Scilab Textbook Companion for Textbook Of Heat Transfer by S. P. Sukhatme¹

Created by
Tushar Goel
B.Tech
Chemical Engineering
Indian Institute of Technology (BHU), Varanasi
College Teacher
Dr. Prakash Kotecha
Cross-Checked by

August 10, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Textbook Of Heat Transfer

Author: S. P. Sukhatme

Publisher: Universities Press

Edition: 4

Year: 2005

ISBN: 9788173715440

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		
1	Introduction	7
2	Heat Conduction in Solids	11
3	Thermal Radiation	35
4	Principles of Fluid Flow	52
5	Heat Transfer by Forced Convection	60
6	Heat Transfer by Natural convection	78
7	Heat Exchangers	88
8	Condensation and boiling	98
9	Mass Transfer	109

List of Scilab Codes

Exa	1.1	Viscosity in SI system
Exa	1.2	Useful heat gain and thermal efficiency 8
Exa	1.3	Exit velocity and Temperature 9
Exa	2.1	Heat flow rate
Exa	2.2	Heat flow rate
Exa	2.3	Engineers decision
Exa	2.4	Thickness of insulation
Exa	2.5	Heat loss rate
Exa	2.6	Critical radius
Exa	2.7	Maximum temperature
Exa	2.8	Steady state temperature
Exa	2.9	Time taken by the rod to heat up
Exa	2.10.i	Heat transfer coefficient at the centre $\dots \dots \dots$
Exa	2.10.ii	heat transfer coefficient at the surface
Exa	2.11.a	Time taken by the centre of ball
Exa	2.11.b	time taken by the centre of ball to reach temperature . 25
Exa	2.12	Temperature at the centre of the brick
Exa	2.13.a	Temperature at the copper fin tip
Exa	2.13.b	Temperature at the steel fin tip
Exa	2.13.c	Temperature at the teflon fin tip
Exa	2.14	Heat loss rate
Exa	2.15	Decrease in thermal resistance
Exa	2.16	Overall heat transfer coefficient
Exa	3.1	Monochromatic emissive power
Exa	3.2	Heat flux
Exa	3.3	Absorbed radiant flux and absorptivity and reflectivity 37
Exa	3.4.a	Total intensity in normal direction
Exa	3.4.b	Ratio of radiant flux to the emissive power

Exa 3.5	Rate of incident radiation	40
Exa 3.6	Shape factor F12	40
Exa 3.7		42
Exa 3.8		43
Exa 3.9		44
Exa 3.10		44
Exa 3.11		45
Exa 3.12		47
Exa 3.13		47
Exa 3.14		48
Exa 3.15		49
Exa 4.1	Pressure drop in smooth pipe	52
Exa 4.2.a	Pressure drop and maximum velocity calculation	53
Exa 4.2.b		54
Exa 4.3		56
Exa 4.4	Thickness of velocity boundary layer	57
Exa 4.5		58
Exa 5.1.a		60
Exa 5.1.b	Wall temperature	61
Exa 5.2		62
Exa 5.3.i	Length of tube	63
Exa 5.3.ii	Exit water temperature	64
Exa 5.4	Length of tube over which temperature rise occurs	66
Exa 5.5	Rate of heat transfer to the plate	68
Exa 5.6.i	Heat transfer rate	69
Exa 5.6.ii		70
Exa 5.7.i		72
Exa 5.7.ii		73
Exa 5.7.iii	Heat transfer rate	75
Exa 6.1		78
Exa 6.2	Reduce the equation	80
Exa 6.3		81
Exa 6.4	True air temperature	83
Exa 6.5	Rate of heat flow by natural convection	85
Exa 6.6	· · · · · · · · · · · · · · · · · · ·	86
Exa 7.1		88
Exa 7.2		89
Exa 7.3		90

Exa 7.4.a	Area of heat exchanger	91
Exa 7.4.b	Exit temperature of hot and cold streams	92
Exa 7.5	Exit Temperature	94
Exa 8.1	Average Heat Transfer Coefficient	98
Exa 8.2	Average heat transfer coefficient and film Reynolds num-	
	ber	99
Exa 8.3	Length of the tube	101
Exa 8.4	boiling regions	103
Exa 8.5	Initial heat transfer rate	107
Exa 9.1	Composition on molar basis	109
Exa 9.2	Diffusion coefficient of napthalene	110
Exa 9.3.a	Rate of hydrogen diffusion	110
Exa 9.3.b	Rate of hydrogen diffusion	111
Exa 9.4.a	Rate of loss of ammonia	112
Exa 9.4.b	Rate at which air enters the tank	113
Exa 9.5	Rate of evaporation	114
Exa 9.6	Rate of evaporation	115
Exa 9.7.a	Mass transfer coefficient Colburn anology	116
Exa 9.7.b	Mass transfer coefficient Gnielinski equation	117
Exa 9.7.c	To show mass flux of water vapour is small	119
Exa 9.8	Mass fraction	120

Chapter 1

Introduction

Scilab code Exa 1.1 Viscosity in SI system

```
1 clear;
2 clc;
3 // A Textbook on HEAT TRANSFER by S P SUKHATME
4 // Chapter 1
5 // Introduction
6
8 // Example 1.1
9 // Page 5
10 // Given that the viscosity of water at 100 degree
      Celsius is 28.8 * 10^-6 \text{ kgf s/m}^2 \text{ in MKS system},
       express this value in SI system.
11 printf("Example 1.1, Page 5 \n \n")
12
13 // Solution:
14
15 //at 100 degree Celsius
16 v1=28.8 * 10^-6; // [kgf s/m^2]
17 v2=28.8 * 10^-6 * 9.8; // [N s/m^2]
18 printf ("Viscosity of water at 100 degree celsius in
     the SI system is \%e N.s/m^2-2 (or kg/m s)", v2)
```

Scilab code Exa 1.2 Useful heat gain and thermal efficiency

```
1 clear all;
2 clc;
3 // Textbook of Heat Transfer (4th Edition)), S P
     Sukhatme
4 // Chapter 1 - Introduction
6 / \text{Example } 1.2
7 // Page 14
8 printf ("Example 1.2, Page 14 n n")
9 //Solution:
10 i=950; // radiation flux [W/m^2]
11 A=1.5; // \text{ area } [m^2]
12 T_i=61; // inlet temperature
13 T_o=69; // outlet temperature
14 mdot=1.5; // [kg/min] , mass flow rate
15 Mdot=1.5/60; // [kg/sec]
16 Q_conductn=50; //[W]
17 t=0.95; // transmissivity
18 a=0.97; // absoptivity
19 // from appendix table A.1 at 65 degree C
20 C_p = 4183; // [J/kg K]
21 // Using Equation 1.4.15, assuming that the flow
      through the tubes is steady and one dimensional.
22 // in this case (dW/dt)_shaft = 0
23 // assuming (dW/dt)_shear is negligible
24 // eqn(1.4.15) reduces to
25 q=Mdot*C_p*(T_o-T_i);
26
27 // let 'n' be thermal efficiency
28 n=q/(i*A);
29 \quad n_percent = n*100;
30
```

Scilab code Exa 1.3 Exit velocity and Temperature

```
1 clear all;
2 clc;
3 // A Textbook on HEAT TRANSFER by S P SUKHATME
4 // Chapter 1
5 // Introduction
6
7
8 //Example 1.3
9 // Page 16
10 printf("Example 1.3, Page 16\n\n");
11
12 // Solution:
13 // Given
14 v_i = 10; // [m/s]
15 q=1000; // [W]
16 d_i = 0.04; // [m]
17 d_0=0.06; // [m]
18
19 // From appendix table A.2
20 rho1=0.946; // [kg/m^3] at 100 degree C
21 C_p=1009; // [J/kg K]
22
```

```
23 mdot=rho1*(pi/4)*(d_i^2)*v_i; // [kg/s]
24
25
26 // In this case (dW/dt)_shaft=0 and (z_o - z_i)=0
27 // From eqn 1.4.15 , q=mdot*(h_o-h_i)
28 // \text{ Let dh} = (h_o - h_i)
29 dh=q/mdot; // [J/kg]
30 // Let T<sub>o</sub> be the outlet temperature
31 T_o=dh/C_p+100;
32
33 rho2=0.773; // [kg/m^3] at T_{-0} = 183.4 degree C
34 // From eqn 1.4.6
35 \text{ v_o=mdot/(rho2*(\%pi/4)*(d_o)^2); // [m/s]}
36
37 dKE_kg=(v_o^2-v_i^2)/2; // [J/kg]
38
39
40 printf("Exit Temperature is %f degree C \n", T_o);
41 printf("Exit velocity is \%f m/s \n", v_o);
42 printf ("Change in Kinetic Energy per kg = %f J/kg",
      dKE_kg);
```

Chapter 2

Heat Conduction in Solids

Scilab code Exa 2.1 Heat flow rate

```
1 clear all;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 2
6 // Heat Conduction in Solids
8 // Example 2.1
9 // Page 27
10 printf ("Example 2.1, Page 27 n\")
12 d_i=0.02; // [m] inner radius
13 d_o=0.04; // [m] outer radius
14 r_i=d_i/2; // [m] inner radius
15 r_o=d_o/2; // [m] outer radius
16 k=0.58; // [w/m K] thermal conductivity of tube
     material
17 t_i=70; //[degree C]
18 t_o=100; // [degree C]
19 l=1; // [m] per unit length
20 // using equation 2.1.5
```

```
21 q=1*2*(%pi)*k*(t_i-t_o)/log(r_o/r_i);
22 printf("Heat flow per unit length is %f W/m",q);
```

Scilab code Exa 2.2 Heat flow rate

```
1 clear;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 2
6 // Heat Conduction in Solids
8 // Example 2.2
9 // Page 31
10 printf ("Example 2.2, Page 31 \n\)
12 d_i=0.02; // [m] inner radius
13 d_o=0.04; // [m] outer radius
14 r_i=d_i/2; // [m] inner radius
15 r_o=d_o/2; // [m] outer radius
16 k=0.58; // [w/m K] thermal conductivity of tube
     material
17 t_i=70; //[degree C]
18 t_o=100; // [degree C]
19 l=1; // [m] per unit length
20
21 // thermal resistance of tube per unit length
22 R_th_tube=(log(r_o/r_i))/(2*\%pi*k*l); // [K/W]
23
24 //from table 1.3, heat transfer co-efficient for
     condensing steam may be taken as
25 h=5000; // [W/m<sup>2</sup> K]
26 // thermal resistance of condensing steam per unit
     length
27 R_th_cond=1/(%pi*d_o*l*h);
```

Scilab code Exa 2.3 Engineers decision

```
1 clear all;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 2
6 // Heat Conduction in Solids
8 // Example 2.3
9 // Page 31
10 printf ("Example 2.3, Page 31 \ln")
11
12 h_w=140; // heat transfer coefficient on water side,
       [W/m^2 K]
13 h_o=150; // heat transfer coefficient on oil side, [
     W/m^2 K
14 k=30; // thermal conductivity [W/m K]
15 r_o=0.01; // inner diameter of GI pipe on inside
16 r_i=0.008; // outer diameter GI pipe on inside
17 l=1; // [m] , per unit length
18
19 // Thermal resistance of inner GI pipe
```

```
20 R_inner_GI=log((r_o/r_i))/(2*%pi*k*l);
21
22
23 // Thermal resistance on the oil side per unit
      length
24 R_oilside=1/(h_o*%pi*2*r_i*1);
25
26
  // Thermal resistance on cold water side per unit
27
      length
28 R_waterside=1/(h_w*%pi*2*r_o*1);
29
30
31 // we see thermal resistance of inner GI pipe
      contributes less than 0.5 percent to the total
      resistance
32
33
34 printf ("Thermal resistance of inner GI pipe = %f K/W
       \n", R_inner_GI);
35 printf ("Thermal resistance on the oil side per unit
      length = \%f K/W \setminus n", R_oilside);
36 printf("Thermal resistance on cold water side per
      unit length = \%f \text{ K/W } \n", R_waterside);
37 printf("So, Engineer in-charge has made a bad
      decision");
```

Scilab code Exa 2.4 Thickness of insulation

```
1 clear all;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 2
6 // Heat Conduction in Solids
```

```
8 // Example 2.4
9 // Page 32
10 printf ("Example 2.4, Page 32 n\")
11
12 \text{ Ti} = 300;
                        //Internal temp of hot gas in
      degree Celsius
                        //Outer diameter of long metal
13 \text{ OD} = 0.1;
      pipe in meters
                        //Internal diamtere of long metal
  ID = 0.04;
       pipe in meters
                        //thermal conductivity of mineral
15 \text{ ki} = 0.052;
       wood in W/mK
  To = 50;
                        //Outer surface temperature in
      degree celsius
  hi = 29;
                        //heat transfer coefficient in
      the inner side in W/m<sup>2</sup> K
  ho = 12;
                        //heat transfer coefficient in
      the outer pipe W/m<sup>2</sup> K
19
20 // Determination of thickness of insulation
21 function[f] = thickness(r)
22
       f = r*(10.344 + 271.15*log(r*(0.05)^-1))-11.75
       funcprot(0);
23
24 endfunction
25 r = 0.082;
26 while 1
27
       rnew = r - thickness(r)/diff(thickness(r));
28
       if rnew == r then
29
            r3 = rnew;
30
            break;
31
       end
32
       r = rnew;
33 end
34 t = r3 - OD/2;
35 printf("\n Thickness of insulation = \%f cm", t*100);
36 //Heat loss per unit length
37 q = 600*(22/7)*r3;
```

Scilab code Exa 2.5 Heat loss rate

```
1 clear all;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 2
6 // Heat Conduction in Solids
8 // Example 2.5
9 // Page 34
10 printf ("Example 2.5, Page 34 \n\")
11
12 \text{ Ti} = 90;
                                            //Temp on inner
      side in degree celsius
13 \text{ To} = 30;
                                            //Temp on outer
      side in degree celsius
14 \text{ hi} = 500;
                                            //heat transfer
      coeffcient in W/m^2 K
15 \text{ ho} = 10;
                                            //heat transfer
      coeffcient in W/m^2 K
                                            //Internal
16 	ext{ ID} = 0.016;
      diameter in meters
17 t = [0 0.5 1 2 3 4 5];
                                          //Insulation
      thickness in cm
18 \text{ OD} = 0.02;
                                          //Outer diameter
      in meters
19 	 r3 = OD/2 + t/100;
                                          //radius after
      insulation in meters
20
21 i=1;
22 printf("\n Insulation thickness(cm)
                                                  r3 (m)
      heat loss rate per meter (W/m)");
```

```
23 while i<=7
24
       ql(i) = [2*(\%pi)*(ID/2)*(Ti-To)]/[(1/hi)
          +(0.008/0.2)*log(r3(i)/0.01) + (0.008/r3(i))
          *(1/ho)];
25 printf("\n
                   %.1 f
                                                   %.3 f
                  \%.1 \, f",t(i),r3(i),ql(i));
26
       i = i+1;
27 end
28 plot(t,ql);
29 xtitle(""," Insulation thickness(cm)"," Heat loss rate
       per unit length ,W/m");
30 printf("\n The maxima in the curve is at r_{-3} = 0.02
     m");
```

Scilab code Exa 2.6 Critical radius

```
1 clear all;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 2
6 // Heat Conduction in Solids
8 // Example 2.6
9 // Page 36
10 printf ("Example 2.6, Page 34 \n\")
12 h_natural = 10; //heat transfer coefficient for
      natural convection in W/m<sup>2</sup> K
13 h_forced = 50; //heat transfer coefficient for
      forced convection in W/m<sup>2</sup> K
14 //for asbestos
15 \text{ k1} = 0.2;
                   //thermal conductivity in W/m K
16 //for mineral wool
17 	 k2 = 0.05;
                   //thermal conductivity in W/m K
```

Scilab code Exa 2.7 Maximum temperature

```
1 clear all;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 2
6 // Heat Conduction in Solids
8 // Example 2.7
9 // Page 43
10 printf ("Example 2.7, Page 43 \n\")
11
12 H = 5; // Height, [m]
13 L = 10 ; // Length, [m]
14 t = 1; // thickness, [m]
15 b = t/2;
16 k = 1.05 ; // [W/m K]
17 q = 58; // [W/m<sup>3</sup>]
18 T = 35 ; // [C]
19 h = 11.6; // Heat transfer coefficient, [W/m^2 K]
20 // Substituting the values in equation 2.5.6
21 T_{max} = T + q*b*(b/(2*k)+1/h);
22 printf("Maximum Temperature = %f degree C", T_max);
```

Scilab code Exa 2.8 Steady state temperature

```
1 clear all;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 2
6 // Heat Conduction in Solids
8 // Example 2.8
9 // Page 47
10 printf ("Example 2.8, Page 47 \ln n")
11
12 // The bar will have two dimensional variation in
      temperature
13 // the differential equation is subject to boundary
      conditions
14 \times 1 = 0; // [cm]
15 Tx1 = 30; // [C]
16 	ext{ x2 = 5; } // 	ext{ [cm]}
17 \text{ Tx2} = 30; // [C]
18 y1 = 0; // [cm]
19 Ty1 = 30; // [C]
20 \text{ y2} = 10; // [\text{cm}]
21 \text{ Ty2} = 130; // [C]
22 // substituting theta = T-30 and using eqn 2.6.11
23 // putting x = 2.5 \text{cm} and y = 5 \text{cm} in infinite
      summation series
24
25
26 n = 1;
27 	 x1 = (1 - \cos(\%pi * n)) / (\sinh(2 * \%pi * n)) * \sin(n^{m}pi / 2) *
      sinh(n*%pi);
28
```

Scilab code Exa 2.9 Time taken by the rod to heat up

```
1 clear all;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 2
6 // Heat Conduction in Solids
8 // Example 2.9
9 // Page 51
10 printf ("Example 2.9, Page 51 \ln n")
11
                          //thermal conductivity in W/m K
12 k = 330;
13 a = 95*10^{(-6)};
                          //thermal expansion coefficient
14 R = 0.01;
                          //radius in meters
15 \text{ To} = 77;
                         //temperature in kelvins
16 \text{ Tf} = 273+50;
                         //temperature in kelvins
17 \text{ theta1} = \text{To} - \text{Tf};
                         //temperature in kelvins
18 T = 273+10;
19 theta = T - Tf;
20 h = 20;
                         //heat transfer coefficient in W
```

```
/m^2 K
21 printf("\n Theta1 = %d K",theta1);
22 printf("\n Theta = %d K ",theta);
23 printf("\n v/A = %.3 f m",R/2);
24 printf("\n k/a = %.4 f*10^(6) J/m^3 K",(k/a)*10^(-6))
;
25
26 time = (k/a)*(R/2)/h*log(theta1/theta);
27
28 printf("\n Time taken by the rod to heat up = %.1 f secs",time);
29 Bi = h*R/k;
30 printf("\n Biot number Bi = %.2 f*10^(-4) ",Bi*10^4);
31 printf("\n Since Biot number is much less than 0.1, therefore assumption that internal temperature gradients are negligible is a good one");
```

Scilab code Exa 2.10.i Heat transfer coefficient at the centre

```
1 clear all;
2 clc;
3
4  // A Textbook on HEAT TRANSFER by S P SUKHATME
5  // Chapter 2
6  // Heat Conduction in Solids
7
8  // Example 2.10(i)
9  // Page 58
10 printf("Example 2.10(i), Page 58 \n\n")
11
12  // Centre of the slab
13  // Given data
14 b = 0.005; // [m]
15 t = 5*60; // time, [sec]
16 Th = 200; // [C]
```

```
17 Tw = 20; // [C]
18 h = 150 ; // [W/m<sup>2</sup> K]
19 rho = 2200 ; //[kg/m^3]
20 Cp = 1050 ; // [J/kg K]
21 k = 0.4 ; // [W/m K]
22 // Using charts in fig 2.18 and 2.19 and eqn 2.7.19
      and 2.7.20
23
24 theta = Th - Tw;
25 \text{ Biot_no} = h*b/k;
26 a = k/(rho*Cp); // alpha
27 Fourier_no = a*t/b^2;
28
29 // From fig 2.18, ratio = theta_x_b0/theta_o
30 ratio_b0 = 0.12;
31 // From fig 2.18, ratio = theta_x_b1/theta_o
32 \text{ ratio\_b1} = 0.48;
33
34 // Therefore
35 \text{ theta_x_b0} = \text{theta*ratio_b0; } // [C]
36 \text{ T_x_b0} = \text{theta_x_b0} + \text{Tw} ; // [C]
37 \text{ theta_x_b1} = \text{theta*ratio_b1}; // [C]
38 \text{ T_x_b1} = \text{theta_x_b1} + \text{Tw} ; // [C]
39
40 // From Table 2.2 for Bi = 1.875
41 \quad lambda_1_b = 1.0498;
42 x = 2*sin(lambda_1_b)/[lambda_1_b+(sin(lambda_1_b))
      *(cos(lambda_1_b))];
43
44 // From eqn 2.7.20
45 theta_x_b0 = theta*x*(exp((-lambda_1_b^2)*Fourier_no
      ));
46 \text{ T_x_b0} = \text{theta_x_b0} + \text{Tw};
47 printf ("Temperature at b=0 is %f degree C\n", T_x_b0)
```

Scilab code Exa 2.10.ii heat transfer coefficient at the surface

```
1 clear all;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 2
6 // Heat Conduction in Solids
8 // Example 2.10(ii)
9 // Page 58
10 printf ("Example 2.10(ii), Page 58 \ln n")
12 // (ii) Surface of the slab
13
14 b = 0.005 ; // [m]
15 t = 5*60; // time, [sec]
16 Th = 200; // [C]
17 Tw = 20; // [C]
18 h = 150 ; // [W/m^2 K]
19 rho = 2200 ; //[kg/m^3]
20 Cp = 1050 ; // [J/kg K]
21 k = 0.4 ; // [W/m K]
22 // Using charts in fig 2.18 and 2.19 and eqn 2.7.19
      and 2.7.20
23 theta = Th - Tw;
24 \text{ Biot_no} = h*b/k;
25 a = k/(rho*Cp); // alpha
26 Fourier_no = a*t/b^2;
27
28 // From fig 2.18, ratio = theta_x_b0/theta_o
29 \text{ ratio\_b0} = 0.12;
30 // From fig 2.18, ratio = \frac{1}{2} theta_v_b1/theta_o
31 ratio_b1 = 0.48;
```

```
32
33 // Therefore
34 \text{ theta_x_b0} = \text{theta*ratio_b0; } // [C]
35 \text{ T_x_b0} = \text{theta_x_b0} + \text{Tw}; // [C]
36 \text{ theta_x_b1} = \text{theta*ratio_b1}; // [C]
37 \text{ T_x_b1} = \text{theta_x_b1} + \text{Tw}; // [C]
38
39 // From Table 2.2 for Bi = 1.875
40 \quad lambda_1_b = 1.0498;
41 \quad x = 2*sin(lambda_1_b)/[lambda_1_b+(sin(lambda_1_b))
       *(cos(lambda_1_b))];
42
43 // From 2.7.19
44 theta_x_b1 = theta_x_b0*(\cos(lambda_1_b*1));
45 \text{ T_x_b1} = \text{theta_x_b1} + \text{Tw};
46 printf ("Temperature at b=1 is \%f degree C \setminus n", T_x_b1)
```

Scilab code Exa 2.11.a Time taken by the centre of ball

```
1 clear all;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 2
6 // Heat Conduction in Solids
7
8 // Example 2.11(a)
9 // Page 65
10 printf("Example 2.11(a), Page 65 \n\n")
11
12 D = 0.05; // [m]
13 To = 450; // [degree C]
14 Tf = 90; // [degree C]
15 T = 150; // [degree c]
```

```
16 h = 115 ; // [W/m^2 K]
17 rho = 8000 ; // [kg/m^3]
18 Cp = 0.42*1000 ; // [J/kg K]
19 k = 46 ; // [W/m K]
20 R = D/2;
21
22 // (a)
23 // From eqn 2.7.3 for a sphere
24 t1 = rho*Cp*R/(3*h)*log((To-Tf)/(T-Tf)); // [sec]
25 t1_min = t1/60 ; // [min]
26 printf("Time taken by the centre of the ball to reach 150 degree C if internal gradients are neglected is %f seconds i.e. %f minutes \n",t1, t1_min);
```

Scilab code Exa 2.11.b time taken by the centre of ball to reach temperature

```
1 clear all;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 2
6 // Heat Conduction in Solids
7
8 // Example 2.11(b)
9 // Page 65
10 printf("Example 2.11(b), Page 65 \n\n")
11
12 D = 0.05; // [m]
13 To = 450; // [degree C]
14 Tf = 90; // [degree C]
15 T = 150; // [degree C]
16 h = 115; // [W/m^2 K]
17 rho = 8000; // [kg/m^3]
```

```
18 Cp = 0.42*1000 ; // [J/kg K]
19 k = 46 ; // [W/m K]
20 R = D/2;
21
22 // (b)
23 // let ratio = theta_R_0/theta_o
24 \text{ ratio} = (T-Tf)/(To - Tf);
25 \text{ Bi} = h*R/k;
26 // From Table 2.5
27 \quad lambda_1_R = 0.430;
28 \times = 2*[sin(lambda_1_R) - lambda_1_R*cos(lambda_1_R)]
      ]/[lambda_1_R - sin(lambda_1_R)*cos(lambda_1_R)];
29
30 // Substituting in equattion 2.7.29, we have an
      equation in variable y = at/R^2
31 // Solving
32 function[eqn] = parameter(y)
33 eqn = ratio - x*exp(-(lambda_1_R^2)*(y));
34 funcprot(0);
35 endfunction
36
37 y = 5; // (initial guess, assumed value for fsolve
     function)
38 Y = fsolve(y, parameter);
39
40 a = k/(Cp*rho); // alpha
41 t2 = Y*(R^2)/(a); // [sec]
42 \text{ t2_min} = \text{t2/60}; // [min]
43 printf("Time taken by the centre of the ball to
      reach 150 degree C if internal temperature
      gradients are not neglected is %f seconds i.e. %f
       minutes", t2, t2_min);
```

Scilab code Exa 2.12 Temperature at the centre of the brick

```
1 clear ;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 2
6 // Heat Conduction in Solids
8 // Example 2.12
9 // Page 67
10 printf("Example 2.12, Page 67 \n")
11
12 \ a = 0.12 \ ; // [m]
13
14 T = 400 ; // [C]
15 To = 25; //[C]
16 t = 100/60 ; // [hour]
17 h = 10 ; // [W/m^2 K]
18 k = 1.0 ; // [W/m K]
19 alpha = 3.33*10^{-3}; // [m<sup>2</sup>/h]
20 // using fig 2.18 and eqn 2.7.20
21
22 \times 1 = h*a/k;
23 x2 = k/(h*a);
24 	ext{ x3} = alpha*t/a^2;
25
26 // Let ratio_x = theta/theta_o for x direction, from
       fig 2.18
27 \text{ ratio}_x = 0.82;
28
29 // Similarly, for y direction
30 \text{ ratio_y} = 0.41;
31
32 // Similarly, for z direction
33 \text{ ratio}_z = 0.30;
34
35 // Therefore
36 total_ratio = ratio_x*ratio_y*ratio_z ;
37
```

```
38 T_centre = To + total_ratio*(T-To); // [degree C]
39 printf ("Temperature at the centre of the brick = \%f
      degree C \setminus n \setminus n, T_{centre};
40
41 // Alternatively
42 printf ("Alternatively, obtaining Biot number and
      values of lambda_1_b and using eqn 2.7.20, we get
       \n")
43
44 ratio_x = 1.1310*\exp(-(0.9036^2)*0.385);
45 \text{ ratio_y} = 1.0701 * \exp(-(0.6533^2) * 2.220);
46 \text{ ratio}_z = 1.0580 * \exp(-(0.5932^2) * 3.469);
47 ratio = ratio_x*ratio_y*ratio_z;
48
49 T_centre = To + total_ratio*(T-To); // [degree C]
50 printf ("Temperature at the centre of the brick = \% f
      degree C \n", T_centre);
```

Scilab code Exa 2.13.a Temperature at the copper fin tip

```
1 clear all;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 2
6 // Heat Conduction in Solids
7
8 // Example 2.13(a)
9 // Page 73
10 printf("Example 2.13(a), Page 73 \n\n")
11
12 D = 0.003; // [m]
13 L = 0.03; // [m]
14 h = 10; // [W/m^2]
15 Tf = 20; // [C]
```

```
16  T1 = 120 ; // [C]
17
18  // (a) Copper fin
19  k = 350 ; // [W/m K]
20
21  // For a circular cross section
22  m = [4*h/(k*D)]^(1/2);
23  mL = m*0.03 ;
24  // T at x = L
25  T = Tf + (T1-Tf)/cosh(m*L);
26  printf("mL = %f \n", mL);
27  printf("Temperature at the tip of fin made of copper is %f degree C \n",T);
```

Scilab code Exa 2.13.b Temperature at the steel fin tip

```
1 clear all;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 2
6 // Heat Conduction in Solids
8 // Example 2.13(b)
9 // Page 73
10 printf ("Example 2.13(b), Page 73 \n")
11
12 D = 0.003 ; // [m]
13 L = 0.03 ; // [m]
14 h = 10 ; // [W/m^2]
15 Tf = 20 ; // [C]
16 \text{ T1} = 120 \text{ ; } // \text{ [C]}
17
18
19 // (b) Stainless steel fin
```

```
20 k = 15 ; // [W/m K]
21
22 // For a circular cross section
23 m = [4*h/(k*D)]^(1/2);
24 mL = m*0.03;
25 // T at x = L
26 T = Tf + (T1-Tf)/cosh(m*L);
27 printf("mL = %f \n", mL);
28 printf("Temperature at the tip of fin made of steel is %f degree C \n", T);
```

Scilab code Exa 2.13.c Temperature at the teflon fin tip

```
1 clear all;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 2
6 // Heat Conduction in Solids
8 // Example 2.13(c)
9 // Page 73
10 printf("Example 2.13(c), Page 73 \n\)
11
12 D = 0.003 ; // [m]
13 L = 0.03; // [m]
14 h = 10 ; // [W/m^2]
15 Tf = 20; // [C]
16 \text{ T1} = 120 \text{ ; } // \text{ [C]}
17
18 // (c) Teflon fin
19 k = 0.35 ; // [W/m K]
20
21 // For a circular cross section
22 m = [4*h/(k*D)]^{(1/2)};
```

Scilab code Exa 2.14 Heat loss rate

```
1 clear all;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 2
6 // Heat Conduction in Solids
8 // Example 2.14
9 // Page 74
10 printf ("Example 2.14, Page 74 \ln")
11
12 L = 0.02 ; // [m]
13 t = 0.002; // [m]
14 b = 0.2 ; // [m]
15 theta1 = 200; // [C]
16 h = 15 ; // [W/m^2 K]
17 k = 45 ; // [W/m K]
18
19 Bi = h*(t/2)/k;
20
21 // We have
22 P = 2*(b+t); // [m]
23 A = b*t; // [m^2]
24 // Therefore
25 mL = ([(h*P)/(A*k)]^{(1/2)}*L;
26
```

```
27  // From equation 2.8.6, fin effectiveness n
28 n = tanh(mL)/mL;
29 printf("Fin Effectiveness = %f \n",n);
30
31 q_loss = n*h*40.4*2*10^-4*200; // [W]
32 printf("Heat loss rate from fin surface = %f W", q_loss);
```

Scilab code Exa 2.15 Decrease in thermal resistance

```
1 clear all;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 2
6 // Heat Conduction in Solids
8 // Example 2.1
9 // Page 74
10 printf ("Example 2.15, Page 74 \ln")
11
12
13 // Find Decrease in thermal Resistance
14 // Find Increase in heat transfer rate
15
                   //[W/m^2.K]
16 h = 15 ;
                   // [W/m.K]
17 k = 300;
18 T = 200;
                   //[C]
19 Tsurr = 30;
                    //[C]
                   // [m]
20 d = .01;
21 L = .1;
                   // [m]
22 A = .5*.5
                    //[m^2]
                   //Number of Pins
23 n = 100
24
                         //Biot Number
25 Bi = h*d/2/k;
```

```
26 //Value of Biot Number is much less than .1
27 //Thus using equation 2.8.6
28 \text{ mL} = (h*4/k/d)^{.}5*L;
29 zi = tanh(mL)/mL;
30 \text{ Res1} = 1/h/A;
                          // Thermal resistance without
      fins, [K/W]
31 Res2 = 1/(h*(A - n*\%pi/4*d^2 + zi*(n*\%pi*d*L))); //
      Thermal resistance with fins, [K/W]
32
                                                    // [K/W]
33 delRes = Res1-Res2;
34 // Increase in heat transfer rate
35 q = (T-Tsurr)/Res2 - (T-Tsurr)/Res1;
                                                   // [W]
36
37 printf("\n\n Decrease in thermal resistane at
      surface %.4f K/W.\n Increase in heat transfer
      rate \%.1 \, f \, W, delRes,q)
38 / END
```

Scilab code Exa 2.16 Overall heat transfer coefficient

```
1 clear all;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 2
6 // Heat Conduction in Solids
7
8 // Example 2.16
9 // Page 75
10 printf("Example 2.16, Page 75 \n\n")
11
12 // Theoretical Problem
13
14 printf('\n\n This is a Theoretical Problem, does not involve any mathematical computation.');
```

15 //END

Chapter 3

Thermal Radiation

Scilab code Exa 3.1 Monochromatic emissive power

```
1 clear all;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 3
6 // Thermal Radiation
8 // Example 3.1
9 // Page 114
10 printf("Example 3.1, Page 114 \n\n");
12 T = 5779; // [Temperature, in Kelvin]
13 // From Wein's law, eqn 3.2.8
14 \ lambda_m = 0.00290/T ; // [m]
15 // Substituting this value in plank's law, we get
16 e = 2*(\%pi)*0.596*(10^-16)/(((0.5018*10^-6)^5)*(exp)
      (0.014387/0.00290) -1)); //[W/m^2 m]
17
18 \ e_bl_max = e / 10^6 ;
19
20 printf ("Value of emissivity on sun surface is %f W/m
```

```
^2 um \n",e_bl_max); // [W/m^2 um]
21
22 e_earth = e_bl_max*((0.695*10^6)/(1.496*10^8))^2;
23
24 printf("The value of emmissivity on earths surface is %f W/m^2 um", e_earth)
```

