Theoretische Informatik HS24

Nicolas Wehrli Übungsstunde 01 25. September 2024

ETH Zürich nwehrl@ethz.ch

Heute

- Organisation
- **2** Grundbegriffe
 - Alphabet
 - Wort
 - Sprache
- **3** Algorithmische Probleme
- 4 Kolmogorov Komplexität

Organisation

Organisation

Kontakt

In der Übungsstunde

Per Mail an nwehrl@student.ethz.ch

Discord: .blackphoenyx, bzw. Nicolas[TI]

WhatsApp-Chat QR-Code und Link per Mail

Aufgaben

50% der Punkte reichen für Teilnahme an Midterms (zu empfehlen)

Gruppeneinteilung heute

LaTex Empfehlung, Overleaf, Template

Abgaben per Moodle

Webseite: https://n.ethz.ch/~nwehrl/TheoInf

Grundbegriffe

Notation

Für eine Menge A bezeichnet |A| die Kardinalität von A und $\mathcal{P}(A)=\{S\mid S\subseteq A\}$ die Potenzmenge von A.

In diesem Kurs definieren wir $\mathbb{N}=\{0,1,2,\dots\}.$

Alphabet

Definition Alphabet

Eine endliche, nichtleere Menge Σ heisst **Alphabet**. Die Elemente eines Alphabets werden **Buchstaben (Zeichen, Symbole)** genannt.

Beispiele

```
\begin{split} &\Sigma_{\text{bool}} = \{0,1\} \\ &\Sigma_{\text{lat}} = \{a,...,z\} \\ &\Sigma_{\text{Tastatur}} = \Sigma_{\text{lat}} \cup \{A,...,Z,\lrcorner,>,<,(,),...,!\} \\ &\Sigma_{\text{logic}} = \{0,1,(,),\wedge,\vee,\neg\} \\ &\Sigma_{abc} = \{a,b,c\} \text{ (unser Beispiel für weitere Definitionen)} \end{split}
```

Definition Wort

- Sei Σ ein Alphabet. Ein **Wort** über Σ ist eine **endliche** (eventuell leere) Folge von Buchstaben aus Σ .
- Das **leere Wort** λ ist die leere Buchstabenfolge.
- Die **Länge** |w| eines Wortes w ist die Länge des Wortes als Folge, i.e. die Anzahl der Vorkommen von Buchstaben in w.
- Σ^* ist die Menge aller Wörter über Σ . $\Sigma^+ := \Sigma^* \setminus \{\lambda\}$ ist Menge aller nichtleeren Wörter über Σ .
- Seien $x \in \Sigma^*$ und $a \in \Sigma$. Dann ist $|x|_a$ definiert als die Anzahl der Vorkommen von a in x.

Achtung Metavariablen! I.e. Das a steht hier für einen beliebigen Buchstaben aus Σ und **nicht** nur für den Buchstaben 'a', der in Σ sein könnte.

Wort

Bemerkungen

- Wir schreiben Wörter ohne Komma, i.e. eine Folge $x_1, x_2, ..., x_n$ schreiben wir $x_1x_2...x_n$.
- $|\lambda| = 0$ aber $|\Box| = 1$ von Σ_{Tastatur} .
- Der Begriff Wort als Fachbegriff der Informatik entspricht nicht der Bedeutung des Begriffs Wort in natürlichen Sprachen!
- E.g. Mit L kann der Inhalt eines Buches oder ein Programm als ein Wort über $\Sigma_{\rm Tastatur}$ betrachtet werden.

Beispiel

Verschiedene Wörter über Σ_{abc} :

a, aa, aba, cba, caaaab etc.

