CODEUR UNIVERSEL

COMPRESSION DES DONNÉES, TP3

Thibaut Castanié

7 décembre 2015

M2 IMAGINA - Université de Montpellier

Table des Matières

- 1. Stratégie
- 2. Explication des étapes
- 3. Quel taux de compression choisir sur le QuadTree?
- 4. Résultats!
- 5. Et si ...
- 6. Conclusion

STRATÉGIE

Stratégie théorique de compression

Stratégie réelle de compression

EXPLICATION DES ÉTAPES

Détection du type de l'image

```
regex regPGM ("(.*pgm)");
regex regPPM ("(.*ppm)");

if(regex_match(cNomImgLue,regPGM)){
    cout << "Image en niveau de gris detectee";
} else if(regex_match(cNomImgLue,regPPM)){
    cout << "Image en couleur detectee";
}</pre>
```

Algorithme QuadTree

Algorithme QuadTree

Image *rollo.pgm* originale

Moyenne de chaque carré

Algorithme QuadTree

Compression faible de 5

Compression forte de 40

Algorithme QuadTree couleurs

Algorithme Prédictif

Avantage

 Permet de réduire grandement la quantité d'informations présentes

INCONVÉNIENTS

- O Perte d'information en cas de pixels contigus trop différents
- O Perte d'information lors de la reconstruction

Algorithme Prédictif

Image arnold.pgm originale

Affichage de l'algo prédictif

RLE adapté à une structure de carrés

RLE adapté à une structure de carrés

- 0,6,2,0
- 2,4,1,90
- 2,5,1,4
- 3,4,1,120

PROBLÈME

Si on veut obtenir un taux de compression correct, il faut le moins de carrés possibles dans l'image. Soit une image très compressée, avec un **PSNR < 30**.

Algorithme de Huffman

- Efficace pour coder par symboles
- Fiable et performant
- \bigcirc Compréhensible par un être humain λ

QUEL TAUX DE COMPRESSION CHOISIR SUR LE QUADTREE ?

Images médicales

Seuil de Quadtree : 5 PSNR : **38,6834**

Seuil de Quadtree : 10 PSNR : **32.3281**

Images dessinées

Seuil de Quadtree : 5 PSNR : **38.9759**

Seuil de Quadtree : 10 PSNR : **32.8298**

Images photographiques

Seuil de Quadtree : 5 PSNR : **37,1341**

Seuil de Quadtree : 10 PSNR : **32.4908**

Images en nuances de gris - medical.pgm

$$\tau = \frac{262159octets}{169844octets} = 1,54$$

PSNR: 38,6834

Images en nuances de gris - arnold.pgm

$$\tau = \frac{262159octets}{237826octets} = 1,11$$

PSNR: 37,917

Images de synthèse - yuri.pgm

$$\tau = \frac{786447octets}{727794octets} = 1,08$$

PSNR: 38.9759

Images de synthèse - starwars.pgm

 $\tau = \frac{786447octets}{698673octets} = 1,13$ PSNR: **38.4969**

Photographies - jack.pgm

$$\tau = \frac{786447octets}{738767octets} = 1,07$$
PSNR: **37,1341**

Photographies - jessica.pgm

$$\tau = \frac{786447octets}{768758octets} = 1,04$$
PSNR: 38.3056

Premières conclusions

Le taux de compression est faible pour les images couleurs :

- O Elles sont riches en détails
- Elles contiennent bien plus de symboles que les images pgm

Une bonne qualité visuelle s'obtient au dépit d'une bonne compression.

Inversement, une bonne compression nécessite une perte de qualité visuelle, via cette méthode de compression.

Courbe d'analyse

ET SI ...

...le RLE adapté aux carrés était mieux ?

Taille image *medical.pgm*: 262159 octets
Taille fichier *RLEmedical.txt*: 506699 octets
Taille fichier *RLEmedical.comp*: 272522 octets

Réponse

Non!

...le codage prédictif était sans pertes ?

Taille image *medical.pgm*: 262159 octets
Taille image *medicalPredictif.pgm*: 262159 octets
Taille fichier *medicalPredictif.comp*: 98387 octets

Réponse

Dommage!

Conclusion