Basic Mathematics (241) Marking Scheme 2023-24 **Section A** 1) xy^2 1 2) $2\overline{0}$ 1 3) ½ 1 4) No Solution 5) 0,8 1 6) 5 Unit 1 7) $\Delta PQR \sim \Delta CAB$ 1 8) RHS 1 9) 70° 1 10) 3/4 1 11) 45° 1 12) sin² A 1 13) *π*:2 1 14) 7 cm 1 15) $\frac{1}{6}$ 1 16) 15 1 17) 3.5 CM 1 18) 12-18 1 19) Both assertion and reason are true and reason is the correct explanation of assertion. 20) Assertion (A) is false but reason(R) is true. 1

SECTION B

21) 3x+2y = 8

$$6x - 4y = 9$$

$$a_1$$
=3, a_2 =6, $C_{1=8}$

$$b_1$$
=2, b_2 =-4, C_2 =9

$$\frac{a_1}{a_2} = \frac{3}{6} = \frac{1}{2} \qquad \frac{b_1}{b_2} = \frac{2}{-4} = \frac{-1}{2} \qquad \frac{c_1}{c_2} = \frac{8}{9}$$
 1/2

$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$
 The given pair of lines is consistent.

The given pair of lines is consistent. 1/2

22) Given:-AB II CD II EF

To prove:-
$$\frac{AB}{ED} = \frac{BF}{FC}$$

Constant:- Join BD which

intersect EF at G.

Proof:- in ∆ ABD

EG II AB (EF II AB)

$$\frac{AE}{ED} = \frac{BG}{GD}$$
 (by BPT)_____(1)

In Δ*DBC*

GFIICD (EFIICD)

$$\frac{BF}{FC} = \frac{BG}{GD}$$
 (by BPT)_____(2)

from (1) & (2)

$$\frac{AE}{ED} = \frac{BF}{FC}$$
 1/2

OR

Given AD=6cm, DB=9cm

AE=8cm, EC=12cm, ∠ADE=48

To find:- ∠ABC=?

Proof:

In Δ*ABC*

Consider,
$$\frac{AD}{DB} = \frac{AE}{EC}$$

$$\frac{6}{9} = \frac{8}{13}$$

$$\frac{2}{3} = \frac{2}{3}$$

$$\frac{AD}{DB} = \frac{AE}{EC}$$

DEIIBC (Converse of BPT)

∠ADE=∠ABC (Corresponding angles)∠ABC=48°

1

1/2

23) In \triangle OTA, \angle OTA = 90°

By Pythagoras theorem

$$OA^2 = OT^2 + AT^2$$

$$(5)^2 = OT^2 + (4)^2$$

$$9 = OT^{2}$$

OT=3cm

1/2

radius of circle = 3cm.

24) $\sin^2 60^\circ + 2 \tan 45^\circ - \cos^2 30^\circ$

$$= \left(\frac{\sqrt{3}}{2}\right)^2 + 2(1) - \left(\frac{\sqrt{3}}{2}\right)^2$$

 $=\frac{3}{4} + 2 - \frac{3}{4}$

= 2

1

1/2

1

25) Area of the circle= sum of areas of 2 circles

$$\pi R^2 = \pi (40)^2 + \pi (9)^2$$

$$\pi R^2 = \pi \times (40^2 + 9)^2$$

$$R^2 = 1600 + 81$$

$$R^2 = 1681$$

$$R = 41 cm.$$

Diameter of given circle =
$$41x2 = 82cm$$
 1/2

OR

r of circle = 10cm $\theta = 90^{\circ}$

A of minor segment = $\frac{\theta}{360^{\circ}}\pi r^2$ - A of Δ

$$= \frac{\theta}{360^{\circ}} \times \pi r^{2} - \frac{1}{2} \times b \times h$$
 1/2

$$= \frac{90^{\circ}}{360^{\circ}} \times 3.14 \times 10 \times 10 - \frac{1}{2} \times 10 \times 10$$

$$= \frac{314}{4} - 50$$

$$= 78.5-50 = 28.5 \text{ cm}^2$$

A of segment =
$$28.5 \text{ cm}^2$$

Section C

26) Let $\sqrt{3}$ be a rational number

 $\sqrt{3} = \frac{a}{b}$ where a and b are co-prime.

1

squaring on both the sides

$$\left(\sqrt{3}\right) = \left(\frac{a}{b}\right)^2$$

$$3 = \frac{a^2}{b^2} = a^2 = 3b^2$$

 a^2 is divisible by 3 so a is also divisible by 3 _____(1)

let a=3cfor any integer c.

$$(3c)^2 = 3b^2$$
 1/2

 $ac^2=3b^2$

 $b^2 = 3c^2$

since b^2 is divisible by 3 so, b is also divisible by 3 ____(2)

From (1) & (2) we can say that 3 in a factor of a and b

which is contradicting the fact that a and b are co- primes.

