

Asymmetric Cryptography and Key Management

Diffie-Hellman Key Exchange

Sang-Yoon Chang, Ph.D.

Module: Diffie-Hellman Key Exchange

Discrete logarithm problem

Diffie-Hellman Key Exchange

Man-in-the-Middle Attack

Ordinary Logarithm

$$y = a^b$$

 $\Leftrightarrow b = log_a y$

$$y = a^b \mod p$$

 $\Leftrightarrow b = dlog_{a,p}y$

b is called the discrete logarithm of y base a mod p

$$y = a^b \mod p$$

 $\Leftrightarrow b = dlog_{a,p}y$

b is called the discrete logarithm of y base a mod p

When does discrete logarithm b exist and is unique?

$$y = a^b \mod p$$

 $\Leftrightarrow b = dlog_{a,p}y$

Given that p is prime, b exists and is unique when a is a primitive root of p, i.e., a^1 , ..., a^{p-1} (mod p) produce distinct integers between 1, ..., p-1

$$y = a^b \mod p$$

 $\Leftrightarrow b = dlog_{a,p}y$

Given that p is prime, b exists and is unique when a is a primitive root of p, i.e., a^1 , ..., a^{p-1} (mod p) produce distinct integers between 1, ..., p-1

$$y = a^b \mod p$$

 $\Leftrightarrow b = dlog_{a,p}y$

Given that p is prime, b exists and is unique when a is a primitive root of p, i.e., a^1 , ..., a^{p-1} (mod p) produce distinct integers between 1, ..., p-1

For modulus p=5

```
a a^2 a^3 a^4 \pmod{p}
```

1

2

3

4

```
a a^2 a^3 a^4 (mod p)
1 1 1
```

For modulus p=5

```
a 	 a^2 	 a^3 	 a^4 	 (mod p)
```

1 1 1 1

2 4 3

3

4

For modulus p=5

```
a a^2 a^3 a^4 (mod p)
1 1 1 1
```

3

4

```
a a² a³ a⁴ (mod p)
1 1 1 1
2 4 3 1 2
3
```

```
a a<sup>2</sup> a<sup>3</sup> a<sup>4</sup> (mod p)
1 1 1
2 4 3 1
3 4 2 1
4 1 4 1
```

a	a^2	a^3	a^4	(mod p)
1	1	1	1	
2	4	3	1	
3	4	2	1	
1	1	1	1	

a	a^2	a^3	a^4	(mod p)
1	1	1	1	
2	4	3	1	
3	4	2	1	
4	1	4	1	

a	a^2	a^3	a^4	(mod p)
1	1	1	1	
2	4	3	1	
3	4	2	1	
4	1	4	1	_

a	a^2	a^3	a^4	(mod p)
1	1	1	1	
2	4	3	1	2 is primitive root 5
3	4	2	1	and so is 3
4	1	4	1	

a	a^2	a^3	a^4	(mod p)
1	1	1	1	
2	4	3	1	2 is primitive root 5
3	4	2	1	and so is 3
4	1	4	1	=> dlog _{a,p} y unique
	a 1 2 3 4	 a a² 1 2 4 4 1 	 a a² a³ 1 1 1 2 4 3 3 4 2 4 1 4 	 a a² a³ a⁴ 1 1 1 1 2 4 3 1 3 4 2 1 4 1 4 1

```
a a^{2} a^{3} a^{4} (mod p)

1 1 1 1

2 4 3 1 2 is primitive root 5

3 4 2 1 and so is 3

4 1 4 1 => dlog<sub>a,p</sub>y unique

2 = dlog<sub>3,5</sub>4
```

Discrete Logarithm Problem

$$y = a^b \mod p$$

 $\Leftrightarrow b = dlog_{a,p}y$

If a is a primitive root of p, then $dlog_{a,p}y$ exist and unique

Discrete Logarithm Problem

$$y = a^b \mod p$$
 Easy

$$\Leftrightarrow$$
 b = dlog_{a,p}y Difficult

If a is a primitive root of p, then $dlog_{a,p}y$ exist and unique

Diffie-Hellman Key Exchange

The first published asymmetric algorithm

Practical method to exchange secret key over public channel

Security relies on Discrete Log Problem

Diffie-Hellman Key Exchange Setup

Alice and Bob want to exchange secret key

They agree on the global parameters: p, a

Each user randomly selects X < p, and computes $Y = a^X \mod p$

X is private and Y is public, i.e., $\{X_A, Y_A\}$ for Alice and $\{X_B, Y_B\}$ for Bob

