

Latency

Big Data Analysis with Scala and Spark

Heather Miller

Data-Parallel Programming

In the Parallel Programming course, we learned:

- ► Data parallelism on a single multicore/multi-processor machine.
- ► Parallel collections as an implementation of this paradigm.

Data-Parallel Programming

In the Parallel Programming course, we learned:

- ▶ Data parallelism on a single multicore/multi-processor machine.
- ► Parallel collections as an implementation of this paradigm.

Today:

- ► Data parallelism in a distributed setting.
- ▶ Distributed collections abstraction from Apache Spark as an implementation of this paradigm.

Distribution

Distribution introduces important concerns beyond what we had to worry about when dealing with parallelism in the shared memory case:

- Partial failure: crash failures of a subset of the machines involved in a distributed computation.
- Latency: certain operations have a much higher latency than other operations due to network communication.

Distribution

Distribution introduces important concerns beyond what we had to worry about when dealing with parallelism in the shared memory case:

- ► Partial failure: crash failures of a subset of the machines involved in a distributed computation.
- Latency: certain operations have a much higher latency than other operations due to network communication.

L1 cache reference	0.5ns	
Branch mispredict	5ns	
L2 cache reference	7ns	
Mutex lock/unlock	25ns	
Main memory reference	100ns	
Compress 1K bytes with Zippy	$3,000 \text{ns} = 3 \mu \text{s}$	
Send 2K bytes over 1Gbps network	$20,000 \text{ns} = 20 \mu \text{s}$	
SSD random read	$150,000 \text{ns} = 150 \mu$.S
Read 1 MB sequentially from	$250,000 \text{ns} = 250 \mu$.S
Roundtrip within same datacenter	500,000ns = 0.5 m	S
Read 1MB sequentially from SSD	1,000,000ns = 1ms	
Disk seek	10,000,000ns = 10 ms	5
Read 1MB sequentially from disk	20,000,000ns = 20 ms	5
Send packet US \rightarrow Europe \rightarrow US	150,000,000ns = 150m	าร

L1 cache reference	0.5ns		
Branch mispredict	5ns		
L2 cache reference	7ns		
Mutex lock/unlock	25ns		
Main memory reference	100ns		
Compress 1K bytes with Zippy	3,000ns	= 3 µs	
Send 2K bytes over 1Gbps network	20,000ns	$= 20 \mu s$	
SSD random read	150,000ns	$= 150 \mu s$	
Read 1 MB sequentially from memor	<u>250,000ns</u>	$= 250 \mu s$	T
Roundtrip within same datacenter	500,000ns	= 0.5 ms	VQQ
Read 1MB sequentially from SSD	1,000,000ns	= 1ms	1
Disk seek	10,000,000ns	= 10ms	
Read 1MB sequentially from disk	<u>20,000,000</u> ns	= 20 ms	4
Send packet US \rightarrow Europe \rightarrow US	150,000,000ns	= 150 ms	

L1 cache reference	0.5ns		
Branch mispredict	5ns		
L2 cache reference	7ns		
Mutex lock/unlock	25ns		
Main memory reference	_100ns		
Compress 1K bytes with Zippy	3,000ns	= 3 μs	
Send 2K bytes over 1Gbps network	20,000ns	$= 20 \mu s$	
SSD random read	150,000ns	$= 150 \mu s$	Loop and a court
Read 1 MB sequentially from	250,000ns	= 250 µs	1,000,000 X SLOWER
Roundtrip within same datacenter	500,000ns	= 0.5 ms	
Read 1MB sequentially from SSD	1,000,000ns	= 1ms	
Disk seek	10,000,000ns	= 10 ms	
Read 1MB sequentially from disk	20,000,000ns	= 20 ms	
Send packet US → Europe → US	<u>150</u> ,00 <u>0</u> . <u>0</u> 00ns	= 150 ms	

Latency Numbers Intuitively

To get a better intuition about the *orders-of-magnitude differences* of these numbers, let's **humanize** these durations.

Method: multiply all these durations by a billion.

Then, we can map each latency number to a human activity.

Humanized Latency Numbers

Humanized durations grouped by magnitude:

Minute:

L1 cache reference	0.5 s	One heart beat (0.5 s)
Branch mispredict	5 s	Yawn
L2 cache reference	7 s	Long yawn
Mutex lock/unlock	25 s	Making a coffee

Hour:

Main memory	reference	100 s	Brushing your teeth
Compress 1K k	bytes with Zippy	50 min	One episode of a TV show

Humanized Latency Numbers

Day:

Send 2K bytes over 1 Gbps network 5.5 hr From lunch to end of work day

Week:

SSD random read		1.7	days	A normal weekend
Read 1 MB sequentially f	from memory	2.9	days	A long weekend
Round trip within same d	latacenter	5.8	days	A medium vacation
Read 1 MB sequentially f	from SSD	11.6	days	Waiting for almost 2
				weeks for a delivery

More Humanized Latency Numbers

Year:

Disk seek

Read 1 MB sequentially from disk

7.8 months

Almost producing a new human being

The above 2 together 1 year

Decade:

Send packet CA->Netherlands->CA 4.8 years Average time it tal

Average time it takes to complete a bachelor's degree

Latency and System Design

Big Data Processing and Latency?

