Tipping Point Sensitivity Analyses

2021-09-01 (updated: 2023-08-22)

Lucy D'Agostino McGowan
Wake Forest University

Recall: Propensity scores

Rosenbaum and Rubin showed in observational studies, conditioning on **propensity scores** can lead to unbiased estimates of the exposure effect

- 1 There are no unmeasured confounders
- Every subject has a nonzero probability of receiving either exposure

Quantifying Unmeasured Confounding

EPIDEMIOLOGIC METHODS (P P HOWARDS, SECTION EDITOR)

Sensitivity Analyses for Unmeasured Confounders

Lucy D'Agostino McGowan¹

Accepted: 15 September 2022 / Published online: 8 November 2022

tipr: An R package for sensitivity analyses for unmeasured confounders

Lucy D'Agostino McGowan © 1¶

1 Wake Forest University, USA ¶ Corresponding author

DOI: 10.21105/joss.04495

Quantifying Unmeasured Confounding

- The exposure-outcome
- 2 The exposure-unmeasured
- 3 The unmeasured confounderoutcome effect

Quantifying Unmeasured Confounding

Table 4 Sensitivity analysis equations and R code

Outcome	Effect of Interest	Sensitivity analysis equation	R function from tipr package	
Unmeasured con association with		distributed with a difference in means between exposu	re groups of d , unit variance, and	
Continuous	Coefficient	$\beta_{Y \sim X U+Z} = \beta_{Y \sim X Z} - \beta_{Y \sim U X+Z} \times d$	adjust_coef()	
Binary ^a	Coefficient	$\beta_{Y \sim X U+Z} = \beta_{Y \sim X Z} - \beta_{Y \sim U X+Z} \times d$	adjust_coef()	
Time to event	Coefficient	$\beta_{Y \sim X U+Z} \approx \beta_{Y \sim X Z} - \beta_{Y \sim U X+Z} \times d$	adjust_coef()	
Binary	Risk ratio	$RR_{Y \sim X U+Z} = \frac{\kappa \kappa_{Y \sim x Z}}{\kappa R_{Y \sim U X+Z}^d}$	adjust_rr()	
Binary	Odds ratio	$OR_{Y \sim X U+Z} pprox rac{OR_{Y \sim X Z}}{OR_{Y \sim U X+Z}^d}$	adjust_or()	
Time to event	Hazard ratio	$HR_{Y\sim X U+\mathbf{Z}} \approx \frac{HR_{Y\sim X Z}}{HRR_{Y\sim U X+\mathbf{Z}}}$	adjust_hr()	
Unmeasured con of $\beta_{Y \sim U X+Z}$	founder, U , is binary wi	th prevalence in the unexposed group of p_0 in the expos	sed group of p_1 , and association with Y	
Continuous	Coefficient	$\beta_{Y \sim X U+Z} = \beta_{Y \sim X Z} - \beta_{Y \sim U X+Z} \times (p_1 - p_0)$	adjust_coef_with_binary(
Binary ^a	Coefficient	$\beta_{Y \sim X \mid U + \mathbf{Z}} = \beta_{Y \sim X \mid \mathbf{Z}} - \log \frac{e^{\beta_{Y \sim U \mid X - \mathbf{Z}}} p_1 + (1 - p_1)}{e^{\beta_{Y \sim U \mid X - \mathbf{Z}}} p_0 + (1 - p_0)}$	adjust_coef_with_binary()	
Time to event	Coefficient	$\beta_{Y \sim X \mid U + \mathbf{Z}} \approx \beta_{Y \sim X \mid \mathbf{Z}} - log \frac{e^{\beta_{Y \sim U \mid X + \mathbf{Z}}} p_1 + (1 - p_1)}{e^{\beta_{Y \sim U \mid X + \mathbf{Z}}} p_0 + (1 - p_0)}$	adjust_coef_with_binary(
Binary	Risk ratio	$RR_{Y \sim X U + \mathbf{Z}} = RR_{Y \sim X \mathbf{Z}} \frac{RR_{Y \sim U X + \mathbf{Z}P_0 + (1 - p_0)}}{RR_{Y \sim U X + \mathbf{Z}P_1 + (1 - p_1)}}$	adjust_rr_with_binary()	
Binary	Odds ratio	$OR_{Y \sim X U + \mathbf{Z}} \approx OR_{Y \sim X \mathbf{Z}} \frac{OR_{Y \sim U X + \mathbf{Z}P_0} + (1 - p_0)}{OR_{Y \sim U X + \mathbf{Z}P_1} + (1 - p_1)}$	adjust_or_with_binary()	
Time to event	Hazard ratio	$HR_{Y \sim X U+Z} \approx HR_{Y \sim X Z} \frac{HR_{Y \sim U X+Z}\rho_0 + (1-\rho_0)}{HR_{Y \sim U X+Z}\rho_1 + (1-\rho_1)}$	adjust_hr_with_binary()	
Unmeasured con $R^2_{Y \sim U X+Z}$	founder, U , has relations	ships with X and Y characterized by $\beta_{U \sim X Z}$ and $\beta_{Y \sim U X+Z}$	$_{\mathbf{r}\mathbf{Z}}$ or by partial R^2 as $R^2_{X\sim U \mathbf{Z}}$ and	
Continuous	Coefficient	$\beta_{Y \sim X U+Z} = \beta_{Y \sim X Z} - \beta_{Y \sim U X+Z} \times \beta_{U \sim X Z}$	adjust_coef()	
Continuous	Coefficient	$\beta_{Y \sim X U+\mathbf{Z}} = \beta_{Y \sim X \mathbf{Z}} - \operatorname{se}(\beta_{Y \sim X \mathbf{Z}}) \sqrt{\frac{R_{Y \sim U X+\mathbf{Z}}^2 \times R_{X \sim U \mathbf{Z}}^2}{(1 - R_{X \sim U \mathbf{Z}}^2)}} df$	adjust_coef_with_r2()	