Scilab code Exa 3.2 Heat flux

```
1 clear all;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 3
6 // Thermal Radiation
8 // Example 3.2
9 // Page 115
10 printf ("Example 3.2, Page 115 n\")
11
12 // Heat emission
13 Stefan_constt = 5.67*10^(-8);
                                      //(W/m^2.K^4)
                                         //temperature is
14 T = 1500;
     in kelvins
15 eb = (Stefan_constt)*(T^(4));
                                             //energy
      radiated by blackbody
16 //emission in 0.3um to 1um
17 e = 0.9;
                                     //emissivity
                                    //wavelength is in um
18 \quad lamda1 = 1;
19 \ lamda2 = 0.3;
                                    //wavelength is in um
20 \quad D0_1 = 0.5*(0.01972+0.00779);
                                    //From table 3.1
     page- 114
                                    //From table 3.1 page
21 \quad D0_2 = 0;
22 q = e*(D0_1-D0_2)*Stefan_constt*T^(4); //in W/m^2
```

Scilab code Exa 3.3 Absorbed radiant flux and absorptivity and reflectivity

```
1 clear all;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 3
6 // Thermal Radiation
8 // Example 3.3
9 // Page 119
10 printf ("Example 3.3, Page 119 \ln n")
12
13 a0_2=1; //absorptivity
14 a2_4=1; //absorptivity
15 a4_6=0.5; //absorptivity
16 a6_8=0.5; //absorptivity
17 a8_=0; //absorptivity
18 HO_2=0; //Irradiation in W/m<sup>2</sup> um
19 H2_4=750; //Irradiation in W/m<sup>2</sup> um
20 H4_6=750; //Irradiation in W/m^2 um
21 H6_8=750; //Irradiation in W/m<sup>2</sup> um
22 H8_=750; //Irradiation in W/m^2 um
23 Absorbed_radiant_flux=1*0*(2-0)+1*750*(4-2)
      +0.5*750*(8-4)+0;
24 \text{ H} = 750*(8-2);
                        //Incident flux
25 a = Absorbed_radiant_flux/H;
                      //Since the surface is opaque
26 p = 1-a;
```

Scilab code Exa 3.4.a Total intensity in normal direction

```
1 clear all;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 3
6 // Thermal Radiation
8 // Example 3.4(a)
9 // Page 123
10 printf ("Example 3.4(a), Page 123 n\")
11
12
13 e = 0.08; //emissivity
14 T = 800; //temperature, [K]
15
16 Stefan_constt = 5.67*10^{(-8)}; //[W/m^2.K^4]
17 // From Stefan Boltzmann law, equation 3.2.10
18 q = e*Stefan_constt*T^4;
                             //[W/m^2]
19 printf("\n Energy emitted = \%.1 \text{ f W/m}^2",q);
20
21 // (a)
22 // Therefore
23 in = (q/(%pi));
24 printf("\n Energy emitted normal to the surface = \%
      .1 \text{ f W/m}^2 \text{ sr}, in);
```

Scilab code Exa 3.4.b Ratio of radiant flux to the emissive power

```
1 clear all;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 3
6 // Thermal Radiation
8 // Example 3.4(b)
9 // Page 123
10 printf ("Example 3.4(b), Page 123 n")
11
12
13 e = 0.08; //emissivity
14 T = 800; //temperature, [K]
15
16 Stefan_constt = 5.67*10^{(-8)}; //[W/m^2.K^4]
17 // From Stefan Boltzmann law, equation 3.2.10
                                      // [W/m<sup>2</sup>]
18 q = e*Stefan_constt*T^4;
19 in = (q/(%pi));
20
21 // (b)
22 // Radiant flux emitted in the cone 0 \le pzi \le 50
      degree, 0 \ll theta \ll 2*pi
23 q_{cone}=2*(\%pi)*in*(-cos(100*(\%pi/180))+cos(0))/4;
24
25 printf ("\n Radiant flux emitted in the cone =\%.1 f W/
     m^2", q_cone);
26
27 Ratio = q_cone/q;
28 printf("\n Ratio = \%.3 \, \text{f}", Ratio);
```

Scilab code Exa 3.5 Rate of incident radiation

```
1 clear all;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 3
  // Thermal Radiation
6
8 // Example 3.5
9 // Page 124
10 printf ("Example 3.5, Page 124 \ln")
11
12 11 = 0.5; // wavelength, [um]
13 12 = 1.5; // wavelength, [um]
14 13 = 2.5; // wavelength, [um]
15 14 = 3.5; // wavelength,
16 H1 = 2500 ; // [W/m<sup>2</sup> um]
17 H2 = 4000 ; // [W/m<sup>2</sup> um]
18 H3 = 2500 ; // [W/m<sup>2</sup> um]
19
20 // Since the irridiation is diffuse, the spectral
      intensity is given by eqn 3.4.14 and 3.4.8
  // Integrating i_lambda over the directions of the
21
      specified solid angle and using fig 3.12
22
23
24 flux = 3/4*[H1*(12-11)+H2*(13-12)+H3*(14-13)];
25 printf ("Rate at which radiation is incident on the
      surface = \%f W/m^2, flux);
```

```
1 clear all;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 3
6 // Thermal Radiation
8 // Example 3.6
9 // Page 132
10 printf ("Example 3.6, Page 132 \ln n")
11
12 // This is a theoretical problem with no numerical
      data
13 printf("This is a theoretical problem with no
      numerical data \n");
14
15 // Considering an elementary ring dA2 of width dr at
       an arbitary radius r, we have
16 // r = h*tanB1
17 // dA2 = 2*\%pi*r*dr
18 // dA2 = 2*\%pi*(h^2)*tan(B1)*sec^2(B1)*dB1
19 // B2 = B1, since surfaces ate parallel, and
20 // L = h/\cos(B1)
21 // Substituting in eqn 3.6.7
22 // F12 = sin^2(a)
23
24
25 printf ("Considering an elementary ring dA2 of width
      dr at an arbitary radius r, we have n");
26 printf("r = h*tanB1 \setminus n");
27 printf("dA2 = 2*pi*r*dr \n");
28 printf("dA2 = 2*pi*(h^2)*tan(B1)*sec^2(B1)*dB1 \ n");
29 printf ("B2 = B1, since surfaces are parallel, and n
      ");
30 printf("L = h/\cos(B1) \setminus n");
31 printf ("Substituting in eqn 3.6.7 \setminus n");
32 printf("F12 = \sin^2(a) \n");
```

Scilab code Exa 3.7 Shape factor

```
1 clear all;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 3
6 // Thermal Radiation
8 // Example 3.7
9 // Page 134
10 printf ("Example 3.7, Page 134 n\")
11
12 // This is a theoretical problem with no numerical
      data
13 printf("This is a theoretical problem with no
      numerical data \n");
14
15
  // Considering an elementary circular ring on the
      surface of the sphere's surface at any arbitary
      anglr B,
17 // we have B1 = B, B2 = 0, L = R and dA_2 = 2*\%pi*(R)
      ^{2} *(sin(B))dB
18 // Therefore, from equation 3.6.7
19 // F12 = \sin^2(a)
20
21 printf ("Considering an elementary circular ring on
      the surface of the sphere surface at any arbitary
       anglr B \n");
22 printf ("we have B1 = B, B2 = 0, L = R and dA_2 = 2*
      pi*(R^2)*(sin(B))dB \n");
23 printf ("Therefore, from equation 3.6.7 \setminus n");
24 printf("F12 = \sin^2(a)");
```

Scilab code Exa 3.8 Shape factor F12

```
1 clear all;
2 clc;
 3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 3
6 // Thermal Radiation
8 // Example 3.8
9 // Page 135
10 printf ("Example 3.8, Page 135 n\")
11
12 // \text{ From eqn } 3.7.5 \text{ or fig } 3.19
13 	ext{ F65} = 0.22;
14 	ext{ F64} = 0.16;
15 \quad F35 = 0.32;
16 \quad F34 = 0.27;
17 A1 = 3; // [m<sup>2</sup>]
18 A3 = 3; // [m<sup>2</sup>]
19 A6 = 6; // [m<sup>2</sup>]
20
21 // Using additive and reciprocal relations
22 // \text{ We have } F12 = F16 - F13
23
24 	ext{ F61} = 	ext{F65} - 	ext{F64};
25 	ext{ F31} = 	ext{F35} - 	ext{F34};
26
27 	ext{ F16} = A6/A1*F61 ;
28 	ext{ F13} = A3/A1*F31 ;
29
30 	ext{ F12} = 	ext{F16} - 	ext{F13};
31
32 printf ("F_1-2 = \%f", F12);
```

Scilab code Exa 3.9 Shape factor

```
1 clear all;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 3
6 // Thermal Radiation
8 // Example 3.9
9 // Page 136
10 printf ("Example 3.9, Page 136 \ln n")
11
12 // This is a theoretical problem, does not involve
      any numerical computation
13 printf("This is a theoretical problem, does not
      involve any numerical computation \n");
14 // Denoting area of conical surface by A1
15 // Considering an imaginary flat surface A2 closing
     the conical cavity
16
17 F22 = 0; // Flat surface
18
19 // from eqn 3.7.2 , we have F11 + F12 = 1 and F22 + 1
     F21 = 1
20 	ext{ F21} = 1 - 	ext{ F22};
21
22 // F12 = A2/A1*F21 ;
23 // F11 = 1 - F12 ;
24 // F11 = 1 - sin(a)
```

Scilab code Exa 3.10 Net radiative heat transfer

```
1 clear all;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 3
6 // Thermal Radiation
8 // Example 3.10
9 // Page 138
10 printf ("Example 3.10, Page 138 \n\")
11
12 \text{ sigma} = 5.670*10^-8;
13 T1 = 473 ; // [K]
14 T2 = 373 ; // [K]
15 A1 = 1*2; // area, [m^2]
16 X = 0.25;
17 Y = 0.5;
18 // From eqn 3.7.4
19 F12 = (2/(\%pi*X*Y))*[\log((((1+X^2)*(1+Y^2))/(1+X^2+Y))]
      (1/2) + Y*((1+X^2)^(1/2))*atan(Y/((1+X^2)
      (1/2)) + X*((1+Y^2)^(1/2))*atan(X/((1+Y^2))
      (1/2)) - Y*atan(Y) - X*atan(X) ];
20
21
22 q1 = sigma*A1*(T1^4-T2^4)*[(1-F12^2)/(2-2*F12)];
23
24 printf("Net radiative heat transfer from the surface
      = \% f W \setminus n",q1);
```

Scilab code Exa 3.11 steady state heat flux

```
1 clear all;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
```

```
5 // Chapter 3
6 // Thermal Radiation
8 // Example 3.11
9 // Page 141
10 printf("Example 3.11, Page 141 \n\")
12 // All modes of heat transfer are involved
13 // let steady state heat flux flowing through the
      composite slab be (q/a)
14 \text{ h1} = 20;
                 //[W/m^2 K]
15 \text{ w1} = 0.2;
                 // [m]
                // [W/m K]
16 k1 = 1;
17 \text{ e1} = 0.5;
               //emmisivity at surfce 1
18 \ e2 = 0.4;
                //emmisivity at surfce 2
                // [m]
19 \text{ w2} = 0.3;
                // [W/m K]
20 \text{ k2} = 0.5;
                 // [W/m^2 K]
21 h2 = 10;
             // [ Kelvin ]
22 	 T1 = 473;
23 T2 = 273+40; //[Kelvin]
24 stefan_cnst = 5.67e-08; //[W/m^2 K^4]
25
26 // For resistances 1 and 2
27 function[f]=temperature(T)
28
       f(1) = (T1-T(1))/(1/h1 + w1/k1) - (T(2) - T2)/(
          w2/k2 + 1/h2);
29
       f(2) = stefan_cnst*(T(1)^4 - T(2)^4)/(1/e1 + 1/e1)
          e2 -1) - (T(2) - T2)/(w2/k2 + 1/h2);
30
       funcprot(0);
31 endfunction
32
33 T = [10 10]; // assumed initial values for fsolve
      function
34 y = fsolve(T, temperature);
36 printf("\n Steady state heat flux q/A = \%.1 f W/m^2"
      ,(T1-y(1))/(1/h1 + w1/k1));
```

Scilab code Exa 3.12 Rate of heat loss

```
1 clear all;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 3
6 // Thermal Radiation
8 // Example 3.12
9 // Page 145
10 printf ("Example 3.12, Page 145 \n\n")
11
12 D = 0.02 ; // [m]
13 \text{ T1} = 1000+273 ; // [K]
14 T2 = 27+273 ; // [K]
15 s = 5.670*10^-8; // stefans constant
16 // Assuming the opening is closed by an imaginary
      surface at temperature T1
17 // Using equation 3.10.3 , we get
18 q = s*1*\%pi*((D/2)^2)*(T1^4-T2^4); // [W]
19
20 printf ("Rate at which heat is lost by radiation = \%f
      W, q);
```

Scilab code Exa 3.13 Rate of nitrogen evaporation

```
1 clear all;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 3
```

```
6 // Thermal Radiation
8 // Example 3.13
9 // Page 146
10 printf ("Example 3.13, Page 146 \n\")
11
12 D = 0.32 ; // [m]
13 D_s = 0.36; // [m]
14 e = 0.02 ; // \text{emissivity}
15 l = 201 ; // [kJ/kg]
16 rho = 800; // [kg/m^3]
17 s = 5.670*10^-8;
18
19 T2 = 303 ; // [K]
20 \text{ T1} = 77 \text{ ; } // \text{ [K]}
21
22 // From equation 3.10.1
23 q1 = s*4*\%pi*((D/2)^2)*(T1^4-T2^4)/[1/e+((D/D_s)^2)
      *(1/e-1)]; // [W]
24
25 evap = abs(q1)*3600*24/(1*1000); // [kg/day]
26 \text{ mass} = 4/3*\%pi*((D/2)^3)*rho;
27 boiloff = evap/mass*100 ; // percent
28
29 T_{drop} = (abs(q1))/(4*\%pi*((D/2)^2))*(1/100); // [C]
30
31 printf("Rate at which nitrogen evaporates = \%f kg/
      day \ \ n", evap)
32 printf("Boil-off rate = \%f percent \n", boiloff);
33 printf ("Temperature drop between liquid Nitrogen and
       inner surface = \%f C", T_drop);
```

Scilab code Exa 3.14 Rate of energy loss from satellite

```
1 clear all;
```

```
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 3
6 // Thermal Radiation
8 // Example 3.14
9 // Page 147
10 printf ("Example 3.14, Page 147 \n\")
12 D = 1; // [m]
13 r = 6250 ; // [km]
14 D_surf = 300 ; // [km]
15 s = 5.670*10^-8;
16 e = 0.3;
17 \text{ Tc} = -18+273 \; ; \; // \; [K]
18 T_{surf} = 27+273; // [K]
19
20 // Rate of emissino of radiant energy from the two
      faces of satellite disc
21 r_emission = 2*e*\%pi*((D/2)^2)*s*Tc^4; // [W]
22
23 // A2*F21 = A1*F12
24 sina = (r/(r+D_surf));
25 	ext{ F12 = sina^2};
26
27 // Rate at which the satellite receives and absorbs
      energy coming from earth
28 \text{ r_receive} = e*s*(\%pi*((D/2)^2))*F12*T_surf^4; // [W]
29
30 \text{ r_loss} = \text{r_emission} - \text{r_receive;} // |W|
32 printf ("Net Rate at which energy is leaving the
      satellite = \%f W", r_loss);
```

Scilab code Exa 3.15 Net radiative heat transfer

```
1 clear all;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 3
6 // Thermal Radiation
8 // Example 3.15
9 // Page 151
10 printf("Example 3.15, Page 151 \n\")
11
12 // From example 3.10
13 \text{ F12} = 0.0363;
14 \text{ F11} = 0;
15 F13 = 1-F11-F12;
16 // Similarly
17 F21 = 0.0363;
18 F22 = 0;
19 	ext{ F23} = 0.9637;
20
21 / \text{Now}, F31 = A1/A3*F13
22 \text{ F31} = 2/24*\text{F13};
23 // Therefore
24 \text{ F32} = \text{F31};
25 \quad F33 = 1-F31-F32;
26
27 // Substituting into equation 3.11.6, 3.11.7,
      3.11.8, we have f(1), f(2), f(3)
28
29 function[f]=flux(B)
30
       f(1) = B(1) - 0.4*0.0363*B(2) - 0.4*0.9637*B(3) -
            0.6*(473^4)*(5.670*10^-8);
       f(2) = -0.4*0.0363*B(1) + B(2) - 0.4*0.9637*B(3)
31
           -0.6*(5.670*10^-8)*(373^4);
       f(3) = 0.0803*B(1) + 0.0803*B(2) - 0.1606*B(3);
32
       funcprot(0);
33
```

```
34 endfunction
35
36 B = [0 0 0];
37 y = fsolve(B,flux);
38 printf("\n B1 = %.1f W/m^2",y(1));
39 printf("\n B2 = %.1f W/m^2",y(2));
40 printf("\n B3 = %.1f W/m^2 \n",y(3));
41
42 // Therefore
43 H1 = 0.0363*y(2) + 0.9637*y(3) ; // [W/m^2]
44 // and
45 q1 = 2*(y(1) - H1) ; // [W]
46
47 printf("Net radiative heat transfer = %f W",q1);
```

