Capacitary estimates of solutions of semilinear parabolic equations

Moshe Marcus

Department of Mathematics, Technion, Haifa, ISRAEL

Laurent Veron

Department of Mathematics, Univ. of Tours, FRANCE

1 Introduction

Let $T \in (0, \infty]$ and $Q_T = \mathbb{R}^N \times (0, T]$ $(N \ge 1)$. If q > 1 and $u \in C^2(Q_T)$ is nonnegative and verifies

$$\partial_t u - \Delta u + u^q = 0 \quad \text{in } Q_T, \tag{1.1}$$

it has been proven by Marcus and Véron [21] that there exists a unique $\nu \in \mathfrak{B}^{reg}_+(\mathbb{R}^N)$, the set of outer-regular positive Borel measures in \mathbb{R}^N , such that

$$\lim_{t \to 0} u(.,t) = \nu,\tag{1.2}$$

in the sense of Borel measures. To each such measure ν is associated a unique couple (S_{ν}, μ_{ν}) (and we write $\nu \approx (S_{\nu}, \mu_{\nu})$) where S is a closed subset of \mathbb{R}^{N} , the singular part of ν , and μ_{ν} , the regular part is a nonnegative Radon measure on $\mathcal{R}_{\nu} = \mathbb{R}^{N} \setminus S_{\nu}$. In this setting, relation (1.2) has the following meaning:

(i)
$$\lim_{t\to 0} \int_{\mathcal{R}_{\nu}} u(.,t) \zeta dx = \int_{\mathcal{R}_{\nu}} \zeta d\mu_{\nu}, \qquad \forall \zeta \in C_0(\mathcal{R}_{\nu}),$$

(ii) $\lim_{t\to 0} \int_{\mathcal{O}} u(.,t) dx = \infty, \qquad \forall \mathcal{O} \subset \mathbb{R}^N \text{ open, } \mathcal{O} \cap \mathcal{S}_{\nu} \neq \emptyset.$ (1.3)

The measure ν is by definition the initial trace of u and denoted by $Tr_{\mathbb{R}^N}(u)$. Conversely, in the subcritical range of exponents

$$1 < q < q_c = 1 + N/2$$
,

it is proven by the same authors that, for any $\nu \in \mathfrak{B}^{reg}_{+}(\mathbb{R}^{N})$, the Cauchy problem

$$\begin{cases} \partial_t u - \Delta u + u^q = 0 & \text{in } Q_{\infty}, \\ Tr_{\mathbb{R}^N}(u) = \nu, \end{cases}$$
 (1.4)

admits a unique solution. A key step for proving the uniqueness is the following inequalities

$$t^{-1/(q-1)}f(|x-a|/\sqrt{t}) \le u(x,t) \le ((q-1)t)^{-1/(q-1)} \qquad \forall (x,t) \in Q_{\infty},$$
 (1.5)

for any $a \in \mathcal{S}_{\nu}$, where f is the unique positive solution of

$$\begin{cases} \Delta f + \frac{1}{2}y \cdot Df + \frac{1}{q-1}f - f^q = 0 & \text{in } \mathbb{R}^N \\ \lim_{|y| \to \infty} |y|^{2/(q-1)} f(y) = 0. \end{cases}$$
 (1.6)

The existence, the uniqueness and the asymptotics of f has been proved by Brezis, Peletier and Terman in [5]. The role of the critical exponent q_c was pointed out by Brezis and Friedman [6] who proved that if $q \geq q_c$, the supercritical range, any solution of (1.1) which vanishes at t = 0for any $x \in \mathbb{R}^N \setminus \{0\}$ must be identically zero. As a consequence, in this range of exponents, Problem (1.4) may admit no solution at all. If $\nu \in \mathfrak{B}^{reg}_{+}(\mathbb{R}^{N})$, $\nu \approx (\mathcal{S}_{\nu}, \mu_{\nu})$, the necessary and sufficient conditions for the existence of a maximal solution $u = \overline{u}_{\nu}$ to Problem (1.4) are obtained in [21], and expressed in terms of the Bessel capacity $C_{2/q,q'}$, (with q'=q/(q-1)). Furthermore, uniqueness does not hold in general as it was pointed out by Le Gall [17]. In the particular case where $S_{\nu} = \emptyset$ and $\nu \approx \mu_{\nu}$, then the necessary and sufficient condition for solvability is that μ_{ν} does not charge Borel subsets with $C_{2/q,q'}$ -capacity zero. This result was already proven by Baras and Pierre [4] in the particular case ν bounded and extended by Marcus and Véron [21] in the general case. We shall denote by $\mathfrak{M}^{q}_{+}(\mathbb{R}^{N})$ the positive cone of the space $\mathfrak{M}^q(\mathbb{R}^N)$ of Radon measures which does not charge Borel subsets with zero $C_{2/q,q'}$ capacity Notice that $W^{-2/q,q}(\mathbb{R}^N) \cap \mathfrak{M}_+^b(\mathbb{R}^N)$ is a subset of $\mathfrak{M}_+^q(\mathbb{R}^N)$; here $\mathfrak{M}_+^b(\mathbb{R}^N)$ is the cone of positive bounded Radon mesures in \mathbb{R}^N . For such measures, uniqueness always holds and we denote $\overline{u}_{\nu} = u_{\nu}$.

The associated stationary equation in a smooth bounded domain Ω of \mathbb{R}^N

$$-\Delta u + u^q = 0 \quad \text{in } \Omega, \tag{1.7}$$

has been intensively studied since 1993, both by probabilists (Le Gall, Dynkin, Kuznetsov) and by analysts (Marcus, Véron). The existence of a trace for positive solutions, in the class of outer-regular positive borel measures on $\partial\Omega$ is proved by Le Gall [16], in the case q=N=2, by probabilistic methods, and then by Marcus and Véron in [21] in the general case q>1, N>1. The existence of a critical exponent $q_e=(N+1)/(N-1)$ is due to Gmira and Véron. In [8] Dynkin and Kuznetsov introduced the notion of σ -moderate solution which means that u is a positive solution of (1.7) such that there exists an increasing sequence of positive Radon measures on $\partial\Omega$ { μ_n } belonging to $W^{-2/q,q'}(\partial\Omega)$ such that the corresponding solutions $v=v_{\mu_n}$ of

$$\begin{cases}
-\Delta v + v^q = 0 & \text{in } \Omega \\
v = \mu_n & \text{in } \partial\Omega
\end{cases}$$
(1.8)

converges to u locally uniformly in Ω . This class of solutions plays a fundamental role because Dynkin and Kuznetsov proved that a σ -moderate solution of (1.7) is uniquely determined by its *fine trace*, a new notion of trace introduced in order to avoid the non-uniqueness phenomena. Later on, it is proved by Mselati [27] (if q = 2 and then by Dynkin [7] (if $q_e \leq q \leq 2$)), that all the positive solutions of (1.7) are σ -moderate. The key-stone element in their proof is the fact that the maximal solution \overline{u}_K of (1.7) the boundary trace of which vanishes outside a compact subset $K \subset \partial\Omega$ is indeed σ -moderate. This deep result was obtained by a combination of probabilistic

and analytic methods by Mselati in the case q=2 and by purely analytic methods by Marcus and Véron [22].

Following Dynkin we can define

Definition 1.1 A positive solution u of (1.1) is called σ -moderate if their exists an increasing sequence, say $\{\mu_n\} \subset W^{-2/q,q}(\mathbb{R}^N) \cap \mathfrak{M}^b_+(\mathbb{R}^N)$, such that the corresponding solution $u := u_{\mu_n}$ of

$$\begin{cases} \partial_t u - \Delta u + u^q = 0 & \text{in } Q_\infty \\ u(x,0) = \mu_n & \text{in } \mathbb{R}^N, \end{cases}$$
 (1.9)

converges to u locally uniformly in Q_{∞} .

If F is a closed subset of \mathbb{R}^N , we denote by \overline{u}_F the maximal solution of (1.1) with an initial trace vanishing on F^c , and by \underline{u}_F the maximal σ -moderate solution of (1.1) with an initial trace vanishing on F^c . Thus \underline{u}_F is defined by

$$\underline{u}_F = \sup\{u_\mu : \mu \in \mathfrak{M}^q_+(\mathbb{R}^N), \mu(F^c) = 0\},$$
(1.10)

where $\mathfrak{M}_{+}^{q}(\mathbb{R}^{N}):=W^{-2/q,q}(\mathbb{R}^{N})\cap\mathfrak{M}_{+}^{b}(\mathbb{R}^{N})$. One of the main goal of this article is to prove that \overline{u}_{F} is σ -moderate and more precisely,

Theorem 1.2 For any q > 1 and any closed subset F of \mathbb{R}^N , $\overline{u}_F = \underline{u}_F$.

We define below a set function which will play an important role in the sequel.

Definition 1.3 Let F be a closed subset of \mathbb{R}^N . The $C_{2/q,q'}$ -capacitary potential W_F of F is defined by

$$W_F(x,t) = t^{-1/(q-1)} \sum_{n=0}^{\infty} (n+1)^{N/2 - 1/(q-1)} e^{-n/4} C_{2/q,q'} \left(\frac{F_n}{\sqrt{(n+1)t}} \right) \quad \forall (x,t) \in Q_{\infty}, \quad (1.11)$$

where
$$F_n = F_n(x,t) := \{ y \in F : \sqrt{nt} \le |x-y| \le \sqrt{(n+1)t} \}.$$

One of the tool for proving Theorem 1.2 is the following bilateral estimate

Theorem 1.4 For any $q \ge q_c$ there exist two positive constants $C_1 \ge C_2 > 0$, depending only on N and q such that for any closed subset F of \mathbb{R}^N , there holds

$$C_2W_F(x,t) \le \underline{u}_F(x,t) \le \overline{u}_F(x,t) \le C_1W_F(x,t) \quad \forall (x,t) \in Q_{\infty}. \tag{1.12}$$

This representation of \overline{u}_F , up to uniformly upper and lower bounded functions, is also interesting in the sense that it indicates precisely what are the blow-up point of \overline{u}_F . Introducing an integral expression comparable to W_F we show, in particular, the following results

$$\lim_{\tau \to 0} C_{2/q,q'}\left(\frac{F}{\tau} \cap B_1(x)\right) = \gamma \in [0,\infty) \Longrightarrow \lim_{t \to 0} t^{-1/(q-1)} \overline{u}_F(x,t) = C\gamma \tag{1.13}$$

for some C = C(N, q) > 0, and

$$\lim_{\tau \to 0} \sup_{t \to 0} \tau^{2/(q-1)} C_{2/q,q'} \left(\frac{F}{\tau} \cap B_1(x) \right) < \infty \Longrightarrow \lim_{t \to 0} \sup_{t \to 0} \overline{u}_F(x,t) < \infty. \tag{1.14}$$

Our paper is organized as follows. In Section 2 we obtain estimates from above on \overline{u}_F . In Section 3 we give estimates from below on \underline{u}_F . In Section 4 we prove the main theorems and expose various consequences. In Appendix we derive a series of sharp integral inequalities.

Aknowledgements The authors are grateful to the European RTN Contract N° HPRN-CT-2002-00274 for the support provided in the realization of this work.

2 Estimates from above

Some notations: Let Ω be a domain in \mathbb{R}^N with a compact C^2 boundary and T > 0. Set $B_r(a)$ the open ball of radius r > 0 and center a (and $B_r(0) := B_r$) and

$$Q_T^{\Omega} := \Omega \times (0, T), \quad \partial_{\ell} Q_T^{\Omega} = \partial \Omega \times (0, T), \quad Q_T := Q_T^{\mathbb{R}^N}, \quad Q_{\infty} := Q_{\infty}^{\mathbb{R}^N}.$$

Let $\mathbb{H}^{\Omega}[.]$ (resp. $\mathbb{H}[.]$) denote the heat potential in Ω with zero lateral boundary data (resp. the heat potential in \mathbb{R}^N) with corresponding kernel

$$(x, y, t) \mapsto H^{\Omega}(x, y, t) \quad (\text{resp.}(x, y, t) \mapsto H(x, y, t) = (4\pi t)^{-N/2} \exp(-|x - y|^2/4t)).$$

We denote by $q_c := 1 + 2/N$, the parabolic critical exponent.

Theorem 2.1 Let $q \ge q_c$. Then there exists a positive constant $C_1 = C_1(N,q)$ such that for any closed subset F of \mathbb{R}^N and any $u \in C^2(Q_\infty) \cap C(\overline{Q_\infty} \setminus F)$ satisfying

$$\begin{cases} \partial_t u - \Delta u + u^q = 0 & in \ Q_{\infty} \\ \lim_{t \to 0} u(x, t) = 0 & locally \ uniformly \ in \ F^c, \end{cases}$$
(2.1)

there holds

$$u(x,t) \le C_1 W_F(x,t) \quad \forall (x,t) \in Q_\infty,$$
 (2.2)

where W_F is the (2/q, q')-capacitary potential of F defined by (1.11).

First we shall consider the case where F = K is compact and

$$K \subset B_r \subset \overline{B}_r,$$
 (2.3)

and then we shall extend to the general case by a covering argument.

2.1 Global L^q -estimates

Let $\rho > 0$, we assume (2.3) holds and we put

$$\mathcal{T}_{r,\rho}(K) = \{ \eta \in C_0^{\infty}(B_{r+\rho}), 0 \le \eta \le 1, \eta = 1 \text{ in a neighborhood of } K \}.$$
 (2.4)

If $\eta \in \mathcal{T}_{r,\rho}(K)$, we set $\eta^* = 1 - \eta$, $\zeta = \mathbb{H}[\eta^*]^{2q'}$ and

$$R(\eta) = |\nabla \mathbb{H}[\eta]|^2 + |\partial_t \mathbb{H}[\eta] + \Delta \mathbb{H}[\eta]|. \tag{2.5}$$

We fix T > 0 and shall consider the equation on Q_T . Throughout this paper C will denote a generic positive constant, depending only on N, q and sometimes T, the value of which may vary from one ocurrence to another. Except in Lemma 2.12 the only assumption on q is q > 1.

Lemma 2.2 There exists C = C(N, q, T) > 0 such that

$$\iint_{Q_T} (R(\eta))^{q'} dx dt \le C \|\eta\|_{W^{2/q,q'}}^{q'}. \tag{2.6}$$

Proof. There holds $\partial_t \mathbb{H}[\eta] = \Delta \mathbb{H}[\eta]$, and

$$\iint_{Q_T} |\partial_t \mathbb{H}[\eta]|^{q'} dx dt = \int_0^T \left\| t^{1-1/q} \partial_t \mathbb{H}[\eta] \right\|_{L^{q'}(\mathbb{R}^N)}^{q'} \frac{dt}{t} \le \|\eta\|_{[W^{2,q'},L^{q'}]_{1/q,q'}}^{q'}$$
(2.7)

where $\left[W^{2,q'},L^{q'}\right]_{1/q,q'}$ indicates the real interpolation functor of degree 1/q between $W^{2,q'}(\mathbb{R}^N)$ and $L^{q'}(\mathbb{R}^N)$ [30]. Similarly, and using the Gagliardo-Nirenberg inequality,

$$\iint_{O_{T}} |\nabla(\mathbb{H}[\eta])|^{2q'} dx dt \le C \|\eta\|_{W^{2/q,q'}}^{q'} \|\eta\|_{L^{\infty}}^{q'} = C \|\eta\|_{W^{2/q,q'}}^{q'}. \tag{2.8}$$

Inequality (2.6) follows from (2.7) and (2.8).

Lemma 2.3 There exists C = C(N, q, T) > 0 such that

$$\iint_{Q_T} u^q \zeta dx \, dt + \int_{\mathbb{R}^N} (u\zeta)(x, T) dx \le C_2 \|\eta\|_{W^{2/q, q'}}^{q'}. \tag{2.9}$$

Proof. We recall that there always hold

$$0 \le u(x,t) \le \left(\frac{1}{t(q-1)}\right)^{1/(q-1)} \quad \forall (x,t) \in Q_{\infty}. \tag{2.10}$$

and (see [6] e.g.)

$$0 \le u(x,t) \le \left(\frac{C}{t + (|x| - r)^2}\right)^{1/(q-1)} \quad \forall (x,t) \in Q_{\infty} \setminus B_r.$$
 (2.11)

Since η^* vanishes in an open neighborhood \mathcal{N}_1 , for any open subset \mathcal{N}_2 such that $K \subset \mathcal{N}_2 \subset \overline{\mathcal{N}}_2 \subset \mathcal{N}_1$ there exist $c_{\mathcal{N}_2} > 0$ and $c_{\mathcal{N}_2} > 0$ such that

$$\mathbb{H}[\eta^*](x,t) \le C_{\mathcal{N}_2} \exp(-c_{\mathcal{N}_2}t), \quad \forall (x,t) \in Q_T^{\mathcal{N}_2}.$$

Therefore

$$\lim_{t\to 0} \int_{\mathbb{R}^N} (u\zeta)(x,t) dx = 0,$$

and ζ is an admissible test function, and one has

$$\iint_{Q_T} u^q \zeta dx dt + \int_{\mathbb{R}^N} (u\zeta)(x, T) dx = \iint_{Q_T} u(\partial_t \zeta + \Delta \zeta) dx dt.$$
 (2.12)

Notice that the three terms on the left-hand side are nonnegative. Put $\mathbb{H}_{\eta^*} = \mathbb{H}[\eta^*]$, then

$$\partial_{t}\zeta + \Delta\zeta = 2q' \mathbb{H}_{\eta^{*}}^{2q'-1} \left(\partial_{t}\mathbb{H}_{\eta^{*}} + \Delta\mathbb{H}_{\eta^{*}}\right) + 2q'(2q'-1)\mathbb{H}_{\eta^{*}}^{2q'-2} |\nabla\mathbb{H}_{\eta^{*}}|^{2},$$

$$= 2q' \mathbb{H}_{\eta^{*}}^{2q'-1} \left(\partial_{t}\mathbb{H}_{\eta} + \Delta\mathbb{H}_{\eta}\right) + 2q'(2q'-1)\mathbb{H}_{\eta}^{2q'-2} |\nabla\mathbb{H}_{\eta}|^{2},$$

because $\mathbb{H}_{\eta^*} = 1 - \mathbb{H}_{\eta}$, hence

$$u(\partial_t \zeta + \Delta \zeta) = u \mathbb{H}_{\eta^*}^{2q'/q} \left[2q'(2q'-1) \mathbb{H}_{\eta^*}^{2q'-2-2q'/q} |\nabla \mathbb{H}_{\eta}|^2 - 2q' \mathbb{H}_{\eta^*}^{2q'-1-2q'/q} (\Delta \mathbb{H}_{\eta} + \partial_t \mathbb{H}_{\eta}) \right].$$

Since 2q' - 2 - 2q'/q = 0 and $0 \le \mathbb{H}_{\eta^*} \le 1$,

$$\left| \iint_{Q_T} u(\partial_t \zeta + \Delta \zeta) dx \, dt \right| \leq C(q) \left(\iint_{Q_T} u^q \zeta dx \, dt \right)^{1/q} \left(\iint_{Q_T} R^{q'}(\eta) dx \, dt \right)^{1/q'},$$

where

$$R(\eta) = |\nabla \mathbb{H}_{\eta}|^{2} + |\Delta \mathbb{H}_{\eta} + \partial_{t} \mathbb{H}_{\eta}|.$$

Using Lemma 2.2 one obtains (2.9).

