

### Medical Imaging with Deep Learning

Montréal, 6 - 9 July 2020

# How Distance Transform Maps Boost Segmentation CNNs: An Empirical Study

Jun Ma

**Department of Mathematics** 

Nanjing University of Science and Technology

Joint work with Zhan Wei, Yiwen Zhang, Yixin Wang, Rongfei Lv, Cheng Zhu, Gaoxiang Chen, Jianan Liu, Chao Peng, Lei Wang, Yunpeng Wang, Jianan Chen



### **Collaborators**



### **CNN + Distance Transform Map**

### An emerging trend for medical image segmentation.

| First<br>author  | Title                                                                                                    | Official<br>Code | Publication |
|------------------|----------------------------------------------------------------------------------------------------------|------------------|-------------|
| Yuan Xue         | Shape-Aware Organ Segmentation by Predicting Signed Distance Maps                                        | None             | AAAI 2020   |
| Hoel<br>Kervadec | Boundary loss for highly unbalanced segmentation                                                         | pytorch          | MIDL 2019   |
| Davood<br>Karimi | Reducing the Hausdorff Distance in Medical Image Segmentation with Convolutional Neural Networks (arxiv) | None             | TMI 2019    |

| First author        | Title                                                                            | Official<br>Code | Publication         |
|---------------------|----------------------------------------------------------------------------------|------------------|---------------------|
| Yan Wang            | Deep Distance Transform for Tubular Structure Segmentation in<br>CT Scans        | None             | CVPR2020            |
| Shusil Dangi        | A Distance Map Regularized CNN for Cardiac Cine MR Image<br>Segmentation (arxiv) | None             | Medical<br>Physics  |
| Fernando<br>Navarro | Shape-Aware Complementary-Task Learning for Multi-organ<br>Segmentation (arxiv)  | None             | MICCAI MLMI<br>2019 |

There are many great studies, but

- these methods are tested on different datasets;
- > the comparison among them has not been well studied.



## **CNN + Distance Transform Map: Two Categories**

#### Our contributions:

summarizing the latest developments;

benchmarking five methods

on two datasets.





**CNNs With** 

**Distance Transform Maps** 



### Answer the question:

How can distance transform maps boost segmentation CNNs?



### **Basic Notation**

> Distance transform map (DTM)

$$G_{DTM} = \begin{cases} \inf_{y \in \partial G} ||x - y||^2, x \in G_{in} \\ 0, & others \end{cases}$$

> Signed distance function (SDF)

$$G_{SDF} = \begin{cases} -\inf_{y \in \partial G} ||x - y||_{2}, & x \in G_{in} \\ 0, & x \in \partial G \\ \inf_{y \in \partial G} ||x - y||_{2}, & x \in G_{out} \end{cases}$$



Ground truth G of image I



## **Category 1: New Loss Functions**



**Boundary loss** 

$$L_{BD} = \frac{1}{|\Omega|} \sum_{\Omega} G_{SDF} \circ S_{\theta}$$

> Hausdorff distance loss

$$L_{HD} = \frac{1}{|\Omega|} \sum_{\Omega} (S_{\theta} - G)^{2} \circ (G_{DTM}^{2} + S_{DTM}^{2})]$$

> Signed distance function loss

$$L_{SDF} = -\sum_{\Omega} \frac{G_{SDF} \circ S_{SDF}}{G_{SDF}^2 + S_{SDF}^2 + G_{SDF} \circ S_{SDF}}$$



## **Category 2: Adding Auxiliary Tasks**





### **Experiments**

#### > Dataset

- Organ segmentation: left atrial (LA) MRI; 16 cases for training; 20 cases for testing
- Tumor segmentation: liver tumor CT; 90 for training; 28 for testing

#### > Network and training protocol

- V-Net; 5 resolutions; 16 channels in the 1<sup>st</sup> resolution;
- Learning rate searching: 0.01, 0.001, 0.0001
- Adam optimizer

#### > Metrics

- Dice
- Jaccard
- 95% Hausdorff Distance
- Average surface distance (ASD)



## **Experimental Results on left atrial MRI Dataset**

| Methods                       | Dice (%) ↑  | Jaccard (%) ↑ | 95HD ↓      | $\mathbf{ASD} \downarrow$ |
|-------------------------------|-------------|---------------|-------------|---------------------------|
| V-Net baseline                | 84.4 (5.70) | 73.6 (7.00)   | 20.1 (13.8) | 5.29 (3.43)               |
| Boundary loss                 | 85.0 (5.64) | 74.2 (7.87)   | 20.8 (15.0) | 5.43 (3.43)               |
| Hausdorff distance loss       | 85.5 (4.96) | 75.0 (7.30)   | 15.9 (13.3) | 4.46(3.68)                |
| Signed distance function loss | 84.2 (8.48) | 73.5 (11.0)   | 13.5 (11.2) | 3.24(3.10)                |
| Multi-heads: FG DTM-L1        | 83.7 (6.33) | 72.5 (8.97)   | 24.7 (12.8) | 6.62 (3.32)               |
| Multi-heads: FG DTM-L2        | 82.6 (6.87) | 71.0 (9.65)   | 15.5 (11.5) | 4.10 (3.12)               |
| Multi-heads: FG DTM-L1+L2     | 83.3 (10.7) | 72.6 (12.6)   | 17.5 (12.1) | 4.87(3.12)                |
| Multi-heads: SDF-L1           | 85.5 (7.82) | 75.3 (10.2)   | 11.8 (8.86) | 2.65(2.11)                |
| Multi-heads: SDF-L2           | 87.0 (3.49) | 77.2 (5.49)   | 16.1 (13.5) | 3.97(3.14)                |
| Multi-heads: SDF-L1+L2        | 84.5(4.38)  | 73.5(6.49)    | 24.7(15.0)  | 6.09(3.71)                |
| Rec-Branch: FG DTM-L1         | 83.5 (5.91) | 72.2 (8.30)   | 23.6 (14.8) | 5.45 (3.57)               |
| Rec-Branch: FG DTM-L2         | 81.5 (8.40) | 69.5 (10.9)   | 19.5 (16.9) | 4.49(4.76)                |
| Rec-Branch: FG DTM-L1+L2      | 83.8(4.57)  | 72.3 (6.78)   | 28.5(14.1)  | 7.47 (3.40)               |
| Rec-Branch: SDF-L1            | 82.5 (9.05) | 73.6 (10.9)   | 12.0(4.61)  | 2.73(1.38)                |
| Rec-Branch: SDF-L2            | 86.9 (4.43) | 77.1 (7.92)   | 10.2(6.03)  | 2.71(1.68)                |
| Rec-Branch: SDF-L1+L2         | 85.1 (67.5) | 74.6 (9.24)   | 16.7 (13.1) | 4.00 (3.19)               |



## **Experimental Results on Liver Tumor CT Dataset**

| Methods                       | Dice ↑      | Jaccard ↑   | 95HD ↓      | $\mathbf{ASD} \downarrow$ |
|-------------------------------|-------------|-------------|-------------|---------------------------|
| V-Net baseline                | 51.0 (28.8) | 39.8 (21.6) | 43.6 (45.2) | 14.9 (22.3)               |
| Boundary loss                 | 52.5 (24.1) | 41.0(21.1)  | 26.3 (33.7) | 7.70 (21.9)               |
| Hausdorff distance loss       | 52.0 (25.4) | 40.9 (22.6) | 28.8(34.3)  | 7.56 (19.4)               |
| Signed distance function loss | 47.6 (29.8) | 37.5 (26.9) | 31.1 (48.7) | 11.2 (23.8)               |
| Multi-heads: SDF-L1           | 48.1 (27.6) | 38.2 (24.4) | 31.5 (40.6) | 8.11 (15.4)               |
| Multi-heads: SDF-L2           | 47.1 (28.0) | 37.0 (25.3) | 25.5(34.1)  | 8.82 (22.3)               |
| Rec-Branch: SDF-L1            | 48.4 (27.7) | 37.9 (25.3) | 32.2 (48.6) | 11.8 (31.1)               |
| Rec-Branch: SDF-L2            | 48.6 (27.3) | 38.5 (25.0) | 31.0 (48.0) | 7.52 (21.8)               |



### **Take Home Message**

- First-try recommendation: multi-heads and reconstruction branch CNNs for organ segmentation; boundary loss and Hausdorff distance loss for tumor segmentation;
- Implementation details have remarkable effects on the final performance.
- Unsolved open question: how can we obtain robust performance gains when incorporating DTM into CNNs?
- Code is available: <a href="https://github.com/JunMa11/SegWithDistMap">https://github.com/JunMa11/SegWithDistMap</a>
- Limitation: Only V-Net and two datasets are used for experiments, which is not justified at all. More extensive experiments: SOTA networks, large datasets...

## Thanks for watching!

