₹ .	÷.	₹.	\$.	€.	€.		3.	≎.=	€.	\$. ₹	\$. =:	÷.	3 .5	3 .	3 .	1.	.S.	.e.	\$.2	÷.	65.88
HSH	1/36 17/38				=======================================	₹.	÷.	-3	3.5	=	÷.5	3.	<u>=</u>	÷.	= = = = = = = = = = = = = = = = = = =	₹.	£.5	₹.	£.58	3	£.5	÷.	÷.	=	151	2.5	121	=	£.	2.12
		•	=======================================	=======================================	=	÷.	÷.	÷.	=	= :	Ξ.	.	=	==	=	=	<u>-</u>	- -	=======================================	= :	==	=	==	≅	S	₹	Ξ	Ξ	==	7 .1
	ទូន	•	= =	~	÷.	₽.	\$. =	~	= :	= :	₹.	~	. .	≎.	5.	€	3 .	∵	4. %	≎.≏	₽ .	₹.	€.	=.~	62.E	€.4	€ .4	4.E	∵	€.4
	35		314600	29500	1631	3150	,	=	121			1360	=	=======================================		353	36 21	3	11611	138	=		£601		=		138	59500		31111
	# 7X	467		- C	4111	123	=	=	=	•	2	2	.	<u>=</u>	€	.	·158	?	38 2	(123	÷123	-123 8	123	=	Ξ		(123	1420		<u>=</u>
	•	1 SEPTE 19 9472 7125	27 30-002 06/30/86 14 35	_	27 30-02 05/20/03 12:35		12/12/21	28 21-661 66/36/86 15:06	28 31-861 05/29/87 13:11			3/15/16	15/27/31	_	2/15/15	_		3 3353 69/65/86 11:48	_	8 33189 04/68/07 12:11	16/11/31	11/23/11	_	13/18/15	11/10/18		15/21/11	11/31/11	_	37 36-83 65/27/87 18:11
	PARATETIS:	2 2 2	16577	1637	TEST	1332 1300 1300 1300 1300 1300 1300 1300	Z :	TEST.			1454			1465	F	Sign	25.5	£	2	14652		1		S .	E			1484		

1 3 1 E	2 2 11			£.	1.2				7.5			2.	9.3			=	1.1	7.6	¥.	3.3	1.62					7.95	1.51			9.1		
85 3				₹	=				=			E	2			2	3	23	3	₹	Ξ					138	≡			3		•
2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					E	Ē			ž				Ξ	=		2	=	2510	\$ €	31	E	3	=				=	55.7		~	
		Ħ	# #	#	===	= 32	# =	22.22	\$ ≈	==	=======================================	3. 11	3	12:51	≅	=======================================	==	# :=	===	3:5	====	===	11:55	### X	22	13:28	13:11	₩.	33	3.33	===	
		Ħ	11/11/15	14/14/14 14/14/14	19/11/G	11/11/21	11/17/11	STATE	#/27/#	11/11/3	11/22/11	#/10/W	19/11/18	11/12/21	10/22/01	11/11/15	14/13/16	M/31/M	13/15/15	11/11/15	11/11/11	11/11/11	11/23/17	11/12/51	12/19/15	11/11/16	H/11/16	15/27/81	N/K/K	11/11/11	15/11/11	
				至文	~ *	¥	¥	₹	===	# ::	Ħ÷Ħ	₩.ic	31-162	31-112	ZH:					371	HILL	HICK	311	15- H3	Ξ·χ	X-12	Ξ×	¥-₩	X-13	36-193	36-113	
				E	×	۶.	3	=	=	≂	z	E	2	2	2	=	•	•	•	-	-	-	-	2	=	×	~	~	=	=	=	
E	r	2	なさ	200	₹ 2	Ž	10	¤ ≥	<u> </u>	<u> </u>	1:53:1	7637	<u> </u>	(450)	Ē		\$	Ę	2	<u> </u>	734652	1	71864	1631	3 2	200	, s	(153)	153	163	11(53)	316

}

APPENDIX B.2: ALLUVIAL WATER LEVEL DATA

THIRD QUARTER FY1987 WATER TABLE MAP DATA

EMA DELL BEES

Wells used to construct the Third Quarter FY 1987 water table contour map. (Page 1 of 13)

Well_ID	Water Level Elexation
01001	5249.8
01002	-999.9
01004	5248.8
01009	0.0
01010	5255 . 8
01011	5257.3
01017	5252.6
01020	-999.9
01021	5247.4
01024 01027	5235.0 5246.6
01033	5249.5
01041	5247.6
01044	5247.5
01049	5245.4
01501	5260.6
01510	5254.0
01514	5260.6
01518	5261.3
01528	5256.7
02001	5223.0
02002	5236.3
02008	5195.7
02011	5207.0
02014	5195.7
02017	-999.9
02020	5220.3
02023	5224.9
02026	5222.6
02034 02037	5227 · 6 5221 · 3
02040	5211.3 5213.8
02049	5193.9
02520	5194.1
03001	5135.4
03002	5139.6
03005	5175.1
03516	5125.4
03517	5125.9
03518	5126.2
03519	-999.9
03522	5132.7
03523	5141.6
04007	5122.7
04010	5127.6
04013	5123.2
04014	5123.2

BMA Data Base

Wells used to construct the Third Quarter FY 1987 water table contour map. (Page 3 of 13)

Well_ID	Water Level Elevation
19001	5170.1
19004	5158.7
19008	-979.9
19009	-999.9
19010	-999 .9
19014	~999.9
22002	5095.7
22003	5093.7
22004	5106.8
22005	5087.5
22006	5109.1
22007	5107.9
22008 22010	5092.7 5093.1
22011	5111.7
22012	5143.7
22014	-999.9
22015	5087.4
22016	5087.3
22017	5087.4
22018	5087.8
22019	5092.2
22020	5093.2
22021	5093.3
22022	5093.4
22025	-999.9
22029	-999.9
22033	5093.5
22034	5093.3
22036	5093.4
22040	5092.3
22043 22045	5093.1
22049	5092.7 5110.3
22050	5110.3 5106.9
22051	5086 · 4
22052	5089.9
22053	5091.2
22054	5112.3
22056	5093.2
22059	5087.2
22060	5106.2
23002	5142.9
23003	5142.9
23004	5141.5
23006	
23007 B-84	5143.0 5142.9

BMA_Data_Base

Wells used to construct the Third Quarter FY 1987 water table contour map. (Page 4 of 13)

Well_ID	Water Level Elevation
23008	5143.7
23009	5141.4
23010	5140.1
23011	5140.8
23012	5141.4
23013	5142.7
23014	5142.7
23015	5142.9
23016	5142.9
23020	0.0
23025	5139.1
23026	5138.8
23029	5140.9
23030	5140.7
23033	5141.2
23034 23035	5144.0 ~999.9
23035 2 3 036	5142.6
23037	0.0
23038	-999.9
23039	5118.9
23040	5130.2
23043	5131.0
23044	5131.0
23045	5128.5
23046	5126.7
23047	5126.8
23048	5127.2
23049	5143.7
23050	5141.6
23051	5141.8
23052	5141.9
23057	5142.8
23058	5141.7
23059	5146.9
23063	-999.9
23064	-999.9
23065	-999 .9
23066 23067	-999.9 5142.6
23072	5142.6 5141.6
23072	5141·0 5143·0
23084	5141,2
23085	5139.9
23092	5129.1
23094	5142.7
23095	5142.7
23096	5142.3
	.85

BMA Data Base

Wells used to construct the Third Quarter FY 1987 water table contour map. (Page 5 of 13)

U-11 Th		Water Level
Well_ID		Elevation
23101		5142.1
23102		5142.0
23107 23108		5143.4 5142.9
23109		-999.9
23110		5127.9
23111		5130.5
23118		5138.5
23119		5139.4
23120 23121		5138.6 5138.6
23122		5139·1
23123		5139.4
23124		5134.1
23128		-999.9
23129 23130		-999.9 -999.9
23131		-999.9
23132		-999.9
23134		5141.8
23135		5145.6
23136		-999.9
23137 23140		-999.9 5142.7
23141		-888.8
23142		5142.6
23143		5142.6
23145		5140.0
23146 23148		5140.2 5141.1
23146		-999.9
23150		5140.6
23151		5140.7
23157		5139.1
33760		5140.8
23166 23178		5134.0 5136.6
23179		5142.6
23188		5142.5
23191		5142.8
23196		5122.6
23197		5125.4
23198 23205		5127.5 5139.1
23207		5 140.0
23208		5140.5
23211	B 04	5140.4
24001	B-8 6	5141.6

BMA_Data_Bass

Wells used to construct the Third Quarter FY 1987 water table contour map. (Page 6 of 13)

Wall_ID	Water Level Elevation
24002	5143.3
24003	5147.4
24004	5132.7
24006	-999.9
24007	5141 - 1
24008	5141.7
24009	5141.6
24010	5141.9
24011	-999.9
24013	5139.8
24014	5140.1
24015	5139.9
24016	5139·4 5139·6
24017 24018	5140.1
24019	5140.7
24020	5140.3
24021	5139.8
24022	5140.0
24023	5140.5
24024	5139.7
24025	5139.2
24026	0.0
24027	5142.3
24040	0.0
24043	5143.2
24045	5141.7
24046	5141.5
24048	5141.4
24049	5141.3
24050	5142.0
24051	5142.0
24052	5142.1
24053	5142.1
24054	0.0
24055	5141.6
24056 24057	5138.5 5139.4
24058	5139.8
24062	5139.6
24064	5151.8
24065	5154.6
24067	0.0
24081	5164.5
24085	5166.1
24088	5162.3
24092	5139.6
24093	5154.2
	B-87

TMA_Data_Base

Wells used to construct the Third Quarter FY 1987 water table contour map. (Page 7 of 13)

Well_ID	١	ater Level Elevation
24094		5157.2
24095		5157.4
24096		5151.5
24097		5149.4
24098		5147.8
24099		5144.3
24100		5143.3
24101		5140.5
24102		5141.6
24103		5141.4
24104		5142.9
24105		5143.8
24106		5145.5
24107		5150.2
24110		-999.9
24111		5158.8
24112		5162.0
24113		5141.2
24114		5140.4
24115		5140.4
24117		5140.5
24121		5143.7
24122		5156.9
24123		5157.0
24128		5140.0
24129		5140.2
24149		5137.8
24150		5136.2
24151		5139.5
24158		5151.4
24161		5132.0
24162		5133.4
24163		5134.8
24164		5135 6
24165		5133.7
24166		5131.8
24169		5133.1
24170		5138.3
24176		5135.3 -999.9
24177		5139·1
24178		5139·1 5138·6
24179		5138.2
24180		5137.8
24181 24182		5137.6
24182		5136.7
24185	n 60	5138.3
24185	B-88	5137.9
34190		J. 31 1 7

Ma_Data_Bass

Wells used to construct the Third Quarter FY 1987 water table contour map. (Page 8 of 13)

		Water Level
Well_ID		Elevation
24167		5137.9
24188		5138.5
25001		5193.7
25002		-999.9
25003		5152.8
25011		5181.2
25015		5160.3
25018		5166.6
25022		5213.2
25030		-999.9
25035		5230.3
25038		5192.6
26001 26002		-999.9
26002 26004		5150·4 -999·9
26005		5158.6
26006		5160.7
26009		5128.7
26010		5163.2
26011		5146.3
26015		5145.5
26016		5146.3
26017		5146.8
26018		5146.1
26020		5149.4
26040		5147.7
26044		5144.4
26046		5145.5
26048		5150.4
26049		5151.5
26050		5157.7
26062		5163.9
26065		5163.5
26068		5160.0
26070		-999.9
26073		5177.2
26076 26078		5151·8 -999·9
26081		
26083		5148·7 5151·0
26085		5180.2
26088		5143.9
26091		5155.7
26093		5162.5
26124		5155.0
26126	F 00	5147.4
26127	B-89	5163.8
26133		5146.6

<u>BMA_Data_Base</u>

Wells used to construct the Third Quarter FY 1987 water table contour map. (Page 9 of 13)

		Water Level
Well_ID		Elevation
26143		5175.9
26145		-999.9
27002		5095.3
27003		5098.0
27004		5093.9
27005		5094 - 1
27006 27007		5094 · 2 5095 · 2
27007 27008		5095.3
27009		5095.7
27010		5093.1
27011		5093.3
27012		-999.9
27013		-999.9
27015		-999.9
27016		5145.6
27017		5148.4
27018		5148.0
27019		-999.9
27024		5126.1
27025		5126.3
27026		5125.8
27028		-999.9
27030		5140.4
27031		5119.2
27032		-999.9
27034 27037		-999.9
27040		5103.6 5121.3
27040		5114.0
27042		5107.0
27043		5104.4
27044		5100.5
27045		5094 - 7
27050		-999.9
27051		5128.8
27053		5103.2
27056		-999.9
27059		-999.9
27062		5093.8
27063		5094.1
27064		5094 - 1
27066		5094.7
27068		5094 2
27070		5094 - 8
27071		5095 - 1
27072		5096 - 2
27073	B-90	5097.8

RMA_Data_Base

Wells used to construct the Third Quarter FY 1987 water table contour map. (Page 10 of 13)

		Water Level
Wall_ID		Elevation
27074		5097.1
27075		5096.2
27076		5096.0
27077		50 95.7
27078		-888.8
27079		5119.8
27080		5120.0
27082 27083		5111.5 5102.6
28002		5096.2
28003		5096.2
28004		5097.0
28005		5097.6
28006		5097.9
28007		5098.6
28008		5098.9
28009		5099 6
28011		5100.2
28012		5100.5
28013 28014		5100.8 5100.6
28014		5100.6
28013		5101.9
28020		5101.9
28021		5101.9
28022		5103.8
28023		5098.3
28024		5098.3
28027		5101.4
28503		5108.1
28513		5105.2
30002		5171.0 -999.9
30003 30009		5197.3
31003		5231.9
31005		5202.4
31009		5216.6
32001		5233.0
33001		5115.4
33002		5118.7
33014		5102.9
33017		5118.1
33018		5102.8
33019		5103.0
330°0		5102.1
33021		5102.9
33022	B-91	5103.0 5103.2
33023	<i>⊌</i> " > 1	2103.3

BMA_Data_Base

Wells used to construct the Third Quarter FY 1987 water table contour map. (Page 11 of 13)

Well_ID	Water Level Elevation
33024	5 103.0
33025	5102.0
33030	5116.7
33033	5110.0
33048	5099·2 5100·1
33049	5101.2
33050 33051	5102.0
33052	5102.2
33053	5102.0
33054	5102.0
33060	5107.8
33061	5107.9
33062	5106.5
33063	5106.9
33064	5111.7 5111.8
33065	5111.4
33066 33067	5111.2
33068	5111.3
33069	5111.4
33070	5103.2
33071	5 102.7
33072	5101.6
33073	5101.7
33077	5106.6 5109.8
33500 33501	5118.0
33502	5113.1
33505	5104.0
33506	5103.5
33507	5102.7
33508	_999.9
33509	5103.9
33510	5107.5 5107.8
33511	5107.9
33512 33533	5102.5
33534	5103.1
33376	5115.2
33577	5107.1
33579	5103.9
33580	5103.0
33581	5104.6
33582	5104.0 5108.3
33583	5167.0
34001 34002	5122.0
34007	241

EMA_Data_Beas

Wells used to construct the Third Quarter FY 1987 water table contour $\ensuremath{\mathsf{map}}$. (Page 12 of 13)

