0

CSE 4/574 Project 1 (part 1)

Regression on Page Relevancy

0

0

CSE4/574 Machine Learning TA: Yu Liu yl73@buffalo.edu

Web search ranking

Goal: given queries and a documents/urls, estimate the Web search results (relevance) of the pages to the queries.

Regression on Page Relevancy

Not Ranking!!

Goal: Train a regression model based on query-url pair datasets, then predict the page relevancy labels for new coming queries.

Binary / multiple levels of relevance (Bad, Fair, Good, Excellent, Perfect, ...)

Datasets

Large scale real world learning to rank (LTR) datasets that has been released:

	Queries	Doc.	Rel.	Feat.	Year
Letor3.0 – Gov	575	568k	2	64	2008
Letor3.0 – Ohsumed	106	16k	3	45	2008
Letor4.0	2476	85k	3	46	2009
Yandex	20267	213k	5	245	2009
Yahoo	36251	883k	5	700	2010

Letor4.0 Dataset

LETOR is a package of benchmark data sets for research on Learning To Rank released by Microsoft Research Asia.

- The latest version, 4.0, can be found at http://research.microsoft.com/en-us/um/beijing/projects/letor/letor4dataset.aspx (It contains 8 datasets for four ranking settings derived from the two query sets and the Gov2 web page collection.)
- For this project, one dataset of <u>MQ2008</u> is used (supervised ranking):

"Querylevelnorm.txt" (15211 urls/samples in total)

