MX-1 MEMORY EXTENSION Technical Manual

PBC 1011

pb Packard Bell Computer

A SUBSIDIARY OF PACKARD BELL ELECTRONICS

1905 ARMACOST AVENUE • LOS ANGELES 25, CALIFORNIA

September 15, 1961

NOTICE

This document involves confidential PROPRIETARY information of Packard Bell Computer Corporation and all design, manufacturing, reproductions, use, and sale rights regarding the same are expressly reserved. It is submitted under a confidential relationship for a specified purpose, and the recipient, by accepting this document assumes custody and control and agrees that (a) this document will not be copied or reproduced in whole or in part, nor its contents revealed in any manner or to any person except to meet the purpose for which it was delivered, and (b) any special features peculiar to this design will not be incorporated in other projects.

When this document is not further required for the specific purposes for which it was submitted, the recipient agrees to return it.

CONTENTS

			Page
I.	Desc	ription and Leading Particulars	. 1-1
	Α.	General	1-1
	B.	Physical Description	. 1-1
II.	Princ	ciples of Operation	2-1
III.	Oper	ation	3-1
	Α.	General	. 3-1
	B.	Operating Instructions	. 3-1
	C.	Modules	3-4
IV.	Chec	kout	. 4-1
	Α.	General	. 4-1
	B.	Checkout Procedure	4-1
V .	Maint	tenance	5-1
	A .	Installation	5-1
	В.	Interconnecting Cables	5-1
VI.	Parts	s List	6-1
VII	Logic	Lavouts	7-1

FIGURES

		Page
1-1.	MX-1 Memory Extension	1-2
3-1.	Interconnection Diagram	3-2
4-1.	CD-100 Module (Schematic)	4-20
4-2.	DG-101 Diode Gate (Schematic)	4-21
4-3.	DG-102 Diode Gate (Schematic)	4-22
4-4.	EF-101 Module (Schematic)	4-23
4-5.	GD-100 Module (Schematic)	4-24
4-6.	MSR-1 Module (Schematic)	4-25
4-7.	XCG-100 Module (Schematic)	4-26
5-1.	MX-1 Installation Drawing.	5-2
7-1.	Clock Distribution	7-2
7-2.	Signal Distribution	7-3
7-3.	Memory Lines	7-4
7-4.	Memory Output	7-5

TABLES

		Page
1-1	Leading Particulars	1-3
2-1	Memory Line Locations	2-2
3-1	Grounding Requirements	3-3
3 - 2	Module Location Chart	3-4
4-1	Random Write-Read IIA Diagnostic Routine	4-2

DESCRIPTION AND LEADING PARTICULARS

A. GENERAL

Model MX-1 (Figure 1-1) is a memory extension chassis manufactured by Packard Bell Computer, Los Angeles, California, for the addition of memory lines to the PB250 Computer. An MX-1 can contain any number up to 24 magnetostrictive delay lines of 256 words each representing a memory addition of up to 6144 words. It is possible to add a second memory extension to this configuration. The second memory extension chassis, which has identical wiring to the MX-1 but contains a maximum of 23 magnetostrictive delay lines of 256 words each, is designated MX-2. Addition of an MX-1 and an MX-2 connected to the PB250 will provide a maximum computer memory of 15,888 words.

B. PHYSICAL DESCRIPTION

Designed for rack mounting, the MX-1 connects directly to the computer and permits adding or removing plug-in memory modules as desired. The entire unit slides out of the rack mount and opens like a book to provide easy accessibility to components and wiring. Included in the MX-1 and MX-2 are solid-state circuits required for selection of one of the delay lines during the read or write operation. The MX-2 connects directly to the MX-1. Applicable leading particulars for both memory extension units are provided in Table 1-1.

Figure 1-1. MX-1 Memory Extension

Table 1-1

LEADING PARTICULARS

Capacity	Model MX-1 has 24 delay lines Model MX-2 has 23 delay lines Two memory extension units with up to 47 delay lines, can be connected to the PB250
Control	Information into and out of the memory extension unit is controlled entirely by the PB250 to which it is linked
Input/Output	Data transferred into and out of the memory extension units from the PB250, at a rate of 2Mc.
Power Requirements	Supplied by the PB250
Dimensions	Rack mounted. Requires 22-3/4 inches of panel height in a standard 19-inch rack.
Weight	150 pounds
Location	Immediately beneath or above PB250 if mounted in the same rack, or in adjacent rack without separating walls. There is a 7 ft interconnecting cable between the PB250 and the MX-1 and a 7 ft interconnecting cable between the MX-1 and the MX-2.

