MULTILED

Enhanced optical Power LED (ThinFilm / ThinGaN)

Lead (Pb) Free Product - RoHS Compliant

LRTB GFTM

Released

Besondere Merkmale

- Gehäusetyp: weißes PLCC-6 Gehäuse, Kontrasterhöhung durch schwarze Oberfläche (RGB-Displays) und diffuser Silikon-Verguß
- Besonderheit des Bauteils: additive Farbmischung durch unabhängige Ansteuerung aller Chips
- **Wellenlänge:** 625 nm (red), 528 nm (true green), 470 nm (blau)
- Abstrahlwinkel: Lambertscher Strahler (120°)
- Technologie: ThinFilm (rot), ThinGaN (true grün, blau)
- optischer Wirkungsgrad: 45 lm/W (rot), 45 lm/W (true grün), 8 lm/W (blau)
- **Gruppierungsparameter:** Lichtstärke, Wellenlänge
- Verarbeitungsmethode: für alle SMT-Bestücktechniken geeignet
- Lötmethode: Reflow Löten
- Vorbehandlung: nach JEDEC Level 4
- Gurtung: 12 mm Gurt mit 1000/Rolle, ø180 mm oder 4000/Rolle, ø330 mm
- ESD-Festigkeit: ESD-sensitives Bauteil

Anwendungen

- Anzeigen (z.B. im Verkehrsbereich; Laufschriftanzeigen)
- Getrennte Anteuerung der Leuchtdiodenchips zur Darstellung verschiedener Farben inclusive weiß
- · Vollfarbdisplays bzw. RGB-Displays

Features

- package: white PLCC-6 package, higher contrast by a black surface (RGB-Displays) and diffused silicone resin
- feature of the device: additive mixture of color stimuli by independent driving of each chip
- wavelength: 625 nm (red), 528 nm (true green), 470 nm (blue)
- viewing angle: Lambertian Emitter (1209)
- technology: ThinFilm (red), ThinGaN (true green, blue)
- optical efficiency: 45 lm/W (red),
 45 lm/W (true green),8 lm/W (blue)
- grouping parameter: luminous intensity, wavelength
- assembly methods: suitable for all SMT assembly methods
- · soldering methods: reflow soldering
- preconditioning: acc. to JEDEC Level 4
- taping: 12 mm tape with 1000/reel, ø180 mm or 4000/reel, ø330 mm
- ESD-withstand voltage: ESD sensitive device

Applications

- displays (e.g. displays for traffic; light writing displays)
- LED chips can be controlled seperately to display various colors including white
- full color displays, RGB-Displays

OSRAM

Bestellinformation Ordering Information

Тур	Emissionsfarbe	Lichtstärke ^{1) Seite 25}				
Туре	Color of Emission	Luminous Intensity ^{1) page 25} $I_{\rm F}$ = 10 mA (R), 20 mA (T), 10 mA (B) $I_{\rm V}$ (mcd)				
		red	true green	blue		
LRTB GFTM	red true green blue	180 560	7101590	80 224		

Bestellinformation Ordering Information

Typ Type	Bestellnummer Ordering Code
LRTB GFTM-ST7-1+VV9-29+Q5R7-49-L	Q65110A9407
LRTB GFTM-ST7-1+VV9-29+Q5R7-49-S	Q65110A9442

Anm: Die oben genannten Typbezeichnungen umfassen die bestellbaren Selektionen. Diese bestehen aus wenigen Helligkeitsgruppen (siehe **Seite 7** für nähere Informationen). Es wird nur eine einzige Helligkeitsgruppe pro Gurt geliefert. Z.B.: LRTB GFTM-ST7-1+VV9-29+Q5R7-49-L bedeutet, dass auf dem Gurt nur eine der Helligkeitsgruppen S, S5, S7, S9, T, T5 oder T7 enthalten ist.

Um die Liefersicherheit zu gewährleisten, können einzelne Helligkeitsgruppen nicht bestellt werden.

Gleiches gilt für die Farben, bei denen Wellenlängengruppen gemessen und gruppiert werden. Pro Gurt wird nur eine Wellenlängengruppe geliefert. Z.B.: LRTB GFTM-ST7-1+VV9-29+Q5R7-49-L bedeutet, dass auf dem Gurt nur eine der Wellenlängengruppen -2, -3, -4, -5, -6, -7, -8 oder -9 enthalten ist (siehe **Seite 8** für nähere Information). Z.B.: LRTB GFTM-ST7-1+VV9-29+Q5R7-49-L bedeutet, dass das Bauteil innerhalb der auf **Seite 4** spezifizierten Grenzen geliefert wird.

