Ch.03

Array

(kmitl) cs-department

Data Structures & Algorithms

Outline

- Array Introduction
- Declaration and Instantiation
 - Random access (retrieve/update)
 - Add/Insert unordered/ordered array
 - Search in unordered/ordered array
 - Delete unordered/ordered array
- Array Limitation
- Expanding an array

Array Introduction

- One of the most basic data structure.
- An array (hence the name) of data of the same type referred to by a common name.
 - Data are put next to each other, without any space, in the physical memory.
 - In JAVA, the data are in heap (dynamic memory) of JVM.

Declaration and Instantiation

- Starts from variable declaration byte b[];
 - Note that we can write byte[] b;
 - Another note, the follow two lines of code are not the same:

```
byte a[], c; // c is just byte
byte[] b, d; // both b and d are
```

• Now, create it.

```
b = new byte[5];
```

- data are allocated next to each others.
- We can refer to them as b[0]..b[4]
- In C/C++ and some other languages address of b is the actual physical memory address. So, we can access memory at the address (b+2) for b[2].

 Let's assume there are 64 bytes of dynamic memory

var	addr
Ь	null

b[3]

Array Operations

- We are to analyze the following array operation
 - Random access (retrieve/update)
 - Add/Insert unordered/ordered array
 - Search in unordered/ordered array
 - Delete unordered/ordered array

Process Memory Layout

MyArray.java & ArrayTester.java

```
MyArray.java
public class MyArray {
    int MAX SIZE = 5;
    int data[] = new int[MAX SIZE];
    int size = 0;
                                  What is the Big-O of
    // your code here
                                      toString()?
    public String toString() {
        StringBuffer sb = new StringBuffer();
        sb.append("[");
        for(int i=0; i<size-1; i++) {
            sb.append(data[i]);
            sb.append(",");
        if(size>0) sb.append(data[size-1]);
        sb.append("]");
        return sb.toString();
```

```
ArrayTester.java

public class ArrayTester {
    public static void main(String args[]) {
        MyArray mArray = new MyArray();

    // your test code here

        System.out.print(mArray.toString());
    }
}
```

MyArray Setup

• In practice, we do not care about the actual address.

var	addr		
MAX_SIZE	0		
data	1		
size	6		

Accessing Array Data

- Random access data in arrays is done by access array at the starting point + index
 - Ex: address of data[2] is at 1+2 = 3
- In MyArray, we encapsulate data by method getAt()/setAt().
 - This way, we can control what happen to our data.
 - The figure illustrates getAt(2) which will return 8.
 - What is the Big-O of setAt()/getAt?


```
getAt() & setAt()

public int getAt(int i) {
    return data[i];
}

public void setAt(int d, int i) {
    data[i] = d;
}
```

Method add(int d)

- We want to add a new data into our array.
- We do not care about order.
- Best place to put is at the end of array.
 - So, we do not have to move any of the old data.

Let's implement this.

```
Method add() version 1

public void add(int d) {
   data[size]=d;
   size=size+1;
}
```

```
Method add() more compact version
public void add(int d) {
   data[size++]=d;
}
```

Method isFull() and isEmpty()

- Error Checking
 - When to check isFull()/isEmpty()?
 - Three ways to do this:
 - Before calling the method (v1)
 - In method (v2)
 - Check exception (v3)
- We will use methods add() and isFull() for demonstration
 - The following ideas are also applicable to index out of bound.

- Simple methods, I will just put it here
 - They are both O(1)

```
Method isFull()
public boolean isFull() {
   return size==MAX_SIZE;
}
```

```
Method isEmpty()

public boolean isEmpty() {
   return size==0;
}
```

Demonstration on isFull()

- If you really need performance, you can leave add() as is and do the checking yourself.
- fast(?) but need to worry programmers

```
public class ArrayTester {
   public static void main(String args[]) {
      MyArray mArray = new MyArray();
      /* v1*/
      if(!mArray.isFull())
            mArray.add(5);
      System.out.print(mArray.toString());
   }
}
```

```
Method add() revised

public int add(int d) {/* v2 */
   if(isFull())
      return -1;
   data[size++]=d;
   return size;
}
```

- Another implementation practice is to return boolean, true if successfully added and false otherwise.
- It is a good practice to use isFull() in place of size == MAX SIZE

Demonstration on isFull() (try - catch)

```
MyArray.java
                                                   ArrayTester.java
// other code above
                                                   public class ArrayTester {
public class IsFullException extends Exception {
    public String toString() {
        return "MyArray is full.";
                                                       try {
                                                           mArray.add(3);
                                                           mArray.add(7);
                                                           mArray.add(5);
public void add(int d) throws IsFullException {
                                                           mArray.add(4);
                       /* v3 */
                                                           mArray.add(6);
    if(isFull()) throw new IsFullException();
                                                           mArray.add(1);
    data[size++] = d;
// other code below
```

