In the Claims

1.	(currently amended)	An ink jet ink or	ink jet recording	material comp	rising at least of	one compound
se	lected from the group o	consisting of				

- a) the dialkyl hydroxylamine stabilizers[[,]] and
- b) the nitrone stabilizers and
- c) the amine oxide stabilizers

where the dialkyl hydroxylamine stabilizers are of the formula

R₁R₂N-OH

where

R₁ is alkyl of 1 to 36 carbon atoms, cycloalkyl of 5 to 12 carbon atoms or aralkyl of 7 to 9 carbon atoms; or R₁ is said alkyl, cycloalkyl or aralkyl substituted by one to six alkyl of 1 to 12 carbon atoms, perfluoroalkyl of 1 to 12 carbons atoms, halogen, cyano, E₁O-, E₁CO-, E₁COO-, E₁COO-, E₁SO-, E₁SO₂-, -NH₂, -NHE₁, -NE₁E₂, -PO(OE₁)(OE₂) or -OPO(OE₁)(OE₂) groups;

 R_2 is hydrogen or independently has the same meaning as R_1 , where at least one of R_1 and R_2 contains a hydrogen alpha to the -NOH moiety; and

 E_1 and E_2 independently are hydrogen, alkyl of 1 to 8 carbon atoms or alkyl of 1 to 8 carbon atoms substituted by one to three hydroxyl groups; or E_1 and E_2 independently are an oligomer of poly(ethylene glycol) or poly(propylene glycol) terminated by hydroxyl, methoxy, acetate or propionate, where the oligomer has a molecular weight up to about 500; and

with the proviso that diethyl hydroxylamine is excluded.

2. (original) An ink jet ink or ink jet recording material according to claim 1 which comprises at least one compound selected from the group consisting of the dialkyl hydroxylamine stabilizers.

3. (canceled)

4. (currently amended) An ink jet ink or ink jet recording material according to claim 2 where the dialkyl hydroxylamine stabilizers are selected from the group consisting of N,N-dibenzylhydroxylamine, N,N-dimethylhydroxylamine, N,N-diethylhydroxylamine[[,]] N,N-bis(2-hydroxy-propyl)hydroxylamine, N,N-bis(3-hydroxypropyl)hydroxylamine, N,N-bis(2-carboxyethyl)hydroxylamine, N,N-bis(benzylthiomethyl)hydroxylamine, N,N-dioctylhydroxylamine, N,N-dilaurylhydroxylamine, N,N-didodecylhydroxylamine, N,N-ditetradecylhydroxylamine, N,N-dihexadecylhydroxylamine, N,N-dioctadecylhydroxylamine, N-hexadecyl-N-tetradecylhydroxylamine, N-hexadecyl-N-heptadecylhydroxylamine, N-hexadecyl-N-octadecylhydroxylamine, N-heptadecyl-N-octadecylhydroxylamine, N,N-di(hydrogenated tallow)hydroxylamine,

$$\left[\begin{array}{c|c} & & & \\ & & \\ & & \end{array}\right]_2^{\text{OH}} \quad \left[\begin{array}{c|c} & & & \\ & & \\ & & \end{array}\right]_2^{\text{OH}} \quad \left[\begin{array}{c|c} & & \\ & & \\ & & \\ \end{array}\right]_1^{\text{OH}} \quad \left[\begin{array}{c|c} & & \\ & & \\ & & \\ \end{array}\right]_1^{\text{OH}}$$

where n = 2 to 200.

- **5.** (currently amended) An ink jet ink or ink jet recording material according to claim **2** where the dialkyl hydroxylamine stabilizers are N,N-diethylhydroxylamine[[,]] N,N-bis(2-hydroxypropyl)hydroxylamine, N,N-bis(3-hydroxypropyl)hydroxylamine, N,N-dibenzylhydroxylamine or N,N-di(hydrogenated tallow)hydroxylamine.
- **6. (original)** An ink jet ink or ink jet recording material according to claim **1** which comprises at least one compound selected from the group consisting of the nitrone stabilizers.
- 7. (currently amended) An ink jet ink or ink jet recording material according to claim 6 where the nitrone stabilizers are of the formula

$$R_2$$
 N
 R_1

wherein

 R_1 is alkyl of 1 to 36 carbon atoms, cycloalkyl of 5 to 12 carbon atoms or aralkyl of 7 to 9 carbon atoms; or R_1 is said alkyl, cycloalkyl or aralkyl substituted by one to six alkyl of 1 to 12 carbon atoms, perfluoroalkyl of 1 to 12 carbon atoms, halogen, cyano, E_1O_- , E_1CO_- , $M^+O^-CO_-$, E_1CO_- , E_1CO_- , E_1SO_- , $E_$

