

Avaliação 01

Ciência e Tecnologia dos Materiais

Arthur Cadore Matuella Barcella

24 de Outubro de 2025

Engenharia de Telecomunicações - IFSC-SJ

Sumário

1.	Instruções	. 3
	Questões	
	2.1. O que é ligação química?	. 3
	2.2. Forneça a distribuição eletrônica em subníveis de energia para a espécie ${ m Cr}^{3+}$. 3
	2.2.1. Configuração eletrônica do átomo neutro de Cr (Z=24):	. 3
	2.2.2. Configuração eletrônica do íon Cr^{3+} :	. 4
	2.3. Forneça a fórmula de Lewis para o PI_3 (Nota I neste caso é o iodo)	. 4
	2.3.1. Distribuição dos elétrons do P :	. 4
	2.3.2. Distribuição dos elétrons do I :	. 5
	2.4. Disserte sobre a teoria do orbital molecular	. 5
	2.4.1. Orbital molecular ligante:	. 6
	2.4.2. Orbital molecular antiligante:	. 6
	2.5. Explique os motivos pelos quais, de acordo com as nossas aulas, os metais são bo	ns
	condutores de eletricidade	. 6
	$2.6.$ Considere a molécula $\mathrm{He}_2.$ Desenhe um diagrama de orbitais moleculares para a	
	mesma. Calcule a ordem de ligação.	. 8
	2.6.1. Diagrama de Orbitais Moleculares:	
	2.6.2. Ordem de ligação:	. 8
3.	Referências	. 9

1. Instruções

Período de Realização: 09h40-23h59. Enviar respostas até 23h59 do dia 26/10/25 para leoqmc@ifsc.edu.br. Respostas podem ser digitadas, fotos de manuscritos, etc. Enviar respostas em arquivo PDF único e organizado, com as respostas de "cabeça para cima". Será descontado 1,0 ponto caso estes requisitos não sejam atendidos.

2. Questões

2.1. O que é ligação química?

Uma ligação química é a força que mantém dois ou mais átomos unidos para formar moléculas ou compostos. Ela ocorre porque os átomos tendem a alcançar uma configuração eletrônica estável, geralmente semelhante à dos gases nobres, completando suas camadas de valência (a camada mais externa de elétrons). Existem três tipos principais de ligação química:

- Ligação iônica: Ocorre entre átomos com grande diferença de eletronegatividade (geralmente metal + não metal). Por exemplo: NaCl (cloreto de sódio).
- Ligação covalente: Ocorre entre átomos com eletronegatividades próximas (geralmente não metais). Por exemplo: H₂O (água).
- Ligação metálica: Ocorre entre átomos de metais. Por exemplo: Fe (ferro).

2.2. Forneça a distribuição eletrônica em subníveis de energia para a espécie Cr^{3+} .

2.2.1. Configuração eletrônica do átomo neutro de Cr (Z=24):

A configuração eletrônica do cromo neutro é dada por:

$$Cr: 1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1 \tag{1}$$

Assim, a representação para cada subnível de energia é:

Nivel	Subnível	Elétrons
1	$1s^2$	2
2	$2s^22p^6$	8
3	$3s^23p^63d^5$	13
4	$4s^1$	1

Podemos também representar a distribuição eletrônica em subníveis de energia, visualmente, como:

2.2.2. Configuração eletrônica do íon Cr^{3+} :

Para formar o íon Cr^{3+} , o cromo perde três elétrons. Os elétrons são removidos primeiro do subnível de maior energia (4s) e depois do subnível 3d. Portanto, seguindo a configuração eletrônica do cromo neutro, a configuração eletrônica do íon Cr^{3+} é:

$$Cr^{3+}: 1s^2 2s^2 2p^6 3s^2 3p^6 3d^3$$
 (2)

A representação para cada subnível de energia do íon Cr^{3+} é:

Nivel	Subnível	Elétrons
1	$1s^2$	2
2	$2s^22p^6$	8
3	$3s^23p^63d^3$	11

A distribuição eletrônica em subníveis de energia para o íon ${\rm Cr}^{3+}$ pode ser representada visualmente como:

2.3. Forneça a fórmula de Lewis para o PI_3 (Nota I neste caso é o iodo).

A fórmula de Lewis é uma representação simplificada que mostra como os elétrons de valência estão distribuídos em uma molécula, indicando ligações químicas e pares de elétrons não ligantes.

2.3.1. Distribuição dos elétrons do P:

O fósforo (P) está no grupo 15 da tabela periódica, portanto, possui 5 elétrons de valência, abaixo está a distribuição em subníveis de energia:

Nível	Subnível	Elétrons
1	$1s^2$	2
2	$2s^22p^6$	8
3	$3s^23p^3$	5

2.3.2. Distribuição dos elétrons do I:

O iodo (I) está no grupo 17 da tabela periódica, portanto, possui 7 elétrons de valência, abaixo está a distribuição em subníveis de energia:

Nível	Subnível	Elétrons
1	$1s^2$	2
2	$2s^22p^6$	8
3	$3s^23p^63d^{\{10\}}$	18
4	$4s^24p^64d^{\{10\}}$	18
5	$5s^25p^5$	7

Dessa forma, podemos considerar que a quantidade de elétrons de valência para cada átomo na molécula PI_3 é:

$$P(5) + 3I(7) = 5 + 21 = 26$$
 elétrons de valência (3)

Assim, a fórmula de Lewis para o tri-iodeto de fósforo (PI_3) pode ser representada da seguinte maneira:

: I : P : I : : I :

2.4. Disserte sobre a teoria do orbital molecular.

A Teoria do Orbital Molecular (TOM) descreve as ligações químicas a partir do comportamento quântico dos elétrons em uma molécula.

