Die ab initio Konstruktion Part 2/2

Blaise Boissonneau

20. Mai 2020

Ziel

Wir konstruieren Hrushovski Gegenbeispiel: eine starke minimale Theorie, die nicht lokal modular ist, und die keine unendliche Gruppe interpretiert.

- Errinerung
- Setup
- 3 Die Strukture M^{μ}
- Stark minimalität
- 5 Interpretierbare Gruppe

δ -Funktionen

- $\mathcal{L} = \{R\}$, mit R ternär. C ist die Klasse von \mathcal{L} -Strukturen mit R irreflexiv und symmetrisch, das heißt, R ist eine Menge von Dreiecke.
- Für endliche $A \in \mathcal{C}_{fin}$, $\delta(A) = |A| |R(A)|$, "Wie viele Punkte wie viele Dreiecke".
- Für $A, X \in \mathcal{C}_{fin}, \ \delta(A/X) = \delta(A \cup X) \delta(X)$: "Wie viele mehr Punkte - Wie viele mehr Dreiecke". Funktioniert auch mit X unendliche.

Eigenschaften

- $\delta(\emptyset) = 0$, $\delta(\{c\}/B) \le 1$.
- submodularität: $\delta(A \cup B) + \delta(A \cap B) \leq \delta(A) + \delta(B)$. Äquivalent: $\delta(A/B) \leqslant \delta(A/A \cap B)$.
- $\delta(AB/C) = \delta(A/BC) + \delta(B/C)$.

Starke Erweiterung

- A ist abgeschlossen in M, M ist eine starke Erweiterung von A, $A \leq M$: $\delta(A) \leq \delta(B)$ für jede $A \subset B \subset M$ (A, B endliche).
- $X \leq M$: $\delta(A/X) \geqslant 0$ für alle endliche $A \subset M$.
- $C^0 = \{M \in C \mid \emptyset \leqslant M\}$, das heißt, δ ist nie negativ.
- $cl(A) = \bigcap_{A \subset B \leq M} B$ ist die $(\delta$ -)Abschluss von A.

Gegenbeispiel

Es gibt 5 Punkte und 7 Dreiecke, diese Struktur ist nicht in \mathcal{C}^0 . (Bem: man kann nicht nur 6 Dreiecke zeichnen, aber eine solche Struktur existiert.)

Minimal starke Erweiterungen

 $B \leqslant C$ ist minimal wenn es keine echte $B \leqslant D \leqslant C$ gibt. (Bem: so bald wie $B \subset D \subset C$, $B \leqslant D$.)

Eigenschaften/Lemma

- $B \leqslant C$ ist minimal gdw für alle echte $B \subsetneq D \subsetneq C$, $\delta(C/D) < 0$ gilt.
- Für $B \leqslant C$ minimal gibt es genau zwei Möglichkeiten; $\delta(C/B) = 0$ oder $\delta(C/B) = 1$ und $C = B \cup \{c\}$.

Der Sonnenschirm

 $\delta(C/B)=0$, und C/B ist minimal, hier mit |C|-|B|=6. Kann auch mit n Punkte gezeichnet sein.

Prägeometrie

Ein Hüllenoperator H ist eine Funktion von $(\mathcal{P}(M), \subset)$ sodass $X \subset H(X)$, H(H(X)) = H(X), und $X \subset Y \Rightarrow H(X) \subset H(Y)$. Wenn auch:

$$H(X) = \bigcup_{A \subset X \text{ endliche}} H(A)$$

gilt, dann hat *H* endliche Charakter. Wenn auch:

$$a \in H(Xb) \setminus H(X) \Rightarrow b \in H(Xa)$$

gilt, dann heißt H eine Prägeometrie.

In C, cl ist eine Hüllenoperator mit endliche Charakter. In C^0 , wir definieren $d(A) = \delta(\operatorname{cl}(A))$, die Dimension, und:

$$CI(A) = \{b \in M \mid d(b/A) = 0\}$$

die geometrische Abschluss von A, die eine Prägeometrie ist.

Stark Fraïssélimes

 $\mathcal{C}_{\mathit{fin}}^{0}$ besitzt die starke Amalgamierungseigenschaft:

 $M \otimes_B N$ ist die Struktur mit Menge $M \cup N$ und relation $R(M) \cup R(N)$.

