REVIEW SESSION STABLE MATCHING

YIFEI HUANG
YIFEIH@USC.EDU

FEBRUARY 7, 2024

When talking about matching, we usually talk about 2 sets ${\bf A}$ and ${\bf B}$ of the same size n

■ Matching: A matching S is a set of pairs (a, b) where $a \in A$ and $b \in B$, and no two pairs share the same a or b.

When talking about matching, we usually talk about 2 sets **A** and **B** of the same size *n*

- Matching: A matching S is a set of pairs (a, b) where $a \in A$ and $b \in B$, and no two pairs share the same a or b.
- **Perfect Matching:** A matching S is perfect if it is of size n. In other word, every $a \in A$ and $b \in B$ is matched with something.

When talking about matching, we usually talk about 2 sets ${\bf A}$ and ${\bf B}$ of the same size n

- Matching: A matching S is a set of pairs (a, b) where $a \in A$ and $b \in B$, and no two pairs share the same a or b.
- **Perfect Matching:** A matching S is perfect if it is of size n. In other word, every $a \in A$ and $b \in B$ is matched with something.
- Unstable Matching: A matching S is unstable if there exist 2 pairs (a_1, b_1) and (a_2, b_2) such that a_1 prefers b_2 than b_1 and b_2 prefers a_1 than a_2 .

When talking about matching, we usually talk about 2 sets **A** and **B** of the same size *n*

- Matching: A matching S is a set of pairs (a, b) where $a \in A$ and $b \in B$, and no two pairs share the same a or b.
- **Perfect Matching**: A matching S is perfect if it is of size n. In other word, every $a \in A$ and $b \in B$ is matched with something.
- Unstable Matching: A matching S is unstable if there exist 2 pairs (a_1, b_1) and (a_2, b_2) such that a_1 prefers b_2 than b_1 and b_2 prefers a_1 than a_2 .
- **Stable Matching Problem**: Given the preference list of *A* and *B*, find a perfect matching *S* that is not unstable.

G-S ALGORITHM

Termination

G-S algorithm terminates in $O(n^2)$ iterations as each man can only propose at most n times.

G-S ALGORITHM

Termination

G-S algorithm terminates in $O(n^2)$ iterations as each man can only propose at most n times.

Uniqueness

G-S algorithm returns a unique solution. But the problem instance might have multiple solutions.

Find an instance of stable matching problem where there are multiple solutions and point out the solution that G-S algorithm will return.

	1st	2nd
M 1	W1	W2
M 2	W2	W1
W 1	M2	M1
W 2	M1	M2

Table: Table caption.

1. (M1,W1), (M2,W2)

	1st	2nd
M 1	W1	W2
M 2	W2	W1
W 1	M2	M1
W 2	M1	M2

Table: Table caption.

- 1. (M1,W1), (M2,W2)
- 2. (M1,W2), (M2,W1)

Find an instance of statble matching problem of size n, such that G-S algorithm terminates in O(n) iteration.

Simple assign each man with different most preferred woman. E.g. m_i prefers w_i the most. In this case G-S algorithm will run exactly n iterations as each man will propose to different woman.

If every man has identical preference list, how many iteration does it take for G-S algorithm to terminate, give the precise answer in *n*.

With out lose of generality, let's assume that every man's preference list is exactly $(w_1, w_2, ..., w_n)$. G-S algorithm returns a stable matching $S = \{(m'_1, w_1), (m'_2, w_2), ..., (m'_n, w_n)\}$. Since every man has the same preference list. m'_i must have proposed exactly i times. Then the total number of iteration is $\sum_{i=1}^n i = \frac{(n+1)n}{2}$.

8 | 1

Is it true that for every n > 2, there exists an instance of stable matching problem that has only one solution?

Yes, simple make m_i 's i-th preferred woman w_i and vice versa. The solution can only be $S = \{(m_i, w_i) | \forall i \in [1, n]\}$. Proof is just the extended version of HW1 Q4.