Languages, automata and computation II Tutorial 10 – Ideals, varieties, and polynomial automata

Winter semester 2024/2025

In this tutorial we explore ideals, varieties, and polynomial automata. Recall that an *ideal* of a ring R is a subset $I \subseteq R$ which is 1) closed under sum $I + I \subseteq I$, and 2) closed under under product with elements from the ring $R \cdot I \subseteq I$. For a set of vectors $A \subseteq \overline{\mathbb{Q}}^k$, let $I(A) \subseteq \overline{\mathbb{Q}}[x_1, \ldots, x_k]$ be the set of polynomials vanishing on A. (This is an ideal, justifying the notation). For a set of polynomials $P \subseteq \overline{\mathbb{Q}}[x_1, \ldots, x_k]$, let $V(P) \subseteq \overline{\mathbb{Q}}^k$ be the set of vectors where all polynomials in P vanish simultaneously. The Zariski closure of a set of vectors A is defined as

$$\overline{A} := V(I(A)).$$

Exercise 1. 1. Show that $A \subseteq \overline{A}$, for every $A \subseteq \overline{\mathbb{Q}}^k$.

2. Find a set of vectors $A\subseteq \overline{\mathbb{Q}}^k$ where the inclusion in the previous point is strict. Can such a set A be finite?

Exercise 2 (zero polynomial vs. zero polynomial function). Show that $p:\overline{\mathbb{Q}}[x_1,\ldots,x_k]$ is the zero polynomial iff as a function $\overline{\mathbb{Q}}^k\to\overline{\mathbb{Q}}$ it is constantly zero. Is this true if we replace $\overline{\mathbb{Q}}$ by \mathbb{F}_2 (the field consisting just of the elements $\{0,1\}$)?

Exercise 3. Show that I is an ideal of R[x] iff I is a vector subspace of R[x] over R (i.e., $I + I \subseteq I$ and $aI \subseteq I$ for every $a \in R$) s.t. $xI \subseteq I$.

Exercise 4. We have seen that I(A) is an ideal of $\overline{\mathbb{Q}}[x_1,\ldots,x_k]$ for every $A\subseteq\overline{\mathbb{Q}}^d$. Is every ideal of this ring of this form?

Principal ideal rings

Recall that a ring R is a *principal ideal ring* if every ideal of R is generated by one element.

Exercise 5. Are the following principal ideal rings?

- 1. The field of rational numbers \mathbb{Q} .
- 2. The ring of integers \mathbb{Z} .

- 3. The ring of univariate polynomials over the rationals $\mathbb{Q}[x]$.
- 4. The ring of univariate polynomials over the integers $\mathbb{Z}[x]$.
- 5. The ring of bivariate polynomials over the rationals $\mathbb{Q}[x,y]$.
- 6. The quotient ring $\mathbb{Q}[x,y]/\langle x-y\rangle$.

Exercise 6. If R is a principal ideal ring, does the same hold for R[x]?

Noetherian rings

A ring R is *Noetherian* if every ideal $I \subseteq R$ is finitely generated. In the following problem we explore ways to construct Noetherian rings.

Exercise 7. 1. Fields are Noetherian.

- 2. Finite rings are Noetherian.
- 3. Principal ideal rings are Noetherian.
- 4. If R is Noetherian and $I \subseteq R$ is an ideal, then R/I is Noetherian.
- 5. If R is Noetherian, then R[x] is Noetherian. Does the converse hold?
- 6. If R is Noetherian, then R[x] is Noetherian.

Exercise 8. Are the following rings Noetherian?

- 1. Ring of polynomials with countably many variables: $\mathbb{Q}[x_1, x_2, \dots]$.
- 2. Ring of power series: $\mathbb{Q}[x]$.
- 3. Ring of rational power series: $\mathbb{Q}[x] \cap \mathbb{Q}(x)$.
- 4. Noncommutative ring of power series in noncommuting variables: $R := \Sigma^* \to \mathbb{Q}, |\Sigma| \ge 2$, with sum and convolution (Cauchy) product.

Exercise 9. For every of the following sets A check that it is a ring. Is it Noetherian?

- 1. $A = x \cdot \mathbb{Q}[x] \subseteq \mathbb{Q}[x]$.
- 2. $A = \mathbb{Z} + x \cdot \mathbb{Q}[x] \subseteq \mathbb{Q}[x]$.

Polynomial automata

Recall that a polynomial automaton is a tuple

$$A = (d, \Sigma, Q, q_I, p, F)$$

where $d \in \mathbb{N}$ is the dimension, Σ is a finite alphabet, $Q = \overline{\mathbb{Q}}^d$ is the set of states, $q_I \in Q$ is the initial state, $p : \Sigma \to \mathbb{Q}[d]^d$ is a collection of tuples of polynomials inducing a polynomial action on states

$$q \in Q \mapsto q \cdot a \in Q$$
, for every $a \in \Sigma$,

where $q \cdot a := p^a(q) = (p_1^a(q), \dots, p_d^a(q))$, and $F : Q \to \overline{\mathbb{Q}}$ is the polynomial output function. The action of Σ is extended to words $w \in \Sigma^*$ homomorphically: $q \cdot \varepsilon := q$ and $q \cdot (a \cdot w) := (q \cdot a) \cdot w$. The semantics of state $q \in Q$ is the mapping $\|q\| : \Sigma^* \to \overline{\mathbb{Q}}$ defined as

$$[\![q]\!]_w = F(q \cdot w), \text{ for every } w \in \Sigma^*.$$

The semantics of the automaton A is $[\![A]\!] = [\![q_I]\!]$. The automaton is zero if $[\![A]\!] = 0$.