Proposition 2.4 Let r > 0, $\rho > 0$, $T \ge (r + \rho)^2$

$$\mathcal{E}_{r+\rho} := \{ (x,t) : |x|^2 + t \le (r+\rho)^2 \}$$

and $Q_{r+\rho,T} = Q_T \setminus \mathcal{E}_{r+\rho}$. There exists C = C(N,q,T) > 0 such that

$$\iint_{Q_{r+q,T}} u^q dx \, dt + \int_{\mathbb{R}^N} u(x,T) dx \le C C_{2/q,q'}^{B_{r+\rho}}(K). \tag{2.13}$$

Proof. Because $K \subset B_r$ and $\eta^* \equiv 1$ outside $B_{r+\rho}$ and takes value between 0 and 1,

$$\begin{split} \mathbb{H}[\eta^*](x,t) & \geq \mathbb{H}[1-\chi_{B_{r+\rho}}](x,t) & = \left(\frac{1}{4\pi t}\right)^{N/2} \int_{|y| \geq r+\rho} \exp(-|x-y|^2/4t) dy, \\ & = 1 - \left(\frac{1}{4\pi t}\right)^{N/2} \int_{|y| < r+\rho} \exp(-|x-y|^2/4t) dy. \end{split}$$

For $(x,t) \in \mathcal{E}_{r+\rho}$, put $x = (r+\rho)\xi$, $y = (r+\rho)v$ and $t = (r+\rho)^2\tau$. Then $(\xi,\tau) \in \mathcal{E}_1$ and

$$\left(\frac{1}{4\pi t}\right)^{N/2} \int_{|y| \le r + \rho} \exp(-|x - y|^2/4t) dy = \left(\frac{1}{4\pi \tau}\right)^{N/2} \int_{|v| \le 1} \exp(-|\xi - v|^2/4\tau) dv.$$

We claim that

$$\max \left\{ \left(\frac{1}{4\pi\tau} \right)^{N/2} \int_{|v| \le 1} \exp(-|\xi - v|^2/4\tau) dv : (\xi, \tau) \in \mathcal{E}_1 \right\} = \ell, \tag{2.14}$$

and $\ell = \ell(N) \in (0,1]$. We recall that

$$\left(\frac{1}{4\pi\tau}\right)^{N/2} \int_{|v| \le 1} \exp(-|\xi - v|^2/4\tau) dv < 1 \quad \forall \tau > 0.$$
 (2.15)

If the maximum is achieved for some $(\bar{\xi}, \bar{\tau}) \in \mathcal{E}_1$, it is smaller that 1 and

$$\mathbb{H}[\eta^*](x,t) \ge \mathbb{H}[1-\chi_{B_{r+\rho}}](x,t) \ge 1-\ell > 0, \quad \forall (x,t) \in \mathcal{E}_{r+\rho}.$$
 (2.16)

Let us assume that the maximum is achieved following a sequence $\{(\xi_n, \tau_n)\}$ with $\tau_n \to 0$ and $|\xi_n| \downarrow 1$. We can assume that $\xi_n \to \bar{\xi}$ with $|\bar{\xi}| = 1$, then

$$\left(\frac{1}{4\pi\tau_n}\right)^{N/2} \int_{|v| \le 1} e^{-|\xi_n - v|^2/4\tau_n} dv = \left(\frac{1}{4\pi\tau_n}\right)^{N/2} \int_{B_1(\xi_n)} e^{-|v|^2/4\tau_n} dv.$$

But $B_1(\xi_n) \cap B_1(-\xi_n) = \emptyset$,

$$\int_{B_1(\xi_n)} e^{-|v|^2/4\tau_n} dv + \int_{B_1(-\xi_n)} e^{-|v|^2/4\tau_n} dv < \int_{\mathbb{R}^N} e^{-|v|^2/4\tau_n} dv$$

and

$$\int_{B_1(\xi_n)} e^{-|v|^2/4\tau_n} dv = \int_{B_1(-\xi_n)} e^{-|v|^2/4\tau_n} dv.$$

This implies

$$\lim_{n \to \infty} \left(\frac{1}{4\pi \tau_n} \right)^{N/2} \int_{B_1(\xi_n)} e^{-|v|^2/4\tau_n} dv \le 1/2.$$

If the maximum were achieved with a sequence $\{(\xi_n, \tau_n)\}$ with $|\tau_n| \to \infty$, it would also imply (2.16), since the integral term in (2.15) is always bounded. Therefore (2.15) holds. Put $C = (1 - \ell)^{-1}$, then

$$\iint_{Q_{r,T}} u^{q} dx dt + \int_{\mathbb{R}^{N}} u(.,T) dx \le C \|\eta_{n}\|_{W^{2/q,q'}(\mathbb{R}^{N})}^{q'}.$$
 (2.17)

If we replace η by η_n , a sequence of functions which satisfies

$$C_{2/q,q'}^{B_{r+\rho}}(K) = \lim_{n \to \infty} \|\eta_n\|_{W^{2/q,q'}(\mathbb{R}^N)}^{q'},$$

we obtain (2.13).

2.2 Pointwise estimates

We give first a rough pointwise estimate.

Lemma 2.5 There exists a constant C = C(N,q) > 0 such that

$$u(x, (r+2\rho)^2) \le \frac{CC_{2/q,q'}^{B_{r+\rho}}(K)}{(\rho(r+\rho))^{N/2}}, \quad \forall x \in \mathbb{R}^N.$$
 (2.18)

Proof. Step 1 We claim that

$$\int_{s}^{T} \int_{\mathbb{R}^{N}} u^{q} dx dt + \int_{\mathbb{R}^{N}} u(x, T) dx = \int_{\mathbb{R}^{N}} u(x, s) dx \quad \forall T > s > 0.$$
 (2.19)

By the maximum principle u is dominated by the solution v with initial trace the indicatrix function I_{B_r} . The function v is the limit, as $k \to \infty$, of the solutions v_k with initial data $k\chi_{B_r}$. Since $v_k \le k\mathbb{H}[\chi_{B_r}]$, it follows Hence

$$\int_{\mathbb{R}^N} u(.,s) dx \le C C_{2/q,q'}^{B_{r+\rho}}(K) \quad \forall T > s \ge (r+\rho)^2, \tag{2.20}$$

by Lemma 2.3. Using the fact that

$$u(x, \tau + s) \le \mathbb{H}[u(., s)](x, \tau) \le \left(\frac{1}{4\pi\tau}\right)^{N/2} \int_{\mathbb{R}^N} u(., s) dx,$$

we obtain (2.18) with
$$s=(r+\rho)^2$$
 and $\tau=(r+2\rho)^2-(r+\rho)^2\approx \rho(r+\rho)$.

The above estimate does not take into account the fact that u(x,0) = 0 if $|x| \ge r$. It is mainly interesting if $|x| \le r$. In order to derive a sharper estimate which uses the localization of the singularity and not only its $C_{2/q,q'}$ -capacity, we need some lateral boundary estimates.

Lemma 2.6 Let $\gamma \ge r + 2\rho$ and c > 0 and either N = 1 or 2 and $0 \le t \le c\gamma^2$ for some c > 0, or $N \ge 3$ and t > 0. Then there holds

$$\int_0^t \int_{\partial_{\theta} B_{\gamma}} u dS d\tau \le C_5 \gamma C_{2/q, q'}^{B_{r+\rho}}(K). \tag{2.21}$$

where C > 0 depends on N, q and c if N = 1, 2 or depends only on N and q if $N \ge 3$.

Proof. Let us assume that N=1 or 2. Put $G^{\gamma}:=B^{c}_{\gamma}\times(-\infty,0)$ and $\partial_{\ell}G^{\gamma}=\partial_{\ell}B^{c}_{\gamma}\times(-\infty,0)$. Set

$$h_{\gamma}(x) = 1 - \frac{\gamma}{|x|},$$

and let ψ_{γ} be the solution of

$$\partial_{\tau}\psi_{\gamma} + \Delta\psi_{\gamma} = 0 \qquad \text{in } G^{\gamma},$$

$$\psi_{\gamma} = 0 \qquad \text{on } \partial_{\ell}G^{\gamma},$$

$$\psi_{\gamma}(.,0) = h_{\gamma} \qquad \text{in } B_{\gamma}^{c}.$$

$$(2.22)$$

Thus the function

$$\tilde{\psi}(x,\tau) = \psi_{\gamma}(\gamma x, \gamma^2 \tau)$$

satisfies

$$\begin{split} \partial_t \tilde{\psi} + \Delta \tilde{\psi} &= 0 & \text{in } G^1 \\ \tilde{\psi} &= 0 & \text{on } \partial_\ell G^1 \\ \tilde{\psi}(.,0) &= \tilde{h} & \text{in } B_1^c, \end{split} \tag{2.23}$$

and $\tilde{h}(x) = 1 - |x|^{-1}$. By the maximum principle $0 \le \tilde{\psi} \le 1$, and by Hopf Lemma

$$-\frac{\partial \tilde{\psi}}{\partial \mathbf{n}} |_{\partial B_1^c \times [-c,0]} \ge \theta > 0, \tag{2.24}$$

where $\theta = \theta(N, c)$. Then $0 \le \psi_{\gamma} \le 1$ and

$$-\frac{\partial \psi_{\gamma}}{\partial \mathbf{n}} \Big|_{\partial B_{\gamma}^{c} \times [-\gamma^{2}, 0]} \ge \theta/\gamma. \tag{2.25}$$

Multiplying (1.1) by $\psi_{\gamma}(x,\tau-t) = \psi_{\gamma}^{*}(x,\tau)$ and integrating on $B_{\gamma}^{c} \times (0,t)$ yields to

$$\int_{0}^{t} \int_{B_{\gamma}^{c}} u^{q} \psi_{r}^{*} dx d\tau + \int_{B_{\gamma}^{c}} (uh_{\gamma})(x,t) dx - \int_{0}^{t} \int_{\partial B_{\gamma}} \frac{\partial u}{\partial \mathbf{n}} \psi_{\gamma}^{*} dS d\tau = -\int_{0}^{t} \int_{\partial B_{\gamma}} \frac{\partial \psi_{\gamma}^{*}}{\partial \mathbf{n}} u d\sigma d\tau.$$
 (2.26)

Since ψ_{γ}^* is bounded from above by 1, (2.21) follows from (2.25) and Proposition 2.4 (notice that $B_{\gamma}^c \times (0,t) \subset \mathcal{E}_{\gamma}^c$), first by taking $t = T = \gamma^2 \geq (r+2\rho)^2$, and then for any $t \leq \gamma^2$.

If $N \geq 3$, we proceed as above except that we take

$$h_{\gamma}(x) = 1 - \left(\frac{\gamma}{|x|}\right)^{N-2}$$

Then $\psi_{\gamma}(x,t) = h_{\gamma}(x)$ and $\theta = N-2$ is independent of the length of the time interval. This leads to the conclusion.

Lemma 2.7 *I-* Let M, a > 0 and $\eta \in L^{\infty}(\mathbb{R}^N)$ such that

$$0 \le \eta(x) \le Me^{-a|x|^2}, \quad a.e. \ in \ \mathbb{R}^N.$$
 (2.27)

Then, for any t > 0,

$$0 \le \mathbb{H}[\eta](x,t) \le \frac{M}{(4at+1)^{N/2}} e^{-a|x|^2/(4at+1)}, \quad \forall x \in \mathbb{R}^N.$$
 (2.28)

II- Let M, a, b > 0 and $\eta \in L^{\infty}(\mathbb{R}^N)$ such that

$$0 \le \eta(x) \le Me^{-a(|x|-b)_+^2}, \quad a.e. \text{ in } \mathbb{R}^N.$$
 (2.29)

Then, for any t > 0,

$$0 \le \mathbb{H}[\eta](x,t) \le \frac{Me^{-a(|x|-b)_+^2/(4at+1)}}{(4at+1)^{N/2}}, \forall x \in \mathbb{R}^N, \, \forall t > 0.$$
 (2.30)

Proof. For the first statement, put a = 1/4s. Then

$$0 \le \eta(x) \le M(4\pi s)^{N/2} \frac{1}{(4\pi s)^{N/2}} e^{-|x|^2/4s} = C(4\pi s)^{N/2} \mathbb{H}[\delta_0](x,s).$$

By the order property of the heat kernel,

$$0 \le \mathbb{H}[\eta](x,t) \le M(4\pi s)^{N/2} \mathbb{H}[\delta_0](x,t+s) = M\left(\frac{s}{t+s}\right)^{N/2} e^{-|x|^2/(4(t+s))},$$

and (2.28) follows by replacing s by 1/4a.

For the second statement, let $\tilde{a} < a$ and $R = \max\{e^{-a(r-b)_+^2 + \tilde{a}r^2} : r \ge 0\}$. A direct computation gives $R = e^{a\tilde{a}b^2/(a-\tilde{a})}$, and (2.30) implies

$$0 \le \eta(x) \le M e^{a\tilde{a}b^2/(a-\tilde{a})} e^{-\tilde{a}|x|^2}.$$

Applying the statement I, we obtain

$$0 \le \mathbb{H}[\eta](x,t) \le \frac{Ce^{a\tilde{a}b^2/(a-\tilde{a})}}{(4\tilde{a}t+1)^{N/2}}e^{-\tilde{a}|x|^2/(4\tilde{a}t+1)}, \quad \forall x \in \mathbb{R}^N, \ \forall t > 0.$$
 (2.31)

Since for any $x \in \mathbb{R}^N$ and t > 0,

$$(4\tilde{a}t+1)^{-N/2}e^{-\tilde{a}|x|^2/(4\tilde{a}t+1)} \le e^{-a\tilde{a}b^2/(a-\tilde{a})}(4at+1)^{-N/2}e^{-a(|x|-b)^2/(4at+1)},$$

$$(2.30)$$
 follows from (2.31) .

Lemma 2.8 There exists a constant C = C(N,q) > 0 such that

$$u(x, (r+2\rho)^{2}) \leq C \max \left\{ \frac{r+\rho}{(|x|-r-2\rho)^{N+1}}, \frac{|x|-r-2\rho}{(r+\rho)^{N+1}} \right\} e^{-(|x|-(r+2\rho))^{2}/4(r+2\rho)^{2}} C_{2/q,q'}^{B_{r+\rho}}(K), \tag{2.32}$$

for any $x \in \mathbb{R}^N \setminus B_{r+3\rho}$.

Proof. We recall that the Dirichlet heat kernel $H^{B_1^c}$ in the complement of B_1 satisfies, for some C = C(N) > 0,

$$H^{B_1^c}(x', y', t', s') \le C_7(t' - s')^{-(N+2)/2} (|x'| - 1) \exp(-|x' - y'|^2 / 4(t' - s')), \tag{2.33}$$

for t' > s'. By performing the change of variable $x' \mapsto (r + 2\rho)x'$, $t' \mapsto (r + 2\rho)^2t'$, for any $x \in \mathbb{R}^N \setminus B_{r+2\rho}$ and $0 \le t \le T$, one obtains

$$u(x,t) \le C(|x| - r - 2\rho) \int_0^t \int_{\partial B_{r+2\rho}} \frac{e^{-|x-y|^2/4(t-s)}}{(t-s)^{1+N/2}} u(y,s) d\sigma(y) ds.$$
 (2.34)

The right-hand side term in (2.34) is smaller than

$$\max \left\{ \frac{C(|x| - r - 2\rho)}{(t - s)^{1 + N/2}} e^{-(|x| - r - 2\rho))^2 / 4(t - s)} : s \in (0, t) \right\} \int_0^t \int_{\partial B_{r + 2\rho}} u(y, s) d\sigma(y) ds.$$

We fix $t = (r + 2\rho)^2$ and $|x| \ge r + 3\rho$. Since

$$\max \left\{ \frac{e^{-(|x|-r-2\rho)^2/4s}}{s^{1+N/2}} : s \in \left(0, (r+2\rho)^2\right) \right\}$$
$$= (|x|-r-2\rho)^{-2-N} \max \left\{ \frac{e^{-1/4\sigma}}{\sigma^{1+N/2}} : 0 < \sigma < \left(\frac{r+2\rho}{|x|-r-2\rho}\right)^2 \right\},$$

a direct computation gives

$$\max \left\{ \frac{e^{-1/4\sigma}}{\sigma^{1+N/2}} : 0 < \sigma < \left(\frac{r+2\rho}{|x|-r-2\rho} \right)^2 \right\}$$

$$= \begin{cases} (2N+4)^{1+N/2} e^{-(N+2)/2} & \text{if } r+3\rho \le |x| \le (r+2\rho)(1+\sqrt{4+2N}), \\ \left(\frac{|x|-r-2\rho}{r+2\rho} \right)^{2+N} e^{-((|x|-r-2\rho)/(2r+4\rho))^2} & \text{if } |x| \ge (r+2\rho)(1+\sqrt{4+2N}). \end{cases}$$

Thus there exists a constant C(N) > 0 such that

$$\max \left\{ \frac{e^{-(|x|-r-2\rho)^2/4s}}{s^{1+N/2}} : s \in \left(0, (r+2\rho)^2\right) \right\} \le C(N)\rho^{-2-N}e^{-(|x|-(r+2\rho))^2/4(r+2\rho)^2}. \tag{2.35}$$

Combining this estimate with (2.21) with $\gamma = r + 2\rho$ and (2.34), one derives (2.32).

Lemma 2.9 There exists a constant C = C(N,q) > 0 such that

$$0 \le u(x, (r+2\rho)^2) \le C \max\left\{\frac{(r+\rho)^3}{\rho(|x|-r-2\rho)^{N+1}}, \frac{1}{(r+\rho)^{N-1}\rho}\right\} e^{-(|x|-r-3\rho)^2/4(r+2\rho)^2} C_{2/q,q'}^{B_{r+\rho}}(K), \tag{2.36}$$

for every $x \in \mathbb{R}^N \setminus B_{r+3\rho}$.

Proof. This is a direct consequence of the inequality

$$(|x| - r - 2\rho)e^{-(|x| - (r+2\rho))^2/4(r+2\rho)^2} \le \frac{C(r+\rho)^2}{\rho}e^{-(|x| - (r+3\rho))^2/4(r+2\rho)^2}, \quad \forall x \in B_{r+2\rho}^c, \quad (2.37)$$

and Lemma 2.8.
$$\Box$$

Lemma 2.10 There exists a constant C = C(N,q) > 0 such that the following estimate holds

$$u(x,t) \le \frac{C\tilde{M}e^{-(|x|-r-3\rho)_{+}^{2}/4t}}{t^{N/2}}C_{2/q,q'}^{B_{r+\rho}}(K), \quad \forall x \in \mathbb{R}^{N}, \, \forall t \ge (r+2\rho)^{2}, \tag{2.38}$$

where

$$\tilde{M} = \tilde{M}(x, r, \rho) = \begin{cases} (1 + r/\rho)^{N/2} & \text{if } |x| < r + 3\rho \\ (r + \rho)^{N+3}/\rho(|x| - r - 2\rho)^{N+2} & \text{if } r + 3\rho \le |x| \le C_N(r + 2\rho) \\ 1 + r/\rho & \text{if } |x| \ge C_N(r + 2\rho) \end{cases}$$
(2.39)

with $C_N = 1 + \sqrt{4 + 2N}$.

Proof. It follows by the maximum principle

$$u(x,t) \le \mathbb{H}[u(.,(r+2\rho)^2)](x,t-(r+2\rho)^2).$$

for $t \geq (r+2\rho)^2$ and $x \in \mathbb{R}^N$. By Lemma 2.5 and Lemma 2.9

$$u(x, (r+2\rho)^2) \le C_{10}\tilde{M}e^{-(|x|-r-3\rho)^2/4(r+2\rho)^2}C_{2/q,q'}^{B_{r+2\rho}}(K),$$

where

$$\tilde{M} = \begin{cases} ((r+\rho)\rho)^{-N/2} & \text{if } |x| < r+3\rho \\ (r+\rho)^3/\rho (|x|-r-2\rho))^{N+2} & \text{if } r+3\rho \le |x| \le C_N(r+2\rho) \\ 1/(r+\rho)^{N-1}\rho & \text{if } |x| \ge C_N(r+2\rho) \end{cases}$$

Applying Lemma 2.7 with $a=(2r+4\rho)^{-2},\,b=r+3\rho$ and t replaced by $t-(r+2\rho)^2$ implies

$$u(x,t) \le C \frac{(r+2\rho)^N \tilde{M}}{t^{N/2}} e^{-(|x|-r-3\rho)^2/4t} C_{2/q,q'}^{B_{r+\rho}}(K), \tag{2.40}$$

for all $x \in B_{r+3\rho}^c$ and $t \ge (r+2\rho)^2$, which is (2.38).

The next estimate gives a precise upper bound for u when t is not bounded from below.

Lemma 2.11 Assume that $0 < t \le (r + 2\rho)^2$ for some c > 0, then there exists a constant C = C(N, q) > 0 such that the following estimate holds

$$u(x,t) \le C(r+\rho) \max\left\{ \frac{1}{(|x|-r-2\rho)^{N+1}}, \frac{1}{\rho t^{N/2}} \right\} e^{-(|x|-r-3\rho)^2/4t} C_{2/q,q'}^{B_{r+\rho}}(K), \tag{2.41}$$

for any $(x,t) \in \mathbb{R}^N \setminus B_{r+3\rho} \times (0,(r+2\rho)^2]$.

