Program współbieżny

Program rozproszony

Program rozproszony i współbieżny

Rozpraszanie

- Poprawa wydajności.
 Pozwala uzyskać współbieżność na komputerach sekwencyjnych. Zbiór komputerów połączonych siecią tworzy wirtualny komputer równoległy w architekturze typu message passing.
- Dostępność zasobów.
 Część programu działa w lokalizacji, w której dostępne są zasoby niezbędne do wykonania zadania.

Założenia

- Przezroczystość
 Wywołania zdalne powinny w jak największym stopniu przypominać wywołania lokalne.
- Wydajność
 Narzut samego wywołania zdalnego
 podprogramu powinien być jak najmniejszy.
- Reprezentacja
 Dane powinny być poprawnie interpretowane
 po obu stronach wywołania.

Przykład 1 – łamanie szyfru

Łamanie szyfru

Dane:
 jawny tekst
 szyfrogram
 [długość klucza]

 Szukane: klucz, którym zakodowano wiadomość do postaci szyfrogramu

Metoda brute force

- klucz := pierwszy klucz
- while klucz <> null do
 - if odszyfruj(szyfrogram, klucz) == wiadomość then return klucz else klucz := następny klucz
- return "nie znaleziono"

Zrównoleglenie brute force

Zrównoleglenie i rozproszenie

- pocz_klucz := pierwszy początek klucza
- repeat
 - sprawdź czy któryś z serwerów znalazł klucz
 - serwer := pierwszy wolny serwer
 - zleć szukanie klucza o początku pocz_klucz serwerowi serwer
 - pocz_klucz := następny początek klucza
- until znaleziono klucz or pocz_klucz == null

Przykład 2 - P2P

P2P – szukam pliku

P2P – pobieram plik