- Slowest of them all, not good for this situation.
- A little too advance / too JAVA specific for this class }

public static void main(String args[]) { MyArray mArray = new MyArray(); } catch (MyArray.IsFullException e) { // error handling code here System.out.println(e.toString()); System.out.print(mArray.toString());

Recap

- Array is an array of data of the same type, referred to by a common name.
- Array must be in a continuous memory for speed.
- Array in JAVA is an object, stored in dynamic memory.
- Random access data on an array is O(1)
- Adding data to an unordered array is O(1)
 - Later, more comprehensive add method

Method insert(int d, int idx)

- Say, if we want to insert6 at index 2
- If order does not matter, consider the following operations
 - 1. Move data[2] to the end of array
 - 2. Put 6 at data[2]
 - 3. Increate size by one
- Step 1. must be done before step 2, but step 3 can be done at anytime.

• Let's implement this.

```
public void insert(int d, int index) {
    data[size++]=data[index];
    data[index] = d;
}
```

What is the Big-O?

Insertion (Ordered Array)

- Right shift so that data[index] is available
 - Remark: the supplied idx must not break the order of data in the array
- Steps (To insert 6 in this ordered array)
 - Move everything >6 to the right one position.
 - Put 6 at the position
 - Increase size by 1

```
public void insert(int d, int index) {
   for(int i=size; i>index; i--) {
      data[i] = data[i-1];
   }
   data[index] = d;
   size++;
}
```


Big-O of Ordered Array Insertion

```
public void insert(int d, int index) {
    for(int i=size; i>index; i--) {
        data[i] = data[i-1];
    }
    data[index] = d;
    size++;
}
```

- Best Case (a.k.a. lucky): insert at the end, O(1)
- Worst Case: insert at the index 0, O(n)
- Average Case: count everything and average

- For average case, Let's start counting
 - Insert at 0: n copy operations
 - Insert at 1: n-1 copy operations
 - Insert at 2: n-2 copy operations
 - ...
 - Insert at n-1: 1 copy operations
 - Insert at n: O copy operations Note that the other operations are constants, not affecting the Big-O
- Total operations are

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

- We insert n times (from 0 to n-1)
- So, the average is $\frac{n(n+1)}{2} \div n = \frac{(n+1)}{2} \in O(n)$

DATA STRUCTURES & ALGORITHMS

Overloaded insert(int d) on ordered array

- Recall, insert(int d, int idx) applies to unordered array
- insert(int d) is to insert into ordered array via computed index
 - No need the index parameter because the index must be computed for consistency.
- Same logic for add(int d) to ordered array
- Steps (insert 6 in this ordered array)
 - (Find where to insert and) Move everything > 6
 to the right one position.
 - Put 6 at the position
 - Increase size by 1

index

index

index

-index

9

size

/ size

/ size

DATA STRUCTURES & ALGORITHMS

Method find(int d)

• In an unordered array, best we can do is linear search

```
Simple implementation

public int find(int d) {
   int index=-1;
   for(int i=0; i<size; i++) {
      if(data[i]==d) {
        index = i;
        break;
      }
   return index;
}</pre>
```

```
Compact version
public int find(int d) {
    for(int i=0; i<size; i++) {</pre>
         if (data[i] == d) {
              return i;
    return -1
                       Efficiency
                                O(1)
                  Best Case:
                  Worst Case:
                                O(n)
                  Average Case: O(n)
```

Big-O is similar to insertion of an ordered array.

Method binarySearch(int d) on Ordered Array

• Binary search on ordered array is by far faster than performing a linear search .

Array of size n

Big-O of binary search

- Best Case is still O(1)
- Worst Case: we need to count
 - \geq 1st iteration: *n*
 - \geq 2nd iteration: $\frac{n}{2}$
 - > 3rd: $\frac{n}{4}$
 - \triangleright kth: $\frac{n}{2^{k-1}}$

Stop criteria

- ➤ Last iteration: 1
- If we run k round, we stop at $\frac{n}{2^{k-1}} = 1 \text{ or } k = \log(n+1)$
- So, the worst case is k round or $O(\log(n))$