Proof. By using (2.21) the following estimate is a straightforward variant of (2.32) for any $\gamma \geq r + 2\rho$,

$$u(x,t) \le C_8(|x| - r - 2\rho)(r + 2\rho) \max \left\{ \frac{e^{-(|x| - r - 2\rho)^2/4s}}{s^{1+N/2}} : 0 < s \le t \right\} C_{2/q,q'}^{B_{r+2\rho}}(K).$$
 (2.42)

Clearly

$$\max \left\{ \frac{e^{-(|x|-r-2\rho)^2/4s}}{s^{1+N/2}} : 0 < s \le t \right\} \\
= \begin{cases}
(2N+4)^{1+N/2} (|x|-r-2\rho)^{-N-2} e^{-(N+2)/2} & \text{if } 0 < |x| \le r+2\rho + \sqrt{2t(N+2)} \\
\frac{e^{-(|x|-r-2\rho)^2/4t}}{t^{1+N/2}} & \text{if } |x| > r+2\rho + \sqrt{2t(N+2)}.
\end{cases}$$

By elementary analysis, if $x \in B_{r+3\rho}^c$,

$$(|x| - r - 2\rho)e^{-(|x| - r - 2\rho)^2/4t} \le e^{-(|x| - r - 3\rho)^2/4t} \begin{cases} \rho e^{-\rho^2/4t} & \text{if } 2t < \rho^2 \\ \frac{2t}{\rho} e^{-1+\rho^2/4t} & \text{if } \rho^2 \le 2t \le 2(r + 2\rho)^2. \end{cases}$$

However, since

$$\frac{\rho}{t}e^{-\rho^2/4t} \le \frac{4}{\rho},$$

we derive

$$(|x| - r - 2\rho)e^{-(|x| - r - 2\rho)^2/4t} \le \frac{Ct}{\rho}e^{-(|x| - r - 3\rho)^2/4t},$$

from which inequality (2.41) follows.

Lemma 2.12 Assume $q \ge q_c$. Then there exists a constant C depending on N and q such that for any r > 0 and $\rho > 0$, and any Borel set $E \subset B_r$, there holds

$$C_{2/q,q'}^{B_{r+\rho}}(E) \le Cr^{N-2/(q-1)} \left(1 + \frac{r}{\rho}\right)^{2/(q-1)} C_{2/q,q'}(E/r),$$
 (2.43)

where $C_{2/q,q'}(E) := C_{2/q,q'}^{\mathbb{R}^N}(E)$.

Proof. By the scaling property of Bessel capacities (see [1]), since $q \geq q_c$,

$$C_{2/q,q'}^{B_{r+\rho}}(E) = r^{N-2/(q-1)} C_{2/q,q'}^{B_{1+\rho/r}}(E/r),$$

for any Borel set $E \subset B_r$. It is sufficient to prove (2.43) when $E' = E/r \subset B_1$ is a compact set, thus

$$C_{2/q,q'}^{B_{1+r/\rho}}(E') = \inf \left\{ \|\zeta\|_{W^{2/q,q'}}^{q'} : \zeta \in C_0^2(B_{1+r/\rho}), 0 \leq \zeta \leq 1, \; \zeta \equiv 1 \text{ on } E' \right\}.$$

Let $\phi \in C^2(\mathbb{R}^N)$ be a radial cut-off function such that $0 \leq \rho \leq 1$, $\rho = 1$ on B_1 , $\rho = 0$ on $\mathbb{R}^N \setminus B_{1+\rho/r}$, $|\nabla \phi| \leq Cr\rho^{-1}\chi_{B_{1+\rho/r}\setminus B_1}$ and $|D^2\phi| \leq Cr^2\rho^{-2}\chi_{B_{1+\rho/r}\setminus B_1}$, where C is independent of r and ρ . Let $\zeta \in C_0^2(\mathbb{R}^N)$. Then

$$\nabla(\zeta\phi) = \zeta\nabla\phi + \phi\nabla\zeta, \ D^2(\zeta\phi) = \zeta D^2\phi + \phi D^2\zeta + 2\nabla\phi \times \nabla\zeta.$$

Thus $\|\zeta\phi\|_{L^{q'}(B_{1+\rho/r})} \le \|\zeta\|_{L^{q'}(\mathbb{R}^N)}$,

$$\int_{B_{1+\rho/r}} |\nabla(\zeta\phi)|^{q'} \, dx \le C \left(1 + \frac{r}{\rho}\right)^{q'} \|\zeta\|_{W^{1,q'}}^{q'}$$

and

$$\int_{B_{r+\rho}} \left| D^2(\zeta \phi) \right|^{q'} dx \le C \left(1 + \frac{r^2}{\rho^2} \right)^{q'} \|\zeta\|_{W^{2,q'}}^{q'}.$$

Finally

$$\|\zeta\phi\|_{W^{2/q,q'}} \le C\left(1 + \frac{r^2}{\rho^2}\right) \|\zeta\|_{W^{2/q,q'}}.$$

Denote by \mathcal{T} the linear mapping $\zeta \mapsto \zeta \phi$. Because

$$W^{2/q,q'} = \left[W^{2,q'}, L^{q'} \right]_{1/q,q'},$$

(here we use the Lions-Petree real interpolation notations and results from [18]), it follows

$$||T||_{\mathcal{L}(W_0^{2/q,q'}(\mathbb{R}^N),W_0^{2/q,q'}(B_{1+\rho/r}))} \le C(q) \left(1 + \frac{r^2}{\rho^2}\right)^{1/q}$$

Therefore

$$C_{2/q,q'}^{B_{1+\rho/r}}(E') \le C\left(1 + \frac{r^2}{\rho^2}\right)^{1/(q-1)} C_{2/q,q'}(E').$$

Thus we get (2.43).

Remark. In the subcritical case $1 < q < q_c$, estimate (2.43) becomes

$$C_{2/q,q'}^{B_{r+\rho}}(E) \le C \max\{r^N, \rho^N\} \left(1 + \rho^{-2/(q-1)}\right).$$
 (2.44)

By using Lemma 2.11, it is easy to derive from this estimate that for any positive solution u of (2.1), the initial trace of which vanishes outside 0, there holds

$$u(x,t) \le Ct^{-1/(q-1)} \min \left\{ 1, \left(\frac{|x|}{\sqrt{t}} \right)^{2/(q-1)-N} e^{-|x|^2/4t} \right\} \quad \forall (x,t) \in Q_{\infty}.$$
 (2.45)

This upper estimate corresponds to the one obtained in [5]. If $F = \overline{B}_r$, the upper we estimate is less esthetic. However, it is proved in [21] by a barrier method that, if the initial trace of positive solution u of (2.1), vanishes outside F, and if 1 < q < 3, there holds

$$u(x,t) \le t^{-1/(q-1)} f_1((|x|-r)/\sqrt{t}) \quad \forall (x,t) \in Q_\infty, \ |x| \ge r,$$
 (2.46)

where = f_1 is the positive solution belonging to $C^2([0,\infty))$ of

$$\begin{cases} f'' + \frac{y}{2}f' + \frac{1}{q-1}f - f^q = 0 & \text{in } (0, \infty) \\ f'(0) = 0, & \lim_{y \to \infty} |y|^{2/(q-1)} f(y) = 0. \end{cases}$$
 (2.47)

Notice that the existence of f_1 follows from [5] since q is the critical exponent in 1 dim. Furthermore f_1 has the following asymptotic expansion

$$f_1(y) = Cy^{(3-q)/(q-1)}e^{-y^2/4t}(1+o(1))$$
 as $y \to \infty$.

2.3 The upper Wiener test

Definition 2.13 We define on $\mathbb{R}^N \times \mathbb{R}$ the two parabolic distances δ_2 and δ_{∞} by

$$\delta_2[(x,t),(y,s)] := \sqrt{|x-y|^2 + |t-s|},\tag{2.48}$$

and

$$\delta_{\infty}[(x,t),(y,s)] := \max\{|x-y|,\sqrt{|t-s|}\}. \tag{2.49}$$

If $K \subset \mathbb{R}^N$ and $i = 2, \infty$,

$$\delta_i[(x,t),K] = \inf\{\delta_i[(x,t),(y,0)] : y \in K\} = \begin{cases} \max\left\{\operatorname{dist}(x,K),\sqrt{|t|}\right\} & \text{if } i = \infty, \\ \sqrt{\operatorname{dist}^2(x,K) + |t|} & \text{if } i = 2. \end{cases}$$

For $\beta > 0$ and $i = 2, \infty$, we denote by $\mathcal{B}^i_{\beta}(m)$ the parabolic ball of center m = (x, t) and radius β in the parabolic distance δ_i .

Let K be <u>any</u> compact subset of \mathbb{R}^N and \overline{u}_K the maximal solution of (1.1) which blows up on K. The function \overline{u}_K is obtained as the decreasing limit of the $\overline{u}_{K_{\epsilon}}$ ($\epsilon > 0$) when $\epsilon \to 0$, where

$$K_{\epsilon} = \{ x \in \mathbb{R}^N : \text{dist}(x, K) \le \epsilon \}$$

and $\overline{u}_{K_{\epsilon}} = \lim_{k \to \infty} u_{k,K_{\epsilon}} = \overline{u}_{K}$, where u_{k} is the solution of the classical problem,

$$\begin{cases}
\partial_t u_k - \Delta u_k + u_k^q = 0 & \text{in } Q_T, \\
u_k = 0 & \text{on } \partial_\ell Q_T, \\
u_k(.,0) = k\chi_{K_\epsilon} & \text{in } \mathbb{R}^N.
\end{cases}$$
(2.50)

If $(x,t) = m \in \mathbb{R}^N \times (0,T]$, we set $d_K = \text{dist}(x,K)$, $D_K = \max\{|x-y| : y \in K\}$ and $\lambda = \sqrt{d_K^2 + t} = \delta_2[m,K]$. We define a slicing of K, by setting $d_n = d_n(K,t) := \sqrt{nt}$ $(n \in \mathbb{N})$,

$$T_n = \overline{B}_{d_{n+1}}(x) \setminus B_{d_n}(x), \quad \forall n \in \mathbb{N},$$

thus $T_0 = B_{\sqrt{t}}(x)$, and

$$K_n(x) = K \cap T_n(x)$$
 for $n \in \mathbb{N}$ and $Q_n(x) = K \cap B_{d_{n+1}}(x)$.

When there is no ambiguity, we shall skip the x variable in the above sets. The main result of this section is the following discrete upper Wiener-type estimate.

Theorem 2.14 Assume $q \ge q_c$. Then there exists C = C(N, q, T) > 0 such that

$$\overline{u}_K(x,t) \le \frac{C}{t^{N/2}} \sum_{n=0}^{a_t} d_{n+1}^{N-2/(q-1)} e^{-n/4} C_{2/q,q'} \left(\frac{K_n}{d_{n+1}}\right) \quad \forall (x,t) \in Q_T, \tag{2.51}$$

where a_t is the largest integer j such that $K_j \neq \emptyset$.

With no loss of generality, we can first assume that x=0. Furthermore, in considering the scaling transformation $u_\ell(y,t)=\ell^{1/(q-1)}u(\sqrt{\ell}y,\ell t)$, with $\ell>0$, we can assume t=1. Thus the new compact singular set of the initial trace becomes $K/\sqrt{\ell}$, that we shall still denote K. We shall also set $a_K=a_{K,1}$ Since for each $n\in\mathbb{N}$,

$$\frac{1}{2\sqrt{n+1}} \le d_{n+1} - d_n \le \frac{1}{\sqrt{n+1}},$$

it is possible to exhibit a collection Θ_n of points $a_{n,j}$ with center on the sphere $\Sigma_n = \{y \in \mathbb{R}^N : |y| = (d_{n+1} + d_n)/2\}$, such that

$$T_n \subset \bigcup_{a_{n,j} \in \Theta_n} B_{1/\sqrt{n+1}}(a_{n,j}), \quad |a_{n,j} - a_{n,k}| \ge 1/2\sqrt{n+1} \text{ and } \#\Theta_n \le Cn^{N-1},$$

for some constant C = C(N). If $K_{n,j} = K_n \cap B_{1/\sqrt{n+1}}(a_{n,j})$, there holds

$$K = \bigcup_{0 \le n \le a_K} \bigcup_{a_{n,j} \in \Theta_n} K_{n,j}.$$

The first intermediate step is related to the quasi-additivity property of capacities.

Lemma 2.15 Let $q \ge q_c$. There exists a constant C = C(N,q) such that

$$\sum_{a_{n,j} \in \Theta_n} C_{2/q,q'}^{B_{n,j}}(K_{n,j}) \le C n^{1/(q-1)-N/2} C_{2/q,q'}\left(\sqrt{n} K_n\right) \quad \forall n \in \mathbb{N}_*, \tag{2.52}$$

where $B_{n,j} = B_{2/\sqrt{n+1}}(a_{n,j})$ and $C_{2/q,q'}$ stands for the capacity taken with respect to \mathbb{R}^N .

Proof. The following result is proved in [2, Th 3]: if the spheres $B_{\rho_j^{\theta}}(b_j)$ are disjoint in \mathbb{R}^N and G is an analytic subset of $\bigcup B_{\rho_j}(b_j)$ where the ρ_j are positive and smaller than some $\rho^* > 0$, there holds

$$C_{2/q,q'}(G) \le \sum_{j} C_{2/q,q'}(G \cap B_{\rho_j}(b_j)) \le AC_{2/q,q'}(G),$$
 (2.53)

where $\theta = 1 - 2/N(q-1)$, for some A depending on N, q and ρ^* . This property is called quasi-additivity. We define for $n \in \mathbb{N}_*$,

$$\tilde{T}_n = \sqrt{n}T_n$$
, $\tilde{K}_n = \sqrt{n}K_n$ and $\tilde{Q}_n = \sqrt{n}Q_n$.

Since $K_{n,j} \subset B_{1/\sqrt{n+1}}(a_{n,j})$, the $C_{2/q,q'}$ capacities are taken with respect to the balls $B_{2/\sqrt{n+1}}(a_{n,j}) = B_{n,j}$. By Lemma 2.12 with $r = \rho = \sqrt{n+1}$

$$C_{2/q,q'}^{B_{n,j}}(K_{n,j}) \le C n^{1/(q-1)-N/2} C_{2/q,q'}(\tilde{K}_{n,j}),$$
 (2.54)

where $\tilde{K}_{n,j} = \sqrt{n}K_{n,j}$ and $\tilde{B}_{n,j} = \sqrt{n}B_{n,j}$. For a fixed n > 0 and each repartition Λ of points $\tilde{a}_{n,j} = \sqrt{n} a_{n,j}$ such that the balls $B_{2\theta}(\tilde{a}_{n,j})$ are disjoint, the quasi-additivity property holds in the following sense: if we set

$$K_{n,\Lambda} = \bigcup_{a_{n,j} \in \Lambda} K_{n,j} , \quad \tilde{K}_{n,\Lambda} = \sqrt{n} K_{n,\Lambda} = \bigcup_{a_{n,j} \in \Lambda} \tilde{K}_{n,j} \text{ and } \tilde{K}_n = \sqrt{n} K_n,$$

then

$$\sum_{a_{n,j} \in \Lambda} C_{2/q,q'}(\tilde{K}_{n,j}) \le AC_{2/q,q'}(\tilde{K}_{n,\Lambda}). \tag{2.55}$$

The maximal cardinal of any such repartition Λ is of the order of Cn^{N-1} for some positive constant C = C(N), therefore, the number of repartitions needed for a full covering of the set \tilde{T}_n is of finite order depending upon the dimension. Because \tilde{K}_n is the union of the $\tilde{K}_{n,\Lambda}$,

$$\sum_{\Lambda} \sum_{a_{n,j} \in \Lambda} C_{2/q,q'}(\tilde{K}_{n,j}) \le C C_{2/q,q'}(\tilde{K}_n)$$
(2.56)

Combining (2.54) and (2.56), we obtain (2.52).

Proof of Theorem 2.14. Step 1. We first notice that

$$\overline{u}_K \le \sum_{0 \le n \le a_K} \sum_{a_{n,j} \in \Theta_n} \overline{u}_{K_{n,j}}.$$
(2.57)

Actually, since $K = \bigcup_n \bigcup_{a_{n,j}} K_{n,j}$, for any $0 < \epsilon' < \epsilon$, there holds $\overline{K_{\epsilon'}} \subset \bigcup_n \bigcup_{a_{n,j}} K_{n,j} \epsilon$. Because a finite sum of positive solutions of (1.1) is a super solution,

$$\overline{u}_{K_{\epsilon'}} \le \sum_{0 \le n \le a_K} \sum_{a_{n,j} \in \Theta_n} \overline{u}_{K_{n,j} \epsilon}. \tag{2.58}$$

Letting successively ϵ' and ϵ go to 0 implies (2.57).

Step 2. Let $n \in \mathbb{N}$. Since $K_{n,j} \subset B_{1/\sqrt{n+1}}(a_{n,j})$ and $|x - a_{n,j}| = (d_n + d_{n+1})/2 = (\sqrt{n+1} + \sqrt{n})/2$, we can apply the previous lemmas with $r = 1/\sqrt{n+1}$ and $\rho = r$. For $n \geq n_N$ there holds $t = 1 \geq (r+2\rho)^2 = 9/(n+1)$ and $|x - a_{n,j}| = (\sqrt{n+1} - \sqrt{n})/2 \geq (2+C_N)(3/\sqrt{n+1})$ (notice that $n_N \geq 8$). Thus

$$u_{K_{n,j}}(0,1) \leq Ce^{(\sqrt{n}-3/\sqrt{n+1})^2/4} C_{2/q,q'}^{B_{n,j}}(K_{n,j})$$

$$\leq Ce^{3/2}e^{-n/4} C_{2/q,q'}^{B_{n,j}}(K_{n,j})$$

$$\leq Cn^{1/(q-1)-N/2}e^{-n/4} C_{2/q,q'}(\tilde{K}_{n,j}),$$
(2.59)

which implies

$$\sum_{a_{n,j}\in\Theta_n} u_{K_{n,j}}(0,1) \le Cn^{N/2-1/(q-1)} e^{-n/4} C_{2/q,q'}(\tilde{K}_n)$$

Using the fact that

$$C_{2/q,q'}\left(\tilde{K}_n\right) \approx \left(d_{n+1}\sqrt{n}\right)^{N-2/(q-1)} C_{2/q,q'}\left(\frac{K_n}{d_{n+1}}\right),$$

for any $n \in \mathbb{N}_*$, we derive

$$\sum_{n=n_N}^{a_K} \sum_{a_{n,j} \in \Theta_n} u_{K_{n,j}}(0,1) \le C \sum_{n=n_N}^{a_K} d_{n+1}^{N/2-1/(q-1)} e^{-n/4} C_{2/q,q'}\left(\frac{K_n}{d_{n+1}}\right). \tag{2.60}$$

Finally, we apply Lemma 2.5 if $1 \le n < n_{\scriptscriptstyle N}$ and get

$$\sum_{1}^{n_{N}-1} \sum_{a_{n,j} \in \Theta_{n}} u_{K_{n,j}}(0,1) \leq C \sum_{1}^{n_{N}-1} C_{2/q,q'} \left(\frac{K_{n}}{d_{n+1}}\right) \\
\leq C' \sum_{1}^{n_{N}-1} d_{n+1}^{N/2-1/(q-1)} e^{-n/4} C_{2/q,q'} \left(\frac{K_{n}}{d_{n+1}}\right).$$
(2.61)

For n = 0, we proceed similarly, in splitting K_1 in a finite number of $K_{1,i}$, depending only on the dimension, such that diam $K_{1,i} < 1/3$. Combining (2.60) and (2.61), we derive

$$\overline{u}_K(0,1) \le C \sum_{n=0}^{a_K} d_{n+1}^{N/2-1/(q-1)} e^{-n/4} C_{2/q,q'} \left(\frac{K_n}{d_{n+1}} \right). \tag{2.62}$$

In order to derive the same result for any t > 0, we notice that

$$\overline{u}_K(y,t) = t^{-1/(q-1)} \overline{u}_{K\sqrt{t}}(y\sqrt{t},1).$$

Going back to the definition of $d_n=d_n(K,t)=\sqrt{nt}=d_n(K\sqrt{t},1)$, we derive from (2.62) and the fact that $a_{K,t}=a_{K\sqrt{t},1}$

$$\overline{u}_K(0,t) \le Ct^{-1/(q-1)} \sum_{n=0}^{a_K} (n+1)^{N/2-1/(q-1)} e^{-n/4} C_{2/q,q'} \left(\frac{K_n}{d_{n+1}}\right), \tag{2.63}$$

which can also read as (2.51) with x=0, and a space translation leads to the final result. \Box

Proof of Theorem 2.1. Let m > 0 and $F_m = F \cap \overline{B}_m$. We denote by $U_{B_m^c}$ the maximal solution of (1.1) in Q_{∞} the initial trace of which vanishes on B_m . Such a solution is actually the unique solution of (2.1) which satisfies

$$\lim_{t \to 0} u(x, t) = \infty$$

uniformly on $B_{m'}^c$, for any m' > m: this can be checked by noticing that

$$U_{B_m^c}(y,t) = \ell^{1/(q-1)} U_{B_m^c}(\sqrt{\ell}y,\ell t) = U_{B_{m/\sqrt{\ell}}^c}(y,t).$$

Furthermore

$$\lim_{m \to \infty} U_{B_m^c}(y, t) = \lim_{m \to \infty} m^{-2/(q-1)} U_{B_1^c}(y/m, t/m^2) = 0$$

uniformly on any compact subset of \overline{Q}_{∞} . Since $\overline{u}_{F_m} + U_{B_m^c}$ is a super-solution, it is larger that \overline{u}_F and therefore $\overline{u}_{F_m} \uparrow \overline{u}_F$. Because $W_{F_m}(x,t) \leq W_F(x,t)$ and $\overline{u}_{F_m} \leq C_1 W_{F_m}(x,t)$, the result follows.

