LPC82X 培训资料

存储器及读写保护 动手实验

MAY, 2016

动手实验1 IAP

内容

•实验简介(目的,内容,结果)

• 软/硬件环境搭建

• 实验步骤

• 相关IAP系统函数说明

实验简介

- •目的:通过IAP应用实例,理解和掌握一下IAP系统函数的使用方法
 - -如何得到芯片的唯一ID(UID)和产品ID(PID)
 - -如何得到IAP系统函数的版本号
 - -如何利用IAP函数检查FLASH空白,擦除烧写FLASH
- •描述:本实验使用IAP系统函数获得芯片信息和完成FLASH擦除 烧写
- 结果:
 - -获得正确的产品ID和唯一的UID
 - -向片上FLASH写入数据并读取数据,从FLASH中读取的数据应与写 入的数据相同

软/硬件环境搭建

• 硬件

- 评估板: LPC824Lite-V1.0

• 工程位置

- ..\peri_example\flash\flash_iap.uvprojx

硬件配置

- 无需特别的硬件配置
 - -使用DEBUG UART来输出调试字符串

实验步骤

- 第一步 根据连接指示, 搭建好硬件环境
- 第二步 编译下载程序, 运行
- 第三步 通过运行环境观看LPC824的产品ID, 唯一ID和ROM版本号, 或者查看DEBUG UART输出的调试信息
- 第四步 LED2亮,表明FLASH读写正确,读取数据等于写入数据, LED3亮,表明FLASH读写校验不正确(FLASH读取数据不等于写入 数据)

相关IAP系统函数说明-1

- 1. 读取芯片唯一ID

 uint32_t Chip_IAP_ReadUID(uint32_t *uid);
- 2. 读取芯片产品ID

 uint32_t Chip_IAP_ReadPID(void);
- 3. 读取BOOTCODE版本号
 uint32_t Chip_IAP_ReadBootCode(void);
- 4. 检测FLASH某区间是否为空白
 uint8_t Chip_IAP_BlankCheckSector(uint32_t strSector,uint32_t endSector);

相关IAP系统函数说明-2

- 5. 准备FLASH块进行写操作
- uint8_t Chip_IAP_PreSectorForReadWrite(uint32_t strSector, uint32_t endSector);
- 6. 擦除FLASH

uint8_t Chip_IAP_EraseSector(uint32_t strSector, uint32_t endSector);

7. 拷贝RAM的数据到FLASH(写FLASH)

uint8_t Chip_IAP_CopyRamToFlash(uint32_t strSector,uint32_t endSector);

8. 比较地址空间的内容

uint8_t Chip_IAP_Compare(uint32_t dstAdd,uint32_t srcAdd,uint32_t bytescmp);

动手实验2 ROM API

内容

•实验简介(目的,内容,结果)

• 软/硬件环境搭建

• 实验步骤

• 相关ROM APIs说明

实验简介

- •目的:通过I2C ROM API应用实例,理解和掌握LPC82x ROM API 关于以下几点:
 - -如何初始化ROM驱动,如何提供ROM驱动所需的RAM内存
 - -如何配置串行外设驱动
 - -如何使用ROM驱动进行数据收发
- 描述:本实验实现通过I2C(中断方式)访问EEPROM (24C02)。其中,LPC824为主,24C02为从。LPC824对 EEPROM读写操作
- **结果**:本实验向EEPROM 写入数据并读取数据,从EEPROM中读取的数据应与写入的数据相同

软/硬件环境搭建

• 硬件

- 评估板: LPC824Lite-V1.0

• 工程位置

- ..\peri_example\rom\rom_24c02\project_rom_24c02.uvprojx

硬件原理

- I2C CLK P0_10, DAT P0_11
- 24C02 I2C 地址 0x50(7 bits)
- 24C02 写保护接地, EEPROM可读可写

实验步骤

- 第一步 根据连接指示, 搭建好硬件环境
- 第二步 编译下载程序, 运行
- 第三步 LED1亮,表明EEPROM访问正确,读取数据等于写入数据,LED2亮,表明EEPROM访问不正确

相关ROM APIs说明-1

- 1. 返回ROM API工作所需要的RAM大小
- uint32_t (*i2c_get_mem_size)(void);
- 2. 提供ROM API 所需的RAM空间

I2C_HANDLE_T *(*i2c_setup)(uint32_t i2c_base_addr, uint32_t *start_of_ram);

3. 设置I2C传输位率

ErrorCode_t (*i2c_set_bitrate)(I2C_HANDLE_T *handle, uint32_t p_clk_in_hz, uint32_t bitrate_in_bps);

4. 返回ROM API工作所需要的RAM大小

ErrorCode_t (*i2c_set_timeout)(I2C_HANDLE_T *handle, uint32_t timeout);

相关ROM APIs说明-2

5. 中断模式发送数据

ErrorCode_t (*i2c_master_transmit_intr)(I2C_HANDLE_T *handle, I2C_PARAM_T *param, I2C_RESULT_T *result);

6. 中断模接收数据

ErrorCode_t (*i2c_master_receive_intr)(I2C_HANDLE_T *handle, I2C_PARAM_T *param, I2C_RESULT_T *result);

7. 默认的中断处理函数

void (*i2c_isr_handler)(I2C_HANDLE_T *handle);

动手实验3 FLASHMAGIC

内容

•实验简介(目的,内容,结果)

• 软/硬件环境搭建

• 实验步骤

实验简介

- •目的:通过实验理解和掌握FLASHMAGIC的使用
 - -如何得到芯片唯一ID(UID)
 - -如何得到产品ID(PID)
 - -如何烧录程序
- •描述:本实验实现通过USART串口线连接PC与LPC824,通过FLASHMAGIC软件获得芯片的基本信息
- •结果:在FLASHMAGIC上显示芯片信息,并成功烧录程序

软/硬件环境搭建

- 硬件
 - 评估板: LPC824Lite-V1.0
- 软件工具
 - FLASHMAGIC http://www.flashmagictool.com/
- Hex文件位置
 - ..\peri_example\flash\flash_iap\keil_output\flash_iap.hex

准备工作

- 连接硬件
- 通过设备管理器确定串口号
- 开始菜单->右键点击"电脑" ->下拉菜单->"属性"->"设备管理器"
- 如果使用USB转串口线, WINDOWS需要安装驱动
- •如图所示COM21连接

实验步骤

- 第一步 LPC824Lite板进入ISP模式,板子上电后执行以下操作
 - 按住ISP按键,不要松开
 - 按下RESET按键
 - 松开RESET按键
 - 松开ISP按键
- 第二步 打开FLASHMAGIC工具

FLASHMAGIC配置

- 选择芯片为LPC824M201FHI33
- 选择COM Port 为串口号(在设备管理器中)
- 选择波特率为115200

实验1-读取芯片唯一ID(UID)和产品ID(PID)

- 第一步 按住板子上ISP按键不放
- 第二步 在Flash Magic软件菜单选择ISP
- 第二步 下拉菜单选择 Read Device Signature...

实验2-烧录程序

- 第一步 按住板子上ISP按键不放
- 第二步 选择.HEX文件
- 第三步 可以选择"more info" 获得更多关于HEX文件的咨询
- 第四步 点击"Start"

实验2-烧录程序结果

- FLASHMAGIC擦写,编程FLASH
- FLASHMAGIC进度条显示绿色并显示Finished
- 按RESET按键并松开重启LPC824Lite板
- 观察程序烧录结果

SECURE CONNECTIONS FOR A SMARTER WORLD