Thormoset Elastoners

Vulcanization:

$$\frac{\mathcal{H}}{\mathcal{C}} = \mathcal{C} - \mathcal{C} + \mathcal{C}$$

TABLE 2.1. TYPICAL TIRE TREAD RECIPES

phra

Ingredient	Natural Rubber	Synthetic	Function
Smoked sheet	100	_	elastomer
Styrene-butadiene/oil			elastomer-extender
masterbatch	_	103.1	masterbatch
cis-polybutadiene	-	25	special purpose elastomer
Oil soluble sulfonic acid	2.0	5.0	processing aid
Stearic acid	2.5	2.0	accelerator-activator
Zinc oxide	3.5	3.0	accelerator-activator
Phenyl-beta-naphthylamine	2.0	2.0	antioxidant
Substituted N,N'-p-phenylene-			
diamine	4.0	4.0/	antiozonant
Microcrystalline wax	1.0	1.0	processing aid and finish
Mixed process oil	5.0	7.0	softener
HAF carbon black	50	_	reinforcing filler
ISAF carbon black	_	65	reinforcing filler
Sulfur	2.5	1.8	vulcanizing agent
Substituted benzothiazole-2-			
sulfenamide	0.5	1.5	accelerator
N-nitrosodiphenylamine	0.5		retarder
Total weight	173.5	220.4	
Specific gravity	1.12	1.13	

^aParts per hundred parts of rubber, by weight.

Source: Morton, M. (ed.) Rubber Technology. 2nd ed. New York: Van Nostrand Reinhold, 1973: p.20

Kerimid High-Temperature Thermoset Resins

Kinetics:

$$(d\alpha/dt) = Z \exp(E/RT)(1-\alpha)^n$$

$$= (1/H_0)(dH/dt)$$

$$\alpha = \int (d\alpha/dt)dt$$

Freeman-Carroll Analysis
$$\log \dot{\alpha} = \log Z + \frac{E}{2.303RT} + n\log(1-\alpha)$$
Difference form:
$$\Delta \log \dot{\alpha} = \Delta \log Z + \frac{E}{2.303R} \Delta \left(\frac{1}{T}\right) + n\Delta \log(1-\alpha)$$

Finite Element Analysis

$$\rho \left[\frac{\partial u}{\partial t} + u \nabla u \right] = -\nabla p + \nabla (\psi \nabla u)$$

$$\rho c \left[\frac{\partial T}{\partial t} + u \nabla T \right] = Q + \nabla (k \nabla u)$$

$$\left[\frac{\partial C}{\partial t} + u \nabla C \right] = R + \nabla (D \nabla u)$$