Artificial Intelligence

CS4365 --- Fall 2022 Games of Chance

Instructor: Yunhui Guo

Backgammon -- Board

- Goal: move all of your pieces off the board before your opponent does.
- Black moves counterclockwise toward
 0.
- White moves clockwise toward 25.
- The number of steps depend on the outcomes of tossing two dices.
- A piece can move to any position except one where there are two or more of the opponent's pieces.

Backgammon -- Rules

• If you roll doubles you take 4 moves (example: roll 5,5,make moves 5,5,5,5).

 Moves can be made by one or two pieces (in the case of doubles by 1, 2, 3 or 4 pieces)

 And a few other rules that concern bearing off and forced moves

Backgammon -- Rules

• White has rolled 6-5 and has 4 legal moves: (5-10,5-11), (5-11,19-24), (5-10,10-16) and (5-11,11-16).

Backgammon -- Rules

The player tosses two dices

Based on the outcomes to make certain moves

The opponent tosses the dices

Based on the outcomes to make certain moves

Game Tree for Backgammon

Uncertain Outcome

 Idea: Uncertain outcomes controlled by chance, not an adversary!

Expectimax Search

Why wouldn't we know what the result of an action will be?

- Explicit randomness: rolling dice
- Unpredictable opponents: the ghosts respond randomly
- Actions can fail: when moving a robot, wheels might slip

Reminder: Probabilities

- A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes
- Example: Traffic on freeway
 - Random variable: T = whether there's traffic
 - Outcomes: T in {none, light, heavy}
 - Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

Reminder: Expectations

 The expected value of a function of a random variable is the average, weighted by the probability distribution over outcomes

Example: How long to get to the airport?

Time: 20 min 30 min 60 min x + x + x 35
Probability: 0.25 0.50 0.25 min

What Probabilities to Use?

- In expectimax search, we have a probabilistic model of how the opponent (or environment) will behave in any state
 - Model could be a simple uniform distribution (roll a die)
 - Model could be sophisticated and require a great deal of computation
 - We have a chance node for any outcome out of our control: opponent or environment
 - The model might say that adversarial actions are likely!
- For now, assume each chance node magically comes along with probabilities that specify the distribution over its outcomes

Expectimax Search

- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under optimal play
 - Max nodes as in minimax search
 - Chance nodes are like min nodes but the outcome is uncertain
 - Calculate their expected utilities
 - I.e. take weighted average (expectation) of children

Expectimax Pseudocod

```
def exp-value(state):
    initialize v = 0
    for each successor of state:
        p = probability(successor)
        v += p * value(successor)
    return v
```


$$v = (1/2)(8) + (1/3)(24) + (1/6)(-12) = 10$$

Expectimax Pseudocode

```
def value(state):
```

```
if the state is a terminal state: return the state's utility if the next agent is MAX: return max-value(state) if the next agent is EXP: return exp-value(state)
```

def max-value(state):
 initialize v = -∞
 for each successor of state:
 v = max(v, value(successor))
 return v

def exp-value(state):
 initialize v = 0
 for each successor of state:
 p = probability(successor)
 v += p * value(successor)
 return v

Expectimax Example

What Utilities to Use?

- For worst-case minimax reasoning, terminal function scale doesn't matter
 - We just want better states to have higher evaluations (get the ordering right)
 - We call this insensitivity to monotonic transformations
- For average-case expectimax reasoning, we need magnitudes to be meaningful

Depth-Limited Expectimax

The Dangers of Optimism and Pessimism

- Dangerous Optimism
 - Assuming chance when the world is adversarial
 - MiniMax
- Dangerous Pessimism
 - Assuming the worst case when it's not likely
 - ExpectiMax

Assumptions vs. Reality

	Adversarial Ghost	Random Ghost
Minimax	Won 5/5	Won 5/5
Pacman	Avg. Score: 483	Avg. Score: 493
Expectimax	Won 1/5	Won 5/5
Pacman	Avg. Score: -303	Avg. Score: 503

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

Utilities

- Utilities are functions from outcomes (states of the world) to real numbers that describe an agent's preferences
- Where do utilities come from?
 - In a game, may be simple (+1/-1)
 - Utilities summarize the agent's goals
 - Theorem: any "rational" preferences can be summarized as a utility function
- We hard-wire utilities and let behaviors emerge
 - Why don't we let agents pick utilities?
 - Why don't we prescribe behaviors?
 - Why maximize expected utility?
 - Expected utility theory is a theory about how to make optimal decisions under a given probability of utility.

Preferences

- An agent must have preferences among:
 - Prizes: A, B, etc.
 - Lotteries: situations with uncertain prizes

$$L = [p, A; (1-p), B]$$

- Notation:
 - Preference: $A \succ B$
 - Indifference: $A \sim B$

A Prize

A

A Lottery

Rational Preferences

 We want some constraints on preferences before we call them rational, such as:

Axiom of Transitivity:
$$(A > B) \land (B > C) \Rightarrow (A > C)$$

- For example: an agent with intransitive preferences can be induced to give away all of its money
 - If B > C, then an agent with C would pay (say) 1 cent to get B
 - If A > B, then an agent with B would pay (say) 1 cent to get A
 - If C > A, then an agent with A would pay (say) 1 cent to get C

Rational Preferences

The Axioms of Rationality

```
Orderability
    (A \succ B) \lor (B \succ A) \lor (A \sim B)
Transitivity
    (A \succ B) \land (B \succ C) \Rightarrow (A \succ C)
Continuity
    A \succ B \succ C \Rightarrow \exists p \ [p, A: \ 1-p, C] \sim B
Substitutability
    A \sim B \Rightarrow [p, A; 1-p, C] \sim [p, B; 1-p, C]
Monotonicity
    A \succ B \Rightarrow
        (p \ge q \Leftrightarrow [p, A; 1-p, B] \succeq [q, A; 1-q, B])
```

• If all the axioms are satisfied, the agent is said to be rational

MEU Principle

- Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]
 - Given any preferences satisfying these constraints, there exists a real-valued function U such that:

$$U(A) \ge U(B) \Leftrightarrow A \succeq B$$

 $U([p_1, S_1; \dots; p_n, S_n]) = \sum_i p_i U(S_i)$

- I.e. values assigned by U preserve preferences of both prizes and lotteries!
- Maximum expected utility (MEU) principle:
 - Choose the action that maximizes expected utility
 - Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
 - E.g., a lookup table for perfect tic-tac-toe

Summary

Minimax considers adversarial opponent

ExpectiMax considers random opponent.

Maximum expected utility leads to a rational agent.