Dann gibt es eine starke Fraïssélimes $M^0 \in \mathcal{C}^0$, das heißt, M ist abzählbare und \mathcal{C}^0 reichhaltig: alle C sodass $B \leqslant C \in \mathcal{C}^0_{\mathit{fin}}$ mit $B \leqslant M$ kann in M über B stark einbetten sein. (Mehr über Reichhlatigkeit später.)

Lokal Modularität

Eine Prägeometrie mit dimension Funktion "dim" heißt modular, wenn $\dim(A \cup B) + \dim(A \cap B) = \dim(A) + \dim(B) \text{ gilt für alle } A \text{ und } B$ abgeschlossen (für die Prägeometrie). Wenn modularität gilt nur wann $\dim(A \cap B) > 0, \text{ dann heißt die Prägeometrie lokal modular.}$ CI ist eine Prägeometrie über alle Strukturen von \mathcal{C}^0 , so auch über M^0 . Aber es gibt endliche Strukturen nicht lokale modular:

Der Schmetterling

A ist δ -abgeschlossen, da d(A)=2. Dann sehen wir dass A geometrische abgeschlossen ist, und B auch. Aber $A \cup B$ ist nicht δ -abgeschlossen. Für lokal modularität, hinzufügen Sie einen nicht verbund Punkt in $A \cap B$.

 M^0 ist keine Gegenbeispiel, weil es nicht stark minimal ist.

Wir suchen eine Unterklasse von \mathcal{C}^0 , sodass sein Fraïssélimes stark minimal und nicht lokal modular ist. Stark minimale Strukturen haben eine natural Prägeometrie: acl, und wir wollen acl nicht lokal modular. Der Schmetterling gibt nicht lokal modularität für CI; wir werden sicherstellen, dass sie identische sind.

Eine nicht starke minimale Strukture: die Sehr Spitze Strukture

 $\operatorname{tp}(c/B)$ ist nicht algebraisch. Wir fügen $\bigcup_{n\in\omega} F_n$ hinzu; dann "x ist verbund mit B" definiert eine nicht endliche nicht coendliche Menge.

Wir brauchen eine Schranke an den Nummer von Realisierungen von Typen.

Gute Paare

Definition

Sei A und X disjunkt Teilmengen von eine \mathcal{L} -Strukture M, A endliche. Die Paare A/X heißt prealgebraische minimale wenn:

- $X \cup A \in \mathcal{C}^0$,
- $X \leqslant X \cup A$ ist minimal,
- $\delta(A/X) = 0$.

A/X heißt gut wenn auch $\delta(A/Y) < 0$ gilt für jede $Y \subset X$.

Sei A/X prealgebraische minimale; es gibt genau ein $B \subset X$ sodass A/B gute ist:

$$B = \{x \in X \mid \exists a \in A \exists y \in X \cup A \ R(xay)\}\$$

B ist die Teilmenge von X, die verbund mit A ist; B heißt Basis von A/X.

Basis von Gute Paare

Wenn B das Basis von A/X ist, dann haben wir:

$$X \cup A = X \otimes_B (B \cup A).$$

Bemerkung

 $\delta(A/B)=0$ impliziert, dass $|B|\leqslant 2\,|A|$. Achten Sie: diese Zeichnung nicht minimal ist (oops).

pseudo Morley Folgen

Definition

Sei A/B eine Gute Paare, und α der Isomorphismus Typ von A/B. Eine pseudo Morley Folge von α über B ist eine Folge $A_0, A_1 \cdots$ von disjunkt Menge sodass A_i/B Isomorphismus Typ α hat.

Main Lemma [Zie13, Lem. 5.1]

Sei $M \leq N \in \mathcal{C}^0$. Angenommen, dass N eine pseudo Morley Folge (A_i) von α über B mit mehr als $\delta(B)$ Elementen enthält. Dann haben wir:

- $B \subset M$. oder
- für ein i, $A_i \subset N \setminus M$.

Beweis

Wir nehmen A_1, \dots, A_r in M und A_{r+1}, \dots, A_{r+s} nicht in M aber nicht disjunkt von M. Angenommen, dass $B \not\subset M$. Wir wollen $r+s \leqslant \delta(B)$ zeigen. Gutheit impliziert B und jede A_i sind disjunkt und verbund, da, hinzufügen B zu M, haben wir mindestens r Dreiecke mehr:

$$\delta(B/M) \leqslant \delta(B/B \cap M) - r \leqslant \delta(B) - r$$

Errinerung [Zie13, cor. 4.5]

Sei C/B minimal mit $\delta(C/B) = 0$, und sei X sodass $C \setminus B$ nicht disjunkt und nicht enthalten mit X ist. Dann gilt $\delta(C/BX) < 0$.

