```
from google.colab import drive
drive.mount('/content/drive')
→ Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force remount=True).
import os
import joblib
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from datetime import datetime
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.metrics import (
   r2_score,
   mean_absolute_error,
   mean_squared_error,
   silhouette_score,
    confusion_matrix,
    ConfusionMatrixDisplay
)
path = '/content/drive/My Drive/Car_Data'
files = os.listdir(path)
print(files)
→ ['CarStory (1).csv']
file_path = '/content/drive/My Drive/Car_Data/CarStory (1).csv'
df = pd.read_csv(file_path)
df.head()
\overline{\Rightarrow}
        Unnamed: 0
                          model year price transmission mileage fuelType
                                                                                 tax mpg engineSize tax(£)
      0
                  0
                          Fiesta 2015
                                        6998
                                                    Manual
                                                              37376
                                                                         Petrol 125.0 54.3
                                                                                                   1.2
                                                                                                          NaN
                                                                        Diesel 150.0 72.4
                                                              19068
                                                                                                          NaN
      1
                  1
                           Astra 2017 10998
                                                    Manual
                                                                                                   1.6
      2
                  2 Grandland X 2019
                                       22995
                                                  Automatic
                                                               5084
                                                                        Diesel 145.0 57.7
                                                                                                   1.5
                                                                                                          NaN
      3
                  3
                           Yaris 2018
                                       9990
                                                              14615
                                                                        Petrol 150.0 58.9
                                                                                                   1.5
                                                                                                          NaN
                                                    Manual
                                2010 22000
                                                                               1/5 0 56 5
                                                                                                   3 N
```

df.info()
df.describe()

```
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 108540 entries, 0 to 108539
    Data columns (total 11 columns):
        Column
                      Non-Null Count
                                      Dtype
        Unnamed: 0 108540 non-null int64
     0
                      108540 non-null object
     1
        model
                      108540 non-null int64
     2
         year
     3
         price
                      108540 non-null int64
         transmission 108540 non-null object
                      108540 non-null int64
         mileage
                      108540 non-null object
         fuelType
                      94327 non-null
         tax
                                       float64
                      99187 non-null
                                      float64
        mpg
                      108540 non-null float64
         engineSize
                      4860 non-null
                                       float64
     10 tax(£)
    dtypes: float64(4), int64(4), object(3)
    memory usage: 9.1+ MB
```

	Unnamed: 0	year	price	mileage	tax	mpg	engineSize	tax(£)
count	108540.000000	108540.000000	108540.000000	108540.000000	94327.000000	99187.000000	108540.000000	4860.000000
mean	54269.500000	2017.098028	16890.124046	23025.928469	120.256183	55.166825	1.661644	121.147119
std	31332.943446	2.130057	9756.266820	21176.423684	63.404805	16.138522	0.557058	58.003289
min	0.000000	1970.000000	450.000000	1.000000	0.000000	0.300000	0.000000	0.000000
25%	27134.750000	2016.000000	10229.500000	7491.750000	125.000000	47.100000	1.200000	125.000000
50%	54269.500000	2017.000000	14698.000000	17265.000000	145.000000	54.300000	1.600000	145.000000
75%	81404.250000	2019.000000	20940.000000	32236.000000	145.000000	62.800000	2.000000	145.000000
mav	108530 000000	20EU 000000	150000 000000	333UUU UUUUUU	580 000000	470 800000	6 600000	555 000000
mav 4	108530 000000	30EU 000000	150000 000000	333000 000000	580 000000	470 800000	E EUUUUU	555 000000

```
complete_rows = df.dropna()
if not complete_rows.empty:
    print(complete_rows.head(5))
else:
    print("No rows with complete data found.")
```

 \rightarrow No rows with complete data found.

Here the Idea now is to Understand the data while cleaning it more.

