## Conversão Matricial de Primitivas Gráficas

Maria Cristina F. de Oliveira Fernando V. Paulovich

#### Imagem Vetorial x Imagem Matricial



#### Problema

- Traçar primitivas geométricas (segmentos de reta, polígonos, circunferências, elipses, curvas, ...) no dispositivo matricial
- 'rastering' = conversão vetorial -> matricial
- Como ajustar uma curva, definida por coordenadas reais em um sistema de coordenadas inteiras cujos ´pontos´tem área associada

# Sistema de Coordenadas do Dispositivo



#### Conversão de Segmentos de Reta

- Características Desejáveis
  - □ Linearidade
  - □ Precisão
  - Espessura (Densidade Uniforme)
  - □ Intensidade independente de inclinação
  - Continuidade
  - Rapidez no traçado

#### Conversão de Segmentos de Reta

- Dados pontos extremos em coordenadas do dispositivo:
  - $\square$  P1(x<sub>1</sub>,y<sub>1</sub>) (inferior esquerdo)
  - $\square$  P2(x<sub>2</sub>,y<sub>2</sub>) (superior direito)
- Determina quais pixels devem ser "acesos" para gerar na tela uma boa aproximação do segmento de reta ideal

# Conversão de Segmentos de Reta – Algoritmo DDA

Usar equação explícita da reta

$$y = mx + B$$
  
 $m = (y_2 - y_1)/(x_2 - x_1)$  //inclinação  
 $B = y_1 - m^*x_1$  //intersecção eixo y

$$y = mx + (y_1 - m^*x_1) = y_1 + m^*(x-x_1)$$

Cálculo em ponto flutuante: ineficiente

## Otimização DDA

Na iteração i:

$$y_{i} = m * x_{i} + B$$

Na iteração i+1:

$$y_{i+1} = m * x_{i+1} + B = m * (x_i + \delta x) + B$$
  
=  $m * x_i + m * \delta x + B = y_i + m * \delta x$ 

se 
$$\delta x = 1$$
, então  
 $x_{i+1} = x_i + 1$ , e  $y_{i+1} = y_i + m$ 

Algoritmo incremental!!

#### Octantes do Sistema de Coordenadas Euclidiano



Na forma dada, funciona para segmentos em que 0 < m < 1

Porque?

Funciona se 0 < m < 1, i.e., assume que a variação em x é superior à variação em y. Se esse não for o caso, vai traçar um segmento com buracos!!

Se m > 1, basta inverter os papéis de x e y,
 i.e., amostra y a intervalos unitários, e calcula x





- Assume x<sub>1</sub> < x<sub>2</sub> e y<sub>1</sub> < y<sub>2</sub> (m positivo), processamento da esquerda para a direita
- Se não é o caso, então  $\delta x = -1$  ou  $\delta y = -1$ , e a equação de traçado deve ser adaptada de acordo
  - Exercício: fazer a adaptação em cada caso

#### Exercício

 Aplique o algoritmo (e adaptações) para fazer a conversão dos seguintes segmentos de reta:

- □ P1: (0,1) P2: (5,3)
- □ P1: (1,1) P2: (3,5)

- Assume 0 < |m| < 1</p>
- Incrementa x em intervalos unitários, calcula o y correspondente
- Abordagem considera as duas possibilidades de escolha de y, decidindo qual a melhor
  - $\neg (x_k, y_k) \rightarrow (x_k+1, y_k) \text{ ou } (x_k+1, y_k+1)$



