

SHRI SANT GAJANAN MAHARAJ COLLEGE OF ENGG.

LABORATORY MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

EXPERIMENT TITLE: Write a python program to find factorial of a number using Recursion

EXPERIMENT NO.: SSGMCE/WI/IT/01/3IT09/01

ISSUE NO.:

ISSUE DATE: 30.07.2023

REV. DATE: REV. NO.: LABORATORY: 3IT09 COMPUTER SKILL LAB - I

DEPTT.: INFORMATION TECHNOLOGY

SEMESTER: III

PAGE: 1 OF 2

1.0) AIM: Write a python program to find factorial of a number using Recursion

2.0) SCOPE: The scope of this Python program is to calculate the factorial of a given positive integer using recursion. It aims to demonstrate the application of recursive functions in solving mathematical problems.

3.0) FACILITIES/ APPARATUS:

- 1. Python development environment (e.g., IDLE)
- 2. Input mechanism (keyboard)
- 3. Computer with Python installed

4.0) THEORY:

Program Description:

- 1. Function for Factorial (factorial): The program defines a function named factorial(n) that calculates the factorial of a given positive integer n using recursion. Factorial is the product of all positive integers from 1 to n.
- 2. Recursive Logic: The factorial() function employs recursion to calculate the factorial. The logic can be described as follows:
 - If the input n is equal to 0, the function returns 1 because the factorial of 0 is defined as 1.
 - For any positive integer n, the function recursively calls itself with the argument n 1 and multiplies the result by n. This process continues until n becomes 0, at which point the recursion stops.
- 3. User Input: The program takes user input to enter a positive integer for which the factorial needs to be calculated.
 - 4. Input Validation: It checks if the entered number is negative. If the number is negative, it prints a message stating that factorial is not defined for negative numbers.

PREPARED BY:	APPROVED BY: (H.O.D.)
DR. A. S. MANEKAR	DR. A. S. MANEKAR

SHRI SANT GAJANAN MAHARAJ COLLEGE OF ENGG.	LABORATORY MANUAL
SIINI SANTI GAJANAN MAHAMAS COLLEGE OF LINGG.	LADUKATUKI MAMUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

EXPERIMENT TITLE: Write a python program to find factorial of a number using Recursion

EXPERIMENT NO.: SSGMCE/WI/IT/01/3IT09/01 ISSUE NO.: ISSUE DATE: 30.07.2023

REV. DATE: REV. NO.: DEPTT.: INFORMATION TECHNOLOGY

LABORATORY: 3IT09 COMPUTER SKILL LAB – I SEMESTER: III PAGE: 2 OF 2

5. Calculation and Display: If the number is not negative, the program calculates the factorial using the factorial() function and displays the result.

Example:

Consider the following code snippet:

```
def factorial(n):
    if n == 0:
        return 1
    else:
        return n * factorial(n - 1)

num = int(input("Enter a positive integer: "))

if num < 0:
    print("Factorial is not defined for negative numbers.")

elif num == 0:
    print("The factorial of 0 is 1.")

else:
    result = factorial(num)
    print(f"The factorial of {num} is {result}")</pre>
```

- 1. We define a function factorial(n) that calculates the factorial of a number n using recursion.
- 2. In the factorial() function: If n is equal to 0, we return 1, as the factorial of 0 is defined as 1.

Otherwise, we recursively calculate the factorial by multiplying n with the factorial of n - 1.

3. We take input from the user to enter a positive integer.

PREPARED BY:	APPROVED BY: (H.O.D.)
DR. A. S. MANEKAR	DR. A. S. MANEKAR

LABORATORY MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

EXPERIMENT TITLE: Write a python program to find factorial of a number using Recursion

EXPERIMENT NO.: SSGMCE/WI/IT/01/3IT09/01

ISSUE NO.:

ISSUE DATE: 30.07.2023

REV. DATE:

REV. NO.: LABORATORY: 3IT09 COMPUTER SKILL LAB - I

DEPTT.: INFORMATION TECHNOLOGY SEMESTER: III PAGE: 3 OF 2

4. We check if the entered number is negative. If it's negative, we print a message indicating that factorial is not defined for negative numbers.

5. If the number is not negative, we calculate the factorial using the factorial() function and display the result.

Program

```
# Function to calculate factorial using recursion
def factorial(n):
   if n == 0:
        return 1
   else:
        return n * factorial(n - 1)
# Input from the user
num = int(input("Enter a positive integer: "))
# Check if the number is negative
if num < 0:
    print("Factorial is not defined for negative numbers.")
elif num == 0:
    print("The factorial of 0 is 1.")
else:
   result = factorial(num)
    print(f"The factorial of {num} is {result}")
```

Output

PREPARED BY:	APPROVED BY: (H.O.D.)
DR. A. S. MANEKAR	DR. A. S. MANEKAR

SHRI SANT	GATANAN	MAHARA1	COLLEGE	OF FNGG
		יאותותוית	COLLEGE	

LABORATORY MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

EXPERIMENT TITLE: Write a python program to find factorial of a number using Recursion

EXPERIMENT NO. : SSGMCE/WI/IT/01/3IT09/01

ISSUE NO.:

ISSUE DATE: 30.07.2023

00

1930E DATE : 30:07:20

REV. DATE : REV. NO. :

LABORATORY : 3IT09 COMPUTER SKILL LAB – I

DEPTT. : INFORMATION TECHNOLOGY

SEMESTER : III PAGE: 4 OF 2

Example Output:

Enter a positive integer: 5
The factorial of 5 is 120

In this example, the program calculates the factorial of 5, which is $5 \times 4 \times 3 \times 2 \times 1 = 120$, using recursion.

This program demonstrates the use of recursion to solve a mathematical problem, finding the factorial of a number.

4.2) Program Execution:

Program Execution Line by Line:

- Lines 1-7: We define a function named factorial(n) to calculate the factorial using recursion. The base case checks if n is 0 and returns 1; otherwise, it multiplies n with the factorial of n 1.
- Lines 9-14: We take user input to enter a positive integer and store it in the variable num.
- Lines 16-19: We perform input validation by checking if num is negative. If it is negative, we print a message indicating that factorial is not defined for negative numbers.
- Lines 21-24: If num is not negative, we call the factorial() function to calculate the factorial and display the result.

5.0) Conclusion:

In conclusion, this Python program illustrates the use of recursive functions to calculate the factorial of a positive integer. Students can learn about the concept of recursion, base cases, and how recursive functions work. It also emphasizes the importance of input validation in handling user inputs.

PREPARED BY:	APPROVED BY: (H.O.D.)
DR. A. S. MANEKAR	DR. A. S. MANEKAR

SHRT SANT	GAJANAN N	MAHARA1	COLLEGE OF	FNGG.

LABORATORY MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

EXPERIMENT TITLE: Write a python program to find factorial of a number using Recursion

EXPERIMENT NO. : SSGMCE/WI/IT/01/3IT09/01

ISSUE NO.:

ISSUE DATE: 30.07.2023

REV. DATE: REV. NO.:

DEPTT.: INFORMATION TECHNOLOGY

LABORATORY: 3IT09 COMPUTER SKILL LAB - I

SEMESTER: III

PAGE: 5 OF 2

Through this exercise, students can gain a deeper understanding of both mathematical concepts and programming techniques.

PREPARED BY:	APPROVED BY: (H.O.D.)
DR. A. S. MANEKAR	DR. A. S. MANEKAR