MAT257 - Week 1 Homework - Ethan Hua

9/13 1. Let A_1, A_2, A_3, \ldots be a sequence of countable sets. Prove that $\bigcup_{i>1} A_i$ is countable.

Proof. Since A_i is countable, denote A_{ij} to be the jth element of set A_i .

Define $f: \bigcup_{i\geq 1} A_i \to \mathbb{N}$ as

$$f(A_{ij}) = 2^i 3^j$$

We will show that f is injective. Let $A_{pq}, A_{rs} \in \bigcup_{i>1} A_i$. Suppose that $f(A_{pq}) = f(A_{rs})$. Then

$$2^p 3^q = 2^r 3^s$$

Since every integer has a unique prime factorisation, it follows that p = r, q = s. Thus $A_{pq} = A_{rs}$.

Now, define the injection $g: \mathbb{N} \to \bigcup_{i>1} A_i$ to be $g(n) = A_{1n}$.

Therefore by the Schröder-Bernstein theorem, $|\bigcup_{i>1} A_i| = |\mathbb{N}|$. Thus the set is countable.

9/13 2. Let X, Y, Z be three vector spaces. Prove that $L^2(X, Y; Z)$ is isomorphic to L(X, L(Y, Z)).

(For two vector spaces X,Y, we use L(X,Y) to denote the space of linear mappings from X to Y. For three vector spaces X,Y,Z, and a a function $\beta: X\times Y\to Z$, we let $\beta(\cdot,y_0)$ denote the function $X\to Z$ given by $x\mapsto \beta(x,y_0)$, where $y_0\in Y$ is some fixed vector; this is called the y_0 -slice of β . The x_0 -slice $\beta(x_0,\cdot)$ is defined similarly.

Proof. For a bilinear map $T \in L^2(X,Y;Z)$, $(x,y) \in X \times Y$, Define $\phi: L^2(X,Y;Z) \to L(X,L(Y,Z))$ such that

$$\phi(T)(x,y) = T(x,\cdot)(y)$$

where $T(x,\cdot)$ is the x-slice of T. We claim that this transformation is an isomorphism.

First, let $\phi(T) = 0$. Then $\forall x \in X, T(x, \cdot)(y) = 0$, from which it follows that T(x, y) = 0, meaning ϕ is injective.

Next, fix $U \in L(X, L(Y, Z))$. Let β be the basis for X. Let $T \in L^2(X, Y; Z)$ be the linear transformation such that $T(x, \cdot) = U(x)$, for all $x \in \beta$. We see that $\forall x, y \in X \times Y$,

$$\phi(T)(x,y) = T(x,\cdot)(y) = U(x)(y)$$

making ϕ surjective.

Thus ϕ is an isomorphism, and we get that $L^2(X,Y;Z) \cong L(X,L(Y,Z))$ as desired.

9/13 3. Let I = (a, b) and J = (c, d) be two open intervals on the real line. Let $f: I \to J$ be an increasing function such that f(I) is dense in J. Prove that f is continuous.

(For two sets $D, S \subseteq \mathbf{R}$ we say that D is **dense** in S if $D \cap (s - \varepsilon, s + \varepsilon) \neq \emptyset$ for all $s \in S$ and all $\varepsilon > 0$.)

Proof. Fixing an $a \in I$, let $\varepsilon > 0$. We can assume without loss of generality that ε is small enough that $(f(a) - \varepsilon, f(a) + \varepsilon) \subseteq J$. Since f(I) is dense in J, we can always find an $y_1 \in (f(a) - \varepsilon, f(a))$ and $y_2 \in (f(a), f(a) + \varepsilon)$ such that $y_1, y_2 \in f(I)$, which means $y_1 = f(x_1)$ and $y_2 = f(x_2)$ for some $x_1, x_2 \in I$.

Take $\delta = \min\{|a - x_1|, |a - x_2|\}$. Let $x \in I$. Suppose that $|x - a| \le \delta$. If x = a, clearly $|f(x) - f(a)| < \varepsilon$. Consider when x < a.

We see that due to the choice of δ , we have that $x_1 < x < a$. Using the fact that f is increasing, we obtain

$$f(a) - \varepsilon < y_1 = f(x_1) < f(x) < f(a) \implies -\varepsilon < f(x) - f(a) < 0 \implies f(a) - f(x) = |f(x) - f(a)| < \varepsilon$$

The argument for the case when x < a is almost the exact same, except for the use of x_2 and y_2 instead of x_1 and y_1 , as well as the inequalities being swapped.

With this, we can conclude that f is continuous.