Theorem 2.1 admits the following integral expression.

Theorem 2.16 Assume $q \ge q_c$. Then there exists a positive constant $C_1^* = C^*(N, q, T)$ such that, for any closed subset F of \mathbb{R}^N , there holds

$$\overline{u}_F(x,t) \le \frac{C_1^*}{t^{1+N/2}} \int_{\sqrt{t}}^{\sqrt{t(a_t+2)}} e^{-s^2/4t} s^{N-2/(q-1)} C_{2/q,q'}\left(\frac{1}{s} F \cap B_1(x)\right) s \, ds,\tag{2.64}$$

where $a_t = \min\{n : F \subset B_{\sqrt{n+1}t}(x)\}$

Proof. We first use

$$C_{2/q,q'}\left(\frac{F_n}{d_{n+1}}\right) \le C_{2/q,q'}\left(\frac{F}{d_{n+1}} \cap B_1\right),$$

and we denote

$$\Phi(s) = C_{2/q,q'} \left(\frac{F}{s} \cap B_1\right) \quad \forall s > 0.$$
(2.65)

Step 1. The following inequality holds (see [1] and [24])

$$c_1 \Phi(\alpha s) \le \Phi(s) \le c_2 \Phi(\beta s) \quad \forall s > 0, \ \forall 1/2 \le \alpha \le 1 \le \beta \le 2,$$
 (2.66)

for some positive constants c_1 , c_2 depending on N and q. If $\beta \in [1, 2]$,

$$\Phi(\beta s) = C_{2/q,q'}\left(\frac{1}{\beta}\left(\frac{F}{s} \cap B_{\beta}\right)\right) \approx C_{2/q,q'}\left(\frac{F}{s} \cap B_{\beta}\right) \ge c_1\Phi(s).$$

If $\alpha \in [1/2, 1]$,

$$\Phi(\alpha s) = C_{2/q,q'}\left(\frac{1}{\alpha}\left(\frac{F}{s} \cap B_{\alpha}\right)\right) \approx C_{2/q,q'}\left(\frac{F}{s} \cap B_{\alpha}\right) \le c_2\Phi(s).$$

Step 2. By (2.66)

$$C_{2/q,q'}\left(\frac{F}{d_{n+1}}\cap B_1\right) \le c_2 C_{2/q,q'}\left(\frac{F}{s}\cap B_1\right) \quad \forall \ s \in [d_{n+1},d_{n+2}],$$

and $n \leq a_t$. Then

$$c_2 \int_{d_{n+1}}^{d_{n+2}} s^{N-2/(q-1)} e^{-s^2/4t} C_{2/q,q'}\left(\frac{F}{s} \cap B_1\right) s \, ds$$

$$\geq C_{2/q,q'}\left(\frac{F}{d_{n+1}}\cap B_1\right)\int_{d_{n+1}}^{d_{n+2}} s^{N-2/(q-1)}e^{-s^2/4t}s\,ds.$$

Using the fact that $N-2/(q-1) \ge 0$, we get,

$$\int_{d_{n+1}}^{d_{n+2}} s^{N-2/(q-1)} e^{-s^2/4t} s \, ds \ge e^{-(n+2)/4} d_{n+1}^{N-2/(q-1)+1} (d_{n+2} - d_{n+1}) \tag{2.67}$$

$$\geq \frac{t}{4e^2} d_{n+1}^{N-2/(q-1)} e^{-n/4}. \tag{2.68}$$

Thus

$$\overline{u}_F(x,t) \le \frac{C}{t^{1+N/2}} \int_{\sqrt{t}}^{\sqrt{t(a_t+2)}} s^{N-2/(q-1)} e^{-s^2/4t} C_{2/q,q'}\left(\frac{1}{s}F \cap B_1\right) s \, ds,\tag{2.69}$$

which ends the proof.

3 Estimate from below

If $\mu \in \mathfrak{M}^q_{\perp}(\mathbb{R}^N) \cap \mathfrak{M}^b(\mathbb{R}^N)$, we denote $u_{\mu} = u_{\mu,0}$, that is the solution of

$$\begin{cases} \partial_t u_\mu - \Delta u_\mu + u_\mu^q = 0 & \text{in } Q_T, \\ u_\mu(.,0) = \mu & \text{in } \mathbb{R}^N. \end{cases}$$
 (3.1)

The maximal σ -moderate solution of (1.1) which has an initial trace vanishing outside a closed set F is defined by

$$\underline{u}_F = \sup \left\{ u_\mu : \mu \in \mathfrak{M}^q_+(\mathbb{R}^N) \cap \mathfrak{M}^b(\mathbb{R}^N), \ \mu(F^c) = 0 \right\}. \tag{3.2}$$

The main result of this section is the next one

Theorem 3.1 Assume $q \ge q_c$. There exists a constant $C_2 = C_2(N, q, T) > 0$ such that, for any closed subset $F \subset \mathbb{R}^N$, there holds

$$\underline{u}_F(x,t) \ge C_2 W_F(x,t) \quad \forall (x,t) \in Q_T. \tag{3.3}$$

We first assume that F is compact, and we shall denote it by K. The first observation is that if $\mu \in \mathfrak{M}^q_+(\mathbb{R}^N)$, $u_\mu \in L^q(Q_T)$ (see lemma below) and $0 \le u_\mu \le \mathbb{H}[\mu] := \mathbb{H}_\mu$. Therefore

$$u_{\mu} \ge \mathbb{H}_{\mu} - \mathbb{G}\left[\mathbb{H}_{\mu}^{q}\right],\tag{3.4}$$

where \mathbb{G} is the Green heat potential in Q_T defined by

$$\mathbb{G}[f](t) = \int_0^t \mathbb{H}[f(s)](t-s)ds = \int_0^t \int_{\mathbb{R}^N} H(.,y,t-s)f(y,s)dyds.$$

Since the details of the proof are very technical, we shall present its main line. The key idea is to construct, for any $(x,t) \in Q_T$, a measure $\mu = \mu(x,t) \in \mathfrak{M}^q_+(\mathbb{R}^N)$ such that there holds

$$\mathbb{H}_{\mu}(x,t) \ge CW_K(x,t) \quad \forall (x,t) \in Q_T, \tag{3.5}$$

and

$$\mathbb{G}\left(\mathbb{H}_{\mu}\right)^{q} \le C \,\mathbb{H}_{\mu} \quad \text{in } Q_{T},\tag{3.6}$$

with constants C depends only on N, q, and T, then to replace μ by $\mu_{\epsilon} = \epsilon \mu$ with $\epsilon = (2C)^{-1/(q-1)}$ in order to derive

$$u_{\mu_{\epsilon}} \ge 2^{-1} \mathbb{H}_{\mu_{\epsilon}} \ge 2^{-1} CW_K.$$
 (3.7)

From this follows

$$\underline{u}_K \ge 2^{-1} \mathbb{H}_{\mu_{\epsilon}} \ge 2^{-1} CW_K. \tag{3.8}$$

and the proof of Theorem 3.1 with $C_2 = 2^{-1}C$.

We recall the following regularity result which actually can be used for defining the norm in negative Besov spaces [30]

Lemma 3.2 There exists a constant c > 0 such that

$$c^{-1} \|\mu\|_{W^{-2/q,q}(\mathbb{R}^N)} \le \|\mathbb{H}_{\mu}\|_{L^q(Q_T)} \le c \|\mu\|_{W^{-2/q,q}(\mathbb{R}^N)}$$
(3.9)

for any $\mu \in W^{-2/q,q}(\mathbb{R}^N)$.

3.1 Estimate from below for the heat equation

3.1.1 The extended slicing

If K is a compact subset of \mathbb{R}^N , m=(x,t), we define d_K , λ , d_n and a_t as in Section 2.3. Let $\alpha \in (0,1)$ to be fixed later on, we define \mathcal{T}_n for $n \in \mathbb{Z}$ by

$$\mathcal{T}_n = \begin{cases} \mathcal{B}_{\sqrt{t(n+1)}}^2(m) \setminus \mathcal{B}_{\sqrt{tn}}^2(m) & \text{if } n \ge 1, \\ \mathcal{B}_{\alpha^{-n}\sqrt{t}}^2(m) \setminus \mathcal{B}_{\alpha^{1-n}\sqrt{t}}^2(m) & \text{if } n \le 0, \end{cases}$$

and put

$$\mathcal{T}_n^* = \mathcal{T}_n \cap \{s : 0 \le s \le t\}, \text{ for } n \in \mathbb{Z}.$$

We recall that for $n \in \mathbb{N}_*$,

$$Q_n = K \cap \mathcal{B}^2_{\sqrt{t(n+1)}}(m) = K \cap B_{d_n}(x)$$

and

$$K_n = K \cap \mathcal{T}_{n+1} = K \cap (B_{d_{n+1}}(x) \setminus B_{d_n}(x)).$$

Let $\nu_n \in \mathfrak{M}_+(\mathbb{R}^N) \cap W^{-2/q,q}(\mathbb{R}^N)$ be the q-capacitary measure of the set K_n/d_{n+1} (see [1, Sec. 2.2]). Such a measure has support in K_n/d_{n+1} and

$$\nu_n(K_n/d_{n+1}) = C_{2/q,q'}(K_n/d_{n+1}) \text{ and } \|\nu_n\|_{W^{-2/q,q'}(\mathbb{R}^N)} = \left(C_{2/q,q'}(K_n/d_{n+1})\right)^{1/q}.$$
 (3.10)

We define μ_n as follows

$$\mu_n(A) = d_{n+1}^{N-2/(q-1)} \nu_n(A/d_{n+1}) \quad \forall A \subset K_n, A \text{ Borel},$$
 (3.11)

and set

$$\mu_{t,K} = \sum_{n=0}^{a_t} \mu_n,$$

and

$$\mathbb{H}_{\mu_{t,K}} = \sum_{n=0}^{a_t} \mathbb{H}_{\mu_n} \tag{3.12}$$

Proposition 3.3 Let $q \geq q_c$, then there holds

$$\mathbb{H}_{\mu_{t,K}}(x,t) \ge \frac{1}{(4\pi t)^{N/2}} \sum_{n=0}^{a_t} e^{-(n+1)/4} d_{n+1}^{N-2/(q-1)} C_{2/q,q'}\left(\frac{K_n}{d_{n+1}}\right),\tag{3.13}$$

in $\mathbb{R}^N \times (0,T)$.

Proof. Since

$$\mathbb{H}_{\mu_n}(x,t) = \frac{1}{(4\pi t)^{N/2}} \int_{K_n} e^{-|x-y|^2/4t} d\mu_n, \tag{3.14}$$

and

$$y \in K_n \Longrightarrow |x - y| \le d_{n+1}$$
,

(3.13) follows because of (3.11) and (3.12).

3.2 Estimate from above for the nonlinear term

We write (3.4) under the form

$$u_{\mu}(x,t) \ge \sum_{n \in \mathbb{Z}} \mathbb{H}_{\mu_n}(x,t) - \int_0^t \int_{\mathbb{R}^N} H(x,y,t-s) \left[\sum_{n \in A_K} \mathbb{H}_{\mu_n}(y,s) \right]^q dy ds$$

$$= I_1 - I_2.$$
(3.15)

since $\mu_n = 0$ if $n \notin A_K = \mathbb{N} \cap [1, a_t]$, and

$$I_{2} \leq \frac{1}{(4\pi)^{N/2}} \int_{0}^{t} \int_{\mathbb{R}^{N}} (t-s)^{-N/2} e^{-|x-y|^{2}/4(t-s)} \left[\sum_{n \in A_{K}} \mathbb{H}_{\mu_{n}}(y,s) \right]^{q} dy ds$$

$$\leq \frac{1}{(4\pi)^{N/2}} (J_{\ell} + J_{\ell}'), \tag{3.16}$$

for some $\ell \in \mathbb{N}^*$ to be fixed later on, where

$$J_{\ell} = \sum_{p \in \mathbb{Z}} \iint_{\mathcal{T}_{p}^{*}} (t - s)^{-N/2} e^{-|x - y|^{2}/4(t - s)} \left[\sum_{n$$

and

$$J'_{\ell} = \sum_{p \in \mathbb{Z}} \iint_{\mathcal{T}_p^*} (t-s)^{-N/2} e^{-|x-y|^2/4(t-s)} \left[\sum_{n \ge p+\ell} \mathbb{H}_{\mu_n}(y,s) \right]^q dy ds.$$

The next estimate will be used several times in the sequel.

Lemma 3.4 *Let* 0 < a < b *and* t > 0, *then*,

$$\max \left\{ \sigma^{-N/2} e^{-\rho^2/4\sigma} : 0 \le \sigma \le t, \ at \le \rho^2 + \sigma \le bt \right\} = e^{1/4} \left\{ \begin{array}{l} t^{-N/2} e^{-a/4} & \text{if } \frac{a}{2N} > 1, \\ \left(\frac{2N}{at} \right)^{N/2} e^{-N/2} & \text{if } \frac{a}{2N} \le 1. \end{array} \right.$$

Proof. Set

$$\mathcal{J}(\rho,\sigma) = \sigma^{-N/2} e^{-\rho^2/4\sigma}$$

and

$$\mathcal{K}_{a,b,t} = \{(\rho,\sigma) \in [0,\infty) \times (0,t] : at \le \rho^2 + \sigma \le bt \}.$$

We first notice that, for fixed σ , the maximum of $\mathcal{J}(.,\sigma)$ is achieved for ρ minimal. If $\sigma \in [at,bt]$ the minimal value of ρ is 0, while if $\sigma \in (0,at)$, the minimum of ρ is $\sqrt{at-s}$.

- Assume first $a \geq 1$, then $\mathcal{J}(\sqrt{at-\sigma},\sigma) = e^{1/4}\sigma^{-N/4}e^{-at/4\sigma}$, thus, if $1 \leq a/2N$ the minimal value of $\mathcal{J}(\sqrt{at-\sigma},\sigma)$ is $e^{(1-2N)/4}(2N/at)^{N/2}$, while, if $a/2N < 1 \leq a$, the minimum is $e^{1/4}t^{-N/2}e^{-a/4}$.

- Assume now $a \leq 1$. Then

$$\max\{\mathcal{J}(\rho,\sigma): \ (\rho,\sigma) \in \mathcal{K}_{a,b,t}\} = \max\left\{ \max_{\sigma \in (at,t]} \mathcal{J}(0,\sigma), \ \max_{\sigma \in (0,at]} \mathcal{J}(\sqrt{at-\sigma},\sigma) \right\}$$
$$= \max\left\{ (at)^{-N/2}, \ e^{(1-2N)/4} (2N/at)^{N/2} \right\}$$
$$= e^{(1-2N)/4} (2N/at)^{N/2}.$$

Combining these two estimates, we derive the result.

Remark. The following variant of Lemma 3.4 will be useful in the sequel: For any $\theta \geq 1/2N$ there holds

$$\max\{\mathcal{J}(\rho,\sigma): (\rho,\sigma) \in \mathcal{K}(a,b,t)\} \le e^{1/4} \left(\frac{2N\theta}{t}\right)^{N/2} e^{-a/4} \quad \text{if } \theta a \ge 1.$$
 (3.17)

Lemma 3.5 There exists a positive constant $C = C(N, \ell, q)$ such that

$$J_{\ell} \le C t^{-N/2} \sum_{n=1}^{a_t} d_{n+1}^{N-2/(q-1)} e^{-(1+(n-\ell)_+)/4} C_{2/q,q'} \left(\frac{K_n}{d_{n+1}}\right). \tag{3.18}$$

Proof. The set of p for the summation in J_{ℓ} is reduced to $\mathbb{Z} \cap [-\ell+2,\infty)$ and we write

$$J_{\ell} = J_{1,\ell} + J_{2,\ell}$$

where

$$J_{1,\ell} = \sum_{p=2-\ell}^{0} \iint_{\mathcal{T}_p^*} (t-s)^{-N/2} e^{-|x-y|^2/4(t-s)} \left[\sum_{n < p+\ell} \mathbb{H}_{\mu_n}(y,s) \right]^q$$

and

$$J_{2,\ell} = \sum_{p=1}^{\infty} \iint_{\mathcal{T}_p^*} (t-s)^{-N/2} e^{-|x-y|^2/4(t-s)} \left[\sum_{n < p+\ell} \mathbb{H}_{\mu_n}(y,s) \right]^q.$$

If $p = 2 - \ell, \dots, 0$.

$$(y,s) \in \mathcal{T}_p^* \Longrightarrow t\alpha^{2-2p} \le |x-y|^2 + t - s \le t\alpha^{-2p},$$

and, if p > 1

$$(y,s) \in \mathcal{T}_p^* \Longrightarrow pt \le |x-y|^2 + t - s \le (p+1)t.$$

By Lemma 3.4 and (3.17), there exists $C = C(N, \ell, \alpha) > 0$ such that

$$\max\left\{(t-s)^{-N/2}e^{-|x-y|^2/4(t-s)}:(y,s)\in\mathcal{T}_p^*\right\}\leq Ct^{-N/2}e^{-\alpha^{2-2p}/4},\tag{3.19}$$

if $p = 2 - \ell, ..., 0$, and

$$\max\left\{(t-s)^{-N/2}e^{-|x-y|^2/4(t-s)}: (y,s) \in \mathcal{T}_p^*\right\} \le Ct^{-N/2}e^{-p/4},\tag{3.20}$$

if $p \ge 1$. When $p = 2 - \ell, \dots, 0$

$$\left[\sum_{1}^{p+\ell-1} \mathbb{H}_{\mu_n}(y,s)\right]^q \le C \sum_{1}^{p+\ell-1} \mathbb{H}_{\mu_n}^q(y,s). \tag{3.21}$$

for some $C = C(\ell, q) > 0$, thus

$$J_{1,\ell} \leq Ct^{-N/2} \sum_{p=2-\ell}^{0} e^{-\alpha^{2-2p}/4} \sum_{n=1}^{p+\ell-1} \|\mathbb{H}_{\mu_n}\|_{L^q(Q_t)}^q$$

$$\leq Ct^{-N/2} \sum_{n=1}^{\ell-1} \|\mathbb{H}_{\mu_n}\|_{L^q(Q_t)}^q \sum_{p=n-\ell+1}^{0} e^{-\alpha^{2-2p}/4}$$

$$\leq Ct^{-N/2} e^{-\alpha^{2\ell-2}/4} \sum_{n=1}^{\ell-1} \|\mathbb{H}_{\mu_n}\|_{L^q(Q_t)}^q.$$
(3.22)

If the set of p's is not upper bounded, we introduce $\delta > 0$ to be made precise later on. Then

$$\left[\sum_{1}^{p+\ell-1} \mathbb{H}_{\mu_n}(y,s)\right]^q \le \left[\sum_{1}^{p+\ell-1} e^{\delta q'n/4}\right]^{q/q'} \sum_{1}^{p+\ell-1} e^{-\delta qn/4} \mathbb{H}^q_{\mu_n}(y,s),\tag{3.23}$$

with q' = q/(q-1). If, by convention $\mu_n = 0$ whenever $n > a_t$, we obtain, for some C > 0 which depends also on δ ,

$$J_{2,\ell} \leq Ct^{-N/2} \sum_{p=1}^{\infty} e^{(\delta(p+\ell-1)q-p)/4} \sum_{n=1}^{p+\ell-1} e^{-\delta q n/4} \|\mathbb{H}_{\mu_n}\|_{L^q(Q_t)}^q$$

$$\leq Ct^{-N/2} \sum_{n=1}^{\infty} \|\mathbb{H}_{\mu_n}\|_{L^q(Q_t)}^q e^{-\delta q n/4} \sum_{p=(n-\ell+1)\vee 1}^{\infty} e^{(\delta(p+\ell-1)q-p)/4}$$

$$\leq Ct^{-N/2} \sum_{n=1}^{\infty} e^{-(1+(n-\ell)+1)/4} \|\mathbb{H}_{\mu_n}\|_{L^q(Q_t)}^q.$$

$$(3.24)$$

Notice that we choose δ such that $\delta \ell q < 1$. Combining (3.22) and (3.24), we derive (3.18) from Lemma 3.2, (3.10) and (3.11).

