[2024-1 Digital Control] Chapter 5. Closed-loop Systems

Gyunghoon Park

School of ECE, University of Seoul

Cascaded open-loop system

5.1. Preliminary Concepts

There are several types of open-loop sampled-data systems, such as

Note: NOT all the systems have a transfer function.

A closed-loop system in sampled-data framework

5.1. Preliminary Concepts

Why close the loop in control?

: The principle of feedback (i.e., we want to adjust uncertain environments)

A closed-loop system that has a transfer function

5.1. Preliminary Concepts

Consider a closed-loop system whose configuration is given by

(which is a usual form of the sampled-data system)

The output C(s) can be represented as

$$C(s) = G(s)E^*(s)$$

and thus, one has

$$E(s) = R(s) - H(s)C(s) = R(s) - H(s)G(s)E^{*}(s)$$

5.1. Preliminary Concepts

Taking the starred transform $(\cdot)^*$ to both sides gives

$$E^*(s) = R^*(s) - \overline{GH}^*(s)E^*(s) \quad \Rightarrow \quad E^*(s) = \frac{1}{1 + \overline{GH}^*(s)}R^*(s).$$

We finally have

$$\begin{split} C(s) &= G(s)E^*(s) = G(s)\frac{R^*(s)}{1 + \overline{GH}^*(s)} \\ \Rightarrow & C^*(s) = \frac{G(s)}{1 + \overline{GH}^*(s)}R^*(s) \\ \Rightarrow & C^{\mathsf{d}}(z) = \frac{G^{\mathsf{d}}(z)}{1 + \overline{GH}^{\mathsf{d}}(z)}R^{\mathsf{d}}(z). \end{split}$$

 \therefore One can obtain a discrete-time transfer function btw. $R^{\mathsf{d}}(z)$ and $C^{\mathsf{d}}(z)$.

A closed-loop system that has no transfer function

5.1. Preliminary Concepts

Consider another example depicted below:

The error signal is computed by

$$E(s) = R(s) - H(s)C^*(s)$$

from which it follows that

$$C(s) = G(s)E(s) = G(s)R(s) - G(s)H(s)C^*(s)$$

$$\Rightarrow C^*(s) = \overline{GR}^*(s) - \overline{GH}^*(s)C^*(s)$$

5.2. Preliminary Concepts

In a simpler form,

$$\begin{split} C^*(s) &= \frac{\overline{GR}^*(s)}{1 + \overline{GH}^*(s)}, \\ \Rightarrow \ C^{\mathsf{d}}(z) &= \frac{\overline{GR}^{\mathsf{d}}(z)}{1 + \overline{GH}^{\mathsf{d}}(z)} \end{split}$$

 \therefore there is NO specific transfer function btw. R(s) and C(s).

Why this happens? The input R(s) is NOT sampled before reached at C(s).

5.3. Derivation Procedure

Show that the (discrete-time) transfer function of the closed-loop system

is computed by

$$C^{\mathsf{d}}(z) = \frac{D^{\mathsf{d}}(z)G^{\mathsf{d}}(z)}{1 + D^{\mathsf{d}}(z)\overline{G}\overline{H}^{\mathsf{d}}(z)}R^{\mathsf{d}}(z)$$

5.3. Derivation Procedure

Note: No transfer function may be derived $\therefore R(s)$ is NOT sampled in the loop.

After some computations, we have

$$C^*(s) = \left[\frac{R}{2+G_2}\right]^*(s) + \frac{\left[\frac{G_1G_2}{2+G_2}\right]^*(s)}{1 + \left[\frac{G_1G_2}{2+G_2}\right]^*(s)} \left[\frac{(1+G_2)R}{2+G_2}\right]^*(s)$$

5.3. Derivation Procedure

With help of the modified z-transform, one has (for $0 < t_0 < T$)

$$C^{\mathsf{d}}(z) = \frac{\left[\frac{GR}{1+GH_1}\right]^{\mathsf{d}}(z)}{1+\left[\frac{GH_2}{1+GH_1}\right]^{\mathsf{d}}_{\mathrm{mod}}(z,m)D^{\mathsf{d}}(z)}$$

How about the closed-loop system in the state space?

5.4. State-variable Models

- ▶ Step 1: find the continuous-time state-space equation for $G_p(s)$ or $G_pH(s)$.
- Step 2: compute its discretization.
- ▶ Step 3: augment the discrete-time plant with the discrete-time controller.

