

Lecture Pattern Analysis

Part 06: K-Means

Christian Riess

IT Security Infrastructures Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg May 7. 2021

K-Means at a Glance

- K-means is arguably the most well-known clustering algorithm¹
- Hard-clustering method, i.e., each sample gets a discrete cluster label assigned
- Idea: minimize Euclidean Within-Cluster Distance W(C):

$$W(C) = \frac{1}{2} \cdot \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(j)=k} ||\mathbf{x}_i - \mathbf{x}_j||^2$$
 (1)

$$= \sum_{k=1}^{K} N_k \cdot \sum_{C(i)=k} ||\mathbf{x}_i - \boldsymbol{\mu}_k||^2 , \qquad (2)$$

where K is the total number of clusters, C(i) the cluster ID for sample \mathbf{x}_i , N_k the number of points in cluster k, and μ_k the mean of all points in cluster k.

¹Literature references are, e.g., Hastie/Tibshirani/Friedman Sec. 14.3.6 or Bishop Sec. 9.1

K-Means Algorithm

- 1. Initialization: set K cluster centers in sample space (e.g., randomly selected)
- 2. Assign each sample to the nearest cluster center w.r.t. Euclidean distance
- 3. Calculate the mean of each cluster from its assigned samples
- 4. goto 2) until convergence
 - Remarks:
 - ullet K-means is locally optimal ullet different initializations $\stackrel{?}{=}$ different results
 - The clusters partition the space, the partitioning is called Voronoi tesselation²

²Picture on the right is from wikipedia (CC BY-SA 4.0): https://upload.wikimedia.org/wikipedia/commons/5/54/Euclidean_Voronoi_diagram.svg

Example Run for k = 3, **Random Starting Positions**