The set of indices p for which the μ_n terms are not zero in J'_{ℓ} is $\mathbb{Z} \cap (-\infty, a_t - \ell]$. We write

$$J'_{\ell} = J'_{1,\ell} + J'_{2,\ell},$$

where

$$J'_{1,\ell} = \sum_{p=-\infty}^{0} \iint_{\mathcal{T}_p^*} (t-s)^{-N/2} e^{-|x-y|^2/4(t-s)} \left[\sum_{n=1 \lor p+\ell}^{\infty} \mathbb{H}_{\mu_n}(y,s) \right]^q dy ds,$$

and

$$J_{2,\ell}' = \sum_{p=1}^{a_t - \ell} \iint_{T_p^*} (t - s)^{-N/2} e^{-|x - y|^2/4(t - s)} \left[\sum_{n=p+\ell}^{\infty} \mathbb{H}_{\mu_n}(y, s) \right]^q dy ds.$$

Lemma 3.6 There exists a constant $C = C(N, q, \ell) > 0$ such that

$$J'_{1,\ell} \le Ct^{1-Nq/2} \sum_{n=0}^{a_t} e^{-(1+\beta_0)(n-h)_+/4} d_{n+1}^{Nq-2q'} C_{2/q,q'}^q \left(\frac{K_n}{d_{n+1}}\right), \tag{3.25}$$

where $\beta_0 = (q-1)/4$ and $h = 2q(q+1)/(q-1)^2$.

Proof. Since

$$(y,s) \in \mathcal{T}_p^*$$
, and $(z,0) \in K_n \Longrightarrow |y-z| \ge (\sqrt{n} - \alpha^{-p})\sqrt{t}$, (3.26)

there holds

$$\mathbb{H}_{\mu_n}(y,s) \le (4\pi s)^{-N/2} e^{-(\sqrt{n}-\alpha^{-p})^2 t/4s} \mu_n(K_n) \le C t^{-N/2} e^{-(\sqrt{n}-\alpha^{-p})^2/4} \mu_n(K_n),$$

by Lemma 3.4. Let $\epsilon_n > 0$ such that

$$A_{\epsilon} = \sum_{n=1}^{\infty} \epsilon_n^{q'} < \infty,$$

then

$$\begin{split} J_{1,\ell}' &\leq C A_{\epsilon}^{q/q'} t^{-Nq/2} \sum_{p=-\infty}^{0} \iint_{T_p^*} (t-s)^{-N/2} e^{-|x-y|^2/4(t-s)} \sum_{n=1 \lor (p+\ell)}^{\infty} \epsilon_n^{-q} e^{-q(\sqrt{n}-\alpha^{-p})^2/4} \mu_n^q(K_n) ds \, dy \\ &\leq C A_{\epsilon}^{q/q'} t^{-Nq/2} \sum_{n=1}^{\infty} \epsilon_n^{-q} \mu_n^q(K_n) \sum_{-\infty}^{p=0 \land (n-\ell)} e^{-q(\sqrt{n}-\alpha^{-p})^2/4} \iint_{T_p^*} (t-s)^{-N/2} e^{-|x-y|^2/4(t-s)} ds \, dy \\ &\leq C A_{\epsilon}^{q/q'} t^{-Nq/2} \sum_{n=1}^{\infty} \epsilon_n^{-q} \mu_n^q(K_n) e^{-q(\sqrt{n}-1)^2/4} \iint_{\cup_{p \leq 0} T_p^*} (t-s)^{-N/2} e^{-|x-y|^2/4(t-s)} ds \, dy \\ &\leq C A_{\epsilon}^{q/q'} t^{1-Nq/2} \sum_{n=1}^{\infty} \epsilon_n^{-q} \mu_n^q(K_n) e^{-q(\sqrt{n}-1)^2/4}. \end{split}$$

(3.27)

Set $h = 2q(q+1)/(q-1)^2$ and Q = (1+q)/2, then $q(\sqrt{n}-1)^2 \ge Q(n-h)_+$ for any $n \ge 1$. If we choose $\epsilon_n = e^{-(q-1)(n-h)_+/16q}$, there holds $\epsilon_n^{-q} e^{-q(\sqrt{n}-1)^2/4} \le e^{(q+3)(n-h)_+/16}$. Finally

$$J'_{1,\ell} \le Ct^{1-Nq/2} \sum_{n=1}^{\infty} e^{(1+\epsilon_0)(n-h)_+/4} \mu_n^q(K_n),$$

with $\beta_0 = (q-1)/4$, which yields to (3.25) by the choice of the μ_n .

In order to make easier the obtention of the estimate of the term $J'_{2,\ell}$, we first give the proof in dimension 1.

Lemma 3.7 Assume N=1 and ℓ is an integer larger than 1. There exists a positive constant $C=C(q,\ell)>0$ such that

$$J_{2,\ell}' \le Ct^{-1/2} \sum_{n=\ell}^{a_t} e^{-n/4} d_{n+1}^{(q-3)/(q-1)} C_{2/q,q'} \left(\frac{K_n}{d_{n+1}}\right). \tag{3.28}$$

Proof. If $(y,s) \in \mathcal{T}_p^*$ and $z \in K_n$ $(p \ge 1, n \ge p = \ell)$, there holds $|x-y| \ge \sqrt{t}\sqrt{p}$ and $|y-z| \ge \sqrt{t}(\sqrt{n}-\sqrt{p+1})$. Therefore

$$J'_{2,\ell} \le C\sqrt{t} \sum_{p=1}^{a_t-\ell} \frac{1}{\sqrt{p}} \int_0^t e^{-pt/4(t-s)} \left(\sum_{n=p+\ell}^{a_t} s^{-1/2} e^{-(\sqrt{n}-\sqrt{p+1})^2 t/4s} \mu_n(K_n) \right)^q.$$

If $\epsilon \in (0,q)$ is some positive parameter which will be made more precise later on, there holds

$$\left(\sum_{n=p+\ell}^{a_t} s^{-1/2} e^{-(\sqrt{n} - \sqrt{p+1})^2 t/4s} \mu_n(K_n)\right)^q \\
\leq \left(\sum_{n=p+\ell}^{a_t} e^{-\epsilon q'(\sqrt{n} - \sqrt{p+1})^2 t/4s}\right)^{q/q'} \sum_{n=p+\ell}^{a_t} s^{-q/2} e^{-(q-\epsilon)(\sqrt{n} - \sqrt{p+1})^2)t/4s} \mu_n^q(K_n),$$

by Hölder's inequality. By comparison between series and integrals and using Gauss' integral

$$\begin{split} \sum_{n=p+\ell}^{a_t} e^{-\epsilon q'(\sqrt{n} - \sqrt{p+1})^2 t/4s} &\leq \int_{p+\ell}^{\infty} e^{-\epsilon q'(\sqrt{x} - \sqrt{p+1})^2 t/4s} dx \\ &= 2 \int_{\sqrt{p+\ell} - \sqrt{p+1}}^{\infty} e^{-\epsilon q' x^2 t/4s} (x + \sqrt{p+1}) dx \\ &\leq \frac{4s}{\epsilon q' t} e^{-\epsilon q'(\sqrt{p+\ell} - \sqrt{p+1})^2 t/4s} + 2 \sqrt{p+1} \int_{\sqrt{p+\ell} - \sqrt{p+1}}^{\infty} e^{-\epsilon q' x^2 t/4s} dx \\ &\leq C \sqrt{\frac{(p+1)s}{t}} e^{-\epsilon q'(\sqrt{p+\ell} - \sqrt{p+1})^2 t/2s} \\ &\leq C \sqrt{\frac{(p+1)s}{t}}. \end{split}$$

If we set $q_{\epsilon} = q - \epsilon$, then

$$J_{2,\ell}' \leq C\epsilon^{-q'/q} t^{1-q/2} \sum_{n=\ell+1}^{\infty} \mu_n^q(K_n) \sum_{p=1}^{n-\ell} p^{(q-2)/2} \int_0^t (t-s)^{-1/2} s^{-1/2} e^{-pt/4(t-s)} e^{-q_{\epsilon}(\sqrt{n}-\sqrt{p+1})^2)t/4s} ds.$$

where $C = C(\epsilon, q) > 0$. Since

$$\begin{split} \int_0^t (t-s)^{-1/2} s^{-1/2} e^{-pt/4(t-s)} e^{-q_{\epsilon}(\sqrt{n}-\sqrt{p+1})^2)t/4s} ds \\ &= \int_0^1 (1-s)^{-1/2} s^{-1/2} e^{-p/4(1-s)} e^{-q_{\epsilon}(\sqrt{n}-\sqrt{p+1})^2/4s} ds, \end{split}$$

we can apply Lemma A.1 with $a=1/2,\ b=1/2,\ A=\sqrt{p}$ and $B=\sqrt{q_\epsilon}(\sqrt{n}-\sqrt{p+1})$. In this range of indices $B\geq \sqrt{q_\epsilon}(\sqrt{p+\ell}-\sqrt{p+1})\geq \sqrt{q_\epsilon}(\ell-1)\sqrt{p}$, thus $\kappa=\sqrt{q_\epsilon}(\ell-1)$ and

$$\sqrt{\frac{A}{A+B}}\sqrt{\frac{B}{A+B}} \le p^{1/4}n^{-1/2}(\sqrt{n}-\sqrt{p})^{1/2}.$$

Therefore

$$\int_{0}^{t} (t-s)^{-1/2} s^{-q/2} e^{-pt/4(t-s)} e^{-q(\sqrt{n}-\sqrt{p+1})^{2}t/4s} ds \le \frac{Cp^{1/4} (\sqrt{n}-\sqrt{p})^{1/2}}{\sqrt{n}} e^{-(\sqrt{p}+\sqrt{q_{\epsilon}}(\sqrt{n}-\sqrt{p+1}))^{2}/4},$$
(3.29)

which implies

$$J_{2,\ell}' \le Ct^{1-q/2} \sum_{n=\ell+1}^{a_t} \frac{\mu_n^q(K_n)}{\sqrt{n}} \sum_{p=1}^{n-\ell} p^{(2q-3)/4} (\sqrt{n} - \sqrt{p})^{1/2} e^{-(\sqrt{p} + \sqrt{q_{\epsilon}}(\sqrt{n} - \sqrt{p+1}))^2/4}, \tag{3.30}$$

where C depends of ϵ , q and ℓ . By Lemma A.2

$$J_{2,\ell}' \le Ct^{1-q/2} \sum_{n=\ell+1}^{a_t} n^{(q-3)/2} e^{-n/4} \mu_n^q(K_n)$$
(3.31)

Because $\mu_n(K_n) = d_{n+1}^{(q-3)/(q-1)} C_{2/q,q'}(K_n/d_{n+1})$ (remember N=1) and diam $K_n/d_{n+1} \le 1/n$, there holds

$$\mu_n^q(K_n) \le C(\sqrt{t}/\sqrt{n})^{q-3}\mu_n(K_n) = C(\sqrt{t}/\sqrt{n})^{q-3}d_{n+1}^{(q-3)/(q-1)}C_{2/q,q'}(K_n/d_{n+1}) \tag{3.32}$$

and inequality (3.28) follows.

Next we give the general proof. For this task we shall use again the quasi-additivity with separated partitions.

Lemma 3.8 Assume $N \ge 2$ and ℓ is an integer larger than 1. There exist a positive constant $C_1 = C_1(q, N, \ell) > 0$ such that f

$$J_{2,\ell}' \le C_1 t^{-N/2} \sum_{n=\ell}^{a_t} e^{-n/4} d_{n+1}^{N-2/(q-1)} C_{2/q,q'} \left(\frac{K_n}{d_{n+1}}\right). \tag{3.33}$$

Proof. As in the proof of Theorem 2.14, we know that there exists a finite number J, depending only on the dimension N, of separated sub-partitions $\{\#\Theta_{t,n}^h\}_{h=1}^J$ of the sets T_n by the N-dim balls $B_{\sqrt{t}/\sqrt{n+1}}(a_{n,j})$ where $|a_{n,j}| = (d_{n+1} + d_n)/2$ and $|a_{n,j} - a_{n,k}| \ge \sqrt{t}/2\sqrt{n+1}$. Furthermore

$$\#\Theta_{t,n}^h \leq Cn^{N-1}$$
. We denote $K_{n,j} = K_n \cap B_{\sqrt{t}/\sqrt{n+1}}(a_{n,j})$. We write $\mu_n = \sum_{h=1}^J \mu_n^h$, and accordingly

 $J'_{2,\ell} = \sum_{h=1}^J J'_{2,\ell}^h$, where $\mu_n^h = \sum_{j \in \Theta_{t,n}^h} \mu_{n,j}$, and $\mu_{n,j}$ are the capacitary measures of $K_{n,j}$ relative to

 $B_{n,j} = B_{6t/5\sqrt{n}}(a_n, j)$, which means

$$\nu_{n,j}(K_{n,j}) = C_{2/q,q'}^{B_{n,j}}(K_{n,j}) \quad \text{and} \quad \|\nu_{n,j}\|_{W^{-2/q,q'}(B_{n,j})} = \left(C_{2/q,q'}^{B_{n,j}}(K_{n,j})\right)^{1/q}. \tag{3.34}$$

Thus

$$J'_{2,\ell} = \sum_{p=1}^{a_t - \ell} \iint_{\mathcal{T}_p^*} (t - s)^{-N/2} e^{-|x - y|^2/4(t - s)} \left[\sum_{n=p+\ell}^{\infty} \sum_{h=1}^{J} \sum_{j \in \Theta_{t,n}^h} \mathbb{H}_{\mu_{n,j}}(y, s) \right]_{q}^{q} dy ds.$$

We denote

$$J_{2,\ell}^{\prime h} = \sum_{p=1}^{a_t - \ell} \iint_{\mathcal{T}_p^*} (t - s)^{-N/2} e^{-|x - y|^2/4(t - s)} \left[\sum_{n=p+\ell}^{\infty} \sum_{j \in \Theta_{t,n}^h} \mathbb{H}_{\mu_{n,j}}(y, s) \right]_{q}^{q} dy ds,$$

and clearly

$$J_{2,\ell}' \le C \sum_{h=1}^{J} J_{2,\ell}'^{h}, \tag{3.35}$$

where C depends only on N and q. For integers n and p such that $n \geq \ell + 1$, we set

$$\lambda_{n,j,y} = \inf\{|y - z| : z \in B_{\sqrt{t}/\sqrt{n+1}}(a_{n,j})\} = |y - a_{n,j}| - \sqrt{t}/\sqrt{n+1}.$$

Therefore

$$\sum_{n=p+\ell}^{a_t} \int_{K_n} e^{-|y-z|^2/4s} d\mu_n^h(z) = \sum_{n=p+\ell}^{a_t} \sum_{j \in \Theta_{t,n}^h} \int_{K_{n,j}} e^{-|y-z|^2/4s} d\mu_{n,j}(z)$$

$$\leq \left(\sum_{n=p+\ell}^{a_t} \sum_{j \in \Theta_{t,n}^h} e^{-\epsilon q' \lambda_{n,j,y}^2/4s} \right)^{1/q'} \left(\sum_{n=p+\ell}^{a_t} \sum_{j \in \Theta_{t,n}^h} e^{-q \lambda_{n,j,y}^2(1-\epsilon)/4s} \mu_{n,j}^q(K_{n,j}) \right)^{1/q}$$

where $\epsilon > 0$ will be made precise later on.

Step 1 We claim that

$$\sum_{n=p+\ell}^{a_t} \sum_{j \in \Theta_{t,n}} e^{-\epsilon q' \lambda_{n,j,y}^2/4s} \le C \sqrt{\frac{ps}{t}}$$
(3.36)

where C depends on ϵ , q and N. If y is fixed in T_p , we denote by z_y the point of T_n which solves $|y - z_y| = \text{dist}(y, T_n)$. Thus

$$\sqrt{t}(\sqrt{n} - \sqrt{p+1}) \le |y - z_y| \le t(\sqrt{n} - \sqrt{p}).$$

Let $Y = y\sqrt{t(p+1)}/|y|$. On the axis $\overrightarrow{0Y}$ we set $\mathbf{e} = Y/|Y|$, consider the points $b_k = (k\sqrt{t}/\sqrt{n})\mathbf{e}$ where $-n \le k \le n$ and denote by $G_{n,k}$ the spherical shell obtain by intersecting the spherical shell T_n with the domain $H_{n,k}$ which is the set of points in \mathbb{R}^N limited by the hyperplanes orthogonal to $\overrightarrow{0Y}$ going through $((k+1)\sqrt{t}/\sqrt{n})\mathbf{e}$ and $((k-1)\sqrt{t}/\sqrt{n})\mathbf{e}$. The number of points $a_{n,j} \in G_{n,k}$ is smaller than $C(n+1-|k|)^{N-2}$, where C depends only on N, and we denote by $\Lambda_{n,k}$ the set of $j \in \Theta_{t,n}$ such that $a_{n,j} \in G_{n,k}$. Furthermore, if $a_{n,j} \in G_{n,k}$ elementary geometric

considerations (Pythagore's theorem) imply that $\lambda_{n,j,y}^2$ is greater than $t(n+p+1-2k\sqrt{p+1}/\sqrt{n})$. Therefore

$$\sum_{n=p+\ell}^{a_t} \sum_{j \in \Theta_{t,n}} e^{-\epsilon q' \lambda_{n,j,y}^2/4s} \le C \sum_{n=p+\ell}^{a_t} \sum_{k=-n}^n (n+1-|k|)^{N-2} e^{-\epsilon q' \left(n+p+1-2k\sqrt{p+1}/\right)t/4s\sqrt{n}}$$
(3.37)

Case N=2. By summing a geometric series and using the inequality $e^u/(e^u-1) \le 1+1/u$ for u>0, we obtain

$$\sum_{k=-n}^{n} e^{\epsilon q' \left(k\sqrt{p+1}/\right)t/2s\sqrt{n}} \leq e^{\epsilon q't\sqrt{n(p+1)}/2s} \frac{e^{\epsilon q't\sqrt{p+1}/2s\sqrt{n}}}{e^{\epsilon q't\sqrt{p+1}/2s\sqrt{n}} - 1} \\
\leq e^{\epsilon q't\sqrt{n(p+1)}/2s} \left(1 + \frac{2s\sqrt{n}}{\epsilon q't\sqrt{p+1}}\right).$$
(3.38)

Thus, by comparison between series and integrals,

$$\begin{split} \sum_{n=p+\ell}^{a_t} \sum_{j \in \Theta_{t,n}} e^{-\epsilon q' \lambda_{n,j,y}^2 / 4s} &\leq C \sum_{n=p+\ell}^{a_t} \left(1 + \frac{s\sqrt{n}}{t\sqrt{p}} \right) e^{-\epsilon q' (\sqrt{n} - \sqrt{p+1})^2 t / 4s} \\ &\leq C \int_{p+1}^{\infty} e^{-\epsilon q' (\sqrt{x} - \sqrt{p+1})^2 t / 4s} dx \\ &+ \frac{Cs}{t\sqrt{p}} \int_{p+1}^{\infty} \sqrt{x} e^{-\epsilon q' (\sqrt{x} - \sqrt{p+1})^2 t / 4s} dx. \end{split} \tag{3.39}$$

Next

$$\int_{p+1}^{\infty} e^{-\epsilon q'(\sqrt{x} - \sqrt{p+1})^2 t/4s} dx = 2 \int_{\sqrt{p+1}}^{\infty} e^{-\epsilon q'(y - \sqrt{p+1})^2 t/4s} y dy
= 2 \int_{0}^{\infty} e^{-\epsilon q' y^2 t/4s} y dy + 2 \sqrt{p+1} \int_{0}^{\infty} e^{-\epsilon q' y^2 t/4s} dy
= \frac{2s}{t} \int_{0}^{\infty} e^{-\epsilon q' z^2/4} z dz + 2 \sqrt{\frac{(p+1)s}{t}} \int_{0}^{\infty} e^{-\epsilon q' z^2/4} dz,$$
(3.40)

and

$$\begin{split} \int_{p+1}^{\infty} \sqrt{x} e^{-\epsilon q' (\sqrt{x} - \sqrt{p+1})^2 t/4s} dx &= 2 \int_{\sqrt{p+1}}^{\infty} e^{-\epsilon q' (y - \sqrt{p+1})^2 t/4s} y^2 dy \\ &= 2 \int_{0}^{\infty} e^{-\epsilon q' y^2 t/4s} (y + \sqrt{p+1})^2 dy \\ &\leq 4 \int_{0}^{\infty} e^{-\epsilon q' y^2 t/4s} y^2 dy + 4(p+1) \int_{0}^{\infty} e^{-\epsilon q' y^2 t/4s} dy \\ &\leq 4 \left(\frac{s}{t}\right)^{3/2} \int_{0}^{\infty} e^{-\epsilon q' z^2/4} z^2 dz + 4(p+1) \sqrt{\frac{s}{t}} \int_{0}^{\infty} e^{-\epsilon q' z^2/4} dz \end{split}$$

$$(3.41)$$

Jointly with (3.39), these inequalities imply

$$\sum_{n=p+\ell}^{a_t} \sum_{j \in \Theta_{t,n}} e^{-\epsilon q' \lambda_{n,j,y}^2/4s} \le C \sqrt{\frac{ps}{t}}$$
(3.42)

Case N > 2 Because the value of the right-hand side of (3.37) is an increasing value of N, it is sufficient to prove (3.36) when N is even, say $(N-2)/2 = d \in \mathbb{N}_*$. There holds

$$\sum_{k=-n}^{n} (n+1-|k|)^{d} e^{\epsilon q' \left(k\sqrt{p+1}/\right)t/2s\sqrt{n}} \le 2\sum_{k=0}^{n} (n+1-k)^{d} e^{\epsilon q' \left(k\sqrt{p+1}/\right)t/2s\sqrt{n}}$$
(3.43)

We set

$$\alpha = \epsilon q' \left(\sqrt{p+1} / \right) t/2s\sqrt{n}$$
 and $I_d = \sum_{k=0}^n (n+1-k)^d e^{k\alpha}$.