Well_ID		Water Level Elexation
34005		5116.1
34008		5110.9
34515		5 120.7
35006		-999.9
35007 35018		5189.0 5188.9
35018 35023		5233·8
35025 35025		5228·5
35026		5225.1
35 031		-999.9
35034		-999.9
35037		5167.2
35040		5166.2
35047		5215.6
35048		5219.2
35052		5240.5
35053		5240.1
35058 35061		5182.6 5222.0
35061		5220.3
35069		5220.8
36001		5252.7
36013		5227.6
36017		5227.3
36050		5254.3
36054		5252.4
36060		5242.4
36063		5230.9
36065		5238.0
36067		5235.3
36073 36074		5233 .6 523 6.7
36075		5245.9
36076		5240.1
36077		5224.0
36081		5229.8
36082		5231.3
36 084		5231.3
36085		5231.2
36087		5249.7
36089		5230.0
36091		-999.9
36093 36103		5230·6 -999·9
36103		5243.9
36112		5219.4
36137		5221.1
36141		5222.4
~~~	B-93	V-87

#### PMA Data Bass

Wells used to construct the Third Quarter FY 1987 water table contour map. (Page 13 of 13)

Well_ID	Water Level Elexation
36142	5223.0
36145	5228 - 5
36147	5217.9
37307	5127.4
37308	5123·1 5119·5
37309	5119.5 5133.2
37312	5106.2
37313 37320	5101.5
37327	5115.9
37330	5093.0
37331	5093.0
37332	5087.2
37333	5087 - 5
37334	5091.9
37335	5089.5
37336	5073.4 5068.3
37337	5129.7
37338 37339	5121.3
37339 37340	5102.8
37341	5070.5
37342	5099.8
37343	5106.3
37344	5089.7
37345	5078.0
37346	5080.5
37348	5057 - 6
37349	5045.4
37350	5041·1 5055·2
37351	5042.6
37352 37353	5036.3
37354	5033.3
37355	5039.9
37356	5019.1
37357	5017.4
37358	5094.7
37359	5085.5
37360	5081 - 7
37361	5063.0
37362	5129.7
37364	5002·9 5296·9
37366	28.40 . 4

# CDM_Data_Base

CDM wells used to generate the Third Quarter FY 1987 Water Table Contour Map. (Page 1 of 3)

Well_ID	Water Level Elevation
005	5125
008	5124
020	5125
025	5150
028	5153
031	5135
033	5101
034	5110
038	5113
045	5141
046	5115
048	5126
051	5125
052	5103
053	5105
056	5140
060	5146
063	5168
068	5106
071	5132
073	5139
076	5139
5461 Magnolia	5173
5471 Magnolia	5172
6871 Monaco 7060 Holly	5131
7080 Kearney	5121
	5125
7091 Leyden	5125
7382-82PL CSF-101	5104 5132
CSF-107	5132 5133
CSF-110	
FIT-IM-MW-1	5143 5174
FIT-IM-MW-2	5174
FIT-IM-MW-3	51 <b>5</b> 6 5156
FIT-IM-MW-4	5153
FIT-IM-MW-4B	5153
FIT-IM-WP-1	5175
FIT-IM-WP-2	5155
FIT-MW-1	5220
FIT-MW-10	5192
FIT-MW-11	5190
FJT-MW-12	5183
FIT-MW-2	5217
FIT-MW-3	5208
FIT-MW-4	5202
PTT_MU_5	5191
B-95	/-

## CDM_Data_Base

CDM wells used to generate the Third Quarter FY 1987 Water Table Contour Map. (Page 2 of 3)  $\,$ 

Well_ID		Water Level Elexation
FIT-MW-6		5192
FIT-MW-7		5188
FIT-MW-8		5178
PIT-MW-9		5199
ers-10		5099
HRS-11		5097
HRS-12		5095
HRS-46		5139.3
HRS-48		5144
HRS-51		5239.2
HRS-55		5133
HRS-59		5141
HRS-69 HRS-70		5169 5143
HRS-72		5124
HRS-BO		5120
HRS-85		5106
HRS-86		5102
LI-GW-4		5111
LI-GW-5		5110.8
MA-MW-1		5113
MA-MW-2		5112
MA-MW-3		5110
MA-MW-4		5110
NMW-1		5156
NMW-10		5156
NMW-15		5149
NMW-16 NMW-17		5147 5147
MMU 10		5147
NMW-19		5155
NMM-5		5156
NMM-50		5156
NMW-21		5156
NMW-22		5156
NMW-23		5155
NMW-24		5156
NMW-3		5156
NMW-4		5156
NMW-5		5155
NMW-6		5154
NMW-7 NMW-9		5154 5152
NMW-9 TAPS-004		5152 5147
TAPS-021		5147 5147
TAPS-031	B-96	5152
TAPS-046	_ , ,	5178
TAPS-049		5171

#### COM_Data_Bass

CDM wells used to generate the Third Quarter FY 1987 Water Table Contour Map. (Page 3 of 3)

Well_ID	Water Level Elevation
TAPS-061	5121
TAP8-073	3104
TAP8-082	5094
TAP8-104	5123
TAPS-126	5121
TAPS-128	5099
TAPS-170	5099

TIME AVERAGED WATER TABLE MAP DATA



Water level information used to construct the Time Averaged Water Table Map 1981-1987. (Page 1 of 12)

Wall_ID		Water Level Elevation
01001		
01001 01002		5250.2 <b>5248.0</b>
01002		5248.0 5249.3
01003		5248.5
01008		5248.6
01010		5256.4
01011		3257.6
01017		5254.1
01020		5244.8
01021		5247.6
01024		5234.8
01027		5249.9
01033		5249.5
01038		5246.7
01041		5248.0
01044 01049		5248.3 5246.4
01501		5259.3
01513		5257.4
01514		5259.8
01518		5259.7
01527		5259.4
01528		5256.5
02001		5221.4
02002		5235.4
02008		5195.3
02011		5207.0
02014		5194.8
02017		5240.4
02020 02023		5220·2 5222·4
02025		5222.4 5221.9
02034		5226·7
02037		5219.6
02040		5213.8
02049		5192.3
02520		5194.1
02546		5246.5
03001		5134.5
03002		5129.2
03005		5174.8
03516		5125.0
03517		5125.2
03518		5125.6
03519 03521		5146·9 5172·4
03521		5172.4 5132.2
03523		5140.8
04007		5121.3
V-1 V V /	B-99	5-44·V

## BMA Data Base

Water level information used to construct the Time Averaged Water Table Map 1981-1987. (Page 2 of 12)

Hall_ID	Water Level Elevation
04010	5127.1
04013	5122.9
04017	5124.1
04019	5124.6
04021	5122.3
04024	5121.6
04026	5127.0
04038	5119.7
04042	5136.6
04044	5132.0
04524	5138.6
04525	5139.4
06001	5234 . 4
06002	5249.8
06003	5235.0
07001	5285 - 1
07003	5276.2
09001	5143.4
09002	5143.5
09005	5153.0
09006	5151.7
09007	5154.2
09008	5171.9
09010	5141.0
09011	5148.7
11002	5235.9
11005	5225.7
11006	5220.1
11007	5228 - 5
12001	5274.9
12002	5255 - 2
12005	5247.3
12007	5245.5
12008	5246.8
12009	5247.6
19001	5168.6
19004	5158 · 3
19008	5165.0
19009	5179.2
19010	5173.4
19014	5164.9
20001	5158.7
22001	5111.0
22003	5093.0
22004	5106.6
22007	5107.9
22008	5092.9

B- 100

# BMA_Data_Base

Water level information used to construct the Time Averaged Water Table Map 1981-1987. (Page 3 of 12)

Yell_ID		Water Level Elevation
22009		5093.2
22010		5092.9
22011		5111.8
22012		5144.4
22014 22015		5143.1 5089.1
22016		5088.9
22017		5089.3
22018		5089.5
22019		5092.7
22025		5110.9
22029		5112.2
22034		5092.7
22035		5091.6
22036 22044		5093.1 5107.6
27045		5093.8
22049		5110.4
22050		5106.4
22051		5092.4
22052		5091.0
22053		5090.8
22054		5112.6
22059		5089.0
22060 23002		5106.2 5143.5
23002		5143.8
23004		5142.5
23006		5143.8
23007		5143.5
23008		5143.9
23009		5142.2
23010		5141.1
23011		5141.8
23012 23013		5142.3 5143.7
23013 23014		5143.7 5143.3
23015		5143.4
23016		5143.5
23033		5141.9
23036		5143.3
23037		5147.6
23038		5116.5
23039		5121.1
23040 23050		5129.0 5142.9
23051	B-101	5142.9 5142.8
23052		5142.7
		W . 7

BMA_Data_Bass

Water level information used to construct the Time Averaged Water Table Map 1981-1987. (Page 4 of 12)

	Water Level
Well_ID	Elevation
23057	5141.3
23058	5142.5
23059	5147.1
23063 23064	5132.2 5126.8
23065	5117.6
23066	5114.7
23067	5145.2
23072	5142.4
23073	52.8
23079	5142.9 5143.0
23082 23084	5143.0 5142.3
23085	5141.5
23094	5143.3
23095	5143.6
23096	5142.6
23101	5143.0
23102	5143.2
23107 23108	5143.5 5143.1
23108	5145·5
23110	5129.7
23111	5131.8
23115	5139.6
23124	5134.9
23128	5146.3
23129	5149.0
23130 23131	5145.4 5147.3
23132	5145.7
23135	5145.7
23136	5149.1
23137	5149.4
23140	5143.3
23141	5146.2
23142 23143	5143.2 5143.4
23147	5144.3
23148	5141.2
23149	5148.3
23150	5141.4
23151	5141.5
23160	5141.3
23166	5135·3
23179 23188	B-102 5143.4 5143.3
23191	5143.3 5143.3
6 34 74	347313

# RMA_Date_Base

Water level information used to construct the Time Averaged Water Table Map 1981-1987. (Page 5 of 12)

•	
Well_ID	Water Level Elevation
	E122 E
23196 23197	5123.5 5126.0
23198	5128.8
23205	5139.4
23206	5139.7
23207	5140.7
23208	5141.2
23211	5141.0
24001	5142.2
24002	5143.9
24003	5147.1
24006	5132.3
24007	5141.7
24008	5142.2
24008	5142.9
24010	5142.9
24011	5145.2
24023	5141.4
24026	5133.8
24027	5143.2
24028	5147.1
24042	514 <b>1.6</b>
24048	5142.1
24049	5142.2
24052	5142.2
24053	5143.0
24054	5142.5
24055	5142.6
24064	5151.8
24065	5254.1
24066	5129.3
24067	5115.4
24081	5165.0
24084	5166.5
24085	5165.9
24088	5161.6
24092	5141.7
24093	5154.2
24094	5156.7
24095	5157.3
24096	5151.0
24097	5159.7
24098	5148.1
24099	5144.8
24100	5144.0
24101	5141.1
24102	5141.7

B-103

RMA Data Base

Water level information used to construct the Time Averaged Water Table Map 1981-1987. (Page 6 of 12)

Well_ID		Water Level Elayation
24103		5141.9
24104		5142.2
24105		5142.4
24106		5144.4
24107		5148.9
24110		5146.4
24111		5159.2
24112		5161.4
24113		5142.2
24114		5141.2
24115		5141 8
24116		5143 (8
24117		5143.4
24121 24122		5144.1
24123		5157.0
24158		5157.1 5150.2
24161		5130.2 5132.1
24163		5133.6
24164		5133.7
24166		5129.4
24169		5133.5
24173		5131.8
24176		5132.1
24177		5137.1
24178		5139.1
24179		5138.8
24180		5138.6
24181		5138.4
24183		5135.9
24185		5138.7
24186		5137.6
24188 25001		5137.9
25001		5193.9
25002		5251.0
25011		5152.9
25015		5181.4 5161.5
25018		5166.8
25022		5214.1
25030		5188.0
25035		5230.4
25038		5191.7
26001		5144.9
26002		5150.7
26004	8_ 104	5159.9
26005	<b>B-</b> 104	5159.3

# RMA_Data_Bass

Water level information used to construct the Time Averaged Water Table Map 1981-1987. (Page 7 of 12)

-		
Well_ID		Water Level Elevation
26006		5159.0
26007		5153.2
26008		5146.5
26009		5145.5
26010 26011		5163.6
26011		5146.6 5173.0
26014		5175.0 5146.5
26015		5146.3
26016		5146.6
26017		5147.0
26018		5146.6
26020		5149.9
26026		5159.1
26036		5149.1
26039		5146.8
26040		5147.8
26044 26045		5145.4
26045		5146.2 5145.6
26048		5150.6
26049		5151·6
26050		5158.3
26062		5164.8
26065		5164.0
26068		5160.2
26070		5165.0
26073		5177.5
26076		5152.3
26078		5150.0
26083 26085		5151·2 5180·7
26088		5142.9
26091		5159.1
26092		5149.7
26093		5164.9
26124		5155.4
26125		5146.9
26127		5164.6
26133		5147.0
26143		5175.9
26145		5140.9
27001		5093.2
27002		5094·8
27003 27004	B-105	5098 · 1 2093 · 7
27004	- IUJ	2093.7 5094.2
27006		2094 . 2
B / 900		407714

RMA_Data_Bass

Water level information used to construct the Time Averaged Water Table Map 1981-1987. (Page 8 of 12)

Water Level Elevation
5095.1
5095.8
5095.5
5093.2
5093.2
5147.6
5144.8
5147.9
5147.9
5145.8
5148·1 5148·3
5148·6
5125.8
5126.2
5125.0
5124.6
dry
5124.9
5122.1
5108.7
dry
dry
5111.7
5110.1
5103.4 5120.6
5113.5
5106.6
5104.2
5100.3
dry
5128.0
5101.9
5098.7
5127.6
5094 . 4
5094 - 2
5096.3
5098.4
5097.1 5096.4
5096.0
5096.0
5095.4
2110 0
3-106 5120.1
5119.6

### RMA Data Bass

Water level information used to construct the Time Averaged Water Table Map 1981-1987. (Fage 9 of 12)

Well_ID		Water Level Elexation
27082		5111.7
27083		5103.0
28002		5096.1
28003		5096.1
28004		5096.9
28005		5097.6
28006		5098.0
28007		5098.4
28008		5098.4
28009		5099.0
28010		5099.3
28011		5100.1
28012		5100.4
28013		5100.6
28014		5100.5
28015		5101.1
28016		5101.3
28017		5100.4
28018		5102.1
28019		5102.3
28020		5102.2
28021		5101.9
28022		5103.8 5098.2
28023		5106·1
28503		5106·1 5104·4
28513		5184.3
30001		5169·6
30002		5207.3
30003		5196.3
30009		5216.2
31001 31003		5232 8
31005		5201.6
31009		5216.9
32001		5232.2
33001		5115.0
33002		5118.2
33011		5103.7
33012		5101.2
33013		5098 - 1
33014		5103.0
33017		5117.4
33030		5115.6
33033		5110.3
33060		5107.7
33061		5107 - 1
33062		5106 - 8
	0.102	

# RMA_Data_Bass

Water level information used to construct the Time Averaged Water Table Map 1981-1987. (Page 10 of 12)

Well_ID	Water Level Elevation
33063	5106.6
33070	5102.9
33071	5102.2
33072	5101.3
33073	5101.1
33077	5106.6
33505	5104.9
33506	5103.2
33507	5101.0
33508	5104 · 3
33509	5103·6 5107·1
33510	5107·1 5107·0
33511	5111.2
33512	5102.8
33580	5104.1
33581 33582	5204.8
34001	5167.1
34002	5121.9
34005	5115.5
34008	5110.3
34515	5120.5
35001	5223.8
35002	5221 8
35006	5191.4
35007	5189.1
35018	5189.5
35020	5222.4
35022	5230.6
35023	5233.4
35025	<b>5228.8</b>
35029	5223.6
35031	5175.6
35034	5188.9
35037	5167.7
35040	5166.7
35042	5170.5
35043	5184.0
35045	5218.6
35046	5200·9
35047	5216.4 5218.5
35048	5218·5 5240·5
35052	<b>5240.</b> 0
35053	5181.9
35058	3101.7

RMA_Data_Bass

Water level information used to construct the Time Averaged Water Table Map 1981-1987. (Page 11 of 12)

Well_ID	Water Level Elevation
35065	5220.8
35069	5221.2
35075	5220.4
35076	5219.6
36001	5252.3
36013	5227.8
36014	5227.5
36016	5226.3
36017	<b>5227</b> · 0
36021	5225 · 4
36022	5224.7
36041	5231 . 8
36048	5241.8
36049	<b>5248</b> .3
36050	5251.6
36053	5252.6
36054	5252 . 2
36058	5250.2
36060	5241.0
36063	5232.0
36065	5237.6
36067	5235.4
36070	5228.5
36073	5233.1
56074	5234 . 2
36075	<b>52</b> 46 · 4
36076	5239 · 4
36077	5224.3
36080	5230.6
36081	5229.8
36082 36084	5230·0
36085	5231.7
36087	5230.3
36088	5250.3 5229.4
36089	5230.4
36091	5231.9
36093	5230.5
36101	5230.4
36103	5231.7
36109	5247.3
36112	5220.3
36135	5227.5
36137	5221.5
36141	5223.0
36142	8005 4
36145	B-109 5228.6
37304	5120.8

### PHA Data Base

Water level information used to construct the Time Averaged Water Table Map 1981-1987. (Page 12 of 12)

Well_ID	Water Level Elevation
37308	5123.4
37309	5119.8
37313	5105.1
37321	5100.9
37323	5118.4
37327	5115.5
37330	5093.7
37331	5093.8
37333 37334	5089 · 6 5092 · 6
37334 37335	5092.6 5090.7
37336 37336	5075.4
37337	5055.5
37339	5121.7
37340	5103.1
37341	5071.3
37342	5100.5
37343	5105.3
37344	5090.6
37345	5076.0
37346	5080.2
37347	5064 - 6
37348	5058.5
37349	5047.2
37350	5042.6
37351	5055 6
37352	5043.8
37353	5036.5
37354	5033.7
37355	5039.7
37356	5017.9
37357	5017.0
37358	5094.7
37360 37361	5081 · 4 5062 · 8
37363	5036·8
37364	5001.7
37366	5296.7
37369	5120.2
37370	5110.0
37373	5109.3
37374	5108.9
37377	5112.4
37378	5112.2
37385	5085.1

# Chan & Associates Data Bass

Wells used to construct the Time Averaged Water Table Map (1981-1987). Water level information Chen & Associates' Stapleton data. (Page 1 of 1)

	Water
	Level
Hall_ID	Elevation
07006	5266.1
07012	5278.0
07013	5283.0
07014	5302.0
08007	5278.7
08008	5287.6
08010	5294.0
08013	5303.9
08015	5296.4
08017	5302.2
11009	5208.1
11011	5222.0
11012	5228.5
11013	5228.5
11014	5240.7
11015	5238.5
11016	5211.8
11017	5235.0
11018	5245.7
11019	5250.1
12010	5239.6
12012	5247.4
12014	5255.0
12015	5268.6
12016	5258.9
12017	5247.4
12020	5257.2
12022	5270.5
12023	5275.7

# MEE_Data_Bess

Additional wells used for the Time Average Water Table Map 1981-1987. MKE water level information. (Page 1 of 1)

Well_ID	Elevation
01004	5065
01019	5040
01023	5032
02002	5040
02010	5039
03003	5015
03007	5013
04001	5014
04001	5298
04601	5283
09001	5287
09006	5045
09008	5032
09026	5047
09603	5294
10002	5228
11005	5070
11015	5073
11016	5077
11017	5078
1 <b>70</b> 01	5132
35003	5014
35010	5019
36002	5045
36012	5020
36014	5030

# CDM_Data_lams

Additional water level information used to construct Time Average Water Table Map 1981-1987 (CDM data). (Page 1 of 2)

	Water Level
Well_ID	Elevation
FIT-MW-12 PIT-MW-2	5183 5217
FIT-MW-3	5208
PIT-MW-4	5202
FIT-MW-5	5191
PIT-MW-6	5192
FIT-MW-7	5188
FIT-MW-8	5178
FIT-MW-9 SAC-MW-2	5199 5119
SAC-MW-3	5132
SAC-MW-4	5152
BAC-MW-5	5173
SAC-MW-6	5179
SAC-MH-8	5155
SAC-MW-9	5203
SC-15B SC-16B	5158 5158
NMW-10	5156
NMW-15	5149
NMW-16	5147
NMW-17	5147
NMW-18	5147
NMW-19	5155
NMW-2 NMW-20	5156 5156
NMW-21	3156
NMW-22	5156
NMW-23	5155
NMW-24	5156
NMW-3	5156
NMW-4 NMW-5	5156
NMW-6	5155 5154
NMW-7	5154
NMW-9	5152
SAC-MW-1	5097
SAC-MW-11	5136
DC-GW-1	5217
DC-GW-3 FIT-IM-MW-1	5192
FIT-IM-MW-1	5174 5156
FIT-IM-MW-3	5153

# CDM_Data_Base

Additional water level information used to construct Time Average Water Table Map 1981-1987 (CDM data). (Page 2 of 2)

	Water Level
Well_ID	Elevation
FIT-IM-MW-4	5153
FIT-IM-MW-4B	5153
FIT-IM-WP-1	5175
FIT-IM-WP-2	5155
FIT-IM-WP-3	5155
FIT-MW-1	5220
FIT-MW-10	5192
FIT-MW-11	5190

appendix b.3: Denver PM water level data

Water level information used to construct the Potentiometric Surface MapDenver Fm Zone A. (Pa $_{\rm b}$ , 1 of 2)

	3rd Quarter FY 1987
	Water Level
Well_ID	_Elevation_
30004	5195.4
29002	5214.8
<b>250</b> 08	5182.1
25033	5182.3
25023	5215.1
35024	5233.8
35055	5232.4
35073	5238.1
35015	5239.7
35071	5241.8
36121	5195.4
36146	5227.5
36105	5216.2
36110	5243.7
36066	5230.9
36119	5239.0
31007	5199.5
31011	5222.4
32002	5224 · 0
06004	5233.9
06005	5234.0
01040	5239 . 7
01034	5241.3
01035	5241.6
01032	5241.9
01042	5241.0
01045	5245.6
01050	5244.9
01028	5244.5
01025	5234.2
01022	5246.2
02047	5243.7
02004 02045	5244.5 5245.5
02043	5245.5 5240.3
02043	5240·3 5228·2
02018	5244 · 0
02030	5244·U 5220·9
02038	2220.9

Water level information used to construct the Potentiometric Surface Map. Denver Fm Zone A. (Page 2 of 2)

	3rd Quarter FY 1987 Water Level
Well_ID	_Elevation_
02024	5229.5
02035	5227.5
02032	5238.1
11004	5226 · 4
12004	5244.5

Wells 36116, 35054, 02044, 02041, and 02019 exhibited water levels between those of zone A and lu. Well 01031 exhibited a water level between that of the alluvium and the A zone. Well 02021 and 08005 exhibited water levels representative of the lu.

Water level information used to construct the Potentiometric Surface Map. Denver Fm Zone lu (Page 1 of 1)

	3rd Quarter FY 1987 Water Level
Well_ID	_Elevation_
2544-44	_#16/07/100_
25028*	5181.0
25024	5202.3
25039	5193.2
30006	5184.2
30005	5180.6
29003	5175.7
26097	5183.8
26054	5199.2
26056	5187.1
26063	5183.8
26064	5174.4
26096	5189.0
35012	5190.5
<b>350</b> 16	5190.6
35009	5194.5
35050*	5202.0
35051	5201 · 8
35005	5178.6
35067	<b>52</b> 05 · 6
35070 35062*	5212.5 5214.4
35059	5214.4 5182.4
35056	5199.0
36147	5217·9
36083	5223.5
36104	5225.8
31008	5194.9
01029*	5222.3
01023	5229.0
02048	5204 · 4
02042	<b>5200</b> .1
02015	5185.2
02039	5206.0
02031	5203.3
02025	5209.2
02036	5214.2
02033	5214.5
02021*	5217.3
02028	5127.6
02012	5207.2
08005	5249.8

 $^{^{\}text{w}}$  Wells 35050, 02021, 01029, and 35062 are screened in the AL above the LA, which is fractured and connects those AL's with the lu.

Water level information used to construct the Potentiometric Surface Map. Denver Fm Zone 1. (Page 1 of 1)

	3rd Quarter FY 1987
	Withor Level
Well_ID	_Elevation_
19017	5165 - ช
19007	5155.7
19003	5164.7
19001	5170.1
24108	5153.4
24089	5160.0
24087	5168.1
24086	5166.6
24083	5166.0
24082	5165.6
24125	5162.5
24080	5160.6
24124	5158.7
23016	5142.9
30007	5167.5
30010	5192.8
25009	5175.3
25037	5179.6
25012	5182.5
25007	5180.7
25040	5192.5
26123	5156.9
26019	5149.7
26022	5150.5
26023	5150.2
26026	5156.5
26071	5158.3
26066	5162.2
26053	5170.5
26128	<b>5</b> 165.5
26052	5166.8
26140	5165.8
26144	5170.5
26075	5168.8
26086	<b>5</b> 173.3
26057	5182.9
26058	5187.3
36079	5195.1
35032	5168.9
35038	5166.3
35036	5178.5

5189.3

5161.2

35017

34012

Water level information used to construct the Potentiometric Surface Map. Denver Fm Zone 2. (Page 1 of 2)

3rd	Ouarter	FΥ	1987

	DIG WORLLET TO
	Water Leyel
Well_ID	_Elevation_
19018	5163.0
19002	5169.7
19015	5166.9
24182	5137.6
24167	5134.1
24127	5139.9
24135	5139.7
24184	5139.5
23204	5132.6
23203	5130.1
23202	5129.9
23177	5135.7
23144	5138.8
23182	5113.6
23186	5129.0
23189	5142.0
23181	5142.3
30011	5187.4
25019	5164.2
<b>25</b> 016	5155.9
25017 25010	5153.6
25010	5170.6 5178.6
26043	5145.5
26146	5138.0
26082	5146.8
26084	5149.4
26141	5154.8
26134	5152.4
26072	5152.7
26077	5150.9
26079	5149.0
26067	5153.2
26061	5145.8
26089	5143.6
26069	5153.5
26060	5153.7
26092	5151.1
26094	5152.3
27049	5141.8
32003	5186.6
36114	5192.6
35068	5193.0
35033	5162.5
<b>3</b> 5/13 <b>9</b>	5145.0
<b>35</b> 041	5145.8



Water level information used to construct the Potentiometric Surface Map. Denver Fm Zone 2. (Page 2 of 2)

	3rd Quarter FY 1987 Water Level
Well_ID	_Elevation_
34006	5116.8
01048	5199.5
02013	5183.5
02009	5177.8
03006	5166.9
09003	5140.9
37387	5119.6
37323	5118.8

Water level information used to construct the Potentiometric Surface Map-Denver Fm Zone 3. (Page 1 of 1)

Well_ID	3rd Quarter FY 1987 Water Level _Elevation_
37371	5110.0
37379	5107.3
19016	5147.1
37376	5129.8
24120	5141.9
24136	5139.8
24168	5134.0
24174	5134.9
23161	51.27 - 8
23209	5136.7
23190	5142.0
23192	5141.6
23200	<b>5130</b> .4
22027	<b>5108</b> · 6
37382	5086.6
30008	<b>515</b> 6.8
261.38	5148.4
26080	5145.0
26142	5154.5
26090	5144.4
26147	5134.8
28030	5102.0
34009	5111.1
34003	5121.7
03003	5130.9
27057	<b>50</b> 98 · 4

Water level information used to construct the Potentiometric Surface Map. Denver Fm Zone 4. (Page 1 of 1)

	3rd Quarter FY 1987
	Water Level
Well_ID	_Elevation_
37372	5109.7
37388	5102.2
37317	5102.2
- <del>-</del> -	
37380	5106.8
37365	5105.5
24159	5147.9
24137	5138·3
24175	5136.0
<b>23</b> 169	5133.3
23183	5112· <b>2</b>
<b>23</b> 187	5120.7
23201	5129.7
22002	5095.7
22028	5102.3
22030	5099.2
22023	5091.5
26135	5152.8
27054	5071.5
28028	<b>50</b> 99.8
34004	5121.0
34007	5117.0
34010	5111.2
33015	5108.3
33016	5113.0
33034	5110.0



ALLUVIAL SLUG TESTS

3	
UPSATE:	
(States)	
IN ALTRICA	
7.5515	

									6100	47.4	980	14157741	4000000	
NAT   1   3   33,315   40,312.2   10.4   11.0   11.0   14.0   11.0   14.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   1	CHES RATES	i	#0113%	EASTING	! -	5	P011CH	13 E	\$-01 X)		CONO	THICKNESS	SIVITY	REFERENCE
14    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10					***************************************	1000.11	(10.11)		5/83	(5/83)		111	(1/30E)	
1986   19   19874   444823   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6   13.6	#	11017		513815.9	4407833.2	10.6	14.0	æ	7.41	7.46-04	-3.130			BROUGHTON ET AL 119791
1900   19   1904.4   41102.2   15   15   15   15   15   15   15   1	9:5	Ž	=	\$14779.8	4611623.3	23.4	33.6	æ	14.1	1.96-03	-2.719		1397	
13   1894   18   1894   1895   130   181   1804   181   1804   181   1804   181   1804   181   1804   181   1804   181   1804   181   1804   181   1804   181   1804   181   1804   181   1804   181   1804   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   18	175	1300	<u>e</u>	\$14901.6	4411623.2	37.0	45.0	£	1.7	1.7E-04	-3.759		135	
17.2   18.94   19. 18.94   14.020, 2   13.0   13.1   18.1   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.2   18.	## T	1300	=	514955.0	4411829.8	13.0	21.0	Ħ						
13	67.	Ž	•	113026.1	4412030.2	13.0	21.0	3	38.2	2.66-63	-2.550	_	813	
150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150	Ç.	13005	E	514934.7	1112219.7	3:0	2	=======================================	6.62	10-30.9	-3.220		113	
1970   19   11994,   41724.5   13.4   24.5   8.5   8.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1	3.	17507	95,	515034.6	4412454.9	33.7	9.	3	1.62	1.6E-64	-3,750		1.0	
14.1   1859   19   14615.4   44(286.7)   2.5   2.5   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1   8.1	1:3	1966	<u>£</u>	514983.3	4412655.1		24.5	**					}	
14   1909   19   19(31)   4(125)   2.0   2.9   R	# 1	1323	61	514713.6	4412829.3	2.77	.5.6.	#4 *-						161617 113837
1318	<b>:</b>	13010	=	514535.0	4412360.7	); ;;	5.47	ž						(6261) 113932
13149   25   SIGMA, 441276.2   35.6   54.6   54.7   54.6   54.6   54.7   54.6   54.6   54.7   54.6   54.6   54.7   54.6   54.7   54.6   54.6   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7   54.7	Ş	PE 1.27	13	511938.1	4412361.5	17.1	9.	**						
1314   13   130977   4412012   13.0   15.0   15.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0	귾	23146	13	512245.2	4412756.0	15	56.5	i.s.				9.5		ZEBELL (1979)
13102   311313.1   41153.1   34.5   55.4   6.   4.5   4.6   4.13.7   12.7   12.1     23102   23   2323.1   41153.1   34.5   34.1   87.1   12.5   4.6   5.2   5.2   5.2     23102   23   2323.1   41123.2   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6	505	25141	12	512077.7	4412263.2	0.55	0.35	<u>a:</u>				9.9		ZEBELL (1979)
23145   313934   4419341   38.1   34.1   47.1   47.5   47.4   47.5   47.4   47.5   47.4   47.5   47.4   47.5   47.4   47.5   47.4   47.5   47.4   47.5   47.4   47.5   47.4   47.5   47.4   47.5   47.4   47.5   47.4   47.5   47.4   47.5   47.4   47.5   47.4   47.5   47.4   47.5   47.4   47.5   47.4   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   4	ii.	2142	13	\$12154.3	1611551.1	9. P	7.35	Æ	·-	4.55-01	-3,347	12.7	=	(1879)
1314   13   132414 (41285.4   16.1   20.0   8   115   1125-05   1.45   5.2   231     2344   23   232214 (41285.4   16.1   20.0   8   115   1125-05   1.45   5.2   231     2345   23   232214 (41285.4   16.1   20.0   8   14.5   14.5   5.2   1.45   7.2   7.2     2345   23   232214 (41285.4   16.1   20.0   8   14.5   14.5   4.65   7.6   7.2   7.2     2355   23   232214 (41285.5   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2	ş	25145	n	\$12053.4	4411354.1	:: P3	7.75	52				2.9		7EBELL (1979)
33.84   33   33.22.14   41275.4   16.1   20.5   88   95.5   406-65   6.10   5.20   6.0   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.20   5.	S	23145	n	512819.1	4412923.9	. 9	3.6	æ	13.3	1.35-53	-2.876		231	1EBELL (1979)
2019   23   23   23   24   4   4   4   4   4   4   4   4	F.	**	13	512521.6	4412755.4	16.1		產	39.5	1.05-63	-2.403		573	1ESELL (1979)
1145   12   52,225.7   41,256.7   5,4   44   47   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6   47,6	抗	1111	17	512424.1	412329.4	16.0	3.65	æ	97.0	1.45-)3	1.0.1		2	1EBELL 11975)
13.5   23.23.4   41339.7   3.5   11.6   M   1.5   1.6   M   1.5   M   1.6	12		22	5,1335,7	2312507.2	<del></del> ;	3.4	12						[EBELL (1979)
20.55   25   21.277-3   44.1275, 5   22.5   22.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5   15.5	7	27.45	F3	512331.4	4412873.7	• ? •••	i1.6	1-				0.0		1EBELL (1979)
55 2015: 25 51272.5 441276.6 27.0 52.0 MT 1.05 1.05 4.55 M 15.1 1.05 1.05 1.05 1.05 1.05 1.05 1.05	13 14 14	23150	13	512379.3	4412835.5	:3	9.33	ž				5.5		(1616) 1EEELL (1979)
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	:5		13	51755.5	4412774.E	33.)	17	7						(1979)
1,000,000   1,000,000   1,000,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000		: 163	13	513132.0	4:1276499	12.7	9	5	1.57	1,66-64	-3.694		\$	(1679) TEBELL (1979)
1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00	<b>3</b>	10.24	<b>:</b>	513977.4	44:3071.7	23	17	Z	0.15;	5-3:1	-4.971		ဏ	TERELL (1979)
1996         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189         189 <td>÷.;</td> <td>?</td> <td>×. :</td> <td>514784.0</td> <td>4413072.7</td> <td>*</td> <td><del>-</del></td> <td>震</td> <td>c. 335</td> <td>3, FE-35</td> <td>-4.413</td> <td></td> <td>53</td> <td>[EBETT (1977)</td>	÷.;	?	×. :	514784.0	4413072.7	*	<del>-</del>	震	c. 335	3, FE-35	-4.413		53	[EBETT (1977)
247		7	: S	9:4679:0	1.15075.7	••• ••• •••		ž	£.	1.05-12	-1.399		9993	TESELL (1979)
45.54         14.1         45.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2         46.2 <t< td=""><td>÷ :</td><td>1</td><td></td><td>512421.</td><td>4472752.0</td><td></td><td>;</td><td>ę.</td><td></td><td>2,55-01</td><td>-6.565</td><td></td><td>19:03</td><td>TERELL (1974)</td></t<>	÷ :	1		512421.	4472752.0		;	ę.		2,55-01	-6.565		19:03	TERELL (1974)
1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	2		:::	515,63.1	4412337.7	*	. Y	<b>;</b> \$	ΞŢ.	1.16-31	-6.35 <b>4</b>		27110	TERELL (1979)
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	3 1	3 (	₹;	314350.5	6	7		-	٠					TEBELL (1979)
1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,00	9.0		·, ;	5.7551.5	16:11:7.2			Œ ;		4. FF-6.	-3,338		Ħ	1636TL (1979)
1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,00	2 1	1	• •	315425.5	44116.0.9	् : :	9	£	•	3.55-5	£ * * * * ·		9(:1	1EBELL (1979)
1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,00	j j	4	ŧ;	9741410	44116.5.0	· ·		7	297	1,06-52	-1.730		2	1EFELL (1979)
1475 14 10 10 10 10 10 10 10 10 10 10 10 10 10	<b>#</b> {		₹ ;	5:4173.4	4411675.5	3		Ţ	6.7	6.46-93	-7.136		3	TEBELL (1979)
1-325         3-4         3-4         3-5         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-6         3-7         3-7         3-7         3-7         3-7         3-7         3-7         3-7         3-7         3-7         3-7         3-7         3-7         3-7         3-7         3-7         3-7         3-7         3-7         3-7         3-7         3-7 </td <td>;</td> <td></td> <td>3 :</td> <td>514743.5</td> <td>5411675.2</td> <td>7.1.5</td> <td>7.7</td> <td>5</td> <td></td> <td>59-36-6</td> <td>-2.90</td> <td></td> <td>4938</td> <td>1EBEIL (1975)</td>	;		3 :	514743.5	5411675.2	7.1.5	7.7	5		59-36-6	-2.90		4938	1EBEIL (1975)
14537 24 51458.24 15.5.4 14.0 76 66.8 135 1.70-02 1.75 5.2.6 5.288 1.70-02 1.75 5.2.6 5.288 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.70-02 1.	3 5		\$ 7	B. +1++1.	44:15.3.1	) ·	9 9	Z		:				1EBELL (1979)
2453 24 51679.0 4417373.4 25.5 74.0 RH 48.0 8.1 2.0 1.37 15.0 8.00 25.3 1.35 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	; ;		<b>.</b> .	2.027715	1.1.2.1.1	3 6		Ŧ ;	Ch.	1.7E-02	1.75		86/21	ZEBELL (1979)
24.79         14         15.56.6         441197.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5	Ç		78	7.000175	1.6261177	3 5		E 0	9 (0.	20.75	100.7		2010	155CL (1777)
2473         26         51236.9         441578.0         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444         444 <t< td=""><td>13</td><td>31.35</td><td>; ;</td><td>4 445.1F</td><td>14119:7 5</td><td></td><td>? ·</td><td>E 5</td><td>70,</td><td>1.36.4</td><td>116.1</td><td></td><td>66107</td><td>102011 (1343)</td></t<>	13	31.35	; ;	4 445.1F	14119:7 5		? ·	E 5	70,	1.36.4	116.1		66107	102011 (1343)
24.52         24         213.45.1         4415.62.2         25.1         45.1         67.1         45.1         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2         67.2		16031	; <del>*</del>	611116	0.000.000	?:	? :	, h				1.00		113511 (1979)
1473         24         54714.1         441273.2         7.5         4.5         7.6         7.5         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.7         7.6         7.7         7.6         7.7         7.6         7.7         7.7         7.6         7.7         7.7         7.6         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.6         7.7         7.7         7.7         7.8         7.7         7.7         7.7         7.8         7.7         7.8         7.7         7.8         7.7         7.8         7.8         7.7         7.7         7.7         7.8         7.8         7.7         7.7         7.8         7.8         7.7         7.7         7.8         7.8         7.7         7.8         7.8         7.8         7.8         7.8         7.8         7.8         7.8         7.8         7.8 <t< td=""><td>7</td><td>13.</td><td>: ::</td><td>11.477</td><td>441.6.7</td><td>Ţ</td><td></td><td>ē ú</td><td>EU.</td><td>V. 20 7</td><td>3.0</td><td>* 0</td><td>7</td><td>7551 (1979)</td></t<>	7	13.	: ::	11.477	441.6.7	Ţ		ē ú	EU.	V. 20 7	3.0	* 0	7	7551 (1979)
145-4				. 112715	1 7			3	3 5	10 10 10 10 10 10 10 10 10 10 10 10 10 1	101	2 2	375	
14595	-0	3	: ::	2 6577.5	77777			5 :	5 1	7.00° 7	0.1.0	. 35	, 60	
7.75 24 514527.5 4412551.3 19.4 8.7 970 9.9E-02 -1.004 8.7 102.2 1EBELL 24597 24 514527.5 4412551.3 19.2 8.8 300 3.0E-02 -1.523 24.9 15775 1EBELL 24593 25.5 29.5 8.8 300 3.0E-02 -1.523 24.9 15775 1EBELL 24593 25.5 20.5 32.6 8.8 8.2E-04 -3.034 21.7 379 1EBELL 2503 24.9 12.7 379 1EBELL 2503 24.9 12.7 379 1EBELL 2503 25.5 32.5 8.8 8.2E-04 -3.034 21.7 379 1EBELL 2503 25.5 32.5 8.8 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	177		; ;	5: \$707 0	24422444 2445544	3	? :	<u> </u>	3	70.36.6	764.1-	?;;	3.6	
2657 24 514051.5 4412405.6 27.5 29.5 RB 300 3.0E-02 -1.024 8.1 18.24 188811 2.05 2.5 5.5 29.5 RB 300 3.0E-02 -1.523 24.9 15775 188811 2.05 25.5 25.5 27.5 RB 8.2E-04 -3.034 21.7 379 188811		77.37	: ::	D. J. LUST . 3	4113651.7	7	9	ě,	ć		• • • •	·		
25.2 CASH 25.2 442425.5 ZO.5 ZO.5 SH 3.04 5.05-04 -1.525 ZA.9 1575 ZEBELL 25.4 CASH 25.4 CASH 25.04 -3.034 ZL.7 J.7 ZFBELL 25.2 ZA.9 ZL.6 ZA.9 B.24 B.25 CA.9 ZL.6 ZA.9 ZL.6 ZL.6 ZL.6 ZL.6 ZL.6 ZL.6 ZL.6 ZL.6	: ;;	11/67	5 7	2.1361.7	4412331.3		7.0	ž	2 ;	7.4E-02	55.1-		15.62	
2222 A 21.7 379 REBELL	3 ;		5 ;	5.4535.3	6.764244			ŧ;	<b>B</b>	5.02-02	-1.523	5. I	15775	
			•;	4.040	4417413	7.7.5	7 (.	3	7.		7	-	,	

B-126

(ESECE)
WIN TH
=
16375
10

	DES. (34.7 10.X		UTH COOKSINATES	DIMATES	SCREENED	SCREENED INTERVAL	,	AYDR	Arb	907 1	1651		5 9 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
ALASEA DESIGN	SECTION NAME	SECTION	EAST 196	NORTHING	13P B3110M (4t.B6S) (4t.B6S)	BCTTOM (ft.865)	17.6	(1 10-4 (2/8)	(s/s)	0 Kg	THICKNESS SIVITY (11) (9pd/1)	SIVITY (gpd/1)	REFERENCE	
!	24130	7.	\$15777.1	4412489.7	23.5	5.3	E	£3.9	4.96-03	-2.312	13.2	1366	713837	(1979)
S S	-	. <del>.</del> .	513237.4	4412856.1	27.0	34.0	3	₹.88	1.96-04	-3.312	15.5	3	1EBELL	
	•	7.	513726.3	4412677.1	17.1	23.1	Æ	29:	1.46-02	-1.649		30.58	ונאפור	
		*	512361.0	4412725.7	22.0	33	差	2.007	7.CE-07	-6.155	12.7	•		
		73	514059.5	4412765.7	17.5	22.0	7						TEBETT	(1979)
	•	<b>%</b>	514187.5	44:2769.0	7.0	15.3	æ	22.	2.ZE-03	-1.654		\$209	ZEBELL	(1973)
_	Zi.	₹	514363.0	4412769.5	5	6.0	E	15.3	1.5E-03	-2.815	14.4	÷		
		75	514476.1	4412744.9	27.0	35.0	Ä				15.3		75951	
57 946	••	75	\$14857.1	4413167.3	1.9	39.9	¥							
	24109	<b>≈</b>	514524.3	4412952.9	47.1	55.1	污						713837	(1979)
		ನ	51444.0	4412363.2	10	11.5	). H						7.53511	16791
	•	:5	51.310.9	4411907.1	.:	36.0	17							(1979)
816 T		74	514356.4	4411913.5	.6.65	53.3	3	44.2	1.4E-03	-2.355		2915	ZEBELL	19791
52 23	73113	7.	513434.9	4412599.5	37.0	45.3	3	2	3	353		1840		1979
963		22	510527.3	4412778.B	37.1	***	:32	6.23	2.56-35	-6.578		5	7FRF1	(1979)
45.	• •	75	513718.5	44:2747.7	22.6	20.0	ä	101	20-31	-1.975		207	113837	(1079)
134 SE	• •	**	\$13250.9	4811211.6	3	0.35	-		! !	•	2.	}	75961	162611
.96		**	513731.6	4412831.4	13.3	25.0	: ::				3.7		758611	(1979)
		77	513194.8	4411533.5	13	4.5	æ	-	1.46-67	-7.785	-	3	16961	(1979)
	2012	:5	517770.7	4411633.1	9:1:	. 4.	7		:		5.5	•	75851	(1979)
14 C		73,	5:3427.7	4411631.7	72.5	45.9	Œ	3.371	3,76-35	-4.431	2.2	~	TEBELL	(1979)
H		75	5:3575.1	4411639.7	32.4	*0	Œ	2.36	2.45-04	-3.627	5.2	38	ZEBELL	16791
71 355		7,3	513503.0	4411629.1	5.5 5.5	9.4°	£	52.6	5.75-33	-2.279	13.5	1729	ZEBET!	(1979)
22 22	92157	.₹	513956.5	4412234.0	27.4	35.4	Œ	131	1.36-92	-1.683	1.5.7	4639	TEBELF	(1179)
		**	512343.3	44:2936.4	6.53	30.0	Z				12.3		ZEBELL	(1979)
154 57		25	517435.0	4412540.8	2: .2	3	٠.	.91	1.76-02	1.7.7	13.5	4750	TEFELL	(1373)
75 937	15003	n	513175.7	4:11327.5	53.5	5.5	Ţ.				2.6		7:3837	(1979)
7: 402	•	35	51223.5	4411426.4	5.3	5.3	Œ.	3.75	3.86-04	-3.426		12	ZEBELL	(828)
₫ 1:		<b>;</b> 4	512141.1	4411461.8	C. at	33.0	:42 17.	36.7	3.76-03	57.		55	ZEBELL	(1979)
		79	5:202:3	4411475.3	45.2	:4.2	Œ	55.3	6.36-53	-2.223	2.3	325		(6561)
		92	5:1923.6	4411437.6	÷.;;	47.5	ž	1:3.2	1.12-02	1.346	7.4	315	756511	19791
		97	511655.5	4411319.3	45.8	50 9.	75	3,763	7,7E-05	-4.114	4.6	-0	7EBELL	16791
<b>₩</b>	26529	92	5:2353.5	4411356.4	56.8	87.8	Ę	17.9	1.88-63	-2.747		3.9	75551	
		22	5:2672.3	4410553.2	. <b>.</b>	0.40	₽:	ï	1.1E-1.6	515.7			6GPF ET AL	(1373)
		ټ. ۲3	5:294:.3	4416565.1	1.57	37.2	'n.	11.53	6.7E-33	-2.377			SOPF ET AL	(1979)
		38	111581.7	4411235.5	5.7.	27.6	Æ	2.277	2.34-55	597.1-			90FF FT AI	(1979)
12		;0	511707.7	6.111197.d	17.9	(a)	Æ	2.44	7.45-74				10 13 cits	19291
3	16/33	52	512652.5	4:10409.1	22.3	32.1	Ë	3.735	9.75-91	515.5			BOSP ET AN	
ii ia		97	511780.3	4411369.1	3.3	35.0	æ	5.936	1(-30.9	-3.223			BOPP ET AL	(6261)
	5.33	**	51:619.4	4413312.4	9.15	35.0	<b>X</b> .	0.438	4.46-35	-4.359			BOFF ET AL	
	76:37	Ę	511752.6	441051.8	10.7	29.7	æ	0.637	8.35-35	-3.081			BOPP ET AL	(6261)
	1913	25	512019.3	4411762.1	9F.	<b>₹</b> .;;	æ	0.50	5.1E-35	-4,254	۲.2	9	1EBELL	(1973)
	\$1137	#1	513:07.2	14:1445.1	35.0	9.5.	Œ	2,13	3, 1E-C4	-3.506	4.5	- 2	JEBE!	(526:)
() 13	7.1.77	40.4	512558.9	4411436.2	45.1	38	) - X	:		3	-	:	752617	(020)
	11001	=	514935.7	4:06467.9	16.6	76.5	£	11.3	1, 16-67	-7.951		2	IN I AUTHOUGH	10201
522 H	33616	B	512641.9	4405983.1	30.0	27.4	: 2	: -	10-57	707		: :	REPRESENTAN ET GE	(1073)
20.														
	7.		511073 5	\$ 57,5077	5							3 3	שמשמעונים בי אר	

SIE TESTS IN ALLIVIUM (SUNTED)	3 14 44.0	S) #51A5	SCATED	_	EFBATE: (	86-Eù-10								
				HTR COSSINATES SCREEKED INTERVAL HYDR LOS TEST TRANSMIS-	HTM CG3891MATES	SCREENED INTERVAL	INTERVAL		HYTR	HYCE CAR	50.5	TEST INTERVAL T	RANSMI3-	
1301	RESIDE	RESIGNATION NAMES RIM	SECTION		g	NOTTON 901	DCT TON	TAFE	1 10 to	(6/2)	E	(11)	7-10/MESS SIVITY (11) (9:4/1)	AEFER
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1(1993) (11993) M		(11.803)	6		0) :- 10-36 6 6: 4	3 95-04	109	1,1	5	NOTHBUC39
	E	35026		5 512844.7	4409424.3	17.2	3.6 5.0	æ æ	11.9	1.25-63	2.324			13Ca
: #	2	350	P 1	\$ \$11623.0			21.0	37S	40.2	1.0E-03	2.336	?	è	BREFSTON
<b>F</b> 3	2	9, 95 95 95 95 95	- ·	514267.1			21.7	9 ¥	1.35	3. H. J.		17.1	23	SPOJENTON
) ici	3 =	36065					39.5	37 R	2	7.06-03	-2.155		\$225	PROJEKT ON
132	2 2	5 28 5 12 28		36 513326.6	1.819619	17.0	9. S.	5.UG	5.51 4.5	5,3c-C	-2.252	1.7	111	BF9:9410N
194 741	Z	26.93	7	513722.	!					CGUMT:	7.5			

		104 175 1972 193
CASES	0 B 25 5 2 6 2 6 5 6 5 6 5 6 5 6 5 6 5 6 5	104 75 -2.872 1. E-03
× 557	~ * * * * * * * * * * * * * * * * * * *	TOTAL CASES: MINNER TESTS: EAN OF THE LOS: GECHETEL PERS
PANGE	(10-7 10-7 10-8 10-8 10-8 10-3 10-1 10-1 31	TOTAL CA HIJMBER TE HEAN OF THE GESHETFIC P
INTERVAL NURBER	- WW-84-4VB	

CONDUCTIVITY STATISTICS

MOTE: "NT" INBICATES NO TEST

B-128

ALLUVIAL PUMPING TESTS

	THE RESERVE OF THE PARTY OF THE	#.E	26	. j	ARABAR annus ganus	
				**:::	1	11   12   13   14   15   15   15   15   15   15   15
1177: 21x:31C	**			14	*	***
		la la la la la				14
		6 4 40 60 40 40 1 1 1 1 10 10 1 4 1 1 1 10 10	18 488F	na na	######################################	#
	900 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*********	and modi	new D		<b>3</b> *
		and the state of t	, ,	90000 4.4. 90000 4.4. 90000 4.4.		
įė.			:	9000 9000 9000 9000 9000 9000		<b>9</b>
18.53 to 18.55.		ны			1	
in			:			55 40 40 52
	in i			(651) (651) (652) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653) (653)		111 111 112 113 114 115 115 115 115 115 115 115 115 115
	isspess.		2000 C C C C C C C C C C C C C C C C C C	25699.	35.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	
7	8730 (24)	** 1 . 64 64 14 14 14 14 14 14 14 14 14 14 14 14 14		:		iż
:::	,	e de la compa	2000 2000 2000 2000 2000 2000 2000 200			() ()
	• • •		j		100000	

DENVER FM SLUG TESTS

					Ē							98		9	3	9	15231	1,00	1550	136		19791	10861	382	1980)	1463)	1695	1985	1580)	36	1006		198	[1980]	19861	(1990)	(36)	13861	(1979)	(1979)	(1979)	(1579)	(1973)	(1-77)	(1379)	(15/51)		(1979)
			Ē	:	: =	Ė	: 5				:	:		: E	: :		-		_		_				5	Ξ	13	3	=	= :	Ξ:	: :	3 5	3	3	5												# # E E
			1			Ŀ			1	E	Ē					MY ET 1	<b></b>	w	3	2	119132	16861	MAY ET AL	EAY ET 1	E	<u></u>	H		=	=	=	= =			5	13	◱		Ħ	=	=	<b>=</b> :	= :				: :	: E
	*			DIE LO	2000	PECIFICATION F.C.	CLOSTE			Ä			1	1	ž	3							3	Ĭ	¥	¥		i R		E :		Ì	3			. R	Ĭ.		3		2	3	2	5	STATE EL	Ž		2 2
	RFEBERGE		٠	\$		Š	9			(1991)			1000	1		(1988);							(IVER):	(1788);	11788);	(1939);	(1198);	(1389);	1.586);	(138);		(1765);	(1786):	1986)	(1786);	(1388);	(3%)		(1979);	(1779);								
	뀰	į								2		5	3	2			,						2		2			区				ב ב ב		25			딾		Ξ	<b>3</b>								
		•									_	_		_									141	•	w	~	₩	_				- 4	, w		w	ш	w		MOREHTOK ET AL	<u></u>								
																																							X	FROUGHTUM ET								
																																								8								
	<u>د</u> ي	. !	•	~:	₹.	~:	=	•	~	-	Ó		-	-	-0	-	-	•	ņ	~	~	•	•	_	-	'n	Ŋ	0	D	• •	- 0	- no		_	•	9	٠,	· ·	٠.	<b>-</b>	۰.	<b>.</b>	γ.	۰ م	<b>,</b> ,			· •
:	TRANSMIS STVITY Cook/LI		•	~	**	~	1039.8	Ξ.	185	7	_	=	3	-	24.6	2	9	'n	3	•	2.	193.	,,;	13	<b>-</b> i	~	1026.2	-	٠ نــ	~ !	: :			3.	159.	'n	5	9	2	107	6	R. 77	Š			ė, r	,	: - : :::::::::::::::::::::::::::::::::
_	3 4	1	ň	6.5	٠,	~	37.6	5	7:	7.9	5.0	0.0	0	•	.°	6	o.	13.7	13.7	6.0	÷.	7.5	3.0	'n	÷	s,	9,	، ج	e .	., <i>-</i>	;	; ;;		<b>.</b>	o.	٠	، ب	٠ •						<b>&gt;</b>		<u>ء</u> د	· -	ے د
5			-		۶,	_	£.	<b>U</b> -	_		•	2	2	~	_	=	80	2	=	~	7	•	m	W7	*	~	•	2 !		• •	9 "	. •	100	40	19.0	2	≛ :	= '	•	9 9	<u> </u>	<u>:</u> ه	· ·	6 9	=======================================	: =	:	12.9
			-3.092	-3.517	-3.939	-3.66	.7.750	-5.220	-2.910	-4.762	5.637	4.093	6.:80	-4.532	3.78	4.327	-5.620	4.625	1.63	-5.697	4.527	235		=======================================	29	2		<u> </u>		2 3		3 =	72	5	<u>.</u>	er :	£ :	e i	<b>.</b>	2 :	2 2	¥ ;	3 5	۽ ۾	; ;	: ::	؛ ج	ر الله
8	<b>E</b> 8		ņ	ņ	4	÷	٠;	'n	7	÷	بْ	÷	÷	÷	ņ	÷	۸į	÷	ij	4:	7	-2.572	7	+.541	-4.730	010.	7:1	537-				-5.113	-4.232	-4.365	-3.378	-4.848	6	20.	7	01/17-	900	7.1.	ָרְיָּרְיִּי	7	3 7		2.1	-2.46
Ē			. 1E-64	2.X.2	₩.	2.16-04	. SE-03	.0.0 20.0	. 76-63	1.78-05	. 25-06	8.16-05	EE-07	2.66-0\$	1.76-04	3.0E-iS	7.48-06	2.4E-05	. ZE-04	2.0€ →6	3.06-05	2.68-03	1.76-65	?	8	3	7E-02	S :	, a.		3	4	Ş	-05	Ģ	ب چ	<u>ة</u> :	3 :	<b>5</b> 2	ş:	7 5	\$ 5	3 =	? ;	7	; \$	; =	; Ę
<b>=</b>	ម ភូ		=	2	-	::	3:	3	-		<b>6</b> .2	8	4.4	7.6	7.7	ਲ ਲ	7.4	7.4	×.2	₹ 7	۳. 9.	7.5	7.	2.76-05	1.éE-05	9.0K-C	-	- :	÷ ;	7	1.46-0.	7. 65-0	5.96-05	2.76-35	4.2E-04	1.45-0. 0.45-0.	20.7 20.7	3.7	77.	2. 7. F	2.17	20.00		( ) 27 - 7	7 25-01	2.0E-05	A 56-64	7. 7777777777
L'OKTA.	E Z									2	=======================================	20 62	٠.							200			2	1	SAND 12			2 :	2 5	2 6	B 12	: ::	¥ 0	=	SALC 13	SAND BY	Ca diag	Z :	3 3	2 4	<u> </u>	3 4	3 5	3 2	3 23	3 S	9	. v2
2	# #									3	248	SA:30			SS		0.00	Ž	243	SAKD			SAS		T.S.	i	, .				A S	SAND	545	546.0	# S	3	7	1 H	5 ::		3 %	5 =	5 E	3 =	3 =	; =	=	3
	13 E		Z	Œ	3	E	Z	5	ž	æ	E	憂	Z	æ	3	歪	1	EK/EK	¥ (1)	1/E	₹	Z	Æ	æ	<b>=</b> :	5	<b>3</b> 5 2	<b>E</b> 3	5 2	5 %	ž	æ	æ	¥	₹:	秦言	200	e : :	5 3	5 3	5 3	2 3	5 :15	: :2	5	: 25	35	<b>*</b>
	! _		•	~	•	_	<b>.</b>	•		•	•	•	0	•			_					~		v,										_									•				-	
15	E0110H (11.195)		Ř	≈	3	₹	₩.	ຂ່	8	ž	13.0	ž	3	5.0	75.0	 	<u></u>	7.0	7		#	39.3	53.0	\$5.5	S. 1	2	,	2.5	3 2		20.0	65.0	53.0	2	3	3			; ;	3 3	2.10		:	3.5		1	7	5
SCREEZ INCOM			•	-	'n	-	•	ė	•:	ب	ë	3.	۰	•	•	•		<b>-</b> :	o.	~:	_	7	ņ	-	ر ج		<b>.</b>	<b>.</b>	> د	, a	. 0		۰	9	۰.	<b>.</b>				٠.	<b>,</b>		٠	• •				
ğ	(31.53)		3	=	2		2.	≅	.:	3	165.3	7:1	3.	2	68.0	85.0	47.3	3	25.0	12	#:7	ä	£.3	3	9.5	e ;	2.5	2.2	į =		12	6.03	÷.	3	٠ ن	i k	: ;:	÷ ::		: :	, ,	7	3	S		6.8		27.0
	:		•																																													
2	ECRTH136																																															
	¥																																															
UP COMPLETES	Ä	i																																														
5	6451 mg																																															
		į	-	_		~	~ ;	=	=	<b>2</b>	=	×	₽.	≈:	<b>R</b> :	<b>:</b>	2	2	3 ;	₽ :	73	73	*	7		<b>.</b>	<b>:</b>	5 8		: 🕏	~	73	<b>~</b>	₹ :	₹ :		: ₹	: =	2 :5			-2	وي		-0	-0		<u> </u>
	V																																	•				•		•	•		,,,			••		•
	Ħ		2		=	3	3	ş	3	<b>∷</b>	3	3	3	?	3		2	5	3		3	2	5	3 !	3 :		3 5	SE	2	: E	:	<b>H</b> :	~	<b>:</b>	<b>.</b>	2 5	5	-	3	; ≾		:5	75	S	'n	*	:8	¥5
	172		_	_	_		•	=	Ξ	13	:3	×	13	i.	×	3 1	13 1	3 :	3 ;	3	<b>.</b>	**		•	× :				7		**	7	3	77	3 5	7	7	2	75	2	2	55.7	33	25	3	<b>7</b>	3	3
5	49										_																																					
Z::247[C	200		3	2	7		E	0	E	-	Ţ.	- 2			k	1	: :	ť ;	5 :		7	7		7					7	12		7.5	-	74 ·		į	13		ž	1	3	X	:3		7.	3,5	ž	17
												•		1				•	_ '	-		•	- 1	- 1		- "	- (1	· u	. •	••	•	•-	(			- 1-								.,,			_	
,	3 4	!	• •	•	• •	•	••	^	••	***	•	<b>:</b> :	==	:::		•	? :	4 !	<b>:</b> :		= 1	1	:: :	::	3 ;	1	7	11:	: 13	١,	<b>;</b> ;	;;	17	2:	۲, ۲	1 2	-	15	: 17	Ų.	::	¥	¥	*	\$	*	=	72
•	- <i>i</i>	•																																														

	SESTEMBLE	jet		UTH COGROIMATES	BINATES	SCREENED	SCREEMED INTERVAL	Teet	INFORMAL	# F	99 g	1531	£	
12		3	SECTION	EASTING	MORTHIMS	13P 86110N (ft.365) (ft.665)	96TTOM (ft.56S)	ğ <b>E</b>	<b>X</b>	(s/e)		THICKNESS STUTY (ft) (9p4/f)	517117 517117 (9pd/1)	REFERENCE
=	ä	26530	*	· · · · · · · · · · · · · · · · · · ·		76.0	97.0	£	Sen	2.1E-03	-2.671	6.8	361.6	(SCAL) M 13 CAN
*	3	26097	**			63.0	83.0	Z	SON	5.86-0	-3.259	23.0	233.6	
<b></b>	<b>S</b>	15231	72			71.0	9.5	Z	Ses	3.96-04	-3.413	20.0	163.9	# 13
×	<b>455</b>	26128	73			63.0	73.0	돑	Sen	1.26-03	-2.915	10.0	257.6	16441) TH 13 4400
:3	ñ	2112	55			70.0	100.0	蓋	5	1.86-03	-1.131	13.0	388.4	ET AL
<b>:</b> *.	1:1. 18-1-1		55			75.0	95.0	ž	SES	2.2E-03	-2.658	27.7	1268.8	13
	45, 38-1-2		22			133.0	157.0	3	S01	10-3:1	-5,865	2.4	0.1	M 13 ca08
	1-7-13		<b>19</b>			155.0	183.0			5.16-05	-4.292	25.0	27.0	5
<b>!</b> ;	;; ;;	24137	17			263.0	223.0			1.96-07	-6.721	6.5	0.0	1623 (163)
1.7	1-2-63	EC 192	:3			87.3	167.0			2.16-95	-4.678	4.4	4.2	KS (1979)
<b>!</b> 5	35-3-5		:3			136.9	133.0			9.2₹-06	-5.686	7.0	1.2	(1414)
	576, 13-4-1		≉			55.0	78.0	æ	SQA	7.16-03	-2.149	21.3	3281.8	
<b>:</b> :1	4:3, 36-4-2		29			3.0	127.0	æ	2	1.96-03	-2.721	31.9	1285.1	ET AL
!#	23-6-3		:9			138.0	146.0			7.66-06	-5.115	4.7	8.0	ស្ន
1	11	31934	×			87.8	85.2	E		3,06-05	-4.517	19.6	12.0	BRELIGHTON ET AL (1979)
25	P	35018	23			37.9	<b>1</b> .01	₹	Ses	9.8€-04	-3.307	13.7	411.4	E #
5	ü	35.17	23			£9.4	11.6	æ	5	1.4E-05	-4.963	'n.	1.6	ET AL (1977): BOPP ET AL
3	25	35019	<b>;</b> ;			98.0	83.4	£	2	5.56-04	-3.263	27.2	114.3	ET AL (1979); BOPP ET AL
79	Ľ	35521	×			9.69	73.0	₹		1.76-04	-3.767	16.5	53.6	ET AL
:3	ß	35024	ន			\$2.1	55.0	æ		6.06-03	-2.098	37.2	8.282.8	BROUGHTON ET AL (1979)
15	Ħ	156.3	£			42.5	95.9	æ		3.76-05	4.431		6.6	E1 AK
i۲	ij	32.75	≈			71.0	89.0	Œ	507	3.56-04	-3.457	15.3	111.2	BOPP ET AL (1979)
;. <b>*</b>	 	35933	ĸ			59.0	67.0	푿	Sin	2.4E-04	-3.611	 <b>6</b> 0	41.6	BOPF ET AL (1979)
12	2	3553	ĸ	្នាំ		0.001	:12.3	₹	2	1.35-0	-3.6%	12.0	32.8	80PP ET AL (1979)
13	G	35641	SS.			62.0	102.0	₹	<b>5</b> 27	1.35-04	-3.837	20.3	55.0	BOPF ET AL (1979)
<b>:</b> :	ធ	15043	55			53.0	33.0	E	5	1.5E-04	-3.80		29.8	NGPF ET AL (1973)
<b>#</b> ?	:2	Xe.39	**			62.3	73.5	15		3.1E-05	-4.50è	3.1	7.1	z
ŕ	<b>3</b> 2	38,95	<b>:</b> ?			70.2	73.5	3		2.56-05	-4.604	15.0	7.9	BRCJGHTON ET AL (1979)
::	Ξ	35066	23			73.3	74.7	Ē		4.1E-35	-4.363	15.3	13.4	BROUGHTON ET AL (1979)
ĸ	13	36071	×			34.1	37.5	¥		5.46-03	-2.276	7.3	875.5	BROWGHTON ET AL (1979)
<b>!</b> !:	3:2	26572	**			33.5	5	졽		3, 35-04	-2,476	15.0	105.6	BROUGHTON ET AL (1979)
¥	ž	26573	25			39.0	9.29	æ		5.76-33	-2.247	5.5	650.0	BRUIGHTON ET AL (1979)
i,;	Z	36093	;°3			77.0	27	곮		4.1E-05	-4.385	0.5	9.0	BROUGHICH ET AL (1979)
H	::	37.72	77			61.5	33.5	RH/FH	SAKE 14	1.28-04	-3.332	28.0	69.5	(1463)
1,;	**	77376	ķ			€9.3	51.3	RH, FR	SAND 43	1.26-64	-3.507	12.3	31.6	
:5	E-33	37379	3.7			39.5	55.5	PH.FH	SAND #3	2.26-34	-3.552	16.2	76.8	
**	<u> </u>	37730	::			64.3	75.0	RR/FR	SAYD 14	4.76-05	-4.367	5.5	12.8	(8861) 353
:#:	£-3	37387	::			7.9.	12.7	H3/H4	SAND	2.1E-04	-3.686	5.3	23.7	(1893) SE3
174	15.	17763	.:			6.7.3	86.0	RH/FH	56:10	3.85-35	7.43	19.7	13.0	
123	·	17350	<b>!</b> `			13.1	44.0	RN.FH	SAND 17	2.25-34	-3.555	7.3	32.8	
•							•							
	, 5	STREET PROPERTY		153:					J-	CSGKT:	r's			

B-133

1		
	#. ABEA C2555	01460
2	106 1.A)	rp us -r
direction linear and	• F	to respond

1		
10 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E	क्षक्ष्याच्या क्षेत्र व्यक्त स्थापन	83 88 -3.903 -3.903 -3.903 -3.903 -3.903 -3.903 -3.903 -3.903
1016 CASES WARER 15315 ACC 136 CC 136		
		TOTAL CASES NUMBER TESTS EST OF THE LCS SECRETALS HEAR ST SE/ OF LCS TEST OF LCS THE CASES

BEST AVAILABLE COPY

DENVER FM PUMPING TESTS

## C.
31.116
n anski
A STATE STATE
STATE OF THE P

	PAPER MAIL	Š		1111	erreally need	زو													
STATISTICS AT ACCUSED.	•	E	S1.9::4.2		12 12 13 11 11 11 11 11 11 11 11 11 11 11 11	ŗ,				••		3.67	311 31 -ve 1113.	10	:	,	;	3	
AN OF THE STATE OF		2000	10 10 10 10 10 10 10 10 10 10 10 10 10 1		ÇE	¥ =		1 7 7 8		19 63. 18/45 (p.225) (p.255.) (p.555.) (p.555.) (p.555.) (p.555.)		<del></del>			general (nyapida) — general da esta esta esta esta esta esta esta est	123	ı. Pi	(8, -5)	
NATIONAL SECTION OF SECTION SE	馬馬馬	(4. X)		:		,	,		· .		•	:					ě	•	ì
, ,	ŗ.			: '	• •	<b>!</b>	٦.	::	` :	:	2 :								
27 24	;;		-	• •	÷	ia.	ķ.	•	••		•	:				1984 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
28	<b>.*</b> ,	14.5	100	• •	=	:	::	::	~.		3	<b>::</b>		••			::	· ·	
A THE R. P.		504.55																	
-	-4						۲.		::			::			Ξ	THE COURSE	a		
	•							•	:			::			1				

BEST AVAILABLE COPY

APPENDIX C

TASK 44

(8)

4

)

1

APPENDIX C.1: SUMMARY OF TASK 44 ACTIVITIES

### APPENDIX C

#### TASK 44

Task 44 was originally intended as a long term monitoring program to sample semiannually and quarterly groups of wells, to monitor water levels, to evaluate data and assess contaminant distributions, to make recommendations to the water monitoring effort of this and other tasks. Many of these original Task objectives were carried out under Task 44 including well network selection, the definition of the analytical schedule, definition of the general scope of work, new well installations, the sampling of the monitoring network, and the monitoring of water levels.

The following section presents a brief summary of original Task 44 objectives and scope-of-work. It also presents the Task 44 sampling network, the analytical suite, and geotechnical program. Detailed information concerning the proposed Task 44 Program is available in the Task 44 Final Technical Plan (ESF, 1988). Data evaluation and interpretive efforts that were originally proposed under Task 44 were ultimately carried out under the Water Remedial Investigation effort and are presented in the main body of the present report.

### TASK 44 OBJECTIVES

The necessity of establishing a comprehensive data base for surface and ground water, was recognized as part of the environmental investigation at RMA has been recognized. Task 4 addressed part of this need by providing baseline data to assess contaminant distributions at RMA.

Under Task 4, three rounds of water samples were collected over a 1-year period within RMA to achieve the following objectives:

Satisfy compliance-oriented regulatory requirements under the Comprehensive Environmental Response. Compensation, and Liability Act of 1980 (CERCLA) and the substantive requirements of all applicable or relevant and appropriate Federal and State requirements that have application through CERCLA:

- o Confirm the existence and chemical nature of contamination and monitor any changes in the lateral and vertical extent of contamination; and
- o Develop a core data base for use in upcoming litigation and Remedial Investigation/Feasibility Study analyses for RMA.

Task 44 was developed using the core Task 4 objectives, however, the scope of the task was broadened to address other salient items that were beyond the scope of Task 4.

Task 44 (under Contract No. DAAK-11-84-D-0016) was awarded on March 19.

1987. The objectives of Task 44 as detailed in the Delivery Order are to:

- Assess the distribution and concentration levels of ground water and surface water contaminants and monitor changes in water quality with respect to these contaminants for both the onpost and offpost areas;
- o Monitor and evaluate changes in water levels:
- Evaluate data and recommend program modifications to this or other water monitoring tasks; and
- o Identify areas of significant public exposure and make appropriate information available to Tasks 35 and 39

In order to satisfy the primary goals of the task, certain ancillary objectives were accomplished and incorporated in the WRIR:

- O Utilize available geologic data to further define the current understanding f the geologic conditions present at RMA:
- o Summarize the hydrogeologic conditions in the onpost and offpost areas by integrating existing hydrologic, geologic, and water quality data:
- o Identify the primary hydrogeologic pathways by which contaminants are being transported to the RMA boundary or the offpost area:
- o Evaluate the existing monitoring program for data deficiencies and assess the need for additional wells: and
- o Integrate all data from water related tasks and supply appropriate information to Task 23 efforts including data bases, contaminant distribution maps, and hydrogeologic assessments.

Task 44 established the hydrologic core data base for and provided to the Endangerment Assessment (EA) and Feasibility Study (FS) groups adequate interpretation and characterization of hydrologic, geologic, and geochemical data so that their specified goals can be achieved.

The overall Task 44 program was designed to be dynamic in nature and to be modified, as required, in response to ongoing data evaluation and/or changes in the SOW or task objectives. Task 44 formed the base or trunk hydrologic program, while other efforts (Tasks 25, 36, 38, 39, etc.) represented tributary or branch efforts which satisfied specific individual task needs, as well as augmented the Task 44 program.

#### PROPOSED_SCOPE=OF=WORK

The scope of the Task 44 water quality/quantity survey included a sampling program of ground-water and surface water that was capable of satisfying the various regulatory requirements. The monitoring program under Task 44 was initially proposed as a semiannual sampling event with quarterly sampling of 43 offpost wells and 12 onpost Basin F wells. However, the proposed semiannual sampling under Task 44 was executed as a one-time-only sampling event during the third quarter FY87. Quarterly sampling of the 55 wells was conducted under Task 44, and monitoring these wells was transferred to the Comprehensive Monitoring Program, which was initiated during the first quarter FY88.

Additional proposed work included development of litigation-quality data for addition to the current data base, and evaluation of the extent and nature of contamination. In order to achieve these objectives, work in six distinct technical areas was initiated. These areas are as follows:

- o Review of historical data:
- o Develop a monitoring program to achieve the task objectives:
- Execute the monitoring program utilizing litigation-quality sampling and analytical procedures:
- o Assess data after the first sampling event for possible adjustments in the sampling and/or analytical scheme:
- O Compile and interpret the accumulated data at the end of the sampling program (conducted under the WRI): and

O Coordinate with and integrate data from other current ground water tasks such as Tasks 25, 26, 36, 38, and 39 (conducted under the WRI).

During review of the historical data, a large number of wells were evaluated with respect to construction detail, sampling history, and location.

Criteria for evaluating these wells are described in the Final Technical Plan, Task 44 (ESE, 1988).

An assessment of numerous types of data was performed to help design the Task 44 monitoring network. Borehole logs and geologic cross sections were examined to establish a preliminary evaluation of subsurface geology. Water-level data from the Task 4 program were examined to establish directions of ground water flow within the alluvium and to aid in the correlation of permeable units within the Denver Formation. Water-quality information from Task 4 and, as appropriate, from the historical data base were examined to formulate an assessment of the distribution of contaminants within the RMA ground water system. A preliminary assessment of hydrogeologic conditions was used to design the proposed Task 44 well network. A detailed review of well selection methodology is discussed in the Final Technical Plan, Task 44 (ESE, 1988).

All ground water monitoring wells and surface water sampling sites were sampled using uniform sampling methods. Ground water and surface water samples were analyzed for a predetermined list of analytes including numerous organic and inorganic parameters (Table). Sample collection, measurement of field parameters, and analysis of samples were performed in accordance with USATHAMA Quality Assurance/Quality Control (QA/QC) procedures (USATHAMA, 1982, RIC#87048R03). These procedures included collection of field quality control samples and decontamination of all sampling equipment. Collection procedures are presented in the Final Technical Plan, Task 44 (ESE, 1988).

## PROPOSED_SELECTION_OF_THE_MONITORING_NETWORK

The monitoring network was designed using numerous criteria including the following:

- o Available information on well construction:
- An evaluation of sampling history;
- o Chemical data;
- o Sampling frequency; and
- Well location.

A detailed description of the network election process is presented in Section 3 of the Task 44 Final Technical Plan (ESE, 1988).

The proposed Task 44 monitoring network for RMA consisted of a total of 311 alluvial, Denver Formation, and offpost wells. Of the 311 wells, 43 are located in the offpost area and 268 wells have either been recently sampled or are proposed for sampling under other RMA tasks or programs as listed below.

- o 186 Task 4 wells (includes 6 wells previously included with Task 38):
- o 43 Offpost wells;
- o 25 Task 25 wells;
- o 11 Task 38 wells; and
- A6_ Historic and recent SCC wells.
  311 Wells

Historic wells are those not sampled recently. Specific wells selected for the Task 44 network from other task networks are discussed in a following section.

Except for offpost well locations, all wells were selected utilizing the criteria and methodology described in the Final Technical Plan. Task 44 (ESE, 1988).

# 3.1.2.2 Offpost Water Quality Monitoring Network

The offpost monitoring network consisted of 43 wells from offpost Task 6 (Contract No. DAAK11-83-D-007) as listed in Table C-1. Well selection criteria were not evaluated in depth for offpost wells because these wells were taken directly from Revision III - 360° Monitoring Program. Of the 43 total offpost wells, 42 are completed in alluvium and one is considered a

Table C-1. Task 44 Offpost Well Network

37348
37349
37350
37351
37352
37353
37354
37355
37356
37357
37358
37359
37360
37361
37362
37363
37364
37365**
37366

Also included are the following four alluvial domestic wells:

Boller XII XXI CIII

Source: ESE, 1988.

^{*} Well abandoned.

^{**} Denver Formation well.

Denver Formation well. Offpost and onpost wells were sampled and analyzed using identical procedures. Offpost wells were sampled on a quarterly basis in conjunction with Task 25 and to comply with requirements of the 1975 Cease and Desist Order. Additional monitoring of the Denver Formation offpost was performed under Tasks 25, 36, and 39. These tasks include installation of additional Denver Formation monitoring wells in selected locations.

The onpost monitoring network was subdivided into an alluvial network consisting of 128 wells and a Denver Formation network consisting of 140 wells. These networks are discussed separately below. Onpost sampling was conducted Third Quarter FY87 except for the following 12 wells in the vicinity of Basin F which will be sampled quarterly:

23049	23142	26020	26085
23095	26015	26041	26127
23108	26017	26073	27016

Quarterly sampling was conducted historically for these Basin F wells, and the same sampling schedule was retained in Task 44 efforts to provide consistent sampling frequency.

# Alluvial Well Network

The alluvial monitoring well network was designed to monitor contaminant distributions in saturated RMA alluvium. One hundred and twenty-eight onpost alluvial wells were selected for the Task 44 program (Table C-2). Many of these wells were recently sampled within the last year under current or previously existing RMA tasks:

Task 4 wells	84
Current Task 25 wells	15
Current Task 38 wells	11
Historical wells	15
Recent Shell Wells	3
Total Task 44 Wells	128

The alluvial monitoring well network is shown in Figure 3.1-3 and summarized by section in Table C-2.

Table C-2. Proposed Onpost Task 44 Monitoring Network, Alluvial Aquifer Wells (Page 1 of 2)

Section	Total Wells	Well Numbers
1	6	017, 020, 021, 024, 027, 041
2	6	008, 011, 014, 020, 034, 037
3	5	002, 005, 008, 518, 523
4	12	007, 010, 014, 021, 024, 027, 030, 038, 041, 042, 044, 045
6	2	002, 003
7	1	001
8	1	003
9	7	002, 005, 006, 008, 010, 011, 013
11	1	002
12	1	002
19	1	001
22	5	006, 021, 049, 051, 059
23	11	004, 029, 039, 049, 058, 095, 108, 142, 179, 188, 191
24	9	092, 101, 106, 107, 111, 112, 113, 158, 185
25	5	011, 015, 018, 022, 038
26	13	006, 011, 015, 017, 020, 041, 073, 076, 083, 085, 088, 127, 133
2.7	8	003, 005, 016, 040, 051, 053, 062, 074
28	3	022, 023, 027

Table C-2. Proposed Onpost Task 44 Monitoring Network,
Alluvial Aquifer Wells (Continued, Page 2 of 2)

Section	Total Wells	Well Numbers
30	1	009
31	1	005
33	8	001, 002, 030, 033, 039, 063, 075, 077
34	7	002, 005, 008, 504, 507, 508, 515
35	7	023, 034, 037, 052, 058, 061, 065
36	7	001, 065, 075, 076, 084, 112, 139

Note:	Task 4 Wells	84
	Current Task 25 Wells	15
	Task 38 Wells	11
	Historic Wells	15
	Recent Shell Wells	3
	Total Task 44 Wells	128

Source: ESE, 1987

Alluvial wells associated directly with five major potential contaminant sites are as follows:

PotentialContaminant_Site	Alluvial_Wells
South Plants	15
Basin A/A Neck Area	9
Basins B-E	8
Basin F	25
North Plants	5

A total of 27 alluvial wells in Sections 4, 9, and 33 (western tier) were included in the Task 44 program to provide long-term monitoring of the organohalogen and DBCP contamination associated with the Railroad Classification Yard and potential offpost sources.

Paleochannels may, under some conditions, influence directions of ground water flow and provide contaminant migration pathways that facilitate the spread of contamination. Consequently, an effort was made when selecting wells to choose wells that were situated within paleochannels or as close to paleochannels as possible to intersect potential contaminant migration paths. Approximately 42 wells were selected to investigate the importance of paleochannels at RMA as related to ground water flow contaminant migration. The paleochannels were inferred from the Army/ESE and Shell bedrock surface maps.

A set of five wells (06002, 07001, 08003, 11002, and 12002) was chosen to provide regional background monitoring of the alluvial aquifer. These wells also provide a general indication of alluvial water quality flowing onto RMA along the southern tier. A second set of five wells (06003, 19001, 25011, 30009, and 31005) was chosen to monitor the eastern side of RMA and provide contaminant boundary definition.

#### Denver Formation Well Network

The Denver Formation monitoring well network includes 140 onpost wells chosen from over 500 onpost wells completed in the Denver Formation.

Individual wells in the monitoring network are listed by section in Table C-3. Following examination of Task 4 data, it was determined that the Denver Formation ground water flow and contaminant transport systems were not as well defined as those in the alluvial system. The monitoring network selected includes a larger percentage of Denver wells than were included in the Task 4 network to provide more Denver Formation well data. Additional Denver wells were also selected to provide monitoring in the Denver Formation beneath areas of unsaturated alluvium. Most of the selected Denver Formation wells were recently sampled under other RMA tasks as outlined below:

Current Task 25 wells	10
Task 4 wells	102
Historic wells	_28
Total Task 44 Wells	140

The monitoring network attempted to utilize the best existing Denver Formation wells for both upgradient and downgradient monitoring of potential contaminant sites. Wells associated directly with five major potential contaminant sites are as follows:

### Potential

Contaminant_Site	Denver_Wells				
South Plants	25				
Basin A/A Neck Area	17				
Basins B-E	13				
Basin F	16				
North Plants	10				

Eight wells from Sections 4, 9, and 33 (western tier) are also included within the Denver well network to provide long-term monitoring of the organohalogen and DBCP contamination associated with the Railroad Classification Yard and potential offpost sources. Available information

Table C-3. Proposed Onpost Task 44 Monitoring Network Denver Formation Wells (Page 1 of 2)

Section	Total Wells	Well Numbers
1	12	007, 008, 012, 015, 022, 025, 036, 037, 043, 047, 048, 050
2	14	009, 010, 012, 018, 019, 021, 025, 030, 031, 035, 036, 038, 039, 043
3	3	003, 004, 006
4	3	008, 009, 011
5	1	001
6	2	004, 005
7	1	004
8	1	005
9	1	003
11	1	004
12	2	003, 004
19	3	003, 015, 017
22	6	023, 024, 027, 028, 030, 031
23	18	053, 054, 161, 177, 180, 181, 182, 183, 184, 185, 186, 187, 189, 190, 192, 193, 209, 210
24	7	086, 089, 120, 124, 127, 130, 159
25	8	009, 013, 014, 016, 017, 021, 023, 039
26	15	019, 057, 058, 061, 066, 067, 071, 072, 075, 084, 086, 129, 140, 142, 147
27	4	049, 054, 055, 057

Table C-3. Proposed Onpost Task 44 Monitoring Network
Denver Formation Wells (Continued, Page 2 of 2)

Section	Total Wells					We	11 Nu:	mbers		ر کے قدم دیں بعد عدد		
28	2	026,	028									
30	1	011										
32	1	002										
33	4	016,	026,	032,	034							
34	3	003,	006,	009								
35	13	013, 067,		017,	036,	038,	039,	054,	056,	062,	063,	066,
36	14		066, 122,		083,	<b>0</b> 90,	110,	113,	114,	116,	117,	119,

Note: Current Task 25 Wells 10
Task 4 Wells 102
Historic Wells __28

Total Task 44 Wells 140

Source: ESE, 1988

suggested these contaminants were restricted to the alluvial aquifer, but monitoring of the Denver aquifer was considered warranted to ensure that contamination had not spread to the Denver Formation.

A set of five wells (07004, 08005, 11004, 12003, and 12004) were included in the Task 44 network to provide regional background monitoring of the Denver Formation waters in the Southern Tier. These wells also provide a general indication of Denver Formation water quality flowing onto RMA along the southern tier.

A set of eight wells (05001, 06004, 06005, 19003, 19015, 19017, 30011, and 32002) monitor the eastern sections of RMA. These wells provide background information on Denver Formation water quality.

Cluster configurations were given selection preference in the Task 44 network to investigate vertical differences in hydraulic head in the Denver Formation. Table C-4 lists all wells in the Task 44 network that are present in cluster configurations. A further breakdown by section and major aquifer is given in Table C-5.

#### PROPOSED_ANALYTICAL_SUITE

The objectives of the Task 44 chemical analysis program were to provide PMO-RMA with reliable, statistically supportable, and legally defensible chemical data regarding type and level of contamination in surface and ground water at RMA. Task 44 required various analytical techniques to be performed on collected samples to achieve a quantitative determination of water quality. Semiquantitative confirmation of analytes identified by quantitative methods and a semiquantitative identification of nontarget compounds are were included.

The modified schedule of 50 compounds utilized in Task 4 was adopted for
Task 44, with the inclusion of benzothiozole and chlordane (C-6). This analytical
schedule includes seven organochlorine pesticides, DCPD, methylisobutylketone
(MIBK), DIMP, DMMP, DBCP, 6 organosulfur compounds, 5 volatile aromatics,
12 volatile organohalogens, and 15 inorganic parameters (Table C-7).
Semiquantitative methods (GC/MS) will be used to screen for 24 purgeable and



Section	Clusters
1	(021*, 022), (024*, 025), (041*, 043)
2	(008*, 009, 010), (011*, 012), (020*, 021), (034*, 035, 036), (037*, 038, 039)
3	(002*, 003, 004), (005*, 006)
4	(007*, 008, 009), (010*, 011)
6	(003*, 004, 005)
8	(003w, 005)
9	(002**, 003)
11	(002*, 004)
12	(002*, 003, 004)
22	(021*, 023, 024)
23	(179*, 180, 181), (188*, 189, 190), (191*, 192, 193)
24	(158*, 159)
25	(011*, 013, 014), (015*, 016, 017), (022*, 023), (038*, 039)
26	(073 ₄ , 075), (083 ₅ , 084), (085 ₄ , 086), (127 ₄ , 129)
27	(053 ₄ , 054, 055)
28	(023**, 026), (027**, 028)
30	(009*, 011)
33	$(030_{W}, 032), (033_{W}, 034)$

Table C-4. Clustered Wells Incorporated in the Proposed Task 44 Monitoring Network* (Continued, Page 2 of 2)

Section	Clusters
34	(002*, 003), (005*, 006)
35	(034*, 036), (037*, 038, 039), (052*, 054), (061*, 062, 063), (065*, 065, 067, 068)
36	(065*, 066), (112*, 113, 114)
Off Post	(37343*, 37365)

^{*} A well cluster is defined as containing at least one alluvial well and one Denver Formation well.

w Alluvial well

Percentage of wells contained in cluster groupings = 36× (111 of 311 wells)

Source: ESE, 1988

Table C-5. Summary of Task 44 Monitoring Wells by Section

Section	Well Total	No. of Clusters*	Alluvial	Denver
1	18	3	6	12
2	20	5	6	14
3	8	2	5	3
4	15	2	12	3
5	1	0	0	1
6	4	1	2	2
7	2	0	1	1
8	2	1	1	1
9	8	1	7	1
11	2	1	1	1
12	3	1	1	2
19	4	0	1	3
20	0	0	-	-
22	11	1	5	6
23	29	3	11	18
24	16	1	9	7
25	13	4	5	8
26	28	4	13	15
27	12	1	8	4
28	5	2	3	2
29	0	0	-	-
30	2	1	1	1
31	1	0	1	0
32	1	0	0	1
33	12	2	8	4
34	10	2	7	3
35	20	5	7	13
36	21	3	7	14
Off Post	_43	1	_42	1
TOTALS	311	47	170	141

Total alluvial wells as a percentage of Task 44 wells = 55%

Source: ESE, 1988

^{*} Clusters are defined as containing at least one alluvial well and one Denver Formation well.

Table O-6. Chemical Analysis - Task 44 (Page 1 of 2)

Analysis/Analytes	Hold Time	Level of Certification	Reference Methods	Method
Organochlorine Pesticides		Quantitative	EPA 608	CAP-GC/ECD
Aldrin	Extract as	•		
Endrin	quickly as			
Dieldrin	possible. (No			
Isodrin	more than 7			
Hexachlorocyclopentadiene	days). Analyze			
p,p'-DOE	within 40 days			
p,p~DDT	of extraction.			
Chlordane				
Volatile Organohalogens		Quantitative	EPA 601	PACK-GC/Hall
Chlorobenzene	14 days	·		
Chloroform	14 days			
Carbon Tetrachloride	14 days			
trans-1,2-Dichloroethylene	14 days			
Trichloroethylene (TCE)	14 days			
Tetrachloroethy lene	14 darys			
1,1-Dichloroethylene	14 days			
1,1-Dichloroethane	14 days			
1,2-Dichloroethane	14 days			
1,1,1-Trichloroethane	14 days			
1,1,2-Trichlorcethane	14 days			
Methylene Chloride	14 days			
Organosulfur Compounds		Quantitative		PACK-CC/FPD-S
P-Chlorophenylmethylsulfone	Extract as			
(PCPMSO ₂ )	quickly as			
P-Chlorophenylmethylsulfoxide	possible. (No			
(PCPMSO)	more than 7 days.)			
P-Chlorophenylmethylsulfide	Analyze within 40			
(PCPMS)	days of extraction.			
1,4-Dithiane				
1,4-0xathiane				
Dimethyldisulfide (DMDS)				
Benzothiozol				
Volatile Aromatics		Quantitative		EPA 602
Benzene	14 days	•		
Toluene	14 days			
o,p xylene	14 days			
M, xylene	14 days			
E thybenzene	14 days			



Table C-6. Chemical Analysis - Task 44 (Page 2 of 2)

Source: ESE, 1988.

Analyeis/Analytes	Hold Time	Level of Certification	Reference Methods	Method
OCPD/MIBK Dicyclopentadiene/ Methylisobutylketone	Extract as quickly as possible. (No more than 7 days). Analyze extract within 40 days of extraction.	Quantitative	EPA 608	CAP-GC/FID
DIMP/DMAP Diisopropylmethylphosphonate/ Dimethylmethylphosphonate	Analyze within 40 of extraction.	Qualitative	EPA 622	PACK-GC/FPD-P
DBCP Dibromochloropropeme	Extract as quickly as possible (No more than 7 days). Analyze extract within 40 days of extraction.	Quantitative		CAP-OC/ECO
Inorganics Calcium Magnesium Sodium Potassium		Quantitative	EPA 200	Inductively Coupled Plasm
Cadmium Copper Chronium Lead Zinc Arsenic	Analyze within 6 months		EPA 206	<b>AA</b> -Hydride
Mercury Chloride Fluoride Sulfate	Analyze within 28 days		EPA 245 EPA 300	Cold Vapor Ion Chromatograph
Nitrate + Nitrite	28 days with H29Q, (Ph of 2); 48 hours with chilling only		EPA 352.1	Auto Analyzer

C-20

Analysis/Analytes	Hold Time	Level of Certification	Reference Methods	Method
Purgeables		Semiquentitative	EPA 624	GC/MS
Ethylbenzene	14 days			
Benzene	•			
MIBK				
DMDS				
l,l~Dichloroethane				
1,2-Dichloroethane				
1,1,1-Trichloroethane				
1,1,2-Trichloroethane				
Methylene chloride				
Chloroform				
Carbon tetrachloride				
trans-1,2-Dichloroethylene				
Toluene				
Chlorobenzene				
Tetrachloroehtylene				
Trichloroethylene				
m-Xylene				
o- and/or p-Xylene				
DBCP				
Dicyclopentadiene				
Bicycloheptadiene				
1,2-Dichloroethane				
Methylene chloride				
Ethy Ibenziene				
Extractables		Semiquantitative	EPA 625	GC/MS
Aldrin	Extract es		(neutral	
Atrazine	quickly as		extraction)	
Chlordane	13.4. /23			
	possible. (No			
PCPMS	more than 7			
PCPMSO	more than 7 days). Analyze			
PCPMSO2	more than 7 days). Analyze extract within			
PCPMSO2 DBCP	more than 7 days). Analyze extract within 40 days of			
PCPMSO2 DBCP DCPD	more than 7 days). Analyze extract within			
PCPMSO2 DBCP DCPD 4,4~DDE	more than 7 days). Analyze extract within 40 days of			
PCPMSO2 DBCP DCPD 4,4'-DDE 4,4'-DDT	more than 7 days). Analyze extract within 40 days of			
PCPMSO2 DBCP DCPD 4,4~-DDE 4,4~-DDT Dieldrin	more than 7 days). Analyze extract within 40 days of			
PCPMSO2 DBCP DCPD 4,4~DDE 4,4~DDT Dieldrin DIMP	more than 7 days). Analyze extract within 40 days of			
PCPMSO PCPMSO2 DBCP DCPD 4,4'-DDE 4,4'-DDT Dieldrin DIMP Dithiane	more than 7 days). Analyze extract within 40 days of			
PCPMSO PCPMSO2 DBCP DCPD 4,4'-DDE 4,4'-DDT Dieldrin DIMP Dithiane Endrin	more than 7 days). Analyze extract within 40 days of			
PCPMSO PCPMSO2 DBCP DCPD 4,4'-DDE 4,4'-DDT Dieldrin DIMP Dithiane Endrin HCCPD	more than 7 days). Analyze extract within 40 days of			
PCPMSO PCPMSO2 DBCP DCPD 4,4'-DDE 4,4'-DDT Dieldrin DIMP Dithiane Endrin HCCPD Isodrin	more than 7 days). Analyze extract within 40 days of			
PCPMSO PCPMSO2 DBCP DCPD 4,4'-DDE 4,4'-DDT Dieldrin DIMP Dithiane Endrin HCCPD Isodrin Malathion	more than 7 days). Analyze extract within 40 days of			
PCPMSO PCPMSO2 DBCP DCPD 4,4'-DDE 4,4'-DDT Dieldrin DIMP Dithiane Endrin HCCPD Isodrin Malathion Oxathiane	more than 7 days). Analyze extract within 40 days of			
PCPMSO PCPMSO2 DBCP DCPD 4,4'-DDE 4,4'-DDT Dieldrin DIMP Dithiane Endrin HCCPD Isodrin Malathion Omathiane Parathion	more than 7 days). Analyze extract within 40 days of			
PCPMSO PCPMSO2 DBCP DCPD 4,4'-DDE 4,4'-DDT Dieldrin DIMP Dithiane Endrin HCCPD Isodrin Malathion Owathiane Parathion Supona	more than 7 days). Analyze extract within 40 days of			
PCPMSO PCPMSO2 DBCP DCPD 4,4'-DDE 4,4'-DDT Dieldrin DIMP Dithiane Endrin HCCPD Isodrin Malathion Owathiane Parathion Supona Vapona	more than 7 days). Analyze extract within 40 days of			
PCPMSO PCPMSO2 DBCP DCPD 4,4'-DDE 4,4'-DDT Dieldrin DIMP Dithiane Endrin HCCPD Isodrin Malathion Owathiane Parathion Supona Vapona 2-Chlorophenol	more than 7 days). Analyze extract within 40 days of			
PCPMSO PCPMSO2 DBCP DCPD 4,4'-DDE 4,4'-DDT Dieldrin DIMP Dithiane Endrin HCCPD Isodrin Malathion Owathiane Parathion Supona Vapona	more than 7 days). Analyze extract within 40 days of			

Source: ESE, 1988

25 extractable compounds (Table ), and to identify nontarget analytes. The analytical list was derived from various sources including:

- o An evaluation of contaminant source characteristics at RMA and compounds attributable to activities at these sites;
- o A review of the historical chemical data and recognition of compounds previously detected; and
- o Additional input from the Memorandum of Agreement (MOA) parties.

Approximately 10 percent of the collected samples were analyzed by GC/MS techniques. Wells with samples that contained a large number of analytes or with high baseline concentrations were given priority for GC/MS analysis.

Defensibility and technical quality of the data was assured by proper documentation of procedures used during the analytical survey. Sample preparation, materials, shipping, handling, chain-of-custody procedures, etc. were consistent with those required in Task 1.

# SUMMARY_OF_COMPOSITE_WELL_PROGRAM_DRILLING,_WELL_INSTALLATION. DEVELOPMENT._AND_SAMPLING

The following section discusses the geotechnical program for Task 44. This includes well drilling, installation and development carried out under the composite well program, as well as well sampling procedures employed by Task 44.

#### DRILLING_METHODS

Two drilling methods were selected for the construction of monitoring wells or for contaminant data acquisition in earth materials. These were rotary and hollow stem auger drilling. Personnel safety and sample integrity were the main factors in the selection of these two methods. Whether rotary or hollow stem auger was used at a particular site was determined by site conditions and proposed depth. Alluvial wells were generally drilled using auger methods, and Denver Fm wells with rotary methods. Monitoring wells were d: !led using auger or rotary techniques according to conditions encoun red at the site.

Techniques and procedures associated with the drilling program, including downhole geophysical surveys, were consistent with those outlined in Section 3.0 of the Task 1 Technical Plan as well as USATHAMA Geotechnical Requirements (1983).

Drilling equipment, including drill rods, samplers, tools, and water tanks. were steam cleaned prior to arrival at RMA and washed with approved water before arrival at each boring or well site. Water used in drilling, grouting, or decontamination was obtained at a source approved by the PMSO. Only USATHAMA approved lubricants, such as petroleum jelly, were used on the threads of downhole drilling equipment. Air usage was fully documented with equipment descriptions and oil filter specifications. Only USATHAMA approved air systems were used.

Continuous alluvial soil samples were collected using rotary or hollow-stem auger sampling techniques. The continuous soil samples were collected in polybutyrate tubes and transferred to a central logging facility. The soil samples were logged and then stored in the polybutyrate tubes or one-pint wide-mouth jars.

Rotary core drilling methods were used to collect 2 1/2-inch diameter rock cores. Hollow-stem augers or conductor casing were advanced into bedrock sealed with bentonite, and then rinsed with approved water to minimize contamination from alluvial materials. The rock cores were taken from a depth of at least 5 ft below the water bearing unit that was to be screened. The rock cores were logged in detail, photographed, wrapped in plastic, and then stored in cardboard coreboxes.

# WELL_DRILLING_AND_INSTALLATION

۹

Installation of monitoring wells began within 12 consecutive hours of borehole completion for uncased or partially cased holes, and within 60 consecutive hours for fully cased holes. Once installation had begun, no break in the installation process was made until the well had been grouted and the protective casing installed. All materials used in well construction were approved by USATHAMA and PMO-RMA prior to use.

#### Alluvial Wells

Alluvial wells were first drilled and continuously sampled using 3 1/4-inch ID hollow stem augers and split spoon samplers. Permeable zones were identified and the hole was reamed with an 8 1/4-inch ID hollow stem auger in preparation for completion with 4-inch PVC casing and screen. The hollow-stem augers were advanced 1 to 2 ft into bedrock. In general, wells were screened from the bedrock contact to approximately 5 ft above the water table surface. Wells were completed inside hollow-stem augers as shown in Figure.

#### Bedrock_Wells

In general, bedrock wells were drilled using direct rotary methods. In instances when sloughing of alluvial material was not a problem, and precautions to prevent cross-contamination were not necessary the bedrock was drilled with hollow-stem augers. The utilization of hollow stem auger drilling for bedrock wells only occurred in a few locations.

In instances where cross-contamination was possible, the borehole was reamed and conductor casing were telescoped and grouted in place using Halliburton techniques. This procedure was followed until the aquifer to be monitored was encountered.

## 1.3 WELL_CONSTRUCTION

Well construction was conducted within the hollow stem augers or within surface casing if rotary methods were employed. The various components of well construction were similar for both drilling methods. These include: screens, casing and fittings, sand pack, bentonite seal, gravel seal, and protective casing. Figures C-1 through C-7 illustrate the Denver well completion techniques implemented for a variety of natural situations. Typical alluvial well construction is illustrated in Figure C-8, while a schematic drawing of cluster site completion is shown in Figure C-9.

## Well_Screens._Casings._and_Fittings

Well screens were commercially fabricated, 4-inch 1D, high-flow, 20-slot (0.020-inch) PVC. A threaded PVC cap was fitted 6 inches below the screen openings. The screens were installed throughout the water bearing unit and

were attached to schedule 40 PVC casing by a nonrestrictive threaded joint.

Alluvial wells were screened 5 ft above the water table. Standard black iron pipe casings of various diameters were used to telescope down and prevent cross-contamination between aquifers. Prior to installation, all screens and casing materials were decontaminated and stored in plastic. This required cleaning and removal of all foreign matter (adhesive tape, labels, soil, grease, etc.) and washing with approved water. Casing tops were fitted with oversized hand-removable caps.

Stainless steel well centralizers were attached by stainless steel clamps only on the cased portion of the well and only above the sand pack.

Boreholes that contained excessively thick or particulate-laden fluid, which could have interfered with casing and screen installation, were purged with USATHAMA-approved water.

#### Sand_Pack

The annular space between the casing/screen assembly and the borehole was filled with a gravel/sand pack to a depth of no less than 5 ft above the well screen. A 1-pint sample of gravel/sand pack material was submitted to PMO-RMA for approval prior to use on site. The material used was 8- to 12-mesh silica sand from Colorado Silica Sand, Inc. If water was needed to facilitate placement of the gravel/sand pack, a minimal amount of approved water was used. The volume of this water was recorded for subsequent removal during well development.

# Bentonite_Seal

A 5 ft bentonite seal was placed in the annulus above the sand pack in most wells. In a few locations shallow ground-water table conditions prevented this. The thickness was that measured immediately after placement, without allowance for swelling. Commercially available bentonite pellets were used in all cases. This material met USATHAMA specifications and was approved by PMO-RMA prior to use on the site. Bentonite seals were placed as shown in Figures C-1 through C-9.

(**4**)



Annular spaces in alluvial monitoring wells were sealed by pumping cement grout through a tramie-pipe placed at the bottom of the target interval, or by gravity placement within the hollow-stem auger. The grout was composed of 10 parts cement to a minimum of 1 part bentonite, and a maximum of 12 gallons of water per sack of cement.

The annular space between conductor casings in Denver Fm monitoring wells were pressure grouted from the bottom of the casing using Haliburton-type techniques. These materials met USATHAMA specifications and were approved by PMO-RMA prior to use on site. The grout seal was inspected for settlement 24 hours after placement and, if necessary, grout was added to the level of the ground surface.

## Protective_Casing

A lockable protective casing was set into the grout seal surrounding offpost wells. The 5-ft long protective casing was constructed from 8-inch-diameter steel pipe with a lid capable of being locked. The casing, cleaned of all foreign matter prior to use, was extended into the grout about 3.0 ft below the ground surface. The offpost wells were padlocked at the time of the installation of the protective casing. After installation, the outside of the protective casing was painted white, and the well identification was painted black. All painting was done with a paintbrush.

Aggregate cement was poured to a depth of about 0.5 ft above the ground surface in the annular space between the protective well casing and the outside of the monitoring well casing. A circular 4-ft diameter pad 0.5 ft thick was poured around the protective casing. A 0.25-inch-diameter drainage port was drilled in the protective casing just above the level of the internal mortar within the protective casing.

#### 1.4 WELL_DEVELOPMENT

Upon completion of the well installation, the monitoring wells were developed at least two weeks prior to sampling. Well development was conducted by means of either a submersible pump or a bottom discharge bailer, with or without a surge block. A minimum of five times the volume

U/I EU I UU

of standing water in the well, sand pack, and annulus were removed, in addition to five times the volume of water that was added and lost during drilling or completing the well. The wells were developed until the water was clear, sediment-free and of consistent conductivity. Wells were not considered fully developed until the measured thickness of sediment remaining in the well was at 5 percent or less of the screen length. Most wells were developed to the point where sediment content was less than 2 percent.

Measurements obtained and recorded included static water level before and after development, field pH, and conductivity measurements before during, and after development. Stability of these parameters was an indication of representative ground-water quality. For each well, a 1-pint sample of the last water to be removed during development was collected and retained. An example well development sheet is shown in Figure C-10.

#### 2.3 GROUND-WATER_SAMPLING_PROCEDURES

The Task 44 ground-water monitoring procedures summarized below describe both methods for measurement of static water levels and for collection of water-quality samples. These methods are described in detail in the Task 44 Final Technical Plan (ESE, 1988).

Static water levels were measured with either Soil Test Model DR-760A or Solinst water-level indicators. Total depths were measured with bottom-weighted, nylon-coated steel measuring tapes. Measured values were reported to the nearest tenth of a foot. All pertinent information obtained during the water-level measurement effort was recorded on water-level measurement forms and in bound field notebooks. The following information was recorded for each well measured:

- o Well number:
- o Casing diameter:
- o Date and time:
- o Photoionization Detector (PID) readings:
- Casing stickup above ground surface;
- o Depth to water from top of casing;
- o Total depth:

- o Water-level measuring device;
- o Observer's initials; and
- Pertinent observations including well conditions.

On arriving at the well site, the following information was recorded on sample data sheets and in field notebooks:

- o Well number:
- o Date and time:
- o Pertinent observations including weather and well conditions:
- o Well information including station elevation, casing diameter, and screened interval;
- o Field instrument identification;
- o Initial PID readings for background and casing headspace:
- o Well stickup above ground surface:
- o Depth to water: and
- Total well depth.

Field instruments were calibrated against known standards prior to purging each well. These instruments were used to monitor field parameters including pH, temperature, and conductivity. In addition, dissolved oxygen was monitored in all pumped wells. Field parameter values were recorded for a portion of the initial water discharged from the well, after each casing volume was removed, and immediately prior to sample collection. An alkalinity titration was also performed on the portion of the well water obtained immediately prior to sampling.

All wells were purged and sampled with either a pump or bailer. In general, wells containing less than 4 gallons/casing volume or known to dewater at one casing volume were purged and sampled by bailing; all other wells were pumped. The types of pumps used during the Task 44 sampling effort included 1.8-inch diameter ISCO Model 2600 bladder-type pumps, a 1.4-inch diameter Bennett Model 140 pump, and a 3-inch diameter Standard pump. An in-line flow cell consisting of an air-tight chamber fitted for instrument probes was used during purging in all pumped wells. Purged water from onpost wells was containerized at the well site. Offpost, purged water was discharged at least 50 ft from the well into natural drainage. A minimum of five casing

volumes were removed from each well prior to sampling: however, samples were not collected until field parameters had stabilized from three consecutive casing volumes. In the event that a well dewatered prior to the removal of five casing volumes or prior to stabilization of field parameters, samples were collected once sufficient recharge had been attained. If sufficient recharge was not attained within a 24-hour period, as many sample fractions were collected as possible.

Ground-water samples were collected either directly from pump discharge lines at low flow rates or from bottom-decanting bailers. All volatile and semivolatile sample fractions were filled completely and capped tightly to avoid air bubbles. Except for metals, all remaining sample fractions were filled to a minimum of 90-percent capacity. Metals fractions were filtered in the field using 0.45-micrometer nitrocellulose or cellulose acetate filters, filled to a minimum of 700 milliliters, and preserved with dilute nitric acid to a pH of 2 or less. Unfiltered nitrate fractions were preserved with sulfuric acid to a pH of 2 or less. All samples were placed on ice immediately upon filling and accompanied by appropriate chain-of-custody records.

All equipment used for sampling and water-level measurement was thoroughly decontaminated at the well site prior to storage. Each pump was decontaminated by triple rinsing all external parts with deionized water and pumping a volume of deionized water equal to three times the volume of the pump and hoses through the lines. All other equipment was cleaned in a solution of water approved by the Contracting Officer's Representative (COR) and trisodium phosphate, rinsed with COR-approved water, and triple rinsed with deionized water. All decontamination water was containerized at the well site.

Further description of Task 44 field procedures including sample shipment and documentation may be found in the Task 44 Final Technical Plan (ESE, 1988).







ı

CENTRALIZERS WERE PLACED ON ALL BLANK CASINGS AT INTERVALS OF NO MORE THAN 40 FEET.

U.S. Army Program Manager's Office For Rocky Mountain Arsenal Prepared for:

Aberdeen Proving Ground, Maryland Figure C-4 GENERALIZED BEDROCK AQUIFER MONITOR WELL CONSTRUCTION (DENVER FM WELL COMPLETED IN FIRST SANDSTONE, ALLUVIUM SATURATED, SHALE AT THE ALLUVIAL-BEDDROCK CONTACT)

SOURCE: Hunter/ESE, 1981

C-33



Aberdeen Proving Ground, Maryland

SOURCE: HumantESE, 1988

**(4**)





3

C-36





ES	E	environmental Science and Engineering. 1332 South Alton Way Buite H-1 Englewood, Colorado 80112 - 303/741-063	INC
	i -	INGLEWOOD, COLORADO BO112 - 303/741-065	

SHEET	 OF	

roject				Well	_		
				Project Number _			
ste(s) Developed				Date Installed			
ersonnel (Name/Con	ipany)			Well Diameter (I.D			
In 11-and				Anulus Diameter	in.		
ig Used			-	<b>6</b>	in.		
ump (Type/Capacity siler (Type/Capacity				Screen Interval		1. to	
				Carlos Halakarak	-	fl. to	
lessured Well Depth	TOC	(Initial)		Casing Height (Abo			
ISSUES WELL DEDIL	100	(Final)		Bottom of Screen (	pelow G.L.)		
ater Level TOC/Date	e/Time (Init			·····			
THE PARTY OF THE		r 24 hrs.)			· · · · · · · · · · · · · · · · · · ·		
eet of Weter in Well				llons/foot =	eallone	casing/anuly	e volume
rilling Fluid Lost			allons	One Purge Volume			
urge Water Lost				Minimum Purge V			
dded Water			-		16		
				I Utal Purke Volum			
asing/Anulus Volum	٠		allons	Volume Measured			
asing/Anulus Volum	۱۲	···	allons		Ву		
alibration. pH Met	er Used:		allons ·	Volume Measured Surge Technique	Ву		
alibration. pH Met	er Used:		allons ·	Volume Measured Surge Technique	Ву		
alibration. pH Met pH 7.00	er Used:		gailons	Volume Measured Surge Technique	Ву		
alibration. pH Met pH 7.00 Conduc	er Used: = tance Mele		galloris	Volume Measured Surge Technique  PC. pH 19.00 =	Ву	1	•0
alibration. pH Met pH 7.00 Conduc	er Used: = tance Mele	r Used.	galloris	Volume Measured Surge Technique  PC. pH 19.00 =	Bya	t	•0
alibration. pH Met pH 7.00 Conduc Standar	er Used: tance Meie d	r Usedumhos/cm	allons at 25°,	Volume Measured Surge Technique  PC. pH 19.00 =  Reading	Bya	1	•0
alibration. pH Met pH 7.00 Conduc Standar	er Used: tance Meie d	r Usedumhos/cm	allons at 25°,	Volume Measured Surge Technique  C. pH 19.00 =  Rending  Conductance at 25	Bya	t	•0
alibration. pH Met pH 7.00 Conduc Standar Purge Volume	er Used: tance Meie d	r Usedumhos/cm	allons at 25°,	Volume Measured Surge Technique  C. pH 19.00 =  Rending  Conductance at 25	Bya	t	•0
alibration. pH Met pH 7.00 Conduc Standar Purge Volume	er Used: tance Meie d	r Usedumhos/cm	allons at 25°,	Volume Measured Surge Technique  C. pH 19.00 =  Rending  Conductance at 25	Bya	t	•0
alibration. pH Met pH 7.00 Conduc Standar Purge Volume	er Used: tance Meie d	r Usedumhos/cm	allons at 25°,	Volume Measured Surge Technique  C. pH 19.00 =  Rending  Conductance at 25	Bya	t	•0
alibration. pH Met pH 7.00 Conduc Standar Purge Volume	er Used: tance Meie d	r Usedumhos/cm	allons at 25°,	Volume Measured Surge Technique  C. pH 19.00 =  Rending  Conductance at 25	Bya	t	•0
alibration. pH Met pH 7.00 Conduc Standar Purge Volume	er Used: tance Meie d	r Usedumhos/cm	allons at 25°,	Volume Measured Surge Technique  C. pH 19.00 =  Rending  Conductance at 25	Bya	t	•0
alibration. pH Met pH 7.00 Conduc Standar Purge Volume	er Used: tance Meie d	r Usedumhos/cm	allons at 25°,	Volume Measured Surge Technique  C. pH 19.00 =  Rending  Conductance at 25	Bya	t	•0
alibration. pH Met pH 7.00 Conduc Standar Purge Volume	er Used: tance Meie d	r Usedumhos/cm	allons at 25°,	Volume Measured Surge Technique  C. pH 19.00 =  Rending  Conductance at 25	umhos/cr C Physic (clarity.or	n at	°C
alibration. pH Met pH 7.00 Conduc Standar Purge Volume	er Used: tance Meie d	r Usedumhos/cm	allons at 25°,	Volume Measured Surge Technique  C. pH 19.00 =  Rending  Conductance at 25	umhos/cr C Physic (clarity.or	t	°C

Figure C-10 WELL DEVELOPMENT DATA FORM

U.S. Army Program Manager's Office For Rocky Mountain Arse.

Aberdeen Proving Ground, Maryland

APPENDIX C-2: WELL CONSTRUCTION DATA

E

EP-53

PAGE____OF___

### **BOREHOLE SUMMARY LOG**

	20,23221,23222
Project Name and Location MW Installation - Task	99 Project Number 13053 053 10
Drilling Company Boyles Driller Roacle	Rig Number Failing 25
Drilling Method(s) Retary - with bentonite drill	mul
Size(s) and type(s) of bit(s) 778" blade, 372" treine	
Borehole Diameterincmft	_cm. to
	_cm. toftcm.
Sampling Methods Continuous Core	
Total Number Soil Sampling Tubes	<del></del>
Total Number Core Boxes 💆	
Number of Gallons Lost Drilling Fluid 😇 300	
Date/Time Started Drilling 729.37 0941	
Date/Time Completed Drilling 4.30.87 (535	
Total Borehold Depth	cm.
Depth to Bedrock 40 ft.	cm.
Depth to Waterft.	cm.
Water Level Determined By?	
Borehole Completed as Monitoring Well?	
Date/Time Grouting Completed 5-1-87 0944	
Depth of Tremmie Pipe 130 ff.	
Gallons of Grout 90 gale.	
Materials Used 4 bags course, 90 gals ovater, po	extral bay bentonisk
Comments yearted to surface - pvc removed a	o much as possible
(= 4. below ground)	
Wellsite Geologist C Reuser	Date 25.1.37
Checked for Grout Settlement on5/2/87	by Ja-
Amount of Grout Added home reached	
All Measurements from Ground Level	
Reviewed by	Date 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Drill Site Geologist	Date C. 4.2

EP53A Well Number: 23220 Borehole: Sample Interval Sample Numbe SOILS LOG Depth - Feet Description Silt/sand/clay - clay 40%, silt 20%, sand 20%, الأص 2.54 4/4 slive brown, med duse, non plan., Silty sands - silt 12%, clay 10% (slight), 10 yr 5/4 2-ادا کی ا yellowish brown, coose, homplas, dry, occas. calc. rich M asea 100/4 interbed of SC - clayer sand - clay 40% - 10yr 3/6_ sc ak yellowish brown, douse, non plas, dury 6 - cale/dola. intensified to 2" banch calc/dolv. about 5% - throughout sample 4-8" 6 6 9 والالااء 8 CLAY (SHNDY) - sand 20% - 104- 4/4 cik. CL yellowish brown - med dones, wunplay dry 8-ולפנו (0 10. 10-10-108/2 12

Drill Site	Geologist C-Litus Lug	1. (34502 Date: 512 87	C-43
Reviewed	By: Kills	Date: 3/ 3/17	

SHEET VOF 4

FP 53A 23220 Well Number:__ Borehole: Sample Number Sample Interval Tube Number Tube Interval SOILS LOG Jepth - Feet Description Recovery CLAY (sandy) Send 20% - 104-4/4 dk ,2 (7) yellowish brown, med. dense, nonplas, dry انالق N 14 14-14 14-(05) 10 10 10-(D . 18 واكول ૃક GRADED SANDS - 10% gravel, 254 4/4 slive brown, 18 SW lose, nonplus, dry 18-19gravel asually rounded to subrounded, 1/4" -1/2", nine 70% 20 20 20 20-20-80% 22 22 clayey send - day 30% - 2.5 yN4/2 ak grayish brown, 21 SC med dense, non place , st. moist (?) day - 2.5 yn7/2 all graying brown, dense, non prices iry 12 CL 22. rr 100% 24 ひょ 231 GP - Grand Kinger

SHEET 3 OF 4

FP53A Well Number: 23220 Borehole: Unified Soil Classification Sample Number Sample Interval Tube Number Tube Interval SOILS LOG Depth - Feet Description gravel /sand mixture - gravel 60% - gravel subanquiar to subrome 24. GP 24 104r 5/4 yellawith brown, loose, run plas, dry alop JANDS - Fine, 1040 5/4 yellowish brown, loose, non place, ary Ue 26 25.3 SP 26. gravel appears at 260 - gravel 10% - mostly 1/2 or smaller 70 761 (pea-size), well runded -80% 28 79 20 281 (00% 30 30 30 30 -30° 31.2 31.2 م/أكل -31.2° growl increases to 2" down to "+" 31.1 312 approx. 15 % 80% 35 33 33 33-33 150% MOIST saughe at 34" 34-35 35 351 35-90% suturated - cuater at 35° 37

Drill Site	Geologist: 1- Linux	Date: 5.12.87	C-4
Reviewed	Bv:	Date:	

23220

___ Well Number:____

EP-53A Borehole:_____ Sample Interval SOILS LOG Depth - Feet Description grantly sands, gravel 104, 1045 5/4 yellowish women, course, non plas sat. 36.6 - 36.8 clay/weathered bedrock seam 37. 37 - BEDROCK at 38'
claystone - 54 5/3 cline - soft é menthered (ob) 39 40. END OF BORING AT 40°

Drill Site Geologisti Chip Lig: (Cuph Date: 37 87

	_		RE LC	cours /	Зу .С	·	erm	_		T.E.T.	Testire/	Lish.	Lith.	Vell(s) Pageaf _:
		***	Bed Angle	cture / ding Desc	Hard	1	1 20			Color	Testure / Grain Sale clet ed gr	Char	Closs	CM (Scale I"= Z fr)
44 -	.5.14		Angle	7.	5			Min	•	2554 4/2 4/2/	L. J. A. J.	7	CL	Coloring set to 41 - bodrocke at 38 - see Alluvicel Log  Alluvicel Log  all recevered looks Like claytone (and quarte/gravite corbile From up hele) However, Resistivity from life to 49 - samples show to wind of this but it fits projec
10 10 50 -	R.		-	Marine						254 N40			19	From other holes - Liquite -
5 <b>L</b> -	3.3		NA NA	highly Fractured						2.54	- / · · · · · · · · · · · · · · · · · ·	cbn +3 25°/0	CL	CLAYSTONE carton claystone
5 <b>4</b> -				Merrical						475/6		1111- +0 2%		
50	2.8		-									- cb		carbon 70 dec.
	+		-									5%	/·	\$ C-47

(80X)	E.		Str	ucter=/ dding	Hord-	Perm	Mineralogy	Color	Crein See	Loh	Lith		Description/Co	omments
( <del>1</del> 9)	DEPTH 218	U S	Angle	Desc.	ness S H	1º 2º	Mineralogy Min Habit	Mo	01 10 1	Chor 00	Closs	CM	(Scale 1": _ Z	
•				Madin			speaks .	1,64			cı	0	LAYSTENE	
				, ,			1%	PKG						
or-	2.7			_			1	Jerse 91 and			-			
	4			destil			gre all	1		63.	55	_ <u> </u>	ANDSTONE	
,4 -	-		1	bedding			651 met	1			-		٠	
<u> </u>	<del> </del>			coalver qualing			5% }							
② ~~~				L to			5%							
66 -	2.5		11				100/0.				_	- -	WOSTONE COM	sev = 66-
•			1/1	-										
<b>В</b> -	-		1 )	_							-			
-			111	_							-	->		
70 -	<b>-</b>		/						1/1	70.	a	- }	of recover	y From uph
	13		-	Marin									CLAYSTON	<u>.</u>
<b>3</b> 2−				_ }										
		-		Y										
			-	-		█▕┊ <del>▝</del> ▀▍░ ▋ ▋ ▋ ↓ ↓						_		
74-	3 - 5		_	······································										
③ ·	5			<b>-</b>				ļ !			_			
76 -	-		-	-							_			
•				-										
79 -				- <b>-</b>			50°13 P1800							C-48
· ( <i>)</i>	4.5		ĺ		:   :									

**(*)** 

(8)

-	<u>.c.</u>		Sir	ucture/	Hard.	P	rm.	Mine	alce	٠ .	Tellure/	Lith.	Lith.	Veli(s) Page 3 of  Description / Comments
ні віс	ini	A PARTY	Be Angle	dding Desc.	1622	10	2*	AA	Habis	Color	Tellure/ Grain See clet ed gr	Char.	Class	
7	-	, <u>s</u>					111	1 7717		M) C	01 10 11		<u>۴۱</u> ۳۱_	CM (Scoie 1"= 2 11)  C. LAYSTONE
	A	++-		Maxime				elon		2,54		41.04 5%		C. C. 7. 1000
<b>a</b>	- {		-	Mir	<u> </u>	$\  \  \ $		100	1	Nu/0		, , ,		
<b>3</b>				1			11	100%	/,	l 1				
81		-	-	- >.	1111			1		4144		81	  -	Claretone . gradationall
	H			<b>V</b>			III i		•	(	1-1-1-1	Jan de		Claystone gradestionall
+	- 11		-	- '	<b>†      </b>		-{  -	-{	ש		<b>  </b>	10%		( )
	- {				<b>F</b>	<u>HF</u>		1	4	V		sit		
84 +	[[بر	++:		<u>_</u>	<b> </b>		1( -	7	. 1	'	<mark>╎</mark> ╏╏┼┼┼┼	5%	_	V
	5					<b>H</b> H	∭ Ŧ	]	1					
	∦	i . l . l			圳	111	: { _	<del> </del>	<u> </u>					SANDSTONE
ł				Fract.	F±(1-1	H	1	ساما			- 11 + + + -	35 '	55	occus. condoneritic &
86 +		丗		wry 4	<b>'I</b> III-	#	111	clor	سر				_	c/" which from 89 to
1							╁╬╁	<b>;</b> .					-	
1	_	H			日日	E	H	MANAGE	~				_	
‡	-			87	<del>╗╸</del>	11	<b>-</b>    +	fracts	n					87' - coarse sand to a quarter of the coarse
28		田	/	المعلمة وا	<u> </u>	1	<u> </u>	3	07				_	in beds 1" while
†	∦	##	$\approx$	م، المامور م، الماساس	<b>]-   - </b>	<u> </u>	###	<b>  Y</b>	<i>ا</i> ن				_	con follows bedding
<u> </u>	5	田		from 60°	<b>'E!!</b>		111	21	0		<del></del> <del>-</del>  +			og of recovery finals
4	. II	++-	/ <del>/</del> /	to 90°	H 1 1	1 51	1	3%	*				_	Feex stains strange-
<u>,, ±</u>		1		(#C	1-11-1	441	-	ال تا سنوار	<i>→</i> a					_   small (1") cir (leg of
90 +	- [-]						111	11/4	0-					grange stain
ΘŁ		H			F##	<b>‡‡</b>	<b>  </b>			2,57		40.4	0	CLATISTONE
F			]	Medice	HH	$\mathbb{H}$	KIT	clon		N3/6			-	<del>-</del> / .
	H			5		<b>†/</b>	#   -	ושו		derk	╟╁┼┼			
92+0	, []		1	- <b>Ý</b>	[]]	詽	1	104		9/44				
1 1	- H		l		<b>   </b>   +	╢┼╀	#+-			(				
Ŧ			7	•	扭扭	MH		C len		₹			•	-> Ligaite aure intiese
		++			<b>  [</b>	₩	<b>∦</b> i	ورسع		▼			i i	
94	1		7	_	$\{\{\}\}$						1,111		_	
5	<u> </u>		ļ		[ ][[	$\prod$	NI E	]	<i>,</i> ()	54 5/1				>3" of recovery rime
† ;	۱.		†	-				2%	,.				-	preceding river
	$\ $					##		2%		gray				
90	$\dashv$		+	_			:		0	\				<b></b>
		-17				11: 1	::		,	$\Psi$				<del></del>
(I)		: :	+	-						ļ			, -	
93 - 5	4		ĺ				$H_{i}$							
93 + 5	5		+			:		1		ļ				
			j			<b>#</b> ;	#::		.		:::			C-4
-			1										-	(-4
1		:	!	!	<u> </u>				٠, ا	}	\ <del>  </del>		i	
lw	11					11	<u>.  </u>	!	_	ł		ł		- <del></del>

!

*

Date 5/37 ESE, Inc. CORE LOG By _COB_ BORE EC 53 Well(s) Testure / Lith. Grain See Lith. clot ed gr Char. Structure/ Bedding Hord. Lith Description / Comments Color Class H Min Hotill M G Angle Desc. Ft CM (Scale 1"= 74 (1) CLASSTONE. CL 59 ③ 5/1 gray 102 102 21/0 silly "ashy" 104 5% 104 of recovery from .p hole 108 6 KC tend of silty lashy texture 37. -112- $\langle q \rangle$ rilly texture gradually sili increasing 5,0 110 117 511 119 -٠+٠ C-50 10,0/0

**%**)

MOI I	AF	Structure/ Bedding	1110000	Perm.	_Mineralogi	Color	Yesture / Grain Site classed gr	Lith.	Lith	Description/Comments
H dac	es de la S	Angle Desc	ness	1° 2°	Min Hohi	ه المار	clet ed gr	Char no	Class	CM (Scale 1": 11)
						P		Si It		CLAYSTONE - Silty
						2,54		30%		
	_ N: 1.	Meni	& FT   N		1			"		e de la companya de l
		M				47/o				-> 122' carton frag - twig
122		I + I		1/11		Lique		126		GRANDSTONE INTERA
1		1 I V	-	וועו	3	gray		411001.		
	V:	1   '	<b>-1</b> +#			11	-  - -	125		-
	5				1 1					
	5	= Fine	<u>ч. Н</u>	1711	4	11		124		SANDSTONE
		bed	w.			(		4ilt		Fire then uphole -
<b>Ø</b> †		اردا	" [#] <b>[</b>	┇			<u> - -  </u>	10%		Mare frame
124 +	H		E±.	<u> </u>				1	_	_
	╟┼┼		++	11/11		Y	<b>   </b>	1		
1		1	_							
			[-].	18-1-16-	7			127		CLAYSTONE
120		1 +						]	_	
1	.3	]			اسان 🗄			1		
1 I-	- III	1 1	<del>                                    </del>		10°			1		
‡ 3	5	1						1		
130+		1 4		┪╬┼┼╂╴	H I		<b>               </b>	:	-	<del> -</del>
{								1		
+		1 +	+++			ļ		-	ļ	
[										
132	-    -					<u> </u>	1111		ļ	
	1-1-			++++						END OF HOLE
+	- 4	1 +		<del>                                      </del>			F###	1		- AT 132'
		1 1				-	1111	1		
+	<del>+-+</del>	1 +								1
	1	]								
+		+					1 1 1 1 1 1			1
	+ +	1		1;11:	. 1	İ				
+	:::	1 +								+
		]								-
		1 +		1::1:			1 4-4 4			-
				1:;1:						
		+ +			• 1				,	
;					:		1::::	1		C-51

(3)

**(3)** 

The second secon	2,000	Single	" 0145 "0835	110	, i	•		800	2	er man	1700	r.	Density Source No	1998 See 1	DSM.	£	Neutron Source No	Inge Struggt	Dishea			40 OHIS'S INChes		
Dat MAY 1, 1987		3%	e 35'	3	Avenue Avenue	Berg house from Ground Level		\$3	Today Scend	_ *	Team	E .	Garona (Analog)	Gamma (Digital)	Catyer	Temperature	DRECTIONAL DATA	Closure	Azmyth	The Vertical Survey Depth		1	-	
ng su				COLORADO	The state of the s	Course Lovel	N.	#C.55	Total Seed 7	75 F886 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	A I I I I I I I I I I I I I I I I I I I	£									(	- 20 m		6
Fromes Logging	Laterana, Colorana	F D 62	- Z	Anomo	ALLEN TO THE PARTY OF THE PARTY		EMPERIT BATA	10 Logged 13.3 FF+	700	O I	s		 17 3/4 × 1/4"	\$ O	110 378		Ressignce An Alama /c., Sweet	ہ او	Ì			NATIONAL GAMMA	Columba Sur	•

4)

. .





## WELL CONSTRUCTION SUMMARY

Borehole FP-53A	WellSP 23220
Project Name and Location, Task ov 200 yes Nor A	Project Number /7052 022./0
Drilling Company Boyks Bres Driller Da	
Drilling Method(s) Augus	
Borehole Diameter 17 1/4 in cm	_ftcm. toftcm.
incm	ftcm. toftcm.
Size(s) and types of Bit(s) Augus	Sampling Method(s) Continues Sole Sacon
3	Date/Time Start Drilling 5/1/07 /0855
Size and Type PVC 9 .020 s/or	Date/Time Finish Drilling 5/2/27 / 1442
Total Borehole Depth 39.07 ftcm.	Date/Time Start Completion 7 1/07/ 1448
Depth to Bedrock 38 ftcm.	Date/Time Cement Protective Casing 5/0/27 / 1000
Depth to Waterftcm.	Materials Used 20 2 TUBES 40 CAPS
Water Level Determined By	Plain PVC 3 - 10' SRCTION)
Length Plain PVC (total)cm.	Slotted PVC 1-10' SECTION
Length of Screenftcm.	Bentonite Pellets
Total Length of Well Casing 40.77 ftcm.	Bentonite Granular 5 1493
PVC Stick Upftcm.	Cement
Depth to Bottom of Screen 39.07 ftcm.	Sand
Depth to Top of Screen 2.3./8 itcm.	Water added during completion 200 44/3
Depth to Top of Sand 22.6 23.11 ftcm.	Water added during drilling
Depth to Top of Bentoniteftcm.	Total Gallons of water added 300 34/3
Drill Site Geologist 6 14	Date
Date/Time/Personnel Internal Mortar, Cement Pad, and V	Veep Hole Installed 3-14-13 TO POSELCA
Date/Time/Personnel Casing Painted 06-17-39	
Date/Time/Personnel Numbers Painted 6-17-47	0445 PiB plus
Materials Used 12 buch & Salvets	<u> </u>
Top of Protective Casing to Top of PVC	239 am// COMMENTINOTES
Top of Protective Casing to Weep Hole	1.45 cm.
Top of Protective Casing to Internal Mortar 418 bit.	1.43 411.04
Top of Protective Casing to Top of Cement Pad	1.77 Lm. c.y
Top of Protective Casing to Ground Loyel	2.7 40.09
Reviewed By	Date - 1/27/4
Drill Site Geologist	C-55

Borehole: EP-53A

23220 Well: 5757 SP

Depth-Feet	Soil/Rock Type	Well Completion	Description
		Gound Level	
4.			
. ي			
/4.	1		
16-		12,4+ 17.8 19,4+ 17.8	- 17:9 I
70. 22 24	1	22.6	TOPOFSAMO
73.		20.18	
34	4		
36	-	7 35	HOATS'
39.	· 1		1907 Borrom or Boring

Drill Site Geologist : Reviewed By :

C-56

The least of the later of the l	Ama	a Cac	ore EP 5	S.A. V	Vell, 23220 Project Number	14
well Diameter (I.D.) Anulus Diameter  Library Service  Serven Interval  Library Service  The Casing Height (Above G.L.)  Library Serven (Below G.L.)  Library Ser	elect ////	23.	67)		Data Installed 05-	07-87
g Used ESE Well Selvice TRUCK  Interpret Capacity) County		0				$\mathcal{H}_{in}$
Standard   Grand   G	ronnei (Name/Com)	, and a second				
Inter Corpe (Capacity)  A A Screen Interval  R. 10  R. 10  Reserved Well Depth TOC (Initial)  Served Well Well Well Well Well Well Well We	Used ESE W			uck		
let (Type/Capacity)  let Source  Casing Height (Above G.L.)  (Initial)  (Init		GRUNO	FOS /12	GPM	Screen Interval	23.1811.10 P. 27. 2011.
Casing Height (Above G.L.)  Reserved Well Depth TOC  (Initial)  (Initia)  (Initial)  (Initia)  (Initial)  (Ini		NA				
(Final) 40.7 ft.  (After Level TOC/Date/Time (Initial) 36. 43 06. 22. 88 0845  (After 24 hrs.) 36. 34 426.7 1/5/  et of Water in Well 12 ft. x 2.32 gallons/foot = 9. 79 gallons casing/anulus vol  (Illing Fluid Lost N/A gallons One Purge Volume 309.79 gal  rge Water Lost gallons Minimum Purge Volume 3 79.79 gal  ided Water 300 gallons Surger Technique 15.8 95 gal  rging/Anulus Volume 9.79 gallons  sting/Anulus Volume 9.79 gallons  Surger Technique 15.8 26.6 26.6 27  pH 7.00 = 7.04 at 22.9 °C, pH 10.00 = 10.0 dat 22.2  Conductance Meter Used: Carfin Markers Surjet		RMA		***	Casing Height (Above G.	· (-)
ter Level TOC/Date/Time (Initial) 36.43 06.22.98 0845  (after 24 hrs.) 36.36 6.26.77 1151  et of Water in Weil 4.22 ft. x 2.32 gallons foot = 9.77 gallons casing/anulus vol  filling Fluid Lost	ssured Well Depth	TOC	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	55 ft.	Bottom of Screen (Below	(G.L.) <u>37.09</u>
Collected by Charles   15   15   15   15   15   15   15   1			1 2 2			
set of Water in Well 4.22 ft. x 2.32 gallons/foot = 9. 77 gallona casing/anulus vol gallons from Purge Volume 309. 79 gallons rge Water Lost	iter Level TOC/Date					
Illing Fluid Lost	. a#442a t 141-11	(after)			A HA	anilana anaina/ansilan saluma
rge Water Lost	·	NIA				309.79 gallons
asing/Anulus Volume 9.79 gallone Volume Measured By Sack Backer Surge Technique Malse + Lower Fallbration: pH Meter Used: 3cc	•	NIA			~	14 1/19 04
Purge Volume  Time  Temp. *C  princi  Description:  Time  Temp. *C  Time  Temp	_	300			•/	
Surge Technique Raise 4 Lower F  pH 7.00 = 7.01 at 22.9 oc, pH 10.00 = 10.01 st 22.2  Conductance Meter Used: Cartin Markeson Digital SN: 14274  Standard 408 umhos/cm at 25°, Reading 1408 umhos/cm at 25°  Purge Volume Time Temp. °C pH Conductance at 25°C Physical Characteristic (clarity, order, and content, co initial O 0900 23.7 809 940:  HNW 0.5 initial customers of the standard standa						W 11 V 11 V
Purge Volume Time Temp. °C pH Conductance at 25°C Physical Characteristic (clarity, odor, and contant, continual of the conti					· N	alsa 4 hower fung
Initial 0 0900 23.7 809 940: Callected by Walks Bud 06-in	•			/	Jeson Digital So	
710 1058 16.3 7.43 3510 Sightly selfs - 14.3 3510  Final  Remarks: 4NU at well Head 6.0 after 10 min  Callected by Wall 3 180 06 - 12	Conduc	tance Meter	Used: Car	fon Wats	veran Digital so	J: 14274
310 1058 16.3 7.43 3510 Sightly sith, - 14.3 mg.  Final  Remarks: 4NU at well Head 6.0 after 10 min  Callected by Phillis Bird 06-in	Conduc · Standar	tance Meter	Used: <u>Car</u> umhos/cm	fin Wats	Reading	J: 14274
Pinal  Remarks: 4NU at well Head 6.0 after 10 min  Collected by While Bird 06-22	Conductive Standar	rance Meter rd <u>406</u>	Used: <u>Car</u> Jumhos/cm Temp. °C	et 25°,	Reading /40 8  Conductance at 25°C	umhos/cm st 25 •0  Physical Characteristics
Remarks: All of well Head G.O after 10 min)  Collected by While Brid 06-22	Conductive Standar	Time	Used: <u>Car</u> yumhos/cm Temp. °C 23.7	pH 809	Reading /40 8  Conductance et 25°C	Physical Characteristics (clarity, odor, sand content, color)
Remarks: 4NU at well Head 6.0 after 10 min  Collected by While Buc 06-22	Conduction	Time	Used: <u>Car</u> yumhos/cm Temp. °C 23.7	pH 809	Reading /40 8  Conductance et 25°C  940:  3510	Physical Characteristics (clarity, odor, sand content, color)
Remarks: 4NU at well Head 6.0 after 10 min	Conductive Standar	Time	Used:	pH 809	Reading /40 8  Conductance at 25°C  940:	Physical Characteristics (clarity, odor, sand content, color)
Callected by While Suc 06-22	Conduction Standar	Time	Used:Car umhos/cm Temp. •C 	pH 809	Reading /40 8  Conductance at 25°C  940:	Physical Characteristics (clarity, odor, sand content, color)
Remarks: 4NU at well Head 6.0 after 10 min	Conductive Standar	Time	Used: <u>Car</u> yumhos/cm Temp. °C 23.7	pH 809	Reading /40 8  Conductance et 25°C	Physical Characteristic (clarity, order, and contant, col
Collected by While Sinc OG- 22	Conductive Standar	Time	Used:Car umhos/cm Temp. •C 	pH 809	Reading /40 8  Conductance at 25°C  940:	Physical Characteristics (clarity, order, and content, color)
Collected by While Suc OG-22	Conductive Standard	Time	Used:	pH 809	Reading /40 8  Conductance at 25°C  940:	Physical Characteristics (clarity, odor, and contant, color)
Collected by	Conductive Standard Purge Volume  Initial O 310  Pinel	Time 0900	Used:	909 7.43	Reading /40 8  Conductance at 25°C  946:	Physical Characteristics (clarity, odor, sand content, color)
CONOCIOO DV	Conduction Standard Purge Volume  Initial O	Time 0900	Used:	909 7.43	Reading /40 8  Conductance at 25°C  946:	Physical Characteristics (clarity, odor, sand content, color)
$\cdot$ I have $\cdot$	Conduction Standard Purge Volume  Initial O	Time 0900	Used:	909 7.43	Reading /40 8  Conductance at 25°C  946:	Physical Characteristics (clarity, order, aand contant, color)  Silty - Some and M-9 M  HNW 0.5 initial a well to  Singlety Silty - H. 3 M  M-1 S M
Checked by Signature C-57	Conduction Standard Purge Volume  Initial O	Time 0900	Used:	9.0 a	Reading 140 8  Conductance at 25°C  940: 3510  Freq 10 m; N	Physical Characteristics (clarity, odor, sand content, color)  Silty - some year IM-9 on HNW 0.5 initial a wall be styling silty - 14. 9 mg.

# ESE ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. 7332 SOUTH ALTON WAY SUITE H-1 ENGLEWOOD, COLORADO 80112 303/741-0638

SHEET 2 OF 3

rsonnel (Name/Com	pany) DE	W/ESE W/ESE		Well Diameter (I.D.) 4 Anulus Diameter	1/4 in. O. 12. to 59.07
g Used SE imp (Type/Capacity			Reck	Screen Interval	in,R. to
iler (Type/Capacity	N	MA			R. to
eter Sourceeasured Well Depth		(Initial) 126		Casing Height (Above C Bottom of Screen (Belov	
ator Level TOC/Dat	e/Time (Initia	(Pinel) <u>40.7</u> 1)36.4		. 22-87 08	45-
	(after	24 hrs.) 3/		36 57 // 5/ ans/foot = 9.29	
eet of Water in Well rilling Fluid Lost _	7.22 N/A		152 gall gallons	One Purge Volume	gellons casing/anulus volus
urge Water Lost	NA		allons	Minimum Purge Volum	10 1548 . 75 gallo
dded Water	30		gallons	Total Purge Volume	550 Bucke F
esing/Anulus Volum	no	_	gallonu	Volume Measured By Surge Technique	
alibration: pH Me	ter Used:	Beckmen		itul 50: 015 883	
pH 7.00	7.01	t2	.   .	C, pH 10.00 =	2.05 at 21.2
pH 7.00 Condu	ctence Meter	ع at2 العام:ا	. l.l V S	C, pH 10.00 =	
pH 7.00 Condu Standa	ctence Meter	at2 Used:/ umhos/cn	. <u>l. l</u> . •( M 5 n at 25°,	C, pH 10.00 = • SN: 4274 Reading	umhoe/cm at 25
pH 7.00 Condu	ctence Meter	ع at2 العام:ا	. l.l V S	C, pH 10.00 =	
pH 7.00 Condu Standa	tence Meter rd 1438	at2 Used:/ umhos/cn	. <u>l. l</u> . •( M 5 n at 25°,	C, pH 10.00 = • SN: 4274 Reading	umhos/cm at
pH 7.00 Condu Standa Purge Volume	tence Meter 1438	st2 Used:/ umhos/cn remp. °C	. l. i . o(	C, pH 10.00 = ・ Sい: 4274 Reading	umhos/cm at
pH 7.00 Condu- Standa Purge Volume	Time	umhos/cn Temp. °C	pH .7.37	C, pH 10.00 =	Physical Characteristics iclarity, odor, sand content, color cloudy, branch shirt & characteristics in the color of the co
pH 7.00 Condu Standa Purge Volume Initial 3/0 620	Time 0857	at _2 Used:i _umhos/cn Temp. °C (6.4	pH 7.37	C, pH 10.00 = SN: 4274  Reading409  Conductance at 25°C  3500.	Physical Characteristics iclarity, order, send content, color cloudy, branch shirts of clear, so silt or sand H-B: no.
pH 7.00 Conduite Standa  Purge Volume  Initial 3/0 620 930	Time  0857  01054  7.01	at2 Used:i umhos/cn Temp. °C (6.4 14.a,*	pH 7.37 7.42 7.28	C, pH 10.00 = SN: 4274  Reading409  Conductance at 25°C  3500.  3540	Physical Characteristics iclarity, odor, sand contant, color cloudy, beauty Shith & Clear, no silt or sand the Binnia.
pH 7.00 Conduite Standa  Purge Volume  Initial 3/0 620 930	Time  0857  01054  7500	at2 Used:i umhos/cn Temp. °C (6.4 14.a,*	pH 7.37 7.42 7.28	C, pH 10.00 = SN: 4274  Reading409  Conductance at 25°C  3500.  3540	Physical Characteristics iclarity, odor, sand contant, color cloudy, beauty Shith & Clear, no silt or sand the Binnia.
pH 7.00 Condui Standa  Purge Volume  Initial 3/0 620 930 1/22	Time  0857  01054  /500	at2 Used:i umhos/cn Temp. °C /6.4 /4.a.° /3.7 /7.6	7.37 7.42 7.35	C. pH 10.00 = SN: 4274  Reading409  Conductance at 25°C  3500.  3540  3570	Physical Characteristics (clarity, odor, sand contant, color cloudy, beauty shirt of the clear, no silt or sand H-B: Mis.  Clear, no silt or sand M-B: Mis.  Clear, no silt or sand M-B: Mis.  Sily Mis Clouds Some sime
Purge Volume Initial 3/0 620 930 1/22 Finel	Time  0857  01054  /500	at2 Used:i umhos/cn Temp. °C /6.4 /4.a.° /3.7 /7.6	7.37 7.42 7.35	C, pH 10.00 = SN: 4274  Reading409  Conductance at 25°C  3500.  3540	Physical Characteristics (clarity, odor, sand contant, color cloudy, beauty shirt of the clear, no silt or sand H-B: Mis.  Clear, no silt or sand M-B: Mis.  Clear, no silt or sand M-B: Mis.  Sily Mis Clouds Some sime

•		Bore 55	3 A	Well 23220	
Project <u>BM</u>				Project Number	
Date(s) Developed		-87		Date Installed 05	-07-87
ersonnel (Name/Co	mpany) 🚣	TRES		Well Diameter (I.D.)	in.
	$D_{i}$	KW ES		Anulus Diameter	13/4 in. Oft. to 37.02 ft.
lig Used <u>FSE</u>	Well Se	RV.Ce			inft. toft.
ump (Type/Capaci		JEOS / Z	Z (G/2!)	Screen Interval	23./21t. to 32.02ft.
lailer (Type/Capacit	(y)	A	<del></del>		ft. toft.
Vater Source		<i>H</i>	4 48:	Casing Height (Above	G.L.)
Aeasured Well Dept	th TOC	(Initial) 40.0		Bottom of Screen (Bei	ow G.L.) 39.07 ft.
		(Final) -D.			<b>~</b>
Vater Level TOC/Da		•		6-22-87 <i>084</i> 9 6-26-87/1151	
		~		llons/foot = 9.29	gallons casing/anulus volume
feet of Water in Wel Drilling Fluid Lost	414		gallons	One Purge Volume 3	
Purge Water Lost	/ _	1 /	gallons		ime 1548.95 gallons
Added Water	36		gallons	Total Purge Volume	
Casing/Anulus Volu			gallons		590/ Bucket Time.
B	····		Danona		ise & LOWER PUMF
Calibration: pH Me	eter Used:	To ceroman	d 21 D1	الله ( عدد 0/588	
	0 = 7.01	at _2=	ζ.,	C, pH 10.00 =/	0.06 at 203 °C
•	ctance Meter			SN: 4274	
Standa	0.1 - 4		n at 25°,	Reading 1408	umhos/cm at 25° °C
	·				
Purge Volume	Time	Temp, °C	pН	Conductance at 25°C	Physical Characteristics
	<u> </u>				(clarity, odor, sand content, color)
Initial // ZZ	2755	16.7°C	7.36	3550	cloudy gray-brown mas - gran
,			1	5.4	illa salada sa salam
1240	6829	13.1	7.37	3600	clear ub color, no udor.
عومه	1030	13,9	7.30	3560	حصلت دور معالات مع سعدات
1550	.036	13, (	1.70		so soudy silt 19-8: Mea.
	+		<del></del>		
	-		<del> </del>		
				Talanta de la companya del la companya de la compan	
Final		ale management of the same			
	J.J		<u> </u>		
**					
temarks: Julia'	1/Nu = -	were round -	D.Z POM	(at well head)	
- \iu		ud 70.0)	im wher	110 minutes ( wit wall	44)
+114 =		whom it	5 mounter	(ot well recol)	,
	1111	T	Collected		11 27 87
			CONTRACT	11)	Signature Date
			Checked	by	0.00
					- C-59

## WELL CONSTRUCTION SUMMARY

Borehole <u>FP-53D/</u>		Vell 2322/	
110/00011101110111101111111111111111111	fallation	Sed. 23 Project Numb	•
		Rig Numb	er failing 25
Drilling Method(s)	d blut	suite and	
Borehole Diameter 17% incr	A .	_ftcm. to _ftcm. to	_ftcm. _ftcm.
Size(s) and types of Bit(s) // 3/8 , 7%	blade	Sampling Method(s)	- 2.00
Size and Type PVC 4" sched. 40		Date/Time Start Drilling 8/8  Date/Time Finish Drilling 99	5·7·87 94 5·7·87
	cm.	Date/Time Start Completion 5.	
Depth to Bedrock 36 ft.	cm.	Date/Time Coment Protective Cas	
Depth to Water 35 ft.	cm.	Materials Used	
		Plain PVC 5 x ca	
Length Plain PVC (total) 45 50.7 ft.	cm.	Slotted PVC / KS	
Length of Screen 5.70 ft.	cm.	Bentonite Pellets 11/4 44	chits.
	cm.	Bentonite Granular 7/5 400	
PVC Stick Up 1-7 ft.	cm.	Coment 30 gals	
Depth to Bottom of Screen 7549ft.	cm.	Sand 1.25 Gay 3	
Depth to Top of Screen 43.3 ft.	cm.	Water added during completion	
Depth to Top of Sand 42.3 ft.	cm.	Water added during drilling	<u> </u>
Depth to Top of Bentonite 78.3 ft.	cm.	Total Gallons of water added	2
Drill Site Geologist C Kense	m	Date 5.7.87	
Date/Time/Personnel Internal Mortar Gem	ent Pad, and W	ep Hole Installed Can Can	17.70 MADOL
Date Frac/Personnel Casing Painted QL	-17-37	0830 PJ3 JA	W 328
Date ²⁷⁷ Personnel Numbers Painted <u>*</u>	3739 S	THE TRANSPORT	
Materials used 13 Page Calictees	te 120	11 TIN (CILITY)	0945 Pik DW
Top of Protective Casing to Top of PVC		COMN	HINT/NOTES
Top of Protective Casing to Weep Hole	O. (3 11.	em.	and the companies of th
Top of Protective Castog to Internal Mortar	<u>0.77 II.</u>	· · · · · · · · · · · · · · · · · · ·	appropriate the same of the sa
Top of Protective Casing to Top of Cement Pad	117211		a mark to secret
Top of Protective Casing to Ground Lyvel	2.70 In		d A Minimum drive contract of the contract of
Reviewed By		(m	C-60

C-61

Borehole: E/53D1 Well: 23221 **Well Completion** Description 2.0 Gound Level 4.05 jt. ぅ 10 14.11 5t. 15 Zoic central 20 34.19 St. 25 30 34, 25 . 1. TOP OF BENTONITE 343. 35 B" Steel caming - HI TOP OF SALD HELD IN 40 45 50 Total Denth 49" A) NOTE THIS I SEED STORE INC where the secret profine removes Standard & Sty was all man Remain of Park Court Che Drill Site Geologist: A BOUSON Date: 5. 237
Reviewed By: J. C. Date: 9. 5. 1.1

# ESE ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. 7332 SOUTH ALTON WAY • SUITE H-1 ENGLEWOOD, COLORADO 80112 • 303/741-0639

	1		17
SHEET		OF	14

		Bore EPS	3-21	Well 2322/		
Project RMA	ON-POST	,		Project Number	TASK 44	
Date(s) Developed	06/26	/87	<del></del>	Date Installed	05/07/87	7
Personnel (Name/Cor	mpany)	JB ESE	<del>''</del>	Well Diameter (I.D.)		4 10
1 ar souther framework		WIESE		Anulus Diameter	1/20 in. (	2 ft. to 41 ft.
Rig Used_ ESE	WELLSER	HE TRUCK	<del></del>	Midda Diamolai		// Rt. to 47 St.
Pump (Type/Capacit			·	Screen Interval	4/3	3 At. to 47 ft.
Bailer (Type/Capacity	,		<del></del>	OCIDON HINDIAN	4.5	
Water Source	KAIN			Casing Height (Above		/·7 6
Measured Well Dept		(Initial) 49	20st	Bottom of Screen (Be		-19 Ft
moustion well popu		(	87 6	ed) neeroc 10 monod	10W G.L.)	
Water Level TOC/Da	te/Time (Initi	(1 11111)	- y-	26-87/0856		
Water Devel 100/Da	•	24 hrs.) 36,		8-47 / 1145	سينات سيطبينين سا	
Feet of Water in Well			4			
Drilling Fluid Lost _						sing/anulus volume 
Purge Water Lost	1.	-	allons	One Purge Volume _		
Added Water Lost		•	gallons	Minimum Purge Vol	• -	
Casing/Anulus Volum		3-0	gallons	Total Purge Volume		
Casing/Andida Apini	π.θ	<u></u>	gallons	Volume Measured B		
Ct-1/1		ECKMAN	2-1	Surge Technique	ENISE & Cam	-AC LIDAL
Calibration: pH Me	_		,		1002	0113
pH 7.00	· ·			C, pH 10.00 =	a.	24.3
	ctance Meter					C
Standa	rd /for	umhos/cm	ı at 25",	Reading	umhos/cm a	nt <u>75°</u> .0
Purge Volume	Time	Temp. •C	pН	Conductance at 25°C		Characteristics
Initial O	0915	19.9	12.10	4650	clouds, 5	mur or east. f
15	1030	22.8	12.29	3280		esta algora
	1/33 -	- well de	witere.	I in 3 % walla	·s ~.	
Finel				ixw		
Remarks: MITIAL ZANDPACK VOL ULI Seuvo tered	114E = 7.8	521x 6.74 =	5.71	12(. + 7,33 agl. =	14.04 .1s.	= 1 Phone volum
Sandjack =	42.3		Checked	1 V 10	Signature	C-62

		Bore EP 531	2/ v	Vell 2322/	
Project RMA	ON	P05+		Project Number	T-44
Date(s) Developed		/87		Date Installed 05-0	27-87
Personnel (Name/Com	pany) 7/4	WIESE.		Well Diameter (I.D.)	
	7>7	BYESE			75 in. D ft. to 4/_ft.
Rig Used ESE up	1/service	TRuck	· ·	_2	7361n. 4/ R. to 22 N.
Pump (Type/Capacity)	<i>X</i>	IA .	<u></u>	Screen Interval	23.3 A. to 22_11.
Bailer (Type/Capacity)		<u>'X. 2' </u>			
Water Source	MH	18.		Casing Height (Above G	4/9
Measured Well Depth	TOC	(Initial) <u>49.20</u>	<u>2</u> _ft.	Bottom of Screen (Below	(G.L.)
Water Level TOC/Date	o/Time (Initia	(Finel) 56.5	<u> </u>	-26-87 0856	( 644 07-06-87 0747
	(after	24 hrs.) 🚅	55		1145
Feet of Water in Well	12.76			ons/foot - 8.33	gailons casing/anulus volume
Drilling Fluid Lost _	2/14		ailons	One Purge Volume	14.04 gallons
Purge Water Lost	N/A	,	allons	Minimum Purge Volum	
Added Water	9 2		allons	Total Purge Volume	gallons
Casing/Anulus Volum	10 <u>8. 3</u>	28	allons	Volume Measured By	594/ Bucket
		Reguest	Фи	Surge Technique	38.1.25
Calibration: pH Me					7.03 at 23.6 °C
pH 7.00	-			of htt 10:00	274
· Standa	tance Meter	0000.		Reading 1002	umhos/cm at 25° C
Standa	ru <u> </u>	umnos/cm	18145	Vegging	
Purge Volume	Time	Temp. °C	рН	Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)
Initial 19	0701	12.4	12.01	4210:	vem stightly closedy, some
35	0.758	13.5	12.71	5230	cloud, sand of grown present
40	1050	14.6	12.63	5570	very cloudy w/ bustonile on
41	7405	140	12.67	5400	Stolety classes 3mg w sit.
76.	1409.	72.30	-12:74-	5:410	- Thouse we are sist grown
Pinal		Ja	vertired.		
	-YV				
Remarks: (0.2)	T- SAND	Cack X	852 =	5.717 8.33 = 1	14. Cel CASINO MARIUS
HNU & well he	mar = 12.0	· 10ph Taltidle	1100	Il deliment in strains	1 Jane.
_		"	Collecte	dby	VET 37:36.07
ecitionthi @ 1220	SM1 : 6353			(6)	Signature C-63/ - Sate
Time GARE BLIC			Checke	1 by	
4 000 - 495 0 3262	•				

oject	07/07/8 pany) 25 pany 55 pany 56 M/A 3.6 RMA	7 3 /65E 3 -mm 3 × 2'	<u>&gt;-/-</u>	Project Number Date Installed Well Diameter (I.D.) Anulus Diameter  Screen Interval  Casing Height (Above Casing Height (Above Casing Height (Below))	
Vater Level TOC/Date		(Final)		•/	(37.13/2-7-87/074)
Teet of Water in Well Orilling Fluid Lost Purge Water Lost Added Water Casing/Anulus Volum	12.76	7/A 8 1/A 8 3 3.33	allons salions salions salions	Ions/foot = A32 One Purge Volume Minimum Purge Volume Total Purge Volume Volume Measured By Surge Technique	ne 7a2 gallons /74 gallons
pH 7.00		Used:	7.3 . 5 DIG 17.	C, pH 10.00 =	umhos/cm at
initial 46	5721	12.6	12.83	505 <u>0</u>	Mostly clay - Some 1 settle and of The
58	0.731	12.7.	12.91	5480	clary, gray bourouse, growt
				• .	
Pinal	:				
			Collecti	ed by And I	51gnature (2, 12-64 Da

oject _	Rug	ON POS		191 A	1 10 001 110 001	<u> </u>
ite(s) De	veloped		09-87		Date Installed	05-07-87
rsonnel	(Name/Comp	any)	Prm / EZE		Well Diameter (I.D.)	4in.
			TB /ESE	<del></del>	Anulus Diameter 4	1 n
g Used_			ence True	<del>/c</del> ·	· <u>7</u>	n. 47 1. to 77 1.
	pe/Capacity)_	3. 35 X			Screen Interval	22 H. to 3 L. H.
	pe/Capacity)	MA			Cooley Halahi (Abaya C	
ater Sou	Well Depth 1		(Initial) 49.2	0 11	Casing Height (Above G. Bottom of Screen (Below	
00000100	A Agit Dabiti		(Finel)			• • • •
ater Lev	vel TOC/Date	Time (Initia		1 /a-2	6-87/0156 (30.	44/07-06-87/0747)
		(after	24 hrs.) 36.6	412418	سند و و و و و و و و و و و و و و و و و و و	
eet of W	ater in Well_	12-76	_ft. x	<u> </u>	ons/foot = P. 33 ·	gallons çasing/anulus volume
rilling F	luid Lost	N/A	8	ailons	One Purge Volume	/4. 64 gallons
_	iter Lost			allons	Minimum Purge Volum	1 - 1
	ater	φ_	4 14	allons	Total Purge Volume 🔔	174. gallons
esing/A	nulus Volum	·	133	alions	Volume Measured By	5 anci on Buchet
			BECKMON	421	Surge Technique ダ	AIL ING
		•				
Jalidrati:	on: pH Mete					7,9 - 17,4 00
Jaiidrati:	pH 7.00	7.0	3_at/	7./	C, pH 10.00 =	0.69 et 17.4 °C
Jaiidrati:	pH 7.00 Conduct	ance Meter	3 at	7./ MS DI	C, pH 10.00 =	.43
Jaii Drati	pH 7.00	ance Meter	3 at	7./ MS DI	C. pH 10.00 = GITAL SN: 142	
	pH 7.00 Conduct	ance Meter	3 at	7./ MS DI	C, pH 10.00 =	.43
	pH 7.00 Conduct Standar	ence Meter	3 st / Used: umhos/cm	7./ •( MS )/ at 25°,	C. pH 10.00 =	
Purg	pH 7.00 Conduct Stendar se Volume	nce Meter 1408	3 st / Used: umhos/cm Temp. *C	7./ •( M S ) / et 25°,	C, pH 10.00 =	umhos/cm atC  Physical Characteristics (clarity, orior, send content, color)
Purg	pH 7.00 Conduct Stendard Be Volume	7.0° 1408 Time	3 st / Used: umhos/cm Temp. °C	7./ •( MS )/ et 25°, pH	C, pH 10.00 =	physical Characteristics (clarity, order, and content, color)  [Mostly clear  [Cloudy w/ a may, dissires
Purg	pH 7.00 Conduct Stendard Be Volume	7.0° 1408 Time	3 st / Used: umhos/cm Temp. °C	7./ •( MS )/ et 25°, pH	C, pH 10.00 =	physical Characteristics (clarity, order, and content, color)  [Mostly clear  [Cloudy w/ a may, dissires
Purg	pH 7.00 Conduct Stendard Be Volume	7.0° 1408 Time	3 st / Used: umhos/cm Temp. °C	7./ •( MS )/ et 25°, pH	C, pH 10.00 =	whosemet
Purg	pH 7.00 Conduct Stendard Be Volume	7.0° 1408 Time	3 st / Used: umhos/cm Temp. °C	7./ •( MS )/ et 25°, pH	C. pH 10.00 =	whosemetC  Physical Characteristics felarity, order, and content, colors  [mostly clean  Cloud, w/ a ma, december
Purg	pH 7.00 Conduct Stendard Be Volume	7.0° 1408 Time	3 st / Used: umhos/cm Temp. °C	7./ •( MS )/ et 25°, pH	C, pH 10.00 =	whosemetC  Physical Characteristics felarity, order, and content, colors  [mostly clean  Cloud, w/ a ma, december
Purg	pH 7.00 Conduct Stendard Be Volume	7.0° 1408 Time	3 st / Used: umhos/cm Temp. °C	7./ •( MS )/ et 25°, pH	C. pH 10.00 =	Physical Characteristics (clarity, order, and content, color)  [Mostly Clear  [Cloud, w/ a.ma, description
Purg Initial Final	pH 7.00 Conduct Stendard Stendard For Sy 17/	Time  7.0  Time  7759  0709	3 st / Used: umhos/cm Temp. °C	7./ •( MS )/ et 25°, pH 12-74 12.86	C. pH 10.00 =	umhos/cm at

o(s) Developed connel (Name/Comp	بنيسس رزيب	LW /ESE		Well Diameter (I.D.)	//2 in 0 n in 4/ n
Used ESE		BW/ESE IKETRIKK	<del></del> .	Anulus Diameter	72 in. 41 r to 47 r.
Used FSE np (Type/Capacity)	NA			Screen Interval	433 n. to 44 n.
ler (Type/Capacity).	3.85 X	2'			
IN SOUTH	rm A	1.4.		Casing Height (Above (	
esured Well Depth	roc	(Initial) 452	<u>lo_f</u> 1.	Bottom of Screen (Belo	w G.L.) 49
And I coul moomake	Minor (Intellation	(Pinel)	/06-20-B	1856 (.26.44/7-6	.87/0747)
ter Level TOC/Date	•	24 hrs.) 24.6	,		
et of Water in Well_	12.76	_ , ,,,,,,,	es3 gall		gallons casing/anulus volum
illing Fluid Lost	NIA		ellons	One Purge Volume	14.0 Z gallon
rge Water Lost	NA		allons	Minimum Purge Volu	me 70.7 gallon
Ided Water	Ø		allons	Total Purge Volume	17W gallon
sing/Anulus Volum	•	.37	allons	Volume Measured By	
<b>▼</b>					744456
libration: pH Met pH 7.00 Conduc	er Used:   204  tence Meter  d	Used:C	17 . 45 A6	Surge Technique	BAILING  10.12 at 152 a
libration: pH Met pH 7.00 Conduc	tence Meter	at <i>}4</i> Used:C#	17 . 45 A6	SN: 015353 C, pH 10.00 =	10.12 1 152
pH Met pH 7.00 Conduc Standar	tence Meter	Used:	17 hus >6	SN: 015353 C, pH 10:00 =	/0./2 st /52 •  umhos/cm at 25 •  Physical Characteristics
pH 7.00 Conductor Standar Purge Volume	tence Meter Juos	umhos/cm Temp. •C	17.75	SN: 015353  C, pH 10.00 =	Physical Characteristics (clarity, order, send content, color)  MOSTLY Clerk  Closon Warry dissilved
pH 7.00 PH 7.00 Conduc Standar	tence Meter d 1408	umhos/cm	(7	SN: 015353  C, pH 10.00 =	Physical Characteristics (clarity, order, aand content, color)  MOSTLY Clerk  Closery Warry dissibled beautenite & Formation s
pH 7.00 Conductor Standar Purge Volume	tence Meter Juos	umhos/cm Temp. •C	17.75	SN: 015353  C, pH 10.00 =	Physical Characteristics (clarity, order, sand content, color)  MOSTLY Clears  Closery Warry dissibled beautionite & Formation
libration: pH Met pH 7.00 Conduc Standar Purge Volume	tence Meter Juos	umhos/cm Temp. •C	17.75	SN: 015353  C, pH 10.00 =	Physical Characteristics (clarity, order, sand content, color)  MOSTLY Clears  Closery Warry dissibled beautionite & Formation
pH 7.00 Conductor Standar Purge Volume	tence Meter Juos	umhos/cm Temp. •C	17.75	SN: 015353  C, pH 10.00 =	Physical Characteristics (clarity, order, sand content, color)  MOSTLY Clears  Closery Warry dissibled beautionite & Formation
pH 7.00 Conductor Standar Purge Volume	tence Meter Juos	umhos/cm Temp. •C	17.75	SN: 015353  C, pH 10.00 =	Physical Characteristics (clarity, order, sand content, color)  MOSTLY Clears  Closery Warry dissibled beautionite & Formation
Purge Volume Initial 7/ 84	7.04 Itance Meter 1408 Time 0904 0914	umhos/cm Temp. °C	pH 17.75	SN: 015353  C, pH 10.00 =	Physical Characteristics (clarity, order, sand content, color)  MOSTLY Clears  Closery Warry dissibled beautionite & Formation
Pinel  Pinel  Pinel  Pinel  Pinel  Pinel  Pinel  Pinel	7.04 tence Meter 1408 Time 0904 0914	umhos/cm Temp. •C	pH 17.75	SN: 015353  C, pH 10.00 =	Physical Characteristics (clarity, order, sand content, color)  MOSTLY Clears  Closery Warry dissibled beautionite & Formation

	ISI WE	Il seru	CE TRUCK		. 2	2 in. 41 R to 49 R
	e/Capacity)_	U/A			Screen Interval	43.1A. to 49.A
	e/Capacity)_	3.45 x	<u>'Z'</u>	<del></del>	·	1.
r Sou aured	Well Depth 7		(Initial) 45.2	Dft.	Casing Height (Above G. Bottom of Screen (Below	
	······· Dop		(Final)			
er Lev	el TOC/Date	· ·			<u>-26-27) (36</u>	145 0 / 780-4 44.
P 441		/	24 hrs.)	663 gall		gallons casing/anulus volum
	iter in Well_ luid Lost			ilons	One Purge Volume	
_	ter Lost			illons	Minimum Purge Volum	In an In
_	ator	6		illons	Total Purge Volume _	176 gallos
ing/Ai	nulus Volum	9,3	<u>}</u>	alions	Volume Measured By _	SMAL BUCKET
		#.		1- "	Surge Technique	BAILIUM
( <b>banes</b> ) -						. 1 ( mm/s & " \
IOTALIC	on: pH Met	or Used! Q!		(Becky		
ior <b>a</b> tic	pH 7.00	<u> +.03</u>	عــــر اهـــــ	20.4 .	C, pH 10.00 =	07 11 20.4 ·
iof <b>a</b> tic	pH 7.00 Conduc	= <u>+.03</u> lence Meter	Used: # 14	20.4 ·	C, pH 10.00 = _10.	07 11 20.4 (
ioralic	pH 7.00	= <u>+.03</u> lence Meter	Used: # 14 a	20.4 ·	C, pH 10.00 =	07 11 20.4 (
	pH 7.00 Conduc	= <u>+.03</u> lence Meter	Used: # 14	20.4 ·	C, pH 10.00 = _10.	07 11 20.4 (
	pH 7.00 Conduc Standar		Used: #\4	20.4 274 ( at 25°,	C. pH 10.00 = 10: • C.V. 5   DIGITAL Reading 1408	umhos/cm at
Purg	pH 7.00 Conduc • Standar • Volume	tence Meter d 1408	Used: # \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	20.4 • 274 ( at 25°,	C, pH 10.00 = 10.00 C PIGHTHL  Reading 1408  Conductance at 25°C	umhos/cm at 25  Physical Characteristics (clarity, odor, sand content, color
Purg	pH 7.00 Conduc • Standar • Volume	Time	Used: # 14 sumhos/cm Temp. °C	20.4 • (2.44 ( pH )	C, pH 10.00 = 10.00	physical Characteristics (clarity, odor, and content, color)
Purg	pH 7.00 Conduc • Standar • Volume	Time	Used: # 14 sumhos/cm Temp. °C	20.4 • (2.44 ( pH )	C, pH 10.00 = 10.00   • CW15	physical Characteristics (clarity, odor, and content, color)
Purg	pH 7.00 Conduc • Standar • Volume	Time	Used: # 14 sumhos/cm Temp. °C	20.4 • (2.44 ( pH )	C, pH 10.00 = 10.00   • CW15 DIGHTML Reading 1408  Conductance at 25°C  7380  8070	physical Characteristics (clarity, odor, and content, color)
Purg	pH 7.00 Conduc • Standar • Volume	Time	Used: # 14 sumhos/cm Temp. °C	20.4 • (2.44 ( pH )	C, pH 10.00 = 10.00   • CW15 DIGHTML Reading 1408  Conductance at 25°C  7380  8070	physical Characteristics (clarity, odor, and content, color)
Purg	pH 7.00 Conduc • Standar • Volume	Time	Used: # 14 sumhos/cm Temp. °C	20.4 • (2.44 ( pH )	C. pH 10.00 = 10.00	physical Characteristics (clarity, odor, and content, color)
Purg	pH 7.00 Conduc • Standar • Volume 84 962	Time 0337	Used: # 14 5 umhos/cm Temp. °C	20.4 (at 25°. pH 12.66 12.7/	C, pH 10.00 = 10.00	umhos/cm at 25  Physical Characteristics (clarity, odor, and content, color)  Clear—  Cloudy Jan disrefued in a framedia Sand.
Purg	pH 7.00 Conduc • Standar • Volume 84 96±	Time 0337	Used: # 14 5 umhos/cm Temp. °C	20.4 (at 25°. pH 12.66 12.7/	C, pH 10.00 = 10.00	umhos/cm at 25  Physical Characteristics (clarity, odor, and content, color)  Clear—  Cloudy Jan disrefued in a framedia Sand.

<u>(4)</u>

o(s) Developed connel (Name/Comp		DLY /ESE		Well Diameter (I.D.) Anulus Diameter	321n. O.121	9_1n.
Used ESE	WELL SE	AUCUE. TRU	ver.	2.	23 n. 44 n. t	o 49 n.
np (Type/Capacity)_ ler (Type/Capacity)_	3.85.	× 2.0		Screen Interval	7 <u>33_</u> R.1	
ter Source	RMA			Casing Height (Above G.	L)/	7 · A.
esured Well Depth 7	roc (	Initial) 452	<u>o 11.</u>	Bottom of Screen (Below	214	<u> </u>
		(Final)		losse (36.44/76-87/o	/ leve	
iter Level TOC/Date		14 hrs.) 36.6		1/87 1H5	(747)	
et of Water in Well_	12.76		4.	Iona/foot = 8.33	gailons casing/ar	ulus volume
illing Fluid Last	·1/A		illons	One Purge Volume	14.02	gallons
rge Water Lost	N/A		allons	Minimum Purge Volum	70.72	galloni
ided Water	<u> </u>	75	allons	Total Purge Volume _	176	gallon
ising/Anulus Volume	•	8	allons	Volume Measured By _	SAILING BU	- KR /
inti Di Primima a Armiti.				O		
dibration: pH Mete pH 7.00	tance Meter		5 DIG.	MAC : 3N: 14243	.00 st 2	25
alibration: pH Mete pH 7.00 Conduct	tance Meter	7.00 t Dugg	5 DIG.	SN: 0(5883 C, pH 10.00 = <u>10</u> THE SN: (4243	umhoe/cm at	25 •(
ulibration: pH Mete pH 7.00 Conduct Standar	tence Meter	7.50 st Duz. Used:umhos/cm F Temp. °C	5 Die,	C. pH 10.00 = 10 THL SN: 142 43 Reading 100 2	umhoe/cm et _	25 •(
ulibration: pH Mete pH 7.00 Conduct Standar	tance Meter d (000	Used:umhos/cm	227 c Die, 1 at 25°,	C, pH 10.00 = 10 THL SN: 142 43 Reading 100 2 Conductance at 25°C	umhoe/cm et	25 equatoristics content, color)
ulibration: pH Mete pH 7.00 Conduct Standar Purge Volume	Time	7.00 at Duzz Used:umhos/cm F Temp. °C	pH . 12.47	SA: 0(5 883 C. pH 10.00 = 10 THL SA: 142 43 Reading 100 2 Conductance at 25°C	Physical Chargelerity, odor, send clear	25 equatoristics content, color)
ulibration: pH Mete pH 7.00 Conduct Standar Purge Volume	Time	7.00 st Duzzs Used: CAA umhos/cm F Temp. °C  /3.4 /2.8	pH .12.47 .12.73	C, pH 10.00 =	Physical Chargelerity, odor, send clear	25 equatoristics content, color)
ulibration: pH Mete pH 7.00 Conduct Standar Purge Volume	Time	7.00 at Duzz Used:umhos/cm F Temp. °C	pH .12.47	C, pH 10.00 =	Physical Chargelerity, odor, send clear	25 equatoristics content, color)
ulibration: pH Mete pH 7.00 Conduct Standar Purge Volume	Time	7.00 st Duzzs Used: CAA umhos/cm F Temp. °C  /3.4 /2.8	pH .12.47 .12.73	C, pH 10.00 =	Physical Chargelerity, odor, send clear	25 equatoristics content, color)
Purge Volume initial 96 1	Time 1050	7.00 at Diggs Used: CAI umhos/cm Temp. °C  (3.4/ /2.8	pH  12.47  12.73	C, pH 10.00 =	Physical Chargelerity, odor, send clear	25 electoristics content, color)
Purge Volume initial 96 1	Time 1050	7.00 at Diggs Used: CAI umhos/cm Temp. °C  (3.4/ /2.8	PH .12.47 .12.73	C, pH 10.00 =	Physical Chargelerity, odor, send clear	25 electoristics content, color)

14. 1. jan		Bore Er.5	3 D/	Well 2322/	*
	א נגט א	ST			tasn 44
		4/87			5/7/87
Date(s) Developed		Dew/a	E/E	Date Installed	
Personnel (Name/Co	mpany)		- 1 <del>4</del>	Well Diameter (I.D.)	
		NOW /A		Anulus Diameter _	-17
Rig UsedESE	31			-	
Pump (Type/Capacil	7	× 2.0'		Screen Interval	43.3 11.10 49 11.
Bailer (Type/Capacit	*	× 2.0			ft. toft.
Water Source		110	20.	Casing Height (Above C	,
Measured Well Dept	h TOC	•	eo_ft.	Bottom of Screen (Belo	w G.L.)ft.
		(Final)	44 /6-26.	00/000	
Water Level TOC/Da	•	18)			
		<u>عالم</u>	. 4.0		
Feet of Water in Wei					gallons casing/anulus volume
Drilling Fluid Lost .	.171	-	gallons	One Purge Volume	_
Purge Water Lost	N/A	<b>_</b>	gallons	Minimum Purge Volun	
Added Water		<b>~</b> • •	gallons	Total Purge Volume _	
Casing/Anulus Volu	me	677	gallons	Volume Measured By .	
		_		Surge Technique	3416126
Calibration: pH M				5N1 01883	
pH 7.0	0 - 700			O' NIT TO'OO	0.01 at 25.0 ·C
Condu	ctance Meter	Used:	1605 DIGI		14243
Stand	ard <u>1900</u>	umhos/cm	at 25°,	Reading 1000	_umhos/cm at°C
<del>_</del>	+		<del></del>		
Purge Volume	Time	Temp. °C	pH	Conductance at 25°C	Physical Characteristics (clarify, odor, sand content, color)
	+				(Cigrity, odor, said content, Color)
initial /08	0306	/3.3	12.40	4370	clear.
	1		-		cloude we dissolved
120	0322	13-0	12.52	5590	herrogenite? silt
		<del></del>			
	1				
	-				1
	, ,	-	<b></b>		
				Again samus spirite from the first state of the state of	
Firm	<del></del>				sew
<u></u>			11	The second secon	1 2/000
	11 11 11	- /// /		1 1 1	
Romarks:	THE HAR	e well head	a /2.3	200 7.24/37 07	145
untered	m 12:0	Andres.	······································	7/24/87 07	
				1. 1	/
1 Pura Val = 0	71 Sand Pa	de vol.	Collected	thy willer	LE NE C
111111111111111111111111111111111111111	.73 Casom /A	الغل سبات			ingnature - // Cath
			Checked	by	C-69
Puna Vol = 5	معمارات ١٠٥٤			•	granutu =

Date Installed Well Diameter (I.D.) Anulus Diameter Screen Interval Casing Height (Above	1/3 in. Ust. to 4/1 st.  73 in. 4/1 st. to 4/2 st.  4/3 st. to 4/3 st.  - st. to - st.
Well Diameter (I.D.) Anulus Diameter Screen Interval Casing Height (Above	//3 in. Ust. to 4/1 st. 73 in. 4/1 st. to 4/1 st. 4/3 st. to 4/7 st. 4/3 st. to 4/7 st.
Anulus Diameter  Screen Interval  Casing Height (Above	1/3 in. Ust. to 4/1 st. 7% in. 4/1 st. to 4/9 st. 4/3 st. to 4/9 st.
Screen Interval Casing Height (Above	73 in. 41 st. to 49 st. 43 st. to 49 st.
Casing Height (Abovo	433 ft. to 49 ft.
Casing Height (Abovo	_
Casing Height (Above	ft. toft.
Casing Height (Above	
n	G.L.)ft.
Rottom of Screen (Reig	ow G.L.) 49ft.
an/ = = =	
87/ 0856	
	gallons casing/anulus volume
<del>-</del>	
<del>-</del>	
<del>-</del>	3
_	
C. pH 10.00 = <u>/ い</u> ル S ルト・サーア。 Reading <u>/ ひ</u> る子	umhos/cm at
·	
Conductance at 25°C	Physical Characteristics
Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)
	Physical Characteristics (clarity, odor, sand content, color)  Class.  Clouds, of distributed sand, sild a some first.
4750	clarity, addr. sand content, color)
4750	clarity, addr. sand content, color)
4750	clarity, addr. sand content, color)
4750	clarity, addr. sand content, color)
4750	clarity, addr. sand content, color)
	In ST

Project Rud  Date(s) Developed  Personnel (Name/Comp	7/	Bore_ <i>BP</i> % [***] 28/87	<del></del>	Project Number	TASIC 44 DU
Personnel (Name/Comp		28/87			
Rig Used	anv)			Date Installed	5/7/39 37
	·		<u> </u>	Well Diameter (I.D.)	1/4
		PJB /FSE		Anulus Diameter	117 in. 0 11.10 41
		seeved The	ur		7 in. 41 st. to 49
'ump (Type/Capacity)_	70/			Screen Interval	43.3 11.10 49
lailer (Typu/Capacity)_	3.35	2.4 '			ft. to
Vater Source	RMA			Casing Height (Above	(G.L.)
Aeasured Well Depth T	COC	(Initial) 45	20 [t.	Bottom of Screen (Bel	ow G.L.)49
			ft.	/	
Vater Level TOC/Date/			•	-/	
	(after	r 24 hrs.) 36.6	9/24/	92 1145	
'eet of Water in Well	12,76	ft.×	.657 ga	illons/foot = <u>8.33</u>	gallons casing/anulus volu
Orilling Fluid Lost	N/A	<del></del>	gallons	One Purge Volume	
Purge Water Lost	N/A			Minimum Purge Volu	me 70.2 gallo
Added Water	$-\frac{\mathcal{D}}{\mathcal{C}}$	73	g <b>a</b> llon <b>s</b>		
asing/Anulus Volume		33	gallons	•	5 GALLAN BROKET
Calibration: pH Meter		7.0 Lm.	4	Surge Technique	BAILING
andration: DH Meler	· Used:	13	4 21	24; 012983	
pH 7.00 =	nce Meter	at24 Used:^#	us 2000	7746	umhos/cm at2
pH 7.00 = Conducta	nce Meter	at24 Used:^4	us 2000	7746	umhos/cm at2
pH 7.00 = Conducta Standard Purge Volume	7.00 Ince Meter /00	Used:^4 Used:^4	us 25°,	Reading /000	umhos/cm at
pH 7.00 = Conducta Standard  Purge Volume  Initial / 5/	7.00	Used:	n at 25°,	Reading /000 Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color
pH 7.00 = Conducta Standard  Purge Volume  Initial /3/	Time	Used:24 Used:	pH /2-62	Reading /000 Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color clear- cloud, wy distance are particular of the color candidate of the candidate
pH 7.00 = Conducta Standard  Purge Volume	Time	Used:24 Used:	pH /2-62	Reading /000 Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color clear-
pH 7.00 = Conducta Standard  Purge Volume	Time	Used:24 Used:	pH /2-62	Reading /000 Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color clear- cloud, wy distance are particular of the color candidate of the candidate
pH 7.00 = Conducta Standard  Purge Volume  Initial /3/	Time	Used:24 Used:	pH /2-62	Reading /000 Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color clear- cloud, wy distance are particular of the color candidate of the candidate
pH 7.00 = Conducta Standard  Purge Volume  Initial /3/	Time	Used:24 Used:	pH /2-62	Reading /000 Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color clear- cloud, wy distance are particular of the color candidate of the candidate
pH 7.00 = Conducta Standard  Purge Volume  Initial /3/	Time	Used:24 Used:	pH /2-62	Reading /000 Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color clear- cloud, wy distance are particular of the color candidate of the candidate
pH 7.00 = Conducta Standard Purge Volume	7.00	Used:	n at 25°,	Reading /000 Conductance at 25°C	Physical Characteristic (clarity, odor, sand content. c
pH 7.00 = Conducta Standard  Purge Volume  Instal /3/	Time	Used:24 Used:	pH /2-62	Reading /000 Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color clear-  clear-  cloud, wy distainer are inclosing a fine sand content.

		Bore EP	r3 D1	Well 2322/	b
ProjectRu	11 -ON -P			Project Number	TASK 44 DU
Date(s) Developed	8/4/	87		Date Installed	5/7/24 37
Personnel (Name/Cor	/ -	SLW /ESE		Well Diameter (I.D.)	i i di in.
		EP /HLA		Anulus Diameter	11 1 in. 6 ft. to 41 ft.
Rig Used FIE	WELL SAR	HCE TRU	ch		77 in. 4/ ft. to 49 ft.
Pump (Type/Capacity	/\ <u>^</u>	1/4		Screen Interval	43.3 ft. to 49 ft.
Bailer (Type/Capacity	3.85"	x 2.01			ft. toft.
Water Source	12.44			Casing Height (Above	~
Measured Well Depth	TOC	(Initial) 45	zo ft.	Bottom of Screen (Beld	ow G.L.) 49 ft.
		(Final)	fι.	,	•
Water Level TOC/Dat	te/Time (Initi	al) 36.49	1/6-26	-87/0856	
	(after	بطائد ( 24 hrs	6 9.58	1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4.	
Feet of Water in Well	1226	_ft. x	653 ya	llons/foot =	gallons casing/anulus volume
Drilling Fluid Lost _	W/A		gallons		gallons
Purge Water Lost	N/A		gallons	Minimum Purge Volu	me 70.2 gallons
Added Water			gallons	Total Purge Volume	gallons
Casing/Anulus Volum	ne <u>3.3</u>	3	gallons	Volume Measured By	S sallow theres
		_		Surge Technique	134161216
Calibration: pH Me				57; 01283	
pH 7.00	7.01			C. pH 10.00	0.04 at 20.4 °C
	tance Meter	U204.	45 DI61		
Standa	rd / / UOE	umhos/cn	n at 25°,	Reading 1001	_umhos/cm at25•C
Purge Volume	Time	Temp. •C	рН	Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)
initial /53	וורס	12-7	12.53	4110	clear.
165	0722	12-5	12.67	4110	silb some mounts
\		. ~~,			
,					
Finei					
Remarks:	Hyd (1100	· ill	رن = امسید م	d garage	The second section of the section of the second section of the section of
Well dwaren	in in	gallons.		,	!
		زا ا			
i Purge vol = =	171 Sound	park vol.	Collected	thy villa	1 3 4 87
· · · · · · · · · · · · · · · · · · ·	5.71 Small 373 Cuchi	vo(.			bignuturu Date
		1	Checked	by	C-72
.14	enations.				bighaluro

		BOLE -		Well 2322/	
roject	A EN-PO	Bore E/2-5		Project Number7	TASK 44
ate(s) Developed	8/11	187		Date Installed	5/7/87
ersonnel (Name/Com	•	NW /FRE		Well Diameter (I.D.)	<u> </u>
		JB /#SE		Anulus Diameter /	in. Oft. to 4/ ft.
ig Used ESE	UGCL STA	ette Truck	<u> </u>	7	in. 41 ft. to 47 ft.
ump (Type/Capacity	\ \\\/			Screen Interval	43.3 ft. to 47 ft.
ailer (Type/Capacity	355" ×	(2.0'			ft. toft.
ater Source	لمريديم			Casing Height (Above G	(.L.) / /7 / ft.
leasured Well Depth	TOC	(Initial)	Zo It.	Bottom of Screen (Belov	w G.L.) 49. U st.
		(Final) 50.	<u>89</u> .11.	m/- ama	
ator Level TOC/Date	e/Time (initia	al) <u>36.44</u>	10-26-8	2887 1145	
	4 10 4	24 hrs.) 36.	2 a	1 99	
eet of Water in Well_				llons/foot = 3.33	gallons casing/anulus volume
rilling Fluid Lost			gallons	One Purge Volume	
urge Water Lost			gallons	Minimum Purge Volum	J-7 /
dded Water		_	gallons	Total Purge Volume _	
asing/Anulus Volum	ie	<u> </u>	gulions	Volume Measured By _	
alibration: pH Met		360 64 4 A	- A	Surge Technique	SKICINO
alibration: pH Met	or Used:	1700000	<del>Ψ.υ.</del>	<del> </del>	
		7	7 7 .	r	1301 377 M
pH 7.00 Conduc	tance Meter	<u>ಲ</u> at <u>2</u> Used: <u>೭</u>	us 2x01	774 SM: 1/34/	_umhos/cm at _ 25 °C
pH 7.00	tance Meter	<u> 0                                     </u>	us 2x01	TAL SH! 1/34/	
pH 7.00 Conduc Standar Purge Volume	tance Moter	ບ_at _2 Used: umhos/cπ	23.7 ° us 3x00 n at 25°.	Reading /000	umhos/cm at 25 °C
pH 7.00 Conduc Standar Purge Volume	tance Meter d /200 Time	e at 2 Used: umhos/cn Temp. °C	23.7 • • • • • • • • • • • • • • • • • • •	Reading /000  Conductance at 25°C	umhos/cm at 25 °C  Physical Characteristics (clarity, odor, sand content, color)
pH 7.00 Conduc Standar Purge Volume	tance Moter d /400 Time	umhos/cm	23.7 us & & o o n at 25°, pH /2.5°,2	C. pR 10.00 1/34/ Reading /000  Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, cotor)
pH 7.00 Conduc Standar Purge Volume	tance Moter d /400 Time	umhos/cm	23.7 us & & o o n at 25°, pH /2.5°,2	Reading 1000 Conductance at 25°C 3800	umhos/cm at 25 °C  Physical Characteristics (clarity, odor, sand content, control  Clear  Louis w 17 street, 25/10 Freshing See 13:10
pH 7.00 Conduc Standar Purge Volume	tance Moter d /400 Time	umhos/cm	23.7 us & & o o n at 25°, pH /2.5°,2	Reading 1000 Conductance at 25°C 3800	umhos/cm at 25 °C  Physical Characteristics (clarity, odor, sand content, control  Clear  Louis w 17 street, 25/10 Freshing See 13:10
pH 7.00 Conduc Standar Purge Volume	tance Moter d /400 Time	umhos/cm	23.7 us & & o o n at 25°, pH /2.5°,2	Reading 1000 Conductance at 25°C 3800	umhos/cm at 25 °C  Physical Characteristics (clarity, odor, sand content, control  Clear  Louis w 17 street, 25/10 Freshing See 13:10
pH 7.00 Conduc Standar Purge Volume	tance Moter d /400 Time	umhos/cm	23.7 us & & o o n at 25°, pH /2.5°,2	Reading 1000 Conductance at 25°C 3800	umhos/cm at 25 °C  Physical Characteristics (clarity, odor, sand content, control  Clear  Louis w 17 street, 25/10 Freshing See 13:10
pH 7.00 Conduc Standar Purge Volume	tance Moter d /400 Time	umhos/cm	23.7 us & & o o n at 25°, pH /2.5°,2	Reading 1000 Conductance at 25°C 3800	umhos/cm at 25 °C  Physical Characteristics (clarity, odor, sand content, control  Clear  Louis w 17 street, 25/10 Freshing See 13:10
pH 7.00 Conduc Standar  Purge Volume Initial (65	Time 2856 2908	umhos/cm Temp. °C	pH /2.53 /2.73	Reading 1000 Conductance at 25°C 3800 5575	umhos/cm at 25 °C  Physical Characteristics (clarity, odor, sand content, control  Clear  Louis w 17 street, 25/10 Freshing See 13:10
pH 7.00 Conduc Standar  Purge Volume Initial (65	Time 2856 2908	umhos/cm Temp. °C	pH /2.53 /2.73	Reading 1000 Conductance at 25°C 3800 5575	umhos/cm at 25 °C  Physical Characteristics (clarity, odor, sand content, control  Clear  Louis w 17 street, 25/10 Freshing See 13:10
pH 7.00 Conduc Standar  Purge Volume Initial (65	Time 2856 2908	umhos/cm Temp. °C	pH /2.53 /2.73	Reading 1000 Conductance at 25°C 3800 5575	umhos/cm at 25 °C  Physical Characteristics (clarity, odor, sand content, control  Clear  Louis w 17 street, 25/10 Freshing See 13:10
pH 7.00 Conduct Standar  Purge Volume  Initial  (65 Einste 175  Well Thanker	1 20 tance Moter d 100 Time 2856 2908	Used:	pH /2.53 /2.73	Reading 1000 Conductance at 25°C 3800 5575	umhos/cm at 25 °C  Physical Characteristics (clarity, odor, sand content, cotor)  Stear  Louis w 17 structure, sand some stearts, sand sand sand sand sand sand sand sand
pH 7.00 Conduct Standar  Purge Volume  Initial  (65 Einste 175  Well Thanker	1 20 tance Moter d 100 Time 2856 2908	Used:	pH /2.53 /2.73	Reading 1000 Conductance at 25°C 3800 SSTO	umhos/cm at 25 °C  Physical Characteristics (clarity, odor, sand content, conor)  Stear  Llouing W. (This in a section)  Some blockering your section of sand sand sand sand sand sand sand sand
pH 7.00 Conduc Standar  Purge Volume Initial (65	1 20 tance Moter d 100 Time 2856 2908	Used:	13.7 US TXO PH 12.52 12.73	Reading 1000 Conductance at 25°C 3800 Soro	Physical Characteristics (clarity, odor, sand content, conor)  Clear  Cloudy of the same  Some clock gan, rooms  Sand gan, rooms

# WELL CONSTRUCTION SUMMARY

BorsholeEP 53 - D	<u> </u>	W	/ell <u>FP 2</u>	32.22	
Project Name and Location	RMA			roject Number <u> </u>	
Drilling Company Boyles	Bros.	Driller R	Roach	Rig Number	<del>د کیرون د نیان د د</del>
Drilling Method(s) Rot	314				
Borehole Diameter 17 1/2"	ncm.	D_	_ftcm. to	<u>40' ft</u>	
111/2	ncm.	40	_ftcm. to		cm.
				70.3	
Size(s) and types of Bit(s) 17	1/2", 77/5	3″	Sampling Method(s)		
hade hits			Date/Time Start Dril		<u>87</u>
Size and Type PVC 4" 4	checlule 40	············			187
Total Borehole Depth	70.3 ft.		Date/Time Start Con	npletion 9:30 5/15	187
Depth to Bedrock	37.ft	cm.	Date/Time Cement I	Protective Casing 12100	515/8.
Depth to Water	ft	cm.	Materials Used		
Water Level Determined By			Plain PVC _6 X	0', 175'	
Length Plain PVC (total)		cm.	Slotted PVC 1x(	<u>o'</u>	<del> </del>
ength of Screen	بمبتله.	cm.	Bentonite Pellets	1.5 buckets	
Total Length of Well Casing	71.71.	cm.	Bentonite Granular	1.2 hags	
PVC Stick Up	14 ft	cm.	Coment 12	beigs	المنعوبات مستنات
Depth to Bottom of Screen	70.3 st.	cm.	Sand a	bags	
Depth to Top of Screen	<u> </u>	cm.	Water added during	g completion work	•
Depth to Top of Sand	57.611.	cm.	Water added during	g drilling <u>neme</u>	
Depth to Top of Bentonite	52.6 ft.	cm.	Total Gallons of wa	iter added	
				,	
Drill Site Geologist	VI. Wallen			187	
				7/25/87 -84	
Date/Time/Personnel Into	ernal Mortar, Ceme	ent Pad, and V	Veep Hole Installed	76-1380 7800 7:3	<u>. ~ 1e</u>
Date/Time/Personnel Cas	ing Painted	2147	the second of the second	· · · · · · · · · · · · · · · · · · ·	
Date/Time/Personnel Nu	mbers Painted 🗀	4177		·	
Materials Used 18 895 0	wick-chole 30	// Lown Edg	ind 12 Bu Timent	1 Barrier Stair	-
Top of Protective Casing to	Top of PVC	11.	cm.	COMMENT/NOTES	;
Top of Protective Casing to	Weep Hole	14 11.	cm.		<del></del>
Top of Protective Casing to I	Internal Mortar	1.10 n.	cm.		
Cop of Protective Casing to	Top ofCement Pad	felly st.	cm.		
* Top of Protective Casing to	Ground Lavel	ft.	cn1,		
Reviewed B	y <u>, , , , , , , , , , , , , , , , , , ,</u>			Dato	
Drill Site Ge	ologist			C~~	74

語に配合語の関係の表示であるという

PAGE 2 OF 2

Borehole: EP 53 D2

Well: 23222

Depth-Feet	Sail/Rack Typu	Well Completion	Description
		.85 joint Gound Level	
0 5 10 15 30 33 40 45 50 55 10 65 70 75		- joint 9.28 - joint 39.25  joint 49.61	12" 0-40' Steel casing 8" 0-50 steel casing 4" PVC 0-70.3  Top of Bentonite 52.6  Top of Sand 57.6  Top of screen 59.6

Date: _____

C-75

3.85 CMA TOC Define (Initial alter 34.24 NA NA 5	(Initial) _70 (Pinal)	5. P3 / 9 - gail gallons gallons gallons	Screen interval  Casing Height (Above G. Bottom of Screen (Below 5/07-06-87)  S-27/1135  Jons/foot = 2.2.36  One Purge Volume  Minimum Purge Volume  Total Purge Volume  Volume Messured By	gallons casing/anulus volt
3.85  MA  TOC  Frime (Initial (after 34/.24/	(Initial) _70 (Pinal)	fi.  5.76/1/0  5.73/9-2  6.53 gail  callons  callons  callons	Casing Height (Above G. Bottom of Screen (Below 5/07-06-87)  5/07-06-87  S-27/135  Ions/foot = 2.2.36  One Purge Volume Minimum Purge Volume Total Purge Volume Volume Measured By Surge Technique B	gallons casing/anulus volta 32.92 gal  a 164.6 gal  s gallon bucket
TOC  TIME (Initial (after 34/.24/	(Pinel)	fi.  5.76/1/0  5.73/9-2  6.53 gail  callons  callons  callons	Bottom of Screen (Below 5/07-06-87  S-27 / //35  Cons/foot = 2-2.36  One Purge Volume  Minimum Purge Volume  Total Purge Volume  Volume Measured By  Surge Technique	gallons casing/anulus volta 32.92 gai  a 164.6 gai  5 gallon bucks 4
e/Time (initial (after 34.24 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 / 1.4 /	(Pinel)	fi.  5.76/1/0  5.73/9-2  6.53 gail  callons  callons  callons	5/07-06-87  S-27 /135  Ions/foot = 2.2.36  One Purge Volume  Minimum Purge Volume  Total Purge Volume  Volume Measured By  Surge Technique	gallons casing/anulus volt 32.92 gal a 164.6 gal gal s gallon bucker
(after 34/.24/.24/.24/.24/.24/.24/.24/.24/.24/.2	24 hrs.) 3.  24 hrs.) 3.  ft. x 0.  2. 36  Beckman	5. P3 / 9 - gail gallons gallons gallons	ions/foot = 2.2.36 One Purge Volume Minimum Purge Volume Total Purge Volume Volume Measured By Surge Technique	32.92 gal • 164.6 gal gal 5 gallan bucke +
34.24 N/A N/A 5 10 2 10 2 10 2 10 2 3	St. x O.	sallons sallons sallons sallons sallons sallons	One Purge Volume  Minimum Purge Volum  Total Purge Volume  Volume Messured By  Surge Technique	32.92 gal • 164.6 gal gal 5 gallan bucke +
A/A 5 ne2 er Used: C.99	2.36 Beckman	salions salions salions	Minimum Purge Volum Total Purge Volume Volume Messured By Surge Technique	o 164.6 gal gallan bucker +
5 ne 2 ner Used: 	2.36 Beckman	sallons sallons	Total Purge Volume Volume Messured By Surge Technique	5 gallon bucket
er Used:	2.36 Beckman	gallons	Volume Messured BySurge Technique	5 gallan bucket
er Used:	Beckman	<u> </u>	Surge Technique	-73
6.99			~~.~~ . ~~	711107
6.99				
	a 75	<u>· o · (</u>	C, pH 10.00 - 9.4	98 . 23.2
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		1.6 DIGIT		<u> </u>
rd 100			Reading /00/	umhos/cm at 25°
			treading	
Time	Temp. *C	рН	Conductance at 25°C	Physical Characteristic (clarity, other rand content, col
1/23	/3.3	12.00	1144:	Masty clan - very stry
1152	14.0.	12.45	2100	very cloudy with gray in
1330	13.7	12.40	2880 '	Mostly clear, some SI
1336	13.7.	12.27	2110 • •	Very cloudy in I'm ant
	clew	stend-		
				Dew
		1		Punge volume @ 28 gallons
	().0 npm	denterce	· · · · · · · · · · · · · · · · · · ·	
m (, 40 /2) 1')	1 c 1 : 1 7 100			83 Annie of 39 Autours.
1,15 (8 )6	TE STEEL MAKE	Collecte	77	101 27.001
	1123 1152 1330 1336	1123 /3.3 1152 /4.0. 1330 /3.7 1336 /3.7 Cleur	1123 13.3 12.00 1152 14.0. 12.45 1330 13.7 12.40 1336 13.7 12.27  clewatered  HAU = 0.0 pp. denistered	1123 13.3 12.00 1144: 1152 14.0. 12.45 2800 1330 137 12.40 2880 1336 13.7. 12.27 2110. Clewatered

•	E	ore EP 53		Well 23222	
Project	ON - POST			Project Number	<u> </u>
Date(s) Developed	07/07/8	<u> </u>		Date Installed	5/15/37
Personnel (Name/Com	pany)	W /BRE		Well Diameter (I.D.)	in,
	795	1 IESE		· · · · · · · · · · · · · · · · · · ·	72 in. 0 12 to 4. 11.
Rig Used ESE	vall seam	A TRUCK	·	. –	/ 1 In. 10 M. to 5- 1.
Pump (Type/Capacity)	MI	1		Screen Interval	57.6 R. to 35.3 R.
Bailer (Type/Capacity)		2'			n, ton.
Water Source	em#			Casing Height (Above G	
Measured Well Depth	TOC	Initial 70.	O ft.	Bottom of Screen (Belov	
•		(Final)	ft./	,	
Water Level TOC/Date	e/Time (Initial	35.	76/7-06	.87/1105	( 41.46/7-7-37/0746)
	•		<b>8</b> 3 9	-25 47 1135	
Feet of Water in Well	_ ' '		653 gal	lons/foot =	gallons casing/anulus volume
Drilling Fluid Lost _	N		allons	One Purge Volume	
Purge Water Lost			allons	Minimum Purge Volum	
Added Water	6		allons	Total Purge Volume _	gallons
Casing/Anulus Volum	7 2		allons	Volume Measured By	5 GALAN BRANET
CashiButmetat Adian	.19		#11O11#	Surge Technique	BAILBA
Calibration: pH Mei	on tiend	BECKMAN	1 8 21	3N: 015883	
pH 7.00			·		.08 . 19.1
•	tance Meter	والمروس والمروس		Ot his soids	· · · · · · · · · · · · · · · · · · ·
· Standa	,	umhos/cm		Reading 1001	_umhos/cm et _25 •c
, Olende				110001110	
Purge Volume	Time	Temp. °C	рH	Conductance at 25°C	Physical Characteristics (clarity, odor, send content, color)
Initial 40	7:57	12.8	12.43	2090	cloudy GRAY 8:1+
	0177		-		Maddy Som
66		17 0	ايوسى ا	7 2 6 -	
	8:22	13.0	12.53	2390	BLACK surface?
	8.20	13.0	12.53	2390	1
	8.20	13.0	12.53		
	8.22	/3.0	12.53		
	822	/3.0	12.53		
	822	/3.0	12.53		
	820	/3.0	12.53		
Final	8.22	/3.0	12.53		
Final	822	/3.0	12.53		
					Black amount ?
Final Remarks:					Black amount ?
					Black amount ?
Remarks:			Pfn :	well demotered is 2	Black amount ?
Remarks: Justra	Y. HNR 6 PM	1/hand = 0.3		well demotered is 2	7 Jahrs
Remarks: Justra	Y. HNR 6 PM	1/hand = 0.3	Collecte	well democrat a 2	Black amount ?
Remarks:	1: HNU Q 100 X 0.852 7 d	Il hand = 0.3	Collecte	well democrat a 2	7 Jahrs

ate(s) Dev	eloped	07-09	î- 87	<del></del>	Project Number Date installed	05/15/87
	(Name/Com		W/ESE		Well Diameter (I.D.)	4 In
	(**************************************	F	TB / ESE		Anulus Dia.neter	72 in 0 12 to 40 st.
ig Used_	ERE U	JELL SERV	lice Truck	·		15 11. 40 R. to 50 R.
ump (Tvt	oe/Capacity	N/4	Α		Screen Interval	596 A. to 76.3 A.
ailer (Typ	pe/Capacity)	3.85 "	x 2'			ot.st
later Sou		RMA			Casing Height (Above G	
feasured.	Well Depth	TOC	,	o <u>f</u> t.	Bottom of Screen (Belov	v G.L.)
	1		(Final)	<u></u>	dine (41111)	7-07-87/0746) (36.0/7-09-89
vater Lev	el TOC/Date	e/Time (Initia	,			7-01-3710146   36-07 1-04-8
ent of W-	iter in Well		24 hrs.) 35.		lons/foot = 22.36	
	luid Lost			gallons	One Purge Volume	
_	ter Lost		-	alions (allons	Minimum Purge Volume	4.6.4
Added We		1 6	-	alions	Total Purge Volume	gailons
	nulus Volum	10 22		gallons	Volume Measured By	
				3411-0110	Surge Technique	فبتراض المسترك المسترك المسترك والمسترك والمسترك والمسترك والمسترك والمسترك والمسترك والمسترك والمسترك والمسترك
Calibratio	n: pH Met	tor Used:	BEEKM	m & 21	1 SN: 015833	
	-	tance Meter	Used:	us 0161	TAC: SN: 142.43	.09 at
Purge	Conduc		Used: umhos/cm	us Dier	FAC SN: 142.43 Reading 1406	_umhos/cm at
Purge	Conduc Standar Volume	tence Meter rd <u>1408</u> Time	Used: umhos/cm Temp. °C	us Dier nat 25°.	Reading /406  Conductance at 25°C	umhos/cm at 25° °C  Physical Characteristics (clarity, orior, send content, color)
	Conduc Standar	tance Meter	Used: umhos/cm	us Dier	FAC SN: 142.43 Reading 1406	Physical Characteristics (clarity, orior, sand content, color)  Mas 44 Clear.
	Conduc Standar Volume	tence Meter rd <u>1408</u> Time	Used: umhos/cm Temp. °C	us Dier nat 25°.	Reading /406  Conductance at 25°C	umhos/cm at 25° °C  Physical Characteristics (clarity, orior, send content, color)
	Conductive Standar	Time 2836	Used: Canada umhos/cm Temp. °C	pH ./2,08	Reading 1406  Conductance at 25°C  2530	Physical Characteristics (clarity, orior, sand content, color)  Mas Hy Clear,  Words of Clear,
	Conductive Standar	Time 2836	Used: Canada umhos/cm Temp. °C	pH ./2,08	Reading 14243  Reading 1406  Conductance at 25°C  2530  3090	Physical Characteristics (clarity, orior, sand content, color)  Mas Hy Clear,  Words of Clear,
	Conductive Standar	Time 2836	Used: Canada umhos/cm Temp. °C	pH ./2,08	Reading 14243  Reading 1406  Conductance at 25°C  2530  3090	Physical Characteristics (clarity, orior, sand content, color)  Mas Hy Clear,  Words of Clear,
	Conductive Standar	Time 2836	Used: Canada umhos/cm Temp. °C	pH ./2,08	Reading 14243  Reading 1406  Conductance at 25°C  2530  3090	Physical Characteristics (clarity, orior, sand content, color)  Mas Hy Clear,  Words of Clear,
Initial Pinal	Conduction Standard	Time  2836 2854	Used:	pH 12.08 /2.34	Reading 1406  Conductance at 25°C  2536  3090	Physical Characteristics (clarity, orior, sand content, color)  Mas 44 Clear.  Load, of actsoirest gray bacterists.
Pinal Remarks	Conduction Standard	Time  2836 2859  :	Used:	pH ./2.08 ./2.34	Reading 1406  Conductance at 25°C  2536  3090	Physical Characteristics (clarity, orior, and content, color)  Mostly Clear,  Lloudy by KITSOINER'  gram banknist.  33 12 Mars (0857)

	أرحي والمراجعين	BW /ESE		Anulus Diameter 🔠 🚄	72 in 40 p. to 40 p.
**************************************	VELL SERVE			≭ — Screen Interval	57.6 n. to 26.3 n.
p (Type/Capacity) r (Type/Capacity)	200	× 2'	······································	Scroon illian val	
r Source	RUMA			Casing Height (Above G	(.l.)
sured Well Depth	TOC	(Initial) 70.0	<u>2_f</u> t.	Bottom of Screen (Belov	w G.L.)n.
!! <b>TOC</b> (Dat	aPT) ma /fmillio	(Pinel)	_n. 1-6-67/1/05	(41.46/7-7-87/0746	(360 /7-9-07/5824)
er Level TOC/Dat	•		7 9-25-4	فليحرج والمستنصل كالمراجع والمستناء والمستناء والمستناء	
of Water in Well	- 1	11.x 0.6	4.	ns/foot = 27. 76.	gailons casing/anulus volume
ling Fluid Lost _	NA	8	illons	One Purge Volume	32.72gallons
ge Water Lost	N/11		illons	Minimum Purge Volum	
led Water	2		illons	Total Purge Volume	5 GALLON Buchet
ing/Anulus Volur	ne	<u> </u>	allons	Volume Measured By . Surge Technique	BAILING
-					
_	Ann f tands	BECLEMAN &	21 5	u! 015 387	
ibration: pH Me	w, 0-44	BECLEMAN &		of 387	10.12 at 15.2
ibration: pH Ma	7.04	at	<i>4.</i> 7•c.	ン: OIS 5名7 PH 10.00 = NL SU: 14/274	10.12 at 15.2 o
ibration: pH Ma	ctance Meter	at	4.7 °C.	pH 10.00 = ,	<u>/0./2 st</u>
ibration: pH Ma pH 7.0 Condu	ctance Meter	Used:	4.7 °C.	D: OIS 387 PH 10.00 = 12/274	_umhos/cm at Physical Characteristics
ibration: pH Ma pH 7.0 Condu Standa	ctance Meter 140 S	Used:	4.7 °C.	ン: 015 5名7 pH 10.00 = NL Su: 14/274 Reading <u>140 1</u>	_umhoe/cm at25
ibration: pH Ma pH 7.0 Condu Standa Purge Volume	0 = <u>7.64</u> ctance Meter ard <u>,40</u> 5	Used:	4.7 °C. S 316 Fr at 25°.	D: OIS 387  pH 10.00 =  NL SU: 14/274  Reading 140 1  Conductance at 25°C	umhos/cm at 25  Physical Characteristics (clarity, odor, send content, color)
ibration: pH Ma pH 7.0 Condu Standa	7.64 ctance Meter ard ,403 Time	Used:CA Used:CA umhos/cm Temp. °C	4.7 °C, S 716H at 25°, pH	D: 015 387  pH 10.00 =  NE	Physical Characteristics (clarity, order, send content, color)  Clear  Cloud, w/ my Sift.
ibration: pH Ma pH 7.0 Condu Standa Purge Volume	7.64 ctance Meter ard ,403 Time	Used:CA Used:CA umhos/cm Temp. °C	4.7 °C, S 716H at 25°, pH	D: 015 387  pH 10.00 =  NL 50: 14/274  Reading 140 7  Conductance at 25°C  2390  2310	Physical Characteristics (clarity, order, send content, color)  Clear  Cloud, w/ my Sift.
ibration: pH Ma pH 7.0 Condu Standa Purge Volume	7.64 ctance Meter ard ,403 Time	Used:CA Used:CA umhos/cm Temp. °C	4.7 °C, S 716H at 25°, pH	D: 015 387  pH 10.00 =  NL 50: 14/274  Reading 140 7  Conductance at 25°C  2390  2310	Physical Characteristics (clarity, order, send content, color)  Clear  Cloud, w/ my Sift.
ibration: pH Ma pH 7.0 Condu Standa Purge Volume	7.64 ctance Meter ard ,403 Time	Used:CA Used:CA umhos/cm Temp. °C	4.7 °C, S 716H at 25°, pH	D: 015 387  pH 10.00 =  NL 50: 14/274  Reading 140 7  Conductance at 25°C  2390  2310	Physical Characteristics (clarity, order, send content, color)  Clear  Cloud, w/ my Sift.
ibration: pH Ma pH 7.0 Condu Standa Purge Volume	7.64 ctance Meter ard ,403 Time	Used:CA Used:CA umhos/cm Temp. °C	4.7 °C, S 716H at 25°, pH	D: 015 387  pH 10.00 =  NL 50: 14/274  Reading 140 7  Conductance at 25°C  2390  2310	Physical Characteristics (clarity, order, send content, color)  Clear  Cloud, w/ my Sift.
ibration: pH Ma pH 7.0 Condu Standa Purge Volume	7.64 ctance Meter ard ,403 Time	Used:CA Used:CA umhos/cm Temp. °C	4.7 °C, S 716H at 25°, pH	D: 015 387  pH 10.00 =  NL 50: 14/274  Reading 140 7  Conductance at 25°C  2390  2310	Physical Characteristics (clarity, order, send content, color)  Clear  Cloud, w/ my Sift.
ibration: pH MapH 7.0 Condu Standa Purge Volume	7.64 ctance Meter ard ,403 Time	Jumhos/cm Temp. °C  12.1  12.7	9.7 °C. 15 DIGHT at 25°.  pH {2.03} /2.05	pH 10.00 = 14/274  Reading 140 1  Conductance at 25°C  2390  2310	Physical Characteristics (clarity, orior, send content, color)  Clear  Cloud, w/ smy Siff.
ibration: pH MapH 7.0 Condu Standa Purge Volume  nitial 99  /33	7.64 ctence Meter rd _,40 Time 0944 10.19	Lised: CM Lumhos/cm Temp. °C 12.1 12.7,	94.7 °C. 15 316H at 25°.  pH 12.05	pH 10.00 = 14/274  Reading 140 1  Conductance at 25°C  2390  2310	Physical Characteristics (clarity, orior, send content, color)  Clear  Cloud, w/ smy Siff.
libration: pH MapH 7.0 Condu Standa Purge Volume	7.64 ctence Meter 17 Time 0944 10.19	Jumhos/cm Temp. °C  12.1  12.7,	94.7 °C. 15 316H at 25°.  pH 12.05	pH 10.00 = 14/274  Reading 140 1  Conductance at 25°C  2390  2310	Physical Characteristics (clarity, order, send content, color)  Clear  Cloud, w/ sny Siff.

Ď

۲)

ump (Type/Capacity), eiler (Type/Capacity), Vater Source feasured Well Depth ' Vater Level TOC/Date	Time (initial 12-76	DLU /ESE ABW /ESE CF TEUCK /A X 2 (Initial) 70.0 (Final) 35.76/7 24 hrs.) 35.3 ft. x 0.6	2_51. -6-87/xo: 32.5	Date Installed Well Diameter (I.D.) Anulus Diameter  Screen Interval  Casing Height (Above G. Bottom of Screen (Below  (41.46./7-7-87/07/6	(G.L.)
Purge Water Lost	er Used:	BECKE MAN	0.4 MS D	Minimum Purge Volume Total Purge Volume Volume Measured By Surge Technique SN: 015 863 C, pH 10.00 = 1427 Reading /468  Conductance at 25°C	Schuod Bucks 7 BIICING  2.07 1 20.4 00
Initial (33	09.29 10.07	126°C	1208	2220	Clear. Cloopy W/Grey SILT (Sauc Dissolve) bentown)
Pinal					Du
Remarks: ILLI  Nell Tre-NATS  Parge vd = 10  + 22	रा भिर ३५	GA15 7/14/9	}	ppm (7-14-87, C92	(a) -1/4/87 Signature C 30 Dec

p (Type/Capacity). er (Type/Capacity).	3.55" 2.44	(Initial) 70.6		Screen Interval  Casing Height (Above G Bottom of Screen (Belov	<b>—</b> . •
t of Water in Well_ lling Fluid Lost ge Water Lost ded Water sing/Anulus Volum libration: pH Met	34. 24 N/A N/A S 22.	36 8 36 8 3 5 C K W A	allons silons silons silons silons	SN: 015883	Season ducker 3412106
pH 7.00 Conduc	tance Meter	Used: CM	71617	m : SNI 1424	25 umhos/cm at 25
pH 7.00	tance Meter	Used: CM	71617	m . sw! 1424	3
pH 7.00 Conduc Standar	tance Meter 1000	Used:umhos/cm	16 17	Reading 1002	umhos/cm at2 <
pH 7.00 Conduc Standar	tance Meter d 1000	Used:umhos/cm umhos/cm Temp. *C	pH	Reading 1002 Conductance at 25°C	umhos/cm et
pH 7.00 Conduc Standar Purge Volume	Time	Used:CMS umhos/cm Temp. *C	pH .11.71e	Reading 1002 Conductance at 25°C	Thysical Characteristics (clerity, odor, and content, color partially cith (true such cloves and content, color partially cith cloudy w/ kluch choice area sawi)
pH 7.00 Conduc Standar Purge Volume	Time	Used:CMS umhos/cm Temp. *C	pH .11.71e	Reading 1002 Conductance at 25°C 1599	Thysical Characteristics (clerity, odor, and content, color partially cith (true such cloves and content, color partially cith cloudy w/ kluch choice area sawi)
pH 7.00 Conduc Standar Purge Volume	Time	Used:CMS umhos/cm Temp. *C	pH .11.71e	Reading 1002 Conductance at 25°C 1599	Thysical Characteristics (clerity, odor, and content, color partially cith (true such cloves and content, color partially cith cloudy w/ kluch choice area sawi)
pH 7.00 Conduc Standar Purge Volume	Time	Used:CMS umhos/cm Temp. *C	pH .11.71e	Reading 1002 Conductance at 25°C 1599	Thysical Characteristics (clerity, odor, and content, color partially cith (true such cloves and content, color partially cith cloudy w/ kluch choice area sawi)

NGLEWOOD, COLUMADO 80112-303//41-0034

	-	ء اس	Bore 5	<u> </u>	Well 23222	- con
Project			1/24/37		Project Number	745k 44 5/15/87
	Developed		/		Date Installed	5/15/81
,etaobu	el (Name/Co	mpany)	Dew/ 855		Well Diameter (I.D.)	
			ABW /BSE		Anulus Diameter	172 in. Oft. to 20 ft.
			AVICE TRUE	<u> </u>	*	1'E in. 40 st. to 50 st.
ump (T	'ype/Capacit		N/A		Screen Interval	SEG st. to 793 st
ailer (T	ype/Capacit	y) 585	X 2.0	<del></del>		ft.toft
	ource				Casing Height (Above)	
leasure	id Well Depti	h TOC	(Initial) 10.		Bottom of Screen (Belo	ow G.L.) 703
			· · · · · · · · · · · · · · · · · · ·	[l. • /7-6-67/	lune	
Vater Le	evel TOC/Da	te/Time (Ini				7 2
			er 24 hrs.)	. 4		77 575 1135
	Vater in Well			_	illons/foot = 22.36	gallons casing/anulus volum
	Fluid Lost _		1.	allons		32.42 gallon
-	ater Lost			gallons	Minimum Purge Volum	
	Vater			allons	Total Purge Volume	S CANON BUCKET
asing/A	Anulus Volur	ne	. , ,	gallons	Volume Measured By	Side of the same o
			DECKMAN		Surge Technique	ISHIL IN C
91101411	ion. pri wie	n = '/./n	2at2	5.2		0.01 at 25.0
Purg	e Volume	Time	Temp, *C	ρН	Reading /000 Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)
Instal	159	09 20	/2.8	11.67	1556	cier
	232	1003	13.5 Paul 3.25	12.25	1978	cloudy w/brown sict
<del>.</del>						
A- +	<del></del>					
:				!:		
Final		1				Diw
1.12	devatered	14 32 6	1000	L		
emark <b>s</b>	: Initial Duler Leve	,	wellhood = 2. 87/7-24-87	03 pm /	12.4 pm while on	iller = 7-12 ppm ist wellhood
: Para	, val = 10,	مع ) لمه ما ک	سأمسد محار)	Collected	aby	7 20177
	+ 27	1.36 gui ( cc	sm /amine voi.)	Checked	/ /	C-82
	32	.92 Ad.				

roject		73. T			
• •	-/-				TASK 44
ersonnel (Name/Co		7/37		Date Installed	5/7/87
<del>-</del>	mpany)	mu/e	SE	Well Diameter (I.D.)	
		TOB ESE	<del></del>	Anulus Diameter	17th. On 10 48
lg Used	WELL SE			*	1/1 in. 40 ft. to 50
ump (Type/Capacit			<u> </u>	Screen Interval	596 st. to 703
ailer (Type/Capacit					
ater Source				Casing Height (Above	V. M.) ——————————————————————————————————
leasured Well Dept	h TOC	(Initial) _Z	<u>00</u> 11.	Bottom of Screen (Belo	ow G.L.) 70.3
		(Final)	ft.	2/12	
ater Level TOC/Da					
		24 hrs.) 35.8			
					gallons casing/anulus volun
rilling Fluid Lost _			galions	One Purge Volume	32.42 gallo
urge Water Lost			_	Minimum Purge Volu	
dded Water			gallons	Total Purge Volume	
asing/Anulus Volu	me		gallons	Volume Measured By	
alibration: pH Me		7	4	Surge Technique	PAISE / COURS PUMP
,,,,	Time	Temp. •C	pH	Conductance at 25°C	Physical Characteristics
Purge Volume	111116	10111p. C			Physical Characteristics (clarity, odor, sand content, notor)
Purge Volume	0845	/P·/	11.93	1761	(clarity, order, sand content, color)
Initial			-		-park bu
Initial 232	0845	18.1	11.93	1769	mosth clear, some si
	771	Tump •C	Ha l	Conductance at 25°C	Dhusiaal Chusaasaas
101 232	0845	18.1	11.93	1769	Mosth clear, some s

Rig Used SEE WELL SECRICE TRUCK  Pump (Type/Capacity) NJA  Screen Interval   ate(s) Developed ersonnel (Name/Com	7/2	- 		Well 23222	■	
Anulus Diameter (I.D.)    STA   SSE   Anulus Diameter   Time   Temp. *C	ersonnel (Name/Com				Project Number	
PUB   ESE   Anulus Diameter   71 in.   Offi. to   40	•	· · · · · ·		<del></del>	Date Installed	5/7/87
g Used SEE WELL SERVER TRUCK  Imp (Type/Capacity) J/A  siler (Type/Capacity) J/A  siler (Type/Capacity) J/A  seasured Well Depth TOC (Initial) 70.0 ft.  (Final) ft.  (after 24 hrs.) J/A  set of Water in Well J/A  gallons  Gallon	g Used ESE W					7in.
siler (Type/Capacity) 385" x Zo'  alter Source. ZMA  casing Height (Above G.L.)  ft. to  ater Source. ZMA  casing Height (Above G.L.)  ft. to  ater Source. ZMA  casing Height (Above G.L.)  ft. to  casing Height	g Used ESE W				Anulus Diameter 2	<u>t inft. toft.</u>
siler (Type/Capacity) 385" x Zo'  alter Source. ZMA  casing Height (Above G.L.)  ft. to  ater Source. ZMA  casing Height (Above G.L.)  ft. to  ater Source. ZMA  casing Height (Above G.L.)  ft. to  casing Height	•	EL SELVE	e Truck		<u>u</u>	14 in. 40 st. to 50 st.
siler (Type/Capacity) 385" K Zo  ater Source ZMA Casing Height (Above G.L.) 144  easured Well Depth TOC (Initial) 70.0 ft. Bottom of Screen (Below G.L.) 70.3  [Fina!] ft. Bottom of Screen (Below G.L.) 70.3  [ater Level TOC/Date/Time (Initial) 35.76 / 7-5-87/105  [ater 24 hrs.) 35.83			A/L		Screen Interval	546 ft. to 70.3 ft.
casing Height (Above G.L.)  (Initial) 70.0 ft. Bottom of Screen (Below G.L.)  (Fine!) ft.  (after 24 hrs.) 35.83 9-25-37 1135  (after 24 hrs.) 35.83 9-25-37 1135  (after 24 hrs.) 35.83 9-25-37 1135  (after 24 hrs.) 36.83 9 1135  (after 24 hrs.) 3	iler (Type/Capacity)	335" K	20'			ft. toft.
easured Well Depth TOC (Initial) 70.0 ft. Bottom of Screen (Below G.L.) 72.3  (Fina!) ft.  ater Level TOC/Date/Time (Initial) 35.76 / 7-6-87/105  (after 24 hrs.) 35.83 G-15-32 1135  bet of Water in Well 34.24 ft. x 0.053 gallons/foot = 22.36 gallons casing/anulus volume illing Fluid Lost					Casing Height (Above G.	L.)fi.
(Final)ft.  ater Level TOC/Date/Time (Initial)35.76 /7-6-67/105  (after 24 hrs.)553			(Initial) 70	ø ft.		7
ater Level TOC/Date/Time (Initial) 35.76 / 7-6-87/105  (after 24 hrs.) 35.83	<b>DESCRICE</b> 11011 <b>DOP</b>		•	ft.		
(after 24 hrs.) 35.83 4-25-87 1135  The control of Water in Well 34.24 ft. x 0.653 gallons/foot = 22.36 gallons casing/anulus volume iilling Fluid Lost	ates Level TOC/Date	·/Time (Initia		7-6-87/110	ي ا	
et of Water in Weil 34. 24 ft. x 0.653 gallons/foot = 22. 36 gallons casing/anulus volutilling Fluid Lost	BIRL DRAGI LOCIDATO	(after	24 has 1 85 %	2 6.35.	4 × 1135	
rilling Fluid Lost			•			gallane gasinulanulus valume
parge Water Lost				•		
gallons Total Purge Volume gall Volume Measured By Samon Property Surge Technique Surge Techni	_	•			One Purge Volume	
slibration: pH Meter Used: Tesceman 6 21 SN'. 015 383  pH 7.00 = 7.00 at 29.2 °C, pH 10.00 = 10.02 at 24.7  Conductance Meter Used: CMS D/617AC SN'. 14 243  Standard 1000 umhos/cm at 25°, Reading 1000 umhos/cm at 25  Purge Volume Time Temp. °C pH Conductance at 25°C Physical Characteristics (clarity, udor, sand content, culo initial 264 0356 24 11.49 1462 Clear.	~	, ,		_		
Surge Technique  Surge	ided Water			_	Total Purge Volume	gallons
Surge Technique  Surge	sing/Anulus Volum	0 2236	33	gallons		3 GIRCON PROPER
nitial 264 0856 29 11.49 1462 Clear.  Cloude Gear	Conduct	tance Meter l	Jsed: - CANA	DIGITA	c 5.01 /4343	a(
Cloude Gear	Purge Volume	Time	Temp. *C	pН	Conductance at 25°C	Physical Characteristics (clarity, udor, sand content, color)
296 0926 13.5 12.09 1820 Cloudy Geny 5,14 Geny	Initial 264	0856	24	11.49	1462	clear.
	296	0926	13.5	12.09	1820	Cloudy Gean Silt
			. ·			7,1
	====			<del>   </del>		
Final						J. 12 >
Final						- Ju F.

121010 2 none 20-E1 ... ...

. 9 . /

· ·		Bore 5/2 - 5	3 22	Well 23222	•
ProjectZA/	A UN -PO			Project Number	THIN 44
Date(s) Developed	8/4/97	,		Date installed	5/7/87
Personnel (Name/Cor	ppany)	LW/ESE		Well Diameter (I.D.)	- J In.
	• • •	PINLA		Anulus Diameter	
Rig Used ESE 4	IEN SERV	ICE TRUCK			7 1. in. 40 st. to 50 st.
Pump (Type/Capacity	() <i>(</i>	J / A		Screen Interval	55.6 ft. to 703 ft.
Bailer (Type/Capacity	1) 3.85"	'x 20'			ft. toft.
Water Source	RMA			Casing Height (Above C	.L.)ft.
Measured Well Depti		(Initial) 70	). <u>o</u> ft.	Bottom of Screen (Belov	v G.L.)ft.
			ft.	,	
Water Lavel TOC/Da	te/Time (Initi	al) 35.76	17-6-87/	1105	
	(after	عك (.24 hrs.	43 5.	25-97 1135	***************************************
Feet of Water in Well		ft. x	957 ga		gallons casing/anulus volume
Drilling Fluid Lost _	NIA		galions	<del>-</del>	'32, 72 gailons
Purge Water Lost			gallons	•	e
Added Water			gallons	Total Purge Volume _	gallons
Casing/Anulus Volur	no <u> </u>	2.34	gallons	Volume Measured By _	5 GALLAN DULME?
		5 mar	b a.	Surge Technique	BAILING
Calibration: pH Me	ter Used:	GREZEMAS		2N1 011883	21/
•	7.01			C, pH 10.00 = 10	04 at <u>10. →</u> •C
	tance Meter			ITAL	
Standa	rd	umhos/cn	1 at 25*,	Reading 1001	_umhos/cm at°C
Purge Volume	Time	Temp. •C	pН	Cpnductance at 25°C	Physical Characteristics
			-		(clarify, offer, sand content, color)
Initial 296	0750	(2.3	11.60	1519	Mostly clear. some,
270	2000	4 50 000	12.2	17.4 5	closed will start upon
328	0829	(2.5	12.03	1893	citt) some this in sent.
\					
		<del></del>			
ţ	{				
	1		<del> </del>		
	7				
Final	l I				
Final					- CM
Final	1		<u>l</u>	,	
ر	ial Horn	e wellhe	ad = 140	o somet : ik in the	Simery's Toric.
ر	111 -2	e wellhe	ad = 141	o spirit : sik in vil	
ر	111 -2		ad = 14	1	
Romarks:nit	111 -2	10/40 10.5		the Indian	g 4187
Romarks:nit	111 -2	10/40 10.5	Collected	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	d freedom Toric.
Romarks:nit	111 -2	10/40 10.5		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	g 4187

Project	ام- الم	Bore	15 175	Project Number	TASK 44
Project Date(s) Developed	3/11/			Date Installed	5/7/87 -
ersonnel (Name/Con	<del></del>	Dew/Es=	<del></del>	Well Diameter (I.D.)	+9-20 4 in.
ALSORMAL (14ETHACON		73/84		Anulus Diameter	175 in. 0 st. to 40 st.
lig Used SE		WILE TRUCK			-11-in. 40 ft. to 50 ft.
ump (Type/Capacity	· ·		<del></del>	Screen Interval	59.6 ft. to 70.3 ft.
lailer (Type/Capacity		× 2-0'		Delecti Interval	fl. toft
Vater Source	٠٤٠	u.A		Casino Haight (Abaya	(G.L.) // (ft
leasured Well Depth		·····	1.0 ft.	Bottom of Screen (Rei	low G.L.) 70.3 st
ichadida Wen Depin			8 ft.	/	(W G.E.)
Vater Level TOC/Dat	e/Time (Initi		17-6-87	1105	
THE SEVER POORDS	lafter	24 hrs.) 🏂		5.43/09-29	5-87 / //:35
eet of Water in Well.	34.24	fl. x		lons/foot = 72.56	المراجع والمراجع والمراجع والمنتقف المراجع والمناف والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع
rilling Fluid Lost			_	One Purge Volume _	
urge Water Lost			gailons	Minimum Purge Volu	ime 164.60 gallons
dded Water	-,		gallons	Total Purge Volume	
asing/Anulus Volum	رور ما ما ما ما	7 4	gallons	Volume Measured By	A
•			-	Surge Technique	
alibration: pH Met	er Used:	"P. ECKMA	w + 2.(	54% O12383	
Purge Volume	Timo	Temp. °C	рН	Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)
Initial 328	0750	12.6	11.67	1592	ilean
360	2833	13.2	11.92	1854	your the formation saw
/				7	
				4	
Linal	<u> </u>	· · · · · · · · · · · · · · · · · · ·			
			8.0 11.	1,1	10 M sreetling your.
Pume vol. = 10.	se source 25	ic vol.	Collected	by 10 Wa	8/16:7
+ 22.	36 casing v	<b>'</b> 0(.		· / /	5 C-86
37.	the casing v		Checked	by	

PAGEOF	PAG	E	<u> </u>	OF	
--------	-----	---	----------	----	--

#### **BOREHOLE SUMMARY LOG**

Borehole <u> </u>	53
Project Name and Location Rwa Sect 24 M.W. Liebs	Project Number 744
Drilling Company Coyles Base Driller B. Roach	Rig Number Faction 1500
Drilling Method(s) 121/4 Augus natan	
Size(s) and type(s) of bit(s) 1214 4 4 yr 31/8 1/2 come	
Borehole Diameter <u>124</u> incm <u>Oft.</u>	_cm. tocm.
374 in cm	_cm. toftcm.
Sampling Methods	
Total Number Soil Sampling Tubes	
Total Number Core Boxes9	
Number of Gallons Lost Drilling Fluid	<del></del>
Date/Time Started Drilling /0/3/1/2 0505	Nagaran production
Date/Time Completed Drilling 10/8/87 0821	
Total Borehold Depthft	cm.
Depth to Bedrock 42.5 ft.	cm.
Depth to Waterft.	cm.
Water Level Determined By?	
Borehole Completed as Monitoring Well?	
Date/Time Grouting Completed 10/8/97 0158	
Depth of Tremmie Pipe //SO	
Gallons of Grout 145	
Materials Used 10 bys of court, 100 g & H20 160	as if lon land
Comments growted to ground surface	
Wellsite Geologist & Too Gand	Date 10 21 87
Checked for Grout Settlement on 10 2087	by stem bank
Amount of Grout Added 10 5 al	
All Measurements from Ground Level	
Reviewed by	Date
Drill Site Geologist	Date 3//2/88
	C-88

SOILS LOG Description MUNSELL COLORS Sanly-selt ~ 20 % & f.gr. sand, 10 VR, 3/4, dk. ywal bown, non- plus, loose, dy, allwinn NA At 2.0', sandy-sell, ~ 20% v. f.g. sand, color-changes to 15 YR. 5/4-6, youth brown, non-plan-loose, dy, alluvium. At 5.5', souly-self, To said increases to -46.7 love, dry, allewarm.

- ---

Reviewed By: Date: 1/11/17

Reviewed By: Date: 9/5/07 C-9

(*****)

Depth-feet	Tube Number Tube Interval	Recovery	Sample Number	Somple Interval	Unfied Soil Classification	SOILS LOG Description  MUNSELL COLUM
25-	24-26'	/.a'	NA	24-26'	JP	gravelly-sands, ~ 30-40% gtz i feldspar guvel, fire-connege rands, 10 M. 5/4-6, yust.br., non-plus, loose, v. stytely moist, alturium.
26-	26-551	1.0'		26-261		At. 26', grandly - words, ~ 30-45% grand (1-2" the fine- over sands, 10 YK, 5/4-6, yord ben, non-plus, love, v. slightly mosst, allowin.
25-	28-30	1.15		28-35'		At 28; gravelly-sounds, ~ 20-3.7. gravel (14-14-time) fair come in sounds, 10 YR, 5/4-6. juni sin, non-plas. bose, v-slybety, most, silverum
30		,	7		7	

Reviewed By: Date: 9/5/5 C-93

 Deill Site	Geologist: A State Date:	4/5/5	C-94
Reviewed	Ву:	Date:	

143% Dall Site Guologist: 1



*





(*



The second second section in C.



4	ESE.	Inc.	CC	RE L	og	Ву	<u>5P</u>	Date	10,	14/8	L BOR	E <i>LY-S</i>	6 V	Vell(s) Page_	<u> </u>
•	(60)	Ξ		511	ucture /	Hard-	Perm	Miner	elogy	Color	Testure / Grete Size	Lith.	Lith. Class	Description / Comments	
1		1 to 1	Ų S	Angle	Desc.	S H	L HL I	Min	Hobit	M (G	of to i	00	fi	CM (Scale 1": Z (1)	
	142-141-141-150-	الله الله		511 0 e	ucture/ dding	Hard-	Perm	Miner	elogy	Color	BOR VIII CONTROL OF TO THE CONTROL OF THE CONTROL O	Lith.	Lith. Class	Description/Comments CM (Scale 1"= Z	201 -
SE, Inc. :E EP:56 WELL(S)					7				150	.0'					-102

Frontier Logging  Lasonac Calcard  E S E  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M A  R M M A  R M M A  R M M A  R M M A  R M M M A  R M M M M M M M M M M M M M M M M M M	9
## 146/2 Ft   19 FT	27 64
E D - 56  RMA  RMA  43 Fr PVC  COLORADO  Indive mud  Grand Level  Gran	1. 67
ED-56  RMA  RMA  45 COUNTY  146/2 Ft   77.	
45 COUNTY  SECONTY  THE LAST STATE PACE  SECONTY  THE LAST STATE S	3 /8:
45 COUNTY  Learning  Learn	43 Fr PNC "
46/2 Fr	10 mg
46½ Fr	•
146½Fr	Graund Level Lakewood
46½ Fr	चक्रस
1461/2 Ft	
Cole : 20 mm 10 mm	Š
1	3
14	
14 15/8" H	Total Control
14 - 15/8 H	e .
78	
	Gamma (Anador)
	S #1:
Gamma (Digital)	2
2.38 × 10 ( 34pc)	Calipper
1.10 3 %	Temperatuse
	Of street, or
RESIDENCE AND PARTY AND PA	
C chms/5	R
100 MVInch -	Azmuth
True Vertical Survey Depth	True Vertical
3.5	RESISTANCE
C-100 MV	40 GINS 5 Inches







## WELL CONSTRUCTION SUMMARY

_ 5P	•
	_Well
Project Name and Location PMA TASK 19 SEL	T 26 Project Number 744
Drilling Company BOTLES BROTHERS Driller	Don 12ビル Rig Number エミ
Drilling Method(s) 1134" POTA2T 73" R.	らてはやイ
Borehole Diameter 1137 in cm	
73 incm	ftcm. to/33ftcm.
•	
Size(s) and types of Bit(s) 11 34 Bude 317	Sampling Method(s) NOT SAMPLED
75" BUIDE 315	Date/Time Start Drilling 11-4-97 0930
Size and Type PVC 4" SINE DILE 40	Date/Time Finish Drilling 11-6-37 0945
Total Borehole Depth 2350 ftcm.	Date/Time Start Completion
Depth to Bedrock 4/2.5 ftcm.	Date/Time Cement Protective Casing 11-4-97 1355
Depth to Waterftcm.	Materials Used
Water Level Determined By	Plain PVC 132. 3' Jew. N
Length Plain PVC (total) /32 Pftcm.	Slotted PVC 5.65 Scerred
Length of Screen 565 ftcm.	Bentonite Pellets / 33 Buchers
Total Length of Well Casing Sp. 15 ftcm.	Bentonite Granular 2 3165
PVC Stick Upftcm.	Cement 14 3/65 4 4 3/65
Depth to Bottom of Screen 436. 75 ftcm.	Sand 2 3.16.5
Depth to Top of Screen 234.12 ftcm.	Water added during completion
Depth to Top of Sand /20 ftcm.	Water added during drilling
Depth to Top of Bentonite /2/ ftcm.	Total Gallons of water added
111	
Drill Site Geologist	Date ///0/87
	Carrier 212 (1)
Date/Time/Personnel Internal Mortar, Cement Pad, and	Weep Hole Installed IN TRANS MONTE 11-19 37 MONTE
Date/Time/Personnel Casing Painted (1915)	
Date/Time/Personnel Numbers Painted 2/12/88	/1510 / DIW & ESP
Materiuls Used 12 Pags Sacrette	
Top of Protective Casing to Top of PVC D. So ft.	
Top of Protective Cusing to Weep Hole /45 It.	
Top of Protective Casing to Internal Mortar /54/11.	
Top of Protective Casing to Top of Coment Pad	
Top of Protective Casing to Ground Level	
Reviewed By	Date 3/11/19 C-10
Drill Site Geologist	Date 12/0/37 C-10

E12-56 21 502 Well: 26153 Borehole: Soil/Rock Type **Well Completion** Description 2.0' Gound Level TUINT O.M POINT 10.9 CENTRIUZER ( 14' TO UT 2012 المالانك ていれて 2545 40. JUINT 40 73 CENTRALIZER & 44' Si JUINT 5075 B. HARLINGIA JU.NT 40.21 20 . JOINT 70 24 CENTRALICER & 7 30 -TO.NT 3: 16 JUINT 908 100-To. WT 101.0 CENTRILIER & IUN' 110 . To.NT 11101 120 -THINK IZELLE TOP OF BENTOINTE - ILI O 130 -TOP OF LINES - (26) 4 JOINT 1311 . 131 --110-DATEM OF MERETA . CAN'T TUTAL TERRILE DAME MUTC ! TINESE EMPORTAGES ALE-Themis crocked there C-108 Drill Late Geologist: _ Date. __

Reviewed By

Date.

		Bore EP-5	6 B1 02	Well 26153	•		
Project Tock 19	15cc. 26			Project Number	stc1944		
Date(s) Developed	2/7/87			•	16187		
Personnel (Name/Cor	DANY LA	+ Vashac /F	ESE WIN	Well Diameter (I.D.)	ن بن الله الله الله الله الله الله الله الل		
Cindu Geh	45/FGE	CMb			13/4 in. Oft. to 512ft.		
Rig Used Mall					17/8 in. 50 ft. to 135 ft.		
Pump (Type/Capacity	16am E	05 10-15 vill	- ·76411	Screen Interval	13 1 1 Wit. to 131 37t.		
Bailer (Type/Capacity		M			ft. toft.		
Water Source 2M	À			Casing Height (Above G.L.) 1.70 ft.			
Messured Well Depth	TOE PUL	(Initial) (38)	<i>ક્ક⊖</i> તિકં8,70	Bottom of Screen (Belo	w G.L.)ft.		
		(Final) 154	. 6 ft.				
Water Level TOC/Dat	te/Time (Initi	1) 49 41	1131714	1/1059			
	(after	24 hrs.) 57	1 /3-14	- 513/1205			
Feet of Water in Well	89.89	ft.x	<u>/ 53 gal</u>	lons/foot = 58.04	gallons casing/anulus volume		
Drilling Fluid Lost _	<u>~//</u>	<u>d</u> 8	gallons 🔻	One Purge Volume	Ballons 67 U gallons		
Purge Water Lost	<u> </u>	48	gallons	Minimum Purge Volun	CMG 647-0 334 L'gallons		
Added Water			gallons	Total Purge Volume	allons		
Casing/Anulus Volur	ne Car de	27 28,00	gallons		5 GARLON BUCHET		
				Surge Technique	MISE LOWER MAP.		
Calibration: pH Me	ter Used:	Beckman	1 401	5083 SN			
•	- 7.02°	L		C. pH 10.00 =	10.131 at 14.3 ·C		
Condu	ctance Meter						
Standa	44 <u>1413</u>	umhos/cm	1 at 25*.	Reading 141C	_umhos/cm atC		
2:0	Backeron	<u> </u>	ecidins !	<u>ර්'ල</u>			
Purge Volume	Backeron	<u>ాద్ అ.ల</u> ? Temp. •C	ecidins !	ට ල Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)		
2:0	Backeron	<u> </u>	ecidins !	<u>ර්'ල</u>			
Purge Volume	Ricke (DU)	<u>ాద్ అ.ల</u> ? Temp. •C	pH	ට ල Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)		
Purge Volume	Ricke (DU)	<u>ాద్ అ.ల</u> ? Temp. •C	pH	ට ල Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)		
Purge Volume	Ricke (DU)	<u>ాద్ అ.ల</u> ? Temp. •C	pH	ට ල Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)		
Purge Volume	Ricke (DU)	<u>ాద్ అ.ల</u> ? Temp. •C	pH	ට ල Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)		
Purge Volume	Ricke (DU)	<u>ాద్ అ.ల</u> ? Temp. •C	pH	ට ල Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)		
Purge Volume	Ricke (DU)	<u>ాద్ అ.ల</u> ? Temp. •C	pH	ට ල Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)		
Purge Volume	Ricke (DU)	<u>ాద్ అ.ల</u> ? Temp. •C	pH	ට ල Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)		
Purge Volume Initial O gall	Ricke (DU)	<u>ాద్ అ.ల</u> ? Temp. •C	pH	ට ල Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)		
Purge Volume	Ricke (DU)	<u>ాద్ అ.ల</u> ? Temp. •C	pH	ට ල Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)		
Purge Volume Initial O gall	Ricke (DU)	<u>ాద్ అ.ల</u> ? Temp. •C	pH	ට ල Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)		
Purge Volume Initial O gall Final	Ricke (DU)	<u>ాద్ అ.ల</u> ? Temp. •C	pH	ට ල Conductance at 25°C	Physical Characteristics (clarify, odor, sand content, color)		
Purge Volume Initial O gall Final	Ricke (DU)	<u>ాద్ అ.ల</u> ? Temp. •C	pH	ට ල Conductance at 25°C	Physical Characteristics (clarify, odor, sand content, color)		
Purge Volume Initial O gall	Ricke (DU)	<u>ాద్ అ.ల</u> ? Temp. •C	pH	ට ල Conductance at 25°C	Physical Characteristics (clarify, odor, sand content, color)		
Purge Volume Initial O gall Finel	Ricke (DU)	<u>ాద్ అ.ల</u> ? Temp. •C	PH 10 05	Conductance at 25°C	Physical Characteristics (clarify, odor, sand content, color)		
Purge Volume Initial O gall Finel Remarks:	Ricke (DU)	<u>ాద్ అ.ల</u> ? Temp. •C	PH 10 05	Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)  Cery Sily  Documy		
Purge Volume Initial O gall Final Remarks:	Ricke (DU)	<u>ాద్ అ.ల</u> ? Temp. •C	PH 10 05	Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)  Cerry Silly Dick Marin		
Purge Volume Initial O 9911 Final	Backe POU	<u>ాద్ అ.ల</u> ? Temp. •C	PH 10 05	Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)  Cery Sily  Documy		

Commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of th

		Bore <u> </u>	1.212	Well 2 6153				
Project RM+	1. N. P.	y - y -		Project Number	T. 444			
Date(s) Developed_				Date Installed 1) 6 17  Well Diameter (1.D.) 4 in.  Anulus Diameter 12 in. 6 ft. to 6 ft.				
Personnel (Name/Co	لك (ompany	TV 7-30						
	LFWL,							
Rig Used 1 나 살 / /	<u> </u>		·	•	73 in. 50 11. 10 120 st.			
Pump (Type/Capaci				Screen Interval	131.10 ft. to 1367511.			
Bailer (Type/Capaci		" \ 1.5.7			[1. toft.			
Water Source				Casing Height (Above	G.L.)			
Measured Well Dep	th TOC	المنظر (Initial)		Bottom of Screen (Beld	ow G.L.) 136.75 sh			
Water Level TOC/D	- 4 - 472 41 1	<u>کے /</u> (Final) د ایک ایک ایک دارین	<u>* Ce_</u> [[,	11-7 / 17 30				
Mater Panel 10C/D	(101) 907(1) (916 (101) 907(1)	(181)	31/ /3-	14-30/ 1205				
Feet of Water in Wa	am) بورگري چې	r 24 nrs.) <u> </u>		Moneton - 7 24 41	gallons casing/anulus volume			
Drilling Fluid Lost			_	One Purge Volume	· •			
Purge Water Lost			gallons		ne 394 gallons			
Added Water			gallons					
Casing/Anulus Volu	em	T 3, 2' 1	gallons	Volume Measured By	CAMEN BUCKET			
			•	Surge Technique				
Calibration: pH M	eter Used:	Be Mount	et Ci	1 11 211 275	<u>53.3</u> ot <u>7.5</u> °C			
Stand	Time	umhos/cr	n et 25°,	Reading 25°C	umhos/cm at			
Initial	-939	10.5	11.75	3110	(Classify, Germany			
		<del> </del>			is sell ment			
40	01016	ف برر	17.62	3010	1,			
50	1054	11.5	11.04	1530	11			
60	1133	11.0	10.82	3020	, 1			
70	1206	11.2	10.54	3010	11			
80	1241	11.3	10.25	3010	11			
90	1:310	11.5	1.90	ن <del>5</del> در	Dark gray nuchu siin			
Remarks:		·····		TUEF				
	······································		<del></del>					
		· · · · · · · · · · · · · · · · · · ·	•	Iby walt Vass	12:15:37			
			Checked	by 1. 1. 1.	Signature C-110			

Drilling Fluid Lost N/A gallons Purge Water Lost A gallons Added Water	4 in.  oft. to 3° ft.  fo ft. to 28 ft.  ft. to 36.77 ft.  ft. to _ft.  /36.77 ft.  /36.77 ft.  scasing/anulus volume  allons gallons gallons
well Diameter (I.D.)  Anulus Diameter (I.D.)  Casing Height (Above G.L.)  Bottom of Screen Interval  Bottom of	oft. to ft. ft. ft. to ft.
TON   Eth   Anulus Diameter   Ton   It   Ton   It   Ton   It   Ton   It   Ton    C	
mp (Type/Capacity) ALATA STAM Screen Interval  mp (Type/Capacity) ALATA STAM Screen Interval  miler (Type/Capacity) N/A  ater Source ALA Casing Height (Above G.L.)  ater Source ALA Casing Height (Above G.L.)  ater Source ALA Casing Height (Above G.L.)  [Final] 138.6 [1.  ater Level TOC/Date/Time (Initial) 148.7 [1.  [Alater 24 hrs.] 13.1 [1.  ater Level TOC/Date/Time (Initial) 148.7 [1.  ater Level TOC/Date/Time (Initial) 148.7 [1.  [Alater 24 hrs.] 13.1 [1.  ater Level TOC/Date/Time (Initial) 148.7 [1.  [Alater 24 hrs.] 13.1 [1.  ater Level TOC/Date/Time (Initial) 148.7 [1.  [Alater 24 hrs.] 13.1 [1.  [Alat	ft. to 28 ft.  /trev ft. to /36.76 ft.  ft. to _ft.  /7 ft.  /36.77 ft.  scasing/anulus volume  allons  gallons  gallons
ster (Type/Capacity) Read Screen Interval  iter (Type/Capacity) R/A  ater Source Read Casing Height (Above G.L.)  sesured Well Depth TOC (Initial) Set in the sesured Well Depth TOC (Initial) Read (Init	ft. to /36.7fft.  ft. toft.  /.7 ft.  //36.7f ft.  scasing/snulus volume  allons gallons gallons
iler (Typu/Capacity)  Aler Source  Alex A  Casing Height (Above G.L.)  Assured Well Depth TOC  (Initial)  (Final)  (Final)  (Alex Casing Height (Above G.L.)  (Final)  (Final)  (Alex Casing Height (Above G.L.)  (Final)  (Final)  (Final)  (Final)  (Final)  (Alex Casing Height (Above G.L.)  (Final)  (F	ft. toft. //7ft. //3075ft.  scasing/anulus volume 2allons 3 Sgallons gallons
Casing Height (Above G.L.)  pasured Well Depth TOC  (Initial)  (Final)  (Final)  (After Level TOC/Date/Time (Initial)  (after 24 hrs.)  (after	/.7 ft. ////////////////////////////////////
Section   Sect	s casing/s nulus volume  gallons  gallons gallons
(Final) 188. 6. (I.  Inter Level TOC/Date/Time (Initial) 49. 91 / 12-37 / 1054  (after 24 hrs.) 43. 1/3 - 1/4 - 1/2 / 170 5  et of Water in Well 88. 85 ft. x 0-1/2 gallons/foot - 18.0 9 gallor gallons  Fige Water Lost 1/1 gallons Minimum Purge Volume 2  Gallons Total Purge Volume 3 gallons Volume Measured By 53 and 54 gallons  Fige Water Lost 1/1 gallons Volume Measured By 53 and 54 gallons  Fige Water Lost 1/1 gallons Volume Measured By 53 and 54 gallons  Fige Water Lost 1/1 gallons Volume Measured By 53 and 54 gallons  Fige Water Lost 1/1 gallons Volume Measured By 53 and 54 gallons  Fige Water Lost 1/1 gallons Volume Measured By 53 and 54 gallons  Fige Water Lost 1/1 gallons 1/1 gallons Volume Measured By 53 and 54 gallons  Fige Water Lost 1/1 gallons 1/1 gallons 1/1 gallons 1/1 gallons  Fige Water Lost 1/1 gallons 1/1	s casing/snulus volume 
ter Level TOC/Date/Time (Initial)  (after 24 hrs.) (after 24 h	zallons S zallons gallons
(after 24 hrs.) 53.11 / 3-14-53 / 1705  et of Water in Well	zallons S zallons gallons
gallons one Purge Volume Green Well Rolling Fluid Lost N/A gallons One Purge Volume Green Water Lost And gallons Minimum Purge Volume Green Water Lost And gallons Minimum Purge Volume Green Gallons Total Purge Volume Green Gallons Volume Measured By Green Gr	zallons S zallons gallons
Illing Fluid Lost N/A gallons One Purge Volume Gree Water Lost N/A gallons Minimum Purge Volume 3 ded Water gallons Total Purge Volume Total Purge Volume Sing/Anulus Volume Sing/Anulus Volume Gallons Volume Measured By Surge Technique Surge Technique Parce Physics Purge Volume Time Temp. °C physics Ph	zallons S zallons gallons
rge Water Lost A gallons Minimum Purge Volume 3  ded Water gallons Total Purge Volume  sing/Anulus Volume S. C. gallons Volume Measured By S. C. gallons Surge Technique Parce Surge Technique Purge Volume Purge Volume Surge Technique Purge Volume Purge Volume Purge Volume Surge Technique Purge Volume Purge Volume Surge Technique Purge Volume Purge Volume Purge Volume Surge Technique Purge Volume Purge Volume Surge Technique Purge Volume Purge Volume Purge Volume Surge Technique Purge Volume Purge	3≦
ded Water gallons Total Purge Volume sing/Anulus Volume St. CM gallons Volume Measured By Surge Technique    Surge Technique   Part	gallons
sing/Anulus Volume  Single Technique  Surge Technique  Surge Technique  Surge Technique  Surge Technique  Perce  pH 7.00 = 7.10 at 7.1 °C. pH 10.00 = 10.28  Conductance Meter Used: TSE WENTE 71 SN: 2602 pSE de 2  Standard /4/2 umhos/cm at 25°, Reading /4/5 umhos  Purge Volume  Time  Temp. °C pH  Conductance at 25°C  Physical Properties  Conductance at 25°C  Physical Physical Properties  Conductance at 25°C  Physical Physical Properties  Conductance at 25°C  Physical Properties  Conductance at 25°C  Physical Physical Properties  Conductance at 25°C  Physical Properties  Conductance at 25°C  Physical Physical Properties  Conductance at 25°C  Physical Physical Properties  Conductance at 25°C  Physical Physic	
Surge Technique    Surge Technique   Part	Const page.
libration: pH Meter Used: BECKMAN DEL SNI CNSERS  pH 7.00 = 7.10 at 7.1 °C. pH 10.00 = 10.28  Conductance Meter Used: YSE WEDEL 71 SN: 2602 pSE dE  Standard /4/2 umhos/cm at 25°, Reading /4/5 umhos  Purge Volume Time Temp. °C pH Conductance at 25°C Physicianity  notical 75 / 3 2 3 11.6 P.73 3100 Cleans	Construction of the constr
pH 7.00 = 7.10 at 7.1 °C. pH 10.00 = 10.28  Conductance Meter Used: 751 WCVFL 71 SN: 7602 pre de Standard 1412 umhos/cm et 25°. Rueding 1415 umhos  Purge Volume Time Temp. °C pH Conductance at 25°C Physicianity  nitial 95 1323 11-6 8.73 3100 Claim	
nitial 75 1323 11.6 8.73 3100 Clean	ical Characteristics
240	odor, sand content colors
772 1 7757 1 7767 1 7737 1 3730 1 3730	in w/ grown si it.
	w/ Summer comments
140 1419 7.1 2.64 5130 Cloud	
Final	المرايات المستدان
Jewelered in 45 gallors Sandjank: 130.71 But. 130.00 marks: Water lead = 49.43 - 10.35 cm (2 40 gallor) / 10.35 lt x.	
HOW C' for I or from. " Down of a lub seller. "	352 and 12 = 7.52
/Proge vol: 68.00 resignate   Collected by lad a way	252 and 2 2 7 12
1 Checked by Signature Signature	252 and 12 = 7.12 02 42 78

SHEET 4 OF C

		Bore EPSC	<b>D</b> 2	Well 26153	
Project	RMAON	POST THE	44	Project Number	6956 TASK.19
ete(s) Developed	02/12			Date Installed	106/67
ersonnel (Name/Co		AT /POLLM	AN : ESE	Well Diameter (I.D.)	ye pre in.
itaouuet (Mamekroi	mpany)				134 in. 0 ft. to 50 ft.
g Used ESE W	ELL SEZ VIC	TRUCK	<del></del>		3 in. 50 ft. to 128 ft.
imp (Type/Capacit	GEOTEC	H / BLADDE	2 PUMP	Screen Interval	/31.10 ft. to /36.78ft.
iller (Type/Capacit)		اشتنتناك		20100111111011101	
ater Source	72.44.4			Casing Height (Above C	. 🛪
easured Well Depti		(Initial) 13	8.70	Bottom of Screen (Belo	wG.L.) 136,75 R
sesuida wan bupi			6 st.		
ater Level TOC/Da	te/Time (Initia			7-67/1054	
ect putoi 190,b1	-	/		-14-82/1705"	
et of Water in Well				illans/foot - 58-04	gallons casing/anulus volume-
illing Fluid Lost _			gallons	One Purge Volume	67 gallons
rge Water Lost			gallons	Minimum Purge Volum	ne gallons
ded Water			gallons		ci gallar barrels gallones
sing/Anulus Volur	ne		gallons	Volume Measured By .	• •
			,	Surge Technique	HISE COURSE PHONE
libration: pH Me	ter Used:	BECKA	MAN OF 3		
•	7.0				./4 at /3.3 -C
•	ctance Meter	Heed:	YSI M	*C. pH 10.00 =	3
Standa Purge Volume	Time	3_umhos/cn	pH	Reading 1413  Conductance at 25°C	_umhos/cm at•C
					(clarity, nilor, sand content, color)
Initial		15 **	8.77	2100	CLOUDY GREY W/ SOME
40011905	7	13,4	ļ	3190	U.FSAND SHITE HOLD SILT
iso gal	1	13.4	8.63	3200	TRANSLUCENT GREY W/ SILT SOME V.F.SAN
770 940	+		<del> </del>		ALMOST CLEAL
160	1448	<i>:</i> 3.2	8.45	3220	SOME FINE SAND
والهيد التكاويد المتحدث المتحددات المتحددات		وبخائديها بصواحة تطالهوجات	4 4 7		CLEAR COLORGES
170	1511	13.0	8.43	3230	NO JANO
100	س		8.50	3200	COLUAL ES ST. CTORON
180	1536	13.3	00		SOME FINE SAND
195	16:13	/2.8	8.48	3190	CLEAR, COLORLESS
	TW:5			1(nc) Dunt	med in 50 making
Pare made up	i Creoverly =	0.34 GPV	4 16 12 9	Junea.	T rest sommer is 148 7
1	4.4			<del></del>	7/4 00
i Progresol:	58,04 an	ما موا	Collegie	d by	ingulature C-112
+	785 X	elipearly vol.	ρ(1 - 1	In I have	- 112
	16.16 3	, ,	Checked	1 by	Signature

	_		
SHEET		OF	9

		Bore 50 54	,72	Well 26(53	
oj <b>ect</b>	ZMN UN-			Project Number	451= 14
te(s) Developed	3 4 8	<u>ą</u>		Date Installed	(1) 24/87
rsonnel (Name/Con		mu / FCE.		Well Diameter (I.D.)	
·	ে হৈ	1555		Anulus Diameter	11 4 in 0 11. 10 _ 5 0 11
g Used <u> हें द्र</u> े ए	ELL SERVICE	- Truck		<u>-</u>	72 in. 50 11. 10 138 M
imp (Type/Capacity	( C-102-1-10)	WS/ 50Pm		Screen Interval	13/.10 ft. to . 36.75 ft
iler (Type/Capacity					
ater Source	126-46	<u>+</u>	<del></del>	Casing Height (Above C	(.L.)R
easured Well Depth	TOC	(Initial) 138		Bottom of Screen (Belov	w G.L.)
		(Final) _/33	<u>. ن ال</u>	/	
ater Level TOC/Dat	e/Time (Initia	l) <u> </u>	12-7-8	97/1054	
	(after	24 hrs.) <u> </u>	11 / 3-	14-66/ 1508	
et of Water in Well	95.29	_ft.×6			gallons casing/anulus voluma
rilling Fluid Lost 🔔	14 /			One Purge Volume	
urge Water Lost	NI		allons		ie 375 gallons
dded Water		111	allons	Total Purge Volume _	gallons
ssing/Anulus Volun	no	<u>'78</u>	gallons	Volume Measured By	SS C. CLUAN GAC
	_		シー	Surge Technique	HHIZ (Limete 120 mg
alibration: pH Me				الااعار المست	
		10 at 125-11			10.00 at - 11.0 12.0 .C
Conduc	tance Meter	Used: 고도르	ا عامالاندا	2. S. S. L' W. C. &	
Standa	rd _1415	umhos/cm	at 25*.	Reading 1410	_umhos/cm at
Purge Volume	Time	Temp. *C	рН	Conductance at 25°C	Physical Characteristics (friently, more, sunn content, other)
initial 199	حورزان	125	8.49	3250	swam of your sitts
(15) 213	0424	12.5	3.19	3110	slightly climates
(30) ZZY	0935	/2.3	8.24	3220	Clear
(45) 243	: 61 44	12.6	4.05	31466	claring of gray soil
656	0454	11.2	871	3230	closing of Jorg sit
Final 257	હિલ્લ	8.0	305	3220	Brough charge and an sint
	<u> </u>		لت حجداً	well econtrol i	is LE contras in haling / 41
13.4	1 .		. (	7	
Remarks: William	د کاموزا	12.01	1.11-1	my m / vilse im	0 7/4 1007 10-1 m/
- Losens	= 17.5	- ( ) · · · · · · · · · · ·	محان ا	<del></del>	the world min in inge
المراد المراجع المراد	() 1 17 K.	<u> </u>	"eldoni w		
1 light of 5	8 - 1 Kenning	· · · · · ·	Collegand	by	1/4/ Q3 C-113
<i>'</i>	ا <i>اسسوبا یا دا</i> م		22 <b>1</b> . 1 . 1 . 1	hu - // -	17.12. 800 C-113
	(1) (	Or ration	Checked	OV	Sugniture.

181   1305   15.5   8.93   2240   514.4   6.04   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07						
Date Installed  17.288  Innel (Name/Company) RR/ESE BE/ESE  Innel (Name/Company) RR/ESE  Innel (Name/Company	roject	MA cn-	Post.		Project Number	
will Diameter (I.D.)  Anulus D	Intel® Developed	3-9-8	8		Date Installed	
Annulus Diameter    Seed FSF   Well Sever Track   2 / 8 in   50 ft. to   35 ft. to   36 ft	ersonnel (Name/Cor	npany) <u>RR/</u>	ESE BN//		•	
Screen Interval  (Itype/Capacity)					Anulus Diameter	
ff. to frequency from the first series of the	ig Used <u>ESE h/el</u>	1 Server	Truck			
introd Well Depth TOC (Initial) (1887 ft. (Final) 1116 ft	ump (Type/Capacit)	1 Grandle	5 5 GRA		Screen Interval	
introd Well Depth TOC (Initial) (1887 ft. (Final) 1116 ft	ailer (Type/Capacity	1)	<u>'4</u>	<del></del>		
(Final) 1366 ft.  (Final) 1366 ft.  (after 24 hrs.) 23.11 /3-14-80/12-5  of Water in Well 8889 ft. x 653 gallons/foot = 58.04 gallons casing/anulus volume in gallons  (after 24 hrs.) 23.11 /3-14-80/12-5  of Water in Well 8889 ft. x 653 gallons/foot = 58.04 gallons casing/anulus volume in gallons  (by Gallons Minimum Purge Volume 33.5 gallons and Water gallons Minimum Purge Volume 287 gallons  (consider of gallons Volume Measured By 33.04/10-0 Cross Surge Technique 1615 / 162-0 Cross Surge Technique 16					Casing Height (Above	3 G.L.)/_/
Conductance Meter Used:   CT   Model   St   St   St   St   St   St   St   S	Aessured Well Depth	1 TOC			Rottom of Scieen (Re	low G.L.)/36//
(after 24 hrs.) 33.11 /3-14-66/1257  of Water in Well 88.89 ft. x 65.3 gallons/foot = 5.8 c.4 gallons casing/anulus voluming Fluid Lost			(Final) 123	/ /2 - 7 -	87/1054	
of Water in Well 88.89 ft. x 653 gallons/foot = 58.04 gallons casing/anulus volume ling Fluid Lost	Vater Level TOC/Dat	(1) (1) 9m(1)9)	24 has 2 83	11 /2-1	V-8-6/1265	
allons Fluid Lost	Sant of thinton in thinli	22 G G	ئىتى (1834 1834 ئىلىنىڭ دارانى	6.53 on	llone/foot - 58 C	4 gellone casing/anulus volu
wester Lost	reet of water in wen Trilling Fluid Loct	N/		gallons		
ad Water Self gallons Total Purge Volume 287 gallon ong/Anulus Volume Measured By 55 Gallon Oram Surge Technique Agis / Jewes flump?  Paration: pH Meter Used: Beckman of 31 pH Meter pH 7.00 = 702 at 185 °C, pH 10.00 = 10.08 at 18.3 °C onductance Meter Used: IST Model 32 SA/ 2003  Standard 1913 jumhos/cm at 25°, Reading 1913 jumhos/cm at 182 °C onductance at 25°C Physical Characteristics (clarity, odor, sand content, solor)  Purge Volume Time Temp. °C pH Conductance at 25°C Physical Characteristics (clarity, odor, sand content, solor)  272 1317 1555 850 32.00 Standard, Grey Conductance at 25°C Physical Characteristics (clarity, odor, sand content, solor)  272 1333 155 850 32.00 Standard Conductance at 25°C Physical Characteristics (clarity, odor, sand content, solor)  272 1333 155 850 32.00 Standard Conductance at 25°C Physical Characteristics (clarity, odor, sand content, solor)  272 1333 155 850 32.00 Standard Conductance at 25°C Physical Characteristics (clarity, odor, sand content, solor)  273 1333 155 850 32.00 Standard Conductance at 25°C Physical Characteristics (clarity, odor, sand content, solor)  274 1333 155 850 32.00 Standard Conductance at 25°C Physical Characteristics (clarity, odor, sand content, solor)  275 1333 155 850 32.00 Standard Conductance at 25°C Physical Characteristics (clarity, odor, sand content, solor)	Purge Water Lost	NI	1		Minimum Purge Volu	ume 335 gall
Surge Technique Suis / Lower flower Surge Technique Suis / Lower flower Surge Technique Suis / Lower flower ph 7.00 - 702 at 185 °C. ph 10.00 - 15.08 at 18.3 °C. ph 7.00 - 702 at 185 °C. ph 10.00 - 15.08 at 18.3 °C. ph	Added Water	· (V/		•		
Surge Technique Kals / Lewer Pamp?  PH 7.00 = 702 at 185 °C, pH 10.00 = 10.08 at 18.3 °C  Conductance Meter Used: 185 °C, pH 10.00 = 10.08 at 18.3 °C  Conductance Meter Used: 185 °C, pH 10.00 = 10.08 at 18.3 °C  Standard 1913 umhos/cm at 25°, Reading 1913 umhos/cm at 18.2 °C  Purge Volume Time Temp. °C pH Conductance at 25°C Physical Characteristics (cliniv. odor, sand content, color)  181	asing/Anulus Volum	ne	78 04			
pH 7.00 = 702 at 185 °C, pH 10.00 = 10.08 at 18.3 °C Conductance Meter Used: 185 °C, pH 10.00 = 10.08 at 18.3 °C Conductance Meter Used: 185 °C, pH 10.00 = 10.08 at 18.3 °C Conductance Meter Used: 185 °C Model 32 50, 2003  Standard 1913 umhos/cm at 25°, Reading 1913 umhos/cm at 182 °C Physical Characteristics (clinic, odor, sand content, color)  Purge Volume Time Temp. °C pH Conductance at 25°C Physical Characteristics (clinic, odor, sand content, color)  131	-		•	-	Surge Technique	an / lower fund
181   1305   15.5   8.93   2240   514.4   6.04   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07   6.07	pH 7.00 Condu	tance Meter	Used: KI	Model 3	C, pH 10.00 =/ 2	
757 1305 155 892 2260 514 Fine in the second of the second	pH 7.00 Conduc Standa	= <u>708</u>   ctance Meter   rd <u>1413</u>	Used: KT	<u>Model</u> 3 n at 25°.	C. pH 10.00 =	umhos/cm at Physical Characteristics
1317 1555 850 37.00 Cloudy, bridge to 1 1328 1555 850 37.00 Cloudy Control 1338 1556 853 37.00 Cloudy Control 1338 1556 853	pH 7.00 Condu	= <u>708</u>   ctance Meter   rd <u>1413</u>	Used: KT	<u>Model</u> 3 n at 25°.	C. pH 10.00 =	Physical Characteristics (clarity, odor, sand content, colo
7 272 1317 155 856 57 0 Fre start Comment Comm	pH 7.00 Condu Standa Purge Volume	tance Meter delay	used: KT umhos/cn Temp. *C	Model 3	C. pH 10.00 =	Physical Characteristics (clarity, odor, sand content, cold
1333 156 883 32.00	Purge Volume	tance Meter delay	used: KT umhos/cn Temp. *C	Model 3 n at 25°.	C. pH 10.00 =	Physical Characteristics (clarity, odor, sand content, colo
	pH 7.00 Conduction Standa  Purge Volume  Initial 2577 (15) 272	Time	used: KT umhos/cn Temp. *C	Model 3 n at 25°.	C. pH 10.00 =	Physical Characteristics (chrity, odor, sand content, color (chrity, odor, sand content, color (chrity, of the fine property)
	Purge Volume  Initial  25.7  (15) 272	Time /305	used: KT used: KT umhos/cn Temp. *C	Midel 3 n at 25°.  pH  2.92	C. pH 10.00 =	Physical Characteristics (clarity, odor, sand content, color (clarity, odor, sand content, color (clarity), State (clarity),
	Purge Volume  Initial  25.7  (15) 272	Time /305	used: KT used: KT umhos/cn Temp. *C	Midel 3 n at 25°.  pH  2.92	C. pH 10.00 =	Physical Characteristics (clarity, odor, sand content, color (clarity, odor, sand content, color (clarity), State (clarity),
	Purge Volume  finital 257  (15) 272	Time /305	used: KT used: KT umhos/cn Temp. *C	Midel 3 n at 25°.  pH  2.92	C. pH 10.00 =	Physical Characteristics (clarity, odor, sand content, color (clarity, odor, sand content, color (clarity), State (clarity),
	pH 7.00 Conduction Standa  Purge Volume  Initial 25.7 (15) 272	Time /305	used: KT used: KT umhos/cn Temp. *C	Midel 3 n at 25°.  pH  2.92	C. pH 10.00 =	Physical Characteristics (clarity, odor, sand content, color (clarity, odor, sand content, color (clarity), State (clarity),
(غان ا	pH 7.00 Conduction Standa  Purge Volume  Initial 25.77 (15) 27.2 (30) 27.3	Time /305	used: KT used: KT umhos/cn Temp. *C	Midel 3 n at 25°.  pH  2.92	C. pH 10.00 =	Physical Characteristics (clarity, odor, sand content, color (clarity, odor, sand content, color (clarity), State (clarity),
mi	pH 7.00 Conduction Standa  Purge Volume  (mital 25.77 (15) 27.2	Time	used: KT umhos/cn Temp. *C	Model 3 n at 25°.	C. pH 10.00 =	Physical Charac (clarity, odor, sand co Cloudy, Grey 514-14 fine 1514 ('cady, Grey)
	pH 7.00 Conduction Standa  Purge Volume  Initial 2577 (15) 272 (34) 273	Time /305	at Used: IST umhos/cn Temp. *C  /57.5*	# 5	C. pH 10.00 =	Physical Characteristics (cliniv.odor.sand content.color)  Cloudy Stey wy  Ste Fine graves  Cloudy, Grey content.
arks: Later and State To technic - Station - S	Purge Volume  finnal  (15) 272  (30) 287  Final	7 02 ctance Meter rd 1913 Time 1305 1317 1333	Temp. °C	Model 3 mat 25°,  pH  2,93  2,50  Collecter	C. pH 10.00 =	Physical Characteristics (christ, odor, sand content, color Clandy, Grey wy State Fine was a content, color content, crey was a characteristics of the fine was a characteristics of the content of the c
	Purge Volume  Inmat  (15) 272  (30) 287  Finat  Remarks:	7 02 ctance Meter rd 1913 Time 1305 1317 1333	Temp. °C	Model 3 mat 25°,  pH  2,93  2,50  Collecter	C. pH 10.00 =	Physical Characteristics (christ, odor, sand content, color Clandy, Grey wy State Fine was a content, color characteristics (christ, Grey was a characteristics).

EP-62

# ESE ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. 7332 SOUTH ALTON WAY SUITE H-1 ENGLEWOOD, COLDRADO 80112-303/741-0639

	,
PAGE	OF

#### **BOREHOLE SUMMARY LOG**

orehole	EP-62		Well	34011		
	and Location RMA	Jutim 24	M.W. Instal	latine_Pro	ject Number	T44
rilling Compa	any Boyle Bro	Driller	B. Rosch		Rig Number_	Failing 500
	d(s)					
lize(s) and type	e(s) of bit(s)	tricme 12%	" Augen			
	neter 12/4" in.	cm.	`_ "	cm. to	61.25 ft.	cm.
	34375		.25 ft.	cm. to _	150.0 ft.	
sampling Meth	hods					
otal Number	Soil Sampling Tubes _					
otal Number	Core Boxes	8				
Number of Gal	llons Lost Drilling Flui	d				
Date/Time Star	rted Drilling 1	87 1257	<u> </u>			
	mpleted Drilling		٥			
Total Borehold				cm.		
Depth to Bedro		<b>5</b> ft		cm.		
Depth to Water		ft		cm.		
=	etermined By?	-				
	pleted as Monitoring V	Vell? No				
	outing Completed		905			
Depth of Trem		15				
Gallons of Gro		9				
Materials Use	0	20 t	Lacker Ho	0   600	م. تما <i>شما الم</i> ما	•
Comments		ground A	was			
Comments	7	TV-SU-S				
TAX - 11-2	to Contonial	(+) (+)			D.1. 0	116/87
	te Geologist	9/16/	47	· 3	E Daling	/ L = / R - L
	rout Settlement on _		<u> </u>	by <b>_</b>	AME DOV	
Amount of Gro		we will		· · · · · · · · · · · · · · · · · · ·		
	nen's from Ground Le					売 やくい
	wed by	70		<del></del>		K/J'S
Drill S	Site Geologist	1-19-			Date <u>-3/</u>	
						C-116

Bore	hole:_	<u>E</u>	P- (	<u> </u>		Well Number:}}
Dapth - Feet	Tube Number Tube Interval	Recovery	Sample Number	Sample Interval	Unitied Soil Classification	SOILS LOG Description
,	0 - 2.0	2/28			SN	Silty smo, 30% silt, fine-lomding gained soud, 1048 5/3, brown, dry, love to main dense, non plantic
3-	χο'-4.5'	1.92			Sm	sand vore 3/2 dark brown dry med dear low obstice
5	3 7 0 0	20,	70% 440- 64	r, 00. 1	3	Chypey 34mD, 40% chy, finite coain graine bond, 10YR S/4 yellowish brow, mounding dry, low plastic, calcaneous chyp? I I also appex 50%
7 ~ y .	1.0.2.4.3	105.	24.07	amy o	SM	Silty Sans, 20% Ailt, fine to coamer grained band, 1048 5/4 yellowish brown, dune, dry, non glootic, very colcanous
9 -	5	120				

Bore	hole:_		EP-	62		Well Number:
Depth - Feet	Tube Number Tube Interval	Recovery	Sample Number	Sample Interval	Unified Suil Classification	SOILS LOG Description
					ML	Silt, 20% fürgravier sourd, 1048 7/3, Very pale
11-	٠,020	- 42 C				brown, dense, dry, louplastic
12 -						Silty Sung, 15% Dilt, 104 R 5/4, yellowish brown, dence, drys, non plastic, colcanous
13-	7 9	13/20				
  4 -	20	21.			5L	grained sand, 1048 S/b, yellowich brown,
15-	8 %	1,5,		+		dence, d. moist, son glostic, colcanous
16.	1,8 11	12.0	1 20	300	2	
	.			9	]	
17-	9	120	3	3	4 4 1	
13	•					
19 -	10	22.0			Sm	Silty SAND, 15% Silt, fine to coarse grained
20		977				Sand, 104R 6/4 hight yellowish brown, dense, light moist, how plastic, calcareous

Dill Site Geologist: Anulo Ortalli la li Atralia Dire: 8/21/82 Reviewed Bv:__ Date: _

EP-62 Well Number: Borehole: Sample Number Somple Interval SOILS LOG Description 5m Silty Sano (su pg 2) 26 3 SC Clayer sano, 40% clay, fine to v. coarse graind and 104R 5/4 yellowigh brown, moist, dense, low platic, calcareous SAND incurrent to 75% 30

Dill Site Geologist: Auglo Ortelli luged in Aton Vario: 3/21/97 C-119 Reviewed Bv:_

Drill Site Geologist: The Ro Otelli leggly the temporale: [/21/87 C-120

40.

moist, madium dance, low plastic, for to weene quinc

SM Silty stwo, 20% wilt, fineto come your

C-121

ES E 7532 SOUTH A TON WAY SOUTH AT -0029

=P-62 Well Number: Borehole:_ SOILS LOG Sample Numi Somple Mer Description 6P 6 rawl (see 795) CL Clay, 40% sond, 5% growd, fin to come grained pand, fine gravels, 75 4 5/3 brown, Stiff, moist, medium plastic. SM Silty Sans, 40% silt, fint course yourd sand 10 PR' 5/3 brown, dense, moist, medium plasti 54. decreases to 1590, non plantic, sand give size decreases to finite nedim praired, 5% mice 56 3 bp Poorly Ground growls, fine grand, 30% and, 57-29 5 20 Sine to very coarse naind sand, 101R 4/1, dank grey, moist, dense 58 - ground size increase to coarse -colleo antop of hidroch 60 Claystone bedanck, 57 5/2 Olive gray

m =		<u>CO</u>		ucture/ dding	Hord.		rm.	Miner	alogy	Color	Tabluro / Grato Stro clot od gr	Lith,	Lith.	Description / Comments	
	101.		Angle		ness	10	20	Min		<b>A</b>	ciet ed gr .Qi io i	Chor.	Class	CM (Scole 1"= 1 (1)	
		**	- V		H	<del>'     </del>		-	1	w) <u> </u>	<del></del>	~	<b></b>		
- 1						##	###	4			<del>                                      </del>				
#	.	#	-	<u> </u>		###	##	1				}			
#	.	#		1		###	<del>+++</del>	7	1			1			
_ ţ	•					###	<del>         </del>	‡	1	1		1	}		
			-	<del> -</del>		<del>         </del>	<del></del>	1	1	1	<b>-1-1-1-1</b>	1	-	1 L \  \  \  \  \  \  \  \  \  \  \  \  \	
‡				ļ		<b>‡</b> ‡‡	+++	1	}	]		1		bedrock at 60.5' Puc to 62.0'	
#	. '			1		+++	111	4	l	1		1	] .	PUC to 62.0	
‡	•			ŀ		-111	4#	4				1		<b>-</b>	
‡						111	444	4	1	1	1 + 1 + 1	1	Ì		
7	-		-	Τ			7.7.4	4		1		1	-	1	
‡	•		1	1		111		<b>ゴ</b> .	١.	١.		4			
W.C.		<b> -</b>			344	+12	30)7	<b>1</b>	77	100	HO	62.	\$		_
#	:		1	MASIN				7	]	54	HIII	62.5	125	I	
‡		坤	1	1	++4		Ϊ₩	#				1	CS	· <b>I</b>	
