# **Batch Whitening**

## **Batch Whitening**

- Given B samples of a random vector  $X \in \mathbb{R}^d$  with covariance  $\Sigma_X$ , generate  $Y \in \mathbb{R}^d$  s.t.  $\Sigma_Y = I_d$
- Common methods:
  - ZCA whitening
  - Choleski Decomposition
  - Eigen decomposition

•

## Using Choleski

- Compute  $\Sigma_{x} = \frac{1}{B-1} \sum_{i=1}^{B} (x_{i} \bar{x})(x_{i} \bar{x})^{T}$
- Using Choleski, find L s.t.  $\Sigma_X = L \cdot L^T$ 
  - L is lower triangular
- Compute  $L^{-1}$
- Whiten by:  $y_i = L^{-1}(x_i \bar{x})^T$

## Layer implementation

- Adding  $\gamma$ ,  $\beta$ 
  - Start with  $\beta = 0$  split from the batch whitening itself
- Use running\_cov and running\_mean during training
- Consider maintaining running\_S (=L<sup>-1</sup>)

#### **Efficient Net**



- 3 blocks/layers to handle
  - Conv\_stem
  - MBConv
  - Proj\_conv

#### **EfficientNet**



- ConvStem 2 options
  - Type 1 (left branch) no BW. as in original topology
  - Type 2 (right branch) with BW



#### **EfficientNet**



• MBConv – 3 options



B- 128 700 3-1321/72 N-> 568 BW M/1/2



### **EfficientNet**

MBConr6 (3x3, 320, 1, 1) Convolution (1280 1x1, 0, 1) MBConv1 (3x3, 16, 1, 1) MBConv6 (5x5, 40, 2, 2) MBConv6 (3x3, 80, 2, 3) (32 3x3, 0, 2) 224x224x3 MBConv6 (3x3, 24, 2, 2 MBConv6 (5x5, 112, 1, 3 MBConv6 (5x5, 192, 2, Pooling & Fully Connected layers Input Image

Conv head

Conv\_heed

[P]
[NX]
[SW]

## Hyper parameter sweep

- Start on tiny imagenet
  - Mbconv block type {1,2,3}
  - Conv stem block type {1,2}
  - Define set of other potentially relevant hyperparms
  - Perform random search

• Try most successful combinations on imagenet