

Tema 4: Integrales

Teoría

Esther Gil Cid

Departamento de Matemática Aplicada I ETSI Industriales. UNED

Integrales

Esther Gil Departamento de Matemática Aplicada ETSI Industriales

Este material ha sido elaborado por Esther Gil Cid bajo el nombre "Curso 0 de Matemáticas para ingenieros industriales: Integrales" y se difunde bajo la licencia Creative Commons Reconocimiento- CompartirIgual 3.0. Puede leer las condiciones de la licencia en http://creativecommons.org/licenses/by-sa/3.0/deed.es

Índice general

1.	Intro	ducción y objetivos	3	
	1.1.	Objetivos	3	
2.	Conte	e <mark>nidos</mark>	4	
	2.1.	Ficha 1: Integrales definidas e integrales indefinidas	4	
	2.2.	Ficha 2: Teorema fundamental del Cálculo	9	
	2.3.	Ficha 3: Integrales inmediatas	11	
	2.4.	Ficha 4: Algunos métodos de integración	14	
	2.5.	Ficha 5: Cálculo de áreas	25	
	Biblio	Bibliografía		
	Índice alfabético 33			

1. Introducción y objetivos

El problema de encontrar el área de figuras planas surgió en tiempos remotos: los griegos llegaron a fórmulas para encontrar el área de polígonos, del círculo o de segmentos de parábolas. Pero el método que empleaban se basaba en aproximar la figura cuya área se quería calcular por polígonos de áreas conocidas.

A partir de este principio, en el s. XVII, Newton y Leibnitz introdujeron el concepto de integral definida de una función f en un intervalo.

Además, la idea de integral "completa" el estudio de las derivadas, ya que se puede considerar (si se trabaja con integrales indefinidas) la operación recíproca a ésta.

1.1. Objetivos

- Entender el significado geométrico de la integral definida.
- Poder calcular algunas áreas mediante integrales.
- Poder resolver integrales inmediatas.
- Detectar qué técnica hay que aplicar para integrar una función.
- Poder resolver integrales sencillas no inmediatas.
- Entender la relación entre derivadas e integrales.

2. Contenidos

2.1. Ficha 1: Integrales definidas e integrales indefinidas

Determinar el área de figuras planas es un problema equivalente a calcular el área comprendida entre la gráfica de una función continua f(x) > 0, el eje OX y las rectas verticales x = a y x = b.

- La forma clásica de determinar este área es aproximar sucesivamente por figuras de área conocida y que se "acercan" cada vezmás a la figura original.
- Una aproximación al área bajo la gráfica de la función se puede obtener dividiendo el área en rectángulos (por debajo o por encima de la gráfica de f(x)), de base cada vez menor, calculando el área de cada uno de ellos y sumando todas las áreas.
- El procedimiento se ha representado en https://ggbm.at/xS5EXDeA.

Integral definida

La integral definida es el área de la región delimitada por una función positiva f(x) entre las rectas x = a y x = b y el eje OX. Se indica como

$$\int_{a}^{b} f(x) \, dx.$$

Ejemplo: La integral definida $\int_0^2 (x^3 + 1) dx$ representa el área que queda entre el trazo de la función $f(x) = x^3 + 1$, el eje OX y las rectas x = 0 y x = 2. Es el área indicada en la figura en gris.

En este punto nos planteamos cómo calcular la integral definida de una función continua f(x). Las derivadas y su "operación recíproca" nos dan la clave.

Integrar

Es la operación inversa de derivar, del mismo modo que obtener la raíz cuadrada positiva es la operación inversa a elevar un número mayor o igual que 0 al cuadrado.

Integrar una función continua $f:(a,b) \longrightarrow \mathbb{R}$ consiste en determinar una función $F:(a,b) \longrightarrow \mathbb{R}$ cuya derivada es f, es decir, con F'(x) = f(x) en (a,b). Esto se escribe

$$F(x) = \int f(x) \, dx,$$

donde f(x) es el integrando, x es la variable de integración y dx indica respecto a qué variable se integra.

Integral indefinida o primitiva

Si f es una función continua definida en el intervalo (a,b) y existe una función F que verifica

$$F'(x) = f(x),$$

F se llama **primitiva** o **integral indefinida** de f.

Vamos a trabajar con funciones continuas, aunque no lo indiquemos específicamente.

Existencia de primitiva

Si F(x) es una primitiva de f(x) (o F'(x) = f(x)), también lo es F(x) + k, para cualquier constante $k \in \mathbb{R}$. Esto es porque sus derivadas coinciden:

$$(F(x) + k)' = F'(x) + (k)' = F'(x) = f(x).$$

Por eso al determinar la integral indefinida de f vamos a añadir una constante k a una primitiva de f y escribimos:

$$\int f(x) dx = F(x) + k, \quad k \in \mathbb{R}.$$

Y así podemos decir que la primitiva, en realidad, es un conjunto de funciones

$$\int f(x) dx = \{F : F' = f\}.$$

Ejemplo: La función $f(x) = \cos x$ tiene una primitiva que es $F(x) = \sin x$, porque la derivada de la función sen x es el $\cos x$. Otra primitiva suya es sen x+3.

Ejemplo: Las funciones $F(x) = 2x^3 + 2$ y $G(x) = 2x^3 - 6$ son primitivas de $f(x) = 6x^2$, porque

$$F'(x) = 2 \cdot 3x^{3-1} + 0 = 6x^2,$$

$$G'(x) = 2 \cdot 3x^{3-1} - 0 = 6x^2.$$

Tabla de primitivas

Una primera tabla de funciones y sus primitivas la obtenemos a partir de las derivadas:

$\int adx = ax + k$	$\int x^a dx = \frac{1}{a+1} x^{a+1} + k, \ a \neq -1$
$\int \cos x dx = \sin x + k$	$\int \operatorname{sen} x dx = -\cos x + k$
$\int (1 + \operatorname{tg}^2 x) dx = \operatorname{tg} x + k$	$\int \frac{1}{\cos^2 x} dx = \operatorname{tg} x + k$
$\int e^x dx = e^x + k$	$\int \frac{1}{x} dx = \ln x + k x > 0$
$\int a^x dx = \frac{1}{\ln a} a^x + k$	$\int \frac{1}{1+x^2} dx = \arctan x + k$
$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + k$	$\int \frac{-1}{\sqrt{1-x^2}} dx = \arccos x + k$

Límites de integración: La diferencia formal obvia entre las integrales definidas e indefinidas es que tienen "límites de integración", que no son más que los números indicados a la derecha del símbolo de integración "arriba" y "abajo". Aunque están muy relacionadas entre ellas, la principal diferencia es que el resultado de una integral definida es un número y el de una integral indefinida es un conjunto de funciones, cuya derivada es el integrando.

