Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. If you make use of a significant portion of these slides in your own lecture, please include this message, or a link to our web site: http://www.mmds.org

Mining Data Streams (Part 2)

Mining of Massive Datasets
Jure Leskovec, Anand Rajaraman, Jeff Ullman
Stanford University

http://www.mmds.org

Today's Lecture

- More algorithms for streams:
 - (1) Filtering a data stream: Bloom filters
 - Select elements with property x from stream
 - (2) Counting distinct elements: Flajolet-Martin
 - Number of distinct elements in the last k elements of the stream
 - (3) Estimating moments: AMS method
 - Estimate std. dev. of last k elements
 - (4) Counting frequent items

(1) Filtering Data Streams

Filtering Data Streams

- Each element of data stream is a tuple
- Given a list of keys S
- Determine which tuples of stream are in S
- Obvious solution: Hash table
 - But suppose we do not have enough memory to store all of S in a hash table
 - E.g., we might be processing millions of filters on the same stream

Applications

Example: Email spam filtering

- We know 1 billion "good" email addresses
- If an email comes from one of these, it is NOT spam

Publish-subscribe systems

- You are collecting lots of messages (news articles)
- People express interest in certain sets of keywords
- Determine whether each message matches user's interest

First Cut Solution (1)

- Given a set of keys S that we want to filter
- Create a bit array B of n bits, initially all Os
- Choose a hash function h with range [0,n)
- Hash each member of s∈ S to one of n buckets, and set that bit to 1, i.e., B[h(s)]=1
- Hash each element a of the stream and output only those that hash to bit that was set to 1
 - Output a if B[h(a)] == 1

First Cut Solution (2)

Creates false positives but no false negatives

to **0** so it is surely not in **S**.

If the item is in S we surely output it, if not we may still output it

First Cut Solution (3)

- |S| = 1 billion email addresses|B| = 1GB = 8 billion bits
- If the email address is in S, then it surely hashes to a bucket that has the big set to 1, so it always gets through (no false negatives)
- Approximately 1/8 of the bits are set to 1, so about 1/8th of the addresses not in S get through to the output (false positives)
 - Actually, less than 1/8th, because more than one address might hash to the same bit

Analysis: Throwing Darts (1)

- More accurate analysis for the number of false positives
- Consider: If we throw m darts into n equally likely targets, what is the probability that a target gets at least one dart?
- In our case:
 - Targets = bits/buckets
 - Darts = hash values of items

Analysis: Throwing Darts (2)

- We have m darts, n targets
- What is the probability that a target gets at least one dart?

Analysis: Throwing Darts (3)

- Fraction of 1s in the array B =
 probability of false positive = 1 e^{-m/n}
- Example: 10⁹ darts, 8·10⁹ targets
 - Fraction of 1s in $B = 1 e^{-1/8} = 0.1175$
 - Compare with our earlier estimate: 1/8 = 0.125

Bloom Filter

- Consider: |S| = m, |B| = n
- Use k independent hash functions $h_1,...,h_k$
- Initialization:
 - Set B to all 0s
 - Hash each element $s \in S$ using each hash function h_i , set $B[h_i(s)] = 1$ (for each i = 1,..., k) (note: we have a single array B!)
- Run-time:
 - When a stream element with key x arrives
 - If $B[h_i(x)] = 1$ for all i = 1,..., k then declare that x is in S
 - That is, x hashes to a bucket set to 1 for every hash function $h_i(x)$
 - Otherwise discard the element x

Bloom Filter -- Analysis

- What fraction of the bit vector B are 1s?
 - Throwing k·m darts at n targets
 - So fraction of 1s is $(1 e^{-km/n})$
- But we have k independent hash functions and we only let the element x through if all k hash element x to a bucket of value 1
- So, false positive probability = $(1 e^{-km/n})^k$

Bloom Filter – Analysis (2)

- = m = 1 billion, n = 8 billion
 - k = 1: $(1 e^{-1/8}) = 0.1175$
 - k = 2: $(1 e^{-1/4})^2 = 0.0493$

What happens as we keep increasing k?

