CS 360 MidTerm 1 Practice Problems Solutions

1. Let $\Sigma = \{0, 1\}$. Write a regular expression for the language of the following ε -NFA.

Solution: From the top branch, we obtain 1010^* .

From the bottom branch, we obtain 1*01.

The ε -transitions from the start state will lead to acceptance if we follow either branch to an accept state. Therefore the regular expression for the automaton is $1010^* + 1^*01$.

2. Prove or disprove each of the following statements about regular expressions.

(a)
$$(R+S)^* = R^* + S^*$$

Solution: This identity is false. We present a counterexample in which the left hand side and right hand side are not equal.

Let

$$\Sigma = \{0, 1\}$$

 $R = 0$, and
 $S = 1$.

Then by definition, R and S are regular expressions over Σ . I claim that $01 \in L((0+1)^*)$ but $01 \notin L(0^*+1^*)$.

Proof that $01 \in L((0+1)^*)$:

$$0 \in L(0+1)$$
, and $1 \in L(0+1)$, so $01 \in L((0+1)^*)$.

Proof that $01 \notin L(0^* + 1^*)$:

01
$$\notin L(0^*)$$
, and
01 $\notin L(1^*)$, so
01 $\notin L(0^* + 1^*)$.

As we have exhibited a word in the language of the left hand side and not in the language of the right hand side. Therefore these regular expressions are not equal, as we claimed.

(b) $(RS + R)^*R = R(SR + R)^*$

Solution: This identity is true.

Proof that $L((RS+R)^*R) \subseteq L(R(SR+R)^*)$: Let $w \in L((RS+R)^*R)$ be arbitrary. The proof is by induction on the number of words from L(RS+R) included in the construction of w.

Base (0 words): Write w = r, for some $r \in L(R)$. Then it is clear that $w \in L(R(SR + R)^*)$, so the base case holds.

Induction $(n \ge 1 \text{ words})$: The induction hypothesis is that any $x \in L(R(SR + R)^*)$ with fewer than n words from L(RS + R) is in $L(R(SR + R)^*)$. Write

$$w=w_1\underbrace{w_2\cdots w_n r_1}_{\text{I.H. applies}}$$
, for some $w_1,\ldots,w_n\in L(RS+R)$ and some $r_1\in L(R)$.

We have the following possibilities for $w_1 \in L(RS + R)$.

• $w_1 = rs$, for some $r \in L(R)$ and $s \in L(S)$: Then we have

$$w_2 \cdots w_n r_1 \in L(R(SR+R)^*)$$
, by the induction hypothesis $sw_2 \cdots w_n r_1 \in L(SR(SR+R)^*) \subseteq L((SR+R)^*)$ $rsw_2 \cdots w_n r_1 \in L(R(SR+R)^*) \sqrt{}$

• $w_1 = r$, for some $r \in L(R)$: Then we have

$$w_2 \cdots w_n r_1 \in L(R(SR+R)^*)$$
, by the induction hypothesis $rsw_2 \cdots w_n r_1 \in L(RR(SR+R)^*) \subseteq L(R(SR+R)^*) \sqrt{}$

So the containment is established.

Proof that $L((RS+R)^*R) \supseteq L(R(SR+R)^*)$: Let $w \in L(R(SR+R)^*)$ be arbitrary. The proof is by induction on the number of words from $L((SR+R)^*)$ included in the construction of w.

Base (0 words): Write w = r, for some $r \in L(R)$. Then it is clear that $w \in L((RS + R)^*R)$, so the base case holds.

Induction $(n \ge 1 \text{ words})$: The induction hypothesis is that any $x \in L(R(SR + R)^*)$ with fewer than n words from $L((SR + R)^*)$ is in $L((RS + R)^*R)$. Write

$$w = \underbrace{r_1 w_1 \cdots w_{n-1}}_{\text{I. H. applies}} w_n$$
, for some $w_1, \dots, w_n \in L(SR + R)$ and some $r_1 \in L(R)$.

We have the following possibilities for $w_n \in L(SR + R)$.

