### Resampling Methods

Levi Waldron, CUNY School of Public Health

July 13, 2016

#### Outline and introduction

- Objectives: prediction or inference?
- Cross-validation
- Bootstrap
- Permutation Test
- Monte Carlo Simulation

 $ISLR\ Chapter\ 5:\ James,\ G.\ et\ al.\ An\ Introduction\ to\ Statistical\ Learning:\ with\ Applications\ in\ R.\ (Springer,\ 2013).$  This book can be downloaded for free at http://www-bcf.usc.edu/-gareth/ISL/getbook.html

### Why do regression?

#### Inference

- Questions:
  - ▶ Which predictors are associated with the response?
  - How are predictors associated with the response?
  - Example: do dietary habits influence the gut microbiome?
- Linear regression and generalized linear models are the workhorses
  - We are more interested in interpretability than accuracy
  - Produce interpretable models for inference on coefficients

#### Bootstrap, permutation tests

# Why do regression? (cont'd)

#### Prediction

- Questions:
  - How can we predict values of Y based on values of X
  - Examples: Framingham Risk Score, OncotypeDX Risk Score
- Regression methods are still workhorses, but also less-interpretable machine learning methods
  - ▶ We are more interested in accuracy than interpretability
  - e.g. sensitivity/specificity for binary outcome
  - e.g. mean-squared prediction error for continuous outcome

#### Cross-validation



### Why cross-validation?



Figure 1: Figure 2.9 B

#### Under-fitting, over-fitting, and optimal fitting

### K-fold cross-validation approach

- ▶ Create K "folds" from the sample of size  $n, K \leq n$
- 1. Randomly sample 1/K observations (without replacement) as the validation set
- 2. Use remaining samples as the training set
- Fit model on the training set, estimate accuracy on the validation set
- 4. Repeat K times, not using the same validation samples
- 5. Average validation accuracy from each of the validation sets



Figure 2: 3-fold CV

### Variability in cross-validation



Figure 3: Variability of 2-fold cross-validation

ISLR Figure 5.2: Variability in 2-fold cross-validation

#### Bias-variance trade-off in cross-validation

- Key point: we are talking about bias and variance of the overall MSE estimate, not between the folds.
- ▶ 2-fold CV produces a *high-bias*, *low-variance* estimate:
  - training on fewer samples causes upward bias in MSE
  - low correlation between models means low variance in average MSE
- ► Leave-on-out CV produces a *low-bias*, *high-variance* estimate:
  - ▶ training on n-1 samples is almost as good as on n samples (almost no bias in prediction error)
  - models are almost identical, so average has a high variance
- Computationally, K models must be fitted
  - ▶ 5 or 10-fold CV are very popular compromises

### Cross-validation summary

- ▶ In prediction modeling, we think of data as training or test
  - ▶ Cross-validation estimates test set error from a training set
- ► Training set error always decreases with more complex (flexible) models
- Test set error as a function of model flexibility tends to be U-shaped
  - ► The low point of the U represents the optimal bias-variance trade-off, or the most appropriate amount of model flexibility

#### Cross-validation caveats

- ▶ Be very careful of information "leakage" into test sets, e.g.:
  - feature selection using all samples
  - "human-loop" over-fitting
  - changing your mind on accuracy measure
  - try a different dataset

http://hunch.net/?p=22

# Cross-validation caveats (cont'd)

- Tuning plus accuracy estimation requires nested cross-validation
- Example from training and test sets simulated from an identical true model
  - Penalized regression models tuned by 5-fold CV



Waldron *et al.*: **Optimized application of penalized regression methods to diverse genomic data.** Bioinformatics 2011, 27:3399–3406.

# Cross-validation caveats (cont'd)

 Cross-validation estimates assume that the sample is representative of the population



Figure 4:

Bernau C *et al.*: **Cross-study validation for the assessment of prediction algorithms.** Bioinformatics 2014, 30:i105–12.