- "Optimal" value of k: n/m In(2)
 - In our case: Optimal k = 8 In(2) = 5.54 ≈ 6
 - Error at k = 6: $(1 e^{-1/6})^2 = 0.0235$

Bloom Filter: Wrap-up

- Bloom filters guarantee no false negatives, and use limited memory
 - Great for pre-processing before more expensive checks
- Suitable for hardware implementation
 - Hash function computations can be parallelized
- Is it better to have 1 big B or k small Bs?
 - It is the same: $(1 e^{-km/n})^k$ vs. $(1 e^{-m/(n/k)})^k$
 - But keeping 1 big B is simpler

(2) Counting Distinct Elements

Counting Distinct Elements

Problem:

- Data stream consists of a universe of elements chosen from a set of size N
- Maintain a count of the number of distinct elements seen so far

Obvious approach:

Maintain the set of elements seen so far

 That is, keep a hash table of all the distinct elements seen so far

Applications

- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?)
- How many different Web pages does each customer request in a week?
- How many distinct products have we sold in the last week?

Using Small Storage

- Real problem: What if we do not have space to maintain the set of elements seen so far?
- Estimate the count in an unbiased way
- Accept that the count may have a little error,
 but limit the probability that the error is large

Flajolet-Martin Approach

- Pick a hash function h that maps each of the
 N elements to at least log₂ N bits
- For each stream element a, let r(a) be the number of trailing 0s in h(a)
 - r(a) = position of first 1 counting from the right
 - E.g., say h(a) = 12, then 12 is 1100 in binary, so r(a) = 2
- Record R = the maximum r(a) seen
 - $\mathbf{R} = \mathbf{max}_a \mathbf{r(a)}$, over all the items \mathbf{a} seen so far
- Estimated number of distinct elements = 2^R

A static or stream bag (~ multiset) of integers.

$$X = \{1, 3, 5, 7, 5, 2, 7\}$$

A hash function.

$$h(x_i) = (3x_i + 1) \bmod 5$$

×	H(X)	Binary of h(x)	r
1			
3			
5			
7			
5			
2			
7			

Flajolet-Martin Approach

X	H(X)	Binary of h(x)	r
1	4	100	2
3	0	000	0
5	1	001	0
7	2	010	1
5	1	001	0
2	2	010	1
7	2	010	1

R(max) = 2 = number of distinct element is $2^2 = 4$

Why It Works: Intuition

- Very very rough and heuristic intuition why Flajolet-Martin works:
 - h(a) hashes a with equal prob. to any of N values
 - Then h(a) is a sequence of log₂ N bits, where 2^{-r} fraction of all as have a tail of r zeros
 - About 50% of as hash to ***0
 - About 25% of as hash to **00
 - So, if we saw the longest tail of r=2 (i.e., item hash ending *100) then we have probably seen about 4 distinct items so far
 - So, it takes to hash about 2^r items before we see one with zero-suffix of length r

(3) Computing Moments

Generalization: Moments

- Suppose a stream has elements chosen from a set A of N values
- Let m_i be the number of times value i occurs in the stream
- The kth moment is

$$\sum_{i\in A} (m_i)^k$$

Special Cases

$$\sum_{i\in A} (m_i)^k$$

- Othmoment = number of distinct elements
 - The problem just considered
- 1st moment = count of the numbers of elements = length of the stream
 - Easy to compute
- 2nd moment = surprise number S = a measure of how uneven the distribution is

Example: Surprise Number

- Stream of length 100
- 11 distinct values
- Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
 Surprise S = 910
- Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
 Surprise S = 8,110

AMS Method

- AMS method works for all moments
- Gives an unbiased estimate
- We will just concentrate on the 2nd moment S
- We pick and keep track of many variables X:
 - For each variable X we store X.el and X.val
 - X.el corresponds to the item i
 - X.val corresponds to the count of item i
 - Note this requires a count in main memory, so number of Xs is limited
- Our goal is to compute $S = \sum_i m_i^2$

One Random Variable (X)

- How to set X.val and X.el?
 - Assume stream has length n (we relax this later)
 - Pick some random time t (t<n) to start, so that any time is equally likely
 - Let at time t the stream have item i. We set X.el = i
 - Then we maintain count c (X.val = c) of the number of is in the stream starting from the chosen time t
- Then the estimate of the 2nd moment ($\sum_i m_i^2$) is: $S = f(X) = n \ (2 \cdot c 1)$
 - Note, we will keep track of multiple Xs, $(X_1, X_2, ..., X_k)$ and our final estimate will be $S = 1/k \sum_{i}^{k} f(X_i)$

AMS example

- Consider the following stream:
- a, b, c, b, d, a, c, d, a, b, d, c, a, a, b
 What is the second moment of the stream?
 Demonstrate the AMS algorithm for X selected as the 3rd, the 8th and the 13th position

