Projekt Zespołowy Etap projektu – projektowanie rozwiązania na zadaną architekturę

Autorzy: Biernacka Kamila Kania Dominik Leśniak Mateusz Maziarz Wojciech

kwiecień 2021

${\bf Streszczenie}$

Poniższe sprawozdanie jest wynikiem naszej pracy na drugim etapie projektu zespołowego z implementacji metody indeksu w architekturach GPU. Przedstawimy w nim przygotowane przez nas projekty i rysunki koncepcyjne wymaganych do zaimplementowania algorytmów.

Spis treści

1	\mathbf{Mn}	ożenie modularne dużych liczb	3
2	Poszukiwanie relacji i faktoryzacja w bazie		4
	2.1	Szybkie potęgowanie modularne	4
	2.2	Fakoryzacja w bazie	4
	2.3	Budowa relacji	4
3	Eliminacja Gaussa w pierścieniu \mathbb{Z}_{p-1}		
	3.1	Algorytm Euklidesa	4
	3.2	Rozszerzony algorytm Euklidesa	4

1 Mnożenie modularne dużych liczb

W celu wykonania mnożenia dużych liczb $a, b \in \mathbb{F}_p$ wykorzystamy algorytm 2. Pierwszym krokiem jest przedstawienie liczb a, b w postaci $a = x_1 \cdot 2^{32} + y_1$ oraz $b = x_2 \cdot 2^{32} + y_2$.

Wtedy

$$r_p = r_p(ab) = r_p((x_1 \cdot 2^{32} + y_1)(x_2 \cdot 2^{32} + y_2)) = r_p(x_1x_2 \cdot_p 2^{64}) +_p r_p(x_1y_2 \cdot_p 2^{32}) +_p r_p(x_2y_1 \cdot_p 2^{32}) +_p r_p(y_1y_2).$$

Do wyznaczenia pośrednich wartości r_p wykorzystywany jest algorytm 1. Algorytm mnożenia pośredniego działa analogicznie do algorytmu 2. Różnicą jest przedstawienie czynników jako $x \cdot 2^{16} + y$.

Algorithm 1: Mnożenie pośrednie, halfMult

```
Input: a, b - dwie liczby całkowite, p - modulnik
```

Output: result - wynik mnożenia

```
1 x_1 \leftarrow a >> 16
```

$$y_1 \leftarrow a \&\& 0xffff$$

3
$$x_2 \leftarrow b >> 16$$

4
$$y_2 \leftarrow b \&\& 0xffff$$

5
$$half_a \leftarrow (((x_1x_2)\%p) \cdot r_p(2^{32}))\%p$$

6
$$half_b \leftarrow (((x_1y_2)\%p) \cdot r_p(2^{16}))\%p$$

7
$$half_c \leftarrow (((x_2y_1)\%p) \cdot r_p(2^{16}))\%p$$

8
$$half_d \leftarrow (y_1y_2)\%p$$

9 return
$$(half_a + half_b + half_c + half_d)\%p$$

Algorithm 2: Pełne mnożenie modularne dwóch liczb

```
Input: a, b - dwie liczby całkowite, p - modulnik
```

Output: result - wynik mnożenia

```
1 x_1 \leftarrow a >> 32
```

$$y_1 \leftarrow a \&\& 0xffffffff$$

3
$$x_2 \leftarrow b >> 32$$

4
$$y_2 \leftarrow b \&\& 0xffffffff$$

5
$$half_a \leftarrow (halfMult(x_1, x_2) \cdot r_p(2^{64}))\%p$$

6
$$half_b \leftarrow (halfMult(x_1, y_2) \cdot r_p(2^{32}))\%p$$

7
$$half_c \leftarrow (halfMult(x_2, y_1) \cdot r_p(2^{32}))\%p$$

$$\mathbf{8} \ half_a \leftarrow halfMult(y_1, y_2)$$

9 return
$$(half_a + half_b + half_c + half_d)\%p$$

- 2 Poszukiwanie relacji i faktoryzacja w bazie
- 2.1 Szybkie potęgowanie modularne
- 2.2 Fakoryzacja w bazie
- 2.3 Budowa relacji
- 3 Eliminacja Gaussa w pierścieniu \mathbb{Z}_{p-1}
- 3.1 Algorytm Euklidesa
- 3.2 Rozszerzony algorytm Euklidesa