II. PRINCIPLES OF OPERATION

Delay lines in the MX-1 and MX-2 are used for data in the same way as any lines 0 through 15 in the PB250. The logic functions used are as follows:

M2g, M3g,---N0g, N1g,---N7g for addressing

Information signal Ig and gate signal Wg to write into a line.

The "fetch" gate information Fg to read out from a line.

The addressing terms and information and gate signals are formed

in the PB250. The write logic is similar to that used in the computer.

Example: For line 23

$$sM23w = M2g N7g Wg Ig + M2g N7g Wg M23r$$

 $rM23w = M2g N7g Wg \overline{Ig} + M2g N7g Wg \overline{M23r}$

Fg is generated in the applicable memory extension unit as follows:

For the MX-1

For the MX-2

Line number 31 is allocated to the index register and therefore cannot be used in the MX-1. The corresponding line number in the MX-2 would be 55. Because both MX-1 and MX-2 are similarly wired, a line number 31 left out in the MX-1 means that there will be no line number 55 in the MX-2. To correct this, the wiring provides for a line number 55 in the MX-1. Cabling to the MX-2 is such that the corresponding "fetch" gate is grounded in that unit.

To summarize: There are up to 24 memory lines in the MX-1. These are 20) $_8$ to 47) $_8$, and 67) $_8$.

There are up to 23 memory lines in the MX-2. These are 50₈ to 66₈, and 70₈ to 77₈. Memory line locations are given in Table 2-1.

Table 2-1. (Sheet 1 of 2)

MEMORY LINE LOCATIONS

	MX-1			MX-2	
Location	Octal Line No.	Decimal Line No.	Location	Octal Line No.	Decimal Line No.
4E	20	16	4E	50	40
5E	21	17	5E	51	41
6E	2.2	18	6E	52	42
7E	23	19	7E	53	43
8E	24	20	8E	54	44
9E	25	21	9E	55	45
10E	26	22	10E	56	46
11E	27	23	11E	57	47
4M	30₩	24	4M	60	48
4 L	31	25	4 L:	61	49
5M	32	26	5M	62	50
5L	33	27	5 L	63	51
6M	34 💆	28	6M	64	52

Table 2-1. (Sheet 2 of 2)

MEMORY LINE LOCATIONS

	MX-1			MX-2	
Location	Octal Line No.	Decimal Line No.	Location	Octal Line No.	Decimal Line No.
6L 7M 7L 8M 8L 9M 9L 10M 10L 11M	35 × 36 40 41 42 43 44 45 46 47 67	29 30 32 33 34 35 36 37 38 39 55	6L 7M 7L 8M 8L 9M 9L 10M 10L 11M	65 66 70 71 72 73 74 75 76	53 54 56 57 58 59 60 61 62 63

III. OPERATION

A. GENERAL

An interconnecting cable is plugged into connector J7 (Figure 3-1) on the PB250 and connector 1MJ on the MX-1. An MX-2 unit can be plugged into connector 2MJ on the back of the MX-1. Connector pins for the MX-2 connection are wired in parallel with those of the MX-1 connection, except that M5g is connected in place of M2g, M6g in place of M3g, and M7g in place of M4g.

The SA100 sinewave amplifier module in the PB250 is a tuned class C amplifier used for synchronization of a PB250 Computer with its peripheral equipment.

The SA100 accepts the two megacycle sinewave generated by the oscillator section of an XCG-100 module, amplifies and distributes it to the MX-1. Output of the SA100 is processed in the MX-1 by the shaper section of the XCG-100 module to produce computer and memory clock signals. The distribution of the SA100 output allows synchronization of the clock signals within 0.01 microsecond between the PB250 and the MX-1.

The Ig, Fg, and Wg signals are also carried by coaxial cables between the PB250 and the MX-1. To eliminate delays in extra amplifier stages, Ig and Wg (rather than Ig and Wg) are sent to the MX-1.

All connections are made with Microdot 95-3920 coaxial cable (Z = 95 ohms, capacitance per foot = $13 \mu \mu f$).

Figure 3-1. Interconnection Diagram

B. OPERATING INSTRUCTIONS

Memory line number 20)₈ is also used in the event of multiple computer coupling. In this instance, Line 20)₈ in the MX-1 cannot be used and the corresponding "fetch" gate M2g N0g M16r must be grounded to prevent a reading of all 1's in Fg if line 20)₈ is selected. Necessary grounding is accomplished by a jumper plug in 2MJ of the MX-1. However, if line 20)₈ is used in the MX-1 and there is no multiple computer coupling, "fetch" gate M2g N0g M8r in the PB250 must be grounded. Necessary grounding is accomplished by a jumper plug in connector 5J on the PB250 which forms part of the MX-1 system.

If no line numbers beyond 31 are used, the "fetch" gate for line numbers 31 through 38 and 55, should be grounded. This is accomplished by a jumper plug in 2MJ of the MX-1 grounding M4g and M6g. Grounding requirements are detailed in Table 3-1.

Table 3-1.

GROUNDING REQUIREMENTS

Coupling	Jumper
Multiple computer coupling; no line numbers used beyond line 31 in MX-1.	Jumper plug on MX-1 to ground (M16r M2g N0g), M4g and M6g
Multiple computer coupling; line numbers used beyond line 31 in MX-1 and/or MX-2.	Jumper plug on MX-1 to ground (M16r M2g N0g)
No computer coupling; no line numbers used beyond line 31 in MX-1.	Jumper plug on PB250 to ground M8r, jumper plug on MX-1 to ground M4g and M6g
No computer coupling; line numbers used beyond line 31 in MX-1 and/or MX-2	Jumper plug on PB250 to ground M8r

C. MODULES

The MX-1 requires the following module cards to be inserted in the PB250: card number 40, row B, DG-101; card number 26, row B, EF-101; card number 27, row C, GD-100. For line numbers in excess of 31, the following module cards are added to the PB250: card number 25, row D, EF-100; card number 24, row D, TF-100. A module location chart is provided in Table 3-2. Applicable module card schematics are provided in Section IV.

Table 3-2.
MODULE LOCATION CHART

CD-100	DG-101	DG-102	EF-101	GD-100	XCG-100
3J	1D	1J	3H	1H	2H
	3D		2Ј		
	1K				
	2K				
	3K				

IV. CHECKOUT

A. GENERAL

The quality and derating of all components used in the MX-1 provide for a trouble-free unit, with a required minimum of maintenance.

B. CHECKOUT PROCEDURE

- 1. Make a visual check of all component parts and wires and replace each damaged or broken part or wire.
- 2. Load Random Write-Read Program IIA (Table 4-1) into the PB250 Computer. Any group of successive lines can be tested up to and including line 36)₈. Note that because line 37)₈ is the index register it cannot be selected by the program and as a result it is not possible to check groups of successive line numbers including 37)₉.

For example: To check lines $30)_8$ to $50)_8$ it would be necessary to select and check lines $30)_8$ to $36)_8$ first and then check lines $40)_8$ to $50)_8$.

Table 4-1. (Sheet 1 of 14)

RANDOM WRITE-READ HA DIAGNOSTIC ROUTINE

Purpose:	To test the read-write circuitry of the PB250
	under operator control.
	To test operation of the PB250 under various
	marginal conditions.
Restrictions:	Line 06 must be in the machine if error punch-
	out is to be performed.
	If an error occurs due to parity, the machine
	will halt. Clearing parity will resume test-
	ing and punch-out.
	No sequence of lines that includes line 37 may
	be tested. Such a sequence must be divided
	into two shorter sequences, the first ending
	with line 36 and the second beginning with
	line 40.
Space:	All sectors of line 01 are used by the program
	and its bootstrap. In addition, all fast-line
	channels are used for temporary storage.
Timing:	Approximately 3.0 seconds to write and read
	one line (optimized).
Loading	The program has its own bootstrap which may
	be loaded by the FILL switch on the computer
	console. After the bootstrap is loaded, the

Table 4-1. (Sheet 2 of 14)

RANDOM WRITE-READ IIA DIAGNOSTIC ROUTINE

remainder of the tape may be read in by pressing the ENABLE and BREAK POINT switches, striking the I Key, and raising the ENABLE switch. When loading is completed, the light on the Flexowriter will come on and the computer will loop, waiting for a keyboard entry.

Input

After the bootstrap is loaded, insert the following sequence:

K FF LL ±nnnnnnn (C/R)

where:

K is a control letter.

FF is the first line to be tested.

LL is the last line to be tested.

±nnnnnn is a signed, seven octal digit number used by the program as the first random number.

If

K = C, the program will writeread continuously.

K = O, the program will writeread once and return control to the
keyboard.

Table 4-1. (Sheet 3 of 14)

RANDOM WRITE-READ IIA DIAGNOSTIC ROUTINE

K = R, the program will read
continuously.