The set $\Sigma^* \to \mathbb{Q}$ has the structure of a commutative ring w.r.t. addition and Hadamard product (pointwise product). This gives us an alternative presentation of the semantics of polynomial automata.

Exercise 10. Show that a function $f: \Sigma^* \to \mathbb{Q}$ is recognisable by a polynomial automaton iff its reversal f^R belongs to a finitely generated subring of $\Sigma^* \to \mathbb{Q}$ closed under left quotients $u^{-1}(\cdot)$.

Exercise 11. Consider the following computational model B. States are tuples of polynomials $S = \mathbb{Q}[d]^d$, with $p_I := (x_1, \ldots, x_d)$ being the initial state and $F: S \to \mathbb{Q}$ a polynomial output function. The update function is described by a tuple of polynomials $p^a = (p_1^a, \ldots, p_d^a) \in \mathbb{Q}[d]^d$, one for each $a \in \Sigma$, by polynomial substitution as follows:

$$p \mapsto p \cdot a := p(p^a) \in S$$
, for every $a \in \Sigma$.

In other words, in the current state p we replace x_1 by p_1^a, \ldots, x_d by p_d^a . This is extended homomorphically to $\Sigma^* \to S$. For instance $p_I \cdot ab = p^a(p^b)$ and $p_I \cdot abc = p^a(p^b)(p^c) = p^a(p^b(p^c))$. The output on reading w is $[\![B]\!]_w = F(p_I \cdot w)$. Decide zeroness for B.

A variety is a subset $V \subseteq \overline{\mathbb{Q}}^d$ which is the set of common zeros of a set of polynomials: V = V(P) for some $P \subseteq \mathbb{Q}[x_1, \dots, x_d]$.

Exercise 12. For d=2 find a non-trivial infinite variety.

Exercise 13. Let $V \subseteq \overline{\mathbb{Q}}^d$ be a variety.

- 1. Let $g: \overline{\mathbb{Q}}^e \to \overline{\mathbb{Q}}^d$ be a polynomial map. Is $g^{-1}(V) \subseteq \overline{\mathbb{Q}}^e$ a variety?
- 2. Let $g: \overline{\mathbb{Q}}^d \to \overline{\mathbb{Q}}^e$ be a polynomial map. Is $g(V) \subseteq \overline{\mathbb{Q}}^e$ a variety?

Exercise 14. Show that all real varieties $V \subseteq \mathbb{R}^d$ are generated by a single polynomial. Is this true for varieties of \mathbb{C}^d ?

Exercise 15. Let $U, V \subseteq \overline{\mathbb{Q}}^d$ be a varieties. Are the following varieties?

- 1. $U \cap V$. What about possibly infinite intersections?
- 2. $U \cup V$. What about possibly infinite intersections?
- 3. $U \setminus V$.

Exercise 16. For each direction of the statements below, prove it if it holds, or find a counter-example otherwise.

- 1. For sets $A, B \subseteq \overline{\mathbb{Q}}^d$: $A \subseteq B$ iff $I(B) \subseteq I(A)$.
- 2. For sets of polynomials $P, Q \subseteq \overline{\mathbb{Q}}[x_1, \dots, x_d]$: $P \subseteq Q$ iff $V(Q) \subseteq V(P)$.
- 3. For varieties $U, V \subseteq \overline{\mathbb{Q}}^d \colon U \subseteq V \text{ iff } I(V) \subseteq I(U)$.

In the next problem we explore an algorithm to decide zeroness of polynomial automata.

Exercise 17. Consider the set of states $V_n \subseteq Q$ which give zero after reading words of length $\leq n$:

$$V_n = \left\{ q \in Q \mid \forall w \in \Sigma^{\leq n} : q \cdot w = 0 \right\}.$$

- 1. Show that the automaton is zero iff $q_I \in \bigcap_n V_n$.
- 2. Show that $V_0 \supseteq V_1 \supseteq \cdots \supseteq \bigcap_n V_n$ is a nonincreasing chain of varieties. Conclude that the chain stabilises at some finite level: There is $N \in \mathbb{N}$ s.t. $V_N = V_{N+1} = \cdots = \bigcap_n V_n$.
- 3. Show that for every $n \in \mathbb{N}$, $V_n = V_{n+1}$ implies n = N.
- 4. Let P_n be a finite set of polynomials s.t. $V_n = V(P_n)$. Show that we can compute a finite set of polynomials P_{n+1} s.t. $V_{n+1} = V(P_{n+1})$.
- 5. Show how to decide V(P) = V(Q) for two finite set of polynomials $P, Q \subseteq \mathbb{Q}[d]$.
- 6. Conclude with an algorithm for zeroness.

Exercise 18. Provide a coRP algorithm (randomised polynomial time) for the following problem: Given a polynomial automaton A and an input word $w \in \Sigma^*$, decide whether $[\![A]\!]_w = 0$.

Exercise 19. Give an algorithm for the following problem: In input we are given a polynomial automaton A and a finite automaton B recognising a regular language $L \subseteq \Sigma^*$. In output we answer whether for every $w \in L$ we have $[\![A]\!]_w = 0$.