$\overline{D} = D \cup$ (множество предельных точек D) — замыкание.

Примечание. $a \in \overline{D}$, тогда $\exists (x_n)$ из $D, x_n \to a$

 Π римечание. $\overline{D} = \bigcap_{\substack{D \subset F \\ F-\text{ замкн.}}} F-$ мин. (по вкл.) замкн. множество, содержащее D.

 Π римечание. D — замкнуто $\Leftrightarrow D = \overline{D}$

Определение. a — граничная точка D, если $\forall U(a) \quad U(a)$ содержит точки как из D, так и из D^c

Определение. Граница множества — множество его граничных точек. Обозначается ∂D

Упражнение:

- 1. $\partial D = \overline{D} \setminus IntD$
- 2. ∂D замкнута
- 3. \forall множество предельных точек замкнуто.

Определение. T — множество, U — набор неких подмножеств T.

При этом:

- 1. $\emptyset \in U, T \in U$
- 2. $G_1, G_2 \dots G_n \in U \Rightarrow \bigcap_{i=1}^n G_i \in U$
- 3. $(G_{\alpha})_{\alpha \in A}, \forall \alpha G_{\alpha} \in U \quad \bigcup_{\alpha \in A} \in U$

Тогда T называется топологическим пространством, U — "набор" открытых множеств в T (мн-ва G^c , где $G \in U$ — замкн.)

 $a\in T,$ U(a) — любое открытое множество, содержащее a и $\neq \emptyset$.

Аксиома 1. Об отделимости: $\forall x, y \in T \exists U(x), U(y) : U(x) \cap U(y) = \emptyset$

Определение. В \mathbb{R} :

1.
$$x_n \to +\infty \quad \forall E > 0 \ \exists N \ \forall n > N \ x_n > E$$

2.
$$x_n \to -\infty \quad \forall E \ \exists N \ \forall n > N \ x_n < E$$

3.
$$x_n \to \infty \Leftrightarrow |x_n| \to +\infty$$

 Π римечание. Требование >0 не обязательно.

Примечание. 1.
$$x_n \to \infty \Rightarrow x_n$$
 не огр. (по модулю)

$$x_n \to +\infty \Rightarrow x_n$$
 не огр. сверху

$$x_n \to -\infty \Rightarrow x_n$$
 не огр. снизу

2.
$$x_n \to +\infty$$
. Тогда $x_n \not\to -\infty$

Откр. множества:

1. Ограниченные открытые множества — те, что открыт. в $\mathbb R$

2.
$$U_E(+\infty) = (E, +\infty] \subset \overline{\mathbb{R}}$$

 $U_E(-\infty) = [-\infty, E) \subset \overline{\mathbb{R}}$

3. Произвольное открытое множество — либо огр. откр., либо огр. $\cup U_E(+\infty)$, огр. $\cup U_E(-\infty)$, огр. $\cup U_E(+\infty) \cup U_E(-\infty)$

Доказательство. Рассмотрим $y = \tan x$

Положим
$$tan(\frac{\pi}{2}) = +\infty$$
, $tan(\frac{\pi}{2}) = -\infty$

an — монотонная биекция $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ на $\mathbb R$

Она обеспечивает биекцию между совокупностью открытых множеств $[-\frac{\pi}{2},\frac{\pi}{2}]$ и . . . в $\overline{\mathbb{R}}$

В $\overline{\mathbb{R}}$ рассмотрим функцию $\rho(x,y)=|\arctan x-\arctan y|$ — метрика.

Покажем, что $x_n \to +\infty$ в смысле исх. опр. $\Leftrightarrow x_n \to +\infty$ в пространстве $(\overline{\mathbb{R}}, \rho)$

Доказательство.
$$x_n \to +\infty \Leftrightarrow \forall U(+\infty) \exists N \ \forall n > N \ x_n \in U(+\infty)$$

$$x_n \to +\infty$$
 в пространстве $(\overline{\mathbb{R}}, \rho) \Leftrightarrow$ высказыванию выше.

Примечание. $a \in \mathbb{R}$, (x_n) — вещ. посл. Тогда $x_n \to a$ в смысле обычного опр. $\Leftrightarrow x_n \to a$ в пространстве $(\overline{\mathbb{R}}, \rho)$

$$\begin{cases} x_n \to a, a \in \overline{\mathbb{R}} \\ x_n \to b, b \in \overline{\mathbb{R}} \end{cases} \Rightarrow a = b$$

в
$$\mathbb{R}^m$$
 $x_n \to \infty$ $\forall E \exists N \ \forall n > N \ ||x_n|| > E$

$$U_E(+\infty) = \{x \in \mathbb{R}^m : ||x|| > E\}$$

1 Ревизия

$$(x_n),(y_n)$$
 $x_n \leq y_n$ $x_n \to x,y_n \to y, x,y \in \overline{\mathbb{R}}$. Тогда $x \leq y$.

- $y = +\infty$ или $x = -\infty$ тривиально.
- $x = +\infty$, $y = a \in \mathbb{R}$ невозможно

• остальное — как в основной теореме.

Определение. Последовательность (y_n) называется бесконечно большой, если $y_n \to +\infty$.

 Π римечание. x_n — бесконечно малая ($\forall n \ x_n \neq 0) \Leftrightarrow \frac{1}{x_n}$ — бесконечно большая.

