Digital Logic Design

Sequential Logic Circuits

Latches and Flip flops

Digital Logic Design (ECE 1003)

Dr. Mohan Bansal Sr. Assistant Professor

307H AB-2 School of Electronics VIT-AP University

Summer Online Course

Digital Logic Design

Sequential Logic Circuits

Latches and Flip flops

Sequential Logic Circuit Design Module III

Combinational Circuits (Recall)

Digital Logic Design

Sequential Logic Circuits

- Logic circuits for digital systems may be combinational or sequential.
- A combinational circuit consists of input variables, logic gates, and output variables.
- Present output depends only on the the present input.
- There is no memory and feedback in combinational circuits.

Block Diagram of Combinational Circuit

Digital Logic Design

Sequential Logic Circuits

Flip flops

 A sequential logic circuit consists of a combinational circuit and a memory element.

Digital Logic Design

Sequential Logic Circuits

Sequential Logic Circuit

- A sequential logic circuit consists of a combinational circuit and a memory element.
- Present output depends on the the present input and past output.

Digital Logic Design

Sequential Logic Circuits

- A sequential logic circuit consists of a combinational circuit and a memory element.
- Present output depends on the the present input and past output.
- There is a memory and feedback path in the sequential circuits.

Digital Logic Design

Sequential Logic Circuits

- A sequential logic circuit consists of a combinational circuit and a memory element.
- Present output depends on the the present input and past output.
- There is a memory and feedback path in the sequential circuits.
- The sequential circuit is capable to store the binary information. 4 D > 4 B > 4 B > 4 B > 9 Q P

Digital Logic Design

Sequential Logic Circuits

Synchronous Seq. Circuit Asynch	ronous Seq. Circuit
---------------------------------	---------------------

Digital Logic Design

Sequential Logic Circuits

Synchronous Seq. Circuit	Asynchronous Seq. Circuit
1. A clocked flip flop act as a memory element	2. An unclocked flip flop act as a memory element

Digital Logic Design

Sequential Logic Circuits

Synchronous Seq. Circuit	Asynchronous Seq. Circuit
1. A clocked flip flop act as a memory element	2. An unclocked flip flop act as a memory element
2. It is slower due to clock	3. Faster as clock is not present

Digital Logic Design

Sequential Logic Circuits

Synchronous Seq. Circuit	Asynchronous Seq. Circuit
1. A clocked flip flop act as a memory element	2. An unclocked flip flop act as a memory element
2. It is slower due to clock	3. Faster as clock is not present
3. The output of the circuit is affected only at the active edge of clock.	4. The output of these circuits may change at any instant as soon as input is changed.

Digital Logic Design

Sequential Logic Circuits

Flip flops

Synchronous Seq. Circuit	Asynchronous Seq. Circuit
A clocked flip flop act as a memory element	2. An unclocked flip flop act as a memory element
2. It is slower due to clock	3. Faster as clock is not present
3. The output of the circuit is affected only at the active edge of clock.	4. The output of these circuits may change at any instant as soon as input is changed.
4. Flip flops are used in synchronous sequential circuits	5. Latches are used in the asynchronous sequential circuits.

Digital Logic Design

Sequential Logic Circuits

Latches and Flip flops Latches and flip flops are the basic elements and these are used to store information.

Digital Logic Design

Sequential Logic Circuit

- Latches and flip flops are the basic elements and these are used to store information.
- \blacksquare Latches and FF consists with two outputs Q and $\bar{Q},$ which is complement to each other.

Digital Logic Design

Sequential Logic Circuit

- Latches and flip flops are the basic elements and these are used to store information.
- Latches and FF consists with two outputs Q and \bar{Q} , which is complement to each other.
- One flip flop or one latch can store one bit of data.

Digital Logic Design

Sequential Logic Circuit

- Latches and flip flops are the basic elements and these are used to store information.
- Latches and FF consists with two outputs Q and \bar{Q} , which is complement to each other.
- One flip flop or one latch can store one bit of data.
- Flip flop is edge triggered and the latch is the level triggered or untriggered.

Digital Logic Design

Sequential Logic Circuit

- Latches and flip flops are the basic elements and these are used to store information.
- Latches and FF consists with two outputs Q and \bar{Q} , which is complement to each other.
- One flip flop or one latch can store one bit of data.
- Flip flop is edge triggered and the latch is the level triggered or untriggered.
- A latch checks input continuously and changes the output whenever there is a change in input.

Digital Logic Design

Sequential Logic Circuit

- Latches and flip flops are the basic elements and these are used to store information.
- Latches and FF consists with two outputs Q and \bar{Q} , which is complement to each other.
- One flip flop or one latch can store one bit of data.
- Flip flop is edge triggered and the latch is the level triggered or untriggered.
- A latch checks input continuously and changes the output whenever there is a change in input.
- But, the flip flop is a combination of latch and clock that continuously checks input and changes the output time adjusted by the clock.

Edge Triggering

Digital Logic Design

Sequential Logic Circuits

Edge Triggering

Digital Logic Design

Sequential Logic Circuits

Digital Logic Design

Sequential Logic Circuits

Level Triggering

Digital Logic Design

Sequential Logic Circuits

Latches and Flip flops

Triggers on low clock level

Timing diagram of flip flop $\left(Q=D\right)$

Digital Logic Design

Sequential Logic Circuits

Latches and Flip flops

Figure: Timing diagram of Flip flop

From the timing diagram it is clear that the output Q changes only at the positive edge of the clock.

Timing diagram of flip flop (Q = D)

Digital Logic Design

Sequential Logic Circuits

Figure: Timing diagram of Flip flop

- From the timing diagram it is clear that the output Q changes only at the positive edge of the clock.
- At each positive edge the output Q becomes equal to the input D at that instant and this value of Q is held until the next positive edge

Digital Logic Design

Sequential Logic Circuits

Latches and Flip flops

Figure: Timing diagram of Latch

A latch checks input continuously and changes the output whenever there is a change in input (Untriggered latch).

Digital Logic Design

Sequential Logic Circuits

Figure: Timing diagram of Latch

- A latch checks input continuously and changes the output whenever there is a change in input (Untriggered latch) .
- From the timing diagram it is clear that the output Q changes at the positive level of the clock (Level triggered).

Digital Logic Design

Sequential Logic Circuit

Figure: Timing diagram of Latch

- A latch checks input continuously and changes the output whenever there is a change in input (Untriggered latch) .
- From the timing diagram it is clear that the output Q changes at the positive level of the clock (Level triggered).
- When clock is high, output Q will be equal to input D.

Digital Logic Design

Sequential Logic Circuit

Figure: Timing diagram of Latch

- A latch checks input continuously and changes the output whenever there is a change in input (Untriggered latch) .
- From the timing diagram it is clear that the output Q changes at the positive level of the clock (Level triggered).
- lacksquare When clock is high, output Q will be equal to input D.
- When clock is low, the output Q will be the last value of the output till next positive clock.