With some intuition now about how expensive network communication and disk operations can be, one may ask:

How do these latency numbers relate to big data processing?

To answer this question, let's first start with Spark's predecessor, Hadoop.

Hadoop/MapReduce

Hadoop is a widely-used large-scale batch data processing framework. It's an open source implementation of Google's MapReduce.

Hadoop/MapReduce

Hadoop is a widely-used large-scale batch data processing framework. It's an open source implementation of Google's MapReduce.

MapReduce was ground-breaking because it provided:

- a simple API (simple map and reduce steps)
- ** fault tolerance **

Hadoop/MapReduce

Hadoop is a widely-used large-scale batch data processing framework. It's an open source implementation of Google's MapReduce.

MapReduce was ground-breaking because it provided:

- a simple API (simple map and reduce steps)
- ** fault tolerance **

Fault tolerance is what made it possible for Hadoop/MapReduce to scale to 100s or 1000s of nodes at all.

Hadoop/MapReduce + Fault Tolerance

Why is this important?

For 100s or 1000s of old commodity machines, likelihood of at least one node failing is **very high** midway through a job.

Hadoop/MapReduce + Fault Tolerance

Why is this important?

For 100s or 1000s of old commodity machines, likelihood of at least one node failing is **very high** midway through a job.

Thus, Hadoop/MapReduce's ability to recover from node failure enabled:

computations on unthinkably large data sets to succeed to completion.

Hadoop/MapReduce + Fault Tolerance

Why is this important?

For 100s or 1000s of old commodity machines, likelihood of at least one node failing is **very high** midway through a job.

Thus, Hadoop/MapReduce's ability to recover from node failure enabled:

computations on unthinkably large data sets to succeed to completion.

Fault tolerance + simple API =

At Google, MapReduce made it possible for an average Google software engineer to craft a complex pipeline of map/reduce stages on extremely large data sets.

Fault-tolerance in Hadoop/MapReduce comes at a cost.

Between each map and reduce step, in order to recover from potential failures, Hadoop/MapReduce shuffles its data and write intermediate data to disk.

Fault-tolerance in Hadoop/MapReduce comes at a cost.

Between each map and reduce step, in order to recover from potential failures, Hadoop/MapReduce shuffles its data and write intermediate data to disk.

Remember:

Reading/writing to disk: 1000x slower than in-memory

Network communication: 1,000,000x slower than in-memory

Spark...

- Retains fault-tolerance
- Different strategy for handling latency (latency significantly reduced!)

Spark...

- Retains fault-tolerance
- Different strategy for handling latency (latency significantly reduced!)

Achieves this using ideas from functional programming!

Spark...

- Retains fault-tolerance
- Different strategy for handling latency (latency significantly reduced!)

Achieves this using ideas from functional programming!

Idea: Keep all data **immutable and in-memory**. All operations on data are just functional transformations, like regular Scala collections. Fault tolerance is achieved by replaying functional transformations over original dataset.

Spark...

- Retains fault-tolerance
- Different strategy for handling latency (latency significantly reduced!)

Achieves this using ideas from functional programming!

Idea: Keep all data **immutable and in-memory**. All operations on data are just functional transformations, like regular Scala collections. Fault tolerance is achieved by replaying functional transformations over original dataset.

Result: Spark has been shown to be 100x more performant than Hadoop, while adding even more expressive APIs.

Latency and System Design (Humanized)

Memory				
L1 cache reference	0.5 s			
Main memory reference	100 s			
Read 1MB sequentially from memory	2.9 days			
seconds/days				

Latency and System Design

Latency and System Design

Memory L1 cache 0.5 sreference Main memory 100 s reference Read 1MB 2.9 sequentially from days memory

seconds/days

Spark

Spark versus Hadoop Performance?

Spark versus Hadoop Performance?

Logistic Regression in Hadoop and Spark, more iterations!

Source: https://databricks.com/blog/2014/03/20/apache-spark-a-delight-for-developers.html

Hadoop vs Spark Performance, More Intuitively

Day-to-day, these perforamnce improvements can mean the difference between:

Hadoop/MapReduce

- 1. start job

 2. eat lunch

 3. get coffee

 4. pick up Kids

 5. job completes

Spark

Spark versus Hadoop Popularity?

February 2007 - February 2017

According to Google Trends, Spark has surpassed Hadoop in popularity.