(b-a) > 0 usar o pixel superior (b-a) < 0 usar o pixel inferior



 Na posição x<sub>k</sub> + 1, a coordenada y é calculada como

$$y = m(x_k + 1) + B$$

Então

$$b = y - y_k = m(x_k + 1) + B - y_k$$

e

$$a = (y_k + 1) - y = y_k + 1 - m(x_k + 1) - B$$

Um teste rápido para saber a proximidade

$$p_k = b - a = 2m(x_k+1) - 2y_k + 2B - 1$$

- Assim
  - $p_k > 0$ : pixel superior
  - $p_k < 0$ : pixel inferior

 Mas calcular m envolve operações de ponto flutuante,

$$\mathbf{m} = (y_2 - y_1)/(x_2 - x_1) = \Delta y / \Delta x$$

então fazemos

$$p_k = 2\Delta y * x_k - 2\Delta x * y_k + c$$

□ constante  $c = 2\Delta y + \Delta x(2B - 1)$ 

Algoritmo incremental

$$p_{k+1} = 2\Delta y * x_{k+1} - 2\Delta x * y_{k+1} + x$$

Subtraindo p<sub>k</sub> de p<sub>k+1</sub> temos

$$p_{k+1} - p_k = 2\Delta y(x_{k+1} - x_k) - 2\Delta x(y_{k+1} - y_k)$$

- Como  $x_{k+1} = x_k + 1$ 
  - $p_{k+1} = p_k + 2\Delta y 2\Delta x (y_{k+1} y_k)$
  - $\Box$  onde  $y_{k+1} y_k \in 0$  ou 1 dependendo do sinal de  $p_k$

Se p<sub>K</sub> < 0, então o próximo ponto é (x<sub>k+1</sub>, y<sub>k</sub>)
 e

$$p_{k+1} = p_k + 2\Delta y$$

Caso contrário o ponto será (x<sub>k+1</sub>, y<sub>k+1</sub>) e

$$p_{k+1} = p_k + 2\Delta y - 2\Delta x$$

```
void bresenham (int x1,int x2, int y1,int y2)
int dx,dy, incSup, incInf, p, x, y;
int valor;
{
    dx= x2-x1; dy= y2-y1;
    p = 2*dy-dx; /* fator de decisão: valor inicial */
    incInf = 2*dy; /* Incremento Superior */
    incSup =2*(dy-dx); /* Incremento inferior */
    x= x1; y= y1;
    write_Pixel (x,y,valor); /* Pinta pixel inicial */
```

```
while (x < x2) {
      if (p <= 0) { /* Escolhe Inferior */</pre>
             p = p + inclnf; }
      else { /* Escolhe Superior */
             p = p + incSup;
             y++;} /* maior que 45°*/
      X++;
      write pixel (x, y, valor);
   } /* fim do while */
} /* fim do algoritmo */
```

Exercício: aplique o algoritmo para

□ P1: (5,8) P2: (9,11)

#### Traçado de Circunferências

Circunf. com centro na origem e raio R:

$$x^2 + y^2 = R^2 \rightarrow y = \pm sqrt(R^2 - x^2)$$
 //forma explícita  $x = R^*cos\theta$ ,  $y = R^*sen\theta$  //forma paramétrica

Partindo de P1: (0,R), porque não usar diretamente a equação explícita acima para traçar um arco de ¼ da circunf.?



Porque não usar a forma paramétrica?

- Traçado de arco de 45º no segundo octante, de x = 0 a x = y = R/sqrt(2)
- O restante da curva pode ser obtido por simetria
  - Se o ponto (x,y) pertence à circunferência, outros
     7 pontos sobre ela podem ser obtidos de maneira trivial...

#### Simetria de Ordem 8



#### Simetria de Ordem 8

```
void CirclePoints (int x, int y, int value)
{
   write_pixel( x,y,value); write_pixel( x,-y,value);
   write_pixel(-x,y,value); write_pixel(-x,-y,value);
   write_pixel( y,x,value); write_pixel( y,-x,value);
   write_pixel(-y,x,value); write_pixel(-y,-x,value);
}
```

#### Algoritmo de Bresenham (Circunf.)

- Define um parâmetro de decisão para definir o pixel mais próximo da circunferência
- Como a equação da circunf. é não linear, raízes quadradas serão necessárias para se calcular distâncias dos pixels
  - Bresenham evita isso comparando o quadrado das distâncias

- Baseado na equação da circunferência define-se qual o pixel mais próxima da mesma
  - Isso é feito em um único octante, o resto é obtido por simetria

- $F_{circ}(x,y) = x^2 + y^2 R^2$ 
  - $\neg$   $F_{circ}(x,y) < 0$  se (x,y) está dentro da circunf.
  - $\neg$   $F_{circ}(x,y) = 0$  se (x,y) está na circunf.
  - $\neg$   $F_{circ}(x,y) > 0$  se (x,y) está fora da circunf.
- Incrementa x e testa pixel está mais perto da circunf.
  - F<sub>circ</sub>(x,y) é o parâmetro de decisão e cálculos incrementais podem ser feitos



