ОРГАНИЗАЦИЯ ПРОЦЕССОВ И ПРОГРАММИРОВАНИЕ В СРЕДЕ LINUX

Цели и задачи дисциплины

Целью курса является изучение внутренней организации операционной системы Linux и программного интерфейса, обеспечивающего управление, взаимодействие и синхронизацию процессов.

В результате изучения дисциплины студенты должны:

• Знать:

- внутреннюю организацию операционной системы Linux, модели работы ее отдельных подсистем,
- способы организации взаимодействия процессов в пределах одной вычислительной системы.
- современные технологии разработки системного программного обеспечения (ПО) и прикладных программ с использованием обращений к системным компонентам операционной системы Linux.

Уметь:

 проектировать, разрабатывать и отлаживать программы на языке С/С++, в которых используются системные вызовы, обеспечивающие порождение, взаимодействие и синхронизацию процессов

• Владеть

практическими навыками самостоятельного работы в среде Linux.

Виды занятий и контроля

Лекции	34	Ч
Лабораторные занятия	34	Ч
Аудиторные занятия	68	Ч
Самостоятельная работа	64	Ч
Всего часов	132	Ч

Диф. зачет	7	сем.
Тестирование		

Лабораторные работы

№	Темы лабораторных работ	Задания	Баллы	Срок сдачи
1	Установка и настройка ОС Ubuntu.	1.1	5	2 нед
2	Управление пользователями и мониторинг работы ОС Ubuntu	2.1		
3	Создание и идентификация процессов	3.1	5	3 нед
4	Управление потоками	4.1	4	4 нед
		4.2	5	
5	Обработка сигналов	5.1	5	5 нед
6	Организация периодических процессов	6.1	8	7 нед
		6.2	10	
7	Обмен данными через канал	7.1	8	9 нед
		7.2	10	
8	Взаимодействие процессов на основе сообщений	8.1	8	11 нед
		8.2	10	
9	Обмен данными через разделяемую память	9.1	10	13 нед
		9.2	8	
10	Синхронизация процессов с помощью семафоров	10.1	8	15 нед
		10.2	10	
11	Взаимодействие процессов через сокеты	11.1	8	17 нед
		11.2	9	
		11.3	10	
	ИТОГО		67/80	

Тестирование (экзамен)

Тестирование проводится в конце семестра. Необходимо ответить на 20 вопросов. За каждый правильный ответ на вопрос 1 балл. Правильным ответом считается выбор всех возможных правильных ответов из предложенных.

No	Вопрос	Варианты	Проверяемое
		ответа	знание,
			умение, навык
1.	С помощью каких	ps	Знание
	команд можно	top	команд
	просмотреть список	man	мониторинга
	запущенных процессов	cd	процессов
		sudo	

Итоговая оценка определяется по сумме баллов за лабораторные работы и тестирование

Больше 95 баллов – оценка 5

Больше 85 баллов – оценка 4

75-85 баллов – оценка 3

Литература

- 1. Роберт Лав, Разработка ядра Linux. Системное программирование"2008.
- 2. Колисниченко, Д. Н. Linux: полное руководство 2007. 777 с.
- 3. Бендел, Дэвид. Использование Linux. M. 2011. 783 с.
- 4. Немет, Эви. Руководство администратора Linux M. 2011. 876 с.
- 5. Вахалия, Юреш. UNIX изнутри М. 2003. 843 с.
- 6. http://scanlibs.com/linux-sistemnoe-programmirovanie-2-e-izdanie/ Linux. Системное программирование.
- 7. http://rus-linux.net/MyLDP/BOOKS/Linux_Foundations/toc.html Фундаментальные основы Linux.
- 8. http://www.linuxlib.ru/kuznetsov/glava_23.html Взаимодействие процессов
- 9.https://codernet.ru/books/linux/programmirovanie_v_linux_samouchitel/
- Программирование в Linux. Самоучитель. Иванов Н. Н
- 10. http://www.redov.ru/kompyutery_i_internet/osnovy_programmirovanija_v_linux/p5.php Основы программирования в Linux
- 11. Г.В.Разумовский. Организация процессов и программирование в среде Linux. Учебн.-метод. пособие. Изд-во СПбГЭТУ «ЛЭТИ», 2018.

OC UNIX II LINUX

- 1971 г. UNIX корпорации Bell Labs
- 1981 г. BSD University of California at Berkeley
- 1982 г. System V корпорация AT&T
- 1991 г. LINUX Линус Торвальдс
- Linux— это не Unix (в Linux реализован
- API OC Unix по стандарту POSIX)

Разновидности Linux

- разработчик приложений вынужден поддерживать все дистрибутивы Linux, что требует существенных затрат на сопровождение и поддержку программного обеспечения;
- ограничивает возможности пользователя по выбору операционной системы, сужает круг доступных ему приложений;
- снижает конкурентоспособность дистрибутивов Linux на фоне других систем.