Konkatentation

Die **Verkettung (Konkatenation)** für ein Alphabet Σ ist eine Abbildung Kon: $\Sigma^* \times \Sigma^* \to \Sigma^*$, so dass $\mathrm{Kon}(x,y) = x \cdot y = xy$ für alle $x,y \in \Sigma^*$.

$$\Sigma^* \times \Sigma^* \to \Sigma^*$$
, so dass

$$Kon(x, y) = x \cdot y = xy$$

- Die Verkettung Kon (i.e. Kon von einem Kon (über das gleiche Alphabet Σ)) ist eine assoziative Operation über Σ^* .

$$Kon(u, Kon(v, w)) = Kon(Kon(u, v), w), \ \forall u, v, w \in \Sigma^*$$

- $x \cdot \lambda = \lambda \cdot x = x$, $\forall x \in \Sigma^*$
- $\implies (\Sigma^*, Kon)$ ist ein Monoid mit neutralem Element λ .
- Kon nur kommutativ, falls $|\Sigma| = 1$.
- $|xy| = |x \cdot y| = |x| + |y|$. (Wir schreiben ab jetzt xy statt Kon(x, y))

Konkatentation - Beispiel

Beispiel

Wir betrachten wieder Σ_{abc} . Sei x = abba, y = cbcbc, z = aaac.

- Kon(x, Kon(y, z)) = Kon(x, yz) = xyz = abbacbcbcaaac
- -|xy| = |abbacbcbc| = 9 = 4 + 5 = |abba| + |cbcbc| = |x| + |y|

Reversal und Iteration

Für eine Wort $a = a_1 a_2 ... a_n$, wobei $\forall i \in \{1, 2, ..., n\}$. $a_i \in \Sigma$, bezeichnet $a^R = a_n a_{n-1} ... a_1$ die **Umkehrung (Reversal)** von a.

Sei Σ ein Alphabet. Für alle $x \in \Sigma^*$ und alle $i \in \mathbb{N}$ definieren wir die i-te **Iteration** x^i von x als

$$x^0 = \lambda, x^1 = x \text{ und } x^i = xx^{i-1}.$$

Reversal und Iteration - Beispiele

Beispiel

Wir betrachten wieder Σ_{abc} . Sei x = abba, y = cbcbc, z = aaac.

- $z^{R} = (aaac)^{R} = caaa$
- $x^{R} = (abba)^{R} = abba$
- $-x^0=\lambda$
- $y^2 = yy^{2-1} = yy = cbcbccbcbc$
- $-z^3 = zz^2 = zzz = aaacaaacaaac$
- $(x^R z^R)^R = ((abba)^R (aaac)^R)^R = (abbacaaa)^R = aaacabba$

Teilwort, Präfix und Suffix

Seien $v, w \in \Sigma^*$ für ein Alphabet Σ .

- v heisst ein **Teilwort** von $w \iff \exists x, y \in \Sigma^* : w = xvy$
- v heisst ein **Präfix** von $w \iff \exists y \in \Sigma^* : w = vy$
- v heisst ein **Suffix** von $w \iff \exists x \in \Sigma^* : w = xv$
- $v \neq \lambda$ heisst ein **echtes** Teilwort (Präfix, Suffix) von $w \iff v \neq w$ und v Teilwort (Präfix, Suffix) von w

Teilwort, Präfix und Suffix - Beispiel

Beispiel

Wir betrachten wieder Σ_{abc} . Sei x = abba, y = cbcbc, z = aaac.

- *bc* ist ein echtes Suffix von *y*
- abba ist kein echtes Teilwort von x.
- *cbcb* ist ein echtes Teilwort und echtes Präfix von *y*.
- ac ist ein echtes Suffix.
- abba ist ein Suffix, Präfix und Teilwort von x.

Sei Σ ein Alphabet und sei $w \in \Sigma^*$ ein Wort der Länge $n \in \mathbb{N} \setminus \{0\}$. Wie viele unterschiedliche Teilwörter kann w höchstens haben?

Wir haben $w=w_1w_2...w_n$ mit $w_i\in\Sigma$ für i=1,...,n. Wie viele Teilwörter beginnen mit w_1 ? Wie viele Teilwörter beginnen mit w_2 ?

Wir haben also $n+(n-1)+\ldots+1=\frac{n(n+1)}{2}$ Teilwörter. Etwas fehlt aber in unserer Berechnung...

