

Desenvolvimento Integrado de Produto

Sistema para aquisição de dados ambientais

Equipe Inove

Eduardo Almeida

Felipe Nogueira

Felipe Lima

Guilherme Augusto

Lucas Oliveira

Silvio Arnaldo

Recall – Smart Farming

No semestre anterior construímos uma câmara como prova de conceito de uma solução tecnológica para plantio *indoor.*

O projeto Smart Farming teve as seguintes propostas:

- q Fabricar uma câmara tecnológica
- q Realizar aquisição de dados ambientais
- q Monitoramento de umidade do solo e temperatura ambiente
- q Iluminação automática
- q Bomba de irrigação automática
- q Exaustão automática

Projeto Smart Farming

Orientador: Prof. Alfred

Cliente: Prof. Leonidas

Validação do processo da câmara de crescimento

- O escopo do projeto foi dividido em três pilares:
- ☐ Validação
- ☐ Tratamento dos dados
- ☐ Atualização/Upgrade

Requisitos do Projeto

- I. Planta: Alface
- II. Água potável
- III. Substrato comum
- IV. Nutriente: NPK 10-10-10
- V. Exibição dos dados Tabela e gráfico no Excel
- VI. Retirar o Smart Farming do Arduino Cloud para validação
- VII. Relatório técnico em PDF
- VIII.Manual Atualizado em PDF

Atualizações

Durante o desenvolvimento da primeira Sprint foram realizadas tarefas de validação, correções de Hardware e Software e testes:

- I. Desvincular protótipo da plataforma ArduinoCloud;
- II. Alterar o modelo do Sensor de Umidade;
- III. Realizar testes de aferição dos Sensores;
- IV. Aferir vazão da bomba;
- V. Método de armazenamento no Cartão SD;
- VI. Mensagens no Display LCD;
- VII. Início de pesquisa de adição do Raspberry Pi;
- VIII. Plantio da Alface.

					k.o I.P.	15	
		Projeto: Int Fan	Equipe:	Inove	Agosto	Setembro	
olu Y	Descrição 💌	Atribuido a: Zolun		ata do Téri			Duração 🔽
	Atividade	Atribuido a:	Início	Término	S1 S2 S3 S4 S5	S1 S2 S3 S4	Prazo
1	Fase 1						
1.1	Formalização da equipe	Silvio	14/ago/23	25/ago/23			12 dias
1.2	Brainstorm	19	14/ago/23	31/ago/23			18 dias
1.3	Divisão das atividades	Felipe Lima	18/ago/23	01/set/23			15 dias
1.4	Escopo e requisitos do projeto	Felipe Nogueira	18/ago/23	31/ago/23			14 dias
1.5	Detalhamento do processo de validação	Eduardo	21/ago/23	06/set/23			16 dias
1.6	Criar check list para acompanhamento	Silvio	21/ago/23	06/set/23			16 dias
1.7	Validar sensores	Eduardo	21/ago/23	06/set/23			16 dias
1.8	Materiais para o plantio e validação	Felipe Nogueira	21/ago/23	06/set/23			16 dias
1.9	Adequação do fechamento frontal para iniciar a validação	Silvio	21/ago/23	01/set/23			11 dias
1.10	Determinar frequência de amostragem adequada	Lucas	21/ago/23	01/set/23			11 dias
1.11	Atualização programa Smartfarming	Felipe Lima	21/ago/23	06/set/23			17 dias
1.12	Relatório técnico	Felipe Lima	21/ago/23	14/set/23			25 dlas
1.13	Croqui inicial para a atualização/Upgrade	Jonathas	21/ago/23	07/set/23			18 dias
1.14	Link Github	Guilherme	28/ago/23	06/set/23			10 dias
1.15	Apresentação Entrega 1	Guilherme	28/ago/23	08/set/23			12 dias
1.16	Estudo da solução para tratativa dos dados	Lucas	14/ago/23	15/set/23			32 dias

OBRIGADO PELA ATENÇÃO!