

Lecture 5 Topic 2 First Law of Thermodynamics

Topics

- 2.3 First Law analysis of closed systems

Reading:

Ch 3.7-3.8 Borgnakke & Sonntag Ed. 8 Ch 4 Cengel and Boles Ed. 5

2.3 Energy analysis of closed systems

First law of thermodynamics

$$\underbrace{\Delta U + \Delta KE + \Delta PE}_{total\ change\ of\ energy\ of\ system} = \underbrace{Q_{net} - W_{net} + \left(E_{mass,in} - E_{mass,out}\right)}_{Energy\ transfer\ by\ heat,work,mass}$$

- Sign convention:
 - Heat/work TO the system is energy ENTERING the system.
 - Heat/work BY the system is energy LEAVING the system.

•
$$Q_{net} = (Q_{in} - Q_{out})$$

•
$$W_{net} = (W_{out} - W_{in})$$

- Closed system: $\Delta E_{mass} = 0$ (no mass exchange).

2.3 Energy analysis of closed systems

First law of thermodynamics:

$$\Delta U + \Delta KE + \Delta PE = Q_{net} - W_{net} + (E_{mass,in} - E_{mass,out})$$

- Internal Energy (U)
 - Energy contained within molecules of the system
 - $-U = mu; \Delta U = m(u_2 u_1)$
 - Intensive property: (u) can be used to help define the thermodynamic state
 - Use tables to determine u value
 - E.g. saturated liquid-vapor: $U = mu = m_{liq}u_f + m_{vap}u_g$ (i.e. $u = u_f + xu_{fg}$)
 - · If superheated vapor or compressed liquid, use entries directly from table

Saturated liquid-vapor

Temp.	Press. (kPa)
0.01	0.6113
5	0.8721
10	1.2276
15	1.705
20	2.339
25	3.169

Internal Energy, kJ/kg				
Sat. Liquid	Evap.	Sat. Vapor		
u_f	u_{fg}	u_g		
0	2375.33	2375.33		
20.97	2361.27	2382.24		
41.99	2347.16	2389.15		
62.98	2333.06	2396.04		
83.94	2318.98	2402.91		
104.86	2304.90	2409.76		

Superheated Vapor

Temp. (°C)	v (m³/kg)	u (kJ/kg)	<i>h</i> (kJ/kg)	
	800 kPa (170.43°C)			
700	0.56007	3476.22	3924.27	
800	0.61813	3661.14	4155.65	
900	0.67610	3852.77	4393.65	
1000	0.73401	4051.00	4638.20	
1100	0.79188	4255.57	4889.08	
1200	0.84974	4466.05	5145.85	

Compressed Liquid

Temp.	$\frac{v}{(m^3/kg)}$	u (kJ/kg)	h (kJ/kg)	
	500 kPa (151.86°C)			
Sat.	0.001093	639.66	640.21	
0.01	0.000999	0.01	0.51	
20	0.001002	83.91	84.41	
40	0.001008	167.47	167.98	
60	0.001017	251.00	251.51	
80	0.001029	334.73	335.24	

2.3 Energy analysis of closed systems

THE UNIVERSITY of EDINBURGH School of Engineering

Example 2.2 - 1st Law applied to a closed system

A rigid container has 0.75 kg water at 300°C, 1200 kPa. The water is now cooled to a final pressure of 300 kPa. Find:

- (a) The work involved in this process
- (b) The heat transfer involved in this process
- (c) The final temperature
- (d) Assume a liquid trap exists that can remove liquid after the process. How much mass would be removed?

Solution:

2.3.1 Closed system cycle

Thermodynamic cycle

- Set of processes that cause the working fluid to undergo a series of state changes such that the final and initial states are identical.
- The change in internal energy of the working fluid is ZERO for a cycle.

Process vs Cycle: Stationary, closed systems

- Process: $Q_{process} W_{process} = \Delta U_{process}$
- Cycle: $Q_{cycle} W_{cycle} = 0 \rightarrow Q_{net,cycle} = W_{net,cycle}$

Example 2-3

Complete the table below for a closed, stationary system undergoing a cycle.

2.3.1 Closed system cycle

Net work done during a cycle

• $W_{net,cycle} = W_{process: 1-2} + W_{process: 2-1} + \cdots$

 $W_{net, cycle}$: difference between the work done by the system and the work done on the system.

2.3.2 Systematic solution procedure

Methodical solution procedure

- 1. Define & Sketch the System
 - a. Show energy crossing system boundaries
- 2. Define processes
 - a. E.g. constant volume / pressure / temperature / mass, adiabatic, etc.
- 3. For each process, determine the thermodynamic states
 - a. Find thermodynamic variables at each state.
 - b. Pure substance (e.g. water, refrigerant) → use thermodynamic tables
 - c. Ideal gas → PV = mRT
- 4. For each process, sketch the process diagram
 - a. E.g. P-v, T-v
- 5. For each process, develop enough equations for the unknowns
 - a. Solve 1st law, conservation of mass (lecture 8), and 2nd law of thermodynamics (topic 3)

2.3.3 Closed System Example

Example 2-3

A piston-cylinder device contains 1 kg of water at 100°C. The piston rests on lower stops where the volume is 0.835 m³. The cylinder has an upper set of stops. When the piston rests against the upper stops, the volume reaches 0.9 m³. A pressure of 175 kPa is required to move the piston. Heat is added to the water until the water exists as a saturated vapor. Does the piston touch the upper stops? How much work is involved in this process?

Solution:

