Statistical Arbitrage Using Limit-Order Book Imbalance

Anton Rubisov

University of Toronto

17 September 2015

Arbitrage with Order Imbalance

Anton Rubisov

Roadmap

Information

Exploratory Data Analysis

Arbitrage with Order Imbalance

Anton Rubisov

Roadma

Information

Exploratory Data Analysis

Background Information

Exploratory Data Analysis

Modelling Imbalance

Order Imbalance

Anton Rubisov

Roadmap

Background nformation

Exploratory Data

Next, consider a two-dimensional CTMC Z(t) that jointly models imbalance bin $\rho(t)$ and price change $\Delta S(t)$, where

$$\rho(t) \in \{1, 2, \dots, \#_{\mathsf{bins}}\}$$

is the bin corresponding to imbalance averaged over the interval $[t-\Delta t_I,t]$, and

$$\Delta S(t) = \operatorname{sgn}(S(t + \Delta t_S) - S(t)) \in \{-1, 0, 1\}$$

is the sign of the change in midprice of the future time interval Δt_S .

 $\rho(t)$ is the imbalance bin of the time-weighted average of I(t) over this past interval.

 $\Delta S(t)$ is the sign of the midprice change over this future interval.

time $t - \Delta t_I \qquad t \qquad t + \Delta t_S$

Roadmap

Background
Information

Exploratory Data

Using MLE, we obtain a generator matrix \mathbf{G} for the CTMC. The transition matrix over a step of size Δt_l is given by

$$\mathbf{P}(\Delta t_I) = e^{\mathbf{G}\Delta t_I}$$

called our one-step transition probability matrix. Matrix entries $p_{ij}(\Delta t_l)$ give the probability of transition from one (imbalance, price change) pair to another over the time interval Δt_l . This can be written semantically as

$$P_{ij} = \mathbb{P}\left[\varphi(\rho_{\mathsf{curr}}, \Delta S_{\mathsf{future}}) = j \mid \varphi(\rho_{\mathsf{prev}}, \Delta S_{\mathsf{curr}}) = i\right]$$

Anton Rubisov

Roadmap

Background

Exploratory Data Analysis

Using Bayes' Rule, we can transform the ${\bf P}$ matrix to

$$\mathbb{P}\left[\Delta S_{\mathsf{future}} = j \mid B, \rho_{\mathsf{curr}} = i\right] = \frac{\mathbb{P}\left[\rho_{\mathsf{curr}} = i, \Delta S_{\mathsf{future}} = j \mid B\right]}{\mathbb{P}\left[\rho_{\mathsf{curr}} = i \mid B\right]}$$

This allows us to predict future price moves.

We'll call the collection of these probabilities the **Q** matrix.

Predicting Future Price Change

				Anton Rubisov
				Roadmap
_	$\Delta S_{ m curr} < 0$)	$\Delta S_{curr} = 0$	$\Delta S_{\rm curr}$

2 3 $\rho_{curr} = 1$ 2 3 1

$$\Delta S_{
m future} < 0$$
 $ho_{
m prev} = 1$ **0.53** 0.15 0.12 $ho_{
m prev} = 2$ 0.10 **0.58** 0.14

0.08

0.41

0.79

0.79

0.06

 $\rho_{\mathsf{prev}} = 3$

 $\rho_{\mathsf{prev}} = 1$

 $\rho_{\mathsf{prev}} = 2$

 $\rho_{\mathsf{prev}} = 3$

 $\Delta S_{\text{future}} > 0$ $ho_{\mathsf{prev}} = 1$

 $\Delta S_{\text{future}} = 0$

0.75

0.36

0.74

0.10

0.78

0.71

0.40

0.09

0.05

0.07

0.09

0.91

0.83

0.81

0.04

0.10

0.04

0.06

0.84

0.92

0.83

0.06

0.14

0.10

0.03

0.79

0.82

0.91

0.07

0.08

0.13

0.11

0.42

0.75

0.70

0.50

 $\Delta S_{\rm curr} >$

0.13

0.06

0.10

0.79

0.37

0.76

0.09

Trading Strategies Informed by the **Q** Matrix

Arbitrage with Order Imbalance

Anton Rubisov

Roadmap

Informat

Exploratory Data Analysis

Naive Use market orders to buy (sell) if price is predicted to move up (down).

Naive+ Post at-the-touch limit orders when zero price change is predicted.

ive++ Post a limit order to buy (sell) is price is predicted to move up (down).

Need to select:

- ightharpoonup price change observation period Δt_S
- ightharpoonup imbalance averaging period Δt_I
- ▶ number of imbalance bins $\#_{bins}$

Calibration done on the first day of the trading year, same parameters used for all days.

Brute-force search of parameter space, using max Sharpe ratio criterion, found that $\Delta t_S = \Delta t_I = 1 sec$, and $\#_{bins} = 4$

Results of Naive Trading Strategies

Conclusions from Naive Trading Strategies

Arbitrage with Order Imbalance

Anton Rubisov

Roadmap

Informa

Exploratory Data Analysis

Why is the Naive strategy producing, on average, normalized losses?

- Backtest is out-of-sample; evidence to reject time-homogeneity
- Calibration is done on first trading day; likely nonrepresentative of trading activity
- Price change probability matrix \mathbf{Q} obtained using midprices, ignoring bid-ask spread; $\mathrm{sgn}(\Delta S)$ may be insufficient for create profit, especially on FARO

Conclusions from Naive Trading Strategies

Arbitrage with Order Imbalance

Anton Rubisov

Roadmap

Background Information

Exploratory Data Analysis

Why do the Naive+ and Naive++ strategies outperform the Naive strategy?

- LOs vs MOs means different transaction price is being used (only MO loses value)
- Naive only executes when predicting non-zero price change
 - Only sign, not magnitude
 - Only if one was already seen