Since

$$e^{k\alpha} = \frac{e^{(k+1)\alpha} - e^{k\alpha}}{e^{\alpha} - 1}$$

we use Abel's transform to obtain

$$I_d = \frac{1}{e^{\alpha} - 1} \left(e^{(n+1)\alpha} - (n+1)^d + \sum_{k=1}^n \left((n+2-k)^d - (n+1-k)^d \right) e^{k\alpha} \right)$$

$$\leq \frac{1}{e^{\alpha} - 1} \left((1-d)e^{(n+1)\alpha} - (n+1)^d + de^{\alpha} \sum_{k=1}^n \left((n+1-k)^{d-1} \right) e^{k\alpha} \right).$$

Therefore the following induction holds

$$I_d \le \frac{de^{\alpha}}{e^{\alpha} - 1} I_{d-1}. \tag{3.44}$$

In (3.38), we have already used the fact that

$$\frac{de^{\alpha}}{e^{\alpha} - 1} \le C \left(1 + \frac{s\sqrt{n}}{t\sqrt{p}} \right),$$

and

$$I_d \leq C \left(1 + \left(\frac{s\sqrt{n}}{t\sqrt{p}}\right)^{d+1}\right) I_0.$$

Thus (3.39) is replaced by

$$\begin{split} \sum_{n=p+\ell}^{a_t} \sum_{j \in \Theta_{t,n}} e^{-\epsilon q' \lambda_{n,j,y}^2 / 4s} &\leq C \sum_{n=p+\ell}^{a_t} \left(1 + \left(\frac{s\sqrt{n}}{t\sqrt{p}} \right)^{d+1} \right) e^{-\epsilon q' (\sqrt{n} - \sqrt{p+1})^2 t / 4s} \\ &\leq C \int_{p+1}^{\infty} e^{-\epsilon q' (\sqrt{x} - \sqrt{p+1})^2 t / 4s} dx \\ &+ \left(\frac{Cs}{t\sqrt{p}} \right)^{d+1} \int_{p+1}^{\infty} x^{(d+1)/2} e^{-\epsilon q' (\sqrt{x} - \sqrt{p+1})^2 t / 4s} dx. \end{split} \tag{3.45}$$

The first integral on the right-hand side has already been estimated in (3.40), for the second integral, there holds

$$\begin{split} \int_{p+1}^{\infty} x^{(d+1)/2} e^{-\epsilon q' (\sqrt{x} - \sqrt{p+1})^2 t/4s} dx &= \int_{0}^{\infty} (y + \sqrt{p+1})^{d+2} e^{-\epsilon q' y^2 t/4s} dx \\ &\leq C \int_{0}^{\infty} y^{d+2} e^{-\epsilon q' y^2 t/4s} dy + C p^{(d+2)/2} \int_{0}^{\infty} e^{-\epsilon q' y^2 t/4s} dy \\ &\leq C \left(\frac{s}{t}\right)^{2+d/2} \int_{0}^{\infty} z^{(d+1)/2} e^{-\epsilon q' z^2/4} dz \\ &\qquad + C \left(\frac{s}{t}\right)^{3/2} p^{(d+2)/2} \int_{0}^{\infty} e^{-\epsilon q' z^2/4} dz. \end{split}$$

$$(3.46)$$

Combining (3.40), (3.45) and (3.46), we derive (3.36).

Step 2 Since $\mathcal{T}_p^* \subset \Gamma_p \times [0,t]$ where $\Gamma_p = B_{d_{p+1}}(x) \setminus B_{d_{p-1}}(x)$, $(y,s) \in \mathcal{T}_p^*$ implies that $|x-y|^2 \ge (p-1)t$, thus $J_{2,\ell}^{\prime h}$ satisfies

$$J_{2,\ell}^{\prime h} \leq Ct^{(1-q)/2} \sum_{p=1}^{\infty} p^{(q-1)/2} \int_{0}^{t} \int_{\Gamma_{p}} (t-s)^{-N/2} s^{-(q(N-1)+1)/2} e^{-|x-y|^{2}/4(t-s)}$$

$$\times \sum_{n=p+\ell}^{a_{t}} \sum_{j \in \Theta_{t,n}^{h}} e^{-q\lambda_{n,j,y}^{2}(1-\epsilon)/4s} \mu_{n,j}^{q}(K_{n,j}) ds dy$$

$$\leq Ct^{(1-q)/2} \sum_{n=\ell+1}^{a_{t}} \sum_{j \in \Theta_{t,n}^{h}} \mu_{n,j}^{q}(K_{n,j})$$

$$\times \sum_{p=1}^{n-\ell} p^{(q-1)/2} \int_{0}^{t} \int_{\Gamma_{p}} (t-s)^{-N/2} s^{-(q(N-1)+1)/2} e^{-|x-y|^{2}/4(t-s)} e^{-q\lambda_{n,j,y}^{2}(1-\epsilon)/4s} ds dy$$

$$(3.47)$$

and the constant C depends on N, q and ϵ . Next we set $q_{\epsilon} = (1 - \epsilon)q$. Writting

$$|y - a_{n,j}|^2 = |x - y|^2 + |x - a_{n,j}|^2 - 2\langle y - x, a_{n,j} - x \rangle \ge pt + |x - a_{n,j}|^2 - 2\langle y - x, a_{n,j} - x \rangle,$$

we get

$$\int_{\Gamma_p} e^{-q_{\epsilon}|y-a_{n,j}|^2/4s} dy = e^{-q_{\epsilon}|x-a_{n,j}|^2/4s} \int_{\sqrt{tp}}^{\sqrt{t(p+1)}} e^{-q_{\epsilon}r^2/4s} \int_{|x-y|=r} e^{2q_{\epsilon}\langle y-x, a_{n,j}-x\rangle/4s} dS_r(y) dr.$$

For estimating the value of the spherical integral, we can assume that $a_{n,j}-x=(0,\ldots,0,|a_{n,j}-x|)$, $y=(y_1,\ldots,y_N)$ and, using spherical coordinates with center at x, that the unit sphere has the representation $S^{N-1}=\{(\sin\phi.\sigma,\cos\phi)\in\mathbb{R}^{N-1}\times\mathbb{R}:\sigma\in S^{N-2},\,\phi\in[0,\pi]\}$. With this representation, $dS_r=r^{N-1}\sin^{N-2}\phi\,d\phi\,d\sigma$ and $\langle y-x,a_{n,j}-x\rangle=|a_{n,j}-x|\,|y-x|\cos\phi$. Therefore

$$\int_{|x-y|=r} e^{2q_{\epsilon}\langle y-x, a_{n,j}-x\rangle/4s} dS_r(y) = r^{N-1} \left| S^{N-2} \right| \int_0^{\pi} e^{2q_{\epsilon}|a_{n,j}-x|r\cos\phi/4s} \sin^{N-2}\phi \, d\phi.$$

By Lemma A.3

$$\int_{|x-y|=r} e^{2q_{\epsilon}\langle y-x, a_{n,j}-x\rangle/4s} dS_r(y) \leq C \frac{r^{N-1}e^{2q_{\epsilon}r|a_{n,j}-x|/4s}}{(1+r|a_{n,j}-x|/s)^{(N-1)/2}} \\
\leq Cs^{(N-1)/2} \left(\frac{r}{|a_{n,j}-x|}\right)^{(N-1)/2} e^{2q_{\epsilon}r|a_{n,j}-x|/4s}.$$
(3.48)

Therefore

$$\int_{\Gamma_p} e^{-q_{\epsilon}|y-a_{n,j}|^2/4s} dy \le Ct^{(N+1)/4} p^{(N-3)/4} \frac{s^{(N-1)/2} e^{-q_{\epsilon}(|a_{n,j}-x|-\sqrt{t(p+1)})^2/4s}}{|a_{n,j}-x|^{(N-1)/2}}, \tag{3.49}$$

and, since $|a_{n,j} - x| \ge \sqrt{tn}$,

$$\int_{0}^{t} \int_{\Gamma_{p}} (t-s)^{-N/2} s^{-(q(N-1)+1)/2} e^{-|x-y|^{2}/4(t-s)} e^{-q_{\epsilon} \lambda_{n,j,y}^{2}/4s} dy ds
\leq C \frac{\sqrt{t} p^{(N-3)/4}}{n^{(N-1)/4}} \int_{0}^{t} (t-s)^{-N/2} s^{-((q-1)(N-1)+1)/2} e^{-pt/4(t-s)} e^{-q_{\epsilon}(\sqrt{tn} - \sqrt{t(p+1)})^{2}/4s} ds
\leq C \frac{t^{(1-q(N-1))/2} p^{(N-3)/4}}{n^{(N-1)/4}} \int_{0}^{1} (1-s)^{-N/2} s^{-((q-1)(N-1)+1)/2} e^{-p/4(1-s)} e^{-q_{\epsilon}(\sqrt{n} - \sqrt{p+1})^{2}/4s}. \tag{3.50}$$

We apply Lemma A.1, with $A = \sqrt{p}$, $B = \sqrt{q_{\epsilon}}(\sqrt{n} - \sqrt{p+1})$, b = ((q-1)(N-1)+1)/2, a = N/2 and $\kappa = \sqrt{q_{\epsilon}}(\ell-1)/8$ as in the case N = 1, and noticing that, for these specific values,

$$A^{1-a}B^{1-b}(A+B)^{a+b-2} = p^{(2-N)/4} \left(\sqrt{q_{\epsilon}}(\sqrt{n} - \sqrt{p+1})\right)^{(1-(q-1)(N-1)/2} \times \left(\sqrt{p} + \sqrt{q_{\epsilon}}(\sqrt{n} - \sqrt{p+1})\right)^{((q-1)(N-1)+N-3)/2}$$

$$\leq C \left(\frac{n}{p}\right)^{N/4-1/2} \left(\frac{\sqrt{n} - \sqrt{p}}{\sqrt{n}}\right)^{(1-(q-1)(N-1)/2},$$

where C depends on N, q and κ . Therefore

$$\int_{0}^{t} \int_{\Gamma_{p}} (t-s)^{-N/2} s^{-N/2} e^{-|x-y|^{2}/4(t-s)} e^{-q_{\epsilon}|y-z|^{2}/4s} dy ds
\leq C \frac{t^{(1-q(N-1))/2} p^{(N-3)/4}}{n^{(N-1)/4}} \left(\frac{n}{p}\right)^{N/4-1/2} \left(\frac{\sqrt{n}-\sqrt{p}}{\sqrt{n}}\right)^{(1-(q-1)(N-1)/2} e^{-(\sqrt{p}+\sqrt{q_{\epsilon}}(\sqrt{n}-\sqrt{p+1}))^{2}/4}
\leq C t^{(1-q(N-1))/2} p^{-1/4} n^{((q-1)(N-1)-2)/4} (\sqrt{n}-\sqrt{p})^{(1-(q-1)(N-1)/2} e^{-(\sqrt{p}+\sqrt{q_{\epsilon}}(\sqrt{n}-\sqrt{p+1}))^{2}/4}.$$
(3.51)

We derive from (3.47), (3.51),

$$J_{2,\ell}^{\prime h} \leq Ct^{1-Nq/2} \times \sum_{n=\ell+1}^{a_t} \sum_{j \in \Theta_{t,n}^h} n^{((q-1)(N-1)-2)/4} \mu_{n,j}^q(K_{n,j}) \sum_{p=1}^{n-\ell} p^{(2q-3)/4} (\sqrt{n} - \sqrt{p})^{(1-(q-1)(N-1)/2} e^{-(\sqrt{p} + \sqrt{q_{\epsilon}}(\sqrt{n} - \sqrt{p+1}))^2/4}.$$
(3.52)

By Lemma A.2 with $\alpha = (2q-3)/4$, $\beta = (1-(q-1)(N-1)/2)$, $\delta = 1/4$ and $\gamma = q_{\epsilon}$, we obtain

$$\sum_{p=1}^{n-\ell} p^{(2q-3)/4} (\sqrt{n} - \sqrt{p})^{(1-(q-1)(N-1)/2} e^{-(\sqrt{p} + \sqrt{q_{\epsilon}}(\sqrt{n} - \sqrt{p+1}))^2/4} \le C n^{(N(q-1)+q-3)/4} e^{-n/4},$$
(3.53)

thus

$$J_{2,\ell}^{\prime h} \le C t^{1-Nq/2} \sum_{n=\ell+1}^{a_t} n^{N(q-1)/2-1} e^{-n/4} \sum_{j \in \Theta_{t,n}^h} \mu_{n,j}^q(K_{n,j}). \tag{3.54}$$

Because

$$\mu_{n,j}(K_{n,j}) = C_{2/q,q'}^{B_{n,j}}(K_{n,j}) \approx \left(\frac{t}{n+1}\right)^{N/2-1/(q-1)} C_{2/q,q'}(\sqrt{n+1}K_{n,j}/\sqrt{t})$$

and diam $(\sqrt{n+1}K_{n,j}/\sqrt{t}) \leq 2$, there holds

$$\mu_{n,j}^q(K_{n,j}) \le \left(\frac{t}{n}\right)^{N(q-1)/2-1} C_{2/q,q'}^{B_{n,j}}(K_{n,j}),$$
(3.55)

we obtain

$$J_{2,\ell}^{\prime h} \leq Ct^{-N/2} \sum_{n=\ell+1}^{a_t} e^{-n/4} \sum_{j \in \Theta_{t,n}^h} C_{2/q,q'}^{B_{n,j}}(K_{n,j})$$

$$\leq Ct^{-N/2} \sum_{n=\ell+1}^{a_t} e^{-n/4} \left(\frac{t}{n}\right)^{N/2-1/(q-1)} C_{2/q,q'}(\sqrt{n}K_n/\sqrt{t}).$$
(3.56)

by using (2.52) in Lemma 2.15. Since $C_{2/q,q'}(\sqrt{n}K_n/\sqrt{t}) \leq (d_{n+1}\sqrt{n}/\sqrt{t})^{N-2/(q-1)}C_{2/q,q'}(K_n/d_{n+1})$, we finally derive

$$J_{2,\ell}^{\prime h} \le Ct^{-N/2} \sum_{n=\ell+1}^{a_t} d_{n+1}^{N-2/(q-1)} e^{-n/4} \sum_{j \in \Theta_{t,n}^h} \mu_{n,j}^q(K_{n,j}). \tag{3.57}$$

Using again the quasi-additivity and the fact that $J'_{2,\ell} = \sum_{h=1}^{J} J'_{2,\ell}^{h}$, we deduce

$$J_{2,\ell} \le C' t^{-N/2} \sum_{n=\ell+1}^{a_t} d_{n+1}^{N-2/(q-1)} e^{-n/4} C_{2/q,q'}(K_n/d_{n+1}), \tag{3.58}$$

which implies (3.33).

The proof of Theorem 3.1 follows from the previous estimates on J_1 and J_2 . Furthermore the following integral expression holds

Theorem 3.9 Assume $q \ge q_c$. Then there exists a positive constants C_2^* , depending on N,q and T, such that for any closed set F, there holds

$$\underline{u}_{F}(x,t) \ge \frac{C_{2}^{*}}{t^{1+N/2}} \int_{0}^{\sqrt{ta_{t}}} e^{-s^{2}/4t} s^{N-2/(q-1)} C_{2/q,q'}\left(\frac{F}{s} \cap B_{1}(x)\right) s \, ds,\tag{3.59}$$

where a_t is the smallest integer j such that $F \subset B_{\sqrt{jt}}(x)$.

Proof. We shall distinguish according $q = q_c$, or $q > q_c$, and for simplicity we shall denote $B_r = B_r(x)$ for the various values of r.