13-	-	世	-	<del>                                     </del>				#	1	410		1	"-	1	
- 1		井	1	1				4	1	duk	11	1			
4	-	井	1.	+				╡		gry		1		<b>L</b> .	
- 1						41		4			<b>*</b>	1		1	
1,,,1			1	1 1		##		46		257		1	1	1)	
64-			-	T V				I.m	•	3/0		1	-	11	
1	<u> </u>			"	#			<b>₫ }™</b> !	-	ıı		1	1		
	<u> </u>	<b>         </b>	1 .	1			<u> -  </u>	<b>ゴ</b>	4	Jone L		‡	] ,	- [ lignidic chystone	
1	روها		1	1				╡	ļ	guy		1		1) 2.2. 2.2.	
	14	1-11-	1		<u> </u>		<b>!-!!</b> !-!	#	•	14 0	╵║┼┼┼┼	1		П	
<u>دی-</u>	-		1 -	<del>†.</del>	##		-#-	#		1		1	-	11	
	<b>†</b>	#	1	1	##		<b>! #</b>	Ħ	1,	1		#		1 1	
	-	<b>H</b> ‡	1	+			###	٦	0	]		‡	1	IJ	
	‡		1	ì		-		Ħ		]		1			
66-	‡	H	1		HIF	111:-	1-11-1	Ħ		1		4			
00-	<del>-</del>	H	1 :	T	F-  -		7777	4	1		<b> - - -</b>	-1	•	7	
	Ŧ		7	1	H	<b>     </b>	$\exists ( \exists$	Ħ			1117	4			
0	‡		7	+		##	1.11	Ħ	İ			1		4	
M	ļ.		7		F-11-	ΠF	<b>       </b>	Ħ		1	11-1-1-1	4	ļ	-	
15	‡	H	7		HH	##	$\Box \Box$	Ħ				7	ĺ	1	
67-	1	H	1 '	<del> </del>	H	117	H			<u> </u>	-	1	1	7	
67-	‡	H	7	1	FIF	111	<del>                                      </del>	-	"/	2/0		4		1	
[ .	╀	H	<b>]</b>		-71		+11-	∏ ₂ 90		1/40		7		4	
	Ŧ	H	7	Played	HF	111	##	يرون 🗆	.   `₁	614	<b>/ </b>	4			
88-	<u> </u>		3		H	#1	<del>                                      </del>	Ç(*)	٠٠٤ ر			7			
<i>\$</i> 8-	Γ	EH	}	T	HF	Hi	H	fis.[	<b>4</b> 7.0	M		3			
	Īη,		3		EIF	+	HF	$\exists \mathbb{N}$	45.	7					
	†狐	E	_	+				⊞*;		1	H	3		4	
l	1	<b>'EH</b>	4	1		ŦŦ	HF	⊞,₀‴	']: '	` [			-		
69-	<u> </u>		4	$\perp$		$\coprod$	111	1100	<u>.</u>		1	$\exists$			
'	<u> </u>	出	_		E	#[	HIF	ملمال 🗆	7					C-123	
	<u> </u>	出	∃	1	EIE	扭	1	<b>∃</b> ;Ҟ	(	•					
	+		4	+	H	#		<u> </u>	1		1	-		4	
1	†		}	1	- -	+[-]	-   -	-				$\exists$			
•	•		7	•	, ,,,				•	•	. • . •	. •			

. (*)



ESE, Inc.	COR	E LOG	<u>Ву _5</u>	<u> </u>	Date	8/	19/17	_ BORE	EP-b	<u>ک ۷</u>	Vell(s)	Page 3 of 1	
SOR H REAL	**	Structure/ Bedding ingle Desc.	Hord-	Perm. 1º 2º	Minera	alogy	Color	Green Stree	Lith. Chor.	Lith. Class	Description / Ca	ymments	i
		Made the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second			A		2.57	2	20% Sit / 78 % 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	es -	Siltinumes	C-125	)

7			' Şı	ructure/	- In	ford	ı. L	Per	m.	Mini	elogy	ایم	Tests	324	Lith.	Lith.	Description / Comments
9		U S	Angle	Desc.		0.64	HL	1• H	2°	Min		Cajar M G	Yealu Grade Clot a Clot I	9 91	Char	Closs	CM (Scale 1" = 150 11)
0		T		MAGIN	F	(E			IT				III.	H			claystone
	1			l .	E	IE	$\mathbf{H}$			1			肚	$\overline{H}$			
	Ī	$\blacksquare$		T	E		H							$\mathbb{H}$			
	<b>‡</b> .	#		1	E	#								##			
1 -	3	#	-	<b>†</b>	-	#	H			1			<b>  </b>	###		-	
	<u> </u>		}	$\perp$	E	HE	H		H	•			<b>!</b>	$\Box$		}	
•	Ŧ	#		+ *	-	II.				}							
	‡	1		10 1	-	#	Ħ			1		2.58	田			55	3 HOTZAWAZ
2-	1-		3	1717777	, F	1	Η.	<b>\</b> ‡	-	1		1/0				-	well comented
	1			Leon	E	$\mathbb{H}$	H			3		9144			•	1	
	<b>‡</b> .			وي ا		#		壯		}		<b>'</b>			. 6	١.	
	‡	##	17.	35/0	þ	#	1	壯		1		Ì		壯	590	l	•
3-	‡	##	<b>/</b> /	350	F	#	#	##	###	1			井	H	CLAP.	ł	
- ک	Ŧ			T	F	H	H			]		2672		H		-	†
	Ŧ				E	#	H	H	肥	3	}	4/0	F	H	15/0		<del> </del>
•	† †	#		†	-	#		╢╴	₩	†		ank	#	##	17,4		1
	‡	##		1	ŀ	#	<b>;</b> ;	44-	╂┼┼	‡		45	#	1	Litte		
14 -	<del>]</del>		\.\.\.\.\.\.	+-	E	$\Box$	11	1	H	3	1	] `	FIF	1	40%	-	
	数				E	+	$\coprod$	$\Pi$	H	Ξ.	1			$oxed{\mathbb{H}}$	Litter		
,	<b>1</b> /5			∔	þ	#	<b>!</b> :†:	#	#1	_				1#	CINSTS	١.	
	‡			}	F	+	1	#	╀	7		1	<b> </b>	#	1	}	
5-	Ŧ	$\coprod$	<u> Z</u>	<u> </u>	Ė	$\pm$	H	$\mathbb{H}$	詽	3				1	•	ļ	_
3	Ŧ	$\coprod$		Ţ	E	$\coprod$	H	#	$\prod$	3						-	
	ţ				þ	#		*#	╫┼	‡		ł		1		į	
	‡			.†	þ	#	#	1	<b>  </b>	7		1	++	1	2040	} '	•
	Ŧ	$\pm$	1 · \	1	F	#	H	7	111	7				- -	ረየግ	1	
76.	+	$\coprod$			-[	H	11	$\exists E$	NE	}		}	田	.TE	4-7	-	1
	‡		=	1-1909	<u> </u>	#		+	╢	3		İ	H				
	‡	##	1=	1	-	#	1	#	###	‡		}	-+- <del> -</del> - -	1		}	<u> </u>
	I		]-		2	11	1	11	旧				H	1	.3	1	
97.	-↓		<del>  -</del> -	-	ŀ			#	1	7			1		0	_	( Lithic conglownate ( Charter chiefs)
•	1	<b>∦</b> :∴	1-		-	1;	11	#	<b>∦¦∴</b>	-		}	1:			1	- samoh matri
	1			$\perp$	ł	1	-	긞	113	] .			- + +-	-		1	SAND
	1 0		1=/	اريبي		T   ++	11	<u> </u>	$\mathbb{H}$	]	١.			L	0	1	1 2 1. the court +
. ^	3.8	=	┨┈`	1 C"10 "	s	+4		1	11:	- 1	,,4			#	100		Gither conflowerate
59.	70	1	1-	24.0	•	1	11		11:	1				: <b>.</b>	00	-	
3	1	11=	]	4		- 44 - 4 - 4	$\ \cdot\ $			3		2.58	411	14	140%		SANDSTONE
9)	+	HE	1	+	}	· • •	+	1		-   X0	٠ ۱	410	14.	1	الميان ا	55	50% stillie (constin)
	Ì		‡	1	1	د ــــــــــــــــــــــــــــــــــــ		1	11	Qu^	13.	dak		;-	Huy	1	clasto (1")
59	+	1	1	4	}		.  †	1		-	.	(m)	1-4		1 1 4	'∤ .	<u> </u>
. •	1	:=	-		-	-+-+	- -	3	11	7	-	'	1-1		t-sun		
	Ī	-	]		Ī	- 4 · 4 4 · 4	刀	$\prod_{i}$	1	-1	. ~	1.			ן יייים		C-126
	1	11:	7	Ī	- 1		]]	1				1			]		
	1	11.	•	1	ı		11	11	31	, 1	1	1	1	1	1	1	1





®) <u>₹</u> .		See	ucture/ dding	Ha	rd-	Per	m,	Miner	ology	Color	Grain Sire	Lith.	Lith.	Vell(s) Page 7
SE H	U	Angle	Desc.	5	 H	ب ب	2* L	Min.	Hobil	M) G	.01 TO 10	Char.	Closs	CM (Scale 1":(1)
$\overline{}$			Massive	H						SY.				Claysions
Ţ		Ξ.	1000	E		田	莊		•	31				
#		‡		H	$\pm$					vegy			•	
121 丰		7		H						Juk	╟┼┼┼┼		}	}
T		] -			$\mp$	生		İ		ary			-	
‡	###	‡	{ }		+	$\square$		]		`				
Ŧ	Ш	] .		H	+									
. ‡		$\exists$			H									
2 +		<b>╡</b> −		H						ĺ			-	
Ī		3	1 1	$\Box$						ĺ				
‡		ქ -	t 1.		${\mathbb H}$								-	
ŧ		=	ال	H									}	
123		] -	-	H	$\pm$								_	
‡		#	ļ	H										_
Ť		] -	}	H			##				┞ <del>╽</del> ┼┼┼		_	
‡	Ш	] -	]											
2 <b>Y</b> +		1					1							
			this banded	$\coprod$			#	30%		2.5Y		124	35	Stroggeone, dim grained
<b>)</b> ‡		-	DENUTO		$oxed{oxed}$		H	لمعدد	y Park	3/0		State Const		gim chaines
1		7	}	H		#	##	age to		اوربر عمله		True		·
25-		] _		$\Box$				7	<b>)</b>	45				_
•		4	·	H				Horle	1					
Ī	Ш	∄ .	L								<del>╺</del> ╁┼┼┤			
‡		<b></b> -	-بردته، لا-							:			-	
<u>, ,                                  </u>		] _	<u> </u>	-			#							my 1: Hic clasts
72.		]	MOSSIM	H						<u></u>	│┢┷┷┩ ┞┪╌┼┷╸			
‡		‡	١.	H						3/1			c5	Claystone
7		-	1		#		1			3/1			-	_
Ţ		3	1 1	E	1					gry				
127		╡ -	-							10		50/-	-	
1	曲	$\exists$		+	+		<b>         </b>					5% oilt		
+		- 1	+	E	Œ								-	ļ
- ‡	<b> </b>	‡			-									
*y+		3 -	- 1				<b>\</b>		,	}			_	
<b>†</b>		4		+			Æ							-
‡		-	+	-+		-   -	+			1			.	
1	E	3	1				#	]			<del>                                  </del>			
25 🛨		╡ _	L	E										
· ‡	#	<b>,</b>	}	1	#	┩┿╍┷╌ ╋╼╼╼╸		,			V:		-	C-129
1		] .	L	H	1				•		+ +			
1	17	-{ ``	Į	11-	Щ	1		]	}	l	1		-	1

<u>.</u>	_		RE LO	ucture / dding	By	Perm.	Mina	مامم		BORE	Lith.	Lith.		Description/Comments
<b>E</b>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	400	Angle	dding Desc.	0683	10 20	Min	Hobit	Coler M G	Yestere / Green Stre Clat ed er MM OI 1.0 IC	Char.	Class	٠,,	(Scale 1"=
<u>ا</u> ست.		Ħ		hase . w.				1 1	() ()		~	cs		155010 1 1
•	1						1		311					.2344-
	F	$\coprod$					=		١.			.	1	
131		#					=		guz					
, _, _				_			7					-	1	
1												1		
3		丑	1				7					-		
122		#					$\exists$				•			
132-				_			4			┃ <del>┤╍</del> ╍┢╼╋╼┫		-		
1		$\boxplus$					3							
1			1	-			1					-		
<b></b>		H		],			=					1		
/33-		田		-v								-	•	
3							3						_	
			1	-								-		
134							3							
134				Massit		<b>V</b> ++#-			SY	1+++1	1341		c) l	tstane
							3		411				, ,	
		$\boxplus$	7	- 1					dark	- +++		-		
135				`			]		gry					
رو. ا	-		7	-					10	1		-		
		-111		\			<u> </u>							
3			1	-					İ					
136		<b>-</b>		1			3 I	'	1.					
		田	7	- Y			1		1	-1++-		-		
				ĺ			] [			#				
			1	•								•	_	
177			İ	_			]			1				
132		田		oryonca		\ <del></del>					137'	- ((		
, ;		H		Silling .	-11-		3 1					55	34	nosome, din gra
		田	1 1	Property.			╡					-	00	issimal v. then
138			•	السم			]						بيار	un of coayston
70-		田	1	Billings			1			-		-		• •
1	}	用	1	٠,			]			三三				
		田	• †	impula			]					-		•
139_		H		My Ma			]							
717		日		Par, A	-1+					-		-		C-130
				المعلى المعلى الم المعلى المعلى الم	1]]		]	3						V 199
1	,			- 100		<u></u>	1	ŀ	'}	-1		4		•

_	Inc.			uetimo /	Ву		Date 🙎	1	Testwe/			
•	E Par	Janes U S	Be Angle	ucture / dding Desc.	Hord- ness	Perm. 1° 2°	Mineralogy Min. Hobit	Color	Green Stre	Lith. Chor.	Lith. Closs	Description/Comments CM (Scale 11'3
141-			<i>   </i>	thin bands							<i>5</i> S	Strostone  Strin busho of congression
142-	+		_	- L							-	1)
143-			-	Mesa W Slock Street			-   -	57 3/1 20. 2 20. 2			CS-	Claystone
144	+		-	fishe				7				
145		7.		Monoria				257 370		APH CO	-	
149-			-					gard day			-	C-131

		•••		
Frontier Logging	ging	A AUX	Avx 20 1987	
		3		13
している。		, material	150	
F P-62	6	<u>'1</u>	376"	•
PMA			62 FT .	0135 20805
Arone Court	COLORADO	spen !!	er + native mud	Q)
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	3	11		W. Linton
443	lating Lating		Grand Lovel	Lakewood
	Want bas san sam			
			3	
TO LOWE 1 AL PT		8		6
		21	-	
200 Scale: 20	#			•
7 . 15	æ	n n	£	*
	-	*	Ten.	<u> </u>
751				
		Giograph Susset:		a contraction
×42 %×1				•
4 - 3 - 3 - 5		fraction (Colored		
		200	,	Jrinds
		Temperature	*	
Nestron A				en europe
1		Oppure		
IO MULTINE		Azmad		3% B
C		Ins Vetal	Survey Depth	
:- 13		11111	11.1111.1	
3 2				









### WELL CONSTRUCTION SUMMARY

Borehole Ep. 64.7/	Well 34011
Project Name and Location	Project Number TW /087
Drilling Company 2010e 200 Driller.	Zon Carries Rig Number 72
Delline Methodia)	
Rolling week	
Borehole Diameter <u>127</u> incm	0 Ncm. tocm.
7% in	65 ft cm. to cm.
Sise(e) and types of Bit(e) 12/1 Blade Bit	Sampling Method(s) Previous Cond
Size and Type PVC	Dete/Time Start Drilling /0/6/87 0805  Dete/Time Finish Drilling /0/6/87 /358
Total Borehole Depth (03.5 ft	Date/Time Start Completion 10/6/85 Nie
Depth to Bedrock 60.6 ftcm.	
Depth to Water ftm.	Materials Used
Water Level Determined By	Plain PVC 93,35°
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	Slotted PVC
Length of Screen  Total Length of Well Casing & Letter 104.2 ft. 104.2 ft.	Bentonite Granular 2 50. (100/d)
A	
PVC Stick Up	
Debris to postolis of octons	
Depth to Top of Screen	. The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the
Depth to Top of Sand	water added ouring drilling
Depth to Top of Bentonite	. Total Gallons of water added
Drill Site Geologist A.S. Stello	Date
	Count Pari - 10/8/81 Dew & Jam
Date/Time/Personnel Internal Mortar, Coment Ped,	, and Weep Hole Installed Tuleran Mary to work hade suffer Deme
Date/Time/Personnel Casing Painted 10/4/5	
Date/Time/Personnel Numbers Painted 10/9/9	7- 1415 NEW 15MP
Materials Used 20 Bugs Sucrete.	
Top of Protective Casing to Top of PVC . 23	ftcm. COMMENT/NOTES
Top of Protective Casing to Weep Hole 1.6	ft,cm.
• • • • • • • • • • • • • • • • • • • •	ftcm.
	<u> ncm</u>
Top of Protective Casing to Ground Level	***
Reviewed By	Date 3.1/2 37
Drill Site Geologist	C-136

Well: 34611

Depth-Feel Sed/Back Trye	Well Completion	Description
	General Level	\$# 17 Stal : 20' Asur Ground to 65.0' Below Grown 4" 17 Jan 40 742: 1.7' Asur Grown 102.5' Below Grown
30 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - CS 78 - C	1.17 Tr. 11.22 Tr. 21.28 Tr. 31.38 Tr. 41.35 Tr. 51.42 Tr. 71.61 Tr. 71.63 Tr. 71.65 Tr. 71.65 Tr.	CENTRALIZER & \$2.19'  CENTRALIZER & \$2.59'  TOP OF BRITISHTR ! The'  TOP OF JURISH'S \$7.0'  TOP OF JURISH'S 92.0'  BOTTOM OF JURISH'S 102.0'  TO: 102.5'

Drill Site Geologist: A.E. A.E.

			-151	٠
SHEET	/	OF	3	5

•		Bore EP-6	201	Well 34011	•
ProjectRun	1 ON . 12				15K 44
Date(s) Developed	10/1	4/27		Date Installed	12/7/47
Personnel (Name/Com		LW IESE		Well Diameter (I.D.)	
		V IFSE			2 4 in. U 11. 10 45 ft.
Rig Used FIE	WEN St.	AVICE TRUCK		7	7 in. 65 11. 10 103 5 11.
Pump (Type/Capacity	GRUND	.45		Screen Interval	52 Oft. 10 102 ft.
Bailer (Typo/Capacity					ft. toft.
Water Source	ZIMA	<u> </u>		Casing Height (Above (	
Measured Well Depth	TOC	(Initial) 104	<u>65</u> (t.	Bottom of Screen (Belo	w G.L.). 102 ft.
		(Final) 104.	<u>66 ft.</u>	,	
Water Level TOC/Date	/Time (Initi	ial)	1.10.44.1	בון /דע	
	(afte	<i>تىلى (</i> r 24 hrs.	5/12-1	5-37/135/	
Feet of Water in Well_			_		gallons casing/anulus volume
Drilling Fluid Lost	אוא		ailons	* One Purge Volume	allons gallons
Purge Water Lost					ne 3/6. 2 gallons
Added Water	Ψ,				330 sallons
Casing/Anulus Volum	الكــــــــــــــــــــــــــــــــــــ	3.46	sallons	Volume Measured By	55 CHILLE DISUNS
		<b>3</b> 4	> /	Surge Technique	21188 /18-18,2 A11719
Calibration: pH Met	er Used:	GEORIAIN	J. 2.1	SN CISAIS	10 / P
		<u> </u>			10 13 at
				E 33 M LA P. 3	4 C
Standar	d <u>/4/3</u>	umhos/cm	at 25°,	Reading 10:0	_umhos/cm at°C
Purge Volume	Time	Temp. *C	pН	Conductance at 25°C	Physical Characteristics (clarify, udor, said content, color)
initial				460 6, 130-6-	stantisted we charte gray silt.
U Gal.	1156	122	11.73	550 0 254	no ceta-
ايركن	1247	14.2-	10.94	330 GR 15.0 E 340 CF 23°C	cloudy up down of any with
lov al	1501	19.7	830	100 12 61 25 62	Stifferly (bush of exchan
107 gal	1527	13/	9.35	380 8 5 Li	Solvery or bear sett
	·				
<del></del>			<del></del>		
Final		†			Din't
		L	<u> </u>	Sanglepair + 11	OF ( HOLL + EL THELEN)
		<b>\</b> - ~ .			Pruns : 105) 19
Romarks: In Tiel			14		C. Carlotte
sychona it politists yes your			1:16	Sind : 14 / 1	Strain Strain Strain Strain
٠٠٠ ٢٠٠ ١١٠٠ ١١٠٠ ١١٠٠	,				114187
1 fungo 111 = 50	466 ( Casing	ر.د،	Collected	d by	Suggeture Jale
	77 ( Same)	F114 0 113	Checked	by	2 - C-138
, I	24 411	- <i>u</i> s		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Signature
wasered Several th	ing is 3	Binime &	ومعالفة ماداء		

		۔۔ جوکیہ
SHEET	2_UF	_3_5

11		Bore EN- W	<b>←</b> ∪(	Well 34011	
Project	eun o	N - PUST		Project Number	7.XX 44
Date(s) Developed	10/1	5 87		Date installed	10/7/87
ersonnel (Neme/Com)	pany)	w / Fie		Well Diameter (I.D.)	
		WIV /ESE		Anulus Diameter	/21 in. 0 ft. to 65 ft.
ig Used EE W	re aroued	TRUCK			13 in 65 ft. to 133.5 ft.
ump (Type/Capacity).				Screen Interval	96.0 11. 10/02 0 ft.
lailer (Type/Capacity).					
Vater Source				Casing Height (Above	3.L.)
Assured Well Depth		(Initial) 104	<u>6.6.5</u> ft.	Bottom of Screen (Belo	w G.L.)
•		(Final) 144	<u> </u>	1	
Vater Level TOC/Date				/ 1113	
	(after	24 hrs.) 🚅		15287 / 1351	
eet of Water in Well_	77.27	_n.x <i>e.u</i>	53		gallons casing/anulus volume
Drilling Fluid Lost			allons 4	One Purge Volume	65.74 gallons
urge Water Lost	N, 1+		gailons	Minimum Purge Volur	me 3/6, 2 gallons
Added Water	ø		gailons	Total Purge Volume	730 gallons
Casing/Anulus Volume	50.4	<u>′</u> [	gailons	Volume Measured By	55 Une. Dilward
				Surge Technique	RAISE/LUISE RUNN
Calibration: pH Mete	r Used:	BEKMAN	\$1 21 Spe	UIS\$\$3	•
pH 7.00	- 7:00	at		C, pH 10.00 =	2.6° at 9.7 °C
•	ance Meter		I mudé L	- 32 515 # 2- 1	N: 2003
Standard	1	3_umhos/cm	A1250	Dandles /////	
Purae Volume	Time		,	·	
Purge Volume	Time	Temp. °C	рН	Conductance at 25°C	Physical Characteristics (clarify, odor, sand content, color)
Purge Volume	Time 1039		,	·	Physical Characteristics iclarity, udor, sand content, color)
		Temp. °C	рН	Conductance at 25°C	Physical Characteristics (clarify, odor, sand content, color)
initial /0'7	1039	Temp. *C	pH 8.90	Conductance at 25°C	Physical Characteristics iclarity, odor, sand content, color)  partly clearly partly color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, c
initial /0'7	1039	Temp. *C	pH 8.90	Conductance at 25°C	Physical Characteristics iclarity, udor, sand content, culor)  partly clearly  partly clearly
inital /0'7	1039	Temp. *C	pH 8.90	Conductance at 25°C	Physical Characteristics iclarity, udor, sand content, culor)  partly clearly  partly clearly
inital /0'7	1039	Temp. *C	pH 8.90	Conductance at 25°C	Physical Characteristics iclarity, udor, sand content, culor)  partly clearly  partly clearly
initial /0'7	1039	Temp. *C	pH 8.90	Conductance at 25°C	Physical Characteristics iclarity, udor, sand content, culor)  partly clearly  partly clearly
Initial 107	1039	Temp. *C	pH 8.90	Conductance at 25°C	Physical Characteristics iclarity, udor, sand content, culor)  partly clearly  partly clearly
Final 107	1038	Temp. •C	PH 8.90 8.06	Conductance at 25°C	Physical Characteristics iclarity, ador, sand content, color)  partly classic,  partly classic,  partly classic,
Initial 107	1038 11 63	13.6 (C.Z.	pH 8.90 8.46	Conductance at 25°C /oo?  15°2	Physical Characteristics (clarity, odor, sand content, color)  partly characteristics adv.  partly characteristics adv.
Final 107	1038 1153	13.1 10.2  13.1 10.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11	PH 8.90 8.006	Conductance at 25°C  100?  152  Conductance at 25°C  100?	Physical Characteristics iclarity, ador, sand content, color)  partly clausic,  partly clausic,  partly clausic,  21/1000
Final  Romarks: Josh 1	1038 1153	13.6 (C.Z.	PH 8.90 8.06	Conductance at 25°C  100?  152  Conductance at 25°C  100?	Physical Characteristics iclarity, ador, sand content, color)  parthy charicy and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and parthy clarity, and part
Final  Romarks: Twik.	1038 1153	13.1 10.2  13.1 10.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11.2  11	PH 8.90 8.006	Conductance at 25°C  100?  152  152  1by Alac	Physical Characteristics (clarity, odor, sand content, color)  partly classic, adv.  partly classic,  partly classic,  7 and 2 5 5 12 15 17

## ESE TOURONMENTAL SCIENCE AND ENGINEERING, INC. 7332 SOUTH ALTON WAY SUITE H-1 ENGLEWOOD, COLORADO 80112-303/741-0639

_	157
SHEET 3 OF	<u> </u>

rojectR		Bore		Well 34011	
· · · · · · · · · · · · · · · · · · ·					mu yy
ate(s) Developed	10/27/			Date Installed	10/7/87
ersonnel (Name/Cor	mpany)	Dew 1865	· · · · · · · · ·	Well Diameter (I.D.)	
		WIN /ESE		Anulus Diameter	(4 Act 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.
ig Used		SERVICE TR		7	13 in. 65 11. 10 (63 -511.
ump (Type/Capacit)	y GRIM	105 / 266A	<u> </u>	Screen Interval	72011. to 102.011.
ailer (Type/Capacit)		N/A			ft. toft.
ater Source	Rong			Casing Height (Above C	
teasured Well Depti	n TOC	(Initial) 64.		Bottom of Screen (Belov	w G.L.)'ft.
		(Final) 1611.	<u>66</u> 41.		
eter Level TOC/Dat		,	· · · · · · · · · · · · · · · · · · ·	-87/1117	
		r 24 hrs.)		15-27 /1351	
eet of Water in Well				illons/foot = 63.24	gallons casing/anulus volume والمادية المادية
rilling Fluid Lost _				One Purge Volume	
urge Water Lost	-4		galions	Minimum Purge Volum	<b>~</b>
dded Water			gallons	Total Purge Volume _	330 gallons
asing/Anulus Volum	ئگــــــ ۳۰	· 4C	gallons	Volume Measured By	
		77			ISE LOWER PUMP
	ter Used: 0 =	BACKEMAN		۲۰. pH 10.00 = <u>/و</u>	0:67 at 19:5 •C
Standa Purge Volume	rd /4/2	umhos/cn	pH	Reading /4:2	Physical Characteristics (clarify, odor, sand content, color)
Initial 1.//5°		14.4	9.21		(clarify, odor, send content, color)
Me-AMA	1522	<i> </i>			
44.5			1.0.	-457 985	Durty cloudy
145 4502	1532	14.9	4.01	<del>437</del> 985	Mosing clear
A: 🚈 ' -	1532	14.9	<del> </del>	437 985	Mosily clear
A: 🚈 ' -	1532	14.9	<del> </del>	437 995	Mosity clear
A: 🚈 ' -	1532	14.9	<del> </del>	437 995	Mosily clear
A: 🚈 ' -	1532	14.9	<del> </del>	437 995	Mosing clear
Final			4.01	379	- Dew
450m			4.01	16.60 isnet:	- Dew
Final			4.01	chiler isnes :	- Dew
Final			4.01	379	- Dew

		مسو
IJ		- 5
SHEET	OF	

	W-POST	•					
-(-) Passalamad /	rolect RMA ON-POST			Project Number			
ersonnel (Name/Company) WD / 1555			Date Installed				
			Well Dinmeter (I.D.)				
In Used Well Service Truck  ump [Type/Capacity] ISCU  siler (Type/Capacity)  vater Source & m  leasured Well Depth TOC (Initial) 104.65 ft.				Anulus Diameter 4	1n2_n. ton.		
				Screen Interval  23: _in			
				Casing Height (Abova G.L.)			
			65 11				
		(Finel) Last.		Dattern of Date on (Bare	W 0131		
ter Level TOC/Date	o/Time (Initia	1 51.0/	2-10-87/	1053			
				6: 27. 33/10-14-37/1			
				Ionalfoot - 2855	gallons casing/anulus volume		
lling Fluid Lost			allons	One Purge Volume	6.3.24 gallons		
rge Water Lost	عميرة المستورية البياد		allons	Minimum Purge Volun	ne 3/6. 2 gallons		
ded Water			allons	Minimum Purge Volume	na <u>3/6. 2                                    </u>		
ded Water			allons	Total Purge Volume	730 gallons		
ded Water sing/Anulus Volum	10 <u>50</u>	46	allons allons	Total Purge Volume Volume Measured By			
ded Water sing/Anulus Volum libration: pH Met pH 7.00 Conduc	er Used:	3eckman  Beckman  Used: Dec	allons allons	Total Purge Volume Volume Measured By Surge Technique  5//	730 gallons  53-104  15 1111  14 at 13 1 00  55 YSE \$52		
ded Water sing/Anulus Volum libration: pH Met pH 7.00 Conduct Standar	er Used:	3eckman at _3 Used: <del>Dec</del> _umhos/cm	allons allons  2/ 4/ 4/ e1 25°,	Total Purge Volume Volume Measured By Surge Technique  SUN (1555)  C, pH 10.00 = 10  Reading 1067	730 gallons  55-104  12 1104  12 12 12 12 12  12		
ded Water aing/Anulus Volum libration: pH Met pH 7.00 Conduct Standar	er Used:	3eckman  at Used: umhos/cm  Temp. °C	allons allons	Total Purge Volume Volume Measured By Surge Technique  5//	730 gallons  53-104  15 1111  14 at 13 1 00  55 YSE \$52		
ded Water sing/Anulus Volum libration: pH Met pH 7.00 Conduct Standar	er Used:	3eckman at _3 Used: <del>Dec</del> _umhos/cm	allons allons  2/ 4/ 4/ e1 25°,	Total Purge Volume Volume Measured By Surge Technique  SUN (1555)  C, pH 10.00 = 10  Reading 1067	730 gallons  si / yer , yer  / at 13 / ec  whosemat 14 - ec  Physical Characteristics		
ded Water  sing/Anulus Volum  libration: pH Met pH 7.00 Conduct Standar  Purga Voluma	er Used:	Jeckman at _3 Used:	ellons allons  ### 27  #### 25°,  ###################################	Total Purge Volume Volume Measured By Surge Technique  SUN COSS  G. pH 10.00 = 10  Reading 1067  Conductance at 25°C	TSC gallons  SS Jack  (\$ 1,040 jumps  12		
ded Water  ing/Anulus Volum  libration: pH Met pH 7.00 Conduct Standar	er Used:	3eckman  at Used: umhos/cm  Temp. °C	ellons allons  #2/ #// el 25°,	Total Purge Volume Volume Measured By Surge Technique  Silvi Crisss  C, pH 10.00 = 10  Reading 1067  Conductance at 25°C	730 gallons  signation  (signation		
ded Water aing/Anulus Volum libration: pH Met pH 7.00 Conduct Standar Purga Voluma	er Used:	Jeckman at _3 Used:	ellons allons  ### 27  #### 25°,  ###################################	Total Purge Volume Volume Measured By Surge Technique  SUN COSS  G. pH 10.00 = 10  Reading 1067  Conductance at 25°C	730 gallons  signation  (signation		
ded Water aing/Anulus Volum libration: pH Met pH 7.00 Conduct Standar Purga Voluma	er Used:	Jeckman at _3 Used:	ellons allons  ### 27  #### 25°,  ###################################	Total Purge Volume Volume Measured By Surge Technique  SUN COSS  G. pH 10.00 = 10  Reading 1067  Conductance at 25°C	730 gallons  signation  (signation		
ded Water aing/Anulus Volum libration: pH Met pH 7.00 Conduct Standar Purga Voluma	er Used:	Jeckman at _3 Used:	ellons allons  ### 27  #### 25°,  ###################################	Total Purge Volume Volume Measured By Surge Technique  SUN COSS  G. pH 10.00 = 10  Reading 1067  Conductance at 25°C	730 gallons  signation  (signation		
ded Water aing/Anulus Volum libration: pH Met pH 7.00 Conduct Standar Purga Voluma	er Used:	Jeckman at _3 Used:	ellons allons  ### 27  #### 25°,  ###################################	Total Purge Volume Volume Measured By Surge Technique  SUN COSS  G. pH 10.00 = 10  Reading 1067  Conductance at 25°C	730 gallons  signation  (signation		
ded Water  ling/Anulus Volum  libration: pH Met pH 7.00 Conduct Standar  Purge Volume	er Used:	Jeckman at _3 Used:	ellons allons  ### 27  #### 25°,  ###################################	Total Purge Volume Volume Measured By Surge Technique  SUN COSS  G. pH 10.00 = 10  Reading 1067  Conductance at 25°C	730 gallons  signation  (signation		

olect <u>RMA</u> Ite(s) Developed	ON POST				· L/ L/	
ite(s) Daveloped/				CAOLOGIA CANDAL	<u> </u>	
Pate(a) DaveInped 10-11-87  Personnel (Neme/Company) WY /ESE  KISP/ESE  Rig Used Well Scruics Truck				Date Installed 10-7-5 7  Well Diameter (I.D.) 4 5 in 6 ft. to 65-7  Anulus Diameter 125 in 65 ft. to 65-76		
		ruch			92 N. to 102 N.	
imp (Type/Capacity)				Screen Interval		
tilet (Type/Capecity) latet Source <i>R.M</i>			-	Casing Height (Above G.		
lessured Well Depth		(Initial) 104	J. Gar	Bottom of Screen (Below		
seemed well Dubin	100	(Pinel) 124		Bottom of Scient (Dalow	(0.0.)	
ater Level TOC/Date	filme (Initia)	27.38	10-14	- 87 /11/3		
	(after 2	4 hrs.) 61	75/5	12-15-37 /1.	35/	
et of Water in Well			3 gall	ons/foot - 4-5:21/	zellone casing/anulus volume	
rilling Fluid Lost				One Purge Volume	S 3 2 W gallons	
urge Water Lost	<u>م</u> بیر		allons	Minimum Purge Volum Total Purge Volume	e <u>i/C 2</u> gullons	
Purge Water Lost				Total Purge Volume	E'ai gallons	
				Volume Messured By Saint Active		
'ng/Anulus Volum	0 200	<u>//</u>	allons	Volume Measured By _	Sa die Belline	
'ng/Anulus Volum	19 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	ch vel. = 12,7	allons ra	Surse Technique	se & leader was many	
'ng/Anulus Volum alibration: pH Met pH 7.00 Conduc	er Used: _3 - 7.05 tance Meter I		. N; 2 1.55•c [ #26	Surge Technique <u>アピー</u> リー・シャー・ジング C. pH 10.00 = <u>プロ</u>	se therefore we many	
Ing/Anulus Volum Falibration: pH Met pH 7.00 Conduc	er Used: _3 - 7.05 tance Meter I	at! at! Jand:Y5	. N; 2 1.55•c [ #26	Surge Technique <u>アル</u> 1 SN ロミュ C pH 10.00 = <u>/</u> C	25 at 12.7 of	
ing/Anulus Volum Calibration: pH Met pH 7.00 Conduc Standar	er Used: 3 - 7.05 tance Meter I d 1412 Time	etat	. /\; 2 \(\frac{1.75}{5} _{\cdot 0}^{\cdot 0}\) \(\frac{1}{25}^{\cdot}\),	Surge Technique アル シャ ンパシュ C. pH 10.00 = パロ Reeding パリラ Conductance at 25°C	13° 8 (2.13° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23° 1.23°	
'ng/Anulus Volum  salibration: pH Mei pH 7.00 Conduc Standar  Purge Volume	er Used: _3 - 7.05 tance Meter I d _1413 Time  0854	Jand: Y5umhos/cm Temp. *C	M; 2 1	Surge Technique AND SIV WISS  pH 10.00 = ACD Reading 1413  Conductance at 25°C  1052	umhosicm at	
Ing/Anulus Volume alibration: pH Met pH 7.00 Conduct Standar  Purge Volume Initial 2/6	er Used:	Jand:	PH 7.86	Surge Technique AND SIV 0153  pH 10.00 = 1053  Reading 1413  Conductance at 25°C  1052	umhos/cm at 15 of  Physical Characteristics (classic, minr, sand content, color)  Very Clever	
'ng/Anulus Volum  salibration: pH Met pH 7.00 Conduc Standar  Purge Volume	er Used: _3 - 7.05 tance Meter I d _1413 Time  0854	Jand: Y5umhos/cm Temp. °C	/ /3	Surge Technique AND SIV WISS  pH 10.00 = ACD Reading 1413  Conductance at 25°C  1052	umhos/cm at 12.7 of  Physical Characteristics felarity, pilor, sand content, color)  Very Clever  Stem re.	
Ing/Anulus Volume  Calibration: pH Met pH 7.00 Conduct Standar  Purge Volume  Initial 2/6	er Used:	Jand:	PH 7.86	Surge Technique AND SIV 0153  pH 10.00 = 1053  Reading 1413  Conductance at 25°C  1052	umhos/cm at 12.7 of  Physical Characteristics felarity, pilor, sand content, color)  Very Clever  Stem re.	

EP-65



	. )
PAGE	OF

#### **BOREHOLE SUMMARY LOG**

Borehole <u>EP65</u> Well	
Project Name and Location MW (not Matin	project Number Tuk 44
	ach Rig Number Taking
A.*	Catedy
Size(s) and type(s) of bit(s) _ 776 " Mc pol , 375" blad	
Borehole Diameter $\frac{7\%}{3\%}$ in. cm. $\frac{0}{40}$ ft.	cm. toftcm.
Sampling Methods Continuous core	
Total Number Soil Sampling Tubes	
Total Number Core Boxes	
Number of Gallons Lost Drilling Fluid	
Date/Time Started Drilling 8.487 0741	
Date/Time Completed Drilling 870.87 (208	
Total Borehold Depth 150 ft.	cm.
Depth to Bedrock 34 ft.	cm.
Depth to Waterft.	cm.
Water Level Determined By?	
Borehole Completed as Monitoring Well?	
Date/Time Grouting Completed 9:10:4 3 0905	
Depth of Tremmie Pipe	
Gallons of Grout /00 gals.	
Materials Used 16 bags coment, No gals, water	c. They be truits
Comments Itale conved to surface	
Comments	- I ALL SHOULY BY
Wellsite Geologist CD Keus on	Date 3.11.37
Checked for Grout Settlement on	by
Amount of Crout Added	
All Measurements from Ground Level	
Reviewed by	Date
Drill Site Geologist	C-144
	(i = 1 m m

 $(\mathbf{r})$ 

Borehole: 13.65 Well Number: SOILS LOG Description ML Sondy-sit, ~ 10-15% v. f.gr. round, 10 VR 5/2-3, graych. brown, non-plan, med. donce, dry, allownim. At 3.0' slagey - selle ~ 20.30% slag 15 1/2 5/3, brown, mon-plus, dense, dry, alluvuim. At 4.0°, clary fine sundo, ~ 3.7. along, 10 VR 5/4, yuch brown, slightly plan, stiff, slightly most, allumine.

Dirli Site Geologist: A State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State

Borehole: KP-45 Well Number: SOILS LOG Description MUNSELL COLORS Me Claying for sands, N 30.45% clay, ~30% of gr. colecus sands, 10 VR 6/4 light youth bin, mottled w/ 10 VR 8/1, white, slightly plan, stiff, slightly minist, alloweum. At 8.0', clayer fine souls, perount clay decreases -to ~ 10-15%, 10 yR, 5/4, ywoh brown, non-plus, bosse, moist, allowim. At 10', clary fine sunls, ~ 15-20% Clay, ~ 20-30% silt, 10 YR 5/4 ywoh Brown, V. slyht ples., soft, moist, ellweim.

Drill Site Geologist: N.F. Entrato Date: 9/16/57

Reviewed By: Date: 1/11/17

Borehole: FP . 65 Well Number: Unified Soil Classification SOILS LOG Description MUNSELL COLORS 12 NX ML At 13.0', clayer for souls, 20% clay, 10 YR - 5/6-8 ywon. brown, v. slight plan, soft, moist, 13 CL Gravelly, rondy-clay, ~ 25% gund (14 dia),
30% vily sand, 10 YR 5/3-4, brown,
med plus, med still, moist, allumin. 7 20% clay, 30% for muly sent 10/ 5/46 SP Gravelly - souls, ~ 30-1/5% grand (1/4-1/2" dia),
fine Smed , souls, 10 4.5ft, gust brown
non-plas, lorse, slightly moist, allumin OF BURING LUG END Reviewed By: Date: 9/16/5

mox) 3	c _	4	Str	ucture/ dding	Hara		Perm	<u>`</u>	Ainero	ology	Color	Grain	See	Lob.	Lith.	Description / Comments
	F 735	₩ U. 5		Desc.	ness S	н	1•   H L	2.	Min.	Habit	M G	C1 0 1	20 00	Char.	Closs	CM (Scole 1"= 2 (1)
		Ħ			竹			$\Pi$		(	$\mathcal{D}^{\circ}$		<del>-</del>		*	bedrate (claystone) at :
	[		}		-  I.	H		田		ļ		H-I	$\blacksquare$			drill fest casing to 40
		#	-	-		<del>   </del>	71	++1					++1		-	Will 134 0-3114 10 10
		-11	1			<b>† •</b> † • †						-	++1			la seina lus se as se
40-			}	<u></u>	+++		+	111								caring begins at 40"
•				Gucs.			1		٠.٥٠	(min	1.54		$\mathbb{H}$		CL	CLAYSTONE
	-		<del> </del> -		11	<b>†   </b>	#1			(MR. 1			-		. ا	
j			]—	1-3	HIE				64		ulu					-
42-	3	#		<b>∟</b> '					Polls		due		#		_	
' '	3	##			-		##				youlse					
3			] .	L			$\exists I$			'					] _	
					F			$\coprod$				M:			_	I da i ama como reconse
		<u> </u>	<b>!</b>			<u> </u>		出	1				14			Note: poor core recover
44-			] -	<del>-</del>	17	-   :	- 7	$\Box$							-	constacts are as accurat
		i E	]—													conducts are as accurate as possible with this
	7-	-	<b></b> -	t	+	-		出				- 1		ı	-	urnatic core
	4	-  -	<del> </del> -		114		4									
46-	-	$\exists E$	]	-		<u> </u>									-	
		-:  -	-		11	r-  -										
$\mathcal{O}$ -			<b> </b>		- }							(	1-1-	-		
_	.5		]	Masing		$\mathbb{N}$	Ŧ					1	1	47"	SS	SANDSTONE
48	_~	[	_	Mason	I			-+-							_	
70	4		1			‡.	-   -	+++				4	+-			
			] _		H											
	7	1	1												•	
	1		1			- - -		1:11				افراً اور	, <b>, ,</b> ,			
50 -			] -										11	EN	100	CLAYSTONE
	1.64	+				1								50°	ادر	( )
_	110	+	1	†		.i     .	-	+								
			1	†									1 4 m 4 1 1 <del>1 m 4</del> 1	!		
52-			-	+									1 1			
	2		1					1 - 0					1-4-			
	- 2	:		+									1-1			
		:			<i>f</i> : {											
54 -				-	ٔ : : ا	<b>)</b>	:	<b>)</b>					1 g. j. j. 1 j. j. j			
-	으	: 1		× -10046-	<b>1</b> ∷				/.e0x				+-+			-
				اجسد					1079							
	: ! _ !		1 11	bedding	<b>]</b> : :			::	Perri	[]						
<b>~</b> /	15		1	1	: :	l ii	• •	::	frec)				,			
56	2			•—• !		/		::	!							1
	: •								:	' ــ ا	i .	1				· !
	,		1	<del></del>							- Su	-			<u> </u>	17
		ł	İ		1 .	• 🕴	• •	;	ן הימן		2 54 1,40	1		57'	[	Trackonaceono C-148



Date 8-10:87 BORE EP 65 Well(s) _______

Mineralogy Color Green Size Lith. Lith Des

(Min Habit ) G OI 100 100 F1 CM (Scale By COB ESE, Inc. CORE LOG Structure/ Description / Comments F1 CM (Scale 1": 2 (1) Angle Desc 70 SANDSTONE 2.54 55 but 4 poorly curented / Friends fritt တ H. your ist of med grained, primarily 岩 gte. 82 3 84 FLOX gu larky willy , but 88 natural/habive . مردوم . 90bedding DEMP9 11-55 (12) Frindle 92 مميا frink irind @ 2.54 والدر على المالة JUNE EP 45 94. 44 Ko 1" Jeli علل lithic (claystone) +4.45 9144 4 46 C-150 ST Chayey DIETSTONE 46.4 CARPLACTURE CLAPATINE

(4)

(

(*)





•

۹



Bre Aug. 11, 1987	-	ζ	At:11 pipe to 85 ft 0735 0835	011	wor. Lindon	Grand Level Lake wood			and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s			My 2.32, "Marie". Ch.Kugi Faturi i	es. fr a Dels Branch f	الراديمة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدينة المدي	ر المسافحة الأوراد في المسافحة الأوراد في المسافحة الأوراد في المسافحة الأوراد في المسافحة الأوراد المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة المسافحة الم	On a LPA'S MP air est.	المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة المعتادة الم	Aprel (1)
		55		COLORADO	200	Ground Level	tight been back to make their sea	*	2. 7.3		Runal Hole blocked @ 73 Ft			Run +2				
Frontier Logging	ESE	EP 65	1	ADAMS COUNTY	Review.		former bein.	10 Loged 145 FT.	200 Scales 20 "	2 / 15	103-1041	34x1	7 - 50 × 107 1	376	,	Resister		

C-154

والوملة إيعلل

True Serve





## WELL CONSTRUCTION SUMMARY

Project Name and Location Res TVV , JEV , JeV. 24 Project Number (705), 251/0  Drilling Company Res Asso. Driller D. Acres. Rig Number Rig Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Right Number Ri	Borehole EP-65 DI	Well 34012
Drilling Company    Periode Diameter   Pit In.	Project Name and Location 2MA TVV , SAY	Jack. 34 Project Number 17353, 081-10
Drilling Method(s)  Reference Diameter 21/1 In		
Eorehole Diameter 12/4 In. cm. dh. cm. to 16 ft. cm. to 17/5 In. cm. 16 ft. cm. to 17/5 In. cm. 17/6 ft. cm. to 17/5 In. cm. 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 17/6 ft. cm. to 1	Drilling Method(s)	
Size(a) and types of Bit(a) 121/2 771/2 31/2 31/2 31/2 31/2 31/2 31/2 31/2 3		
Size(a) and types of Bit(a) 121/2 771/2 31/2 31/2 31/2 31/2 31/2 31/2 31/2 3	Porehole Diameter /2/// in. cm.	0 ft. cm.to 1/6 ft. cm.
Size(s) and types of Bit(s) 12 1/2 7711 8144 816  Size and Type PVC 4 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2		<u> </u>
Date/Time/Personnel Internal Mortar, Cement Pad, and Weep Hole Installed Materials Used 16 Most Server 17 Most Server 18 Materials Used 16 Most Server 18 Materials Used 16 Most Server 18 Materials Used 16 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server		
Date/Time/Personnel Internal Mortar, Cement Pad, and Weep Hole Installed Materials Used 16 Most Server 17 Most Server 18 Materials Used 16 Most Server 18 Materials Used 16 Most Server 18 Materials Used 16 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server 18 Most Server	Size(s) and types of Bit(s) /2/4"? 77/1" Blade Bit	Sempling Method(s) Previous Carel
Determine Prince   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine   Determine		Date/Time Start Drilling 10/8/67 0745
Total Borahole Depth Depth to Bedrock Depth to Bedrock Depth to Bedrock Depth to Water  ### Am. DeterTime Cement Protective Casing Depth to Water  ### Am. DeterTime Cement Protective Casing Depth to Water  ### Am. DeterTime Cement Protective Casing Depth to Water  ### Am. DeterTime Cement Protective Casing Depth to Bedrock  ### DeterTime Protective Casing to Top of Protective Casing to Top of Protective Casing to Top of Coment Pad.  #### DeterTime Personnel DeterTime Personnel DeterTime Personnel Top of Protective Casing to Top of Coment Pad.  ###################################	Size and Type PVC 4 10 Jol 40	Date/Time Pinish Drilling 4/9/87 0945
Depth to Bedrock  Depth to Water  St. Cm. Materials Used 6.7.6 PVC  Water Level Determined By  Length Plain PVC (total)  Length of Screen  2.37 ft. cm. Bentonite Pellets 2.5 deaders (150 /8)  Total Length of Well Casing 97.6 ft. cm. Bentonite Granular 74 ft. 6.6 ft. (10 /8)  PVC Stick Up  Depth to Bottom of Screen  2.5.7 ft. cm. Cement 74 ft. (10 /8)  Depth to Top of Screen  Top of Protective Casing to Weup Hole  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top of Coment Pad  Top of Protective Casing to Top	Total Borehole Depth 98 ftcn	n. Date/Time Start Completion 10/9/57 /280
Plain PVC   Se.33'	Depth to Bedrock A. 36 ft on	
Plain PVC   Se.33'	Depth to Waterftcn	n. Materials Used 101.70 PVC
Length Plain PVC (total)  Length of Screen  2.1.37 ft. cm. Bentonite Pellets  2.5 declare (15014)  Total Length of Well Casing  91.6 ft. cm. Bentonite Granular  Total Length of Well Casing  91.6 ft. cm. Bentonite Granular  Total Length of Well Casing  10.5 ft. cm. Bentonite Granular  Total Casing Politic Casing to Top of Pvc Casing to Top of Protective Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing to Top of Casing t	Water Level Determined By	
Length of Screen  21.37 ft. cm. Bentonite Pellets 2.5 booker (150 14)  Total Length of Well Casing 91.6 ft. cm. Bentonite Granular 7/4 (16 15 (50 14))  PVC Stick Up	7	
Total Length of Well Casing 91.6 ft. cm. Bentonite Granular 7/4 ft. 6.6 ft. 5016)  PVC Stick Up 7.6 ft. cm. Cement 7/4 ft. 6.6 ft. 5016)  Depth to Bottom of Screen 75.98 ft. cm. Sand 5 ft. 50018. Cla. Vilia Depth to Top of Screen 75.98 ft. cm. Water added during completion Depth to Top of Sand 71.0 ft. cm. Water added during drilling Depth to Top of Bentonite 55.0 ft. cm. Total Gallons of water added Depth to Top of Bentonite 55.0 ft. cm. Total Gallons of water added Depth to Top of Bentonite 55.0 ft. cm. Total Gallons of water added Depth to Top of Bentonite 65.0 ft. cm. Total Gallons of water added Depth to Top of Bentonite 65.0 ft. cm. Total Gallons of water added Depth to Top of Bentonite 65.0 ft. cm. Depth to Top of Protective Casing to Top of PVC 15.0 ft. cm. COMMENT/NOTES  Top of Protective Casing to Top of PVC 15.0 ft. cm. COMMENT/NOTES  Top of Protective Casing to Internal Mortar 15.7 ft. cm.  Top of Protective Casing to Top of Cement Pad 15.5 ft. cm.  Top of Protective Casing to Ground Level 15.5 ft. cm.  Top of Protective Casing to Ground Level 15.5 ft. cm.  Reviewed By 5.0 ft. cm.  Date 5.0 ft. cm.  Date 5.0 ft. cm.  Date 5.0 ft. cm.  Date 5.0 ft. cm.  Date 5.0 ft. cm.  Date 5.0 ft. cm.  Date 5.0 ft. cm.	4 80	
Depth to Bottom of Screen  Depth to Top of Screen  Depth to Top of Screen  Depth to Top of Screen  Depth to Top of Screen  Depth to Top of Sand  Depth to Top of Bentonite  Depth to Top of Bentonite  Depth to Top of Bentonite  Depth to Top of Bentonite  Determine/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Numbers Painted  Date/Time/Personnel  Numbers Painted  Date/Time/Personnel  Numbers Painted  Date/Time/Personnel  Numbers Painted  Date/Time/Personnel  Numbers Painted  Date/Time/Personnel  Numbers Painted  Date/Time/Personnel  Numbers Painted  Date/Time/Personnel  Numbers Painted  Date/Time/Personnel  Numbers Painted  Date/Time/Personnel  Numbers Painted  Date/Time/Personnel  Numbers Painted  Date/Time/Personnel  Numbers Painted  Date/Time/Personnel  Numbers Painted  Date/Time/Personnel  Numbers Painted  Date/Time/Personnel  Numbers Painted  Date/Time/Personnel  Numbers Painted  Date/Time/Personnel  Numbers Painted  Date/Time/Personnel  Numbers Painted  Date/Time/Personnel  Numbers Painted  Date/Time/Personnel  Date/Time/Personnel  Numbers Painted  Date/Time/Personnel  Numbers Painted  Date/Time/Personnel  Date/Time/Personnel  Numbers Painted  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Numbers Painted  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Numbers Painted  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel  Date/Time/Personnel	961	
Depth to Bottom of Screen 75.95 ft. cm. Sand 5 sys. (500 /6.) Cols. Vilia.  Depth to Top of Screen 75.95 ft. cm. Water added during completion Depth to Top of Sand 74.0 ft. cm. Water added during drilling Depth to Top of Bentonite 65.0 ft. cm. Total Gallons of water added  Drill Site Geologist 1.4. Internal Mortar, Cement Pad, and Weep Hole Installed 1.5.1 1.7. 1.7. 2.0 2.0. 1.7. 1.7. 2.0. 2.0. 1.7. 1.7. 2.0. 2.0. 1.7. 1.7. 2.0. 2.0. 1.7. 1.7. 2.0. 2.0. 1.7. 1.7. 2.0. 2.0. 1.7. 1.7. 2.0. 2.0. 1.7. 1.7. 2.0. 2.0. 1.7. 1.7. 1.7. 2.0. 2.0. 1.7. 1.7. 1.7. 1.7. 1.7. 1.7. 1.7. 1		m1 (/2 4)4 (/ / / / / / / / / / / / / / / / / / /
Depth to Top of Screen  Top of Sand  Top of Sand  Top of Sand  Top of Sand  Top of Sand  Depth to Top of Sand  Top of Bentonite  Total Callons of water added during drilling  Depth to Top of Bentonite  Total Callons of water added  Date  Total Callons of water added  Date  Total Callons of water added  Date  Total Callons of water added  Date  Total Callons of water added  Date  Total Callons of water added  Date  Total Callons of water added  Date  Total Callons of water added  Date  Total Callons of water added  Date  Total Callons of water added  Date  Total Callons of water added  Date  Total Callons of water added  Date  Total Callons of water added  Date  Total Callons of water added  Date  Total Callons of water added  Date  Total Callons of water added  Date  Date  Total Callons of water added  Date  Date  Total Callons of water added during completion  Date  Total Callons of water added during drilling  Date  Total Callons of water added  Date  Date  Total Callons of water added  Date  Date  Total Callons of water added  Date  Date  Total Callons of water added  Date  Date  Total Callons of water added  Date  Date  Total Callons of water added  Date  Date  Total Callons of water added  Date  Date  Total Callons of water added  Date  Date  Total Callons of water added  Date  Date  Total Callons of water added  Date  Date  Total Callons of water added  Date  Date  Total Callons of water added  Date  Date  Total Callons of water added  Date  Date  Total Callons of water added  Date  Date  Total Callons of water added  Date  Date  Total Callons of water added  Date  Date  Total Callons of water added  Date  Date  Total Callons of water added  Date  Date  Total Callons of water added  Date  Date  Total Callons of water added  Date  Date  Total Callons of water added  Date  Date  Total Callons of water added  Date  Date  Total Callons  Date  Total Callons  Date  Total Callons  Date  Total Callons  Date  Total Callons  Date  Total Callons  Date  Total Callons  Date  Total Callons  Date  Total Callons  Date  T		
Depth to Top of Sand  Depth to Top of Bentonite    Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lange   Lan	7/09	
Depth to Top of Bentonite    Soft		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
Date   10   9   10   10   10   10   10   10		' A
Date/Time/Personnel Internal Mortar, Cement Pad, and Weep Hole Installed Date/177 1973 Description Date/Time/Personnel Casing Painted Date/177 1993 Description Date/Time/Personnel Numbers Painted Date/177 1993 Description Date/Time/Personnel Numbers Painted Date/177 1993 Description Date/Time/Personnel Numbers Painted Date/177 1993 Description Date/Time/Personnel Numbers Painted Date/197 1993 Description Date/1973 Description Date/1973 Description Date/1973 Description Date/1973 Description Date/1973 Description Date/1973 Description Date/1973 Description Date/1973 Description Date/1973 Description Date/1973 Description Date/1973 Description Date/1973 Description Date/1973 Description Date/1973 Description Date/1973 Description Date/1973 Description Date/1973 Description Date/1973 Description Date/1973 Description Date/1973 Description Date/1973 Description Date/1973 Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description De	10.	
Date/Time/Personnel Internal Mortar, Cement Pad, and Weep Hole Installed No. 1972 1973 December 1982 1983 December 1982 1983 December 1982 1983 December 1982 1983 December 1982 1983 December 1982 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 19	Drill Sita Geologist A.E. Statelli	Date 10/9/87
Date/Time/Personnel Internal Mortar, Cement Pad, and Weep Hole Installed No. 1972 1973 December 1982 1983 December 1982 1983 December 1982 1983 December 1982 1983 December 1982 1983 December 1982 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 1983 December 19		with meethor we not infully? 13mg Dens
Date/Time/Personnel Numbers Painted 10/28/17 1525 1070  Materials Used 16 3105 520 6175  Top of Protective Casing to Top of PVC . C240 ft. cm. COMMENT/NOTES  Top of Protective Casing to Weup Hole 155 ft. cm.  Top of Protective Casing to Top of Cement Pad 155 ft. cm.  Top of Protective Casing to Ground Level 13 ft. cm.  Reviewed By 15 ft. cm.	Date/Time/Personnel Internal Mortar, Cement Pa	
Materials Used		, , , , , , , , , , , , , , , , , , ,
Materials Used	Date/Time/Personnel Numbers Painted 10/2	d+7 1522 10TV
Top of Protective Casing to Weup Hole  Top of Protective Casing to Internal Morter  Top of Protective Casing to Top of Cement Ped  Top of Protective Casing to Ground Level  Reviewed By  Date	Materials Used 16 3465 SACCOTE	7
Top of Protective Casing to Weup Hole  Top of Protective Casing to Internal Morter  Top of Protective Casing to Top of Cement Ped  Top of Protective Casing to Ground Level  Reviewed By  Date	Top of Protective Casing to Top of PVC . 22.	(i) cm. COMMENT/NOTES
Top of Protective Casing to Internal Morter 1.72 ft. cm.  Top of Protective Casing to Top of Cement Ped 1.85 ft. cm.  Top of Protective Casing to Ground Level 1.3 ft. cm.  Reviewed By Date	· · · · · · · · · · · · · · · · · · ·	
Top of Protective Casing to Top of Cement Ped 155 ft. cm.  Top of Protective Casing to Ground Level 13 ft. cm.  Reviewed By Date		
Top of Protective Casing to Ground Level 43 ft	<u> </u>	
Reviewed By Date		
, 15		
	•	15

		SE BOUTH ALTON WAY-BUITE HOI DLEWGOO, COLORADO BO113-303/741-0099	Y NO Camara and Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contr
		Borehole: EP-6571	Well: 34012
Dapets-Foot	Sail/Rock Type	Well Campletion	Description
		Count Level	- 8" ID STARL CHING FROM 1.9" AROVE GRAND TO 46.0" BRUN SURFER - 4" ID PIC CAIND FROM 1.6" AROVE GROUND TO 97.0" BRUN SURFACE
5		5,10 ;/.	
10	4	15.86;4.	
5.	1	25.37 jf.	
4.	62	45.48 jt.	TD (8° STRAL) = 46.00
6.	11		TOD OF BENTSNITE: 65.0'
7.	, 🚽	15.59 jt 70.27 jt.10 75.63 jt	TOP OF JUSTEM: 75.98"
8.	, a J.	S. Nit R. Nit	Borrom of Screen: 96.5'

Drill Site Coologist: A.C. Watell:
Reviewed By:

Date: 10/9/87

TD: 77.0' (PVC)

C-158

.

# WELL DEVELOPMENT DATA

		Bore_F/-U	12 01	Well 1 34612	
Project	ON-POS			Project Number	21512 44
Date(s) Developed	10/2			Date Installed	10/4/87
Personnel (Name/Com	Parit	W /#55		Well Diameter (I.D.)	in.
616	47			Anulus Diameter	22 tin ft. to ft.
Rig Used FSE		VAE THUMBE			73 in. 46 st. to 95 st.
Pump (Type/Capacity)			6/74	Screen Interval	7594 st. to 94.5 st.
Bailer (Type/Capacity)				O	ft. toft.
Water Source		(Initial)	95 c	Casing Height (Above	e G.L.)ft.
Measured Well Depth	TOC	(Einel) 48	€o ft.	Botto.n of Screen (Be	NOW G.L.)
Mater Level TOC/Date	.PTima (Imidi		//u · Z u ··	17/1015	
Water Level TOC/Date		,		-28-47/1530	
Dank af SAlasan in 14/all	rane) 22 Oct	24 hrs.)		<del></del>	gallons casing/anulus volume
Drilling Fluid Lost				One Purge Volume	
Purge Water Lost				Minimum Purge Vol	
Added Water				Total Purge Volume	dilla
Casing/Anulus Volum			gailons		y 15 cauco Decom
CastuRivumina Aointii	·		Ramons	Surge Technique	121,55 /6-1212. PULL
Calibration: pH Mete	e licadi	Breseman	is 20	Saile Legitidae —	
nH 7 00	. <u>7.∪ }.</u>	21 /	P. % .		10 68 at 13 2 °C
		Used:			
		umhos/cm		4.4.5	
0.2					
Purge Volume	Time	Temp. °C	pН	Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)
Initial = gallons	1024	15.0	12.81	1543	Soupy much both off
40 collins	1052	14 4	10.13	496	tine White his man
8 v aplicas	1108	14.5	915	534	Cloudy of boom with of
120 yallars	1134	188	832	574	Cloudy of sine is one on load
160 collos	11.43	12.7	7.65	570	County my bires on some some
Final 2003 gallers	1156	14.0	7.76	5-5-2-	Howay of firm in idease the
· · · · · · · · · · · · · · · · · · ·			<del></del>	Same so	or . The of series 710
Burnacher In hill	HNU 1	ruc) = 20		/	755 jut
Remarks: In. Hill Handered (4)	53 wiles	112 111 1 11 16	11-1	<del></del>	
	J			· ) , ,	
	)	// /	Collected	11/4	Signature . C-159
Sundpute vil 25.54			Coneciei	10)	Signature . C-159
Page od = 150 10	1. ( Easing )	4)	Checked	by	1.
Pargo sed = 150 go	ستمامهمه وم	الكسان بان			Signatule
2, 7 ,	I ~ His	<b>'</b>			

# WELL DEVELOPMENT DATA

		Bore El-6			
roject Pun	ON -12:08	7		Project Number	TISE 44
ate(s) Developed	10/20	107		Date Installed	10/4/27
ersonnel (Name/Con	npany)	DEW / FIE		Well Diameter (I.D.)	in.
_		WTV IFIE		Anulus Diameter	12 in ft. to ## it.
ig Used ESE	WAG	Cirving Thum	<u> </u>		7 in. 46 st. to 20 st
ump (Type/Capacity	1_ 000	26/200 M	41.14	Screen Interval	7574 11.10 56.5 11
eiler (Typo/Capacity	)	N/N			ft. toft
Vater Source	ri	بز و		Casing Height (Abov	e G.L.)ft
Measured Well Depth	TOC	(Initial) <u>FS.</u> (Final) <del>78</del> .	F≤ ft. ¶o ft.	Bottom of Screen (Be	olow G.L.) 765
Makan I awal TOCIDak	- /Ti /1 - isi	(*		47 1015	
Water Level TOC/Date	(1911) Smi 1 <b>(8</b>			28-87/1530	
Feet of Water in Well.		ft. x			gallons casing/anulus volume
Orilling Fluid Lost				One Purge Volume	Daniel account
Purge Water Lost			gallons	Minimum Purge Vol	_
Added Water	•		gallons	Total Purge Volume	
Casing/Anulus Volum			•		y 55 canan Deven
Sestifficulting Animi			ganons		RAISE / LOUDE PUMP
Calibration: pH Met	an I lead:	REChiman	1 1/21		/ ***
Conduc	tance Meter	Used:umhos/cm		C, pH 10.00 = Reading	umhos/cm at
	tance Meter	Used:		gc 32 55 1	umhos/cm at 25° •(
Conduc Standar	tance Meter	Used:umhos/cm	n at 25°,	Reading 1413	umhos/cm ate( Physical Characteristics (clarity, udor, send content, color)
Conduc Standar Purge Volume	tance Meter	Used:umhos/cm	n at 25°,	Reading 1413	Physical Characteristics (clarity, udor, sand content, color)  Parthy clarity of through 5th
Conduc Standar Purge Volume	tance Meter d <u>/4/3</u> Time	Used:umhos/cm Temp. °C	pH	التائير ملاكة سام Reading <u>المرادة</u> Conductance at 25°C	Physical Characteristics (clarity, udor, sand content, color)  Parthy clarify of the content colors of the clarify and the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the colors of the color
Purge Volume	Time	Used:umhos/cm Temp. °C	pH	Reading 14/3  Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)  Partly closes, of discuss/3/6  Partly closes, of bissum/6/6
Purge Volume	Time	Used:umhos/cm Temp. °C	pH	Reading 14/3  Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)  Partly closes, of discuss/3/6  Partly closes, of bissum/6/6
Purge Volume	Time	Used:umhos/cm Temp. °C	pH	Reading 14/3  Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)  Partly closes, of discuss/3/6  Partly closes, of bissum/6/6
Purge Volume	Time	Used:umhos/cm Temp. °C	pH	Reading 14/3  Conductance at 25°C	Physical Characteristics (clarity, udor, sand content, color)  Pirth, closes, up bismulble  parts closes, up bismulble
Finel  Rumarks: How Finel	Time  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos	Temp. °C  13.7  141.0	pH 7.00	Reading 14/3  Conductance at 25°C  627  600	Physical Characteristics (clarity, udor, sand content, color)  Pirth, cloud, uf bissum/bla  rich, cloud, uf bissum/bla  rich, cloud, uf bissum/bla  rich, cloud, uf bissum/bla
Purge Volume  Timital 240  Final	Time  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos  Alos	Temp. °C  13.7  141.0	0.0 21 at compared to	Reading 14/3  Conductance at 25°C  627  600	Physical Characteristics (clarity, udor, sand content, color)  Parthy clarify of himm/s/a  Parthy clarify of himm/s/a  Parthy clarify of himm/s/a  Parthy clarify of himm/s/a

# ESE TYPE BOUTH ALTON WAY BUTTE HAD ENGINEERING. IN

#### WELL CONSTRUCTION SUMMARY

Borehole Ep. 65 De	Well 34013
Project Name and Location 244 TAM 44 Sate Sa	Project Number 05/
Drilling Company Bogle Bars. Driller 7	~ Goria Rig Number IR
Drilling Method(s) Zotang wool	
Borehole Diameter 161/4 in. cm. 0	ncm. to59ftcm.
1/3/4 134/4-10 cm 30	ftcm. toftcm.
77/5 in 95 fi	. f. 186 fr.
Size(s) and types of Bit(s) 16'4" 124 77/64	Sampling Method(s) Zeevenel cond
1/3/4 2/ode 2/17	Date/Time Start Drilling /0/15/37 /050
Size and Type PVC 4" Jal. 10	Date/Time Pinish Drilling 10/14/57 1240
Total Borehole Depthft	Date/Time Start Completion/e/15/87 1445
Depth to Bedrock 36 ftcm.	Date/Time Coment Protective Casing
Depth to Waterftft.	Meterials Used
Water Level Determined By	Plain PVC
Length Plain PVC (total) 107.58 ftcm.	Slotted PVC 26.72'
Length of Screen <u>26.72</u> ftcm.	Bentonite Pellete 2 Soulds (150 16.)
Total Length of Well Casing 131.30 ftcm.	Bentonite Granuler 5 64. (250 16.)
PVC Stick Upcm.	Cement 45 by (4050/6.)
Depth to Bottom of Screen 132.5 from.	Sand 862 (Soll.)
Depth to Top of Screen 106.14tcm.	Water added during completion
Depth to Top of Sand	Water added during drilling
Depth to Top of Bentonite 76.0 ftcm.	Total Gallons of water added
Drill Site Geologist A.S. Outello	Date
	INT MORTHA POURED HOLE 10/19/39 SIS DE FET
Date/Time/Personnel Internal Mortar, Cement Pad, and 1	Weep Hole Installed 10/20/27 1500 Jun 3 170
DeterTime/Personnel Casing Painted 10/21/37	
Date/Time/Personnel Numbers Painted 10/28/87	1520 INTV
Materials Used 14 BAGS SICRETE	
Top of Protective Casing to Top of PVC . O.80 ft.	cm. COMMENT/NOTES
	cm.
	cm.
·	cm
	. cm.
Reviewed By	Date 12/5/52 C-161
Drill Site Geologist	

	Borehole: _ Ep- 65 72_	Well: 34013		
Depth-Fee Seil/Rech Type	Well Completion	Description		
0	Gound Level	12" ID STREE: GROUD TO 39.0' DALOW  \$"ID STREE: 2.0' ABOTE GROUD TO 98.0' BREEN  4"17 THE: 1.3' ABOTE GROUD TO 183.0' BRLOW		
15 - CL 15 - CL 15 - CL 15 - Ti		To: (12* Steal): 59.0'		
70 - CL	16.25 jt.  16.25 jt.  116.56 jt.  127.34 jt.	TOP OF BROTONIFA 164L ' 36.5'  TO (8' Stall): 98.0'  TOP OF JORGAN: 106.114'  BOTTOM OF ICERRA!: 132.5'  TD: 133.0' (71L)		

Date: 10/15/57 Date: 1/12/21

C-162

Drill Site Geologist : .

Reviewed By

SHEET	j	4.111	2
SHEEL		OF	

### WELL DEVELOPMENT DATA

Date   Daveloped   Dollar   Free   Date   Daveloped   Dollar   Free   Date   Daveloped   Dollar   Free   Date   Daveloped   Dollar   Free   Date   Daveloped   Dollar   Free   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Da	,	<u>- ندن - کما</u>			Project Number	Tilske 44
Rig Used ESE WEN ARROWS TRANS  Rig Used ESE WEN ARROWS TRANS  Bailer (Type) (Capacity) Lewas Prof. 20 6 8 10 20 6 11 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 in. 37 i	• •					10/14/57
Rig Used  SEE WEN MENDE THEN PUMP TYPE/Capacity)  Pump Type/Capacity)  Water Source  2006  Water Source  2006  Casing Height (Above G.L.)  (Initial)  All In.  Water Level TOC/Date/Time (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (Initial)  All In.  (	Personnel (Name/Cor	he)			• •	
Pump (Type/Capacity)  Bailer (Type/Capacity)  Water Source  Bailer (Type/Capacity)  Measured Well Depth TOC  (Initial)  (Initial)  Measured Well Depth TOC  (Initial)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24 hrs.)  (After 24					Anulus Diameter	
Bailer (Typo/Capacity)  Water Source  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initial)  (Initi					*	
Water Source    Measured Well Depth TOC   (Initial)   246 ft.   Bottom of Screen (Below G.L.)   1.3   (I.				<del></del>	Screen Interval	
Measured Well Depth TOC (Initial) 1346 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 ft. (Final) 1344 f					<b>6</b>	
Water Level TOC/Date/Time (Initial) #7.3 / 10-26-57 / 1500  [after 24 hrs.] 48.47 / 10-26-57 / 1500  Feet of Water in Well 96.3 ft.x 0.653 gallons/foot = 56.35 gallons casing/anulus volume Drilling Fluid Lost				4 0		
Water Level TOC/Date/Time (Initial)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (after 24 hrs.)  (af	wessured well nebit	1100			pottom of Screen (be	10W G.L.)1.
Feet of Water in Well \$6.3 ft. x	Water Level TOC/Dat	e/Time (Initi	· /	110-26	-87/1500	
Feet of Water in Well \$6.3 ft. x \$\text{\$0.653}\$ gallons/foot = \$56.35 gallons casing/anulus volume Drilling Fluid Lost	AATIEL PAAGI 10000	•	•			
Drilling Fluid Lost	Feet of Water in Well		•			5° gallons casing/anulus volume
Purge Water Lost						
Added Water B gallons Total Purge Volume 765 gallons Casing/Anulus Volume 56. d gallons Volume Measured By 55 616 Days Surge Technique 12. 56. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d 26. d	-			-	<del>-</del>	47
Casing/Anulus Volume	_	<b>Ø</b>		-	_	7/2 (
Calibration: pH Meter Used:   320			, , , , , , , , , , , , , , , , , , , ,	-	•	
Calibration: pH Meter Used: 35 Channe 6 21 Sp. C1583  pH 7.00 = 7.02 at 17.7 °C, pH 10.00 = 10.09 at 17.7 °C  Conductance Meter Used: YIE Model 32 856 #2  Standard 1413 umhos/cm at 25°, Reading 1414 umhos/cm at °C  Purge Volume Time Temp. °C pH Conductance at 25°C Physical Characteristics iclarity, odor, sand content content in the second specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific standard specific stan				•	Surge Technique	RAISE SECURER DANS
PH7.00 = 7.02 at 17.2 °C, pH 10.00 = 10.09 at 77.7 °C  Conductance Meter Used: YST Model 32 856 82  Standard 1413 umhos/cm at 25°, Reading 1414 umhos/cm at °C  Purge Volume Time Temp. °C pH Conductance at 25°C Physical Characteristics (clarity, odor, sand content co.001)  Immal 5 qul. 1540 13.6 11.79 1741 Characteristics (clarity, odor, sand content co.001)  SS spal 1547 13.6 11.42 901 partly closely of sand since the 170 spal 1547 13.6 11.42 901 partly closely of sand since the 170 spal 1555 12.4 11.09 506 partly closely of sand since the 170 spal 1555 12.4 11.09 506 partly closely of sand since the 170 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spal 160 spa	Calibration: pH Me	ter Used:	BECKMAN	d 21 SN		
Conductance Meter Used:				<u>/7 ?</u> •	C. pH 10.00/	10.09 at 77 °C
Standard   1413   umhos/cm at 25°,   Reading   1414   umhos/cm at   0°C     Purge Volume   Time   Temp. °C   pH   Conductance at 25°C   Physical Characteristics   Ideally of the sand content count     Immai   5 quil.   1540   13.6   11.79   1741   Charing of great   1540   13.6   11.79   1741   Charing of great   1540   13.6   11.42   901   Partly closedy of sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the san				I MODE		
18mal = gali 1540 13.6 11.79 1741 Charif of group with so works  85 yol, 1547 13.6 11.02 901 partly cloudy of some off  170 girl, 1555 12.4 11.09 506 partly cloudy of some off  255 ad. 1604 17.5 10.31 47.3 partly clouds, and had  340 eyel, 1614 12.3 10.24 383 partly clouds.  Final 425 gd. 1621 130 10.21 365 partly clouds, some visa.  Remarks: Initial down (700) - 0.0 your what was a partly cloudy, some visa.  Final 425 gd. 1621 130 10.21 365 partly cloudy, some visa.  Final 425 gd. 1621 130 10.21 365 partly confirmed to the partly clouds of the partly clouds.  Remarks: Initial down (700) - 0.0 your what was a partly cloud of the partly clouds of the partly clouds.  Remarks: Initial down (700) - 0.0 your what was a partly cloud of the partly clouds of the partly clouds.  Remarks: Initial down (700) - 0.0 your white the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed						
18mal = gali 1540 13.6 11.79 1741 Charif of group with so works  85 yol, 1547 13.6 11.02 901 partly cloudy of some off  170 girl, 1555 12.4 11.09 506 partly cloudy of some off  255 ad. 1604 17.5 10.31 47.3 partly clouds, and had  340 eyel, 1614 12.3 10.24 383 partly clouds.  Final 425 gd. 1621 130 10.21 365 partly clouds, some visa.  Remarks: Initial down (700) - 0.0 your what was a partly cloudy, some visa.  Final 425 gd. 1621 130 10.21 365 partly cloudy, some visa.  Final 425 gd. 1621 130 10.21 365 partly confirmed to the partly clouds of the partly clouds.  Remarks: Initial down (700) - 0.0 your what was a partly cloud of the partly clouds of the partly clouds.  Remarks: Initial down (700) - 0.0 your what was a partly cloud of the partly clouds of the partly clouds.  Remarks: Initial down (700) - 0.0 your white the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed to the partly confirmed	Standa	rd 1413				umhos/cm at•C
18mal 5 gals 1540 13.6 11.79 1741 Charly of gray with so books  85 yol, 1547 13.6 11.02 901 partly cloudy by some fit  170 gul. 1555 12.4 11.09 506 partly cloudy by some fit  255 ad. 1604 17.5 10.31 47.3 partly clouds, and had  340 eyel. 1614 12.3 10.24 383 partly clouds.  Final 425 gd. 1621 13 0 10.21 365 partly cloud, some vital  Remarks: Initial down (700) - 0.0 form in 10.21 365 partly cloud, some vital  Final 425 gd. 1621 13 0 10.21 365 partly cloud, some vital  Remarks: Initial down (700) - 0.0 form in 1355 dd. partly continued.  Remarks: Initial down (700) - 0.0 form in 1355 dd. partly continued.  Remarks: Initial down (700) - 0.0 form in 1355 dd. partly continued.  Remarks: Initial down (700) - 0.0 form in 1355 dd. partly continued.  Remarks: Initial down (700) - 0.0 form in 1355 dd. partly continued.  Remarks: Initial down (700) - 0.0 form in 1355 dd. partly continued.  Remarks: Initial down (700) - 0.0 form in 1355 dd. partly continued.  Remarks: Initial down (700) - 0.0 form in 1355 dd. partly continued.  Remarks: Initial down (700) - 0.0 form in 1355 dd. partly continued.	Standa	rd <u>1413</u>				umhos/cm at•C
85 gpl. 1547 13.6 11.42 901 Darthy cloudy of come of 170 gpl. 1556 13.4 11.09 500 70.74, clouden of come of 255 af. 1604 17.5 10.31 493 prof. clouden on formal 340 gpl. 1614 12.3 10.24 383 partly clouden on formal Final 425 gpl. 1621 130 10.21 365 70.74 cloudy some of the Final 425 gpl. 1621 130 10.21 365 70.74 clouden some of the Final solutions of 2 90 gp. 10.21 365 70.24 clouden some of the formal solutions of 114 cloudens of 2 90 gp. 10.21 365 pp. 10.21 14 cloudens of 2 90 gp. 10.21 365 pp. 10.21 365 pp. 10.21 pp. 20.21 pp. 10.21 pp. 20.21 pp. 10.21 pp. 20.21 pp. 10.21 pp. 20.21 pp. 10.21 pp. 20.21 pp. 10.21 pp. 20.21 pp. 10.21 pp. 20.21 pp. 10.21 pp. 20.21 pp. 10.21 pp. 20.21 pp. 10.21 pp. 20.21 pp. 10.21 pp. 20.21 pp. 10.21 pp. 20.21 pp. 10.21 pp. 20.21 pp. 10.21 pp. 20.21 pp. 10.21 pp. 20.21 pp. 10.21 pp. 20.21 pp. 10.21 pp. 20.21 pp. 10.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20.21 pp. 20		1	umhos/cn	n at 25°,	Reading 1414	
85 yol. 1547 13.6 11.42 901 Darthy cloudy of come of 170 yol. 1556 13.4 11.09 500 Parthy clouden of come of 255 of 1604 17.5 10.31 493 portly clouden on formal 340 yol. 1614 12.3 10.24 383 partly cloudy some final 425 yol. 1621 130 10.21 365 Partly cloudy some vital formal many formal many some vital A final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of the final some of	Purge Volume	1	umhos/cn	n at 25°,	Reading 1414	Physical Characteristics (clarity, odor, sand content color)
170 gul. 1856 124 11.09 506 70076, clower,  255 al. 1604 17.5 10.31 49.3 prof. clower,  340 epcl. 1614 13.3 1024 383 partly clower,  Final 425 gd. 1621 130 10.21 365 Partly clower, some visual.  Remarks: Instrict Anna (700) - 0.0 form Wall were 200 200 10 20 10 20 200 10 20 200 10 20 20 200 10 20 20 20 20 20 20 20 20 20 20 20 20 20	Purge Volume	Time	umhos/cn	pH	Reading 1414  Conductance at 25°C	Physical Characteristics (clarity, odor, sand content color)
255 and 1604 17.5 10.31 49.3 party lines, and have 340 apol. 1014 12.3 1024 383 partly come.  Final 425 gd. 1021 130 10.21 365 Party closer, some visco.  Remarks: Tristial Awa (70c) - 0.0 poin intell west pre-development.  Remarks: Tristial Awa (70c) - 0.0 poin intell west pre-development.  Remarks: Tristial Awa (70c) - 0.0 poin intell west pre-development.  Remarks: Tristial Awa (70c) - 0.0 poin intell west pre-development.  Remarks: Tristial Awa (70c) - 0.0 poin intell west pre-development.  Remarks: Tristial Awa (70c) - 0.0 poin intell west pre-development.  Remarks: Tristial Awa (70c) - 0.0 poin intell west pre-development.  Remarks: Tristial Awa (70c) - 0.0 poin intell west pre-development.  Remarks: Tristial Awa (70c) - 0.0 poin intell west pre-development.  Remarks: Tristial Awa (70c) - 0.0 poin intell west pre-development.  Remarks: Tristial Awa (70c) - 0.0 poin intell west pre-development.  Remarks: Tristial Awa (70c) - 0.0 poin intell west pre-development.  Remarks: Tristial Awa (70c) - 0.0 poin intell west pre-development.  Remarks: Tristial Awa (70c) - 0.0 poin intell west pre-development.  Remarks: Tristial Awa (70c) - 0.0 poin intell west pre-development.  Remarks: Tristial Awa (70c) - 0.0 poin intell west pre-development.  Remarks: Tristial Awa (70c) - 0.0 poin intell west pre-development.  Remarks: Tristial Awa (70c) - 0.0 poin intell west pre-development.  Remarks: Tristial Awa (70c) - 0.0 poin intell west pre-development.  Remarks: Tristial Awa (70c) - 0.0 poin intell west pre-development.  Remarks: Tristial Awa (70c) - 0.0 poin intell west pre-development.  Remarks: Tristial Awa (70c) - 0.0 poin intell west pre-development.  Remarks: Tristial Awa (70c) - 0.0 poin intell west pre-development.  Remarks: Tristial Awa (70c) - 0.0 poin intell west pre-development.  Remarks: Tristial Awa (70c) - 0.0 poin intell west pre-development.  Remarks: Tristial Awa (70c) - 0.0 poin intell west pre-development.	Purge Volume	Time	umhos/cn Temp. °C	pH //. 74	Reading 1414  Conductance at 25°C	Physical Characteristics (clarity, odor, sand content control closely of group with a banks growt; some fine from the control
255 apl 1604 13.5 10.31 49.3 party lives, and have 340 appl. 1614 12.3 10.24 383 partly come.  Final 425 gpl. 1621 13.0 10.21 365 Party closer, some visco.  Remarks: Trital Ana (70c) - 0.0 poin intell west pre-development.  **Remarks: Trital Ana (70c) - 0.0 poin intell west pre-development.  **Remarks: Trital Ana (70c) - 0.0 poin intell west pre-development.  **Remarks: Trital Ana (70c) - 0.0 poin intell west pre-development.  **Remarks: Trital Ana (70c) - 0.0 poin intell west pre-development.  **Remarks: Trital Ana (70c) - 0.0 poin intell west pre-development.  **Remarks: Trital Ana (70c) - 0.0 poin intell west pre-development.  **Remarks: Trital Ana (70c) - 0.0 poin intell west pre-development.  **Remarks: Trital Ana (70c) - 0.0 poin intell west pre-development.  **Remarks: Trital Ana (70c) - 0.0 poin intell west pre-development.  **Remarks: Trital Ana (70c) - 0.0 poin intell west pre-development.  **Remarks: Trital Ana (70c) - 0.0 poin intell west pre-development.  **Remarks: Trital Ana (70c) - 0.0 poin intell west pre-development.  **Remarks: Trital Ana (70c) - 0.0 poin intell west pre-development.  **Remarks: Trital Ana (70c) - 0.0 poin intell west pre-development.  **Remarks: Trital Ana (70c) - 0.0 poin intell west pre-development.  **Remarks: Trital Ana (70c) - 0.0 poin intell west pre-development.  **Remarks: Trital Ana (70c) - 0.0 poin intell west pre-development.  **Remarks: Trital Ana (70c) - 0.0 poin intell west pre-development.  **Remarks: Trital Ana (70c) - 0.0 poin intell west pre-development.  **Remarks: Trital Ana (70c) - 0.0 poin intell west pre-development.  **Remarks: Trital Ana (70c) - 0.0 poin intell west pre-development.  **Remarks: Trital Ana (70c) - 0.0 poin intell west pre-development.  **Remarks: Trital Ana (70c) - 0.0 poin intell west pre-development.  **Remarks: Trital Ana (70c) - 0.0 poin intell west pre-development.  **Remarks: Trital Ana (70c) - 0.0 poin intell west pre-development.  **Remarks: Trital Ana (70c) - 0.0 poin intell west pre-development.  **Remarks: Trital Ana (70c)	Purge Volume	Time	umhos/cn Temp. °C	pH //. 74	Reading 1414  Conductance at 25°C	Physical Characteristics (clarity, odor, sand content control closely of group with a banks growt; some fine from the control
340 opel. 1614 12.3 1024 383 Partle committee of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property	Purge Volume  immai = gal.  55 ppl.	Time 1540 1547	umhos/cn Temp. °C /3.6	pH //. 74	Reading 1414  Conductance at 25°C  1741  901	Physical Characteristics (clarity, odor, sand content control closely my group with a works specific some first from the control partly a lovely my some fit.
Final \$\frac{1}{25} gd. 1021 130 10.21 365 \frac{700 \text{ Closing Sime visual}}{4m.  Inside of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the prod	Purge Volume  immai = gal.  55 ppl.	Time 1540 1547 1555	umhos/cn Temp. °C  /3.6  /3.4	pH  //. 74  //. 42  //. 54	Reading	Physical Characteristics Iclarity, odor, sand content 20,001  Cloudy my given with a books growt; some think time and partly aloudy my some fit.  Taith, clours
Final \$\frac{1}{25} gd. 1021 130 10.21 365 \frac{700 \text{ Closing Sime visual}}{4m.  Inside of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the prod	Purge Volume  immai & gal.  55 ppl.  170 gul.	Time 1540 1547 1555	umhos/cn Temp. °C  /3.6  /3.4	pH  //. 74  //. 42  //. 54	Reading	Physical Characteristics Iclarity, odor, sand content 20,001  Cloudy my given with a books growt; some think time and partly aloudy my some fit.  Taith, clours
Remarks: Jisiphil Awa (70c) - 0.0 pp.m Wall we " The Power of the 14 of 502.  ** Final Award Did . 7 3 40 70 185 Hd. Tumped.  The vi: = 56.4 (cash vol.) Did volume 182.5 Collected by Mall lier Marine 182.5 Collected by Mall lier Marine 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collected by September 182.5 Collec	Purge Volume  immai = gal.  85 ppl.  170 gal.  255 al.	Time 1540 1547 1555 1604	umhos/cn Temp. °C  /3.6  /2.4  /7.5	pH  //. 74  //. 74  //. 74  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //	Reading	Physical Characteristics (clarity, odor, sand content conor)  Charify of group with in books growt some rise time come  partly always of some fit.  To other clouses, the fine
Remarks: Isisfiel Awa (70c) - 0.0 pp.m Wall we " The Power Power of the 14 of 502.  **Final Alaman, Did. o 73 40 70 185 Hd. Tumped.  The vi: = 56.4 (casin vol.) Dobar Journa = 132.5 Collected by Mall lies Parties of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power of the power	Purge Volume  immai = gal.  85 ppl.  170 gal.  255 al.	Time 1540 1547 1555 1604	umhos/cn Temp. °C  /3.6  /2.4  /7.5	pH  //. 74  //. 74  //. 74  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //	Reading	Physical Characteristics Iclarity, odor, sand content 20,001  Cloudy my girey wilt in books growt; some from from from  partly alousing my some fit.  Tooth, clouses, in the from  partly clouses, in the from  partly clouses,
The vi = 56.4 (casin vol.) Bother Journa = 132.5 Collected by 11/1/1/2 1/2/27  - 26.7 (sand over) To. 13 and - 101.0	Purge Volume  immai = gal.  55 yal.  170 gal.  255 al.  340 eyel.	Time 1540 1547 1555 1604 1614	umhos/cn Temp. *C  /3.6  /3.4  /3.5  /3.3	pH  //. 74  //. 74  //. 74  //. 74  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //	Reading 1414  Conductance at 25°C  1741  901  500  403	Physical Characteristics (clarity, odor, sand content control  cloudy of gray with in books, growt; some than two come  partly cloudy of some fit.  partly cloudy  partly cloudy  partly cloudy  partly cloudy  partly cloudy  partly cloudy  partly cloudy  some vive
The vi = 56.4 (cosin vol.) Bother Journa = 132.5 Collected by Mallier Marine Paraller Collected by Superior Superior Collected by Superior Superior Collected by Superior Superior Collected by Superior Superior Collected by Superior Superior Collected by Superior Superior Collected by Superior Superior Collected by Superior Superior Collected by Superior Superior Collected by Superior Superior Collected by Superior Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by Superior Collected by	Purge Volume  immai = gal.  55 yal.  170 gal.  255 al.  340 apal.	Time 1540 1547 1555 1604 1614	umhos/cn Temp. *C  /3.6  /3.4  /3.5  /3.3	pH  //. 74  //. 74  //. 74  //. 74  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //	Reading 1414  Conductance at 25°C  1741  901  500  403	Physical Characteristics (clarity, odor, sand content control  cloudy of gray with in books, growt; some than two come  partly cloudy of some fit.  partly cloudy  partly cloudy  partly cloudy  partly cloudy  partly cloudy  partly cloudy  partly cloudy  some vive
40 vi = 56.4 (cash vi) Both Jerum = 132.5 Collected by /////// Distriction / 26.7 p. 26.7 services To. 1 and 101.0	Purge Volume  Immai 5 gal.  85 ypl.  170 gal.  255 al.  340 eyel.  Final 425 gal.	Time 1540 1547 1555 1604 1614 1021	umhos/cn Temp. °C  /3.6  /3.6  /2.4  /3.3  /3.0	pH  //. 74  //. 74  //. 74  //. 74  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //. 75  //	Reading 1414  Conductance at 25°C  1741  901  500  403	Physical Characteristics (clarity, odor, sand content control  cloudy of gray with in books, growt; some than two come  partly cloudy of some fit.  partly cloudy  partly cloudy  partly cloudy  partly cloudy  partly cloudy  partly cloudy  partly cloudy  some vive
a 36, Visuality (iv)	Purge Volume  Immai = gal.  85 ppl.  170 gul.  255 al.  340 apel.  Final 425 gd.  Rumurks: Finitial	Time 1540 1547 1555 1604 1014 1021	umhos/cn Temp. °C  /3.6  /3.6  /3.7  /3.3  /3.0	pH  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %	Reading 1414  Conductance at 25°C  1741  901  500  403	Physical Characteristics Iclarity, odor, sand content 20,001  Charify my given with a booker growth some from time time.  Partly cloudy my some fit.  Partly cloudy my some from  Partly cloudy.  Partly cloudy.  Partly cloudy.  Some visca  Fragis cloudy.  Some visca  from content.
- 36. Visuality (iv)	Purge Volume  Immai = gal.  85 ppl.  170 gul.  255 al.  340 apel.  Final 425 gd.  Rumurks: Finitial	Time 1540 1547 1555 1604 1014 1021	umhos/cn Temp. °C  /3.6  /3.6  /3.7  /3.3  /3.0	pH  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %  //. %	Reading 1414  Conductance at 25°C  1741  901  500  403	Physical Characteristics Iclarity, odor, sand content 20,001  Charify my given with a booker growth some from time time.  Partly cloudy my some fit.  Partly cloudy my some from  Partly cloudy.  Partly cloudy.  Partly cloudy.  Some visca  Fragis cloudy.  Some visca  from content.
a 36, Visuality (iv)	Purge Volume  Immal 5 gal.  85 yol.  170 gal.  255 asl.  340 ayal.  Final 425 gal.  Rumurks: Initial  Final 100000	Time  1540  1547  1556  1604  1614  1621  Ana (70c)	umhos/cn Temp. °C  /3.6  /3.6  /3.4  /3.3  /3.3	pH  11.79  11.42  11.09  10.31  10.24  10.21	Reading 1414  Conductance at 25°C  1741  901  506  403  383  305	Physical Characteristics Iclarity, odor, sand content 20,001  Charify my given with a booker growt; some that fire come partly cloudy my come fit.  To other cloudes, were from partly cloudes, were from partly cloudes, were from partly cloudes, some vision from is and it.
	Purge Volume  Immai = gol.  85 pol.  170 gol.  255 ad.  340 epel.  Final 425 gd.  Remarks: Initial  Final 425 gd.	Time  1540  1547  1556  1604  1614  1621  Ana (70c)	umhos/cn Temp. °C  /3.6  /3.6  /3.4  /3.3  /3.3	pH  11.79  11.42  11.09  10.31  10.24  10.21	Reading 1414  Conductance at 25°C  1741  901  506  403  383  305	Physical Characteristics Iclarity, odor, sand content conort  Cloudy my group with an bombon growth; some rise from the come partly cloudy my some fit.  Partly cloudy, in the fine partly cloudy, some vites from the cooking.  The tig cloudy some vites from the cooking.

(1)

SHEFT	2	OF	2
3115.5.1	-	E 3 P	

#### WELL DEVELOPMENT DATA

	rma on-p	Bore En	-65 DZ	Well 34013	•
Project	RMA ON-P	059		Project Number	7,85 44
Date(s) Develop	ed 12/6	19/27		Date Installed	10/14 57
Personnel (Nam	, , , , , , , , , , , , , , , , , , ,	TOLW / 55E		Well Diameter (I.D.)	y in.
		WTV /FIE		, ,	v. in. 0 11. 10 37 11.
Rig Used	ELE WELL SEEN				in. 37 ft. to 33° ft.
	pacity) GREAL		<u></u>	Screen Interval	1. 10 11. 10 11. 11. 11. 11. 11. 11. 11.
		•		Screen Interval	
	لم <u>ل</u> پيريم				ft. toft.
Water Source				Casing Height (Above C	1.be.)1(,
Measured Well	Depth TOC		46 n. 44 n.	Bottom of Screen (Belov	w G.L.) ·ft.
Water Level TO	C/Date/Time (Init	,	110-26-87	1500	
	(afte	r 24 hrs.)	8.49	11.2.87 1330	
Feet of Water in	Well 86 3	ft. x _ 0.6	63 ga	llons/foot =	gallons casing/anulus volume
Drilling Fluid L	ا <i>مبرلم</i> ost		gallons #	One Purge Volume	gallons
Purge Water Lo			gallons	Minimum Purge Volum	. 1 10
Added Water	,		gallons	Total Purge Volume _	gallons عات
Casing/Anulus			gailons		SS GARCIN DIEMAS
Cestili Britishina	* DIGITIO		Perious.		
Calibantian, -1	(A. A. dans and A. dans also	The can see and	du	Surge Technique <u>גלא</u> גע: בא בארץ	70.00
•	H Meter Used:				21.3
_	H 7.00 =			• • • • • • • • • • • • • • • • • • • •	C - C - C
C	onductance Meter		I MODEL	32 1442	
St	landard 1403	umhos/cn	n at 25°,	Reading	umhos/cm at*C
Furge Volur	me Time	Temp. •C	pН	Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)
Initial 425	1132	14.5	10.91	465	cloudy my army is to
5.0	1140	14.4	10.48	411	partly gloudy of time on 10
				· · · · · · · · · · · · · · · · · · ·	
595	1148	14.3	9.63	402	party cloudy of won
680	1157	14.3	4.67	370	partly warm of the snay be
			السما		3 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 -
765	1705	141.2	9.74	392	774 22 34 37
765 Final	1705	141.2	9.79	392	Promoting of General and John Colonia Colonia
	1705	141.2	29.774	39 z	77.0
		4855	1,0	392	
Final		4855	1,0	392	
Remarks:		43.55	135-4	sil or " 2 = lendoned 1	
Remarks:	Judes land : Mil Tip He Mysers 7:0	48 (5 -44 (30c): : 73 98 r.	1,0	sil or " 2 = lendoned 1	m 144 87 - 602 16 2000 2 mgs
Remarks: 154  X 81402  I Page Ud: 50		4855 -40(100): : 73 915	135-4	by Alex	- 12 3 - 14/1/17 - 1002 11/200 2 10/100 - 10/1/19

**EP-66** 

C-165

	1	1
PAGE	OF	

#### **BOREHOLE SUMMARY LOG**

					/		
Borehole	FP-66	<u> </u>		Well		03012	
Project Name and L	ocation <u>R</u>	ma Li	6m 34			reject Number_	
Drilling Company_	Byla	Rus	Briller	Ponch		Rig Number_	Fal . 500
Drilling Method(s)	_intin	os cr	4			· · · · · · · · · · · · · · · · · · ·	J
Size(s) and type(s) of	f bit(s)	Ny "-tai ca	1214"/	tyn			
Borehole Diameter	` (/		:m	ft.	cm. to	16.7 ft.	cm
	33/4"in.		m. 16.7	ft,	cm. to	160.0 ft.	
Sampling Methods	<u>in</u>				·		
Total Number Soil S	Sampling Tul	oes					
Total Number Core	Boxes	14					
Number of Gallons	Lost Drilling	Fluid	_				
Date/Time Started D	Orilling	8/12/87	0754				
Date/Time Complete	-	8/17/17	0856				
Total Borehold Dep	_	160	ft		cm.		
Depth to Bedrock		3.7	ft.		cm.		
Depth to Water			ft		cm.		
Water Level Determ	ined By?	خشين					
Borehole Completed	•	ing Well?	Ho	<del></del>			
Date/Time Grouting		بام	-1	759			
Depth of Tremmie F		55'					
Gallons of Grout	140				<del></del>		
	10 600	٠ لد	لان ۱۳۵	4 4	11 1.4	l.a.+. +	
	4.1 4.	3	And a		<del>Linux Mi</del> ri	or and a	
Comments	4	7	7		···············		
Wellsite Geo	plogist	At the G	کید			Data 9/	16/87
Checked for Grout S			116187		lve J	Hungas	
Amount of Grout Ac		None - 5	and at a		. <u> </u>	·	Mention of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sam
All Measurements		,	, ,	And the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t	0		
Reviewed by		Liver /			•	13.40	ege .
Drill Site C	•	1 17				Date	22 C-166
Dill inte O	······································	15/10/10	-	***************************************			d-dight-

FP-LL Well Number: 03012 Barehola: Somple Interve Tube Number Tube Interval SOILS LOG Jepth - Feel Description Silty Sans, 20% silt, fine to coarse grained sans Sm 1042 413, back brown, Dry, very loose, itens and Bilty SAND, 15% silt, fine to come grained SM Sens, 104R SID, gellowish brown, dry, loose, non plastic Chyen SAND, 30% chy, fine to coarse SAND, OYR 616, Brownish yellow, moist, medium dense SC calcaneous stringers and nodulus, low plastic

Dall Site Geologist: Date: 8/12/97

Reviewed By: Date: 4/1/17

C-167

SHEET 2 OF 2

Borehole: EP-44 . Well Number: 0 30 12 Unified Soil Classification Sample Interva Number Interval Sample Numb SOILS LOG Recovery Description Tebe Clayey SAND (sea pg. 1) CL Clay, 30% sond, fireto very coorse grained, 5% small monel, 104R 8/2, white, medians stiff, moist, 12 medium plastic, very coleanous 2.0 chy w) moisents come chetone chets, 104R 6/6, brownish yellow, very stiff, moist, medium plastic, calcareous nobules 14 SANDETONE BOORER, 20% silt, w/ lominated chy lunes 12. 15-4 -:048 516 yellowish brown, 3% conton pagents, 5% mica, colcareous stringuo 16 TOTAL DEPTH 16.0'

Drill Site Geologist: Date: 9/12/87 C-168

Reviewed By: Date: -1/2-



**(*)** 

۱

**(***)



ESE, Inc.	CC	RE LOG	8y			Date	<u> 이</u>	7/8 +	BORI	EY-L		
		Structure/ Bedding	Hard-	Per	m. 2°	Mineral	ogy	Color	Tenture / Grein Size clai ed er man .01 LO 10	Lith. Char	Lith. Closs	Description / Comments
<b>3</b> Fi	U S	Angle Desc.	S H	H	LH	Min. H	obiy	AD G	01 10 10	<b>x</b>	Fı	CM (Scale 1"= 2 (1)
		MAKS ( W					- 1				es	Claystone
Į		1 + 1				1	-	25 YR	┡╋┿┿┿			Q1/4-3.11
ŧ			出进			1	Į					
<b>35</b>						1		4/4	┠╂┼┼┼		-	
<b>-</b> ‡	#					1		Dlive				
Ī						]	Ì	Plony				
‡		1   /			╫┼	1						-
3 <b>4</b> +		1 1				]			HIL			
7 ‡	<b>         </b>	1	+ +	<b>     </b>	##	1910				1		
1		1 1 1					,			}		] .
‡		1	+ +	╫┼	# +	1						
77 <u>±</u>		1 1				]				]	_	]
37		$\mathbf{I}  T \setminus$				3%	•			1	l	
<b>†</b>		1   \	111	#+	₩	اسات	O			1		
9 🗍	H	1 1 1				148				]	Ì '	1
+		1 1 1		###		1				1		
39 ‡		1 + 1		##	╂┼┼	1	1			1	-	1
Ŧ		]		田	] [	]	•			}		
‡		1 + 1	1+1+		┇┼┼	1				1		1
<b>†</b>		1			$\Pi$	]	4	i		3		
35+		<del>]</del> +			$\coprod$	]				]	-	
‡	<b>N</b>	4   \	+4+	<b>‡</b>   -	1	4				1		
+	H	V + E		1					FILE	]		4
‡		1	<b> </b>	╬┼	.444					1		
40		<del></del>	-1113	1		3				40	5t	siltstone - workly constant
1		Mossim	<b>`</b>	╁		վ		254		۳		while cincles
‡		<b>‡</b>		┼┧┼	┇┼	اهر		6/6		30%		4
Ŧ		3   [		$\pm \mathbb{H}$		ME		ollive				Γ
41		1 1	<del>                                    </del>	+11	-   -	=		golic	7-11-+			_
‡	1	7			-	7		1		-	ì	
Ŧ		]	1	-11		]		1		-]		1
<b>†</b>		1 1 1	<del>┆</del> ┆ ┆ ┆	<b>+</b> 1	###							
42	出									<u> </u>		
,-		#	1.1.1			- FOX	1	5/2 0114 984		42	cs	C1445tome
1								2/2		10% 10%		
		=	114	1/1-	-       -	gfo cor	~	2011		sit		
42		] [				- Iry	1	170	1	]		<u> </u>
43		$I \cap I$				3'	1	1	-	-		
		=	-   - :		:    <u> </u>	:=		1	1:4: ::			C-171
3 🚶												1
j <del>i</del>	' [ ]	-1 1,	1.1	4	. II.	]	i	1	1. 1.	1	t	Ţ.
			_					_		_		_
		. 4	•		-			_		•		<b>▲</b>

**①** 

•

(4)

SOX) 3	ا _ ا		511	ucture/ dding	Hord-	Pen		Miner	alogy	Color	Green Size	Lith.	Lith.	Description/Comments
	Tel.	U S	Angle	Desc.	5 H	1°			Habit	M G	Tenture / Grain Size class ad gr mm Oi 1.0 10	Choi.	Closs	CM (Scale 1"= 2 ft)
- T				Masire		IH		Feat		2.5 Y		10%	c>	
1 ‡				1	<u>                                     </u>	****			ł	410		20% 51 H	62	Claystone
1 7	.				-   -	#;;;;	##		ļ	ouk	┢╪╬┟┼╣		-	
l I						$H \coprod$				quy				
45 <del> </del>	-		-	- 1						-	7		-	
				<b>.</b>	-  -		( -				[-[-+++-]			
1 1	-		,	Fralis		- -			}	ļ				
		仕		Poppa						,				_
46	_			- 800 VO		<del>╽</del> ┼┼┤								
1 1		-#				╟┼┼┼				104K				
I			٠. ا			$\Pi$	##		ļ	13/3			1	
1 1			<u>=</u> :			$H \rightarrow H$				dak			-	
} .	•	##		No. 200									}	
47	-	-7	_	-masi ex						1042		47'	11	6
<del> </del>		31		)						5/6			55	SAMOSTONE
			-	- /					٠.	sour Brown		MUSC.	-	
} ‡	:									Rion		<b>10</b>	}	
49 -	- 1		_	-	-		<b>\</b>		•				_	
1 }					EHE			3%		{				
<b>h</b> ‡	.		_	-	┠╪╂╪			CBR	<u> </u>				_	
3	.							Arak.	•.	}				
144				\									•	_
l '				1			$\coprod$			1 .			_	
	:					-  -	-						ļ	
1 7						F-11	ļ.,			1			-	
. ]					┟╌┼╌┧├╌		H		}					
150-	-		_	_										would cometas him
						<b>         </b>								would amended from
<del> </del>	-		_	r i									-	
1 !													 	
151	-	<b>\</b>		<u>L</u>			1						_	
51														
1 1	.		<u> </u>	<del> </del>	F 1 1 1 1		+	i		ĺ				
	İ	44		:		##	†#						-	
57	_	4	_	<u> </u>	1 1 1		• • • • • • •							
	-			1		]							-	
		기::		l l										
L †	•		-		1117	<b> + </b>	1				-		-	
ו פו	ł			:	111	<u> </u>	1:			}	: ::			C – 17
53	- [		4	<b>-</b>	<b>H</b>	EH	}::			]				
]	ļ	-1:-			]]::					l	- ::			
	_	1		-			1:				•   • •		İ -	
1 1	ļ	71.7	-	1	1		1:			1			-	



*)





			KE L		gy.	<del>-</del>				_	110			6.0	1	veii(s) rage <u>z_0; 1</u>
<b>9</b>	Pes.	***		ucture / dding	Hai	<u>'</u>	Per 1º	20		alogy		C+40	Sire	Lith. Char	Lith. Class	Description / Comments
24 2	3 111	U S	Angle	Desc.	5	H	. н	LH	Min.	Habit	M) G	.01	1.0 10	0		CW 12/2//
•		##		MISTYL							_	口			55	Smostme
- 1		Щ		1		圳	#.		1		1	H	144			
- 1	t	##	-	† )	坩	##	廿									1
1	t t			1 1			世					出			١.	
85-	Ŀ			Ll		++	H	∄±±	•	,		H	++	Final, interlied	45	
7		$\blacksquare$					1	<b>H</b>	}	}	DO YF	LI.	<u> </u>	Final o	125	Claustone
1	•			1 1	H	$\Box$	H	H + -	}	ļ	2/1	H		ملةبيد		Claystane buarry (5/0554)
4	}	4	-	+ 1	Hi	iH	1	$\Pi$	1		41	H	1	sitt.	1	- must (2 was 2)
1	•			1 1	$\Box$	$\Box$	##	111	1		black	H	$\Box$		4	F
	† †	##			$\Box$		##	###	1	1		H				
86-			-	<del> </del>	$\Box$		1	#++	1	1		口	<b>1</b> ::::::::::::::::::::::::::::::::::::		"	1
3	t l	$L \perp$		1 1		Ш			1		ļ	日				Ì
3	E		_	$\perp J_{I}$		H	$\pm$		}	<b>\</b>					1	]
7	F		_	T	$\Box$	$\Box$			7		ľ	-				1
1	ţ	#			H	H	#		7			H	$\Box$			
87-	<b>Ļ</b> │	世	_	+	H	#	#	1	7		[	F	+		-	4
	†	1		ł	井	#	╁┼	##	1			F	1			L
•	‡			1			#	##	1			17	1-1-			Γ
*	1		٠	<b>†</b>	<del> </del>	H	#	###	1	1		11	1 1 4-			7
:	‡		l	1	井		岸	1++	‡	}	1	1	+ - + - + - + - + - + - + - + - + - + -			
88-	<u> </u>	<b>       </b>	_	<del> </del>		###	<b>!</b> #	<b>1</b> ,++	1			1		ĺ	.	4
	‡			1			$\sharp$	###	‡	1		17	<del>┤</del> ┯┿╾		1	
<b>A</b>	†	1	}				世	# + +	<u> </u>			44			}	
<b>(b)</b> -	+	1		masiv	e 🖠	+	1	1			254	1.1	نه نا حداد ال		NS	Sittstone
	Ŧ		}	1,,,,,,		$ar{\Box}$	1	+	-				A	j	54	JII LISTONE
O.	Ţ	H	}	1 1	干	$\Pi$	-	-11	₹ Ø•	10	5/0	-	1-1	1		
85-	<b>T</b>	17-	-	T		1	1	###	<b>1</b> /2	صرا	1			}		
,	‡		1	1 1	-		-1-	${\mathbb H}^{\perp}$	ء∴۲		grey	<b>\</b> [-]		1		
	‡	<b> </b>	1	+ $I$			-1-	-111	<b>-</b>	1	1		<del>-</del>	1		4
	‡	<del> </del>	1	1 (				11	7	)	1	1-1	+++	1		· ·
_	‡		‡	1 1			-11	-111-7	7	1.		П	11	1	İ	
90-	<b>†</b>	H	1 .	T .	+	:  ;-	1-1-	-111-	=	18		+1	1	4		7
	‡		1		-	11:		-11#	_	'		-   1	1++	1		
	‡	<b>H</b>	1	1		-11-	#	111	#		1	-11	1-1-1-	1		4
	‡	∷	1		-1	111	111			7	1	-11	+11	1	İ	
۸.	‡	H=	1			-  -	┇┇		7		1	11	- <del>  - + - + -</del>	1		
91-	+		1 .	+-	<del> </del>	:  :	<b>†   .</b> .	<u> </u>	7			-   4		1		7
	‡	11:	1	İ		-: ;-	11:		4				4 4- 1-	1		
				1	+	-1-	†   -	_  ;_;	_	<del>  -</del>	1	1:		1		1
$\bigcirc$	İ		<u> </u>									11	4 - 4 - 4 - 4 - 1 - 1 - 1 - 1 - 1 - 1 -	1	1	
_	ł	1	-				$\{\{\}\}$			1			 	1	1	
92	<del> </del>	71=		10.		-:[[	$\prod$	HE	-	1		- [ ]		inhal		4
•	Ŧ		1=	Final-		-	$\{\}$		$\exists$					intert.	urur.	
Ì	1		==.	BC06-40	1		$\prod$		7		1		• • •	es .		
	Te.	:-:	<b>1</b> -	Ti		-: :						-				]
	13/		1			-: :	11.		:-							
43	∸'			<del>-</del>  -	:		11.		: }				; ; ;	-		C-176
'	}				:	<b>: </b> :.	1	: :  : .					: : :	93	105	C/14ystone C-176
	ł				:	:  :	11.	;	: †				<b>(</b> : : : <b>)</b>	1.41	.	7-
	<b>+</b>		+	+ 1		:: :.	#:			İ			1:::	200/0 51 b	2	1
	<b>†</b>	41.	<del>-</del> L	1 1	:	1:	11	:   -	:			-	1	- si t		1
	1	1	1	1 07	ı	1	1.1	. 1	1	1	I	ı	ı	i	ı	•

*****)



-			₿У			Dun	14	M.		LL	<u> </u>	veil(s) rogeor_r
**************************************	300	Structure/ Bedding	Hor	a. F	Perm.  *   2*		alogy		Tenture / Gruss Size cist ed g/	Lith. Char	Lith. Class	Description / Comments
10 1 2 11	y s	Ingle Desc.	5	HL	HLT	Min.	Hobij	<u> </u>	01 10 1			CM (Scale 1"= f+)
'		MARSIN	<b>-</b>	111		]		54			cs	Claytone
. ‡ at		ļ ,				1		4/1				1 11
Ŧ				++#	<del>                                      </del>	‡		1.1	<b>╒╫</b> ╅╾┿╸ ┡╼ <b>╢</b> ┼┈┿╼			
105		U				]		donk			_	
#					╪╢┾╪	-		guy				
I I		1	$\boxplus$		<del>-</del> -	1		i	<b>  </b>			
ا ا						3						<del> -</del>
15				++#	╪╣╃╪	1						
106+3			$\boxplus$			]		ļ ļ			-	
#				+-#+	╅╫┿	1						
Ŧ		Ť	H	+	1111	1		•			-	
,,,			$\blacksquare$			]						
107	11	Muselm		1	┷╫┷	٠,		}	<u> </u>	107	5+	3:11:stone
- Ŧ [	田	1				<u>چ</u> %	1					
	<b>╿</b> ╤┼╬╌	<u> </u>	<del>-</del>		<b>+  </b>  +	100	0				-	
1	田	Musdin		H		]				107.50	cs	elaystone with thin intilias grittime
109		- with			111	}			1			with this intelled
n I I		وفرق		++++	<b>+ </b> ++	1			)			galterne
ତ ‡ା		+ 64	$\square$			]					-	
	<del>[    </del> -	<u> </u>	-	-	<del> </del>							
109		-		$\Box$		]			3		-	
+ 1		====	‡‡	##	++  -+	1						
3		+		$\mathbf{H}$	HE	]					-	
15			4 🕌	\	1	1						
<del>//a-]</del>	田	+ Cimly		Æ		1		54	X:::	109.81	St-	Siltstane
1		(مذنب	田	#		}		1 1	-1-			
_ +		- Cinding	<b>~</b> ";;;	1   -	<del>╎</del> ┆╏	1		611				
<b>9</b>					田庄			9123	1-4-			<u> </u>
<del> </del>	-		-1:4:1	:	\	1		`				
		Cinely	1			}	•			111	55	Sampstone
+	肝扎	Cinely bearing	VI.	1	<del> </del>	١.					U	cutal oddo with
1 1		(1662)				3.10	′					1. Hotone
112-	-		1:1			- 64 P	P.				_	
] [		=   1	1-1-			] "	)"					<u> </u>
+_		_ +	+	<b>;</b>   :	;  ;-	1						
5	-	_				1	•					
13-1-1	-	_	1	11		1				_	_	
<u> </u>	:.: -	-			]: <b>                                    </b>	1			::/:::	11:51	St	Samponis Sitts tone C- introduction with
1	L	::										I note to be dead a set l
‡		-   V	::	11:	<i> :</i>  }:	1	•					! not ince

**(*)** 





(2)	H Res.	3000	- 80	ructure /	Hord-	Per	7.	Mineral	ogy Co	lor	Testure / Grain State class and a	Lith.	Lith. Closs	Description / Comments
	<u> </u>	ų s	Angle	Desc.	S H	I ' I	LH	Min H	obit (A)	၂	.01 10	100		CM (Scale 1"= fr)
	ŧ		1	1									S+	5: Him
	Ŧ		1	Manau	1111		╫┿		23	7		1343		Claush -
•	Ŧ		•	1				1 1	2/	Ġ		j '''	100	Claustone
1	Ŧ			1 1	<b> </b>		##		614		1	₫	1	1
135	╄ │			- 1							-11-1-1	<u> </u>	1 _	<u>j</u>
	‡									Į	+	}	1 -	]
:	1/4			] [			世			ŀ		3		
1	30		_	t 1					ľ	Ł		3	1	4
] :	1 3°	7		1 1					1	-		3	ł	<del>-</del>
134	- 1		_	- 1			╫±			ŀ	1	3		
	1			1 1						E		7	"	1
-	‡									F		7		
,	•		1	t 1						F	-11:1-	7	,	<b>∤</b> .
:	‡			] ]			$\coprod$	}		}	-111-	7		
137-		##		トル					}	F		7		
	t l	111				+				F	1	1	-	1
1		-1-1-					-			ļ	#	1		<b>_</b>
7										_	- 1-4			
1	ŀ			8 10 E		+++		İ	2.5	۲	17:-	1375	St	Siltstone
137-	<u> </u>			الافرلاميا			$\Box$		31	o þ	- <del> -</del>  -	1		
1		##				-1++	田		lu.		1	1	-	
1	3			1 1		7			200	<b>^</b> [	<del> </del>	1		
	-5		<b>_</b> +	- U					به ا	4	##	1	.	
9		+	- 1		7-41-1	111	$\Box$	1	14	7	┿╍ <del>┞</del> ┊╺╸ ┿╍╿╺╌┑╴	1		
139	_ [			masive		1#		}	-	-	+ + + + + + + + + + + + + + + + + + +			
10.			٦	46/600	二十二	7	$\square$		}	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	139	-ري آ	SAMPSTONE weil consted
1		+	ł	1	$\top H$	774				-		1		
- 1					7	1								
}				Final	111	H			-	-	± ∭	1,89,5	St	Siltstone
140	<u> </u>					177	17			-		1	į '	
140		1.7		Wan 100	777	1+4	口			<u>- :</u>		140		
1		$\mp$		Mossia	-1-1		11	1	2.5	·  _	11:4	i ,	C5	elaystone
- 1	- [		+	- 1 1	777	1777	H	1	2/0	) <u> </u>	1+++			3
I	. [		İ	(), 1					2/0	:14:	<b>∮</b> }-å-∔-			
7					1:1:1					-				
			2	GIAN LIL	1 11 1	7				-	<b>             </b>	747.		
ł	E		<b>A</b>	Crabiletien Unablik	7-11-7	[41]			2.5		∮	. 11	St	Siltstone
1	- [		~ <del> </del>	Garage.	7	FIT	H		410		<b> </b>			
ł	F		استد	- 1	7/17	田	1		dowl	k l l	4-4-4-			
142	_ [:				1-11-1	1111			gree	4	1::::			
ł	-			- }		4 []			17.	7	1 1		-	
6	<b>43</b>	-		•		$\Gamma \parallel$	H			1	-: :-			<del>-</del>
(B)	/		+	.		1;	14				1::::			
1	3		1		- 4	[;]	1.7.4		-		] : : : :			
143	_ }		Ì	_		1:11	• • •	}						
דיי	ł	- =	Ī	-		1511	: :	Ì					-	0.101
i	!		1	ļ		[::]	4	<u> </u>		1-	1::::		!	C-181
	- [.			.	-: :	1: : 4:		l i	1	1	l : : : l			
Ţ	-			Ţ	- : :	::4:		]			1		ļ	



(100 E)	Ξ	•	Str	ucture/ dding	Ho		Per	m.	Miner	ology	Color	Tosture/ Grain Sure	Lith.	Lith. Class	Vell(s) Page 15
<b>(a)</b>	SEPTH SEPTH	u 5	Angle	Desc.	5	** H	1° L H	2°	Min.	Hobit	<b>1</b> 30 c	Testure/ Grain Size clat ad gr man OI IO II	Char.	Class	CM (Scale 1"=f1)
				blockey	Ĭ						2.54			cs	Claytone
	Ī			-			住				20			•	
107 -	<u> </u>										the				
153-	-				田									-	
	1			_	H		1+	#							
	+						$\  \mathbb{T} \ $								) 
156_							#		_						
	1	#		musin	#		1=	++	مان الالل			1.1.1.1.1			
	3	#		-					44	•					•
<b>49</b>	[7			1						1					
<b>ማ</b> ሆን-	-	##	-	-			出	#							
,	†			\											-
-	1		+	•											
	]	#	}		1		且	$\pm$	1		ł				
158-	- 1	拙	7	-	#	-+-	+	++-						-	
						田					Ī				
-		田	7	· V						ļ	}			1	
				_		+			ł	İ	-		}		_
iss-		1:1							1	ľ	ŀ	1		7	
		田	1		<b>∃</b> [						ţ			}	
		出				#	11-1		1				}		
160-					1	+						1:			
	<u> </u>	;;;;	16	o' Ta	ta.	4	4	PE	١	1					
-		-	†		-	+	$\prod$							į	
1			1		11	++	1+1			1		- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	}		<del></del>
1	-	:	7	-	1.1		-   -							4	
		$\prod$	-	ļ	-			11				1 1 1 1 1	}		
1		出	1			$\frac{1}{1}$	111	+++						+	
1		田			:1	1									
					• •		!	+		-			}	7	
}	L [		1		•										
1				}	::					1					
4	_		+	- }	0 				1	İ				-	C-18
					• •				- 1				ļ	}	3 10
•	-		+		: :	:}							ļ	1	
•	,	: =	,		::		1	: ::	İ		} i.			1	

Frontier Logging	gging				
Lehemood, Colorado	992		Pr 106	7, 1387	
			Drym (C	160Fr	
EP-66	9		6	3	
				Ft. "	1015 205
ADAMS C.	- COLORADO	60	Trative v	native mud/water	01
l	}	le sen	Decarly Victorial		morain Linton
	Ground Level	Level	ولاها	Ground Level	Lakewood
111111111111111111111111111111111111111	Oran pe Republication of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control	te soor s			
_	Scale	<b>4</b>	3	•	\$. \$
ה ה	Park Barrier	1,0	SI PRO ALE	James Bredding	
Co sales		a a		2	•
- /S i	E	2	à	2	
	Total	<u> </u>			2
1 3/2 1/2			Gamma (Analog)		Demsity Source No
160 x 16 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			Gamma (Digital)	5	_
110 3%			145		IFSH
;			Temperature	u	
Pessural 200 chans /4" from			200	BARGERS THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE	Neutron Source No
Sr 70 MV/Tuch			Dosare	ě.	
			Azmufir		(1). (1). (1). (1). (1). (1). (1). (1).
C-			True Vertical	ta Survey Expits	
- 184					







#### **WELL CONSTRUCTION SUMMARY**

Rambala Ep-6671		u 030	13
Diversion		***	Project Number
Project Name and Location	Driller De	Lavia	Rig Number
	Driller		VIR IAUMOOK
Drilling Method(s)			
Borehole Diameter /2'// in	_cm0	itcm. to	ftcmcm.
Size(s) and types of Bit(s) 12/4 7/		Sampling Method(s Date/Time Start Dri	lling (0/18/8) (410
Size and Type PVC 40 Jeh 40		Date/Time Finish D	rilling 10/16/87 0215
Total Borehole Depth 63 ft.		Date/Time Start Co	
Depth to Bedrockft.			Provective Casing
Depth to Waterft.	cm.	Materials Used	
Water Level Determined By			.29'
Length Plain PVC (total) 46.29 ft.	cm.	Slotted PVC	.2/
Length of Screen 16.2/ft.	cm.	Bentonite Pellets _	
Total Length of Well Casing 62.50 ft.	cm.	Bentonite Grapujer	1/10 bas (4016.)
PVC Stick Up	cm.	Cement 840	المستحد المستحد المستحد المستحد المستحد المستحدال
Depth to Bottom of Screen 49.50ft.	cm.	Sand	(35.16.)
Depth to Top of Screen 44.16 ft.	cm.	Water added durin	is completion
Depth to Top of Sand 40.0 ft.	cm.	Water added durin	ng drilling 30 yet. (set.)
Depth to Top of Bentonite 34.e.ft.	cm.	Total Gallons of w	ater edded
Drill Site Geologist A.E. Ostall		Date	ี้ ช
Date/Time/Personnel Internal Morter	, Cement Pad, and We	ep Hole Installed	10/7/87 / 1280 20 12
Date/Time/Personnel Casing Painted		/1480/ Diw	Bury!
Date/Time/Personnel Numbers Painte	d 10/24/57	1100 / WIN	,
Materials Used 13 8465 5		•	
Top of Protective Casing to Top of PVC	0.20 ft.	cm.	COMMENT/NOTES
Top of Protective Casing to Weep Hole	1.15 11.	cm.	
Top of Protective Casing to Internal Mor	1. 64 ft.	cm.	
Fop of Protective Casing to Top of Cemer	. 50	cm.	
Top of Protective Casing to Ground Leve	1 2	cm.	
Reviewed By	<b>L</b>		Date 3//W C-188

## B # B # Well Completion  Description    Part   1.5' oliver years   1.5'   1.5' oliver years   1.5'   1.5' oliver years   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5'   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress   1.5' oliver surpress		Bomhole:	Well: 03012
Complement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5'   1.5' delaw implement 1.5'   1.5'   1.5' delaw implement 1.5'   1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5'   1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw implement 1.5' delaw i	Depth-Food Sail/Rock Free	Well Completion	Description
# 53 Pl.60 jt.  20 - CL 24.67 jt.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 56.  50 - SJ 5		15.75	to 19.0' below sufer
	30 - 34 CU S3 - CU	4.66 jt. 24.67 jt. 34.73 jt.  55.34 jt.	TOP OF BRATENITE: 34.0'  TOP OF SAND: 40.0'  TOP OF SCREW: 44.96'  BOTTOM OF JERREN: 60.5'

Drill Site Geologist: A.R. Witelli Reviewed By: Date: 10/16/85 Date: 2/17/4/

Well 03012

Bore EP-66 31

ate(s) Developedersonnel (Name/Compaig Used	WI Seu See Grund	W/ESE		Date Installed Well Diameter (I.D.)	10(16)87
is Used ECE wump (Type/Capacity)_ailer (Type/Capacity)_/ster Source	WI Seu See Grund	V /ESE		Mall Diameter (LD.)	
ump (Type/Capacity) ailer (Type/Capacity) ater Source	JEUL SEE GRUUD			AAerr Dismeres (1.D.)	in.
amp (Type/Capacity) ailer (Type/Capacity) ater Source	GRUND			Anulus Diameter	12-41n. 0 ft. to 14 ft.
niler (Type/Capacity) ater Source			<del></del>		73. in. 14 ft. to 63 ft.
eter Source			<b>M</b>	Screen Interval	44.96 st. to 60.5 st.
	ربر	<u> </u>	<del></del>		
easured Well Depth TC	15,4,4		Jul	Casing Height (Above	
	OC	(Initial)		Bottom of Screen (Bel	ow G.L.)ft.
		(Final) 62.5		/	
ater Level TOC/Date/T	-	/		07/0820	
	after) 3. して	24 hrs.) 34		-47/1310	
	.1.74	_ft.x		lons/foot = (5,44)	gallons casing/anulus volume
rilling Fluid Lost			allons 4	One Purge Volume	me 3/4. S gallons
urge Water Lost	11/A 30		allons	Minimum Purge Volu	4111 -
dded Water		. 4 . 4	allons	Total Purge Volume	SE WILLIAM DOWN
ssing/Anulus Volume .			allons		
- 11 h 11 h 4		B.scr. mon &	21 SN:	Surge Technique	RRISE / WHOLE 19 page
alibration: pH Meter		·	4 .		0.08 at 181 °C
pH 7.00 = Conductar				سيسے - Pii voido	
Conductar Standard		umhos/cm		141 -	
Standard		umnos/cm	#t 25*	Reading	uninos/ciriat
Purge Volume	Time	Temp. *C	рН	Conductance at 25°C	Physical Characteristics (clarity, odor, sand content. :olor)
Initial 5 31L.	0842	Ks	5.29	374	muchly of brown sit &
S JAL.	0842	14.2	51.89 7.71	373 844	
GC CHL.			-		muchly of brown sit & fire cand sitt
130 5AL.	0854	14.2	7.71	84.4	muchly of income sit &  very chandy my train sitt  claudy of limon sitt same  claudy of limon sitt same  claudy of limon sitt same  claudy of limon sitt same
130 5AL. 6	C854 0910	14.2	7.71	3×4 294	anushing of isoron sit is using chanday my train sitt claudy of limon sitt some claudy of limon sitt some claude at some sitt & some

lailer (Type/Cape Vater Source Assured Well D	Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Company)  Compan		2	Project Number  Date Installed  Well Diameter (I.D.)	17854 44 W/16/87
Personnel (Name Rig Used	Company)  SEE WELL  scity)  acity)  N	DLW / SSE FF / BSE SHOWER :	<u>e</u>		- / / in
lig Used tump (Type/Cape lailer (Type/Cape Vater Source Veasured Well D	acity) oav	rr / BSE Szenia			
Pump (Type/Capi lailer (Type/Capi Vater Source Measured Well D	acity) car	SEONER :		• •	12 vin. 0 ft. to 14 ft.
Pump (Type/Capa Bailer (Type/Capa Water Source Measured Well D	ecity) <u>oav.</u>	3	PANE	Vindias Diemaras	76 in 7211 to 63 ft.
Bailer (Type/Cape Vater Source Measured Well D	city)	120 sall	684	Screen Interval	44.96 ft. to 605 ft.
Vater Source Measured Well D  Vater Level TOC	′			Delegii Illici vai	ft. toft.
Measured Well D				Casian Hainka ( a hana )	<del></del>
		(Initial) 62	44 6	Casing Height (Above ) Bottom of Screen (Belo	
Vater <b>Lavel</b> TOC	Spin 10C	(Final) 62	_	pottont of Screen (Bett	W U.L.)I(.
ASIGE PANEL LOC	MataMima Mali			-87/0520	
	•	7.	9.31 /11-		
eet of Water in \				والتناقي المتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والمتالي والم	gallons casing/anulus volume
			gallons	•	•
Orilling Fluid Los	12		•	-	ne 2/4.5 gallons
Purge Water Lost		· · · · · · · · · · · · · · · · · · ·	gallons gallons	Minimum Purge Volum	4.4.4
Added Water		. 44	gallons gailons	Total Purge Volume	
Casing/Anulus V	olume		Battons	Volume Measured By	nice Jeowen Rur
				SUPPRE LACERDANA TO	
pH Co	7.00 = 7.00 nductance Mete	r Used:	SI mod	PC, pH 10.00 =	umhos/cm at 25 °C
pH Co	7.00 = 7.00 nductance Mete ndard 141	1at/4 r Used:	SI mod	EX: 0(58) PC, pH 10.00 =	umhos/cm at 2 C °C
pH Coi Sta	7.00 = 7.00 nductance Mete ndard 141	Tused:	1./ "S.T Mode n at 25°,	C, pH 10.00 =	umhos/cm at
pH Cor Sta Purge Volum	7.00 = 7.00 nductance Mete ndard 141 e Time	r Used:	#./ "S.T Ang.D. n at 25°, pH	Reading Conductance at 25°C	umhos/cm at 2 C °C
Purge Volum	7.00 = 7.00 nductance Mete ndard 141 e Time  6435	Temp. °C	9.7.27.	## 015893  C, pH 10.00 =	umhos/cm at 25 °C  Physical Characteristics (clarity, odor, send content, color)  Purtly dayly of same is:
Purge Volum	7.00 = 7.00 nductance Mete ndard 141 e Time  6435	Temp. °C	9.7.27.	## 015893  C, pH 10.00 =	umhos/cm at 25 °C  Physical Characteristics (clarity, odor, send content, color)  Purtly dayly of same is:
Purge Volum	7.00 = 7.00 nductance Mete ndard 141 e Time  6435	Temp. °C	9.7.27.	## 015893  C, pH 10.00 =	umhos/cm at 25 °C  Physical Characteristics (clarity, odor, send content, color)  Purtly dayly of same is:
Purge Volum	7.00 = 7.00 nductance Mete ndard 141 e Time  6435	Temp. °C	9.7.27.	## 015893  C, pH 10.00 =	umhos/cm at 25 °C  Physical Characteristics (clarity, odor, send content, color)  Purtly dayly of same is:

EP-67

PAGEOF	
--------	--

### BOREHOLE SUMMARY LOG

Size(s) and type(s) of bit(s) 3\( \text{in} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \) \( \text{cm} \)	Borehole FP 67 A Well	35087	
Drilling Company Reyles Drilling R. Muschey Rig Number Rig Number Drilling Method(s) 31/10 TD HS Reget  Size(s) and type(s) of bit(s) 31/10 TD HS Reget  Borehole Diameter 1: in. cm. ft. 0 cm. to 36.5 ft. cm.  In. cm. ft. cm. to ft. cm. of ft. cm. of ft. cm.  Total Number Soil Sampling Tubes 16  Total Number Core Boxes 2  Number of Gallons Lost Drilling Fluid New Date/Time Started Drilling 11.11.87 / 1323  Date/Time Completed Drilling 11.11.87 / 15.77  Total Borehold Depth 36.5 ft. cm.  Depth to Bedrock 36.5 ft. cm.  Depth to Bedrock 36.5 ft. cm.  Borehole Completed as Monitoring Well?  Date/Time Grouting Completed 11.11.87 / 16.02  Depth of Tremmie Pipe 16  Gallons of Grout 4.40  Materials Used 5.40  Wellsite Geologist 7.40  Wellsite Geologist 7.40  Measurements from Ground Level Reviewed by Date 31.23  Date 31.21/38	Project Name and Location RMA T44 Well Jus	lallation Project	Number 1705 3 0 € 1 10
Size(s) and type(s) of bit(s) 3 1/4 TO HA 3.1  Borehole Diameter (- In. cm. ft. cm. to 36.5 ft. cm  in. cm. ft. cm. to ft. cm.  Sampling Methods Poly bytera (c 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2		nuckey Rig	Number 700
Borehole Diameter (. in. cm. ft. cm. to 36.5 ft. cm. in. cm. ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. to ft. cm. cm. to ft. cm. cm. to ft. cm. cm. to ft. cm. cm. to ft. cm. cm. to ft. cm. cm. to ft. cm. cm. to ft. cm. cm. to ft. cm. cm. cm. cm. cm. cm. cm. cm. cm. cm	Drilling Method(s) 3"" IP HS Auges	•	
in	Size(s) and type(s) of bit(s) 31/4" ID HS Bit		
Sampling Methods Poly Buterale 1 when in continuous 50 may 12  Total Number Soil Sampling Tubes 1 C  Total Number Core Boxes 2  Number of Gallons Lost Drilling Fluid Now Date/Time Started Drilling 11 when 27 / 1323  Date/Time Completed Drilling 11 when 27 / 1323  Date/Time Completed Drilling 11 when 27 / 1323  Date/Time Completed Drilling 11 when 27 / 1517  Total Borehold Depth 3 when 25 ft. cm.  Depth to Bedrock 3 x 25 ft. cm.  Depth to Water 32 x 5 ft. cm.  Water Level Determined By? Start the 2 cm.  Water Level Determined By? Start the 2 cm.  Borehole Completed as Monitoring Well? Date/Time Grouting Completed 11 x 1 x 2 x 1 cm.  Materials Used 2 x 3 x 4 cm. 2 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 cm. 4 c	Borehole Diameterincmft.	<u> </u>	. • 5 ftcm.
Total Number Soil Sampling Tubes 1.C  Total Number Core Boxes 2  Number of Gallons Lost Drilling Fluid News  Date/Time Started Drilling 11-11-27 13-23  Date/Time Completed Drilling 11-11-27 15-17  Total Borehold Depth 36-5 ft. cm.  Depth to Bedrock 32-5 ft. cm.  Depth to Water 32-5 ft. cm.  Water Level Determined By? Sleet tage  Borehole Completed as Monitoring Well?  Date/Time Grouting Completed 1/2-11-27 1/2-02  Depth of Tremmine Pipe 1/6  Gallons of Grout 32-15 ft. cm.  Wellsite Geologist 2 ft. 12-16 ft. cm.  Wellsite Geologist 2 ft. 12-16 ft. cm.  Wellsite Geologist 3 ft. 12-16 ft. cm.  Date 1/2-12-16 ft. cm.  Date 1/2-12-16 ft. cm.  Date 1/2-12-16 ft. cm.  Date 1/2-12-16 ft. cm.  Date 1/2-12-16 ft. cm.  Date 1/2-12-16 ft. cm.  Date 1/2-12-16 ft. cm.	incmft.	cm. to	ftcm.
Total Number Core Boxes 2  Number of Gallons Lost Drilling Fluid News  Date/Time Started Drilling 11-11-27 / 1323  Date/Time Completed Drilling 11-11-27 / 1517  Total Borehold Depth 36-5 ft. cm.  Depth to Bedrock 32-5 ft. cm.  Depth to Water 32-5 ft. cm.  Water Level Determined By? Sleet tage  Borehole Completed as Monitoring Well?  Date/Time Grouting Completed 16-15-57 / 16-02  Depth of Tremmine Pipe /6  Gallons of Grout 34-55  Materials Used 69-77 for 32 cmc-4c 1/4 for security.  Wellsite Geologist 7 for 32 cmc-4c 1/4 for security.  Checked for Grout Settlement on 1/17-51 by Date 1/4 for security.  Amount of Grout Added All Measurements from Ground Level Reviewed by Date 3/15/38	Sampling Methods Polybuterate tubes in	continuous so	m. 26 13
Number of Gallons Lost Drilling Fluid New Date/Time Started Drilling 11-11-27 / 1323  Date/Time Completed Drilling 11-11-27 / 1323  Date/Time Completed Drilling 11-11-27 / 1517  Total Borehold Depth 36-5 ft. cm.  Depth to Bedrock 36-5 ft. cm.  Depth to Water 32-5 ft. cm.  Water Level Determined By? \$12-1 + 1000  Borehole Completed as Monitoring Well?  Date/Time Grouting Completed 11-11-27 / 16-02  Depth of Tremmie Pipe /6  Gallons of Grout 94-6 C  Materials Used 69-900 ft. 24-90 concrete 1/11 has, for reached Comments  Wellsite Geologist 2 with a page of the page 1/12 ft. for reached 1/12 ft. for reached Comments  Wellsite Geologist 2 with a page 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12 ft. for reached 1/12	Total Number Soil Sampling Tubes		
Date/Time Started Drilling 11-11-27 / 13-23  Date/Time Completed Drilling 11-11-27 / 15-17  Total Borehold Depth 36-5 ft	Total Number Core Boxes3		
Date/Time Completed Drilling   11-11-27   1517   Total Borehold Depth   3(-5 ft. cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.   15 cm.	Nuriber of Gallons Lost Drilling Fluid Now		
Total Borehold Depth 36.5 ft. cm.  Depth to Bedrock 36.5 ft. cm.  Depth to Water 32.5 ft. cm.  Water Level Determined By? Steet tenge  Borehole Completed as Monitoring Well?  Date/Time Grouting Completed 11-11-87 / 16-02  Depth of Tremmie Pipe 6  Gallons of Grout 24.6 7 feage central 1/11 has, for remaining Comments  Wellsite Geologist 7 has a central 1/11 has, for remaining Comments  Wellsite Geologist 7 has a central 1/11 has, for remaining Comments  Wellsite Geologist 7 has a central 1/11 has, for remaining Comments  Date 1/11-12/11  Amount of Grout Added 1-11-11  All Measurements from Ground Level Reviewed by Date 3/12/38	Date/Time Started Drilling 11-11-27 / 1323		
Total Borehold Depth 36.5 ft. cm.  Depth to Bedrock 36.5 ft. cm.  Depth to Water 32.5 ft. cm.  Water Level Determined By? Steet teach  Borehole Completed as Monitoring Well?  Date/Time Grouting Completed 11-11-87 / 16-02  Depth of Tremmie Pipe //6'  Gallons of Grout 34.6 C  Materials Used 67.0 7 had 2 central to the har for contact  Comments  Wellsite Geologist 2 within Date 11-12 ft. by Checked for Grout Settlement on 11-12 st. by Checked for Grout Added  All Measurements from Ground Level Reviewed by Date 31/2/38	Date/Time Completed Drilling 11-11-87 / 1517		
Depth to Water 32.5 ft. cm.  Water Level Determined By? Sleet two C  Borehole Completed as Monitoring Well?  Date/Time Grouting Completed //- 1/- 57 / //- 02  Depth of Tremmie Pipe //- //- //- //- //- //- //- //- //- //	Total Borehold Depthft	cm.	
Water Level Determined By? Steel tage  Borehole Completed as Monitoring Well?  Date/Time Grouting Completed //- // E7 / 1/-02  Depth of Tremmie Pipe //6  Gallons of Grout	Depth to Bedrock 36.5 ft.	cm.	
Borehole Completed as Monitoring Well?  Date/Time Grouting Completed //-// E7 / 16-02  Depth of Tremmie Pipe /6'  Gallons of Grout	Depth to Waterft	cm.	
Depth of Tremmie Pipe	Water Level Determined By? Steet tage		
Depth of Tremmie Pipe 16'  Gallons of Grout 24 g C  Materials Used 7 has a concrete 1/4 has, be condected  Comments  Wellsite Geologist 7 wilkin Date 1/1 2 2 / by Taxi  Amount of Grout Added  All Measurements from Ground Level Reviewed by Date 31/2-138	Borehole Completed as Monitoring Well?		
Gallons of Grout Syrte 7 hags concerte the hay be condected.  Comments Wellsite Geologist Wilhing Date	Date/Time Grouting Completed/ 16-02		
Gallons of Grout Syrte 7 hags concerte the hay be condected.  Comments Wellsite Geologist Wilhing Date			
Wellsite Geologist 7 with Date 11.17 51. by Tall  Checked for Grout Settlement on 11.17 51. by Tall  Amount of Grout Added 1.11.  Reviewed by Date 31/2/38	Gallons of Grout Guy and		
Wellsite Geologist 7 with Date 11.17 51. by Tall  Checked for Grout Settlement on 11.17 51. by Tall  Amount of Grout Added 1.11.  Reviewed by Date 31/2/38	Materials Used 15 mgs concerto	1/11 has be william	
Amount of Grout Added  All Measurements from Ground Level  Reviewed by  Date 31/2/38		; <b>)</b>	
Amount of Grout Added  All Measurements from Ground Level  Reviewed by  Date 31/2/38			
Amount of Grout Added  All Measurements from Ground Level  Reviewed by  Date 31/2/38			
Amount of Grout Added  All Measurements from Ground Level  Reviewed by  Date 31/2/38	Wellsite Geologist wilking		Date
All Measurements from Ground Level  Reviewed by	,		
Reviewed by Date	Amount of Grout Added		
•	All Measurements from Ground Level		
Drill Site Geologist C-193	Reviewed by		Date 3/1=/38
	Drill Site Geologist		C-193

PAGE	OF	·
------	----	---

#### **BOREHOLE SUMMARY LOG**

Borehole	7-67		Well		····
Project Name and I	ocation _	<u>AMS</u>		Project Number	
Drilling Company_	Boyle	Bros	_Driller Fob Porich	Rig Number Fail:	1500
Drilling Method(s)	_antas	y war			<del></del>
Size(s) and type(s) o	of bit(s)				
Borehole Diameter		iC1	m. <u>0.0</u> ft.	cm. to <u>35,8</u> ft.	cm
		ıCı		.cm. toft	cm
Sampling Methods					
Total Number Soil	Sampling T	ubes			
Total Number Core	Boxes			- · · · · · · · · · · · · · · · · · · ·	
Number of Gallons					
Date/Time Started	Drilling	10/15/87	1256		
Date/Time Comple	ted Drilling	10/20/87	0947	<del></del>	
Total Borehold Dep	oth	181.0	_ft	cm.	
Depth to Bedrock		33.0	_ft	cm.	
Depth to Water			_ft	cm.	
Water Level Deterr	nined By? _			<del></del>	
Borehole Complete					
Date/Time Groutin	g Completed	10/20/5	12 1340		
Depth of Tremmie			<u></u>		
Gallons of Grout	174				
Materials Used	12 huga	temes to	- 120 460 H2 O 12	they of buttonich	
Comments	. تراستن	I game	) sugar		
			~1		
		<del>- 1 / /</del>	)		· · · · · · · · · · · · · · · · · · ·
Wellsite G	eologi <b>st</b>	itta Uc	u.,	Date Chin	( )
Checked for Grout	Settlement o	on	10/23/ 19	by	
Amount of Grout A	Added	10 (	get 1. Julius	1	
All Measurements			,		
Daviassed	by Re	teri P. S.	mest	Date _5//6/	88
INDALOMED !					

11/10/1/2

17 11,00

	Ron	nhale:		عج	e.:	£Z.	Well Number
	Depth-feer	Tube Number Tube Interval	Recovery	Sample Humber	Sample Interest	Unfied Sul Classica	SOILS LOG  Description  Munsell Colors
0		0-2	٤,		6-3		1005c, non-plaste, dry, Almon truce calcilor card
ว	-	2-#1	1		2-3		
ا ب	_						NO RECOVERY 3-6'
	-	4-4.	Ò				
( (		6-8-3	`ب		1 6.8.3		ML; Sendy will, a 10% and, says My yellowing income modium douse, non-plastic, day, Allumin of 15% calcium carbonate 10/2 etc white
5.	3 -	8.3 - 10	ວັ				No Recovery 8.3 to 10'
0		10.12	ج:		) le·12		all brown, round and depose, non play his in
∟ړ. ۲	ع النه	ita Č					BEST AVAILABLE

,	Dore	thole:			<u>=</u> 2_	67	Well Number:
	Depth - Feet	Tube Number Tube Interval	Recevery	Somple Number	Sample Intervai	Unified Soil Classification	SOILS LOG  Description  Many Il Colors
44		∌૯ - ખિ	٥٠				cuttings silly cky
26	1	રા⊧ - ઢઇ	oʻ				are Kerovery 26.38  Clay ends @ 26' loose file grained some fell out of samples
<b>3</b> 9		28 - 30	'ا۔۔		26 34		1048 413 brown, loose, non-pleatic, moist Allinoining Cas. 10, silly clay, 1648 513 brown, med. dense, slightly provided RECOVERY 30000 Z9- 36-4'  Clayery gravel outlings
	_	. <del>3</del> 6-32	Ċ				
<i>ڍ</i> ڌ		32 - 34	ેં				@32.5 saturated gravelry sound
34	-	34-36,5	0, /		Je . 4-36.5		END OF BORTNE LOG
l							END OF BURTHE THE

Dell Site Geologist: J. (12) Vess Date: 11 11 27

C-197

ESE, Inc. CORE LOG Date 10/21/87 BORE 57-67 Well(s) _ <u>_ Page __ of _&</u> olor Testure / Grain Site Chor. Structure/ Bedding Lith. Hord-Description/Comments Color Closs H Min Habit Desc Angle FI CM (Scale 1"= 2 (1) Puc and 2 36 Goduck at 233 dogin conta, all 31 No minery 31 442' 54 6/1 17:00:00 6:00:00 Claystone کٽ. SŁ Siltistane 2540 ۽ ٻور تسم 714 لاسراة 100 m المارية ي درامين د به نام SAMOSTONE , molim grains 514 inconscribated, friable: MJ ternon seces muit charmen from ments. 48. 0 57R 3/2 91-3/36 ۲۵ Clay stone, Juny intelled ) with lignite 50 61:444 22.05 سخمورور. ۱۳۰۸زیم S. Itstone interlighed in th 20% こうちょうしょくとうし 52. SAND chysten on a smostenic 15% CHY thisty WELL(S) No Luie recoveren from 25 70 45 18 66.5 56 Costingo com instruction mussimo combilomento 58 -C-198

	r		.  <u>S</u> f	ructure/ edding	Hord.	Pe	rm.	Miner	ology	Color	Texture/ Gran Sara	Lith	Lith.	Description/Comments
<b>®</b>	品幣	400	Angle			10	2*	<b></b>			clat ad at	Char	Closs	i
₹5	유	ln s		Desc.	SH	1	11 4	J	110011	M @	10 TO 1	1 1	55	CM (Scale 1": [+)
-	ł		ł	1	1111	$\Pi$	Ш	}				ł	57	No Come recovered from
1	Ţ	H	1	1		H	$\prod_{i}$					}		6" SS C. 16.5
1	ł		}	Ī		111								ì
J	Ī		1	1	1444			]	!		•	l	1	
62 -	+	FFT	┨ -	╀	1111		1::	1			: :	1	-	
1	1	: ;	ļ	ľ	1:::		1::	{ .	. 1			1		
1	1		1				1::	!						
'	Ţ	1::	1	Ť	1 ; ;	1::	1.		.			•	'	
	‡		1	}	1111		11:	1 ;				į		
64-	$\perp$		1 _	$\perp$	1-+++		† † : <u>-</u>					1	_	
	<u>†</u>		1	ļ	1111	++	<u> </u>	1 1		1				
1 :	ł		<u> </u>	1				1				Í		
•	t		} .	+			1						-	
1	ł		1			1							•	
1						1.4	: :			}		}		
166 -			-	<del> </del>			† † • •			j			_	
-	•	=	100	San.		7000	<del>                                      </del>	2 (1)		<del></del>	<b></b>		665	
-	-	-	<u> </u>	highly Fractures	, ; ; ; ; ; ; ;	=	#=	(c(6)	.	516			C5.	Claystone
] .	1		ξ.	19.5'	$H^{\pm\pm}$	===	:1=	B.ir		-65.00 01.04 1				lage many
:							1.::	•		Gray .	1::::		·	-17.5 Phidation benius
68 -	-	#::	4	1201-						45/0 huk	1 : : ::		-	
;		=		İ	ĿШ	吐	1.1			30.9	::::::::::::::::::::::::::::::::::::			
				L	$H \pm H$		1	!		''	1: : : :3			
(2)		<u>/</u>				<b>]</b>		!		1	1			
		1			11-11-1				ľ		) : : : :			
70-	-		-	-	14.44			Ì	- 1	Į	}		•••	<del> </del>
] }	[								_		] : : : : :			
]	[ ]			Museum	1777	$\Box$		54.	7	NYO			76.7	a-
1 7		\	1	1			1-1	44.4	• .	mid	: ( : : 1		5.2	SANDSTONE, MUZIUM GROW
		1		1		(	4.4	iceio de	الم	Gras	:   : :	i		he of economic yourse, you
72-	_			77 73	<b>₹</b> ;†1::‡	1: +:	1.7.	مَارُدُارَ	٠.	4.	: (:::		_	
				34" 1/m				25%		ļ	2.1			
			<u>.</u> .	bampic			1:::	27.45		İ	1 :1			
1 1	-			- (		lita:	[ <del>++</del> -1			1	- \:1		4	-
	1			7		1::		2000 PM	.	1	:: 1:1			) 20% small in well is
74	_	(1	7		1-111-1	<u>                                     </u>	1-4-	المليماح	- 1	- {	1:1:1			Chaystone chosen
	];	.): [		Massie		]: : :	! 1			143/0	<i>→</i> : : :		74.87	
!	L	11:1	1	i		111		i	l	MIK	<i>(</i>		cs	Claystone
†	•		+	- \		$\parallel i \parallel$			(	100		1	į	3
1				1		li - (		1	- [		• • • }	ľ		
76	_ (:	-1:-1		_ \					Ì	- (/	:			
	-		T	_		];			ł	Į.			1	
1		$\Xi$	20	معونها	IJij	1	d H		-	N I	1 : : : }		1	<del></del>
1	. }.	- 1	1	76	/  !		1::1		İ	1		1		
1	ľ	: I	İ	- 1			1:1	1		1			l	
_ 1	-	111		- 1 -	<b>.</b>		1:1	- 1			: : : 1	Í		
18	-		+	- J. i		!!!!	+:	:		i!  k	::::1	1	ł	
	ļ.			V		: : :	1:1	į		Ģ.	: : : : }	ļ	1	C-19
1	.  _	: 11	1			$: \prod$	1:1	i		•	: • . : }	ŀ	ļ	
•	}	: #	Ì				111	:	-	Ę		j	1	
į	J	- 11			n': '11	[ 1 1	1 ' 1		1	-	• • • •			

lœ ≖	~	Structure/ Bedding	Hord-	Perm.	Mine	ralogy	Color	Gram Sire	Linh.	Lith.	Description/Comments
A P P P P P P P P P P P P P P P P P P P	, ,	Angle Desc	ness S H	1° 2'	H Min	Habit	M C	cief ed er	Crior.	Class	CM (Scole 1": _2 (1)
30	ĬĬ		111	11-1-1				113.1	·	ĈŚ	Claystone
	TAH					}		W + 1		81.	
3:	411	17:411.00	- 15:1		N. N.E	<del> </del>	212			<b>├</b> क\	SANOSMUS
	11	(	14);		] cm		NI3/O		9,0 20,000 a.v.		SANDSTONIE , VITY COMME
-81-	1:1		- + +		دان دار کان	T	47		رامیده. ماهدی	-	grained, moder. well cenent
		- Unrith	1;1:		-ان 'ا	y,	1.				- Canada
. !					1.50						
j j	7:1	··								ĺ	-
	/::1				∄—	-	2111			32.7	
84 -	: +1	+ \		//::14	╡ .	Ι.	N4/0		30% 2011	(2) -	Clayshme, A. I Ly, chang
:	-	·   \		\:=-	5.40		denk	111	****	}	7
		+ \			-		Givy				1
					12.52	۶					
86 :-	::1			::	:[	l		<u>                                    </u>		252'-	
				:	4					SS	S
					7	1			40°4	33	1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
3	-	Finely			7	1			Di 12	-	Smosma, v. s. Ity, Si fin graines, well am
1 1 6		ومعوس			3						interbooked in the as History
88 +		. +			3	]	ì			-	
		ار اور به اور به اور اور اور اور اور اور اور اور اور اور	) 🟥 🛨		∃		,			1	
· : 1		1 1 1 1 1 1 1 1 1			-					-	
;	#				7	İ	~				
90	H			-11-	7	ļ				40'	_
I F	$\coprod$	masa	<b>V</b>		]		N 2/0				claystone
] ]	出	(			:		Chamish Clarks			71	
	#	† \	出出				N3/0	7	التسيسين		SANDSTONE
1 1		1 1	12		╡		Man .				
51 +		+			34	_	טודעי	III SP		_ک	Claystone
	$\mathbb{H}$				cbn		Dark				
	<u> </u>				11-7	ė	9247			.	
	+		+++		-						
			15	\ \ : -	:			1			
54: :-	<b>Z</b> :	+ 1	1:1:1	1! ::	1						
1 1			1:1:1	1:4::	1			١ : ا		14.7	
		+ 1		1:1:	1		nylo Light gaug		6/	57.	5. Itstance
シ・ル					-}		Light	1 1 2 1	10°/0		
76 - 1		1					gnary		Sang		
	* +-				1 .				Own		
	::	V	: :	1:1::	1			-			
-		†		1:1:	1	!	ł	:1::1		1	
	· · · · ·	v. 5. nely	1:1:1				ļ	1   1			
18		- trans			]						
: il	: : ] :			1:1::	-			:[::]			
:	: :  :	1	: :i								C-20
	1		1 4 4 4 4	1.1	1 1	j	I			I .	





(00x) <b>x</b>	-	Structure/ Bedding	Hard-	Per	m	Miner	olo gy	Color	Gran Stre	Lith.	Lith.	Vell(s) Page c
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Angle Desc.	neii S H	1° 1 H	2.	Min	Hobit	. 6	Green Street	r Char	Closs	CM (Scale 1": 2 (1)
740	1744	MARA		Ë	ÌFF			O'EN	<u> </u>	<del>-</del>	25	Claystone
] ]		1 ,	144	<b>V</b> i I I				DHK	M	=	`	3,77
ba t		+ 1	1111					ging.	{ - - -	1	.	4
<b>3</b> †	14:14		1711	-   -				[]` <b>-</b>		4		
142					] i : '					7	142	
176		i when						Sy di		17		Lignita
1	1177	muse	<u>"</u> ] ).	$\mathcal{N} : \mathbb{R}$				N 5/0			نابر و. اورون	
	1117	+	1.7	-/-	ļ. i.			5,45		}	1930	
Ī			<u> </u>		+			1400		10%	52	5: Itstore
144		_1_			(i +			1		chy	944.8	}
144+		7						1 (	-1-7:-		194.0	Sugar 1:
1	$\Pi$			H=	-			1		20%		Senosion, Jim gran Delty, well mustbe
†		المرابع		-7:-		-1%	/			o  +		with ment was les
Ī		الماسية الماسية	.7			31% Cbr	′		-	3		
<u> </u>		CANAL			<b> </b>	405				3		
146-		Trend				′ -	0	V		-}		
1		مده ۱۱ ان								]		<b>-</b>
Ŧ		+			++-					}	-	
Ŧ					ļ					:		
149 丰					1 +					:	_	
T		T								3	-	
ł										3		
<b>→</b> †		+				1				}	-	
<b>3</b>						I	1			-		
150			_				ļ				150	
" <u>†</u>		friet U Sim				1				35%	St	Siltstone, very change
<u> </u>		_ w.ii2		4#		1	ļ			Clary	1	1
‡		; † ¯			1::-	J	i		17	1,2	•	
<b>†</b>		:	111	44		1	ľ		· {	•		
152-			_::::::::::::::::::::::::::::::::::::::						_		15%	
‡		1. 4.		11		20%	- 1	N 1/0		30%	55	Samos rome line grain
<b>†</b>	<b></b>	beil an		<b>-1</b> :-1		16%		Med down	- 1 - 1 - 1 - 1	3.		
Ŧ		-ti	1-1-1-1	4:(-	1-1-	parth	~	47-5		{		modually well unanted in
1		Port and	1 1 1	4	+-1-1			. ~	1111	1		M. prable
454-			1:1:1	7:1		1	- 1			1	_	
I		. [				ĺ	ĺ			1		v findy wilded in the
Ţ			1-1-1	1:#	- 1					}		1. Hotens
I		Ī		1:1	::1	İ	ļ	1		}		, <u>-</u>
										}		
152				111	.	إوماسة				<u> </u>	-	
1				1:1			}	1		<u> </u>		<b></b>
<b>⋧</b> ↓ │		== 4.123		1:1		ر رست	1			<u> </u>		
ソー	-: :-}-	د داما								<del>]</del>		
	ا: : ا	in Vithing						1		]		
153		-		$\mathbb{H}$				1		}	-	
1			-  -  -  -  -  -  -  -  -  -  -  -  -	7: 1						]		C-203
1.												
<u> </u>				$\ \cdot\ $		2 (4)	ا ر			]		
1 1	1	ļ	1.1.1	$I \cdot I$	1:.	- 11,	1	ł	1 .	1	· 1	

**(1)** 

(3)



Star of Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Desc Sample Des	s) Page 2_ of !
25 2144 Total Back 181	Description/Comments
Total David 181	(Scole 1": 2
Total Distil 181	
Total Depth 181'	
	C-205

۹

(**+**)









#### **WELL CONSTRUCTION SUMMARY**

Borehole <u>EP-67 Alluvial</u> Well	35087
Project Name and Location RMA Monitor well Inst.	Project Number 7/9
Drilling Company Boyles Bross Driller Don	Truine Rig Number IR
Drilling Method(s) 12 1/4 " OD HS Augus	
Borehole Diameter 12 / in cm 6 ft	
incmft	cm. toftcm.
	ling Method(s) Not Sampled - cuting Aralysis
	Time Start Drilling // 24-87 / 13-3
	Time Start Completion 11-24-87 / 1353
	Time Cement Protective Casing 11-25-87/4034
7 m Anadah	rials Used
_	PVC _28.87
	d PVC
	onite Pellets 5 (Syal buckets) 250#
•	onite Granular 2/3 bay (53#1
	int 7 hago (656#)
	9 bein (900 #) 10:20
_	radded during completion gal-
	r added during drilling
•	Gallons of water added 10 cat
	11 · 24-87
·	
Date/Time/Personnel Internal Mortar, Coment Pud, and Weep Ho	
Date/Time/Personnel Casing Painted 2/25/88 533	
Date/Time/Personnel Numbers Painted 3/8/ダイ ウラン	rw rr
Materials Used 12 bap of Aut	
• •	_cm. COMMENT/NOTES
Top of Protective Casing to Weep Hole 1,30 ft.	_cm.
Top of Protective Casing to Internal Mortar 1, 6 6 It.	cm.
Top of Protective Casing to Top of Cement Pad 1. L3 ft.	cm.
Top of Protective Casing to Ground Layelf 1.95 in	cm.
Reviewed By Langan	Date3//2/55 C-210
Drill Site Geologist	

Borehole: EP-L7 Alluvial

Well: 35037

Dopth-Fact	Soil/Rock Type	Well Completion	Description
=	7 &		
		Gound Level	4" ID Sch 40 PVG; 10#0' Above ground to 38.1' Below ground
10	1	7.07 J4.	
20 -		17.13 54	Top of Bentonite : 17.6' Top of Sand: 21.8'
30		27.17	Top of screen: 27.15'
40 -			Bedrouk: 34.6' Bottom of Screen: 38.1 TD: 38.1
,	-		
	4		

Drill Site Geologist: 4. Wilhen
Reviewed By Jan

C-211

	,		_
SHEET	. /	OF	

Project RMR CAU Pate(s) Developed Sersonnel (Name/Con Rig Used ESE (A) Pump (Type/Capacity Pater (Type/Capacity Vater Source Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (Name (N	ウス / / ユ / mpeny) <u>ム</u> で モムし 5ではい y) 年 アレルロ	98 87/204/	77 w.Est	Project Number	1/24/87
ig Used <u>ESE (222</u> ump (Type/Capacity siler (Type/Capacity ster Source	mpany) <u>とい</u> EKL SERV y) G TLUNC	SST/FORKM	w.ESE		
g Used ESE (22) imp (Type/Capacity iller (Type/Capacity ster Source	ELLSCIRU Y) GRUNC		<u>س 33 عامه</u>	Well Diameter (I.D.)	タップレC In.
imp (Type/Capacity iller (Type/Capacity ster Source	y) G TUNC			· 4	
imp (Type/Capacity iller (Type/Capacity ster Source	y) G TUNC			Anulus Diameter 🛚 🖟	n2_11. to 3511.
iler (Type/Capacity ster Source	y) G RUNC				inft. toft.
ster Source <del>7:</del> ∠		F05@2	-4/7W	M Screen Interval	25 11. to 38. / N.
	y) <u>, , , , , , , , , , , , , , , , , , , </u>	Geof	eich/bladde	-1 <del>-1-1</del> -	ft. toft.
		·····		Casing Height (Above	• C.L.)it.
easured Well Depth	h TOC	(Initial) 3	9.80 11.	Bottom of Screen (Be	low G.L.) <u>38. /</u>
		(Final) 3	9.00 st.	,	
ater Level TOC/Dat	te/Time (Init	ial)	45/2-1	2-36/0900	
	(afte	r 24 hrs.)	37 45 / 3	-10-64/0134	
et of Water in Well				allons/foot = 14.0	gallons casing/anulus volume
rilling Fluid Lost _	N/	Α	_gallons	■ One Purge Volume _	25 gallons
irge Water Lost	<b>~1.</b>	Α	_gallons	Minimum Purge Volu	
dded Water			gallons	Total Purge Volume	
sing/Anulus Volum	ne14		_gailons	Volume Measured By	S'S GALLO BARREL.
•			<b>-y</b>	Surge Technique	PAISE LOWER PUMP
libration: pH Mei		-			
pH 7.00	7.05	at	17.9	SN: 015877	/6.14 at /5.0 °C
pH 7.00 Conduc Standar Purge Volume	tance Meter	at	12.9 15.7 /s.	SA): •15877 *C. pH 10.00 = からに 3 2 Sy	Physical Characteristics (clarity, order, sanif content, color)
pH 7.00 Conduc Standar Purge Volume	7. 6 5 ctance Meter rd	at/ Used: 3umhos/c	/2. 9 /5= // im at 25°,	SA: •15877  *C. pH 10.00 = からに 3 2 Sy  Reading / 4/16	/6.14 at /5.0 °C  z603  Lumhos/cm at
pH 7.00 Conduc Standar Purge Volume	7. 6 5 ctance Meter rd	atat	7. 9 m at 25°, pH	SA: ・15877  *C. pH 10.00 = たっちょう	Physical Characteristics (clarity, order, sand content, color)
pH 7.00 Conduc Standar Purge Volume	Time 9:34	atat	7.70	SAN: 015877  *C. pH 10.00 =  *DEC 3 A SV  Reading	Physical Characteristics (clarity, order, sanil content, color)  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  VISCAGUS  V
pH 7.00 Conduc Standar Purge Volume	Time 9:34	atat	7.70	SAN: 015877  *C. pH 10.00 =  *DEC 3 A SV  Reading	Physical Characteristics (clarity, order, sand content, color)  VISCIOUS OFFICE  YSOERWOOD SILT, SAME  SAME

• •		Bore	4+	Well 35037	CA SACA
Project RATT	<del></del>			Fiolectivation	6736
Date(s) Developed	02/11/	<u>es , </u>	دېنم	Date Installed//	24/27
Personnel (Name/Com		1/1/1/11	1111	Well Diameter (I.D.)	Ar ply c
Kein Person	- 12cy 2	<u> </u>	<del></del>	Anulus Diameter /2	1/4"in ? ft. to 35. / ft.
Rig Used A V	rellarcy.	er Truck	<u> </u>	•	lnft. 10ft.
Pump (Type/Capacity	/ .	A	1A	Screen Interval	27/2 11. 10 38 / 11.
Bailer (Type/Capacity		185 K 2.0			ft. toft.
Water Source RALA	<u> </u> <del> </del>		<del></del>	Casing Height (Above (	
Measured Well Depth	TOC	(Initial) 37		Bottom of Screen (Belo	w G.L.)
		(Final) 35.5	<u>e_ft</u> ,	10 00 / 12.31	1 12 12 1224 Change Diga!
Water Level TOC/Date			344/3	19-20 / (2013)	1 (3),43/2-12-05/0.00
		4 (113.)		310.05	gailons casing/anulus volums.
Feet of Water in Well			gallons	llons/foot =	25 gallons
Drilling Fluid Lost	44.		gallons	Minimum Purge Volum	
Purge Water Lost Added Water	10		gallons	Total Purge Volume	34 gallons
Casing/Anulus Volum			gallons	Volume Measured By	
Casing/Andids volum	19 <del></del>		ţenons	Surge Technique	
Calibration: pH Met	کے الممان کے	N # 3163	34-4	BIREKMIN 421	
SH 7 00	7.07	et.	c70.		.20 at 083 as
Conduc	tance Meter	Used: <u>SNラ</u>		O, P.I. 10:00	
Standar		umhos/cm		Reading	_umhos/cm at _25
Stellue	U	ug,ç,ı	14145	Magnilly	
Purge Volume	Time	Temp. •C	рН	Conductance at 25°C	Physical Characteristics telerity, odor, sand content, color) -
initial Property	.12:54	12.0°	7.73	1195	SILTY, BROWN
.0	17.67	11.5°	- 21	.02/	SAME
12 gai.	13:03	11.5	7,81	1236	JAME
-					
	<b>Y</b>		ļ		
Finel					PP
					PR
Remarks: De M	·····			d by	Signature C-2
	- 10 1		Checked	by	Signature
	3.4 A.C	~ >: !			

SHEET 3 OF 5

	eri ===		Bore_FF	7/1	Well_35087					
roject _	"Zu.				Project Number 798 12 44					
ate(s) De	veloped				Date Installed 1/24/67					
ersonnel	(Name/Con		XW / ESE		Well Diameter (I.D.)					
			R /FSE		Anulus Diameter /2	24 in. 0 1t. to 30/1t.				
ig Used_	£5E	JEH STU	ce Truck		-	inft. toft.				
ump (Ty	pe/Capacity		11	<del></del>	Screen Interval	27/5 N. to 38/ N.				
ziler (Ty	pe/Capacity	3.85"	x 2.0'			ft. toft.				
	1C6		<u> </u>	<del></del>	Casing Height (Above C	S.L.)				
leasured	Well Depth	TOC	(Initial) 32		Bottom of Screen (Belo	w G.L.)				
			(Final) <u>351</u>	ro ft.						
Vater Lev	el TOC/Dat	e/Time (Initia	al)3 <u>5 45</u>	12-12-3	3/0800					
		(after	24 hrs.)3i	1.45 /3-	10-00/ 0936	gallons casing/anulus volume				
				are 21 ga	Ilons/foot = 14.0	gallons casing/anulus volume				
rilling F	luid Lost	<i>\\</i>			# One Purge Volume	gellone				
urge Wa	ter Lost	Nist		gallons	Minimum Purge Volum	ne <u>125</u> gallons				
dded W	ster	/2 10	.,	gallons	Total Purge Volume	gallons				
asing/Ar	nulus Volum	10		gallons	Volume Measured By	5 GUILLIU BULLATET				
		er Used:			Surge Technique	BAILING				
Purge	Volume	Time	Temp. *C	pH	Conductance at 25°C	Physical Characteristics				
						Iclarity, ortor, and contest, colors				
Initial	12	1444	11.2	761	1202	cloudy we come - 11,00m				
	15	1447	11.3	757	116:-	charing of ways in				
	20	1501	11.0	7.70	د ۲۲۶	close of compension				
Finel										
Rnmarks:	iv.k.	Jesel :	3548		Sountered in	8 gallers				
, P.	-90 001.	H gal.	cosing + unala	Chested	by	3/4 5/2 C-21				

SHEET	4	OF	5	
SHEET	4	OF		

		Bore EC G	7 A	Well 35087	
Project	Rund Un-Co			Project Number	7,5-45 44
ate(s) Developed	2/2	127		Date Installed	11/24/87
ersonnel (Name/Co	ompany)	DEN INSE		Well Diameter (I.D.)	
RIZ/ES	<u> </u>	J/Fi		Anulus Diameter	12- in. 6 ft. to 38.1 ft.
ig Used Fig					ft. toft.
ump (Type/Capaci		x 2.0°	<del></del>	Screen Interval	2 <u>7.15</u> ft. to 38.1 ft.
ailer (Type/Capaci	. 7 /				G.L.)ft. toft.
Vater Source			. (4. ) . (.	Casing Height (Above	
feasured Well Dep	th TOC	(Initial) 34 (Final) 34		Bottom of Screen (Beld	ow G.L.)
Vater Level TOC/D	ata/Tima (Initi	(Final)	12-12 - 5	المان المان المان المان المان المان المان المان المان المان المان المان المان المان المان المان المان المان الم	
AFFEL TOARI 1001D	ette: 1 (2)2 (efte:	24 hrs ) 3	3.45 /3	-10-50/ 0436	
eet of Water in We	11 6.05	ft. x	- PA	llons/foot = 14.0	gallons casing/anulus volume
rilling Fluid Lost			gallons	← One Purge Volume	25 gallons
urge Water Lost	N.A	والمستوال والمتوالي والمتوالي والمتوالي	gallons	Minimum Purge Volu	gallons gailons gailons
dded Water	10		gallons	Total Purge Volume	
asing/Anulus Volu	me	1	gallons	Volume Measured By	58 Francis France 150
				Surge Technique	73.1.1.20
alibration: pH M					
•		<u>* at</u>		•	10 27 at 6.7 °C
		Used: - Tak			
Stand	ard	3_umhos/cn	n at 25°,	Reading 14.5	umhos/cm atC
Purge Volume	Time	Temp. °C	рН	Conductance at 25°C	Physical Characteristics (clarify, odor, sand content, color)
Initial 20	1503	173	7.78	1155	ساسيم سا دروس د - ١٠٠٠
23	1505	10.5	764	51271	11-19 4 11-14 - Com
26	1507	10.5	7641	1181	change of change whom is
27	1516	4.7	7.65	1200	chandy or come known suit
				1	
Final					
				····	3
	,				<b></b>
emarks:	10 inigh -	33.50-	77	Admintered in	i yeithin
1840 EL 14	tial comme	.mulus	Collected	1 by	5/7/27
1800 0 1. 14	" a lever	4,-		• • • • • • • • • • • • • • • • • • • •	Signature
·	<b>-</b>	-	Checked	uy	Signature C-2
27	-> 25 ju	lin			

ProjectR	MA on	Bore EP-6	67A_	Weil 35087 Project Number	TASK	44	
Date(s) Developed_		-88		Date Installed	11/24		
Personnel (Name/Co	mpany)	RIBSE 1	BWLESE	Well Diameter (I.D.)	4		in.
				Anulus Diameter	121/2 in.	ft. to	38,111.
Rig Used ESE V	Iell Service	truck			in.	ft. to	ft.
Pump (Type/Capaci	ly) <i>AL</i> /			Screen Interval		27.15 ft. to	<u> 38. l</u> ft.
Bailer (Type/Capacit	7,	12,×50.					ft.
Water Source		RMA		Casing Height (Above		47	ft.
Measured Well Dept	th TOC	(Initial) 37. (Final) 37.	ilde.	Bottom of Screen (Bel		38./	ft.
Water Level TOC/Da	•	73			<del>12 </del>		<del></del>
	•		<u>3.45/</u>		36./	MX.	
Feet of Water in Wel	7		19-2.72gal			casing/anu	
Drilling Fluid Lost .	- 11		gallons	One Purge Volume		<u> </u>	gallons
Purge Water Lost Added Water	7		gallons gallons	Minimum Purge Volu	me <u>/ Z</u>	<u></u>	gallons
Casing/An ilus Volu			gallons	Total Purge Volume Volume Measured By	55 Callo	- decol	gallons buch
Casing/An itus voiu	me	<u> </u>	Rations	Surge Technique	Bailing	T DUITET	- Car
Calibration: pH M	eter Used:	Rockman	विदा न	Holf Meter SV	01634	/	
pH 7.0	0 - 7.03	- at		C. pH 10.00 =/			.9 •C
,,	ictance Meter		I Model	12 SN 26			<u> </u>
<del></del>	<del></del>	umhos/cm	· · · · · · · · · · · · · · · · · · ·		umhos/c	·	
Purge Volume	Time	Temp. *C	pН	Conductance at 25°C	Physi (clarity,	cal Characte	eristics lent, color)
Initial 2.7	1337	13.4	7.83	//93	cloudy	Ymie)	The read
30	1343	12.0	7,79	1194	Cloudy	w/conge	6 m 5 1/
3.3	1347	11.9	2-76	1192	Cloud;	Lacour	4-20 -
Final 34	135-1	12.1	7.71	1211	druix	"/ <u>"Y" ys.</u>	i so int
Finel							134
Remarks: Water	level =	33.51/	13 33	Vewat red	. 7 y	45.5	
33 33		ا المرد ان ك ن		by Bol Winters	Signature Signature	3.8	C-2 16

# **(a)**

## WELL CONSTRUCTION SUMMARY

Borehole EP67 D1	Well
Project Name and Location Zecar Mrd A Zec Mat -	Section 35 Project Number 244
Drilling Company Pyles RES Driller 1	DON IRVINC Rig Number
Drilling Method(s) HOLLOW STEM AUGER	0-38.6 fc
ROMEY W/CUSAN WATER 38.6-48.5	
Borehole Diameter 12" incm. 2-38.6	ftcm. toftcm.
5 36 in cm. 38.4-1	<b>227</b> ftcm. toftcm.
Size(s) and types of Bit(s) August 12 65. / 1.7 "I. >	Sampling Method(s)  Date/Time Start Drilling /2/1/87 090 6
Size and Type PVC 7 0. b. SCH 40	Date/Time Finish Drilling
Total Borehole Depth 28.7 ftcm.	Date/Time Start Completion 12/3/03 //40
Depth to Bedrock -36 ftcm.	Date/Time Cement Protective Casing
Depth to Water The Grant Com.	Materials Used
Water Level Determined By	Plain PVC
Length Plain PVC (total) 44.76 ft cm.	Slotted PVC 5.644, Sen 40 .010 XLOT
Length of Screen <u>5.64</u> ftcm.	Bentonite Pellets 2800 100 160  Bentonite Granular
Total Length of Well Casing 50.6 ftcm.	Bentonite Granular Cement & BASS BALL CASING
PVC Stick Upftem.	
Depth to Bottom of Screen 18.9 ftcm.	Sand 2 BACS Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supp
Depth to Top of Screen 23.26 ftcm.	Water added during completion Togals west Completion
Depth to Top of Sand 20 ftcm.	Water added during drilling
Depth to Top of Bentoniteftcm.	Total Gallons of water added
Drill Site Geologist KEITH S. Theemal	Date
Date/Time/Personnel Internal Mortar, Coment Pad, and	d Weep Hole Installed 2125/85 0945 55 45
Date/Time/Personnel Casing Painted 2/25/88	90 1000 55 BW
Date/Time/Personnel Numbers Painted 3/8/84	<b>1</b> =
Materials Used 12 buyo saku	
Top of Protective Casing to Top of PVC 0.64	
top of thotective casting to troop their	ftcm
Top of Protective Casing to Internal Mortar 1.46	
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	ftcm.
Top of Protective Casing to Ground Lovel	It Date
Reviewed By Africa	C., 217
Drill Site Geologist	Date

PAGE____OF____

Borehole: EP-6701

Well: FRE7 57 35088

Gound Level
CENTRALIZER  CENTRALIZER  30  CENTRALIZER  34' SEPTH TO WATER  35' SEPTH TO TOP & BENTONIA  40 DEPTH TO TOP SE SAND  40 DEPTH TO TOP SE SAND  43.26' DEPTH TO TOP-SEREE  AND WISIGHT  49,9' TOTAL DEPTH

Drill (ate Geologist : Reviewed By W Funt

41114141	1		
SHEET		.OF	

Signature

		Bore F. 31	71) [	Well 35 383	
Project TEST	44			Project Number	
Date(s) Developed	2-14-	5K		Date Installed 12-	3-57
Personnel (Name/Comp		SE		Well Dismeter (I.D.)	4" P1'CIn.
Kenin Pinsen		36/25		Anulus Diameter /2	1/4"in. 40 ft. to 497 ft.
Rig Used Meel Dou.		vck			inlt. tolt.
Pump (Type/Capacity)_	NIC	9			24.3.26. It. 1048.7 ft.
Bailer (Typn/Capacity)	HUNGO	BAILER	Stainless SH	hel "	ft. toft.
Water Source_A	.1	<b>47</b> *		Casing Height (Above C	(i.l.) <u>/. 7</u> (t.
Measured Well Depth T	OC	(Initiat)	لا منك _{ا11} حتى لا	Bottom of Screen (Below	w C.L.)
·		(Final) 50	8Zn.,		. / ~ >
Water Level TOC/Date/	Time (Initia	al) <u>31.9</u>		315 / 2-19-19	1 / RR
	(after	47 III OI		14-84/1210	10.50
Feet of Water in Well	2.17	_ft.xl 22.3	gal	lons/foot = -	gallons casing/anulus volume
Drilling Fluid Lost	N.A		gallons	One Purge Volume 20	O gallons
Purge Water Lost	y .4		gallons	Minimum Purge Volun	ne 100 gallons
Added Water			gallons	Total Purge Volume _	105 gallons
Casing/Anulus Volume			gallons	Volume Measured By .	3 CAL. BUCKET
•			•	Surge Technique	3.4161.NE.
		د ایاد			
Calibration: pH Meter	Used:	>1/ 4/ 6/6	<u> </u>		
Calibration: pH Meter	Used:	>\/ +/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/	<u> </u>	C, pH 10.00 =	22. at <u>40.3</u> •c
pH 7.00 =	Used:	et <u>_</u> _	•	C. pH 10,00 = 1/2.	
pH 7.00 =	nce Meter	et <u>_</u> _	1 = 1.1	C. pH 10.00 = 1 24 3 Reading 14/3	_umhos/cm at 2/2 °C
pH 7.00 = Conducta	nce Meter	Used:	1 = 1.1	24 3	
pH 7.00 = Conducta	nce Meter	Used:	1 = 1.1	24 3	umhos/cm at 2000 °C
pH 7.00 = Conducta Standard  Purge Volume	7.57 ince Meter 14.1	Used: SA 3_umhos/cn Temp. °C	n at 25°	243 Reading 1413	Physical Characteristics (clarity, oder, sand content, color)
Purge Volume	Time	Used: SA 3_umhos/cn	n at 25°	Reading 14/3 Conductance at 25°C	Physical Characteristics (clarity, oder, saud content, color)
Purge Volume	7.57 ince Meter 14.1	Used: 5/2 3_umhos/cn Temp. *C	pH	243 Reading 1413	Physical Characteristics (clarity, oder, sand content, color)
Purge Volume	Time	Used: SA 3_umhos/cn Temp. °C	n at 25°	Reading 14/3 Conductance at 25°C	Physical Characteristics (clarity, oder, sand content, color)  \$147 Y L'NoteN  -same -sand content, color)
Purge Volume  Initial Carlot  25 Find	7, 57 ince Meler 14-1: Time 73:50	Used: 5/3 Used: 5/3 umhos/cn  Temp. °C	pH	2+3 Reading 1+13 Conductance at 25°C 76.6 1421	Physical Characteristics (clarity, order, sand content, color)  SIZTY DROWN  SIME SEC
Purge Volume  Initial  25 7:3	Time	Used: 5/2 3_umhos/cn Temp. *C	pH	Reading 14/3 Conductance at 25°C	Physical Characteristics (clarity, oder, sand content, color)  S147 Y Line (Clarity)  S3ME SEC
Purge Volume  Initial Carlot  25 Find	7, 57 ince Meler 14-1: Time 73:50	Used: 5/3 Used: 5/3 umhos/cn  Temp. °C	pH	2+3 Reading 1+13 Conductance at 25°C 76.6 1421	Physical Characteristics (clarity, order, sand content, coint)  SILTY DIRECTOR  SIME SEC
Purge Volume  Initial Carlot  25 Find	7, 57 ince Meler 14-1: Time 73:50	Used: 5/3 Used: 5/3 umhos/cn  Temp. °C	pH	2+3 Reading 1+13 Conductance at 25°C 76.6 1421	Physical Characteristics (clarity, order, sand content, coint)  SILTY DIRECTOR  SIME SEC
Purge Volume  Initial Carlot  25 Find	7, 57 ince Meler 14-1: Time 73:50	Used: 5/3 Used: 5/3 umhos/cn  Temp. °C	pH	2+3 Reading 1+13 Conductance at 25°C 76.6 1421	Physical Characteristics (clarity, order, sand content, coint)  SILTY DIRECTOR  SIME SEC
Purge Volume  Initial  RR  25 fin  31 Gal.	7, 57 ince Meler 14-1: Time 73:50	Used: 5/3 Used: 5/3 umhos/cn  Temp. °C	pH	2+3 Reading 1+13 Conductance at 25°C 76.6 1421	Physical Characteristics (clarity, order, sand content, coint)  SILTY DIRECTOR  SIME SEC
Purge Volume  Initial Carlot  25 Find	7, 57 ince Meler 14-1: Time 73:50	Used: 5/3 Used: 5/3 umhos/cn  Temp. °C	pH	2+3 Reading 1+13 Conductance at 25°C 76.6 1421	Physical Characteristics (clarity, order, sand content, coint)  SILTY DIRECTOR  SIME SEC
Purge Volume  Initial  RR  25 fin  -31 Gal.	7, 57 ince Meler 14-1: Time 73:50	Used: 5/3 Used: 5/3 umhos/cn  Temp. °C	pH	2+3 Reading 1+13 Conductance at 25°C 76.6 1421	Physical Characteristics (clarity, order, sand content, coint)  SILTY DIRECTOR  SIME SEC
Purge Volume  Initial  25 fin  31 6-al.  Final	Time 13:50 1425 1425	Used: _5A 3 _umhos/cn Temp. *C /2.4* 12.5°	pH  7.5:	2+3 Reading 1+13 Conductance at 25°C 76.6 1421	Physical Characteristics (clarity, order, sand content, coint)  SILTY DIRECTOR  SIME SEC
Purge Volume  Initial  RR  25 fin  -31 Gal.	Time 13:50 1425 1425	Used: _5A 3 _umhos/cn Temp. *C /2.4* 12.5°	pH  7.5:	2+3 Reading 1+13 Conductance at 25°C 76.6 1421	Physical Characteristics (clarity, order, sand content, coint)  SILTY DIRECTOR  SIME SEC
Purge Volume  Initial  25 fin  31 6-al.  Final	Time 13:50 1425 1425	Used: _5A 3 _umhos/cn Temp. *C /2.4* 12.5°	pH  7.5:	2+3 Reading 1+13 Conductance at 25°C 76.6 1421	Physical Characteristics (clarity, order, sand content, coint)  SILTY DIRECTOR  SIME SEC
Purge Volume  Initial  25 fin  31 6-al.  Final	Time 13:50 1425 1425	Used: _5A 3 _umhos/cn Temp. *C /2.4* 12.5°	pH  1 25°  pH  7.5°	24 3 Reading 14/3 Conductance at 25°C 76 8 1421 1495	Physical Characteristics (clarity, order, sand content, color)  S147Y LINCUN  SME SEC  SME SEC
Purge Volume  Initial  25 fin  31 6-al.  Final	Time 13:50 1425 1425	Used: _5A 3 _umhos/cn Temp. *C /2.4* 12.5°	pH  1 25°  pH  7.5°	2+3 Reading 1+13 Conductance at 25°C 76.6 1421	Physical Characteristics (clarity, order, sand content, color)  S147Y LINCUN  SME SEC  SME SEC

		Bore EP-G	701	Well 35088	
Project Tark 4	4 RMA				Task 44
Date(s) Developed	2/0	55			12/2/87
Personnel (Name/Co	mpany) PR	ESE BW	ESE	Well Diameter (I.D.)	4 in.
	pu,	7			12 in. O. ft. to 386 ft.
Rig Used ESE W	lell Develop	ment Truck			5-74 in. 38.6 ft. to 48.9 ft.
Pump (Type/Capacit		FUS /SUPIN		Screen Interval	43 26 ft. to 44.9 ft.
Bailer (Type/Capacit	,,	7			ft. toft.
Water Source	RMA			Casing Height (Above	
Measured Well Dept		(Initial) 246	959.83	Bottom of Screen (Beld	
			82- ft.		
Water Level TOC/Da	te/Time (Init		3.7-88	6832 AK BW	
			L.10 /7	-14- 30/ 1220	
Feet of Water in Wei			53 00	llons/foot = 12,37	gallons casing/anulus volume
Drilling Fluid Lost .			gallons	4 One Purge Volume	
Purge Water Lost			gullons	Minimum Purge Volu	
Added Water			gallons	Total Purge Volume	
Casing/Anulus Volu			gallons	Volume Measured By	
				Surge Technique	
Condu	0 = 7,63 actance Meter ard 1413		Medel	PC, pH 10.00 =	
Purge Volume	Time	Temp. °C	pН	Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)
initial 21	0905	14.6	7.69	1503	Cloudy from my
		1.1.4			Cloudy Brown wi
41	10913	13.7	8.18	1460	5/2 of five conved sand
.500.1	AC# -	1	- ~-	4430	Cloudy prown w/
51	0925	14.6	7,87	1479	Silt true exercised sond
56	0937	15.0	7.53	1210	Clouds
	1 24 44	1			
	1				
Final				ي څرگ	
				5.0	
Romarks: Co.s.	and Got	المات المان	N 75	Gal, 15ma leter	400 Top 1 Sinder 76
	<del>الموال الانسبة،</del> '	· · · · · · · · · · · · · · · · · · ·			
1 (2	17. 4	40.00	Collanta	d by william's 1	3 4. W.S.
1 Days rol.	12,4	casm	Condeta	,	Signature C-220
•	- B i, d	_ sandpuix	Checked	by	<u> </u>
		•		-	Signature
	Jan 17 1	de de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de			

Rig Used Wall	Donator	Truck			13. in. 15. ft. to 33. 6 ft.
Pump (Type/Capaci	IV Frederick		G.P.NI.	Screen Interval	43.26 ft. 1045 17 ft.
Bailer (Type/Capaci	/	,'			ft. toft.
Water SourceR				Casing Height (Above	C.L.)
Measured Well Dept	h TOC	(Initial) 50.		Bottom of Screen (Beld	ow G.L.) 449 11
		(Final) Sc.		1-100 / 500-10	را مع معدد
Water Level TOC/Da			2. 10 /	3-14-61/1220	AR AW
Feet of Water in Wei					gallons casing/anulus volume
Orilling Fluid Lost			gallons	One Purge Volume	
Purge Water Lost	NIA		gallons	Minimum Purge Volu	<del>_</del>
Added Water			gallons	Total Purge Volume	105 gallons
	/_?	37	gallons	Volume Measured By	55 Cal Bucks
Casing/Anulus Volu	me <u>/&amp;</u>				
-		<b>-</b> /	4.	Surge Technique	
Calibration: pH Me	eter Used: _/		J. 21 1	H Mater SN #	111.344
Calibration: pH Me	eter Used:	3at _/2 r Used: _Y_S	I Nea	C., pH 10.00 KR	611.844 -687 17.6° 0
Calibration: pH Mo pH 7.0 Condu	eter Used: _/ 0 =	3 at // r Used: YS	I Nea	C., pH 10.00 A A	umhos/cm at 25 °C
Calibration: pH Me pH 7.0 Condu Standa	eter Used: _/ 0 = _7_() ctance Meter ard _/4/	3st/3 r Used:/3 3umhos/cr	n at 25°,	C. pH 10.00 A A A Reading 14, 14	
Calibration: pH Me pH 7.0 Condu Standa Purge Volume	eter Used: _/ 0 = _7_() ctance Meter ard _/4/ Time	at // r Used: Y S umhos/cr Temp. °C	n at 25°,	Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)
Calibration: pH Mo pH 7.0 Condu Standa Purge Volume	ter Used: _Z 0 = _Z_Q ctance Meter and _L4 Time	s at // r Used: YS umhos/cr Temp. °C	pH 7.77	C. pH 10.00 A A A A A A A A A A A A A A A A A A	Physical Characteristics (clarity, odor, sand content, odor)
Calibration: pH MepH 7.0 Condu Standa  Purge Volume  Initial 5 C	ter Used:	Temp. °C	pH 7.77 7.47	Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)  Claudy Dan out  Claudy Dan out  Claudy Dan out
Purge Volume  Initial 5 6  15 7 (	ter Used: _/ 0 = _7_0 ctance Meter and _/4/_ Time	Temp. °C  12.7  12.5	pH 7.77 7.47	C. pH 10.00 A A A A A A A A A A A A A A A A A A	Physical Characteristics (clarity odor, sand content, odor)  Claudy 13-11  Claudy 13-11  Claudy 13-11  Claudy 13-11
Purge Volume Initial 5 6  15 7 (	ter Used: _/ 0 = _7_0 ctance Meter and _/4/_ Time	Temp. °C  12.7  12.5	pH 7.77 7.47	C. pH 10.00 A A A A A A A A A A A A A A A A A A	Physical Characteristics (clarity odor, sand content, odor)  Claudy 13-11  Claudy 13-11  Claudy 13-11  Claudy 13-11
Purge Volume  Initial 5 6  15 7 (	ter Used: _/ 0 = _7_0 ctance Meter and _/4/_ Time	Temp. °C  12.7  12.5	pH 7.77 7.47	C. pH 10.00 A A A A A A A A A A A A A A A A A A	Physical Characteristics (clarity odor, sand content, odor)  Claudy 13-11  Claudy 13-11  Claudy 13-11  Claudy 13-11

CHEET	4	^=	5
SHEET		OF	

0.		Bore EP-	<u> </u>	Well_35088	
roject	WA. on -			Project Number	Ask 44
Date(s) Developed		10/38	ontinue)	Date installed	
ersonnel (Name/Co		W', TZR,	ZW	Well Diameter (I.D.)	in.
	ESE		ينيدين	Anulus Diameter	inft. toft.
ig Used FSE	WELL 4	PULL TEN	Che	•	inft. toft.
ump (Type/Capaci	y) GRINT	1805 / 5 G	an	Screen Interval	ft. toft.
ailer (Type/Capacit					ft. toft.
ater Source				Casing Height (Above (	J.L.)ft.
leasured Well Dept	h TOC	(Initial) 50.5 (Final) 50.5		Bottom of Screen (Belo	w G.L.)ft.
ater Level TOC/Da	ite/Time (Initia			8/0432	
	lafter	24 hrs.)	2.10 /3	・14-ゼン/1224	
et of Water in Wel					gailons casing/anuius volume
rilling Fluid Lost				One Purge Volume	
urge Water Lost			•	Minimum Purge Volun	ne 100 gailons
dded Water			_	Total Purge Volume _	105 gallons
sing/Anulus Volu			•	Volume Measured By	55 GALLOW BALLER
•			•		2415E/LOWER PUMP
alibration: pH Me	iter Used:	BELENN	N DZI		6344
	0 - 7.1			C, pH 10.00 - LC	25 at 5.0 ·c
Condu	ctance Meter	Used: TS	Com 7	EL 32	
	rd <u>1413</u>				_umhos/cm atC
Stands Purge Volume	rd <u>1413</u>	umhos/cn	pH	Reading  Conductance at 25°C	umhos/cm at*C  Physical Character:stics (clarity, odor, sand content, cotor)
Purge Volume	1				Physical Characteristics
Purge Volume	Time	Temp. •C	pH	Conductance at 25°C	Physical Characteristics (clarity odor, sand content, color)
Purge Volume	Time   1520	Temp. •C	pH 7:41 7:91	Conductance at 25°C	Physical Characteristics (clarity odor, sand content, cotor)
Purge Volume Initial 31	1520 1524	Temp. •C	pH 7.41 7.91 2.88	Conductance at 25°C  1566	Physical Characteristics (clarity odor, sand content, color)

_		Bore EP-6	701	well 35088		
Project <i>R/</i>	11 on 1	est		Project Number	Task 44	
Date(s) Developed_	3-11-8	78		Date Installed	12、2、87	
Personnel (Name/Co	mpany) RA	LUW/ESE		Well Diameter (I.D.)	4	in.
·				Anulus Diameter	12 in. Q ft. to -	38 6 ft.
Rig Used <u>ESE</u> W	<u>lell Servic</u>	e Truck			37/4in. 38.6 ft. to	48,9 st.
Pump (Type/Capaci	iy) <u>Grand</u>	505 / 5 GP	M	Screen Interval	43,26 st. 10	18.9 st.
Bailer (Type/Capaci	ly)	/4			ft. to	
Water Source	RI	14		Casing Height (Above	(G.L.)	ft.
Measured Well Dept	h TOC	(Initial) 50	<u>83</u> ft.	Bottom of Screen (Bel	ow G.L.) 48. 9	ft.
		يك (Final)		1		
Water Level TOC/Da	ite/Time (Ini	tial) <u>37.89</u> ,	3 - 5 - 80	5/0812		
	(afte	er 24 hrs.)	36.10	12-14-52/1220		
Feet of Water in Wel	1 18:34	ft.×&	<u>573 g</u>	allons/foot =	37 gailons casing/anulu	s volume
Drilling Fluid Lost .	4/1		gallons		20	
Purge Water Lost				Minimum Purge Volu	ime	gailons
Added Water				_		-
Casing/Anulus Volu	me <u> </u>	37	gallons	Volume Measured By	55 Collen Derrel	
	_		,	Surge Technique	30 / leve - 20m2	
Calibration: pH Ma	iter Used: 🍱	eckmen &	21 5	N 016344	, , , , , , , , , , , , , , , , , , ,	
p			4 4			
pH 7.0	0 - 7.04	at	<u> </u>	.*C, pH 10.00 =/	14 at 13,33	•c
pH 7.0 Condu	o = 7cy ctance Mete	r Used: YSI	Adel 3	54 2663	······································	
pH 7.0 Condu Standa	0 = 7.54 ctance Mete and 1413	r Used: YSIumhos/cn	Adel 3 nat 25 °,	Reading <u>INII</u>	umhos/cmat	-*C
pH 7.0 Condu	o = 7cy ctance Mete	r Used: YSI	Adel 3	5N 2663	······································	-*C
pH 7.0 Condu Standa	0 = 7.54 ctance Mete and 1413	r Used: YSIumhos/cn	Adel 3 nat 25 °,	Reading <u>INII</u>	Physical Character (clarity, odor, sand content of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the County of the Cou	estics t. colori
pH 7.0 Condu Standa Purge Volume	ctance Mete rd 1413 Time	Temp. *C	n at 25*, pH	Reading INII  Conductance at 25°C	Physical Character (clarity, odor, sand content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of	estics t. colori
Purge Volume	ctance Mete	Temp. °C	n at 25*,	Reading INIL  Conductance at 25°C	Physical Character (clarity odor, sand content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of t	stics t.colori
Purge Volume  Initial 95	ctance Mete rd 1413  Time  CSSC	Temp. *C	pH 7.5°6	Reading 1911  Conductance at 25°C  13'75	Physical Character (clarity, odor, sand content of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destance of the destanc	stics t.colori
pH 7.0 Condu Standa Purge Volume	ctance Mete rd 1413 Time	Temp. *C	n at 25*, pH	Reading INII  Conductance at 25°C	Physical Character (clarity odor, sand content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of t	stics t.colori
Purge Volume  Initial 95	ctance Mete rd 1413  Time  CSSC	Temp. *C	pH 7.5°6	Reading 1911  Conductance at 25°C  13'75	Physical Character (clarity, odor, sand content of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of	stics t.colori
Purge Volume  Initial 95	ctance Mete rd 1413  Time  CSSC	Temp. *C	pH 7.5°6	Reading 1911  Conductance at 25°C  13'75	Physical Character (clarity, odor, sand content of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of	stics t.colori
Purge Volume  Initial 95	ctance Mete rd 1413  Time  CSSC	Temp. *C	pH 7.5°6	Reading 1911  Conductance at 25°C  13'75	Physical Character (clarity, odor, sand content of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of	stics t.colori
Purge Volume  Initial 95	ctance Mete rd 1413  Time  CSSC	Temp. *C	pH 7.5°6	Reading 1911  Conductance at 25°C  13'75	Physical Character (clarity, odor, sand content of the day of the sand content of the sand content of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of	stics t.colori
pH 7.0 Condu Standa Purge Volume Initial 95	ctance Mete rd 1413  Time  CSSC	Temp. *C	pH 7.5°6	Reading 1911  Conductance at 25°C  13'75	Physical Character (clarity, odor, sand content of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of the desired of	stics t.colori
pH 7.0 Condu Standa Purge Volume Initial 95	ctance Mete rd 1413  Time  CSSC	Temp. *C	pH 7.5°6	Reading 1911  Conductance at 25°C  13'75	Physical Character (clarity, odor, sand content of the day of the sand content of the sand content of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of the sand of	stics t.colori
PH 7.0 Condu Standa Purge Volume Initial 95 / Cc Fraul	ctance Mete rd 1413  Time  CSSC  CS42	Temp. *C 7, 5. 9,1	7.33	Reading <u>INII</u> Conductance at 25°C  13'75  1432  1435	Physical Character (clarity, odor, sand content of the sand content of the sand content of the sand content of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand content of the sand clarity of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand conten	stics (color)
pH 7.0 Condu Standa Purge Volume Initial 95	ctance Mete rd 1413  Time  CSSC  CS42	Temp. *C 7, 5. 9,1	7.33	Reading 1911  Conductance at 25°C  13'75  1432  1455	Physical Character (clarity, odor, sand content of the sand content of the sand content of the sand content of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand content of the sand clarity of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand conten	stics t.colori
PH 7.0 Condu Standa Purge Volume Initial 95 /Cc Final Final	ctance Mete rd 1413  Time  CSSC  CS42	Temp. *C 7, 5. 9,1	7.33	Reading <u>INII</u> Conductance at 25°C  13'75  1432  1435	Physical Character (clarity, odor, sand content of the sand content of the sand content of the sand content of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand content of the sand clarity of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand conten	stics (color)
PH 7.00 Condu Standa  Purge Volume  Initial 95  / Co Fract / Co Fract / Co Fract / Co	ctance Mete rd 1413  Time  CSSC  CSUZ  CSUZ	Temp. *C  7, 8  9, 1  9, 3	7.5°6 7.3°3 7.41	Reading 1911  Conductance at 25°C  13'75  1432  1435	Physical Character (clarity, odor, sand content of the sand content of the sand content of the sand content of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand clarity of the sand content of the sand clarity of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand conten	stics t.colori
PH 7.0 Condu Standa  Purge Volume  Initial 95 /CC Fract /CC Fract /CC Fract /CC Fract	ctance Mete rd 1413  Time  CSSC  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSGS  CSG	Temp. *C  7, 8  9, 1  9, 3	7,5°6 7,3°3 7,41  Collected	Reading <u>INII</u> Conductance at 25°C  13'75  1432  1435	Physical Character (clarity, odor, sand content of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of the destand of	stics (color)

# **WELL CONSTRUCTION SUMMARY**

Borehole <u> </u>	35089
Project Name and Location Rus Task 44 WELL WATERSTON	Project Number 744
Drilling Company Beals Bees. Driller Don GM	
Drilling Method(s)	
Borehole Diameter 16/4 in cm ft	cm. to38ftcm.
	cm. tocm.
746 50 A.	to 69 4.
	ing Method(s) / As prime (4 Const
./a h / a/	ime Start Drilling 12/4/17 1040
/ <b>/</b>	ime Finish Drilling 12/9/82 (500
	ime Start Completion 42/9/27 /550
Depth to Bedrock ft cm. Date/T	ime Cement Protective Casing 13/10/57 0845
	als Used
	PVC _54-58. 92'
	IPVC _/0.67'
	nite Pellets 1.25 backers (62.5/b/
	nite Granular 2.25 64 (1351)
PVC Stick Upft,cm. Cemer	nt 23 days (2070/3.)
Depth to Bottom of Screen 66.0 ftcm. Sand	3 bigs (300 16.)
	added during completion
Depth to Top of Sand 50.0 ftcm. Water	added during drilling 50,500.
Depth to Top of Bentoniteftcm. Total	Gallons of water added 50 50
1 0 1	
Drill Site Geologist Date	12/10/87
	• /
Date/Time/Personnel Internal Mortar, Cement Pad, and Weep Hol	e Installed <u>2/25/9'8 1010 10 57</u>
Date/Time/Personnel Casing Painted 2/25/86 // 50	SS RI
Date/Time/Personnel Numbers Painted 319 188 1900	ew re
Materials Used 12 bays Sukerte	
Top of Protective Casing to Top of PVC	_cm. COMMENT/NOTES
Top of Protective Casing to Weep Hole 1.0 [t.	cm.
Top of Protective Casing to Internal Mortar 1.4 ft.	_cm.
Fop of Protective Casing to Top of Coment Pad 15 ft.	_cm.
Top of Protective Casing to Ground Level	_cm.
Reviewed By The House	Date 3/8/59 C-224
Drill Site Geologist	Date

Borehole: FP-6172 Well: 35089 Soil/Rock Type Well Completion Description 12° 10 Steel Casing & Sortiac to 38' 5-17 Steel Casing: 2.0' Above Surface 4"1) PK (Set 40) : 1.7' Abon Sorfee 6.48 TE. 16.21 Te Centralizar @ 30.0' SE TT. TD / 12"10 Steel : 38.0'
Controller @ 44.02' Top of Brotonite Seal: 46.0' 46.02' TR. 10/8-17 Steel: 50.0' Top of Sand Pack: 50.0' 55.88 Tt. Top of Serven: 56.0' JJ Bottom of Serven : 66.0' TO/ 4" 10 THC: 66.5" C 86

> Drill Site Geologist: A.R. Atli Reviewed By:

Date: 2/9/87 Date: 3/1/1/9 C- 22

	,		.7
SHEET		OF	

		Bore ED-6	1DL	Well 35087	
Project	ON .	157		Project Number	715k 44
Date(s) Developed	3/7/8			Date Installed	12/10/87
Personnel (Name/Com	pany /	LW /ESE		Well Diameter (I.D.)	
TR/Fix	BWI	نت ت	<del>سند. و سند</del>	Anulus Diameter	在如in. oft. to 些 ft.
Rig Used Fig.	E winder SE	ANCE THE			2 1/4 in. 31 ft. to 50 ft.
Pump (Type/Capacity	is Card	PS/505.7	<del></del>	Screen Interval	7 % Sc ft. to 67 ft.
Bailer [Type/Capacity]					Seeft. to seeft.
Water Source				Casing Height (Above (	G.L.)ft.
Measured Well Depth		(Initial)	<u>7e_ft.</u>	Bottom of Screen (Belo	w G.L.)
		(Final) 672	<u> </u>	<b>A</b> *	
Water Level TOC/Date	/Time (Initia		5 /3-7-	1525	
		24 hrs.)	5-42-/3-		18/2-11-30/1475
Feet of Water in Well				llons/foot =	galions casing/anulus volume
Drilling Fluid Lost	_	1	gallons	¥′One Purge Volume	
Purge Water Lost		,1	allons	Minimum Purge Volur	ne 415 gailons
Added Water	. •		gallons	Total Purge Volume	415 gallons
Casing/Anulus Volum	-	<u>. s*</u>	gallons	Volume Measured By	53 ANLIOU BARRE
-				Surge Technique	Zusse / Lover Puns
Calibration: pH Met	er Used:	BGEKINDE !	1/21 5.0	. 516. >44	•
pH 7.00	- 7.00	<u> </u>		C, pH 10.00 =/	21 at 48 •C
			M-).c	32 500 2003	
		umhos/cn		Reading 1412	_umhos/cm at•C
			<del></del>		
Purge Volume	Time	Temp. °C	pН	Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)
Initial 3 (4).	1543	9.8	12.33	2350	Viscous, Alliche muray my
10 siel	1552	10.1	12.45	2670	musely w/ g on with
200	1556	//. 3	12 24	2200	less mady (close) of
7.00				, . 1	Month clear some ince
359-4	1613	11.8	10.48	(16.7	Mrs 11 19 ( second )
Final					+
_				Saland Joen / "	The Autopolitical
Remarks:	m 1540				16 1 11 x 1352 polision 122 9
Tip comm	U.6 mm.	Dome !	rate ( 4	0 1. May = 4,2 0,14	,
	Jī			1 7 1	
ر بادی چهنداک د ند	115 301	ing will	Collected	<u> / اند. ایم ان ا</u>	3/1/3
' '	6.6 Sam	frak u.d.		-////	Signature C-226
	· M. in	4.	Checked	by	Signature
	3.1 is al	•			⊒ig (i <b>e</b> i ⊎i v
'					

(2)

 $(\underbrace{\bullet})$ 

			>	
SHEET	_Z.	OF	L,	

late(s) Developed ersonnel (Name/Co		1500 RI	VIESE		12-10-87
ersonnei (Name/Co	mpany) AA	<i>/</i>	CV CESC	Well Diameter (I.D.) Anulus Diameter	1. 10
ig Used ESE W	lell Service	e truck			<u>/04/in0ft.to 38 ft</u> // ³ /4/in. <u>39 ft.to 50 ft</u>
ump (Type/Capacit			2M	Screen Interval	7 % in 50 ft. 10 69 ft
ailer (Type/Capacit		2/1	-	Li	3 2011. 10 66 g
/ater Source		L'MA		Casing Height (Above	
leasured Well Dept	h TOC	1	<u>1.10 ft.</u>	Bottom of Screen (Beld	ow G.L.)
		4	<u>. 24 ft.</u>		
ater Level TOC/Da	-		7	7-88 1525	
	_ •		5. 16	7-10-30	3486 /+-11-04/ H25
eet of Water in Wel				llons/foot = 19.5	gallons casing/anulus volum
rilling Fluid Lost _ urge Water Lost			gallons gallons	One Purge Volume	_
urge Water Lost .dded Water	,		gallons gallons	Minimum Purge Volume Total Purge Volume	41.2
asing/Anulus Volus			gallons		55 Goldan Persel
esing/fillings void			Penons		ce and house - 2. mg?
alibration: pH Me	nter Used: 🕮	eckman C	21 24	meter sh 0163	
· · · · · · · · · · · · · · · · · · ·	<u> </u>	25 st/	2.0	C. pH 10.00 = _/C	1/4/ at 12. 40
pH 7.0	ctance Meter		2.0 ST Mede		
pH 7.0 Condu	ctance Meter		ST Mede	132 50 260	
pH 7.0 Condu Standa	ctance Meter	r Used: Your Nos/cr	ST Mede n at 25°.	1 3	_umhos/cm ate
pH 7.0 Condu	ctance Meter	r Used: Y	ST Mede	132 50 260	umhos/cm at
pH 7.0 Condu Standa Purge Volume	ctance Meter	r Used: Your Nos/cr	ST Mede n at 25°.	Reading 1416 Conductance at 25°C	_umhos/cm at
pH 7.0 Condu Standa	ctance Meter	r Used: Your Nos/cr	ST Mede n at 25°.	1 3	umhos/cm at
pH 7.0 Condu Standa Purge Volume	Time	Temp. *C	pH 12.02	Reading 1416  Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, colori
pH 7.0 Condu Standa Purge Volume	rd 1413	Temp. *C	pH 12.02	Reading 1416 Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)
pH 7.0 Condu Standa Purge Volume	Time	Temp. *C	pH 12.02	Reading 1416  Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)
PH 7.00 Condu Standa Purge Volume	Time 1430 1439	Temp. *C  13.7  13.4  13.6	pH 12.02 11.49 11.29	Reading 1416  Conductance at 25°C  796  2.6.2  759	Physical Characteristics (clarity, odor, sand content, color)  //oud/
pH 7.0 Condu Standa Purge Volume	Time 1430	Temp. °C	pH 12.02	Reading 1416  Conductance at 25°C  796	Physical Characteristics (clarity, odor, sand content, color)  //oud/
PH 7.00 Condu Standa Purge Volume	Time 1430 1439	Temp. *C  13.7  13.4  13.6	pH 12.02 11.49 11.29	Reading 1416  Conductance at 25°C  796  2.6.2  759	Physical Characteristics (clarity, odor, sand content, color)  //oud/ //c/s////////////////////////////////
pH 7.0 Condu Standa Purge Volume Initial 85 /00 / 5	Time 1430 1439 1439 1439	Temp. °C	pH  12.02  11.49  11.29  9.82	Reading 1416  Conductance at 25°C  796  26.2  769  861	Physical Characteristics (clarity, odor, sand content, color)  //oud/ //c/schi///ex
pH 7.0 Condu Standa  Purge Volume  Initial 85  100 15 170 755	Time 1430 1439 1439 1439	Temp. °C	pH  12.02  11.49  11.29  9.82	Reading 1416  Conductance at 25°C  796  26.2  769  861	Physical Characteristics (clarity, odor, sand content, color)  //oud/ //c/s/////// //c/s///////////////////
pH 7.00 Condu Standa  Purge Volume  Initial 85 /00 / 5 170 7 55 Final	Time 1430 1439 1439 1439	Temp. *C  13.7  13.4  13.5  12.1	pH  12.02  11.49  11.29  9.82	Reading 1416  Conductance at 25°C  796  26.2  769  861	Physical Characteristics (clarity, odor, sand content, color)  //oud/ //c/s/li///// //c/s/li///// //c/s/li///// //c/s/li///// //c/s/li///// //c/s/li///// //c/s/li///// //c/s/li///// //c/s/li///// //c/s/li///// //c/s/li///// //c/s/li///// //c/s/li///// //c/s/li///// //c/s/li///// //c/s/li///// //c/s/li///// //c/s/li///// //c/s/li///// //c/s/li///// //c/s/li///// //c/s/li/////// //c/s/li////////////////////////////////
PH 7.00 Condu Standa  Purge Volume  Initial FS  120 7.55 Final	Time  1430 1439 1439 1439 1554 1554	Temp. *C  13.7  13.4  13.6  12.1	pH  12.02  11.49  11.29  9.82	Reading 1416  Conductance at 25°C  796  262  789  801  607  608  736	Physical Characteristics (clarity, odor, sand content, color)  //out// //sus// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out// //out//
PH 7.00 Condu Standa  Purge Volume  Initial FS  100 755 Final	Time  1430 1439 1439 1439 1554 1554	Temp. *C  13.7  13.4  13.6  12.1	pH  12.02  11.49  11.29  9.82	Reading 1416  Conductance at 25°C  796  262  789  801  607  608  736	Physical Characteristics (clarity, odor, sand content, color)  //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics //pud/ Creating Characteristics
pH 7.00 Condu Standa  Purge Volume  Initial FS  100 755 Final	Time  1430  1439  1439  1504  1504	Temp. *C  13.7  13.4  13.6  12.1	pH 12.02 11.49 11.29 9.82 9.37	Reading 1416  Conductance at 25°C  796  26.2  759  861  6736  736  736	Physical Characteristics (clarity, odor, sand content, color)  /oud/ /essilic/ex
pH 7.00 Condu Standa  Purge Volume  Initial 85 /00 / 5 / 70 7 55 Final	Time  1430  1439  1439  1504  1504	Temp. *C  13.7  13.4  13.6  12.1	pH 12.02 11.49 11.29 9.82 9.37	Reading 1416  Conductance at 25°C  796  262  789  801  607  608  736	Physical Characteristics (clarity, odor, sand content, color)  //pud/ //sis Coud //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus/ //cus

SHEET	.3	OF	2
911661		Ur	

g Used <u>E.S.F.</u> ump (Type/Capacity) siler (Type/Capacity)	3-8.2.  npany) ER/  /ell Service ) Gronad F	ESE BW/		Date Installed Well Diameter (I.D.) Anulus Diameter	Task 44  12-10-87  4 in  10/4 in. O ft. to 38 ft
ump (Type/Capacity) niler (Type/Capacity) /ater Source	npany) ER/ lell Servic ) Gronad F ) N	ESE BW/	ESE	Well Diameter (I.D.) Anulus Diameter	4 in. 0 ft. to 38 ft
ig Used <u>ESE</u> w/ ump (Type/Capacity) siler (Type/Capacity) /ater Source	lell Service	e truck	ESE	Anulus Diameter	10'/4 in. Oft. to 38 ft
ig Used <u>ESE</u> w/ ump (Type/Capacity) siler (Type/Capacity) /ater Source	lell Service	e truck	·····		
ump (Type/Capacity) ailer (Type/Capacity) /ater Source	1 Ground F	e truck			113/1 1 2/1 A. C
ailer (Type/Capacity) /ater Source	)//		<del></del>	•	<u>113/4 in. 381 ft. to 50 ft</u>
ailer (Type/Capacity) Vater Source	)//	05 / 5 Gf	<u> </u>	Screen Interval	7% iv 50 11.10 69 11
		/4 '			56.0 11.10 66.0 ft
teasured Well Depth	R M	Α		Casing Height (Above	G.L.)
	TOC	(Initial) 64	.90 ft.		ow G.L.)
-		(Final) 68	2 Co ft.	1	
Vater Level TOC/Date	e/Time (Initia	al) 35.05	:/ 3-	7-88/1525	
	fafter	24 hrs.) ====================================	596/4	مر مدمد/سته	34 84 /3 11-84 1430
eet of Water in Well_					3 යන්න් allons casing/anulus volum
Filling Fluid Lost	N	/A	gallons		<b>当 gallon</b>
urge Water Lost	N	<i></i>	gallons	Minimum Purge Volum	megallon
Added Water	ذ	<b>`</b> '0	gallons	Total Purge Volume	4 . 🗲
Casing/Anulus Volum			gallons	Volume Measured By	55 Gallon Sacrel
			<b>G</b>	Surge Technique	413e + 10min promis
Calibration: pH Mete	. •	1 m. W	1		
.autoration: Off Meli	er Used:5	7 C N 1970 1	¢ 21	Pll Meter SN C	016344
-					
pH 7.00	7,05	at	12.0	PH Meter SN C *C. pH 10.00 =	10.14 at 13 c
pH 7.00 Conduct	tance Meter	at	12,0 51 Ma	*C, pH 10.00 = lel 3で らん た	10.14 at 13 c
pH 7.00 Conduct Standard	1 7.65	Used:Y	/2.0 5 Me n at 25°,	*C. pH 10.00 = はいし 3 こ	/0.1년 at / 호호 66명 umhos/cm at _/ 호
pH 7.00 Conduct	tance Meter	used:Y	12,0 51 Ma	*C, pH 10.00 = はい 3ヱ Sル ェ	/ <u>/// at / / 경우</u> 66명
pH 7.00 Conduct Standard Purge Volume	Time	Used: Used: umhos/cii Temp. °C	/2.0 SE Me, n at 25°,	*C. pH 10.00 =	/0.14 at /3 6 663 umhos/cm at //5
pH 7.00 Conduct Standard	1 7.65	Used:Y	/2.0 5 Me n at 25°,	*C. pH 10.00 = はいし 3 こ	/0.14 at /3 6 663 umhos/cm at //5
pH 7.00 Conduct Standard Purge Volume	Time	umhos/cn Temp. °C	72.0 E Me n at 25°, pH	*C. pH 10.00 =	Physical Characteristics (clarify, odor, sand content, color)
pH 7.00 Conduct Standard Purge Volume	Time	Used: Used: umhos/cii Temp. °C	/2.0 SE Me, n at 25°,	*C. pH 10.00 =	Physical Characteristics (clarify, odor, sand content, color)
pH 7.00 Conduct Standard Purge Volume	Time	umhos/cn Temp. °C	72.0 E Me n at 25°, pH	*C. pH 10.00 =	Physical Characteristics (clarify, odor, sand content, color)
pH 7.00 Conduct Standard Purge Volume	Time	umhos/cn Temp. °C	72.0 E Me n at 25°, pH	*C. pH 10.00 =	Physical Characteristics (clarify, odor, sand content, color)
pH 7.00 Conduct Standard	Time	umhos/cn Temp. °C	72.0 E Me n at 25°, pH	*C. pH 10.00 =	Physical Characteristics (clarify, odor, sand content, color)
pH 7.00 Conduct Standard	Time	umhos/cn Temp. °C	72.0 E Me n at 25°, pH	*C. pH 10.00 =	Physical Characteristics (clarify, odor, sand content, color)
pH 7.00 Conduct Standard Purge Volume	Time	umhos/cn Temp. °C	72.0 E Me n at 25°, pH	*C. pH 10.00 =	Physical Characteristics (clarify, odor, sand content, color)
pH 7.00 Conduct Standard Purge Volume	Time	umhos/cn Temp. °C	72.0 E Me n at 25°, pH	*C. pH 10.00 =	Physical Characteristics (clarify, odor, sand content, color)

EP-71A



n		C		١.	<u> </u>	. /
r	n	u	Ę,	 	OF	· <del></del>

#### **BOREHOLE SUMMARY LOG**

Borehole <u>E? 7/ A</u> Well <u>13137</u>	23238		
Project Name and Location RMA S. Sampling 7 44 Cell Installe			16
Drilling Company Boules Driller R. Muckey			
Drilling Method(s) 374" ID HS Augec			<del></del>
Size(s) and type(s) of bit(s) 중'/4" エロ HS BH - 스트릭 타다			
Borehole Dismeterincm@ftcm. t	026	ft	
incmftcm. t	o	_ft	_cm.
Sampling Methods Ry before Cube in Continuous Ser	mplia		
Total Number Soil Sampling Tubes	•		
Total Number Core Boxes	•		
Number of Gallons Lost Drilling Fluid News			
Date/Time Started Drilling /1-12-27 / ce29	•		
Date/Time Completed Drilling//cci	-		
Total Borehold Depthftcm		•	
Depth to Bedrock /2 ftcm	. Margary	eillistone	
Depth to Water Alex English watered cm	•		
Water Level Determined By?	•		
Borehole Completed as Monitoring Well?	•		
Date/Time Grouting Completed //: 12 : 27 / 5959	•		
Depth of Tremmie Pipe	_		
Gallons of Grout	-		
Materials Used State Sweeter Value Locations	-		
Comments			
Wellsite Geologist F	Date		
<del>-</del>		<u> </u>	
Amount of Grout Added			
All Measurements from Ground Level			
Reviewed by	Date	3/17/14	
Drill Site Geologist			

4

	Bon	hole:_		-1'-	11/	<u> </u>	Well Number: 12 32 3 > , 23 2 3 Y
	Depth - Feet	Tube Number Tube Interval	Recovery	Sample Number	Sample Interval	Unified Soil Classification	SOILS LOG Description  Munsell Colors
0	0-2	ړ-0	2'	N/A	6-2	mL	ML, Sundy-sit. 10:15% rfg sand, 10xx 1/3 brown-dk. brown, non-plastic, loose, moist, Alluvium  @0.8 colon change to loye 5/4 yellowish brown
		2-4	2'		2-1		ML. sandy silt 10% usig sand w/ trace calcite  104R 5/3 brown, non-plastic, medium drive,  slightly muist, Alluvium
4		4-6	ړ.		4.6		Mr., sandy silt ~ 3000 usy sand, as teach calcile 1042 5/4 yellowish brown, 1100-plastic, medium derese. slightly moist, Alluvium
6		6-8	0		3.9		NO RECOVERY 6-105' Forevertered while Fine sill physical bob.
CO	•	6-10	ړځ ٔ		₽-1¢		··
10	_	21 - 01	2'		ic 12		very pale brown, non plastic, loope, chy, Allavium ~ 40% calcium carbonate 1042/2 mine- chy, Allavium ~ 40% calcium carbonate 1042/2 mine- con plastic, sandy sill, a room sand, 1042 5/2, gravish tra up = 1500 calcium carbonate 1042 1/2 - te now-plastic, medium dance, deep - 1 carrow
10(	•	<del></del>	<u> </u>	<u> </u>	<del></del>	<u> </u>	

Dill Site Geologist: Reviewed By:

	Roi	ehole:			IC.	718	Well Number:
	Depth - Feet	Tube Number Tube Interval	Racovery	Sample Number	Somple Interval	Unified Soil Classification	SOILS LOG Description  Munsell Colors
12		12, 14	2'	N/A	12-14		er. 0' Weathered claying sultistance, a 40% clay 104R 5/2. grayish brown of 104R 7/2 pile brown Calcium carbonate sputs. traces of small gravel possibly gravite, druse, dry, Bedrack
	-	91-14	2*		J4- 16		Same we a scale calcium carbonate 1042 1/2 1/2. brownish gray
16		16-18	٥		16- 1 <del>0</del>		NI RECOVERY 16-20 Encountered gravel @ ~ 16.5 sample soil and
16	1	08.81	0		18 20		graces were exister store
40		?o· 22	٦,		20-22		1048 5/2 grayish brown medium dense was
<b>رد</b> ب	_	ا، د .در	0		22.24	-	NO RECOURTY 22:24' Course . Francisco
ابوب			<u> </u>			l_	

C-232

Reviewed By:

Drill Site Geologist;

Date: //- // //

Date: / 1/27

Daill Site Geologist:

Reviewed By:

	Barr	hole:_		T.	<u>ر م</u>	711	Well Number:
	Depth - Feet	Tube Number Tube Interval	Recovery	Sample Number	Sample Interval	Unified Soil Classification	SOILS LOG  Description  Munsell Colors
24		¥∙K	מ'	N/A	३४-४७		@24. Well rounded gravel 10485/3 @24.5. Silly clary wordhood, 1048 4/1 dkgray med. dense, moist
26							END OF BURING LOG
	_						C-233

_ Date:_

111.117

Date:_

115	٠, ١	<b>.</b>		far se ne far der jar	* ** / !! 9	3, 10,000	7						1 1 10		Description / Comments
		, '/' 	<b>-</b>	des presidents	U = 1.			•	ing in	9.11	<u>.</u> `			11	CM Charle I'm . 3 (1)
•	;					.	•	•	•		٠.		•	:	
				· •					•	:				!	
	•			• 1									İ	i	Bodrock ut 217'
-	į		::			<b>!</b> :	· · ·	1		•		•	•		Coning art 7.16
-	-	••		-		1	4	i .		:			( :	-	Coming set 216' login coming at 26
	į						<b>!</b> :.		:	i			1	-	
Ì	٠,					1::.			:						
	1		! : : :	!		1:::	• • •	1 .	. ;			::	1		
- [		-				: : :	· ·	• • •		į		: ;		<u> </u>	
	i			,					;	İ					
ı	1					1:::			! !				j		
-	1					<b>!</b> : : :	1::	1	i .						}
20						:::	1::	1::		- 1		-			
	D	1		0	میں اعدا اسا	E:   :	1:::	1::		375	12	1	25%	८८	Claystone
ηď	D	Q.			اسار الماري الماري	<u>}: :</u>	#:::	1::.		700	9	1::	Roud		- 3
	i						1	<del></del>	-		<del>- ::</del>	1		.27.0	
	i						1::								No Com Brancis
28	<del>,</del> ÷	•		+			1::		į i		101 0			<u> </u>	1 min 21 4 30 5
İ	- ‡9	3		1		0-4 0- 	<b>†</b> : :	• • •	1	!	:				
	÷	٦		+								-		-	
1	Ì	- 1					$\coprod$	4 • • •		i					
30	, 🕹	.					<del> </del>			ļ				_	<b>-</b> -
L			=				· j - • - •	. <b></b>			<u> </u>			30.5	
	<u> </u>		-[]	الأسلم	L MM	1	]::		'	574	16 -			ĊS	Claysum
1	÷	ļ	:)		× /	::	1::			912					
			7-/	1.5	`~		1::	1	ì	1	`∥∷	•			
32	• 🛨			1					!		- ∦∷:	-:		-	
1	Ч	5		ļ	- 1						y:				
1	+	3	-:4	35 1.2	~ <i>}</i>	\\ :	<b>!</b> ::	1:::			1::	:::		1	
	1	-		35 3.16	٠	: :	<b>\$</b> ::.	<b>\$</b> ::;	i 						
<del>े</del>   3 4	+	.	$\exists : \parallel$	<del>-</del>	- 1				i						
34	1	1							1						
	<b>,</b>			4-		<del>                                    </del>	::					::			
	' ]					/:-				3401	uli :	::1			
1 2 .	19		#	-					1	Disk	ابا				
"	!	4	<b>::</b> #	į	1	. : :	#::			76/101	<b>1</b>	::		! 7	
	•			1	1	` · ·		\		[		::		i l	
	:	: بو					]	}		ı				! <b>1</b>	
	:	1	::#			• •	1								
34				• •	· ,	<b>(</b> :	ĺ				1			•	
1	3				<b>V</b>	1		١.						. "	C – 23
		4	41	•		1	1				į			•	
•		,	• •			1	!	ł			•				

0

(*****)

40	Hearting / Bending Angle Dec.	17. 1	** ***** · · ·	,, SY 411		the lists	
17.75				9110	8	3% 17	
35	•		10% chm -	1407 1407 1407 1410	15	to it	exidation boundary
4, -7	···· \		ton I	N310 Bik Gray	26	76	
14	1			5741 01:04 3:44			
44 - 3	+						
	+				8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		
\\ \frac{1}{1}	++++			50sin	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
12 22	+		1.212	Mr. 7			
2 7,	1		3.			9/	sano 76 minimo
(a) 2/2				we but	ار سرو		
7. + 7	theby Emore			ماکان نامور دامور	: ] : : [ .~	55 55	Sames some, medium to crace grained, multimely, well count to all publish
3 74			المسلومة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة المالة	5 67 10 10 10 10 10 10 10 10 10 10 10 10 10			Frillie C-236
c/- /	18005.04	( 7	74,	1,70		40, 50	S. Hora, Lung.

**①** 

•

ESE, In	e. (	DRT LOG	·, 5P	Dow 11/2/9	A BODE	EP 71 V	Vell(s) Page 6
Marie I	he:	Structure Beging	To an inch	Alme-alogy ( , ) .		Lith Lith	Lescription / Comments
772		Ange Care		10 (10 pg ) 10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10 pg   10	<b>\</b>	' · •	CH Charles C (1)
1	•	V. C	. 11 1	564	<b>^ </b>	ع   م ^{اد} ې	Claystone
1 4.	5	bedde	- 11	ا الر كان من ا	M	0, 1t	
-		<u> </u>		gues			by I'mb intubable i
122		MAAN M		N 310	7/	- (%)	by the introduced in the the
1 1				Dik		20% - n:1t	
1 - 7	4	- \		1949			
!					11::::		<b>—</b>
124			11:1		11: 1:11	c"/c	1 1
(8)					4: : : : : :	oilk -	
<u> </u>		<u> </u>	1::::::::::::::::::::::::::::::::::::::				:
-	_	1		1 1			, 
126+				4			
] }			11 1 1	1			
//		· +		! !			
4.	٠   ١						
128				-		-	
				1 !			
<u> </u>	  	<u> </u>		-			
1%							
130			<u> </u>	<del>  </del>	<del>  </del>		
ļ <u> </u>		Tota	1 drille	dight	130!		
÷		• ••• •					
Ť							
+				]			
ţ				1			
+	= =	<u> </u>				-	
<u> </u>		1	<u> </u>		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
+				1		-	
İ				1 !	::::		
+						-	
1					]::::		
+						-	
:	!::	İ		1		; <u>;</u>	and a
•	4:::	•	1				
:	1::1		* * * * * * *	:	1	! ,	
•		• •		•			
:			•	ı		:	C-23
:	· · ·		•				
:	•						
							1

Frontier Logging	gging	Date OCT. 23, 1987	
で に の の の の の の の の の の の の の		Depth 129 FT	<u>.</u>
		. 378	ويامية
RMA		22 FT PVC "	59/ = 025/ =
C. ADAMS COUNTY	COLORADO	Native mud	
decreed to the second	funge .	Special Parameter Comments	we Linton
	in wanting Ground Level	and mounting Ground Level	Lekewood
ATA Tributes	Cal tree! Same in wants Treel, on		

Eggenger pa sa	deza yê ûn emel Califerê Ami de veneyê livek, ve	tain							
II topped	***	× ×		# X			# 55 55		
" 2/52/	± 050	'n	-ESP-		•	450			ŧ
	paus Indian 1	3.	Feed Seed		1 25.	feeds history	٠, د	and helle.	
> :>cale = 20	S. S.	-	4784		3	ā			1
The Control	*· (ma)	<u>.</u>		ţ			. j.	•	
2	2	5	ii ii		=	٤			٠
	Keri,	1,000		T petal			Fyte		
23			n			4			٠
103-1421	1st run - hale blocked P. 115/F	4ed @ 115%	·						Ì
3/4 x 1			Samma (Anakeg)			Density Source No	curce No		
Ŋ			Gamma (Pertal)			1 L			1
2.38 x 10" 7	2nd run in hole inside	inside							
5,41,674	Och Daring	-0.0	Caliper			ξ. Σ.			f
Co. of Factor		, , ,	Temperature			-		1	
t aff the	lopen hole log	e log 96 FT-125/	K						٠
40 phws /5" gran					_	Meutron	Neutron Source No		
60 MV/ INCh "			Cosure			g.		ن معانی	1
			Azımuth			\$ . \$			
			True Vertical	Serv	Survey Depth				-

C-240

NESSTANCE







# WELL CONSTRUCTION SUMMARY

	WeilSP 22079
Project Name and Location 244 MW WSTOWNTO	N SG, NE SECT. 22 Project Number Tusk 44
Drilling Company 30 ress 340 71665 D	riller Tod ZONCH / TON INVANE Rig Number FAILING 150-
Drilling Method(s)	
	<u> </u>
<u>75</u> incm.	<u>29</u> ftcm. toSC. S ftcm.
many of the same of the same to the	m to said his mid m to define many
Size(s) and types of Bit(s) 115" black 6.7	Sampling Method(s) Not Supplied (see Er-71 co.)
Size and Type PVC 4" Schalade 40	
Total Borehole Depth Ji. 10 ft.	
Depth to Bedrockft.	
Depth to Water Air ft.	cm. Materials Used 31.00 # 85 "OD STATE CASING
Water Level Determined By	• · · · · · · · · · · · · · · · · · · ·
Length Plain PVC (total) 74.77 ft.	
Length of Screen (U.S. 3 ft.	
Total Length of Well Casing 37.7cft.	
PVC Stick Up 7.55° ft.	cm. Cement 14 1275
Depth to Bottom of Screen 26.1/ft.	cm. Sand + vags
Depth to Top of Screen 7518 ft.	
Depth to Top of Sand <u>r-f. Zo ft.</u>	•
Depth to Top of Bentonite <u>69.43</u> ft.	
$\bigcirc$ . $\bigcirc$ +	<u>.</u> .
Drill Site Geologist	Date 2/ (7.58
	Pad, and Weep Hole Installed Page 3/18/18
Date/Time/Personnel Casing Painted 1/21	
Date/Time/Personnel Numbers Painted 2122	
Materials Used 1 bugh 1 bu	
	ftcm. COMMENT/NOTES
	1 0 5 1t cm 5' deed was 9 464 se
•	
and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	
· · · · · · · · · · · · · · · · · · ·	4 45 Date -1 C-24
Drill Site Geologist	Date 27.8

Borehole: EP-71 PI

Well: 2725757 22079

Depth-Feet	Soil/Redi Type		Well Completion	Description
			0.21	T sa'
-	ļ	Gound Level		75.4
<b></b>		521		Survey Letonil: 75.8
<i>10</i> -		  st.ta'	4:" <1es	I cavin
w_	1		Cuntralia Cuntralia	1 %
- برز	1	25.26	201.20	20 20 20 20 20 20 20 20 20 20 20 20 20 2
-	1	35 24		
40 -	1	45.23	Samuel Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the	-
- دک	+	45.21	in drain	Eightenhizer & 54.21
U0 -	4			
	-	65.20		Top of bentumine = 6440
·" ره	4		Burn bourts	14
	1	7514	S	Fig. Summer Sall
80 ·				But transfer over the second
90 .				Tetal De Laborder register & 200 100
<u></u>				7

Drill Life Geologiski Additional Date: 1/19/89
Reviewed II. Date: 1/1/1/19

C-245

# ESE ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. 7332 BOUTH ALTON WAY SUITE H-I ENGLEWOOD, COLORADO 80112 303/741-0839

		~
SHEET	 OF	

		Bore_E?	ובור	Well 22074	
Project	ON - 2051				TASK HY
Date(s) Developed				Date Installed	जा   ०५ । एए
Personnel (Name/Co		100		Well Diameter (I.D.)	in.
PRIFE	A BW	liese-		Anulus Diameter	112 in. O ft. to 24.2 ft.
Rig Used FSE	WELL SERV	KE TRUCK			75. in. 24 ft. to 36.5 ft.
Pump (Type/Capacit	y) <u> </u>	305/56	2.14	Screen Interval	7514 ft. to 5611 ft.
Bailer (Type/Capacit	<u>م م</u>				ft. toft.
Water Source	13/11/			Casing Height (Above	G.L.)
Measured Well Dept	h TOC	(Initial) 'Zea	Lo st.	Bottom of Screen (Beld	ow G.L.)ft.
		(Final) <u>37</u>			
Water Level TOC/Da	te/Time (Initi	al) <u>22.65</u>	13-4-4	33/1010	
		24 hrs.) _36			
Feet of Water in Well					gallons casing/anulus volume
Drilling Fluid Lost _			_	One Purge Volume	44 23 7 50 gallons
Purge Water Lost		,	gallons	Minimum Purge Volu	me <u>250</u> gallons
Added Water			gallons	<del>-</del>	140 Sallons
Casing/Anulus Volum	me	35.23	gallons		22 nuch Binger
		•			2,4152 / Woreiz 12 -112
Calibration: pH Me	ter Used:	PELONE	4.	5d 200 2441	N. S. and
-	0 32 344			C. pH 10.00 =	008 at <u>0.2</u> 10
	ctance Meter	T	ST INVIE		
Standa	rd	?umhos/сп	n at 25*,	Reading , W. L.	_umhos/cm at°C
Purge Volume	Time	Temp. °C	рН	Conductance at 25°C	Physical Characteristics (clarify odor)
Initial	1624	14.6	1184	1452	municipiers in gray
13	1623	13.4	1(.33	1026	way about my me in the sign
20	(G 13	134	11.36	600	With body in your in the wine
30	1629	13.1	11 44	190	fort cloudy in the first own them.
	_				
Final					
Juny 12 buckens	ا ما ما ما ما ما	ay yun rim	-vik.	Smoparte =	86-11 = By 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Remarks:	my saych	ay -yun min	2 16 341 m	Surporte =	CHITE TOP ( Town
Dung of prickens	my grangel	24 - June 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2000 1- 2	2 10 311 m	Surports =	
Remarks:	Francisco (m. 1	1 104816 1 104816	2 10 300 m	Surporte =	CHITE TOP ( Town
Juny 12 buckens	Propries	1 1 1 2 4 1 6 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1	Collected		CHITE TOP ( Town
Remarks:	Prop in a	1 104816 1 104816	Collected Checked	by	CHITE TOP ( Town

(3)

Project RMA				,	Task 44
Date(s) Developed	3.10.	1 11 / 100 6' 15			A 11
Personnel (Name/Co	mpany) Bw/S	EVESE		Well Diameter (I.D.)	11/2 in. 6 ft. to 29.2 f
Rig Used FS	Well Sur	Touch		Anulus Diameter	77/3 in. 24 ft. 10,7%.55
Pump (Type/Capacit	41	Fix 1561	M	Screen Interval	75.15 ft. 10, 6.1/1
Bailer (Type/Capacit	•	Y/.+		Octobri Ilifot 481	ft, tof
Water Source	RM	Á		Casing Height (Above	
Measured Well Dept	h TOC	(Initial) 76	60 ft.	Bottom of Screen (Beld	
·		(Final) 47.5	Źſt.,	,	,
Water Level TOC/De	te/Time (Init		5/3	4-58/1616	
		r 24 hrs.) 36.6		4/1215	
Feet of Water in Wel		Fit.x inch		=	gallons casing/anulus volun
Drilling Fluid Lost _	. · · · · · · · · · · · · · · · · · · ·		allons	One Purge Volume	
Purge Water Lost		- det	allons	Minimum Purge Volui	
Added Water			allons	Total Purge Volume	
Casing/Anulus Volut	me <u>35</u>	2 - 3 - 8	allons	Volume Measured By	
Calibration: pH Me		Breknaga	X 21	Surge Technique Air	2 Chare July
	ctance Meter	Used: <u>YS</u> umhos/cm	1 <u>Mb d</u> at 25°,	Reading 14/4	umhos/cm at
			i M. ci at 25°, pH	4 4 4 4	umhos/cm at 35
Standa	ord /4/3	3umhos/cm	<del></del>	Reading 14/4	umhos/cm at
Standa Purge Volume	Time	umhos/cm	pН	Reading /4/4 Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)
Purge Volume	Time //:53	Temp. •C	рН 10.74	Reading 14/4 Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)  Moddy, bisconic filey  There is the block flay  There is the filey
Purge Volume  Initial 3 C	Time //:53	3_umhos/cm Temp. •C	рН 10.14 9,99	Reading 14/4  Conductance at 25°C  3060  3250	Physical Characteristics (clarity, odor, sand content, color)  Mindy, bischelling  Gray 3. // black flay  There is here
Purge Volume  Initial 3 C	Time //:53	3_umhos/cm Temp. •C	рН 10.14 9,99	Reading 14/4  Conductance at 25°C  3060  3250	Physical Characteristics (clarity, odor, sand content, color)  Moddy, block flay  There is the lock flay
Standa Purge Volume  Initial 3 C (5-) 3 7	Time  //:53  17:56  12':01	3_umhos/cm Temp. •C  -7.3  -7.1  -3.4  -7.3  -3.4  -3.4  -3.4  -3.4	рН 10.14 9,99 10.27	Reading 14/4  Conductance at 25°C  3060  3250  2700	Physical Characteristics (clarity, odor, sand content, color)  Mindry, bush and content, color)  Cring and black they  Thicker, the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and

(1)

		Bore EP 7	IDI	Well 22079	
Project RM	1 on Pas	<del>-</del>		Project Number	Task 44
		88		Date Installed	01-06 88
Date(s) Developed Personnel (Name/Cor	many 26	IESE BL	VIESE	Well Diameter (I.D.)	<i>L)</i> in.
rerionne: (Mamercoi	ilhena)		<del></del> _		11/2 in. Oft. to 29, 2 ft.
Rig Used ESE	Well Sec	vice. Truck			77/4 in. 29 st. to E65 st.
Pump (Type/Capacity	1 Grundfi	5/560	<b>V</b> I	Screen Interval	73:18 11. 10 86.11 ft.
Beiler (Type/Capacity	NIA				ft. toft.
Water Source	RMA			Casing Height (Above	G.L.)
Measured Well Depti		(Initial) 76	60 R.	Bottom of Screen (Beld	ow G.L.)fi.
_		(Final) 87.	9 _ft.	,	
Water Level TOC/Da	te/Time (Initi	el)	<del>-/ 3-9</del>	-88   161C	
	Infiar	24 hrs.)56	6 / 4-4	·17/ 1315	
		ft. x	<u>. 653 g</u>	allons/foot = 35.23	gallons casing/anulus volume
Drilling Fluid Lost _	<u></u>		gallons		<u> らつ</u> gallons
Purge Water Lost Added Water			gailons		meaellons
Added Water	<u> </u>		gallons	Total Purge Volume	146 gallons
Casing/Anulus Volus	ne35	23	galions	Volume Measured By	55 Gal parel
	0	1-	1		be not former temper
Calibration: pH Me	ter Used: 🕰	eckmas	<u>ゆってし</u>	5N. 016344	2.11
pH 7.0	<u> مور                                      </u>		3, 3		7.14 at <u>1337</u> .0
		Used: YST		? 5.W 2663	
Standa	rd <u>1915</u>	umhos/cn	n at 25°.	Reading <u>1411</u>	umhos/cm at•C
Purge Volume	Time	Temp. *C	pН	Conductance at 25°C	Physical Characteristics (clarity, odor, send content, color)
Initial			<b>a</b>	700	Much - nony
44	1009	৭,3	9.11	3990	and Hack Class
(5) 49	10.4	ч. 7	9.43	4580	Clearly wy of the acce
	1017		<del>                                     </del>	1710	Buy Con and I can a comment
9 53	107	ભ્યાં	19.26	49,50	ment of a second
المان والمان					(
	-				
			<u> </u>		· \
Final	ł	1			200
<u> </u>	_ <del></del>	<u> </u>	_1	to 77.53 37.5°	
a . whoel	1				
Romarks: water 1	e vel 64	10 11	<u> </u>	at the state of the state of	4.00 mg
JAMA GE A	- "4 ; slich				
		3			7 11. 25
il i forme i	<i>A</i>	, a constant	Collecte	ed by 1 to 1 to 12 to 23	Agriature C-248
	الماري	الماعة إلى الماعة	Checko	d by	C-246
			GIICEND		Signature
	49.5	<b>)</b>			

Project	_	Bore_ <i>EP-71</i> 105T 114/ex	<u> </u>	Project Number Date Installed	TASK 44 01/06/83
Personnel (Name/Cor	npany)	Dew /1855		Well Diameter (I.D.)	
		V /858		Anulus Diameter	25 in 24 to 10 56.5 to
Rig Used				Casaa Intonial	28 in. 24 ft. to \$6.5 ft.  75/8 ft. to \$6.1/ft.
Pump (Type/Capacity Bailer (Type/Capacity				Screen Interval	ft. toft.
Water Source				Casing Height (Above	
Measured Well Depti			60 ft.	Bottom of Screen (Be	<b>A</b>
		(Final) 97	9_11.	·	,
Water Level TOC/Dat	e/Time (Initia	1)	5 / 3- 9	7.38 / 1610	
	(after	24 hrs.) _36.	<u> </u>	3/ 1215	
Feet of Water in Well				ilons/foot =	gallons casing/anulus volume
Drilling Fluid Lost			gallons	One Purge Volume	
Purge Water Lost			gallons	Minimum Purge Volu	
Added Water			galions	Total Purge Volume	
Casing/Anulus Volum	ne <u>3,5.</u>		gallons	Volume Measured By	
- 111 · · · · · · · · · · · · · · · · ·		08 mm = 11	ي ن د د	Surge Technique	RATUR Juiner Pulmps
Calibration: pH Ma				.V.,	10,00 at 10,1 °C
pH 7.00		at Used:		C, pH 10.00 =	
Standa Purge Volume	rd <u>/-//</u> Time	umhos/cn Temp. °C	pH	Reading /4/S Conductance at 25°C	Physical Characteristics (clarity, odor, send content, color)
Initial 57,3	0933	10.8	ي توسي	4480	Very clary of g. y if . in
58	49 57	11.1	3.60	5040	cleaning of mines, of in - 60, man
63	06,40	:1.2	3.: -	540	clary in our sit
i. 3	2743	11.0	3.4	57000	Character of love sit -
73	6746	12.1	3.57	4045	cludes we have a sum
Finel 77	: 444	/2./	200	4810	Whendy we apply to me . It
Romarks: Water	- lead =			DE-ATERTS IN	Ed Colomas
	i 23 Lasina		Collected	1 by Aly ?	5/14, P  Signature   C-249
	1 2 5 = 7	sond.	Checked	by	Signature

			つ
SHEET	5	7.10	7

roject	المن المن المن المن المن المن المن المن		1121	Well 22079 Project Number	AGE 44	
ate(s) Developed			-		1-6-80	-
ersonnel (Name/Cor		Dui /sic		Well Diameter (I.D.)	4 10	- 1.
		U /FSE		Anulus Diameter	"1 in. " ft. to 27 L f	
is Used ESE w	itic serv	ICE TRUCK			73 in. 27 ft. to PLT	
ump (Type/Capacity	1 11	<u> </u>		Screen Interval	7514 11.10 St.111	t.
lailer (Typo/Capacity		K 5.0'			ft. tof	t.
Vater Source	RINA			Casing Height (Above 6	G.L.)	t.
teasured Well Depth	TOC	(Initial) 26		Bottom of Screen (Belo	w G.L.)	t.
Vater Level TOC/Dat	(after	: 24 hrs.) <u>- 3 6.</u>	5 /4-4- 6 /4-4-	88/ 1318		-
est of Water in Well				llons/foot = 35.23		
Orilling Fluid Lost _				One Purge Volume		
urge Water Lost			gailons gallons	Minimum Purge Volume	ਜਦ <u>ਵੇਵੰਚ</u> gallor <u>/40</u> gallor	
idded Water Casing/Anulus Volun			galions	Volume Measured Ru	SS Sales Builter/Sea	18 ( , (
sesiiikiyiinine võinu			<b>D</b> 4110113	Surge Technique		
Calibration: pH Me	ter Used:	DIZION SI	1.234	314 1064		_
					2.0. at ///.4	
pH 7.00	) = = (·····	at		C, pH 10.00 =	at	C
•	tance Meter	at		C. pH 10.00 =		С —
Conduc	tance Meter		[ Ma) te	34 SM 7663		с - с
Conduc	tance Meter	Used:	[ Ma) te	34 SM 7663		c
Conduc Standa	ctance Meter	Used:umhos/cm	<u>Γ ΜαΣτ'ς</u> 1 at 25°,	32 3M 7013  Reading 111/2	umhos/cm at2' 5"  Physical Characteristics	C C
Conduc Standar Purge Volume	riance Meter rd <u>'4/3</u> Time	Used:	n at 25°.	Reading 7013  Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)  Very Cloudy of Jones of Committee of the Color of Committee of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color	C #
Conduc Standar Purge Volume	Time	Used:	pH 3 247	Reading 7112  Conductance at 25°C  \$170	Physical Characteristics (clarity, odor, sand content, color)  Very Closer of Jones Screen of the surfice series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series o	C #
Conduction Standard Purge Volume Initial 77	Time /002 /2/6	Used:	pH 3 24 8 56	Reading 7003  Reading 7003  Conductance at 25°C  S170  S030	Physical Characteristics (clarify, odor, sand content, color)  Very i long of main your solors  Very i long of main you will so the grown of main your solors  Very i long of main you will so the grown of main your solors  Eith retire of main your solors  Single or the grown of main your solors.	C +
Conduction Stendard Purge Volume  Initial 77  83  87	Time /002 /2/3	Used:	PH 3 29 8 56 8 69	Reading 7013  Reading 7013  Conductance at 25°C  S170  S010	Physical Characteristics iclarity, odor, sand content, colors  Very closery of series with the series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of series of s	C # 8
Conduction Standard Purge Volume  Initial 77  83  87	Time  /002  /2/6  /023	Used:	PH  3 29  8 56  8 69  9 74	Reading 7013  Reading 7013  Conductance at 25°C  \$170  \$010  4930	Physical Characteristics (clarify, odor, sand content, color)  Very i long of main your sold sold sold of main your sold sold of main your sold sold of main your sold sold of main your sold sold of main your sold sold of main your sold sold of main your sold sold of main your sold sold of main your sold sold of main your sold sold of main your sold sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sold of main your sol	C # 8
Conduction Standard Purge Volume Institut 77 83 87 62 98	Time  /002  /2/6  /023	Used:	PH  3 29  856  869  8-14  8.30	Reading 7112  Reading 7112  Conductance at 25°C  \$170  \$2,30  \$010  4930  4930	Physical Characteristics (clarity, odor, sand content, color)  Very Cloudy of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the current of the	C # 8
Conduction Standard Purge Volume  Initial 77 83 87 62 98 Final	Time  /002  /2/6  /023  /030  /034	Used:	Provider	Reading 7112  Reading 7112  Conductance at 25°C  \$170  \$010  4930  4930  4950	Physical Characteristics (clarity, odor, sand content, color)  Very closed of man of same such series of local of man of man of man of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the ser	C # 8
Conduction Standard Purge Volume Initial 77 83 87 62 68 Final	Time  /002  /2/6  /023  /030  /030	Used:	Provider	Reading 7112  Reading 7112  Conductance at 25°C  \$170  \$2,30  \$010  4930  4930	Physical Characteristics (clarity, odor, sand content, color)  Very closed of man of same such series of local of man of man of man of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the ser	C # 8
Conduction Standard Purge Volume Initial 77 83 87 62 98 Final	Time  /002  /2/6  /023  /030  /030	Used:	Provider	Reading 7112  Reading 7112  Conductance at 25°C  \$170  \$010  4930  4930  4950	Physical Characteristics (clarity, odor, sand content, color)  Very closed of man of same such series of local of man of man of man of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the ser	C # 8
Conduction Conduction Standard Purge Volume  Initial 77  83  87  622  98  Final Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conduction Conducti	Time  /002  /2/6  /023  /030  /030	Used:	Pennier	Reading 7112  Reading 7112  Conductance at 25°C  \$170  \$010  4930  4930  4930  4950  4150	Physical Characteristics (clarity, odor, sand content, color)  Very Cloudy of John Strain of John Strain of John Language with sailly of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John	C # 8
Conduction Standard Purge Volume Initial 77 83 87 62 98 Final	Time  /002  /2/6  /023  /030  /034	Used:	Provider	Reading 11/12  Conductance at 25°C  5170  5010  4730  4730  4730  4750	Physical Characteristics (clarity, odor, sand content, color)  Very Cloudy of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the	C
Conduction Standard Purge Volume Initial 77 83 87 62 98 Final	Time  /002  /2/6  /023  /030  /034	Used:	Pennier	Reading 7112  Reading 7112  Conductance at 25°C  \$170  \$230  \$010  4730  4730  4750	Physical Characteristics (clarity, odor, sand content, color)  Very Cloudy of John Strain of John Strain of John Language with sailly of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John Strain of John	C

**b**)

		Bore EP -	7(12)	Well 72079			
Project		e		Project Number	TA SIE 44		
Date(s) Developed	3 -	110-13B		Date Installed 1- 6-もの			
Personnel (Name/Cor	mpany) 🚞	w Jece		Well Diameter (I.D.)			
	3 _v	3 /8·E		<b>Anulus Diameter</b>	11/2 in. Oft. to 24.2 ft.		
Rig Used <u>Esc</u>	سجد و عدوما	4 Texas			73 in. 29 ft. to 30. 5 ft.		
Pump (Type/Capacity				Screen Interval	Trivatio Real ft.		
Bailer (Type/Capacity					ft. toft.		
Water Source	RMA			Casing Height (Above	G.L.) <u>1.17</u> ft.		
Measured Well Depti	h TOC	(Initial) 76. (Final) 87		Bottom of Screen (Beld	ow G.L.)		
Water Level TOC/Da	te/Time (Initia	11 22.05	13-4-63	1010			
	(after	24 hrs.) 36.	6/4.4.4	11/215			
Feet of Water in Well	53 95	ft. x . 6			gallons casing/anulus volume		
Orilling Fluid Lost _					gallons		
Purge Water Lost			gallons		me		
Added Water	فه	·	gallons		146 gallons		
Casing/Anulus Volum			gallons	Volume Measured By	5 one Burret		
•			_		BAILINE		
Calibration: pH Me	ter Used:	trion sil 2	30 3M:	1064			
		at		°C. pH 10.00 =/	one at Se •c		
•		Used: <u>ک</u>		72 500 2007			
				ـــــــان ليالا			
Standa	rd	umhos/cn	1 at 25°.	Reading 7777	umhos/cmat 25 °C		
Standa	/av.	umhos/cn	1 at 25°,	Reading 7777	_umhos/cm at2 ≤C		
Purge Volume	Time	Temp. °C	pH	Reading 7777 / co. 3  Conductance at 25°C	Physical Characteristics (clarity, odor, send content, color)		
	1000		<del> </del>				
Purge Volume	Time	Temp. *C	pH	Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)		
Purge Volume	Time	Temp. °C	pH Sel	Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)		
Purge Volume Initial 98	7000 Time 0925	Temp. *C /ひし - タし	рН .5-:1 3:34	Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  (""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""  ("""		
Purge Volume Initial 98 /C3	7000 Time 0925 0925	Temp. •C  /UC  9.5	pH 5-21 3:34 3:31	Conductance at 25°C  5270  5270  5220	Physical Characteristics (clerity, odor, send content, color)  ("""" (""""""""""""""""""""""""""""""		
Purge Volume  Initial 98  / C 3  / C 3'  . : 5	7000 Time 0925 0939 4555	Temp. °C  106  96  95	pH 5-21 3:34 3:34 3:31 9:41	Conductance at 25°C  \$340  \$2.70  \$2.20  \$5.50	Physical Characteristics (clarity, odor, sand content, color)  ('many of signal safe  ('org (loudy of signal safe  ('org (loudy of signal safe)  ('org (loudy of signal safe)  ('org (loudy of signal safe)  ('org (loudy of signal safe)  ('org (loudy of signal safe)  ('org (loudy of signal safe)  ('org (loudy of signal safe)		
Purge Volume  Initial 98  103  103  108  Final	7000 Time  0925  0939  4555  1007  1024	Temp. °C  100  200  3.5  1897  10.1	pH 5-21 3:34 3:31 9:41 3:62	Conductance at 25°C  \$340  \$2.70  \$2.20  \$5.50	Physical Characteristics (clarity, odor, sand content, color)  ("""""""""""""""""""""""""""""""""""		
Purge Volume Initial 78 103 103 118	7000 Time  0925  0939  4555  1007  1024	Temp. °C  100  200  3.5  1897  10.1	pH 5-21 3:34 3:31 9:41 3:62	Conductance at 25°C  \$340  \$270  \$220  \$350  \$5000	Physical Characteristics (clerity, odor, send content, color)  if you change of the send send send send send send send sen		
Purge Volume  Initial 98  /CS  /OS  /OS  /OS  /OS  /OS  /OS  /OS	7000 Time  2725  (1739  1555  1647  1024	Temp. °C  10 C  9 C  8 5  18 9  10.1	pH 5:1 3:34 8:31 9:41 7:62	Conductance at 25°C  \$340  \$270  \$220  \$150  \$060	Physical Characteristics Iclanic, odor, sand content, color)  ("""  """  """  """  """  """  """		
Purge Volume  Initial 98  /CS  /OS  /OS  /OS  /OS  /OS  /OS  /OS	7000 Time  2725  (1739  1555  1647  1024	Temp. °C  10 C  9 C  8 5  18 9  10.1	pH 5-21 3:34 3:31 9:41 3:62	Conductance at 25°C  \$340  \$270  \$220  \$150  \$060	Physical Characteristics Iclanic, odor, sand content, color)  ("many of joing safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments and safe  "ong closed of comments		
Purge Volume  Initial 98  /CS  /OS  /OS  /OS  /OS  /OS  /OS  /OS	7000 Time  0925  0939  4555  1007  1024	Temp. °C  106  9.6  9.5  18.9  10.1	pH 5:1 3:34 8:31 9:41 7:62	Conductance at 25°C  \$340  \$270  \$220  \$350  \$5000	Physical Characteristics Iclania, odor, sand content, color)  ("""  """  """  """  """  """  """		

ŧ

			Bore EP.	7/21	Well 22079		
	Project Time	1 04.			Project Number	71 CHE 44	
4	Date(s) Developed	3-10	- 33		Date Installed	1-6:36	
1	Personnel (Name/Cor	npany) À	WIF SE		Well Diameter (I.D.)	4	in.
	BW/ESE		3,5			ル生 in1. to	29 ft.
	Rig Used FSE		ice Touck			7 in. 29 ft. to	
	Pump (Type/Capacity				Screen Interval	7518 ft. to	
4	Bailer (Typo/Capacity		× 2.0'			ft. to	
•	Water Source				Casing Height (Above	G.L.)	
	Measured Well Depth	TOC	(Initial) 76.	60 ft.	Bottom of Screen (Bel	ow G.L.) \$6.11	ft.
			(Final) 87.	<u>4 (t.</u>	,		
	Water Level TOC/Dat	te/Time (Initi	al) <u>22.65</u>	13.17-2	3/1610		
ŧ		(after	24 hrs.) 36.4	5 / 4/4/	88/ 1215		
	Feet of Water in Well	53.95	_ft.x	S ga	llons/foot = 35.23	gallons casing/anuli	us volume
	Drilling Fluid Lost _	, .		gallons	One Purge Volume		gailons
	Purge Water Lost	- M, 4		gallons	Minimum Purge Volu		gallons
	Added Water			gallons	Total Purge Volume	146	gallons
4	Casing/Anulus Volun	ne <u> </u>	2 3 8	gallons	Volume Measured By	5 3111/05	<del></del>
					Surge Technique	34.6.00	
	Calibration: pH Me	ter Used:	MRIUN SA	1230	in what		
		1 - <u>7:08</u>	<del></del>		C, pH 10.00 =		<u>/</u> •c
			Used:		16 36 1W 3600		<del></del>
1	Standar	$rd = \frac{140}{1}$	umhos/cm	at 25°,	Reading 1411	umhos/cm ac	•C
	Purge Volume	Time	Temp. °C	рН	Conductance at 25°C	Physical Characte (clarity, odar, sanii contr	ristics
•	Initial //9	0250	/ୟମ	3.06	5210		New
•	/28	0907	11.7	کی ج	5270	Slivery, lund	
	133	J416.	11.7	3.04	57 30	March 11 /31 26	a stiff
Ĺ	140	1242.5	118 1200	8.12	5210	Capte Comments	
	146	1.544	//.3	851	5020	ren closes of sin	
	#!!!!! Ju						مید ن _ا است. ا
, De.	valered in 28 youther		DEVELUTIONE	F1N1	LIZED TETER &	المام المؤسود (ألا لا ما مام مام المال	30W47424
•	Remarks:	1 1 5	55.22	2.1.1	Ben Paly / 1942	Fich and	
	71		3 7 3		id the best of the best	( LY,46 / 7.3	2 1515
		11,5 ,000 5		<u> </u>	20.00 2001 - 2011	و المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام الما	
.,				Collected	The fel 1. Cui	3 / 13	- C-252
. '			ż	Conscien	10y	'un matura	0.232
1	1 18 19 131 34 34 44	4-1-19	, ik	Checked		ingnature	C232

# WELL CONSTRUCTION SUMMARY

Borshole FP.7( D'Z	Well
Project Name and Location EMA MW Tashallah.	
Drilling Company Boy (as Brow. Drille	- Rose Roseh Rig Number Failing 1500
Drilling Method(s)	
Borehole Diameter _!! 3/4 incm	O_ftcm. to91ftc
7 ½ incm	91 ftcm. toc
Size(s) and types of Bit(s) 1124" black bit	Sampling Method(s) Not Sampled (See En-71
7 %" blade bit	Date/Time Start Drilling 6-11-36 / 6417
Size and Type PVC 4" Schedule 40	Date/Time Finish Drilling
Total Borehole Depth (03.8 ftcm	Date/Time Start Completion _ 1-13-33 / 1345
Depth to Bedrockftcm	Date/Time Cement Protective Casing <u>( ಇ.೭-ಆಲ್/) ಅ</u>
Depth to Waterftm	Materials Used 43.97' 3" Shel caring
Water Level Determined By	Plain PVC 10 sections (47 29) Scheme
Length Plain PVC (total) 47.17 ftcm	Slotted PVC (1) 5' Section + making = 5%
Length of Screen <u>S. 27</u> ftcm	Bontonite Pellets 65 buckers
Total Length of Well Casing 103.70 ftcm	Bentonite Granular 7.7 hours (50 th some)
PVC Stick Up 2.0 ftcm	. Cement 37 licys (4) 16 large)
Depth to Bottom of Screen 107.10 ftcm	. Sand 15 being (17616 inage)
Depth to Top of Screen 45.39 ftcm	. Water added during completion 100 cmcms
Depth to Top of Send 4/2.5 % ftcm	. Water added during drilling
Depth to Top of Bentonite 25.68 ft	. Total Gallons of water added
Drill Site Geologist	Date
	Compression of the medical control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control o
	and Weep Hole Installed PAP 3-15 - 551 - 551
Date/Time/Personnel Casing Painted 3/2/19/	
Date/Time/Personnel Numbers Painted 2/27/1/	Y 1465 1-12
Materials Used is being Aulus	
Top of Protective Casing to Top of PVC October 1	
	The come State a sing who true =
Top of Protective Casing to Internal Mortar 2017  Top of Protective Casing to Top of Coment Pad 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ttcm.
Top of those creating to top orderman the	
Top of Protective Casing to Ground Level	
Reviewed By	DateC-
Drill Site Geologist	Date sylvy

Borehole: EP-7102

Well: 77.080

		porenole:	Well: 3770 SD
Depth-Fact	Seil/Rack Type	Well Completion	Description
10 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -		Gound Level  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  35.40  35.40  35.40  35.40  35.40  35.40  35.40  35.40  36.40  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42  375.42	Contradizer et 20.49  P'steel caering into 40.114'  Top of Sundante = 456.6°  Top of Server = 42.83°  Top of Server = 45.83°  Actual server and interval = 40.20 - 01.20°  Buthon of Server = 101.70°  Total Bu check deport = 102.3

Drill Site Geologist
Reviewed By

Date: ___ Date: 177.

C-254

## ESE ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. 7332 SOUTH ALTON WAY SUITE H-1 ENGLEWOOD, COLORADO 80112 303/741-0639

			-
SHEET	 <u> </u>	OF	

_		Bore E.P.	2015	Well 22033		
Project Pu				Project Number	77-5 K 44	
Date(s) Developed	<u> 3 - 9 - 8 5</u>	3	<del>-,</del>	Date Installed	1 (13) 815	
Personnel (Name/Co	mpany) <u>&amp;</u> &	FSE BW	ESE	Well Diameter (I.D.)		_in.
		•		Anulus Diameter	113/4 in. 0 11.10 41	
Rig Used ESE	won sea	evice town	crc_		7% in. 41 ft. to 102	
Pump (Type/Capacit				Screen Interval	9 <u>5 89 ft. to 101.75</u>	
Bailer (Type/Capacit	y)				fl. to	
Water Source				Casing Height (Above	G.L.) 2.0	_
Measured Well Dept	h TOC	(Initial) _/^		Bottom of Screen (Bel	ow G.L.) 101.75	_ft.
		(Final) 10.		1		
Water Level TOC/Da	te/Time (Init	(ial) 36.10 /	<u>3 · 9</u> · <u>38</u>	11510 [BW		
		er 24 hrs.) <u>43.3</u>		_		
Feet of Water in Wel			_	د ـ	gallons casing/anulus volu	
Drilling Fluid Lost _			-00u	<del>.</del>	galle	
Purge Water Lost			-	Minimum Purge Volu	me <u>- 156-</u> gallo	ons
Added Water	712	• 1.	gallons	_	gallo	
Casing/Anulus Volum	ne	<i><u> </u></i>	gallons	· · · · · · · · · · · · · · · · · · ·	SS CONCO BARREL	
<b>~ 10</b>			بر لاد د د	Surge Technique مصاور کا مالیکا	BA1>2/60062 3,m12	
		BIKIMPLA (I.'	<u> </u>	74440 C 5 7/ CH ( ) ( ) ( )		
Canbration: privie	ter Usea: 🕰	. 2	() ()	00 111000 101	4.7	
pH 7.00	0 - <u>702</u>	<u>at 2</u>	<u>00</u>	°C. pH 10.00 = <u>/C</u>	107 at	_ °C
pH 7.00 Condu	ctance Meter	r Used: YST	oc Mudel	°C. pH 10.00 = <u>/の</u> フェージルフCのニ	<u>.e. 7</u> at	
pH 7.00 Condu	ctance Meter	<u>at 2</u>	oc Mudel	°C. pH 10.00 = <u>/の</u> フェージルフCのニ	107 at	
pH 7.00 Condu	ctance Meter	r Used: YST	oc Mudel	°C. pH 10.00 = <u>/の</u> フェージルフCのニ	<u>.e. 7</u> at	- · C
pH 7.00 Condu Standa	0 = <u>7.02</u> ctance Meter rd <u>1413</u>	at 2 r Used: YST umhos/cn	medel pH	*C. pH 10.00 = 10 2	umhos.cm at	- · C
pH 7.00 Condu Standa Purge Volume	0 = <u>7.02</u> ctance Meter rd <u>1413</u>	at 2 r Used: YST umhos/cn	n at 25°,	*C. pH 10.00 = 10 2	Physical Characteristics (clarity, odor, sand content, color Claudy) - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Claudy - Clau	- · C
Purge Volume	Time	at 2 r Used: YST umhos/cn Temp. °C	Pr.del n at 25°, pH	*C. pH 10.00 = 10 ?	Physical Characteristics (clarity, out), sand content, color Claudy out, sand content, color Claudy out, sand content, color Claudy out, sand content, color Claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand content, color claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy out, sand claudy o	- 'C
pH 7.00 Condu- Standa Purge Volume	0 = 7.02 ctance Meter rd 1413	at 2 TUsed: YST umhos/cn Temp. °C	medel pH	*C. pH 10.00 = 10 2	Physical Characteristics (clarity, odd).  Claudel and Characteristics (clarity, odd).  Claudel and Characteristics (clarity, odd).	- 'C
Purge Volume	Time	at 2 r Used: YST umhos/cn Temp. °C	pH 12.32	*C. pH 10.00 = 10  2	Physical Characteristics (clarity, odd).  Claudy - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) - Postage (second) -	- 'C
Purge Volume	Time	at 2 TUsed: YST umhos/cn Temp. °C	Pr.del n at 25°, pH	*C. pH 10.00 = 10 ?	Physical Characteristics (clarity, oddr. sand content, color ledge Action 1997)  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Ac	- 'C
Purge Volume	Time	at 2 r Used: YST umhos/cn Temp. °C	pH 12.32	*C. pH 10.00 = 10  2	Physical Characteristics (clarity, oddr. sand content, color legislation of the sand content, color legislation of the sand content, color legislation of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand con	- C
Purge Volume Initial	Time  '572   /524  /529	Temp. °C	pH 12.32	*C. pH 10.00 = 10  27	Physical Characteristics (clarity, oddr. sand content, color ledge Action 1997)  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Action 1997  Ledge Ac	- C
Purge Volume Initial	Time  1524  1537	Temp. °C	Pr. del mat 25°.  pH  12.32  12.10  12.22	*C. pH 10.00 = 10  27	Physical Characteristics (clarity, oddr. sand content, color legislation of the sand content, color legislation of the sand content, color legislation of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand content of the sand con	- C
Purge Volume Initial C  TC  TC  TC  TC  TC  TC  TC  TC  TC	Time  1524  1537  1558  1558	Temp. °C  141 G  141 G  141 G  141 G  141 G  141 G  141 G  141 G  141 G  141 G	Pr. del mat 25°.  pH  12.32  12.10  12.22  12.21	*C. pH 10.00 = 10  27	Physical Characteristics (clarity, odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor,	- C
Purge Volume Initial C  C  C  C  C  C  C  C  C  C  C  C  C	Time  1524  1524  1537  1545  1558  Left in 1558	Temp. °C  ILI G  14 G  14 C  14 C  14 C  14 C  14 C  14 C  14 C  14 C  14 C  14 C  14 C  14 C  14 C  15 C  14 C	Pr. del mat 25°.  pH  12.32  12.10  12.22	*C. pH 10.00 = 10  2	Physical Characteristics (clarity, out). Since the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the	- C
Purge Volume Initial C  C  C  C  C  C  C  C  C  C  C  C  C	Time  1524  1537  1558  1558	Temp. °C  ILI G  14 G  14 C  14 C  14 C  14 C  14 C  14 C  14 C  14 C  14 C  14 C  14 C  14 C  14 C  15 C  14 C	Pr. del mat 25°.  pH  12.32  12.10  12.22	*C. pH 10.00 = 10  27	Physical Characteristics (clarity, out). Since the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the	- C
Purge Volume Initial C  C  C  C  C  C  C  C  C  C  C  C  C	Time  1524  1524  1537  1545  1558  Left in 1558	Temp. °C  ILI G  14 G  14 C  14 C  14 C  14 C  14 C  14 C  14 C  14 C  14 C  14 C  14 C  14 C  14 C  15 C  14 C	Pr. del mat 25°.  pH  12.32  12.10  12.22	*C. pH 10.00 = 10  2	Physical Characteristics (clarity, outer, sand content, color (clarity), outer, sand content, color (clarity), outer, sand content, color (clarity), outer, sand content, color (clarity), outer, sand content, color (clarity), outer, sand content, color (clarity), outer, sand content, color (clarity), sand content, color (clarity), sand content, color (clarity), sand content, color (clarity), sand content, color (clarity), sand content, color (clarity), sand content, color (clarity), sand content, color (clarity), sand content, color (clarity), sand content, color (clarity), sand content, color (clarity), sand content, color (clarity), sand content, color (clarity), sand content, color (clarity), sand content, color (clarity), sand content, color (clarity), sand content, color (clarity), sand content, color (clarity), sand content, color (clarity), sand content, color (clarity), sand content, color (clarity), sand content, color (clarity), sand content, color (clarity), sand content, color (clarity), sand content, color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color (clarity), sand color	- C
Purge Volume Initial  C  To  Ho  Remarks: Act 12	Time  1524  1524  1537  1545  1558  Left in 1558	Temp. °C  ILI G  14 G  14 C  14 C  14 C  14 C  14 C  14 C  14 C  14 C  14 C  14 C  14 C  14 C  14 C  15 C  14 C	Pr. del mat 25°.  pH  12.32  12.10  12.72  12.72	*C. pH 10.00 = 10  2	Physical Characteristics (clarity, odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand content, color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor, sand color (clarity), odor,	- C C

# ESE ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. 7332 SOUTH ALTON WAY-SUITE H-I ENGLEWOOD, COLORADO 80112-303/741-0639

SHEET 2 OF 7

	0		Bore_EA	7/02	Well 22000	المراب المسائ ^ي
			- AOST	<del></del>		äsk 44
• •	Developed		\$ 10/88		Date Installed	1 13 28
_	el (Name/Cor		wiese		Well Diameter (I.D.)	in.
	R/ESE	BM	ESE		Anulus Diameter	1174 in ft. to _ ft.
Rig Used			SERVICE T			75 in. 11 It. to 102 It.
Pump (T	ype/Capacity	1 GRUD	125 / 560m	<u> </u>	Screen Interval	95.79 ft. to 10.73 ft.
	ype/Capacity	<i>r</i> 1	NIP			ft. toft.
Water Sc	ource	Rn	H	···	Casing Height (Above	
Measure	d Well Depth	TOC		<u>. Z.</u> ft. <u>. Y5</u> ft.	Bottom of Screen (Beld	ow G.L.)ft.
Water Le	evel TOC/Dat		al) 36.10	13-9	-88/1510	
			24 hrs.) 43.			
	Vater in Well Fluid Lost 🔔				iions/foot = <u>4136</u> * One Purge Volume <u> </u>	gailons casing/anulus volume
_	ater Lost			allons		me 256 gallons
	Vater	•		alions	Total Purge Volume	
				allons		SS GHULW TARREL
Casingra	Anulus Volun	16		anons	Surge Technique	1
C-111			BECK MAN	A 21	Surge reconsidue	
Campran	ion: pri Mei	- 7.10	3		C. pH 10.00 =	0.28 at 2.7 °C
	•			<u>5.J. wo</u>	•	
		tance Meter				_umhos/cm atC
	Standar	'a <u>171-</u>	umhos/cm	at 25*,	Reading 1412	C
Purg	se Volume	Time	Temp. •C	рН	Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)
Initial	42	1430	10.6	12.17	5710	chand wy gran sit ting
(9)	52.	1433	99	12.06	5180	for soul is con mins
15)	57	1435	10.02	80.51	.5170	ET Tomi
(17)	59	1431	9.3	12.13	5160	Jam 17 ho shring to
			to the material part	-		10 2001
Final					• .	- · · · · · · · · · · · · · · · · · · ·
L				1		
<b>n</b> 1	10/20/10	10 ml = -	2 / al - Maa		al f. il = 107 6	·3 ' /
Remarks	:	<u> </u>	14 . Al	Numer u	ul de, th = 107.6	Toronto de ora Una
	m 142	5 / 1438	100 311	UEW,	ATECA V IN TI	TRUCETO
r i fin	4e .ol. "	d3.4	com uch	Collected	by	dignature C-256
	•	7	James para vol.	Physick and	<i>⊶ 1</i> I,,,	
		51.35 =	> 52 n.144	CHUCKUII.	thyh	tagnulare

## ESE ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. 7392 SOUTH ALTON WAY SUITE H-I ENGLEWOOD, COLORADO 80112-303/741-0839

SHEET 3 OF 7

		Bore EP	<u> 11 U Z</u>	Well 22080	
Project	MA ON	- Past		Project Number	Tusk 44
Date(s) Developed		.66		Date Installed	1-13-88
Personnel (Name/Co	mpany) <u>R</u> 8	Clesie Bwil	ESE	Well Diameter (I.D.)	<u> </u>
				Anulus Diameter	1134 in. 0 [t. to 9]
Rig Used <u>ESE</u> W					1/2/2 in. 11 ft. to 102
Pump (Type/Capacis	ly) Gradh	US/ 5 GP	<u> </u>	Screen Interval	75:541. to 101.70
Bailer (Type/Capacit	(y)	4	<del></del>		ft. to
Water Source			\		G.L.) <u>2 c</u>
Measured Well Dept	h TOC	(Initial) 10	_	Bottom of Screen (Bel	low G.L.)
Water Level TOC/Da	ia/Tima/Inii	<u>(ا در بری</u> (Final)		8/1510	
Agret Peagl (OCID)	iteri ime (init efte)	or 24 hrs.) 43	7 /0.4	18/1002	<u> </u>
Feet of Water in Wel	1 66.4	ستبست (۱۱۱۵۰) سان به ۱۱	<u>53</u>		gailons casing/anulus volun
Orilling Fluid Lost _					5 ² gallo
Purge Water Lost	N/4		gallons	Minimum Purge Volu	ime 7-5% sallo
Added Water			gallons	Total Purge Volume	
Casing/Anulus Volum	me	<i>ુ</i> હ	gallons	Volume Measured By	23 Gillow Burgel
•		1			WER / lowe - P. n. ?
Calibration: pH Me	ter Used: 👸		21	5.0:016344	·
p					
pH 7.0	0 = 7.54			.*C. pH 10.00 =	<u>υμ</u> at <u>193</u>
pH 7.0 Condu	0 = <u>7.54</u> ctance Meter	r Used: <u> </u>	Medel	.*C, pH 10.00 = 32	<u>्रिय</u> at <u>। १२३</u>
pH 7.0 Condu	0 = <u>7.54</u> ctance Meter		Medel	.*C, pH 10.00 = 32	<u>υμ</u> at <u>193</u>
pH 7.0 Condu	0 = <u>7.54</u> ctance Meter	r Used: <u> </u>	Medel	.*C, pH 10.00 = 32	<u>्रिय</u> at <u>। १२३</u>
pH 7.0 Condu Standa	0 = <u>7.54</u> ctance Meter rd <u>1413</u>	r Used: <u>YST</u> umhos/cn	<u>Mcdel</u> n at 25°,	*C. pH 10.00 = 32	umhos/cm at 35 Physical Characteristics
pH 7.0 Condu Standa Purge Volume	0 = 7.54 ctance Meter rd 1413 Time	Temp. °C	<u>Madel</u> n at 25°, pH	*C. pH 10.00 =  32	Physical Characteristics (clarity, udgr. sand content, color)
Purge Volume  Initial 54	0 = 7.64 ctance Meterrd 1413 Time	Temp. °C	Madel nat 25°, pH	*C. pH 10.00 =	umhos/cm at
Purge Volume  Initial 5"	0 = 7.5-1 ctance Meter rd 1413 Time	Temp. °C	Madel	*C. pH 10.00 = 32	Physical Characteristics (clarity, udgr. sand content, color)
pH 7.0 Condu Standa  Purge Volume  Initial 5-1	0 = 7.64 ctance Meterrd 1413 Time	Temp. °C	Madel nat 25°, pH	*C. pH 10.00 =	umhos/cm at
pH 7.0 Condu Standa  Purge Volume  Initial 5-1	0 = 7.64 ctance Meterrd 1413 Time	Temp. °C	Madel nat 25°, pH	*C. pH 10.00 =	umhos/cm at
Purge Volume  Initial 54	0 = 7.64 ctance Meterrd 1413 Time	Temp. °C	Madel nat 25°, pH	*C. pH 10.00 =	umhos/cm at
Purge Volume  Initial 54	0 = 7.64 ctance Meterrd 1413 Time	Temp. °C	Madel nat 25°, pH	*C. pH 10.00 =	umhos/cm at
pH 7.0 Condu Standa  Purge Volume  Initial 50	0 = 7.64 ctance Meterrd 1413 Time	Temp. °C	Madel nat 25°, pH	*C. pH 10.00 =	umhos/cm at 55  Physical Characteristics (clarity, oddr. sand content, color)  Court Style Court
pH 7.0 Condu Standa  Purge Volume  Initial 5 () (5) 64	0 = 7.54 ctance Meter rd 1413 Time 1052 1054	Temp. •C	Madel mat 25°,  pH    119 4    1215	*C. pH 10.00 =	Physical Characteristics (clarity, oddr. sand content, color)
pH 7.0 Condu Standa  Purge Volume  Initial 5 () (4)  (5) (4)	0 = 7.54 ctance Meter rd 1413 Time 1052 1054	Temp. •C	Madel mat 25°,  pH    119 4    1215	*C. pH 10.00 =	Physical Characteristics (clarity, odor, sand content, color)
Purge Volume  Initial 50  (5)  (6)  (6)  Final  Remarks: Salve	Time   1052   1054   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057   1057	Temp. •C  10.4  10.4  10.5	Madel   mat 25°,   pH	*C. pH 10.00 =	Physical Characteristics (clarity, odor, sand content, color)
pH 7.0 Condu Standa  Purge Volume  Initial 5")  (5) 64  (4)  Final	1052 1050 1050	Temp. •C  10.4  10.4  10.4  10.4  10.4  10.4	Madel   mat 25°,   pH	*C. pH 10.00 =	Physical Characteristics (clarity, odor, sand content, color)
Purge Volume  Initial 5-7  (5) 64  Final  Remarks: 121-7	1052 1050 1050	Temp. *C	Madel   mat 25°,   pH	*C. pH 10.00 =	Physical Characteristics (clarity, odor, sand content, color)

114 141411	4	7
SHEET _	OF	

Project Number 785K 444  Inveloped 3-14-89  If (Name/Company) Daw 165E  Well Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 5 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 4 in.  Anulus Diameter (I.D.) 5 in.  Anulus Diameter (I.D.) 5 in.  Anulus Diameter (I.D.) 5 in.  Anulus Diameter (I.D.) 5 i				Bore 62.7/	<u> </u>	Well 220 Po	
Date Installed   -/3-3'8'	roject _	BmA	ON - 105	_			TASK 44
### 1582 Anulus Diameter 124 in. Off. to 71 ft.  ### WALL STRYING TRACK  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN INTERVAL  PROCEDUCY AND SCREEN	ate(s) Dev	•	3-14.	. 81			1-13-88
Scenitify   Solution   Solution   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Interval   Screen Inter	ersonnel (	(Name/Con				Well Diameter (I.D.)	
Screen Interval    Set   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. to   St. t	·	Bis jest wan saying taning				Anulus Dismeter	12 in. 0 ft. to 9/
Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope   Pope	iig Used_						7% in. 3/ ft. to 102
Total Purge Volume  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The Hoter Used:  The	ump (Typ	e/Capacity	) BRUNDA	0- 1 50PM		Screen Interval	9587 11.10 NIN
Well Depth TOC   (Initial)   102.5 ft.   Bottom of Screen (Below G.L.)   104.70 ft.	ailer (Typ	o/Capacity	/	.^	····		ft. to
vel TOC/Date/Time (Initial)  (after 24 hrs.) 4/3.7  (ater in Well 66.4 ft. x , 653 gallons/foot = 4/3.76 gallons casing/anulus volume fluid Lost	Vater Sour	rce	2mf			Casing Height (Abov	e G.L.)
vel TOC/Date/Time (Initial)  (after 24 hrs.) 4/3.7  (ater in Well 66.4 ft. x , 653 gallons/foot = 4/3.76 gallons casing/anulus volume fluid Lost	Aeasured '	Well Depth	TOC	•		Bottom of Screen (Be	elow G.L.)
(after 24 hrs.) 43.7  (ater in Well 66.4 ft. x , 653 gallons/foot = 43.36 gallons casing/anulus volume fluid Lost				(Final)	ft.		
(after 24 hrs.) 43.7  (ater in Well 66.4 ft. x , 653 gallons/foot = 43.36 gallons casing/anulus volume fluid Lost	Vater Leve	el TOC/Dat	e/Time (Initi	al)30.10	13.9-8	18/1514	
The lost Sellons One Purge Volume Sellons Minimum Purge Volume 256 gallons Minimum Purge Volume 256 gallons after gallons Total Purge Volume 137 gallons Purge Volume 137 gallons Volume Measured By Sontware Antice Consumptions on: pH Meter Used: CRION IN 230 Surge Technique PANSE / LUNCE PUMP PH 7.00 = 10.00 at 14.0 °C, pH 10.00 = 10.00 at 14.0 °C Conductance Meter Used: TSE MUDIC 72 SN 2003  Standard 1413 umhos/cm at 25°, Reading 140° umhos/cm at 25° Conductance at 25°C Physical Characteristics (clarity, outer, sand content, color) at 12.7 12.8 (610 Silly in the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little of the little			(after	r 24 hrs.) 43	<u>. 7</u>		
ster Lost						llons/foot = 4336	
ater gallons Total Purge Volume 13 c gallons volume Measured By 55 online Amise in Surge Technique Tense for Jump on: pH Meter Used: CRION IN 230 Surge Technique Tense for Jump on: pH 7.00 = 10.00 at 14.0 °C, pH 10.00 = 10.00 at 14.0 °C Conductance Meter Used: TSI mudaic 72 SN 2003 Standard 1413 umhos/cm at 25°, Reading 140 umhos/cm at 25° Conductance at 25° C Physical Characteristics (clarity, outer, sand content, color) of the sand content, color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color) of the sand content color)	Fling Flu	uid Lost 🔔		<u>/</u>			