^a The equality will hold for binary outcomes fit via a loglinear model. Otherwise, this is an approximation

D'Agostino McGowan, L. Sensitivity Analyses for Unmeasured Confounders. Curr Epidemiol Rep 9, 361–375 (2022)

What will tip our confidence bound to cross zero?

Quantifying Unmeasured Confounding

Table 7 Tipping point equations and R code

From: Sensitivity Analyses for Unmeasured Confounders

Effect of Interest	Known relationship	Tipping point equation	R function from the tipr package	
Unmeasured confo $eta_{Y\sim U X+\mathbf{Z}}$	ounder, U , is Normally $\mathfrak c$	distributed with a difference in means between e	xposure groups of d , unit variance, and association with Y of	
Coefficient	U and X	$\beta_{Y \sim U X+\mathbf{Z}, tip=0} = \frac{\beta_{Y \sim X \mathbf{Z}}}{d}$	tip_coef()	
Coefficient	U and Y	$d_{tip=0} = \frac{\beta_{Y \sim X Z}}{\beta_{Y \sim U X+Z}}$	tip_coef()	
Risk ratio	U and X	$RR_{Y \sim U X+\mathbf{Z}, tip=1}$ $= RR_{Y \sim X \mathbf{Z}}^{1/d}$	tip_rr() tip_or() tip_hr()	
Risk ratio	U and Y	$d_{tip=1} = \frac{\log(RR_{Y\sim X Z})}{\log(RR_{Y\sim U X+Z})}$	tip_rr() tip_or() tip_hr()	
Unmeasured confo	ounder, U , is binary wit	h prevalence in the unexposed group of p_0 in the	exposed group of p_1 , and association with Y of $oldsymbol{eta}_{Y\sim U X+{f Z}}$	
Risk ratio	U and X	$RR_{Y \sim U X+\mathbf{Z}, tip=1}$ $= \frac{(1-p_1) + RR_{Y \sim X \mathbf{Z}} \times (p_0-1)}{RR_{Y \sim X \mathbf{Z}} \times p_0 - p_1}$	tip_rr_with_binary() tip_or_with_binary() tip_hr_with_binary()	
Risk ratio	U and Y	$p_{1,tip=1} = \frac{RR_{Y \sim X Z}-1}{RR_{Y \sim U X+Z}-1} \ p_{0,tip=1} = \frac{p_1}{RR_{Y \sim X Z}} + (RR_{Y \sim X Z} \times p_0) - \frac{RR_{Y \sim X Z}-1}{RR_{Y \sim X Z} \times (RR_{Y \sim U X+Z}-1)}$	tip_rr_with_binary() tip_or_with_binary() tip_hr_with_binary()	
Unmeasured confo	ounder, U , has relations	ships with X and Y characterized by $oldsymbol{eta}_{U\sim X \mathbf{Z}}$ and $oldsymbol{\mu}$	$g_{Y \sim U X+\mathbf{Z}}$ or by partial R^2 as $R^2_{X \sim U \mathbf{Z}}$ and $R^2_{Y \sim U X+\mathbf{Z}}$	
Coefficient	U and X	$\beta_{Y \sim U X+\mathbf{Z}, tip=0} = \frac{\beta_{Y \sim X \mathbf{Z}}}{\beta_{U \sim X \mathbf{Z}}}$	tip_coef()	
Coefficient	U and Y	$ \beta_{U \sim X \mathbf{Z}, tip=0} = \frac{\beta_{Y \sim X \mathbf{Z}}}{\beta_{Y \sim U X+\mathbf{Z}}} $	tip_coef()	
Coefficient	U and X	$R_{Y \sim U X+\mathbf{Z},tip=0}^2 = \frac{\beta_{Y \sim X \mathbf{Z}}^2 \beta_{Y \sim X \mathbf{Z}}^2 R_{X \sim U \mathbf{Z}}^2}{se^2(\beta_{Y \sim X \mathbf{Z}})df \times R_{X \sim U \mathbf{Z}}^2}$	tip_coef _with_r2()	
Coefficient	U and Y	$R_{X \sim U \mathbf{Z}, tip=0}^2 = \frac{\beta_{Y \sim X \mathbf{Z}}^2}{\beta_{Y \sim Y \mathbf{Z}}^2 + se^2(\beta_{Y \sim Y \mathbf{Z}})df \times R_{Y \sim U \mathbf{Z}}^2}$	tip_coef _with_r2()	