Стандарт Linux

Документ, определяющий стандарт ОС Linux — Linux Standards Base (LSB), который можно найти на Web-сайтах http://mvw.linuxbase.org или http://www.linux-foundation.org/en/LSB.

Список дистрибутивов, прошедших сертификацию, можно найти по адресу http://www.linux-foundation.org/en/Products.

Разделы стандарта LSB

Раздел Core:

- базовые требования;
- требования к формату исполнимых файлов;
- требования к базовому бинарному интерфейсу;
- требования к командам и утилитам;
- требования к устройству файловой системы;
- требования к процессу инициализации;
- требования к пользователям и группам;
- требования к инсталляции программного обеспечения.

Раздел С++:

- представление C++ данных;
- правила преобразования идентификаторов;
- бинарный интерфейс базовых библиотек.

Раздел Desktop:

- графические библиотеки (libX11, libSM, libICE, libXt, libXext, libXi);
- библиотеки OpenGL (libGL);
- библиотеки PNG (libpng12);
- библиотеки JPEG (libjpeg);
- библиотеки конфигурирования шрифтов (libfontconfig);
- библиотеки семейства GTK+ (libglib-2.0, libgobject-2.0, libgmodule-2.0, libatk-1.0, libpango-1.0);
- библиотека Qt3 (libqt-mt);
- библиотека XML2 (libxml2).

Установка Linux

Русский сайт Linux Ubuntu http://ubuntu.ru/

Установка Linux Ubuntu на виртуальную машину VirtualBox

- http://white55.ru/vboxubuntu.html
- http://www.youtube.com/watch?v=levQyUFpeEY

Установка Linux Ubuntu на компьютер с установленным Windows

- http://hobbyjobby.org.ua/linux/kak-ustanovit-linuxubuntu-na-kompyuter-s-ustanovlennoj-windows.html
- http://pingvinus.ru/note/ubuntu-install

Установка Linux Ubuntu вместо Windows

- http://vse-sekrety.ru/698-kak-ustanovit-linux.html
- http://help.ubuntu.ru

Виртуальная машина Oracle VM VirtualBox

Рабочий стол Ubuntu

Среды разработки программ Unbutu

Текстовый редактор Geany

Руководство по Geany http://www.geany.org/manual/current/index.html

Команды терминала

Открытие терминала Ctrl+Alt+T

- <u>Администрирование.</u>
- man (команда) Выдаст полное описание данной команды (help). clear Очищает все содержимое текущего окна терминала. sudo passwd root Смена пароля главного пользователя. sudo -s Работаем под root пользователем. exit Выходим из режима супер пользователя root. ps (или) top Информация о процессах всей системы. kill (номер процесса) Убиваем процесс. uname -r Вывод имени текущего ядра. uname -a Информация о системе.
- Работа с каталогами.
- <u>Работа с файлами.</u>

Более подробную информацию можно найти http://linuxsoid.com/blog/komandy_terminala_v_ubuntu_chast_i/2014-01-23-38

Запуск программы

./Имя программы параметр1 параметр2

Мониторинг средствами команды top или приложения Htop (динамический снимок процессов)

top - 16:54:41 up 5:12, 2 users, load average: 0.75, 0.77, 0.35
Tasks: 116 total, 1 running, 115 sleeping, 0 stopped, 0 zombie
Cpu(s): 5.3%us, 2.7%sy, 0.0%ni, 91.7%id, 0.3%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 775540k total, 758548k used, 16992k free, 13920k buffers
Swap: 787144k total, 34724k used, 752420k free, 443552k cached

