

Đại số quan hệ (Relational Algebra)

CƠ SỞ DỮ LIỆU

- Giới thiệu về Đại số quan hệ
- Các phép toán tập hợp
- Các phép toán quan hệ
- Các phép toán khác
- Các thao tác cập nhật trên quan hệ

NỘI DUNG TRÌNH BÀY

- Giới thiệu
- Đại số quan hệ
- Các phép toán tập hợp
 - − Hội ∪ (Union)
 - Giao ∩ (Intersection)
 - Trù (Difference)
 - Tích Descartes x (Cartesian Product)
 - Chia ÷ (Division)
- Các phép toán quan hệ
 - Chiếu π (Projection)
 - Chon σ (Selection)
 - Kết ⊳⊲ (Join)
- Các phép toán khác
 - Gán ← (Assignment)
 - Đổi tên ρ (Rename)
- Các thao tác cập nhật trên quan hệ

Giới thiệu

- Xét một số xử lý trên quan hệ NHANVIEN
 - Thêm mới một nhân viên
 - Chuyển nhân viên có tên là "Tùng" sang phòng số 1
 - Cho biết họ tên và ngày sinh các nhân viên có lương trên 20000

Tung	Nguyen	12/08/1955 DCHI			
Hang	Ng Bui n	12, 07/19/1968 38 NVC (<u>t</u>
Nhung	BLe	07,06/20/195132 NTH			
Hung	Nguyen	06, 09/15/1962 1 HVH Q			
Quang	NPham	09/ 11/10/1937 8a Ria V			
Quang	Pham	11/10/1937 450 TV H	N Nam	55000	1

Giới thiệu

- Có 2 loại xử lý trên CSDL
 - Làm thay đổi dữ liệu (cập nhật)
 - Thêm mới, xóa và sửa
 - Không làm thay đổi dữ liệu (rút trích)
 - Truy vấn/mẫu hỏi (Query)
- Thực hiện các xử lý

Sử dụng ngôn ngữ truy vấn (Query Language) → cho phép người dùng thực hiện và rút trích dữ liệu từ CSDL. Bao gồm:

- Đại số quan hệ (Relational Algebra)
- Phép tính quan hệ (Relational Calculus)

Cơ sở của các ngôn ngữ CSDL ví dụ như SQL

Đại số quan hệ

- •Là ngôn ngữ biểu diễn câu truy vấn về các quan hệ
- •Bao gồm <u>tập hợp các phép toán</u> được áp dụng trên các thể hiện của quan hệ. <u>Kết quả trả về</u> của một câu truy vấn là một <u>thể hiện của quan hệ</u>
- •Chuỗi các phép toán đại số quan hệ hình thành nên biểu thức đại số quan hệ (câu truy vấn) mà kết quả của nó cũng trả về một thể hiện của quan hệ
- Có 3 nhóm phép toán
 - Phép toán tập hợp
 - Phép toán quan hệ
 - Phép toán khác

CƠ SỞ DỮ LIỆU

- Giới thiệu về Đại số quan hệ
- Các phép toán tập hợp
- Các phép toán quan hệ
- Các phép toán khác
- Các thao tác cập nhật trên quan hệ

Một số định nghĩa

- Quan hệ là tập hợp các bộ
- Tính khả hợp (Union Compatibility)
 Hai lược đồ quan hệ R(A₁, A₂, ..., A_n) và S(B₁, B₂, ..., B_n) là khả hợp nếu:
 - Cùng bậc n (cùng số thuộc tính)
 - Và có $DOM(A_i)=DOM(B_i)$, $1 \le i \le n$
- Trên các lược đồ quan hệ cũng có các phép toán hội, giao, trừ, chia và tích Descartes như những tập hợp thông thường
- Kết quả của các phép toán ∪, ∩, –, ÷, và x là một quan hệ có cùng tên thuộc tính với quan hệ đầu tiên (R)

Ví dụ

NHANVIEN	TENNV	NGSINH	PHAI
	Tung	12/08/1955	Nam
	Hang	07/19/1968	Nu
	Nhu	06/20/1951	Nu
	Hung	09/15/1962	Nam

THANNHAN	TENTN	NG_SINH	PHAITN
	Trinh	04/05/1986	Nu
	Khang	10/25/1983	Nam
	Phuong	05/03/1958	Nu
	Minh	02/28/1942	Nam
	Chau	12/30/1988	Nu

Bậc n=3 DOM(TENNV) = DOM(TENTN) DOM(NGSINH) = DOM(NG_SINH) DOM(PHAI) = DOM(PHAITN)

