11.10. PROBLEMS 435

• The matrix of the transpose map f^{\top} is equal to the transpose of the matrix of the map f (Proposition 11.14).

• For any $m \times n$ matrix A,

$$\operatorname{rk}(A) = \operatorname{rk}(A^{\top}).$$

- Characterization of the rank of a matrix in terms of a maximal invertible submatrix (Proposition 11.16).
- The four fundamental subspaces:

$$\operatorname{Im} f$$
, $\operatorname{Im} f^{\top}$, $\operatorname{Ker} f$, $\operatorname{Ker} f^{\top}$.

- The column space, the nullspace, the row space, and the left nullspace (of a matrix).
- Criterion for the solvability of an equation of the form Ax = b in terms of the left nullspace.

11.10 Problems

Problem 11.1. Prove the following properties of transposition:

$$(f+g)^{\top} = f^{\top} + g^{\top}$$
$$(g \circ f)^{\top} = f^{\top} \circ g^{\top}$$
$$\mathrm{id}_E^{\top} = \mathrm{id}_{E^*}.$$

Problem 11.2. Let (u_1, \ldots, u_{n-1}) be n-1 linearly independent vectors $u_i \in \mathbb{C}^n$. Prove that the hyperlane H spanned by (u_1, \ldots, u_{n-1}) is the nullspace of the linear form

$$x \mapsto \det(u_1, \dots, u_{n-1}, x), \quad x \in \mathbb{C}^n$$

Prove that if A is the $n \times n$ matrix whose columns are $(u_1, \ldots, u_{n-1}, x)$, and if $c_i = (-1)^{i+n} \det(A_{in})$ is the cofactor of $a_{in} = x_i$ for $i = 1, \ldots, n$, then H is defined by the equation

$$c_1x_1 + \dots + c_nx_n = 0.$$

Problem 11.3. (1) Let $\varphi \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be the map defined by

$$\varphi((x_1,\ldots,x_n),(y_1,\ldots,y_n))=x_1y_1+\cdots+x_ny_n.$$

Prove that φ is a bilinear nondegenerate pairing. Deduce that $(\mathbb{R}^n)^*$ is isomorphic to \mathbb{R}^n .

Prove that $\varphi(x,x)=0$ iff x=0.