Propiedades de la integral

Si f(x) es una función y c es una constante, se verifican las propiedades:

■ Homogeneidad

$$\int cf(x) dx = c \int f(x) dx.$$

Aditividad

$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx.$$

Las propiedades anteriores son válidas tanto para integrales indefinidas como definidas (añadiendo límites de integración).

Ejemplo: La integral $\int (x^4 + 3x^2 - 2\sqrt{x}) dx$ se calcula en los siguientes pasos:

1. Como es una suma, se aplica la aditividad y homogeneidad para tener

$$\int (x^4 + 3x^2 - 2\sqrt{x}) dx = \int x^4 dx + \int 3x^2 dx - \int 2\sqrt{x} dx$$
$$= \int x^4 dx + 3 \int x^2 dx - 2 \int \sqrt{x} dx.$$

2. Cada una de las integrales anteriores se resuelve con la regla anterior:

$$\int x^4 dx = \frac{1}{5}x^5 + k_1,$$

$$3 \int x^2 dx = \frac{3}{3}x^3 + k_2 = x^3 + k_2,$$

$$2 \int \sqrt{x} dx = 2 \int x^{1/2} dx = 2\frac{1}{1/2}x^{3/2+1} + k_3 = \frac{4}{3}x^{3/2} + k_3.$$

3. Al escribir la integral, es suficiente sumar una única constante

$$\int (x^4 + 3x^2 - 2\sqrt{x}) dx = \frac{1}{5}x^5 + x^3 - \frac{4}{3}x^{3/2} + k.$$

Ejemplo: Para calcular la integral de $f(x) = 8\cos x + 2$:

1. Aplicamos las propiedad de aditividad y homogeneidad, porque así

$$\int (8\cos x + 2) dx = \int 8\cos x dx + \int 2dx$$
$$= 8 \int \cos x dx + 2 \int dx.$$

- 2. La integral de $\cos x$ es sen x, como vimos anteriormente.
- 3. La integral de 1 es x, lo que se comprueba observando que la derivada de x es 1.
- 4. Así, para $k \in \mathbb{R}$, tenemos

$$\int (8\cos x + 2) \, dx = 8 \int \cos x \, dx + 2 \int dx = 8 \sin x + 2x + k.$$

2.2. Ficha 2: Teorema fundamental del Cálculo

Regla de Barrow

Si f(x) es una función continua en [a,b] y F(x) es una primitiva de f(x). Entonces

$$\int_{a}^{b} f(x) dx = F(x)|_{a}^{b} = F(b) - F(a).$$

 $F\left(x\right)|_{a}^{b}$ es una forma de escribir $F\left(b\right)-F\left(a\right)$.

Nota: No hemos pedido que la función f(x) sea positiva ya que este resultado es válido para cualquier función continua f(x).

Nota: Al aplicar la regla de Barrow hay que prestar atención a los límites de integración si se aplican algunos métodos de integración que ocasionan cambios en el integrando.

Ejemplo: Podemos calcular el área representada en la siguiente figura

a partir de la integral de $x^3 + 1$, por la regla de Barrow:

$$\int_0^2 (x^3 + 1) dx = \frac{1}{4}x^4 + x \Big|_0^2$$
$$= \frac{1}{4}2^4 + 2 - \left(\frac{1}{4}0^4 + 0\right) = 4 + 2 = 6.$$

Imaginemos que definimos la función $F:[a,b] \longrightarrow \mathbf{R}$ como

$$F(t) = \int_{a}^{t} f(x)dx.$$

La función F(t) es el área de la región bajo la función f entre a y $t \in [a, b]$. Entonces intuitivamente vamos que F será una función continua. Se puede demostrar que o es, y también que tiene derivada. Ese resultado es el Teorema Fundamental del Cálculo.

Teorema fundamental del Cálculo

Si f(x) es una función continua en [a, b]. Entonces

$$F(x) = \int_{a}^{x} f(t) dt \text{ es derivable,}$$

$$F'(x) = f(x), \quad x \in (a, b).$$

Se llama Teorema Fundamental del Cálculo porque nos asegura que existe una primitiva F de una función continua f y porque nos permite trabajar con ella, como se muestra en el siguiente ejemplo.

Ejemplo: La derivada segunda de la función

$$F\left(x\right) = \int_{0}^{x} e^{t} \sin^{2}t dt$$

se puede calcular según el Teorema anterior:

$$F'(x) = e^x \operatorname{sen}^2 x,$$

$$F''(x) = e^x \operatorname{sen}^2 x + 2e^x \operatorname{sen} x \cos x.$$

Integrar primero la función puede ser muy complicado, pero es posible determinar sus derivadas de forma sencilla.

2.3. Ficha 3: Integrales inmediatas

Vamos a trabajar con funciones continuas.

Un primer paso para la integración es detectar las integrales inmediatas o que se transforman en inmediatas con manipulaciones sencillas del integrando.

Inversa de la regla de la cadena

Si en el integrando aparecen $g'\left(f\left(x\right)\right)f'\left(x\right)$, entonces la primitiva es $g\left(f\left(x\right)\right)$:

$$\int g'(f(x)) f'(x) dx = g(f(x)) + k.$$

Esta regla es la "inversa" de la regla de la cadena.

Ejemplo: Para calcular $\int \sin^2 x \cos x dx$:

- 1. Observamos que aparece sen x elevado al cuadrado, multiplicado por $\cos x$, que es la derivada del seno. Podemos aplicar la regla anterior.
- 2. Una primitiva de una potencia de grado 2 de "algo" es $\frac{1}{2+1}$ multiplicado por "algo" elevado a 2+1.
- 3. Así, la integral de sen $^2x \cos x$ es $\frac{1}{3}$ sen $^3x + k$.
- 4. Se puede comprobar derivando esta función:

$$\left(\frac{1}{3}\mathrm{sen}^{3}x + k\right)' = \frac{1}{3} \cdot 3\mathrm{sen}^{3-1}x \cos x + 0 = \mathrm{sen}^{2}x \cos x.$$

Ejemplo: Una integral integral inmediata típica es la del logaritmo neperiano: cuando el integrando es un cociente y el numerador es la derivada del denominador. Por ejemplo, para calcular $\int \frac{2x+1}{x^2+x-3} dx$ observamos:

- 1. En el denominador aparece $x^2 + x 3$ y en el numerador 2x + 1, que es su derivada.
- 2. La derivada de $\ln f(x)$ es $\frac{1}{f(x)}f'(x)$, aplicando la regla de la cadena.
- 3. Esto es precisamente lo que tenemos aquí, por lo que

$$\int \frac{2x+1}{x^2+x-3} dx = \ln |x^2+x-3| + k.$$

4. Se ponen las barras de valor absoluto, para evitar problemas de definición del ln (sólo está definido para argumento mayor que 0) y porque las derivadas de $\ln(x)$ y $\ln(-x)$ coinciden.

Como ejercicio queda comprobar que la integral está bien hecha.

Integral casi-inmediata

A menudo tenemos que resolver integrales de este tipo que no son completamente inmediatas, pero lo son con sencillas manipulaciones previas.

Ejemplo: Podemos calcular

a.
$$\int \frac{x}{x^2 + 4} dx$$
, b. $\int \frac{x^2}{x^2 + 1} dx$, c. $\int \frac{1}{x^2 + 4} dx$.

con esta técnica. Son 3 integrales aparentemente similares, pero que se manipulan de forma distinta.

- a. Para integrar $\int \frac{x}{x^2+4} dx$, vemos que el numerador no es la derivada del denominador, pero "casi". Para que lo fuera, debería aparecer 2x.
 - 1. Multiplicamos por 2 el numerador, pero para que no cambie la fracción, debemos dividir también por 2

$$\int \frac{x}{x^2 + 4} dx = \int \frac{1}{2} \frac{2x}{x^2 + 4} dx.$$

2. Por homogeneidad, "sacamos" $\frac{1}{2}$ del integrando

$$\int \frac{x}{x^2 + 4} dx = \frac{1}{2} \int \frac{2x}{x^2 + 4} dx.$$

3. Ya tenemos una fracción donde el numerador es la derivada del denominador y, por tanto, la integral es

$$\int \frac{x}{x^2 + 4} dx = \frac{1}{2} \ln|x^2 + 4| + k.$$

b. En este caso, no vamos a poder transformar el numerador para que sea la derivada del denominador, porque tendríamos que dividir entre x, que no podemos "sacar" fuera de la integral. Pero si el integrando fuera $\frac{1}{x^2+1}$, tendríamos un arctg.

1. Si sumamos y restamos 1 en el numerador y operamos, tenemos

$$\int \frac{x^2}{x^2 + 1} dx = \int \frac{x^2 + 1 - 1}{x^2 + 1} dx$$
$$= \int \left(\frac{x^2 + 1}{x^2 + 1} - \frac{1}{x^2 + 1}\right) dx$$
$$= \int \left(1 - \frac{1}{x^2 + 1}\right) dx.$$

2. Aplicando la aditividad, resulta

$$\int \frac{x^2}{x^2 + 1} dx = \int dx - \int \frac{1}{x^2 + 1} dx.$$

3. Integramos y obtenemos

$$\int \frac{x^2}{x^2 + 1} dx = x - \arctan x + k.$$

- c. En esta integral, si el denominador fuera t^2+1 , sería un arctg. Lo transformamos de la siguiente manera:
 - 1. Tenemos que conseguir que el denominador sea "algo"+1, para lo que sacamos factor común al 4

$$\int \frac{1}{x^2 + 4} dx = \int \frac{1}{4} \frac{1}{\frac{x^2}{4} + 1} dx = \int \frac{1}{4} \frac{1}{\left(\frac{x}{2}\right)^2 + 1} dx.$$

2. Para que sea la derivada del arct
g de una función $f(x) = \frac{x}{2}$, nos falta la derivada de f en el numerador, que es $\frac{1}{2}$

$$\int \frac{1}{4} \frac{1}{\left(\frac{x}{2}\right)^2 + 1} dx = \int \frac{1}{4} 2 \frac{\frac{1}{2}}{\left(\frac{x}{2}\right)^2 + 1} dx$$
$$= \int \frac{1}{2} \frac{\frac{1}{2}}{\left(\frac{x}{2}\right)^2 + 1} dx.$$

3. Teniendo en cuenta la homogeneidad, resulta

$$\int \frac{1}{x^2 + 4} dx = \int \frac{1}{2} \frac{\frac{1}{2}}{\left(\frac{x}{2}\right)^2 + 1} dx$$
$$= \frac{1}{2} \int \frac{\frac{1}{2}}{\left(\frac{x}{2}\right)^2 + 1} dx$$
$$= \frac{1}{2} \arctan \frac{x}{2} + k.$$

2.4. Ficha 4: Algunos métodos de integración

La mayoría de las veces las integrales no son inmediatas. Por eso, para integrar funciones continuas se siguen distintos procedimientos, según cómo sea el integrando.

Integral por partes

Se suele aplicar cuando el integrando es un producto de funciones y la integral de uno de ellos es inmediata.

- Para aplicar este método, se identifican dos partes en la integral: a una la llamaremos u' y a la otra v', que es la derivada de una función v. u y v son funciones que dependen de una variable x.
- u y v' deben tomarse de tal manera que sea muy fácil derivar u y muy fácil integrar la parte v'.
- Se basa en la siguiente fórmula

$$\int uv'dx = uv - \int u'vdx.$$

donde u y v son funciones de x.

La integración por partes es la aplicación a la integración de la regla de la derivada de un producto

$$(fg)' = f'g + fg'.$$

Si no elegimos las partes $(u \ y \ v')$ de forma que se simplifique la integral, ésta "no sale", porque se puede complicar. Por eso, es importante elegirlas para que sea fácil derivar u e integrar v'.

Ejemplo: Para resolver la integral $I = \int xe^x dx$, observamos:

- 1. Si elegimos u = x, al derivarla nos va a quedar u' = 1dx.
- 2. Entonces, debe ser $v'dx = e^x dx$ y tenemos $v = e^x$.
- 3. Así

$$I = \int xe^x dx = xe^x - \int e^x dx.$$

4. La última integral es inmediata y resulta

$$I = xe^x - \int e^x dx = xe^x - e^x + k.$$

Al resolver una integral definida aplicando la integración por partes hay que esperar al final para aplicar la regla de Barrow.

Ejemplo: Vamos a calcular la siguiente integral definida

$$\int_0^1 x^2 e^x dx.$$

La resolvemos por partes, con

$$u = x^2,$$
 $u' = 2x$
 $v = e^x$ $v' = e^x$

Entonces, tenemos:

$$\int x^2 e^x dx = x^2 e^x - 2 \int x e^x dx.$$

Para esta última integral elegimos:

$$u = x,$$
 $u' = 1$
 $v = e^x$ $v' = e^x$

Entonces:

$$\int x^2 e^x dx = x^2 e^x - 2 \int x e^x dx = x^2 e^x - 2x e^x + 2 \int e^x dx$$
$$= x^2 e^x - 2x e^x + 2e^x + k.$$

Ahora aplicamos ya la regla de Barrow:

$$\int_0^1 x^2 e^x dx = \left(x^2 e^x - 2x e^x + 2e^x \right) \Big|_0^1$$

$$= \left(1^2 e^1 - 2 \cdot 1 \cdot e^1 + 2e^1 \right) - \left(0^2 e^x - 2 \cdot 0 \cdot e^0 + 2e^0 \right)$$

$$= e - 2.$$

En algunos casos, la integral sería inmediata si la variable adoptara una forma más simple.

Integral por cambio de variable

- Para reducir una integral a este caso, se hace un cambio de variable t = f(x).
- Entonces dt = f'(x) dx y se sustituyen esta expresión y la variable x por t.
- Al final del proceso hay que deshacer el cambio de variable para que el

resultado quede como función de x.

Es la aplicación a integrales de la regla de la cadena de la derivación

$$(g(f))'(x) = (g)'(f(x))(f)'(x)$$

introduciendo una nueva variable, t = (f(x))

Ejemplo: La integral $I = \int (3x - 1)^{20} dx$ se puede resolver desarrollando la potencia e integrando el polinomio resultante. Sin embargo, es más sencillo hacer un cambio de variable:

- 1. Si dentro del paréntesis apareciera t, la integral sería inmediata. Por eso, elegimos t=3x-1.
- 2. Entonces, $(3x-1)^{20} = t^{20}$ y $dt = 3 \cdot dx \Rightarrow dx = \frac{1}{3}dt$.
- 3. La integral queda

$$I = \int (3x - 1)^{20} dx = \int t^{20} \frac{1}{3} dt = \frac{1}{3} \frac{1}{21} t^{21} + k = \frac{1}{63} t^{21} + k.$$

4. Finalmente, hay que deshacer el cambio de variable, resultando

$$I = \frac{1}{63} (3x - 1)^{21} + k.$$

Ejemplo: La integral $I = \int \left(\sqrt{2x+1} + \frac{1}{e^x + e^{-x}}\right) dx$ se resuelve aplicando cambios de variable a cada uno de los sumandos:

1. En primer lugar, se separa la integral en dos integrales:

$$I = \int \sqrt{2x+1}dx + \int \frac{1}{e^x + e^{-x}}dx = I_1 + I_2.$$

2. Si en I_1 , dentro de la raíz, tuviéramos x, sería muy sencillo. Por eso, intentamos el cambio $t=2x+1,\,dt=2dx\Rightarrow dx=\frac{1}{2}dt$

$$I_1 = \int \sqrt{2x+1} dx = \int \frac{1}{2} \sqrt{t} dt$$
$$= \frac{1}{2} \frac{2}{3} t^{3/2} + k_1 = \frac{1}{3} \sqrt{2x+1}^3 + k_1.$$

Si hubiéramos hecho $t^2=2x+1,\,2tdt=2dx\Rightarrow dx=tdt,$ tendríamos el mismo resultado

$$I_1 = \int \sqrt{2x+1} dx = \int t \cdot t dt = \int t^2 dt$$
$$= \frac{1}{3}t^3 + k_1 = \frac{1}{3}\sqrt{2x+1}^3 + k_1.$$

3. Observamos que en el denominador de I_2 aparecen e^x y e^{-x} . Por eso, si hacemos el cambio $t=e^x$, entonces $e^{-x}=t^{-1}$ y como $dt=e^x dx=t dx$, resulta $dx=\frac{1}{t}dt$ y la integral queda

$$I_2 = \int \frac{1}{e^x + e^{-x}} dx = \int \frac{1}{t + t^{-1}} \frac{1}{t} dt$$
$$= \int \frac{1}{t^2 + 1} dt = \arctan t + k_2 = \arctan e^x + k_2.$$

4. Sumando ambas integrales, resulta

$$I = \frac{1}{3}\sqrt{2x+1}^3 + \operatorname{arctg} e^x + k.$$

Si se resuelve una integral definida por cambio de variable, hay que acordarse de deshacer el cambio de variable antes de aplicar la regla de Barrow.

Ejemplo: Vamos a calcular la siguiente integral definida

$$\int_0^1 x^2 e^x dx.$$

La resolvemos por partes, con

$$u = x^2,$$
 $u' = 2x$
 $v = e^x$ $v' = e^x$

Entonces, tenemos:

$$\int x^2 e^x dx = x^2 e^x - 2 \int x e^x dx.$$

Para esta última integral elegimos:

$$u = x,$$
 $u' = 1$
 $v = e^x$ $v' = e^x$

Entonces:

$$\int x^2 e^x dx = x^2 e^x - 2 \int x e^x dx = x^2 e^x - 2x e^x + 2 \int e^x dx$$
$$= x^2 e^x - 2x e^x + 2e^x + k.$$

Ahora aplicamos ya la regla de Barrow:

$$\int_0^1 x^2 e^x dx = \left(x^2 e^x - 2x e^x + 2e^x \right) \Big|_0^1$$

$$= \left(1^2 e^1 - 2 \cdot 1 \cdot e^1 + 2e^1 \right) - \left(0^2 e^x - 2 \cdot 0 \cdot e^0 + 2e^0 \right)$$

$$= e - 2.$$

Integral de expresiones racionales

• Son las integrales del tipo

$$\int \frac{p(x)}{q(x)} dx,$$

donde p(x) y q(x) son polinomios y el grado de p(x) es menor que el de q(x).

■ Si el grado de p(x) es mayor o igual que el de q(x), se dividen, resultando

$$\int \frac{p(x)}{q(x)} dx = \int P(x) dx + \int \frac{r(x)}{q(x)} dx,$$

y con el grado de r(x) menor que el de q(x).

- Vamos a dividir este tipo en distintos casos. Sólo vamos a considerar polinomios q(x) de grado 2 y con raíces distintas. Para grado mayor de q(x), si no tiene raíces múltiples, el procedimiento es similar.
- Caso 1: $\int \frac{1}{ax+b} dx$.

Procedimiento. Es un logaritmo neperiano:

$$\int \frac{1}{ax+b} dx = \frac{1}{a} \int \frac{a}{ax+b} dx = \frac{1}{a} \ln|ax+b| + k.$$

■ Caso 2: $\int \frac{1}{x^2 + ax + b} dx$, donde $x^2 + ax + b$ no tiene raíces reales.

Procedimiento. "Completando cuadrados" se reduce a:

$$c\int \frac{1}{\left(dx+e\right)^2+1}dx$$

Esta integral es casi inmediata

$$\int \frac{1}{(dx+e)^2+1} dx = \frac{1}{d} \int \frac{d}{(dx+e)^2+1} dx = \frac{1}{d} \arctan(dx+e) + k.$$

Los números c, d y e se han elegido de forma adecuada.

Ejemplo: La integral $\int \frac{1}{x^2 - 6x + 13} dx$ corresponde al Caso 2. Se resuelve operando con el denominador, porque no tiene raíces reales:

1. Tenemos que "completar cuadrados" y conseguir que en el denominador aparezca $(x+r)^2+s$. Para ello, suponemos que 6 es $2 \cdot r$ y operamos con 13 para que aparezca como suma de dos términos y uno de ellos sea r^2 :

$$x^{2} - 6x + 13 = x^{2} - 2 \cdot 3x + 9 + 4$$
$$= x^{2} - 2 \cdot 3x + 3^{2} + 4$$
$$= (x - 3)^{2} + 4.$$

2. Operamos para tener $(dx + e)^2 + 1$ en el denominador

$$x^{2} - 3x + 13 = (x - 3)^{2} + 4$$

$$= 4\left(\frac{1}{4}(x - 3)^{2} + 1\right)$$

$$= 4\left(\left(\frac{1}{2}x - \frac{3}{2}\right)^{2} + 1\right).$$

3. Entonces

$$\int I = \frac{1}{x^2 - 3x + 13} dx = \int \frac{1}{4\left(\left(\frac{1}{2}x - \frac{3}{2}\right)^2 + 1\right)} dx$$

$$= \frac{1}{4} \int \frac{1}{\left(\frac{1}{2}x - \frac{3}{2}\right)^2 + 1} dx = \frac{1}{4} 2 \int \frac{1/2}{\left(\frac{1}{2}x - \frac{3}{2}\right)^2 + 1} dx$$

$$= \frac{1}{2} \arctan\left(\frac{1}{2}x - \frac{3}{2}\right).$$

• Caso 3: $\int \frac{x}{x^2 + ax + b} dx$, donde $x^2 + ax + b$ no tiene raíces reales.

Procedimiento. Se completa el numerador y se reduce a dos integrales Inmediatas:

$$I = \int \frac{x}{x^2 + ax + b} dx = \int \frac{x + \frac{a}{2} - \frac{a}{2}}{x^2 + ax + b} dx$$
$$= \frac{1}{2} \int \frac{2x + a}{x^2 + ax + b} dx - \frac{a}{2} \int \frac{1}{x^2 + ax + b} dx$$
$$= \frac{1}{2} \ln|x^2 + ax + b| - \frac{c}{d} \arctan(dx + e) + k,$$

donde c, d y e se han elegido de forma adecuada.

Ejemplo: Vamos a resolver la integral del caso 3:

$$I = \int \frac{x}{x^2 + x + 1} dx.$$

Observamos que $4x^2 + x + 1$ no tiene raíces reales. En el numerador tiene que aparecer la derivada del denominador, así que hacemos

$$I = \int \frac{x}{x^2 + x + 1} dx = \frac{1}{2} \int \frac{2x + 1 - 1}{x^2 + x + 1} dx = \frac{1}{2} \int \frac{2x + 1}{x^2 + x + 1} dx - \frac{1}{2} \int \frac{1}{x^2 + x + 1} dx = \frac{1}{2} \int \frac{2x + 1}{x^2 + x + 1} dx = \frac{1}{2} \int \frac{1}{x^2 + x + 1} dx = \frac{1}{2} \int \frac{2x + 1}{x^2 + x + 1} dx = \frac{1}{2}$$

La primera de estas integrales es la integral de un logaritmo, ya que en el numerador aparece la derivada del denominador:

$$\int \frac{2x+1}{x^2+x+1} dx = \ln(x^2+x+1) + c.$$

No hace falta poner valor absoluto, ya que es argumento siempre es positivo. La segunda integral se puede transformar en un arcotangente:

$$\int \frac{1}{x^2 + x + 1} dx = \int \frac{1}{x^2 + x + \frac{1}{4} - \frac{1}{4} + 1} dx = \int \frac{1}{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}} dx$$
$$= \int \frac{1}{\frac{3}{4} \left(\frac{4}{3} \left(x + \frac{1}{2}\right)^2 + 1\right)} dx = \frac{4}{3} \int \frac{1}{\left(\frac{2}{\sqrt{3}} x + \frac{1}{\sqrt{3}}\right)^2 + 1} dx.$$

Esta integral ya es casi inmediata:

$$\frac{4}{3} \int \frac{1}{\left(\frac{2}{\sqrt{3}}x + \frac{1}{\sqrt{3}}\right)^2 + 1} dx = \frac{4}{3} \frac{\sqrt{3}}{2} \arctan\left(\frac{2}{\sqrt{3}}x + \frac{1}{\sqrt{3}}\right) + c'$$
$$= \frac{2}{\sqrt{3}} \arctan\left(\frac{2}{\sqrt{3}}x + \frac{1}{\sqrt{3}}\right) + c'.$$

Entonces:

$$I = \int \frac{x}{x^2 + x + 1} dx = \frac{1}{2} \int \frac{2x + 1}{x^2 + x + 1} dx - \frac{1}{2} \int \frac{1}{x^2 + x + 1} dx$$
$$= \frac{1}{2} \ln (x^2 + x + 1) - \frac{1}{2} \frac{2}{\sqrt{3}} \arctan \left(\frac{2}{\sqrt{3}}x + \frac{1}{\sqrt{3}}\right) + k$$
$$= \frac{1}{2} \ln (x^2 + x + 1) - \frac{1}{\sqrt{3}} \arctan \left(\frac{2}{\sqrt{3}}x + \frac{1}{\sqrt{3}}\right) + k$$

En lugar de sumar dos constantes de integración c y c', hemos sumado una única, k.

■ Caso 4: $\int \frac{ax+b}{x^2+cx+d} dx$, donde r_1 y r_2 son las raíces de x^2+cx+d .

Procedimiento. Se factoriza el polinomio $x^2 + cx + d = (x - r_1)(x - r_2)$. Se puede escribir:

$$\int \frac{ax+b}{x^2+cx+d} dx = \int \frac{ax+b}{(x-r_1)(x-r_2)} dx = \int \frac{A}{x-r_1} dx + \int \frac{B}{x-r_2} dx.$$

Las constantes A y B se encuentran desarrollando la suma de fracciones, igualando los coeficientes de la misma potencia de x y resolviendo el sistema de ecuaciones resultante. Las integrales resultantes son del Caso 1.

Ejemplo: Resolvamos la integral (del Caso 4)

$$\int \frac{x^2 + 2x}{x^2 - 1} dx.$$

1. Como el grado de numerador es mayor que el grado del denominador, primero tenemos que dividir ambos polinomios:

$$\frac{x^2 + 2x}{x^2 - 1} = \frac{x^2 - 1 + 2x + 1}{x^2 - 1} = 1 + \frac{2x + 1}{x^2 - 1}.$$

2. Como las raíces de $x^2 - 1$ son 1 y -1, podemos factorizar el denominador

$$x^2 - 1 = (x - 1)(x + 1)$$
.

3. Ahora tenemos que buscar A y B para que

$$\frac{2x+1}{x^2-1} = \frac{A}{x-1} + \frac{B}{x+1} = \frac{A(x+1) + B(x-1)}{(x-1)(x+1)}$$

$$= \frac{Ax + A + Bx - B}{(x-1)(x+1)} = \frac{(A+B)x + (A-B)}{(x-1)(x+1)}$$

$$\Longrightarrow \begin{cases} A+B=2\\ A-B=1 \end{cases} \Longrightarrow A = \frac{3}{2} \qquad B = \frac{1}{2}$$

$$\Longrightarrow \frac{2x+1}{x^2-1} = \frac{3}{2} \frac{1}{x-1} + \frac{1}{2} \frac{1}{x+1}.$$

4. La integral es

$$\int \frac{x^2 + 2x}{x^2 - 1} dx = \int dx + \int \frac{3}{2} \frac{1}{x + 1} dx + \int \frac{1}{2} \frac{1}{x - 1} dx$$
$$= x + \frac{3}{2} \int \frac{1}{x - 1} dx + \frac{1}{2} \int \frac{1}{x + 1} dx$$
$$= x + \frac{3}{2} \ln|x - 1| + \frac{1}{2} \ln|x + 1| + k.$$

Integral de expresiones trigonométricas

- Las integrales del tipo $\int \sin^n x \cos^m x dx$ se resuelven de forma sencilla según sean n y m par o impar.
- Si no estamos en el caso anterior, casi todas las integrales con expresiones trigonométricas (no inmediatas) se resuelven con el cambio de variable

$$\operatorname{tg} \frac{x}{2} = t \Longrightarrow x = 2 \operatorname{arctg} t \Longrightarrow dx = \frac{2dt}{1 + t^2},$$
$$\operatorname{sen} x = \frac{2t}{1 + t^2}, \ \operatorname{cos} x = \frac{1 - t^2}{1 + t^2},$$

que transforma la integral en la integral de una función racional.

Para resolver la integral $\int \sin^n x \cos^m x dx$ tenemos en cuenta:

• Si $n \ y \ m$ son pares, se utilizan las siguientes identidades, deducidas a partir de las expresiones del coseno del ángulo doble:

$$\sin^2 x = \frac{1 - \cos 2x}{2}, \qquad \cos^2 x = \frac{1 + \cos 2x}{2}.$$

• Si n = 2k + 1 es impar, se hace

$$I = \int \operatorname{sen}^{n} x \cos^{m} x dx = \int \operatorname{sen}^{2k+1} x \cos^{m} x dx$$
$$= \int \operatorname{sen}^{2k} x \operatorname{sen} x \cos^{m} x dx$$
$$= \int (1 - \cos^{2} x)^{k} \operatorname{sen} x \cos^{m} x dx.$$

• Si m = 2k + 1 es impar, se hace

$$I = \int \operatorname{sen}^{n} x \cos^{m} x dx = \int \operatorname{sen}^{n} x \cos^{2k+1} x dx$$
$$= \int \operatorname{sen}^{n} x \cos^{2k} x \cos x dx = \int \operatorname{sen}^{n} x \left(1 - \operatorname{sen}^{2} x\right)^{k} \cos x dx.$$

Ejemplo: La integral

$$I = \int \left(\sin^3 x + \cos^2 x \sin^2 x \right) dx$$

se puede escribir como la suma de dos integrales:

$$I = \int \operatorname{sen}^{3} x dx + \int \cos^{2} x \operatorname{sen}^{2} x dx = I_{1} + I_{2}.$$

La primera de estas integrales, I_1 , es impar en seno, por lo que hacemos

$$I_1 = \int \sin^3 x dx = \int \sin^2 x \sin x dx$$
$$= \int (1 - \cos^2 x) \sin x dx = \int (\sin x - \cos^2 x \sin x) dx$$
$$= \int \sin x dx - \int \cos^2 x \sin x dx = -\cos x + \frac{1}{3} \cos^3 x + K.$$

Además, I_2 es par en coseno y hacemos

$$\cos^2 x = \frac{1 + \cos 2x}{2}, \sin^2 x = \frac{1 - \cos 2x}{2},$$

lo que implica que

$$I_2 = \int \cos^2 x \sin^2 x dx = \int \frac{1 + \cos 2x}{2} \cdot \frac{1 - \cos 2x}{2} dx$$
$$= \frac{1}{4} \int (1 - \cos^2 2x) dx.$$

De nuevo tenemos una integral par en coseno, y como $\cos^2 2x = \frac{1+\cos 4x}{2}$

$$I_2 = \frac{1}{4} \int (1 - \cos^2 2x) \, dx = \frac{1}{4} \int \left(1 - \frac{1 + \cos 4x}{2}\right) dx$$
$$= \frac{1}{8} \left(\int dx - \int \cos 4x dx\right) = \frac{1}{8} x - \frac{1}{32} \sin 4x + K'.$$

Finalmente, la integral I es

$$I = -\cos x + \frac{1}{3}\cos^3 x + \frac{1}{8}x - \frac{1}{32}\sin 4x + k.$$

2.5. Ficha 5: Cálculo de áreas

Hemos definido la integral definida de una función positiva f(x) como el área de la región delimitada por f entre las rectas x = a y x = b y el eje OX. Ahora vamos a aplicar este resultado al cálculo de recintos definidos por funciones continuas.