HAI QUAN HỆ NHANVIEN VÀ THANNHAN LÀ KHẢ HỢP

Phép hội

- Cho 2 quan hệ R và S khả hợp
- Phép hội của R và S
 - Ký hiệu R ∪ S
 - Là một quan hệ gồm các bộ thuộc R hoặc thuộc
 S, hoặc cả hai (các bộ trùng lắp sẽ bị bỏ)

$$R \cup S = \{ t / t \in R \lor t \in S \}$$

Ví dụ

R	А	В
	α	1
	α	2
	β	1

S	Α	В
	α	2
	β	3

Q	Α	В
	α	1
	α	2
	β	1
	β	3

Phép hội

■ Ví dụ

Xét hai quan hệ của hai lược đồ quan hệ NV1 (Q_1) và NV2 (Q_2) như sau :

Q_1	MA_NV	TEN_NV	MA_PHG
	001	A	1
	002	В	1
	003	С	2

Q_2	MA_NV	TEN_NV	MA_PHG
	004	С	1
	001	Α	1

Kết quả nhận được khi $(\mathbf{Q_1} \cup \mathbf{Q_2})$: $\mathbf{Q} = \mathbf{Q_1} \cup \mathbf{Q_2}$

Q	MA_NV	TEN_NV	MA_PHG
	001	A	1
	002	В	1
lon≡ rel .	003	С	2
	004	С	1

Phép giao

- Cho 2 quan hệ R và S khả hợp
- Phép giao của R và S
 - Ký hiệu R ∩ S
 - Là một quan hệ gồm các bộ thuộc R đồng thời thuộc S

$$R \cap S = \{ t / t \in R \land t \in S \}$$

Ví dụ

S	Α	В
	α	2
	β	3

$$Q = R \cap S$$

Q	Α	В
	α	2

Phép giao

■ Ví dụ

Xét hai quan hệ của hai lược đồ quan hệ NV1 (Q_1) và NV2 (Q_2) như sau :

Q_1	MA_NV	TEN_NV	MA_PHG
	001	A	1
	002	В	1
	003	С	2

Q_2	MA_NV	TEN_NV	MA_PHG	
	004	С	1	
	001	A	1	

Kết quả nhận được khi $(\mathbf{Q}_1 \cap \mathbf{Q}_2)$: $\mathbf{Q} = \mathbf{Q}_1 \cap \mathbf{Q}_2$

Q	MA_NV	TEN_NV	MA_PHG
	001	A	1

Phép trừ

- Cho 2 quan hệ R và S khả hợp
- Phép trừ của R và S
 - Ký hiệu R S
 - Là một quan hệ gồm các bộ thuộc R và không thuộc S
- Ví dụ

$$R - S = \{ t / t \in R \land t \notin S \}$$

R	Α	В
	α	1
	α	2
	β	1

S	Α	В
	α	2
	β	3

$$Q = R - S$$

Q	Α	В
	α	1
	β	1

Phép trừ

■ Ví dụ

Xét hai quan hệ của hai lược đồ quan hệ NV1 (Q_1) và NV2 (Q_2) như sau :

Q_1	MA_NV	TEN_NV	MA_PHG
	001	A	1
	002	В	1
	003	С	2

Q_2	MA_NV	TEN_NV	MA_PHG	
	004	С	1	
	001	Α	1	

Kết quả nhận được khi $(Q_1 - Q_2)$: $Q = Q_1 - Q_2$

Q	MA_NV	TEN_NV	MA_PHG
	002	В	1
	003	С	2

Các tính chất

Giao hoán

$$R \cup S = S \cup R$$

$$R \cap S = S \cap R$$

Kết hợp

$$R \cup (S \cup T) = (R \cup S) \cup T$$

$$R \cap (S \cap T) = (R \cap S) \cap T$$

Phép tích Cartesian

- Được dùng để kết hợp các bộ của các quan hệ lại với nhau
- Ký hiệu

```
R \times S = \{ t_1, t_2 / t_1 \in R \land t_2 \in S \}
```

HAY

```
R x S = { t/ t có dạng (a_1, a_2, ..., a_n, b_1, b_2, ..., b_m)
trong đó (a_1, a_2, ..., a_n) \in R và (b_1, b_2, ..., b_m) \in S}
```

- Kết quả trả về là một quan hệ Q
 - Mỗi bộ của Q là <u>tổ hợp</u> giữa 1 bộ trong R và 1 bộ trong S
 - Nếu R có u bộ và S có v bộ thì Q sẽ có $\mathbf{u} \times \mathbf{v}$ bộ
 - Nếu R có n thuộc tính và S có m thuộc tính thì Q sẽ có n + m thuộc tính ($R^+ \cap S^+ = \emptyset$)

Phép tích Cartesian (tt)