PID	USER	PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	COMMAND
6938	funalien	15	0	70012	29m	18m	S	4.0	3.9	10:40.43	ktorrent
5375	root	15	Θ	79060	55m	6616	S	2.3	7.3	4:45.84	Xorg
7869	funalien	15	Θ	30400	15m	13m	S	1.0	2.0	0:00.99	ksnapshot
5600	funalien	18	Θ	15252	9700	4528	S	0.3	1.3	0:19.03	pypanel
5605	funalien	15	Θ	9704	3592	2968	S	0.3	0.5	1:20.99	conky
7802	funalien	15	Θ	228m	75m	23m	S	0.3	9.9	0:36.56	firefox-bin
1	root	15	Θ	2952	1852	532	S	0.0	0.2	0:01.33	init
2	root	11	-5	0	0	0	S	0.0	0.0	0:00.00	kthreadd
3	root	RT	-5	0	0	0	S	0.0	0.0	0:00.00	migration/0
4	root	34	19	0	Θ	0	S	0.0	0.0	0:00.10	ksoftirqd/0
5	root	RT	-5	0	0	0	S	0.0	0.0	0:00.00	watchdog/0
6	root	10	- 5	0	0	0	S	0.0	0.0	0:00.16	events/0
7	root	10	-5	Θ	Θ	Θ	S	0.0	0.0	0:00.00	khelper
26	root	12	-5	Θ	Θ	0	S	0.0	0.0	0:00.00	kblockd/0
27	root	20	-5	Θ	Θ	Θ	S	0.0	0.0	0:00.00	kacpid
28	root	20	- 5	0	0	0	S	0.0	0.0	0:00.00	kacpi notify
108	root	10	-5	Θ	0	0	S	0.0	0.0	0:00.00	kseriod

PID — идентификатор процесса **USERNAME** — пользователь, от которого запущен процесс

PRI — текущий приоритет процесса **NICE** — приоритет, выставленный

командой nice. От -20 (наивысший) до 19.

VIRT — виртуальный размер процесса (данные, стек и т. д.) в килобайтах или мегабайтах

RES — размер оперативной памяти

SHR — размер разделяемой памяти

STATE — текущее состояние («START», «RUN», «SLEEP», «STOP», «ZOMB», «WAIT» или «LOCK»)

%CPU - процент использования центрального процессора

%МЕМ - процент использования оперативной памяти

TIME — время использования процессора в секундах

COMMAND — название команды, под которой работает процесс.

Управление выводом команды top

Клавиши:

- t Включение и выключение выдачи на экран суммарных данных.
- **m** Включение и выключение выдачи на экран информации об использовании памяти.
- **A** Сортировка строк по максимальному потреблению различных системных ресурсов.
- **f** Вход в меню интерактивного конфигурирования данных, выдаваемых на экран командой top.
- o адавать порядок строк, выдаваемой командой top.
- **r** Изменение приоритета процессов с помощью команды renice.
- **k** Удаление процесса с помощью команды kill.
- Z Переключение между цветным / монохромным вариантом выдачи изображения.
- **n** Изменить число отображаемых процессов.
- **u** Сортировать по имени пользователя.
- **М** Сортировать по объёму используемой памяти.
- **Р** Сортировать по загрузке процессора.
- **q** Завершение команды.

Разновидности команды ps

Вывод списка всех процессов:

ps -Al ps -AlF ps -ax ps -axu

Отображение потоков:

ps –AlFH **ps** –AlLm

Вывод дерева процессов:

ps -ejH ps axjf

Вывод процессов, запущенных пользователем:

ps -U User -u User u

Использование памяти:

free

Вывод информации о параметрах безопасности:

ps -eo euser, ruser, suser, fuser, f, comm, label ps axZ ps -eM

Мониторинг средствами команды ps (статический снимок процессов)

	8	o gen	a@ger	na-Virtu	alE	ox: ~							
ge	gena@gena-VirtualBox:~\$ ps -Al												
F	S	UID	PID	PPID	C	PRI	NI	ADD	R SZ	WCHAN	TTY	TIME	CMD
4	S	0	1	0	1	80	0		979	poll_s	?	00:00:06	init
1	S	0	2	0	0	80	0		0	kthrea	?	00:00:00	kthreadd
1	S	0	3	2	0	80	0		0	smpboo	?	00:00:00	ksoftirqd/0
1	S	0	4	2	0	80	0		0	worker	?	00:00:00	kworker/0:0
1	S	0	5	2	0	60	-20		0	worker	?	00:00:00	kworker/0:0H
1	S	0	7	2	0	-40			0	smpboo	?	00:00:00	migration/0
1	S	0	8	2	0	80	0		0	rcu_gp	?	00:00:00	rcu_bh
1	S	0	9	2	0	80	0		0	rcu_gp	?	00:00:02	rcu_sched
5	S	0	10	2	0	-40			0	smpboo	?	00:00:00	watchdog/0
1	S	0	11	2	0	60	-20		0	rescue	?	00:00:00	khelper
5	S	0	12	2	0	80	0		0	devtmp	?	00:00:00	kdevtmpfs
1	S	0	13	2	0	60	-20		0	rescue	?	00:00:00	netns
1	S	0	14	2	0	60	-20		0	rescue	?	00:00:00	writeback
1	S	0	15	2	0	60	-20		0	rescue	?	00:00:00	kintegrityd
1	S	0	16	2	0	60	-20		0	rescue	?	00:00:00	bioset
1	S	0	18	2	0	60	-20		0	rescue	?	00:00:00	kblockd
1	S	0	19	2	0	60	-20		0	rescue	?	00:00:00	ata_sff
1	S	0	20	2	0	80	0		0	hub_th	?	00:00:00	khubd
1	S	0	21	2	0	60	-20		0	rescue	?	00:00:00	md
1	S	0	22	2	0	60	-20		0	rescue	?	00:00:00	devfreq_wq
1	S	0	24	2	0	80	0		0	watchd	?	00:00:00	khungtaskd
1	S	0	25	2	0	80	0	-	0	kswapd	?	00:00:00	kswapd0

F	Флаги (сведения о процессе)
S (l)	Статус процесса.
UID	Идентификатор владельца процесса.
PID	Идентификатор процесса.
PPID	Идентификатор рдительского процесс
C	Доля выделенного планировщиком времени ЦП.
STIME	Время запуска процесса.
PRI	Приоритет процесса.
NI	Поправка к приоритету.
ADDR	Адрес процесса в памяти.
SZ	Размер (в блоках) образа процесса в памяти.
VCHAN	Адрес события, которого ожидает процесс.
TTY	Управляющий терминал.
TIME	Истраченное процессом время ЦП.

COMMAND Имя программы.

Значение параметров F и S

- **F** Флаги (шестнадцатеричные), логическая сумма которых дает следующие сведения о процессе:
 - 00 Процесс терминирован; элемент таблицы процессов свободен.
 - 01 Системный процесс: всегда в основной памяти.
 - 02 Процесс трассируется родительским процессом.
 - О4 Родительский трассировочный сигнал остановил процесс; родительский процесс ждет.
 - 08 Процесс не может быть разбужен сигналом.
 - 10 Процесс в основной памяти.
 - 20 Процесс в основной памяти; блокирован до завершения события.
 - 40 Идет сигнал к удаленной системе.
 - 80 Процесс в очереди на ввод/вывод.
- **S** Статус процесса:
 - О Активный: обрабатывается процессором.
 - S Спящий: ожидает завершения события.
 - R Готов: стоит в очереди на выполнение.
 - I Рождающийся: процесс создается.
 - Z Состояние "зомби": процесс завершен, но родительский процесс не ждет этого.
 - T Трассируемый: процесс остановлен сигналом, так как родительский процесс трассирует его.
 - Х Растущий: процесс ожидает получения большего объема основной памяти.

Диспетчер задач (gnome-system-monitor)

Учетная запись пользователя

Учетная запись — совокупность данных о пользователе, необходимая для его опознавания (аутентификации) и предоставления доступа к его личным данным и настройкам (хранится /etc/passwd).

Параметры учетной записи:

- Системное имя (user name)
- Идентификатор пользователя (UID)
- Идентификатор группы (GID)
- Полное имя (full name)
- Домашний каталог (home directory)
- Начальная оболочка (login shell)

Пароли хранятся в файле /etc/shadow

Управление пользователями

Добавления (удаления) учетной записи sudo adduser username sudo deluser username Просмотр текущего статуса учетной записи sudo chage -l username Создание (удаление) группы sudo addgroup groupname sudo delgroup groupname Добавление пользователя в группу sudo adduser username groupname

Приложение «Пользователи и группы»

Создание общей папки

- 1. Прописать общую папку Windows в VirtualBox.
- 2. Установить дополнение гостевой ОС (Ubuntu).
- 3. Создать ссылку на виртуальный диск.
- 4. Создать общую папку в Ubuntu.
- 5. Смонтировать виртуальный диск.

Настройка общей папки в VirtualBox

Установка дополнений

Команды настройки общей папки

Создание ссылки на виртуальный диск sudo In -s /opt/VBoxGuestAdditions-4.3.10/lib/VBoxGuestAdditions /usr/lib/VBoxGuestAdditions

Будет создан файл-ссылка /sbin/mount.vboxsf на /usr/lib/VBoxGuestAdditions/mount.vboxsf Монтирование виртуального диска sudo mount -t vboxsf share /home/gena/Win

Лабораторные работы 1 и 2

- УПРАВЛЕНИЕ ПОЛЬЗОВАТЕЛЯМИ И МОНИТОРИНГ РАБОТЫ ОС UBUNTU

Защита лабораторных работ, начиная с 3, по скайпу Gennadiy Razumovskiy Вопросы по почте g.razumovsky@mail.ru