Parallel hp-FEM

hp-adaptive, hybrid-GMG, MatrixFree

Marc Fehling marc.fehling@colostate.edu

■

Colorado State University

June 18, 2021

Table of Contents

```
hp-FEM
```

What is hp-adaptive FEM?

Timeline of hp-implementation in deal.II

How to use hp in deal.II?

Challenges in parallelization

Load balancing

Efficient solvers

MatrixFree

Example: Laplace problem, step-75

Results

Error convergence

Strong scaling

Marc Fehling

What is hp-adaptive FEM?

• Align mesh resolution with complexity of current solution

h-adaptation: dynamic cell sizes

good for irregular solutions

p-adaptation: dynamic function spaces

good for smooth solutions

Combination of both possible

- Algebraic convergence with h-adaptation
- Exponential convergence possible with hp-adaptation

Timeline of hp-implementation in deal.II

2007/09/07	deal.II 6.0:	hp::DoFHandler, step-27		
2009/04/27	deal.II 6.2:	FE_Nothing		
2010/06/25	deal.II 6.3:	r.E.wothing		
2011/10/09	deal.II 7.1:	step-46		
2017/04/06	deal.II 8.5:	FESeries, step-27 rework	parallel	
2018/05/11	deal.II 9.0:	hp::DoFHandler with shared::Triangulation		
2019/05/21	deal.II 9.1:	hp::DoFHandler with distributed::Triangulat	oFHandler with distributed::Triangulation	
2020/05/20	deal.II 9.2:	hp::Refinement, future FE indices		
2021/06/01	/01 deal. II 9.3: MGTransferGlobalCoarsening, step-75,		7 rework	

How to use hp in deal.II?

- Enable hp-mode in DoFHandler with hp::FECollection
 - Note: hp::DoFHandler no longer required
- active_fe_index sets FE on each cell
- future_fe_index determines FE on each cell after refinement
- hp::Refinement 🗹 namespace offers decision strategies
- Decision indicators via SmoothnessEstimator , predict_error

Serial example

step-27 demonstrates a basic serial hp-application.

Load balancing

- Partition domain into subdomains for parallelization
- Balance workload on all subdomains
- Workload on each cell proportional to number of DoFs
- Requires weighted repartitioning for load balancing
 - parallel::CellWeights

Efficient solvers

- System matrix with many nonzero entries for high-order FEs
- Number of nonzero entries per row varies with hp-FEM
- Pure algebraic multigrid (AMG) methods struggle with irregular matrices
 - Number of solver iterations explode with increasing fragmentation
- Alternative: Geometric multigrid (GMG) methods
- Hybrid-GMG: Combination of p-multigrid, h-multigrid, and AMG
- Possible with new global coarsening algorithms
 - MGTransferGlobalCoarsening

Marc Fehling Slide 6 | 12

Hybrid-GMG

MatrixFree

- Memory bandwidth is bottleneck in HPC-applications
- Avoid storing system matrices
 - MatrixFree ☑
- Hybrid-GMG allows us to use that feature

Parallel example

step-75 demonstrates load balancing, hybrid-GMG, and MatrixFree methods combined in the hp-context.

Marc Fehling Slide 8 | 12

Example: Laplace problem, step-75

- Singularity at reentrant corners for elliptic problems
- L-shaped domain:

$$\Omega = [-1,1]^2 \setminus ([0,1] \times [-1,0])$$

Manufactured Laplace problem

$$-\nabla^2 u = 0 \quad \text{on} \quad \Omega$$

$$u = \bar{u} \quad \text{on} \quad \partial \Omega$$

$$\bar{u} = r^{2/3} \sin(2/3 \varphi)$$

$$\|\nabla \bar{u}\| = r^{-1/3}$$

Figure: L-shaped domain

Figure: Polynomial degrees

Figure: Partitioning

Figure: Polynomial degrees

Figure: Partitioning

Marc Fehling

Figure: Polynomial degrees

Figure: Partitioning

Figure: Polynomial degrees

Figure: Partitioning

Marc Fehling

Figure: Polynomial degrees

Figure: Partitioning

Marc Fehling

Results: Cycle 7 (zoom x20)

Figure: Polynomial degrees

Figure: Partitioning

Results: Error convergence

Figure: Error performances of several adaptation strategies¹

¹M. Fehling, Algorithms for massively parallel generic hp-adaptive finite element methods 🗗

Results: Strong scaling

Figure: Scaling on consecutively refined meshes for 768 MPI processes and a pure AMG solver¹

¹M. Fehling, Algorithms for massively parallel generic hp-adaptive finite element methods ✓

