Time:

Kept Score:

**Submission Details:** 

Current Score: 9 out of 10

87 minutes

9 out of 10













### 2023 Fall C

Home

Modules

Announcements

Assignments

Discussions

Grades

# Module1-quiz-Fall 23 A+

2023Fall-T-CSE579-90615-92233 > Quizzes > Module1-quiz-Fall 23

**Due** Sep 3 at 11:59pm **Points** 10 **Questions** 10

Available Aug 20 at 12am - Sep 3 at 11:59pm Time Limit 300 Minutes

# Attempt History

|        | Attempt   | Time       | Score       |  |
|--------|-----------|------------|-------------|--|
| LATEST | Attempt 1 | 87 minutes | 9 out of 10 |  |
|        |           |            |             |  |

## ① Correct answers will be available on Sep 4 at 3:01am.

Score for this quiz: **9** out of 10 Submitted Aug 29 at 9:57pm This attempt took 87 minutes.

# $\begin{array}{c} \textbf{Question 1} & \textbf{1/1 pts} \\ \\ \textbf{Consider the following propositional formulas:} \\ P \rightarrow (Q \land R) \\ (P \land S) \rightarrow \neg Q \\ (R \lor \neg S) \leftrightarrow P \\ \\ \textbf{Where P, Q, R and S are propositional variables. Which of the following combinations of the truth values satisfy all three formulas simultaneously?} \\ \hline & \textbf{P=True, Q=True, R=True, S=False} \\ \hline & \textbf{P=False, Q=False, R=False, S=True} \\ \hline & \textbf{P=False, Q=False, R=True, S=False} \\ \hline \\ \hline & \textbf{P=False, Q=False, R=True, S=False} \\ \hline \end{array}$

| Question 2                                                                                                                                                                                                                          | 1 / 1 pts  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Consider the following propositional logic formula: $(A \wedge B) \vee ((C \to D) \wedge (\neg E \leftrightarrow (A \wedge C)))$ Which of the following assignments of truth values to variables and E will make the formula False? | A,B, C, D, |
| ○ A=True, B=True, C=True, D=True, E=True                                                                                                                                                                                            |            |
| None of the above                                                                                                                                                                                                                   |            |
| A=True, B=False, C=True, D=True, E=True                                                                                                                                                                                             |            |
| ○ A=True, B=False, C=True, D=True, E=False                                                                                                                                                                                          |            |

# Question 3 1 / 1 pts

Apply unit propagation on the formula  $(\neg A \land B \land C) \lor (A \lor B) \land (C \lor \neg D) \land (D \lor \neg A) \land (\neg C \lor \neg D),$  starting with an empty set of U literals. What is/are the resulting set of U literals after the first three iterations?

 $\label{eq:controller} \quad \square \ \ U-1 = \left\{ \neg A \right\}, U-2 = \left\{ \neg A, \neg B \right\}, U-3 = \left\{ \neg A, \neg B, \neg C \right\}$ 

 $U - 1 = \{ \neg A \}, U - 2 = \{ \neg A, B \}, U - 3 = \{ \neg A, B, C \}$ 

 $\Box U - 1 = \{ \neg A \}, U - 2 = \{ B \}, U - 3 = \{ C \}$ 

## Question 4

1 / 1 pts

What is the concept that involves starting with a theory, a collection of hypotheses, and an empirical observation, and aims to determine the most probable explanation for that event?

Epistemic reasoning

Default reasoning

Abductive reasoning

Deductive reasoning

Incorrec

## Question 5

0 / 1 pts

Which of the following logic formulas is/are entailed by  $(p \wedge q) o q$ ?

 $\square p$ 

 $\square q$ 

 $(p \rightarrow q) \rightarrow ((p \land q) \rightarrow q)$ 

 ${\color{red} \blacksquare} \ (p \to q) \to ((p \lor q) \to q)$ 

 $\square p \rightarrow q$ 

All interpretations of p and q that satisfy  $(p \land q) \to q$  also satisfies the given correct options.

These interpretations are:

I(p)=f, I(q)=f

I(p)=f, I(q)=t

I(p)=t, I(q)=f

I(p)=t, I(q)=t.

For all the other answer choices, there is at least one interpretation of p and q for which  $(p \wedge q) \to q$  is satisfied but the formula on the right side is not.

Question 6

1 / 1 pts

| O 8       |  |
|-----------|--|
| <b>10</b> |  |
| O 9       |  |
| O 12      |  |
|           |  |

| Question 7                                                                                                                     | 1 / 1 pts |  |
|--------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| P and Q are two propositions, which of the following are equivale                                                              | ent?      |  |
| $I \colon P \longrightarrow Q$                                                                                                 |           |  |
| II: P ∨ ¬ Q                                                                                                                    |           |  |
| III: ¬P ∨ Q                                                                                                                    |           |  |
| IV: ¬Q → ¬P                                                                                                                    |           |  |
| ∅ I, III, IV                                                                                                                   |           |  |
| O I, II                                                                                                                        |           |  |
| ○ I, III                                                                                                                       |           |  |
| ○ I, II, IV                                                                                                                    |           |  |
|                                                                                                                                |           |  |
| I, III are equivalent. IV can be simplified to III $\neg Q \longrightarrow \neg P = \neg (\neg Q) \lor \neg P = Q \lor \neg P$ |           |  |

|               | nal model obtained after applying DPLL to the no unit clause? | ne below formula |
|---------------|---------------------------------------------------------------|------------------|
| (¬p ∨ q) ∧ (- | $\neg p \lor r) \land (q \lor r) \land (\neg q \lor \neg r)$  |                  |
| ○ {p, q, −    | or}                                                           |                  |
| ○ {¬p, ¬      | q, ¬r }                                                       |                  |
| ● {¬p, q,     | ¬r}                                                           |                  |
| (p, q, r)     |                                                               |                  |
|               |                                                               |                  |

| 1 / 1 pt            |
|---------------------|
| tation satisfies F. |
|                     |
|                     |
|                     |
|                     |
|                     |

| Question 10                                                                                                                                       | 1 / 1 pts |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| What are the total number of sub formulas that can be formed propositional formula $((\neg p \land q) \longrightarrow (p \land (q \lor \neg r)))$ | for below |
| <pre></pre>                                                                                                                                       |           |
| O 10                                                                                                                                              |           |
| 0 7                                                                                                                                               |           |
| O 8                                                                                                                                               |           |
|                                                                                                                                                   |           |
| subformals 1.p 2.q 3.r                                                                                                                            |           |
| 4.¬p 5.¬r 6.(¬p ∧ q)                                                                                                                              |           |
| $7.(q \lor \neg r) \ 8.(p \land (q \lor \neg r))$                                                                                                 |           |
| $9. ((\neg p \land q) \longrightarrow (p \land (q \lor \neg r)))$                                                                                 |           |

Quiz Score: 9 out of 10

◆ Previous

Next ▶