

Departamento de Matemática da Universidade de Aveiro

Algebra Linear e Geometria Analítica

Exame de Recurso

01 de Fevereiro de 2010	Duração: 2 horas e 30 minutos

Nome:		Nº mec.:
Curso:		Nº folhas suplementares:
Caso pretenda desistir assine a seguinte Declaro que desisto.	,	

Questão	1a	1b	2a	2b	3	4	total
Cotação	10	10	15	10	15	20	80
Classificação							

Questão	5a	5b	5c	6a	6b	6c	6d	7a	7b	total
Cotação	10	15	10	15	10	15	15	15	15	120
Classificação										

Classificação
total
valores

IMPORTANTE: Justifique resumidamente todas as suas afirmações, indique os cálculos que efectuou e explicite a sua resposta.

- 1. (a) Considere a matriz real quadrada A, invertível, tal que $A^2 = A$. Calcule det(A).
 - (b) Considere a matriz real $B = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$. Sabendo que $\det(B) = 5$, calcule o determinante da matriz $\begin{bmatrix} 3a_1 + a_2 & a_1 & -5a_3 \\ 3b_1 + b_2 & b_1 & -5b_3 \\ 3c_1 + c_2 & c_1 & -5c_3 \end{bmatrix}$.
- 2. Considere a matriz

$$C = \left[\begin{array}{cccc} 1 & 0 & 2 & -1 \\ 0 & 1 & -1 & 1 \\ 1 & 2 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{array} \right].$$

- (a) Calcule $\det(C)$.
- (b) Verifique se a matriz C é não invertível.
- 3. Considere o seguinte sistema de equações lineares

$$\begin{cases} x + y + z - w = 1 \\ (a-1)y + 2z = 0 \\ (a-1)(a+2)z = (b-3) \end{cases}$$

onde a e b são parâmetros reais. Indique, justificando, os valores de a e b para os quais o sistema é

- (a) possível e determinado,
- (b) possível e indeterminado,
- (c) impossível.
- 4. Considere o parâmetro $k \in \mathbb{R}$, a matriz $A = \begin{bmatrix} 1 & 1 & k \\ 1 & k & k^2 \\ k & k^2 & k^2 \end{bmatrix}$ e o vector $B = \begin{bmatrix} k \\ 1 \\ 1 \end{bmatrix}$. Usando o método de eliminação de Gauss, obtenha em função do parâmetro k a forma escalonada por linhas da matriz ampliada $[A \mid B]$.
- 5. Considere os vectores linearmente independentes X = (1, 0, -1) e Y = (1, 1, 1), o vector Z = -X + 2Y e a matriz A cujas colunas são os vectores $X, Y \in Z$.
 - (a) Indique a nulidade da matriz A, nul(A).
 - (b) Determine o subespaço vectorial das colunas de A, $\mathcal{C}(A)$. Indique uma base e a sua dimensão.
 - (c) Determine um vector W de tal forma que $\{X, Y, W\}$ seja uma base ortogonal.
- 6. Considere a transformação linear $L: \mathbb{R}^3 \to \mathbb{R}^2$ dada por L(x,y,z) = (x+y,2x+z) para todos os $(x,y,z) \in \mathbb{R}^3$.
 - (a) Determine a imagem de L, im(L), e uma sua base.
 - (b) L é sobrejectiva? E injectiva? Justifique.
 - (c) Encontre a matriz A da transformação L relativamente às bases S = ((1, 1, 0), (1, 0, 0), (1, 1, 1)) e T = ((1, 1), (0, 1)).
 - (d) Usando a matriz A (obtida na alínea anterior), calcule L(2,0,0). (NOTA: Se não determinou a matriz A na alínea (c), suponha que A é uma matriz com todos os seus elementos iguais a 2.)
- 7. Seja

$$A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 2 & -1 & 1 \\ 0 & 1 & 3 \end{array} \right].$$

- (a) Verifique que 1 é valor próprio da matriz A e determine os vectores próprios associados a 1.
- (b) Averigue se A é diagonalizável e, em caso afirmativo, indique uma matriz diagonal semelhante a A.