

### Introdução Inteligência Computacional

Profa. Dra. Ana Paula Abrantes de Castro e Shiguemori anapaula.acs@ifsp.edu.br
Instituto Federal de Educação, Ciência e Tecnologia – IFSP

Dr. Elcio Hideiti Shiguemori elcio@ieav.cta.br Instituto de Estudos Avançados - IEAv

**Curso**: Análise e Desenvolvimento de Sistemas 4º. Semestre - IICI4 – 4 aulas Semanais



### Roteiro

- Modelo Perceptron
- Treinamento
- Interpretação Geométrica
- Exemplos
- Limitações

### Modelo do Neurônio Artificial

O Neurônio artificial é função matemática que associa pesos às entradas.



(McCulloch e Pitts, 1943)

### Histórico Perceptron

### Rosemblat propôs o Perceptron (1958)

- Como um método inovador de aprendizagem supervisionada
- Demonstração do teorema da convergência
- A forma mais simples de uma rede neural usada para classificação de padrões linearmente separáveis

#### **Características**

- Aprendizado supervisionado
- Representação binária
- Apenas uma camada de pesos ajustáveis

### Modelo do Perceptron



$$v = \sum_{i}^{N} W_{i}.X_{i} + Bias$$

 $\varphi(v)$ 

Entradas (Dendritos)

Pesos Sinápticos
 (Efeito de inibição ou de excitação sobre a ativação dos sinais de entrada)

Ativação
 (Considera o conjunto total das entradas e dos seus pesos associados)

Função de Ativação (Regulagem da saída da rede)





### Arquitetura Básica do Perceptron



### Fronteira de Decisão

- Atribuir o ponto representado pelas entradas  $x_1, x_2, ..., x_n$  à classe  $C_1$  se a saída y do Perceptron for igual a 1 ou à classe  $C_2$  se ela for 0
- O efeito do bias "b" é de deslocar a fronteira de decisão em relação à origem



### Limitações do Perceptron

- Não admite mais de uma camada de pesos ajustáveis
- Aprendizado nem sempre ocorre
- $\rightarrow$  As duas classes  $C_1$  e  $C_2$  devem ser linearmente separáveis





### Algoritmo de Treinamento

#### Inicialize w

#### **Repita**

```
Para cada padrão x_i faça y_i \leftarrow valor de saída do perceptron para o padrão <math>x_i e \leftarrow d_i - y_i w \leftarrow w + e * \eta * x_i
```

<u>fim</u>

Até (o número de interações máximo ser atingido) ou (o perceptron acertar a saída para todos os padrões).

<u>Fim</u>

### Algoritmo de Treinamento

Passo 1. Inicializa pesos:

$$\overline{W}(0) = \overline{0}$$

Passo 2. Ativa a rede - vetor de entrada e a resposta desejada:

$$\overline{X}(n)$$
 e  $d(n)$ 

Passo 3. Calcula-se a saída: 
$$y(n) = F(\overline{W}^T(n)\overline{X}(n))$$
 - F(.) é a função sinal

Passo 4. Atualiza os pesos e bias:

$$\overline{w}(n+1) = \overline{w}(n) + \eta[d(n) - y(n)]\overline{X}(n)$$

$$b(n+1) = b(n) + \eta[d(n) - y(n)] * 1$$

$$d(n) = \begin{cases} +1 & se & \overline{X}(n) \in C_1 \\ -1 & se & \overline{X}(n) \in C_2 \end{cases}$$

Passo 5. Incrementa n e volta para o Passo 2.

## <u>A</u> Exemplo

$$x_1 = 2$$
  
 $x_2 = 4$   
 $w_1 = 0.1$   
 $w_2 = 0.2$ 



### Exemplo – Classificação 2 Classes

 Treinar o Perceptron para achar um discriminante que divida em duas partes o conjunto de quatro pontos no plano que são Linearmente.



### Iniciando os dados

| X    | у     | Classe |              |
|------|-------|--------|--------------|
| 0.3  | 0.7   | 1      | $\leftarrow$ |
| -0.6 | 0.3   | 0      |              |
| -0.1 | -0.8  | 0      | $\leftarrow$ |
| 0.1  | -0.45 | 1      |              |

#### Pesos

$$W_1 = 0.8$$
  
 $W_2 = -0.5$ 

$$n = 0.5$$

### Equações de Treinamento

Toda vez que gera uma saída compara com a classe esperada e computa o erro.

$$e = (saida_{desejada} - saida_{rede})$$

Atualização dos pesos

$$\varphi(y) = \begin{cases} 1 \text{ se } o \ge 0 \\ 0 \text{ se } o < 0 \end{cases}$$

Atualização dos pesos

$$w_{new} = w_{old} + nex_i$$

Onde  $x_i$  é o elemento correspondente do vetor de input que gerou o erro.



