# Vv556 Methods of Applied Mathematics I

## **Linear Operators**

### Assignment 3

Date Due: 12:10 PM, Thursday, the 11th of October 2018

This assignment has a total of (10 Marks).



Let  $P_n$  be the *n*th Legendre polynomial. Show that

$$||P_n||_{L^2} = \sqrt{\frac{2}{2n+1}}.$$

(2 Marks)

#### Exercise 3.2

The first three Legendre polynomials are

$$P_0(x) = 1,$$
  $P_1(x) = x,$   $P_2(x) = \frac{1}{2}(3x^2 - 1).$ 

- i) Use these polynomials to find an approximation p(x) to the function  $f: [-1,1] \to \mathbb{R}, f(x) = e^x$ . (2 Marks)
- ii) Plot in one graph the functions  $e^x$ , p(x) found above and the Taylor series at  $x_0 = 0$ ,  $e^x \approx 1 + x + x^2/2$ . Comment on the quality of the approximation. (2 Marks)

#### Exercise 3.3

In this exercise we use the scalar product

$$\langle u, v \rangle := \int_a^b \overline{u(x)} v(x) \, dx$$

on C([a,b]) for any interval  $[a,b] \subset \mathbb{R}$ 

i) Show that the family of functions defined on the interval [-1,1] and given by

$$\left\{\frac{1}{\sqrt{2}}, \cos(\pi n x), \sin(\pi n x)\right\}_{n=1}^{\infty}$$

is an orthonormal system.

(2 Marks)

ii) Show that if  $\{e_n\}$  is an orthonormal system in C([-1,1]), then  $\{\tilde{e}_n\}$  defined by

$$\widetilde{e}_n(x) = \sqrt{\frac{2}{b-a}} \cdot e_n \left( \frac{2}{b-a} \left( x - \frac{b+a}{2} \right) \right)$$

is an orthonormal system in C([a, b]). (2 Marks)