En general, hay que aplicar el sentido común. No obstante, vamos a describir y ver ejemplos de las principales situaciones.

Área del recinto limitado entre una función y el eje OX

El área del recinto limitado por la función continua f(x) entre los puntos a y b es

$$\int_{a}^{b} |f(x)| \, dx.$$

Se cubren los casos:

- La función f(x) es positiva (f(x) = |f(x)|) y se aplica la definición de integral definida).
- La función f(x) es negativa (coincide con el recinto de su función opuesta, o de la función |f(x)| = -f(x), que es una función positiva).
- La función f(x) cambia de signo (se divide el intervalo [a, b] en subintervalos con el mismo signo y siempre estamos en alguno de los casos anteriores).

Se aprecia en la siguiente figura:

Ejemplo: Calculemos el área de la región delimitada por $f(x) = \frac{\sqrt{x}}{\sqrt{x} + 2}$ entre las rectas x = 0 y x = 4 y el eje OX.

La función f(x) siempre es mayor o igual que 0. El área se representa en la sigueinte figura:

- 1. Hay que resolver la integral $\int_0^4 \frac{\sqrt{x}}{\sqrt{x}+2} dx$.
- 2. Hacemos el cambio de variable $\sqrt{x} = t$, $\frac{1}{2\sqrt{x}}dx = dt$ y:

$$\int_0^4 \frac{\sqrt{x}}{\sqrt{x}+2} dx = \int_0^2 \frac{t}{t+2} 2t dt.$$

Con este cambio, $x_0 = 0$ se convierte en $t_0 = 0$ y $x_1 = 4$ se convierte en $t_1 = 2$.

3. Resolvemos la integral

$$\begin{split} I &= \int_0^2 \frac{t}{t+2} 2t dt = 2 \int_0^2 \frac{t^2}{t+2} dt \\ &= 2 \int_0^2 \left(t - 2 + \frac{4}{t+2} \right) dt = 2 \int_0^2 t dt - 4 \int_0^2 dt + 8 \int_0^2 \frac{1}{t+2} dt \\ &= 2 \left. \frac{1}{2} t^2 \right|_0^2 - 4 t |_0^2 + 8 \ln|t+2||_0^2 \\ &= 4 - 8 + 8 \left(\ln 4 - \ln 2 \right) = -4 + 8 \ln 2. \end{split}$$

4. Podíamos haber resuelto la integral, deshecho el cambio de variable y haber obtenido los valores entre los límites de integración:

$$\int \frac{\sqrt{x}}{\sqrt{x}+2} dx = \int \frac{t}{t+2} 2t dt = t^2 - 4t + 8\ln|t+2|$$
$$= x - 4\sqrt{x} + 8\ln|\sqrt{x} + 2|.$$

Entonces

$$\int_0^4 \frac{\sqrt{x}}{\sqrt{x} + 2} dx = x - 4\sqrt{x} + 8\ln\left|\sqrt{x} + 2\right|\Big|_0^4$$

$$= 4 - 4\sqrt{4} + 8\ln\left|\sqrt{4} + 2\right| - \left(0 - 4\sqrt{0} + 8\ln\left|\sqrt{0} + 2\right|\right)$$

$$= 4 - 8 + 8\ln 4 - 8\ln 2 = -4 + 8\ln 2.$$

Ejemplo: Vamos a determinar el área entre la función seno y el eje OX cuando x varía de 0 a 2π .

Si representamos la función observamos que entre 0 y π , la función seno es positiva y entre π y 2π es negativa.

Entontonces, el área es

$$A = \int_0^{\pi} \sin x dx + \int_{\pi}^{2\pi} (-\sin x) dx = -\cos x \Big|_0^{\pi} - (-\cos x)\Big|_{\pi}^{2\pi}$$
$$= -(-1 - 1) + 1 - (-1) = 4.$$

Si no tomamos la precaución de ver dónde es positiva y dónde es negativa la función, habríamos tenido:

$$\int_0^{2\pi} \sin x dx = -\cos x \Big|_0^{2\pi} = -(1-1) = 0.$$

Área del recinto limitado por dos funciones que no se cortan

Vamos a suponer que f(x), g(x) son funciones continuas, que no se cortan y que f(x) > g(x) en el intervalo [a,b]. Entonces el área del recinto limitado entre los puntos x=a y x=b por estas funciones es

$$\int_{a}^{b} (f(x) - g(x)) dx.$$

Intuitivamente, y aplicando la regla de Barrow, vemos que la expresión coincide con el área entre dos funciones positivas que no se cortan:

Este resultado es válido independientemente de los signos de las funciones f(x) y g(x).

Intuitivamente es claro, ya que si estamos en esta situación, basta con desplazar las funciones haciendo f(x) + k y g(x) + k de tal forma que éastas sean positivas. Así estamos en una situación donde el área A de la región delimitada por las dos funciones no ha cambiado, ambas funciones son positivas podemos aplicar el resultado anterior para tener:

$$A = \int_{a}^{b} (f(x) + k - (g(x) + k)) dx = \int_{a}^{b} (f(x) - g(x)) dx.$$

Ejemplo: Vamos a determinar el área de la región delimitada por las funciones $f(x) = e^x$ y $g(x) = \frac{1}{2}\cos x$, entre los valores x = -1 y x = 1.

