

Lecture Outline

- Flip-flops
 - Initializing contents
 - Different types of flip-flops
- Registers
 - Serial
 - Parallel
- Register File
 - Addressing
- Lab Exercise 3

D Latch and Flip-Flops

Level triggered

Level sensitive

Negative edge triggered

Negative edge sensitive

Positive edge triggered

Positive edge sensitive

D Flip-Flops with Set and Reset

"Set" and "Reset" are also called "Preset" and "Clear"

Master-Slave D Flip-Flop with S, R

Edge triggered D Flip-Flop with S, R

Set/Reset: synchronous or asynchronous

- Asynchronous : not timed with clock
- Synchronous: timed with clock

Set / Reset operation	D input of flip-flop
Set operation only	S + D
Reset operation only	D. R
Set & Rest, Set overrides	$S + (D.\overline{R})$
Set & Reset, Reset overrides	(S + D) . R

Different types of Flip-Flops

J	Q_	
_ к		
->_	<u>Q</u> –	

S	R	Q(t+1)
0	0	Q (t)
0	1	0
1	0	1
1	1	XXX

D	Q(t+1)	
0	0	
1	1	

T	Q(t+1)
0	Q (t)
1	Q (t)

$$D = T.\overline{Q} + \overline{T}.Q$$

J	K	Q(t+1)
0	0	Q (t)
0	1	0
1	0	1
1	1	Q (t)

$$D = J.\overline{Q} + \overline{K}.Q$$

$$S = T.\overline{Q}, R = T.Q$$

$$S = J.\overline{Q}, R = K.Q$$

Parallel in Parallel out Register Symbol

Register: Serial & Parallel

Register: Serial & Parallel

Register File nxm

Register File with addressing

Lab Exercise 3

Design 8x4 register file with 2 read and 1 write ports

Lab Exercise 3 continued

 In-place interchange of two registers in three XOR steps