- Assume this is an model to find a prediction of tax based on the car.
- Hence, drop the ID, and model columns.
- There is the year 2060, so that will make the model biased; hence, I will remove it or fix it with ppl in charge (for exam case, I will remove
 it)
- after looking in 5 complete rows, the tax and tax £ are similar (I thought maybe its a USD or currency difference or there might be a different country tax like having the car in the US tax or UK tax but for simplifying reason I will assume its currency and there is no noticeable difference, so I will fill the missing data from tax £ to tax)

```
df['tax'] = df['tax'].fillna(df['tax(£)'])
df.drop(columns=['tax(£)', 'Unnamed: 0', 'model'], inplace=True)

df.info()
df.head()

# Fill remaining missing values in 'tax' based on the median of 'engineSize' and 'year'
median_tax_by_group = df.groupby(['engineSize', 'year'])['tax'].median()

def fill_tax(row):
    if pd.isnull(row['tax']):
        return median_tax_by_group.get((row['engineSize'], row['year']), df['tax'].median())
    else:
        return row['tax']

df['tax'] = df.apply(fill_tax, axis=1)

# Verify the final result
df.info()
df.head()
```

```
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 108540 entries, 0 to 108539
    Data columns (total 8 columns):
        Column
                     Non-Null Count
                                    Dtype
        -----
                     -----
    0
        year
```

108540 non-null int64 108540 non-null int64 1 price transmission 108540 non-null object 2 3 mileage 108540 non-null int64 4 fuelType 108540 non-null object 99187 non-null tax 99187 non-null mpg engineSize 108540 non-null float64

dtypes: float64(3), int64(3), object(2)

memory usage: 6.6+ MB <class 'pandas.core.frame.DataFrame'> RangeIndex: 108540 entries, 0 to 108539 Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	year	108540 non-null	int64
1	price	108540 non-null	int64
2	transmission	108540 non-null	object
3	mileage	108540 non-null	int64
4	fuelType	108540 non-null	object
5	tax	108533 non-null	float64
6	mpg	99187 non-null	float64
7	engineSize	108540 non-null	float64
dtyp	es: float64(3)	, int64(3), objec	t(2)

memory usage: 6.6+ MB

		year	price	transmission	mileage	fuelType	tax	mpg	engineSize
	0	2015	6998	Manual	37376	Petrol	125.0	54.3	1.2
	1	2017	10998	Manual	19068	Diesel	150.0	72.4	1.6
	2	2019	22995	Automatic	5084	Diesel	145.0	57.7	1.5
;	3	2018	9990	Manual	14615	Petrol	150.0	58.9	1.5
	4	2019	33900	Semi-Auto	3000	Diesel	145 0	56.5	3.0

Make sure every thing is clean and Normalise the data

df.describe()

from datetime import datetime current year = datetime.now().year df = df[df['year'] <= current_year]</pre> df.describe()