Das leere Wort λ ist auch ein Teilwort! Also haben wir $\frac{n(n+1)}{2} + 1$ Teilwörter.

Sei $\Sigma = \{a, b, c\}$ und $n \in \mathbb{N}$. Bestimme die Anzahl der Wörter aus Σ^n , die das Teilwort a enthalten.

In solchen Aufgaben ist es manchmal einfach, das Gegenteil zu berechnen und so auf die Lösung zu kommen. Wie viele Wörter aus Σ^n enthalten das Teilwort a nicht?

Da wir jetzt die Anzahl Wörter der Länge n wollen, die nur b und c enthalten, kommen wir auf $|\{b,c\}|^n=2^n$.

Daraus folgt, dass genau $|\Sigma|^n - 2^n = 3^n - 2^n$ Wörter das Teilwort a enthalten.

Sei $\Sigma = \{a, b, c\}$ und $n \in \mathbb{N} \setminus \{0\}$. Bestimme die Anzahl der Wörter aus Σ^n , die das Teilwort aa nicht enthalten.

Wir bezeichnen die Menge aller Wörter mit Länge n über Σ , die aa nicht enthalten als L_n .

Schauen wir mal die ersten zwei Fälle an:

$$L_1 = \{a, b, c\} \implies |L_1| = 3$$

 $L_2 = \{ab, ac, ba, bb, bc, ca, cb, cc\} \implies |L_2| = 8$

Nun können wir für $m \ge 3$ jedes Wort $w \in L_m$ als Konkatination $w = x \cdot y \cdot z, |y| = |z| = 1$ schreiben, wobei wir zwei Fälle unterscheiden:

- (a) $z \neq a$
 - In diesem Fall kann $y \in \{a, b, c\}$ sein, ohne dass die Teilfolge aa entsteht und somit ist xy ein beliebiges Wort aus L_{m-1} .

Dann könnten wir alle Wörter in diesem Case durch $L_{m-1} \cdot \{b,c\}$ beschreiben, was uns die Kardinalität $2 \cdot |L_{m-1}|$ gibt.

- (b) z = a
 - In diesem Fall muss $y \neq a$ sein, da sonst aa entstehen würde.
 - Somit kann xy nur in b oder c enden. x kann aber ein beliebiges Wort der Länge m-2 sein.
 - Deshalb können wir alle Wörter in diesem Case durch $L_{m-2} \cdot \{b,c\} \cdot \{a\}$ beschreiben. Kardinalität: $2 \cdot |L_{m-2}|$.

Daraus folgt

$$|L_n| = \begin{cases} 3 & n = 1 \\ 8 & n = 2 \\ 2|L_{n-1}| + 2|L_{n-2}| & n \ge 3 \end{cases}$$

Kanonische Ordnung

Sei $\Sigma = \{s_1, s_2, ..., s_m\}, m \geq 1$, ein Alphabet und sei $s_1 < s_2 < ... < s_m$ eine Ordnung auf Σ . Wir definieren die **kanonische Ordnung** auf Σ^* für $u, v \in \Sigma^*$ wie folgt:

$$u < v \iff |u| < |v| \lor (|u| = |v| \land u = x \cdot s_i \cdot u' \land x \cdot s_j \cdot v')$$
 für irgendwelche $x, u', v' \in \Sigma^*$ und $i < j$.

Kanonische Ordnung - Beispiel

Sei $\Sigma_{abc} = \{a, b, c\}$ und wir betrachten folgende Ordnung auf Σ_{abc} : c < a < b. Was wäre die kanonische Ordnung folgender Wörter?

- c, abc, aaac, aaab, bacc, a, λ

 λ , c, a, abc, aaac, aaab, bacc

Sprache

Eine **Sprache** L über einem Alphabet Σ ist eine Teilmenge von Σ^* .

- Das Komplement L^{\complement} der Sprache L bezüglich Σ ist die Sprache $\Sigma^* \setminus L$.
- $L_{\emptyset} = \emptyset$ ist die **leere Sprache**.
- $L_{\lambda} = \{\lambda\}$ ist die einelementige Sprache, die nur aus dem leeren Wort besteht.