Chapter 4

Principles of Fluid Flow

Scilab code Exa 4.1 Pressure drop in smooth pipe

```
1 clear;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 4
6 // Principles of Fluid Flow
8 // Example 4.1
9 // Page 172
10 printf("Example 4.1, Page 172 \n\n");
12 L = 3; // Length, [m]
13 D = 0.01 ; // ID, [m]
14 V = 0.2; // Average Velocity, [m/s]
15
16 // From Table A.1 at 10 degree C
17 rho = 999.7; // [kg/m^3]
18 v=1.306 * 10^-6 ; // [m^2/s]
19
20 Re_D=0.2*0.01/(1.306*10^-6);
21
```

```
// this value is less than the transition Reynolds
    number 2300.
// Hence flow is laminar. From eqn 4.4.19

f = 16/Re_D;

// from eqn 4.4.17

delta_p = 4*f*(L/D)*(rho*V^2)/2;

// since flow is laminar

V_max = 2*V;

printf("Pressure drop is %f Pa \n",delta_p);

printf("Maximum velocity is %f m/s",V_max);
```

Scilab code Exa 4.2.a Pressure drop and maximum velocity calculation

```
1 clear;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 4
6 // Principles of Fluid Flow
8 // Example 4.2(a)
9 // Page 180
10 printf("Example 4.2(a), Page 180 \n\n")
11
12 L = 3; //[m]
13 D = 0.01 ; //[m]
14 V = 0.2 ; //[m/s]
15
16 // (a)
17 printf("(a) If the temperature of water is increased
       to 80 degree C \setminus n");
18
```

```
19
20 // Properties of water at 80 degree C
21 rho = 971.8; // [kg/m^3]
22 v = 0.365 * 10^-6; // [m^2/s]
23
24 \text{ Re}_D = D*V/v;
25
26 // flow is turbilent, so from eqn 4.6.4a
27
28 f=0.079*(Re_D)^(-0.25);
29 delta_p = (4*f*L*rho*V^2)/(D*2); // [Pa]
30 printf("Pressure drop is %f Pa \n", delta_p);
31
32 // \text{ from eqn } 4.4.16
33
34 // x = (T_w/p)^0.5 = ((f/2)^0.5)*V;
35 x = ((f/2)^0.5)*V;
36 \text{ y_plus} = 0.005*x/(0.365*10^-6);
37
38 // from eqn 4.6.1 c & 4.6.2
39
40 V_{max} = x*(2.5* log(y_plus) + 5.5); // [m/s]
41 ratio = V_max/V;
42 printf("V_{max} = \%f m/s \ n", V_{max});
43 printf("V_{max}/V_{bar} = \%f \ n\n", ratio);
```

Scilab code Exa 4.2.b Pressure drop and maximum velocity calculation

```
1 clear;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 4
6 // Principles of Fluid Flow
7
```

```
8 // Example 4.2(b)
9 // Page 180
10 printf("Example 4.2(b), Page 180 \n\n")
11
12 L = 3; //[m]
13 D = 0.01; //[m]
14 V = 0.2 ; //[m/s]
15
16 // (b)
17
18 V1 = 0.7;
19 v1 = 1.306 * 10^-6 ; // [m^2/s]
20
21 printf("(b) If the velocity is increased to 0.7 \ n")
22 // if velocity of water is 0.7 m/s
23 V1=0.7; // [m/s]
24 \text{ Re}_D1=V1*D/(1.306*10^-6);
25 printf("Reynolds no is \%f \n", Re_D1);
26
27 // flow is again turbulent
28 f1 = 0.079*(Re_D1)^(-0.25);
29
30 delta_p1 = (4*f1*L*999.7*0.7^2)/(0.01*2); // [Pa]
31 printf("Pressure drop is %f Pa \n", delta_p1);
32
33 // x1 = (T_w/p)^0.5 = ((f1/2)^0.5)*V;
34 	 x1 = ((f1/2)^0.5)*V1 ;
35
36 \text{ y1_plus} = 0.005*x1/(v1);
37 printf("y+ at centre line = \%f \n",y1_plus);
38
39 V_{max1} = x1*(2.5* log(y1_plus) + 5.5) ; // [m/s]
40 printf("V_{max} is %f m/s \n", V_{max1});
42 \text{ ratio1} = V_max1/V1;
43 printf("Vmax/Vbar = \%f", ratio1);
```

Scilab code Exa 4.3 Pressure drop and power needed

```
1 clear;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 4
6 // Principles of Fluid Flow
8 // Example 4.3
9 // Page 181
10 printf ("Example 4.3, Page 181 \n\")
11 P = 80 * 10^3 ; // [Pa]
12 L = 10 ; // [m]
13 V_bar = 1.9 ; // [m/s]
14 \ 1 = 0.25 \ ; \ // \ [m]
15 b = 0.15 ; // [m]
16
17 // Fully developed flow
18
19 // From Table A.2, for air at! atm pressure and 25
      degree C
20 rho = 1.185; // [kg/m^3]
21 mew = 18.35 * 10^-6 ; // [kg/m s]
22
23 // At 80 kPa and 25 degree C
24 rho1 = rho*(80/101.3); // [kg/m^3]
25
26 // For given duct r=(b/a)
27 r = b/1;
28
29 D_e = (4*1/2*b/2)/(1/2 + b/2); // [m]
31 // \text{From eqn } 4.6.7
```

```
32
33 D_1 = [2/3 + 11/24*0.6*(2-0.6)]*D_e ; // [m]
34
35 // Reynolds no based on D<sub>-</sub>l
36
37 \text{ Re} = \text{rho1*D_1*V_bar/mew};
38 printf ("Reynolds no = \%f \n", Re);
39
40 	 f = 0.079*(Re^-0.25);
41 printf(" f = \%f \n",f);
42
43 // From eqn 4.4.17
44
45 \text{ delta_P} = 4*f*(L/D_1)*(rho1*(V_bar^2)/2);
46 printf("Pressure drop = \%f Pa \n", delta_P);
47
48 power = delta_P*(V_bar*l*b)
49 printf("Power required = %f W", power);
```

Scilab code Exa 4.4 Thickness of velocity boundary layer

```
1 clear;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 4
6 // Principles of Fluid Flow
7
8 // Example 4.4
9 // Page 189
10 printf("Example 4.4, Page 189 \n\n")
11
12 l = 2; // [m]
13 b = 1; // [m]
14 V = 1; // [m/s]
```

```
15
16 // From table A.2
17
18 rho = 1.060; // [kg/m^3]
19 v = 18.97 * 10^-6; // [m^2/s]
20
21 // \text{ At } x = 1.5 \text{m}
22 \times = 1.5 ; // [m]
23 Re = V*x/v; // Reynolds number
24
25 // From eqn 4.8.12
26
27 d = 5*x/(Re^(1/2))*1000 ; // [mm]
28 printf ("Thickness of Boundary layer at x = 1.5 is \%f
       mm \setminus n, d)
29
30 \text{ Re_l} = V*1/v;
31
32 // From eqn 4.8.19 and 4.8.16
33
34 \text{ c_f} = 1.328*\text{Re_l^-(1/2)}; // \text{drag coefficient}
35 printf("Drag Coefficient c_f = \%f \setminus n", c_f);
36
37 	ext{ F_d} = 0.00409*(1/2)*\text{rho}*(2*1*b)*1^2;
38 printf("Drag Force F_D = \%f N", F_d);
```

Scilab code Exa 4.5 Drag coefficient and drag force

```
1 clear;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 4
6 // Principles of Fluid Flow
7
```

```
8 // Example 4.5
9 // Page 195
10 printf("Example 4.5, Page 195 \n\n");
11
12 \ 1 = 2 \ ; \ // \ [m]
13 v = 4 ; // [m/s]
14
15 // From Table A.2
16
17 mew = 18.1*10^-6; // [N s/m<sup>2</sup>]
18 rho = 1.205*1.5; // [kg/m^3]
19
20 \text{ Re_l = rho*v*l/mew};
21 // Boundary layer is partly laminar and partly
      turbulent, we shall use eqn 4.10.4
22 \text{ Cf} = 0.074*(7.989*10^5)^(-0.2) - 1050/Re_l;
23 printf ("Drag coefficieent is \%f \n", Cf)
24
25 D_f = Cf*1/2*rho*1*v^2;
26 printf("Drag force per meter width = %f N \n",D_f);
27
28 //from eqn 4.10.1
29
30 x = 3*10^5 * (18.1*10^-6)/(1.808*4);
31 printf("Value of x_c is \%f m",x);
```

Chapter 5

Heat Transfer by Forced Convection

Scilab code Exa 5.1.a Local heat transfer coefficient

```
1 clear;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 5
6 // Heat Transfer by Forced Convection
9 // Example 5.1(a)
10 // Page 209
11 printf ("Example 5.1(a) \ln")
12
13 D = 0.015 ; // [m]
14 Q = 0.05 ; // [m<sup>3</sup>/h]
15 H = 1000 ; // [W/m<sup>2</sup>]
16 T_b = 40; // [degree C]
17
18 // From table A.1, properties at 40 degree C
19 k = 0.634 ; // [W/m K]
```

```
20  v = 0.659*10^-6 ; // [m^2/s]
21
22  V_bar = 4*Q/((%pi)*D^2);
23
24  Re_D = V_bar*D/v;
25
26  // Therefore , Laminar Flow , from eqn 5.2.8
27
28  h = 4.364*k/D; // [W/m^2 K]
29
30  printf("(a) Local heat transfer coefficient is %f W/m^2 K \n",h);
```

Scilab code Exa 5.1.b Wall temperature

```
1 clear;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 5
 6 // Heat Transfer by Forced Convection
8
9 // Example 5.1(b)
10 // Page 209
11 printf("Example 5.1(b) \n\n")
12
13 D = 0.015 ; // [m]
14 Q = 0.05; // [m^3/h]
15 H = 1000; // [W/m^2]
16 \text{ T_b} = 40 \text{ ; } // \text{ [degree C]}
17
18 // From table A.1, properties at 40 degree C
19 k = 0.634 ; // [W/m K]
20 v = 0.659*10^-6; // [m^2/s]
```

```
21
22 V_bar = 4*Q/((%pi)*D^2);
23
24 \text{ Re_D} = V_bar*D/v;
25
26 // Therefore, Laminar Flow, from eqn 5.2.8
27
28 h = 4.364*k/D;
29
30 // From the definition of h in eqn 5.2.3, the local
      wal to bulk mean temperature difference is given
      by
31
32 T_w = H/h + T_b;
33
34 printf("(b) Wall Temperature Tw = %f degree C", T_w);
```

Scilab code Exa 5.2 ratio of thermal entrance length to entrance length

```
1 clear;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 5
6 // Heat Transfer by Forced Convection
7
8
9 // Example 5.2
10 // Page 213
11 printf("Example 5.2, Page 213 \n\n")
12
13 // From eqn 5.2.12 and 4.4.20
14 // Let r = Lth/Le
15 // r = 0.04305*Pr/0.0575;
16
```

```
17 function[T]=r(Pr)
18         T = 0.04305*Pr/0.0575
19 endfunction
20
21         // For Pr = 0.01
22         r1 = r(0.01);
23         // For Pr = 0.1
24         r2 = r(1);
25         // For Pr = 100
26         r3 = r(100);
27
28         printf("Lth/Le at Pr = 0.01 is %f \n",r1);
29         printf("Lth/Le at Pr = 1 is %f \n",r2);
30         printf("Lth/Le at Pr = 100 is %f",r3);
```

Scilab code Exa 5.3.i Length of tube

```
1 clear;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 5
6 // Heat Transfer by Forced Convection
7
8
9 // Example 5.3(i)
10 // Page 215
11 printf ("Example 5.3(i), Page 215 \n\)
12
13 D = 0.015 ; // [m]
14 V = 1; // [m/s]
15 Tw = 90; // [degree C]
16 Tmi = 50; // [degree C]
17 Tmo = 65; // [degree C]
18
```

```
19 // (i)
 20
 21 // From Table A.1
22 \text{ k} = 0.656 \text{ ; } // \text{ [W/m K]}
23 rho = 984.4; // [kg/m^3]
24 \text{ v} = 0.497 * 10^-6 ; // [m^2/s]
 25 Cp = 4178 ; // [J/kg K]
 26 \text{ Pr} = 3.12 ;
 27 rho_in = 988.1; // [kg/m^3]
 28
 29 m_dot = \pi \cdot D^2 \cdot D
 30
 31 Re = 4*m_dot/(%pi*D*rho*v);
 32
 33 // Using eqn 5.3.2 and 4.6.4 a
 34 f = 0.079*(Re)^-0.25;
 35
 36 \text{ Nu} = (f/2)*(Re-1000)*Pr/[1+12.7*(f/2)^(1/2)*((Pr)^2)
                                     ^(2/3))-1)];
 37 h = Nu*k/D; // [W/m^2 K]
 38
39 // From the energy equation, extracting the value of
                                       \mathbf{L}
 40 L = m_dot*Cp*(Tmo-Tmi)*[log((Tw-Tmi)/(Tw-Tmo))]/[((
                                    Tw-Tmi)-(Tw-Tmo))*h*D*%pi]; // [m]
 41
 42 printf("The length of tube if the exit water
                                     temperature is 65 degree C = \%f m n, L);
```

Scilab code Exa 5.3.ii Exit water temperature

```
1 clear;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
```

```
5 // Chapter 5
6 // Heat Transfer by Forced Convection
8
9 // Example 5.3(i)
10 // Page 215
11 printf ("Example 5.3(ii), Page 215 \n\")
12
13 D = 0.015; // [m]
14 V = 1 ; // [m/s]
15 Tw = 90; // [degree C]
16 Tmi = 50; // [degree C]
17 Tmo = 65; // [degree C]
18
19 // From Table A.1
20 k = 0.656 ; // [W/m K]
21 rho = 984.4; // [kg/m^3]
22 v = 0.497 * 10^-6; // [m^2/s]
23 Cp = 4178 ; // [J/kg K]
24 \text{ Pr} = 3.12 ;
25 rho_in = 988.1; // [kg/m^3]
26
27 \text{ m\_dot} = \text{\%pi*(D^2)*rho\_in*V/4}; // [kg/s]
28
29 Re = 4*m_dot/(\%pi*D*rho*v);
30
31 // \text{ Using eqn } 5.3.2 \text{ and } 4.6.4a
32 f = 0.079*(Re)^-0.25;
33
34 \text{ Nu} = (f/2)*(Re-1000)*Pr/[1+12.7*(f/2)^(1/2)*((Pr)^2)
      ^(2/3))-1)];
35 h = Nu*k/D; // [W/m^2 K]
36
37 // From the energy equation, extracting the value of
38 L = m_dot*Cp*(Tmo-Tmi)*[log((Tw-Tmi)/(Tw-Tmo))]/[((
      Tw-Tmi)-(Tw-Tmo))*h*D*%pi]; // [m]
39
```

```
40 // (ii)
41 printf("\nTrial and error method \n");
42
43 // Trial 1
44 printf("Trial 1 \setminus n");
45 printf("Assumed value of Tmo = 70 degree C\n");
46 \text{ T_mo} = 70 \text{ ; } // \text{ [degree C]}
47 \text{ T_b} = 60 \text{ ; } // \text{ [degree C]}
48
49 k1 = 0.659 ; // [W/m K]
50 \text{ rho1} = 983.2 ; // [kg/m^3]
51 \text{ v1} = 0.478 * 10^-6 ; // [m^2/s]
52 \text{ Cp1} = 4179 \text{ ; } // \text{ [J/kg K]}
53 \text{ Pr1} = 2.98 ;
54
55 \text{ Re1} = 4*m_dot/(\%pi*D*rho1*v1);
56
57 // From Blasius eqn (4.6.4a), we get
58 	ext{ f1} = 0.005928;
59
60 // Substituting this value into the Gnielinski Eqn
61 \text{ Nu_d} = 154.97;
62 h = Nu_d*k1/D ; // [W/m^2 K]
63
64 // from eqn 5.3.3, we get
65 Tmo1 = 73.4; // [degree C]
66 printf("Value of Tmo obtained = 73.4 degree C\n");
67
68 // Trial 2
69 printf("Trial 2 \ n");
70 printf("Assume Tmo = 73.4 degree C\n");
71 printf ("Value of Tmo obtained = 73.6 degree C which
       is in reasonably close agreement with assumed
      value.\n")
```