nulus Volume 43 to gallons Volume Measured By 55 0.71 www 74126 to Surge Technique PARSE / LUWER FUMP  on: pH Meter Used: ORION 3A 230 SW. 1064  pH 7.00 = 10.00 at 14.0 °C, pH 10.00 = 10.00 at 14.0 °C  Conductance Meter Used: TST MUDIC 72 SN 2003  Standard 1413 umhos/cm at 25°, Reading 140° umhos/cm at 25° °C  8 Volume Time Temp. °C pH Conductance at 25°C Physical Characteristics (clarity, outer, sand content, color)  68 1046 12.7 1208 (210 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer 101 immediately outer	'urge Wate	er Lost	11/	<u>'A</u> 8			
Surge Technique TRAISE / LUMBE FUMP  PH 7.00 = 10.00 at 14.0 °C, pH 10.00 = 10.00 at 14.0 °C  Conductance Meter Used: TSI MUSIC 72 SN LUBS  Standard 1413 umhos/cm at 25°, Reading 140°1 umhos/cm at 25° °C  8 Volume Time Temp. °C pH Conductance at 25°C Physical Characteristics (clarity, outer, sand content, color)  68 1046 12.7 1228 (310 investigation of the color)  73 1049 12.6 11.60 5040 Clear, a 440 in the Sale					-	Total Purge Volume	MAINLE MAINLE
pH 7.00 = 10.00 at 14.0 °C, pH 10.00 = 10.00 at 14.0 °C  Conductance Meter Used: TSE MUDGE 72 SN 2003  Standard 1413 umhos/cm at 25°, Reading 140°1 umhos/cm at 23° °C  8 Volume Time Temp. °C pH Conductance at 25°C Physical Characteristics (clarity, outer, sand content, color)  69 1046 12.7 12.09 (310 investi, outer, sand content, color)  73 1049 12.6 11.60 5040 Clear, a 440 investion 54.00 characteristics (clarity outer, sand content, color)	lasing/An	ulus Volun	ne <u> </u>	3, 76	allons	Volume Measured B	y so unum TARLEC
PH 7.00 = 10.00 at 14.0 °C, pH 10.00 = 10.00 at 14.0 °C  Conductance Meter Used: 75 mubic 72 SN 2003  Standard 1413 umhos/cm at 25°, Reading 140° umhos/cm at 25° °C  B Volume Time Temp. °C pH Conductance at 25°C Physical Characteristics (clarity, ouor, sand content, color)  69 1046 12.7 1209 (310 immediately out a silication of the color)  73 1049 12.6 11.60 5040 Clear, a silication sale				/22 · 1 ·	1.1 On	Surge Technique	KAISE / LUWER FUMP
68 1046 12.7 1208 (010 invest citar ic) to the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the		Conduc Standar	rd <u>/4/3</u>	Used:umhos/cm	at 25°,		
73 1047 12.6 11.60 5040 Clear, a new . Time 54	Purge '	Standar	rd <u>/4/3</u>	umhos/cm	at 25°,	Reading 140°	umhos/cm at 23°  Physical Characteristics
		Standa: Volume	Time	umhos/cm	pH	Reading //c ⁻¹ Conductance at 25°C	Physical Characteristics (clarity, outer, sand content, color)
83 1050 300 + 7 11.53 4580 clear warment	Initial	Standar Volume	Time /046	Temp. *C	pH /2-28	Reading //c ⁻¹ Conductance at 25°C	Physical Characteristics (clarity, outer, sand content, color)
35 11011 12.5 11.54) 4560 Very latter clumm of T	Initial	Standar Volume 67	Time  /046 /047	Temp. *C	pH /2-28 //.60	Reading	Physical Characteristics (clarity, ouor, sand content, color)  weeth clear in house sold sold a sold sold sold sold sold sold sold sold
	Initial	Standar Volume GP 73 35	Time  1046  1047  1086	Temp. °C  /2.7  /2.6  >	pH /2-28 //.60 //.53	Reading	Physical Characteristics (clarity, outer, sand content, color)  investignment of the sand content, color  investignment of the sand of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the sand color of the
	Initial	Standar Volume GP 73 35	Time  1046  1047  1086	Temp. °C  /2.7  /2.6  >	pH /2-28 //.60 //.53	Reading	Physical Characteristics (clarity, outer, sand content, color)  interface of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same
75 8 1		Conduc	tance Meter	Used: 734	nt 259		
	Initial	Standar Volume GP 73 35	Time  1046  1047  1086	Temp. °C  /2.7  /2.6  >	pH /2-28 //.60 //.53	Reading	Physical Characteristics (clarity, outer, sand content, color)  interface of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same
	Initial	Standar Volume GP 73 35	Time  1046  1047  1086	Temp. °C  /2.7  /2.6  >	pH /2-28 //.60 //.53	Reading	Physical Characteristics (clarity, outer, sand content, color)  interface of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same section of the same
Nowate en 11 - 7.	Initial	Standar Volume  67  73  85	Time  /046 /047 /056 /1011	umhos/cm Temp. °C  /2.7  /2.6  >	pH /228 /1.60 /1.53 //.54)	Reading 140° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25°	Physical Characteristics (clarity, odor, sand content, color)  inwell clear in house since clear, a dem since characteristic clear, a dem since characteristic characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics
November of 17.	Initial	Standar Volume  67  73  85	Time  /046 /047 /056 /1011	umhos/cm Temp. °C  /2.7  /2.6  >	pH /228 /1.60 /1.53 //.54)	Reading 140° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25°	Physical Characteristics (clarity, odor, sand content, color)  inwell clear in house since clear, a dem since characteristic clear, a dem since characteristic characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics characteristics
Water level = 65.66 Pung on 1041/ Pung : 1102.  Heasund total clyth = 103.75	Final Remarks:	Standar Volume  67  73  85  35	Time  1046  1046  1049  1059  11011	umhos/cm   Temp. °C   /2.7   /2.6   30./2.5   /2.5   /2.5   = 65.66	pH /2-08 //.60 //.53 //.57	Reading 140° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25°	Physical Characteristics (clarity, outer, sand content, color in well with the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the
Winter level = 65.66. Pung on 1041/ Pung 1/102.  Hearing to the cigitie = 103.75	Final Remarks:	Standar Volume  67  73  85  35	Time  1046  1046  1049  1059  11011	umhos/cm   Temp. °C   /2.7   /2.6   30./2.5   /2.5   /2.5   = 65.66	pH /2-08 //.60 //.53 //.57	Reading 140° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25°	Physical Characteristics (clarity, outer, sand content, color)  investigation of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same
1 November 1 102 - 65.66 Pung on 1041/ Pung of 1102.  Household to the cliptin = 103.75	Final Remarks:	Standar Volume  67  73  85  35	Time  1046  1046  1049  1059  11011	umhos/cm   Temp. °C   /2.7   /2.6   30./2.5   /2.5   /2.5   = 65.66	pH /2-08 //.60 //.53 //.57	Reading 140° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25° Conductance at 25°	Physical Characteristics (clarity, outer, sand content, color)  investigation of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same

Drilling Fluid Lost	pany)  Bu  Ruck CE  P  3 35 "  C mu  TOC  e/Time (Initi  (after  W:-4		∑ ft. ft. / 3 -4 - 4 : 3 -3 _ gallons	Date Installed  Well Diameter (I.D.)  Anulus Diameter  Screen Interval  Casing Height (Above Bottom of Screen (Be	4   in.   in.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.   7   ft.
Purge Water Lost Added Water Casing/Anulus Volum Calibration: pH Mel	ne <u>43.</u> er Used:	BL OBLON S	gallons gallons	Total Purge Volume Volume Measured By Surge Technique	ume 256 gallons  /3.7 gallons  y 5 succes Trucket  Trucket
pH 7.00 Conduc	tance Meter	Land: 75	ZI MUDEL	C. pH 10.00 =	umhos/cm at*C
tomal 85	//37	/3.8	11.74	5350	prostly clear, a troom
40	1144	12.9	11.50	49.25	the sale clear in since many
95	1153	13.0	11.5-7	5,00	Cloudy of the expenses is seemed
100	1217	12.7	11.50	4450	المداد المام المامانيات
103	1223	12.6	11.95	5556	thomas may make
Final					i 3
Remarks: Tip co.			Collected	thy	Sixuature
X I fune sol		52 gullions	Checked	_	/ C-259

		Bore ED. 7	( ) ~	Well 22080	
rojectP	mid un	- Pas T	*		There 44
ate(s) Developed	.3/16	98		Date installed	1-13-80
ersonnel (Name/Co	mpany)	in little		Well Diameter (I.D.)	
		w 1 = 55			7/4 in. 0 ft. to 5/ ft.
ig Used	wan ser	nce truck			74 in. 11 ft. to 104 ft.
ump (Type/Capacit		14	-	Screen Interval	9537 ft. to 14. 25 ft.
siler (Typo/Capacit		× 2.0'			ft. toft.
ater Source		····			G.L.) <u>Z.o</u> ft.
easured Well Dept	h TOC	(Initial) 103.	<u>r</u> ft.	Bottom of Screen (Belo	ow G.L.) 101.70
		(Final)	ft.	/ .	
ater Level TOC/Da	te/Time (Initi	(al) 30.10	3.4.4.2/	15.0	
	(after	r 24 hrs.)			
					gallons casing/anulus volume
rilling Fluid Lost 🔔		-		One Purge Volume	<u>s'2</u> gallons
irge Water Lost				Minimum Purge Volu	
dded Water				Total Purge Volume	
ssing/Anulus Volus	me	336	allons	Volume Measured By Surge Technique	
Condu- Standa	rd	Used: YSE	at 25°,	72 5N 2003  Reading 10k'3	_umhos/cm at°C
Condu Standa Purge Volume	ird	<u>umhos/cπ</u>	pH	Reading 10%'3  Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)
Standa Purge Volume	rd	umhos/cm	at 25°,	Reading /ch/3	Physical Characteristics (clerity, odor, send content, color)  worth claim, square care and hadrante
Standa Purge Volume	Time	Temp. *C	pH	Reading 1013 Conductance at 25°C	Physical Characteristics (clerity, odor, send content, color)  Worth class school had ton te shipty closed had ton te
Standa Purge Volume Initial 103	Time 1046	Temp. *C	pH // 7 /	Conductance at 25°C	Physical Characteristics (clerity, odor, send content, color)  World clary serve as a property of the clary serve as a property clary of some as a sure of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the clary of the cl
Standa Purge Volume  Initial 103	Time  1046  107	Temp. *C	pH // 77 // 55	Conductance at 25°C	Physical Characteristics (clerity, odor, sand content, color)  Worth claim some content color)  Singly claims in some of sand content claims in some of sand content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content c
Standa Purge Volume  Initial 103 108 113	Time  1046  //07  //20	Temp. *C  //-/ //-/	pH // 74 // 55	Reading 1043  Conductance at 25°C  50 40  50 50	Physical Characteristics (clerity, odor, send content, color)  Mostly claim, squae as single claims of had tonite as single claims of had tonite as some of the same of the same of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the col
Standa Purge Volume  Initial 103 108 113 117	Time  1046  //07  //20	Temp. *C  //-/ //-/	pH // 74 // 55	Reading 1043  Conductance at 25°C  50 40  50 50	Physical Characteristics (clerity, odor, send content, color)  Worth claims sque  singly claims in some in  Singly claims in some in  Singly claims in some in  Cit - (ittle - and lymn)  City shall in y many in some in  City shall in y many in some in
Purge Volume  Initial /03 /08 //3	Time  1046  //07  //20	Temp. *C  //-/ //-/	pH // 74 // 55	Reading 1043  Conductance at 25°C  50 40  50 50	Physical Characteristics (clarity, odor, sand content, color)  Musth claim squee sit in the sand high tent to sand high tent to sand front to sand in the sand front to sand in the sand front to sand in the sand front to sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sand in the sa
Standa Purge Volume  Initial /03 /08 //3	Time  1046  //07  //20	Temp. *C  //-/ //-/	pH  // 77  // 55  // 57  // 76	Reading 1043  Conductance at 25°C  SUCU  SUHU  SOBU  SUHO	Physical Characteristics (clarity, odor, sand content, color)  Mustby characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the surprise of the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics  in the characteristics
Standa Purge Volume  Initial 103 108 117  Final	Time  10 46  107  1120  1/32	Temp. °C  //·/  /// /// /// /// /// /// /// ///	pH  // 77  // 55  // 57  // 76	Reading 1043  Conductance at 25°C  SUCU  SUHU  SOBU  SUHO	Physical Characteristics (clarity, odor, sand content, color)  Musth claim squae cus products had tonite shighty claims in some cus work along my grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any grow cust - letter in any gr
Standa Purge Volume  Initial 103 108 113 117	Time  10 46  107  1120  1/32	Temp. °C  //·/  /// /// /// /// /// /// /// ///	pH  // 77  // 55  // 57  // 76	Reading 1043  Conductance at 25°C  SUCU  SUHU  SOBU  SUHO	Physical Characteristics (clerity, odor, send content, color)  Worth claims sque  singly claims in some in  Singly claims in some in  Singly claims in some in  Cit - (ittle - and lymn)  City shall in y many in some in  City shall in y many in some in
Purge Volume Initial 103 108 113 117 Final	Time  1046  107  1120  1134  70: 105	Temp. °C  //-/ //-/ //-/ //-/ //-/ //-/ //-/ /	pH  // 7 /  // 53  // 57  // 76	Reading 1023  Conductance at 25°C  SUOV  SUHU  SOBU  SUHU  SOBU  SUHU  SUHU  SUHU  SUHU  SUHU  SUHU  SUHU  SUHU  SUHU  SUHU	Physical Characteristics (clarity, odor, sand content, color)  Mustby claim some is a sure of sand from the straighty claims in some in a sure of sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from the sand from
Purge Volume  Initial 103 108 113 117  Final	Time  1046  107  1120  1134  70: 105	Temp. °C  //-/ //-/ //-/ //-/ //-/ //-/ //-/ /	pH  // 77  // 55  // 57  // 76	Reading 1023  Conductance at 25°C  SUOV  SUHU  SOBU  SUHU  SOBU  SUHU  SUHU  SUHU  SUHU  SUHU  SUHU  SUHU  SUHU  SUHU  SUHU	Physical Characteristics (clarity, odor, sand content, color)  Who the claim is the color ball to the claim is some or some of the claim in some of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of
Standa Purge Volume  Initial 103 108 117  Final	Time  1046  107  1120  1134  70: 105	Temp. °C  //-/ //-/ //-/ //-/ //-/ //-/ //-/ /	pH  // 7 /  // 53  // 57  // 76	Reading 1023  Conductance at 25°C  SU OV  SO HU  SO BU  SU, 40	Physical Characteristics (clarity, odor, sand content, color)  Mustby claim some since and some some surprised by the some some some some some some some som



	-1		フ
SHEET		OF	

		Bore Ep.	2002	Well 22080	
Project	MA ON-	POST		Project Number	Treke 44
Date(s) Developed	3//	8/18	<del></del>	Date Installed	1-13-53
Personnel (Name/Cor	mpany) 📥	W Rue T	<u> </u>	Well Diameter (I.D.)	in.
	(Est)		<del></del>	Anulus Diameter	1134 in. 0 ft. to 9/ ft.
Rig Used Fr			<u></u>		72 in. 91 ft. to 102 ft.
Pump (Type/Capacity		) IA		Screen Interval	9587 st. 10 12.70 st.
Bailer (Type/Capacity	7 /	" X 2.0'	<del></del>		ft. toft.
Water Source	Funt			Casing Height (Above	G.L.)ft.
Measured Well Depti	n TOC	(Initial) 102	<u>ک</u> ا۱.		ow G.L.) <u>197.70</u> ft.
		(Final)	ft.		
Water Level TOC/Da	te/Time (Initi	al) <u>%.16</u>	3-4-3	38/ 1810	
		24 hrs.)		4.5 % 4	
	4.6.4	ft.x <i>&amp;</i>	· S y ga	llons/foot = 43.36	
Drilling Fluid Lost _				One Purge Volume	·
Purge Water Lost			-		me 256 gallons
Added Water			gallons	Total Purge Volume	
Casing/Anulus Volum	ne	<del>/</del>	gallons		Sone. Bucket
Calthaustan		atternal Co	240	Surge Technique	T5412, 2 C
Calibration: pH Me	ter Used:	EVELOW DA	THE R. P. LEWIS CO., LANSING.	ويرونون والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتناور والمتاور والمتاور والمتناور والمتاور والمتاور والمتناور والمتناور وا	
	) = <u>7.00</u>	Used:	-		16161 at 1/17 °C
Standar Purge Volume	rd	umhos/cmTemp. *C	pH	Reading /4/2 Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)
Initial 117	0959	12.6	11.34	4940	clarity, odor, sand content, color)
122	1010	127	11.49	4910	Clear-
120	1035	12.9	11.63	46:70	Highthy lowery my home
FA:16 /39	1104	126	11.95	56.30	Clumber of Sasy Dunion poursa.
Final	1		<del> </del>		
FINALIZED	26021	ひつんせんて	AFITE O-	& CONSECUTIVE &	TARKE DEWATER WAY
Remarks: Waterless				1 1	- 11
			L 2.	wedered in 72 c	, while is
	10 - 10	<del></del>	······································		
		17.4 male 707		ث حديد تاكن و حديث عالم	
	13 4 casing		Collected	by	"3 / 5/ 5'8"
·	in south	PAGE C	Checked	ku za Ada 💉 🗎	C-261
	1.4 =7 12		CHECKEU	U.y	,iiKua(mia









**EP-72** 



PAGEOF	_/
--------	----

#### **BOREHOLE SUMMARY LOG**

boreboleEP-72	
Project Name and Location MW Installation	Project Number Tusk 44
	Rig Number Friday 1500
Drilling Method(s) Continuoso CYE	
Size(s) and type(s) of bit(s) 37/8 Tricone Let, 12.1/4 " an	ger.
Borehole Diameter 1274 in cm cm cm.	n. tocm. n. toftcm.
Sampling Methods	
Total Number Soil Sampling Tubes	
Total Number Core Boxes//	
Number of Gallons Lost Drilling Fluid /50	
Date/Time Started Drilling 7.28.87 1000	
.Date/Time Completed Drilling 7-30-8 7 1054	
· · · · · · · · · · · · · · · · · · ·	cm.
- A E	cm.
	cm.
Water Level Determined By?	
Borehole Completed as Monitoring Well?	
Date/Time Grouting Completed 7 31.87 0751	
Depth of Tremmie Pipe 125	
Gellon: of Grout 90	
eleterial red 9 begs curent, 90 gols. water I bay bou	torite
Comments Hole growted to surf ce	_
	,
Wellsite Geologist CD Reuse	Day 7. 30.87
Checked for Grout Settlement on 95/97 b	v #50
Amount of Grout Added how had a	
41 Measurements from Ground Level	d
Reviewed by Alex Fast	Dat 28/19/88
Drill Site Geologist	Date

Bon	poje:"	F.A.	:72			Well Number:
Depth - Feet	Tube Number Tube Interval	Recovery	Somple Number	Sample Interval	Unified Soil Clossification	SOILS LOG Description
<i>i'</i>	6. 3.0'-%0' 0.0' -2.0'		SAME AS TUBE NUMBER	AS TUBE INTERVAL	CL CL Sm	CIAY, 30% silt, 10 YR 4/4, dark yellowish brown, dry, stiff, low plastic  Chy, 15% silt, 10 YR 6/4, light yellowish brown, dry, stall, low plastic, colcansous  brown, dry, stall, low plastic, colcansous  Silt, Sawo, 15% silts fire to make yeared  brown, dry, medium dense, man plastic  Clay, 20% band, fire to coarse chained sand,  10 YR 4/4, dark yellowish brown, dry, stall-  madium plastic, URM colcansus (calc veins)  madium plastic, URM colcansus (calc veins)  madium plastic, URM colcansus (calc veins)  chay, 25% wand i mostim to dary coarse grained sand;  Chay, 25% wand, for 8 8/4, usry pale brown,  3114, Samo, 20% silt, 10 YR 8/4, usry pale brown,  Silt, Samo, 20% silt, 10 YR 8/4, usry pale brown,  Silt, Samo, 20% silt, 10 YR swall gravel, fire to very coarse  yeared sand, 10 YR 8/4, yellowish brown, dry, mil dense, non plaste  very colcansous, 10 YR 8/4, yellowish brown, dry, mil dense, non plaste
۹	8,01-10.01	22/10			CL	Clay 180% 511E, 15% Samo, finit come graind, 5% smeet grand 1048 83, very palo brown, dry, other, medium plastic very calcaneous  CIAY 85 Samo, fine to come graind, 10 th 4/4 dank
10	Service Services	20/20				yellowish brown, dry, stirf, medium plastic, very colcanum acog modules (20%)

Dill Site Geologist: Steve Varis Date: 7/22/87 C-264

Reviewed By:__

+)

Bore	hole:_		P-Z			Well Number:
Depth-feet	Tube Number Tube Interval	Recovery	Sample Number	Sample Interval	Unified Soil Classification	SOILS LOG Description
10.5	. 12.0, -(3.3, 10.0)	20 345	SAMEAS TUBE NUMBER	Shine A Tobe		Chryston bedrack, SY 4/2, Olive gazy, how, moist, modulus phatte, very concornous,  "" to 1/2" CoCo; nodulus  TOTAL DEPTH 13.3"
hill S	ite Ge	ologis	ı: <u> </u>	Their	- ~ /	Date: 7/22/87 C-205

Reviewed By:

BORE EP 72- Well(s) ESE, Inc. CORL LOG COB Date Testure / Gram Sare challed at C Lith Closs Structure / Description / Comments Bedding CM (Scale 1": _2 11) Desi Hole cased to 13.5, bedrock out 10.5 bedrock out Allwider dry 13-5 SANTEJONE. 2.54 55 ilz. 14 portly canealed / Frimble 8574 6,4 ų. 5% yelise 5/50 ... 13 ① 254 TLAY STUNE المهلسة 5/2 frag: (created Hronis P (7)" 3.1 5 5 14. 22 8 0-266

1		222,			_	.00	Ву		<u> </u>	-	Dole	1	<u>, , , , , , , , , , , , , , , , , , , </u>	_ RO	(t Jul	<u> </u>	Vell(s)	Page Lat
			X - Rec	1	Si Bi	ructure/ rdding	H	) (d   (1)	Per	m .	Miner	alogy	م.ان)	Testine /	Lah	Lith	Description	on/Comments
			() ()	10 5	Angle	Desc	].	Н		1 11	Min	Hoba	<u> </u>	risisis prisis	100	1	CM (Scale 1":	2- 11)
	' ~ -								$\overline{I}$		120+		2.54			(L	CL.AYSTO	
		,	;		]	Mary	$\int$	!	:		June	) ;						
9		Ì			! !	Won		1			7		51V					
Ž.		34			!	( ( ا	1				5°		ما بدره		!		]	
1		31	. <b>.</b> .			1.2)			:	!	لانداع	' I	Aleun,	. :			]	
						أسب		:			:	í	ν					
ļ	-		•			i V	<b>i</b> ;	: :			Woo !	i			Ì		_	
į	j	٠,١,٠			<u> </u>	• -					احباه				!			
i i		36		1		<b>.</b>				i	، ''ناران	'						
4		*		1	7						1			: . : :		i i		
,					!					:	!				l			
S N	Ì	33	_			<u> </u>			: : :		!	i						
Ş	1	•	į	- }				.			†	-						
•		2	2			·-							!				<del></del>	
1		į	5				:				1		1	1::::	i			
)		45	- ;		_	-					1	İ	!					
j		!	- !		†			:					ļ	: : : : :				
4		; +	. :	: { ;		- 1					-							
		Ĭ		$: \mathbb{I}_{\mathbf{i}}$			:	:i'	li: l	: : i	fear	L	10		Challes'	55	SANDSTUN	DE
	].	42+		:) .					:}: <u>}</u>		KT 1811	ا ہو	4,4,4	7				
•	}	+	-		$\equiv$	المراجعة	;	31/	4	1	200	_	572	-\-	42'	u_	. Schuyston	e /interbed-
•		‡	-	11	+		: ]	$\cdot   \setminus$	(:			1	1771in	7 🗔	42.6	55	_	
1	]	Ī					$\mathbb{H}$		):		~	٦	2.54		43	CL	CLAYSTU	VC.
*	ا	44 <del> </del>	-	1	+	-	:	$  \xi  $		:::[\	<b>6</b> r	- 1	- 11	::::		4		
		İ				. [:	:					- 1	5/2					
•		+	5		+	_	: [-	1		7	and		المجنعاء					
		1	. ا د ا	:-:	-	f	$\mathbf{I}$	: ]]:		'	"	p	''-				_	
	S	心干	.   :		+-	- ]							- 1/			4		
	WELL(S)	+	<b>-</b>		!	İ		: #:			İ		H					
4		+	:	-					- 1							4		
			: ا	1	7-16	(a) frach	:	·   :	:   :	Vi	İ		Ш					
		15 +	2 -		`+,	Constan		:   :		$\prod$			- 1)			[.]	)	
	1	ا !					: †	:   :	: :		!				-18 -184451	-	-> 31. gully 5.	1ty -5%
•	کا اِن ا	3) +	<b>-:</b>		>	رهد						İ	- 11		49-		)	·
				#		وكال راهد	:  :			. { }					-11			
	5	0			/+	الموتقيد				11			- {}			4		C-267
-			1 -	·  -		ACCUAL	+	-:	•		!							
•	E, Inc.		5	Ti.	1.	•• ;	1:			1		!			;			
	انس	. Si		.1.	/		;	. [		l i		'	:1			1		

**①** 

•

Hand Parm	CAY 2.5"	Teature / Green Size Lith elst soil girl Christ min (i) 10 100	Class  FI CM (Scale 1": 72 (1)
	CAY 2.5"		
مان الرحادية	KAY 2.59	A	( C + A. ) + TA + 1/-
Season .			CLAYSIONE
	الماح التحويل	1	:
	المراسعة المعالمة		
-,-	Freez SHEET		Francy - Fault youngel?
			Bennie J.
	1.		1
			4
			-
	No. Jak		
. 11:11:11			4
	3		-
			7
	60-		
			1
	mar.		
	hilden for .		
	- Lung		3 clayey - Foult mayer
- <i>ا</i> ا ا ا ا ا عی	<del>i   -   -  </del> 25%		
	. 1 1 145 11		- approx. oxidation manda
	17777 1 19		
	1701		-
		<b> </b>	
	u		-
	V	14.5	SANDSTONE
	.   -	5ity	
	✓ .	30%	
	- -		C-268
2			
		20.4	E CLAYSTONE
	· •	Section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sectio	Cole Cole Cole Cole Cole Cole Cole Cole

•

(**.** 

	(1832)	its let	gerer U 5	Bedding Angle , Desi	Hand ness	1"	1		Culie M G	Yealure/ Grown Sere (let ed gr m/fr ()) (t) (t	Lish Chur	Lith Closs	Description/Comments  CM (Scale 1": Z (i)
•		5 -		Marine	1 1				7:57 N50 N'M			CL ·	CLAYSTONE
4	24			•							6,11mg	75.	
1	16-	4										_	
•	18 -								d (198			<u>-</u>	
	გა -			+							,	_	
•	(C)			<u>.</u>								_	_
•	gr-	ا اع: اي			<i>[</i>		de de	1/6	2.54 N36 VC4 d*4			-	
•	8 <del>1-</del>			<b>-</b> +			 naj-	ب م پ	2.54		83.9 Un 85.	55	Sandstone interbed with Clay hukulus
,	36	212		Units.					4144				-
- Ep. 2	39	_		الموساء المساور								-	
,	13 <del>-</del>	215		•				:					C-269
							_						

}

•

,

(Ca)	) 1 (1)	g see ?	Str. Ber	ucture /	Hurd- ness	Parr	7"		alngy	Colur	Yeature/ Grum Sate claf ad ar	Lith Char	Lith Closs	Description/Comments
	<u> </u>	4	Angle		<u>도</u> #	<del> -   </del>		Min	i 4cəl sə t	√;;) ∞) c	01 10 10	) ₍₎	ü	CLAYSTONIL
	•	1		Marine						240		51m		
(A)	:	<u> </u>   •						رهم ا ,۴/ء		gur gur	/: · · :   	93.5		
44	;						1:		· <del>-</del> ·					
	:								<b>:</b>				1	_
960									,				_	-
	-: -:45		!								)		_	
	5													
193	:												_	_
'	-			-	1			j 					-	•
100	+			_										<u>-</u>
•	1			_	1: :		<b>;</b> ;						_	
	5			-	: <del> </del> +			i . I	-		3=1-1-3		,	
102	<del>-</del>	: =		-			1	دایم	~				_	
(8)	+		]					fragi	10			103	ST	+ > +
164	-		_		4	11			الدوي			3/2 AA		SILTSTONE INTERRED -
	-	1					1		-			10-1		
			†	-		::							-	
wen(S)			_	18" - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy (1. - Chy				. 1				100	VC	VOLCANICLASTIC ?
. 3	5		1	118"	-1::	1:1					<b>)</b> ::::		-	Claritisme , Chingathia. Little fragments, ornal. Koper (?)
60 108				_										I I
f I	:							-			:(\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	108	58	SANDSIONE
BOKE.	:					1		yon first		2.5.7		cachen 1574	-	1
8 100	+			Firely				2"	' . I	2000		 silt		Income sundstone Tie,
, j	:5-5			medden					<b>&gt;</b>	14 9 7 -9184		10%		even renture, et C-270
<u> </u>	;	-} '		A SAN	. ;				٠,	F7 1		•	•	!

.

•

þ

.

)

,

					INC LOG	Ву ∴	<u> </u>		ווסע	: <u> </u>					_!_ <u>_</u> V	veri(s) rage u_ore
.			1 - #*	a proper	Structure/ Redding	Hard	Peri	M	Miner	alagy	Calce	G a	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Lith Char	Lith. Class	Description / Comments
			i in	U S	Anula Desc	<u>ы</u> н	1 ' 1		14.	Phylin?		U	10 1	00	11	CM (Scale 1": 2 11)
1									elm	4				i, my	55	SIMIDETONE
						1:1		) I		•	2.54 1)40		•	450%	]	
1			:		!		<b>!</b> : <b>∖</b> . !		44	4	ो सर-स्व"	:	• •	4, ct		
		3:01								*	11 41.4					- texture change -
		114				:		)		!	İ	<b> :</b>	1:::		114	
9			5							:						]
1			5							) 						-
- 1		ا ال				::	:   <u>i</u>		 	 		i .	:::			
- 1	٦	-414-			<del></del>		)								-	
•				:::		1::/:	:/	(:				{:	:::	1 5:1	190.5	- tunve charge
	j	1			Ť									100/2		1
	}	ا م		<b>]</b> :::]	i				! !	i						
		113	-	::	†		1	:::	ر روز دروز		4.3.70 4.1.70 4.1.70					1
•							1: 1		7,5		20 1/0 JK	13:				-
		+		::	†	: :	1: 1	::		*	2.514		:::	1	-	1
	İ	†					1:1		664		טוייט	1:				
	ا-	120-	-		. +				رائع.	₩.	9124-	1:			_	-
d								::		100	17 14/20	4:	:::			
		(O)	. [		+		1:1			C		1			-	{ <del> </del>
į		1	7	: ::	İ							╁╁				
. ]		22	-5		+			1:4=4	_				++-		_	-
		Ţ				F (:				-JI	2.57	]:				
٦		‡	.	• • •	+				800	V	1740		7.1		_	4
1		1							<b>6</b> 0		1	1				
	ا	24+	<b></b>	1	+	:: :			,, ]	1	dr gray		::		-	4
	[		-				/		HA		יאי ו	7:			1244	
9		- ‡	- ‡		+			11				<b>f</b> : ;			C1 -	CLAYSTONE
		†						l: :			j ,					
	5	26-	_ []													
	WELL	ī	5		slikes		:								_	
•	*	⊕┆	5		at 45°				- 1				$\vdots$	- 11.9		
1				::	du che	:: :	: :					<b>\</b> ::	::			
-	35	ا م	_	:: }	1 0011			-	ļ							
	9	8	A				$\mathbb{H}$					[:		ا بر بر سا المراجع	1245	
•	26.32		_				1:1		İ	1		::	::1	المين 111 10"(ت		
1	· •	121 -	!	1		بسلسنب	<del></del>		<del></del> ;				::1	احنت		THE DOUBLE
1	က်	4	,	- 1 (				::	ĺ	ļ	ļ					Total Depth
		•	- !	: : 1	- •		•		!			• •	::		4	127
		:	!	•			•		ŀ		ļ	• •				
1	100	•	•	:	•					i					1	
ì		•						٠							'	
1																
أ	•			•	•			•			•			•		• •
-					-			-			-			_		

(8)

(**+**)

		130 5156	011	W. Linter			X X	2		lvg .		Density Source No	3445	0,244		Neutron Source No	Price Steading	(YSW)	-	RESISTANCE	25 OHUSI S INCIRES	
JULY 30, 1987	31/8"	13 57	1ster	Denoy in	Ground Level		25.2	Transport to the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	•	10.0		Gamma (Analor)	Gamma (hgyta)	Calopt	F. Tempesiwe	Deft trains para	Closure	Azmuth	True Verlical Survey Depth		1	
gging	72		COLORADO		Ground Level	14	447, 442)	J. Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit Spirit				0-95 Ft . Open hale log		93-130th open hole log	ry pipe to 93			-		S.P.	- 20 mv	
Frontier Logging	EP.	RMA	- ADAMS COUNTY			***************************************	10 lange 95 and 130	200 Scale: 20 2	<i>3)</i>	Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast of the Cast o	103-1041 15/8"	xtal 34 x 1/4"	1,60 × 10 5 "" 7	378"	a pro-c	Resilience Own in-	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		DECT	C-27		

**BEST AVAILABLE COPY** 











#### **WELL CONSTRUCTION SUMMARY**

rilling Company Soules Bres Drille	Well  27 Wos Demorre Walls Project Number 17052 08610  Tawa Rig Number
	Car Avg(R
Size(s) and types of Bit(s)	Sampling Method(s)  Date/Time Start Drilling 9/82/82 / 1990
Size and Type PVC 4" .OLO S/or	Date/Time Start Drilling 9/83/82 /479  Date/Time Pinish Drilling 9/83/83 /6/7
Fotal Borehole Depth 28.4 ft	
Depth to Bedrock 10.5 ft	
Depth to Water A.C. ft	
Water Level Determined By Sampling	
Length Plain PVC (total)	_ · · · · · · · · · · · · · · · · · · ·
Length of Screen 5.86 ft, cr	
Total Length of Well Casing 22.4 h	
PVC Stick Up 469 R.	
Depth to Bottom of Screen 224 ft. cr	
Depth to Top of Screen 1.39 ft	
Depth to Top of Sand 11.7 ft	
Depth to Top of Bentonite 5.5 ft.	
Drill Site Geologist	Date
Date/Time/Personnel Internal Mortar, Coment Pa	ed, and Weep Hole Installed
Date/Time/Personnel Numbers Painted	
Materials Used	
_	ftcm. COMMENT/NOTES
	Rcm.
Reviewed By	C-278

	Borehole: .	EP-72 01	Well:
Dapth-Food	•	Well Completion	Description
2 7 6 . 8 . No. 12 . 32 . 32 . 32 . 32 . 32 . 32 . 32	Cound Lovel Journey		C.S. TOP OF BRANCHE  -//.7 TOP OF SAMO  -//.54 TOP OF SERBRA
		Drill Site Geologist:	Date: 9/23/87 C-27

SHEET		OF	1
-------	--	----	---

Project RMA ON Date(s) Developed 12-2 Personnel (Name/Company Rig Used Well Serve Pump (Type/Capacity) Bailer (Type/Capacity) Water Source RMA Measured Well Depth TOC Water Level TOC/Date/Tim Feet of Water in Well Drilling Fluid Lost Purge Water Lost	y) LETY ESE BW/ESE ICE Truck United 26 gpm  (Initial) 24.21'/ (after 24 hrs.)	08 [i. [i.	Screen Interval  Casing Height (Above G Bottom of Screen (Below	23.27inft.tinft.tft.tft.tft.t	
Date(s) Developed 12-2 Personnel (Name/Company A Rig Used Well Servi Pump (Type/Capacity) Gr Bailer (Type/Capacity) Water Source RMA Measured Well Depth TOC Water Level TOC/Date/Tim Feet of Water in Well Drilling Fluid Lost	y) LETY ESE BW/ESE ICE Truck United 26 gpm  (Initial) 24.21'/ (after 24 hrs.)	08_[i. [i.  12-32-87	Date Installed	23.27inft.tinft.tft.tft.tft.t	
Personnel (Name/Company A Rig Used	y) LETY ESE  BW ESE  ICE Truck  Gundos 26 gpm  (Final)  (Final)  (after 24 hrs.)	08 [i. [i.  2-12-1/2	Anulus Diameter  Screen Interval  Casing Height (Above G Bottom of Screen (Below	inft. t inft. t ft. t ft. t l.)	
Rig Used Well Servi Pump (Type/Capacity) Gr Bailer (Type/Capacity) Water Source RMA Measured Well Depth TOC Water Level TOC/Date/Tim	Pulse Ice Truck under 26 gen (Initial) 24.0 (Final) — ne (Initial) 24.21'/ (after 24 hrs.)	08 [i. [i.  2-12-1/2	Screen Interval  Casing Height (Above G Bottom of Screen (Below	inft. t ft. t ft. t w G.L.)22.4	
Pump (Type/Capacity) 60 Bailer (Type/Capacity) Water Source Rma Measured Well Depth TOC Water Level TOC/Date/Tim Feet of Water in Well Drilling Fluid Lost	(Initial) 24.0 (Final) ne (Initial) 24.21 // (after 24 hrs.)	08_[i. [i.  2-32-87	Screen Interval  Casing Height (Above G  Bottom of Screen (Below	ft.t ft.t w.G.L.) <del>22.4</del>	0
Bailer (Type/Capacity) Water Source RMA Measured Well Depth TOC Water Level TOC/Date/Tin Feet of Water in Well Drilling Fluid Lost	(Initial) 24.4 (Final) ne (Initial) 24.21'/ (after 24 hrs.) /	08_[1. [1. !2-32-# ?	Casing Height (Above G Bottom of Screen (Below		o
Water Source RMA Measured Well Depth TOC Water Level TOC/Date/Tim Feet of Water in Well Drilling Fluid Lost	(Initial) 24.4 (Final) ne (Initial) 24.21 // (after 24 hrs.)	08_[i. fi.  2-22-87	Bottom of Screen (Below	w G.L.)	
Measured Well Depth TOC  Water Level TOC/Date/Tin  Feet of Water in Well  Drilling Fluid Lost	(Initial) 24.4 (Final) ne (Initial) 24.21 // (after 24 hrs.)	(1.  2-22-87	Bottom of Screen (Below	w G.L.)2.4	
Water Level TOC/Date/Tin Feet of Water in Well	(Final)	(1.  2-22-87			
Feet of Water in Well	ne (Initial) 24.21'/ (after 24 hrs.) / ft. x	12-22-87	11410 DRY	WELL	
Feet of Water in Well	(after 24 hrs.) /		/1410 DXY	WEZZ_	
Feet of Water in Well	(after 24 hrs.) /		•		
Drilling Fluid Lost					
_		ga	llons/foot =	gallons casing/an	ulus volum
Purge Water Lost		-	One Purge Volume		-
		gallons	Minimum Purge Volum	e	gallon
Added Water		gallons	Total Purge Volume _		gallon
Casing/Anulus Volume	<del></del>	gallons	Volume Measured By _		
			Surge Technique		
Calibration: pH Meter Us	sed:				
pH 7.00 =	at	·	C, pH 10.00 =	at	•
Conductance	a Meter Used:				
Standard _	umhos/cn	n at 25°,	Reading	_umhos/cm at	•
Purge Volume T	ime Temp. °C	рH	Conductance at 25°C	Physical Charac (clarity, odor, sand co	teristics ntent, color)
Initial				,	
DW			erang ang ang ang ang ang ang ang ang ang		
72/2/1		1			
Nall		<del></del>			
1 1					
1		1			
Final					

## WELL CONSTRUCTION SUMMARY

BoreholeWell	
Project Name and Location Tester Sec 33 Wee Democrat	
Drilling Company Boyks Bree Driller D. Tas	Rig Number_5445
Drilling Method(s) Rovery	
Borehole Diameter	on to AGA b
	cm. to
Size(a) and types of Rit(a) ( 3/4 D/AAA A/7 8a)	mpling Method(s)
Sise and Type PVC De	Herrime Finish Drilling Photos 1027
Total Borehole Depth CT. CYRom. De	ste/Time Start Completion 2/19/27 1927
	ste/Time Cement Protective Casing 2/22/62
	aterials Used
· · · · · · · · · · · · · · · · · · ·	ain PVC /E /e spece
•	otted PVC
	entonite Pellets / Gueker
	entonite Compie
•	entent /4 4A91
	and 4 A.e.
•	Vater added during completion
	Vater added during drilling
	otal Gallons of water added
1 11	Date 1/27 30/87
Date/Time/Personnel Internal Mortar, Coment Pad, and Weer	p Hole Installed
Date/Time/Personnel Casing Painted	
Deto/Time/Personnel Numbers Painted	
Materials Used	
Top of Protective Casing to Top of PVCft.	cm. COMMENT/NOTES
Top of Protective Casing to Weep Hole	
Top of Protective Casing to Internal Morter	
op of Protective Casing to Top of Cament Pad	
Top of Protective Casing to Ground Level	
Reviewed By	
Drill Site Geologist	

(*)

		Romhola:	Well:
Dark Fre	Tree Tree	Wel ⁺ Cempletion	Description
·			1 1 .
		Opend Lovel	
75			STADIOLARY AT 77.5 37.5 7.0
70	4		
744			TOP OF RENTONITE
امر مر م	' 🖣 .		-107.4 Tepapeano
**			MEAT TOP SCREEN
1	w -		
	P9 -		
1	187		23. Fy 70
L			0. 292

Delli Site Geologist : ...

Reviewed By:

Date: -

Date: ...

		Bore EP. A		Well 23230	
roject RMA o			•	Project Number	Tack 44
ate(s) Developed 🗸	2/16-87	) 		Date Installed	092787
ersonnel (Name/Co	mpany)	IN / ESE	<del></del>	Well Diameter (I.D.)	<u>-4</u>
	TOM	ESE		<b>Anulus Diameter</b>	124 in. 0 ft. to 106.19
ig Used Well S	errice '	Truck	-		73 in. 106 1991. to 123.59
ump (Type/Capaci	ly) Grundi	fos 779pm	<u> </u>	Screen Interval	1/2.67 11. 10 122.54
ailer (Type/Capacit					ft. to
/ater SourceR/	na_		W	Casing Height (Abov	
feasured Well Dept	h TOC	(Initial)	5.441.39	Bottom of Screen (Be	elow G.L.) 12554
		(Final)	ft.		
later Level TOC/De	ite/Time (Init	ial) <u>43.74</u>	6/12-16	1-87/0910	
		er 24 hrs.)			<u> </u>
eet of Water in Wel			653 g.	illons/foot - 43	gallons casing/anulus volur
rilling Fluid Lost.	NA		gallons	🗡 One Purge Volume 🗋	St. St. (60) gallo
urge Water Lost		<u> </u>	gallons	Minimum Purge Vol	ume 264.3 (300) gallo
.dded Water	6		gallons	Total Purge Volume	
asing/Anulus Volu	me	77 53.3	gallons	Volume Measured B	y 55 gel. drams
ت <del>ر</del>	~ 4 <del>-13.</del>	141.	•	Surge Technique	
alibration: pH Me	eter Used:	Beck man	Phi 21	EN U15883	
alibration: pH Me	eter Used:	Beck man	Phi 21	بيرين والمستوال والمستوال والمستوال	1.27 . 3.6
pH 7.0 Condu	ctance Mete	r Used: <u>ソ</u> ジ	s Mode	C. pH 10.00 - 10	
pH 7.0	ctance Mete	at <u>3</u> r Used: <u>ソ</u> ジ	s Mode	C, pH 10.00 = 10	umhos/cm at 6.5
pH 7.0 Condu Stando	0 =	at <u>3</u> r Used: <u>ソジ</u> umhos/cr	m at 25°,	C. pH 10.00 = 10	umhos/cm at 6.5
pH 7.0 Condu Standa Purge Volume	rime	r Used:ys umhos/cr Temp. °C	.\$ * ***********************************	C. pH 10.00 = 10	umhos/cm at 6.5
pH 7.0 Condu Standa Purge Volume	Time 09:53	r Used:umhos/cr Temp. °C	m at 25°,	C. pH 10.00 = 10  Reading 477  Conductance at 25°C	umhos/cm at 6.5
pH 7.0 Condu Standa Purge Volume	Time 09:53	r Used:umhos/cr Temp. °C	m at 25°,	C. pH 10.00 = 10  Reading 477  Conductance at 25°C	umhos/cm at 6.5
pH 7.0 Condu Standa Purge Volume	Time 09:53	r Used:umhos/cr Temp. °C	m at 25°,	C. pH 10.00 = 10  Reading 477  Conductance at 25°C	umhos/cm at 6.5
pH 7.0 Condu Standa Purge Volume	Time 09:53	r Used:umhos/cr Temp. °C	m at 25°,	C. pH 10.00 = 10  Reading 477  Conductance at 25°C	umhos/cm at 6.5
pH 7.0 Condu Stande  Purge Volume  Initial	Time 09:53	r Used:umhos/cr Temp. °C	m at 25°,	C. pH 10.00 = 10  Reading 477  Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)  Milley 9 4 7 7 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Purge Volume Initial	Time 09:53 10:11	r Used:umhos/cr Temp. °C	pH    2.50    0.83	C. pH 10.00 = 10  Reading 477  Conductance at 25°C  1915  448	umhos/cm at 6.5
Purge Volume Initial	Time 09:53 10:11	Temp. °C	pH    2.50    0.83	C. pH 10.00 = 10  Reading 477  Conductance at 25°C  1915  448	Physical Characteristics (clarity, odor, sand content, color)  Milley 9 4 7 7 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Purge Volume Initial  Purge Volume  Initial  Purge Volume  Initial  Purge Volume  Initial  Purge Volume	Time 09:53 10:11	Temp. °C  3.5  10.1  4.5-onl.6	pH   12.50   10.83	Conductance at 25°C  1915  448  1.29pm	Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characterist
Purge Volume Initial	Time 09:53 10:11	Temp. °C  3.5  10.1  4.5-onl.6	pH  12.50  10.83	Conductance at 25°C  1915  448  1.29pm	Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity, odor, sand content, color)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characteristics (clarity)  Physical Characterist

late(s) Developed	roc (Initial)	7 VV/ESE M/ESE rdck M Grands  (Initial) (25 (Final)	4,5	Screen Interval	2787 4 in. 12 in. 0 ft. to 106.19ft. 73 in. 106.19ft. to 123.54ft. 112.67 ft. to 123.54ft.	
Personnel (Name/Comp Rig Used Well Sec Pump (Type/Capacity). Bailer (Type/Capacity). Vater Source R MA Measured Well Depth T Water Level TOC/Date/ Peet of Water in Well_ Drilling Fluid Lost	roc (Initial)	M/63E M/63E rack Grunds (Initial) (25 (Final)	4,5	Well Diameter (I.D.) Anulus Diameter  Screen Interval	4 in. 12 ft. to 126/9st. 73 in. 126/19st. to 1235/st. 1235/st. 1235/st.	
tig Used Well Serven ump (Type/Capacity).  Isailer (Type/Capacity).  Vater Source Report  Vater Source Report  Vater Level TOC/Date/  Veet of Water in Well  Orilling Fluid Lost  Furge Water Lost	TO Vice To Type TOC  Time (Initial Cafter #1.6%)	M/6 3C rack M Grands (Initial) (25 (Final)	4,5	Anulus Diameter Screen Interval	12 in. 0 ft. to 106.19ft. 73 in. 106.19ft. to 125.5/st. 112.67 ft. to 125.5/st.	
Pump (Type/Capacity).  Pailer (Type/Capacity).  Vater Source R	Topon  Toc  Time (Initi (after	(Initial) (25	4,	Screen Interval	73 in. 106-1911. to 1235911. 11367 ft. to 1235-911.	
Pump (Type/Capacity).  Pailer (Type/Capacity).  Vater Source R	Toc Toc Time (Initial)	(Initial) (25			11217 11.10 (25.59E	
Bailer (Type/Capacity) Vater SourceR_M Measured Well Depth T  Vater Level TOC/Date/ Peet of Water in Well Drilling Fluid Lost Purge Water Lost	TOC /Time (Initi	(Initial) (25				
Vater Source RMA Measured Well Depth T Vater Level TOC/Date/ Peet of Water in Well_ Drilling Fluid Lost Purge Water Lost	TOC /Time (Initi	(Finel)	- 40	en de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	f &	
Measured Well Depth T Mater Level TOC/Date/ Feet of Water in Well Drilling Fluid Lost Purge Water Lost	TOC Time (Initi (after	(Finel)	- 40			
Peet of Water in Well_ Drilling Fluid Lost Purge Water Lost	Time (Initi (after	(Finel)	- 48	Casing Height (Above (	G.L.)	
Orilling Fluid Lost Purge Weter Lost	(after 4/. 6%	1 48.76		Bottom of Screen (Beld	w G.L.) /23 5/ /R.	
-	21.68		112-16-	27/0910		
Orilling Fluid Lost Purge Weter Lost	4.4	r 24 hrs.)				
Purge Water Lost				lons/foot = -	gallons casing/anulus volume	
_	7/4		gallons	One Purge Volume		
			gallons	•		
			gallons	Total Purge Volume	s gal drum	
lasing/Anulus Volume	+ 13.71	a sand mak	gallons	Volume Measured By		
<b>- 4.4</b>			بمالص	Surge Technique	TE TOVER PROPERTY.	
Calibration: pH Meter	r Used: _A 			<i>SW: 015-88-3</i> C, pH 10.00 = <u>10</u> -	39 44	
		Used: YA		Reading <u>259</u>	umhos/cm at 4.2 •C	
	Time					
Purge Volume	ı ime	Temp. *C	рH	Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)	
	9:40	Temp. *C	pH 10.04	Conductance at 25°C		
initial 30	9:40	7.8	10.04	2220		
initial 30	9:40  2:	7.8	10.04	2 <b>220</b> 1640		
initial 30	9:40  2:	7.8	10.04	2 <b>220</b> 1640		

Project SMA	ON POS	Bore 3:72	-	Well 23230	_
				Project Number	15K 44
refai naverobeg —	12-21-				72787
ersonnel (Name/Co	*	. 2		Well Diameter (I.D.)	4
	34/ 5			The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	12 in. 0 St. to 106/91
g Used well	ervice	Truck		•	73 in. 106.19st. to 435/8
imp (Type/Capacit				Screen Interval	112.67 ft. to 123.57
ailer (Type/Capacit		_			ft. tof
ater Source				Casing Height (Above 0	G.L.)
leasured Well Depti	h TOC	(Initial) /25.	_	Bottom of Screen (Belo	wG.L.)
ater Level TOC/Da	anstrum a state	(Final)		2/000	
MEL DEADL TOCIDE		r 24 hrs.)	16-10-0	870770	
et of Water in Well			55	llons/foot = 1/3-+-	gallons casing/anulus volum
rilling Fluid Lost			_	One Purge Volume	
irge Water Lost				Minimum Purge Volum	
_			•		gallor
dded Water		(	zallons	Total Purce Volume	
dded Water	ne VI	14 m 53 3	gallons	Total Purge Volume Volume Measured By .	
asing/Anulus Volur	-	53 3 may 23 3	gailons &	Volume Measured By : Surge Technique	55 gal downs
asing/Anulus Volur alibration: pH Me pH 7.00 Conduc	ter Used: 13	ECKMAN O	Railons  Ph	Volume Measured By solution Surge Technique Parison MATER  C. pH 10.00 = 10.00	
asing/Anulus Volur alibration: pH Me pH 7.00 Conduc	ter Used: 13	ECUMANO OF ALL	Railons  Ph	Volume Measured By some Surge Technique Parison C. pH 10.00 = 10.00	at Grande
asing/Anulus Volur alibration: pH Me pH 7.00 Conduc Stands	ter Used: 13 Per Per Per Per Per Per Per Per Per Per	Used: YEE  umhos/cm  Temp. °C	Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopo	Volume Measured By Surge Technique	umhos/cm at  Physical Characteristics (clarity, odor, sand content, color)
asing/Anulus Volur alibration: pH Me pH 7.00 Conduc Stands	ter Used: So Pace Control of the Pace Meter and 1413	Used: YZ	Railons  Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Physical Phy	Volume Measured By surge Technique resident Surge Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident Surger Technique resident S	at Grande
asing/Anulus Volur alibration: pH Me pH 7.00 Conduc Stands	ter Used: 13 Per Per Per Per Per Per Per Per Per Per	Used: YEE  umhos/cm  Temp. °C	Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopological Phopo	Volume Measured By Surge Technique	umhos/cm at  Physical Characteristics (clarity, odor, sand content, color)
asing/Anulus Volur alibration: pH Me pH 7.00 Conduc Stands Purge Volume	ter Used: 3 2 2 2 ctance Meter rd 1413 Time	Used: YZ umhos/cn	pH  9.18	Volume Measured By Surge Technique Paris MATER  C. pH 10.00 = Di  2 2 2 C C C C C C C C C C C C C C C C	at Grand  at Grand  umhos/cm at  Physical Characteristics (clarity, odor, sand content, color)  Clear to Gray
asing/Anulus Volur alibration: pH Me pH 7.00 Conduc Stands Purge Volume	ter Used: 3 2 2 2 ctance Meter rd 1413 Time	Used: YZ umhos/cn	pH  9.18	Volume Measured By Surge Technique Paris MATER  C. pH 10.00 = Di  2 2 2 C C C C C C C C C C C C C C C C	at Grand  at Grand  umhos/cm at  Physical Characteristics (clarity, odor, sand content, color)  Clear to Gray
asing/Anulus Volur alibration: pH Me pH 7.00 Conduc Stands Purge Volume	ter Used: 3 2 2 2 ctance Meter rd 1413 Time	Used: YZ umhos/cn	pH  9.18	Volume Measured By Surge Technique Paris MATER  C. pH 10.00 = Di  2 2 2 C C C C C C C C C C C C C C C C	at Grand  at Grand  umhos/cm at  Physical Characteristics (clarity, odor, sand content, color)  Clear to Gray
Conduc Stands Purge Volume	ter Used: 3 2 2 2 ctance Meter rd 1413 Time	Used: YZ umhos/cn	pH  9.18	Volume Measured By Surge Technique Paris MATER  C. pH 10.00 = Di  2 2 2 C C C C C C C C C C C C C C C C	at Grand  at Grand  umhos/cm at  Physical Characteristics (clarity, odor, sand content, color)  Clear to Gray

Project  Personnel (Name/Cor  Rig Used // Ser  Pump (Type/Capacity  Bailer (Type/Capacity  Water Source RM  Measured Well Depth  Water Level TOC/Dat  Feet of Water in Well	mpany)A  cruice y) Geotec y) \$ h TOC  te/Time (Ini	PTV/ESE BW/ESE Truck K-ISCO HASINT	<u>'0)r</u>	Date Installed	72787 
ersonnel (Name/Cor lig Used Well Service (Type/Capacity sailer (Type/Capacity Vater Source RM Measured Well Depth Vater Level TOC/Det	mpany)A A // Centec y) Gentec y) Gentec y) Gentec h TOC	OTV/ESE BW/ESE Truck K-ISCO WAST WIT		Well Diameter (I.D.) _ Anulus Diameter	/2 1/2 in
ersonnel (Name/Cor lig Used Well Service (Type/Capacity sailer (Type/Capacity Vater Source RM Measured Well Depth Vater Level TOC/Det	mpany)A A // Centec y) Gentec y) Gentec y) Gentec h TOC	OTV/ESE BW/ESE Truck K-ISCO WAST WIT		Anulus Diameter	/2 1/2 inOft. to 104,/9st 7 1/2 in. 106×1st. to 123 5/st
ump (Type/Capacity ailer (Type/Capacity Vater Source RM deasured Well Depth Vater Level TOC/Detweet of Water in Well	A Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y) Genter  y	Coulexe Truck K-Isco Harry W			7 % in. 10649st. to 123 54 st
ump (Type/Capacity ailer (Type/Capacity Vater Source	y) Geotec y) 25") h TOC te/Time (Ini	(Initial)			
ailer (Type/Capacity Vater SourceRM  leasured Well Depth Vater Level TOC/Det  eet of Water in Wall	y) 4 4 h TOC	(Initial)		Screen Interval	1/2.67 (t. to /23.57 ft
Veter Source <u>RM</u> Jeasured Well Depth Vater Level TOC/Det eet of Water in Well	h TOC te/Time (Ini	(Initial)			
feasured Well Depth Vater Level TOC/Det eet of Water in Well	h TOC te/Time (Ini (aft)				ft. toft
Vater Level TOC/Dat	te/Time (Ini (aft			Casing Height (Above (	G.L.) <u>1.7</u> fl
eet of Water in Wall	(a ft		25.37ft.	Bottom of Screen (Belo	w G.L.) <u>123. 59</u> ft
eet of Water in Wall	(a ft	(Final)	f!.	1 mai	
eet of Water in Well	(a ft	tial) <u>43.76</u>	112-16-3	7/09/0	
eet of Water in Well		er 24 hrs.)			C2.3
	121.63	ft.x	653 ge	illons/foot = 75.77	gallons casing/anulus volume
rilling Fluid Lost 🔔		·	_gallons	One Purge Volume	So. 36 / 60) gailon
urge Water Lost				Minimum Purge Volum	ne gallon
dded Water	740 110	<u> </u>	Rajjoua	Total Purge Volume	gallon
asing/Anulus Volum	ne - +3177	* * * * * * * * * * * * * * * * * * *	_gailons	Volume Measured By	
alibration: pH Met				Surge Technique	•
Conduc Standar		3umhos/c			_umhos/cm at _===================================
					_umhos/cm at(
Standar Purge Volume	rd <u>141</u>	Z_umhos/c	pH	Reading 825°C	umhos/cm ate( Physical Characteristics (clarity, odor, sand content, color)
Standar Purge Volume	rd	3umhos/c	m at 25°,	Reading 825	_umhos/cm at(
Standar Purge Volume	rd <u>141</u>	Z_umhos/c	pH	Reading 825°C	umhos/cm ate( Physical Characteristics (clarity, odor, sand content, color)
Standar Purge Volume	Time 0910	3umhos/c Temp. °C 10.3	pH 8.84	Reading 825°C  Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)  Clear  Clear
Standar Purge Volume	Time 0910	Temp. °C	pH 8.84 9.76	Reading 825°C  Conductance at 25°C  2540	umhos/cm ate( Physical Characteristics (clarity, odor, sand content, color)
Standar Purge Volume	Time 0910	3umhos/c Temp. °C 10.3	pH 8.84 9.76	Reading 825°C  Conductance at 25°C  2540	Physical Characteristics (clarity, odor, sand content, color)  Clear  Clear
Standar Purge Volume	Time 0910	3umhos/c Temp. °C 10.3	pH 8.84 9.76	Reading 825°C  Conductance at 25°C  2540	Physical Characteristics (clarity, odor, sand content, color)  Clear  Clear
Standar Purge Volume	Time 0910	3umhos/c Temp. °C 10.3	pH 8.84 9.76	Reading 825°C  Conductance at 25°C  2540	Physical Characteristics (clarity, odor, sand content, color)  Clear  Clear

reonnel (Name/Com EV in Koy g Used W# LL imp (Type/Capacity) iller (Type/Capacity)	pany) E Bob DEVE VIS	6'8 5E 0P. TRUG C D (Initial) (Final) 125		Well Diameter (I.D.) Anulus Diameter Screen Interval Casing Height (Above 6 Bottom of Screen (Beld	w C.L.) 123:54
eter Level TOC/Date  pet of Water in Well;  rilling Fluid Lost  urge Water Lost  dded Water  asing/Anulus Volum  falibration: pH Met	(efter 40.42 N/ N/ N/ 0 0 66	24 hrs.) <u>69</u> _ft. x	gal allons allons allons allons allons	2-23-88/9:/ 2-24-88/9:/ 2-24-88/9:/ 2-24-88/9:/ 2-24-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-88/9:/ 2-23-8	
enotetion: bu wa				5 -11 ch an //	14 1 13.3
Conduc		Used: 50 2 umhos/cm	/ <del>7/-</del> /-	4243	_umhos/cm at _25°
Conductive Standard	Time	Used: <u>SA</u> 3_umhos/cm 'Temp. °C	# /-	4243 Reading 14/3 Conductance at 25°C	_umhos/cm at _25°
Conductive Standard	Time 10:00 11:43	Used: <u>SA</u> <u>Sumhos/cm</u> 'Yemp. •C	pH 9,18	# 243 Reading 14/3 Conductance at 25°C 2570 2600	Physical Characterist (clarity, exter, send content, of CLEAR
Conduction Standard Purge Volume  Initial R 165601  2256	Time 10:00 11:43	Used: <u>SA</u> 2 umhos/cm Temp. °C  10: 8  9: 6	pH 9,18 9,52	# 243 Reading 14/3 Conductance at 25°C 2570 2600	umhos/cm at 25°  Physical Characterist (clarity, order, send content, of CLEAR  CLEAR

EP-74

C-288

## **BOREHOLE SUMMARY LOG**

Borebole EP - 74 Well 24194	24193 24198
Project Name and Location 1960 (15 tall attor	Project Number 744
Drilling Company Boules Driller B. Roach	Rig Number Francis 1500
Drilling Method(s) Continuous (ore	
Size(s) and type(s) of bit(s) 17'/4" anger 5 7/2"	trinait
	76 1
Borehole Diameter 17.44ncmftcmftcmftcm	1. to 122 ftcm.
Sempling Methods	
Total Number Soil Sampling Tubes	-
Total Number Core Boxes	<del></del>
Number of Gallons Lost Drilling Fluid	Alleren
ugte/Time Started Drilling 9.3.37 0 750	
Date/Time Completed Drilling 2:4.87 0823	
Total Borehold Depth /22 ft	m.
Depth to Bedrock 25.10 ft.	m.
Depth to Waterft	rm.
Water Level Datermines and water level indicates	<del></del>
Borehole Completed as Monitoring Well?	
Date/Time Grouting Completed 8.4.87	
Depth of Tremmie Pips	
Gallons of Grout	
Materials Used 95005 coment, 2 gal water,	Tong and and
Comments have prosted to suffice	
	8.11.23
Wellsite Geologist 4 107	Date 7
Checked for Grout Settlement on 8/7-/87 by	- Galler
Amount of Grout Added house justed	
All Measurements from Ground Kevel	11/1
Reviewed by Atm Haw	Date
Drill Site Geologist	C-289

(4

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC.

2

SHEET 1 OF 3

Well Number: SOILS LOG Description įį Clay, 10% Soon, from to come pained, 2% small grand, 10 YR 4 It Dark yellowesh brown, motion stiff, dry, low plastic, porous 2 Cr. Chy, 10% silty, 10YR 5/4, yellowish brown, medium stiff, bry, low plastic, calconeous at 3,7 band, Jim to come grained ٠ 3 01 elag, 20% Dand, fine to coasses gracind, 10 YR 7/3 very pale brown, dry, medium stiff, medium plastic, ory, colemnes ce chy, 30% sand, fine to come grained, 10 42 7/4
very pale brown, dry notion stay, motion Plantiz, dry, caternous SC Clagey Dand, 25% chay, fine to coarse grained sand, moium dense, moist, 10YR 5/6, yellowith 10 brown, v. bon glastic

Drill Site Geologist: Jack Date: 7/28/17

Réviewed By: Date: 9/89/87

*

r)

Drill Site		Date: 7/29/87	C-29
Reviewed	By: Joseph L. Reed	Date: 9/29/87	

MOR	) <u>*</u>	- A	37	tucture /	Hura.		rm.	Miner	ology	Color	Gram Can	Lith	Lith	
	) <u>†</u> ""	u s	Angle			1 .	2.	Min		Color	Tealure/ Green See cial ad a mm OI 10	Lith. Char	Closs	Description / Comments
					15					€ G	1 1 1	100	<del>  ''</del>	CM (Scale 1": 4 11) Water at 24.75
	1	;	į		11:;		Ш					1	}	bedruk at 25.50
ļ	Ī		1	1										]
١.	.		1		1:::	::	::					1		casing set to 26
24	†		-	<del> </del>			::						-	Casing 5ct to 26 Begin coving at 2
				l			117	1			· · · ·	1		BOAR CONTROL
_	<u> </u>		_		+:1	1	†: <u>;</u> ∙			_		<b>-</b> -	-	
	I		1	مدرهد.		<b>     </b>		FeD+		2.54	<b> </b>	27'	CL	- CLAYSTUNE
20	_	: [	-	المارسي	1::/			FeD4 Craix	,,,	6/4		-]	} -	metted gray/proun
	1	-1		Monday	:	11:5	-;-	6		رخ سمال	)i .,	-	]	المساما المسلم
	†		1	fials.	E.I.			1100.		bland		1	-	
	1 1 5			4,0			++			}		]		
<b>3</b> 0 -	+	-	` -	-35	H = H					}	1	1	-	
	1			1	]	-								_
	† [	=	Ч	- 0 - 303	1 :: [		, L			ļ		1		
	}	=												
32			/-	_	- <u> - </u>  -		: :-			<b>†</b>				
	1		`		F±1:1	++	-		1	- 1				
	<del>]</del>	- 11	+	-					Ì	ł				
	‡  :	<del>+</del> {				-+ +				ľ				
34 -	1-1	+41	7	_		++	1	ļ	İ	ļ			_}	
-,	5	$\exists$			HIII	++				Ŧ	-1			
-	†	- 11	\	-						F			j	
	[	<del>- ]</del> ]	`.							ŀ				
- م <i>و</i> د	<del> -</del>		4	_	-			-		ſ		j		
			\.				田		İ				ŀ	
$\odot_1$	-		+				++-			F			j	
									2	57	* *** * ·		+	<b></b>
38 -	_	: #	`	<b>-</b> .		†			.	رد/ع	\			
		7		`		1:1				14	1::::			
-	- 1					$\left\{ \cdot \right\}$					i [			
	5		<u> </u>	ج. بعلم خلو الادطاعة ط		31		36.	,	·		39'	51	SILTSTONE - Junky,
10 -	.5			clayyou		).]		المعس	۱-,			Se, m		coulc. cement
' !			- I	sanadera	::[:]	41	: #	الامم	1	15 4	-:-	clay I W		_conduction tomorbus a
i	.		=	T 40 CM	-7:1	11				.59		70.6	ia!	LIGNITE
•	1				:(::)	11		ļ	1	1 .			21	2.00116
12-		:}`	-   6	Lunnal d						12/U :	:	į		
				FISSILE	1:1				[			!	• į	
:	. 4				:   :	1:1	: :   2	all:  -			1	!	!	C-29
	þ	• 1		!	1	1:1		14" !		! .		ı	•	
	1	-	~		1:	1.1	1				1			

(min)	1 . Her	تېم	St R	ructure/ edding	Hord	<b></b>	1 m.	Miner	alugy	Cole	Testus/ liver Sus cist so gr	Lith,	Lith.	Vell(s)Page Z
(3)	S IN	U S	Angle		- new	, 1°,	2"	Min	<del>,</del> -	10		1	Class	CM (Scale 1": _ 2 11)
46-	34/5		-	Masin						2.57		44*	CL -	CLAYSTONE
413-			-					5-10 CPW	14.1			475	<del>5</del> 5_	SAUDSTONE WRITE (Frie
50	515		-					8-40 4mms.	N.			30°	CL -	CLAYSTONE SILLY
52 -			1 1	درستن				۵۹مل ۱۰۵	100			52'	51	SILTSTONE
54	5			Massie				راحم مورده درورده	ىد	2.57 NHO		<b>७</b> ५७८	CL	CLAYSTONE
56 -			-							1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		57 - clay	ST	SILTSTONE - Cinyey
58-	515		1 Pin	peddm'				- راه موان - موان		44.4) duk 44.4)		15/10 15/10 58.7 2011.	55_	SANDSTONE  The of Controls Some
υ0 -								land	, ,	257 ~いい 15:77		, ,	-	- Course of Court and
62	•			1				رمند. پاسلا		. ' /		:		C-29

	ESE, In	ic. C			By C		_ Dat	_દ ુયુ	A.R.	BOR	EEP.	74_ v	Vell(s) _		Poge 3 o
	(1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ini i	<u>H</u>	editing Desi	Hard	Perm.	Mine		Colm	Testure/ Grain Sue clat ad gr	Lith Chor	Lith	ŀ	ecription/	
		5/5	11 ))	(wreatin)	5 14	() H	den gyg (see alor)		4,44 4,54 5,54 W) C	1:1::	00	55	5AN	DSTUN	<u> </u>
	63	-	-	Massir			19:	111 0			lithic freqs 68.1	cı.	2camb	arel 144 1752 60% 17570NE	عاديدي يبلا علامًا
	⊕ † - 70 i	4.3		-					2.5y N3/0 VVy ak: 4'~4			-			
·	72		•	V 								-			
	74	5/5	* * * * * * * * * * * * * * * * * * *	<u> </u>			70° 1					-			
	3			+								_			
WE	78 T	515					1301 (1301) (1301) (1301)	1			77.1	5T_	31LT	STUNE	NDS TONE
5	32			•			enter Clark	:			511		-	decreasing	•
					.		(18 fm	('د			24.		! √ ′	,,,,,,,	C-29

HON	X.	<u>~</u>	Sin	dding	Hant	Perm		ralogr	Color	Tosture /	Lith	Lith	Description / Comments
(3)	5 8 H	U S	Angle	Desc	) A11	1- 1	Min	Hubit		cist sd gr	Char	Class	CM (Scale 1": _2 (1)
				Manue	44		42		2.57			55	SANIDSTONE W. to and counting rock st. Friable
	5		·		<b>:</b>		مين مانيا		N5/0				rock st. frakte
e34	5	:::					. المنها المالية	}	9004				
gu -	$\Gamma$		_	$\Gamma I$									
				1 (			110					}	
					1						1		-
ජුව -	-		-	- 1		<b>                                     </b>				7:1:		-	4
	1			1		F:	Lb.		}				
(i)	5		-	+	EI :	1-1 1:	مسوره ا	1					· '
	3	1 1			Ei i	1:11:	710	,					
90 -	+ *	: -	-	+				-				-	1
					FI:		$\exists$	,			-	}	-
'	Ţ	1		T	<b>[</b> -[							1	]
02 -	+		_		F: 1	1:11		•		<u> </u>		_	_
92-	<u> </u>			}	= 1 :	1:1-11:	: 1	1.		E : 1 :			
		: :		+		1:4:	-	1:			.}		-
	ţ										]	}	
94 -	+		-	+-	13:	+:1+1:		1.		1: 1:-		-	╀
	5			1	-1:	1-11	:-			Eli	:	}	
	5	1:	İ	Ť	1:1:		-					Ì	1
								.,					
90	T		-							-			-1
7				<u> </u>		<del>         </del>		1			]		1
$\mathcal{O}$					1	141					114		ZHONITE SEAM - HAR
99-	+		_	+	اسب	\$	chr		1		43.7		)
						7	HM	X		1:11			I because, more (+)
	+ _	::		†		1	-	-	}		קיני זיר		†
	3							•		1:1::	1		
100 -	ר ד		_			11:1:							_
	•			<u> </u>	14:	11:1:	•			1:1:	!		
	!								i [				· !
102-	1		-	! :		11:1	.		!		:	i	
					: <b>:</b>	111	:		•		•	I	C
	-		i ! !	•		1 1	•						
	•	1 .	i		1	1				.			

)

(1)

4)

	Inc.	٠.٠			By C	Perm		/OIE		Testure /	Liih	Lith.	Vell(s) Page 5
	X 101	4 argue	Be Angle	dding Desc	Murd- ness	10		Mineralog Min Hab	Colu		Chor	P 1.	CM (Scale 1": Z (1)
106-				Massing	<b>5</b> M		11 1		2.57 ~40 91~	01 0 10	N.	55	SANDSTONE Sandstone weakly consulted friends
108 -			-						1		:		
(B)	515		-					مالور مراد مسائد مسائد				_	
112-	+		-				111111111						
	ļ		-										
114 -	43			+				DA.	N3/0		114.	CL	CLAYSTUNE
9				+				con .	4.4				
18.	515			fine, aring the backers				\$   -	- 257 NS		119-	55	SANDSTUNE INTERB
120				+					400		100%	CL	- CLAYSTONE - SILTY
122		<u> </u>	•	••									Total Desile

.

**(***)

			•				
FF	Frontier Logging	jing	•	<	1000		
	Laborated Colorado			HC6	4. 1981		
j	ESE			0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Dog 122 FT	_	
	FP. 74	4		*1	i	ł	
	RMA				Pvc .	· 0945	= 1045
ADAMS CO	CONTY	- COLORADO	ADO	water	3		
ł		}	Photos	11		Dersia Linkon	×
		Graund	d Level	-	Ground Level	Lakewood	
		The party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the p	1 8		ł		
TO Lapped	3	•	#   #   #   #   #   #   #   #   #   #	8	3	3 8	
١	13	3	J.		Table 31	3	
7 7	Y.	2 2		2		4	
Cate Seco evide	3		3	a a	Į	E .	
105-1041	%/						
4. 1/4 1/4	2			Gamma (Analog)	z.	Density Source Ne	
٤, ١				Gamma (Digital)	a		
,	3%.			Catoe		750	
and place of the second			•	Temperatura			
">/ smalo 06	112				STATEMENT SATA	Meutron Source No	
30 MV/Inch	1 5 2			Dosare	*	man.	3. <b>a.ke</b> .
		5		Azmeth		0530	
				The Vertical	Survey Depth		
Ç.				منشد	j		

C-298







## WELL CONSTRUCTION SUMMARY

Borehole EP-74A	Well 24196
Project Name and Location PMA Section 2	7ask 44 Project Number
Drilling Company Boyles Bres. Driller	
Drilling Method(s) Continuous Sampled using	314" FD, 7555" OD Hollow stem
Deamed with 1214" Hollow	sten hum
Borehole Diameter 5½ incmcm.	ftcm. tocm.
121/4 incm	2'_ftcm. to <u>27.47</u> ftcm.
4	And A land a land
Size(s) and types of Bit(s). Auga	Sampling Method(s) Mabile continuous Sand
44 -1 5 44	Date/Time Start Drilling 7/22/87 0731
Size and Type PVC 4" Schol 40	Date/Time Finish Drilling 7/22/97 1265
Total Borehole Depth 27.47ftcm.	Date/Time Start Completion 7/23/87 0710
Depth to Bedrock 25.5 2475 ftcm.	Date/Time Cement Protective Casing 7/23/87 692
Depth to Water 24.75 ftcm.	Materials Used
Water Level Determined By Samples + Laging	Plain PVC 2- 10' metions (1 cut)
Length Plain PVC (total) 20.12 ftcm.	Slotted PVC 1-10' Acction
Length of Screen 10.14 ftcm.	Bentonite Pellets 5 byshe 5
Total Length of Well Casing 29.56ftcm.	Bentonite Granular 19
PVC Stick Up 1.70 ftcm.	Coment 3 bass
Depth to Bottom of Screen 27.36 ftcm.	Sand 11 bags
Depth to Top of Screencm.	Water added during completion
Depth to Top of Sandcm.	Water added during drilling
Depth to Top of Bentonite 4.06 ftcm.	Total Gallons of water added
Drill Site Geologist Alex Cans	Date
Date/Time/Personnel Internal Mortar, Gement Pad, and	Weep Hole Installed 17/33/82 170 300 170
	116 DUV. 1751
- 4 - 4 144	12 Smy 58
Moterials Used 12 bars of relate	
Top of Protective Casing to Top of PVC 0.34 It.	cm. COMMENT/NOTES
Top of Protective Casing to Weep Hole 1.3 ft.	6.111.
Top of Protective Cusing to Internal Mortar 1.551.0.20	/cm.
Pop of Protective Casing to Top of Cement Pad 145 tt	
Top of Protective Casing to Ground Level 2.5 ft.	
Reviewed By	EX
Drill Site Geologist XI / Wan	D.00 C-302

	Borehole:	EP-74A	Well: 24196
Soul/Reds		Well Completion	Description
20 25	Gound Level	Joint 9	List Top of brentonite  Cantonite seed 6.0'-11.0'  11.00' Top of Sand  Sand Ediriti.00 - 16.52'  16.52 Top of Screen  Screen interval 16.52 - 27.36'  - 24.75 Static water elev 23.3', rop of Bedrouse 27.36 Bostom of Seveen  27.47 Total Depth
	<b>!</b> ]r.!!	Remarks & Line 19	-303

ersonnel (Name/Considersonnel (Name/Considersonnel (Name/Considersonnel (Name/Considersonnel (Name/Capacity))    Consider (Name/Capacity)	WHILL SEE	-7/87 Du /65 729/85	<u> </u>	Project Number TA	7/23/87
rersonnel (Name/Continue)  Rig Used <u>BSE</u> Pump (Type/Capacity  Bailer (Type/Capacity  Vater Source	WHILL SEE	779/85	R.		11.77.14.1 41
Rig Used <u>FSE</u> Pump (Type/Capacit Bailer (Type/Capacit Water Source	WHILL SEE			Well Diameter (I.D.)	- in.
'ump (Type/Capacit Iailer (Type/Capacit Vater Source			<u> </u>		124"in st. to 27,36st.
Bailer (Type/Capacity Vater Source	y) GRUNK	TVICE THE	K_		ft. toft.
Vater Source		76PM		Screen Interval	1652 st. to 27.35st.
	y)	N/A	·		ft. toft.
	<u>RMA</u>			Casing Height (Above (	C.L.)
Measured Well Depti	h TOC	(Initial) 24.		Bottom of Screen (Belo	w G.L.) <u>27.36</u> ft
		(Final) 22		4-1-4-	
Water Level TOC/Da	te/Time (Initi	iel) <u>25.72</u>		87/0932	<b>7</b> A
		r 24 hrs.) 25			
Feet of Water in Well		And in the latest designation of			gallons casing/anulus volume
Orilling Fluid Lost _	/ .		gallons gallons	One Purge Volume	
Purge Water Lost Added Water			gallons	Minimum Purge Volur Total Purge Volume	
Casing/Anulus Volus			gailons	<del>-</del>	SGALLAN BUCKET
Terinflyumma Aoim	310		RELIOIS	Surge TechniqueRA	
Calibration: pH Me	tan Handi	BECK MA	J /b z	1 60 1 012 30 1	
•	0 = <u>7.00</u> ctance Meter ird <u>41</u>	: Used:	145 DIGI	C, pH 10.00 =	_umhos/cm at
Condu	ctance Meter	Used:	145 DIGI	C, pH 10.00 =	_umhos/cm at _ ₹ \$•0
Condu Standa	ctance Meter ird <u>나</u> 다	Used:	145 PIG	C, pH 10.00 =	Physical Characteristics (clarity, odor, sand content, color)  [12-y Cloudy (sandly) w/
Condu Standa Purge Volume	ctance Meter and	Used: umhos/cm Temp. *C	n at 25°,	C, pH 10.00 =	Physical Characteristics (clarity, odor, sand content, color)
Condu Standa Purge Volume	Time	Temp. °C	pH 8.4/	C, pH 10.00 =	Physical Characteristics (clarity, odor, sand content, color)  Lea Cloud (carely) w/
Condu Standa Purge Volume	Time	Temp. °C	pH 8.41	C, pH 10.00 =	Physical Characteristics (clarity, odor, sand content, color)  Stay Cloudy (stadily) w/ prome - bown sift.  Cloudy w orman - brown city.
Condu Standa Purge Volume  Initial 0.0	Time  /024  /0 40  /0 50	Temp. °C  2 1 9  //	pH 8.41 7.69	C, pH 10.00 =	Physical Characteristics (clarity, odor, send content, color)  Stery Cloudy (standay) w/ prome - bown sitt.  Cloudy w/ orman - brown City.  Lightly cloudy, w/ 6m 5ith

ft. x	12 ft. 12ft. 12ft. 13 - 9- 9 3 - 9- 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 -	Screen Interval  Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height	7/23/87  H in. 12/4 in. Oft. to 27/36 ft.  - in. ft. to - ft.  1652ft. to 27/36ft.  - ft. to - ft.  3.L.) 1.70 ft.  w G.L.) 27/3L ft.
DLW   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE   STATE	12 ft. 12ft. 12ft. 13 - 9- 9 3 - 9- 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 -	Well Diameter (i.D.) Anulus Diameter  Screen Interval  Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Ab	H
(Initial) 29. (Final) 25.77 itial) 25.77 ft. x 2	12 ft. 12ft. 12ft. 13 - 9- 9 3 - 9- 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 - 9 3 - 9 -	Anulus Diameter  Screen Interval  Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Ab	1214 in. Oft. to 2736 ft.  - in ft. to - ft.  - 16.52 ft. to 27.36 ft.  - ft. to - ft.  - ft. to - ft.  - ft. to - ft.  - ft. to - ft.  - ft. to - ft.  - ft. to - ft.  - ft. to - ft.  - gallons casing/anulus volume  - gallons casing/anulus volume  - gallons casing/anulus volume
(Initial) 29.  (Final) 35.  itial) 25.77  ft. x 2.	12-ft. /2ft. /2q-ey-egallons gallons gallons	Screen Interval  Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height	inft. toftft. toftft. toftft. toftft. w G.L.)73_Lftgallons casing/anulus volume
(Initial) 29.  (Final) 28.  (itial) 26.77  (iter 24 hrs.) 25.  (iter 24 hrs.) 25.  (iter 24 hrs.) 25.	ft. ///ft. /////////////////////////////	Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing He	1652ft. to   27.36ft.
(Initial) 29.  (Final) 25.77  (iter 24 hrs.) 25.  (iter 24 hrs.) 25.  (iter 24 hrs.) 25.	29-03-6 23-9-03-6 gallons gallons gallons	Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing Height (Above Casing He	ft. toft. G.L.) 1.70 ft. w G.L.) ユアスム ft. gallons casing/anulus volume
(Initial) 29. (Final) 28.  (itial) 26.73 (iter 24 hrs.) 25.  (iter 24 hrs.) 25.  (iter 24 hrs.) 25.  (iter 24 hrs.) 25.	29-03-6 23-9-03-6 gallons gallons gallons	Bottom of Screen (Belo 17/0432 25-87/14:30 ons/foot = 7.4 One Purge Volume Minimum Purge Volum	G.L.) 1.70 ft. w G.L.) 2734 ft. gallons casing/anulus volume
(Final) 25.77  (Ster 24 hrs.) 25.6  (It x 2.6  (It x 2.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.	29-03-6 23-9-03-6 gallons gallons gallons	Bottom of Screen (Belo 17/0432 25-87/14:30 ons/foot = 7.4 One Purge Volume Minimum Purge Volum	w G.L.) 2736 ft.  gallons casing/anulus volume
(Final) 25.77  (Ster 24 hrs.) 25.6  (It x 2.6  (It x 2.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.6  (It x 3.	29-03-6 23-9-03-6 gallons gallons gallons	17/0432 25-87/14:30 ons/foot = 7.4 One Purge Volume Minimum Purge Volum	gallons casing/anulus volume
itial) 26.72 iter 24 hrs.) 25.1  ft. x 2  /n  7. 9	gallons gallons	25-87 / / /: 30  ons/foot = 7.4  One Purge Volume  Minimum Purge Volum	gallons casing/anulus volume
iter 24 hrs.) 2 5. ° ft. x 2 /n /n	gallons gallons gallons	25-87 / / /: 30  ons/foot = 7.4  One Purge Volume  Minimum Purge Volum	gallons casing/anulus volume
/h /h 7. 9	gallons gallons gallons	One Purge Volume Minimum Purge Volum	
7.9	gallons gallons	Minimum Purge Volun	
7.4	gallons	<u>-</u>	20 34.5 callone
7.4	gallons gallons	Total Pures Volume	<del></del>
	gallons	TOTAL L DI BO A OTOTILO -	
<b>~</b> .	0	Volume Measured By .	S CALLON BEAMET
<b>₽</b> \		Surge Technique	ist Lover ourt
		sh : 015 BB]	
1 al 29	<u>.7</u> •c	, pH 10.00	. <u>11 at 225 °C</u>
umhos/cn	n at 25°,	Reading <u>1413</u>	_umhos/cm at*C
Temp. *C	pH	Conductance at 25°C	Physical Characteristics (clarity, odor, send content, color)
16.7	7.54	120	very slightly clause.
16.9	7.63	2100	Slightly cloudy wi
17.2_	1.54	こにひ	alouin w/ unem
17.4	7.51	2110	Sijury carrie in
17.1	7.45	2110	von elighthy rimedy.
			· · · · · · · · · · · · · · · · · · ·
ı	Temp. °C  (6.7  16.9  17.2	Temp. °C pH  (6.7 7.54  16.9 7.63  17.2 7.54	Temp. °C pH Conductance at 25°C  16.7 7.54 2125  16.9 7.63 2100  17.4 7.7 210

## WELL CONSTRUCTION SUMMARY

Borehole EP-74D]	Well24197
	NW intellation Project Number 744
Drilling Company Bosles Bros Driller Bo	_
Drilling Method(s)	
Borehole Diameter 164 incm	<u>ftcm. to36,5ftст.</u>
	_ftcm. to69.5_ftcm.
	•
Size(s) and types of Bit(s) by 6hde 77 bale	Sampling Method(s)
	Date/Time Start Drilling 8/24/97 0737
Size and Type PVC Y'schol	Date/Time Finish Drilling 8/27/87 0950
Total Borehole Depth 49.5 ftcm.	Date/Time Start Completion 4/27/97 ///7
Depth to Bedrock 25.5 ftcm.	Date/Time Cement Protective Casing 3/25/97 /135
Depth to Waterftcm.	Materials Used a controlizar mulcep com
Water Level Determined By	Plain PVC 6-10 Median
Length Plain PVC (total) 60.31 ftcm.	Slotted PVC 1-10' section
Length of Screencm.	Bentonite Pellets 13/3 buckets
Total Length of Well Casing 71.0 ftcm.	Bentonite Granular 180 160
PVC Stick Up (1.70 ftcm.	Cement 36 bass
Depth to Bottom of Screen cm.	Sand 234 6010
Depth to Top of Screen 5835 ftcm.	Water added during completion
Depth to Top of Sand 5574ftcm.	Water added during drilling
Depth to Top of Bentonite 50.64 ftcm.	Total Gallons of water added
H- (1) -	al la
Drill Site Geologist Vans Vans	Date 9/3/97
	eep Hole Installed 41. 11. 13. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Date/Time/Personnel Casing Painted 4/11/99	
Date/Time/Personnel Numbers Painted 3123144	1m. cmc11.
Materials Used 12 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	-
Top of Protective Casing to Top of PVC	cm. COMMENT/NOTES
Top of Protective Casing to Weep Hole 1.46 ft.	cm.
Top of Protective Casing to Internal Mortar 1.55 ft.	cm.
•	cm.
Top of Protective Casing to Ground Level 2.10 9.	um.
Reviewed By	Date 7 7 C-306
Drill Site Geologist	Date 97 /

PAGE Z OF Z

Borehole: FP-74D1 Well: 24197 Soil/Rock Well Completion Description Type 2.10 7 1.71 POL Justs ----1.35 10 Trit' controlizar 20 29.44 Centralizer B" steal coming 3. 50 so, en contente 55.74 Top of SAND 5835 Top of Screen 69.30 dottom in acreeur 70 -69.50 Tital drilled depth

Drill fate Geologist: Reviewed By

Date: 9/10/87

C-30

	ì		
SHEET		UF	

		Bore En 7	<u>491</u>	Well 24/17	
Project	A ON-PO	<b>ST</b>		Project Number	TASK 44
Date(s) Developed		147		Date Installed	8/27/87
Personnel (Name/Co	npany)	DLW FSE		Well Diameter (I.D.)	in
		228/ESE		Anulus Diameter	16 4 in. 0 ft. to 30 5 ft
Rig Used 문도					73 in. 305 st. to 67.5st
ump (Type/Capacit		105/70PM		Screen Interval	5 <u>835</u> ft. to <u>69.30ft</u>
Bailer (Type/Capacity	<u>// N/</u>	<u> </u>			fi. tof
Water Source	RMA			Casing Height (Above	(G.L.)f
Measured Well Depti	n TOC	(Initial) 71.	<del>7_f</del> t.	Bottom of Screen (Bel	low G.L.)
			ft.	-1	
Water Level TOC/Da	te/Time (Init	ial) <u>30.45</u>	19-12-	67/0938	
	(afte	r 24 hrs.) _34	22 /6-	7-87/1635	
Feet of Water in Well		- ft. x <u>0.6</u>	_	allons/foot = 24.5	
Drilling Fluid Lost _			-	One Purge Volume _	
Purge Water Lost	N //A		gallons	Minimum Purge Volu	
Added Water	<del>- 8</del> -		gallons	Total Purge Volume	
Casing/Anulus Volur	ne	3.4	gallons	•	S GALWA ZWAFT /71
		<b>T</b>		Surge Technique	RAISE/LOWER PUMP
				50" (25 F 33	12.11
pH 7.00	) =	94 at 13	<u>, (</u>	•C. pH 10.00 =	10.14 at 13!
				ا ١٤٤١ ا الموا	
Standa	rd Luis	umhos/cn	n at 25°,	Reading 1414	umhos/cmat•
Purge Volume	Time	Temp. •C	рН	Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)
Initial 💍	0910	14.2	8.70	<b>5</b> 44	very cloudy -/ chance
E122 6 30	0437	13.5	4.50	356	المحالم داندسل سا ساجم وال
Hered 2 37	1122	10.5	9.38	404	metricu wy young to -
				/	
	1				,
<del></del>	7			7	
Final			.سـ	20 10	
	<u> </u>	A	<u> </u>	1 Rusting Strain 5 CS	7.1
T + .	1	\ -a ·		i 20	sait mountil and
		1-0			
Indial purping	TRUTE : /	· 52 il L w			
		<del></del>		—— <del>/                                   </del>	<del></del>
July 14: 13.56	L x 0854	7.1 = 11.57 11	Collected	d by	Signature / / 2 200
7/. 5	and Consider	176	Checked	At /	C-308
me vol . 26:	sel (Servi	ל אמו אמו	CHECKED	by	Signature
*		,			

SHEET		OF	6
-------	--	----	---

•		Bore FP 7	401	Well 24197	
roject PMA	- OH -Pos	-		Project Number	TILSKAY
ate(s) Developed	65/50	27		Date Installed	421 27
rsonnel (Name/Com		DU / GUE		Well Diameter (I.D.)	in
		P38 /865		Anulus Diameter .	10 tin. 0 11.10 205 h
ig Used FIE			TRUCK		73 in. 30.5 st. to 695 st
ump (Type/Capacity)	<u>, , , , , , , , , , , , , , , , , , , </u>	//		Screen Interval	5835 ft. to 18134 ft
siler (Type/Capacity)	<u> </u>	<u> </u>			ft. toft
ater Source				Casing Height (Above (	S.L.)f
leasured Well Depth	TOC	Tottial) _71	<u>01</u> ft.	Bottom of Screen (Belo	w G.L.)
		(al)	ft.		
ater Level TOC/Date	/Time (Initi	al)30 #:	19-22-	87/0818	
	(after	· 24 hrs.)			
eet of Water in Well_			_	illons/foot = 26.5	gallons casing/anulus volum
rilling Fluid Lost	N /Y		gallons	One Purge Volume	gallon
urge Water Lost			•		ne <u>کی                                    </u>
dded Water				Total Purge Volume	್ರಾಲ್ gallon
asing/Anulus Volum	e <u> </u>	5	gallons		5 CHALL BURRET
		_			31.60
alibration: pH Met	nr Used:	BRIKME	<u>کا ایک کو کم</u>	At OISASS	
pH 7.00	7.37	at	<u>/6.7</u>	·C, pH 10.00 •	<u> </u>
				4. SIV. 11341	
Standar	d 1413	umhos/cn	1 at 25*,	Reading 1414	_umhos/cm at•
<del></del>			,		
Purge Volume	Tim.e	Temp. *C	pH	Conductance at 25°C	Physical Characteristics (clarify, odor, sand content color)
Initial 37 mg/	0815	72.4	2.34	4714	Licar
50 01 11	0427	12.1	P.30	916	mas N. Linn
6701	2945	12.4	2.79	<b>953</b>	Marie a later of a
			1		
		<u>— Dewe</u>	اطه است		
i					
					The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon
Final	•	_		• •	<b>`</b> . '
emarks: Ihi	1.04 TO1	و ن ن روه	11,	for 10 ml = 36 2000	23 677 1965
emarks: Init	1 13 30	. None			
		J			
me set . 26.5 a.s.	المعالم والأراك	ر ۱.	Collected	the AN Code V	1/2: · ' c
me ve	( ( <del>(                                </del>	. \			Signatura
136	1 Sand fran	" bat	Checked	by	41.1.58
1710				· · · · · · · · · · · · · · · · · · ·	Signature
* / 1 /					

SHEET 3 OF 6

roject ANA ON ete(s) Developed Of ersonnel (Name/Com- ig Used ————————————————————————————————————	9-24-8 npany) PI GL, Nell S I) GeoTe I) N/A RMA	7 8 ESE V ÉSE	Ruck	2	745k # 8/27/87 in 8/20/87 in
ig Used ESE ump (Type/Capacity siler (Type/Capacity	npany) YT GL Nell ) GeoTe ) N/H RMA	B ESE V ESE Service 7	Ruck	Well Diameter (I.D.) Anulus Diameter	6/4/in. Dit. to 30.5/t
ig Used ESE ump (Type/Capacity siler (Type/Capacity ater Source	Nell S Nell S N Geo Te N N / H RMA			Anulus Diameter	
ump (Type/Capacity siler (Type/Capacity ater Source	CeoTe N/H RMA			7	
ump (Type/Capacity siler (Type/Capacity ater Source	N/A RMA			A Saman Interval	Sin. 20.51t. to 6.5 1t
iller (Type/Capacity ater Source	N/A RMA			'Y SCERRI INIREVAL	58.35 st. to 69. 30st
ater Source	RMA			54.0011111111111	ft, toft
			<del></del>	Casing Height (Above C	
seraiou mon Depin		(Initial) 71.0	7 6	Bottom of Screen (Belo	10 -
		(Final)	ft	20113111 01 0010011 (0010	
ater Level TOC/Date	e/Time (Initi	· — .	15/0	19-22-87/c	8 39
ater bever 100/Date	•	24 hrs.)			
et of Water in Well	1/3 i =	11.x 0.6	53 cal	Ilons/foot - 26.5	gallons casing/anulus volum
rilling Fluid Lost	- 4		ailons	One Purge Volume	gallon
irge Water LostA	- A .	_	alions	Minimum Purge Volum	
dded Water	E	_	allons	Total Purge Volume	200 gallon
sing/Anulus Volum	ne2	•	allons	Volume Measured By	50al Bucket
		<del></del>	w	T T	
				Surga Tachniqua /56/	9L / 2/4/1/
pH 7.00	tance Meter		<u>v</u> .	C, pH 10.00 =/	0.10 at 17.1 .
pH 7.00 Conduc	tance Meter	Used:	<u>v</u> .	C, pH 10.00 =	umhos/cm at 25.
pH 7.00 Conduc Standar Purge Volume	tance Meter	Used:umhos/cm umhos/cm	2/5 D at 25°,	C, pH 10.00 =	Umhos/cm at 25.  Physical Characteristics (clarify, odor, sand content, color)
pH 7.00 Conduc Standar	tance Meter	Used:umhos/cm	V	C, pH 10.00 =	Physical Characteristics (clarity, odor, sand content, color)
pH 7.00 Conduc Standar Purge Volume Initial 67ga	Time 0910	Used:umhos/cm umhos/cm	2/5 D at 25°,	C, pH 10.00 =	Umhos/cm at 25.  Physical Characteristics (clarify, odor, sand content, color)
pH 7.00 Conduc Standar Purge Volume	tance Meterrd	umhos/cm Temp. •C	pH 8.20	C. pH 10.00 =	Physical Characteristics (clarity, odor, sand content, coior)  Eligatly milky,  Little Silt - race first
pH 7.00 Conduc Standar Purge Volume	Time 0910	umhos/cm Temp. •C	pH 8.20	C, pH 10.00 =	Physical Characteristics (clarity, odor, sand content, color)  Elightly milky  Lightly milky
pH 7.00 Conduc Standar Purge Volume	Time 0910	umhos/cm Temp. •C	pH 8.20 8.16 8.16	C, pH 10.00 =	Physical Characteristics (clarity, odor, sand content, color)  Elightly milky  Lightly milky
pH 7.00 Conduc Standar Purge Volume	Time 0910	umhos/cm Temp. •C	pH 8.20	C, pH 10.00 =	Physical Characteristics (clarity, odor, sand content, color)  Elightly milky  Little silt - mee fines  Sightly milky  some silt, race fines
pH 7.00 Conduc Standar Purge Volume	Time 0910	umhos/cm Temp. •C	pH 8.20 8.16 8.16	C, pH 10.00 =	Physical Characteristics (clarity, odor, sand content, color)  Elightly milky  Little silt - mee fines  Sightly milky  some silt, race fines
pH 7.00 Conduc Standar Purge Volume	Time 0910	umhos/cm Temp. •C	pH 8.20 8.16 8.16	C, pH 10.00 =	Physical Characteristics (clarity, odor, sand content, color)  Elightly milky  Little silt - mee fines  Sightly milky  some silt, race fines

SHEET 4 OF 6

roject <u>RMA</u> Pate(s) Developed_C	ON Pos	, <i>j</i>		Project Number 27	937 0210	TASK
ate(s) Developed_C	~ ~~					
	) 4-25-	87		Date Installed	-27-87	
ersonnel (Name/Cor	npany) 🚓	FB ESA	<u> </u>	Well Diameter (I.D.)		<u>4/in</u>
	G6	V ESA	<b></b>		16/7 in	
is Used ESE	well	Service		2	7 38 in. 30.5 ft	
ump (Type/Capacity	1) George		1.3 CPM	Screen Interval	5 <u>8.3511</u>	. 10 <u>69.361</u> 1
niler (Type/Capacity	/)	NIA			ft	.101
ater Source	RMA	- A1		Casing Height (Above C		1.7_1
leasured Well Depti	TOC	(Initial) Z40	2.Z_ft.	Bottom of Screen (Belo	w G.L.)	30
		(Final)	ے مرا <del>ا ہے</del>		. <del>C</del>	
ater Level TOC/Da			107	-22-87 / 083	8	
		24 hrs.)		· · · · · · · · · · · · · · · · · · ·		
				llons/foot = 26.50		
rilling Fluid Lost urge Water Lost	N/A		•	One Purge Volume		_
	N/A		gallons	Minimum Purge Volun		gallor
dded Water	-47		gallons	Total Purge Volume		sallor
asing/Anulus Volur	ne	<u> </u>	galions	Volume Measured By	<u> </u>	CKE
		Α.	200	Surge Technique	Lise & Lower	<u>a bung</u>
pH 7.00 Condu	-	Used:	M5 J	C. pH 10.00 - 10 Dig. +A/ SN //	34/	25-
Condu Standa	ctance Meter	Used:	M5 L	C, pH 10.00 = . / 6 Dig. +A/ SN // Reading /4/3	0,06_at _2 34/ _umhos/cm at _	25
pH 7.00 Condu	= <u>7.0/</u> ctance Meter	Used:	M5 4 at 25°,	C. pH 10.00 - 10 Dig. +A/ SN //	2,06 at 2 34/ _umhos/cm at _ Physical Char (clarity, once, sand	25
pH 7.00 Conduc Standa Purge Volume	ctance Meter	Used:	M5 L	C, pH 10.00 = . / 6 Dig. +A/ SN // Reading /4/3	0,06_at _2 34/ _umhos/cm at _	25
pH 7.00 Conduc Standa Purge Volume	tance Meter rd /4/2	Used:	M5 4 at 25°,	C. pH 10.00 - 10 SN 11 Reading 14/3  Conductance at 25°C	2,06 at 2 34/ _umhos/cm at _ Physical Char (clarity, once, sand	acteristics
pH 7.00 Condu Standa	7.0/ ctance Meter rd /4/3 Time	Used:	pH 8.05	C, pH 10.00 - 19 Pig. +A/ SN // Reading /4/3  Conductance at 25°C	Physical Chartclurity, odor, sand	acteristics
pH 7.00 Conduction Stands  Purge Volume Initial 100	Time //:45	at _20   Used: _(!   Umhos/cir   Temp. °C   14.3   5.0	pH 8.08	C. pH 10.00 - 10 SN 11 Reading 14/3  Conductance at 25°C  1072  1006	Physical Char (clarity, onlor, sand C/ear	acteristics
pH 7.00 Conduction Stands  Purge Volume Initial 100	Time //:45	at _20   Used: _(!   Umhos/cir   Temp. °C   14.3   5.0	pH 8.08	C, pH 10.00 - 10 SN 11 Reading 14/3  Conductance at 25°C  1072  1006	Physical Char (clarity, onlor, sand C/ear	acteristics
pH 7.00 Conduction Stands  Purge Volume Initial 100	Time //:45	at _20   Used: _(!   Umhos/cir   Temp. °C   14.3   5.0	pH 8.08	C, pH 10.00 - 10 SN 11 Reading 14/3  Conductance at 25°C  1072  1006	Physical Char (clarity, onlor, sand C/ear	acteristics

roject <u>AUD</u> late(s) Developed_C	271/ 25-28:1	Fost		Project Number 32	·
	າ <i>⊊ຸລ</i> ໘. ເ				
		5'7	-	Date Installed	<u> 28 - 27 - 87</u>
ersonnel (Name/Cor		JA ESE		Well Diameter (I.D.)	
	G	V JESTE	•	Anulus Diameter	16/4 in
is Used ESE	W211 5.	PLICA TRU	CK	•	778 in 305 11 to 68 5 1t.
ump (Type/Capacity					55.3511. to 67.3011.
ailer (Type/Capacity		. (			ft. toft.
Vater Source				Casing Height (Above	A
Aeasured Well Depth		(Initial) 2/	076	Ration of Screen (Rel	low G.L.) <u>69.30</u> st.
vessored Men Dahir		(Final)		Dation of Deigen (Dei	
National annal MOC(Da)	- FD: (1-14)		5 //6	- 22 -87/083	· 57
Vater Level TOC/Dat	=	,	/ 4 7		
		r 24 hrs.)	/ /* 3	1118 2.6 676	na Nana na tantana alamatana a
		-	_	ilons/foot = 26.55	- · ·
Orilling Fluid Lost _	5 *	<u> </u>	gallons	One Purge Volume	
urge Water Lost			gallons	Minimum Purge Volu	
Added Water			gallons	Total Purge Volume	4114114
Casing/Ar ulus Volun	ne	<u> </u>	gallons	Volume Measured By	54a/ Suchi+
				Surge Technique A	large of warried Marinia
		D . 4	,	Darge recuirides	والمراجع والمستوال والمستوالين والمستوالي والمستوالي
Calibration: pH Me	ter Used:	BELKMAR	رن سینی	54 575883	
Calibration: pH Me	ter Used:	Beckman	<u>', ' </u>	SA C 15 98 3 C. pH 10.00 = 3	General Co
pH 7.00	) - <u>7 - 6 -</u>	at	<u>'-2</u> '	SA \$\frac{c}{c}/5^\frac{c}{2}\frac{c}{2}} = \frac{1}{2}\frac{c}{2}	
pH 7.00 Conduc	tance Meter	Beckman Lat Le Used: Cou Lumbosica	<u>, 7</u> 5 2 5.	SA C 15 98 3 C. pH 10.00 = 3	( 50 / st / 5 - 1).5 °C
pH 7.00 Conduc Standa	) = <u>7.64</u> ctance Meter rd <u>14</u>	Used: Coll Jumhos/cn	(, ) S 7 s, n at 25°,	Sh C 15 88 3  C, pH 10.00 = 23  Ful Sh //34/ 10  Reading	umhos/cm atC
pH 7.00 Conduc	tance Meter	at <u>الرث</u> Used: <u>الرث</u>	<u>, 7</u> 5 2 5.	50 C 15 8 8 3 C, pH 10.00 = 2 Full 50 1/34/	umhos/cm at C
pH 7.00 Conduc Standa	) = <u>7.64</u> ctance Meter rd <u>14</u>	Used: Coll Jumhos/cn	(, ) S 7 s, n at 25°,	Sh C 15 88 3  C, pH 10.00 = 23  Ful Sh //34/ 10  Reading	umhos/cm atC
pH 7.00 Conduc Standa Purge Volume	tance Meter	umhos/cn	S 2 s, n at 25*,	SA C 15 8 5 3 C, pH 10.00 = 20 FA 1 5 N 1/34 / 10 Reading	Physical Characteristics (clarity, odor, sand content, color)
pH 7.00 Conduction Standa Purge Volume	Time 0726	Temp. *C	S 7 s. n at 25*.  pH S. 3 Z	5x C/5-983 C, pH 10.00 = 20 Ful 5x //34/ / 9 Reading	Physical Characteristics (clarify, odor, sand content, color)
pH 7.00 Conduction Standa Purge Volume	7.64 ctance Meter rd _/4/ Time 0 ? 2 6	umhos/cn	S 2 s, n at 25°.	5x C/5-883 C, pH 10.00 = 23 Fx/ 5x//34/ /6 Reading	umhos/cm at Characteristics (clarify, odor, sand content, color)
Purge Volume Initial / 3 C	Time 0726	Temp. *C	S 7 s. n at 25*.  pH S. 3 Z	5x C/5-983 C, pH 10.00 = 20 Ful 5x //34/ / 9 Reading	umhos/cm at Characteristics (clarify, odor, sand content, color)
Purge Volume Initial / 3 C	Time 0726	Temp. *C	S 7 s. n at 25*.  pH S. 3 Z	5x C/5-983 C, pH 10.00 = 20 Ful 5x //34/ / 9 Reading	umhos/cm at Characteristics (clarify, odor, sand content, color)
Purge Volume Initial / 3 C	Time 0726	Temp. *C	S 7 s. n at 25*.  pH S. 3 Z	5x C/5-983 C, pH 10.00 = 20 Ful 5x //34/ / 9 Reading	umhos/cm at Characteristics (clarify, odor, sand content, color)
Purge Volume Initial / 3 C	Time 0726	Temp. *C	S 7 s. n at 25*.  pH S. 3 Z	5x C/5-983 C, pH 10.00 = 20 Ful 5x //34/ / 9 Reading	umhos/cm at Characteristics (clarify, odor, sand content, color)
Purge Volume Initial / 3 C	Time 0726	Temp. *C	S 7 s. n at 25*.  pH S. 3 Z	5x C/5-983 C, pH 10.00 = 20 Ful 5x //34/ / 9 Reading	umhos/cm at Characteristics (clarify, odor, sand content, color)

# ESE ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. 7332 SOUTH ALTON WAY-SUITE H-I ENGLEWOOD, COLORADO 80112-303/741-0639

,	•
<i>{</i> -	10
SHEETOP	
***********	

Date(s) De Personnel Rig Used_ Pump (Ty	i (Name/Con		-87 TA ESE LN ESE DNICC TR	uck	Date Installed Well Diameter (I.D.) Anulus Diameter	737 0.3/0 778544 18-27-87 16/4in. C. It. to 30.5 178 in. 30.5 It. to 69.5 58.35 It. to 69.30 — It. to	ñ. N.
Water Sou	urce	RMA			Casing Height (Above (	5.L.) <u>/ / 7</u>	ft.
Messured	i Well Depth	TOC	(Initial) 71.	<u>0'7</u> ft.	Bottom of Screen (Belo	w G.L.) <u> </u>	ft.
Feet of W Drilling F Purge We Added W	ater in Well, luid Lost ater Lost ater	4C (-2 N/A	_ft.x _C.4	<u>2之 / ルークラ</u> gallons gallons gallons	One Purge Volume  Minimum Purge Volum  Total Purge Volume	ne <u>xico</u> gallo	ns
Casing/A	nulus Volun	ne	u · 5'	gallons	Volume Messured By	Spel Buckert	
					Surge Technique	Parise 4- how R Par	<u>ئىر</u> ،
Calibratio	on: pH Mei	ler Used:	BEKMER	<b>—</b> 1	21 5N 015833		
		. ///		21 1 A	C, pH 10.00 - /	13 at 14.3	
	-	- <u>703</u>	- 17	· مسوورسات استنساس			,•C
	Conduc	tance Meter	Used:	45 10	9. 10/ 15 SN /S	7	
	Conduc	tance Meter	- 17	45 10		7	·c
Purg	Conduc	tance Meter	Used:	45 10	9. 10/ 15 SN /S	7	·c
Purge Initial	Conduc Standar	tance Meter	Used:umhos/cn	n at 25°,	Reading	umhos/cm at Physical Characteristics	·c
	Conduc Standar e Volume	tance Meter	Used:umhos/cn	pH	Reading  Conductance at 25°C	umhos/cm at	·c
	Conduc Standar e Volume	Time	Used:umhos/cn Temp. °C	pH	Reading  Conductance at 25°C	Physical Characteristics (clarity, other, send content, color	·c
	Conduction Standard	Time	Used:umhos/cn Temp. °C  13. 7	pH (2.24 8.35	Reading  Conductance at 25°C    C	Umhos/cm at  Physical Characteristics [clarity, orint, sand content, color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color col	·c
	Conduction Standard	Time	Used:umhos/cn Temp. °C  13. 7	pH (2.24 8.35	Reading  Conductance at 25°C    C	Umhos/cm at  Physical Characteristics [clarity, orint, sand content, color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color col	·c
	Conduction Standard	Time	Used:umhos/cn Temp. °C  13. 7	pH (2.24 8.35	Reading  Conductance at 25°C    C	Umhos/cm at  Physical Characteristics [clarity, orint, sand content, color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color col	·c
	Conduction Standard	Time	Used:umhos/cn Temp. °C  13. 7	pH (2.24 8.35	Reading  Conductance at 25°C    C	Umhos/cm at  Physical Characteristics [clarity, orint, sand content, color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color color col	·c
Initial	Conduction Standard Policy Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conductio	Time 1105	Used:umhos/cn Temp. °C  13. 7	pH G.24 8.35 G.51	Reading  Conductance at 25°C  1107  1016  836	Physical Characteristics (clarity, orier, send content, color	·c
Initial	Conduction Standard Policy Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conductio	Time 1105	Used:umhos/cn Temp. °C 13.7 13.3 /3.1	pH G. 24 8. 35 G. 51	Reading  Conductance at 25°C  1107  1016  8366	Physical Characteristics (clarity, order, sand content, color	·c
Initial	Conduction Standard Policy Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conduction Standard Property Conductio	Time 1105	Used:umhos/cn Temp. °C 13.7 13.3 /3.1	pH G.24 8.35 G.51	Reading  Conductance at 25°C  1107  1016  8%(a)	Physical Characteristics (clarity, order, sand content, color	

## WELL CONSTRUCTION SUMMARY

Borehole EP-74	DZ		Well2410	<del>18</del>	
Project Name and Location	Section 24	Monti	or well	Project Number	
Drilling Company Boyle	Bros	_Driller	Roech	Rig Number	Failinson
Drilling Method(s) _ 50 to	254				
	<u>,                                    </u>				
Borehole Diameter 1614	incm		ftcm	.101	tcm.
12/4	cm		ftcm		icm.
7%	,, ,,,	74,50	) tt	to 117.001	ř <b>.</b>
Size(s) and types of Bit(s)	6hde		Sampling Method Date/Time Start	od(s) Not on Orilling 8/28	Λ
Size and Type PVC	schol 48		Date/Time Finis	h Drilling _9/2/	197 1125
Total Borehole Depth	117.0 ft.	cm.		Completion $9/2/$	
Depth to Bedrock	25.5 ft.	cm.			18 9/1/87 1425
Depth to Water	n.	cm.		hull cap be	<u>k</u>
Water Level Determined By			Plain PVC 8-		1 cutoff oucts
Length Plain PVC (total)	80.80n.	cm.	Slotted PVC 3-	10' meting	1-5 lt seetiv
Length of Screen	37.24	cm.	Bentonite Pellet	·	uhts
Total Length of Well Casing	118,04ft.	cm.	_	ılar <u>5 1/2</u> 6.	<u>eht</u>
PVC Stick Up	_1.70ft	cm.	Cement5		
Depth to Bottom of Screen	11634 n	cm.	Sand	hags	
Depth to Top of Screen	79.10 m.	cm.	Water added du	ring completion _	
Depth to Top of Sand		cm.	Water added dur	ring drilling	00 1-1
Depth to Top of Bentonite	69.25ft.	cm.	Total Gallons of	water added	or fal
Drill Site Geologist	ten Paris		Date <b>9/9</b>	/17	
	ernal Mortar, Come			41. 24	and the second
Date/Time/Personnel Ca	sing Painted 911	144 64	70 Dem 4	356	
Date/Time/Personnel Nu	imbers Painted 🕮	23188 12	OL 51111 1	317	
Materials Used	o buch of	rabuits.			MANAGE M
Top of Protective Casing to	Top of PVC	0.17 II.	cm.	COMME	INT NOTES
Top of Protective Casing to	Weep Hole	1.40 ft.	cm		
Top of Protective Casing to	Internal Mortar	1.42 11.	cm.		managaman and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon
Pop of Protective Casing to	Top ofCement Pad	1.70 11.		The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	The second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second dispute the second di
Top of Protective Casing to	Ground Level 🕥 -	2.0 11.	um.	and the adding options are not made to the	magin complete and a service of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract o
Reviewed B	·	سوست سندسا فعلومسا		Dare	C-314
Drill Site Ge	ologist /	7	***************************************	Date	1 11

Reviewed By: _

•

	7
SHEET U	٠

ste(s) Developed	7 22 A		<del></del>	Project Number	41 6 8.5
• •	7	Dend/tse	<del></del>	Date Installed	4/4/8/
ersonnel (Name/Con		DC-4/ FSE		Well Diameter (I.D.) Anulus Diameter	4 in.
ig Used Fie					164 in. 0 ft. to 3/ ft.
imp (Type/Capacity				Screen Interval	77/ft. to 11-34/ft
iller (Type/Capacity				Screen interval	ft.toft
ater Source				Casing Height (Above 0	3.L.)
easured Well Depth		(Initial) 1/7.	٧.5° (۱.		w G.L.) // 6. 34/
•		(Final)	ft.		
ater Level TOC/Dat	e/Time (Initi	el) 3/. 2 5	14-32-271	1 1005	-
	(after	24 hrs.)	1.72/9.	Prosident	
					gallons casing/anulus volum
rilling Fluid Lost 🔔			,	<del>-</del>	192.6 gallon
irge Water Lost	•	_			ne <u>ned</u> gallon
ided Water			gallons	_	/ උපා gallon
ising/Anulus Volum	10	<u> </u>	gallons		SS Colle. Disum
			.4	•	هم مدروس مع عدرت في عدد ود
alibration: pH Met				N: 67 F 983	\ . <del></del>
· · · · · · · · · · · · · · · · · · ·		at		C. pH 10.00 =	2.69 at 755 •(
Purge Volume	Time	Temp. •C	рН	Conductance at 25°C	Physical Characteristics (clarity, ortor, sand content, color)
Initial 5 4 1.	1321	15.6	11 46	٠٠٠٠ ١	who we have the
7	1431	14.2	11 41	615	whose on all late and because
100 1.1.			<u> </u>		and the second second
loo ed. Zoo eal	1522	1< H	10.35	441	ري المحدد المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة ا المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة الم
,	1522	15.4 15.4	10.35	441 421	Charles out than you a survey
200 and					الموسيدة في في يساد الأون الارتهام الآن المراجعة المراجعة الأون الارتهام الأن الارتهام الأن الارتهام الأن الارتهام الأن الارتهام الأن الارتهام الأن ال
200 rad					الموسيدة في في يساد الأون الارتهام الآن المراجعة المراجعة الأون الارتهام الأن الارتهام الأن الارتهام الأن الارتهام الأن الارتهام الأن الارتهام الأن ال
200 mml	1552	15.6	10.21	خاج ا مسار مدد العداد المدينة	الموسيدة في في يساد الأون الارتهام الله المان المان الله المان الله المان الله الله الله الله الله الله الله ا المان المان الله الله الله الله الله الله الله ال
200 end 275 Final  marks:	1552 11,300 (4,11	15.6	10.21	خاج ا ماری میروند ماری میروند	Charge of the party of the same
inal marks:	1552	15.6	10.21	Alty and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state	Charles on the hand of manager of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second

	•	Bore 5,2.7	4772	Well 24198	
roject		PUST.		Project Number	THSIS UY
Date(s) Developed	٠١/٠	/27	<del></del>	Date Installed	9/2/87
ersonnel (Name/Co	mpany)	Dew / Est		Well Diameter (I.D.)	<u> </u>
		POD JESE		• • • • • • • • • • • • • • • • • • • •	6 d in. 2 1. 10 3/
ig Used ELE	WELL IN	eruce Tru		<b>-</b>	21 in. 3/ 1. to 745 ft
ump (Type/Capacit				Screen Interval	741_ft. to 116.34 ft
leiler (Typo/Capacit Veter Source		<u> </u>		Casing Height (Above (	
Acasured Well Dept		(Initial) 42	1.45 ft.	Bottom of Screen (Bolo	* 1 ° 1 ° 1 ° 1 ° 1 ° 1 ° 1 ° 1 ° 1 ° 1
-		(Final)	ft.		w <i>0.0., <u>0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.0., 0.</u></i>
Vater Level TOC/Da	te/Time (Initi	al) 3/, 25/	9-72-57	1055	
	(after	r 24 hrs.1	1.72,9-	28-87/1445	
eet of Water in Well	84.2	ft.×	653 go	Ilons/foot = 56.3	gallons casing/anulus volum
Orilling Fluid Lost _			-	One Purge Volume	gallon
urge Water Lost				Minimum Purge Volun	
dded Water				Total Purge Volume _	1000 gallon
asing/Anulus Volui	me	6.3	gallons	Volume Measured By	
		, man,	/A.m	Surge Technique	MINE CONTRACTORINA
alibration: pH Me	iter Used:	BECKINAN		5.4. 0/5.(33	9 1.19
	0 = 7.02			C. pH 10.00 =/2	2 3 7 at
		umhos/cr		Reading / U/W	umhos/cm at
Standa		umnosci	ii <b>4</b> ( 25 °,	Reading	_umitos/cm at
Purge Volume	Time	Temp. •C	pН	Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)
Initial 275	1022	13.3	10 30	462	Meconfig - without
400	1035	135	10.14	445	trusty consu
500	1050	137	2.75	420	296.87
les	1127	17.3	4 34	414	60 /m
700	1123	Africa Du	1 6 74	415	20 'Clayer
Pco.	1135	15 6	7 75	413	"Elemin
				1, 12 = Just , 1	3
17 - 78 2 1	- 10m				,
1 fara al . !	With at least	m 44/)	Collected	I by	Signature ( )
ډ سان ر <u>ب</u>	use got com	المن المديد المرابط	Checked	by	5   G   C   317
· •	i s. literes			(	- • ·····

	•	Burg F12-7	472	Well 24198	
Project	MA ON-			Project Number	15k 44
Date(s) Developed	9/	23/87	<del></del>	Date installed	5/2/47
Personnel (Name/Cor	•	"DLW/FSE	· ·	Well Diameter (I.D.)	<u>' ' 4 in.</u>
		Psis /Esie		Anulus Diameter 😃	2 in. 0 11. to 3/ 11.
Rig Used FSE		WER TRUCK		* 12.	y in. 31 ft. to 74.5 ft.
Pump (Type/Capacity	/ /		GAU	Screen Interval	751 ft. 10 18634 ft
Bailer (Typu/Capacity	N/1				ft. toft
Water Source	PHI			Casing Height (Above G	(L.)ft
Measured Well Depti	1 TOC	(Initial) 1/2	<u>45</u> [1.	Bottom of Screen (Belov	WG.L.). 116. 34
		(Final) 4/8.	<b>/\$</b> ft. /		
Water Level TOC/Da	te/Time (Init		14-72-1/1		
	(afte	r 24 hrs.) 3/.7		09-25-87/04	.45
Feet of Water in Well			•	llons/foot = / 56.3	gallons casing/anulus volumi
Drilling Fluid Last _			allons	One Purge Volume	
Purge Water Lost			allons	Minimum Purge Volum	
Added Water			allons	Total Purge Volume	
Casing/Anulus Volus	ne <u>54</u>	3	gallons	Volume Measured By _	SS SAL DRUM
				Surge Technique	1158 / LOWER POWER
Calibration: pH Me	ter Used:	BECHNIN		210: CY 5 943	
	7.01			C, pH 10.00 =	at 15.2 •(
				17.14 SN 11341	
Standa	rd	umhos/cn	at 25°,	Reading 14/4	_umhos/cm at2 \rightarrow
Purge Volume	Time	Temp. *C	рН	Conductance at 25°C	Physical Characteristics (clarity, order, send content, color)
Innet 400	1146	137	950	421	clear-
FIMAL 1000	1158	13 8	9:42	415	Clear
		٠.			٧
	1			,	
-Final-					11.0
	<u> </u>	<u> </u>	<u> </u>		, , , ,
Romarka Tarita	INU TOL	مارد ی دی د د	nda.	14 Led + 4.719 > 30	フーノンレギ
& -INH IN	M	77" 74	1 70 //7 ()		
Tropo entél 4				}	1
, , , , , , , , , , , , , , , , , , ,				ŗ	1N 1
		/ \	Callant	11 11.	(, , , , , , , , , , , , , , , , , , ,
1. 300 00000 10000	نه که اور ج.روع نه که که دو ج.روع	المام مام	Collected	l by	5 ignature C-3 18
1. 300 00000 10000	نه که اور ج.روع نه که که دو ج.روع	المادة المادة المادة المادة المادة المادة المادة المادة المادة المادة المادة المادة المادة المادة المادة المادة		t make to 1 / /	5ignature C-318
1,700 orașe undi		4844 (1611) (1414) (1414) (1414)	Collected Checked	t make to 1 / /	Signature 4/11/cf C-318

EP-75

**(** 

7332 SOUTH ALTON WAY SUITE H-I. ENGLEWOOD, COLORADO 80112-303/741-0839
------------------------------------------------------------------------

PAGE	OF	<del></del>
------	----	-------------

## BOREHOLE SUMMARY LOG

celling Company	se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s) of bit(s)  se(s) and type(s	orehole	Well	
celling Company	celling Company	roject Name and Location	MU Installator	Project Number 744 44
se(s) and type(s) of bit(s)  Prehole Diameter (172 in. cm. 0 ft. cm. to 3/ ft.  3/8 in. cm. 7/8 in. cm. 122 ft.  Impling Methods Constitution (22 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft.  Intel Number Soil Sampling Tubes  Stal Number Core Boxes  Sumber of Gallons Lost Drilling Fluid  State/Time Started Drilling 7.24.87 0.704  State/Time Completed Drilling 7.27.87 /17 4  State Borehold Depth 122 ft. cm.  Septh to Bedrock 23 ft. cm.  Stater Level Determined By?  Stater Level Determined By?  Stater Time Grouting Completed 7.25.87 0.719  Stater Tremmis Pipe 120  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater I Level 9 ft. cm. 107.19  Stater	se(s) and type(s) of bit(s)  Prehole Diameter 172 in. cm. Q ft. cm. to 3/ ft.  3/8 in. cm. 7/6 in. cm. to 122 ft.  Impling Methods  Continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues of the continues	rilling Company Begles	Driller B. Koa	Rig Number Field /50
prehole Diameter (174 in. cm. pt. cm. pt. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 122 ft. cm. to 12	prehole Diameter (172 in. cm. pt. cm. pt. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft. cm. to 1/22 ft.	rilling Method(s)		
### And Provided By?    And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Prov	### And Provided By?    And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Prov	se(s) and type(s) of bit(s)	8" frience 111/2"	anger
### And Provided By?    And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Prov	### And Provided By?    And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Provided By?   And Prov	orehole Diameter 1142 in.	cmft	cm. toftc
ptal Number Soil Sampling Tubes  ptal Number Core Boxes  pumber of Gallons Loat Drilling Fluid  pate/Time Started Drilling 7-24-57 0704  ptal Borehold Depth 122 ft	ptal Number Soil Sampling Tubes  ptal Number Core Boxes  pumber of Gallons Loat Drilling Fluid  ate/Time Started Drilling 7-24-37 0 70 4  ptal Borehold Depth 122 ft. cm.  apth to Bedrock 23 ft. cm.  apth to Water 23 ft. cm.  ater Level Determined By?  ater Level Determined By?  ate/Time Grouting Completed 7-23-37 0 7 19  apth of Tremmie Pipe 120  allons of Grout 90  laterials Used 9 boxs 6 count, 90 asks water 162 ft. cm.  aterials Used 9 boxs 6 count, 90 asks water 162 ft. cm.		cm <b>7/</b> _ft	cm. toftc
ptal Number Soil Sampling Tubes  ptal Number Core Boxes  pumber of Gallons Loat Drilling Fluid  pate/Time Started Drilling 7-24-57 0704  ptal Borehold Depth 122 ft	ptal Number Soil Sampling Tubes  ptal Number Core Boxes  pumber of Gallons Loat Drilling Fluid  ate/Time Started Drilling 7-24-37 0 70 4  ptal Borehold Depth 122 ft. cm.  apth to Bedrock 23 ft. cm.  apth to Water 23 ft. cm.  ater Level Determined By?  ater Level Determined By?  ate/Time Grouting Completed 7-23-37 0 7 19  apth of Tremmie Pipe 120  allons of Grout 90  laterials Used 9 boxs 6 count, 90 asks water 162 ft. cm.  aterials Used 9 boxs 6 count, 90 asks water 162 ft. cm.	empling Methods	mus come	
ste/Time Started Drilling 7.24.37 0.700  ste/Time Completed Drilling 7.24.37 0.700  ste/Time Completed Drilling 7.24.37 0.700  ste/Time Completed Drilling 7.24.37 0.700  stel Borehold Depth 1.2.2 ft. cm.  septh to Bedrock 8.9 ft. cm.  septh to Water 23 ft. cm.  septh to Water 1.1 cm.  septh to Water 2.1 ft. cm.  septh to Completed as Monitoring Well?  sete/Time Grouting Completed 7.13.37 0.719  septh of Tremmis Pipe 1.20  septh of Grout 90  sete/Time Grouting Completed 7.23.37 0.719	ste/Time Started Drilling 7.24.57 0.70 (ate/Time Completed Drilling 7.27.87 /17 4 (ate/Time Completed Drilling 7.27.87 /17 4 (ate/Time Completed Drilling 7.27.87 /17 4 (ate/Time Completed Drilling 7.27.87 /17 4 (ate/Time Completed 88.9 ft. cm. cm. cm. cm. cm. cm. cm. cm. cm. cm	otal Number Soil Sampling Tubes		
ste/Time Started Drilling 7.24.37 0.700  ste/Time Completed Drilling 7.24.37 0.700  ste/Time Completed Drilling 7.24.37 0.700  ste/Time Completed Drilling 7.24.37 0.700  stel Borehold Depth 1.2.2 ft. cm.  septh to Bedrock 8.9 ft. cm.  septh to Water 23 ft. cm.  septh to Water 1.1 cm.  septh to Water 2.1 ft. cm.  septh to Completed as Monitoring Well?  sete/Time Grouting Completed 7.13.37 0.719  septh of Tremmis Pipe 1.20  septh of Grout 90  sete/Time Grouting Completed 7.23.37 0.719	ste/Time Started Drilling 7.24.57 0.70 (ate/Time Completed Drilling 7.27.87 /17 4 (ate/Time Completed Drilling 7.27.87 /17 4 (ate/Time Completed Drilling 7.27.87 /17 4 (ate/Time Completed Drilling 7.27.87 /17 4 (ate/Time Completed 88.9 ft. cm. cm. cm. cm. cm. cm. cm. cm. cm. cm	ptal Number Core Boxes		
ate/Time Started Drilling 7.24.87 0.704  ate/Time Completed Drilling 7.27.87 //7  ptal Borehold Depth 12.2 ft. cm.  appth to Bedrock 5.7 ft. cm.  appth to Water 23 ft. cm.  ater Level Determined By? 466.44 ft. cm.  ater/Time Grouting Completed 7.25.87 0.719  appth of Tremmie Pipe 12.6  allons of Grout 90  laterials Used 9 5661 Count, 90 466.44 ft. 666 ft.	ate/Time Started Drilling 7.24.87 0704  ate/Time Completed Drilling 7.27.87 /17 4  pital Borehold Depth 12.2 ft. cm.  appth to Bedrock 58.9 ft. cm.  appth to Water 23 ft. cm.  ater Level Determined By? 46.4 ft. cm.  ater Level Determined By? 46.4 ft. cm.  ater/Time Grouting Completed 7.25.87 07.19  appth of Tremmis Pipe 12.0  allons of Grout 90  laterials Used 9 ft. cm. ft. ft. ft. ft. ft. ft. ft. ft. ft. ft			
ste/Time Completed Drilling 7.27.87 /17 4  ptal Borehold Depth 12.2 ft	ste/Time Completed Drilling 7.27.87 /17 4  potal Borehold Depth 12.2 ft			<del></del>
potal Borehold Depth	potal Borehold Depth			
spith to Bedrock  spith to Water  spith to Water  ster Level Determined By?  ster Level Determined By?  ster Completed as Monitoring Well?  ster Time Grouting Completed  7:25:57  or 19  spith of Tremmis Pipe  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grout  spith of Grou	spith to Bedrock  SS-7  St		<u></u>	cm.
Tater Level Determined By? 48 144 444 Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded Accorded A	eater Level Determined By? 48 44 44 44 44 44 44 44 44 44 44 44 44		<u>9</u>	cm.
este/Time Grouting Completed 7:25:87 07:19  spth of Tremmis Pipe 120  silions of Grout 90  Laterials Used 9 bees count, 90 coke water, 1 bay been four to	este/Time Grouting Completed 7:25:87 07:19  spth of Tremmis Pipe	epth to Water		cm.
este/Time Grouting Completed 7:25:87 07:19  spth of Tremmis Pipe 120  silions of Grout 90  Laterials Used 9 bees count, 90 coke water, 1 bay been four to	este/Time Grouting Completed 7:25:87 07:19  spth of Tremmis Pipe	later Level Determined By?	so tape measure	<u> </u>
este/Time Grouting Completed 7:25:87 07:19  epth of Tremmie Pipe 120  allons of Grout 90  Laterials Used 9 boos count, 90 cake water, 1 bay been four to	este/Time Grouting Completed 7:25:87 07:19  epth of Tremmie Pipe 120  allons of Grout 90  Laterials Used 9 bass caref, 90 asks. water, 1 bas ben from the			
allons of Grout 90 hars count 90 caks water, I had been fount	silons of Grout 90 hars count, 90 cals . water, 1 bay ben fruite			
laterials Used a bass count 90 sals. water, 1 bag been tower	laterials Used a bass count 90 caks. water, 1 bag ben from	epth of Tremmis Pipe	<i></i>	
laterials Used a bass count 90 sals. water, 1 bag been tower	laterials Used a bass count 90 caks. water, 1 bag ben from			
amments arouted to curtice anded eve out a hole	omments growted to curture, pulled eve out quale		count, 90 cale. was	ter, I had been town to
			to current ou	ued ove out a hale
		Wellsite Conlogist	. O Benson	Date 7.29.67
Wellsite Geologist C D Busson Date 7.29.87	Wellsite Geologist CD Buse 7.29.87	•	7/30/17	by Ata Part
Wellsite Geologist	me a later ()			
hecked for Grout Settlement on 7/30/27 by Star Park	hecked for Grout Settlement on 7/30/17 by		headed	
hecked for Grout Settlement on 7/30/87 by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by	hecked for Grout Settlement on 7/30/87 by Stanford	uniount of Grout Added		
hecked for Grout Settlement on 7/30/87 by Standard Inspection of Grout Added Inspection Added Inspection III Measurements from Ground Vevel 7/10/20	hecked for Grout Settlement on 7/30/67 by Standard Insount of Grout Added Insound Level	Anyount of Grout Added		Data 2/14/88
hecked for Grout Settlement on 7/30/87 by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by Standard by	hecked for Grout Settlement on 7/30/87 by Standard Involunt of Grout Added Level Reviewed by Tank Park Date 2/19/88	Anyount of Grout Added		Date 2/14/88

٠ ٦

23223

EP-7SA Well Number:_ Borehole:___ Urified Soil Classification Sample Number Somple Interval Tube Number Tube Interval SOILS LOG Jepth - feet Description CIAY: 20% Dilt, 10 YR 5/4, yellowish brown otil, moist, medium plantic 9 3% CHy, 30% wilt, 10 YR \$3, brow, medium stiff CL moist, medium plastic, 10% Sano, fint coaux 11/30 CL CIAY, 35% Samo, fine to very coarse graind. %; 1048 8/4, very pale brown, moist, medium st medium photic, colconous 1 SM Silty SAND, 20% Dilt, Fine to very coarse gra Friam mand demalley theil, 4/6 Yes Ourte redium dense, non plantic, medium decree? 10

	H V. C	Date: 7/23/87-	
Drill Site	Geologist: Men Hans	Date:	C-32
Danianad	By: Double Real	Date: 9/89/87	
Keriewea	BV		

(1)

**(*)** 

Well Number: 23223 Borehole: Unified Soil Classification Tube Number Tobe Interval SOILS LOG Jepth – Feet Description Somple SM Silty Sono, (Lee pg 1) 12 SC Changer Sand, 12% Chy, fine to very course grand
sans, 10% fine to maion panel, 2.5 Y 6/4 light
yellowish brown, moist, v. how glastic, majour dense 14 Sans Party graded, give to very come graved sond 5% stress years, 2.57 6/4, light yellowish 15-19 brown, moist, non plantic, medium dura OP Parts gradid gravel, 40% sound, medium to v. eng coarse grained, 2.5 Y 6/4, Right gellowish brown 93 moist, non planti **SP** Poorly graded samps, gireto very course grained son 5% small gravel, 2.57 6/4, light getlowish brow 18 moist hon plact of bear SC Clare sano, 40% clay, fine to medium grained sand 2.57 5/4 light olive brown, dense, to fow playlic 5m Silty sano, 15% alk, fine to nature grained, sound, 2.57 6/4 light yellowish brown, moist, medium dence, non plan the 20 Clayer samo, 30% clay fine to medion grained cond 2.59 \$14 Right olive brown, moist, medium Elect Elen

Drill Site	Geologist: Leve Jaro	Date: 7/23/87
Reviewed	By: Joseph L. Recc	Date: 9/29/87

C = 322

Borehole: EP-75A 23223 Well Number:_ SOILS LOG Description Unified Soil Clos ge clayey oand (au 85 2) SM Sitty Sano, 15% silt, fine to coonse grained Aand, 2.57 'SI4, Right olive brown, medium 21. dense, moist, non photic 1.0% 22 23 SP Pourly Graded Stros, Coarse to very warse grained Dando, 5% small gravelo, 2.54 6/4, 24. light yellowish, brown, medium dense, sature non plastic. 71 27-14 grando increase to 10% and size incuance to small to medium grand GP Poorly graded gravelo, 30% sand, course to u. coarse graind, smult to med size yourel, 10 4 8 6/21 ight gellowish, brow, snedien denne postunated mor blustic 29.8 Chystone Beduck, by 5/3, Olive, very stul moist, medium plastic, wentlessed, blocky

Drill Site Geologist: Sans
Reviewed By: Joseph L. Rus

Date: 7/23/87

Date: 9/29/87

C = 323

_	Bore	hole:_	FP-	75 A			Well Number: 23223
•	Depth - Feet	Tube Number Tube Interval	Recovery	Sample Number	Somple Interval	Unified Soil Classification	SOILS LOG Description
	32-	240,026,012	30.0	*	Same As tule Interest		CIAYSTONE BEDTOOK (SEE PG 3)

Drill Site Geologist: Stend Japan Date: 7/23/87

Reviewed By: Date: 9/29/87



<b>©</b>	Ξ,		Structur Beddin	e/ Ho	rd.	Pern	١. ا	Miner	ology	Color	Teature / Green Size cist ed o	Line	Lith.	Well(s) <u>EP75</u> Page . Description / Comments
		US	Angle De		" H	1º Hit			Hobit	M G	elet sel g mm .OI LO	ति CI 100	Closs	CM (Scale 1": 2 11)
	1	EE	MA	ANE _						104A.			CL	
	<u> </u>					1-1		1		VRIY BAIK		7		
	F					1-				gray'			ļ	1
	Ŧ					$\exists$	$\exists$	CON =%	<b>÷</b>			3		
52	Ť		+					-%	-		H=	3	•	-
	1_1			-	=			ļ				₫		
	18/5		+	ļ	1			1	. <u>.</u>			‡		_
İ	Ŧ						H	ļ	<del></del>			7		-
54-	<u> </u>		-				$oxed{\exists}$	i	<del></del>			}		
'	‡		1					ļ				}		
ł	‡	-1										‡		
[	<b>†</b>		Ť		-	7		 : سهه	ا ج			clay	55	SILTY SANOSTONE
	Ŧ					= =		Cen :	Ŧ			CIAY		1
56 -	-				$\exists$	7-		Ì				52	CL	Clay stone
	‡				$\equiv$			AN:	<b>4</b> .			5% Sitt		
	‡				++			25%				1,9	بلاد	
	‡				1		긐	j	ĺ			1		
rg -	<del>‡</del>											7		
"	14%		T		1			دهيرا	=			1	-	1
	1	╁┤					$\exists$	10%	_			3		
	+	坩	+		<del>-</del>							}		1
	‡	二二									-	1		
••-	<del>-</del>	1=	+		+							1	_	<b>_</b>
	Ŧ	$\equiv$				-		Ì		ļ	:	1		
			1					}				-		
	‡					1:+						]		
	‡	11	1	+		1::		j	1			‡		
•2-	+ l		<b>T</b>		-							15%	_	
	]											SIP		
	4.5		+					5%				!	.	
		1=			:  ::			- /0		-	:	si/r		_
64 -	<u>.</u> !	14		eres :	: : :			i	ļ			1 ""	· _	
	: 1		HEA	eive dy						1	:   : ::	1		
	1	-	Fra	Porto		7		i	- [	1		1090	55	Silry SANGETONE
	•		:	::			1:			- 1	:   : -	B//F		
, ,	1	1		j:	ſ	<b></b>	1:			İ	:/::	¦	.01	  -   O   due a   E
• 6		=				• • •	11			!	1 :::	1	-	ClaysTONE
	: :		1 1	į .			] :	:	j		( : : :	1		
	: i	::	<b>INT</b>	840 ·		וֹר	/		ļ	!	$\mathbf{I}$	15%	,55	SANDSTONE ,
									1 !	i		Clay	;	Q /AUSTUA
63	4.0	1::					• :	•			1::	•	_	INTARAL
	7								!	į		1		
	•					J			i	;		†		C-3
			Eur	MA,		·	ء (	173					CL	Clays rowh
	•	1 .	•		-		1 '	- A -		•	1		1	1

Þ

. 🔷)

•		•		ucture/ dding	Hor						Color						
	ו בי	u s	Angle	Desc.	5	HL	1º   HIL	2° H	Min	Habit	M G	01"	SEB ed gr	Char.	Closs FI	CM (Scale )"=	<u> (+)</u>
	T . I			Interesty				ΞŒ	CH.	1	Joys Sery Sery Sery	H			CL	Claystone	
,	1/2	_		Fractive					/	سف	VERY	:					
-	<del>I</del> '	1-	-	r				-		1	BONT	-:			•		
	i l				-			$\pm$			,	口:		'			
72-	I I		_					=1:				占:			-	1	
'` :	<u> </u>	1-		MASSIVE				_):	CIN	=	!						
	ł I	上		!		-		:/:	17		l						
-	t l	1	-	<b>T</b>		$\perp$		1=	•			口			'		
	t l	_		į	L				1	İ							
74-	ا ر ـــــــــــــــــــــــــــــــــــ	#	_	_		_;	_	-	1		ĺ			10/9		 	
	: % :			t			4-	1=	į	İ				2590,	55	SILTY SANGETONE	
	<u></u> †′	_				==			1					••••	i	1	
-	<del>†</del>	1	-	<u> </u>				<b>!</b>	1		ł	-					
٠ ١	‡	-		ļ			-				ļ			İ			
76 -	<u>+</u>		_	<u> </u>			- -	!=	1	}	İ				-	1	
	1		i	1			- :	-	į	İ	•	_					
	t		1	!		: : : -	-  :		1	ł				1049			
-	-	_	•	Jut 800			ピニ	1=	4	i		-			106	Claystone	
	<u>.</u> +	-	1	1			<b>:)</b>	[::	CON			::(		SAMA		5:	SINTRIG
78-	<u>+</u>		-	<u>_</u>		<u> </u>	(: <u>:</u> -	-	5%	一		二,	)		-		
'•	‡		1				:).:	<u> </u>	1		ļ	1-5		1			
	<u> </u>		4	1			 )	-	1	١.		:(		1			
-	+ 4 <	-	:	<del>-</del>	-		:):		264	三	i	-)		1			
	4.5		•		 	]::::::::::::::::::::::::::::::::::::::	<i>(</i> :::)		- / <b>- %</b> - 1	سعت	1	<b> ::)</b>	• <del></del>	1			
80-		1	-	MASSIVE	: -{	<del></del>	7:	‡ <u>-</u>	1,		1	1.	· -• · •	1	-	<del> -</del>	
	‡ :		<del>-</del>				: :	1	יונין.	三	1	-				<u> </u>	
1	ļ. t	1	1			1:	- :		1	i	I	-		sile	55	SANGSTONE	
'	+	1-1-	<b>i</b> .	†		17	1:		1	İ		:		1		1	
1	‡		+			1.	- -		1	1				1			
82-	+	=	1 -	<del> </del>		-	- :		1	İ	1	:	•	]	-	-	
	Ŧ		1	1		-	- :	-	1	į		•		}			
ì	‡	-  -	7	1	-		- :	1.	1	i				}			
	Ţ	-	] '	Ī		-   †	- ;	-	]					}		<u> </u> -	
	Ĭ	- -	-	•			:		1	!	1			1			
84		:	- • -	· · · · · ·						!			• •	i	-	-	
İ	1/5	: [ :	-					1:	:		i	j :	•	}		!	
	<u> </u>	-  -	-	-			-   -	•		t					!	1	
	Ī	-	, -1		:		:   •	.	;			•	• •	1		:	
	:	<u> </u>							1		[						
86-		-	-			1		1	Ì		1					1	
†	•	1	•				.   .		1								
			•	_							1		• :			i	
	:				,	1.			1		į	1		į			
86 -	•	٠	•			1:	$\cdot$				1	;		i	İ	1	
88			•	<del></del>	,		.	1			1	• .			'	†	
	116		•				: ] .		•				1::				
1	 			••		1			:		:			Ì			C-32
	•		•		•		-   :	1.	1		!	i i		!	İ		
						1					'			•	•		

**(9)** 

Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Si	(60X)	I .	A.F.	Str	ructure/ edding	Hard		Perm.	Minera	logy	Cala	Green S	<u></u>	Lith.	Lith.	Description / Comment	14
The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa			u S			ness	H	* 2*	<u> </u>	labit	M G	cist so	97	Chur.	Class		
TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO  TOTALO		ī	Ħ		MASSIVE						1075			10/25/1			
THE SET SOLD STORE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTO		123					-	1	1		3/1		-				
THE BOOK STATE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE C		†	<u> </u>	-	t		+	<b> </b>	1		BACK		듸		-	1	
The BOD SAMESTONE Clayer of Chief Samestone Clayer of Chief Samestone Clayer of Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Samestone Chief Sameston		‡	<b> </b>				1	1	1		Gray	=======================================	=				
The sade of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa	92-	<del>+</del>		-	-		7	1	1				$\exists$		_	4	
The body of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the st	1	Ŧ															
The BOO STATE Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Claystone Cl	1 .	<u>I</u> :							]							j	
The body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the bo		‡							!							<b>-</b>	
The body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the body of the bo		<b>+</b>			İ								<u> </u>				
The bad Same Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter of Chapter o	77-	14.		_					1							1	
THE SOLUTION STATE OF STATE STATE SANGETONE STATE STATE SANGETONE STATE STATE STATE SANGETONE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE ST		}^							1	ĺ							
THE SOLUTION STATE OF STATE STATE SANGETONE STATE STATE SANGETONE STATE STATE STATE SANGETONE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE ST	1	<del>†</del>		-	Tir see		_ L.	<u> </u>	CON -	<u> </u>		-1		2=9	66	Conservate	
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	İ	‡		1		<u>  </u>	+1		5%			-:/:-		chy	32	CAYE	70A
ABSING SITE OF SITE SANGETONE CANADADA STATE OF STATE SANGETONE STATE OF SANGETONE STATE SANGETONE STATE SANGETONE STATE SANGETONE STATE SANGETONE STATE SANGETONE STATE SANGETONE STATE SANGETONE STATE SANGETONE STATE SANGETONE STATE SANGETONE STATE SANGETONE STATE SANGETONE STATE SANGETONE STATE SANGETONE STATE SANGETONE STATE SANGETONE STATE SANGETONE STATE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGETONE SANGE	76 -	‡	1	_	!		$\pm_{i}$	)						·	_	120	T614
THE BOOK STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF		‡	-		į			)	1	Ì			_				
THE SOO STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STAT	<b>.</b>	‡		_				\					_		_	<u></u>	
THE SOO STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STAT		1					- 1	/	]				=		_	]	
THE SOO STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STAT		1			i I	:	<b>†</b> .	)	1			_   .	-=				
TOP SITE SOO SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRUCTION OF SOLIT SANGSTONE CONSTRU	173-	<u> </u>		-	<b>-</b>	:		·	1				=		_	1	
TON SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF SALES OF		1./			•	=:  :	_ _(	( <del></del>	1	ļ			:::				
TOY S/S  TOY S/S  TOY S/S  TOY S/S  TOY S/S  TOY S/S  TOY S/S  TOY S/S  TOY S/S  TOY S/S  TOY S/S  TOY S/S  TOY S/S  TOY S/S  TOY S/S  TOY SANGITONE  TOY  TOY  TOY  TOY  TOY  TOY  TOY  TO	.	<del> </del> 7/4		-	-		-17		" "			- ] :		<u></u>		a de como de	
TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY		Ŧ							cake )	ا المرا					c۲	Crysta //1	~ E
TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY 5/5  TOY	/00 -	<u> </u>		_	Francis	-	- ]					_/::				- VAINS OF	EA
TOT SOO SILT SANGITONE C-		‡				<u> </u>			İ							77-	7 /4
TOT SOO SILT SANGITONE  ANNIAR  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO  TOTO		‡	1			:						7					
TOT SOO SILT SANGITONE C-		Ŧ !		_				• • • • •		,	CVA		-		•		
TOT SOO SILT SANGITONE C-	ŀ	1			14772274		1				17	-					
TOY 5/5  THE SOLD  TOY  SOLD  TOY  SOLD  TOY  SOLD  TOY  TOY  TOY  TOY  TOY  TOY  TOY  TO	108-	+			<u></u>				1		Anm				-	1	
TOY 5/5  THE SOLD  TOY  SOLD  TOY  SOLD  TOY  SOLD  TOY  TOY  TOY  TOY  TOY  TOY  TOY  TO		‡					11		1		Bray	:-					
TOT 600  JOY SANDITONE  AMBINER  C-  1090  1090  1090  1090  1090  1090  1090  1090  1090  1090  1090  1090  1090  1090  1090  1090  1090  1090  1090  1090  1090  1090  1090  1090  1090  1090		†		-	<del> </del>		$\top$	•- •					_		-	<b>.</b>	
TOT SOO SILTY SANDSTONE  AND SILTY SANDSTONE  AND SILTY SANDSTONE  C-		į ,			!	,				1						Γ	
THE SANGETONE STATE OF SANGETONE C-	104-	-5/5		_	<del> </del>		1					: :	-				
THE SANGETONE STATE OF SANGETONE C-		•		! !		¦ :		• • • • •	1								
THE SOLD SANGETONE SILT SOLT SANGETONE C-		Ţ			!			• • • •	ļ i								
THE SAND SILT SONO SILT SANDSTONE C-		-		•	· ·	: :									-		
THE SAND SILT SONO SILT SANDSTONE C-		!			!	:											
THE SAN SILT SON SAN ASTONE	106-	-	:=	- !	1	; : .							:			†	
MASSING C-		•		; ;	i	! : :	- 1		! !	i	1045						
MASSAR C-		-		· ·	ENTANA	• '	- {		:	l	3/1		1	244	1.5	Selte SANDITONE	
MH35MR C-						:	•	<b>)</b>		•	dank dray			silr			
4 - 1 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	108.		. :		<u></u>	: :	• (	<b>)</b>	i ;	i	•				_		
4 - 1			. :			_	1		:	ł	ļ	.   :					_
	1				MASINA -			]	•	,			: :	1090			C-1
	.!	i 1				Ì			· •	į			: ;	silr	-		
	•					ļ							1	ı		1	

<b>®</b>	Pec.	***	Angle	ucture/ dding Desc.	Hord-		2.	}	ور داران	Color M G	e11]	44 01	Lith. Char.	Lith. Class	j	n/Comments
	3	U S	Angle		5 1	111	<u> Н</u>	Win	nabir	M G	.01	10 10	00	FI	CM (Scale I"=	
	1		'	MASSNE		77	#1-	] ]		3/i gark Gray	_			55	SAUBITONE	
	1 _/					1-1		1		Anck		-				
-	1%		4	-	<u> </u>	+	<del>   </del>	1		Brny				-	₹	
	Ţ						Π	1 1						ĺ	1	
	‡					##	11-	! i								
//Z-			_	-		+	<del>!] _</del>	1			<u> </u>			-	┪	
	<b>₹</b>							!							[	
	‡	H				-		1			-					
-	<b>†</b>			-		11		1 !						[ '	1	
•	ŧ :		1			+-1		1 1						<u> </u>	Г	
,,,	I		ı			┷┷╁		:			<u> </u>					
//Y -	%		_			1-1		1 1			<b>—</b>				]	
	<b>'</b>			INT 616				5%		<del>)</del>						
	Ł			_	<u> </u>	<del>-</del>		18	7		_			İ.		Claystone INTRIBER
-	ļ	H	_			1-7	+1-				<u> </u>					INTRIBER
,	‡					1-1	#=	1						ŀ		
116 -	_		_				11	1						_	1	
// • <u> </u>	<del>]</del>					1	-	}						-		
	Ţ				F	1-1	-   -	1							<del>-</del>	
-	-		-	mla # a a = : =		لت	:[=	•			-/				ر م ا	
	1		ı	MASSNE		-   -	<b>∵</b> ':}∵	: :			-7		,	CL	Claystone	
118 -	5/			ļ	1::1	.11:		i							· ·	
118 -	18		-	-	<b>/</b>	-   -	F	} ;			-   -			-	4	
	<b>[</b>		· 			71-		ļ								
	‡							1			]]					
-	† '			<b></b>	1-1:			. :				· · · • · · · • · · · ·		•	1	
	+	H-H				-     -		!!!			<del> </del> -∤-					
	Ţ	H =				11:					П	•		}	L	
/20 -	+		_	-			-	:						-	1	
	į '					11:	1 1	:			╽.	h a—a ≀ b⊢ah a- i				
	£ !		_											İ		
	Ţ					+1:	4	]			Н			•		
•	‡							1 1								
/22 -					<u> </u>	<del></del>	• • •	<u> </u>			1				-	
	‡				ريشرا	· • · • · •	4	K.	. :							
	†					4	<i>DF</i>	100	RIN	7						
•	<del>.</del>		-	-				1							4	
	†					7		] [			[:				_	
	!							1								
/ <b>2</b> 4 –	1	1 :	_	<b>.</b> _		<b>.</b>		1			:			-	- <b>i</b>	
						1		i			ĺ			i I	1	
	†					<b>;</b> : :		i '			:					
	<del>-</del>		!	<del>-</del>		1::	• • •	<b>'</b> i	1		: .				1	
	‡ :				: .	1:	1	<b>.</b> .							1	
126 -	1			_	: : :			!!								
	•				[			! :								
	:			<b>}</b>	ı											
	•		١.	-		• •		ł 1			1		<b>!</b>		1	
	. ;					• • •				! !				İ		
							• •	¦ .		ı	-					
118 -	:	•		_		•	:	•			, ,			_	i	
					• • •	1	1 1 1	· ,		1				ļ		
																C-3
	• •			•				•		!					4	
		•			•	• : •		•		ı	•		l	1		
	,														-	

**(** 

(3)

		10 mm	$\cdot \Gamma$	1 6 3	1155	호	Location		200	ŝ	1		100	7	Density Source No	2	in Osher		-	Neutron Source No	Shepting Shepting	Dynes		RESISTANCE OPPLIES I INCIDES
,	7	Coope 100 FT	1		2	Change Franch	al and a second	JAANA PARAGE	25.2	1950 Seed 1000 See	25 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and	E	lead .		Gamma (Analog)	Gamma (Digital)	Caliper	Femperature		SWECTOWAL DATA		Azimuth	fine Vertical Survey Depth	
. Jaging	op _e		5		- COLORADO		System Cynesis Lade				10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10 February 1 10	11 11	В		e,			,				-		S.P.
rrontier Logging	Letemood, Coloredo	FS F	EP. 75	RMA	- ADAMS COUNTY			TIT DEMANDE	To larged 12/ FT San	85	Page Case 1		3	_		1,60 v 10° 7	1.10 31/8"	2 2	Resistance		O MY/ Inch			C-330

BEST AVAILABLE COPY





# ESE ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. 7:332 SOUTH ALTON WAY-SUITE M-1 ENGLEWOOD, GOLORADO 80112-303/741-0030

## WELL CONSTRUCTION SUMMARY

Borehole EP-75 A	well 25223
م م المعادي المسلم	23 Project Number \$193702\0
2	. 10,001
Drilling Company Coyles Dros Driller De Drilling Method(s) Hollow ston aug 3/4"	42-1-2
101/	
incm	_ftcm. toftcm.
Size(s) and types of Bit(s) Hollow Steen Asen 124"	Sampling Method(s) Continuous hallow Sten Avel  Date/Time Start Drilling 7/15/97 0726
Size and Type PVC 4" Sel 40 0.18" slet	Date/Time Finish Drilling 1/16/87 16 28
Total Borehole Depth 32.0 ftcm.	Date/Time Start Completion 7/0/87 0633
Depth to Bedrock 295' ft	Date/Time Coment Protective Casing 7/17/97 0915
Depth to Water 22.7 ft	Materials Used 3con bones , 23' of 2" tubes
Water Level Determined By Sanding + Samole	Plain PVC 1-10' 2-5' section
Length Plain PVC (total) 17.06 1247 icm.	Slotted PVC 1-10', 1-5' . action
Length of Screen 16.21 ftm.	Bentonite Pellets 45 becket
Total Length of Well Casing 33.27 ftcm.	Bentonite Granular 1,5°5, 128 649
PVC Stick Up /270 ftcm.	Cement 3 bass
Depth to Bottom of Screen 3157 ftcm.	Sand 1 6450
Depth to Top of Screen 15.3 bft	Water added during completion
Depth to Top of Send	Water added during drilling 20 gol
Depth to Top of Bentonite 6.0 ftcm.	Total Gallons of water added 2000
Drill Site Geologist Dans	Date . 7/17/43
	NICF
Date/Time/Personnel Internal Mortar, Cement Pad, and W	eep Hole Installed 7/23/7 7/23/7
Date/Time/Personnel Casing Painted 7/23/8 7	1100
Date/Time/Personnel Numbers Painted 7123187	1100
Materials Used 15 80th buys of comme	the min
Top of Protective Casing to Top of PVC 0.3 ft.	cm. COMMENT/NOTES
Top of Protective Casing to Weep Hole 1.1 ft.	cm.
Top of Protective Casing to Internal Mortar 1.24 [1.	cm.
l'op of Protective Casing to Top of Coment Pad 1.75 ft.	cm.
Top of Protective Casing to Ground Level 1.90 ft.	cm,
Reviewed By	Date 5 . 3 . 5
Drill Site Geologist	Date 3/16/97 C-334

Borehole: EF-75A Well: 23223 Depth-Feet Soil/Rock Type Well Completion Description Joints Gound Leve Cemmt - 6.01 · 5.3 1 ۲ bot TOP of bentonite destructe mal 6,0'-11,0' 10 . 110+ TOP OF SAWO SAND pack Interne 11.0'-22.0' 19 1836+ TEP OF SEFER 13.36 Screen interval 15.36-31.57 20 . -20.87 227 + static water Level 25. 28.9 + Top of Bedrows 30 -3137 + Bottom of screen 328 TISTAL DEPT H 35 Date: 7/17/87 Drill Site Geologist: Ature Para C-3

Reviewed By:

			•
ES	E	ENVIRONMENTAL SCIENCE AND ENGINEERING, 7332 SOUTH ALTON WAY • SUITE H-I ENGLEWOOD, COLORADO 80112 • 303/741-063	INC

(**a**)

(*****)

CAR DT	١	2
SHEET	OF	

## WELL DEVELOPMENT DATA

Well 23223

EP-751

poject ZAAA geate(a) Developed precursel (Name/Competing Used ESE wife ump (Type/Capacity)				Project Number  Date Installed Well Diameter (I.D.)	7/17/87
preonnel (Name/Compe					4 1
is Used_ESS_use					
g Used ESE wife	. feat			Anulus Diameter	2411Q1610 22-1
imp (Type/Canadity)				•	inft. toi
mil (+ 2 han mahannı) i	corcusts for	x/76m		Screen Interval	15.36 (1. to 31.57)
iler (Typp/Capacity)_		)/A	<del></del>		
ster Source	RMA			Casing Height (Above	
essured Well Depth TO	oc	(	<u>z,                                    </u>	Bottom of Screen (Beld	ow G.L.)
		(	13 ft.		
ater Level TOC/Date/T		-/	8-4-87/11		
	q.o		427 /8-17-		
et of Water in Well				lona/foot - 23.68	gallons casing/anulus volun
rilling Fluid Lost	N/A		gallons	One Purge Volume	
rge Water Lost	20		gallons	Minimum Purge Volum	~~/
dded Water			gallons	Total Purge Voluma	575 gallo
sing/Anulus Volume.			gallons	Surge Technique	,
slibration: pH Meter	lland. "	Becker 40	مع الع	Surge rechnique	
pH 7.00 =	ــــ ;Deeu	A1Z		C, pH 10.90 =	0.06 at 20.1
Conducter					
Standard	1000	umhos/cm	a at 25°,	Reading 1001	_umhos/cm at _25
Purge Volume	Time	Temp. •C	рН	Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)
initial O	128	22.4	7.35-	3560	some sund.
. 40 1	200	14.6	6.79	7730	Sind And Counting row
80 1	1243	15.3	6.74	7610	partly cloudy w/ vione s
120	328	15.6	6.72	7520	willy clear, some some
160	1409	15.8	6.76	7520	cloudy my 14 brown 50
Final 2/5	1506	Korz	6.76	7450	greenile brown silt.
omerko: Juitid	HAU @	wellbeard -	0.8 pm.		V
Flow rute			68 mpm	,	
WW TW'C		Jam. 10.	11	7 1 1	A 1.
					<del>} </del>
	/	, ,	Callagrad	Line / Alabo (cala)	'1 8/4/87
Pune Vol = 2088		seale vol.	Collected		Signature .
Punge Vol = ZaBB	casin/ mader,		Collected Checked	1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	

(*)

SHEET 2 OF 2

## **WELL DEVELOPMENT DATA**

•		Bore EP.	75 A	Well 23223	
rojectRA	11 ON-	POST		Project Number	TASK # 44
ate(s) Developed	8/	11/87	-	Date Installed	7/17/87
ersonnel (Name/Con	pany)	BLY/ELE		Well Diameter (I.D.)	
	7	JIS IRSE			12-4 in. 0 11.10 34 11
	WEU SAA	IXE -RUCK	<u> </u>		ft. toft
ump (Type/Capacity	GRUNDA	501/76PM		Screen Interval	15.36 ft. to 3/. 57ft
ailer (Type/Capacity	NI	1			
leter Source		usi		Casing Height (Above	
leasured Well Depth	TOC	(Initial) 33.	2 11	Bottom of Screen (Beld	
resputed than pobin		(Final) 32.5			1
Vater Level TOC/Dat	effine (Initia			/1100	
After Peace 1 CC/Det		24 hrs.)2	14.27/7-	17/87/1320	
est of Water in Well	_ `			llons/foot - 20.88	gallons casing/anulus volum
rilling Fluid Lost			allons	One Purge Volume	40.00 gallon
	. 7		alions	Minimum Purge Volu	
urge Water Lost			allons	Total Purge Volume	A
dded Water			allons (allons		5 GALLON BUCKET
	16 <del></del>	00	:auons		) O-400-1- O
asing/Anulus Volum			,		
			•	Surge Technique	AISE / LOWER PURC
Calibration: pH Me	ier Used:	BECKUA	w Ø2.	Surge Technique R SN: 615383	AISE / Lower Pump
Calibration: pH Med pH 7.00	er Used:	Bæckun al	w Ø2.1 23.7	Surge Technique	AISE / LOWER PURC
Calibration: pH Med pH 7.00 Conduc	ter Used:	Bæckend at Used:e	w Ø2.1 23.7 •	Surge Technique	MISE / LOWER PUMP
Calibration: pH Med pH 7.00 Conduc	ter Used:	Bæckun al	w Ø2.1 23.7 •	Surge Technique	MISE / LOWER PUMP
Calibration: pH Med pH 7.00 Conduc	ter Used:	Bæckend at Used:e	w Ø2.1 23.7 •	Surge Technique	MISE / LOWER PUMP
Calibration: pH Mei pH 7.00 Conduc Standar Purge Volume	ter Used:	BECACMA at Used:CA umhos/cm  Temp. °C	23.7 45 Dress at 25°,	Surge Technique R  SN: 015383  C. pH 10.00 = [134]  Reading [00]  Conductance at 25°C	umhos/ci at 25.4  Physical Characteristics (clarity, udor, sand content, color)
calibration: pH Med pH 7.00 Conduc Standar	ter Used:	Bacacacacacacacacacacacacacacacacacacac	w Ø2.1 23.7 . 45 Dres 1 at 25°,	Surge Technique	umhos/ci at 25.  Physical Characteristics (clarity, udor, sand content, color)
Calibration: pH Met pH 7.00 Conduc Standar Purge Volume	ter Used:	BECACMA at Used:CA umhos/cm  Temp. °C	23.7 45 Dress at 25°,	Surge Technique R SN: 015383 C. pH 10.00 = 1/34/ Reading 100/ Conductance at 25°C	umhos/ci at 25.4  Physical Characteristics (clarity, udor, sand content, color)  Cloudy by brain 5 off A
Purge Volume  Initial 2/5	Time  1004  1028	BECACHA  at  Used:CA umhos/cm  Temp. °C	pH 6.85	Surge Technique _R	Physical Characteristics (clarity, under, send content, color)  Cloudy of brain 5 of black from fin. 5 and mostly clear is the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the
Purge Volume  Initial 2/5 275	Time  // 1004  // 1000	B.EC.C.M.A. at Used:C.Pumhos/cm Temp. °C  16.5  14.6  15.5	pH G.85 G.74 6.6?	Surge Technique _R	wise / Lower Pune    Cook   23.4
Calibration: pH Met pH 7.00 Conduct Standard Purge Volume  Initial 2/5 277 295 335	Time  // 1004  // 1000  // 1000  // 1000  // 1000  // 1000	B.EC.C.M.A. at Used:C.Pumhos/cm  Temp. °C	pH G.85 G.74 6.69 G.67	Surge Technique _R	with the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of the sent of t
Purge Volume  Initial 2/5 275	Time  // 1004  // 1000	B.EC.C.M.A. at Used:C.Pumhos/cm Temp. °C  16.5  14.6  15.5	pH  6.85  6.69	Surge Technique _R	wise / Lower Pune  23.4  umhos/cs. at 23.4  Physical Characteristics (clarity, udor, eand content, color)  Clouds up brown Sirt a  Usek / brown fin. Sand.  Mostly clear is some  Yhost / y Char  Some Sirt  Mostly Clear Some
Calibration: pH Met pH 7.00 Conduct Standard Purge Volume  Initial 2/5 277 295 335	Time  // 1004  // 1000  // 1000  // 1000  // 1000  // 1000	B.EC.C.M.A. at Used:C.Pumhos/cm  Temp. °C	pH G.85 G.74 6.69 G.67	Surge Technique _R	with the sent punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punch punc

1 Purge red. = 20.88 resing lander vol. + 20.00 alded water 40.35 gallons Collected by . Checked by

C-337

## WELL CONSTRUCTION SUMMARY

Borehole _	59-75D)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			33225			·-··-
Project Nam	e and Location	RMA	Seethon	23		Project	Number	Task 44	
Drilling Con	npany Boy	es Bres	Drille	Ton	Irvina	Rig	Number_	<u> </u>	
	hod(s)								
		•					. 1		
Borehole Dia	ameter 12 1/2"	•jn	cm		ftcı	n. to	<u>. 0</u> ft.		
	_('')	_in	cm	32.0	ftcı	n. to9	<b>5.0</b> ft.		_cm.
mi	ypes of Bit(s)	علالا " 38			Sampling Meth	ander N	1_		
Size(s) and ty	Abes of Piris)				Sampling Met Date/Time Star			0915	
Size and Typ	4.11	Schol 40		- '	Date/Time Star Date/Time Fini	ish Drilling	5/6/17	1445	
Total Boreho	-	95.0 ft.	CD	n.	Date/Time Star	t Completio	n 8/6/83	1445	
Depth to Bed	<del>-</del>	29.0 ft.		n.	Date/Time Cen	nent Protect	ive Casing	7/28/17	082
Depth to Wa			CT	n.	Materials Used	97' 1	14 00 st	il com	
-	Determined By				Plain PVC				10
	n PVC (total)	AND ST	cr		Slotted PVC				
Length of Sc		16.23 11.	cr		Bentonite Pelle		2 busher		
_	h of Well Casing	A 4 9 11	Cr	n.	Bentonite Grai				
PVC Stick U	_	1.54 ft.	cr		Cement				
	ttom of Screen	9420ft.	cr			3 600			
Depth to To		71.57 ft.	cı	n.	Water added d	uring compl	letion	0	
Depth to To	-	77.2 M.	C1	n.	Water added d	uring drillin	g 30	gal_	
~	p of Bentonite	72.0 ft.	cı	n.	Total Gallons	of water add	ed J	الموه	
·		L	_					O	
Drill Site Ge	ologist	Jans	<u> </u>		Date				
			_	> 5/10/1	37/0830/04	W, TAL			
Date/Time/I	Personnel In	ternal Mortor,	Cement Pag				17, 1100/	DIM	
Date/Time/I		asing Painted	ا ما ا م	87/151				<del> </del>	
Date/Time/I	Personnel N	umbers Paintec	1 8/20	107/09	16/ NW, CH	<u>•H</u>			
Materials U	sed	MAGS OF QU		\ 					
Top of Prot	ective Casing to	Top of PVC		50'st	cm.		COMMEN	NT/NOTES	
Top of Prot	ective Casing to	Weep Hole		en.	cm.				
Top of Prot	ective Casing to	Internal Morte			cm.				-
. op of Prot	ective Casi g to	Top of Cement			cm.				
Top of Prot	ective Casing to	Cround Level	2.	27 ft	cm.				C 5.
	Reviewed E	Зу		•					C-31
	Drill Site G	eologist				<u>.</u>	Date		

•

(4)

Borehole: FP-75 D1 Well:__ Soil/Rock Type Well Completion Description Gound Level Sints l. 27.83' controliza .29.0' Approx. badrock
-31.77' Bottom of 38" steel cooling So still controlizer 70 15 Bothom at have to the total depth

Drill Site Geologist : Her Park
Reviewed By:

Date: 8/10/17

C-339

(**4**)

(**4**)

***	•	Born EP-7	5 DI	Well 23224	
Project RMA	an-cost	COI Vallettanania			44 87937
	1.21.4	)	فالتبييسيات		1-6-97
Date(s) Developed_		W LOSE	<del></del>	Well Diemeter (I.D.)	4 In
Personnel (Neme/C	صحاب (ompany	1/656		• •	2 /24n. 0 ft to 32 ft.
	SH				17/2in, 12-ft. to 5 ft.
	Seenles		7:	<del>-</del>	
Pump (Type/Capac	ity) <b>SEUNDS</b>	305 - Ige	<b>LWIL</b>	Screen Interval	78.67 ft. to 94.2 ft.
Bailer (Type/Capac	ity)	<u> </u>			
Water Source	RHA			Casing Height (Above C	5.L.)ft.
Measured Well De	oth TOC		Sen.	Bottom of Screen (Below	w G.L.)94.10ft.
		(Final) 26:	<u>25 ji.</u>	ان ملحمد است	
Water Level TOC/I	ate/Time (Initi	(al)	0 /8-Z	-87/0802/SUH	
			54/09		
Feet of Water in W	11 71.36	11.× _0.4	253_1	illons/fooi - 410160	galions caping/anulus volume
Drilling Fluid Lost			allons	One Purge Volume	9224 gallons
Purge Water Lost_	- A & A		alions	Minimum Purge Volun	
Added Water	50		gallons	Total Purge Volume	700 gallons
• •			gallons	Volume Measured By .	
Casing/Anulus Vol	ume		Renons	Surge Technique	
		D .MasAal d	621 4	U: 0/6443	
Calibration: pH N	feter Used:	Deck Man 1			.03 A 25.0 ·C
			.a.o	•C. pH 10.00 - 10	.03 al 25.0 (C
•	.00 - <u>7.01</u>				
•	.00 = <u>7.0()</u> luctance Meter	r Used:C		MAL SHILLSH	
Cont	luctance Meter	r Used:umhos/cn	5 DI		_umhos/cm at25•C
Cont	luctance Meter		5 DI	THE SHILLSH	
Cont	luctance Meter		5 DI	THE SHILLSH	
Cons Stan Purge Volume	luctance Meter	umhos/cn	15 Dia n at 25°,	Reading 998	_umhos/cm at*C  Physical Characteristics (clarify, odor, send content, color)
Conc	luctance Meter	umhos/cn	15 Dia n at 25°,	Reading 998	_umhos/cm at•C
Cons Stan Purge Volume	luctance Meter dard 1000	umhos/cn Temp. *C	n at 25°,	Reading 998  Conductance at 25°C  217	Physical Characteristics (clarify, odor, sand content, color)  very Claudy, gray \$14,  sone sand, grant
Cons Stan Purge Volume	luctance Meter dard 1000	umhos/cn Temp. *C	n at 25°,	Reading 998  Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)  very Clarity, gray sill, some sand, gray Clarity, gray sill;
Cons Stan Purge Volume	Time  0 840	Temp. °C	pH 1042 9.85	Reading 998  Conductance at 25°C  212  731	Physical Characteristics (clarify, odor, sand content, color)  very Claudy, gray \$14,  sone sand, grant
Cons Stan Purge Volume	Time	Temp. °C	pH	Reading 998  Conductance at 25°C  217	Physical Characteristics (clarity, odor, sand content, color)  very Clarity, gray sill, some sand, gray Clarity, gray sill;
Purge Volume	Time  0 840	Temp. °C	pH 1042 9.85	Reading 998  Conductance at 25°C  212  731	Physical Characteristics (clarity, odor, sand content, color)  very Clarity, gray sill, some sand, gray Clarity, gray sill;
Purge Volume	Time  0 840	Temp. °C	pH 1042 9.85	Reading 998  Conductance at 25°C  212  731	Physical Characteristics (clarity, odor, sand content, color)  very Clarity, gray sill, some sand, gray Clarity, gray sill;
Purge Volume	Time  0 840	Temp. °C	pH 1042 9.85	Reading 998  Conductance at 25°C  212  731	Physical Characteristics (clarity, odor, sand content, color)  very Clarity, gray sill, some sand, gray Clarity, gray sill;
Purge Volume	Time  0 840	Temp. °C	pH 1042 9.85	Reading 998  Conductance at 25°C  212  731	Physical Characteristics (clarity, odor, sand content, color)  very Clarity, gray sill, some sand, gray Clarity, gray sill;
Purge Volume	Time  0 840	Temp. °C	pH 1042 9.85	Reading 998  Conductance at 25°C  212  731	Physical Characteristics (clarily, odor, send content, color)  way Claudy, gray sill, tone sand, gray sill, Sightly claudy
Purge Volume Initial 0.0 92.0	Time  0 840	Temp. °C	pH 1042 9.85	Reading 998  Conductance at 25°C  212  731	Physical Characteristics (clarity, odor, sand content, color)  very Clarity, gray sill, some sand, gray Clarity, gray sill;
Purge Volume Initial 0.0 92.0 184.0	Time  0840  0965	Temp. °C  15.1  17.4  18.4	pH 10-62 9.85 9.14	Reading 998  Conductance at 25°C  2172  751  949	Physical Characteristics (clarify, odor, send content, color)  way Claudy, gray Sill,  tone sand, gray Sill  Slightly Claudy
Purge Volume Initial 0.0 92.0 184.0	Time  0840  0965	Temp. °C  15.1  17.4  18.4	pH 10-62 9.85 9.14	Reading 998  Conductance at 25°C  2172  751  949	Physical Characteristics (clarify, odor, send content, color)  way Claudy, gray Sill,  tone sand, gray Sill  Slightly Claudy
Purge Volume Initial 0.0 92.0 184.0	Time  0840  0965	Temp. °C  15.1  17.4  18.4	pH 10-62 9.85 9.14	Reading 998  Conductance at 25°C  212  731	Physical Characteristics (clarify, odor, send content, color)  way Claudy, gray Sill,  tone sand, gray Sill  Slightly Claudy
Purge Volume Initial 0.0 92.0 184.0	Time  0840  0965	Temp. °C  15.1  17.4  18.4	pH 10-62 9.85 9.14	Reading 998  Conductance at 25°C  2172  751  949	Physical Characteristics (clarify, odor, send content, color)  way Claudy, gray Sill,  tone sand, gray Sill  Slightly Claudy
Purge Volume Initial 0.0  92.0  184.0  Final	Time  0 840  0965  1189	Temp. °C  15.1  17.4  18.4	pH 10-62 9.85 9.14	Reading 998  Conductance at 25°C  2172  751  949	Physical Characteristics (clarily, odor, send content, color)  way Claudy, gray sill,  some same, gray sill  Slightly cloudy
Purge Volume Initial 0.0 92.0 184.0	Time  0840  0965	Temp. °C  15.1  17.4  18.4	pH 10-62 9.85 9.14	Reading 998  Conductance at 25°C  212  751  949	Physical Characteristics (clarily, odor, send content, color)  Para Claudy, gray Sill,  Sightly claudy  9 3000  1 22/87 C-340
Purge Volume Initial 0.0  92.0  184.0  Final	Time  0 840  0965  1189	Temp. °C  15.1  17.4  18.4	pH 10.62 9.14 Collecte	Reading 998  Conductance at 25°C  217  751  949  Add by Jylux	Physical Characteristics (clarily, odor, sand content, color)  way Claudy, gray sill,  some sand, gray sill  Signify claudy  9  Signify claudy  C-340
Purge Volume Initial 0.0 92.0 184.0 Final  Remarks: Inff	Time  0 840  0965  1189	Temp. °C  15.1  17.4  18.4	pH 10-62 9.65 9.14  Collecte Checke	Reading 998  Conductance at 25°C  212  751  949  Add by Jylon  d by Jylon  d by Jylon  d by Jylon  d by Jylon  Here are 1.37 3pu/0.	Physical Characteristics (clarily, odor, sand content, color)  way Claudy, gray silt, Signify claudy
Purge Volume Initial 0.0 92.0 184.0 Final  Remarks: Inff	Time  0 840  0965  1189	Temp. °C  15.1  17.4  18.4	pH 10.62 9.14 Collecte	Reading 998  Conductance at 25°C  212  751  949  Add by Jylon  d by Jylon  d by Jylon  d by Jylon  d by Jylon  Here are 1.37 3pu/0.	Physical Characteristics (clarily, odor, sand content, color)  way Claudy, gray sill,  some sand, gray sill  Signify claudy  9  Signify claudy  C-340

**(** 

			Bore EP-7	143	Well 23224	
Project	RM	A ou-Pa		<del>-</del>		TASK 44 87177
•	eveloped	8	24 107		Date installed	8-6-87
• •	il (Name/Con	npany) T	LW/ESE		Well Diameter (I.D.)	
		• •	WL /FCE		Anulus Diameter	123 in. 0 11. 10 32 11.
is Used	ESE W	en Jeru	us Truck	<u> </u>		72 in. 12 ft. to 45 ft.
			ms /7 6P	4	Screen Interval	78.57 ft. to 74.P ft.
-	ype/Capacity					
-	)urce				Casing Height (Above	e G.L.)ft.
	d Well Depth		(Initial) 45	st st.	Bottom of Screen (Be	low G.L.) 44-80 ft.
	•		(Final) 96.		,	
ater Le	evel TOC/Dat	te/Time (Initia	1) 24-20/	8-21-B	7/0802	
			24 hrs.)	1.54/01	1- 67/1140	
set of V	Vater in Well	7436	_ft.×	657 B	illons/foot - 4'6.60	
rilling l	Fluid Lost	N/A		gallons	One Purge Volume _	
urge W	ater Lost			gallons	Minimum Purge Vol	
dded W	Vater	76		gallons	Total Purge Volume	
asing/A	inulus Volun	ne <u>46.</u>	W	gallons		SE GAL BANKEL
					Surge Technique	RAISE / LUWER PUMP
alibrati	ion: pH Me	ter Used:	Backena	3 0 EI	SU: 015863	
	pH 7.00	7.02			*C, pH 10.00 =	0.09 at 17.6 °C
	Conduc	ctance Meter			THE EN: 113411	
	Standar	rd , 등학자 <u>의</u>	umhos/cn	at 25°,	Reading 1000	umhos/cm at 25 °C
		T		1	0	Disciplination of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the seco
Purg	e Volume	Time	Temp. °C	pН	Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)
Initial					4	very cloudy w/ black for.
	184	0928	14.1	4.70	433	said and gray sitis
	276	1040	14-3	9-54	967	doudy w/ going sitt
		<del> </del>		<del>                                     </del>		Dantly Cloudy WY Sum
	368	1229	156	9.32	180	bour server sitt.
	· · · · · · · · · · · · · · · · · · ·		// /	8.24	974	churchy 3/ my/brown
	460	1511	16.6	0.00	(7	्री होंगे,
				1		
				-		
Final						
		1		ــــــــــــــــــــــــــــــــــــــ	1	) Drul
	punger ( p )					west and a
	: Initial	MAN 6	TO . 0.	Pp.	Water level = 2	4.54/8-24-87,0404
710	W Hate =	1.5 gpmu	1.5.1 (Ipstha	1 gpm	TH motor retailing	and action break 1 PH 70= 7
				<u>.                                    </u>	///// \\	CIMON DINA
e Puec	€ Nor: =	46.60	asay vol.	Collecte	d by full (en)e	Signature Date
		+ 17.64	mad party vol.	Characterist	I LINE	3/2-13/2-85
		+ >0.00	- CALL COMPANY	Checked	luy	Signature C-
		92.24 0	f without			

	7		2
SHEET		OF.	->

		Bore EP-	75 21	Well 33224	•
Project	EMA ON.				MSH 44 87937
Date(s) Developed		15/87		Date Installed	8-6-87
Personnel (Name/Co	1.	De 1855		Well Diameter (I.D.)	4in.
		TEP / MLA	-	, ,	/2 in. 0 ft. to 3 - ft.
Rig Used	WEN S	ALKE TR	MIK.		73 in. 32 ft. to 95 ft.
Pump (Type/Capacit			141	Screen Interval	72.57 ft. to 94.8 ft.
Bailer (Type/Capacit	y) <i>*\</i>	'A	-		
Water Source	Ruk				G.L.)[t.
Measured Well Dupt	h TOC	(Initial)		Bottom of Screen (Beld	ow G.L.)ft.
		(Final) 🏂		•	
Water Level TOC/Da	te/Time (Init	ial)24. z	· /07	21-87/0802	
	(afte	r 24 hrs.) _ <del>2-</del>	1.54/09	-01-87/1140	
Feet of Water in Wel			_	Ilons/fooi = 46.6.	gullons casing/anulus volume
Drilling Fluid Lost _			gallons	One Purge Volume	9224 gallons
Purge Water Lost	-		gellons	Minimum Purge Volu	
Added Water			gallons	Total Purge Volume	
Casing/Anulus Volus	ne	. 60	gallons	Volume Measured By	BS GALLOW DRIMS
					CAISE / LOWER AUM!
-				SA): 015 883	
pH 7.00	7.07				0.09 at 18.0 °C
Conduc	ctance Meter	Used:	als divi	FAL SW! 11741	
Standa	rd	2umhos/cn	at 25*,	Reading <u>949</u>	_umbos/cm atC
Purge Volume	Time	Temp. •C	pН	Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)
Innal 460	0116	14.1	9.11	1004	black/born formation one
552	1004	121	9.11	1004	cloudy if some gry-brown
644	1317	155	9.21	1003	cloud of gray sitt of
700	1411	16.9	9.05	110	= 65 hy clary = 1/4 3 mg - do
Final				erren allenge deur dels seine punke a sei bie 1. activi este ; et que day an Ren allende kalendare seine des products de la companya de la companya de la companya de la companya de la comp	
					Dem
Remarks: Tair Recalibration after Cond. academ Punga vol = 440	er lunch :	PH 7.00 0 2 25 2 16. W. W. V.J.	7.01%	7 pl4 10.00 to 13.05 0	24.5 4   24.5 4   515, 10   0, 5   5   5   5   5   5   5   5   5   5
	· police	Hzo	Checked t	y Little Town	11.72- 315 88
91	1.24 goldan	f		*	Signatura C=34
	_ 1				

## WELL CONSTRUCTION SUMMARY

Borehole	W	/ell 23225	
Project Name and Location PMA-	Seetton 23	Proj	ect Number Task 44
Drilling Company Boyles Ros	Driller Desc	Fruing	Rig Number TR
Drilling Method(s)			
7			
Borehole Diameter 164"in.	cm	ftcm. to	32.6' ftcm.
_117/g_in	cm. <u>32,5</u>	cm. to	97.5' ftcm.
77/	97.0		117.0
Size(s) and types of Bit(s) /6 2 Plade		Sampling Method(s)	NA
117/8 blade 71/4" 40 6		Date/Time Start Drilling	
Size and Type PVC 4" school		Date/Time Finish Drillin	
Total Borehole Depthft	cm.	Date/Time Start Comple	ation <u>8 5 87</u> 1225
Depth to Bedrock 25.1 ft	cm.	Date/Time Cement Prote	ective Casing
Depth to Waterft	cm.	Materials Used 22'4	24" stud cam , 98 of the 14
Water Level Determined By		Plain PVC 10 - 10	
Length Plain PVC (total) 10114ft	cm.	Slotted PVC	
Length of Screen 10.76 ft	cm.	Bentonite Pellets/ 3	by bucket
_	cm.	Bentonite Granular	Str bage
PVC Stick Up 1.7 ft			• 10
· .	cm.	Sand 2 4/8	bega
·	cm.	Water added during con	npletion
•	cm.	Water added during dril	lling 0
			ddedO
Drill Site Geologist Ato Pon		Date 8/10/87	
		WORTHIR & WEEP HOLE	E-14-27/1100/DLW
Date/Time/Personnel Internal Morta	r, Cement Pad, and Wee		8-18-87/1017 DIW = SMA
Date/Time/Personnel Casing Painted	8-16-87/15	3F/DLW	/
Date/Time/Personnel Numbers Paint	ed <u>9-20-67</u>	0936 /D.W & SIM	+
Materials Used 20 BAGI	QUICKRETE		
Top of Protective Casing to Top of PVC	0.20 ft.	cm.	COMMENT/NOTES
Top of Protective Casing to Weep Hole	<u>//60_</u> ft		
Top of Protective Casing to Internal Mor	tar <u>1.70</u> ft	cm.	gi kapangangganggan maggan maggan maggan panggan panggan panggan ka Managan kanangan ka kanangan an antanggan k
Top of Protective Casing to Top of Cemer	4		
Top of Protective Casing to Ground Leve			
	2.30	cm	
Reviewed By	2.33 [1	CIII.	Date C-343

Well: 23225 Borehole: EP- 75 Da Sail/Rect Type **Well Completion** Description /• 13.06 150 contralizon 2374 29.0. Bebrock 20 -22.10 Bottom of 12/2"ap. steel coming 3332 40 41.44 contrally 4328 50 544 60. 64.07 70 74,16 10 eques controlina 70 Bottom of 88"OD stal cooling In. 104.42 110 . 113.0' Total drilled deptil 120-

Drill Site Geologist : Alexander Control

Date: **8/4/87**Date: _____

C-344

SHEET	- 1	()E	2
2111111111		O.	

Project RMA ON-POST Date(s) Developed 9/1/37 Personnel (Name/Company) DLU / ESE PTB / ESE Rig Used ECE WING SERVER TRACK Dump (Type/Capacity) GRMD S / 73/M Dailer (Type/Capacity) N/A Vater Source 244 Aeasured Well Depth TOC (Initial) (13-15 ft. (Final) //6-9/ ft. Vater Level TOC/Date/Time (Initial) 25-22 / 9-1-87	Date Installed Well Diameter (I.D.) Anulus Diameter Screen Interval Casing Height (Above	## ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10. ## 10.
resonnel (Name/Company)  PTB / BSE  Itig Used	Date Installed Well Diameter (I.D.) Anulus Diameter Screen Interval Casing Height (Above	/6£ inft. to _3ft. //2 inft. toft. //2 ft. toft.
ersonnel (Neme/Company)  PJB / ESE  Lig Used	Anulus Diameter  Screen Interval  Casing Height (Above	16£ in. 0 ft to 32 ft.  112 in. 32 ft. to 97 ft.  104.42 ft. to 115.28 ft.  15. toft.
ig Used	Screen Interval  Casing Height (Above	//2 in. 32 ft. to 47 ft. /04.42 ft. to //5.28 ftft. toft.
ump (Type/Capacity) ARMORS /7.5/AL ailer (Type/Capacity) N/A /ater Source 24A feasured Well Depth TOC (Initial) (13-15 ft. (Final) (16-9) ft. /ater Level TOC/Date/Time (Initial) 25-22 / 9-1-87	Screen Interval  Casing Height (Above	ft. toft.
ump (Type/Capacity) ARMORS /7.5/AL siler (Type/Capacity) N/A leasured Well Depth TOC (Initial) (13-15 ft. (Final) (16-9) ft. leasured TOC/Date/Time (Initial) 25-22 / 9-1-87	Screen Interval  Casing Height (Above	ft. toft.
easured Well Depth TOC (Initial) (13.15 ft. (Final) 16.91 ft. (ater Level TOC/Date/Time (Initial) 25.22 / 9-1-97		
easured Well Depth TOC (Initial) (13.15 ft. (Final) (16.91 ft. ater Level TOC/Date/Time (Initial) 25.22 / 9-1-97		<b>—</b> — <b>—</b>
(Final) //6.9/ ft. ater Level TOC/Date/Time (Initial) 25.22 / 9-/-87	Bottom of Screen (Beld	
ater Level TOC/Date/Time (Initial) 25.22 / 9-1-67		ow G.L.) //5:29 ft.
ater Level TOC/Date/Time (Initial) 25.22 / 9-1-6		
	(177)	
(after 24 hrs.) 25, 26/4-	2-87 / ORW	
et of Water in Weil 77.92 ft. x		gallons casing/anulus volume
rilling Fluid Lostgallons	One Purge Volume	69-33 gallons
urge Water Lost N/A gallons	Minimum Purge Volum	me 346.65 gallons
dded Water gallons	Total Purge Volume	350 gallons
asing/Anulus Volume 57.42 gallons		FF ONE. Decor
,		esaleoner pour
alibration: pH Meter Used:	en: 0/5883	
pH 7.00 = 7.0/ at 21. Y		10.05 AL -21.5 E/1.1 .C
Conductance Meter Used: <u>CAS DIS</u> Standard <u>HIB</u> umhos/cm at 25°,	17de SN1 1/341	
	Reading 1413	umhos/cm at
Purge Volume Time Temp. *C pH	Conductance at 25°C	
Purge Volume Time Temp. °C pH		Physical Characteristics (clarity, odor, sand content, color)
Purge Volume Time Temp. °C pH	Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)  very clouds by discount of bands of bands of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of t
Purge Volume Time Temp. °C pH  nitial 0 0754 146 12.31  70 0905 17.3 11.99	Conductance at 25°C  3310  1860	Physical Characteristics (clarity, odor, sand content, color)  Very aloud by discound (up budged) shart; Washe  Cloudy; Shark  DROM SPECS  afounds by 14. group dis
Purge Volume Time Temp. °C pH  Initial 0 0754 140 12.31  70 0905 17, 3 /1.97  140 1/35 /9.3 //48	Conductance at 25°C  7310  1860  1615	Physical Characteristics (clarity, odor, sand content, color)  Ven aloud of discloud (san bodod) good; Warker  Cloudy y Shack offer Spec S  double of 14.0, may diss see for 15 (set)
Purge Volume Time Temp. °C pH  Initial 0 0754 146 12.31  70 0905 17,3 11.95  140 1/35 19.3 //48	Conductance at 25°C  3310  1860	Physical Characteristics (clarity, odor, sand content, color)  Very aloud by discound (up budged) shart; Washe  Cloudy; Shark  DROM SPECS  afounds by 14. group dis
Purge Volume Time Temp. °C pH  nitial 0 0754 146 12.31  70 0905 17,3 11.95  140 1/35 19.3 //48  216 1511 125 11.29	Conductance at 25°C  7310  1860  1615	Physical Characteristics (clarity, odor, sand content, color)  Ven aloud of discloud (san bodod) good; Warker  Cloudy y Shack offer Spec S  double of 14.0, may diss see for 15 (set)
Purge Volume Time Temp. °C pH  Initial 0 0754 146 12.31  70 0905 17, 3 11.95  140 1135 19.3 11.48	Conductance at 25°C  7310  1860  1615	Physical Characteristics (clarity, odor, sand content, color)  Ven aloud of discloud (san bodod) good; Warker  Cloudy y Shack offer Spec S  double of 14.0, may diss see for 15 (set)
Purge Volume Time Temp. °C pH  Initial 0 0754 1444 12.31  70 0905 17, 3 11.95  140 1135 19.3 11.48  216 1511 125 11.29	Conductance at 25°C  7310  1860  1615	Physical Characteristics (clarity, odor, sand content, color)  Ven aloud of discloud (san bodod) good; Warker  Cloudy y Shack offer Spec S  double of 14.0, may diss see for 15 (set)

Linitial) (Initial) (Initial) 25.3 (after 24 hrs.)	P./5 ft.	Date Installed	
Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri / 55 Pri	F./F ft.	Well Diameter (I.D.) Anulus Diameter Screen Interval Casing Height (Above C	/62 in. Oft to 3 ft. //2 in. 32 ft. to 77 ft. //2 in. 12 ft. to 45.28 ft.
Pos / 5: SEAVER  SEAVER  (Initial) (Initial) (Final) (Initial) 25: (after 24 hrs.)	F./F ft.	Anulus Diameter Screen Interval Casing Height (Above C	/62 in. O ft. to 3 - ft. //2 in. 32 ft. to 77 ft. //42 ft. to 45.24 ft.
PTE / ES	P./5 ft.	Screen Interval  Casing Height (Above C	//2 in. 32 ft. to 77 ft.  //42 ft. to 45.28 ft.
(Initial) (Initial) (Initial) (Initial) 25.3	F./5 ft. 6.9/ ft.	Screen Interval  Casing Height (Above C	(442.ft. to #5.24ft. 
(Initial) (Initial) (Initial) (Initial) (Initial) (Initial) (Initial) (Initial)	F./5 st. 6.9/ st.	Casing Height (Above C	3.L.)ft. toft.
(Initial) (() (Final) (() (Initial)2\$.; (after 24 hrs.)	<u>6.91    f</u> t.	• • •	(i.L.) 2.35 (t.
(Initial) ((Final) ((Initial) 25.)	<u>6.91    f</u> t.	• • •	1.L.)
(Final) (Initial)	<u>6.91    f</u> t.	Bottom of Screen (Belov	w G.L.) //5.28 ft.
(Final) (Initial)	<u>6.91    f</u> t.		
(after 24 hrs.)	2 /4-1-87	. /	
(		<del> </del>	
		17/0831	
931t.×	0.653 gall		gallons casing/anulus volume
<u> </u>	_gallons		69.35 gallons
/6	_gallons	Minimum Purge Volum	no 346.65 gallons
	_gallons	Total Purge Volume _	350 gallons
57.42-	_gallons	Volume Measured By .	FF concent: Dam.
	_	Surge Technique RA	NE /LOVER PUMP
d: Zescu	<del>ры</del> ф <u>ъ1</u>	ent disper	
coat	24.5 -(	C, pH 10.00 =	0.01 at 25.0 °C
	MS DIGITA	1L EN! /1741	
/4/3 umhos/c	:m at 25*,		_umhos/cm at*C
ne Temp. °C	pН	Conductance at 25°C	Physical Characteristics (clarity, odor, sand content, color)
1. 163	1	1496	should character and
13.7	16.14		
			du. said : black & white ?"
6 19.9	10.41	1348	Vicing lotty cloudy, some
19.9 1 20.3	10.41	1342	
			Vicing lotty cloudy, some
			Vicing lotty cloudy, some
	1/6 6 57.42- d: Zescu d: Zescu deler Used: /4/3umhos/c	gallons gallons 7, 42 gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons gallons	gallons  gallons Total Purge Volume Volume Measured By Surge Technique Co at 24.5 °C, pH 10.00 = 4.4  Meter Used: Cons Digital Soi 11.241  Meter Used: Cons Digital Soi 11.241  Meter Used: Cons Digital Soi 11.241  Meter Used: Cons Digital Soi 11.241  Meter Used: Cons Digital Soi 11.241  Meter Used: Cons Digital Soi 11.241  Meter Used: Cons Digital Soi 11.241  Meter Used: Conductance at 25°C

APPENDIX C.3: WATER CHEMISTRY DATA FOR TASK 44, 1ST, 2ND AND 4TH QUARTER, FY87



WELL AQUIFER: ALLUVIUM WELL AQUIFER: ALLUV!UM 23049 SCREENED INT.: 38.4- 42.4 23095 SCREENED INT : 44.3-48. BEDROCK DEPTH: 53.0 BEDROCK LITH: SH BEDROCK DEPTH: 45.5

BEDROCK LITH .: SH SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<34.000	1117CE	<17.000
112TCE	<20.000	112TCE	<10.000
11DCE	<11.000	11DCE	<1.100
11DCLE	₹12.000	11DCLE	2 · 250
12DCLE	<12.200	12DCLE	7.570
ALDRN	<1.400	ALDRN	<1.400
C6H6	15.400	C 6 H 6	16.000
CA	106000.000	CA	451000.000
CCL4	<48.000	CCL4	₹24 ₹000
CDTOT	₹5.160	CDTOT	<5.160
CH2CL2	25.600	CH2CL2	5.150
CHCL3	6850.000	CHCL3	1760.000
CL	5400000.000		
CL6CP		CL	5740000.000
	<1.400	CL6CP	<1.400
CLC6H5	<11.600	CLC6H5	<0.580
CPMS	293.000	CPMS	225.000
CPMSO	<4.200	CPMSO	12.000
CPMSO2	461.000	CPMSO2	454.000
CRTOT	(11.900	CRTOT	<11.900
CUTOT	<7.930	CUTOT	⟨7.930
DBCP	<0.130	DBCP	⟨0.130
DCPD	1100.000	DCPD	747.000
DIMP	416.000	DIMP	765.000
DITH	87.700	DITH	72.800
DLDRN	<1.200	DLDRN	(1.200
DMDS	<1.B00	DM DS	⟨1.800
DMMP	27.300	DMMP	22.600
ENDRN	<1.040	ENDRN	<1.040
ETC6H5	3.690	ETC6H5	2.280
FL	9540.000	FL	9540.000
HCTOT	<0.500	нстот	< 0 ⋅ 5 0 0
ISODR	<1.200	ISODR	<1.200
ĸ	23600.000	K	37400.000
MEC6H5	48.400	MEC6H5	5.700
MG	146000.000	MG	249000.000
MIBK	15.400	MIBK	(12.900
MXYLEN	2.120	MXYLEM	(1.350
N A	3300000.000	NA.	3860000.000
NIT	•	NIT	,
OXAT	19 800	OXAT	12.200
PBTOT	<18.600	PBTOT	(18.600
PPDDE	<1.060	PPDDE	(1.060
PPDDT	<1 400	PPDDT	(1.400
SO4	1360000.000	SO4	1400000.000
T12DCE	(12.000	T12DCE	₹12.000
TCLEE	37.500	TCLEE	30.500
TRCLE	11.400	TRCLE	11.300
XYLEN	3.490		
ZNTOT	27.30C	XYLEN	(2.470
ASTOT	39.200	ZNIOT	78.600
V0101	39.200	ASTOT	28.600

WELL AQUIFER: ALLUVIUM WELL AQUIFER: ALLUVIUM

23108 SCREENED INT.: 36.5-40.5 23142 SCREENED INT.: 38.0-59.4

BEDROCK DEPTH: 38.5

BEDROCK LITH: SS

BEDROCK LITH: SH

SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DC E	<1.100
11DCLE	<1.200	11DCLE	<ï⋅200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	∢0⋅350	ALDRN	<0.350
C6H6	<1.340	C6H6	<1.340
CA	139000.000	CA	129000.000
CCL4	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	<1.400
CL	687000.000	CL	551000.000
CL6CP	<0.350	CL6CP	<0.350
CLC6H5	<0.580	CLC6H5	∢0.580
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	5.410
CRTOT	<11.900	CRTOT	<11.900
CUTOT	<b>ر7</b> ،930	CUTOT	∢7.930
DBCP	<0.130	DBCP	٥٠.130
DCPD	⟨9⋅310	DCPD	ر9.310
DIMP	<10.500	DIMP	1110.000
DITH	<1.100	DITH	24.100
DLDRN	<b>0</b> .7 9	DLDRN	<0.300
DMDS	<1.8∪0	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.260	ENDRN	<0.260
ETC6H5	<1.280	ETC6H5	<1.280
FL	2510.000	F L	2600.000
HGTOT	⟨0.500	HGTOT	<0.500
ISODR	<0.300	ISODR	<0.300
K	5470.000	K	4910.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	58900.000	MG	39500.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
N A	639000.000	N A	469000.000
NIT	•	NIT	•
OXAT	⟨2⋅000	OXAT	4.490
PBTOT	<18.600	PBTOT	<18.600
PPDDE	⟨0.265	PPDDE	∢0.265
PPDDT	⟨0⋅350	PPDDT	⟨0.350
S 0 4	424000.000	S O 4	281000.000
T12DCE	(1.200	T12DCE	(1.200
TCLEE	<1⋅300	TCLEE	(1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
2 NTOT	<20.100	ZNTOT	105.000
ASTOT	7.270	ASTOT	∢3.900

BEDROCK LITH.:

SH

AQUIFER: ALLUVIUM WELL WELL AQUIFER: ALLUVIUM 26017 26015 SCREENED INT .: 48.0- 52.0 SCREENED INT .: 43.6- 47.6 BEDROCK DEPTH: 47.0

BEDROCK DEPTH: 48.6 BEDROCK LITH .: SH

SCREENED ZONE: ALLUVIUM

ASTOT

(

SCREENED ZONE: ALLUVIUM COMPOUND CONCENTRATION COMPOUND CONCENTRATION <1.700 111TCE 111TCE <1.700 112TCE 1.170 112TCE <1.000 11DCE <1.100 11DCE <1.100 11DCLE <1.200 11DCLE <1.200 12DCLE 0.829 12DCLE <0.610 ALDRN <0.350 ALDRN <0.350 C6H6 <1.340 C6H6 <1.340 CA 250000.000 CA 102000.000 CCL4 <2.400 CCL4 <2.400 CDTOT <5.160 CDTOT <5.160 CH2CL2 <5.000 CH2CL2 <5.000 CHCL3 <1.400 CHCL3 <1.400 CL 1290000.000 CL 540000.000 CL6CP <0.350 CL6CP <0.350 CLC6H5 <0.580 CLC6H5 <0.580 CPMS <1.300 CPMS <1.300 CPMSO <4.200 CPMSO <4.200 CPMSO2 194.000 CPMSO2 13.800 CRTOT <11.900 CRTOT <11.900 CUTOT <7.930 CUTOT <7.930 DBCP <0.130 DBCP <0.130 DCPD <9.310 DCPD <9.310 DIMP 599.000 DIMP 118.000 DITH 13.600 DITH <1.100 DLDRN <0.300 DLDRN < 0.300 DMDS <1.800 <1.800 DMDS <15.200 DMMP DMMP <15.200 <0.260 ENDRN ENDRN <0.260 ETC6H5 <1.280 ETC6H5 <1.280 FL 3250.000 FL 1990.000 HCTOT <0.500 HCTOT <0.500 ISODR <0.300 ISODR < 0.300 K 8930.000 ĸ 4910.000 MEC6H5 <1.210 <1.210 MEC 6H5 MG 83600.000 42300.000 MG MIBK <12.900 <12.900 MIBK MXYLEN <1.350 MXYLEN <1.350 739000.000 NA 434000.000 NA NIT NIT OXAT 3.750 <2.000 OXAT PBTOT <18.600 PRTOT (18.600 <0.265 PPDDE PPDDE <0.265 PPDDT <0.350 PPDDT <0.350 504 536000.000 313000.000 504 T12DCE <1.200 <1.200 T12DCE TCLEE <1.300 TCLEE <1.300 TRCLE <1.100 TRCLE (1.100 XYLEN <2.470 XYLEN <2.470 ZNTOT 27.200 ZNTOT 55.200

ASTOT

8.230

13.100

WELL

AQUIFER: DENVER

(*****)

1

WELL

AQUIFER: ALLUVIUM

SCREENED INT .: 26041 42.9- 46.9 26020 SCREENED INT .: 40.0- 44.0 BEDROCK DEPTH: 43.7 BEDROCK DEPTH: 42.0 BEDROCK LITH .: SH BEDROCK LITH .: SH SCREENED ZONE: 1 SH SCREENED ZONE: ALLUVIUM COMPOUND CONCENTRATION COMPOUND CONCENTRATION <5.000 <1.700 111TCE 111TCE 112TCE < 5.000 <1.000 112TCE < 5 · 010 <1.100 11DCE 11DCE **25.000** <1.200 11DCLE 11DCLE 24.500 12DCLE <0.610 12DCLE < 0.350 ALDRN <1.400 ALDRN <1.340 C6H6 25.400 C6H6 75700.000 CA 189000.000 CA 44.990 CCL4 <2.400 CCL4 <5.160 CDTOT c5.160 CDTOT <5.000 5.890 CH2CL2 CH2CL2 < 5 · 000 CHCL3 CHCL3 4.380 27600000.000 629000.000 CL CL CL6CP <0.350 CL6CP <1.400 CLC6H5 **c5**.000 CLC6H5 <0.580 <1.300 CPMS <1.300 CPMS CPMSO <4.200 CPMSO <4.200 CPMS02 <4.700 CPMSO2 556.000 <11.900 CRTOT CRTOT <11.900 <7.930 CUTOT <7.930 CUTOT <0.130 DBCP <0.130 DBCP 21.700 DCPD <9.310 DÇPD 2720.000 DIMP DIMP 805.000 DITH 3.120 DITH 59.500 DLDRN <0.300 DLDRN <1.200 <1.800 DMDS DMDS <1.800 13100.000 DMMP DMMP <15.200 <0.260 <1.040 ENDRN ENDRN <1.280 ETC6H5 <1.280 ETC6H5 221000.000 2080.000 FL FL HGTOT < 0.500 HCTOT 1.770 (1.200 ISODR <0.300 ISODR K 4030.000 K 100000.000 MEC6H5 <1.210 MEC6H5 308.000 23100.000 598000.000 MG MG (12.900 <12.900 MIBK MIBK <1.350 <1.350 MXYLEN MXYLEN 8540000.000 NA 392000.000 NA NIT NIT <20.000 OXAT <2.000 OXAT PBTOT <18.600 PBTOT 39.100 (1.060 PPDDE <0.265 PPDDE <1.400 PPDDT <0.350 PPDDT 162000.000 8110000.000 504 S 0 4 <1.200 T12DCE T12DCE **65.000** TCLEE <1.300 TCLEE <5.010 <1.100 TRCLE 5.810 TRCLE 8.270 XYLEN <2.470 XYLEN 50.900 69.700 ZNTOT ZNTOT <3.900 17.400 ASTOT ASTOT

- 1

(4)

WELL AQUIFER: ALLUVIUM

26073 SCREENED INT: 46.2-50.2

BEDDOCK DEPTH: 49.0

BEDROCK DEPTH: 49.0

BEDROCK LITH: SH

BEDROCK LITH: SS

BEDROCK LITH: SS

SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

SCREENED 2	ONE: ALLUVIUM	SCREENED	ZONE: ALLUVIUM
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.350	ALDRN	<0.700
C6H6	31.200	C6H6	<1.340
CA	198000.000	CA	457000.000
CCL4	4 . 4 4 0	CCL4	< 2 . 400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	₹5.000	CH2CL2	⟨5⋅000
CHCL3	12.200	CHCL3	23.500
CL	₁ 70000.000	CL	1730000.000
CL6CP	<0.350	CL6CP	<0.700
CLC6H5	⟨0.580	CLC6H5	⟨0.580
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700 <4.700
URTOT	<11.900	CRTOT	<11.900
CUTOT	<7.930	CUTOT	21.600
DBCP	(0.130	DBCP	0.220
DCPD	(9.310	DCPD	<pre>&lt; 9 · 310</pre>
DIMP	<10.500		
DITH	<1.100	DIMP	97.000
		DITH	<1.100
DLDKN	<0.300	DLDRN	<0.600
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.260	ENDRN	<0.520
ETC6H5	<1.280	ETC6H5	<1.280
FL	1590.000	FL	3000.000
HGTOT	<0.500	HCTOT	< 0.500
ISODR	<0.300	ISODR	< 0 . 6 0 0
K	4780.000	K	9000.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	43900.000	MG	155000.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
N A	200000.000	N A	545000.000
NIT	•	NIT	•
OXAT	<2.000	OXAT	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.265	PPDDE	⟨0.530
PPDDT	<0.350	PPDDT	<0.700
SO4	598000.000	S O 4	807000.000
TJ 2DCE	<1.200	T12DCE	⟨1.200
TCLEE	<1.300	TCLEE	⟨1⋅300
TRCLE	<1.100	TRCLE	8.930
XYLEN	<2.470	XYLEN	(2.470
ZNTOT	61.900	ZNTOT	219.000
ASTOT	<3.900	ASTOT	17.900

C-353

- 1

•

*

WELL AQUIFER: ALLUVIUM

26127 SCREENED INT:: 41.1-44.5 27016 SCREENED INT:: 21.0-25.0 3 BEDROCK DEPTH: 43.0 BEDROCK LITH:: SS BEDROCK LITH:: ST SCREENED ZONE: ALLUVIUM

SCREENED	ZONE: ALLUVIUM	SCREENED Z	ONE: ALLUVIUM
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	llDCLE	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	< 0 · 350
C6H6	(1.340	C6H6	<1.340
CA	325000.000	CA	55900.000
CC14	(2.400	CCL4	<2.400
CDTOT	7.200	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	<1.400
CL	910000.000	CL	541000.000
CL6CP	<0.070	CL6CP	< 0 . 350
CLC6H5	2.310	CLC6H5	<0.580
CPMS	⟨1⋅300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	20.700	CRTOT	19.500
CUTOT	10.900	CUTOT	<7.930
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	(9.310
DIMP	1620.000	DIMP	13.500
DITH	37.700	DITH	(1.100
DLDRN	0.303	DLDRN	0.586
DMDS	<1.800	DMDS	<1.800
DMMP		DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.260
ETC6H5	<1.280	ETC6H5	<1.280
F L	1360.000	F L	2980.000
нстот	1.090	HGTOT	<0.500
ISODR	(0.060	ISODR	<0.300
K	4470.000	K	3970.000
MEC6H5	(1.210	MEC6H5	<1.210
MG	75900.000	MG	21300.000
MIBK	<b>&lt;12.900</b>	MIBK	<12.900
MXYLEN	⟨1⋅350	MXYLEN	<b>&lt;1.35</b> 0
NA	225000.000	N A	542000.000
NIT		NIT	•
TAXO	4.350	OXAT	<2.000
PBTOT	<18.600	РВТОТ	<18.600
PPDDE	⟨0.053	PPDDE	(0.265
PPDDT	⟨0.066	PPDDT	<0.350
SO4	414000.000	804	392000.000
T12DCE	<1.200	Tl2DCE	(1.200
TCLEE	⟨1.200	TCLEE	(1.300
TRCLE	<1.100	TRCLE	(1.100
XYLEN	<2.470	XYLEN	(2.470
ZNTOT	75.000	ZNTOT	78.700
ASTOT	73.000	ASTOT	(3.900
V21A1	7.750 C=3º		(3.700

C-354

WELL AQUIFER: ALLUVIUM

WELL AQUIFER: ALLUVIUM

23049 SCREENED INT : 38.4-42.4 23095 SCREENED INT : 44.3-48.3 BEDROCK DEPTH: 45.5 BEDROCK DEPTH: 53.0 BEDROCK LITH .: SH

BEDROCK LITH .: SH

SCREENED ZONE: ALLUVIUM

SCREENED ZONE: ALLUVIUM

COMPOUND			20420442	6046WWWW 4 # T O W
COMPOUND	CONCENTRATION <170.000		COMPOUND 111TCE	CONCENTRATION
111TCE 112TCE	•		= .	<34.000
	⟨1⋅000		112TCE	<20.000
11DCE	(1.100		11DCE	<1.100
11DCLE	2.670		11DCLE	1.590
12DCLE	<61.000		12DCLE	63.700
ALDRN	<0.415		ALDRN	(0.415
ASTOT	39.600 <1.140		ASTOT	15.700
BTZ C6H6	<134.000		BTZ	(1.140
	96300.000		C 6 H 6	<1.340 405000.000
CA CCL4	<2.400		CC14	
CDTOT	<5.160		CDTOT	<48.000 < <b>5</b> .160
CH2CL2	39.100		CH2CL2	<5.100 <5.000
CHCL3	10200.000		CHCL3	1720.000
CL	5330000.000		CL	6030000.000
CL6CP	<0.415		CL6CP	<0.415
CLC6H5	<0.415 <0.580		CLC6H5	<0.413
CLUBRI	(0.760		CLUGHS	<b>&lt;0.360 &lt;0.760</b>
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	(1.980
CPMSO2	493.000		CPMSO2	524.000
CRTOT	27.500		CRTOT	40.400
CUTOT	47.940		CUTOT	15.000
DBCP	<0.130		DBCP	<0.130
DCPD	1410.000		DCPD	654.000
DIMP	424.000		DIMP	770.000
DITH	74.300		DITH	74.200
DLDRN	0.844		DLDRN	2.750
DMDS	<1.160		DMDS	<1.160
DMMP	(15.200		DMMP	<15.200
ENDRN	₹0.300		ENDRN	⟨0⋅300
ETC6H5	1.210	•	ETC6H5	(1.280
FL	9090.000		FL	9680.000
HGTOT	<0.359		HGTOT	(0.359
ISODR	⟨0.280		ISODR	(0.280
K	29600.000		K	48400.000
MEC6H5	<121.000		MEC6H5	5.760
MG	152000.000		MG	226000.000
MIBK	15.400		MIBK	(12.900
MXYLEN	2.200		MXYLEN	(1.350
NA	2790000.000		N A	3720000.000
NIT	195.000		NIT	(20.000
OXAT	20.800		OXAT	14.000
PBTOT	<18.600		PBTOT	<18.600
PPDDE	⟨0.230		PPDDE	(0.230
PPDDT	<0.295		PPDDT	(0.295
S O 4	1450000.000		S O 4	1420000.000
T12DCE	<1.200		T12DCE	<1.200
TCLEE	48.500		TCLEE	25.200
TRCLE	27.400		TRCLE	16.000
XYLEN	4.420		XYLEN	(2.470
ZNTOT	162.000	C355	ZNTOT	<20.100

WELL AQUIFER: ALLUVIUM

23108 SCREENED INT .: 36.5-40.5

BEDROCK DEPTH: 38.5 BEDROCK LITH: SS

SCREENED ZONE: ALLUVIUM

WELL AQUIFER: ALLUVIUM

23142 SCREENED INT .: 38.0- 59.4

BEDROCK DEPTH: 56.5 BEDROCK LITH: SH

SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	(1.700
112TCB	<1.000		112TCE	(1.000
11DCE	<1.100		11DCE	(1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	(0.083
ASTOT	7.870		ASTOT	5.420
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
CA	110000.000		CA	111000.000
CCL4	<2.400		CC14	<2.400
CDTOT	<5.160		CDTOT	<5.160
CH2CL2	< 5 · 000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	627000.000		CL	605000.000
CL6CP	<0.083		CL6CP	∢0.083
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMSO2	11.200
CRTOT	<b>&lt;5</b> .960		CRTOT	<5.960
CUTOT	<7·940		CUTOT	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	⟨9⋅310		DCPD	<9.310
DIMP	32.800		DIMP	1260.000
DITH	<3.340		DITH	30.300
DLDRN	0.201		DLDRN	0.126
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<b>&lt; 0</b> · 0 6 0
ETC6H5	<1.280		ETC6H5	<1.280
FL	3440.000		FL	2550.000
HGTOT	<0.359		HCTOT	∢0.359
ISODR	<0.056		ISODR	<0.056
K	6520.000		K	5450.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	49700.000		MG	34600.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	(1.350
NA	541000.000		NA	415000.000
NIT	72.700		NIT	63.300
TAXO	<1.350		OXAT	5.500
PBTOT	<18.600		PBTOT	<18.600
PPDDE	(0.046		PPDDE	< 0 - 0 4 6
PPDDT	<0.059		PPDDT	< 0 - 059
304	7970000.000		S O 4	268000.000
T12DCE	<1.200		T12DCE	<1.200
TCLEE	<1.300		TCLFE	<1.300
TRCLE	<1.100		TRCLE	<1 100
XYLEN	<2.470	C- 356	XYLEN	€2 + 470
ZNTOT	65.800		ZNTOT	< 20 . 100

WELL AQUIFER: ALLUVIUM
26015 SCREENED INT.: 48.0-52.0 26017 SCREENED INT.: 43.6-47.6
BEDROCK DEPTH: 48.6 BEDROCK DEPTH: 47.0

BEDROCK LITH: SH

SCREENED ZONE: ALLUVIUM

BEDROCK LITH: SH

SCREENED ZONE: ALLUVIUM

SCREENED	ZONE: ALLUVIUM		SCREENED	ZONE: ALLUVIUM
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
ASTOT	9.590		ASTOT	6.400
BTZ	<1.140		BTZ	1.780
C6H6	<1.340		C6H6	<1.340
CA	217000.000		CA	114000.000
CCL4	<2.400		CCL4	<2.400
CDTOT	<5.160		CDTOT	<5.160
CH2CL2	<5.000		CH2CL2	₹5.000
CHCL3	28.700		CHCL3	<1.400
CL	1030000.000		CL	506000.000
CL6CP	<0.083		CL6CP	(0.083
CLC6H5	<0.580		CLC6H5	(0.580
CLDAN	(0.152		CLDAN	⟨0.152
CPMS	<1.080		CPMS	(1.080
CPMSO	<1.980		CPMSO	⟨1,980
CPMSQ2	181.000		CPMSO2	20.800
CRTOT	19.400		CRTOT	<b>&lt;5.960</b>
CUTOT	<7.940		CUTOT	(7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	(9.310
DIMP	551.000		DIMP	162.000
DITH	7.820		DITH	5 . 2 4 0
DLDRN	0.221		DLDRN	0.205
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	(15.200
ENDRN	< 0.060		ENDRN	<0.060
ETC6H5	<1.280	•	ETC6H5	⟨1 ⋅ 280
FL	2790.000		FL	2210.000
HGTOT	< 0 . 359		HGTOT	⟨0⋅359
ISODR	< 0.056		ISODR	(0.056
K	10300.000		K	7280.000
MEC6H5	5.280		MEC6H5	<1.210
MG	67000.000		MG	47600.000
MIBK	<12.900		MIBK	(12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	701000.000		NA	495000.000
NIT	> 200.000		NIT	2300.000
TAKO	3.510		OXAT	6.010
PBTOT	(18.600		PBTOT	(18.600
PPDDE	(0.046		PPDDE	(0.046
PPDDT	⟨0.059		PPDDT	(0.059
504	499000.000		S O 4	318000.000
T12DCE	⟨1.200		TIZDCE	(1.200
TCLEE	⟨1⋅300		TCLEE	⟨1.300
TRCLE	₹1,100		TRCLE	(1.100
XYLEN	⟨2⋅470		XYLEN	(2.470
2NTOT	86.700	C-357	ZNTOT	43.000
	00.100	U 331	214101	43.000

**③** 

•

•

þ

Þ

20.00

(*)

•

WELL AQUIFER: ALLUVIUM WELL AQUIFER: DENVER 26020 SCREENED INT.: 40.0- 44.0 26041 SCREENED INT.: 42.9- 46.9 BEDROCK DEPTH: 43.7 BEDROCK DEPTH: 42.0 BEDROCK LITH .: SH BEDROCK LITH .: SH

BEDROCK LI	(TH: SH		BEDROCK L	ITH:: SH
SCREENED 2	ONE: ALLUVIUM		SCREENED	ZONE: 1 SH
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		llitce	(34.000
112TCE	<1.000		112TCE	⟨20.000
11DCE	<1.100		11DCE	22.000
11DCLE	⟨1 ⋅ 200		11DCLE	<24.000
12DCLE	⟨0,610		12DCLE	39.300
ALDRN	<0.083		ALDRN	⟨0.083
ASTOT	4.430		ASTOT	192.000
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C636	<26.800
CA	97200.000		CA	205000.000
CCL4	<2.400		CCL4	₹48,000
CDTOT	<5.160		CDTOT	
CH2CL2	<5.100 <5.000		CH2CL2	(5.160
CHCL3	<1.400		CHCL3	<100.000
CL	616000.000		CL	<28.000
				27200000.000
CL6CP	<0.200		CL6CP	<0.200
CLC6H5	<0.580		CLC6H5	<11.600
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMSO2	692.000
CRTOT	<5.960		CRTOT	⟨5⋅960
CUTOT	<7.940		CUTOT	<7.940
DBCP	⟨0⋅130		DBCP	⟨0⋅130
DCPD	(9.310		DCPD	14.600
DIMP	868.000		DIMP	3260.000
DITH	5.260		DITH	53.600
DLDRN	0.106		DLDRN	0.470
DMDS	<1.160		DMDS	29.000
DMMP	<15.200		DMMP	315.000
ENDRN	<0.060		ENDRN	(0.060
ETC6H5	<1.280		ETC6H5	< <b>2</b> 5.600
FL	2320.000		FL	189000.000
HCTOT	<0.359		HGTOT	0.426
ISODR	<0.056		ISODR	<0 056
K	5150.000		K	134000.000
MEC6H5	<1.210		MEC6H5	344.000
MG	26600.000		MG	872000.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<b>&lt;2</b> 7 000
NA	463000.000		N A	19800000.000
NIT	1910.000		NIT	21.500
OXAT	2 · 810		OXAT	11.000
PBTOT	<18.600		PBTOT	(18.600)
PPDDE	(0.046		PPDDE	⟨0.230
PPDDT	<0.059		PPDDT	< 0 . 059
S O 4	228000.000		\$04	7430000.000
T12DCE	<1.200		T12DCE	(24.000
TCLEE	<1.300		TCLEE	(26.000
TRCLE	(1.100	1 050	TRCLE	(22.000
XYLEN	(2.470	0-050	XYLEN	(49.400
ZNTOT	27.000		ZNTOT	27.500
				-· • • •

WELL AQUIFER: ALLUVIUM
6073 SCREENED INT.: 46.2-50.2 WELL AQUIFER: ALLUVIUM
26085 SCREENED INT.: 22.9-32.1

۹

ZNTOT

28.4()

Þ

BEDROCK DEPTH: 49.0

BEDROCK LITH:: SH

SCREENED ZONE: ALLUVIUM

BEDROCK LITH:: SS

SCREENED ZONE: A .UV

SCREENED ZONE: A .UVIUM COMPOUND CONCENTRATION COMPOUND CONCENTRATION <1.700 <1.700 111TCE 111TCE 112TCE <1.000 112TCE <1.000 11DCE <1.100 11DCE <1.100 <1.200 <1.200 11DCLE 11DCLE 12DCLE 12DCLE <0.610 <0.610 ALDRN <0.166 ALDRN <0.166 ASTOT <2.500 ASTOT 19.900 BTZ BTZ <1.140 3.360 C6H6 <1.340 C6H6 <1.340 214000.000 538000.000 CA CA CCL4 6.290 CCL4 <2.400 CDTOT <5.160 CDTOT <5.160 CH2CL2 **<5.000** CH2CL2 <5.000 CHCL3 14.300 CHCL3 18.000 CL 167000.000 1720000.000 CL CL6CP <0.166 CL6CP (0.166 CLC6H5 <0.580 CLC6H5 <0.580 CLDAN <0.304 (0.304 CLDAN <1.080 CPMS CPMS <1.080 CPMSO (1.980 <1.980 CPMSO CPMSO2 <2.240 CPMSO2 28.600 CRTOT 12.200 CRTOT 43.700 CUTOT <7.940 CUTOT (7.940 DBCP (0.130 DBCP 0.187 DCPD <9.310 DCPD <9.310 DIMP 23.800 DIMP 123.000 <3.340 DITH DITH (3.340 DLDRN 0.402 DLDRN <0.110 DMDS <1.160 <1.160 DMDS <15.200 DMMP DMMP <15.200 ENDRN .0.120 <0.120 ENDRN ETC6H5 (1.280 ETC6H5 FL 1650.000 2790.000 FL HCTOT <0.359 HCTOT (0.359 SODR <0.112 ISODR (0.112 5150.000 8200.000 MEC6H5 <1.210 MEC6H5 <1.210 MG 50100.000 188000.000 MC MIBK (12.900 <12.900 MIBK MXYLEN <1.350 MXYLEN <1.350 NA 207000.000 NA 681000.000 NIT 4890.000 1170.000 NIT OXAT <1.350 OXAT (1.350 PBTOT <18.600 PBTOT PPDDE <0.092 PPDDE (0.092 PPDDT <0.118 PPDDT <0.118 504 716000.000 504 963000.000 T12DCE (1.200 (1.200 T12DCE TCLFE 1.340 TCLEE (1.300 TRCLE <1.100 TRCLE 8.750 11 359 XYLEN <2.470 XYLEN (2.470

ZNTOT

35.100

WELL AQUIFER: ALLUVIUM WELL AQUIFER: ALLUVIUM

26127 SCREENED INT .: 41.1- 44.5 27016 SCREENED INT .: 21.0- 25.0

BEDROCK DEPTH: 43.0
BEDROCK LITH.: SS
BEDROCK LITH.: ST
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM

SCREENED	ZONE: ALLUVIUM		SCREENED	ZONE: ALLUVIUM
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		lidcle	<1.200
12DCLE	< 0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
ASTOT	6.400		ASTOT	8.610
BTZ	1.320		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
CA	369000.000		CA	<50000.000
CCL4	<2.400		CCL4	<2.400
CDTOT	₹5.160		CDTOT	(5.160
CH2CL2	⟨5⋅000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	843000.000		CL	542000.000
CL6CP	(0.083		CL6CP	<0.200
CLC6H5	2.990		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	(1.080		CPMS	<1.080
CPMSO	₹1.980		CPMSO	<1.980
CPMSO2	(2.240		CPMSO2	(2,240
CRTOT	21.200		CRTOT	(5.960
CUTOT	(7.940		CUTOT	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	(9.310		DCPD	(9.310
DIMP	1420.000		DIMP	39.300
DITH	41.700		DITH	< 3 · 3 4 0
DLDRN	0.090		DLDRN	0.447
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	1480.000		FL	3020.000
HGTOT	<0.359		HGTOT	(0.359
ISODR	(0.056		ISODR	(0.056
K	4840.000		K	2410.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	75600.000		MG	16900.000
MIBK	(12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	292000.000		N A	551000.000
NIT	1890.000		NIT	525.000
OXAT	5 - 4 5 0		OXAT	⟨1 - ↑50
PBTOT	<18.600		PBTOT	(18.600
PPDDE	(0.046		PPDDE	(0.046
PPDDT	(0.059		PPDDT	(0.059
504	399000.000		S O 4	364000.000
T12DCE	<1.200		T12DCE	(1.200
TCLEE	(1.300		TCLEE	(1.300
TRCLE	(1.100		TRCLE	1 - 100
XYLEN	<2.470	0-350	XYLEN	2 : 470
ZNTOT	20 100			20 100

<20.100

ZNTOT

ZNTOT

<20.100

(3)

WELL AQUIFER: ALLUVIUM WELL AQUIFER: ALLUVIUM

(3)

23049 SCREENED INT.: 38.4-42.4 23095 SCREENED INT.: 44.3-48.3 BEDROCK DEPTH: 45.5 BEDROCK DEPTH: 53.0

BEDROCK DEPTH: 45.5

BEDROCK LITH: SH

SCREENED ZONE: ALLUVIUM

BEDROCK LITH: SH

SCREENED ZONE: ALLUVIUM

SCREENED	ZONE: ALLUVIUM		SCREENED	ZONE: ALLUVIUM
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<34.000		111TCE	<17.000
112TCE	<20.000		112TCE	⟨20.000
11DCE	<22.000		11DCE	(11.000
11DCLE	<24.000		11DCLE	(12.000
12DCLE	(61.000		12DCLE	<6·100
ALDRN	⟨7.000		ALDRN	<1.400
ASTOT	11.300		ASTOT	12.800
BTZ	⟨2⋅000		BTZ	⟨2.000
C6H6	<26.800		C 6 H 6	⟨1.3.400
CA	188000.000		CA	524000.000
CCL4				
	<48.000		CCL4	(24.000
CDTOT CH2CL2	<5.160		CDTOT	<5.160
CHCL3	<100.000 10200.000		CH2CL2	<50.000
			CHCL3	606.000
CL	3050000.000		CL	3530000.000
CL6CP	<7.000		CL6CP	<1.400
CLC6H5	<11.600		CLC6H5	<b>∢5</b> ⋅800
CLDAN	. 1.0.00		CLDAN	, , , , ,
CPMS	<13.000		CPMS	<1.300
CPMSO	<4.200		CPMSO	<4.200
CPMSO2	506.000		CPMSO2	563.000
CRTOT	<5.960		CRTOT	<b>&lt; 5</b> · <b>9</b> 6 0
CUTOT	<7.940		CUTOT	<7.940
DBCP	<0.130		DBCP	< 0 ⋅ 1 3 0
DCPD	1420.000		DCPD	840.000
DIMP	504.000		DIMP	643.000
DITH	85.800		DITH	90.000
DLDRN	<6.000		DLDRN	<1.200
DMDS	<1.800		DMDS	<1.800
DMMP	<152.000		DMMP	<152.000
ENDRN	< 5 · 200		ENDRN	<1.040
ETC6H5	: 25.600		ETC6H5	<12.800
FL	<12200.000		F L	<12200.000
HGTOT	< 0 · 4 8 0		<b>НСТОТ</b>	<b>(0</b> · 4 8 0
ISODR	<6.000		ISODR	<1.200
K	29400.000		K	8110.000
MEC6H5	37.600		MEC6H5	<12.100
MG	281000.000		MG	308000.000
MIBK	15.600		MIBK	<12.900
MXYLEN	<27.000		MXYLEN	<13.500
NA	4080000.000		N A	5090000.000
NIT	117.000		NIT	1040.000
OXAT	20.500		OXAT	16.700
PBTOT	<18.600		PBTOT	<18.600
PPDDE	⟨5⋅300		PPDDE	<1.060
PPDDT	<7.000		PPDDT	<1.400
504	1450000.000		504	1570000.000
T12DCE	< 24 - 000		T12DCE	(12.000
TCLEE	33.100		TCLEE	24.000
TRCLE	22.300		TRCLE	19.100
XYLEN	<49.400	0~ <b>3</b> 51	XYLEN	< 24 . 700
ZNTOT	<20.100		ZNTOT	126.000

WELL AQUIFER: ALLUVIUM AQUIFEK: ALLUVIUM WELL

(*****)

23142 SCREENED INT .: 38.0-59.4

23108 SCREENED INT.: 36.5-40.5 BEDROCK DEPTH: 38.5 BEDROCK DEPTH: 56.5
BEDROCK LITH: SH
SCREENED ZONE: ALLUVIUM BEDROCK LITH .: SS

SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.070		ALDRN	<0.070
ASTOT	7.400		ASTOT	3.900
BTZ	2.770		BTZ	<b>∢2⋅0</b> 00
C6H6	<1.340		C 6 H 6	<1.340
CA	162000.000		CA	118000.000
CCL4	<2.400		CCL4	< 2 . 4 0 0
CDTOT	12.700		CDTOT	<5.160
CH2CL2	<5.000		CH2CL2	<b>∢5⋅0</b> 00
CHCL3	<1.400		CHCL3	<1.400
CL	723000.000		CL	694000.000
CL6CF	<0.070		CL6CP	<0.070
CLC6H5	<0.580		CLC6H5	<b>∢0</b> ⋅580
CLDAN	•		CLDAN	•
CPMS	<1.300		CPMS	⟨1⋅300
CPMSO	<4.200		CPMSO	<4.200
CPMSO2	6.770		CPMSO2	13.100
CRTOT	9.160		CRTOT	•
CUTOT	15.300		CUTOT	27.000
DBCP	<0.130		DBCP	⟨0.130
DCPD	<9.310		DCPD	⟨9⋅310
DIMP	<10.500		DIMP	1260.000
DITH	<1.100		DITH	> 22.200
DLDRN	<0.060		DLDRN	0.080
DMDS	<1.800		DMDS	<1.800
DMMP	<15.200		DMMP	<152.000
ENDRN	<0.052		ENDRN	⟨0.052
ETC6H5	<1.280		ETC6H5	<1.280
FL	2780.000		FL	2720.000
HCTOT	< 0 · 480		HGTOT	⟨0.480
ISODR	<0.060		ISODR	⟨0.060
K	6670.000		K	4840.000
MEC6H5	<1.210		MEC6H5	<1 ⋅ 210
MG	71300.000		MG	37600.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	⟨1⋅350
NA	704000.000		N A	447000.000
NIT			NIT	101.000
OXAT	<2.000		TAXO	5 . 2 7 ()
PRTOT	<18.600		PBTOT	<18.600
PPDDE	<0.053		PPDDE	(0.053
PPDDT	<0.070		PPDDT	(0.070
S O 4	380000.000		S O 4	276000.000
T12DCE	<1.200		TIZUCE	(1 - 200
TCLEE	<1 300		TCLEE	(1 - 300
TRCLE	(1 - 1 0.0		TRCLE	(1.100
INCLE				
XYLEN	(2.470	0-332	XYLEN	<2.470

WELL AQUIFER: ALLUVIUM WELL AQUIFER: ALLUVIUM 26015 SCREENED INT.: 48.0-52.0 26017 SCREENED INT .: 43.6-47.6

Alberta Santa Balbarata

**(4**)

BEDROCK DEPTH: 48.6 BEDROCK DEPTH: 47.0 BEDROCK LITH .: SH BEDROCK LITH .: SH

SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

SCREENED	ZONE; ALLOVIUM		SCREENED	ZONE: ALLUVIUM
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	0.610		12DCLE	<0.610
ALDRN	<0.070		ALDRN	<0.070
ASTOT	8.200		ASTOT	4 - 700
BTZ	<2.000		BTZ	<2.000
C6H6	<1.340		C6H6	<1.340
CA	198000.000		CA	110000.000
CCL4	<2.400		CCL4	<2.400
CDTOT	5.470		CDTOT	<b>5.160</b>
CH2CL2	<5.000		CH2CL2	⟨5⋅000
CHCL3	<1.400		CHCL3	<1.400
CL	1000000.000		CL	560000.000
CLGCP	<0.070		CL6CP	<0.070
CLC6H5	<0.580		CLC6H5	⟨0.580
CLDAN	•		CLDAN	
CPMS	<1.300		CPMS	<1.300
CPMSO	<4.200		CPMSO	<4.200
CPMSO2	30.200		CPMSO2	19.000
CRTOT	•		CRTOT	•
CUTOT	10.800		CUTOT	<7.940
DBCP	<0.130		DBCP	⟨0 ⋅ 1 3 0
DCPD	<9.310		DCPD	<9.310
DIMP	470.000		DIMP	201.000
DITH	4.010		DITH	10.300
DLDRN	<0.060		DLDRN	0.308
DMDS	<1.800		DMDS	<1.800
DMMP	<152.000		DMMP	<152.000
ENDRN	⟨0.052		ENDRN	<0.052
ETC6H5	<1.280		ETC6H5	<1.280
FL	3040.000		FL	2470.000
HCTOT	<0.480	î	HGTOT	< 0 . 480
ISODR	<0.060		ISODR	< 0 . 0 6 0
K	8160.000		K	4840.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	59900.000		MG	45400.000
MIBK	<b>&lt;12.900</b>		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	< 1 + 350
NA	698000.000		N A	497000.000
NIT	188.000		NIT	2340.000
OXAT	3.240		OXAT	5 - 610
PBTOT	<b>&lt;18.600</b>		PBTOT	<18 ⋅ 600
PPDDE	<0.053		PPDDE	< 0 . 0 5 3
PPDDT	<0.070		PPDDT	< 0 + 0 7 0
504	449000.000		S O 4	285000.000
T12DCE	<b>(1.200</b>		T12DCE	< 1 + 2 0 0
TCLEE	<1.300		TCLEE	< 1 - 300
TRCLE	<1.100	0-363	TRCLE	<1.100
XYLEN	<2.470	,	XYLEN	< 2 . 4 7 0
ZNTOT	43.800		ZNTOT	< 20 - 100

BEDROCK DEPTH: 42.0

BEDROCK LITH .: SH

SCREENED ZONE: 1 SH

WELL AQUIFER: ALLUVIUM
26020 SCREENED INT.: 40.0-44.0 WELL AQUIFER: DENVER
26041 SCREENED INT.: 42.9-46.9

BEDROCK DEPTH: 43.7 BEDROCK LITH: SH

SCREENED ZONE: ALLUVIUM

111TCE	COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
112TCE		¿1,700		111TCE	<17.000
11DCE					•
11DCLE					
12DCLE				•	
ALDRN					
ASTOT					
BTZ					
C6H6         <1.340					
CA					
CCL4					•
CDTOT CH2CL2					
CH2CL2					
CHCL3	-				
CL         600000.000         CL         26300000.000           CL6CP         <0.070					
C16CP		•			
CLC6H5         <0.580					
CLDAN CPMS					•
CPMS         <1.300					
CPMSO         <4.200         CPMSO2         <4.200           CPMSO2         <4.700					
CPMSO2         <44.700					
CRTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT CUTOT					
CUTOT					
DBCP (0.130 DECP (0.130 DECP (0.130 DCPD (9.310 DCPD (9.310 DCPD (9.310 DCPD (9.310 DCPD (9.310 DTMP 392C.000 DTMP 392C.000 DTMP 392C.000 DTMP 392C.000 DTM (46.600 DLDRN (0.075 DLDRN (3.000 DMDS (1.800 DMDS (1.800 DMDS (1.800 DMDS (1.800 DMDS (1.800 DMDS (1.800 DMDS (1.800 DMDR (2.600 ENDRN (2.600 ETC6H5 (1.280 ETC6H5 (1.2800 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.4000.000 FL 19.40		•			
DCPD         (9.310)         DCPD         (9.310)           DIMP         711.000         DIMP         3920.000           DITH         3.320         DITH         46.600           DLDRN         0.075         DLDRN         (3.000           DMDS         (1.800)         DMDS         (1.800)           DMMP         (152.000)         DMMP         13600.000           ENDRN         (2.600)         ETC6H5         (12.800)           FL         2360.000         FL         194000.000           HGTOT         BGTOT         2.030           ISODR         (0.060)         ISODR         (3.000)           K         R         126000.000           MEC6H5         (1.210)         MEC6H5         136.000           MG         774000.000         MIBK         (12.900)           MIBK         (12.900)         MXYLEN         (13.500)           NA         NA         8380000.000           NIT         OXAT         9.480           PBTOT         44.200         PPDDE         (2.650           PPDDT         (0.070         PPDDT         (3.500           SO4         206000.000         SO4         7690000.		. 0 1 2 0			
DIMP         711.000         DIMP         3920.000           DITH         3.320         DITH         46.600           DLDRN         0.075         DLDRN         (3.000)           DMDS         <1.800					
DITH         3.320         DITH         46.600           DLDRN         0.075         DLDRN         <3.000           DMDS         <1.800         DMDS         <1.800           DMMP         <152.000         DMMP         13600.000           ENDRN         <2.600         ENDRN         <2.600           ETC6H5         <1.280         ETC6H5         <12.800           FL         194000.000         FL         194000.000           HGTOT         <2.030         ISODR         <3.000           K         .         K         126000.000           MEC6H5         <1.210         MEC6H5         136.000           MG         <774000.000         MIBK         <12.900           MXYLEN         <1.350         MXYLEN         <13.500           NA          NA         8380000.000           NIT         OXAT         9.480           PBTOT         .         PBTOT         44.200           PPDDE         <0.053         PPDDE         <2.650           PPDDT         <0.000         SO4         7690000.000           T12DCE         <1.200         TCLEE         <13.000           TCLEE					
DLDRN         0.075         DLDRN         (3.000           DMDS         ⟨1.800         DMDS         ⟨1.800           DMMP         ⟨152.000         DMMP         13600.000           ENDRN         ⟨2.600         ETC6H5         ⟨1.2800           ETC6H5         ⟨1.2800         ETC6H5         ⟨12.800           FL         194000.000         FL         194000.000           HGTOT         2.030         ISODR         ⟨3.000           K         126000.000         MEC6H5         136.000           MG         774000.000         MEC6H5         136.000           MG         774000.000         MIBK         ⟨12.900         MIBK         ⟨12.900           MXYLEN         ⟨1.350         MXYLEN         ⟨13.500           NA         NA         8380000.000           NIT         OXAT         9.480           PBTOT         PBTOT         44.200           PPDDE         ⟨0.053         PPDDE         ⟨2.650           PPDDT         ⟨3.500         SO4         7690000.000           T12DCE         ⟨1.200         T12DCE         ⟨12.000           TCLEE         ⟨1.3000         TCLEE         ⟨13.000					
DMDS         <1.800			-		
DMMP         <152.000			•		
ENDRN					
ETC6H5         <1.280         ETC6H5         <12.800           FL         2360.000         FL         194000.000           HGTOT         2.030           ISODR         <3.000         K         126000.000           MEC6H5         <1.210         MEC6H5         136.000           MG         774000.000         MG         774000.000           MIBK         <12.900         MIBK         <12.900           MXYLEN         <13.500         MXYLEN         <13.500           NA         8380000.00         NIT           OXAT         <2.000         QXAT         9.480           PBTOT         <44.200         PPDDE         <2.650           PPDDT         <0.070         PPDDT         <3.500           SO4         206000.000         SO4         7690000.000           T12DCE         <1.200         T12DCE         <12.000           TCLEE         <1.300         TCLEE         <13.000           TRCLE         <1.300         TRCLE         <22.000           XYLEN         <22.470         XYLEN         <24.700					
FL       2360.000       FL       194000.000         HGTOT       :       HGTOT       2.030         ISODR       <0.060					
HCTOT       .       HCTOT       2.030         ISODR       <0.060					
ISODR		2360.000			
K       .       K       126000.000         MEC6H5        136.000         MG       774000.000       MG       774000.000         MIBK       <12.900       MIBK       <12.900         MXYLEN       <1350       MXYLEN       <13.500         NA       8380000.000       NIT       .         OXAT       9.480       PBTOT       44.200         PBTOT       9.480       PPDDE       <2.650         PPDDT       <0.053       PPDDE       <2.650         PPDDT       <3.500       SO4       7690000.000         T12DCE       <1.200       T12DCE       <12.000         TCLEE       <1.300       TCLEE       <13.000         TRCLE       <1.100       TRCLE       <22.000         XYLEN       <24.700       XYLEN       <24.700		.0.040			
MEC6H5       <1.210		\$0.060		_	
MG         .         MC         774000.000           MIBK         <12.900         MIBK         <12.900           MXYLEN         <13.500         MXYLEN         <13.500           NA         8380000.000         NIT         .           OXAT         NIT         .         .           OXAT         9.480         .         .           PBTOT         44.200         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .					
MIBK         <12.900		(1.210			
MXYLEN         (1.350)         MXYLEN         (13.500)           NA         .         NA         8380000.000           NIT         .         NIT         .           OXAT         9.480         9.480           PBTOT         44.200         PBTOT         44.200           PPDDE         <0.053					
NA        NA       8380000.000         NIT        NIT          OXAT        QXAT       9.480         PBTOT        PBTOT       44.200         PPDDE         PPDDE           PPDDT                                                                                    <					
NIT        NIT          OXAT <pre></pre>					
OXAT         <2.000         OXAT         9.480           PBTOT         .         PBTOT         44.200           PPDDE         <0.053		•			8380000.000
PBTOT         .         PBTOT         44.200           PPDDE         <0.053		• • • • •			,
PPDDE         <0.053		<2.000			
PPDDT         < 0.070         PPDDT         < 3.500           SO4         206000.000         SO4         7690000.000           T12DCE         < 1.200		• • • • •			
SO4     206000.000     SO4     7690000.000       T12DCE     <1.200					
T12DCE					
TCLEE       <1.300					
TRCLE <1.100 TRCLE <22.000 XYLEN <2.470 C-365 XYLEN <24.700					
XYLEN (2.470 C-35) XYLEN (24.700					
Albert Control			15. 15. 2. 4		
ZNTOT . ZNTOT 148.000		< 2 . 4 7 0	0.736.5		
	ZNTOT	•		ZNTOT	148.000

WELL AQUIFER: ALLUVIUM

26073 SCREENED INT .: 46.2-50.2 26085 SCREENED INT .: 22.9-32.1 BEDROCK DEPTH: 49.0 BEDROCK DEPTH: 32.5 BEDROCK LITH .: SH

SCREENED ZONE: ALLUVIUM

WELL AQUIFER: ALLUVIUM

BEDROCK LITH .: SS

SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	₹0.070		ALDRN	(1.400
ASTOT	⟨3⋅070		ASTOT	37.400
BTZ	⟨2.000		BTZ	2.650
C6H6	⟨1.340			
CA	229000.000		C 6 H 6	<1.340
CC14			CA	695000.000
CDTOT	3.810		CCL4	<2.400
	7.510		CDTOT	15.100
CH2CL2	⟨5⋅000		CH2CL2	<5.000
CHCL3	11.500		CHCL&	12.600
CL	176000.000		CL	1720000.000
CL6CP	<0.070		CL6CP	<1.400
CLC6H5	<0.580		CLC6H5	<b>&lt;0</b> .580
CLDAN	•		CLDAN	•
CPMS	<1.300		CPMS	<1.300
CPMSO	<4.200		CPMSO	<4.200
CPMSO2	<4.700		CPMSO2	<4.700
CRTOT	21.500		CRTOT	
CUTOT	<b>ر7.940</b>		CUTOT	13.100
DBCP	<0.130		DBCP	0.180
DCPD	ر9،310		DCPD	(9.310
DIMP	<10.500		DIMP	76.400
DITH	<1.100		DITH	<1.100
DLDRN	< 0.060		DLDRN	<1.200
DMDS	<1.800		DMDS	<1.800
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.052		ENDRN	<1.040
ETC6H5	<1.280		ETC6H5	<1.280
FL	1800.000		F L	3340.000
HGTOT	< 0 . 480		нстот	<0.480
ISODR	<0.060		ISODR	<1.200
K	3020.000		K	6170.000
MEC6H5	<1.210		MEC6H5	<1 · 210
MG	55200.000		MG	216000.000
MIBK	⟨12⋅900		MIBK	
MXYLEN	⟨1⋅350			<12.900
NA	234000.000		MXYLEN	<1.350
NIT	5540.000		N A	924000.000
OXAT			NIT	1670.000
	<2.000		OXAT	<2.000
PBTOT	21.900		PBTOT	<18.600
PPDDE	(0.053		PPDDE	<1.060
PPDDT	⟨0.070		PPDDT	<1 ⋅ 4 0 0
SO4	742000.000		S O 4	941000 - 000
T12DCE	(1.200		T12DCE	<1 + 2 0 0
TCLEE	<1.300		TCLEE	(1 - 300
TRCLE	<1.100	C-365	TRCLE	7 - 4 0 0
XYLEN	< 2 · 470		XYLEN	<2.470
ZNTOT	44.700		ZNTOT	101.000



WELL AQUIFER: ALLUVIUM

26127 SCREENED INT .: 41.1-44.5

BEDROCK DEPTH: 43.0 BEDROCK LITH: SS

SCREENED ZONE: ALLUVIUM

COMPOUND		CONCENTRATION
111TCE		<1.700
112TCE		⟨1.000
11DCE		<1.100
11DCLE		<1.200
12DCLE		<0.610
ALDRN		<0.070
ASTOT		10.600
BTZ		2.370
C6H6		<1.340
CA		342000.000
CCL4		<2.400
CDTOT		⟨5⋅160
CH2CL2		⟨5⋅000
CHCL3		<1.400
CL		924000.000
CL6CP		<0.070
CLC6H5		1.570
CLDAN		
CPMS		<1.300
CPMSO		<4.200
CPMSO2		<4.700
CRTOT		(41700
CUTOT		13.100
DBCP		⟨0⋅130
DCPD		<9·310
DIMP		1690.000
DITH		22.200
DLDRN	>	0.089
DMDS		⟨1⋅800
DMMP		<152.000
ENDRN		
		(0.052
ETC6H5 FL		(1.280
HGTOT		1610.000
		(0.480
ISODR		<0.060
K Mec6h5		2520.000
MG		(1.210
		74000.000
M T B K M X Y L E N		<12.900 <1.350
		307000.000
N A		
NIT		2180.000
OXAT		7.680
PBTOT		<18.6 J
PPDDE		(0.053
PPDDT		<0.070
504		412000.000
T12DCE		<1.200
TCLLE		<1.300
TRCLE		<1.100
XYLEN		<2.470

C- 356

OFFPOST WATER CHEMISTRY DATA

WELL AQUIFER: ALLUVIUM
37305 SCREENED INT.: 0.0- 0.0 37308 SCREENED INT.: 0.0- 0.0 BEDROCK DEPTH: 27.0 BEDROCK LITH.: SS BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	1.080	112TCE	<1.000
11DCE_	<1.100	11DCE_	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	0.744	12DCLE	2.000
ALDRN	0.140	ALDRN	0.083
C6H6	<1.340	C6H6	<1.340
CA	431000.000	CA	198000.000
CCL4_	<2.400	CCL4_	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCT3	<1.400	CHCL3	<1.400
CL	534000.000	CL	263000.000
CL6CP	<0.070	CL6CP_	<0.070
CLC6H5	<0.580	CLC6H5	<0.580
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	50.600
CPMSO2	<4.700	CPMSQ2	<4.700
CRTOT	< <b>5.9</b> 60	CRTOT	<5.960
CUTOT	<7.930	CUTOT	<7.930
DBCP	<0.130	DRCD	0.207
DCPD	<9.310	DCPD	<b>58.00</b> 0
DIMP	1220.000	DIMP	153.000
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	0.672
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	0.658
ETC6H5	<1.280	ETC6H5	<1.280
FL	1950.000	FL	1610.000
HGTOT	<0.500	HGTOT	<0.500
ISODR	<0.060	ISODR	<0.060
K	1960.000	K	3350.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	4800.000	MG	93800.000
MIBK	<12.900	MIBK	<12.900
MXYLE:	<1.350	MXYLEN	<1.350
NA	471000.000	NA	400000.000
NIT	349.000	NIT	2640.000
OXAT	<2.000	TAXO	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	0.066
PPDDT	<0.066	PPDDT	<0.066
<b>SO4</b>	789000.000	SO4	2180000.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	14.000
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	29.300	ZNTOT	27.100
ASTOT	10.800	ASTOT	6.330

WELL AQUIFER: ALLUVIUM
37309 SCREENED INT.: 0.0- 0.0 37312 SCREENED INT.: 0.0- 0.0 BEDROCK DEPTH: 23.0 BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
	<1.700	111TCE	<1.700
111TCE	(1.700	112TCE	<1.000
112TCE	<1.000		<1.000
11DCE	<1.100	11DCE_	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	6.190	12DCLE	<0.610
ALDRN	0.108	ALDRN	<0.070
C6H6	<1.340	C6H6	<1.340
CA	229000.000	CA	187000.000
CCL4	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
		CHCL3	<1.400
CHCL3	<1.400		21.400
CL	600000.000	CL	262000.000
CL6CP	0.090	CL6CP	<0.070
CLC6H5	<0.580	CLC6H5	<0.580
CPMS	<1.300	CPMS	<1.300
CPMSO	20.200	CPMSO	<4.200
CPMSO2	24.200	CPMSO2	<4.700
CRTOT	<5.960	CRTOT .	<5.960
CUTOT	<7.930	CUTOT	<7.930
DBCP	0.173	DBCP	<0.130
DCPD	618.000	DCPD	<9.310
	802.000	DIMP	22.200
DIMP		DIMP	
DITH	6.900	DITH	<1.100
DLDRN	<0.060	DLDRN	0.289
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	0.421	ENDRN	0.276
ETC6H5	<1.280	ETC6H5	<1.280
FL	2770.000	FL	1920.000
HGTOT		HGTOT	<0.500
ISODR	<0.060	ISODR	<0.060
K	2140.000	K	2590.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	77500.000	MG	91800.000
MIBK	<12.900	MIBK	<12.900
	<1.350		<1.350
MXYLEN	<1.350	MXYLEN	
NA	707000.000	NA	312000.000
NIT	740.000	NIT	574.000
OXAT	<2.000	TAXO	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.066	PPDDT	<0.066
504	633000.000	S04	555000.000
TIZDCE	<1.200	T12DCE	<1.200
TCLEE	59.700	TCLEE	<1.300
TRCLE	3.300	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	<20.100	ZNTOT	28.600
ASTOT	7.230	ASTOT	4.970

WELL AQUIFER: ALLUVIUM
37313 SCREENED INT.: 0.0- 0.0 37320 SCREENED INT.: 22.7- 32.7
BEDROCK DEPTH: 28.8 BEDROCK DEPTH: 35.0
BEDROCK LITH.: SS BEDROCK LITH.: SS
SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

COMPOUND   CONCENTRATION   COMPOUND   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCENTRATION   CONCEN	COMPOUND		201201112	0011451:55.
112TCE	COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
11DCE		<1.700		<1.700
11DCLE				<1.000
ALDRUM				<1.100
ALDRN 0.299 ALDRN 0.299 CSH6 1.340 C6H6 2.390 C6H6 1.340 C6H6 2.390 CA 170000.000 CA 170000.000 CCL4 2.400 CCL4 2.400 CCL4 2.400 CCDTOT 5.160 CDTOT 5.160 CDTOT 5.160 CDTOT 5.160 CH2CL2 5.000 CH2CL2 5.000 CH2CL3 1.400 CL 132000.000 CL 134000.000 CL 134000.000 CL 134000.000 CL 134000.000 CL 134000.000 CL 134000.000 CL 134000.000 CL 134000.000 CL 134000.000 CL 134000.000 CDMS 1.300 CDMS 1.300 CDMS 1.300 CDMS 1.300 CDMS 1.300 CDMS 1.300 CDMS 1.300 CDMS 1.300 CDMS 1.300 CDMS 1.300 CDMS 1.300 CDMS 1.300 CDMS 1.300 CDMS 1.300 CDMS 1.300 CDMS 1.300 CDMS 1.300 CDMS 1.300 CDMS 1.300 CDMS 1.300 CDMS 1.300 CDMS 1.300 CDMS 1.300 CDMS 1.300 CDMS 1.300 CDMS 1.300 CDMS 1.300 CDDD 1.300 CDDD 1.300 CDDD 1.300 CDDD 1.300 CDDD 1.300 CDDD 1.300 CDDD 1.300 CDDD 1.300 CDDD 1.300 CDDD 1.300 CDDD 1.300 CDDD 1.300 CDDD 1.300 CDDD 1.300 CDDD 1.300 CDDD 1.300 CDDD 1.300 CDDD 1.300 CDDD 1.300 CDDD 1.300 CDDD 1.300 CDDD 1.300 CDDD 1.300 CDDD 1.300 CDDDD 1.300 CDDDD 1.300 CDDD 1.300 CDDDD 1.300 CDDDD 1.300 CDDDD 1.300 CDDDD 1.300 CDDDDD 1.300 CDDDDD 1.300 CDDDDD 1.300 CDDDDD 1.300 CDDDDD 1.300 CDDDDDDDD 1.300 CDDDDDD 1.300 CDDDDDD 1.300 CDDDDDD 1.300 CDDDDDD 1.300 CDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD		<1.200		<1.200
CSH6		<0.610		
CCL4	ALDKN			
CC14			Соно	
CDTOT				170000.000
CH2CL2	CCL4 CDTCT			
CHCL3		<5.160		
CL         1520000.000         CL         134000.000           CL6CP         <0.070			CH2CL2	
CL6CP         <0.070	CHCL3	<1.400		
CLC6H5			CL	
CPMS         <1.300	7-7-7-			
CPMSO         <4.200         CPMSO2         <4.700           CPMSO2         <4.700				
CPMSO2				
CRTOT		<4.200		<4.200
CUTOT		<4.700		<4.700
DBCP		<5.960		<5.960
DCPD				
DIMP         4480.000         DIMP         17.100           DITH         9.210         DITH         <1.100				
DITH         9.210         DITH         <1.100           DLDRN         <0.060		<9.310		<9.310
DLDRN         <0.060         DLDRN         0.071           DMDS         <1.800				
DMDS         <1.800				
DMMP         <15.200				
ENDRN 0.072 ENDRN <0.052 ETC6H5 <1.280 ETC6H5 <1.280 FL 2870.000 FL <1200.000 HGTOT <0.500 HGTOT <0.500 ISODR <0.060 K 2320.000 MEC6H5 <1.210 MEC6H5 <1.210 MG 191000.000 MG 54700.000 MIBK <12.900 MIBK <12.900 MXYLEN <1.350 MXYLEN <1.350 NA 104000.000 NIT 416.000 OXAT 4.140 OXAT <2.000 PBTOT <18.600 PBTOT <18.600 PPDDE <0.053 PPDDT <0.066 PPDDT <0.066 S04 149000.000 TCLEE <1.200 TCLEE <1.300 TCLEE <1.300 TRCLE <1.100 XYLEN <2.470 ZNTOT 36.600 ZNTOT 21.800				
ETC6H5				
FL 2870.000 FL <1200.000 HGTOT <0.500 HGTOT <0.500 ISODR <0.060 K 2320.000 MEC6H5 <1.210 MEC6H5 <1.210 MG 19100.000 MG 54700.000 MIBK <12.900 MIBK <12.900 MXYLEN <1.350 MXYLEN <1.350 NA 1040000.000 NIT 416.000 OXAT <10.000 NIT 416.000 OXAT 4.140 OXAT <2.000 PBTOT <18.600 PBTOT <18.600 PPDDE <0.053 PPDDT <0.066 S04 1490000.000 S04 432000.000 T12DCE <1.200 TCLEE <1.300 TCLEE <1.300 TCLEE <1.300 TRCLE <1.300 TRCLE <1.100 XYLEN <2.470 ZNTOT 36.600 ZNTOT 21.800		0.072		
HGTOT       <0.500		<1.280		<1.280
ISODR			FL	<1200.000
K       6820.000       K       2320.000         MEC6H5       <1.210				
MEC6H5       <1.210				
MG 191000.000 MG 54700.000 MIBK <12.900 MIBK <12.900 MXYLEN <1.350 MXYLEN <1.350 NA 1040000.000 NA 253000.000 NIT <10.000 NIT 416.000 OXAT 4.140 OXAT <2.000 PBTOT <18.600 PBTOT <18.600 PPDDE <0.053 PPDDE <0.053 PPDDT <0.066 PPDDT <0.066 SO4 149000.000 SO4 432000.000 T12DCE <1.200 T12DCE <1.200 TCLEE <1.300 TCLEE <1.300 TRCLE <1.100 TRCLE <1.100 XYLEN <2.470 ZNTOT 36.600 ZNTOT 21.800				
MIBK <12.900 MIBK <12.900 MXYLEN <1.350 MXYLEN <1.350 NA 1040000.000 NA 253000.000 NIT <16.000 NIT 416.000 OXAT <2.000 PBTOT <18.600 PBTOT <18.600 PDDE <0.053 PPDDE <0.053 PPDDE <0.053 PPDDT <0.066 PPDDT <0.066 PPDDT <0.066 SO4 432000.000 T12DCE <1.200 T12DCE <1.200 T12DCE <1.300 TCLEE <1.300 TCLEE <1.300 TCLEE <1.300 TCLEE <1.100 XYLEN <2.470 XYLEN <2.470 ZNTOT 36.600				<1.210
MXYLEN       <1.350				
NA       1040000.000       NA       253000.000         NIT       <10.000		<12.900		
NIT       <10.000				<1.350
OXAT       4.140       OXAT       <2.000				253000.000
PBTOT       <18.600				
PPDDE       <0.053				
PPDDT       <0.066       PPDDT       <0.066         SO4       1490000.000       SO4       432000.000         T12DCE       <1.200				<18.600
SO4       1490000.000       SO4       432000.000         T12DCE       <1.200				<0.053
T12DCE <1.200 T12DCE <1.200 TCLEE <1.300 TCLEE <1.300 TRCLE <1.100 TRCLE <1.100 XYLEN <2.470 XYLEN <2.470 ZNTOT 36.500 ZNTOT 21.800			PPDDT	
TCLEE <1.300 TCLEE <1.300 TRCLE <1.100 TRCLE <1.100 XYLEN <2.470 XYLEN <2.470 ZNTOT 36.600 ZNTOT 21.800				432000.000
TRCLE       <1.100				<1.200
XYLEN <2.470 XYLEN <2.470 ZNTOT 36.600 ZNTOT 21.800				<1.300
XYLEN <2.470 XYLEN <2.470 ZNTOT 36.500 ZNTOT 21.800	TRCLE	<1.100		<1.100
ZNTOT 36.600 ZNTOT 21.800				<2.470
ASTOT 13.600 ASTOT <3.900		36.500	ZNTOT	
	ASTOT	13.600	ASTOT	<3.900

WELL AQUIFER: ALLUVIUM
37332 SCREENED INT.: 46.9-51.4 37333 SCREENED INT.: 38.4-47.7
BEDROCK DEPTH: 51.0 BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM

SCREENED ZONE: ALLUVIUM	SCREENED ZONE: ALLUVIUM
COMPOUND CONCENTRATION	COMPOUND CONCENTRATION
111TCE <1.700	111TCE <1.700
112TCE <1.000	112TCE <1.000
11DCE <1.100	11DCE <1.100
11DCLE <1.200	11DCLE <1.200
12DCLE <0.610	12DCLE <0.610
ALDRN <0.070	<b>ALDRN</b> <0.070
C6H6 <1.340	C6H6 <1.340
CA 390000.000	CA 114000.000
CCL4 <2.400	CCL4 <2.400
CDTOT <5.160	<b>CDTOT</b> <5.160
CH2CL2 <5.000	CH2CL2 <5.000
CHCL3 3.340	CHCL3 13.000
CL 729000.000	CL 374000.000
CL6CP <0.070	CL6CP <0.070
CLC6H5 <0.580	CLC6H5 <0.580
CPMS <1.300	CPMS <1.300
CPMSO <4.200	CPMSO <4.200
CPMSO2 <4.700	CPMSO2 <4.700
CRTOT <5.960	CRTOT <5.960
CUTOT <7.930	CUTOT <7.930
DBCP < 0.130	DBCP <0.130
DCPD <9.310	DCPD <9.310
DIMP <10.500	DIMP <10.500
DITH <1.100	DITH <1.100
DLDRN 0.447	DLDRN 0.168
DMDS <1.800	DMDS <1.800
DMMP <15.200	DMMP <15.200
ENDRN 0.130	ENDRN <0.052
ETC6H5 <1.280	ETC6H5 <1.280
FL 2130.000	FL <1200.000
HGTOT <0.500	HGTOT <1.000
ISODR <0.060	ISODR <0.060
K 3310.000	K 4070.000
MEC6H5 <1.210	MEC6H5 <1.210
MG 122000.000	MG 8140.000
MIBK <12.900	MIBK <12.900
MXYLEN <1.350	MXYLEN <1.350
NA 1340000.000	NA 352000.000
NIT 3940.000	NIT 2080.000
OXAT <2.000	OXAT <2.000
PBTOT <18.600	PBTOT <18.600
PPDDE <0.053	PPDDE <0.053
PPDDT <0.066	PPDDT <0.066
SO4 403000.000	504 171000.000
T12DCE <1.200	T12DCE <1.200
TCLEE <1.300	TCLEE <1.300
TRCLE <1.100	TRCLE <1.100
XYLEN <2.470	XYLEN <2.470
ZNTOT 77.700	ZNTOT 36.800
<b>ASTOT</b> 9.040	ASTOT 6.780

	AQUIFER: ALLUVIUM	WELL AQUIFER: ALLUVIUM	
37335	SCREENED INT.: 38.2- 57.6	37338 SCREENED INT.: 6.8-29.2	
	BEDROCK DEPTH: 51.0	BEDROCK DEPTH: 23.5	
	BEDROCK LITH.: SH	BEDROCK LITH.: SH	
	SCREENED ZONE: ALLUVIUM	SCREENED ZONE: ALLUVIUM	

OCKERNED	DONE. ADDOVION	SCREENED 2	ONE. ADDOVION
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
COMPOUND			
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	
	(0.070		<0.070
сене	<1.340	<b>C6H6</b>	<1.340
CA	82500.000	CA	159000.000
CCL4	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	4.860
CL	96600.000	CL	255000.000
		CL6CP	
CL6CP	<0.070		<0.070
CLC6H5	9.870	CLC6H5	7.350
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	<5.960	CRTOT	<5.960
CUTOT	<7.930	CUTOT	<7.930
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DOCE	<b>10.130</b>
		DCPD	<9.310
DIMP	<10.500	DIMP	17.400
DITH	<1.100	DITH	<1.100
DLDRN	0.068	DLDRN	າ.090
DMDS	<1.800	DMDS	<7.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	<1200.000	FL	1470.000
HGTOT	<0.500	HGTOT	<0.500
ISODR		ngioi	
ISONK	<0.060	ISODR	<0.060
K	2270.000	K	8420.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	11800.000	MG	50600.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	102000.000	NA	220000.000
NIT	472.000	TIN	1440.000
ÖXAT	<2.000	TAXO	
PBTOT			<2.000
	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.066	PPDDT	<0.066
SO4	55200.000	SO4	521000.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	<20.100	ZNTOT	<20.100
ASTOT		ACTOT	
VOTOI.	<3.900	ASTOT	<3.900

WELL AQUIFER: ALLUVIUM
37339 SCREENED INT.: 11.7- 22.3 37341 SCREENED INT.: 20.3- 50.7
BEDROCK DEPTH: 20.0 BEDROCK LITH.: SH BEDROCK LITH.: SS
SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

COMPOUND 111TCE	CONCENTRATION <1.700	COMPOUND	CONCENTRATION
112TCE	<1.000	111TCE 112TCE	<1.700
11DCE	<1.100		<1.000
11DCLE	<1.200	11DCE	<1.100
12DCLE	<0.610	lidcle	<1.200
ALDRN		12DCLE	<0.610
C6H6	<0.070 <1.340	ALDRN	<0.070
CA	796000.000	C6H6	<1.340 70300.000
CCL4	<2.400	CA CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	<1.400
CL	2140000.000	CL CL	62200.000
CL6CP	<0.070	CL6CP	<0.070
CLC6H5	<0.580	CLC6H5	6.240
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	<5.960	CRTOT	< <b>5.96</b> 0
CUTOT	<7.930	CUTOT	<7.930
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	498.000	DIMP	15.800
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMDS	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	3940.000	FL	<1200.000
HGTOT		ЙĠТОТ	<0.500
ISODR	<0.060	ISODR	<0.060
K	2460.000	K	4440.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	194000.000	MG	16600.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	1300000.000	NA NA	66400.000
NIT	9480.000	NIT	2770.000
TAXO	<2.000	TAXO	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.066	PPDDT	<0.066
S04	2100000.000	S04	102000.000
T12DCE	<1.200	TIZDCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	91.700	ZNTOT	<20.100
ASTOT	5.330	ASTOT	<3.900

WELL AQUIFER: ALLUVIUM

J7342 SCREENED INT.: 12.9-29.0 37343 SCREENED INT.: 3.7-35.1

BEDROCK DEPTH: 27.5 BEDROCK LITH.: SH

SCREENED ZONE: ALLUVIUM

WELL AQUIFER: ALLUVIUM

37343 SCREENED INT.: 3.7-35.1

BEDROCK DEPTH: 35.5

BEDROCK LITH.: SH

SCREENED ZONE: ALLUVIUM

ij.

COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	1.090	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	
			<1.200
12DCLE	1.360	12DCLE	2.970
ALDRN	<0.070	ALDRN	<0.070
C6H6	<1.340	C6H6	<1.340
CA	252000.000	CA	174000.000
CCL4	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	<1.400
CL	451000.000	CL	407000.000
CL6CP	<0.070	CL6CP	<0.070
CLC6H5			
	<0.580	CLC6H5	<0.580
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMS02	<4.700
CRTOT	<5.960	CRTOT	<5.960
CUTOT	<7.930	CUTOT	<7.930
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	47.300	DIMP	899.000
DITH	<1.100		
DLDRN	<1.100	DITH	3.570
	<0.060	DLDRN	0.213
DMDS	<u>≮1.800</u>	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	0.090
ETC6H5	<1.280	ETC6H5	<1.280
FL	<1200.000	FL	1540.000
HGTOT	<0.500	HGTOT	<0.500
ISODR	<0.060	ISODR	<0.060
K	6040.000	ĸ	5140.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	54600.000	MG	67600.000
MIBK			
	<12.900	MIBK	<12.900
WXYLEN	<1.350	MXYLEN	<1.350
NA	412000.000	NA	268000.000
NIT	7010.000	NIT	86.600
OXAT	<2.000	OXAT	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.066	PPDDT	<0.066
S04	678000.000	S04	462000.000
TIZDCE	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE		TCLEE	
	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	<20.100	ZNTOT	<b>6</b> 6.600
ASTOT	<3.900	ASTOT	4.950

WELL WELL AQUIFER: ALLUVIUM 37344 SCREENED INT.: 37345 16.4- 37.1

37.5

AQUIFER: ALLUVIUM SCREENED INT.: 15.5-40.9 BEDROCK DEPTH: 42.0 BEDROCK LITH.: SS BEDROCK DEPTH: BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

COMPOUND CONCENTRATION COMPOUND CONCENTRATION <1.700 111TCE 111TCE <1.700 <1.000 112TCE 112TCE <1.000 <1.100 <1.200 <1.100 <1.200 11DCE 11DCE 11DCLE 11DCLE <6.100 12DCLE 12DCLE <0.610 ALDRN <0.070 ALDRN <0.070 **C6H6** <1.340 111000.000 C6H6 <1.340 167000.000 CA CA CCL4 CDTOT CCL4 7.870 <2.400 <5.160 CDTOT <5.160 CH2CL2 CH2CL2 <5.000 <5.000 CHCL3 1010.000 CHCL3 <1.400 74500.000 CL CL CL6CP 382000.000 <0.070 CL6CP <0.070 2.060 <0.580 <1.300 <4.200 CLC6H5 CLC6H5 **CPMS** CPMS **CPMSO** 91.800 CPMSO <4.700 CPMS02 <4.700 CPMS02 CRTOT <5.960 CRTOT <5.960 CUTOT <7.930 <7.930 CUTOT 12.000 DBCP DBCP <0.130 DCPD <9.310 DCPD <9.310 DIMP 1080.000 DIMP <10.500 DITH <1.100 DITH <1.100 DLDRN <0.060 DLDRN <0.060 <1.800 **DMDS** DMDS <1.800 DMMP <15.200 <15.200 DMMP ENDRN <0.052 ENDRN <0.052 ETC6H5 <1.280 ETC6H5 <1.280 FL <1200.000 FL <1200.000 HGTOT <0.500 HGTOT <0.500 ISODR <0.060 ISODR < 0.060 3450.000 2410.000 MEC6H5 <1.210 <1.210 MEC6H5 MG 45900.000 19300.000 MG MIBK <12.900 MIBK <12.900 MXYLEN <1.350 MXYLEN <1.350 14600.000 ΝA NA 95200.000 NIT 2830.000 MIT 242,000 <2.000 **TAXO** OXAT <2.000 PBTOT PBTOT <18.600 <18.600 PPDDE < 0.053 PPDDE < 0.053 PPDDT <0.066 PPDDT <0.066 520000.000 **SO4** S04 222000.000 T12DCE T12DCE <12.000 <1.200 TCLEE 102.000 TCLEE <1.300 TRCLE 7.160 TRCLE <1.100 XYLEN <2.470 XYLEN <2.470 ZNTOT <20.100 ZNTOT <20.100 ASTOT <3.900 <3.900

ASTOT

WELL AQUIFER: ALLUVIUM

37346 SCREENED INT.: 8.6-24.0 37347 SCREENED INT.: 23.2-33.8
BEDROCK DEPTH: 24.0 BEDROCK DEPTH: 33.5
BEDROCK LITH.: SH BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
IIDCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	
	<0.610		<0.610
ALDRN	<0.070	ALDRN	<0.070
Сене	<1.340	<b>C6H6</b>	<1.340
CA	81000.000	CA	69700.000
CCL4	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5,000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	<1.400
CL	64800.000	CL	62000.000
CL6CP	<0.070	CL6CP	<0.070
CLC6H5	<0.580	CLC6H5	<0.580
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	<5.960	CRTOT	<5.960
CUTOT	<7.930	CKIOI	<5.900 <7.000
DBCP	<0.330	CUTOT	<7.930
	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	<10.500	DIMP	19.100
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.800	DMDS	<1.800
DMMP	15.200	DMMP	<15.200
ENDRN	0.052	ENDRN	<0.052
ETCe	<1.280	ETC6H5	<1.280
FL	290.000	FL	<1200.000
HC"	<0.500	HGTOT	<0.500
1	<0.060	ISODR	<0.060
1	3800.000	K	3450.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	14800.000	MG	16400.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350		
		MXYLEN	<1.350
NA	82100.000	NA	70800.000
NIT	114.000	NIT	1280.000
OXAT	<2.000	TAXO	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	< 0.053	PPDDE	<0.053
PPDDT	<0.066	PPDDT	<0.066
S04	164000.000	SO4	129000.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	<20.100	ZNTOT	<20.100
ASTOT	<3.900	ASTOT	<3.900
	73.300	WOIGI	<b>~3.5</b> 00

WELL AQUIFER: ALLUVIUM
37348 SCREENED INT.: 16.4-42.0 37349 SCREENED INT.: 23.2-43.6
BEDROCK DEPTH: 41.0 BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM

COMP( IND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
C6H6	<1.340	C6H6	<1.340
CA	94900.000	CA	83800.000
CCL4	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	<1.400
CL	91900.000	CL	71300.000
CL	91900.000	CT.	71300.000
CL6CP	<0.070	CL6CP	<0.070
CLC6H5	1.230	CLC6H5	1.420
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMS02	<4.700	CPMSO2	<4.700
CRTOT	<5.960	CRTOT	<5.960
CUTOT	<7.930	CUTOT	<7.930
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
	430.500	DCPD	79.310
DIMP	<10.500	DIMP	37.700
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	< 1.5.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	1450.000	FL	1400.000
HGTOT	<0.500	HGTOT	<0.500
ISODR	<0.060	ISODR	<0.060
K	1940.000	K	1680.000
MEC6H5			
	<1.210	МЕС6Н5	<1.210
MG	22900.000	MG	22700.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	96800.000	NA	92600.000
NIT	2580.000	NIT	4710.000
OXAT	<2.000	TAXO	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.066	PPDDT	<0.066
504	213000.000		148000.000
T12DCE		S04	
	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	<20.100	ZNTOT	<20.100
ASTOT	<3.900	ASTOT	<3.900
			· <del></del>

WELL AQUIFER: ALLUVIUM

\$7350 SCREENED INT.: 26.9-52.3 37351 SCREENED INT.: 17.9-38.5

BEDROCK DEPTH: 52.5 BEDROCK DEPTH: 36.0

BEDROCK LITH.: SH BEDROCK LITH.: SS

SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

.**4**)

SCREENED	ZONE: ALLUVIUM	SCREENED Z	ONE: ALLUVIUM
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
112100	41.000		<1.000
11DCE_	<1.100	11DCE_	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
C6H6	<1.340	C6H6	<1.340
CA	111000.000	CA	96700.000
CCL4	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	<1.400
CL	101000.000	CL	124000.000
ČĽ6CP	<0.070	CL6CP	<0.070
CLC6H5	1.130	CLC6H5	2.880
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	<5.960	CRTOT	<5.960
CUTOT	<7.930	CUTOT	<7.930
DBCP	<0.130	LBCB	<0.130
DCPD	<9.310	DCPD	p> <9.310
DIMP	<10.500	DIMP	12.100
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	<b>&lt;0.06</b> 0
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	<1200.000	FL	1580.000
HGTOT	<0.500	HGTOT	<0.500
ISODR	<0.060	ISODR	<0.060
ĸ	3670.000	K	1590.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	30700.000	MG	27400.000
MIEK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1,350
NA NA	92000.000	NA LEN	125000.000
NIT	92000.000	NIT	8910.000
	8730.000		
TAXO	<2.000	OXAT	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.066	PPDDT	<0.066
S04	195000.000	S04	189000.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	<20.100	ZNTOT	<20.100
ASTOT	<3.900	<b>ASTOT</b>	<3.900

WELL AQUIFER: ALLUVIUM
37352 SCREENED INT.: 29.8-38.3 37353 SCREENED INT.: 27.1-42.4
BEDROCK DEPTH: 37.9 BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM

SCREENED	ZONE: ALLOVIUM	SCREENED	ZONE: ALLOVIUM
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE		11DCE	<1.000
	<1.100		<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
C6H6	<1.340	С6Н6	1.470
CA	91200.000	CA	203000.000
CCL4	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	<1.400
CL	100000.000	CL	305000.000
ČĽ6CP	<0.070	ČĽ6CP	<0.070
CLC6H5	8.810	CLC6H5	9.050
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	<5.960	CRTOT	<11.900
CUTOT	<7.930	CUTOT	<7.930
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	<10.500	DIMP	619.000
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	<1200.000	FL	<1200.000
HGTOT	<0.500	нGтот	<0.500
ISODR	<0.060	ISODR	<0.060
K	1290.000	K	2580.000
MEC6H5	<1.210	месен5	<1.210
MG	22200.000	MG	53400.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	12.900		
NA I LEN	<1.350 93200.000	WXATEN	<1.350
	93200.000	NA	171000.000
NIT	2710.000	NIT	7790.000
TAXO	<2.000	TAXO	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.066	PPDDT	<0.066
504	180000.000	S04	322000.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	<20.100	ZNTOT	<20.100
ASTOT	<3.900	ASTOT	<3.900
· - <del></del>			

WELL AQUIFER: ALLUVIUM
37354 SCREENED INT.: 13.8-49.1 37355 SCREENED INT.: 11.1-71.7
BEDROCK DEPTH: 49.0 BEDROCK DEPTH: 70.0
BEDROCK LITH.: SH BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

COMPOUND 111TCE	CONCENTRATION <1.700	COMPOUND 111TCE	CONCENTRATION 16.300
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	
			<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
C6H6	<1.340	C6H6	<1.340
CA	112000.000	CA	132000.000
CCL4		ČČL4	
	<2.400		<2.400
CDTOT	-5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	11.800	CHCL3	2.870
CL	147000.000	CL	171000.000
CL6CP	<0.070	CL6CP	<0.070
CLC6H5	4.260	CLC6H5	1.430
CPMS	<1.300	CPMS	
CPMSO	44.500		<1.300
	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	<5.960	CRTOT	<5.960
CUTOT	<7.930	CUTOT	<7.930
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	13.900	DIMP	11.900
DITH	<1.100	DITH	<1.100
DLDRN	<0.060		
DMDS	<0.060	DLDRN	0.104
	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	<1200.000	FL	1450.000
HGTOT	<0.500	HGTOT	<0.500
7.75	<0.060	ISODR	<0.060
•	4720.000	K	2280.000
	<1.210	MEC6H5	<1.210
MG	29300.000		
	29300.000	MG	32500.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<b>&lt;1.35</b> 0
NA	108000.000	NA	133000.000
NIT	9540.000	NIT	7950.000
OXAT	<2.000	OXAT	<2.000
PBTOT	<18.600	PRTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.066	PPDDT	<0.066
S04	189000.000	PPDD1	
	103000.000	S04	218000.000
T12DCE	<1.200	Tl2DCE	<1.200
TCLEE	<1.300	TCLEE	1.930
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	<20.100	ZNTOT	<20.100
ASTOT	<3.900	ASTOT	<3.900
	<del></del>		

WELL 37356	AQUIFER: ALLUVIUM SCREENED INT.: 8.3-38.4 BEDROCK DEPTH: 38.5 BEDROCK LITH.: SH	AQUIFER: ALLUVIUM SCREENED INT.: 4.5-19.7 BEDROCK DEPTH: 19.0 BEDROCK LITH.: SH
	BEDROCK LITH.: SH	BEDROCK LITH.: SH

COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
			1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
C6H6	<1.340	C6H6	<1.340
CA	114000.000	CA	97700.000
CCL4	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5,000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	8.450
CL	130000.000	CL	130000.000
CL6CP		ČĽ6CP	<0.070
	<0.070		
CLC6H5	1.480	CLC6H5	1.700
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	<5.960	CRTOT	<5.960
CUTOT	<7.930	CUTOT	<7.930
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	104.000	DIMP	22.000
	104.000		
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	<1200.000	FL	<1200.000
HGTOT	<0.500	HGTOT	<0.500
ISODR	<0.060	ISODR	<0.060
K		K	7170.000
	4010.000		
MEC6H5	<1.210	MEC6H5	<1.210
MG	28500.000	MG	25400.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	126000.000	NA	99200.000
NIT	9330.000	NIT	11600.000
OXAT	<2.000	TAXO	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.066	PPDDT	<0.066
SO4			
# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	200000.000	S04	200000.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	<20.100	ZNTOT	<20.100
ASTOT	<3.900	ASTOT	<3.900
		****	

WELL AQUIFER: ALLUVIUM
7358 SCREENED INT.: 44.3-59.9
BEDROCK DEPTH: 59.0
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM

WELL AQUIFER: ALLUVIUM
37359 SCREENED INT.: 23.2-43.7
BEDROCK DEPTH: 42.9
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM

SCREENED 2	TONE: WITHOUTH	SCREENED ZC	ME: ALLUVIUM
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	5.510
112TCE	<1.000	112TCE	1.140
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200		1.100
12DCLE	<1.200 <0.610	11DCLE	2.000
	<0.610	15DCFE	1.160
ALDRN	<0.070	ALDRN	<0.070
Сене	<1.340	Сене	<1.340
CA	126000.000	CA	194000.000
CCL4	<2.400	CCL4_	<2.400
CDTOT	6.530	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	9.240
CL	75200.000	CL	142000.000
CL6CP	<0.070	CL6CP	<0.070
CLC6H5	2.790	CLC6H5	3.770
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	<11.900	CRTOT	<11.900
CUTOT	<7.930	CUTOT	<7.930
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	<10.500	DIMP	18.800
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	<1200.000	FL	<1200.000
нстот	<0.500	н <mark>ст</mark> от	<0.500
ISODR	<0.060	ISODR	<0.060
K	3020.000	K K	4030.000
MEC6H5	<1.210	MEC6H5	
MG	13400.000	MG MECONS	<1.210
MIBK	13400.000		25900.000
	<12.900	MIBK	<12.900
MXYLEN NA	<1.350 60600.000	WXYLEN	<1.350
NIT		NA NA	135000.000
	6120.000	NIT	B340.000
OXAT	<2.000	TAXO	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.066	PPDDT	<0.066
S04	138000.000	S04	330000.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	6.670
TRCLE	<1.100	TRCLE	4.260
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	<20.100	ZNTOT	<20.100
ASTOT	<3.900	ASTOT	<3.900

AQUIFER: ALLUVIUM SCREENED INT.: 26.4-101.9 WELL AQUIFER: ALLUVIUM 37361 SCREENED INT.: 2 WELL 37360 37361 21.7- 92.3 BEDROCK DEPTH: 101.5 BEDROCK LITH.: SH BEDROCK DEPTH: BEDROCK LITH.: 92.0 SH SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM CONCENTRATION COMPOUND COMPOUND CONCENTRATION <1.700 111TCE 111TCE <1.700 112TCE <1.000 112TCE <1.000

۹

۹

.🔫)

11DCE <1.100 11DCE <1.100 11DCLE <1.200 11DCLE <1.200 12DCLE <0.610 12DCLE <0.610 ALDRN <0.070 ALDRN <0.070 C6H6 <1.340 C6H6 <1.340 111000.000 CA CA 93000.000 CCL4 <2.400 CCL4 <2.400 CDTOT <5.160 CDTOT <5.160 CH2CL2 <5.000 <5.000 CH2CL2 CHCL3 <1.400 CHCL3 <1.400 CL 58400.000 CL 107000.000 CL6CP <0.070 CL6CP <0.070 CLC6H5 1.980 CLC6H5 2.180 CPMS CPMS <1.300 <1.300 **CPMSO** <4.200 CPMSO <4.200 CPMSO2 <4.700 CPMSO2 <4.700 CRTOT 12.600 <11.900 CRTOT CUTOT <7.930 CUTOT <7.930 DBCP <0.130 DBCP <0.130 DCPD <9.310 DCPD <9.310 DIMP <10.500 DIMP <10.500 DITH <1.100 DITH <1.100 DLDRN <0.060 DLDRN <0.060 <1.800 DMDS DMDS <1.800 DMMP <15.200 DMMP <15.200 **ENDRN** <0.052 ENDRN <0.052 ETC6H5 <1.280 ETC6H5 <1.280 FL <1200.000 <1200.000 FLHGTOT <0.500 HGTOT <0.500 ISODR <0.060 ISODR <0.060 2710.000 2650.000 MEC6H5 <1.210 MEC6H5 <1.210 11200.000 MG MG 12600.000 MIBK <12.900 MIBK <12.900 MXYLEN <1.350 MXYLEN <1.350 NA 60500.000 65900.000 NA NIT NIT 8540.000 5310.000 **TAXO** <2,000 TAXO <2.000 PRTOT <18.600 <18.600 PBTOT PPDDE <0.053 PPDDE <0.053 PPDDT <0.066 PPDDT <0.066 SO4 129000.000 **SO4** 136000.000 T12DCE <1.200 T12DCE <1.200 TCLEE <1.300 TCLEE <1.300 TRCLE <1.100 TRCLE <1.100 XYLEN <2.470 XYLEN <2.470 ZNTOT <20.100 ZNTOT <20.100 ASTOT <3.900 ASTOT <3.900

WELL

AQUIFER: ALLUVIUM

WELL

ASTOT

ACUIFER: ALLUVIUM SCREENED INT.: 34.5- 45.2 37362 37363 SCREENED INT.: 6.9- 32.2 BEDROCK DEPTH: 42.5 BEDROCK LITH.: SH BEDROCK DEPTH: 32.1 BEDROCK LITH .: SS SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM COMPOUND CONCENTRATION COMPOUND CONCENTRATION 111TCE <1.700 111TCE <1.700 112TCE <1.000 112TCE <1.000 11DCE 11DCE <1.100 <1.100 11DCLE 11DCLE <1.200 <1.200 12DCLE <0.610 12DCLE <0.610 ALDRN <0.070 ALCRN <0.070 C6H6 <1.340 C6H6 <1.340 CA 5000.000 CA 51700.000 CCL4 CCL4 12.400 <2.400 <5.160 CDTO' . 160 CDTOT CH2CL2 000.د CH2CL2 <5.000 <1.400 CHCL3 CHCL3 <1.400 CL 240000.000 CL 93200.000 CL6CP CL6CP <0.070 <0.070 CLC6H5 CLC6H5 <0.580 4.810 **CPMS** CPMS <1.300 <1.300 **CPMSO CPMSO** <4.200 <4.200 CPMSO2 <4.700 <4.700 CPMS02 CRTOT <11.900 CRTOT <11.900 CUTOT CUTOT <7.930 <7.930 DBCP DBCP <0.130 <0.130 **DCPD** <9.310 DCPD <9.310 DIMP <10.500 DIMP <10.500 DITH <1.100 DITH <1.100 DLDRN <0.060 DLDRN <0.060 DMDS <1.800 DMDS <1.800 DMMP <15.200 DMMP <15.200 ENDRN **ENDRN** <0.052 <0.052 ETC6H5 <1.280 ETC6H5 <1.280 1670.000 FL FL <1200.000 HGTOT <0.500 HGTOT <0.500 ISODR ISODR <0.060 <0.060 2710.000 K 3210.000 K MEC6H5 MEC6H5 <1.210 <1.210 44600.000 MG 14200.000 MG MIBK <12.900 MIBK <12.900 MXYLEN <1.350 MXYLEN <1.350 NA 253000.000 NA 65800.000 NIT 1770.000 NIT 715.000 TAXO <2.000 TAXO <2.000 PBTOT <18.600 PBTOT <18.600 PPDDE <6.053 PPDDE <0.053 PPDDT <0.066 PPDDT <0.066 504 453000.000 192000.000 S04 T12DCE T12DCE <1.200 <1.300 <1.200 TCLEE <1.300 TCLEE TRCLE <1.100 TRCLE <1.100 XYLEN <2.470 XYLEN <2.470 ZNTOT <20.100 ZNTOT <20.100

ASTOT

<3.900

<3.900

WELL AQUIFER: ALLUVIUM SCREENED INT.: 6.8-27.3 37365 SCREENED INT.: 49.1-59.7 BEDROCK DEPTH: 28.9 BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM SCREENED ZONE: 4

COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.700
	1.000	112105	<1.000
11DCE_	<1.100	11DCE_	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
C6H6	2.520	C6H6	<1.340
CA	67600.000	CA	31400.000
CCL4	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2			
	<5.000	CH2CL2	5.330
CHCL3	<1.400	ĆHCL3	6.700
CL	82800.000	CL	53600.000
CL6CP	<0.070	CL6CP	<0.070
CLC6H5	7.230	CLC6H5	<0.580
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	<11.900		411 000
		CRTOT	<11.900
CUTOT	<7.930	CUTOT	<7.930
DBCP	<0.130	DBCP	0.348
DCPD	<9.310	DCPD	<9.310
DIMP	<10.500	DIMP	16.700
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN			
	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	<1200.000	FL,	<1200.000
HGTOT	•	hgtot	<0.500
ISODR	<0.060	ISODR	<0.060
K	6350.000	K	1260.000
MEC6H3	<1.210	MEC6H5	<1.210
MG	13500.000	MG	3520.000
MIBK	<12.900	MIBK	<12.900
MXYLEN			12.900
MYITEN	<1.350	MXYLEN	<1.350
NA	93400.000	NA_	188000.000
NIT	747.000	NIT	128.000
TAKO	<2.000	TAXO	<2.000
PBTOT	<18.600	PBTOT	23.200
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.066	PPDDT	<0.066
504	161000.000	SO4	234000.000
TIZDCE	<1.200	T12DCE	<1.200
TCLEE	<1.300		1.200
	ZI.300	TCLEE	<1.300
TRCLE	<1.100	TRCLE	4.600
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	24.900	ZNTOT	114.000
