Ant System: Application to TSP

Stone Mele: u0897718

Motivation:

- Failed ant keeper
 - Virtual ants > Real Ants
- Inspired by real life biological ants
 - Ants = Mostly Blind
 - No method of visual communication
 - Pheromones!
 - Ants have been around since dinosaurs
 - Span every continent besides "Ant"arctica!
- Unique, and interesting approach

Origin:

- First presented by:
 - Marco Dorigo, Victor Maniezzo, Alberto Colorni
 - o 1996
 - The Ant System: Optimization by a colony of cooperating agents
 - Implementation based on this.

Method Overview (Example):

- T=0
 - No pheromones.
 - Randomly traveling.
 - Both sides.
- T=1
 - 2x pheromone levels at B.
 - Influence movements towards B.
- How to represent?

Implementation/Representation

- N cities/locations
- N*N edges
- Graph data structure obvious choice
- K "ant" agents
- Each edge contains:
 - Pheromone at time t
 - o Distance from node i to j

Implementation/Representation:

Probabilistic Edge Choice:

- \circ τ : pheromone on edge i,j
- \circ α : parameter defining contribution of pheromone
- \circ β : parameter defining contribution of inverse distance.
- η: 1/d inverse of distance of edge i,j
- Only search edges we haven't used yet. (TSP)
- Series of probabilities that sum to 1.
- Use probability distribution to choose next edge.

$$p_{ij}^{k}(t) = \begin{cases} \frac{\left[\tau_{ij}(t)\right]^{\alpha} \cdot \left[\eta_{ij}\right]^{\beta}}{\sum\limits_{k \in allowed_{k}} \left[\tau_{ik}(t)\right]^{\alpha} \cdot \left[\eta_{ik}\right]^{\beta}} & \text{if } j \in allowed_{k} \\ 0 & \text{otherwise} \end{cases}$$

Implementation/Representation:

Pheromone Update

- Only update per cycle. (t+n)
- \circ p: parameter representing evaporation rate. (0-1)
- Q: parameter controlling amount of pheromone deposited
- L: represents the length of the tour that "ant" agent k took between time t to t+n.

$$\tau_{ij}(t+n)=\rho\cdot\tau_{ij}(t)+\Delta\tau_{ij}$$

$$\Delta \tau_{ij} = \sum_{k=1}^{m} \Delta \tau_{ij}^{k}$$

$$\Delta \tau_{ij}^k = \begin{cases} \frac{Q}{L_k} & \text{if } k \text{ - th ant uses edge }(i,j) \text{ in its tour (between time t and } t+n) \\ 0 & \text{otherwise} \end{cases}$$

• Costly edges disappear

Oliver30

Conclusion

- Very unique, and interesting algorithm
- Biological inspiration
- Shed light on different types of optimization algorithm
- Converges quickly
- Versatile
- A Lot of parameters to mess with!

Questions?