_		year	price	mileage	tax	mpg	engineSize
	count	108539.000000	108539.000000	108539.000000	108532.000000	99186.000000	108539.000000
	mean	2017.097633	16890.219820	23025.635661	120.649325	55.166950	1.661646
	std	2.126083	9756.260741	21176.301513	62.296617	16.138556	0.557060
	min	1970.000000	450.000000	1.000000	0.000000	0.300000	0.000000
	25%	2016.000000	10230.000000	7491.500000	125.000000	47.100000	1.200000
	50%	2017.000000	14698.000000	17265.000000	145.000000	54.300000	1.600000
	75%	2019.000000	20940.000000	32236.000000	145.000000	62.800000	2.000000
	mav •	2020 000000	150000 000000	333000 000000	E80 000000	470 Q00000	6 600000

```
# For 'tax' and 'mpg', fill missing values with the median without inplace
df['tax'] = df['tax'].fillna(df['tax'].median())
df['mpg'] = df['mpg'].fillna(df['mpg'].median())
# 'year', 'price', 'mileage', and 'engineSize' should be numeric and look fine
# 'transmission' and 'fuelType' should be categorical
df['transmission'] = df['transmission'].astype('category')
df['fuelType'] = df['fuelType'].astype('category')
# Standardize text columns for consistency
df['transmission'] = df['transmission'].str.lower()
df['fuelType'] = df['fuelType'].str.lower()
# Verify the result
df.info()
df.head()
</pre
     Index: 108539 entries, 0 to 108539
     Data columns (total 8 columns):
         Column
                       Non-Null Count
                                        Dtvpe
     #
     ---
         -----
                       108539 non-null int64
     0
         year
     1
         price
                       108539 non-null int64
         transmission 108539 non-null object
         mileage
                       108539 non-null int64
         fuelType
                       108539 non-null object
         tax
                       108539 non-null float64
                       108539 non-null float64
         mpg
                       108539 non-null float64
         engineSize
     dtypes: float64(3), int64(3), object(2)
     memory usage: 7.5+ MB
        year price transmission mileage fuelType
                                                      tax mpg engineSize
     0 2015
               6998
                                    37376
                           manual
                                               petrol 125.0 54.3
                                                                        1.2
      1 2017 10998
                           manual
                                    19068
                                              diesel 150.0 72.4
                                                                        1.6
     2 2019 22995
                         automatic
                                     5084
                                              diesel 145.0 57.7
                                                                        15
     3 2018
               9990
                           manual
                                    14615
                                              petrol 150.0 58.9
                                                                        1.5
         2010
                                               diacal 145.0
              33000
                                      3000
                                                           56 5
missing_values = df.isnull().sum()
if missing_values.sum() == 0:
   print("No missing data")
   print("Missing values in each column:")
    print(missing_values[missing_values > 0])
# Save the processed DataFrame to an Excel file in Google Drive
output_path = '/content/drive/My Drive/Processed_Excel_Car.xlsx'
df.to excel(output path, index=False)
print("File saved to Google Drive as 'Processed_Excel_Car.xlsx'")
   No missing data
     File saved to Google Drive as 'Processed_Excel_Car.xlsx'
# Normalise the data form 1 to 10 as price, mileage, tax, mpg, and engineSize as I will assume later thae score is from 10 easier to
numeric_cols = ['price', 'mileage', 'tax', 'mpg', 'engineSize']
# Initialize the scaler with a feature range from 1 to 10
scaler = MinMaxScaler(feature_range=(1, 10))
df[numeric_cols] = scaler.fit_transform(df[numeric_cols])
# Save the normalized DataFrame Drive
output_path = '/content/drive/My Drive/Car_Normalized_1_to_10.xlsx'
df.to_excel(output_path, index=False)
print("Normalized data (1 to 10) saved to Google Drive as 'Car_Normalized_1_to_10.xlsx'")
> Normalized data (1 to 10) saved to Google Drive as 'Car_Normalized_1_to_10.xlsx'
```

75%

max

3.727273

10.000000

```
df = pd.read_excel('/content/drive/My Drive/Car_Normalized_1_to_10.xlsx')
print(df[['price', 'mileage', 'tax', 'mpg', 'engineSize']].describe())
df[['price', 'mileage', 'tax', 'mpg', 'engineSize']].hist(bins=20, figsize=(12, 10))
plt.suptitle('Distribution of Normalized Numerical Features')
plt.show()
₹
                    price
                                 mileage
                                                     tax
                                                                    mpg
            108539.000000
                           108539.000000
                                          108539.000000
                                                          108539.000000
     count
                 1.927376
                                1.641555
                                                2.872169
                                                               2.048098
     mean
                                0.590054
                                                               0.295144
                 0.550341
                                                0.966645
     std
                                1.000000
                 1,000000
                                                1,000000
                                                               1,000000
     min
                 1.551680
                                1,208714
                                                2.939655
                                                               1.895218
     25%
     50%
                 1.803715
                                1.481042
                                                3.250000
                                                               2.032944
     75%
                 2.155820
                                1.898192
                                                3.250000
                                                               2.168757
     max
                10.000000
                                10.000000
                                               10.000000
                                                              10.000000
               engineSize
     count 108539.000000
                 3.265881
     mean
                 0.759627
     std
                 1.000000
     min
                 2.636364
     25%
     50%
                 3.181818
```

