

SEQUENCE LISTING

GENERAL INFORMATION:

(i)

APPLICANT: PEREGRINO FERREIRA, Paulo;

5 GESSIEN KROON, Erna;

PIMENTA DOS REIS, Karlsson Jenner;

BIAS FORTES FERRAZ, Isabella;

CERQUEIRA LEITE, Romulo.

(ii)

10 TITLE OF INVENTION: Method and composition for the diagnosis of equine
infectious anemia virus disease by using the recombinant capsid protein virus
(p26)

(iii)

NUMBER OF SEQUENCES: 1

15 (iv)

CORRESPONDENCE ADDRESS:

(A)

ADDRESSEE: Universidade Federal de Minas Gerais - CTIT

(B)

20 STREET: Avenida Antônio Carlos, 6627 Bairro São Francisco

(C)

CITY: Belo Horizonte

(D)

STATE: Minas Gerais

25 (E)

COUNTRY: BRAZIL

(F)

ZIP: 31270-901

(v)

30 COMPUTER READABLE FORM:

(A)

MEDIUM TYPE: diskette – 3.50 inch, 1.44 Mb storage

(B)

COMPUTER: IBM compatible

(C)

5 OPERATING SYSTEM: Windows 98

(D)

SOFTWARE: Office premium

(vi)

CURRENT APPLICATION DATA:

10 (A)

APPLICATION NUMBER: U.S. 09/331.262

(B)

FILING DATE:

(C)

15 CLASSIFICATION: C12Q1/70

(vii)

PRIOR APPLICATION DATA

(A)

APPLICATION NUMBER: PI 9606273-8

20 (B)

FILING DATE: 18-DEC-1996

(2)

INFORMATION FOR SEQ ID N0:1:

(i)

25 SEQUENCE CHARACTERISTICS:

(A)

LENGTH: 252 amino acids

(B)

TYPE: amino acid

30 (D)

TOPOLOGY: linear

(ii)

MOLECULE TYPE : protein

(vi)

5 ORIGINAL SOURCE

(A)

ORGANISM : equine infectious anemia virus

(ix)

FEATURE:

10 (A)

NAME: p26

(x)

PUBLICATION INFORMATION

(A)

15 AUTHORS:

(B)

TITLE: (

C)

JOURNAL:

20 (D)

VOLUME:

(F)

PAGES:

(G)

25 DATE:

(xi)

SEQUENCE DESCRIPTION: SEQ ID NO:1

His His His His His Gly Ser Pro Gly Asn Pro Leu Thr Trp

30

5

10

15

Ser Lys Ala Leu Lys Lys Leu Glu Lys Val Thr Val Gln Gly Ser
 20 25 30
 Gln Lys Leu Thr Thr Gly Asn Cys Na Trp Ala Leu Ser Leu Val
 35 40 45
 5 Asp Leu Phe His Asp Thr Asn Phe Val Lys Glu Lys Asp Trp Gln
 50 55 60
 Leu Arg Asp Val Ile Pro Leu Leu Glu Asp Val Thr Gln Thr Val
 65 70 75
 Ser Gly Gln Glu Arg Glu Ala Phe Glu Arg Thr Trp Trp Ala Ile
 10 80 85 90
 Ser Ala Val Lys Met Gly Leu Gln Ile Asn AsnVal Val Asp Gly
 95 100 105
 Lys Ala Ser Phe Gln Leu Leu Arg Ala Lys Tyr Glu Lys Lys Thr
 110 115 120
 15 Ala Asn Lys Lys Gln Ser Glu Pro Ser Glu Glu Tyr Pro Ile Met
 125 130 135
 Ile Asp Gly Ala Gly Asn Arg Asn Phe Arg Pro Leu Thr Pro Arg
 140 145 150
 Gly Tyr Thr Thr Trp Val AsnThr Ile Gln Thr Asn Gly Leu Leu
 20 155 160 165
 Asn Glu Ala Ser Gln Asn Leu Phe Gly Ile Leu Ser Val Asp Cys
 170 175 180
 Thr Ser Glu Glu Met Asn Ala Phe Leu Asp Val Val Pro Gly Gln
 185 190 195
 25 Ala Gly Gln Lys Gln Ile Leu Leu Asp Ala Ile Asp Lys Ile Ala
 200 205 210
 Asp Asp Trp Asp Asn Arg His Pro Leu Pro Asn Ala Pro Leu Val
 215 220 225
 Ala Pro Pro Gln Gly Pro Ile Pro Met Thr Ala Arg Phe Ile Arg
 30 230 235 240
 Gly Leu Gly Val Pro Arg Glu Arg Gln Met Glu Pro
 245 250

Asn Cys Val Val Gln Ser Phe Gly Val Ile Gly Gln Ala His Leu.
260 265 270
Glu Leu Pro Arg Pro Asn Lys Arg Ile Arg Asn Gln. Ser Phe Asn
275 280 285
5 Gln Tyr Asn Cys Ser Ile Asn. Asn Lys Thr Glu Leu Glu Thr Trp
290 295 300
Lys Leu.Val Lys Thr Ser Gly Val Thr Pro Leu Pro. Ile Ser Ser
305 310 315
Glu Ala Asn Thr Gly Leu
10 320