Professor: Ali Karime

Université d'Ottawa Faculté de génie SIGE

University of Ottawa Faculty of Engineering EECS

ITI 1100-B

Digital Systems I

Mid-Term Examination

First Name: _	Ali	
Last Name : _	Korine	
Student #:	Sample	Solution.
Signature:		

Professor: Ali Karime

Exam Duration: 90 minutes

Instructions

- Closed book examination. The maximum score is 100 points.
- Use the provided space to answer the questions. If more space is required, use the back of the page.
- Show all the steps to obtain marks.
- Calculators are **NOT allowed**.
- It is strongly recommended that you write down your solutions step by step. This is the only way it is possible for you to earn full marks.
- Cheating will be penalized in accordance with University of Ottawa regulations.

Question 1	(35)	
Question 2	(10)	
Question 3	(55)	
Total	/100	

Question 1 (35 points)

(a) Convert the following two decimal numbers: A = 12.25 and B = 16.50 to signed binary numbers (use a signed magnitude presentation). Use the necessary bits to represent the integer part and use 2 bits for the fractional part and an additional bit for the sign. [15 points]

Now in signed magnitude representation, we can write A and B as follows

- (b) Perform the following binary arithmetic operations using 1's complement.
 - (i) C = A B [7.5 points]
 - (ii) D = A + B [7.5 points]

i)
$$15 \ \beta B = 15 \ 000000.10 = 101111.01$$
 $A - B = A + 15 \ \beta B$
 001100.01
 10011.01
 10011.01
 10011.01

Sign 1's complement magnitude form

So the onswer in magnitude is -000100.01

ii) 001100.01
 1000.01
 1000.01

(b) Convert the binary number (10 0110.11)2 to hexadecimal. [5]

$$(20100110.1109)$$
 (26.0)
 $(20100110.11) = (26.0)$

Question 2 (10 points)

Consider the following truth table A, B and C are input variables and F is the output function

A	В	С	F		
0	0	0	1		F=)
0	0	1	1		T
0	1	0	0	-	0 0
0	1	1	0		F=0
1	0	0	0		0
1	0	1	1		F=C
1	1	0	1	-	/
1	1	1	0		F=C
				-	

properly determining
the volume of f at each
point of combinations

a) Implement the function F using a 4-to-1 multiplexer.

Question 3: (55 points)

Given the logic function $F(A,B,C,D) = \Sigma m(1,3,5,12)$ together with the *don't care* conditions $d(A,B,C,D) = \Sigma d(2,7,8,11,14,15)$,

(a) Write the truth table of the logic function. Use the Karnaugh-map method to find the simplest sum-of-products expression of function *F*. **[20 points]**

	A	В	C	D	F
	C	0	0	0	7
	0	0	0		1
	0	0	-	0	X
	0	0	(1.
O pourts	0	ſ	0	0	C
	0		0	1	1
	0		1	0	\hat{C}
	0	1	1	1	X
	1	0	0	0	X
	1	0		1	0
		0	1	0	Ō
	1	0	1	1	X
a	-	(Ô	0	1
			0	1	0
	1		1	0	X
		1	1	1	X

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
00 0 1 1 X	
OOLXO	
1 1:0 XX	
10 X O X	
the simplified f is no	t
Dai and	
	la te
	10 ps
2) F= A'D+ ABD'	
Student may give	ory of
the 2 onswers.	5 0
the 2 onswers.	

(b) Implement the minimized function with NAND gates only. <u>Note</u>: You can use NAND gates with any number of inputs you may need. Assume, as well, that the input variables are available in both true and complemented form. [10 points]

(c) Express the same logic function in a product of sums form (give the non-simplified form of the function). [5 points]

Cooking in the truth table for the moxterms, we find f=(A+B+C+D)(A+B+C+D)(A+B+C+D)(A+B+C+D') (A'+B+C'+D)(A'+B'+C'+D)

(d) Simplify your function in product of sums. [10 points]

We symplify by grouping o's first and then finding f(N.B: Simplification is not unique) F' = A'D' + AD + ACor F' = A'D' + AD + AB' or F' = A'D' + AD + CD'if F = A'D' + AD + AC is chosen then f = F'' = (A + D)(A' + D')(A' + C')

(e) Implement your function F employing a 4-to-16 **active low decoder** (see the following block diagram) and AND gate (with required number of inputs) only. [10 points]