Distribution of Normalized Numerical Features

Box Plots of Normalized Numerical Features

Correlation matrix for normalized features with yellow-brown
plt.figure(figsize=(10, 8))
sns.heatmap(df[['price', 'mileage', 'tax', 'mpg', 'engineSize']].corr(), annot=True, cmap='Y10rBr')
plt.title('Correlation Matrix of Normalized Features')
plt.show()


```
# Load the normalized data from Excel
df = pd.read_excel('/content/drive/My Drive/Car_Normalized_1_to_10.xlsx')
# Derive the required features
\label{eq:df'price} $$ df'[price'] = df'[price'] / (df'[mileage'] + 1) $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ dd 1 to avoid division by zero $$ $$ $$ $$ $$
df['tax_to_price_ratio'] = df['tax'] / (df['price'] + 1) # Add 1 to avoid division by zero
# Prepare data for clustering with only the derived features
features_for_clustering = df[['tax_to_price_ratio', 'price_per_mileage']]
scaler = StandardScaler()
features scaled = scaler.fit transform(features for clustering)
# Apply K-Means Clustering
kmeans = KMeans(n_clusters=3, random_state=0) # Adjust n_clusters as needed
kmeans_labels = kmeans.fit_predict(features_scaled)
kmeans_score = silhouette_score(features_scaled, kmeans_labels)
# Store the K-Means results in the DataFrame
df['kmeans_cluster'] = kmeans_labels
print(f"K-Means Silhouette Score: {kmeans_score}")
→ K-Means Silhouette Score: 0.5700146570389054
# Load the normalized data from Excel
"""df = pd.read_excel('/content/drive/My Drive/Car_Normalized_1_to_10.xlsx')
# Derive the required features
\label{eq:df'price} $$ df'[price'] = df'[price'] / (df'[mileage'] + 1) $$ \# Add 1 to avoid division by zero $$ division by z
df['tax_to_price_ratio'] = df['tax'] / (df['price'] + 1) # Add 1 to avoid division by zero
# Prepare data for clustering with only the derived features
features_for_clustering = df[['tax_to_price_ratio', 'price_per_mileage']]
scaler = StandardScaler()
features_scaled = scaler.fit_transform(features_for_clustering)
from sklearn.cluster import DBSCAN
# Apply DBSCAN Clustering
dbscan = DBSCAN(eps=0.5, min_samples=5) # Adjust eps and min_samples as needed
dbscan labels = dbscan.fit predict(features scaled)
```

```
# Filter out noise points (label -1) for silhouette score calculation
filtered labels = dbscan labels[dbscan labels != -1]
filtered_features = features_scaled[dbscan_labels != -1]
dbscan_score = silhouette_score(filtered_features, filtered_labels) if len(set(filtered_labels)) > 1 else -1
# Store the DBSCAN results in the DataFrame
df['dbscan_cluster'] = dbscan_labels
print(f"DBSCAN Silhouette Score: {dbscan_score}")
results_table = pd.DataFrame({
    'Clustering Method': ['K-Means', 'DBSCAN'],
    'Silhouette Score': [kmeans_score, dbscan_score]
})
print("Comparison of Clustering Methods:")
print(results_table)
# Choose the best method based on the highest Silhouette Score
best_method = results_table.sort_values(by="Silhouette Score", ascending=False).iloc[0]['Clustering Method']
print(f"\nbest clustering method based on Silhouette Score: \{best\_method\}")
# Use the chosen method's cluster labels for visualization
df['best_cluster'] = df['kmeans_cluster'] if best_method == 'K-Means' else df['dbscan_cluster']
plt.figure(figsize=(10, 6))
plt.scatter(df['tax_to_price_ratio'], df['price_per_mileage'], c=df['best_cluster'], cmap='viridis', marker='o', s=50, alpha=0.7)
plt.xlabel('Tax to Price Ratio')
plt.ylabel('Price per Mileage')
plt.title(f'Clustering of Cars by {best_method} (Using Derived Features)')
plt.colorbar(label='Cluster')
plt.show()
# Plot the K-Means Clustering result
plt.figure(figsize=(10, 6))
plt.scatter(df['tax_to_price_ratio'], df['price_per_mileage'], c=df['kmeans_cluster'], cmap='viridis', marker='o', s=50, alpha=0.7)
plt.xlabel('Tax to Price Ratio')
plt.ylabel('Price per Mileage')
plt.title('K-Means Clustering of Cars by Cost-Efficiency Features')
plt.colorbar(label='Cluster')
plt.show()
```



```
df = pd.read_excel('/content/drive/My Drive/Car_Normalized_1_to_10.xlsx')
# Derive additional features for regression
df['price_per_mileage'] = df['price'] / (df['mileage'] + 1) # Avoid division by zero
df['tax_to_price_ratio'] = df['tax'] / (df['price'] + 1)
```

