

Example Exam

Name:

Student ID:

$\boxed{0} \boxed{0}$	0	0	0	0	0	0
1 1	1	1	1	1	1	1
2 2	2	2	2	2	2	2
3 3	3	3	3	3	3	3
4 4	4	4	4	4	4	$\boxed{4}$
5 5	5	5	5	5	5	5
6 6	6	6	6	6	6	6
7 7	7	7	7	7	7	7
8 8	8	8	8	8	8	8
$\boxed{9} \boxed{9}$	9	9	9	9	9	9

In the following circuit, where source voltage is $V_s=110$ V, current and active power measurements were taken:

- $I_2 = 2 \text{ A};$
- $I_3 = 4 \text{ A};$
- $P_3 = 320 \text{ W}$ (measured in RL branch)

Figura 1: Circuit

Question 1 Find the magnitude for current I_1 , in amperes.

0 0	0 0
1 1	1 1
2 2	2 2
3 3	3 3
$\boxed{4}$	4
$\begin{bmatrix} 5 \end{bmatrix} \begin{bmatrix} 5 \end{bmatrix}$	$\begin{bmatrix} 5 \end{bmatrix} \begin{bmatrix} 5 \end{bmatrix}$
6 6	$\boxed{6}\boxed{6}$
7 7	7 7
8 8	8 8
9 9	9 9

Question 2 Find the power factor in the RL branch (leading or lagging).

0	=	0
1	=	1
2	2	2
3	3	3
4	4	4
5	5	5
6	6	6
7	7	7
8	8	8
9	• 9	9

Question 3 Find the power factor as seen from the voltage source (leading or lagging).

0	0	0
1	1	1
$\boxed{2}$	2	2
3	3	3
$\boxed{4}$	4	4
5	5	5
6	6	6
7	7	7
8	8	8
9.	9	9

+1/3/58+

Question 4

Describe the procedure and assumptions that should be followed to find the capacitor that adjusts the power factor to a specific value.

+1/4/57+