1 Formulas

Maxwell's Equations

$$\nabla .D = \rho$$

$$\nabla .B = 0$$

$$\nabla \times E = -\frac{\delta B}{\delta t}$$

$$\nabla \times H = J_C + \frac{\delta D}{\delta t}$$

Electric Field

$$E = \frac{Q}{4\pi\epsilon r^2}$$

, where
$$\epsilon = \epsilon_0 \epsilon_r, \; \epsilon_0 = 8.85 \times 10^{-12} Fm^{-1}$$

$$E = -grad(V)$$

Electric Flux

$$\Psi = \iint \epsilon E ds = \iint D ds$$

Electric Flux Density

$$D = \frac{\Psi}{A}$$

Capacitor

•
$$C = \frac{\epsilon A}{d}$$

$$\bullet \ E = \frac{1}{2}CV^2$$

Magnetic Flux

$$\Phi = \iint \mu H ds = \iint B ds$$

Magnetic Flux Density

$$B = \frac{\Phi}{A} = \mu H$$

Resistivity

$$\rho = \frac{RA}{l}$$

Drift Velocity

$$U_d = \mu_m E$$

1

Transmission Line

- Shunt Admittance: $Y = G + j\omega C$
- Series Impedance: $Z = R + j\omega L$
- Propagation Constant: \sqrt{ZY}
- Attenuation Constant: $Re\sqrt{ZY}$

- Phase Constant: $Im\sqrt{ZY}$
- Characteristic Impedance: $Z_{line} = \sqrt{\frac{Z}{Y}} = \sqrt{\frac{R+j\omega L}{G+j\omega C}}$
- VSWR: $VSWR = \frac{1+\Gamma_v}{1-\Gamma_v}$
- Reflection coefficient for $V:\Gamma_v = \frac{Z_L Z_0}{Z_L + Z_0}$
- Reflection coefficient for $\mathbf{I}:\Gamma_i=-rac{Z_L-Z_0}{Z_L+Z_0}=-\Gamma_v$
- Reflected Voltage: $V_r = V_i \times \Gamma_v$
- Reflected Current: $I_r = I_i \times \Gamma_i$

2 Definitions

- Gauss's Law: Total electric flux over a volumn is equal to the charge enclosed by that volumn.
- Electric Field:
- **Absolute Potential**: The work move a unit charge from infinity to a radial distance r1.
- Electric Flux: Electric Flux through a surface is the integral of normal component of electric field multiplied by ϵ .
- Electric Flux Density: Electric flux divided by A.
- **Permittivity**:Permittivity of vacuum multiplied by relative permittivity.
- **Drift Velocity**: Mobility multiplied by E.
- Magnatic Flux Density:
- Relative Permeability:
- Transmission Line: Guide electromagnetic energy or info from one point to another.
- Application of Transmission Lines: Telephone, coaxial cables, micro strip tracks on a PCB
- AC Circuit Theory: $l << \lambda$

3 Tao Lu

3.1 Know D, find ρ

- 1. $\iint Dds = \rho$
- 2. Determine if the ρ from last step is what we want.
- 3. If isn't, for example, we want the ρ of a line, but we have ρ in a volumn, then find the ρ we want.

3.2 Magnetic Flux Between Strips

- 1. $H = \frac{I}{W}$, where W is the width of the strip.
- 2. $\Phi = \mu H A$

3.3 Find EMF

- 1. Find EMF caused by change of B, $EMF = \frac{d\Phi}{dt} = \frac{AdB}{dt}$
- 2. Find EMF caused by $\int (v \times B) dL$
- 3. Add them together.

3.4 Wave Equation From Gauss's Law

- 1. We know $\nabla \times E = -\frac{dB}{dt}$
- 2. Calculate curl for both side. $\nabla \times \nabla \times E = \nabla \times \nabla \times -\frac{dB}{dt}$
- 3. Substitute $\nabla \times B = \mu_0 \epsilon_0 \frac{dE}{dt}$ into the equation obtained before
- 4. $\nabla \times \nabla \times E = \nabla(\nabla \cdot E) \nabla^2 E$, where $\nabla \cdot E$ is 0 in vacuum
- 5. $\nabla^2 E = \mu_0 \epsilon_0 \frac{dE}{dt}$