# funcapprox

February 23, 2017

## 1 Function Approximation

Sciences Po, Spring 2016

#### 1.1 Outline

- 1. Overview of Approximation Methods
  - 1. Interpolation
  - 2. Regression
- 2. Polynomial Interpolation
- 3. Spline Interpolation
- 4. Multidimensional Approximation

### 1.2 Approximation Methods

- Confronted with a non-analytic function f (i.e. something not like log(x)), we need a way to numerically represent f in a computer.
  - If your problem is to compute a value function in a dynamic problem, you don't have an analytic representation of *V*.
  - If you need to compute an equilibrium distribution for your model, you probably can't tell it's from one parametric family or another.
- Approximations use *data* of some kind which informs us about f. Most commonly, we know the function values  $f(x_i)$  at a corresponding finite set of points  $X = \{x_i\}_{i=1}^N$ .
- The task of approximation is to take that data and tell us what the function value is at  $f(y), y \notin X$ .
- To an economist this should sound very familiar: take a dataset, learn it's structure, and make predictions.
- The only difference is that we can do much better here, because we have more degree's of freedom (we can choose our X in  $Y = \beta X + \epsilon$ )

#### 1.3 Some Classification

• Local Approximations: approximate function and it's derivative f, f' at a *single* point  $x_0$ . Taylor Series:

$$f(x) = f(x_0) + (x - x_0)f'(x_0) + \frac{(x - x_0)^2}{2}f''(x_0) + \dots + \frac{(x - x_0)^n}{n!}f^n(x_0)$$