

Learning Transferable Visual Models From Natural Language Supervision

Introductory presentation

Alec Radford, Jong Wook Kim, Chris Hallacy, A. Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever, *OpenAI*, 2021.

Presenter: Diego Calanzone

Seminar: Learning with Limited Labeled Data

Academic year: **2021/2022**

Difficulties in Computer Vision

- Typical vision datasets are costly and labor intensive to create
- Standard vision models are good at one task only
- Such models can perform poorly in stress tests

[Dodge, S., & Karam, L. (2017, July). "A study and comparison of human and deep learning recognition performance under visual distortions." In ICCCN 2017]

[Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A., & Brendel, W. (2018). "ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness." In ICLR 2019]

[Alcorn, M. A., Li, Q., Gong, Z., Wang, C., Mai, L., Ku, W. S., & Nguyen, A. (2019). "Strike (with) a pose: Neural networks are easily fooled by strange poses of familiar objects." In CVPR 2019]

Appreciating natural language as a training signal

- Appreciating natural language as a training signal
- No burdensome label crafting

- Appreciating natural language as a training signal
- No burdensome label crafting
- More scalable data

- Appreciating natural language as a training signal
- No burdensome label crafting
- More scalable data
- Flexible zero-shot transfer

Background: language-image models

Zero-Shot Learning Through Cross-Modal Transfer Sochet et al., 2013

Learning Visual N-Grams from Web Data Li et al., FAIR, 2017

Predicted n-grams GP Silverstone Classic Formula 1 race for the

Background: language-image models

VirTex: Learning Visual Representations from Textual Annotations

Desai et al., UofMichigan, 2020

Exploring the Limits of Weakly Supervised Pretraining

Mahajan et al., Facebook, 2020

Limitations & Inspiration

Key idea: bidirectional contrastive learning

Contrastive Learning of Medical Visual Representations from Paired Images and Text Zhang et al., Stanford University, 2020

Overall limitations

- Low zero-shot performances
- Poor scalability

Contrastive Language-Image Pretraining (CLIP)

(1) Contrastive pre-training

(2) Create dataset classifier from label text

Main contributions and outcomes

- A paradigm based on intensive, task-agnostic pre-training:
 - a. Symmetric loss
 - b. Contrastive objective
- A dedicated dataset of over 400M pairs
- A highly scalable architecture

```
# image_encoder - ResNet or Vision Transformer
# text encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
                - minibatch of aligned texts
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
                - learned temperature parameter
# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]
T_f = text_encoder(T) #[n, d_t]
# joint multimodal embedding [n, d_e]
I_e = 12_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12_{normalize(np.dot(T_f, W_t), axis=1)}
# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)
# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2
```


Task-specific comparison & performance

	aYahoo	ImageNet	SUN
Visual N-Grams	72.4	11.5	23.0
CLIP	98.4	76.2	58.5

Comparison with the Visual N-Grams model from Li et al. (FAIR) 2017

Zero-shot performance & Efficiency

- Natural Language Supervision allows scalability, flexibility with language, generalization
- Contrastive learning is efficient, learning the text-image affinity is much better for zero-shot transfer
- A novel dataset based on image captions provides better semantics and allows scaling

Yet to discuss:

- The dataset
- Training, scalability, variations of the model
- Limitations: bias, broader impacts, typography attacks
- Further benchmarks: comparison with humans, robustness tests

Thanks for listening!

Questions are welcome.

1.0