Konkatenation von Sprachen

Sind L_1 und L_2 Sprachen über Σ , so ist

$$L_1 \cdot L_2 = L_1 L_2 = \{vw \mid v \in L_1 \text{ und } w \in L_2\}$$

die **Konkatenation** von L_1 und L_2 .

Iteration von Sprachen

Ist L eine Sprache über Σ , so definieren wir

$$L^0 := L_{\lambda} \text{ und } L^{i+1} := L^i \cdot L \text{ für alle } i \in \mathbb{N},$$
 $L^* = \bigcup_{i \in \mathbb{N}} L^i \text{ und } L^+ = \bigcup_{i \in \mathbb{N} \setminus \{0\}} L^i = L \cdot L^*.$

 L^* nennt man den Kleene'schen Stern von L.

Man bemerke, dass $\Sigma^i = \{x \in \Sigma^* \mid |x| = i\}$, $L_\emptyset L = L_\emptyset = \emptyset$ und $L_\lambda \cdot L = L$.

Sprachen - Beispiel

Mögliche Sprachen über Σ_{abc}

-
$$L_{1} = \emptyset$$

- $L_{2} = \{\lambda\}$
- $L_{3} = \{\lambda, ab, baca\}$
- $L_{4} = \Sigma_{abc}^{*}, L_{5} = \Sigma_{abc}^{+}, L_{6} = \Sigma_{abc} \text{ oder } L_{7} = \Sigma_{abc}^{27}$
- $L_{8} = \{c\}^{*} = \{c^{i} \mid i \in \mathbb{N}\}$
- $L_{9} = \{a^{p} \mid p \text{ ist prim.}\}$
- $L_{10} = \{c^{i}a^{3i^{2}}ba^{i}c \mid i \in \mathbb{N}\}$

 λ ist ein Wort über jedes Alphabet. Aber es muss nicht in jeder Sprache enthalten sein!

Lemmas über Sprachen

Seien L_1, L_2 und L_3 Sprachen über einem Alphabet Σ . Dann gilt

$$L_1L_2 \cup L_1L_3 = L_1(L_2 \cup L_3) \tag{1}$$

$$L_1(L_2 \cap L_3) \subseteq L_1L_2 \cap L_1L_3$$
 (2)

Weshalb nicht '=' bei (2)?

Sei
$$\Sigma = \Sigma_{\text{bool}} = \{0, 1\}$$
, $L_1 = \{\lambda, 1\}$, $L_2 = \{0\}$ und $L_3 = \{10\}$.

Dann haben wir $L_1(L_2 \cap L_3) = \emptyset \neq \{10\} = L_1L_2 \cap L_1L_3$.

Beweise im Buch/Vorlesung

Aufgaben

Aufgabe 2.10

Seien L_1, L_2 und L_3 Sprachen über dem Alphabet $\{0\}$. Gilt

$$L_1(L_2 \cap L_3) = L_1L_2 \cap L_1L_3?$$

Aufgabe 2.11

Seien $L_1 \subseteq \Sigma_1^*$ und $L_2, L_3 \subsetneq \Sigma_2^*$ für zwei Alphabete Σ_1 und Σ_2 mit $\Sigma_1 \cap \Sigma_2 = \emptyset$. Gilt

$$L_1(L_2 \cap L_3) = L_1L_2 \cap L_1L_3?$$

Von einem Alphabet zum anderen

Seien Σ_1 und Σ_2 zwei beliebige Alphabete. Ein Homomorphismus von Σ_1^* nach Σ_2^* ist jede Funktion $h:\Sigma_1^*\to\Sigma_2^*$ mit den folgenden Eigenschaften: (i) $h(\lambda)=\lambda$ und (ii) $h(uv)=h(u)\cdot h(v)$ für alle $u,v\in\Sigma_1^*$.