- For average case, Let's start counting
 - The search data is at index 0, 1, 2, 3, ..., n 1, not found
 - We will sum the number of operations of all search and divide it by n+1
- There are $[k = \log(n+1)]$:
 - 1 data that need only 1 comparison
 - 2 data that need 2 comparisons
 - 4 data that need 3 comparisons
 - ..
 - 2^{k-1} data that need k comparisons
- Total operations

$$= 1^{20}+2^{21}+3^{22}+4^{23}+..+k^{2k-1}$$

$$\begin{array}{l} - 2^{k} - 1 - 2^{0} - 2^{1} - 2^{2} - ... - 2^{k-2} \\ + 2^{k} - 1 - 2^{0} - 2^{1} - 2^{2} - ... - 2^{k-2} \\ = 2^{k} - 2^{0} + 2^{k} - 2^{1} + 2^{k} - 2^{2} + 2^{k} - 2^{3} + 2^{k} - 2^{4} + ... + 2^{k-2} \\ = k2^{k} - (2^{0} + 2^{1} + 2^{1} + 2^{1} + ... + 2^{k-1}) \\ = k2^{k} - (2^{k} - 1) = k2^{k} - 2^{k} + 1 \\ = (k-1)2^{k} + 1 \\ = (k-1)2^{k} + 1 \\ \end{array}$$

$$\begin{array}{l} \bullet \text{ So, average} = \frac{(k-1)2^{k} + 1}{n+1} = \frac{(k-1)2^{k} + 1}{2^{k-1} + 1} \in O(k) = O(\log n) \\ \end{array}$$

ALGORITHMS

Recap

• Let summarize using a table

Methods	Best case	Worst case	Average case
Add (unordered)	0(1)	0(1)	0(1)
Insert unordered array	0(1)	0(1)	0(1)
Insert ordered array / add (ordered)	0(1)	O(n)	O(n)
Find unordered array	0(1)	O(n)	O(n)
Binary search ordered array	0(1)	$O(\log n)$	$O(\log n)$

• Now, only method delete left.

Delete from an Unordered Array delete(int index)

- If order is not important, it can be done in O(1) time.
- If we want to delete 7 at index=2
 - 1. Copy last data to index 2
 - 2. Decrease size by one Note that the last element will be removed automatically.
- Very simple to implement

```
public void delete(int index) {
    data[index] = data[--size];
}
```

Note that we skip the searching for data step since that would mean O(n).

Delete from an Ordered Array delete(int index)

- Very similar to insert into an ordered array.
 - Move everyone to the left, instead of the right
- Steps from delete at index=2
 - Start from the index
 - Move data from the right to the current place
 - Keep going to the right and do the same thing until the end
 - Decrease size by 1
- Big-O is similar to insert into an ordered array.

Let's implement this.

```
public void delete(int index) {
   for(int i=index; i<size-1; i++) {
      data[i] = data[i+1];
   }
   size--;
}</pre>
```

Limitation of Array

Given the shaded areas are occupied.

It is not possible to

create an array of size 10.

Although we have more than

enough memory.

var	addr
b	0

0	0	0	0	0		

Expanding Array (add())

- Array data structures can not be expanded.
- What we can do is
 - Create a bigger array
 - Copy all data to the new one
 - Point to the new one
 - Delete the old one
- Modified add();

```
public void add(int d) {
    if(isFull()) expands();
    data[size++] = d;
}
```

Seems too be slow, right?

Two versions of expands()

```
void expands() { // version A
    MAX SIZE = MAX SIZE+M;
    int newData[] = new int[MAX SIZE];
    System.arraycopy (data, 0, newData, 0, size);
    data = newData;/
    System.gc();
                    For sufficiently large M such as M=1000
void expands() { // version B
    MAX SIZE = 2*MAX SIZE;
    int newData[] = new int[MAX SIZE];
    System.arraycopy(data, 0, newData, 0, size);
    data = newData;
    System.gc();
```

The Big-O

- For expand (), Big-O is always O(n)
- **For** add ()
 - Best case is O(1), we do not have to expand.
 - Worst case is O(n), we must expand and copy n times.
 - Let compute for the average case for both version.

Version A

- ullet To compute average, we assume that data are added n times
 - Add data from index 0 to S-1 take S operations
 - Add data at index S takes S+1 operations, since we need to copy and add a new data.
 - Add data from index S+1 tø S+M-1 take M-1 operations
 - Add data at index S+M takes S+M+1 operations
 - And so on...
- Total operation is

$$S + k(S+1) + k(M-1) + [M+2M+3M+\dots+(k-1)M]$$

$$= (k+1)S + kM + \left(\frac{(k-1)k}{2}\right)M$$

Data Structures & Algorithms

Average of Version A

Total Operations

$$n = S + kM$$

$$k = \frac{n - S}{M}$$

$$Sum = (k+1)S + kM + \left(\frac{(k-1)k}{2}\right)M$$

$$Sum = \left(\frac{n-S}{M} + 1\right)S + \frac{n-S}{M}M + \left(\frac{\left(\frac{n-S}{M} - 1\right)\frac{n-S}{M}}{2}\right)M$$

$$Sum = \left(\frac{n-S+M}{M}\right)S + n - S + \left(\frac{(n-S-M)(n-S)}{2M}\right)$$

- Without simplifying it further, we can see that it is $O(n^2)$
- Since average is $\frac{Sum}{n}$, so, the average is O(n).