Letor4.0 Dataset

Sample rows from the MQ2008 dataset:

```
Querylevelnorm.txt
                                               0 gid:10002 1:0.007477 2:0.000000 3:1.0000
                                               0 qid:10002 1:0.603738 2:0.000000 3:1.0000
0 qid:10002 1:0.214953 2:0.000000 3:0.0000
                                              00 46:0.021127 #docid = GX044-30-4142998 inc = 0.00841930701072746 pr
                                              00 46:0.000000 #docid = GX228-42-3888699 inc = 0.00841930701072746 pr
0 gid:10002 1:0.000000 2:0.000000 3:1.0000
0 qid:10002 1:1.000000 2:1.000000 3:0.0000
                                              67 46:0.000000 #docid = GX229-14-12863205 inc = 1 prob = 0.0410162
                                              67 46:0.021127 #docid = GX240-35-2775348 inc = 0.0163988344071652 pro
0 qid:10002 1:0.008411 2:0.000000 3:0.0000
                                              33 46:0.007042 #docid = GX246-16-5503229 inc = 1 prob = 0.133097
0 qid:10002 1:0.005607 2:0.500000 3:1.0000
0 qid:10002 1:0.259813 2:1.000000 3:0.0000
                                              33 46:0.035211 #docid = GX255-50-7550514 inc = 1 prob = 0.111686
                                              00 46:0.153846 #docid = GX010-65-7921994 inc = 0.00137811889937823 pr
0 qid:10032 1:0.021201 2:0.000000 3:1.0000
                                              00 46:0.461538 #docid = GX024-71-0000000 inc = 1 prob = 0.0894792
0 qid:10032 1:0.000000 2:0.000000 3:0.0000
                                              00 46:0.000000 #docid = GX029-17-16711721 inc = 1 prob = 0.0825829
0 qid:10032 1:0.007067 2:0.000000 3:0.6666
                                              00 46:0.076923 #docid = GX029-35-5894638 inc = 0.0119881192468859 pro
2 qid:10032 1:0.056537 2:0.000000 3:0.6666
                                              00 46:1.000000 #docid = GX030-77-6315042 inc = 1 prob = 0.341364
0 qid:10032 1:0.279152 2:0.000000 3:0.0000
                                              09 46:1.000000 #docid = GX140~98-13566007 inc = 1 prob = 0.0701303
0 qid:10032 1:0.130742 2:0.000000 3:0.3333
                                              1 qid:10032 1:0.593640 2:1.000000 3:0.0000
                                              00 46:0.000000 #docid = GX266-75-11189217 inc = 0.00240162628819282 p
0 qid:10032 1:1.000000 2:0.000000 3:0.0000
0 qid:10035 1:0.643564 2:0.000000 3:0.4285
                                              00 46:0.750000 #docid = GX026-92-0492427 inc = 1 prob = 0.260843
                                              00 46:0.166667 #docid = GX031-29-0590777 inc = 0.00960272095977389 pr
0 qid:10035 1:0.039604 2:0.000000 3:0.0000
                                              00 46:0.166667 #docid = GX046-28-2590531 inc = 0.0121050330659901 pro
0 qid:10035 1:0.891089 2:1.000000 3:1.0000
                                              .00 46:0.000000    #docid = GX058-84-15460908    inc = 1    prob = 0.115017
0 gid:10035 1:0.000000 2:0.000000 3:0.4285
                                              00 46:1.000000 #docid = GX072-27-16566993 inc = 0.00370129850418619 p
0 gid:10035 1:0.356436 2:0.750000 3:0.4285
                                              00 46:0.000000 #docid = GX187-61-14052950 inc = 1 prob = 0.0895514
0 gid:10035 1:0.039604 2:0.000000 3:0.0000
0 qid:10035 1:0.326733 2:0.000000 3:0.0000
                                              00 46:0.000000 #docid = GX259-93-1304063 inc = 1 prob = 0.211328
                                              00 46:0.000000 #docid = GX271-73-0262448 inc = 0.00279108757203101 pr
0 gid:10035 1:1.000000 2:0.000000 3:0.0000
                                              00 46:0.205128 #docid = GX004-58-2379388 inc = 0.00787784586285098 pr
0 gid:10036 1:0.000000 2:0.000000 3:0.0000
                                              80 46:0.307692 #docid = GX026-91-0752750 inc = 1 prob = 0.0694043
0 gid:10036 1:0.152610 2:0.000000 3:0.0000
                                              00 46:0.282051 #docid = GX030-76-8940205 inc = 1 prob = 0.637585
1 gid:10036 1:0.040161 2:0.000000 3:1.0000
1 qid:10036 1:0.461847 2:0.000000 3:0.0000
                                              93 46:0.025641 #docid = GX033-48-15177030 inc = 0.00457731740633636 p
                                              80 46:1.000000 #docid = GX038-50-12242635 inc = 0.00655269450534177 p
0 gid:10036 1:0.156627 2:0.000000 3:0.0000
                                              00 46:0.025641 #docid = GX051-80-1956661 inc = 1 prob = 0.790266
1 gid:10036 1:0.112450 2:0.000000 3:1.0000
0 qid:10036 1:0.546185 2:0.000000 3:0.0000
                                              74 46:0.051282 #docid = GX253-71-1712302 inc = 1 prob = 0.495703
                                              87 46:0.000000 #docid = GX263-77-2918505 inc = 0.00885951241812525 pr
0 gid:10036 1:1.000000 2:0.000000 3:0.0000
                                              00 46:0.055556 #docid = GX005-79-12987050 inc = 0.0367750156613992 pr
O gid:10050 1:0.104089 2:1.000000 3:0.3333
0 qid:10050 1:1.000000 2:0.000000 3:1.0000
                                              00 46:0.166667 #docid = GX012-00-14776414 inc = 1 prob = 0.266764
                                              00 46:1.000000 #docid = GX012-24-11313254 inc = 0.00132536849683004 p
0 qid:10050 1:0.111524 2:0.500000 3:0.0000
                                              00 46:0.000000 #docid = GX054-01-12862186 inc = 1 prob = 0.0647587
O gid:10050 1:0.000000 2:0.000000 3:0.3333
                                              00 46:0.333333 #docid = GX054-03-7475558 inc = 0.00398987983127586 pr
0 aid:10050 1:0 003717 2:0 000000 3:0 0000
```