Доказательство.
$$|x_n| < \varepsilon \Leftrightarrow |\frac{1}{x_n}| > \frac{1}{\varepsilon}$$

Теорема 1. Об арифметических свойствах пределов в $\overline{\mathbb{R}}$.

$$(x_n),(y_n)$$
 — вещ., $x_n \to a, y_n \to b, \quad a,b \in \overline{\mathbb{R}}$

Тогда:

1.
$$x_n \pm y_n \rightarrow a \pm b$$

2.
$$x_n y_n \to ab$$

3.
$$\frac{x_n}{y_n}
ightarrow rac{a}{b}$$
 , если $orall n \ y_n
eq 0; b
eq 0$

При условии, что выражения в правых частях имеют смысл.

$$\langle x_n \to +\infty, y_n \to a \in \mathbb{R}$$

$$\forall E \ \exists N \ \forall n > N \ x_n + y_n > E$$

Для
$$E-(a-1)$$
 $\exists N_1 \ \forall n>N_1 \ x_n>E-(a-1)$

Для
$$E=1 \; \exists N_2 \; \forall n>N_2 \; x_n>a-1$$

Также для $x_n \to +\infty, y_n$ — orp.cнизу $\Rightarrow x_n + y_n \to +\infty$.

$$\begin{cases} x_n \to +\infty \\ y_n > \varepsilon, (\varepsilon > 0) \text{ при } n > N_0 \end{cases} \Rightarrow x_n y_n \to +\infty$$

 y_n отделено от нуля при больших n.

 Π римечание. Верны аналогичные теоремы, где вместо $\overline{\mathbb{R}}-\overline{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$

Неопределенности:

•
$$+\infty - \infty$$

•
$$0 \cdot (\pm \infty)$$

- $\frac{\pm \infty}{\pm \infty}$
- $\frac{0}{0}$

2 Точные границы числовых множеств

Теорема 2. Теорема Кантора о стягивающихся отрезках.

Дана последовательность отрезков $[a_1,b_1]\supset [a_2,b_2]\supset \dots$

Длины отрезков $\to 0$, т.е. $(b_n - a_n) \to_{n \to +\infty} 0$

Тогда $\exists!c\in\mathbb{R}\quad\bigcap_{k=1}^{+\infty}[a_k,b_k]=\{c\}$ и при этом $a_n\to_{n\to+\infty}c,b_n\to_{n\to+\infty}c$

Примечание. Вместо " $b_n-a_n\to 0$ " $\forall \varepsilon>0 \ \exists n:b_n-a_n<\varepsilon$

Доказательство. Берем из аксиомы Кантора $c\in \bigcap_{k=1}^{+\infty} [a_k,b_k]$

$$\begin{cases} 0 \le b_n - c \le b_n - a_n \\ 0 \le c - a_n \le b_n - a_n \end{cases} \Rightarrow \begin{cases} b_n - c \to 0 \\ c - a_n \to 0 \end{cases} \Rightarrow \begin{cases} b_n \to c \\ a_n \to c \end{cases}$$

По теореме об единственности предела c однозначно определено.

Определение. $E \subset \mathbb{R}$. E — огр. сверху, если $\exists M \in \mathbb{R} \ \forall x \in E \ x \leq M$. Кроме того, всякие такие M называются верхними границами E.

Аналогично ограничение снизу.

Определение. $E \subset \mathbb{R}, E \neq \emptyset$.

Для E — огр. сверху супремум (sup E)— наименьшая из верхних границ E.

Для E — огр. снизу инфимум (inf E) — наибольшая из нижних границ E.

Примечание. Техническое описание супремума: $b = \sup E \Leftrightarrow \begin{cases} \forall x \in E \ x \leq b \\ \forall \varepsilon > 0 \ \exists x \in E \ b - \varepsilon < x \end{cases}$

Аналогично для inf

Определение. $M = \max E : M \in E \ \forall x \in E \ x \leq M$

Теорема 3. О существовании супремума.

 $E \subset \mathbb{R}, E \neq \emptyset, E$ – orp. cbepxy.

Тогда $\exists \sup E \in \mathbb{R}$

Доказательство. Строим систему вложенных отрезков $[a_k, b_k]$ со свойствами:

- 1. b_k верхняя граница E
- 2. $[a_k, b_k]$ содержит точки E.

 a_1 — берём любую точку E, b_1 — любая верхняя граница.

Границы следующего отрезка найдём бинпоиском (математики это называют половинное деление).

Если $\frac{a_1+b_1}{2}$ — верхняя граница E, $[a_2,b_2]:=[a_1,\frac{a_1+b_1}{2}].$

Иначе на $[\frac{a_1+b_1}{2},b_1]$ есть элементы $E,[a_2,b_2]:=[\frac{a_1+b_1}{2},b_1]$

Длина $[a_k,b_k]=b_k-a_k=rac{b_1-a_1}{2^{k-1}} o 0$

 $\exists!c\in\bigcap[a_k,b_k]$

Проверим: $c = \sup E$ по техническому описанию супремума:

1. $\forall x \in E \ \forall n \ x < c$

2. $\forall \varepsilon > 0$ $c - \varepsilon$ — не верхн. гран., т.е. $\exists n : c - \varepsilon < a_n$

Доказательство 1: $\forall n \ x \leq b_n, x \to x, b_n \to c \Rightarrow x \leq c$ (предельный переход)

Доказательство 2: $\forall \varepsilon > 0$ возьмём n : длина отрезка = $b_n - a_n < \varepsilon$.

$$c - a_n < b_n - a_n < \varepsilon$$

$$c - \varepsilon < a_n$$

5