Principal Component Analysis

Insights about PCA:

- PCA is used for the problem of Dimensionality Reduction
- Pre-requisites:
 - Mean Normalization
 - Feature Scaling
- Consolidates higher dimensional features
- PCA is not Linear Regression

Problem Formulation

For a problem where we want to reduce features from 2D to 1D, find a direction (a vector $\mu^{(1)} \in \mathbb{R}^n$) onto which to project the data so as to minimize the projection error.

General Case: Reduce from n-dimensions to k-dimensions, find k vectors $\mu^{(1)}, \mu^{(2)}, \dots, \mu^{(k)}$ onto which to project the data, so as to minimize the projection error.

Data Preprocessing

Training Set: $x^{(1)}, x^{(2)}, \ldots, x^{(m)}$

Preprocessing (Feature Scaling/Mean Normalization):

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$

- Replace each $x_j^{(i)}$ with $x_j \mu_j$
- If different features on different scales (For example, $x_1 = \text{Size}$ of house, $x_2 = \text{Number}$ of bedrooms), scale features to have comparable range of values

Algorithm

For reducing data from n-dimensions to k-dimensions,

• Compute Covariance Matrix

$$\sum = rac{1}{m} \sum_{i=1}^n (x^{(i)}) (x^{(i)})^T$$

• Compute **Eigen Vectors** of matrix \sum

```
[U, S, V] = svd(Sigma);
U_reduce = U(:, 1,:k);
z = U_reduce'*x;
```

SVD = Single Value Decomposition

We'll get the $n \times n \ U$ matrix as:

$$U = egin{bmatrix} dots & dots & dots & dots \ u^{(1)} & u^{(2)} & \ldots & u^{(m)} \ dots & dots & \ddots & dots \end{bmatrix} \in R^{n imes n}$$