R₂ is hydrogen or independently has the same meaning as R₁; or

 R_1 and R_2 together form a C_{2-12} heterocyclic ring which is unsubstituted or is substituted by one to three three alkyl of 1 to 12 carbon atoms, perfluoroalkyl of 1 to 12 carbon atoms, halogen, cyano, E_1O_7 , E_1CO_7 ,

M⁺ is a mono-, di- or tri-valent metal cation;

 E_1 and E_2 independently are hydrogen, alkyl of 1 to 8 carbon atoms or alkyl of 1 to 8 carbon atoms substituted by one to three hydroxyl groups; or E_1 and E_2 independently are an oligomer of poly(ethylene glycol) or poly(propylene glycol) terminated by hydroxyl, methoxy, acetate or propionate, where the oligomer has a molecular weight up to about 500; and

R₃ independently has the same meaning as R₁;

or the nitrones are of the formula

$$\begin{bmatrix} & R_5 & R_4 & O^{-} \\ E & & & N^{+} & T \\ & & & & n \end{bmatrix}$$

$$\begin{bmatrix} & R_5 & R_4 & O^- \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

wherein

E is hydrogen, oxyl, hydroxyl, alkyl of 1 to 18 carbon atoms, alkenyl of 3 to 18 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, hydroxyalkyl of 2 to 6 carbon atoms, alkoxyalkyl of 2 to 20 carbon atoms, alkanoyl of 1 to 18 carbon atoms, alkoxy of 1 to 18 carbon atoms, cycloalkoxy of 5 to 12 carbon atoms, aryloxy of 6 to 10 carbon atoms, hydroxyalkoxy of 2 to 6 carbon atoms, alkoxyalkoxy of 2 to 20 carbon atoms, aralkoxy of 7 to 15 carbon atoms or a bicyclo or tricycloaliphatic oxy radical of 7 to 12 carbon atoms,

 R_4 and R_5 are independently alkyl of 1 to 4 carbon atoms or together R_3 and R_4 are pentamethylene,

n is 1, 2, 3 or 4,

when n is 1, T is alkyl of 1 to 36 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, aralkyl of 7 to 9 carbon atoms or aralkyl of 7 to 9 carbon atoms substituted by alkyl of 1 to 4 carbon atoms or by one or two halogen atoms, said alkyl interrupted by one or more oxygen atoms, cyanoethyl, alkenyl of 3 to 8 carbon atoms, alkoxycarbonylalkyl of 4 to 36 carbon atoms where alkyl is of 1 to 4 carbon atoms,

when n is 2, T is alkylene of 2 to 12 carbon atoms, arylene of 6 to 10 carbon atoms, xylylene, - CH₂CHOHCH₂-, -CH₂CHOHCH₂-, -CH₂-phenylene-COO-G₁-OCO-phenylene-CH₂- or -CH₂-phenylene-CH₂-,

G₁ is alkylene of 2 to 12 carbon atoms, arylene of 6 to 10 carbon atoms or cycloalkylene of 6 to 12 carbon atoms,

when n is 3, T is alkanetriyl of 3 to 6 carbon atoms, or is
$$\begin{array}{c} CH_2 \\ H_3C \\ CH_2 \\ CH_2 \\ CH_2 \end{array}, \text{ and }$$

when n is 4, T is alkanetetrayl of 4 to 6 carbon atoms,

 G_3 is a direct bond, -OCO-(C_qH_{2q}) $_q$ -, -OCO-phenylene-CH $_2$ -, -NG $_4$ -CO-(C_qH_{2q}) $_q$ - or -NG $_4$ -CO-phenylene-CH $_2$ - where q is 1 to 12,

