Prof. Dr. S. Decker, Prof. Dr. M. Jarke

Dr. B. Heitmann, PD Dr. R. Klamma, C. Samsel

Datenbanken und Informationssysteme (Sommersemester 2017)

Übung 10

Abgabe bis 11. Juli 10:00 Uhr. Zu spät eingereichte Übungen werden nicht berücksichtigt.

Bitte reichen Sie Ihre Lösung in Dreiergruppen ein. Die Lösung zu diesem Übungsblatt wird in den Übungen am 11. und 12. Juli vorgestellt. Bitte beachten Sie auch die aktuellen Ankündigungen im L^2P -Lernraum zur Vorlesung.

Aufgabe 10.1 (Serialisierbarkeit)

(7 Punkte)

Betrachten Sie die folgenden Schedules s_1 , s_2 , welche drei Transaktionen t_1 , t_2 und t_3 enthalten, die auf den Datenelementen x, y, z arbeiten:

$$s_1 = r_1(x)w_2(y)r_1(x)w_3(z)w_3(x)r_1(y)w_1(y)w_2(z)w_1(z)w_3(y)r_2(x)c_3r_2(y)c_2w_1(y)a_1$$

$$s_2 = r_2(y)r_2(z)r_3(z)w_3(y)r_3(x)w_2(y)w_1(x)w_1(y)w_3(z)c_3w_2(z)c_2w_1(z)c_1$$

- a) Bestimmen Sie für die Schedules s_1 , s_2 die Konfliktmengen $conf(s_1)$, $conf(s_2)$.
- b) Entscheiden Sie, ob die Schedules konfliktserialisierbar sind. Begründen Sie Ihre Entscheidung.

Aufgabe 10.2 (Recovery)

(7 Punkte)

Überprüfen Sie für jeden der folgenden Schedules, ob dieser jeweils in den Klassen RC, ACA und ST liegt. Begründen Sie Ihre Entscheidung.

- a) $s_1 = w_1(x)r_2(y)r_2(x)r_1(x)c_2w_1(y)c_1$
- b) $s_2 = w_1(x)r_2(y)r_1(x)c_1r_2(x)w_2(y)c_2$
- c) $s_3 = w_1(x)r_2(y)w_2(x)c_1r_2(x)w_2(y)c_2$
- d) $s_4 = w_2(x)r_1(y)r_2(x)r_1(x)c_2w_1(y)c_1$

In dieser Aufgabe sollen die Ausgaben von C2PL- S2PL- und SS2PL-Schedulern für eine gegebene Transaktion bestimmt werden. Geben Sie bei den Ausgaben der Scheduler das Setzen und Freigeben von Sperren mit an. Zusätzlich zu den C2PL, S2PL und SS2PL Sperrprotokollen, sollen die Scheduler Sperren erst anfordern, wenn sie benötigt werden, Sperren wieder freigeben, sobald dies möglich ist und Operationen nicht weiter verzögern als notwendig. Falls der Scheduler einen Deadlock produziert, geben Sie dies an und begründen Sie.

Hinweis: Ein Deadlock ist zum Beispiel gegeben, wenn die Transaktion t_1 auf einen Sperre, die von t_2 gehalten wird, wartet und gleichzeitig die Transaktion t_2 auf eine Sperre, die von t_1 gehalten wird, wartet, wobei keine dieser Transaktionen ihre Sperren lösen kann.

a) Gegeben sei der Schedule s_1 :

$$s_1 = w_3(x)w_2(y)r_1(y)r_2(x)w_3(z)w_1(z)c_1c_2c_3$$

Bestimmen Sie die Ausgabe eines C2PL-Schedulers für die Eingabe s_1

b) Gegeben sei der Schedule s_2 :

$$s_2 = w_1(z)r_2(x)w_3(y)w_2(y)r_3(z)w_1(x)c_1c_2c_3$$

Bestimmen Sie die Ausgabe eines S2PL-Schedulers für die Eingabe s_2

c) Gegeben sei der Schedule s_3 :

$$s_3 = r_3(z)w_1(y)r_3(x)w_2(y)w_2(x)w_3(z)c_1c_2c_3$$

Bestimmen Sie die Ausgabe eines SS2PL-Schedulers für die Eingabe s_3