EXPERIMENT 6

Aim: To study measurement of Power in three phase circuit using Two Wattmeter method.

Apparatus: Wattmeter (600V/5A), Voltmeter(0-600V), Ammeter(0-5A), Auto-transformer, three-phase Induction Motor, connecting wires.

Circuit Diagram:

Fig 1. Power Measurement using Two Wattmeter Method

Theory:

Power consumed by a 3-phase balanced or unbalanced load (delta connected) can be measured by using 2-wattmeters properly connected in the circuit. In Two-Wattmeter method, the current coils of the wattmeter are connected with any two lines, say R and Y as shown in Fig.1. While the pressure coil of each wattmeter is connected between these two lines and the third line i.e., B as shown above. Under running conditions, the power consumed by the three-phase system is the sum of the two individual wattmeters.

i.e.,
$$P_{Measured} = W_1 + W_2$$

where, W_1 is the power measured by wattmeter 1 and W_2 is the power measured by wattmeter 2.

The total power in circuit can be calculated as follows:

$$P_{Calculated} = \sqrt{3} V_L I_L \cos \theta$$

where,

V_L is the line voltage,

I_L is the line current

 $\cos \theta$ is the power factor.

The phase angle can be calculated as,

$$\therefore \theta = \left[tan^{-1} \left\{ \sqrt{3} \left(\frac{W_2 - W_1}{W_2 + W_1} \right) \right\} \right]$$

The percent error is given by

% error =
$$\frac{P_{Calculated} - P_{Measured}}{P_{Measured}} \times 100$$

Multiplying Factor for wattmeter is calculated as follows:

$$\textit{Multiplying Factor} = \frac{\textit{Voltage Rating} * \textit{Current Rating} * \textit{Power factor}}{\textit{Full} - \textit{scale reading}}$$

Procedure:

- 1. Connect the circuit as shown in the Fig.1.
- 2. Start the 3Φ -ac supply and observe wattmeter readings. If one wattmeter reads negative or gives reverse reading then switch off the supply and reverse the current coil terminals.
- 3. Now, again start the ac supply and set the voltage to desired value using auto-transformer and then note down the current in ammeter i.e. line current I_L , voltage in voltmeter i.e. line voltage V_L and power rating in both the watt meters i.e. W_1 and W_2 .
- 4. Repeat the procedure for five different voltages.

Observation Table:

Sr. No.	Line Voltage V _L	Line Current I _L	W_1	W_2	$P_{Measured} = W_1 + W_2$	Phase Angle, θ	$P_{Calculated} = \sqrt{3} V_L I_L \cos \theta$	% error
1	400V	3.6A	220*4	-135*4	-		, , , , , , , , , , , , , , , , , , ,	
2	360V	3.0A	165*4	-97*4				
3	300V	2.4A	120*4	-60*4				
4	280V	2.2A	100*4	-50*4				
5	240V	2.0A	80*4	-45*4				

Calculations:

Questions:

(1) What are the advantages and disadvantages of two wattmeter method?

Conclusion: