

Numerical Linear Algebra

Tamar Kldiashvilii

Kutaisi International University

November, 2022

► Quiz Solutions

Prove if statement below is true, else give counter example:

- 1. $cond(A^{-1}) = cond(\alpha A), \ a \in \mathbb{R}^{n \times n}, \ \alpha \in \mathbb{R}, \ \alpha \neq 0;$
- 2. cond(A) = 1 if and only if $A^T A = \alpha I$, $\alpha \in \mathbb{R}$, $\alpha \neq 0$;
- 3. $cond_2(A) = cond_2(A^T)$ iff $A \in \mathbb{R}^{n \times n}$;
- 4. $cond_{\infty}(A) = cond_1(A)$ iff A is symmetric.

1. $cond(A^{-1}) = cond(\alpha A), \ a \in \mathbb{R}^{n \times n}, \ \alpha \in \mathbb{R}, \ \alpha \neq 0;$

Solution:

$$cond(\alpha A) = \|\alpha A\| \cdot \|(\alpha A)^{-1}\| = |\alpha| \cdot \|A\| \cdot |\alpha^{-1}| \cdot \|A^{-1}\| =$$
$$= \|A\| \cdot \|A^{-1}\| = cond(A^{-1})$$

2. cond(A) = 1 if and only if $A^T A = \alpha I$, $\alpha \in \mathbb{R}$, $\alpha \neq 0$;

Solution:

Consider
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
.

$$A^T A = A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

But $cond_F(A) = \sqrt{2}$.

3.
$$cond_2(A) = cond_2(A^T)$$
 iff $A \in \mathbb{R}^{n \times n}$;

Solution:

I. Prove $cond_2(A) = cond_2(A^T) \Rightarrow A \in \mathbb{R}^{n \times n}$

$$cond_2(A) = ||A||_2 ||A^{-1}||_2$$

The inverse matrix exist only for square matrices. So, $A \in \mathbb{R}^{n \times n}$.

II. Prove $A \in \mathbb{R}^{n \times n} \Rightarrow cond_2(A) = cond_2(A^T)$.

Matrix and its transpose have the same set of eigenvalues. Thus,

$$cond_2(A) = \frac{\sigma_1}{\sigma_2} = cond_2(A^T)$$

4. $cond_{\infty}(A) = cond_1(A)$ iff A is symmetric.

Solution:

Consider
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
.

$$A^{-1} = \begin{pmatrix} 0 & 0 & 1\\ 1/2 & 0 & -1/2\\ -1/2 & 1 & -1/2 \end{pmatrix}.$$

$$cond_{\infty}(A) = ||A||_{\infty} \cdot ||A^{-1}||_{\infty} = 3 \cdot 2 = 6$$

 $cond_{1}(A) = ||A||_{1} \cdot ||A^{-1}||_{1} = 3 \cdot 2 = 6$

 $cond_{\infty}(A) = cond_1(A)$ but A is not symmetric.

Suppose

$$Ax = b, \ A = \begin{pmatrix} 0.99 & 1 & 1 \\ 1 & 0.9999 & 1 \\ 1 & 1 & 0.999999 \end{pmatrix}, \ cond_1(A) \approx 59991, \|b\|_1 = \|A\|_1$$

What is acceptable absolute error in the right hand side and coefficients of linear system Ax = b for obtaining solution with relative error not higher than 10^{-3} ?

Give example of 2×2 matrix such that $cond_2(A) = 10^9$.

Solution:

Use the fact that $cond_2(A) = \frac{\lambda_{max}}{\lambda_{min}}$, where A is a symmetric positive definite matrix.

We want
$$cond_2(A) = 10^9 \Rightarrow cond_2(A) = \frac{\lambda_{max}}{\lambda_{min}} = 10^9$$
.

If we take
$$A = \begin{pmatrix} 10^9 & 0 \\ 0 & 1 \end{pmatrix}$$
, we get that $\lambda_{max} = 10^9$ and $\lambda_{min} = 1$. Thus,

$$cond_2(A) = \frac{\lambda_{max}}{\lambda_{min}} = 10^9$$

Suppose $v_1 = (1, 1, 1, 1), v_2 = (2, 2, 2, 2), v_3 = (1.5, 0.5, 1.5, 0.5)$. Using different markers for different vectors draw points $(i, v_{1i}), (i, v_{2i}), (i, v_{3i}), i = 1, 2, 3, 4$ on a plane. Give example of a vector norm formula such that:

- 1. $\|v_2 v_1\| < \|v_3 v_1\|$
- 2. $||v_3 v_1|| < ||v_2 v_1||$

1.
$$||v_2 - v_1|| < ||v_3 - v_1||$$

Solution:

$$(v_2 - v_1) = (1, 1, 1, 1)$$

 $(v_3 - v_1) = (0.5, -0.5, 0.5, -0.5)$

Check if $||x||_* = |x_1| + \sum_{i=2}^n |x_i - x_{i-1}|$ is a norm.

- 1. $||x||_* > 0$ when $x \neq 0$ and $||x||_* = 0$ iff x = 0;
- 2. $||kx||_* = |kx_1| + \sum_{i=2}^n |kx_i kx_{i-1}| = |k||x_1| + |k| \sum_{i=2}^n |x_i x_{i-1}| = |k| (= |x_1| + \sum_{i=2}^n |x_i x_{i-1}|) = |k| ||x||$ for any scalar k.
- 3. $\|x+y\|_* = |x_1+y_1| + \sum_{i=2}^n |(x_i+y_i) (x_{i-1}+y_{i-1})| \le |x_1| + |y_1| + \sum_{i=2}^n (|x_i-x_{i-1}| + |y_i-y_{i-1}|)$ Thus, $\|x\|_*$ is a norm.

Check if given inequality is satisfied.

$$\|v_2 - v_1\|_* = 1 + 0 + 0 + 0 = 1 < 0.5 + 1 + 1 + 1 = 3.5 = \|v_3 - v_1\|_*$$

2.
$$||v_3 - v_1|| < ||v_2 - v_1||$$

Solution:

$$(v_2 - v_1) = (1, 1, 1, 1)$$

 $(v_3 - v_1) = (0.5, -0.5, 0.5, -0.5)$

Consider 2-norm:
$$||x||_2 = (\sum_{i=1}^n |x_i|^2)^2$$

$$\| \textit{v}_3 - \textit{v}_1 \|_2 = 1/4 + 1/4 + 1/4 + 1/4 = 1 < 1 + 1 + 1 + 1 = 4 = \| \textit{v}_2 - \textit{v}_1 \|_2$$

Consider $n \times n$ bi-diagonal matrix with ones on main diagonal and twos on upper diagonal. Show that this matrix is ill-conditioned for n = 101.

Prove: $||A|| = \inf\{\lambda \in \mathbb{R} : ||Ax|| \le \lambda ||x||, x \in \mathbb{R}^n\}, A \in \mathbb{R}^{n \times n}$