10_RDMBS205PXC+mysql 存储引擎

- PXC

MHA 必须做的配置

配置 mysql 主从同步

指定 vip 地址

恢复服务器时必须手动同步数据和手动配置主从结构,从新修改配置文件

- 1.1 PXC 概述 Percona XtraDB Cluster
- 1.1.1 是基于 Galera 的 mysql 高可用集群解决方案
- 1.1.2 Galera cluster 是 Codershiop 公司开发的一套免费开源的高可用方案
- 1.1.3 PXC 集群主要由两部分组成: Percona Server with XtraDB 和 Write Set Replication patches (同步\多主复制插件)
- 1.1.4 官网:http://galeracluster.com

1.2 PXC 特点

- 1.2.1 数据强一致性,无同步延迟
- 1.2.2 没有主从切换操作,无需使用虚拟 VIP #不用配置数据库主从和设置 vip
- 1.2.3 仅支持 InnoDB 存储引擎, 默认为 InnoDB
- 1.2.4 多线程复制

进程: 系统进行资源分配和调度的基本单位;是多个线程的组合,是线程的容器;单独

处理一个任务,独享资源

线程:操作系统能够进行运算调度的最小单位,进程中一个单一顺序的控制流,一个进

程中可以并发多个线程;一起处理一个任务,相互独立,可同时工作,共享资源

1.2.5 部署使用简单

1.2.6 支持节点自动加入, 无需手动拷贝数据

1.3 相应端口

端口	说明	
3306	数据服务端口	
4444	SST 端口 全量同步时才可见此端口	
4567	集群通信端口	
4568	IST 端口 增量同步时才可见此端口	
SST	state snapshot transfer 全量同步	
IST	increment state transfer 增量同步	

1.4 服务器角色: 71 72 73 全为数据库服务器

编辑每台服务器的/etc/hosts 文件,进行服务器名映射

```
pxenode71\72\73 ~]# vim /etc/hosts
192.168.4.71    pxcnode71
192.168.4.72    pxcnode72
192.168.4.73    pxcnode73
```

2.1.2 71 72 73 安装依赖包\主软件	牛包
集群服务程序	
percona-xtradb-cluster-serve	r-57-5.7.25-31.35.1.el7.x86_64.rpm
qpress-1.1-14.11.x86_64.rpm	递归压缩程序

pxenode71 PXC]# rpm -ivh libev-4.15-1.el6.rf.x86 64.rpm

pxenode71 PXC]# rpm -ivh qpress-1.1-14.11.x86 64.rpm

percona-xtrabackup-24-2.4.13-1.el7.x86 64.rpm

room9pc01 ~]\$ scp -r /linux-soft/03/PXC

root@192.168.4.71\72\73:/root/

pxenode71 PXC]# yum -y install

pxenode71 ~1# cd PXC

percona-xtrabackup-24-2.4.13-1.el7.x86 64.rpm 在线热备程序

IP地址

192 168 4 71

192 168 4 72

192 168 4 73

ping -c 4 -i 0.1 pxcnode71\72\73

角色

数据库服务器

数据库服务器

数据库服务器

主机名

pxcnode71

pxcnode72

pxcnode73

映射验证:相互 ping

二 部署 PXC
2.1 安装软件
2.1.1 软件介绍

```
pxenode71 PXC]# tar -xvf
Percona-XtraDB-Cluster-5.7.25-31.35-r463-el7-x86_64-bundle.tar
pxenode71 PXC]# yum -y install Percona-XtraDB-Cluster-*.rpm
```

2.2 配置服务(71 72 73 都修改)

pxenode71 ~]# cd /etc/percona-xtradb-cluster.conf.d/

2.2.1 修改数据库服务运行参数配置文件 mysqld.cnf

pxenode71 percona-xtradb-cluster.conf.d]#

71 percona-xtradb-cluster.conf.d]# cp mysqld.cnf{,.bak} #备份 71 percona-xtradb-cluster.conf.d]# vim mysqld.cnf

server-id=71\72\73 #核改 server-id 号

2.2.2 修改 mysql 服务运行进程配置文件 mysqld_safe.cnf

该文件仅查看

2.2.3 修改主配置文件 wsrap.cnf(PXC 集群配置文件)