- Partindo de (x<sub>k</sub>, y<sub>k</sub>) as opções são

  - $(x_k + 1, y_k 1)$

- Então a função de decisão é
  - $P_k = Fcirc(x_k + 1, y_k \frac{1}{2})$
  - $P_k = (x_k+1)^2 + (y_k \frac{1}{2})^2 R^2$
- Se pk < 0 o ponto está dentro da circunf. e y<sub>k</sub> está mais próxima da borda
  - □ Caso contrário, y<sub>k</sub> −1 está mais próxima

A formulação incremental pode ser feita avaliando
 x<sub>k+1</sub> + 1

$$p_{k+1} = F_{circ}(x_{k+1} + 1, y_{k+1} - \frac{1}{2})$$

$$p_{k+1} = [(x_{k+1})+1]^2 + (y_{k+1} - \frac{1}{2})^2 - R^2$$

$$p_{k+1} = p_k + 2(x_k+1) + (y_{k+1}^2 - y_k^2) - (y_{k+1} - y_k) + 1$$

- Se  $p_k < 0$ , então o próximo ponto é  $(x_{k+1}, y_k)$ 
  - $p_{k+1} = p_k + 2x_{k+1} + 1$
- Caso contrário será (x<sub>k</sub> + 1, y<sub>k</sub> 1)

$$p_{k+1} = p_k + 2x_{k+1} + 1 - 2y_{k+1}$$

$$oldsymbol{1}$$
 com  $2x_{k+1} = 2x_k + 2$  e  $2y_{k+1} = 2y_k - 2$ 

# Conversão matricial de elipses

 Algoritmo do Ponto Médio: mesmos princípios, com alguns complicadores...

Tarefa: estudar algoritmo e sua derivação na apostila!!!

# Correção de Traçado (Antialiasing)

- Segmentos de retas em sistemas raster tem espessura – ocupa uma área
- Devido ao processo de amostragem (discretização), segmentos de retas pode apresentar uma aparência serrilhada
- Uma forma de diminuir esse problema é usar monitores com pixels menores
  - Problemas para manter a taxa de restauro em 60Hz

# Correção de Traçado (Antialiasing)



## Correção de Traçado (Antialiasing)

- Em sistemas que podem mostrar mais de dois níveis de intensidade, é possível usar uma solução de software
- Uma solução simples é conhecida como superamostragem
  - Aumenta a taxa de amostragem simulando um monitor com um (sub)pixel de menor tamanho
  - A intensidade do pixel real é definida com base na quantidade de subpixels cobertos

# Superamostragem

- Dividir cada pixel em sub-pixels
  - A intensidade é dada pelo número de sub-pixel que estão sob o caminho da linha





### Máscara de Ponderação do Sub-Pixel

 Define uma máscara que assinala maior peso (intesidade) para sub-pixels no centro da área do pixel

| 1 | 2 | 1 |
|---|---|---|
| 2 | 4 | 2 |
| 1 | 2 | 1 |

# Antialiasing Baseado em Área

 Intensidade proporcional a área coberta do pixel considerando que a linha tem largura finita



# Antialiasing Baseado em Área



### Técnicas de Filtragem

- Similar a técnica de máscara, porém mais precisa
  - Uma superfície contínua de ponderação é usada para determinar a cobertura do pixel
  - A ponderação é calculada por integração
    - Uso de tabelas para acelerar o processo



# Compensando Diferenças de Intensidade

- Antialiasing pode compensar outro problema de sistemas raster
  - Linhas desenhadas com mesma quantidade de pixels apresentarem tamanhos diferentes
    - Linhas menores mais brilhantes



# Antialiasing e OpenGL

- A função de antialiasing em OpenGL é ativada usando
  - glEnable(tipoprim)
- Tipos de primitivas
  - GL\_POINT\_SMOOTH
  - GL\_LINE\_SMOOTH
  - GL\_POLYGON\_SMOOTH
- Também necessário ativar blending em RGBA (RGB)
  - glEnable(GL\_BLEND)
  - glBlendFunc(GL\_SRC\_ALPHA, GL\_ONE\_MINUS\_SRC\_ALPHA)

# Antialiasing e OpenGL



# Antialiasing e OpenGL