• Ví dụ

$$Q = R \times S$$

unambiguous

R	Α	В
	α	1
	β	2

S	В	С	D
	α	10	+
	β	10	+
	β	20	-
	γ	10	_

R×S	Α	R.B	S.B	С	D
	α	1	α	10	+
	α	1	β	10	+
	α	1	β	20	-
	α	1	γ	10	-
	β	2	α	10	+
	β	2	β	10	+
	β	2	β	20	-
	β	2	γ	10	-

Phép tích Cartesian (tt)

■ Ví dụ

Xét hai quan hệ của hai lược đồ quan hệ NV1 (Q_1) và NV2 (Q_2) như sau :

Q_1	MA_NV	TEN_NV	MA_PHG
	001	A	1
	002	В	1
	003	С	2

Q_2	MA	TEN
	NV01	X
	NV02	Y

Kết quả nhận được khi $(Q_1 \times Q_2)$: $Q = Q_1 \times Q_2$

Q	MA_NV	TEN_NV	MA_PHG	MA	TEN
	001	Α	1	NV01	X
	002	В	1	NV01	X
	003	С	2	NV01	X
	001	Α	1	NV02	Y
	002	В	1	NV02	Y
	003	С	2	NV02	Y

Phép tích Cartesian (tt)

 Thông thường theo sau phép tích Cartesian là phép chọn

$$R \times S$$

Α	R.B	S.B	С	D	
α	1	α	10	+	
α	1	β	10	+	
α	1	β	20	-	
α	1	γ	10	-	
β	2	α	10	+	
β	2	β	10	+	
β	2	β	20	-	
β	2	γ	10	-	

$$\sigma_{A=S,B}(R \times S)$$

Α	R.B	S.B	С	D
α	1	α	10	+
β	2	β	10	+
β	2	β	20	-

Phép chia

- Được dùng để lấy ra một số bộ trong quan hệ R sao cho thỏa với <u>tất cả</u> các bộ trong quan hệ S
- Ký hiệu R ÷ S
 - R(Z) và S(X)
 - Z là tập thuộc tính của R, X là tập thuộc tính của S
 - $\bullet \ \ X \subset Z$
- Kết quả của phép chia là một quan hệ T(Y)
 - Với Y=Z-X
 - Có t là một bộ của T nếu <u>với mọi bộ</u> t_s∈S, tồn tại bộ t_R∈R thỏa 2 điều kiện
 - $t_R(Y) = t$
 - $t_R(X) = t_S(X)$

Phép chia (tt)

$$Q = R \div S$$

R	Α	В	С	D	Е
	α	a	α	a	1
	α	а	γ	a	1
	α	а	γ	b	1
	β	а	γ	а	1
	β	а	γ	b	3
	γ	а	γ	а	1
	γ	а	γ	b	1
	γ	a	β	b	1

S	D	Ε
	a	1
	b	1

$$R \div S$$

Q	Α	В	С
	α	a	γ
	γ	a	γ

$$R \div S = \{ t / \forall t_2 \in S, \exists t_1 \in R : t = t_1[Q] \land t_2 = t_1[S] \}$$

$$R \div S = \{ t / sc: \forall u \in S, (t,u) \in R \}$$

Phép chia (tt)

 Biểu diễn phép chia thông qua tập đây đủ các phép toán ĐSQH

$$\begin{array}{c} \text{Q1} \leftarrow \pi_{\text{Y}}(\text{R}) \\ \\ \text{R} \div \text{S} \end{array} \qquad \begin{array}{c} \text{Q2} \leftarrow \text{Q1} \times \text{S} \\ \\ \text{Q3} \leftarrow \pi_{\text{Y}}(\text{Q2} - \text{R}) \\ \\ \text{T} \leftarrow \text{Q1} - \text{Q2} \end{array}$$

Y là tập thuộc tính của Q với $Y = R^+ - S^+$

CƠ SỞ DỮ LIỆU - QUẢN LÝ ĐỀ ÁN CÔNG TY

Ví dụ

- Cho biết mã nhân viên tham gia tất cả các đề án
 - Quan hệ: PHANCONG, DEAN
 - Thuộc tính: MANV

 $\pi_{MANV}(PHANCONG \div DEAN)$

Ví dụ

- Cho biết mã nhân viên tham gia tất cả các đề án do phòng số 4 phụ trách
 - Quan hệ: PHANCONG, DEAN
 - Thuộc tính: MANV
 - Điều kiện: PHONG=4

$$\pi_{MANV}(\sigma_{PHONG=4} (PHANCONG \div DEAN))$$

CƠ SỞ DỮ LIỆU

- Giới thiệu về Đại số quan hệ
- Các phép toán tập hợp
- Các phép toán quan hệ
- Các phép toán khác
- Các thao tác cập nhật trên quan hệ