 ${\tt pxenode71\ percona-xtradb-cluster.conf.d] \#\ vim\ wsrep.cnf}$

2.2.3.1 定义集群成员列表

[mvsald]

8 wsrep_cluster_address=gcomm://

2.2.3.2 定义本机 IP 地址

25 wsrep_node_address=**192.168.4.71** #解除注释,写本机 IP

- 27 wsrep cluster name=**pxc-cluster** #默认即可
- 2.2.3.4 定义本机服务器名

2.2.3.3 定义集群名称.3 台服务器必须设置相同

- 30 wsrep_node_name=pxcnode71
- 2.2.3.5 定义 SST 数据同步授权用户及密码
- 39 wsrep_sst_auth="sstuser:**123qqq...A**" #解除注释,修改密码
- 2.3 启动集群服务
- 在1台服务器上执行即可(192.168.4.71)
- pxenode71 ~l# systemctl start mysgl.service
- 2.3.2 杳看数据座管理员初始脊录密码
- pxenode71 \sim]# grep pass /var/log/mysqld.log
- 2.3.3 使用初始密码登录

2.3.1 71 启动集群服务

- pxenode71 ~]# mysql -uroot -p"初始密码"
- 2.3.4 修改登录密码(无密码策略要求)
- mysql> alter user user() identified by "123456"
- 2.3.5 添加授权用户
- mysql> grant reload,lock tables,replication client,process on *.*
- to sstuser@"localhost" identified by "123qqq...A";
- 2.3.6 72\73 启动数据库服务 mysql(第一次启动会做全量同步)[无 d]

```
pxcnode72\73 ~1# systemctl restart mysgl #无d
```

2.3.7 72\73 登录数据库查看用户授权

```
pxcnode72\73 ~1# mysql -uroot -p123456
```

72\73 mysgl> select user, host from mysgl.user;

有数据: sstuser | localhost

72\73 mvsql> show grants for sstuser@"localhost":

有在 71 授予的权限

2.3.8 在 71\72\73 杏看端口

```
pxenode71 ~]# ss -antulp | grep :3306
tcp LISTEN 0 80 :::3306 :::* users:(("mysqld",pid=1862,fd=32))
```

pxenode71 ~]# ss -antulp | grep :4567

tcp LISTEN 0 128 *:4567 *:* users:(("mvsald".pid=1862.fd=11))

2.4 测试配置

2.4.1 仟意一台服务器上查看集群信息

71\72\73 任意 mysql> show status like "%wsrep%";

wsrep incoming addresses

192.168.4.73:3306.192.168.4.71:3306.192.168.4.72:3306

#成员列表

wsrep cluster size 3 #集群服务器台数

wsrep cluster status Primary #本服务器在集群中的状态

73 mysql> grant all on gamedb.* to admin@"%" identified by "123456";		
71\72 mysql> show grants for admin@"%";		
在客户端使用授权访问用户连接任意数据库服务器都可以写入数据,查看到同样数据		
50 连接 71 的数据库		
mysql50 ~]# mysql -h192.168.4.71 -uadmin -p123456		
50 mysql> show databases; #无 gamedb 库,创建		
50 mysql> create database gamedb;		

ON

ON

在任意一台服务器上的数据库内添加访问数据的授权访问用户

#相互之间的连接状态

#本服务器的服务状态

71 mysql> create table gamedb.stuinfo(

- -> id int **primary key auto increment**, #主键并自增长
- -> name char(15),

律表时,必须要有主律字段

wsrep connected

2.4.2 测试集群功能

wsrep ready

-> age tinyint unsigned,

72\73 mvsql> show databases:

-> class char(9));