We will use the derived features and other relevant columns for the regression model

```
X = df[['price', 'mileage', 'mpg', 'engineSize', 'price_per_mileage', 'tax_to_price_ratio']]
v = df['tax']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
# Initialize and train the Linear Regression model
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
# Evaluate the model performance
r2 = r2_score(y_test, y_pred)
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
print("Linear Regression Performance:")
print(f"R-squared Score: {r2}")
print(f"Mean Absolute Error (MAE): {mae}")
print(f"Mean Squared Error (MSE): {mse}")
→ Linear Regression Performance:
     R-squared Score: 0.9742825480133924
     Mean Absolute Error (MAE): 0.0917348369520035
     Mean Squared Error (MSE): 0.02387230754715723
df = pd.read_excel('/content/drive/My Drive/Car_Normalized_1_to_10.xlsx')
# Derive additional features for regression
df['price per mileage'] = df['price'] / (df['mileage'] + 1) # Avoid division by zero
df['tax_to_price_ratio'] = df['tax'] / (df['price'] + 1)
# Select features and target variable
X = df[['price', 'mileage', 'mpg', 'engineSize', 'price_per_mileage', 'tax_to_price_ratio']]
y = df['tax'] # Target variable: tax
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
# Initialize and train the Random Forest Regressor
# n_estimators: Number of trees in the forest (default is 100; try increasing for potentially better accuracy)
# max_depth: Maximum depth of the trees. Setting a lower value can help prevent overfitting.
model = RandomForestRegressor(n_estimators=100, random_state=0)
model.fit(X\_train,\ y\_train)
# Predict on the test set
y_pred = model.predict(X_test)
r2 = r2_score(y_test, y_pred)
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
print("Random Forest Regression Performance:")
print(f"R-squared Score: {r2}")
print(f"Mean Absolute Error (MAE): {mae}")
print(f"Mean Squared Error (MSE): {mse}")
model_path = '/content/drive/My Drive/random_forest_model.joblib'
joblib.dump(model, model_path)
print(f"Model saved to Google Drive at '{model_path}'")
''' In case of hyber_para then we can adjust
param_grid_rf = {
    'n_estimators': [50, 100, 200],
                                              # Number of trees
    'max_depth': [None, 10, 20, 30],
                                              # Max depth of each tree
    'min_samples_split': [2, 5, 10],
                                              # Minimum samples required to split a node
    'min_samples_leaf': [1, 2, 4],
                                              # Minimum samples required at a leaf node
    'max_features': ['auto', 'sqrt', 'log2'] # Number of features to consider when looking for the best split
Random Forest Regression Performance:
     R-squared Score: 0.9974376033012835
     Mean Absolute Error (MAE): 0.004513936543338572
     Mean Squared Error (MSE): 0.002378552979565614
     Model saved to Google Drive at '/content/drive/My Drive/random_forest_model.joblib'
     ' In case of hyber_para then we can adjust \nparam_grid_rf = {\n 'n_estimators': [50, 100, 200],
                                                                                                                    # Number of trees\n
     'max_depth': [None, 10, 20, 30],
                                                # Max depth of each tree\n
                                                                            'min_samples_split': [2, 5, 10],
                                                                                                                         # Minimum sampl
     1
```