ASTOT	5.710	ASTOT	<3.900

WELL AQUIFER: ALLUVIUM

J7366 SCREENED INT.: 2.2- 17.2 BEDROCK DEPTH: 20.0 BEDROCK LITH.: SS BEDROCK LITH.: SS SCREENED ZONE: ALLUVIUM

SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

COREBIAED	BONE. ALLOVION	BCREENED	ZONE. ALLOVION
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
	11.700		<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
C6H6	<1.340	C6H6	<1.340
CA	107000.000	CA	74200.000
CCL4_	<2.400	CCL4_	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	29.300
CL	44400.000	CL	184000.000
CL6CP	<0.070	CL6CP	<0.070
CLC6H5	2.060	CLC6H5	1.950
CPMS	<1.300		
		CPMS	<1.300
CPMSO	<4.200	CPMSO	11.400
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	<11.900	CRTOT	<5.960
CUTOT	<7.930	CUTOT	14.500
DBCP	<0.130	DBCP	0.266
DCPD	<9.310	DCPD	<9.310
DIMP	<10.500	DIMP	141.000
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.800		<0.000
	1.600	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	<1200.000	FL	<1200.000
HGTOT	<0.500	HGTOT	<0.500
ISODR	<0.060	ISOUR	<0.060
K	3650.000	K	2830.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	17500.000		
	17500.000	MG	18000.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	85900.000	NA	82500.000
NIT	5490.000	NIT	2650.000
OXAT	·2.000	OXAT	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.066	PPDDT	<0.066
SO4	117000.000	S04	619000.000
T12DCE	<1.200		
MOT TO	ZI 200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	5.620
TRCLE	<1.100	TRCLE	2.670
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	27.100	ZNTOT	23.200
ASTOT	<3.900	ASTOT	<3.900
	- · · -		

WELL

XII

()

AQUIFER: ALLUVIUM

0.0-

123.000

0.0

SCREENED INT .:

ZNTOT

WELL

CIII

AQUIFER: ALLUVIUM SCREENED INT.:

0.0-

<3.900

0.0

BEDROCK DEPTH: BEDROCK LITH.: BEDROCK DEPTH: BEDROCK LITH.: 0.0 58.0 SH SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM COMPOUND CONCENTRATION COMPOUND CONCENTRATION 111TCE <1.700 112TCE <1.000 112TCE <1.000 11DCE <1.100 11DCLE 11DCE <1.100 <1.200 11DCLE <1.200 12DCLE <0.610 12DCLE <0.610 ALDRN <0.070 ALDRN 0.104 C6H6 <1.340 C6H6 <1.340 CA 111000.000 CA 142000.000 CCL4 <2.400 CCL4 CDTOT <5.160 <2.400 CDTOT <5.160 <5.000 CH2CL2 CH2CL2 <5.000 CHCL3 <1.400 96700.000 CHCL3 <1.400 CL 87200.000 CL6CP CL <0.070 CLSCP CLC6H5 <0.580 <0.070 CLC6H5 CPMS <0.580 CPMS <1.300 **CPMSO** <1.300 <4.200 **CPMSO** <4.200 CPMSO2 <4.700 CPMS02 <4.700 CRTOT 8.650 CRTOT <5.960 CUTOT 8.060 CUTOT <7.930 DBCP <0.130 DBCP <0.130 DCPD <9.310 DCPD <9.310 <10.500 DIMP <10.500 DIMP DITH <1.100 DITH <1.100 DLDRN <0.060 DLDRN <0.060 DMDS <1.800 DMDS <1.800 DMMP <15.200 DMMP <15.200 ENDRN <0.052 ENDRN <0.052 ETC6H5 <1.280 ETC6H5 FL <1200.000 <1.280 FL <1200.000 HGTOT <0.500 HGTOT <0.500 ISODR <0.060 ISODR <0.060 3660.000 MEC6H5 2610.000 <1.210 MEC6H5 13900.000 <1.210 MG MIBK MG 35300.000 <12.900 MIBK <12.900 MXYLEN <1.350 MXYLEN <1.350 NA 58400.000 187000.000 NIT NA 10400.000 NIT 4270.000 OXAT <2.000 TAXO **PBTOT** <18.600 <2.000 <18.600 **PBTOT** PPDDE <0.053 PPDDE < 0.053 PPDDT <0.066 PPDDT 189000.000 <0.066 SO4 142000.000 **SO4** T12DCE <1.200 T12DCE TCLEE <1.200 <1.300 TCLEE TRCLE XYLEN <1.300 2.010 TRCLE <1.100 <2.470 XYLEN <2.470 ZNTOT 44.400

ASTOT

WELL AQUIFER: ALLUVIUM

7308 SCREENED INT.: 0.0- 0.0

BEDROCK DEPTH: 20.5

BEDROCK LITH.: SH

SCREENED ZONE: ALLUVIUM

WELL AQUIFER: ALLUVIUM

37309 SCREENED INT.: 0.0- 0.0

BEDROCK DEPTH: 23.0

BEDROCK LITH.: SH

SCREENED ZONE: ALLUVIUM

SCREENED ZONE: ALLUVIUM

COMPOUND 111TCE	CONCENTRATION	COMPOUND 111TCE	CONCENTRATION <1.700
112TCE	<1.000	112TCE	<1.000
11DCE 11DCLE	<1.100	11DCE	<1.100
12DCLE	<1.200 2.550	11DCLE 12DCLE	<1.200
ALDRN	<0.070	ALDRN	<0.610 <1.400
ASTOT	<2.500	ALDRN	2.810
BTZ	<2.000	BTZ	<2.000
C6H6	<1.340	C6H6	<1.340
CÀ	123000.000	CA	126000.000
CCL4	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	9.340	CH2CL2	7.060
CHC 13	<1.400	CHCL	<1.400
CL	246000.000	CL	514000.000
CL6CP	<0.070	CL6CP	<1.400
CLC6H5	<0.580	CLC6H5	<0.580
CLDAN	•	CLDAN	
CPMS	<1.300	CÝMS	<1.300
CPMSO	10.800	CPMSO	24.000
CPMSO2	<4.700	CPMSO2	35.400
CRTOT	<5.960	CRTOT	<5.960
CUTOT	<7.940	CUTOT	<7.940
DBCP	0.249	DBCP	0.183
DCPD	58.600	DCPD	736.000
DIMP	86.700	DIMP	1020.000
DITH	<1.100	DITH	8.340
DLDRN	<0.060	DLDRN	<1.200
DMDS DMMP	<1.800 <15.200	DMDS	<1.800
ENDRN	<0.052	DMMP ENDRN	<15.200 <1.040
ETC6H5	<1.280	ETC6H5	<1.280
FL	2070.000	FL	1850.000
HGTOT	<0.359	нстот	<0.359
ISODR	<0.060	ISODR	<1.200
K	6080.000	K	4010.000
MEC6H5	<1.210	MEC6H5	5.330
MG	66600.000	MG	60800.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	273000.000	NA	499000.000
NIT	835.000	NIT	2080.000
TAXO	<2.000	OXAT	<2.000
PBTOT'	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<1.060
PPDDT	<0.070	PPDDT	<1.400
SO4	440000.000	504	624000.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	29.600	TCLEE	70.900
TRCLE XYLEN	<1.100	TRCLE	3.040
ZNTOT	<2.470	XYLEN	<2.470
THIOT	<20.100	ZNTOT	<20.100

WELL	AQUIFER: ALLUVIUM	WELL	AQUIFER: ALLUVIUM	
37312	SCREENED INT.: 0.0- 0.0	37313	SCREENED INT.:	
	BEDROCK DEPTH: 13.5		BEDROCK DEPTH: 2	
	BEDROCK LITH.: SH		BEDROCK LITH.: S	
	SCREENED ZONE: ALLUVIUM		SCREENED ZONE: AL	TOATOM

		- 411221122	
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.700	112TCE	
	<1.000	112102	<1.000
11DCE	<1.100	11DCE_	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	0.757
ALDRN	<0.700	ALDRN	<0.700
ASTOT	<2.500	ASTOT	<2.500
BTZ	<2.000	BTZ	<2.000
<b>C6H6</b>	<1.340	<b>Č6H6</b>	<1.340
CA	129000.000	CA	510000.000
CCL4	<2.400	ČĈL4	
CDTOT			<2.400
	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	<1.400
CL	247000.000	CL	1340000.000
CL6CP	<0.700	CL6CP	<0.700
CLC6H5	<0.580	CLC6H5	<0.580
CLDAN		CLDAN	•
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	<5.960		
	<b>\5.900</b>	CRTOT	24.800
CUTOT	<7.940	CUTOT	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	23.700	DCPD	<9.310
DIMP	23.000	DIMP	5180.000
DITH	<1.100	DITH	13.200
DLDRN	1.170	DLDRN	<0.600
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	< 15.200
ENDRN	<0.520	ENDRN	<0.520
ETC6H5	<1.280	ETC6H5	<1.280
FL	1890.000	FL	2770.000
HGTOT	<0.359	HGTOT	<0.359
ISODR			
	<0.600	ISODR	<0.600
K	4530.000	K	12700.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	66000.000	MG	173000.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	231000.000	NA	1020000.000
NIT	124.000	NIT	<10,000
OXAT	<2.000	OXAT	4.880
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.530	PPDDE	<0.530
PPDDT	<0.700	PPDDT	<0.700
SO4	473000.000		1470000.000
T12DCE		S04	14/0000.000
	<1.200	T12DCE	<1.200
TCLEE	3.290	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	<20.100	ZNTOT	<20.100

AQUIFER: ALLUVIUM SCREENED INT.: 22.7-32.7 BEDROCK DEPTH: 35.0 BEDROCK LITH.: SS	AQUIFER: ALLUVIUM SCREENED INT.: 46.9-51.4 BEDROCK DEPTH: 51.0 BEDROCK LITH.: SH
SCREENED ZONE: ALLIVIUM	SCREENED ZONE: ALLUVIUM

SCREENED	ZONE: ALLOVION	SCREENED	ZONE: ALLOVION
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.700
ASTOT	<2.500	ASTOT	4.830
BTZ	<2.000	BTZ	<2.000
C6H6	<1.340	C6H6	1.550
CA	130000.000	CA	129000.000
CCL4	<2.400	CCL4_	<2.400
CDTOT	<5.160	CDTOT	7.530
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	2.520
CL	145000.000	CL	673000.000
CL6CP	<0.070	CL6CP	1.020
CLC6H5	0.772	CLC6H5	5.700
CLDAN	01//2	CLDAN	31700
CPMS	<1.300	CDDVIA	<1.300
CPMSO	11.300	CPMS	
	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	<5.960	CRTOT	<5.960
CUTOT	<7.940	CUTOT	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	27.100	DIMP	<10.500
DITH	<1.100	DITH	<1.100
DLDRN	0.070	DLDRN	0.742
במינים	<1.800	DMDS	<1.800
4.154	<15.200	DMMP	<15.200
ก็ โล้ท	<0.052	ENDRN	<0.520
ETC6H5	<1.280	ETC6H5	<1.280
FL	<1200.000	FL	2410.000
HGTOT	<0.359	HGTOT	<0.359
ISODR	<0.060	ISODR	<0.600
K	5050.000	ĸ	7110.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	42600.000	MG	43200.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	180000.000	NA	544000.000
NIT	3860.000	NIT	4650.000
TAXO	<2.000	TAXO	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.530
	<b>10.053</b>		<0.530 40.700
PPDDT	<0.070	PPDDT	<0.700
S04	417000.000	S04	393000.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	21.500	ZNTOT	<20.100

WELL AQUIFER: ALLUVIUM
37333 SCREENED INT.: 38.4-47.7 37335 SCREENED INT.: 38.2-57.6
BEDROCK DEPTH: 47.0 BEDROCK DEPTH: 51.0
BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM

SCREENED	ZONE: ALLUVIUM	SCREENED	ZONE: ALLUVIUM
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610		<0.610
	40.610	12DCLE	<0.010
ALDRN	<0.070	ALDRN	<0.070
ASTOT	<2.500	ASTOT	<2.500
BTZ	<2.000	BTZ	<2.000
C6H6	<1.340	<b>C6H6</b>	<1.340
CA	83000.000	CA	79400.000
CCL4	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	14.900	CHCL3	<1.400
CL	372000.000	CL	103000.000
CL6CP	<0.070	CL6CP	<0.070
CLC6H5	<0.580	CLC6H5	<0.580
CLDAN		CLDAN	10.500
CPMS	<1:300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	<5.960	CRTOT	< <b>5.960</b>
CUTOT	<7.940	CRIOT	<5.960
	<7.940	CUTOT	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	<10.500	DIMP	<10.500
DITH	<1.100	DITH	<1.100
DLDRN	0.084	DLDRN	0.078
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	<1200.000	FL	<1200.000
HGTOT	<0.359	HGTOT	<0.359
ISODR	<0.060	ISODR	<0.060
K	7620.000	ĸ	4010.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	6750.000	MG	12700.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA DEN	247000.000	NA LEN	87200.000
NIT	2820.000	NIT	250.000
OXAT			
	<2.000	OXAT	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.070	PPDDT	<0.070
SO4	163000.000	S04	56300.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	<20.100	ZNTOT	25.100

WELL AQUIFER: ALLUVIUM

37338 SCREENED INT.: 6.8-29.2 37339 SCREENED INT.: 11.7-22.3
BEDROCK DEPTH: 23.5 BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM

WELL AQUIFER: ALLUVIUM

37339 SCREENED INT.: 11.7-22.3
BEDROCK DEPTH: 20.0
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM

SCREENED ZONE: ALLUVIUM

SCREENED	ZONE: ALLUVIUM	SCREENED	ZONE: ALLUVIUM
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	
IIDCE	<1.100	11DCE	<1.000
11DCLE	<1.200		<1.100
12DCLE	<0.610	llDCLE	<1.200
	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
ASTOT	<2.500	ASTOT	<2.500
BTZ	<2.000	BTZ	<2.000
C6H6	<1.340	C6H6	<1.340
CA	143000.000	CA	818000.000
CCL4	<2.400	CCL4	<2,400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	2,950	CHCL3	<1.400
CL	134000,000	CL	2220000.000
CL6CP	<0.070	CL6CP	<0.070
CLC6H5	<0.580	CLC6H5	<0.580
CLDAN		CLDAN	40.500
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	<5.960	CRTOT	
CUTOT	<7.940		39.800
DBCP		CUTOT	<7.940
DCPD	<0.130	DBCP	<0.130
DIMP	<9.310	DCPD	_<9.310
DIMP	0.500	DIMP	724.000
DITH	1.100	DITH	<1.100
DLDRN	0.063	DLDRN	<0.060
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	1280.000	FL	4240.000
HGTOT	<0.359	HGTOT	<0.359
ISODR	<0.060	ISODR	<0.060
K	31900.000	ĸ	5050.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	45700.000	MG	203000.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	209000.000	NA NA	1390000.000
NIT	1620.000	NÎT	
TAXO	<2.000		8610.000
PBTOT	<18.600	OXAT	<2.000
PPDDE	<0.053	PBTOT	<18.600
PPDDT	<0.053	PPDDE	<0.053
SO4	20.070	PPDDT	<0.070
T12DCE	388000.000	504	2120000.000
	<1.200	T12DCE	<1.200
TCLEE	1.690	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	37.200	ZNTOT	37.900

WELL	AQUIFER: ALLUV	IUM	WELL	AQUIFER: ALLUVIUM
37340	SCREENED INT.:	23.5- 34.1	37341	SCREENED INT.: 20.3- 50.7
	BEDROCK DEPTH:	32.0		BEDROCK DEPTH: 48.0
	BEDROCK LITH .:	SH		BEDROCK LITH.: SS
	SCREENED ZONE:	ALLUVIUM		SCREENED ZONE: ALLUVIUM

~ C1(1) 111111111111111111111111111111111			DIVET HEEDOVION
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
	<1.100		
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
ASTOT	<2.500	ASTOT	<2.500
BTZ	<2.000	BTZ	<2.000
C6H6	<1.340	C6H6	<1.340
CA	192000.000	CA	107000.000
CCL4	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	<1.400
CL	225000.000	CL CL	72800.000
	225000.000		
CL6CP	<0.070	CL6CP	<0.070
CLC6H5	<0.580	CLC6H5	<0.580
CLDAN	•	CLDAN	<1.300
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPM502	<4.700
CRTOT	9.550	CRTOT	<5.960
CUTOT	<7.940	CUTOT	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	39.200	DIMP	<10.500
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	1890.000	FL	<1200.000
HGTOT	<0.359	HGTOT	<0.359
ISODR	<0.060	ISODR	<0.060
K	6190.000	ĸ	7110.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	41400.000	MG	17400.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA NA	338000.000		86700.000
NIT		NA NA	
	4090.000	NIT	324.000
OXAT	<2.000	OXAT	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.070	PPDDT	<0.070
SO4	589000.000	SO4	146000.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	<20.100	ZNTOT	<20.100
	2501700	714 T O T	72V11UU

WELL AQUIFER: ALLUVIUM

37342 SCREENED INT.: 12.9-29.0 37343 SCREENED INT.: 3.7-35.1

BEDROCK DEPTH: 27.5 BEDROCK LITH.: SH

SCREENED ZONE: ALLUVIUM

WELL AQUIFER: ALLUVIUM

37343 SCREENED INT.: 3.7-35.1

BEDROCK DEPTH: 35.5

BEDROCK LITH.: SH

SCREENED ZONE: ALLUVIUM

SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE			
	<1.700	llitce	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	0.936	12DCLE	2.740
ALDRN	<0.070	ALDRN	<0.070
ASTOT	<2.500	ASTOT	<2.500
BTZ	<b>12.500</b>	WELOI	~2.500
BTZ	<2.000	BTZ	<2.000
<b>C6H6</b>	<1.340	<b>C6H6</b>	<1.340
CA	281000.000	CA	185000.000
CCL4	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	<1.400
CL			
CI	461000.000	CL	303000.000
CL6CP	<0.070	CL6CP_	<0.070
CLC6H5	<0.580	CLC6H5	<0.580
CLDAN	•	CLDAN	•
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	17.600	CRTOT	10.900
	27.000		
CUTOT	<7.940	CUTOT	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	20.300
DIMP	57.100	DIMP	1110.000
DITH	<1.100	DITH	1.940
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	DIMIE	15,200
		ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	1280.000	FL	1550.000
HGTOT	<0.359	HGTOT	<0.359
ISODR	<0.060	ISODR	<0.060
K	9150.000	K	7110.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	61000.000	MG	68800.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MANTEN	12.900
		MXYLEN	<1.350
NA_	403000.000	NA	294000.000
NIT	5200.000	NIT	21.400
CXAT	<2.000	OXAT	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.070	PPDDT	<0.070
504	716000.000	SO4	416000.000
	110000.000	504	
T12DCE	<1.200	Tl2DCE	<1.200
TCLEE	1.360	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	<20.100	ZNTOT	<20.100
		W11 2 W 2	

AQUIFER: ALLUVIUM SCREENED INT.: 15.5-40.9 BEDROCK DEPTH: 42.0 BEDROCK LITH.: SS SCREENED ZONE: ALLUVIUM	AQUIFER: ALLUVIUM SCREENED INT.: 16.4-37.1 BEDROCK DEPTH: 37.5 BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM
SCREAD DONE: ADDOTON	SCREEKED ROKE: ALLOVION

SCKEENED	ZORE: ALLOVIUM	OCKEENED	ZONE: ALLUVIUM
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<12.200	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
ASTOT	<2.500	ASTOT	<2.500
BTZ	<2.000	BTZ	<2.000
Сене	<1.340	<b>C</b> 6H6	<1.340
	71.340		
CA	207000.000	CA	127000.000
CCL4	8.970	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	1370.000	CHCL3	<1.400
CL	388000.000	CL	84500.000
CL6CP	<0.070	CL6CP	<0.070
CLC6H5	<0.580	CLC6H5	<0.580
CLDAN	70.500	CLDAN	10.500
CPMS	3.410		<1.300
		CPMS	
CPMSO	104.000	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	9.100	CRTOT	<5.960
CUTOT	<7.940	CUTOT	<7.940
DBCP	13.400	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	1340.000	DIMP	<10.500
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	< 0.060
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200		<15.200
	<b>15.200</b>	DMMP	
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	1280.000	FL	<1200.000
HGTOT	<0.359	HGTOT	<0.359
ISODR	<0.060	ISODR	<0.060
K	6660.000	ĸ	5050.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	53900.000	MG	18100.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	338000.000	NA DEN	90900.000
NIT			51.900
	2700.000	NIT	
TAXO	<2.000	OXAT	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.070	PPDDT	<0.070
504	497000.000	SO4	198000.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	111.000	TCLEE	<1.300
TRCLE	6.620	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	<20.100	ZNTOT	<20.100
514101	ZZU. 100	2H101	Z0.100

AQUIFER: ALLUVIUM
SCREENED INT.: 8.6-24.0 37347 SCREENED INT.: 23.2-33.8
BEDROCK DEPTH: 26.0 BEDROCK DEPTH: 33.5
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

91.LL 21346

COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	-	111TCE	<1.700
112TCE	•	112TCE	<1.000
IIDCE	•	11DCE	<1.100
lidcle	<1.930	11DCLE	<1.200
12DCLE	<b>11.350</b>	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
ASTOT	<2.500	ASTOT	<2.500
BTZ	<2.000	BTZ	<2.000
C6H6		C6H6	<1.340
CA	99000:000		110000.000
CCL _i 4	99000.000	CA COT 4	
	<5.160	CCL4_	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	•	CH2CL2	<5.000
CHCL3		CHCr3	<1.400
CL	98400.000	CL	147000.000
CL6CP	<0.070	CL6CP_	<0.070
CLC6H5	•	CLC6H5	<0.580
CLDAN	•	CLDAN	•
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	9.110	CRTOT	8.330
CUTOT	<7.940	CULOT	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	<10.500	DIMP	256.000
TTH	<1,100	DITH	<1.100
ULDRN	<0.760	DLDRN	<0.060
OMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5		ETC6H5	<1.280
FL	1270:000	FL	<1200.000
HGTOT	<0.359	натот	<0.359
ISODR	<0.060	ISODR	<0.060
K	5050.000	K	6190.000
MEC6H5	5050.000	MEC6H5	<1.210
MG	17100.000	MG	25900.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<12.900		
	00000.000	MXYLEN	<1.350
NA	80600.000	NA_	89000.000
NIT	70.200	NIT	820.000
OXAT	<2.000	OXAT	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.070	PPDDT	<0.070
S04	166000.000	S04	182000.000
T12DCE	•	T12DCE	<1.200
TCLEE	•	TCLEE	<1.300
TRCLE	•	TRCLE	<1.100
XYLEN	• •	XYLEN	<2.470
ZNTOT	<20.100	ZNTOT	<20.100

WELL AQUIFER: ALLUVIUM

37348 SCREENED INT.: 16.4-42.0 37349 SCREENED INT.: 23.2-43.6
BEDROCK DEPTH: 41.0 BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM

WELL AQUIFER: ALLUVIUM

BEDROCK DEPTH: 44.0
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM

SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
	<2.500		(0.070
ASTOT	<2.500	ASTOT	<2.500
BTZ	<2.000	BTZ	<2.000
Сене	<1.340	Сене	<1.340
CA	110000.000	CA	153000.000
CCL4	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	2.430	CHCL3	<1.400
CL	83500.000	CL	143000.000
CL6CP	<0.070	CL6CP	<0.070
CLC6H5	<0.580	CLC6H5	<0.580
CLDAN	•	CLDAN	•
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	<5.960	CRTOT	<5.960
CUTOT	<7.940	CUTOT	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	<10.500	DIMP	201.000
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.800		<1.800
DMMP	<15.200	DMDS	
ENDRN	15.200	DMMP ENDRN	<15.200
	<0.052	ENDRN	<0.052
etc6H5	<1.280	ETC6H5	<1.280
FL HGTOT	1580.000	FL	1280.000
	<0.359	HGTOT	<0.359
ISODR	<0.060	ISODR	<0.060
K	3370.000	K	3370.000
MEC6H5	<1.210	мес6н5	<1.210
MG	20000.000	MG	38800.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	109000.000	NA	123000.000
NIT	1950.000	NIT	8250.000
OXAT	<2.000	OXAT	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.070	PPDDT	<0.070
S04	204000.000	SO4	227000.000
T12DCE	<1.200	TIZDCE	<1.200
TCLEE	2.090	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	<20.100	ZNTOT	<20.100
	·= <del></del>		

WELL AQUIFER: ALLUVIUM

SCREENED INT.: 26.9-52.3 37351 SCREENED INT.: 17.9-38.5

BEDROCK DEPTH: 52.5 BEDROCK DEPTH: 36.0

BEDROCK LITH.: SH BEDROCK LITH.: SS

SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

	BONE. REBOVION	ockilling !	BOND. ADDOVION
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	lidce	21.000
	<1.100	TIDGE	<1.)
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
ASTOT	<2.500	ASTOT	<2.500
BTZ	<2.000	BTZ	<2.000
Сене	<1.340	C6H6	<1.340
CA	141000.000	CA	132000.000
CCL4	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	<1.400
CL	98200.000	CL	<120000.000
CL6CP	<0.070	CL6CP	<0.070
CLC6H5	<0.580	CLC6H5	<0.580
CLDAN		CLDAN	
CPMS	<1.300		<1.300
	<1.300	CPMS	<1.300
CPMSO CPMSO2	<4.200	CPMSO	<4.200
	<4.700	CPMSO2	<4.700
CRTOT	<5.960	CRTOT	<5.960
CUTOT	<7.940	CUTOT	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	17.400	DIMP	15.300
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	1.280	ETC6H5	<1.280
FL	<110.000	FL	1590.000
HGTOT	<0.359	натот	<0.359
ISODR	<0.060	ISODR	<0.060
K	5570.000	K	3490.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	33700.000	MG	33000.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	
NA	92100.000	NA NA	<1.350 112000.000
NIT	7390.000		
TAXO		NIT	9360.000
	<2.000	OXAT	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.070	PPDDT	<0.070
504	248000.000	<b>SO4</b>	210000.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	F2.800	ZNTOT	36.600
<b>-</b>		W11.44	, 31 4 4 4

AQUIFER: ALLUVIUM SCREENED INT.: 29.8-38.3 BEDROCK DEPTH: 37.9 BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM WELL AQUIFER: ALLUVIUM
37353 SCREENED INT.: 27.1-42.4
BEDROCK DEPTH: 44.0
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM WELL 37352 37353

SCREEMED	ZONE. ADDOVION	SCREENED	MONE. ADDOVION
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
ASTOT	<2.500	ASTOT	<2.500
BTZ	<2.000	BTZ	<2.000
	<2.000		2.000
Сене	<1.340	сене	<1.340
CA	101000.000	ÇÀ_	157000.000
CCL4	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	<1.400
CL	88400.000	CL	268000.000
CLECP	<0.070	CL6CP	
			<0.070
CLC6H5	<0.580	CLC6H5	<0.580
CLDAN	<1:300	CLDAN	<1.300
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	<5.960	CRTOT	<5.960
CUTOT	<7.940	CUTOT	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
	79.310	DCPD	
DIMP	<10.500	DIMP	632.000
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	1340.000	FL	<1200.000
HGTOT	<0.359	н <del>ст</del> от	
ISODR			<0.359
	<0.060	ISODR	<0.060
K	2970.000	K	4530.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	18300.000	MG	42000.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	84300.000	NA	156000.000
NIT	3610.000	NIT	4990.000
OXAT	20.000		
	<2.000	OXAT	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.070	PPDDT	<0.070
S04	181000.000	<b>S04</b>	289000.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	34.600	ZNTOT	41.000
41111	34.000	ZNIUT	41.000

WELL AQUIFER: ALLUVIUM

37354 SCREENED INT.: 13.8-49.1 37355 SCREENED INT.: 11.1-71.7
BEDROCK DEPTH: 49.0 BEDROCK DEPTH: 70.0
BEDROCK LITH.: SH BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

		00	
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE		111TCE	
112TCE	<1.700	112TCE	5.290
	<1.000	TIZTCE	1.560
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	1.540
ALDRN	<0.070	ALDRN	<0.070
ASTOT	<2.500	ASTOT	<2.500
BTZ	<2.000	BTZ	<2.000
C6H6	<1.340	C6H6	<2.000
			<1.340
CA	108000.000	CA	114000.000
CCL4	<2.400	CCL4	<2.400
CDTOT	41.200	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	3.960	CHCL3	1.550
CL	103000.000	CL	130000.000
CL6CP	<0.070	CL6CP	<0.070
CLC6H5	<0.580	CLC6H5	<0.580
CLDAN			
	<1.300	CLDAN	<1.300
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	39.300	CRTOT	<5.960
CUTOT	<7.940	CUTOT	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	12.400	DIMP	<10.500
DITH	12.400		
	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	0.094
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	1300.000	FL	1630.000
HGTOT	<0.359	н <del>д</del> тот	<0.359
ISODR	<0.060	ISODR	<0.060
K	4010.000	K	
MEC6H5	<1.210		4310.000
		MEC6H5	<1.210
MG	25800.000	MG	28100.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	91800.000	NA	120000.000
NIT	8440.000	NIT	7880.000
OXAT	<2.000	OXAT	<2.000
PBTOT	52.100	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.070	PPDDT	<0.033
804			
	168000.000	S04	200000.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	62.800	ZNTOT	60.400
_		<del></del>	= - <b>· · ·</b>

WELL AQUIFER: ALLUVIUM
37356 SCREENED INT.: 8.3-38.4 37357 SCREENED INT.: 4.5-19.7
BEDROCK DEPTH: 38.5 BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN			
	<0.070	ALDRN	<0.070
ASTOT	<2.500	ASTOT	<2.500
BTZ	<2.000	BTZ	<2.000
<b>C6H6</b>	<1.340	Сене	<1.340
CA	130000.000	CA	116000.000
CCL4	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	20.600
CL	138000.000	CL	114000.000
CL6CP	<0.070	CL6CP	<0.070
CLC6H5	<0.580	CLC6H5	<0.580
CLDAN	•	CLDAN	•
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	<5.960	CRTOT	<5.960
CUTOT	<7.940	CUTOT	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	125.000	DIMP	30.600
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.B00	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	<1200.000	FL	<1200.000
HGTOT	<0.359	HGTOT	<0.359
ISODR	<0.060	ISODR	<0.060
K	6600.000	ĸ	9660.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	31800.000	MG	30900.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	122000.000	NA NA	118000.000
NIT	8880.000	NIT	8930.000
OXAT	<2.000	TÄXO	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.070	PPDDT	<0.070
SO4	207000.000	\$04	197000.000
TIZDCE	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	2.840
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	76.200	ZNTOT	<20.100
-11444	70.200	24101	~20,100

WELL AQUIFER: ALLUVIUM
37358 SCREENED INT.: 44.3-59.9
BEDROCK DEPTH: 59.0
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM

WELL AQUIFER: ALLUVIUM
37359 SCREENED INT.: 23.2-43.7
BEDROCK DEPTH: 42.9
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	2.740
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	2.100
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
ASTOT	<2.500	ASTOT	<2.500
BTZ	<2.000	BTZ	<2.000
C6H6 CA CCL4	<1.340 258000.000	C6H6	<1.340 216000.000
CDTOT CH2CL2	<2.400 <5.160 <5.000	CCL4 CDTOT CH2CL2	<2.400 <5.160 <5.000
CHCL3	<1.400 80800.000	CHCL3	<1.400 138000.000
CL6CP CLC6H5 CLDAN	<0.070 <0.580	CL6CP CLC6H5 CLDAN	<0.070 <0.580
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	<5.960	CRTOT	24.000
CUTOT	<7.940	CUTOT	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	<10.500	DIMP	<10.500
DITH DLDRN DMDS	<1.100 <0.060 <1.800	DITH DLDRN	<1.100 <0.060
DMMP ENDRN	<15.200 <0.052	DMDS DMMP ENDRN	<1.800 <15.200 <0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	<1200.000	FL	<1200.000
HGTOT	<0.359	HGTOT	<0.359
ISODR	<0.060	ISODR	<0.060
K	5050.000	K	7120.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	13500.000	MG	30100.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	61900.000	NA	147000.000
NIT	3180.000	NIT	9590.000
OXAT	<2.000	OXAT	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.070	PPDDT	<0.070
SO4	133000.000	SO4	337000.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	2.780
TRCLE	<1.100	TRCLE	3.180
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	25.400	ZNTOT	<20.100

AQUIFER: ALLUVIUM WELL SCREENED INT.: 26.4-101.9 37361 BEDROCK DEPTH:101.5 BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM AQUIFER: ALLUVIUM SCREENED INT.: 21.7- 92.3 BEDROCK DEPTH: 92.0 BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM WELL WELL 37360

SCREENED	ZONE: ALLUVIUM	SCREENED	ZONE: ALLUVIUM
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
ASTOT	<2.500	ASTOT	<2.500
BTZ	<2.000	BTZ	<2.000
C6H6	<1.340	C6H6	<1.340
CA	155000.000	CA	105000.000
CCL4	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	<1.400
CL	56900.000	CL	58700.000
CL6CP	<0.070	CL6CP	<0.070
CLC6H5	<0.580	CLC6H5	<0.580
CLDAN	•	CLDAN	
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CFASO2	<4.700
CRTOT	7.230	CRTOT	<5.960
CUTOT	<7.940	CUTOT	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	<10.500	DIMP	<10.500
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	<1200.000	FL	<1200.000
HGTOT	<0.359	HGTOT	<0.359
ISODR	<0.060	ISODR	<0.060
K	3840.000	K	4310.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	13200.000	MG	13000.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	73500.000	NA	64900.000
NIT	8000.000	NIT	6310.000
TAXO	<2.000	TAXO	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.070	PPDDT	<0.070
SO4	123000.000	SO4	148000.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLL	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	<20.100	ZNTOT	<20.100

WELL AQUIFER: ALLUVIUM
37362 SCREENED INT.: 34.5- 45.2 37363 SCREENED INT.: 6.9- 32.2
BEDROCK DEPTH: 42.5 BEDROCK LITH.: SH BEDROCK LITH.: SS
SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

_			
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE_	<1.100
11DCLE	<1.200	lidcle	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
ASTOT	<2.500	ASTOT	<2.500
BTZ	<2.000	BTZ	<2.000
C6H6	<1.340	C6H6	<1.340
CA	144000.000	CA	86600.000
CCL4	<2.400	čĈL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	1.760	CHCL3	<1.400
CL	213000.000	CL	102000.000
CL6CP	<0.070	CL6CP	<0.070
CLC6H5	<0.580	CLC6H5	<0.580
CLDAN	•	CLDAN	•
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMS02	<4.700
CRTOT	<5.960	CRTOT	<5.960
CUTOT	<7.940	CUTOT	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD			
	<9.310	DCPD	<9.310
DIMP	<10.500	DIMP	<10.500
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	1840.000	FL	<1200.000
HGTOT	<0.359	HGTOT	<0.359
ISODR	<0.060	ISODR	<0.060
K	5050.000	K	4780.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	50800.000	MG	16000.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	12.900		
	<1.350	MXYLEN	<1.350
NA	278000.000	NA_	89500.000
NIT	1710.000	NIT	2420.000
OXAT	<2.000	TAXO	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.070	PPDDT	<0.070
SO4	456000.000	SO4	180000.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	65.000	ZNTOT	<20.100
	03.00	211101	~20.100

WELL 37364	AQUIFER: ALLUVIUM SCREENED INT.: 6.8-27.3 BEDROCK DEPTH: 28.9 BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM	AQUIFER: ALLUVIUM SCREENED INT.: 2.2- 17.2 BEDROCK DEPTH: 20.0 BEDROCK LITH.: SS SCREENED ZONE: ALLUVIUM	
	COMPOUND CONCENTRATION	COMPOUND CONCENTRATION	

		<del> </del>	
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
	<1.700		
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
ASTOT	4.230	ASTOT	<2.500
BTZ	<2.000	BTZ	<2.000
C6H6		C6H6	<1.340
Соло	<1.340	Cono	
CA	72200.000	CA	129000.000
CCL4	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	<1.400
CL	107000.000	CL	37400.000
CL6CP	<0.070	CL6CP	<0.070
CLC6H5	<0.580	CLC6H5	<0.580
	<0.560		
CLDAN		CLDAN	<1.300
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	<5.960	CRTOT	<5.960
CUTOT	<7.940	CUTOT	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	<10.500	DIMP	<10.500
		DIMP	
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	<1200.000	FL	<1200.000
HGTOT	<0.359	нётот	<0.359
ISODR		ISODR	<0.060
	<0.060	ISOUR	5700.000
K	8130.000	K	5720.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	12500.000	MG	19900.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	111000.000	NA	100000.000
MIT	660.000	NIT	6120.000
TAXO	<2.000	OXAT	<2.000
PBTOT	<18.600	PRTOT	<18.600
PPDDE			<0.053
	<0.053	PPDDE	-0 020 -0.033
PPDDT	<0.070	PPDDT	<0.070
S04	176000.000	S04	110000.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	<20.100	ZNTOT	<20.100
		MIT X O X	-20,100

WELL SOLLER	AQUIFER: ALLUVIUM SCREENED INT.: 0.0- BEDROCK DEPTH: 0.0 BEDROCK LITH.: SCREENED ZONE: ALLUVIUM	0.0	WELL	AQUIFER: ALLUVIUM SCREENED INT.: 0.0- 0.0 BEDROCK DEPTH: 58.0 BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM
		•		CONLINED DONE: ALLOVION

SCREENED	ZONE: ALLUVIUM	SCREENED	ZONE: ALLUVIUM
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	ÎIDCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610		
ALDRN		12DCLE	<0.610
	<0.083	ALDRN	<0.083
ASTOT	<2.500	ASTOT	<2.500
BTZ	<1.140	BTZ	<1.140
C6H6	<1.340	C6H6	<1.340
CA	181000.000	CA	149000.000
CCL4	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	24.900	CHCL3	<1.400
CL	180000.000	CL	86900.000
CL6CP	<0.083	CL6CP	<0.083
CLC6H5	<0.580	CLC6H5	<0.580
CLDAN	<0.152	CLDAN	<0.152
CPMS	<1.080	CPMS	<1.080
CPMSO	11.700	CPMSO	<b>41.000</b>
CPMSO2	<2.240		<1.980
CRTOT		CPMSO2	<2.240
	<5.960	CRTOT	25.100
CUTOT	<7.940	CUTOT	<7.940
DBCP		DBCP	•
DCPD	<9.310	DCPD	<9.310
DIMP	152.000	DIMP	<10.500
DITH	<3.340	DITH	<3.340
DLDRN	<0.054	DLDRN	<0.054
DMDS	<1.160	DMDS	<1.160
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.060	ENDRN	<0.060
ETC6H5	.280	ETC6H5	<1.280
FL	20.000	FL	<1220.000
HGTOT	<0.359	HGTOT	<0.359
ISODR	<0.056	ISODR	<0.056
K	3630.000	K	4240.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	57200.000	MECOHS MG	14400.000
MIBK	<12.900		
MXYLEN	<1.350	MIBK	<12.900
		MXYLEN	<1.350
NA	269000.000	NA_	70700.000
NIT	2630.000	NIT	3'.10.000
TAXO	<1.350	OXAT	<1.350
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.046	PPDDE	<0.046
PPDDT	<0.059	PPDDT	<0.059
SO4	591000.000	SO4	172000.000
T12DCE	<1.200	TIZDCE	<1.200
TCLEE	5.810	TCLEE	<1.300
TRCLE	1.480	TRCLE	1.250
XYLE	<2.470	XYLEN	<2.470
ZNT	76.800	ZNTOT	61.700
		21177	07.400

WELL

XII

AQUIFER: ALLUVIUM SCREENED INT.: 0.0- 0.0 BEDROCK DEPTH: 0.0 BEDROCK LITH.: SCREENED ZONE: ALLUVIUM

COMPOUND 111TCE 112TCE 11DCE 11DCLE 11DCLE 12DCLE ALDRN ASTOT BTZ C6H6 CA CCL4 CCDTOT CH2CL2 CHCL3 CL CL6CP CLC6H5 CLDAN CPMS CPMSO CPMSO CPMSO CPMSO CCTTOT CUTOT	CONCENTRATION <1.700 <1.000 <1.100 <1.200 <0.610 <0.083 <2.500 <1.140 <1.340 76200.000 <2.400 <5.160 <5.000 <1.400 55500.000 <1.400 55500.000 <1.400 55500.000 <1.980 <1.980 <1.980 <7.940
DBCP DCPD DIMP DITH DLDRN DMDS DMMP ENCEHS FL OT ISODR MEC 6H5 MG MIBK MAIT PBTOT PPDDT SO4 T12DE PPDDT SO4 T12LEE TCLEE TYLEN ZNTOT	<pre>&lt;9.310 &lt;10.500 &lt;3.340 &lt;0.054 &lt;1.160 &lt;15.200 &lt;0.060 &lt;1.280 &lt;1.280 &lt;1.20000 &lt;1.280 &lt;1.210 17000.000 &lt;1.350 84600.000 &lt;1.350 &lt;18.600 &lt;18.600 &lt;1.350 &lt;18.600 &lt;1.350 &lt;18.600 &lt;1.350 &lt;18.600 &lt;1.350 &lt;18.600 &lt;20.100 &lt;1.300 &lt;1.300 &lt;1.300 &lt;21.300 &lt;21.300 &lt;21.300 &lt;21.300 &lt;21.300 &lt;21.300 &lt;20.100</pre>

AQUIFER: ALLUVIUM SCREENED INT.: BEDROCK DEPTH: 20 BEDROCK LITH.: SH	0.0- 0.0 .5	AQUIFER: ALLUV SCREENED INT.: BEDROCK DEPTH:	0.0- 0.0 23.0	0
		BEDROCK LITH.:	SH	
SCREENED ZONE: AL	LUVIUM	SCREENED ZONE:	ALLUVIUM	

SCREENED	ZONE: ALLUVIUM	SCREENED	ZONE: ALLUVIUM
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
IIDCLE	<1.200	lidcle	<1.200
12DCLE	0.604	12DCLE	4.150
ALDRN	<0.070	ALDRN	
ASTOT	<3.070		<0.070
BTZ	<2.000	ASTOT	<3.070
C6H6	<1.340	BTZ	<2.000
CA	111003.000	<b>C6H6</b>	<1.340
CCL4		CA	117000.000
	<2.400	CCL4_	<2.400
CDTOT	5.470	CDTOT	5.470
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	<1.400
CL	267000.000	ĆŢ	444000.000
CL6CP	<0.070	CL6CP	<0.070
CLC6H5	<0.580	CLC6H5	<0.580
CLDAN	•	CLDAN	•
CPMS	<1.300	CPMS	<1.300
CPMSO	63.800	CPMSO	55,500
CPMSO2	<4.700	CPMS02	39.300
CRTOT		CRTOT	
CUTOT	8.390	CUTOT	26.000
DBCP	<0.130	DBCP	0.229
DCPD	30.500	DCPD	529.000
DIMP	43.700	DIMP	765.000
DITH	<1.100	БІТН	5.930
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<76.000
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	2190.000	FL	3260.000
HGTOT	<0.480	й́бтот	<0.480
ISODR	<0.060	ISODR	<0.060
K	4640.000		2580.000
MEC6H5	<1.210	K	
MG	64400.000	MEC6H5	<1.210
MIBK	412.000	MG	56100.000
MXYLEN	<12.900	MIBK	<12.900
	<1.350	MXYLEN	<1.350
NA	276000.000	NA_	432000.000
NIT	924.000	NIT	1750.000
OXAT	<2.000	OXAT_	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.070	PPDDT	<0.070
504	409000.000	SO4	585000.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	9.360	TCLEE	46.500
TRCLE	<1.100	TRCLE	2.300
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	23.400	ZNTOT	56.000

WELL AQUIFER: ALLUVIUM
37312 SCREENED INT.: 0.0- 0.0 37313 SCREENED INT.: 0.0- 0.0
BEDROCK DEPTH: 13.5 BEDROCK DEPTH: 28.8
BEDROCK LITH.: SH BEDROCK LITH.: SS
SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

00.00.00	DOME: NEEDO LEGI	SOMEDINED OF	MED. HEDOVION
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
	(1.100		<b>1.100</b>
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	0.679
ALDRN	<0.070	ALDRN	<0.070
ASTOT	<3.070	ASTOT	<3.070
BTZ	<2.000	BTZ	<2.000
C6H6	<1.340	C6H6	<1.340
CA	116000.000	CA	262000.000
CCL4	<2.400	CCL4	<2.400
CDTOT	5.470	CDTOT	5.470
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	<1.400
CL	228000.000	CL	1130000.000
CL6CP		OT CD	
	<0.070	CL6CP	<0.070
CLC6H5	<0.580	CLC6H5	<0.580
CLDAN	<1.300	CLDAN	<1.300
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	•	CRTOT	•
CUTOT	<7.940	CUTOT	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	<10.500	DIMP	3850.000
DITH	<1.100	DITH	11,000
DLDRN	0.135	DLDRN	0.086
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<304.000
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	
FL	71.400		<1.280
	2310.000	FL	2780.000
HGTOT	<0.480	HCTOT	<0.480
ISODR	<0.060	ISODR	<0.060
K	4040.000	K	9430.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	61700.000	MG	117000.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	228000.000	NA	821000.000
NIT	1050.000	NIT	236,000
OXAT	<2.000	OXAT	4.400
PBTOT	<18.600	PBTOT	44.200
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.070	PPDDT	<0.070
S04	415000.000	SO4	1170000.000
TÍZDCE	<1.200	TIZDCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	<1.100	TOLEE	<1.100
XYLEN	<2.470	TRCLE	
ZNTOT		XYLEN	<2.470
PHIOT	149.000	ZNTOT	34.600

WELL AQUIFER: ALLUVIUM
37320 SCREENED INT.: 22.7-32.7 37332 SCREENED INT.: 46.9-51.4
BEDROCK DEPTH: 35.0 BEDROCK DEPTH: 51.0
BEDROCK LITH.: SS BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

•

1

COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700		
	11.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
ASTOT	<3.070	ASTOT	5.800
BTZ	<2.000	BTZ	
C6H6	2.000	D12	<2.000
	<1.340	C6H6	<1.340
CA	122000.000	CA	96700.000
CCL4	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	5.470
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	3.390
CL	150000.000	CL	609000.000
CL6CP	<0.070	CL6CP	<0.070
CLC6H5	<0.580	CLC6H5	3.220
			3.220
CLDAN	<1.300	CLDAN	<1.300
CPMS	<1.300	CPMS_	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	•	CRTOT	•
CUTOT	940	CUTOT	41.300
DBCP	«0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	18.900	DIMP	<10.500
DITH	10.900		
	<1.100	DITH	<1.100
DLDRN	0.140	DLDRN	1.020
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	<1220.000	FL	2610.000
HGTOT	<0.480	HGTOT	<0.480
ISODR	<0.060	ISODR	<0.060
K	3350.000	ĸ	3780.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	43000.000	MG MECOHS	24200 000
MIBK			34200.000
MARTAN	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA_	177000.000	AN	506000.000
NIT	3680.000	NIT	4360.000
OXAT	<2.000	OXAT	<2.000
PBTOT	<18.600	PBTOT	38.100
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.070	PPDDT	<0.070
SO4	375000.000	S04	331000.000
Tizdce	<1,200	TIZDCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	<1.100	TROLE	<1.100
XYLEN	<2.470		<2.470
ZNTOT	<20.100	XYLEN	
DUICI	~20.100	ZNTOT	54.000

WELL AQUIFER: ALLUVIUM
37333 SCREENED INT.: 38.4-47.7
BEDROCK DEPTH: 47.0
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM

WELL AQUIFER: ALLUVIUM
37335 SCREENED INT.: 38.2-57.6
BEDROCK DEPTH: 51.0
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE_	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
ASTOT	4.800	ASTOT	<3.070
BTZ	<2.000	BTZ	<2.000
C6H6	<1.340	C6H6	<1.340
CA	85700.000	CA	67400.000
CCL4_	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	5.470
CH3CL3	<5.000	CH2CL2	<5.000
CHCL3	11.600	CHCL3	<1.400
CL	372000.000	<b>C</b> L	111000.000
CL6CP_	<0.070	CL6CP_	<0.070
CLC6H5	<0.580	CLC6H5	1.650
CLDAN	•	CLDAN	<1.300
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	•	CRTOT	_ •
CUTOT	<7.940	CUTOT	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	<10.500	DIMP	<10.500
DITH	<1.100	DITH	<1.100
DLDRN	0.226	DLDRN	0.328
DMDS	<1.800	DMDS	<1.300
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	<1220.000	FL	<1220.000
hgtot	<0.480	HGTOT	<0.480
ISODR	<0.060	ISODR	<0.060
K	5580.000	ĸ	2920.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	13800.000	MG	13900.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	247000.000	NA	75200.000
NIT	2920.000	NIT	236.000
TAXO	<2.000	OXAT	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.070	PPDDT	<0.070
S04	153000.000	<b>S04</b>	51000.000
T12DCE	<1.200	Tl2DCE	<1,200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	33.600	ZNTOT	21.400

WELL AQUIFER: ALLUVIUM
37338 SCREENED INT.: 6.8-29.2 37339 SCREENED INT.: 11.7-22.3
BEDROCK DEPTH: 23.5 BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM

~ ~			
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	1127CE	<1.000
11DCE	<1.100	11DCE	
	<1.100		<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
ASTOT	<3.070	ASTOT	3.500
BTZ	<2.000	BTZ	<2.000
C6H6	<1.340	C6H6	<1.340
CA	162000.000	CA	668000.000
CCL4	<2.400	CCL4	<2.400
CDTOT	5.470	CDTOT	9.500
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	2,030	CHCL3	<1.400
CL	260000.000	CL	1990000.000
CL6CP	<0.070	Č <u>ľ</u> 6CP	<0.070
CLC6H5	2.640	CLC6H5	<0.580
CLDAN		CLDAN	
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	<4.700	CRTOT	<4.700
	<7.940		9.820
CUTOT	<7.940	CUTOT	9.820
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	<10.500	DIMP	546.000
DITH	<1.100	DITH	<1.100
DLDRN	0.108	DLDRN	0.128
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<76.000
ENDRN	<0.052	Endrn	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	1880.000	FL	4650.000
HGTOT	<0.480	hgtot	<0.480
ISODR	<0.060	ISODR	<0.060
K	8660.000	K	3610.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	54000.000	MG	174000.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	242000.000	NA NA	1220000.000
NIT	1320.000	NIT	8920.000
OXAT	<2.000	TÄŽÕ	<2.000
PRTOT	<18.600	PBTOT	25.800
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.053	PPDDE	<0.070
SO4	449000.000		1970000.000
T12DCE		S04	
TCLEE	<1.200	T12DCE	<1.200
TRCLE	<1.300	TCLEE	<1.300
	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	41.800	ZNTOT	152.000

AQUIFER: ALLUVIUM SCREENED INT.: 23.5- 34.1 WELL WELL AQUIFER: ALLUVIUM 37340 37341 SCREENED INT.: 20.3- 50.7

. 🔷 )

BEDROCK DEPTH: 32.0 BEDROCK LITH.: SH BEDROCK DEPTH: 48.0

BEDROCK LITH .: SS SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

COMPOUND CONCENTRATION COMPOUND CONCENTRATION 111TCE <1.700 111TCE <1.700 112TCE <1.000 112TCE <1.000 11DCE <1.100 11DCE <1.100 11DCLE <1.200 11DCLE <1.200 12DCLE <0.610 12DCLE <0.610 <0.070 <0.070 ALDRN ALDRN <3.070 ASTOT <3.070 ASTOT BTZ <2.000 BTZ <2.000 C6H6 <1.340 C6H6 <1.340 149000.000 70500.000 CA CA CCL4 <2.400 CCL4 <2.400 CDTOT <5.160 CDTOT <5.160 CH2CL2 CH2CL2 <5.000 <5.000 CHCL3 CHCL3 <1.400 <1.400 220000.000 CL CL 50500.000 CL6CP <0.070 CL6CP <0.070 CLC6H5 CLC6H5 <0.580 0.807 CLDAN CLDAN <1:300 CPMS CPMS <1.300 CPMSO <4.200 CPMSO <4.200 CPMSO2 <4.700 CPMS02 <4.700 CRTOT CRTOT CUTOT <7.940 <7.940 CUTOT **DBCP** <0.130 DBCP < 0.130 <9.310 35.300 <1.100 DCPD DCPD <9.310 DIMP DIMP <10.500 DITH DITH <1.100 DLDRN <0.060 DLDRN <0.060 DMDS DMDS <1.800 <1.800 DMMP <15.200 DMMP <15.200 ENDRN ENDRN 0.164 <0.052 ETC6H5 <1.280 ETC6H5 <1.280 FL 1700.000 <1220.000 FL HGTOT <0.480 HGTOT <0.240 ISODR <0.060 ISODR <0.060 4290.000 4640.000 K MEC6H5 <1.210 MEC6H5 <1.210 35900.000 MG 15500.000 MG MIBK MIBK <12.900 <12.900 MXYLEN <1.350 MXYLEN <1.350 299000.000 64600.000 NA NA NIT NIT 4110,000 878.000 TAXO <2.000 TAXO <2.000 PBTOT <18.600 PBTOT <18.600 PPDDE <0.053 PPDDE < 0.053 PPDDT <0.070 PPDDT <0.070 504 563000.000 120000.000 **SO4** T12DCE <1.200 T12DCE <1.200 TCLEE <1.300 <1.300 TCLEE TRCLE <1.100 TRCLE <1.100 XYLEN <2.470 XYLEN <2.470 ZNTOT 31.600 ZNTOT 48.900

WELL AQUIFER: ALLUVIUM
37342 SCREENED INT.: 12.9- 29.0 37343 SCREENED INT.: 3.7- 35.1
BEDROCK DEPTH: 27.5 BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM

	ZONE: ALLEOVION	JCKEDNED A	JOHE: HALOVION
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE		112TCE	<1.000
112100	<1.000		1.000
11DCE	<1.100	11DCE_	<1.100
JIDCLE	<1.200	lidcle	<1.200
12DCLE	1.110	12DCLE	0.801
ALDRN	<0.070	ALDRN	<0.070
ASTOT	<3.070	ASTOT	4.300
BTZ	<2.000	BTZ	<2.000
C6H6	<1.340	<b>C6H6</b>	<1.340
CA	287000.000	CA	119000.000
CCL4	207000.000	ČČL4	113000.000
	<2.400		<2.400
CDTOT	5.470	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	<1.400
CL	586000.000	CL	223000.000
CLSCP	<0.070	CL6CP	<0.070
CLC6H5	<0.580	CLC6H5	3.090
CLDAN		CLDAN	
CPMS	<1:300	CPMS	<1.300
CPMSO	1.300	ČPMSO	<4.200
	<4.200 <4.700		<4.700
CPMSO2		CPMSO2	<4.700
CRTOT	<7.940	CRTOT	11.100
CUTOT	<7.940	CUTOT	<7.940
DBCP	<0.130	DBC.P	<0.130
DCPD	<9.310	DCPD	11.900
DIMP	44.000	DIMP	468.000
DITH	<1.100	DITH	1.900
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<76.000
ENDRN	₹0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	1510.000	FL	1750.000
	0.360	ห็ฐเกา	<0.480
HGTOT	0.360	ng To T	
ISODR	<0.060	ISODR	<0.060
K	6600.000	K_	5580.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	65700.000	MG	50200.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	426000.000	NA	250000.000
NIT	8210.000	NIT	100.000
OXAT	<2.000	TAXO	<2.000
PBTOT	<18.600	PRTOT	21.900
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.070		
	961000 000	PPDDT	<0.070
S04	861000.000	S04	355000.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	2.190	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	<20.100	ZNTOT	36.900

WELL AQUIFER: ALLUVIUM
37344 SCREENED INT.: 15.5-40.9 SCREENED INT.: 16.4-37.1
BEDROCK DEPTH: 42.0 BEDROCK LITH.: SS BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

**(4)** 

COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<17.000	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<6.100	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
ASTOT	<3.070	ASTOT	3.100
BTZ	<2.000	BTZ	<b>&lt;2.0</b> 0∪
C6H6	<1.340	С6Н6	<1.340
CA	183000.000	CA	83000.000
CCL4	<24.000	ČĈL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	1180.000	CHCL3	<1.400
CL	427000.000	CL CL	60500.000
CL6CP	<0.070	ČL6CP	<0.070
CLC6H5	6.900	CLC6H5	<0.570
CLOAN			<0.580
CPMS	<1.300	CLDAN CPMS	<1.300
CPMSO	101.000		
CPMSO2	101.000	CPMSO	<4.200
	<4.700	CPMSO2	<4.700
CRTOT	17.300	CRTOT	7.630
CUTOT	<7.940	CUTOT	<7.940
DBCP	13.300	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	1030.000	DIMP	<10.500
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.800	DMDS	<1.800
DMMP	<152.000	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	1330.000	FL	1240.000
HGTOT	<0.480	HGTOT	<0.480
ISODR	<0.060	ISODR	<0.060
K	4210.000	K	3180.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	51700.000	MG	17900.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	323000.000	NA	79500.000
NIT	2760.000	NIT	446.000
OXAT	<2.000	OXAT	<2.000
PBTOT	27,400	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.070	PPDDT	<0.070
SO4	505000.000	SO4	186000.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	112.000	TCLEE	<1.300
TRCLE	7.710	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	<20.100	ZNTOT	100.000
• •			

WELL AQUIFER: ALLUVIUM
37346 SCREENED INT.: 8.6-24.0 37347 SCREENED INT.: 23.2-33.8
BEDROCK DEPTH: 24.0 BEDROCK DEPTH: 33.5
BEDROCK LITH.: SH BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

۹

COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
COMPOUND	CONCENTRATION	- · · · · - · · ·	
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
ASTOT	3.200	ASTOT	<3.070
BTZ	<2.000	BTZ	<2.000
C6H6	<1.340	C6H6	<1.340
CA	48700.000	CA	72000.000
CCT	<2.400	CCL4	<2.400
OF.	<5.160	CDTOT	<5.160
	<5.000	CH2CL2	<5.000
•	<1.400	CHCL3	<1.400
ČĽ	40900.000	CL CL	
			54900.000
CL6CP	<0.070	CL6CP	<0.070
CLC6H5	<0.580	CLC6H5	<0.580
CLDAN	•	CLDAN	. •
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	<5.960	CRTOT	6.940
CUTOT	<7.940	CUTOT	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	<10.500	DIMP	<10.500
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN		ENDRN	
	<0.052		<0.052
ETC6H5	<1.280	<u>E</u> TC6H5	<1.280
FL	1300.000	FL	<1220.000
HGTOT	<0.240	HGTOT	<0.240
ISODR	<0.060	ISODR	<0.060
K	2670.000	ĸ	3440.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	10500.000	MG	17800.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	64100.000	NA	69100.000
NIT	292.000	NIT	2710.000
TAXO	<2.000	OXAT	<2.000
PBTOT	<18.600	PBTOT	21.900
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.070	PPDDT	<0.070
SO4	79500.000	SO4	109000.000
Tizdce	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN			
ZNTOT	<2.470	XYLEN	<2.470
PUTOT	49.500	ZNTOT	61.200

	OFFP	OSI MATER GOUDILL !!			-
WELL 37348	AQUIFER: SCREENED BEDROCK D BEDROCK L SCREENED	INT.: 16.4- 42.0 EPTH: 41.0	WELL 37349	AQUIFER: A SCREENED D BEDROCK DI BEDROCK L SCREENED D	INT.: 23.2-43.6 EPTH: 44.0 ITH.: SH ZONE: ALLUVIUM
	COMPOULE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TCE 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112TC 1112	ZONE: ALLUVIUM  CONCENTRATION		COMPOUND 112TCE 112TCE 112TCE 112TCE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 112DCLE 1	CONCENTRATION
	XYLEN ZNTOT	<2.470 <20.100		XYLEN ZN <b>T</b> OT	<2.470 73.800

AQUIFER: ALLUVIUM SCREENED INT.: 1 WELL AQUIFER: ALLUVIUM WELL 37350 SCREENED INT.: 26.9- 52.3 37351 17.9- 38.5 BEDROCK DEPTH: 36.0

4)

BEDROCK DEPTH: 52 BEDROCK LITH.: SH BEDROCK LITH.: SS SCREENED ZONE: ALLUM SCREENED ZONE: ALLUVIUM

COMPOUND CONCENTRATION COMPOUND CONCENTRATION 111TCE <1.700 111TCE <1.700 112TCE <1.000 112TCE <1.000 <1.100 <1.200 11DCE 11DCE <1.100 11DCLE 11DCLE <1.200 12DCLE <0.610 12DCLE <0.610 ALDRN <0.070 ALDRN <0.070 AS T <3.070 ASTOT <3.070 BĨ. BTZ <2.000 <2.000 C6H6 <1.340 C6H6 <1.340 3000.000 CA CA 114000.000 CCL4 <2.400 CCL4 <2.400 CDTOT 960 CDTOT <5.160 CH2CL2 -00 CH2CL2 <5.000 CHCL3 CHCL3 **∌0** <1.400 85000.000 CL CL 123000.000 CL6CP <0.070 CL6CP <0.070 CLC6H5 0.853 CLC6H5 1.600 CLDAN CLDAN <1.300 <4.200 <4.700 8.330 <1.300 CPMS CPMS CPMSO <4.200 <4.700 **CPMSO** CPMSO2 CPMS02 CRTOT 15.300 CRTOT CUTOT <7.940 CUTOT <7.940 DBCP <0.130 DBCP <0.130 DCPD <9.310 DCPD <9.510 DIMP <10.500 DIMP <10.500 DITH <1.100 DITH <1.100 DLDRN <0.060 DLDRN <0.060 DMDS <1.800 DMDS <1.800 DMMP <15.200 DMMP <15,200 ENDRN <0.052 ENDRN <0.052 ETC6H5 <1.280 ETC6H5 <1.280 FL <1220.000 FL 1720.000 HGTOT <0.240 **HGTOT** <0.240 ISODR <0.060 ISODR <0.060 4] 2500.000 <1.210 000 MEC6H5 210 MEC6H5 MG 31 00.000 MG 31700.000 MIBK <12.900 MIBK <12.900 MXYLEN <1.350 MXYLEN <1.350 NA 93300.000 NA 120000.000 NIT NIT 5020.000 8060.000 OXAT PBTOT TAXO <2.000 <2.000 PBTOT 38.400 <18.600 PPDDE <0.053 **PPDDE** <0.053 PPDDT PPDDT <0.070 <0.070 504 205000.000 S04 194000.000 T12DCE <1.200 <1.300 T12DCE <1.200 TCLEE TCLEE <1.300 TRCLE <1.100 TRCLE <1.100 XYLEN XYLEN ~2.470 <2.470 ZNTOT

ZNTOT

<20.100

<20.100

WELL AQUIFER: ALLUVIUM
37352 SCREENED INT.: 29.8-38.3 37353 SCREENED INT.: 27.1-42.4
BEDROCK DEPTH: 37.9 BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM

(4)

**(***)

COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
	CONCENTRATION		
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
ASTOT	<3.070	ASTOT	<3.070
		20101	
BTZ	<2.000	BTZ	<2.000
<b>C6H6</b>	<1.340	C6H6	<1.340
CA	92500.000	CA	117000.000
CCL4	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	<1.400
	71.400		102000 000
CL	78400.000	CL	103000.000
CL6CP_	<0.070	CL6CP	<0.070
CLC6H5	<0.580	CLC6H5	<0.580
CLDAN	•	CLDAN	•
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSQ2	<4.700
CRTOT	8.330	CRTOT	11.100
CUTOT	<7.940	CUTOT	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	<10.500	DIMP	73.700
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.800		<1.800
		DMDS	<b>1.800</b>
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<b>→</b> <1.280	ETC6H5	<1.280
FL	1320.000	FL	<1220.000
HGTOT	<0.240	HGTOT	<0.240
ISODR	<0.060	ISODR	<0.060
K	1810.000	K	<1260,000
	1010.000		
MEC6H5	<1.210	MEC6H5	<1.210
MG	23200.000	MG	32400.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	92200.000	NA	123000.000
NIT	2980.000	NIT	4220.000
OXAT	<2.000	TAXO	<2.000
PRTOT	<18.600	PBTOT	32.900
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.070	PPDDT	<0.070
504	169000.000	SO4	189000.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	<1.100	1 RCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
	~2·4/U		
ZNTOT	<20.100	ZNTOT	<20.100

WELL	AQUIFER: ALLUVIUM	WELL	AQUIFER: ALLUVIUM
37354	SCREENED INT.: 13.8- 49.1	37355	SCREENED INT.: 11.1-71.7
	BEDROCK DEPTH: 49.0		BEDROCK DEPTH: 70.0
	BEDROCK LITH.: SH		BEDROCK LITH.: SH
	SCREENED ZONE: ALLUVIUM		SCREENED ZONE: ALLUVIUM

SCREENED	ZONE: ALLUVIUM	SCREENED	ZONE: ALLUVIUM
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700		
TITICE	<b>41.700</b>	111TCE	29.400
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	2.670
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALURN	<0.070	ALDRN	<0.070
ASTOT	<3.070	ASTOT	<3.070
BTZ	<2.000	BTZ	<2.000
C6H6	~2.000		2.000
	<1.340	Сене	<1.340
CA	77100.000	CA	134000.000
CCL4	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	2.360
CL	65700.000	CL	203000.000
CL6CP	<0.070	ČĽ6CP	<0.070
CLC6H5	0.622	CLC6H5	<0.580
	0.622		<0.560
CLDAN		CLDAN	<1.300
CPMS	<1.300	CPMS	
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	8.330	CRTOT	11.100
CUTOT	<7.940	CUTOT	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	~10 E00		<3.0 E00
	<10.500	DIMP	<10.500
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	0.087
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	1280.000	FL	1630.000
HGTOT	<0.240	нстот	<0.240
ISODR	<0.060	ISODR	<0.060
K	2507.000		
MEC6H5	2507.000	K	3090.000
	.210	MEC6H5	<1.210
MG	210€ .000	MG	35200.000
MIBK	113.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	100.000	NA	155000.000
NIT	6310.000	NIT	6480.000
OXAT	<2.000	OXAT	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	·
PPDDT	~0.093 ~0.070		<0.053
	<0.070	PPDDT	<0.070
504	138000.000	S04	202000.000
TIZDCE	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	5.520
TRCLE	<1.100	TRCLE	2.120
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	<20.100	ZNTOT	<20.100
		2112-01	

WELL AQUIFER: ALLUVIUM
37356 SCREENED INT.: 8.3-38.4 37357 SCREENED INT.: 4.5-19.7
BEDROCK DEPTH: 38.5 BEDROCK LITH.: SH

WELL AQUIFER: ALLUVIUM
37357 SCREENED INT.: 4.5-19.7
BEDROCK LITH.: SH

BEDROCK LITH.: SH

(*)

(8)

**(4**)

SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM COMPOUND CONCENTRATION COMPOUND CONCENTRATION 111TCE <1.700 JIITCE. <1.700 112TCE 112TCE <1.000 <1.000 11DCE <1.100 11DCE <1.100 11DCLE <1.200 11DCLE <1.200 12DCLE <0.610 12DCLE <0.610 ALDRN <0.070 ALDRN <0.070 ASTOT <3.070 ASTOT <3.070 BTZ BTZ <2.000 <2.000 C6H6 <1.340 C6H6 <1.340 CA CCL4 109000.000 CA 82400.000 <2.400 CCL4 <2.400 CDTOT <5.160 CDTOT <5.160 CH2CL2 <5.000 CH2CL2 <5.000 CHCL3 <1.400 CHCL3 4.680 105000.000 CL CL 84500.000 CL6CP CL6CP <0.070 <0.070 CLC6H5 1.720 CLC6H5 1.100 CLDAN CLDAN **CPMS** <1.300 CPMS <1.300 **CPMSO** <4.200 CPMSO <4.200 CPMS02 <4.700 CPMSO2 <4.700 CRTOT 9.020 CRTOT 13.900 CUTOT <7.940 CUTOT <7.940 DBCP <0.130 **DBCP** <0.130 DCPD DCPD <9.310 <9.310 DIMP 54.100 DIMP 16.200 DITH <1.100 DITH <1.100 DLDRN <0.060 DLDRN <0.060 DMDS <1.800 DMDS <1.800 <15.200 DMMP DMMP <15.200 ENDRN <0.052 ENDRN <0.052 ETC6H5 <1.280 ETC6H5 <1.280 FL <1220.000 FL 1220.000 HGTOT <0.240 HGTOT <0.240 ISODR <0.060 ISODR <0.060 2520.000 K 6670.000 MEC6H5 <1.210 MEC6H5 <1.210 27300.000 MG 22500.000 MG MIBK <12.900 MIBK <12.900 <1.350 MXYLEN MXYLEN <1.350 122000.000 NA 98500.000 NA NIT 6770,000 NIT 10700.000 TAXO <2.000 OXAT <2.000 PBTOT 21.900 PBTOT 21.900 PPDDE <0.053 PPDDE <0.053 PPDDT <0.070 PPDDT <0.070 S04 186000.000 168000.000 S04 T12DCE <1.200 <1.300 T12DCE <1.200 TCLEE <1.300 TCLEE TRCLE <1.100 TRCLE <1.100 XYLEN <2.470 XYLEN <2.470

ZNTOT

<20.100

<20.100

ZNTOT

WELL	AQUIFER: ALLUVIUM	WELL	AQUIFER: ALLUVIUM
7358	SCREENED INT.: 44.3-59.9	37359	SCREENED INT.: 23.2-43.7
	BEDROCK DEPTH: 59.0		BEDROCK DEPTH: 42.9
	BEDROCK LITH.: SH		BEDROCK LITH.: SH
	SCREENED ZONE: ALLUVIUM		SCREENED ZONE: ALLUVIUM

J 41(LL)	DOWN ADDOVIOU	DOMESTICE DO	ME. ALLOVION
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	4.540
112TCE	<1.500	112TCE	<1.000
IIDCE	<1.100	11DCE	<b>1.000</b>
11000	<b>1.100</b>	11DCE_	<1.100
11DCLE	<1.200	11DCLE	1.950
15DCTE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
ASTOT	<3.070	ASTOT	<3.070
BTZ	<2.000	BTZ	<2.000
C6H6	<1.340	C6H6	<1.340
CA	121000.000	CA	187000.000
CCL4	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	
CHCL3	<3.000		<5.000
CL	<1.400	CHCL3	<1.400
	"10.000	CL	129000.000
CL6CP	0.070	CL6CP	<0.070
CLC6H5	<0.580	CLC6H5	1.010
CLDAN	•	CLDAN	•
CPMS	<1:300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMS02	<4.700	CPMSO2	<4.700
CRTOT	8.330	CRTOT	11.100
CUTOT	<7.940	CUTOT	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	410 E00		<3.310
DIMP	<10.500	DIMP	<10.500
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	<1220.000	FL	<1220.000
HGTOT	<0.240	HGTOT	<0.240
ISODR	<0.060	ISODR	<0.060
ĸ	2360.000	K	5580.000
MEC6H5	<1.210	м̂ес6н5	
MG			<1.210
MIBK	14900.000	MG	26200.000
	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	70400.000	NA	142000.000
NIT	2410.000	NIT	5610.000
TAXO	<2.000	TAXO	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.070	PPDDT	<0.070
S04	111000.000	SO4	327000.000
TIZDCE	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	3.670
TRCLE	>1 100 >1.300	TCLEE	3.0/U
VVI BU	<1.100	TRCLE	6.560
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	<20.100	ZNTOT	<20.100

WELL AQUIFER: ALLUVIUM
37360 SCREENED INT.: 26.4-101.9 SCREENED INT.: 21.7-92.3
BEDROCK DEPTH:101.5 BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM

4

•

•

•

SCREENED	ZONE: ALLUVIUM	SCREENED	ZONE: ALLUVIUM
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
	<1.200		11.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
ASTOT	<3.070	ASTOT	<3.070
BTZ	<2.000	BTZ	<2.000
<b>C6H6</b>	<1.340	<b>C6H6</b>	<1.340
CA	120000.000	CA	95300.000
CCL4	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	<1.400
CL	63300.000	CL	51100.000
CL6CP	<0.070	CL6CP	<0.070
CLC6H5	1.360	CLC6H5	1.550
CLDAN	<b>.</b>	CLDAN	
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	9.710	CRTOT	11.800
CUTOT	<7.940	CUTOT	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	<10.500	DĬMP	<10.500
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	<1220.000	FL	<1220.000
HGTOT	<0.240	нётот	<0.240
ISODR	<0.060	ISODR	<0.060
K	2840.000	K	3350.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	12500.000	MG MECONS	14600.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA LEN	65100.000	NA NA	65000.000
NIT	8940.000	NIT	5520.000
TAXO			
PBTOT	<2.000 27.400	OXAT PBTOT	<2.000 27.400
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.053	PPDDE	<0.053
S04	130000.000	SO4	126000.000
T12DCE	72 200 000.000	T12DCE	<1.200
TCLEE	<1.200		
TRCLE	<1.300 <1.100	TCLEE	<1.300 <1.100
XYLEN		TRCLE XYLEN	
ZNTOT	<2.470		<2.470
PHIOL	<20.100	ZNTOT	<20.100

WELL AQUIFER: ALLUVIUM
37362 SCREENED INT.: 34.5-45.2 37363 SCREENED INT.: 6.9-32.2
BEDROCK DEPTH: 42.5 BEDROCK LITH.: SH
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

ı

**.+**)

SCKEENED	ZONE. ADDOVION	DURABAGO	BONE. ADDOVION
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
TIDCE	(1.100	11DCLE	<1.100
11DCLE	<1.200		<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
ASTOT	<3.070	ASTOT	. •
BTZ	<2.000	BTZ	<2:000
C6H6	<1.340	C6H6	<1.340
CA	147000.000	CA	72700.000
CCL4	<2.400	CCL4	<2.400
CDTOT	5.260	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	1.320	CHCL3	<1.400
CL	231000.000	CL	86900.000
CL6CP	<0.070	CL6CP	<0.070
CLC6H5	<0.580	CLC6H5	0.661
CLCONS		CLDAN	
	<1.300	CLDVU	<1.300
CPMS	<1.300	CPMS	
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	18.000	CRTOT	<5.960
CUTOT	<7.940	CUTOT	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	<10.500	DIMP	<10.500
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	1760.000	FL	<1220.000
HGTOT	<0.240	н <b>ёт</b> от	<0.240
ISODR	<0.060	ISODR	<0.060
K	3350.000	K	2190.000
MEC6H5	3350.000	MEC6H5	<1.210
MG MECONS	<1.210		16200.000
	47400.000	MG	16200.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	269000.000	NA_	85100.000
NIT	1760.000	NIT	<10.000
OXAT	<2.000	TAXO	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.070	PPDDT	<0.070
SO4	450000.000	SO4	175000.000
T12DCE	<1.200	TIZDCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	74.800	ZNTOT	<20.100
DIATOT	/4.000	2N101	~20.100

AQUIFER: ALLUVIUM SCREENED INT.: 6.8- 27.3 BEDROCK DEPTH: 28. BEDROCK LITH.: SH	AQUIFER: DENVER SCREENED INT.: BEDROCK DEPTH: BEDROCK LITH.:	49.1- 33.5 SH	59.7
SCREENED ZONE: ALLUVIUM	SCREENED ZONE:	4	

COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
ASTOT	10.010	ASTOT	
BTZ	<2.000	BTZ	<2:000
C6H6	<1.340	C6H6	<1.340
CA	32000.000		35000.000
CCL4	32000.000	CA	
	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	ČHCT3	<1.400
CL	37300.000	CL	45100.000
CL6CP	<0.070	CL6CP	<0.070
CLC6H5	1.000	CLC6H5	<0.580
CLDAN	•	CLDAN	• _
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	8.640	CRTOT	<5.960
CUTOT	<7.940	CUTOT	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	<10.500	DIMP	11.500
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENLRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	<1220.000	FL	<1220.000
HGTOT	<0.240	Й <mark>ст</mark> от	<0.240
ISODR	<0.060	ISODR	<0.060
K	4680.000	ĸ	<1260.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	6800.000	MG	4030.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	49100.000	NA NA	277000.000
NIT	113.000	NIT	844.000
OXAT	<2.000		<2.000
PRTOT	<18.600	OXAT PBTOT	<18.600
PPDDE			
PPDDT	<0.053 <0.070	PPDDE	<0.053
SO4		PPDDT	<0.070
T: 2DCE	81000.000	S04	256000.000
TCLEE	<1.200	T12DCE	<1.200
TRCLE	<1.300	TCLEE	<1.300
XYLEN	<1.100	TRCLE	<1.100
	<2.470	XYLEN	<2.470
ZNTOT	<20.100	ZNTOT	<20.100

WELL AQUIFER: ALLUVIUM
37366 SCREENED INT.: 2.2-17.2 BEDROCK DEPTH: 20.0 BEDROCK LITH.: SS BEDROCK LITH.: SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM

WELL AQUIFER: ALLUVIUM
BOLLER SCREENED INT.: 0.0-0.0
BEDROCK LITH.: SS BEDROCK LITH.: SCREENED ZONE: ALLUVIUM

**(***)

	101121 112201211	DOMEDINED TOWN NEEDO (TON
COMPOUND	CONCENTRATION	COMPOUND CONCENTRATION
111TCE	<1.700	111TCE <1.700
112TCE	<1.000 <1.100	112TCE <1.000
11DCE	<1.100	11DCE <1.100
11DCLE	<1.200	11DCLE <1.200
12DCLE	<0.610	12DCLE <0.610
ALDRN	<0.070	ALDRN <0.070
ASTOT		ASTOT <3.070
BTZ	<2.000	BTZ <2.000
C6H6	<1.340	
Cono	<1.340	C6H6 <1.340
CA	121000.000	CA 194000.000
CCL4	<2.400	CCL4 <2.400
CDTOT	<5.160	CDTOT <5.160
CH2CL2	<5.000	CH2CL2 <5.000
CHCL3	<1.400	CHCL3 13.800
CL	46900.000	CL 170000.000
CL6CP	<0.070	CL6CP <0.070
CLC6H5	<0.580	CLC6H5 <0.580
CLDAN	70.560	CDC0H3
	<1.300	CLDAN CPMS <1.300
CPMS	<1.300	CPMS <1.300
CPMSO	<4.200	CPMSO 16.900
CPMSO2	<4.700	CPMSO2 <4.700
CRTOT	18.200	CRTOT 18.200
CUTOT	<7.940	CUTOT <7.940
DBCP	<0.130	DBCP 0.184
DCPD	<9.310	DCPD <9.310
DIMP	<10.500	DIMP 137.000
DITH	<1.100	
	<b>1.100</b>	
DLDRN	0.184	DLDRN <0.060
DMDS	<1.800	DMDS <1.800
DMMP	<15.200	DMMP <15.200
endrn	<0.052	ENDRN <0.052
ETC6H5	<1.280	ETC6H5 <1.280
FL	<1220.000	FL 1280.000
HGTOT	<0.240	HGTOT <0.240
ISODR	<0.060	ISODR <0.060
K	4680.000	K 2780.000
MEC6H5	<1.210	
		MEC6H5 <1.210
MG	23300.000	MG 52800.000
MIBK	<12.900	MIBK <12.900
MXYLEN	<1.350	MXYLEN <1.350
NA	131000.000	NA 248000.000
NIT	8080.000	NIT 2710.000
OXAT	<2.000	OXAT <2.000
PBTOT	<18.600	PBTOT <18.600
PPDDE	<0.053	PPDDE <0.053
PPDDT	<0.070	PPDDT <0.070
SO4	98700.000	
	30/00,000	504 556000.000
TIZDCE	<1.200	T12DCE <1.200
TCLEE	1.770	TCLEE 5.590
TRCLE	<1.100	TRCLE 1.150
XYLEN	<2 \70	XYLEN <2.470
ZNTOT	<20.100	ZNTOT 46.600
<del>-</del>	· - •	

	AQUIFER: ALLUVIUM	WELL AQUIFER: ALLUVIUM
XII	SCREENED INT.: 0.0- 0.0	XXIA SCREENED INT.: 0.0- 0.0
	BEDROCK DEPTH: 0.0	BEDROCK DEPTH: 0.0
	BEDROCK LITH.:	BEDROCK LITH.:
	SCREENED ZONE: ALLUVIUM	SCREENED ZONE: ALLUVIUM

			<del>-</del>
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
	41.000		
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
ASTOT	<3.070	ASTOT	<3.070
BTZ	<2.000	BTZ	<2.000
C6H6	<1.340	C6H6	<1.340
	~1.340	Cono	<b>41.340</b>
CA	101000.000	CA	77900.000
CCL4	<2.400	CCL4	<2.400
CDTOT	<5.160	CDTOT	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	<1.400
CL	85800.000	CL	67100.000
CL6CP	<0.070	čĽ6CP	<0.070
CLC6H5	<0.580	CLC6H5	<0.580
CLDAN	•	CLDAN	•
CPMS	<1:300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMSO2	<4.700
CRTOT	16.300	CRTOT	11.500
CUTOT	<7.940	CUTOT	<7.940
DBCP	-/· <b>&gt;</b> 10		40 120
	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	<10.500	DIMP	13.200
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5			1 200
	<1.280	ETC6H5	<1.280
FL	<1220.000	FL	1210.000
HGTOT	<0.240	HGTOT	<0.240
ISODR	<0.060	ISODR	<0.060
ĸ	3600.000	ĸ	2370.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	26700.000	MG	22500.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	12.300		
	<1.350	MXYLEN	<1.350
NA	112000.000	NA	79500.000
NIT	4650.000	NIT	9610.000
TAXO	<2.000	ТАХО	<2.000
PBTOT	<18.600	PBTOT	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.070	PPDDT	<0.070
804	133000.000	504	136000.000
T12DCE			T20000.000
	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZNTOT	<20.100	ZNTOT	26.000

AQUIFER: ALLUVIUM SCREENED INT.: 0.0- 0.0 BEDROCK DEPTH: 58.0 BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM WELL

COMPOUNI- 111TCE 112TCE 11DCLE 11DCLE 12DCLE ALDRN ASTOT BTZ C6H6 CA CCL4 CDTOT CH2CL2 CHCL3 CL	CONCENTRATION <1.700 <1.000 <1.100 <1.200 <0.610 <0.070 <3.070 <2.000 <1.340 159000.000 <2.400 <5.160 <5.000 <1.400 93100.000 <0.580
CLUAN CLUAN CPMSO CPMSO CPMSO2 CRTOT CUTOT DBCP DCPD DIMP DITH DLDF DMD: DMD: DMD: ENDRN ETC6H5 FL HGTOT ISODR	<1.300 <4.200 <4.700 25.000 44.700 <0.130 <9.310 10.500 <1.100 <0.060 <15.200 <1.800 <1.280 <1.280 <1.280 <0.060 <1.240 <0.060
K MEC6H5 MG MIBK MXYLEN NA NIT OXAT PBTOT PPDDE PPDDT SO4 T12DCE TCLEE TRCLE XYLEN ZNTOT	3930.000

APPENDIX D

CHEMISTRY DATA

APPENDIX D.1: 3RD QUARTER FY87 CHEMISTRY DATA

#### WRIB_WATER_CHEMISTRY_SUMMARY_3RD_QUARTER_FY1987

#### EXPLANATION

The following information pertains to tables presented in this section of the WRIR:

- Concentrations are in u/l.
- Analysis were not conducted for analytes concentrations designated by " . ".
- Bedrock lithology for wells 23218, 23219, 24191, 37369, 37370, 37371, 37372, 37376, 37387, 37388, 37389, and 3730 can be found in the forthcoming Task 36 Report.
- Bedrock lithology for wells 37367, 37368, 37373, 37370, 3737
   37378, 37379, 37380, 37381, 37383, 37391 and 37392 can be for ! in the forthcoming Task 39 Report.
- For all other wells, bedrock depths are zero and/or bedrock lithologies are not listed when:
  - Survey data were unavailable
  - Tenuous bedrock picks from lithologic logs
  - Borehole did not penetrate bedrock
  - Well data were acquired from sources where this information was unavailable.
- Screened intervals were unavailable for wells listed with a "0" screened interval designation.

### WRIR WATER CHEMISTRY SUMMARY, 3RD QUARTER, FY87

AOUIFER: DENVER WELL AOUIFER: DENVER WELL 16.6- 20.0 SCREENED INT .: 01008 23.0- 26.4 SCREENED INT.: 01007 BEDROCK DEPTH: 9.0 4.0 BEDROCK DEPTH: VC BEDROCK LITH .: BEDROCK LITH .: VC SCREENED ZONE: VC SCREENED ZONE: VC COMPOUND CONCENTRATION CONCENTRATION COMPOUND **(***) 111TCE <1.700 <1.700 111TCE 112TCE <1.000 <1.000 112TCE <1.100 11DCE <1.100 11DCE 11DCLE <1.200 <1.200 11DCLE <0.610 12DCLE <0.610 12DCLE <0.083 ALDRN <0.083 ALDRN <2.500 AS <2.500 AS <1.140 BTZ <1.140 BTZ <1.340 C6H6 <1.340 C6H6 79000.000 CA 46600.000 CA <2.400 CCL4 177.000 CCL4 <5.160 CD <5.160 CD <5.000 CH2CL2 <5.000 CH2CL2 6.930 CHCL3 27,000 CHCL3 149000.000 CL 28400,000 CL CL6CP < 0.083 <0.083 CL6CP <0.580 CLC6H5 <0.580 CLC6H5 <0.152 CLDAN <0.152 CLDAN CPMS <1.080 <1.080 **CPMS** <1.980 CPMSO <1.980 **CPMSO** <2.240 CPMSO2 <2.240 CPMS02 5.970 CR <5.960 CR CU <7.940 <7.940 CU <0.130 DBCP DBCP <0.130 <9.310 DCPD <9.310 DCPD <10.500 DIMP <10.500 DIMP <1.590 DITH <1.590 DITH 0.154 DLDRN 0.104 DLDRN <1.160 DMDS <1.160 DMDS <15.200 DMMP <15.200 DMMP <0.060 ENDRN **ENDRN** <0.060 <1.280 ETC6H5 <1.280 ETC6H5 2820.000 FL1840.000 FL <0.359 HG<0.359 HG ISODR <0.056 ISODR <0.056 3210.000 K K MEC6H5 <1.210 <1.210 MEC6H5 30100.000 16300.000 MG MG <12.900 MIBK MIBK <12.900 MXYLEN <1.350 <1.350 MXYLEN 348000.000 NA 63000.000 NA 13600.000 NIT 5770.000 NIT <1.350 OXAT TAXO <1.350 <18.600 PB <18,600 PB <0.046 PPDDE <0.046 PPDDE <0.059 PPDDT <0.059 PPDDT 559000,000 S04 50500.000 S04 <1.200 T12DCE <1.200 T12DCE <1.300 TCLEE 2.310 TCLEE

1.360

<2.470

39.800

TRCLE

XYLEN

ZN

TRCLE

XYLEN

ZN

2.710

<2.470

<20.100

	WRIR WATER CHEMISTRY SUMMARY, 3R	D QUARTER, FY87
WELL 01012	AQUIFER: DENVER SCREENED INT.: 14.6- 18.0 01015 BEDROCK DEPTH: 5.5 BEDROCK LITH.: VC SCREENED ZONE: VC	
	COMPOUND CONCENTRATION 111TCE <1.700 112TCE <1.000	COMPOUND CONCENTRATION 111TCE <1.700 112TCE <1.000 11DCE <1.100

		COMPOUND	CONCENTRATION
COMPOUND	CONCENTRATION	111TCE	<1.700
111TCE	<1.700	112TCE	<1.000
1 1 2 TCE	<1.000	11DCE	<1.100
11DCE	<1.100		<1.200
1 1 DCLE	1.570	11DCLE	(0.610
12DCLE	<0.610	12DCLE	<0.083
ALDRN	<0.083	ALDRN	(2.500
AS	<2.500	AS_	<1.140
BTZ	<1.140	BTZ	2.000
	<1.340	C6H6	2.000
C6H6	127000.000	CA	389000.000
CA	⟨2.400	CCL4	(2.400
CCL4	<5.160	CD	<b>&lt;5.160</b>
CD	<5.000	CH2CL2	<b>&lt;5.000</b>
CH2CL2	(5.000	CHCL3	<1.40C
CHCT3	<1.400	CL	36900.000
CL	118000.000	CL6CP	<0.083
CL6CP	<0.083	CLC6H5	<0.580
CLC6H5	<0.580	CLDAN	<0.152
CLDAN	<0.152	CPMS	<1.080
CPMS	<1.080	CPMSO	<1.98€
CPMSO	<1.980	CPMSO2	<2.240
CPMSO2	16.500	CR	<5.960
CR	31.000	ςũ	47.940
Ċΰ	22.500		<0.130
OBCP	<0.130	DBCP	(9.310
DCPD	<9.310	DCPD	<10.500
DIMP	<10.500	DIMP	<1.590
_	<1.590	DITH	<0.054
DITH	0.118	DLDRN	<1.160
DLDRN	<1.160	DMDS	
DMDS	<15.200	DMMP	<15.200
DMMP	<0.060	ENDRN	(0.060
ENDRN	<1.280	ETC6H5	<1.280
ETC6H5	1560.000	FL	1510.000
FL	<0.359	НG	(0,359
HG		ISODR	< 0.056
ISODR	<0.056	ĸ	9520. <b>0</b> 00
ĸ	3680.000	MEC6H5	<1.210
MEC6H5	<1.210	MG	73200.000
MG	48400.000	MIBK	<12.900
MIBK	<12.900	MXYLEN	(1.350
MXYLEN	<1.350	NA NA	401000.000
NA	127000.000		987.000
NIT	8150.000	NIT	(1.350
OXAT	<1.350	OXAT	(18.600
PB	20.900	PP	<0.046
PPDDE	<0.046	PPDDE	<0.059
	<0.059	PPDDT	1900000.000
PPDDT	157000.000	S04	
504	4.260	TIZDCE	<1.20°
T12DCE	15.500	TCLEE	(1.300
TCLEE	1.200	TRCLE	<1.100
TRCLE	<2.470	XYLEN	(2.470
XYLEN	108.000	2N	98.900
ZN	100.000		

## WRIR WATER CHEMISTRY SUMMARY, 3RD QUARTER, FY87

WELL AQUIFER: ALLUVIUM
01017 SCREENED INT.: 10.6- 14.0 01020 SCREENED INT.: 6.0- 10.0 BEDROCK DEPTH: 12.5 BEDROCK LITH .: SH BEDROCK LITH .: VC SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM COMPOUND CONCENTRATION CONCENTRATION COMPOUND
111TCE
112TCE
11DCE
11DCLE
11DCLE
12DCLE
ALDRN
AS
BTZ
C6H6
CA
CCL4
CD
CH2CL2
CHCL3
CL6CP
CLC6H5
CLDAN
CPMS
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMSO
CPMS COMPOUND <17.000 <1.700 111TCE <10.000 <1.000 112TCE <11.000 <1.100 11DCE 2.260 <1.200 11DCLE <6.100 <0.610 12DCLE <0.083 AJ PRN <0.083 <2.500 <2.500 AS <1.140 <1.140 BTZ 9.040 <1.340 C6H6 53800.000 CA <2.400 CCL4 <5.160 <5.160 CD 6.630 <5.000 CH2CL2 2,6,0 187000.000 <0.083 194.000 CHCL3 570000.000 CL<0.083 CL6CP 26.300 <0.580 CLC6H5 <0.152 CLDAN <0.152 <1.080 <1.080 CPMS <1.980 <1.980 CPMSO <2.240 CPMSO2 <2.240 12,600 <5.960 CR 44.900 <7.940 CU 11.800 <0.130 DBCP <9.310 <9.310 DCPD DIMP DITH DLDRN DMMS DMMP ENDRN ETC6H5 FL HG ISODR K MEC6H5 MG MIBK MXYLEN NA NIT OXAT PB PPDDT SO4 T12DE TCLEE TRCLE <10.500 <10.500 DIMP 89.500 <1.590 DITH <0.054 <1.160 <0.054 DLDRN <1.160 DMDS <15.200 <15.200 DMMP <0.060 <0.060 ENDRN <1.280 <1.280 ETC6H5 2800.000 2540.000 FL <0.359 <0.359 HG <0.056 <0.056 ISODR 25000.000 2940.000 K <1.210 MEC6H5 <1.210 83900.000 16200.000 MG <12.900 MIBK <12.900 <1.350 <1.350 MXYLEN 395000.000 105000.000 NA 288000.000 12300.000 NIT 9.440 TAKO <1.350 <18.600 <18.600 PB <0.046 <0.046 PPDDE <0.059 PPDDT <0.059 637000.000 134000.000 SO4 <12.000 <1.200 T12DCE 4.970 <1.300 TCLEE

<1.100

<2.470

48.500

TRCLE

XYLEN

ZN

TRCLE >

ZN

194.000

<2.470

54.200

error of were agreed

**4**)

WELL AQUIFER: ALLUVIUM WELL AQUIFER: DENVER
1021 SCREENED INT: 14.0-64.0 01022 SCREENED INT: 107.0-117.0
BEDROCK DEPTH: 64.0 BEDROCK DEPTH: 64.0 BEDROCK DEPTH: 64.0 BEDROCK LITH: SH BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM SCREENED ZONE: AM

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
λS	<2.500		λS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		<b>C6H6</b>	<1.340
CA	85000.000		CA	79600.000
CCL4	<2.400		CCL4	<b>&lt;2.40</b> 0
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	58700.000		CL	12900.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMSO2	<2.240
CR	10.800		CR	10.200
CU	<7.940		Ċΰ	<7.940
DBCP	<0.130		DBCF	<0.130
DCPD	<9.310			
			DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	< 0.054
DMD5	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	< 0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	<1220.000		FL	<1200.000
HG	<0.359		HG	
				< 0.359
ISODR	<0.056		ISODR	<0.056
K	2850.000		K	1730.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	<b>17100.0</b> 00		MG	13800.000
MIBK	<12.900		MIBK	,12.9OO
MXYLEN	<1.350		MXYLEN	<1.350
NA	65500.000		NA	58600.011
NIT	1600.000		NIT	1040.000
				1949-55
OXAT	<1.350		OXAT	<1.351
PB	<18.600		PB	<18.600
PPDDE	< 0.046		PPDDE	< 0 , 04 6
PPDDT ·	<0.059		PPDDT	< Û • Û € Ð
S04	83100.000		504	6080000.000
TIZDCE	<1.200		TIZDCE	<1.201
TCLEE	<1.300		TCLEE	(1,30)
TRCLE	<1.100			
			TRCLE	(1.100 (0.170
XYLEN	<2.470		XYLEN	<2.470
ZN	<20.100	D-6	ZN	< 20.100

WELL AQUIFER: ALLUVIUM
01024 SCREENED INT.: 4.0-49.0
BEDROCK DEPTH: 53.0

BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM

WELL	AQUIFER: DENVER		
01025	SCREENED INT.:	66.0-	71.0
	BEDROCK DEPTH:	53.0	

BEDROCK LITH.: SH SCREENED ZONE: AU

SCREENED	ZONE: ADDOVION		OCKERNED	BOND. NO
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<8.500		111TCE	<3.400
112TCE	<2.000		112TCE	<1.000
11DCE	<1.100		1 I DCE	<1.100
11DCLE	<1.200		1 1 DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
AS	<2.500		AS	₹2.500
BTZ	<1.140		BTZ	<1.140
Сене	<1.340		C6H6	<1.340
CA	52000.000		CA	20400.000
CCL4	<12.000		CCL4	<4.800
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	58500.000		CL	25800.000
CL6CP	<0.083		ČL6CP	<0.083
CLC6H5			CLC6H5	< <b>0.58</b> 0
	<0.580			
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<b>&lt;1.98</b> 0
CPMSO2	<2.240		CPMS02	<2.240
CR	10.100		CR	<5.960
CU	<7.940		CU	<7.940
DBCP	<0.130		DBCP	< 0.130
DCPD	⟨9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
			DITH	<1.590
DITH	<1.590			
DLDRN	< 0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	< 15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	<1200.000		FL	1340.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	3170.000		K	1320.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	13500.000		MG	1760.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
AM	59700.000		NA	<b>78</b> 300.000
NIT	258.000		NIT	342.000
TAXO	<1.350		OXAT	<1.350
PB	<18.600		PB	<18.600
PPDDE	<0.046		PPDDE	<0.046
			PPDDT	<0.059
PPDDT	<0.059			
S04	66300.000		S04	28900.000
T12DCE	<1.200		T12DCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<2.200		TRCLE	<1.100
XYLEN	< 2.470		XYLEN	<2.470
ZN	<20.100		ZN	<20.100
लक्ष व	, 20. 100	D-7		. 20

WELL AQUIFER: ALLUVIUM
027 SCREENED INT.: 10.0- 15.0
BEDROCK DEPTH: 14.0
BEDROCK LITH.: SH

WELL AQUIFER: DENVER
01036 SCREENED INT.: 40.0- 60.0
BEDROCK DEPTH: 7.5
BEDROCK LITH.: SS SCREENED ZONE: ALLUVIUM SCREENED ZONE: AU

0011221122			00	0.1.2.1.1.0
COMPOUND 111TCE 111DCLE 111DCLE 111DCLE 11DCLE 11DCLE ALDR AS Z C6H6 CCL 4 CCH 2CL3 CCL6CHC CCHCL3 CCLCCHC CCHCCHC CCHCCHC CCHCCHC CCHCCHC CCHCCH	CONCENTRATION		COMPOUND 111TCE 111DCLE 111DCLE 111DCLE 111DCLE ALD AS BTZ C6A CCL CPMSO CCL CCL CCL CCL CCL CCL CCL CCL CCL CC	CONCENTRATION
DMMP ENDRN ETC6H5 FL HG ISODR K	<15.200 <0.060 <1.280 2270.000 <0.359 <0.056 4490.000	D-8	DMMP ENDRN ETC6H5 FL HG ISODR K	<15.200 <0.060 <1.280 <1200.000 <0.359 <0.056 3810.000

(4)

WELL 01037

(4)

AQUIFER: DENVER
SCREENED INT.: 85.0-100.0
BEDROCK DEPTH: 7.5
BEDROCK LITH.: SS WELL AQUIFER: ALLUVIUM
01041 SCREENED INT.: 5.0- 15.0
BEDROCK DEPTH: 12.0
BEDROCK LITH.: ST
SCREENED ZONE: ALLUVIUM 01041

SCREENED ZONE: AML

	50.12. ALIE		0011001100	0
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
1 1 2 TCE	<1.000		112TCE	<1.000
1 1DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
λS	<2.500		λS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
	14500.000			
CA			CA CCT 4	54300.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	3.340
CL	13100.000		CL	100000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
			CPMS	
CPMS	<1.080			<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMSO2	<2.240
CR	8.580		CR	<5.960
CU	<7.940		cu	<b>&lt;7.94</b> 0
DBCP	<0.130		DBCP	1.090
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
			DLDRN	<0.054
DLDRN	<0.054			
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	<1200.000		FL	2190.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	1040.000		ĸ	2210.000
MEC6H5	<1.210		MEC6H5	<1.210
MG				16000.000
	830.000		MG	
MIBK	<12.900		MIBK	(12,900
MXYLEN	<1.350		MXYLEN	<1.350
NA	136000.000		NA	128000.000
NIT	230.000		NIT	7120.000
OXAT	<1.350		TAXO	<1.350
PB	<18.600		PB	<18.600
PPDDE	<0.046		PPDDE	<0.046
PPDDT	₹0.059		PPDDT	<0.059
504	160000.000		S04	161000.000
T12DCE	<1.200		TIZDCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	< <b>2.4</b> 70		XYLEN	< 2.470
ZN	27.600	D-9	ZN	47.400
		レーブ		

. . . . . . . . . .

1

(*****)

WELL AQUIFER: DENVER WELL AQUIFER: DENVER 01047 SCREENED INT.: 33.0-43.0
BEDROCK DEPTH: 10.0
BEDROCK LITH.: VC SCREENED INT.: 123.0-149.0 BEDROCK DEPTH: 12.0 043

the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon

BEDROCK LITH.: ST SCREENED ZONE: 1 SCREENED ZONE: VC

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	< 0.083
λS	<2.500		λS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
Cλ	5660.000		CA	94400.000
CCL4	<2.400		CCL4	< 2 . 4 0 0
CD	26.500		CD	< 5.162
CH2CL2	<5.000		CH2CL2	₹5.000
CHCL3	<1.400		CHCL3	3.510
	16600.000		CL	
CL				256000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	< 0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMSO2	<2.240
CR	<b>&lt;5.96</b> 0		CR	<5.960
cับ	<7.940		¢ΰ	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	(9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590			
			DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	< 15.200
ENDRN	<b>&lt;0.</b> 060		ENDRN	< <b>0.06</b> 0
ETC6H5	<1.280		ETC6H5	<1.280
FL	1740.000		FL	1780.000
HG	<0.359		HG	< 0.359
ISODR	<0.056		ISODR	<0.056
K	<520.000		K	4930.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	< 500.000		MG	25100.000
MIBK	<12.900		MIBK	12.907
MXYLEN	<1.350			
			MXYLEN	1.35
NA	107000.000		NA	304000.
NIT	2300.000		NIT	3520.0
OXAT	<1.350		OXAT	/ N x 3 5 1
PB	<18.600		PB	<18.6.7
PPDDE	< 0.046		PPDDE	+0.046
PPDDT	<0.059		FIDDT	< 0.059
S04	<10000.000		804	506000.001
TIZDCE	<1.200		TEDOE	1.20
TCLEE	<1.300		TCLEE	(1,3%)
TRCLE	<1.100		TROLE	(1,10)
XYLEN				
	< 2.470		XYLEN	.2.47
ZN	<20.100	D-10	ZN	<20.100

WELL AQUIFER: DENVER 01050 SCREENED INT.: 77.0-117.0 BEDROCK DEPTH: 34.3 WELL AQUIFER: DENVER
01048 SCREENED INT.: 160.0-210.0
BEDROCK DEPTH: 10.0

BE S

EDROCK LITH.	: VC	BEDROCK SCREENED	LITH .:	VC
_	ONCENTRATION	COMPOUND		renin

COMPOUND	CONCENTRATION	1	COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	
112TCE	<1.000			<1.700
			112TCE	<1.000
1 1DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	< 0.083		ALDRN	<0.083
λS	<2.500		λS	<2.500
BTZ	<1.140		BTZ	(1.140
C6H6	<1.340		C6H6	(1.340
CA	6020.000		CA	63900.000
CCL4	(2.400		CCL4	<2.400
CD	<5.160		CD	(5.160
CH2CL2	<5.000		CH2CL2	<b>(5.000</b>
CHCL3	8.120			
			CHCL3	<1.400
CL	62600.000		CL	53900.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	< 0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPM\$O2	<2.240		CPMSO2	<2.240
CR	<5.960		CR	<5.960
CU	<7.940		ดับ	(7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	< <b>9.3</b> 10
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	
DLDRN				<1.590
	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<b>&lt; 0.0</b> 60
ETC6H5	<1.280		ETC6H5	<1.280
FL	1720.000		FL	<1220.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	718.000		ĸ	3020.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	<500.000		MG	3080.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	(1.350
NA	116000.000		NA	215000.000
NIT	12.500		NIT	215000.000
OXAT	<1.350		TAXO	<1.350
PB	<18.600		PB	<18.600
PPDDE	<0.046		PPDDE	< 0.046
PPDDT	<0.059		PPDDT	<0.059
SO4	40700.000		S04	431000.000
T12DCE	<1.200		TIZDCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	(2.470		XYLEN	<2.470
ZN	<20.100	D-11	ZN	<20.100
	. 20.700	U- 11	٠٠٠ س	120 · 100

(*)

YELL AQUIFER: ALLUVIUM WELL AQUIFER: DENVER SCREENED INT.: 50.0-70.0 02009 SCREENED INT.: 115.0-125.0 BEDROCK DEPTH: 70.4 BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM SCREENED ZONE: 2

COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	⟨1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	(1.100
IIDCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.083	ALDRN	<0.083
AS	<2.500	AS	⟨2.500
BT2	<1.140	BTZ	<1.140
C6H6	<1.340	C6H6	<1.340
CA	72400.000	CA	4370.000
CCL4	<2.400	ČČL4	<2.400
CD	<5.160	CD	<b>12.4</b> 00 <b>15.16</b> 0
CH2CL2	<5.000	CH2CL2	< 5.000
CHCL3	<1.400	CHCL3	<1.400
	92100.000		5300.000
CL		CL	
CL6CP	<0.083	CL6CP	<0.083
CLC6H5	<0.580 <0.152	CLC6H5	< 0.580
CLDAN	•	CLDAN	<0.152
CPMS	<1.080	CPMS	<1.080
CPMSO	<1.980	CPMSO	<1.980
CPMSO2	5.730	CPMS02	<2.240
CR	<5.960	CR	<5.960
ÇU	<7.940	CU	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	<10.500	DIMP	<10.500
DITH	<1.590	DITH	<1.590
DLDRN	0.080	DLDRN	< 0.054
DMDS	<1.160	DMDS	<1.160
DMMP	<15.200	DMMP	< 15.200
ENDRN	<0.060	ENDRN	<0.060
ETC6H5	<1.280	ETC6H5	<1.28€
FL	<1220.000	FL	2640.000
HG	<0.359	HG	<0.359
ISODR	<b>&lt;0.</b> 056	ISODR	<0.056
K	2680.000	K	< <b>5 2 0 .</b> 0 0 0
MEC6H5	<1.210	MEC6H5	<1.210
MG	15400.000	MG	<500.000
MIBK	<12.900	MIBK	<12.977
MXYLEN	<1.350	MXYLEN	<1.350
NA	83500.000	NA	45900.00
NIT	41.400	NIT	62.616
TAXO	<1.350	OXAT	(1,35)
PB	<1 <b>8.6</b> 00	PB	<18.601
PPDDE	<0.046	PPDDE	र0.04€
PPDDT	<0.059	PPDUT	<0.059
504	57500.000	S04	<10000.00
TIZDCE	<1.200	TIZDCE	1.26
TCLEE	<1.300	TCLEE	c1.30°
TRCLE	<1.1	TRCLE	<1.101
XYLEN	<b>&lt;2.4</b> /0	XYLEN	<2.47.
ZN	<20.100	ZN	< 20.100
	. = 0	<b>₩</b> 11	

WELL

WELL AQUIFER: ALLUVIUM 02011 SCREENED INT.: 35.0- 95.0 02011 02010

AQUIFER: DENVER SCREENED INT.: 135.0-155.0 BEDROCK DEPTH: 70.4 BEDROCK LITH.: SH SCREENED ZONE: 3 BEDROCK DEPTH: 99.0
BEDROCK LITH: LG
SCREENED ZONE: ALLUVIUM

SCREENED	ZONE: 3		SCREENED	BOND: ILDBOVEO.
	CONCENTRATION		COMPOUND	CONCENTRATION
COMPOUND	<1.700		111TCE	<1.700
111TCE			112TCE	<1.000
112TCE	<1.000		11DCE	<1.100
11DCE	<1.100		1 1 DCLE	<1.200
11DCLE	<1.200			<0.610
12DCLE	<0.610		12DCLE	
ALDRN	<0.083		ALDRN	<0.083
	<2.500		λS	<2.500
AS	<1.140		BTZ	<1.140
BTZ	<1.340		C6H6	<1.340
C6H6	3650.000		CA	120000.000
CA			CCL4	<2.400
CCL4	<2.400		CD	<5.160
CD	<5.160		CH2CL2	<5.000
CH2CL2	<5.000		CHCL3	<1.400
CHCL3	<1.400			79300.000
CL	5970.000		CL	<0.083
CL6CP	<0.083		CL6CP	
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
	<1.080		CPMS	<1.080
CPMS	<1.980		CPMSO	<1.980
CPMSO	₹2.240		CPMS02	<2.240
CPMSO2			CR	11.100
CR	< <b>5.960</b>		čΰ	<7.940
CU	<7.940		DBCP	<0.130
DBCP	<0.130		DCPD	<9.310
DCPD	<9.310		DIMP	<10.500
DIMP	<10.500		DITH	₹1.590
DITH	<1.590			<0.054
DLDRN	<0.054		DLDRN	<1.160
DMDS	<1.160		DMDS	
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	2170.000		FL	<1220.000
	<0.359		HG	<0.359
HG	⟨0.056		ISODR	<0.056
ISODR	<520.000		K	4110.000
K	<1.210		MEC6H5	<1.210
MEC6H5			MG	24600.000
MG	<500.000		MIBK	<12.900
MIBK	<12.900		MXYLEN	<1.350
MXYLEN	<1.350		NA	86700.000
АN	57400.000			7370.000
NIT	•		NIT	(1.350
OXAT	<1.350		TAXO	<18.600
PВ	<18.600		PB	
PPDDE	< 0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	<0.059
504	<10000.000		504	187000.000
	<1.200		T12DCE	<1.200
TIZDCE	<1.300		TCLEE	<1.300
TCLEE	(1.100		TRCLE	<1.100
TRCLE			XYLEN	<2.470
XYLEN	<2.470	•	ZN	<20.100
ZN	< 20.100	11_12	411	. • • • • •

AQUIFER: DENVER SCREENED INT.: 128.0-133.0 BEDROCK DEPTH: 99.0 'ELL 02014 .012

WELL AQUIFER: ALLUVIUM
02014 SCREENED INT.: 40.0-45.0
BEDROCK DEPTH: 40.5
BEDROCK LITH.: SH BEDROCK LITH.: LG SCREENED ZONE: 1U SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION:
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		1 IDCE	<1.100
11DCLE	<1.200		1 1 DCLE	<1.200
12DCLE	<0.610		12DCLE	< 0.610
ALDRN	<0.083		ALDRN	<0.083
λS	<2.500		AS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
				141000.000
CA	9350.000		CA	
CCL4	(2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<b>5</b> 1.300
CL	<4800.000		CL	405000.000
CL6CP	<0.083		CL6CP	<0.083
			CLC6H5	<0.580
CLC6H5	<0.580			
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.08♀
CPMSO	<1.980		CPMSO	<1.98⊕
CPMSO2	<2.240		CPMSO2	<2.240
CR	<5.960		CR	<5.96€
Ċΰ	<7.940		Ċΰ	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	< 10.500
DITH	<1.590		DITH	<1.590
DLDRN	< 0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
				<1.280
ETC6H5	<1.280		ETC6H5	
FL	1900.000		FL	<1200.000
HG	0.513		HG	<0.359
ISODR	< 0.056		ISODR	٠0.056
K	<b>765.0</b> 00		K	3210.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	517.000		MG	15900.000
MIBK	<12.900		MIBK	<12.9€
MXYLEN	<1.350		MXYLEN	(1.350
NA	64700.000		NA	191000.000 6360 300
NIT	50.100		NIT	656
TAXO	<1.350		OXAT	<1.35°
PB	<18.600		PB	<18.60°
PPDDE	<0.046		PPCDE	<0.046
PPDDT	<0.059		PPDDT	<0.059
S04	<10000.000		201	81200.000
				(1.20)
TIZDCE	<1.200		TIZDCE	
TCLEE	<1.300		TCLEE	<1.31
TRCLE	<1.100		TRCLE	<1.120
XYLEN	<2.470		XYLEN	€2.47€
ZN	<20.100	•	ZN	34.400

WELL AQUIFER: DENVER 02019 SCREENED INT.: 80.0- 95.0 WELL 02018

(4)

AQUIFER: DENVER SCREENED INT.: 40.0-55.0 BEDROCK DEPTH: 19.5 BEDROCK LITH.: SH SCREENED ZONE: AU BEDROCK DEPTH: 19.5 BEDROCK LITH.: SH SCREENED ZONE: AL

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	< 0 . 083
AS	<2.500		AS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
	115000.000		CA	330000.000
CA CCL4	<2.400		CCL4	<2.400
	<5.160		CD	<5.160
CD	< <b>5.000</b>		CH2CL2	< 5.000
CH2CL2	<1.400		CHCL3	<1.400
CHCL3	111000.000		CL	119000.000
CL			CL6CP	<0.083
CL6CP	<0.083		CLC6H5	<0.580
CLC6H5	<0.580		CLCONS	<0.152
CLDAN	<0.152			<1.080
CPMS	<1.080		CPMS	<1.980
CPMSO	<1.980		CPMSO	<2.240
CPMS02	<2.240		CPM502	
CR	<b>&lt;5.960</b>		CR	15.800
CU	<7.940		CU	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	< j.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	1670.000		FL	1510.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	4570.000		K	5520.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	29500.000		MG	31100.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	254000.000		NA	636000.000
NIT	7930.000		NIT	41.600
OXAT	<1.350		OXAT	<1.350
PB	<18.600		PB	<18.600
PPDDE	<0.046		PPDDE	< 0.046
PPDDT	<0.059		PPDDT	< 0.059
504	462000.000		S04	1850000.000
	<1.200		T12DCE	(1,200
T12DCE			TCLEE	(1.300
TCLEE	<1.300		TRCLE	<1.100
TRCLE	<1.100		XYLEN	<2.470
XYLEN	<2.470			<20.100
ZN	45.700	b 15	ZN	(20.100

AQUIFER: DENVER
SCREENED INT.: 49.0-84.0
BEDROCK DEPTH: 39.5
BEDROCK LITH.: SH
SCREENED ZONE: AL AQUIFER: ALLUVIUM SCREENED INT.: 9.5- 40.0 WELL WELL 02021 020

BEDROCK DEPTH: 39.5 BEDROCK LITH .: SH SCREENED ZONE: ALLUVIUM

0011221121			COMPOUND	CONCENTRATION
COMPOUND	CONCENTRATION		COMPOUND	<1.700
111TCE	<1.700		111TCE	<1.000
112TCE	<1.000		112TCE	<1.100
11DCE	<1.100		11DCE	
	3.270		11DCLE	8.820
11DCLE	<0.610		12DCLE	< 0.610
12DCLE	<0.083		ALDRN	<0.083
ALDRN			AS	<2.500
AS	<2.500		BTZ	<1.140
BTZ	<1.140		C6H6	<1.340
C6H6	<1.340		CA CA	270000.000
CA	123000.000		CCL4	<2.400
CCL4	<2.400		CD	(5.160
CD	<5.160		CH2CL2	<5.000
CH2CL2	<5.000		CHCL3	19.800
CHCL3	8.400			779000.000
CL	326000.000		CL	<0.083
CL6CP	<0.211		CLECA	<0.580
CLC6H5	<0.580		CLC6H5	
	<0.152		CLDAN	< 0.152
CLDAN	<1.080		CPMS	<1.080
CPMS	<1.980		CPMSO	<1.980
CPMSO	<2.240		CPMSO2	<2.240
CPMS02			CR	<b>&lt;5.9</b> 60
CR	<b>&lt;5.960</b>		CÜ	<7.940
ÇÜ	<7.940		DBCP	<0.130
DBCP	<0.130		DCPD	<9.310
DCPD	<9.310		DIMP	<10.500
DIMP	<10.500		DITH	<1.590
DITH	(1.590			<0.054
DLDRN	0.225		DLDRN	<1.160
DMDS	<1.160		DMDS	(15.200
DMMP	<15.200		DMMP	<0.060
ENDRN	< 0.060		ENDRN	<1.280
	<1.280		ETC6H5	
ETC6H5	(1200.000		FL	<1220.000
FL	<0.359		HG	(0.359
HG	<0.056		ISODR	<0.056
ISODR	2650.000		K	4200.000
K			MEC6H5	<1.210
MEC6H5	<1.210		MG	46800.000
MG	23900.000		MIBK	(12.900
MIBK	<12.000		MXYLEN	(1.35)
MXYLEN	<1.350		NA	166000.77
NA	117000.000		NIT	231.17
NIT	195.000			11.35
TAKO	<1.350		TAXO	<18.670
PB	23.700		PB	0.046
PPDDE	<0.046		PPDDE	وور أو
PPDDT	<0.059		PPUDT	54000.011
\$74 \$74	72500.000		504	
	1.350		TIZDCE	5,080
T12DCE	<1.300		TCLEE	(1,3)
TCLEE	<1.100		TROLE	<1.101
TRCLE	(2.470		XYLEN	<b>&lt;2.47</b> 9
XYLEN	83.500		Z.N	<20.100
ZN	63.300	D-16		

WELL AOUIFER: DENVER AQUIFER: DENVER SCREENED INT.: 53.0- 73.0 02030 SCREENED INT.: 90.0-105.0 02025 BEDROCK DEPTH: 7.0

BEDROCK LITH .:

SCREENED ZONE: AUM

SH

<12.900

<1.350

<2.470

39.800

BEDROCK DEPTH: 27.5 BEDROCK LITH .: SH SCREENED ZONE: 1U

٩

COMPOUND CONCENTRATION CONCENTRATION COMPOUND <1.700 111TCE <1.700 111TCE <1.000 112TCE 112TCE <1.000 <1.100 11DCE <1.100 11DCE 11DCLE <1.200 <1.200 11DCLE <0.610 12DCLE <0.610 12DCLE <0.083 ALDRN <0.083 ALDRN <2.500 AS <2.500 AS <1.140 BTZ <1.140 BTZ C6H6 <1.340 <1.340 **C6H6** 1650000.000 CA CA 90800.000 CCL4 7.600 CCL4 <2.400 <5.160 CD <5.160 CD <5.000 CH2CL2 CH2CL2 <5.000 120.000 CHCL3 CHCL3 <1.400 7290000.000 CL38500.000 CL <0.083 CL6CP <0.083 CL6CP <0.580 CLC6H5 <0.580 CLC6H5 <0.152 CLDAN <0.152 CLDAN CPMS <1.080 <1.080 **CPMS** <1.980 CPMSO <1.980 **CPMSO** CPMS02 <2.240 CPMSO2 3.160 89.100 CR <5.960 CR <7.940 CU <7.940 CU DBCP <0.130 <0.170 DBCP <9.310 DCPD DCPD **<9.**3.0 <10.500 DIMP DIMP <10.500 <1.590 <1.590 DITH DITH <0.054 DLDRN <0.054 DLDRN <1.160 DMDS <1.160 DMDS <15.200 DMMP <15.200 DMMP <0.060 ENDRN <0.060 ENDRN <1.280 ETC6H5 ₹1.280 ETC6H5 4490.000 FL<1220.000 FL <0.359 HG HG <0.359 <0.056 ISODR <0.056 ISODR 15100.000 K 2480.000 K MEC6H5 <1.210 <1.210 MEC6H5 467000.000 MG

902000.000 NA 397000.000 NA 8740.000 NIT 24.200 NIT <1.350 OXAT <1.350 OXAT PB <18.600 <18.600 PB <0.046 PPDDE <0.046 PPDDE <0.059 TUCAL <0.059 PPDDT 315000.000 504 504 764000.000 <1.200 T12DCE <1.200 T12DCE TCLEE <1.300 <1.300 TCLEE <1.100 TRCLE TRCLE <1.100

MIBK

MXYLEN

XYLEN

7340.000

<12.900

<1.350

<2.470

33.500

MG

MIBK

MXYLEN

XYLEN

ZN

J-17

WELL 2031	AQUIFER: DENVER SCREENED INT.: 103.0-138 BEDROCK DEPTH: 7.0 BEDROCK LITH.: SH SCREENED ZONE: 1U	WELL 02034	
	COMPOUND CONCENTRATIO 111TCE (1.700 112TCE (1.000 11DCE (1.100 11DCLE (1.200 12DCLE (0.610 ALDRN (0.083 AS (2.500) BTZ (1.140 CCA (2.400) CCL4 (2.400) CCL4 (2.400) CCL5 (5.160) CCL2CL2 (5.000) CCL6CP (0.083 CLC6H5 (0.580) CLC6H5 (0.580) CLDAN (0.152 CPMS (1.080) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.980) CPMSO (1.160) CMBC (1.280) CMBC6H5 (1.210) MG (4520.000) MIBK (1.2900) MIBK (1.2900) MIBK (1.2900) MIBK (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN (1.350) MSYLEN	)N	COMPOUND CONCENTRATION 111TCE
	XYLEN (2.470 ZN (20.100	D-18	XYLEN 62.470 ZN 53.800

D-18

WELL AQUIFER: DENVER WELL AQUIFER: DENVER

02035 SCREENED INT.: 31.0-46.0 02036 SCREENED INT.: 93.0-108.0 BEDROCK DEPTH: 20.3 BEDROCK LITH.: SH BEDROCK LITH.: SH

BEDROCK LITH: SH SCREENED ZONE: AMU

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

SCREENED ZONE: 1U

OUE E E 2 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CONCENTRATION		UNDESTRUCTION OF PROPERTY OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF STANDARD OF S	CONCENTRATION
PPDDT	<0.118 247000.000 <1.200 3.060 5.420		PPDDT SO4 T12DCE TCLEE TRCLE	<0.059 628000.000 <1.200 <1.300 <1.100
ZN	<2.470 32.000	D- 19	XYLEN ZN	<2.470 <20.100

--------

MELL AQUIFER: ALLUVIUM WELL AQUIFER: DENVER

SCREENED INT.: 12.0-22.0 02038 SCREENED INT.: 28.0-43.0

BEDROCK DEPTH: 17.0 BEDROCK DEPTH: 17.0

BEDROCK LITH.: SH BEDROCK LITH.: SH

SCREENED ZONE: ALLUVIUM SCREENED ZONE: AM

SCREENED	ZONE: ALLUVIUM		SCREENED 2	ZONE: AM
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	
				<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
AS	<2.500		AS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
CA	87500.000		CA CA	90400.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	
				<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	8.880
CL	109000.000		CL	245000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	< 0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMSO2	<2.240
CR	11.200		CR	<5.960
čΰ	(7.940		Ċΰ	<7.940
DBCP	<0.130		DBCP	< 0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590			
			DITH	<1.590
DLDRN	0.966		DLDRN	0.149
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	0.103		ENDRN	< 0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	1970.000		FL	1550.000
HG	<0.359		HG	< 0.359
ISODR	<0.056		ISODR	<0.056
K	3240.000		K	4160.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	19000.000		MG	23900.000
MIBK	<12.900		MIBK	612.911
MXYLEN	<1.350		MXYLEN	₹1.350
NA	117000.000		NA	259000.000
NIT	5590.000		NIT	8410.000
TAXO	<1.350		OXAT	(1,35)
PB	<1 <b>8.6</b> 00			<18.600
			FB	
PPDDE	0.124		PFDDE	≺ପ୍.ପ୍⊣ୁଟ୍
PPDDT	<0.059		PPDDT	(0.059
504	110000.000		504	253000.00
TIZDCE	<1.200		TIZDCE	%1 <b>,2</b> 1?
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	<2.470		XYLEN	<2.470
ZN	29.300	D-20	ZN	42.300

WELL AQUIFER: DENVER
02039 SCREENED INT.: 76.0-86.0 02043 SCREENED INT.: 46.5-61.5
BEDROCK DEPTH: 17.0 BEDROCK LITH.: SH

WELL AQUIFER: DENVER
02043 SCREENED INT.: 46.5-61.5
BEDROCK LITH.: VC

BEDROCK LITH.: SH SCREENED ZONE: 1U

SCREENED ZONE: AU

SCREENED	DONE. TO			
COMPOUND 1117CE 111DCLE 111DCLN 111DCLN AST Z 646 4 22 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CONCENTRATION		COMPTCE 112TCE 112DCLE 112DCLE 112DCLN ASTA 6	CONCENTRATION
MIBK MXYLEN NA NIT	<12.900 <1.350 390000.000 <10.000	D - 2 I	MIBK MXYLEN NA NIT	<12.900 <1.350 308000.000 10900.000

WELL AQUIFER: ALLUVIUM
002 SCREENED INT.: 43.0-103.0 WELL AQUIFER: DENVER

03003 SCREENED INT.: 136.0-146.0 BEDROCK DEPTH: 105.5 BEDROCK LITH.: SH SCREENED ZONE: 3 BEDROCK DEPTH: 105.5 BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	1 1 DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	< 0.610
ALDRN	<0.083	ALDRN	<0.083
λS	<2.500	AS	<2.500
BTZ	<1.140	BTZ	<1.140
C6H6	<1.340	Сене	<1.340
CA	<b>67</b> 100.000	CA	64100.000
CCL4	<2.400	CCL4	<2.400
CD	<5.160	CD	<5.16C
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	<1.400
Cr	34700.000	CL	36400.000
CL6CP	<0.083	CL6CP	<0.083
CLC6H5	<0.580	CLC6H5	< 0.580
CLDAN	<0.152	CLDAN	< 0.152
CPMS	<1.080	CPMS	<1.080
CPMSO	<1.980	CPMSO	<1.980
CPMSO2	<2.240	CPMSO2	<2.240
CR	₹5.960	CR CR	₹5.960
CU	<7.940	CU	<7.940
DBCP	<0.130	DBCP	<0.13€
DCPD	< 9.310	DCPD	<9.310
DIMP	<10.500	DIMP	<10.500
DITH	<1.590	DITH	<1.593
DLDRN	< 0.054	DLDRN	<0.054
DMDS	<1.160	DMDS	<1.160
DMMP	<15.200		<15.200
		DMMP	
ENDRN	<0.060	ENDRN	<0.060
ETC6H5	<1.280	ETC6H5	<1.280
FL	<1200.000	FL	< 1200.000
HG	< 0.359	HG	<0.359
ISODR	<0.056	ISODR	<0.056
K	3740.000	ĸ	3740.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	8450.000	MG	8120.000
MIBK	<12.900	MIBK	<12.911
MXYLEN	<1.350	MXYLEN	<1.351
NA	38000.000	NA	37105.111
NIT	6970.000	NIT	4720.11.
TAXO	<1.350	CXAT	(1.35)
PB	<37.200	PB	<37.217
PPDDE	< 0.046	PPDDE	<0.04€
PPDDT	₹0.059	PFULT	(0.50
504	49000.000	504	<b>50100.</b> 00
TIZDCE	<1.200	TIZDOE	1.2.
TCLEE	<1.300	TCLEE	C1.301
TRCLE	<1.100	TROLE	<pre>// 1.1()</pre>
XYLEN	/2.470	XYLEN	<2.471
ZN	₹40.200	ZN	104.000
-11	1 13 1 2 0 0	D=22	

AQUIFER: DENVER SCREENED INT.: 168.0-178.0 WELL 03005 03004

WELL AQUIFER: ALLUVIUM
03005 SCREENED INT.: 20.0-70.0
BEDROCK DEPTH: 59.0
BEDROCK LITH.: SS BEDROCK DEPTH: 105.5 BEDROCK LITH .: SH SCREENED ZONE: 4 SCREENED ZONE: ALLUVIUM

-				
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
IIDCLE	<1.200		11DCLE	<1.200
12DCLE	0.907		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
AS	8.070		AS	(2.500
BTZ	2.340		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
CA				
CCL4	8630.000 <2.400		CA CCL4	111000.000
				<2.400
CD	<5.160		CD	< <b>5.</b> 160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	2.850
CL	<4800.000		CL	184000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMS02	<2.240		CPMSO2	<2.240
CR	< <b>5.9</b> 60		CR	•
CU	<7.940		Cii	<7.940
DBCP	<0.130		DBCP	0.417
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	2.940
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	3190.000		FL	<1200.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	1950.000		K	4340.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	630.000		MG	17400.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	74200.000		NA	142000.000
NIT	28.900		NIT	4130,000
OXAT	<1.350		TAXO	<1.350
PB	<37.200		PB	<18,600
PPDDE				
PPDDT	<0.046		FPDDE	0.195
	<0.059		PPDDT	<0.059
504	23800.000		504	111000.000
T12DCE	<1.200		TIZDCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	<2.470		XYLEN	<2.470
ZN	52.200	D-23	ZN	274.000
		U ~ 4.1		

YELL AQUIFER: DENVER

OO6 SCREENED INT.: 110.0-120.0

BEDROCK DEPTH: 59.0

BEDROCK LITH.: SS

SCREENED ZONE: 2 WELL AQUIFER: ALLUVIUM
03008 SCREENED INT.: 55.1-65.1
BEDROCK DEPTH: 0.0
BEDROCK LITH.:
SCREENED ZONE: ALLUVIUM

SCREENED	ZONE: 2		SCREENED	ZONE:	ALLUVIUM
COMPOUND	CONCENTRATIO	N	COMPOUND	CON	CENTRATION
111TCE	<1.700		111TCE		<1.700
112TCE	<1.000		112TCE		<1.000
11DCE	<1.100		11DCE		<1.100
11DCLE	<1.200		11DCLE		<1.200
12DCLE	<0.610		12DCLE		<0.610
	<0.083		ALDRN		
ALDRN	<b>&lt;2.5</b> 00				<0.083
AS	<1.140		AS		<2.500
BTZ			BTZ		<1.140
C6H6	<1.340		<b>C6H6</b>		<1.340
Cy	12600.000		CA	103	000.000
CCL4	<2.400		CCL4		<2.400
CD	<5.160		CD		<5.160
CH2CL2	<5.000		CH2CL2		<5.000
CHCL3	<1.400		CHCL3		<1.400
CL	25500.000		CL	52	800.000
CL6CP	<0.083		CL6CP		<0.083
CLC6H5	<b>&lt;0.5</b> 80		CLC6H5		<0.580
CLDAN	<0.152		CLDAN		<0.152
CPMS	<1.080		CPMS		<1.080
CPMSO	<1.980		CPMSO		<1.98C
CPMSO2	<2.240		CPMSO2		<2.240
CR	<b>&lt;5.9</b> 60		CR		8.730
CU	<7.940		CÜ		<7.940
DBCP	<0.130		DBCP		<0.130
DCPD	<9.310		DCPD		<9.310
DIMP	<10.500		DIMP		<10.500
DITH	<1.590		DITH		<1.590
DLDRN	< 0.054		DLDRN		<0.054
DMDS	<1.160		DMDS		<1.160
DMMP	<1 <b>5.2</b> 00		DMMP		<15.200
ENDRII	<0.060		ENDRN		<0.060
ETC6H5	<1.280		ETC6H5		<1.28€
FL	1740.000		FL	₹ 1	220.000
HG	<0.359		HG		<0.359
ISODR	<0.056		ISODR		<0.056
K	1600.000		K	5	520.000
MEC6H5	<1.210		MEC6H5	_	<1.210
MG	<500.000		MG	1 9	900.000
MIBK	<12.900		MIBK		<12.911
MXYLEN	<1.350		MXYLEN		1.35
NA	72600.000		NA	5.8	700.011
NIT	527.000		NÎT	16	4(0.0)
OXAT	<1.350		CXAT		1.35
PB	<18.600		PE		<18.61
PPDDE	<0.046		PPLDE		.0.04
PPDDT	<0.059		PFDDT		(0,050
S04	23700.000		504	1 0 7	000.001
T12DCE	<1.200		TIZDCE	157	<1.211
TCLEE	<1.300		TCLEE		. 1.301
TRCLE	<1.100		TROLE		1.153
XYLEN	<2.473		XYLEN		<2.47€
ZN	<20.100				<20.100
214	(20.100	D-24	ZN		\ <u>Z U i ' U C</u>

**(***)

WELL AQUIFER: ALLUVIUM

03518 SCREENED INT.: 42.0-52.0

03523 SCREENED INT.: 63.0-73.0

BEDROCK DEPTH: 76.0 03518 BEDROCK DEPTH: 76.0
BEDROCK LITH.:
SCREENED ZONE: ALLUVIUM

BEDROCK LITH .:

SCREENED ZONE: ALLUVIUM

ALLUVIU

-ENED INT.:
BEDROCK DEPTH:
BEDROCK LITH.:
SCREENED ZONE: AL)

COMPOUND CONCEN
111TCE <1.
11DCE <1.
11DCLE <1.
11DCLE <0.6
ALDRN <0.01
AS <2.5C
BTZ <1.14
C6H6 <1.34(
CA 112000.00C
CCL4 <2.400
CD <5.160
CH2CL2 <5.000
CHCL3 8.160
CH 69000.000
CL6CP 0.361
CLC6H5 <0.580
CLDAN <0.152
CPMS <1.080
CPMSO <1.980
CPMSO <1.980
CPMSO2 <2.240
CR 14.400
CU <7.94°
DBCP
DCPD
DIMP
DITH <1.590 DITH DITH <1.590 <0.054 <1.160 DLDRN DLDRN < 0.054 DMDS DMDS <1.160 <15.200 DMMP DMMP <15.200 <0.060 <0.060 <1.280 ENDRN ENDRN ETC6H5 <1.280 <1220.000 FL HG <0.359 ISODR <0.056 4110.000 K MEC6H5 <1.210 MG 24000.000 <12.900 MIBK MXYLEN <1.350 NA NIT 82000.000 8610.000 OXAT <1.350 <18.600 PB <0.046 <0.059 173000.000 PPDDE PPDDT SO4 <1.200 T12DCE TCLEE <1.300 <1.100 <2.470 <40.200 TRCLE <1.100 XYLEN ZN XYLEN <2.470 <20.100 D-25 ZN

WELL AQUIFER: ALLUVIUM
SCREENED INT.: 39.2-78.0
BEDROCK DEPTH: 78.0
BEDROCK LITH.: SS
SCREENED ZONE: ALLUVIUM

WELL AQUIFER: DENVER
04008
SCREENED INT.: 88.0-98.0
BEDROCK DEPTH: 78.0
BEDROCK LITH.: SS
SCREENED ZONE: 3 WELL AQUIFER: ALLUVIUM

SCREENED	ZONE: ALLUVIUM		JU	
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700			<1.000
112TCE	<1.000		112TCE	< 1.100
1 1 DCE	<1.100		11DCE	
11DCLE	<1.200		1 1 DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
	₹2.500		AS	<2.500
AS	<1.140		BTZ	<1.140
BTZ	<1.340		C6H6	<1.340
Сене	168000.000		CA	18700.000
CA			CCL4	(2.400
CCL4	<2.400		CD	<5.160
CD	<5.160		CH2CL2	<5.000
CH2CL2	< 5.000		CHCL3	<1.400
CHCL3	<1.400		CL	5730.000
CL	113000.000		CL6CP	< 0.083
CL6CP	<0.083			<0.58€
CLC6H5	<0.580		CLC6H5	₹0.152
CLDAN	<0.152		CLDAN	<1.080
CPMS	<1.080		CPMS	<1.980 ·
CPMSO	<1.980		CPMSO	<2.240 °
CPMS02	<2.240		CPMSO2	
CR	14.000		CR	<5.960
CA	<7.940		CU	<7.940
DBCF	< 0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
	<10.500		DIMP	<10.500
DIMP	<1.590		DITH	<1.590
DITH	0.054		DLDRN	<0.054
DLDRN			DMDS	<1.160
DMDS	<1.160		DMMP	<15.200
DMMP	<15.200		ENDRN	< 0.060
ENDRN	<0.060		ETC6H5	<1.280
ETC6H5	<1.280		FL	3400.000
FL	<1200.000		HG	< 0.359
HG	< 0.359			<0.056
ISODR	<0.056		ISODR	957.000
ĸ	5570.000		K	<1.210
MEC6H5	<b>&lt;1.2</b> 10		MEC6H5	1220.000
MG	19400.000		MG	(12.90)
MIBK	<12.900		MIBK	11.357
MXYLEN	<1.350		MXYLEN	48700.000
NA	105000.000		NA	
NIT	8420.000		NIT	2140.000
OXAT	<1.350		OXAT	<1.350
PB	<18.600		FB	<37.200
	< 0.046		FPLDE	< ହ∙ ତୁର୍ୟୁଣ୍
PPDDE	₹0.059		PPDDT	< 0.059
PPDDT	330000.000		504	25800.000
\$04 504	3.600		TIZECE	/ 1 . <u>2 0 0</u>
T12DCE	<1.300		TCLEE	<1.30°
TCLEE			TRCLE	<1.10]
TRCLE	2.360		XYLEN	<2.470
XYLEN	< 2.470	D-26	ZN	<40.200
ZN	48.200	D 20	۵.,	

AQUIFER: DENVER WELL

WELL AQUIFER: ALLUVIUM 04010 SCREENED INT.: 65.0- 90.0 04010 04009

SCREENED INT.: 145.0-155.0 BEDROCK DEPTH: 78.0 BEDROCK DEPTH: 87.0
BEDROCK LITH: SS
SCREENED ZONE: ALLUVIUM BEDROCK LITH.: SS

SCREENED ZONE: 5

SCREENED 2	ONE: 5		0011221122	
0040011110	CONCENTRATION		COMPOUND	CONCENTRATION
COMPOUND			111TCE	<1.700
111TCE	<1.700		112TCE	<1.000
112TCE	<1.000		– – –	<1.100
11DCE	<1.100		1 1 DCE	
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
	22.200		λS	<b>&lt;2.5</b> 00
λS	1.500		BTZ	<1.140
BTZ			С6Н6	<1.340
C6H6	3.050		CA	95300.000
CA	9440.000			<2.400
CCL4	<2.400		CCL4	
CD	<5.160		CD	<b>&lt;5.160</b>
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	<4800.000		CL	43300.000
	<0.083		CL6CP	<0.083
CL6CP	<0.580		CLC6H5	<0.580
CLC6H5			CLDAN	<0.152
CLDAN	<0.152			<1.080
CPMS	<1.080		CPMS	<1.980
CPMSO	<1.980		CPMSO	
CPMSO2	<2.240		CPMS02	(2.240
CR	<b>&lt;5.9</b> 60		CR	13.100
CÜ	<7.940		CU	<7.940
DBCP	<0.130		DBCP	<0.130
	⟨9.310		DCPD	(9.310
DCPD	<10.500		DIMP	<10.500
DIMP			DITH	<1.590
DITH	<1.590			<0.054
DLDRN	<0.054		DLDRN	<1.160
DMDS	<b>&lt;1.</b> 160		DMDS	<15.200
DMMP	<15.200		DMMP	
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	13.700		ETC6H5	<1.280
FL	5640.000		FL	<1200.000
НĞ	⟨0.359		HG	<0.359
	<0.056		ISODR	<0.056
ISODR	3810.000		K	4460.000
K			MEC6H5	<1.210
MEC6H5	5.200		MG	12700.000
MG	<500.000			72,00.000 <12.900
MIBK	<12.900		MIBK	<1.350
MXYLEN	45.100		MXYLEN	
NA	74500.000		NA	47200.000
NIT	1330.000		NIT	10200.000
OXAT	<1.350		OXAT	<1.350
PB	<18.600		PB	<37.200
	(0.046		PPDDE	< 0.046
PPDDE	<0.059		PPDDT	< 0.059
PPDDT			S04	87500.000
S04	17700.000			<1.200
T12DCE	<1.200		T12DCE	<1.300
TCLEE	<1.300		TCLEE	
TRCLE	<1.100		TRCLE	<1.100
XYLEN	53.400		XYLEN	<2.470
ZN	30.100	D-27	ZN	66.700
₩.,	<del> </del>	,		

Oli SCREENED INT.: 153.0-158.0 BEDROCK DEPTH: 87.0 WELL

04014

BEDROCK LITH.: SS SCREENED ZONE: 5

•

AQUIFER: ALLUVIUM
SCREENED INT.: 71.0- 81.0
BEDROCK DEPTH: 101.2
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
1 1 DCE	<1.100		1 1 DCE	<1.100
11DCLE	<1.200		1 1 DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
λS	12.600		λS	⟨2.500
BTZ			BTZ	<1.140
	<1.140			
C6H6	<1.340		C6H6	<1.340
CA	12100.000		CÀ	134000.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.16₽
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	<4800.000		Cr	93300.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	< 0.152		CLDAN	<0.152
CPM5	<1.080		CPM5	<1.Q8Q
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMSO2	<2.240
CR	<5.960		CR	12.100
Ċΰ	<7.940		cΰ	<7.940
DBCP	<0.130		DBCP	15.900
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	7870.000		FL	<1200.000
HG	<0.359		HG	<0.359
			ISODR	<0.056
ISODR	<0.056			
K	1430.000		K	5650.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	<500.000		MG	15700.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	€ 1 × 35 €
NA	<b>76700.0</b> 00		NA	64500.11.
NIT	3990.000		NIT	12000.000
TAXO	<1.350		TAXO	<1.353
PB	<37.200		PB	<18.600
PPDDE	<0.046		PFDDE	. 0.046
				(0.059
PPDDT	<0.059		PPDDT	
504	14900.000		504	162000.000
T12DCE	<1.200		TIZDCE	C1.20
TCLEE	<1.300		TCLEE	<1.360
TRCLE	<2.200		TRCLE	<1.10÷
XYLEN	<2.470		XYLEN	<2.47€
ZN	<40.200	D-28	ZN	36.600
		D = 10		

AQUIFER: ALLUVIUM SCREENED INT.: 65.0- 75.0 AQUIFER: ALLUVIUM SCREENED INT.: 70.0-80.0 WELL WELL 04024 04021

1

BEDROCK DEPTH: 100.0
BEDROCK LITH: SH
SCREENED ZONE: ALLUVIUM BEDROCK DEPTH: 86.3
BEDROCK LITH: SH
SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	1.050		112TCE	
				<1.000
1 1 DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	0.784
ALDRN	<0.083		ALDRN	<0.083
ΆS	<2.500		AS	<2.500
BTZ	<1.140		BTZ	<1.140
C6#6	<1.340		C6H6	<1.340
CA	102000.000		CA	71500.000
CCL4	<2.400		CCL4	
				<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	2.400		CHCL3	<1.400
CL	66400.000		CL	35900.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	< 0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	
				<1.980
CPMSO2	<2.240		CPMS02	<2.240
CR	<5.960		CR	8.200
CU	<7.940		CU	<7.940
DBCP	<0.130		DBCP	< 0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060			
			ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	<1200.000		FL	<1200.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	5380.000		ĸ	3870.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	14500.000		MG	8940.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	₹1.350
NA	57800.000		NA LEN	<b>5</b> 0300.000
NIT	9530.000		NIT	10900.000
OXAT	<1.350		OXAT	<1.350
PB	<18.600		PB	<37.20€
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	(0.059
504	136000.000		SO4	<b>777</b> 00.000
T12DCE	<1.200		TIZDCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	22.800		TRCLE	<1,100
XYLEN	(2.470		XYLEN	<2.470
ZN	105.000		ZN	47.000
₩.	103.000	D-29	LIN	4 / L U U U

D - 29

**)

BEDROCK L	INT.: 69.0- 79.0 EPTH: 99.0	WELL 04030	AQUIFER: ALLUVIUM SCREENED INT.: 0.0- 0.0 BEDROCK DEPTH: 103.3 BEDROCK LITH.: LG SCREENED ZONE: ALLUVIUM
COMPOUND 111TCE 112TCE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11D	CONCENTRATION	υ-30	COMPOUND 11TCE

WELL AQUIFER: ALLUVIUM

04038 SCREENED INT.: 64.9-84.9 BEDROCK DEPTH: 87.5

BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM

WELL AQUIFER: ALLUVIUM

04041 SCREENED INT.: 50.7- 70.7

BEDROCK DEPTH: 73.8

BEDROCK LITH.:

SCREENED ZONE: ALLUVIUM

COMPOUND 111TCE 111DCE 111DCLE 111DCLE 111DCLE 111DCLE 112DCLA AS Z C6H 6 CA L 2 CCL CCL CCL CCL CCL CCL CCL CCL CCL CCL	CONCENTRATION  27.000  <1.000  8.330  <1.200  <0.610  <0.083  <2.500  <1.140  <1.340  122000.000  <2.400  <5.160  <5.000  <1.400  74200.000  <0.083  <0.580  <0.152  <1.080  <1.980  <1.980  <2.240  <5.960  <7.940  <0.130  <9.310  <10.500  <1.590  <0.1590  <1.590  <0.1590  <1.590  <0.1500  <1.280  <1.200  <0.359  <0.359  <0.056		COMPOUND 111TCE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 12DCRN AS Z C6H CCA CCD CCCA CCD CCCCCCCCCCCCCCCCCCCCCC	CONCENTRATION 14.500 <1.000 5.820 <1.200 <0.610 <0.083 <2.500 <1.140 <1.340 114000.000 <2.400 <5.160 <5.000 <1.400 69000.000 <0.083 1.700 <0.152 <1.080 <1.980 <1.980 <2.240 10.700 <7.940 <0.130 <9.310 <10.500 <1.590 <0.1590 <1.590 <0.1590 <1.590 <0.054 <1.160 <15.200 <0.054 <1.160 <15.200 <0.359 <0.359 <0.359 <0.359 <0.359
ETC6H5	<1.280		ETC6H5	<1.280
FL	<1220.000		FL	<1220.000
ISODR	<0.056		ISODR	<0.056
K	4490.000		K	4270.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	13000.000		MG	13300.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	56900.000		NA	49000.000
NIT	8780.000		NIT	9370.000
OXAT	<1.350		OXAT	<1.350
PB	<18.600		PB	<18.600
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	<0.059
SO4	181000.000		SO4	132000.000
T12DCE	<1.200		T12DCE	<1.200
TCLEE	<1.300	D-31	TCLEE	<1.300
TRCLE	26.300		TRCLE	21.300
XYLEN	<2.470		XYLEN	<2.470
ZN	33.900		ZN	58.100

1

WELL AQUIFER: ALLUVIUM
042 SCREENED INT.: 78.5- 93.5
BEDROCK DEPTH: 94.0

SCREENED ZONE: ALLUVIUM

BEDROCK LITH .:

WELL AQUIFER: ALLUVIUM 04044 SCREENED INT.: 49.0-69.0

BEDROCK DEPTH: 69.0

BEDROCK LITH .:

SCREENED ZONE: ALLUVIUM

SCREENED	ZONE: ADDOVION			
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
	<1.700		111TCE	<1.700
111TCE			112TCE	<1.000
112TCE	<1.000		1 1DCE	<1.100
11DCE	<1.100			₹1.200
1 1 DCLE	<1.200		1 1 DCLE	
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
AS	<2.500		AS	<2.500
	<1.140		BTZ	<1.140
BTZ	<1.340		C6H6	<1.340
C6H6			CA	187000.000
CA	194000.000		CCL4	<2.400
CCL4	<2.400			<5.160
CD	<5.160		CD	<5.000
CH2CL2	<5.000		CH2CL2	
CHCL3	<1.400		CHCL3	<1.400
CL	185000-000		CL	164000.000
CL6CP	<0.083		CL6CP	<0.083
	1.820		CLC6H5	<0.580
CLC6H5	<0.152		CLDAN	< 0.152
CLDAN			CPMS	<1.080
CPMS	<1.080		CPMSO	<1.980
CPMSO	<1.990			<2.240
CPMSO2	<2.240		CPMSO2	
CR	<5.960		CR	9.510
cu	<7.940		CU	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		CPD	<9.310
	<10.500		DIMP	< 10.500
DIMP	<1. <b>5</b> 90		DITH	<1.590
DITH			DLDRN	<0.054
DLDRN	<0.054		DMDS	<1.160
DMDS	<1.160			(15.200
DMMP	<15.200		DMMP	
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	<1220.000		FL	< 1200.000
НĞ	<0.359		HG	<0.359
	<0.056		ISODR	<0.056
ISODR	6570.000		K	6850,000
K			MEC6H5	<1.210
MEC6H5	<1.210		MG	18900.000
MG	18600.000			<12,900
MIBK	<12.900		MIBK	(1.35
MXYLEN	<1.350		MXYLEN	
NA	136000.000		NA	126000.00.
NIT	5970.000		NIT	5 <b>75</b> 0.001
OXAT	<1.350		OXAT	<1.35.
	<18.6U0		PB	<37.201
PB	<0.046		PPDDE	<0.046
PPDDE			PPDDT	₹0.059
PPDDT	(0.059		201 11501	355000.00
S04	364000.000			1.85
TIZDCE	1.900		TIZDCE	
TCLEE	4.410		TCLEE	4.590
TRCLE	3.620		TRCLE	4.240
XYLEN	<2.470		XYLEN	<2.470
	31.600	D 20	ZN	< 40.200
ZN	31.000	D-32		

WELL AQUIFER: ALLUVIUM
04045 SCREENED INT.: 88.0-108.0
BEDROCK DEPTH:108.0
BEDROCK LITH.:
SCREENED ZONE: ALLUVIUM

WELL AQUIFER: DENVER
05001 SCREENED INT.: 22.8-28.8
BEDROCK DEPTH: 6.4
BEDROCK LITH.: ST
SCREENED ZONE: B

SCREENED	ZONE: ALLUVIUM		OC11221122	
	CONCENTRATION		COMPOUND	CONCENTRATION
COMPOUND			111TCE	<1.700
111TCE	<1.700		112TCE	<1.000
112TCE	<1.000			<1.100
11DCE	<1.100		11DCE	<1.200
11DCLE	<1.200		11DCLE	
12DCLE	<0.610		12DCLE	< 0.610
ALDRN	<0.083		ALDRN	<0.083
AS	⟨2.500		AS	<2.500
	<1.140		BTZ	<1.140
BTZ	<1.340		C6H6	<1.340
C6H6			CA	331000.000
CA	199000.000		CCL4	<2.400
CCL4	<2.400		CD	<5.160
CD	<5.160			<5.000
CH2CL2	<5.000		CH2CL2	<1.400
CHCL3	<1.400		CHCT3	158000.000
CL	153000.000		CL	
CL6CP	<0.083		CL6CP	< 0.083
CLC6H5	1.080		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
	<1.980		CPMSO	<1.980
CPMSO	(2.240		CPMSO2	<2.240
CPMSO2			CR	15.700
CR	12.600		cυ	9.740
CU	<7.940		DBCP	<0.130
DBCP	<0.130		DCPD	<9.310
DCPD	<9.310			<10.500
DIMP	<10.500		DIMP	<1.590
DITH	<1.590		DITH	<0.054
DLDRN	<0.054		DLDRN	<1.160
DMDS	<1.160		DMDS	
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	<1200.000		FL	2020.000
	<0.359		HG	<0.359
HG	<0.056		ISODR	<0.056
ISODR	5870.000		K	8660.000
K			MEC6H5	<1.210
MEC6H5	<1.210		MG	38600.000
MG	17600.000		MIBK	<12.900
MIBK	<12.900		MXYLEN	<1.350
MXYLEN	<1.350			313000.000
NA	128000.000		ИA	51500.000
NIT	5820.000		NIT	<1.350
TAXO	<1.350		OXAT	
PB	<1 <b>8.6</b> 00		PB	(18.600
PPDDE	< 0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	(0.059
504	352000.00		SO4	1170000.000
	2.340		T12DCE	<1.200
TIZDCE	4.760		TCLEE	<1.300
TCLEE	4.850		TRCLE	<1.100
TRCLE			XYLEN	<2.470
XYLEN	<2.470		ZN	73.900
ZN	30.200	D=33	214	J

47

•		WRIR	WATER	CHEMISTRY	SUMMARY,	3RD	QUARTER,	1101
	.002	AQUIFER: SCREENED BEDROCK D	ALLUVII INT.: EPTH:	JM 25.7- 32. 32.7 ST		WELL	SCREENED BEDROCK I	DEPTH: 21.0
		SCREENED						CONCENTRATION
•		COMPOUND 111TCE 112TCE 11DCE 11DCLE	CON	CENTRATION <1.700 <1.000 <1.100 <1.200 <0.610			COMPOUND 111TCE 112TCE 11DCE 11DCLE 12DCLE	<1.700 <1.000 <1.100 <1.200 <0.610
4		12DCLE ALDRN AS BTZ C6H6	E /	<0.083 <2.500 <1.140 <1.340			ALDRN AS BTZ C6H6 CA	<0.083 <2.500 <1.140 <1.340 77600.000 <2.400
		CA CCL4 CD CH2CL2 CHCL3 CL		<2.400 <5.160 <5.000 <1.400 5700.000			CCL4 CD CH2CL2 CHCL3 CL	<5.160 <5.000 <1.400 73100.000 <0.083
•		CL6CP CLC6H5 CLDAN CPMS CPMSO	-	<pre>&lt;0.083 1.390 &lt;0.152 &lt;1.080 &lt;1.980</pre>			CL6CP CLC6H5 CLDAN CPMS CPMSO CPMSO2	<0.580 <0.152 <1.080 <1.980 <2.240
•		CPMSO2 CR CU DBCP DCPD		<2.240 <5.960 <7.940 <0.130 <9.310 <10.500			CR CU DBCP DCPD DIMP	7.300 <7.940 <0.130 <9.310 <10.500 <1.590
•		DIMP DITH DLDRN DMDS DMMP ENDRN ETC6H5		<1.590 <0.054 <1.160 <15.200 <0.060 <1.280 1310.000			DITH DLDRN DMDS DMMP ENDRN ETC6H5 FL	<pre>&lt; 0.054</pre>
•		FL HG ISODR K MEC6H5 MG		<pre></pre>			HG ISODR K MEC6H5 MG MIEK	<0.056 4010.000 <1.210 27200.000 <12.900
•		MIBK MXYLEN NA NIT OXAT PB		<12.900 <1.350 79100.000 6900.000 <1.350 <18.600 <0.046			MXYLEN NA NIT OXAT PB PPDDE	<pre>&lt;1.350 106000.001 2500.000 &lt;1.351 &lt;18.601 &lt;0.046 &lt;0.059</pre>
•		PPDDE PPDDT SO4 T12DCE TCLEE TRCLE XYLEN ZN		<pre>&lt;0.059 79800.000 &lt;1.200 &lt;1.300 &lt;1.100 &lt;2.470 40.900</pre>			PFDDT S04 T12DCE TCLEE TRCLE XYLEN ZN	220000.
		۵14			<b>D-3</b>	34		

WELL AQUIFER: DENVER
WELL AQUIFER: DENVER
06005 SCREENED INT.: 83.0-93.0

06004 SCREENED INT.: 58.0-63.0
BEDROCK DEPTH: 21.0

BEDROCK LITH.: ST SCREENED ZONE: A SH BEDROCK DEPTH: 21.0 BEDROCK LITH.: ST SCREENED ZONE: AL LG

	CONORMED A THOM		COMPOUND	CONCENTRATION
COMPOUND	CONCENTRATION		111TCE	<1.700
111TCE	<1.700		112TCE	<1.000
112TCE	<1.000		11DCE	<1.100
1 1 DCE	<1.100		11DCLE	<1.200
11DCLE	<1.200		12DCLE	<0.610
12DCLE	<0.610		ALDRN	<0.083
ALDRN	<0.083		AS	<2.500
AS	2.570		BTZ	<1.140
BTZ	<1.140		C6H6	<1.340
C6H6	<1.340		CA	15900.000
CA	67000.000		CCL4	<2.400
CCL4	<2.400		CD	<5.160
CD	<5.160		CH2CL2	<5.000
CH2CL2	<5.000		CHCL3	<1.400
CHCL3	<1.400		CL	13600.000
CL	12000.000		CL6CP	<0.083
CL6CP	<0.083		CLC6H5	<0.580
CLC6H5	<0.580		CLDAN	<0.152
CLDAN	<0.152		CPMS	<1.080
CPMS	<1.080		CPMSO	<1.980
CPMSO	<1.980		CPMSO2	<b>(2.24</b> 0
CPMS02	<2.240		CR	<b>&lt;5.96</b> 0
CR	<5.960		CÜ	<7.940
ÇU	<7.940		DBCP	<0.130
DBCP	<0.130		DCPD	<9.310
DCPD	<9.310		DIMP	<10.500
DIMP	<10.500		DITH	<1.590
DITH	<1.590		DLDRN	<0.054
DLDRN	<0.054		DMDS	<1.160
DMDS	<1.160		DMMP	<15.200
DMMP	<15.200		ENDRN	<0.060
ENDRN	<0.060		ETC6H5	<1.280
ETC6H5	<1.280		FL	<1220.000
FL	<1220.000		HG	<0.359
HG	<0.359		ISODR	<0.056
ISODR	<0.056			963.000
ĸ	2860.000		K MEC6H5	<1.210
MEC6H5	<1.210		MG	<500.000
MG	5430.000		MIBK	<12.900
MIBK	<12.900		MXYLEN	<1.350
MXYLEN	<1.350			109000.000
NA	105000.000		NA NIT	20.000
NIT	70.200		TAXO	<1.350
OXAT	<1.350		PB	<18.600
PB	<18.600		PPDDE	< 0.046
PPDDE	< 0.046		PPDDT	<0.059
PPDDT	<0.059			146000.000
504	319000.000		504 #13DCF	(1.200
TIZDCE	<1.200		T12DCE	<1.300
TCLEE	<1.300		TCLEE	<1.100
TRCLE	<1.100		TRCLE	<2.470
XYLEN	<2.470		XYLEN	<20.100
ZN	<20.100	D-35	ZN	(20.10)

**4**)

YELL AQUIFER: ALLUVIUM

001 SCREENED INT.: 16.8- 21.8

BEDROCK DEPTH: 21.3

BEDROCK LITH.: SH

WELL AQUIFER: DENVER

07004 SCREENED INT.: 44.0- 59.0

BEDROCK DEPTH: 22.0

BEDROCK LITH.: SH

BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM

SCREENED ZONE: B

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111 <b>T</b> CE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
1 I DCLE	<1.200		1 I DCLE	<1.200
12DCLE	<0.610		12DCLE	< 0.610
ALDRN	<0.083		ALDRN	<0.083
AS	<2.500		λS	•
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
CA	413000.000		CA	
CCL4	<2.400		CCL4	<2.400
CD	11.500		CD	
CH2CL2	<5.000		CH2CL2	< 5.000
CHCL3	<1.400		CHCL3	<1.400
CL	39500.000		CL	
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	1.870		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980			<1.980
CPMSO2 .	<2.240		CPMSO	<2.240
CR CR	37.400		CPMSO2	
	29.600		CR	•
CU	<0.130		CU	
DBCP			DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	. • • • •
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	< 15.200		DMMP	•
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.28€
FL	2650.000		FL	•
HG	<0.359		HG	•
ISODR	<0.056		ISODR	< 0.056
K	4920.000		K	•
MEC6H5	<1.210		MEC6H5	₹1,210
MG	26600.000		MG	•
MIBK	<b>&lt;12.9</b> 00		MIBK	<12.91
MXYLEN	<1.350		MXYLEN	<1.35]
NA	3 <b>63000.</b> 000		NA	•
NIT	726.000		NIT	•
OXAT	<1.350		OXAT	( ) . 3 5
PB	24.200		FB	
PPDDE	<0.046		PPIDE	र ⊈े इंबर
PPDDT	<0.059		PFDDT	< \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
SO4	295000.000		804	
T12DCE	<1.200		TIZDCE	, 1 ** * r r *
TCLEE	<1.300		TOLEE	(1.30
TRCLE	<1.100		TROLE	().
XYLEN	⟨2.470		XYLEN	<2.47
ZN	96.900		ZN	
-17	20.300	D-36	<b>414</b>	•

D = 36

WELL AQUIFER: ALLUVIUM
08003 SCREENED INT.: 9.0~ 29.0
BEDROCK DEPTH: 29.0

BEDROCK LITH.: SS SCREENED ZONE: ALLUVIUM

WELL AQUIFER: DENVER 08005 SCREENED INT.: 148.0-208.0

1

BEDROCK DEPTH: 29.0 BEDROCK LITH:: SS SCREENED ZONE: AL LG

	CONCENTED NET ON		COMPOUND	CONCENTRATION
COMPOUND	CONCENTRATION		111TCE	<1.700
111TCE	<1.700		112TCE	<1.000
112TCE	<1.000		IIDCE	<1.100
1 1 DCE	<1.100		11DCLE	<1.200
11DCLE	<1.200		12DCLE	< 0.610
12DCLE	0.636			<0.083
ALDRN	<0.083		ALDRN	2.570
AS	<2.500		λS	<1.140
BTZ	<1.140		BTZ	<1.340
C6H6	<1.340		C <b>6</b> H6	4740.000
CA	76100.000		CA	
CCL4	<2.400		CCL4	<2.400
CD	< <b>5.16</b> 0		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	50600.000		CL	23100.000
CL6CP	<0.083		CL6CP	<0.083
	0.737		CLC6H5	<0.580
CLC6H5	<0.152		CLDAN	<0.152
CLDAN	<1.080		CPMS	<1.080
CPM5	<1.980		CPMSO	<1.980
CPMSO	<2.240		CPMSO2	<2.240
CPMS02			CR	<b>&lt;5.96</b> 0
CR	11.000		ດີບໍ່	<7.940
CU	<7.940		DBCP	<0.130
DBCP	<0.130		DCPD	<9.310
DCPD	<9.310		DIMP	<10.500
DIMP	<10.500		DITH	<1.590
DITH	<1.590		DLDRN	<0.054
DLDRN	<0.054			(1.166
DMDS	<1.160		DMDS	<15.200
DMMP	<15.200		DMMP	<0.060
ENDRN	<0.060		ENDRN	<1.280
ETC6H5	<1.280		ETC6H5	1210.000
FL	<1220.000		FL	<0.359
HG	<0.359		HG	<0.056
ISODR	<0.056		ISODR	
ĸ	3020.000		K	659.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	20100.000		MG	<500.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NY	78200.000		NA	92900.000
	> 20000.000		NIT	12.200
NIT	<1.350		TAKO	<1.350
OXAT	<18.600		PB	<18.600
PB			PPDDE	< 0.046
PPDDE	<0.046		PPDDT	<0.059
PPDDT	<0.059		804	17100.000
504	77600.000		TIZDCE	<1.200
TIZDCE	<1.200		TCLEE	(1.300
TCLEE	<1.300		TROLE	<1.100
TRCLE	<1.100			<2.470
XYLEN	<2.470		XYLEN	41,900
ZN	<20.100	D-37	ZN	41,200
		U 31		

WELL AQUIFER: ALLUVIUM

0002 SCREENED INT.: 64.0- 84.0

BEDROCK DEPTH: 84.0

BEDROCK LITH.: SH

WELL AQUIFER: DENVER

09003 SCREENED INT.: 104.0-129.0

BEDROCK DEPTH: 84.0

BEDROCK LITH.: SH

BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM SCREENED ZONE: 2

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	< 0.610
ALDRN	<0.083		ALDRN	<0.083
AS	<2.500		AS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		Сене	<1.340
CA	170000.000		CA	21600.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	75.160
CH2CL2	<5.000		CH2CL2	< 5.000
CHCL3	<1.400		CHCL3	<1.400
CL	94200.000		CL	5890.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	<0.58€
CLDAN	<0.152		CLDAN	<0.152
			CPMS	<1.080
CPMS	<1.080			
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMS02	<1.240
CR	13.300		CR	√5.9€û
CU	<7.940		CU	<7.940
DBCP	<0.130		DBCP	< 0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	< 0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
	<0.060			<0.060
ENDRN			ENDRN	<1.280
ETC6H5	<1.280		ETC6H5	
FL	<1220.000		FL	1450.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	< 0.056
K	6220.000		K	1040.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	19600.000		MG	<500.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	×1.350
NA	107000.000		NA	59630.
NIT	8430.000		NIT	
OXAT	<1.350		OXAT	€1.35.
				(12.67)
PB	<18.600		FB	
PPDDE	<0.046		PPDD'E	<0.246
PPDDT	<0.059		FFDDT	<0.059
S04	335000.000		SQ4	<b>59300.</b> 003
TIZDCE	<1.200		TIZDCE	ଟ୍ଏ.⊉ମୁଟ୍
TCLEE	1.590		TCLEE	e1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	< 2.470		XYLEN	<2.47€
ZN	<20.100	D-38	ZN	21.600
		סנ – ע	<b></b>	

1

MKIN MNIDW CHEMITOINE COMMISSION

COMPOUND CONCENTRATION 111TCE	• • • • • • • • • • • • • • • • • • • •				
TITCE	COMPOUND				
112TCE		<1.700			
IIDCE					
11DCLE					
12DCLE				1 1 DCLE	
ALDRN				12DCLE	<0.610
ALDRN AS					<0.083
AS C6H6 C1.340 C6H6 C1.340 CCA 18700.000 CCL4 C2.400 CCL4 C2.400 CCL4 C2.400 CCL4 C2.400 CCL4 C2.400 CCL4 C2.400 CCL4 C2.400 CCL4 C2.400 CCL4 C2.400 CCL4 C2.400 CCL4 C2.400 CCL4 C2.400 CCL4 C2.400 CCL4 C2.400 CCL4 C2.400 CCL4 C2.400 CCL4 C2.400 CCL4 C2.400 CCL2 C5.160 CD CD CH2CL2 C5.000 CH2CL2 C5.000 CH2CL2 C5.000 CCL6CP C0.083 CL6CF C0.083 CL6CF C0.083 CL6CF C0.580 CL6CF C0.580 CL6CB5 C1DAN C0.152 CDAN C0.152 CPMS C1.080 CPMS C1.080 CPMS C1.080 CPMS CPMS C1.080 CPMS CPMS C1.080 CPMS CPMS C1.080 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CPMS C1.980 CDB CDB CDB CDB CDB CDB CDB CDB CDB CDB					
C6H6					
CA 187000.000 CA 173000.000 CCL4 (2.400 CCL4 (2.400 CCL4 (2.400 CCL4 (2.400 CCL4 (2.400 CCL4 (2.400 CCL4 (2.400 CCL (2.400 CCL2 (5.000 CCL2 (5.000 CCL2) (5.160 CCC CCCL2 (5.000 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	BTZ				
CCL4	C6H6				
CCL4	CA				
CD		<2.400			
CH2CL2		<5.160			
CHCL3		<5.000			<5.000
CL					
CL6CP				CL	137000.000
CLC6H5					<0.083
CLDAN					
CPMS					<0.152
CPMSO					
CPMSO2		(1.080			
CPMSD2 CR					
CR	CPMSO2				
DBCP	CR				
DBCP					
DCPD		<0.130			
DIMP		<9.310			
DITH					
DLDRN         <0.054         DLDRN         <0.054           DMDS         <1.160				DITH	
DMDS         <1.160				DLDRN	
DMMP				DMDS	<1.160
ENDRN					<15.200
ETC6H5					
FL					
HG					
ISODR					
TSODR	HG				
MEC6H5	ISODR	<0.056			
MEC6H5       <1.210	K	5870.000			
MG 16800.000 MG 17600.000 MIBK (12.900 MIBK (12.900 MXYLEN (1.350 MXYLEN (1.350 NA 124000.000 NA 73300.000 NIT 11600.000 NIT 3510.000 OXAT (1.350 OXAT (1.350 PB (18.600 PB (18.600) PPDDE (0.046 PPDDE (0.046) PPDDT (0.059 SO4 330000.000 SO4 264000.000 T12DCE 8.990 T12DCE (1.200 TCLEE 1.870 TCLEE (1.300 TRCLE 5.860 TRCLE (1.100 XYLEN (2.470					
MIBK		16800.000			
MXYLEN       <1.350					
NA 124000.000 NA 73300.000  NIT 3510.000  NIT 3510.000  OXAT <1.350 OXAT <1.350  PB <18.600 PB <18.600  PPDDE <0.046  PPDDT <0.059  SO4 264000.000  T12DCE 8.990 T12DCE <1.200  TCLEE 1.870 TCLEE <1.300  TRCLE 5.860 TRCLE <1.100  XYLEN <2.470  39.100				MXYLEN	
NIT 11600.000 NIT 3510.000 OXAT				NA	
OXAT					3510.000
PB					<1.350
PB					<18.600
PPDDE					
PPDDT       C0.039         SO4       264000.000         T12DCE       8.990       T12DCE       <1.200         TCLEE       1.870       TCLEE       <1.300         TRCLE       5.860       TRCLE       <1.100         XYLEN       <2.470       XYLEN       <2.470         39.100					
T12DCE 8.990 T12DCE <1.200 TCLEE 1.870 TCLEE <1.300 TRCLE 5.860 TRCLE <1.100 XYLEN <2.470 39.100					
T12DCE 8.990 T12DCE (1.200) TCLEE 1.870 TCLEE (1.300) TRCLE 5.860 TRCLE (1.100) XYLEN (2.470) XYLEN (39.100)	504	330000.000			
TCLEE 1.870 TCLEE (1.300 TRCLE (1.100 TRCLE (2.470 XYLEN (2.470 39.100					
TRCLE 5.860 TRCLE <1.100 XYLEN <2.470 XYLEN 39.100		<b>1.8</b> 70			
XYLEN <2.470 XYLEN <2.470					
781 39.100				XYLEN	<2.470
ΔIT 201000 U-37			n-20	ZN	39.100
	<b>414</b>	20.00	לכ−ע		

WELL AQUIFER: ALLUVIUM

008 SCREENED INT.: 60.8- 75.8 BEDROCK DEPTH: 76.0

BEDROCK LITH .:

SCREENED ZONE: ALLUVIUM

AQUIFER: ALLUVIUM WELL 09010

SCREENED INT.: 64.0-84.0 BEDROCK DEPTH: 85.0

BEDROCK LITH .:

SCREENED ZONE: ALLUVIUM

001120112			COMPOUND	CONCENTRATION
COMPOUND	CONCENTRATION		COMPOUND	<1.700
111TCE	8.180		111TCE	<1.000
112TCE	<1.000		1 1 2 TCE	<1.100
	2.960		1 1 DCE	<1.200
11DCE	<1.200		1 1 DCLE	
1 1 DCLE	< 0.610		12DCLE	< 0.610
12DCLE	< 0.083		ALDRN	<0.083
ALDRN			AS	(2.500
AS	<2.500		BTZ	(1.149
BTZ	<1.140		C6H6	<1.340
C6H6	<1.340		CA	88700.000
CÀ	130000.000		CCL4	<2.400
CCL4	<2.400		CD	<5.160
CD	<5.160			< 5.000
CH2CL2	<5.000		CH2CL2	<1.400
CHCL3	<1.400		CHCL3	44700.000
CL	85900.000		CL	<0.083
CL6CP	<0.083		CL6CP	0.659
	⟨0.580		CLC6H5	
CLC6H5	<0.152		CLDAN	<0.152
CLDAN	<1.080		CPMS	<1.080
CPMS	<1.980		CPMSO	<1.980
CPMSO			CPMS02	< 2.240
CPMSO2	<2.240		CR	<5.960
CR	< <b>5.9</b> 60		čΰ	<7.940
CU	<7.940		DBCP	< 0.130
DBCP	<0.130		DCPD	< 9.310
DCPD	<9.310		DIMP	< 10.500
DIMP	< 10.500			<1.590
DITH	<1.590		DITH	<0.054
DLDRN	< 0.054		DLDRN	<1.160
	<1.160		DMDS	<15.200
DMDS	<15.200		DMMP	
DMMP	<0.060		ENDRN	< 0.060
ENDRN	<1.280		ETC6H5	<1.280
ETC6H5	<1200.000		FL	<1200.000
FL			HG	< 0.359
HG	<0.359		ISODR	< 0.056
ISODR	<0.056		K	3280.000
K	4750.000		MEC6H5	<1.21€
MEC6H5	<1.210		MG	10100.000
MG	11100.000			/12.910
MIBK	<12.900		MIBK	(1.35)
MXYLEN	<1.350		MXYLEN	483(0.111
NA	51600.000		NA_	6870
	9820.000		NIT	
NIT	<1.350		TAXO	41.35
OXAT	<37.200		ΡB	<37.201
PB	<0.046		FFDDE	< 0. 34 5
PPDDE			PPDIT	<pre></pre>
PPDDT'	<0.059		504	84500.
S04	142000.000		TIZDCE	<1.20l
T12DCE	1.200		TCLEE	<pre>(1.30)</pre>
TCLEE	<1.300		TRCLE	<1.100
TRCLE	17.400			(2.47)
XYLEN	<2.470		XYLEN	< 40.200
ZN	<40.200	D-4()	ZN	\ <b>1</b> \ \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b> \ <b>1</b>
ZN	• • • <del>-</del>	<u> </u>		

WELL AQUIFER: ALLUVIUM
09011 SCREENED INT.: 75.0- 90.0 BEDROCK DEPTH: 90.0 BEDROCK DEPTH: 90.0

BEDROCK LITH .:

SCREENED ZONE: ALLUVIUM

BEDROCK LITH .:

SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	73.000		111TCE	85.200
112TCE	<1.000		112TCE	<1.000
11DCE	24.200		11DCE	28.700
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	< 0.610
ALDRN	<0.083		ALDRN	< 0.083
AS	₹2.500		AS	< 2.500
BTZ	<1.140		BTZ	<1.140
C6H6	₹1.340		C6H6	<1.340
	129000.000		CA	137000.000
CA	<2.400		CCL4	<2.400
CCL4	<5.160		CD	<5.160
CD	<5.000		CH2CL2	<5.000
CH2CL2	<1.400		CHCL3	<1.400
CHCL3	79500.000		CL	87300.000
CL	<0.083		CL6CP	<0.083
CL6CP			CLC6H5	<0.580
CLC6H5	<0.580		CLDAN	<0.152
CLDAN	<0.152		CPMS	<1.080
CPMS	<1.080		CPMSO	<1.980
CPMSO	<1.980		CPMSQ2	<2.240
CPMSO2	<2.240		CR CR	8.770
CR	6.140		CU	<7.940
CU	<7.940			< 0.130
DBCP	<0.130		DBCP	(9.310
DCPD	<9.310		DCPD DIMP	<10.500
DIMP	<10.500		DIMP	(1.590
DITH	(1.590			<0.054
DLDRN	<0.054		DLDRN	<1.160
DMDS	<1.160		DMDS	<15.200
DMMP	<15.200		DMMP	<0.060
ENDRN	<0.060		ENDRN	<1.28 ⁰
ETC6H5	<1.280		ETC6H5	<1200.000
FL	<1200.000		FL	
HG	<0.359		HG	<0.359 <0.056
ISODR	<0.056		ISODR	5300.000
K	4750.000		K	
MEC6H5	<1.210		MEC6H5	<1.210 12200.000
MG	11200.000		MG	12200.000 <12.900
MIBK	<12.900		MIBK	
MXYLEN	<1.350		MXYLEN	<1.350
NA	61500.000		NA	60300.000
TIK	8690.000		NIT	9030.000
OXAT	<1.350		OXAT	(1.350
PB	<37.200		PB	<37.20¢
PPDDE	<0.046		PPDDE	< 0.016
PPDDT	<0.059		PFDDT	<0.059
SO4	168000.000		S04	161000.000
T12DCE	1.600		TIZDCE	2.570
TCLEE	<1.300		TCLEE	<1.300
TRCLE	36.300		TRCLE	41.500
XYLEN	(2.470		XYLEN	(2.470
ZN	<40.200	D-41	ZN	<40.200

WELL AQUIFER: ALTUVIUM

002 SCREENED INT.: 20.0-65.0

BEDROCK DEPTH: 65.0

BEDROCK LITH.: SH

SCREENED ZONE: ALLUVIUM

WELL AQUIFER: DENVER

SCREENED INT.: 97.0-103.0

BEDROCK DEPTH: 65.0

BEDROCK LITH.: SH

SCREENED ZONE: AU

SCREENED	ZONE: ALLUVIUM		•	
			COMPOUND	CONCENTRATION
COMPOUND	CONCENTRATION		111TCE	<1.700
111TCE	<1.700		112TCE	<1.000
112TCE	<1.000			<1.100
11DCE	<1.100		11DCE	<1.200
	<1.200		1 1 DCLE	<0.610
11DCLE	<0.610		12DCLE	
12DCLE	<0.083		ALDRN	<0.083
ALDRN			AS	<2.500
AS	<2.500		BTZ	<1.140
BTZ	<1.140		C6H6	<1.340
C6H6	<1.340		CA	8670.000
CA	47600.000		CCL4	<2.400
CCL4	<2.400		-	<5.160
CD	<5.160		CD	<5.000
	<5.000		CHSCTS	<1.400
CH2CL2	<1.400		CHCL3	
CHCL3	34000.000		CL	5520.000
CL			CL6CP	< 0.083
CL6CP	< 0.083		CLC6H5	<0.58℃
CLC6H5	<0.580		CLDAN	<0.152
CLDAN	<0.152		CPMS	<1.080
CPMS	<1.080		CPMSO	<1.980
CPMSO	<1.980			₹2.240
CPMS02	<2.240		CPMSO2	⟨5.960
-	<b>&lt;5.9</b> 60		CR	<7.940
CR	<7.940		cu	
CU	<0.130		DBCP	<0.130
DBCP	10.130		DCPD	<9.310
DCPD	<9.310		DIMF	<10.500
DIMP	<10.500		DITH	<1.590
DITH	<1.590		DLDRN	< 0.054
DLDRN	<0.054			<1.160
DMDS	<1.160		DMDS	<15.200
	<15.200		DMMP	<0.060
DMMP	<0.060		ENDRN	<1.28°
ENDRN	<1.280		ETC6H5	< 1 ⋅ 4 € ¥
ETC6H5	1350.000		FL	1750.000
FL			HG	<0.359
HG	< 0.359		ISODR	<0.056
ISODR	<0.056		K	659.000
ĸ	3320.000		MEC6H5	<1.210
MEC6H5	<1.210		MG	<500.000
MG	7280.000			<12.900
MIBK	<12.900		MIBK	<1.351
MXYLEN	<1.350		MXYLEN	58400.001
	25400.000		NA	32.67
NA	3730.000		TIN	35.5
NIT	<1.350		TAKO	(1.35)
TAXO			FB	<18.61
PB	< 18.600		PPDDE	୯0.046
PPDDE	. 0.046		PFDDT	<0.059
PPDDT	0.059		504	12100.000
504	22200.000		TIZDCE	(1.20)
TIZDCE	<1.200			<1.300
TCLEE	<1.300		TCLEE	21.100
	<1.100		TROLE	(2.470
TRCLE	< <b>2.4</b> 70		XYLEN	
XYLEN	61.600		ZN	<20.100
ZN	61.600	D-42		

<b>③</b>	1	WRIR	WATER CHEMISTRY SU	MWKI, 2VD	QUARTERY -	
		AQUIFER: A	t.t.uvtum	WELL	AQUIFER: I	DENVER INT.: 60.0- 70.0
	WELL 12002	SCREENED I	NT.: 19.0~ 44.0	12003	SCREENED :	
(8)	12002	BEDROCK DE	PTH: 43.0		BEDROCK L	ITH: SH
	4	BEDROCK LI	TH.: SH		SCREENED	ZONE: B
	•	SCREENED Z	ONE: ALLUVIUM			
<b>(♣</b> )		COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION <1.700
		111TCE	<1.700		111TCE 112TCE	₹1.000
		112TCE	<1.000		11DCE	<1.100
•	<b>4</b>	11DCE	<1.100		1 1 DCLE	<1.200
•	4	11DCLE	<1.200 <0.610		12DCLE	< 0.610
		12DCLE	<0.083		ALDRN	<0.083
	,	ALDRN AS	₹2.500		AS	<2.500 <1.140
	:	BTZ	<1.140		BTZ	<1.340
		C6H6	<1.340		C6H6 CA	57100.000
	•	CA	95900.000		CCL4	<2.400
		CCL4	<2.400		CD	<b>&lt;5.16</b> 0
		CD	<5.160 <5.000		CH2CL2	<5.000
		CH2CL2	<1.400		CHCL3	<1.400
		CL CHCL3	102000.000		CL	32800.000 <0.083
_	<b>4</b>	CL6CP	<0.083		CL6CP	<0.580
•	4	CLC6H5	<0.580		CLC6H5 CLDAN	₹0.152
		CLDAN	<0.152		CPMS	<1.080
		CPMS	<1.080		CPMSO	<1.980
		CPMSO	<1.980 <2.240		CPMSO2	<2.240
		CPMSO2	17.100		CR	<5.960 -7.040
•	•	CR CU	<7.940		CU	<7.940 <0.130
		DBCP	<0.130		DBCP	<9.310
		DCPD	<9.310		DCPD DIMP	<10.500
		DIMP	<10.500		DITH	<1.590
		DITH	<1.590		DLDRN	<0.054
		DLDRN	<0.054 <1.160		DMDS	<1.160
•	•	DMDS	<15.200		DMMP	<15.200
		DMMP ENDRN	<0.060		ENDRN	<0.060 <1.280
		ETC6H5	<1.280		ETC6H5	(1220.000
		FL	<1220.000		FL HG	<0.359
		ĦG	<0.359		ISODR	<0.056
b	•	ISODR	<0.056		K	1880.000
		K	4540.000 <1.210		MEC6H5	<1.210
		MEC6H5	19300.000		MG	8130.000
		MG MIBK	<12.900		MIBK	<12.900 <1.350
	•	MXYLEN	₹1.350		MXYLEN	43000.000
	•	NA	82900.000		NA	4080.000
•	4	NIT	3810.000		NIT OXAT	<1.350
		OXAT	<1.350		PB	<18.600
		PB	<18.600		PPDDE	<0.046
		PPDDE	<0.046		PPDDT	<0.059
		PPDDT	<0.059 149000.000		504	47900.000
•	4	504	(1.200		T12DCE	<1.200
-	-	T12DCE	<1.300		TCLEE	<1.300 <1.100
		TCLEE TRCLE	<1.100		TRCLE	<2.470
		XYLEN	<2.470		XYLEN	28.000
		ZN	29.500	D-43	ZN	20.000
				· · · =		

WRI	WATER CHEMISIKI BOW	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
BEDROCK I	INT.: 109.5-124.5	WELL 19001		INT.: 23.62 39.6 EPTH: 25.1 ITH.: SS ZONE: ALLUVIUM
COM OUND 111 TCE 11 DCE 11 DCE 11 DCLE 11 DCLE 11 DCLE 11 DCLE 11 DCLE 11 DCLE 11 DCLE 11 DCLE 11 DCLE 11 DCLE 11 DCLE 11 DCLE 11 DCLE 11 DCLE 11 DCLE 11 DCLE 11 DCLE 11 DCLE 11 DCLE 11 DCLE 11 DCLE 11 DCLE 11 DCLE 11 DCLE 11 DCLE 11 DCLE 12 DCLE 12 DCLE 13 DCLE 14 DCLE 15 DCLE 16 DCLE 17 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE 18 DCLE	<1.300 <1.100 <2.470		OMPCCE  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLL  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCLR  1112DCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CONCENTRATION <1.700 <1.700 <1.1000 <1.1000 <1.1000 <1.1000 <0.613 <0.083 <2.5000 <1.3400 <0.083 <2.1000 <1.3400 <0.0830 <2.4000 <0.0830 <2.4000 <0.0830 <2.4000 <0.0830 <2.4000 <0.0830 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.08
XYLEN	<20.100	D-44	ZN	4 2 C + F C -

D-44

ZN

19015 19003

4

WELL AQUIFER: DENVER
19003 SCREENED INT.: 13.0-21.0
BEDROCK DEPTH: 5.0
BEDROCK LITH.: SH WELL AQUIFER: DENVER
19015 SCREENED INT.: 55.0-75.0
BEDROCK DEPTH: 39.0
BEDROCK LITH.: SH SCREENED ZONE: 1 SCREENED ZONE: 2

20112011112	20110511551551		00450455	G011G711771177
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		1 1 2 TCE	<1.000
11DCE	<1.100		11DCE	<1.100
1 I DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	< 0.610
ALDRN	<0.083		ALDRN	<0.083
AS	<2.500		AS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
CA	304000.000		CA	124000.000
CCL4	<2.400		CCL4	<2.400
CD	₹5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	173000.000		CL	83300.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPM5	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMSO2	<2.240
CR	43.200		CR	12.500
CÜ	<7.940		CÜ	16.700
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DIMP				
DLDRN	<1.590 8.920		DITH	<1.590
DMDS			DLDRN	<0.054
DMMP	<1.160 <15.200		DMDS	<1.160
			DMMP	<15.200
ENDRN	0.198		ENDRN	< 0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	2340.000		FL	<1220.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	4840.000		K	4620.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	89300.000		MG	26500.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	442000.000		NA	495000.000
NIT	3210.000		NIT	137.000
TAXO	<1.350		OXAT	<1.350
PB	<18.600		PB	< 18.600
PPDDE	<0.046		PFDDE	<0.046
PPDDT	<0.059		PPDDT	< 0.059
SO4	1800000.000		504	987000.000
T12DCE	<1.200		T12DCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	<2.470		XYLEN	<2.470
ZN	59.600	D~45	ZN	<20.100
		D-43		•

WELL AQUIFER: DENVER

017 SCREENED INT.: 27.0- 47.0 22005 SCREENED INT.: 37.0- 43.5
BEDROCK DEPTH: 13.0 BEDROCK LITH.: SH
SCREENED ZONE: 1 SCREENED ZONE: ALLUVIUM

SCREENED &	SUNE: I		SCREENED	ZONE: ALLOVION
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.090
112TCE	<1.000		112TCE	<1.630
	<1.100		1 1DCE	<1.850
11DCE				
1 1 DCLE	<1.200		11DCLE	< 1.930
12DCLE	<0.610		12DCLE	<2.070
ALDRN	<0.083		ALDRN	< 0.083
λS	<2.500		AS	<2.500
BTZ	<1.140		BTZ	•
C6H6	<1.340		C6H6	<1.920
CA	76300.000		CA	
CCL4	<2.400		CCL4	<1.690
CD	<5.160		CD	
CH2CL2	<5.000		CH2CL2	<2.48@
				14.45V
CHCT3	<1.400		CHCL3	16.500
CL	44200.000		CL	286000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	<1.360
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	•
CPMSO	<1.980		CPMSO	•
CPMSO2	<2.240		CPMSO2	
CR	13.300		CR	•
Ċΰ	<7.940		čů	•
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	•
				•
DITH	<1.590		DITH	••••
DLDRN	<0.054		DLDRN	0.087
DMDS	<1.160		DMDS	•
DMMP	<15.200		DMMF	•
ENDRN	<0.060		ENDRN	<ଠ.ପ୍ଲପ
ETC6H5	<1.280		ETC6H5	< 0.620
FL	<1220.000		FL	1930.000
HG	< 0.359		HG	•
ISODR	< 0.056		ISODR	<0.056
K	10900.000		K	
MEC6H5	<1.210		MEC6H5	(2.100
MG	19500.000		MG	
MIBK	<12.900		MIBY	12,900
MXYLEN	<1.350		MXYLEN	1.04
NA	146000.000		NA	
				•
NIT	22800.000		NIT	•
OXAT	<1.350		OXAT	•
PB	<18.600		PB	•
PPDDE	< 0.046		PPDDE	≺ହ୍ୟତ୍ୟୁତ୍
PPDDT	<0.059		PPDDT	<0.050
504	194000.000		504	156000.000
T12DCE	<1.200		TIZDCE	<1.750
TCLEE	<1.300		TCLEE	.2.760
TRCLE	<1.100		TRCLE	<1.310
XYLEN	< 2.470		XYLEN	<1.34¢
ZN	304.000		ZN	•
	5555	D-46		•

WELL AQUIFER: ALLUVIUM
22006 SCREENED INT.: 18.5-22.5
BEDROCK DEPTH: 22.5
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM

WELL AQUIFER: ALLUVIUM
SCREENED INT.: 45.0-63.3
BEDROCK DEPTH: 63.2
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM

SCREENED	ZONE: ALLOVIUM		•••••	
	CONCENTRATION		COMPOUND	CONCENTRATION
COMPOUND			111TCE	<1.090
111TCE	<1.700		112TCE	<1.630
112TCE	<1.000			<1.850
11DCE	<1.100		11DCE	<1.930
11DCLE	<1.200		1 1 DCLE	
12DCLE	<0.610		12DCLE	<2.070
ALDRN	<0.083		ALDRN	<0.083
	₹2.500		AS	9.370
AS	<1.140		BTZ	•
BTZ			C6H6	<1.920
C6H6	<1.340		CA CA	•
CA	152000.000		CCL4	<1.690
CCL4	<2.400		CD	
CD	<5.160			< 2.480
CH2CL2	<5.000		CH2CL2	20.400
CHCL3	<1.400		CHCL3	
CL	112000.000		CL	736000.000
CL6CP	<0.083		CL6CP	<0.083
	₹0.580		CLC6H5	<1.360
CLC6H5	⟨0.152		CLDAN	< 0.152
CLDAN			CPMS	•
CPMS	<1.080		CPMSO	•
CPMSO	<1.980		CPMSO2	•
CPMSO2	<2.240			•
CR	15.500		CR	•
CU	<7.940		CU	0.344
DBCP	<0.130		DBCP	<9.310
DCPD	<9.310		DCPD	
DIMP	<10.500		DIMP	58.300
DITH	<1.590		DITH	. •
	<0.054		DLDRN	0.654
DLDRN	<1.160		DMDS	•
DMDS			DMMP	<15.200
DMMP	<15.200		ENDRN	0.294
ENDRN	<0.060		ETC6H5	< 0.620
ETC6H5	<1.280		FL	2980.000
FL	4130.000			2,00,000
HG	<0.359		HG	<0.056
ISODR	<0.056		ISODR	(0.030
ĸ	5550.000		K	<2.100
MEC6H5	<1.210		MEC6H5	(2.100
MG	43500.000		MG	•
MIBK	<12.900		MIBK	<12.900
	<1.350		MXYLEN	<1.040
MXYLEN			NA	•
NA	463000.000		NIT	•
NIT	3000.000		OXAT	
OXAT	<1.350			
PB	<18.600		PB	<0.046
PPDDE	< 0.046		PPDDE	<0.059
PPDDT	<0.059		PPDDT	1000 000 000
S04	1270000.000		504	407000.000
TIZDCE	<1.200		TIZDCE	<1.750
	<1.300		TCLEE	(2.760
TCLEE	<1.100		TRCLE	2.620
TRCLE	<2.470		XYLEN	<1.340
XYLEN			ZN	•
ZN	<101.000	D-47	<b></b>	

.**+**)

WRIR	WATER CHEMISTRY SUM	MAKI, SAD	QOMM DITY -	
BEDROCK DE	NT.: 38.5- 42.5 PTH: 42.5	WELL 22015	AQUIFER: A SCREENED I BEDROCK DE BEDROCK LI SCREENED Z	NT.: 41.0-51.0 PTH: 51.0 TH.: SH ONE: ALLUVIUM
BEDROCK LI SCREENED Z COMPOUND 111TCE 112TCE 11DCE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE	TH.: SH		SCREENED  Z  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED  CREENED	ONE: ALLUVIUM  CONCENTRATION (1.090 (1.630 (1.850 (1.930 (2.070 (0.083 4.270 (1.920 (1.690 (2.480 28.100 460000.000 (0.083 (1.360 (0.152 (0.152 (0.060 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.600 (0.60
PPDDT SO4 T12DCE TCLEE TRCLE XYLEN ZN	<pre></pre>	D-48	SO4 T12DCE TCLEE TRCLE XYLEN ZN	232000.017 

AQUIFER: ALLUVIUM
SCREENED INT.: 37.0- 47.0
BEDROCK DEPTH: 47.0
BEDROCK TITE - CT WELL AQUIFER: ALLUVIUM

22016

BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM

BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION		COMPOUND 111TCE	CONCENTRATION <1.090
112TCE	<1.630		1 1 2 TCE	<1.630
	<1.850		11DCE	<1.850
11DCE	<1.930		11DCLE	<1.930
1 IDCLE			12DCLE	<2.070
12DCLE	<2.070		ALDRN	<0.083
ALDRN	<0.083			3.370
λS	2.930		AS	3.370
BTZ	•		BTZ	
C6H6	<1.920		C6H6	<1.920
CA			CA	•
CCL4	<1.690		CCL4	<1.690
	(1000		CD	•
CD	<2.480		CH2CL2	<2.480
CH2CL2	30.200		CHCL3	34.200
CHCT3	353000.000		CL	430000.000
CL			CL6CP	<0.083
CL6CP	<0.083		CLC6H5	<1.360
CLC6H5	<1.360		CLDAN	₹0.152
CLDAN	<0.152			(01.52
CPMS	•		CPMS	•
CPMSO	•		CPMSO	•
CPMS02	•		CPMSO2	•
CR	•		CR	•
ζü	•		ÇU	• • • • •
DBCP	<0.130		DBCP	< 0.130
DCPD	<9.310		DCPD	(9.310
	12.000		DIMP	<10.500
DIMP	12.000		DITH	•
DITH	0.192		DLDRN	0.272
DLDRN	0.192		DMDS	
DMDS	.15 200		DMMP	<15.200
DMMP	<15.200		ENDRN	<0.060
ENDRN	0.112		ETC6H5	< 0.620
ETC6H5	<0.620		FL	2220.000
FL	2100.000			2220.000
HG	•		HG	< 0.056
ISODR	<0.056		ISODR	(0.030
K	•		K	. 2 . 100
MEC6H5	<2.100		MEC6H5	<2.100
MG	•		MG	
MIBK	<12.900		MIBK	<15.000
MXYLEN	<1.040		MXYLEN	<1.040
NA	•		NA	•
			NIT	•
NIT OXAT	•		OXAT	•
	•		PB	•
PB	40.046		PPDDE	<0.046
PPDDE	<0.046		PPDDT	< 0.059
PPDDT	<0.059		504	231000.000
504	194000.000		T12DCE	<1.75ú
T12DCE	<1.750		TCLEE	(2.760
TCLEE	<2.760			<1.310
TRCLE	2.170		TRCLE	<1.340
XYLEN	<1.340		XYLEN	
ZN	•	D-49	ZN	•
		,		

	WKIK W	HER CHEMICANA David			
WELL '018	AQUIFER: ALI SCREENED IN' BEDROCK DEF' BEDROCK LITI SCREENED ZOI	r.: 30.5- 40.5 rh: 40.5	WELL 22019	AQUIFER: ASSCREENED IS BEDROCK DES BEDROCK LIS SCREENED Z	NT.: 42.0- 52.0 PTH: 52.0 IH.: SH ONE: ALLUVIUM
	COMPOUND 111TCE 112TCE 11DCLE 11DCLE 11DCLE 11DCLE 12DCLE ALDRN AS BTZ C6H6 CA CCL4 CD CHCL3 CLHCL3 CLHCL3 CLHCL3 CLHCL3 CLHCLCAN CCHCLA CD CHCLCAN CCHCLCAN CCHCLCAN CCHCLCAN CCHCLCAN CCHCLCAN CCHCLCAN CCHCLCAN CCHCLCAN CCHCLCAN CCHCCCHCCCHCCCHCCCHCCCHCCCCCCCCCCCCC	CONCENTRATION <1.090 <1.630 <1.850 <1.930 <2.070 <0.083 <2.500 <1.920 <1.690 <2.480 10.300 312000.000 <0.083 <1.360 <0.152  <0.130 <9.310 <10.500		COMPOUND 111TCE 111DCLE 111DCLE 111DCLE 111DCLE ALD AS BTC6 CA CCL CCL CCL CCL CCL CCL CCL CCL CCL	CONCENTRATION <1.090 <1.630 <1.850 <1.930 <2.070 <0.083 <2.500 <1.920 <1.699 <2.480 11.000 315000.000 0.083 <1.360 <0.152 <0.130 <9.310 <10.500

<0.054

<15.200

<0.060

<0.620

<0.056

<2.100

<12.900

<1.040

(0.045

<0.059

<1.750

<2.760

<1.310

<1.340

168000.000

1900.000

DITH

DLDRN

DMDS

DMMP

FL

HG

ĸ

MG

NA

NIT

PB

TAXO

PPDDE

PPDDT

TIZDCE

TCLEE

TRCLE

XYLEN

ZN

S04

MIBK

ENDRN

ETC6H5

ISODR

MEC6H5

MXYLEN

DITH

DLDRN

DMDS

DMMF

FL

НG

ĸ

MG

MIBK

NA

NIT

FΒ

DXAT

FFULE

PPDDT

204

TIZDOE

TCLEE

TRCLE

XYLEN

ZN

D-50

ENDRN

ETC6H5

ISODR

MEC6H5

MXYLEN

<0.054

<15.200

<0.060

<0.620

<0.056

<2.100

<12.900 <1.640

<0.04€

<0.059

(1.31)

<1.349

171000.000 (1.759

1820.000

WELL AQUIFER: ALLUVIUM 22021 SCREENED INT.: 38.1-47.1 BEDROCK DEPTH: 57.0 22021

BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM

AQUIFER: DENVER WELL 70.0- 80.0 SCREENED INT .: 22023

BEDROCK DEPTH: 57.0 BEDROCK LITH .: SH SCREENED ZONE: 4

SCREENED	ZONE: ALLUVIUM			
	TO THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE		COMPOUND	CONCENTRATION
COMPOUND	CONCENTRATION		111TCE	<1.700
111TCE	<1.700		112TCE	<1.000
112TCE	<1.000		11DCE	<1.100
11DCE	<1.100		11DCLE	<1.200
11DCLE	<1.200			< 0.610
12DCLE	< 0.610		12DCLE	<0.083
	< 0.083		ALDRN	4.240
ALDRN	₹2.500		AS	
λS	₹1.140		BTZ	<1.140
BTZ	<1.340		C6H6	<1.340
C6H6	(1.340		CA	51500.000
CA	122000.000		CCL4	<2.400
CCL4	<2.400		CD	<5.160
CD	<5.160		CH2CL2	<5.000
CH2CL2	< <b>5.0</b> 00		CHCL3	<1.400
CHCL3	13.100			104000.000
CT	387000.000		CL	<0.083
	<0.083		CL6CP	<0.580
CL6CP	⟨0.580		CLC6H5	
CLC6H5	<0.152		CLDAN	<0.152
CLDYN			CPMS	<1.080
CPMS	<1.080		CPMSO	<1.980
CPMSO	<1.980		CPMSO2	<2.240
CPMSO2	<2.240		CR	<5.960
CR	<5.960		CÚ	<7.940
cΰ	<7.940		DBCP	<0.130
DBCP	< <b>0.13</b> 0		DCPD	(9.310
DCPD	<9.310		DIMP	<10.500
DIMP	<10.500			<1.590
DITH	<1.590		DITH	<0.054
DLDRN	<0.054		DLDRN	<1.160
	<1.160		DMDS	(15.200
DMDS	<15.200		DMMP	(0.060
DMMP	<0.060		ENDRN	(0.000
ENDRN	<1.280		ETC6H5	<1.280
ETC6H5			FL	<1220.000
FL	1230.000		HG	<0.359
HG	<0.359		ISODR	<0.056
ISODR	<0.056		K	1740.000
K	5380.000		MEC6H5	<1.210
MEC6H5	<1.210		MG	5640.000
MG	34500.000		MIBK	<12.900
MIBK	<12.900			/1.350
MXYLEN	<1.350		MXYLEN	72400.000
	197000.000		NA	108.000
NA	3720.000		NIT_	(1.350
NIT	<1.350		TAXO	
TAXO	<18.600		PB	<18.600
PB	<0.046		PPDDE	(0.046
PPDDE			PPDDT	<0.059
PPDDT	<0.059		504	62400.000
SO4	2520000.000		TIZDCE	<1.200
T12DCE	<1.200		TCLEE	<1.300
TCLEE	<1.300		TRCLE	<1.100
TRCLE	<1.100		XYLEN	<2.470
XYLEN	<2.470		ZN	<101.000
ZN	33.500	D-51	2,14	
217				

•

****

TELL AQUIFER: DENVER

J24 SCREENED INT.: 95.0-105.0

BEDROCK DEPTH: 57.0

BEDROCK LITH.: SH

SCREENED ZONE: 5

WELL AQUIFER: DENVER
22027 SCREENED INT.: 65.0-75.0
BEDROCK DEPTH: 44.0
BEDROCK LITH.: SH
SCREENED ZONE: 3

SCREENED	20112.			
COMPOUND  111TCE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11D	CONCENTRATION		OUE EEE  OUE EEE  OUT TO CELL OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT	CONCENTRATION <1.700 <1.000 <1.1000 <1.1000 <1.2000 <0.610 <0.083 <2.5000 <0.0400 <0.1400 <0.0400 <0.1600 <0.0800 <0.1600 <0.0800 <0.1600 <0.0800 <0.1600 <0.0800 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1600 <0.1
XYLEN ZN	<2.470 45.600	D-52	XYLEN ZN	41.200

MUTU Attracts assess

•

WELL AQUIFER: DENVER
22028 SCREENED INT.: 100.0-115.0
BEDROCK DEPTH: 44.0
BEDROCK LITH.: SH
SCREENED ZONE: 4

22030

WELL AQUIFER: DENVER
22030 SCREENED INT.: 100.0-110.0
BEDROCK DEPTH: 29.0
BEDROCK LITH.: SH
SCREENED ZONE: 4

SCREENED ZOND: 4					
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION (1.700	
111TCE	<1.700		112TCE	<1.000	
112TCE	<1.000			<1.100	
11DCE	<1.100		11DCE	<1.200	
1 1DCLE	<1.200		11DCLE	<0.610	
12DCLE	< 0.610		12DCLE	<0.083	
ALDRN	<0.083		ALDRN	(2.500	
	<2.500		AS	(1.140	
AS	<1.140		BTZ	<1.340	
BTZ	<1.340		C6H6	122000.000	
C6H6	273000.000		CA	(2.400	
CA	<2.400		CCL4	<5.160	
CCL4	<5.160		CD		
CD	₹5.000		CH2CL2	<5.000 <1.400	
CH2CL2	<1.400		CHCL3	<1.400	
CHCL3	643000.000		CL	444000.000	
CL	<0.083		CL6CF	<0.083	
CL6CP	(0.580		CLC6H5	<0.580	
CLC6H5	⟨0.152		CLDAN	< 0.152	
CLDAN	<1.080		CPMS	<1.080	
CPMS	<1.980		CPMSO	<1.980	
CPMSO	<2.240		CPMSO2	<2.240	
CPMSO2	6.620		CR	14.400	
CR	<7.940		cu	<7.940	
CU	<0.130		DBCP	<0.130	
DBCP	<9.310		DCPD	<9.310	
DCPD	<10.500		DIMP	<10.500	
DIMP	<1.590		DITH	<1.590	
DITH			DLDRN	< 0.054	
DLDRN	<0.054		DMDS	<1.160	
DMDS	<1.160 <15.200		DMMP	<15.200	
DMMP			ENDRN	⟨0.060	
ENDRN	<0.060		ETC6H5	<1.280	
ETC6H5	<1.280		FL	1290.000	
FL	1740.000		HG	<0.359	
HG	<0.359		ISODR	<0.056	
ISODR	<0.056		K	2570.000	
K	5050.000		MEC6H5	<1.210	
MEC6H5	<1.210		MG	5200.000	
MG	9740.000		MIBK	<12.900	
MIBK	<12.900		MXYLEN	<1.350	
MXYLEN	<1.350		NA	520000.000	
NA	737000.000		NIT	51.600	
NIT	224.000		TAXO	<1.350	
TAXO	<1.350		PB	<18.600	
PB	<18.600		PPDDE	<0.046	
PPDDE	< 0.046		PPDDT	<0.059	
PPDDT	(0.059		504	773000.000	
504	1550000.000		TIZDCE	<1.200	
T12DCE	<1.200		TCLEE	<1.300	
TCLEE	<1.300		TROLE	<1.100	
TRCLE	<1.100		XYLEN	<2.470	
XYLEN	(2.470			<20.100	
ZN	<20.100	D-53	ZN		

AQUIFER: DENVER MELL SCREENED INT.: 124.0-134.0
BEDROCK DEPTH: 29.0
BEDROCK LITH.: SH 031

SCREENED ZONE: 5

AQUIFER: ALLUVIUM WELL SCREENED INT.: 31.5- 55.5 22033 55.5 BEDROCK DEPTH:

BEDROCK LITH .:

SCREENED ZONE: ALLUVIUM

SCREENED	ZUNE: 5			
COMPOUND 111TCE 112TCE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DC	CONCENTRATION		COMPOUND 111TCE 111DCE 111DCLE 111DCLE 111DCLE 111DCLE 112DCLN AS BTZ C6H6 CA CCL CCL CCLC6H5 CCLCAN CCLCCCC CCLCAN CCLCCCC CCLCCCCC CCCCCCCCCC	CONCENTRATION <1.090 <1.630 <1.850 <1.930 <2.070 <0.083 <2.500 <1.920 <1.690 <1.690 <0.083 <1.360 <0.152 <0.130 <9.310 <10.500 <0.054 <15.200 <0.0620 1680.000 <0.056 <2.100
FL	<1220.000 <0.359		HG	· · · -
ĸ	2010.000		K MEC6H5	•
MG MIBK MXYLEN NA	1070.000 <12.900 <1.350 444000.000		MG MIBK MXYLEN NA NIT	<12.900 <1.040 
NIT OXAT PB PPDDE PPDDT SO4 T12DCE TCLEE TRCLE XYLEN ZN	34.400 <1.350 <18.600 <0.046 <0.059 476000.000 <1.200 <1.300 <1.100 <2.470 113.000	D-54	OXAT PB PPDDE PPDDT SO4 T12DCE TCLEE TRCLE XYLEN ZN	<pre></pre>

WELL AQUIFER: ALLUVIUM

22043 SCREENED INT.: 34.5-57.5

BEDROCK DEPTH: 57.5

BEDROCK LITH.: SH

BEDROCK DEPTH: 32.5

BEDROCK LITH.: SH 22043

NIT

PB

TAXO

PPDDE

PPDDT

504

T12DCE

TCLEE

TRCLE

XYLEN

ZN

BEDROCK LITH .:

SCREENED ZONE: ALLUVIUM

SCREENED ZONE: ALLUVIUM CONCENTRATION COMPOUND CONCENTRATION COMPOUND <1.090 111TCE <1.090 <1.630 111TCE 112TCE <1.630 <1.850 112TCE 11DCE <1.850 1 1 DCE <1.930 11DCLE (1.930 11DCLE 12DCLE <2.070 <0.083 12DCLE ALDRN <0.083 4.720 ALDRN λS <2.500 AS BTZ 7.420 BTZ C6H6 <1.920 C6H6 CA <1.690 CA CCL4 <1.690 CCL4 CD <2.480 CD CH2CL2 <2.480 <1.880 CH2CL2 CHCL3 40.400 743000.000 CHCL3 CL 323000.000 <0.083 CL6CP CL <0.083 <1.360 CL6CP CLC6H5 (1.360 <0.152 CLC6H5 CLDAN <0.152 CLDAN CPMS CPMS CPMSO CPMSO CPMSO2 CPMS02 CR ĊR CU CU <0.130 DBCP <0.130 <9.310 DBCP DCPD <9.310 DCPD <10.500 DIMP <10.500 DIMP DITH 0.159 DITH DLDRN 0.147 DLDRN DMDS <15.200 DMDS DMMP <15.200 <0.060 DMMP ENDRN <0.060 <0.620 ENDRN ETC6H5 <0.620 3750.000 ETC6H5 FL 1640.000 FLHG <0.056 ISODR HG <0.056 ISODR <2.100 MEC6H5 <2.100 MEC6H5 MG <12,900 MIBK MG <12.900 <1.040 MIBK MXYLEN <1.040 MXYLEN NA NA NIT

WELL AQUIFER: ALLUVIUM

D-55

<0.046

(2,760

1.790

<1.340

<0.059

140000.000

<1.750

TAXO

PPDDE

PPDDT

504

TIZDCE

TCLEE

TROLE

XYLEN

ZN

⟨0.046 ⟨0.059

403000.000

<1.750

×2.760

<1.310

<1.340

PB

YELL AQUIFER: ALLUVIUM WELL
349 SCREENED INT.: 25.3-35.3 22051
BEDROCK DEPTH: 35.8
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM WELL AQUIFER: ALLUVIUM 22051 SCREENED INT.: 25.2-45.2 BEDROCK DEPTH: 45.5

BEDROCK LITH .: SCREENED ZONE: ALLUVIUM

SCREENED	ZONE: ADDOVIO			massanima tat Oli
*******	CONCENTRATION		COMPOUND	CONCENTRATION <1.700
COMPOUND	<1.700		111TCE	
111TCE	<1.000		112TCE	<1.000
112TCE	(1.000		11DCE	<1.100
11DCE	<1.100		11DCLE	<1.200
11DCLE	<1.200		12DCLE	< 0.610
12DCLE	<0.610		ALDRN	<0.083
ALDRN	•		AS	5.820
AS	•		BTZ	<1.140
BTZ	•			<1.340
C6H6	<1.340		C6H6	135000.000
CA	•		CA	<2.400
CCL4	<2.400		CCL4	<5,160
			CD	<5.00°
CD	< 5.000		CH2CL2	<1.400
CH2CL2	<1.400		CHCL3	738000.000
CHCT3			CL	
CL	•		CL6CP	<0.083
CL6CP_	<0.580		CLC6H5	<0.580
CLC6H5			CLDAN	<0.152
CLDAN	•		CPMS	< 1 08 Q
CPMS	•		CPMSO	<1.980
CPMSO	•		CPMSO2	<2.240
CPMSO2	•		CR	11.600
CR	•		CÜ	<7.94≎
cυ	•		DBCP	<0.130
DBCP	<0.130		DCDD	<9.310
DCPD	<21.600			<10.500
DIMP	13.600		DIMP	<1.590
DITH			DITH	0.377
DLDRN	•		DLDRN	<1.160
			DMDS	<15.200
DMDS	<15.200		DMMP	<0.060
DMMP			ENDRN	<1.28°
ENDRN	<1.280		ETC6H5	2270.000
ETC6H5			FL	22/0.000
FL	•		HG	<0.359
HG	•		ISODR	<0.056
ISODR	•		K	6810.000
K	<1.210		MEC6H5	<1.210
MEC6H5	(1.210		MG	31100.000
MG	* * * * * * * * * * * * * * * * * * * *		MIBK	<12.901
MIBK	<12.900		MXYLEN	c1.35
MXYLEN	<1.350		NA	444000.01.
NA	•		NIT	19700.000
NIT	•		TAXO	<1.351
TAXO	•		FB	<18.60°
PB	•			(0.046
PPDDE	•		PPDDE	(0.059
PPDDT	•		PPDDT	295000.000
	•		804	<1.200
SO4 T12DCE	<1.200		TIZDCE	61,300
-	<1.300		TCLEE	(1,100
TCLEE	<1.100		TRCLE	
TRCLE	<2.470		XYLEN	(2.470
XATEN		D-56	ZN	45.300
ZN	•	סכ "ע		

WELL AQUIFER: ALLUVIUM
22053 SCREENED INT.: 30.0-50.0 22059 SCREENED INT.: 42.7-52.7
BEDROCK DEPTH: 46.5 BEDROCK DEPTH: 53.4

BEDROCK LITH .: BEDROCK LITH .:

SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

111TCE <1.090 111TCE <1 112TCE <1.630 112TCE <1	TRATION .700 .000 .100 .200
111TCE <1.090 111TCE <1 112TCE <1.630 112TCE <1	.700 .000 .100 .200
112TCE <1.630 112TCE <1	.000
	.100
TIDGE CLUBSO TIDGE CI	.200
12DCLE <2.070 12DCLE <0	.610
	.083
	.500
	.140
	.340
CA . CA 324000	.000
CCL4 <1.690 CCL4 <2	.400
CD . CD 7	.070
	.000
	.700
	.083
	.580
CLDAN <0.152 CLDAN <0	.152
CPMS . CPMS <1	.080
	.160
	.240
	.000
	.000
	.130
DCPD <9.310 DCPD <9	.310
DIMP 24.800 DIMP <10	.500
- · · · - · · · · · · · · · · · · · · ·	.590
	.188
	.160
	.200
	.060
ETC6H5 < 0.620 ETC6H5 < 1	.280
FL 3030.000 FL 2170	
	.359
	.056
K 2060	
	.210
MG . MG 197000	
MIBK <12.900 MIBK <12	• ៦០០
MXYLEN <1.040 MXYLEN <1	.350
NA . NA 383000	
NIT . NIT 5000	
	.350
	.300
	.046
PPDDT <0.059 PFDDT <0	.059
<b>S04 430000.000 S04</b> 252000	
	.200
	.300
	.100
	.470
ZN . D-57 ZN 2210	.000

 $\langle \bullet \rangle$ 

**+**)

WELL AQUIFER: ALLUVIUM

065 SCREENED INT.: 0.0- 0.0

BEDROCK DEPTH: 0.0

BEDROCK LITH.:

SCREENED ZONE: ALLUVIUM

WELL AQUIFER: ALLUVIUM

SCREENED INT.: 15.0- 27.0

BEDROCK DEPTH: 31.9

BEDROCK LITH.: SS

SCREENED ZONE: ALLUVIUM

SCREENED Z	ONE: ALLUVIUM		001.237	
DOLDEN -			COMPOUND	CONCENTRATION
COMPOUND	CONCENTRATION		111TCE	<170.000
111TCE	<1.090		112TCE	<100.000
112TCE	<1.630		11DCE	<110.000
	<1.850			<120.000
1 1 DCE	<1.930		11DCLE	<61.000
1 1DCLE	(2.070		12DCLE	<0.415
12DCLE	(0.083		ALDRN	4.980
aldrn	(2.500		AS	(1.140
AS	(2.500		BTZ	<134.000
BTZ	(1.920		Cehe	7134.009
<b>C6H</b> 6	(1.920		CA	623000.000
CA			CCL4	(240.000
CCL4	<1.690		CD	(5.165
CD	* * * * *		CH2CL2	<500.000
CH2CL2	<2.480		CHCT3	7330.000
CHCL3	15.900		CL	2650000.000
CL	322000.000		CL6CP	<0.415
CL6CP	<0.083		CLC6H5	<58.000
CLC6H5	<1.360		CLDAN	<0.760
CLDAN	<0.152		CPMS	<1.080
CPMS	•		CPMSO	<1.980
CPMSO	•		CPMSO2	10.600
	•			59.800
CPMSO2	•		CR	18.400
CR	· ·		CU	1.420
CU	<0.130		DBCP	414.000
DBCP	(9.310		DCPD	1590.000
DCPD	<10.500		DIMP	10.800
DIMP			DITH	3.480
DITH	<0.054		DLDRN	<1.160
DLDRN	(0.054		DMDS	(15.200
DMDS	45.000		DMMP	0.512
DMMP	(15.200		ENDRN	0.512
ENDRN	(0.060		ETC61	<128.000
ETC6H5	(0.620		FL	4430.000
FL	1780.000		нG	<0.359
НG	• •		ISODR	<0.28€
ISODR	<0.056		K	12600.000
K	•		MEC6H5	(121.000
MEC6H5	<2.100		MG	279000.000
MĞ	•		MIBY	<12.900
MIBK	(12.900		MXYLE	<135.000
MXYLEN	<1,040		NA	838000.000
	•			14.400
AN TIN	•		NIT	2.95
	•		OXAT	<18.60
TAXO			PB	(0,23)
PB	<0.046		FFDDE	(0.295
PPDDE	<0.059		FFDDT	832000.000
PPDDT	174000.000		504	120.000
504	<1.750		T12DCE	20.000 2130.000
T12DCE	<b>(2.76</b> 0		TCLEE	(110.000
TCLEE	(1.310		TRCLE	. 247.000
TRCLE			XYLEN	· 54 / · 600
XYLEN	<1.340	D-58	ZN	<20.100
ZN	•	סל - ת		

WELL AQUIFER: ALLUVIUM
23007 SCREENED INT.: 31.8-41.8
BEDROCK DEPTH: 41.4
BEDROCK LITH.: SS
SCREENED ZONE: ALLUVIUM

WELL AQUIFER: ALLUVIUM
SCREENED INT.: 34.7-44.7
BEDROCK DEPTH: 44.0
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM

				CONCENSE AMITON
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION (1.090
111TCE	<1.090		111TCE	
112TCE	6.060		112TCE	<1.630
	<1.850		1 1DCE	<1.850
11DCE	<1.930		11DCLE	<1.930
11DCLE	(2.070		12DCLE	<2.070
12DCLE			ALDRN	<0.083
ALDRN	<0.083		λS	<2.500
AS	<2.500		BTZ	<1.140
BTZ	<1.140		C6H6	<1.920
C6H6	<1.920			
CA	•		CA	<1.690
CCL4	<1.690		CCL4	(1.690
CD			CD	
CH2CL2	<2.480		CH2CL2	<2.480
	208.000		CHCL3	2.870
CHCT3	342000.000		CL	273000.000
CL	<0.083		CL6CP	<0.083
CL6CP			CLC6H5	<1.360
CLC6H5	<1.360		CLDAN	<0.152
CLDAN	<0.152		CPMS	<1.080
CPMS	2.280		CPMSO	<1.980
CPMSO	61.600			<2.240
CPMSO2	4.790		CPMS02	
CR	•		CR	•
ζΰ			CÜ	
DBCP	2.170		DBCP	<0.130
	<9.310		DCPD	<9.310
DCPD	197.000		DIMP	<10.500
DIMP	<1.590		DITH	<1.590
DITH			DLDRN	0.090
DLDRN	0.995		DMDS	<1.160
DMDS	<1.160		DMMP	<15.200
DMMP	<15.200			<0.060
ENDRN	0.870		ENDRN	<0.620
ETC6H5	< 0.620		ETC6H5	2850.000
FL	1960.000		FL	
нG	•		HG	
ISODR	<0.056		ISODR	<0.056
K			K	•
MEC6H5	<2,100		MEC6H5	<2.100
			MG	•
MG	<12.900		MIBK	< 12.900
MIBK			MXYLEN	<1.040
MXYLEN	<1.040		NA	•
ΝA	•		NIT	
NIT	•			<1.350
TAXO	<1.350		TAXO	VI • 5 5 5
PB	•		PB	<0.046
PPDDE	< 0.046		PPDDE	
PPDDT	<0.059		PPDDT'	<0.059
	402000.000		SO4	3500000.000
504 m13DCE	<1.750		TIZDCE	<1.750
TIZDCE	10.600		TCLEE	<2.760
TCLEE			TRCLE	<1.310
TRCLE	1.330		XYLEN	<1.340
XALEN	<1.340	n *^	ZN	
ZN	•	D-59	ΔN	-

AQUIFER: ALLUVIUM SCREENED INT.: 17.8- 22.8 BEDROCK DEPTH: 23.0 WELL AQUIFER: ALLUVIUM SCREENED INT.: 16.0- 19.0 WELL 009 23010

**(** 

BEDROCK DEPTH: 19.0 BEDROCK LITH: SH SCREENED ZONE: ALLUVIUM BEDROCK LITH.: ST SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.090		111 <b>T</b> CE	<1.090
112TCE	<1.630		112TCE	<1.630
11DCE	(1.850		11DCE	<1.850
1 1DCLE	<1.930		IIDCLE	<1.930
12DCLE	⟨2.070		12DCLE	<2.070
ALDRN	<0.083		ALDRN	<0.083
AS	4.080		AS	4.080
BTZ	<1.140		BTZ	<1.140
C6H6	<1.920		C6H6	<1.920
CA	•		CA	•
CCL4	<1.690		CCL4	<1.690
CD	•		CD	•
CH2CL2	<2.480		CH2CL2	<2.480
CHCL3	<1.880		CHCL3	<1.880
CL	247000.000		CL	289000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<1.360		CLC6H5	<1.360
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080			
			CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	15.800		CPMSQ2	15.900
CR	•		CR	•
CU	•		ÇÜ	•
DBCP	<0.130		DBCF	<0.130
DCPD	11.200		DCPD	<9.310
DIMP	> 210.000		DIMP	1370.000
DITH	16.900		DITH	7.900
DLDRN	0.573		DLDRN	0.105
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	0.248			
			ENDRN	<0.060
ETC6H5	<0.620		ETC6H5	<0.620
FL	3560.000		FL	4220.000
HG	•		HG	•
ISODR	<0.056		ISODR	<0.056
ĸ	•		K	•
MEC6H5	<2.100		MEC6H5	<2.100
MG	•		MG	•
MIBK	<12.900		MIBK	<12.90
MXYLEN	<1.040		MXYLEN	<1.040
NA	•		NA	
NIT			NIT	•
OXAT	3.690		TAXO	2.50
PB				2 • 5 4
	10.016		PB	•
PPDDE	< 0 . 0 4 6		PFDDE	< 0.046
PPDDT	<0.059		FFDDT	(0.059
SO4	226000.000		201	379000.00.
T12DCE	<1.750		TIZDCE	<1.75]
TCLEE	<2.760		TCLEE	< 2.7€1
TRCLE	<1.310		TROLE	<1.312
XYLEN	<1.340		XYLEN	(1.34)
ZN		D 40	ZN	
<b>~</b> : '	•	D-60	2.R	•

WELL AQUIFER: ALLUVIUM

23011 SCREENED INT.: 19.5-22.5
BEDROCK DEPTH: 22.5
BEDROCK LITH.: ST
SCREENED ZONE: ALLUVIUM

WELL AQUIFER: ALLUVIUM

23029 SCREENED INT.: 13.2-23.2
BEDROCK DEPTH: 23.8
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM

SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.090		111TCE	•
112TCE	<1.630		112TCE	<u> </u>
1 1DCE	<1.850		IIDCE	•
11DCLE				•
	<1.930		11DCLE	•
1 2DCLE	<2.070		12DCLE	•
ALDRN	<0.083		ALDRN	<0.083
AS	2.720		AS	<2.500
BTZ	<1.140		BTZ	1.410
C6H6	<1.920		C6H6	
CA			CA	51300.000
CCL4	<1.690		CCL4	31300.000
	(1.690			
CD	•		CD	<5.160
CH2CL2	<2.480		CH2CL2	•
CHCL3	<1.880		CHCL3	•
CL	599000.000		CL	267000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<1.360		CLC6H5	•
CLDAN	<0.152		CLDAN	< 0 . 1 5 2
CPMS	<1.080		CPMS	30.100
CPMSO	3.220		CPMSO	12.700
CPMSO2	14.100		CPMSO2	310.000
CR	•		CR	<b>&lt;5.96</b> 0
CU	•		CU	⟨7.940
DBCP	<0.130		DBCP	₹0.130
DCPD	<9.310		DCPD	<9.310
DIMP	558.000		DIMP	420.000
DITH	8.060		DITH	55.000
DLDRN	0.256		DLDRN	0.670
DMDS	<1.160		DMDS	8.470
DMMP	<15.200		DMMP	<15.200
ENDRN	0.200		ENDRN	0.421
ETC6H5	< 0.620		ETC6H5	0.42
FL	3100.000			3470.000
	3100.000		FL	
HG			HG	<0.359
ISODR	<0.056		ISODR	< 0.056
K	•		ĸ	3620.000
MEC6H5	<2.100		MEC6H5	•
MG	•		MG	20000.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.040		MXYLEN	
				201000 000
NA	•		NA	294000.000
NIT	. •		NIT	179.000
OXAT	3.080		OXAT	13.100
PB	•		PB	<18.600
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	< 0.059
S04	231000.000		201	221000.000
				2210001000
T12DCE	<1.750		TIZDCE	•
TCLEE	₹2.760		TCLEE	•
TRCLE	<1.310		TRCLE	•
XYLEN	<1.340		XYLEN	•
ZN	•	D-61	ZN	<20.100
•	-	5 51	<del></del>	<u> </u>

WRIR WATER CHEMISTRY SUMMARY, 3RD QUARTER, FY87 WELL AQUIFER: ALLUVIUM

033 SCREENED INT.: 23 7- 28.7

BEDROCK DEPTH: 29.
BEDROCK LITTLE CO. WELL AQUIFER: ALLUVIUM BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

 $\langle \bullet \rangle$ 

SCREENED	ZUNE. ADECTEC			CONCENTRATION
	CONCENTRATION		COMPOUND	<1.090
COMPOUND	<1.090		111TCE	
111TCE	<1.630		1 1 2 TCE	<1.630
112TCE	<1.850		1 1 DCE	<1.850
1 1 DCE			11DCLE	(1.930
11DCLE	<1.930		12DCLE	<2.070
12DCLE	<2.070		ALDRN	<0.083
ALDRN	<0.083		λS	<2.500
AS	4.010		BTZ	<1.140
BTZ	<1.140			<1.920
CeHe	<1.920		C6H6	
	•		CA	< 1.690
CA	<1.690		CCL4	(1.09)
CCL4			CD	<b>(2.48</b> 0
CD	<b>&lt;2.48</b> 0		CH2CL2	(2.489
CH2CL2	<1.880		CHCL3	<1.880
CHCL3			CL	238000.000
CL	1320000.000		CL6CP	<0.083
CL6CP	<0.083		CLC6H5	<1.36↑
CLC6H5	<1.360		CLDAN	<0.152
CLDAN	<0.152		CPMS	<1.080
CPMS	<1.080			34.000
CPMSO	<1.980		CPMSO	3.360
CPMSO2	161.000		CPMSO2	3.50
	•		CR	•
CR	•		CU	A* 37A
CU	< 0.130		DBCP	0.270
DBCP	<9.310		DCPD	40.800
DCPD	681.000		DIMP	15.000
DIMP			DITH	<1.590
DILH	32.300		DLDRN	0.449
DLDRN	0.188		DMDS	<1.160
DMDS	< 1 160		DMMP	< 15.200
DMMP	<15.200		ENDRN	0.274
ENDRN	<0.060		ETC6H5	<0.620
ETC6H5	< 0.620			2530.000
FL	3630.000		FL	
HG	•		HG	<0.056
ISODR	<0.056		ISODR	(0.050
			K	₹ <b>2.</b> 100
K	<2.100		MEC6H5	(2.10.
MEC6H5			MG	< 12.900
MG	<12.900		MIBK	<1.040 <1.040
WIBK	<1.040		MXYLEN	(1,UH)
MXYLEN			NA	•
NA	•		NIT	•
NIT	* * * * * * * * * * * * * * * * * * * *		OXAT	41.350
TAXO	7.460		FB	•
PB	•		PFDDE	(0.046
PPDDE	(0.046		PFDDT	(O.059
PPDDT	< 0.059		204	427000.000
504	410000.000			(1.750
TIZDCE	<1.750		TIZDCE	5.721
TCLEE	<2.760		TCLEE	(1.310
	2.310		TRCLE	(1.340
TRCLE	<1.340		XYLEN	
XYLEN	4	<b>.</b>	ZN	•
ZN	•	D-62		

WELL AQUIFER: ALLUVIUM
23047 SCREENED INT.: 21.9- 25.9
BEDROCK DEPTH: 25.3

WELL AQUIFER: ALLUVIUM
23049 SCREENED INT.: 38.4- 42.4
BEDROCK DEPTH: 45.5

 $\langle \bullet \rangle$ 

BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

SCREENED	ZONE: ALLUVIUM			
	- ON CONTRACTOR		COMPOUND	CONCENTRATION
COMPOUND	CONCENTRATION		111TCE	<34.000
111TCE	<1.090		112TCE	<20.000
112TCE	<1.630		1 1 DCE	<22.000
11DCE	<1.850		1 1 DCLE	<24.000
IIDCLE	<1.930		1 2DCLE	143.000
12DCLE	<2.070			<1.400
ALDRN	<0.083		ALDRN	45.200
AS	<2.500		AS	(2.000
BTZ	(1.140		BTZ	<26.800
C6H6	<1.920		Cehe	20.800
			CA	113000.000
CA	<1.690		CCL4	<48.000
CCL4			CD	<5.160
CD	<2.480		CH2CL2	<100.000
CH2CL2	3.470		CHCL3	10800.000
CHCT3	348000.000		CL	5200000.000
CŢ			CL6CP	<1.400
CL6CP	<0.083		CLC6H5	<11.600
CLC6H5	<1.360		CLDAN	•
CLDAN	<0.152		CPMS	<28.100
CPMS	<1.080		CPMSO	<4.200
CPMSO	3.770		CTMSO2	478.000
CPMSO2	<2.240		CR	<5.960
CR	•		CU	<7.940
CÜ	•			0.275
DBCP	<0.130		DBCP	1200.000
DCPD	<9.310		DCPD	474.000
DIMP	69.900		DIMP	92.900
DITH	<1.590		DITH	<1.200
DLDRN	< 0.054		DLDRN	<1.800
	<1.160		DMDS	71.800
DMDS	<15.200		DMMP	<76.000
DMMP	<0.060		ENDRN	<1.040
ENDRN	<0.620		ETC6H5	<25.600
ETC6H5	2730.000		FL	(12200.000
FL			HG	<0.480
HG	<0.056		ISODR	<1.200
ISODR	(0.036		K	33200.000
K	. 2 100		MEC6H5	:24.200
MEC6H5	<2.100		MG	178000.000
MG	* * * * * * * * * * * * * * * * * * * *		MIBK	< 12.900
MIBK	<12.900		MXYLEN	<27.000
MXYLEN	<1.040		NA	2990000.000
NA	•		NIT	310.000
NIT	•			19.800
TAXO	<1.350		TAKO	<18.600
PB	•		FB	1.060
PPDDE	<0.046		PFDDE	<1.400
PPDDT	<0.059		PPDDT	1350000.000
S04	857000.000		504	(24.0(°)
T12DCE	<1.750		TIZDCE	43.100
_	₹2.760		TCLEE	43.100
TCLEE	₹1.310		TRCLE	<110.000
TRCLE	₹1.340		XYLEN	< 49.400
XYLEN			ZN	34.700
ZN	•	D-63		

WELL AQUIFER: ALLUVIUM 23052 SCREENED INT.: 35.6-39.6 DELL AQUIFER: ALLUVIUM
DEDROCK DEPTH: 46.4-50.4
BEDROCK DEPTH: 48.8 BEDROCK DEPTH: 39.5 BEDROCK LITH .: SH SCREENED ZONE: ALLUVIUM

BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM

SCREENED	ZUNE: ALBOTION			CONCENTRATION
COMPOUND 111TCE 112TCE 11DCLE 11DCLE 11DCLE 12DCLE ALDRN AS BTZ C6H6 CA CCL4 CD CH2CL2 CHCL3 CLC6CP CLC6CH5 CLDAN CPMS CPMS CPMS CPMS CPMS CPMS CPMS CPMS	CONCENTRATION <1.090 <1.630 <1.850 <1.930 <2.070 <0.083 3.100 <1.140 <1.920 <1.690 <2.480 <1.880 1320000.000 <0.083 <1.360 <0.152 <1.080 7.020 145.000 <9.310 1270.000		COMPOUND 111TCE 112TCE 112TCE 11DCLE 11DCLE 12DCLE ALDRN AS BTZ CA CCL CCL CCL CCL CCL CCL CCL CCL CCL	CONCENTRATION <1.090 <1.630 <1.850 <1.930 80.100 <0.083 9.150 12.800 11.200 <1.690 <1.690 <1.690 <1.360 <0.152 125.000 <1.360 <1.980 647.000 1510.000 74.300
DMDS DMMP ETC6H5 FC ODR HG ODR MEC6H5 MG BK EN MIBY MANATT PPDDD DE PPDD SO11CLCLE TRYLE XN	<1.160 <15.200 <0.060 <0.620 4040.000 <0.056 <2.100 <12.900 <1.040 <1.040  <1.040  <1.040  <1.059 412000.000  1.750  2.760 <1.310 <1.340	D-64	DMDS DMMP ENC6H5 ETC6H5 FL HG ISODR KEC6H5 MGBKEN MSYLEN NAT NAT OXA NITA OXA PPD04 TCCCLEN TCCCLEN ZN	<pre></pre>

### 3RD QUARTER, FY87 WRIR WATER CHEMISTRY SUMMARY,

AQUIFER: DENVER

WELL

23053

1

WELL

23057

AQUIFER: ALLUVIUM

41.6- 45.6

<1.340

XYLEN

ZN

D - 65

SCREENED INT .:

SCREENED INT .: 43.1- 47.1 BEDROCK DEPTH: 44.0 BEDROCK DEPTH: 43.0 BEDROCK LITH .: SH BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM SCREENED ZONE: 2 SH CONCENTRATION COMFOUND CONCENTRATION COMPOUND <1.090 111TCE <85.000 111TCE <1.630 112TCE <1.000 112TCE <1.850 11DCE <1.100 11DCE . 930 11DCLE 2.110 11DCLE 6.150 12DCLE <61.000 12DCLE <0.083 ALDRN <0.083 ALDRN 6.430 AS 9.080 AS 1.770 BTZ 5.010 BTZ <1.920 C6H6 19.600 **C6H6** CA 1040000.000 CA <1.690 CCL4 <120.000 CCL4 CD <5.160 CD CH2CL2 58.900 CH2CL2 198.000 CHCL3 16500.000 CHCL3 1980000.000 CL4750000.000 CL <0.083 CL6CP <0.083 CL6CP <1.360 CLC6H5 < 0.580 CLC6H5 <0.152 CLDAN <0.152 CLDAN 12.700 CPMS 94,300 CPMS 19.600 CPMSO <1.980 CPMS0 16.800 CPMSO2 520.000 CPMS02 CR <5.960 CR CU 16.800 CU <0.130 DBCP 1.690 DBCP 165.000 DCPD 256.000 DCPD 3070.000 DIMP 1660.000 DIMP 33.000 DITH ₹79.500 DITH 0.478 DLDRN 2.060 DLDRN <1.160 DMDS 28.500 DMDS <15.200 DMMP 156.000 DMMP 0.321 ENDRN 1.220 ENDRN <0.620 ETC6H5 1.340 ETC6H5 4440.000 FL 7500.000 FL HG <0.359 HG <0.056 ISODR <0.056 ISODR K 14500.000 ĸ <2.100 MEC6H5 1.460 MEC6H5 MG 449000.000 MG <12.900 MIBK <129.000 MIBK <1.040 MXYLEN <1.350 MXYLEN NA 1460000.000 NA NIT <10.000 NIT 12.100 TAKO 17.200 OXAT PB <18.600 PB 0.102 PFDDE <0.046 PPDDE <0.059 PPDDT <0.059 PPDDT 521000.000 SO4 1280000.000 504 <1.750 T12DCE <1.200 T12DCE 38.400 TCLEE 37.900 TCLEE 4.640 TRCLE

7.650

<2.470

<20.100

TRCLE

XYLEN

ZN

(*) 

MELL AQUIFER: ALLUVIUM

ALDRN

BEDROCK LITH .: SH

D58 SCREENED INT.: 39.1-43.1 BEDROCK DEPTH: 41.0

WELL AQUIFER: ALLUVIUM 23085 SCREENED INT.: 23.6- 27.0

BEDROCK DEPTH: 29.0 BEDROCK LITH .: SH

COMPOUND

111TCE

SCREENED ZONE: ALLUVIUM

CONCENTRATION

<1.090

<b>4</b> )		
¶ /		

SCREENED 2	ONE: ALLUVIUM	
COMPOUND	CONCENTRATION	
111TCE	<1.700	
112TCE	<1.000	
11DCE	<1.100	
11DCLE	<1.200	
12DCLE	<0.610	
AT DEN	<0.117	

112TCE	(1.030
IIDCE	<1.850
IIDCLE	<1.930
12DCLE	(2.070
ALDRN	<0.083
AS	2.780
WO	4 4 5

AS	* * * * * * * * * * * * * * * * * * * *
BTZ	<1.140
C6H6	د1.340
CA	
CCL4	<2.400
CD	•

<5.000

CH2CL2 (1.400 CHCT3 CL <0.083 CL6CP

<0.580 CLC6H5 <0.152 CLDAN <1.08D CPMS

<1.980 CPMSO <2.240 CPMSO2 CR

cu <0.130 DBCP <21.600 DCPD <10.500 DIMP

<1.590 DITH <0.054 DLDRN <1.160 DMDS <15.200 DMMP <0.060 ENDRN

<1.289 ETC6H5 • FL HG <0.056 ISODR

ĸ (1.210 MEC6H5 MG <12.900 MIBK

<1.350 MXYLEN NA NIT <1.350

TAXO PB <0.046 PPDDE <0.059 PPDDT

504 <1.200 T12DCE <1.300 TCLEE <1.100 TRCLE

<2.470 XYLEN ZN

BTZ <1.920 C6H6 CA <1.690 CCL4 CD <2.480 CH2CL2 <1.880 CHCL3 370000.000 CL <0.083 CL6CP <1.360 CLC6H5 <0.152

CLDAN <1.080 CPMS 4.940 CPMSO 9.440 CPMS02 . CR CU

<0.130 DBCP <9.310 DCPD 387.000 DIMP 12.300 DITH 0.178

DLDRN <1.160 DMDS <30.400 DMMP <0.060 ENDRN <0.620 ETC61 3310.000

FL HG <0.056 ISODR K

<2.100 MEC6H5 MG /12.900 MIBK 11.540 MXYLEN

NA NIT 3.8 TAKO FΒ

0.046 PEDDE (0.025 PFDDT 185000.00 504 .1.75

TIZDCE (2.769 TCLEE C1.310 TRCLE (1.34) XYLEN

ZN

D-66



•

WELL AQUIFER: ALLUVIUM
23095 SCREENED INT.: 44.3-48.3
23096 SCREENED INT.: 27.0-37.0
BEDROCK DEPTH: 37.0

23095

BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM

BEDROCK LITH.: SH

SCREENED ZONE: ALLUVIUM

COMPOUND 111TCE 112TCE 11DCE 11DCLE 12DCLE ALDRN AS BTZ	CONCENTRATION <17.000 <10.000 <1.100 <1.200 26.600 <0.700 18.000 <2.000		COMPOUND 111TCE 112TCE 11DCE 11DCLE 12DCLE ALDRN AS BTZ	CONCENTRATION <1.090 <1.630 <1.850 <1.930 <2.070 <0.083 <2.500 <1.140
С6Н6 СХ	<13.400 345000.000		C6H6 CA	<1.920
CCL4	<24.000		CCL4	2.960
CD	<5.160		CD	
CH2CL2	<5.000		CH2CL2	•
CHCL3	997.000		CHCL3	1560.000
CL6CP	5580000.000 <0.700		CL6CP	309000.000 <0.083
CLC6H5	<0.580		CLC6H5	<1.360
CLDAN	•		CLDAN	<0.152
CPMS	<1.300		CPMS	1.710
CPMSO	<4.200		CPMSO	48.500
CPMSO2 CR	430.000 15.200		CPM502 CR	<2.240
CU	(7.940		CU	•
DBCP	<0.130		DBCP	4.590
DCPD	681.000		DCPD	(9.310
DIMP	788.000		DIMP	142.000
DITH	66.300		DITH	<1.590
DLDRN DMDS	<0.600 <1.800		DLDRN DMDS	1.090 <1.160
DMMP	<152.000		DMMP	<30.400
ENDRN	<0.520		ENDRN	1.330
ETC6H5	<1.280		ETC6H5	<0.620
FL	9690.000		FL	2700.000
HG ISODR	<0.480		HG	< 0.056
K	<0.600 48200.000		ISODR K	
MEC6H5	8.110		MEC6H5	<2.100
MG	209000.000		MG	•
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.040
NA NIT	3320000.000 40.300		NA NIT	•
OXAT	11.700		TAXO	<1.350
PB	<18.600		PB	
PPDDE	<0.530		PPDDE	<0.046
PPDDT	<0.700		PPDDT	< 0.059
504	1520000.000		504	412000.000
TIZDCE	<1.200 28.500		T12DCE	(1.750 32 000
TCLEE TRCLE	<110.000		TCLEE TRCLE	32.900 1.790
XYLEN	<2.470		XYLEN	<1.340
ZN	38.700	D-67	ZN	•

	WRIR	WATER CHEMISTRY SUM	MARY, 3RD	QUARTER, F	101
WELL 102	BEDROCK DE	NT.: 32.7- 36.1 PTH: 36.5	WELL 23106	AQUIFER: D SCREENED I BEDROCK DE BEDROCK LI SCREENED Z	NT.: 34.4- 37.8 PTH: 34.0 TH.: SH ONE: 2 SH
	COMPOUND 111TCE 112TCE 11DCE 11DCLE 12DCLE ALDRN AS BTZ C6H6 CA CCL4 CD CH2CL2 CHCL3 CL	CONCENTRATION <1.090 <1.630 <1.850 <1.930 28.700 <0.083 5.510 4.300 9.970 <1.690  17.500 3830.000 2090000.000 <0.083		COMPOUND 111TCE 112TCE 11DCE 11DCLE 12DCLE ALDRN AS BTZ C6H6 CA CCL4 CD CH2CL2 CHCL3 CL CCL6CP CL CCH	CONCENTRATION <1.090 <1.630 <1.850 <1.930 47.800 <0.415 4.590 6.620 7.470 <1.690  11.700 8760.000 1900000.000 <0.415 <1.360

**(***)

112101	<1.850		11DCE	<1.85U
11DCE	₹1.930		IIDCLE	<1.930
11DCLE	28.700		12DCLE	47.800
12DCLE	<0.083		ALDRN	< 0.415
ALDRN			AS	4.590
λS	5.510		BTZ	6.620
BTZ	4.300			7.470
C6H6	9.970		CeHe	7.475
CA	•		CA	< 1.690
CCL4	<1.690		CCL4	(1.050
CD	•		CD	
CH2CL2	17.500		CH2CL2	11.700
	3830.000		CHCL3	8760.000
CHCL3	2090000.000		CL	1900000.000
CL	2090000.000		CL6CP	<0.415
CL6CP	<0.083		CLC6H5	<1.360
CLC6H5	<1.360		CLDAN	<0.760
CLDAN	<0.152			49.200
CPMS	37.000		CPMS	91.300
CPMSO	14.500		CPMSO	111.000
CPMS02	122.000		CPMSO2	111.000
-	•		CR	•
CR	•		CU	•
CU	0.432		DBCP	5.570
DBCP			DCPD	161.000
DCPD	272,000		DIMP	1900.000
DIMP	2660.000		DITH	34.800
DITH	67.400			2.060
DLDRN	0.639		DLDRN	<1.160
DMDS	<1.160		DMDS	<152.000
DMMP	<30.400		DMMP	
ENDRN	<0.060		ENDRN	0.438
	< 0.620		ETC6H5	<0.620
ETC6H5	4980.000		FL	4440.000
FL			HG	•
HG	< 0.056		ISODR	0.411
ISODR	<0.056		K	•
K	- • . • •		MEC6H5	<2.100
MEC6H5	< 2 . 100			
MG	•		MG	<12.900
MIBK	<12.900		MIBK	1.040
MXYLEN	<1.040		MXYLEN	
	•		NA	•
NA	•		NIT	•
NIT	19.300		CXYL	10.321
TAKO			PB	•
PB			PFDDE	.0.231
PPDDE	< 0.046		PPDDT	, (), <b>2</b> 9 5
PPDDT	<0.059			612000.000
S04	566000.000		504	1.75
TIZDCE	<1.750		TIZDCE	50.100
TCLEE	58.300		TCLEE	
	9.120		TROLE	4.380
TRCLE	<1.340		XYLEN	(1.340
XYLEN		b 44	ZN	•
ZN	•	D-68	<b></b> ,	

WELL AQUIFER: ALLUVIUM

23108 SCREENED INT.: 36.5- 40.5
BEDROCK DEPTH: 38.5
BEDROCK LITH.: SS
SCREENED ZONE: ALLUVIUM

WELL AQUIFER: ALLUVIUM

SCREENED INT.: 13.5- 17.5
BEDROCK DEPTH: 17.5
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM

				CONCENTED METON
COMPOUND 111TCE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCL	CONCENTRATION		COMPOUND 111CE 112TCE 111DCLE 111DCLE 111DCLE 111DCLE 112DCLA AS BTZ C6H6 CCA CL CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCHC CCA CCA CCA CCA CCA CCA CCA CCA CCA CC	CONCENTRATION <1.090 <1.630 <1.850 <1.930 <2.070 <0.083 3.150 <1.140 <1.920 <1.690 <1.880 230000.000 <0.083 <1.360 <0.152 <1.080 <1.980 <1.980 11.000 <1.980 <1.980 <1.1000 <1.1000 <1.1000 <0.130 <9.310 558.000 1.680 0.181 <1.160 <152.000 <0.620 4800.000
DIMP				
				0.181
				<1.160
			ENDRN	<0.060
				4800.000
нG	<0.480		HG ISODR	<0.056
ISODR	<0.060		K	•
K MEC6H5	6590.000 <1.210		MEC6H5	<2.100
MG	58500.000		MG	<12.900
MIBK	<12.900		MIBK MXYLEN	-1.040
MXYLEN	<1.350 604000.000		NA	•
NA	1140.000		NIT	. 250
NIT OXAT	<2.000		OXAT	<1.35€
PB	<18.600		PB PPDDE	0.065
PPDDE	<0.053		FFDDT	< 0.059
PPDDT	<0.070		804	289000.000
S04	382000.000 <1.200		TIZDCE	<1.75℃
T12DCE TCLEE	<1.300		TCLEE	<2.760 <1.310
TRCLE	<1.100		TRCLE	(1,340
XYLEN	<2.470	w	XYLEN ZN	
ZN	<20.100	D-69	<b>2</b> 14	-

WRIR	WATER CHEMISTRY SUM	MARI, 3KD		
BEDROCK D	INT.: 14.00 16.0 EPTH: 18.0	WELL 23120	BEDROCK DER	TT: 13.5- 17.5 PTH: 17.0 PH: SH ONE: ALLUVIUM
COMPOUND 111TCE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 111DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11DCLE 11	CONCENTRATION		COMPOSE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA	CONCENTRATION (1.090 (1.630 (1.850 (1.930 7.280 (0.083 2.810 (1.140 (1.920 (1.690 (1.880 517000.000 (0.083 (1.352 1.630 2.8200 (0.1630 2.8200 (0.1600 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 3190.000 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (0.620 (
ZN	•	D-70	<del></del> -	

	WRIR	WATER CHEMISIKI Som	1111127	-	
WELL 23123	AQUIFER: A SCREENED I BEDROCK DE BEDROCK LI SCREENED Z	NT.: 20.0- 24.0 PTH: 23.0	WELL 23140	AQUIFER: A SCREENED I BEDROCK DE BEDROCK LI SCREENED Z	NT: 38.6-54.6 PTH: 53.0 TH: SH ONE: ALLUVIUM
		CONCENTRATION		COMPOUND	CONCENTRATION
	COMPOUND	<1.090		111TCE	<1.090
	111TCE	<1.630		112TCE	<1.630
	112TCE	<1.850		1 IDCE	<1.850
	11DCE	<1.930		11DCLE	<1.930
	11DCLE 12DCLE	5.120		12DCLE	<2.070 <0.083
	ALDRN	<0.083		ALDRN	(2.500
	AS	2.810		as Btz	<1.140
	BTZ	1.660		C6H6	3.250
	C6H6	7.590		CA	•
	CA	<1.690		CCL4	<1.690
	CCL4	(1.690		CD	• • • • •
	CD CH2CL2	<2.480		CH2CL2	<2.480 <1.880
	CHCL3	3.890		CHCT3	295000.000
	ČL	1020000.000		CL	(0.083
	CL6CP	<0.083		CL6CP CLC6H5	<1.360
	CLC6H5	<1.360		CLDAN	<0.152
	CLDAN	<0.152 21.400		CPMS	<1.080
	CPMS	18.300		CPMSO	<1.980
	CPMSO CPMSO2	78.100		CPMSO2	7.500
	CR CR	•		CR	•
	Ċΰ	•		CU DBCP	<0.130
	DBCP	0.191		DCPD	<9.310
	DCPD	875.000		DIMP	178.000
	DIMP	580.000 33.600		DITH	2.960
	DITH	0.355		DLDRN	<0.054
	JLDRN DMDS	<1.160		DMDS	<1.160 <76.000
	DMMP	<304.000		DMMP	<0.060
	ENDRN	<0.060		ENDRN ETC6H5	<0.620
	ETC6H5	<0.620		FL	5420.000
	FL	3410.000		HG	•
	HG	< 0.056		ISODR	<0.056
	ISODR			ĸ	
	K MEC6H5	<2.100		MEC6H5	(2.100
	MG	•		MG	<12.900
	MIBK	<12.900		MIBK MXYLEN	<1.040
	MXYLEN	<1.040		NA	•
	NA	•		NIT	•
	NIT'	8.140		TAXO	1.710
	TAXO	9.140		PB	0.16
	PB PPDDE	< 0.046		PPDDE	<0.046 <0.059
	PPDDT	<0.059		PPDDT	383000.000
	504	423000.000		SO4 T12DCE	<1.750
	T12DCE	<1.750		TCLEE	(2.760
	TCLEE	40.400		TRCLE	(1.310
	TRCLE	6.540 <1.340		XYLEN	<1.340
	XYLEN	(1.340	D-71	ZN	•

D-71

F

ZN

WELL AQUIFER: ALLUVIUM WELL AQUIFER: ALLUVIUM

142 SCREENED INT.: 38.0-59.4

BEDROCK DEPTH: 56.5

BEDROCK LITH.: SH

SCREENED ZONE: ALLUVIUM

SCREENED ZONE: ALLUVIUM

BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM

SCREENED	ZONE: ALLUVIUM		
		COMPOUND	CONCENTRATION
COMPOUND	CONCENTRATION	111TCE	<b>&lt;1.09</b> 0
111TCE	<1.700	112TCE	<1.630
112TCE	<1.000	11DCE	<1.850
11DCE	<1.100	IIDCLE	<1.930
IIDCLE	<1.200	12DCLE	<2.070
12DCLE	<0.610	ALDRN	< 0.083
ALDRN	< 0.070		3.150
AS	4.200	AS	<1.140
BTZ	<2.000	BTZ	(1.920
	<1.340	GeHe	(1.520
C6H6	112000.000	CA	<1.690
CA	<2.400	CCL4	(1.050
CCL4	<5.160	CD	<2.480
CD	<5.000	CH2CL2	<2.40U
CH2CT3	<1.400	CHCL3	<1.880
CHCT3	518000.000	CL	275000.000
CL	<0.070	CL6CP	<0.083
CL6CP		CLC6H5	<1.360
CLC6H5	<0.580	CLDAN	<0.152
CLDAN	• 200	CPMS	<1.080
CPM5	<1.300	CPMSO	<1.980
CPMSO	<4.200	CPMS02	<2.240
CPMSO2	6.210	CR	•
CR	<5.960	Ċũ	•
cu	<7.940	DBCP	<0.130
DBCP	<0.130	DCPD	<9.310
DCPD	<9.310	DIMP	<10.500
DIMP	1340.000		<1.590
DITH	21.400	DITH	0.153
DLDRN	<0.060	DLDRN	<1.160
DMDS	<1.800	DMDS	<15.200
DMMP	<380.000	DMMP	<0.060
	⟨0.052	ENDRN	<0.620
ENDRN	<1.280	ETC6H5	4060.000
ETC6H5	2650.000	FL	4060.000
FL	<0.480	HG	. 0 056
HG	<0.060	ISODR	<0.056
ISODR	5840.000	K	• • • • • •
K	<1.210	MEC6H5	<2.100
MEC6H5	36100.000	MG	
MG		MIBK	/12.900
MIBK	<12.900	MXYLEN	(1) CAT
MXYLEN	<1.350	NA	•
NA	428000.000	NIT	•
NIT	<20.000	TAKO	(1,35)
TAKO	4.100	PB	•
PB	<18.600	PFDUE	0.04
PPDDE	<0.053	PFDUT	<0.059
PPDDT	<0.070	204	353000.000
504	271000.000	T12DCE	
TIZDCE	<1.200		(2.76)
TCLEE	<1.300	TCLEE	<1.310
TRCLE	<1.100	TRCLE	11.34
XYLEN	(2.470	XYLEN	
	<20.100	D-72 ZN	•
ZN		<del>-</del> · -	

	***************************************		
•	WELL AQUIFER: ALLUVIUM  1 1 SCREENED INT.: 27.0- 3: BEDROCK DEPTH: 34.2 BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM	BEDROCK I	INT: 22.0- 30.0 DEPTH: 27.3 LITH: SH ZONE: ALLUVIUM
	COMPOUND CONCENTRATION	ON COMPOUND	CONCENTRATION < 1.090
	111TCE <1.090		<1.630
	112TCE <1.630	112TCE	<1.850
	11DCE <1.850	11DCE	<1.930
•	11DCLE <1.930	11DCLE 12DCLE	11.900
	12DCLE <2.070		<0.083
	ALDRN <0.083	ALDRN	3.580
	AS (2.500	AS	1.960
	BTZ <1.140	BTZ	₹1.920
	C6H6 <1.920	Сене	
•	CA ·	CA CCL4	<1.690
	CCL4 <1.690	CD	•
	CD ·	CH2CL2	•
	CH2CL2	CHCL3	<1.880
	CHCL3 (1.880	CL	1650000.000
	CL 294000.000	CL6CP	<0.083
•	CL6CP <0.083	CLC6H5	<1.360
	CLC6H5 <1.360	CLDAN	< 0 - 152
	CLDAN <0.152 CPMS <1.080	CPMS	18.400
	040	CPMSO	<1.98 ⁰
	CPMSO <1.980 CPMSO2 6.240	CPMSO2	133.000
	CR •	CR	•
•	CU	CU	
	DBCP <0.130	DBCP	<0.130
	DCPD <9.310	DCPD	380.000 1200.000
	DIMP 270.000	DIMP	58.500
	DITH 2.060	DITH	0.838
	DLDRN <0.054		<1.160
4	DMDS <1.160		(380.000
	DMMP <15.200		<0.600
	ENDRN <0.060		<0.620
	ETC6H5 (0.620		4670.000
	FL 3660.000	нĞ	•
	HG		<0.056
•	2005.	K	•
	X	MEC6H5	<2.100
	11200	MG	
	MG MIBK <12.900	MIBK	<12.900
	MXYLEN <1.040		<1.040
	NA ·	NA	•
•	NIT	TIM	
	OXAT <1.350	OXAT	11.900
	PB ·	PB	0.103
	PPDDE < 0.046		<0.059
	PPDDT <0.059		686000.000
	804 381000.000	504	(1.750

<1.750

<2.760

<1.310

<1.340

<1.750

19.300

11.600

<1.340

TIZDCE

TCLEE

TRCLE

XYLEN

ZN

D-73

T12DCE

TCLEE

TRCLE

XYLEN

ZN

MELL AQUIFER: DENVER
61 SCREENED INT.: 64.0-74.0
BEDROCK DEPTH: 24.0 WELL AQUIFER: DENVER

23177 SCREENED INT.: 33.0-53.0
BEDROCK DEPTH: 14.5
BEDROCK LITH.: SH BEDROCK LITH .: SH SCREENED ZONE: 3 SCREENED ZONE: 2

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1,200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	< 0.610
ALDRN	<0.083		ALDRN	<0.083
	<2.500		AS	
AS				<2.500
BTZ	<1.140		BTZ	<1.140
С6Н6	<1.340		Сене	<1.340
CA	167000.000		CA	296000.000
CCL4	< 2.400		CCL4	<2.400
CD	< 5.160		CD	<5.160
CH2CL2	< 5.00 <b>0</b>		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	2.030
CL	41500.000		CL	496000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMS02	<2.240		CPMSO2	₹2.240
CR	₹5.960		CR	20.400
CÜ	(7.940		cΰ	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<b>(9.3</b> 10
DIMP	<10.500		DIMP	27.000
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	(0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	<1220.000		FL	1910.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.05€
K	4470.000		K	4100.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	13000.000		MG	77400.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.35€
NA	352000.000		NA	377000.000
NIT	42.000		TIN	3230.00:
OXAT	⟨1.350		OXAT	(1.350
PB	<18.600		PB	(18.60)
PPDDE	< 0.046		PPDDE	(0.046
PPDDT	<0.059		PPDDT	(0.059
504	1040000.000		S04	1140000.000
T12DCE	<1.200		TIZDCE	(1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	<2.470		XYLEN	<2.470
ZN	70.500	D-74	ZN	<20.100

)

**.***)

WELL AQUIFER: ALLUVIUM
23178 SCREENED INT.: 16.5- 26.5
BEDROCK DEPTH: 18.5
BEDROCK LITH.: SH

WELL AQUIFER: ALLUVIUM
23179 SCREENED INT.: 17.0- 42.0
BEDROCK DEPTH: 42.0
BEDROCK LITH.: SH BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

SCREENED	ZONE: ADDOVION		SCREENED	ZONE: ADDOVION
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.090		111TCE	<170.000
112TCE	<1.630		112TCE	<1.000
11DCE	<1.850		1 î DCE	<1.100
1 1 DCLE	<1.930		11DCLE	3.370
1 2DCLE	10.400		12DCLE	<61.000
ALDRN	< 0.083		ALDRN	<0.830
			AS	
AS	2.810			23.200
BTZ	<1.140		BTZ	<1.140
C6H6	<1.920		C6H6	<134.000
CA	•		CA	612000.000
CCL4	<1.690		CCL4	<240.000
CD	•		CD	<5.160
CH2CL2	< 2.460		CH2CL2	129.000
CHCL3	<1.880		CHCL3	> 19400.000
	558000.000		CL	4210000.000
CL				
CL6CP	< 0.083		CL6CP	<0.830
CLC6H5	<1.360		CLC6H5	<0.580
CLDAN	< 0.152		CLDAN	<1.520
CPMS	1.850		CPMS	108.000
CPMSO	6.520		CPMSO	18.300
CPMS02	23.500		CPMSO2	958.000
CR			CR	74.600
	•			
CU			CU	10.500
DBCP	<0.130		DBCP	<0.130
DCPD	152.000		DCPD	437.000
DIMP	681.000		DIMP	908.000
DITH	27.100		DITH	54.800
DLDRN	< 0.054		DLDRN	<0.550
DMDS	<1.160		DMDS	<1.160
DMMP	<304.000		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.600
ETC6H5				
	<0.620		ETC6H5	2.140
FL	3030.000		FL	9010.000
HG	•		HG	<0.359
ISODR	<0.056		ISODR	< <b>0.56</b> 0
K	•		K	23000.000
MEC6H5	<2.100		MEC6H5	4.570
MG			MG	225000.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.040		MXYLEN	<1.350
	V1.040			
NA	•		NA	1760000.000
NIT			NIT	537.000
OXAT	5.740		TAKO	17.500
PB	•		PB	<18.600
PPDDE	< 0.046		PPDDE	< <b>0.4</b> 60
PPDDT	<0.059		PFDDT	(0.590
S04	343000.000		504	1190000.000
TIZDCE	<1.750		T12DCE	(1.200
TCLEE	6.530		TCLEE	57.900
TRCLE	3.430		TRCLE	11.100
XYLEN	<1.340		XYLEN	3.230
ZN	•	·	ZN	52.000
		D-75		

NELL AQUIFER: DENVER

1180 SCREENED INT.: 65.0-70.0

BEDROCK DEPTH: 42.0

BEDROCK LITH.: SH

SCREENED ZONE: 2 WELL AQUIFER: DENVER
23181 SCREENED INT.: 85.0- 95.0 BEDROCK DEPTH: 42.0 BEDROCK LITH: SH SCREENED ZONE: 2

COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	IIITCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	1 1DCE	<1.100
11DCLE	<1.200	1 1 DCLE	<1.200
12DCLE	< 0.610	12DCLE	< 0.610
ALDRN	<0.083	ALDRN	< 0.083
AS		AS	<2.500
BTZ	<1.140	BTZ	<1.140
Сене	2.140	C6H6	1.780
CA		Cλ	45300.000
CCL4	<2.400	CCL4	<2.400
CD	•	CD	< 5.160
CH2CL2	< 5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	<1.400
CL	73300.000	CL	63800.000
CL6CP	<0.083	CL6CP	<0.083
CLC6H5	<0.580	CLC6H5	<0.580
CLDAN	<0.152	CLDAN	<0.152
CPMS	<1.080	CPMS	<1.080
CPMSO	<1.980	CPMSO	<1.980
CPMSO2	<2.240	CPMSO2	(2.240
CR		CR	<5.960
	•		
CU	.0.100	CU	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	<10.500	DIMP	<10.500
DITH	<1.590	DITH	<1.590
DLDRN	<0.054	DLDRN	<0.054
DMDS	<1.160	DMDS	<1.160
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.060	ENDRN	<0.060
ETC6H5	<1.280	ETC6H5	<1.280
FL	<1220.000	FL	<1220.000
HG		нG	<0.359
ISODR	<0.056	ISODR	⟨0.05€
K	10.050	K	2270.000
MEC6H5	<1.210	MEC6H5	(1,210
	(1.210		
MG		MG	2050.000
MIBK	<12.900	MIEK	(12.ଡୁଠୁର୍
MXYLEN	<1.350	MXYLEN	<1.350
NA	•	NA	263000.001
NIT	1960.000	ТІИ	3940.000
OXAT	<1.350	OXAT	<1.351
PB	•	PB	40.701
PPDDE	< 0.046	PPDDE -	र⊙.ऐबेन
PPDDT	<0.059	FPDDT	< 0.059
504	576000.000	\$04	539000.010
TIZDCE	<1.200	TIZDOE	<1.200
TCLEE	<1.300	TCLEE	(1.30)
TRCLE	<1.100	TROLE	(1.10)
XYLEN	<2.470	XYLEN	(2.470
ZN	•	ZN	534.000
		a- m .	

23182	AQUIFER: DENVER SCREENED INT.: 28.0-48.0 BEDROCK DEPTH: 18.0 BEDROCK LITH.: ST SCREENED ZONE: 2	23183	AQUIFER: DENVER SCREENED INT.: 85.0- 95 BEDROCK DEPTH: 18.0 BEDROCK LITH.: ST SCREENED ZONE: 4	·· · · · · · · · · · · · · · · · · · ·
-------	-------------------------------------------------------------------------------------------------	-------	------------------------------------------------------------------------------------------------	----------------------------------------

SCREENED	ZONE: 2			
	CONCENTRATION		COMPOUND	CONCENTRATION
COMPOUND			111TCE	<1.700
111TCE	<1.700		112TCE	<1.000
112TCE	<1.000		1 1DCE	<1.100
11DCE	<1.100		1 1DCLE	<1.200
11DCLE	₹1.200			₹0.610
12DCLE	<0.610		1 2DCLE	₹0.083
ALDRN	<0.083		ALDRN	⟨2.500
AS	<2.500		AS	
	<1.140		BTZ	<1.140
BTZ	<1.340		C6H6	<1.340
C6H6	366000.000		CA	93700.000
CA			CCL4	<2.400
CCL4	<2.400		CD	<5.160
CD	<5.160		CH2CL2	<5.000
CH2CL2	<5.000		CHCL3	<1.400
CHCL3	<1.400		CL	483000.000
CL	670000.000			<0.083
CL6CP	<0.083		CL6CP	<0.5B0
CLC6H5	<0.580		CLC6H5	⟨0.152
CLDAN	<0.152		CLDAN	
CPMS	<1.080		CPMS	<1.080
	₹1.980		CPMSO	<1.980
CPMSO	<2.240		CPMSO2	<2.240
CPMSO2	22.300		CR	<5.960
CR .			CÜ	<7.940
CU	11.200		DBCP	<0.130
DBCP	<0.130		DCPD	<9.310
DCPD	<9.310		DIMP	<10.500
DIMP	<10.500			<1.590
DITH	<1.590		DITH	₹0.054
DLDRN	<0.054		DLDRN	(1.160
DMDS	<1.160		DMDS	(15.200
DMMP	<15.200		DMMP	
	<0.060		ENDRN	<0.060
ENDRN	<1.280		ETC6H5	<1.280
ETC6H5	3100.000		FL	1300.000
FL			HG	<0.359
HG	<0.359		ISODR	<0.056
ISODR	<0.056		ĸ	3270.000
K	8640.000		MEC6H5	<1.210
MEC6H5	<1.210		MG	3480.000
MG	79700.000			<12.900
MIBK	<12.900		MIBK	<1.350
MXYLEN	<1.350		MXYLEN	655000.000
NA	1080000.000		NA_	655000.000
	13600.000		NIT	125.000
NIT	(1.350		TAXO	<1.350
OXAT	<18.600		PB	<18.600
PB			PPDDE	< 0 . 0 1 6
PPDDE	<0.046		PPDDT	< 0.059
PPDDT	<0.059		504	868000.000
SO4	2590000.000		TIZDCE	<1.200
T12DCE	<1.200			<1.300
TCLEE	<1.300		TCLEE	<1.100
TRCLE	<1.100		TRCLE	⟨2.470
XYLEN	<2.470		XYLEN	(20.100
	<20.100	D-77	ZN	(20.100
ZN	, 20, , 00	<i>5-77</i>		

NELL AQUIFER: DENVER
SCREENED INT.: 112.0-117.0
BEDROCK DEPTH: 18.0

 $\langle \bullet \rangle$ 

BEDROCK LITH .: ST SCREENED ZONE: 5

WELL AQUIFER: DENVER SCREENED INT.: 37.5- 42.5
BEDROCK DEPTH: 34.0
BEDROCK LITH.: SH
SCREENED ZONE: 1 SH 23185

SCREENED	ZUNE: 3			~ ~
20112011112	CONCENTRATION		COMPOUND	CONCENTRATION
COMPOUND	<1.700		111TCE	<1.700
111TCE	<1.000		112TCE	<1.000
112TCE	<1.100		11DCE	<1.100
1 1 DCE			1 1 DCLE	<1.200
11DCLE	<1.200		12DCLE	< 0.610
12DCLE	<0.610		ALDRN	<0.083
ALDRN	<0.117		AS	•
AS	<2.500		BTZ	<1.140
BTZ	<1.140			<1.340
C6H6	<1.340		CeHe	669000.000
CA	38200.000		CA	<2.400
CCL4	(2.400		CCL4	<b>45.160</b>
	<5.160		CD	<5.000
CD	<5.000		CH2CL2	<1.400
CH2CL2	<1.400		CHCL3	11400
CHCL3	586000.000		CL	1480000.000
CL	<0.083		CL6CP	<0.083
CLECP	<0.580		CLC6H5	<0.580
CLC6H5	<0.152		CLDAN	<0.152
CLDAN			CPMS	<1.08C
CPMS	<1.080		CPMS*	<1.980
CPMSO	<1.980		CPMS.	<2.240
CPMSO2	<2.240		CR	32.100
CR	<5.960		cũ	<7.940
Ċΰ	<7.940		DBCP	<0.130
DBCP	<0.130		DCFD	(9.310
DCPD	<21.600			5060.000
DIMP	<10.500		DIMP	1.590
DITH	<1.590		DITH	(0.054
DLDRN	<0.054		DLDRN	<1.160
	<1.160		DMDS	<15.200
DMDS	<15.200		DMMP	( 15 . £ 0 0
DMMP	<0.060		ENDRN	<0.060
ENDRN	<1.280		ETC6H5	<1.280
ETC6H5	1640.000		FL	3410.000
FL			HG	•
HG	<0.359		ISODR	<0.056
ISODR	<0.056		K	•
ĸ	1790.000		MEC6H5	<1.210
MEC6H5	<1.210		MG	78100.000
MG	841.000		MIBK	<12.900
MIBK	<12.900		MXYLEN	(1,350
MXYLEN	<1.350			91400(.000
NA	376000.000		NA	2580
NIT	195.000		NIT	1.79
OXAT	<1.350		TAXO	<18.600
PB	<18.600		PB	(0.046
PPDDE	(0.046		PPDDE	, O , O 5 9
	<0.059		PFDDT	
PPDDT	255000.000		804	1890000.00
504	<1.200		TIZDCE	1.20
TIZDCE	<1.300		<b>TCLEE</b>	(1.300)
TCLEE			TRCLE	(1.100
TRCLE	<1.100		XYLEN	₹2.470
XYLEN	<2.470		ZN	72.900
ZN	(20.100	D-78		

WELL AQUIFER: DENVER SCREENED INT.: 74.0- 89.0 23186

BEDROCK DEPTH: 34.0 BEDROCK LITH .: SH SCREENED ZONE: 2

AQUIFER: DENVER WELL 23187 SCREENED INT.: 116.5-131.5

BEDROCK DEPTH: 34.0 BEDROCK LITH .: SH SCREENED ZONE: 4

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		1 1 DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
AS	<2.500		AS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H <b>6</b>	<1.340		C6H6	5.550
ÇA	343000.000		CA	125000.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	⟨5.000
CHCL3	<1.400		CHCT3	<1.400
CL	233000.000		CL	398000.000
CL6CP	<0.083		CL6CP	<0.169
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMSO2	<2.240
CR	31.300		CR	<5.960
CU	<7.940		ÇÜ	<7.940
DBCP	<0.130		DBCP	< 0.130
DCPD	<9.310		DCFD	<9.310
DIMP	<10.500			
			DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	< 0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	1550.000		FL	1260.000
HG	<0.359		HG	< 0.359
ISODR	<0.056		ISODR	<0.056
K	6390.000		K	4770.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	25000.000		MG	3280.000
MIBK	<12.900		MIBK	<12.900
MXYLEN				
	<1.350		MXYLEN	<1.350
NA	675000.000		NA	509000.000
NIT	1610.000		TIN	61.200
OXAT	<1.350		TAXO	<1.350
PB	<18.600		PB	<18.600
PPDDE	< 0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	<0.059
504	1770000.000		504	871000.000
T12DCE	<1.200		T12DCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	<2.470		XYLEN	< 2.470
ZN	131.000		ZN	50.800
a i Y	131.000	D-79	W14	20.000

WELL AQUIFER: DENVER
23189 SCREENED INT.: 57.5~ 67.5
BEDROCK DEPTH: 48.0
BEDROCK LITH.: SH 'ELL AQUIFER: ALLUVIUM
188 SCREENED INT.: 37.5- 47.5
BEDROCK DEPTH: 48.0

SCREENED ZONE: 2

BEDROCK LITH .: SH

SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		IIITCE	<1.700
	<1.000		112TCE	<1.000
112TCE			11DCE	
1 IDCE	<1.100			<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	2.600		12DCLE	<0.610
ALDRN	<0.332		ALDRN	<0.083
λS	5.820		AS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
CA	511000.000		CA	145000.000
CCL4	(2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	25.000
CHCL3			CHCL3	<1.400
	<1.400			
CL	2020000.000		CL	90000.000
CL6CP	<0.332		CL6CP	<0.083
CLC6H5	< 0.580		CLC6H5	<0.580
CLDAN	< 0.608		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMS02	252.000		CPMSO2	<2.240
CR	70.700		CR	<5.960
CÜ	<7.940		CÜ	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	18.800		DCPD	(9.310
				<10.500
DIMP	1140.000		DIMP	
DITH	42.700		DITH	<1.590
DLDRN	0.372		DLDRN	(0.054
DMDS	<1.160		DMDS	(1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.240		ENURN	<0.060
ETC6H5	<1.280		ETC6H5	<1.28€
FL	3640.000		FL	<1220.000
HG	< 0.359		HG	< 0.359
ISODR	<0.224		ISODR	<0.056
K	13100.000		K	3860.000
MEC6H5	<1.21°		MEC6H5	<1.210
				9540.000
MG	234000.000		MG	
MIBK	(12.900		MIBK	< 12, ବୁଣ୍ଡ
MXYLEN	<1.350		MXYLEN	(1,35)
NA	898000.000		NA	408000.୧
NIT	204.000		NIT	28.101
TAXO	8.390		OXAT	(1.35
PB	< 1 <b>8.6</b> 00		FB	<1 <b>8.</b> €€.
PPDDE	<0.184		PPDD'E	K 0 , 5 4 6
PPDDT	(0.236		FFDDT	< 0.050
504	856000.000		804	1160000,100
TIZDCE	<1.200		TIEDOE	1,201
				(1.30)
TCLEE	<1.300		TCLEL	
TRCLE	5.840		TRCLE	<1.133
XYLEN	< 2.470		XYLEN	<2.470
ZN	35.100	D-80	ZN	34.300
		P 00		

WELL AQUIFER: ALLUVIUM 23191 SCREENED INT.: 45.0-55.0 WELL AQUIFER: DENVER
23190 SCREENED INT.: 102.5-107.5
BEDROCK DEPTH: 48.0
BEDROCK LITH.: SH
SCREENED ZONE: 3 23191 BEDROCK DEPTH: 54.0

BEDROCK LITH .: SH SCREENED ZONE: ALLUVIUM

			COMPCUND	CONCENTRATION
COMPOUND	CONCENTRATION			<1.700
111TCE	<1.700		111TCE	<1.000
112TCE	<1.000		112TCE	<1.100
	<1.100		1 1 DCE	
11DCE	<1.200		11DCLE	<1.200
11DCLE			12DCLE	< 0.610
12DCLE	<0.610		ALDRN	<0.249
ALDRN	<0.083		AS	3.940
AS	<2.500		BTZ	<1.140
BTZ	<1.140			<1.340
C6H6	24.600		C6H6	135000.000
CA	88800.000		CA	<2.400
CCL4	<2.400		CCL4	
	<5.160		CD	<5.160
CD	₹5.000		CH2CL2	<5.000
CH2CL2	<1.400		CHCL3	<1.400
CHCL3			ĊL	1060000.000
CL	93100.000		CL6CP	<0.249
CL6CP	<0.083		CLC6H5	<0.580
CLC6H5	<0.580		CLDAN	<0.456
CLDAN	<0.152		CPMS	<1.080
CPMS	<1.080			<1.980
CPMSO	. <1.980		CPMSO	<112.000
CPMSO2	<2.240		CPMSO2	15.500
CR	<5.960		CR	<7.940
	<7.940		CU	
CU	⟨0.130		DBCP	<0.130
DBCP	<9.310		DCPD	(9.310
DCPD	<10.500		DIMP	395.000
DIMP	(1.590		DITH	13.000
DITH			DLDRN	0.230
DLDRN	<0.054		DMDS	<1.160
DMDS	(1.160		DMMP	<15.200
DMMP	<15.200		ENDRN	<0.180
ENDRN	<0.060		ETC6H5	<1.280
ETC6H5	<1.280		FL	2210.000
FL	1310.000			(0.359
HG	<0.359		HG	₹0.168
ISODR	<0.056		ISODR	7960.000
K	4160.000		K	(1,210
MEC6H5	<1.210		MEC6H5	60000.000
•	2740.000		MG	
MG	<12.900		MIBK	<12.900
MIBK	⟨1.350		MXYLEN	(1,350
MXYLEN	378000.000		NA	714000.000
NA	2660.000		NIT	6020.000
NIT			TAXO	4.210
OXAT	<1.350		PB	<18.600
PB	<18.600		PPDDE	₹0.138
PPDDE	<0.046		PPDDT	<0.177
PPDDT	<0.059		504	413000.000
504	824000.000		TIZDCE	(1,200
TIZDCE	(1.200			<1.300
TCLEE	<1.300		TCLEE	<1.100
TRCLE	<1.100		TRCLE	<2.470
XYLEN	<2.470		XYLEN	35.000
ZN	26.300	D81	ZN	35.000
417	30.00			

"ELL AQUIFER: DENVER

**(** 

AQUIFER: DENVER

192 SCREENED INT.: 106.0-116.0

BEDROCK DEPTH: 54.0

REDDROCK DEPTH: 54.0 BEDROCK DEPTH: 54.0 BEDROCK LITH.: SH SCREENED ZONE: 4 BEDROCK LITH.: SH SCREENED ZONE: 3

			601/B0111/B	COMORNING
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
IIDCLE	<1.200		11DCLE	<1.200
12DCLE			12DCLE	< 0.610
	<0.610			
ALDRN	<0.249		ALDRN	<0.083
λS	<2.500		AS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	14.600		C6H6	<1.34J
CA	246000.000		CA	34300.000
CC14	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
				<5.000
CH2CL2	<5.000		CH2CL2	
CHCL3	<1.400		CHCT3	<1.400
CL	340000.000		CL	442000.000
CL6CP	<0.249		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	< 0.456		CLDAN	<0.152
CPMS	<1.080		CPMS	41.080
CPMSO	<1.980		CPMSO	<1.980
				₹2.240
CPMSO2	<2.240		CPMSO2	
CR	•		CR	<5.960
CÜ	<7.940		CU	13.200
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	1.680
DLDRN	₹0.165		DLDRN	<0.054
				<1.160
DMDS	<1.160		DMDS	
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.180		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	1360.000		FL	1830.000
HG	< 0.359		HG	<0.359
ISOUR	<0.168		ISODR	<0.056
K	6380.000		K	2650.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	7520.000		MG	598.000
			MIBK	12.91
MIBK	<12.900			(1.35
MXYLEN	<1.350		MXYLEN	* • • •
NA	621000.000		NA	289001.000
NIT	136.000		NIT	20000.111
TAXO	<1.350		OXAT	(1,35)
PB	<18.600		PB	(18,67)
PPDDE	<0.138		FFDDE	<0.€46
PPDDT	₹0.177		PPDDT	< 0.059
S04	1290000.000		504	82200.000
				C1.201
T12DCE	<1.200		TIEDCE	
TCLEE	<1.300		TCLEE	<1.300 1.100
TRCLE	<1.100		TRCLE	(1.100
XALEN	<2.470		XYLEN	<2.470
ZN	22.700	D-82	ZN	<20.100
		-		

#### WRIR WATER CHEMISTRY SUMMAKY, JKD QUARTER, FID.

WELL AQUIFER: ALLUVIUM

23196 SCREENED INT:: 12.0- 22.0

BEDROCK DEPTH: 18.0

BEDROCK LITH:: SH

SCREENED ZONE: ALLUVIUM

WELL AQUIFER: ALLUVIUM

23197 SCREENED INT:: 13.0- 23.0

BEDROCK DEPTH: 19.0

BEDROCK LITH:: SH

SCREENED ZONE: ALLUVIUM

SCREENED ZONE: ALLUVIUM WELL AQUIFER: ALLUVIUM WELL AQUIFER: ALLUVIUM

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.090		111TCE	<1.090
112TCE	<1.630		112TCE	<1.630
1 1DCE	<1.850		1 I DCE	₹1.850
1 1DCLE	<1.930		11DCLE	₹1.930
12DCLE	<2.070		12DCLE	₹2.070
ALDRN	<0.083		ALDRN	<0.083
AS	<2.500		λS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.920		C6H6	<1.920
CA	•		CA	•
CCL4	<1.690		CCL4	<1.690
CD			CD	•
CH2CL2	<2.480		CH2CL2	•
CHCL3	<1.880		CHCT3	<1.880
CL	632000.000		CL	383000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<1.350		CLC6H5	<1.360
CLDAN CPMS	<0.152 <1.080		CLDAN	<0.152
CPMS0	<1.980		CPMS CPMSO	<1.080 <1.980
CPMSO2	<2.240		CPMSO2	<2.240
CR CR			CR	(2.240
cũ	•		CÚ	:
DBCP	< 0.130		DBCP	< 0.130
DCPD	<9.310		DCPD	<9.310
DIMP	11.900		DIMP	17.000
DITH	<1.590		DITH	<1.590
DLDRN	< 0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<30.400		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<0.620		ETC6H5	<0.620
FL	4170.000		FL	3850.000
HG			HG	•
ISODR	<0.056		ISODR	<0.056
K Mec6h5	<2.100		K MEC6H5	<2.100
MG			MG	(2.100
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.040		MXYLEN	<1.040
NA	•		NA	•
NIT	•		NIT	•
OXAT	<1.350		OXAT	<1.350
PB	•		PB	
PPDDE	< 0.046		PFDDE	<0.046
PPDDT	<0.059		PPDDT	< 0.059
504	1750000.000		504	1520000.000
TIZDCE	<1.750		TIZDCE	<1.750
TCLEE	<2.760		TCLEE	<2.760
TRCLE	<1.310		TRCLE	<1.310
XYLEN	<1.340		XYLEN	<1.340
ZN	•	D-83	ZN	•

WELL AQUIFER: DENVER

WELL AQUIFER: ALLUVIUM
198 SCREENED INT.: 15.0-20.0
BEDROCK DEPTH: 22.0
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM

23200 SCREENED INT.: 73.5~ 78.5 BEDROCK DEPTH: 20.0 BEDROCK LITH.: SH SCREENED ZONE: 3

COMPOUND 111TCE 112TCE 11DCE 11DCLE 12DCLE ALDRN AS BTZ C6H6 CA	CONCENTRATION <1.090 <1.630 <1.850 <1.930 <2.070 <0.083 <2.500 <1.140 <1.920		COMPOUND 111TCE 112TCE 11DCE 11DCLE 12DCLE ALDRN AS BTZ C6H6 CA	CONCENTRATION <1.090 <1.630 <1.850 <1.930 <2.070 <0.083 <2.500 <1.140 <1.920
CCL4 CD CH2CL2 CHCL3 CL CL6CP	<1.690 <2.480 <1.880 250000.000 <0.083		CCL4 CD CH2CL2 CHCL3 CL CL6CP	<1.690 <2.480 <1.880 93100.000 <0.083
CLC6H5 CLDAN CPMS CPMSO CPMSO2 CR	<1.360 <0.152 <1.080 <1.980 <2.240		CLC6H5 CLDAN CPMS CPMSO CPMSO2 CR	<1.360 <0.152 <1.080 <1.980 <2.240
CU DBCP DCPD DIMP DITH	<0.130 <9.310 648.000 <1.590		CU DBCP DCPD DIMP DITH	<0.130 <9.310 <10.500 <1.590
DLDRN DMDS DMMP ENDRN ETC6H5 FL	0.075 <1.160 <15.200 <0.060 <0.620 3260.000		DLDRN DMDS DMMP ENDRN ETC6H5 FL	<0.054 <1.160 <15.200 <0.060 <0.620 1070.000
HG ISODR K MEC6H5 MG MIBK	<0.056 <2.100 <12.900		HG ISODR K MEC6H5 MG MIBK	<0.056 <2.100 <12.9()
MXYLEN NA NIT OXAT PB	<1.040 : <1.350		MXYLEN NA NIT OXAT PB	<1.040 <1.350
PPDDE PPDDT SO4 T12DCE TCLEE TRCLE	<0.046 <0.059 491000.000 <1.750 <2.760 <1.310		FPDDE FFDDT SO4 T12DCE TCLEE TRCLE	<pre></pre>
XYLEN ZN	<1.340	D-84	XYLEN ZN	<1.340 •

------

WELL AQUIFER: DENVER WELL AQUIFER: DENVER SCREENED INT.: 84.5-104.5 BEDROCK DEPTH: 20.0 23202 SCREENED INT.: 20.0-25.0 23201 BEDROCK DEPTH: 16.0

BEDROCK LITH .: SH BEDROCK LITH .: SH SCREENED ZONE: 4 SCREENED ZONE: 2

			0011221122	
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.090		111TCE	<1.090
112TCE	<1.630		112TCE	<1.630
1 IDCE	<1.850		1 1 DCE	
				<1.850
1 1DCLE	<1.930		11DCLE	<1.930
12DCLE	<2.070		12DCLE	<2.070
ALDRN	<0.083		ALDRN	<0.083
AS	<2.500		AS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.920		C6H6	<1.920
CA	•		CA	•
CCL4	<1.690		CCL4	<1.690
CD	•		CD	•
CH2CL2	<2.480		CH2CL2	
CHCL3	<1.880		CHCL3	6.780
CL	95200.000		CL	447000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	8.390			
			CLC6H5	<1.360
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMSO2	<2.240
CR	•		CR	•
CU	•		CU	•
DBCP	<0.130		DBCP	<0 130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	322.000
DITH	<1.590		DITH	<1.590
DLDRN	< 0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	< 0.620			
			ETC6H5	<0.620
FL	1020.000		FL	3060.000
HG			HG	• • • •
ISODR	<0.056		ISODR	<0.056
K			K	•
MEC6H5	<2.100		MEC6H5	<2.100
MG	•		MG	•
MIBK	<12.900		MIBK	<15.000
MXYLEN	<1.040		MXYLEN	<1.040
NA	•		NA	•
NIT	•		NIT	•
TAXO	<1.350		OXAT	<1.350
PB	•		PB	
PPDDE	< 0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	(0.059
504	337000.000			1370000.000
	<1.750		204	<1.750
T12DCE			T12DCE	
TCLEE	<2.760		TCLEE	<2.760
TRCLE	<1.310		TRCLE	<1.310
XYLEN	<1.340		XYLEN	<1.340
ZN	•	D-85	ZN	•

SCREENED ZONE: 2

YELL AQUIFER: DENVER
203 SCREENED INT.: 27.0- 32.0
BEDROCK DEPTH: 20.0
BEDROCK LITH.: SH

WELL AQUIFER: DENVER
23204 SCREENED INT.: 29.0- 34.0
BEDROCK DEPTH: 24.0
BEDROCK LITH.: SH

SCREENED ZONE: 2

CONCENTRATION COMPOUND CONCENTRATION COMPOUND 111TCE 111TCE <1.090 <1.090 112TCE 112TCE <1.630 <1.630 11DCE <1.850 1 1DCE <1.850 11DCLE 11DCLE <1.930 <1.930 2.620 12DCLE 2.750 12DCLE ALDRN <0.083 ALDRN <0.083 AS <2.500 AS BTZ BTZ C6H6 C6H6 <1.920 CA CA CCL4 <1.690 CCL4 CD CD CH2CL2 CH2CL2 CHCL3 24.500 CHCL3 <1.880 404000.000 CL 262000.000 CL<0.083 CLSCP <0.083 CL6CP CLC6H5 <1.360 CLC6H5 <1.360 CLDAN <0.152 CLDAN <0.152 CPMS <1.080 CPMS 7.230 CPMSO 12.900 CPMSO 47.300 CPMS02 CPMSO2 3.280 CR CR CU CU DBCP <0.130 DBCP 1.120 49,900 DCPD DCPD 96.400 304.000 DIMP DIMP 387.000 DITH DITH 3.640 3.160 DLDRN <0.054 DLDRN 0.189 DMDS <1.160 DMDS <1.160 DMMP <152.000 DMMP <15.200 0.122 ENDRN 0.115 ENDRN ETC6H5 ETC6H5 < 0.620 < 0.620 <10000.000 FL 2010.000 FL HG HG <0.056 ISODR <0.056 ISODR MEC6H5 MEC6H5 <2.100 MG MG <12.900 MIBK MIBK MXYLEN MXYLEN 1.141 <1.040 NA NA NIT NIT TAXO OXAT 2.370 PB PB PFDDE <0.046 PPDDE <0.059 PPDDT < 0.059 PFUDT 1190000.00. S04 860000.000 SO4 1.75 Tid: 'F <1.750 TIZDCE 22.100 3.860 TCLEE 1.59 <1.310 TRCLL TRCLE 41.340 XYLEN <1.340 XYLEN ZN ZN D 86

۹

**-**

•

•

WELL AQUIFER: ALLUVIUM 23205 SCREENED INT.: 10.0-15.0 BEDROCK DEPTH: 15.0 BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM WELL AQUIFER: ALLUVIUM
23208 SCREENED INT.: 14.0-19.0
BEDROCK DEPTH: 19.0
BEDROCK LITH.: SH 23205

SCREENED ZONE: ALLUVIUM

SCREENED	ZONE: ALLOVIUM		SCREENED	ZONE: ALLOVIUM
COMPOUND 111TCE 112TCE 11DCE 11DCLE 12DCLE ALDRN AS BTZ C6H6 CA CCL4	CONCENTRATION <1.090 <1.630 <1.850 <1.930 <2.070 <0.083 <2.500 <1.140 <1.920 <1.690		COMPOUND 111TCE 112TCE 11DCE 11DCLE 12DCLE ALDRN AS BTZ C6H6 CA CCL4	CONCENTRATION <1.090 <1.630 <1.850 <1.930 <2.070 <0.083 3.860 <1.140 <1.920 <1.690
CD CH2CL2 CHCL3 CL CL6CP CLC6H5 CLDAN CPMS CPMSO CPMSO2 CR	<2.480 <1.880 3000.000 <0.083 <1.360 <0.152 <1.080 2.750 <2.240		CD CH2CL2 CHCL3 CL CL6CP CLC6H5 CLDAN CPMS CPMSO CPMSO2 CR	<2.480 <1.880 320000.000 <0.083 <1.360 <0.152 <1.080 <1.980 <2.240
CU DBCP DCPD DIMP DITH DLDRN DMMP ENDRN ETC6H5 FL HG	<0.130 <9.310 74.400 <1.590 0.073 <1.160 <30.400 <0.060 <0.620 4360.000		CU DBCP DCPD DIMP DITH DLDRN DMDS DMMP ENDRN ETC6H5 FL HG	<pre>&lt; 0.130 &lt; 9.310 &lt; 10.500 &lt; 1.590</pre>
ISODR K MEC6H5 MG MIBK MXYLEN NA NIT OXAT PB PPDDE PPDDT SO4 T12DCE TCLEE TRCLE	<0.056 <2.100 <12.900 <1.040 <1.350 <0.046 <0.059 1400000.000 <1.750 <2.760 <1.310		ISODR K MEC6H5 MG MIBK MXYLEN NA NIT OXAT PB PFDDE PPDDT SO4 T12DCE TCLEE TRCLE	<0.056 <2.100 <12.900 <1.040 <1.350 <0.046 <0.059 349000.000 <1.750 <2.760 <1.310
XYLEN ZN	<1.340	D-87	XYLEN ZN	<1.340

AQUIFER: DENVER
SCREENED INT.: 70.0-80.0 23211
BEDROCK DEPTH: 19.5
BEDROCK LITH.: SH
SCREENED ZONE: 3 AQUIFER: ALLUVIUM
SCREENED INT.: 20.5-30.5
BEDROCK DEPTH: 25.0
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM WELL 209

ı

	201.2. 3			OND: ADDOVION
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		IIITCE	<1.090
112TCE	<1.000		112TCE	<1.630
11DCE	<1.100		11DCE	<1.850
1 1 DCLE	<1.200		IIDCLE	<1.930
12DCLE	<0.610		12DCLE	<2.070
ALDRN	<0.083		ALDRN	<0.083
λS	<2.500		AS	3.660
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	3.350
CA	73600.000		CA	•
CCL4	<2.400		CCL4	<1.690
CD	<5.160		CD	
CH2CL2	<5.000		CH2CL2	<2.480
CHCL3	<1.400		CHCL3	<1.880
CL	60400.000		CL	333000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	₹1.360
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	(2.240		CPMSO2	<2.240
CPM502 CR	< <b>5.96</b> 0			
CU	<7.940		CR	•
			CO	
DBCP	<0.130		DBCP	<0.130
DCPD			DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	0.415
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	< 0.060
ETC6H5	<1.280		ETC6H5	<0.620
FL	<1220.000		FL	4110.000
HG	<0.359		HG	•
ISODR	< 0.056		ISODR	<0.056
K	3560.000		K	•
MEC6H5	<1.210		MEC6H5	<2.100
MG	5230.000		MG	•
MIBK	•		MIBK	<12,900
MXYLEN	<1.350		MXYLEN	<1.045
NA	280000.000		NA	•
NIT	66.700		NIT	•
OXAT	<1.350		OXAT	2.040
PB	<18.600		PB	
PPDDE	< 0.046		PFDDE	(0.046
PPDDT	<0.059		FFDDT	(0.05)
504	290000.000		201	260000.00
TIZDCE	<1.200		TIZDCE	(1.75)
TCLEE	<1.300		TCLEE	2.760
TRCLE	<1.100		TROLE	<1.310
XYLEN	<2.470		XYLEN	(1.340
ZN	33.100		ZN	
<b>₩</b> 11	33.100	D-88	ZN	•

AQUIFER: DENVER WELL AQUIFER: DENVER WELL

SCREENED INT.: 47.3-58.0 BEDROCK DEPTH: 22.0 23219 SCREENED INT.: 63.3- 74.0 23218 BEDROCK DEPTH: 22.0

BEDROCK LITH .:

SCREENED ZONE: 3

BEDROCK LITH .:

SCREENED ZONE: 2

**

COMPOUND 111TCE 112TCE 11DCE 11DCLE 12DCLE ALDRN	CONCENTRATION <1.090 <1.630 <1.850 <1.930 <2.070 <0.083		COMPOUND 111TCE 112TCE 11DCE 11DCLE 12DCLE ALDRN	CONCENTRATION <1.090 <1.630 <1.850 <1.930 <2.070 <0.083
AS BTZ C6H6	<2.500 <1.140 12.200		AS BTZ C6H6	<2.500 <1.140 3.300
CA CCL4 CD CH2CL2	<1.690 •		CA CCL4 CD CH2CL2	<1.690
CHCL3 CL CL6CP	4.500 53800.000 <0.083		CHCL3 CL CL6CP	<1.880 80100.000 <0.083
CLC6H5 CLDAN CPMS	48.900 <0.152 <1.080		CLC6H5 CLDAN CPMS	16.500 <0.152 <1.080
CPMSO CPMSO2 CR	<1.980 <2.230		CPMSO CPMSO2 CR	<1.980 <2.230
CU DBCP DCPD	0.370 <9.310		CU DBCP DCPD	<0.130 < <b>9.3</b> 10
DIMP DITH DLDRN	<10.500 <3.340 <0.054		DIMP DITH DLDRN	<10.500 <3.340 <0.054
DMDS DMMP ENDRN ETC6H5	<1.160 <15.200 0.05B <0.620		DMDS DMMP ENDRN ETC6H5	<1.160 <15.200 <0.060 <0.620
FL HG ISODR	<1000.000 <0.056		FL HG ISODR	<1000.000 <0.056
K MEC6H5 MG	<2.100		K MEC6H5 MG	<2.100
MIBK MXYLEN	<12.900 <1.040		MIBK MXYLEN NA	<12.900 <1.040 •
NIT OXAT PB PPDDE	<1.350 <0.046		NIT OXAT FB FPDDE	(1.350 (0.046
PPDDE PPDDT SO4 T12DCE	<0.059 548000.000 <1.750		PPDDE PPDDT SO4 T12DCE	<0.048 <0.059 415000.000 <1.750
TCLEE TRCLE XYLEN	<2.760 4.430 <1.340		TCLEE TRCLE XYLEN	(2.760 1.330 (1.340
ZN	•	D-89	ZN	•

YELL AQUIFER: ALLUV OG3 SCREENED INT.: BEDROCK DEPTH: BEDROCK LITH.:	7.0- 22.0 22.1 SH	AQUIFER: SCREENED BEDROCK I BEDROCK I	INT.: DEPTH: LITH.:	41.0- 44.0 ST	
SCREENED ZONE:	ALLUVIUM	SCREENED	ZONE:	<b>AL</b> LUVIU	ML

SCREENED A	SONE. ADDOVION		OCKEDNED .	BOND. REBOVION
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.090		111TCE	<1.090
112TCE	<1.630		112TCE	<1.630
1 1 DCE	<1.850		11DCE	<1.850
11DCLE	(1.930		11DCLE	<1.930
	<2.070		12DCLE	<2.070
12DCLE				
ALDRN	<0.083		ALDRN	<0.083
λS	<2.500		λS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.920		C6H6	<1.920
CA	•		CA	•
CCL4	<1.690		CCL4	3.250
CD			CD	
CH2CL2	<2.480		CH2CL2	<2.480
CHCL3	<1.880		CHCL3	23.100
	88600.000		CL	110000.000
CL				
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<1.360		CLC6H5	<1.360
CLDAN	(0.152		CLDAN	<0.152
CPMS	:1.080		CPMS	3.780
CPM50	<1.980		CPMSO	32.300
CPMS02	2.830		CPMSO2	4.380
CR	•		CR	•
CÜ			CU	•
DBCP	< 0.130		DBCP	1.960
DCPD	(9.310		DCPD	<9.310
DIMP	<10.500		DIMP	56.400
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	1.200
				<1.160
DMDS	<1.160		DMDS	
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	0.824
ETC6H5	<0.620		ETC6H5	<0.620
FL	1600.000		FL	2640.000
HG	•		HG	•
ISODR	<0 <b>.056</b>		ISODR	<0.056
K	•		K	•
MEC6H5	<2.100		MEC6H5	<2.100
MG	•		MG	•
MIBK	<12.900		MIBK	<12.901
MXYLEN	<1.040		MXYLEN	(1,040
NA			NA	•
NIT	•		NIT	•
	<1.350		OXAT	(1.35)
TAXO	(1.330			11633
PB			PB	. 0 . 0 . 1.
PPDDE	< 0.046		FPDDE	< 0 * 0 4 4
PPDDT	<0.059		FFDDT	<0.059
SO4	317000.000		<b>S</b> 04	<b>802000.</b> 000
T12DCE	<1.750		TIZDCE	<1.750
TCLEE	< 2.760		TCLEE	12.400
TRCLE	<1.310		TRCLE	<1.310
XYLEN	<1.340		XYLEN	<1.340
ZN	•	D-90	ZN	•
	-	D-40	<del>= .</del> .	

•

•

•

•

WELL AQUIFER: ALLUVIUM 24013 SCREENED INT.: 13.7-23.7 BEDROCK DEPTH: 23.5 BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM	24024	AQUIFER: ALLUVIUM SCREENED INT.: 16.0- 2 BEDROCK DEPTH: 23.1 BEDROCK LITH.: SCREENED ZONE: ALLUVIUM	
---------------------------------------------------------------------------------------------------------------------	-------	-----------------------------------------------------------------------------------------------------	--

SCREENED	ZONE: ALLUVIUM		SCREENED	ZONE: ALLOVION
			COMPOUND	CONCENTRATION
COMPOUND	CONCENTRATION		111TCE	<1.090
111TCE	<1.090		112TCE	<1.630
112TCE	<1.630			<1.850
1 1 DCE	<1.850		1 1 DCE	
	<1.930		1 1 DCLE	<1.930
1 1 DCLE	<2.070		12DCLE	<2.070
12DCLE	(2.070		ALDRN	< 0.083
ALDRN	<0.083		AS	<2.500
λS	<2.500			(1.140
BTZ	<1.140		BTZ	<1.920
C6H6	<1.920		C6H6	
	•		CA	<1.690
CA	<1.690		CCL4	<1.690
CCL4	(1.090		CD	•
CD	• • • • •		CH2CL2	<2.480
CH2CL2	<2.480		CHCL3	7.450
CHCL3	3.120			123000.000
CL	99300.000		Cr	<0.083
CL6CP	<0.083		CL6CD	
CLC6H5	<1.360		CLC6H5	<1.360
	₹0.152		CLDAN	< 0.152
CLDAN	1.230		CPMS	4.580
CPMS			CPMSO	34.600
CPMSO	9.940		CPMSO2	6.130
CPMSO2	<2.240		CR CR	•
CR	•			•
CU	•		CU	2.030
DBCP	0.282		DBCP	2.030
DCPD	(9.310		DCPD	(9.310
DIMP	75.100		DIMP	120.000
	<1.590		DITH	<1.590
DITH	0.266		DLDRN	0.431
DLDRN			DMDS	<1.160
DMDS	< 1.160		DMMP	<15.200
DMMP	<15.200		ENDRN	0.310
ENDRN	0.191			₹0.620
ETC6H5	<0.620		ETC6H5	2460.000
FL	2630.000		FL	2460.000
нG			HG	
ISODR	<0.056		150DR	<0.056
			K	•
K	⟨2.100		MEC6H5	<2.100
MEC6H5	(2.100		MG	•
MG			WIBK	<12.900
MIBK	<12.900		WXXTEN	<1.040
MXYLEN	<1.040			
NA	•		NA	•
NIT			NIT	
OXAT	<1.350		OXAT	<1.350
	, , , , ,		PB	•
PB	<0.046		PPDDE	<0.040
PPDDE			PPDUT	· 0.059
PPDDT	(0.059		504	630000.000
504	509000.000			<1.750
TIZDCE	<1.750		T12DCE	18.400
TCLEE	3.120		TCLEE	<1.310
TRCLE	<1.310		TRCLE	
XYLEN	<1.340		XYLEN	<1.340
	•	D-91	ZN	•
ZN	•	וביט		

NELL AQUIFER: ALLUVIUM

027 SCREENED INT.: 28.1-32.1

BEDROCK DEPTH: 32.0

BEDROCK LITH.: SH

SCREENED ZONE: ALLUVIUM

WELL AQUIFER: ALLUVIUM

24049 SCREENED INT.: 44.2-48.2

BEDROCK DEPTH: 50.0

BEDROCK LITH.: SS

SCREENED ZONE: ALLUVIUM

SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.090	111TCE	<1.090
112TCE	<1.630	112TCE	<1.630
1 1DCE	₹1.850	11DCE	
			<1.850
1 1DCLE	<1.930	IIDCLE	<1.930
12DCLE	<2.070	12DCLE	<2.070
ALDRN	<0.083	ALDRN	<0.083
λS	<2.500	λS	<2.500
BTZ	<1.140	BTZ	3.640
C6H6	<1.920	СбИб	4.670
CA	-	CA	4.070
CCL4	41.600		
	<1.690	CCL4	<1.690
CD	•	CD	•
CH2CL2	<2.480	CH2CL2	<2.480
CHCL3	<1.880	CHCL3	263.000
CL	89800.000	CL	298000.000
CL6CP	<0.083	CL6CP	<0.083
CLC6H5	<1.360	CLC6H5	
CLDAN	<0.152		(1.360
		CLDAN	0.306
CPMS	<1.080	CPMS	51.000
CPMSO	<1.980	CPMSO	122.000
CPMSO2	<2.240	CPMSO2	60. <b>8</b> 00
CR	•	CR	•
CU		ζŪ	•
DBCP	<0.130	DBCP	5.380
DCPD	<9.310		
		DCPD	135.000
DIMP	42.200	DIMP	392.000
DITH	<1.590	DITH	<b>6.</b> 060
DLDRN	<0.054	DLDRN	1.860
DMDS	<1.160	D <b>MDS</b>	<1.160
DMMP	<30.400	DMMP	<15.200
ENDRN	<0.060	ENDRN	1.260
ETC6H5	<0.620	ETC6H5	< 0.620
FL	1770.000		
HG	1770.000	FL	2620.000
		HG	•
ISODR	<0.056	ISODR	< 0.056
K	•	K	•
MEC6H5	<2.100	MEC6H5	<2.100
MG	•	MG	
MIBK	<12.900	MIBK	612.900
MXYLEN	<1.040	MXYLEN	1.040
NA		NA NA	
NIT	•	NIT	•
OXAT	<1.350	OXAT	1.92
PB	•	PB	•
PPDDE	<0.046	PFDDE	८०.६४६
PPDDT	<0.059	PFDDT	<0.059
S04	434000.000	504	582000.000
T12DCE	<1.750	TIZDCE	<1.75¢
TCLEE	₹2.760		
		TCLEE	<123.000
TRCLE	<1.310	TRCLE	3.380
XXTEN	<1.340	XYLEN	<1.340
ZN	• 1	₀₋₉₂ ZN	•
	L L	J- 7 6	

	MKTK ANIEK	CHEMIDIKI Domini		•		
24063 SCF BEI BEI	JIFER: DENVER REENED INT.: DROCK DEPTH: 3 DROCK LITH.: 5 REENED ZONE: 2	SH	WELL 24081	AQUIFER: AL SCREENED IN BEDROCK DEP BEDROCK LIT SCREENED ZO	T.: 31.1- 47.1 TH: 35.0 H.: SS NE: ALLUVIUM	1
BECE SOLUTION TO THE SECOND STATES OF THE SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SE	DROCK LITH.: SEENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED ZONE: 2 REENED Z	SH SH SENTRATION  <1.090 <1.630 <1.850 <1.930 <2.070 <0.083 <2.500 <1.140 4.060 <1.690 <2.480 <1.880 B00.000 <0.083 <1.360 <0.152 <1.080 <1.980 <2.240  <0.130 <1.980 <2.240  <0.1590 <0.1590 <0.054 <1.160 <30.400 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0.0620 <0		BEDROCK LITO  LITOCK  SCRENED  OUNTIE  112TCE  111DCLE  111DCLE  112DCLN  AS Z 6  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANSOO  COLLOANS		
T T X	12DCE CLEE RCLE YLEN	<1.750 <2.760 <1.310 <1.340		TCLEE TRCLE XYLEN ZN	<2.760 <1.310 <1.340	)
Z	.N	• 1	0-93	eu : -		

AQUIFER: DENVER WELL AQUIFER: DENVER 086 SCREENED INT.: 33.9- 49.9 WELL 24089 SCREENED INT.: 30.2- 39.3 BEDROCK DEPTH: 17.5 BEDROCK DEPTH: 22.4 BEDROCK LITH .: SH BEDROCK LITH .: 65 SCREENED ZONE: 1 SCREENED ZONE: 1

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	(1.700
112TCE	<1.000		112TCE	<1.000
	<1.100		11DCE	<1.100
IIDCE	<1.200		11DCLE	<1.200
1 IDCLE	<0.610		12DCLE	<0.610
12DCLE			ALDRN	<0.083
ALDRN	<0.083		λ5	<2.500
λS	<2.500		BTZ	<1.140
BTZ	<1.140			<1.340
C6H6	<1.340		Сене	139000.000
CA	142000.000		Cλ	(2.400
CCL4	<2.400		CCL4	
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	< 5.000
CHCT3	<1.400		CHCL3	26.500
	169000.000		CL	101000.000
CL	<0.083		CL6CP	<0.083
CL6CP			CLC6H5	<0.580
CLC6H5	<0.580		CLDAN	<0.152
CLDAN	<0.152		CPMS	<1.080
CPMS	<1.080		CPMSO	<1.980
CPMSO	<1 <b>.98</b> 0			(2.240
CPMSO2	<2.240		CPMSO2	(5.950
CR	<b>&lt;5.96</b> 0		CR	
čû	<7.940		CU	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	(9.310
DIMP	<10.500		DIMP	<10.500
	<1.590		DITH	<1.590
DITH	<0.054		DLDRN	< 0.054
DLDRN			DMDS	<1.160
DMDS	<1.160		DMMP	<15.200
DMMP	<15.200		ENDRN	<0.060
ENDRN	<0.060			<1.280
ETC6H5	<1.280		ETC6H5	1280.000
FL	1470.000		FL	(0.359
HG	<0.359		HG	<0.056
ISODR	<0.056		ISODR	
K	1930.000		K	2740.000
MEC6H5	<1.210		MEC6H5	(1.210
MG	47000.000		MG	34400.000
	<12.900		MIBK	<12.900
MIBK	<1.350		MXYLEN	3.5
MXYLEN			NA	134000.000
NA	193000.000		NIT	3100.000
NIT	849.000		OXAT	<1.35%
TKKO	<1.350		-	<18.601
PB	<18.600		PB	(0.046
PPDDE	< 0.046		PPDDE	(0.029
PPDDT	<0.059		PPDDT	
S04	465000.000		204	411000.000
TIZDCE	<1.200		TIZDIE	(1.200
TCLEE	<1.300		TCLEE	<1.30°
	<1.100		TROLE	<1.100
TRCLE	<2.470		XYLEN	<2.47€
XALEN			ZN	(20.100
ZN	<20.100	D-94		

WELL AQUIFER: ALLUVIUM 24094 SCREENED INT.: 25 AQUIFER: ALLUVIUM SCREENED INT.: 35.0- 45.0 BEDROCK DEPTH: 47.0 BEDROCK LITH.: SH WELL 28.3- 40.3 24092 36.8

SCREENED ZONE:	ALLUVIUM		
BEDROCK LITH.:	SH	SCREENED ZONE:	
BEDROCK DEPTH:	41.0	BEDROCK LITH.:	. cu

BEDROCK DEPTH:

				CONCENTRATION
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		1   1 TCE	<1.090
112TCE	<1.000		112TCE	<1.630
1 1 DCE	<1.100		1 1 DCE	<1.850
	<1.200		11DCLE	<1.930
11DCLE	<0.610		12DCLE	<2.070
12DCLE	<0.083		ALDRN	<0.083
ALDRN	<2.500		AS	<2.500
AS			BTZ	<1.140
BTZ	<1.140		C6H6	<1.920
C6H6	<1.340		CA	•
CA	165000.000		CCL4	<1.690
CCL4	<2.400		CD	
CD	<5.160		CH2CL2	<2.480
CH2CL2	<5.000		011013	₹1.880
CHCL3	<1.400		CHCL3	105000.000
CL	89900.000		CL	<0.083
CL6CP	<0.083		CL6CP	<1.360
CLC6H5	<0.580		CLC6H5	<0.152
CLDAN	<0.152		CLDAN	
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	(2.240		CPMSO2	<2.240
CR	(5.960		CR	•
	<b>ر7.94</b> 0		CU	•
CU	<0.130		DBCP	< 0.130
DBCP	(9.310		DCPD	<9.310
DCPD	29.600		DIMP	<10.500
DIMP	<1.590		DITH	<1.590
DITH	(0.054		DLDRN	<0.054
DLDRN	(1.160		DMDS	<1.160
DMDS	<15.200		DMMP	<30.400
DMMP	⟨0.060		ENDRN	<0.060
ENDRN	<1.280		ETC6H5	<0.620
ETC6H5	1860.000		FL	1400.000
FL			нG	•
HG	<0.359		ISODR	<0.056
ISODR	<0.056		K	•
K	5270.000		MEC6H5	<2.100
MEC6H5	<1.210		MG	•
MG	81100.000		MIBK	<12,900
MIBK	<12.900		MXYLEN	<1.040
MXYLEN	<1.350		NA DEN	•
NA	215000.000		NIT'	•
NIT	2540.000		OXAT	<1.35€
OXAT	<1.350		PB	
PB	<18.600		PPDDE	<0.046
PPDDE	<0.046			<0.059
PPDDT	<0.059		PPDDT	357000.000
SO4	1040000.000		SO4	<1.750
T12DCE	<1.200		T12DCE	<2.760
TCLEE	<1.300		TCLEE	<1.310
TRCLE	<1.100		TRCLE	<1.340
XYLEN	< <b>2.4</b> 70		XYLEN	
ZN	21.600	n et	ZN	•
		D-95		

AQUIFER: ALLUVIUM
SCREENED INT.: 27.0-35.0
BEDROCK DEPTH: 32.3
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM

SCREENED A	JONES ILLEGISTE			CONCENTRATION
	CONCENTRATION		COMPOUND	(1.700
COMPOUND	1.550		111TCE	<1.000
111TCE	<1.630		112TCE	<1.100
112TCE	<1.850		11DCE	<1.200
1 1 DCE			11DCLE	(1.200
11DCLE	<1.930		12DCLE	< 0.610
12DCLE	<2.070		ALDRN	<0.083
ALDRN	<0.083		AS	<2.500
AS	<2.500		BTZ	<1.140
BTZ	1.410		C6H6	<1.340
C6H6	<1.920			25100.000
	•		CA	(2.400
CX	5.290		CCL4	₹5.160
CCL4			CD	(5,000
CD	<2.480		CH2CT5	(1.400
CH2CL2	2.460		CHCL3	
CHCL3	893.000		CL	97000.000
Cr	178000.000		CL6CP	<0.083
CL6CP	<0.083		CLC6H5	⟨0.580
CLC6H5	<1.360		CLDAN	<0.152
CLDAN	<0.152		CPMS	<1.080
CPMS	9.800			<1,980
	68.800		CPMSO	3.900
CPMSO	13.100		CPMSO2	₹5.960
CPMS02	(3.750		CR	<7.940
CR	•		CU	(0.130
ÇÜ	5.120		DBCP	
DBCP			DCPD	(9.310
DCPD	18.600		DIMP	(10.500
DIMP	157.000		DITH	<1.590
DITH	1.860		DLDRN	<0.054
DLDRN	1.060		DMDS	<1.160
DMDS	<1.160		DMMP	<15.200
DMMP	<30.400			< 0.060
	1.330		ENDRN	<1.280
ENDRN	< 0.620		ETC6H5	1690.000
ETC6H5	2540.000		FL	< 0.359
FL			HG	⟨0.056
HG	<0.056		ISODR	<b>(0.050</b>
ISODR	(0.056		K	2480.000
K	• • • • • • • • • • • • • • • • • • • •		MEC6H5	<1.210
MEC6H5	<2.100		MG	31300.000
MG	•		MIBK	/12.90°
MIBK	<12.900		MXXLEN	<1.35:
MXYLEN	<1.040		NA DEN	167000.000
NA	•			281.011
	•		NIT	11.35%
TIN	<1.350		OXAT	(18.600
TAXO	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		FB	70.246
PB	<0.046		FFDDE	( U . U . E . E
PPDDE			<b>FFL-DT</b>	
TODYS	<0.059		504	338000.000
504	735000.000		TIZDCE	<1.239
TIZDCE	<1.750		TCLEE	21.30C
TCLEE	40.100		TRCLE	(1.10)
TRCLE	(1.310		XYLEN	(2.47)
	(1.340			.20.100
XATEN	•	D-96	ZN	
ZN	•	<b>D</b> 344		

WELL AQUIFER: ALLUVIUM

24107 SCREENED INT.: 27.0- 35.0
BEDROCK DEPTH: 34.6
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM

WELL AQUIFER: DENVER

24108 SCREENED INT.: 31.9- 39.9
BEDROCK DEPTH: 22.5
BEDROCK LITH.: SH
SCREENED ZONE: 1

)

0011221122			0000000	, , , , , , , , , , , , , , , , , , ,
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.090
112TCE	<1.000		112TCE	<1.630
1 IDCE	<1.100		11DCE	<1.850
1 1DCLE	<1.200		11DCLE	
				<1.930
12DCLE	<0.610		12DCLE	<2.070
ALDRN	<0.083		ALDRN	<0.083
AS	<2.500		AS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	<1.920
CA	421000.000		CA	•
CCL4	<2.400		CCL4	<1.690
CD	<5.160		CD	•
CH2CL2	<b>&lt;5.0</b> 00		CH2CL2	<2.480
CHCL3	<1.400		CHCL3	<1.880
CL	293000.000		CL	125000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	<1.360
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMS02	<2.240		CPMSO2	<2.240
CR	25.800		CR	
CÜ	<7.940		cũ	•
DBCP	<0.130		DBCP	<0.130
DCPD	(9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DIMP	<1.590
DLDRN	<0.054			
DMDS	<1.160		DLDRN DMDS	<0.054
DMMP	<15.200			<1.160
			DMMP	<15.200
ENDRN ETC6H5	<0.060		ENDRN	<0.060
	<1.280		ETC6H5	<0.620
FL	2750.000		FL	3160.000
HG	< 0.359		HG	• • • • •
ISODR	<0.056		ISODR	<0.056
K	3620.000		K	. •
MEC6H5	<1.210		MEC6H5	<2.100
MG	117000.000		MG	•
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		NXYLEN	<1.040
NA '	742000.000		NA	•
NIT	2040.000		NIT	
TAXO	<1.350		OXAT	<1.350
PB	< 18.600		PB	•
PPDDE	< 0.046		PPDDE	(0.046
PPDDT	<0.059		PFDDT	< 0.059
504	2620000.000		804	1140000.000
T12DCE	<1.200		TIZDCE	<1.750
TCLEE	<1.300		TCLEE	k2.760
TRCLE	<1.100		TRCLE	<1.310
XYLEN	<2.470		XYLEN	<1.340
ZN	92.800	D-97	ZN	•
		L 31	•	

WELL AQUIFER: DENVIL: 47.0-55.0 WELL AQUIFER: ALLUVIUM SCREENED INT.: 18.0-30.0

BEDROCK DEPTH: 12.8

BEDROCK LITH.: SH

SCREENED ZONE: 2 SH

BEDROCK LITH.: SH

SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
HITCE	<1.090		111TCE	⟨1.700
112TCE	<1.630		112TCE	<1.000
11DC~	<1.850		11DCE	<1.100
11DCLE	<1.930		11DCLE	<1.200
12DCLE	<2.070		12DCLE	< 0.610
ALDRN	<0.083		ALDRN	<0.083
AS	<2.500		AS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.920		C6H6	₹1.340
			CA	120000.000
CA				
CCL4	<1.690		CCL4	<2.400
CD	•		CD	< 5.160
CH2CL2	<2.480		CH2CL2	< 5 . 0 0 0
CHCL3	<1.880		CHCL3	1.580
CL	34900.000		CL	162000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<1.360		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
			CPMS	<1.080
CPMS	<1.080			
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMSO2	< 2.240
CR	•		CR	<5.96C
CU	•		CU	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	224.000
DITH	<1.590		DITH	<1.590
			DLDRN	<0.054
DLDRN	<0.054			
DMDS	<1.160		DMDS	<1.160
DMMP	<30.400		DMMP	<15.200
ENDRN	<0.060		ENDRN	<b>&lt;0.</b> 060
ETC6H5	<0.620		ETC6H5	<1.280
FL	3180.000		FL	1590.000
HG	•		HG	<0.359
ISODR	< 0.056		ISODR	<0.056
K			K	2340.000
MEC6H5	<2.100		MEC6H5	(1,210
MG	(2.100		MG	40400.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.040		MXYLEN	(1.35)
NA	•		NA	223000.000
NIT	•		NIT	15200.000
TAXO	<1.350		TAKO	<1.35€
PB	•		FB	<18.600
PPDDE	< 0.046		PPDDE	.0.046
PPDDT	<0.059		PPDDT	(0.059
			204	517000.003
S04	2710000.000			\$17000.00. <1.200
T12DCE	<1.750		TIZDCE	
TCLEE	<2.760		TCLEE	1.369
TPCLE	<1.310		TRCLE	<1.100
XYLEN	<1.340		XYLEN	<2.470
ZN	•	D-98	ZN	<20.100
	•	D 70		· · · · · - · ·

WELL AQUIFER: ALLUVIUM WELL AQUIFER: ALLUVIUM 24113 SCREENED INT.: 37.0-45.0

24112 SCREENED INT.: 36.6-50.0 BEDROCK DEPTH: 37.6

BEDROCK LITH.: ST SCREENED ZONE: ALLUVIUM

BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM

BEDROCK DEPTH:

42.5

SCREENED	ZONE: ALLUVIUM	SCREENED Z	ONE: ALLUVIUM
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111 <b>T</b> CE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	1 1 DCLE	<1.200
		12DCLE	<0.610
12DCLE	<0.610		
ALDRN	<0.083	ALDRN	<0.083
<u>as</u>	<2.500	AS	<2.500
BTZ	<1.140	BTZ	<1.140
C6H6	<1.340	C6H6	<1.340
CA	143000.000	CA	97000.000
CCL4	<2.400	CCL4	< 2.400
CD	<5.160	CD	< 5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	7.650	CHCL3	<1.400
CL	121000.000	CL	45700.000
CL6CP	<0.083	CL6CP	<0.083
CLC6H5	<0.580	CLC6H5	<0.580
CLDAN	<0.152	CLDAN	< 0.152
CPMS	<1.080	CPMS	<1.080
CPMSO	<1.980	CPMSO	<1.980
CPM502	<2.240	CPMSQ2	(2.240
CR	<5.960	CR	₹5.960
CU	<7.940	CU	(7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	< 9,310
DIMP	<10.500	DIMP	13.500
DITH	<1.590	DITH	<1.590
DLDRN	<0.054	DLDRN	< 0.054
DMDS	<1.160	DMDS	<1.160
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.060	ENDRN	< 0.060
ETC6H5	<1.280	ETC6H5	<1.280
FL	<1220.000	FL	<1220.000
HG	<0.359	HG	< 0.359
ISODR	<0.056	ISODR	< 0.056
K	3460.000	K	3870.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	36800.000	MG	32500.000