G₄ is hydrogen, alkyl of 1 to 8 carbon atoms or phenyl,

m is 1 or 2,

when m is 1, G_2 is alkyl of 1 to 36 carbon atoms, said alkyl interrupted by one or more oxygen atoms, cyanomethyl, cycloalkyl of 6 to 8 carbon atoms, alkenyl of 2 to 8 carbon atoms, aryl of 6 to 10 carbon atoms, or aryl of 6 to 10 carbon atoms substituted by alkyl of 1 to 4 carbon atoms or by one or two halogen atoms, or alkoxycarbonylalkyl of 4 to 36 carbon atoms where alkyl is of 1 to 4 carbon atoms, and

when m is 2, G₂ is alkylene of 2 to 12 carbon atoms or arylene of 6 to 10 carbon atoms,

X and X₁ are independently Q-G, where Q is -O-, -COO-, -OCO- or -NR₆-,

 R_6 is hydrogen, alkyl of 1 to 8 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, cyanoethyl, aryl of 6 to 10 carbon atoms, aralkyl of 7 to 15 carbon atoms or -CH₂CHR₇OH, and R₇ is hydrogen, methyl or phenyl, with Q being attached to the piperidinyl ring,

G is alkylene of 1 to 4 carbon atoms, arylene of 6 to 10 carbon atoms or arylene-alkylene of 7 to 15 carbon atoms,

R₈ and R₉ are independently hydrogen or alkyl of 1 to 8 carbon atoms, and

L and L_1 are independently -CO-alkylene of 2 to 5 carbon atoms or -CO-phenylene-with the carbonyl group being attached to the N atom.

8. (original) An ink jet ink or ink jet recording material according to claim 6 where the nitrone stabilizers are selected from the group consisting of N-benzyl- α -phenylnitrone, N-ethyl- α -methylnitrone, N-octyl- α -heptylnitrone, N-lauryl- α -undecylnitrone, N-tetradecyl- α -tridcylnitrone, N-hexadecyl- α -pentadecylnitrone, N-octadecyl- α -heptadecylnitrone, N-hexadecyl- α -heptadecylnitrone, N-octadecyl- α -heptadecylnitrone, N-octadecyl- α -heptadecylnitrone, N-octadecyl- α -hexadecylnitrone, N-methyl- α -heptadecylnitrone, the nitrone derived from N,N-di(hydrogenated tallow)hydroxylamine, N-benzyl- α -methylnitrone, N-butyl- α -propylnitrone,

- 9. (original) An ink jet ink or ink jet recording material according to claim 6 where the nitrone stabilizers are N-benzyl- α -phenylnitrone or N-ethyl- α -methylnitrone.
- 10. (original) An ink jet ink or ink jet recording material according to claim 7 in which E is hydrogen, hydroxyl, alkyl of 1 to 12 carbon atoms, alkyl, benzyl, alkanoyl of 2 to 4 carbon atoms, alkoxy of 1 to

12 carbon atoms, cyclohexyloxy or alpha-methylbenzyloxy.

11. (original) An ink jet ink or ink jet recording material according to claim 7 in which

R₄ and R₅ are each methyl,

when n is 1, T is hydrogen, alkyl of 1 to 18 carbon atoms, benzyl or alkoxycarbonylalkyl of 4 to 18 carbon atoms where the alkyl is of 2 to 4 carbon atoms,

when n is 2, T is alkylene of 2 to 8 carbon atoms or is p-xylylene,

when n is 3, T is glyceryl,

when n is 4, T is pentaerythrityl,

G₃ is a direct bond,

G₄ is hydrogen,

when m is 1, G₂ is alkyl of 1 to 12 carbon atoms or phenyl,

when m is 2, G₂ is alkylene of 3 to 8 carbon atoms or phenylene,

X and X_1 are the same,

R₈ and R₉ are each hydrogen, and

L and L₁ are the same and are -CO-CH₂- or -CO-phenylene-.

12. (original) An ink jet ink or ink jet recording material according to claim **6** where the nitrone stabilizers are selected from the group consisting of α -phenyl-N-(2,2,6,6-tetramethylpiperidin-4-yl)nitrone, α -phenyl-N-(1,2,2,6,6-pentamethylpiperidin-4-yl)nitrone, α -phenyl-N-(1-cyclohexyloxy-

