

Frequency control and stability requirements on hydro power plants

Sigurd Hofsmo Jakobsen
Department of electrical engineering
October 14, 2019

Outline

Problem

Paper I

Paper I

Load and production balancing

 The power system frequency measures the power balance.

Load and production balancing

- The power system frequency measures the power balance.
- It is the responsibility of Statnett to control the frequency.

Load and production balancing

- The power system frequency measures the power balance.
- It is the responsibility of Statnett to control the frequency.
- However, it is the power plant owners who can control the frequency.

Buying frequency control

 Statnett pays all power plant owners to provide frequency control.

Figure: Frequency control response to step change in frequency

Buying frequency control

- Statnett pays all power plant owners to provide frequency
- However, they don't provide the same quality of service.

control.

Figure: Frequency control response to step change in frequency

Buying frequency control

- Statnett pays all power plant owners to provide frequency control.
- However, they don't provide the same quality of service.
- Renewable energy sources such as wind and solar don't contribute.

Figure: Frequency control response to step change in frequency

Future of frequency control

- Power plants have to pass tests to get paid to provide frequency control.
- Only those who pass the tests get paid for the service.

Figure: Test of power plant

Tests proposed by the industry

Figure: Testing procedure [source:ENTSO-E]

Example from real tests

- The power plant needs to be disconnected
- Takes up to 20 hours.

Frequency (rad/s)

Example from real tests

- The power plant needs to be disconnected
- Takes up to 20 hours.
- Only one sine test needed with model learning.

Motivation

 The power system is never really in steady state.

Motivation

- The power system is never really in steady state.
- Can the power plant dynamics be identified from normal operation measurements?

Research questions

— Can power plant dynamics be identified using a PMU?

Research questions

- Can power plant dynamics be identified using a PMU?
- Can power plant dynamics be identified using control system measurements without disturbing the operation of the plant?

Research questions

- Can power plant dynamics be identified using a PMU?
- Can power plant dynamics be identified using control system measurements without disturbing the operation of the plant?
- What is the effect of nonlinearities on the identification?

Outline

Problem

Paper I

Paper II

Background

 Idea from¹ can the power plant dynamics be identified using PMUs

¹Dinh Thuc Duong et al. "Estimation of Hydro Turbine-Governor's Transfer Function from PMU Measurements". In: IEEE PES General Meeting. Boston: IEEE, July 2016

Background

- Idea from¹ can the power plant dynamics be identified using PMUs
- Uses the same input and output measurements as in the requirements:
 - Input: Power system frequency.
 - Output: Electric power.

¹Dinh Thuc Duong et al. "Estimation of Hydro Turbine-Governor's Transfer Function from PMU Measurements". In: IEEE PES General Meeting. Boston: IEEE, July 2016

Methodology

- Collect several datasets from PMUs.
- Calculate power and frequency from the measurements.
- Identify dynamics using vector fitting.
- Compare models.

Vector fitting basics

 Vector fitting fits a transfer function to measured input and output data

Vector fitting basics

$$Y(s) = H(s) \cdot U(s) \tag{1}$$

- Vector fitting fits a transfer function to measured input and output data
- It assumes the system to have the following structure.

$$H(s) = d + \sum_{i=1}^{n_p} \frac{r_i}{s - p_i}$$
 (2)

Vector fitting basics

$$Y(s) = H(s) \cdot U(s) \tag{1}$$

- Vector fitting fits a transfer function to measured input and output data
- It assumes the system to have the following structure.
- In time domain it is.

$$H(s) = d + \sum_{i=1}^{n_p} \frac{r_i}{s - p_i}$$
 (2)

$$y(t) \approx \tilde{d}x(t) + \sum_{i=1}^{n_p} \tilde{r}_i x_i - \sum_{i=1}^{n_p} \tilde{k}_i y_i$$
 (3)

$$x_i = \int_0^t e^{\tilde{p}_i(t-\tau)} x_i(\tau) d\tau \qquad (4)$$

$$y_i = \int_0^t e^{\tilde{p}_i(t-\tau)} y_i(\tau) d\tau \qquad (5)$$

Vector fitting basics ctd.

— Find \tilde{d} , \tilde{r}_i and \tilde{k}_i to minimize:

$$y(t) - (\tilde{d}x(t) + \sum_{i=1}^{n_p} \tilde{r}_i x_i - \sum_{i=1}^{n_p} \tilde{k}_i y_i)$$
 (6)

Cross validation using distant data sets

Cross validation using distant data sets

Estimated droop and bandwidth

Dataset	Droop[%]	Bandwidth[mHz]
Fall 2015	10	4.16
Spring 2016	8	2.41

Shortcoming with the paper

- No theoretical validation of the results.
- No simulation validation of the results.

Main contributions to the research questions

 Promising results for 19 datasets.

Main contributions to the research questions

- Promising results for 19 datasets.
- Developed code for interfacing with the PMU data.

Outline

Problem

Paper I

Paper II

Motivation

- Explain the problem to my co-supervisor.
- Create a model for analysing the identifiability of hydro power plant dynamics.

— From the PMU we get

P,f

MATLAB

V,I

PMU

Generator

Transformer

Power system

- From the PMU we get
 - Power: $\Delta P_{e1}(s)$.

- From the PMU we get
 - Power: $\Delta P_{e1}(s)$.
 - Frequency: $\Delta f(s)$.

- From the PMU we get
 - Power: $\Delta P_{e1}(s)$.
 - Frequency: $\Delta f(s)$.
- We need to model how $\Delta P_{e1}(s)$ and $\Delta f(s)$ is related through the power system.

Idea behind the test system

 The frequency and power system angle is related.

$$\Delta\theta(s) = \frac{2\pi f_s}{s} f(s) \qquad (7)$$

Idea behind the test system

- The frequency and power system angle is related.
- The angle and power is related.

$$\Delta\theta(s) = \frac{2\pi f_s}{s} f(s) \qquad (7)$$

$$P_k pprox \sum_{m \in \Omega_k} x_{km}^{-1} \theta_{km}$$
 (8)

Idea behind the test system

- The frequency and power system angle is related.
- The angle and power is related.
- On matrix form.

$$\Delta\theta(s) = \frac{2\pi f_s}{s} f(s) \qquad (7)$$

$$P_k pprox \sum_{m \in \Omega_k} x_{km}^{-1} \theta_{km}$$
 (8)

$$\mathbf{P} = \mathbf{Y}\theta \tag{9}$$