



# DW\_inc\_gray

### **Gray Incrementer**

Version, STAR, and myDesignWare Subscriptions: IP Directory

### **Features and Benefits**

- Parameterized word length
- Inferable using a function call

### **Description**

DW\_inc\_gray adds input at ci to Gray coded input a and produces the Gray coded output z.



### Table 1-1 Pin Description

| Pin Name | Width      | Direction | Function               |
|----------|------------|-----------|------------------------|
| a        | width bits | Input     | Gray coded input data  |
| ci       | 1 bit      | Input     | Carry-in               |
| z        | width bits | Output    | Gray coded output data |

### **Table 1-2** Parameter Description

| Parameter | Values | Description       |
|-----------|--------|-------------------|
| width     | ≥ 1    | Input word length |

### Table 1-3 Synthesis Implementations<sup>a</sup>

| Implementation Name |     | Function                        | License Feature Required |
|---------------------|-----|---------------------------------|--------------------------|
|                     | rpl | Ripple-carry synthesis model    | DesignWare               |
|                     | cla | Carry-lookahead synthesis model | DesignWare               |

a. During synthesis, Design Compiler selects the appropriate architecture for your constraints. However, you may force Design Compiler to use one of the architectures described in this table.

Table 1-4 Simulation Models

| Model                           | Function                             |  |
|---------------------------------|--------------------------------------|--|
| DW01.DW_inc_gray_cfg_sim        | Design unit name for VHDL simulation |  |
| dw/dw01/src/DW_inc_gray_sim.vhd | VHDL simulation model source code    |  |
| dw/sim_ver/DW_inc_gray.v        | Verilog simulation model source code |  |

Table 1-5 Truth Table

| a - Gray Input | ci - Carry-in | z - Gray Output |
|----------------|---------------|-----------------|
| 000            | 0             | 000             |
| 001            | 0             | 001             |
| 011            | 0             | 011             |
| 010            | 0             | 010             |
| 110            | 0             | 110             |
| 111            | 0             | 111             |
| 101            | 0             | 101             |
| 100            | 0             | 100             |
| 000            | 1             | 001             |
| 001            | 1             | 011             |
| 011            | 1             | 010             |
| 010            | 1             | 110             |
| 110            | 1             | 111             |
| 111            | 1             | 101             |
| 101            | 1             | 100             |
| 100            | 1             | 000             |

## **Related Topics**

- Math Arithmetic Overview
- DesignWare Building Block IP User Guide

# **HDL Usage Through Function Inferencing - VHDL**

```
library IEEE, DWARE;
use IEEE.std_logic_1164.all;
use DWARE.DW_Foundation_arith.all;

entity DW_inc_gray_func is
   generic (func_width : positive := 8);
   port (func_a : in std_logic_vector(func_width-1 downto 0);
        func_ci : in std_logic;
        z_func : out std_logic_vector(func_width-1 downto 0));
end DW_inc_gray_func;

architecture func of DW_inc_gray_func is
begin
   -- function inference of DW_inc_gray
   z_func <= DWF_inc_gray (func_a, func_ci);
end func;</pre>
```

### **HDL Usage Through Function Inferencing - Verilog**

```
module DW_inc_gray_func (func_a, func_ci, z_func);
 parameter func width = 8;
  input
         [func width-1 : 0] func a;
  input
                            func ci;
 output [func width-1: 0] z func;
 // pass "width" parameters to the inference functions
 parameter width = func width;
  // Please add search path = search path + {synopsys root + "/dw/sim ver"}
  // to your .synopsys dc.setup file (for synthesis) and add
  // +incdir+$SYNOPSYS/dw/sim_ver+ to your verilog simulator command line
  // (for simulation).
  `include "DW_inc_gray_function.inc"
  // function inference of DW inc gray
  assign z func = DWF_inc_gray (func_a, func_ci);
endmodule
```

### **HDL Usage Through Component Instantiation - VHDL**

```
library IEEE, DWARE;
use IEEE.std logic 1164.all;
use DWARE.DW Foundation comp arith.all;
entity DW inc gray inst is
  generic (inst width : positive := 8);
 port (inst a : in std logic vector(inst width-1 downto 0);
        inst ci : in std logic;
        z inst : out std logic vector(inst width-1 downto 0));
end DW inc gray inst;
architecture inst of DW inc gray inst is
begin
  -- instance of DW_inc_gray
 U1 : DW inc gray
    generic map (width => inst width)
   port map (a => inst_a,
              ci => inst ci,
              z \Rightarrow z inst);
end inst;
-- pragma translate off
configuration DW inc gray inst cfg inst of DW inc gray inst is
  for inst
  end for;
end DW inc gray inst cfg inst;
-- pragma translate on
```

### **HDL Usage Through Component Instantiation - Verilog**

### **Copyright Notice and Proprietary Information**

© 2022 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use, reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

#### **Destination Control Statement**

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and to comply with them.

#### **Disclaimer**

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

#### **Trademarks**

Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at https://www.synopsys.com/company/legal/trademarks-brands.html.

All other product or company names may be trademarks of their respective owners.

### Free and Open-Source Software Licensing Notices

If applicable, Free and Open-Source Software (FOSS) licensing notices are available in the product installation.

### **Third-Party Links**

Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse and is not responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc. www.synopsys.com