36-710: Advanced Statistical Theory

Fall 2018

Lecture 4: September 12

Lecturer: Alessandro Rinaldo Scribes: Matteo Bonvini

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

4.1 Last time

In previous lectures, we defined sub-Gaussian random variables by bounding their MGF:

$$X \in SG(\sigma^2) \implies \mathbb{E}\{\exp\{\lambda(X-\mu)\}\} \ \forall \lambda \in \mathbb{R}$$

where $\mu = \mathbb{E}\{X\}$. In particular, we derived the Hoeffding Inequality, which tells us that sub-Gaussian random variables have Gaussian tails. Other equivalent definitions of sub-Gaussianity can be found in Chapter 2 of Wainwright.

4.2 Today's lecture

Theorem 4.1 Let $X \in SG(\sigma^2)$ with mean μ . It holds that

$$\mathbb{E}\{|X|^p\} \leq p(2\sigma^2)^{p/2}\Gamma\left(\frac{p}{2}\right) \implies \|X\|_p \lesssim \sigma\sqrt{p}$$

where last inequality is up to constant and holds for large p.

Proof:

$$\mathbb{E}\{|X|^p\} = \int_0^\infty P(|X|^p \ge t)dt$$

$$= \int_0^\infty P(|X| \ge t^{1/p})dt$$

$$\le \int_0^\infty 2\exp\left\{-\frac{t^{2/p}}{2\sigma^2}\right\}dt$$

$$= (2\sigma^2)^{p/2}p\underbrace{\int_0^\infty e^{-u}u^{p/2-1}du}_{\Gamma\left(\frac{p}{2}\right)} \qquad \left[u = \frac{t^{2/p}}{2\sigma^2}\right]$$

Note that $\Gamma\left(\frac{p}{2}\right) \leq \left(\frac{p}{2}\right)^{\frac{p}{2}}$ and $p^{\frac{1}{p}} \leq e^{\frac{1}{p}}$ for $p \geq 2$, hence:

$$||X||_p \le \sigma e^{\frac{1}{p}} \sqrt{p} \lesssim \sigma \sqrt{p}$$

Special case:

$$X \sim N(0,\sigma^2) \implies \mathbb{E}\left\{|X|^p\right\} = \frac{\sigma^p 2^{p/2} \Gamma\left(\frac{p+1}{2}\right)}{\sqrt{\pi}}$$

Definition 4.2 (Sub-Exponential random variables) A random variable is sub-Exponential (SE) with parameters ν^2 and α , where $\nu, \alpha > 0$, if the following holds:

$$\mathbb{E}\left\{\exp\{\lambda(X-\mu)\}\right\} \le \exp\left\{\frac{\lambda^2\nu^2}{2}\right\} \ \forall \lambda: |\lambda| < \frac{1}{\alpha}$$

Example 4.3 (χ_1^2 is SE(4,4)) Let $Z \sim N(0,1)$ and consider $X = Z^2$, for which we have $\mathbb{E}\{X\} = 1$ and $X \sim \chi_1^2$. Then:

$$\begin{split} \mathbb{E}\left\{\exp\{\lambda(X-1)\}\right\} &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\{\lambda(z^2-1)\} \exp\left\{-\frac{z^2}{2}\right\} dz \\ &= \frac{e^{-\lambda}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left\{-\frac{z^2}{2}(1-2\lambda)\right\} dz \\ &= \frac{e^{-\lambda}}{\sqrt{2\pi}\sqrt{1-2\lambda}} \int_{-\infty}^{\infty} \exp\left\{-\frac{y^2}{2}\right\} dy \qquad \left[y = z\sqrt{1-2\lambda} \ for \ \lambda < 1/2\right] \\ &= \frac{e^{-\lambda}}{\sqrt{1-2\lambda}} \end{split}$$

We can use the following inequality:

$$-\log(1-u) - u \le \frac{u^2}{2(u-1)} \ u \in (0,1)$$

to conclude that

$$\mathbb{E}\left\{\exp\{\lambda(X-1)\}\right\} \le \exp\left\{\frac{\lambda^2}{1-2\lambda}\right\} \ |\lambda| < 1/2$$

This means that we can get the following one-tail bound:

$$P(Z^2 - 1 \ge 2t + 2\sqrt{t}) \le e^{-t} \text{ for } t > 0$$

Notice that for $|\lambda| < 1/4$, we have:

$$\mathbb{E}\left\{\exp\{\lambda(X-1)\}\right\} \le \exp\left\{\frac{\lambda^2}{1-2\lambda}\right\} \le \exp\left\{\frac{4\lambda^2}{2}\right\}$$

so that $X \in SE(4,4)$.