Scilab code Exa 5.4 Length of tube over which temperature rise occurs

```
1 clear;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 5
6 // Heat Transfer by Forced Convection
8
9 // Example 5.4
10 // Page 219
11 printf ("Example 5.4, Page 219 n\")
12
13 D_i = 0.05; // [m]
14 m = 300 ; // [kg/min]
15 m1 = m/60 ; // [kg/sec]
16 rho = 846.7; // [kg/m^3]
17 k = 68.34 ; // [W/m K]
18 c = 1274; // [J/kg K]
19 v = 0.2937*10^-6; // [m^2/s]
20 \text{ Pr} = 0.00468 ;
21
22 \text{ Re}_D = 4*m1/(\%pi*D_i*rho*v);
23
24 // Assuming both temperature and velocity profile
      are fully developed over the length of tube
25 // using eqn 5.3.6
26 \text{ Nu_D} = 6.3 + 0.0167*(Re_D^0.85)*(Pr^0.93);
27
28 h = Nu_D*k/D_i;
29
30 // Equating the heat transferred through the wall of
       the tube to the change of enthalpy pf sodium
31 L = 300/60*1274*(500-400)/(h*%pi*D_i*30)
32
33 printf("Length of tube over which the temperature
      rise occurs = %f m",L)
```

Scilab code Exa 5.5 Rate of heat transfer to the plate

```
1 clear;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 5
6 // Heat Transfer by Forced Convection
8
9 // Example 5.5
10 // Page 231
11 printf ("Example 5.5, Page 231 \n")
12
13 V = 15 ; // [m/s]
14 \text{ s=0.2}; // [m]
15 T_m = (20+60)/2; // [degree C]
16 // Properties at mean temp = 40 degree C
17 v = 16.96*10^-6; // [m^2/s]
18 rho = 1.128 ; // [kg/m^3]
19 k = 0.0276; // [W/m K]
20 \text{ Pr} = 0.699;
21 \quad A = s^2;
22 \text{ Re_L} = V*0.2/v;
23 // This is less than 3*10^5, hence the boundary
      layer may be assumed to be laminar over the
      entire length.
24 // \text{ from eqn } 4.8.19
25
26 \text{ Cf} = 1.328/(Re_L)^0.5
27 \text{ Fd} = 2*Cf*1/2*rho*A*V^2;
28
\frac{29}{\sqrt{\text{From eqn } 5.5.10}}
30 Nu_1 = 0.664*(Pr^(1/3))*(Re_L^(1/2));
```

```
31
32 h = Nu_1*k/s;
33 // Therefore rate of heat transfer q is
34 q = 2*A*h*(60-20); // [W]
35
36 // With a turbulent boundary layer from leading edge
     , the drag coefficient is given by eqn 4.10.4
37 \text{ Cf1} = 0.074*(Re_L)^(-0.2);
38 Fd1 = 2*Cf1*1/2*rho*A*V^2; // [N]
39
40 // from eqn 5.8.3 with C1 = 0
41 \text{ Nu\_l1} = 0.0366*(0.699^(1/3))*(Re_L^(0.8));
42
43 h1 = Nu_11*k/s; // [W/m^2 K]
44 \text{ q1} = 2*A*h1*(60-20);
45
46 printf("For Laminar Boundary Layer \n");
47 printf("Rate of Heat transfer = \%f W\n",q);
48 printf ("Drag force = \%f N \n \n", Fd)
49
50 printf("For Turbulent Boundary Layer from the
      leading edge \n");
51 printf("Rate of Heat transfer = \%f W\n",q1);
52 printf ("Drag force = \%f N\n", Fd1)
```

Scilab code Exa 5.6.i Heat transfer rate

```
1 clear;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 5
6 // Heat Transfer by Forced Convection
7
8
```

```
9 // Example 5.6(i)
10 // Page 235
11 printf ("Example 5.6(i), Page 235 \ln n")
12
13 D = 0.075 ; // [m]
14 V = 1.2 ; // [m/s]
15 T_air = 20 ; // [degree C]
16 T_{surface} = 100; // [degree C]
17 T_m = (T_air + T_surface)/2;
18
19 v = 18.97*10^-6; // [m^2/s]
20 \text{ k} = 0.0290 \text{ ; } // \text{ [W/m K]}
21 \text{ Pr} = 0.696;
22
23 Re_D = V*D/v;
24
25 \text{ Nu} = 0.3 + [(0.62*(Re_D^(1/2))*(Pr^(1/3)))
      /[(1+((0.4/Pr)^(2/3)))^(1/4)]]*([1+((Re_D/282000)
      (5/8))(4/5);
26
27 h = Nu*k/D ; // [W/m^2 K]
29 flux = h*(T_surface - T_air); // [W/m^2]
30 q = flux * \%pi * D * 1; // [W/m]
31
32 printf("Heat transfer rate per unit length = \%f W/m\
      n",q);
```

Scilab code Exa 5.6.ii Average wall tempeature

```
1 clear;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 5
```

```
6 // Heat Transfer by Forced Convection
8
9 // Example 5.6(ii)
10 // Page 235
11 printf("Example 5.6(ii), Page 235 \n\n")
12
13 D = 0.075 ; // [m]
14 V = 1.2 ; // [m/s]
15 T_{air} = 20; // [degree C]
16 T_surface = 100 ; // [degree C]
17 T_m = (T_air + T_surface)/2;
18
19 v = 18.97*10^-6; // [m^2/s]
20 \text{ k} = 0.0290 \text{ ; } // \text{ [W/m K]}
21 \text{ Pr} = 0.696;
22
23 Re_D = V*D/v;
24 \text{ Nu} = 0.3 + [(0.62*(Re_D^0.5)*(Pr^(1/3)))/[(1+((0.4/2))]
      Pr)^(2/3)))^(1/4)]]*[1+(Re_D/282000)^(5/8)]^(5/8)
25 h = Nu*k/D; // [W/m^2] K
26 flux = h*(T_surface - T_air); // [W/m^2]
27
28 // (ii) Using Trial and error method
29 T_avg = 1500/flux*(T_surface - T_air);
30
31 T_{assumd} = 130; // [degree C]
32 \text{ Tm} = 75 ; // [degree C]
33
34 \text{ v1} = 20.56*10^{-6} \text{ ; } // \text{ [m}^2/\text{s]}
35 \text{ k1} = 0.0301 \text{ ; } // \text{ [W/m K]}
36 \text{ Pr1} = 0.693;
37
38 \text{ Re}_D1 = V*D/v1;
39
40
41 // Using eqn 5.9.8
```

```
42 Nu1 = 33.99;
43 h = Nu1*k1/D;
44 // Therefore
45 T_diff = 1500/h; // [degree C]
46 T_avg_calc = 129.9 ; // [degree C]
47 printf("Assumed average wall temperature = %f degree C\n", T_assumd);
48 printf("Calculated average wall Temperature = %f degree C\n", T_avg_calc);
49 printf("Hence, Average wall Temperature = %f degree C", T_avg_calc);
```

Scilab code Exa 5.7.i Pressure drop

```
1 clear;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 5
6 // Heat Transfer by Forced Convection
7
8
9 // Example 5.7(i)
10 // Page 241
11 printf("Example 5.7(i), Page 241 n \n");
12
13 // Given data
14 D = 0.0125 ; // [m]
15 \text{ ST} = 1.5*D ;
16 \text{ SL} = 1.5*D ;
17 V_{inf} = 2; //[m/s]
18
19 N = 5;
20 Tw = 70; // [degree C]
21 Tmi = 30; // [degree C]
```

```
22 L = 1; // [m]
23 // Properties of air at 30 degree C
24 rho = 1.165; // [kg/m^3]
25 v = 16.00 *10^-6; // [m^2/s]
26 Cp = 1.005 ; // [kJ/kg K]
27 \text{ k} = 0.0267 \text{ ; } // \text{ [W/m K]}
28 \text{ Pr} = 0.701;
29
30 // From eqn 5.10.2
31 Vmax = ST/(SL-D)*V_inf ; // [m/s]
32 \text{ Re} = Vmax*D/v ;
33
34 // From fig 5.15
35 f = 0.37/4;
36 // Also, tube arrangement is square
37 X = 1;
\frac{38}{7} From eqn 5.10.6
39 delta_P = 4*f*N*X*(rho*Vmax^2)/2; // [N/m^2]
40
41 printf("(i) Pressure drop of air across the bank is
      %f N/m^2 \n", delta_P);
```

Scilab code Exa 5.7.ii Exit temperature of air

```
1 clear;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 5
6 // Heat Transfer by Forced Convection
7
8
9 // Example 5.7(ii)
10 // Page 241
11 printf("Example 5.7(ii), Page 241 \n \n");
```

```
12
13 D = 0.0125 ; // [m]
14 \text{ ST} = 1.5*D;
15 \text{ SL} = 1.5*D ;
16 V_inf = 2; // [m/s]
17 N = 5;
18 Tw = 70; // [degree C]
19 Tmi = 30; // [degree C]
20 L = 1; // [m]
21
22 rho = 1.165; // [kg/m^3]
23 v = 16.00 *10^-6; // [m^2/s]
24 Cp = 1.005*1000 ; // [J/kg K]
25 \text{ k} = 0.0267 \text{ ; } // \text{ [W/m K]}
26 \text{ Pr} = 0.701;
27
28 / From eqn 5.10.2
29 Vmax = ST/(SL-D)*V_inf ; // [m/s]
30 \text{ Re} = Vmax*D/v ;
31
32 // From fig 5.15
33 \text{ f} = 0.37/4;
34 // Also, tube arrangement is square
35 X = 1;
36 / From eqn 5.10.6
37 delta_P = 4*f*N*X*(rho*Vmax^2)/2; // [N/m^2]
38
39 // At 70 degree C
40 \text{ Pr1} = 0.694;
41 // From table 5.4 and 5.5
42
43 \text{ C1} = 0.27;
44 m = 0.63;
45 \quad C2 = 0.93;
46
47 // Substituting in Eqn 5.10.5
48 Nu = C1*C2*(Re^m)*(Pr^0.36)*(Pr/Pr1)^(1/4);
49 h = Nu*k/D; // [W/m^2 K]
```

```
50
51 // For 1 m long tube
52 \text{ m\_dot} = \text{rho*}(10*1.5*D*1)*2; // [kg/s]
53
54 // Substituting m_dot in 5.3.4 and solving, we get
55 function[f]=temp(Tmo)
       f(1) = h*(\%pi*D*L)*50*[(Tw-Tmi)-(Tw-Tmo(1))]/[
56
          \log((Tw-Tmi)/(Tw-Tmo(1)))]-m_dot*Cp*(Tmo(1)-
          Tmi);
       // h*(\%pi*D*L)*N*((Tw-Tmi)-(Tw-Tmo))/log[(Tw-Tmi)
57
          (Tw-Tmo) - m_dot*Cp*(Tmo - Tmi);
58
       funcprot(0);
59 endfunction
60
61 Tmo = 40; // Initial assumed value for fsolve
      function
62 y = fsolve(Tmo, temp);
63 printf("Tmo = \%f \n",y);
64
65 printf("(ii) Exit temperature of air = %f degree C \
      n",y);
```

Scilab code Exa 5.7.iii Heat transfer rate

```
1 clear;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 5
6 // Heat Transfer by Forced Convection
7
8
9 // Example 5.7(iii)
10 // Page 241
11 printf("Example 5.7(iii), Page 241 \n \n");
```

```
12
13 D = 0.0125 ; // [m]
14 \text{ ST} = 1.5*D;
15 \text{ SL} = 1.5*D ;
16 V_inf = 2; // [m/s]
17 N = 5;
18 Tw = 70; // [degree C]
19 Tmi = 30; // [degree C]
20 L = 1; // [m]
21
22 rho = 1.165; // [kg/m^3]
23 v = 16.00 *10^-6; // [m^2/s]
24 Cp = 1.005*1000 ; // [J/kg K]
25 \text{ k} = 0.0267 \text{ ; } // \text{ [W/m K]}
26 \text{ Pr} = 0.701;
27
28 / From eqn 5.10.2
29 Vmax = ST/(SL-D)*V_inf ; // [m/s]
30 \text{ Re} = Vmax*D/v ;
31
32 // From fig 5.15
33 \text{ f} = 0.37/4;
34 // Also, tube arrangement is square
35 X = 1;
36 / From eqn 5.10.6
37 delta_P = 4*f*N*X*(rho*Vmax^2)/2; // [N/m^2]
38
39 // At 70 degree C
40 \text{ Pr1} = 0.694;
41 // From table 5.4 and 5.5
42
43 \text{ C1} = 0.27;
44 m = 0.63;
45 C2 = 0.93;
46
47 // Substituting in Eqn 5.10.5
48 Nu = C1*C2*(Re^m)*(Pr^0.36)*(Pr/Pr1)^(1/4);
49 h = Nu*k/D; // [W/m^2 K]
```

```
50
51 // For 1 m long tube
52 \text{ m\_dot} = \text{rho*}(10*1.5*D*1)*2; // [kg/s]
53
54 // Substituting m_dot in 5.3.4 and solving, we get
55 function[f]=temp(Tmo)
       f(1) = h*(\%pi*D*L)*50*[(Tw-Tmi)-(Tw-Tmo(1))]/[
56
          \log((Tw-Tmi)/(Tw-Tmo(1)))]-m_dot*Cp*(Tmo(1)-
          Tmi);
       // h*(\%pi*D*L)*N*((Tw-Tmi)-(Tw-Tmo))/log[(Tw-Tmi)]
57
          (Tw-Tmo) - m_dot*Cp*(Tmo - Tmi);
       funcprot(0);
58
59 endfunction
60
61 Tmo = 40; // Initial assumed value for fsolve
      function
62 y = fsolve(Tmo, temp);
63
64 // Heat transfer rate q
65 q = h*(\%pi*D*L)*50*((Tw-Tmi)-(Tw-y))/(log((Tw-Tmi))/(
      Tw-y)));
66
67 printf("(iii) Heat transfer rate per unit length to
      air = \%f W', q);
```

Chapter 6

Heat Transfer by Natural convection

Scilab code Exa 6.1 Average nusselt number

```
1 clear;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 6
6 // Heat Transfer by Natural Convection
9 // Example 6.1
10 // Page 258
11 printf("Example 6.1, Page 258 n n");
12
13 H = 0.5 ; // [m]
14 T_h = 100; // [degree C]
15 T_1 = 40; // [degree C]
16
17 \text{ v} = 20.02*10^-6 \text{ ; } // \text{ [m/s]}
18 \text{ Pr} = 0.694;
19 k = 0.0297; // [W/m K]
```

```
20
21 T = (T_h+T_1)/2 + 273 ; // [K]
22 printf("Mean film temperature = \%f K \n",T);
23 B = 1/T;
24
25 Gr = 9.81*B*((T_h-T_1)*H^3)/(v^2);
26 \text{ Ra} = \text{Gr}*\text{Pr};
27
28 // (a)
29 // Exact analysis - Equation 6.2.17
30 disp("(a)");
31 printf("Exact analysis\n");
32 Nu_a = 0.64*(Gr^(1/4))*(Pr^0.5)*((0.861+Pr)^(-1/4));
33 printf("Nu_L = \%f \n", Nu_a);
34
35 // (b)
36 // Integral method - Equation 6.2.29
37 disp("(b)");
38 printf("Integral method \n");
39 Nu_b = 0.68*(Gr^(1/4))*(Pr^0.5)*((0.952+Pr)^(-1/4));
40 printf("Nu_L = \%f \n", Nu_b);
41
42 // (c)
43 // McAdams correlation - Equation 6.2.30
44 disp("(c)");
45 printf("McAdams correlation \n");
46 \text{ Nu_c} = 0.59*(Ra)^(1/4);
47 printf("Nu_L = \%f \n", Nu_c);
48
49 // (d)
50 // Churchill and Chu correlation - Equation 6.2.31
51 disp("(d)")
52 printf("Churchill and Chu correlation\n");
53 \text{ Nu_d} = 0.68 + 0.670*(Ra^(1/4))/[1+(0.492/Pr)^(9/16)]
      ]^{(4/9)};
54 printf("Nu_L = \%f \setminus n", Nu_d);
```

Scilab code Exa 6.2 Reduce the equation

```
1 clear;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 6
6 // Heat Transfer by Natural Convection
7
8
9 // Example 6.2
10 // Page 259
11 printf("Example 6.2, Page 259 n \n");
12
13 Tm = 150 ; // [degree C]
14 // From table A.2
15 v = 28.95*10^-6; // [m^2/s]
16 \text{ Pr} = 0.683;
17 k = 0.0357 ; // [W/m K]
18
19 B = 1/(273+Tm); //[K^-1]
20
21 // \text{ from eqn } 6.2.30
22 printf ("Equation 6.2.30 \n h = k/L*0.59*[9.81*B*(Tw-
      Tinf)*(L^3)*0.683/(v^2)]^(1/4)n")
23 // h = k/L*0.59*[9.81*B*(Tw-Tinf)*(L^3)*0.683/(v^2)
     ]^{(1/4)};
24 // simplifying we get
25 / h = 1.38*[(Tw-Tinf)/L]^(1/4)
26 printf ("Reduces to h = 1.38*[(Tw-Tinf)/L]^(1/4) \ n")
27
28
29 // From eqn 6.2.33
30 // h*L/k = 0.10*[9.81*B*(Tw-Tinf)*(L^3)*0.683/(v^2)
```

```
]^(1/3);
31 printf("Equation 6.2.33 \n h*L/k = 0.10*[9.81*B*(Tw-Tinf)*(L^3)*0.683/(v^2)]^(1/3) \n");
32 // simplifying
33 // h = 0.95*(Tw-Tinf)^1/3
34 printf("Reduces to h = 0.95*(Tw-Tinf)^1/3 \n");
35
36 printf("where h is expressed in W/m^2 K, (Tw-Tinf) in C and L in metres \n");
```