#### Permutation test

- $\triangleright$  Classical hypothesis testing:  $H_0$  of test statistic derived from assumptions about the underlying data distribution
  - e.g. t,  $\chi^2$  distribution
- ▶ Permutation testing:  $H_0$  determined empirically using permutations of the data where  $H_0$  is guaranteed to be true

#### Permutation test - pros and cons

- Pros:
  - does not require distributional assumptions
  - can be applied to any test statistic
- Cons:
  - less useful for small sample sizes
  - p-values usually cannot be estimated with sufficient precision for heavy multiple testing correction
  - ▶ in naive implementations, can get p-values of "0"

### Steps of permutation test:

- 1. Calculate test statistic (e.g. T) in observed sample
- 2. Permutation:
  - 2.1 Sample without replacement the response values (Y), using the same X
  - 2.2 re-compute and store the test statistic T
  - 2.3 Repeat R times, store as a vector  $T_R$
- 3. Calculate empirical p value: proportion of permutation  $T_R$  that exceed actual T

### Calculating a p-value

$$P = \frac{sum(abs(T_R) > abs(T)) + 1}{length(T_R) + 1}$$

- ▶ Why add 1?
  - Phipson B, Smyth GK: Permutation P-values should never be zero: calculating exact P-values when permutations are randomly drawn. Stat. Appl. Genet. Mol. Biol. 2010, 9:Article39.

### Example from (sleep) data:

▶ Sleep data show the effect of two soporific drugs (increase in hours of sleep compared to control) on 10 patients.

| ## | ez     | rtra      | group |      | ID    |
|----|--------|-----------|-------|------|-------|
| ## | Min.   | :-1.600   | 1:10  | 1    | :2    |
| ## | 1st Qເ | 1.:-0.025 | 2:10  | 2    | :2    |
| ## | Mediar | n : 0.950 |       | 3    | :2    |
| ## | Mean   | : 1.540   |       | 4    | :2    |
| ## | 3rd Qu | 1.: 3.400 |       | 5    | :2    |
| ## | Max.   | : 5.500   |       | 6    | :2    |
| ## |        |           |       | (Oth | er):8 |
|    |        |           |       |      |       |

### t-test for difference in mean sleep

```
##
##
   Welch Two Sample t-test
##
## data: extra by group
## t = -1.8608, df = 17.776, p-value = 0.07939
## alternative hypothesis: true difference in means is not
## 95 percent confidence interval:
## -3.3654832 0.2054832
## sample estimates:
## mean in group 1 mean in group 2
              0.75
##
                              2.33
```

#### Permutation test instead of t-test

## [1] 0.079

```
set.seed(1)
permT = function(){
  index = sample(1:nrow(sleep), replace=FALSE)
  t.test(extra ~ group[index], data=sleep)$statistic
}
Tr = replicate(999, permT())
(sum(abs(Tr) > abs(Tactual)) + 1) / (length(Tr) + 1)
```

Bootstrap

### The Bootstrap



Figure 5: Schematic of the Bootstrap

### Uses of the Bootstrap

- ► The Bootstrap is a very general approach to estimating sampling uncertainty, e.g. standard errors
- ► Can be applied to a very wide range of models and statistics
- ▶ Robust to outliers and violations of model assumptions

### How to perform the Bootstrap

- ► The basic approach:
  - 1. Using the available sample (size n), generate a new sample of size n (with replacement)
  - 2. Calculate the statistic of interest
  - 3. Repeat
  - Use repeated experiments to estimate the variability of your statistic of interest

#### Example: bootstrap in the sleep dataset

0.75

##

- ▶ We used a permutation test to estimate a p-value
- ▶ We will use bootstrap to estimate a confidence interval

```
t.test(extra ~ group, data=sleep)
##
   Welch Two Sample t-test
##
##
## data: extra by group
## t = -1.8608, df = 17.776, p-value = 0.07939
## alternative hypothesis: true difference in means is not
## 95 percent confidence interval:
## -3.3654832 0.2054832
## sample estimates:
## mean in group 1 mean in group 2
```

