IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the application of : KAZUTO OKAMURA et al.

Serial Number

: 10/534,249

Filed

: 10 May, 2005

For

: LAMINATE FOR HDD SUSPENSION

WITH THE USE OF THIN COPPER FOIL

AND METHOD FOR MANUFACTURING

THE SAME

Group Art Unit

: 1794

DECLARATION UNDER 37 CFR 1.132

Honorable Commissioner

Alexandria, Virginia 22313-1450

Sir:

Now comes Yuji Matsushita who declares and says that:

- 1. I am a co-worker of Kazuto Okamura who is an inventor of the United States Patent Application Serial Number 10/467,463. I am also one of the inventors of U.S. Patent No. 6,203,918 (Shimose et al).
- 2. I graduated from Kyushu University Faculty of Engineering synthetic chemistry department in 1993, and I subsequently graduated from Kyushu University graduate school engineering

postgraduate course in 1995.

- 3. I have been employed by Nippon Steel Chemical Co., Ltd. since 1995, and I studied the development of HDD suspension materials, the development of the de novo copper foil for the COF field of application, and the metallization technology (spattering, plating) development to a polyimide film.
- 4. I have proved the feature which is different from the characteristics of a conductor shown by Shimose et al (U.S. Patent No. 6,203,918) quoted by the examination about conductor layer prescribed in the present invention.

PROOF

1. Re: Copper foil characteristics of EXAMPLE 1 of Shimose et al.

I obtained a product catalogue of electrolytic copper foil CF-T9 produced by Fukuda Metal Foil & Powder Co., Ltd.

The data (an extract) on the copper foil characteristics in the catalogue;

Official name thickness: 9 µ m

Tensile strength: 350MPa (at 23℃), 180MPa (at 180℃)

From the data in the catalogue, the electrolytic copper foil illustrated by EXAMPLE 1 of Shimose et al is the one where the

tensile strength reaches less than 400MPa.

2. Re: Copper foil characteristics of EXAMPLE 4 of Shimose et al.

I obtained a product catalogue of C7025 TM-03 produced by Olin Somers Corporation.

The data (an extract) of the copper foil characteristics in the catalogue;

Electrical Conductivity: 35% IACS Min. @68° F

From the data in the catalogue, the metal rolling copper foil illustrated by EXAMPLE4 of Shimose et al, is the one where the conductivity reaches less than 65%.

Conclusions

I can conclude as follows on the basis of the foregoing.

The copper foil of Shimose et al (U.S. Patent No. 6,203,918) is less than tensile strength 400MPa or conductivity 65%. Therefore, it has been confirmed that none of Shimose et al discloses a conductance layer satisfying the requirements of the present invention.

I, the undersigned petitioner, further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true, and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment or both, under Section 1001 of title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

This /oth day of July 2008

Yuji Matsushita

Address: c/o Nippon Steel Chemical Co., Ltd.

1- Tsukiji, Kisarazu, Chiba, 292-0835 Japan

Juji matsushota

Attachments:

Catalogue 1: Catalogue of Fukuda Metal Foil & Powder Co.,

Ltd.

Catalogue 2: Catalogue of Olin Somers Corporation

製品情報

企業情報 『 事業内容 『

金属粉の製法 電解箔の製法

铜箔代表特性Representative copper foil characteristics

電解銅箔 Electrodeposited Copper Foil

Committee of the Commit									
	IPCグレード					3			
製品名(CF)	Product name (CF)	原箔	SV	sv	HS	SV	HTE	HS	HTE
An ingressive convergence and interesting the minimized processing interesting and interesting the processing of the pro		処理	<u>T9系</u> /T8系						
公称厚さ Official name thickness		μm	9 12		2	18			35
質量厚さ		g/m^2	80	107	107	153	153	153	285
光沢面粗さ Ra		иm	0.25	0.25	0.25	0.25	0.25	0.25	0.25
粗面粗さ Rz	1.8		1.8	5.5	1.8	7.0	7.0	9.0	
Tensile strength at 23°C 引張強さ			350	350	430	350	350	440	350
JINES.	at 180°C	N/mm² (≃MPa)	180	180	200	200	180	200	210
伸び率	at 23°C	%	8	8	7	10	10	10	16
I# 0·44	at 180°C	70	11	12	6	15	6	6	6
	常態		0.65	0.80	1.15	0.95	1.50	1.45	1.95
	はんだ処理後 S-4	kN/m	0.65	0.80	1.15	0.95	1.50	1.45	1.95
引き剥がし	高温時 at 125℃		0.60	0.65	1.00	0.75	1.30	1.25	1.70
強さ	煮沸処理後 D-2/100	劣化率	< 20	< 20	< 20	< 20	< 20	< 20	< 20
	HCI処理後 18% HCI 25°C 60min.	为16 年 %	< 2	< 2	< 2	< 2	< 2	< 2	< 2
はんだ濡れ性	IPC-4562					良			

