Ve572 Lecture 10

Manuel and Jing

UM-SJTU Joint Institute

June 19, 2018

- Association analysis, a.k.a Association rule mining/learning is a method for discovering interesting relations between variables in large databases.
- It is often used by retailers, again your cat and dog, which has a very large database on transactions, known as market basket data, e.g.

TID	Items
1	{ Bread, Milk }
2	{ Bread, Diapers, Beer, Eggs }
3	{ Milk, Diapers, Beer, Cola }
4	{ Bread, Milk, Diapers, Beer }
5	${}$ { Bread, Milk, Diapers, Cola ${}$

- Retailers are interested in analysing the data to learn about the purchasing behaviour of their customers, and make recommendations to their customers.
- Q: Can you guess the difference between clustering and association analysis?

- Association analysis is often used in
- 1. Bioinformatics
- 2. Medical diagnosis
- 3. Finance
- 4. Government monitoring
- We discuss association analysis using market basket data. Let

$$\mathcal{I} = \{z_1, z_2, \dots, z_p\}$$

be the set of all items in a market basket data, and

$$\mathcal{T} = \{t_1, t_2, \dots, t_n\}$$

be the set of all transactions, where each transaction

$$t_i$$

has a unique transaction ID, and contains a subset of items from \mathcal{I} .

 \bullet Imagine we have a very big market basket data, that is, very large p and n in

$$\mathcal{I} = \{z_1, z_2, \dots, z_p\}$$
 and $\mathcal{T} = \{t_1, t_2, \dots, t_n\}$

Q: How would you make recommendations? That is, how to expand the idea

	Gillette Razors	Christian Louboutin Shoes	Air Jordan Shoes
obs. 1	1	0	1
obs. 2	0	1	0
obs. 1	1	0	1

to slightly more complicated data but vastly big

TID	Bread	Milk	Diapers	Beer	Egg	Cola	
1	1	1	0	0	0	0	_
2	1	0	1	1	1	0	
3	0	1	1	1	0	1	
4	1	1	1	1	0	0	
5	1	1	1	0	0	1	

where 1 denotes at least 1 of that item was brought in the ith transaction.

ullet In association analysis, a subset of \mathcal{I} , $\mathcal{X}\subset\mathcal{I}$, is known as an itemset, e.g.

$$\mathcal{A} = \{$$
 Milk, Diapers, Beer $\}$

ullet The support of an itemset ${\mathcal X}$ is defined as

$$\operatorname{supp}(\mathcal{X}) = \frac{|\{t_i \mid \mathcal{X} \subset t_i, t_i \in \mathcal{T}\}|}{|\mathcal{T}|}$$

where $|\cdot|$ denotes the number of elements in a set, the size of the set.

• For instance, the support of A is 0.4,

TID	Bread	Milk	Diapers	Beer	Egg	Cola
1	1	1	0	0	0	0
2	1	0	1	1	1	0
3	0	1	1	1	0	1
4	1	1	1	1	0	0
5	1	1	1	0	0	1

• An association rule is an implication of the form

$$\mathcal{X} \implies \mathcal{Y}$$

where ${\mathcal X}$ and ${\mathcal Y}$ are itemsets of ${\mathcal I}$, and are disjoint

$$\mathcal{X} \cap \mathcal{Y} = \emptyset$$

The confidence of a rule is defined as

$$\operatorname{conf}\left(\mathcal{X}\implies\mathcal{Y}\right) = \frac{\operatorname{supp}\left(\mathcal{X}\cup\mathcal{Y}\right)}{\operatorname{supp}\left(\mathcal{X}\right)}$$

Q: What is the confidence of the rule $\{$ Milk, Diapers $\} \implies \{$ Beer $\}$?

TID	Bread	Milk	Diapers	Beer	Egg	Cola
1	1	1	0	0	0	0
2	1	0	1	1	1	0
3	0	1	1	1	0	1
4	1	1	1	1	0	0
5	1	1	1	0	0	1

- ullet The support of an itemset ${\mathcal X}$ is an indication of how frequently ${\mathcal X}$ in ${\mathcal T}$.
- Q: What can we interpret the confidence of a rule

$$\operatorname{conf}\left(\mathcal{X}\implies\mathcal{Y}\right) = \frac{\operatorname{supp}\left(\mathcal{X}\cup\mathcal{Y}\right)}{\operatorname{supp}\left(\mathcal{X}\right)}$$

- Of course, we wish to discover rules with high support and high confidence.
- Similar to hierarchical clustering in the sense that the number of rules satisfy

$$\operatorname{supp}(\mathcal{X} \cup \mathcal{Y}) \ge s_{min}$$
 and $\operatorname{conf}(\mathcal{X} \Longrightarrow \mathcal{Y}) \ge c_{min}$

decreases as s_{min} and c_{min} increases, just like the number of clusters and ${\bf d}.$

- A choice then can be made regarding the recommendations for customers once we have a set of rules with the highest support and confidence.
- ullet Association rule mining is about finding all rules achieve certain s_{min} or c_{min}
- A brutal force approach is NOT a good idea since it grows really quickly.