Letor4.0 Dataset

Sample rows from the MQ2008 dataset:

```
Querylevelnorm.txt
                                              00 46:0.007042 #docid = GX008-86-4444840 inc = 1 prob = 0.086622
0 gid:10002 1:0.007477 2:0.000000 3:1.0000
                                              0 qid:10002 1:0.603738 2:0.000000 3:1.0000
                                              00 46:0.021127 #docid = GX044-30-4142998 inc = 0.00841930701072746 pr
0 qid:10002 1:0.214953 2:0.000000 3:0.0000
                                              00 46:0.000000 #docid = GX228-42-3888699 inc = 0.00841930701072746 pr
0 gid:10002 1:0.000000 2:0.000000
                                              67 46:0.000000 #docid = GX229-14-12863205 inc = 1 prob = 0.0410162
0 qid:10002 1:1.000000 2:1.000000 3:0.0000
                                              67 46:0.021127 #docid = GX240-35-2775348 inc = 0.0163988344071652 pro
O gid:10002 1:0.008411 2:0.000000 3:0.0000
                                                46.0 007042 #dooid - CV246 16 EE02220 inc - 1 prob = 0.133097
                                                                                               ob = 0.111686
0 qid:10002 1:/
                                                                                                37811889937823 pr
0 qid:10032 1
0 gid:10032 1
                                                                                                 = 0.0894792
                   The first column is relevance label of this pair. The larger the relevance label,
                                                                                                bb = 0.0825829
0 qid:10032 1
                                                                                                9881192468859 pro
2 gid:10032
                   the more relevant the query-document pair.
                                                                                                b = 0.341364
0 qid:10032 1
                                                                                                bb = 0.0701303
0 qid:10032 1
                   Judgments \in \{0; 1; 2\}
                                                                                                6292023050293 pro
1 qid:10032 1
0 qid:10032 1
                   The second column is query id,
                                                                                                240162628819282 p
                                                                                                Ь = 0.260843
0 qid:10035 1
                   The following 46 columns are features. A query-document pair is represented
                                                                                                60272095977389 pr
0 qid:10035 1
                                                                                                1050330659901 pro
0 qid:10035 1
                   by a 46-dimensional feature vector of real numbers in the range 0 to 1.
                                                                                                bb = 0.115017
0 qid:10035 1
                                                                                                370129850418619 p
0 qid:10035 1
                   The end of the row is a comment about the pair, including id of the document.
                                                                                                bb = 0.0895514
0 qid:10035 1
                                                                                                Ь = 0.211328
0 qid:10035 1
0 gid:10035 1:
                                                                                               787784586285098 pr
0 qid:10036 1:0
                                              0 gid:10036 1:0.152610 2:0.000000 3:0.0000
                                              00.46:0.282051 #docid = GX030-76-8940205 inc = 1 prob = 0.637585
1 gid:10036 1:0.040161 2:0.000000 3:1.0000
                                              93 46:0.025641 #docid = GX033-48-15177030 inc = 0.00457731740633636 p
1 gid:10036 1:0.461847 2:0.000000 3:0.0000
0 qid:10036 1:0.156627 2:0.000000
                                              80 46:1.000000 #docid = GX038-50-12242635 inc = 0.00655269450534177 p
                                              00 46:0.025641 #docid = GX051-80-1956661 inc = 1 prob = 0.790266
1 gid:10036 1:0.112450 2:0.000000 3:1.0000
0 qid:10036 1:0.546185 2:0.000000 3:0.0000
                                              74 46:0.051282 #docid = GX253-71-1712302 inc = 1 prob = 0.495703
                                              87 46:0.000000 #docid = GX263-77-2918505 inc = 0.00885951241812525 pr
0 qid:10036 1:1.000000 2:0.000000
                                              00 46:0.055556 #docid = GX005-79-12987050 inc = 0.0367750156613992 pr
0 gid:10050 1:0.104089 2:1.000000
                                              00 46:0.166667 #docid = GX012-00-14776414 inc = 1 prob = 0.266764
0 qid:10050 1:1.000000 2:0.000000
                                              00 46:1.000000 #docid = GX012-24-11313254 inc = 0.00132536849683004 p
0 qid:10050 1:0.111524
                     2:0.500000
                                              00 46:0.000000 #docid = GX054-01-12862186 inc = 1 prob = 0.0647587
```

Features

Given a query and a document, construct a feature vector (normalized between 0 and 1)

Caluma in Outnut	Description
Column in Output	Description
1	TF(Term frequency) of body
2	TF of anchor
3	TF of title
4	TF of URL
5	TF of whole document
6	IDF(Inverse document frequency) of body
7	IDF of anchor
8	IDF of title
9	IDF of URL
10	IDF of whole document
11	TF*IDF of body
12	TF*IDF of anchor
13	TF*IDF of title
14	TF*IDF of URL
15	TF*IDF of whole document
16	DL(Document length) of body
17	DL of anchor
18	DL of title
19	DL of URL
20	DL of whole document
21	BM25 of body
22	LMIR.ABS of body
23	LMIR.DIR of body
24	LMIR.JM of body
25	BM25 of anchor
26	LMIR.ABS of anchor
27	LMIR.DIR of anchor
28	LMIR.JM of anchor
29	BM25 of title
30	LMIR.ABS of title
31	LMIR.DIR of title
32	LMIR.JM of title
33	BM25 of URL
34	LMIR.ABS of URL
35	LMIR.DIR of URL
36	LMIR.JM of URL
37	BM25 of whole document
38	LMIR.ABS of whole document
39	LMIR.DIR of whole document
40	LMIR.JM of whole document
41	PageRank
42	Inlink number
43	Outlink number
44	Number of slash in URL
45	Length of URL
46	
40	Number of child page

Import Data Set

Matlab function: fopen, textscan, strfind, etc.

Read by line

```
File -> Import Data...
>> line_string = importedData{1} % imported data is nx1 cell
```

	Name Z	Value		Class	
	() Querylevelnorm	<15211x1 cell>		cell	
(or				
<pre>>> fid = fopen('dataset.txt'); >> data = textscan(fid, '%[^\n]'); >> line_string = data{1}{1};</pre>		% read by lines, d	lata is 1x1 (cell	

Name △	Value	Class
() data () data in cell	<1x1 cell>	cell
() data in cell	<15211x1 cell>	cell

Example of line in string [1x604 char]

Process Data Set (i)

Process the original data into a matrix containing relevance labels (the first column) and feature vectors. This input matrix (training data) will be feed into your regression model.

• LETOR 4.0

```
2 qid:10002 1:0.007477 2:0.000000 3:1.000000 4:0.000000 5:0.007470 ... 46:0.007042 #docid = GX008-86-4444840 inc = 1 prob = 0.086622
2 qid:10002 1:0.007477 2:0.000000 3:1.000000 4:0.000000 5:0.007470 ... 46:0.007042 #docid = GX008-86-4444840 inc = 1 prob = 0.086622
```

Process Data Set (ii)

For LETOR 4.0, you need partition the data set into three subsets.

Train/Validation/Test Sets

Linear Regression

Problem: We want a general way of obtaining a linear model (model is linear in the parameters) that fitted to observed data.

General set up:

Given a set of training examples (\mathbf{x}_n, t_n) , n = 1, ...NGoal: learn a function y(x) to minimize some loss function (error function): E(y,t)

Linear Basis function Model:

$$y(x, w) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(x) = \phi(x)w$$

- Typically, $\phi_0(x) = 1$, so that w_0 acts as a bias parameter.
- In the simplest case, we use linear basis functions : $\phi_i(x) = x_i$.

Linear Regression

$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix} \boldsymbol{t} = \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_N \end{pmatrix} \qquad \boldsymbol{w} = \begin{pmatrix} w_0 \\ w_1 \\ \vdots \\ w_{M-1} \end{pmatrix}$$

Estimation:

$$\mathbf{y}(\mathbf{x}, \mathbf{w}) = \Phi \mathbf{w}$$

Squared Error function:

$$E(\mathbf{y},\mathbf{t}) = (\Phi \mathbf{w} - \mathbf{t})^{\mathrm{T}} (\Phi \mathbf{w} - \mathbf{t})$$

Minimize error:

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} E(\mathbf{y}, \mathbf{t})$$

Least squares solution:

$$\nabla_{w} E = \Phi^{T} (\Phi w - t) = 0$$
$$\mathbf{w}^{*} = (\Phi^{T} \Phi)^{-1} \Phi^{T} t$$

Linear Basis Function Models

$$y(x, w) = \sum_{j=0}^{M-1} w_j \phi_j(x) = \phi(x)w$$

$$\phi_j(\boldsymbol{x}) = x^j$$

$$\phi_j(\mathbf{x}) = x^j$$
 $\phi_j(\mathbf{x}) = \exp\left\{-\frac{(x - \mu_j)^2}{2s^2}\right\}$ $\phi_j(\mathbf{x}) = \sigma\left(\frac{x - \mu_j}{s}\right)$

$$\phi_j(\mathbf{x}) = \sigma\left(\frac{x - \mu_j}{s}\right)$$

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

Linear Regression for Project

Project Goal: To predict the value of one or more continuous target variables t given the value of a D-dimensional vector x of input variables.

$$\boldsymbol{x} = \begin{pmatrix} x_1^1 & x_1^2 & \dots & x_1^D \\ x_2^1 & x_2^2 & & x_2^D \\ & \ddots & & \\ x_n^1 & x_n^2 & \dots & x_n^D \end{pmatrix} \qquad \boldsymbol{t} = \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_n \end{pmatrix}$$
 One dimensional: D = 1 (already encountered)

