МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа радиотехники и компьютерных технологий.

Отчёт о выполнении лабораторной работы 1.1.1

Определение систематических случайных погрешностей при измерении удельного сопротивления нихромовой проволоки.

Автор: Устюжанина Мария Алексеевна Б01-107

1 Введение

Цель работы: измерить удельное проволоки, изготовленной из нихромового сплава, и вычислить систематическую и случайную погрешности при использовании измерительных приборов (штангенциркуля, микрометра, мультиметра, амперметра, моста постоянного тока). Обору-

дование: штангенциркуль, микрометр, отрезок проволоки из нихрома, амперметр, мультиметр, источник ЭДС, мост постоянного тока, реостат, ключ.

2 Теоретические сведения

Методы измерения сопротивления:

- 1. определение углового коэффициента наклона зависимости напряжения на проволоке от тока через неё;
- 2. измерение с помощью моста постоянного тока.

Удельное сопротивления однородной проволоки круглого сечения можно определить по следующей формуле:

$$\rho = R \frac{\pi d^2}{4l},$$

где R — сопротивление проволоки, d — её диаметр, l — длина.

Согласно закону Ома напряжение V и ток I в образце связаны соотношением

$$V = RI$$
.

Для измерения напряжения и тока используем схему, изображенную на рис.1. Так как она приводит к меньшей поправке.

Ввиду неидеальности используемого вольтметра необходимо учесть поправку на его конечное сопротивление R_V . Показания амперметра I_A и вольтметра V_B связаны соотношением:

Рис. 1: Схема цепи

$$V_R = R'I_A$$
.

где R' — сопротивление параллельно соединённых проволоки и вольтметра.

При этом
$$\frac{1}{R'} = \frac{1}{R_V} + \frac{1}{R}$$
, и $R_V \gg R, R'$.

Таким образом, график зависимости $V_{\rm B}\left(I_A\right)$ должен представлять прямую, угловой коэффициент которой есть R', откуда сопротивление образца может быть найдено по следующей формуле:

$$R = \frac{R_V R'}{R_V - R'} \approx R' \left(1 + \frac{R'}{R_V} \right).$$

3 Оборудование и экспериментальные погрешности

Штангенциркуль: $\Delta_{\text{mit}} = \pm 0, 1$ мм

Микрометр: $\Delta_{\text{мкм}} = \pm 0,005 \text{ мм}$

Вольтметр(в качестве вольтметра использовался мультиметр): $R_v = 10 \text{MOm}$

Амперметр:

Система	Электромагнитная
Класс точности	0,2
Предел измерения	300 мА
Число делений	150 ед.
Цена деления	2 мА
Абс. погрешность	0.5 мА
Внутреннее сопротивление	$R_A = 0,55{ m Om}$

Мост постоянного тока Р4833:

Класс точности	0,1	
Разрядность магазина сопротивлений	5 ед.	
Исследуемый диапазон измерений	$10^{-4} - 10$ Ом (для множителя $N =$	
	10^{-2})	
Погрешность измерений в используемом	$\pm 0,010~{\rm Om}$	
диапазоне		

4 Результаты измерений и обработка данных

4.1 Измерение диаметра d проволоки

Измерения проводились штангенциркулем и микрометром для N=10 различных участков проволоки. При измерении штангенциркулем получено d=0,4 мм для всех участков. При измерении микрометром были получены следующие показания:

Номер измерения	1	2	3	4	5	6	7	8	9	10
d, мм	0,37	0,365	0,37	0,365	0,365	0,36	0,36	0,37	0,365	0,37

Таблица 1: Измерение диаметра проволоки микрометром

Среднее значение диаметра $\overline{d} = \frac{\sum d_i}{N} = 0,366$ мм.

Случайная погрешность измерения $\sigma_{\overline{d}} = \sqrt{\frac{1}{N(N-1)}\sum (d_i - \overline{d})^2} \approx 0,0012$ мм.

С учётом инструментальной погрешности $\Delta_{\text{мкм}}=0,005$ мм погрешность диаметра может быть вычислена как $\sigma_{\overline{d}}^{\text{полн}}=\sqrt{\sigma_{\overline{d}}^2+\Delta_{\text{мкм}}^2}\approx 0,005$ мм.