4.2.1 Some properties of sub-Exponetial random variables

- 1. If $X \in SG(\sigma^2)$ and $\mathbb{E}\{X\} = 0$, then $X^2 \mathbb{E}\{X^2\} \in SE(256\sigma^4, 16\sigma^2)$
- 2. If $Var(X) \leq \sigma^2$ and $|X \mu| \leq b$ a.e., then $X \in SE(2\sigma^2, 2b)$.

Proof:

$$\mathbb{E}\left\{\exp\{\lambda(X-\mu)\}\right\} \le 1 + \frac{\lambda^2 \sigma^2}{2} + \sum_{k=3}^{\infty} \frac{\lambda^k}{k!} \mathbb{E}\left\{[X-\mu]^k\right\} \qquad [\text{equality if } Var(X) = \sigma^2]$$

$$\le 1 + \frac{\lambda^2 \sigma^2}{2} + \frac{\lambda^2 \sigma^2}{2} \sum_{k=3}^{\infty} [|\lambda|b]^{k-2}$$

$$= 1 + \frac{\lambda^2 \sigma^2}{2} + \frac{\lambda^2 \sigma^2}{2} \sum_{k=0}^{\infty} [|\lambda|b]^k$$

$$= 1 + \frac{\lambda^2 \sigma^2}{2(1-|\lambda|b)}$$

$$\le \exp\left\{\frac{\lambda^2 \sigma^2}{2(1-|\lambda|b)}\right\} \qquad [1 + x \le e^x]$$

$$\le \exp\left\{\lambda^2 \sigma^2\right\} \qquad [|\lambda| < 1/(2b)]$$

Remark: if $|X - \mu| \le b$ a.e., we have $X \in SG(\sigma^2)$.

Theorem 4.4 (Sub-Exponential tail bound) Let $X \in SE(\nu^2, \alpha)$, then it holds that

$$P(X - \mu \ge t) \le \begin{cases} \exp\left\{-\frac{t^2}{2\sigma^2}\right\} & \text{if } 0 < t \le \frac{\nu^2}{\alpha} \\ \exp\{-t\} & \text{if } t > \frac{\nu^2}{\alpha} \end{cases}$$

Proof: WLOG, take $\mathbb{E}\{X\} = 0$. For t > 0, we have

$$P(X \ge t) \le \exp\left\{-\lambda t + \frac{\lambda^2 \nu^2}{2}\right\}$$
 $[0 < \lambda < 1/\alpha]$

The next step is to minimize over λ , that is to find $\inf_{\lambda \in [0,1/\alpha]} \exp\left\{-\lambda t + \frac{\lambda^2 \nu^2}{2}\right\}$. Without the constraint on λ , the minimum occurs at $\lambda^* = t/\nu^2$, which is also the constrained minimum if $t < \nu^2/\alpha$. This yields a bound that is Gaussian-like. Otherwise, it is sufficient to note that $\exp\left\{-\lambda t + \frac{\lambda^2 \nu^2}{2}\right\}$ is decreasing in $\lambda \in [0, \lambda^*]$, so that the constrained minimum occurs at $\lambda^* = t/\alpha$. Plugging λ^* into the log of the function we get

$$-\lambda^* t + \frac{\lambda^{*2} \nu^2}{2} = -\frac{t}{\alpha} + \frac{1}{2\alpha} \frac{\nu^2}{\alpha} \le -\frac{t}{2\alpha} \qquad \left[t \ge \frac{\nu^2}{\alpha} \right]$$

Definition 4.5 (Bernstein Condition) Let X be a random variable with $Var(X) \leq \sigma^2$. X is said to satisfy the Bernstein Condition with parameter b if the following holds:

$$\mathbb{E}\left\{|X - \mu|^k\right\} < \frac{1}{2}k!\sigma^2b^{k-2} \text{ for } k \in \{3, 4, \ldots\}$$

Result: if X satisfies the BC condition with parameter b, then it holds that

$$\mathbb{E}\left\{\exp\{\lambda(X-\mu)\}\right\} \le \exp\left\{\frac{\lambda^2\sigma^2}{2(1-|\lambda|b)}\right\} \quad for \ |\lambda| < \frac{1}{b}$$

which yields the following bound

$$P(|X - \mu| \ge t) \le 2 \exp\left\{-\frac{t^2}{2(\sigma^2 + tb)}\right\}$$

In the proof of the bound, λ is set to be $\frac{t}{\sigma^2+bt}<\frac{1}{b}.$