For example, if the operator wishes to test all command lines continuously, the following input sequence might be used:

C 02 07 +1234567 (C/R)

A space must separate the control letter, the first line, the last line, and the random number. A carriage return will start the computation. If an erroneous configuration is typed, the ENABLE and BREAK POINT switches should be pressed, the I Key struck and the ENABLE switch raised. This will reset the control and the correct sequence may be typed.

When using the R mode, the memory must first be filled with random numbers using the O mode. Then the R mode is inserted using the same first random number.

Output

If an error is found, the program will punch the following:

SSSLL ±bbbbbbb ±wwwwwww

Table 4-1. (Sheet 4 of 14)

RANDOM WRITE-READ IIA DIAGNOSTIC ROUTINE

where:

SSSLLL = the sector and line where error occurred.

±bbbbbbb = a signed, seven octal
digit number which should have
been found in this location.

±wwwwwww = a signed, seven
octal digit number which was found
in this location.

In the event that the error involved included a parity error, the machine will halt when this number is picked up for punch-out.

Punch-out may be resumed by clearing parity with the ENABLE and BREAK POINT switches. If, at any time, five consecutive sectors are found to be bad, it is assumed that the entire line is bad and no further punch-out for that line will occur. Anything less than five consecutive erroneous sectors will cause normal punch-out; i.e., each sector where an error occurred will be punched out.

Method:

The program generates a series of random numbers beginning with the initial number

Table 4-1. (Sheet 5 of 14)

RANDOM WRITE-READ IIA DIAGNOSTIC ROUTINE

inserted. Each generated number is written into a different sector of the line. After writing, the program again generates the same series of numbers and compares against those previously written. If the numbers do not compare, an error occurs.

Since the random numbers are generated by multiplication, an initial number of zero will cause the program to clear the specified memory area and compare for zero. If no initial number is typed, it will automatically be zero.

First line No in 10 Just " " 2,0

Table 4-1 (Sheet 6 of 14)

LOCATION	INSTRUCTION	SYMBOLIC OP CODE		REMARKS
000	02454300;	CLB	L	nitially 007SLDC01;
001	~7740000	CONST	E	CBP mask & sector increment
002	013S2100;	LSD	8	
003	006 5501;	LAI	Ŋ	New characterA
004	017 3601;	TBN	Г	Transfer if word complete
005	00154001;	EBP	·	To fill sign of A
006	+0000377	CONST	I	LAI mask
007	+0007332	CONST	Į	Line count
010	01150701;	LDP		Put marker in B
011	+0000077	CONST		
012	00285200;	RPT		
013	014 5200;	RPT	· .	
014	013 7736;	TES		Reject last character
015	012 7736;	TES		
016	01485700;	CIB		Wait for next character
017	000 3401;	TCN	7	Transfer if line complete
020	025 1101;	STA		Store word away
021	020 0501;	LDA		Increment store address
022	001 1501;	SUB	,	increment store address
023	020 1101;	STA		
024	01053701;	TRU		Return for next word
025	232 0401;	LDC		Set exit for first space
026	046 1001;	STC		300 0220 202 202 202
027	032\$4500;	CLA		
030	271 5501;	LAI		Read in new character
031	037.\$5601;	CAM		Compare for "C"
032	· 02755100;	RTK		
033	034 5100;	RTK		D. J. J. J. sk. shows stew
034	033 7736;	TES		Reject last character
035	032 7736;	TES		Wait for next character

Table 4-1. (Sheet 7 of 14)

LOCATION	INSTRUCTION	SYMBOLIC OP CODE	REMARKS
036	034\$5700;	CIB	
037	000 00541	CONST	"C" code
040	056 7501;	TOF	Transfer if C
041	243 5601;	CAM	Transfer if 0
042	056 7501;	TOF	Transact in V
043	· 263 560 1;	CAM	Transfer if R
044	056 7501;	TOF	Transfer if K
045	370 5601;	CAM	T
046	060 7501;	TOF	Transfer if space
047	360 5601;	CAM	The section of CIP
050	101 7501;	TOF	Transfer if C/R
051	000 0200;	IBC	
052	056 2210;	RST	Assemble character in B
053	000 0100;	IAC	Assemble character in B
054	100 2210;	RST	
055	032\$4500;	CLA	Return to read next character
056	000 1100;	STA	Store control character and
057	026\$4300;	CLB	return to read sequence
060	376 0401;	LDC	First space; set exit for
061	046 1501;	STC	second space
062	026\$4300;	CLB	Return to read sequence
063	325 0501;	LDA	Second space; set exit
064	046 1101;	STA	for third space
065	377 0401;	LDC	Leitichier Grant New Atoms
066	070\$3701;	TRU	Initialize first line store
067	355 0401;	LDC	Initialize last line store
070	000 4500;	CLA	
071	077 1001;	STC	
072	114 2110;	LST	
073	017 1100;	STA	Rearrange Lo

Table 4-1. (Sheet 8 of 14)

LOCATION	INSTRUCTION	SYMBOLIC OP CODE	REMARKS
074	000 4500;	CLA	
075	104 2110;	LST	
076	017 1400;	ADD	
077	002 1100;	STA	Store address in fast line
100	02654300;	CLB	Return to read sequence
101	011 1200;	STB	DN N K
102	012 1200;	STB	R.N. K _o , K _i
103	000 4400;	CLC	Set first time mode
104	013 1000;	STC	(Read phase in C)
105	000 0500;	LDA	
106	263 5601;	CAM	Control: R
107	130 7501;	TOF	
110	127 3401;	TCN	What phase?
111	113 2100;	LSD	Wantana
112	145 1001;	STC	Was read, set write
113	012 0500;	LDA	V . V
114	011 1100;	STA	K _o K _i
115	000 0500;	LDA	
116	243 5601;	CAM	Control: 0
117	122 7501;	TOF	
120	002 0500;	LDA	First line - Index
121	13351137;	STA	That time — index
122 .	013 0500;	LDA	First time?
123	000 3501;	TAN	Yes. Return to start
124	277 1401;	ADD	
125	013 1100;	STA	No. Reset first time flag
126	120\$3701;	TRU	
127	131 2200;	RSI	
130	145 1001;	STC	Was write, set read
131	011 0500;	LDA	$K_0 \longrightarrow K_i$

Table 4-1 (Sheet 9 of 14)

LOCATION	INSTRUCTION	SYMBOLIC OP CODE	REMARKS
132	012 1100;	-LDA	
133	120\$3701;	TRU	
134	140 3401;	TCN	What phase?
135	152 0501;	LDA	
136	143 1100;	STA	Read prestore CAM
137	14353701;	TRU	
140	14150501;	LDA	
141	200 11001	STA	Write prestore STA
142	143 1100;	STA	
143	15187100;	MCL	
144	225\$0400;	LDC	
145	000 0000;	CONST	Store error test in fast line
146	242 7501;	TOF	
147	242 3401;	TCN	
150	356\$3701;	TRU	
151	32453701;	TRU	
152	200 56001	CAM	
153	15450401;	LDC	
154	046 22331	CONST	Generate K _{i+}
155	205\$3200;	MUP	
156	157\$1101;	STA	C N
157	000 0000;	CONST	Save N _r
160	003 0500;	LDA	
161	16281501;	SUB	
162	000 5100;	CONST	Piele va Na
163	164 1101;	STA	Pick up Nw
164	000 0000;	LDA	
165	013 1101;	STA	
166	003 0600;	LDB	
167	000 4500;	CLA	

Table 4-1. (Sheet 10 of 14)

LOCATION	INSTRUCTION	SYMBOLIC OP CODE	REMARKS
170	202 2110;	LST	
171	000 0100;	IAC	
172	174 0637;	LDB	Pick up SSSLL
173	214 2110;	LST	/ *************************************
174	000 0100;	IAC	
175	210 2210;	RST	
176	014 1200;	STB	
177	376 0706;	LDP	
200	016 1300;	STD	Save 37606 and 37706
201		CLA	
	000 4500;		Clear space counter
202	015 1100; 206S0601;	STA LDB	Punch limit = 5
204		WOC	C/R
	000 6116;		
205	21251200;	STB	Store K _{i+1}
206 207	000 0001; 254 1201;	CONST	
		STB	
210	21150401;	LDC	
211	000 6020;	WOC	Prestore space punch
212	21453701;	TRU	
213	22353700;	TRU	Fast line
214	273 1001;	STC	
215	014 0600;	LDB	
216	000 4500;	CLA	Pick up next digit
217	223 2110;	LST	Tick up next digit
220	014 1200;	STB	
221	000 4300;	CLB	
222	000 4400;	CLC	
223	224 0000;	MAC	
224	001 5601;	CAM	
225	000 4100;	GTB	Assemble in A

Table 4-1. (Sheet 11 of 14)