Thus, our assumption that $\sqrt{3}$ is a rational number is wrong.

Hence, $\sqrt{3}$ is an irrational number.

27) $P(S) = 4S^2 - 4S + 1$

2S(2S-1)-1(2S-1)=0

$$(2S-1)(2S-1)=0$$

$$S = \frac{1}{2} \qquad S = \frac{1}{2}$$

1

$$a = 4$$
 $b = -4$ $c = 1$ $\alpha = \frac{1}{2}$ $\beta = \frac{1}{2}$

$$\propto +\beta = \frac{-b}{a} \qquad \propto \beta = \frac{c}{a}$$

$$\frac{1}{2} + \frac{1}{2} = \frac{-(-4)}{4}$$
 $\left(\frac{1}{2}\right) \left(\frac{1}{2}\right) = \frac{1}{4}$

1

$$\frac{1+1}{2} = \frac{+4}{4}$$
 $\frac{1}{4} =$

$$\frac{2}{2} = 1$$

1 = 1

1

28) Let cost of one bat be Rs x

Let cost of one ball be Rs y

1/2

ATQ

$$4x + 1y = 2050$$
 (1)

3x + 2y = 1600(2)	1/2
from(1)4x + 1y = 2050	
2052	. /0
y = 2050 - 4x	1/2
Substiture value of y in (2)	
[3x + 2(2050 - 4x) = 1600]	
3x + 4100 - 8x = 1600	
-5x = -2500	. 10
x = 500	1/2
Substiture value of x in (1)	
4x + 1y = 2050	
4(500) + y = 2050	
2000 + y = 2050	
y = 50	1/2
Hence	
Cost of one bat=Rs 500	1/2
Cost of one ball = Rs 50	
OR	
Let the fixed charge for first 3 days= Rs x	
And additional charge after 3 days= RS y	1/2
ATQ	1/2
x + 4y = 27(1)	4 /2
x + 2y = 21(2)	1/2
Subtract eq ⁿ (2) from (1)	
x + 4y = 27	
x + 2y = 21	
2y = 6	
y = 3	1
Substitute value of y in (2)	
x + 2y = 21	
x + 2(3) = 21	
x = 21 - 6	
x = 15	1
Fixed charge= RS 15	
Additional charge = Rs 3	
, tautional onalige 1.55	
29) Given circle touching sides of ABCD at P,Q,R and S	
To prove- AB+CD=AD+DA	1
Proof- s q	1
AP=AS(1) tangents from same point	
PB=BQ(2) to a circle are equal in length	
DR=DS(3)	
CR=CQ(4)	1
Adding eq ⁿ (1),(2),(3) & (4)	
AP+BP+DR+CR=AS+DS+BQ+CQ	
AB+DC=AD+BC	1

Time =
$$\frac{360}{x}$$
 1/2

New speed = $(x + 5)km/hr$

Time = $\frac{D}{5}$
 $x + 5 = \frac{380}{(\frac{360}{x} - 1)}$ 10

 $(x + 5)(\frac{360}{x} - 1) = 360$
 $(x + 5)(360 - x) = 360x$
 $-x^2 - 5x + 1800 = 0$
 $x^2 + 5x - 1800 = 0$
 $x^2 + 5x - 1800 = 0$
 $x^2 + 45x - 40x - 1800 = 0$
 $x(x + 45) - 40(x + 45) = 0$
 $(x + 45)(x - 40) = 0$
 $x + 45 = 0$
 $x - 40 = 0$
 $x = -45$

Speed cannot be negative

Speed of train = $40km/hr$

Upstream speed = $(18 - x)km/hr$

Downstream speed = $(18 - x)km/hr$

Downstream speed = $(18 - x)km/hr$

Time taken (upstream) = $\frac{24}{(18 + x)}$

Time taken (upstream) = $\frac{24}{(18 + x)}$

Time taken ($40km/hr = 12km/hr = 12km/h$

7

1

x(x-6) + 54(x-6) = 0

x + 54 = 0

(x-6)(x+54)=0

x - 6 = 0

$$x = 6$$
 $x = -54$

Speed cannot be negative

Speed of stream=6km/hr

33) Given $\triangle ABC = DE \mid \mid BC$

To prove
$$\frac{AD}{DB} = \frac{AE}{EC}$$

Construction: join BE and CD

Draw DM __ AC and EN __CD

Proof: or $\triangle ABC = \frac{1}{2} \times b \times h$

$$=\frac{1}{2}x$$
 AD x EN-----(1)

