Social Media Usage and Emotional Well-Being: Analysis and Predictions

Orlando Marin, Tatiana Eng

Topics of Discussion

1 Introduction to the Dataset

U4 Regression Model

) Data Pre-processing

∩5 Data Visualizations

Summary Statistics

Conclusion and Takeaways

Introduction to the Dataset

Introduction to the Dataset (Background Information)

- The Social Media Usage and Emotional Well-Being dataset explores the relationship between social media usage patterns and emotional well-being
- Why did we choose this dataset?
 - Mental Health Awareness College students often experience stress, anxiety, and other emotional challenges. Understanding how social media affects emotional well-being can help them make informed choices.
 - Comparing Platform Effects Different platforms may have varying effects on emotions (e.g., Instagram and self-esteem, Twitter and anxiety). This is useful for students to evaluate their habits.
 - Personalized Well-Being Strategies Students can use data-driven insights to modify their social media habits in ways that support mental health and overall well-being.

Source: Kaggle

Data Pre-processing

Data Pre-Processing

- 1. Removed rows that contain empty values
- 2. Swapped 76 rows where "Age" and "Gender" values were in the wrong column
- 3. Changed the datatype of "Age" from string to int
- 4. One-hot encoding: Converted categorical values into numeric values for the purpose of using them in our regression model
- 5. Created our own variable (activity score) to mitigate multicollinearity

Dataset Features

Original:

Qualitative Features:

- Gender
- Social Media Platform
- Dominant Emotion

Quantitative Features:

- Age
- Daily Usage Time (minutes)
- Posts per Day
- Likes Received per Day
- Comments Received per Day
- Messages Sent per Day

After Our Modifications:

Qualitative Features:

- Gender
- Social Media Platform
- Dominant Emotion

Quantitative Features:

- Age
- Daily Usage Time (minutes)
- Activity Score
 - Calculated by taking the sum of Posts per Day, Likes Received per Day, Comments Received per Day, and Messages Sent per Day columns

Each user was identified using a unique user ID.

Data Pre-Processing: Correlation Heatmap Before Adjusting for Multicollinearity

Data Pre-Processing: Correlation Heatmap After Adjusting for Multicollinearity

Correlation values above 0.75 indicate a likelihood of multicollinearity.

We created our own variable (Activity_Score) to reduce multicollinearity, as evident in the heatmap.

Data Pre-Processing: Reducing Multicollinearity

PROBLEM

- Multicollinearity among the following features:
 - Posts per day
 - Likes received per day
 - Comments received per day
 - Messages sent per day

SOLUTION

- Created a new feature, Activity Score, which is calculated by taking the sum of the following features:
 - Posts per day
 - Likes received per day
 - Comments received per day
 - Messages sent per day

Source: Code

Summary Statistics

Summary Statistics

	Age	Daily_Usag e_Time (minutes)	Posts_Per_ Day	Likes_Rece ived_Per_D ay	Comments _Received_ Per_Day	Messages_S ent_Per_Da y	Activity_Sc ore
Mean	27.51	95.95	3.32	39.90	15.61	22.56	81.39
Standard deviation	3.93	38.85	1.91	26.39	8.82	8.52	44.48
Minimum	21	40	1	5	2	8	18
50%	27.50	85	3	33	14	22	73
Maximum	35	200	8	110	40	50	203

Regression Model

Multiple Regression Model

80% training, 20% testing

 $R^2 = 0.92$

Root mean squared error = 10.35

• On average, the model's predicted Daily Usage Time (minutes) deviates by approximately 10.35 minutes from the actual values in our dataset.

Analysis of Our Residuals

Source: Code

Data Visualizations

Linear Relationship Between Activity Score and Daily Usage Time

Source: Code

Which Features Contribute Most to Predicting Usage Time?

Instagram and Snapchat Have the Highest Daily Usage

Source: Code

Conclusion and Takeaways

Conclusion and Takeaways

Limiting Factors

- Dataset purely focused on social media usage and didn't consider outside factors
- The mean and median age of the people surveyed was 27.5 years old, which runs the risk of making the results less relevant to students
- Each person surveyed only included social media usage for one platform
- The dataset did not include data on popular social media platforms like TikTok or YouTube, which could impact results

Suggestions for Future Study

- Gather survey data from college students, including data on multiple social media platforms, and use the data to predict dominant emotion
- Use social media usage data, coupled with data in other areas (education, exercise, sleep) to make further predictions

Recommendations to Students

- Curate Your Feed Follow content that positively impacts emotional well-being.
- Take Breaks Periodic social media detoxing can improve focus and reduce stress.

Thank you!