本节内容

检错编码

(循环冗余校验码)

本节总览

CRC码的基本思想

循环冗余校验码 (CRC码) 如何构造

如何检错纠错

循环冗余校验(Cyclic Redundancy Check,CRC)

循环冗余校验码的基本思想

数据出错导致余数改变——检测到错误

循环冗余校验码的思想:

数据发送、接受方约定一个"除数"

K个信息位+R个校验位作为"被除数",添加校验位后需保证除法的余数为0

收到数据后,进行除法检查余数是否为0

若余数非0说明出错,则进行重传或纠错

【例2-5】设生成多项式为 $G(x)=x^3+x^2+1$,信息码为101001,求对应的CRC码。

1. 确定K、R以及生成多项式对应的二进制码

K=信息码的长度=6, R=生成多项式最高次幂=3 → 校验码位数N=K+R=9

生成多项式 $G(x) = 1 \cdot x^3 + 1 \cdot x^2 + 0 \cdot x^1 + 1 \cdot x^0$,对应二进制码1101

2. 移位

1101 101001000

信息码左移R位,低位补0

3. 相除

对移位后的信息码,用生成多项式进行<mark>模2除</mark>法,产生余数

【例2-5】设生成多项式为 $G(x)=x^3+x^2+1$,信息码为101001,求对应的CRC码。

对应的CRC码:

101001 001

【例2-5】设生成多项式为 $G(x)=x^3+x^2+1$,信息码为101001,求对应的CRC码。

1. 确定K、R以及生成多项式对应的二进制码

K = 信息码的长度 = 6,R = 生成多项式最高次幂 = 3 → 校验码位数N = K + R = 9 生成多项式 $G(x) = 1 \cdot x^3 + 1 \cdot x^2 + 0 \cdot x^1 + 1 \cdot x^0$,对应二进制码1101

2. 移位

信息码左移R位,低位补0

3. 相除

对移位后的信息码,用生成多项式进行<mark>模2除</mark>法,产生余数对应的CRC码: 101001 001

4. 检错和纠错

【例2-5】设生成多项式为 $G(x)=x^3+x^2+1$,信息码为101001,求对应的CRC码。

3. 相除

对移位后的信息码,用生成多项式进行模2除法,产生余数

对应的CRC码: 101001 001

4. 检错和纠错

发送: 101001001 记为C₉C₈C₇C₆C₅C₄C₃C₂C₁

接收: 101001001 用1101进行模2除 余数为000,代表没有出错

接收: 101001011 用1101进行模2除 余数为010, 代表C2出错

接收: 101001001 用1101进行模2除 余数为000,代表没有出错

接受	余数	出错位
101001 01 <mark>0</mark>	001	1
101001 0 <mark>1</mark> 1	010	2
101001 <mark>1</mark> 01	100	3
101000 001	101	4
101011 001	111	5
101 <mark>1</mark> 01 001	011	6
10 <mark>0</mark> 001 001	110	7
1 <mark>1</mark> 1001 001	001	8
<mark>0</mark> 01001 001	010	9

信息位: 0100

生成多项式: G(x)=x³+x²+1 (1101)

0100 000 对 1101 模 二除,余数为 011

CRC码: 0100 011

接受	余数	出错位
<i>0100</i> 01 <mark>0</mark>	001	1
<i>0100</i> 0 <mark>1</mark> 1	010	2
<i>0100</i> 1 01	100	3
<i>010</i> 1 001	101	4
<i>01<mark>1</mark>0</i> 001	111	5
0000 001	011	6
1 100 001	110	7

对于确定的生成多项式,出 错位与余数是相对应的

理论上可以证明循环冗余校验码的检错能力有以下特点:

- 1)可检测出所有奇数个错误;
- 2) 可检测出所有双比特的错误;
- 3) 可检测出所有小于等于校验位长度的连续错误;

实际应用中一般只用来"检错"

K个信息位,R个校验位,若生成多项式选择得当,且2^R≥K+R+1,则CRC码可纠正1位错

知识回顾

由生成多项式确定"除数"。若生成多项式中x的最高次为R,则"除数"有R+1位 K个信息位+R个O, 作为"被除数" 构造 被除数、除数 进行"模二除",得R位余数 K个信息位+R位余数 = CRC码 收到K+R位数据,与生成多项式模二除,计算R位余数 校验 余数为0,说明无错误 余数非O,说明出错 1) 可检测出所有奇数个错误; 2) 可检测出所有双比特的错误; 检错、纠错能力

3) 可检测出所有小于等于校验位长度的连续错误;

4) 若选择合适的生成多项式,且2^R≥ K+R+1,则可纠正单比特错

循环冗余校验码

王道考研/CSKAOYAN.COM