Table 1. Grammar of tipr functions.

category	Function term	Use
action	adjust	These functions adjust observed effects, requiring both the unmeasured confounder-exposure relationship and unmeasured confounder-outcome
		relationship to be specified.
	tip	These functions tip observed effects. Only one
		relationship, either the unmeasured
		confounder-exposure relationship or unmeasured
		confounder-outcome relationship needs to be
		specified.
effect	coef	These functions specify an observed coefficient from
		a linear, log-linear, logistic, or Cox proportional hazards model
	rr	These functions specify an observed relative risk
	or	These functions specify an observed relative risk
	hr	These functions specify an observed hazard ratio
what	continuous	These functions specify an unmeasured
		standardized Normally distributed confounder.
		These functions will include the parameters
		exposure_confounder_effect and
		confounder_outcome_effect
	binary	These functions specify an unmeasured binary
		confounder. These functions will include the
		parameters exposed_confounder_prev,
		unexposed_confounder_prev, and
	r2	confounder_outcome_effect These functions specify an unmeasured confounde
	12	parameterized by specifying the percent of variatio
		in the exposure / outcom explained by the
		unmeasured confounder. These functions will
		include the parameters confounder_exposure_r2
		and outcome_exposure_r2

{action}_{effect}_with_{what

tip_rr_with_continous()

adjust_coef_with_r2()

D'Agostino McGowan, L., (2022). tipr: An R package for sensitivity analyses for unmeasured confounders. Journal of Open Source Software, 7(77), 4495

ORIGINAL PAPER

Metformin use and incidence cancer risk: evidence for a selective protective effect against liver cancer

Harvey J. Murff^{1,2,5} · Christianne L. Roumie^{1,2} · Robert A. Greevy^{1,3} · Amber J. Hackstadt³ · Lucy E. D'Agostino McGowan³ · Adriana M. Hung^{1,2} · Carlos G. Grijalva^{1,4} · Marie R. Griffin^{1,2,4}

Received: 22 April 2017 / Accepted: 13 July 2018 / Published online: 18 July 2018 © Springer Nature Switzerland AG 2018

Question

Metformin^{*}

VERSUS SULFONYLUREAS

Analysis

New-user design

 Matched 42,217 new metformin users to 42,217 new sulfonylurea users

Fit adjusted Cox proportional hazards model on the matched cohort

Results

Outcome: Lung Cancer

Adjusted Hazard Ratio: 0.87 (0.79, 0.96)

What if alcohol consumption is an unmeasured confounder?

What if heavy alcohol consumption is prevalent among 4% of Metformin users and 6% of Sulfonylurea users?

Meadows SO, Engel CC, Collins RL, Beckman RL, Cefalu M, Hawes-Dawson J, et al. 2015 health related behaviors survey: Substance use among US active-duty service members. RAND; 2018.