MIBK	<12.900	MIBK	(12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	153000.000	NA	145000.000
NIT	1620.000	NIT	1660.000
OXAT	<1.350	OXAT	<1.350
PB	<18.600		<18.600
		PB	
PPDDE	<0.046	PPDDE	< 0.046
PPDDT	<0.059	PPDDT	(0.059
S04	411000.000	504	119000.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	(1.100	TRCLE	< 1.100
XYLEN	<2.470	XYLEN	< 2.470
ZN	<20.100	ZN	<20.100

WELL AQUIFER: ALLUVIUM 24117 SCREENED INT.: 12.0- 20.0 WELL AQUIFER: ALLUVIUM SCREENED INT.: 22.0- 30.0 BEDROCK DEPTH: 28.0 BEDROCK DEPTH: 18.8 BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM

BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM

SCREENED	ZONE: ALLOVION			
	CONCENTRATION		COMPOUND	CONCENTRATION
COMPOUND	<1.090		111TCE	<1.090
111TCE			112TCE	<b>&lt;1.63</b> 0
112TCE	<1.630		11DCE	<1.850
11DCE	<1.850		11DCLE	<1.930
1 1 DCLE	<1.930		12DCLE	<2.070
12DCLE	<2.070		ALDRN	<0.083
ALDRN	< 0.083			<2.500
λS	<2.500		λS	<1.140
BTZ	<1.140		BTZ	<1.920
	<1.920		C6H6	
CeHe			CA	16.800
CA	<1.690		CCL4	16.800
CCL4	(1.000		CD	•
CD	400		CH2CL2	<2.480
CH2CL2	<2.480		CHCL3	<1.880
CHCL3	<1.880		C1,	88600.000
CL	98800.000		CL6CP	<0.083
CL6CP	<0.083		CLC6H5	<1.360
CLC6H5	<1.360		CLDAN	<0.152
CLDAN	< 0.152			<1.080
CPMS	<1.080		CPMS	<1.980
CPMSO	<1.980		CPMSO	⟨2.240
CPMS02	<2.240		CPMSO2	(2.245
	•		CR	•
CR	•		CÜ	
CU	0.157		DBCP	<0.130
DBCP			DCPD	<9.310
DCPD	<9.310		DIMP	<10.500
DIMP	<10.500		DITH	<1.590
DITH	<1.590		DLDRN	<0.054
DLDRN	< 0.054		DMDS	<1.160
DMDS	<1.160		DMMP	<15.200
DMMP	<30.400			<0.060
ENDRN	0.064		ENDRN	₹0.620
ETC6H5	< 0.620		ETC6H5	1210.000
FL	1180.000		FL	1210100
			HG	<0.056
HG	<0.056		ISODR	(0.056
ISODR			K	
K	(2.100		MEC6H5	<2.100
MEC6H5	(2.100		MG	•
MG			MIBK	<12.900
MIBK	<12.900		MXYLEN	<1.040
MXYLEN	<1.040		NA	•
NA	•		NIT	
NIT	•			<1.351
TAXO	<1.350		OXAT	<u>.</u>
PB	•		PB	₹0.046
PPDDE	< 0.046		PFDDE	(0.059
	<0.059		PFDDT	291000.000
PPDDT	319000.000		804	
S04	<1.750		T12DCE	(1.750
T12DCE	(2.760		TCLEE	<2.760
TCLEE			TRCLE	<1.310
TRCLE	<1.310		XYLEN	<1.340
XYLEN	<1.340		ZN	•
7.N	•	D- 100	41	

• D- 100

ZN

	WRIR WATER CHEMISTRY SUM	MARY, 3RD QUARTER,	FY87
WELL 24120	AQUIFER: DENVER SCREENED INT.: 85.0-95.0 BEDROCK DEPTH: 32.0 BEDROCK LITH.: SS SCREENED ZONE: 3	WELL AQUIFER: 24124 SCREENED BEDROCK BEDROCK SCREENED	INT.: 32.6- 40.6 DEPTH: 12.5 LITH.: SS
	COMPOUND CONCENTRATION 111TCE <1.700 112TCE <1.000	COMPOUNE 111TCE 112TCE 11DCE	CONCENTRATION <1.700 <1.000 <1.100

SCHEENER				
COMPOUND 111TCE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 11CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111CE 111	CONCENTRATION		OUE ELE 2 OUE ELE 1110CLN ONTTCELE 1110CLN ONTTCELE 1110CLN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110CCN ONTTCELE 1110C	CONCENTRATION
S04			T12DCE TCLEE TRCLE	<1.200
XYLEN ZN	<2.470 35.200	D- 10 1	XYLEN ZN	<20.100

MELL WELL

127 24130

AQUIFER: DENVER SCREENED INT.: 30.0-35.0 BEDROCK DEPTH: 27.4 BEDROCK LITH.: SH SCREENED ZONE: 2

AQUIFER: DENVER
SCREENED INT.: 25.0- 30.0
BEDROCK DEPTH: 22.8
BEDROCK LITH.: ST
SCREENED ZONE: 2 SH

COMPOUND   CONCEMTRATION					
111TCE	COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
112TCE	111TCE	<1.700			
11DCE					
11DCLE					
12DČLE					
ALDRN					
AS					
AS	ALDRN	<0.083		ALDRN	<0.083
### TZ	λS	<2.500		λS	<2.500
CAHE CA 191000.000 CA 121000.000 CCL4 CCL4 C2.400 CCL4 C2.400 CCCL4 C2.400 CCCL4 C2.400 CCCL4 C2.400 CCCL4 C2.400 CCCL4 C2.4000 CCCL4 C2.4000 CCCL4 C2.4000 CCCL4 C2.4000 CCCL4 C2.4000 CCCL4 C2.4000 CCCL4 C2.4000 CCCLC4 C5.000 CH2CL2 C5.0000 CH2CL3 T8.400 CLCCB CCCC CCCCC CCCCCCCCCCCCCCCCCCCC					
CA 191000.000					
CCL4					
CD					
CH2CL2	·				
CHCL3					
CL         489000.000         CL         116000.000           CL6CP         <0.083         CL6CP         <0.083           CLC6H5         <0.580         CL6CF         <0.580           CLDAN         <0.152         CLDAN         <0.152           CPMS         22.300         CPMS         2.300           CPMSO         29.600         CPMSO         8.970           CPMSO2         25.800         CPMSO2         <2.240           CR         <5.960         CR         <5.960           CU         <7.940         CU         <7.940           DBCP         0.609         DCPD         0.609           DCPD         169.000         DECP         0.609           DCPD         169.000         DCPD         0.9310           DIMP         107.000         DIMP         107.000           DITH         6.450         DITH         <1.590           DLDRN         1.140         DLDRN         0.221           DMDS         <1.160         DMDS         <1.160           DMMP         <15.200         DMMP         <15.200           ETC6H5         <1.280         ETC6H5         <1.280           FL					
CL6CP         <0.083         CL6CP         <0.083           CLC6H5         <0.580	CHCL3			CHCL3	78.400
CL6CP         <0.083         CL6CP         <0.083           CLC6H5         <0.580	CL	489000.000		CL	116000.000
CLC6H5         <0.580	CL6CP				
CLDAN					
CPMS         22.900         CPMSO         8.970           CPMSO2         25.800         CPMSO2         <2.240					
CPMSO 92.600 CPMSO 8.970 CPMSO2 25.800 CPMSO2 (2.2400 CR (5.960 CR (5.960 CD (CR (5.960) CD (CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (7.940) CD (CD (7.940) CD (7.940) CD (CD (7.940) CD (CD (7.940) CD (7.940) CD (CD (7.940) CD (7.940) CD (CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.940) CD (7.					
CPMSO2					
CR		92.600			
CU					
DBCP 3.640 DBCP 0.609 DCPD 169.000 DCPD	CR	<b>&lt;5.96</b> 0		CR	<5.960
DBCP 3.640 DBCP 0.609 DCPD 169.000 DCPD	CU	<7.940		CÜ	<7.940
DCPD					
DIMP 676.000 DIMP 107.000 DITH 6.450 DITH (1.590 DLDRN 1.140 DLDRN 0.221 DMDS (1.160 DMDS (1.160 DMMP (15.200 DMMP (15.200 ENDRN 0.819 ENDRN 0.225 ETC6HS (1.280 ETC6H5 (1.280 FL 1860.000 FL 2480.000 HG (0.359 HG (0.359 ISODR (0.056 ISODR (0.056 K 6660.000 K 3580.000 MEC6H5 (1.210 MEC6H5 (1.210 MG 87900.000 MG 51500.000 MIBK (12.900 MIBK (12.900 MXYLEN (1.350 MXYLEN (1.350 NA 249000.000 NA 167000.000 NIT 173.000 NIT 3880.000 NIT 173.000 NIT 3880.000 NIT 173.000 PB (1.350 PB (18.600 PB (1.350) PDDE (0.046 PPDDE (0.046) PPDDT > 0.066 PPDDT (0.059 S04 56300.000 TCLEE (6.670 TCLEE 70.100 TRCLE (5.500 XYLEN (2.470 XYLEN (2.470)					
DITH 6.450 DITH (1.590 DLDRN 0.221 DMDS (1.160 DMDS (1.160 DMDS (1.160 DMDS (1.160 DMDS (1.160 DMDS (1.160 DMMP (15.200 DMMP (15.200 DMMP (15.200 ENDRN 0.819 ENDRN 0.225 ETC6H5 (1.280 ETC6H5 (1.280 FL 1860.000 FL 2480.000 HG (0.359 HG (0.359 ISODR (0.056 K 6660.000 K 3580.000 MEC6H5 (1.210 MEC6H5 (1.210 MEC6H5 (1.210 MG 87900.000 MG 51500.000 MIBK (12.900 MIBK (12.900 MXYLEN (1.350 MXYLEN (1.350 MXYLEN (1.350 NA 249000.000 NA 167000.000 NIT 3380.000 OXAT (1.350 PB (18.600 PB (18.600 PPDDT (0.059 S04 563000.000 S04 452000.000 T12DCE (1.200 TRCLE 70.100 TRCLE (5.500 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.010 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.010 XYLEN (2.470 XYLEN (2.470 XYLEN (2.470 XYLEN (2.010 XYLEN (2.470 XYLEN (2.010 XYLEN (2.010 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN (2.00 XYLEN					
DLDRN         1.140         DLDRN         0.221           DMDS         <1.160					
DMDS					
DMMP         <15.200         DMMP         <15.200           ENDRN         0.819         ENDRN         0.225           ETC6HS         <1.280					
ENDRN 0.819 ENDRN 0.225 ETC6H5	DMDS			DMDS	<1.160
ENDRN 0.819 ENDRN 0.225 ETC6H5	DMMP	<15.200		DMMP	<15.200
ETC6H5	ENDRN	0.819		ENDRN	
FL       1860.000       FL       2480.000         HG       (0.359)       HG       (0.359)         ISODR       (0.056)       ISODR       (0.056)         K       6660.000       K       3580.000         MEC6H5       (1.210)       MEC6H5       (1.210)         MG       87900.000       MG       51500.000         MIBK       (12.900)       MIBK       (12.900)         MXYLEN       (1.350)       MXYLEN       (1.350)         NA       249000.000       NIT       3380.000         NIT       173.000       NIT       3380.000         OXAT       (1.350)       PB       (18.600)         PB       (18.600)       PB       (18.600)         PPDDE       (0.046)       PPDDE       (0.046)         PPDDT       (0.059)       SO4       452000.000         T12DCE       (1.200)       T12DCE       (1.200)         TCLEE       70.100       TCLEE       6.670         TXLEN       (2.470)       XYLEN       (2.470)         XYLEN       (2.470)       XYLEN       (2.470)					
HG       <0.359					
ISODR					
K       6660.000       K       3580.000         MEC6H5       <1.210	-				
MEC6H5       <1.210					
MG 87900.000 MG 51500.000 MIBK (12.900 MIBK (12.900 MXYLEN (1.350 MXYLEN (1.350 NA 249000.000 NA 167000.000 NIT 173.000 NIT 3380.000 OXAT 2.090 OXAT (1.350 PB (18.600 PB (18.600 PPDDE (0.046 PPDDE (0.046 PPDDT ) 0.066 PPDDT (0.059 SO4 563000.000 SO4 452000.000 T12DCE (1.200 T12DCE (1.200 TCLEE 70.100 TCLEE (5.500 XYLEN (2.470 XYLEN (2.470					
MIBK       <12.900					
MXYLEN       <1.350	MG			MG	
MXYLEN         <1.350	MIBK	<12.900		MIBK	<12.900
NA       249000.000       NA       167000.000         NIT       173.000       NIT       3380.000         OXAT       2.090       OXAT       <1.350		<1.350			
NIT       173.000       NIT       3380.000         OXAT       2.090       OXAT       c1.350         PB       <18.600       PB       <18.600         PPDDE       <0.046       PPDDE       <0.046         PPDDT       <0.059       SO4       452000.000         SO4       563000.000       SO4       452000.000         T12DCE       <1.200       T12DCE       <1.200         TCLEE       70.100       TCLEE       6.670         TRCLE       12.100       TRCLE       <5.500         XYLEN       <2.470       XYLEN       <2.470         ZN       94.000       ZN       <2.200					
OXAT       2.090       OXAT       c1.350         PB       <18.600					
PB       <18.600					
PPDDE       < 0.046					
PPDDT       < 0.059					
SO4       563000.000       SO4       452000.000         T12DCE       <1.200					
SO4       563000.000       SO4       452000.000         T12DCE       <1.200	PPDD'T	> 0.066		PPDDT	<0.059
T12DCE <1.200 T12DCE <1.200 TCLEE 70.100 TCLEE 6.670 TRCLE 12.100 TRCLE <5.500 XYLEN <2.470 XYLEN <2.470					452000 0000
TCLEE       70.100       TCLEE       6.670         TRCLE       12.100       TRCLE       < 5.500         XYLEN       < 2.470       XYLEN       < 2.470         ZN       94.000       ZN       < 2.0.100					
TRCLE 12.100 TRCLE <5.500 XYLEN <2.470 XYLEN <2.470 7N 94.000 7N (20.100)					
XYLEN <2.470 XYLEN <2.470					
7N 94 000 7N (20 100					
2N 94.000 $0-102$ $2N$ <20.100					
	ZN	94.000	D-102	ZN	<20.100

1

 $( \underbrace{\bullet} )$ 

4

•

•

AQUIFER: DENVER SCREENED INT.: 31.0- 35.0 BEDROCK DEPTH: 25.0	WELL AQUIFER: DENVER 24136 SCREENED INT.: 51.0-6 BEDROCK DEPTH: 25.0	4.0
BEDROCK LITH.: SS	BEDROCK LITH.: SS	
CODERNED TOND. 3	COPERIED TONE. 3	

COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.090	111TCE	<1.090
112TCE	<1.630	112TCE	<1.630
11DCE	<1.850	11DCE	<1.850
11DCLE	<1.930	11DCLE	<1.930
12DCLE	<2.070	12DCLE	<2.070
ALDRN	<0.083	ALDRN	<0.083
λS	<2.500	λS	<2.500
BTZ	<1.140	BTZ	<1.140
C6H6	<1.920	C6H6	4.260
CA	•	CA	•
CCL4	<1.690	CCL4	<1.690
CD	•	CD	
CH2CL2	<2.480	CH2CL2	<2.480
CHCL3	22,000	CHCL3	<1.880
CL	125000.000	CL	40500.000
CL6CP	<0.083	CL6CP	<0.083
CLC6H5			
	<1.360	CLC6H5	<1.360
CLDAN	<0.152	CLDAN	<0.152
CPMS	3.380	CPMS	<1.080
CPMSO	20.600	CPMSO	<1.980
CPMSO2	3.840	CPMSO2	<2.240
CR	•	CR	•
CU	•	CÜ	•
DBCP	0.841	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	134.000	DIMP	<10.500
DITH	<1.590	DITH	<1.590
DLDRN	0.332	DLDRN	<0.054
DMDS	<1.160	DMDS	<1.160
DMMP	<15.200		<15.200
		DMMP	
ENDRN	0.243	ENDRN	<0.060
ETC6H5	<0.620	ETC6H5	<0.620
FL	2490.000	FL	990.000
HG	•	HG	•
ISODR	<0.056	ISODR	<0.056
K	•	K	•
MEC6H5	<2.100	MEC6H5	<2.100
MG	•	MG	•
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.040	MXYLEN	<1.040
NA	•	NA	4
NIT	•		•
OXAT	<1.350	NIT OXAT	<1.350
	(1.330		
PB	.0.046	PB	
PPDDE	<0.046	PPDDE	< 0 . 016
PPDDT	<0.059	PPDDT	<0.059
S04	710000.000	504	704000.000
TIZDCE	<1.750	TIZDCE	< 1.75@
TCLEE	<b>6.</b> 380	TCLEE	<2.760
TRCLE	<1.310	TRCLE	<1.310
XYLEN	<1.340	XYLEN	<1.340
ZN	n	ZN	<u> </u>

TELL AQUIFER: DENVER

37 SCREENED INT.: 81.0-100.0 24158 SCREENED INT.: 9.0-29.0 BEDROCK DEPTH: 29.0

BEDROCK DEPTH: 25.0
BEDROCK LITH.: SS
BEDROCK LITH.: SH
SCREENED ZONE: 4
SCREENED ZONE: ALLUVIUM

	201121 4	GCKBBNBB	BONE: RELOVION
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.090	111TCE	<1.700
112TCE	<1.630	112TCE	
			<1.000
11DCE	<1.850	1 1 DCE	<1.100
11DCLE	<1.930	11DCLE	<1.200
12DCLE	<2.070	12DCLE	<0.610
ALDRN	<0.083	ALDRN	<0.083
λS	<2.500	AS	<2.500
BTZ	<1.140	BTZ	<1.140
C6H6	<1.920	C6H6	<1.340
CA		CA	
			93800.000
CCL4	<1.690	CCL4	<2.400
CD		CD	< 5.160
CH2CL2	<2.480	CH2CL2	<5.000
CHCL3	<1.880	CHCL3	<1.400
CL	34500.000	CL	120000.000
CL6CP	<0.083	CL6CP	<0.083
CLC6H5	<1.360	CLC6H5	<0.580
CLDAN	<0.152	CLDAN	<0.152
CPMS	<1.080	CPMS	<1.080
CPMSO	<1.980	CPMSO	<b>&lt;1.98</b> 0
CPMS02	<2.240	CPMSO2	<2.240
CR	•	CR	<5.960
CU	•	CU	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	<10.500	DIMP	<10.500
DITH	<1.590	DITH	<1.590
DLDRN	<0.054	DLDRN	<0.054
DMDS	<1.160	DMDS	<1.160
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.060	ENDRN	<0.060
ETC6H5	<0.620	ETC6H5	<1.280
FL	<1000.000	FL	1420.000
HG	•	HG	< 0.359
ISODR	<0.056	ISODR	⟨0.056
K		K	4100.000
MEC6H5	<2.100	MEC6H5	<1.210
	(2.100		
MG		MG	42200.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.040	MXYLEN	<1.350
NA	•	NA	152000.000
NIT	•	NIT	1920.000
OXAT	<1.350	TAXO	<1.350
PB		PB	<18,600
PPDDE	< 0.046	PFDDE	(0.046
	<0.059		( <b>0</b> .0 <b>2</b> 0
PPDDT		PPDDT	
S04	528000.000	504	297000.000
TIZDCE	<1.750	TIZDCE	<1.200
TCLEE	<2.760	TCLEE	<1.300
TRCLE	<1.310	TRCLE	<1.100
XYLEN	<1.340	XYLEN	< 2.470
ZN	•	ZN	107.000
<b>_</b>	•	<b>D</b> 10.	

D-104

- --- . . .

(4)

*)

WELL AQUIFER: DENVER

24159 SCREENED INT.: 63.0-108.0

BEDROCK DEPTH: 29.0

BEDROCK LITH.: SH

WELL AQUIFER: ALLUVIUM

24161 SCREENED INT.: 13.0-18.0

BEDROCK DEPTH: 17.5

BEDROCK LITH.: SH

BEDROCK LITH.: SH
SCREENED ZONE: 4

BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM

SCYPPHED	20112. 4	OCKEDINED COME: NEEDO 1 2011
COMPOUND	CONCENTRATION	COMPOUND CONCENTRATION
111TCE	<1.700	111TCE <1.090
112TCE	<1.000	:12TCE <1.630
11DCE	<1.100	11DCE <1.850
11DCLE	<1.200	11DCLE <1.930
12DCLE	<0.610	12DCLE <2.070
ALDRN	<0.166	ALDRN <0.083
λS	₹2.500	AS <2.500
BTZ	<1.140	BTZ 1.320
C6H6	<1.340	C6H6 <1.920
		^.
CA	132000.000	CA
CCL4	<2.400	CCL4 <1.690
CD	<5.160	CD .
CH2CL2	<5.000	CH2CL2 <2.480
CHCL3	<1.400	CHCL3 4.690
CL	43000.000	CL 242000.000
CL6CP	<0.166	CL6CP <0.083
CLC6H5	<0.580	CLC6H5 <1.360
		CLDAN <0.152
CLDAN	<0.304	
CPMS	<1.080	CPMS 18.200
CPMSO	<1.980	CPMSO 43.800
CPMSO2	<2.240	CPMSO2 9.870
CR	<b>&lt;5.9</b> 6 <b>0</b>	CR .
CU	<7.940	CU .
DBCP	<0.130	DBCP 0.966
DCPD	<9.310	DCPD 24.400
DIMP	<10.500	DIMP > 210.000
DITH	<1.590	DITH 2.430
DLDRN	<0.110	DLDRN 0.573
DMDS	<1.160	DMDS <1.160
DMMP	<15.200	DMMP <15.200
ENDRN	<0.120	ENDRN 0.377
ETC6H5	<1.280	ETC6H5 < 0.620
FL	<1220.000	FL 2500.000
HG	<0.359	HG .
ISODR	<0.112	ISODR < 0.056
ĸ	2750.000	K
MEC6H5	<1.210	MEC6H5 <2.100
	15100.000	MG .
MG		
MIBK	<12.900	** <del>*</del>
MXYLEN	<1.350	MXYLEN <1.040
NA	116000.000	NA .
NIT	11.500	NIT .
TAXO	<1.350	OXAT (1.350
PB	<18.600	PB .
PPDDE	<0.092	PPDDE (0.046
PPDDT	<0.118	PPDDT < 0.059
S04	320000.000	504 528000.000
T12DCE	<1.200	T12DCE /1.750
TCLEE	<1.300	TCLEE 22.200
TRCLE	<1.100	TRCLE 2.790
XYLEN	<2.470	XYLEN <1.340
ZN	<20.100	ZN .
		=-

**(★)** 

WELL AQUIFER: ALLUVIUM

162 SCREENED INT.: 11.0- 16.0

BEDROCK DEPTH: 17.0

BEDROCK LITH.: SH

SCREENED ZONE: ALLUVIUM

WELL AQUIFER: ALLUVIUM

24163 SCREENED INT.: 9.0- 19.0

BEDROCK DEPTH: 24.0

BEDROCK LITH.: SH

SCREENED ZONE: ALLUVIUM

SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.090		111TCE	<1.090
112TCE	<1.630		112TCE	<1.630
11DCE	<1.850		11DCE	<1.850
11DCLE	<1.930		11DCLE	<1.930
12DCLE	<2.070		12DCLE	(2.070
ALDRN	<0.083		ALDRN	< 0.083
λS	<2.500		λS	7.150
BTZ	<1.140		BTZ	1.140
C6H6	<1.920		C6H6	(1.920
Cλ	•		CA	•
CCL4	<1.690		CCL4	<1.690
CD	•		CD	•
CH2CL2	<2.480		CH2CL2	<2.480
CHCL3	2.380		CHCL3	<1.880
CL	285000.000		CL	174000.000
CL6CP	<0.0B3		CL6CP	<0.083
	<1.360			
CLC6H5			CLC6H5	<1.360
CLDAN	<0.152		CLDAN	<0.152
CPMS	3.380		CPMS	<1.080
CPMSO	4.960		CPMSO	<1.980
CPMSO2	3.700		CPMS02	<2.240
CR	•		CR	•
CU	•		CU	•
DBCP	<0.130		DBCP	< 0.130
DCPD	<9.310		DCPD	<9.310
DIMP	157.000		DIMP	<10.500
DITH	7.120		DITH	<1.590
DLDRN	0.733		DLDRN	< 0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	(15,200
ENDRN	0.486		ENDRN	<0.060
ETC6H5	<0.620		ETC6H5	⟨0.620
FL	2260.000		FL	2290.000
HG	•		HG	
ISODR	<0.056		ISODR	<0.056
K	•		K	•
MEC6H5	<2.100		MEC6H5	< 2.100
MG	•		MG	•
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.040		MXYLEN	<1.040
NA	•		NA	•
NIT	4		NIT	•
TAXO	2.200		TAKO	<1.35€
PB	•		PB	
PPDDE	< 0.046		PPDDE	< 0 . 04 e
PPDDT	<0.059		PFDDT	ڊ <u>ڙ</u> ڙ. ۾ ،
S04	417000.000		504	322000.000
T12DCE	<1.750		T12DCE	<1.75⊕
TCLEE	4.390		TCLEE	(2.760
TRCLE	<1.310		TRCLE	<1.310
XYLEN	<1.340		XYLEN	€1.340
ZN	•	D-106	ZN	•

WELL AQUIFER: ALLUVIUM
24164 SCREENED INT.: 9.0- 19.0 WELL AQUIFER: ALLUVIUM
24166 SCREENED INT.: 16.0- 26.0
BEDROCK DEPTH: 20.0 BEDROCK DEPTH: 23.0

BEDROCK DEPTH: 23.0

BEDROCK LITH.: SH

SCREENED ZONE: ALLUVIUM

BEDROCK DEPTH: 23.0

BEDROCK DEPTH: 23.0

BEDROCK DEPTH: 23.0

BEDROCK DEPTH: 23.0

BEDROCK DEPTH: 23.0

BEDROCK DEPTH: 23.0

SUREENED 2	ONE: ALLUVIUM		SCKEENED	ZONE: ALLUVIUM
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.090		111TCE	<1.090
112TCE			112TCE	
	<1.630			<1.630
1 1 DCE	<1.850		11DCE	<1.850
1 1 DCLE	<1.930		11DCLE	<1.930
12DCLE	<2.070		12DCLE	<2.070
ALDRN	<0.083		ALDRN	<0.083
AS	<2.500		AS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	₹1.920		C6H6	₹1.920
CA			CA	
	<1.690			<1.690
CCL4	(1.690		CCL4	<1.690
CD	<2.480		CD	•
CH2CL2			CH2CL2	<2.480
CHCL3	<1.880		CHCL3	<1.880
CL	174000.000		CL	110000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<1.360		CLC6H5	<1.360
CLDAN	⟨0.152		CLDAN	<0.152
CPMS	<1.080			
	(1.000		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMS02	<2.240		CPMSO2	<2.240
CR	•		CR	•
CU	•		CU	•
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	0.117
DMDS	<1.160		DMDS	
DMMP				<1.160
	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.0€0
ETC6H5	<0.620		ETC6H5	<0.620
FL	3230.000		FL	<b>1710.0</b> 00
HG	•		HG	•
ISODR	<0.056		ISODR	<0.056
K	•		ĸ	•
MEC6H5	<2.100		MEC6H5	<2.100
MG			MG	
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.040		MXYLEN	<1.040
NA	(1.040			CITORS
	•		NA	•
NIT			NIT	
TAXO	<1.350		OXAT	<1.350
PB	•		PB	•
PPDDE	< 0.046		PPDDE	< 0.046
PPDDT	<0.059		FFDDT	< 0.059
504	651000.000		SO4	320000.000
TIZDCE	<1.750		T12DCE	(1.750
TCLEE	<2.760		TCLEE	(2.760
TRCLE	<1.310		TRCLE	(1,310
XYLEN	<1.340		XYLEN	<1.340
ZN	•	D-107	ZN	•

4

•

(*****)

_

•

----**-**

•

=

"ELL AQUIFER: DENVER
67 SCREENED INT.: 43.5-53.5
BEDROCK DEPTH: 22.5
BEDROCK LITH.: ST
SCREENED ZONE: 2 WELL AQUIFER: DENVER 24168 SCREENED INT.: 73.5-93.5
BEDROCK DEPTH: 22.5
BEDROCK LITH.: ST
SCREENED ZONE: 3

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.090		111TCE	<1.090
112TCE	<1.630		112TCE	<1.630
11DCE	<1.850		IIDCE	<1.850
1 1DCLE	<1.930		11DCLE	<1.930
12DCLE	<2.070		12DCLE	<2.070
ALDRN	<0.083		ALDRN	<0.083
ALDAN	(2.500		ALDAN	<2.500
BTZ	<1.140		BTZ	<1.140
	2.930		C6H6	
C6H6 ርእ				4.020
CCL4	<1.690		CA CCL4	41.600
				<1.690
CD	<2.480		CD	<2.480
CH2CL2	<2.48U		CH2CL2	
CHCL3	<1.880		CHCL3	<1.880
CL	31700.000		CL	44400.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	10.500		CLC6H5	14.400
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMS02	<2.240		CPMSO2	<2.240
CR	•		CR	•
CU	•		CU	•
DBCP	< 0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	•
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	•
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<0.620		ETC6H5	<0.620
FL	1170.000		FL	1090.000
HG	•		HG	•
ISODR	<0.056		ISODR	<0.056
K	•		K	•
MEC6H5	<2.100		MEC6H5	<2.100
MG	•		MG	•
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.040		MXYLEN	र्भे. ६५६
NA	•		NA	•
NIT	•		NIT	•
OXAT	<1.350		OXAT	< 1.350
PB	•		PB	•
PPDDE	<0.046		PPDDE	(0,046
PPDDT	<0.059		PPDDT	(0.059
S04	763000.000		S04	428000.000
TI 2DCE	<1.750		TIZDCE	<1.750
TCLEE	<2.760		TCLEE	(2.76)
TRCLE	(1. 10		TRCLE	(1.310
XYLEN	<1.340		XYLEN	<1.340
ZN		h 100	ZN	
- I4	•	D-108	411	•

WELL AQUIFER: DENVER
24172 SCREENED INT.: 121.5-131.5 WELL 24171

AQUIFER: DENVER
SCREENED INT.: 40.0-50.0
BEDROCK DEPTH: 18.0
BEDROCK LITH.: SS BEDROCK DEPTH: 18.0 BEDROCK LITH.: SS SCREENED ZONE: 5 SCREENED ZONE: 2

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.090		111TCE	<1.090
	<1.630			
112TCE			112TCE	<1.630
11DCE	<1.850		1 1 DCE	<1.850
1 1 DCLE	<1.930		11DCLE	<1.930
12DCLE	<2.070		12DCLE	< 2.070
ALDRN	<0.083		ALDRN	<0.083
AS	3.420		λS	<2.500
BTZ	<1.140		BTZ	
				<1.140
Сене	5.710		C6H6	4.680
CA	•		CA	•
CCL4	<1.690		CCL4	<1.690
CD	•		CD	•
CH2CL2	<2.480		CH2CL2	<2.480
CHCL3	<1.880		CHCL3	6.870
CL	27800.000		Cr	34300.000
CL6CP	<0.083		CL6CP	
				<0.083
CLC6H5	21.600		CLC6H5	17.400
CLDAN	<0.152		CLDAN	< 0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMSO2	<2.240
CR	•		CR	
Ċΰ	•		ζű	•
DBCP	<0.130		DBCP	40.130
				<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	0.090		DLDRN	< 0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	⟨0.620		ETC6H5	<0.620
FL	2190.000			
	2190.000		FL	978.000
HG	•		HG	•
ISODR	<0.056		ISODR	<0.056
K	•		ĸ	•
MEC6H5	<2.100		MEC6H5	<2.100
MG	•		MG	
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.040		MXYLEN	<1.040
NA			NA	
NIT	•			•
	44.350		NIT	, , , , , ,
OXAT	<1.350		OXAT	<1.350
PB	•		PB	•
PPDDE	<0.046		PPDDE	< 0.046
PPDDT	<0.059		PPDDT	<0.059
S04	141000.000		504	891000.000
TIZDCE	<1.750		TIZDCE	<1.750
TCLEE	(2.760		TCLEE	(2.760
TRCLE	(1.310			
			TRCLE	<1.310
XYLEN	<1.340		XYLEN	<1.340
ZN	•	D-109	ZN	•

WELL AQUIFER: DENVER
4174 SCREENED INT.: 56.5-61.5 24175 SCREENED INT.: 90.0-95.0 BEDROCK DEPTH: 21.0 BEDROCK LITH.: SS SCREENED ZONE: 3 SCREENED ZONE: 4

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.090		111TCE	<1.090
112TCE	<1.630		112TCE	<1.630
11DCE	<1.850		11DCE	<1.850
	<1.930		11DCLE	<1.930
IIDCLE				
12DCLE	<2.070		12DCLE	<2.070
<b>A</b> LDRN	<0.083		<b>A</b> LDRN	<0.083
λS	<2.500		λS	4.080
BTZ	<1.140		BTZ	<1.140
C6H6	<1.920		C6H6	3.980
CA	•		Cλ	•
CCL4	<1.690		CCL4	<1.690
CD			CD	
	<2.480		CH2CL2	<2.480
CH2CL2				
CHCT'3	<1.880		CHCL3	<1.880
CL	15600.000		Cr	15100.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	9.500		CLC6H5	16.700
ÇLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMSO2	<2.240
CR			CR	
ζΰ	•		CÜ	•
DBCP	<0.130		DBCP	<0.130
				40.130
DCPD	<9.310		DCPD	<9.310
DIMP	. •		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP			DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<0.620		ETC6H5	<0.620
FL	<1000.000		FL	913.000
HG			HG	
ISODR	<0.056		ISODR	<0.056
K	(0.030		K	(0.030
	<2.100			<2.100
MEC6H5	(2.100		MEC6H5	(2.100
MG			MG	
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.040		MXYLEN	<1.040
NA	•		NA	•
NIT	•		TIM	•
OXAT	<1.350		OXAT	<1.350
PB	•		PB	•
PPDDE	< 0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	<0.059
\$04	275000.000		S04	293000.000
TIZDCE	<1.750		T12DCE	<1.750
TCLEE	<2.760		TCLEE	<2.760
TRCLE	<1.310		TRCLE	<1.310
XYLEN	<1.340		XYLEN	<1.340
ZN	•	D 110	zn	•

D--110

WELL AQUIFER: ALLUVIUM WELL AQUIFER: ALLUVIUM

24179 SCREENED INT.: 14.0- 24.0 24180 SCREENED INT.: 11.0- 16.0 BEDROCK DEPTH: 24.0 BEDROCK DEPTH: 16.0 BEDROCK LITH.: SS BEDROCK LITH.: SS

SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

			***************************************	C.D. ADDOVION
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.090		111TCE	<1.090
112TCE	<1.630		112TCE	(1.630
11DCE	<1.850		11DCE	
				<1.850
11DCLE	<1.930		11DCLE	<1.930
12DCLE	<2.070		12DCLE	<11.500
ALDRN	<0.083		<b>ALDRN</b>	<0.083
λS	<2.500		λS	4 <b>2.5</b> 00
BTZ	<1.140		BTZ	<1.140
C6H6	<1.920		C6H6	<1.920
CA	•		CA	
CCL4	6.090		CCL4	4.290
CD			CD	4.230
CH2CL2	<2.480		CH2CL2	<2.480
CHCL3	<1.880		CHCL3	433.000
CL	101000.000			
CL6CP			CL	229000.000
	<0.083		CL6CP	<0.083
CLC6H5	<1.360		CLC6H5	<1.360
CLDAN	<0.152		CLDAN	<0.152
CPMS	6.200		CPMS	4.160
CPMSO	33.200		CPMSO	45.600
CPMSO2	7.150		CPMSO2	5.520
CR	•		CR	•
CU	•		CÜ	·
DBCP	1.140		DBCP	4.180
DCPD	10.700		DCPD	<9.310
DIMP	138.000		DIMP	227.000
DITH	<1.590		DITH	
DLDRN	1.740			<1.590
DMDS			DLDRN	0.257
	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<30.400
ENDRN	1.470		ENDRN	0.427
ETC6H5	<0.620		ETC6H5	<0.620
FL	2340.000		FL	2860.000
HG	•		HG	•
ISODR	<0.056		ISODR	<0.056
K	•		K	
MEC6H5	<2.100		MEC6H5	<2.100
MG	•		MG	
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.040		MXYLEN	(1.040
NA	- " "			(1.040
	•		NA	•
NIT	<1.350		NIT	
OXAT	(1.350		OXAT	<1.350
PB	• • • • •		PB	•
PPDDE	<0.046		PPDDE	< 0.046
PPDDT	<0.059		PPDDT	<0.059
<b>S</b> 04	457000.000		<b>S</b> 04	940000.000
T12DCE	<1.750		T12DCE	<1.750
TCLEE	16.700		TCLEE	26.800
TRCLE	<1.310		TRCLE	<1.310
XYLEN	<1.340		XYLEN	<1.340
ZN			ZN	
J17	•	D-111	ΔN	•

WELL AQUIFER: ALLUVIUM 24182 SCREENED INT.: 16.0-26.0 BEDROCK DEPTH: 22.5 WELL AQUIFER: ALLUVIUM LIST SCREENED INT.: 17.0-27.0 BEDROCK DEPTH: 24.0

BEDROCK LITH.: ST BEDROCK LITH.: SH

SCREENED	ZONE: ALLUVIUM		SCREENED	ZONE:	ALLUVIUM
COMPOUND	CONCENTRATION		COMPOUND	ÇOI	NCENTRATION
111TCE	<1.090		111TCE		<1.090
112TCE	<1.630		112TCE		<1.€30
11DCE	<1.850		11DCE		<1.850
IIDCLE	<1.930		11DCLE		<1.930
12DCLE	<2.070		12DCLE		
					<2.070
ALDRN	<0.083		ALDRN		<0.083
λS	<2.500		λS		<2.500
BTZ	<1.140		BTZ		<1.140
Cehe	<1.920		C6H6		<1.920
ÇA	•		CA		•
CCL4	<1.690		CCL4		<1.690
CD	•		CD		•
CH2CL2	<2.480		CH2CL2		<2.480
CHCL3	3.520		CHCL3		<1.880
CL	119000.000		CL	10:	3000.000
CL6CP	<0.083		CL6CF		<0.083
CLCEH5	<1.360		CLC6H5		<1.360
CLDAN	<0.152		CLDAN		<0.152
CPMS	<1.080		CPMS		<1.080
CPMSO	<1.980		CPMSO		<1.980
CPMS02	3.670		CPMS02		8.710
CR	•		CR		•
čū	•		čΰ		
DBCP	0.172		DBCP		0.847
DCPD	<9.310		DCPD		(9.310
DIMP	26.400		DIMP		20.900
DITH	<1.590		DITH		<1.590
DLDRN	<0.054		DLDRN		0.220
DMDS	<1.160		DMDS		<1.160
DMMP	<15.200		DMMP		<15.200
ENDRN	<0.060				0.076
ETC6H5	(0.620		ENDRN		
			ETC6H5	i	<0.620
FL	1970.000		FL		1480.000
HG	10,056		HG		.0.056
ISODR	<0.056		ISODR		<0.056
K			K		
MEC6H5	<2.100		MEC6H5		<2.100
MG			MG		<12.900
MIBK	<12.900		MIBK		
MXYLEN	<7.040		MXYLEN		<1.040
NA	•		NA		•
NIT	•		NIT		•
OXAT	<1.350		OXAT		<1.350
PB	•		PB		•
PPDDE	<0.046		PPDOE		<0.046
PPDDT	<0.059		PPDDT		<0.059
<b>S</b> 04	488000.000		SC4	367	7000.000
TIZDCE	<1.750		T12DCE		<1.750
TCLEE	<2.760		TCLEE		<2.760
TRCLE	<1.310		TRCLE		<1.310
XYLEN	<1.340		XYLEN		<1.340
ZN	•	<b>5</b> 112	ZN		•
	•	D-112	<del></del>		*

WELL AQUIFER: ALLUVIUM

24183 SCREENED INT.: 11.0-21.0
BEDROCK DEPTH: 21.0
BEDROCK LITH.: ST
SCREENED ZONE: ALLUVIUM

WELL AQUIFER: DENVER

24184 SCREENED INT.: 18.0-23.0
BEDROCK DEPTH: 16.9
BEDROCK LITH.: SS
SCREENED ZONE: 2

. 🔷 )

BEDRUCK LITH.: ST SCREENED ZONE: ALLUVIUM

SCREENED	ZONE: ALLUVION		SCREENED 2	EUNE: 2
COMPOUND	CENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.090		111TCE	<1.090
112TCE	<1.630		112TCE	<1.630
1 I DCE	<1.850		11DCE	<1.850
11DCLE	<1.930		1 1 DCLE	<1.930
12DCLE	<2.070		12DCLE	<2.070
ALDRN	<0.083		ALDRN	<0.083
AS	(2.500		λS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	₹1.920		C6H6	<1.920
CA			CA	
CCL4	<1.690			
	(1.690		CCL4	<1.690
CD	•		CD	•
CH2CL2	<2.480		CH2CL2	<2.480
CHCL3	<1.880		CHCL3	2.110
CL	203000.000		CL	71400.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<1.360		CLC6H5	<1.360
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	3.690		CPMSO2	<2.240
CPMSO2 CR				
	•		CR	•
CU			CU	
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<b>&lt;9.3</b> 10
DIMP	<1( 500		DIMP	18.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<30.400		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<0.620		ETC6H5	<0.620
FL	2630.000		FL	2220.000
HG			HG	2220.000
ISODR	<0.056			<0.056
	(0.056		ISODR	(0.056
K	* * * * * * * * * * * * * * * * * * * *		X	•
MEC6H5	<2.100		MEC6H5	<2.100
MG	•		MG	•
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.040		MXYLEN	<1.040
NA	•		NA	•
NIT	•		NIT	
OXAT	<1.350		OXAT	<1.350
PB			PB	
PPDDE	<0.046			<0.046
			PPDDE	
PPDDT	<0.059		PPDDT	<0.059
S04	1370000.000		504	305000.000
T12DCE	<1.750		T12DCE	<1.750
TCLEE	<b>&lt;2.76</b> 0		TCLEE	<2.760
TRCLE	<1.310		TRCLE	<1.310
XYLEN	<1.340		XYLEN	<1.340
ZN	•		ZN	•
<del></del> -	•	D-113	<b>~••</b>	•

			•	•	
WELL 4185	BEDROCK DI	ALLUVIUM INT.: 15.0- 25.0 IPTH: 25.0 ITH.: SS CONE: ALLUVIUM		AQUIFER: ALLUVIUM SCREENED INT.: 5.0- 15.0 BEDROCK DEPTH: 12.0 BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM	)
	COMPOUND 111TCE 112TCE 11DCE 11DCLE 12DCLE ALDRN AS BTZ C6H6 CA CCL4 CD CH2CL2 CHCL3 CL CL6CP	CONCENTRATION <1.090 <1.630 <1.850 <1.930 <2.070 <0.083 <2.500 <1.140 <1.920 <1.690 <2.480 <1.880 83900.000 <0.083		COMPOUND CONCENTRATION 111TCE 13.900 112TCE (1.630 11DCE (1.850 11DCLE (1.930 12DCLE (2.070 ALDRN (0.083 AS (2.500 BTZ (1.140 C6H6 (1.920 CA (1.690 CCL4 (1.690 CCL4 (1.690 CH2CL2 (2.480 CCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	
	CLC6H5 CLDAN CPMS CPMSO CPMSO2 CR CU DBCP DCPD DIMP DITH DLDRN DMDS DMMP ENDRN ETC6H5 FL HG ISODR K	<1.360 <0.152 <1.080 <1.980 <2.240  <0.130 <9.310 <10.500 <1.590 0.299 <1.160 <15.200 0.082 <0.620 1120.000  <0.056		CLC6H5 CLDAN CLDAN CLDAN CPMS CPMS CPMSO CPMSO2 CR CU DBCP CPD CPD CPD CPD CPD CPD CITH C1.590 DLDRN C1.590 DLDRN C1.160 DMMP C30.400 ENDRN CMSC ETC6H5 FL CO.056 K CO.136 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056 CO.056	
	MEC6H5 MG MIBK MXYLEN NA NIT OXAT PB PPDDE PPDDT SO4 T12DCE TCLEE TRCLE XYLEN	<2.100 <12.900 <1.040 <1.350 <0.046 <0.059 297000.000 <1.750 <2.760 <1.310 <1.340		MEC6H5 (2.100 MG MIBK (12.900 MXYLEN (1.040 NA NIT OXAT (1.350 PB PPDDE (0.046 PPDDT (0.059 S04 252000.000 T12DCE (1.750 TCLEE (2.760 TRCLE (1.310 XYLEN (1.340	

D-114

ZN

ZN

WELL AQUIFER: ALLUVIUM
24187 SCREENED INT.: 8.0-18.0

DEDMI: 17.0

WELL AQUIFER: ALLUVIUM
24188 SCREENED INT.: 7.0-17.0
BEDROCK DEPTH: 34.0

(8)

**(4**)

BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM BEDROCK LITH .: SH

SCREENED ZONE: ALLUVIUM

SCREENED 2	CONE: ALLUVIUM		SCREENED	ZONE: ALLUVIUM
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.090		111TCE	<1.090
112TCE	<1.630		112TCE	<1.630
11DCE	<1.850		1 1DCE	<1.850
11DCLE	<1.930		11DCLE	<1.930
12DCLE	<2.070		12DCLE	<2.070
ALDRN	<0. <b>083</b>		ALDRN	< 0.083
λS	<2.500		λS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.920		C6H6	<1.920
CA	•		CX	•
CCL4	<1.690		CCL4	<1.690
CD			CD	
CH1 LL2	<2.480			<2.480
	(2.480		CH2CL2	
CHCL3	<1.880		CHCL3	<1.880
CL	88700.000		CL	269000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<1.360		CLC6H5	<1.360
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	4.410		CPMS02	3.360
CR	•		CR	•
CU	•		CU	*
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	< <b>9.3</b> 10
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<30.400
ENDP'				
	<0.060		ENDRN	<0.060
ETC6ht	<0.620		ETC6H5	<0.620
FL	1800.000		FL	2880.000
hg	•		HG	•
ISODR	<0.056		ISODR	<0.056
K	•		K	•
MEC6H5	<2.100		MEC6H5	<2.100
MG			MG	(20,00
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.040		MXYLEN	<1.040
NA	•		NA	•
NIT	•		NIT	•
OXAT	<1.350		OXAT	<1.350
PB	•		PB	•
PPDDE	<0.046		PPDDE	< 0.046
PPDDT	₹0.059		PPDDT	₹0.059
504	440000.000		504	1430000.000
T12DCE	<1.750		T12DCE	<1.750
TCLEE	<2.760		TCLEE	<2.760
TRCLE	<1.310		TRCLE	<1.310
XYLEN	<1.340		XYLEN	<1.340
ZN	•		ZN	•
		D~ 1.15		<del>-</del>

D~115

. . . . .

WELL AQUIFER: DENVER
25009 SCREENED INT.: 70.0-105.0
BEDROCK DEPTH: 34.0
BEDROCK LITH.: SS WELL AQUIFER: DENVER
1191 SCREENED INT.: 33.1-44.0
BEDROCK DEPTH: 17.0 SCREENED ZONE: 1

BEDROCK LITH .: SCREENED ZONE: 2

(3)

*)

ı

, (

•

•

•

				,
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.090		111TCE	<1.700
112TCE	<1.630		112TCE	<1.000
1 1 DCE	<1.850		11DCE	<1.100
1 1 DCLE	<1.930		11DCLE	<1.200
12DCLE	<2.070		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
λS	<2.500		λS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.920		C6H6	<1.340
CX	•		CA	80400.000
CCL4	<1.690		CCL4	<2.400
CD	•		CD	<5.160
CH2CL2	<2.480		CH2CL2	<5.000
CHCL3	<1.880		CHCL3	<1.400
CL	80100.000		CL	27500.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	12.800		CLC6H5	<0.580
CLCAN	<0.152			
			CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMS02	<2.230		CPMSO2	<2.240
CR	•		CR	<5.960
CU	•		ÇÜ	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<3.340		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<0.620		ETC6H5	
				<1.280
FL	<1000.000		FL	<1220.000
HG			HG	<0.359
ISODR	<0.056		ISODR	⟨∪.056
K	•		K	5380.000
MEC6H5	<2.100		MEC6H5	<1.210
MG	•		MG	3660.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.040		MXYLEN	<1.350
NA	•		NA	169000.000
NIT			NIT	•
OXAT	<1.350		OXAT	<1.350
PB	-		PB	<18.600
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.059			<0.059
			PPDDT	
S04	525000.000		S04	421000.000
T12DCE	<1.750		T12DCE	<1.200
TCLEE	<2.760		TCLEE	<1.300
TRCLE	<1.310		TRCLE	<1.100
XYLEN	<1.340		XYLEN	<2.470
ZN	•	<b>5</b> . 1.12	ZN	<20.100
		D-116		

WELL AQUIFER: DENVER

25011

WELL AQUIFER: ALLUVIUM 25011 SCREENED INT.: 10.0- 45.0 BEDROCK DEPTH: 11.0 BEDROCK LITH.: SS SCREENED ZONE: ALLUVIUM

(8)

***

25013 SCREENED INT.: 80.0- 95.0 BEDROCK DEPTH: 11.0 BEDROCK LITH.: SS SCREENED ZONE: 2

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
			11DCE	
11DCE	<1.100			<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<b>&lt;0.6</b> 10
ALDRN	<0.083		ALDRN	<0.083
λS	<2.500		AS	<2.500
BTZ	<1.140		BTZ	<1.140
			C6H6	
C6H6	<1.340			<1.340
CA	136000.000		CX	30800.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	145000.000		CL	12100.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
	<2.240		CPMSO2	<2.240
CPMS02				
CR	12.200		CR	<5.960
CU	<7.940		CU	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	1190.000		FL	<1220.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	3270.000		K	1430.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	56500.000		MG	1280.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	186000.000		NA	145000.000
NIT	5490.000		NIT	69.200
OXAT	<1.350		OXAT	<1.350
PB	<18.600		PB	<18.600
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	<0.059
S04	455000.000		S04	237000.000
T12DCE	<1.200		TIZDCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	<2.470		XYLEN	<2.470
ZN	<20.100		ZN	22.300
~**	120.100	D-117	211	-2.000

WELL AQUIFER: DENVER

5014 SCREENED INT.: 54.0-64.0
BEDROCK DEPTH: 11.0
BEDROCK LITH.: SS
SCREENED ZONE: 1

WELL AQUIFER: ALLUVIUM
25015 SCREENED INT.: 31.0-41.0
BEDROCK DEPTH: 39.0
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM

SCREENED Z	ONE: 1		SCREENED	ZONE: ALLUVIUM
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		1 1 DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<b>&lt;0.6</b> 10
ALDRN	<0.083		aldrn	<0.083
λS	(2.500		λS	(2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		<b>C6H6</b>	<1.340
CA	5260.000		CX	245000.000
CCL4	<2.400		CCL4	(2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	24300.000		CL	52000.000
CL6CP	<0.083		CL6CP	<0.211
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	(2.240		CPMSO2	<2.240
CR	(5.960		CR	<5.960
cu	<7.940		ÇÜ	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	2370.000		FL	1310.000
нĞ	(0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	745.000		K	5380.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	<500.000		MG	43500.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	103000.000		NA	370000.000
NIT	•		NIT	2120.000
OXAT	<1.350		OXAT	<1.350
PB	<b>&lt;18.6</b> 00		PB	<18.600
PPDDE	< 0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	<v.059< td=""></v.059<>
504	79700.000		SO4	1290000.000
T12DCE	<1.200		T12DCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	<2.470		XYLEN	<2.470
ZN	<20.100	D-118	ZN	73.700
<b>2</b> 17		סוו-ת		

**(***)

(4)

**(** 

AQUIFER: DENVER

WELL AQUIFER: DENVER
25016 SCREENED INT.: 57.0-63.5 25017
BEDROCK DEPTH: 39.0
BEDROCK LITH.: SH
SCREENED ZONE: 2 SCREENED INT:: 72.0-78.0
BEDROCK DEPTH: 39.0
BEDROCK LITH:: SH
SCREENED ZONE: 2

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
1 I DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
1 2DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
λS	<2.500		λS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
CA	355000.000		Ċλ	88400.000
CCL4	<2.400		CCL4	<2.400
CD	6.640		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	17800.000		CL	19300.000
CL6CP	<0.211		CL6CP	<0.211
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
				<1.080
CPMS	<1.080		CPMS	
CPMSO	<1.980		CPMSO	<1.980
CPM502	<2.240		CPMSO2	<2.240
CR	12.700		CR	<b>&lt;5.9</b> 60
CU	<7.940		ĊU	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	(9.310
			DIMP	<10.500
DIMP	<10.500			
DITH	<1.590		DITH	(1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	1290.000		FL	<1200.000
HG	<0.359			<0.359
			HG	
ISODR	<0.056		ISODR	<0.056
K	5750.000		K	4490.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	38500.000		MG	4640.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	464000.000		NA	282000.000
NIT	151.000		NIT	172.000
**				<1.350
TAXO	<1.350		OXAT	
PB	<18.600		PB	<18.600
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	<0.059
504	1580000.000		SO4	779000.000
TIZDCE	<1.200		TIZDCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	(2.470	<b>m</b>	XYLEN	<2.470
ZN	44.400	D-119	ZN	<20.100

WELL AQUIFER: ALLUVIUM
7018 SCREENED INT.: 23.0-43.0
BEDROCK DEPTH: 43.0
WELL AQUIFER: DENVER
SCREENED INT.: 122.0-142.0
BEDROCK DEPTH: 43.0

4)

BEDROCK DEPTH: 43.0 BEDROCK LITH: SH SCREENED ZONE: 2 BEDROCK LITH.: SS SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION	ī	COMPOUND	CONCENTRATION
111TCE	<1.700	•	111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE_	<1.100		1 1 DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	< 0.610
ALDRN	<0.083		ALDRN	<0.083
AS	(2.500		λS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
CA	138000.000		Cλ	15400.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	146000.000		CL	215000.000
CL6CP	<0.083		CL6CP	<0.083
	(0.580			
CLC6H5			CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1. <b>08</b> 0		CPM5	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	(2.240		CPMS02	<2.240
CR	<5.960		CR	<5.960
CÜ	<7.940		Ċΰ	<7.940
DBCP	<0.130		DBCP	<0.130
				10.130
DCPD	<9.310		DCPD	<9.310
DIMP	212.000		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	1460.000		FL	1310.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
ĸ	3040.000		ĸ	814.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	46700.000		MG	<500.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	₹1.350
<del>-</del>				
NA	207000.000		NA	193000.000
NIT	1910.000		NIT	10.800
TAXO	<1.350		OXAT	<1.350
PB	<18.600		PB	<18.600
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	<0.059
S04	480000.000		S04	116000.000
TIZDCE	<1.200		T12DCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	<2.470		XYLEN	<2.470
ZN	<20.100	D-120	ZN	<20.100
<del></del> ·	. =	. = -	<del></del>	· = - · · • •

**(***)

4

.(

WELL AQUIFER: DENVER
25023 SCREENED INT.: 60.0-65.0
BEDROCK DEPTH: 48.0
BEDROCK LITH.: LG WELL AQUIFER: ALLUVIUM 25022 SCREENED INT.: 40.0-50.0 BEDROCK DEPTH: 48.0 BEDROCK LITH.: LG SCREENED ZONE: ALLUVIUM SCREENED ZONE: AL

OCKEENED	SORE: ALLOVION		SCREENED	ZONE: AL
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
1 1DCE	<1.100		11DCE	<1.100
1 1DCLE	<1.200		11DCLE	<1.200
1 2DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
as	<2.500		λS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
CÀ	92300.000		CA	37100.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	₹5.000		CH2CL2	<5.000
CHCL3				
	<1.400		CHCL3	<1.400
CL	31300.000		CL	16100.000
CL6CP	<0.211		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240	•	CPMSO2	<2.240
CR	<5.960		CR	< <b>5.96</b> 0
CU	<7.940		CU	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	(9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	0.085		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	
				<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	2300.000		FL	1310.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	3020.000		K	2210.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	36200.000		MG	12000.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	110000.000		NA	80100.000
NIT	2810.000		NIT	8(6.000
TAXO	<1.350		OXAT	<1.350
₽B	<18.600		PB	<18.600
PPDDE	<0.046			
PPDDT			PPDDE	(0.046
	<0.059		PPDDT	<0.059
S04	405000.000		504	152000.000
TIZDCE	<1.200		T12DCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	<2.470		XYLEN	<2.470
ZN	21.300	D 101	ZN	27.500
		D 12 1		

D-121

____

• .____ •

WELL AQUIFER: DENVER
25039 SCREENED INT.: 48.0-73.0
BEDROCK DEPTH: 28.3
BEDROCK LITH.: SH
SCREENED ZONE: U WELL AQUIFER: ALLUVIUM

5038 SCREENED INT.: 17.0- 27.0

BEDROCK DEPTH: 28.3

BEDROCK LITH.: SH

SCREENED ZONE: ALLUVIUM

SCREENED	ZONE: ALLUVIUM		SCREENED 2	ONE: 'U
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		1 1 DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
λ5	<2.500		λ5	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
CA	98500.000		Cλ	143000.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2				
	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	68400.000		CT	22500.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMSO2	<2.240
CR	<5.960	•	CR	<5.960
CU	<7.940		čΰ	₹7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<16.200
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15-200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	<1200.000		FL	<1220.000
НG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	3680.000		K	2660.000
MEC6H5	<1.210		MEC6H5	(1.210
MG	29000.000		MG	12500.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	105000.000		NA	237000.000
NIT	2320.000		NIT	79.200
OXAT	<1.350		CXAT	<1.350
PB	<18.600		PB	<18.600
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	<0.059
S04	254000.000		<b>\$04</b>	<b>682000.</b> 000
T12DCE	<1.200		T12DCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.10 <b>0</b>		TRCLE	<1.100
XYLEN	<2.470		XYLEN	<2.470
ZN	53.200		ZN	23.200
		D-122	<del></del> -	

(

• . . .

WELL AQUIFER: ALLUVIUM
26006 SCREENED INT.: 29.0-35.0
BEDROCK DEPTH: 35.2
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM

SCREENED	ZONE: ADDOVION		SCREENED	ZONE: ALLOVIUM
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	9. <b>9</b> 00		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.117
λS	27.700		λS	<2.500
BTZ	1.370		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
Cλ	197000.000		CA	308000.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	1.540		CHCL3	<1.400
CL	733000.000		CL	1300000.000
CL6CP	<0.211		CL6CP	<0.083
CLC6H5	9.140		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	1.840		CPMS	<1.080
CPMSO	8.780		CPMSO	<1.980
CPM502	840.000		CPMSO2	11.200
CR	15.200		CR	25.500
CU	<7.940		CU	<7.940
DBCP	0.397		DBCP	<0.130
DCPD	<9.310		DCPD	<21.600
DIMP	1040.000		DIMP	16.300
DITH	144.000		DITH	1.740
DLDRN	1.010		DLDRN	0.244
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060	•	ENDRN	0.220
ETC6H5	<1.280		ETC6H5	<1.280
FL	1930.000		FL	2880.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	5980.000		K	9400.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	68900.000		MG	123000.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	665000.000		NA	<b>777000.00</b> 0
NIT	3420.000		NIT	1420.000
OXAT	18.400		OXAT	1.660
PB	<18.600		PB	<18.600
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	<0.059
504	923000.000		504	534000.000
T12DCE	<1.200		T12DCE	<1.200
TCLEE	1.780		TCLEE	<1.300
TRCLE	6.470		TRCLE	<1.100
XYLEN	<2.470		XYLEN	<2.470
ZN	33.800	D-123	ZN	73.500
		U- 123		

WELL AQUIFER: ALLUVIUM 26017 SCREENED INT.: 43.6-47.6 BEDROCK DEPTH: 47.0

WELL AQUIFER: ALLUVIUM WELL 6015 SCREENED INT.: 48.0-52.0 26017 BEDROCK DEPTH: 48.6 BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION	1	COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
1 1 DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610			
ALDRN			12DCLE ALDRN	<0.610
	<0.070			<0.070
AS	13.200		λS	9.400
BTZ	<2.000		BTZ	<2.000
C6H6	<1.340		C6H6	<1.340
CA	202000.000		CA	114000.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	< 5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCT3	<1.400		CHCL3	<1.400
CL	1030000.000		CL	547000.000
CL6CP	<0.070		CL6CP	<0.070
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	•		CLDAN	•
CPMS	<1.300		CPMS	<1.300
CPMSO	<4.200		CPMSO	<4.200
CPMSO2	84.100		CPMSO2	14.600
CR	<5.960		CR	<5.960
CÜ	12.600		ζũ	<7.940
DBCP	<0.130		DBCP	₹0.130
DCPD	<9.310		DCPD	₹9.310
DIMP	526.000		DIMP	174.000
DITH	<1.760		DITH	3.310
DLDRN	<0.060		DLDRN	<0.060
DMDS	<1.800		DMDS	<1.800
DMMP	< <b>76.0</b> 00		DMMP	<30.400
ENDRN	<0.052		ENDRN	<0.052
ETC6H5	<1.280		ETC6H5	<1.280
FL	2720.000		FL	2370.000
HG	<0.480		HG	<0.480
ISODR	<0.060			
K			ISODR	<0.060
MEC6H5	9770.000		K	6780.000
	<1.210		MEC6H5	<1.210
MG	70000.000		MG	49400.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	729000.000		NA	519000.000
NIT	298.000		NIT	2380.000
OXAT	<2.000		OXAT	<2.000
PB	<18.600		PB	<18.600
PPDDE	<0.053		PPDDE	<0.053
PPDDT	<0.070		PPDDT	<0.070
S04	449000.000		S04	314000.000
TIZDCE	<1.200		T12DCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	<2.470		XYLEN	<2.470
ZN	82.100	D-124	ZN	70.300
		- <b></b> ·		

**(4**)

(3)

WELL AQUIFER: DENVER 26019 SCREENED INT.: 46.6-50.6 BEDROCK DEPTH: 46.5 BEDROCK LITH.: SH 26019

WELL AQUIFER: ALLUVIUM
26020 SCREENED INT.: 40.0-44.0
BEDROCK DEPTH: 43.7
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM SCREENED ZONE: 1

COMBOUND	CONCENSES METON		COMPOUND	COMORNIANIA
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.070
λS	5.080		λS	•
BTZ	<1.140		BTZ	<2.000
C6H6	<1.340		C6H6	<1.340
CA	113000.000		CA	
CCL4	<2.400		CCL4	<2.400
CD	₹5.160		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	559000.000		CL	
CL6CP	<0.083		CL6CP	40.070
CLC6H5				<0.070
	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	
CPMS	<1.080		CPMS	<1.300
CPMSO	<1.980		CPMSO	<4.200
CPMSO2	5.810		CPMSO2	<4.700
CR	<5.960		CR	•
CU	<7.940		CU	•
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	12.000		DIMP	862.000
DITH	<1.590		DITH	3.130
DLDRN	<0.054		DLDRN	0.137
DMDS	<1.160		DMDS	<1.800
DMMP	<15.200		DMMP	<152.000
ENDRN	<0.060		ENDRN	<0.052
ETC6H5	<1.280		ETC6H5	<1.280
FL	2890.000		FL	
HG	<0.359			•
ISODR	<0.339 <0.056		HG	10.000
			ISODR	<0.060
K	4740.000		K	. •
MEC6H5	<1.210		MEC6H5	<1.210
MG	32800.000		MG	•
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	390000.000		NA	•
NIT	4310.000		NIT	•
OXAT	<1.350		OXAT	<2.000
PB	<1 <b>8.</b> 600		PB	•
PPDDE	<0.046		PPDDE	<0.053
PPDDT	<0.059		PPDDT	<0.070
804	329000.000		<b>S</b> 04	
T12DCE	<1.200		TIZDCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	<2.470			<2.470
			XYLEN	
ZN	40.900	D-125	ZN	•

WELL AQUIFER: DENVER
16041 SCREENED INT.: 42.9- 46.9 WELL AQUIFER: DENVER
26057 SCREENED INT.: 46.0- 50.0

BEDROCK DEPTH: 42.0

BEDROCK LITH.: SH

SCREENED ZO( ): 1 SH

BEDROCK LITH.: SH

SCREENED ZONE: 1

SCREENED	20. 3: 1 SH		SCREENED Z	JNE: I
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<34.000		111TCE	<1.700
112TCE	<20.000		112TCE	<1.000
11DCE	<22.000		1 1DCE	<1.100
11DCLE	<24.000		11DCLE	<1.200
12DCLE	109.000		1 2DCLE	<0.610
ALDRN	<0.700		ALDRN	<0.083
λS	410.000		λS	<2.500
BTZ	<40.000		BTZ	<1.140
Сене	<26.800		C6H6	<1.340
CA	176000.000		CA	154000.000
CCL4	<48.000		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<100.000		CH2CL2	<5.000
CHCL3	<28.000		CHCL3	<1.400
CL	28200000.000		CL	235000.000
CL6CP	<0.700		CL6CP	<0.083
CLC6H5	<11.600		CLC6H5	<0.580
CLDAN	•		CLDAN	<0.152
CPMS	<56.300		CPMS	<1.080
CPMSO	< <b>84.0</b> 00		CPMSO	<1.980
CPMS02	510.000		CPMSO2	<2.240
CR	24.400		ĊR	<5.960
CU	<7.940		CU	<7.940
DBCP	0.747		DBCP	<0.130
DCPD	16.600		DCPD	<9.310
DIMP	3810.000		DIMP	127.000
DITH	45.500		DITH	<1.590
DLDRN	<0.600		DLDRN	0.097
DMDS	8.100		DMDS	<1.160
DMMP	19700.000		DMMP	<15.200
ENDRN	<0.520		ENDRN	0.062
ETC6H5	<25.600		ETC6H5	<1.280
FL	223000.000		FL	<1220.000
HG	<0.686		HG	<0.359
ISODR	<0.600		ISODR	<0.056
K	120000.000		K	5670.000
MEC6H5	320.000		MEC6H5	<1.210
MG	699000.000		MG	28900.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<27.000		MXYLEN	<1.350
NA	3530000.000		NA	391000.000
NIT	106.000		NIT	11400.000
OXAT	8.560		OXAT	<1.350
PB	<18.600		PB	<18.600
PPDDE	<0. <b>5</b> 30		PPDDE	<0.046
PPDDT	<0.700		PPDDT	<0.059
S04	8490000.000		SO4	747000.000
T12DCE	<24.000		T12DCE	<1.200
TCLEE	<26.000			<1.300
TRCLE	(22.000		TCLEE TRCLE	<1.100
XYLEN	< <b>49.4</b> 00			<2.470
ZN	70.400		XYLEN	<20.100
- IT	70.400	D-126	ZN	\&U • 1UU



.**(***)

t		MKTK MVI	ER CHEMIOIKI DO		-	
4. (	26058 SCI BEI BEI	JIFER: DEN' REENED INT DROCK DEPTI DROCK LITH REENED ZONI	: 82.9- 87.5 H: 25.0 .: SS	WELL 26061	AQUIFER: DE SCREENED IN BEDROCK DEF BEDROCK LIT SCREENED ZO	T.: 47.8- 51.2 TH: 27.5 H.: SH
			CONCENTRATION		COMPOUND	CONCENTRATION
•			1.700		111TCE	<1.700
		1 TCE	<1.000		112TCE	<1.000
		2TCE	<1.100		1 1 DCE	<1.100
í		DCE	<1.200		11DCLE	<1.200
•	111	DCLE	<0.610		12DCLE	<0.610
		DCLE	<0.083		ALDRN	<0.415
		DRN	⟨2.500		AS	5.440
•	as Bt		<1.140		BTZ	<1.140
	C6		<1.340		C6H6	<1.340
ď	CA		26300.000		CA	506000.000
•	CC		2.400		CCL4	<2.400
	CD		.160		CD	<5.160
		2CL2	<b>⇒.000</b>		CH2CL2	<5.000
		CL3	8.790		CHCT3	29.500
	CL		58000.000		CL	1560000.000
4		6CP	<0.083		CL6CP	<0.415
•		C6H5	<0.580		CLC6H5	<0.580 <0.760
		DAN	<0.152		CLDAN	2.350
		MS	<1.080		CPMS	<1.980
		MSO	<1.980		CPMSO	9.580
	CF	MSC?	<2.240		CPMS02	<5.960
4	CR		<b>&lt;5.960</b>		CR CU	<b>₹7.940</b>
•	CU		<7.940		DBCP	<0.130
		BCP	<0.130		DCPD	<9.310
		CPD	<9.310		DIMP	767.000
		LMP	17.000		DITH	12.600
		TH	(1.590		DLDRN	.0.275
4		LDRN	<0.054 <1.160		DMDS	<1.160
•		4DS	< 15.200		DMMP	<15.200
		1MP	<0.060		ENDRN	<0.300
		NDRN	<1.280		ETC6H5	<1.280
		rc6H5	1480.000		FL	2420.000
	FI		<0.359		HG	<0.359
4	H	5 SODR	<0.056		ISODR	<0.280
•		אמטא	2020.000		K	4240.000
	K	EC6H5	<1.210		MEC6H5	<1.210
	Me		4150.000		MG	155000.000
		1 B K	<12.900		MIBK	(12.900
		XALEN	<1.350		MXYLEN	<1.350
4	N.		190000.000		NA	365000.000
•		IT	<10.000		NIT	16.400
		TÄX	<1.350		TAXO	8.920
	P		<18.600		PB	<18.600
		PDDE	<0.046		PPDDE	<0.230 <0.295
		PDDT	<0.059		PPDDT	428000.000
4		04	269000.000		504	428000.000 <1.200
•		12DCE	<1.200		T12DCE	1.540
		CLEE	<1.300		TCLEE	<1.100
		RCLE	<1.100		TRCLE	<2.470
		YLEN	<2.470		XYLEN	<20.100
	Z	N	<20.100	D-127	ZN	(201100

WELL AQUIFER: DENVER

6066 SCREENED INT.: 49.0-61.0

BEDROCK DEPTH: 34.0

WELL AQUIFER: DENVER

26067 SCREENED INT.: 99.0-107.0

BEDROCK DEPTH: 34.0

BEDROCK LITH.: SH

SCREENED ZONE: 1

BEDROCK LITH.: SH

SCREENED ZONE: 2

**(** 

COMPOUND	CONCENTRATION	ľ	COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
1 1DCLE	<1.200		IIDCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
λS	6.760		λS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	4.820		C6H6	<1.340
CA	1040000.000		CX	63600.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	3200000.000		CL	166000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	8.620		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	2.500		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMSO2	₹2.240
CR	70.700		CR	⟨5.960
CÜ	<7.940		CU	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310			(9.310
DIMP	116.000		DCPD DIMP	
				<10.500
DITH	263.000		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		etc6H5	<1.280
FL	3530.000		FL	<1220.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	9550.000		ĸ	<520.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	276000.000		MG	2370.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	615000.000		NA	332000.000
NIT	108.000		NIT	<10.000
OXAT	49.500		OXAT	<1.350
PB	<18.600		PB	<18.600
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	(0.059
\$04	689000.000			
T12DCE			S04	474000.000
	<1.200		TIZDCE	<1.200
TCLEE	5.700		TCLEE	<1.300
TRCLE	3.980		TRCLE	<1.100
XYLEN	<2.470		XYLEN	<2.470
ZN	<20.100	D-128	ZN	28.100

WELL AQUIFER: DENVER WELL 26071 26072 SCREENED INT.: 92.0-104.0

AQUIFER: DENVER SCREENED INT.: 46.0-54.0 BEDROCK DEPTH: 39.0 BEDROCK LITH.: ST SCREENED ZONE: 1 BEDROCK DEPTH: 39.0 BEDROCK LITH.: ST SCREENED ZONE: 2

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
λŞ	9.370		λS	<2.500
BTZ	<1.140		BTZ	<1.140
	<1.340		C6H6	
Сене				<1.340
CA	131000.000		CA	36800.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	1.990		CHCL3	<1.400
CL	519000.000		CL	108000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	1.740		CLC6H5	<0.580
CLDAN	< 0.152		CLDAN	<0.152
CPMS	5.980		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMSO2	<2.240
CR	<5.960		CR	₹5.960
CÜ	<7.940		CU	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	5230.000		DIMP	<10.500
DITH	19.800		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	1370.000		FL	<1200.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	5510.000		K	1330.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	39100.000		MG	1720.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	458000.000		NA	255000.000
NIT	<10.000		NIT	<10.000
OXAT	7.640		OXAT	<1.350
PB	<18.600		PB	<18.600
PPDDE	<0.046		PPDDE	<0.046
	<0.046			<0.059
PPDDT			PPDDT	
504	513000.000		S04	279000.000
T12DCE	<1.200		T12DCE	<1.200
TCLEE	5.330		TCLEE	<b>&lt;1.30</b> 0
TRCLE	<1.100		TRCLE	<1.100
XYLEN	<2.470		XYLEN	<2.470
ZN	32.400	D-129	ZN	23.800
-14	32.400	U-127	ΔI7	23.000

WELL AQUIFER: ALLUVIUM

6073 SCREENED INT.: 46.2-50.2 BEDROCK DEPTH: 49.0

BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM

4)

WELL AQUIFER: DENVER 26075 SCREENED INT.:

SCREENED INT.: 88.5- 99.5

BEDROCK DEPTH: 49.0 BEDROCK LITH.: SH SCREENED ZONE: 1

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.070		ALDRN	<0.083
λS	8.000		λS	<2.500
BTZ	<2.000		BTZ	<1.140
C6H6	2.320		C6H6	
				<1.340
CA	211000.000		Cλ	64700.000
CCL4	6.140		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	15.400		CHCL3	5.180
Cr	178000.000		CL	38000.000
CL6CP	<0.070		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	•		CLDAN	<0.152
CPMS	<1.300		CPMS	<1.080
CPMSO	<4.200		CPMSO	<1.980
CPMSO2	<4.700		CPMSO2	<2.240
CR	⟨5.960		CR	₹5.960
CÜ	<7.940		Cΰ	<7.940
	<0.130			
DBCP			DBCP	<0.130
DCPD	<9.310		DCPD	•
DIMP	<10.500		DIMP	<10.500
DITH	<1.100		DITH	<1.590
DLDRN	<0.208		DLDRN	<0.054
DMDS	<1.800		DMDS	<1.160
DMMP	18.100		DMMP	<15.200
ENDRN	<0.052			
			ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	1700.000		FL	<1220.000
HG	<0.480		HG	<0.359
ISODR	<0.960		ISODR	<0.056
K	5460.000		K	2650.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	50100.000		MG	5520.000
MIBK	<12.900			
			MIBK	
MXYLEN	<1.350		MXYLEN	<1.350
NA	216000.000		NA	263000.000
NIT	4290.000		NIT	<10.000
OXAT	<2.000		OXAT	<1.350
PB	<18.600		PB	24.700
PPDDE	<0.053		PPDDE	<0.046
PPDDT	<0.070			<0.059
			PPDDT	
504	724000.000		S04	332000.000
T12DCE	<1.200		TIZDCE	<1.200
TCLEE	1.320		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	<2.470		XYLEN	<2.470
ZN	<20.100	D 100	ZN	69.800
<b>4</b> 17	1201100	D-130	7114	09.000

WELL AQUIFER: ALLUVIUM
26076 SCREENED INT.: 25.4-32.5
BEDROCK DEPTH: 32.0 WELL AQUIFER: ALLUVIUM 26083 SCREENED INT.: 17.0-27.0

BEDROCK DEPTH: 24.0
BEDROCK LITH: SH
SCREENED ZONE: ALLUVIUM BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM

(

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
λS	•		λS	9.940
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
CA			Cλ	40100.000
CCL4	<2.400		CCL4	<2.400
CD			CD	<5.160
CH2CL2	< <b>5.0</b> 00		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL			CL	296000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<b>&lt;0.580</b>		CLC6H5	<0.580
CLCONS	(0.152		CLDAN	<0.152
			CPMS	<1.080
CPMS	<1.080		=	<1.980
CPMSO	<1.980		CPMSO	(2.240
CPMSO2	<2.240		CPMSO2	
CR	•		CR	< <b>5.9</b> 60
CU	•		CU	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	386.000		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	0.093		DLDRN	0.454
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	•		FL	3820.000
HG	•		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	•		K	4760.000
MEC6H5	<1.210		MEC6H5	<1.210
MG			MG	17600.000
MIBK	<12.900		MIBK	<12,900
MXYLEN	<1.350		MXYLEN	<1.350
NA			NA	381000.000
NIT	•		NIT	4280.000
OXAT	<1.350		OXAT	<1.350
	(1.350		PB	<18.600
PB	40.016			<0.046
PPDDE	<0.046		PPDDE	
PPDDT	<0.059		PPDDT	(0.059
S04			504	275000.000
TIZDCE	<1.200		T12DCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	<2.470		XYLEN	(2.470
ZN	•	D-131	ZN	53.500

WELL AQUIFER: DENVER
SCREENED INT.: 70.0-82.0 26085 SCREENED INT.: 22.9-32.1
BEDROCK DEPTH: 24.0 BEDROCK LITH.: SH
SCREENED ZONE: 2 SCREENED ZONE: ALLUVIUM

SCREENED ZONE: ALLUVIUM

SCREENED ZONE: ALLUVIUM

SCREENED ZONE: ALLUVIUM

SCREENED ZONE: ALLUVIUM

· t

**.***)

	-			
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
	<1.200		11DCLE	<1.200
11DCLE	<0.610		12DCLE	<0.610
12DCLE			ALDRN	<0.700
ALDRN	<0.083		AS	28.400
AS	⟨2.500		BTZ	<2.000
BTZ	<1.140		C6H6	<1.340
C6H6	<1.340			504000.000
Cλ	111000.000		CA	(2.400
CCL4	<2.400		CCL4	(5.160
CD	<5.160		CD	
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	24.200
CL	130000.000		CL	1740000.000
CL6CP	<0.083		CL6CP	<0.700
CLC6H5	<0.580		CLC6H5	<b>&lt;0.58</b> 0
CLDAN	<0.152		CLDAN	•
	<1.080		CPMS	<1.300
CPMS	<1.980		CPMSO	<5.350
CPMSO	<2.240		CPMSO2	<22.000
CPMSO2	< <b>5.9</b> 60		CR	<5.960
CR			Ċΰ	<7.940
CU	<7.940		DBCP	0.214
DBCP	<0.130		DCPD	<9.310
DCPD	<9.310		DIMP	104.000
DIMP	<10.500			<1.100
DITH	<1.590		DITH	<0.600
DLDRN	<0.054		DLDRN	
DMDS	<1.160		DMDS	<1.800
DMMP	<15.200		DMMP	(30.400
ENDRN	<0.060		ENDRN	<0.520
ETC6H5	<1.280		ETC6H5	<1.280
FL	<1200.000		FL	2920.000
HG	<0.359		HG	<0.480
ISODR	<0.056		ISODR	<0.600
	3310.000		K	8270.000
K	<1.210		MEC6H5	<1.210
MEC6H5	5780.000		MG	181000.000
MG	<12.900		MIBK	<12.900
MIBK			MXYLEN	<1.350
MXYLEN	<1.350		NA	648000.000
NA	419000.000		NIT	1410.000
NIT	24.500			<2.000
OXAT	<1.350		OXAT	<18.600
PB	<18.600		PB	<0.530
PPDDE	<0.046		PPDDE	<0.700
PPDDT	<0.059		PPDDT	917000.000
504	939000.000		S04	
T12DCE	<1.200		T12DCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	8.690
XYLEN	₹2.470		XYLEN	<2.470
ZN	<20.100	D-132	ZN	40.900
₽L	1201100	U" 132	_	

·**(4**)

WELL AQUIFER: DENVER
26086 SCREENED INT.: 64.0-74.0
BEDROCK DEPTH: 32.5
BEDROCK LITH.: SS
SCREENED ZONE: 1

WELL AQUIFER: ALLUVIUM
SCREENED INT.: 32.0-36.0
BEDROCK DEPTH: 33.0
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM

OCI/DDIAMP			TOUGHT ON THE ON
	CONCENTRATION	COMPOUND	CONCENTRATION
COMPOUND	<1.700	111TCE	<1.700
111TCE		112TCE	<1.000
112TCE	<1.000	1 1 DCE	<1.100
11DCE	<1.100	IIDCLE	<1.200
11DCLE	<1.200		<0.610
12DCLE	<0.610	12DCLE	<0.083
	<0.083	aldrn	(0.003
ALDRN	6.470	λS	<2.500
λS	1.620	BTZ	<1.140
BTZ	1.020	C6H6	<1.340
C6H6	<1.340	CA	515000.000
CA	245000.000	CCL4	<2.400
CCL4	<2.400		(5.160
CD	<5.160	CD	<5.000
	<5.000	CH2CL2	16.100
CH2CL2	<1.400	CHCL3	16.100
CHCL3	802000.000	CL	361000.000
CL		CL6CP	<0.083
CL6CP	<0.083	CLC6H5	<0.580
CLC6H5	3.810	CLDAN	<0.152
CLDAN	<0.152		<1.080
CPMS	<1.080	CPMS	₹1.980
CPMSO	<1.980	CPMSO	<2.240
	<2.240	CPMS02	
CPMSO2	17.100	CR	<5.960
CR	<7.940	CU	<7.940
CU		DBCP	<0.130
DBCP	<0.130	DCPD	<9.310
DCPD	<9.310	DIMP	12.700
DIMP	286.000		(1.590
DITH	23.900	DITH	0.453
	0.121	DLDRN	0.430
DLDRN	1.160	DMDS	<1.160
DMDS	3.200	DMMP	(15.200
DMMP		ENDRN	<0.060
ENDRN	.0.060	ETC6H5	<1.280
ETC6H5	<1.280	FL	1960.000
FL	1490.000		(0.359
НG	<0.359	HG	(0.056
ISODR	<0.056	ISODR	5220.000
	3090.000	K	
K	<1.210	MEC6H5	<1.210
MEC6H5		MG	158000.000
MG	53600.000	MIBK	<12.900
MIBK	<12.900	MXYLEN	<1.350
MXYLEN	<1.350		368000.000
NA	279000.000	NA	4580.000
NIT	660.000	NIT	<1.350
TKKO	3.090	TAXO	<18.600
	<18.600	PB	
PB	<0.046	PPDDE	<0.046
PPDDE		PPDDT	<0.059
PPDDT	<0.059	S04	177000.000
S04	331000.000	TIZDCE	<1.200
TIZDCE	<1.200		₹ ₹1.300
TCLEE	<1.300	TCLEE	(1.100
TRCLE	<1.100	TRCLE	(1.100
	<2.470	XYLEN	<2.470
XYLEN	25.300	ZN	<20.100
ZN	23.300	_	

WELL AQUIFER: ALLUVIUM

16127 SCREENED INT.: 41.1- 44.5
BEDROCK DEPTH: 43.0
BEDROCK LITH.: SS
SCREENED ZONE: ALLUVIUM

WELL AQUIFER: DENVER
SCREENED INT.: 90.0-100.0
BEDROCK DEPTH: 43.0
BEDROCK LITH.: SS
SCREENED ZONE: 2

SCREENED	BOWE! !!BEG ! E G !!			
7000000	CONCENTRATION		COMPOUND	CONCENTRATION
COMPOUND	<1.700		111TCE	<1.700
111TCE	<b>&lt;1.0</b> 00		112TCE	<1.000
112TCE			1 1 DCE	<1.100
11DCE	<1.100		11DCLE	<1.200
11DCLE	<1.200		12DCLE	<0.610
12DCLE	<0.610		ALDRN	<0.083
ALDRN	<0.070		ABDAN	6.450
AS	5.100			<1.140
BTZ	<2.000		BTZ	4.500
Сене	<1.340		Cehe	274000.000
CA	374000.000		CA	274000.000
CCL4	(2.400		CCL4	<2.400
	<b>&lt;5.160</b>		CD	<5.160
CD	<5.000		CH2CL2	<5.000
CH2CL2	<1.400		CHCL3	<1.400
CHCT3			CL	890000.000
CL	901000.000		CL6CP	<0.083
CL6CP	<0.070		CLC6H5	0.790
CLC6H5	1.040		CLDAN	<0.152
CLDAN	•			<1.080
CPMS	<1.300		CPMS	₹1.980
CPMSO	<4.200		CPMSO	<2.240
CPMSO2	<4.700		CPMSO2	16.300
CR	<b>&lt;5.96</b> 0		CR	
	<7.940		CU	<7.940
CU	<0.130		DBCP	<0.130
DBCP	<9.310		DCPD	<16.200
DCPD			DIMP	214.000
DIMP	1760.000		DITH	89.100
DITH	44.300		DLDRN	<0.054
DLDRN	0.106		DMDS	<1.160
DMDS	<1.800			<15.200
DMMP	<380.000		DMMP	<0.060
ENDRN	<0.052		ENDRN	<1.280
ETC6H5	<1.280		ETC6H5	1440.000
FL	1500.000		FL	
	<0.480		HG	<0.359
HG	<0.060		ISODR	<0.056
ISODR	4340.000		K	3770.000
K	<1.210		MEC6H5	(1.210
MEC6H5			MG	34100.000
MG	79400.000		MIBK	<12.900
MIBK	<12.900		MXYLEN	<1.350
MXYLEN	<1.350		NA	425000.000
NA	282000.000			11.400
NIT	1560.000		NIT	12.800
OXAT	4.710		TAXO	<18.600
PB	<18.600		PB	⟨0.046
PPDDE	<0.053		PPDDE	
	<0.070		PPDDT	<0.059
PPDDT	411000.000		504	379000.000
S04	<1.200		TIZDCE	<1.200
TIZDCE			TCLEE	<1.300
TCLEE	<1.300		TRCLE	<1.100
TRCLE	<1.100		XYLEN	<b>&lt;2.4</b> 70
XYLEN	<2.470			<20.100
ZN	<20.100	D-134	ZN	
<del></del> -		n- 124		

WELL AQUIFER: ALLUVIUM
26133 SCREENED INT.: 35.0-55.0
BEDROCK DEPTH: 40.5
BEDROCK LITH.: ST
SCREENED ZONE: ALLUVIUM WELL AQUIFER: DENVER 26133

1

26140 SCREENED INT.: 59.0-78.0 BEDROCK DEPTH: 48.0 BEDROCK LITH.: SH SCREENED ZONE: 1

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<340.000		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	8.840		11DCLE	<1.200
12DCLE	<122.000		12DCLE	<0.610
ALDRN	<1.660		ALDRN	0.133
λS	24.600		λS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	508.000		C6H6	<1.340
CX	308000.000		CA	264000.000
CCL4	<480.000		CCL4	<2.400
CD	<5.160		CD	8.700
CH2CL2	1000.000		CH2CL2	<3.000
CHCL3	> 38800.000		CHCL ₃	16.500
CL	2440000.000		CL	744000.000
CL6CP	<1.660		CL6CP	<0.083
CLC6H5	28.500		CLC6H5	<b>&lt;0.58</b> 0
CLDAN	<3.040		CLDAN	<0.152
CPMS	748.000		CPMS	<1.080
CPMSO	26.800		CPMSO	<1.980
CPMSO2	1280.000		CPMSO2	<2.240
CR	37.300		CR	19.100
CU	<7.940		CU	<7.940
DBCP	35.400		DBCP	<0.130
DCPD	703.000		DCPD	<9.310
DIMP	1170.000		DIMP	<10.500
DITH	37.800		DITH	<1.590
DLDRN	> 0.380		DLDRN	0.411
DMDS	1.580		DMDS	<1.160
DMMP	> 305.000		DMMP	<15.200
ENDRN	<1.200		ENDRN	> 0.057
ETC6H5	7.780		ETC6H5	<1.280
FL	<30500.000		FL	1300.000
HG	<0.359		HG	<0.359
ISODR	<1.120		ISODR	<0.056
K	20800.000		K	4100.000
MEC6H5	<242.000		MEC6H5	<1.210
MG	144000.000		MG	64800.000
MIBK	172.000		MIBK	<12.900
MXYLEN	> 8.930		MXYLEN	<1.350
NA	1380000.000		NA	265000.000
NIT	464.000		NIT	•
OXAT	15.400		OXAT	<1.350
PB	<18.600		PB	<18.600
PPDDE	<0.920		PPDDE	<0.046
PPDDT	<1.180		PPDDT	<0.059
504	7840000.000		S04	315000.000
T12DCE	3.100		T12DCE	<1.200
TCLEE	926.000		TCLEE	<1.300
TRCLE	68.700		TRCLE	<1.100
XYLEN	<494.000		XYLEN	<2.470
ZN	211.000	D-135	ZN	89.300

WELL

26147

AQUIFER: DENVER

SCREENED INT.:

BEDROCK DEPTH:

85.0-105.0

29.5

WELL

6142

t)

AQUIFER: DENVER

BEDROCK DEPTH: 48.0

SCREENED INT.: 138.0-146.0

BEDROCK LITH.: SH BEDROCK LITH .: SH SCREENED ZONE: 3 SH SCREENED ZONE: 3 COMPOUND CONCENTRATION COMPOUND CONCENTRATION 111TCE <1.700 111TCE <1.700 112TCE <1.000 112TCE <1.000 11DCE <1.100 11DCE <1.100 11DCLE <1.200 11DCLE <1.200 12DCLE <0.610 12DCLE <0.610 ALDRN ALDRN <0.083 <0.083 <2.500 λS AS <2.500 BTZ BTZ <1.140 <1.140 C6H6 C6H6 <1.340 <1.340 24400.000 CA 110000.000 CA CCL4 CCL4 <2.400 <2.400 CD CD <5.160 <5.160 CH2CL2 CH2CL2 <5.000 <5.000 CHCL3 <1.400 CHCL3 <1.400 CL 53500.000 CL 214000.000 CL6CP CL6CP <0.083 <0.083 CLC6H5 CLC6H5 <0.580 <0.580 CLDAN <0.152 CLDAN <0.152 CPMS <1.080 CPMS <1.080 **CPMSO** <1.980 CPMSO <1.980 CPMS02 <2.240 CPMSO2 <2.240 <5.960 <5.960 CR CR CU <7.940 CU <7.940 DBCP DBCP <0.130 <0.130 DCPD <9.310 DCPD <9.310 DIMP <10.500 DIMP <10.500 DITH <1.590 DITH <1.590 DLDRN 1.230 DLDRN <0.054 **DMDS** <1.160 **DMDS** <1.160 <15.200 DMMP <15.200 DMMP ENDRN 0.162 ENDRN <0.060 ETC6H5 <1.280 ETC6H5 <1.280 <1200.000 FL 1760,000 FL HG <0.359 HG <0.359 ISODR ISODR <0.056 <0.056 1740,000 2500.000 MEC6H5 <1.210 MEC6H5 <1.210 MG 2190.000 MG 5790.000 MIBK <12.900 <12.900 MIBK MXYLEN <1.350 MXYLEN <1.350 NA 169000.000 NA 388000.000 NIT 51.400 NIT <10.000 OXAT OXAT <1.350 <1.350 PB <18.600 PB <18.600 PPDDE <0.046 PPDDE <0.046 PPDDT <0.059 PPDDT <0.059 S04 227000.000 SO4 803000.000 T12DCE <1.200 <1.200 T12DCE TCLEE <1.300 TCLEE <1.300 TRCLE <1.100 TRCLE . <1.100 XYLEN <2.470 XYLEN <2.470 <20.100 ZN ZN . <20.100

WELL AQUIFER: ALLUVIUM
27001 SCREENED INT.: 30.4- 46.4
BEDROCK DEPTH: 48.6
WELL AQUIFER: ALLUVIUM
27002 SCREENED INT.: 37.0- 63.5
BEDROCK DEPTH: 69.7

BEDROCK LITH .: SH

BEDROCK LITH .: ST SCREENED ZONE: ALLUVIUM

SCREENED ZONE: ALLUVIUM

			COMPOUND	CONCENTRATION
COMPOUND	CONCENTRATION		•	<1.090
111TCE	<1.090		111TCE	<1.630
112TCE	<1.630		112TCE	<1.850
11DCE	<1.850		11DCE	<1.930
1 1DCLE	<1.930		11DCLE	(2.070
12DCLE	<2.070		12DCLE	
ALDRN	<0.083		ALDRN	<0.083
AS	<2.500		λS	<2.500
BTZ	•		BTZ	
C6H6	<1.920		C6H6	<1.920
CA	•		CA	
CCL4	<1.690		CCL4	<1.690
CD			CD	
CH2CL2	<2.480		CH2CL2	(2.480
CHCL3	<1.880		CHCL3	24.800
	70400.000		CL	357000.000
Cr	<0.083		CL6CP	<0.083
CL6CP	<1.360		CLC6H5	<1.360
CLC6H5	(0.152		CLDAN	<0.152
CLDAN	•		CPMS	•
CPMS	•		CPMSO	•
CPMSO	•		CPMSO2	•
CPMSO2	•		CR	
ĊR	•		CÜ	•
CU			DBCP	<0.130
DBCP	<0.130		DCPD	<9.310
DCPD	<9.310		DIMP	<10.500
DIMP	<10.500		DIMP	(10:300
DITH	•			0.370
DLDRN	0.135		DLDRN	0.570
DMDS	¥		DMDS	<15.200
DMMP	<15.200		DMMP	(0.060
ENDRN	<0.060		ENDRN	(0.620
ETC6H5	<0.620		ETC6H5	1160.000
FL	<1000.000		FL	1160.000
HG	•		HG	<0.056
ISODR	<0.056		ISODR	(0.056
ĸ	•		K	
MEC6H5	<2.100		MEC6H5	<2.100
MG	•		MG	
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.040		MXYLEN	<1.040
NA DEN			NА	•
NIT	·		NIT	•
TAXO	· ·		OXAT	•
PB	<u>.</u>		PB	•
	<0.046		PPDDE	<0.0 <b>4</b> 6
PPDDE	<0.059		PPDDT	<0.059
PPDDT	52400.000		504	112000.000
504	<1.750		TIZDCE	<1.750
TIZDCE			TCLEE	<2.760
TCLEE	<2.760		TRCLE	<1.310
TRCLE	<1.310		XYLEN	<1.340
XYLEN	<1.340		ZN ZN	•
ZN	•	D-137	Z IA	•

WELL AQUIFER: ALLUVIUM WELL AQUIFER: ALLUVIUM `7003 SCREENED INT.: 48.8- 59.7 27005 SCREENED INT.: 39.5~ 43.5 BEDROCK DEPTH: BEDROCK DEPTH: 60.3 43.5 BEDROCK LITH .: ST BEDROCK LITH .: SS SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM CONCENTRATION COMPOUND CONCENTRATION COMPOUND <1.090 <1.700 111TCE 111TCE 112TCE <1.630 112TCE <1.000 <1.850 11DCE 11DCE <1.100 11DCLE <1.930 11DCLE <1.200 12DCLE <2.070 12DCLE <0.610 <0.083 ALDRN ALDRN <0.083 λS (2.500 AS <2.500 BTZ BTZ <1.140 C6H6 <1.920 C6H6 <1.340 CA 70500.000 CA CCL4 CCL4 <1.690 <2.400 CD CD <5.160 CH2CL2 <2.480 CH2CL2 <5.000 CHCL3 <1.880 CHCL3 <1.400 CL 66400.000 CL 103000.000 CL6CP <0.083 CL6CP <0.083 CLC6H5 <1.360 CLC6H5 <0.580 CLDAN <0.152 CLDAN <0.152 CPMS CPMS <1.080 <1.980 CPMSO **CPMSO** CPMS02 <2.240 CPMSO2 CR CR 20.800 CU CU <7.940 **DBCP** <0.130 **DBCP** <0.130 DCPD <9.310 DCPD <9.310 DIMP <10.500 DIMP <10.500 DITH <1.590 DITH DLDRN 0.132 DLDRN <0.054 DMDS DMDS <1.160 <15.200 DMMP <15.200 DMMP **ENDRN** <0.060 ENDRN <0.060 ETC6H5 <0.620 ETC6H5 <1.280 <1000.000 <1220.000 FL FL HG HG <0.359 <0.056 <0.056 ISODR ISODR K K 814.000 <1.210 MEC6H5 <2.100 MEC6H5 13900.000 MC MG <12.900 MIBK <12.900 MIBK MXYLEN <1.040 MXYLEN <1.350 NA NA 81000.000 NIT NIT 221.000 OXAT OXAT <1.350 PB PB <18.600 PPDDE <0.046 <0.046 PPDDE

PPDDT <0.059 PPDDT <0.059 61700.000 51700.000 S04 SO4 <1.200 T12DCE <1.750 T12DCE <2.760 TCLEE TCLEE <1.300 TRCLE <1.310 TRCLE <1.100 XYLEN <1.340 XYLEN <2.470 Z.N 27.500 ZN D-138

WELL AQUIFER: ALLUVIUM
27016 SCREENED INT.: 21.0-25.0 27024 SCREENED INT.: 36.0-40.0
BEDROCK DEPTH: 25.0 BEDROCK DEPTH: 40.0
BEDROCK LITH.: ST
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM

**(***)

			0011221122	DONE: WEDOVION
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.090
112TCE	<1.000		112TCE	<1.630
11DCE	<1.100		11DCE	
11DCLE	<1.200		11DCLE	<1.850
				<1.930
12DCLE	<0.610		12DCLE	3.150
ALDRN	<0.070		ALDRN	<0.083
λ5	12.000		λS	17.300
BTZ	<2.000		BTZ	•
C6H6	<1.340		C6H6	•
CA	46700.000		CA	•
CCL4	<2.400		CCL4	<1.690
CD	<5.160		CD	•
CH2CL2	<5.000		CH2CL2	•
CHCL3	<1.400		CHCL3	4.180
CL	608000.000		CL	789000.000
CL6CP	<0.070		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	<1.360
CLDAN	•		CLDAN	<0.152
CPMS	<1.300		CPMS	(0.152
CPMSO	<4.200		CPMSO	•
CPMSO2	<4.700			•
	< <b>5.960</b>		CPMSO2	•
CR			CR	•
CU	<7.940		CU	• • • • •
DBCP	<0.130		DBCP	0.371
DCPD	<9.310		DCPD	<9.310
DIMP	12.900		DIMP	12.900
DITH	<1.100		DITH	•
DLDRN	<0.060		DLDRN	0.291
DMDS	<1.800		DMDS	•
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.052		ENDRN	0.329
ETC6H5	<1.280		ETC6H5	•
FL	3070.000		FL	2750.000
HG	<0.480		HG	•
ISODR	<0.060		ISODR	< 0.056
K	3030.000		K	•
MEC6H5	<1.210		MEC6H5	
MG	19000.000		MG	•
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	
NA	561000.000		NA	•
NIT	1210.000			•
OXAT	<2.000		NIT	•
PB	<18.600		OXAT	•
			PB	• • • •
PPDDE	<0.053		PPDDE	<0.046
PPDDT	<0.070		PPDDT	(0.059
504	375000.000		S04	618000.000
T12DCE	<1.200		T12DCE	<1.750
TCLEE	<1.300		TCLEE	<2.760
TRCLE	<1.100		TRCLE	5.010
XYLEN	<2.470		XYLEN	•
ZN	<20.100	D-139	ZN	•

	<b>③</b>			AVIV	WATER CHEMICAL CONTRACTOR	•		
ı	<b>(3)</b>		WELL ?7026	AQUIFER: A SCREENED D BEDROCK DI BEDROCK L	INT.: 28.0- 32.0 EPTH: 32.0	WELL 27028	AQUIFER: 1 SCREENED DEDROCK DEDROCK L SCREENED DEDROCK L	INT.: 27.6- 31.6 EPTH: 36.5
,		•		SCREENED				CONCENTRATION
	.🚗)			COMPOUND	CONCENTRATION		COMPOUND	(1.090
	· · ·			11 rce	<1.090		112TCE	<1.630
				112TCE	<1.630		11DCE	<1.850
				1 1DCE	<1.850		11DCLE	<1.930
1		•		1 1 DCLE	<1.930		12DCLE	<2.070
				12DCLE	<2.070 <0.083		ALDRN	<0.083
				ALDRN	4.940		AS	<2.500
				AS BTZ	4.540		BTZ	. •
				C6H6	<1.920		Cehe	<1.920
				CA	•		CA	<1.690
,		•		CCL4	<b>&lt;1.69</b> 0		CCL4	(1.030
				CD	•		CD CH2CL2	<2.480
				CH2CL2			CHCL3	20.300
				CHCL3	22.800		CL	237000.000
				CL	777000.000 <0.083		CL6CP	<0.083
)				CL6CP	<1.360		CLC6H5	<1.360
•		•		CLC6H5 CLDAN	<0.152		CLDAN	<0.152
				CPMS			CPMS	•
				CPMSO	•		CPMSO	•
				CPMS02	•		CPMSO2	•
	_			CR	•		CR CU	•
		•		CU	0.116		DBCP	<0.130
				DBCP	0.146 <9.310		DCPD	<9.310
				DCPD	<10.500		DIMP	<10.500
				DIMP	(10.300		DITH	• • • •
				DITH DLDRN	0.099		DLDRN	0.804
				DMDS	•		DMDS	<15.200
,		•		DMMP	<15.200		DMMP	0.184
				ENDRN	0.154		ENDRN ETC6H5	<0.620
				ETC6H5	<0.620		FL	2310.000
				FL	2510.000		нG	
				HG	40 056		ISODR	<0.056
•		1		ISODR	<0.056		K	•
				K Mec6h5	<2.100		MEC6H5	<2.100
				MG	•		MG	<12.900
				MIBK	<12.900		MIBK	<12.900
				MXYLEN	<1.040		MXYLEN	(1.040
_		_		NA	•		NA NIT	•
•		•		NIT	•		TAXO	•
				TAXO	•		PB	•
				PB	<0.046		PPDDE	<0.046
				PPDDE	<0.059		PPDDT	<0.059
				PPDDT S04	293000.000		504	172000.000
		•		T12DCE	<1.750		TIZDCE	<1.750
_		•		TCLEE	<2.760		TCLEE	<2.760 <1.310
				TRCLE	<1.310		TRCLE	<1.340
				XYLEN	<1.340		XYLEN	(1.340
				ZN		D-140	ZN	-

	WRIR WATER CHEMISTRY SUM		QUARTER, FI		
27030 SCRE BEDR BEDR	FER: ALLUVIUM ENED INT.: 38.0- 42.0 OCK DEPTH: 42.0 OCK LITH.: SH ENED ZONE: ALLUVIUM	27031	AQUIFER: AL SCREENED IN BEDROCK DEF BEDROCK LIT SCREENED ZO	TT:: 39.0-43.0 TH: 43.0 TH:: SH ONE: ALLUVIUM	· )
BEDR SCRE COMP 111T 112T 11DC 11DC 12DC ALDR AS BTZ C6H6 CA CCL4 CD CHCI CLC CLC CLC CLC CPMS CPMS CPMS CPMS CPMS CPMS CPMS CPM	OCK LITH: SH ENED ZONE: ALLUVIUM  OUND CONCENTRATION CE <1.090 CE <1.630 CE <1.850 CLE <1.930 CLE <2.070 CN <0.083 C2.500 CN <1.920 CL2 <2.480 CD <1.690 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD <0.083 CD		BEDROCK LITSCREENED ZO COMPOUND 111TCE 112TCE 11DCE 11DCLE 12DCLE ALDRN AS BTZ C6H6 CA CCL4 CD CH2CL2 CHCL3 CL CPMS CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMS	ONE: ALLUVIUM  CONCENTRATION	)
MG MIE MXY NA NIT OXA PB PPI SOA TIC	C6H5	D-141	ISODR K MEC6H5 MG MIBK MXYLEN NA NIT OXAT PB PPDDE PPDDT SO4 T12DCE TCLEE TRCLE XYLEN ZN	<0.056 <2.100 <12.900 <1.040 <.0.046 <0.059 149000.000 <1.750 <2.760 <1.310 <1.340	

WELL AQUIFER: ALLUVIUM 27040 SCREENED INT.: 31.9- 35.3 BEDROCK DEPTH: 33.8 WELL AQUIFER: DENVER

27049 SCREENED INT.: 61.5-65.0

BEDROCK DEPTH: 37.2 BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM BEDROCK LITH.: SH SCREENED ZONE: 2

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	
				<1.100
11DCLE	<1.200		1 1 DCLE	<1.200
12DCLE	3.840		12DCLE	<0.610
ALDRN	0.516		ALDRN	<0.083
λS	19.700		λS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
Cy	200000.000		CA	113000.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	2.940		CHCL3	19.400
Cr	1030000.000		ÇL	403000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	6.440		CPMSO	<1.980
CPMSO2	<2.240		CPMS02	<2.240
CR	19.600		CR	< <b>5.96</b> 0
CU	<7.940		CU	<7.940
DBCP	0.403		DBCP .	<0.130
DCPD	<9.310		DCPD	< <b>9.3</b> 10
DIMP	36.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	0.136
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	1990.000			1470.000
			FL	
HG	<0.359		HG	<0.359
ISODR	0.291		ISODR	<0.056
K	7090.000		K	3620.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	71900.000		MG	34300.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	509000.000			234000.000
			NA	
NIT	2430.000		NIT	3280.000
OXAT	2.840		TAKO	<1.350
PB	<18.600		PB	<18.600
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	<0.059
S04	659000.000		S04	237000.000
T12DCE	<1.200		TIZDCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	7.500		TRCLE	3.520
XYLEN	<2.470		XYLEN	<2.470
ZN	<20.100	Ti = 16.0	ZN	<20.100
		D-142		• •

WELL AQUIFER: ALLUVIUM
27051 SCREENED INT.: 33.8-53.0

WELL AQUIFER: ALLUVIUM
27053 SCREENED INT.: 51.7-66.7

•

BEDROCK DEPTH: 54.0

BEDROCK DEPTH: 66.7

BEDROCK LITH.: SH

SCREENED ZONE: ALLUVIUM

BEDROCK LITH.: SH

SCREENED ZONE: ALLUVIUM

				· · · · · · · · · · · · · · · · · · ·
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
			12DCLE	<0.610
12DCLE	<0.610			
ALDRN	<0.083		ALDRN	<0.083
λŚ	<2.500		AS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
CA	83000.000		CA	74200.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<\$.000
CHCL3	7.650		CHCL3	<1.400
Cr	224000.000		CL	98900.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMS02	(2.240		CPMSO2	<2.240
				10.600
CR	< <b>5.960</b>		CR	
CU	<7.940		CU	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1 <b>.16</b> 0
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	1500.000		FL	<1220.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	2270.000		K	5370.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	31500.000			13900.000
MIBK			MG	<12.900
	<12.900		MIBK	
MXYLEN	<1.350		MXYLEN	<1.350
NA	248000.000		NA_	86900.000
NIT	3450.000		NIT	353.000
OXAT	<1.350		OXAT	<1.350
PB	<18.600		PB	<18.600
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	<0.059
<b>S</b> 04	210000.000		SO4	45800.000
TIZDCE	<1.200		T12DCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	<2.470		XYLEN	<2.470
ZN	<20.100	<b>.</b>	ZN	<101.000
-11		D-143	217	(131.000

WELL AQUIFER: DENVER WELL AQUIFER: DENVER 27055 SCREENED INT.: 120.0-135.0
BEDROCK DEPTH: 66.7
BEDROCK LITH.: SH
SCREENED ZONE: 5 SCREENED INT.: 90.0-105.0 BEDROCK DEPTH: 66.7 `7054

BEDROCK LITH.: SH SCREENED ZONE: 4

1

*)

			<b>***</b>
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<17.000	111TCE	<1.700
112TCE	<5.000	112TCE	<1.000
11DCE	<1.100	1 1 DCE	<1.100
11DCLE	<12.000	11DCLE	<1.200
12DCLE	<6.100	12DCLE	<0.610
ALDRN	•	ALDRN	<0.083
λS	•	λS	<2.500
BTZ	•	BTZ	<1.140
C6H6	<1.340	C6H6	<1.340
CX	•	CA	4760.000
CCL4	<24.000	CCL4	<2.400
CD	•	CD	< 5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<14.000	CHCL3	<1.400
CL	•	CL	<4800.000
CL6CP	•	CL6CP	<0.083
CLC6H5	<0.580	CLC6H5	<0.580
CLDAN	•	CLDAN	<0.152
CPMS	•	CPMS	<1.080
CPMSO	•	CPMSO	<1.980
CPMSO2	•	CPMSO2	<2.240
CR	•	CR	< <b>5.96</b> 0
CU	•	CÜ	39.400
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<b>&lt;9.3</b> 10
DIMP	<10.500	DIMP	<10.500
DITH	•	DITH	<1.590
DLDRN	•	DLDRN	<0.054
DMDS	•	DMDS	<1.160
DMMP	<15.200	DMMP	<15.200
ENDRN	•	ENDRN	<0.060
ETC6H5	<1.280	ETC6H5	<1.280
FL	•	FL	2580.000
HG	•	HG	<0.359
ISODR	•	ISODR	<0.056
K	•	ĸ	7410.000
MEC6H5	2.170	MEC6H5	<1.210
MG	•	MG	<500.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	•	NA	63400.000
NIT	•	NIT	927.000
OXAT	•	TAXO	<1.350
PB	•	PB .	26.200
PPDDE	•	PPDDE	<0.046
PPDDT	•	PPDDT	<0.059
804	•	504	<10000.000
T12DCE	<12.000	TIZDCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	1.240	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZN	· - · · ·	ZN	<101.000
		<b></b> *'	

WELL AQUIFER: DENVER
27057 SCREENED INT.: 57.0-62.0 SCREENED INT.: 28.6-43.6
BEDROCK DEPTH: 44.2 BEDROCK DEPTH: 44.6

BEDROCK LITH.: SS SCREENED ZONE: 3

ŧ

**(** 

BEDROCK LITH.: SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	0.725
ALDRN	<0.083		ALDRN	<0.083
AS	<2.500		AS	9.510
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
Cλ	46900.000		CA	198000.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCT3	16.500
CL	48500.000		CL	934000.000
CL6CP	<0.169		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	4.850
CPMS02	<2.240		CPMSO2	<2.240
CR	<5.960		CR	23.700
ÇU	<7.940		CU	<7.940
DBCP	<0.130		DBCP	0.258
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	30.400
DITH	<1.590		DITH	<1.590
DLDRN	0.103		DLDRN	0.216
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5				
	<1.280		ETC6H5	<1.2R0
FL	<1220.000		FL	1970.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	2650.000		K	2340.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	4630.000		MG	56200.000
MIBK	<12.900		MIBK	(12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	207000.000		NA	412000.000
NIT	16200.000		NIT	4800.000
OXAT	<1.350		OXAT	<1.350
PB	<18.600		PB	<18.600
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	<0.059
S04	265000.000		504	434000.000
T12DCE	<1.200		TIZDCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	2.160
XYLEN	<2.470		XYLEN	<2.470
ZN	<101.000		ZN	119.000
<del></del> -	<del></del>	D-145	<del></del>	

MVTV AUTON A .....

WELL AQUIFER: ALLUVIUM

7063 SCREENED INT.: 40.0-60.0 SCREENED INT.: 44.6-64.6

BEDROCK DEPTH: 60.8 BEDROCK LITH.: SH

BEDROCK LITH.: SH

SCREENED ZONE: ALLUVIUM

**(*)** 

1

SCREEN

-	mann.	A T T 1317T IIM	SCREENED Z	ONE:	<b>V</b> TTO A Y OW
NED	ZUNE:	ALLUVIUM			

<b>D ( ( ( ( ( ( ( ( ( (</b>				CONCENSES A MIT ON
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
	<1.090		111TCE	<1.090
111TCE	<1.630		112TCE	<1.630
112TCE	<1.850		1 1DCE	<1.850
11DCE			1 1DCLE	<1.930
11DCLE	<1.930		12DCLE	<2.070
12DCLE	<2.070			⟨0.083
ALDRN	<0.166		ALDRN	⟨2.500
λS	5.440		λS	
BTZ	•		BTZ	<1.140
C6H6	<1.920		C6H6	<1.920
	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		CX	•
Cλ	<1.690		CCL4	<1.690
CCL4	(1.030		CD	•
CD	• • • • • • • • • • • • • • • • • • • •		CH2CL2	<2.480
CH2CL2	<2.480		CHCL3	26.100
CHCL3	22.800			256000.000
CL	698000.000		CL	<0.083
CL6CP	<0.166		CL6CP	
CLC6H5	<1.360		CLC6H5	<1.360
	<0.304		CLDAN	<0.152
CLDAN			CPMS	•
CPMS	•		CPMSO	•
CPMSO	•		CPMSO2	•
CPMSO2	•		CR	•
CR	•			
CÜ	•		CU	<0.130
DBCP	0.215		DBCP	
DCPD	<9.310		DCPD	<9.310
	13.900		DIMP	<10.500
DIMP	(3,500		DITH	1.590
DITH	0.277		DLDRN	1.350
DLDRN	0.277		DMDS	<1.160
DMDS	•		DMMP	<15.200
DMMP	< 15.200			<0.060
ENDRN	<0.120		ENDRN	<0.620
ETC6H5	<0.620		ETC6H5	1720.000
FL	2640.000		FL	1720.000
НĞ	•		HG	<0.056
	<0.112		ISODR	<0.056
ISODR	101115		K	•
K	<2.100		MEC6H5	<2.100
MEC6H5	(2.100		MG	•
MG			MIBK	<12.900
MIBK	<12.900		MXYLEN	<1.040
MXYLEN	<1.040			
NA	•		NA	•
NIT	•		NIT	•
TAXO	•		OXAT	•
	-		PB	•
PB	(0.092		PPDDE	<0.046
PPDDE	(0.118		PPDDT	< 0.059
PPDDT			S04	194000.000
<b>SO4</b>	333000.000		TIZDCE	<1.750
T12DCE	<1.750			<2.760
TCLEF	<2.760		TCLEE	(1.310
TRCLE	<1.310		TRCLE	(1.340
XYLEN	<1.340		XYLEN	
ZN	•		ZN	•
414	-	D-146		

WELL AQUIFER: ALLUVIUM WELL 27068 SCREENED INT.: 45.0-65.0 27071 BEDROCK DEPTH: 65.2 BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM WELL AQUIFER: ALLUVIUM
27071 SCREENED INT.: 45.0-65.0
BEDROCK DEPTH: 65.2
BEDROCK LITH.: SH 27068

SCREENED ZONE: ALLUVIUM

1

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.090		111TCE	<1.090
112TCE	<1.630		112TCE	<1.630
11DCE	<1.850		IIDCE	<1.850
	<1.930			
1 1DCLE			11DCLE	(1.930
12DCLE	<2.070		12DCLE	<2.070
ALDRN	<0.523		ALDRN	<0.083
λS	<2.500		λS	<2.500
BTZ	•		BTZ	
C6H6	<1.920		C6H6	<1.920
Cλ			CA	
CCL4	<1.690		CCL4	<1.690
	(1.050			(1.690
CD	• • • • • • • • • • • • • • • • • • • •		CD	• 4.0.0
CH2CL2	<2.480		CH2CL2	<2.480
CHCL3	46.000		CHCL3	28.000
CL	359000.000		CL	211000.000
CL6CP	<0.523		CL6CP	<0.083
CLC6H5	<1.360		CLC6H5	<1.360
CLDAN	<0.958		CLDAN	<0.152
CPMS	•		CPMS	
CPMSO	•		CPMSO	•
	•			6
CPMSO2	•		CPMSO2	*
CR	•		CR	•
CU	•		ÇÜ	•
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	•		DITH	
DLDRN	<0.347		DLDRN	0.158
DMDS	((,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		DMDS	0.,50
	<15.200			<15.200
DMMP			DMMP	
ENDRN	<0.378		ENDRN	<0.060
ETC6H5	<0.620		ETC6H5	<0.620
FL	1440.000		FL	1080.000
HG	•		HG	•
ISODR	<0.353		ISODR	<0.056
K	•		K	•
MEC6H5	<2.100		MEC6H5	<2.100
MG			MG	•
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.040		MXYLEN	<1.040
NA			NA	
	•			•
NIT	•		NIT	•
OXAT	•		OXAT	•
PB	•		PB	•
PPDDE	<0.290		PPDDE	< 0.046
PPDDT	<0.372		PPDDT	<0.059
<b>SO4</b>	154000.000		S04	107000.000
T12DCE	<1.750		TIZDCE	<1.750
TCLEE	<2.760		TCLEE	₹2.760
TRCLE	<1.310		TRCLE	<1.310
XYLEN				
	<1.340		XYLEN	<1.340
ZN	•	D-147	ZN	•

WELL AQUIFER: ALLUVIUM
77072 SCREENED INT.: 45.0-65.0 BEDROCK DEPTH: 63.0 WELL AQUIFER: ALLUVIUM
27073 SCREENED INT.: 43.8-53.8
BEDROCK DEPTH: 54.0

BEDROCK LITH .:

BEDROCK LITH.: SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.090		111TCE	<1.090
112TCE	<1.630		112TCE	<1.630
11DCE	<1.850		1 1 DCE	<1.850
1 1 DCLE	<1.930		11DCLE	<1.930
12DCLE	<2.070		12DCLE	<2.070
ALDRN	<0.083		ALDRN	<0.083
AS	(2.500		λS	<2.500
				(2.500
BTZ	•		BTZ	•
C6H6	<1.920		C6H6	<1.920
CA	•		CA	•
CCL4	<1.690		CCL4	(1.690
CD	11.000		CD	(11090
	• • • • • • • • • • • • • • • • • • • •			. •
CH2CL2	<2.480		CH2CL2	<2.480
CHCL3	7.720		CHCL3	53.300
CL	166000.000		CL	364000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<1.360			
			CLC6H5	<1.360
CLDAN	<0.152		CLDAN	<0.152
CPMS	•		CPMS	•
CPMSO	•		CPMSO	_
CPMSO2	•		CPMSO2	•
	•			•
CR	•		CR	•
CU	•		CU	•
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
	(10.500			(10.500
DITH	•		DITH	•
DLDRN	<0.054		DLDRN	0.117
DMDS	•		DMDS	•
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	0.323
ETC6H5				
	<0.620		ETC6H5	<0.620
FL	<1000.000		FL	1340.000
HG	•		HG	•
ISODR	<0.056		ISODR	<0.056
K			K	
MEC6H5	<2.100			<2.100
	(2.100		MEC6H5	(2.100
MG	•		MG	•
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.040		MXYLEN	<1.040
NA	•		NA	•
NIT	•		NIT	•
	•		• • • •	•
OXAT	•		OXAT	•
PB	•		PB	•
PPDDE	<0.046		PPDDE	< 0.046
PPDDT	<0.059		PPDDT	0.069
504	71500.000			
			S04	150000.000
T12DCE	<1.750		T12DCE	<1.750
TCLEE	<2.760		TCLEE	⟨2.760
TRCLE	<1.310		TRCLE	<1.310
XYLEN	<1.340		XYLEN	<1.340
ZN				
411	•	D-148	ZN	•

**.** 

AQUIFER: ALLUVIUM SCREENED INT.: 28.3-48.3 BEDROCK DEPTH: 48.5 WELL 27074 BEDROCK LITH.: SCREENED ZONE: ALLUVIUM

WELL 27075

AQUIFER: ALLUVIUM
SCREENED INT.: 39.5-59.5
BEDROCK DEPTH: 60.6
BEDROCK LITH.: SS
SCREENED ZONE: ALLUVIUM

		- A. I. M. A. I. I. I. I.	CONCENTRATION
COMPOUND	CONCENTRATION	COMPOUND	
111TCE	<1.700	111TCE	<1.090
112TCE	<1.000	112TCE	<1.630
11DCE	<1.100	11DCE	<1.850
	<1.200	11DCLE	<1.930
11DCLE	<0.610	12DCLE	<2.070
12DCLE	<0.083	ALDRN	<0.083
ALDRN		λS	<2.500
λS	<2.500	BTZ	•
BTZ	<1.140	C6H6	<1.920
C6H6	<1.340	CA	
Ċλ	108000.000		<1.690
CCL4	<2.400	CCL4	(1.090
CD	<5.160	CD	<2.480
CH2CL2	<5.000	CH2CL2	
CHCL3	27.000	CHCL3	26.100
CL	339000.000	CL	234000.000
	<0.083	CL6CP	<0.083
CL6CP	<0.580	CLC6H5	<1.360
CLC6H5		CLDAN	<0.152
CLDAN	<0.152	CPMS	•
CPMS	<1.080	CPMSO	•
CPMSO	<1.980	CPMSO2	•
CPMSO2	<2.240		•
CR	<b>&lt;5.9</b> 60	CR	•
CÜ	<7.940	CU	40.130
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
	<10.500	DIMP	<10.500
DIMP	<1.590	DITH	•
DITH	0.180	DLDRN	0.383
DLDRN		DMDS	•
DMDS	<1.160	DMMP	<15.200
DMMP	<15.200	ENDRN	<0.060
ENDRN	<0.060		₹0.620
ETC6H5	<1.280	ETC6H5	1810.000
FL	1250.000	FL	1810.000
HG	<0.359	HG	<0.056
ISODR	<0.056	ISODR	(0.036
K	5220.000	ĸ	
MEC6H5	(1.210	MEC6H5	<2.100
	30100.000	MG	•
MG	<12.900	MIBK	(12.900
MIBK	(1.350	MXYLEN	<1.040
MXYLEN	(1.350	NA	•
NA	199000.000	NIT	•
NIT	20700.000	TAXO	•
TAXO	<1.350		
PB	<18.600	PB	<0.046
PPDDE	<0.046	PPDDE	<0.059
PPDDT	<0.059	PPDDT	
504	159000.000	S04	199000.000
T12DCE	<1.200	TIZDCE	<1.750
	₹1.300	TCLEE	⟨2.760
TCLEE	<1.100	TRCLE	<1.310
TRCLE		XYLEN	<1.340
XYLEN	<2.470	7 N	•
ZN	<20.100	D-149 2K	

WELL 27076	AQUIFER: ALLUVIUM SCREENED INT.: 50.0-60.0 BEDROCK DEPTH: 61.0 BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM	WELL 27077	AQUIFER: A SCREENED I BEDROCK DE BEDROCK LI SCREENED Z	NT.: 34.9- 54.9 PTH: 57.2
	SCREENED INT.: 50.0-60.0  BEDROCK DEPTH: 61.0  BEDROCK LITH.: SH		SCREENED I BEDROCK DE BEDROCK LI	NT.: 34.9- 54.9 PTH: 57.2 TH.: SH
	PB PFDDE	D-150	PB PPDDE PPDDT SO4 T12DCE TCLEE TRCLE XYLEN ZN	<0.046 <0.059 404000.000 <1.750 <2.760 2.070 <1.340

1

۹

WELL AQUIFER: ALLUVIUM
27078 SCREENED INT.: 40.2-50.2
BEDROCK DEPTH: 50.6
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM

•

*)

(4)

*****

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION	
111TCE	<1.090		111TCE	<1.700	
112TCE	<1.630		112TCE	<1.000	
11DCE	<1.850		11DCE	<1.100	
11DCLE	<1.930		11DCLE	<1.200	
12DCLE	<2.070		12DCLE	<0.610	
ALDRN	<0.083		ALDRN	<0.083	
λS	14.500		AS		
	14.500			<2.500	
BTZ	•		BTZ	<1.140	
<b>C6H6</b>	<1.920		C6H6	<1.340	
CA	•		CA	78000.000	
CCL4	<1.690		CCL4	<2.400	
CD	•		CD	<5.160	
JH2CL2	<2.480		CH2CL2	<5.000	
CHCL3	<1.880		CHCL3	14.800	
CL	813000.000				
			CL	31800.000	
CL6CP	<0.083		CL6CP	<0.083	
CLC6H5	<1.360		CLC6H5	<0.580	
CLDAN	<0.152		CLDAN	<0.152	
CPMS	•		CPMS	<1.080	
CPMSO			CPMSO	<1.980	
CPMSO2	•		CPMS02	<2.240	
CR	•				
	•		CR	< <b>5.960</b>	
CU	• • • • • • • • • • • • • • • • • • • •		CU	<7.940	}
DBCP	0.214		DBCP	1.720	
DCPD	<9.310		DCPD	<9.310	
DIMP	•		DIMP	<10.500	
DITH	•		DITH	<1.590	
DLDRN	<0.054		DLDRN	<0.054	
DMDS			DMDS	<1.160	
DMMP	•				
			DMMP	<15.200	
ENDRN	<0.060		ENDRN	<0.060	
ETC6H5	< <b>0.6</b> 20		ETC6H5	<1.280	
FL	3250.000		FL	<1220.000	
HG	•		HG	<0.359	
ISODR	<0.056		ISODR	<0.056	
K			K	3580.000	1
MEC6H5	<2.100		MEC6H5		,
	(2.100			<1.210	
MG			MG	10900.000	
MIBK	<12.900		MIBK	<12.900	
MXYLEN	<1.040		MXYLEN	<1.350	
NA	•		NA	49100.000	
NIT	•		NIT	2170.000	
OXAT	•		OXAT	<1.350	,
PB	-		PB	<18.600	
PPDDE	40°046				
	<0.046		PPDDE	<0.046	
PPDDT	<0.059		PPDDT	<0.059	
<b>S</b> 04	487000.000		504	72100.000	
T12DCE	<1.750		TIZDCF	<1.200	_
TCLEE	<2.760		TCLEE	<1.300	•
TRCLE	1.430		TRCLE	<1.100	
XYLEN	<1.340		XYLEN	<2.470	,
ZN			ZN	<20.100	
*11	•	D-151	AN	(20.100	

. ...

(

AQUIFER: ALLUVIUM SCREENED INT.: 32.7-41.9 BEDROCK DEPTH: 52.0 BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM WELL AQUIFER: DENVER
28026 SCREENED INT.: 110.0-120.0
BEDROCK DEPTH: 52.0
BEDROCK LITH.: SH
SCREENED ZONE: 6 WELL 28023

SCREENED	ZONE: ALLUVIUM		SCREENED 2	CONE: 6
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE				
	<1.100		1 1 DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDEN	<0.083		ALDRN	<0.146
λS	<2.500		λS	<2.500
BTZ	<1.140		BT2	<1.140
C6H6	<1.340		C6H6	<1.340
CA	121000.000		CA	4860.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	₹5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	65900.000		CL	<4800.000
CLECP	<0.083		CL6CP	<0.211
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.233
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMS02	<2.240
CR	10.000		CR	<5.960
CÜ	<7.940		CÜ	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.079
DMDS				
	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.085
ETC6H5	<1.280		ETC6H5	<1.280
FL	<1220.000		FL	2490.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.109
K	4160.000		K	675.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	18000.000		MG	<500.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	74200.000		NA	63900.000
NIT	8330.000		NIT	27.400
OXAT	<1.350		TAXO	<1.350
PB	23.400		PB	23.900
PPDDE				
PPDDT	<0.046 <0.059		PPDDE	<0.046
			PPDDT	<0.097
S04	154000.000		S04	12700.000
T12DCE	<1.200		TIZDCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	<2.470		XYLEN	<2.470
ZN	40.300	D-152	ZN	<101.000

----

AQUIFER: ALLUVIUM SCREENED INT.: 39.0- 48.0 BEDROCK DEPTH: 48.0 WELL WELL AQUIFER: DENVER 28027 28028 SCREENED INT.: 57.5- 67.5 BEDROCK DEPTH: 48.0 BEDROCK LITH .: SH BEDROCK LITH .: SH

SCREENED ZONE: ALLUVIUM SCREENED ZONE: 4

1

COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
1 1 1 TCE	<1.700	111 <b>T</b> CE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	< 0.610
ALDRN	<0.083	ALDRN	<0.083
λS	<2.500	λS	<2.500
BTZ	<1.140	BTZ	<1.140
C6H6	<1.340	C6H6	<1.340
CA	68400.000	CA	44200.000
CCL4	<2.400	CCL4	<2.400
CD	<5.160	CD	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	<1.400
CL	35900.000	CL	28200.000
CL6CP	<0.083	CL6CP	<0.083
CLC6H5	<0.580	CLC6H5	<0.580
CLDAN	<0.152	CLDAN	<0.152
CPMS	<1.080	CPMS	<1.080
CPMSO	<1.980	CPMSO	<1.980
CPMSO2	<2.240	CPMSO2	<2.240
CR	6.190	CR	<5.960
Ċΰ	<7.940	cu	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	<10.500	DIMP	<10.500
DITH	<1.590	DITH	<1.590
DLDRN	<0.054	DLDRN	<0.054
DMDS	<1.160	DMDS	<1.160
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.060	ENDRN	<0.060
ETC6H5	<1.280	ETC6H5	<1.280
FL	<1220.000	FL	<1220.000
HG	<0.359	HG	<0.359
ISODR	<0.056		
X	3560.000	ISODR	<0.056
MEC6H5	<1.210	K	2800.000
MG		MEC6H5	<1.210
MIBK	8670.000	MG	3080.000
WXYLEN	<12.900	MIBK	<12.900
	<1.350	MXYLEN	<1.350
NA	42100.000	NA	80900.000
NIT	3440.000	NIT	199.000
OXAT	<1.350	TAXO	<1.350
PB	<18.600	PB	<18.600
PPDDE	<0.046	PPDDE	<0.046
PPDDT	<0.059	PPDDT	<0.059
504	53500.000	804	129000.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	(2.470
ZN	<101.000	D-153 ZN	<20.100
		~	

•

WELL AQUIFER: ALLUVIUM WELL AQUIFER: DENVER 3009 SCREENED INT.: 123.0-133.0

BEDROCK DEPTH: 24.0
BEDROCK LITH: SH
BEDROCK LITH: SH
SCREENED ZONE: ALLUVIUM
BEDROCK LITH: SH
SCREENED ZONE: 2

SCREENED	SONE: ALLUVIUM	SCREENED Z	JNE: 2
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
		11DCE	
11DCE	<1.100		<1.100
11DCLE	<1.200	11DCLE	<1.200
1 2DCLE	<0.610	12DCLE	<0.610
<b>A</b> LDRN	<0.083	ALDRN	<0.083
λS	<2.500	λS	<2.500
BTZ	<1.140	BTZ	<1.140
C6H6	<1.340	C6H6	<1.340
CA	104000.000	CA	9380.000
CCL4	<2.400	CCL4	<2.400
CD	<5.160	CD	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	<1.400
CL	93400.000	CL	29300.000
CL6CP	<0.211	CL6CP	<0.083
	40.500		
CLC6H5	<0.580	CLC6H5	<0.580
CLDAN	<0.152	CLDAN	<0.152
CPMS	<1.080	CPMS	<1.080
CPMSO	<1.980	CPMSO	<1.980
CPMS02	<2.240	CPMSO2	<2.240
CR	16.300	CR	<b>&lt;5.9</b> 60
CU	< <b>7.9</b> 40	CU	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<9.310	DCPD	<9.310
DIMP	<10.500	DIMP	<10.500
DITH	₹1.590	DITH	<1.590
DLDRN	₹0.054	DLDRN	<0.054
DMDS	<1.160	DMDS	
			<1.160
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.060	ENDRN	<0.060
ETC6H5	<1.280	ETC6H5	<1.280
FL	1320.000	FL	2480.000
HG	<0.359	HG	<0.359
ISODR	<0.056	ISODR	<0.056
K	6350.000	K	2100.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	37300.000	MG	<500.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	160000.000	NA	84100.000
NIT	8680.000	NA TIN	24.300
OXAT	<1.350		<1.350
		OXAT	
PB	<18.600	PB	<18.600
PPDDE	<0.046	PPDDE	<0.046
PPDDT	<0.059	PPDDT	<0.059
504	447000.000	SO4	<10000.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
(YLEN	<2.470	XYLEN	<2.470
ZN	135.000	ZN	<20.100
	,55.000	D=154	1201100

WELL AQUIFER: ALLUVIUM
31005 SCREENED INT.: 20.0- 45.0
BEDROCK DEPTH: 43.0
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM

WELL AQUIFER: DENVER
32002 SCREENED INT.: 105.0-115.0
BEDROCK DEPTH: 30.8
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: AL

**.** 

BCREERED	SONE: ADDOVION		SCREEKED	ZONE: AL
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	
				<1.700
1 1 2TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
λS	<2.500		λS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
CA	187000.000		CA	104000.000
CCL4				
	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	178000.000		CL	58900.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	< 0.152		CLDAN	<0.152
CPMS	₹1.060		CPMS	<1.080
CPMSO	<1.980			
			CPMSO	<1.980
CPMS02	<2.240		CPMSO2	<2.240
CR	22.500		CR	<5.960
CU	<7.940		CU	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	<1220.000		FL	<1220.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	2860.000		K	•
MEC6H5	<1.210		MEC6H5	<1.210
MG	59400 000		MG	1990.000
MIBK	<12.900		MIBK	(12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	208000.000		NA	230000.000
NIT	388.000		NIT	<10.000
TAXO	<1.350		OXAT	<1.350
PB	<18.600		PB	64.600
PPDDE	<0.046		PPDDE	< 0.046
PPDDT	<0.059		PPDDT	<0.059
S04	602000.000		504	698000.000
T12DCE	<1.200		TIZDCE	(1.200
TCLEE	<1.300			
			TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	<2.470		XYLEN	<2.470
ZN	43.000	D - 155	ZN	34.000
		· · · · · · ·		

WELL AQUIFER: ALLUVIUM
33001 SCREENED INT.: 60.2- 78.6 33002 SCREENED INT.: 103.9-111.5
BEDROCK DEPTH: 77.3 BEDROCK DEPTH: 112.1 33001

BEDROCK LITH .: SS SCREENED ZONE: ALLUVIUM BEDROCK LITH .: SH

SCREENED ZONE: ALLUVIUM

0011021100				OHE. REEDVEON
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	
	<1.200			<1.100
11DCLE			11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
λS	<2.500		AS	<2.500
BTZ	<1.140		BTZ	<1.140
<b>C6H6</b>	<1.340		C6H6	8.230
CA	47500.000		CA	181000.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	27000.000		CL	122000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	
				32.700
CLDAN	(0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMSO2	<2.240
CR	<5.960		CR	<b>&lt;5.9</b> 60
CU	<7.940		CU	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRI:	<0.054		DLDRN	<0.054
DMDS	(1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.050		ENDRN	<0.060
ETC6H5	<1.280			
			ETC6H5	<1.280
FL	<1200.000		FL	<1220.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	2990.000		K	5800.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	6240.000		MG	19500.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	41000.000		NA	101000.000
NIT	1400.000		NIT	7260.000
OXAT	<1.350		OXAT	<1.350
PB	<37.200		PB	<18.600
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.059			(0.059
			PPDDT	
S04	36300.000		504	332000.000
TIZDCE	<1.200		T12DCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	9.470
XYLEN	<2.470		XYLEN	<2.470
ZN	<40.200	D-156	ZN	<20.100
		טכו ע		

۹

WELL AQUIFER: DENVER

SCREENED INT.: 75.0-85.0
BEDROCK DEPTH: 60.9
BEDROCK LITH.: SS
BCREENED ZONE: 4

WELL AQUIFER: DENVER
SCREENED INT.: 98.0-108.0
BEDROCK DEPTH: 63.0
BEDROCK LITH.: SH
SCREENED ZONE: 7

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	
				<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
λS	<2.500		λS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
CA	29600.000		CA	8700.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	9450.000		CL	11200.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	(2.240		CPMSO2	(2.240
CR	9.090		CR CR	<5.960
CÜ	< <b>7.94</b> 0		CU	<7.940
DBCP	<0.130			
DCPD			DBCP	<0.130
	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	1430.000		FL	1820.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	1530.000		K	<520.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	1960.000		MG	<500.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	57800.000		NA	62800.000
NIT	3900.000		NIT	2810.000
OXAT	<1.350		TAXO	<1.350
PB	22.200		PB	<18.600
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	<0.059
S04	52600.000		SO4	57700.000
T12DCE	<1.200		T12DCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	<2.470		XYLEN	<2.470
ZN	25.200	D-157	ZN	44.700
		D-137		· · · ·

WELL AQUIFER: DENVER
33032 SCREENED INT.: 190.0-200.0
BEDROCK DEPTH: 117.5
BEDROCK LITH.: SH
SCREENED ZONE: 7 WELL AQUIFER: ALLUVIUM 33030 SCREENED INT.: 55.0-115.0 BEDROCK DEPTH:117 5 33030 BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		1 ! DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
λS	<2.500		AS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
CA	126000.000		Cλ	40100.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	81400.000		CL	<4800.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMSO2	<2.240
CR	6.490		CR	<5.960
cũ	<b>&lt;7.940</b>		Ċΰ	8.320
DBCP	0.786		DBCP	<0.130
DCPD	<9.310		DCPD	(9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<b>&lt;0.06</b> 0		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	(1.280
	<1200.000			1680.000
FL			FL	
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	4160.000		K	2770.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	16600.000		MG	<b>&lt;500.000</b>
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	64400.000		NA	85300.000
NIT	14200.000		NIT	9910.000
OXAT	<1.350		OXAT	<1.350
PB	<37.200		PB	<37.500
PPDDE	<0.046		PPDDE	(0.046
PPDDT	<0.059		PPDDT	⟨∪.059
<b>S</b> 04	154000.000		SO4	13400.000
T12DCE	<1.200		T12DCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	<2.470		XYLEN	< <b>2.47</b> 0
ZN	<40.200	5 1f0	ZN	65.600
		D-158		

WELL AQUIFER: ALLUVIUM

SCREENED INT.: 38.7-53.7

BEDROCK DEPTH: 53.7

BEDROCK LITH.: SH

SCREENED ZONE: ALLUVIUM

WELL AQUIFER: DENVER

SCREENED INT.: 74.0-84.0

BEDROCK DEFTH: 53.7

BEDROCK LITH.: SH

SCREENED ZONE: 4

*)

BCKCDHID				
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
	<1.100		11DCE	<1.100
11DCE_	<1.200		11DCLE	<1.200
11DCLE			12DCLE	<0.610
12DCLE	<0.610		ALDRN	<0.083
ALDRN	<0.083		AS	₹2.500
λS	<2.500		BTZ	<1.140
BTZ	<1.140			<1.340
C6H6	<1.340		C6H6	
Ċλ	£4500.000		CX	33800.000
CCL4	<2.400		CCL4	<2.400
CD	(5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<b>&lt;5.</b> 000
CHCL3	<1.400		CHCL3	<1.400
	43500.000		CL	29900.000
CL	<0.083		CL6CP	(0.083
CL6CP	<0.580		CLC6H5	<0.580
CLC6H5	(0.152		CLDAN	<0.152
CLDAN			CPMS	<1.080
CPMS	<1.080		CPMS0	<1.980
CPMSO	<1.980		CPMSO2	⟨2.240
CPMS02	<2.240			₹5.960
CR	<5.960		CR	₹7.940
CÜ	<7.940		CU	
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	(1.590
DLDRN	<0.054		DLDRN	<0.054
	<1.160		DMDS	<1.160
DMDS	<15.200		DMMP	<15.200
DMMP	<0.060		ENDRN	<0.060
ENDRN			ETC6H5	<1.280
ETC6H5	<1.280		FL	1450.000
FL	<1200.000		HG	< 0.359
HG	<0.359			₹0.056
ISODR	<0.056		ISODR	2630.000
K	4340.000		K	(1.210
MEC6H5	<1.210		MEC6H5	2560.000
MG	9700.000		MG	
MIBK	<12.900		MIBK	(12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	44100.000		NA	72300.000
NIT	7330.000		NIT	576.000
	<1.350		OXAT	<1.350
OXAT	<37.200		PB	<37.200
PB			PPDDE	< 0.046
PPDDE	<0.046		PPDDT	< 0.059
PPDDT	<0.059		S04	144000.000
<b>504</b>	76200.000			<1.200
TIZDCE	<1.200		T12DCE	<1.300
TCLEE	<1.300		TCLEE	<1.100
TRCLE	<1.100		TRCLE	<2.470
XYLEN	<2.470		XYLEN	
ZN	71.700	n 150	zn	(40.200
		D-159		

WELL AQUIFER: ALLUVIUM
3039 SCREENED INT.: 45.8-55.8
BEDROCK DEPTH: 0.0 WELL AQUIFER: ALLUVIUM 33063 SCREENED INT.: 68.0- 78.0 BEDROCK DEPTH: 78.0

**)

BEDROCK LITH .: BEDROCK LITH .: SH SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
λS	<2.500		λS	<2.500
BTZ	(1.140		BTZ	
				<1.140
C6H6	<1.340		C6H6	<1.340
CA	113000.000		CX	132000.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	₹5.000
CHCL3	<1.400		CHCL3	
				<1.400
CL	72100.000		CL	81000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	₹1.080
CPMSO	<1.980			
			CPMSO	<1.980
CPMS02	<2.240		CPMSO2	<2.240
CR	<5.960		CR	8.810
CU	<7.940		CU	<7.940
DBCP	0.416		DBCP	3.210
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500			
			DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200	•	DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5				
	<1.280		ETC6H5	<1.280
FL	<1200.000		FL	<1200.000
HG	<0.359		HĢ	<0.359
ISODR	<0.056		ISODR	<0.056
ĸ	4960.000		K	5030.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	41600.000		MG	14600.000
MIBK	(12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
Nλ	194000.000		NA	62000.000
NIT	8530.000		NIT	<b>8290.00</b> 0
OXAT	<1.350		OXAT	<1.350
PB	<18.600			<18.600
			PB	
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	<0.059
504	142000.000		504	142000.000
T12DCE	<1.200		TIZDCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	6.170			
			TRCLE	<1.100
XYLEN	<2.470		XYLEN	<2.470
ZN	48.500	D-160	ZN	98.100

WELL AQUIFER: ALLUVIUM
33075 SCREENED INT.: 57.4~ 77.4 33077 SCREENED INT.: 107.5-127.5
BEDROCK DEPTH: 99.0 BEDROCK DEPTH: 127.5
BEDROCK LITH.: BEDROCK LITH.:

**.***)

SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	25.800		111TCE	<1.700
112TCE	<1.000		1 1 2 TCE	<1.000
1 1DCE	8.090		1 1 DCE	<1.100
11DCLE	<1.200		1 1DCLE	1, 100
12DCLE	<0.610		12DCLE	
ALDRN	<0.083			<0.610
ALDRIV			ALDRN	<0.083
	(2.500		λS	<2.500
BTZ	<1.140		BTZ	<1.140
Сене	<1.340		Сене	<1.340
Cλ	122000.000		CA	
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	•
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	72600.000		CL	51000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	0.582		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMS02	<2.240
CR	6.120		CR	
CÜ	<7.940		CÜ	•
DBCP	<0.130		DBCP	<0.130
DCPD	(9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	
DMMP	<15.200			<1.160
			DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	<1200.000		FL	<1200.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	4710.000		K	4110.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	10700.000		MG	•
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	56900.000		NA	•
NIT	9770.000		NIT	8630.000
OXAT	<1.350		TAXO	<1.350
PB	<37.200		PB	•
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	<0.059
SO4	164000.000		804	107000.000
T12DCE	<1.200		T12DCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	33.700		TRCLE	5.160
XYLEN	<2.470		XYLEN	<2.470
ZN	53.300		ZN	
		D 141		•

D_161

WELL AQUIFER: ALLUVIUM WELL AQUIFER: DENVER

**(***)

4002 SCREENED INT.: 68.5-83.7 34003 SCREENED INT.: 122.0-132.0

BEDROCK DEPTH: 83.7
BEDROCK LITH.: SH
SCREENED ZONE: 3 BEDROCK DEPTH: 83.7 BEDROCK LITH .: SH SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
1 1 2TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
λS	<2.500		λS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
CA	61000.000		CA	8450.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
C7.	105000.000		CL	5600.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	⟨0.580		CLC6H5	₹0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	₹1.980
CPMS02	3.790		CPMSO2	(2.240
CR	< <b>5.960</b>		CR	<b>(5.960</b>
CU	<7.940		CU	<7.940
DBCP	<0.130		DBCP	<0.130
				<9.310
DCPD	<9.310		DCPD	
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	<1200.000		FL	2200.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	4270.000		K	680.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	12800.000		MG	<500.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	75900.000		NA	57100.000
NIT	261.000		NIT	29.100
TAXO	<1.350		OXAT	<1.350
PB	<18.600		PB	<18.600
PPDDE	<0.046		PPDDE	< 0.046
PPDDT	<0.059		PPDDT	₹0.059
504	46900.000		S04	13500.000
T12DCE	<1.200		T12DCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	<b>&lt;2.470</b>		XYLEN	(2.470
	28.000			
ZN	40.UUU	D=162	ZN	<20.100

D-!62

AQUIFER: ALLUVIUM SCREENED INT.: 61.0- 71.0 BEDROCK DEPTH: 71.0 WELL 34005

SCREENED ZONE: ALLUVIUM

BEDROCK LITH .: SH

1

1

•

WELL AQUIFER: DENVER
34006 SCREENED INT.: 85.0- 95.0 71.0

BEDROCK DEPTH: 71. BEDROCK LITH.: SH SCREENED ZONE: 2

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	< 0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
AS	<2.500		λS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
CA	126000.000		CA	95300.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	28.300		CHCL3	<1.400
CL	379000.000		CL	321000.000
CL6CP	<0.0B3		CL6CP	<0.083
	(0.580		CLC6H5	<0.580
CLC6H5	(0.152			
CLDAN			CLDAN CPMS	<0.152
CPMS	<1.080			<1.080
CPMSO	<1.980		CPMS0	<1.980
CPMSO2	(2.240		CPMSO2	<2.240
CR	<5.960		CR	<5.960
CU	<7.940		CU	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	0.802		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	<1220.000		FL	1240.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	4860.000		K	2210.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	27100.000		MG	7140.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	227000.000		NA	213000.000
NIT	10800.000		NIT	20.900
OXAT	<1.350		OXAT	<1.350
PB	<18.600		PB	<b>&lt;18.6</b> 00
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	<0.059
804	148000.000		S04	156000.000
T12DCE	<1.200		TIZDCE	<1.200
TCLEE	(1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	<2.470		XYLEN	<2.470
ZN	40.400	D 163	ZN	56.900
	111100	<b>∠</b> 103	<del>*************************************</del>	

WELL AQUIFER: ALLUVIUM

4008 SCREENED INT.: 54.5-84.5

BEDROCK DEPTH: 84.5

BEDROCK LITH.: SH

SCREENED ZONE: ALLUVIUM

WELL AQUIFER: DENVER

SCREENED INT.: 100.0-110.0

BEDROCK DEPTH: 84.5

BEDROCK LITH.: SH

SCREENED ZONE: 3

		COMPOUND	CONCENTRATION
Compound	CONCENTRATION	111TCE	<1.700
111TCE	<1.700	112TCE	<1.000
112TCE	<1.000	11DCE	<1.100
11DCE	<1.100	11DCLE	<1.200
1 1 DCLE	<1.200	12DCLE	< 0.610
12DCLE	<0.610	ALDRN	<0.083
ALDRN	<0.083	ABBAN	<2.500
λS	<2.500	BTZ	<1.140
BTZ	<1.140	C6H6	<1.340
C6H6	<1.340	CA	21000.000
Çλ	75900.000	čĈ14	(2.400
CCL4	<2.400	CD	<5.160
CD	<5.160	CH2CL2	<5.000
CH2CL2	<5.000	CHCL3	<1.400
CHCL3	<1.400	CL	7520.000
CL	98100.000	Creca	<0.083
CL6CP	<0.083	CLC6H5	<0.580
CLC6H5	<0.580	CLDYN	<0.152
CLDAN	<0.152	CPMS	<1.080
CPMS	<1.080	CPMSO	<1.980
CPMSO	<1.980	CPMSO2	(2.240
CPMSO2	<2.240	CR	<5.960
ÇR	<b>&lt;5.960</b>	Cn	<7.940
Cυ	<7.940	DBCP	<0.130
DBCP	<0.130	DCPD	(9.310
DCPD	<9.310	DIMP	<10.500
DIMP	<10.500	DITH	<1.590
DITH	<1.590	DLDRN	<0.054
DLDRN	0.098	DMDS	<1.160
DMDS	<1.160	DMMP	<15.200
DMMP	<15.200	ENDRN	<0.060
ENDRN	<0.060	ETC6H5	<1.280
ETC6H5	<1.280	FL	1410.000
FL	<1220.000	F L HG	(0.359
HG	<0.359	ISODR	⟨0.056
ISODR	<0.056		1330.000
K	3550.000	K Mec6H5	<1,210
MEC6H5	<1.210	MG MG	1790.000
MG	15500.000	MG MIBK	<12.900
MIBK	<12.900	MXYLEN	₹1.350
MXYLEN	<1.350	NA NA	49400.000
NA	79300.000	NIT	14.700
NIT	674.000	TAXO	<1.350
OXAT	<1.350		(18.600
PB	<18.600	PB	<0.046
PPDDE	<0.046	PPDDE	(0.059
PPDDT	<0.059	PPDDT	53600.000
804	68100.000	504 713767	<1.200
T12DCE	<1.200	T12DCE	<1.300
TCLEE	<1.300	TCLEE	<1.100
TRCLE	<1.100	TRCLE	<2.470
XYLEN	<2.470	XYLEN	<20.100
ZN	<20.100	D-164 ZN	(20.100

WELL AQUIFER: ALLUVIUM
34508 SCREENED INT.: 0.0- 0.0 WELL AQUIFER: ALLUVIUM 34507 SCREENED INT.: 0.0- 0.0 BEDROCK DEPTH: 0.0 BEDROCK DEPTH: 0.0

BEDROCK LITH .:

-

4

BEDROCK LITH.: SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION	
111TCE	<1.700		111TCE	<1.700	
112TCE	<1.000		112TCE	<1.000	
11DCE	<1.100		11DCD	<1.100	
11DCLE	<1.200		11DCLE	<1.200	
12DCLE	<0.610		12DCLE	<0.610	
ALDRN	<0.083		ALDRN	<0.083	
AS	<2.500		AS	• • • • • • • • • • • • • • • • • • • •	
BTZ	<1.140		BTZ	<1.140	
Сене	<1.340		<b>C6H6</b>	<1.340	
Cλ	138000.000		CA	• • • •	
CCL4	<2.400		CCL4	<2.400	
CD	<5.160		CD		
CH2CL2	<5.000		CH2CL2	<5.000	
CHCT3	20.300		<b>CHCT3</b>	16.500	
CL	450000.000		CL	528000.000	
CL6CP	<0.083		CL6CP	<0.083	
CLC6H5 CLDAN	<0.580		CLC6H5	<0.580	
	<0.152		CLDAN	<0.152	
CPMS CPMSO	<1.080 <1.980		CPMS	<1.080	
CPMSO2	⟨2.240		CPM50 CPM502	<1.980 <2.240	
CPM502 CR	11.700		CPMSU2 CR		
CU	<7.940		CU	•	
DBCP	<0.130		DBCP	<0.130	)
DCPD	< <b>9.3</b> 10		DCPD	<9.310	
DIMP	<10.500		DIMP	<10.500	
DITH	<1.590		DIMP	<1.590	
DLDRN	0.286			0.088	
DMDS	<1.160		DLDRN DMDS	<1.160	
DMMP	<15.200		DMMP	<15.200	
ENDRN	0.506		ENDRN	<0.060	
ETC6H5	<1.280		ETC6H5	<1.280	
FL	1200.000		FL	1340.000	
НĞ	<0.359		HG	1340.000	
ISODR	<0.056		ISODR	<0.056	
K	4670.000		K	(0.050	
MEC6H5	<1.210		MEC6H5	<1.210	
MG	49600.000		MG		
MIBK	<12.900		MIBK	<12.900	
MXYLEN	<1.350		MXYLEN	<1.350	
NA	204000.000		NA		
NIT	10800.000		NIT	7820.000	
OXAT	<1.350		OXAT	<1.350	
PB	<1B.600		PB		
PPDDE	<0.046		PPDDE	< 0.046	
PPDDT	<0.059		PPDDT	₹0.059	
S04	166000.000		S04	163000.000	
T12DCE	<1.200		TIZDCE	<1.200	
TCLEE	<1.300		TCLEE	<1.300	
TRCLE	<1.100		TRCLE	1.100	)
XYLEN	<2.470		XYLEN	<2.470	,
ZN	<20.100	D~165	ZN		
		כסורע	<del></del>	•	

WELL AQUIFER: ALLUVIUM 14515 SCREENED INT.: 40.0-50.0 BEDROCK DEPTH: 65.0 WELL AQUIFER: DENVER

35013 SCREENED INT.:

BEDROCK LITH .:

SCREENED ZONE: ALLUVIUM

26.0- 29.4 BEDROCK DEPTH: 8.5 BEDROCK LITH.: SH SCREENED ZONE: A

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		1 IDCE	4.410
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
λS	<2.500		AS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
CA	124000.000		CA	107000.000
CCL4	<2.400		CCL4	52.000
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	12.200
CL			CL	102000.000
	63000.000			
CL6CP	<0.211		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMSO2	<2.240
CR	21.200		CR	48.600
CU	16.800		ČŪ	15.700
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
-				
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	<1200.000		FL	<1200.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	3980.000		K	5160.000
MEC6H5	<1.210		MEC6H5	<1.210
	24900.000			
MG			MG	41200.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	68800.000		NA	135000.000
NIT	10100.000		NIT	17400-000
OXAT	<1.350		TAXO	<1.350
PB	20.300		PB	<18.600
PPCDE	<0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	<0.059
SO4	140000.000		S04	179000.000
T12DCE	<1.200			<1.200
			T12DCE	
TCLEE	<1.300		TCLEE	6.100
TRCLE	<1.100		TRCLE	9.830
XYLEN	<2.470		XYLEN	<2.470
ZN	76.700	D-166	ZN	131.000

ŧ

ŧ

**DBCP** 

WELL AQUIFER: DENVER

35016 SCREENED INT.: 37.0- 40.4 35017 SCREENED INT.: 88.4- 91.8

BEDROCK DEPTH: 18.0 BEDROCK DEPTH: 18.0

BEDROCK LITH .: SH BEDROCK LITH .: SH SCREENED ZONE: 1U SCREENED ZONE: 1 COMPOUND CONCENTRATION CONCENTRATION COMPOUND 111TCE <1.700 111TCE <1.700 112TCE 112TCE <1.000 <1.000 11DCE 11DCE <1.100 <1.100 <1.200 11DCLE <1.200 11DCLE 12DCLE <0.610 12DCLE <0.610 ALDRN <0.083 ALDRN <0.083 AS 7.430 λS <2.500 BTZ 3.560 BTZ <1.140 C6H6 C6H6 <1.340 <1.340 Cλ 551000.000 CA 13900.000 CCL4 CCL4 <2.400 <2.400

CD CD <5.160 <5.160 CH2CL2 <5.000 CH2CL2 <5.000 CHCL3 <1.400 CHCL3 <1.400 1610000.000 49400.000 CL CL CL6CP <0.083 CL6CP <0.083 CLC6H5 19.500 CLC6H5 <0.580

CLDAN <0.152 CLDAN <0.152 **CPMS** 1.250 CPMS <1.080 **CPMSO CPMSO** <1.980 <1.980 CPMS02 <2.240 CPMSO2 <2.240 CR 45.900 CR <5.960 CU <7.940 CU <7.940

<0.130

DCPD DCPD <9.310 <9.310 DIMP 5350.000 DIMP <10.500 HTIU 183.000 DITH <1.590 DLDRN <0.054 DLDRN 0.065 DMDS <1.160 DMDS <1.160 DMMP <15.200 DMMP <15.200 **ENDRN** <0.060 **ENDRN** <0.060

DBCP

<0.130

ETCEFF <1.280 ETC6H5 <1.280 FI. 2150.000 1530.000 FL HO < 0.359 HG <0.359 ISODR <0.056 ISODR <0.056 7190.000 1620.000 MEC6H5 MEC6H5 <1.210 <1.210

90300.000 MG 623.000 MG MIBK <12.900 MIBK <12.900 MXYLEN <1.350 MXYLEN <1.350 167000.000 446000.000 NA NA NIT 176.000 NIT 34.700

OXAT 16.900 OXAT <1.350 PB <18.600 PB <18.600 PPDDE PPDDE <0.046 <0.046 PPDDT <0.059 PPDDT <0.059 504 473000.000 187000.000 S04 T12DCE <1.200 T12DCE <1.200

TCLEE <1.300 TCLEE <1.300
TRCLE 2.550 TRCLE <1.100
XYLEN <2.470

	Z28	•		WRIR	WATER	CHEMI	DIKI D	OHHAN1 1	31.0	Activitation			
	<b>③</b>		WETT	AQUIFER:	<b>11.11.11V</b>	UM			<b>VEL</b> L	AQUIFER:	DENVER		^
			WELL 35023	SCREENED	INT.:	21.8-	25.2	35	036	SCREENED	INT.:	74.0- 89.0	J
		1	15023	BEDROCK D	EPTH:					BEDROCK I		17.0	
		•		REDROCK L	ITH.:	es				BEDROCK SCREENED	LITH.:	SH	
	. •	4		SCREENED	ZONE: 1	ALLUVI	UM			SCREENED	ZUNE:	1	
	•									COMPOUND	CÓN	CENTRATION	
	( <b>4</b> )			COMPOUND	CON	CENTRA				111TCE	••••	<1.700	
	•			111TCE		<1.70				112TCE		<1.000	
				112TCE		<1.10				11DCE		<1.100	
				11DCE 11DCLE		<1.20	ō			1 1DCLE		<1.200	
		•		12DCLE		<0.61				12DCLE		<0.610	
				ALDRN		<0.08				ALDRN		<0.083	
				λS		<2.50				λS		<2.500	
				BTZ		1.24	10			BTZ		<1.140 <1.340	
				C6H6		<1.34				Cehe	103	000.000	
_				Cλ	93	000.00	0			CA CCL4	103	<2.400	
•		1		CCL4		<2.40				CD CD		<5.160	
				CD		<5.16				CH2CL2		<5.000	
				CH2CL2	_	7.09				CHCL3		<1.400	
				CHCL3		530.00				CL	62	100.000	
				CL	170	000.00				CL6CP		<0.083	
				CL6CP		<0.08 4.33				CLC6H5		<0.580	
Ð		•		CLC6H5		<0.15				CLDAN		<0.152	
				CLDAN CPMS		2.53				CPMS		<1.080	
				CPMSO		14.40				CPMSO		(1.980	
				CPMSO2		29.20				CPMSO2		<2.240	
				CR		₹5.96				CR		<5.960	
•		4		čΰ		<7.94				CU		<7.940 <0.130	
•		•		DBCP	>	2.43	30			DBCP		(9.310	
				DCPD		(9.3)	10			DCPD		<10.500	
				DIMP		<10.50				DIMP DITH		(1.590	
				DITH		<1.59				DLDRN		<0.054	
				DLDRN		< 0.0				DMDS		<1.160	
b		•		DMDS		<1.10				DMMP		<15.200	
		•		DMMP		<15.2				ENDRN		<0.060	
				ENDRN		<0.00 <1.2				ETC6H5		<1.280	
				ETC6H5	,	1220.0				FL	<	1220.000	
				FL HG	`	<0.3				HG		₹0.359	
				ISODR		<0.0				ISODR		<0.056	
D		4		K		3610.0				K		2800.000	
				MEC6H5		<1.2				MEC6H5		<1.210	
				MG	2	6000.0				MG		6730.000 <12.900	
				MIBK		<12.9	0.0			MIBK		<1.350	
				MXYLEN		<1.3				MXYLEN	31	5000.000	
				NA	13	3000.0				NA TIN	Э,	11.000	
		•		NIT		<10.0				OXAT		<1.350	
				TAXO		<1.3				PB		<18.600	
				PB		<18.6 <0.0	116			PPDDE		<0.046	
				PPDDE		<0.0				PPDDT		<0.059	
				PPDDT	1 6	8000.0				504	63	5000.000	
_		_		504	10	<1.2				TIZDCE		<1.200	
D		•		T12DCE TCLEE		3.9				TCLEE		<1.300	
				TRCLE		<1.1				TRCLE		<1.100	
				XYLEN		(2.4				XYLEN		<2.470	
				ZN		50.8		D-168	₹	ZN		<20.100	
				<del></del> ,				טר - ע	•				

13/

WELL AQUIFER: DENVER BEDROCK DEPTH: 37.0 35038 SCREENED INT.: 59.0-67.0 BEDROCK DEPTH: 37.0 BEDROCK LITH.: SH 3502/ BEDROCK LITH .: 6H SCREENED ZONE: ALLUVIUM SCREENED ZONE: 1

SCREENED	ZONE: ALLUVIUM		SCREENED .	
	CONCENTRATION		COMPOUND	CONCENTRATION
COMPOUND	CONCENTRATION		111TCE	<1.700
111TCE	<1.700		112TCE	<1.000
112TCE	<1.000		11DCE	<1.100
11DCE	<1.100		11DCLE	<1.200
1 1DCLE	<1.200		110015	<0.610
12DCLE	<0.610		12DCLE	<0.083
ALDRN	<0.083		ALDRN	
λS	<2.500		λ5	<2.500
BTZ	<1.140		BTZ	<1.140
C6#6	<1.340		C6H6	<1.340
	157000.000		CA	71500.000
CX	<2.400		CCL4	<2.400
CCL4	<5.160		CD	<5.160
CD	<5.000		CH2CL2	<5.000
CH2CL2			CHCL3	<1.400
CHCL3	10.400		CL	36200.000
Cr	246000.000		CL6CP	<0.083
CL6CP	<0.083		CLC6H5	<0.580
CLC6H5	<0.580		CLCGRS	(0.152
CLDAN	<0.152			<1.080
CPMS	<1.080		CPMS	(1.980
CPMSO	<1.980		CPMSO	(2.240
CPMS02	<2.240		CPMSO2	
CR	172.000		CR	<b>&lt;5.96</b> 0
CU	174.000		CU	<7.940
	<0.130		DBCP	<0.130
DBCP	<9.310		DCPD	<9.310
DCPD	<10.500		DIMP	<10.500
DIMP			DITH	<1.590
DITH	<1.590		DLDRN	<0.054
DLDRN	1.760		DMDS	<1.160
DMDS	<1.160		DMMP	<15.200
DMMP	<15.200			<0.060
ENDRN	<0.060		ENDRN	<1.280
ETC6H5	<1.280		ETC6H5	<1220.000
FL	1870.000		FL	(0.359
ĦĠ	<0.359		HG	
ISODR	<0.056		ISODR	<0.056
K	5380.000		K	2650.000
MEC6H5	<1.210		MEC6H5	<1.210
	65100.000	•	MG	14500.000
MG	<12.900		MIBK	<12.900
MIBK	⟨1.350		MXYLEN	<1.350
MXYLEN	238000.000		NA	213000.000
NA			NIT	4420.000
NIT	4320.000		OXAT	<1.350
TAKO	<1.350		PB	<18.600
PB	120.000			<0.046
PPDDE	<0.046		PPDDE	(0.059
PPDDT	<0.059		PPDDT	249000.000
504	277000.000		S04	
TIZDCE	<1.200		T12DCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	(1.100
XYLEN	<2.470		XYLEN	(2.470
	589.000		ZN	<20.100
ZN	367.000	D-169	= :	

WELL

)

AOUIFER: DENVER

WELL

AQUIFER: ALLUVIUM

SCREENED INT.: 100.0-112.0 BEDROCK DEPTH: 37.0 35052 SCREENED INT.: 15.0- 20.0 5039 BEDROCK DEPTH: 48.0 BEDROCK LITH .: SH BEDROCK LITH .: SH SCREENED ZONE: ALLUVIUM SCREENED ZONE: 2 COMPOUND CONCENTRATION COMPOUND CONCENTRATION 111TCE <1.700 111TCE <1.700 112TCE <1.000 112TCE <1.000 <1.100 11DCE <1.100 11DCE <1.200 11DCLE <1.200 11DCLE 12DCLE <0.610 12DCLE <0.610 **ALDRN** <0.083 ALDRN <0.083 <2.500 λS <2.500 λS BTZ <1.140 BTZ <1.140 <1.340 C6H6 C6H6 <1.340 455000.000 59100.000 CA CX CCL4 <2.400 CCL4 <2.400 CD <5.160 <5.160 CD CH2CL2 <5.000 CH2CL2 <5.000 CHCL3 <1.400 CHCL3 <1.400 CL 750000.000 46500.000 CL CL6CP <0.083 CL6CP <0.083 CLC6H5 CLC6H5 <0.580 <0.580 CLDAN <0.152 CLDAN <0.152 **CPMS** <1.080 <1.080 **CPMS** <1.980 **CPMSO** <1.980 CPMSO CPMSO2 (2.240 <2.240 CPMS02 109.000 CR CR <5.960 CU 47.900 CU <7.940 DBCP <0.130 DBCP <0.130 DCPD <9.310 DCPD <9.310 DIMP <10.500 DIMP <10.500 DITH <1.590 DITH <1.590 <0.054 DLDRN <0.054 DLDRN DMDS <1.160 **DMDS** <1.160 DMMP <15.200 <15.200 DMMP <0.060 ENDRN ENDRN <0.060 ETC6H5 1.650 <1.280 ETC6H5 <1220.000 <1220.000 FL FL HG <0.359 HG <0.359 ISODR <0.056 <0.056 **ISODR** K 19300.000 1620.000 MEC6H5 <1.210 MEC6H5 <1.210 MG 59100.000 MG 3140.000 MIBK <12.900 MIBK <12.900 MXYLEN MXYLEN <1.350 <1.350 237000.000 258000.000 NA NA NIT NIT 9630.000 50.400 <1.350 OXAT <1.350 OXAT <18.600 PB <18.600 PB PPDDE <0.046 PPDDE <0.046 PPDDT <0.059 PPDDT <0.059 280000.000 504 376000.000 S04 <1.200 T12DCE T12DCE <1.200 TCLEE <1.300 <1.300 TCLEE TRCLE <1.100 TRCLE <1.100 <2.470 XYLEN <2.470 XYLEN 210.000 ZN 66.400 ZN

WELL AQUIFER: DENVER
35054 SCREENED INT.: 66.0-76.0 35056 SCREENED INT.: 110.0-145.0 BEDROCK DEPTH: 48.0 BEDROCK LITH.: SH
BEDROCK LITH.: SH
BEDROCK LITH.: SS

(*)

BEDROCK DEPTH: 48.0

BEDROCK LITH: SH

SCREENED ZONE: AL

COMPOUND CONCENTRATION

BEDROCK DEPTH: 10.1

BEDROCK LITH: SS

BEDROCK LITH: SS

BEDROCK DEPTH: 10.1

COMPOUND CONCENTRATION

COMPOUND CONCENTRATION

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		1 1 DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
λS	<2.500		λS	(2.500
BTZ	<1.140		BTZ	<1.140
Сене			C6H6	41 240
	<1.340			<1.340
Cλ	236000.000		CX	57000.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	24500.000		CL	83700.000
CL6CP			CL6CP	
	<0.083			<0.083
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMSO2	<2.240
CR	15.200		CR	₹5.960
CÜ			CU	
	<7.940			<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1,590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP				
	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	<1220.000		FL	<1220.000
HG.	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	4790.000		K	1620.000
MEC6H5	<1.210		MEC6H5	<1.210
				(1.2.10
MG	45200.000		MG	615.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	465000.000		NA	219000.000
NIT	131.000		NIT	<10.000
OXAT	<1.350		OXAT	<1.350
PB	<18.600		PB	<18.600
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	<0.059
S04	1400000.000		<b>\$04</b>	411000.000
T12DCE	<1.200		T12DCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN				
	<2.470		XYLEN	<2.470
ZN	<20.100	5. 171	ZN	< 20.100

#### WETE WATER CHEMISTRY SHMMARY SED OHIERTED EV07

	WRIR	WATER CHEMISTRY SUMM	ARY, 3RD QUA	RTER, FY87
WELL	AQUIFER:	ALLUVIUM		IFER: ALLUVIUM
`5058		INT.: 15.5- 35.5 EPTH: 33.0		EENED INT.: 35.0- 40.0 PROCK DEPTH: 40.0
	BEDROCK L			PROCK LITH: 40.0
		ZONE: ALLUVIUM		EENED ZONE: ALLUVIUM
	COMPOUND	CONCENTRATION		POUND CONCENTRATION
	111TCE	<1.700	111	TCE <1.700
	112TCE 11DCE	<1.000 <1.100		TCE <1.000
	11DCLE	<1.200	110	CE <1.100 CLE <1.200
	12DCLE	<0.610		CLE <0.610
	ALDRN	<0.083	ALD	
	λS	<2.500	λS	(2.500
	BTZ	<1.140	BTZ	<1.140
	C6H6	<1.340	C6H	
	CA	74600.000	Cλ	300000.000
	CCL4	<2.400	CCL	
	CD	<5.160	CD	<5.160
	CH2CL2	<5.000		CL2 <5.000
	CHCL3	5.260	CHC	
	CL CL6CP	151000.000	CL	227000.000
	CLC6H5	<0.083 <0.580	CL6	CP <0.083 6H5 <0.580
	CLOAN	<0.152	CLD	
	CPMS	<1.080	CPM	
	CPMSO	<1.980	CPM	
	CPMS02	<2.240	CPM	
	CR	20.300	CR	56.700
	CU	19.800	CU	25.500
	DBCP	<0.130	DBC	
	DCPD	<9.310	DCP	
	DIMP	<10.500	DIM	
	DITH	<1.590	DIT	
	DLDRN DMDS	1.220 <1.160	DLD	
	DMMP	<15.200	DMD DMM	
	ENDRN	<0.060	END	
	ETC6H5	<1.280	ETC	
	FL	1750.000	FL	2390.000
	HG	<0.359	HG	⟨0.359
	ISODR	<0.056	ISO	DR < 0.056
	K	4420.000	K	5750.000
	MEC6H5	<1.210	MEC	
	MG	29100.000	MG	77100.000
	MIBK	<12.900	MIB	
	MXYLEN	<1.350	MXY	
	NA NIT	194000.000 4690.000	NA NTT	294000.000
	OXAT	<1.350	NIT OXA	
	PB	25.500	PB	<18.600
	PPDDE	<0.046	PPD	
	PPDDT	(0.059	ממפ	

D-172

PPDDT

T12DCE

TCLEE

TRCLE

XYLEN

ZN

S04

<0.059

<1.100 <2.470 131.000

1050000.000

<0.059

<1.200 <1.300 <1.100 <2.470 78.500

155000.000

PPDDT

T12DCE

TCLEE

TRCLE

XYLEN

ZN

504

WELL WELL AOUIFER: DENVER AQUIFER: DENVER 35063 SCREENED INT .: 96.0-116.0 / 35062 40.0

SCREENED INT.: 66.5-81.5
BEDROCK DEPTH: 40.0
BEDROCK LITH.: SH BEDROCK DEPTH: BEDROCK LITH .: SH SCREENED ZONE: AL SCREENED ZONE: 1U

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		1 1 DCE	<1.100
11DCLE	<1.200		1 1DCLE	
				<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
λS	<2.500		λS	< <b>2.50</b> 0
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
CA	209000.000		CX.	50200.000
CCL4	<2.400		CCL4	(2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	35400.000		CL	57200.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO				
	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMS02	<2.240
CR	17.100		CR	<5.960
CU	<7.940		CU	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	(9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS				
	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	1180.000		FL	<1200.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	4490.000		K	1620.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	28700.000		MG	1540.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350			
			MXYLEN	<1.350
Nλ	<b>52300</b> 0.000		NA	274000.000
NIT	. •		NIT	•
OXAT	<1.350		OXAT	<1.350
PB	<18.600		PB	<1 <b>8.6</b> 00
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	<0.059
504	1340000.000		504	525000.000
T12DCE	<1.200		TIZDCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100			<1.100
			TRCLE	
XYLEN	<2.470		XYLEN	<2.470
ZN	43.200	D-173	ZN	24.700

. .*****)

	W				
WELL 15065	AQUIFER: SCREENED BEDROCK DI BEDROCK LI SCREENED	INT.: 16.0- 31.0 EPTH: 32.0	WELL 35066	AQUIFER: D SCREENED I BEDROCK DE BEDROCK LI SCREENED 2	NT.: 40.5- 55.5 PTH: 32.0 TH.: SH CONE: AL
	COMPOUND 1117CE 112TCE 111DCLE 111DCLE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE 111DCLIE	CONCENTRATION		COMPOUND 111TCE 111DCLE 111DCLE 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCLN 111DCL	CONCENTRATION
	ZN	367.000	D-174	ZN	

WELL AQUIFER: DENVER
35067 SCREENED INT.: 60.0-83.0 WELL AQUIFER: DENVER
35068 SCREENED INT.: 99.0-159.0

**(** 

SCREENED INT.: 60.0-83.0 35068 SCREENED INT.: 99.0-19
BEDROCK DEPTH: 32.0 BEDROCK DEPTH: 32.0
BEDROCK LITH.: SH
SCREENED ZONE: 1U SCREENED ZONE: 1 2 4 3

COMPOUND	COVCENERATION		COMBOUND	CONCENTED LATON
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		1 1DCE	<1.100
11DCLE	<1.200		1 1 DCLE	<1.200
12DCLE	<0.610		12DCLE	< 0.610
ALDRN	<0.083		ALDRN	<0.083
AS	< <b>2.5</b> 00		AS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
CA	285000.000		CX	75600.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	133000.000		CL	54200.000
CL6CP	<0.083		CL6CP	<0.211
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPM\$	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMSO2	<2.240
CR	19.400		CR	<5.960
cົ _ນ	9.400		Ċΰ	
				<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDE	<1.160		DMDS	<1.160
DMMT.	<15.200		DMMP	<15.200
E	<0.060		ENDRN	(0.060
	<1.280			
	(1,200		ETC6H5	<1.280
FL	1630.000		FL	1280.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	5160.000		ĸ	1330.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	71200.000		MG	5950.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	521000.000		NA	279000.000
NIT	321000.000			2/9000.000
			NIT	
OXAT	<1.350		OXAT	<1.350
PB	< <b>18.6</b> 00		PB	<18.600
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	< 0.059
504	1420000.000		S04	537000.000
T12DCE	<1.200		TIZDCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100			
			TRCLE	<1.100
XYLEN	<2.470		XYLEN	<2.470
ZN	63.000	D-175	ZN	<20.100

WELL AQUIFER: ALLUVIUM

SCREENED INT.: 10.5-20.0

BEDROCK DEPTH: 17.0

BEDROCK LITH.: SS

SCREENED ZONE: ALLUVIUM

WELL AQUIFER: DENVER

SCREENED INT.: 26.5-30.5

BEDROCK DEPTH: 24.5

BEDROCK LITH.: ST

SCREENED ZONE: VC

				MATAL RELIGIOUS
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<850.000		111TCE	<1.700
112TCE	<500.000		112TCE	<1.000
	<550.000		1 1 DCE	1.700
1 1DCE			11DCLE	3.770
11DCLE	<600.000		12DCLE	474.000
12DCLE	<305.000		ALDRN	(2.080
aldrn	<0.083			103.000
λS	3.640		λS	<1.140
BTZ	<1.140		BTZ	16000.000
C6H6	25000.000		Сене	1060000.000
CA	86300.000		Çλ	
CCL4	<1200.000		CCL4	<2.400
CD	(5.160		CD	<5.160
CH2CL2	<2500.000		CH2CL2	7340.000
	4870.000		CHCL3	1920.000
CHCL3	175000.000		Cr	3640000.000
CL	<0.169		CL6CP	<2.080
CL6CP			CLC6H5	1170.000
CLC6H5	31200.000		CLDAN	<3.800
CLDYN	<0.152		CPMS	63.800
CPMS	113.000		CPMSO	392.000
CPMSO	<1.980		CPMS02	(2.240
CPMSO2	154-000			₹5.960
CR	<b>&lt;5.9</b> 60		CR	₹7.940
CÜ	9.780		CU	1.550
DBCP	278.000		DBCP	
DCPD	•		DCPD	< <b>9.3</b> 10
DIMP	<10.500		DIMP	164.000
DITH	1.690		DITH	7760.000
	1.230		DLDRN	2.340
DLDRN	47.100		DMDS	11.400
DMDS	132.000		DMMP	<15.200
DMMP	<0.060		ENDRN	<1.500
ENDRN			ETC6H5	<b>8.</b> 090
ETC6H5	<640.000		FL	6230.000
FL	2600.000		нĞ	11.300
HG	1.900			<1.400
ISODR	<0.056		ISODR	6610.000
K	3260.000		K	8 800
MEC6H5	<605.000		MEC6H5	356000.000
MG	34500.000		MG	
MIBK	•		MIBK	(12.900
MXYLEN	<675.000		MXYLEN	> 8.930
NA	292000.000		NA	1480000.000
	56.800		ТІИ	127.000
NIT	<1.350		OXAT	1550.000
OXAT	<18.600		PB	<b>&lt;18.6</b> 00
PB			PPDDE	<1.150
PPDDE	<0.046		PPDDT	<1.480
PPDDT	<0.059		S04	1960000.000
<b>SO4</b>	166000.000		TIZDCE	14.000
TIZDCE	<600.000		TCLEE	184.000
TCLEE	<650.000			146.000
TRCLE	2840.000		TRCLE	
XYLEN	<1240.000		XYLEN	) 18.100 22.400
ZN	<101.000	D-176	ZN	22.400

WELL AOUIFER: ALLUVIUM WELL AOUIFER: DENVER SCREENED INT.: SCREENED INT.: 17.6- 21.0 36066 36065

1

1

**(***)

73.3- 76.7 BEDROCK DEPTH: 22.5 BEDROCK DEPTH: 22.5 BEDROCK LITH .: SH BEDROCK LITH .: SH SCREENED ZONE: ALLUVIUM SCREENED ZONE: AL

CONCENTRATION COMPOUND COMPOUND CONCENTRATION 111TCE <1.700 111TCE <1.700 112TCE <1.000 112TCE <1.000 11DCE <1.100 11DCE <1.100 <1.200 11DCLE 11DCLE <1.200 12DCLE <0.610 12DCLE <0.610 ALDRN <0.083 ALDRN <0.083 AS <2.500 λS <2.500 BTZ BTZ <1.140 <1.140 C6H6 1.510 C6H6 <1.340 501000.000 CA CA 69800.000 16.400 CCL4 CCL4 <2.400 CD <5.160 CD <5.160 CH2CL2 <5.000 CH2CL2 <5.000 CHCL3 57.500 CHCL3 <1.400 CL 279000.000 CL 57700.000 CL6CP CL6CP <0.083 <0.083 CLC6H5 0.980 CLC6H5 <0.5B0 CLDAN <0.152 CLDAN <0.152 **CPMS CPMS** <1.080 <1.080 **CPMSO** CPMSO <1.980 <1.980 CPMS02 <2.240 CPMSO2 <2.240 CR 32.400 <5.960 CR CU <7.940 CU <7.940 DBCP DBCP 1.520 <0.130 DCPD DCPD <9.310 <9.310 DIMP <10.500 DIMP <10.500 DITH <1.590 DITH <1.590 DLDRN <0.054 DLDRN <0.054 DMDS <1.160 DMDS <1.160 DMMP DMMP <15.200 <15.200 ENDRN <0.060 ENDRN <0.060 ETC6H5 <1.280 ETC6H5 <1.280 FL 2890.000 FL <1220.000 HG <0.359 HG <0.359 ISODR <0.056 ISODR <0.056 3350.000 K 2540.000 MEC6H5 MEC6H5 <1.210 <1.210 MG 119000.000 MG 7220.000 MIBK <12.900 MIBK <12.900 MXYLEN <1.350 MXYLEN <1.350 485000.000 NA NA 671000.000 NIT 49.400 3170.000 NIT TAXO OXAT <1.350 <1.350 PB PB <18.600 <18.600 FPDDE <0.046 PPDDE <0.046 PPDDT PPDDT <0.059 <0.059 **SO4** 2090000.000 1270000.000 SO4 T12DCE T12DCE <1.200 <1.200 TCLEE <1.300 TCLEE <1.300 TRCLE 32.600 TRCLE <1.100 XYLEN <2.470 XYLEN <2.470 ZN. <101.000

ZN

D-177

<101.000

ŧ

ı

#### WRIR WATER CHEMISTRY SUMMARY, SAU QUARTER, FIG.

WELL AQUIFER: DENVER SCREENED INT.: 17.5- 22.5
BEDROCK DEPTH: 9.7 6069

WELL 36075

AQUIFER: ALLUVIUM

SCREENED INT .: 7.6- 11.0

BEDROCK DEPTH: 14.5 BEDROCK LITH .: SH

SCREENED ZONE: ALLUVIUM

BEDKOCK I	TIH	SH
SCREENED	ZONE:	VCE

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		IIDCE	<1.100
11DCLE	<1.200		1 1DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
λS	₹2.500		AS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	40 د . ۱
CA	76300.000		CX.	106000.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	136.000		CHCL3	1.440
CL	246000.000		Cr	137000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	₹0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMSO2	(2.240
CR	<5.960		CR	9.690
Ċΰ	<7.940		ČÛ	9.480
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<16.200
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	(1.280		ETC6H5	(1.280
FL	2330.000		FL	3530.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	4170.000		K	2800.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	18900.000		MG	47200.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	323000.000		NA	373000.000
NIT	23400.000		NIT	15400.000
OXAT	<1.350		OXAT	<1.350
PB	<18.600		PB	<18.600
PPDDE	<0.046		PPDDE	< 0.046
PPDDT	<0.059		PPDDT	<0.059
<b>\$</b> 04	419000.000		504	776000.000
T12DCE	<1.200		TIZDCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	1.740
XYLEN	<2.470		XYLEN	<2.470
ZN	34.900	D-178	2N	<101.000

WELL AQUIFER: ALLUVIUM

36076 SCREENED INT.: 13.5- 16.9

BEDROCK DEPTH: 29.5

BEDROCK LITH.: ST

SCREENED ZONE: ALLUVIUM

WELL AQUIFER: DENVER

36083 SCREENED INT.: 79.0- 82.4

BEDROCK DEPTH: 29.0

BEDROCK LITH.: SH

SCREENED ZONE: 1U

SCREENED	ZONE: ALLOVION			
	CONCENTRATION		COMPOUND	CONCENTRATION
COMPOUND	<850.000		111TCE	<1.700
111TCE	3.790		112TCE	<1.000
112TCE	6.990		1 1 DCE	<1.100
11DCE	9.740		11DCLE	<1.200
11DCLE			12DCLE	<0.610
12DCLE	<305.000		ALDRN	<0.083
ALDRN	<0.830		AS	<25.200
λS	315.000		BTZ	<1.140
BTZ	7.730		C6H6	<1.340
C6H6	1420.000		CA	364000.000
Cλ	180000.000			<2.400
CCL4	<1200.000		CCL4	<5.160
CD	<b>&lt;5.16</b> 0		CD	<5.000
CH2CL2	5780.000		CH2CL2	<1.400
CHCL3	11100.000		CHCL3	
CL	791000.000		CL	226000.000
CL6CP	<0.830		CL6CP	<0.169
CLC6H5	19600.000		CLC6H5	<0.580
CLDAN	<1.520		CLDAN	<0.152
CPMS	20.800		CPMS	<1.080
	10.800		CPMSO	<1.980
CPMSO	1390.000		CPMS02	<2.240
CPMSO2	15.800		CR	34.600
CR	10.400		CÜ	9.390
CU	Ç.586		DBCP	<0.130
DBCP			DCPD	<9.310
DCPD	<9.310		DIMP	<10.500
DIMP	<10.500		DITH	(1.590
DITH	33.300		DLDRN	<0.054
DLDRN	<0.550		DMDS	<1.160
DMDS	8.990		DMMP	<15.200
DMMP	<15.200			<0.060
ENDRN	<b>&lt;0.6</b> 00		ENDRN	₹1.280
ETC6H5	<1.280		ETC6H5	5250.000
FL	2300.000		FL	<0.359
HG	<0.359		HG	<0.056
ISODR	< 0.560		ISODR	
K	11100.000		K	8070.000
MEC6H5	> <b>8.8</b> 90		MEC6H5	<1,210
MG	33600.000		MG	141000.000
MIBK	16.200		MIBK	<12.900
MXYLEN	1.520		MXYLEN	<1.350
NA	739000.000		NA	3830000.000
•	2010.000		ИIT	13.500
NIT	26.100		TAXO	<1.350
OXAT	<18.600		PB	<18.600
PB	<0.460		PPDDE	<0.046
PPDDE	<0.590		PPUDT	<0.059
PPDDT			504	8710000.000
S04	752000.000		T12DCE	<1.200
T12DCE	9.560		TCLEE	<1.300
TCLEE	9.160		TRCLE	, <1.100
TRCLE	16.500		XYLEN	(2.470
XYLEN	<2.470			208.000
ZN	<101.000	D-179	ZN	200.000
		U- 179		

WELL AQUIFER: ALLUVIUM

CONTROL OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF

Ü

SCREENED	ZONE: ALLUVIUM		SCREENED	ZONE: VC
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	36.800		112TCE	4.470
11DCE	<1.100		1 1DCE	<1.100
	<1.200		11DCLE	<1.200
11DCLE				
12DCLE	11.900		12DCLE	265.000
ALDRN	<2.080		ALDRN	<0.083
λS	131.000		AS	26.000
BTZ	5.270		BTZ	14.600
C6H6	8.470		C6H6	<1.340
CA	893000.000		CA	1180000.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	34.500		CHCL3	3.990
CL	6230000.000		CL	2590000.000
CL6CP	<2.080		CL6CP	<0.083
CLC6H5	4.710		CLC6H5	55.900
CLDAN	<3.800		CLDAN	<0.152
CPMS	<1.080		CPMS	8.460
CPMSO	<1.980		CPMSO	<1.980
CPMS02	<2.240		CPMSO2	<2.240
CR	58.600		CR	62.800
CU	<7.940		CU	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	12100.000		DIMP	13.200
DITH	498.000		DITH	1110.000
DLDRN	<1.380		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<1.500		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	2.840
FL	9590.000		FL	3820.000
HG	<0.359		HG	<0.359
ISODR	<1.400		ISODR	<0.056
ĸ	30100.000		K	7190.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	361000.000		MG	288000.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NÄ	3410000.000		NA	796000.000
NIT	609.000		NIT	255.000
OXAT	68.600			1170.000
PB	<18.600		OXAT	<18.500
			PB	
PPDDE	<1.150		PPDDE	<0.046
PPDDT	<1.480		PPDDT	<0.059
S04	2980000.000		SO4	2070000.000
T12DCE	56.700		T12DCE	14.900
TCLEE	8.760		TCLEE	23.600
TRCLE	> 194.000		TRCLE	175.000
XYLEN	<2.470		XYLEN	<2.470
ZN	34.000	D-180	ZN	36.100
		2 .00		

WELL AQUIFER: DENVER
36110 SCREENED INT.: 61.8-65.2 WELL AQUIFER: ALLUVIUM
36112 SCREENED INT.: 23.0-33.0

(*)

۹

4)

BEDROCK DEPTH: 27.1

BEDROCK LITH: SH

SCREENED ZONE: AS

BEDROCK LITH: SH

SCREENED ZONE: ALLUVIUM

CONCENTRATION COMPOUND COMPOUND CONCENTRATION 111TCE <1.700 111TCE <1.700 112TCE <1.000 112TCE <1.000 11DCE <1.100 11DCE <1.100 <1.200 11DCLE 11DCLE <1.200 12DCLE 2.610 12DCLE 0.750 ALDRN <0.083 ALDRN <0.117 λS 26.700 λS 19.900 BTZ <1.140 BTZ <1.140 C6H6 <1.340 C6H6 <1.340 250000.000 CA CA 733000.000 CCL4 CCL4 <2.400 <2.400 CD <5.160 CD <5.160 CH2CL2 <5.000 CH2CL2 <5.000 CHCL3 91.600 CHCL3 <1.400 CL 145000.000 2460000.000 CL CL6CP CL6CP <0.083 <0.083 CLC6H5 CLC6H5 <0.580 <0.580 CLDAN <0.152 CLDAN <0.152 **CPMS** <1.080 CPMS 6.110 **CPMSO** <1.980 **CPMSO** <1.980 CPMS02 3.650 CPMS02 <2.240 CR 21.200 CR 55.100 CU <7.940 CU <7.940 DBCP <0.130 DBCP <0.130 DCPD <9.310 DCPD <21.600 DIMP <10.500 DIMP 144.000 DITH <1.590 DITH 415.000 DLDRN 0.050 DLDRN <0.054 DMDS <1.160 DMDS <1.160 DMMP <15.200 DMMP <15.200 **ENDRN** <0.060 ENDRN <0.060 ETC6H5 <1.280 ETC6H5 <1.280 FL 2020.000 FL3030.000 HG <0.359 HG < 0.359 ISODR <0.056 ISODR <0.056 K 4680.000 ĸ 8080.000 MEC6H5 MEC6H5 <1.210 <1.210 6B800.000 MG MG 242000.000 MIBK <12.900 MIBK <12.900 MXYLEN <1.350 MXYLEN <1.350 NA 680000.000 498000.000 NA NIT 690.000 NIT 2750.000 OXAT <1.350 OXAT 60.100 PB <18.600 PB <18.600 PPDDE <0.046 PPDDE <0.046 PPDDT <0.059 PPDDT <0.059 S04 1910000.000 504 835000.000 T12DCE <1.200 T12DCE <1.200 TCLEE <1.300 TCLEE <1.300 TRCLE <1.100 TRCLE <1.100 XYLEN <2.470 XYLEN <2.470

D-181

ZN

<101.000

<101.000

ZN

AQUIFER: DENVER
SCREENED INT.: 65.5-80.5
BEDROCK DEPTH: 33.0
BEDROCK LITH.: SH
SCREENED ZONE: 1U WELL AQUIFER: DENVER 36114 SCREENED INT.: 101.2-146.2 WELL 36114 6113 BEDROCK DEPTH: 33.0

BEDROCK LITH.: SH SCREENED ZONE: 1 2

•

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
1 1 DCE	<1.100		1 1DCE	<1.100
11DCLE	<1.200		1 1DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.083		ALDRN	<0.083
λS	<2.500		AS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	1.670		C6H6	<1.340
CA	47800.000		CA	91400.000
CCL4	<2.400		CCL4	
CD			CD	<2.400 <5.160
	<5.160			
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	14300.000		CL	189000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMSO2	<2.240
CR	<5.960		CR	<5.960
CU	<7.940		CU	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<1.280
FL	<1220.000		FL	1220.000
HG	<0.359		HG	<0.359
ISODR	<0.056		ISODR	<0.056
K	5510.000		K	2270.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	5260.000		MG	2620.000
MIBK	<12.900			
MXYLEN	<1.350		MIBK	<12.900 <1.350
,,,,			MXYLEN	
NA	183000.000		NA	376000.000
NIT	75.300		NIT	44.400
OXAT	<1.350		OXAT	<1.350
PB	<18.600		PB	(18.600
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	(0.059
504	299000.000		<b>SO4</b>	<b>6280</b> 00.000
TIZDCE	<1.200		T12DCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	<2.470		XYLEN	<2 <b>.4</b> 70
ZN	<101.000		ZN	<101.000
		D-182	<del>-</del>	·

36117

WELL AQUIFER: DENVER

36119 SCREENED INT.: 81.0- 91.0

BEDROCK DEPTH: 9.0

BEDROCK LITH.: SH

SCREENED ZONE: AM WELL AQUIFER: DENVER
36117 SCREEHED INT.: 61.0-76.0
BEDROCK DEPTH: 12.5
BEDROCK LITH.: SH
SCREENED ZONE: AM

GCVTTUDD	DONE. AN		0011221122	01121 1111
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		1 1 DCE	<1.100
	<1.200		1 I DCLE	<1.200
IIDCLE				
12DCLE	<0.610		12DCLE	<0.610
ALDRN	< 0 · <u>1</u> 46		ALDRN	<0.083
λS	<2.500		λS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
Cλ	102000.000		CA	11800.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	10000.000		CL	19400.000
CL6CP	<0.211		CL6CP	<0.083
CLC6H5	<0.580		CLC6H5	⟨0.580
CLDAN	<0.233		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
			CPMSO	<1.980
CPMSO	<1.980			
CPMS02	<2.240		CPMSO2	<2.240
CR	<5.960		CR	<5.960
CU	<7.940		CU	<7.940
DBCP	< 0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.590
DLDRN	0.124		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.085		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	₹1.280
FL	<1220.000		FL	<1220.000
HG	<0.359		НĞ	<0.359
ISODR	<0.109		ISODR	<0.056
K	3890.000		K	1740.000
MEC6H5				<1.210
	<1.210		MEC6H5	
MG	19500.000		MG	995.000
MIBK	(12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	195000.000		NA	169000.000
NIT	167.000		NIT	161.000
TAXO	<1.350		OXAT	<1.350
PB	<18.600		PB	28.400
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.097		PPDDT	<0.059
504	241000.000		S04	207000.000
T12DCE	<1.200		TIZDCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
				<2. <b>4</b> 70
XYLEN	<2.470		XYLEN	
ZN	24.200	D-183	2N	23.000

WELL AQUIFER: DENVER
36121 SCREENED INT.: 48.0-53.0 36122 SCREENED INT.: 70.0-80.0
BEDROCK DEPTH: 17.5 BEDROCK DEPTH: 17.5

BEDROCK DEPTH: 17.5

BEDROCK LITH.: SH

SCREENED ZONE: AM

BEDROCK LITH.: SH

SCREENED ZONE: AM

44112 MI120		0011221120	
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
11DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	< 0.610	12DCLE	⟨0.610
ALDRN	<0.083	ALDRN	<0.083
AS	<2.500	λS	(2.500
BTZ	<1.140	BTZ	<1.140
C6H6	<1.340	C6H6	1.630
CA	366000.000	CA	109000.000
CCL4	<2.400	CCL4	(2.400
CD	<5.160	CD	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	<1.400
CL	218000.000	CL	164000.000
CL6CP	<0.083	CL6CP	<0.083
CLC6H5	<0.580	CLC6H5	<0.580
CLCSHS	<0.152	CLCONS	(0.152
	<1.080		
CPMS		CPMS	<1.080
CPMSO	<1.980	CPMSO	<1.980
CPMS02	<2.240	CPMS02	(2.240
CR	25.900	CR	(5.960
CU	<7.940	CU	<7.940
DBCP	<0.130	DBCP	<0.130
DCPD	<16.200	DCPD	<9.310
DIMP	<10.500	DIMP	<10.500
DITH	<1.590	DITH	<1.590
DLDRN	<0.054	DLDRN	<0.054
DMDS	<1.160	DMDS	<1.160
DMMP	<15.200	DMMP	(15.200
ENDRN	<0.060	ENDRN	<0.060
ETC6H5	<1.280	ETC6H5	<1.280
FL	1860.000	FL	<1220.000
HG	<0.359	HG	<0.359
ISODR	<0.036	ISODR	<0.056
K	7000.000	K	3890.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	79800.000	MG	7560.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	804000.000	NA	501000.000
NIT	4080.000	NIT	56.100
OXAT	<1.350	TAXO	<1.350
PB	<18.600	PB	<18.600
PPDDE	< 0.046	PPDDE	<0.046
PPDDT	<0.059	PPDDT	<0.059
804	2080000.000	S04	1020000.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
77 N 1	4401 000	PU L .	22 000

D-184

ZN

33.800

ZN

<101.000

(

**(+**)

36139	AQUIFER: DENVER SCREENED INT.: 15.0- 30.0 BEDROCK DEPTH: 14.0 BEDROCK LITH.: SS	AQUIFER: DENVER SCREENED INT.: 132.0-142.0 BEDROCK DEPTH: 11.5 BEDROCK LITH.: ST
	SCREENED ZONE: AS	SCREENED ZONE: 1U

BUREENED	ZUNE: AS		SCREENED 2	ONE: 10
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	⟨1.700		111TCE	<1.700
	<1.000		112TCE	
112TCE				<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	20.400		12DCLE	<0.610
ALDRN	<0.415		ALDRN	<0.146
λS	74.900		λS	<2.500
BTZ	6.790		BTZ	<1.140
C6H6	<1.340		C6H6	<1.340
CA	1330000.000		Cλ	37100.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
	<5.000		CH2CL2	
CH2CL2				<5.000
CHCL3	25.400		CHCL3	<1.400
CL	4410000.000		CL	142000.000
CL6CP_	<0.415		CL6CP	<0.211
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	<0.760		CLDAN	<0.233
CPMS	3.790		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMS02	<2.240
CR	81.900		CR	<5.960
CU	<7.940		ĊÜ	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	9.310		DCPD	<9.310
DIMP	417.000		DIMP	<10.500
DITH	302.000		DITH	<1.590
DLDRN	<0.275		DLDRN	<0.079
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.300		ENDRN	<0.085
ETC6H5	<1.280		ETC6H5	<1.280
FL	4190.000		FL	<1220.000
HG	<0.359		HG	< 0.359
ISODR	<0.280		ISODR	<0.109
K	<b>32900.0</b> 00		K	1470.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	262000.000		MG	751.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
Nλ	1260000.000		NA	278000.000
NIT	811.000		NIT	47.900
CXAT	58.900		OXAT	<1.350
PB	<18.600		PB	<18.600
PPDDE	(0.230		PPDDE	<0.046
PPDDT	⟨0.295		PPDDT	<0.097
604	1950000.000		504	401000.000
TIZDCE	<1.200		T12DCE	<1.200
TCLEE	· · · · · · · · · · · · · · · · · · ·			
	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	<b>&lt;2.4</b> 70		XYLEN	<2.470
ZN	154.000	D-185	ZN	<20.100
		• •		

**A** 

.. .

•

•

. -

AQUIFER: ALLUVIUM SCREENED INT.: 0.0- 0.0 BEDROCK DEPTH: 20.5 BEDROCK LITH.: SH WELL WELL AQUIFER: ALLUVIUM SCREENED INT.: 0.0- 0.0 37309 7308 د BEDROCK DEPTH: 23.0 BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
1 1DCE	<1.100		1 1 DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	1.690		12DCLE	6.270
ALDRN	<0.070		ALDRN	<0.700
λS	<3.070		λS	<3.070
BTZ	<2.000		BTZ	<2.000
C6H6	<1.340		C6H6	<1.340
Cy	120000.000		CA	144000.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1,400		CHCL3	<1.400
CL	275000.000		CL	624000.000
CL6CP	<0.070		CL6CP	<0.700
CLC6H5	<0.580		CLC6H5	<0.580
	(0.560			
CLDAN	• • • • • • •		CLDAN	
CPMS	<1.300		CPMS	<1.300
CPMSO	59.100		CPMSO	27.100
CPMS02	<4.700		CPMSO2	32.600
CR	<5.960		CR	<5.960
cΰ	<7.940		Ċΰ	<7.940
DBCP	<0.130		DBCP	0.176
	54.100			
DCPD			DCPD	475.000
DIMP	78.400		DIMP	829.000
DITH	<1.100		DITH	6.480
DLDRN	0.291		DLDRN	<0.600
DMDS	<1.800		DMDS	<1.800
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.052		ENDRN	<0.520
ETC6H5	<1.280		ETC6H5	<1.280
FL	2090.000		FL	2790.000
HG	<0.240		HG	<0.240
ISODR	<0. <b>06</b> 0		ISODR	<0. <b>60</b> 0
ĸ	4130.000		K	2580.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	68100.000		MG	71400.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	272000.000		NA	<b>539000.00</b> 0
NIT	667.000		NIT	2180.000
OXAT	<2.000		OXAT	<2.000
PB	<18.600		PB	<18.600
PPDDE	<0.053		PPDDE	<0.530
PPUDT	₹0.070		PPDDT	<0.700
				·
804	430000.000		504	591000.000
T12DCE	<1.200		T12DCE	<1.200
TCLEE	14.400		TCLEE	45.400
TRCLE	<1.100		TRCLE	3.160
XYLEN	<2.470		XYLEN	<2.470
ZN	21.600	71 101	ZN	<20.100
<b></b> 11	211900	D-186	<b>4.17</b>	. 201100

• ___ •

WELL AQUIFER: ALLUVIUM WELL AQUIFER: ALLUVIUM

37312 SCREENED INT.: 0.0- 0.0

BEDROCK DEPTH: 13.5

BEDROCK LITH.: SH

SCREENED ZONE: ALLUVIUM

WELL AQUIFER: ALLUVIUM

37313 SCREENED INT.: 0.0- 0.0

BEDROCK DEPTH: 28.8

BEDROCK LITH.: SS

SCREENED ZONE: ALLUVIUM

SCREENED ZONE: ALLUVIUM

,(

 $(\bullet)$ 

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	. <1.000		112TCE	<1.000
1 IDCE	<1.100		1 1DCE	<1.100
	<1.200			
11DCLE			1 1DCLE	<1.200
12DCLE	<0.610		12DCLE	<b>&lt; 0 61</b> 0
ALDRN	<0.070		<b>A</b> LDRN	<0.070
AS	<3.070		λS	<3.070
BTZ	<2.000		BTZ	<2.000
C6H6	<1.340		C6H6	<1.340
CX	135000.000		CA	270000.000
ČČL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	258000.000		CL	730000.000
CL6CP	<0.076		CL6CP	<0.070
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	•		CLDAN	
CPMS	<1.300		CPMS	<1.300
CPMSO	<4.200		CPMSO	<4.200
CPMSO2	<4.700		CPMSO2	
				<4.700
CR	<5.960		CR	<5.960
CU	<7.940		CU	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	2170.000
DITH	<1.100		DITH	8.970
DLDRN	1.620		DLDRN	<0.060
DMDS	<1.800		DMDS	<1.800
DMMP	<15.200		DMMP	<15.200
ENDRN	1.510		ENDRN	<0.052
ETC6H5				
	<1.280		ETC6H5	<1.280
FL	. 90.000		FL	2030.000
HG	<0.240		HG	<0.240
ISODR	< <b>0.06</b> 0		ISODR	< <b>0.06</b> 0
K	2430.000		K	12300.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	72500.000		MG	> 400000.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	250000.000		NA	600000.000
NIT OXAT	1020.000		NIT	85.400
	<2.000		TAXO	<2.000
PB	<18.600		PB	23.300
PPDDE	<0.053		PPDDE	<0.053
PPDDT	<0.070		PPDDT	<0.070
504	481000.000		504	1030000.000
T12DCE	<1.200		T12DCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	<2.470		XYLEN	(2.470
ZN	<20.100		ZN	22.100
<b></b>		D-187	<b>2</b> 17	22.100

D-187

•

•

•

WELL	AQUIFER: DENVER	WELL AQUIFER: DENVER	
7316	SCREENED INT.: 88.1- 96.2	37317 SCREENED INT.: 51	.2- 60.6
	BEDROCK DEPTH: 31.0	BEDROCK DEPTH: 31	. 1
	BEDROCK LITH.: 04	BEDROCK LITH .: SH	
	SCREENED ZONE: 5	SCREENED ZONE: 4	

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.090		111TCE	<1.090
112TCE	<1.630		112TCE	<1.630
11DCE	<1.850		1 1 DCE	<1.850
11DCLE	<1.930		11DCLE	<1.930
12DCLE	<2.070		12DCLE	<2.070
<b>ALDRN</b>	<0.083		ALDRN	<0.083
λS	<2.500		λS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.920		C6H6	<1.920
CA	•		Çλ	•
CCL4	<1.690		CCL4	<1.690
CD	•		CD	•
CH2CL2	<2.480		CH2CL2	<2.480
CHCL3	<1.880		CHCL3	<1.880
CL	74500.000		CL	56000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<1.360		CLC6H5	<1.360
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMSO2	<2.240
CR	•		CR	•
ĊU	•		CÜ	•
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	27.000		DIMP	<10.500
DITH	<1. <b>59</b> 0		DITH	<1.590
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<0.620		ETC6H5	<0.620
FL	2060.000		FL	1290.000
HG	20001000		нĞ	1230.000
ISODR	<0.056		ISODR	<0.056
K	(0.030		K	10.050
MEC6H5	<2.100		MEC6H5	<b>&lt;2.</b> 100
MG			MG	
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.040		MXYLEN	<1.040
NA			NA	
NIT	•		NIT	•
OXAT	<1.350		TAXO	<1.350
PB	(11330		PB	(1.350
PPDDE	< 0.046		PPDDE	<0.046
PPDDT	(0.059		PPDDT	(0.059
S04	505000.000		504	627000.000
T12DCE	<1.750		T12DCE	<1.750
TCLEE	<2.760			<2.760
TRCLE	<1.310		TCLEE	
XYLEN	(1.340		TRCLE	<1.310
ZN	(1.340		XYLEN	<1.340
<b>6</b> 17		D-188	ZN	•

D-188

......

WELL AQUIFER: DENVER
37319 SCREENED INT.: 145.4-154.5 ( ) AQUIFER: DENVER WELL SCREENED INT.: 41.8- 50.7 37319 37318

BEDROCK DEPTH: 27.0 BEDROCK LITH .: SH SCREENED ZONE: 3

(**4**)

BEDROCK DEPTH: 29.0 BEDROCK LITH.: SH SCREENED ZONE: 6

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.090		111TCE	<1.090
112TCE	<1.630		112TCE	<1.630
	<1.850		11DCE	<1.850
11DCE				
11DCLE	<1.930		11DCLE	<1.930
12DCLE	<2.070		12DCLE	<2.070
ALDRN	<0.083		ALDRN	<0.083
λS	<2.500		λS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.920		C6H6	<1.920
CA			CA	
	<1.690		CCL4	<1.690
CCL4	(1.650			(1.090
CD			CD	
CH2CL2	<2.480		CH2CL2	6.760
CHCL3	<1.880		CHCL3	3.100
CL	44300.000		CL	6110.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	<1.360		CLC6H5	<1.360
CLOAN	<0.152		CLDAN	<0.152
			CPMS	<1.080
CPMS	<1.080			
CPMSO	<1.980		CPMSO	<1.980
CPMS02	<2.240		CPMSO2	<2.240
CR	•		CR	•
CU	•		CU	•
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
	11.500		DITH	<1.590
DITH	<1.590			
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<0.620		ETC6H5	<0.620
FL	<1000.000		FL	1670.000
нG	( 1000000		HG	
ISODR	<0.056		ISODR	< 0.056
	(0.036			(0.030
K			K	<2.100
MEC6H5	<2.100		MEC6H5	(2.100
MG	•		MG	•
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.040		MXYLEN	<1.040
NA	•		NA	•
NIT	Ĭ.		NIT	
TAXO	<1.350		OXAT	<1.350
			PB	11135
PB				10.046
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	<0.059
<b>S</b> 04	313000.000		SO4	20200.000
T12DCE	<1.750		T12DCE	<1.750
TCLEE	<2.760		TCLEE	<2.760
TRCLE	<1.310		TRCLE	<1.310
XYLEN	<1.340		XYLEN	<1.340
			ZN ZN	
ZN	•	D-189	#17	•

WELL AQUIFER: ALLUVIUM
37320 SCREENED INT.: 22.7-32.7
BEDROCK DEPTH: 35.0
BEDROCK LITH.: SS
BEDROCK LITH.: SS
BEDROCK LITH.: SS

SCREENED ZONE: 4

SCREENED ZONE: ALLUVIUM

**(4**)

0411481161	20,121 11,200 110.1		V-(1201120 4	
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.090
112TCE	₹1.000		112TCE	<1.630
11DCE	<1.100		11DCE	<1.850
11DCLE	<1.200		1 IDCLE	<1.930
	<0.610			(2.070
12DCLE			12DCLE	
ALDRN	<0.070		ALDRN	<0.083
λS	<3.070		λS	<2.500
BTZ	<2.000		BTZ	<1.140
C6H6	1.750 .		CSH6	<1.920
СХ	127000.000		ÇÀ	•
CCL4	<2.400		CCL4	<1.690
CD	<5.160		CD	•
CH2CL2	<5.000		CH2CL2	<2.480
CHCL3	<1.400		CHCL3	<1.880
CL	155000.000		Cr	16800.000
CL6CP	<0.070		CL6CP	<0.083
CLC6H5	10.000		CLC6H5	3.600
CLDAN			CLDAN	<0.152
CPMS	<1.300		CPMS	<1.080
CPMSO	<4.200		CPMSO	<1.980
CPMSO2	<4.700		CPMS02	<2.240
CR	<5.960		CR	•
CU	12.100		CU	•
DBCP	<0.130		DBCP	< 0.130
DCPD	<9.310		DCPD	<9.310
DIMP	21.500		DIMP	<10.500
DITH	<1.100		DITH	<1.590
DLDRN	<0.060		DLDRN	< 0 - 054
DMDS	41.800		DMDS	<1.160
DMMP	<15.200		DMMP	<30.400
ENDRN	<0.052		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<0.620
FL	<1220.000		FL	<1000.000
HG	<0.480		HG	(1000.000
-				40.056
ISODR	<0.060		ISODR	<0.056
K	2890.000		K	
MEC6H5	<1.210		MEC6H5	<2.100
MG	44300.000		MG	• • • • • • • • • • • • • • • • • • • •
MIBK	<12.900		MIBK	(12.900
MXYLEN	<1.350		MXYLEN	<1.040
NA	176000.000		NA	•
NIT	4200.000		NIT	•
OXAT	<2.000		OXAT	<1.350
PB	<18.600		PB	•
PPDDE	<0.053		PPDDE	<0.046
PPDDT	<0.070		PPDDT	<0.059
804	413000.000		\$PDD1 \$04	216000.000
T12DCE	<1.200			<1.750
			T12DCE	
TCLEE	<1.300		TCLEE	<2.760
TRCLE	<1.100		TRCLE	<1.310
XYLEN	(2.470		XYLEN	<1.340
2N	<20.100	D-190	ZN	•

<u></u>		AVTV AV	I DR CHERTECENT COM	•	_		
(3)	WELL 37322	AQUIFER: DEN SCREENED INT BEDROCK DEPT BEDROCK LITH SCREENED ZON	7.: 87.8- 96.9 7H: 35.0 1.: 86	WELL 37323	AQUIFER: D SCREENED I BEDROCK DE BEDROCK LI SCREENED Z	NT.: 16.5~ 26.3 PTH: 10.0 TH.: SH	, )
.😍)			CONCENTRATION		COMPOUND	CONCENTRATION	
		COMPOUND	(1.090		111TCE	<1.090	
		111TCE	<1.630		112TCE	<1.630	
		112TCE	<1.850		11DCE	<1.850	
	•	11DCE 11DCLE	<1.930		11DCLE	<1.930	
		12DCLE	<2.070		12DCLE	<2.070	
		ALDRN	<0.083		ALDRN	<0.083	
		AS	<2.500		λS	<2.500	
		BTZ	<1.140		BTZ	<1.140	
		C6H6	<1.920		C6H6	<1.920	
ı	•	CA	•		CA		
		CCL4	<1.690		CCL4	<1.690	
		CD	•		CD	<2.480	
		CH2CL2	<2.480		CH2CL2	36.700	
		CHCL3	<1.880		CHCL3	238000.000	
		CL	17100.000		CL CL6CP	<0.083	
ı	•	CL6CP	<0.083		CLC6H5	<1.360	
		CLC6H5	7.740		CLDAN	₹0.152	
		CLDAN	<0.152		CPMS	<1.080	
		CPMS	.<1.080		CPMSO	<1.980	
		CPMSO	<1.980 <2.240		CPMSO2	<2.240	
_		CPMSO2			CR	•	
	1	CR	•		CU	•	)
		CU DBCP	<0.130		DBCP	<0.130	
		DCPD	(9.310		DCPD	<9.310	
		DIM	<10.500		DIMP	15.700	
		DITH	<1.590		DITH	<1.590	
		DLDRN	<0.054		DLDRN	<0.054	
•	•	DMDS	<1.160		DMDS	<1.160	
		DMMP	<15.200		DMMP	<15.200	
		ENDRN	<0.060		ENDRN	(0.060	
		ETC6H5	<0.620		ETC6H5	<0.620 2310.000	
		FL	<1000.000		FL		
		HG			HG ISODR	<0.056	
1	•	ISODR	<0.056		K		
		X	<2.100		MEC6H5	<2.100	
		MEC6H5	<b>(2.10</b> 0		MG	•	
		MG	<12.900		MIBK	<12.900	
		MIBK	<1.040		MXYLEN	<1.040	
	_	MXYLEN			NA	•	
ı	•	NA	•		NIT	•	
		TIN TAXO	<1.350		OXAT	<1.350	
		PB DANI			PB	•	
		PPDDE	<0.046		PPDDE	<0.046	
		PPDDT	₹0.059		PPDDT	<0.059	
	<b>A</b>	804	207000.000		504	1020000.000	
1	•	TIZDCE	<1.750		T12DCE	(1.750	
		TCLEE	<2.760		TCLEE	(2.760	}
		TRCLE	<1.310		TRCLE	<1.310 <1.340	,
		XYLEN	<1.340		XYLEN	(1.340	
		ZN	•	D-191	ZN	•	

AQUIFER: ALLUVIUM WELL AQUIFER: ALLUVIUM WELL 37327 SCREENED INT.: 29.6- 34.5 37330 SCREENED INT .: 37.5- 57.2

BEDROCK DEPTH: 34.9 BEDROCK DEPTH: BEDROCK LITH .: SH BEDROCK LITH .: SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

57.0

SH

CONCENTRATION COMPOUND CONCENTRATION COMPOUND 111TCE <1.090 111TCE <1.090 112TCE 112TCE <1.630 <1.630 11DCE <1.850 11DCE <1.850 11DCLE 11DCLE <1.930 <1.930 12DCLE <2.070 12DCLE <2.070 ALDRN <0.083 ALDRN <0.083 <2.500 λS AS <2.500 BTZ BTZ <1.140 <1.140 C6H6 <1.920 C6H6 <1.920 CA CA <1.690 CCL4 CCL4 <1.690 CD CD <2.480 CH2CL2 CH2CL2 <2.480 CHCL3 <1.880 CHCL3 18.100 257000.000 CL CL 291000.000 CL6CP CL6CP <0.093 <0.083 CLC6H5 CLC6H5 <1.360 2.690 CLDAN <0.152 CLDAN <0.152 CPMS <1.080 CPMS <1.080 **CPMSO** <1.980 CPMSO <1.980 CPMSO2 <2.240 CPMS02 <2.240 CR CR CU CU DBCP <0.130 DBCP <0.130 DCPD DCPD <9.310 <9.310 DIMP <10.500 DIMP <10.500 DITH <1.590 DITH <1.590 DLDRN <0.054 DLDRN <0.054 DMDS DMDS <1.160 <1.160 DMMP DMMP <15.200 <30.400 **ENDRN** <0.060 ENDRN <0.060 ETC6H5 <0.620 ETC6H5 < 0.620 2700.000 FL FL 1630.000 HG HG ISODR <0.056 ISODR <0.056 K K <2.100 MEC6H5 MEC6H5 <2.100 MG MG <12.900 MIBK <12.900 MIBK <1.040 MXYLEN MXYLEN <1.040 NA NA NIT NIT OXAT <1.350 <1.350 OXAT PB PB <0.046 <0.046 PPDDE PPDDE PPDDT <0.059 PPDDT <0.059 804 1190000.000 154000.000 S04 T12DCE <1.750 T12DCE <1.750 TCLEE <2.760 TCLEE <2.760 TRCLE <1.310 TRCLE <1.310 XYLEN <1.340 XYLEN <1.340

D-192

ZN

ZN

WELL AQUIFER: ALLUVIUM
37331 SCREENED INT.: 39.6-48.6 SCREENED INT.: 46.9-51.4
BEDROCK DEPTH: 48.0 BEDROCK LITH.: SH

WELL AQUIFER: ALLUVIC '
37332 SCREENED INT.: 46.9-51.4
BEDROCK DEPTH: 51.0
BEDROCK LITH.: SH

SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

OCKEERED .	SORE: MEDOATON		SCREENED	ZONE: ALLOVION
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
IIITCE	<1.090		111TCE	<1.700
112TCE	<1.630		112TCE	<1.000
11DCE	<1.850		11DCE	<1.100
11DCLE	<1.930		11DCLE	<1.200
12DCLE	<2.070		12DCLE	₹0.610
	<0.083			
ALDRN			ALDRN	<0.070
AS	<2.500		λS	4.500
BTZ	<1.140		BTZ	<2.000
C6H6	<1.920		C6H6	<1.340
CA	•		CA	116000.000
CCL4	<1.690		CCL4	<2.400
CD			CD	₹5.160
CH2CL2	<2.480		CH2CL2	<5.000
CHCL3	<b>25.8</b> 00		CHCL3	<1.400
CL	327000.000		CL	714000.000
CL6CP	<0.083		CL6CP	<0.070
CLC6H5	6.590		CLC6H5	<0.580
CLDAN	<0.152		CLDAN	
CPMS	<1.080		CPMS	<1.300
CPM50	<1.980		CPMSO	<4.200
CPMS02	<2.240		CPMSO2	<4.700
CR	•		CR	<b>&lt;5.96</b> 0
CÜ			CÜ	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
				(9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.590		DITH	<1.100
DLDRN	<0.054		DLDRN	0.711
DMDS	<1.160		DMDS	<1.800
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.052
ETC6H5	<0.620		ETC6H5	₹1.280
FL	1730.000		FL	2540.000
	1730.000			
HG			HG	<0.240
ISODR	<0.056		ISODR	<0.060
K	•		K	3970.000
MEC6H5	<2.100		MEC6H5	<1.210
MG	•		MG	> 200000.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.040		MXYLEN	<1.350
NA				
	•		NA	501000.000
NIT			NIT	5130.000
OXAT	<1.350		TAXO	<2.000
PB	•		PB	<18.600
PPDDE	<0.046		PPDDE	<0.053
PPDDT	<0.059		PPDDT	< 0.070
504	169000.000		504	393000.000
T12DCE	<1.750			<1.200
			T12DCE	
TCLEE	<2.760		TCLEE	<1.300
TRCLE	<1.310		TRCLE	<1.100
XYLEN	<1.340		XYLEN	<2.470
ZN	•	D-193	ZN	131.000
			=	

.

#### 3RD QUARTER, FY87 WRIR WATER CHEMISTRY SUMMARY.

AQUIFER: ALLUVIUM WELL AQUIFER: ALLUVIUM WELL 42.3- 67.3 SCREENED INT.: 37334 37333

SCREENED ZONE: ALLUVIUM

į

SCREENED INT.: 38.4- 47.7 BEDROCK DEPTH: 64.0 BEDROCK DEFER: 47.0 BEDROCK LITH .: SH BEDROCK LITH .: SH SCREENED ZONE: ALLUVIUM

CONCENTRATION COMPOUND CONCENTRATION COMPOUND <1.090 111TCE <1.700 111TCE <1.630 112TCE <1.000 112TCE <1.850 11DCE <1.100 11DCE <1.930 11DCLE <1.200 11DCLE <2.070 12DCLE <0.610 12DCLE <0.083 ALDRN <0.070 ALDRN <2.500 AS <3.070 λS <1.140 BTZ <2.000 BTZ <1.920 C6H6 <1.340 C6H6 CA 80100.000 CA <1.690 CCL4 <2.400 CCL4 CD <5.160 CD <2.480 CH2CL2 <5.000 CH2CL2 <1.880 CHCL3 13.500 CHCL3 72000.000 CL 394000.000 CL <0.083 CL6CP <0.070 CL6CP 3.710 CLC6H5 <0.580 CLC6H5 <0.152 CLDAN CLDAN <1.080 **CPMS** <1.300 CPMS <1.980 **CPMSO** <4.200 CPMSO <2.240 CPMSO2 <4.700 CPMS02 CR <5.960 CR CU <7.940 CU <0.130 DECP <0.130 DBCP (9.310 DCPD <9.310 DCPD <10.500 DIMP <10.500 DIMP <1.590 DITH <1.100 DITH 0.169 DLDRN 0.205 DLDRN <1.160 DMDS <1.800 DMDS <30.400 DMMP <15.200 DMMP <0.060 ENDRN <0.052 **ENDRN** <0.620 ETC6H5 <1.280 ETC6H5 <1000.000 FL <1220.000 FL HG <0.240 HG <0.056 ISODR ISODR <0.060 K 4740.000 K <2.100 MEC6H5 <1.210 MEC6H5 MG 10500.000 MG <12.900 MIBK <12.900 MIBK <1.040 MXYLEN <1.350 MXYLEN NA 233000.000 NA NIT 3330.000 NIT <1.350 TAXO <2.000 TAXO PB <18.600 PB <0.046 PPDDE <0.053 PPDDE <0.059 PPDDT <0.070 PPDDT 64800.000 S04 157000.000 S04 <1.750 T12DCE <1.200 T12DCE <2.760

<1.300

<1.100

<2.470

<20.100

TCLEE

TRCLE

XYLEN

ZN

TCLEE

TRCLE

XYLEN

ZN

D-194

<1.310

<1.340

WELL AQUIFER: ALLUVIUM

, **4***)

WELL AQUIFER: ALLUVIUM 37335 SCREENED INT.: 38.2-57.6 BEDROCK DEPTH: 51.0 37336 SCREENED INT.: 19.3-38.9 BEDROCK DEPTH: 39.0 BEDROCK LITH.: SH

BEDROCK LITH .: SH SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

SCREENED	ZONE: ALLUVIUM		SCREENED	ZONE: ALLUVIUM
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.090
112TCE	<1.000		112TCE	<1.630
11DCE	<1.100		1 1 DCE	<1.850
11DCLE	<1.200		11DCLE	<1.930
12DCLE	<0.610			
			12DCLE	<2.070
ALDRN	<0.070		ALDRN	<0.083
AS	<3.070		AS	<2.500
BTZ	<2.000		BTZ	<1.140
C6H6	1.740		C6H6	<1.920
CX	69800.000		CA	•
CCL4	<2.400		CCL4	<1.690
CD	<b>&lt;5.16</b> 0		CD	•
CH2CL2	<5.000		CH2CL2	<2.480
CHCL3	<1.400		CHCL3	9.230
CL	112000.000		CL	225000.000
CL6CP	<0.070		CL6CP	<0.083
CLC6H5	8.550		CLC6H5	6.910
CLDAN	•		CLDIN	< 0.152
CPMS	<1.300		CPMS	<1.080
CPMSO	<4.200		CPMSO	<1.980
CPMSO2	(4.700		CPMS02	<2.240
CR	₹5.960		CR	
CÜ	<7.940		CU	•
				.0.120
DBCP	(0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.100		DITH	<1.590
DLDRN	0.065		DLDRN	0.082
DMDS	<1.800		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.052		ENDRN	<0.060
ETC6H5	<1.280		ETC6H5	<0.620
FL	<1220.000		FL	1360.000
HG	<0.240		HG	•
ISODR	<0.060		ISODR	<0.056
K	2430.000		K	•
MEC6H5	<1.210		MEC6H5	<2.100
MG	13600.000		MG	•
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.040
NA	80900.000		NA	
NIT	255.000		NIT	•
OXAT	<2.000		TAXO	<1.350
PB	<18.600		PB	
PPDDE	<0.053		PPDDE	<0.046
PPDDT	<0.033			
			PPDDT	<0.059
S04	54400.000		504	159000.000
T12DCE	<1.200		T12DCE	<1.750
TCLEE	<1.300		TCLEE	<2.760
TRCLE	<1.100		TRCLE	<1.310
XYLEN	<2.470		XYLEN	<1.340
ZN	39.800	D- 195	ZN	•

D-195

-- - ----

AQUIFER: ALLUVIUM SCREENED INT.: 25.8- 40.3 WELL WELL AQUIFER: ALLUVIUM SCREENED INT.: 7337 37338 6.8- 29.2 BEDROCK DEPTH: 32.1 BEDROCK DEPTH: 23.5 BEDROCK LITH .: SH BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM COMPOUND COMPOUND CONCENTRATION CONCENTRATION 111TCE <1.090 111TCE <1.700 112TCE <1.630 112TCE <1.000 11DCE <1.850 11DCE <1.100 11DCLE <1.930 11DCLE <1.200 12DCLE <2.070 12DCLE <0.610 ALDRN <0.083 ALDRN <0.070 <3.070 λS <2.500 λS BTZ <1.140 BTZ <2.000 C6H6 <1.920 C6H6 1.490 CA CA 127000.000 CCL4 <1.690 CCL4 <2.400 CD CD <5.160 CH2CL2 <2.480 CH2CL2 <5.000 CHCL3 <1.880 CHCL3 <1.400 148000.000 CL 63000.000 CL CL6CP <0.083 CL6CP <0.070 CLC6H5 <1.360 CLC6H5 8.370 CLDAN <0.152 CLDAN **CPMS** CPMS <1.080 <1.300 **CPMSO** <1.980 **CPMSO** <4.200 CPMS02 <2.240 CPMSO2 <4.700 CR CR CU CÜ DBCP <0.130 DBCP DCPD <9.310 DCPD <9.310 DIMP <10.500 DIMP <10.500 DITH <1.590 DITH <1.100 DLDRN DLDRN 0.068 0.062 DMDS DMDS <1.160 <1.800 DMMP <30.400 DMMP <15.200 ENDRN ENDRN <0.060 <0.052 ETC6H5 <0.620 ETC6H5 <1.280 FL 1000.000 FL 1400.000 HG HG <0.240 ISODR <0.056 ISODR <0.060 16000.000 K ĸ MEC6H5 <2.100 MEC6H5 <1.210 MG MG 41900.000 MIBK <12.900 MIBK <12.900 MXYLEN MXYLEN <1.040 <1.350 NA NA 180000.000 • NIT NIT 1040.000 OXAT <1.350 OXAT <2.000 PB PB <18.600

PPDDE <0.046 PPDDE <0.053 PPDDT <0.059 PPDDT <0.070 123000.000 SO4 504 392000.000 T12DCE <1.750 T12DCE <1.200 TCLEE <2.760 TCLEE <1.300 TRCLE <1.310 TRCLE <1.100 XYLEN <1.340 XYLEN <2.470 ZN ZN 25.600 D-196

(4)

(

þ

AQUIFER: ALLUVIUM SCREENED INT.: 11.7- 22.3 BEDROCK DEPTH: 20.0 AQUIFER: ALLUVIUM SCREENED INT.: 23.5- 34.1 BEDROCK DEPTH: 32.0 BEDROCK LITH.: SH WELL WELL 37340 37339 BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM

SCREENED ZONE: ALLUVIUM

GCKEDINOU	BOND: ADDOVION		Childhad	BONE: ADDOVION
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		IIITCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0.070		ALDRN	
AS	<3.070		λς	•
BTZ	(2.000		BTZ	•
C6H6	<1.340		C6H6	<1.340
Cy	537000.000		CA	(1.340
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	(2.400
CH2CL2	\$ 000			45.000
			CH2CL2	<5.000
CHCT3	<,,400		CHCL3	<1.400
CL	2020000.000		CL	•
CL6CP	<0.070		CL6CP	
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN			CLDAN	•
CPMS	<1.300		CPMS	•
CPMSO	<4.200		CPMSO	•
CPMSO2	<4.700		CPMS02	•
CR	<5.960		CR	•
CU	<7.940		CU	•
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	•
DIMP	515.000		DIMP	•
DITH	<1.100		DITH	•
DLDRN	<0.060		DLDRN	•
DMDS	<1.800		DMDS	•
DMMP	<15.200		DMMP	•
ENDRN	<0.052		ENDRN	•
ETC6H5	<1.280		ETC6H5	<1.280
FL	4230.000		FL	•
HG	<0.240		HG	•
ISODR	<0.060		ISODR	•
K	3510.000		K	•
MEC6H5	<1.210		MEC6H5	<1.210
MG	167000.000		MG	•
MIBK	<12.900		MIBK	•
MXYLEN	<1.350		MXYLEN	<1.350
NA	1060000.000		NA	
NIT	9230.000		NIT	·
OXAT	<2.000		OXAT	
PB	<18.600		PB	•
PPDDE	<0.053		PPDDE	•
PPDDT	<0.070		PPDDT	•
804	2180000.000		504	•
T12DCE	<1.200			<1.200
TCLEI	<1.300		T12DCE	<1.300
TRCLE	(1.100		TCLEE	<1.100
			TRCLE	
XYLEN	(2.470		XYLEN	<2.470
ZN	93.900	D-197	ZN	•

WELL AQUIFER: ALLUVIUM 17341

*

WELL AQUIFER: ALLUVIUM 37342 SCREENED INT.: 12.9- 29.0 SCREENED INT.: 20.3-50.7 BEDROCK DEPTH: 48.0

BEDROCK DEPTH: 27.5 BEDROCK LITH.: SH BEDROCK LITH .: SS SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

SCREENED	ZONE: ALLUVIUM		SCREENED	ZONE: ALLUVIUM
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
IIDCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	1.470
ALDRN	<0.070		ALDRN	<0.070
λS	<3.070		λS	<3.070
BTZ	<2.000		BTZ	<2.000
C6H6	<1.340		C6H6	<1.340
CX	65300.000		CX	311000.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<b>&lt;5.0</b> 00		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	47500.000		CL	576000.000
CL6CP	<0.070		CL6CP	<0.070
CLC6H5	2.420		CLC6H5	<0.580
CLDAN	•		CLDAN	•
CPMS	<1.300		CPMS	<1.300
CPMSO	<4.200		CPMSO	<4.200
CPMSO2	<4.700		CPMSO2	<4.700
CR	< <b>5.9</b> 60		CR	<5.960
CÚ	<7.940		CÜ	<7.940
DBCP	<0.130		DBCP	<0.130
	<9.310			
DCPD			DCPD	<9.310
DIMP	<10.500		DIMP	41.100
DITH	<1.100		DITH	<1.100
DLDRN	<0.060		DLDRN	<0.060
DMDS	<1.800		DMDS	<1.800
DMMP	<30.400		DMMP	<15.200
ENDRN	<0.052		ENDRN	<0.052
ETC6H5	<1.280		ETC6H5	<1.280
FL.	<1220.000		FL	1460.000
HG	<0.480		HG	<0.240
ISODR	<0.060		ISODR	<0.060
K	4280.000		ĸ	6130.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	13100.000		MG	74500.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	60700.000		NA	444000.000
NIT	725.000		NIT	5650.000
OXAT	<2.000		OXAT	<2.000
PB	<18.600		PB	<18.600
PPDDE	<0.053		PPDDE	<0.053
PPDDT	<0.033		PPDDT	<0.070
\$04	103000.000		\$04	883000.000
T12DCE	<1.200		T12DCE	<1.200
TCLEE				
	<1.300		TCLEE	2.200
TRCLE	<1.100		TRCLE	<1.100
XYLEN	<2.470		XYLEN	<2.470
ZN	<20.100	D-198	ZN	82.900

WELL AQUIFER: ALLUVIUM
37343 SCREENED INT.: 3.7- 35.1
BEDROCK DEPTH: 35.5

WELL AQUIFER: ALLUVIUM
37344 SCREENED INT.: 15.5-40.9
BEDROCK DEPTH: 42.0
BEDROCK LITH.: SS

BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

BCREENED	BOME. ADDOVION		SCKEENED	BONE. ALLOVION
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
1 1DCLE	<1.200		1 1 DCLE	<1.200
12DCLE	2.240		12DCLE	13.700
ALDRN	<0.070		ALDRN	<0.070
λS	3.900		λS	<3.070
BTZ	<2.000		BTZ	<2.000
C6H6	<1.340		C6H6	1.720
CA	144000.000		Cλ	177000.000
CCL4	<2.400		CCL4	9.880
CD	<5.160		CD	<5.160
CH2CL2	₹5.000		CH2CL2	<5.000
CHCL3			CHCL3	
	<1.400			1370.000
CL	333000.000		CL	402000.000
CL6CP	<0.070		CL6CP_	<0.070
CLC6H5	8.930		CLC6H5	6.530
CLDAN	•		CLDAN	•
CPMS	<1.300		CPMS	3.290
CPMSO	<4.200		CPMSO	110.000
CPMSO2	<4.700		CPMSO2	<4.700
CR	<5.960		CR	<5.960
CU	26.700		ĊU	22.100
DBCP	<0.130		DBCP	10.600
DCPD	16.800		DCPD	<9.310
DIMP	966.000		DIMP	1160.000
DITH	1.830		DITH	<1.100
DLDRN	: 0.060		DLDRN	<0.060
DMDS	₹1.800		DMDS	<1.800
DMMP	<152.000		DMDS	<380.000
ENDRN	<0.052			
			ENDRN	<0.052
ETC6H5	<1.280		ETC6H5	<1.280
FL	1600.000		FL	1350.000
HG	<0.240		HG	<0.480
ISODR	<0.060		ISODR	<0.060
K	4590.000		K	4740.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	54000.000		MG	48800.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	270000.000		NA	292000.000
NIT	190.000		NIT	2670.000
OXAT	<2.000		OXAT	(2.000
PB	<18.600		PB	<18.600
PPDDE	<0.053		PPDDE	<0.053
PPDDT	<0.070		PPDDT	<0.070
S04	428000.000		504	495000.000
T12DCE	<1.200		T12DCE	<1.200
TCLEE	<1.300			115.000
			TCLEE	
TRCLE	<1.100		TRCLE	7.060
XYLEN	<2.470		XYLEN	<2.470
ZN	24.400	D-199	ZN	<20.100
		U 177		

**(4)** 

. 👣

		· C	WELL 37345	BEDROCK 1	INT.: 16.4- 3 EPTH: 37.5		ELL 346	SCREENED BEDROCK I BEDROCK I	DEPTH: 24.0
	<b>(*)</b>			COMPOUND	CONCENTRATI	ОИ		COMPOUND	CONCENTRATION
	12			111TCE	<1.700			111TCE	<1.700
				112TCE 11DCE	<1.000 <1.100			112TCE 11DCE	<1.000 <1.100
_				1 1 DCLE	<1.200			11DCLE	<1.200
Ð		•		12DCLE	<0.610			12DCLE	<0.610
				ALDRN	<0.070			ALDRN	<0.070
				AS	<3.070			λS	₹3.070
				BTZ	₹2.000			BTZ	₹2.000
				C6H6	<1.340			C6H6	<1.340
				CA	74700.000			CA	91800.000
		•		CCL4	(2.400			CCL4	<2.400
				CD	<5.160			CD	<5.160
				CH2CL2	<5.000			CH2CL2	<5.000
				CHCL3	<1.400			CHCL3	<1.400
				CL	52000.000			CL	73900.000
_				CL6CP	<0.070			CL6CP	<0.070
D		•		CLC6H5	<0.580			CLC6H5	<0.580
				CLDAN				CLDAN	. • • • •
				CPMS	<1.300			CPMS	<1.300
				CPMSO CPMSO2	<4.200			CPMSO	<4.200
				CPMB02 CR	<4.700 <5.960			CPMSO2 CR	<4.700 <5.960
		_		CŪ	<7.940			CU	< <b>7.94</b> 0
		•		DBCP	<0.130			DBCP	<0.130
				DCPD	<9.310			DCPD	₹9.310
				DIMP	<10.500			DIMP	52.200
				DITH	<1.100			DITH	<1.100
				DLDRN	<0.060			DLDRN	<0.060
D		4		DMDS	<1.800			DMDS	<1.800
		•		DMMP	<15.200			DMMP	<15.200
				ENDRN	<0.052			ENDRN	<0.052
				ETC6H5	<1.280			ETC6H5	<1.280
				FL	1270.000			FL	<1220 000
				HG	<0.240			HG	<0.240
•		•		ISODR	<0.060			ISODR	<0.060
_		•		K MEC6H5	1660.000 <1.210			K	3660.000
				MG	16200.000			MEC6H5 MG	<1.210 17200.000
				MIBK	<12.900			MIBK	<12.900
				MXYLEN	<1.350			MXYLEN	<1.350
				NA	69500.000			NA	71800.000
<b>D</b>		•		NIT	668.000			NIT	722.000
		-		OXAT	(2.000			OXAT	<2.000
				PB	<18.600			PB	<18.600
				PPDDE	<0.053			PPDDE	<0.053
				PPDDT	<0.070			PPDDT	<0.070
				S04	153000.000			SO4	159000.000
D		•		T12DCE	<1.200			T12DCE	<1.200
				TCLEE	<1.300			TCLEE	<1.300
				TRCLE	<1.100			TRCLE	<1.100
				XYLEN	<2.470			XYLEN	<2.470
				ZN	77.100	D-200		ZN	42.800

WELL AQUIFER: ALLUVIUM

37347 SCREENED INT.: 23.2-33.8 SCREENED INT.: 16.4-42.0

BEDROCK DEPTH: 33.5

BEDROCK LITH.: SH

WELL AQUIFER: ALLUVIUM

37348 SCREENED INT.: 16.4-42.0

BEDROCK DEPTH: 41.0

BEDROCK LITH.: SH

BEDROCK LITH .: SH SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

SCREENED	ZONE: ALLUVIUM	SCREENED	ZORE: ALLOVION
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
	<1.700	111TCE	<1.700
111TCE	<1.000	112TCE	<1.000
1 1 2 TCE		11DCE	<1.100
11DCE	<1.100	11DCLE	<1.200
11DCLE	<1.200	12DCLE	₹0.610
12DCLE	<0.610		<0.070
ALDRN	<0.070	ALDRN	<3.070
λS	<3.070	<u> </u>	<2.000
BTZ	<2.000	BTZ	
C6H6	· <1.340	Ç <b>6</b> H5	<1.340
ÇA	70500.000	CÀ	148000.000
CCL4	<2.400	CCL4	<2.400
CD	<5.160	ÇD	<5.160
CH2CL2	<5.000	CH2CL2	<5.000
CHCL3	<1.400	CHCL3	<1.400
CL	55500.000	CL	189000.000
CL6CP	<0.070	CL6CP	<0.070
CLC6H5	₹0.580	CLC6H5	2.050
CLDAN		CLDAN	•
CPMS	<1.300	CPMS	<1.300
CPMS0	4.200	CPMSO	<4.200
	<4.700	CPMSO2	<4.700
CPMS02	<5.960	CR	<5.960
CR	<7.940	ζù	<7.940
CU	<0.130	DBCP	<0.130
DBCP	<b>&lt;9.3</b> 10	DCPD	<9.310
DCPD	33.500	DIMP	<10.500
DIMP		DITH	<1.100
DITH	<1.100	DLDRN	<0.060
DLDRN	<0.060	DMDS	<1.800
DMDS	<1.800	- ·	<15.200
DMMP	<15.200	DMMP	⟨0.052
ENDRN	<0.052	ENDRN	<1.280
ETC6H5	<1.280	ETC6H5	1470.000
FL	<1220.000	FL	<0.480
HG	<0.240	HG	<0.060
ISODR	<0.060	ISODR	2430.000
K	3050.000	K	<1.210
MEC6H5	<1.210	MEC6H5	35100.000
MG	16000.000	MG	(12.900
MIBK	<12.900	MIBK	
MXYLEN	<1.350	MXYLEN	<1.350
NA	69500.000	NA	124000.000
NIT	1180.000	NIT	4010.000
OXAT	(2.000	OXAT	<2.000
PB	<18.600	PB	<18.600
PPDDE	₹0.053	PPDDE	<0.053
PPDDT	₹0.070	PPDDT	<0.070
604	112000.000	S04	334000.000
T12DCE	<1.200	T12DCE	<1.200
	<1.300	TCLEE	<1.300
TCLEE	<1.100	TRCLE	<1.100
TRCLE	<2. <b>4</b> 70	XYLEN	<2.470
XYLEN	52.200	# N1	34.600
ZN	54.200	D-201 ZN	-

•

(**4**)

, (

WELL AQUIFER: ALLUVIUM
'7349 SCREENED INT.: 23.2-43.6
BEDROCK DEPTH: 44.0
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM

SCREENED 3	CONE: ALLOVIUM	SCREENED 2	ONE: ALLUVIUM
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
111TCE	<1.700	111TCE	<1.700
112TCE	<1.000	112TCE	<1.000
1 1 DCE	<1.100	11DCE	<1.100
11DCLE	<1.200	11DCLE	<1.200
12DCLE	<0.610	12DCLE	<0.610
ALDRN	<0.070	ALDRN	<0.070
λ5	₹3.070	λS	<3.070
BTZ	<2.000	BTZ	<2.000
C6H6	<1.340	<b>C6</b> H6	<1.340
CA	181000.000	CA	114000.000
CCL4	<2.400	CCL4	(2.400
CD	<5.160	CD	<5.160
CH2CL2	<5.000	ČH2CL2	<5.000
CHCL3	<1.400	CHCL3	2.120
CL	277000.000	CL	86100.000
CLECP	<0.070	CL6CP	< 0.070
CLC6H5	<0.580	CLC6H5	<0.580
CLDAN		CLDAN	
CPMS	<1.300	CPMS	<1.300
CPMSO	<4.200	CPMSO	<4.200
CPMSO2	<4.700	CPMS02	<4.700
CPM502 CR	<b>&lt;5.96</b> 0	CR CR	<b>(5.96</b> 0
CU	<b>&lt;7.940</b>	CU	<7.940
DBCP	<0.130	DBCP	<0.130
	<9.310		(9.310
DCPD	456.000	DCPD	
DIMP		DIMP	16.600
DITH	<1.100	DITH	<1.100
DLDRN	<0.060	DLDRN	<0.060
DMDS	<1.800	DMDS	<1.800
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.052
ETC6H5	<1.280	ETC6H5	<1.280
FL	1250.000	FL	<1220.000
HG	<0.240	HG	<0.480
ISODR	<0.060	ISODR	<0.060
K	3050.000	K	3660.000
MEC6H5	<1.210	MEC6H5	<1.210
MG	47100.000	MG	30200.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.350
NA	127000.000	NA_	83400.000
NIT	6790.000	NIT	7010.000
OXAT	<2.000	OXAT	<2.000
PB	<18.600	PB	<18.600
PPDDE	<0.053	PPDDE	<0.053
PPDDT	<0.070	PPDDT	<0.070
<b>S</b> 04	311000.000	504	218000.000
T12DCE	<1.200	T12DCE	<1.200
TCLEE	<1.300	TCLEE	<1.300
TRCLE	<1.100	TRCLE	<1.100
XYLEN	<2.470	XYLEN	<2.470
ZN	116.000	ZN	<20.100

WELL AQUIFER: ALLUVIUM

37351 SCREENED INT.: 17.9- 38.5 37352 SCREENED INT.: 29.8- 38.3 BEDROCK DEPTH: 36.0 BEDROCK DEPTH: 37.9 BEDROCK LITH.: SS SCREENED ZONE: ALLUVIUM

SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

(4)

SCREENED	ZONE: MILOVION		SCREENED	ZONE: ALLUVIUM
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
	<0.070		ALDRN	<0.070
aldrn				
λS	<3.070		λS	(3.070
BTZ	<2.000		BTZ	<2.000
C6H6	<1.340		Сене	<1.340
CX	139000.000		Ċλ	112000.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	9.970
CHCL3	<1.400		CHCL3	<1.400
CL	128000.000		CL	82200.000
CL6CP	<0.070		CL6CP	<0.070
CLC6H5	<1.730		CLC6H5	<0.580
CLDAN	•		CLDAN	•
CPMS	<1.300		CPMS	<1.300
CPMSO	<4.200		CPMSO	<4.200
CPMSO2	<4.700		CPMSO2	<4.700
CR	<5.960		CR	<5.960
Ċΰ	<7.940		CÜ	<7.940
DBCP	<0.130		DBCP	< 0.130
DCPD	<9.310		DCPD	(9.310
DIMP	12.400		DIMP	<10.500
DITH	<1.100		DITH	<1.100
DLDRN	<0.060		DLDRN	<0.060
DMDS	<1.800		DMDS	<1.800
DMMP	<30.400		DMMP	<15.200
ENDRN	<0.052		ENDRN	<0.052
ETC6H5	<1.280		ETC6H5	<1.280
FL	1690.000		FL	1380.000
нĞ	<0.480		HG	<0.240
ISODR	<0.060		ISODR	₹0.060
K	1840.000		K	<1260.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	38000.000		MG	28200.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
	135000.000		NY	112000.000
NA NA	7890.000		NIT	3360.000
NIT	(2.000		OXAT	<2.000
OXAT				<18.600
PB	<18.600		PB	<0.053
PPDDE	(0.053		PPDDE	(0.070
PPDDT	<0.070		PPDDT	177000.000
504	206000.000		S04	
T12DCE	<1.200		T12DCE	(1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	(2.470		XYLEN	<2.470
ZN	<20.100	n-203	ZN	37.900

D-203

WELL

7353

AQUIFER: ALLUVIUM SCREENED INT.: 27.1- 42.4 BEDROCK DEPTH: 44.0 BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM WELL AQUIFER: ALLUVIUM
37354 SCREENED INT.: 13.8-49.1
BEDROCK DEPTH: 49.0
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	(1.700
112TCE	<1.000		112TCE	(1.000
1 1DCE	<1.100		1 1 DCE	<1.100
1 IDCLE	<1.200		11DCLE	<1.200
	<0.610		12DCLE	
12DCLE				<0.610
aldrn	<0.070		aldrn	<0.070
λS	<3.070		AS	<3.070
BTZ	<2.000		BTZ	<2.000
C6H6	<1.340		C6H6	1.510
CX	119000.000		CA	108000.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	3.380
CL	119000.000		CL	87300.000
CL6CP	<0.070		CL6CP	<0.070
CLC6H5	<0.580		CLC6H5	7.340
CLDAN			CLDAN	
CPMS	<1.300		CPMS	<1.300
CPMSO	<4.200		CPMSO	₹4.200
CPMSO2	<4.700		CPMSO2	<4.700
	<b>&lt;5.960</b>		CPMSO2 CR	< <b>5.9</b> 60
CR	<7.940		CU	(7.940
CU				
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	103.000		DIMP	13.100
DITH	<1.100		DITH	<1.100
DLDRN	0.156		DLDRN	<0.060
DMDS	<1.800		DMDS	<1.800
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.052		ENDRN	<0.052
ETC6H5	<1.280		ETC6H5	<1.280
FL	<1220.000		FL	1300.000
HG	<0.240		HG	< 0.480
ISODR	<0.060		ISODR	< 0.060
K	1690.000		K	2150.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	32500.000		MG	28200.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	135000.000		NA	106000.000
NIT	4030.000		NIT	7750.000
OXAT				
	<2.000 <18.600		OXAT	<2.000 <18.600
PB			PB	
PPDDE	<0.053		PPDDE	<0.053
PPDDT	<0.070		PPDDT	<0:070
804	187000.000		S04	160000.000
T12DCE	<1.200		T12DCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1. 00		TRCLE	<1.100
XYLEN	<2.470		XYLEN	<2.470
ZN	97.900	D-204	ZN	22.600
	- · · · · ·	D-204		

**(***)

	WR:	IR WATER CHEMISTRE SU	MMWKI' 2VD	Source.		
(	37355 SCREENEI BEDROCK BEDROCK	: ALLUVIUM D INT.: 11.1- 71.7 DEPTH: 70.0 LITH.: SH D ZONE: ALLUVIUM	WELL 37356	AQUIFER: SCREENED BEDROCK D BEDROCK L SCREENED	INT:: 8.3-38.4 (EPTH: 38.5	,
1	BEDROCK BEDROCK SCREENE COMPOUN 111TCE 112TCE 11DCLE 11DCLE 11DCLE 12DCLE ALDRN AS BTZ C6H6 CA CCL4 CD CH2CL3 CLC6CP CLC6H5 CLDAN CPMS CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPMSO CPM	DEPTH: 70.0 LITH:: SH D ZONE: ALLUVIUM  D CONCENTRATION 9.590 <1.000 <1.100 <1.200 <0.610 <0.070 <3.070 <2.000 <1.340 148000.000 <2.400 <5.160 <5.000 3.250 196000.000 <0.070 5.790  <1.300 <4.200 <4.700 <5.960 11.100 <0.130 <9.310 <10.500 <1.100 0.116 <1.800 <1.100 0.116 <1.800 <1.100 0.116 <1.800 <1.100 0.116 <1.800 <1.100 0.116 <1.800 <1.100 0.116 <1.800 <1.100 0.116 <1.800 <1.100 0.116 <1.800 <1.100 0.116 <1.800 <1.100 0.116 <1.800 <1.100 0.116 <1.800 <1.100 0.116 <1.800 <1.100 0.116 <1.800 <1.100 0.116 <1.800 <1.100 0.116 <1.800 <1.100 0.116 <1.800 <1.100 0.116 <1.800 <1.100 0.116 <1.800 <1.100 0.116 <1.800 <1.100 0.116 <1.800 <1.100 0.116 <1.800 <1.100 0.116 <1.800 <1.100 0.116 <1.800 0.110 0.116 <1.800 0.110 0.000		BEDROCK D BEDROCK L	EPTH: 38.5 ITH: SH	
	MIBK MXYLEN NA NIT OXAT PB PPDDE PPDDT S04 T12DCE TCLEE TRCLE	<12.900 <1.350 157000.000 6270.000 <2.000 24.500 <0.053 <0.070 208000.000 <1.200 1.480 <1.100 <2.470		MIBK MXYLEN NA NIT OXAT PB PPDDE PPDDT SO4 T12DCE TCLEE TRCLE XYLEN	<pre>&lt;1.350 111000.000 4680.000 &lt;2.000 &lt;18.600 &lt;0.053 &lt;0.070 155000.000 &lt;1.200 &lt;1.300 &lt;1.100 &lt;2.470</pre>	
	XYLEN Zn	35.200	D-205	ZN	29.900	

WELL AQUIFER: ALLUVIUM WELL AQUIFER: ALLUVIUM

(*****)

**(** 

PB

PPDDE

PPDDT

T12DCE

TCLEE

TRCLE

XYLEN

ZN

**\$04** 

17357 SCREENED INT.: 4.5- 19.7 37358 SCREENED INT.: 44.3- 59.9

BEDROCK DEPTH: 19.0

BEDROCK LITH.: SH

SCREENED ZONE: ALLUVIUM

BEDROCK LITH.: SH

SCREENED ZONE: ALLUVIUM

COMPOUND CONCENTRATION COMPOUND CONCENTRATION 111TCE <1.700 111TCE <1.700 112TCE <1.000 112TCE <1.000 11DCE <1.100 11DCE <1.100 11DCLE <1.200 11DCLE <1.200 12DCLE 12DCLE <0.610 <0.610 ALDRN <0.070 ALDRN <0.070 λS <3.070 λS <3.070 BTZ <2.000 BTZ <2.000 C6H6 C6H6 <1.340 <1.340 CA 121000.000 CA 135000.000 CCL4 CCL4 <2.400 <2.400 CD <5.160 CD <5.160 CH2CL2 <5.000 CH2CL2 <5.000 CHCL3 CHCL3 <1.400 24.300 CL 126000.000 ÇL 73800.000 CL6CP <0.070 CL6CP <0.070 CLC6H5 <0.580 CLC6H5 <0.580 CLDAN CLDAN **CPMS CPMS** <1.300 <1.300 **CPMSO** <4.200 **CPMSO** <4.200 CPMSO2 <4.700 CPMSO2 <4.700 CR <5.960 CR <5.960 CU CU <7.940 <7.940 DBCP DBCP <0.130 <0.130 DCPD <9.310 DCPD <9.310 DIMP 29.600 DIMP <10.500 DITH <1.100 DITH <1.100 DLDRN <0.060 DLDRN <0.060 DMDS <1.800 DMDS <1.800 DMMP DMMP <15.200 <15.200 **ENDRN** <0.052 **ENDRN** <0.052 ETC6H5 ETC6H5 <1.280 <1.280 FL FL <1220.000 :1220.000 HG <0.240 HG <0.240 ISODR ISODR <0.060 <0.060 6640.000 K K 2150.000 MEC6H5 MEC6H5 <1.210 <1.210 32900.000 MG MG 15000.000 MIBK <12.900 MIBK <12.900 MXYLEN <1.350 MXYLEN <1.350 137000.000 NA 73200.000 NA 3460.000 NIT 10300.000 NII OXAT <2.000 OXAT <2.000

D-206

PB

PPDDE

PPDDT

T12DCE

TCLEE

TRCLE

XYLEN

ZN

S04

<18.600

<0.053

<0.070

<1.200

<1.100

<2.470

67.400

3.390

192000.000

<18.600

<0.053

<0.070

<1.200

<1.300

<1.100

<2.470

<20.100

123000.000

WELL

l

AQUIFER: ALLUVIUM
SCREENED INT.: 23.2-43.7
BEDROCK DEPTH: 42.9
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM WELL AQUIFER: ALLUVIUM

37360 SCREENED INT.: 26.4-101.9
BEDROCK DEPTH: 101.5
BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM 37359

SCREENED &	ONE. ALLOVION		GCREENED (	BONE. ALLOVION
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	3.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	2.310		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
ALDRN	<0. <b>0</b> 70		ALDRN	<0.070
λS	<3.070		AS	₹3.070
BTZ	<2.000		BTZ	₹2.000
C6H6	<1.340		C6H6	<1.340
CA	229000.000		Cλ	137000.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCL3	<1.400
CL	134000.000		CL	62200.000
CL6CP	<0.070		CL6CP	<0.070
CLC6H5	<0.580		CLC6H5	7.520
CLDAN			CLDAN	
CPMS	<1.300			<1.300
			CPMS	
CPMSO	<4.200		CPMSO	<4.200
CPMSO2	<4.700		CPMSO2	<4.700
CR	<5.960		CR	<5.960
CU	<7.940		CŲ	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	.100		DITH	<1.100
DLDRN	060		DLDRN	<0.060
DMDS	<1.800		DMDS	<1.800
DMMP	<15.200			
			DMMP	<15.200
ENDRN	<0.052		ENDRN	<0.052
ETC6H5	<1.280		ETC6H5	<1.280
FL	<1220.000		FL	<1220.000
HG	<0.240		HG	<0.240
ISODR	<0.060		ISODR	<0.060
K	4470.000		K	2920.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	31800.000		MG	14900.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	165000.000		NA	71900.000
NIT	9060.000		NIT	8900.000
OXAT	<2.000		TAXO	<2.000
PB	<18.600		PB	<18.600
PPDDE	<0.053		PPDDE	< 0.053
PPDDT	<0.070		PPDDT	< <b>0.0</b> 70
804	333000.000		504	132000.000
T12DCE	1.260		TIZDCE	<1.200
TCLEE	3.950		TCLEE	<1.300
TRCLE	5.130		TRCLE	<1.100
XYLEN	<2.470		XYLEN	<2.470
ZN	<20.100			<20.100
-J17	\&\v\\\	D-207	ZN	(20.100

1

WELL AQUIFER: ALLUVIUM SCREENED INT.: 34.5- 45 WELL AQUIFER: ALLUVIUM SCREENED INT.: 21.7- 92.3 37362 17361 BEDROCK DEPTH: 92.0 BEDROCK DEPTH: 42.5 BEDROCK LITH .: SH BEDROCK LITH .: SH SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM CONCENTRATION CONCENTRATIO COMPOUND COMPOUND 111TCE <1.700 111TCE <1.700 112TCE <1.000 112TCE <1.000 11DCE <1.100 11DCE <1.100 11DCLE 11DCLE <1.200 <1.200 12DCLE <0.610 12DCLE <0.610 ALDRN ALDRN <0.070 <0.070 AS <3.070 AS <3.070 BT2 <2.000 BTZ <2.000 C6H6 1.530 C6H6 <1.340 CA 120000.000 158000.000 CA CCL4 <2.400 CCL4 <2.400 CD <5.160 CD <5.160 CH2CL2 <5.000 CH2CL2 <5.000 CHCL3 <1.400 CHCL3 <1.400 62300.000 CL CL 234000.000 CL6CP <0.070 CL6CP <0.070 CLC6H5 CLC6H5 7.760 <0.580 CLDAN CLDAN CPMS <1.300 CPMS <1.300 CPMSO <4.200 CPMSO <4.200 CPMSO2 <4.700 CPMS02 <4.700 CR <5.960 CR <5.960 CU <7.940 CU <7.940 DBCP <0.130 <0.130 DBCP DCPD <9.310 DCPD <9.310 DIMP <10.500 <10.500 DIMP DITH <1.100 DITH <1.100 <0.060 <0.060 <1.800 DLDRN DLDRN DMDS <1.800 <15.200 <1.800 DMDS DMMP <15.200 DMMP ENDRN <0.052 ENDRN <0.052 ETC6H5 <1.280 ETC6H5 <1.280 <1220.000 1770.000 FL FLHG <0.240 HG <0.240 ISODR <0.060 ISODR <0.060 2000.000 ĸ K 2460.000

MEC6H5 <1.210 MEC6H5 <1.210 15600.000 53800.000 MG MG MIBK <12.900 MIBK <12.900 MXYLEN <1.350 MXYLEN <1.350 81100.000 314000.000 NA NA NIT 7890.000 1700.000 NIT OXAT <2.000 CXAT <2.000 PB <18.600 PP <18.600 PPDDE <0.053 PPDDE <0.053 PPDDT <0.070 PPDDT <0.070 143000.000 S04 S04 449000.000 T12DCE <1.200 TIZDCE <1.200 TCLEE <1.300 TCLEE <1.300 TRCLE <1.100 TRCLE <1.100 XYLEN <2.470 XYLEN <2.470 ZN 22.800 55.100 ZN D-208

WELL AQUIFER: ALLUVIUM
37364- SCREENED INT.: 6.8- 27.3 WELL AQUIFER: ALLUVIUM

37363 SCREENED INT.: 6.9- 32.2 BEDROCK DEPTH: 32.1 BEDROCK DEPTH: 28.9 BEDROCK LITH.: SS BEDROCK LITH.: SH SCREENED ZONE: ALLUVIUM

SCREENED	ZONE: ALLUVIUM		SCREENED	ZONE: ALLUVIUM
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	< 0.610
ALDRN	<0.070		ALDRN	<0.070
<b>A</b> LDAN	<3.070		<b>A</b> S	6.200
BTZ	<2.000		BTZ	<2.000
C6H6	<1.340			<1.340
	105000.000		CeHe	36200.000
CA			CA CCL4	
CCL4	<2.400			<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	<1.400		CHCT3	<1.400
CL	98600.000		CL	31800.000
CL6CP	<0.070		CL6CP	<0.070
CLC6H5	9.420		CLC6H5	4.690
CLDAN	*		CLDAN	. •
CPMS	<1.300		CPMS	<1.300
CPMSO	<4.200		CPMSO	<4.200
CPMS02	(4.700		CPMSO2	<4.700
CR	<b>&lt;5.96</b> 0		CR	<5.960
CU	<7.940		CU	<7.940
DBCP	<0 130		DBCP	<0.130
DCPD	< 9 - 310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<1.100		DITH	<1.100
DLDRN	<0.060		DLDRN	<0.060
DMDS	<1.800		DMDS	<1.800
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.052		ENDRN	<0.052
ETC6H5	<1.280		ETC6H5	<1.280
FL	<1220.000		FL	1200.000
HG	<0.240		HG	<0.240
ISODR	<0.060		ISODR	<0.060
K	2460.000		K	4160.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	23600.000		MG	7410.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	111000.000		NA	57400.000
NIT	870.000		NIT	1280.000
OXAT	<2.000		OXAT	<2.000
PB	<18.600		PB	<18.600
PPDDE	<0.053		PPDDE	<0.053
PPDDT	<0.070		PPDDT	<0.070
504	180000.000		504	70100.000
TIZDCE	<1.200		T12DCE	<1.200
TCLEE	<1.300		TCLEE	<1.300
TRCLE	<1.100		TRCLE	<1.100
XYLEN	<2.470		XYLEN	<2.470
ZN	<20.100	D-209	ZN	<20.100

WELL AQUIFER: ALLUVIUM
37367 SCREENED INT.: 11.5- 38.4 AQUIFER: ALLUVIUM SCREENED INT.: 2.2- 17.2 WELL 37366 BEDROCK DEPTH: 38.5

BEDROCK LITH .:

<20.100

ZN

BEDROCK DEPTH: 20.0 BEDROCK LITH.: SS SCREENED ZONE: ALLUVIUM

The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th

(4)

SCREENED ZO	H.: 55 NE: ALLUVIUM	BEDROCK SCREENEI	D ZONE: ALLUVIUM
COMPOUND	CONCENTRATION	COMPOUNI	
111TCE	<1.700	111TCE	<1.090
112TCE	<1.000	112TCE	<1.630
11DCE	<1.100	11DCE_	<1.850
11DCLE	<1.200	11DCLE	<1.930
12DCLE	<0.610	12DCLE	<2.070
ALDRN	<0.070	ALDRN	<0.083
λS	<3.070	λS	<2.500
BTZ	<2.000	BTZ	<1.140
C6H6	<1.340	C6H6	2.920
CA CCL4	137000.000 <2.400	CA CCL4	158000.000
CD	<5.160	CD CD	<1.690 <5.160
CH2CL2	<5.000	CH2CL2	<2.480
CHCL3	<1.400	CHCL3	127.000
CL	45200.000	CL	201000.000
CL6CP	<0.070	CL6CP	<0.083
CLC6H5	<0.580	CLC6H5	9.230
CLDAN	•	CLDAN	< 0.152
CPMS	<1.300	CPMS	4.160
CPMSO	<4.200	CPMSO	113.000
CPMSO2	<4.700	CPMSO2	4.310
CR	<5.960	CR	<5.960
CŪ	(7.940	CU	<7.940
DBCP	<0.130	DBCP	2.570
DCPD	<9.310	DCPD	<9.310
DIMP	<10.500	DIMP	397.000
DITH	<1.100	DITH	<3.340
DLDRN	0.072	DLDRN	<0.054
DMDS	<1.800	DMDS	<1.160
DMMP	<15.200	DMMP	<15.200
ENDRN	<0.052	ENDRN	<0.060
ETC6H5	<1.280	ETC6H5	<0.620
FL	<1220.000	FL	2050.000
HG	<0.240	HG	. 0 0 0 0 0
ISODR	<0.060	ISODR	<0.056
K MEC6H5	3850.000 <1.210	K MEC6H5	<2.100
MG	25600.000	MG MECONS	50900.000
MIBK	<12.900	MIBK	<12.900
MXYLEN	<1.350	MXYLEN	<1.040
NA	127000.000	NA NA	265000.000
NIT	7240.000	NIT	2820.000
OXAT	<2.000	OXAT	<1.350
PB	<18.600	PB	<18.600
PPDDE	<0.053	PPDDE	<0.046
PPDDT	<0.070	PPDDT	₹0.059
504	106000.000	504	578000.000
T12DCE	<1.200	TIZDCE	<1.750
TCLEE	<1.300	TCLEE	35.800
TRCLE	<1.100	TRCLE	4.100
XYLEN	<2.470	XYLEN	<1.340
CT 5.5			

72.000

D-210

ZN

WELL AQUIFER: ALLUVIUM
37368 SCREENED INT.: 18.1- 34.3 37369 SCREENED INT.: 4.1- 25.2
BEDROCK DEPTH: 34.0 BEDROCK DEPTH: 25.5
BEDROCK LITH.: SCREENED ZONE: ALLUVIUM
SCREENED ZONE: ALLUVIUM

(*)

.**4**)

SCREENED	ZONE: ALLUVIUM		SCREENED	ZONE: ALLUVIUM
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.090		111TCE	<1.090
112TCE	<1.630		112TCE	<1.630
1 1 DCE	<1.850		11DCE	<1.850
1 1DCLE	(1.930		11DCLE	<1.930
12DCLE	₹2.070		12DCLE	3.000
ALDRN	₹0.083		ALDRN	<0.083
λS	2.560		λS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	2.630		C6H6	<1.920
CA	367000.000		CA	
CCL4	<1.690		CCL4	41.600
CD CCT4				<1.690
	<5.160 +2.400		CD	
CH2CL2	<2.480		CH2CL2	<2.480
CHCL3	29.900		CHCL3	<1.880
CL	690000.000		CL	210000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	11.500		CLC6H5	8.880
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	3.430		CPMSO	8.590
CPMSO2	<2.240		CPMSO2	4.110
CR	<5.960		CR	•
CU	<7.940		cu	• . • .
DBCP	1.110		DBCP	<0.130
DCPD	<9.310		DCPD	59.400
DIMP	55.700		DIMP	251.000
DITH	<3.340		DITH	<3.340
DLDRN	<0.054		DLDRN	0.333
DMDS	<1.160		DMDS	<1.160
DMMP	15.200		DMMP	<76.000
ENDRN	<0.060		ENDRN	0.428
ETC6H5	0.620		ETC6H5	<0.620
FL	4580.000		FL	2690.000
HG	•		HG	•
ISOD	<0.056		ISODR	<0.056
K	•		K	• . • .
MEC6H5	<2.100		MEC6H5	<2.100
MG	96500.000		MG	•
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.040		MXYLEN	<1.040
NA	384000.000		NA	•
NIT	9020.000		NIT	•
OXAT	<1.350		OXAT	<1.350
PB	<18.600		PB	•
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	<0.059
S04	784000.000		SO4	391000.000
T12DCE	<1.750		TIBDCE	<1.750
TCLEE	16.000		TCLEE	8.960
TROLE	1.930		TRCLE	<1.310
XYLEN	<1.340		XYLEN	<1.340
ZN	<20.100	D-2+1	ZN	•

D-211

(4)

AOUIFER: DENVER WELL AQUIFER: ALLUVIUM WELL SCREENED INT .: 28.3- 39.0 37371 SCREENED INT.: 4.4- 25.8 `7370 BEDROCK DEPTH: 26.0 BEDROCK DEPTH: 25.8 BEDROCK LITH .: BEDROCK LITH .: SCREENED ZONE: 3 SCREENED ZONE: ALLUVIUM CONCENTRATION COMPOUND **.+**) COMPOUND CONCENTRATION <1.090 111TCE <1.090 111TCE <1.630 112TCE <1.630 112TCE <1.850 11DCE <1.850 11DCE <1.930 11DCLE <1.930 11DCLE <2.070 12DCLE <2.070 12DCLE <0.083 ALDRN <0.083 ALDRN <2.500 λS 2.720 AS BTZ <1.140 BTZ <1.140 <1.920 C6H6 8.430 C6H6 231000.000 CA CA <1.690 CCL4 <1.690 CCL4 <5.160 CD CD CH2CL2 <2.480 <2.480 CH2CL2 <1.880 CHCL3 <1.880 CHCL3 467000.000 CL 568000.000 CL <0.083 CL6CP CL6CP <0.083 <1.360 CLC6H5 27.300 CLC6H5 <0.152 CLDAN <0.152 CLDAN <1.080 **CPMS** <1.080 **CPMS** <1.980 **CPMSO** <1.980 **CPMSO** <2.240 CPMSO2 <2.230 CPMSO2 <5.960 CR CR <7.940 CU CU <0.130 DBCP <0.130 DBCP <9.310 DCPD <9.310 DCPD 1100.000 DIMP 278.000 DIMP <3.340 DITH <3.340 DITH <0.054 DLDRN <0.054 DLDRN <1.160 DMDS <1.160 DMDS <15.200 DMMP <76.000 **DMMP** <0.060 **ENDRN** <0.060 ENDRN <0.620 ETC6H5 ETC6H5 <0.620 2590.000 FL 2550.000 FL HG HG <0.056 ISODR <0.056 ISODR <2.100 MEC6H5 <2.100 MEC6H5 61900.000 MG MG <12.900 MIBK <12.900 MIBK <1.040 MXYLEN <1.040 MXYLEN 428000.000 NA . NA 838.000 NIT NIT <1.350 OXAT <1.350 OXAT <18.600 PB PB <0.046 PPDDE <0.046 PPDDE <0.059 PPDDT <0.059 PPDDT 700000.000 S04 899000,000 **SO4** <1.750 T12DCE <1.750 T12DCE <2.760 TCLEE <2.760 TCLEE <1.310 TRCLE 2.650 TRCLE <1.340 XYLEN

<1.340

D-212

<20.100

XYLEN

ZN

WELL AQUIFER: ALLUVIUM AQUIFER: DENVER
SCREENED INT.: 61.5-88.5
BEDROCK DEPTH: 26.0
WELL AQUIFER: ALLUVIUM
37373 SCREENED INT.: 4.3-25.7
BEDROCK DEPTH: 25.0 WELL

(4)

37372

BEDROCK DEPTH: 25.0 BEDROCK LITH.: BEDROCK LITH .:

SCREENED ZONE: ALLUVIUM SCREENED ZONE: 4

BUREHED	BOND: 4			
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.090		111TCE	<1.090
112TCE	<1.630		112TCE	<1.630
11DCE	<1.850		11DCE	<1.850
11DCLE	<1.930		1 1 DCLE	<1.930
	<2.070		12DCLE	18.200
12DCLE	<0.083		ALDRN	<0.083
ALDRN	(2.500		λS	3.650
λS	(1.140		BTZ	<1.140
BTZ	10.300		C6H6	<1.920
CeHe	10.300		Cλ	329000.000
CA	<1.690		CCL4	<1.690
CCL4			CD	<5.160
CD	•		CH2CL2	<2.480
CH2CL2	<1.880		CHCL3	<1.880
CHCT3	57800.000		CL	744000.000
CL	<0.083		CL6CP	<0.083
CL6CP	42.400		CLC6H5	3.560
CLC6H5			CLDAN	<0.152
CLDAN	<0.152		CPMS	<1.080
CPMS	<1.080		CPMSO	4.090
CPMSO	<1.980		CPMSO2	16.100
CPMSO2	<2.230		CR	<5.960
CR	•		CÜ	₹7.940
CU	•••		DBCP	<0.130
DBCP	0.207		DCPD	430.000
DCPD	<9.310		DIMP	430.000
DIMP			DITH	19.300
DITH	<3.340		DLDRN	<0.054
DLDRN	<0.054		DMDS	<1.160
DMDS	<1.160		DMMP	•
DMMP			ENDRN	<0.060
ENDRN	<0.060		ETC6H5	<0.620
ETC6H5	<0.620		FL	2620.000
FL	2350.000		HG	2020.000
HG	.0.056		ISODR	<0.056
ISODR	<0.056		K	
K			MEC6H5	<2.100
MEC6H5	<2.100		MG	108000.000
MG			MIBK	<12.900
MIBK	<12.900		MXYLEN	<1.040
MXYLEN	. <1.040			589000.000
NA	•		NA	59.600
NIT	• • • •		NIT	5.100
OXAT	<1.350		OXAT	<18.600
PB	. •		FB	0.113
PPDDE	(0.046		PPDDE	0.110
PPDDT	<0.059		PPDDT	921000.000
S04	370000.000		SO4	<1.750
T12DCE	<1.750		T12DCE	15.700
TCLEE	<2.760		TCLEE	3.570
TRCLE	2.830		TRCLE	<1.340
XYLEN	<1.340		XYLEN	29.800
ZN	•	D-213	ZN	29.600

(3)		WELL 7374	AQUIFER: A SCREENED I BEDROCK DI BEDROCK LI SCREENED I	INT.: 8.7-24.9 EPTH: 26.0	WELL 37376	AQUIFER: D SCREENED I BEDROCK DE BEDROCK LI SCREENED 2	NT.: 40.3-51.0 PTH: 31.0 TH.:
. <b>.*</b> )			COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
			111TCE	<1.090		111TCE	<1.090
			112TCE	<1.630		112TCE	<1.630
	4		11DCE	<1.850		11DCE	<1.850
	•		11DCLE	<1.930		11DCLE	<1.930
			12DCLE	<2.070		12DCLE	(2.070
			ALDRN	<0.083		ALDRN	<0.083
			λ5	2.790		AS	<2.500 <1.140
			BTZ	<1.140		BTZ	3.640
	4		C6H6	2.680		C <b>A</b>	3.640
	•		CX	557000.000		CCL4	<1 <b>.69</b> 0
			CCL4	<1.690		CD	(1.030
			CD	<5.160 <2.480		CH2CL2	<2.480
			CH2CL2	2.930		CHCL3	<1.880
			CHCL3	386000.000		CL	14800.000
	4		CL CL6CP	<0.083		CLECP	<0.083
	•		CLC6H5	13.300		CLC6H5	33.000
			CLDAN	<0.152		CLDAN	<0.152
			CPMS	<1.080		CPMS	<1.080
			CPMSO	<1.980		CPMSO	<1.980
			CPMSO2	<2.240		CPMS02	<2.240
	4		CR	<5.960		CR	•
	•		čΰ	<7.940		CU	•
			DBCP	<0.130		DBCP	<0.130
			DCPD	<9.310		DCPD	(9.310
			DIMP	445.000		DIMP	<10.500
			DITH	<3.340		DITH	<3.340
			DLDRN	<0.054		DLDRN	<0.054 <1.160
	•		DMDS	<1.160		DMDS	<15.200
			DMMP	<15.200		DMMP ENDRN	<0.060
			ENDRN	<0.060		ETC6H5	<0.620
			ETC6H5	<0.620		FL	<1000.000
			FL	4170.000		HG	•
	_		HG	<0.056		ISODR	<0.056
	•		ISODR			K	•
			K Mec6H5	<2.100		MEC6H5	<2.100
			MG	160000.000		MG	•
			MIBK	<12.900		MIBK	<12.900
			MXYLEN	<1.040		MXYLEN	<1.040
	•		NA	754000.000		NA	•
	•		NIT	938.000		NIT	•
			OXAT	<1.350		OXAT	<1.350
			PB	<18.600		PB	• • • •
			PPDDE	< 0.046		PPDDE	<0.046
			PPDDT	<0.059		PPDDT	<0.059
	_		504	2140000.000		504	192000.000
	•		T12DCE	<1.750		T12DCE	<1.750
			TCLEE	<2.760		TCLEE	<2.760
			TRCLE	<1.310		TRCLE	1.380
			XYLEN	<1.340		XYLEN	<1.340
			ZN	<20.100	· D-214	ZN	•
					7		

WELL AQUIFER: ALLUVIUM
37378 SCREENED INT.: 23.8-34.7 /
BEDROCK DEPTH: 35.0
BEDROCK LITH.: WELL AQUIFER: ALLUVIUM
37377 SCREENED INT.: 22.7- 38.9
BEDROCK DEPTH: 39.5

BEDROCK LITH .:

SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

SCREENED 2	CONE: ALLUVIUM		SCREENED 2	RONE: ALLUVIUM
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.090		111TCE	<1.090
112TCE	<1.630		112TCE	<1.630
11DCE	<1.850		11DCE	<1.850
	<1.930		11DCLE	<1.930
11DCLE			12DCLE	<2.070
12DCLE	<2.070			<0.083
ALDRN	<0.083		ALDRN	
AS	<2.500		AS	2.680
BTZ	<1.140		BTZ	<1.140
C6H6	5.800		C6H6	3.140
CX	151000.000		CX	113000.000
CCL4	<1.690		CCL4	<1.690
CD	<5.160		CD	<5.160
CH2CL2	<2.480		CH2CL2	<2.480
CHCL3	2.250		CHCL3	<1.880
CL	165000.000		CL	104000.000
CL6CP	<0.083		CL6CP	<0.083
CLC6H5	22.700		CLC6H5	12.600
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
	3.070		CPMSO	<1.980
CPMSO	<2.240		CPMSO2	(2.240
CPMSO2			CPMSO2 CR	<b>(5.960</b>
CR	<5.960			(7.940
CU	<7.940		CU	<0.130
DBCP	<0.130		DBCP	
DCPD	<9.310		DCPD	<9.310
DIMP	63.100		DIMP	<10.500
DITH	<3.340		DITH	<3.340
DLDRN	<0.054		DLDRN	0.073
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<b>&lt;0.06</b> 0
ETC6H5	<0.620		ETC6H5	<b>&lt;0.62</b> 0
FL	2340.000		FL	1360.000
HG	-		HG	•
ISODR	<0.056		ISODR	<0.056
ĸ	-		K	•
MEC6H5	<2.100		MEC6H5	<2.100
MG	56900.000		MG	36800.000
MIBK	<12.900		MIBK	<12.900
			MXYLEN	<1.040
MXYLEN	<1.040		NA	173000.000
NA_	229000.000			1350.000
NIT	697.000		NIT	
OXAT	<1.350		OXAT	<1.350
PB	<18.600		PB	<18.600
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	<0.059
\$04	506000.000		504	327000.000
T12DCE	<1.750		TIZDCE	<1.750
TCLEE	<2.760		TCLEE	<2.760
TRCLE	1.710		TRCLE	<1.310
XYLEN	<1.340		XYLEN	<1.340
ZN	29.400		ZN	<20.100
<b>4</b> 17	29.400	D-215	<b>.</b>	

*)

, (

WELL 17379

AQUIFER: DENVER SCREENED INT.: 39.3-55.5 BEDROCK DEPTH: 27.0 BEDROCK LITH.: ECREENED ZONE: 3 WELL AQUIFER: DENVER
37380 SCREENED INT.: 64.3-75.0
BEDROCK DEPTH: 27.0
BEDROCK LITH.:
SCREENED ZONE: 4

OCKBBN	DD ZONE. J	<u> </u>	CHEDITED BONE.	, -
COMPOU	ND CONCENTRATION	1 C	OMPOUND CO	ONCENTRATION
111TCE			11TCE	<1.090
112TCE			12TCE	<1.630
11DCE	<1.850		IDCE	<1.850
1 1 DCLE			1DCLE	<1.930
12DCLE				(1.930
			2DCLE	<2.070
aldrn	<0.083		LDRN	<0.083
λS	<2.500	<u> </u>		<2.500
BTZ	<1.140		TZ	<1.140
C6H6	5.760		6H6	3.650
CX	272000.000	C		•
CCL4	<1.690		CL4	<1.690
CD	<5.160	Ci	D	•
CH2CL2	<2.480	Ċ	H2CL2	<2.480
CHCL3	<1.880		HCL3	<1.880
CL	418000.000	C		2000.000
CL6CP	<0.083		L6CP	<0.083
CLC6H5			LC6H5	15.400
CLDAN	<0.152		LDAN	<0.152
CPMS	<1.080		PMS	<1.080
CPMSO	<1.980		PMSO	<1.920
CPMSO2			PMS02	<2.240
				(2.240
CR	<5.960	CI		•
CU	(7.940	CI		• • • • • • • • • • • • • • • • • • • •
DBCP	<0.130		BCP	0.191
DCPD	(9.310		CPD	<9.310
DIMP	47.100		IMP	<10.500
DITH	<3.340		ITH	<3.340
DLDRN	<0.054		LDRN	<0.054
DMD\$	<1.160	DI	MDS	<1.160
DMMP	<15.200	DI	MMP	<15.200
ENDRN	<0.060	E	NDRN	<0.060
ETC6H5	<0.620	E'	TC6H5	<0.620
FL	3000.000	F:		2100.000
HG	•	H		<0.359
ISODR	<0.056		SODR	<0.056
X		ĸ		5580.000
MEC6H5	<2.100		EC6H5	<2.100
MG	41900.000	M		
MIBK	<12.900		IBK	<12.900
MXYLEN			XYLEN	<1.040
NA NA	729000.000			
		N.		•
NIT	2070.000		IT	
OXAT	<1.350		TAX	<1.350
PB	<18.600	Pi		
PPDDE	<0.046		PDDE	<0.046
PPDDT	<0.059	Pi	PDDT	<0.059
504	1450000.000			0000.000
T12DCE		T.	12DCE	<1.750
TCLEE	<2.760		CLEE	<2.760
TRCLE	1.370		RCLE	<1.310
XYLEN	<1.340		YLEN	<1.340
ZN	210.000	D-216 Zi		•
	2,2,00	ט-בוס	•	•

1

WELL AQUIFER: ALLUVIUM
37381 SCREENED INT.: 7.3-28.5 37383 SCREENED INT.: 17.6-39.0
BEDROCK DEPTH: 28.0 BEDROCK DEPTH: 50.0 37381

BEDROCK LITH .: BEDROCK LITH .:

SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

00	201121 1122012011			
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.090		111TCE	<1.090
112TCE	⟨1.630		112TCE	<1.630
11DCE	₹1.850		1 1 DCE	<1.850
			11DCLE	<1.930
11DCLE	<1.930			
12DCLE	(2.070		12DCLE	<2.070
ALDRN	<0.083		ALDRN	<0.083
λS	<2.500		λS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	<1.920		C6H6	3.170
CA	600000.000		CA	162000.000
CCL4	<1.690		CCL4	<1.690
CD	8.580		CD	<5.160
CH2CL2	<2.480		CH2CL2	<2.480
CHCL3	<1.880		CHCL3	<1.880
CL	1060000.000		CL	131000.000
CL6CP			CL6CP	
	<0.083			<0.083
CLC6H5	2.680		CLC6H5	11.400
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	3.640		CPMSO	<1.980
CPMS02	<2.240		CPMSO2	<2.240
CR	52.400		CR	< <b>5.96</b> 0
CU	<7.940		CU	<7.940
DBCP	<0.130		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	•		DIMP	51.300
DITH	(3.340		DITH	<3.340
DLDRN	⟨0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP			DMMP	<15.200
	40.000			
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	<0.620		ETC6H5	<0.620
FL	3650.000		FL	<b>1580.0</b> 00
HG	•		HG	
ISODR	<0.056		ISODR	<0.056
K	•		K	•
MEC6H5	<2.100		MEC6H5	<2.100
MG	148000.000		MG	<b>4</b> 9 <b>900.00</b> 0
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.040		MXYLEN	<1.040
NA	504000.000		NA	233000.000
NIT	-		NIT	2.280.000
OXAT	<1.350		TAXO	<1.350
PB	<18.600		PB	<18.600
PPDDE				
	<0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	<0.059
504	1420000.000		S04	570000.000
T12DCE	<1.750		T12DCE	<1.750
TCLEE	<2.760		TCLEE	<2.760
TRCLE	<1.310		TRCLE	<1.310
XYLEN	<1.340		XYLEN	<1.340
ZN	40-900	D. 217	ZN	<20.100
		D-217		

WELL AQUIFER: DENVER
7387 SCREENED INT.: 36.8- 42.6
BEDROCK DEPTH: 17.0 WELL AQUIFER: DENVER 37388 SCREENED INT.: 69.8-86.0

BEDROCK DEPTH: 17.0

BEDROCK LITH.: SCREENED ZONE: 2 BEDROCK LITH .: SCREENED ZONE: 4

(*)

(3)

			000000	
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.090		111TCE	<1.090
112TCE	<1.630		112TCE	<1.630
				<1.850
11DCE	<1.850		11DCE	
11DCLE	<1.930		11DCLE	<1.930
12DCLE	<2.070		12DCLE	<2.070
<b>A</b> LDRN	<0.083		ALDRN	<0.083
λS	<2.500		λS	<2.500
BTZ	<1.140		BTZ	<1.140
C6H6	73.800		C6H6	10.100
CA	206000.000		Cλ	•
CCL4	<1.690		CCL4	<1.690
CD	<5.160		CD	•
CH2CL2	<2.480		CH2CL2	<2.480
CHCL3	8.620		CHCL3	<1.880
CL	303000.000		CL	403000.000
CL6CP	<0.083		CL6CP	<0.083
				32.800
CLC6H5	74.700		CLC6H5	
CLDAN	<0.152		CLDAN	<0.152
CPMS	<1.080		CPMS	<1.080
CPMSO	<1.980		CPMSO	<1.980
CPMSO2	<2.240		CPMSO2	<2.230
CR	8.140		CR	•
CU	<7.940		CU	•
DBCP	0.779		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	<10.500		DIMP	<10.500
DITH	<3.340		DITH	<3.340
DLDRN	<0.054		DLDRN	<0.054
DMDS	<1.160		DMDS	<1.160
DMMP	<15.200		DMMP	<15.200
ENDRN	<0.060		ENDRN	<0.060
ETC6H5	1.320		ETC6H5	<0.620
FL	3220.000		FL	2650.000
HG	• • • • •		HG	
ISODR	<0.056		ISODR	<0.056
K	•		K	•
MEC6H5	<2.100		MEC6H5	<2.100
MG	<b>35600.00</b> 0		MG	•
MIBK	<12 <b>.9</b> 00		MIBK	<12.900
MXYLEN	1.370		MXYLEN	<1.040
NA	1170000.000		NA	•
NIT	17200.000		NIT	•
OXAT	<1.350		OXAT	<1.350
PB	<18.600		PB	•
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	(0.059
S04	2350000.000		S04	1580000.000
T12DCE				<1.750
	<1.750		TIZDCE	
TCLEE	<2.760		TCLEE	<2.760
TRCLE	8.680		TRCLE	1.830
XYLEN	3.600		XYLEN	<1.340
ZN	<20.100	D-218	ZN	•
		2 210		

1

WELL AQUIFER: ALLUVIUM
37389 SCREENED INT.: 8.4-35.2 37390 SCREENED INT.: 40.1-46.0
BEDROCK DEPTH: 23.5
BEDROCK LITH.: BEDROCK LITH.:

SCREENED ZONE: ALLUVIUM SCREENED ZONE: 3 COMPOUND CONCENTRATION COMPOUND CONCENTRATION <1.090 111TCE 111TCE <1.090 112TCE 112TCE <1.630 <1.630 <1.850 11DCE 11DCE <1.850 11DCLE <1.930 11DCLE <1.930 12DCLE <2.070 12DCLE <2.070 ALDRN <0.083 ALDRN <0.083 <2.500 λS <2.500 AS BTZ <1.140 BTZ <1.140 C6H6 <1.920 C6H6 8.500 141000.000 CA CA <1.690 CCL4 CCL4 <1.690 CD <5.160 CD CH2CL2 <2.480 CH2CL2 <2.480 CHCL3 CHCL3 56.500 <1.880 55700.000 217000.000 CL CL CL6CP CL6CP <0.083 <0.083 CLC6H5 CLC6H5 23.700 2.740 CLDAN <0.152 CLDAN <0.152 CPMS <1.080 CPMS <1.0B0 **CPMSO** 9.520 CPMSO <1.980 CPMS02 CPMS02 5.490 <2.240 CR <5.960 CR CU <7.940 CU DBCP 0.400 DBCP <0.130 DCPD <9.310 DCPD <9.310 DIMP DIMP 343.000 DITH <3.340 DITH <3.340 <0.054 DLDRN <0.054 DLDRN DMDS 1.160 DMDS <1.160 DMMP (15.200 DMMP ENDRN <0.060 ENDRN <0.060 ETC6H5 <0.620 ETC6H5 < 0.620 <1000.000 FL 2190.000 FL HG HG <0.056 ISODR <0.056 ISODR K K MEC6H5 <2.100 MEC6H5 <2.100 53800.000 MG MG MIBK <12.900 MIBK <12.900 MXYLEN <1.040 MXYLEN <1.040 219000.000 NA NA NIT 163.000 NIT OXAT <1.350 TAXO <1.350 PB <18.600 PB <0.046 PPDDE <0.046 PPDDE <0.059 PPDDT PPDDT <0.059 804 405000.000 504 242000.000 <1.750 TIZDCE <1.750 T12DCE

D-219

TCLEE

TRCLE

XYLEN

ZN

<2.760

<1.310

<1.340

28.500

<1.310

<1.340

21.200

TCLEE

TRCLE

XYLEN

ZN

4)

.(

(

WELL AQUIFER: ALLUVIUM
7391 SCREENED INT.: 19.7-41.1 37392 SCREENED INT.: 13.2-29.4
BEDROCK DEPTH: 40.0 BEDROCK LITH.: BEDROCK LITH.:

SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.090		111TCE	<1.090
112TCE	<1.630		112TCE	<1.630
11DCE	<1.850		11DCE	<1.850
11DCLE	<1.930		11DCLE	(1.930
12DCLE	2.260		12DCLE	<2.070
ALDRN	<0.083		ALDRN	<0.083
AS	3.320		λS	•
BTZ	<1.140		BTZ	15.100
C6H6	<1.920		C6H6	15.100
CA CCL4	<1.690		CA CCL4	<1.690
CD	(1.650		CD	(1.030
CH2CL2	< <b>2.48</b> 0		CH2CL2	<2.480
CHCL3	79.300		CHCL3	115.000
CL	390000.000		Cr	112000.000
CL6CP	<0.083		CL6CP	<0.203
CLC6H5	<1.360		CLC6H5	8.410
CLDAN	<0.152		CLDAN	<0.152
CPMS	3.260		CPMS	0.675
CPMSO	148.000		CPMSO	•
CPMS02	5.920		CPMSO2	4.490
CR	•		CR	•
CU	•		CU	•
DBCP	4.690		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	> 2030.000		DIMP	29.000
DITH	<3.340		DITH	1.250
DLDRN	<0.054		DLDRN	0.095
DMDS	<1.160		DMDS	• • • • •
DMMP	<16.300		DMMP	<16.300
ENDRN	<0.060		ENDRN	0.234
ETC6H5	<0.620		ETC6H5	1.420
FL HG	2070.000 <0.500		FL HG	1980.000 <0.500
ISODR	<0.056		ISODR	<0.056
K	4840.000		K	2910.000
MEC6H5	<2.100		MEC6H5	<2.100
MG	•		MG	
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.040		MXYLEN	1.140
NA	•		NA	•
NIT	•		NIT	•
OXAT	<1.350		OXAT	•
PB	•		PB	•
PPDDE	<0.046		PPDDE	<0.046
PPDDT	<0.059		PPDDT	<0.059
S04	174000.000		<b>S</b> 04	427000.000
TIZDCE	<1.750		T12DCE	<1.750
TCLEE	92.000		TCLEE	<2.760
TRCLE	2.200		TRCLE	<1.310
XYLEN	<1.340		XYLEN	1.940
ZN	•	D-320	ZN	•

D-220

1

WELL AQUIFER: ALLUVIUM WELL AQUIFER: ALLUVIUM

BOLLER SCREENED INT.: 0.0- 0.0 CIII SCREENED INT.: 0.0- 0.0 BEDROCK DEPTH: 58.0

BEDROCK LITH.: BEDROCK LITH.: SH
SCREENED ZONE: ALLUVIUM SCREENED ZONE: ALLUVIUM

SCREENED	ZONE: ALLUVIUM		SCREENED	ZONE: ALLUVIUM
COMPOUND	CONCENTRATION		COMPOUND	CONCENTRATION
111TCE	<1.700		111TCE	<1.700
112TCE	<1.000		112TCE	<1.000
11DCE	<1.100		11DCE	<1.100
11DCLE	<1.200		11DCLE	<1.200
12DCLE	<0.610		12DCLE	<0.610
	<0.070		ALDRN	<0.070
ALDRN	<3.070		AS	
λS				<3.070
BTZ	<2.000		BTZ	<2.000
С6Н6	<1.340		Сене	<1.340
Cλ	198000.000		Cλ	167000.000
CCL4	<2.400		CCL4	<2.400
CD	<5.160		CD	<5.160
CH2CL2	<5.000		CH2CL2	<5.000
CHCL3	18.400		CHCL3	<1.400
CL	177000.000		CL	91700.000
CL6CP	<0.070		CL6CP	<0.070
CLC6H5	<0.580		CLC6H5	<0.580
CLDAN	•		CLDAN	•
CPMS	. <1.300		CPMS	<1.300
CPMSO	<4.200		CPMSO	<4.200
CPMSO2	10.100		CPMS02	<4.700
CR	<5.960		CR	<5.960
čΰ	<7.940		Ċΰ	<7.940
DBCP	0.187		DBCP	<0.130
DCPD	<9.310		DCPD	<9.310
DIMP	133.000		DIMP	<10.500
DITH	<1.100		DITH	<1.100
DLDRN	<0.060		DLDRN	<0.060
DMDS	<1.800		DMDS	<1.800
	<15.200			<15.200
DMMP			DMMP	
ENDRN	<0.052		ENDRN	<0.052
ETC6H5	<1.280		ETC6H5	<1.280
FL	1280.000		FL	<1220.000
HG	<0.480		HG	<0.480
ISODR	<0.060		ISODR	<0.060
ĸ	2150.000		K	2610.000
MEC6H5	<1.210		MEC6H5	<1.210
MG	55500.000		MG	17800.000
MIBK	<12.900		MIBK	<12.900
MXYLEN	<1.350		MXYLEN	<1.350
NA	281000.000		NA	89300.000
NIT	2780.000		NIT	9440.000
TAXO	<2.000		OXAT	<2.000
PB	<18.600		PB	<18.600
PPDDE	<0.053		PPDDE	<0.053
PPDDT	<0.070		PPDDT	< 0.070
504	615000.000		S04	197000.000
T12DCE	<1.200		T12DCE	<1.200
	5.720			1.830
TCLEE			TCLEE	5.410
TRCLE	1.250		TPCLE	
XYLEN	<2.470		XYLEN	<2.470
ZN	131.000	D-221	ZN	66.900

•

•

**a**___

**=** .... _

ı

)

## WRIR WATER CHEMISTRY SUMMARY, 3RD QUARTER, FY87

WELL AQUIFER: ALLUVIUM
SCREENED INT.: 0.0- 0.0
BEDROCK DEPTH: 0.0
BEDROCK LITH.:
SCREENED ZONE: ALLUVIUM
WELL AQUIFER: ALLUVIUM
SCREENED INT.: 0.0- 0.0
BEDROCK DEPTH: 0.0
BEDROCK LITH.:
SCREENED ZONE: ALLUVIUM

COMPOUND	CONCENTRATION		POUND CONCENTRAT	
111TCE	<1.700	1117		
112TCE	<1.000	1127		
1 1DCE	<1.100	1100	CE <1.100	
	<1.200	1100	CLE <1.200	
11DCLE	<0.610	1200		)
12DCLE	<0.070	ALDI		)
ALDRN		λS	···· (3.070	)
λS	<3.070	BTZ	⟨2.000	
BTZ	<2.000	C6H		
C6H6	<1.340		83800.000	
CA	91600.000	CA		
CCL4	<2.400	CCr	(5.16)	
CD	<5.160	CD		
CH2CL2	<5.000	CH2		
CHCL3	<1.400	CHC	L3 <1.400	J
CL	72800.000	CL	60300.00	
CLECP	<0.070	CLē	CP (0.07)	
CLC6H5	<0.580	CLC	6H5 < 0.58	0
	(0.500	CLD	AN .	
CLDAN	<1.300	CPM		0
CPMS	(4.200	CPM		0
CPMSO		CPM		
CPMS02	<4.700	CR	₹5.96	
ÇR	<5.960	CU	₹7.94	
CU	18.900			
DBCP	<0.130	DBC	· <del>-</del>	0
DCPD	<9.310	DCP		
DIMP	<10.500	DIM	• •	
DITH	<1.100	DIT		
DLDRN	<0.060	ם זם	RN <0.06	Ū
DMDS	<1.800	DMD	S <1.80	0
DMMP	<15.200	DMM	(P <15.20	
	<0.052	END	RN <0.05	
ENDRN	<1.280		C6H5 <1.28	
ETC6H5	<1220.000	FL	1320.00	0
FL		НĞ	<0.48	
HG	<0.480	ISC		
ISODR	<0.060	K	1690.00	
K	1840.000			
MEC6H5	<1.210		C6H5 <1.21 23000.00	
MG	24100.000	MG		
MIBK	<12.900	MI		
MXYLEN	<1.350		YLEN (1.35	
NA	108000.000	АИ	91300.00	
NIT	3740.000	NI	T 3450.00	Ų
ÖXÂT	<2.000	OX	AT <2.00	
PB	<18.600	PB	(18.60	
PPDDE	<0.053		DDE < 0.05	
	<0.070		DDT < 0.0	
PPDDT		so		0 0
S04	130000.000		2DCE (1.20	
T12DCE	<1.200		LEE <1.30	
TCLEE	<1.300			
TRCLE	<1.100		V	
XYLEN	<2.470			
ZN	49.200	ZN	101.0	0 0
		n-222		

D-222

APPENDIX D.2: EPA CHEMISTRY DATA

WELL: EPA001 EPA LGCID: 198DW001001 SAMPLE DATE: 12/16/85

COMPOUND CH2CL2 11DCE 11DCJ.E T12DCE CHCL3 12DCLE 111TCE CCL4 TRCLE 112TCE C6H6 TCLEE MEC6H4 CLC6H5 ETC6H5 XYLENE CL6CP ALDRN DLDRN	CONCENTRATION  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00
ALDRN	< 0.05
PPDDE ENDRN PPDDT CLDAN DIMP DBCP	< 0.10 < 0.10 < 0.10 < 0.50 < 1.00 < 0.004

WELL: EPA004 EPA LOCID: 198DW004001 SAMPLE DATE: 12/17/85

COMPOUND	CONCENTRATION
CH2CL2	< 5.00
11DCE	₹ 5.00
1 1 DCLE	₹ 5.00
TIZDCE	9.00
CHCL3	< 5.00
12DCLE	₹ 5.00
111TCE	₹ 5.00
CCL4	< <b>5.</b> 00
TRCLE	68.00
112TCE	< 5.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	<10.00
CL6CP	<10.00
ALDRN	< 0.05
DLDRN	< 0.10
PPDDE	< 0.10
ENDRN	< 0.10
PPDDT	< 0.10
CLDAN	< 0.50
DIMP	< 1.00
DBCP	< 0.004

WELL: EPA005

LOCID: 198DW005001 SAMPLE DATE: 12/17/85

COMPOUND	CONCENTRATION
CH2CL2	< 5.00
11DCE	
	< 5.00
11DCLE	< 5.00
T12DCE	< 5.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	< 5.00
CCL4	< 5.00
TRCLE	< 5.00
112TCE	< 5.00
C6H6	< <b>5.</b> 00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	<10.00
CL6CP	<10.00
ALDRN	< 0.05
DLDRN	< 0.10
PPDDE	< 0.10
ENDRN	< 0.10
PPDDT	< 0.10
CLDAN	< 0.50
DIMP	< 1.00
DBCP	< 0.004
	,

WELL: EPA006 EFA LOCID: 1980W006001 SAMPLE DATE: 12/17/85

COMPOUND	CONCENTRATION
CH2CL2	< 5.00
11DCE	< <b>5.0</b> 0
11DCLE	< 5.00
T12DCE	< 5.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	< 5.00
CCL4	< 5.00
TRCLE	12.00
112TCE	< 5.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	<10.00
CL6CP	<10.00
ALDRN	< 0.05
DLDRN	< 0.10
PPDDE	< 0.10
ENDRN	< 0.10
PPDDT	< 0.10
CLDAN	< 0.50
DIMP	< 1.00
DBCP	< 0.004

WELL: EPA007 EPA LOCID: 1980W007001 SAMPLE DATE: 12/17/85

COMPOUND	CONCENTRATION
CH2CL2	< 6.00
11DCE	₹ 5.00
11DCLE	6.00
T12DCE	< 5.00
CHCL3	₹ 5.00
12DCLE	₹ 5.00
111TCE	10.00
CCL4	< 5.00
TRCLE	55.00
112TCE	< 5.00
C6H6	< 5.00
TCLEE	12.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	<10.00
CL6CP	<10.00
ALDRN	< 0.05
DLDRN	< 0.10
PPDDE	< 0.10
ENDRN	< 0.10
PPDDT	< 0.10
CLDAN	< 0.50
DIMP	< 1.00
DBCP	< 0.004

WELL: EPA008 EPA LOCID: 198DW008001 SAMPLE DATE: 12/17/85

COMPOUND CH2CL2 11DCE 11DCLE T12DCE CHCL3 12DCLE 111TCE CCL4 TRCLE 112TCE C6H6 TCLEE MEC6H4 CLC6H5 ETC6H5 XYLENE	CONCENTRATION  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00

WELL: EPA010 EPA LOCID: 1980W010001 SAMPLE DATE: 12/18/85

COMPOUND CH2CL2 11DCE 11DCLE T12DCE CHCL3 12DCLE 111TCE CCL4 TRCLE 112TCE C6H6 TCLEE MEC6H4 CLC6H5 ETC6H5 ETC6H5 XYLENE DIMP CL6CP DBCP ALDRN PPDDE ENDRN	CONCENTRATION

WELL: EPA011 EPA LOCID: 1980W011001 SAMPLE DATE: 12/18/85

COMPOUND	CONCENTRATION
CH2CL2	< 6.00
11DCE	< 5.00
	₹ 5.00
11DCLE	< 5.00
T12DCE	< 5.00
CHCL3	₹ 5.00
12DCLE	₹ 5.00
111TCE	₹ 5.00
CCL4	7.00
TRCLE	
112TCE	
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	<10.00
DIMP	< 3.50
CL6CP	<10.00
DBCP	( 0.00
ALDRN	< 0.05
DLDRN	< 0.10
PPDDE	< 0.10
ENDRN	< 0.10
PPDDT	< 0.10
CLDAN	< 0.50

WELL: EPA013 EPA LOCID: 198DW013001 SAMPLE DATE: 12/18/85

COMPOUND	CONCENTRATION	
CH2CL2	< 5.00	
11DCE	< 5.00	
11DCLE	< 5.00	
T12DCE	< 5.00	
CHCL3	< 5.00	
12DCLE	< 5.00	
111TCE	< 5.00	
CCL4	< 5.00	
TRCLE	< 5.00	
112TCE	< 5.00	
C6H6	< 5.00	
TCLEE	< 5.00	
MEC6H4	< 5.00	
CLC6H5	< 5.00	
ETC6H5	< 5.00	
XYLENE	<10.00	
DIMP	< 3.50	
CL6CP	<10.00	
DBCP	< 0.00	
ALDRN	< 0.05	
DLDRN	< 0.10	
PPDDE	< 0.10	
ENDRN	< 0.10	
PPDDT	< 0.10	
CLDAN	< 0.50	

WELL: EPA017 EPA LOCID: 1980W017001 SAMPLE DATE: 12/19/85

COMPOUND	CONCENTRATION
CH2CL2	⟨ 6.00
1 1DCE	< 5.00
1 1DCLE	< 5.00
T12DCE	< 5.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	< 5.00
CCL4	< 5.00
TRCLE	< 5.00
112TCE	< 5.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	< 0.50
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	<10.00
DIMP	< 3.50
CL6CP	<10.00
DBCF	< 0.00
ALDRN	< 0.05
DLDRN	< 0.10
PPDDE	< 0.10
ENDRN	< 0.10
PPDDT	< 0.10
CLDAN	< 0.50

WELL: EPA019 EPA LOCID: 198DW013001 SAMPLE DATE: 12/19/85

COMPOUND CH2CL2 11DCE 11DCLE T12DCE CHCL3 12DCLE 111TCE CCL4 TRCLE 112TCE C6H6 TCLEE MEC6H4 CLC6H5 ETC6H5 ETC6H5 ETC6H5 ALDRN DLDRN PPDDE ENDRN PPDDT	< 3.50 <10.00 0.089 < 0.05 < 0.10 < 0.10

WELL: EPA020 EPA LOCID: 198DW020001 SAMPLE DATE: 12/20/85

COMPOUND	CONCENTRATION
CH2CL2	< 6.00
11DCE	< 5.00
11DCLE	6.00
T12DCE	< 5.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	7.00
CCL4	< 5.00
TRCLE	12.00
112TCE	< 5.00
C6H6	< 5.00
TCLEE	8.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	<10.00
DIMP	< 3.50
CL6CP	<10.00
DBCP	< 0.00
ALDRN	< 0.05
DLDRN	< 0.10
PPDDE	< 0.10
ENDRN	< 0.10
PPDDT	< 0.10
CLDAN	< 0.50

**SAMPLE DATE: 12/20/85** 

WELL: EPA021 EPA LOCID: 1

CLDAN

. 🔫)

EPA LOCID: 198DW021001

CONCENTRATION COMPOUND < 6.00 CH2CL2 < 5.00 11DCE < 5.00 11DCLE < 5.00 T12DCE < 5.00 CHCL3 < 5.00 12DCLE < 5.00 111TCE < 5.00 CCL4 < 5.00 TRCLE 112TCE < 5.00 < 5.00 C6H6 < 5.00 TCLEE < 5.00 MEC6H4 < 5.00 CLC6H5 < 5.00 ETC6H5 <10.00 XYLENE < 3.50 DIMP <10.00 CL6CP < 0.00 DBCP < 0.05 ALDRN < 0.10 DLDRN PPDDE < 0.10 ENDRN < 0.10 < 0.10 PPDDT

< 0.50



WELL: EPA023

EPA LOCID: 198DW023001

SAMPLE DATE: 01/14/86

COMPOUND	CONCENTRATION
CH2CL2	
	< 6.00
11DCE	< 5.00
11DCLE	< 5.00
T12DCE	< 5.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	< 6.00
CCL4	< 6.00
TRCLE	< 5.00
1 1 2 TCE	< 6.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< <b>5.</b> 00
ETC6H5	< 5.00
XYLENE	< 5.00
CL6CP	<10.00
DBCP	< 0.11
ALDRN	< 0.01
DLDRN	< 0.01
PPDDE	< 0.01
ENDRN	< 0.01
PPDDT	< 0.02
CLDAN	< 0.25
DIMP	< 10.00

WELL:EPA024 EPA LOCID:198DW024001 SAMPLE DATE:01/14/86

COMPOUND	CONCENTRATION
CH2CL2	< 8.00
1 1 DCE	< 5.00
1 1DCLE	< 5.00
T12DCE	< 5.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	< 5.00
CCL4	6.00
TRCLE	< <b>5.</b> 00
112TCE	<b>&lt; 6.0</b> 0
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
CL6CP	<10.00
DBCP	< 0.11
ALDRN	< 0.01
DLDRN	< 0.01
PPDDE	< 0.01
ENDRN	< 0.01
PPDDT	< 0.02
CLDAN	< 0.25
DIMP	< 10.00

COMPOUND	CONCENTRATION
CH2CL2	< 6.00
1 1 DCE	< 5.00
1 1 DCLE	< 5.00
T12DCE	< 5.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	< 6.00
CCL4	< 6.00
TRCLE	< 5.00
112TCE	< 6.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
CL6CP	<10.00
DBCP	< 0.11
ALDRN	< 0.01
DLDRN	< 0.01
PPDDE	< 0.01
ENDRN	< 0.01
PPDDT	< 0.02
CLDAN	< 0.25
DIMP	< 10.00

WELL: EPA026 EPA LOCID: 198DW026001 SAMPLE DATE: 01/13/86

COMPOUND CH2CL2 11DCE 11DCLE T12DCE CHCL3 12DCLE 111TCE CCL4 TRCLE 112TCE C6H6 TCLEE MEC6H4	CONCENTRATION < 6.00 < 5.00 < 5.00 < 5.00 < 5.00 < 5.00 < 5.00 < 5.00 < 6.00 < 5.00 < 5.00 < 5.00 < 5.00 < 5.00
XYLENE CL6CP DBCP ALDRN DLDRN PPDDE ENDRN PPDDT CLDAN DIMP	< 5.00 <10.00 < 0.11 < 0.01 < 0.01 < 0.01 < 0.02 < 0.25 < 10.00

WELL:EPA028 EPA LOCID:198DW028001 SAMPLE DATE:01/13/86

	COLONIUM SATISTICAL
COMPOUND	CONCENTRATION
CH2CL2	< 6.00 
1 1 DCE	< 5.00
1 1 DCLE	< 5.00
T12DCE	< 5.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	< 5.00
CCL4	< 6.00
TRCLE	19.00
112TCE	< 6.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00 < 5.00
XYLENE	
CL6CP	
DBCP	< 0.11 < 0.01
ALDRN	
DLDRN	
PPDDE	
ENDRN	< 0.01 < 0.02
PPDDT	⟨ 0.02
CLDAN	
DIMP	< 10.00

**③** 

WELL: EPA029

EPA LOCID: 198DW029001

SAMPLE DATE: 01/13/86

COMPOUND	CONCENTRATION
CH2CL2	< 6.00
11DCE	< 5.00
11DCLE	₹ 5.00
T12DCE	< 5.00
· ·	₹ 5.00
CHCL3	₹ 5.00
.12DCLE	₹ 6.00
111TCE	₹ 6.00
CCL4	₹ 5.00
TRCLE	₹ 6.00
112TCE	₹ 5.00
C6H6	₹ 5.00
TCLEE	< <b>5.00</b>
MEC6H4	₹ 5.00
CLC6H5	< 5.00
ETC6H5	⟨ 5.00
XYLENE	<10.00
CLECP	⟨ 0.11
DBCP	< 0.01
ALDRN	
DLDRN	
PPDDE	
ENDRN	< 0.01
PPDDT	< 0.02
CLDAN	< 0.25
DIMP	< 10.00

WELL: EPA030 EPA LOCID: 198DW030001 SAMPLE DATE: 01/15/86

COMPOUND CH2CL2 11DCE 11DCLE T12DCE CHCL3 12DCLE 111TCE CCL4 TRCLE 112TCE C6H6 TCLEE MEC6H4 CLC(H5 ETC6H5 XYLENE CL6CP DBCP ALDRN PPDDE	CONCENTRATION  < 6.00     7.00     8.00     6.00     < 5.00     11.00     6.00     22.00     < 6.00     < 5.00     < 5.00     < 5.00     < 5.00     < 5.00     < 0.01     < 0.01     < 0.01
DLDRN	< 0.01
	, , , , ,

WELL: EPA031 EPA LOCID: 198DW031001 SAMPLE DATE: 01/15/86

COMPOUND	CONCENTRATION
CH2CL2	< 6.00
11DCE	< 5.00
11DCLE	14.00
T12DCE	9.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	< 6.00
CCL4	< 6.00
TRCLE	6.00
112TCE	< 6.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
CL6CP	< 10.00
DBCP	< 0.11
ALDRN	< 0.01
DLDRN	< 0.01
PPDDE	< 0.01
ENDRN	< 0.01
PPDDT	< 0.02
CLDAN	< 0.25
DIMP	< 10.00

WELL: EPA032 EPA LOCID: 198DW032001 SAMPLE DATE: 01/15/86

COMPOUND	CONCENTRATION
CH2CL2	< 6.00
11DCE	< 5.00
	₹ 5.00
11DCLE	< 5.00
T12DCE	₹ 5.00
CHCL3	₹ 5.00
12DCLE	
111TCE	
CCL4	< 6.00
TRCLE	13.00
112TCE	< 6.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
DIMP	<10.00
CL6CP	<10.00
DBCP	< 0.11
	< 0.01
ALDRN	< 0.01
DLDRN	< 0.01
PPDDE	₹ 0.01
ENDRN	₹ 0.02
PPDDT	₹ 0.25
CLDAN	( 0.23

• {

WELL: EPA033 EPA LOCID: 198DW033001 SAMPLE DATE: 01/14/86

COMPOUND	CONCENTRATION
CH2CL2	< 5.00
11DCE	< 5.00
11DCLE	< 5.00
T12DCE	< 5.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	< 5.00
CCL4	< <b>6.</b> 00
TRCLE	6.00
112TCE	< 6.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
DIMP	<10.00
CL6CP	<10.00
DBCP	< 0.11
ALDRN	< 0.01
DLDRN	< 0.01
PPDDE	< 0.01
ENDRN	< 0.01
PPDDT	< 0.02
CLDAN	< 0.25

WELL: EPA034 EPA LOCID: 198DW034001 SAMPLE DATE: 01/14/86

COMPOUND	CONCENTRATION
CH2CL2	< 6.00
11DCE	< 5.00
11DCLE	< 5.00
T12DCE	< 5.00
CHCL3	< 5.00
	< 5.00
12DCLE	7.00
111TCE	< 6.00
CCL4	8.00
TRCLE	6.00
112TCE	
C6H6	
TCLEE	
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
DIMP	<10.00
CL6CP	<10.00
DBCP	< 0.11
ALDRN	< 0.01
DLDRN	< 0.01
PPDDE	< 0.01
ENDRN	< 0.01
PPDDT	< 0.02
CLDAN	< 0.25
עאמקט	

WELL: EPA035 EPA LOCID: 198DW035001 SAMPLE DATE: 01/16/86

COMPOUND CH2CL2 11DCE 11DCLE T12DCE CHCL3 12DCLE 111TCE CCL4 TRCLE 112TCE	CONCENTRATION < 6.00 9.00 10.00 13.00 < 5.00 < 5.00 20.00 < 6.00 23.00 < 6.00
C6H6 TCLEE	< 5.00 17.00
MEC6H4	< 5.00
CLC6H5	₹ 5.00
ETC6H5	< 5.00
XYLENE	<12.00
DIMP	<10.00
CL6CP	<10.00
DBCP	< 0.11
ALDRN	< 0.01
DLDRN	< 0.01 < 0.01
PPDDE	< 0.01
ENDRN	< 0.02
PPDDT	( 0.25
CLDAN	\ 0.23

WELL: EPA036 EPA LOCID: 198DW036001 SAMPLE DATE: 01/16/86

COMPOUND	CONCENTRATION
CH2CL2	< 6.00
11DCE	11.00
11DCLE	10.00
	15.00
T12DCE	
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	26.00
CCL4	< 6.00
TRCLE	91.00
112TCE	< 6.00
C6H6	< 5.00
TCLEE	15.00
MEC6H4	< 5.00
CLC6H5	< <b>5.0</b> 0
ETC6H5	< 5.00
XYLENE	< 9.00
DIMP	<10.00
CL6CP	<10.00
DBCP	< 0.11
ALDRN	₹ 0.01
DLDRN	₹ 0.01
	< 0.01
PPDDE	
ENDRN	< 0.01
PPDDT	< 0.02
CLDAN	< 0.25

WELL:EPA037 EPA LOCID:198DW037001 SAMPLE DATE:01/16/86

,	
COMPOUND	CONCENTRATION
CH2CL2	< 6.00
1 1 DCE	< 5.00
11DCLE	< 5.00
T12DCE	9.00
CHCL3	< 5.00
12DCLE	< 5.00
IIITCE	< 5.00
CCL4	₹ 5.00
TRCLE	48.00
112TCE	< 6.00
	₹ 5.00
C6H6 TCLEE	< 2.00
	< 5.00
MEC6H4	
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
DIMP	<10.00
CL6CP	<10.00
DBCP	< 0.11
ALDRN	< 0.01
DLDRN	< 0.02
PPDDE	< 0.01
ENDRN	< 0.01
PPDDT	< 0.02
CLDAN	< 0.25

WELL: EPA038

EPA LOCID: 198DW038001 SAMPLE DATE: 01/16/86

COMPOUND	CONCENTRATION
CH2CL2	< 6.00
11DCE	< 5.00
11DCLE	< 5.00
T12DCE	< 5.00
CHCL3	< 5.00
12DCLE	₹ 5.00
111TCE	₹ 6.00
	₹ 6.00
CCL4	₹ 5.00
TRCLE	⟨ 6.00
112TCE	
C6H6	
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
DIMP	<10.00
CL6CP	<10.00
DBCP	< 0.11
ALDRN	< 0.01
DLDRN	0.02
PPDDE	< 0.01
ENDRN	< 0.01
PPDDT	< 0.02
CLDAN	< 0.25
~ · · · ·	

WELL: EPA045 EPA LOCID: 198DW045001 SAMPLE DATE: 01/17/86

COMPOUND	CONCENTRATION
CH2CL2	< 6.00
11DCE	₹ 5.00
11DCLE	₹ 5.00
T12DCE	< 5.00
CHCL3	₹ 5.00
12DCLE	< 5.00
111TCE	< 5.00
CCL4	< 6.00
TRCLE	< 5.00
112TCE	< 6.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
DIMP	< 10.00
ALDRN	< 0.01
DLDRN	< 0.01
PPDDE	< 0.01
ENDRN	< 0.01
CLDAN	< 0.25
CL6CP	< 10.00
DBCP	< 0.11

WELL: EPA046 EPA LOCID: 198DW046001 SAMPLE DATE: 01/17/86

	TO THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERT
COMPOUND	CONCENTRATION
CL6CP	<10.00
DBCP	(0.11
ALDRN	< 0.01
DLDRN	< 0.01
PPDDE	< 0.01
ENDRN	< 0.01
PPDDT	⟨ 0.02
CLDAN	< 0.25
CH2CL2	< 6.00
11DCE	< 5.00
IDCLE	< 5.00
T12DCE	< 5.00
CHCL3	₹ 5.00
12DCLE	⟨ 5.00
111TCE	₹ 5.00
CCL4	< 5.00
TRCLE	₹ 5.00
112TCE	< 6.00
C6H6	< 5.00
TCLEE	₹ 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
DIMP	<10.00
U 4114	

WELL: EPA047 EPA LOC1 : 1980W047001 SAMPLE DATE: 01/17/86

COMPOUND	CONCENTRATION
CH2CL2	< 6.00
11DCE	< 5.00
11DCLE	< 5.00
T12DCE	< 5.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	₹ 5.00
CCL4	₹ 6.00
TRCLE	6.00
112TCE	< 6.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
DIMP	<10.00
CL6CP	<10.00
DBCP	< 0.11
ALDRN	< 0.01
DLDRN	< 0.01
PPDDE	< 0.01
ENDRN	< 0.01
PPDDT	< 0.02
CLDAN	₹ 0.25
COUNT	` 0.23

WELL: EPA048 EPA LOCID: 1980W048001 SAMPLE DATE: 01/17/86

COMPOUND CH2CL2 11DCE 11DCLE 11DCLE T12DCE CHCL3 12DCLE 111TCE CCL4 TRCLE 112TCE C6H6 ALDRN DLDRN PPDDE ENDRN PPDDT CLDAN TCLEE	CONCENTRATION  < 6.00 < 5.00 < 5.00 < 5.00 < 5.00 < 6.00 < 6.00 < 6.00 < 6.00 < 0.01 < 0.01 < 0.01 < 0.02 < 5.00 < 5.00
TCLEE MEC6H4	< 5.00
CLC6H5 ETC6H5	< 5.00 < 5.00
XYLENE DIMP CL6CP	< 5.00 < 10.00 < 10.00
DBCP	< 0.11

WELL: EPA051

EPA LOCID:198DW051001 SAMPLE DATE:01/20/86

COMPOUND	CONCENTRATION
CH2CL2	< 6.00
	₹ 5.00
11DCE	
11DCLE	< 5.00
T12DCE	12.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	10.00
CCL4	< 6.00
TRCLE	88.00
112TCE	< 6.00
C6H6	₹ 5.00
TCLEE	9.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
DIMP	<10.00
ALDRN	< 0.01
DLDRN	< 0.01
PPDDE	< 0.01
ENDRN	< 0.01
	⟨ 0.02
PPDDT	
CLDAN	< 0.25
CL6CP	<10.00
DBCP	< 0.11
TCLEE	₹276.00

WELL: EPA052 EPA LOCID: 198DW052001 SAMPLE DATE: 01/20/86

COMPOUND	CONCENTRATION
CH2CL2	< 6.00
11DCE	< 5.00
11DCLE	< 5.00
TIZDCE	< 5.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	< 5.00
CCL4	< 6.00
TRCLE	7.00
112TCE	< 6.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
CL6CP	<10.00
DBCP	< 0.11
ALDRN	< 0.01
DLDRN	< 0.01
PPDDE	< 0.01
ENDRN	< 0.01
PPDDT	< 0.02
ÇLDAN	< 0.25
TCLEE	< 285.00
DIMP	< 10.00

WELL: EPA053

EPA LOCID: 198DW053001 SAMPLE DATE: 01/20/86

COMPOUND CH2CL2 11DCE 11DCLE 11DCLE T12DCLE 111TCE CCL4 TRCLE 112TCE C6H6 TCLEE MEC6H4 CLC6H5 ETC6H5 XYLENE DIMP CL6CP DBCP ALDRN DPDDE ENDRN	CONCENTRATION  < 6.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 6.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00  < 5.00

WELL: EPA055 EPA LOCID: 1980W055001 SAMPLE DATE: 05/30/86

COMPOUND	CONCENTRATION
CH2CL2	< 2.00
1 1 DCE	< 5.00
11DCLE	< 5.00
T12DCE	< 5.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	< 5.00
CCL4	< 5.00
TRCLE	7.00
112TCE	< 5.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
CL6CP	<15.00 < 0.20
ALDRN DLDRN	
PPDDE	< 0.30 < 0.30
ENDRN	< 0.40
PPDDT	< 5.00
CLDAN	<123.00
~~~ III1	\123.00