Phép chọn

- Được dùng để lấy ra các bộ của quan hệ R
- Các bộ được chọn phải thỏa mãn điều kiện chọn P
- Ký hiệu

$$\sigma_{P}(R)$$

- P là biểu thức gồm các mệnh đề có dạng
 - <tên thuộc tính> <phép so sánh> <hằng số>
 - <tên thuộc tính> <phép so sánh> <tên thuộc tính>
 - <phép so sánh> gồm có: < , > , ≤ , ≥ , ≠ , =
 - Các mệnh đề có thể được nối lại nhờ các phép toán luận lý: ∧ (and), ∨ (or), ¬ (not)

Phép chọn (tt)

- Kết quả trả về là một quan hệ
 - Có cùng danh sách thuộc tính với R
 - Có số bộ luôn ít hơn hoặc bằng số bộ của
 R

Ví dụ

R	Α	В	С	D
	α	α	1	7
	α	β	5	7
	β	β	12	3
	β	β	23	10

	R	Α	В	С	D
$\sigma_{(A=B)\wedge(D>5)}$ (R	()	α	α	1	7
		β	β	23	10

Phép chọn (tt)

Phép chọn có tính giao hoán

$$\sigma_{p1}(\sigma_{p2}(R)) = \sigma_{p2}(\sigma_{p1}(R))$$

Ví dụ:

$$\sigma_{\text{(PHONG=4)}}(\sigma_{\text{(Luong>2500)}}(\text{NHANVIEN}))$$

$$\sigma_{\text{(Luong>2500)}}(\sigma_{\text{(PHONG=4)}}(\text{NHANVIEN}))$$

CƠ SỞ DỮ LIỆU - QUẢN LÝ ĐỀ ÁN CÔNG TY

Ví dụ 1

- Cho biết các nhân viên ở phòng số 4
 - Quan hệ: NHANVIEN
 - Thuộc tính: PHONG
 - Điều kiện: PHONG=4

O_{PHONG=4} (NHANVIEN)

Ví dụ 2

- Tìm các nhân viên có lương trên
 25000 ở phòng 4 hoặc các nhân viên có lương trên 30000 ở phòng 5
 - Quan hệ: NHANVIEN
 - Thuộc tính: LUONG, PHONG
 - Điều kiện:
 - LUONG>25000 và PHONG=4 hoặc
 - LUONG>30000 và PHONG=5

 σ (PHONG=4 \wedge Luong>25000) \vee (PHONG = 5 \wedge LUONG > 30000) (NHANVIEN)

Phép chiếu

- Được dùng để lấy ra một vài cột của quan hệ R
- Ký hiệu π_{A1, A2, ..., Ak}(R)
- Kết quả trả về là một quan hệ
 - Có k thuộc tính
 - Có số bộ luôn ít hơn hoặc bằng số bộ của R
- Ví dụ

R	Α	В	С
	α	10	1
	α	20	1
	β	30	1
	β	40	2

R	Α	С
	α	1
	α	1
	β	1
	β	2

Phép chiếu (tt)

Phép chiếu không có tính giao hoán

$$\pi_{X,Y}(R) = \pi_X(\pi_Y(R))$$

$$\pi_{A1, A2, ..., An}(\pi_{A1, A2, ..., Am}(R)) \neq \pi_{A1, A2, ..., Am}(\pi_{A1, A2, ..., An}(R))$$

Ví dụ 1

- Cho biết họ tên và lương của các nhân viên
 - Quan hệ: NHANVIEN
 - Thuộc tính: HONV, TENNV, LUONG

 $\pi_{HONV, TENNV, LUONG}(NHANVIEN)$

Ví dụ 2

- Cho biết mã nhân viên có tham gia đề án hoặc có thân nhân
 - Quan hệ: DEAN
 - Thuộc tính: MANV
 - Quan hê: THANNHAN
 - Thuộc tính: MANV

 $\pi_{MANV}(DEAN) \cup \pi_{MANV}(THANNHAN)$

Ví dụ 3

- Cho biết mã nhân viên không có thân nhân nào
 - Quan hệ: NHANVIEN
 - Thuộc tính: MANV
 - Quan hệ: THANNHAN
 - Thuộc tính: MANV

 $\pi_{MANV}(NHANVIEN) - \pi_{MANV}(THANNHAN)$

Phép chiếu mở rộng

- Mở rộng phép chiếu bằng cách cho phép sử dụng các phép toán số học trong danh sách thuộc tính
- Ký hiệu $\pi_{F1, F2, ..., Fn}$ (E)
 - E là biểu thức ĐSQH
 - F₁, F₂, ..., F_n là các biểu thức số học liên quan đến:
 - Hằng số
 - Thuộc tính trong E

