

Traffic Sign Recognition Using Deep Learning

A Deep Learning Approach to Traffic Sign Identification

Done by:

-Maram Alshehri, Shahad Faiz, Fai Aladyani

Project Objective

- Implement a deep learning model (CNN) to recognize traffic signs.
- Recognizing traffic sign to solve traffic-related problems.

Why Traffic Sign Recognition?

- Improving road safety.
- Assisting autonomous driving systems.

Data Collection

- Name of Dataset: Traffic sign
- Dataset source: Kaggle
- Programming language: Python
- Framework: TensorFlow and Keras.

Sign Types

- Number of classes: 43
- Dataset size: 39,000 images

ClassId	Name		
0	Speed limit (20km/h)		
1	Speed limit (30km/h)		
2	Speed limit (50km/h)		
3	Speed limit (60km/h)		
4	Speed limit (70km/h)		
5	Speed limit (80km/h)		
6	End of speed limit (80km/h)		
7	Speed limit (100km/h)		
8	Speed limit (120km/h)		
9	No passing		
10	No passing for vechiles over 3.5 metric tons		
11	Right-of-way at the next intersection		
12	Priority road		
13	Yield		
14	Stop		
15	No vechiles		
16	Vechiles over 3.5 metric tons prohibited		
17	No entry		
18	General caution		
19	Dangerous curve to the left		
20	Dangerous curve to the right		
21	Double curve		
22	Bumpy road		
23	Slippery road		
24	Road narrows on the right		
25	Road work		
26	Traffic signals		
27	Pedestrians		
28	Children crossing		
29	Bicycles crossing		
30	Beware of ice/snow		
31	Wild animals crossing		
32	End of all speed and passing limits		
33	Turn right ahead		
34	Turn left ahead		
35	Ahead only		
36	Go straight or right		
37	Go straight or left		
38	Keep right		
39	Keep left		
40	Roundabout mandatory		
41	End of no passing		
42	End of no passing by vechiles over 3.5 metric tons		

Preprocessing Steps

- Convert image to grayscale.
- Apply histogram equalization to enhance contrast.
- Normalize the pixel values by scaling between o and 1.
- Data splitting into training, validation and test sets, ratio 60/20/20 split.

Data Augnemntation

- 1. Width shift
- 2. Hight shift
- 3. Zoom
- 4. Shear
- 5. Rotation

Model Selection

Model Chosen:

Convolutional Neural Network (CNN)

Why CNN?

Ideal for image data, automatically detects and extracts key features (edges, shapes).

Outperforms traditional models in image classification.

Architecture Overview:

Convolution layers extract features, pooling reduces size, and dense layers classify.

Model Implementation

Layers Explained:

• Conv2D:

Extracts features from the image.

- MaxPooling:
 Reduces the spatial size of the feature maps.
- Fully Connected (Dense):
 Final classification based on extracted features.
- Loss Function: Categorical Crossentropy
- Optimizer: Adam
- Evaluation Metric: Accuracy

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 28, 28, 60)	1,560
conv2d_1 (Conv2D)	(None, 24, 24, 60)	90,060
max_pooling2d (MaxPooling2D)	(None, 12, 12, 60)	0
conv2d_2 (Conv2D)	(None, 10, 10, 30)	16,230
conv2d_3 (Conv2D)	(None, 8, 8, 30)	8,130
max_pooling2d_1 (MaxPooling2D)	(None, 4, 4, 30)	0
dropout (Dropout)	(None, 4, 4, 30)	0
flatten (Flatten)	(None, 480)	0
dense (Dense)	(None, 500)	240,500
dropout_1 (Dropout)	(None, 500)	0
dense_1 (Dense)	(None, 43)	21,543

Total params: 378,023 (1.44 MB)

Trainable params: 378,023 (1.44 MB)

Non-trainable params: 0 (0.00 B)

None

Training and Fine-Tuning

Epochs: 10

Batch Size: 32

Optimizer: Adam (Learning rate: 0.001)

Loss Function: Categorical Crossentropy

Metrics: Accuracy

Hyperparameter Tuning:

Learning rate & dropout tuning for optimization.

Model Evaluation

Accuracy: 97.14%

Test Score (Loss): 0.107

Test Score: 0.10669804364442825

Test Accuracy: 0.9714080691337585

Model Performance:

The model achieved high accuracy and low test

loss, indicating effective traffic sign recognition

on unseen data.

Conclusion and Future Work

Model performs well in identifying traffic signs.

Future improvements:

- Experiment with over-sampling and under-sampling techniques
- Add more signs
- Improve model accuracy.
- Real-time traffic sign detection

Thank you for listening!