2,2,6,6-tetramethylpiperidin-4yl)nitrone, α -phenyl-N-(1-octyloxy-2,2,6,6-tetramethylpiperidin-4yl)nitrone, α,α' -p-phenylene-N,N'-bis[(2,2,6,6-tetramethylpiperidin-4-yl)nitrone], N-benzyl-N-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-ylidene)amine-N -oxide, α -n-propyl-N-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)nitrone, α -isopropyl-N-(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl)nitrone, α,α' -tetramethylpiperidin-4-yl)nitrone and α -[4-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)nitrone and α -[4-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yloxycarbonyl)-phenyl]-N-[4-(1-cyclohexyloxy-2,2,6,6-tetramethyl-piperidin-4-yloxycarbonyl)-phenyl]-N-[4-(1-cyclohexyloxy-2,2,6,6-tetramethyl-piperidin-4-yloxycarbonyl)]-N-[4-(1-cyclohexyloxy-2,2,6,6-tetramethyl-piperidin-4-yloxycarbonyl)]-n-[4-(1-cyclohexyloxy-2,2,6,6-tetramethyl-piperidin-4-yloxycarbonyl)]-n-[4-(1-cyclohexyloxy-2,2,6,6-tetramethyl-piperidin-4-yloxycarbonyl)]-n-[4-(1-cyclohexyloxy-2,2,6,6-tetramethyl-piperidin-4-yloxycarbonyl)]-n-[4-(1-cyclohexyloxy-2,2,6,6-tetramethyl-piperidin-4-yloxycarbonyl)]-n-[4-(1-cyclohexyloxy-2,2,6,6-tetramethyl-piperidin-4-yloxycarbonyl)]-n-[4-(1-cyclohexyloxy-2,2,6,6-tetramethyl-piperidin-4-yloxycarbonyl)]-n-[4-(1-cyclohexyloxy-2,2,6,6-tetramethyl-piperidin-4-yloxycarbonyl)]-n-[4-(1-cyclohexyloxy-2,2,6,6-tetramethyl-piperidin-4-yloxycarbonyl)]-n-[4-(1-cyclohexyloxy-2,2,6,6-tetramethyl-piperidin-4-yloxycarbonyl)]-n-[4-(1-cyclohexyloxy-2,2,6,6-tetramethyl-piperidin-4-yloxycarbonyl)]-n-[4-(1-cyclohexyloxy-2,2,6,6-tetramethyl-piperidin-4-yloxycarbonyl)]-n-[4-(1-cyclohexyloxy-2,2,6,6-tetramethyl-piperidin-4-yloxycarbonyl)]-n-[4-(1-cyclohexyloxy-2,2,6,6-tetramethyl-piperidin-4-yloxycarbonyl)]-n-[4-(1-cyclohexyloxy-2,2,6,6-tetramethyl-piperidin-4-yloxycarbonyl)-n-[4-(1-cyclohexyloxy-2,2,6,6-tetramethyl-piperidin-4-yloxycarbonyl)-n-[4-(1-cyclohexyloxy-2,2,6,6-tetramethyl-piperidin-4-yloxycarbonyl)-n-[4-(1-cyclohexyloxy-2,2,6,6-tetramethyl-piperidin-4-yloxycarbonyl)-n-[4-(1-cyclohexyloxy-2,2,6,6-tetramet

13-18. (canceled)

19. (currently amended) An ink jet ink or ink jet recording material according to claim 1 comprising

at least one compound selected from the group consisting of a) the dialkyl hydroxylamine stabilizers and at least one compound selected from the group consisting of b) the nitrone stabilizers or

at least one compound selected from the group consisting of a) the dialkyl hydroxylamine stabilizers and at least one compound selected from the group consisting of c) the amine oxide stabilizers or

at least one compound selected from the group consisting of b) the nitrone stabilizers and at least one compound selected from the group consisting of c) the amine oxide stabilizers.

20. (currently amended) An ink jet ink according to claim 1 which comprises about 0.01 to about 30% by weight of at least one compound selected from the group consisting of components a)[[,]] and b)-and-c), based on the weight of the ink jet ink.