Phép chiếu mở rộng (tt)

- Ví dụ
 - Cho biết họ tên của các nhân viên và lương của họ sau khi tăng 10%

Biểu thức số học F = Luong*1.1

- <u>Phép chiếu</u>: Dùng để trích chọn các thuộc tính được chỉ ra trong danh sách thuộc tính của một quan hệ. Ký hiệu phép chiếu lên thuộc tính A của quan hệ R là <u>R/A/</u>.
- Ví dụ: cho quan hệ NhanVien với tập thuộc tính NhanVien+={MaNV, HoTen, Phai, Luong, PHG}, chứa 2 bộ giá trị

	NhanVien				
	MaNV	HoTen	Phai	Luong	PHG
– nv1 =	123	NTA	Nữ	2000	NC
– nv2 =	124	LVM	Nam	2100	NC

- Phép chiếu lên 1 thuộc tính HoTen của quan hệ NhanVien:
 - NhanVien[HoTen] = {N T A, L V M}

NhanVien				
MaNV	HoTen	///Phai//	Luong	PHG
123///	NTA	Nữ	2000	NC////
124///	LVM	Nam	2100///	NC////

- Phép chiếu lên 1 tập thuộc tính K={HoTen, Phai} của quan hệ NhanVien:
 - NhanVien[HoTen, Phai] = {{N T A, Nữ}, {L V M, Nam}}

NhanVien				
MaNV	HoTen	Phai	Luong	PHG
123///	NTA	Nữ	2000//	NC///
124///	LVM	Nam	2100//	NC ////

 Phép chiếu trên bộ giá trị: dùng để trích chọn các giá trị cụ thể của bộ giá trị đó theo các thuộc tính được chỉ ra trong danh sách thuộc tính của một quan hệ.

 Phép chiếu của một bộ giá trị t lên thuộc tính A của quan hệ R là t_R/A/.

•Ví dụ: cho quan hệ NhanVien với tập thuộc tính NhanVien+={MaNV, HoTen, Phai, Luong, PHG}, chứa 2 bộ giá trị nv1 và nv2

	NhanVien					
	MaNV	HoTen	Phai	Luong	PHG	
nv1 =	123	NTA	Nữ	2000	NC	
nv2 =	124	LVM	Nam	2100	NC	

Phép chiếu 1 bộ lên 1 thuộc tính-Nv1[HoTen] = {N T A}

- Phép chiếu 1 bộ lên 1 tập thuộc tính
 - tập thuộc tính K={HoTen, Phai}
 - $-nv1[K] = \{nTA, n\tilde{u}\}$

	NhanVien				
	MaNV	HoTen	Phai	Luong	PHG
-nv1 =	123	NTA	Nữ	2000	NC
– nv2 =	124	LVM	Nam	2100	NC

CƠ SỞ DỮ LIỆU

- Giới thiệu về Đại số quan hệ
- Các phép toán tập hợp
- Các phép toán quan hệ
- Các phép toán khác
- Các thao tác cập nhật trên quan hệ

Chuỗi các phép toán

- Kết hợp các phép toán đại số quan hệ
 - Lồng các biểu thức lại với nhau

$$\pi_{A1, A2, ..., Ak}(\sigma_P(R))$$

$$\sigma_{P}(\pi_{A1, A2, ..., Ak}(R))$$

- Thực hiện từng phép toán một
 - <u>B1</u>

$$\sigma_{P}(R)$$

• <u>B2</u>

$$\pi_{A1, A2, ..., Ak}$$
 (Quan hệ kết quả ở B1)

Cần đặt tên cho quan hệ

Phép gán

- Được sử dụng để nhận lấy <u>kết quả</u> trả về của một phép toán
 - Thường là kết quả trung gian trong chuỗi các phép toán
- Ký hiệu ←
- Ví dụ
 - <u>**B1**</u>

$$S \leftarrow \sigma_{P}(R)$$

- <u>B2</u>

$$KQ \leftarrow \pi_{A1, A2, ..., Ak}(S)$$

Phép đổi tên

- Được dùng để đổi tên
 - Quan hệ

```
Xét quan hệ R(B, C, D)
```

 $\rho_{S}(R)$: Đổi tên quan hệ R thành S

- Thuộc tính

 $\rho_{X,C,D}(R)$: Đổi tên thuộc tính B thành X

Đổi tên quan hệ R thành S và thuộc tính B thành X

$$\rho_{S(X,C,D)}(R)$$

Ví dụ

- Cho biết họ và tên nhân viên làm việc ở phòng số 4
 - Quan hệ: NHANVIEN
 - Thuộc tính: HONV, TENNV
 - Điều kiện: PHONG=4
- C1: $\pi_{HONV, TENNV}(\sigma_{PHONG=4}(NHANVIEN))$
- C2: $NV_P4 \leftarrow \sigma_{PHONG=4}(NHANVIEN)$

$$KQ \leftarrow \pi_{HONV, TENNV}(NV_P4)$$

 κ KQ(HO, TEN) $\leftarrow \pi_{\text{HONV, TENNV}}$ (NV_P4)