Scilab code Exa 6.3 Time for cooling of plate

```
1 clear;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 6
6 // Heat Transfer by Natural Convection
8
9 // Example 6.3
10 // Page 260
11 printf("Example 6.3, Page 260 n n);
12
13 s = 0.2; // [m]
14 d = 0.005 ; // [m]
15 rho = 7900 ; // [kg/m^3]
16 Cp = 460 ; // [J/kg K]
17
18 T_{air} = 20; // [C]
19 // For 430 C to 330 C
20 \text{ T_avg} = 380 ; // [C]
21 Tm = (T_avg + T_air)/2; // [C]
22
23
```

```
24 \text{ v} = 34.85*10^{-6} \text{ ; } // \text{ [m}^2/\text{s]}
25 \text{ Pr} = 0.680 ;
26 \text{ k} = 0.0393 \text{ ; } // \text{ [W/m K]}
27
28 Re = 9.81*1/(273+Tm)*(T_avg-T_air)*(s^3)/(v^2)*Pr;
29
30 // \text{From eqn } 6.2.31
31 Nu = 0.68 + 0.670*(Re^{(1/4)})/[1+(0.492/Pr)^{(4/9)}]
      ]^{(4/9)};
32
33 h = Nu*k/s; // [W/m^2 K]
34 	 t1 = rho*s*s*d*Cp/((s^2)*2*h)*log((430-T_air)/(330-
      T_air)); // [s]
35 printf("Time required for the plate to cool from 430
       C to 330 C is \%f s\n",t1);
36
37 // for 330 to 230
38 h2 = 7.348 ; // [W/m<sup>2</sup> K]
39 	 t2 = rho*s*s*d*Cp/((s^2)*2*h2)*log((330-T_air)/(230-T_air))
      T_air)); // [s]
40 printf("Time required for the plate to cool from 330
       C to 230 C is \%f s\n",t2);
41
42 // for 230 to 130
43 h3 = 6.780; // [W/m<sup>2</sup> K]
44 t3 = rho*s*s*d*Cp/((s^2)*2*h3)*log((230-T_air)/(130-
      T_air)); // [s]
45 printf("Time required for the plate to cool from 230
       C to 130 C is \%f s\n",t3);
46
47 // Total time
48
49 \text{ time} = t1+t2+t3;
50 \text{ minute} = \text{time}/60;
51 printf ("Hence, time required for the plate to cool
      from 430 C to 130 C n = \%f \ s = \%f \ min, time,
      minute);
```

Scilab code Exa 6.4 True air temperature

```
1 clear;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 6
6 // Heat Transfer by Natural Convection
7
9 // Example 6.4
10 // Page 264
11 printf ("Example 6.4, Page 264 n n");
12
13 D = 0.006 ; // [m]
14 e = 0.1;
15 Ti = 800; // [C]
16 Ta = 1000; // [C]
17 // Rate at which heat gained = net radiant heat,
      gives h*(Ta-800) = 1306.0; // [W/m<sup>2</sup>]
18
19 // Using trial and error method
20 // Trial 1
21 printf("Trial 1 \n");
\frac{22}{\text{Let Ta}} = 1000 \text{ degree C}
23 printf("Let Ta = 10000 \text{ C } \text{ n}");
24
25 \text{ Tm} = (Ta+Ti)/2;
26 // From table A.2
27 \text{ v} = 155.1*10^-6 \text{ ; } // \text{ [m}^2/\text{s]}
28 k = 0.0763 ; // [W/m K]
29 \text{ Pr} = 0.717 ;
30
31 Gr = 9.81*1/1173*(200*D^3)/(v^2);
```

```
32 \text{ Ra} = \text{Gr}*\text{Pr};
33
34 // From eqn 6.3.2
35 Nu = 0.36 + 0.518*(Ra^(1/4))/[1+(0.559/Pr)^(9/16)
      ]^{(4/9)};
36 h = Nu*k/D;
37 x = h*(Ta-Ti); // [W/m^2]
38 printf ("Value of h(Ta-800) = \%f W/m^2, which is much
        larger than the required value of 1306 \text{ W/m}^2 \text{ n}
       ,x);
39
40 // Trial 2
41 printf("\nTrial 2 \n");
42 // \text{ Let Ta} = 900
43 printf ("Let Ta = 900 \text{ C } \text{n}");
44 \text{ Ra2} = 6.42;
45 \text{ Nu2} = 0.9841 ;
46 \text{ h2} = 12.15;
47 	 x2 = h2*(900-800);
48 printf ("Value of h(Ta-800) = \%f W/m^2, which is a
       little less than the required value of 1306 W/m<sup>2</sup>
       n, x2);
49
50 // Trial 3
51 printf("\nTrial 3 \n");
52 // \text{ Let Ta} = 910
53 printf("Let Ta = 910 C \n");
54 \text{ Ra3} = 6.93;
55 \text{ Nu3} = 0.9963;
56 \text{ h3} = 12.33;
57 \times 3 = h3*(910-800);
58 printf ("Value of h(Ta-800) = \%f W/m^2 \setminus nThis value
      is little more than the required value of 1306 W/
      m^2 \setminus n, x3);
59 // Interpolation
60 T = 900 + (910-900)*(1306-x2)/(x3-x2);
61 printf("\nThe correct value of Ta obtained by
       interpolation is %f C",T);
```

Scilab code Exa 6.5 Rate of heat flow by natural convection

```
1 clear;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 6
6 // Heat Transfer by Natural Convection
8
9 // Example 6.5
10 // Page 269
11 printf ("Example 6.5, Page 269 n n");
12
13 T_p = 75; // Temperature of absorber plate , degree
       \mathbf{C}
14 T_c = 55; // Temperature of glass cover, degree C
15 L = 0.025 ; // [m]
16
17 \text{ H} = 2 \text{ ; } // \text{ [m]}
18 \ Y = 70 \ ; \ // degree
19
20 a = 19/180*\%pi; // [Radians]
21
22 r = H/L;
23
24 \text{ T_avg} = (T_p+T_c)/2+273 ; // [K]
25 // Properties at 65 degree C
26 \text{ k} = 0.0294 \text{ ; } // \text{ [W/m K]}
27 \text{ v} = 19.50*10^-6 \text{ ; } // \text{ [m}^2/\text{s]}
28 \text{ Pr} = 0.695;
29
30 Ra = 9.81*(1/T_avg)*(T_p-T_c)*(L^3)/(v^2)*Pr*cos(a);
31
```

```
32 // From eqn 6.4.3

33 Nu = 0.229*(Ra)^0.252;

34

35 h = Nu*k/L ; // [W/m^2 K]

36

37 Rate = h*2*1*(T_p-T_c); // [W]

38

39 printf("Heat transfer rate = %f W", Rate);
```

Scilab code Exa 6.6 Average Heat transfer coefficient

```
1 clear;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 6
6 // Heat Transfer by Natural Convection
8
9 // Example 6.6
10 // Page 270
11 printf("Example 6.6, Page 270 n \n");
12
13 T_{air} = 30; // [C]
14 D = 0.04 ; // [m]
15 T_s = 70; // surface temperature, [C]
16 \ V = 0.3 \ ; \ // \ [m/s]
17
18 Tm = (T_air + T_s)/2; // [C]
19 // Properties at Tm
20 v = 17.95*10^-6; // [m^2/s]
21 \text{ Pr} = 0.698 ;
22 k = 0.0283 ; // [W/m K]
23
24 Gr = 9.81*1/323*(T_s-T_air)*(D^3)/v^2;
```

```
25  Re = V*D/v ;
26  X = Gr/Re^2 ;
27  printf("Since Gr/Re^2 = %f is > 0.2, we have a combined convection situation. \n\n",X);
28
29  // From Eqn 5.9.8
30  Nu_forced = 0.3 + 0.62*(Re^0.5)*(Pr^(1/3))/[[1+(0.4/Pr)^(2/3)]^(1/4)]*[1+(Re/282000)^(5/8)]^(4/5);
31
32  // Substituting in Eqn 6.5.1
33  Nu = Nu_forced*[1+6.275*(X)^(7/4)]^(1/7);
34  h = Nu*(k/D);
35  printf("The Average heat transfer coefficient = %f W /m^2 K",h);
```

Chapter 7

Heat Exchangers

Scilab code Exa 7.1 Heat transfer coeffficient

```
1 clear;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 7
6 // Heat Exchangers
8
9 // Example 7.1
10 // Page 285
11 printf("Example 7.1, Page 285 n n");
12
13 h = 2000 ; // [W/m<sup>2</sup> K]
14 // From Table 7.1
15 U_f = 0.0001; // fouling factor, m^2K/W
16 h_f = 1/[1/h+U_f];
17 printf("Heat transfer coefficient including the
      effect of foulung = \%f W/m^2 K n, h_f);
18
19 p = (h-h_f)/h*100;
20 printf("Percentage reduction = \%f \n",p);
```

Scilab code Exa 7.2 Area of heat exchanger

```
1 clear;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 7
6 // Heat Exchangers
8
9 // Example 7.2
10 // Page 294
11 printf("Example 7.2, Page 294 n \n");
12
13 m = 1000 ; // [kg/h]
14 Thi = 50; // [C]
15 The = 40; // [C]
16 \text{ Tci} = 35 ; //
                 [C]
17 Tce = 40 ; //
                 [C]
18 U = 1000 ; // OHTC, W/m^2 K
19
20 // Using Eqn 7.5.25
21 q = m/3600*4174*(Thi-The) ; // [W]
22
23 delta_T = ((Thi-Tce)-(The-Tci))/log((Thi-Tce)/(The-
      Tci)); // [C]
24 printf("delta T = \%f \ n\ , delta_T);
25
26 // T1 = Th and T2 = Tc
27 R = (Thi-The)/(Tce-Tci);
28 S = (Tce-Tci)/(Thi-Tci);
29 // From fig 7.15,
30 F = 0.91 ;
31
```

```
32 printf("Taking T1 = Th and T2 = Tc \setminus n")
33 printf("R = \%f, S = \%f \n",R,S);
34 printf ("Hence, F = \%f \setminus n \setminus n", F);
35
36 // Alternatively, taking T1 = Tc and T2 = Th
37 R = (Tci-Tce)/(The-Thi);
38 S = (The-Thi)/(Tci-Thi);
39
40 // Again from fig 7.15,
41 F = 0.91;
42
43 printf ("Taking T1 = Tc and T2 = Th \n")
44 printf("R = \%f, S = \%f \setminus n", R,S);
45 printf("Hence, F = \%f \setminus n",F);
46
47 A = q/(U*F*delta_T);
48 printf("\nArea = \%f m^2",A);
```

Scilab code Exa 7.3 Mean temperature difference

```
1 clear;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 7
6 // Heat Exchangers
7
8
9 // Example 7.3
10 // Page 295
11 printf("Example 7.3, Page 295 \n \n");
12
13 // Because of change of phase , Thi = The
14 Thi = 100; // [C], Saturated steam
15 The = 100; // [C], Condensed steam
```

```
16  Tci = 30 ; // [C], Cooling water inlet
17  Tce = 70 ; // [C], cooling water outlet
18
19  R = (Thi-The)/(Tce-Tci);
20  S = (Tce-Tci)/(Thi-Tci);
21
22  // From fig 7.16
23  F = 1;
24
25  // For counter flow arrangement
26  Tm_counter = ((Thi-Tce)-(The-Tci))/log((Thi-Tce)/(The-Tci)); // [C]
27  // Therefore
28  Tm = F*Tm_counter;
29  printf("Mean Temperaature Difference = %f C", Tm)
```

Scilab code Exa 7.4.a Area of heat exchanger

```
1 clear;
2 clc;
3
4  // A Textbook on HEAT TRANSFER by S P SUKHATME
5  // Chapter 7
6  // Heat Exchangers
7
8
9  // Example 7.4(a)
10  // Page 302
11 printf("Example 7.4(a), Page 302 \n \n");
12
13  // (a)
14 printf("(a) \n");
15  // Using Mean Temperature Difference approach
16 m_hot = 10; // [kg/min]
17 m_cold = 25; // [kg/min]
```

```
18 hh = 1600; // [W/m<sup>2</sup> K], Heat transfer coefficient
      on hot side
19 hc = 1600; // [W/m<sup>2</sup> K], Heat transfer coefficient
      on cold side
20
21 Thi = 70; // [C]
22 Tci = 25 ; // [C]
23 The = 50; // [C]
24
25 // Heat Transfer Rate, q
26 	ext{ q = m_hot/60*4179*(Thi-The); // [W]}
27
28 // Heat gained by cold water = heat lost by the hot
      water
29 Tce = 25 + q*1/(m_cold/60*4174); // [C]
30
31 // Using equation 7.5.13
32 Tm = ((Thi-Tci)-(The-Tce))/log((Thi-Tci)/(The-Tce));
       // [C]
33 printf("Mean Temperature Difference = %f C \n", Tm);
34
35 U = 1/(1/hh + 1/hc); // [W/m^2 K]
36 A = q/(U*Tm); // Area, [m^2]
37 printf("Area of Heat Exchanger = \%f m<sup>2</sup> \n",A);
```

Scilab code Exa 7.4.b Exit temperature of hot and cold streams

```
1 clear;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 7
6 // Heat Exchangers
7
```

```
9 // Example 7.4(b)
10 // Page 302
11 printf("Example 7.4(b), Page 302 n \n");
12
13 // Using Mean Temperature Difference approach
14 m_hot = 10; // [kg/min]
15 m_cold = 25 ; // [kg/min]
16 hh = 1600; // [W/m<sup>2</sup> K], Heat transfer coefficient
      on hot side
17 hc = 1600; // [W/m<sup>2</sup> K], Heat transfer coefficient
      on cold side
18
19 Thi = 70; // [C]
20 Tci = 25 ; // [C]
21 The = 50; // [C]
22
23 // Heat Transfer Rate, q
24 q = m_hot/60*4179*(Thi-The); // [W]
25
26 // Heat gained by cold water = heat lost by the hot
      water
27 Tce = 25 + q*1/(m_cold/60*4174); // [C]
28
29 // Using equation 7.5.13
30 Tm = ((Thi-Tci)-(The-Tce))/log((Thi-Tci)/(The-Tce));
      // [C]
31 U = 1/(1/hh + 1/hc); // [W/m^2 K]
32 A = q/(U*Tm); // Area, [m^2]
33
34 \text{ m_hot} = 20 \text{ ; } // \text{ [kg/min]}
35 // Flow rate on hot side i.e. 'hh' is doubled
36 \text{ hh} = 1600*2^{0.8}; // [W/m^{2} K]
37 U = 1/(1/hh + 1/hc); // [W/m^2 K]
38 \text{ m_hC_ph} = \text{m_hot/}60*4179 ; // [W/K]
39 \text{ m_cC_pc} = \text{m_cold/}60*4174 ; // [W/K]
40 // Therefore
41 C = m_hC_ph/m_cC_pc;
42 \text{ NTU} = U*A/m_hC_ph;
```

```
43 printf("NTU = %f \n",NTU);
44
45 // From equation 7.6.8
46 e = [1 - exp(-(1+C)*NTU)]/(1+C);
47
48 // Therefore (Thi - The)/(Thi - Tci) = e , we get
49 The = Thi - e*(Thi - Tci); // [C]
50
51 // Equating the heat lost by water to heat gained by cold water , we get
52 Tce = Tci + [m_hC_ph*(Thi-The)]/m_cC_pc;
53 printf("Exit temperature of cold and hot stream are %f C and %f C respectively.",Tce,The);
```