5.4. State-variable Models

Consider the following closed-loop sampled-data system (Fig. (a)) that can be transformed into Fig. (b):

5.4. State-variable Models

Let the transfer functions in the blocks in Fig.(b) be

$$G_1(s) = \frac{1 - e^{-Ts}}{s^2(s+1)} = \frac{1 - e^{-Ts}}{s} G_{p1}(s),$$

$$G_2(s) = \frac{2(1 - e^{-Ts})}{s(s+2)} = \frac{1 - e^{-Ts}}{s} G_{p2}(s),$$

$$H(s) = \frac{10}{s+10}$$

Step 1: Obtain a continuous-time state-space equation for the analog part

$$\dot{\mathbf{v}}^{\mathsf{c}}(t) = \mathbf{A}^{\mathsf{c}}\mathbf{v}^{\mathsf{c}}(t) + \mathbf{B}^{\mathsf{c}}\begin{bmatrix} \overline{e}_{1}^{\mathsf{c}}(t) \\ \overline{e}_{2}^{\mathsf{c}}(t) \end{bmatrix}, \quad \begin{bmatrix} y^{\mathsf{c}}(t) \\ e_{2}^{\mathsf{c}}(t) \end{bmatrix} = \mathbf{C}^{\mathsf{c}}\mathbf{v}^{\mathsf{c}}(t)$$

5.4. State-variable Models

Step 2: Together with the sampler and the zero-order hold, the discretized model of the continuous-time system is given by

$$\mathbf{v}^{\mathsf{d}}(k+1) = \mathbf{A}^{\mathsf{d}}\mathbf{v}^{\mathsf{d}}(k) + \mathbf{B}^{\mathsf{d}} \begin{bmatrix} \overline{e}_{1}^{\mathsf{d}}(k) \\ \overline{e}_{2}^{\mathsf{d}}(k) \end{bmatrix}, \quad \begin{bmatrix} y^{\mathsf{d}}(k) \\ e_{2}^{\mathsf{d}}(k) \end{bmatrix} = \mathbf{C}^{\mathsf{d}}\mathbf{v}^{\mathsf{d}}(k)$$

Step 3: Since

$$\begin{bmatrix} \overline{e}_1^\mathsf{d}(k) \\ \overline{e}_2^\mathsf{d}(k) \end{bmatrix} = \begin{bmatrix} r^\mathsf{d}(k) \\ 0 \end{bmatrix} + \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y^\mathsf{d}(k) \\ e_2^\mathsf{d}(k) \end{bmatrix} = \begin{bmatrix} r^\mathsf{d}(k) \\ 0 \end{bmatrix} + \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{C}^\mathsf{d}\mathbf{v}^\mathsf{d}(k),$$

the closed-loop system turns out to be

$$\mathbf{v}^{\mathsf{d}}(k+1) = \left(\mathbf{A}^{\mathsf{d}} + \mathbf{B}^{\mathsf{d}} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{C}^{\mathsf{d}} \right) \mathbf{v}^{\mathsf{d}}(k) + \mathbf{B}^{\mathsf{d}} \begin{bmatrix} r^{\mathsf{d}}(k) \\ 0 \end{bmatrix}$$

Example 5.7: When a digital filter is added in the loop

5.4. State-variable Models

The system consists of the sampled-data system

$$\begin{bmatrix} v_1^\mathsf{d}(k+1) \\ v_2^\mathsf{d}(k+1) \end{bmatrix} = \begin{bmatrix} 1 & 0.0952 \\ 0 & 0.905 \end{bmatrix} \begin{bmatrix} v_1^\mathsf{d}(k) \\ v_2^\mathsf{d}(k) \end{bmatrix} + \begin{bmatrix} 0.0484 \\ 0.952 \end{bmatrix} m^\mathsf{d}(k),$$

$$y^\mathsf{d}(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} v_1^\mathsf{d}(k) \\ v_2^\mathsf{d}(k) \end{bmatrix}$$

and the digital filter or controller

$$v_3^{\mathsf{d}}(k+1) = 0.9v_3^{\mathsf{d}}(k) + e^{\mathsf{d}}(k), \quad m^{\mathsf{d}}(k) = 0.01v_3^{\mathsf{d}}(k) + 0.9e^{\mathsf{d}}(k).$$

⇒ The state-space equation of the closed-loop system?