Case 1: $q = q_c \iff N - 2/(q - 1) = 0$. Because $F_n = F \cap (B_{d_{n+1}} \setminus B_{d_n})$ there holds

$$C_{2/q,q'}\left(\frac{F_n}{d_{n+1}}\right) \ge C_{2/q,q'}\left(\frac{F}{d_{n+1}} \cap B_1\right) - C_{2/q,q'}\left(\frac{F \cap B_{d_n}}{d_{n+1}}\right),$$

Furthermore, since $d_{n+1} \ge d_n$,

$$C_{2/q,q'}\left(\frac{F\cap B_{d_n}}{d_{n+1}}\right) = C_{2/q,q'}\left(\frac{d_n}{d_{n+1}}\frac{F\cap B_{d_n}}{d_n}\right) \le C_{2/q,q'}\left(\frac{F}{d_n}\cap B_1\right),$$

thus

$$C_{2/q,q'}\left(\frac{F_n}{d_{n+1}}\right) \geq C_{2/q,q'}\left(\frac{F}{d_{n+1}} \cap B_1\right) - C_{2/q,q'}\left(\frac{F}{d_n} \cap B_1\right),$$

it follows

$$\begin{split} \sum_{n=1}^{a_t} e^{-n/4} C_{2/q,q'} \left(\frac{F_n}{d_{n+1}} \right) &\geq \sum_{n=1}^{a_t} e^{-n/4} C_{2/q,q'} \left(\frac{F}{d_{n+1}} \cap B_1 \right) - \sum_{n=1}^{a_t} e^{-n/4} C_{2/q,q'} \left(\frac{F}{d_n} \cap B_1 \right) \\ &\geq \sum_{n=1}^{a_t} e^{-n/4} C_{2/q,q'} \left(\frac{F}{d_{n+1}} \cap B_1 \right) - e^{-1/4} \sum_{n=0}^{a_t-1} e^{-n/4} C_{2/q,q'} \left(\frac{F}{d_{n+1}} \cap B_1 \right) \\ &\geq (1 - e^{-1/4}) \sum_{n=1}^{a_t-1} e^{-n/4} C_{2/q,q'} \left(\frac{F}{d_{n+1}} \cap B_1 \right) - e^{-1/4} C_{2/q,q'} \left(\frac{F}{\sqrt{t}} \cap B_1 \right). \end{split}$$

Since, by (2.66),

$$C_{2/q,q'}\left(\frac{F}{s'}\cap B_1\right) \ge C_{2/q,q'}\left(\frac{F}{d_{n+1}}\cap B_1\right) \ge C_{2/q,q'}\left(\frac{F}{s}\cap B_1\right),$$

for any $s' \in [d_{n+1}, d_{n+2}]$ and $s \in [d_n, d_{n+1}]$, there holds

$$te^{-n/4}C_{2/q,q'}\left(\frac{F}{d_{n+1}}\cap B_1\right) \ge C_{2/q,q'}\left(\frac{F}{d_{n+1}}\cap B_1\right) \int_{d_n}^{d_{n+1}} e^{-s^2/4t} s \, ds$$

$$\ge \int_{d_n}^{d_{n+1}} e^{-s^2/4t} C_{2/q,q'}\left(\frac{F}{s}\cap B_1\right) s \, ds.$$

This implies

$$W_F(x,t) \ge (1 - e^{-1/4})t^{-(1+N/2)} \int_0^{\sqrt{ta_t}} e^{-s^2/4t} C_{2/q,q'}\left(\frac{F}{s} \cap B_1\right) s \, ds.$$

Case 2: $q > q_c \iff N - 2/(q - 1) > 0$. In that case it is known [1] that

$$C_{2/q,q'}\left(\frac{F_n}{d_{n+1}}\right) \approx d_{n+1}^{2/(q-1)-N} C_{2/q,q'}\left(F_n\right)$$

thus

$$W_F(x,t) \approx t^{-1-N/2} \sum_{n=0}^{a_t} e^{-n/4} C_{2/q,q'}(F_n).$$

Since

$$C_{2/q,q'}(F_n) \ge C_{2/q,q'}(F \cap B_{d_{n+1}}) - C_{2/q,q'}(F \cap B_{d_n}),$$

and again

$$t^{-N/2} \sum_{n=0}^{a_t} e^{-n/4} C_{2/q,q'}(F_n) \ge (1 - e^{-1/4}) t^{-N/2} \sum_{n=0}^{a_t - 1} e^{-n/4} C_{2/q,q'}(F \cap B_{d_{n+1}})$$

$$\ge (1 - e^{-1/4}) t^{-(1+N/2)} \int_0^{\sqrt{ta_t}} e^{-s^2/4t} C_{2/q,q'}(F \cap B_s) s \, ds.$$

Because
$$C_{2/q,q'}(F \cap B_s) \approx s^{N-2/(q-1)}C_{2/q,q'}(s^{-1}F \cap B_1), (3.59)$$
 follows.

4 Applications

The first result of this section is the following

Theorem 4.1 Assume $N \ge 1$ and q > 1. Then $\overline{u}_K = \underline{u}_K$.

Proof. If $1 < q < q_c$, the result is already proved in [21]. The proof in the super-critical case is an adaptation that we shall recall, for the sake of completeness. By Theorem 2.16 and Theorem 3.9 there exists a positive constant C, depending on N, q and T such that

$$\overline{u}_F(x,t) \le \underline{u}_F(x,t) \quad \forall (x,t) \in Q_T.$$

By convexity $\tilde{u} = \underline{u}_F - \frac{1}{2C}(\overline{u}_F - \underline{u}_F)$ is a super-solution, which is smaller than \underline{u}_F if we assume that $\overline{u}_F \neq \underline{u}_F$. If we set $\theta := 1/2 + 1/(2C)$, then $u_\theta = \theta \overline{u}_F$ is a subsolution. Therefore there exists a solution u_1 of (1.1) in Q_∞ such that $u_\theta \leq u_1 \leq \tilde{u} < \underline{u}_F$. If $\mu \in \mathfrak{M}_+^q(\mathbb{R}^N)$ satisfies $\mu(F^c) = 0$, then $u_{\theta\mu}$ is the smallest solution of (1.1) which is above the subsolution θu_μ . Thus $u_{\theta\mu} \leq u_1 < \underline{u}_F$ and finally $\underline{u}_F \leq u_1 < \underline{u}_F$, a contradiction.

If we combine Theorem 2.16 and Theorem 3.9 we derive the following integral approximation of the capacitary potential

Proposition 4.2 Assume $q \geq q_c$. Then there exist two positive constants C_1^{\dagger} , C_2^{\dagger} , depending only on N, q and T such that

$$C_{2}^{\dagger}t^{-(1+N/2)} \int_{0}^{\sqrt{ta_{t}}} s^{N-2/(q-1)} e^{-s^{2}/4t} C_{2/q,q'} \left(\frac{F}{s} \cap B_{1}(x)\right) s \, ds \leq W_{F}(x,t)$$

$$\leq C_{1}^{\dagger}t^{-(1+N/2)} \int_{\sqrt{t}}^{\sqrt{t(a_{t}+2)}} s^{N-2/(q-1)} e^{-s^{2}/4t} C_{2/q,q'} \left(\frac{F}{s} \cap B_{1}(x)\right) s \, ds$$

$$(4.60)$$

for any $(x,t) \in Q_T$.

Definition 4.3 If F is a closed subset of \mathbb{R}^N , we define the (2/q, q') integral capacitary potential W_F by

$$\mathcal{W}_{F}(x,t) = t^{-1-N/2} \int_{0}^{D_{F}(x)} s^{N-2/(q-1)} e^{-s^{2}/4t} C_{2/q,q'}\left(\frac{F}{s} \cap B_{1}(x)\right) s \, ds \quad \forall (x,t) \in Q_{\infty}, \quad (4.61)$$

where $D_F(x) = \max\{|x - y| : y \in F\}.$

An easy computation shows that

$$0 \leq W_{F}(x,t) - t^{-(1+N/2)} \int_{0}^{\sqrt{ta_{t}}} s^{N-2/(q-1)} e^{-s^{2}/4t} C_{2/q,q'}\left(\frac{F}{s} \cap B_{1}(x)\right) s \, ds$$

$$\leq C \frac{t^{(q-3)/2(q-1)}}{D_{F}(x)} e^{-D_{F}^{2}(x)/4t},$$

$$(4.62)$$

and

$$0 \leq t^{-(1+N/2)} \int_{0}^{\sqrt{t(a_{t}}+2)} s^{N-2/(q-1)} e^{-s^{2}/4t} C_{2/q,q'} \left(\frac{F}{s} \cap B_{1}(x)\right) s \, ds - \mathcal{W}_{F}(x,t)$$

$$\leq C \frac{t^{(q-3)/2(q-1)}}{D_{F}(x)} e^{-D_{F}^{2}(x)/4t},$$

$$(4.63)$$

for some C = C(N, q) > 0. Furthermore

$$W_F(x,t) = t^{-1/(q-1)} \int_0^{D_F(x)/\sqrt{t}} s^{N-2/(q-1)} e^{-s^2/4} C_{2/q,q'} \left(\frac{F}{s\sqrt{t}} \cap B_1(x) \right) s \, ds. \tag{4.64}$$

The following result gives a sufficient condition in order \overline{u}_F has not a strong blow-up at some point x.

Proposition 4.4 Assume $q \ge q_c$ and F is a closed subset of \mathbb{R}^N . If there exists $\gamma \in [0, \infty)$ such that

$$\lim_{\tau \to 0} C_{2/q,q'}\left(\frac{F}{\tau} \cap B_1(x)\right) = \gamma,\tag{4.65}$$

then

$$\lim_{t \to 0} t^{1/(q-1)} \overline{u}_F(x,t) = C\gamma, \tag{4.66}$$

for some C = C(N, q) > 0.

Proof. Clearly, condition (4.65) implies

$$\lim_{t \to 0} C_{2/q,q'}\left(\frac{F}{\sqrt{t}s} \cap B_1(x)\right) = \gamma$$

for any s > 0. Then (4.66) follows by Lebesgue's theorem. Notice also that the set of γ is bounded from above by a constant depending on N and q.

In the next result we give a condition in order the solution remains bounded at some point x. The proof is similar to the previous one.

Proposition 4.5 Assume $q \geq q_c$ and F is a closed subset of \mathbb{R}^N . If

$$\limsup_{\tau \to 0} \tau^{-2/(q-1)} C_{2/q,q'} \left(\frac{F}{\tau} \cap B_1(x) \right) < \infty, \tag{4.67}$$

then $\overline{u}_F(x,t)$ remains bounded when $t \to 0$.

A Appendix

The next estimate is crucial in the study of semilinear parabolic equations.

Lemma A.1 Let a and b be two real numbers, a > 0 and $\kappa > 0$. Then there exists a constant $C = C(a, b, \kappa) > 0$ such that for any A > 0, $B > \kappa/A$ there holds

$$\int_{0}^{1} (1-x)^{-a} x^{-b} e^{-A^{2}/4(1-x)} e^{-B^{2}/4x} dx \le C e^{-(A+B)^{2}/4} A^{1-a} B^{1-b} (A+B)^{a+b-2}. \tag{A.1}$$

Proof. We first notice that

$$\max\{e^{-A^2/4(1-x)}e^{-B^2/4x}: 0 \le x \le 1\} = e^{-(A+B)^2/4},\tag{A.2}$$

and it is achieved for $x_0 = B/(A+B)$. Set $\Phi(x) = (1-x)^{-a}x^{-b}e^{-A^2/4(1-x)}e^{-B^2/4x}$, thus

$$\int_0^1 \Phi(x)dx = \int_0^{x_0} \Phi(x)dx + \int_{x_0}^1 \Phi(x)dx = I_{a,b} + J_{a,b}.$$

Put

$$u = \frac{A^2}{4(1-x)} + \frac{B^2}{4x},\tag{A.3}$$

then

$$4ux^{2} - (4u + B^{2} - A^{2})x + B^{2} = 0. (A.4)$$

If $0 < x < x_0$ this equation admits the solution

$$x = x(u) = \frac{1}{8u} \left(4u + B^2 - A^2 - \sqrt{16u^2 - 8u(A^2 + B^2) + (A^2 - B^2)^2} \right)$$
$$\int_0^{x_0} (1 - x)^{-a} x^{-b} e^{-A^2/4(1 - x) - B^2/4x} dx = -\int_{(A+B)^2/4}^{\infty} (1 - x(u))^{-a} x(u)^{-b} e^{-u} x'(u) du$$

Putting x' = x'(u) and differentiating (A.4),

$$4x^{2} + 8uxx' - (4u + B^{2} - A^{2})x' - 4x = 0 \Longrightarrow -x' = \frac{4x(1-x)}{4u + B^{2} - A^{2} - 8ux}.$$

Thus

$$\int_0^{x_0} \Phi(x) dx = 4 \int_{(A+B)^2/4}^{\infty} \frac{(1-x(u))^{-a+1} x(u)^{-b+1} e^{-u} du}{4u + B^2 - A^2 - 8ux(u)}.$$
 (A.5)

Using the explicit value of the root x(u), we finally get

$$\int_0^{x_0} \Phi(x)dx = 4 \int_{(A+B)^2/4}^{\infty} \frac{(1-x(u))^{-a+1}x(u)^{-b+1}e^{-u}du}{\sqrt{16u^2 - 8u(A^2 + B^2) + (A^2 - B^2)^2}},$$
(A.6)

and the factorization below holds

$$16u^{2} - 8u(A^{2} + B^{2}) + (A^{2} - B^{2})^{2} = 16(u - (A + B)^{2}/4)(u - (A - B)^{2}/4).$$

We set $u = v + (A + B)^2/4$ and obtain

$$x(u) = \frac{v + (AB + B^2)/2 - \sqrt{v(v + AB)}}{2(v + (A + B)^2/4)}$$

and

$$1 - x(u) = \frac{v + (A^2 + AB)/2 + \sqrt{v(v + AB)}}{2(v + (A + B)^2/4)}.$$

We introduce the relation \approx linking two positive quantities depending on A and B. It means that the two sided-inequalities up to multiplicative constants independent of A and B. Therefore

$$\tilde{\Phi}(v) = \frac{\int_0^{x_0} \Phi(x) dx = 2^{a-b-4} e^{-(A+B)^2/4} \int_0^{\infty} \tilde{\Phi}(v) dv \quad \text{where}}{\left(v + (AB + B^2)/2 - \sqrt{v(v + AB)}\right)^{1-b} \left(v + (A^2 + AB)/2 + \sqrt{v(v + AB)}\right)^{1-a}} e^{-v} dv.}$$

$$(V + (A+B)^2/4)^{2-a-b} \sqrt{v(v + AB)}$$
(A.7)

Case 1: $a \ge 1$, $b \ge 1$. First

$$\frac{\left(v + (A+B)^2/4\right)^{a+b-2}}{\sqrt{v(v+AB)}} \le \frac{\left(v + (A+B)^2/4\right)^{a+b-2}}{\sqrt{v(v+\kappa)}} \approx \frac{\left(v + (A+B)^2\right)^{a+b-2}}{\sqrt{v(v+\kappa)}} \tag{A.8}$$

since $a + b - 2 \ge 0$ and $AB \ge \kappa$. Next

$$\left(v + (A^2 + AB)/2 + \sqrt{v(v + AB)}\right)^{1-a} \approx (v + A(A+B))^{1-a}.$$
 (A.9)

Furthermore

$$v + (AB + B^{2})/2 - \sqrt{v(v + AB)} = B^{2} \frac{v + (A + B)^{2}/4}{v + B(A + B)/2 + \sqrt{v(v + AB)}}$$

$$\approx B^{2} \frac{v + (A + B)^{2}}{v + B(A + B)}.$$
(A.10)

Then

$$\left(v + (AB + B^2)/2 - \sqrt{v(v + AB)}\right)^{1-b} \approx B^{2-2b} \left(\frac{v + B(A + B)}{v + (A + B)^2}\right)^{b-1} \tag{A.11}$$

It follows

$$\tilde{\Phi}(v) \le CB^{2-2b} \left(\frac{v + (A+B)^2}{v + A(A+B)} \right)^{a-1} \frac{(v + B(A+B))^{b-1}}{\sqrt{v(v+\kappa)}}
\le CB^{2-2b} \left(\frac{v + (A+B)^2}{v + A(A+B)} \right)^{a-1} \frac{v^{b-1} + (B^2 + AB)^{b-1}}{\sqrt{v(v+\kappa)}}$$
(A.12)

where C depends on a, b and κ . The function $v \mapsto (v + (A+B)^2)/(v + A(A+B))$ is decreasing on $(0, \infty)$. If we set

$$C_1 = \int_0^\infty \frac{v^{b-1}e^{-v}dv}{\sqrt{v(v+\kappa)}}$$
 and $C_2 = \int_0^\infty \frac{e^{-v}dv}{\sqrt{v(v+\kappa)}}$

then

$$C_1 \le K(B^2 + AB)^{b-1}C_2$$

with $K = C_1 \kappa^{1-b}/C_2$. Therefore

$$\int_0^{x_0} \Phi(x)dx \le Ce^{-(A+B)^2/4}B^{1-b}A^{1-a}(A+B)^{a+b-2}.$$
(A.13)

The estimate of $J_{a,b}$ is obtained by exchanging (A,a) with (B,b) and replacing x by 1-x. Mutadis mutandis, this yields directly to the same expression as in A.13 and finally

$$\int_0^1 \Phi(x)dx \le Ce^{-(A+B)^2/4} A^{1-a} B^{1-b} (A+B)^{a+b-2}. \tag{A.14}$$

Case 2: $a \ge 1$, b < 1. Estimates (A.7), (A.8), (A.9), (A.10) and (A.11) are valid. Because $v \mapsto (v + B(A+B))^{b-1}$ is decreasing, (A.12) has to be replaced by

$$\tilde{\Phi}(v) \le CB^{2-2b} \left(\frac{v + (A+B)^2}{v + A(A+B)} \right)^{a-1} \frac{\left(AB + B^2\right)^{b-1}}{\sqrt{v(v+\kappa)}}.$$
(A.15)

This implies (A.13) directly. The estimate of $J_{a,b}$ is performed by the change of variable $x \mapsto 1 - x$. If $x_1 = 1 - x_0$, there holds

$$J_{a,b} = \int_0^{x_1} x^{-a} (1-x)^{-b} e^{-A^2/4x} e^{-B^2/4(1-x)} dx = \int_0^{x_1} \Psi(x) dx.$$

Then

$$\int_{0}^{x_{1}} \Psi(x)dx = 2^{b-a-4}e^{-(A+B)^{2}/4} \int_{0}^{x_{1}} \tilde{\Psi}(v)dv \quad \text{where}$$

$$\tilde{\Psi}(v) = \frac{\left(v + (AB + A^{2})/2 - \sqrt{v(v + AB)}\right)^{1-a} \left(v + (B^{2} + AB)/2 + \sqrt{v(v + AB)}\right)^{1-b}}{\left(v + (A+B)^{2}/4\right)^{2-a-b} \sqrt{v(v + AB)}} e^{-v}dv.$$
(A.16)

Equivalence (A.8) is unchanged; (A.9) is replaced by

$$\left(v + (B^2 + AB)/2 + \sqrt{v(v + AB)}\right)^{1-b} \approx \left(v + B(A+B)\right)^{1-b},\tag{A.17}$$

(A.10) by

$$v + (AB + A^2)/2 - \sqrt{v(v + AB)} \approx A^2 \frac{v + (A+B)^2}{v + A(A+B)},$$
 (A.18)

and (A.11) by

$$\left(v + (AB + A^2)/2 - \sqrt{v(v + AB)}\right)^{1-a} \approx A^{2-2a} \left(\frac{v + A(A + B)}{v + (A + B)^2}\right)^{a-1}.$$
 (A.19)

Because a > 1, (A.12) turns into

$$\tilde{\Psi}(v) \leq CA^{2-2b}(v + (A+B)^2)^{b-1} \frac{(v+A^2+AB)^{a-1}(v+B^2+AB)^{1-b}}{\sqrt{v(v+\kappa)}}
\leq Ce^{-(A+B)^2/4}A^{2-2b}(A+B)^{2b-2}
\times \frac{v^{a-b} + (A^2+AB)^{a-1}v^{1-b} + (B^2+AB)^{1-b}v^{a-1} + A^{a-1}B^{1-b}(A+B)^{a-b}}{\sqrt{v(v+\kappa)}}.$$
(A.20)

Because $AB \geq \kappa$, there exists a positive constant C, depending on κ , such that

$$\int_{0}^{\infty} \frac{v^{a-b} + (A^{2} + AB)^{a-1}v^{1-b} + (B^{2} + AB)^{1-b}v^{a-1}}{\sqrt{v(v+\kappa)}} e^{-v} dv$$

$$\leq CA^{a-1}B^{1-b}(A+B)^{a-b} \int_{0}^{\infty} \frac{e^{-v} dv}{\sqrt{v(v+\kappa)}}.$$
(A.21)

Combining (A.20) and (A.21) yields to

$$\int_0^{x_1} \Psi(x)dx \le Ce^{-(A+B)^2/4} A^{1-a} B^{1-b} (A+B)^{a+b-2}. \tag{A.22}$$

This, again, implies that (A.1) holds.

Case 3: $\max\{a,b\} < 1$. Inequalities (A.7)-(A.11) hold, but (A.12) has to be replaced by

$$\tilde{\Phi}(v) \le CB^{2-2b} \left(\frac{v + (A+B)^2}{v + A(A+B)}\right)^{a-1} \frac{\left(v + B^2 + AB\right)^{b-1}}{\sqrt{v(v+\kappa)}}
\le CB^{1-b}(A+B)^{2a+b-3} \frac{v^{1-a} + \left(A^2 + AB\right)^{1-a}}{\sqrt{v(v+\kappa)}} \tag{A.23}$$

Noticing that

$$\int_0^\infty \frac{v^{1-a}e^{-v}dv}{\sqrt{v(v+\kappa)}} \le C\left(A^2 + AB\right)^{1-a} \int_0^\infty \frac{e^{-v}dv}{\sqrt{v(v+\kappa)}},$$

it follows that (A.13) holds. Finally (A.14) holds by exchanging (A, a) and (B, b).