Or
$$\triangle ABC = \frac{1}{2}x$$
 DB x EN-----(2)

Divide $eq^{n}(1)$ by (2)

$$\frac{\operatorname{Or} \Delta ABC}{\operatorname{Or} \Delta BDE} = \frac{\frac{1}{2} X \ AD \ X \ EN}{\frac{1}{2} X \ DB \ X \ EN} = \frac{AD}{DB} - - - - - - - - - (A)$$

Or $\triangle ABC = \frac{1}{2} \times AE \times DM$ -----(3)

Or
$$\triangle DEC = \frac{1}{2} \times EC \times DM$$
 -----(4)

Divide $eq^{n}(3)$ by (4)

$$\frac{\operatorname{Or} \Delta ADE}{\operatorname{Or} \Delta DEC} = \frac{\frac{1}{2} X AE X DM}{\frac{1}{2} X EC X DM} = \frac{AE}{EC} - - - - - - - - (A)$$

 ΔBDE and ΔDEC are on the same as DE and between name parallel lines BC and DE

$$-or(BDE) = or(DEC)$$

hence

$$\frac{ar \; \Delta ADE}{ar \; \Delta BDE} = \frac{ar \; \Delta ADE}{ar \; \Delta DEC}$$

$$\frac{AD}{DB} = \frac{AE}{EC}$$
 (from (A) and (B))

Given

$$\frac{PS}{PQ} = \frac{PT}{TR}$$

$$\angle PST = \angle PRQ$$

To prove :- PQR is an isosceles $\Delta^{|e|}$

Proof :-
$$\frac{PS}{PO} = \frac{PT}{TR}$$

$$\angle$$
PST = \angle PQR (Corresponding angles)

But
$$\angle PST = \angle PRQ$$

$$\angle PQR = \angle PRQ$$

PR = PQ (sides opposite to equal angles are equal

-
$$\Delta PQR$$
 is isosceles $\Delta^{|e|}$.

1

1/2

1/2

1

34) Diameter of cylinder and hemisphere = 5mm radius (r) = $\frac{5}{2}$

Total weight = 14mm

Height of cylinder = 14 - 5 = 9mm

1

CSA of cylinder = 2⁻rh

$$= 2 \times \frac{22}{7} \times \frac{5}{2} \times 9$$

$$=\frac{990}{7}\,\mathrm{mm}^2$$

CSA of hemispheres = $2 \times r^2$

$$=2x\frac{22}{7}x\left(\frac{5}{2}\right)^2$$

$$=\frac{275}{7}$$
 mm²

1

CSA of 2 hemispheres = $2 \times \frac{275}{7}$

 $=\frac{550}{7}\,\mathrm{mm^2}$

Total area of capsule = $\frac{990}{7} + \frac{550}{7}$

$$=\frac{1540}{7}$$

 $= 220 \text{ mm}^2$

1

OR

Diameter of cylinder = 2.8 cm

$$r$$
 of cylinder = $\frac{2.8}{2}$ = 1.4 cm

r of cylinder = r of hemisphere = 1.4 cm

Height of cylinder = 5-2.8

1

1

= 2.2 cm

Volume of 1 gulab jamun = vol. of cylinder + 2 x vol. of hemisphere

$$= \overline{\wedge} r^2 h + 2 \times \frac{2}{3} \overline{\wedge} r^2$$

$$\frac{22}{7}$$
 x (1.4)² x 2.2 + 2 x $\frac{2}{3}$ x $\frac{22}{7}$ x (1.4)³

$$= 13.55 + 11.50$$

 $= 25.05 cm^3$

 $volume\ of\ us\ gulab\ jamun=45\ x25.05$

syrup jin 45 jamun = 30% x 45 x 25.05

$$= \frac{30}{100} \times 45 \times 25.05$$

$$= 338.185 \text{ cm}^3$$

$$= 338 \text{ cm}^3$$
1

35)

Life time (in hours)	Number of lamps	Mid x	d	fd
1500-2000	14	1750	-1500	-21000
2000-2500	56	2250	-1000	-56000
2500-3000	60	2750	-500	-30000
3000-3500	86	3250	0	0
3500-4000	74	3750	500	37000
4000-4500	62	4250	1000	62000
4500-5000	48	4750	1500	72000
	400			64000

$$Mean = a + \frac{\Sigma f d}{\Sigma f}$$

$$a = 3250$$

2

1

$$Mean = 3250 + \frac{64000}{400}$$

$$= 3250 + 160$$

 $= 3410$

Average life of lamp is 3410 hr

Section E

36)
$$a_6 = 16000$$
 $a_9 = 22600$

a=16000-5d

substitute in (2)