Diferente do modelo de ligação de valência (que considera elétrons localizados entre dois átomos), a Teoria do Orbital Molecular propõe que, quando os átomos se aproximam para formar uma molécula, seus orbitais atômicos se combinam para gerar novos orbitais moleculares que pertencem a toda a molécula, e não a um átomo específico. Esses orbitais moleculares resultam da combinação linear dos orbitais atômicos dos átomos constituintes. Cada combinação pode gerar dois tipos de orbitais:

2.4.1. Orbital molecular ligante:

Resulta de uma interferência construtiva entre os orbitais atômicos (ou como visto em aula, sobreposição em fase da função de onda), aumentando a densidade eletrônica entre os núcleos e estabilizando a molécula.

A combinação linear construtiva entre dois orbitais p_z de átomos distintos pode ser representada genericamente como:

$$\psi_{\{\text{lig}\}} = c_1 \cdot \psi_{\{p_z\}} + c_2 \cdot \psi_{\{p_z\}} \tag{4}$$

Onde c_1 e c_2 são coeficientes que dependem da contribuição relativa de cada orbital atômico para o orbital molecular formado, e $\psi_{\{p_z\}}$ representa a função de onda do orbital p_z de cada átomo.

2.4.2. Orbital molecular antiligante:

Resulta de interferência destrutiva (ou seja, conforme visto em aula, sobreposição fora de fase da função de onda), diminuindo a densidade eletrônica entre os núcleos e desestabilizando a molécula.

A combinação linear destrutiva entre dois orbitais p_z de átomos distintos pode ser representada genericamente como:

$$\psi_{\text{\{antilig\}}} = c_1 \cdot \psi_{\{p_z\}} - c_2 \cdot \psi_{\{p_z\}} \tag{5}$$

Onde c_1 e c_2 são coeficientes que dependem da contribuição relativa de cada orbital atômico para o orbital molecular formado, e $\psi_{\{p_z\}}$ representa a função de onda do orbital p_z de cada átomo.

Um exemplo apresentado em aula foi a molecula de O_2 , que possui comportamento paramagnético que pode ser observado experimentalmente com oxigênio líquido sendo atraído por um campo magnético. Esse comportamento é explicado pela presença de dois elétrons desemparelhados em orbitais moleculares antiligantes pi^* , conforme previsto pela Teoria do Orbital Molecular.

O mesmo comportamento não pode ser explicado pela Teoria da Ligação de Valência, que não prevê a existência de elétrons desemparelhados em O_2 .

2.5. Explique os motivos pelos quais, de acordo com as nossas aulas, os metais são bons condutores de eletricidade.

Nos metais, os átomos estão organizados em uma rede cristalina e unidos por ligações metálicas. Nessa ligação, os elétrons da camada de valência não estão ligados a um átomo específico, em vez disso, eles se movem livremente através do retículo cristalino, formando o que se chama de "mar de elétrons". Conforme visto em aula, a estrutura eletrônica cristalina dos metais se repete por todo o material, a repetição e periódica oque permite representar a menor unidade estrutural do material, chamada de célula unitária, conforme ilustrado na figura abaixo para o atomo de ferro (Fe).

Figura 1: Fonte [2]

Célula unitária do Ferro (Fe)

Assim, os elétrons livres são os portadores de carga que se deslocam facilmente quando um campo elétrico é aplicado, permitindo a condução elétrica com menos energia necessária para mover os elétrons através do material, isso que resulta em alta condutividade elétrica.

Quanto maior a quantidade de atomos metálicos presentes no material, maior será a quantidade de elétrons livres disponíveis para condução elétrica, o que aumenta ainda mais a condutividade do material, e diminui a quantidade de energia necessária para mover esses elétrons. Esse conceito pode ser visualizado na figura abaixo, onde a presença de mais átomos metálicos resulta em mais elétrons livres disponíveis para condução elétrica.

Remember, dots represent nudei and half-arrows represent electrons.

Most antibonding

Som panier of atoms increasing

Most bonding

Li Li₂ Li₄ Li_∞

Number of atoms increasing

Figura 2: Fonte [1]

Relação entre a quantidade de átomos metálicos e a condutividade elétrica do material

2.6. Considere a molécula ${\rm He}_2$. Desenhe um diagrama de orbitais moleculares para a mesma. Calcule a ordem de ligação.

2.6.1. Diagrama de Orbitais Moleculares:

Combinando os orbitais 1s dos dois átomos He formam-se um orbital molecular ligante σ_{1s} e um orbital molecular antiligante σ_{1s}^* .

 $\begin{array}{c|c} & & & & \\ & &$

Figura 3: Elaborada pelo Autor

Diagrama de Orbitais Moleculares para a molécula He₂

2.6.2. Ordem de ligação:

A ordem de ligação (OL) é calculada pela fórmula:

$$OL = \frac{N_{\text{elétrons ligantes}} - N_{\text{elétrons antiligantes}}}{2}$$
 (6)

Assim, para a molécula He₂, temos:

$$OL = \frac{2-2}{2} = 0 (7)$$

Dessa forma, podemos concluir que com 4 elétrons no total (2 por átomo), ambos os orbitais ficam preenchidos, isto leva a ordem de ligação = 0, ou seja não há ligação covalente estável entre os dois átomos de hélio no estado fundamental segundo a TOM.

3. Referências

- [1]: https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.solutioninn.com%2 Fstudy-help%2Fchemistry-the-central-science%2Frepeat-exercise-1247-for-a-linear-chain-of-eight-lithium-846201
- [2]: https://www.youtube.com/watch?v=n-Fvm06m4Wc