Um die Liefersicherheit zu gewährleisten, können einzelne Wellenlängengruppen nicht bestellt werden.

LRTB GFTM-ST7-1+VV9-29+Q5R7-49-L bedeutet Lieferung auf einer ø330 mm Rolle. LRTB GFTM-ST7-1+VV9-29+Q5R7-49-S bedeutet Lieferung auf einer ø180 mm Rolle.

Anm: The above Type Numbers represent the order groups which include only a few brightness groups (see **page 7** for explanation). Only one group will be shipped on each reel (there will be no mixing of two groups on each reel). E.g. LRTB GFTM-ST7-1+VV9-29+Q5R7-49-L means that only one group S, S5, S7, S9, T, T5 or T7 will be shippable for any one reel.

In order to ensure availability, single brightness groups will not be orderable.

In a similar manner for colors where wavelength groups are measured and binned, single wavelength groups will be shipped on any one reel. E.g. LRTB GFTM-ST7-1+VV9-29+Q5R7-49-L means that only 1 wavelength group -2, -3, -4, -5, -6, -7, -8 or -9 will be shippable (see **page 8** for explanation). E.g. LRTB GFTM-ST7-1+VV9-29+Q5R7-49-L means that the device will be shiped within the specified limits as stated on **page 4**. In order to ensure availability, single wavelength groups will not be orderable.

LRTB GFTM-ST7-1+VV9-29+Q5R7-49-L means delivery on \emptyset 330 mm reel. LRTB GFTM-ST7-1+VV9-29+Q5R7-49-S means delivery on \emptyset 180 mm reel..

2012-04-27

Grenzwerte Maximum Ratings

Bezeichnung Parameter		Symbol Symbol	Werte Values			Einheit Unit
			red	true green	blue	
Betriebstemperatur Operating temperature range		$T_{\sf op}$	- 4	40 + ′	110	C
Lagertemperatur Storage temperature range		$T_{ m stg}$	- 4	40 + ′	110	C
Sperrschichttemperatur Junction temperature		T_{j}		+ 125		C
Durchlassstrom Forward current $(T_S=25^{\circ}C)$	(min.) (max.)	I_{F}	- 40		3 20	mA mA
Stoßstrom Surge current $t_p = 10 \ \mu s, D = 0.005, T_S = 25^{\circ}C$		I_{FM}	100	200	200	mA
Sperrspannung ^{2) Seite 25} Reverse voltage ^{2) page 25} $(T_S=25^{\circ}C)$		V_{R}	12		5	V

Kennwerte Characteristics

 $(T_{\rm S}=25~{
m C})$

Bezeichnung Parameter		Symbol Symbol		Werte Values		
			red	true green	blue	
Wellenlänge des emittierten Lichtes Wavelength at peak emission $I_F = 10 \text{ mA (R)}, 20 \text{ mA (T)}, 10 \text{ mA (B)}$	(typ.)	λ_{peak}	632	523	465	nm
Dominantwellenlänge ^{4) Seite 25} Dominant wavelength ^{4) page 25} I _F = 10 mA (R), 20 mA (T), 10 mA (B)	(min.) (typ.) (max.)	λ_{dom}	619 625 631	519 528 546	454 470 476	nm nm nm
Spektrale Bandbreite bei 50 % $I_{rel max}$ Spectral bandwidth at 50 % $I_{rel max}$ $I_F = 10$ mA (R), 20 mA (T), 10 mA (B)	(typ.)	Δλ	18	33	25	nm
Abstrahlwinkel bei 50 % $\rm I_V$ (Vollwinkel) Viewing angle at 50 % $\rm I_V$	(typ.)	2φ	120	120	120	Grad deg.
Durchlassspannung ^{5) Seite 25} Forward voltage ^{5) page 25} $I_{\rm F}$ = 10 mA (R), 20 mA (T), 10 mA (B)	(min.) (typ.) (max.)	V_{F} V_{F} V_{F}	1.7 2.05 2.3	2.7 3.2 3.7	2.7 3.0 3.5	V V V
Sperrstrom ^{2) Seite 25} Reverse current ^{2) page 25} $V_{\rm R} = 5 \text{ V (blue / true green); } 12 \text{ V (red)}$	(typ.) (max.)	I_{R} I_{R}	0.02 10	0.01 10	0.01 10	μΑ μΑ
Temperaturkoeffizient von $\lambda_{\rm peak}$ Temperature coefficient of $\lambda_{\rm peak}$ $I_{\rm F}$ = 10 mA (R), 20 mA (T), 10 mA (B) ; -10°C $\leq T \leq$ 100°C	(typ.)	$TC_{\lambda peak}$	0.14	0.04	0.03	nm/K
Temperaturkoeffizient von $\lambda_{\rm dom}$ Temperature coefficient of $\lambda_{\rm dom}$ $I_{\rm F}$ = 10 mA (R), 20 mA (T), 10 mA (B) ; -10°C $\leq T \leq$ 100°C	(typ.)	$TC_{\lambda dom}$	0.07	0.03	0.03	nm/K
Temperaturkoeffizient von $V_{\rm F}$ Temperature coefficient of $V_{\rm F}$ $I_{\rm F}=$ 10 mA (R), 20 mA (T), 10 mA (B) ; -10 ${\mathbb C} \le T \le 100{\mathbb C}$	(typ.)	TC_{V}	- 2.5	- 3.6	-4.0	mV/K
Wärmewiderstand Thermal resistance Sperrschicht/Umgebung ^{3) Seite 25} Junction/ambient ^{3) page 25} Sperrschicht/Lötpad Junction/solder point	1 chip on 3 chips on	$R_{ m th\ JA}$ $R_{ m th\ JA}$ $R_{ m th\ JS}$	440** 700 280**	440 700 280**	440** 700 280**	K/W K/W K/W

