The Colour of Cleaning

ODSC Europe 2021

Marta Markiewicz

ROADMAP

This
Thing
Called
Cleaning

Why care?

Data

Business Cleaning Modelling Deployment

https://clipartix.com https://imgur.com/gallery/dQcny7b Manually introduced data

No proper system for data input

Incorrect data types

Wrong formats

Out-of-domain observations

All possible dates formats

Typos

Single value columns

Lack of uniqueness

Systems integrations

Missing data

Duplicated not bringing value

Improperly gathered data

Improper cross field dependencies

Lack of data input rules

1.

Psychological barriers

RoomEscapeArtist.com

Why the dislike?

Pressure

Jever ending

ual & boring

No fame

Fame

Hack your psychology

High iterativeness

Evangelisation

ML for cleaning

2.

Missing data imputation

Simple approaches

73% empty

1 out of 60

Dropping column

Dropping rows

Mean / median / other statistic

Last observation carried forward Next observation carried backward

Interpolation

2020-12-22 2021-01-11 2021-01-31 2021-02-20 2024±e3-12 2021-04-01 2021-04-21 2021-05-11 date

Building a model

missForest

Pclass	Gender	Fare	Pclass	Gender	Fare		Pclass	Gender	Fare		Pclass	Gender	Fare		Gender	Fare
1	female	71.2833	1	female	71.2833		1	female	71.2833		1	female	71.2833		0	0
3	female	7.925	3	female	7.925		3	female	7.925		3	female	7.925		0	0
1		263	\1	male	263		1	male	263		1	female	263		1	0
1	male	27.7208	1	male	27.7208	-	1	male	27.7208	_/	1	male	27.7208	\	0	0
3	male	7.8958	3	male	7.8958		3	male	7.8958		3	male	7.8958		0	0
1	female		1	female	32.17		1	female	107.08		1	female	107.08		0	74.91
2		26	2	male	26		2	male	26		2	male	26		0	0

Multiple iterations!

MICE - Multiple Imputation by Chained Equations

Missing data is in red. There is a strong correlation between A and B, so let's try to impute A using B and C. Missing data is filled in randomly. This dillutes the correlations, but allows us to impute using all available data. A random forest is used to predict A with B and C. Notice the correlation between A and B improved. After Imputing B using A and C, we have achieved a correlation between A and B much closer to the original data.

Α	В	C
0.93	1.40	1.53
0.24	0.46	0.76
	0.80	
0.95	1.24	1.46
0.23	0.57	
0.90		1.28
0.15	0.42	
0.47	0.54	0.63
	1.14	
0.89	1.23	1.45

PMM - Predictive Mean Matching

The predicted value of A (E[A|B,C]) is shown to the left. We are interested in imputing the bold missing value below Our predicted value for the first missing sample is 0.60. The closest predicted value is 0.62. We find the closest values for all of our missing samples.

We then impute the value corresponding to the original data.

E[A B,C]	Α	В	C
0.73	0.93	1.40	1.53
0.62	0.24	0.46	0.76
0.60	100	0.80	1.53
1.39	0.95	1.24	1.46
0.36	0.23	0.57	1.28
1.27	0.90	0.46	1.28
0.15	0.15	0.42	1.53
0.65	0.47	0.54	0.63
1.20		1.14	1.28
1.24	0.89	1.23	1.45

Α	В	C
0.93	1.40	1.53
0.24	0.46	0.76
	0.80	1.53
0.95	1.24	1.46
0.23	0.57	1.28
0.90	0.46	1.28
0.15	0.42	1.53
0.47	0.54	0.63
	1.14	1.28
0.89	1.23	1.45

E[A B,C]	Α	В	C
0.73	0.93	1.40	1.53
0.62	0.24	0.46	0.76
0.60	0.24	0.80	1.53
1.39	0.95	1.24	1.46
0.36	0.23	0.57	1.28
1.27	0.90	0.46	1.28
0.15	0.15	0.42	1.53
0.65	0.47	0.54	0.63
1.20	0.89	1.14	1.28
1.24	0.89	1.23	1.45

Summary

3.

Messed up data

LAST time

Incorrect target labels

	VOC 2012	COCO 2017	Udacity – Self Driving Car
Training Set Images	17 177	94 439	11 992
Training Set Labels	20	80	9
Training Set Objects	49 834	686 385	78 230
Manual Correction	21.1%	23.6%	25%

 $\underline{\text{https://deepomatic.com/en/how-we-improved-computer-vision-metrics-by-more-than-5-percent-only-by-cleaning-labelling-errors}$

Breaking quality issues

Lack of middle phase

Lacks half of a flight

Data gathering error

Complete vaccinations series

Incomplete vaccinations series

(Almost) absent vaccinations series

Active learning

Active learning - intuition

https://towardsdatascience.com/introduction-to-active-learning-117e0740d7cc

Active quality learning

Anomalies - examples

Anomalies

	Intended supervised	A side effect supervised	Unsupervised	Mixed
Manual	A lot	No	No	A little
Immunity to pattern changes	No, unless repeated periodically	Yes	Yes	Partial

Anomalies - what to do with them?

Geo

- 1. Anomalies detection
- 2. Swapping
- 3. Anomalies detection

Typos world

male	375
female	200
Mr.	68
facet	63
monsieur	51
femme	27
kobiet	25
m ale	20
mujer	19
kobieta	18
dziewczyna	16
famale	9
	W 100

NLP evolution

Siamese / Triplets Networks

Siamese / Triplets Networks

Embeddings + dimension reduction / clustering

https://arxiv.org/pdf/1908.10084.pdf

https://machinelearningmastery.com/clustering-algorithms-with-python/

Cleaning categories

male	462
female	251
mle	24
man	24
monsieur	19
m ale	18
facet	16
mujer	14
Mr.	14
kobiet	11
kobieta	11
femme	10
femalle	10
dziewczyna	7

Cleaning categories Original 3D Data

2D UMAP Projection

male	462
female	251
mle	24
man	24
monsieur	19
m ale	18
facet	16
mujer	14
Mr.	14
kobiet	11
kobieta	11
femme	10
femalle	10
dziewczyna	7

n_neighbors: 50 min_dist: 0.25

Identifying improper categories

ategory	subcategory
house	bungalow
	bus
	cottage
	log-house
	sem-detached house
	semi-detached house
	short-sleeved
vehicle	calf-length
	car
	caravan
	lorry
	lory
	minivan
	motorcoach
	motorcycle
	truck
	two-storey hous

ous 0.204250
ved 0.26032
gth 0.26465
ous 0.45005
van 0.55382
9

Key takeaways

- Iterate
- Evangelate
- Leverage ML:
 - Regression / classification
 - Multiple imputation
 - Quality active learning
 - Anomalies detection
 - Embeddings
 - Dimension reduction
 - Clustering
 - 0 ...

Thank you!

Any Questions?

Marta Markiewicz

m.markiewicz.pl@gmail.com

https://github.com/lady-pandas/cleaning-is-coming