Estructuras de Tip Date Ostos Abstractos

Gonzalo Gabriel Méndez, Ph.D.

Recordatorio

Contenidos (resumen)

Primer parcial

- Tipos de Datos y Tipos de Datos Abstractos (TDAs)
- 2. Listas
- 3. Pilas
- 4. Colas
- 5. Conjuntos y mapas

Segundo parcial

- 6. Grafos
- 7. Árboles

Contenidos (resumen)

Primer parcial

- 1. Tipos de Datos y Tipos de Datos Abstractos (TDAs)
- 2. Listas
- 3. Pilas
- 4. Colas
- 5. Conjuntos y mapas

Segundo parcial

- 6. Grafos
- 7. Árboles

Tipos de Datos

TIPOS DE DATOS

- Los datos se clasifican en TIPOS
 - Diferentes dominios existentes
 - Edad
 - Año de Nacimiento
 - Número de multas
 - Nombre
 - Dirección
 - Cédula

• Operaciones asociadas para dicho dominio

Datos Primitivos

- Los podemos distinguir fácilmente, están en el diario vivir:
 - El Sr. Vera de 63 años tiene cedula No. 0908815533, y paga \$120 de impuestos
- Permiten representar información numérica, caracteres, etc.

NOMBRE	CONJUNTO DE VALORES	OPERACIONES
Enteros	Negativos y positivos sin decimal	Suma, resta, multiplicación, división, residuo
Reales	Negativos y positivos, con decimal	Suma, resta, multiplicación, división, residuo
Lógicos	Verdadero (True) => 1 Falso (False)=> 0	And, Or, Not
Caracteres	Letras, números, especiales, juntos forman una cadena	Concatenar (suma de cadenas), buscar, subcadena, etc.

Datos Compuestos

- En ocasiones se necesitan tipos de datos mas complejos y estructurados
 - Variables que almacenen mas de un valor
 - Variables que representen información de la vida real
 - Estarán formados a partir de tipos de datos simples

• En Java, tenemos:

TIPO	FORMATO DECLARACION	
ARREGLOS	<pre>int arreglo[];</pre>	
CLASES	<pre>public class ClaseEjemplo { }</pre>	
COLECCIONES	Set, List, Map, Queue	

Tipos de Datos Abstractos (TDAs)

Abstracción

• Visión simplificada de una realidad en la que sólo consideramos determinados aspectos esenciales

• Consiste en enfocarse en lo esencial

¿Qué significa abstracción?

Homero Simpson construyendo el auto de sus sueños

Tipo de Dato Abstracto (TDA)

- Un TDA trata de representar entidades del mundo real especificando el QUÉ y no el CÓMO
- Se compone de:
 - Comportamiento u operaciones
 - Los TDAs existen para proveer operaciones
 - Ejemplo: Un carro, es útil porque se lo puede manejar
 - manejar es un comportamiento u operación del TDA Carro
 - Propiedades o Atributos
 - Se refiere al funcionamiento interno del TDA
 - Un TDA correctamente creado mantiene sus propiedades OCULTAS
 - Ejemplo: No nos interesa cómo funciona un carro; solo nos interesa que funcione

Implementación de un TDA

- En JAVA, los TDAs pueden ser implementados mediante:
 - Clases
 - Clases Abstractas
 - Interfaces

Representa una colección de elementos de

cualquier tipo

List

<interface>

Permite añadir, eliminar y recuperar elementos

Permite elementos duplicados (un mismo elemento puede ser añadido

varias veces)

No admite valores nulos

Las operaciones de añadir y eliminar devuelven valores booleanos de

éxito

Representa una colección de elementos de cualquier tipo

add(E e)

Appends the specified element to the end of this list (optional operation).

```
add(int index, E element)
```

Method and Description

Inserts the specified element at the specified position in this list (optional operation).

```
addAll(Collection<? extends E> c)
```

Appends all of the elements in the specified collection to the end of this list, in the order that they are returned by the specified collection's iterator (optional operation).

```
addAll(int index, Collection<? extends E> c)
```

Inserts all of the elements in the specified collection into this list at the specified position (optional operation).

clear()

Removes all of the elements from this list (optional operation).

contains(Object o)

Returns true if this list contains the specified element.

Representa una colección de elementos de

Representa una colección de elementos de cualquier tipo List <interface> **Estructuras de Datos** ArrayList LinkedList

Representa una colección de elementos de cualquier tipo List <interface> **Estructuras de Datos** LinkedList ArrayList

Se usan de manera similar, lo que varía es la implementación

Para un programador que usa las estructuras:

Tanto el ArrayList como la LinkedList son listas

El usuario no se entera de los detalles de implementación

Para quien implementa las estructuras:

Éstas son representaciones concretas del TDA List

Debe tomar decisiones de cómo lograr el comportamiento

Elefersite codes of, Duasted implementará varios TDAs

Antes de todo...

Necesitamos conocer algunos conceptos

Java Generics

Notación asintótica

Recursividad