LOCATION	INSTRUCTION	SYMBOLIC OP CODE	REMARKS
226	000 0100;	IAC	
227	372 3401;	TCN	
230	37051401;	ADD	
231	232\$4500;	CLA	
232	060 7501;	TOF	Clear Ce
233	23451101;	STA	Glour Go
234	000 0000;	CONST	
235	24350500;	LDA	Pick up CAM/STA
236	376 1106;	STA	
237	240\$0501;	LDA	
240	253\$3701;	TRU	7 1 11 1 31 -44
241	247\$3701;	TRU	Punch assembled digit
242	243\$0500;	LDA	
243	000 0041;	CONST	Punch limit
244	245\$1401;	ADD	
245	001 0000;	CONST	Increment sector
246	263\$1100;	STA	
247	377 1106;	STA	
250	25150401;	LDC	
251	000 1400;	CONST	Punch
252	376S3706;	TRU	
253	254S0501;	LDA	
254	000 0000;	CONST	
255	25651501;	SUB	Word done?
256	000 00001	CONST	
257	262 3501;	TAN	
260	254 1101;	STA	No. Return for next digit
261	215\$3701;	TRU	110.
262	27350701;	LDP	Yes
263	000 00021	CONST	R code

Table 4-1. (Sheet 12 of 14)

LOCATION	INSTRUCTION	SYMBOLIC OP CODE	REMARKS
264	266 7501;	TOF	Last sector?
265	15250600;	LDB	No. Return for K _i + 1
266	26750437;	LDC	
267	000 2000;	CONST	
270	27154201;	AMC	Yes. Pick up index
271	000 00571	CONST	
272	27650300;	ROT	
273	000 6000;	woc	
274	307\$3701;	TRU	
275	376 1306;	STD	Punch space or C/R
276	267 0401;	LDC	
277	37653706;	TRU	
300	301\$5600;	CAM	
301	000 2000;	CONST	Last line?
302	306 7501;	TOF	
303	304\$1401;	ADD	
304	000 0040;	CONST	No. Increment index
305	323\$1137;	STA	
306	325\$0400;	LDC	Pick up phase constant
307	273 0501;	LDA	
310	204 5601;	CAM	Punching complete?
311	350 7501;	TOF	
312	243 0601;	LDB	No. Punch limit = 8
313	254 1201;	STB	
314	015 0500;	LDA	Space counter negative?
315	344 3501;	TAN	
316	277 1401;	ADD	No. Make negative
317	015 1100;	STA	Tio. Industry
320	157 0501;	LDA	Pick up N _r
321	014 1100;	STA	<u> </u>

Table 4-1. (Sheet 13 of 14)

LOCATION	INSTRUCTION	SYMBOLIC OP CODE	REMARKS
322	332 3501;	TAN	\
323	32750701;	LDP	
324	352\$4500;	CLA	
325	066 7501;	TOF	
326	105\$3701;	TRU	
327	000 6036;	woc	
330	340\$3701;	TRU	Punch sign
331	335\$3701;	TRU	/
332	333\$0701;	LDP	
333	000 6037;	woc	
334	340\$3701;	TRU	
335	376 1306;	STD	/
336	301 0401;	LDC	
337	376\$3706;	TRU	<u> </u>
340	014 0600;	LDB	
341	343 2110;	LST	Pick up digit
342	014 1200;	STB	
343	21653701;	TRU	
344	204 0501;	LDA	Yes. Prestore C/R punch
345	273 1101;	STA	160. 1165.636 17.01
346	013 0501;	LDA	Pick up Nw
347	32153701;	TRU	
350	016 0700;	LDP	Restore 37606 and 37706
351	376 1306;	STD	Restore store and street
352	24253701;	TRU	Return
353	234 1101;	STA	Clear Ce
354	15280600;	LDB	Return to generate K _{i+}
355	001 1100;	STA	Last line store
356	234 0401;	LDC	
357	36050100;	IAC	Pick up Ce

Table 4-1. (Sheet 14 of 14)

LOCATION	INSTRUCTION	SYMBOLIC OP CODE	REMARKS
360	000 0053;	CONST	C/R code
361	36285601;	CAM	
362	000 00011	CONST	= 5 ?
363	242 7501;	TOF	
364	365\$1401;	ADD	
365	000 00001	CONST	No. Increment Ce
366	234 1101;	STA	
367	15550100;	IAC	——Punch out
370	000 0004;	CONST	
371	230 7501;	TOF	
372	375 2110;	LST	
•	374\$1401;	ADD	Assemble digit for punch out
373 374	000 6000;	woc	
375	23653701;	TRU	
376	063 7501;	TOF	Second space exit
377	002 1100;	STA	First line store
3.1.			