What if we assume the effect of alcohol consumption on lung cancer after adjusting for other confounders is 2?

```
1 library(tipr)
2 adjust_hr_with_binary(
3   effect_observed = c(0.79, 0.87, 0.96),
4   exposed_confounder_prev = .04,
5   unexposed_confounder_prev = .06,
6   confounder_outcome_effect = 2)
```

What if we assume the effect of alcohol consumption on lung cancer after adjusting for other confounders is 2?

```
1 library(tipr)
2 adjust_hr_with_binary(
3   effect_observed = c(0.79, 0.87, 0.96),
4   exposed_confounder_prev = .04,
5   unexposed_confounder_prev = .06,
6   confounder_outcome_effect = 2)
```

Results

Outcome: Lung Cancer

• Adjusted Hazard Ratio: 0.87 (0.79, 0.96)

What if we assume the effect of alcohol consumption on lung cancer after adjusting for other confounders is 2?

```
1 library(tipr)
2 adjust_hr_with_binary(
3   effect_observed = c(0.79, 0.87, 0.96),
4   exposed_confounder_prev = .04,
5   unexposed_confounder_prev = .06,
6   confounder_outcome_effect = 2)
```

What if heavy alcohol consumption is prevalent among 4% of Metformin users and 6% of Sulfonylurea users?

Meadows SO, Engel CC, Collins RL, Beckman RL, Cefalu M, Hawes-Dawson J, et al. 2015 health related behaviors survey: Substance use among US active-duty service members. RAND; 2018.

What if we assume the effect of alcohol consumption on lung cancer after adjusting for other confounders is 2?

```
1 library(tipr)
2 adjust_hr_with_binary(
3   effect_observed = c(0.79, 0.87, 0.96),
4   exposed_confounder_prev = .04,
5   unexposed_confounder_prev = .06,
6   confounder_outcome_effect = 2)
```

```
# A tibble: 3 \times 5
 hr adjusted hr observed exposed confounder prev
unexposed_confounder_prev
       <dbl> <dbl>
                                         <dbl>
<dbl>
       0.805 0.79
                                          0.04
0.06
                 0.87
     0.887
                                          0.04
0.06
     0.978 0.96
                                          0.04
0.06
# i 1 more variable: confounder outcome effect <dbl>
```

"If heavy alcohol consumption differed between groups, with 4% prevalence among metformin users and 6% among sulfonylureas users, and had an HR of 2 with lung cancer incidence the updated adjusted effect of metformin on lung cancer incidence would be an HR of 0.89 (95% CI: 0.81-0.98). Should an unmeasured confounder like this exist, our effect of metformin on lung cancer incidence would be attenuated and fall much closer to the null.

```
library(tipr)
sens <- adjust_hr_with_binary(
   effect_observed = 0.96,
   exposed_confounder_prev = .04,
   unexposed_confounder_prev = .06,
   confounder_outcome_effect = seq(1.1, 3.5, by = 0.1))</pre>
```

```
library(ggplot2)
ggplot(sens, aes(x = confounder_outcome_effect, y = hr_adjusted)
geom_point() +
geom_hline(yintercept = 1, lty = 2)
```



```
1 library(tipr)
2 tip_hr_with_binary(
3 effect_observed = 0.96,
4 exposed_confounder_prev = .04,
5 unexposed_confounder_prev = .06)
```

"If heavy alcohol consumption differed between groups, with 4% prevalence among metformin users and 6% among sulfonylureas users, it would need to have an association with lung cancer incidence of 3.27 to tip this analysis at the 5% level, rendering it inconclusive. This effect is larger than the understood association between lung cancer and alcohol consumption."

What is known about the unmeasured confounder?

Both exposure and outcome relationship is known

Only one of the exposure/outcome relationships is known

Nothing is known

 adjust_* functions in an array

- adjust_* functions adjust_* functions
 in an array
- tip_* functions in an array

- tip * functions
- tip_coef_with_r2()
 (measured confounders)
- Robustness valuer_value() & E-valuese_value()

Disney Data tip_coef()

 effect_observed: observed exposure - outcome effect 4.45 minutes (95% CI: 0.17, 8.37)

Disney Data tip_coef()

 exposure_confounder_effect: scaled mean difference between the unmeasured confounder in the exposed and unexposed population

Disney Data tip_coef()

confounder_outcome_effect: relationship
 between the unmeasured confounder and outcome

Disney Data

tip_coef(): specify one, it will estimate the
other

• exposure_confounder_effect

confounder_outcome_effect

Disney Data

Our causal effect estimate: 4.45 minutes (95% CI: 0.17, 8.37)

Your turn

Use the tip_coef() function to conduct a sensitivity analysis for the estimate from your previous exercises.

05:00