Wir können Probleme etc. in anderen Alphabeten kodieren. So wie wir verschiedenste Konzepte, die wir auf Computer übertragen in Σ_{bool} kodieren. _____

Algorithmische Probleme

Vorläufige Definition des Begriffs Algorithmus

Mathematische Definition folgt in Kapitel 4 (Turingmaschinen).

Vorerst betrachten wir Programme, die für jede zulässige Eingabe halten und eine Ausgabe liefern, als Algorithmen.

Wir betrachten ein Programm (Algorithmus) A als Abbildung $A: \Sigma_1^* \to \Sigma_2^*$ für beliebige Alphabete Σ_1 und Σ_2 . Dies bedeutet, dass

- (i) die Eingaben als Wörter über Σ_1 kodiert sind,
- (ii) die Ausgaben als Wörter über Σ_2 kodiert sind und
- (iii) $\it A$ für jede Eingabe eine eindeutige Ausgabe bestimmt.

A und B äquivalent \iff Eingabealphabet Σ gleich, $A(x) = B(x), \forall x \in \Sigma^*$

Ie. diese Notion von "Äquivalenz" bezieht sich nur auf die Ein und Ausgabe.

Entscheidungsprobleme

Das Entscheidungsproblem (Σ, L) für ein gegebenes Alphabet Σ und eine gegebene Sprache $L \subseteq \Sigma^*$ ist, für jedes $x \in \Sigma^*$ zu entscheiden, ob

$$x \in L \text{ oder } x \notin L.$$

Ein Algorithmus A löst das Entscheidungsproblem (Σ, L) , falls für alle $x \in \Sigma^*$ gilt:

$$A(x) = \begin{cases} 1, & \text{falls } x \in L, \\ 0, & \text{falls } x \notin L. \end{cases}$$

Wir sagen auch, dass A die Sprache L erkennt.

Why do we care

Wenn für eine Sprache L ein Algorithmus existiert, der L erkennt, sagen wir, dass L **rekursiv** ist.

Wir sind oft an spezifischen Eigenschaften von Wörtern aus Σ^* interessiert, die wir mit einer Sprache $L\subseteq \Sigma^*$ beschreiben können.

Dabei sind dann L die Wörter, die die Eigenschaft haben und $L^{\complement} = \Sigma^* \setminus L$ die Wörter, die diese Eigenschaft nicht haben.

Jetzt ist die allgemeine Formulierung von Vorteil!

Why do we care - Beispiele

i. Primzahlen finden:

Entscheidungsproblem $(\Sigma_{\text{bool}}, L_p)$ wobei $L_p = \{x \in (\Sigma_{\text{bool}})^* \mid \text{Nummer}(x) \text{ ist prim}\}.$

ii. Syntaktisch korrekte Programme:

Entscheidungsproblem $(\Sigma_{\text{Tastatur}}, L_{C++})$ wobei $L_{C++} = \{x \in (\Sigma_{\text{Tastatur}})^* \mid x \text{ ist ein syntaktisch korrektes C++ Programm}\}.$

iii. Hamiltonkreise finden:

Entscheidungsproblem (Σ, HK) wobei $\Sigma = \{0, 1, \#\}$ und $HK = \{x \in \Sigma^* \mid x \text{ kodiert einen Graphen, der einen Hamiltonkreis enthält.}\}$

 $\ddot{A} quivalenz probleme \subset Entscheidung sprobleme$

Funktion, Relation

Seien Σ und Γ zwei Alphabete.

- Wir sagen, dass ein Algorithmus A eine Funktion (Transformation) $f: \Sigma^* \to \Gamma^*$ berechnet (realisiert), falls

$$A(x) = f(x)$$
 für alle $x \in \Sigma^*$

- Sei $R \subseteq \Sigma^* \times \Gamma^*$ eine Relation in Σ^* und Γ^* . Ein Algorithmus A berechnet R (bzw. löst das Relationsproblem R), falls für jedes $x \in \Sigma^*$, für das ein $y \in \Gamma^*$ mit $(x, y) \in R$ existiert, gilt:

$$(x,A(x)) \in R$$

Optimierungsprobleme

Ein **Optimierungsproblem** ist ein 6-Tupel $\mathcal{U}=(\Sigma_I,\Sigma_O,L,M,\cos t, \operatorname{goal})$, wobei:

- (i) Σ_I ist ein Alphabet (genannt **Eingabealphabet**),
- (ii) Σ_O ist ein Alphabet (genannt **Ausgabealphabet**),
- (iii) $L\subseteq \Sigma_I^*$ ist die Sprache der **zulässigen Eingaben** (als Eingaben kommen nur Wörter in Frage, die eine sinnvolle Bedeutung haben). Ein $x\in L$ wird ein **Problemfall (Instanz) von** $\mathcal U$ genannt.
- (iv) M ist eine Funktion von L nach $\mathcal{P}(\Sigma_O^*)$, und für jedes $x \in L$ ist M(x) die Menge der zulässigen Lösungen für x,
- (v) **cost** ist eine Funktion, **cost**: $\bigcup_{x \in L} (\mathcal{M}(x) \times \{x\}) \to \mathbb{R}^+$, genannt **Kostenfunktion**,
- $(vi) \ \ \textbf{goal} \in \{Minimum, Maximum\} \ ist \ das \ \textbf{Optimierungsziel}.$

Optimierungsprobleme

Eine zulässige Lösung $\alpha \in \mathcal{M}(x)$ heisst **optimal** für den Problemfall x des Optimierungsproblems \mathcal{U} , falls

$$cost(\alpha, x) = \mathbf{Opt}_{\mathcal{U}}(x) = goal\{cost(\beta, x) \mid \beta \mathcal{M}(x)\}.$$

Ein Algorithmus *A* **löst** \mathcal{U} , falls für jedes $x \in L$

- (i) $A(x) \in \mathcal{M}(x)$ (ii) $cost(A(x), x) = goal\{cost(\beta, x) \mid \beta \in \mathcal{M}(x)\}.$

Kolmogorov Komplexität

Algorithmen generieren Wörter

Sei Σ ein Alphabet und $x \in \Sigma^*$. Wir sagen, dass ein Algorithmus A das Wort x generiert, falls A für die Eingabe λ die Ausgabe x liefert.

Beispiel:

```
A_n: begin for i = 1 to n; write (01); end
```

 A_n generiert $(01)^n$.

Aufzählungsalgorithmus

Sei Σ ein Alphabet und sei $L \subseteq \Sigma^*$. A ist ein **Aufzählungsalgorithmus für** L, falls A für jede Eingabe $n \in \mathbb{N} \setminus \{0\}$ die Wortfolge $x_1, ..., x_n$ ausgibt, wobei $x_1, ..., x_n$ die kanonisch n ersten Wörter in L sind.

Information messen

Kolmogorov-Komplexität

Für jedes Wort $x \in (\Sigma_{\text{bool}})^*$ ist die **Kolmogorov-Komplexität** K(x) **des Wortes** x das Minimum der binären Längen, der Pascal-Programme, die x generieren.

K(x) ist die kürzestmögliche Länge einer Beschreibung von x.

Die einfachste (und triviale) Beschreibung von x, ist wenn man x direkt angibt.

x kann aber eine Struktur oder Regelmässigkeit haben, die eine Komprimierung erlaubt.

Kolmogorov-Komplexität - Beispiel

Beispiel

Aber durch die Regelmässigkeit von einer 20-fachen Wiederholung der Sequenz 01, können w auch durch $(01)^{20}$ beschreiben. Hierbei ist die Beschreibungslänge ein wenig mehr als 4 Zeichen.

Grundlegende Resultate

Es existiert eine Konstante d, so dass für jedes $x \in (\Sigma_{bool})^*$

$$K(x) \le |x| + d$$

Die Kolmogorov-Komplexität einer natürlichen Zahl n ist K(n) = K(Bin(n)).

Für jede Zahl $n \in \mathbb{N} \setminus \{0\}$ existiert ein Wort $w_n \in (\Sigma_{\mathsf{bool}})^n$, so dass

$$K(w_n) \geq |w_n| = n$$