^{*} Einzelgruppen siehe Seite 8 Individual groups on page 8

 $^{^{**}}R_{th}(max)$ basiert auf statistischen Werten $R_{th}(max)$ is based on statistic values

Farbortgruppen^{6) Seite 25} Chromaticity Coordinate Groups^{6) page 25}

LRTB GFTM

Gruppe Group	Сх	Су	Gruppe Group	Сх	Су
2	0.115	0.742	4	0.153	0.022
	0.152	0.673		0.163	0.040
	0.174	0.691		0.155	0.051
	0.144	0.760		0.143	0.033
3	0.134	0.754	5	0.146	0.029
	0.167	0.685		0.157	0.047
	0.188	0.692		0.153	0.057
	0.160	0.762		0.140	0.037
4	0.150	0.759	6	0.143	0.033
	0.180	0.689		0.155	0.051
	0.202	0.694		0.149	0.065
	0.179	0.757		0.135	0.045
5	0.166	0.760	7	0.139	0.039
	0.192	0.694		0.152	0.059
	0.222	0.690		0.145	0.078
	0.202	0.752		0.129	0.056
6	0.190	0.755	8	0.133	0.048
	0.212	0.691		0.148	0.069
	0.233	0.684		0.140	0.094
	0.215	0.745		0.121	0.071
7	0.203	0.750	9	0.126	0.061
	0.222	0.687		0.143	0.083
	0.249	0.676		0.132	0.122
	0.234	0.735		0.110	0.098
8	0.222	0.742	red	0.693	0.310
	0.238	0.681		0.679	0.311
	0.265	0.668		0.698	0.292
	0.253	0.727		0.712	0.291
9	0.240	0.734		<u> </u>	·
	0.254	0.674			
	0.283	0.657			
	0.274	0.710			
		•			

Anm.: Die Farbkoordinaten des Mischlichtes können innerhalb des gekennzeichneten Bereichs des Farbdreiecks erwartet werden.
Note: The color coordinates of the mixed light can be expected within the marked area of the color triangle

Floating Bins

Floating Bins

Floating Bins

Wellenlängengruppen (Dominantwellenlänge)^{4) Seite 25} **Wavelength Groups** (Dominant Wavelength)^{4) page 25}

Gruppe	true	green	Einheit
Group	min.	max.	Unit
2	519	525	nm
3	523	528	nm
4	526	531	nm
5	529	535	nm
6	533	537	nm
7	535	540	nm
8	538	543	nm
9	541	546	nm

Gruppe	bl	Einheit	
Group	min.	max.	Unit
4	454	461	nm
5	459	463	nm
6	461	466	nm
7	464	469	nm
8	467	472	nm
9	470	476	nm

Gruppenbezeichnung auf Etikett Group Name on Label

Beispiel: S9-1+V5-5+Q7-6 Example: S9-1+V5-5+Q7-6

Helligkeits- gruppe	Wellenlänge (keine Gruppierung)	Helligkeits- gruppe	Wellenlänge	Helligkeits- gruppe	Wellenlänge
Brightness Group	Wavelength (no grouping)	Brightness Group	Wavelength	Brightness Group	Wavelength
(red)	(red)	(true green)	(true green)	(blue)	(blue)
S9	1	V5	5	Q7	6

Anm.: In einer Verpackungseinheit / Gurt ist immer nur eine Helligkeitsgruppe pro Farbe enthalten.

Note: No packing unit / tape ever contains more than one brightness group per color.

Relative spektrale Emission^{6) Seite 25} Relative Spectral Emission^{6) page 25}

 $V(\lambda)$ = spektrale Augenempfindlichkeit / Standard eye response curve

 $I_{\rm rel}$ = $f(\lambda)$; $T_{\rm S}$ = 25 °C; $I_{\rm F}$ = 10 mA (R); 20 mA (T); 10 mA (B)

 ${\bf Abstrahl charakteristik}^{6)} \ {\it Seite} \ {\it 25}$

Radiation Characteristic^{6) page 25}

 $I_{\rm rel}$ = f (ϕ); $T_{\rm S}$ = 25 °C, $I_{\rm F}$ = 10 mA (R); 20 mA (T); 10 mA (B) red, true green, blue

Abstrahlcharakteristik^{6) Seite 25} Radiation Characteristic^{6) page 25}

 $I_{rel} = f(\phi)$; $T_S = 25 \, \text{C}$, $I_F = 10 \, \text{mA}$ (R); 20 mA (T); 10 mA (B) red, true green, blue

Durchlassstrom^{5) 6) Seite 25} Forward Current^{5) 6) page 25}

Relative Lichtstärke^{6) 7) Seite 25} Relative Luminous Intensity^{6) 7) page 25}

3

3.5

4 V 4.5

 $-V_{\mathsf{F}}$

10⁰ _____

 $I_V/I_V(10 \text{ mA (R)}; 10 \text{ mA (B)}) = f(I_F); T_S = 25 \text{ }^{\circ}\text{C}$ 10¹

Relative Lichtstärke^{6) Seite 25} Relative Luminous Intensity^{6) page 25}

 $I_V/I_V(25 \text{ C}) = f(T_i); I_F = 10 \text{ mA (R)}; 20 \text{ mA (T)}; 10 \text{ mA (B)}$

Relative Lichtstärke^{6) 7) Seite 25} Relative Luminous Intensity^{6) 7) page 25}

 $I_V/I_V20 \text{ mA (T)} = f(I_F); T_S = 25 \text{ }^{\circ}\text{C}$

2012-04-27 11

Dominante Wellenlänge^{6) Seite 25} Dominant Wavelength^{6) page 25}

blue, $\lambda_{\text{dom}} = f(I_{\text{F}})$; $T_{\text{S}} = 25 \, ^{\circ}\text{C}$

Dominante Wellenlänge^{6) Seite 25} Dominant Wavelength^{6) page 25} true green, $\lambda_{\text{dom}} = f(I_{\text{F}})$; $T_{\text{S}} = 25$ °C

510 0 10 20 30 40 50 60 70 80 mA100

-- I_F

Maximal zulässiger Durchlassstrom rot Max. Permissible Forward Current red

Maximal zulässiger Durchlassstrom rot Max. Permissible Forward Current red

Maximal zulässiger Durchlassstrom true grün Max. Permissible Forward Current true green $I_F = f(T)$; 1 chip on

Maximal zulässiger Durchlassstrom true grün Max. Permissible Forward Current true green

Maximal zulässiger Durchlassstrom blau Max. Permissible Forward Current blue

 $I_{\mathsf{F}} = f(T)$; 1 chip on

Maximal zulässiger Durchlassstrom blau Max. Permissible Forward Current blue

 $I_{\mathsf{F}} = f(T)$; 3 chips on

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 25 °C $I_F = f(t_p)$; red (1 Chip on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 85 °C I_F = f (t_p); red (1 Chip on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 25 $^{\circ}$ C $I_F = f(t_p)$; red (3 Chips on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 85 °C I_F = $f(t_0)$; red (3 Chips on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 25 °C I_F = $f(t_p)$; true green (1 Chip on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 85 °C $I_F = f(t_p)$; true green (1 Chip on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 25 $^{\circ}$ C $I_F = f(t_p)$; true green (3 Chips on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 85 $^{\circ}$ C $I_F = f(t_p)$; true green (3 Chips on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 25 °C $I_F = f(t_p)$; blue (1 Chip on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, $T_{\rm A}$ = 85 °C $I_{\rm F}$ = f ($t_{\rm p}$); blue (1 Chip on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 25 $^{\circ}$ C $I_F = f(t_D)$; blue (3 Chips on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 85 °C I_F = f (t_p); blue (3 Chips on)

Maßzeichnung^{8) Seite 25} Package Outlines^{8) page 25}

Gewicht / Approx. weight: 40 mg

Gurtung / Polarität und Lage^{8) Seite 25} Verpackungseinheit 1000/Rolle, ø180 mm

oder 4000/Rolle, ø330 mm

Method of Taping / Polarity and Orientation $^{8) \ page \ 25}$ Packing unit 1000/reel, \emptyset 180 mm

or 4000/reel, ø330 mm

Empfohlenes Lötpaddesign^{8) 9) Seite 25} Recommended Solder Pad^{8) 9) page 25}

Reflow Löten Reflow Soldering

Lötbedingungen Soldering Conditions Reflow Lötprofil für bleifreies Löten Reflow Soldering Profile for lead free soldering Vorbehandlung nach JEDEC Level 4 Preconditioning acc. to JEDEC Level 4 (nach J-STD-020D.01) (acc. to J-STD-020D.01)

Profil-Charakteristik	Symbol	Pb-F	Einheit		
Profile Feature	Symbol	Minimum	Recommendation	Maximum	Unit
Ramp-up Rate to Preheat*) 25 °C to 150 °C			2	3	K/s
Time t _s T _{Smin} to T _{Smax}	t _S	60	100	120	S
Ramp-up Rate to Peak*) T _{Smax} to T _P			2	3	K/s
Liquidus Temperature	T _L		217		°C
Time above Liquidus temperature	t _L		80	100	s
Peak Temperature	T _P		245	260	°C
Time within 5 °C of the specified peak temperature T _p - 5 K	t _P	10	20	30	S
Ramp-down Rate* T _P to 100 °C			3	6	K/s
Time 25 °C to T _P				480	S

All temperatures refer to the center of the package, measured on the top of the component * slope calculation DT/Dt: Dt max. 5 s; fulfillment for the whole T-range

Barcode-Produkt-Etikett (BPL) Barcode-Product-Label (BPL)

Gurtverpackung

Tape dimensions in mm (inch)

W	P_0	P_1	P_2	D_0	E	F
12 ⁺ 0.3 - 0.1	4 ± 0.1 (0.157 ± 0.004)	8 ± 0.1 (0.315 ± 0.004)	2 ± 0.05 (0.079 ± 0.002)			5.5 ± 0.05 (0.217 ± 0.002)

Reel dimensions in mm (inch)

A	W	N_{min}	W_1	$W_{ m 2\ max}$
180 (7)	12 (0.472)	60 (2.362)	12.4 + 2 (0.488 + 0.079)	18.4 (0.724)
330 (13)	12 (0.472)	60 (2.362)	12.4 + 2 (0.488 + 0.079)	18.4 (0.724)

Trockenverpackung und Materialien Dry Packing Process and Materials

Anm.: Feuchteempfindliche Produkte sind verpackt in einem Trockenbeutel zusammen mit einem Trockenmittel und einer Feuchteindikatorkarte

Bezüglich Trockenverpackung finden Sie weitere Hinweise im Internet und in unserem Short Form Catalog im Kapitel "Gurtung und Verpackung" unter dem Punkt "Trockenverpackung". Hier sind Normenbezüge, unter anderem ein Auszug der JEDEC-Norm, enthalten.

Note: Moisture-senisitve product is packed in a dry bag containing desiccant and a humidity card.

Regarding dry pack you will find further information in the internet and in the Short Form Catalog in chapter "Tape and Reel" under the topic "Dry Pack". Here you will also find the normative references like JEDEC.

Kartonverpackung und Materialien Transportation Packing and Materials

Revision History: 2012-04-27 Previous Version: 2010-01-29

Page	Subjects (major changes since last revision)	Date of change
all	Released Data Sheet created	2010-01-29
21	OS-IN-2012-005	2012-04-27

Attention please!

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact our Sales Organization. If printed or downloaded, please find the latest version in the Internet.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components^{10) page 25} may only be used in life-support devices or systems^{11) page 25} with the express written approval of OSRAM OS.