2.33

### Example: bootstrap in the sleep dataset

note: better to use library(boot)

```
set.seed(2)
bootDiff = function(){
  sleepboot = sleep[sample(1:nrow(sleep), replace = TRUE),
  mean(sleepboot$extra[sleepboot$group==1]) - mean(sleepboors)
}
bootR = replicate(1000, bootDiff())
bootR[match(c(25, 975), rank(bootR))]
## [1] -3.32083333 0.02727273
```

### Example: oral carcinoma recurrence risk

- Oral carcinoma patients treated with surgery
- Surgeon takes "margins" of normal-looking tissue around to tumor to be safe
  - number of "margins" varies for each patient
- ► Can an oncogenic gene signature in histologically normal margins predict recurrence?

Reis PP, Waldron L, *et al.*: **A gene signature in histologically normal surgical margins is predictive of oral carcinoma recurrence.** BMC Cancer 2011, 11:437.

#### Example: oral carcinoma recurrence risk

- Model was trained and validated using the maximum expression of each of 4 genes from any margin
- What if only one margin were profiled?
  - 1. take a bootstrap sample of patients
  - 2. randomly select a single margin from each patient
  - 3. calculate Hazard Ratio
  - Repeat to estimate confidence interval or perform hypothesis test

Example: oral carcinoma recurrence risk

#### From results:

Simulating the selection of only a single margin from each patient, the 4-gene signature maintained a predictive effect in both the training and validation sets (median HR=2.2 in the training set and 1.8 in the validation set, with 82% and 99% of bootstrapped hazard ratios greater than the no-effect value of HR=1)

Monte Carlo

#### What is a Monte Carlo simulation?

- "Resampling" is done from known theoretical distribution
- Simulated data are used to estimate the probability of possible outcomes
  - most useful application for me is power estimation
  - also used for Bayesian estimation of posterior distributions

#### How to conduct a Monte Carlo simulation

#### Steps of a Monte Carlo simulations:

- 1. Sample randomly from the simple distributions in each step
- 2. Estimate the complex function for the sample
- 3. Repeat this a large number of times

# Random distributions form the basis of Monte Carlo simulation

Figure 6A.15: Distributional Choices



Figure 6:

Credit: Markus Gesmann http://www.magesblog.com/2011/12/fitting-distributions-with-r.html

### Power Calculation for a follow-up sleep study

▶ What sample size do we need for a future study to detect the same effect on sleep, with 90% power and  $\alpha = 0.05$ ?

```
##
##
        Two-sample t test power calculation
##
##
                 n = 31.38141
##
             delta = 1.58
##
                sd = 1.9
         sig.level = 0.05
##
             power = 0.9
##
##
       alternative = two.sided
##
## NOTE: n is number in *each* group
```

### The same calculation by Monte Carlo simulation

- ▶ Use rnorm() function to draw samples
- Use t.test() function to get a p-value
- ▶ Repeat many times, what % of p-values are less than 0.05?

### R script

## [1] 0.895

```
set.seed(1)
montePval = function(n){
   group1 = rnorm(n, mean=.75, sd=1.9)
   group2 = rnorm(n, mean=2.33, sd=1.9)
   t.test(group1,group2)$p.value
}
sum(replicate(1000, montePval(n=32)) < 0.05) / 1000</pre>
```

# Summary: resampling methods

|                      | Procedure                                                                    | Application                                          |
|----------------------|------------------------------------------------------------------------------|------------------------------------------------------|
| Cross-<br>Validation | Data is randomly divided into subsets. Results validated across sub-samples. | Model tuning<br>Estimation of<br>prediction accuracy |
| <u>—</u>             |                                                                              |                                                      |
| Permutation<br>Test  | Samples of size N drawn at random <i>without</i> replacement.                | Hypothesis testing                                   |
| <u> </u>             |                                                                              |                                                      |
| Bootstran            | Samples of size N drawn                                                      | Confidence intervals                                 |

Bootstrap Samples of size IV drawn Confidence intervals, at random with hypothesis testing replacement.