• We will have a lot of rules with only 6 items,

• In practice, when apply the support requirement, a lot of rules are out, e.g.

```
 \{ \  \, \text{Beer, Diapers} \,\} \implies \{ \  \, \text{Milk} \,\}, \, \{ \  \, \text{Milk} \,\} \implies \{ \  \, \text{Beer, Diapers} \,\}, \\ \{ \  \, \text{Diapers, Milk} \,\} \implies \{ \  \, \text{Beer} \,\}, \, \{ \  \, \text{Beer} \,\} \implies \{ \  \, \text{Diapers, Milk} \,\}, \\ \{ \  \, \text{Beer, Milk} \,\} \implies \{ \  \, \text{Diapers} \,\}, \, \{ \  \, \text{Diapers} \,\} \implies \{ \  \, \text{Beer, Milk} \,\},
```

all involve the same $\mathrm{supp}\,(\mathcal{X}\cup\mathcal{Y})$, where $\mathcal{X}\cup\mathcal{Y}=\{$ Milk, Diapers, Beer $\}$

- Hence a common strategy used by many association rule mining algorithms is to decompose the problem into the following sequential steps:
- 1. Frequent Itemset Generation

$$\operatorname{supp}\left(\mathcal{X}\cup\mathcal{Y}\right)\geq s_{min}$$

2. Strong Rule Generation

$$\operatorname{conf}\left(\mathcal{X}\implies\mathcal{Y}\right)\geq c_{min}$$

Notice the definition of support

$$\operatorname{supp}(\mathcal{X}) = \frac{|\{t_i \mid \mathcal{X} \subset t_i, t_i \in \mathcal{T}\}|}{|\mathcal{T}|}$$

ensures the following key inequality is true

$$\mathrm{supp}\left(\mathcal{X}\cup\mathcal{Y}\right)\leq\mathrm{supp}\left(\mathcal{X}\right)$$

ullet This means if $\{a,b\}$ is infrequent, then all the supersets are infrequent,

and if $\{c, d, e\}$ is frequent, then all the subsets are frequent.

1. This leads to the sub-steps in the Frequent Itemset Generation step in the

Apriori algorithm

- Roughly, this step consists of two iterative sub-steps:
- (a) Candidate generation
- (b) Candidate pruning
 - To give a high-level illustration, consider the following small dataset again

TID	Bread	Milk	Diapers	Beer	Egg	Cola
1	1	1	0	0	0	0
2	1	0	1	1	1	0
3	0	1	1	1	0	1
4	1	1	1	1	0	0
5	1	1	1	0	0	1

ullet Note we want to compute/check the support, however $|\mathcal{T}|$ is a constant and

$$\sigma(\mathcal{A}) = |\mathcal{T}| \cdot \operatorname{supp}(\mathcal{A}) = |\{t_i \mid \mathcal{A} \subset t_i, t_i \in \mathcal{T}| = \text{counts}\}$$

thus it is just a matter of converting this table in wide form into a long form.

(a) Candidate generation:

Generate all itemset A of size 1, that is |A| = 1,

Itemset	Count
Bread	4
Milk	4
Diapers	4
Beer	3
Egg	1
Cola	2

- \bullet Suppose $s_{min}=60\%$, which is equivalent to a minimum count equal to 3.
- (b) Candidate pruning:

Remove itemsets with a low count, that is, we left with ______

Itemset	Count
Bread	4
Milk	4
Diapers	4
Beer	3

• Next iteration, we repeat sub-step (a) and (b), but with itemset of A of size

$$|\mathcal{A}| = 2$$

Invoking the key inequality,

$$\mathrm{supp}\left(\mathcal{X}\cup\mathcal{Y}\right)\leq\mathrm{supp}\left(\mathcal{X}\right)$$

the relevant itemset are the ones that do not involve Egg or Cola

TID	Bread	Milk	Diapers	Beer	Egg	Cola
1	1	1	0	0	0	0
2	1	0	1	1	1	0
3	0	1	1	1	0	1
4	1	1	1	1	0	0
5	1	1	1	0	0	1

{ Bread, Milk }, { Bread, Diapers }, { Bread, Beer }, • Thus, we have { Milk, Diapers }, { Milk, Beer }, Diapers, Beer },

(a) Candidate generation:

Itemset	Count
Bread, Milk	3
Bread, Diapers	3
Bread, Beer	2
Milk, Diapers	3
Milk, Beer	2
Diapers, Beer	3

(b) Candidate pruning:

Itemset	Count
Bread, Milk	3
Bread, Diapers	3
Milk, Diapers	3
Diapers, Beer	3

Similarly, in the next iteration, we have

Itemset	Count
Bread, Milk, Diapers	3

• Notice every itemset of size 3 involving Beer is a superset of an infrequent itemset in the previous two iterations.