- **21.** (currently amended) An ink jet recording material according to claim **1** which comprises about 1 to about 10000 mg/m² of at least one compound selected from the group consisting of components a)[[,]] and b)-and c).
- 22. (original) An ink jet ink or ink jet recording material according to claim 1 further comprising a UV absorber selected from the group consisting of the hydroxyphenylbenzotriazoles, the tris-aryl-striazines, the benzophenones, the α -cyanoacrylates, the oxanilides, the benzoxazinones, the benzoxazinones and the α -alkyl cinnamates.
- **23. (original)** An ink jet ink or ink jet recording material according to claim **1** further comprising a UV absorber selected from the group consisting of the hydroxyphenylbenzotriazoles, the tris-aryl-striazines and the benzophenones.
- **24. (original)** An ink jet ink or ink jet recording material according to claim **1** further comprising a UV absorber selected from the group consisting of

```
5-chloro-2-(2-hydroxy-3,5-di-tert-butylphenyl)-2H-benzotriazole;
```

- 2-(2-hydroxy-3,5-di-tert-butylphenyl)-2H-benzotriazole;
- 2-(2-hydroxy-3,5-di-tert-amylphenyl)-2H-benzotriazole;
- 2-(2-hydroxy-3,5-di- α -cumylphenyl)-2H-benzotriazole;
- $2-(2-hydroxy-3-\alpha-cumyl-5-tert-octylphenyl)-2H-benzotriazole;$
- 2-(2-hydroxy-5-tert-octylphenyl)-2H-benzotriazole;
- 2-(2-hydroxy-5-methylphenyl)-2H-benzotriazole;
- 2-(2-hydroxy-3-tert-butyl-5-methylphenyl)-2H-benzotriazole-5-sulfonic acid, sodium salt;
- 3-tert-butyl-4-hydroxy-5-(2H-benzotriazol-2-yl)-hydrocinnamic acid;
- 12-hydroxy-3,6,9-trioxadodecyl 3-tert-butyl-4-hydroxy-5-(2H-benzotriazol-2-yl)-hydrocinnamate;

octyl 3-tert-butyl-4-hydroxy-5-(2H-benzotriazol-2-yl)-hydrocinnamate;

2-(3-t-butyl-2-hydroxy-5-(2-(ω -hydroxy-octa-(ethyleneoxy)carbonyl-ethyl)-phenyl)-2H-benzotriazole;

	2,4-bis(2-hydroxy-4-butyloxyphenyl)-6-(2,4-bis-butyloxyphenyl)-1,3,5-triazine;
	2-[4-(dodecyloxy/tridecyloxy-2-hydroxypropoxy)-2-hydroxyphenyl]-4,6-bis(2,4-
dimeth	nylphenyl)1,3,5-triazine;
	the reaction product of tris(2,4-dihydroxyphenyl)-1,3,5-triazine with the mixture of α -
chloro	propionic esters (made from isomer mixture of C ₇ -C ₉ alcohols);
	2,4-dihydroxybenzophenone;
	2,2',4,4'-tetrahydroxy-5,5'-disulfobenzophenone, disodium salt;
	2-hydroxy-4-octyloxybenzophenone;
	2-hydroxy-4-dodecyloxybenzophenone;
	2,4-dihydroxybenzophenone-5-sulfonic acid and salts thereof;
	2-hydroxy-4-methoxybenzophenone-5-sulfonic acid and salts thereof;
	2,2'-dihydroxy-4,4'dimethoxybenzophenone-5,5'-disodium sulfonate;
	3-(2H-benzotriazol-2-yl)-4-hydroxy-5-sec-butylbenzenesulfonic acid, sodium salt; and
	2-(2'-hydroxy-3'-tert-butyl-5'-polyglycolpropionate-phenyl)benzotriazole.
•	currently amended) An ink jet system, comprising a recording material and at least one colored be applied to the recording material by means of an ink jet nozzle, wherein at least either the
	ling material or at least one colored ink comprises at least one compound selected from the consisting of
	a) the dialkyl hydroxylamine stabilizers[[,]] and
	b) the nitrone stabilizers-and
	c) the amine oxide stabilizers
where	the dialkyl hydroxylamine stabilizers are of the formula
	R ₁ R ₂ N-OH
	<u>where</u>

4,6-bis(2,4-dimethylphenyl)-2-(4-octyloxy-2-hydroxyphenyl)-s-triazine;

