Lec 30 Why is learning Possible?

(Ein VS Eout) ch 1.3

- 1. Why is learning Possible?
- 4 e.g. Binary classification

$$\underline{\alpha} \in \{0, 1\}^2, \quad \underline{\beta} = \{+1, -1\}$$

<u>x</u>	y=f(x)	_	
(0,0))	7	
(0,1)	-		
(1,0)	-1	J	
() ()	1		

given

(1.1) ? - Can we learn? NO. Can be anything

Impossible to learn > Need randomness

= e.g. A run with balls, each either red or green.

Want to estimate the % that are red.

- · Randomly pick so balls and observe colors: G=10, R=40
 - : We expect the $\frac{40}{50}$ red = 0.8

4 e.g. Nyquist sampling theorem for interpolation:

- · How many plot do we have?
- · How complex is f(.)?

e.g. Binary learning classification: $\hat{y} = sign \left(\underline{w}^{T} \underline{x} + b \right)$ then H = all possible $(\underline{W}, b) \in \mathbb{R}^{d+1}$ $M = + \infty$ A = PLA 3. Performace Matrix (for given hypothesis ge71) 1) In sample (training) error. $E_{in}(g) = \frac{1}{N} \sum_{n=1}^{\infty} e(y_n, g(\underline{x}_n))$ \(\begin{align*} \text{"e."} \end{align*} @ Out- of - sample (test) error Eone (g) = [[e (y, g(1))] expectation over $p(\underline{x})$ $\underline{\alpha} \sim P(\alpha)$, iid

$$= \mathbb{E} \left[1 \left(y_n \neq g(x_n) \right) \right]$$

Ein (g)	Eout (g)
Computable	
Corripulable	Unknown
random	deterministic