

VAS

Vicerrectoría de Acción Social

TCU-565

Apoyo y promoción de las ciencias en la educación costarricense

Daniela Zúñiga Zamora

La potencia mecánica está dada en Watts (W) y se describe por las siguientes fórmulas:

$$P = \frac{w}{t} \mid P = \overrightarrow{F} \cdot \overrightarrow{v}$$

Donde w es trabajo (J), t es tiempo (s), F es fuerza (N) y v es velocidad (m/s)

Ejemplo 1:

Una máquina industrial desarrolla una potencia de 600 kW. ¿Cuánto trabajo realiza en 2 horas?

<u>Datos</u>

$$P = 600 \, kw$$

$$t = 2 horas$$

Lo primero que debemos hacer es obtener los datos que nos brinda el ejercicio.

Ahora, revisaremos que los mismos se encuentren en las unidades correctas

Es necesario realizar una conversión, ya que necesitamos que la potencia esté en Watts y se encuentra en kiloWatts y el tiempo debe estar en segundos y está en horas

$$600 \ kw \cdot \frac{1 \ x \ 10^3 \ w}{1 \ kw} = 6.0 \ x \ 10^5 \ W$$
$$2 \ h \cdot \frac{3600 \ s}{1 \ h} = 7200 \ s$$

AHORA SELECCIONAREMOS LA FÓRMULA QUE NECESITAMOS

Necesitaremos despejar la fórmula

 $P \cdot t = w$

Ahora, podemos solucionar el ejercicio al aplicar la fórmula.

$$P \cdot t = w$$

$$w = 6.0 \times 10^5 W \cdot 7200 s = 4.32 \times 10^9 J$$

Veamos otro ejemplo

Un joven sube una caja de libros en 1,8 s y otro lo hace en 2,5 s. ¿Cuál de los dos realizó el trabajo con más potencia? ¿Por qué?

$$P = \frac{w}{t}$$

RECORDEMOS LA FÓRMLA DE LA POTENCIA Al observar esta fórmula, sabemos que el tiempo y la potencia tienen una relación inversamente proporcional.

Por lo tanto:

A mayor tiere

A mayor tiempo, menor potencia.

Posee más potencia el de 1,8 s.

VEAMOS UN EJEMPLO MÁS

Mario necesita levantar una carga de 550 kg verticalmente a una velocidad de 20 m/s pero no está seguro de qué motor necesita comprar para poder hacerlo. ¿Cuál es la potencia necesaria para mover este peso?, ¿Cuál motor le recomiendan a Mario?

1) Extraigamos los datos

v = 20 m/s

m = 550 kg

Unidades?

Las unidades, son las correctas :)

AHORA, BUSQUEMOS LA FÓRMULA CORRECTA

Recordemos que tenemos la siguiente fórmula:

$$P = \overrightarrow{F} \cdot \overrightarrow{v}$$

El ejercicio nos da la velocidad y con la masa podemos calcular la fuerza de la siguiente forma:

La fuerza que debemos calcular es el peso de la carga!

De esta forma, podemos aplicar la fórmula y obtener la potencia.

$$P = 107 800 W$$

RECORDA QUE LA PRÁCTICA HACE AL MAESTRO!

Te invitamos a continuar practicando este tema.

Ejercicios tomados de: Hernández, K. (2018). Física: Un enfoque Práctico (10 ed., pp. 270-271). San José, Costa Rica: Didáctica Multimedia.