Lecture 02

§6 Counterexample

- To disprove "if A then B", we just need to find an example where A is true but B is false.
- Examples:
 - (1) Disprove: If a, b, c are positive integers such that $a \mid bc$, then $a \mid b$ or $a \mid c$.
 - (2) Disprove: if p is prime, then $2^p 1$ is also prime.

§7 Boolean algebra

- Boolean algebra includes expressions containing letters and operations, where each letter stands for the value TRUE or FALSE. The basic operations are
 - \wedge and: $x \wedge y$ is true if and only if both x and y are true.
 - \vee or: $x \vee y$ is true if and only if at least one of x and y is true.
 - $\neg not$: $\neg x$ is true if and only if x is false.
 - \rightarrow if \cdots then \cdots : $x \rightarrow y$ is true if and only if the statement "if x then y" is true. In other words, $x \rightarrow y$ is always true unless x is true but y is false.
 - \leftrightarrow if and only if: $x \leftrightarrow y$ is true if and only if x and y are both true or both false.
- A technique to prove the equivalence of Boolean expressions: use 1 and 0 to represent true and false, then each Boolean expression has a value 0 or 1. In other words, define a function ϕ from Boolean expressions to 1 and 0: $\phi(\text{true})=1$ and $\phi(\text{false})=0$. The operations of Boolean expressions becomes the following calculations of 1 and 0:
 - (1) $\phi(x \wedge y) = \phi(x)\phi(y)$.
 - (2) $\phi(x \vee y) = \phi(x) + \phi(y) \phi(x)\phi(y)$.
 - (3) $\phi(\neg x) = 1 \phi(x)$.
 - (4) $\phi(x \to y) = 1 \phi(x) + \phi(x)\phi(y)$.
 - (5) $\phi(x \leftrightarrow y) = \phi(x)\phi(y) + (1 \phi(x))(1 \phi(y)).$
- Examples:
 - (3) Prove that $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$ and that $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$.
 - (4) Prove that $\neg(x \lor y) = (\neg x) \land (\neg y)$ and that $\neg(x \land y) = (\neg x) \lor (\neg y)$.
 - (5) Prove that $(x \wedge y) \vee (x \wedge \neg y)$ is equivalent to x.
 - (6) Prove that $(x \land (x \rightarrow y)) \rightarrow y$ is always true.

HW1(b) (Due 2/1/2016)

- 6.9
- 7.8
- 7.13 (b),(c)