Fußnoten:

- Helligkeitswerte werden während eines Strompulses einer typischen Dauer von 25 ms, mit einer internen Reproduzierbarkeit von +/- 8 % und einer erweiterten Messunsicherheit von +/- 11 % gemessen (gemäß GUM mit Erweiterungsfaktor k = 3).
- 2) Die LED kann kurzzeitig in Sperrichtung betrieben werden.
- R_{thJA} ergibt sich bei Montage auf PC-Board FR 4 (Padgröße ≥ 16 mm² je Pad)
- Die dominante Wellenlänge wird während eines Strompulses einer typischen Dauer von 25 ms, mit einer internen Reproduzierbarkeit von +/- 0,5 nm und einer erweiterten Messunsicherheit von +/- 1 nm gemessen (gemäß GUM mit Erweiterungsfaktor k = 3).
 Vorwärtsspannungen werden während eines
- Vorwärtsspannungen werden während eines Strompulses einer typischen Dauer von 8 ms, mit einer internen Reproduzierbarkeit von +/- 0,05 V und einer erweiterten Messunsicherheit von +/- 0,1 V gemessen (gemäß GUM mit Erweiterungsfaktor k=3).
- Wegen der besonderen Prozessbedingungen bei der Herstellung von LED können typische oder abgeleitete technische Parameter nur aufgrund statistischer Werte wiedergegeben werden. Diese stimmen nicht notwendigerweise mit den Werten jedes einzelnen Produktes überein, dessen Werte sich von typischen und abgeleiteten Werten oder typischen Kennlinien unterscheiden können. Falls erforderlich, z.B. aufgrund technischer Verbesserungen, werden diese typischen Werte ohne weitere Ankündigung geändert.
- 7) Im gestrichelten Bereich der Kennlinien muss mit erhöhten Helligkeitsunterschieden zwischen Leuchtdioden innerhalb einer Verpackungseinheit gerechnet werden. Dimmverhältnis im Gleichstrom-Betrieb max. 5:1 für red
- 8) Maße werden wie folgt angegeben: mm (inch)
- 9) Gehäuse hält TTW-Löthitze aus nach CECC 00802
- Ein kritisches Bauteil ist ein Bauteil, das in lebenserhaltenden Apparaten oder Systemen eingesetzt wird und dessen Defekt voraussichtlich zu einer Fehlfunktion dieses lebenserhaltenden Apparates oder Systems führen wird oder die Sicherheit oder Effektivität dieses Apparates oder Systems beeinträchtigt.
- Lebenserhaltende Apparate oder Systeme sind für (a) die Implantierung in den menschlichen K\u00f6rper oder
 - (b) für die Lebenserhaltung bestimmt.

Falls sie versagen, kann davon ausgegangen werden, dass die Gesundheit und das Leben des Patienten in Gefahr ist.

Remarks:

- ¹⁾ Brightness values are measured during a current pulse of typical 25 ms, with an internal reproducibility of \pm 0 and an expanded uncertainty of \pm 11 % (acc. to GUM with an coverage factor of k = 3).
- 2) Driving the LED in reverse direction is suitable for short term application.
- R_{thJA} results from mounting on PC board FR 4 (pad size ≥ 16 mm² per pad)
- The dominant wavelength is measured at a current pulse of typical 25 ms, with an internal reproducibility of +/- 0,5 nm and an expanded uncertainty of +/- 1 nm (acc. to GUM with an coverage factor of k=3).
- (acc. to GUM with an coverage factor of k=3).

 The forward voltage is measured during a current pulse of typical 8 ms, with an internal reproducibility of +/- 0,05 V and an expanded uncertainty of +/- 0,1 V (acc. to GUM with an coverage factor of k=3).
- Oue to the special conditions of the manufacturing processes of LED, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.
- In the range where the line of the graph is broken, you must expect higher brightness differences between single LEDs within one packing unit. Dimming range for direct current mode max. 5:1 for red
- 8) Dimensions are specified as follows: mm (inch)
- 9) Package able to withstand TTW-soldering heat acc. to CECC 00802
- A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or the effectiveness of that device or system.
- 11) Life support devices or systems are intended (a) to be implanted in the human body, or
 - (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health and the life of the user may be endangered.

Published by OSRAM Opto Semiconductors GmbH Leibnizstraße 4, D-93055 Regensburg www.osram-os.com

© All Rights Reserved.

EU RoHS and China RoHS compliant product

此产品符合欧盟 RoHS 指令的要求; 按照中国的相关法规和标准,不含有毒有害物质或元素。