La situación se representa en la siguiente figura:

Onservamos que las gráficas no se cortan. también observamos que en este intevalo tenemos que f(x) > g(x). Entocnes tenemos que calcular

$$A = \int_{-1}^{1} (f(x) - g(x)) dx = \int_{-1}^{1} \left(e^{x} - \frac{1}{2} \cos x \right) dx$$

$$= e^{x} - \frac{1}{2} \sin x \Big|_{-1}^{1} = e - \frac{1}{2} \sin 1 - \left(e^{-1} - \frac{1}{2} \sin (-1) \right) = e - e^{-1} - \frac{1}{2} \sin 1 + \frac{1}{2} \sin 1$$

$$= e - e^{-1} - \sin 1 = 1.5089$$

porque sen (-1) = -sen (1).

Área del recinto limitado por dos funciones que se cortan

Vamos a suponer que f(x), g(x) son funciones continuas que se cortan en en los puntos x_1, x_2, \ldots, x_n . Entonces el área determinado entre estas funciones

$$\int_{a}^{x_{1}} |f(x) - g(x)| dx + \int_{x_{1}}^{x_{2}} |f(x) - g(x)| dx + \dots + \int_{x_{n}}^{b} |f(x) - g(x)| dx.$$

Ejemplo: Calculemos el área de la región delimitada por las gráficas de las funciones f(x) = 2x + 3 y $g(x) = x^2$.

1. Primero tenemos que calcular los puntos de corte:

$$f(x) = g(x) \iff 2x + 3 = x^2 \iff x^2 - 2x - 3 = 0$$

$$\iff x = \frac{2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-3)}}{2 \cdot 1} = \frac{2 \pm \sqrt{4 + 12}}{2}$$

$$= \frac{2 \pm \sqrt{16}}{2} = \frac{2 \pm 4}{2}.$$

Por tanto, -1 y 3 serán los límites de integración:

2. Como $f(x) \ge g(x)$ en [-1,3], entonces el área pedida es

$$S = \int_{-1}^{3} (f(x) - g(x)) dx = \int_{-1}^{3} (2x + 3 - x^{2}) dx$$

$$= x^{2} + 3x - \frac{1}{3}x^{3} \Big|_{-1}^{3}$$

$$= 3^{2} + 3 \cdot 3 - \frac{1}{3}3^{3} - \left((-1)^{2} + 3(-1) - \frac{1}{3}(-1)^{3}\right)$$

$$= 9 + 9 - 9 - \left(1 - 3 + \frac{1}{3}\right)$$

$$= 9 + \frac{5}{3} = \frac{32}{3}.$$

Ejemplo: Vamos a determinar el área de la región delimitada por las funciones $f(x) = x^3 + x^2$ y g(x) = 2x.

Primero encontramos si hay puntos de corte, es decir, buscamos valores de \boldsymbol{x} donde se cumpla

$$x^{3} + x^{2} = 2x \iff x^{3} + x^{2} - 2x = 0 \iff x(x^{2} + x - 2) = 0.$$

Entonces debe ser x=0 o $x^2+x-2=0$. Resolvemos la ecuación de segundo grado y tenemos

$$x = \frac{-1 \pm \sqrt{1^2 + 4 \cdot 1 \cdot (-2)}}{2 \cdot 1} = \frac{-1 \pm \sqrt{9}}{2} = \frac{-1 \pm 3}{2}.$$

Esto implica que x = 1, x = -2 son las soluciones de la ecuación de segundo grado. Y que las gráficas de las dos funciones se cortan en los puntos donde x vale -2, 0 y 1. La situación se representa en la siguiente gráfica:

Observamos que $f(x) \ge g(x)$ en el intervalo [-2,0] y que $f(x) \le g(x)$ en el intervalo [0,1]. Esto se puede comprobar:

- f(x) g(x) no cambia de signo en [-2, 0] y f(-1) = 0 > g(-1) = -1.
- f(x) g(x) no cambia de signo en [-2, 0] y $f(0,5) = 0,5^3 + 0,5^2 = 0,375 < g(0,5) = 1.$

Por tanto, el área es

$$A = \int_{-2}^{1} |f(x) - g(x)| dx = \int_{-2}^{0} (f(x) - g(x)) dx + \int_{0}^{1} (g(x) - f(x)) dx$$
$$= \int_{-2}^{0} (x^{3} + x^{2} - 2x) dx + \int_{0}^{1} (2x - x^{3} - x^{2}) dx$$
$$= \frac{1}{4}x^{4} + \frac{1}{3}x^{3} - x^{2} \Big|_{-2}^{0} + x^{2} - \frac{1}{4}x^{4} - \frac{1}{3}x^{3} \Big|_{0}^{1} = \frac{37}{12}.$$

Bibliografía

- [1] Alonso Tosca, J.I.; Novo Sanjurjo, V.; 1988. Cálculo de Primitivas. Cuadernos de la Uned. Madrid: Libro donde se describen todas las técnicas de integración, con gran cantidad de ejemplos y ejercicios.
- [2] Ballvé, M. E.; Delgado, M.; Porto, A. M.; Ulecia, T.: Problemas de Matemáticas especiales. 2.a ed. Editorial Sanz y Torres: Libro de ejercicios correspondiente al libro de "Matemáticas especiales". Muchos ejercicios resueltos.
- [3] Bujalance, E.; Bujalance, J. A.; Costa, A.; Fernández, V.; Fernández, J.; Jiménez, P.; María, J. L. de; Martínez, E.: Matemáticas especiales. 2.a ed. Editorial Sanz y Torres: Libro para el acceso a la Universidad para mayores de 25 años, donde no se requiere base matemática previa. Ejemplos resueltos y ejercicios propuestos no resueltos.
- [4] http://w3.cnice.mec.es/Descartes/index.html. Páginas elaboradas dentro del Proyecto Descartes, desarrollado por el Ministerio de Educación, Cultura y Deportes. Es una herramienta capaz de generar materiales interactivos con la que se han construido más de cien unidades didácticas de los distintos cursos de la enseñanza secundaria, accesibles a través de esta página.
- [5] Hernández Morales, V.; Ramon Méndez, E.; Vélez Ibarrola, R.; Yáñez de Diego, I.; 2002. Introducción a las Matemáticas. Ediciones Académicas. Madrid: En este libro están explicadas de forma clara las derivadas, en el Capítulo 7. Se acompaña de numerosos ejemplos y ejercicios.
- [6] http://personales.unican.es/gonzaleof/. Página web con 4 cursos de Matemáticas (Primero y Segundo de Bachillerato, Ciencias y Sociales). Material de exposición clara, con numerosos ejemplos y ejercicios.

#SOMOS2030 uned.es

