hackathon

dharmik

10 November 2017

2. Define your data exploration, imputation and visualization approach.

```
library(knitr)
library (dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
      filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library (ggplot2)
library(corrplot)
## Warning: package 'corrplot' was built under R version 3.4.2
## corrplot 0.84 loaded
setwd("D:/data science term sylabus/2nd term/ML/hackathon")
model_data <- read.csv("Model_Data.csv")</pre>
#correlation on integer variables
cor_values <- model_data %>% select(age,fnlwgt,edu_num,cap_gain,cap_loss,Hours_per_week)
corr <- cor(cor values)</pre>
corrplot(corr, method = "square")
```


most of attribute are moderately correlated with each other

ggplot(model_data,aes(x = sex ,y = compensation_level,color=workclass))+geom_bar(stat = "identity")

from plot we get the insight that less number of female get compensation more than 50k and highest count of male get more than 50k compensation

gender working in private sector company gets compensation greater than 50k compare to gen ders working in local-gov and self-emp-not-inc

ggplot(model_data,aes(x =workclass ,y = compensation_level))+geom_bar(stat = "identity")

employees working in private sector falls in category of "compensation more than 50k" compare to local-gov and self-emp-not-inc

ggplot(model_data,aes(x=mar_status,y=compensation_level,fill=race))+geom_bar(stat = "identity")

married-civ-spouse gets higher compensation level and making comparison in people race we get to know that white people get more compensation compare to other race people

DATA IMPUTATION

```
model_new_data <- read.csv("Model_Data.csv")
```

model_new_dataworkclass < $-gsub("?", NA, model_new_data$ workclass, fixed = TRUE) model_new_data occupation < $-gsub("?", NA, model_new_data$ occupation, fixed = TRUE)

 $\label{local_new_data} model_new_data occupation[is. na(model_new_data occupation)] = Mode(model_new_data occupation) model_new_data occupation) model_new_data workclass[is.na(model_new_data workclass)] = Mode(model_new_data workclass) Mode <- function(v) { uniqv <- unique(v) uniqv[which.max(tabulate(match(v, uniqv)))] } \\$

DECISION TREE

6.Build 3 Models, each using one of different type of algorithm. Send me the model building command.

```
"" MODEL 1 = DECISION TREE
```

set.seed(28) train_data <- sample.int(n = nrow(model_new_data), size =floor(0.8 *nrow(model_new_data)),replace = F)

train <- model_new_data[train_data,] test <- model_new_data[-train_data,]</pre>

train_model <- tree(comp_new_level ~.,train)

plot(train_model) text(train_model)

check_model <- predict(train_model,test) check_model</pre>

maxidx <- function(arr) { return(which(arr==max(arr))) } idx <- apply(check_model,c(1),maxidx) predict_model <- c('No','Yes') [idx]

confmat <- table(predict_model,test\$comp_new_level) confmat confusion matrix

accuracy <- sum(diag(confmat))/sum(confmat) accuracy

ACCURACY = 0.8388021

'MODEL 2 =Naive Bayes

```
library (e1071)
```

```
## Warning: package 'e1071' was built under R version 3.4.2
```

```
model_new_data <- read.csv("Model_Data.csv")</pre>
model_new_data$comp_new_level <- gsub("\\.", "", model_new_data$compensation_level)</pre>
model_new_data$comp_new_level <- as.factor(model_new_data$comp_new_level)</pre>
model new data <- model new data[,-15]</pre>
set.seed(28)
sample <- sample.int(n=nrow(model new data), size = floor(0.8*nrow(model new data)), replace = F)</pre>
train_data <- model_new_data[sample,]</pre>
test_data <- model_new_data[-sample,]</pre>
Hours per week+country,data = train data)
#model
pred <- predict(model,test data)</pre>
#pred
#chechking and creating conf matrix with pred values and labelled variable values
confmat <- table(pred, test_data$comp_new_level)</pre>
confmat
```

```
## pred <=50K >50K
## <=50K 5082 687
## >50K 724 1187
```

```
#checking accuracy
accuracy <- sum(diag(confmat))/sum(confmat)
accuracy</pre>
```

```
## [1] 0.816276
```

.....MODEL 3=kNN.....

```
library(class)
set.seed(28)
sample <- sample.int(nrow(model_new_data), size = floor(0.80*(nrow(model_new_data))), replace = FAL
SE)

train <- model_new_data[sample,c(1,3,5,11,12,13)]
test <- model_new_data[-sample,c(1,3,5,11,12,13)]
train_label <-model_new_data[sample,14]
test_label <-model_new_data[-sample,14]

k=5
pred_label <- knn(train = train,test = test,cl =train_label,k)

confmat=table(test_label,pred_label)
accuracy <- sum(diag(confmat))/sum(confmat)
accuracy</pre>
```

```
## [1] 0.8933594
```

Country column didnt had any major impact on labelled variable so have ignored column to build the model

7.Predict your model performance on each of the 3 models and submit (1 mark each = total 3 marks) model1_accuracy= 0.8388021 model2_accuracy = 0.816276 modell3_accuracy=0.8933594

8. Generalization:-

Loading [MathJax]/jax/output/HTML-CSS/jax.js % so my model are not underfit and overfit