Find
$$\mathbf{w} = \begin{pmatrix} w_0 \\ w_1 \\ \vdots \\ w_2 \end{pmatrix}$$

Linear Regression for Project

Polynomial Basis Function (not required)

$$\phi_i(\mathbf{x}) = x^j$$

$$y(\boldsymbol{x},\boldsymbol{w}) = w_0 + \sum_{j=1}^{M-1} \sum_{i=1}^{D} w_{(i,j)} \phi_j(x_i)$$
Different orders of polynomial Sum over D dimension

$$\Phi(\mathbf{x}) = \begin{pmatrix}
1, x_1^1, x_1^2, ..., x_1^D, (x_1^1)^2, (x_1^2)^2, ..., (x_1^D)^2, ..., (x_1^1)^{M-1}, (x_1^2)^{M-1}, ..., (x_1^D)^{M-1} \\
\vdots \\
1, x_N^1, x_N^2, ..., x_N^D, (x_N^1)^2, (x_N^2)^2, ..., (x_N^D)^2, ..., (x_N^1)^{M-1}, (x_N^2)^{M-1}, ..., (x_N^D)^{M-1}
\end{pmatrix}$$

$$N \times ((M-1) \times D + 1) \text{ matrix}$$

w: (M-1)xD+1 dimension weight vector

Linear Regression for Project

Gaussian Basis Function

$$\phi_j(\mathbf{x}) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

$$y(\textbf{\textit{x}},\textbf{\textit{w}}) = w_0 + \sum_{j=1}^{M-1} \sum_{i=1}^{D} w_{(i,j)} \phi_j(\textbf{\textit{x}}_i)$$
Different Gaussian parameter settings
Sum over D dimension

$$\Phi(\mathbf{x}) = \begin{pmatrix} 1, \phi_1(x_1^1), \phi_1(x_1^2), \dots, \phi_1(x_1^D), \phi_2(x_1^1), \phi_2(x_1^2), \dots, \phi_2(x_1^D), \dots \phi_{M-1}(x_1^1), \phi_{M-1}(x_1^2), \dots, \phi_{M-1}(x_1^D) \\ \vdots \\ 1, \phi_1(x_N^1), \phi_1(x_N^2), \dots, \phi_1(x_N^D), \phi_2(x_N^1), \phi_2(x_N^2), \dots, \phi_2(x_N^D), \dots \phi_{M-1}(x_N^1), \phi_{M-1}(x_N^2), \dots, \phi_{M-1}(x_N^D) \end{pmatrix}$$

$$N \times ((M-1)xD + 1) \text{ matrix}$$

w: (M-1)xD+1 dimension weight vector

Sigmoid basis function: similar to Gaussian

Overfitting Issue

What can we do to curb overfitting?

- Use less complex model
- Use more training examples
- Regularization

Regularized Least Square

Add regularization term to error function to control over-fitting:

$$E(\mathbf{w}) = E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$$
Data dependent term Regularization term

Squared Error function:

$$E(\mathbf{w}) = (\mathbf{\Phi} \, \mathbf{w} - \mathbf{t})^{\mathrm{T}} (\mathbf{\Phi} \, \mathbf{w} - \mathbf{t}) + \frac{1}{2} \lambda \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

encourage small weight values!

Minimize error:

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} E(\mathbf{w})$$

Regularized Least squares solution:

$$\nabla_{\mathbf{w}} \mathbf{E} = \Phi^{\mathsf{T}} (\Phi \mathbf{w} - \mathbf{t}) + \lambda \mathbf{w} \qquad \Longrightarrow \qquad \mathbf{w}^* = (\Phi^{\mathsf{T}} \Phi + \lambda \mathbf{I})^{-1} \Phi^{\mathsf{T}} \mathbf{t}$$

Experimental Phases

Training

Determine format of your model

Train the model you have selected

learn weights w

Validation

Adjusting following:

of basis func. M Regularization λ Hyperparameter μ,s

etc.

Model with tuned parameters

Test

Evaluating the final model

Report test error

Unacceptable validation error

Model

Experimental Phases

Training

Determine format of your model

Train the model you have selected

learn weights w

Validation

Adjusting following:

of basis func. M Regularization λ Hyperparameter μ,s

etc.

Model with tuned parameters

Test

Evaluating the final model

Report test error

Unacceptable validation error

Model

Optimal solution?

Model complexity?

Evaluation Metrics

Express results as Root Mean Square Error: E_{RMS}

$$\boldsymbol{E}_{RMS}(\mathbf{w}) = \sqrt{\frac{2\boldsymbol{E}_{D}(\mathbf{w})}{N}}$$

N: number of data in data set E_D(w): sum of square error function (data-dependent error)

Project Report

- Explain the problem and how you choose your model.
- Elaborate your validating process.
 - The intuitive choice of parameters)
 There are no limitation on setting parameters and there could be infinity choices.
 You can define some range or choose some specific values.
 - Description of how you went about avoiding overfitting.
- Generate graphs showing how error changes with the adjusting of parameters.
- Report final result and evaluating model performance.