Estimating adverse clinical outcomes and Biological Age using CT & Clinical Data

Harsh Sahu Ganesh Cheerla Hemal kumar Patel

Preprocessing and Feature Engineering

- Clipping of higher values to remove skewness in few features.
 Example : AoCa_Agatston clipped at 99 percentile
- Fill NULL values in few CT features using iterative imputing based on other features.
 - Example: L3_SMI_(cm2/m2) filled using 'BMI_more_than_30' and 'Sex'
 - Remaining filled with Median/Mean.

 Dropped some features based on correlation and created new features like "TAT/Body area."

[Regression] Predicting No. of Death Days

Sub-sampled the Data to people who have died (samples for which we have non-null values)

Model	Only CT (RMSE)	CT+Clinical (RMSE)
Linear Regression	1351	1324 (-2%)
SVR (Support Vector Regressor)	1410	1381 (-2%)
XGBoost	1331	1314 (-1.2%)

Best Model Results

Prediction on NULL values

Let's take the trained model and try predicting on all the Test samples (NULL + Non NULL)

There is a need to somehow

incorporate "Null" samples in Training

[Regression] Predicting "Recency"

We define a new quantity "Recency"

- For people who have died: **Recency = 1 / No. of death days**

For people who have not died: Recency = 0

Highly Skewed :(
Incompatible to be Trained

Transforming Recency

- Transformed positive (>0) samples to a more uniform distribution using Box-Cox Transform
- Under-sampled "zero" samples to be comparable to non-zero samples

Final Training data = **838** samples

Test data = **1860** samples [We are going to predict for everyone :)]

Results

Model	Only CT (RMSE)	CT+Clinical (RMSE)
Linear Regression	0.235	0.212 (-9.7%)
SVR (Support Vector Regressor)	0.235	0.243 (+3.4%)
XGBoost	0.232	0.204 (-13.36%)

Analysing Best Model...

Predicting "Days" vs Predicting "Recency"

"Days"

(Using the Best Model)

Error% = RMSE/(True values' mean) = **58.85**%

"Recency"

(Using the Best Model)

Error% = RMSE/(True values' mean) = 61.42%

Predicting other clinical outcomes (using Recency)

Heart Attack

Model	Only CT (RMSE)	CT+Clinical (RMSE)
Linear Regression	0.223	0.221 (-0.8%)
SVR (Support Vector Regressor)	0.243	0.241 (+0.8%)
XGBoost	0.245	0.230 (-6.1%)

Aortic Calcification
comes out to be the best
predictor

Diabetes

Model	Only CT (RMSE)	CT+Clinical (RMSE)
Linear Regression	0.248	0.243 (-2%)
SVR (Support Vector Regressor)	0.253	0.258 (+1.9%)
XGBoost	0.257	0.251 (-2.3%)

Metabolic Syndrome comes out to be the best predictor

Biological Age

Methodology

Assumption:

- People die at bio age 100
- Higher the "DEATH[d from CT]", higher the patient has bio-days left

Data Processing:

 Split Data in train/test fashion using key column "DEATH [d from CT]" value. If non-empty -> train, else->test

Methodology:

- Train data: compute bio_days_left using the exponential decay increasing function shown in the right
- Bio_age = max_bio_age bio_days_left
- Apply linear regression and XGBoost(Better)

Sample: bio_days_left using exponential decay increasing function

$$y = a + C \cdot \left(1 - e^{-kx}\right)$$

Result and Verification

Linear Regression(doesn't work well)

XGBoost (better)

Thank You!