2

Окончательные результаты измерения диаметра проволоки:

• Штангенциркулем: $d=0, 4\pm 0, 1$ мм

• Микрометром: $(0,366 \pm 0,005 \text{ мм})$

4.2 Измерение сопротивления проволоки

Проведем 10 измерений значений тока и напряжения для 3 длин проволоки. Результаты занесем в таблицу:

				l =	= 20 см					
I_A , дел.	32,5	38	42,5	49	55	66,5	78	91	103,5	135
I_A , мА	35	76	85	98	110	133	156	182	207	27
V_B , B	0,1321	0,1563	0,175	0,2017	0,2248	0,2735	0,3217	0,3746	0,51	
	l = 30 cm									
I_A , дел.	34	37,5	42,5	48	52,5	58,5	70	77,5	91,5	118
I_A , мА	68	75	85	96	105	117	140	155	183	236
V_B , B	0,219	0,241	0,274	0,31	0,339	0,381	0,455	0,504	0,596	0,7685
	$l=50~\mathrm{cm}$									
I_A , дел.	32	38	47	54,5	64	71,5	82	86	98	118,5
I_A , мА	64	76	94	109	128	143	164	172	196	237
V_B , B	0,341	0,411	0,503	0,589	0,691	0,771	0,885	0,929	1,067	1,288

Графики зависимостей U=f(I) для всех отрезков проволоки:

Из графиков видно, что нет различия между значениями, полученными при возрастании и при уменьшении тока.

Для каждой длины проволоки находим сопротивление $R_{\rm cp}=\frac{<\!UI>}{<\!I^2>}$ и среднеквадратичную случайную ошибку:

$$\sigma_{R_{\rm cp}}^{
m c, nyq} = rac{1}{\sqrt{10}} \sqrt{rac{< U^2>}{< I^2>} - R_{
m cp}^2},$$

где 10 - число экспериментальных точек.

Возможную систематическую погрешность $R_{\rm c}$ р найдем по формуле:

$$\sigma_{R_{\rm cp}}^{\rm chct} = R_{\rm cp} \sqrt{(\frac{\sigma U}{U})^2 + (\frac{\sigma I}{I})^2},$$

где U, I - максимальные значения силы тока и напряжения, $\sigma U, \sigma I$ - ошибки измерения вольтметром и амперметром:

$$\sigma U = 0,1 \text{MB}$$

$$\sigma I = 1 \text{MA}$$

Ошибка измерений $\sigma_R = \sqrt{(\sigma_R^{\text{случ}})^2 + (\sigma_R^{\text{сист}})^2}$ Результаты в таблице.

4.3 Измерения сопротивления с помощью мультиметра и моста

Измерим сопротивление с помощью мультиметра R_0 и моста "постоянного тока" R'_0 . Занесем результаты в таблицу.

Для всех длин вычислим поправку в измеренное значение по формуле:

$$R_{\rm np} = R_{\rm cp} + \frac{R_{\rm cp}^2}{R_V}$$

Занесем разультаты в таблицу.

Результаты измерения сопротивления проволоки и погрешность

l, см	20	30	50
Rcp	2,079	3,249	5,412
R_0	2,03	3,22	5,4
R'_0	2,2156	3,3977	5,4974
$\sigma_{ ext{cuct}}$	0,008	0,014	0,023
$\sigma_{ m cлуч}$	0,015	0,004	0,008
$\sigma_{\text{полн}}$	0,017	0,015	$0,\!26$

Итоговый результаты измерения сопротиивления проволоки и погрешность

1, см	20	30	50
Rcp	2,079	3,249	5,412
$\sigma_{\text{полн}}$	0,017	0,015	0,024

Сравнивая результаты измерения сопротивления проволоки с помощью вольтметра и амперметра с результатами, полученными с помощью моста и мультиметра получаем расхождения в значениях, не превышающие погрешности.

4.4 Нахождение удельного сопротивления проволоки

$$\rho = \frac{R_{\rm np} \cdot \pi d^2}{4l}$$

И погрешность по формуле:

$$\frac{\sigma_{\rho}}{\rho} = \sqrt{\left(\frac{\sigma R}{R}\right)^2 + \left(2\frac{\sigma d}{d}\right)^2 + \left(\frac{\sigma l}{l}\right)^2}$$

l, см	$\rho, 10^{-6} \mathrm{Om} \cdot \mathrm{m}$	$\sigma_{ ho}, 10^{-6} \mathrm{Om} \cdot \mathrm{m}$
20	1,09	0,17
30	1,14	0,16
50	1,14	0,16

Тогда:

$$\rho = (1, 12 \pm 0, 17) \cdot 10^{-6} \mathrm{Om} \cdot \mathrm{m}$$

4

5 Вывод

Сравним табличное значение с полученным: табличные лежат удельного сопротивления нихромовой проволоки лежат в диапазоне $0,97...1.14\cdot 10^{-6}$ Ом·м. Полученные значения попадают в этот диапазон.

Использованный в работе метод позволил получить результат с точностью 14,7%.

В ходе работы был подтвержден закон Ома для участка цепи. Установленно, что сопротивление проволоки не зависит от величины I и U, а зависит только от их отношения.

В ходе эксперемента было выявлено, что с увеличением длины проволоки систематическая погрешность увеличивается. В полную погрешность вносят существенный вклад и систематическая, и случайная погрешности.