COMS10003 **Proof Strategies**

Kerstin Eder

Introduction

- A proof is an argument that demonstrates a result beyond reasonable doubt, ideally, beyond all doubt.
- In practice, due to lack of space/time, proofs are rarely given as a complete sequence of logical steps.
 - It is "obvious" that...
 - ... is "trivial".
- Proofs can be hard to follow and can contain mistakes.

Proof Strategies

- Several proof strategies, e.g.
 - Direct proof
 - Proof by contradiction
 - Existence proofs
 - Contrapositives and Counterexamples
 - Proof by exhaustion
 - (Mathematical induction)
- Find the easiest or most elegant proof

Direct Proof

- A proof that follows a sequence of logical statements from a set of assumptions leading to the desired conclusion.
- Standard argument uses basic rules of inference like Modus Ponens.
 - Aim to show Q is true.
 - We know that if P is true then Q is true.
 - We can prove P to be true.
 - Therefore, by MP, Q must be true.

Direct Proof

More formally:

- We are using P → Q in our proof.
- If P is false, then the implication is always true.
- In a direct proof, we assume that P is true, and show that Q must therefore be true.

Direct Proof: Example

"The square of every positive even number is divisible by four."

Formalization:

transform into an "if...then..." statement
"If n is a positive even number then its square, n², is divisible by four."

P:

Q:

Direct Proof: Example

"The square of every positive even number is divisible by four."

"If n is a positive even number then its square, n², is divisible by four."

- A number, n, that is even and positive can be written as n=2k, with $k \in \mathbb{N}$.
- $(2k)^2 = 4k^2$ is divisible by four. \odot

Direct Proof: Example

"If n is odd, then n² is odd."

Observation

• The implication P → Q is logically equivalent to:

Р	Q	P→Q	Q→P	$\neg P \rightarrow \neg Q$	$\neg Q \rightarrow \neg P$
F	F				
F	Т				
Т	F				
Т	Т				

$$\neg Q \rightarrow \neg P$$

Contrapositives

- Note that the implication P → Q is logically equivalent to ¬Q → ¬P.
- Therefore, P → Q can be proved by demonstrating that its contrapositive is true.
- An indirect proof is a proof of the contrapositive.

Contrapositives: Example

"If 3n+2 is odd, then n is odd."

- Assume that conclusion is false, i.e. assume that n is even.
- Then n=2k for some integer k.
- Now, 3n+2 = 3(2k)+2 = 6k+2 = 2 (3k+1), which is a multiple of two, so is even.

The negation of the conclusion of the implication leads to a false hypothesis.

Therefore, the original implication is true.

Contrapositives: Example

"If n² is odd, then n is odd."

- Formalize:
 - P:
 - Q:
 - $-P \rightarrow Q$:
- Contrapositive:
 - "If n is even, then n² is even."
 - n = 2k for some integer k
 - $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$ is a multiple of two, so is even.
- Therefore, the original statement is true.

Vacuous Proof

- We are trying to prove $P \rightarrow Q$.
- But P is false.
 - Then in both cases, F → F and F → T, the implication is true.
- If P can be shown to be false, then a vacuous proof of P → Q can be given.

"For n=0, show that if n>1, then $n^2 > n$."

- "If 0>1, then $0^2>0$." This is vacuously true.

Trivial Proof

- We are trying to prove $P \rightarrow Q$.
- We know that Q is true.
 - Then in both cases, F → T and T → T, the implication is true.
- If Q can be shown to be true, then a trivial proof of P → Q can be given.

"For n=0, show that if $a \ge b$, then $a^n \ge b^n$."

- "If a ≥ b, then $a^0 \ge b^0$ " is trivially true.

Proof by Contradiction

- Given a statement S, assume it is false.
- Prove that ¬S leads to false.

Intuition:

- To show that S must be true, suppose it is not true, instead, assume the negation of S was true.
- Demonstrate that a consequence of this assumption is a statement that is known to be false.
- This shows that your assumption must have been false, so S is therefore true.

Proof by Contradiction: Example

Theorem (by Euclid):

"There are infinitely many prime numbers."

- Proof:
 - Assume there is a finite number of primes.
 - List them in sequence: p₁, p₂, p₃, ..., p_n.
 - Now, consider $x = p_1p_2p_3...p_n + 1$.
 - x is not divisible by any of the primes in our list.
 - Dividing x by any of the primes in our list leaves a remainder of 1!
 - We know that all non-prime numbers can be written as products of primes.
 - The only divisors of x are 1 and x itself.
 - Therefore, x must be a prime not in our list.
 - This contradicts our assumption.
 - Therefore, there are infinitely many prime numbers.

Proof by Contradiction

- For a statement P → Q you only need to consider the case when P is true and Q is false:
 - To prove P → Q, assume its negation is true, i.e. \neg (P → Q).
 - Note that ¬(P → Q) = ¬(¬P \vee Q) = P \wedge ¬Q.
 - If we can show that $P \land \neg Q$ leads to a contradiction (such as $P \land \neg P$ or $\neg Q \land Q$), then we can conclude that $P \land \neg Q$ must be false.
 - Therefore, $P \rightarrow Q$ must be true.

Proof by Contradiction

More formally, proof by contradiction is based on the following logical equivalences:

For P and Q propositions,

•
$$(\neg(P \rightarrow Q) \rightarrow \neg P) \iff (P \rightarrow Q)$$
, i.e. $((P \land \neg Q) \rightarrow \neg P) \iff (P \rightarrow Q)$ or

•
$$(\neg(P \rightarrow Q) \rightarrow Q) \iff (P \rightarrow Q)$$
, i.e. $((P \land \neg Q) \rightarrow Q) \iff (P \rightarrow Q)$.

(SSE: If this is not intuitive, write the truth tables for the above equivalences.)

Existence Proofs

- To prove a statement ∃xP(x), we only need to show that P(n) for some n.
- Two types of proof:
 - In constructive proof we find a specific value of n for which P(n) holds.
 - In non-constructive proof we show that such an n exists, but we don't actually find it.
 - Strategy:
 - Assume that it does not exist and derive a contradiction.

Constructive Existence Proof: Examples

"A square exists that is the sum of two other squares."

• Proof: $3^2 + 4^2 = 5^2$

"A cube exists that is the sum of three other cubes."

• Proof: $3^3 + 4^3 + 5^3 = 6^3$

Uniqueness Proofs

- If a theorem states that only one such value exists, then we must demonstrate:
 - Existence: that such a value exists, and
 - Uniqueness: that there is only one such value.

"If the equation 5x + 3 = a has a solution, then it is unique."

- Existence: 5x+3 = a, yields x = (a-3)/5
- Uniqueness: $5x_1+3 = 5x_2+3 = a$, yields $x_1=x_2$

Counter examples

- Given a statement ∀xP(x), find a single example for which it is not true.
 - "Every positive integer is the square of another positive integer."
 - Need to find a number for which the square root is not an integer.

Note:

- One can disprove a statement with a single counter example.
- But, one can't prove a statement by example.
- Prove that "all numbers are even."

Proof by Exhaustion

- The problem is split into subcases.
 - Proof by Exhaustion is sometimes called a case spit.
- Each subcase is proven individually.
- More formally:
 - Show that $(P_1 \vee P_2 \vee P_3 \vee ... \vee P_n) \rightarrow Q$
 - by demonstrating that

$$-P_1 \rightarrow Q \land P_2 \rightarrow Q \land P_3 \rightarrow Q \land ... \land P_n \rightarrow Q$$

- Need to make sure we include ALL cases.
- There is no limit to the number of cases. ©

Mathematical Induction

- Show that the statement holds for n=1, i.e. prove P(1).
 - If P(n) holds from n=0, then prove P(0).
- Assume P(k) is true for some $k \ge 1$.
 - To obtain P(k) from P(n) set n=k in P(n).
 - This is simply a syntactic replacement of n with k in P(n).
- Prove that if P(k) is true, then P(k+1) is true.
- Based on P(1) being true and P(k) → P(k+1) being true, we can now conclude P(2).
 - Based on P(2) and P(k) \rightarrow P(k+1), we can derive P(3).
 - Based on P(3) and P(k) \rightarrow P(k+1), we can derive P(4).
 - **–** ...
- This establishes P(n) for all n by the principle of mathematical induction.

Summary

- Proof strategies:
 - Direct proof
 - Proof by contradiction
 - Existence proofs
 - Contrapositives and Counter examples
 - Proof by exhaustion (case split)
 - (Mathematical induction)
- Workshop: Practice individual strategies