• $w_n = sr$, for some $s \in L(S)$ and $r \in L(R)$: Then we have

$$r_1w_1\cdots w_{n-1}\in L((RS+R)^*R)$$
, by the induction hypothesis $r_1w_1\cdots w_{n-1}s\in L((RS+R)^*RS)\subseteq L((RS+R)^*)$ $r_1w_1\cdots w_{n-1}sr\in L((RS+R)^*R)$

• $w_n = r$, for some $r \in L(R)$: Then we have

$$r_1w_1\cdots w_{n-1}\in L((RS+R)^*R)$$
, by the induction hypothesis $r_1w_1\cdots w_{n-1}r\in L((RS+R)^*RR)\subseteq L((RS+R)^*R)\sqrt{}$

So the containment is established.

(c) $(RS + R)^*RS = (RR^*S)^*$

Solution: This identity is false. We present a counterexample in which the left hand side and right hand side are not equal.

Let

$$\Sigma = \{0, 1\},\$$

$$R = 0, \text{ and }$$

$$S = 1.$$

Then by definition, R and S are regular expressions over Σ . It is clear that $\varepsilon \in L((00^*1)^*)$ but $\varepsilon \notin L((01+0)^*01)$.

As we have exhibited a word in the language of the right hand side and not in the language of the right hand side. Therefore these regular expressions are not equal, as we claimed.

- 3. Prove that each of the following languages is not regular.
 - (a) Let $\Sigma = \{(,)\}$. L is all strings of well-balanced parentheses. Examples of words in L are (), (()), (())(()).

Solution: The proof is by the Pumping Lemma. Let n be a positive integer. Let $x = \underbrace{(\cdots () \cdots)}_{n \text{ copies } n \text{ copies}}$. It is clear that $x \in L$ and satisfies our definition of a long word. For

any decomposition x = uvw with $|uv| \le n$ and $|v| \ge 1$, we have that uv is composed of all (s, and therefore so is v. But then $uw \notin L$, as it contains fewer (s than)s. Thus x cannot be pumped. Thus, by the Pumping Lemma, L is not regular.

(b) Let $\Sigma = \{0, 1\}$. $L = \{0^n \mid n \text{ is a perfect square }\}.$

Solution: The proof is by the Pumping Lemma. Let n be a positive integer. Let $x = 0^{(n+1)^2}$. It is clear that $x \in L$ and satisfies our definition of a long word. For any decomposition x = uvw with $|uv| \le n$ and $|v| \ge 1$, we have that uv is composed of all 0s, and therefore so is v. Write $v = 0^i$, for some 1 < i < n.

We need to record one key fact about the difference between consecutive perfect squares before we proceed. Let k be any non-negative integer. Then we note that the difference between the consecutive perfect squares $(k+1)^2$ and k^2 is

$$= (k+1)^{2} - k^{2}$$

$$= k^{2} + 2k + 1 - k^{2}$$

$$= 2k + 1$$
(1)

Now we must show that all possible choices $1 \le i \le n$ lead to a word $uw \notin L$.

- If i = 1, then $uw = 0^{(n+1)^2-1}$, and by the fact on line (1), $(n+1)^2 1$ cannot be a perfect square since $(n+1)^2$ is a perfect square.
- If i = 2, then $uw = 0^{(n+1)^2-2}$, and by the fact on line (1), $(n+1)^2 2$ cannot be a perfect square since $(n+1)^2$ is a perfect square.
- •
- If i = n, then $uw = 0^{(n+1)^2 n}$, and by the fact on line (1), $(n+1)^2 n$ cannot be a perfect square since $(n+1)^2$ is a perfect square.

But then, for all possible choices for i, we see that $uw \notin L$. Thus x cannot be pumped. Thus, by the Pumping Lemma, L is not regular.

(c) Let $\Sigma = \{0, 1\}$. $L = \{0^i 1^j \mid \gcd(i, j) = 1\}$.

Solution: The proof is by the Pumping Lemma. Let n be a positive integer. Let i=p, for some prime p satisfying p>n+1. There is always a large enough prime available. Let $j=(1)(2)\cdots(p-1)$. Then by construction, we have that $\gcd(i,j)=1$.

Let $x=0^i1^j$. It is clear that $x\in L$ and satisfies our definition of a long word. For any decomposition x=uvw with $|uv|\le n$ and $|v|\ge 1$, we have that uv is composed of all 0s, and therefore so is v. Write $v=0^i$, for some $1\le i\le n$.