Random Forest model are way better LOLZ &

!pip install flask-ngrok

```
!pip install Flask
→ Collecting flask-ngrok
       Downloading flask_ngrok-0.0.25-py3-none-any.whl.metadata (1.8 kB)
     Requirement already satisfied: Flask>=0.8 in /usr/local/lib/python3.10/dist-packages (from flask-ngrok) (2.2.5)
     Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from flask-ngrok) (2.32.3)
    Requirement already satisfied: Werkzeug>=2.2.2 in /usr/local/lib/python3.10/dist-packages (from Flask>=0.8->flask-ngrok) (3.0.4)
    Requirement already satisfied: Jinja2>=3.0 in /usr/local/lib/python3.10/dist-packages (from Flask>=0.8->flask-ngrok) (3.1.4)
    Requirement already satisfied: itsdangerous>=2.0 in /usr/local/lib/python3.10/dist-packages (from Flask>=0.8->flask-ngrok) (2.2.0)
    Requirement already satisfied: click>=8.0 in /usr/local/lib/python3.10/dist-packages (from Flask>=0.8->flask-ngrok) (8.1.7)
    Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->flask-ngrok) (3.4
    Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->flask-ngrok) (3.10)
    Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->flask-ngrok) (2.2.3)
    Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->flask-ngrok) (2024.8.36
    Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from Jinja2>=3.0->Flask>=0.8->flask-ngrol
    Downloading flask_ngrok-0.0.25-py3-none-any.whl (3.1 kB)
    Installing collected packages: flask-ngrok
     Successfully installed flask-ngrok-0.0.25
    Requirement already satisfied: Flask in /usr/local/lib/python3.10/dist-packages (2.2.5)
    Requirement already satisfied: Werkzeug>=2.2.2 in /usr/local/lib/python3.10/dist-packages (from Flask) (3.0.4)
    Requirement already satisfied: Jinja2>=3.0 in /usr/local/lib/python3.10/dist-packages (from Flask) (3.1.4)
    Requirement already satisfied: itsdangerous>=2.0 in /usr/local/lib/python3.10/dist-packages (from Flask) (2.2.0)
    Requirement already satisfied: click>=8.0 in /usr/local/lib/python3.10/dist-packages (from Flask) (8.1.7)
    Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from Jinja2>=3.0->Flask) (3.0.2)
!pip install flask-ngrok
```

```
Requirement already satisfied: flask-ngrok in /usr/local/lib/python3.10/dist-packages (0.0.25)
Requirement already satisfied: Flask>=0.8 in /usr/local/lib/python3.10/dist-packages (from flask-ngrok) (2.2.5)
Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from flask-ngrok) (2.32.3)
Requirement already satisfied: Werkzeug>=2.2.2 in /usr/local/lib/python3.10/dist-packages (from Flask>=0.8->flask-ngrok) (3.0.4)
Requirement already satisfied: Jinja2>=3.0 in /usr/local/lib/python3.10/dist-packages (from Flask>=0.8->flask-ngrok) (3.1.4)
Requirement already satisfied: itsdangerous>=2.0 in /usr/local/lib/python3.10/dist-packages (from Flask>=0.8->flask-ngrok) (2.2.0)
Requirement already satisfied: click>=8.0 in /usr/local/lib/python3.10/dist-packages (from Flask>=0.8->flask-ngrok) (8.1.7)
Requirement already satisfied: dnac4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->flask-ngrok) (3.4
Requirement already satisfied: urlib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->flask-ngrok) (2.2.3)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->flask-ngrok) (2024.8.36
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from Jinja2>=3.0->Flask>=0.8->flask-ngrok)
```

!pip install pyngrok --quiet

!ngrok authtoken usr_2o0yg4006WojW7oGSGqbJFWnvwp

Authtoken saved to configuration file: /root/.config/ngrok/ngrok.yml