16000-sd + 8d = 22600

3d = 22600-16000

3d=6600

$$d = \frac{6600}{3} = 2200$$

a = 16000-5(2200)

a = 16000-11000

```
a = 5000
(i) a_n = 29200 \ a = 5000
                                   d = 2200
   a_n = a + (n-1)d
   29200 = 5000 + (n - 1)2200
                                                                                                         1/2
   29200-5000 = 2200n-2200
   24200+2200=2200n
   26400=2200n
   n = \frac{264}{22}
                                                                                                         1/2
   n=12
   in 12th year the production was Rs 29200
(ii) n=8, a=5000,
                        b=2200
   a_n = a + (n-1)d
                                                                                                         1/2
   = 5000+(8-1)2200
                                                                                                         1/2
   = 5000+7 \times 2200
   = 5000+15400
                                                                                                         1/2
   = 20400
   The production during 8^{th} year is = 20400
                                                                                                         1/2
                                                      OR
   n = 3, a = 5000, b = 2200
  s_n = \frac{n}{2} [2a + (n-1)d]
                                                                                                         1/2
  =\frac{3}{2}[2(5000) + (3-1) 2200]
  S_3 = \frac{3}{2} (10000 + 2 \times 2200)
                                                                                                         1/2
  =\frac{3}{2}(10000 + 4400)
                                                                                                         1/2
   = 3 \times 7200
   = 21600
                                                                                                         1/2
   The production during first 3 year is 21600
(iii) a_4 = a + 3d
   =5000 + 3 (2200)
   =5000 + 6600
   = 11600
                                                                                                         1/2
   a_7 = a + 6d
   = 5000 + 6 \times 2200
   =5000 + 13200
   = 18200
                                                                                                         1/2
a_7 - a_4 = 18200 - 11600 = 7400
```

37) coordinates of A (2,3)- Alia is house

coordinates of B (2,1)- Shagun is house

coordinates of C (4,1)- library

(i) AB =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$=\sqrt{(2-2)^2+(1-3)^2}$$

$$=\sqrt{(0^2+(-2)^2)^2}$$

$$AB = \sqrt{0+4} = \sqrt{4} \text{unit} = 2 \text{ units}$$

Alia's house from shagun's house is 2 unit

(ii) C(4,1), B (2,1)

$$CB = \sqrt{(2-4)^2 + (1-1)^2}$$

$$= \sqrt{(-2)^2} + 0^2$$

$$=\sqrt{4+0} = \sqrt{4} = 2$$
 unit

(iii) 0(0,0), B(2,1)

OB =
$$\sqrt{(2-0)^2}$$
+ $(1-0)^2$

$$=\sqrt{2^2+1^2} = \sqrt{4+1} = \sqrt{5}$$
 units

Distance between Alia's house and Shagun's house AB = 2 units

For shagun, school [O] is farther than Alia's house [A] and Library [C]

OR

C (4,1) A(2,3)

$$CA = \sqrt{(2-4)^2} + (3-1)^2$$

$$=\sqrt{(-2)^2}+2^2 = \sqrt{4+4} = \sqrt{8}$$

$$= 2\sqrt{2} \text{ units} \qquad AC^2 = 8 \qquad 1$$

Distance between Alia's house and Shagun's house AB = 2 units

Distance between Library and Shagun's house CB = 2 units

$$AC^2 + BC^2 = 2^2 + 2^2 = 4 + 4 = 8$$

Therefore A,B and C form a right triangle.

38) (i) XY CD and AC is transversal.

$$\angle ACD = \angle CAX \text{ (alt.int } \angle S)$$

∠ACD=30°

1/2

1/2

1/2

1

(ii) \angle YAB = 30°

Because XY || CD and AB is a transversal

so alternate interior angles are equal

1/2

100m

1/2

(iii) CD=? In $\triangle ADC \theta = 45^{\circ}$ $\tan\theta = \frac{P}{B}$ 1/2 $\tan 45^\circ = \frac{100}{B}$ $1 = \frac{100}{B}$ 1/2 B=100m CD = 100m 1 OR BD=? $\ln \Delta ABD \quad \theta = 30^{\circ}$ $\tan\theta = \frac{P}{B}$ 1/2 $\tan 30 = \frac{100}{BD}$ 1/2 $BD = 100\sqrt{3} \text{ m}$ 1