72\73 查看库.表 gamedb.stuinfo

72\73 mysql> show databases;

```
mysal> use gamedb:
    mvsql> show tables:
50 连接 71 的数据库写入数据
50 mysql> insert into gamedb.stuinfo(name,age,class)
values("tom",21,"nsd1906");
50 mvsql> insert into gamedb.stuinfo(name.age.class)
values("ierry".22. "nsd1906"):
50 mysgl> insert into gamedb.stuinfo(name,age,class)
values("harry", 23, "nsd1906");
71\72\73 mysgl> select * from gamedb.stuinfo;
数据的 id 按服务器数量自加间隔增长,避免 id 值重复
2.4.3 测试故障自动恢复
任何一台数据库服务器宕机都不影响用户存取数据
2.4.3.1 停止 72 的 mvsql 服务并查看 72 的端口
pxcnode72 ~1# systemctl stop mysal
pxcnode72 ~1# ss -antulp | grep :3306
pxcnode72 ~]# ss -antulp | grep :4567
2.4.3.2 71\73 上数据库内查看%wsrep%状态
```

71 mysql> show status like "%wsrep%";

```
192.168.4.73:3306.192.168.4.71:3306 #成员列表没有 72 了
wsrep cluster size
                                   #集群服务器台数变成2
                         2
                        Primary #本服务器在集群中的状态
wsrep cluster status
wsrep connected
                         ON
                                  #相互之间的连接状态
wsrep ready
                         ON
                                  #本服务器的服务状态
2.4.3.3 50 连接 71 数据库并写入 game. db 数据,在 71\73 上看写入的数据
mysql50 ~]# mysql -h192.168.4.71 -uadmin -p123456
50 mysgl> insert into gamedb.stuinfo(name,age,class)
   values("xvv",24,"nsd1906"):
   50 mysql> insert into gamedb.stuinfo(name,age,class)
   values("xvv1".25, "nsd1906"):
50 mysql> insert into gamedb.stuinfo(name.age.class)
```

2.4.3.4 宕机服务器继续运行后,自动同步宕机期间的数据

values("xyy2",26,"nsd1906");

71\73 上数据库内查看新写入的数据[此时 id 按 2 间隔增长] 71\73 mysql> select * from gamedb.stuinfo:

启动 72 的 musql 服务并查看 72 的端口

wsrep incoming addresses

pxcnode72 ~]# systemctl restart mysql

pxcnode72 ~]# ss -antulp | grep :3306

72 杳看数据库内的数据是否自动同步

72 mysgl> select * from gamedb.stuinfo:

pxcnode72 ~1# ss -antulp | grep :4567

71\72\73 查看%wsrep%状态

71\72\73 mvsql> show status like "%wsrep%":

wsrep incoming addresses

#成员列表恢复

wsrep cluster size 3

wsrep cluster status Primary #本服务器在集群中的状态

wsrep connected

wsrep ready

mysql50 ~]# mysql -h192.168.4.72 -uadmin -p123456

values("natasha", 27, "nsd1096");

三 mysql 存储引擎 3.1 存储引擎概述

存储引擎,作为可插拔式的组件提供

192.168.4.73:3306.192.168.4.72.192.168.4.71:3306

#集群服务器台数恢复为3

ON #相互之间的连接状态

ON #本服务器的服务状态 2.4.3.5 50 连接 72 数据库写入数据,并在 71\72\73 上杳看写入的数据

50 mysgl> insert into gamedb.stuinfo(name,age,class)

71\72\73 mysql> select * from gamedb.stuinfo; #正常显示新写入的值

mysql 服务软件自带的功能程序,处理表的处理器

不同的存储引擎有不同的功能和数据存储方式

mysql 5.0\5.1 MyISAM

mysql 5.5\5.6 InnoDB

列出可用的存储引擎类型: show engines:

查看软件版本: show variables like "%version%":

查看表的当前引擎及详细属性: show create table stuinfo;

3.2 mysql 体系结构

管理工具,连接池,接口,解析器,优化器,缓存,存储引擎,文件系统

四 配置存储引擎

4.1 修改表存储引擎

4.1.1 建表时手动指定[未指定则使用默认存储引擎]

create table 表名 engine=存储引擎名;

4.1.2 建表后手动修改表的存储引擎

alter table 表名 engine=存储引擎名;