 $\rho_{\text{KQ(HO, TEN)}}(\pi_{\text{HONV, TENNV}}(\text{NV_P4}))$

- Với mỗi phòng ban, cho biết thông tin của người trưởng phòng
 - Quan hệ: PHONGBAN, NHANVIEN
 - Thuộc tính: TRPHG, MAPHG, TENNV, HONV, ...

TENPHG	MAPHG	TRPHG	NG_NHANG	CHUC	_				
Nghien cuu	5	333445555	5 05/22/19	988					
Dienhand	MAPHG	98 78879 87	7 NG_KATATO	29FUC	MANV	TEN	VV	HON	V
Quan ly Nghien cuu	1 5	88866555! 33344555!		981 988	33344555	5 Tui	ng	Nguy	en
Dieu hanh MANV	TENNV	987987987 HONV 88866555	NGSTNH	D	98798798 CHI 88866555	PHAI	LU	Nguy ONG Phar	PHG
Quan ly 333445555	Tung	Nguyen	12/08/1955		NVC Q5	Nam		000	5
888665555	Vinh	Pham	07/19/1968	332 1	NTH Q1	Nu	25	000	4
987654321	Nhu	Le	06/20/1951	291 H	IVH QPN	Nu	43	000	4
987987987	Hung	Nguyen	09/15/1962	Ba I	Ria VT	Nam	38	000	5

 B1: Tích Cartesian PHONGBAN và NHANVIEN

• B2: Chọn ra những bộ thỏa TRPHG=MANV

$$KQ \leftarrow \sigma_{TRPHG=MANV}(PB_NV)$$

- Cho biết lương cao nhất trong công ty
 - Quan hệ: NHANVIEN
 - Thuộc tính: LUONG

_	TENNV	HONV	 LUONG			LUONG	
	Tung	Nguyen	 40000		***	40000	
	Hang	Bui	 25000			25000	
	Nhu	Le	 43000			43000	
	Hung	Nguyen	 38000	•••		38000	

 B1: Chọn ra những lương không phải là lớn nhất

$$\begin{array}{l} \text{R1} \leftarrow (\pi_{\text{LUONG}} \, (\text{NHANVIEN})) \\ \\ \text{R2} \leftarrow \sigma_{\text{NHANVIEN.LUONG} \, < \, \text{R1.LUONG}} (\text{NHANVIEN} \, \times \, \text{R1}) \\ \\ \text{R3} \leftarrow \pi_{\text{NHANVIEN.LUONG}} \, (\text{R2}) \end{array}$$

• B2: Lấy tập hợp lương trừ đi lương trong R3

$$KQ \leftarrow \pi_{LUONG} (NHANVIEN) - R3$$

- Cho biết các phòng ban có cùng địa điểm với phòng số 5
 - Quan hệ: DIADIEM_PHG
 - Thuộc tính: DIADIEM, MAPHG
 - Điều kiện: MAPHG=5

Phòng 5 có tập hợp những địa điểm nào?

MAPHG	DIADIEM
1	ТР НСМ
4	HA NOI
5	VUNGTAU
5	NHATRANG
5	TP HCM

Phòng nào có địa điểm nằm trong trong tập hợp đó?

MAPHG	DIADIEM
1	TP HCM
4	HA NOI
5	VUNGTAU
5	NHATRANG
5	TP HCM

• B1: Tìm các địa điểm của phòng 5

$$DD_P5(DD) \leftarrow \pi_{DIADIEM}(\sigma_{MAPHG=5}(DIADIEM_PHG))$$

 B2: Lấy ra các phòng có cùng địa điểm với DD_P5

$$R1 \leftarrow \sigma_{MAPHG \neq 5}$$
 (DIADIEM_PHG)

