

2004 Romania National Olympiad

Romania National Olympiad 2004

_	Grade level 7
_	April 5th
1	On the sides AB, AD of the rhombus $ABCD$ are the points E, F such that $AE = DF$. The lines BC, DE intersect at P and CD, BF intersect at Q . Prove that:
	(a) $\frac{PE}{PD} + \frac{QF}{QB} = 1$;
	(b) P, A, Q are collinear.
	Virginia Tica, Vasile Tica
2	The sidelengths of a triangle are a, b, c .
	(a) Prove that there is a triangle which has the sidelengths $\sqrt{a}, \sqrt{b}, \sqrt{c}$.
	(b) Prove that $\sqrt{ab} + \sqrt{bc} + \sqrt{ca} \le a + b + c < 2\sqrt{ab} + 2\sqrt{bc} + 2\sqrt{ca}$.
3	Let $ABCD$ be an orthodiagonal trapezoid such that $\angle A = 90^{\circ}$ and AB is the larger base. The diagonals intersect at O , (OE) is the bisector of $\angle AOD$, $E \in (AD)$ and $EF AB $, $F \in (BC)$. Let P,Q the intersections of the segment EF with AC,BD . Prove that:
	(a) $EP = QF$;
	(b) $EF = AD$.
	Claudiu-Stefan Popa
4	Let $\mathcal{U} = \{(x, y) x, y \in \mathbb{Z}, \ 0 \le x, y < 4\}.$
	(a) Prove that we can choose 6 points from \mathcal{U} such that there are no isosceles triangles with the vertices among the chosen points.

three which form an isosceles triangle.

(b) Prove that no matter how we choose 7 points from \mathcal{U} , there are always

Art of Problem Solving 2004 Romania National Olympiad

	Radu Gologan, Dinu Serbanescu	
_	Grade level 8	
_	April 5th	
1	Find all non-negative integers n such that there are $a, b \in \mathbb{Z}$ satisfying $n^2 = a + b$ and $n^3 = a^2 + b^2$.	
	Lucian Dragomir	
2	Prove that the equation $x^2 + y^2 + z^2 + t^2 = 2^{2004}$, where $0 \le x \le y \le z \le t$, has exactly 2 solutions in \mathbb{Z} .	
	Mihai Baluna	
3	Let $ABCDA'B'C'D'$ be a truncated regular pyramid in which BC' and DA' are perpendicular.	
	(a) Prove that $\angle (AB', DA') = 60^{\circ}$;	
	(b) If the projection of B' on (ABC) is the center of the incircle of ABC , then prove that $d(CB',AD')=\frac{1}{2}BC'$.	
	Mircea Fianu	
4	In the interior of a cube of side 6 there are 1001 unit cubes with the faces parallel to the faces of the given cube. Prove that there are 2 unit cubes with the property that the center of one of them lies in the interior or on one of the faces of the other cube.	
	Dinu Serbanescu	
_	Grade level 9	
_	April 5th	
1	Find the strictly increasing functions $f: \{1, 2,, 10\} \rightarrow \{1, 2,, 100\}$ such that $x + y$ divides $xf(x) + yf(y)$ for all $x, y \in \{1, 2,, 10\}$.	
	Cristinel Mortici	

Art of Problem Solving 2004 Romania National Olympiad

2	Let $P(n)$ be the number of functions $f: \mathbb{R} \to \mathbb{R}, f(x) = ax^2 + bx + c$, with	
	$a, b, c \in \{1, 2,, n\}$ and that have the property that $f(x) = 0$ has only integer solutions. Prove that $n < P(n) < n^2$, for all $n \ge 4$.	
	$Laurentiu\ Panaitopol$	
3	Let H be the orthocenter of the acute triangle ABC . Let BB' and CC' be altitudes of the triangle $(B' \in AC, C' \in AB)$. A variable line ℓ passing through H intersects the segments $[BC']$ and $[CB']$ in M and N . The perpendicular lines of ℓ from M and N intersect BB' and CC' in P and Q . Determine the locus of the midpoint of the segment $[PQ]$.	
	Gheorghe Szolosy	
4	Let $p, q \in \mathbb{N}^*$, $p, q \geq 2$. We say that a set X has the property (S) if no matter how we choose p subsets $B_i \subset X$, $i = \overline{1, n}$, not necessarily distinct, each with q elements, there is a subset $Y \subset X$ with p elements s.t. the intersection of Y with each of the B_i 's has an element at most, $i = \overline{1, p}$. Prove that:	
	(a) if $p = 4, q = 3$ then any set composed of 9 elements doesn't have (S) ;	
	(b) any set X composed of $pq-q$ elements doesn't have the property (\mathcal{S}) ;	
	(c) any set X composed of $pq - q + 1$ elements has the property (S) .	
	$Dan\ Schwarz$	
_	Grade level 10	
_	April 5th	
1	Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that $ f(x) - f(y) \leq x - y $, for all $x, y \in \mathbb{R}$.	
	Prove that if for any real x , the sequence $x, f(x), f(f(x)), \ldots$ is an arithmetic progression, then there is $a \in \mathbb{R}$ such that $f(x) = x + a$, for all $x \in \mathbb{R}$.	
2	Let $ABCD$ be a tetrahedron in which the opposite sides are equal and form equal angles.	
	Prove that it is regular.	