Expectation Analysis

- 2nd moment is $S = \sum_i m_i^2$
- c_t ... number of times item at time t appears from time t onwards ($c_1=m_a$, $c_2=m_a-1$, $c_3=m_b$)
- $E[f(X)] = \frac{1}{n} \sum_{t=1}^{n} n(2c_t 1)$

 $= \frac{1}{n} \sum_{i} n (1 + 3 + 5 + \dots + 2m_i - 1)$

m_i ... total count of item *i* in the stream (we are assuming stream has length *n*)

Group times by the value seen

Time t when the last i is seen $(c_t=1)$

Time t when the penultimate i is seen ($c_t=2$)

Time t when the first i is seen $(c_t=m_i)$

Expectation Analysis

$$E[f(X)] = \frac{1}{n} \sum_{i} n (1 + 3 + 5 + \dots + 2m_i - 1)$$

- Little side calculation: $(1+3+5+\cdots+2m_i-1)=\sum_{i=1}^{m_i}(2i-1)=2\frac{m_i(m_i+1)}{2}-m_i=(m_i)^2$
- Then $E[f(X)] = \frac{1}{n} \sum_{i} n (m_i)^2$
- So, $E[f(X)] = \sum_{i} (m_i)^2 = S$
- We have the second moment (in expectation)!

Higher-Order Moments

- For estimating kth moment we essentially use the same algorithm but change the estimate:
 - For k=2 we used $n (2 \cdot c 1)$
 - For k=3 we use: $n(3\cdot c^2 3c + 1)$ (where c=X.val)
- Why?
 - For k=2: Remember we had $(1+3+5+\cdots+2m_i-1)$ and we showed terms **2c-1** (for **c=1,...,m**) sum to m^2
 - $\sum_{c=1}^{m} 2c 1 = \sum_{c=1}^{m} c^2 \sum_{c=1}^{m} (c-1)^2 = m^2$
 - So: $2c 1 = c^2 (c 1)^2$
 - For k=3: $c^3 (c-1)^3 = 3c^2 3c + 1$
- Generally: Estimate = $n(c^k (c-1)^k)$

Combining Samples

In practice:

- Compute f(X) = n(2c-1) for as many variables X as you can fit in memory
- Average them in groups
- Take median of averages

Problem: Streams never end

- We assumed there was a number n, the number of positions in the stream
- But real streams go on forever, so n is a variable – the number of inputs seen so far

Streams Never End: Fixups

- (1) The variables X have n as a factor keep n separately; just hold the count in X
- (2) Suppose we can only store k counts.
 We must throw some Xs out as time goes on:
 - Objective: Each starting time t is selected with probability k/n
 - Solution: (fixed-size sampling!)
 - Choose the first k times for k variables
 - When the n^{th} element arrives (n > k), choose it with probability k/n
 - If you choose it, throw one of the previously stored variables X out, with equal probability

Why It Works: More formally

- What is the probability that a given h(a) ends in at least r zeros is 2^{-r}
 - h(a) hashes elements uniformly at random
 - Probability that a random number ends in at least r zeros is 2^{-r}
- Then, the probability of NOT seeing a tail of length r among m elements:

Why It Works: More formally

- Note: $(1-2^{-r})^m = (1-2^{-r})^{2^r(m2^{-r})} \approx e^{-m2^{-r}}$
- Prob. of NOT finding a tail of length r is:
 - If $m \ll 2^r$, then prob. tends to 1
 - $(1-2^{-r})^m \approx e^{-m2^{-r}} = 1$ as $m/2^r \rightarrow 0$
 - So, the probability of finding a tail of length r tends to 0
 - If m >> 2^r, then prob. tends to 0
 - $(1-2^{-r})^m \approx e^{-m2^{-r}} = 0$ as $m/2^r \to \infty$
 - So, the probability of finding a tail of length r tends to 1
- Thus, 2^R will almost always be around m!

Why It Doesn't Work

- **E**[2^R] is actually infinite
 - Probability halves when $R \rightarrow R+1$, but value doubles
- Workaround involves using many hash functions h_i and getting many samples of R_i
- How are samples R_i combined?
 - Average? What if one very large value 2^{R_i} ?
 - Median? All estimates are a power of 2
 - Solution:
 - Partition your samples into small groups
 - Take the median of groups
 - Then take the average of the medians

Why It Works: More formally

- Now we show why Flajolet-Martin works
- Formally, we will show that probability of finding a tail of r zeros:
 - Goes to 1 if $m \gg 2^r$
 - Goes to 0 if $m \ll 2^r$

where m is the number of distinct elements seen so far in the stream

Thus, 2^R will almost always be around m!