GUIA 01 RELATIVIDAD

1) Transformaciones de Lorentz y sus consecuencias

a) Hallar las transformaciones de velocidades, u_x , u_y , u_z , a partir de las transformaciones de Lorentz, par el caso en que el sistema S´ se desplaza con velocidad v=cte. respecto de S.

- b) Repetir el cálculo para las aceleraciones.
- c) Efectuar el límite para v<<c y analizar.
- d) Considere que en S' la luz se propaga con velocidad u'_x=c. Hallar la velocidad de la luz en el sistema S.
- e) Repita el calculo si en S' la luz se propaga con velocidad u'_y=c.
- f) Para un observador en tierra un cohete A se mueve con velocidad v=0,8c y el cohete B con velocidad –v. Hallar la velocidad de B medida por A y comparar con el resultado clásico.
- g) Para el mismo caso anterior determinar el valor de v tal que el resultado relativista coincide con el clásico si se tolera un error del 10%.

Ver sección 1-3 en <u>Tipler_Llewellyn.pdf</u>

 $t = \gamma [t' + x' \frac{v}{c^2}]$; $x = \gamma [x' + vt']$; y = y'; z = z' donde $\gamma = \frac{1}{\sqrt{(1-\beta^2)}}$ con $\beta = v/c$

* 2) Momento relativista.

Considere una partícula que se mueve libremente con velocidad $\vec{u} = (u_x, u_y, u_z)$ y masa en reposo m₀.

- a) Escriba el momento relativista en cada dirección p_x , p_y y p_z
- b) Hallar una expresión para el módulo del momento total relativista \vec{p} en función de $\beta = |\vec{u}|/c$.
- c) A partir de esta expresión efectuar el límite clásico. (Se pide la expresión a orden más bajo, no nulo, realizando un desarrollo de Taylor alrededor de $\beta = 0$).
- d) Graficar ambas expresiones y marcar en dicho gráfico el error absoluto para varios valores de β .
- e) Hallar una expresión para el error relativo. Discutir el significado y analizar de que depende.
- f) Si se acepta un error porcentual del 5% ¿Qué valores de $|\vec{u}|$ son aceptables?
- g) Para esto último ¿importa el tipo de partícula?. Evalué la variación del error porcentual ante un cambio de la masa de la partícula.

GUIA 01 RELATIVIDAD

*3) Energía relativista.

Considere una partícula con energía de reposo E_0 que se mueve libremente con velocidad $\vec{u} = (u_x, u_y, u_z)$.

- a) Hallar una expresión para la energía cinética relativista T en función de $\beta = |\vec{u}|/c$.
- b) A partir de esta expresión efectuar el límite clásico. (Se pide la expresión a orden más bajo, no nulo, realizando un desarrollo de Taylor alrededor de $\varepsilon = \beta^2 = 0$).
- c) Graficar T/E_0 vs β para el caso relativista y el obtenido en el punto (b) y marcar en dicho gráfico el error absoluto para varios valores de β .
- d) Hallar una expresión para el error relativo. Discutir el significado y analizar de que depende.
- e) Si se acepta un error porcentual del 5% ¿Qué valores de $|\vec{u}|$ son aceptables?
- f) Para esto último ¿importa el tipo de partícula? Evalué la variación del error porcentual ante un cambio de la masa de la partícula.

.....

$$T = (\gamma - 1)mc^2 = (\gamma - 1)E_0;$$
 $E = T + E_0 = \gamma(u)mc^2 = \gamma E_0;$ $E^2 = E_0^2 + p^2c^2$

Relaciones útiles

Constante	valor	unidad
c= velocidad de la luz en el vacío	$3,00*10^8$	m/s
h= constante de Planck	6,63*10 ⁻³⁴	J s
h= constante de Planck en eV s	$4,14*10^{-15}$	eV s
h*c	1242	eV nm
$\hbar = h/2\pi$ constant de Planck/ 2 pi en eV s	$6,58*10^{-16}$	eV s
$\hbar c = hc / 2\pi$; c*constante de Planck/ 2 pi en eV nm	197	eV nm
m _e c ² = Energía en reposo del electrón en MeV	0,511	MeV
Carga elemental	1,60* 10 ⁻¹⁹	C
Masa del electrón	9,11* 10 ⁻³¹	kg
e/m	$1,76*10^{11}$	C/kg
$\lambda_c = h/m_e c$	2,4*10 ⁻¹²	m

1eV=1,6*10⁻¹⁹J

PÁGINA 2 DE 2