Random Write-Read IIA Flow Diagram (Sheet 1 of 4)

Random Write Read IIA Flow Diagram (Sheet 2 of 4)

Random Write-Read IIA Flow Diagram (Sheet 3 of 4)

Random Write-Read IIA Flow Diagram (Sheet 4 of 4)

ï
1

FIRST	LAST	DELETED
СТ	C.8	
CRI		
QI	Q.8	
RI	R29	,

NOTES: UNLESS OTHERWISE SPECIFIED.

I. ALL RESISTOR VALUES ARE IN KILOHMS ± 5%, 1/4 W.

2. ALL CAPACITORS ARE IN UUF. 3. ALL TRANSISTORS ARE 2NI500.

4 CRI TO BE PER PBCC DWG NO. 358-IA3050.

Figure 4-1. CD-100 Module (Schematic)

	4
1	
ſ	V
۲	_

FIRST	LAST	DELETED
RI	RI3	
CI	CI	
CF '	CR25	CR6
Qı	Q2	

NOTES: UNLESS OTHERWISE SPECIFIED

I ALL RESISTOR VALUES ARE IN KILOHMS±5%, 1/4 W.
ALL DIODES TO BE PER PBCC DWG NO. 358-1A3050.
WHEN PARALLELING EMITTER FOLLOWERS, THE
CONNECTION BETWEEN CONTACT TERMINAL 16 & 17
IS OMITTED.

Figure 4-2. DG-101 Diode Gate (Schematic)

FIRST	LAST	DELETED
CI	C 2	
CRI	CR 19	
RI	R6	

- NOTES: UNLESS OTHERWISE SPECIFIED

 1. ALL RESISTOR VALUES ARE IN KILOHMS ± 5%,1/4W

 2. ALL DIODES TO BE PER P.B.C.C. DWG NO. 358-1A3050.

Figure 4-3. DG-102 Diode Gate (Schematic)

NOTES: UNLESS OTHERWISE SPECIFIED

I. ALL DIODES ARE PER PBCC DWG. NO. 358-1A3050

2. ALL RESISISTOR VALUES ARE IN KIL OHMS ±5% 1/4W

3. ALL TRANSISTORS ARE 2N604

Figure 4-4. EF-101 Module (Schematic)

FIRST	LAST	DELETED
QI	Q8	
RI	R 32	
CI	C 9	

NOTES: UNLESS OTHERWISE SPECIFIED

1. ALL RESISTOR VALUES IN KILOHMS ±5%, 1/4W.

2. ALL CAPACITOR VALUES IN UUF.

3. ALL TRANSISTORS 2N1500.

Figure 4-5. GD-100 Module (Schematic)

Figure 4-6. MSR-1 Module (Schematic)

FIRST	LAST	DELETED
CI	C14	
CRI	CR7	
L2	L4	LI
QI	Q7	
RI	R24	R6
TPI		
YI		

NOTES: UNLESS OTHERWISE SPECIFIED

I. ALL RESISTOR VALUES ARE IN KILOHMS $\pm 5\%$, $\frac{1}{4}$ WAT T.

2. ALL DIODES TO BE PER PBCC DWG NO.358-1A3050.

3. ALL CAPACITOR VALUES IN UUF.

4. ALL TRANSISTORS ARE 2N604.

[5] TWO SWITCHES INCLUDED IN TEST CIRCUIT FUNCTION, NOT LOCATED ON MODULE BOARD.

Figure 4-7. XCG-100 Module (Schematic)

V. MAINTENANCE

A. INSTALLATION

Refer to Figure 5-1 for details covering the installation of the MX-1 and MX-2. Ensure that the interconnecting cables between the PB250 and the MX-1 and the MX-1 and MX-2 are properly plugged into their respective connectors. Details of the jumper plugs are given in Table 3-1.

B. INTERCONNECTING CABLES

Refer to Table 5-1 for details covering the interconnecting cable between the PB250 and the MX-1 and Table 5-2 for details covering the connector on the MX-1 for this cable.

Table 5-3 gives details covering the interconnecting cable between the MX-1 and the MX-2 and Table 5-4 gives details covering the connector on the MX-1 for this cable.

Table 5-1.