WELL: EPA056 EPA LOCID: 198DW056001 SAMPLE DATE: 05/30/86

COMPOUND	CONCENTRATION
CH2CL2	< 3.00
11DCE	< 5.00
11DCLE	< 5.00
T12DCE	< 5.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	< 5.00
CCL4	< 5.00
TRCLE	34.00
112TCE	< 5.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
CL6CP	<15.00
ALDRN	< 0.20
DLDRN	< 0.30
PPDDE	< 0.30
ENDRN	< 0.40
PPDDT	< 5.00
CLDAN	<123.00

WELL: EPA058 EPA LOCID: 198DW058001 SAMPLE DATE: 06/02/86

COMPOUND	CONCENTRATION
CH2CL2	< 2.00
11DCE	< 5.00
IDCLE	6.00
T12DCE	< 5.00
CHCL3	< 5.00
12DCLE	₹ 5.00
111TCE	9.00
CCL4	< 5.00
TRCLE	33.00
112TCE	⟨5.00
C6H6	₹ 5.00
TCLEE	12.00
MEC6H4	< 5.00
CLC6H5	₹ 5.00
ETC6H5	₹ 5.00
XYLENE	₹ 5.00
CL6CP	₹15.00
ALDRN	₹ 0.20
DLDRN	₹ 0.30
PPDDE	⟨ 0.30
	⟨ 0.40
ENDRN PPDDT	₹ 5.00
	<123.00
CLDAN	(123.00

WELL: EPA059 EPA LOCID: 1980W059001 SAMPLE DATE: 06/02/86

COMPOUND CH2CL2 11DCE 11DCLE T12DCE CHCL3 12DCLE	CONCENTRATION < 5.00 < 5.00 6.00 < 5.00 < 5.00 < 5.00
111TCE CCL4 TRCLE 112TCE C6H6 TCLEE MEC6H4 CLC6H5	8.00 < 5.00 15.00 < 5.00 11.00 < 5.00 < 5.00
ETC6H5 XYLENE ALDRN DLDRN PPDDE ENDRN PPDDT CLDAN CL6CP	< 5.00 < 5.00 < 0.20 < 0.30 < 0.40 < 5.00 <123.00 <15.00

WELL: EPA060 EPA LOCID: 198DW060001

SAMPLE DATE: 06/20/86

	CONCENTRATION
COMPOUND	⟨ 2.00
CH2CL2	
1 1 DCE	< 5.00
1 1 DCLE	< 5.00
TIZDCE	12.00
TIZDED	< 5.00
CHCL3	< 5.00
12DCLE	6.00
1 1 1 TCE	
CCL4	< 5.00
TRCLE	53.00
112TCE	< 5.00
C6H6	< 5.00
TCLEE	< 5.00
	< 5.00
MEC6H4	₹ 5.00
CLC6H5	₹ 5.00
ETC6H5	
XYLENE	< 5.00
CL6CP	<15.00
ALDRN	< 0.20
DLDRN	< 0.30
	< 0.30
PPDDE	< 0.40
ENDRN	₹ 5.00
PPDDT	<123.00
CLDAN	(123.00

WELL: EPA062 EPA LOCID: 198DW062001 SAMPLE DATE: 06/03/86

COMPOUND	CONCENTRATION
CH2CL2	⟨ 2.00
11DCE	< 5.00
11DCLE	< 5.00
	< 5.00
T12DCE	⟨ 5.00
CHCL3	< 5.00
12DCLE	
111TCE	< 5.00
CCL4	< 5.00
TRCLE	38.00
112TCE	< 5.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
CL6CP	<15.00
ALDRN	< 0.20
	< 0.30
DLDRN	< 0.30
PPDDE	< 0.40
ENDRN	
PPDDT	< 5.00
CLDAN	<123.00

WELL: EPA063

EPA LOCID: 198DW063001 SAMPLE DATE: 06/03/86

COMPOUND	CONCENTRATION
CH2CL2	< 2. 00
11DCE	< 5.00
11DCLE	< 5.00
T12DCE	14.00
CHCL3	< 5.00
12DCLE	₹ 5.00
111TCE	< 5.00
CCL4	< 5.00
TRCLE	120.00
112TCE	< 5.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	₹ 5.00
CLC6H5	₹ 5.00
ETC6H5	₹ 5.00
	- • •
XYLENE	< 5.00
CL6CP	<15.00
ALDRN	< 0.20
DLDRN	< 0.30
PPDDE	< 0.30
ENDRN	< 0.40
PPDDT	< 5.00
CLDAN	<123.00
CTDV!!	\ & J • U U

WELL: EPA066 EPA LOCID: 198DW066001 SAMPLE DATE: 06/03/86

COMPOUND CL6CP	CONCENTRATION (15.00
CH2CL2	< 2.00
11DCE	< 5.00
11DCLE	< 5.00
T12DCE	< 2.00 < 5.00
CHCL3 12DCLE	⟨ 5.00
111TCE	₹ 5.00
CCL4	₹ 5.00
TRCLE	23.00
112TCE	₹ 5.00
C6H6	₹ 5.00
TCLEE	₹ 5.00
MEC6H4	⟨ 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
ALDRN	< 0.20
DLDRN	< 0.30
PPDDE	< 0.30
ENDRN	< 0.40
PPDDT	< 5.00
CLDAN	<123.00

WELL: EPA067 EPA LOCID: 198DW067001 SAMPLE DATE: 06/04/86

COMPOUND	CONCENTRATION
CH2CL2	< 5.00
1 IDCE	< 5.00
1 1 DCLE	< 5.00
T12DCE	< 5.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	< 5.00
CCL4	< 5.00
TRCLE	8.00
1 1 2 TCE	< 5.00
C6H6	< 5.00
TCLEE	₹ 5.00
MEC6H4	₹ 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
CL6CP	< 15.00
ALDRN	< 0.20
DLDRN	< 0.30
PPDDE	< 0.30
ENDRN	< 0.40
PPDDT	< 5.00
CLDAN	< 123.00

WELL: EPA068 EPA LOCID: 198DW068001 SAMPLE DATE: 06/04/86

COMPOUND	CONCENTRATION
CH2CL2	< 2.00
1 1 DCE	< 5.00
11DCLE	< 5.00
T12DCE	< 5.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	< 5.00
CCL4	< 5.00
TRCLE	< 5.00
112TCE	< 5.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
CL6CP	<15.00
ALDRN	< 0.20
DLDRN	< 0.30
PPDDE	< 0.30
ENDRN	< 0.40
PPDDT	< 5.00
CLDAN	<123.00

WELL: EPA069 EPA LOCID: 198DW069001 SAMPLE DATE: 06/04/86

COMPOUND	CONCENTRATION
CH2CL2	< 5.00
1 1 DCE	< 5.00
11DCLE	6.00
T12DCE	< 5.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	< 5.00
CCL4	< 5.00
TRCLE	< 5.00
112TCE	< 5.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
CL6CP	<15.00
ALDRN	< 0.20
DLDRN	< 0.30
PPDDE	< 0.30
ENDRN	< 0.40
PPDDT	< 5.00
CLDAN	<123.00

WELL: EPA071

EPA LOCID: 198DW071001 SAMPLE DATE: 06/05/86

COMPOUND	CONCENTRATION
CH2CL2	< 1.00
1 1 DCE	₹ 5.00
11DCLE	₹ 5.00
T12DCE	₹ 5.00
CHCL3	₹ 5.00
12DCLE	₹ 5.00
111TCE	< 5.00
CCL4	₹ 5.00
TRCLE	< 5.00
112TCE	< 5.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
CL6CP	<15.00
ALDRN	< 0.20
DLDRN	< 0.30
PPDDE	< 0.30
ENDRN	< 0.40
PPDDT	< 5.00
CLDAN	<123.00

WELL: EPA072 EPA

EPA LOCID: 198DW072001

SAMPLE DATE: 06/05/86

	CONCERNED RETON
COMPOUND	CONCENTRATION
CH2CL2	< 1.00
11DCE	< 5.00
11DCLE	< 5.00
T12DCE	< 5.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	6.00
CCL4	< 5.00
TRCLE	56.00
112TCE	< 5.00
	₹ 5.00
C6H6	7.00
TCLEE	< 5.00
MEC6H4	₹ 5.00
CLC6H5	₹ 5.00
ETC6H5	
XYLENE	< 5.00
CL6CP	<15.00
ALDRN	< 0.20
DLDRN	< 0.30
PPDDE	< 0.30
ENDRN	< 0.40
PPDDT	< 5.00
	<123.00
CLDAN	(123.00

WELL: EPA073

EPA LOCID: 198DW073001 SAMPLE DATE: 06/05/86

COMPOUND CH2CL2	CONCENTRATION < 2.00
1 1 DCE	7.00
1 1DCLE	10.00
T12DCE	13.00
CHCL3	< 5.00
12DCLE 111TCE	< 5.00 17.00
CCL4	< 5.00
TRCLE	16.00
112TCE	< 5.00
C6H6	₹ 5,00
TCLEE	16.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
CL6CP	<15.00
ALDRN	< 0.20
DLDRN	< 0.30
PPDDE	< 0.30
ENDRN	< 0.40
PPDDT CLDAN	< 5.00 <123.00
CLUAN	(123.00

WELL: EPA076 EPA LOCID: 198DW076001 SAMPLE DATE: 06/05/86

COMPOUND CH2CL2	CONCENTRATION < 3.00
11DCE	11.00
11DCLE	11.00 16.00
T12DCE CHCL3	₹ 5.00
12DCLE	₹ 5.00
111TCE	25.00
CCL4	< 5.00
TRCLE	110.00
112TCE	< 5.00
C6H6	< 5.00
TCLEE MEC6H4	21.00
CLC6H5	< 5.00 < 5.00
ETC6H5	₹ 5.00
XYLENE	₹ 5.00
CL6CP	<15.00
ALDRN	< 0.20
DLDRN	< 0.30
PPDDE	< 0.30
ENDRN	< 0.40 < 5.00
PPDDT CLDAN	<123.00
CHDVA	(123.00

WELL: EPA010 EPA LOCID: 198DW010002 SAMPLE DATE: 03/03/87

COMPOUND	CONCENTRATION
CH2CL2	< 5.00
11DCE	< 6.00
11DCLE	12.00
T12DCE	85.00
CHCL3	< 5.00
12DCLE	₹ 5.00
111TCE	130.00
CCL4	< 5.00
TRCLE	91.00
112TCE	< 5.00
C6H6	< 5.00
TCLEE	10.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5. 00
XYLENE	< 5.00

WELL: EPA010 EPA LOCID: 198DW010003 SAMPLE DATE: 03/03/87

COMPOUND	CONCENTRATION
11DCE	1.00
11DCLE	9.40
	< 0.50
T12DCE	₹ 0.50
CHCL3	92.00
111TCE	
TRCLE	95.00
TCLEE	6.60
C6H6	< 1.00

WELL: EPA010 EPA LOCID: 198DW010002 SAMPLE DATE: 03/03/87

CONCENTRATION
1.20
10.00
< 0.50
< 0.50
95.00
400 00
100.00
7.20
< 1.00
< 5.00

WELL: EPA019

EPA LOCID: 198DW019002 SAMPLE DATE: 03/03/87

COMPOUND	CONCENTRATION
CH2CL2	< 5.00
11DCE	8.00
11DCLE	12.00
T12DCE	28.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	19.00
CCL4	< 5.00
TRCLE	14.00
112TCE	< 5.00
C6H6	< 5.00
TCLEE	16.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00

WELL: EPA019 EPA LOCID: 198DW019002 SAMPLE DATE: 03/03/87

COMPOUND	CONCENTRATION
	7.00
11DCE	
11DCLE	11.00
T12DCE	< 0.50
CHCL3	1.40
111TCE	14.00
TRCLE	13.00
TCLEE	14.00
C6H6	< 1.00
DCPD	< 5.00

WELL: EPA063

EPA LOCID: 198DW063002 SAMPLE DATE: 03/02/87

COMPOUND	CONCENTRATION
CH2CL2	< 5.00
11DCE	< 6.00
11DCLE	< 5.00
TIZDCE	8.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	< 5.00
CCL4	< 5.00
TRCLE	19.00
112TCE	< 5.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00

WELL: EPA063

EPA LOCID: 198DW063002 SAMPLE DATE: 03/02/87

COMPOUND	CONCENTRATION
11DCE	< 0.50
11DCLE	< 0.50
T12DCE	< 0.50
CHCL3	< 0.50
111TCE	< 0.50
TRCLE	19.00
	< 0.50
TCLEE	< 1.00
C6H6	₹ 5.00
ከሮ ኮ ከ	\ J.00

WELL: EPA073 EPA LOCID: 1980W073002 SAMPLE DATE: 03/03/87

COMPOUND	CONCENTRATION
CH2CL2	< 5.00
1 1 DCE	8.00
11DCLE	11.00
T12DCE	27.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	23.00
CCL4	< 5.00
TRCLE	16.00
112TCE	< 5.00
C6H6	< 5.00
TCLEE	18.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00

 \bigcirc

WELL: EPA073 EPA LOCID: 198DW073002 SAMPLE DATE: 03/03/87

COMPOUND	CONCENTRATION
1 1 DCE	6.50
11DCLE	11.00
T12DCE	< 0.50
CHCL3	1.40
111TCE	13.00
TRCLE	12.00
TCLEE	8.80
C6H6	< 1.00
DCDD	< 5.00

WELL: EPA077 EPA LOCID: 198DW077001 SAMPLE DATE: 03/03/87

COMPOUND	CONCENTRATION
CH2CL2	< 5.00
11DCE	< 6.00
IIDCLE	< 5.00
T12DCE	20.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	10.00
CCL4	< 5.00
TRCLE	66.00
112TCE	< 5.00
C6H6	< 5.00
TCLEE	6.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XVI.ENE	< 5.00

 \Box

WELL:EPA077 EPA LOCID:198DW077001 SAMPLE DATE:03/03/87

COMPOUND	CONCENTRATION
11DCE	2.80
11DCLE	2.40
T12DCE	< 0.50
CHCL3	0.81
111TCE	6.00
TRCLE	83.00
TCLEE	4.40
C6H6	< 1.00
DCPD	< 5.00

WELL: EPA008G EPA LOCID: 198GW008011 SAMPLE DATE: 02/25/87

COMPOUND	CONCENTRATION
	< 5.00
CH2CL2	⟨ 6.00
11DCE	
11DCLE	< 5.00
T12DCE	< 5.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	< 5.00
CCL4	< 5.00
TRCLE	< 5.00
112TCE	< 5.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	₹ 5.00
CLC6H5	₹ 5.00
ETC6H5	₹ 5.00
XYLENE	₹ 5.00
	₹20.00
CL6CP	
DBCP	< 0.10
ALDRN	< 0.05
DLDRN	< 0.10
PPDDE	< 0.10
ENDRN	< 0.10
PPDDT	< 0.10
CLDAN	< 0.50
ISODR	< 0.00

WELL: EPA008G EPA LOCID: 198GW008011 SAMPLE DATE: 02/25/87

COMPOUND 11DCE	CONCENT	ATION
11DCLE	<	0.50
T12DCE	<	0.50
CHCL3	<	0.50
111TCE		0.73
TRCLE		3.00
TCLEE		0.85
C646	<	0.50
DIMP	<	2.00
DCPD	<	5.00

WELL: EPA009G EPA LOCID: 198GW009013 SAMPLE DATE: 02/26/87

COMPOUND	CONCENTRATION
CH2CL2	< 5.00
1 1 DCE	< 6.00
1 1 DCLE	< 5.00
T12DCE	< 5.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	< 5.00
CCL4	< 5.00
TRCLE	24.00
112TCE	< 5.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
CL6CP	<20.00
DBCP	< 0.10
ALDRN	< 0.05
DLDRN	< 0.10
PPDDE	< 0.10
ENDRN	< 0.10
PPDDT	< 0.10
CLDAN	< 0.50
ISODR	< 0.00

WELL: EPA009G EPA LOCID: 198GW009013 SAMPLE DATE: 02/26/87

COMPOUND	CONCENTRATION
11DCE	0.66
11DCLE	0.95
T12DCE	< 0.50
CHCL3	< 0.50
111TCE	< 0.50
TRCLE	29.00
TCLEE	1.50
C6H6	< 1.00
DIMP	< 2.00
DCPD	₹ 5.00

WELL: EPA010G EPA LOCID: 198GW010011 SAMPLE DATE: 02/26/87

COMPOUND CH2CL2 11DCE 11DCLE 11DCLE T12DCE CHCL3 12DCLE 111TCE CCL4 TRCLE 112TCE C6H6 TCLEE MEC6H4 CLC6H5 ETC6H5 ETC6H5 XYLENE CL6CP DBCP ALDRN PPDDE ENDRN PPDDT	CONCENTRATION < 5.00 < 6.00 < 5.00 < 5.00 < 5.00 < 5.00 < 5.00 < 5.00 < 5.00 < 5.00 < 5.00 < 5.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.50
	< 0.10 < 0.50 < 0.00

WELL:EPA010G EFA LOCID:198GW010011 SAMPLE DATE:02/26/87

COMPOUND	CONCENTRATION
11DCE	< 0.50
11DCLE	< 0.50
T12DCE	< 0.50
CHCL3	< 0.50
111TCE	< 0.50
TRCLE	2.30
TCLEE	1.10
C6H6	< 1.00
DIMP	< 2.00
DCPD	< 5.00

WELL: EPA011G EPA LOCID: 198GW011009 SAMPLE DATE: 02/26/87

COMPOUND	CONCENTRATION
CH2CL2	< 5.00
11DCE	< 6.00
11DCLE	< 5.00
T12DCE	< 5.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	₹ 5.00
CCL4	< 5.00
TRCLE	< 5.00
112TCE	< 5.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
CL6CP	<20.00
DBCP	< 0.10 < 0.05
ALDRN	
DLDRN	< 0.10 < 0.10
PPDDE	< 0.10
ENDRN	< 0.10
PPDDT	< 0.50
CLDAN	< 0.00
ISODR	(0.00

WELL: EPA012G EPA LOCID: 198G012012 SAMPLE DATE: 02/27/87

COMPOUND	CONCENTRATION
11DCE	0.90
11DCLE	< 0.50
T12DCE	< 0.50
CHCL3	< 0.50
111TCE	< 0.50
TRCLE	35.00
TCLEE	0.60
C6H6	< 1.00
DIMP	₹ 2,00
DCPD	< 5.00

WELL: EPA014G EPA LOCID: 198GW014009 SAMPLE DATE: 02/27/87

COMPOUND	CONCENTRATION
CH2CL2	< 7.00
11DCE	< 6.00
11DCLE	< 6.00
TIZDCE	⟨ 6.00
	< 6.00
CHCL3	
12DCLE	< 6.00
111TCE	< 6.00
CCL4	< 6. 00
TRCLE	9.00
112TCE	< 6.00
C6H6	< 6.00
TCLEE	110.00
	< 6.00
MEC6H4	
CLC6H5	< 6.00
ETC6H5	< 6.00
XYLENE	< 6.00
CL6CP	<20.00
DBCP	< 0.10
ALDRN	< 0.05
DLDRN	< 0.10
PPDDE	< 0.10
ENDRN	₹ 0.10
	• • • •
PPDDT	< 0.10
CLDAN	< 0.50
ISODR	< 0.00

WELL: EPA011G EPA LOCID: 198GW011009 SAMPLE DATE: 02/26/87

COMPOUND	CONCENTRATION
11DCE	< 0.50
11DCLE	< 0.50
T12DCE	< 0.50
CHCL3	< 0.50
111TCE	< 0.50
TRCLE	< 0.50
TCLEE	< 0.50
C6H6	< 1.00
DIMP	< 2.00
DCPD	< 5.00

EPA LOCID: 198GW012012 SAMPLE DATE: 02/27/87

COMPOUND	CONCENTRATION
CH2CL2	< 5.00
11DCE	< 6.00
11DCLE	< 5.00
T12DCE	7.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	< 5.00
CCL4	< 5.00
TRCLE	45.00
112TCE	< 5.00
C6H6	₹ 5.00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
CL6CP	<20.00
DBCP	< 0.10
ALDRN	< 0.05
DLDRN	< 0.10
PPDDE	< 0.10
ENDRN	₹ 0.10
PPDDT	₹ 0.10
CLDAN	< 0.50
+ ··· • · · · ·	
ISODR	< 0.00

WELL: EPA014G EPA LOCID: 198GW014009 SAMPLE DATE: 02/27/87

COMPOUND	CONCENTRATION
11DCE	< 0,50
11DCLE	< 0.50
T12DCE	< 0.50
CHCL3	< 0.50
111TCE	< 0.50
TRCLE	8.50
TCLEE	120.00
C6H6	< 1.00
DIMP	₹ 2.00
DCPD	< 5.00

③

(*)

WELL: EPA015G EPA LOCID: 198GW015011 SAMPLE DATE: 02/27/87

COMPOUND	CONCENTRATION
CH2CL2	< 5.00
1 1 DCE	< 6.00
11DCLE	₹ 5.00
T12DCE	₹ 5.00
CHCL3	₹ 5.00
12DCLE	₹ 5.00
111TCE	< 5.00
CCL4	< 5.00
TRCLE	19.00
112TCE	< 5.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
CL6CP	<20.00
DBCP	₹ 0.10
ALDRN	₹ 0.05
DLDRN	₹ 0.10
PPDDE	< 0.10
ENDRN	< 0.10
PPDDT	< 0.10
CLDAN	< 0.50
ISODR	< 0.00

WELL: EPA015G EPA LOCID: 198GW015011 SAMPLE DATE: 02/27/87

CONTOUND	CONCENTRATION
COMPOUND	1.30
11DCE	< 0.50
11DCLE	
T12DCE	< 0.50
-	< 0.50
CHCL3	
111TCE	< 0.50
TRCLE	12.00
	0.56
TCLEE	< 1.00
C6H6	• • • • • • • • • • • • • • • • • • • •
DIMP	< 2.00
	< 5.00
DCPD	

<u>.</u>

WELL: EPA016G EPA LOCID: 198GW016010 SAMPLE DATE: 02/26/87

COMPOUND	CONCENTRATION
CH2CL2	< 5.00
11DCE	< 6.00
1 1 DCLE	< 5.00
T12DCE	< 5.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	< 5.00
CCL4	< 5.00
TRCLE	10.00
112TCE	< 5.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
CL6CP	<20.00
DBCP	< 0.10
ALDRN	< 0.05
DLDRN	< 0.10
PPDDE	< 0.10
ENDRN	< 0.10
PPDDT	< 0.10
CLDAN	< 0.50
	< 0.00
ISODR	. •

ф. П

WELL: EPA016G EPA LOCID: 198GW016010 SAMPLE DATE: 02/26/87

COMPOUND	CONCENTRATION
11DCE	1.40
1 1 DCLE	2.00
T12DCE	< 0.50
CHCL3	< 0.50
111TCE	2.80
TRCLE	12.00
TCLEE	3.50
C6H6	< 1.00
DIMP	< 2.00
DCPD	< 5.00

WELL: EPA005M EPA LOCID: 198MW005015 SAMPLE DATE: 02/24/87

	CONCENTRATION
COMPOUND	< 5.00
CH2CL2	6.00
11DCE	
11DCLE	⟨ 5.00
T12DCE	< 5.00
712000	< 5.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	< 5.00
CCL4_	9.00
TRCLE	< 5.00
112TCE	₹ 5.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	₹ 5.00
CLC6H5	₹ 5.00
ETC6H5	₹ 5.00
XYLENE	(20.00
CL6CP	(0.10
DBCP	(0.05
ALDRN	
DLDRN	
PPDDE	
ENDRN	
PPDDT	(0.10
CLDAN	< 0.50
ISODR	< 0.00
TOON	

.

WELL: EPA005M EPA LOCID: 198MW005015 SAMPLE DATE: 02/24/87

COMPOUND	CONCENTRAT	TON
11DCE		66
11DCLE	•	50
T12DCE	< 0.	50
CHCL3	< 0.	50
111TCE	1.	50
TRCLE	5.	50
TCLEE	1,	70
C6H6		50
DIMP		00
DCPD	< 5.	00

WELL: EPA005M EPA LOCID: 198MW005016 SAMPLE DATE: 02/24/87

COMPOUND	CONCENTRATIO	ľ
1 1DCE	0.71	
1 1 DCLE	< 0.50	
, , , , , , , , , , , , , , , , , , , ,	< 0.50	
T12DCE	₹ 0.50	
CHCL3	1.60	
111TCE		
TRCLE	5.20	
TCLEE	1.50	
C6H6	< 0.50)
-		

WELL: EPA012M EPA LOCID: 198MW012010 SAMPLE DATE: 02/24/87

COMPOUND	CONCENTRATION
CH2CL2	< 5.00
1 1 DCE	< 6.00
11DCLE	< 4.00
T12DCE	< 5.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	< 5.00
CCL4	< 5.00
TRCLE	6.00
112TCE	< 5.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00

WELL: EPA012M EPA LOCID: 198MW012010 SAMPLE DATE: 02/24/87

COMPOUND	CONCENTRATIO	١
11DCE	2.80	
11DCLE	1.00	
T12DCE	< 0.50	
CHCL3	< 0.50	
111TCE	1.10	
TRCLE	6.40	
TCLEE	2.10	
C6H6	< 0.50	
DIMP	< 2.00	
DCPD	< 5.00	

WELL:EPA012M EPA LOCID:198MW012010 SAMPLE DATE:02/24/87

COMPOUND	CONCENTRATION
CL6CP	<20.00
ALDRN	< 0.05
DLDRN	< 0.10
PPDDE	< 0.10
ENDRN	< 0.10
PPDDT	< 0.10
CLDAN	< 0.50
ISODR	< 0.00
DBCP	< 0.10

WELL: EPA012M EPA LOCID: 198MW012011 SAMPLE DATE: 02/24/87

COMPOUND	CONCENTRATION
11DCE	2.80
11DCLE	0.89
TIZDCE	< 0.50
CHCL3	< 0.50
111TCE	0.58
TRCLE	4.80
TCLEE	1.40
CENE	2 D ED

WELL: EPA013M EPA LOCID: 198MW013012 SAMPLE DATE: 02/25/87

COMBOUND	CONCENTRATION
COMPOUND	
CH2CL2	6.00
1 1DCE	< 6.00
11DCLE	< 5.00
T12DCE	< 5.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	< 5.00
CCL4	< 5.00
TRCLE	8.00
112TCE	< 5.00
C6H6	< 5.00
TCLEE	₹ 5.00
MEC6H4	₹ 5.00
CLC6H5	₹ 5.00
ETC6H5	₹ 5.00
XYLENE	< 5.00
	(20.00
CL6CP	
DBCP	< 0.10
ALDRN	< 0.05
DLDRN	< 0.10
PPDDE	< 0.10
ENDRN	< 0.10
PPDDT	< 0.10
CLDAN	< C.50
ISODR	< 0.00

WELL: EPA013M EPA LOCID: 198MW013012 SAMPLE DATE: 02/25/87

COMPOUND	CONCENTRATION
11DCE	0.61
11DCLE	3.00
T12DCE	< 0.50
CHCL3	< 0.50
111TCE	2.50
TRCLE	4.80
TCLEE	2.30
C6H6	· < 0.50
DIMP	< 2.00
DCPD	< 5.00

WELL: EPA013M EPA LOCID: 198MW013013 SAMPLE DATE: 02/25/87

COMPOUND	CONCENTRATION
11DCE	0.63
11DCLE	2.90
T12DCE	< 0.50
CHCL3	< 0.50
111TCE	2.40
TRCLE	4.30
TCLEE	2.00
C6H6	< 0.50

WELL: EPA014M EPA LOCID: 198MW014013 SAMPLE DATE: 02/24/87

COMPOUND CH2CL2 11DCE 11DCLE T12DCE CHCL3 12DCLE 111TCE CCL4 TRCLE	CONCENTRATION < 5.00 < 6.00 7.00 8.00 < 5.00 < 5.00 12.00 < 5.00 i6.00
TRCLE 112TCE C3H6 TCLEE MEC6H4 CLC6H5 ETC6H5 XYLENE CL6CP ALDRN DLDRN PPDDE ENDRN PPDDT	<pre>< 5.00 < 5.00 10.00 < 5.00 < 5.00 < 5.00 < 5.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10</pre>
CLDAN ISODR DBCP	< 0.50 < 0.00 < 0.10

WELL: EPA014M EPA LOCID: 198MW014013 SAMPLE DATE: 02/24/87

COMPOUND	CONCENTRATION
•••••	• • • • • • • • • • • • • • • • • • • •
11DCE	0.53
11DCLE	5.10
T12DCE	< 0.50
CHCL3	0.93
111TCE	8.30
TRCLE	12.00
TCLEE	5.70
C6H6	< 0.50
DIMP	< 2.00
DCPD	< 5.00

WELL: EPA014M EPA LOCID: 198MW014014 SAMPLE DATE: 02/24/87

COMPOUND	CONCENTRATION
1 1 DCE	1.80
11DCLE	5.10
T12DCE	< 0.50
CHCL3	0.75
111TCE	8.00
TRCLE	12.00
TCLEE	5.70
CERE	< 0.50

WELL: EPA015M EPA LOCID: 198MW015015 SAMPLE DATE: 02/25/87

COMPOUND	CONCENTRATION
CH2CL2	10.000
1 1DCE	< 6.00
1 1DCLE	< 5.00
T12DCE	< 5.00
CHCL3	< 5.00
12DCLE	₹ 5.00
111TCE	12.00
• • • • • •	< 5.00
CCL4	16.00
TRCLE	
112TCE	< 5.00
C6H6	< 5.00
TCLEE	< 5.00
MEC6H4	< 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
CL6CP	<20. ∩ 0
DBCP	< 0.10
ALDRN	< 0.05
DLDRN	< 0.10
PPDDE	< 0.10
ENDRN	< 0.10
PPDDT	< 0.10
CLDAN	< 0.50
ISODR	⟨ 0.00
IBODK	` 0.00

WELL: EPA015M EPA LOCID: 198MW015015 SAMPLE DATE: 02/25/87

COMPOUND	CONCENTRATION
11DCE	1.80
11DCLE	< 0.50
T12DCE	< 0.50
CHCL3	< 0.50
111TCE	5.70
TRCLE	8.70
TCLEE	< 0.50
C6H6	< 0.50
DIMP	< 2.00
DCPD	< 5.00

WELL: EPA015M EPA LOCID: 198MW015016 SAMPLE DATE: 02/25/87

COMPOUND	CONCENTRA	CITA
11DCE	1	.80
1 1 DCLE	< 0	.50
T12DCE	< 0	.50
CHCL3	< 0	.50
111TCE	5	.50
TRCLE	8	1.80
TCLEE	((.50
C6H6	< (.50

WELL: EPA015M EPA LOCID: 198MW015017 SAMPLE DATE: 02/25/87

COMPOUND CH2CL2	CONCENTRATION
11DCE	₹ 6.00
11DCLE	< 5.00
T12DCE	< 5.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	7.00
CCL4	< 5.00
TRCLE 112TCE	11.00
C6H6	< 5.00
TCLEE	₹ 5.00
MEC6H4	₹ 5.00
CLC6H5	< 5.00
ETC6H5	< 5.00
XYLENE	< 5.00
CL6CP	<20.00
DBCP	< 0.10

(4)

WELL: EPA015M EPA LOCID: 198MW015017 SAMPLE DATE: 02/25/87

COMPOUND	CONCENTRATION
ALDRN	< 0.05
DLDRN	< 0.10
PPDDE	< 0.10
ENDRN	< 0.10
PPDDT	< 0.10
CLDAN	< 0. 50
ISODR	< 0.00

WELL: EPA015M EPA LOCID: 198MW015017 SAMPLE DATE: 02/25/87

COMPOUND 11DCE 11DCLE T12DCE CHCL3 111TCE TRCLE	CONCENTRATION 1.80 < 0.50 < 0.50 < 0.50 5.70 8.60 < 0.50
TRCLE TCLEE C6H6	• • • • • • • • • • • • • • • • • • • •

WELL: EPA517M EPA LOCID: 198MW517005 SAMPLE DATE: 02/27/87

COMPOUND	CONCENTRATION
11DCE	< 0.50
11DCLE	0.52
T12DCE	< 0.50
CHCL3	< 0.50
111TCE	0.88
TRCLE	< 0.50
TCLEE	< 0.50
CEUE	< 1.00

WELL: EPA517M EPA LOCID: 198MW517005 SAMPLE DATE: 02/27/87

	CONCENSE A MITON
COMPOUND	CONCENTRATION
CH2CL2	< 5.0℃
1 1 DCE	< 6.00
1 1DCLE	< 5.00
T12DCE	< 5.00
CHCL3	< 5.00
12DCLE	< 5.00
111TCE	< 5.00
CCL4	< 5.00
TRCLE	< 5.00
	₹ 5.00
112TCE	₹ 5.00
C6H6	₹ 5.00
TCLEE	₹ 5.00
MEC6H4	⟨ 5.00
CLC6H5	
ETC6H5	< 5.00
XYLENE	< 5.00
CL6CP	<20.00
DBCP	< 0.10
ALDRN	< 0.05
DLDRN	₹ 0.10
PPDDE	< 0.10
ENDRN	< 0.10
PPDDT	< 0.10
CLDAN	< 0.50
ISODR	< 0.00

WELL: EPA517M

EPA LOCID: 198MW517006 SAMPLE DATE: 02/27/87

COMPOUND	CONCENTRATION
1 I DCE	< 0.50
1 1 DCLE	0.51
T12DCE	< 0.50
CHCL3	< 0.50
111TCE	0.67
TRCLE	< 0.50
TCLEE	< 0.50
C6H6	< 1.00
DIMP	< 2.00
DCPD	< 5. 00

APPENDIX D.3: ALLUVIAL/UNCONFINED PLUME MAPS (D-1 TO D-9)

(**)**

Prepared for: U.S. Army Program Manager's Office

CPMSO PLUMES UNCONFINED GROUNDWATER

CPMSO, PLUMES UNCONFINED GROUNDWATER FLOW SYSTEM 3RD QUARTER, FY 1987

U.S. Army Program Manager's Office For Rocky Mountain Arsenal

U.S. Army Program Manager's Office For Rocky Mountain Arsenal

Aberdeen Proving Ground, Maryland

11 DICHLOROETHENE PLUMES UNCONFINED GROUNDWATER SYSTEM 3RD QUARTER, FY 1987

SOURCE: Hunter/ESE, 1988

Prepared for: U.S. Army Program Manager's Office For Rocky Mountain Arsenal

Aberdeen Proving Ground. Maryland

T1,2-DICHLOROETHENE PLUMES UNCONFINED GROUNDWATER FLOW SYSTEM 3RD QUARTER, FY 1987

COMBCE SUSSESSED

③

(8)

(

U.S. Army Program Manager's Office For Rocky Mountain Arsenal Prepared for:

1,1,1-TRICHLOROETHENE PLUMES UNCONFINED GROUNDWATER FLOW SYSTEM 3RD QUARTER, FY 1987

SOURCE Hunter/ESF 1988

Aberdeen Proving Ground, Maryland

APPENDIX D.4: ALLUVIAL/UNCONFINED POINT PLOTS (D-10 TO D-26)

Prepared for: U.S. Army Program Manager's Office

ISODRIN DETECTIONS UNCONFINED GROUNDWATER FLOW SYSTEM

Prepared for: U.S. Army Program Manager's Office

HEXACHLOROCYCLOPENTADIENE DETECTIONS UNCONFINED

Prepared for: U.S. Army Program Manager's Office For Rocky Mountain Arsenal

Scale in Feet

Figure D-15

CHLORODANE DETECTIONS UNCONFINED GROUNDWATER FLOW SYSTEM, 3RD QUARTER, FY 1987

U.S. Army Program Manager's Office For Rocky Mountain Arsenal

Drowing Ground Maryland

ETHYLBENZENE DETECTIONS UNCONFINED GROUNDWAIEN FLOW SYSTEM, 3RD QUARTER, FY 1987

SOURCE: Hunter/ESE, 1988

For Rocky Mountain Arsenal

Aberdeen Proving Ground, Maryland

HORTH BOUNDARY CONTAINMENT REEW R67W **⊢** − ∽

Prepared for:

....... FI OW EVETEN

Aberdeen Proving Ground, Maryland

Į

(1)

U.S. Army Program Manager's Office For Rocky Mountain Arsenal

Prepared for: U.S. Army Program Manager's Office For Rocky Mountain Arsenal

Prepared for: U.S. Army Program Manager's Office For Rocky Mountain Arsenal

CARBON TETRACHLORIDE DETECTIONS UNCONFINED GROUNDWATER FLOW SYSTEM, 3RD QUARTER, FY 1987

112 TRICHLOROETHANE DETECTIONS UNCONFINED GROUNDWATER FLOW SYSTEM, 3RD QUARTER, FY 1987

SOURCE: Hunter/ESE, 1988

U.S. Army Program Manager's Office For Rocky Mountain Arsenal

Aberdeen Proving Ground, Maryland

APPENDIX D.5: DENVER FM POINTS PLOTS (D-27 TO D-168)

ENDRIN DETECTIONS DENVER ZONE 2 3RD QUARTER, FY 1987
SOURCE: Hunter/ESE, 1988

U.S. Army Program Manager's Office For Rocky Mountain Arsenal

Aberdeen Proving Ground, Maryland

(3)

SOURCE: Hunter/ESE, 1988

(4)

(4)

(4)

r)

)

P)

Figure D-117 METHYLENE CHLORIDE DETECTIONS DENVER ZONE VC/VCE 3RD QUARTER FY1987

SOURCE: Hunter/ESE, 1988

U.S. Army Program Manager's Office For Rocky Mountain Arsenal

Aberdeen Proving Ground, Maryland

Figure D-122 1,1 DICHLOROETHANE DETECTIONS DENVER ZONE VC/VCE 3RD QUARTER FY 1987

SOURCE: Hunter/ESE, 1988

Prepared for:

U.S. Army Program Manager's Office For Rocky Mountain Arsenai

Aberdeen Proving Ground, Maryland

(1)

(ید

(

(8)

•

. •

.

APPENDIX D.7: GC/MS DATA

D-515

GC/MS DETECTIONS, MOST PREQUENTLY DETECTED NONTARGET COMPOUNDS

3RD QUARTER FY 1986 TASK 4 GC/MS CONFIRMATION DATA

FIELD GROUP NUMBERS TC44, T4BWC, AND OPW2C ARE GC/MS RESULTS

SAMPLE LIST TAC

19 38 6	120 15.1		17.0	2:							.2	17.0	1.20	17.0	1.28	17.0	? '	•			9.	1.20	17.0	8 .	• •	1.6		17.6	1.28	• • • • • • • • • • • • • • • • • • •	1.29	17.0	87.8	221		17.B	. 20	17.0	1.28	17 8	2.7		8 :	2	. T.	.20
Б (- ت	-	Ţ	ټ ټ	÷ ;	7 0	. 3	; ;	. 3	; J	3	₹	₹	J	7	♥ '	₹		•	, ₹	· 🛡	₹	♥	ټ ټ	' ن	• 🗸	· \$	J	₹ :	. :	3	¥	_	•	J 3	; ₹	, T	. ▽	₹	Ţ	₹	J.	ت 5	<i>;</i>	; =	7
81512 UB	/1 9																																													
2950	S 1/30		44.0	<1.38 :: 38	4. T. 3.	1		1717		C14.0	€>	C14.0	<1.30	41.1	41.34	3 .5	#				414.	€E-1>	614.	C1.38	7.7	(1¢	2.32	4.14.	₩. ₩.		F. 5	•C14.8	C14.0	9.82		- T- T- T- T- T- T- T- T- T- T- T- T- T-	E - 0	0.90	1.39	C14.8	<1.30	<14.0 :	E :		• • • •	CL.38
98563 BU	1.4-011H		25.4	33.5		6 113				4.11.	9 1.0	6.11.	61.19	6.10	C1.10	<11.0	2 :	# TO			28.2	17.8	<11.0	61.18 1.18	£3.7	(1. 6 . 1)	2.85	45.1	31.2		\$	•(117.	6.1.9	9 1.15	• • • • • • • • • • • • • • • • • • •	79	; ;	892	342	41.0	<1.16	411.0	(1.19 (1.19	6.11.8 5.	91.7	61.15
98564 UB	74-014 06/1		6 . I 9	2 ;	7 7	2 9		÷ ;		9	42.8	€6.18	42.11	(6.19	45.E	6 .16		9:5	,		6 .1	3.64	6 .18	2	9.30	6. 25	2.35	9 . 18	3.73	₽ :	2 2	•(6.18	6.10	2.5	9 0	2. 49	0	39.1	32.8	6 .18	42.8	66.19	3 :	9 9		2
81588 Ud	(2 / 3n		3.5	8 5			2	5 5		8	C1.88	8 .0	(1.88	3.8	8 . €	3 :	8 . 5			0.8	8.0	<1.89	3 .6	2 ;		2	₩. 1>	8 .6	2. S	3 5	# # T	8.0	3.6	3 .5		601		3.6	<1.80	3 .8	61.68	₽.	€		20.17	2 2
39396 SS	7/98	•	4.8.V	6.17	() () () () () () () () () ()		22 87	(III)	1	410.0	(8.87	<10.0	<0.078	(18.8	CB. 878	4.8.		6. e. e.		6.878	<18.8	<0.358	C18.8	<0.878			46.878	€.B.	6.895			*<18.B	<18.8	(e. 14e	, J		<8.788	CIB.	46.070	<18.8	40.700	CIB.0	6.678			788
33.55 25 25 26 27 26 27	# 7/9a	•	3 9.0	G. 652	70.0	3.0	(3.05)	9.0	CB B 52	3.0	<0.152	19"	<0.052	43.68	<8.052	97.0	<#.052 () ()	6 .7.5	26.0	48.05 2	39.0	697.8 2	43.6	6.8 2	3.5	3	<0.052	3 9.0	• · · ·	2.7	(8.852	89.D.	19 ***	0.739			£25.	9.0	<0.852	99.0	€25.	9.0	CB. 05 2	9.5	26.00	\$ 578 \$ 578
39300	1/58	1	64.78		7 7	2. 2	- Bye	67.75	Bye By	64.78	498.8>	4.70	0.437	4.78	8.229	4.7	99.			990	64.78	CB. 388	4.7	990.8>		2 2	(8.968	64.78	 E. :		9.5	*(4.78	2.2	. 865		2 7	99	4.78	690.8 >	64.78	18.688	2. 3	68.89			1 () () () () () () () () () (
39328 SB - BS	- - - - - - - -		¢4.70	(G. 153	20.00	2. 3	C6.653	64.78	68.83	\$4.7 8	<6.853	6.78	(0.053	C4.78	(8.83	2.2	(6.8 53		(4. 73	<0.053	4.78	<0.265	4.2	6.8 3	2.5	\$ 75 27	(8.6 53	64.70	6.8 3		(6.853	•<4.78	2.2	98		(C. 1)	530	4.7	CB. 05 3	64.78	<8.538	4.78	(8.83	2.5 5.5		
SS SS	1/9n		S. 9			8		8	9	6.3	69.8 %	62.38	69.8 9	65.98	\$. B	6.9				(C. 066	62.98	CB. 388	S. 5	89.	9	8	(B. 868	6.9		ë ,	3	*<5.9	8,5	. i.2		£	999	6.8	99.8	65.9t	6.68	S	99.			
39.339 St At DR 18	1/25 1/25		4.2		7	S. 2	6/8 B)	2	CB 978	2.2	CB. 878	C4.78	<6.878	C. 78	<8.678	5	**************************************			će. e7e	C. 78	<8.358	2.5	6. IO7	* *	2.2	1.455	4.7	9. 192			*C4.78	C. 78				8.53	4.78	<1.070	C4.78	€.7	C4.78	6.13	2.5		. ES
A 386 SB MCCPD	1/9A		G			0	44 B78	C 1 1 2	67.8	<u>.</u>	<0.070	€ 11.	<8.678	€.:	ce. 878	3 .5	(e.e.)			678	€ 11.	(8.358	- -	46.67	- T	(1:75 (11.8	CB. 878	433.	6.17	-17		• !!»</td <td>61.8</td> <td>G. 148</td> <td></td> <td></td> <td></td> <td>411.</td> <td><0.070</td> <td>€11.</td> <td>6.788</td> <td>C11.</td> <td>6.67</td> <td></td> <td></td> <td></td>	61.8	G. 148				411.	<0.070	€11.	6.788	C11.	6.67			
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	び		65.7	₹	. 52	\$ 5.7	Ş	65.7	5	65.7	=======================================	CS. 7	#	(5.7	5	G .7	=;	35	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	; =	658	96	7.5	£ :			480	678	= ;	į	₹	#<5.7	210		<u>;</u> =	2,0	3100	92		65.7	=	(5.7	₹;	. : S	3 2	× =
				05:01 93/C7/98							96/25/86 89:02	92:11 98/52/91	6/23/06 11:26				_ •	15:50 98/71/90 96/71/90				16/26/86 88:47			79:45 m2:45		_			6/19/86 12:41 4/19/86 13:41		_			65.28 08:30 67.25/86 08:30	_				25:60 98/92/98					76, 23, 60, 13:37	06/26/86 14:28
				2701	_	_	_	_		_	02035	•	_	_	_	_	-	17077			_	_	_		23179		•	•		23152	•	_	•	•	25.62			•	26866	_	_	_		•	10070	_
	:	*	m r	۰ ۵	` ~	•	15	'n	2	. •	2	^	2	₩	2	•	t :	= *	2 5	: 2	_	×	2 :	£ :	2 2	: :	=	=	‡ :	<u> </u>	£ 4	~	R :	X :	3 S	; ;	3 53	: 23	3	₹	3	%	3	€ 5	6 ;	` ?
STORET CODE: NETHOO CODE: PARAMETER:	JAITS:	.LD.CM.	8	3 2	TABLE	140	140	140	1104	7	72	1400	14CE	¥.	2	2	2 5	3 2	<u> </u>	2	7400	D. ₹0.	ម - 5	18	3 2	2 2	1	7400	2 3	3 5	12	TABLE	1400		1 2	1,2	2	7	Ş	₹	1	₹ 2	7	¥ ;	3 5	3 2

SAMPLE LIST TAC

STORET CODE	;;		81596	34630	34010	H371	98553	96554	34423	3458	34496	34546	32196	34531	34.586	32 182
PARANETER:	;		# 19E	DE NZENE	TOLUEN ET	HYLLBEW?	₽-X1.	O.P-IIL	THYLCL	11805	110011	1120CE	2 2 3 3	120CLE	11117.	2 5
GRETS:	*	CARPIC IN DATE TIME	1/3n	UC/L	rc⁄r	NC/L	UC/L	1/3n	7/3n	1/3 0	7/9n	1/3n	1/90	7/3n	UG/L	1/9n
1400		2/3	42.00	<10.0	<1.80	8.5	8 .15	67.0	11.4		9 91	2	1178	23	17.6	
140	m	98/52/98	(12.9	CL.34	(1.21	C1.20	¢ .5	4.7	6.16	2.75	47.1	<12.0	>500	6 . 10	¢17.	24.
107	•	98/62/56	(12.9	27.34	CI.21	(i.2	0.35	47.47	3 .	€1.18	d.2	0.28	C1.48	(1.618	€1.7 6	47.7
14840	7	11902 05/25/26 08:45 20:00 04/27/26 08:45	2. Z	8.7	R 3	\$ 5 5 5	2 5	2 3	5 5 5 5 5 5		2°	\$ 5 .	3 ;	2 3	3 5	2 .0
	. 2	99/5/99	(12.9	37.2	4.52	2	5.5	0.47	2	#I 15	, T	25.00	9 9	4. L. 4.	; ;	
7400	S	96/53/86	₩. Z	8 .13	1.49	2.5	3 .	65.0	6.8	:	2.8	Q.1	991		8	2
1408	Ξ.	98/22/90	<12.9	CI.34	CI.21	<1.28	CI.35	42.47	G.B	41.15	C1.28	(I.28	115	48.618	J</th <th>9.53</th>	9.53
¥ 5	۾ م	20:32 98/52/98 95:02	6 .2	2 7		2		3 (H.9	•	7.52	5 .	€:	8 :5	2 :	Z .
ij	۰ د				77	2. 5	9 2	20	3 5	4 1.15	# E	7.0	. 85 85		7 2	ا ا
1404	22	98/53/99	C12.9	E. D	C.21	C. 28	2.3	4.4	9 5	¢1.19	£.15	£. 23	2.79	(8.618	2 0	# * * * * * * * * * * * * * * * * * * *
7400	-	96/53/86	42.0	C1.8	₽.5	M.1	8 .10	42.88	G.R		42.88	4. 1. 1.	9.18	÷.	₩. ₩.	G.B
101	≈ •	96/53/96	C12.9	£.5	G.2	2.2 2.2	C :	42.47	€3.8	4.1	41.28 11.28	C1.20	7.4	619.6 3	CI.78	47.4
2 2 2 2	- 7	CD: DI 98/52/98 (CB27)	; ;	3 7			B. ;	2. S	8 8	:	2. 2.	8 .73	2 :	= ;	3 ;	42.11
	: =	64/12/86	0 0	* = 0	7. 2	7.73 3.73 3.73	Ç T	200	0 K	21.13	7. 2.	7.	17.4		7.	3 5
_	×	96/15/86	Q2.9	C1.34	4.21	C.23	4.35	4.41	8.8	£.18	C1.28	Z. 2	9.1	(6.610		# 75 # 75
	23	94/15/96	47.8	8 .15	8 .15	8 .15	₽.₽	8 .5	65.88		43.00	8 .2	₩. 1.08	€98	C	Q.8
	2	98/15/99	412.9	CL.34	(Z.D	CT.28	Ć.35	42.47	65.0	₽	<1.28	61.20	C1.48	619.6 5	61.79	47.48
	<u> </u>	23142 04/26/06 00:47	5	7 7		3 ;	3	5.5	5 5	:	# F	3 :	3 ;	₩.;	8	2 :
	۲ <u>۱</u>	66/12/86 1	2.8	* 3	; 2 ;	2 E	7 S	\$ 5	8		8 .5	2.5	.	(C. 0)		
1404	*	66/12/86	<12.9	£.15	(1.21	(1.26	CL.35	47.47	65.8	CI.18	(1.20	0.23	₽£	619.6 3	4.7	G.48
	92	98/17/99	4.2	48.2	61.0	8 .5	8 .5	3.24	Ĭ		3.48	6 .0	32868	115	C1.18	11. 22
	F :	96/15/96	(12.9 (12.9	38.7	2.71	3.59	÷ :	3.52	<u>22</u>	=	×. ;	<1.28	22588	6.618	2 5	2.48
3 2	= =	58:83 98/12/80 58152 58:83 98/16/1/98 58152	3 5	# # C C	3 7	8 .5	3 5 5 5	3 5	2 2	= 5	8 .7	5 7	8 5 5 5	6 616	3 7	2
	: 22	98/61/96	Q. B	8 .5		₽.	3	47.8	(S. B)	;	2.8	6.		1.53		8. %
_	¥	98/61/90	<12.9	41.34	(1.21	C1.28	CI.35	4.0	€2.0	41.10	CI.28	CI.28	41.48	1.59	CI.76	CZ.48
	:	98/13/98	3 (3 :	2 ;	3 :	2 .	2 :	8 .8	;	42.88	67.8	3 :	3 ;	2 3 3 3	42.13
3 2	₹ ₹	23150 06/19/86 12:41	(12.9 (12.9	#. # U U	2.2	7 7	5 5	(* ()	2 E		2.2	8 7.5	7 .5	619.65 618.618	87.TS	# # # # # # # # # # # # # # # # # # #
	m	98/62/50	2.0	3.70	8 .15	8.0	÷	2	65.88		2.8	67.8	3 .	<u>-</u>	₩. ₩.	8 .5
1400	2	98/11/98	47.5	3 .0	3. :	8 .15	÷:	4.0	6 .8	;	42.8	2.0	1120	1.79	8 7	4.53
	R 7	241/8 96 /19/36 14:22	0 25.3	* 3	7.5	7.0	4 5	2 5	j t	91.13	7.0	7.15	100 1V	10.0		77.0
14CE 5	: 5	66/25/86	C12.9	C.3	(I.2)	27.T	CL.35	2.47	S.	C1.18	CI.28	2.2	Q4	619.8	₹.5	4.5
	23	98/12/98	32.7	58.1	953	₽.1	₩.	C2.88	65.00		4.8	2.19	£	=	₽.₽	42.00
201	59 :	26041 06/27/76 18:28	C12.9	9.6	1076	2 .2	Z. ;	19.2	. S.	£F	C.28	2.3	9 (5.23 5.23	₹:	9 0
	3 3	_	3.5	2. I	 : :	8. T. T	2 X	3 5	7		ָ ֓֞֞֞֞֞֞֓֓֓֓֓֓֓֞֞֞֓֓֓֓֓֓֓֡֓֓֓֡֓֡֓֓֓֓֡֡֓֡֓֓֡֡	2		917		5.0
		98/92/98	(C.2)	8.0	3.0	\$ 5	3	2.2	\$ 5		2.5	2.5	15.1		\$ 3	\$. I \$
7402	3	98/92/98	(12.9	C1.34	(1.21	CI.28	CL.35	6.47	48.88	€1.19	62.15	CI.20	12.0	419.8 >	C.70	5.75
1460 2	۲2	98/53/86	47.8	61.0	3 .15	C. D.	3 .0	2	6.2		6 .8	62.00	8 .5	3.	3 .0	42.88
75	3 :	98/53/96	(12.9	¥.,	<1.21 2.21	41.28 5	CL.35	45.43	8 .9	₽.1	47.15 5	C1.20	₽ :	48 .61 8	2 .5	C2.48
	2 5	96/ 23 /86	3 .	7.91	2 ₹	2 ;	₽ X	8.6	S: *	•	8. 5	Q.E	B	88.17 W		# :
֓֞֞֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	5 5	26884 W6/23/86 13:3/ 26885 86/26/96 14-28	677.	19.5	7 2	5.5	7 2	2 ¢	5 X	F	\$.	₽7°5	27.8	# 6 T	: :	# # 0 5
	; 2	98/92/98	C12.9	C1.34		# # T	5 5	9	. S	61.19	2.2 C.2	67.0	21.1	<0.618	2.13 2.13	₹. .
<u>.</u>	!	(23.63	;	•	;	!	;	;	;	;	•	;				;

34361	=	CLC6MS	てつの		12.7	CB. 588	2.8	4. 2	CB. 580	4 .5	ce. 586	47.8	2,5	2.8	S. 5	67.8	6.5	4.2	63.588	4.	6.58	4.2	6.58	4 7.	C. 588	8. 7	2.5		2.8	CB. 580	47.7	CB. See	62.88	6.5	68.586	2.5			CB. 588	2.16	2.71	29-61	7.6	62.88	68.586	47.10	CB. 588	Q. H	CB. 588	8.8	<8.588
34475	#	Tale	.; PG/:	•	(9.	£.13	8.0	\$1.0¢	E.13	3 .5	#.T	2.63	8.1	8 ∵5	€1.38	3 .5	第.1 2	8 .15	K.12	8 .13	#. 7	8 .5	ć. 3	÷ 3.	61.38		#: F	, ×	3	£.2	£1.8	£.0	# T	<1.30 	C1.38	Z	2	7.6	2	3	#. U	4.27	3.%	8 .15	41.30	41.0	41.30	30 -10	¢:.3	₩.	E.13
34511	=	112TCE	7	3	3	C	8 .5	8. D	£.15	3 .15	4.13	41.18	₽.₽	8 .15	8,10	8 ,2	≅.5	4.1	8 .13	3 .5	₩.5	3 .0	₹.	€	8		3 5	# #		\$.₽	41.8	₩.5	€. E	3 (3 .5				3	3	2.5	8 .0	₩.₽	CI.00	G.8	C1.18	2.5	8 .15	₽.5	₩.₽	81.15
			1	# # -	8	8 :45	21:45	3:5	3 :8	¥:4:	14:0 1	20:64	20:64	11:26	11:28	15:53	15:55	18:05	# #:	5:3	3:33	#2:C	17:21	# :7	4:			2 2		10:03	94:11	11:46	12:41	12:41	Z :		7::	77.	*	10:21	10:21	\$2:5	52:64	25:6	25:60	14:52	H:52	13:57	13:57	14:28	14:28
			1	DA11.	1/2/4	15/29/16	\$5/23/76	98/52/98	96/24/96	\$6/27/36	\$2/12/96	96/52/96	86/25/86	#/23/#	#/23/#	\$4/23/96	#/23/#	86/24/86	32/32/38	\$/15/\$¢	9 /77/ 9	6/12/36	96/12/96	\$/%/\$	94/56/96	/15/2	2/15/m	ya/21/ya	/ ! / y	%/ FI / 78	98/13/89	98/61/90	98/61/98	96/13/16	92/62/5	98/52/50	90/61/90	A / 2 / 3 / 3 / 3 / 3 / 3 / 3 / 3 / 3 / 3	// //	9////9	6/27/06	98/52/98	\$4/52/9	90/52/98	98/92/98	\$6/23/4\$	98/23/86	06/23/86	96/23/86	98/92/30	98/92/98
				01 T-MEN	01020	11002	11962	12019	61828	8583	82838	02035	82835	15830	62037	85838	3K 9Z 0	65.838	65833	22821	22021	22624	22824	23142	23142	23177	71162	721.7	22185	23165	23189	23186	231%	231%	24150	212		25.07	25022	2664	264	26.066	26866	26473	26873	26883	26083	26884	26884	2684S	26085
	<u>;;</u>		•	* ~	· m	•	~	•	2	₩	=	•	R	~	2	-	S	•	z	=	×	2	2	<u>=</u>	*	₩;	# :	# #	: =	=	=	7	2	\$	2	۳ ;	4 5	R =	: 5	: 2	3	2	3	*	3	X	3	×	5	23	2
		PARAMETER:	Unit TS:	147	1401	1	TABLE	1400	1401	7400	120	7 2	140	7450	1402	₹ 2		7400	14QE	120	7	7	140	<u> </u>	Ş Z	<u>ੂ</u>)-	52	0	140	12	74	1404	748	2		14890	3 2	1	122	757	74CH	7,1	14CK	745	100	1400	140	7400	14CB	7,00	740

8 SAPPLE 19 DATE THEE 8 SAPPLE 19 DATE THEE 9 11362 86/25/96 16:29 1 1362 86/25/96 16:39 1 1362 86/25/96 16:30 1 1362 86/25/96 16:30 1 1362 86/25/96 16:30 1 1362 86/25/96 16:30 1 1362 86/25/96 16:30 2 1363 86/25/96 16:30 2 1363 86/25/96 16:30 2 1363 86/25/96 16:30 2 1363 86/25/96 16:30 2 1363 86/25/96 16:30 2 1363 86/25/96 16:30 2 1363 86/25/96 16:30 2 1363 86/25/96 16:30 2 1364 86/25/96 16:30 2 1317 86/12/96 16:30 2 1318 86/13/96 16:30 2 1318 86/13/96 16:31 2 1318 86/13/96 16:41 2 1318 86/13/96 16:41 2 1318 86/13/96 16:41 2 1318 86/13/96 16:41 2 1318 86/13/96 16:41 2 1318 86/13/96 16:41 2 1318 86/13/96 16:24 2 1318 86/13/96 16:42 2 1318 86/13/96 16:42 2 1318 86/13/96 16:42 2 1318 86/13/96 16:42 2 1318 86/13/96 16:42 2 1318 86/13/96 16:24 2 1318 86/13/96 16:42 2 1318 86/13/96 16:24	State D DATE THE	ETHOD CODE: ARAMETER:	·· ··			808	20 00		2 6	20	
2 11002 66/25/06 10:30 3 01020 66/25/06 10:30 1 1002 66/25/06 10:3	1	1175:				3	73	790	791	3	3
11802 85/29/86 86-35		9.036	B SARPLE	3	¥;		;	•		•	•
9 11962 65/29/06 68-45	11002 65/29/16 60-15 0.130 0.131	2 2	310		R	16.1	;	•	(9.31	;	:
2 11867 65/29/86 68:45	2 11000 05/20/06 06-15 C(13) C(14) C(14) 1 02219 05/20/06 07-16 C(13) C(14) C(14) C(14) 1 02219 05/20/06 07-16 C(13) C(15) C(14) C(13) 1 02229 05/20/06 07-16 C(13) C(15) C(14) C(13) 2 02229 05/20/06 07-16 C(13) C(15) C(14) C(13) 2 02229 05/20/06 07-16 C(13) C(15) C(16) C(13) 2 02229 05/20/06 07-16 C(13) C(15) C(16) C(13) 2 02229 05/20/06 07-16 C(13) C(15) C(16) C(13) 2 02220 05/20/06 07-16 C(13) C(15) C(16) C(13) 2 02220 05/20/06 07-16 C(13) C(15) C(16) C(13) 2 02220 05/20/06 07-16 C(13) C(15) C(16) C(16) 2 02220 05/20/06 07-16 C(13) C(15) C(16) C(16) 2 02220 05/20	<u>=</u>	# ·	•	88:45	CO. 130			G .31		
1	Column C	7. EC	2	•	#: 1 2		\$D.	.		7.5	٠, ١
17 12 12 12 12 13 15 15 15 15 15 15 15	17 12,223 16,7746 14,511 14,139 14,1	¥ 2		•	1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2	£	3	2	3	-
17 17 17 17 17 17 17 17	17 2282 66/27/96 19-11 0-139 0-13	<u> </u>		•			\$10		•	(4.7	~
6 67835 66/25/96 69:02 (0.136 (15 6 6 12 6 12 6 12 6 6 12	100 100	150	7			6.138	}	;	(9.31	,	
22 02025 66/25/86 69:62 (6.130 (15 0202 66/25/86 11256 (6.130 (15 0202 66/25/86 11256 (6.130 (15 0202 66/25/86 11256 (6.130 (15 0202 66/25/86 11256 (6.130 (15 0202 66/25/86 11256 (6.130 (15 0202 66/25/86 11265 (6.130 (15 0202 66/25/86 6127) (6.130	1,000,000,000,000,000,000,000,000,000,0	₹	9	•	29:69		415	6. 0		4.7	_
02037 06/23/06 1128 013 013 02037 06/23/06 1128 013 02037 06/23/06 1128 02037 06/23/06 1128 02037 06/23/06 1128 02037 06/23/06 1128 02037 06/23/06 1128 02037 06/23/06 1128 02037 06/23/06 1128 02037 06/23/06 1128 02037 06/23/06 1128 02037 06/23/06 1128 02037 06/23/06/23/06 02037 06/23/06/23/06 02037 06/23/06 02037 06/23/06 02037 06/23/06 02037 06/23/06 02037 06/23/06 02037 06/23/06 02037 06/23/06 02037 06/23/06 02037 06/23/06 02037 06/23/06 02037 06/23/06/23/06/23/06/23/06/23/06/23/06/23/06/23/06/23/06/23/06/23/06/23	1	707	82	•	29:05	G. 136	;	;	69.31	;	
2	2.20.20 MC/23/NB 15:25 CG.130 CG.5 CG.6 CG.31 2.20.20 MC/23/NB 15:25 CG.130 CG.6 CG.31 2.20.21 MC/23/NB 18:25 CG.130 CG.6 CG.31 2.20.22 MC/23/NB 18:25 CG.130 CG.6 CG.31 2.20.23 MC/23/NB 18:25 CG.130 CG.6 CG.31 2.20.24 MC/23/NB 08:37 CG.130 CG.6 CG.31 2.20.25 MC/23/NB 08:47 CG.130 CG.6 CG.31 2.20.27 MC/23/NB 08:47 CG.130 CG.6 CG.31 2.20.27 MC/23/NB 08:47 CG.130 CG.6 CG.31 2.20.27 MC/23/NB 08:47 CG.130 CG.6 CG.31 2.20.27 MC/23/NB 18:30 CG.130 CG.6 CG.31 2.20.28 MC/23/NB 18:30 CG.130 CG.6 CG.31 2.20.29 MC/23/NB 18:30 CG.130 CG.6 CG.9 2.20.20 MC/23/NB 18:30 CG.130 CG.6 CG.9 2.20.20 MC/23/NB 18:20 CG.130 CG.6 CG.9 2.20.20 MC/23/NB 18:20 CG.130 CG.6 <t< td=""><td>년 :</td><td>R 1</td><th>•</th><th>2</th><th></th><td>9</td><td>3</td><td></td><td>3</td><td></td></t<>	년 :	R 1	•	2		9	3		3	
23 0203 06/23/06 15:55 (0.130 (15 2202) 06/23/06 16:65 (0.130 (15 2202) 06/23/06 16:65 (0.130 (15 2202) 06/23/06 16:65 (0.130 (15 2202) 06/12/06 07:27 (0.130	23 07233 06/23/96 15.55 CG.138 CG.16 CG.31 24 27233 06/23/96 18.55 CG.138 CG.6 CG.31 25 27231 06/23/96 19.53 CG.138 CG.6 CG.31 25 27232 06/23/96 19.53 CG.138 CG.6 CG.31 27 27234 06/23/96 06.47 CG.138 CG.6 CG.31 27 27234 06/23/96 06.47 CG.138 CG.6 CG.31 23 2734 06/22/96 06.47 CG.138 CG.6 CG.31 24 23.17 06/22/96 06.47 CG.138 CG.6 CG.31 25 23.17 06/22/96 18.6 CG.138 CG.6 CG.31 25 23.17 06/22/96 18.6 CG.138 CG.6 CG.9 24 23.17 06/22/96 18.6 CG.138 CG.6 CG.9 24 23.18 06/22	1 2		•	15:55		CIS	64.0	12-27	4.1	~
9 02039 66/23/86 10:05 21 22021 66/12/86 60:37 22 22024 66/12/86 60:37 22 22024 66/12/86 60:37 23 22 66/12/86 60:37 23 22 66/12/86 60:37 23 23 7 66/12/86 60:47 23 23 7 66/12/86 60:47 23 23 7 66/12/86 60:47 23 23 7 66/12/86 60:47 23 23 7 66/12/86 60:47 23 23 7 66/12/86 60:47 23 23 7 66/12/86 60:47 23 23 7 66/12/86 60:47 23 23 7 66/12/86 60:47 23 23 7 66/12/86 60:42 24 23 66/13/86 60:43 24 23 66/13/86 60:49 25 23 66/13/86 60:46 25 23 66/13/86 60:49 25 25 66/13/86 60:49 25 25 66/13/86 60:49 26 25 25 66/13/86 60:49 27 26 26/13/86 60:49 28 26 178 66/13/86 60:49 29 26 26/13/86 60:49 20 26 26/13/86 60:49 20 26 26/13/86 60:49 20 26/13/86 60:49 21 26/13/86 60:49 22 26/13/86 60:49 23 26/13/86 60:49 24 26/13/86 60:49 25 26/13/86 60:29 26 26/13/86 60:29 27 26/13/86 60:29 28 26/13/86 60:29 29 26/13/86 60:29 20 26/13/86 60:20 20 26/13/86 60:20 20 26/13/86 60:20 20 26/13/86 60:20 20 26	9 02039 66/72/106 10:05 (4.130 (15 (4.6 (9.31) 11 22021 66/11/106 60:37 (6.130 (15 (4.0 (9.31) 25 22021 66/11/106 60:37 (6.130 (15 (4.0 (9.31) 27 22022 66/12/106 60:37 (6.130 (15 (4.0 (9.31) 27 22024 66/12/10/10 60:47 (6.130 (15 (4.0 (9.31) 23 23142 66/26/10/10 60:47 (6.130 (15 (4.0 (9.31) 13 23142 66/26/10/10 60:47 (6.130 (15 (4.0 (9.31) 14 23142 66/12/10/10 60:42 (6.130 (15 (4.0 (9.31) 23177 66/12/10/10 60:42 (6.130 (15 (4.0 (9.31) 17 23165 66/19/10/10 60:43 (4.130 (15 (4.0 (9.31) 18 23169 66/19/10/10 60:43 (4.130 (15 (4.0 (9.31) 19 23169 66/19/10/10 60:44 (4.130 (15 (4.0 (4.0 23	7401 2	328	_	15:55	6.13			(9.3 1		
24 22021 66/12/86 69:37 (0.136 (1.2021 66/12/86 69:37 (0.136 (1.2021 66/12/86 69:37 (0.136 (1.2021 66/12/86 69:37 (0.136 (1.2021 66/12/86 69:37 (0.136 (1.2021 66/12/86 69:37 (0.136 (1.2021 66/12/86 69:37 (0.136 (1.2021 66/12/86 69:37 (0.136 (1.2021 66/12/86 69:37 (0.136 (1.2021 66/12/86 69:36 66/12/86 69:36 (1.2021 66/12/86 69:36 66/12/86 69:36 (1.2021 66/12/86 69:36 66/12/86 69:36 (1.2021 66/12/86 69:36 69:36 66/12/86 69:36 66/12/86 69:36 66/12/86 69:36 66/12/86 69:36 66/12/86 69:36 66/12/86 69:36 66/12/86 69:36 66/12/86 69:36 69:36 66/12/86 69:36 66/12/86 69:36 66/12/86 69:36 66/12/86 69:36 69:36 66/12/86 69:36 66/12/86 69:36 66/12/86 69:36 66/12/86 69:36 66/12/86 69:36 66/12/86 69:36 66/12/86 69:36 66/12/86 69:36 69:36 66/12/86 69:36 69:36 66/12/86 69:36 66/12/86 69:36 69:36 6	22021 66/12/06 60:37 CO.130 CO.31 22021 66/12/06 60:37 CO.130 CO.31 22022 66/12/06 60:37 CO.130 CO.31 27 22024 66/12/06 60:27 CO.130 CO.31 23 22024 66/12/06 60:27 CO.130 CO.31 23 22024 66/12/06 60:27 CO.130 CO.31 23 23042 66/12/06 60:27 CO.130 CO.31 23 23042 66/12/06 60:27 CO.130 CO.31 23 23042 66/12/06 60:27 CO.130 CO.31 23 23042 66/12/06 60:27 CO.130 CO.31 23 23042 66/13/06 60:27 CO.32 CO.31 23 23042 66/13/06 60:27 CO.32 CO.31 23 23042 66/13/06 60:27 CO.32 CO.32 23 23042 66/13/06 60:27 CO.32 CO.32 24 23190 66/13/06 60:27 CO.32 CO.33 24 23100 66/13/06 60:27 CO.32 CO.33 25 24100 66/13/06 60:27 CO.32 CO.33	748	320	-	:: £		S.	9.6	;	44.7	-
22024 66/12/86 69:37 (0.136 (15 22024 66/12/86 69:37 (0.136 (15 22024 66/12/86 69:37 (0.136 (15 22024 66/12/86 69:47 (0.136 (15 23142 66/12/86 69:47 (0.136 (15 23142 66/12/86 69:47 (0.136 (15 23142 66/12/86 69:47 (0.136 (15 23142 66/12/86 69:47 (0.136 (15 23142 66/12/86 69:42 (0.136 (15 23142 66/12/86 69:42 (0.136 (15 23142 66/13/86 11:46 (0.136 (15 23142 66/13/86 11:46 (0.136 (15 23142 66/13/86 11:46 (0.136 (15 23142 66/13/86 11:46 (0.136 (15 23142 66/13/86 11:46 (0.136 (15 23142 66/13/86 11:46 (0.136 (15 23142 66/13/86 11:45 (0.136 (15 23142 66/13/86 11:45 (0.136 (15 23142 66/13/86 11:42 (0.136 (1	2.2.2.1.1. M. L.	2			S :	#	***	•	3.3	;	
22223 66/12/16 67:28 23 2223 66/12/16 67:28 23 23 24 66/12/16 67:49 23 23 24 66/12/16 67:49 23 23 24 66/12/16 67:49 23 23 24 66/12/16 67:49 23 23 24 66/12/16 67:49 24 23 23 24 66/12/16 67:49 25 23 23 24 66/12/16 67:49 26 24 25 25 25 26 24 67:49 26 24 26 26/22/16 67:49 26 24 26 26/22/16 67:49 27 23 24 26 66/22/16 67:49 28 24 24 26 66/22/16 67:49 28 24 24 26 66/22/16 67:49 29 24 26 26/22/16 67:49 20 24 26 26/22/16 67:49 20 24 26/22/16 67:49 21 26/22/16 67:49 22 26/22 66/22/16 67:49 23 26/22 66/22/16 67:49 24 26/22 66/22/16 67:29 25 25/22 66/22/16 67:29 25 25/22 66/22/16 67:29 25 25/22 66/22/16 67:29 25 25/22 66/22/16 67:29 25 25/22 66/22/16 67:29 25 25/22 66/22/16 67:29 25 25/22 66/22/16 67:29 25 26/22 66/22/16 67:29 26/22 66/22/16 67:29 27 26/22 66/22/16 67:29 28 26/22 66/22/16 67:29 29 26/22 66/22/16 67:29 20 26/22/16 67:29 20 26/22 66/22/16 67:29 20 26/22 66/22/16 67:29 20 26/22 66/22/16 67:29 20 26/22 66/22/16 67:29 20 26/22 66/22/16 67:29 20 26/22/16 67:20 20 26/22/16 67:20 20 26/22/16 67:20 20 26/22/16 67:20 20 26/22/16 67:20 20 26/22/16 67:20 20 26/22/16 67:20 20 26/22/16 67:20 20 26/22/16 67:20 20 26/22/16 67:20 20 26/22/16 67:20 20 26/22/16 67:20 20 26/22/16 67:20 20 26/22/16 67:20 20 26/22/16 67:20 20 26/22/16 67:20 20 26/22/16 67:20 20 26/22/1	2 22024 66/12/16 61-28 Cd-13	3	122	•		7.	9	3	5	3	
13 23024 66/12/86 67:28	22024 66/12/86 8::28 (6.138 (15 (4.6 (9.31 13 23142 66/25/86 8::47 (6.138 (15 (4.6 (9.31 23 23142 66/25/86 8::49 (6.138 (15 (4.6 (9.31 36 23177 66/12/86 8::49 (6.138 (15 (4.6 (9.31 37 23179 66/12/86 8::49 (6.138 (15 (4.6 (9.31 37 23179 66/12/86 8::49 (6.138 (15 (4.6 (9.31 41 23188 66/13/86 8::49 (6.138 (6.138 (6.136 (4.6 (9.31 41 23188 66/13/86 8::41 (6.138 (6.138 (6.136 (4.6 (9.31 41 23188 66/13/86 8::41 (6.138 (6.136 (4.6 (9.31 45 23188 66/13/86 8::41 (6.138 (6.136 (4.6 (9.31 45 23188 66/13/86 8::24 (6.138 (6.136 (6.13 (6.13 45 23188 66/13/86 8::24 (6.138 (6.13 (6.13 (6.13	3 5	2 .	•	7.0		CIS	(4.0		(4.7	-
13 23142 66/26/16 68:47 (8:139 (15 23142 66/26/16 68:47 (8:139 (15 23142 66/26/16 (15 69 (15 23142 66/26/16 (15 69 (15 23142 66/26/16 (15 69 (15 23142 66/12/16 (15 69 (15 23142 66/13/16 (16 13	13 23142 66/26/96 68:47 Ct. 130 Ct	1401	7 228	•	12:4	6.13	}	}	(9.31		
34 23142 66/25/76 68:47 (8.139 (15 23177 66/12/76 15:99 (8.139 (15 23177 66/12/76 15:99 (8.139 (15 23177 66/12/76 15:99 (8.139 (15 23177 66/12/76 15:99 (8.139 (15 23177 66/12/76 15:99 (8.139 (15 23177 66/12/76 16:93 (8.139 (15 23187 66/13/76 11:46 (13 23187 66/13/76 11:46 (13 23187 66/13/76 11:46 (13 23187 66/13/76 11:46 (13 23187 66/13/76 11:46 (13 23187 66/13/76 11:46 (13 23187 66/13/76 11:46 (13 23187 66/13/76 11:46 (13 23187 66/13/76 11:46 (13 23187 66/13/76 11:46 (13 23187 66/13/76 11:45 (13 23187 66/13/76 11:22 (13 23187 66/13/76 11:2	34 23142 66/25/66 68:47 CB.130 CIS	740	3 231	•	4:43		<15	4.0		4.7	_
			4 231	•	4 :43	8 .138			G .31	!	,
3.8 23177 86/12/36 89:42 0.53 16 23179 86/12/36 89:42 0.953 17 23185 86/12/36 89:42 0.953 41 23185 86/13/36 10:43 0.136 41 23185 86/13/36 11:46 0.136 42 23188 86/13/36 11:46 0.136 43 23198 86/13/36 11:46 0.136 44 23188 86/13/36 11:46 0.136 45 23198 86/13/36 11:46 0.136 45 23198 86/13/36 12:41 0.136 45 23198 86/13/36 12:41 0.136 45 23198 86/13/36 12:41 0.136 45 23198 86/13/36 12:41 0.136 45 23198 86/13/36 14:22 0.136 24178 86/13/36 14:22 7.25 25623 86/25/36 80:26 0.136 25623 86/25/36 80:25 0.136 25623 86/25/36 80:25 0.136 25623 86/25/36 80:25 0.136 25623 86/25/36 80:25 0.136 25623 86/25/36 80:25 0.136 25643 86/25/36 80:25 0.136 <	3.23177 Be/12/36 PE-12 CR.138	3	231	•	15:18 15:18	;	<15	6.	;	5	_
37 23179 66/12/36 10:03 C15 41 23185 66/19/36 10:03 C1 38 41 23185 66/19/36 10:46 C1 38 44 23186 66/19/46 11:46 C1 38 44 23186 66/19/46 11:46 C1 38 45 23196 66/19/46 12:41 C1 38 45 23196 66/19/46 12:41 C1 38 45 23196 66/19/46 12:41 C1 38 45 23196 66/19/46 12:41 C1 38 46 23196 66/19/46 12:22 C2 138 5 24178 66/19/46 14:22 7.25 24 246/29/46 69:26 C1 138 24 246/29/46 69:26 C2 138 24 246/29/46 69:26 C3 138 24 246/29/46 69:26 C4 138 24 256/29/46 69:25 C4 138 25 266/29/46 69:25 C4 138 25 266/29/46 69:25 C4 138 26 266/29/46 69:25 C4 138 26 266/29/46 69:25 C4 138 26 266/29/46 69:25 C4 138 <td>37 23179 66/12/36 b9:42 6.953 (15 (4.6 9.31 41 23185 66/19/36 18:63 (6.136 (4.6 9.31 44 23185 66/19/36 18:46 (6.136 (4.6 9.31 45 23186 66/19/36 12:41 (6.136 (15 (4.6 9.31 45 23196 66/19/36 12:41 (6.136 (15 (4.6 9.31 45 23196 66/19/36 12:41 (6.136 (6.136 (4.6 9.31 45 23196 66/19/36 12:41 (6.136 (6.136 (3.1 9.31 45 23196 66/19/36 12:41 (6.136 (6.136 (3.1 9.31 45 23196 66/19/36 14:22 7.25 (15 (4.6 9.31 24178 66/19/36 14:22 7.25 (15 (4.6 9.31 25 26419 66/79/36 18:28 (6.136 (15 (4.6 9.31 25 26410 66/79/46 18:28 (6.136 (15 (4.6 9.31 26 26410 66/79/46 18:28 (6.136 (15<td>5 2</td><td>231</td><th>•</th><th>15:2 2:4:4</th><th></th><td>50</td><td>44.8</td><td>G-31</td><td>=</td><td></td></td>	37 23179 66/12/36 b9:42 6.953 (15 (4.6 9.31 41 23185 66/19/36 18:63 (6.136 (4.6 9.31 44 23185 66/19/36 18:46 (6.136 (4.6 9.31 45 23186 66/19/36 12:41 (6.136 (15 (4.6 9.31 45 23196 66/19/36 12:41 (6.136 (15 (4.6 9.31 45 23196 66/19/36 12:41 (6.136 (6.136 (4.6 9.31 45 23196 66/19/36 12:41 (6.136 (6.136 (3.1 9.31 45 23196 66/19/36 12:41 (6.136 (6.136 (3.1 9.31 45 23196 66/19/36 14:22 7.25 (15 (4.6 9.31 24178 66/19/36 14:22 7.25 (15 (4.6 9.31 25 26419 66/79/36 18:28 (6.136 (15 (4.6 9.31 25 26410 66/79/46 18:28 (6.136 (15 (4.6 9.31 26 26410 66/79/46 18:28 (6.136 (15 <td>5 2</td> <td>231</td> <th>•</th> <th>15:2 2:4:4</th> <th></th> <td>50</td> <td>44.8</td> <td>G-31</td> <td>=</td> <td></td>	5 2	231	•	15:2 2:4:4		50	44.8	G-31	=	
17 23185 66/19/86 18:83 CB 138 CB CB 138 CB CB CB CB CB CB CB C	17 23185 66/19/86 18:83 CB 138 CB CB 18 23185 66/19/86 18:63 CB 138 CB CB 19 23189 66/19/86 18:46 CB 139 CB CB 19 23199 66/19/86 18:41 CB 139 CB CB 19 23199 66/19/86 18:41 CB 139 CB CB 19 23199 66/19/86 18:41 CB 139 CB CB 19 23199 66/19/86 18:41 CB 139 CB 19 23199 66/19/86 18:41 CB 139 CB 19 23199 66/19/86 18:22 CB 139 CB 19 23199 66/19/86 18:22 CB 139 CB 19 23199 66/19/86 18:22 CB 139 CB 19 23199 66/19/86 18:23 CB 139 CB 19 23199 66/19/86 18:23 CB 139 CB 19 23199 66/19/86 18:23 CB 139 CB 19 23199 66/19/86 18:23 CB 139 CB 19 23199 66/19/86 18:22 CB 139 CB 19 23199 66/19/86 18:22 CB 139 CB 19 23199 66/19/86 18:23 CB 139 CB 19 23199 66/19/86 18:23 CB 139 CB 19 23199 66/19/86 18:23 CB 139 CB 19 23199 66/19/86 18:29 CB CB 19 23199 66/19/86 18:29 CB 20 23199 66/19/86 18:29 CB 20 23199 66/19/86 18:29 CB 20 23199 66/19/86 18:29 CB 20 23199 66/19/86 18:29 CB 20 23199 66/19/86 18:29 CB 20 23199 66/19/86 18:29 CB 20		7	•	27.5	6.953	;	:	736	}	,
41 23185 66/19/86 18:03 C0.130 C15 18 23188 66/19/86 11:46 C0.130 C15 44 23188 66/19/86 11:46 C0.130 C15 45 23198 66/19/86 12:41 C0.130 C15 46 24150 66/19/86 12:41 C0.130 C15 28 24150 66/19/86 12:41 C0.130 C15 29 24178 66/19/86 14:22 7.25 C15 20 24178 66/19/86 14:22 7.25 C15 20 24178 66/19/86 14:22 7.25 C15 20 24178 66/19/86 11:22 7.25 C15 21 25023 66/25/86 60:36 C0.130 C15 23 26041 66/25/86 60:36 C0.130 C15 24 26042 66/25/86 60:36 C0.130 C15 24 26043 66/25/86 60:36 C0.130 C15 25 26043 66/25/86 60:25 C0.130 C15 26 26043 66/25/86 60:25 C0.130 C15 26 26043 66/25/86 60:25 C0.130 <	41 23185 66/19/76 18:63 (G. 130 (G. 231 (G. 231 (G. 231 (G. 231 (G. 231 (G. 231 (G. 231 (G. 231 (G. 231 (G. 231 (G. 231 (G. 231 (G. 231 (G. 231)				10:03	;	CIS	6. 6		64.7	~
18 23188 06/13/96 11:46 (0.139 (15) 19 23188 06/13/96 11:46 (0.139 (15) 19 23198 06/13/96 12:41 (0.139 (15) 23 24159 06/13/96 12:41 (0.139 (15) 23 24159 06/13/96 12:41 (0.139 (15) 23 24159 06/13/96 14:22 7.25 24 24159 06/13/96 14:22 7.25 25 25023 06/25/96 00:36 (0.139 (15) 25 25023 06/25/96 00:36 (0.139 (15) 25 25041 06/25/96 00:36 (0.139 (15) 25 25041 06/25/96 00:25 (0.139 (15) 25 25041 06/25/96 00:25 (0.139 (15) 25 25042 06/25/96 00:25 (0.139 (15) 25 25043 06/25/96 00:25 (0.139 (15) 25 25043 06/25/96 00:25 (0.139 (15) 25 25043 06/25/96 00:25 (0.139 (15) 25 25043 06/25/96 00:25 (0.139 (15) 25 25043 06/25/96 00:25 (0.139 (15) 25 25043 06/25/96 00:25 (0.139 (15) 25 25043 06/25/96 10:25 (0.139 (15) 25 25043 06/25/96 10:25 (0.139 (15) 25 25043 06/25/96 10:25 (0.139 (15) 25 25043 06/25/96 10:25 (0.139 (15) 25 25043 06/25/96 10:25 (0.139 (15) 25 25043 06/25/96 10:25 (0.139 (15) 25 25043 06/25/96 10:25 (0.139 (15) 25 25043 06/25/96 10:25 (0.139 (15) 25 25043 06/25/96 10:25 (0.139 (15) 25 25043 06/25/96 10:25 (0.139 (15) 25 25043 06/25/96 10:25 (0.139 (15) 25 25043 06/25/96 10:25 (0.139 (15) 25 25043 06/25/96 10:25 (0.139 (15) 25 25043 06/25/96 10:25 (0.139 (15) 25 25043 06/25/96 10:25 (0.139 (15) 25 25044 06/25/96 10:25 (0.139 (15) 25 25044 06/25/96 10:25 (0.139 (15) 25 25044 06/25/96 10:25 (0.139 (15) 25 25045 06/25/96 10:25 (0.139 (15) 25 25045 06/25/96 10:25 (0.139 (15) 25 25045 06/25/96 10:25 (0.139 (15) 25 25045 06/25/96 10:25 (0.139 (15) 25 25045 06/25/96 10:25 (0.139 (15) 25 25045 06/25/96 10:25 (15) 25 25045 06/25/96 10:25 (15) 25 25045 06/25/96 10:25 (15) 25 25045 06/25/96 10:25 (15) 25 25045 06/25/96 10:25 (15) 25 25045 06/25/96 10:25 (15) 25 25045 06/25/96 10:25 (15) 25 25 25 25 25 25 (15) 25 25 25 25 25 (15) 25 25 25 25 25 (15) 25 25 25 25 25 (15) 25 25 25 25 25 (15) 25 25 25 25 25 (15) 25 25 25 25 25 (15) 25 25 25 25 25 (15) 25 25 25 25 25 (15) 25 25 25 25 25 (15) 25 25 25 25 25 (15) 25 25 25 25 25 (15) 25 25 25 25 25 (15) 25 25 25 25 25 (15) 25 25 25 25 25 (15) 25 25 25 25 25 (15) 25 25 25 25 25 (15) 25	18 23188 66/13/16 11:46 Cf. 3 Cf. 9 Cf.	1401	1 231	•	10:03	6 .13	,		69.31	•	
44 23188 66/19/76 12:41 (0.138 (1.2318 66/19/76 12:41 (0.138 (1.2319 66/19/76 12:41 (0.138 (1.2319 66/19/76 12:41 (0.138 (1.2319 66/19/76 12:41 (0.138 (1.2319 66/19/76 14:22 (1.2319 6/19/76 14:22 (1.2319 6/19/76 14:22 (1.2319 6/19/76 14:22 (1.2319 6/19/76 14:22 (1.2319 6/19/76 14:2319 (1.2319 6/19/76 14:2319 6/19/76 14:2319 (1.2319 6/19/76 14:2319 6/19/76 14:2319 (1.2319 6/19/76 14:2319 6/19/76 14:2319 6/19/76 14:2319 6/19/76 14:2319 6/19/76 14:2319 6/19	44 23188 66/19/16 [1:46] Cd.139 Cd.139 Cd.139 Cd.139 Cd.139 Cd.139 Cd.139 Cd.139 Cd.139 Cd.139 Cd.139 Cd.139 Cd.139 Cd.139 Cd.139 Cd.139 Cd.139 Cd.139 Cd.131	7 E	Ē :	•	11:46	;	<15	3 .	:	4 2	~
15 23199 66/19/36 [2:41 (0.138) 15 24159 65/29/36 69:69 (0.138) 15 24159 65/29/36 69:69 (0.138) 15 24159 65/29/36 69:69 (0.138) 15 24159 65/19/36 [4:22] 17 25423 66/25/36 69:36 (0.138) 17 25423 66/25/36 69:36 (0.138) 18 25423 66/25/36 69:25 (0.138) 19 25424 66/25/36 69:25 (0.138) 19 25424 66/25/36 69:25 (0.138) 19 25424 66/25/36 69:25 (0.138) 19 25423 66/25/36 69:25 (0.138) 19 25424 66/25/36 69:25 (0.138) 19 25423 66/25/36 69:25 (0.138) 19 25424 66/25/36 69:25 (0.138) 19 25423 66/25/36 69:25 (0.138) 19 25424 66/25/36 69:25 (0.138) 19 25423 66/25/36 69:25 (0.138) 19 25424 66/25/36 69:25 (0.138) 19 25423 66/25/36 69:25 (0.138) 19 25424 66/25/36 69:25 (0.138) 19 25424 66/25/36 69:25 (0.138) 19 25424 66/25/36 69:25 (0.138) 19 25424 66/25/36 69:25 (0.138) 19 25424 66/25/36 69:25 (0.138) 19 25424 66/25/36 69:25 (0.138) 20 25444 66/25/36 69:25 (0.138) 21 25425 66/25/36 69:25 (0.138) 22 25424 66/25/36 69:25 (0.138) 23 25424 66/25/36 69:25 (0.138) 24 25424 66/25/36 69:25 (0.138) 25 25444 66/25/36 69:25 (0.138) 25 25444 66/25/36 69:25 (0.138) 25 25445 66/25/36 69:25 (0.138) 25 25445 66/25/36 69:25 (0.138) 25 25445 66/25/36 69:25 (0.138) 25 25445 66/25/36 69:25 (0.138) 25 25445 66/25/36 69:25 (0.138) 25 25445 66/25/36 69:25 (0.138) 25 25445 66/25/36 69:25 (0.138) 25 25456 66/25/36 69:25 (0.138) 25 25457 66/25/36 69:25 (0.138) 25 25	15 23199 66/19/16 (0:139 15 24159 66/19/16 (0:139 15 24159 66/19/16 (0:139 15 24159 66/19/16 (0:139 15 24159 66/19/16 (0:139 15 24159 66/19/16 (0:139 15 25423 66/25/16 (0:3) 15 25423 66/25/16 (0:3) 15 25423 66/25/16 (0:3) 15 25421 66/25/16 (0:3) 15 25421 66/25/16 (0:3) 16 25421 66/25/16 (0:2) 17 25421 66/25/16 (0:2) 18 25421 66/25/16 (0:2) 18 25421 66/25/16 (0:2) 19 25421 66/25/16 (0:2)		231	•	11:46	R 1.5	50		2.0	(4)	_
16 24159 65/29/36 69:00 (0.134 24159 65/29/36 69:00 (0.134 24159 65/19/36 69:00 (0.134 24159 66/19/36 61:22 25023 66/25/36 60:36 (0.136 25023 66/25/36 60:36 (0.136 25023 66/25/36 60:36 (0.136 25023 66/25/36 60:36 (0.136 25023 66/25/36 60:36 (0.136 25023 66/25/36 60:26 (0.136 25023 66/25/36 69:25 (0.136 25024 66/25/36 69:25 (0.136 25024 66/25/36 60:25 (0.136	16 24159 65/29/16 69:00 60:139 60:131 60:13		231.5		12:41	6.13	}	;	9.31	;	
3 24159 65/25/86 69:00 e/c15 28 24178 66/19/86 14:22 7.25 21 25423 66/25/86 64:36 C0.136 23 25423 66/25/86 64:36 C0.136 23 25441 66/25/86 64:36 C0.138 24 25423 66/25/86 69:25 25 25441 66/25/86 69:25 25 25441 66/25/86 69:25 26 25441 66/25/86 69:25 27 25646 66/25/86 69:25 28 25443 66/25/86 69:25 29 25444 66/25/86 69:37 20 25444 66/25/86 49:37 21 25485 66/25/86 49:37 22 25484 66/23/86 13:57 23 25485 66/23/86 13:57 24 25485 66/23/86 13:57 25 25485 66/23 66/23/86	3 24150 85/29/86 69:00 *C15 C4.8 ** 26 24178 66/19/86 14:22 7.25 G15 9.5 34.2 21 25023 66/25/86 68:36 C6.136 C15 C4.8 9.31 23 25041 66/27/86 18:28 C6.136 C15 C4.6 C9.31 25 25041 66/27/86 18:28 C6.136 C15 C4.6 C9.31 25 25041 66/27/86 18:28 C6.136 C15 C4.6 C9.31 26 25042 66/27/86 18:25 C6.139 C15 C4.6 C9.31 24 25046 66/27/86 69:52 C6.139 C15 C4.6 C9.31 26 25043 66/27/86 69:52 C6.139 C15 C4.6 C9.31 26 25043 66/23/86 14:27 C6.139 C15 C4.6 C9.31 26 25049 66/23/86 14:27 C6.139 C15 C4.6 C9.31 26 25049 66/23/86 14:27 C6.139 C15 C4.6 C9.31 26 25049 66/23/86 14:27	7	9	•	3:6	< €.138			(9.31		
24 24178 66/19/86 14:22 7.25 C15 59 24178 66/19/86 14:22 7.25 21 25923 66/25/86 68:36 C0.138 23 25624 66/25/86 68:36 C0.138 C15 25641 66/27/86 16:28 C0.138 C2 25641 66/27/86 19:25 C0.139 C4 25662 66/25/86 69:25 C0.139 C5 25683 66/25/86 69:25 C0.139 C5 25683 66/25/86 69:52 C0.139 C5 25683 66/25/86 19:52 C0.139 C6 25683 66/25/86 19:57 C0.139 C7 25685 66/25/86 19:57 C0.130	26 178 66/19/16 14:22 7.25 (15 9.5 34.2 29 24178 66/19/16 14:22 7.25 7.25 34.2 34.2 21 25922 66/25/16 68:36 (0.138) (15 (4.8 (9.31) 23 25641 66/27/16 18:28 (0.138) (15 (4.6 (4.6 (4.6 25 25641 66/27/16 18:28 (0.138) (15 (4.6 (4.6 (4.6 (4.6 25 2664 66/25/16 69:25 (0.138) (15 (4.6<	TABAC	3 241	•	3		•<15	9.5		7.17	~
21 254178 664/19/96 1432 7.25 (15 22) (24 23 64/25/96 68:36 (0.138 (15 23 24) 64/25/96 68:36 (0.138 (15 23 24) 64/25/96 68:36 (0.138 (15 23 24) 64/25/96 68:36 (0.138 (15 23 24) 64/25/96 69:25 (0.138 (15 24) 2666 66/25/96 69:25 (0.138 (15 24) 2666 66/25/96 69:25 (0.138 (15 24) 64/25/96 69:25 (0.138 (15 24) 64/25/96 69:25 (0.138 (15 24) 64/25/96 69:35 (0.138 (15 24) 64/25/96	21 254178 66/19/16 14:22 7.25 </td <td>7<u>4</u></td> <td>12</td> <th>•</th> <th>14:22</th> <th>;</th> <td>C15</td> <td>9.5</td> <td>;</td> <td>~</td> <td>•</td>	7 <u>4</u>	12	•	14:22	;	C15	9.5	;	~	•
23 2562 66/25/86 68:36 (0.138 (15.26 26.138	23 25023 04/25/96 08:36 (0.138 (15 (4.6 (9.3)) 23 25041 04/27/96 18:28 (0.138 (15 (4.6 (4.5)) 24 25042 04/27/96 18:28 (0.138 (15 (4.6 (4.5)) 24 25043 04/27/96 18:25 (0.138 (15 (4.6 (4.5)) 24 25043 04/27/96 09:25 (0.138 (15 (4.6 (4.3)) 25 25043 04/27/96 09:25 (0.138 (15 (4.6 (4.3)) 26 25043 04/27/96 18:27 (0.138 (15 (4.6 (4.3)) 27 25043 04/27/96 18:27 (0.138 (15 (4.6 (4.3)) 28 25043 04/27/96 18:27 (0.138 (15 (4.6 (4.3)) 29 25043 04/27/96 18:27 (0.138 (15 (4.6 (4.6 (4.3))) 20 25043 04/27/96 18:28 (0.138 (15 (4.6 (4.6 (4.6 (4.6 (4.6 (4.6 (4.6 (4.6		192	•	7:2	27.7	357	***	34.2	()	_
23 2641 66/27/96 18:28 (0.138 (15 26 26 18:28 (0.138 (15 26 26 26 26 26 26 26 26 26 26 26 26 26	23 264-1 66/72/76 19:28 (9.138 (15 (4.6 65 264-1 66/77/76 19:28 (9.138 (15 (4.6 (4.6 24 266-2 66/25/16 69:25 (9.139 (15 (4.6 (9.31 24 266-13 66/25/16 69:25 (9.139 (15 (4.6 (9.31 25 266-13 66/25/16 69:25 (9.139 (15 (4.6 (9.31 25 266-13 66/25/16 19:27 (9.139 (15 (4.6 (9.31 26 266-13 66/23/16 13:57 (9.139 (15 (4.6 (9.31 26 266-13 66/23/16 13:57 (1.130 (15 (4.6 (9.31 26 266-13 66/23/16 13:57 (1.130 (15 (4.6 (9.31 26 266-13 66/23/16 13:57 (1.130 (15 (4.6 (9.31 26 266-13 66/25/16 14:28 (1.30 (15 (4.6 (9.31 27 266-13 66/25/16 14:29 (1.20 (1.5 (4.6 (9.31 266-13 66/25/16 14:29			•	X X	CO. 138	}	;	69.33	;	
65 26441 06/27/06 10:28 (0.138 (15.28 26.68 06/25/06 09:25 (0.138 26.68 06/25/06 09:25 (0.138 26.68 06/25/06 09:25 (0.138 26.138 26/25/06 09:25 (0.138 26/25/06 09:25 26/138 26/25/06 09:25 (0.138 26/25/06 09:25 26/138 26/25/06 10:27 26/138 26/25/06 10:27 26/138 26/25/06 10:28 26/25/06/25/06 26/25/	65 24641 64/27/96 18:26 CB.138 CB.5<	75.	32.	•	16:28		(15	6. 6	ı	2	•
22 26455 66/75/76 69:25 (0.139 (15 26 26 16 26 26 26 26 26 26 26 26 26 26 26 26 26	22 26645 66/25/N6 69:25 C4.139 C4.6 C4.6 C4.6 C4.6 C4.6 C4.6 C4.6 C4.6 C4.6 C4.6 C4.3 C4.6 C4.3 C4.3 C4.3 C4.6 C4.3<	1021	5 24	2	10:28	6.138			49.5		
24 26466 86/25/76 89:25 (0.138 24 26473 86/25/76 89:25 (0.138 25 26473 86/25/76 89:52 (0.138 25 26473 86/25/76 89:52 (0.138 25 26473 86/25/76 89:52 26 26473 86/25/76 89:52 26 26473 86/25/76 89:57 27 27 27 27 27 27 27 27 27 27 27 27 27 2	24 26466 66/25/16 67:25 (6.138 (15 (4.1 (9.31 (2.1 (3.1 (3.1 (3.1 (3.1 (3.1 (3.1 (3.1 (3	74 74 74	3	•	2	;	(15	₹. 5		5.7	,
24 22673 66/28/786 69:52 (6.139 (15.25) 26683 66/28/786 69:52 (6.139 (15.25) 26683 66/28/786 14:52 (6.139 (15.25) 26884 66/28/786 13:57 (6.139 (15.25) 26785 66/28/786 13:57 (6.139 (15.25) 26885 66/28/786 13:57 (6.139 (15.25) 26885 66/28/786 13:28	66 26073 66/28/706 09:522 (0.139 (1.31) 25 26083 66/23/706 14:52 (0.130 (1.5 (4.0 (4.13)) 26 26083 66/23/706 13:57 (0.130 (1.5 (4.0 (4.3)) 27 26082 66/23/706 13:57 (0.130 (1.5 (4.0 (4.3)) 27 26082 66/28/706 14:20 (9.23)		*		52:53	8 .13	ž		6.5	[5	-
25 2602 06/23/76 H:52 (0,130 (15 27 26 H:52 (0,130 (15 27 26 H:52 27 26 H:52 (15 27 26 H:52 27 26 H:52 (15 27 26 H:52 27 26 H:50 (15 27 26 H)))))))	25 26063 66/23/96 14:52 (0.130 (4.0 (9.31 26083 66/23/96 13:57 (0.130 (4.0 (9.31 26084 66/23/96 13:57 (4.130 (4.0 (9.31 26085 66/23/96 13:57 (4.130 (4.0 (9.31 26085 66/26/96 14:28 (4.23) (4.0 (9.31 26085 66/26/96 14:28 (4.23)	3 2 2		•		B. (8)	;	;	18 93	•	
68 2683 86/23/86 14:52 (0.138 26 2688 86/23/86 13:57 (0.130 69 2689 66/23/86 13:57 (0.130 27 2685 66/26/86 14:28 (15	66 26083 66/22/86 14:52 (0.130 (9.31 26) 26084 66/23/86 13:57 (0.130 215 26084 66/23/86 13:57 (0.130 215 26085 66/26/86 14:28 26085 66/26/86 14:28 6.239 (15 (4.0 29.31 26085 66/26/86 14:28 26/26/86 14:28 26/26 14:28 26/26 14:28 26/26/86 14:28 26/26 14:28 26/26 14:28 26/26 14:28 26/26 14:28 26/26 14:28 26/26 14:28 26/26 14:28 26/26 14:28 26/26 14:28 26/26 14:28 26/26 14:28 26/26 14:28 26/26 14:28 26/26 14:28 26/26 14:28 26/26 14:28			•	23.25	}	CIS	6.0	;	4.7	-
26 2688 86/23/86 13:57 <15 69 2688 86/23/86 13:57 <0.130 27 26885 86/26/86 14:28 <15	26 26084 06/23/06 13:57 <0.13	_		-	14:52	G. 136	ı		(9.31		
69 26004 06/23/86 13:57 <0.130 <15	69 26004 06/23/86 13:57 <0.130 <9.31 <7.02 <7.31 <7.02 <7.31 <7.02 <7.02 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03 <7.03	•		•	13:57	,	ÇEŞ	6. 7	;	4.7	~
CIN 2002 14:50 14:50 (20 20 20 20 20 20 20 20 20 20 20 20 20 2	2/ Z0855 W6/Z6/W6 14:28	_		•	13:51	68 .138	;	;	6.9	;	,
	78 Z6885 86/26/86 14:28 6.239			•	2:X		<1 2	2.5	;	3	

(4.28 (4.29) 98561 98561 9871 9871 9871 9872 81512 48 872 867. 61.9 65.1 65.1 65.1 65.1 65.1 65.1 66.1 6.18 6.18 6.18 7.02 28.18 28.18 15.4 66.18 66.18 66.18 66.18 66.18 66.18 6.25 6.25 6.25 98564 .us. .us. .us. 9.142 9.142 1.34 6.12 6.13 SCDRIN SCDRIN UCAL EBEEERG BRANKSSS MESSI PER LEAL 2686 (
26127 (
26128 d
26128 d
26128 d
26128 d
26128 d
26128 d
26128 d
26128 d
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0
27040 0 我的《沈祖公丁的美兴习知道到现代——中野月月以刊月以770000051125173 1000 CODE:
1000 CODE:
10100 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CODE:
11000 CO \odot

(👣)

(4)

2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.3 2. 64/12/86 10:55 64/10/86 10:35 64/10/86 10:36 26122 26123 ORET CORE: THOO CODE: MANETER: (175: D. GRP. # 2 ・近日方フな名外の名別問題第21日中間付出なば付けっ 第200 日本のでは、100 日本のでは

③

۹

7735 800 UC/L

MASS BCP USA

E # 55

99133 8607 867

TONET CORE:
ETHOD CORE:
ARANETER:
BITS:
LD.CHP. B 5

4.5 2. 2.0

2.7

4.7 4.7

9.31

Ĭ **6**.5 42.8 ä 2

3

63.31

ŝ

935 (9.31 (9.31 9.31 (9.31

"加刊势化进行组体坚均组织并印统的

2.7

4.7 2.7

3 **6**3 \$3 **C15**

2. 9.5 9 Ÿ 8

9.31 (9.31

> 3 3 ×

33.9

2

5.7

2.7 4.7 9.7

(9.31

"玉田艺了农名外的安建加沙路——希斯

4.7

3 **3**

> **G.138** CB. 138 G. 138 **CB. 138 G.138 ₹1.9** <6.138 <8.130 =

 (\mathbf{z})

◉

(*****)

)

)

11

47.8

2

2

111 9.31

\$

2.7

C15

11:41 15:17 15:17 11:13 11:13 11:58 11:58

91/91/98

86/15/26

2 Ş <u>2</u>.

34.2

Ξ

6.31

2

17.9

454545

9.31

色》

(4)

ARANTER: MITS: MITS: OFGUZ 31 37353 06/12/96 11:32 OFGUZ 32 37353 06/12/96 11:32 OFGUZ 32 37354 06/11/96 10:06 OFGUZ 4 37354 06/11/96 10:06 OFGUZ 4 37354 06/11/96 10:06 144C 2 84807 06/04/96 14:13 144M 2 84807 06/04/96 08:24 154M 10 04838 06/04/96 08:24 154W 10 04838 06/04/96 08:24	71.00 10.00				ì	•	=	=	=	=	=	=	=	
SAMPLE 1D DATE 37353 66/12/86 37353 66/11/86 37354 66/11/86 37354 66/11/86 94887 66/84/86 94838 66/84/86 94838 66/94/86		BENZENE HENZENE	TOLUEN ET	FATLBENZ	H-XII.	11470	METHYLCL	LIDCE	LIBOLE	T120CE	CHCL3	ושמצו	TITCE	ca.
37353 06/12/96 37353 06/12/96 37354 06/11/86 94007 06/04/96 94007 06/04/96 94030 06/04/96		1/39 14/1		1/36	3	3	3	7	7	735	730	5	5	7
8 37353 66/12/86 32 37354 66/11/86 4 37354 66/11/86 2 84807 66/84/96 3 84832 66/84/86 18 64838 66/84/86 4 84833 66/64/66		C1.34	(1.21	C1.28	C1.35	4.47	6.8	C1.30	61.20	<17.26	87 TO	819°8)	C1.78	4.5
32 37354 96/11/86 4 37354 96/11/86 2 84997 96/94/86 3 84838 96/94/86 18 94838 96/94/86 4 84833 96/94/96		C1.8	8 .0	£.15	8 .15	42.BB	65.8		2.8	2.8	8.0	0.0	8 .5	8
4 37354 66/11/06 2 84807 66/84/36 2 84807 66/84/36 3 84830 66/84/36 4 84838 66/84/36		C1.34	(1.21	41.28	<4.35	4.47	5	<11.10	CI.28	C1.28	C. 48	<0.610	¢1.78	4.4
2 84807 86/84/86 2 84807 86/84/86 3 84632 86/84/86 4 84833 86/84/86		8.0	C. 13	8.15	2.0	87.2	65.8		22.88	4. 9	2.21	C1.E8	₩. C	42.11
2 94007 06/04/36 3 94630 06/04/36 10 04830 06/04/36 4 04833 06/04/36		3 .15	8 .15	₩.;>	8 .13	₹5.₩	65.00		2	7.38	61.86	£1.00	C1.80	42.18
3 94838 96/94/36 16 94838 96/94/36 4 94833 96/94/36		¥.1>	(1.21	61.28	(1.35	4.0	5.8	41.10	63.20	3.	47.13	49.610	C1.78	4.4
10 04830 06/04/06		3.31	8 -15	Ci.88	3 .5	87.	65.8		42.11	4.21	+.4	61.8	61.08	42.8
4 64833 96/64/96		2.%	(1.21	<1.2I	(1.35	4.4	S.8	CI.19	61.20	2.54	3.29	40.610	Ci.78	42.48
	-	36.6	8 .15	8 .15	8 .15	2.8	65.8		2.00	42.88	61.0	C. 88	87.13	42.8
13 64633 66/64/96		992	(1.23	<1.28	<1.35	4.47	65.88	41.19	67.13	C1.28	C1.48	019 0>	C1.78	4.4
4 06005 06/04/06	-	41.34	0.21	61.28	CL.35	47	4.5	CI.19	<1.20	<1.20	C1.48	619.8 >	C1.78	4.4
4 6005 04/04/04		17.1	3 .15	₽.₽	₽.5	6. 2	S.8		4 .5	4 .8	8.10	€	61.08	42.8
5 67861 65/29/86		K.15	41.21	CI.23	<1.35	4.47	8.8	<1. IO	C1.20	61.29	C1.48	49.618	¢1.78	Q.4
98/62/58 100/0 1	-	8 . i>	8 .15	₽.5	8 .5	6 7.8	3		8 .2	8 .8	99 .0	61.8	61.8	42.00
5 0900 5 06/05/16	-	8 .15	8 .15	8 .13	8.1 5	6.8	€.8		47.89	13.9	8 .15	£1.8	8 .0	4.5
15 PYBBS 06/05/34		£.15	<1.21	(1.29	41.35	4.47	0	<1.15	(1.20	7.29	97 .1>	48.618	CI.78	4.6
8 BOLLER 67/81/86		¥.5	12.15	<1.28	<1.35	42.47	65.88	C1.19	61.20	41.28	27.3	CB.618	61.78	(2.40
2 BOLLER 67/81/86	•	3 .15	8 .5	8 .0	£1.0	2.C	8		42.88	42.8	39.7	41.88	61.1	42.88
58/52/98 21818 1		₽	26 . D	€ 1.8	61.8	8 .2	8.8		6 2.8	3.87	2.16	30.1 2	61.00	62.88
98/52/90 21010 1	•	£.15	(1.21	61.28	41.35	4.47	65.88	61.19	1.75	3.62	1.95	<0.610	07.78	42.48
2 81914 87/91/96		185800	<u>.</u>	#	-	846	9		647	387	98 7	4186	981>	288
2 61014 67/01/96		212969	832	273	695	1740	S.8	¢1.19	(1.20	<1.28	C1.48	8.10	C1.78	42,48

(<u>*</u>)

SLIPLE LIST To.

2 37353 66/12/96 11:32 37353 66/12/96 11:32 37353 66/12/96 11:32 37353 66/11/96 10:36 94007 66/04/96 14:13 94007 66/04/96 14:13 94007 66/04/96 14:13 94007 66/04/96 11:37 6403 66/04/96 11:37 6405 66/04/96 11:37 6405 66/04/96 11:37 6405 66/04/96 11:25 97001 65/29/96 11:05 97001 65/29/96 11:05 97001 65/29/96 11:05 97001 65/29/96 11:05 97001 65/29/96 11:05 97001 65/29/96 11:05 97001 65/29/96 11:05 97001 65/29/96 11:05 97001 65/29/96 11:05 97001 66/29/96 11:05 97001 66/29/96 11:05 97001 66/29/96 11:05 97001 66/29/96 11:05 97001 66/29/96 11:05 97001 66/29/96 11:05

D-528

STORET CODE:
PARAMETER:
FLD.GRV. 8 S
OPCAZ 31
OPCAZ 32
OPCAZ 32
OPCAZ 4
TARK 2
TARK 3
TARK 4
TARK 4
TARK 4
TARK 5
TARK 6
TARK 7
TARK 18
TARK 7
TARK 18
TARK 6
TARK 18
TARK 7
TARK 18
TARK 7
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TARK 18
TA

(5)

(

(*****)

•

							SAMPLE LIST TAC	7 14C
			\$133	\$\$133	39 133	77985	77985	77985
			8	Ē	2	2	ï	햩
				980	5	0430	0.00 0.00	8
			UC/1	てつの	てかり	NE/I	73	1/33
2	PATE	I						
_	_	11:32	(6.138			(3.31		
_				C15	6.5		4.7	7
_	_	38:01	81.9			6.31		
_	-	38:01		415	8.8		(4.7	4.5
		14:13		C15	9.5		C4.7	42.
_		14:13	48.138					
_	_	M:24		CIS	67.6		4.7	47.0
_		17:1	CB. 138					
_	\$/X/\$	=		C15	8.5		(4.7	2.
_	\$4/W/\$6		6.13					
_	38/M/96		ce. 130			(9.31		
_	%/M/%	11:37		C15	6.2		4.7	2
_	94/12/54	11:26	CB. 130			(9.31		
	34/62/54			•<15	5.0		44.7	5 .
	\$6/55/36			C15	5		G.1	47-8
	A/88/M		G. 138					
_	3/19/2	19:35	0.332			(9.31		
_	98/18/21	69:32		(1)	4.4		(4.7	6 .5
	98/52/98			CIS	6.8		64.7	 7
	\$8/52/98		8.244			(9.31		
7	93/19/19	96:38		£	98 7>		72000	3
	707 107 20		97.1			47.5		

0017 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 CODE:
18.00 C

2 22 2 2

2.0 2.0

2.0 3.0 3.0

336

77985 8078 8674

D-529

4TH QUARTER FY 1986 TASK 4 GC/MS CONFIRMATION DATA

FIELD GROUP NUMBERS T4CC2. T4WC2. AND OPG3C ARE GC/MS RESULTS

	\$683	23	88	88	28.	3	z	8	5	norok Perok	50C116	88262 08	9n 71c19	, ,
	P 140	FC3	ALDRIN US/I	1500A) N	3004.4 NSN	DIELDRIN INCA	EMDR1N	1034	SQEO	1,4-0xAT	1,4-DITH	CPRS	8T 2	CPRS
DATE									\$		3	3	1/80	3
01621 09/18/80 14:22 01621 09/18/86 07:06		1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 7		C. 153	9. B9	25.65		3 5	8 5	# T	# T		4.2
98/18/40	17	<0.878	(8.078	99.5	CE. 053	6.86	<0.052	CO.0 3	2	2.5	# T	E		3
98/11/60	•	411.0	64.78	(5.98	64.78	<4.70	99.0	<10.0	3.6	6.18	411.0	<14.B		C17.
98/11/60		6.87	46.878	2	(8, 853	8.438	(8.15 2	CO. 878	1.8	Q.	<1.10	<1.38		4.2
64/i/19	•	-117	(4.78	3 .5	C4.78	C4.78	9.0	C10.0	3.6	97 99	411.8	C14.0		€.
					5	,	70.07			3 .7%	9	#. ;		2.2
/C:51 \$9/50/60 \$6878								410.0 410.0	3 5	9 (• 11.5 • 11.5	• 14.0 • 14.0		₹.
96/56/6	•						250.00	\\				\$ 7. 3 8		· :
y / 5 3 / 6 4				,						e 6		• : : • :		÷:
9/83/80 84/83/86					66. 43 45. 43	7	26.92							7.5
98/58/68		7				300				9 5		- C		
// Y					× 100	4.390	70.0			7.7		\$1.38 \$1.5		7.5
27/63/60			2	K-0		*	2.5		3 .5	6 . 10		41 4.8		÷.
02/53/60					6.538		6.52	48.788	# T	8.	91.0	# . ∪		2.5
69/63/B6	3		4.7	S. S.	C4.78	4.7	19°C	<10.0	4.33	10.1	67.7	414.8		€17.
91/2/10	<u> </u>	4.87	61.87	\$. . 6	<6.653	\$. B	(8.8 52	CB. B78	8 .13	42.8	<1.1 6	CI.38		\$.2
\$1/2/6		•	4.7	3 .5	64.78	4.78	£7.68	<18.0	9 .0	6 . 1 0	411.	C14.0		417 .
93/85/86	_	2.29	9 .5	<1.20	C1.86	<1.20	3.7	4.1	£.13	17.9	73.6	73.4		E,
98/28/69	_	4.11.	64.78	3 .69	2.7	4.18	69"	<18.0	8.0	66.18	55.0	115		€.
63/84/86		<0.678	<6.076	69.968	(0.153	69.00	<0.052	40.878	61.88	47.0	CI.18	E. 12		4.2
83/84/8¢		411. 6	£.79	6.3	2.7	64.78	99.0	<10.0	(3. 88	6 . 1 9	4.11.	6.4.0		<17.
98/11/69		<8.878	61.878	98.	<8.8 3	6.968	<0.8 52	<0.076	97 .1>	42.68	41.10	C. 30		64. 2
98/M/69			£.79	S. 9	4.78	64.78	3.6	4.00	₽;	66.10	6.11.	<14.8 		C1).
03-11 70/77/60 8/11/						C. 5.	77.7	4.E.		8. %	#: .T	13.5		55.
_				į,		707		(18.		2 5				ė (
98/22/64			2	, t		4. 336 4. 78	99 C			2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		F. 5		7.5
98/88/6		4.878	67.0	- E66	(A. 653	(B. 868	C 052	133			• 1			; ;
84/88/88	•	8 117	2 7	\$	27	27.70	19 D			4	• T : T			; ;
83/19/B6		<0.878	501	66.86	***	9 164	(4 852	6 8 7						3
98/61/60		403.0	6.2	6.5	C4. 78	22.33	19 D	C10.0		9	011	# 7 0		(17
88/22/68		<8.878	CB. B78	\$	<0.053	0.112	CB. M52	<0.07e	10	2.46	11.7	<1.30		3
26815 89/22/86 89:18	917	C11.	64.70	3. 50	4.7	¢4.78	99.0	C18.9	3.8	€6.18	411.0	C14.		¢17.
_	3 136	<8.878	(8.87	49. B	CB. 053	6.163	<8.8 52	<6.878	<1.68	42.88	5.27	C1.30		4.2
26817 89/22/86 18:53		€.1.5	€7.59	65.9	64.70	4.7	9.0	(IB.B	3.6	61.9	411.8	<14.6		417.
98/52/60	926	41.878	CB. 878	\$9.8¢	ce. 853	9.201	CB. BS 2	<6.878	41.88	62.8	2.93	CI.38		<4.2
94/23/86				,					3.8					
69/23/16		2 . 7	3 .7	\$ 3. 5	6.538	99.8	6.528	6.788	•	8.46	54.5	48.8		45 .
23/29	_	41.	2.2	S. 2	2.2	64.78	3.0	418.0	42.3	6. 18	62.1	4.4.		417.
91/62/6	_	4.878		2	68.833	2.42	. W	1.14	2.1	4.42	34.3	#.T		2.5
91/22/5		4.ID	2.7	2.0	2.7	4.78	9.0		3.8	6 . 10	+	(14.		. .
98/61/60	7	4. 1.	C1.48	99.8	\$. \$	2.24	1.1	4	2 . 15	11.4	31.7	366		3
98/61/64		411.	5 .5	8. 2.	4.78	7.8	3.0	<118.0	8	13.6	35.3	2		<u>.</u>
26142 69/24/86 87 :48		64.878	2. .2	CB. 063	(8.853	2.52	(0.528	6.17	2. C	42.88	CI.18	€. 13		4.2
26142 89/24/86 87 :48	·	411.6	4.78	8.8	4.7	4.7	99.D	C18.8	3 .0	66.10	4.11.	C14.0		(17.
27816 89/26/86 86:22	2 14	40.678	(8.878	49.8 %	<8.8 53	8.246	<0.8 52	61.878	41.88	G.88	CI.18	E. D		64.2
27816 89/26/86 88:22		411.	4.78	CS.98	4.7	2 7	67.6e	4.01	3.E	6 6.18	<11.0	C14.8		2.
3-00 yo/61/00 2561C		46.4	454	***	-									
•	3		474.E)	. .	(8.8 3	9	CB. 8 25	<8.878	<1.60	3	C1.18	<1.38		Ž.

## 9FKZE SAMPLE 1D DATE TIME ## 9FKZE ## 9F	#ETHOO CODE:		ž	9	-	87	2	3	y.k	œ,	α >	a ×	d.	,	>	>
			#18K	9E KZE NE	TOLUEN ET	HYLBENZ	H-XYL	CEP-XYL	RETHYLCL	1 IDCE	110CLE	1120CE	CHCL3	120C.E	111700	CC.
			1/3	7/36	NG/L	1 /9n	79n	7/3n	7/9n	7/9n	1/9n	7/3n	7/9 n	7/90	7/3n	7/2n
March Marc	_	99/18/86	(12.9	41.34	CI.21	41.28	<1.35	4.2	65.00	41.15	<1.28	<1.28	C. 14	<0.618	€47 8	(2.48
		98/91/60	42.0	(1.88	₽.₽	41.1	41.68	3 .5	(5.98		C2.86	2.8	61.0	<1.00	<1.00	(2.09
Color Colo		98/81/66	<12.9	¥.1	<1.21	<1.28	<1.35	47.47	65.18	41.19	41.20	<1.2 6	41.1 5	<8.610	€1.7	C.48
999786 1557 0229 0239 0239 0239 0239 0239 0239 0239		99/21/60	3.5	2 7	3 .7.7	3	3	3.5	3 3 3 3 3 3 3 3 3 3			8 7	3	2	3 ;	2.0
999586 1559		98/11/60	2.		(1.00	\$ 3		8	9		2.87	2.2	36.8	910.0		20
9998786 1535		98/50/60	(12.9	C1.34	(1.21	<1.28	C.35	47	(5.11	CI.15	4.29	<1.20	13.3	<0.610	2.2	0
12,000 10,000 1		98/88/6	4 .0	CI.03	41.8	C1.00	G.8	42.0	45.88		19.4	(2.00	14.6	<1.00	Q.18	(2.88
Mario Mari		98/50/60	<12.9	CI.34	<1.21 	<1.28	4.35	4.47	62.88	41.18	6.74	<1.28	162	619.8	CI.78	13.5
March Marc		99/92/86	42.88	8 .0	61.69	41.88	€ 1.8	47.8	42.88			42.88	991<	<1.88	<i.10< td=""><td>16.7</td></i.10<>	16.7
9/9/15/66 (12.5) CL26	_	98/83/86	(12.9	₩. 	<1.21	Ç: 78	¢1.35	4.7	65.88	.	<1.20 3.20	<1.26 2.12	- :	6.610 	€ 	47.79
2315 97/25/16 12-10 (2.2) (2.1	_	69/63/80	35	7	41.80 22.22			3 S	7.7	:	2		60.6	99.TV	8 . 13	2 .6
2005 89/40/46 22-11 (12.2 2.2 2.4 C.40 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.1		04/83/86	(C) (B)		17:17	8 2	2 E		7	•	7.5	0.5		10.016 1.018	7 5	3 5
2005 99/75/86 65:24		98/69/60	(12.9	22.0	6.40	2.85	<1.35	47.47	8.5	<1.19	<1.28	\$7.15 \$1.28	1420	<8.618 <8.618	2.0	7
2115 99/25/86 15-24	_	98/89/69	6.22	23.7	Ci.80	41.88	41.00	2.25	S.68	•	2.8	42.88	3860	43.1	\$1.E	2.8
23139 96/28/6 95-37 C2.89 <td>_</td> <td>98/52/60</td> <td>C12.9</td> <td>CI.34</td> <td>(1.21</td> <td><1.28</td> <td>CI.35</td> <td>(2.47</td> <td>65.00</td> <td><1.19</td> <td><1.28</td> <td>C1.20</td> <td>1.71</td> <td><0.610</td> <td><1.76</td> <td>42.48</td>	_	98/52/60	C12.9	CI.34	(1.21	<1.28	CI.35	(2.47	65.00	<1.19	<1.28	C1.20	1.71	<0.610	<1.76	42.48
2313 PANZAR B PS-T C 2-18 CL 36 C 2-18 CL 36 C 2-18 CL 36 C 2-18 CL 36 C 2-18 CL 36 C 2-18 CL 36 C 2-18 CL 36 C 2-18 CL 36 C 2-18 CL 36 C 2-18 CL 37 C 2-18 CL 38 C 2-18 CL 38 C 2-18 CL 38 C 2-18 CL 38 C 2-18 CL 38 C 2-18 CL 38 C 2-18 CL 38 C 2-18 CL 38 C 2-18 CL 38 C 2-18 CL 38 C 2-18 CL 38 C 2-18 CL 38 C 2-18 CL 38 C 2-18 CL 38 C 2-18	_	98/52/60	42.88	41.88	<1.19	41.8	<1.86	42.88	48.88		62.8	42.68	2.24	80 .1>	98.15	(2. 86
2318 PV/PV/R6 Ps; 7 (2.29	_	98/85/89	<12.9	32.8	468	31.28	<1.35	42.43	128	<1.19	<1.28	CI.20	26988	819.6 >	C1.78	42.40
2318 29/4/66 14:17 C.22	ω.	98/85/86	42.88	31.5	8 7	61.86	# T	2.82	150		3.35	47.00	>16600	122	(1.88	<2.88
2318 99/2/66 14:59		98/14/63	(12.9	£ :	41.21	<1.28	41.35	42.47	9 .5	41.18	<1.28	<1.20	4.15	69.618	2.2	4 .5
2418 99/27/66 14:59 C2.09 C1.09 C1.09 C1.09 C1.09 C2.09 C2.09 C1.00 C1.09 C1.00 C1.09 C1.00 C1.0		98/10/60		86.13 6.13		3 (9 .5	;	2.E	2 .23		88 .17	98 .1>	\$2. 88
2418 99/22/86 81:59 (12.5) (1.34) (1.21) (1.28) (1.35) (2.49) (2.69) (1.10) (1.29) (1.		09/60/60	6.31	* :	17:17	87:17		3 5			7 .5	2.5	7 5	(8.618	2.7	2.4
24178 89/22/86 H1:56 C2.00 1,114 C1.00 C1.00 C2.00 C2.00 C2.00 C1.00 C1.00 C2.00 </td <td></td> <td>98/25/68</td> <td>K12.9</td> <td></td> <td>(1.2)</td> <td>(1.28</td> <td>35</td> <td>C7.47</td> <td>\$. S</td> <td>C1.10</td> <td>C. 28</td> <td>2. 2. S</td> <td>121</td> <td>99.17</td> <td>9 7</td> <td>, c</td>		98/25/68	K12.9		(1.2)	(1.28	35	C7.47	\$. S	C1.10	C. 28	2. 2. S	121	99.17	9 7	, c
24155 99/23/66 86:56 C12.9 C12.9 C1.24 </td <td></td> <td>98/22/60</td> <td>2.88</td> <td>1.14</td> <td>41.00</td> <td><1.15</td> <td>CI.</td> <td>2.8</td> <td><5.86</td> <td></td> <td>2.0</td> <td>42.88</td> <td>163</td> <td>1.39</td> <td>\$6.1></td> <td>2.73</td>		98/22/60	2.88	1.14	41.00	<1.15	CI.	2.8	<5.86		2.0	42.88	163	1.39	\$6.1>	2.73
2916 99/85/86 11:96		98/53/86	(12.9	¢1.34	(1.21	<1.28	<1.35	42.47	65.08	41.19	CI.20	<1.20	67.15	<0.619	41.78	42.48
99/95/56 11:66 C42.9 C42.9 C4.16 C4.26 C4.16 C4.26 C4.16 C4.26 C4.16 C4.26 C4.16 C4.26 C4.16 C4.26 C4.16 C4.26 C4.16 C4.26 C4.16 C4.26 C4.16 C4.26		69/23/86	47.88	¢1.10	<1.80	88 -1>	<1.08	42.88	<5.88		42.88	47.8	41.0	<1.00	€1.8¢	<2.88
9/19/286 6134 CL.19 CL.29		98/92/60	6.215	15.4	41.21	<1.28	CL.35	42.47	S . S	41.10	<1.28	<1.20	94. 15	68.618	61.7 8	4.4
99/19/26 69:14		98/59/60	(2. B	5.62	8 .7	2 :	8	3 :	5 9	:	2 :	<2. 88	8 :	99.1>	61.00 21.00	42.88
26615 99/22/86 99:19	_	20/61/60	(12.9	# #	17:17	3.5	G. 5	;	3 5	1 :5	9. (7.15		919.93	7.7	7.5
26015 99/22/86 19:53 C1.00 C1.00 C1.00 C2.00 C2.00 C1.00 </td <td></td> <td>69/22/86</td> <td><12.9</td> <td>₹. ;;;;</td> <td>0.21</td> <td>47.78 41.28</td> <td>. T</td> <td>\$ CF. C</td> <td>5 5</td> <td>CI.18</td> <td>2.15</td> <td>2.2</td> <td>8</td> <td>(B.618</td> <td>2. 13 2. 13</td> <td>45.48 42.48</td>		69/22/86	<12.9	₹. ;;;;	0.21	47.78 41.28	. T	\$ CF. C	5 5	CI.18	2 .15	2.2	8	(B.618	2. 13 2. 13	45.48 42.48
26417 99/22/86 18-53 C12-9 C1.24 C1.24 C1.24 C1.24 C1.24 C1.24 C1.24 C1.24 C1.27 C1.29 C1.29 C1.34 C1.24 C1.26 C1.29 C1.29 C1.34 C1.24 C1.24 C1.29 C1.34 </td <td>٠.</td> <td>89/25/88</td> <td>42.00</td> <td>€1.15</td> <td>41.88</td> <td>₽.5</td> <td>C1.00</td> <td>42.08</td> <td><5.00</td> <td></td> <td>42.00</td> <td>62.88</td> <td><1.08</td> <td><1.00</td> <td>C1.88</td> <td>42.88</td>	٠.	89/25/88	42.00	€1.15	41.88	₽.5	C1.00	42.08	<5.00		42.00	62.88	<1.08	<1.00	C1.88	42.88
2641 by/23/86 l8:45 C2.00 C1.00 <td>٠.</td> <td>98/22/60</td> <td>¢12.9</td> <td>CI.34</td> <td>(1.21</td> <td><1.28</td> <td>G.35</td> <td>42.47</td> <td><5.66</td> <td>CI.18</td> <td>(1.20</td> <td><1.20</td> <td><1.48</td> <td><0.610</td> <td>€1.78</td> <td>43.48</td>	٠.	98/22/60	¢12.9	CI.34	(1.21	<1.28	G.35	42.47	<5.66	CI.18	(1.20	<1.20	<1.48	<0.610	€1.7 8	43.48
26620 99/23/86 68:45 C12.9 C1.24 C1.26 C1.16 C1.26 C1.16 C1.26 C1.16 C1.26 C1.16 C1.26 C1.16 C1.26 C1.16 C1.26 C1.16 C1.26 C1.16 C1.26 C1.16 C1.26 C1.16 C1.26 C1.16 C1.26 </td <td>_</td> <td>98/22/60</td> <td>42</td> <td>₽.:0</td> <td>3.5</td> <td>₩. 12</td> <td>4.18</td> <td>47.0</td> <td>42.8</td> <td></td> <td>42.88</td> <td>47.</td> <td>41.08</td> <td>8</td> <td>3</td> <td>42.88</td>	_	98/22/60	42	₽.:0	3 .5	₩. 12	4.18	47.0	42.8		42.88	4 7.	41. 0 8	8	3	42.88
26822 97/29/86 18:19 CLUB<		98/53/89	(12.9	#. : :	(1.21 (1.21	<1.28 	Ç.33	2.47	8 .8	₽₽	C1.28	C.28	9 .5	(B.619	₹.5	27.7
26041 97/23/86 0.11 0.12		98/23/68	25.	V 87	729	2 22		, ,		• 60	36	7	0000	99.17	9.7	7
26127 99/29/86 18:20 (12.9 (1.28 (1.36 (2.47 (5.86 (1.18 (1.20 (1.78 </td <td></td> <td>98/57/60</td> <td>25.</td> <td>27.5</td> <td>(25.8</td> <td>5</td> <td>3 5</td> <td></td> <td>405</td> <td></td> <td></td> <td></td> <td>(5 gr</td> <td>650</td> <td>65 m</td> <td></td>		98/57/60	25.	27.5	(25.8	5	3 5		405				(5 gr	650	65 m	
26127 99/29/66 18:28 C.2.68 C1.89 C1.89 C2.89 C2.89 C1.89<		98/52/60	<12.9	7.7	41.21	<1.28	<1.35	0.47	65.0	<11.18	<11.28	<1.28	<1.48 <1.48	<8.618	<1.76	42.48
26133 09/19/86 12:07 C326 C32 195 C180 C180 C1.10 C6.00 C6.00 C60 C60 C61.00 C170 C170 26132 09/19/86 12:07 C260 C30 C30 C20 C20 C20 C20 C1.00 <t< td=""><td></td><td>69/29/8¢</td><td>42.88</td><td>88 1></td><td><1.15</td><td>\$1.E</td><td>10. IV</td><td><2.98</td><td>(5.98</td><td></td><td><2.86</td><td>42.88</td><td>€</td><td>0 T</td><td><13.80</td><td>42.86</td></t<>		69/29/8¢	42.88	88 1>	<1.15	\$1.E	10. IV	<2.98	(5.98		<2.86	42.88	€	0 T	<13.80	42.86
26132 69/19/86 12:07	_	98/61/60	(323	295	195	8.41	8.52	55.6	₹52.8	41.10	66.88	889>	48666	61.e	6178	<248
26142 69/24/86 87:48 C12.9 C1.34 C1.21 C1.28 C1.35 C2.47 C5.89 C1.10 C1.20 C1.40 C6.61 C1.79 26142 89/24/86 87:48 C2.80 C1.30	_	98/61/60	<286	536	199	<188	.	4788	814		4238	588	68366	<186	991>	<208
26i42 89/24/66 67:48		68/54/86	<12.9	CL.34	(1.21	<1.28	<1.35	42.47	68.69	C1.10	41.28	<1.28	<1.48	6.61 6	41.78	47.48
89/26/86 88:22 (12.9 (1.34 (1.21 (1.28 (1.35 (2.47 (5.80 (1.18 (1.20 (1.20 (1.48 (0.610 (1.70 (1		89/24/86	4 2. 88	€1.1¢	₽.₽	\$1.1 \$	C1.8	42.88	68.69		42.88	42.88	<1.80	<1.88	C1.88	42.88
77816 89/26/86 88:22 <2.68 <1.88 <1.89 <1.03 <2.68 <5.80 <2.89 <2.89 <1.29 <1.99 <1.31 <1.21 <1.28 <1.35 <2.47 <5.80 <1.18 <1.28 <1.26 <1.28 <1.78		98/92/60	<12.9	45.0	(1.21	<1.28	<1.35	47.47	<5.88	CI.18	¢1.20	<1.28	<17.19	619.6>	C1.78	48
27853 89/19/86 88:52 (12.9 (1.34 (1.21 (1.28 (1.35 (2.47 (5.88 (1.18 (1.28 (1.28 (1.48 (8.618 (1.78	_	98/97/6	<2.88	<1.15	C1.80	€1. 88	CI.13	42.68	€2.88	:	42.88	(2.8#	88. T>	41.80	<1.08	<2.88
		98/61/60	<12.9	41 "3 4	(1.21	<1.28	<1.35	4.0	68.5>	€ 1.1 9	<1.28	<1.26	<1.48	<8.618 <	. 78 . 78	C2.48

(4

	:300E		34511	34475	3438]
METHOD CO	CODE:		78	8	A.
PARAMETER	••		IIZICE	מַרְבָּנָ	
FLE. GR	•	SAMPLE ID DATE TIME			
72	*	121 09/18/86	₽.₽	€1.30	6 .58
14002	_	69/18/86 87	<i.1></i.1>	61.8	2 .
1402	9	_	3 .0	<1.38	CB. 588
14662	~	11 98/81/60	8 .13	₽.₽	5 .
1402	9	= :			68.58
252	* :	11 98/11/69	3 3	3 7	2 0
7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<u>-</u>	2 5	# # 5 5	8 3	6.0
1 1 1 1	. "			. ~	55
14002	9	35 89/85/86 15	61.0	3.59	4.0
1402	58	59 89/83/86 18	8 .13	€ 1.3	68.588
14662	_	2829 69/63/86 18	\$7.0°	₽.₽	47.
1402	€ '	2060 09/03/86 08	50.15	₩.:	8 . 58
1462	• ;	80 98/89/60		<u>.</u>	2.5
֓֞֝֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	÷ °	38/63/63/69 3865 89/83/96		7.7	
1402	E	3125 89/25/86 15		. T	28
14602	=	3125 09/25/86 15	8 . E>	₽.5	2
14C2	37	3179 89/82/86 89	<i.e< th=""><th>67.7</th><th>CB. 58</th></i.e<>	67.7	CB. 58
14002	77	3179 09/02/86	61.8	59.	₩.
1402	ጽ	97/84/86 10	8 .15	≅ .⊃	8 5.
14002	= :	23182 09/04/86 10:12	1.06	2 :	3
D 1407	= :	88/88/ 14 88/88/ 14		# .	BC .
5	12	89/84/86 14	3 (5 ,
33	7	41/8 89/22/86 14 174 60/22/86 14		7.84	. 7
35	2	1 09/77/6		33.5	
1400	; 2			•	0
140	3	11 98/58/60 9105	8.0		Ce. 58
14002	2	98/50/68 9105	41.00		₩.2
14C2	3	98/61/60	8 .0	<1.3	CB. 588
14002	7	80 98/61/60	8. 15	2 :	8 .0
2	9	98/22/68			
201	3 5	24413 69/22/86 69:10			7
14002	3 2	10/22/86	8.17		8
1402	E	80 93/53/60	\$6.T>		6.588
14002	74	98/52/64	€1.B	₩.	8 .8
14C2	\$	84/53/86 87	478.	479	411.6
1402	K 2 F	6841 89/23/86 87	8 8	8	
7407	2 ;	1 99/67/60		9. ;	
1402 1402	2 %	26127 B9/29/W6 18:28 26133 B9/19/96 12:87	3 3	3 S	3.50
146	; ;	C1 70/01/00	1		
27	; ×	19,74/36 17	\$, E	58
1460	78	84/24/86 87	86. [5	₩	2
1402	122	816 89/26/86 88	41.00	¢1.38	CB. 588
14002	\$	80 98/92/60	€i.#		2 .4
1402	₩	27853 69/19/86 08:52	<1.00	€1.3	6.588
14002	2	80 99/61/60 1	3 , 5	2	8 .

77945 811 0CP0	J-\-	1	6 .5	43.0		5.	67.0		42.8	• 62		42.0	688	•	4.6	į	Ę	€2.0	•	į	4.7	• 0	}	47.0			4.9	47.6	•	47.0	41	•	47.1	858		43.1	47.0	1	€2.
77965 BBB DCPD	1	;	7.5	4.7	;	-	(4.7		4.7	7 77	;	C4.7	8	•	4.7	•		(4.7		į	2 6	7 25	}	4.7	(4.7	;	(4.7	(4.7			E	4	. .	178		c4.7	4.7	;	C4.7
BCP0	1/96	(9.31	6	;	(9.31		18.5	(9.3)	;	(9.3)	(9.31	į	4	(9.31		929	(9.31		(9.31	31.9	;	(9.31	(9.31	;	(9.31	(9.31	5	16.65	(9.31	23.5		(9.31	7.4	2	69.3 1			(9.31	
99133 R8 DBCP	7/40	;	3	6.4	;	-	4.0		64.8	•	•	G.		•	4.8	;	• •	6.6	• 7		5.1	- 77		6. 5	6.0	!	6.	4.1	;	- -	8 7	;	5	**		- .	4.9	. ;	6.
99 133 98CP 886 98CP	3	;	9	CIS	į	9	CE		<15	512	}	CIS	415	}	CIS	11.	9	CIS	317	;	CES	513	}	(1 2	CIS	;	CIS	<is< th=""><th></th><th></th><th>CIS</th><th>•</th><th>\$</th><th>*</th><th></th><th>CIS</th><th><115</th><th></th><th><112</th></is<>			CIS	•	\$	*		CIS	<115		<112
95 133 98 98 133	3	CB. 130	CB, 138		CB. 130	•61	130	ce. 130	:	e. 143	CB. 138	;		<6.138		1.82	<0.13€		4 . 13 8	5.58	;	4. 136	<0.130	;	6. 138	(0.130	6 21 6 3		ce. 130	<6,138		6. 136	. X	•	(C. 130	130		CB. 138	
	TIRE	-,	8 8	6::1	91:11	9::1	13:57	15:00	15:00	18:24	50:00	50:05	16:31	15:24	15:24	75:57	10:12	10:12	14:07	14:58	14:50		98:11	11:06		91:6	69:18	10:53	##:45	7:10	87:18	10:20	12-67	12:07	87:48	17:48 27:48	18:22	38:52	98 :52
	DATE	98/18/69	63/13/60 63/13/60	94/18/46	98/11/60	98/11/6	91/59/60	99/53/68	98/58/68	08/88/60 08/83/86	98/88/69	98/69/60	98/89/60	98/52/60	91/52/66	78/82/86	94/14/6	98/16/64	98/H/86	9/27/6	98/22/60	69/53/69	98/59/60	98/58/60	98/13/69	69/27/69	69/22/86 69/22/86	92/22/60	98/52/60	98/57/60	98/53/86	98/52/60	98/62/68	92/67/60	98/57/58	98/54/68	96/92/60	99/61/60	98/61/60
	SAFFILE 10	0.1021	1201	63023	82828	2828	F 820	12835	55838	22858	5505	1982Z	25 ME 2	23125	23125	23179	23162	23182	23163	24176	24178	24185	25016	25016	11 9 5%	26915	26815	26017	26828	268.2	26841	26127	75192	26133	26142	26142	27815	27053	27053
###	*	•	- 9	~	<u>3</u>	+ <u>6</u>	ë v	2	۶ م	9 ^	80	₩ ;	≓ °	` E	=	۲ :	3 %	=	=	3	= :	;; 2	3	R :	3 2	: 3	ខន	3 2	g :	5 53	23	2	8 =	: 12	2	% ž	1 83	= :	*
STORET CODE: NETHOD CODE: PARAMETER: UNITS:	F.D. CR.	T4C2	3 2	14002	140	3 5	74002	14C2	14002	145.5	1402	1400	14007	1422	14002	<u> </u>	<u> </u>	J 4602	<u> </u>	1 C	14002	1402	1402	14002	1402	1402	140 140 140	7602	1402		14002	140	200	1 25	1402	14602	14002	1402	7502

③

①

		84 84	3	87	2	2	8	*	%	8 2	46	B.	82	60	8 2
Color Colo		X 700	BENZENE UGA	TOLUEN ETH	TALBENZ UG/1	#-XXI	CRP-XYL	METHYLCL UGA	3011	ן זסכרנ וופין	T120CE		120C.f	111706	* 750 100
1, 10, 10, 10, 10, 10, 10, 10, 10, 10,		į					3	ì	ì			•		1	
Color Colo		;	3.68	4.21	<1.28	<1.35	4.47	65.0	<1.19	C1.20	C1.28	C1.48	<0.61€	CI.70	47.7
Color Colo		5 .5	3 7	3 7	8 7 7	2	8.0	47.3	:	3 5	8 7	8 .5	##.T>	2	2 2 3 3
CLAN CL22 CL28		62.88	8.7	41.00		2	6.8	S. 50	•	2	6				
C.3. C.3. <td< td=""><td></td><th></th><td>C1.34</td><td>(1.21</td><td><1.28</td><td><1.35</td><td>14.0</td><td>65.88</td><td>¢1.10</td><td><1.28</td><td>¢1.20</td><td>1.78</td><td>CB.618</td><td>€.7</td><td>4.7</td></td<>			C1.34	(1.21	<1.28	<1.35	14.0	65.88	¢1.10	<1.28	¢1.20	1.78	CB.618	€.7	4.7
Class Clas		42.88	C1.88	21.1 2	C1.88	<0.15	67.8	(5.86		6.8	43.11	2.53	CI.88	41.88	62.00
Class Clas			41.34	(1.21	<1.28	<1.35	17.23	68.89	€1.19	41.2	41.20	<1.48	619.6	41.78	(2.48
Color Colo		42.8	3 .0	9 (7	3 ;	3 :	2 :	£.	;	62.88	42.88	1.91	98 7	3 :	3 .0
Color Colo		(12.9	#. :	G.21	87 (3	(35	Q. 1	3 (3	2	Z. D.	<0.20 0.20	24.6	619 0 >	CI.78	4.7
Color Colo	- '	2.5	2 7	# F	# R	2	3 .0	8 9	91 17	3 5	8 .5	33.6		7	2 :
Class Clas		67.0		17:17	8 2					2.0	7:0	7 5	20.01 0.01		200
C.1.8 C.1.8 C.1.8 C.1.9 <th< td=""><td>•</td><th>(12.9</th><td>¥.</td><td>2.2</td><td>(1.28</td><td>C.35</td><td>4.47</td><td>9</td><td>¢1.10</td><td>¢1.28</td><td>2.12 2.12</td><td>7.83</td><td>(B.616</td><td>2.5</td><td>7</td></th<>	•	(12.9	¥.	2.2	(1.28	C.35	4.47	9	¢1.10	¢1.28	2.12 2.12	7.83	(B.616	2.5	7
Q134 QL22 QL23 QL23 QL24 QL36 <th< td=""><td></td><th>47.M</th><td>***</td><td>61.0</td><td>₩.₽</td><td>61.8</td><td>6.8</td><td>65.88</td><td></td><td>42.00</td><td>(2.80</td><td>9.40</td><td>41.00</td><td>C. 1</td><td>42.00</td></th<>		47.M	***	61.0	₩.₽	61.8	6.8	65.88		42.00	(2.80	9.40	41.00	C. 1	42.00
Q.18 Q.18 <th< td=""><td>_</td><th>(12.9</th><td>41.34</td><td>(1.21</td><td><1.28</td><td><1.35</td><td>4.47</td><td>65.88</td><td>C. 10</td><td>(1.28</td><td>C1.28</td><td>41.48</td><td>CB.618</td><td>C#.50</td><td>19.6></td></th<>	_	(12.9	41.34	(1.21	<1.28	<1.35	4.47	65.88	C. 10	(1.28	C1.28	41.48	CB.618	C#.50	19 .6>
Color Colo		Ø.5	3 . €	8.T	€1. 86	₽.	4.	3 .€		Q.88	42.00	41.0	41.8	8 .0	4.5
Color Colo		(12.9	41.34	78.55	<1.28	<1.35	47	4 2.	€1.1¢	<1.2	<1.28	4.92	9.776	61.79	47.7
Colored Colo		8.5	2. 2.	3 .0	3 ;	₩.	2.5	5 .8	;	3 :	2.10	3 .	1	3 :	42.0
Color Colo	•	6.219		17.15	C1.28	÷.			C1.15	C1.28	CI.29	63.9	(3.618 (1.018	₹	2.5
Client C		3.5 5.5	1.13	2	3 5	B. ;	7		=	; ;		7.5		7	7.7
Climate Clim			3			2.5		5		7-0	2	3.43	15.6	2	
Class Clas		<12.9	C1.34	(1.21)	¢1.28	<1.35	2.47	8.8	€1.15	¢1.28	¢1.2	Q. 40	48.618	41.7	47.48
Class Clas		42.8	41.08	21.86	41.0	₽.₽	42.88	65.88		42.00	42.86	<11.88	61.10	11.15	₹5.00
Climan C		<12.9	# T	41.21	¢1.28	C.35	G.47	3 (8	€1.1 6	C1.28	C1.28	₽ : :	69.618	¢1.7	47.4
Climate Clim		3 .			2 (3 ;	2.5		:	3 .23	2.5	99.12			3 5
Q1.34 Q1.21 Q1.22 Q1.34 G1.36 Q1.36 <th< td=""><td></td><th>(1Z.9</th><td>* 2</td><td>7. 2</td><td></td><td>8 2</td><td>200</td><td>3 S</td><td>4.15</td><td>7. 5</td><td>7-7</td><td>2 2</td><td>4.61/ CE CE</td><td>7.5</td><td># # C</td></th<>		(1Z.9	* 2	7. 2		8 2	200	3 S	4.15	7. 5	7-7	2 2	4.61/ CE CE	7.5	# # C
CLID CLID		<12.9	÷	C1.21	<1.28	(1.35	4.47	(5.8	€1.1\$	<1.2 6	<1.20	64.D	<0.618	C. 13	47.0
Q1.34 Q1.21 Q1.22 Q1.24 Q1.26 <th< td=""><td></td><th>47.8</th><td>CI.10</td><td>61.88</td><td>₽.₽</td><td>11.</td><td>42.88</td><td>65.88</td><td></td><td>42.00</td><td>42.88</td><td>1.87</td><td>41.11</td><td>8.15</td><td>42.88</td></th<>		47.8	CI.10	61.88	₽.₽	11.	42.88	65.88		42.00	42.88	1.87	41.11	8 .15	42.88
Client Client		<12.9	41.34	C1.21	<1.28	C .3	4.47	65.88	CI.18	(1.28	<11.28	<1.48	6.618	C1.76	46.75
Class Clas		1	2 7 7	# T	3 8	2 ;	2 5	5 .5	•	2 ;	# C :	8 :	***	3	2.2
Q.34 Q.21 Q.28 Q.24 G.10 Q.20 <th< td=""><td></td><th>(17.)</th><td>ξ.</td><td>17.17</td><td>2.1</td><td>3 =</td><td>; =</td><td></td><td></td><td>1</td><td>7-17</td><td>V.</td><td>10.5</td><td>* *</td><td>a v</td></th<>		(17.)	ξ. 	17.17	2.1	3 =	; =			1	7-17	V.	10.5	* *	a v
Class Clas		<12.9	C1.34	C1.21	C1.28	Q.35	47.7	65.83	¢1.19	<1.28	<1.29	C1.48	€.610	<1.7B	45.48
CL.34 CL.21 CL.28 CL.35 C2.47 C5.00 CL.10 CL.20 CL.40 CL.61 CL.70 CL.30 CL.		MĀ	¥¥	MA	¥	¥	1	¥¥		¥	KX	Η̈́Α	M.A.	KA	¥
CLOR CLOR		(12.9	<1.3 4	<1.21	<1.28	<1.35	C.47	68.88	61.18	<1.2 6	<1.20	C1.40	619°62	41.79	47.7
C1.34 C1.21 C1.28 C1.35 C2.47 C5.06 C1.16 C1.26 C1.26 C1.26 C1.26 C1.26 C1.26 C1.26 C1.36 <th< td=""><td></td><th>42.88</th><td>€1.86</td><td><1.8¢</td><td>61.8</td><td><1.E</td><td>4.</td><td>65.88</td><td></td><td>2.1</td><td>42.11</td><td><1.86</td><td>10.10</td><td>€1.68</td><td>42.86</td></th<>		42.88	€1. 86	<1.8¢	61.8	<1.E	4 .	65.88		2.1	42.11	<1.86	10 .10	€1.68	42.86
		412.9	C1.34	<1.21	(1.28	<1.35	47	65.88	<1.1¢	<1.28	<1.2	11.	6.618	€1.70	42.48
CL.34 CL.28 CL.37 CS.88 CL.10 CL.20 CL.20 CL.40 CL.20 <th< td=""><td></td><th>¥</th><td>¥</td><td>¥</td><td>KA</td><td>M</td><td>\$</td><td>¥</td><td></td><td>KA</td><td>Z.</td><td>¥</td><td>MA</td><td>KA</td><td>4</td></th<>		¥	¥	¥	KA	M	\$	¥		KA	Z.	¥	MA	KA	4
C1.00			0.34	(1.21	<1.28	41.35	47	63.83	€ 1.18	C1.28	<1.28	41.48	619.6 2	41.78	42.48
CL.34 CL.28 CL.38 CL.35 C2.47 C5.00 CL.10 CL.28 CL.48 C6.610 CL.70 CL.30 CL.34 CL.38 CL.48 C6.610 CL.70 CL.3		4 .	61.0	<11.86	1.1	₩.	2.5	€S.E		2.	4 .	<1.6e	3	0.1	65.69
		:	7. S	C.2;	<1.28	Ç.3	4.4	S. 5	€5	2.7	2.2	€ 7 5 7	6.618	2 .15	⟨2. 4
		7			\$?				•		, .				
			F 2	17:17	7.1										

(* **A**

34301	2072.5	7/3A	 	CB.588	G.B	CB. 580	Z			SE. 55	Z	€. SE	E 5	2		2	\$8.588	42.11	5.77	+.4	1.78	2.87	€. 588	2.16	2	CB. 588	4.8	CB. 588		Ø.	<0.586	4 7. 1 8	CB. 588	1	3	55		S. 58		CB. 588	42.88	CB. 588	8 .8
34475	# £	1 /2 2 /2 2 /2) 	C1.38	₹.5	8 :5	# :			K :		R (7 2	# # 	3	E .	2,0	11.0	10.7	C.3	-	1.55				₽.₽	R .	3		CI.38	8 .15	CI.38	_	7.7	# 5	3.1	2.24	_	€-1 >	8 -1>	8.13	3 .0
34511	13761	720	! !	₽.5	8 .0	3. :						3 (3 5		8	8	8.7	€.13	₩.	8 .10	8: 3:	3 :	8 8		3.	₩.	3 :	8 8		C1.8	85 .13	8.5	≨ \$: :	\$.15	\$.T>	2	8 .1>	¢1.8	8.1 2	3
			TIRE	 5:5	10:50	13:53	13:53		: :	11:37	11:3;	# : Z		12:21		=	11:37	11:37	11:17	11:17	11:44	11:41	. 	13.45	13-61	14:56	14:56	16:15 15:15		12:06	10:13	=======================================	1 7:53	1 7:53	200	E7:01	10:43	19:47	10:47	# # # # # # # # # # # # # # # # # # #	1	10:11	30 - E
			DATE	98/89/68	9/19/96	98/92/30	/22/	08/16/		% / E	/ 4/	94/C1/E		/E // y	/ k / k	/4//4/	9/15/46	9/12/06	38/88/6	98/88/6	98/92/64	9/32/64	98/92/4	9/9//E	98/96/	90/92/00	98/92/10	98/92/10	08/07/M	0/22/86	98/52/86	98/52/86	98/11/6	79/11/80	09/21/6	24/44/4 24/44/4	3/86/86	11/166	9/11/6	24/92/M	91/52/10	98/52/10	98/5//
			SAMPLE 10	33824	33024	33826	42 M.E.	REFE		THE REAL PROPERTY.		25.0	15865		3	35.05	35863	35063	35865	35865	36065	36065	36662	36462	36121	37305	37385	37313	2/3/3	37.22	37347	17347	37349	37.34.9	57575	3735	37356	37357	37357	7.07	1187	M021	17070
STORET CODE:	RELIMINATION CONT.		*	£	-	Z '	~ (3 '	" }	G.	• ;	2	X 1	R 5	3 =	7	Ä	X	Ä	×	•	8	¥ :	r ž	,	۳	_	•	, ,	. m	X	5	2	; م	; ·	7	_	æ	•	•	w	•	9
	9	MITS:		7417	₽	7	7	į	1	7	7	į	֝֞֝֞֝֟֝֟֝֓֟֝֝֟֝֓֓֓֟֝֟֝֟֝֓֓֟֝֟֝֓֓֓֟֝֟֝֟֝֟֝		1 2	1400	Š	14002	2	14002	ξ			150			950	C 5	3 2	×	6	OF 630	m.	¥ 5		3	X340	E340	OF 630	14112	14MC2	7112	TABC

77945 88 DCPD	7/90	43.0		6 .	0	į	47.	8	ļ	47.	0	;	47.1	2	3	0	•	m	•	3 .	47.0		43.0	0	;	47.	1	2	*		6 .	7	•	67.	;	8.	47.0
77945 868 DCPD	1/3	4.7		4.7	64.7		4.7	(4)		(4.7	4 7	;	4.7	:	¥	(4.)		31	;	4.	(4.7		4.7	(1)	;	4.7	;	.	4.7		(4.7	(1)		4.7	;	3 .7	4.7
77965 R8 BGP0	7/20						;	()	c9.3i	;	16.65	(9.31		24.4	11 0/	7.5	24.3	į	(9.31	(9.31	•	(9.3)	;	4.5	(9.31		69.31	(9.3)		(9.3 1	;	6.5					
99133 #E	1/26	4.8		÷.	•	:	6. 2	•	;	6 .6	8 77	:	4.	;	2.5	2	!	6.	;	- .	6.43		4.0	* 77	;	6.6	1	1	1		*	1	i	9.1	;	3 .	6.4.8
99133 BBS DBCP	4	C15		ÇIŞ	517	;	C15	513	;	C15	55	}	415	•	ST)	513	;	C15	;	CIS	C15		CIS	5	}	CIS	•	9	CIS		CIS	313	}	CIS		ÇÎS	₽
99 133	1/96	6.13	48. E38	7 7		(8.138	;	6 . 13 8	(G. 13#	;		CB. 138		6 .13	•		161.1		6. 136	\$ S	<u>}</u>	CB. 130	•	E . 1.3	(8 , 13 0		2 . 138	48.130		<0.130	:	P(1.5)	11.5		48 , 138	9	9.0
	31.	7	13:53	25.53		11:37	11:37	12:3	13:31	13:31		11:37	11:37	71:11	11:11	* -	10:45	10:45	13:48	13:49	14:56	10:15	10:15	98:21	10:13	===	17:53	7:38	17:38	10:43	16:43	/ Y : 01	3	1	# : E	91:01	11:59
		13/87 1 13/83/86		18/28/186 18/28/186	_			08/C2/6			%/#/				#/#/X/					75/26/86 1 16/26/86 1				98/77/69		_	_	13/11/18 19/15/186	_			34/11/6		14/26/16	_		98/92/88
	-	33824	33826	93856		33831	76 PK	1000	35.83	35838	X 22	35.63	35463	35865	2000	59895	36962	36882	36121	36121	37305	37313	37313 (2676		37347	37349	37353	37353	37356	37356	100.15	¥ • • • • • • • • • • • • • • • • • • •	7	04021	_	72814
č.		2	77	۲ م	3 ~	X	4 !	2 2	2	# ;	3 2	ξ	æ	<u>.</u>	R :	-	Ξ	ጽ	2	*	. –	9	7 1	۰ ،	, K	S	7	۵ ۳	+	*	۲ م	d •	• =	w	•	۰ م	• ~
STORET CODE: NETHOD CODE: PARAMETER:	F.0.08°.	74.52	14112	7. E. C. S.	1	CH.T.	14HC2	2 2 2	7422	14002	֓֞֝֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	Ş	14002	2	3 5				8	14502	96 96 96	0463	OF 63C	3 5	8	OPEX		55	₩36	6	9636	2 2	₹ ₹	14MC2	1482	T48C2	1482 148C2

TASK 44 GC/MS CONFIRMATION DATA

FIELD GROUP NUMBER T44GM53 IS GC/MS RESULTS

SAIPLE LIST TAPALE

1958	8 8 6	K Z		3	₩. U	¥.5	, F.	417.0	8.1 2	617.0	3 .7	1	8 -5	417.0	12.7	417.6	K	1	26.15	Z.3	<17.0	£.5	C17.8	X :		<17.0	CI.98	47.	92-6	÷.5	417.0	8 .5	2.75	2.5	417.0	41.98	1	417.8	61.98	<17.6	R.D			C17.	<1.98
21512	5 E	んり		1	41.14	4.1	CI.14		1.5	;	5.E	1	0.14		1.41	;	4.1		KI.14	4.0		CI.14	;	41.14	71.10	;	41.14	;	41.15	41.14		€1.14	:	1		41.14	T	;	CI.14		3.50		5.27	!	14.6
29585	2 5	1/30		1	41.0	3 • • • • • • • • • • • • • • • • • • •	₩. 7.8	4.40	€ 1. 8	C14.8	3 .5	1 0 T	8 . D	24.6	38.1	CI4.0		¥.	41.86	₩.I>	<14.8	1 .0	614.			<14.0	61.0	64.6	22.3	(T. M.	<14.0	8 1			<14.0	8 .10	1	C14.8	2		57.7		CI. 88	C14.8	8.46
98963	1,4-DITH	7	• 15	1	CI.59	5.5	0.59	G 1.0	<1.59	61.	41.59		8.8	41.2	55.0	61.6	67.13		1.68	(1.59	C11.	(1.59	(II.	67.5	5	-	<1.59		\$: 1	C .5	411.9	CL.59			411.8	CL.59	¥.	411.6	C1.59	991		777	498	1961	9111
798	1_4-0xAT	733	11 37	≦	CI.35	C. 33	CL.35	€.18	41.35	6. ie	<1.35	<u> </u>	2.92	3.	13.1	6.10	(1.3)	1	(1.35	<1.35	66.18	(1.35	6. 18 3. 18	5.5	2 2 3 3 3	6.10	<11.35	e. :	6. 4. (4. 18.	C. 35	66.18	C.35	3 7	9	6.10	<1.35	¥	66.18	41.35	14.7	, ie. y	4 7	68.6	1230	1170
98518	Sold	7 121	8	1 1 1 1 1 1 1 1 1 1	41.16	2.5	97.75	3.8	41.16	8 :	4.15 1.15	5	C1.16	0.50	8.47	4	2 5	27.5	CI.16	41.16	42.5	41.16	2.5	2.5	2 2	2.5	<11.16	6.5	2 5	2 : 5 2 : 16	Q.50	C1.16	7 : 7 :		8 .6	CI.16	4	© :	41.16	3 .5			¢1.16	83.65	C1.16
3536	P. P007	730		2	(0.05)	(e. 85)	(6.05)	6.6	<8.859	\$.6 \$	(e.059	4 B C	ce.295	4.01.	ce. 859	C10.0	(Cara)	*	(4, 159	(8.85)	CIB.B	(8. B59				G. 8.	(8.85)	(18.8 (18.8		(0.859	C18.0	(B. 85)			419.0	(6.65)	ž	C10.	(e. 85)		(6.65)		8 7.13	418.6	(e. 859
39398	EMDRIN	UC/1	5	3 ≦	99° 00	9.6	9.0	9.0	CB. BEB	9 9. C	3	5	0.512	09.D	0.421	3.		¥	99.90	6.868	99.C	99.	3 9.0		99.	99.0	CB. 060	9.0	2 6	69. 69	47.60	6.06		3.0	3.0	CB. B66	¥	89.0		3.0			C1.58	89 . D	498.8 2
98.66	DIELDANA	V3A	200	1	1.154			4.7	CB. BSS	G.78	€.# 55	42 75 CT 78	3.48	C. 78	0.670	2.7		1	<0.055	<0.055	4.7	CB. 055		20.00	(0.055	¢4.70	9.125	₹. 5	2 2	0.136	C. 78	<0.055		\$7.5 \$7.5	C4.78	CB. BS	¥	C. 78	CE. USS	Z. Z		2 2	C1.38	64.78	<0.055
39328	300-1-	1731	2	2	CB. EM6		(a. F.	64.70	549.87	2 3	\$ \$ \$	\$ P	(8.238	C4.78	CB. 846	2.5			68.846	CB. PH 6	64.78	6. F.	4.7		(B. 146	C4.70	49.146	2.7	27 29	CB. B46	64.78	68.946		C. 70	64.78	9H. 5	1	2.3	4. F.		7	\$ 75 5 75	(1.15	4.78	68.946
25. 25.	ISODR I	173M	*	1	41.85	5 5 7 7 7 7	\$5. ES	6.2	(8.85	S. S.	\$: •	\$ £	C. 280	6.3	68.856	S. 5		3	48.856	6.156	68.30	95	0		92	6.3	\$5.00	\$.5 \$	8		8.8	÷ 156		S.S	6.3	©.656	1			2 €		8 9	C. 4	6.3	48.856
36336	ALDRIN	730	2	*	(B. H3)	CB. BB3	(B. 883	64.78	(9, 983	4.78		\$	(6.415	4.7	(3,063	8 . 3	(6.46)	1	CB. 86 3	(B. 04)	C4.78	6.86 3	3	(a. ma)	CB. BB3	C4.78	CB. 863	£.7	2	(8.8 83	€.2	6.83		€. 2	4.78	CB. 903	¥ :	₹.; ₹.;		? ? ?	2 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2	C2.08	64.78	<8.883
3436	£ (1)	7/36	•	1	(8, M3	6.003	6.86 3	¢11.6	CB. BG3	CI.	₩. •	¥ • 1	<4.415	C11.	6 . 8 3	9710		*	<0.003	CBO . 6	6.115	CB- 843			(B. 883	4.11.	<0.003		() () () () () () () () () ()	CB. BB3	41.0	(6.083		\$1.0 \$1.0	¢11.	(3. 86 3		- E	(4. W63				G. 88	C11.8	CB. MB3
98551	100	7/20	,	} ₹	₽	= {	; 5	65.7	₽	(S.)	5 5	5.5	99	936	420	238	֓֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֡֓֡֓	**	411	*	25	5	Ġ	3 5	: =	88	5	65.7	900	ŧ =	(5.7	Ξ;	3 5	C 5	CS.7	₹	₹;	: :	5				1286	(5.7	E3
			SAMPLE 10 DATE TIME	5/65/17	96/02/87	02000 05/05/87 13:19	06/02/17	85/86/87 87	18/99/58	05/05/87	66/83/87	22451 05/13/87 07:52	45/13/87	05/13/87	05/13/07	05/13/87	05:30 /8/8/ /CB 68:57	65/14/87	95/14/87	05/18/87	18/11/61	05/18/87	/8/18/8/	24111 85/14/87 43:55	15/18/87	18/81/50	18/61/50	24128 05/19/87 13:43	#5/12/8:	15/12/67	18/17/81	27855 05/06/87 89:15	_	13/13/83	85/85/87 M	18/29/90	12/62/63	/8/5/	/9//	31351 /9/90/54 91355 35915 95/90/90 35-35	7/2/2	05/12/87	05/12/87	18/98/50	36090 05/06/87 13:51
STORET CODE:	ARAMETER:		-LD.GRP. 8 SI	T44153 1	T448R3 1	TAACH3 7		T446MS3 3	T44883 9	T44CHS3 4		144083 5	14425-3 \$		14425-3 6	T446HS3 7	TARCHES 0		2 144153 9	14425-3 15	ST44GMS3 10	214425-3 16	1446HS3 11	144_CS-3 16 TARTES 17	14425-3 19	T446MS3 13	T4425-3 29	T44GMS3 14	1446953 15	14425-3 24	1446mS3 17	144013 64	14475-7 25	T446553 28	T44GHS3 21		<u> </u>	77	1445mc3 32	1446RSS 23		T4469S3 26	744153 38	1446953 27	144153 31

SAMPLE LIST TAPAUL

32 102 va	7 00	799	•	8 .5	•	2	8.0	4.2	8. 7	48.48	2.5	5.	3 .5	2.5	67.15	1	1	47.7	2, S	3	3 :	7	7.0	3	4.0	<1.50	42.40	3 .5	2 5	200	42.5	47.48	2; S	3	4.7	¥	6 .8	2.4	4 .0			44.0	55.5	C1.58	42.40	2.8
34546	11116	1/9h		3 ;	* * *	\$7.7 5	C. 2	61.79	₽. ₽.	4.7	3 .5	61.78	₹.		2	*	4	41.7	8 ,0	3 ;	2		3 5	3	\$1.7 9	41.00	C: 78	3 :	₹. 8	2.0	80.1 2	C1.78	8 7		C1.78	ĭ	8 .5	2.T	2 :			2		₩.	<11.70	3 ;
34531	1 Section	1 1 1 1 1 1 1 1 1 1	:	3 ;		6.618	2.0	68.618	8 .5	49.610	3 ;	6.618	6.610		, T	AN.	2	619.6 2	3 :5	2	CB. 618				(6.61	4.0	619.6 2	3	6.618	7.25	8.12	(6.618	8 .5		<0.610	1	3 .5	CB.618	\$19. 8 >			46.616	3 .0	19.1	11.9	>158 265
32185		<u> </u>		6 .57	6.23	27	2,2	41.46	3,1	41.4		* .:>	4 .0	00.1	>150	W.	¥	41.48 CI.48	17.7	3	4 .0;				1.58	1.21	C1.48	C1.8		781	139	19.4	26.3		27.0	¥¥	# T	7.5	₹ .			7	2,34	37.1	34.5	4.56
34546	112005	3	!	3 :	7.77	41.20	2.8	CI.28	2.0	<1.28	2.2	CI.28	2 .5	7.17	<1.28	1	1	C1.20	C1.20	C1.28	2.5	\$7°5	2.5	<1.28	C1.28	41.28	€1.20	<1.20 2.20	2.5	22.23	CI.28	(1.28	\$. \$. \$.	2 17	\$7.13	1	3 .5	61.28	C1.28	3 5		2	C. 20	74.5	56.7	13.6
34.5%	3001	726		8 5		2 5	Z. M.	<1.20	\$ \$	<1.28	2.8	C1.28	7 5		0	1	1	(1.28	6.8	2 .2	2.2		7 7	0	61.28	47.8	<1.20	3.5	7. C	2	₹7.	C1.20	8 7 7	200	2.12	1	6.8	27.13	2.1. 7.1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	# # F	62.53	2	Q.8	42.00	<0.28	2 7
34501	בים בים	NC/1		•				<17.19		CI. 18		41.18	₽.₽	• • • • • • • • • • • • • • • • • • • •	,	1		41.19		;			5		41.15		C1.19	;				41.10	•		41.10		;	2. IS	₹	•	-	C1.18	;		CI.19	•
34423	HETHYR CI	1798 1871) ;	S. 6	j t	8	6.8	65.88	8 .8	€.8	6.8	3 . 2	5. 5.		7	4	*	8 .8	64.5	44.BE	3 (5) (5)			2	\$	44.89	45.88	8 .5	0	8	7.23	4. 5	2, 6	2	6.8	*	3 9	S :	8 8	, t	į	9	\$ T	64.80	6.8	\$. \$. \$.
98554	769-YY	100		2. S	3 5	47	2.2	47.0	67.4	53.4	4.0	4.47	2.47	3.5	2	YH.	*	47.47	2 .3	2.58	6.4		20	0	47	42.86	47.47	3 .5	2.5	0.47	4.0	47.2	3 5		4.47	#	#. 5	4.2	Q. C			2.47	# Z	4.0	47.47	2.0
98553	_	-		3 ;	9 ×	C . 2	3.5	41.35	62.3	45.1	2.2	CI.35	4.35	2.7 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13		1	1	CI.35	# T	2					CL.35	C1.8	CL.35	3 :		2.35	₽. D	CI.35	2 7		CL.35	1	3 .0	41.35	£ 5	¥		CL.35	2.8	CI.8	0.35	2 2 2 2 4
34371	TUN BERT	7/5h) i	\$:	5 5	7.7	2	C1.28	28.6	13.7	2	CI.28	C.28			1	4	<1.28	3 . 17	2.1×	17.17 17.17	7.5	7	2	(1.28	₽.₽	C.2	3 7	7.7	C . 28	3	<1.28	8 .0	8 . D	C.28	¥H	3 .5	27.15 27.15	7 .5	*	2	<1.28	2.0	C1.68	C1.28	₩. 7
34618		7/9		3 .	2.2	C1.21	3.0	<1.21	7.23	2.20	2 .1>	<1.21	41.21		¥ .	Y II	1	<1.21	9 .0		12.12	7.17	2	8	Ci.21	61.19	(1.21	9	7.5	(4.2)	C1.50	<1.21	2 7		0.21	W.	8 .∵	17.13 17.13	7.12	7		(1.21	₩.	61.19	<1.21	CI.88
34838	SENTENE SENTENE	מר שני ער			₹. ? ∵ :	# # 	₩	₹.5	3.46	3.85	4 .1	CI.34	¥.5	21.15 21.15	£ =	¥	4	41.34	3 7	90 ;	#. F		7 7	2	£.0	(1.19	C.34	= ;	# =	2.15	2.89	C1.34	1.13	5 5	2.3	*	8 .0	8.23	# 3	7		41.34	2.88	7.68	8.47	3 , 7,
91296	į	16 7/5H		3 .5	625.9	C12.9	27.8	C12.9	3 .0	(12.9	47.8	<12.9	C12.9	35	0	¢12.9	¥	(12.9	3	3.8	C12.9			0	612.9	62.88	C12.9	Q.86	C12.9	<12.9	42.88	(12.9	3	(# C	412.9	M	8 .5	(12.9	Q2.5			C12.9	42.8	42.0	C12.9	C2.9
			DATE TIME			PS/PS/R7 13:19			15/06/17 07:36					15/13/B/ 17:52			15/13/87 11:44	•	_		- '	76:00 /8/91/5	-			05/14/87 13:55			5/19/8/ 13:43				IS/12/87 IS:12		_	15/13/87 09:47			12:00 /8/50/50 5/05/00 /01:21							#5/#6/87 13:51 #5/#6/87 13:51
			SAMPLE 19	•	_	750 8000			/SB 63070	•	•	-	-	/SE 18827		_	730 62062	•	-	_		/CB 26847	_	_	_	_	•	•	24128 65/			•	27549 85/	•	•		•	•	33062 05/		_	_	•	•	_	/50 0609E
:: 6 6	5	<u>:</u> :	3			- P-	~	m	m	•	-	2	₹,	n .	ۍ د	-	1	Ξ	6 0	•	٠.	2 5	,	: ::		15	51	2 (₹ =	2 2	2	7.	- 3	<u> </u>	X	*	2 i	_ :		3 F	; ;	23	52	*	8 (i e
TOSET CODE	TIMES COR.	# 11 1 E T T T T T T T T T T T T T T T T	LD. GRP.	1446HS3	144153	744683	T44683	T44RR3	T44CHS3	144883	TAACHS3			1446753	E25741	14425-3	T44GHS3	14425-3	144653	1446453	144153	C-C7***	15 15 15 15 15 15 15 15 15 15 15 15 15 1	ESHUTT:	E-52**	1446453	14425-3	14683	T4425-3	T4425-3	TACHSE	T4425-3	T446#S3	1446RS3	14425-3	1446453	1446853	144583	144003	CHURAL CHURAL	1446-53	144153	T&4CmS3	TARCHSS	1441S3	# C # 44 F F F F F F F F F F F F F F F F F

<u>.</u>

SAIPLE LIST To . . d.

TORET CODE:	,14			99133	99133	99133	77965	77945	77985	
ETHOD CODE:				8	ï	2	2			
ARANETER:						2				
MITS:			,	7	731	725	1	7/20	1/1	
LD.CRP.	I SAMPLE 10	TO DATE	¥ :		317	• **		6.7		
744153			10:13	CB. 130	}	•	9.31	;		
144883		_	15:30	6. 138			3.31			
144CH3	1 6288	•	13:19	ce , 130	,	;	G-31	;		
144CHS3	2 820	_	13:19	;	CIS	3	;	5	4.	
TAARRE		78/62/87 88 65/65/87	25:50	8 . 13	513	4.5	17.65	4.7	42.0	
144463		•	17:36	CB. 138	•		6.31	•	ļ	
144CAS3	4 09002	•	14:16		CIS	2.9		4.7	42.8	
		•	\$5:61	8			6.3			
144MM3 106	20062	#2 @5/@5/B7	14:18 13:18	CE. 136	\$17		69.31	4 7	-	
14425-3	23001	•	20 - Q:	1.42	}	;	**	;	•	
144CHS3	73964	•	96:01		CIS	3.8		728	\$1.78	
14425-3	5 23829	•	11:44	48.138	•	;	6.3	,	;	
1446453	7 23629	•	11:44		C15	4	;	4.7	4	
:4425-3	G162 11	•		138	ļ	;	63.31		•	
1446453	(4) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6	/8/14/19 68 69 66/11/67			g #			3		
246.733	£1157 £		87:58 80:30	46.134	í		12 85	ł	;	
174475-3	5 23192 S 24892		17:20	\$ 1.30 \$ 1.30			5			
7446553	24842		27-14		513	€3.8	•	(4.7	G.1	
74425-3	24106	•	13:35	<6.13€			(9.31			
T446MS3 1	90117 II	18/81/50 90	13:35		CIS	<3.8		4.7	G.1	
74425-3		•	13:55	48 . 13 8			49.3 1	;		
		_	13:55		CIS	3.1	;	4.7	4.1	
	19 24113		10:46	6. 13 8	*	•	69.31			
14175-3	24113	13 85/18/8/	95:01	#Z = 0	ĵ		4 162	;	;	
144CHS	62152 10	•	13:43	. 13	CIS	4.6		(4.7	(1.1	
14425-3 2	72127	•	14:33	3.64			691			
	15 24127	•	14:43		CIS	G. 8	;	1 <u>9</u>	>170	
11475-3	27949	•	15:12	CB . 13 8	;	;	63.31	;		
1446753	27855	45 65/12/87	13:12 3 :13	821 B3	9	7.5	(6,31	5	7.1	
		•	9:15		<15	3.8		4.7	(1.1)	
14425-3 2	27874	•	Z-1-1	CB. 138	•	1	3 .31	;	į	
1446753	7/1/2	25/13/8/			9 5	¥ .		7.5		
	200EE 21	•	17:41	CB, 130	3		(9.3)	;	į	
_		•	12:00	CB. 130			6 31			
	22 33063	63 65/06/87	14:24		CIS	9.9		<4.7	67.9	
		•	14:24	3.21			6.31			
		•	15:16	•	<15	6.	;	4.7	67.8	
		•	15:16	CB . 130	•	;	(9.31	;	,	
	33,000	•	7:47		SD			;		
1446433	PRINCE OF	18/71/5 8 481	7:11		9	2.5		;	1.5	
	27 36898		13-61	. 13	CIS	• •	15:65	(4.7	6.0	
		_	13:51	CB. 138	;	!	(9.31	; • •) •	
	:			;			•			

X Y Y Y Y Y Y Y Y					112TCE	TCLEE	3373
JAITS:					73	1/3A	
710.68P.	-	SAMPLE 10	DATE				
144CHS3		101	15/15/11	=	8 .13	2 1.8	
144153			65/65/87	10:13	61.8	€E 13	3.5
•	-	3610	66/82/87	15:51	2	41.30	5
144CH3	_	#5 ##	65/85/87	13:19	1 .15	<1.38	₹.
TACCHS3	~	2007	15/18/87	13:19	3	2	
144683	~	2002	66/02/87	3 :2	₽. ♡	<1.3 8	5
144CHS3	~	<u> </u>	15/06/11	67:36	3 .0	2. C	
144443	•	1	18/196/81	97:36	2 .5		\$.5
144683	-	2	5/05/67	14:16	\$.∵	1.65	
144633	2	2006	66/63/87	\$:55	8 .5	1.59	•
144883	ĕ	2006	18/88/83	14:16	8 .1>	1.93	3. 5.
144CHS3	S	22051	15/13/87	17:52	3 .17	Z2	
14425-3	S	23864	65/13/87	\$0:0 1	8	C130	
T44CHS3	9	7 × × ×	05/13/87	:	3 . :	36.9	
T4425-3	9	23829	05/13/07	11:44	¥	¥	
T44CHS3	1	2382	05/13/87	17:71	W.	ĭ	
T4425-3	=	23169	18/11/81	96:36	¢1.15	C1.38	5
144CHS3	-	23189	05/14/87	96:36	8 .15	8 .15	
1446HS3	•	23193	05/14/87	86:28	3 . ;	8 .15	
144153	•	23193	05/14/87	82:98	€.1	C1.38	5
-	53	24892	05/18/87	96:42	3 .5	CI.38	\$
1.46	=	24092	18/81/50	#8:42	81.1	\$0°17	
E-52#154	91	94147	45/18/87	13:35	8 .15	<11.30	8
C T44GHS3	=	24186	18/11/20	13:35	8. D	<1.00	
14425-3	<u>e</u>	24111	85/14/87	13:55	8 .1	<17.36	\$
1446453	21	24111	#5/14/87	13:55	₹.5	\$.T	Q
14425-3	2	24113	18/11/87	10:46	₹.	CI.3	\$
1446453	=	24113	05/10/87	18:46	8 .5	8 , 0	Ç
14425-3	2	24120	19/61/50	13:43	2 .1>	<i.30< td=""><td>S. S.</td></i.30<>	S. S.
144683	Z	24120	05/19/87	13:43	₩. ₩	2 . 3	
14425-3	27	24127	05/12/87	14:33		7.1	5
:446453	2	24127	8 5/12/8?	£ 7: 7:	3 .5	•	
14425-3	7.	27849	95/12/87	15:12			•
1446453	= :	27849	65/12/87	15:12	2 :	₹	
144CN3	3	27055	85/mg/87	51:5			= 1
1446953	<u> </u>	27855	19/99/50	51:12	3 :		,
E-62991	Q į	7/8/7	/3/13/6/		3 ;	# . T	•
1000000	,	727	/B/F1/CD		.		
	3 5	7000	/B/CB/CB	17:8			
TARBUT	. 9	33000	() () () () () () () () () ()				
TAACHS	2	33663	/W//W/	14.24			0
TAKENS	; 2	33662	7 / W / Y / Y	14.24		*	•
144645	1 2	7.97	05 / BK / B7	15.16			•
EVITOL .	1 2	3,5	25/86/97	15.16		# # T	
C	; ;	DI BEE	19/09/59			5	
TARCECA	3 %	POSC C	(0/21/5	10.0	- 10		
744153	; #	36.884	65/12/87	27.01	9. 7.	36.96	
TARCET.	1 5	-	20/ 30/ 30		? ;		
١						0	

SAMPLE LIST TAPAUL

(4)

ENVIRONMENTAL SCIENCE AND EA

(

19586	CPRSO	てま	;	K :5	417.	2 .5	417.	15.7	27.1	417.8	87.3	417.0	2.2	53.6	417.8	27.2	<17.0
81512 U 6	1	て	:	4 .5		6.79			4. 2		8 .8		2.5			3 .5	
2 95 \$\$	SE	7	;	2	6.4.9	3.79	CH.	C14.0	8.13	C14.8	£5	C14.0	#. 7	6.4.8	<14.0	C.3	614.8
E95 3	HLIG-P'I	1	;	41.59	€:: •	385	241	6.11.	9.48	4.11.	61.19	411.8	61.15	6.11.	6 11.	CI.10	41.0
7 S	1.4-0xAT	NG/L	;	C.3	6 . 16	58.9	44.9	66.18	2.8	6.10	2.8	6 .10	8 .5	6.19	66.16	4 .8	6 .10
81588 81588	SOE	NC/F	•	4.1 6	2.5	61.16	2.5	25.50	81 .15	42.50	88 . I.>	2.5	87.13	2.5	2.5	₩. T>	42.58
	1001	NC/L	,	ê. 3 5	C18.8	<0.295	<10.0	418.8	CB. 788	0.61)	<0.070	0.01>	<0.070	419.0	418.6	(0.878	<10.0
3939e		NC/L	,	99.00	3.0	6. ₩	3.0	3.0	<0.520	05°C	<0.052	3.0	<0.852	3.0	39.75	(8.852	89 .0
39.388	DIELDRIK	IK/I		× .55	£.2	CB.275	44.70	64.70	C. 600	64.78	0.711	64.70	582.0	64.70	64.70	\$ B60	64.70
39328	- 100 · - 100 · · · · · · · · · · · · · · · · · ·	7		\$. E. 6	2.2	<0.236	64.78	£.75	48.538	64.78	ce.e5 3	C4.78	(8,853	C4.70	64.78	<0.653	47.76
39438	1500ETH	730		5	8 .8	CG. 200	5	8.5	3	8.8	39.5	3.5	\$6.8¢	8.8	8	99.0	8.3
39336	A: 00 14	7		€.E3	64.70	<0.415	C4.78	2.2	68.78	<4.78	<0.070	C4.73	(0.078	C4.78	c4. 78	620 83	<4.78
34386	֓֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	1/3S		6.983	C 115	415	• 10		200	CIT.	CO. 079	611.0	48.878	•	- 110	48.878	CH.
96551		72		1	65.7	420			200	65.7	Ü	6.7	Ξ	3	(5.7	Ü	63.7
			SAMPLE ID DATE	78/11/8 05/11/87	74/11/8 45/11/87	78/11/50 05/11/87	34136 65/11/87	78/86/07/18/	78/91/98 98:2E	78/88/CB CFFTF C	78/81/30 CEFTE 0	78/00/10 FEFTE F	78/81/90 EFETE 0	17344 67/66/87	27359 B7/BR/E7	78/21/98 #522E	46 CIII 07/00/87 09:55
STORET COB	THE THEO CO.	UNITS:	FLD CRP	TAACUS	TAACHCS	744603	1447853	1446933	144063	TAACHS	144063	TAKERS	144063	TASCHES	TAACHS	144003	T446MS3

でこ ゴミス

(4)

 (\bullet)

(*)

77985 R8	_						_										
2867T	100	V90			2.7		2	3		\$		์ ฮ		3	\$		5
77985 R8	0400	7/3n		(9 .31		(9.31			675		(9.3)		(9.31			69.3 1	
99133	2	10°A			3.6		3.6	43.8		3.6		8.8		12	₹3.8		43.8
99133 RE8	200	7/9A			C15		<115	CIS		3		CIS		<15	Ci2		<15
99133	1000	1/90		46.138		6 . 130			1.176		48 .138		<0.13€			6.136	
£8164 68133	1080	1/90	DATE TIME	85/11/87 15:42	05/11/87 15:42	14:39	#5/11/87 14:39	67/84/87 6E:56	06/16/87 09:45	81/88/87 88:85	96/18/87 00:29	07/09/67 07:28	P6/18/87 P9:39	97/06/87 11:15	07/08/87 09:45	96/17/87 :0:25	CIII 07/08/87 09:55

Ć

્તુ

25.11 24.75 11.27 12.16 12.27 12.18 12.27 12.18	34511 34475 THE TOTAL TOTAL THE TOTA	34511 34475 TB 1127CE 10.11 SASPIE 1D DATE TIME 1127CE 10.10 36118 05/11/87 15:42 < 1.10 36139 05/11/87 14:39 < 1.10 36139 05/11/87 14:39 < 1.10 37339 05/11/87 14:39 < 1.10 37339 06/16/87 14:39 < 1.10 37339 06/16/87 16:39 < 1.10 45.4 37332 06/16/87 16:39 < 1.10 41.30 37333 06/16/87 06:29 < 1.10 41.30 37334 06/16/87 06:29 < 1.10 41.30 37334 06/16/87 06:29 < 1.10 41.30 37334 06/16/87 06:29 < 1.10 41.30 37334 06/16/87 06:29 < 1.10 41.30 37334 06/16/87 06:29 < 1.10 41.30 37334 06/16/87 06:29 < 1.10 41.30 37334 06/16/87 06:29 < 1.10 41.30 3734 06/16/87 06:29 < 1.10 41.30 3734 06/16/87 06:29 < 1.10 41.30 42.30 43.31 44.31 45.31 46.31 46.31 47.31 47.31 47.31 47.32 47.33 47.33																		
	2511 11270 1270	34511 54511 127CE 127CE 127CE 127CE 36118 05/11/87 15:42 36139 05/11/87 15:42 36139 05/11/87 14:39 37309 07/00/87 14:39 37309 06/16/87 09:45 37330 06/16/87 09:45 37333 06/16/87 09:45 37333 06/16/87 09:45 37334 06/16/87 09:45 37334 06/16/87 09:45 37334 06/16/87 09:45 37334 06/16/87 09:45 37334 06/16/87 09:45 37334 06/16/87 09:45 37334 06/16/87 09:45 37334 06/16/87 09:45	34381	B.A	CLCGHS	UG/L		49.588	47.18	CB. 588	47.14	2.1	<0.584	99.9	48.588	42.18	<0.588	3.89	B. 01	
112.16 112.17 112.17 112.17 112.17 112.19 11	## ## ## ## ## ## ## ## ## ## ## ## ##	SASPIE 1D DATE TIME 36118 05/11/87 15:42 36139 05/11/87 15:42 36139 05/11/87 14:39 37399 05/16/87 09:45 3732 07/80/87 00:26 37332 06/16/87 00:28 37332 06/16/87 00:28 37333 06/16/87 00:28 37334 06/16/87 00:28 37346 06/16/87 09:39	34475	1.0	TCLEE	1/9n		<1.30	11.13	<1.38	€	73.5	45.4	41.8	<1.38	1 .17	€T.3	911	3.17	3.95
1112 1112 1112 1113 1113 1113 1113 1113		SASPIE 1D DATE 36118 BS/11/87 36118 BS/11/87 36139 BS/11/87 36139 BS/11/87 37389 B6/16/87 37332 BS/18/87 37333 BS/18/87 37334 BS/18/87 37334 BS/18/87 37355 BS/18/87 37354 BS/18/87 37355 BS/18/87 37355 BS/18/87 37354 BS/18/87 37355 BS/18/87 3755 BS/18/87 3755 BS/18/87 3755 BS/18/87 3755 BS/18/87 3755 BS/18/87 3755 BS/18/87 3755 BS/18/87 3755 BS/18/87	34511	-	112TCE	1/31		₽.5	₹	₹.	2.E	3 .15	3 .€	3 .1>	₽.5	÷.	₩. ₩.	₽.₽	₩.T>	2
	DATE 5/11/87 5/11/87 5/11/87 5/11/87 17,86/87 17,89/87 17,89/87 17,89/87 17,89/87	SARPI E 1D 36118 36118 36118 36139 3739 37332 37333 37333 37333					1	15:42	15:42	14:39	14:39	95:84	51:42	# :#5	\$2:88	17:26	33.33	11:15	51:45	10.25
	# # # # # # # # # # # # # # # # # # #		37 TORET CC	3000 00HLJM	PARAMETER:	MITS:	LD CRP.	144CH3	144CHS3	144CH3	T446RS3	T446MS3	144063	144683	144093	T446RS3	1440P3	T44CHS3	TAAGRS3	144003

GC/MS DATA FOR TENTATIVELY IDENTIFIED COMPOUNDS

Assignical Secults for Tesatively Toestifies Compounds oy 40,83 Analysis

Non-terget anniques	61968 61912 61814		81629 62666 62	1619 a2626	29 95120	34 626	1 1	120 15520	£1929 FE	E75E9 595E9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ŧ =	[2 3}4 [7]	afa je	ade33 Birb	
ASSLITES TITH 10 OF MARZ OCCUMENCES 1.1.2.2-retransaloroethane	3.7	wri	70.	1 1 1 2 3 4 4 5 6 6 6 7			11.6			7.1		:	÷.		• • • • • • • • • • • • • • • • • • •	
i.i.l.trucaleretame 2.ú.lu.it-terramethyibemmiecame							ı ت	7.E		rs:						
2.6,19-trimetayl pentagecuse bini2-ethylieryl) phibalate					æ <u>2</u>											
caprelactas	ķ	3	9 13			213	13.4	_	i.		-	= 2	1120 66	_	::	
COLOPERCIMENE		5		19.4										: <u>:</u>		
Retificanels acid					19.2	ني	6.76		i.47							
g-elcostae		<u>.2</u>	15.1	5E :	 					2 ;						
n-newsloading		-		≣ }	45.6	=	-			12.4						
n-terradecture n-northernore		7 .	7. 5.		70 7	= 13	7 17			216						
1-sondecuse	¥	r		13	Ξ	•	.			Z						
a-pentadecane				111	1.12											
n-tetradecase				73.5	ž					11.j						
					3		4 71			į						
octamentation acts						.	<u>:</u>									
TRE (cerrapherofaras)	17.1															
ABALTIES VITH GGSS TEAM 16 UCCHREGICES																
1,1-bigiochyjthiozethane																
1,2,3,4,5,7,5-beptachlernervernene																
1.2-dichiornethase			•													
i.2-dicalerenthene		=	n :													
1.6-sictionappropria		2	•													
1. J. bdiezachie inse																
i. 3-41 Cate (mac		-	¥. i.3													
Lu-ditatelane-2-talene																
1,4-cyclooctanieae		0057														
1.4-ditera																
1.4-41th:une					•											
1-propaste 1-: 1-netere-3-metherrenessizethanse					-	:										
2 prepage					\$											
4.4.2-tricaleroethinel														. •		
4.3-dickiora-2-methyidencyl nicohof																
2,4-thicatolidinedione																
2. i. lu, 14-tetracthy increscone	 															
C. C. Lin and Learning Communications of the communication of the commun	•															
4.6.10.10.14-fetfameny)menantme 2.6.10.14-tetrameny)mentamen					1.75											
2.5.18,14-terranetayipentagrene																
i-cycloseres-1-ase																

Assiftical Sesuits for fenatively identified Convocada by CORS Assignis

	1.	ber-target soniftes	194 81815 B181	44 244		124 124	1020 30	5 6282	0.629	1862 8286 82819 82826 82836 82836 82835 82833 82835 82835 83865 83852 81867 64069 64816 94813 94813 94835 81346	62035	5020	11829	9 95824	466	- SE	2 2	5	1	1704	12440	201	77.0	es als
17.00 17.0	17 17 17 17 17 17 17 17	/ - abrille in any leader about		-																				
1.1. 2.1.	11-5-clapator-1-ee 11-5-cl	Z-aethel-Z-f-aestanek																						
11 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	11-5-5-0-persons 15-0-	2-pressue)																						
Charles	Control Cont	2-14-metani-2-favoil-2-coclomentes-1-	*																					
		3.3.5-truethricreleerneen																						
1700 1700	12 12 12 12 13 14 15 15 15 15 15 15 15	1,5-4methyl-1,2,4-trithiolase																						
### #### #############################	15 15 15 15 15 15 15 15	3-sethylienne																						
1-1-pationse 1-1-pationse 1-1-pationse 1-1-1-pationse 1-p	1-1-personne 1-1-1-bertrand	3-methyl-l, J. 5-herntraese		**	2																			
Life Libercrapter Life Libercra	1, (1, 1, 1) occasion (1) occas	4-hydraxy-4-methys-2-pentanone																						
154 154	150 150	#-energrelett, 2, 2, 4, 2, 6, -ectas-1-et																						
Sin Sin	1519 1514	acetapheane																						
150 150	1559 1540 1559 1559 1550	arniobentene																						
150 150	154 154	beattaine																						
150 150	154 154	benzathratere																						
Single Section Sing		Stepelodis phropestantene		-	35¢																			
First Firs	15.2 15.4 15.4 15.5	bicycle 2, 2, libept-2-es-1-el																						
15.4 15.4	15.4 15.4	bipaesyl-si																						
15.2 15.4 15.4 15.5	15.4 15.4 15.4 15.4 15.5	butyl actadecaseate																						
Fig. Fig.	State Stat	but figl pestacetate																						
1	15.3 26.3 26.4 26.5	bat 7 iberatecantite												7.5										
15.3 26.3	11.7 11.4 15.9 18.1.1	Cuteryters							3															
15.3 18.3	16.7 16.4 16.5 26.3	chierenecky) permei																						
25.3 24.3 14.7 14.7 14.7 14.7 15.2 25.3 24.3 16.2 25.4 16.2 25.5 25	25.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18	chiece-netayl marringide																						
25.5 180.3 14.7 14.4 14.7 16.2 16.2 16.2. Liberta-t-nee 16.2. Liberta-t-nee 16.2. Liberta-t-nee 16.3. Liberta-t-nee 16.3. Liberta-t-nee 16.3. Liberta-t-nee 16.3. Liberta-t-nee 16.3. Liberta-t-nee 16.3. Liberta-t-nee	25.3 p.3.3 14.4 14.7 14.6 15.2 16.2 16.2 16.2 16.3 16.4 16.5	caelest-1-cae																						
15.9 14.1 15.9 14.1 15.9 14.1 15.9 14.1 15.9 14.1 15.0 14.1 15.1 15.2 14.1 15.2 14.1 15.2 14.1 15.2 14.1 15.2 14.1 15.2 14.1 15.2 14.1 15.2 14.1 15.3 14.1 15.4 14.1 15.5	25.3 184.3 14.7 14.7 14.7 14.7 14.7 14.7 14.7 15.2 15.4 15.5	1 tage 1																						
14.7 14.4 14.7 14.4 14.7 14.7 14.7 14.7 14.7 15.4 15.5	14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1 15.1	Cyclobesshope																						
144 147 148 14.1 14.	14.7 14.7	Carleson pari-and																						
11.5 15.6 2.24 2.25 2.26 2.26 2.26 2.27 2.28	11.7 (45.2 (decisere and					2	•	4.4															
5.28 11.8 7.24 4665 5.28 2.24 11.8 7.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24	14.7 445.2 447 3.11 15.5.4 15.5.4 15.5.5	det refrances							ı															
14.7 45.2 15.4 584 3.11 15.5	45.2 th. 15.4 th. 15.5 th. 15.	a) chi e coirea pese				77																		
45.2 15.4 15.4 2.81 15.5 15.5	\$7.81 11.4 14.5 \$.2.84	dibertuiskthalate	-	7.7																				
45.2 tát tás.5 tát. tát. tát. tát. tát. tát. tát. tá	5.24 11.8 15.5 5.24	ash paratracta? [beatoute																						
\$.24 11.4 Table 5.24	45.2 L5.4 Aill 8.55	america rection																						
46.5. 15.4 2.24 11.4 15.5	45.2 tái tái. 15.4	disethilshibs																						
45.2 L5.4 244 A.11 15.5	45.2 tái tá 15.4 táin 15.5 táin 15.5	dipethyloutide																						
45.2 L5.2 268 3.11 15.5	15.4 tá.	amethyltrithiolane																						
45.2 tál tál tál tál tál tál tál tál tál tál	\$7.51 T.F. 11.5.	dippenyl ether																						
15.5 to 15.5 to 15.5	45.2 L5.4 L5.4 Aill 85.5																					•••		
Afric 1977	11.6 2640	40001000					\$.	.4							_	3-6						-		
24de 24de	1.11 254 0	optersons: De																						
Pade -	Záde	sedectable acid							19					¥.=										
		ethylmentene		14	100													.₹	<u>.</u>					
Dept.colerobicpclei_2_1_libest_ceae hept.colecolucpclei_2_1_libest_ceae hept.colucpclei_1_1_libest_ceae hept.colucpclei_1_1_libest_ceae	heptachierbhichteid.2.1 liben.i-eac heptachiere-burgion 2.1. liben.i-eac heptachiere heptachier autoria 2.2. i locyta-2-eac	Beataca (area) cyclosepiene																						
herizenisco-turpriori, i, i lieptane Bestratiereste Bestratiereste in in interestation in i	hepitacijaro-turpcjar2,2,1 Beptase Bentacijarnicycjar2,2,2 Jugara-2-aae	Bentacalerebicecles 2. 2. lineat - t-eac																						
Describes (Control of Control of	Destablisticytist 2.2, i luggas-2-me Destablisticytist 2.2, i luggas-2-me Destablisticytist 2.2, i luggas-2-me	heptachioro-bicyclo; 2, 2, 1 lheptane																						
Period is raicytelat 2,2, i laptus - 2-aec	Desicyles.2.2, i luegra-2-me Desicyles.2.2, i luegra-2-me	Peptinene																						
_	PETECN INFOMEDATION	Bettchiefsteyelst 2, 2, i juepts-2-one																						

Analytical Estalts for Tenatively Identified Convenue by GOUS Analysis

A	Ham-target unalytes	1010 2	74 B.	9020 92	61929	42929	62838	1 1697	1 5024	33 .	1929 151	51020 11	63065	6353	198	Se T	3	7 PA 17	13 6463	64633	£ .	1
### 13.2 13.2	beriderans de																					
### ### ### ### #### #################	7100 4100004						. 12															
### ### ### ### ### ### ### ### ### ##	Principal action																					
## this content and the state of the state o	Tripper Particular Par																					
15 15 15 15 15 15 15 15	16000CF OCTOORS										#	.1										
15 15 15 15 15 15 15 15	14-only 14-encese																					
134 134 134 135 134 135	teereeribeatese																					
15 15 15 15 15 15 15 15	Libosene																					
154 154 154 155	sethorybeasaldebyte																					
154 154 155	wethy ester of dibytroxyvencore acid																					
154 154	pethyl octane																					
### ### ### #### #####################	nethylbenzylouise																					
### ##################################	nechylethy lbestene	£	.																			
2.1.4.2.1 inct-t-nee-i-cubarriace 2.1.4.2.1 inct-t-nee-i-cubarriace inter inte	nethylmapthalese	2	<u>.</u>													77.7						
2.1. of 1. lact -1-acc 3-carbarilate set of the contract of t	metnylsulienyibencene																					
is the control of the	methyithis-1-butamene													,								
1524 16.4 1524 16.4 1525 16.4 152 16.5 152 16.5 152 16.5 153 16.5 154 16.5 155 16.5 157 16.5 158 16.5 158 16.5 158 16.5 159 16.5 159 16.5 150	methyltricyclatl,2,1,4,2,7lact-1-eme-5-carbenylate													7.72								
1524 10.4 1524 10.5 152	netayl-2.4-pentanediol																					
1524 16.4	n-weaths-4, 6-dress																					
1524 1524 1334	n pethyl lutidos		=	₹.																		
Total total	asychalene	1321	全																			
ante est est est est est est est est est e	Brand																					
nté nté maine de 3 de 3 de 3 de 3 de 3 de 3 de 3 de	HORDE					, •																
10.1 10.1	n.n-arbatylacetsaske					÷,																
ande see 2 ande see 2 ande see 3	n. n. dampetinakinenentanane																					
astife lectyll area lectyll area 21.5 11.4 11.4 21.1 11.4 21.1 11.4	1-pervise tusiés																					
All debyte sinde	a-merbeiberhannne ?						5.5															
20.5 11.4 11.4 11.4 41.1	a a constant and a series																					
21.5 11.4 11.4 11.4 11.4 11.4 11.4 11.4 1																						
21.5 11.4 11.4 11.4 21.5 21.5 21.5 21.1 11.4 11.4 11.4 11.4 11.4 11.4 11.4	u.e .air (1-achticen)(aice																					
21.5 11.4 11.4 21.5 21.5 21.5 21.6 21.7 21.7 21.7 21.7 21.7 21.1 21.1 21.1																						
11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4	a-tricectuse											, ,										
11.4 Lifetyae Lifetyae Lifetyae	octafecanaride											:										
larypack) barpack) staid acid in acid in acid in acid candel aci	octatecanetate)?											-										
Strick and a series and a serie	octaseic acie												_									
strict ex. a acté aintryl I no acté no acté a systemaralderac a systemaralderac a systemaralderac is rogenesi	pentacularephenei																					
di.1	ptendi																					
d1.1	pomosorothiche sein																					
Li.1	propagie aciá																					
letrae	prosessediantryl																					
lebyae	propart																		•			
lebyde	propanenc acid																					
pytralme p.tsprobylem.rpldebyde p.tsprobylem.rpldebyde p.tsprobylem.rpldebyde p.tsprobylem.rpldebyde tetrachietopenaeve tetrachietopenaeve	programme and a second															7.5						
p-tappestraidebyde sijossme sijossme tetrainintsphene	pyridike																					
## SELECTRE	p-tsapronylbentynidehyde																					
sulur terranistammaree terranistammaree	El forme																					
tetrachistopenase.	seller																					
: ettatai etaparaal	tetracularmentene																					
	Intractation of the second of																					

(2)

malyticus Results for Tenativesy Scientified Coopenies by SCATS Analysis

Han-target andigtes	3	21919	, 191	$\frac{1}{10000}$	120 E00	1978 SI	£929	15820	1 82635	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1001	70 70 70 70 70 70 70 70 70 70 70 70 70 7	* 53	· S	3 2	**	346.		1284	3	3		~
tetrachiscutaname tetracpladeptae tetracpladeptae tetracaname tetracaname tetracaname tetracaname thisphes trisphese tricpladestee tricpladestee tricpladestee tricpladestee trinchyladestee trinchyladestee trinchyladestee trinchyladestee trinchyladestee	1		1				÷	_								¥.	•						
rylese 321 irise 520 irise 120 irise	•		<u>F</u> E		-											~ %	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			!			
S-sethyl-1, J-stathnase	16.5		=	=	-	=	_	2	-	-	-	-	-	=	-	•	-	1.4	~		-	-	•

Ť i.i 12 9 21.3 WENETZ ETWONE OF CHROOMES 635 ait pastic kprocurbon altase calorisated coposed ratine compound

150
155
11rese or alcohol
152
11state or altere sites ŧ

32.9 37.8

6.35 11.2

1.51 19.5 . 53

5.a6 35.5

=

5.61 13.3

19.1 36.2

17.1

:: :::

D-552

daniptical Bernits for Tenatively Generalies Coopenses by CC/85 daulyms

Non-target analytes	101	\$1919 21919 \$PB16	111	1910 1200 1201 1201 1202 1203 1203 1203 12	20 89	#Z# #I	E120 12	1 1283	102035	92635	18820	15831	65924	3005	22	¥.	2 2	245	7254	3	2	į	3
		11.5		22.5								2.7											
123		9.3							5.6		6.6	7											
* and		3.										2						1	_				
100																		:					
Bicycle compression			•																				
7.0																							
****												6.63											
27.																							
calsrehytracarum																							
72																							
55																							
bicycle se tricycle compensé																							
atrepette cassonad			-									=											
631												•											
alences or uncaturated fatty seeid												•											
cicesel																							
\$63																							
£45																							
195																							
Libre																							
nerd or alcohol																							
611																							
149																							
638																							
aliphane eyelie conspend																							
phybalate																							

	4- a-target panytes	85642 95465 11862 22821 22824 22658	12922 2	24.14.22	77	PZZ 65	3 60 33	2022	2262 2266 2364 2382 23645 131-13 23-131 23-132	151.23	152 231	25 2316	ing min		1113 BI	23175 23175 23162 23163 23165 23120 23120 23150	3	7	750)2	3
10 11 12 13 13 13 13 13 13	A THE STATE OF THE	4 4 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5													•	•				
10 10 10 10 10 10 10 10	Marie City of work work				m					-		≓		17.7	2.5	=			-	
10 10 10 10 10 10 10 10	arriversity of the first				. 7									.5.		•				
1 1 1 1 1 1 1 1 1 1	1.2-tricaloreclasse				•	:					15.3			Ξ		3				
1 1 1 1 1 1 1 1 1 1	i.ia.id-tetrasethyldetadecade											_					:3		.	
1 1 1 1 1 1 1 1 1 1	i.18-trimethyl pentanetane		=													=	:	ä		
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	sic-echiperili paraziate										6.61				¥(::				=	
14.5 15.3 15.4 15.5	prelactae	9					•				<u> </u>									
12 12 12 12 12 12 12 12	Istuerrest											5.	7	\$.5			=	•		
12 24 12 24 12 24 12 24 12 24 12 24 12 24 12 24 12 24 12 24 12 24 12 24 12 24 12 24 24	ciopestabble		=	i										.i.						
1. 1. 1. 1. 1. 1. 1. 1.	ingecaseic reid		•	į								7.7								
1.00 1.00	el consise		3	ē.							P					=				
1.00 1.00	Penet costae		31.5	2						,	-	- '-	-			-			!2	
1, 10, 10, 10, 10, 10, 10, 10, 10, 10,	rest ad ectate		77	<u>.</u>						7.85	· :	= ;				•				
13 14 15 15 15 15 15 15 15			74:	:			٠			7.7	7.6	: :								
1.15 2.16 1.15			197	5						7:17	3	•				1			, .	
11.2 12.4 13.5			=	Ţ,							1,31	=					3		• :	
1.2 1.2 1.3 1.3 1.5				471								#		_			•		Ţ,	
11.2 12.4 13.1 14.4 13.1 14.4 13.1 14.4 13.1 14.4 13.1 14.4 13.1 14.4 13.1 13.1 14.4 13.1	Letrasecone		<u> </u>	9						7.67	4			_			=		ន	
13. 15.4 15.1 16.2 15.1 16.2 15.1 16.2 15.1 16.2 15.1 16.2 15.1 16.2 15.1 16.2 15.1 16.2 15.1 16.2 1	talecase.		į	***																
1 1 1 1 1 1 1 1 1 1	Checibold Scif						:							1:						
111 Sa.7 111.	CERCI I GEGECHERE						Ė		•		•									
Hill 24.1	f jietrasjureizzas											<u>:</u>								
111 26.7 11.3	NITES WITH LESS THAN 10 OCCUMENCES																			
#### #################################	- as as not trilling became																			
antiples of the state of the st	1.1.4.5.7.1-beptacylaruorushe																			
binne astypeenititainne astype	2-gichtoroethane																			
astypeedictassee astypeedicta	2-41Cs lerestarse																			
111 24.1 H.1.3	2-dickiereprepene																			
111 24.7 H13	i cyclopentatiese																			
## 111 24.1 H3.1	1.6-41czathrerae																			
# S4.5 H14 S4.5 H13	J-ditnislane																			
111 24.1 H.3	3-dithelane-2-these																			
34.5 Ed.5	4-cyclesctatiese																			
# 24.5 H3	4-41th: 42																-	٠.		
34.5 SA.5	d.enthine																•	!		
111 24.7 H.1.3																				
111 24.i	property - merneryments refusions																			
111																				
iit Ed.5	1 2 - Percel populational																			
181.	statistical and property of the control of the cont																			
int sa.i.	A terminal descriptions																			
;;;;	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		ī																	
	. s. je. je - tetraetnymeraerome		:							5										
	.o.lu.id-tetrusethyioetottene										1.3									
. B. II. I - CCCCARCES FREED FOR	in lo. if-tetrametry pertadecase																			

Analytical desaits for Tenatively identified Compounds by UCMS Analysis

	ibe-tarjet malyten	2964	3	7411	12021	2 32427	1581	127 658	90EZ 99E	52062 H	1 I I I 1000 001-12 00112 00112 00112 00112 00112 00112 00112 00112 00112 00112 00112 00112 00112 0000 00000 00000 00000 00000 00000 0000	241-EZ H	2 52162	116 2316	1112 111	1 23179	29162	3183 2314	23163	terte te	14 34 14
1444 1641 1643 1644 1644 1644 1644 1644	i-actaylepelasose																				
Here Here	-sethy -2, 6-pestabol -sessana																				
6.8 4.4 10.	2-i -methri-z-iuryl)-Z-cycloyeates-i-one	_													=	74					
16. 16. 16.1 16.1 16.1 16.1 16.1 16.1 1	3,1,5-trusthylcycloberanon																				
6.15 d.1. 10.4 1	5.5-dimethyl-1.2,4-trithiolime																				
6.35 d.1. 16.4 1	l-setaylherase																				
6.15 d.1 16.4 16	-sethpi-1, 1,5-beratriese																				
10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	-hygraty-4-wethy1-2-pentanone																				
1.15 d.1. 1.16 d.1. 1.17 d.2. 1.18 d.1. 1.19 d.1. 1.19 d.1. 1.10 d.1.	-exatricyctot2.2.2.8,2.8;-eccas-i-el														1						
16. 45. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16	cetapenone																				
16.8 (1.1) 16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4	Stabencese																				
16.4 d.1. 16.4 d.1.	e42343e																				
Had the state of t	ercothusee																				
Had that the state of the state	Heyerbergerene																				
that that the state of the stat	1.c. pc1ef 2. 2. 1 (bept-2-en-1-e)					•															
16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4	n stepji-ti				2	- -															
14.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1	ntyl sciateciaesie																				
16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4	mtrigiresiace cate																				
16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4	ntylbetadecanoate																				
16.4 16.4 5.44 5.44 5.44 1.44 1.44 1.44 1.44 1.	Bierafers																				
16.4 16.4 3.44 16.7 16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4	siocoeckyi paesai																				
14.1 14.1 15. earl 15.1 15. earl 15.1	tiere-sethyl militarylaniae																				
16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4	belest-1-ese																				
186.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1 1	MS issuer																				
16.4 16.4 15.44 15	relater 2000e																				
16.4 16.4 15.14 16.4 15.14 16.4 15.14 16.4 16.4 16.4 16.4 16.4 16.4 16.4 1	polopestes-1-es:																				
16.6 (4.6) 15. (4.7) 15. (4.7) 15. (4.7) 15. (4.7) 15. (4.7) 15. (4.7)	conete acid					<u>:</u>															
16. 16. 16. 16. 16. 16. 16. 16. 16. 16.	ekydrosyraa																				
16.1 (4.4) 16.1 (4.7) 16.1 (icalerotentene																				
16.1 (6.7) (bert restaulate																				
16.4 (a.s.) 16.7	thydrotynethylbentoste														Ė	_					
15. 18.5. 1.1. 18.5.	Betay Batasatata													•				.			
15. tes.7 15.5 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7																					
16. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18	26116111111111111																				
16. 18. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	mpenyl ether																				
16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7						-								-		_				5	
4.	7	•				, ;								•					٠.	•	
41 5.54 15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9	MEC3401C BC18																			41.3	
16.7 5.55 1.1.	187 i beatene																				
£.5t	etacalershicycasbeptese								=	_											
•	ptachlareatcycleiz.2.fiBeat-2-eme										15.5					2					
	entacalero-arcyclofz.z.lihestane																				
1 T																					
											-				-						

danytical Results for Tenatively Toestified Concenses by CC/IS Analysis

1.2 1.2	be-tirget assiptes	**************************************	21 20011	177 178	15822 12	25022	2 85622	17 YEAR 23	## 53	161-12 51	135 13	112 21	1162 21	1 2313	2113	2 20102	163 231	15. 23.04	*152	76052	8
1.55 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.55	bersteenstate																				
1.55 11.5 11.5 11.5 11.5 11.5 11.5 11.5	. 900																				
155 at 157 at 158 at 15																					
155 117 117 117 117 117 117 117 117 117	***************************************																				
155 167 167 167 167 167 167 167 167 167 167	datri estassimente																				
15.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	the tribe acree														**						
1.55 #1.50 #	propriorne																				
11.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3				-	ż																
15.5 20.1 15.5 20.1 15.5 20.1 15.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	her rees tal debyae																				
15.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5	2). ester of diligarosphesions acid																				
12.5 26.1 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	hyl octube																				
12.5 12.5 12.5 12.5 12.5 12.5 12.6 12.5 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6	17lbescylastae									=											
12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1	bylethy i benstae																				
13.4 12.1 12.2 12.2 12.2 12.2 12.2 12.2 12	himpchalese																				
13.5 1.64 13.4 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14	hylau!(arythenrene							9.2						26.7							
12-7 12-7 12-14 12-1 12-14 12-1 12-15 12-1	bylthis-i-butagese																				
1.56 13.4 1.56 13.4 1.56 13.4 1.58 13.4 1.58 13.4 1.58 13.4 1.59 13.4 1.50 13.4	bptrncpelu(3,1,1,4,2,7)oct-3-ene-5-c																				
1.64 15.4 1.64 15.4 1.65 15.4 1.65 15.4 1.65 15.4 1.65 15.4	by1-2, 4-pentanedsos																				
1.64 B.4 1.64 B.4 1.65 B.4 1.1.5 1.1	esthi-4.b-drese																				
1.14 13.4 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14	Pibyl latidos																				
1.61 15.4 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5																					
1.61 15.4 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63				12	*																
14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5				:	:																
1.6 13.4 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14																					
1.64 15.4 11.5 11.5 13.5 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6																					
1.64 15.4 11.5 13.5 13.6 14.5 1																					
8.4 8.4 8.4 8.4 8.4 8.4 8.4	edytaconomics																				
1.64 15.4 10.5 1	trajac menerales .																				
1.66 19.4 10.5 1																					
1.14 19.4 1.15 1.15 1.15 1.15 1.15 1.16 1.16 1.17 1.18 1.18 1.19 1																					
21.5 8.66 1.4.5 1.4.5 1.4.5 1.4.4 1.	Taylor and the second s		-	11	=																
1.5 21.5 1.5 1.6 i.4 i.4 i.4 i.4 i.4 i.4 i.4 i.4 i.4 i.4			•	:	•												Ξ	۷,			
1.5 21.5 34.6 34.6 6.4 6.4 6.4																					
S. ii																					
S. S. S. S. S. S. S. S.																					
4-thiste soid 4-thist soid 4-thiste soid 4-thist soid 4-thiste soid 4-thist soid 4-thiste soid 4-thist soid 4-thiste soid 4-this	THE PIOCE PROPERTY																				
	Ī													•							
ataity! ataity! ataity! i. 4 i. 5.4 i. 6.4 i. 6.4 i. 6.4 i. 6.4 i. 6.4 i. 6.4 i. 6.4 i. 6.4 i. 6.4 i. 6.4 i. 6.4 i. 6.4 i. 6.4 i. 6.4 i. 6.4 i. 6.4 i. 6.4 i. 6.4 i. 6.4 i. 7 i. 6.4 i. 7 i. 1 i.	postothiste meid								•					-							
anattyl i i ic acid ecite	proces scrid								=	- -											
in the second se	pescentitryl								7	•											
ne acid entrue e	1100														-			-			
erittee eri	Manage Beid																				
e ogribensvaldebree e lesensvaldebree 187 seensvaldebree 187 seensvaldebree	24,000,000																				
oyi bentra idebye. B. 100 reserve. III nawe e i																					
derbenswe 18.5	soncort bearn idebase																				
19.5																					
19.5 Israelee	100																				
	rachlerogentene							23.5						9.4							
	raceserenses																				

D_556

dealytical Seruite for Tenatively Inentified Consomer by 60/83 Analysis

tetraca lorsetasasse			•	9.45						
tetracyclokeptsoc				ž						
terratecasase acid										
tetradecassi										
Uroptene										
tolnere										
trickierabengene										
tricyclei2,2,1.02,6]-beptam-3-ei										
triethyl eater of phopheric acid										
criethyspeotybate										
tribethyl ester of possperuthione acid										
trimetaylbensese										
trinethylcycloherane										
rylene										
zylese 523										
ryleme 534										
'freen'										
2-oethyl, 1-(1,1-duethylethyl)-2-										
nethyl-1,3-propanetryl proprosace										
ethyl, methyl benzene										
ethyl disetayl beazese										
tedecyclesycthanel										
bistisseprapy) area		3.5								
exatricyclosectasose		15.2								
2.6-1-baty1-4-aethyl phenel										
trickleracyclopeatene										
5-echyi-5-nec.anyi-2,4,6(1h,3h,5h)-										
pyribidinetriose										
5-methyl-1, 3-ernthiane										

28.7 1.31 General grand

D-557

Analysical Besults for featurely identified Coopsades by GG/HS Analysis

	# 1 I T
lipe-target analytes	
413	
. 15	
979	
bicycle cespensé	17.1
954	
7	
chiscre yerocarion	
5	
53	-
sucycle at trieyele composed	
shepelic compound	
111	
atesed or mentarated for y acid	
alcuis	
ie.	
99	
7.0	-
altyne	
BCIG OF BICSBOIL	
17	
47.	
536	-
alippatic erclic compound	
pecealace	

.2

Assignment fessive fessively identalies Compounds by CC/BS Analysis

Bon-tarfet analytes	24111 24113		24127	01191 11192 11197 12197 12197 12197 19097 19097 121097 111097 12097 11097 12097 11097 12097 11107 12107 12107	1 25 2711	116 25	25 E8	111 268	992 51	92	1952 67	1 264	25065	25873	25003	10052	26405	y#952	12197	1 12192	92 RZ19	1 26	1 26	2
AMALTES WITH 10 OR BUIL OCCUSIONIES [1,1,2,2-tetranierostina [1,1,2-trichierostinae				~	17.1										1.55								1 2115	1
La. 18, 14-ternachiplerasesa. Ls. 18-triachip petasecae bigl-ethiberji petasae enpralacta	7	22	34	3	2	11 2353	<u>18.21</u>	216 31	375 27	ñ		23		1561			333		=			4	2 1	=
calarocessoe cyclopertacoe benedecamic acid						•	3				72	7	*	'		1.45	5	13.2	2	5.5				
1-tichtae 1-feetcitae						i	:								\$5.5 12.2	H		#: I						
1-teritateciae											11.5	100			3 12	7		3 3	##					
D-sesiectae															= :	= :		2	*					
a-perimenas a-terratectae															3			-	16.4					
ACCIDECIBIL ACIA					£	tš. 6 T.	1.8						14.5	_	£	2		7	[£]					
tetrazionethene Mi stetrabphedunas				1 2				53.5		**	122 23.6	_	12.6			2		2	÷.		***	151		176
SECRETARION OF RANGE COST OF PERSONS																								
1.1-bearechylthesethane				12							7.17	_												
1.2-dichleretase				:							•													
1,2-dichierethere																								
.,i cyclapeatagrese											7.1	_												
. J. V. C. Cleratical case																								
dithoùme-2-thom													25.4				28.4	18.4 £.85	1.32					
i,4-cyclosetastese																								
1.4-dather											4.4	_	:						;					
1,4-21(k)34e													2						2					
-preparate -t4-kydroxy-i-methoxypremallethassme																								
ž propasez																								
2.1.1-tricklersethmel																						•		
1,1-dichiere-L-methylbentyl alcohol																					•	•		
C.s. chiquada independent of the liferatement																								
2,6,19,14-terracky;pentadecuse																								
Z.m.ff.id-tetramethyihermene				11.5																				
Z.m.id.id-triramenty/pentadectae				::																				
される。このでは、このでは、このでは、このでは、このでは、このでは、このでは、このでは、				:																				

Analyticsi Sesuits for fenatively identified Conneads by Will Analysis

2-methylopolopontanone 2-methylopolopontanon 2-propassi 2-f-eculyl-2-forb)-2-cyclaponten-i-noc 3-f-eculyl-2-forb)-2-cyclaponten-i-noc 3-f-aculyl-2-forb)-3-cyclaponten-i-noc 3-f-aculyl-3-forb)-3-cyclaponten-i-noc				*******							
rechir-c.r-produce. 2-14-ectips-2-inri)-2-cyclopesten-i-me 2-14-ectips-2-inri)-2-cyclopesten-i-me 3.5-sneckpi-1.5.4-trytkisolme		;									
2.14-ectipt-2.inspl)-2-cyclapenten-1-one 2.14-ectipt-2-insply-2-cyclapenten-1-one 2.15-ennethyl-1.2.4-trikktoline	217	•									
1,1,5-trimethylopoleheranan 1,5-armethyl-1,2,4-trithiolane	•										
3.5-annethel-1.2.4-trithislane	\$ \$?	971									
			21.3			78. 4		3.53	1.12		
J-sech glactane											
3. metayl-1, 3, 5-bexattrene	į	:									
4-bidrory-4-nethyl-2-pentanose	5	5 21								<u> </u>	7.7
8-erstricycler2,2,2,8,2,6,-estas-:-ei											
acetophenase											
stidoksisek									,		
									2.0		
kensathistene 16.2											
herelogibydrapentadiene											
bicyclail. I, likept-i-en-i-ei											
ktpeenyi-ol											
batyl ectagecuseate				,							
mtylglycelacetzte		_		ž.5.							
betylnersåecsbeure											
chlereters	•										
Chineselly f plene i	Ħ	Ĭ									
chiore-orthy: sallatylable				i							
				36	•					3.4.5	
				7	-					i	
	21.7			:	•						
	:										
BECOMPIC SCIE											
and the second s											
dibtorates the bearante											
disembay pacthase	177										
es setar jastas see											
daethylsuline		9875									
disethyl trithiolane											
dippenyl etner											
	į	\$ 1 75								318	Ξ
iecume					35.6		Œ		-		
lodecassande									. •		
lorectant acid							3				
etaylbenrene											
beptachlarenceptiobeptene											
heptachiorontogeroj2, 1, 1 japp1-ene											-
septeculare-escyclaid.2. I)septase											
berschiernereyeletz.z.lbeptu-z-see										*	ç

analytical County for Tenatively Identified Compounds by GL/RS Analytic

Hon-terjet analyten	24111 24113	: :::	2 1211	7 221	1 118 22	51 319	957 (23	952 11:	92 51	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2601.1	1 26841	25166	(1952	26083	2 2983	2 5899	FE 9849	I 121 26	152 121	18 161	1 2613	26148
herutecusande						n.i				; ; ; ; ;													
bernote acid																		:					
persua																		Ē					
Persone :																							
impact of begreen																							
Lineace																							
sethorybears idehyte																				=		•	
sethyl ester of disydrospecasic acid																							_
sethyi octase																							
sethy i benzy i anne																							
setsyletsylbestes																							
sethylasptkalene											14										•	ï	
sechyinalisty then tene											2										•		
Sectificated - sections																							
metajitricjelej 5,4,1,8,4,7 met-J-eme-3-6	.										Total L												
recaylet, separated																							
b Print attitud																							
																						,	
To the state of th																							
n.n-dibatylacetaeide																							
a, p-dimethy beary inche																							
s-bergiacetaside																							
a-nethylaethannoide ?																							
n-nitrosotipropylanide								,	;												;		
n-n'-bin (I-methyletnyl) uren									Ž.		:										7	•	
n-propylycepante											. ·												
a-tridectae						٠																	
octaercanseite						Ē	3																
ectatecasethick											=======================================	_											
ectabole acid												_											
一つのでは、 できる ののできる できる できる かんかい しょうしょう しょうしょう																							
Marie and the same												_											
Majeria ecid																							
Proposition 1																							
Property acid																							
rear bearene																							
pridiae											15.3	_											
e-169pronjibentjaldekjae												17.7											
Libeare											1	â ;								_	17.	197	1
un) in											Ê										:	i	,
Terrisco de desente de la composición dela composición de la composición dela composición de la composición dela composición dela composición de la composición de la composición de la composición dela composición de la composición de la composición del composición dela composición dela composición dela composición dela composición dela composición dela composición dela composición dela c																							
Cettachioresteme!																							

danigerent flegelts for leastorely identified Compounds by SC/88 Annigers

		*******	******	 																	
terrachiorostassae			:							:											
Letracyclobeptuse										Ξ;						-					
Letraecessic Acid										77.7						Í					
tetrodecama .											•	,									
thispene												7		2	•					•	=
talacre										174	Ē			1	•					•	:
Lrich i oroben zene																				7	15
triepcho12,2,1.42,6 -heptan-1-e1																				•	į
triethy ester of proports acid										;	Ę										
trethriphospate										71										7 22	
trinethyl ester of phosporathion acid																					
trusthylbranes																					
trineligiciclobetane											::										
Tiese																					•
milene 527																				2	7
Triene Sil																				=	7
free																					
2.combal Let Lebrashookshalba?-																					
action of Landson, and appropriate																					
mereji-i'a-hichemeri'i bichineere																					
etayi. methil benzeme																					
etayl disetayl bearese																					
describing the second of the s																					
bisiisepropyliarea																					
eratricycleectaese																					
2 5-1-batel-4-methyl mbenn!																					
tichlorecyclopentons f 6 9 f. Cith. 16 fb																					
3-gethyl-1,1-amethode													•	•							
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	-	~	 _	_	-	-	~	-	17	21	=	~	=	=	-	15 14	.79	-	=	~
General groups of compounds																					
altese												•		,				_	:		
635				_	2					2		-		: :		7			7		
aliphatic hydrocaraes														-	_		_				
nine																	-	_	-		
chlastated commende																					-
**															=	14.2 53.5			77.7		
Statist consense											_							-			
954															-				=		
322															*	1.41 13.3			3		
sikene or alcoses					_									-	-		_				
100															•	11.t 15.h	14		2		
																	•	-			

furlytical Secults for Lenatively identified Communic by 42/113 Analyms

mon-target analytes	I I I I I I I I I I I I I I I I I I I	1 152 1492 824	I 2666 26	192 22	13 2661	36635	12 59952	1 1	I 26128 26133	I 26131 26149
F9		***************************************					7 55		412	=
							•		7	44.
919	10 T						16.1		: 1 .	23.2
bicycle cosponal	£-7]	•	656							
151			-							
2214e		•		•						
568		•		-						
CRISTORNACIONE			•							17.4
534			•							
619										
bierela ar trierela campana										
alicyclic compound			•							
sicanol or meraturated latty acid										11
ziconei		•								
79		•								
617										16.2
35										£.13
alayre										T: <u>=</u>
acid or aicobel										
637										
616										13.4
19										11.2
sliphatic cyclic compound										11.5
pathaiste										

A

12

2

eathinest Serute for featurely identified Compounds by CC/BS Annyois

11.2 14.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1	5 7 4 7	22 E 66.1											į
17.2 13.4 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15		_											
16.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1	5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	-											
16.1 194 16.1 16.2 1818 15.3 15.3 18.3 15.3 18.3 15.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18		-			11.1	=	7.	14.3		38.2	7		
16.1 19.1 15.2 15.1 15.5 15.5 1	7.	_			19.1								
19.1 352 4819 5.18 19.2 5.18 15.5 15.5 15.5 15.5 15.5 15.5 15.5	7.23 2.3 2.3	-	£.1										
11.2 5.18 15.5 15.5 15.5 15.5 15.5 15.5 15.5		-						1					
11.2 5.24 15.5 5.34 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.		_				خ	÷.	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		: :	~	;	
19.2 5.38 16.4 16.4 18.3 17.2 334 18.3	ş: ;	ŧ		3	ž		=		5	:	_		
11.2 5.18 15.5 15.5 15.5 15.5 15.5 15.5 15.5	5; z		~	7.0				=		2		970	
15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4	5; a												
16.4 17.2 31.4 18.5.1.	<u>.</u>					•	6.12					7	=
16.4 Sin.i. Sin.	1 2	=								13.3	_		
16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4	7	23											
16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4		2								3.			
16.4 17.2 33.4 18.5 15.5 15.5 16.4		**				7				≓	14		
17.2 33.4 III	21.5	2	_							Ä	~		
172 334 10 10 10 10 10 10 10 10 10 10 10 10 10		*	4 20.1										
11.2 J.14 ILE		Ë	~										
17.2 3.14 IS	24.3	\$:E										
172 334 CE3							<u>::</u>					1.37	
112 334 CE3													
Additis wim 1253 Tass to uccessings [.fbiscoets/fits/eletane 1.2.1.5.7.7.3-beptachernersere 1.2.1.5.6.7.3-beptachernersere 1.2.4cchiscoets/eletane 1.2.4cchiscoets/eletane 1.3.5-dichiscoets/ele 1.3.5-dichiscoets/eletane 1.3.5-dichiscoets/eletane 1.3.5-dichiscoets/eletane 1.4.5-dichiscoets/eletane 1.4.5-dichiscoets/eletane 1.4.5-dichiscoets/eletane 2.3.2-trablesets/eletane 2.3.2-trablesets/eletane 2.4-dichiscoets/eletane 2.4-dichiscoets/eletane 2.5-d			7.7			<u>:</u>			11.6				
i.l-issued&ficialectame i.l-issued&ficialectame i.lissued&ficialectame i.lissuedeme i.ldeclarateme i.l													
1,2.1,4.5.7,4-epichiolotichae 1,2.1,4.5.7,4-epichiolotichae 1,2.1,4.5.4,4-epichiolotichae 1,2-dichiorethae 1,2-dichiorethae 1,3-cycloperioretee 1,3-cycloperioretee 1,4-cycloperioretee 1,4-cycloperioretee 1,4-cycloperioretee 1,4-cycloperioretee 1,4-cycloperioretee 1,5-dichiorethae 1,5-dichioreth										;			
1.2-dichievetiane 1.2-dichievetiane 1.2-dichievetiane 1.3-dichievetiane 1.4-dichievetiane 1.3-dichievetiane 1.3-dichievetiane 1.3-dichievetiane 1.4-dichieve										2	•		
1.2-declarections 1.2-declarections 1.3-declarections 1.3-declarections 1.3-declarative size 1.4-declarative size 1.4-declarative size 1.4-declarative 1.4-dec			1										
1,2-dreinspropere 1,1,4-dreinspropere 1,1,4-dreinspropere 1,1,4-dreinspropere 1,1,4-dreinspropere 1,4-													
1.3 crelatore process 1.1.4-trinitalise 1.1.4-tr													
L.Jfurnitionales L.Jfurnitio													
1.3-criticians 1.4-criticians 1.4-criticians 1.4-criticians 1.4-criticians 1.4-criticians 1.4-criticians 1.4-criticians 1.4-criticians 1.4-criticians 1.4-criticians 1.4-criticians 1.4-criticians 1.4-criticians 1.5-cr													
1. d-critician-2-three 1. d-critician-3-three 1. d-critician 1. d-thiss 1. d-thiss 1. d-thiss 1. d-three 1. d-three 1. d-three 1. d-three 1. d-three 2. 2. 2-tribic-critician 2. 3-d-critician-3-ectivities 2. 2-tribician-3-ectivities 2. d-critician-3-ectivities 2. d-critician-3-ectivities 2. d-critician-3-ectivities 2. d-critician-3-ectivities 2. d-critician-3-ectivities 3. d-critician-3-ectiv		31.1		2									=
1.4-cyclooctanee 1.4-dythias 1.4-dythias 1.4-dythias 2.4-dythiase 2.2.2-cyclooctanee 2.2.2-cyclooctanee 2.2.2-cyclooctanee 2.2.2-cyclooctanee 2.3-dythiaseeckanel 2.3-dythiaseeckanel 2.3-dythiaseeckanel 2.3-dythiaseeckanel 2.4-		}		,				2.6					1.5
Li-dithias Li-dithiase L-forpasise L-forpasise Z-forpasise Z-forpasise Z-forpasise Z-forpasisisethanj Z-forpasisisethanj Z-forpasisisethanj Z-forpasisisethanj Z-forpasisisethanj Z-forpasisisethanj Z-forpasisisethan													
1.4-dithiame 1-propanime 1-if-hyrriy-3-etharyacoollethamee 1-if-hyrriy-3-etharyacoollethamee 2.2.2-treblorethami 2.3-dichor-2-ethylesayl alcomi 2.4-trabasnisinediame													
1-ft-bpstry-2-etharypated itimate 1-if-bpstry-2-etharypated itimate 1.2.2-trebiorethard 2.3-trebiorethard 2.3-trebiorethard 2.3-trebiorethard 2.3-trebiorethard 2.4-trabateisatedtaat		===	7										
1-(4-bparary-3-ectharypaesellethasese 2.2.2-trachesectharel 2.3-4-trathesectharel 2.3-4-trathesectharel 2.3-4-trathesectharel 2.4-trathesectharel 2.4-trathesectharel 2.4-trathesectharel 3.4-trathesectharel 3.4-trathesectharel													
E promanene 2.2.2-trotineetkarol 2.3-4cziono-2-aethylbessyl alcomo: 2.4-tandazsindimediame												5	
2.2.2-trickloreetbarol 2.3-4czloro-2-aetbylbessyl slosos 2.4-tandassitdisedtsoe													
2.3-4cmlore-2-ethylbesyl slones 2.4-tmdassitäinedtme										7.5	•		
Z. 4-tatdazoitátmedtane								;					
								£.					
2, i, 19, 14-tetraethylaernermae										±	_		
Z.b. 10. 10-tetraethylpestadethae													
7:57													
t.b.10.10-tectagetagapenanee													

	5	51 27055 21662	28025	106E 326	13663	Set 25et	3 35616	35037 39	638 3565	3 35654 3	1 15665 3560	3 35666	36661	965 360	Fe9f 94	2
	2-welkyleyelopentanane 2-welkyle2, 4-pentanan															
	2-propassi 2-q-sethyl-2-[azyi]-2-cyclapentm-i-ase															
	1.1.5-transthylcpcloberasen 1.5-transthyl-1.2.4-tribialese					59 .1								21.1		
	3-methylbernee												9831			
	1-methyl-1, 1, 1-heratriese															
	4-bytrary-(-melbyl-2-pentanose A-maranenenenenen 2, 2, 2, 8, 2, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,															
	aretapease												211	27.7		;
	Lildepentene														-	
	Entraire															
	Personal Laberta															
	http://www.myt.com/ http:/														i. 11	
	hipteryl-ti					. T	.2				;				•	•
	brigi actatectavate														<u>~</u>	7
1	burillirenneceate															
n -	outy i betraterasente										9.					
56																
5	reterent to the property of th													21	17.1	
	CHR Isoser															
	cycleterasese															
	cyclopester-!-sae															
	Gecassic acid	:														
	desideosytes	•·											Sides	1 Same	:	
	CICA Jorden Cente														:	
	CINCOCTIBETER															
	dispersion of the contract of															
	describelishts.															
	disette is alfide															
	diserbitribislase												;	•		
	sippenyl ether												<u>:</u>	_	=	
	童															
	éscenne					II.5									1-	5
	docesamide		:												3	7
	CARECONSIC ACIÓ		3													
	ethylèestene															
	bestach torest cytishestese															
	herraniersmerciel2.2.1ibest-2-ese												Ič			
											3.62					
											!		<u>.</u>			
	Principle Control 6-6-14 Brown - 6-15															

designent besehre for feastwely identified Coopenie by COM daulysis

19 19 19 19 19 19 19 19	emeter eneliter seet seet statt 2001 2001 1000 1000 1000 1000 1000 10					
1,	kruletannisk					
### ### ##############################	במספוב הכוק				111	
1948 1948					2116	-
184 184	Creating action colors and a second colors and				:	
18 18 18 18 18 18 18 18	seet/likestre:					
10 10 10 10 10 10 10 10	make a property of the scare				Ξ	
10.20 10.2						
He had been described by the had been desc	etholypertained yes					
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	publication of the project of the publication of th					
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	othy (beery harne	=	<u> </u>			
1. 1. 1. 1. 1. 1. 1. 1.	etajletajnentese				Ξ	
1.00 1.00	ethjimpthalene		•			
	\$-64 (334)		-	•	13.5	:
	ets/tricyclei3.2.6.0.5.7]ect-j-ebe-j-c				,	
	ethji-č. t-pestanesiol					•
	-bestha-4, 4-drene					=
	ectayl luttons					
15.1 15.3	hydratese					
15.23 15.24 15.25 15.2						
9.00	a-ciletriacetrande			5.3		
Size Size	a-disethilbestjimine	- ÷				
	-brytacetanide					17.4
	-beisylbethassalse ?					
	ar crosses propries de					Ξ.
12.1 12.1	a'-bis il-betapsetapli urea					
12.18 12.1	ae toedean Lieux.					
15.2 15.2	;	**				
######################################		7				
15.2 15.2	בינייני אוני					
15.2 15.3						1.5.1
15.3 15.3						
1578 25.3	supporthidic acre					
	ette					
1.13 1.15	estate (st.)					
In the latest the state of the	[Japan]			•		
Herpleck yee 13.1	reposet beld		•	•	1 20	
promatriales trees					i	
13.3	TO THE THE PART TRANSPORTE MADE TO THE PART TO THE PART TO THE PART TRANSPORTE TO THE TRANSPORTE TO THE TRANSPORTE TO THE TRANSPORTE TO THE TRANSPORTE TO THE TR		••	3.4		
[1.3]	Ilegae					
18.5						
	etrachiarabenreae				13.5	

Analytical besults for fentively identified Compands by GC/RS Analysis

													,				***************************************				*****
		2			117	H-1			¥:13	_									# 2	£	
														4				~ -	7. 69.		(e)
			-	· •																	
erel	₁•	•	-	(M)	sn.	,- -	-	•	=		_			•	-	=	.4	.an	2	-	-
												_				•	~	 ::	•		
					•					_	_										
	-		 		 										1.4	1.4		1. i i i i i i i i i i i i i i i i i i i			

•

THE THE PART SHALL 7 Bos-target maxifted

}

t

=

Analytical Leguits for Teastively Identified Compounds by GC.MS Analysis

Here is the interest of the in

Bes-target anniptes

11.1.2.1terracidarectuse 11.1.2.1.etracidarectuse 11.1.2.terdiorectuse 11.1.2.terdiorectuse 2.1.1.1.teretrusethiferuse 2.1.1.1.teretrusethiferuse 11.1.1.teretrusethiferuse 11.1.1.teretrusethiferuse 11.1.1.teretruse 11.1.1.teretruse 11.1.1.teretruse 11.1.teret		7									
ortane methylkeniene yli petialete yli petialete											
methylberniecae si peisidecae yli pitalete gri											
yt pertederane yil petisulete ets		13.9	_								
yli patúalete gai											
7		Ħ								2.13	7.1
7	136 86.3	11.6		131		121					1
epelogentunane Nemakempole acid							1.1		\$72		15.
hermecannic acid							;		ŀ		•
	6.17		•								
a-elcustae			•-	ũ	_						
s-benetzestae		1.11	_								
1-legitatectae		37.4	_	**	_			Z.3			
3-leximecane		22.5									
1-1004621800		73		=	_			1.49			
a-pertadectae											
a-tetradecine											
ectaficase		14.3	_	1.1							
ectadecaseic acié	6.3										
teirachlervetheve IV (teizabyörviuran)	11.2		<u>1</u> .1		£. £				39.5		
PENESTRA DE SEAS TEAS DE CONTRACTO											
1.2.3.4,5.7.7-hentackiersersere											
1,4-dichlorectione											
1.2-dickloroethene											
f.Z-incelerspropene											
1,3 creispentadaese					£.5						
1, 3, 6-storathrotane			-								
f.J-dithininae	7.7										
1.3-dichrelane-2-thione		7-41									
1,4-cyclooctasses											
i.4-dichias											
1.6-dithuse											
l-grupasine											
[-id-kydrasy-3-acthesyphenaljetkanene											
2 prepares											•
2.2,2-tricklerecthmel											•
Z.3-dichlore-2-methylbensyl alcobal											
2.4-instazalitinedime											
2,5.18.16-tetraethylbersécoue											
2.4. in. 14-tecentifylpm adecane											
2,6.10,14-tetrasthylaramene											
2.6.18.16-tetragethy/pentadecuse		17.1						5.51			
Z. f. 18, 13-Cetragethy bentances											

Analytical Benults for Pentively Identities Convenses by CAMS Analytic

1.	Mon-target analytes	15644	35.030	36112	36139	17305	1971		1 21511		1726	nemet kent tille skill triff triff triff triff triff triff triff triff triff triff triff triff triff triff triff	F 52	=					
## 16.4 B3 B3 B3 B3 B3 B4 B4 B4 B4 B4 B4 B4 B4 B4 B4 B4 B4 B4	2-ectarications									_	1-1								
16.1 B.1 B.1 B.1 B.1 B.1 B.1 B.1 B.1 B.1 B	2-methyl-2, 4- pentanol																		
3.4 III B.3 III B.4 II	2-properel																		
1.1. 1.1. 1.2.44 1.1. 1.1. 1.1. 1.1. 1.1. 1.1. 1.1.	2-(4-methyl-2-furyl]-2-tyclopentes-1-ove	·							-	<u>:</u>									
13. 13. 13. 13. 13. 14. 14.2	1.1.5-trinethyicycloderason																		
13. III 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	3,5-draethyt-1,1,4-terthiolane			70.8															
13.44 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5	J-methy besame																		
11. 2.46 11. 2.46 13. 13. 14. 2.46	J-methyl-1, 3, 5-beratriene																		
13 13.4 13 64.2	1-hydrary-4-methy]-2-pentanone															=			
11. 12. 13. 13. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14	f-exitricycle: 2, 2, 6, 2, 6; -ectae-7-el																		
	ace temperature																		
	atidepetrae																		
	Measures are																		
	brere inch becraent mires																		
11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	by curlett 7. Libeat - 7-ra																		
11	himsendi-mi																		
13 13 13 14 2.46 2																			
13 13 13 15 15 15 15 15	MULTI DELAMETER																		
11 13 14 15.46 11 13 113 113 114 15.2 10 115 115 115 115 115 115 115 115 115	Backillike incerare																		
13 13 13 14 15 15 15 15 15 15 15	bet fiberatecesour.																		
11 13 13 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	chlocatera																		
13	chloremethyl phenel																		
11 12.46 13.4 113 44.2 44.2 44.2 44.1 44.2 44.2 44.1 44.2 44.2	chiaro-sethyi cuiforplanide																		
13.46 14.2	r st-J-se																		
11 12.46 13.5 113 14.17 114-pt-12-ene 15.17 113 14.17 114-pt-12-ene 15.17 114-pt-12-	Cha tremes																		
11 **Example	crelohermene																		
19.5 113 19.5 113 19.6 114 19.6 115 19.7 115 19.8 115 19.9 1	cyclopenten-1-one																		
19.5 113 19.5 113 49.2 49.2 49.2 49.2	decise o acid																		
19.5 113 19.5 113 19.5 114 19.5 115 115 115 115 115 115 115 115 115 1	dehytrogites																	•	:
19.5 113 19.5 113 19.5 113 19.7 113 19.5 113 19.5 113	dichlorebessese																	•	.
79.5 113 49.2 49.2 49.2 1)bept-2-ese -1 beptace	dibeptyl phthulate			=															
### 19.5 113 49.2	dib perespecify lberseate																		
19.9 113 49.2 49.2 41.2.1 bept.2-ese 12.2.1 bept.ase	disetherysethme																		
19.5 1115 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2	dineray iphthainte																		
19.5 11} 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2	dinethyloulfide																		
49.2 pytene 1.2.1 Jbept-2-ene 12.2.1 Jbept-ane	dimethyltrithishane		19.5		Ξ														
tinestrae 19.2	diplent ether																		
cycladeptame cycladeptame cycladell.2.19bept.2me hecycladell.2.1beptame																			
tryindeptuse reprind 1.2.1 Magnetic cycles 1.2.1 M	decrease																		
crytaleptene crytaleptene tryctol 2,2,1 llept-2-ene htyptol 2,2,1 lleptane	and economic de																		•
etajiknice beptaniaratoretejelej 1.1. ilbept-1-ene beptaniaratoretejelej 1.1. ilbept-1-ene beptaniaratiara-hopeia j.1. ilbeptane	docessore será			4.7															
beptach inraticycladeptene beptachioratoryclaj 2, 1 lbept - 2-ene beptachioratoryclaj 2, 1 lbeptase beptachioratoryclaj 2, 1 lbeptase	etayibentree																		
beptersionabtrychell.1.11bept-1-one beptersiona-herciol2.1.11beptase beptenson	beptach formbacycindeptene																		
beptachlere-h.cyclel2.1 krytuse Preptusee	beptacalorabicycloj 2, 2, 1 beps-2-ene																		
A Company of the Comp	heptachloro-bicycio(2,2.1 keptase																		
	Peptiabone																		

Derachistabatadiese

Analytical Benutz for fenatively identified Conporads by COM Analysis

Gen-target maniftes

11.1 18.3 38.7 21.5 Ξ. sethyttricyclet1,2,1,6,2,7;oct-3-exe-5-c seideryventalákkyte belkyl ester at álkyttatykentale keld petkyl octase n-attrosodipropjinatie n-a -bis il-nechjietaj!) urea n-propjipropanie p-isouropy bearyaldebyce netryi-2, 4-pentanediol n-pentan-4,8-diene n nethyl lucidon n.n-disethylbentylnaine n-berylnoetride techutji ectadecazonte n-sethjipethinade : netayisaiforyibeareae pespecratidate acid propasts acid propasciatry! propasti nethylthio-l-batanone 1, a-gibetylacetsande **Cetrackistro-azeae** secayletayibeaceae ectafilentifanse octabaic ació pertuckioropiesal respropy lacazene verby inspilatione ectafecanethiel? 1500stylbentene propusete seid octadecumante bezséeznantée beranete acté erapy lacazene a-tridecane apthalese pyridiae n íosare ber320be Lyenene pessi 54:12

D-571

Cetta-Bintsabeas!

arelytical feruits for featively identified Coopsunds by OCAS Apaiyers

Mon-target analyten	16034 36	5	3115	13	385	26. 29.	# # # # # # # # # # # # # # # # # # #	20	112 111	11.	E .	11	E	=	=	111	111	111	3135	1	MALLE SELLE SELLE SELLE SELLE SELLE SELLE SELLE SELLE SELLE SELLE SELLE SELLE SELLE SELLE SELLE SELLE SELLE SELLE
tetrackierostansase																					
tetracyclobeptane																					
tetradecumus acid			?																		
tetradecasei			53.5																		
Chreptone																					
La Lateral Land Brown Company of the Children Company																					
tricpciol 2, 2, 1.02, 61-heptan-J-61																					
tricthyl ester of phopheric acid																					
tricthylphosphate																					
Interest entre of prosperatories and																					
tracthylepclokerane																					
rylece																					
125 analiz																					
rylene 530				•																	
Tress 7-resis [-4] 1-4-methy ethy [-2-																					
octayl-1,3-propagetry propionale																					
ethyl, sethyl bengene																					
ethyl dimethyl nengene																					
codecycloryethand																					
binissprent[lures																					
erecticyclesconders.																					
trichlerectcherene	5.5																				
5-ethyi-5-sec.onyi-2,4,511h,3h,5hi-	3																				
pyrisidiaetriose 5-methri-1,3-szathiane	3	E .1																			

General troups of compounds

=

15.