Now we must show that all possible choices $1 \le i \le n$ lead to a word $uw \notin L$.

- If i = 1, then $uw = 0^{p-1}1^j$, and $gcd(p-1, j) = p 1 \neq 1$ if p > 2.
- If i = 2, then $uw = 0^{p-2}1^j$, and $gcd(p-2, j) = p 2 \neq 1$ if p > 3.
- •
- If i = n, then $uw = 0^{p-n}1^j$, and $gcd(p n, j) = p n \neq 1$ if p > n + 1.

All the lower bounds on p are satisfied, by the choice of p.

But then $uw \notin L$, by the definition of L. Thus x cannot be pumped. Thus, by the Pumping Lemma, L is not regular.

4. (a) If L is a language over Σ and $a \in \Sigma$ is a symbol, then we define the <u>quotient of L and a</u>, denoted L/a by

$$L/a = \{ w \mid wa \in L \}.$$

For example, if $\Sigma = \{a, b\}$ and $L = \{a, aab, baa\}$, then $L/a = \{\varepsilon, ba\}$. Prove that if L is regular, then so is L/a.

Solution: Let L be a regular language. Let D be a DFA for language L, with accepting states $F \subset Q$. Construct a new DFA D' for L/a, as follows:

- Take the same states and transitions as in D.
- For each accept state f of D, find all states q in D with a transition into f for the alphabet symbol a. Declare each such state q to be an accept state of D'.

Then, by construction,

$$\begin{array}{cccc} D' & \text{accepts} & w \\ \Leftrightarrow D & \text{accepts} & wa \\ \Leftrightarrow wa & \in & L \\ \Leftrightarrow w & \in & L/a. \end{array}$$

Now D' is a DFA, because D is. D' accepts L/a, and therefore L/a is regular.

(b) If L is a language over Σ and $a \in \Sigma$ is a symbol, then we define $a \setminus L$ by

$$a \backslash L = \{ w \mid aw \in L \}.$$

For example, if $\Sigma = \{a, b\}$ and $L = \{a, aab, baa\}$, then $a \setminus L = \{\varepsilon, ab\}$. Prove that if L is regular, then so is $a \setminus L$.

Solution: Let L be a regular language. Recall from class that the reversal of a regular language is regular. Then we have

$$a \backslash L = \{w \mid aw \in L\}$$

$$= \{w \mid (aw)^R \in L^R\}$$

$$= \{w \mid w^R a^R \in L^R\}$$

$$= \{w \mid w^R a \in L^R\}, \text{ as } a \text{ is a single character}$$

$$= \{(w^R)^R \mid w^R a \in L^R\}$$

$$= \{(w^R) \mid w^R a \in L^R\}^R$$

$$= \{v \mid va \in L^R\}^R, \text{ letting } v = w^R$$

$$= [(L^R)/a]^R.$$

Now note that

- L is regular, therefore L^R is regular.
- L^R is regular, therefore $(L^R)/a$ is regular, by part 4a.

• $(L^R)/a$ is regular, therefore $[(L^R)/a]^R$ is regular.

And so we are done.

5. (a) Suppose L is a regular language over an alphabet Σ . Give an algorithm to tell whether $L = \Sigma^*$, i.e. all possible strings over the given alphabet.

Solution:

- As L is regular, so is the complement L' (as proved in class).
- So obtain a DFA D' for L' from Kleene's Theorem.
- Determine whether $L(D') = \emptyset$, by our test from class.
 - If $L(D') = \emptyset$, then $L = \Sigma^*$.
 - Otherwise, i.e. if $L(D') \neq \emptyset$, then $L \neq \Sigma^*$.
- (b) Suppose L_1, L_2 are regular languages over an alphabet Σ . Give an algorithm to tell whether L_1 and L_2 have at least one word in common.

Solution:

- Obtain DFAs M_1 and M_2 for L_1 and L_2 , respectively.
- Construct an ε -NFAs M for $L_1 \cap L_2$, as in class.
- Test whether $L(M) = \emptyset$, by our test from class.
 - If $L(M) = \emptyset$, then L_1 and L_2 have no words in common.
 - Otherwise, i.e. if $L(M) \neq \emptyset$, then L_1 and L_2 have at least one word in common.