

Demystifying AI for Transportation Planners: Bridging Research and Practice

Henan (Bety) Zhu

Yajun Liu

Dr. Xuesong (Simon) Zhou

Arizona State University Contact: xzhou74@asu.edu

- Introduction
- The Architecture of Open-TI
- Sub-module Embodiment
- Experiment
- Acknowledgments

Introduction

Introduction

How to bridge that gap?

- Unifying the simulation and analysis process by a standard ecosystem like General Modeling Network Specification (GMNS) to define a common format for sharing routable road network files and is designed for multimodal static and dynamic transportation planning and operations.
- Building an intelligent system with self-explain abilities, which is integrated with multiple domain-specific tasks and the corresponding frontier solutions: state-of-the-art algorithms, powerful simulators, etc., and can be easily executed with sufficient explanations in an interactive way.

Introduction

5 stages of Transportation intelligence:

Transportation intelligence develops across five stages, from rule-based modeling to dynamic and predictive simulation, Al-enhanced intelligence, and ultimately Turing Indistinguishability with human-like decision-making.

Large language models (LLMs) advance stage four, while Augmented Language Models (ALMs) extend tool use and analysis.

We propose Open-TI, a prototype traffic agent combining dialogue, intent understanding, analysis, and interpretability for research and practice.

Source: Open-TI

The Architecture of Open-TI

Overview of Open-TI

Open-TI for Intelligent Traffic Planning and Simulation

- Prompt or question (top left)
- Hints of questions (middle left)
- Thought and action
- Response and chat history

Reference: Da, L., Liou, K., Chen, T., Zhou, X., Luo, X., Yang, Y., & Wei, H. (2024). Open-ti: open traffic intelligence with augmented language model. Int. J. Mach. Learn. & Cyber.

Overview of Open-TI

The core of Open-TI mainly incorporates three modules: **Analysis and Simulation**, **Task Specific Embodiment** and **Zero Control** to enhance the intelligent traffic analysis and planning.

Copyright © 2025 Arizona Board of Regen

Integrate Network, Demand and Supply Elements based on GMNS

Source: ASU Trans+Al Lab. https://github.com/asu-trans-ai-lab

Open-Source Ecosystems

Download OSM data

https://osm2gmns.readthedocs.io/en/latest/quick-start.html

Get a network in GMNS format

- >>> import osm2gmns as og
- >>> net = og.getNetFromFile('asu.osm')
- >>> og.outputNetToCSV(net)

Consolidate Intersections

>>> og.consolidateComplexIntersections(net)

Generate movements at intersections

>>> og.generateMovements(net)

Network Types and POI

Source: ASU Trans+Al Lab. https://github.com/asu-trans-ai-lab

Sub-module Embodiment

Pivotal Agent for Transportation Analysis

In this module, analysis is enabled through seamless integration of augmented tools with the core operation agent. When users request related tasks, Open-TI automatically selects the most suitable option, as illustrated in the example.

The supported external tools and packages are shown as follows:

Name	Functions	Versions
osm2gmns	obtain networks from OSM and convert to GMNS	V-0.7.3
grid2demand	Origin-destination trans demand generate	V-0.3.6
DLSim-MRM	Multi-resolution Traffic Simulation	V-0.2.11
Libsignal	Multi-simulator platform for Traffic Signal Control	V-1.0.0

Source: ASU Trans+Al Lab. https://github.com/asu-trans-ai-lab

Task-Specific Embodiment

In the realization of traffic signal control embodiment, we seamlessly integrated the Libsignal that could realize the cross-simulator traffic signal control over the majority of baseline methods, including the rule-based approaches (Fixed Time and Self-organizing traffic lights - SOTL) and reinforcement-learning-based approaches as shown below.

Source: Open-TI

Experiment

Language Agent Analysis on the API Calls

We conduct the functionality-level experiments of API analysis and compare them with the baseline method known as TrafficGPT.

Experiment Design:

First, we analyze three types of API call abnormal behaviors, namely 'No API Call Rate', 'API Mismatching Rate', and 'Error Raise Rate'. Both Open-TI and TrafficGPT are equipped to handle a range of tasks spanning geographical information, simulation, and traffic signal control. Although the specific functions of Open-TI and TrafficGPT are slightly different, we are still able to evaluate the overall API access stability. We adopted T = 6 similar tasks to conduct the comparison by testing each task 20 times. And calculate the error rate follow the equation 1:

Error rate =
$$\frac{1}{T} \sum_{t=1}^{T} \frac{n_t^e}{n_t^c} = \frac{1}{T} \sum_{t=1}^{T} \frac{1}{n_t^c} \sum_{t=1}^{T} (c_t^{no}, c_t^{miss}, c_t^{error})$$
 (1)

where n_t^e represents the number of error occurrences for task t during total tests, nc denotes the number of total testing instances, (i.e., $n_c = 20$ for this experiment), c_t^{no} is the sum of errors caused by the absence of API calls for task t among all tests, similarly, c_t^{miss} is the sum of mismatching error times, c_t^{error} is the number of error raising times, and exist $n_t^e = c_t^{no} + c_t^{miss} + c_t^{error}$.

Reference: Da, L., Liou, K., Chen, T., Zhou, X., Luo, X., Yang, Y., & Wei, H. (2024). Open-ti: open traffic intelligence with augmented language model. Int. J. Mach. Learn. & Cyber.

Language Agent Analysis on the API Calls

The comparison is conducted on the average value over 20 times. The sum of the 3 types of error rates in Open-TI and TrafficGPT are 8.3% and 19.2%, calculated by aggregation of the three types of error rates in two systems respectively.

Copyright © 2025 Arizona Board of Regent

Acknowledgments

Acknowledgments

Longchao Da, Kuanru Liou, Tiejin Chen

Dr. Yezhou Yang, Dr. Hua Wei

School of Computing and Augmented Intelligence, Arizona State University (USA)

Dr. Xiangyong Luo

School of Sustainable Engineering and the Built Environment, Arizona State University (USA)

Key Tools and Resources

osm2gmns (PyPI)

https://pypi.org/project/osm2gmns/

A high-performance package to convert OpenStreetMap (OSM) data into standardized GMNS transportation networks.

path4gmns (PyPI)

https://pypi.org/project/path4gmns/

An efficient framework for path-based modeling, supporting shortest paths, demand modeling, and related applications.

> DTALite (GitHub)

https://github.com/asu-trans-ai-lab/DTALite

An open-source AMS library for macroscopic and mesoscopic traffic assignment using GMNS format.

grid2demand (GitHub)

https://github.com/asu-trans-ai-lab/grid2demand

A tool for generating zone-to-zone travel demand based on grid cells or TAZs using a gravity model.

Reference Paper:

Da, L., Liou, K., Chen, T., Zhou, X., Luo, X., Yang, Y., & Wei, H. (2024). Open-TI: Open traffic intelligence with augmented language model. International Journal of Machine Learning and Cybernetics.

Lab Website: https://github.com/asu-trans-ai-lab

