Activity 9

OBJECTIVE

To verify the algebraic identity : $a^3 + b^3 = (a + b) (a^2 - ab + b^2)$

METHOD OF CONSTRUCTION

MATERIAL REQUIRED

Acrylic sheet, glazed papers, saw, adhesive, cellotape, coloured papers, sketch pen, etc.

- 1. Make a cube of side *a* units and another cube of side *b* units as shown in Fig. 1 and Fig. 2 by using acrylic sheet and cellotape/adhesive.
- 2. Make a cuboid of dimensions $a \times a \times b$ [see Fig. 3].
- 3. Make a cuboid of dimensions $a \times b \times b$ [see Fig. 4].
- 4. Arrange these cubes and cuboids as shown in Fig. 5.

Mathematics 33

DEMONSTRATION

Volume of cube in Fig. $1 = a^3$

Volume of cube in Fig. $2 = b^3$

Volume of cuboid in Fig. $3 = a^2b$

Volume of cuboid in Fig. $4 = ab^2$

Volume of solid in Fig. 5 = $a^3+b^3+a^2b+ab^2$ = $(a+b) (a^2 + b^2)$

Removing cuboids of volumes a^2b and ab^2 , i.e., ab (a + b) from solid obtained in Fig. 5, we get the solid in Fig. 6.

Fig. 6

Volume of solid in Fig. $6 = a^3 + b^3$.

Therefore,
$$a^3 + b^3 = (a+b)(a^2 + b^2) - ab(a+b)$$

= $(a+b)(a^2 + b^2 - ab)$

Here, volumes are in cubic units.

OBSERVATION

On actual measurement:

$$a = \dots, b = \dots,$$

So, $a^3 = \dots, b^3 = \dots, (a+b) = \dots, (a+b)a^2 = \dots,$

$$(a+b) b^2 = \dots, a^2b = \dots, ab^2 = \dots,$$

 $ab (a+b) = \dots,$

Therefore,
$$a^3 + b^3 = (a + b) (a^2 + b^2 - ab)$$
.

APPLICATION

The identity may be used in simplification and factorisation of algebraic expressions.