MATH 307

Chapter 5

SECTION 5.2: THE ALGEBRA OF LINEAR TRANSFORMATIONS

Contents

Operations on Linear Transformations	2
Addition	2
Scalar Multiplication	2
Composition or Multiplication of Operators	9

Created by: Pierre-Olivier Parisé Summer 2022

OPERATIONS ON LINEAR TRANSFORMATIONS

Addition

If $T:V\to W$ and $S:V\to W$ are two linear transformations, then their sum T+S is the new linear transformation defined by

$$(T+S)(v) = T(v) + S(v) \quad v \text{ in } V.$$

EXAMPLE 1. Let T and S be the following linear transformations:

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 2x - y \\ x + 2y \end{bmatrix}$$
 and $S\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x + 3y \\ x - y \end{bmatrix}$.

Find T + S.

Scalar Multiplication

If $T:V\to W$ is a linear transformation and c is a real number, then the function cT is the linear transformation defined by

$$(cT)(v) = cT(v)$$
 v in V.

EXAMPLE 2. With T and S as in the previous example, find S + 4T.

Let B(V, W) be the set of all linear transformations $T: V \to W$.

THEOREM 3. The set B(V, W) equipped with the addition and scalar multiplication is a vector space.

Composition or Multiplication of Operators

If $T:V\to W$ and $S:W\to U$ are two linear transformations, then the composite $ST:V\to U$ is the linear transformation defined by

$$ST(v) = S(T(v))$$
 v in V.

EXAMPLE 4. Find ST with S and T as in example 1.