Exercises [See also Linz, Exs at end of Sec. 1.2]

Find grammars for $\Sigma = \{a,b\}$ that generate sets of all strings with

- (a) no a
- (a) **exactly** one a
- (b) at least one a.
- (c) exactly two a's
- $(d) \ge two a's$
- (e) \leq two a's

Notation

(1) Given a word, u, and a symbol, a:

 $n_a(u) =$ # of occurrences of a in u.

(2) For $u = a_1...a_n$ and $0 \le k \le n$:

 $u \upharpoonright k =$ **prefix** of u up to $k = a_1...a_k.$

(3) xs(a, b, u) = excess of a over b in u.

$$= n_a(u) - n_b(u)$$

(4) u is balanced $\iff n_a(u) = n_b(u)$

$$xs(a, b, u) = 0$$

Where n = |u|.

Exercise: [Linz, Example 1.13] Let L = the set of all **balanced** words over $\{a, b\}$.

Find a **grammar** for L.

Let G = grammar with productions:

$$S \longrightarrow a \ S \ b \ | \ b \ S \ a \ | \ S \ S \ | \ \lambda$$

Show L(G) = L (= set of all balanced words in Σ^*).

In order to accomplish this, we must show:

- (a) $L(G) \subseteq L$ and,
- (b) $L \subseteq L(G)$
- (a) is clear: every sentential form generated by G has an equal number of a's and b's.
- (b) We will show:

If u is **balanced**, then u is generated by G.

The proof is by **induction** (CVI) on |u|.

Base: Suppose |u| = 0.

Then $u = \lambda$ which is derived in G by $S \to \lambda$.

Induction step: Suppose |u| = n > 0 and

$$\forall v \in L$$
, if $|v| < n$, then v is generated by G . (i.h.)

There are 4 cases for u:

- $(1) \mathbf{u} = \mathbf{a} \mathbf{v} \mathbf{b}$
- (2) u = b v a
- (3) u = a v a
- (4) u = b v b

Case 1

u = a v b

Then v is balanced and |v| < |u|. So by the **induction hypothesis**, there is a G-derivation of v:

$$S \stackrel{\star}{\Longrightarrow} v$$

But then there is a G-derivation of u:

$$S \implies a S b \stackrel{\star}{\implies} a v b = u$$

Case 2

u = b v a

Very similar to Case 1.

Case 3

u = a v a

So, if $u = a_1...a_n$, then $a_1 = a$, $a_n = a$.

For k = 0, 1, ..., n, let

$$f(k) = xs(a, b, u \upharpoonright k)$$

= excess of \boldsymbol{a} over \boldsymbol{b} in first \boldsymbol{k} symbols of \boldsymbol{a} .

.

Note:

$$u \upharpoonright 0 = \lambda$$
, so $f(0) = \underline{0}$
 $u \upharpoonright n = u$, so $f(n) = \underline{0}$

And, for each k < n,

$$f(k+1) = f(k) + 1$$
 if $a_k = a$
= $f(k) - 1$ if $a_k = b$

So:

$$f(1) = \underline{1}$$
$$f(n-1) = \underline{-1}$$

$$\therefore \exists k : \ 0 < k < n : \ f(k) = 0$$

So putting

$$egin{aligned} v_1 &= a_1...a_k \ v_2 &= a_{k+1}...a_n \end{aligned}$$

 $u = v_1 v_2$ where v_1, v_2 are balanced.

So by the **induction hypothesis** there are G-derivations

$$S \stackrel{\star}{\Longrightarrow} v_1$$
$$S \stackrel{\star}{\Longrightarrow} v_2$$

But then there is a G-derivation of u:

$$S \Longrightarrow S S \stackrel{\star}{\Longrightarrow} v_1 \, S \stackrel{\star}{\Longrightarrow} v_1 \, v_2 = u$$

Case 4

u = b v b

Similar to Case 3.