$$R2 \leftarrow \sigma_{DIADIEM=DD} (R1 \times DD_P5)$$

$$KQ \leftarrow \pi_{MAPHG}(R2)$$

Phép kết

- Được dùng để tổ hợp 2 bộ có liên quan từ 2 quan hệ thành 1 bộ
- Ký hiệu R ⋈ S
 - $R(A_1, A_2, ..., A_n)$ và $S(B_1, B_2, ..., B_m)$
- Kết quả của phép kết là một quan hệ Q
 - Có n + m thuộc tính $Q(A_1, A_2, ..., A_n, B_1, B_2, ..., B_m)$
 - Mỗi bộ của Q là tổ hợp của 2 bộ trong R và S, thỏa mãn một số <u>điều kiên kết</u> nào đó
 - Có dạng A_i θ B_i
 - A_i là thuộc tính của R, B_i là thuộc tính của S
 - A_i và B_i có cùng miền giá trị
 - θ là phép so sánh: ≠, =, <, >, ≤, ≥

Có thể xem phép kết là phép tích Descarte + phép chọn

- Phân loại
 - Kết theta (Theta join) là phép kết có điều kiện
 - Ký hiệu R ⋈_CS
 - C gọi là điều kiện kết trên thuộc tính
 - Kết bằng (Equi join) khi C là điều kiện so sánh bằng
 - Kết tự nhiên (Natural join)
 - **Ký hiệu** R ⋈ S hay R * S
 - R⁺ ∩ S⁺ ≠ Ø
 - Kết quả của phép kết bằng bỏ bớt đi 1 cột giống nhau

Ví dụ phép kết Theta

$$R \bowtie_{B < D} S$$

B1: Q ← **R x S**

B2: $KQ \leftarrow \sigma_{B < D}(Q)$

Ví dụ phép kết bằng

R	Α	В	С
	1	2	3
	4	5	6
	7	8	9

S	D	Е
	3	1
	6	2

$$R \bowtie_{C=D} S$$

$$R\bowtie_{C=S.C} S$$

• Ví dụ phép kết tự nhiên

- Với mỗi nhân viên, hãy cho biết thông tin của phòng ban mà họ đang làm việc
 - Quan hệ: NHANVIEN, PHONGBAN

 $\pi_{\text{MANV,TENNV, TENPHONGBAN}}$ (NHANVIEN

PHONGBAN)

MA_PHG = MAPHONG

- Với mỗi phòng ban hãy cho biết các địa điểm của phòng ban đó
 - Quan hệ: PHONGBAN, DDIEM_PHG

 $\pi_{\mathsf{MAPHONG},\mathsf{TENPHONGBAN},\;\mathsf{DIADIEM}}(\mathsf{PHONGBAN})$

DDIEM_PHG)

MAPHONG = MA PHG

Phép kết ngoài

- Mở rộng phép kết để tránh mất mát thông tin
 - Thực hiện phép kết
 - Lấy thêm các bộ không thỏa điều kiện kết
- Có 3 hình thức
 - Mở rộng bên trái
 - − Mở rộng bên phải

Ví dụ

- Cho biết họ tên nhân viên và tên phòng ban mà họ phụ trách nếu có
 - Quan hệ: NHANVIEN, PHONGBAN
 - Thuộc tinh: TENNV, TENPH

R1
$$\leftarrow$$
 NHANVIEN $\Rightarrow_{PHG=MAPHG}$ PHONGBAN KQ \leftarrow $\pi_{HONV,TENNV,TENPHG}$ (R1)

TENNV	HONV	TENPHG
Tung	Nguyen	Nghien cuu
Hang	Bui	null
Nhu	Le	null
Vinh	Pham	Quan ly

Tập đầy đủ các phép toán ĐSQH

- Tập các phép toán σ, π, ×, −, ∪ được gọi là tập đây đủ các phép toán ĐSQH
 - Nghĩa là các phép toán có thể được biểu diễn qua chúng
 - Ví dụ
 - $R \cap S = R \cup S ((R-S) \cup (S-R))$
 - $R \bowtie_{c} S = \sigma_{c}(R \times S)$

Tập đầy đủ các phép toán ĐSQH

 Biểu diễn phép chia thông qua tập đây đủ các phép toán ĐSQH

$$\begin{array}{c} Q1 \leftarrow \pi_{Y}(R) \\ \\ R \div S \end{array} \qquad \begin{array}{c} Q2 \leftarrow Q1 \times S \\ \\ Q3 \leftarrow \pi_{Y}(Q2 - R) \\ \\ T \leftarrow Q1 - Q2 \end{array}$$

Phép chia (nhắc lại)