Lemma A.2 . Let α , β , γ , δ be real numbers and ℓ an integer. We assume $\gamma > 1$, $\delta > 0$ and $\ell \geq 2$. Then there exists a positive constant C such that, for any integer $n > \ell$

$$\sum_{p=1}^{n-\ell} p^{\alpha} (\sqrt{n} - \sqrt{p})^{\beta} e^{-\delta(\sqrt{p} + \sqrt{\gamma}(\sqrt{n} - \sqrt{p+1}))^2} \le C n^{\alpha - \beta/2} e^{-\delta n}. \tag{A.24}$$

Proof. The function $x \mapsto (\sqrt{x} + \sqrt{\gamma}(\sqrt{n} - \sqrt{x+1}))^2$ is decreasing on $[(\gamma-1)^{-1}, \infty)$. Furthermore there exists C > 0 depending on ℓ , α and β such that $p^{\alpha}(\sqrt{n} - \sqrt{p})^{\beta} \leq Cx^{\alpha}(\sqrt{n} - \sqrt{x+1})^{\beta}$ for $x \in [p, p+1]$ If we denote by p_0 the smallest integer larger than $(\gamma-1)^{-1}$, we derive

$$S = \sum_{p=1}^{n-\ell} p^{\alpha} (\sqrt{n} - \sqrt{p})^{\beta} e^{-(\sqrt{p} + \sqrt{\gamma}(\sqrt{n} - \sqrt{p+1}))^{2}/4} = \sum_{p=1}^{p_{0}-1} + \sum_{p_{0}}^{n-\ell} p^{\alpha} (\sqrt{n} - \sqrt{p})^{\beta} e^{-\delta(\sqrt{p} + \sqrt{\gamma}(\sqrt{n} - \sqrt{p+1}))^{2}}$$

$$\leq \sum_{p=1}^{n-\ell} p^{\alpha} (\sqrt{n} - \sqrt{p})^{\beta} e^{-\delta(\sqrt{p} + \sqrt{\gamma}(\sqrt{n} - \sqrt{p+1}))^{2}}$$

$$+ C \int_{0}^{n+1-\ell} x^{\alpha} (\sqrt{n} - \sqrt{x})^{\beta} e^{-\delta(\sqrt{x} + \sqrt{\gamma}(\sqrt{n} - \sqrt{x+1}))^{2}} dx,$$

(notice that $\sqrt{n} - \sqrt{x} \approx \sqrt{n} - \sqrt{x+1}$ for $x \leq n - \ell$). Clearly

$$\sum_{n=1}^{p_0-1} p^{\alpha} (\sqrt{n} - \sqrt{p})^{\beta} e^{-\delta(\sqrt{p} + \sqrt{\gamma}(\sqrt{n} - \sqrt{p+1}))^2} \le C_0 n^{\alpha} (\sqrt{n} - \sqrt{n-\ell})^{\beta} e^{-\delta n}$$
(A.25)

for some C_0 independent of n. We set $y = y(x) = \sqrt{x+1} - \sqrt{x}/\sqrt{\gamma}$. Obviously

$$y'(x) = \frac{1}{2} \left(\frac{1}{\sqrt{x+1}} - \frac{1}{\sqrt{\gamma}\sqrt{x}} \right) \quad \forall x \ge p_0,$$

and their exists $\epsilon = \epsilon(\delta, \gamma) > 0$ such that $\sqrt{2}\sqrt{x} \ge y(x) \ge \epsilon\sqrt{x}$ and $y'(x) \ge \epsilon/\sqrt{x}$. Furthermore

$$\sqrt{x} = \frac{\sqrt{\gamma} \left(y + \sqrt{\gamma y^2 + 1 - \gamma} \right)}{\gamma - 1},$$

$$\sqrt{n} - \sqrt{x} = \frac{\sqrt{n}(\gamma - 1) - \sqrt{\gamma}y - \sqrt{\gamma}\sqrt{\gamma y^2 + 1 - \gamma}}{\gamma - 1}$$

$$= \frac{n(\gamma - 1) + \gamma - 2y\sqrt{\gamma n} - \gamma y^2}{\sqrt{n}(\gamma - 1) - \sqrt{\gamma}y + \sqrt{\gamma}\sqrt{\gamma y^2 + 1 - \gamma}}$$

$$\approx \frac{n(\gamma - 1) + \gamma - 2y\sqrt{\gamma n} - \gamma y^2}{\sqrt{n}}$$

since $y(x) \leq \sqrt{n}$. Furthermore

$$n(\gamma - 1) + \gamma - 2y\sqrt{\gamma n} - \gamma y^2 = \gamma(\sqrt{n+1} + \sqrt{n}/\sqrt{\gamma} + y)(\sqrt{n+1} - \sqrt{n}/\sqrt{\gamma} - y)$$

$$\approx \sqrt{n}(\sqrt{n+1} - \sqrt{n}/\sqrt{\gamma} - y),$$

because y ranges between $\sqrt{n+2-\ell} - \sqrt{n+1-\ell}\sqrt{\gamma} \approx \sqrt{n}$ and $\sqrt{p_0+1} - \sqrt{p_0}\sqrt{\gamma}$. Thus $(\sqrt{n} - \sqrt{x})^{\beta} \approx (\sqrt{n+1} - \sqrt{n}/\sqrt{\gamma} - y)^{\beta}$.

This implies

$$\int_{p_{0}}^{n+1-\ell} x^{\alpha} (\sqrt{n} - \sqrt{x})^{\beta} e^{-\delta(\sqrt{x} + \gamma(\sqrt{n} - \sqrt{x+1}))^{2}} dx$$

$$\leq C \int_{y(p_{0})}^{y(n+1-\ell)} y^{2\alpha+1} \left(\sqrt{n+1} - \sqrt{n}/\sqrt{\gamma} - y\right)^{\beta} e^{-\gamma\delta(\sqrt{n} - y)^{2}} dy$$

$$\leq C n^{\alpha+\beta/2+1} \int_{1-y(n+1-\ell)/\sqrt{n}}^{1-y(p_{0})/\sqrt{n}} (1-z)^{2\alpha+1} (z + \sqrt{1+1/n} - 1 - 1/\sqrt{\gamma})^{\beta} e^{-\gamma\delta nz^{2}} dz.$$
(A.26)

Moreover

$$1 - \frac{y(p_0)}{\sqrt{n}} = 1 - \frac{1}{\sqrt{n}} \left(\sqrt{p_0 + 1} - \frac{\sqrt{p_0}}{\sqrt{\gamma}} \right),$$

$$1 - \frac{y(n - \ell + 1)}{\sqrt{n}} = 1 - \frac{\sqrt{n - \ell + 2}}{\sqrt{n}} + \frac{\sqrt{n - \ell + 1}}{\sqrt{n\gamma}}$$

$$= \frac{1}{\sqrt{\gamma}} \left(1 + \frac{\sqrt{\gamma} (\ell - 2) - \ell + 1}{2n} + \frac{\sqrt{\gamma} (\ell - 2)^2 - (\ell - 1)^2}{8n^2} \right) + O(n^{-3}).$$
(A.27)

Let θ fixed such that $1 - \frac{y(n-\ell+1)}{\sqrt{n}} < \theta < 1 - \frac{y(p_0)}{\sqrt{n}}$ for any $n > p_0$. Then

$$\int_{\theta}^{1-y(p_0)/\sqrt{n}} (1-z)^{2\alpha+1} (z+\sqrt{1+1/n}-1-1/\sqrt{\gamma})^{\beta} e^{-\gamma \delta n z^2} dz \leq C_{\theta} \int_{\theta}^{1-y(p_0)/\sqrt{n}} (1-z)^{2\alpha+1} e^{-\gamma \delta n z^2} dz \\
\leq C_{\theta} e^{-\gamma \delta n \theta^2} \int_{\theta}^{1-y(p_0)/\sqrt{n}} (1-z)^{2\alpha+1} dz \\
\leq C e^{-\gamma \delta n \theta^2} \max\{1, n^{-\alpha-1/2}\}.$$

Because $\gamma \theta^2 > 1$ we derive

$$\int_{a}^{1-y(p_0)/\sqrt{n}} (1-z)^{2\alpha+1} (z+\sqrt{1+1/n}-1-1/\sqrt{\gamma})^{\beta} e^{-\gamma \delta n z^2} dz \le C n^{-\beta} e^{-\delta n}, \tag{A.28}$$

for some constant C > 0. On the other hand

$$\int_{1-y(n+1-\ell)/\sqrt{n}}^{\theta} (1-z)^{2\alpha+1} (z+\sqrt{1+1/n}-1-1/\sqrt{\gamma})^{\beta} e^{-\gamma \delta n z^{2}} dz
\leq C'_{\theta} \int_{1-y(n+1-\ell)/\sqrt{n}}^{\theta} (z+\sqrt{1+1/n}-1-1/\sqrt{\gamma})^{\beta} e^{-\gamma \delta n z^{2}} dz.$$

The minimum of $z \mapsto (z + \sqrt{1 + 1/n} - 1 - 1/\sqrt{\gamma})^{\beta}$ is achieved at $1 - y(n + 1 - \ell)$ with value

$$\frac{\sqrt{\gamma}(\ell+1)+1-\ell}{2n\sqrt{\gamma}}+O(n^{-2}),$$

and the maximum of the exponential term is achieved at the same point with value

$$e^{-n\delta + ((\ell-2)\sqrt{\gamma} + 1 - \ell)/2} (1 + \circ(1)) = C_{\gamma} e^{-n\delta} (1 + \circ(1)).$$

We denote

$$z_{\gamma,n} = 1 + 1/\sqrt{\gamma} - \sqrt{1 + 1/n}$$
 and $I_{\beta} = \int_{1 - y(n + 1 - \ell)/\sqrt{n}}^{\theta} (z - z_{\gamma,n})^{\beta} e^{-\gamma \delta n z^2} dz$.

Since $1 - y(n + 1 - \ell) \ge 1/\sqrt{2\gamma}$ for n large enough,

$$\begin{split} I_{\beta} &\leq \sqrt{2\gamma} \int_{1-y(n+1-\ell)/\sqrt{n}}^{\theta} (z-z_{\gamma,n})^{\beta} z e^{-\gamma\delta n z^{2}} dz \\ &\leq \frac{-\sqrt{2\gamma}}{2n\gamma\delta} \left[(z-z_{\gamma,n})^{\beta} e^{-\gamma\delta n z^{2}} \right]_{1-y(n+1-\ell)/\sqrt{n}}^{\theta} + \frac{\beta\sqrt{2\gamma}}{2n\gamma\delta} \int_{1-y(n+1-\ell)/\sqrt{n}}^{\theta} (z-z_{\gamma,n})^{\beta-1} z e^{-\gamma\delta n z^{2}} dz \end{split}$$

But $1 - y(n + 1 - \ell)/\sqrt{n} - z_{\gamma,n} = (\ell - 1)(1 - 1/\sqrt{\gamma})/2n$, therefore

$$I_{\beta} \le C_1 n^{-\beta - 1} e^{-\delta n} + \beta C_1' n^{-1} I_{\beta - 1}.$$
 (A.29)

If $\beta \leq 0$, we derive

$$I_{\beta} \le C_1 n^{-\beta - 1} e^{-\delta n}$$

which inequality, combined with (A.26) and (A.28), yields to (A.24). If $\beta > 0$, we iterate and get

$$I_{\beta} \le C_1 n^{-\beta - 1} e^{-\delta n} + C_1' n^{-1} (C_1 n^{-\beta} e^{-\delta n} + (\beta - 1) C_1' n^{-1} I_{\beta - 2})$$

If $\beta - 1 \le 0$ we derive

$$I_{\beta} \le C_1 n^{-\beta - 1} e^{-\delta n} + C_1 C_1' n^{-1 - \beta} e^{-\delta n} = C_2 n^{-\beta - 1} e^{-\delta n}$$

which again yields to (A.24). If $\beta - 1 > 0$, we continue up we find a positive integer k such that $\beta - k \leq 0$, which again yields to

$$I_{\beta} \le C_k n^{-\beta - 1} e^{-\delta n}$$

and to
$$(A.24)$$
.

The next estimate is fundamental in deriving the N-dimensional estimate.

Lemma A.3 For any integer $N \geq 2$ there exists a constant $c_N > 0$ such that

$$\int_0^{\pi} e^{m\cos\theta} \sin^{N-2}\theta \, d\theta \le c_N \frac{e^m}{(1+m)^{(N-1)/2}} \quad \forall m > 0.$$
 (A.30)

Proof. Put
$$\mathcal{I}_N(m) = \int_0^{\pi} e^{m\cos\theta} \sin^{N-2}\theta \, d\theta$$
. Then $\mathcal{I}_2'(m) = \int_0^{\pi} e^{m\cos\theta} \cos\theta \, d\theta$ and
$$\mathcal{I}_2''(m) = \int_0^{\pi} e^{m\cos\theta} \cos^2\theta \, d\theta = \mathcal{I}_2(m) - \int_0^{\pi} e^{m\cos\theta} \sin^2\theta \, d\theta$$
$$= \mathcal{I}_2(m) - \frac{1}{m} \int_0^{\pi} e^{m\cos\theta} \cos\theta \, d\theta$$
$$= \mathcal{I}_2(m) - \frac{1}{m} \mathcal{I}_2'(m).$$

Thus \mathcal{I}_2 satisfies a Bessel equation of order 0. Since $\mathcal{I}_2(0) = \pi$ and $\mathcal{I}'_2(0) = 0$, $\pi^{-1}\mathcal{I}_2$ is the modified Bessel function of index 0 (usually denoted by I_0) the asymptotic behaviour of which is well known, thus (A.30) holds. If N=3

$$\mathcal{I}_3(m) = \int_0^{\pi} e^{m\cos\theta} \sin\theta \, d\theta = \left[\frac{-e^{m\cos\theta}}{m} \right]_0^{\pi} = \frac{2\sinh m}{m}.$$

For N > 3 arbitrary

$$\mathcal{I}_N(m) = \int_0^{\pi} \frac{-1}{m} \frac{d}{d\theta} (e^{m\cos\theta}) \sin^{N-3}\theta \, d\theta = \frac{N-3}{m} \int_0^{\pi} e^{m\cos\theta} \cos\theta \sin^{N-4}\theta \, d\theta. \tag{A.31}$$

Therefore,

$$\mathcal{I}_4(m) = \frac{1}{m} \int_0^{\pi} e^{m\cos\theta} \cos\theta \, d\theta = \mathcal{I}'_2(m),$$

and, again (A.30) holds since $I_0'(m)$ has the same behaviour as $I_0(m)$ at infinity. For $N \geq 5$

$$\mathcal{I}_N(m) = \frac{3-N}{m^2} \left[e^{m\cos\theta}\cos\theta\sin^{N-5}\theta \right]_0^{\pi} + \frac{N-3}{m^2} \int_0^{\pi} e^{m\cos\theta} \frac{d}{d\theta} \left(\cos\theta\sin^{N-5}\theta\right) d\theta.$$

Differentiating $\cos \theta \sin^{N-5} \theta$ and using (A.31), we obtain

$$\mathcal{I}_5(m) = \frac{4\sinh m}{m^2} - \frac{4\sinh m}{m^3},$$

while

$$\mathcal{I}_N(m) = \frac{(N-3)(N-5)}{m^2} \left(\mathcal{I}_{N-4}(m) - \mathcal{I}_{N-2}(m) \right), \tag{A.32}$$

for $N \geq 6$. Since the estimate (A.30) for \mathcal{I}_2 , \mathcal{I}_3 , \mathcal{I}_4 and \mathcal{I}_5 has already been obtained, a straigthforward induction yields to the general result.

Remark. Although it does not has any importance for our use, it must be noticed that \mathcal{I}_N can be expressed either with hyperbolic functions if N is odd, or with Bessel functions if N is even.

References

[1] Adams D. R. and Hedberg L. I., Function spaces and potential theory, Grundlehren Math. Wissen. **314**, Springer (1996).

- [2] Aikawa H. and Borichev A.A., Quasiadditivity and measure property of capacity and the tangential boundary behavior of harmonic functions, Trans. Amer. Math. Soc. **348**, 1013-1030 (1996).
- [3] P. Baras & M. Pierre, Singularités éliminables pour des équations semilinéaires, Ann. Inst. Fourier **34**, 185-206 (1984).
- [4] P. Baras & M. Pierre, *Problèmes paraboliques semi-linéaires avec données mesures*, Applicable Anal. 18, 111-149 (1984).
- [5] H. Brezis, L. A. Peletier & D. Terman, A very singular solution of the heat equation with absorption, Arch. rat. Mech. Anal. 95, 185-209 (1986).
- [6] H. Brezis & A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures Appl. 62, 73-97 (1983).
- [7] Superdiffusions and positive solutions of nonlinear partial differential equations. Univ. Lecture Ser. 34. Amer. Math. Soc., Providence, RI (2004).
- [8] Dynkin E. B. and Kuznetsov S. E. Superdiffusions and removable singularities for quasilinear partial differential equations, Comm. Pure Appl. Math. 49, 125-176 (1996).
- [9] Dynkin E. B. and Kuznetsov S. E. Solutions of $Lu = u^{\alpha}$ dominated by harmonic functions, J. Analyse Math. **68**, 15-37 (1996).
- [10] G. Grillo, Lower bounds for the Dirichlet heat kernel, Quart. J. Math. Oxford Ser. 48, 203-211 (1997).
- [11] Grisvard P., Commutativité de deux foncteurs d'interpolation et applications, J. Math. Pures et Appl., 45, 143-290 (1966).
- [12] Khavin V. P. and Maz'ya V. G., Nonlinear Potential Theory, Russian Math. Surveys 27, 71-148 (1972).
- [13] S.E. Kuznetsov, Polar boundary set for superdiffusions and removable lateral singularities for nonlinear parabolic PDEs, Comm. Pure Appl. Math. 51, 303-340 (1998).
- [14] Labutin D. A., Wiener regularity for large solutions of nonlinear equations, Archiv för Math. 41, 307-339 (2003).
- [15] O.A. Ladyzhenskaya, V.A. Solonnikov& N.N. Ural'tseva, *Linear and Quasilinear Equations of Parabolic Type*, Nauka, Moscow (1967). English transl. Amer. Math. Soc. Providence R.I. (1968).
- [16] Legall J. F., The Brownian snake and solutions of $\Delta u = u^2$ in a domain, Probab. Th. Rel. Fields 102, 393-432 (1995).
- [17] Legall J. F., A probabilistic approach to the trace at the boundary for solutions of a semi-linear parabolic partial differential equation, J. Appl. Math. Stochastic Anal. 9, 399-414 (1996).

- [18] Lions J. L. & Petree J. Sur une classe d'espaces d'interpolation, Publ. Math. I.H.E.S. 19, 5-68 (1964).
- [19] M. Marcus & L. Véron, The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case, Arch. Rat. Mech. Anal. 144, 201-231 (1998).
- [20] Marcus M. and Véron L., The boundary trace of positive solutions of semilinear elliptic equations: the supercritical case, J. Math. Pures Appl. 77, 481-524 (1998).
- [21] M. Marcus & L. Véron, The initial trace of positive solutions of semilinear parabolic equations, Comm. Part. Diff. Equ. 24, 1445-1499 (1999).
- [22] Marcus M. and Véron L., Removable singularities and boundary trace, J. Math. Pures Appl. 80, 879-900 (2000).
- [23] Marcus M. and Véron L., Capacitary estimates of solutions of a class of nonlinear elliptic equations, C. R. Acad. Sci. Paris **336**, 913-918 (2003).
- [24] Marcus M. and Véron L., Capacitary estimates of positive solutions of semilinear elliptic equations with absorption, J. Europ. Math. Soc. 6, 483-527 (2004).
- [25] M. Marcus & L. Véron, Semilinear parabolic equations with measure boundary data and isolated singularities, J. Analyse. Math. 85, 245-290 (2001).
- [26] M. Marcus & L. Véron, Capacitary representation of positive solutions of semilinear parabolic equations, C. R. Acad. Sci. Paris I 342, 655-660 (2006).
- [27] Mselati B., Classification and probabilistic representation of positive solutions of a emilinear elliptic equation in a domain. Mem. Amer. Math. Soc. 168, Providence R. I. (2004).
- [28] Pierre M., *Problèmes semi-linéaires avec données mesures*, Séminaire Goulaouic-Meyer-Schwartz (1982-1983) **XIII**.
- [29] Stein E. M., Singular integrals and differentiability properties of functions, Princeton Univ. Press 30 (1970).
- [30] Triebel H., Interpolation theory, function spaces, Differential operators, North-Holland Publ. Co., (1978).
- [31] Whittaker E. T. & Watson G. N., A course of Modern Analysis, Cambridge University Press, 4th Ed. (1927), Chapter XXI.