INTERCONNECTING CABLE, PB250 TO MX-1

PB 250, DB - 25S	Term	MX-1 DBM - 21W1S
7P		1MP
1	M2g	1
2	M3g	2
3	M4g	3
4	M5g	4
5	M6g	5
6	M7g	6
7	N0g	7
8	Nlg	8
9	N2g	9
10	N3g	10
11	N4g	11
12	N5g	12
13	N6g	13
14	N7g	14
15	$\overline{\mathbf{W}}\mathbf{x}\mathbf{g}$	15
16	Īxg	16
17	Spare	
18	$\mathbf{F}\mathbf{x}\mathbf{g}$	17
19	Spare	
20	Spare	
~21	+6v	18
22	Gnd	19
23	-12v	20
24	Shield	
25	SA out 4	A

Table 5-2.

CONNECTOR, MX-1 TO PB250

Type DBM - 21W1P, 1MJ		
Pin No.	Destination	Term
1	3D27	M2 g
2	1J21	M3g
3	2K10, 2MJ3	M4g
4	2MJ1	M5g
5	2MJ2	M6g
6	2MJ3	M7g
7	2MJ7	N0g
8	2MJ8	Nlg
9	2MJ9	N2g
10	2MJ10	N3g
11	2MJ11	N4g
12	2MJ12	N5g
13	2MJ13	N6g
14	2MJ14	N7g
15	2MJ15	$\overline{\mathbb{W}}_{\mathbf{x}\mathbf{g}}$
16	2MJ16	Īxg
17	2MJ 18	Fxg
18	TB1-1L	+6v
19	TB1-3L	Gnd
20	TB1-6L	-12v
A	2MJ25	SA out

Table 5-3.
INTERCONNECTING CABLE, MX-1 TO MX-2

MX-1		MX-2
DB - 25S 2MP	Term	DBM - 21 W1S 1MP
1	M5g	1
2	M6g	2
3	M7g	3
4	M4g	4
5	Gnd	5
6	Jumper M16r M2g N0g	6
7	N0g	7
8	Nlg	8
9	N2g	9
10	N3g	10
11	N4g	11
12	N5g	12
13	N6g	13
14	N7g	14
15	Wxg	15
16	Ixg	16
17	1Ag	10
18	Fxg	17
19	Spare	7.1
20	Spare	
	+6v	18
21 22	Gnd	19
	· ·	20
23	-12v	20
24	Shield	^
25	SA out 4	A

Table 5-4.

CONNECTOR, MX-1 TO MX-2

Type DB 25P - 2MJ			
Origin	Pin No.	Destination	Term
lMJ4	1		M5g
lMJ5	2	3K33	M6g
1MJ6	3		M7g
1MJ3	4	,	M4g
	5	TB1-4L	Gnd
1D8	6		Jumper M16r M2g N0g
1MJ7	7	4E26	N0g
1MJ8	8	5E26	Nlg
1MJ9	9	6 E 26	N2g
1MJ10	10	7E26	N3g
1MJ11	11	8E26	N4g
1MJ12	12	9E26	N5g
1MJ13	13	10E26	N6g
1MJ14	14	11E26	N7g
1MJ15	15	1K20	${ m W}{f x}{ m g}$
1MJ16	16	2K20	${ t I}{f x}{ t g}$
1MJ17	17		
	18	3H28	${ t Fxg}$
	19		Spare
	20		Spare
	21	TB1-1L	+6 ∨
	22	TB1-3L	Gnd
	23	TB1-6L	-12v
	24	Spare	Shield
1MJA	25	2H6	SA out

VI. MX-1 PARTS LIST

Description	Manufacturer	Mfrs. Part No.	PBC Part No.	Qty.
Cable, Assembly		;	124-1A6416	1
Connector, MJl	Cannon	DBM-21W1P	274-1A3366-21	1
Connector, MJ2	Cannon	DB-25P	274-1A3366-25-2	1
Connector, 35-pin	Elco	7001-35-5-1-2	274-1A3019-1	35
Module, CD-100	PBC		124-1D2692	1
Module, DG-101	PBC		124-1D2321	5
Module, DG-102	PBC	·	124-1D2336	1
Module, EF-101	PBC		124-1C4625	2
Module, GD-100	PBC		124-1D2492	1
Module, XCG-100	PBC		124-1C2689	1

LIST OF MANUFACTURERS

Cannon	Cannon Electric Company, Los Angeles 31, Calif.
Elco	Elco Corporation, Philadelphia 24, Pa.
PBC	Packard Bell Computer, Los Angeles 25, Calif.

VII LOGIC LAYOUTS

This section is comprised of logic layouts for clock distribution, signal distribution, memory lines and memory output.

Figure 7-1. Clock Distribution

Figure 7-2. Signal Distribution

Figure 7-3. Memory Lines

Figure 7-4. Memory Output