Version B

• First, let compute relationship between n and k

$$n = S + S + 2S + 4S + ... + 2^{k-1}S$$

$$n = (1 + 1 + 2 + 4 + ... + 2^{k-1})S$$

$$n = 2^k S$$

$$k = \log \frac{n}{S}$$

• Let compute average in the next slide

Data Structures & Algorithms

Version B

$$MAX SIZE = 2*MAX SIZE;$$

Expands k times

$$n = 2^k S$$
$$k = \log \frac{n}{S}$$

- Again, we assume we add data n times
 - Add data from index 0 to S-1 take S operations
 - Add data at index S takes S+1 operations, from copy and add new data
 - Add data from index S+1 to 2S-1 take S-1 operations
 - Add data at index 2S takes 2S+1 operations
 - And so on..
- The total operations is

$$S + 2S + 4S + 8S + ... + 2^k S = (2^{k+1} - 1)S = 2(2^k S) - S = 2n - S$$

• So, average is $\frac{2n-S}{n} \in O(1)!$

Data Structures & Algorithms

Example challenge

26. Remove Duplicates from Sorted Array

Solved **⊘**

Given an integer array nums sorted in **non-decreasing order**, remove the duplicates **in- place** such that each unique element appears only **once**. The **relative order** of the elements should be kept the **same**. Then return *the number of unique elements in nums*.

Example 1:

Input: nums = [1,1,2]
Output: 2, nums = [1,2,_]

Explanation: Your function should return k=2, with the first

two elements of nums being 1 and 2 respectively.

It does not matter what you leave beyond the returned k (hence they are underscores).

Example 2:

Input: nums = [0,0,1,1,1,2,2,3,3,4]
Output: 5, nums = [0,1,2,3,4,__,__,_]

Explanation: Your function should return k = 5, with the first five elements of nums being 0, 1, 2, 3, and 4 respectively. It does not matter what you leave beyond the returned k (hence they are underscores).

```
public class Solution {
   public int removeDuplicates( int[] nums) {
      return 0;
   }
}

/* it is already sorted. Care to swap the first
next value to its correct position? */
```

Example challenge

75. Sort Colors

Solved **⊘**

Given an array nums with n objects colored red, white, or blue, sort them **in- place** so that objects of the same color are adjacent, with the colors in the order red, white, and blue.

We will use the integers [0], [1], and [2] to represent the color red, white, and blue, respectively.

You must solve this problem without using the library's sort function.

Example 1:

Input: nums = [2,0,2,1,1,0]
Output: [0,0,1,1,2,2]

Example 2:

Input: nums = [2,0,1]
Output: [0,1,2]

```
void sortColors(int[] nums) {
 int tmp, low = 0, mid = 0, high = nums.length - 1;
 while (mid <= high) {</pre>
    if (nums[mid] == 0) {
      // Swap arr[low] and arr[mid], move both forward
      tmp = nums[low];
      nums[low] = nums[mid];
      nums[mid] = tmp;
      /* use below technique leads to unexpected side effect
         (accessing same index nums[index] both LHS and RHS)
      // nums[low] = nums[low] + nums[mid];
      // nums[mid] = nums[low] - nums[mid];
                                                        */
      // nums[low] = nums[low] - nums[mid];
      low++;
     mid++;
    } else if (nums[mid] == 1) {
      mid++;
    } else {
      tmp = nums[mid];
      nums[mid] = nums[high];
      nums[high] = tmp;
      // if the same variable is modified in-place incorrectly,
      // we may accidentally cause corruption,
      // Swap arr[mid] and arr[high], move high backward
      // nums[mid] = nums[mid] + nums[high];
      // nums[high] = nums[mid] - nums[high];
      // nums[mid] = nums[mid] - nums[high];
      high--;
```

Summary

• Let summarize all methods of array data structures

Methods	Best case	Worst case	Average case	
Add into an array	0(1)	0(1)	0(1)	
Insert into an unordered array	0(1)	0(1)	0(1)	
Insert / Add into an ordered array	0(1)	O(n)	O(n)	
Find in an unordered array	0(1)	O(n)	O(n)	
Binary search in an ordered array	0(1)	$O(\log n)$	$O(\log n)$	
Delete from an unordered array	0(1)	0(1)	0(1)	
Delete from an ordered array	0(1)	O(n)	O(n)	
Expand an array version B	0(n)	O(n)	O(n)	
Add with expand	0(1)	O(n)	0 (1)	

an example of amortized analysis