Wir nehmen, für i>r+1, $X=A_{r+1}\cdots A_{i-1}\cup M$, da $\delta(A_i/BA_{r+1}\cdots A_{i-1}M)<0$, und $\delta(A_{r+1}\cdots A_{r+s}/MB)\leqslant -s$. Dann:

$$0 \leqslant \delta(A_{r+1} \cdots A_{r+s}B/M) = \delta(A_{r+1} \cdots A_{r+s}/MB) + \delta(B/M) \leqslant \delta(B) - r - s$$

das gibt $r + s \leq \delta(B)$.

Für jede Isomorphismus Typ α von eine Gute Paare A/B, setzen wir eine natural Zahl $\mu(\alpha) \geqslant \delta(B)$.

Definition

 $\mathcal{C}^{\mu}\subset\mathcal{C}^{0}$ ist die Klasse von alle \mathcal{C}^{0} -Structuren mit pseudo Morley Folge von jede α so lang wie oder kurzer als $\mu(\alpha)$.

Beispielen

- Wenn M ist eine C^{μ} -Struktur, $M \cup c$ mit c nicht verbund zu M auch.
- ullet Der Schmetterling ist eine \mathcal{C}^μ -Struktur. (Erklärung später.)
- Die Sehr Spitze Strukture ist nicht in C^{μ} .

Amalgamierungseigenschaft

Theorem

 \mathcal{C}^{μ} besitzt die starke Amalgamierungseigenschaft.

Bew: Sei $B\leqslant M$ und $B\leqslant N$ in $\mathcal{C}^\mu_{\mathit{fin}}$. Wir suchen eine starke Erweiterung von M und N, die in \mathcal{C}^μ ist. Wir können nehmen N/B minimal, und wir nehmen an, dass $M\otimes_B N$ nicht in \mathcal{C}^μ ist. Das bedeutet, dass $M\otimes_B N$ eine pseudo Morley Folge (A'_i) von α über B' langer als $\mu(\alpha)$ enthählt. Mit Main Lemma gibt es nur 2 möglichkeiten:

- \bullet $B' \subset M$,
- oder ein $A'_i \subset M \otimes_B N \setminus M$.

Aber wenn ein $A_i'\subset N\setminus M$, weil A_i'/B' gute ist, $B'\subset N$ (weil $M\setminus N$ nicht verbund mit $N\setminus M$ ist). Danach weil N in \mathcal{C}^μ ist, ein $A_j'\subset M\setminus N$. A_j'/B' ist gute und das gibt $B'\subset M$, da die erste Möglichkeit ist genug.

Setup

 $B \leqslant M$ und $B \leqslant N$ in $\mathcal{C}^{\mu}_{\mathit{fin}}$, N/B minimal. (A'_i) ist eine pseudo Morley Folge von α über B' in $M \otimes_B N$, langer als $\mu(\alpha)$. Wir haben $B' \subset M$.

- Es gibt mindestens eine A_i' nicht voll in M, weil $M \in \mathcal{C}^{\mu}$ ist.
- $A'_i \subset A = N \setminus M$, weil A'_i/B' gute ist: $B' \leq B' \cup (A'_i \cap M)$ kann nicht echte sein.
- A/M ist minimal, weil A/B minimal ist.
- $A'_{i} = A$, weil $\delta(A'_{i}/M) = 0$.
- $B' \subset B$ weil A/B' gute ist: alle Punkte von B' mussen mit A verbund sein.
- Es gibt mindestens eine A_i' nicht voll in N, weil $N \in \mathcal{C}^{\mu}$ ist.
- B' ist die Basis von A/B, weil A/B prealgebraische minimal ist und A/B' gut ist. B' ist die Basis von A'_j/B , aus similar Gründen.

Wir senden A nach A'_j , das ist eine stark embettung von N in M über B.

Definition

 M^{μ} ist der stark Fraïssélimes von \mathcal{C}^{μ} . Sei T^{μ} die Theorie definiert durch $M \vDash T$ gdw:

- $M \in \mathcal{C}^{\mu}$,
- Es gibt keine prealgebraische minimale erweiterung von M in \mathcal{C}^{μ} ,
- M ist unendliche.