2004 Romania National Olympiad

3 Let $n > 2, n \in \mathbb{N}$ and $a > 0, a \in \mathbb{R}$ such that $2^a + \log_2 a = n^2$. Prove that:

$$2 \cdot \log_2 n > a > 2 \cdot \log_2 n - \frac{1}{n}.$$

Radu	Gologan
------	---------

4 Let $(P_n)_{n\geq 1}$ be an infinite family of planes and $(X_n)_{n\geq 1}$ be a family of non-void, finite sets of points such that $X_n \subset P_n$ and the projection of the set X_{n+1} on the plane P_n is included in the set X_n , for all n.

Prove that there is a sequence of points $(p_n)_{n\geq 1}$ such that $p_n\in P_n$ and p_n is the projection of p_{n+1} on the plane P_n , for all n.

Does the conclusion of the problem remain true if the sets X_n are infinite?

Claudiu Raicu

- Grade level 11
- April 5th
- Let $n \geq 3$ be an integer and F be the focus of the parabola $y^2 = 2px$. A regular polygon $A_1 A_2 \ldots A_n$ has the center in F and none of its vertices lie on Ox. $(FA_1, (FA_2, \ldots, (FA_n \text{ intersect the parabola at } B_1, B_2, \ldots, B_n)$.

Prove that

$$FB_1 + FB_2 + \ldots + FB_n > np$$
.

$Calin\ Popescu$

- Let $n \in \mathbb{N}, n \geq 2$.
 - (a) Give an example of two matrices $A, B \in \mathcal{M}_n(\mathbb{C})$ such that

$$\operatorname{rank}(AB) - \operatorname{rank}(BA) = \left\lfloor \frac{n}{2} \right\rfloor.$$

2004 Romania National Olympiad

(b) Prove that for all matrices $X, Y \in \mathcal{M}_n(\mathbb{C})$ we have

$$\operatorname{rank}(XY) - \operatorname{rank}(YX) \le \left\lfloor \frac{n}{2} \right\rfloor.$$

	$Ion \ Savu$
3	Let $f:(a,b)\to\mathbb{R}$ be a function with the property that for all $x\in(a,b)$ there is a non-degenerated interval $[a_x,b_x]$ with $a< a_x\leq x\leq b_x< b$ such that f is constant on $[a_x,b_x]$.
	(a) Prove that $\text{Im } f$ is finite or numerable.
	(b) Find all continuous functions which have the property mentioned in the hypothesis.
4	(a) Build a function $f: \mathbb{R} \to \mathbb{R}_+$ with the property (\mathcal{P}) , i.e. all $x \in \mathbb{Q}$ are local, strict minimum points.
	(b) Build a function $f: \mathbb{Q} \to \mathbb{R}_+$ such that every point is a local, strict minimum point and such that f is unbounded on $I \cap \mathbb{Q}$, where I is a non-degenerate interval.
	(c) Let $f: \mathbb{R} \to \mathbb{R}_+$ be a function unbounded on every $I \cap \mathbb{Q}$, where I is a non-degenerate interval. Prove that f doesn't have the property (\mathcal{P}) .
_	Grade level 12
_	April 5th
1	Find all continuous functions $f: \mathbb{R} \to \mathbb{R}$ such that for all $x \in \mathbb{R}$ and for all $n \in \mathbb{N}^*$ we have $n^2 \int_x^{x+\frac{1}{n}} f(t) dt = n f(x) + \frac{1}{2}.$
	Mihai Piticari

2004 Romania National Olympiad

 $\mathbf{2}$

Let $f \in \mathbb{Z}[X]$. For an $n \in \mathbb{N}$, $n \geq 2$, we define $f_n : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ through $f_n(\widehat{x}) = \widehat{f(x)}$, for all $x \in \mathbb{Z}$.

- (a) Prove that f_n is well defined.
- (b) Find all polynomials $f \in \mathbb{Z}[X]$ such that for all $n \in \mathbb{N}$, $n \geq 2$, the function f_n is surjective.

Bogdan Enescu

3

Let $f:[0,1]\to\mathbb{R}$ be an integrable function such that

$$\int_0^1 f(x) \, dx = \int_0^1 x f(x) \, dx = 1.$$

Prove that

$$\int_0^1 f^2(x) \, dx \ge 4.$$

Ion Rasa

4

Let \mathcal{K} be a field of characteristic $p, p \equiv 1 \pmod{4}$.

- (a) Prove that -1 is the square of an element from \mathcal{K} .
- (b) Prove that any element $\neq 0$ from \mathcal{K} can be written as the sum of three squares, each $\neq 0$, of elements from \mathcal{K} .
- (c) Can 0 be written in the same way?

Marian Andronache