Scilab code Exa 7.5 Exit Temperature

```
1 clear;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 7
6 // Heat Exchangers
8
9 // Example 7.5
10 // Page 304
11 printf("Example 7.5, Page 304 n \n");
12
13 mc = 2000 ; // [kg/h]
14 Tce = 40 ; // [C]
15 Tci = 15; // [C]
16 Thi = 80; // [C]
17 U = 50; // OHTC, [W/m^2] K
18 A = 10; // Area, [m^2]
19
```

```
20 // Using effective NTU method
21 // Assuming m_c * C_p = (m * C_p) s
22 \text{ NTU} = \text{U*A/(mc*1005/3600)};
23 e = (Tce-Tci)/(Thi-Tci);
24 // From fig 7.23, no value of C is found
      corresponding to the above values, hence
      assumption was wrong.
25 // So, m_h*C_ph must be equal to <math>(m*C_p)s,
      proceeding by trail and error method
26
27
28 printf("m_h(kg/h
                             NTU
                                       \mathbf{C}
      T_he(C)
                      T_he(C) (Heat Balance)");
29
30 \text{ mh} = \text{rand}(1:5);
31 \text{ NTU} = \text{rand}(1:5);
32 \text{ The = } rand(1:5);
33 \text{ The2} = rand(1:5);
34
35 \text{ mh}(1) = 200
36 NTU(1) = U*A/(mh(1)*1.161);
37 //Corresponding Values of C and e from fig 7.23
38 \ C = .416;
39 e = .78;
40 //From Equation 7.6.2 Page 297
41 The(1) = Thi - e*(Thi-Tci)
42 //From Heat Balance
43 The2(1) = Thi - mc*1005/3600*(Tce-Tci)/(mh(1))
      *1.161);
                             %.3 f
                                        %.3 f
                                                    \%.3 f
44 printf("\n
                   \%i
      %.2 f
                   \%.2 f", mh(1), NTU(1), C, e, The(1), The2(1))
45
46 \text{ mh}(2) = 250
47 \text{ NTU}(2) = U*A/(mh(2)*1.161);
48 // Corresponding Values of C and e from fig 7.23
49 \ C = .520;
50 e = .69;
```

```
51 //From Equation 7.6.2 Page 297
52 The(2) = Thi - e*(Thi-Tci)
53 //From Heat Balance
54 \text{ The2}(2) = \text{Thi} - \text{mc}*1005/3600*(Tce-Tci)/(mh(2))
       *1.161);
55 printf("\n
                    \%\mathrm{i}
                              \%.3 f
                                           \%.3 f
      \%.2 {\rm f}
                  \%.2 \, f", mh(2), NTU(2), C, e, The(2), The2(2))
       ;
56
57 \text{ mh}(3) = 300
58 \text{ NTU}(3) = \text{U*A/(mh(3)*1.161)};
59 //Corresponding Values of C and e from fig 7.23
60 \ C = .624;
61 e = .625;
62 //From Equation 7.6.2 Page 297
63 The(3) = Thi - e*(Thi-Tci)
64 //From Heat Balance
65 \text{ The2}(3) = \text{Thi} - \text{mc}*1005/3600*(Tce-Tci)/(mh(3))
       *1.161);
66 printf("\n
                      \%i
                              %.3 f
                                           \%.3 f
                                                       %.3 f
      \%.2 {\rm f}
                    \%.2 \, \mathrm{f} ", mh(3), NTU(3), C, e, The(3), The2(3))
       ;
67
68 \text{ mh}(4) = 350
69 NTU(4) = U*A/(mh(4)*1.161);
70 //Corresponding Values of C and e from fig 7.23
71 C = .728;
72 e = .57;
73 //From Equation 7.6.2 Page 297
74 \text{ The}(4) = \text{Thi} - e*(\text{Thi}-\text{Tci})
75 //From Heat Balance
76 The2(4) = Thi - mc*1005/3600*(Tce-Tci)/(mh(4))
       *1.161);
77 printf("\n\n %i
                              %.3 f
                                           \%.3 f
                                                        %.3 f
                    \%.2 f", mh(4), NTU(4), C, e, The(4), The2(4))
      \%.2 {\rm f}
       ;
78
79 \text{ mh}(5) = 400
```

```
80 NTU(5) = U*A/(mh(5)*1.161);
81 //Corresponding Values of C and e from fig 7.23
82 C = .832;
83 e = .51;
84 //From Equation 7.6.2 Page 297
85 The(5) = Thi - e*(Thi-Tci)
86 //From Heat Balance
87 The2(5) = Thi - mc*1005/3600*(Tce-Tci)/(mh(5))
      *1.161);
88 printf("\nn
                   \%\mathrm{i}
                           %.3 f
                                      %.3 f
                                                 %.3 f
                  \%.2 f", mh(5), NTU(5), C, e, The(5), The2(5))
      \%.2 {\rm f}
89
90 clf();
91 plot(mh, The, mh, The2, [295 295 200], [0 39.2 39.2])
92 xtitle('The vs mh', 'mh (kg/hr)', 'The (C)');
93 printf("\n From the plot, value of mh = 295 kg/hr
      and correspondingly The = 39.2 \, \text{C}")
```

Chapter 8

Condensation and boiling

Scilab code Exa 8.1 Average Heat Transfer Coefficient

```
1 clear;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 8
6 // Condensation and Boiling
8
9 // Example 8.1
10 // Page 318
11 printf("Example 8.1, Page 318 n \);
12 Ts = 80; // [C]
13 Tw = 70; // [C]
14 L = 1; // [m]
15 g = 9.8; // [m/s<sup>2</sup>]
16
17 // Assuming condensate film is laminar and Re < 30
18 	 Tm = (Ts + Tw)/2 	 ;
19 // From table A.1
20 rho = 978.8; // [kg/m^3]
21 k = 0.672 ; // [W/m K]
```

```
22 u = 381 *10^-6 ; // [kg/m s]
23 v = u/rho;
24 // At 80 C,
25 lambda = 2309 ; // [kJ/kg]
26 // Substituting in eqn 8.3.9, we get
27 h = 0.943*[(lambda*1000*(rho^2)*g*(k^3))/((Ts-Tw)*u*
     L)]^(1/4); // [W/m^2 K]
28
29 rate = h*L*(Ts-Tw)/(lambda*1000); // [kg/m s]
30 \text{ Re} = 4*rate/u;
31 printf ("Assuming condensate film is laminar and Re <
       30 \ n");
32 printf("h = \%f W/m<sup>2</sup> K\n",h);
33 printf("Re_L = \%f \n", Re);
34 printf ("Initial assumption was wrong, Now
      considering the effect of ripples, we getn");
35
36 // Substituting h = Re*(lambda*1000)*u/(4*L*(Ts-Tw))
      , in eqn 8.3.12
37 Re = [[[4*L*(Ts-Tw)*k/(lambda*1000*u)*(g/(v^2))]
      ^(1/3)]+5.2]/1.08]^(1/1.22);
38 // From eqn 8.3.12
39 h = [Re/(1.08*(Re^1.22)-5.2)]*k*((g/v^2)^(1/3)); //
      [W/m^2 K]
40 m = h*L*10/(lambda*1000); // rate of condensation ,
     [kg/m s]
41
42 printf ("Re = \%f \n", Re);
43 printf("Heat Transfer Cofficient = %f W/m^2 K \n",h)
44 printf("Rate of condensation = \%f kg/m s",m);
```

Scilab code Exa 8.2 Average heat transfer coefficient and film Reynolds number

```
1 clear;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 8
6 // Condensation and Boiling
7
8
9 // Example 8.2
10 // Page 321
11 printf ("Example 8.2, Page 321 n n);
12
13 Ts = 262; // [K]
14 D = 0.022 ; // [m]
15 Tw = 258; // [K]
16
17 Tm = (Ts+Tw)/2;
18 // Properties at Tm
19 rho = 1324 ; // [kg/m^3]
20 k = 0.1008 ; // [W/m K]
21 v = 1.90*10^-7 // [m^2/s];
22 lambda = 215.1*10^3; // [J/kg]
23 g = 9.81 ; // [m/s<sup>2</sup>]
24 u = v*rho ; // Viscosity
25
26 // From eqn 8.4.1
27 h = 0.725*[lambda*(rho^2)*g*(k^3)/((Ts-Tw)*u*D)
      ]^{(1/4)};
28
29 rate = h*\%pi*D*(Ts-Tw) /lambda ; // [kg/s m]
30 \text{ Re} = 4*\text{rate/u};
31
32 printf("Heat transfer coefficient = \%f W/m<sup>2</sup> K\n",h)
33 printf ("Condensation rate per unit length = \%f kg/s
     m \setminus n", rate);
34 printf("Film Reynolds number = \%f \n", Re);
```

Scilab code Exa 8.3 Length of the tube

```
1 clear;
2 clc;
3
4 // A TeTwtbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 8
6 // Condensation and Boiling
7
9 // ETwample 8.3
10 // Page 322
11 printf("Example 8.3, Page 322 n n);
12
13 m = 25/60 ; // [kg/sec]
14 ID = 0.025; // [m]
15 OD = 0.029 ; // [m]
16 Tci = 30; // [C]
17 Tce = 70 ; // [C]
18 g = 9.8; // [m/s<sup>2</sup>]
19
20 \text{ Ts} = 100 \text{ ; } // \text{ [C]}
21 // Assuming 5.3.2 is valid, properties at 50 C
22 // Properties at Tm
23 rho = 988.1; // [kg/m^3]
24 \text{ k} = 0.648 \text{ ; } // \text{ [W/m K]}
25 \quad v = 0.556*10^-6 / [m^2/s];
26 \text{ Pr} = 3.54 ;
27 Re = 4*m/(\%pi*ID*rho*v);
28 // From eqn 4.6.4 a
29 f = 0.005635;
30 // \text{From eqn } 5.3.2
31 \text{ Nu} = 198.39 ;
32 h = Nu*k/ID;
```

```
33
34 // Assuming average wall temperature = 90 C
35 \text{ Tw} = 90 \text{ ; } // \text{ [C]}
36 \text{ Tm} = (Tw+Ts)/2;
37 // Properties at Tm
38 // Properties at Tm
39 rho = 961.9; // [kg/m^3]
40 \text{ k} = 0.682 \text{ ; } // \text{ [W/m K]}
41 u = 298.6*10^-6; // [kg/m s]
42 lambda = 2257*10^3; // [J/kg]
43
44 h = 0.725*[lambda*(rho^2)*g*(k^3)/((Ts-Tw)*u*OD)
      ]^{(1/4)};
45 // Equating the heat flow from the condensing steam
      to the tube wall, to the heat flow from the tube
      wall to the flowing water.
46 // Solving the simplified equation
47 function[f] =temp(Tw)
       f = (100 - Tw)^{(3/4)} - 8.3096 / [log((Tw - Tci) / (Tw - Tce))]
48
          ];
       funcprot(0);
49
50 endfunction
51
52 \quad T = fsolve(Tw, temp);
53 printf("Temperature obtained from trial and error =
      %f C \setminus n", T);
54
55 // Therefore
56 hc = 21338.77/(100-T)^(1/4); // [W/m^2 K]
57 printf("h_c = \%f W/m^2 K n", hc);
58
59 // Now, equating the heat flowing from the
      condensing steam to the tube wall to the heat
      gained by the water, we have
60 function[g] = lngth(1)
       g=hc*(\%pi*OD*1)*(100-T)-m*4174*(Tce-Tci);
61
62
       funcprot(0);
63 endfunction
```

Scilab code Exa 8.4 boiling regions

```
1 clear;
2 clc;
4 // Properties at (Tw+Ts)/2 = 100.5 degree celsius
5 \text{ deltaT1} = 1;
                                      //in degree celsius
6 p1 = 7.55e-4;
                               //[K^{(-1)}] p1 is coefficient
      of cubical expansion
7 \text{ v1} = 0.294 \text{e} - 6;
                                       //[m<sup>2</sup>/sec] viscosity
       at 100.5 degree celsius
                                     // [W/m-k] thermal
8 k1 = 0.683;
      conductivity
                                      //Prandtl number
9 \text{ Pr1} = 1.74;
10 g = 9.81;
                                      //acceleration due to
      gravity
                                      //diameter in meters
11 L = 0.14e-2;
12 // Properties at (Tw+Ts)/2 = 102.5
                                      //in degree celsius
13 \text{ deltaT2} = 5;
14 p2 = 7.66e-4;
                                 //[K^{(-1)}] p1 is coefficient
       of cubical expansion
15 \text{ v2} = 0.289e-6;
                                  //[m^2/sec] viscosity at
      102.5 degree celsius
16 \text{ k2} = 0.684;
                                    //[W/m-k] thermal
      conductivity
17 \text{ Pr2} = 1.71;
                                     //Prandtl number
18 // Properties at (Tw+Ts)/2 = 105
19 \text{ deltaT3} = 10;
                                       //in degree celsius
20 p3 = 7.80e-4;
                                 //[K^{\hat{}}(-1)] p1 is coefficient
```

```
of cubical expansion
21 \text{ v3} = 0.284e-6;
                                 //[m^2/sec] viscosity at
      105 degree celsius
                                    //[W/m-k]thermal
22 k3 = 0.684;
      conductivity
23 \text{ Pr3} = 1.68;
                                     //Prandtl number
24
25 function[Ra]=Rayleigh_no(p,deltaT,v,Pr)
         Ra = [(p*g*deltaT*L^3)/(v^2)]*Pr;
26
27
         funcprot(0);
28 endfunction
29
30 function[q] = flux(k,deltaT,Rai,v)
        q=(k/L)*(deltaT)*{0.36+(0.518*Rai^(1/4))}
31
           /[1+(0.559/v)^(9/16)]^(4/9);
32
        funcprot(0);
33 endfunction
34
35 Ra = Rayleigh_no(p1,deltaT1,v1,Pr1);
36 q1 = flux(k1,deltaT1,Ra,Pr1);
37 printf("\n q/A = \%.1 f W/m^2 at (Tw-Ts)=1",q1);
38 Ra = Rayleigh_no(p2,deltaT2,v2,Pr2);
39 	 q2 = flux(k2, deltaT2, Ra, Pr2);
40 printf("\n q/A = \%.1 f W/m^2 at (Tw-Ts)=5",q2);
41 Ra = Rayleigh_no(p3,deltaT3,v3,Pr3);
42 	 q3 = flux(k3, deltaT3, Ra, Pr3);
43 printf("\n q/A = \%.1 \text{ f W/m}^2 \text{ at (Tw-Ts)} = 10",q3);
44
45 //At 100 degree celsius
46 \text{ Cpl} = 4.220;
                             //[kJ/kg]
47 \text{ lamda} = 2257;
                            //[kJ/kg]
                            //viscosity is in kg/m-sec
48 \text{ ul} = 282.4e-6;
49 \text{ sigma} = 589e-4;
                            //Surface tension is in N/m
                            //density in kg/m<sup>3</sup>
50 pl = 958.4;
                            //density of vapour in kg/m<sup>3</sup>
51 \text{ pv} = 0.598;
52 deltap = pl-pv;
53 \text{ Prl} = 1.75;
                            //Prandtl no. of liquid
54 \text{ Ksf} = 0.013;
```

```
55 function [q1] = heat_flux(deltaT)
       q1=141.32*deltaT^3;
56
57
        funcprot(0);
58 endfunction
59
60 printf("\n q/A at deltaT = 5 degree celsius = \%.1 \,\mathrm{f} W
      /m^2", heat_flux(5));
61 printf("\nq/A at deltaT = 10 degree celsius = %.1 f W
      /m^2", heat_flux(10));
62 printf("\n q/A at deltaT =20 degree celsius = %.1 f W
      /\text{m}^2", heat_flux(20));
63 //qi = [heat_flux(5), heat_flux(10), heat_flux(20)];
64 q = [q1 q2 q3];
65 i = 1;
66 while i<=10
67
       T(i)=i;
       ql(i) = heat_flux(i);
68
69
       i=i+1;
70 end
71 plot2d([1 5 10],q);
72 plot2d(T,q1);
73 xtitle ("Boiling curve", "(Tw - Ts) degree celsius", "
      Heat flux, (q/A)W/m^2");
74 L1 = (L/2)*[g*(pl-pv)/sigma]^(1/2);
75 printf("\n Peak heat flux L = \%.3 f",L1);
76 f_L = 0.89 + 2.27 * exp(-3.44 * L1^(0.5));
77 printf("\n f(l) = \%.4 \, f",f_L);
78 q2 = f_L*{(\%pi/24)*lamda*10^(3)*pv^(0.5)*[sigma*g*(
      pl-pv)]^(0.25)};
79 printf("\n q/A = \%.3 \, \text{e W/m}^2", q2);
80
81 Tn = poly([0], 'Tn');
82 \text{ Tn1} = \text{roots}(141.32*\text{Tn}^3 - q2);
83 printf("\n Tw-Ts = \%.1 f degree celsius", Tn1(3));
84
85
86
87 printf("\n Minimum heat flux");
```

```
88 q3 = 0.09*lamda*10^3*pv*[sigma*g*(pl-pv)/(pl+pv)^(2)
       ]^{(0.25)};
 89 printf("\n q/A = \%d W/m<sup>2</sup>",q3);
 90 printf("\n Stable film boiling");
91 \text{ Ts1} = 140;
                           //surface temperature in degree
       celsius
92 \text{ Ts2} = 200;
                           //surface temperature in degree
       celsius
93 Ts3 = 600;
                           //surface temperature in degree
       celsius
94 \text{ Twm1} = (140+100)/2; //Mean film temperature}
 95 //properties of steam at 120 degree celsius and
       1.013 bar
96 kv = 0.02558; //thermal conductivity in W/mK
                         //vapor density in kg/m^3
97 \text{ pv1} = 0.5654;
98 uv=13.185*10^{\circ}(-6); //viscosity of vapour in kg/m
       sec
99 lamda1 = (2716.1-419.1)*10^{(3)}; //Latent heat of
       fusion in J/kg
100 hc = 0.62*[(kv^3)*pv*(pl-pv)*g*lamda1/(L*uv)
       *(140-100))]^(0.25);
101 printf("\n hc = \%.2 \, f \, W/m^2",hc);
102 grad = 5.67*10^{(-8)}*(413^4 - 373^4)/[(1/0.9)+1-1];
103 printf("\n q/A due to radiation = \%.2 \text{ f W/m}^2", qrad);
104 \text{ hr} = qrad/(413-373);
105 printf("\n hr = \%.2 \text{ f W/m}^2 \text{ K ",hr});
106
107 printf("\n Since hr<hc ");
108 printf("\n The total heat transfer coefficient");
109 h = hc + 0.75*hr;
110 printf (" h = \%.2 \text{ f W/m}^2 \text{ K",h});
111 printf("\n Total heat flux = \%.3 \text{ f W/m}^2 \text{ K}", h
       *(140-100));
112
113 hc_{200} = 0.62*[(kv^3)*pv*(pl-pv)*g*lamda1/(L*uv)]
       *(200-100))]^(0.25);
114 \text{ qrad1} = 5.67*10^{(-8)}*(473^4 - 373^4)/[(1/0.9)+1-1];
115 \text{ hr}_200 = \text{qrad1}/(200-100);
```