## Primeira Iteração

Entradas: 
$$x_1 = 0.3 \ e \ x_2 = 0.7 \rightarrow Classe = 1$$

Pesos: 
$$w_1 = 0.8 \ e \ w_2 = -0.5$$

Saída: 
$$y_1 = 0.3 * 0.8 + 0.7 * (-0.5) = -0.11$$

Função de Ativação: 
$$\varphi(-0.11) = \begin{cases} 1 \text{ se } o \ge 0 \\ 0 \text{ se } o < 0 \end{cases} \to 0$$

Erro: 
$$e_1 = (1 - 0) = 1$$

Atualização dos Pesos: 
$$w_1 = 0.8 + 0.5 *1*0.3 = 0.95$$
  $w_2 = -0.5 + 0.5 *1*0.7 = -0.15$ 



# Segunda Iteração

Entradas: 
$$x_1 = -0.6 \ e \ x_2 = 0.3 \ \rightarrow Classe = 0$$

Pesos: 
$$w_1 = 0.95 \ e \ w_2 = -0.15$$

Saída: 
$$y_1 = -0.6 * 0.95 + 0.3 * (-0.15) = -0.525$$

Função de Ativação: 
$$\varphi(-0.525) = \begin{cases} 1 \text{ se } o \ge 0 \rightarrow 0 \\ 0 \text{ se } o < 0 \end{cases}$$

Erro: 
$$e_1 = (0 - 0) = 0$$



## Terceira Iteração

Entradas: 
$$x_1 = -0.1 \ e \ x_2 = -0.8 \rightarrow Classe = 0$$

Pesos: 
$$w_1 = 0.95 \ e \ w_2 = -0.15$$

Saída: 
$$y_1 = -0.1 * 0.95 + (-0.8) * (-0.15) = 0.025$$

Função de Ativação: 
$$\varphi(0.025) = \begin{cases} 1 \text{ se } o \ge 0 \\ 0 \text{ se } o < 0 \end{cases} \rightarrow 1$$

Erro: 
$$e_1 = (1 - 0) = 1$$

Atualização dos Pesos: 
$$w_1 = 0.95 + 0.5 *1*(-0.1) = 1$$
  $w_2 = -0.15 + 0.5 *1*(-0.8) = 0.25$ 



## Quarta Iteração

Entradas: 
$$x_1 = 0.1 \ e \ x_2 = -0.45 \rightarrow Classe = 1$$

Pesos: 
$$w_1 = 1 e w_2 = 0.25$$

Saída: 
$$y_1 = 0.1 * 1 + (-0.45) * 0.25 = -0.0125$$

Função de Ativação: 
$$\varphi(-0.11) = \begin{cases} 1 \text{ se } o \ge 0 \\ 0 \text{ se } o < 0 \end{cases} \rightarrow 0$$

Erro: 
$$e_1 = (1 - 0) = 1$$

Atualização dos Pesos: 
$$w_1 = 1 + 0.5 *1*(0.1) = 1.05$$
  $w_2 = 0.25 + 0.5 *1*(-0.45) = 0.025$ 



## Quinta Iteração

Entradas: 
$$x_1 = 0.3 e$$
  $x_2 = 0.7 \rightarrow Classe = 1$ 

Pesos: 
$$w_1 = 1.05 \ e \ w_2 = 0.025$$

Saída: 
$$y_1 = 0.3 * 1.05 + 0.7 * 0.025 = 0.3325$$

Função de Ativação: 
$$\varphi(0.3325) = \begin{cases} 1 \text{ se } o \geq 0 \\ 0 \text{ se } o < 0 \end{cases} 1$$

Erro: 
$$e_1 = (1-1) = 0$$



# Sexta Iteração

Entradas: 
$$x_1 = -0.6 \ e \ x_2 = 0.3 \ \rightarrow Classe = 0$$

Pesos: 
$$w_1 = 1.05 \ e \ w_2 = 0.025$$

Saída: 
$$y_1 = -0.6 * 1.05 + 0.3 * 0.025 = -0.6225$$

Função de Ativação: 
$$\varphi(-0.6225) = \begin{cases} 1 \text{ se } o \ge 0 \\ 0 \text{ se } o < 0 \end{cases} \rightarrow 0$$

Erro: 
$$e_1 = (0 - 0) = 0$$



# Sétima Iteração

Entradas: 
$$x_1 = -0.1 \ e \ x_2 = -0.8 \ \rightarrow Classe = 0$$

Pesos: 
$$w_1 = 1.05 \ e \ w_2 = 0.025$$

Saída: 
$$y_1 = -0.1 * 1.05 + (-0.8) * 0.025 = -0.125$$

Função de Ativação: 
$$\varphi(-0.125) = \begin{cases} 1 \text{ se } o \ge 0 \\ 0 \text{ se } o < 0 \end{cases} \rightarrow 0$$

Erro: 
$$e_1 = (0 - 0) = 0$$



# Oitava Iteração

Entradas: 
$$x_1 = 0.1 \ e \ x_2 = -0.45 \rightarrow Classe = 1$$

Pesos: 
$$w_1 = 1.05 \ e \ w_2 = 0.025$$

Saída: 
$$y_1 = 0.1 * 1.05 + (-0.45) * 0.025 = 0.0937$$

Função de Ativação: 
$$\varphi(0.0937) = \begin{cases} 1 \text{ se } o \ge 0 \\ 0 \text{ se } o < 0 \end{cases} 1$$

Erro: 
$$e_1 = (1-1) = 0$$



## △\ Gráfico



## Considerações

- Derceptron só é capaz de separar classes através de funções lineares.
- As classes têm que ser linearmente separáveis, o que é uma condição não garantida para a maioria dos problemas de classificação
- Resolve o problema da porta AND e OR, por serem linearmente separáveis
- Não Resolve o problema da porta XOR, por não ser linearmente separável

## Exercício

Faça o treinamento da Rede Perceptron para o problema da porta lógica AND.

| Х | у | Classe |
|---|---|--------|
| 0 | 0 | 0      |
| 0 | 1 | 0      |
| 1 | 0 | 0      |
| 1 | 1 | 1      |





### Referências Bibliográficas

- José Demísio Simões da Silva Notas de Aula
- Ana Paula A. C. Shiguemori Notas de Aula
- Elcio Hideiti Shiguemori Notas de Aula