SEMAINE DU 12/10 AU 16/10

1 Cours

Applications

Définitions Ensembles d'arrivée et de départ, graphe, image.

Composition Définition, associativité, application identité.

Injectivité Définition. Composition et injectivité.

Surjectivité Définition. Composition et surjectivité.

Bijectivité Définition. Bijection réciproque. Si $f: E \to F$ et $g: F \to G$ sont bijectives, alors $g \circ f$ est bijective et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. $f: E \to F$ est bijective si et seulement si il existe $g: F \to E$ telle que $g \circ f = \operatorname{Id}_E$ et $f \circ g = \operatorname{Id}_F$ et dans ce cas, $f^{-1} = g$.

Image directe et réciproque Définitions. Image directe et réciproque d'une union, d'une intersection.

Restriction et prolongement Définitions. Bijection induite.

2 Méthodes à maîtriser

- Savoir prouver l'injectivité en pratique : «Soit (x, x') tel que f(x) = f(x')» puis montrer que x = x'.
- Savoir prouver la surjectivité en pratique : recherche d'un antécédent (résolution d'une équation).
- Savoir prouver la bijectivité en pratique :
 - Existence et unicité d'une solution de l'équation y = f(x) où y est fixé et x est l'inconnue.
 - Déterminer g telle que $g \circ f = \text{Id et } f \circ g = \text{Id}$.
 - Montrer que f est injective et surjective.
- Automatismes:

$$-y \in f(A) \iff \exists x \in A, \ y = f(x)$$

$$-x \in f^{-1}(B) \iff f(x) \in B$$

3 Questions de cours

Injectivité. Soient $f: E \to F$ et $g: F \to G$ deux applications.

- 1. Montrer que si f et g sont injectives, alors $g \circ f$ l'est également.
- 2. Montrer que si $g \circ f$ est injective, alors f l'est également.

Surjectivité. Soient $f: E \to F$ et $g: F \to G$ deux applications.

- 1. Montrer que si f et g sont surjectives, alors $g \circ f$ l'est également.
- 2. Montrer que si $g \circ f$ est surjective, alors g l'est également.

Retour sur le DS n°2. Soit $(p, n) \in \mathbb{N}^2$ tel que $p \le n$. Montrer que

$$\sum_{k=p}^{n} \binom{n}{k} \binom{k}{p} = 2^{n-p} \binom{n}{p}$$

Retour sur le DS n°2. On pose $s = \cos\left(\frac{2\pi}{5}\right) + \cos\left(\frac{4\pi}{5}\right)$ et $p = \cos\left(\frac{2\pi}{5}\right)\cos\left(\frac{4\pi}{5}\right)$.

- 1. Montrer que s = 2p.
- 2. En calculant $p \sin\left(\frac{2\pi}{5}\right)$, déterminer la valeur de p et en déduire celle de s.
- 3. En déduire que $\cos\left(\frac{2\pi}{5}\right) = \frac{-1+\sqrt{5}}{4}$ et $\cos\left(\frac{4\pi}{5}\right) = \frac{-1-\sqrt{5}}{4}$.