Scilab code Exa 8.5 Initial heat transfer rate

```
1 clear;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 8
6 // Condensation and Boiling
7
8
9 // Example 8.5
10 // Page 337
11 printf ("Example 8.5, Page 337 n \n");
12
13 D = 0.02; // [m]
14 \ 1 = 0.15 \ ; \ // \ [m]
15 T = 500+273 ; // [K]
16 \text{ Tc} = -196+273 \; ; \; // \; [K]
17 e = 0.4;
18 s = 5.670*10^-8;
```

```
19 // Film boiling will occur, hence eqn 8.7.9 is
      applicable
20 \text{ Tm} = (T+Tc)/2;
21
22 // Properties
23 k = 0.0349 ; // [W/m K]
24 rho = 0.80 ; // [kg/m<sup>3</sup>]
25 u = 23*10^-6 ; // [kg/m s]
26
27 Cp_avg = 1.048; // [kJ/kg J]
28 rho_liq = 800 ; // [kg/m^3]
29 latent = 201*10^3; // [J/kg]
30
31 lambda = [latent + Cp_avg*(Tm-Tc)*1000]; // [J/kg]
32 \text{ h_c} = 0.62*[((k^3)*rho*799.2*9.81*lambda)/(D*u*(T-Tc)
      ))]^(1/4); // [W/m^2 K]
33
34 // Taking the emissivity of liquid surface to be
      unity and using equation 3.9.1, the exchange of
      radiant heat flux
35 flux = s*(T^4-Tc^4)/(1/e+1/1-1); // [W/m^2]
36 \text{ h_r} = \text{flux/(T-Tc)};
37
38 // Since h_r < h_c, total heat transfer coefficient
      is determined from eqn 8.7.11
39 h = h_c+3/4*h_r; // [W/m^2 K]
40
41 flux_i = h*(T-Tc);
42 Rate = flux_i*%pi*D*l; // [W]
43
44 printf("Initial heat flux = \%f W/m<sup>2</sup> \n",flux_i);
45 printf("Initial heat transfer rate = \%f W", Rate);
```

Chapter 9

Mass Transfer

Scilab code Exa 9.1 Composition on molar basis

```
1 clear;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 9
6 // Mass Transfer
8
9 // Example 9.1
10 // Page 349
11 printf("Example 9.1, Page 349 n \n");
12
13 \text{ w_a} = 0.76 ;
14 \text{ w_b} = 0.24;
15 m_a = 28; // [kg/kg mole]
16 m_b = 32 ; // [kg/kg \text{ mole}]
17
18 x_a = (w_a/m_a)/(w_a/m_a+w_b/m_b);
19 x_b = (w_b/m_b)/(w_a/m_a+w_b/m_b);
20 printf("The molar fractions are given by \n");
21 printf("x_a = %f n", x_a);
```

```
22 printf("x_b = \%f", x_b);
```

Scilab code Exa 9.2 Diffusion coefficient of napthalene

```
1 clear;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 9
6 // Mass Transfer
7
8
9 // Example 9.2
10 // Page 350
11 printf("Example 9.2, Page 350 n \n");
12
13 // From Table 9.1 at 1 atm and 25 C
14 Dab = 0.62*10^-5; // [m<sup>2</sup>/s]
15 // Therefore at 2 atm and 50 C
16 \text{ Dab2} = \text{Dab}*(1/2)*(323/298)^1.5;
17 printf("Dab at 2 atm & 50 C = \%e \text{ m}^2/\text{s}", Dab2);
```

Scilab code Exa 9.3.a Rate of hydrogen diffusion

```
1 clear;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 9
6 // Mass Transfer
7
8
9 // Example 9.3(a)
```

```
10 // Page 352
11 printf("Example 9.3(a), Page 352 n \n");
12
13 t = 0.04; // [m]
14 A = 2; // [m<sup>2</sup>]
15 \text{ rho1} = 0.10;
16 \text{ rho2} = 0.01;
17 D_400 = 1.6*10^-11 ; // at 400K [m^2/s]
18
19 // Mass Diffusion in solid solution, assuming Ficks
      law is valid & steady state and one dimensional
      diffusion
20
21 // Subtituting the values in eqn 9.3.3 , At 400~\mathrm{K}
22
23 \text{ m}_400 = A*D_400*(\text{rho}1-\text{rho}2)/t; // [kg/s]
24 printf ("Rate of diffusion of Hydrogen at 400 K = \%e
      kg/s \ n, m_400);
```

Scilab code Exa 9.3.b Rate of hydrogen diffusion

```
1 clear;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 9
6 // Mass Transfer
7
8
9 // Example 9.3(b)
10 // Page 352
11 printf("Example 9.3(b), Page 352 \n \n");
12
13 t = 0.04; // [m]
14 A = 2; // [m^2]
```

Scilab code Exa 9.4.a Rate of loss of ammonia

```
1 clear;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 9
6 // Mass Transfer
7
8
9 // Example 9.4(a)
10 // Page 356
11 printf("Example 9.4(a), Page 356 n n");
12
13 L = 1; // [m]
14 D = 0.005 ; // [m]
15 Pa1 = 1; // [atm]
16 \text{ Pa2} = 0;
17 R = 8314 ;
18 T = 298; // [K]
```

```
19
20  // Assuming Equimolal counter diffusion
21  // From Table 9.1
22  Dab = 2.80*10^-5 ;  // [m^2/s]
23  // Substituing in eqn 9.4.12
24  Na = -[Dab/(R*T)*(Pa2-Pa1)*(1.014*10^5)/L]*(%pi*(D /2)^2);
25  R_NH3 = Na*17 ;  // [kg/s]
26
27  printf("Na = -Nb = %e (kg mole)/m^2 s\n",Na);
28  printf("Rate at which ammonia is lost through the tube = %e kg/s \n",R_NH3);
```

Scilab code Exa 9.4.b Rate at which air enters the tank

```
1 clear;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 9
6 // Mass Transfer
8
9 // Example 9.4(b)
10 // Page 356
11 printf("Example 9.4(b), Page 356 n n");
12
13 L = 1; // [m]
14 D = 0.005 ; // [m]
15 Pa1 = 1; // [atm]
16 \text{ Pa2} = 0;
17 R = 8314 ;
18 T = 298 ; // [K]
19
20 // Since the tank is large and the pressure and
```

```
temperature at the two ends of the same tube are
same, we are assuming Equimolal counter diffusion

// From Table 9.1

bab = 2.80*10^-5; // [m^2/s]

// Substituing in eqn 9.4.12

Na = -[Dab/(R*T)*(Pa2-Pa1)*(1.014*10^5)/L]*(%pi*(D/2)^2);

// Since equimolal counter diffusion is taking place

Nb = - Na;

// therefore rate at which air enters the tank

R_air = abs(Nb)*29; // [kg/s]

printf("Rate at which air enters the tank = %e kg/s"
,R_air);
```

Scilab code Exa 9.5 Rate of evaporation

```
1 clear;
2 clc;
3
4  // A Textbook on HEAT TRANSFER by S P SUKHATME
5  // Chapter 9
6  // Mass Transfer
7
8
9  // Example 9.5
10  // Page 359
11 printf("Example 9.5, Page 359 \n \n");
12
13  // Evaporation of water, one dimensional
14 T_w = 20+273; // [K]
15 D = 0.04; // [m]
16 h = 0.20; // [m]
17 h_w = 0.03; // [m]
```

```
18
19 P = 1.014*10^5; // [Pa]
20 R = 8314 ; // [J/kg mole K]
21 P_{sat} = 0.02339 ; // [bar]
22 \text{ x\_a1} = P\_\text{sat}/1.014; // mole fraction at liq-vap
      interface
23 x_a2 = 0; // mole fraction at open top
24 c = P/(R*T_w);
25 // From Table 9.2
26 Dab = 2.422*10^-5; // [m^2/s]
27
28 // Substituting above values in eqn 9.4.18
29 flux = 0.041626*Dab/0.17*log((1-0)/(1-x_a1)); // [kg]
       mole/m^2 s
30 rate = flux*18*(\%pi/4)*(D^2);
31
32 printf ("Rate of evaporation of water = \%e kg/s", rate
      );
```

Scilab code Exa 9.6 Rate of evaporation

```
1 clear;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 9
6 // Mass Transfer
7
8
9 // Example 9.6
10 // Page 364
11 printf("Example 9.6, Page 364 \n \n");
12
13 l = 1; // length, [m]
14 w = 0.25; // width, [m]
```

```
15 T = 293; // Temperature, [K]
16 rho_infinity = 0; // [kg/m^3]
17 R = 8314; // [J/ kg K]
18
19 // From Table A.2
20 v = 15.06*10^-6; // [m^2/s]
21 // From Table 9.2
22 Dab = 2.4224*10^{-5}; // [m<sup>2</sup>/s]
23 \text{ Re} = 2.5/v;
24 \text{ Sc} = v/Dab;
25 // Since Re > 3*10^5, we may assume laminar boundary
       layer
26 \text{ Sh} = 0.664*Sc^{(1/3)}*Re^{(1/2)}; // Sherwood number
27 h = Sh*Dab;
28
29 p_aw = 2339; // Saturation pressure of water at 20
      degree C. [N/m<sup>2</sup>]
30 rho_aw = p_aw/(R/18*T); // [kg/m^3]
31 rho_a_inf = 0; // since air in the free stream is
      dry
32 \text{ m_h} = h*(2*l*w)*(rho_aw-rho_infinity);
33 printf("Rate of evaporation from plate = \%e \text{ kg/s}",
      m_h);
```

Scilab code Exa 9.7.a Mass transfer coefficient Colburn anology

```
1 clear;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 9
6 // Mass Transfer
7
8
9 // Example 9.7(a)
```

```
10 // Page 366
11 printf("Example 9.7(a), Page 366 \n \n");
12
13 D = 0.04 ; // [m]
14 V = 1.9 ; // [m/s]
15
16 // (a) Colburn anology and Gnielinski equation
17 // Properties of air at 27 degree C
18 v = 15.718*10^-6; // [m^2/s]
19 rho = 1.177; // [kg/m^3]
20 \text{ Pr} = 0.7015 ;
21 Cp = 1005 ; // [J/kg K]
22 k = 0.02646 ; // [W/m K]
23 // From Table 9.2
24 Dab = 2.54 * 10^-5 ; // [m^2/s]
25 Sc = v/Dab;
26 Re = V*D/v;
27 // The flow is turbulent and eqn 9.6.5 may be
      applied
28 // let r = h/h_m
29 r = rho*Cp*((Sc/Pr)^(2/3));
30 // From Blasius equation 4.6.4a
31 f = 0.079*Re^{(-0.25)};
32 // Substituting this value into Gnielinski equation
      5.3.2
33 Nu = [(f/2)*(Re-1000)*Pr]/[1+12.7*((f/2)^(1/2))*((Pr)^2)
      (2/3)-1);
34 h = Nu*k/D;
35 \text{ h_m} = \text{h/r}; // [\text{m/s}]
36
37 printf ("h_m using Colburn anology and Gnielinski
      equation = \%f \n", h_m);
```

Scilab code Exa 9.7.b Mass transfer coefficient Gnielinski equation

```
1 clear;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 9
6 // Mass Transfer
7
8
9 // Example 9.7(b)
10 // Page 366
11 printf("Example 9.7(b), Page 366 \n \n");
12
13 D = 0.04; // [m]
14 V = 1.9 ; // [m/s]
15
16 // (b) mess transfer correlation equivalent to the
      Gleilinski equation
17
18 // Properties of air at 27 degree C
19 v = 15.718*10^-6; // [m^2/s]
20 rho = 1.177; // [kg/m^3]
21 \text{ Pr} = 0.7015;
22 Cp = 1005 ; // [J/kg K]
23 k = 0.02646 ; // [W/m K]
24 // From Table 9.2
25 Dab = 2.54 * 10^-5 ; // [m^2/s]
26 \text{ Sc} = \text{v/Dab};
27 Re = V*D/v;
28
29 // From Blasius equation 4.6.4 a
30 f = 0.079*Re^{(-0.25)};
31
32 // Substituting in eqn 9.6.7
33 Sh_D = [(f/2)*(Re-1000)*Sc]/[1+12.7*((f/2))*((Sc)
      ^(2/3))-1)];
34 h_m1 = Sh_D*Dab/D;
35
36 printf("(b) h_m = \%f \setminus n", h_m1);
```

Scilab code Exa 9.7.c To show mass flux of water vapour is small

```
1 clear;
2 clc;
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 9
6 // Mass Transfer
8
9 // Example 9.7(c)
10 // Page 366
11 printf("Example 9.7(c), Page 366 n \n");
12
13 D = 0.04; // [m]
14 V = 1.9 ; // [m/s]
15
16 // (c) To show that mass flux of water is very small
       compared to the mass flux of air flowing in the
      pipe
17 // Properties of air at 27 degree C
18 v = 15.718*10^-6; // [m<sup>2</sup>/s]
19 rho = 1.177; // [kg/m^3]
20 \text{ Pr} = 0.7015 ;
21 Cp = 1005 ; // [J/kg K]
22 k = 0.02646 ; // [W/m K]
23 // From Table 9.2
24 Dab = 2.54 * 10^-5 ; // [m^2/s]
25 \text{ Sc} = \text{v/Dab};
26 Re = V*D/v;
27 // The flow is turbulent and eqn 9.6.5 may be
      applied
28 // let r = h/h_m
29 r = rho*Cp*((Sc/Pr)^(2/3));
```

```
30 // From Blasius equation 4.6.4 a
31 f = 0.079*Re^{(-0.25)};
32
33 // From steam table
34 rho_aw = 1/38.77; // [kg/m^3]
35 // let X = (m_a/A)_max
36 X = f*rho_aw; // [kg/m^2 s]
37
38 // let Y = mass flux of air in pipe = (m/A)
39 Y = rho*V; // [kg/m^2 s]
40 \text{ ratio} = X/Y;
41 percent = ratio * 100;
42
43 printf("(c) (m_a/A)_max/(m_a/A) = \%f percent Thus,
      mass flux of water is very small compared to the
      mass flux of air flowing in the pipe. ", percent )
```

Scilab code Exa 9.8 Mass fraction

```
1 clear;
2 clc;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // Chapter 9
6 // Mass Transfer
7
8
9 // Example 9.8
10 // Page 369
11 printf("Example 9.8, Page 369 \n \n");
12
13 V = 0.5; // [m/s]
14 T_h = 30; // [C]
15 T_c = 26; // [C]
```

```
16 \text{ Tm} = (T_h+T_c)/2;
17 // From table A.2
18 rho = 1.173 ; // [kg/m^3]
19 Cp = 1005 ; // [J/kg K]
20 \text{ k} = 0.02654 \text{ ; } // \text{ [W/m K]}
21
22 alpha = k/(rho*Cp); // [m^2/s]
23
24 // From Table 9.2 at 301 K
25 Dab = 2.5584*10^{-5}; // [m<sup>2</sup>/s]
26 \text{ lambda} = 2439.2*10^3 ; // [J/kg]
27
28 // Substituting in equation 9.7.5
29 // let difference = rho_aw-rho_a infinity
30 difference = rho*Cp*((alpha/Dab)^(2/3))*(T_h-T_c)/
      lambda;
31
32 // From steam table
33 \text{ Psat} = 3363;
34 \text{ rho\_aw} = Psat/(8314/18*299);
35 rho_inf = rho_aw - difference;
36 x = rho_inf/rho; // mole fraction of water vapour in
       air stream
37
38 PP = rho_inf *8314/18 *303; // Partial pressure of
      water vapour in air stream
39 // From steam table partial pressure of water vapour
       at 30 C
40 PP_30 = 4246 ; // [N/m^2]
41
42 \text{ rel_H} = PP/PP_30;
43 \text{ percent} = rel_H*100;
44
45 printf ("Relative humidity = %f i.e. %f percent",
      rel_H, percent);
```