5.13

D-572

Analytical Besults for Tenatively Identified Compounds by 95/HS Analytis

Noa-target saalyteu	1896	36838	36112	36139	37.165	METE	17308	37369	31312	11311	17320 3	MANNE SELLE BELLE BELLE BELLE BELLE BELLE FALLE TATE BELLE ELEGE BELLE BELLE BELLE BELLE BELLE BELLE BELLE BELLE	343 33	3734€ 37347 37349 37353 37354	11 11	EE EE	21 13	St 113	1715	31359	SOCIET
				医尿管 医牙 电电电池 医子子罗伊氏性 电电子 医多质性性 医医性遗传性 化十分 医中心																	
115																					
651																					
636																					
Bicyc.p compensal																					:
959			74.1																		2
Mide																					
77.0																					
Chisrapperecarbon																					;
7.00			7.12																		¥.
573			11.3																		=
bicycle or tricycle compound																					
alicyclic compound								2													
(31																					
alcoast or measurated fatty ucid																					
aicobel																					
														•							
119																					
Litte																					
acid or alcohel			н																		
103																					
946																					
634																					
aliphatic cyclic comports																					
pthaiate																					
	-				-				*												

TASK 4 GC/MS NONTARGET DATA 3RD AND 4TH QUARTERS FY1986

		01012	
PARAMETERS	STORET #	T4CC	TENTATIVE ID
UNITS	METHOD	1	
DATE	06/25/	86	
TIME	12:5	0	
UNK055		28.7	THE
UNK 532		7.41	1,1,2,2-TETRACHLOROETHANE
UNK.591	91591	5.43	ALKANE
UNK 594	91594	30.0	2,6,10,14-TETRAETHYLPENTADECANE
			N-HEPTADECANE
UNK600		11.4	2,6,10,14-TETRAETHYLHEXADECANE
UNK 605		14,4	N-NONADECANE
UNK 608		5.42	UNK
UNK617		11.3	ALKENE
UNK632		14.7	DIHEPTYLPHTHALATE
UNK 635		28. i	A PHTHALATE
UNK 640		27.3	A PHTHALATE
UNK 643	91643	77.5	A PHTHALATE
UNK 650	91650	19.6	A PHTHALATE
UNK651	91651	7.83	A PHTEALATE
UNK655	91655	39.9	A PHTHALATE
UNK671	91671	12.6	A PHTHALATE

	010	14	
PARAMETERS	STORET #	T4CC	TENTATIVE ID
UNITS	METHOD	2	
DATE	07/01/86		
TIME	08:36		
UNK 123	91123 1720)	
UNK 127	91127 723		
UNK 129	91129 773		
UNK 144	91144 9640		
UNK 147	91147 3786)	
UNK514	91514 7700		CnH10, POSSIBLY 3-METHYL-1,3,5- HEXATRIENE
UNK515	91515 3630)	TOLUENE
UNK 522	91522 240		XYLENE, POSSIBLY 1,4-CYCLO- OCTADIENE
UNK 526	91526 2686	n	ETHYLBENZENE
UNK 527	91527 9000		XYLENE
UNK 529	91529 3820		BICYCLO COMPOUND
UNK 530	91530 700		XYLENE
UNK 531	91531 1750		BICYCLO COMPOUND
UNK 532	91532 1720		ISOMER OF UNK 531
UNK 536	91536 950	-	UNK
UNK 538	91538 790	•	POSSIBLY METHYL ETHYL BENZENE
UNK 539	91539 1720	=	BICYCLO COMPOUND
UNK 540	91540 145		BICYCLO COMPOUND
UNK 541	91541 271	-	UNK
UNK 543	91543 155		POSSIBLY BICYCLODIHYDRO-
		•	PENTADIENE
UNK 548	91548 4660	0	ISOMER OF UNK 543
UNK 549	91549 835	-	BICYCLO COMPOUND
UNK 553	91553 6100	-	clihi0
UNK 555	91555 3040	-	BICYCLO COMPOUND
UNK 556	91556 3920		UNK, c12h16
UNK 558	91558 2850		ISOMER OF UNK 556
UNK 559	91559 505	-	UNK
UNK 560	91560 347	7	NAPTHALENE, ALICYCLIC COMPOUND
UNK 561	91561 700	-	NAPTHALENE, ALICYCLIC COMPOUND
UNK 562	91562 1520		NAPTHALENE, ALICYCLIC COMPOUND
UNK 563	91563 615		BICYCLO COMPOUND, UNK
UNK 564	91564 368		ALICYCLIC COMPOUND, UNK
UNK 565	91565 517		ALICYCLIC COMPOUND, UNK
UNK 566	91566 127		UNK
UNK 567	91567 155		UNK
UNK 569	91569 480	-	UNK
UNK 570	91570 605		METHYL NAPTHALENE
UNK 574	91574 107		UNK, ALICYCLIC COMPOUND
UNK 575	91575 810	_	UNK, BICYCLIC COMPOUND
UNK 576		-	UNK, ALICYCLIC COMPOUND
CHROID	91576 364	U	DIAK, ALICICLIC COMPOUND

		0101	4	
PARAMETERS	STORE	T #	THCC	TENTATIVE ID
UNITS	METHO	D	2	
DATE	07/	01/86		
TIME	0	8:36		
UNK 577	91577	775		UNK, ALICYCLIC COMPOUND
UNK 579	91579	1890		UNK, ALICYCLIC COMPOUND
UNK 583	91583	13900		UNK, ALICYCLIC COMPOUND
UNK584	91584	8050		UNK
UNK 585	91585	2890		UNK, ALICYCLIC COMPOUND
UNK587	91587	34300		UNK, BICYCLIC COMPOUND
UNK 588	91588	7230		UNK, ALICYCLIC COMPOUND
UNK.590	91590	16300		UNK, ALICYCLIC COMPOUND
UNK 591	91591	890		UNK, ALICYCLIC COMPOUND
UNK 593	91593	4220		UNK, ALICYCLIC COMPOUND
UNK 597	91597	1590)	UNK, ALICYCLIC COMPOUND
UNK 602	91602	770		UNK, ALICYCLIC COMPOUND
UNK612	91612	1290)	UNK, ALICYCLIC COMPOUND
UNK615	91615	750		UNK
UNK617	91617	1310)	UNK
UNK 619	91619	1260)	UNK, ALICYCLIC COMPOUND
UNK 621	91621	635		UNK
UNK 623	91623	335	,	UNK
UNK 624	91624	403	1	UNK
UNK626	91626	2250)	UNK
UNK627	91627	484		UNK
UNK 672	91672	4990)	UNK
UNK 694	91694	3550)	UNK

	010	20	
PARAMETERS	STORET #	T4CC	TENTATIVE ID
UNITS	METHOD	3	
DATE	06/25/86		
TIME	10:30		
UNK048	91048 13.0)	1,2-DICHLOROETHENE
UNK079	91079 6.80)	NO MATCH
UNK087	91087 33.4	,	1,2-DICHLOROPROPENE
UNK 193	91193 144	4	DICHLOROBENZENE
UNK524	91524 54.6	j	CHLOROBENZENE
UNK532	91532 5.99)	1,1,2,2-TETRACHLOROETHANE
UNK543	91543 11.1		DICHLOROBENZENE
UNK545	91545 39.0)	DICHLOROBENZENE
UNK 558	91558 8.13	3	SULFUR COMPOUND, POSSIBLY 1,3-
			DITHIOLANE
UNK 566	91566 28.7	1	UNK
UNK 572	91572 8.66	5	UNK
UNK 574	91574 99.5	5	UNK
UNK 578	91578 30.6	5	UNK
UNK580	91580 10.4	4	N-METHYL LUTIDON (c8h11n0)
UNK581	91581 14.8	3	UNK
UNK 582	91582 13.4	4	ALKANE, UNK
UNK584	91584 540	0	UNK
UNK588	91588 19.4	4	N-HEXADECANE
UNK591	91591 22.6	5	UNK
UNK594	91594 38.2	2	N-HEPTADECANE, ALKANE
UNK 600	91600 11.5	5	ALKANE
UNK604	91604 37.2	2	UNK
UNK 605	91605 19.9	9	N-NONADECANE
UNK608	91608 51.0)	UNK
UNK609	91609 13	9	UNK
UNK610	91610 15.3	7	N-EICOSANE, UNK
UNK616	91616 10	0	UNK
UNK617	91617 6.34	4	ALIPHATIC HYDROCARBON
UNK619	91619 13.9	9	UNK
UNK 620	91620 7.23	3	UNK
UNK629	91629 7.70	0	UNK
UNK 632	91632 6.43		A PHTHALATE
UNK635	91635 12.		A PHTHALATE
UNK640	91640 6.39		A PHTHALATE
UNK 643	91643 22.9		A PHTHALATE
UNK650	91650 6.9		A PHTHALATE
UNK655	91655 12.0		A PHTHALATE

	02	2019	
PARAMETERS	STORET #	TACC	TENTATIVE ID
UNITS	METHOD	:	
DATE	06/24/86	5	
TIME	09:06		
UNK 122	91122 4.2	22	NO MATCH
UNK517	91517 19.	.8	CYCLOPENTANONE
UNK 573	91573 29.	.9	DECANOIC ACID
UNK 575	91575 29.	.0	TETRADECANE
UNK 578	91578 16.	.1	ALIPHATIC HYDROCARBON
UNK 579	91579 20.	.8	ALIPHATIC HYDROCARBON
UNK 582	91582 21	10	PENTADECANE
UNK 585	91585 10	02	ALIPHATIC HYDROCARBON
UNK 586	91586 12	25	ALIPHATIC HYDROCARBON
UNK 587	91587 19.	.5	ALIPHATIC HYDROCARBON
UNK 588	91588 70	06	HEXADECANE
UNK 591	91591 39	98	ALIPHATIC HYDROCARBON
UNK 592	91592 99	.9	ALIPHATIC HYDROCARBON
UNK 594	91594 12.	50	ALIPHATIC HYDROCARBON,
			HEPTADECANE
UNK 596	91596 16	64	ALIPHATIC HYDROCARBON
UNK 597	91597 10	07	ALIPHATIC HYDROCARBON
UNK 598	91598 13	25	ALIPHATIC HYDROCARBON
UNK 600	91600 10	30	OCTADECANE, ALIPHATIC HYDRO-
			CARBON
UNK 601	91601 25	.7	ALIPHATIC HYDROCARBON
UNK 602	91602 1	76	ALIPHATIC HYDROCARBON
UNK 603	91603 2	12	ALIPHATIC HYDROCARBON
UNR 605		31	NONADECANE, ALIPHATIC HYDRO-
			CARBON
UNK 607	91607 72	.0	ALIPHATIC HYDROCARBON
UNK 608	91608 88		ALIPHATIC HYDROCARBON
UNK610	91610 3:	35	N-EICOSANE
UNK612	91612 1	26	ALIPHATIC HYDROCARBON
UNK613	91613 58		ALIPHATIC HYDROCARBON
UNK 614	91614 45		ALIPHATIC HYDROCARBON
UNK 615	_	ii	N-HENEICOSANE
UNK 617		71	ALIPHATIC HYDROCARBON
UNK 619	91619 32		ALIPHATIC HYDROCARBON
UNK 620	91620 45		DOCOSANE
UNK 621	91621 35		ALIPHATIC HYDROCARBON
UNK 626	91626 38		ALIPHATIC HYDROCARBON
UNK 627		91	ALIPHATIC HYDROCARBON
UNK 628	91628 30		ALIPHATIC HYDROCARBON
UNK 635	91635 29		PHTHALATE
UNK 642	91642 23		UNK
= - /	- 10 - 20	•••	w1***

		02020	195
PARAMETERS UNITS	STORET #	4	TENTATIVE ID
DATE TIME UNK642 UNK671 UNK693	91671		UNK UNK UNK

دما

	020	30
PARAMETERS	STORET #	T4CC TENTATIVE ID
UNITS	METHOD	5
DATE	06/27/86	· ·
TIME	14:01	
UNK037	91037 27.6	2 PROPANONE
UNK 042	91042 9.90	
UNK044	91044 40.0	
UNK 079 UNK 152	91079 4.10 91152 6.50	
UNK 559	91559 6.82	
		•
UNK 563	91563 35.6	
UNK 573	91573 28.3	
UNK 576	91576 30.7	
UNK 580	91580 9.53	
UNK 582	91582 27.2	
UNK 585	91585 12.3	
UNK 587	91587 287	
UNK 588	91588 96.4	
UNK 589	91589 9.32	
UNK 591	91591 45.0	
		2,6,10-TRIMETHYLPENTADECANE
UNK 592	91592 20.2	
UNK 593	91593 45.6	UNK, ALIPHATIC HYDROCARBON
UNK 594	91594 152	
UNK 595	91595 52.1	2.6.10.14-TETRAMETHYLPENTADECANE
UNK 597	91597 40.5	ALIPHATIC HYDROCARBON
UNK 598	91598 61.4	TETRADECANOIC ACID
UNK 600	91600 125	N-OCTADECANE
UNK601	91601 55.1	2,6,10,14-TETRAMETHYLHEXADECANE
UNK 602	91602 18.5	ALIPHATIC HYDROCARBON
UNK 603	91603 8.91	ALIPHATIC HYDROCARBON
UNK 604	91604 8.77	
UNK 605	91605 64.7	
UNK 606	91606 117	
UNK 609	91609 89.2	
UNK611	91611 76.3	
UNK614	91614 26.9	
UNK 615	91615 33.7	
UNK616	91616 32.6	
UNK617	91617 0.0	
UNK618	91618 466	
UNK 620	91620 9.68	
UNK 632	91632 16.9	· · = · · · · · · · · · · · · · · · · ·
UNK 635	91635 14.9	·
UNK642	91642 14.5	UNK

		02034	
PARAMETERS	STORET *	T4CC2	TENTATIVE ID
UNITS	METHOD	5	
DATE	09/05/	/86	
TIME	13:5	57	
UNK059	9105 9	19.8	1 PROPAMINE
UNK515	91515	7.34	1,1,2-TRICHLOROETHANE
UNK531	91531	10.6	1,1,2,2-TETRACHLOROETI'ANE
LINK 565	91565	219	CAPROLACTAM

		02035		
PARAMETERS	STORET	Γ# 7	‡CC	TENTATIVE ID
UNITS	METHO	D	4,	
DATE	06/2	25/86		
TIME	09	9:02		
UNK515	91515	9.64		1,1,2-TRICHLOROETHANE
UNK 532	91532	17.6		1,1,2,2-TETRACHLOROETHANE
UNK 551	91551	6.89		UNK
UNK 594	91594	11.3		N-HEPTADECANE
UNK 600	91600	37.9		N-HEXADECANE, ALKANE
UNK 605	91605	8.45		N-NONADECANE
UNK 608	91608	6.76		HEXADECANOIC ACID
UNK 617	91617	14.8		OCTADECANOIC ACID
UNK 632	91632	6.69		A PHTHALATE
UNK 635	91635	12.1		A PHTHALATE
UNK 640	91640	7.01		A PHTHALATE
UNK 650	91650	9.97		A PHTHALATE
UNK 655	91655	19.5		A PHTHALATE
1'NK 671	91671	5.60		A PHTHALATE

02035 TENTATIVE ID STORET # T4CC2 PARAMETERS UNITS 6 METHOD 09/05/86 DATE 15:00 TIME 91565 73.9 CAPROLACTAM

UNK 565

(*)

02037					
PARAMETERS UNITS	STORET METHOD	7	TENTATIVE ID		
DATE	06/23	•			
TIME	11:	26			
UNK 532	91532	7.83	1,1,2,2-TETRACHLOROETHANE		
UNK 585	91585	7.56	UNK		
UNK617	91617	10.1	UNK		
UNK 632	91632	5.88	PHTHALATE		
UNK 635	91635	10.8	PHTHALATE		
UNK 640	91640	5.85	PHTHALATE		
UNK 642	91642	35.5	UNK		
UNK 650	91650	6.95	PHTHALATE		
UNK655	91655	11.2	PHTHALATE		
UNK660	91660	67.4	UNK		
UNK661	91661	56.2	UNK		
UNK671	91671	6.49	PHTHALATE		

PARAMETERS	STORET #	T4CC	TENTATIVE ID
UNITS	METHOD	8	
DATE	06/23/		
TIME	15:5:	-	
UNK 562		7.88	UNK
UNK576		7.31	UNK
UNK586		9.11	DODECANOIC ACID
UNK608		B.4 7	HEXADECANOIC ACID
UNK617	91617	7.81	ALCOHOL OR UNSATURATED FATTY ACIDS
UNK619	91619	15.8	BUTYL HEXADECANOATE
UNK 628		10.2	ISOBUTYL OCTADECANOATE
UNK 631	91631	6.81	PHTHALATE
UNK 632	91632	19.9	PHTHALATE
UNK 633	91633	7.97	ALIPHATIC HYDROCARBON
UNK 635	91635	36.2	PHTHALATE
UNK 637	91637	6.94	ALIPHATIC HYDROCAPBON
UNK640	91640	35.5	PHTHALATE
UNK641	91641	35.3	UNK
UNK 642	91642	173	UNK
UNK643	91643	56.2	PHTHALATE
UNK644	91644	16.9	UNK
UNK645	91645	35.1	UNK.
UNK.646	91646	14.7	ALIPHATIC HYDROCARBON
UNK648	91648	6.63	PHTHALATE
UNK 650	91650	32.9	PHTHALATE
UNK651	91651	13.6	PHTHALATE
UNK 652	91652	8.72	ALIPHATIC HYDROCARBON
UNK 655	91655	57.8	PHTHALATE
UNK671	91671	19.8	PHTHALATE

		0203	39	
PARAMETERS	STORE	Γ#	TICC	TENTATIVE ID
UNITS	METHO	D	4	
DATE	06/2	24/86		
TIME	1	0:05		
UNK 565	91565	165		CAPROLACTAM
UNK 608	91608	7.02		UNK
UNK618	91618	7.93		UNK
UNK621	91621	80.1		UNK
UNK627	91627	17.0		UNK, OCTADECANAMIDE
UNK 628	91628	21.5		OCTADECANAMIDE
UNK637	91637	29.4		UNK
UNK642	91642	425		UNK
UNK 647	91647	10.7		UNK
UNK655	91655	11.4		OCTANOIC ACID,
				1,2,3-PROPANETRYL
UNK657	91657	33.4		UNK
UNK 674	91674	1650		UNK

03005				
PARAMETERS	STORET #	T4CC	TENTATIVE ID	
UNITS	METHOD	10		
DATE	06/11/86			
TIME	11:50			
UNK515	91515 7.5	9	1,1,2-TRICHLOROETHANE	
UNK532	91532 14.	4	1,1,2,2-TETRACHLOROETHANE	
UNK 575	91575 27.		N-TETRADECANE	
UNK 576	91576 7.4		UNK	
UNK 578	91578 11.		C15 ALKENE	
UNK 579	91579 15.		C15 ALKENE	
UNK582	91582 11		N-PENTADECANE	
UNK585	91585 24.		C16 ALKENE	
UNK586	91586 51.		C16 ALKENE, C17 ALKENE	
UNK 588	91588 32		N-HEXADECANE	
UNK 591	91591 15		C17, C18 ALKENE	
UNK 592	91592 38.		CI7 ALKENE	
UNK 594	91594 67	2	N-HEPTADECANE, 2,6,10,14-TETRA-	
			METHYLPENTADECANE	
UNK 596	91596 59.		C18 ALKENE	
UNK 597	91597 51.		C18 ALKENE	
UNK 598	91598 15.		C18 ALKENE	
UNK 599		K		
UNK600	91600 51	17	N-OCTADECANE, C19 ALKENE,	
			2,6,10,14-TETRAMETHYLHEXADECANE	
UNK 602	91602 39.		C19 ALKENE	
UNK 603	91603 73.		C19 ALKENE	
UNK 605	91605 30		N-NONADECANE	
UNK 608	91608 13.		C20 ALKENE	
UNK610	91610 10		N-EICOSANE	
UNK612	91612 11.		C21 ALKENE	
UNK614	91614 15.		C21 ALKENE	
UNK615	91615 32.		N-HENEICOSANE	
UNK617	91617 12		C22 ALKENE	
UNK620	91620 13.		N-DOCONANE	
UNK621	91621 16.		C23 ALKENE	
UNK642	91642 11	12	UNK	

	03523	
PARAMETERS	STORET # T	4WC TENTATIVE ID
UNITS	METHOD	1
DATE	06/04/86	
TIME	13:47	
UNK 567	91567 *OK 15.9	NO MATCH
UNK 581	91581 *OK 10.5	NO MATCH
UNK 582	91582 *OK 28.6	NO MATCH
UNK 586	91586 *OK 8.32	METHYL TRICYCLO(3,2,1,0,2,7)OCT-
		3-ENE-5-CARBOXYLATE

04007

PARAMETERS STORET # T4WC TENTATIVE ID

UNITS METHOD 2

DATE 06/04/86
TIME 14:13

		04014	
PARAMETERS	STORE 1	T4WC2	TENTATIVE ID
UNITS	METHO	D 5	
DATE	08/3	26/86	
TIME	0	8:04	
UNK532	91532	16.0	1,1,2,2-TETRACHLOROETHANE
UNK 564	91564	740	CAPROLACTAM
UNK 622	91622	9.71	UNK
UNK642	91642	871	UNK
UNK 672	91672	6040	UNK
UNK 695	91695	4160	UNK

		04021	
PARAMETERS	STORET	_	TENTATIVE ID
UNITS	METHO		
DATE		25/86	
TIME	1	0:18	
UNK531	91531	6.44	1,1,2,2-TETRACHLOROETHANE
UNK 565	91565	1120	CAPROLACTAM
UNK636	91636	7.45	PHTHALATE
-	91642	47.4	UNK
UNK 642	•	304	UNK
UNK671	91671		
UNK 693	91693	223	UNK

		04027	
PARAMETERS	STORET	# T4WC2	TENTATIVE ID
UNITS	METHO	7	
DATE	08/2	6/86	
TIME	11	:59	
UNK 565	91565	668	CAPROLACTAM
UNK 642	91642	31.9	UNK
UNK 671	91671	207	UNK
UNK 693	91693	132	UNK

PARAMETERS STORET # T4WC TENTATIVE ID

UNITS METHOD 3

DATE 06/04/86

TIME 08:24

UNK518 91518 *OK16.8 CYCLOPENTANONE

	04	1033	
PARAMETERS	STORET #	THWC	TENTATIVE ID
UNITS	METHOD	4	
DATE	06/04/86	•	
TIME	09:01		
UNK 565	91565 *OK5	5.75	HEXAHYDRO-2H-AZEPIN-2-ONE
UNK 622	91622 *OK.5	.88	NO MATCH
UNK 642	91642 *OK.5	51.9	NO MATCH

PARAMETERS STORET # T4BWC TENTATIVE 1D UNITS METHOD 4

DATE 06/04/86
TIME 11:37
UNK642 91642 *OK11.1 NO MATCH

07001
PARAMETERS STORET # T4BWC TENTATIVE ID
UNITS METHOD I
DATE 05/29/86
TIME 11:26

PARAMETERS UNITS DATE TIME

09005 T4WC STORET # **METHOD** 5 06/05/86 11:05

TENTATIVE ID

11002

PARAMETERS STORET # T4BWC TENTATIVE ID
UNITS METHOD 2
DATE 05/29/86
TIME 08:45

22021				
PARAMETERS	STORET #	T4CC	TENTATIVE ID	
UNITS	METHOD	11	•	
DATE	06/12/86			
TIME	09:37			
UNK517	91517 14.0	5	CYCLOPENTANONE	
UNK 568	91568 7.64	\$	N-TRIDECANE	
UNK 575	91575 38.3	2	N-TETRADECANE	
UNK 578	91578 16.5	5	C14 OR C15 ALKENE	
UNK579	91579 19.0	6	CI5 ALKENE	
UNX 582	91582 11	4	N-PENTADECANE	
UNK583	91583 6.73	5	BIPHENYL-OL	
UNK 585	91585 37.0	5	CI6 ALKENE	
UNK 586	91586 33.0	0	C16 ALKENE	
UNK 588	91588 34	2	N-HEXADECANE	
UNK 591	91591 13	1	C17 OR C18 ALKANE OR ALKENE,	
			2,6,10-TRIMETHYLPENTADECANE	
UNK 592	91592 16.5	9	C18 OR C17 ALKENE	
UNK 594	91594 53	2	N-HEPTADECANE, 2,6,10,14-TETRA-	
			METHYLPENTADECANE	
UNK 596	91596 54.	5	C18 ALKENE, ALKANE	
UNK 597	91597 46.		C18 ALKENE	
UNK 598	91598 13.	6	CIS ALKENE	
UNK 599	91599 38	2	N-OCTADECANE	
UNK 600	91600 11	1	2,6,10,14-TETRAMETHYLHEXADECANE	
UNK 602	91602 38.	3	C19 OR C20 ALKENE	
UNK603	91603 77.)	C19 OR C20 ALKENE	
UNK 605	91605 24	7	N-NONADECANE, C19 ALKENE	
UNK 607	91607 16.	4	C20 OR C21 ALKENE	
UNK608	91608 15.	9	C20 ALKENE	
UNK610	91610 12	9	N-EICOSANE	
UNK612	91612 13.	0	C20 OR C21 ALKENE	
UNK613	91613 6.8	4	C21 ALKENE	
UNK614	91614 17.	8	C21 ALKENE	
UNK615	91615 38.	5	N-HENEICOSANE	
UNK617	91617 19.	1	C21 ALKENE	
UNK 620	91620 15.	9	C21 OR C22 ALKENE	
UNK 621	91621 20.	8	C23 ALKENE	
UNK 642	91642 11.	6	UNK	

22024				
PARAMETERS	STORET :		TENTATIVE ID	
UNITS	METHOD	12		
DATE	06/12	/86		
TIME	07:2			
UNK517	91517	26.9	CYCLOPENTANONE	
UNK 545	91545	9.95	LIMONENE	
UNK552	91552	12.9	NONANAL	
UNK 568	91568	19.4	N-TRIDECANE	
UNK 573	91573	14.8	DECANOIC ACID, C15 ALKENE	
UNK 575	91575	120	N-TETRADECANE	
UNK 578	91578	51.2	C14 OR C15 ALKENE	
UNK 579	91579	77.7	CI5 OR CI6 ALKENE	
UNK 580	91580	26.8	C16 ALKENE, ALKENE	
UNK 582	91582	504	N-PENTADECANE	
UNK 583	91583	27.1	BIPHENYL-OL	
UNK 585	91585	126	CI6 OR CI7 ALKENE, ALKENE	
UNK 586	91586	178	CI6 OR CI7 ALKENE	
UNK 587	91587	52.8	C17 ALKENE, ALKENE	
UNK 588	91588	1060	N-HEXADECANE	
UNK 589	91589	14.6	C17 ALKENE OR ALKENE	
UNK 591	91591	580	2,6,10-TRIMETHYLPENTADECANE,	
			C17 OR C18 ALKENE	
UNK 502	91592	144	CIS ALKENE	
UNK 594	91594	1790	N-HEPTADECANE, 2,6,10,14-TETRA-	
			METHYLPENTADECANE	
UNK 596	91596	175	ALIPHATIC HYDROCARBON	
UNK 597	91597	273	ALIPHATIC HYDROCARBON	
UNK 598	91598	201	ALIPHATIC HYDROCARBON	
UNK600	91600	1620	N-OCTADECANE, ALIPHATIC	
			HYDROCARBON	
UNK 602	91602	132	ALIPHATIC HYDROCARBON	
UNK 603	91603	266	ALIPHATIC HYDROCARBON	
UNK 604	91604	79.2	ALIPHATIC HYDROCARBON	
UNK 605	91605	749	ALIPHATIC HYDROCARBON,	
			N-NONADECANE	
UNK 607	91607	43.7	ALIPHATIC HYDROCARBON	
UNK 608	91608	102	ALIPHATIC HYDROCARBON	
UNK 610	91610	358	N-EICOSANE	
UNK 612	91612	47.7	ALIPHATIC HYDROCARBON	
UNK613	91613	81.5	ALIPHATIC HYDROCARBON	
UNK615	91615	103	N-HENEICOSANE	
UNK 617	91617	36.8	ALIPHATIC HYDROCARBON	
UNK 619	91619	34.3	N-DOCOSANE	
UNK 62 !	91621	37.6	ALIPHATIC HYDROCARBON	
UNK 632	91632	20.7	ALIPHATIC HYDROCARBON	
UNK 642	91642	110	UNK	

		22059	
PARAMETERS	STORE		TENTATIVE ID
UNITS	METHO		
DATE	09/	03/86	
TIME	1	0:24	
UNK515	91515	26.6	1,1,2-TRICHLOROETHANE
UNK531	91531	39.1	1,1,2,2-TETRACHLOROETHANE
UNK 565	91565	451	CAPROLACTAM
UNK 642	91642	1340	UNK
UNK647	91647	12.4	UNK
UNK654	91654	1580	UNK
UNK 672	91672	7400	UNK
UNK 694	91694	6320	UNK

		22060		
PARAMETERS	STORE'	T# T40	CC2 TENTA	TIVE ID
UNITS	METHO	D S	3	
DATE	09/	03/86		
TIME	08:05			
UNK 564	91564	28.6	CAPROLA	ACTAM
UNK 642	91642	63.3	UNK	
UNK 650	91650	20.3	UNK	
UNK654	91654	960	UNK	
UNK671	91671	130	UNK	
UNK693	91693	60.9	UNK	

23095			
PARAMETERS	STORET # T4CC	2 TENTATIVE ID	
UNITS	METHOD 9		
DATE	09/03/86		
TIME	12:31		
UNK036	91036 13.0		
UNK049	91049 4.45		
UNK053	91053 4.80		
UNK 123	91123 38.6	PROPANEDINITRYL	
UNK 144	91144 6.30	ISOMER OF DICYCLOPENTADIENE	
UNK146	91146 8.30	ISOMER OF DICYCLOPENTADIENE	
UNK 158	91158 21.5	PROPAMIN ACID	
UNK 161	91161 310	TETRACYCLOHEPTANE, ISOBUTYLBENZENE	
UNK 177	91177 8.40	HEXACHLOROBUTADIENE	
UNK518	91518 20.4	TETRACHLOROETHENE	
UNK551	91551 10.9	UNK	
UNK 552	91552 10.7	UNK	
UNK 553	91553 26.8	UNK	
UNK 555	91555 119	UNK	
UNK 558	91558 25.3	UNK	
UNK561	91561 16.3	UNK	
UNK 562	91562 9.45	TETRACHLOROSTANNANE	
UNK 564	91564 11.8	UNK	
UNK 566	91566 131	CYCLIC COMPOUND	
UNK 570	91570 97.0	POSSIBLY ALPHA-METHYLBENZYLAMINE	
UNK 571	91571 29.7	UNK	
UNK 572	91572 11.1	UNK	
UNK 574	91574 9.25	UNK	
UNK 575	91575 9.33	UNK	
UNK 577	91577 26.3	BICYCLO OR TRICYCLO COMPOUND	
UNK 579	91579 1730	UNK	
UNK581	915/9 1/30	BICYCLO OR TRICYCLO COMPOUND	
UNK 584	91584 399	UNK	
UNK 586	91586 1260	UNK	
UNK 588	91588 620	UNK	
UNK 591	91591 35.5	HEPTACHLOROBICYCLO[2,2,1]-	
CINKSFI	71.751 37.3	HEPT-2-ENE	
UNK 595	91595 95.8	UNK	
UNK 605	91605 20.5		
UNK 606		UNK	
UNK 609		UNK	
	91609 236	UNK	
UNK 618	91618 19.5	UNK	
UNK 621	91621 11.8	UNK	
UNK 622	91622 69.0	UNK	
UNK 625	91625 55.6	HEXACHLORO COMPOUND	
UNK 632	91632 120	UNK	
UNK 638	91638 56.0	UNK	
UNK 642	91642 740	UNK	
UNK 647	91647 94.2	UNK	
UNK 654	91654 12.2	PHTHALATE	
UNK 656	91656 39.4	UNK	
UNK 672	91672 4170	UNK	
UNK 695	91695 4100	UNK	

		23-191		
PARAMETERS	STORET #	F T4CC2	TENTATIVE ID	
UNITS	METHOD	15		
DATE	09/04/	′8 6		
TIME	15:1	5		
UNK515	91515	10.7	1,1,2-TRICHLOROETHANE	
UNK531	91531	16.7	1,1,2.2-TETRACHLOROETHANE	•
UNK551	91551	6.10	UNK	
UNK 565	91565	263	CAPROLACTAM	
UNK 579	91579	13.7	UNK	
UNK.582	91582	7.86	UNK	
UNK 588	91588	23.2	HEXADECANE	
UNK 591	91591	19.9	ALKANE	
UNK 594	91594	50.2	HEPTADECANE	
UNK 595	91595	24.7	2,6,10,14-TETRAMETHYLPENTADECANE	
UNK 597	91597	6.52	ALKENE	
UNK 600	91600	29.2	OCTADECANE	
UNK601	91601	18.0	ALKANE, ALKENE	
UNK 605	91605	27.3	NONADECANE	
UNK611	91611	10.9	ALKANE	
UNK 642	91642	660	UNK	
UNK 67 I	91671	2370	UNK	
UNK 694	91694	2150	UNK	

		23-192	
PARAMETERS UNITS	STORE' METHO		TENTATIVE ID
DATE	09/	05/86	
TIME		6:00	
UNK 564	91564	29.9	CAPROLACTAM
UNK 582	91582	7.54	N-PENTADECANE
UNK 588	91588	26.3	N-HEXADECANE
UNK 591	91591	13.6	ALKENE
UNK 594	91594	49.3	N-HEPTADECANE
UNK 595	91595	17.9	2,6,10,16-TETRAMETHYLPENTADECANE
UNK 598	91598	6.92	ALKENE
UNK600	91600	36.0	N-OCTADECANE
UNK601	91601	15.9	2,6,10,14-TETRAMETHYLHEXADECANE
UNK 605	91605	25.0	N-NONADECANE
UNK 609	91609	68.0	UNK
UNK611	91611	14.6	N-EICOSANE
UNK 622	91622	20.6	UNK
UNK 638	91638	50.1	UNK
UNK 642	91642	355	UNK
UNK 647	91647	22.2	• • • • •
			UNK
UNK 656	91656	11.6	UNK
UNK 671	91671	1460	UNK
UNK 693	91693	1170	IINK

	231	25	
PARAMETERS	STORET #	T4CC2	TENTATIVE ID
UNITS	METHOD	١٠	
DATE	09/25/86		
TIME	15:24		
UNK055	91055 *OK9,	70	THF
UNK 089	91089 *BK	10	NO MATCH
UNK 129	91129 *BK	0	NO MATCH
UNK 174	91174 *BK	0	NO MATCH
UNK653	91653 331	I	CORRESPONDING LOT-HIT-NOT FOUND

23142						
PARAMETERS	STORET	#	T4CC	TENTATIVE ID		
UNITS	METHOD)	13			
DATE	06/26	/86				
TIME	08:4	47				
UNK055	91055	31.7				
UNK064	91064	156				
UNK515	91515	7.39		1,1,2-TRICHLOROETHANE		
UNK517	91517	15.2		CYCLOPENTANONE		
UNK 532	91532	13.6		1,1,2,2-TETRACHLOROETHANE		
UNK551	91551	10.3		UNK		
UNK 563	91563	15.7		UNK		
UNK 575	91575	10.6		N-TETRADECANE		
UNK 579	91579	46.4		DIMETHYL PHTHALATE, UNK		
UNK 582	91582	44.4		N-PENTADECANE, UNK		
UNK 586	91586	13.3		ALIPHATIC HYDROCARBON		
UNK587	91587	96.8		UNK		
UNK588	91588	46.1		N-HEXADECANE		
UNK 591	91591	73.0		ALIPHATIC HYDROCARBON,		
				2,6,10-TRIMETHYLPENTADECANE		
				ALKENE OR ALCOHOL		
UNK 592	91592	20,3		ALKANE, ALIPHATIC HYDROCARBON		
UNK 594	91594	157		N-HEPTADECANE, 2,6,10,14-TETRA-		
				METHYLPENTADIENE		
UNK 596	91596	15.5		ALIPHATIC HYDROCARBON		
UNK 597	91597	18.0		ALIPHATIC HYDROCARBON		
UNK600	91600	134		N-OCTADECANE, 2,6,10,14-TETRA-		
				METHYLHEXADECANE		
UNK602	91602	14.1		ALIPHATIC HYDROCARBON		
UNK603	91603	17.0		ALIPHATIC HYDROCARBON		
UNK604	91604	7.16		ALIPHATIC HYDROCARBON		
UNK605	91605	70.9		N-NONADECANE		
UNK 607	91607	6.80		ALIPHATIC HYDROCARBON		
UNK608	91608	8.96		ALIPHATIC HYDROCARBON		
UNK610	91610	33.1		N-EICOSANE		
UNK615	91615	12.0		N-HEHEICOSANE		
UNK617	91617	15.3		ALKENE OR ALCOHOL		
UNK621	91621	7.17		ALIPHATIC HYDROCARBON		
UNK 635	91635	22.0		A PHTHALATE, BIS(2-ETHYLHEXYL)-		
				PHTHALATE		

23177							
PARAMETERS	STORET		C TENTATIVE ID				
UNITS	METHOI						
DATE	06/13	r					
TIME		:00					
UNK575	91575	11.3	N-TETRADECANE				
UNK 578	91578	6.56	C14 ALKENE				
UNK579	91579	6.87	C15 ALKENE				
UNK 582	91582	47.5	N-PENTADECANE				
UNK585	91585	11.8	CI6 ALKENE, ALKENE				
UNK586	91586	15.4	C16 ALKENE				
UNK588	91588	154	N-HEXADECANE				
UNK591	91591	65.7	C17 ALKENE, 2,6,10-TRIMETHYL-				
			PENTADECANE				
UNK 592	91592	16.0	CI7 ALKENE				
UNK 594	91594	259	N-HEPTADECANE, 2,6,10,14-TETRA-				
			METHYLPENTADECANE				
UNK 596	91596	25.1	CI8 ALKENE				
UNK 597	91597	20.1	C17 OR C18 ALKENE				
UNK 598	91598	6.36	C18 ALKENE				
UNK600	91600	257	N-OCTADECANE, 2,6,10,14-TETRA-				
			METHYLHEXADECANE				
UNK601	91601	BK					
UNK602	91602	21.1	C19 ALKENE				
UNK 603	91603	30.8	C19 ALKENE				
UNK604	91604	9.38	C19 ALKENE				
UNK605	91605	112	N-NONADECANE				
UNK610	91610	55.8	N-EICOSANE				
UNK614	91614	6.58	C21 ALKENE				
UNK615	91615	19.5	N-HENEICOSANE				
UNK620	91620	7.69	N-DOCOSANE				
UNK621	91621	8.75	C22 ALKENE				
UNK 642	91642	71.0	UNK				
UNK 664	91664	414					

	23179)
PARAMETERS		4CC TENTATIVE ID	
UNITS		6	
DATE	06/12/86		
TIME	09:42		
UNK 161	91161 24400	NO MATCH	
UNK515	91515 6.52	1,1,2-TRICHLOROETHANE	
UNK517	91517 40.5	CYCLOPENTANONE	
UNK519	91519 17.7	TETRACHI.OROETHENE	
UNK 532	91532 22.2	1,1,2,2-TETRACHLOROETHANE	
UNK 536	91536 16.3	UNK	
UNK540	91540 8.68	PHOSPHOROTHIDIC ACID, TRIMETHYL ESTER	
UNK551	91551 24,4	UNK	
UNK553	91553 41.9	UNK	
UNK 554	9155 4 19.7	UNK	
UNK 555	91555 106	UNK	
UNK 558	91558 20.0	UNK	
UNK 559	91559 17.0	UNK	
UNK 560	91560 6.56	UNK	
UNK561	91561 20.6	UNK	
UNK 562	91562 33.2	HEXACHLOROBUTADIENE	
UNK 563	91563 28.7	UNK	
UNK 566	91566 32.3	UNK	
UNK 567	91567 20.4	UNK	
UNK 568	91568 16.7	8-OXATRICYCLO(2,2,2,0,2,6)-	
		OCTAN-7-ONE (c17c18)	
UNK 570	91570 129	UNK	
UNK 572	91572 39.1	UNK	
UNK.573	91573 30.1	UNK	
UNK 574	91574 9.21	TETRACHLOROBENZENE	
UNK 575	91575 20.3	METHYLSULFOXYLBENZENE	
UNK 577	91577 65.4	UNK	
UNK 579	91579 250	UNK	
UNK 580	91580 544	UNK	
UNK 581	91581 38.1	UNK	
UNK 582	91582 51.6	UNK	
UNK 583	91583 102	2-(4-METHYL-2-FURYL)-2-CYCLO- PENTEN-/ONE, UNK	
UNK 584	91584 83.8	UNK	
UNK 587	91587 174	UNK	
UNK 588	91588 85.8	N-HEXADECANE	
UNK 589	91589 14.2	UNK	
UNK 590	91590 11.7	UNK	
UNK 591	91591 35.5	UNK, 2,6,10-TRIMETHYLPENTADECANE	
UNK 592	91592 7.55	UNK	
UNK 593	91593 8.40	UNK	
UNK 594	91594 133	N-HEPTADECANE, 2,6,10,14-TETRA- METHYLPENTADECANE	
UNK 595	91595 23.2	UNK	
UNK 596	91596 19.6	UNK	
UNK 597	91597 7.56	UNK	
UNK 598	91598 10.8	UNK)

JNK 600	91600	14.7	2,6,10,14-TETRAMETHYLHEXADECANE
UNK 602	91602	31.7	UNK
UNK 605	91605	62.7	N-NONADECANE
UNK 606	91606	17.8	UNK
UNK 608	91608	63.3	UNK, HEXADECANOIC ACID
UNK 609	91609	10.3	DIHYDROXYLMETHYLBENZOATE
UNK610	91610	19.7	N-EICOSANE
UNK615	91615	7.90	N-HENEICOSANE
UNK 619	91619	6.51	N-DOCOSANE
UNK 620	91620	13.2	UNK
UNK621	91621	8.46	UNK
UNK 622	91622	8.36	CHLORINATED COMPOUND W/ 4CL
UNK 623	91623	7.56	UNK
UNK625	91625	12.0	UNK
UNK631	91631	10.4	UNK
UNK633	91633	10.6	CHLORINATED COMPOUND (c14)
UNK 635	91635	7.46	BIS(2-ETHYLHEXYL)PHTHALATE
UNK 642	91642	14.1	UNK

DATE	23179			}
DATE TIME 09:02/16 TIME 09:57 UNK044 91044 6.40 2 PROPANIL UNK033 91033 4.50 NO MATCH UNK123 91123 30.8 ISOMER OF DICYCLOPENTADIENE UNK144 91144 10.8 ISOMER OF DICYCLOPENTADIENE UNK158 91158 54.7 ISOBUTYLBENZENE UNK.616 91161 699 ISOBUTYLBENZENE UNK.515 91515 17.2 1,1,2-TRICHLOROETHANE UNK.518 91518 46.2 TETRACHLOROETHENE UNK.518 91531 25.9 1,1,2-TRICHLOROETHANE UNK.513 91531 25.9 1,1,2-TRICHLOROETHANE UNK.535 91535 21.2 UNK UNK.535 91535 21.2 UNK UNK.535 91535 36.3 UNK UNK.551 91551 36.3 UNK UNK.552 91552 20.4 UNK UNK.553 91553 48.7 UNK UNK.553 91553 48.7 UNK UNK.554 91554 32.2 UNK UNK.555 91555 174 UNK UNK.558 91566 1790 CAPROLACTAM UNK.559 91560 1790 CAPROLACTAM UNK.566 91566 1790 CAPROLACTAM UNK.570 91570 84.9 UNK UNK.571 91571 106 UNK UNK.571 91571 106 UNK UNK.573 91573 24.0 ALIPHATIC CYCLIC COMPOUND UNK.573 91573 24.0 ALIPHATIC CYCLIC COMPOUND UNK.574 91574 24.6 UNK UNK.575 91575 32.7 UNK UNK.577 91577 126 UNK UNK.577 91577 126 UNK UNK.578 91580 1300 UNK UNK.581 91580 1300 UNK UNK.583 91580 1300 UNK UNK.583 91580 30.3 UNK UNK.584 91584 51.9 UNK UNK.5857 91587 365 ALIPHATIC CYCLIC COMPOUND UNK.588 91588 38.3 UNK UNK.589 91589 22.7 UNK UNK.589 91599 157.8 UNK UNK.589 91590 91590 UNK	PARAMETERS	STORET # T4CC2	TENTATIVE ID	,
TIME	UNITS	METHOD 12		
UNK044 91044 6.40 2 PROPANIL UNK033 91033 4.50 NO MATCH UNK123 91123 30.8 ISOMER OF DICYCLOPENTADIENE UNK144 91144 10.8 ISOMER OF DICYCLOPENTADIENE UNK158 91158 54.7 ISOMUTYLBENZENE UNK161 91161 699 ISOMUTYLBENZENE UNK1518 91518 46.2 TETRACHLOROETHANE UNK318 91518 46.2 TETRACHLOROETHANE UNK331 91531 25.9 1,1,2,2-TETRACHLOROETHANE UNK335 91535 21.2 UNK UNK335 91535 21.2 UNK UNK340 91540 50.4 UNK UNK551 91551 36.3 UNK UNK552 91552 20.4 UNK UNK553 91553 48.7 UNK UNK554 91554 32.2 UNK UNK555 91555 174 UNK UNK556 91555 174 UNK UNK556 91566 1790 CAPROLACTAM UNK566 91566 1790 CAPROLACTAM UNK566 91566 1790 CAPROLACTAM UNK571 91571 106 UNK UNK571 91571 106 UNK UNK571 91571 106 UNK UNK573 91573 24.0 ALIPHATIC CYCLIC COMPOUND UNK374 91574 24.6 UNK UNK375 91575 32.7 UNK UNK375 91575 32.7 UNK UNK376 91576 36.9 UNK UNK377 91577 126 UNK UNK380 91580 1300 UNK UNK381 91581 36.9 UNK UNK381 91581 36.9 UNK UNK382 91582 64.9 UNK UNK584 91584 91585 10.0 UNK UNK585 91585 13.0 UNK UNK585 91585 13.0 UNK UNK586 91580 1300 UNK UNK587 91577 126 UNK UNK588 91589 30.2 UNK UNK589 91589 1580 1300 UNK UNK589 91589 1580 1300 UNK UNK589 91589 1580 1300 UNK UNK588 91588 36.9 UNK UNK589 91589 22.7 UNK UNK589 91589 32.7 UNK UNK589 91589 32.7 UNK UNK589 91589 32.7 UNK UNK589 91589 32.7 UNK UNK589 91589 30.2 UNK UNK589 91589 30.7 UNK UNK589 91589 30.7 UNK UNK589 91589 30.7 UNK UNK589 91589 30.7 UNK UNK589 91589 30.7 UNK UNK589 91589 30.7 UNK UNK590 91590 19.0 UNK UNK600 91600 17.4 UNK UNK601 91601 17.4 UNK UNK601 91601 17.4 UNK UNK601 91601 17.4 UNK UNK601 91601 17.4 UNK UNK601 91601 17.4 UNK UNK601 91601 17.4 UNK UNK601 91601 17.4 UNK UNK601 91601 17.4 UNK	DATE			
UNK 033 91033 4.50 NO MATCH UNK 123 91123 30.8 ISOMER OF DICYCLOPENTADIENE UNK 144 91144 10.8 ISOMER OF DICYCLOPENTADIENE UNK 158 91158 54.7 ISOBUTYLBENZENE UNK 159 91515 17.2 1,1,2-TRICHLOROETHANE UNK 1515 91515 17.2 1,1,2-TRICHLOROETHANE UNK 315 91518 46.2 TETRACHLOROETHANE UNK 315 91519 25.9 1,1,2,2-TETRACHLOROETHANE UNK 315 91535 21.2 UNK UNK 315 91530 21.2 UNK UNK 315 91531 25.9 1,1,2,2-TETRACHLOROETHANE UNK 316 91540 50.4 UNK UNK 317 91551 36.3 UNK UNK 517 91552 20.4 UNK UNK 518 91552 20.4 UNK UNK 519 91552 20.4 UNK UNK 519 91554 32.2 UNK UNK 519 91555 174 UNK UNK 519 91556 1750 CAPROLACTAM UNK 510 91560 91560 1790 CAPROLACTAM UNK 510 91560 91560 1790 CAPROLACTAM UNK 510 91570 84.9 UNK UNK 511 91571 106 UNK UNK 517 91571 106 UNK UNK 517 91573 24.0 ALIPHATIC CYCLIC COMPOUND UNK 518 91581 30.2 UNK UNK 517 91573 24.0 ALIPHATIC CYCLIC COMPOUND UNK 518 91581 30.2 UNK UNK 519 91591 91.0 HEPTACHLORO-BICYCLO-[2.2.1]- HEPT-2-ENE UNK 500 91600 31.7 UNK UNK 600 91600 17.4 UNK UNK 600 91600 17.4 UNK UNK 601 91601 17.4 UNK UNK 601 91601 17.4 UNK UNK 601 91601 17.4 UNK UNK 601 91601 17.4 UNK UNK 601 91601 17.4 UNK UNK 601 91601 17.4 UNK UNK 601 91601 17.4 UNK UNK 601 91601 17.4 UNK UNK 601 91601 17.4 UNK UNK 601 91601 17.4 UNK UNK 601 91601 17.4 UNK UNK 601 91601 17.4 UNK UNK 601 91601 17.4 UNK				
UNK 123 91124 10.8 ISOMER OF DICYCLOPENTADIENE UNK 144 91144 10.8 ISOMER OF DICYCLOPENTADIENE UNK 158 91158 54.7 ISOBUTYLBENZENE UNK 151 91515 17.2 1,1,2-TRICHLOROETHANE UNK 151 91518 46.2 TETRACHLOROETHANE UNK 151 91511 25.9 1,1,2-TETRACHLOROETHANE UNK 152 91551 21.2 UNK UNK 1535 91535 21.2 UNK UNK 154 91551 36.3 UNK UNK 1551 91551 36.3 UNK UNK 1552 91552 20.4 UNK UNK 1553 91553 48.7 UNK UNK 1554 91554 32.2 UNK UNK 1555 91555 174 UNK UNK 1562 91556 179 UNK UNK 1562 91566 1790 CAPROLACTAM UNK 1566 91566 1790 CAPROLACTAM UNK 1569 91569 30.5 POSSILBY 8-OXATRICYCLO- (2,2,2,0,2,6)OCTAN-2-ONE UNK 1570 91571 106 UNK UNK 1571 91571 106 UNK UNK 1573 91573 24.0 ALIPHATIC CYCLIC COMPOUND UNK 1574 91574 24.6 UNK UNK 1577 91575 32.7 UNK UNK 1577 91577 126 UNK UNK 1581 91581 30.2 UNK UNK 1582 91582 64.9 UNK UNK 1583 91583 86.9 UNK UNK 1584 91584 30.2 UNK UNK 1585 91581 30.2 UNK UNK 1585 91581 30.2 UNK UNK 1586 91580 1300 UNK UNK 1587 91577 126 UNK UNK 1581 91581 30.2 UNK UNK 1582 91582 64.9 UNK UNK 1583 91583 86.9 UNK UNK 1584 91584 31.9 UNK UNK 1585 91588 38.3 UNK UNK 1587 91575 36.5 UNK UNK 1589 91589 22.7 UNK UNK 1589 91589 22.7 UNK UNK 1589 91589 22.7 UNK UNK 1589 91589 37.7 UNK UNK 1580 91580 31.3 UNK UNK 1589 91589 31.7 UNK UNK 1589 91589 31.7 UNK UNK 1589 91589 157.8 UNK UNK 1580 91606 32.0 UNK UNK 1580 91606 31.7 UNK UNK 1580 91606 31.7 UNK UNK 1580 91606 31.7 UNK UNK 1580 91606 31.7 UNK UNK 1580 91606 31.7 UNK UNK 1580 91606 31.7 UNK UNK 1580 91606 31.7 UNK UNK 1580 91606 31.7 UNK UNK 1580 91606 31.7 UNK UNK 1580 91606 31.7 UNK UNK 1580 91607 17.4 UNK UNK 1580 91607 17.4 UNK UNK 1580 91607 17.4 UNK UNK 1580 91607 17.4 UNK UNK 1580 91607 17.4 UNK UNK 1580 91607 17.4 UNK UNK 1580 91607 17.4 UNK UNK 1580 91671 10.00 UNK				
UNK 144 91144 10.8 ISOMER OF DICYCLOPENTADIENE UNK 158 91158 54.7 ISOBUTYLBENZENE UNK 161 91161 699 ISOBUTYLBENZENE UNK 151 91515 17.2 1.1.2-TRICHLOROETHANE UNK 1518 91518 46.2 TETRACHLOROETHANE UNK 351 91531 25.9 1.1.2.2-TETRACHLOROETHANE UNK 351 91535 21.2 UNK UNK 351 91551 36.3 UNK UNK 351 91551 36.3 UNK UNK 352 91552 20.4 UNK UNK 353 91553 48.7 UNK UNK 353 91555 174 UNK UNK 355 91555 174 UNK UNK 355 91556 179 UNK UNK 356 91569 30.5 POSSILBY 8-OXATRICYCLO- (2.2.2.0,2.6)OCTAN-2-ONE UNK 370 91570 84.9 UNK UNK 371 91571 106 UNK UNK 373 91573 24.0 ALIPHATIC CYCLIC COMPOUND UNK 373 91573 24.0 UNK UNK 374 91574 24.6 UNK UNK 375 91575 32.7 UNK UNK 376 91580 1300 UNK UNK 377 91577 126 UNK UNK 381 91581 30.2 UNK UNK 382 91582 64.9 UNK UNK 383 91583 86.9 UNK UNK 384 91584 31.9 UNK UNK 385 91589 22.7 UNK UNK 386 91588 38.3 UNK UNK 387 91587 365 ALIPHATIC CYCLIC COMPOUND UNK 388 91588 38.3 UNK UNK 389 91589 92.7 UNK UNK 389 91589 32.7 UNK UNK 389 91589 32.7 UNK UNK 380 91580 30.0 UNK UNK 381 91581 30.2 UNK UNK 382 91582 64.9 UNK UNK 384 91584 51.9 UNK UNK 385 91589 32.7 UNK UNK 389 91589 32.7 UNK UNK 389 91589 32.7 UNK UNK 389 91589 32.7 UNK UNK 380 91580 33.0 UNK UNK 389 91589 32.7 UNK UNK 389 91589 32.7 UNK UNK 389 91589 37.7 UNK UNK 380 91606 52.0 UNK UNK 380 91608 121 UNK UNK 380 91609 17.4 UNK UNK 380 91609 17.4 UNK UNK 380 91609 17.4 UNK UNK 380 91609 17.4 UNK UNK 380 91609 17.4 UNK UNK 380 91609 17.4 UNK UNK 380 91609 17.4 UNK UNK 380 91609 17.4 UNK UNK 380 91609 17.4 UNK UNK 380 91609 17.4 UNK UNK 380 91607 17.4 UNK UNK 380 91607 17.4 UNK UNK 380 91607 17.4 UNK UNK 380 91607 17.4 UNK UNK 380 91607 17.4 UNK UNK 380 91607 17.4 UNK UNK 380 91607 17.4 UNK UNK 380 91607 17.4 UNK UNK 380 91607 17.4 UNK UNK 380 91607 17.4 UNK UNK 380 91607 17.4 UNK UNK 380 91607 17.4 UNK UNK 380 91607 17.4 UNK				
UNK 158				
UNK:161 9161 699 ISOBUTYLBENZENE UNK:155 91515 17.2 1.1.2-TRICHLOROETHANE UNK:318 91518 46.2 TETRACHLOROETHANE UNK:331 91531 25.9 1,1,2,2-TETRACHLOROETHANE UNK:335 91535 21.2 UNK UNK:340 91540 50.4 UNK UNK:551 91551 36.3 UNK UNK:552 91552 20.4 UNK UNK:552 91555 174 UNK UNK:554 91556 32.2 UNK UNK:555 91555 174 UNK UNK:555 91555 174 UNK UNK:556 91566 1790 CAPROLATIAN UNK:560 91566 1790 CAPROLATIAN UNK:560 91569 30.5 POSSILBY 8-OXATRICYCLO- (2,2,2,0,2,6)OCTAN-2-ONE UNK:570 91570 84.9 UNK UNK:571 91571 106 UNK UNK:572 91572 79.9 UNK UNK:573 91573 24.0 ALIPHATIC CYCLIC COMPOUND UNK:574 91574 24.6 UNK UNK:575 91575 32.7 UNK UNK:575 91575 32.7 UNK UNK:577 91577 126 UNK UNK:577 91577 126 UNK UNK:580 91580 1300 UNK UNK:581 91581 30.2 UNK UNK:581 91581 30.2 UNK UNK:582 91582 64.9 UNK UNK:583 91583 86.9 UNK UNK:584 91584 51.9 UNK UNK:585 91585 38.3 UNK UNK:585 91585 38.3 UNK UNK:589 91580 38.3 UNK UNK:580 91580 38.3 UNK UNK:580 91580 38.3 UNK UNK:580 91580 38.3				
ÜNK515 91515 17.2 1,1,2-TRICHLOROETHANE UNK518 91518 46.2 TETRACHLOROETHENE UNK331 91531 22.9 1,1,2,2-TETRACHLOROETHANE UNK400 91540 50.4 UNK UNK551 91551 36.3 UNK UNK552 91552 20.4 UNK UNK553 91553 48.7 UNK UNK554 91554 32.2 UNK UNK555 91555 174 UNK UNK556 91562 19.1 HEXACHLOROBUTADIENE UNK566 91566 1790 CAPROLACTAM UNK570 91569 30.5 POSSILBY 8-OXATRICYCLO- (2,2,2,0,2,6)OCTAN-2-ONE UNK UNK UNK571 91571 106 UNK UNK572 91572 24.0 ALIPHATIC CYCLIC COMPOUND UNK574 91574 24.6 UNK UNK575 91575 32.7 UNK UNK580 91580 1300				
UNK518 91518 46.2 TETRACHLOROETHENE UNK531 91531 25.9 1,1,2,2-TETRACHLOROETHANE UNK535 91535 21.2 UNK UNK540 91540 50.4 UNK UNK551 91551 36.3 UNK UNK552 91552 20.4 UNK UNK553 91553 48.7 UNK UNK554 91554 32.2 UNK UNK5554 91555 174 UNK UNK555 91555 174 UNK UNK556 91566 1790 CAPROLACTAM UNK566 91566 1790 CAPROLACTAM UNK566 91566 1790 CAPROLACTAM UNK566 91566 1790 CAPROLACTAM UNK570 91570 84.9 UNK UNK571 91571 106 UNK UNK571 91571 106 UNK UNK572 91572 79.9 UNK UNK573 91573 24.0 ALIPHATIC CYCLIC COMPOUND UNK574 91574 24.6 UNK UNK5757 91575 32.7 UNK UNK577 91577 126 UNK UNK577 91577 126 UNK UNK580 91580 1300 UNK UNK581 91581 30.2 UNK UNK582 91582 64.9 UNK UNK582 91582 64.9 UNK UNK583 91583 86.9 UNK UNK584 91584 51.9 UNK UNK585 91585 38.3 UNK UNK585 91587 365 ALIPHATIC CYCLIC COMPOUND UNK588 91588 38.3 UNK UNK589 91591 19.0 HEPT-2-ENE UNK594 91591 19.0 HEPT-2-ENE UNK605 91605 37.7 UNK UNK606 91606 52.0 UNK UNK609 91609 17.4 UNK UNK601 91609 17.4 UNK UNK601 91609 17.4 UNK UNK601 91609 17.4 UNK UNK601 91609 17.4 UNK UNK601 91601 17.4 UNK UNK601 91601 17.4 UNK UNK601 91601 17.4 UNK UNK601 91601 17.4 UNK UNK601 91601 17.4 UNK UNK601 91601 17.4 UNK UNK601 91601 17.4 UNK UNK601 91601 17.4 UNK UNK601 91601 17.4 UNK UNK601 91601 17.4 UNK UNK601 91601 17.4 UNK				
UNK531 91531 25.9 1,1,2,2-TETRACHLOROETHANE UNK535 91535 21.2 UNK UNK540 91540 50.4 UNK UNK551 91551 36.3 UNK UNK552 91552 20.4 UNK UNK553 91555 48.7 UNK UNK553 91555 174 UNK UNK555 91555 174 UNK UNK558 91558 24.8 UNK UNK558 91566 1790 CAPROLACTAM UNK560 91566 1790 CAPROLACTAM UNK560 91569 30.5 POSSILBY 8-OXATRICYCLO- (2,2,2,0,2,6)OCTAN-2-ONE UNK570 91570 84.9 UNK UNK571 91571 106 UNK UNK571 91571 91571 106 UNK UNK572 91572 79.9 UNK UNK573 91573 24.0 ALIPHATIC CYCLIC COMPOUND UNK574 91574 24.6 UNK UNK575 91575 32.7 UNK UNK577 91577 126 UNK UNK577 91571 126 UNK UNK580 91580 1300 UNK UNK580 91580 1300 UNK UNK581 91581 30.2 UNK UNK582 91582 64.9 UNK UNK583 91583 86.9 UNK UNK584 91584 51.9 UNK UNK585 91585 86.9 UNK UNK585 91585 88.3 UNK UNK586 91588 38.3 UNK UNK587 91587 365 ALIPHATIC CYCLIC COMPOUND UNK588 91588 38.3 UNK UNK589 91589 22.7 UNK UNK589 91589 15.9 UNK UNK589 91589 15.9 UNK UNK589 91589 32.7 UNK UNK589 91589 32.7 UNK UNK580 91580 38.3 UNK UNK589 91589 32.7 UNK UNK589 91589 32.7 UNK UNK589 91589 32.7 UNK UNK589 91589 32.7 UNK UNK589 91589 32.7 UNK UNK589 91589 32.7 UNK UNK580 91580 38.3 UNK UNK589 91580 38.3 UNK UNK589 91580 38.3 UNK UNK589 91580 38.3 UNK UNK589 91580 15.9 UNK UNK589 91580 15.9 UNK UNK589 91580 17.8 UNK UNK590 91600 37.7 UNK UNK600 91606 52.0 UNK UNK600 91606 52.0 UNK UNK601 91609 17.4 UNK UNK601 91601 1080 UNK				
UNK540 UNK540 UNK540 UNK540 UNK551 UNK551 UNK551 UNK551 UNK552 UNK UNK553 UNK553 UNK UNK553 UNK554 UNK554 UNK555 UNK555 UNK555 UNK UNK555 UNK555 UNK555 UNK556 UNK557 UNK566 UNK566 UNK566 UNK570 UNK570 UNK571 UNK571 UNK571 UNK573 UNK573 UNK573 UNK573 UNK573 UNK574 UNK575 UNK575 UNK575 UNK575 UNK576 UNK577 UNK577 UNK577 UNK UNK577 UNK578 UNK578 UNK579 UNK579 UNK579 UNK UNK579 UNK UNK571 UNK571 UNK571 UNK571 UNK572 UNK UNK573 UNK UNK573 UNK UNK574 UNK575 UNK UNK575 UNK UNK575 UNK UNK576 UNK UNK577 UNK UNK577 UNK UNK580 UNK UNK581 UNK580 UNK UNK581 UNK581 UNK UNK581 UNK582 UNK UNK582 UNK UNK584 UNK584 UNK584 UNK5859 UNK UNK5859 UNK UNK589 UNK UNK589 UNK UNK589 UNK UNK589 UNK UNK589 UNK UNK589 UNK UNK589 UNK UNK589 UNK UNK589 UNK UNK589 UNK UNK589 UNK UNK589 UNKS99 UNK UNK600 UNK600 UNK600 UNK600 UNK600 UNK600 UNK600 UNK600 UNK600 UNK601 UNK601 UNK601				
UNK 501 UNK 511 UNK 512 UNK 513 UNK 514 UNK 5152 UNK 5153 UNK 5153 UNK UNK 5154 UNK 5154 UNK 5155 UNK 5155 UNK 5155 UNK 5155 UNK 5155 UNK 5155 UNK 516 UNK 517 UNK 518 UNK 518 UNK 519			• • •	
UNK551 91551 36.3 UNK UNK552 91552 20.4 UNK UNK553 91553 48.7 UNK UNK554 91554 32.2 UNK UNK555 91555 174 UNK UNK558 91555 174 UNK UNK558 91555 24.8 UNK UNK566 91566 1790 CAPROLACTAM UNK566 91566 1790 CAPROLACTAM UNK569 91569 30.5 POSSILBY 8-OXATRICYCLO- (2,2,2,0,2,6)OCTAN-2-ONE UNK570 91570 84.9 UNK UNK571 91571 106 UNK UNK571 91571 79.9 UNK UNK573 91573 24.0 ALIPHATIC CYCLIC COMPOUND UNK574 91574 24.6 UNK UNK575 91575 32.7 UNK UNK577 91577 126 UNK UNK577 91577 126 UNK UNK580 91580 1300 UNK UNK580 91580 1300 UNK UNK581 91581 30.2 UNK UNK582 91582 64.9 UNK UNK583 91583 86.9 UNK UNK583 91583 86.9 UNK UNK584 91584 51.9 UNK UNK587 91587 365 ALIPHATIC CYCLIC COMPOUND UNK588 91588 38.3 UNK UNK589 91589 22.7 UNK UNK589 91589 12.7 UNK UNK589 91589 1589 UNK UNK589 91589 1589 UNK UNK591 91591 19.0 HEPT-2-ENE UNK594 91594 20.9 UNK UNK595 91595 17.8 UNK UNK602 91605 37.7 UNK UNK606 91606 52.0 UNK UNK608 91608 121 UNK UNK609 91609 17.4 UNK UNK601 91609 17.4 UNK UNK601 91609 17.4 UNK UNK601 91609 17.4 UNK UNK601 91609 17.4 UNK UNK601 91609 17.4 UNK UNK601 91609 17.4 UNK UNK601 91601 1080 UNK				
UNK.552 91552 20.4 UNK UNK.553 91553 48.7 UNK UNK.554 91554 32.2 UNK UNK.555 91555 174 UNK UNK.558 91555 174 UNK UNK.558 91556 1790 CAPROLACTAM UNK.560 91566 1790 CAPROLACTAM UNK.560 91569 30.5 POSSILBY 8-OXATRICYCLO- (2,2,2,0,2,6)OCTAN-2-ONE UNK.570 91570 84.9 UNK UNK.571 91571 106 UNK UNK.572 91572 79.9 UNK UNK.573 91573 24.0 ALIPHATIC CYCLIC COMPOUND UNK.574 91574 24.6 UNK UNK.575 91575 32.7 UNK UNK.577 91577 126 UNK UNK.580 91580 1300 UNK UNK.580 91580 1300 UNK UNK.581 91581 30.2 UNK UNK.582 91582 64.9 UNK UNK.583 91583 86.9 UNK UNK.583 91583 86.9 UNK UNK.584 91584 51.9 UNK UNK.585 91587 365 ALIPHATIC CYCLIC COMPOUND UNK.588 91588 38.3 UNK UNK.589 91589 22.7 UNK UNK.589 91589 22.7 UNK UNK.589 91589 22.7 UNK UNK.589 91589 22.7 UNK UNK.589 91589 22.7 UNK UNK.589 91589 22.7 UNK UNK.589 91589 37.7 UNK UNK.589 91589 22.7 UNK UNK.589 91589 22.7 UNK UNK.589 91589 22.7 UNK UNK.589 91589 37.7 UNK UNK.589 91589 22.7 UNK UNK.589 91589				
UNK.553 91553 48.7 UNK UNK.554 91554 32.2 UNK UNK.555 91555 174 UNK UNK.555 91555 174 UNK UNK.558 91558 24.8 UNK UNK.562 91562 19.1 HEXACHLOROBUTADIENE UNK.566 91566 1790 CAPROLACTAM UNK.569 91569 30.5 POSSILBY 8-OXATRICYCLO- (2,2,2,0,2,6)OCTAN-2-ONE UNK.570 91570 84.9 UNK UNK.571 91571 106 UNK UNK.572 91572 79.9 UNK UNK.573 91573 24.0 ALIPHATIC CYCLIC COMPOUND UNK.574 91574 24.6 UNK UNK.575 91575 32.7 UNK UNK.577 91577 126 UNK UNK.580 91580 1300 UNK UNK.581 91581 30.2 UNK UNK.582 91582 64.9 UNK UNK.582 91582 64.9 UNK UNK.583 91583 86.9 UNK UNK.584 91584 51.9 UNK UNK.587 91587 365 ALIPHATIC CYCLIC COMPOUND UNK.588 91588 38.3 UNK UNK.588 91589 22.7 UNK UNK.589 91589 15.9 UNK UNK.589 91589 15.9 UNK UNK.589 91589 15.9 UNK UNK.589 91589 15.7 UNK UNK.589 91589 15.9 UNK UNK.589 91589 15.9 UNK UNK.589 91589 15.7 UNK UNK.589 91589 17.8 UNK UNK.589 91595 17.8 UNK UNK.599 91595 17.8 UNK UNK.599 91605 37.7 UNK UNK.6006 91606 52.0 UNK UNK.6008 91608 121 UNK UNK.6009 91609 17.4 UNK UNK.601 91601 17.4 UNK UNK.601 91601 1080 UNK	-			
UNK555 91555 174 UNK UNK555 91555 174 UNK UNK558 91555 24.8 UNK UNK562 91562 19.1 HEXACHLOROBUTADIENE UNK566 91566 1790 CAPROLACTAM UNK569 91569 30.5 POSSILBY 8-OXATRICYCLO- (2,2,2,0,2,6)OCTAN-2-ONE UNK570 91570 84.9 UNK UNK571 91571 106 UNK UNK572 91572 79.9 UNK UNK573 91573 24.0 ALIPHATIC CYCLIC COMPOUND UNK574 91574 24.6 UNK UNK575 91575 32.7 UNK UNK575 91577 126 UNK UNK577 91577 126 UNK UNK580 91580 1300 UNK UNK581 91581 30.2 UNK UNK581 91581 30.2 UNK UNK582 91582 64.9 UNK UNK583 91583 86.9 UNK UNK584 91584 51.9 UNK UNK587 91587 365 ALIPHATIC CYCLIC COMPOUND UNK588 91588 38.3 UNK UNK588 91589 22.7 UNK UNK589 91589 22.7 UNK UNK599 91591 19.0 HEPTACHLORO-BICYCLO-[2,2,1]- HEPT-2-ENE UNK602 91602 75.5 UNK UNK603 91606 32.0 UNK UNK606 91606 121 UNK UNK608 91608 121 UNK UNK609 91609 17.4 UNK UNK601 91607 17.4 UNK UNK601 91671 1080 UNK			_	
UNK.555 91555 174 UNK UNK.558 91558 24.8 UNK UNK.562 91562 19.1 HEXACHLOROBUTADIENE UNK.566 91566 1790 CAPROLACTAM UNK.569 91569 30.3 POSSILBY 8-OXATRICYCLO- (2.2.2,0,2,6)OCTAN-2-ONE UNK.570 91570 84.9 UNK UNK.571 91571 106 UNK UNK.572 91572 79.9 UNK UNK.573 91573 24.0 ALIPHATIC CYCLIC COMPOUND UNK.574 91574 24.6 UNK UNK.575 91575 32.7 UNK UNK.577 91577 126 UNK UNK.577 91577 126 UNK UNK.580 91580 1300 UNK UNK.581 91581 30.2 UNK UNK.582 91582 64.9 UNK UNK.582 91582 64.9 UNK UNK.583 91583 86.9 UNK UNK.584 91584 51.9 UNK UNK.587 91587 365 ALIPHATIC CYCLIC COMPOUND UNK.588 91588 38.3 UNK UNK.589 91589 22.7 UNK UNK.589 91589 22.7 UNK UNK.591 91591 19.0 HEPTACHLORO-BICYCLO-[2.2,1]- HEPT-2-ENE UNK.594 91594 20.9 UNK UNK.595 91595 17.8 UNK UNK.595 91595 17.8 UNK UNK.595 91605 37.7 UNK UNK.606 91606 52.0 UNK UNK.608 91608 121 UNK UNK.609 91609 17.4 UNK UNK.6071 91671 1080 UNK				
UNK558 91558 24.8 UNK UNK562 91562 19.1 HEXACHLOROBUTADIENE UNK566 91566 1790 CAPROLACTAM UNK569 91569 30.5 POSSILBY 8-OXATRICYCLO- (2,2,2,0,2,6)OCTAN-2-ONE UNK570 91570 84.9 UNK UNK571 91571 106 UNK UNK572 91572 79.9 UNK UNK573 91573 24.0 ALIPHATIC CYCLIC COMPOUND UNK574 91574 24.6 UNK UNK575 91575 32.7 UNK UNK577 91577 126 UNK UNK580 91580 1300 UNK UNK580 91580 1300 UNK UNK581 91581 30.2 UNK UNK582 91582 64.9 UNK UNK583 91583 86.9 UNK UNK583 91584 51.9 UNK UNK584 91584 51.9 UNK UNK585 91589 22.7 UNK UNK589 91589 22.7 UNK UNK589 91589 22.7 UNK UNK589 91589 22.7 UNK UNK591 91591 19.0 HEPTACHLORO-BICYCLO-[2,2,1]- HEPT-2-ENE UNK595 91595 17.8 UNK UNK595 91595 17.8 UNK UNK606 91606 52.0 UNK UNK606 91606 52.0 UNK UNK608 91608 121 UNK UNK609 91604 255 UNK UNK6071 91671 1080 UNK				
UNK562 91562 19.1 HEXACHLOROBUTADIENE UNK566 91566 1790 CAPROLACTAM UNK569 91569 30.5 POSSILBY 8-OXATRICYCLO- (2,2,2,0,2,6)OCTAN-2-ONE UNK570 91570 84.9 UNK UNK571 91571 106 UNK UNK572 91572 79.9 UNK UNK573 91573 24.0 ALIPHATIC CYCLIC COMPOUND UNK574 91574 24.6 UNK UNK575 91575 32.7 UNK UNK577 91577 126 UNK UNK577 91577 126 UNK UNK580 91580 1300 UNK UNK581 91581 30.2 UNK UNK582 91582 64.9 UNK UNK582 91582 64.9 UNK UNK583 91583 86.9 UNK UNK584 91584 51.9 UNK UNK587 91587 365 ALIPHATIC CYCLIC COMPOUND UNK588 91588 38.3 UNK UNK589 91589 22.7 UNK UNK589 91589 19.0 HEPTACHLORO-BICYCLO-[2,2,1]- HEPT-2-ENE UNK594 91594 20.9 UNK UNK605 91605 37.7 UNK UNK606 91606 52.0 UNK UNK606 91608 121 UNK UNK609 91609 17.4 UNK UNK609 91604 255 UNK UNK601 91611 1080 UNK				
UNK566 UNK569 91569 91569 30.5 POSSILBY 8-OXATRICYCLO- (2,2,2,0,6)OCTAN-2-ONE UNK570 UNK571 91571 106 UNK UNK572 91572 79.9 UNK UNK573 91573 24.0 ALIPHATIC CYCLIC COMPOUND UNK574 UNK575 91575 91575 32.7 UNK UNK577 91577 126 UNK UNK580 91580 1300 UNK UNK581 91581 30.2 UNK UNK582 91582 64.9 UNK UNK583 91583 86.9 UNK UNK583 91584 91584 51.9 UNK UNK585 UNK585 91585 38.3 UNK UNK586 91588 91588 38.3 UNK UNK588 91588 91588 38.3 UNK UNK589 91589 22.7 UNK UNK589 91589 19591 19.0 HEPTACHLORO-BICYCLO-[2,2,1]- HEPT-2-ENE UNK602 91602 75.5 UNK UNK605 91605 37.7 UNK UNK606 91606 52.0 UNK UNK606 91606 121 UNK UNK606 91606 121 UNK UNK606 91606 121 UNK UNK606 91607 UNK UNK606 91608 121 UNK UNK606 91609 91609 17.4 UNK			= 1 11	
UNK569 91569 30.5 POSSILBY 8-OXATRICYCLO- (2,2,2,0,2,6)OCTAN-2-ONE UNK570 91570 84.9 UNK UNK571 91571 106 UNK UNK572 91572 79.9 UNK UNK573 91573 24.0 ALIPHATIC CYCLIC COMPOUND UNK574 91574 24.6 UNK UNK575 91575 32.7 UNK UNK577 91577 126 UNK UNK580 91580 1300 UNK UNK581 91581 30.2 UNK UNK581 91582 64.9 UNK UNK582 91582 64.9 UNK UNK583 91583 86.9 UNK UNK584 91584 51.9 UNK UNK587 91587 365 ALIPHATIC CYCLIC COMPOUND UNK588 91588 38.3 UNK UNK589 91589 22.7 UNK UNK599 9159 12.7 UNK UNK591 9159 19.0 HEPTACHLORO-BICYCLO-[2,2,1]- HEPT-2-ENE UNK594 91594 20.9 UNK UNK595 91595 17.8 UNK UNK605 91602 75.5 UNK UNK606 91606 52.0 UNK UNK606 91606 52.0 UNK UNK608 91608 121 UNK UNK609 91604 255 UNK UNK601 91604 255 UNK UNK602 91642 255 UNK UNK604 91642 255 UNK UNK6071 91671 1080 UNK				
UNK 570 91570 84.9 UNK UNK 571 91571 106 UNK UNK 572 91572 79.9 UNK UNK 573 91573 24.0 ALIPHATIC CYCLIC COMPOUND UNK 574 91575 32.7 UNK UNK 575 91575 32.7 UNK UNK 577 91577 126 UNK UNK 580 91580 1300 UNK UNK 581 91581 30.2 UNK UNK 582 91582 64.9 UNK UNK 583 91583 86.9 UNK UNK 584 91584 51.9 UNK UNK 584 91584 51.9 UNK UNK 585 91588 38.3 UNK UNK 588 91588 38.3 UNK UNK 589 91589 22.7 UNK UNK 589 91591 19.0 HEPTACHLORO-BICYCLO-[2,2,1]- HEPT-2-ENE UNK 594 91605 37.7 UNK UNK 606 91606 52.0 UNK UNK 608 91608 121 UNK UNK 609 91604 255 UNK UNK 604 91604 255 UNK UNK 6067 91604 255 UNK UNK 6067 91604 255 UNK UNK 6069 91604 255 UNK UNK 6061 91604 255 UNK UNK 6067 91604 255 UNK UNK 6067 91604 255 UNK UNK 6067 91604 255 UNK UNK 6069 91604 255 UNK UNK 6069 91604 255 UNK UNK 6069 91604 255 UNK UNK 6067 91604 255 UNK				
UNK570 91570 84.9 UNK UNK571 91571 106 UNK UNK572 91572 79.9 UNK UNK573 91573 24.0 ALIPHATIC CYCLIC COMPOUND UNK574 91574 24.6 UNK UNK575 91575 32.7 UNK UNK577 91577 126 UNK UNK580 91580 1300 UNK UNK581 91581 30.2 UNK UNK582 91582 64.9 UNK UNK583 91583 86.9 UNK UNK584 91584 51.9 UNK UNK584 91584 51.9 UNK UNK587 91587 365 ALIPHATIC CYCLIC COMPOUND UNK588 91588 38.3 UNK UNK589 91589 22.7 UNK UNK589 91589 22.7 UNK UNK591 91591 19.0 HEPTACHLORO-BICYCLO-[2,2,1]- HEPT-2-ENE UNK594 91594 20.9 UNK UNK595 91595 17.8 UNK UNK605 91605 37.7 UNK UNK606 91606 52.0 UNK UNK608 91608 121 UNK UNK609 91609 17.4 UNK UNK609 91609 17.4 UNK UNK601 91609 17.4 UNK UNK601 91601 1080 UNK	Chillyon	31003 50.5		
UNK571 91571 106 UNK UNK572 91572 79.9 UNK UNK573 91573 24.0 ALIPHATIC CYCLIC COMPOUND UNK574 91574 24.6 UNK UNK575 91575 32.7 UNK UNK577 91577 126 UNK UNK580 91580 1300 UNK UNK581 91581 30.2 UNK UNK582 91582 64.9 UNK UNK583 91583 86.9 UNK UNK583 91584 51.9 UNK UNK584 91584 51.9 UNK UNK587 91587 365 ALIPHATIC CYCLIC COMPOUND UNK588 91588 38.3 UNK UNK588 91589 22.7 UNK UNK589 91589 22.7 UNK UNK589 91591 19.0 HEPTACHLORO-BICYCLO-[2,2,1]- HEPT-2-ENE UNK594 91602 75.5 UNK UNK602 91602 75.5 UNK UNK605 91605 37.7 UNK UNK606 91606 52.0 UNK UNK608 91608 121 UNK UNK609 91609 17.4 UNK UNK609 91609 17.4 UNK UNK601 91601 1080 UNK	TINK 570	91570 \$4.9		
UNK572 91572 79.9 UNK UNK573 91573 24.0 ALIPHATIC CYCLIC COMPOUND UNK574 91574 24.6 UNK UNK575 91575 32.7 UNK UNK577 91577 126 UNK UNK580 91580 1300 UNK UNK581 91581 30.2 UNK UNK582 91582 64.9 UNK UNK583 91583 86.9 UNK UNK584 91584 51.9 UNK UNK584 91584 51.9 UNK UNK587 91587 365 ALIPHATIC CYCLIC COMPOUND UNK588 91588 38.3 UNK UNK589 91599 22.7 UNK UNK591 91591 19.0 HEPTACHLORO-BICYCLO-[2,2,1]- HEPT-2-ENE UNK594 91602 75.5 UNK UNK602 91602 75.5 UNK UNK603 91603 37.7 UNK UNK606 91606 52.0 UNK UNK608 91608 121 UNK UNK609 91609 17.4 UNK UNK609 91609 17.4 UNK UNK601 91671 1080 UNK				
UNK573 91573 24.0 ALIPHATIC CYCLIC COMPOUND UNK574 91574 24.6 UNK UNK575 91575 32.7 UNK UNK577 91577 126 UNK UNK580 91580 1300 UNK UNK581 91581 30.2 UNK UNK582 91582 64.9 UNK UNK583 91583 86.9 UNK UNK584 91584 51.9 UNK UNK587 91587 365 ALIPHATIC CYCLIC COMPOUND UNK588 91588 38.3 UNK UNK589 91589 22.7 UNK UNK589 91589 19.0 HEPTACHLORO-BICYCLO-[2,2,1]- HEPT-2-ENE UNK594 91594 20.9 UNK UNK595 91595 17.8 UNK UNK602 91602 75.5 UNK UNK605 91603 37.7 UNK UNK606 91606 52.0 UNK UNK608 91608 121 UNK UNK609 91609 17.4 UNK UNK609 91609 17.4 UNK UNK609 91601 1080 UNK				
UNK574 91574 24.6 UNK UNK575 91575 32.7 UNK UNK577 91577 126 UNK UNK580 91580 1300 UNK UNK581 91581 30.2 UNK UNK582 91582 64.9 UNK UNK583 91583 86.9 UNK UNK584 91584 51.9 UNK UNK587 91587 365 ALIPHATIC CYCLIC COMPOUND UNK588 91588 38.3 UNK UNK589 91589 22.7 UNK UNK591 91591 19.0 HEPTACHLORO-BICYCLO-[2,2,1]- HEPT-2-ENE UNK594 91594 20.9 UNK UNK595 91595 17.8 UNK UNK602 91602 75.5 UNK UNK605 91605 37.7 UNK UNK606 91606 52.0 UNK UNK608 91608 121 UNK UNK609 91609 17.4 UNK UNK609 91609 17.4 UNK UNK642 91642 255 UNK UNK671 91671 1080 UNK				
UNK575 91575 32.7 UNK UNK577 91577 126 UNK UNK580 91580 13000 UNK UNK581 91581 30.2 UNK UNK582 91582 64.9 UNK UNK583 91583 86.9 UNK UNK584 91584 51.9 UNK UNK587 91587 365 ALIPHATIC CYCLIC COMPOUND UNK588 91588 38.3 UNK UNK589 91589 22.7 UNK UNK591 91591 19.0 HEPTACHLORO-BICYCLO-[2,2,1]- HEPT-2-ENE UNK594 91594 20.9 UNK UNK595 91595 17.8 UNK UNK602 91602 75.5 UNK UNK605 91605 37.7 UNK UNK606 91606 52.0 UNK UNK608 91608 121 UNK UNK609 91609 17.4 UNK UNK609 91609 17.4 UNK UNK609 91604 255 UNK UNK642 91642 255 UNK UNK642 91642 255 UNK				
UNK577 91577 126 UNK UNK580 91580 1300 UNK UNK581 91581 30.2 UNK UNK582 91582 64.9 UNK UNK583 91583 86.9 UNK UNK584 91584 51.9 UNK UNK587 91587 365 ALIPHATIC CYCLIC COMPOUND UNK588 91588 38.3 UNK UNK589 91589 22.7 UNK UNK589 91591 19.0 HEPTACHLORO-BICYCLO-[2,2,1]- HEPT-2-ENE UNK594 91594 20.9 UNK UNK595 91595 17.8 UNK UNK602 91602 75.5 UNK UNK605 91605 37.7 UNK UNK606 91606 52.0 UNK UNK606 91606 52.0 UNK UNK608 91608 121 UNK UNK609 91609 17.4 UNK UNK609 91609 17.4 UNK UNK609 91602 255 UNK UNK601 91604 255 UNK				
UNK580 91580 1300 UNK UNK581 91581 30.2 UNK UNK582 91582 64.9 UNK UNK583 91583 86.9 UNK UNK584 91584 51.9 UNK UNK587 91587 365 ALIPHATIC CYCLIC COMPOUND UNK588 91588 38.3 UNK UNK589 91589 22.7 UNK UNK589 91591 19.0 HEPTACHLORO-BICYCLO-[2,2,1]- HEPT-2-ENE UNK594 91594 20.9 UNK UNK595 91595 17.8 UNK UNK602 91602 75.5 UNK UNK605 91605 37.7 UNK UNK606 91606 52.0 UNK UNK608 91608 121 UNK UNK609 91609 17.4 UNK UNK609 91642 255 UNK UNK642 91642 255 UNK UNK671 91671 1080 UNK	UNK577			
UNK581 91581 30.2 UNK UNK582 91582 64.9 UNK UNK583 91583 86.9 UNK UNK584 91584 51.9 UNK UNK587 91587 365 ALIPHATIC CYCLIC COMPOUND UNK588 91588 38.3 UNK UNK589 91589 22.7 UNK UNK591 91591 19.0 HEPTACHLORO-BICYCLO-[2,2,1]- HEPT-2-ENE UNK594 91594 20.9 UNK UNK595 91595 17.8 UNK UNK602 91602 75.5 UNK UNK605 91605 37.7 UNK UNK606 91606 52.0 UNK UNK608 91608 121 UNK UNK609 91609 17.4 UNK UNK609 91609 17.4 UNK UNK609 91609 17.4 UNK UNK601 91671 1080 UNK	UNK580			
UNK583 91583 86.9 UNK UNK584 91584 51.9 UNK UNK587 91587 365 ALIPHATIC CYCLIC COMPOUND UNK588 91588 38.3 UNK UNK589 91589 22.7 UNK UNK591 91591 19.0 HEPTACHLORO-BICYCLO-[2,2,1]- HEPT-2-ENE UNK594 91594 20.9 UNK UNK595 91595 17.8 UNK UNK602 91602 75.5 UNK UNK605 91605 37.7 UNK UNK606 91606 52.0 UNK UNK608 91608 121 UNK UNK609 91609 17.4 UNK UNK609 91609 17.4 UNK UNK642 91642 255 UNK UNK671 91671 1080 UNK	UNK581			
UNK584 91584 51.9 UNK UNK587 91587 365 ALIPHATIC CYCLIC COMPOUND UNK588 91588 38.3 UNK UNK589 91589 22.7 UNK UNK591 91591 19.0 HEPTACHLORO-BICYCLO-[2,2,1]- HEPT-2-ENE UNK594 91594 20.9 UNK UNK595 91595 17.8 UNK UNK602 91602 75.5 UNK UNK605 91605 37.7 UNK UNK606 91606 52.0 UNK UNK606 91606 52.0 UNK UNK608 91608 121 UNK UNK609 91609 17.4 UNK UNK609 91609 17.4 UNK UNK642 91642 255 UNK UNK671 91671 1080 UNK	UNK 582	91582 64.9	UNK	
UNK587 91587 365 ALIPHATIC CYCLIC COMPOUND UNK588 91588 38.3 UNK UNK589 91589 22.7 UNK UNK591 91591 19.0 HEPTACHLORO-BICYCLO-[2,2,1]- HEPT-2-ENE UNK594 91595 17.8 UNK UNK595 91595 17.8 UNK UNK602 91602 75.5 UNK UNK605 91605 37.7 UNK UNK606 91606 52.0 UNK UNK606 91608 121 UNK UNK608 91608 121 UNK UNK609 91609 17.4 UNK UNK609 91642 255 UNK UNK642 91642 255 UNK UNK671 91671 1080 UNK	UNK583	91583 8 6.9	UNK	
UNK588 91588 38.3 UNK UNK589 91589 22.7 UNK UNK591 91591 19.0 HEPTACHLORO-BICYCLO-[2,2,1]- HEPT-2-ENE UNK594 91594 20.9 UNK UNK595 91595 17.8 UNK UNK602 91602 75.5 UNK UNK605 91605 37.7 UNK UNK606 91606 52.0 UNK UNK608 91608 121 UNK UNK608 91609 17.4 UNK UNK609 91642 255 UNK UNK642 91642 255 UNK UNK671 91671 1080 UNK	UNK584	91584 51.9	UNK	
UNK589 91589 22.7 UNK UNK591 91591 19.0 HEPTACHLORO-BICYCLO-[2,2,1]- HEPT-2-ENE UNK594 91594 20.9 UNK UNK595 91595 17.8 UNK UNK602 91602 75.5 UNK UNK605 91605 37.7 UNK UNK606 91606 52.0 UNK UNK608 91608 121 UNK UNK608 91609 17.4 UNK UNK609 91642 255 UNK UNK671 91671 1080 UNK	UNK 587	91587 365	ALIPHATIC CYCLIC COMPOUND	Į.
UNK591 91591 19.0 HEPTACHLORO-BICYCLO-[2,2,1]- HEPT-2-ENE UNK594 91594 20.9 UNK UNK595 91595 17.8 UNK UNK602 91602 75.5 UNK UNK605 91605 37.7 UNK UNK606 91606 52.0 UNK UNK608 91608 121 UNK UNK609 91609 17.4 UNK UNK609 91642 255 UNK UNK671 91671 1080 UNK	UNK588	91588 38.3	UNK	
UNK 594 91594 20.9 UNK UNK 595 91595 17.8 UNK UNK 602 91602 75.5 UNK UNK 605 91605 37.7 UNK UNK 606 91606 52.0 UNK UNK 608 91608 121 UNK UNK 609 91609 17.4 UNK UNK 609 91642 255 UNK UNK 671 91671 1080 UNK			UNK	
UNK594 91594 20.9 UNK UNK595 91595 17.8 UNK UNK602 91602 75.5 UNK UNK605 91605 37.7 UNK UNK606 91606 52.0 UNK UNK608 91608 121 UNK UNK609 91609 17.4 UNK UNK609 91642 255 UNK UNK671 91671 1080 UNK	UNK591	91591 19.0	HEPTACHLORO-BICYCLO-[2,2,1]-	
UNK 595 91595 17.8 UNK UNK 602 91602 75.5 UNK UNK 605 91605 37.7 UNK UNK 606 91606 52.0 UNK UNK 608 91608 121 UNK UNK 609 91609 17.4 UNK UNK 642 91642 255 UNK UNK 671 91671 1080 UNK			HEPT-2-ENE	
UNK602 91602 75.5 UNK UNK605 91605 37.7 UNK UNK606 91606 52.0 UNK UNK608 91608 121 UNK UNK609 91609 17.4 UNK UNK642 91642 255 UNK UNK671 91671 1080 UNK			UNK	
UNK605 91605 37.7 UNK UNK606 91606 52.0 UNK UNK608 91608 121 UNK UNK609 91609 17.4 UNK UNK642 91642 255 UNK UNK671 91671 1080 UNK			UNK	
UNK606 91606 52.0 UNK UNK608 91608 121 UNK UNK609 91609 17.4 UNK UNK642 91642 255 UNK UNK671 91671 1080 UNK				
UNK 608 91608 121 UNK UNK 609 91609 17.4 UNK UNK 642 91642 255 UNK UNK 671 91671 1080 UNK				
UNK609 91609 17.4 UNK UNK642 91642 255 UNK UNK671 91671 1080 UNK				
UNK642 91642 255 UNK UNK671 91671 1080 UNK				
UNK671 91671 1080 UNK				
UNK093 91693 854 UNK				1
	UNK 693	91693 854	UNK	J

	2	3182	
PARAMETERS	STORET #	T4CC2	TENTATIVE ID
UNITS	METHOD	14	
DATE	09/04/8	6	
TIME	10:12		
UNK 642	91642 1	86	UNK
UNK 652	91652	10	UNK
UNK671	91671	580	UNK
IINK 693	91693	113	UNK

		23183	
PARAMETERS UNITS	STORE METHO	D 15	TENTATIVE ID
DATE TIME	•	04/86 4:07	
UNK 579	91579	5.88	DIMETHYL PHTHALATE
UNK 587	91587	39 <u>.</u> 9	UNK

		231	85	
PARAMETERS	STORE	T #	T4CC	TENTATIVE ID
UNITS	METHO	D	17	
DATE	06/	19/86		
TIME	1	0:03		
UNK 515	91515	8.38		1,1,2-TRICHLOROETHANE
UNK 532	91532	14.2		1,1,2,2-TETRACHLOROETHANE
UNK 562	91562	15.2		UNK
UNK 563	91563	16,3		UNK
UNK 576	91576	23.8		UNK
UNK 582	91582	6.98		UNK
UNK 588	91588	14.9		UNK
UNK 591	91591	8.09		C17 OR C18 ALKANE
UNK 594	91594	38.3		N-HEPTADECANE
UNK 600	91600	12.7		2,6,10,14-TETRAMETHYLHEXADECANE
UNK 605	91605	21.1		N-NONADECANE
UNK 610	91610	11.7		N-HENEICOSANE
UNK 628	91628	14.5		OCTADECANAMIDE, UNK
UNK 642	91642	10.8		BIS(2-ETHYLHEXYL)PHTHALATE

23188						
PARAMETERS	STORET #	T4CC	TENTATIVE ID			
UNITS	METHOD	18				
DATE	06/19/8	36				
TIME	11:46					
UNK 129	91129 1	3.5	1,4 DITHIAN			
UNK 161	91161 7	.60	NO MATCH			
UNK517	91517 1	8.2	CYCLOPENTANONE			
UNK532	91532 1	0.4	1,1,2,2-TETRACHLOROETHANE			
UNK541	91541 7	.18	UNK			
UNK553	91553 1	0.3	UNK			
UNK 555	91555 1	6.6	UNK			
UNK558		3.24	POSSIBLY N-HEXYLACETAMIDE			
UNK561		9.2	N,N'-BIS(1-METHYLETHYL)UN			
UNK 563		i.60	UNK			
UNK 566		0.13	UNK			
UNK 569		27.3	UNK			
UNK 570		2.2	UNK			
UNK 572		1.52	UNK			
UNK 574).41	UNK			
UNK 575		.87	UNK			
UNK 576		7.6	UNK			
UNK 577		1.3	UNK			
UNK 579		5.58	UNK			
UNK 580		251	UNK			
UNK 581		7.26	UNK			
UNK 582		33.1	N-PENTADECANE			
UNK 583		11.2	POSSIBLY 2-(4-METHYL-2-FURYL)?			
UNK 584		18.2	UNK			
UNK 586		15.6	UNK			
UNK 587		5.74	C12 ALKYNE			
UNK 588		79.7	N-HEXADECANE, ALKENE OR ALCOHOL			
UNK 591	91591 3	32.5	ALKANE, 2,6,10-TRIMETHYL- PENTADECANE			
UNK 594	91594	137	N-HEPTADECANE, 2,6,10,14-TETRA- METHYLPENTADECANE			
UNK 396	91596	15.5	CIS ALKANE			
UNK 597		13.4	C17 ALKENE			
UNK 599		36.9	N-OCTADECANE			
UNK 600		23.7	2,6,10,14-TETRAMETHYLHEXADECANE			
UNK 602		36.2	UNK			
UNK 603		16.2	ALKENE			
UNK 605		72.4	N-NONADECANE, ALKANE OR ALKENE			
UNK 608		15.0	ALKENE			
UNK610		32.0	N-EICOSANE			
UNK615		11.7	N-HENEICOSANE			
UNK 620		7.65	UNK			
UNK 621		7.80	UNK			

23190								
PARAMETERS	STORET #	THCC	TENTATIVE ID					
UNITS	METHOD	19						
DATE	06/19/86							
TIME	12:41							
UNK 532	91532 7.31		1,1,2,2-TETRACHLOROETHANE					
UNK 575	91575 8.75	5	N-TETRADECANE					
UNK 579	91579 6.28	3	ALKANE					
UNK 582	91582 48.6	5	N-PENTADECANE					
UNK 585	91585 33.6	5	ALKENE					
UNK 586	91586 41.9)	ALKANE, DODECANOIC ACID, ALKENE					
UNK 588	91588 190	0	N-HEXADECANE					
UNK 591	91591 74.0)	ALKANE, 2,6,10-TRIMETHYL-					
			PENTADECANE, ALKENE					
UNK 592	91592 19.1]	ALKANE, ALKENE					
UNK 594	91594 26	7	ALKANE, N-HEPTADECANE,					
			2,6,10,14-TETRAMETHYLPENTANONE					
UNK 596	91596 30.1		ALKANE					
UNK 597	91597 65.8	3	ALKENE					
UNK 598	91598 7.53	7	ALKENE					
UNK 600	91600 22	8	N-OCTADECANE, 2,6,10,14-TETRA-					
			METHYLHEXADECANE					
UNK 602	91602 23.6		ALKANE OR ALKENE					
UNK 603	91603 34.4		ALKENE					
UNK 605	91605 14		ALKANE, N-NONADECANE					
UNK 607	91607 9.65		ALKENE					
UNK 608	91608 28.	1	ALKENE					
UNK610	91610 59.9	•	N-EICOSANE					
UNK614	91614 7,79		ALKENE					
UNK615	91615 18.0		N-HENEICOSANE					
UNK 617	91617 15.		ALKENE OR ALCOHOL					
UNK619	91619 8.30		ALKENE					
UNK 620	91620 7.3		DOCOSANE OR ALKENE					
UNK 621	91621 9.35		ALIPHATIC HYDROCARBON					
UNK 635	91635 92.9		BIS(2-ETHYLHEXYL)PHTHALATE					
UNK642	91642 35.6	5	UNK					

		2417	78	
PARAMETERS	STORE	T #	T4CC	TENTATIVE ID
UNITS	METHO	D C	20	
DATE	06/	19/86		
TIME	1	4:22		
UNK519	91519	21.0		TETRACHLOROETHENE
UNK589	91589	33.7		UNK
UNK591	91591	6.12		1,2,3,4,5,7,7-HEPTACHLORNOR- BORNENE
UNK 594	91594	9.79		2,6,10,14-TETRAMETHYLPENTADIENE
UNK600	91600	11.5		2,6,10,14-TETRAMETHYLHEXADIENE
UNK629	91629	26.2		POSSIBLY A BENZOTHIAZENE
UNK635	91635	6.90		BIS(2-ETHYLHEXYL)PHTHALATE

		24178	
PARAMETERS UNITS	STORET METHOI		TENTATIVE ID
DATE	09/2	2/86	
TIME	14	:50	
UNK518	91518	32.1	TETRACHLOROETHANE
UNK 589	91589	23.1	UNK
UNK 629	91629	19.4	UNK

25016							
PARAMETERS	STORET #	T4CC2	TENTATIVE ID				
UNITS	METHOD	20					
DATE	09/05/8						
TIME	11:06						
UNK568		350	CAPROLACTAM				
UNK57I		1.9	UNK				
UNK 599	91599 21	1.5	UNK				
UNK617		9.3	ALKENE OR ALCOHOL				
UNK618		9.4	OCTADECANOIC ACID, UNK				
UNK619	91619 14	4.7 UI	NK.				
UNK620	91620 23	7.7	AN ALIPHATIC AMIDE, POSSIBLY HEXADECANAMIDE				
UNK 622	91622 8	1.6	UNK				
UNK 625		.91	UNK				
UNK 626		.32	UNK				
UNK 628	91628	305	AN ALIPHATIC AMIDE, LIKELY OCTADECENAMIDE				
UNK 629	91629 5	3.8	OCTADECANAMIDE				
UNK 635	91635	5.0	PHTHALATE				
UNK 636	91636 13	2.5	PHTHALATE				
UNK 637	91637 1:	5.1	UNK				
UNK 638	91638 5	7.4	UNK				
UNK 642	91642	676	UNK				
UNK647	91647 2	1.9	UNK				
UNK 652	91652	230	UNK				
UNK 656	91656 9	5.0	UNK				
UNK 671	91671 3	470	UNK				
UNK 694	91694 2	550	UNK				

		250	23	
PARAMETERS	STORE	T #	T4CC	TENTATIVE ID
UNITS	METHO	D	21	
DATE	06/	25/86		
TIME	Č	8:36		
UNK 517	91517	13.8		UNK
UNK 551	91551	14.9		UNK
UNK 608	91608	9.06		HEXADECANOIC ACID
UNK617	91617	7.69		OCTADECANOIC ACID
UNK619	91619	6.01		
UNK 620	91620	6.75		UNK
UNK 623	91623	6.01		UNK
UNK 628	91628	20.0		AN AMIDE, OCTADECANAMIDE
UNK635	91635	19.6		BIS(2-ETHYLHEXYL)PHTHALATE
UNK 636	91636	6.30		UNK
UNK 642	91642	26.6		UNK

		2601	1	
PARAMETERS	STORE	r# 7	T4CC2	TENTATIVE ID
UNITS	METHO		21	
DATE	09/	19/86		
TIME	0	8:54		
UNK 565	91565	216		CAPROLACTAM
UNK 579	91579	34.7		UNK
UNK 585	91585	11.4		UNK
UNK 642	91642	757		UNK
UNK 671	91671	3760		UNK
UNK 694	91694	3680		UNK

		260	15	
PARAMETERS UNITS	STORET METHO		T4CC2 22	TENTATIVE ID
DATE	09/2	22/86		
TIME	0	9:10		
UNK055	91055	53.5	,	THF
UNK 562	91562	8.04		N-N'-BIS(I-METHYLETHYL)UREA
UNK 565	91565	375	5	CAPROLACTAM
UNK 570	91570	28.5	}	UNK
UNK 579	91579	26.9		UNK
UNK 602	91602	7.28	}	UNK
UNK 609	91609	7.37	•	UNK
UNK 642	91642	18,9)	UNK
UNK671	91671	61.9)	UNK
UNK 693	91693	35.4		UNK

		2601		
PARAMETERS	STORE	Γ# 7	T4CC2	TENTATIVE ID
UNITS	METHO	D	23	
DATE	09/2	22/86		
TIME	1	0:53		
UNK 055	91055	26.0		THF
UNK 565	91565	221		CAPROLACTAM
UNK 642	91642	48.3		UNK
UNK 671	91671	113		UNK
UNK 693	91693	58.1		UNK

PARAMETERS STORET # T4CC2 TENTATIVE ID UNITS METHOD 24

DATE 09/23/86
TIME 08:45
UNK055 91055 122 THF

26041						
PARAMETERS	STORET #	T4CC	TENTATIVE ID			
UNITS	METHOD	23				
DATE	06/27/86	6				
TIME	10:28					
UNK020	91020 2	47	UNK			
UNK044	91044 2	.77	2 PROPANOL			
UNK049	91049 28	3.3	DIMETHOXYMETHANE			
UNK055	91055 23	3.4	THF			
UNK 123	91123 34	1.8	1,3-CYCLOPENTADIENE			
UNK 129	91129 46		1,4-DITHIAM			
UNK 156		3.2	NO MATCH			
UNK 161		41	TETRACYCLOHEPTANE			
UNK513		5.3	PYRIDINE			
UNK514).7	N-PROPYLPROPANAMINE			
UNK515		21	TOLUENE			
UNK 517		82	CYCLOPENTANONE			
UNK 522		1.2	CYCLOPENTEN-/-ONE			
UNK 523	91523 4	153	4-HYDROXY-4-METHYL-2-			
			PENTANONE			
UNK 530		580	DMMP			
UNK 536		720	UNK			
UNK 540		080	METHYL-2,4-PENTANEDIOL			
UNK 543		3.5	UNK			
UNK 546		95	3,3,5-TRIMETHYLCYCLOHEXANON			
UNK 548		501	POSSIBLY PHENOL			
UNK 554		377	POSSIBLY CHLOROMETHYL PHENOL			
UNK 555		82	TRIETHYLPHOSPHATE			
UNK 560		280	UNK			
UNK561		01	UNK			
UNK 566		64	UNK			
UNK 568		500	UNK			
UNK 570		398	CHLOROMETHYL PHENOL			
UNK571		8.4	CHLOROMETHYL PHENOL			
UNK 574		242	UNK			
UNK 575		3.0	AN ACID			
UNK 576		195	METHYL SULFOXYL BENZENE			
UNK 578		B.2	UNK			
UNK 579 UNK 586		4.8	UNK			
UNK 587		320	UNK			
		160	UNK			
UNK 588 UNK 590		160	UNK			
UNK 591		160	UNK			
		1.1	HEPTACHLORONOLBORENE			
UNK 594		2.5	N-HEPTADECANE			
UNK 595 UNK 597		6.7	UNK			
		.90	UNK			
UNK 598 UNK 606		2.7 060	TETRADECANOIC ACID			
UNK611		060 433	UNK			
UNK614		127	UNK			
UNK618		090 867	MOLECULAR SULFUR (S8)			
UNK619		6.3	ALCOHOL			
CHRUIS	ס גוסוג 00	U.J	UNK			

UNK 621	91621	44.8	UNK
UNK 627	91627	76.0	AN AMIDE
UNK 629	91629	29.7	UNK
UNK 634	91634	111	UNK
UNK 635	91635	19.7	PHTHALATE
UNK 637	91637	12.3	UNK
UNK 642	91642	834	UNK
UNK 646	91646	15.9	UNK
UNK 654	91654	33.3	OCTANOIC ACID
UNK 656	91656	143	UNK
UNK 669	91669	26.7	UNK
UNK 672	91672	4450	UNK

		26041	
PARAMETERS	STORET	# T4CC2	TENTATIVE 1D
UNITS	METHOD	25	
DATE	09/23	3/86	
TIME		:10	
UNK035	91035	5280	DIMETHYL SULFIDE
UNK043	91043	170	NO MATCH
UNK 162	91162	295	SILOSANE
UNK 175	91175	216	TRIMETHYLCYCLOHEXANE
UNK514	91514	464	TOLUENE
UNK 523	91523	126	4-HYDROXY-4-METHYL-2-PENTANONE
UNK 528	91528	5480	DMMP
UNK 533	91533	924	POSSIBLY 2-METHYL-2,4-PENTANOL
UNK 545	91545	126	POSSIBLY TRIMETHYLCYCLOHEXANONE
UNK 554	91554	304	TRIETHYL ESTER OF PHOSPHORIC ACID
UNK 557	91557	728	UNK
UNK 561	91561	916	UNK
UNK 562	91562	280	UNK
UNK 564	91564	121	CAPROLACTAM POSSURI V
UNK 566	91566	344	BICYCLO COMPOUND, POSSIBLY
			CHLOROMETHYL PHENOL
UNK 569	91569	552	UNK
UNK 578	91578	165	UNK
UNK 582	91582	212	UNK
UNK 584	91584	492	UNK
UNK 586	91586	836	UNK, CYCLO COMPOUND
UNK 587	91587	944	UNK, CYCLO COMPOUND
UNK 602	91602	1460	SULFUR CONTAINING COMPOUND
UNK 605	91605	297	UNK
UNK 606	91606	680	UNK
UNK 608	91608	748	UNK
UNK 609	91609	792	UNK
UNK614	91614	944	MOLECULAR SULFUR
UNK615	91615	184	UNK
UNK618	91618	339	UNK
UNK 619	91619	241	UNK
UNK621	91621	351	UNK
UNK 622	91622	148	UNK
UNK 636	91636	656	PHTHALATE
UNK 642	91642	440	UNK
UNK 671	91671	1010	UNK
UNK 693	91693	560	UNK

	20		
PARAMETERS	STORET #	7 100	TENTATIVE ID
UNITS	METHOD	23	
DATE	06/25/86	5	
TIME	09:25		
UNK041	91041 5.		NO MATCH
UNK056	91056 12	•	THF
UNK080		1.2	THIOPHENE
UNK 129	91129 1	22	1,4-DITHIANE
UNK 524).6	CHLOROBENZENE
UNK551	91551 6.	77	POSSIBLY BUTYLGLYCOLACETATE
UNK558	91558 15	5.6	POSSIBLY 1,3-DITHIOLANE-2-THION
UNK563	91563 24	1.9	UNK
UNK 566		44	CAPROLACTAM
UNK 573		7	3,5-DIMETHYL-1,2,4-TRITHIOLANE
UNK 578	91578 11		UNK
UNK 580		3.7	A CHLOROHYDORCARBON
UNK 608	91608 10).9	HEXADECANOIC ACID
UNK617	91617 10).9	OCTADECANOIC ACID
UNK 635	91635 8.	79	BIS(2-ETHYLHEXYL)PHTHALATE
UNK637	91637 11	.1	UNK
UNK 642	91642 2	65	UNK
UNK 647	91647 10).5	UNK
UNK 655	91655 6.	33	UNK
UNK 657	91657 12	2.3	UNK
UNK 664	91664 8.	32	UNK
UNK 674	91674 15	540	UNK

		2607	3	
PARAMETERS UNITS	STORE' METHO	=	14CC 24	TENTATIVE ID
DATE	06/	26/86		
TIME	0	9:52		
UNK 551	91551	5.57		POSSIBLY BUTYLGLYCOLACETATE
UNK 567	91567	1560		CAPROLACTAM
UNK 627	91627	7.52		AN AMIDE
UNK 635	91635	6.05		A PHTHALATE
UNK 637	91637	46.0		UNK
UNK 642	91642	960		UNK
UNK 657	91657	58.7		UNK
UNK 666	91666	19.8		UNK
UNK 667	91667	25.2		UNK
UNK 668	91668	43.9		UNK
11NIV 675	01675	4600		LINK

r)

26083							
PARAMETERS	STORE	T# T4C	C TENTATIVE ID				
UNITS	METHO	D 25					
DATE	06/2	23/86					
TIME	14	4:52					
UNK517	91517	6.37	CYCLOPENTANONE				
UNK 530	91530	6.54	CYCLOHEXANONE				
UNK 532	91532	8.55	1,1,2,2-TETRACHLOROETHANE				
UNK 538	91538	10.1	UNK				
UNK 545	91545	6.37	ALIPHATIC HYDROCARBON				
UNK 546	91546	7.27	ALIPHATIC HYDROCARBON				
UNK 582	91582	23.3	N-PENTADECANE				
UNK586	91586	17.6	ALIPHATIC HYDROCARBON				
UNK 588	91588	126	ALIPHATIC HYDROCARBON,				
			N-HEXADECANE				
UNK 59 I	91591	73.6	ALIPHATIC HYDROCARBON				
UNK 592	91592	18,1	ALIPHATIC HYDROCARBON				
UNK 594	91594	280	N-HEPTADECANE, ALIPHATIC				
			HYDROCARBON				
UNK 596	91596	37.2	ALIPHATIC HYDROCARBON				
UNK 597	91597	23.7	ALIPHATIC HYDROCARBON				
UNK 598	91598	8.60	ALIPHATIC HYDROCARBON				
UNK600	91600	205	N-OCTADECANE, ALIPHATIC				
	•		HYDROCARBON				
UNK 60 I	91601	8.57	ALIPHATIC HYDROCARBON				
UNK 602	91602	27.5	ALIPHATIC HYDROCARBON				
UNK 603	91603	53 .0	ALIPHATIC HYDROCARBON				
UNK605	91605	210	ALIPHATIC HYDROCAKBON,				
			N-NONADECANE				
UNK 607	91607	19.5	ALIPHATIC HYDROCARBON				
UNK608	91608	28.1	ALIPHATIC HYDROCARBON				
UNK610	91610	95.5	N-EICOSANE				
UNK612	91612	20.0	ALKENE OR ALCOHOL				
UNK614	91614	17.4	ALKENE OR ALCOHOL				
UNK615	91615	32.2	N-HENEICOSANE				
UNK621	91621	1080	ALKENE OR ALCOHOL, UNK				
UNK 635	91635	14.6	PHTHALATE AND HYDROCARBON				
UNK.642	91642	38.8	UNK				
UNK 646	91646	152	UNK				
UNK 659	91659	104	UNK				
UNK 663	91663	410	UNK.				
UNK 668	91668	52.8	CHOLEST-3-ENE (c27h46)				
UNK 672	91672	14.6	UNK				

26084						
FARAMETERS	STORET #	T4CC	TENTATIVE ID			
UNITS	METHOD	26				
DATE	06/23/86					
TIME	13:57					
UNK056	91056 17.0		THF			
UNK515	91515 13.3	2	TOLUENE			
UNK517	91517 9.8		CYCLOPENTANONE			
UNK 562	91562 15.		UNK			
UNK 575	91575 29.		TETRADECANE			
UNK 576	91576 22.		ALKENE OR ALCOHOL OR ACID			
UNK 578	91578 12.		ALKENE OR ALCOHOL			
UNK 579	91579 19.		ALIPHATIC HYDROCARBON			
UNK 582	91582 13		PENTADECANE			
UNK 585	91585 53.		ALIPHATIC HYDROCARBON			
UNK 586	91586 47.		ALIPHATIC HYDROCARBON			
UNK 588	91588 46	57	ALIPHATIC HYDROCARBON			
UNK 591	91591 12	28	ALIPHATIC HYDROCARBON			
UNK 592	91592 50.	.1	ALIPHATIC HYDROCARBON			
UNK 594	91594 84	13	HEPTADECANE, ALIPHATIC			
			HYDROCARBON			
UNK 597	91597 56		ALIPHATIC HYDROCARBON			
UNK 598	91598 64		ALIPHATIC HYDROCARBON			
UNK 600	91600 7	26	OCTADECANE, ALIPHATIC			
_			HYDROCARBON			
UNK 602	91602 60	.2	ALIPHATIC HYDROCARBON			
UNK 603		23	ALIPHATIC HYDROCARBON			
UNK 605	91605 3	78	NONADECANE			
UNK 607	91607 18		ALIPHATIC HYDROCARBON			
UNK 608	91608 31		ALIPHATIC HYDROCARBON			
UNK610		27	EICOSANE			
UNK612	91612 27		ALKENE OR ALCOHOL			
UNK614	91614 33		ALIPHATIC HYDROCARBON			
UNK615	91615 80		HENEICOSANE			
UNK617	91617 25		ALIPHATIC HYDROCARBON			
UNK 620	91620 35	.6	DOCOSANE			
UNK 623	91623 27	1.6	ALKENE OR ALCOHOL			
UNK 627	91627 14	1.6	ALKENE OR ALCOHOL			
UNK 642	91642 53	3.1	UNK			
UNK 662	91662 95	5.4	UNK			
UNK 674	91674 45	5.1	UNK			
=						

26085						
PARAMETERS	STORET *	T4CC	TENTATIVE ID			
UNITS	METHOD	27				
DATE	06/26/					
TIME	14:2					
UNK055		5.60	NO MATCH			
UNK 553		9.48	UNK			
UNK 558		28.8	1,3-DITHIOLANE-2-THIONE			
UNK 560		6.39	UNK			
UNK561		8.85	UNK			
UNK 566	91566	332	CAPROLACTAM			
UNK 573		26.4	3,5-DIMETHYL-1,2,4-TRITHIOLANE			
UNK 574	91574	195	UNK			
UNK 578		6.55	SULFUR COMPOUND			
UNK 58 I		11.2	UNK			
UNK 582		56.7	UNK			
UNK 585		10.4	UNK			
UNK 589		7.10	UNK			
UNK608		9.49	HEXADECANOIC ACID			
UNK617		24.2	ALKENE OR ALCOHOL			
UNK624		3940	UNK			
UNK632	91632	11.2	PHTHALATE, BIS(2-ETHYLHEXYL)- PHTHALATE			
UNK 635	91635	26.0	PHTHALATE, BIS(2-ETHYLHEXYL)- PHTHALATE			
UNK637	91637	47.2	UNK			
UNK640	91640	10.2	PHTHALATE			
UNK642	91642	245	UNK			
UNK 647	91647	14.1	UNK			
UNK650	91650	8.71	PHTHALATE			
UNK655	91655	9.27	PHTHALATE			
UNK 657	91657	19.9	UNK			
UNK 665	91665	972	UNK			
UNK 674	91674	1570	UNK			
UNK 685	91685	6.20	UNK			

26086							
PARAMETERS	STORET		CC TENTATIVE ID				
UNITS	METHO						
DATE		4/86					
TIME		3:55					
UNK055	91055	167	THF				
UNK517	91517	12.2	CYCLOPENTANONE				
UNK518	91518	10.7	HEXANOL				
UNK547	91547	14.7	UNK				
UNK558	91558	9.66	1,3-DITHIOLANE-2-THIONE				
UNK 563	91563	56.0	UNK				
UNK 572	91572	104	UNK				
UNK 577	91577	92.9	UNK				
UNK 582	91582	74.6	PENTADECANE				
UNK586	91586	38.0	ALIPHATIC HYDROCARBON,				
			DODECANOIC ACID				
UNK 588	91588	368	HEXADECANE				
UNK 591	91591	132	ALIPHATIC HYDROCARBON				
UNK 592	91592	35.8	ALIPHATIC HYDROCARBON				
UNK 594	91594	563	HEPTADECANE				
UNK 596	91596	58.5	ALIPHATIC HYDROCARBON				
UNK 597	91597	36.2	ALIPHATIC HYDROCARBON				
UNK 598	91598	113	ALIPHATIC HYDROCARBON,				
			TETRADECANOIC ACID				
UNK 600	91600	581	OCTADECANE, ALIPHATIC HYDRO-				
			CARBON				
UNK 602	91602	59.7	ALIPHATIC HYDROCARBON				
UNK 603	91603	115	ALIPHATIC HYDROCARBON				
UNK 605	91605	369	ALIPHATIC HYDROCARBON,				
			NONADECANE				
UNK 608	91608	358	ALKENE OR ALCOHOL				
UNK610	91610	213	EICOSANE				
UNK612	91612	16.8	ALKENE OR ALCOHOL				
UNK614	91614	81.5	ALKENE OR ALCOHOL				
UNK615	91615	91.1	HENEICOSANE				
UNK618	91618	1430	ALKENE OR ALCOHOL				
UNK619	91619	97.1	OCTADECANOIC ACID, ALKENE				
UNK 620	91620	53.0	DOCOSANE				
UNK 628	91628	18.8	ALKENE OR ALCOHOL				
UNK 632	91632	35.3	PHTHALATE				
UNK 635	91635	64.7	PHTHALATE				
UNK 640	91640	57.5	PHTHALATE				
UNK641	91641	12.9	ALKENE				
UNK 642	91642	117	UNK				
UNK 643	91643	55.8	PHTHALATE				
UNK 650	91650	28.6	PHTHALATE				
UNK 651	91651	10.1	PHTHALATE				
UNK 655	91655	69.9	PHTHALATE				
UNK 671	91671	9.67	OIL, CIS TO C30				

③

	261	27
PARAMETERS	STORET #	T4CC TENTATIVE ID
UNITS	METHOD	29
DATE	06/26/86	
TIME	12:58	
UNK056	91056 7.43	THF
UNK 129	91129 124	I,4-DITHIANE
UNK517	91517 8.90	
UNK 558	91558 7.32	
		THIONE
UNK 563	91563 25.2	UNK
UNK 573	91573 9.57	3,5-DIMETHYL-1,2,4-TRITHIOLANE
UNK 574	91574 12.5	UNK
UNK 575	91575 16.8	
UNK 578	91578 10.0	ALKENE OR ALCOHOL
UNK 579	91579 13.7	· · — · · · · · · · · · · · · · · · · ·
UNK 582	91582 82.4	
UNK 585	91585 45.2	
		ALKENE OR ALCOHOL
UNK 586	91586 31.8	
UNK 587	91587 15.0	
UNK 588	91588 275	***************************************
UNK 591	91591 119	
		PENTADECANE, ALKENE
UNK 592	91592 27.0	
UNK 594	91594 412	
		METHYLPENTANONE
UNK 596	91596 43.4	
UNK 597	91597 37.0	
UNK 598	91598 9,22	
UNK 600	91600 297	
* 1511/2 200	01/00 10.6	METHYLHEXADECANOIC ACID
UNK 602	91602 19.9	
UNK 603	91603 57.9	
UNK 605	91605 208	,
UNK 608	91608 14.8	
UNK 610	91610 85.3	
UNK 614	91614 18.0	ALKENE
UNK 615	91615 28.3	ALKENE
UNK 621	91621 17.8	ALKENE
UNK 627	91627 9.27	ALKENE OR ALCOHOL
UNK 628	91628 13.0	ALKENE OR ALCOHOL
UNK 642	91642 33.5	UNK
UNK 663	91663 314	UNK

		26127	
PARAMETERS	STORE	T# T4CC2	TENTATIVE ID
UNITS	METHO	D 26	
DATE	09/3	29/86	
TIME	1:	0:20	
UNK055	91055	*BK0	UNK
UNK089	91089	OK 5.50	CYCLOPENTANONE
UNK 129	91129	OK6.40	NO MATCH
UNK 174	91174	*BK0	UNK
UNK 563	91563	14.2	UNK
UNK573	91573	7.13	SULFER CONTAINING COMPOUND
UNK574	91574	11.0	POSSIBLY METHOXY BENZALDEHYDE
UNK 582	91582	7.27	UNK
UNK 642	91642	16.9	UNK

26128					
PARAMETERS UNITS	STORET METHOD		TENTATIVE ID		
DATE	06/24	/86			
TIME	13:	•			
UNK055	91055	2180	THF		
UNK059	91059	8.30	THF		
UNK 129	91129	30.5	NO MATCH		
UNK 563	91563	17.3	UNK		
UNK 573	91573	7.22	3,5-DIMETHYL-1,2,4-TRITHIOLANE		
UNK 574	91574	15.9	UNK		
UNK 582	91582	7.08	UNK		
UNK 608	91608	644	MOLECULAR SULFUR (S8)		
UNK617	91617	7.40	UNSATURATED ACID		
UNK 626	91626	12.2	UNK		
UNK 627	91627	6.35	UNK		
UNK630	91630	25.7	BENZAMINE, 4-(METHYL-SULFOXYL)-		
O. ROSO	3.030		2,6-DINITRO-N,N-DIPROPYL-		
			PHTHALATE		
UNK 632	91632	10.5	PHTHALATE		
UNK 635	91635	31.5	PHTHALATE, BIS(2-ETHYLHEXYL)-		
CIROSS	71033	31.3	PHTHALATE		
UNK 637	91637	14.0	UNK		
UNK 639	91639	6.93	UNK		
UNK 640	91640	22.9	PHTHALATE		
UNK 642	91642	73.9	UNK		
UNK 643	91643		PHTHALATE		
UNK 650	•	33.9			
UNK651	91650	14.7	PHTHALATE		
UNK 655	91651	6.23	PHTHALATE		
	91655	33.0	PHTHALATE		
UNK 671	91671	11.0	PHTHALATE		

		26133	
PARAMETERS	STORET #	T4CC	TENTATIVE ID
UNITS	METHOD	31	
DATE	06/27/	86	
TIME	09:0	6	
UNK 162	91162	567	NOT FOUND
UNKSIS	91515	366	TOLUENE
UNK519	91519	351	TETRACHLOROETHENE
UNK523	91523	154	POSSILBY 4-HYDROXY-4-METHYL-
			2-PENTANONE
UNK 527		53.9	XYLENE
UNK 528		318	DMMP
UNK530		16.4	XYLENE
UNK535		56.7	UNK
UNK 536		32.2	UNK
UNK 539		14.2	TRICYCLO(2,2,1.02,6]-HEPTAN-3-OL
UNK540	91540 2	29.5	TRIMETHYL ESTER OF PHOSPHORO-
			THIOIC ACID
UNK541		11.8	UNK
UNK 544		2.5	UNK
UNK 548		168	UNK
UNK551		125	UNK
UNK 552		4.3	UNK
UNK553		114	UNK
UNK554		37.7	UNK
UNKSSS		178	UNK
UNK 558		117	UNK
UNK 559		10.9	UNK
UNK 562		4.9	HEXACHLOROBUTADIENE
UNK 563	91563 2	27.3	POSSIBLY N,N'-BIS(1-METHYL-
TINIVECE	01444		ETHYL)-UREA
UNK 565		106	CAPROLACTAM
UNK 568 UNK 570		6.5	CPMS ISOMER
UNK 571		3.1	UNK
UNK 572		5.8	UNK
UNK 573		4.0	UNK
UNK 575		172	UNK
UNK 576		7.0	METHYLSULFOXYLBENZENE
CIANIO	91576 4	4.6	2,3-DICHLORO-2-METHYLBENZYL
UNK 577	91577 7	4.2	ALCOHOL
UNK 579		*	UNK
UNK580		434	UNK
UNK 584		204 4.8	UNK
UNK 589	_		UNK
UNK 591		8 .6 7 .2	UNK
UNK 602	_	7.2 3.2	HEPTACHLOROBICYCLOHEPT-2-ENE UNK
UNK 605		3.4 4.5	
UNK 606		4.5 5 .3	UNK
UNK 608		5.3 114	UNK
UNK 609		6. 8	UNK
UNK 642		6.8	UNK UNK
UNK 672		0.8 257	UNK
W1717012	710/2	631	UIN

UNK694 91694 113 UNK

	;	26133	
PARAMETERS	STORET #	T4CC2	TENTATIVE ID
UNITS	METHOD	27	TENTATIVE ID
DATE	09/19/8	36	
TIME	12:07	1	
UNK514	91514	173	TOLUENE
UNK518	91518	215	TETRACHLOROETHANE
UNK 523	91523 5	9.9	4-HYDROXY-4-METHYL-2-PENTANONE
UNK 526	91526 2	5.7	XYLENE
UNK 528	91528	148	DMMP
UNK 529	91529 2	8.0	XYLENE
UNK 535	91535 2	3.4	POSSIBLY A BICYCLIC COMPOUND
UNK 539	91539 3	5.9	POSSIBLY TRICYCLO[2,2,102,6]-
UNK 540	91540 3	4.9	HEPTAN-3-OL (c7h10o) UNK
UNK 547		4. 7 6.4	UNK
UNK 551		8. 9	UNK
UNK 552		7.5	UNK
UNK 553		7.3 8 .7	UNK
UNK554		6. <i>(</i> 4.4	
UNK 555		4.1	UNK UNK
UNK 557		7.8	UNK
UNK 558		7.8 9.3	UNK
UNK 562		2.2	HEXACHLOROBUTADIENE
UNK 563		5 .0	UNK
UNK 565		142	CAPROLACTAM
UNK 569		3.9	UNK
UNK 570		7.9	UNK
UNK 571		0.7	UNK
UNK 573	_	110	UNK
UNK 577		4.1	UNK
UNK 579		318	UNK
UNK 580		7.6	UNK
UNK 582		1.6	UNK
UNK 584		5.3	UNK
UNK 587		118	UNK
UNK 589		8.9	UNK
UNK 591		8.4	1,2,3,4,5,7,7-HEPTACHLORO-
			BICYCLO(2,2,1)HEPT-2-ENE
UNK 596		9.9	TETRACHLORINATED COMPOUND
UNK 602		7.3	UNK
UNK 606		8.3	UNK
UNK 608		6.6	UNK
UNK 609	91609 30	0.1	POSSIBLY METHYLESTER OF DIHYDROXYBENZOIC ACID
UNK610	91610 2	8.7	UNK
UNK614		203	MOLECULAR SULFUR (S8)
UNK 621		7.4	UNK
UNK 642		119	UNK
UNK653		724	UNK
UNK 670		188	UNK
UNK 692		155	UNK

26140						
CARAMETERS	STORET #		TENTATIVE ID			
UNITS	METHOD	32				
DATE	06/24/					
TIME	08:57					
UNK055	91055	126	THF			
UNK 129	91129 5	i.33	NO MATCH			
UNK 532	91532 7	7.04	1,1,2,2-TETRACHLOROETHANE			
UNK 631	91631 1	3.0	PHTHALATE			
UNK 632	91632 4	12.6	PHTHALATE			
UNK 635	91635	112	BIS(2-ETHYLHEXYL)PHTHALATE,			
			PHTHALATE			
UNK 637	91637	19.8	PHTHALATÉ			
UNK 638	91638	11.5	PHTHALATE			
UNK 640		2.6	PHTHALATE			
UNK 642		12.5	UNK			
UNK 643		249	PHTHALATE			
UNK 646		17.2	PHTHALATE			
UNK 647		3.79	PHTHALATE			
UNK 648		12.4	PHTHALATE			
UNK650		72.9	PHTHALATE			
UNK651		29.2	PHTHALATE			
UNK 655	91655	149	PHTHALATE			
UNK 663		16.2	PHTHALATE			
UNK 664		18.1	PHTHALATE			
UNK 671		44.5	PHTHALATE			
CINKOTI	310/1	77.5				

		2614			
PARAMETERS UNITS	STORET METHO		T4CC2 28	TENTATIVE ID	
DATE	09/2	4/86			
TIME	07	7:48			
UNK037	91037	12.5		NO MATCH	
UNK055	91055	172		THF	
UNK 566	91566	408		•	
UNK618	91618	21.5		•	
UNK622	91622	229			
UNK 637	91637	6.84			
UNK 638	91638	97.:			
UNK 642	91642	892			
UNK 672	91672	4770			
UNK694	91694	3830			

		27016		
PARAMETERS UNITS	STORET METHO	D 29	22	TENTATIVE ID
DATE	•	26/86		
TIME	-	8:22	•	
UNK 582	91582	11.9	7	
UNK 585	91585	7.49	_	
UNK627	91627	7.63	•	
UNK 642	91642	6.89		
UNK651	91651	907		

		27040			
PARAMETERS	STORET	# T4CC	TENTATIVE ID		
UNITS	METHO	33			
DATE	06/19	9/86			
TIME	09	:15			
UNK055	91055	334	THE		
UNK 064	91064	75.4	NO MATCH		
UNKS17	91517	17.2	CYCLOPENTANONE		
UNK 532	91532	10.8	1,1,2,2-TETRACHLOROETHANE		
UNK 558	91558	7.58	SULFUR COMPOUND		
UNK 562	91562	14.1	UNK		
UNK 573	91573	6.60	UNK		
UNK 576	91576	18.6	UNK		
UNK 582	91582	17.1	UNK		
UNK 585	91585	38.2	UNK		
UNK 588	91588	10.0	POSSIBLY TETRADECANOL		
UNK 591	91591	10.1	2,6,10-TRIMETHYLPENTADECANE		
UNK 594	91594	35.2	2,6,10,14-TETRAMETHYLPENTA-		
			DECANE, HEPTADECANE		
UNK 600	91600	16.1	2,6,10,14-TETRAMETHYLHEXADECANE		
UNK 605	91605	16.4	NONADECANE		
UNK 627	91627	22.4	UNK		
UNK 642	91642	7.62	UNK		
Q11144 14	•				

		27053	
PARAMETERS	STORET #	T4CC2	TENTATIVE ID
UNITS	METHOD	30	
DATE	09/19/	86	
TIME	08:5	2	
UNK 565	91565	362	CAPROLACTAM
UNK642	91642	585	UNK
UNK 671	91671	2050	UNK
UNK 693	91693	1390	UNK

		27062	
PARAMETERS UNITS	STORET METHO	D 34	TENTATIVE ID
DATE TIME	10	2/86):52	DEHYDROPYRAN
UNK 517 UNK 532	91517 91532	71.4 67.1 156	1,1,2,2-TETRACHLOROETHANE
UNK585 UNK591	91585 91591 91594	85.0 219	2,6,10-TRIMETHYLPENTADECANE 2,6,10,14-TETRAMETHYLPENTA-
UNK 594 UNK 600	91600	187	DECANE 2,6,10,14-TETRAMETHYLHEXA-
UNK604	91604	81.2	DECANE C19 ALKANE OR ALKENE C21 ALKENE
UNK614 UNK627	91614 91627	52.8 114	POSSIBLY CHLORINATED COMPOUND (5 cl)
UNK650 UNK664	91650 91664	358 81.9	UNK UNK

		2802	:5	
PARAMETERS UNITS	STORET		T4CC 35	TENTATIVE ID
DATE TIME UNK037	06/1 14 91037 91056	9/86 35 4.80 18.0		NO MATCH THE
UNK056 UNK517 UNK586 UNK598	91517 91586 91598	5.38 6.48 11.2		CYCLOPENTANONE DODECANOIC ACID TETRADECANOIC ACID
UNK 608 UNK 617 UNK 627 UNK 628	91608 91617 91627 91628	15.5 98.6 50.1 19.8		HEXADECANOIC ACID OCTADECANOIC ACID OCTADECENAMIDE OCTADECANAMIDE
UNK 642 UNK 644 UNK 645	91642 91644 91645	251 13.0 36.8		UNK UNK UNK
UNK656 UNK657 UNK675	91656 91657 91675	6.78 67.9 105		UNK UNK UNK

		3302 6	
PARAMETERS	STORET	# T4WC2	TENTATIVE ID
UNITS	METHO	D 2	
DATE	08/2	8/86	
TIME	13	1:53	
UNK 534	91534	8.63	2-CYCLOHEXEN-1-ONE
UNK 582	91582	7.09	ALIPHATIC HYDROCARBON
UNK591	91591	7.49	ALIPHATIC HYDROCARBON
UNK 594	91594	30.8	N-HEPTADECANE
UNK 595	91595	13.0	ALIPHATIC HYDROCARBON
UNK600	91600	28.3	N-OCTADECANE
UNK601	91601	9.67	2,6,10,14-TETRAMETHYLHEXA-
			DECANE
UNK 605	91605	21.5	N-NONADECANE
UNK611	91611	10.9	N-EICOSANE
UNK636	91636	25.4	BIS(2-ETHYLHEXYL)PHTHALATE

		3303		
PARAMETERS	STORE	r# 7	r4WC2	TENTATIVE ID
UNITS	METHO	D	3	
DATE	09/	04/86		
TIME	0	9:40		
UNK 632	91632	9.17		UNK
UNK 633	91633	8.62		UNK
IINK 653	91653	419		UNK

35012							
PARAMETERS	STORET	# T4CC	TENTATIVE ID				
UNITS	METHOD	36					
DATE	06/11	/86					
TIME	16:	18					
UNK080	91080	27.4	THIOPHENE				
UNK 129	91129	133	1,4-DITHIANE				
UNK524	91524	40.1	CHLOROBENZENE				
UNK 540	91540	31.1	1,3-DITHIOLANE				
UNK541	91541	8.65	UNK				
UNK558	91558	9.03	SULFUR COMPOUND				
UNK563	91563	63.8	UNK				
UNK 573	91573	50.1	3,5-DIMETHYL-1,2,4-TRITHIOLANE				
UNK 575	91575	17.7	N-TETRADECANE				
UNK 578	91578	20.9	UNK				
UNK 579	91579	13.5	CIS ALKANE				
UNK 582	91582	90.0	N-PENTADECANE				
UNK 585	91585	9.88	CI6 ALKANE				
UNK586	91586	17.5	CI6 ALKENE				
UNK 587	91587	19.6	CI6 ALKENE OR ALKYNE				
UNK588	91588	265	N-HEXADECANE				
UNK591	91591	89.0	2,6,10-TRIMETHYLPENTADECANE				
UNK 592	91592	14.2	C17 ALKENE				
UNK 594	91594	437	N-HEPTADECANE				
UNK 596	91596	33.1	CI8 ALKANE				
UNK 597	91597	25.1	CIS ALKENE				
UNK 598	91598	9.35	CI8 ALKENE				
UNK600	91600	452	N-OCTADECANE, 2,6,10,14-TETRA-				
			METHYLHEXADECANE				
UNK 602	91602	15.0	CI9 ALKENE				
UNK 603	91603	40.3	CI9 ALKENE				
UNK 605	91605	193	N-NONADECANE				
UNK 608	91608	8.87	C20 ALKENE				
UNK610	91610	115	N-EICOSANE				
UNK614	91614	8.26	C21 ALKENE				
UNK615	91615	25.9	N-HENEICOSANE				
UNK617	91617	12.1	C22 ALKENE				
UNK 620	91620	11.5	N-DOCOSANE, C22 ALKENE				
UNK642	91642	90.7	UNK				
UNK 649	91649	240	UNK				

35013							
PARAMETERS	STORET *	# T4CC	TENTATIVE ID				
UNITS	METHOD	37					
DATE	06/12/	86					
TIME	14:2	1					
UNK037	91037	2.90	NO MATCH				
UNK048	91048	10.8	1,2-DICHLOROETHANE				
UNK055	91055	2.80	TETRAHYDROFURAN				
UNK 575		5.48	N-TETRADECANE				
UNK 57°		6.32	CIS ALKANE				
UNK 582		20.3	N-PENTADECANE				
UNK 583	91583	B.59	BIPHENYL-OL				
UNK 585	•	7.08	C16 ALKENE				
UNK 586		5.92	CI6 ALKENE				
UNK 587		7.24	C16 ALKENE				
UNK 588		24.0	N-HEXADECANE				
UNK 591	91591	46.1	C17 ALKANE,2,6,10-TRIMETHYL-				
			PENTADECANE				
UNK 594	91594	120	N-HEPTADECANE, 2,6,10,14-TETRA-				
			METHYLPENTADECANE				
UNK 596		19.0	CI8 ALKANE				
UNK 597		15.5	C17 OR C18 ALKENE				
UNK 599		95.0	N-OCTADECANE				
UNK600	91600	46.4	2,6,10,14-TETRAMETHYLHEXA-				
1 4 1 1 1 2 2 4 4 1			DECANE				
UNK 601		5.80	CI9 ALKENE				
UNK 602		16.4	C19 ALKENE				
UNK 603		17.2	CIB, CI9 ALKENE				
UNK 604		16.2	C17 ALKENE				
UNK 605		50.8	N-NONADECANE				
UNK610		34.1	N-EICOSANE				
UNK614		16.8	C20 OR C21 ALKENE				
UNK 615		10.4	N-HENEICOSANE				
UNK 616		3.05	C21 ALKENE				
UNK 617		7.98	C21 ALKENE				
UNK 621		9.39	C22 OR C23 ALKENE OR ALKANE				
UNK 642		3.29	UNK				
UNK 649	91649	134	UNK				
UNK 670	91670	368	UNK				

		35037	
PARAMETERS	STORE	T# T4CC2	TENTATIVE ID
UNITS	METHO	D 32	
DATE	09/	05/86	
TIME	1	2:30	
UNK515	91515	15.7	1,1,2-TRICHLOROETHANE
UNK 531	91531	22.8	1,1,2,2-TETRACHLOROETHANE
UNK 564	91564	302	CAPROLACTAM
UNK638	91638	6.71	UNK
UNK 642	91642	298	UNK
UNK653	91653	431	UNK
UNK671	91671	1480	UNK
IINK 693	91693	928	UNK

	3	5038	
PARAMETERS	STORET #	T4CC2	TENTATIVE ID
UNITS	METHOD	33	
DATE	09/05/86	5	
TIME	13:31		
UNK 057	91057 1	16	THF
UNK 589	91589 6	01	HEXADECANE
11NK 652	91652 65	5.7	UNK

		350	52	
PARAMETERS	STORET		T4CC	TENTATIVE ID
UNITS	METHO	_	38	
DATE	•	5/86		
TIME		2:01		
UNK036	91036	5.20		NO MATCH
UNK064	91064	22.4		FREON
UNK123	91123	7.20		NO MATCH
UNK532	91532	10.4		1,1,2,2-TETRACHLOROETHANE
UNK557	91557	7.88		UNK
UNK560	91560	6.93		UNK
UNK.562	91562	6.35		UNK
UNK 565	91565	7.28		UNK
UNK567	91567	13.1		UNK
UNK570	91570	44.4		POSSIBLY ALPHA-METHYLBENZYL- AMINE
UNK571	91571	6.76		UNK
UNK575	91575	9.48		POSSIBLY N,N-DIMETHYLBENZYL- AMINE
UNK 576	91576	6.76		UNK
UNK583	91583	7.39		UNK
UNK585	91585	6.51		UNK
UNK 592	91592	6.66		UNK
UNK593	91593	13.1		UNK
UNK 608	91608	6.02		HEXADECANOIC ACID
UNK617	91617	13.1		OCTADECENOIC ACID
UNK628	91628	12.1		OCTADECANAMIDE
UNK635	91635	6.05		BIS(2-ETHYLHEXYL)PHTHALATE
UNK642	91642	60.3		UNK
UNK645	91645	7.32		UNK
UNK660	91660	90.2		UNK
UNK674	91674	29.9		UNK

PARAMETERS UNITS	STORET *	34	TENTATIVE ID
DATE TIME UNK 564 UNK 642 UNK 671 UNK 693	/150 .		CAPROLACTAM UNK UNK UNK

35065					
PARAMETERS	STORET	#	T4CC	TENTATIVE ID	
UNITS	METHOD		39		
• • • • • • • • • • • • • • • • • • • •	06/30				
DATE	09:				
TIME	91519	14.3		TETRACHLOROETHANE	
UNK519	91524	8.46		CHLOROBENZENE	
UNK524	91525	9.62		HEPTANONE	
UNK 525	91541	19.2		UNK	
UNK 541	91553	7.95		POSSIBLY 2,4-IMIDAZOLIDINE-	
UNK553	71333			DIONE	
	91555	12.0		UNK	
UNK555	91558	26.8		1,3-DITHIOLANE-2-THIONE	
UNK 558	91560	6.63		UNK	
UNK 560	91564	1200		CAPROLACTAM	
UNK 564	91566	20.6		UNK	
UNK 566	91568	21.9		UNK	
UNK 568	91570	10.5		IINK	
UNK 570		15.3		N,N-DIBUTYLACETAMIDE	
UNK 572	91572	89.8		UNK	
UNK 573	91573	19.5		UNK	
UNK 574	91574	17.3		METHYLSULFOXYLBENZENE	
UNK 575	91575	89.1		CITIFUR COMPOUND	
UNK 578	91578	63.		ISOPROPYLBENZYALDEHYDE	
UNK579	91579			UNK	
UNK 580	91580	43.0		UNK	
UNK581	91581	7.5		UNK	
UNK 582	91582	68.		UNK	
UNK 583	91583	9.7		UNK	
UNK 585	91585	20		UNK	
UNK 586	91586	36.		PROPANOIC ACID, 2-METHYL-1-	
UNK 589	91589	99.	8	BUTYL-2-ONE	
			_		
UNK 594	91594	8.9		UNK	
UNK 595	91595	8.0		UNK	
UNK 596	91596	8.0		UNK	
UNK 597	91597	7.8		UNK	
UNK 603	91603	6.3	38	UNK	
UNK 620	91620	7.2	25	BUTYLHEXADECANOATE	
UNK 627	91627	6.6	57	UNK	
UNK628	91628	7.	67	BUTYL OCTADECANOATE	
UNK635	91635		1.1	BIS(2-ETHYLHEXYL)PHTHALATE	
UNK642	91642		0.0	UNK	
UNK672	91672		03	UNK	
	91694		4.3	UNK	
UNK 694	,,,,,,	-			

		350	65	
PARAMETERS	STOR	ET#	T4CC2	TENTATIVE ID
UNITS	METH	OD	36	
DATE	09	/08/86		
TIME		11:17		
UNK055	91055	*OK21	.8	THF
UNK 541	91541	6.70)	UNK
UNK 564	91564	400)	UNK
UNK 565	91565	89.0)	CAPROLACTAM
UNK 573	91573	34.7	•	UNK
UNK 578	91578	45.2	?	UNK
UNK 580	91580	18.8	}	UNK
UNK 581	91581	7.46	,	UNK
UNK 582	91582	27.8	}	UNK
UNK 585	91585	60.5	5	UNK
UNK 642	91642	10	4	UNK
UNK 672	91672	71	2	UNK
UNK 693	91693	48	2	UNK

		36001		
PARAMETERS	STORE'		ICC TENTATIVE ID	
UNITS	METHO)	
DATE		23/86		
TIME		4:09		
UNK 122	91122	1680	3 METHYLHEXANE	
UNK 161	91161	547	METHYLETHYL BENZENE	
UNK 193	91193	55400	DICHLOROBENZENE	
UNK 513	91513	2740	HEXANONE	
UNK514	91514	44.8	HEXANOL	
UNKSIS	91515	348	TOLUENE	
UNK519	91519	90.2	TETRACHLOROETHANE	
UNK 525	91525	7900	CHLOROBENZENE	
UNK 527	91527	488	XYLENE	
UNK 528	91528	1060	XYLENE	
UNK 529	91529	35.9	2,2,2-TRICHLOROETHANO	L
UNK 530	91530	802	XYLENE	
UNK 534	91534	108	ISOPROPYLBENZENE	
UNK 535	91535	35.5	1,1-BIS(METHYLTHIO)ETH	ANE
UNK 537	91537	26.9	PROPYLBENZENE	
UNK 538	91538	41.6	ETHYL, METHYL BENZENE	
UNK 539	91539	26.2	TRIMETHYLBENZENE, PO	
			DIMETHYLHEPTANONE	
UNK 540	91540	25.3	POSSIBLY METHYLTHIO-I	-BUTANONE
UNK 544	91544	3030	DICHLOROBENZENE	
UNK 547	91547	2620	DICHLOROBENZENE	
UNK 549	91549	142	AACETOPHENONE, UNK	
UNK 554	91554	20.5	UNK	
UNK555	91555	18.5	UNK	
UNK 559	91559	249	TRICHLOROBENZENE, NA	PTHALENE
UNK 562	91562	85.3	TRICHLOROBENZENE, HE BUTADIENE	
UNK 563	91563	12.2	UNK	
UNK 565	91565	37.1	CAPROLACTAM	
UNK 570	91570	12.6	UNK	
UNK 572	91572	13.5	UNK	
UNK 573	91573	105	UNK	
UNK 574	91574	19.3	TETRACHLOROBENZENE	
UNK 576	91576	17.4	DIPHENYL ETHER	
UNK 580	91580	14.1	UNK	
UNK581	91581	114	HEXACHLOROBICYCLO(2,2 HEPTA-2-ONE	2,1]
UNK 588	91588	31.9	HEXADECANE	
UNK 589	91589	173	UNK	
UNK591	91591	51.1	HEPTACHLORO-BICYCLO() HEPTANE	2,2,1]
UNK 594	91594	50.6	HEPTADECANE, 2,6,10,14- METHYLPENTADECANE	ΓETRA-
UNK600	91600	19.1	2,6,10,14-TETRAMETHYLH DECANE	EXA-
UNK 605	91605	30.8	NONADECANE	
UNK610	91610	19.3	EICOSANE	
UNK 627	91627	13.0	HEXACHLORO COMPOUNI)

UNK632 91632 26.3 UNK635 91635 13.5 CHLORINATED COMPOUND BIS(2-ETHYLHEXYL)PHTHALATE

3	6	۵	6	5	
•	v	v	·	•	

PARAMETERS	STORET *	T4CC2	TENTATIVE ID
UNITS	METHOD	37	
DATE	09/26/86	5	
TIME	11:41		
UNK055	91055 *OK	39.7	UNK
UNK 089	91089 * E	K0	
UNK 129	91129 *E	KO .	
UNK 174	91174: *E	K0	

36076						
PARAMETERS	STORET #	T4CC	TENTATIVE ID			
UNITS	METHOD	41				
DATE	06/25/86					
TIME	14:24					
UNK 193	91193 15300	U	DICHLOROBENZENE			
UNK 513	91513 20.3		4-METHYL-2-PENTANONE			
UNK 525	91525 6320)	CHLOROBENZENE			
UNK 530	91530 11.3		UNK			
UNK 540	91540 8.77		BICYCLO(2,2,1)HEPT-2-EN-7-OL			
UNK 544	91544 6490)	DICHLROBENZENE			
UNK 547	91547 5840)	1,2-DICHLOROBENZENE			
UNK 548	91548 9.10		UNK			
UNK 549	91549 22.2		ACETOPHENONE			
UNK 550	91550 14.3		N-NITROSODIPROPYLAMINE			
UNK 553	91553 11.1		UNK			
UNK 558	91558 12.6		N-HEXYLACETAMIDE			
UNK 559	91559 145	•	TRICHLOROBENZENE, TRICHLORO-			
			CYCLOPENTANE			
UNK 560	91560 11.9		M-MENTHA-4,8-DIENE			
UNK 562	91562 35.0		TRICHLOROBENZENE			
UNK 566	91566 675	,	CAPROLACTAM			
UNK 569	91569 25.9		UNK			
UNK 570	91570 8.29		UNK			
UNK 573	91573 21.1		3,5-DIMETHYL-1,2,4-TRITHIOLANE			
UNK 575	91575 8.63		METHYLSULFOXYL BENZENE			
UNK 576	91576 8.71		DIPHENYL ETHER			
UNK 578	91578 8.76		UNK			
UNK 581	91581 11.4		UNK			
UNK 582	91582 9.51		1-(4-HYDROXY-3-METHOXYPHENYL)-			
			ETHANONE			
UNK 586	91586 16.2		TETRACHLOROPHENOL			
UNK 598	91598 65.1		PENTACHLOROPHENOL			
UNK 607	91607 12.1		A CHLORO-METHYLSULFOXYLAMIDE			
UNK 608	91608 14.8		HEXADECANOIC ACID			
UNK610	91610 10.5		TRICHLORO COMPOUND			
UNK617	91617 9.52		OCTADECANOIC ACID			
UNK619	91619 34.6		PENTACHLORO COMPOUND			
UNK 624	91624 288		UNK			
UNK 627	91627 151		AN AMIDE			
UNK 642	91642 80.8		UNK			
UNK 657	91657 12.3		UNK			
UNK 666	91666 8.84		UNK			
UNK 668	91668 10.2		UNK			
UNK 674	91674 943		UNK			
			•			

36082						
PARAMETERS	STORET #		TENTATIVE ID			
UNITS	METHOD	42				
DATE	06/27/					
TIME	10:03	-				
UNK 530	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5.95	XYLENE			
UNK 539		11.8	1,3-DITHIOLANE			
UNK 542		16.7	UNK			
UNK 552	91552	5.91	UNK			
UNK 555	91555	15.9	UNK			
UNK 557	91557	11.9	1,3-DITHIOLANE-2-THIONE			
UNK 563	91563	1010	UNK			
UNK 570	91570	11.9	UNK			
UNK 572	91572	11.3	UNK			
UNK 573	91573	99.5	UNK			
UNK 574	91574	69.8	UNK			
UNK 578	91578	84.2	UNK			
UNK 580	91580	8.47	UNK			
UNK581	91581	15.0	UNK			
UNK 582	91582	37.8	UNK			
UNK 596	91596	7.86	POSSIBLY AZIDOBENZENE OR HYDROXY BENZENE			
UNK 597	91597	8.32	UNK			
UNK 603	91603	6.06	UNK			
UNK 606	91606	6.95	UNK			
UNK608		7.09	HEXADECANOIC ACID			
UNK 609		26.5	UNK			
UNK620		5.80	BUTYL OCTADECANOATE			
UNK 628		7.85	DODECANAMIDE			
UNK 642		8.20	UNK			

		3608	2	
PARAMETERS	STORE	T # 7	r4CC2	TENTATIVE ID
UNITS	METH	QD.	39	
DATE	09/	/26/86		
TIME		10:45		
UNK 055	91055	*BKC)	
UNK 089	91089	*BK()	
UNK 129	91129	*BKC)	
UNK 174	91174	*OK7.70)	XYLENE
UNK 539	91539	7.61		•
UNK 541	91541	13.2		
UNK 554	91554	10.7		
UNK 557	91557	9.03		
UNK 565	91565	768		
UNK 566	91566	5.79		
UNK 570	91570	5.74		
UNK 573	91573	102		
UNK 574	91574	31.1		
UNK 578	91578	155		
UNK 580	91580	7.91		
UNK581	91581	18.5		
UNK 582	91582	41.3		
UNK 585	91585	36.7		
UNK 597	91597	18.8		
UNK 603	91603	7.52		•
UNK 604	91604	6.75		
UNK 607	91607	12.1		
UNK 609	91609	32.6		

36112					
PARAMETERS	STORET #	T4CC	TENTATIVE ID		
UNITS	METHOD	43			
DATE	06/30/86				
TIME	08:52				
UNK049	91049 4.30)	NO MATCH		
UNK080	91080 58.5	5	THIOPHENE		
UNK 129	91129 240)	NO MATCH		
UNK 532	91532 6.42		1,1,2,2-TETRACHLOROETHANE		
UNK 539	91539 13.2		1,3-DIOTHIOLANE		
UNK 540	91540 35.8		UNK		
UNK 547	91547 13.4		UNK		
UNK 550	91550 7.87		1,3,6-DIOXATHIOLANE		
UNK 552	91552 17.4	}	UNK		
UNK 554	91554 6.81		UNK		
UNK 557	91557 16.2	2	1,3-DITHIOLANE-2-THIONE		
UNK 563	91563 170)	UNK		
UNK 564	91564 13.6		CAPROLACTAM		
UNK 573	91573 70.8		3,5-DIMETHYL-1,2,4-TRITHIONE		
UNK 577	91577 27.3		UNK		
UNK 580	91580 6.17		UNK		
UNK 582	91582 23.0		UNK		
UNK586	91586 49.2		DODECANOIC ACID		
UNK588	91588 22.6		N-HEXADECANE		
UNK 591	91591 10.1		ALKANE		
UNK 594	91594 37.8		N-HEPTADECANE		
UNK 595	91595 13.7	,	2,6,10,14-TETRAMETHYLPENTA- DECANE		
UNK 597	91597 6.97	1	ALIPHATIC HYDROCARBON		
UNK 598	91598 18.6	5	TETRADECANOIC ACID, ALKENE OR ALCOHOL		
UNK 600	91600 34.3	}	N-OCTADECANE		
UNK601	91601 13.9)	2,6,10,14-TETRAMETHYLHEXADECANE		
UNK 605	91605 28.9)	N-NONADECANE		
UNK 608	91608 11.2	2	HEXADECANOIC ACID		
UNK611	91611 17.6	i	N-EICOSANE		
UNK614	91614 21.9	}	MOLECULAR SULFUR (S8)		
UNK615	91615 7.28	}	N-HENEICOSANE		
UNK617	91617 54.5	}	ALCOHOL, OCTADECANOIC ACID		
UNK 620	91620 10.2	?	ACID OR ALCOHOL		
UNK628	91628 10.3	}	POSSIBLY OCTADECANETHOIL		
UNK.632	91632 11.0)	DIHEPTYLPHTHALATE		
UNK635	91635 30.1		PHTHALATE, BIS(2-ETHYLHEXYL)- PHTHALATE		
UNK 640	91640 15.2	2	PHTHALATE		
UNK 642	91642 13.9		UNK		
UNK 649	91649 11.9		PHTHALATE		
IUNK 654	91654 28.1		PHTHALATE		
L'NK 669	91669 8.85		PHTHALATE		

TASK 44 GC/MS NONTARGET DATA 3RD QUARTER FY1987

		01008	
PARAMETERS	STORET	# T44GMS3	TENTATIVE ID
UNITS	METHOD	1	
DATE TIME	05/0 5 10:	5/87 13	
UNK 565 UG/L	91565 0	350	CAPROLACTAM
UNK588 UG/L	91 588 0	9	2-METHYL, 1-(1,1-DIMETHYLETHYL)- 2-METHYL-1,3-PROPANEDIYL PROPIONATE

PARAMETERS STORET # T44GMS3 TENTATIVE ID UNITS METHOD 2

DA FE 05/05/87
TIME 13:19

UNK588 91588 7 2-METHYL, 1-(1,1-DIMETHYLETHYL)-UG/L 0 2-METHYL-1,3-PROPANEDIYL PROPIONATE

		0400)9	
PARAMETERS UNITS	STORE METHO		T44GMS3 3	TENTATIVE ID
DATE TIME		06/ 87 07:36		
UNK 525 UG/L	91525 0	15.5		ETHYLBENZENE
UNK 526 UG/L	91526 0	76.4		XYLENE
UNK529 UG/L	91529 0	35.6		XYLENE (ISOMER OF UNK 526)
UNK536 UG/L	9153 6	27.1		PROPYLBENZENE
UNK537 UG/L	91537 0	100		ETHYL, METHYL BENZENE
UNK538 UG/L	91538 0	48.1		TRIMETHYL BENZENE
UNK539 UG/L	91539 0	28.3		ETHYL, METHYL BENZENE
UNK541 UG/L	91541 0	136		TRIMETHYL BENZENE
UNK544 UG/L	91544 0	39.7		TRIMETHYL BENZENE
UNK 545 UG/L	91545 0	172		ETHYLHEXANOL
UNK546 UG/L	91546 0	14.0		DIETHYLBENZENE
UNK 547 UG/L	91547 0	98.6		METHYLPROPYL BENZENE, ETHYL DIMETHYL BENZENE
UNK 548 UG/L	91548 0	14.4		METHYL PROPYL BENZENE
UNK 549 UG/L	91549	49.0		ETHYL DIMETHYL BENZENE
UNK 550 UG/L	91550	51.0		ETHYL DIMETHYL BENZENE
UNK 552 UG/L	91552	10		METHYL ISOPROPYL BENZENE

			04009	
PARAMET	TERS UNITS	STORET METHOD		TENTATIVE ID
DATE TIME		05/0 6 07:		
UNK553		91553	58.6	TETRAMETHYL BENZENE
UNK555	UG/L	91555	40.2	DIHYDROMETHYL-1H-INDENE,
	UG/L	0		DIETHYL METHYL BENZENE c11h16 (AROMATIC HYDROCARBON)
UNK556	UG/L	91 55 6 0	39.3	DIHYDROMETHYL-1H-INDENE, METHYL, ISOPROPYL BENZENE
UNK557	UG/L	91557 0	9.57	clihi6 (AROMATIC HYDROCARBON)
UNK 558	UG/L	91558	10	DIMETHYL PROPYL BENZENE
UNK 559	UG/L	91559	35.2	NAPTHALENE, DIHYDRO, DIMETHYL-1H-INDENE
UNK 567	•	91567	2140	CAPROLACTAM
UNK 568	UG/L	0 91 568	33.8	METHYL NAPTHALENE
UNK 569	UG/L	0 91 5 69	15.7	METHYL NAPTHALENE
UNK 571	UG/L	0 91571	9	UNKNOWN
UNK 576	UG/L	0 91576	9.97	DIMETHYL NAPTHALENE
UNK 577	UG/L	0 91577	8.65	DIMETHYL NAPTHALENE
	UG, L	Ù	2.00	

			04009			
PARAME	TERS UNITS	STORE : METHOD		TENTATIVE ID		
DATE TIME						
UNK 589	116 (1	91589	23.7	UNKNOWN		
UNK 595	UG/L	0 9159 5	21.2	POSSIBLY DODECYCLOXYETHANOL		
UNK611	UG/L	0 91 6 11	41.8	UNKNOWN		
UNK 612	UG/L	0 91612	8.78	UNKNOWN		
UNK618	UG/L	0 91618	9.12	UNKNOWN		
	UG/L	0				
UNK 622	UG/L	91622 0	87.9	UNKNOWN		
UNK 624	UG/L	91624 0	50.3	UNKNOWN		
UNK 625	UG/L	91625 0	12.4	UNKNOWN		
UNK 632		91632	10.3	UNKNOWN		
UNK 636	UG/L	0 91636	44.5	UNKNOWN		
UNK 643	UG/L	0 91643	765	UNKNOWN		
UNK 648	UG/L	0 91648	9.99	UNKNOWN		
UNK 695	UG/L	0 91695				
CMMOAS	UG/L	כצפיע 0	8.61	UNKNOWN		

r)

09002

STORET # T44GMS3 TENTATIVE ID
METHOD 4 PARAMETERS UNITS

05/05/87 DATE 14:16 TIME

UNK 566 91566 935 CAPROLACTAM

UG/L 0

		22051	
PARAMETERS	STORET	# T44GMS3	TENTATIVE ID
UNITS	METHOD	5	
DATE TIME	05/13 07:	•	
UNK 582 UG/L	91582 0	10.7	UNKNOWN
UNK636 UG/L	9163 6 0	19.9	BIS (2-ETHYL HEXYL) PHTHALATE

PARAME	TERS UNITS	STORET METHOD	23004 # T44GMS3 6	TENTATIVE ID
DATE TIME		05/13, 10:0		
UNK 518	UG/L	91518	11.2	TETRACHLOROETHENE
UNK 552	UG/L	91552	20	UNKNOWN
UNK 553	UG/L	91553 0	18.1	UNKNOWN
UNK 556	UG/L	91556 0	10.7	UNKNOWN
UNK 557	UG/L	91557 0	11.9	UNKNOWN
UNK 558	UG/L	91558 0	20	UNKNOWN
UNK561	UG/L	91561 0	33.5	POSSIBLY BIS(ISOPROPYL)UREA c7h16n2o
UNK566	UG/L	91566 0	46.1	UNKNOWN
UNK 568	UG/L	91568 0	15.2	POSSIBLY OXATRICYCLOOCTANONE
UNK 569	UG/L	91569 0	57.1	UNKNOWN
UNK 571	UG/L	91571 0	30	UNKNOWN
UNK 573	UG/L	91573 0	36.1	UNKNOWN
UNK577	UG/L	91577 0	57.8	UNKNOWN
UNK582	UG/L	91582 0	32.2	UNKNOWN
UNK 587	UG/L	91587 0	375	UNKNOWN
UNK 588	UG/L	91588 0	30	UNKNOWN
UNK 589	UG/L	91589 0	15.6	UNKNOWN
UNK 595	UG/L	91595 0	26.9	UNKNOWN
UNK 625	UG/L	91625 0	22.0	HEXACHLORINATED CMPD, M.WT.364

23004				
PARAME	TERS UNITS	STORET * METHOD	• T44GMS3 6	TENTATIVE ID
DATE TIME		05/13/8 10:08		
UNK 535	VC //	91535 1	1.8	UNKNOWN
UNK 540	UG/L	91540 3	31.2	UNKNOWN
UNK 551	UG/L		14.3	UNKNOWN
UNK 554	UG/L	_	1 5.8	UNKNOWN
UNK 562	UG/L	0 91562 8	35.3	UNKNOWN
UNK 570	UG/L	0 91570	75.0	UNKNOWN
UNK.574	UG/L	0 91 5 74	29.5	TETRACHLOROBENZENE, UNKNOWN
UNK 575	UG/L	0 91575	17.6	METHYL SULFOXYL BENZENE
UNK 578	UG/L	0 91578	114	UNKNOWN
UNK 579	UG/L	0 91 5 79	274	UNKNOWN
UNK 581	UG/L	0 91581	20.8	UNKNOWN
UNK.583	UG/L	0 91583	83.8	UNKNOWN
UNK584	UG/L	0	73.6	UNKNOWN
UNK 586	UG/L	0	32,7	UNKNOWN
UNK 590	UG/L	0		PENTACHLORINATED CMPD, M.WT.236
UNKJ90	UG/L	0	13.5	PENTACHLORINATED CMFD, NLW 1.2.30

			230			
PARAME	TERS UNITS	STORE METHO		T44GMS3 6	TENTATIVE ID	
DATE TIME		•	13/87 0:08			
UNK 591	UG/L	91591 0	16.7	1	HEPTACHLOROBICYCLOHEPTENE c7h13cl7	
UNK 593	UG/L	91593 0	13.3	3	UNKNOWN	
UNK 594	UG/L	91594 0	13.1	İ	UNKNOWN	
UNK 602	UG/L	91602 0	80)	UNKNOWN	
UNK 623	UG/L	91623 0	21.9)	PENTACHLORINATED CMPD,M.WT.344	
UNK633	UG/L	91633	20.7	,	CHLORINATED CMPD, M.WT.>325	

23029

PARAMETERS STORET # T44GMS3 TENTATIVE ID UNITS METHOD 7

DATE 05/13/87 TIME 05/13/87

UNK582 91582 7.31 MONOCHLORINATED CMPD, M.WT.182

UG/L (

24092 STORET # T44GMS3 TENTATIVE ID PARAMETERS

METHOD 10

DATE TIME

05/18/87 08:42

UNK 564

91564 13.6

UG/L

UNITS

CAPROLACTAM

24106 STORET # T44GMS3 TENTATIVE ID PARAMETERS UNITS **METHOD**

11

05/18/87 DATE TIME 13:35

91588 UNKNOWN UNK 588 10

UG/L

ENVIRONMENTAL SCIENCE & ENGINEERING 01/06/88 STATUS:

PROJECT NUMBER 87436 0000 PROJECT NAME RMA TASK44
FIELD GROUP T44GMS3 PROJECT MANAGER

T44G3 LAB COORDINATOR HUGH PRENTICE

24111							
PARAME	TERS UNITS	STORE METHO		T44GMS3 12	TENTATIVE ID		
DATE TIME		05/14/87 13:55					
UNK 588	UG/L	91588 0	9	, ,	UNKNOWN		
UNK636	UG/L	91636 0	68.3	3 . 1	BIS(2-ETHYLHEXYL)PHTHALATE		

			24113	
PARAME		STORET		TENTATIVE ID
	UNITS	METHOD	13	
DATE		05/18/	87	
TIME		10:4	6	
UNK566		91566	528	CAPROLACTAM
CINKSOO	UG/L	0	J20	CAIRODACIAM
UNK 588		91588	6	UNKNOWN
	UG/L	0		

PARAMET L		STORET METHOD	24127 # T44GMS3 15	TENTATIVE ID
DATE TIME		05/12/ 14:4		
UNK518	JG/L	91518	27.0	TETRACHLOROETHENE
UNK 565		91565	i 88	CAPROLACTAM
UNK 569		0 91569	8.55	UNKNOWN
UNK 582			10.1	UNKNOWN
UNK 587			6.84	UNKNOWN
UNK 589			21.5	UNKNOWN
UNK 636		0 91636	16.1	BIS(2-ETHYL HEXYL)PHTHALATE
UNK 562			6.45	UNKNOWN
UNK 579		0 91 5 79	111	UNKNOWN
UNK 583		0 91583	14.3	UNKNOWN
UNK 584		91584	16.3	UNKNOWN
UNK 585		0 91585	10	UNKNOWN
UNK 586		0 91 586	54.7	UNKNOWN
UNK 593	UG/L	91 593	8.88	UNKNOWN
τ	UG/L	0		

PARAMETERS STORET # T44GMS3 TENTATIVE ID UNITS METHOD 17

DATE 05/12/87 15:12

UNK516 91516 10.0 UNKNOWN UG/L 0

			27055	
PARAME	TERS UNITS	STORET METHOD		TENTATIVE ID
DATE TIME		05/08 09:		
UNK 569	UG/L	91 569 0	8810	CAPROLACTAM
UNK612	UG/L	91612	21.3	UNKNOWN
UNK618	UG/L	91618	23.2	UNKNOWN
UNK 622	UG/L	91622 0	161	UNKNOWN
UNK 624	UG/L	91624 0	10.5	UNKNOWN
UNK 625	UG/L	91625 0	22.8	UNKNOWN
UNK 643	UG/L	91643	994	UNKNOWN
UNK 580	UG/L	91580	20	CHLORINATED HYDROCARBON
UNK 583	UG/L	91583	7.77	2,6-L-BUTYL-4-METHYL PHENOL
UNK 637	UG/L	91633	20.2	UNKNOWN
UNK649	UG/L	0 91649	8.9 1	UNKNOWN
U14K049	UG/L	0	0.71	CINCINOWIN

PARAMETERS UNITS	STORE METHO		GMS3 TENTATIVE ID
DATE TIME		06/87 4:24	
UNK 567	91567	2240	CAPROLACTAM
UG/L UNK642	0 91642 0	23.4	UNKNOWN

			35016	
PARAME	TERS UNITS	STORET METHOL		IS3 TENTATIVE ID
DATE TIME		05/00 15	5/ 87 :16	
UNK 523	UG/L	91523 0	13.4	CHLOROBENZENE
UNK 539	UG/L	91539 0	29.4	1,3-DITHIOLANE, UNKNOWN
UNK557	UG/L	91557 0	8.45	POSS. 1,3-DITHIOLANE-2-THIONE
UNK 563	UG/L	91563	52.0	UNKNOWN
UNK 565	UG/L	91565 0	436	CAPROLACTAM
UNK573	UG/L	91573 0	22.9	A SULFUR-CONTAINING CMPD,M.WT.152
UNK 577	UG/L	9157 7 0	8.06	A SULFUR-CONTAINING CMPD
UNK 582	,	91582	15.1	A SULFUR-CONTAINING CMPD
UNK587	UG/L	0 91587	7.83	UNK
UNK614	UG/L	91614	21.8	MOLECULAR SULFUR (S8)
UNK 642	UG/L	91642	17.2	UNK
	UG/L	0		

			350	066	
PARAME'	TERS UNITS	STORET METHOD		T44GMS3 25	TENTATIVE ID
DATE TIME		05/12 07:	•		
UNK 563	UG/L	91563 0	14	1	UNKNOWN
UNK 577	UG/L	91577 0	17.3	3	UNKNOWN
UNK 582	UG/L	91582 0	15.9)	MONOCHLORINATED CMPD, M.WT.182
UNK 572	UG/L	91572 0	22.3	3	MONOCHLORINATED CMPD, M.WT.170

r)

			36084	
PARAME	TERS UNITS	STORET METHOD	# T44GMS3 26	TENTATIVE ID
DATE TIME		05/12 10:2		
UNK 557	UG/L	91557 0	11.8	UNKNOWN
UNK 559	UG/L	91559	5.51	TRICHLOROCYCLOPENTENE
UNK561	·	91561	10.7	UNKNOWN
UNK 563	UG/L	91563	265	UNKNOWN
UNK 565	UG/L	0 91565	186	CAPROLACTAM
UNK 566	UG/L	0 91 5 66	18.7	UNKNOWN
UNK 568	UG/L	0 91568	14.8	UNKNOWN
UNK 569	UG/L	0 91569	7.14	UNKNOWN
UNK 571	UG/L	0 91571	6	UNKNOWN
	UG/L	0		
UNK 573	UG/L	91573	95.5	UNKNOWN
UNK 577	UG/L	9157 7 0	49.2	UNKNOWN
UNK 582	UG/L	91582 0	57.2	MONOCHLORINATED CMPD, M.WT.182

			36084	
PARAMET I	ERS UNITS	STORET METHOD		TENTATIVE ID
DATE TIME		05/12, 10:2		
UNK 589	UG/L	91589	12.0	UNKNOWN
UNK 695	UG/L	91695	8.30	UNKNOWN
UNK 554	UG/L	91554	30.7	UNKNOWN
UNK 560	UG/L	91560	7.72	UNKNOWN
UNK 574	UG/L	91574	23.9	SULFUR CONTAINING CMPD, M.WT.136
UNK 578	UG/L	91578	57.6	UNKNOWN
UNK 579	UG/L	91579 0	14.8	UNKNOWN
UNK 580	UG/L	91580 0	6	UNKNOWN
UNK581	UG/L	91581	10.3	UNKNOWN
UNK 585	UG/L	91585	60	UNKNOWN
UNK586	UG/L	91586	29.7	UNKNOWN
UNK594	UG/L	91594 0	15.7	UNKNOWN
UNK 596	UG/L	91596 0	6.13	UNKNOWN
UNK 598	UG/L	91598 0	56.9	5-ETHYL-5-SEC.AMYL-2,4,6 (1H,3H,5H)-PYRIMIDINETRIONE
UNK 603	UG/L	91603 0	33.2	CHLORINATED COMPOUND
UNK 604	UG/L	91604 0	15.4	UNKNOWN
UNK 672	UG/L	91672 0	19.4	UNKNOWN
	UG/L	V		

PARAMETERS UNITS	36090 STORET # T44GMS3 METHOD 27	TENTATIVE ID
DATE TIME	05/06/87 13:51	
UNK518 UG/L	91518 11.2	TETRACHLOROETHANE
UNK523 UG/L	91523 56.9	CHLOROBENZENE
UNK 533 UG/L	91533 10.3	POSS. 5-METHYL-1,3-OXATHIANE
UNK 539	91539 73.1	1,3-DITHIOLANE
UG/L UNK542	0 91542 20.9	POSS. DIMETHYL-1,3-OXATHIANE POSS. DIMETHYL-1,3-OXATHIANE
UG/L UNK544	0 91544 79.0	UNKNOWN
UG/L UNK545	0 91545 8.99	SULFUR CONTAINING CMPD, M.WT. 12
UG/L UNK557	0 91557 44.0	SULFUR CONTAINING CMPD, M.WT.136
UG/L UNK558	91558 10	UNKNOWN
UG/L UNK561	0 91561 8.48	UNKNOWN
UG/L UNK564	0 91564 86.3	CAPROLACTAM
UG/L UNK 573	0 91573 79.9	DIMETHYL TRITHIOLANE
UG/L UNK588	0 91588 20	UNKNOWN
UG/L UNK609	0 91609 6.32	HEXADECANOIC ACID
UG/L UNK617	0 91617 !0.1	UNKNOWN
UG/L UNK618	0 91618 49.5	OCTADECENOIC ACID, UNKNOWN
UG/L UNK622	0 91622 96.1	UNKNOWN
UG/L UNK642	0 91642 126	UNKNOWN
UG/L UNK 673	0 91673 375	UNKNOWN
UG/L UNK 694	0 91694 37.4	UNKNOWN
UG/L	0	

PARAMETERS STORET # T44GMS3 TENTATIVE ID UNITS METHOD 2' DATE 05/11/87	
DATE 05/11/87	
TIME 14:39	
UNK550 91550 7.00 1,3,6-DIXATHIOLANE (c5h10o2s)	
UG/L 0	
UNK552 91552 40 UNKNOWN	
UG/L 0	
UNK557 91557 23.0 SULFUR-CONTAINING COMPOUND)
UG/L 0	
UNK 563 91563 153 UNK NOWN	
UG/L 0	
UNK573 91573 113 DIMETHYL TRITHIOLANE	
UG/L 0	
UNK577 91577 24.5 SULFUR-CONTAINING CMPD,M.WT	152
UG/L 0	103
UNK582 91582 6.33 MONOCHLORINATED CMPD, M.WT	.102
UG/L 0 UNK642 91642 11.2 UNKNOWN	
UG/L 0	
UNK554 91554 8.38 UNKNOWN	
UG/L 0	
UNK 574 91574 114 SULFUR-CONTAINING CMPD	
UG/L 0	
UNK 579 91579 6.46 UNK NOWN	
UG/L 0	
UNK603 91603 7.78 CHLORINATED CMPD	
UG/L 0	

PARAMETERS UNITS	STORET #	7309 T44GMS3 TENTATIVE ID 41)
DATE TIME	07/08/87 08:56	,	
UNK 563 UG/L	91 563 21.	9 UNKNOWN, ALICYCLIC CMPD.	
UNK 566 UG/L	91566 72. 0	.7 UNKNOWN, ALICYCLIC CMPD.	
UNK 569 UG/L	91569 18. 0	.ı unknown	
UNK 573 UG/L	91573 9.1 0	1 UNKNOWN, ALICYCLIC CMPD.	
UNK 577 UG/L	91577 13.	.3 UNKNOWN	
UNK 582 UG/L	91582 16.	.9 UNKNOWN	
UNK 587 UG/L	91587 16.	.5 UNKNOWN	
UNK 589	91589 28.	.2 UNKNOWN	
UG/L UNK.595	91595 13.	.7 UNKNOWN	
UG/L UNK 625	91625 13.	.8 UNKNOWN	
UG/L UNK 575	91575 16.	.I UNKNOWN	!
UG/L UNK 579	0 91579 79.	.0 UNKNOWN	
UG/L UNK580	_	0 UNKNOWN	
UG/L UNK 581	0 91581 10,	4 UNKNOWN	
UG/L Uivic583	91583 30.	.0 UNKNOWN	
UG/L UNK585		UNKNOWN, ALICYCLIC CMPD.	
UG/L UNK 586	0 91586 54,	.4 UNKNOWN	
UG/L UNK 593	0 91593 24.	.5 UNKNOWN	
UG/L UNK 594	0 91594 31.	.5 UNKNOWN	
UG/L UNK 623	0 91623 7.9	0 c12h9c15o	
UG/L	0	2,5,7-METHENO-3H-CYCLOPENTA- [A]PENTALEN-3-ONE	
UNK 633 UG/L	91633 40. 0		
UNK 519 UG/L	91519 23. 0	TETRACHLOROETHENE	
UNK 543	91543 11.	2 DCPD ISOMER)

			37332	
PARAMETERS UNITS		STORET # T44GMS3 METHOD 42		TENTATIVE ID
DATE TIME		07/08/ 08:0		
UNK 523	UG/L	91523 1 0	8.80	CHLOROBENZENE
UNK582	UG/L	91582 0	10.3	UNKNOWN

PARAMETERS STORET # T44GMS3 TENTATIVE ID METHOD 43

DATE 07/09/87 07:20

UNK 642 91642 37.8 UNK NOWN

UG/L

			37344	1	
PARAME	TERS UNITS	STORE' METHO		44GMS3 44	TENTATIVE ID
DATE TIME		•	08/87 I:15		
UNK 523		91523	2.90		CHLOROBENZENE
UNK 582	UG/L	0 91582	8.12		UNKNOWN
UNK.589	UG/L	0 91 589	79.2		UNKNOWN
UNK 585	UG/L	0 91585	7		UNKNOWN
UNK 593	UG/L	0 91593	13.7		UNKNOWN
	UG/L	0 91519	39.5		TETRACHLOROETHENE
UNK519	UG/L	91319	37.3		- M

		37359	
PARAMETERS UNITS	STORET METHOD	# T44GMS3 45	TENTATIVE ID
DATE TIME	07/08/ 09: 4		
UNK 523	,	5.50	CHLOROBENZENE
UG/L UNK543	0 91543 0	2.48	DICHLOROBENZENE

OFFPOST GC/MS NONTARGET DATA TASKS 4 AND 44 3RD & 4TH QUARTER, FY1986 AND 4TH QUARTER FY1987

		37305	
PARAMETERS	STORET #	OPG3C	
UNITS	METHOD	1	TENTATIVE ID
DATE	08/26	/86	
TIME	14:	56	
UNK 563	91563	28.8	UNK
UNK 565	91565	154	CAPROLACTAM
UNK 582	91582	20.4	UNK
UNK 586	91586	8.78	UNK

PARAMETERS UNITS	STORET *	37307 OPGW2C OD 2	TENTATIVE ID
DATE	06/	18/86	
TIME	i	1:41	
UNK594	91594	26.4	N-HEPTADECANE; 2,10,6,4-TETRA- METHYLPENTADECANE
UNK600	91600	7.48	N-OCTADECANE
UNK605	91605	13.0	N-NONADECANE
UNK610	91610	7.40	N-EICOSANE

PARAMETERS UNITS	STORET #		TENTATIVE ID
DATE	06/1	6/ 86	
TIME	15	5:17	
UNK519	91519	20.9	TETRACHLOROETHENE
UNK 563	91563	7.43	CYCLOPENTADIENE DERIVATIVE clibio
UNK566	91566	18.9	c10h10o, CYCLPENTADIENE
	91579	33.6	UNK
UNK 579	91582	6.61	UNK
UNK 582		7,54	UNK
UNK 583	91583		UNK
UNK 585	91585	27.9	— · · · · · · · · · · · · · · · · · · ·
UNK 586	91586	18.7	UNK
UNK 589	91589	30.5	UNK
UNK 593	91593	14.4	UNK
UNK 594	91594	6.78	UNK
UNK 595	91595	6.42	UNK
UNK 533	91633	8.52	TETRACHLORINATED COMPOUND

PARAMETERS UNITS	37312 STORET # OPGW2C METHOD 1	TENTATIVE ID
DATE	06/17/86	
TIME	11:13	
UNK 579	91579 6.57	UNK

PARAMETERS	STORET #	37313 OPG3C	TENTATIVE ID
UNITS	METHO		IBMINITALID
DATE	08/2		
TIME	-):15	
UNK 560	91560	7.49	UNK
UNK 563	91563	29.0	UNK
UNK 565	91565	339	CAPROLACTAM
UNK 579	91579	14.4	2-(4-METHYL-2-FURYL)-2-
			CYCLOPENTEN-I-ONE
UNK 582	91582	27.5	UNK
UNK 585	91585	11.8	UNK
UNK 586	91586	14.6	UNK
UNK 588	91588	38.7	PROPANOIC ACID, 2-METHYL-1-
			(1,1-DIMETHYL ETHYL)-2-METHYL
			-1,3-PROPANEDIEL ESTER
UNK 599	91599	7.87	UNK
UNK 642	91642	96.6	UNK
UNK654	91654	911	UNK
UNK 67 I	91671	752	UNK
UNK 693	91693	571	UNK

PARAMETERS	STORET #	37320 OPG3C	TENTATIVE ID
UNITS			
DATE	09/22		
TIME	12:0	26	
UNK 529	91529	14.1	2-METHYLCYCLOPENTANONE
UNK 648	91648	11.3	UNK
UNK 652	91652	236	UNK

PARAMETERS	STORET #	37332 OPGW2C	TENTATIVE ID	
UNITS	METHO	_		
DATE	06/	16/86		
TIME	1	1:58		
UNK040	91040	7.50	UNK	
UNK 582	91582	6.41	UNK	

37343

PARAMETERS STORET # OPGW2C TENTATIVE ID

UNITS METHOD 6

DATE 06/13/86
TIME 08:39
UNK594 91594 14.3 N-HEPTADECANE, 2,6,10,14TETRAMETHYLPENTADECANE

PARAMETERS UNITS	STORET #	37343 OPGW2C D 6	TENTATIVE ID
DATE	06/1	3/86	
TIME	0:	8:39	
UNK 600	91600	5.51	2,6,10,14-TETRAMETHYLPENTADECANE
UNK 605	91605	7.49	N-NONADECANE
LINK 667	91667	175	UNK

PARAMETERS STORET # OPG3C TENTATIVE ID UNITS METHOD 5

DATE 08/25/86
TIME 00:00

77349
PARAMETERS STORET # OPG3C TENTATIVE ID
UNITS METHOD 6
DATE 09/11/86
TIME 07:53

		37353	
PARAMETERS	STORE	T # OPGW	2 TENTATIVE ID
UNITS	METHO	D 8	
DATE	06/	12/86	
TIME	1	1:32	
UNK 523	91523	10.8	A NONANE
UNK 524	91524	13.0	4-HYDROXYL-4-METHYL-2-PENTANONE
UNK 526	91526	20.9	A NONANE
UNK 526	91526	20.9	A NONANE
UNK 527	91527	32.3	METHYLOCTANE

PARAMETERS UNITS	STORET #	37353 OPGW2C D 8	TENTATIVE ID
DATE	06/	12/86	
TIME	1	1:32	
UNK 649	91649	120	UNK
UNK 657	91657	67,7	UNK

PARAMETERS STORET # OPG3C TENTATIVE ID UNITS METHOD 4

DATE 09/12/86
TIME 07:38

37354

PARAMETERS STORET # OPGW2C TENTATIVE ID

UNITS METHOD 4

DATE 06/11/86

TIME 10:06

UNK635 91635 2.83 BIS(2-ETHYLHEXYL)PHTHALATE

PARAMETERS STORET # OPG3C TENTATIVE ID UNITS METHOD 7

DATE 09/08/86
TIME 10:43
UNK652 91652 127 UNK

PARAMETERS STORET # OPG3C TENTATIVE ID UNITS METHOD 8

DATE 09/11/86
TIME 10:47

		BOLLER	
PARAMETERS	STORET #	OPGW2C	TENTATIVE ID
UNITS	METHOD 7		
DATE	07/01/86		
TIME	09:32		
UNK 588	91588	11.4	UNK
UNK635	91635	18.4	PHTHALATE, BIS(2-ETHYLHEXYL)-
			PHTHALATE
UNK 640	91640	5.79	PHTHALATE
UNK649	91649	7.08	PHTHALATE
UNK654	91654	6.42	PHTHALATE
UNK656	91656	112	UNK
UNK 669	91669	5.87	PHTHALATE

GC/MS TRIP BLANK DATA

ENVINORMENTAL SCIENCE AND ENGINE . INC. DATE: 09/23/98 PAGE 1

*

9

	34361			Ĭ	9.0	5	0.0	5	2.0	0	0.0	9.0	9	4.0	<u>.</u>	2.0	6.0	0.0	8	4.0	5 .	2.0	9.0	9 .0	0.0	9.0	5.	2.5	5.5	9.0	4.0	2.5	0	2.1	0	5	0	0	5
	X			Ĭ	677	5		-	41.0	0.0	9.5	9.5	6.13	6.1	6.1	41.0	-	6. 5		6. 0	6.5	6. 0	6.19	61.8	=	41.0	6.1	0. 5	6.1	6.1	6. 5	6.1	6.15	4.5	41.0	2.5	5	0.0	6.9
	34546	2		į	0.0	2	0.0	2	6.0	2.0	0.0	0.0	6. 5	2.8	2.5	. .	9.5	9.0	5.5	2.5	6.5	9.5	5 .5	2.1	5.5	6. 5	43.0	4.5	5.	5.	2.5	2.0	41.2	41.2	C3.2	6.2	41.2	77	41.2
	29120		Ē	į	6.0	0.0	0.0	2.0	2.0	2.0	2.0	2.0	4.5	2.0	6. 7	2.0	4.5	6. 5	4.5	47.0	4.0	6.0	4.2	4.5	47.	5 .5	6.	3 .0	5 .5	4.5	4.5	2.0	CI.5	CI.5	CI.5	CI.5	CI.5	6.5	41.5
	30126				61.0	2.5	8	2	2.5	2.0	2.0	2.0	2.2	2.2	2.2	2.5	Z.3	2.5	2.5	2.5	2 .5	₽.5	2.5	3 .5	<u>2</u>	2.2	₽.5	3 .5	2.2	2. 2.	2.5	3 .5	3. 3.	2.2	2.0	2.5	2.2	\$. E	8 .
	34423			Ĭ	8.8	8.5	2	8.5	2.0	8.8	S.8	8.8	8 .8	3.5	3.9	S. E	6.7	6.41	3.E	3 .8	8 .8	3.8	3.E	1.45	3 .8	3.8	3.5	8.8	3.2	3.8	8.8	3.5	15.9	6.18	3 .5	2.2	2.5	9.01	2.72
	34511		3 5		6.0	CI.0	6.15	6.5	G. 1	<u>0</u> .0	6.0	4.15	1 .5	61.0	- -	£.5	61.0	6. 5	0.0	6.0	6.5	6.1	6.1	6.15	6. 5	€.5	6.5	6. 5	€	4.	₽.5	-	6. 5	6.5	5 .0	₽.5	6. 0	€:5	0. 0
	34506		7 7 X		67.9	4.0	4.0	3.9	4.6	4.0	6.1	41.8	5	₽.5	1 .0	<u>-</u>	C. .	C. .	6.19	1.12	.0.0	1.1	0. 5	C. .	6.1	: :	4.0	0. 5	₽.5	6. 5	6 .0	67°	0.D	4.0	0.15	41.0	<u>0.5</u>	6.1	4.0
8	34531		167.1		4.15	CI.	9 .5	61.8	6.0	6.0	6.6	6.6	- :	- :5	6. 5	- -	4.0	6.0	C.	9 .0	5	. .	4.2	<u></u>	<u>6.5</u>	5	C .	5.5	=======================================	5 .5	5 .5	6.1	- 7-	67.0	- :5	CL.6	6. 5	6.10	6.1 0
TRIP BLAM	****				9.0	9.0	 	4.6	4.2	5 .0	5 .5	6.	7	7 .0	 	6.	9.5	2.5	4.5	6.0	5	6.5	6.9	6.6	6.9	5	. .		3 .	9 .0	9 .0	6. 0	9.0	0.0	5 .5	2.0	9.5	5 .5	4.6
BCMS	3 1	İ	Š		9.0	9 .0	. .	17.0	9 .5	9.0	9.	0.0	 C		9 .0	. .	0.0	9 .5	. .	5	0	5	. .	0.0	.	5	C	0	.	5	5	0	2.5	2.5	2.5	2.5	2.5	2.5	4.5
	96518		¥		42.0	47.0	6. 5	47.0	47.	6. 0	5		2.5	5	4.0	2.5	6.	-	5	5 .	6 .0	2.	3 .5	2.0	7.	47.	6.	4.0	7. 0	4.0	0.	5 .0	5	4.5	5 .	4.0	6.5	4.5	47.
	X 8 X				4.15	G.	1 .1	C.1	-	• :5	5 .	:	5	- -	- :	- :	. .	5.	0.	- :	6.1	÷:	. .	.	- :	4.2	(1.1	5 .0	- .	5	4.6	÷:	:	C. 2	===	<u>1.5</u>		G. 1	G.1
	167	C TRYBE			4.12	C.1	0.1	6.0	5 .5	C. 1	9 .5	6.1	C.	. .	5	-	-	: :	-	C:.	CI.0	C1.1	5 .5	C1.0	. .	1.	9.5	5 .0	6.1	. .	•. •.	5 .	6.	C	- :-	41.B	₽.5	4.0	6. .
				E 19 BATE TIME	TK2 16/H/16 10:00	16/15/36	•	_	9/57/36	*/27/36	*/X/*	*/17/*		9/19/6		Tex 09/12//56 00:00	TES 09/03/06 00:00	_	_	THE 89/06/06 06:00	_	_	Ξ	2/15/16 E	_	_ `	ME 14 00/52/60 ME 10		_	1017 89/25/46 RE-90	TEI 05/25/17 00:00	65/16/17 B	TB3 65/00/47 60:00	TH STIM SEE	_	15/13/71	_	THE 65/19/87 RE:00	TB16 67/89/67 67:28
	3104E1 CODE:	TENDO CONT.	mil's:	TO CRP. 1 SAWLE !!	14TBKC 2	TATEC 3	14TMC 5	1419KC 6	14TBKC 7	Tetler .	•	2	= :	2	14180	14100	1476	1476	74780 7	14780	Z X			1476	21 25.7	1476	14190	TOTEC IS	1476 16	1476 17	1445753 52	14¢RS3 \$1	T44CHS3 52	14CMS3 53	144CMS3 S4	144CMS3 55	144CMS3 %	1440053 57	144CMS3 59

יותני רתני		34175	39165	9853	1000	2	77000	
E THOS CORES		E	E	2	1	1	1	
ARANE TER:		Tafe	Male	R-INER	H-6		?	
MITS:		7	7	7	\$	5	Ş	
	SMETT 19 BATE TIME	;	;					
	DO ON THE CONTRACT OF THE CONT	5	-	•. •.	4.5	9.5	2.1	
	10 m 20/cz/m (m)	-	1 .	4.1	4.5	6.2	0	
•	40: M 98/21/M CM:	4.	-	6.1 >	0.0	4. P	5	
_	TEK\$ 66/23/96 60:00	6.6	6.15	4 17	5		,	
	TEXT 06/24/36 00:00	6.15	2	•	;		,	
_	THE 04/24/34 00:00			;	7	3	5	=
	3				2	2	6.	9.5
2	1			• :5	5	5	6. 5	5
: =			₽	:	6. 2	2.5	6.0	
	25: M 92/36/40 11:25	6 .0	-	-	2.5	-	0	
"		- :	. :	C. 1.	67.9	64.9	• 0	
•	00:00 98/92/Na EB)	6.1	4.0	9.5	0.0	2	3	
	•	6. 5	. .	6.15	0			;
. .	TES 69/43/76 60:00	2.0	6.15				,	
•	THE 05/04/36 DE:00	6.	-				֭֭֭֓֞֝֞֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֡֓֓֓֓֓֡֓֡֓֡֓֡֡	
•	16 69/85/86 BB:80	6.	-				7	=
•	•				;		2	=======================================
•	TB4 09/12/36 no:00	=			,		2.5	-
	•	;			7		3.	-
2			;	5	0.0	4.	6. 0	6 .5
=		;	1.5	5	0.0	2	0. 0	<u>6.5</u>
: 2	10: 10: 10: 10: 10: 10: 10: 10: 10: 10:	- ;	-	5	9.0	9.5	2.0	\$.
2 2	B:B 8/6/60 7101		-	: :	6.1	6.5	6.0	
2 =	20 20 777 760 F101	5	5	-	6.5	6.5	2.5	-
: :	M:M 92/57/10 1/51		5	- :	2.1	6. 9	2.0	5
2 :	-		÷ :	6 .5	0.0	4.6	0	=
::		-	6.	5	4.6	6.5	42.0	5
: 3		5	÷.	:	4.5	6.5	9.0	2
1 5		3.5	5	- :	0	5.5	2.1	5
7	M:M /P/M/cs 71:	0.	9 .5	C	4.0	2.0	4.0	0.0
X :	•	. :	===	- .	7.	5	4.1	5
7	•	==	-	6.1	2.5	5	-	=
7	165 65/12/87 66:00	- :	. :	61.0	9.0	5	;	
S	•	1.	CI.	6.19	-		;	
፠	TB7 05/18/87 08:00	9.0	-	-			-	-
S	100 65/19/07 40:00	-		;			-	=
S	TRIG 07/00/07 07.30				;	7	-	
					•			

APPENDIX E

HYDROCHEMICAL PROPERTIES AND HYDROLOGIC CALCULATIONS

APPENDIX E HYDROCHEMICAL PROPERTIES

Several hydrochemical properties that are discussed in Section 4.4 (Volume I) and presented in this Appendix may also influence contaminant distribution in the Denver Fm. These parameters include density, solubility, viscosity, and partitioning behavior (partition coefficients). The following discuss the environmentally important properties of chemicals, as well as the major types of mechanisms that may be operative at RMA, and the influence these controls may exert on compound distribution.

E.1 PHYSIOCHEMICAL PROPERTIES

The concentration, behavior, and fate of compounds in aqueous media are determined by a number of physiochemical and biological processes (Moore and Ramamoothy, 1984). These processes include sorption-desorption, volatilization, oxidation-reduction, hydrolysis, halogenation-dehalogenation, cosolvent effects, photochemical processes, and metabolic transformation which liftuence contaminant partitioning, migration, and degradation. Processes are discussed in Section E.2. Specific chemical properties influence the physiochemical processes, and include density, solubility, viscosity, vapor pressure, and partition coefficients. A summary of these properties for contaminants identified in RMA waters is discussed below and provides information to assess fate and transport processes that control contaminant distribution in aqueous media.

E.1.1 DENSITY

Density is defined as the mass per unit volume of a substance under standard conditions of pressure and temperature (Morris, 1976). Specific gravity is similar to density, as it represents the mass of a compound relative to that of an equal volume of water at 4° C. After immiscible contaminants are introduced to the ground-water system they will either sink, float, or remain suspended in the ground water as a function of compound density/ specific gravity. Table 4-2 lists the specific gravity of RMA contaminants.

The influence of compound density on contaminant distribution is substantially decreased once the compound is dissolved. However, the resulting density of the overall aqueous media relative to uncontaminated aquifer waters may produce a small amount of density differentiation, depending on compound concentration. As a contaminant continues to mix with uncontaminated water, dilution of the ground water/contaminant mixture occurs and the effects of density differentiation are greatly reduced.

E.1.2 SOLUBILITY

Solubility is the maximum amount of a compound that will dissolve in a given amount of solvent. This property will affect the amount of contaminant that can be transported in the dissolved phase within aqueous media.

Solubility of a contaminant in water is influenced by a number of parameters including temperature, pressure, chemical reactions within the ground water system, pH, Eh, and the concentration of other ionic species in solution. In very general terms, the solubility of a compound increases with increased temperature, decreased ionic content, decreased pH (for metals), and increased

organic constituent content (Ebasco, 1988, unpublished). Table 4-2 summarizes RMA contaminant solubility in water. In general, compounds with solubilities in excess of 1,000 mg/l may be considered relatively soluble, which includes most of the volatile organohalogens, benzene, DBCP, MIBK, CPMSO, CPMSO₂, DMDS, oxathiane, dithiane, DIMP, and DMMP.

Arsenic is generally considered insoluble, although it is found throughout much of the RMA alluvial ground water Appendix F (Figure 4.2-21). One possible explanation for this occurrence is that arsenic may be found as metalloid complexes (negatively charged or neutral) that exhibit little or no adsorption or ion exchange attenuation (Freeze and Cherry, 1979, Task 23).

E.1.3 VISCOSITY

Viscosity can be an important consideration for immiscible compounds. In a porous media setting, immiscible, viscous material will travel at lower rates than dissolved constituents through porous media. Noting that many of the contaminants at RMA exhibit miscibility, this parameter may be of concern only where solubility of a compound is exceeded and undissolved material may exist.

E.1.4 VAPOR PRESSURE

Vapor pressure is defined as the pressure exerted by vapor in equilibrium with its solid or liquid phase (Morris, 1976). This parameter defines which compounds are classified as volatile and determines the relative potential influence of the vapor phase on contaminant distribution. Vapor pressure is highly dependent upon temperature and molar/molal heat of vaporization (Moore and Ramamoorthy, 1984). Ebasco (1988) assembled information regarding vapor pressure for RMA compounds (Table 4-2). In general terms, volatile compounds exhibit vapor pressures in excess of 1 millimeter of mercury (mmHg), semivolatile compounds exhibit vapor pressures between 1 and 0.001 mmHg, and nonvolatile compounds exhibit vapor pressures less than 1 x 10-3 mmHg (Ebasco, 1988).

E.1.5 PARTITION COEFFICIENTS

A partition coefficient is the measure of the distribution of a given compound between two phases and may be expressed as a concentration ratio (Moore and Ramamoorthy, 1984). Of particular concern to aqueous media are the partitioning of compound between the aqueous and vapor phases, and partitioning of contaminant between the aqueous and solid (aquifer material) phases. These behaviors are defined by Henry's constant (K_h) and the sorption coefficient (K_d) , which are discussed below.

E.1.5.1 HENRY'S LAW CONSTANT

Henry's law states that at equilibrium, the solubility of a gas in water at a constant temperature is proportional to the vapor pressure (Hem, 1986). This proportionality is related to Henry's law constant, which is defined by the formula:

$$K_h = \frac{L_{K_1}}{P_{K_1}}$$

where:

K_h = Henry's constant,
[x] = Activity of the compound in the liquid phase, and

Px - Vapor pressure of the compound at a given temperature. K_h is constant at equilibrium, therefore, variations in either Px or [x] will produce a corresponding adjustment in the other phase.

Compounds that exhibit K_h of less than 10^{-7} atm-m³/mol are considered nonvolatile and will exist primarily as dissolved or sorbed constituents within aqueous media. Compounds with K_h between 10^{-7} and 10^{-3} at m-m³/mol may be considered semivolatile in nature, while contaminants with K_h greater than 10^{-3} atm-m³/mol volatile.

E.1.5.2 SORPTION COEFFICIENT

The sorption coefficient, or K_d , is represented by the ratio of the concentration of a contaminant sorbed to aquifer material and the concentration of contaminant in the aqueous phase. The following formula describes this relationship:

K_d = Sorption coefficient;
Cs = Concentration in the solid phase; and

Cw = Concentration in the liquid phase.

 ${
m K_d}$ is different for each contaminant, and is affected by temperature, pH, Eh, and composition of both the soil and aqueous media.

 $\mathbf{K_d}$ is markedly influenced by the organic carbon content within the system. Organic carbon is usually associated with the solid media, and the relationship is described by:

$$K_d = K_{oc} \cdot f_{oc}$$
 or $K_{oc} = \frac{K_{d-}}{f_{oc}}$

 $K_{\rm OC}$ = Sorption coefficient on organic carbon in soil; and $f_{\rm OC}$ = Fraction organic carbon in solid.

Sorption coefficient values shown on Table 4-2 were mainly acquired from Task 35, although values derived under the $K_{f d}$ Investigation were also considered (ESE, 1988). Under this investigation, borings were installed in the Basin A area and ground water/aquifer soil samples collected to determine partition coefficient values for RMA compounds. $K_{\mathbf{d}}$ calculations were conducted based on ${\sf K_{OC}}$ and ${\sf f_{OC}}$ determinations, and were compared with estimates presented in the Task 35 Toxicity Assessment (Ebasco, 1988). Figure E-1 illustrates the relationship of ${\sf K_d}$ and ${\sf K_h}$ within aqueous media at RMA. The figure shows those compounds that are volatile, semivolatile, and nonvolatile. It also shows that dichloro-ethene/ethane compounds and methylene chloride may have 30 to 70 percent of constituents in the vapor phase relative to the dissolved phase, with the remainder of the volatiles exhibiting 4 to 30 percent of their total concentration in the vapor phase. Figure E-1 also serves to illustrate partitioning behavior of semivolatile/ nonvolatile compounds. Compounds to the left exhibit higher K_ds, and are therefore more likely to be sorbed to aquifer material relative to compounds on the right side of the diagram.

An additional partitioning relationship of concern is defined by the octanol-water partition coefficient ($K_{\rm OW}$) (Table 4-2). This parameter is defined by the ratio of a chemical's concentration in the octanol phase to its concentration in the aqueous phase in a two-phase system (Ebasco, 1988). $K_{\rm OW}$ is of particular concern in a system where both aqueous and organic solvent phases are present. A compound may partition into either phase preferentially based on the compound's $K_{\rm OC}$. There is not sufficient solvent concentration within RMA waters to cause this cosolvent effect on a regional basis, although localized partitioning may occur. A laboratory study by Staples and Geiselmann (1987) using soil columns indicated that cosolvent concentrations of approximately 5 to 10 percent were necessary to reduce transport time by 1/2. This would require organic solvent concentrations on the order of 50,000 ppm to 100,000 ppm, much higher than detectable concentrations in RMA groundwater.

The sorption coefficient (K_d) is particularly important because it may profoundly influence contaminant distribution within a ground-water system. Contaminant flow will be attenuated by the amount of partitioning between the liquid and solid phase, and is represented by the equation:

$$R_f = 1 + \frac{E - K}{N_e} d$$

where:

Rf = Retardation factor,

 B^{-} = Bulk density of the aquifer material (kg/1), and

N. = Effective porosity of the aquifer.

Estimates for effective alluvial aquifer porosity range between 20 percent and 35 percent, with an estimated porosity of 30 percent. Bulk density is approximately 2.7 g/cm 3 . Dividing $R_{\rm f}$ by ground-water velocity can indicate potential contaminant migration rates.

E.2 CONTAMINANT TRANSPORT AND FATE PROCESSES

To determine the interaction of contaminated RMA soils and ground water and their subsequent impact on the environment, an understanding of contaminant fate and transport is required. Environmental contamination problems would be minimal in the absence of transport processes. It is the transport processes that cause the migration of contaminants laterally and vertically from the site of their storage, disposal, or accidental spill. In addition to the migration of contaminants from their point of origin in the environmental matrix, numerous transformation and degradation processes also influence their fate. These processes can cause changes in the physical properties of contaminants, such as increasing or decreasing their mobility and toxicity. The dynamic interaction of these fate and transport processes governs the distribution of contaminants in the soil.

In order to summarize potential fate and transport mechanisms in the unsaturated and saturated soil environments, processes have been organized into three general categories:

- o Transport processes:
- o Attenuation processes: and
- Loss processes.

Several processes are included under each of these general categories. The role of these processes in the environment, and their specific infinence on RMA contaminant fate and transport, is discussed below. This categorization is in some sense artificial, and is strongly dependent on the definition of the system of interest. Some processes have characteristics which cause them to fall to some extent into more than one category. For example, volatilization can be an attenuation process in the aqueous phase if contaminants are retained in the gaseous phase within the soil pore space. In this case the contaminants may reenter solution. If the gaseous contaminants are lost to the atmosphere they are no longer a component in the system in question. This would be considered a loss process. Ecological exposure pathways will be discussed in detail in the Biota Remedial Investigation Report (ESE, 1989a).

E.2.1 Transport Processes

Processes that effect transport of soluble contaminants in ground water include advection and dispersion. Advection is the process by which contaminants are transported by the bulk motion of flowing ground water. It is the primary process by which solutes migrate in coarse-grained, permeable aquifers. The magnitude of the driving force for ground-water flow is the hydraulic conductivity. The average linear velocity of ground water in an aquifer is equal to the product of the gradient and the aquifer's capability to transmit water (Mackay et al., 1985).

A plume of iissolved contaminants will spread as it moves with ground water. This tendency to spread is called dispersion and it is the result of two processes-- molecular diffusion and mechanical mixing.

Molecular diffusion defines the tendency for ionic and molecular species to move under the influence of their kinetic activity. This kinetic activity of contaminants in solution results in a net flux, or diffusion, of contaminants from an area of higher concentration to an area of lower concentration (Freeze and Cherry, 1979). The influence of molecular diffusion on movement of solutes diminishes directly with the velocity of ground-water flow.

Mechanical mixing, by contrast, involves variation in ground water velocity caused by frictional forces, variability in pore dimensions, and variability in localized flow direction (Mackay et. al., 1985). Dispersion leads directly to dilution, so that maximum concentrations diminish with distance from the source. Dispersion will also tend to increase the uniformity of concentrations in a plume with distance from the source. Observed dispersion in the direction of longitudinal flow is usually greater than dispersion in the traverse direction of flow. Tests using field tracers indicate increasing dispersivity in the longitudinal direction as the distance between injection and observation wells increases, until some point where the dispersivity stops increasing. This phenomenon of increased dispersivity with increased distance travelled is referred to in the literature as the scale effect (Molz, 1983). It is possible for dispersive spreading to result in the arrival of detectable contaminant concentrations prior to the predicted arrival time based solely on the average ground water velocity (Newsom, 1985; Mackay, 1985).

E.2.2 ATTENUATION PROCESSES

The concentrations of many organic and inorganic contaminants in ground water are often much lower than would be expected on the basis of equilibrium solubility calculations or from supply to the aqueous phase from point source concentrations. Most commonly these compounds are adsorbed onto the solid phase or, in the case of inorganic contaminants, are influenced by chemical precipitation in response to solubility constraints (Drever, 1982; Cherry, 1984).

E.2.2.1 SORPTION-DESORPTION

Partitioning between coexisting aqueous and solid phases is the dominant factor for determining the extent to which a contaminant will be leached to the water table and transported with ground-water flow. Contaminants that are strongly sorbed to the solid phase will migrate at a relatively slow rate compared to contaminants which are not as strongly sorbed. Many contaminants of environmental concern are commonly detected in both the solid and aqueous phases at similar concentrations. For these moderately adsorbed compounds, travel times will be intermediate between those that are more readily adsorbed and those with minimal adsorption characteristics.

The transfer of contaminant mass by sorption from the aqueous phase to the solid phase of the porous medium causes retardation of the rate of contaminant transport. The partition coefficient concept is based on the assumption that the reactions that partition contaminants between the aqueous and solid phases are completely reversible. In such a case contaminant plume transport will be retarded by the transfer of contaminant mass from the liquid to the solid phase. As concentrations decrease in ground-water, contaminants will be transferred back to the aqueous phase. After input of contaminated water is discontinued, the plume of contamination will move down the flow path as it is replaced by groundwater with decreasing concentrations. With sufficient time, all contaminants will be flushed from the ground-water system if the reactions are reversible. Any contaminant fixed to the solid phase irreversibly, relative to the time scale of interest, will not be transferred back to the aqueous phase and will therefore remain in place in the subsurface environment. In cases where partitioning cannot be described by equilibrium relations, information on reaction rates between contaminant and porous media is required in order to make accurate predictions on rate of contaminant migration. An example of this are substances that do not react rapidly enough with the porous media relative to ground-water flow rates for equilibrium to be established (Freeze and Cherry, 1979).

These are several generalities that can be used to predict the extent of sorption. The more hydrophobic an organic compound is, the more likely it is to be sorbed. The solubility of an organic compound depends upon the physiochemical characteristics of the sorbent material, such as available surface area, nature and density of charge, presence of hydrophobic areas, presence of organic matter such as humic and fulvic acids, as well as characteristics of the contaminant such as solubility and hydrophobicity. Karickloff (1981) generalized that for neutral organic compounds of limited solubility ($<10^{-3}$ M), that are not susceptible to speciation charges, sorption is primarily controlled by organic carbon content and the percentage of fine-grained sediments.

To predict solubility constraints the law of mass action and the associated principles of equilibrium-chemical thermodynamics must be considered. The equilibrium relation for a contaminant species controlled by precipitation or dissolution is defined as:

xX + bB = yY + cC + dD;

wher**e**:

X is the inorganic contaminant species in the solution phase; Y is a mineral or solid amorphous compound in which the contaminant species is incorporated by precipitation or from which it is released by dissolution:

released by dissolution:
B, C, and D are other species in solution: and,

x, y, b, c, and d are the stoichiometric mole number.

From the law of mass action, the equilibrium expression is obtained

 $[X]_{\mathbf{X}} = [C]_{\mathbf{C}} [D]_{\mathbf{d}} / K^{\mathbf{ed}} [B]_{\mathbf{p}}^{\mathbf{f}}$

where:

Keq is the equilibrium constant and the quantities within the brackets are chemical activities of the species indicated.

If X is initially above the equilibrium concentration when it enters the accound water system, adjustment toward equilibrium will occur by precipitation of mineral or amorphous solids. If X is below the equilibrium concentration, available minerals or amorphous solids that contain X as part of the chemical structure will dissolve.

E.2.3 LOSS PROCESSES

Loss processes are those that cause a compound to be removed permanently from the environmental system under study. For example, compounds with relatively high values of Henry's law constant are likely to volatilize from a surface water body. After volatilization they are lost to the aqueous phase and are present in the atmosphere where they are subject to a different set of processes.

E.2.3.1 Volatilization

Volatilization is the process by which a compound evaporates from either a liquid or solid phase to the gas phase. Loss of contaminants from surface water and shallow ground water through volatilization can be a significant transport pathway, resulting in reduced concentrations. The degree to which a compound will be volatilized is dependent on physical chemical characteristics of the compound, such as vapor pressure and Henry's law constant, as well as properties of the coexisting sediment and aqueous phases.

E.2.3.2 Chemical Transformations

Transformation and degradation processes determine whether a chemical will persist in the environment. Key processes include both biological and chemical mechanisms, such as biotransformation, hydrolysis, photolysis, and oxidation-reduction. Contaminants are generally reduced to less hazardous components, such as carbon dioxide and water. However, the characteristics of degradation products may, in certain instances, be of greater concern due to increased toxicity, persistence, or mobility. Specific rates at which these processes

occur are dependent on individual chemical, soil, and environmental characteristics. In general, surface processes occur at faster rates than subsurface processes.

Several chemical reaction mechanisms potentially contribute to the overall process of chemical transformation. Hydrolysis, photolysis, and oxidation-reduction reactions are the primary components of chemical transformation in surface and ground-water, although other reactions, such as reductive dehalogenation may be significant for individual compounds of interest. Callahan (1979) assessed potential transformations affecting priority pollutants in aqueous systems. Only a brief description of each major class of reactions is provided below.

Hydrolysis

During hydrolysis, an organic compound reacts with water, resulting in the introduction of a hydroxyl group into the molecule and subsequent elimination of another functional group, such as a halogen. Hydrolysis may be catalyzed by acid (H+), base (OH-), or metal (M+) ions: thus, the rate of hydrolysis is pH and metal-ion-concentration dependent. Surface effects may also influence the rate of hydrolysis. Hydrolysis of some pesticide derivatives is more rapid in the presence of humic materials.

Mabey and Mill (1978) reviewed data for hydrolysis of a variety of organic chemicals for use in predicting of half-lives in aquatic systems. In some cases alkyl halides appear to exhibit hydrolysis rates which are independent of pH in the environmental pH range of 4-9. Carboxylic acid esters, however, are acid/base promoted and exhibit a minimum hydrolysis rate at pH 4-5. Rate constants for many hydrolyzable structures can be estimated from published data (EPA, 1979).

Photochemical Processes

Photochemical processes include both direct photolysis and sensitized photolysis. In direct photolysis the compound adsorbs solar radiation and is transformed, while in sensitized photolysis, the energy which transforms the compound is derived from another species in solution. Photolysis reactions may occur in either near-surface soils or surface water.

Photochemical reactions generally occur at wavelengths greater than 290nm. The rate of direct photolysis is dependent on the sunlight photon flux, the light adsorption coefficients of the chemical, and the reaction efficiency for converting absorbed light into chemical reaction.

In contrast to direct photolysis, indirect photolysis will take place if substances naturally present in aquatic environments form excited chemical species or radicals upon absorption of sunlight. These radicals subsequently react with a chemical. Photochemical reactions that may be considered in the indirect class are those in which photolyzed natural substances produce high energy intermediates that react with the ground state of the chemical. An example of such indirect reactions is photo-oxygenation. In this case singlet oxygen is the intermediate.

Oxidation-Reduction

In the soil environment, oxidation-reduction (redox) reactions involving both lnorganic and organic compounds are important. Inorganic chemists define oxidation as the loss of electrons and increase in oxidation number, while reduction is the gain of electrons and decrease in oxidation number. Organic oxidation reactions generally involve a gain in oxygen and loss of hydrogen, while the reverse is frequently true for organic reduction.

Many organic compounds can either accept or donate electrons, forming reduced or oxidized species. This oxidation or reduction may alter an organic compound's environmental and biological properties. The rate of loss of a chemical by oxidation or reduction is generally a second-order kinetic reaction. Oxidation may be expressed by the following:

$$-\frac{d^{c}}{dt} = k_{OX} [OX] [c]$$

where

 $k_{\rm OX}$ = second-order rate constant for the oxidation of chemical, C, and lox] and [c] are the concentrations of oxidant and chemical, respectively. Mill (1979) reviewed the use of $k_{\rm OX}$ for estimation of oxidation half-lives of chemicals (Moore and Ramanoorthy, 1984).

Oxygen often requires the presence of O_2 , but the reaction usually involves free radicals, especially OH, RO_2 , RO, and singlet oxygen as the oxidant (where R = carbon chain or ring). Redox reactions are often biologically mediated, but can also occur in abiotic systems. Chemical structures most susceptible to oxidation include, phenols, aromatic amines, and dienes. Unsaturated alkyl compounds such alkenes, halogenated alkenes, alcohols, esters, and ketones are not readily oxidizable in the ground water environment (Cherry et al., 1984).

Halogenation-Dehalogenation

Reductive dehalogenation involves the removal of a halogen atom an oxidation-reduction reaction. This reaction is most likely to occur in w-redox state ground waters. This biological reaction requires mediators, such as Fe⁺³ or biological products, to accept electrons generated by oxidation of reduced organics and to transfer these electrons to the halogenated organic compound to bring about dehalogenation (Mackay et al., 1984).

Conversely, halogenation of organic compounds occurs mostly under synthetic conditions or under harsh environmental conditions. Mild chlorination reactions are possible in natural waters containing residual chlorine.

Metabolic Transformation

Biotransformations occur as a result of the metabolic activity of microorganisms through the action of enzymes which catalyze chemical reactions. These reactions generally lead to the production of energy or some essential nutrient for the organism, although some chemicals may be transformed even though the specific reaction does not promote growth. Rates of biotransformation are dependent on microbial tolerance to specific contaminant compounds and the availability of groups of compounds, such as oxygen and nitrate, as nutrient sources. Therefore, rates of biodegradation are dependent upon microbial population and environment

as well as the physical/chemical properties of the compound. Although only limited information is available on rates of biodegradation, historical data and field studies may be helpful in evaluating the use of biodegradation processes in remediating site contamination.

GROUND WATER VELOCITY CALCULATIONS

Calculation of Lateral Travel Times in the Denver Fm--The lateral travel times in Denver Fm units were estimated by calculating the average linear ground-water velocity from the principles of Darcy's Law, which can be written as:

where:

▼ = average linear ground-water velocity
 K = horizontal hydraulic conductivity

dh = horizontal hydraulic gradient

d1
n = porosity [calculated from soil test data on Denver Fm units by May at al. (1980, RIC#81266R48) and May (1982, RIC#82295R01)].

The horizontal hydraulic conductivity values used, 1.6 ft/day and 1.1 ft/day, were determined from pumping tests performed on Wells 22317 and 24154 by Black and Veatch (1980, RIC#81266R25). These are the only horizontal hydraulic conductivity values obtained from a pumping test for confined Denver Fm sandstone units at RMA. These values were chosen to obtain a conservative estimate of travel times and because pumping tests generally provide more reliable values then slug tests.

The hydraulic gradient used was $0.01~{\rm ft/ft}$ which is representative of potentiometric surface gradients observed in Denver Fm zones at RMA. The porosity of the Denver Fm sandstones was estimated from the following equation:

where:

n = porosity
e = void ratio

and the void ratio was calculated from:

where:

e = void ratio

G = specific gravity (2.7)

W = unit weight of water (62.4 lb/ft³)

d = dry unit weight (96.0 to 113.6 lbs/ft³)

This calculation was performed by assuming a specific gravity for sandstone of 2.7 (Lambe and Whitman, 1969) and using the range of dry-unit weights for

sandstone samples determined from laboratory tests by May at al. (1980, RIC#81266R48) and May (1982, RIC#82295R01). Using the above equation, calculated porosity values ranged from 0.33 for medium to coarse-grained sandstone to 0.43 for silty, fine-grained sandstone. These porosity values are in close agreement with the representative values reported for fine-grained sandstone (0.33) and medium-grained sandstone (0.37) by Morris and Johnson (1967). To obtain the highest estimates of average linear ground-water velocities, the lowest porosity value of 0.33 was used.

Vertical average linear ground-water velocities were estimated using Darcy's Law. The calculation of vertical average linear ground-water velocity is dependent on the vertical hydraulic conductivity, the porosity of the weathered clayshale, and the vertical hydraulic gradient.

The vertical hydraulic conductivity of the weathered clayshale could be estimated by three methods: pumping tests, laboratory permeability tests, and using the assumption that vertical hydraulic conductivity is generally to orders of magnitude less than the horizontal hydraulic conductivity. These three methods will be briefly described below.

The first method used a pumping test performed near the NBCS at Well 24154 (Black and Veatch, 1980, RIC#81266R25) to estimate vertical hydraulic conductivity for clayshale using the type-curve graphical method devised by Walton (1960) for a leaky artesian aquifer. However, as explained in the Task 36 Draft Final Report (ESE, 1988), the 4.1 x 10^{-5} ft/day value may have been underestimated because the confining layer between the alluvium and the sandstone unit that was tested was 20-ft thick.

The second method that could be used to estimate vertical hydraulle conductivity was using laboratory permeability tests conducted by WES (1987. At #82295R01) on clayshale core samples from Wells 32002 and 35067. The sample interests were from 107.6 to 108.0 ft, and 77.0 to 77.6 ft, respectively, and were now the depth of weathering. The average vertical hydraulic conductivity v. ... from these falling head permeability tests was 0.16 ft/day. This value appears to be overestimated due to the travel times that would be associated with its use.

A third method used to estimate vertical hydraulic conductivity assumed that it is generally two orders of magnitude less than the horizental hydraulic conductivity value (Freeze and Cherry, 1980). A slug test performed on Well 24145, screened in jointed clayshale (May at al., 1980, RIC#81266R48), yielded a horizontal value of 5.7 x 10^{-2} ft/day. Using this value, and assuming vertical hydraulic conductivity would be two orders of magnitude less, a vertical value of 5.7 x 10^{-4} ft/day is obtained. The horizontal value may be underestimated, thereby underestimating the vertical value, due to the slug test not stressing the aquifer enough to yield water from the fractures.

It is important when considering vertical hydraulic conductivity to note that it generally decreases with depth due to decreased fracturing and weathering and increased consolidation of the rock.