 \mathcal{C}^{μ} ist elementar. Sei A/M prealgebraische minimal mit Basis B, sei α der Typ von A/B. Dann gibt es nur endliche viele α' sodass $N=M\cup A$ eine lange pseudo Morley Folge haben kann: angenommen α' mit eine lange pseudo Morley Folge über B', mit Main Lemma wir haben $B'\subseteq M$, und wie lätzte Beweis B'=B und $\alpha=\alpha'$; oder ein $A'_i\subset A$ und $|B'|\leqslant 2\,|A'_i|\leqslant 2\,|A|$.

Reichhaltigkeit

Definition

Sei $\mathcal C$ eine Klasse von $\mathcal L$ -Strukturen. M heißt $\mathcal C$ -reichhlatig, wenn $M \in \mathcal C$ und für jede $B \leqslant C \in \mathcal C_{\mathit{fin}}$ mit $B \leqslant M$, C kann in M stark embetten sein.

Weil M^{μ} ein stark Fraïssélimes ist, M^{μ} ist \mathcal{C}^{μ} -reichhaltig.

Theorem

Eine \mathcal{L} -Strukture M ist \mathcal{C}^μ -reichhaltig gdw M eine ω -saturiert Modelle von \mathcal{T}^μ ist.

Das gibt: T^{μ} ist die vollstandige Theorie von M^{μ} .

Beweis: M reichhlatig $\Rightarrow M \models T^{\mu}$

Sei M reichhlatig. F_n – die Strukture mit n Punkte ohne Relation – ist in \mathcal{C}^μ , da M unendliche ist.

Sei A/M prealgebraische minimal mit Basis B und Typ α . Sei $C=\operatorname{cl}(B)\subset M$. $C\leqslant M\leqslant M\cup A$, da auch $C\leqslant C\cup A$. Reichhaltigkeit gibt, dass M eine Kopie A_0 von A über C (und auch über B) enthält. Sei $C_0=\operatorname{cl}(CA_0)$, und dann C_i und A_i per Induktion definiert; dann haben wir eine unendliche pseudo Morley Folge von α , so zu sagen $M\cup A\notin \mathcal{C}^\mu$.

Beweis: ω -saturiert Modelle von T^{μ} sind reichhaltig

Sei $M \vDash T^{\mu}$ ω -saturiert. Sei $B \leqslant M$ und $B \leqslant C \in \mathcal{C}^{\mu}_{\mathit{fin}}$. Wir können nehmen C/B minimal. Es gibt 2 Möglichkeiten:

- $\delta(C/B) = 0$. $M \otimes_B C \notin C^{\mu}$ weil no algebraische minimal extension von M ist. Die Beweis von C^{μ} -amalgamation gibt dass C einbett über B in M.
- $\delta(C/B) = 1$ und C = Bc mit c nicht verbund zu B. Angenommen, dass es ein $c' \in M$ aber nicht in Cl(B) gibt, dann $c \to c'$ ist eine starke Einbettung von C über B.

Existenz von ein c' kommt von nächste Lemma.

Bem: M reichhaltig impliziert dann, dass M ω -saturiert ist, wie lätzte Woche.

acl und Cl

Lemma

Sei $M \in \mathcal{C}^{\mu}$ ω -saturiert und $B \subset M$, dann $Cl(B) \subset acl(B)$.

cl(B) ist algebraische über B. Wir nehmen $B \leqslant M$. Dann Cl(B) die Vereinigung von alle C/B mit $\delta(C/B)=0$ ist. Es ist genug, um dass jede prealgebraische minimal A/B algebraisch ist zu zeigen.

Sei B_0 die Basis von A/B und α der Typ von A/B_0 . Eine fogle von Menge mit gleiche Typ wie A über B ist eine pseudo Morley Folge von α und so endliche.

T^{μ} ist stark minimal

Lemma (ohne Beweis)

Sei M_1 und M_2 2 Modelle von T^{μ} . Sei $a_1 \in M_1$ und $a_2 \in M_2$. Dann a_1 und a_2 haben die gleiche Typen gdw $a_1 \to a_2$ kann zu $cl(a_1) \to cl(a_2)$ erweitern sein.

Theorem

 T^{μ} ist stark minimal.

