Architecture

ARCHITECTURE

COMMUNICATION FLOW

Receive User Input

Process with ambient info

Trigger Actuator

Hardware

HARDWARE

Types

- Microcontrollers
- Microprocessors
- SoCs

Chip Vendors

- ARM
- Atmel
- o TI
- Intel

Dev Boards

- Arduino
- ARM
- RaspberryPi
- BeagleBone
- Atmel
- Intel Galileo / Gen 2 / Edison

Microcontroller

SYSTEM ON CHIP

INTEL EDISON

TI - CC 2540

SOC

ARDUINO

Raspberry Pi

STM32 Cortex M3

ARM7 LPC2148 Board

8051 ADVANCED TRAINER BOARD

Node Vs Gateway

Parameter	Node	Gateway
Cost	\$10	\$80
Power	Battery	Continuous
Communication	Short Range Wireless	Cloud
Computing Power	Low	Medium
Size	1"	6"
Unique IP	Not necessary	Most likely

Communication

RF

Components

- Transmitters
- Receivers
- Transceivers
- System on Chip [SoC]

Typical Bands

- o 433 Mhz
- 868 MHz –
 recommended for India
- 2.4 GHz

Examples / Protocols

- ZigBee
- Z-Wave
- Blue Tooth
- BLE
- Wi-Fi
- Proprietary

CLOUD COMMUNICATION

Components

- Gateway
- Server

Channels

- WiFi
- Ethernet
- GSM / GPRS
- 3G
- LTE
- PLC

Protocol Examples

- Http / Https
- TCP / IP
- UDP
- MQTT
- CoAP
- XMPP

Cloud

CLOUD

Components

- Streaming
- Data Stores
- Rules processing & Notification
- Device Management Systems
- Analytics and Reporting Engines

Examples

- AWS
- IBM
- CISCO
- Microsoft

Data Streaming

DATA STREAMING

Components

- Streaming Server
- Actuation
- Over the Air Updates

Examples

- Tomcat
- JBoss
- Websphere
- Mosquitto
- Node.js TCP/IP

Approach

- REST over Http / Https
- Jersey reference implementation
- Entire Functionality over REST services
- REST over CoAP under development

Data Stores

DATA STORES

- o Sql
 - Oracle
 - MySql
- NoSql
 - Key Value Redis, Amazon SimpleDB
 - Column Cassandra, HBase
 - Document CouchDB,MongoDB
 - Graph Neo4J, InfoGraph

Approach

- Hybrid
- Hibernate
- Modularization

Event Processing

Analytics

ANALYTICS

Components

- Real time
- Offline
- Visualization

Examples

- Hadoop Ecosystem
- Spark
- MongoDB
- o D3
- Tableau

Approach

- MongoDB Map Reduce
- NVD3 Visualization
- Real time Dashboards
- Domain Ontologies

Analytics Maturity

What is Visual Analytics

- Science of analytical reasoning facilitated by visual interactive interfaces
- Integrates new computational and theory-based tools with innovative interactive techniques and visual representations to enable human-information discourse
- Design is based on human cognitive and perceptual principles

Device Management System

UI TECHNOLOGIES

Components

- Business Logic
- Data Store
- Visualization
- Integration and Services

Examples

- Angular JS
- Google Toolkit
- Spring MVC / Grails
- Ruby on Rails

Approach

- Spring MVC
- Bootstrap and jQuery
- Hibernate
- MySQL

Security

SECURITY

Components

- Wireless Communication
- Communication with Server
- Security of Data in Cloud

Examples

- DTLS
- Https
- BLE

Approach

- HTTPS
- Psuedo Random Numbers
- Proprietary Encoding / Decoding
- Fused Code on Chip
- AWS Security infrastructure

WHY IS IOT SECURITY DIFFICULT?

BECAUSE...

- 1. Wireless communication
- 2. Physical insecurity
- 3. Constrained devices
- 4. Potentially sensitive data
- 5. Lack of standards
- 6. Heterogeneity: weakest link problem
- 7. A systems, not software problem
- 8. Classic web / internet threats
- 9. Identity management & dynamism
- 10. Inconvenience and cost

THREATS TO IOT SYSTEMS

THE PHYSICAL DEVICES

- Can be stolen
- Can be modified
- Can be replaced
- Can be cloned

THE SOFTWARE

- Can be modified (firmware / OS / middleware)
- Can be decompiled to extract credentials
- Can be exhausted (denial of service)

THE NETWORK

- Eavesdropping
- Man-in-the-middle attacks
- Rerouting traffic
- Theft of bandwidth