R₁ is alkyl of 1 to 36 carbon atoms, cycloalkyl of 5 to 12 carbon atoms or aralkyl of 7 to 9 carbon atoms; or R₁ is said alkyl, cycloalkyl or aralkyl substituted by one to six alkyl of 1 to 12 carbon atoms, perfluoroalkyl of 1 to 12 carbons atoms, halogen, cyano, E₁O-, E₁CO-, E₁COO-, E_1S_{-} , E_1SO_{-} , E_1SO_{2-} , $-NH_2$, $-NHE_1$, $-NE_1E_2$, $-PO(OE_1)(OE_2)$ or $-OPO(OE_1)(OE_2)$ groups; R₂ is hydrogen or independently has the same meaning as R₁, where at least one of R₁ and R₂. contains a hydrogen alpha to the -NOH moiety; and E₁ and E₂ independently are hydrogen, alkyl of 1 to 8 carbon atoms or alkyl of 1 to 8 carbon atoms substituted by one to three hydroxyl groups; or E₁ and E₂ independently are an oligomer of poly(ethylene glycol) or poly(propylene glycol) terminated by hydroxyl, methoxy, acetate or propionate, where the oligomer has a molecular weight up to about 500; and with the proviso that diethyl hydroxylamine is excluded. 26. (currently amended) A process for stabilizing ink jet prints which comprises applying to a recording material for ink jet printing an ink composition comprising a water soluble dye or a solution of a dye in an organic solvent and at least one compound selected from the group consisting of a) the dialkyl hydroxylamine stabilizers[[,]] and b) the nitrone stabilizers and c)-the amine oxide stabilizers and drying said recording material where the dialkyl hydroxylamine stabilizers are of the formula R₁R₂N-OH where

R₁ is alkyl of 1 to 36 carbon atoms, cycloalkyl of 5 to 12 carbon atoms or aralkyl of 7 to 9 carbon atoms; or R₁ is said alkyl, cycloalkyl or aralkyl substituted by one to six alkyl of 1 to 12 carbon atoms, perfluoroalkyl of 1 to 12 carbons atoms, halogen, cyano, E₁O-, E₁CO-, E₁COO-, E₁SO-, E₁SO₂-, -NH₂, -NHE₁, -NE₁E₂, -PO(OE₁)(OE₂) or -OPO(OE₁)(OE₂) groups;

 R_2 is hydrogen or independently has the same meaning as R_1 , where at least one of R_1 and R_2 contains a hydrogen alpha to the -NOH moiety; and

 E_1 and E_2 independently are hydrogen, alkyl of 1 to 8 carbon atoms or alkyl of 1 to 8 carbon atoms substituted by one to three hydroxyl groups; or E_1 and E_2 independently are an oligomer of poly(ethylene glycol) or poly(propylene glycol) terminated by hydroxyl, methoxy, acetate or propionate, where the oligomer has a molecular weight up to about 500; and

with the proviso that diethyl hydroxylamine is excluded.

- **27.** (currently amended) A process for stabilizing ink jet prints which comprises applying to a recording material for ink jet printing a casting or coating dispersion or an aqueous or organic solution comprising at least one compound selected from the group consisting of
 - a) the dialkyl hydroxylamine stabilizers[[,]] and
 - b) the nitrone stabilizers and
 - c) the amine oxide stabilizers and

further applying either an ink composition comprising a water soluble dye or a solution of a dye in an organic solvent; or an ink composition comprising a water soluble dye or a solution of a dye in an organic solvent and at least one compound selected from the group consisting of components a)[[,]] and b) and cying said recording material

where the dialkyl hydroxylamine stabilizers are of the formula

R₁R₂N-OH

R₁ is alkyl of 1 to 36 carbon atoms, cycloalkyl of 5 to 12 carbon atoms or aralkyl of 7 to 9 carbon atoms; or R₁ is said alkyl, cycloalkyl or aralkyl substituted by one to six alkyl of 1 to 12 carbon atoms, perfluoroalkyl of 1 to 12 carbons atoms, halogen, cyano, E₁O-, E₁CO-, E₁COO-, E₁COO-, E₁SO-, E₁SO₂-, -NH₂, -NHE₁, -NE₁E₂, -PO(OE₁)(OE₂) or -OPO(OE₁)(OE₂) groups;

 R_2 is hydrogen or independently has the same meaning as R_1 , where at least one of R_1 and R_2 contains a hydrogen alpha to the -NOH moiety; and

 E_1 and E_2 independently are hydrogen, alkyl of 1 to 8 carbon atoms or alkyl of 1 to 8 carbon atoms substituted by one to three hydroxyl groups; or E_1 and E_2 independently are an oligomer of poly(ethylene glycol) or poly(propylene glycol) terminated by hydroxyl, methoxy, acetate or propionate, where the oligomer has a molecular weight up to about 500; and

with the proviso that diethyl hydroxylamine is excluded.