Beweis: wenn d(c/B) = 0, $c \in Cl(B) \subset acl(B)$. Wenn d(c/B) = 1, tp(c/B) sagt, dass c nicht verbund zu cl(B) ist und dass $cl(B) \cup \{c\}$ abgeschlossen ist. Aber das ist eine vollstandiges Description von tp(c/B): sei c' nicht verbund zu B mit $cl(B) \cup \{c'\}$ abgeschlossen. Dann $Bc \to Bc'$ erweitert zu $cl(Bc) = cl(B)c \to cl(Bc') = cl(B)c'$, und c und c' haben gleichen Typen über B. Das impliziert stark Minimalität [TZ12, cor. 5.7.7]. Danach haben wir auch, dass Cl(B) = acl(B): $c \notin Cl(B) \Leftrightarrow d(c/B) = 1 \Rightarrow c \notin acl(B)$.

Modularität

Der Schmetterling ist in C^{μ} : A/B ist Gut und es gibt nur 1 Realisierung.

Er ist aber nicht lokal modular für CI; weil CI = acI, wir haben:

Theorem

 T^{μ} ist nicht lokal modular.

Bem: T^{μ} ist model-vollstandig ($\forall \exists$ -axiomatisierbar).

Flachheit

 T^{μ} is stark minimal, nicht lokal modular; jetzt zeigen wir dass sie keine unendliche Gruppe interpretiert.

Definition

Eine δ -Funktion f heißt flach an E_1, \dots, E_n , wenn:

$$\sum_{\Delta\subset\{1,\cdot\cdot,n\}}(-1)^{|\Delta|}f(E_\Delta)\leqslant 0$$

Mit $E_{\Delta} = \bigcap_{i \in \Delta} E_i$ – und $E_{\emptyset} = \bigcup_{1 \le i \le n} E_i$.

In \mathcal{C}^0 -Strukturen, die Dimension d ist flach an geometrisch-abgeschlossen Menge mit endliche Dimension: sei E_1, \cdots, E_n solche Menge. Sei A_Δ abgeschlossen endliche mit $\operatorname{Cl}(A_\Delta) = E_\Delta$, und $A_i = \bigcup_{\Delta \ni i} A_\Delta$. Dann:

$$\sum_{\Delta\subset\{1,\cdot\cdot,n\}}(-1)^{|\Delta|}d(E_{\Delta})=\sum_{\Delta\subset\{1,\cdot\cdot,n\}}(-1)^{|\Delta|}\delta(A_{\Delta})\leqslant 0$$

Definierbare Gruppe

Theorem

Es gibt keine unendliche \emptyset -definierbare Gruppe in T^{μ} .

Sei $G \subset M \models T^{\mu}$ eine \emptyset -definierbare Gruppe. Sei a_1 , a_2 und a_3 independent Elementen mit dimension g = MR(G). Sei $b_1 = a_1 \cdot a_2$, $b_2 = a_2 \cdot a_3$, und $b_3 = a_1 \cdot b_2 = b_1 \cdot a_3$. Sei $E_i = Cl(L_i)$.

$$d(E_{\emptyset}) = d(a_1, a_2, a_3) = 3g, \ d(E_i) = 2g, \ d(E_{ij}) = g \ \text{und} \ E_{ijk} = CI(\emptyset).$$

Mit flachheit: $3g - 4 \times 2g + 6g = g \le 0$, da g = 0 und G ist endliche.

Interpretierbare Gruppe

Theorem

Es gibt keine unendliche interpretierbare Gruppe in T^{μ} .

Sei G interpretierbare, dann G definierbare in M^{eq} ist, mit Parametern A. Weil M stark minimal ist, ein Element von G ist immer interalgebraisch über A mit einen endlichen tuple von M. Dann können wir die selbe Diagram, aber mit tuple von M, konstruieren; und das gibt auch MR(G) = 0.

Bibliographie

- [Hru93] Ehud Hrushovski. A new strongly minimal set. *Annals of Pure and Applied Logic*, 62(2):147 166, 1993.
- [TZ12] Katrin Tent and Martin Ziegler. A Course in Model Theory. Lecture Notes in Logic. Cambridge University Press, 2012.
- [Zie13] Martin Ziegler. An exposition of hrushovski's new strongly minimal set. Annals of Pure and Applied Logic, 164(12):1507 – 1519, 2013. Logic Colloquium 2011.