- Được dùng để lấy ra một số bộ trong quan hệ R sao cho thỏa với <u>tất cả</u> các bộ trong quan hệ S
- Ký hiệu R ÷ S
 - R(Z) và S(X)
 - Z là tập thuộc tính của R, X là tập thuộc tính của S
 - $X \subseteq Z$
- Kết quả của phép chia là một quan hệ T(Y)
 - Với Y=Z-X
 - Có t là một bộ của T nếu <u>với mọi bộ</u> t_S∈S, tồn tại bộ t_R∈R thỏa 2 điều kiện
 - $t_R(Y) = t$
 - $t_R(X) = t_S(X)$

Phép chia (nhắc lại)

• Ví dụ

R	Α	В	С	D	Е
	α	a	α	a	1
	α	а	γ	а	1
	α	а	γ	b	1
	β	а	γ	а	1
	β	а	γ	b	3
	γ	а	γ	а	1
	γ	а	γ	b	1
	γ	a	β	b	1

S	D	Е
	a	1
	b	1

Ví dụ

- Cho biết mã nhân viên tham gia tất cả các đề án
 - Quan hệ: PHANCONG, DEAN
 - Thuộc tính: MANV

 $\pi_{MANV}(PHANCONG \div DEAN)$

Ví dụ

- Cho biết mã nhân viên tham gia tất cả các đề án do phòng số 4 phụ trách
 - Quan hệ: PHANCONG, DEAN
 - Thuộc tính: MANV
 - Điều kiện: PHONG=4

$$\pi_{MANV}(\sigma_{PHONG=4} (PHANCONG \div DEAN))$$

Hàm kết hợp

- Nhận vào tập hợp các giá trị và trả về một giá trị đơn
 - AVG
 - MIN
 - MAX
 - SUM
 - COUNT

Hàm kết hợp

• Ví dụ

R	Α	В
	1	2
	3	4
	1	2
	1	2

$$SUM(B) = 10$$

$$AVG(A) = 1.5$$

$$MIN(A) = 1$$

$$MAX(B) = 4$$

COUNT(A) = 4

Cho biết lương cao nhất của các nhân viên công ty

 $MAX(\pi_{Luong}(NHANVIEN))$

Phép gom nhóm (\mathcal{F})

- •Được dùng để phân chia quan hệ thành nhiều nhóm dựa trên điều kiện gom nhóm nào đó
- •Ký hiệu

G1, G2, ..., Gn
$$\mathcal{F}_{F1(A1), F2(A2), ..., Fn(An)}(E)$$

- -E là biểu thức ĐSQH
- -G1, G2, ..., Gn là các thuộc tính gom nhóm
- -F1, F2, ..., Fn là các hàm
- -A1, A2, ..., An là các thuộc tính tính toán trong hàm F

Phép gom nhóm (tt)

• Ví dụ

$$J_{SUM(C)}(R)$$

$$A$$
_{SUM(C)}(R)

Ví dụ

 Tính số lượng nhân viên và lương trung bình của cả công ty

$$\mathcal{F}_{\text{COUNT(MANV),AGV(LUONG)}}$$
(NHANVIEN)

Ví dụ

 Tính số lượng nhân viên và lương trung bình của từng phòng ban

$$PHONG \mathcal{I}_{COUNT(MANV),AGV(LUONG)}(NHANVIEN)$$

CƠ SỞ DỮ LIỆU

- Giới thiệu về Đại số quan hệ
- Các phép toán tập hợp
- Các phép toán quan hệ
- Các phép toán khác
- Các thao tác cập nhật trên quan hệ

Các thao tác cập nhật

- Nội dung của CSDL có thể được cập nhật bằng các thao tác
 - Thêm (insertion)
 - Xóa (deletion)
 - Sửa (updating)
- Các thao tác cập nhật được diễn đạt thông qua phép toán gán

Thao tác thêm

• Được diễn đạt

$$R_{new} \leftarrow R_{old} \cup E$$

- R là quan hệ
- E là một biểu thức ĐSQH
- Ví dụ
 - Phân công nhân viên có mã 123456789 làm thêm đề án mã số 20 với số giờ là 10

PHANCONG \leftarrow PHANCONG \cup ('123456789', 20, 10)

Thao tác xóa

Được diễn đạt

$$R_{new} \leftarrow R_{old} - E$$

- R là quan hệ
- E là một biểu thức ĐSQH
- Ví dụ
 - Xóa các phân công đề án của nhân viên 123456789

Thao tác sửa

• Được diễn đạt

$$R_{new} \leftarrow \pi_{F1, F2, ..., Fn} (R_{old})$$

- R là quan hệ
- Fi là biểu thức tính toán cho ra giá trị mới của thuộc tính
- Ví dụ
 - Tăng thời gian làm việc cho tất cả nhân viên lên
 1.5 lần

PHANCONG $\leftarrow \pi_{MA NVIEN, SODA, THOIGIAN*1.5}$ (PHANCONG)

