Test Temas 5, 6 y 7 de Percepción

ETSINF, Universitat Politècnica de València, Mayo de 2018

Apellidos:	Nombre:	

 \boxtimes Jorge Civera \square Carlos Martínez

Cuestiones (0.25 puntos, 15 minutos, con apuntes)

|A| Dados N = 12 vectores binarios 4-dimensionales etiquetados:

n	1	2	3	4	5	6	7	8	9	10	11	12
$\overline{x_{n1}}$	0	1	0	0	1	0	1	1	1	1	1	1
x_{n2}	1	0	0	0	1	0	1	1	1	1	1	1
x_{n3}	1	1	1	1	1	1	0	0	1	0	1	0
x_{n4}	1	1	1	1	1	1	0	0	0	0	0	0
c_n	A	A	A	A	A	A	B	B	B	B	B	B

¿Cuál es la estimación máximo verosímil de los prototipos Bernoulli de las clases?

A)
$$\hat{\mathbf{p}}_{A} = (\frac{1}{3} \frac{1}{3} 1 1)^{t}$$
 $\hat{\mathbf{p}}_{B} = (1 1 \frac{1}{3} 0)^{t}$
B) $\hat{\mathbf{p}}_{A} = (\frac{2}{3} \frac{2}{3} 0 0)^{t}$ $\hat{\mathbf{p}}_{B} = (0 0 \frac{2}{3} 1)^{t}$
C) $\hat{\mathbf{p}}_{A} = (\frac{2}{3} \frac{2}{3} \frac{2}{3} \frac{1}{2})^{t}$ $\hat{\mathbf{p}}_{B} = (\frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{2})^{t}$
D) $\hat{\mathbf{p}}_{A} = (1 1 \frac{1}{3} 0)^{t}$ $\hat{\mathbf{p}}_{B} = (\frac{1}{3} \frac{1}{3} 1 1)^{t}$

B)
$$\hat{\mathbf{p}}_A = (\frac{2}{3} \frac{2}{3} 0 0)^t$$
 $\hat{\mathbf{p}}_B = (0 0 \frac{2}{3} 1)^t$

C)
$$\hat{\mathbf{p}}_A = (\frac{2}{3} \frac{2}{3} \frac{2}{3} \frac{1}{2})^t \quad \hat{\mathbf{p}}_B = (\frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{2})^t$$

D)
$$\hat{\mathbf{p}}_A = (1 \ 1 \ \frac{1}{3} \ 0)^t$$
 $\hat{\mathbf{p}}_B = (\frac{1}{3} \ \frac{1}{3} \ 1 \ 1)^t$

B Dado el siguiente prototipo multinomial $\hat{\mathbf{p}} = (0.4\ 0.2\ 0.4\ 0.0)^t$, ¿cuál sería su versión suavizada $\tilde{\mathbf{p}}$ mediante descuento absoluto con $\epsilon = 0.1$ y backoff?

A)
$$\tilde{\mathbf{p}} = \left(\frac{5}{10} \frac{2}{10} \frac{5}{10} \frac{1}{10}\right)^t$$

B)
$$\tilde{\mathbf{p}} = \left(\frac{3}{10} \frac{1}{10} \frac{3}{10} \frac{3}{10}\right)^t$$

C) $\tilde{\mathbf{p}} = \left(\frac{3}{9} \frac{2}{9} \frac{3}{9} \frac{1}{9}\right)^t$

C)
$$\tilde{\mathbf{p}} = (\frac{3}{9} \frac{2}{9} \frac{3}{9} \frac{1}{9})^t$$

D)
$$\tilde{\mathbf{p}} = \left(\frac{2}{9} \frac{1}{9} \frac{2}{9} \frac{4}{9}\right)^t$$

B El clasificador gaussiano:

- A) Tiene como parámetros sólo las matrices de covarianzas de las clases.
- B) Es, en general, más discriminante que el multinomial o el de Bernoulli.
- C) Sólo es aplicable a vectores de números reales positivos.
- D) Es un clasificador cuadrático cuando las matrices de covarianzas de las clases son idénticas.

Test Temas 5, 6 y 7 de Percepción

ETSINF, Universitat Politècnica de València, Mayo de 2018

Apellidos:	Nombre:
Profesor: □ Jorge Civera ⊠ Carlos Martínez	
Cuestiones (0.25 puntos, 15 minutos, con apunt	$ ext{tes})$
D Dado el siguiente prototipo Bernoulli $\hat{\mathbf{p}} = \sin \alpha$ sión suavizada $\tilde{\mathbf{p}} = (0.95\ 0.10\ 0.90\ 0.05)^t$ m ¿qué valor de ϵ ha sido utilizado? A) $\epsilon = 0.35$ B) $\epsilon = 0.25$ C) $\epsilon = 0.15$ D) $\epsilon = 0.05$, ,
Dado el siguiente conjunto de datos:	

Sus parámetros multinomiales son:

A)
$$\mathbf{p} = \left(\frac{1}{10}, \frac{2}{5}, \frac{1}{2}\right)^t$$

B) $\mathbf{p} = \left(\frac{1}{5}, \frac{1}{5}, \frac{3}{5}\right)^t$
C) $\mathbf{p} = \left(\frac{4}{25}, \frac{11}{50}, \frac{9}{50}, \frac{6}{25}, \frac{9}{50}\right)^t$
D) $\mathbf{p} = \left(\frac{1}{10}, \frac{1}{5}, \frac{7}{10}\right)^t$

- B En general, ¿cuál es la principal diferencia entre un clasificador gaussiano con matriz de covarianzas diferente para cada clase y común para todas las clases?
 - A) Los clasificadores obtenidos son diferentes, pero equivalentes
 - B) El clasificador gaussiano de matriz de covarianzas común es lineal, pero cuadrático para matrices diferentes
 - C) El clasificador gaussiana es siempre cuadrático independientemente de las matrices de covarianza
 - D) El clasificador gaussiana es siempre lineal independientemente de las matrices de covarianza