Bob

Randomly select $X_A < p$ Compute $Y_A = a^{A} \mod p$

> Randomly select $X_B < p$ Compute $Y_B = a^{X_B} \mod p$

Bob

Randomly select $X_A < p$ Compute $Y_A = a^{X_A} \mod p$

> Randomly select $X_B < p$ Compute $Y_B = a^{X_B} \mod p$

Bob

Randomly select $X_A < p$ Compute $Y_A = a^{A} \mod p$

> Randomly select $X_B < p$ Compute $Y_B = a^{X_B} \mod p$

Compute $K = Y_B^{X_A} \mod p$ Compute $K = Y_A^{X_B} \mod p$

Bob

Compute
$$K = Y_B^{X_A} \mod p$$
 Compute $K = Y_A^{X_B} \mod p$

Bob

Compute
$$K = Y_B^{X_A} \mod p$$
 Compute $K = Y_A^{X_B} \mod p$

Alice Bob

```
Randomly select X_A < p

Compute Y_A = a^{AA} \mod p \leftarrow D. log problem

Randomly select X_B < p

Randomly select X_B < p

Compute Y_B = a^{AB} \mod p

Send Y_A to Bob

Send Y_A to Bob

Send Y_B to Alice
```

Compute
$$K = Y_B^{X_A} \mod p$$
 Compute $K = Y_A^{X_B} \mod p$

Alice Bob

```
Randomly select X_A < p
Compute Y_A = a^{AA} \mod p

Randomly select X_B < p
Randomly select X_B < p
Compute Y_B = a^{BB} \mod p

Send Y_A to Bob

Send Y_A to Bob

Send Y_B to Alice
```

Compute
$$K = Y_B^{X_A} \mod p$$
 Compute $K = Y_A^{X_B} \mod p$
Since X_A , X_B are secret, K is also secret

Alice

Bob

Randomly select $X_A < p$ Compute $Y_A = a^{A} \mod p$

Randomly select $X_B < p$ Compute $Y_B = a^{X_B} \mod p$

Send Y_A to Bob -----> <----- Send Y_B to Alice

Compute $K = Y_B^{X_A} \mod p$ Compute $K = Y_A^{X_B} \mod p$

K is the secret key for Alice and Bob:

```
K = Y_B^{X_A} \mod q // A can compute

= (a^{X_B} \mod q)^{X_A} \mod q

= (a^{X_B})^{X_A} \mod q

= a^{X_B X_A} \mod q

= (a^{X_A})^{X_B} \mod q

= (a^{X_A} \mod q)^{X_B} \mod q

= Y_A^{X_B} \mod q // B can compute
```


Compute
$$K = Y_B^{X_A} \mod p$$
 Compute $K = Y_A^{X_B} \mod p$

Randomly select $X_A < p$ Compute $Y_A = a^{X_A} \mod p$

Randomly select $X_B < p$ Compute $Y_B = a^{X_B} \mod p$

Send Y_A to Bob ----> Receive Y_A; Send Y_{M1} ----> <--- Send Y_{M2}; Receive Y_A; <--- Send Y_B to Alice

Compute
$$K = Y_B^{X_A} \mod p$$
 Compute $K = Y_A^{X_B} \mod p$

Randomly select $X_A < p$ Compute $Y_A = a^{X_A} \mod p$

Randomly select $X_B < p$ Compute $Y_B = a^{X_B} \mod p$

Send Y_A to Bob ----> Receive Y_A; Send Y_{M1} ----> <--- Send Y_{M2}; Receive Y_A; <--- Send Y_B to Alice

Compute $K_2 = Y_{M2}^{X_A} \mod p$ Compute $K_1 = Y_{M1}^{X_B} \mod p$

Randomly select $X_A < p$ Compute $Y_A = a^{X_A} \mod p$

Randomly select $X_B < p$ Compute $Y_B = a^{X_B} \mod p$

Send Y_A to Bob ----> Receive Y_A; Send Y_{M1} ----> <--- Send Y_{M2}; Receive Y_B; <--- Send Y_B to Alice

Compute $K_2 = Y_{M2}^{X_A} \mod p$ Compute $K_1 = Y_{M1}^{X_B} \mod p$ Knows Y_A and can compute K_2

Randomly select $X_A < p$ Compute $Y_A = a^{X_A} \mod p$

Randomly select $X_B < p$ Compute $Y_B = a^{X_B} \mod p$

Send Y_A to Bob ----> Receive Y_A; Send Y_{M1} ----> <--- Send Y_{M2}; Receive Y_B; <--- Send Y_B to Alice

Compute $K_2 = Y_{M2}^{X_A} \mod p$ Compute $K_1 = Y_{M1}^{X_B} \mod p$ Knows Y_{Δ} and can compute K_2 Knows Y_B and can compute K_1

Randomly select $X_A < p$ Compute $Y_A = a^{X_A} \mod p$

Randomly select $X_B < p$ Compute $Y_B = a^{X_B} \mod p$

Send Y_A to Bob ----> Receive Y_A; Send Y_{M1} ----> <--- Send Y_{M2}; Receive Y_B; <--- Send Y_B to Alice

Compute $K_2 = Y_{M2}^{X_A} \mod p$ Compute $K_1 = Y_{M1}^{X_B} \mod p$ Knows Y_A and can compute K_2 Knows Y_B and can compute K_1 Alice uses K₂ Bob uses K₁

Man-in-the-Middle Attack Countermeasure

Vulnerable because no authentication

Authenticate Alice and Bob, e.g., certificates and digital signatures

El Gamal Encryption

El Gamal encryption related to D.-H.:

- Relies on Discrete Log problem
- Use exponentiation
 Sends one-time key with the message
 Used in Digital Signature Standards