4.2 设置数据库服务使用的存储引擎为 MyISAM[修改/etc/my.cnf 配置文件]

vim /etc/my.cnf

default-storage-engine=存储引擎名 #[mysqld]下添加此行

修改完成后重启 mysqld 服务

shutting down mysql ... [确定]

starting mysgl [确定]

mysql50 ~]# mysql -uroot -p123456 -e "show engines;"

#列出可用引擎列表,修改后表中的默认引擎为 My ISAM

4.3 存储引擎特点

4.3.1 MyISAM 存储引擎

主要特点

支持表级锁定;不支持事务\事务回滚\外键

表文件

表名.frm #表结构文件[存储 desc 表名 出现的内容]

表名.MYI #表索引文件

表名.MYD #表数据文件

4.3.2 InnoDB 存储引擎

主要特点

支持行级锁定:支持事务\事务回滚\外键

表文件

表名.frm 表结构文件 #.frm 文件是所有存储引擎都有的文件

表名.ibd 表索引+数据文件

事务日志文件

ibdata1

ib_logfile0

ib_logfile1

4.3.3 mysql 锁机制

4.3.3.1 锁粒度

表级锁:对整张表加锁

行级锁:仅对被访问的行分别加锁

4.3.3.2 锁类型

读锁(共享锁):支持并发读,可同时多个客户端读

写锁(互斥锁\排他锁):是独占锁,上锁期间其他线程不能读表或写表

4.3.3.3 查看当前锁状态

show status like "table lock%";

4.3.4 InnoDB 的事条特件(ACID)

事务: 从连接到操作到断开连接的过程

事务问滚: 当事务讨程出现错误时, 表内容恢复到正确的状态

4.3.4.1 Atomic[ə'tpmɪk]:原子性

事务的整个操作是一个整体,不可分隔,要求全部成立,要么全部失败

4.3.4.2 Consistency[kən'sɪstənsil:一致性

事务操作的前后,所有人看到的表记录都一样

4.3.4.3 Isolation[.arsə'ler[n]:隔离性

事务操作是相互隔离不受影响的,多个用户对同一表操作时,相互不知道对方的存 在及对方在对表讲行事条操作,只有事条操作提交前后才知道

4.3.4.4 Durability[.divərə'bɪlɪtil:持久性

数据一旦提高,不可改变,永久改变表数据

4.3.4.5 相关命令

mvsgl> show variables like "autocommit": #査看提交状态

mvsql> set autocommit=off:

#关闭白动提交

mvsgl> rollback: #数据回滚

mysql> commit; #提交数据

命令行关闭自动提交只对当前终端有效,关闭后自动还原

4.4 事务特性测试

```
4.4.1 开1个终端登录 50 的数据库

mysql50 ~]# mysql -uroot -p123456

4.4.2 查看自动提交状态

50 mysql> show variables like "autocommit";

Variable_name Value

autocommit ON
```

```
4.4.3 关闭自动提交
50 mysql> set autocommit=off:
```

4.4.4 创建一个表,并写入数据,不提交

50 mysql> create table db10.e(id int) engine=innodb; 50 mysql> insert into db10.e values(11);

4.4.5 新开一个终端登录 50 数据库, 查看 db10.e 中的数据

50 mysql> select * from db10.e; #无数据

4.4.6 原终端提交 50 mysql> commit;

50 mysql> select * from db10.e; #有数据11

mysql> delete from table db10.e;

4.4.9 新终端再查看 db10.e 中的数据

4.4.7 新终端查看 db10.e 中的数据

4.4.8 原终端删除表 e 记录不提交

```
50 mysql> select * from db10.e; #有数据11
```

50 mysgl> rollback:

4.4.10 原终端回滚+提交+查看

- 50 mysql> commit;
- 50 mvsal> select * from db10.e: #有数据11
- 4.4.11 新终端再查看 db10.e 中的数据
- 50 mysql> select * from db10.e; #有数据11
- 4.4.12 原终端删除 db10.e 记录并提交并查看
- 50 mysql> delete from db10.e;
- 50 mysql> commit;
- mysql> select * from db10.e; #无数据
- 4.4.13 新终端再查看 db10.e 中的数据
- mvsal> select * from db10.e: #无数据