TID	Bread	Milk	Diapers	Beer	Egg	Cola	Itemset	Count
							Bread, Milk	3
1	1	1	0	0	0	0	Bread, Diapers	3
2	1	0	1	1	1	0	Bread, Beer	2
3	0	1	1	1	0	1	Milk, Diapers	3
4	1	1	1	1	0	0	Milk, Beer	2
5	1	1	1	0	0	1	Diapers, Beer	3

• In general, the candidate generation sub-step in Apriori algorithm merges a pair of itemsets of size (k-1) only if their first (k-2) items are idential.

Let

$$A = \{a_1, a_2, \dots, a_{k-1}\}$$
 and $B = \{b_1, b_2, \dots, b_{k-1}\}$

be a pair of frequent itemsets generated in the (k-1)th iteration.

• In the kth iteration, \mathcal{A} and \mathcal{B} are merged

$$\mathcal{A} \cup \mathcal{B}$$

to form an itemset of size k if the following conditions are satisfied

$$\begin{aligned} a_i &= b_i & \text{for} \quad i &= 1, 2, \dots, k-2 \\ a_{k-1} &= b_{k-1} \end{aligned}$$

- Iterating until no such pair of frequent itemsets exists, which is the end of
- 1. Frequent Itemset Generation
- (a) Candidate generation
- (b) Candidate pruning

• Now consider rule generation given a frequent itemset $\mathcal{A} = \mathcal{X} \cup \mathcal{Y}$ of size k

$$\operatorname{conf}(\mathcal{X} \implies \mathcal{Y}) \geq c_{min}$$

• For example, we have the following as one of the frequent itemsets

$$\mathcal{A} = \{$$
 Bread, Milk, Diapers $\}$

• There are six candidate association rules that can be generated from A:

```
{ Bread, Milk } \Longrightarrow { Diapers } 
{ Bread, Diapers } \Longrightarrow { Milk } 
{ Milk, Diapers } \Longrightarrow { Bread } 
{ Bread } \Longrightarrow { Milk, Diapers } 
{ Milk } \Longrightarrow { Bread, Diapers } 
{ Diapers } \Longrightarrow { Bread, Milk }
```

Q: How can we efficiently generate and prune rules given a frequent itemset?

 $\bullet \ \ \text{Note if a rule } \mathcal{C} \implies \mathcal{A} - \mathcal{C} \text{, where } \mathcal{C} \subset \mathcal{A} \text{, is low confidence rule, that is,}$

$$\operatorname{conf}\left(\mathcal{C} \implies \mathcal{A} - \mathcal{C}\right) < c_{min}$$

then any rule $\mathcal{C}^*\implies \mathcal{A}-\mathcal{C}^*$, where $\mathcal{C}^*\subset\mathcal{C}$, is also low confident,

$$\operatorname{conf}\left(\mathcal{C}^{*} \implies \mathcal{A} - \mathcal{C}^{*}\right) < c_{min}$$

This is clear from the definition of

$$\begin{split} & \operatorname{conf}\left(\mathcal{C} \implies \mathcal{A} - \mathcal{C}\right) = \quad \frac{\operatorname{supp}\left(\mathcal{C} \cup \left(\mathcal{A} - \mathcal{C}\right)\right)}{\operatorname{supp}\left(\mathcal{C}\right)} = \frac{\operatorname{supp}\left(\mathcal{A}\right)}{\operatorname{supp}\left(\mathcal{C}\right)} \\ & \operatorname{conf}\left(\mathcal{C}^* \implies \mathcal{A} - \mathcal{C}^*\right) = \frac{\operatorname{supp}\left(\mathcal{C}^* \cup \left(\mathcal{A} - \mathcal{C}^*\right)\right)}{\operatorname{supp}\left(\mathcal{C}^*\right)} = \frac{\operatorname{supp}\left(\mathcal{A}\right)}{\operatorname{supp}\left(\mathcal{C}^*\right)} \end{split}$$

Since $C^* \subset C$, we have

$$\operatorname{supp}(\mathcal{C}^*) > \operatorname{supp}(\mathcal{C})$$

ullet Thus we should start with the largest possible ${\mathcal C}$ for a given frequent itemset,

and precede to the next level only if both rules satisfy

$$\frac{\operatorname{conf}\left(\mathcal{C}_{1} \implies \mathcal{A} - \mathcal{C}_{1}\right) < c_{min}}{\operatorname{conf}\left(\mathcal{C}_{2} \implies \mathcal{A} - \mathcal{C}_{2}\right) < c_{min}} \implies \operatorname{conf}\left(\mathcal{C}_{1} \cap \mathcal{C}_{2} \implies \mathcal{A} - \mathcal{C}_{1} \cap \mathcal{C}_{2}\right)$$

• Rules from 2 itemsets are not related, so are generated and pruned separately