圧延銅箔 Rolled Copper Foil

IPCグレード			5								
製品名(CF)			原箔				RC	F			
突叫石(O)			処理	T5B	T4X	T5B	T4X	T5B	T4X	T5B	T8
公称厚さ			иm	9	9	1	2	1	8	3	5
質量厚さ			g/m^2	82	76	107	100	158	152	305	305
光沢面粗さ R	la		1.7 88	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
粗面粗さ Rz			μm	3.0	1.2	3.0	1.2	3.0	1.2	3.0	4.0
	引張強さ	縦 (MD)	N/mm ²	440	440	440	440	440	440	440	440
	ST MINE	横 (TD)	N/mm~	420	420	420	420	420	420	420	420
常態	伸び率	縦 (MD)	%	1.2	1.2	1.7	1.7	2.0	2.0	2.0	2.0
111725	11.01-	横(TD)	70	1.0	1.0	1.5	1.5	1.5	1.5	1.5	1.5
	耐折力*	縦 (MD)		2000	2000	1200	1200	1000	1000	300	
	(MIT)	横(TD)	123	1000	1000	350	350	200	200	50	-
	引張強さ	縦(MD)	N/mm ²	190	190	210	210	220	220	220	220
	J1 J2 J2 C	横(TD)	11/11/11	170	170	180	180	200	200	200	200
アニール後	伸び率	縦 (MD)	%	5	4	13	13	17	17	20	20
(180°C-1hr.)	1101	横(TD)	,,	5	4	8	8	12	12	17	17
	耐折力*	縦 (MD)		300	300	280	280	230	230	200	
	(MIT)	横 (TD)		200	200	180	180	150	150	140	-
引き剥がし強さ	ž.	常態	kN/m	0.60	0.50	0.60	0.50	0.75	0.70	1.05	1.20
(FR-4)		はんだ後 S-4		0.60	0.50	0.60	0.50	0.75	0.70	1.05	1.20
はんだ濡れ性 IPC-4562					良						

*耐折力(MIT) 荷重500g 曲率半径0.8mm 試験片幅15mm

企業情報 | 事業内容 | 製品情報 | 財務情報 | 採用情報 | お問い合わせ

Table 2

Alloy C7025 Mechanical Properties								
Temper	Tensile Strengt	Fensile Strength		rength	Elongation % in	Approximate Hardness		
Name	ksi	kgf/mm	ksi	kgf/mm	2" (51mm)	Rockwell 15T	Rockwell 30T	
TM00	90- 110	63-77	65-90	45-63	10% Min.	83-89	73-79	
TM02	95- 120	67-84	85- 110	59-77	7% Min.	86-92	75-81	
TM02 Special	96- 121	67-86	85- 110	60-77	7% Min.	86-92	75-81	
TM03	100- 125	70-88	95- 120	66-84	5% Min.	89-95	77-83	
TH03	70-90	49-63	65-85	46-60	5% M in.	83-86	73-77	
TR02 *	88 Min.	62 Min.	80 Min.	56 Min.	6% M in.	87-93	76-82	
TR04	115- 131	81-92	109- 123	77-86	1% Min.			
* For leadframe applications only								

Table 3

Alloy C7025 Physical Properties						
Physical Properties	English Units	Metric Units				
Melting Point (Liquidus)	2003° F	1095° C				
Melting Point (Solidus)	1967° F	1075° C				
Density	.318 lbs/cu in @ 68° F	8.82 gm/cu cm @ 20° C				
Thermal Conductivity	85-110 Btu ft/sq ft hr ° F @ 68° F	0.35-0.45 cal cm/sq cm sec ° C @ 20° C				
Electrical Resistivity (Annealed)	25.9 ohms (cir mil/ft)	4.3 microhm-cm @ 20° C				
Electrical Conductivity - TR02	40% IACS * Min. @ 68° F	0.23 megmho/cm @ 20° C				
TR04	30% IACS * Min. @ 68° F	0.17 megmho/cm @ 20° C				
ТМ00	40% IACS * Min. @ 68° F	0.23 megmho/cm @ 20° C				
TM02	40% IACS * Min. @ 68° F	0.23 megmho/cm @ 20° C				
TM02 Special	40% IACS * Min @ 68° F	0.23 megmho/cm @ 20° C				
TM03	35% IACS * Min. @ 68° F, .	0.20 megmho/cm @ 20° C				
TH03	50% IACS * Nom. @ 68° F	0.29 megmho/cm @20° C				
Modulus of Elasticity	19,000,000 psi	13,500 kg/sq mm				
* International Annealed Copper Standard						

Back to C7025