Secvențiere ADN

În cadrul domeniului bioinformaticii, echipamentele de secvențiere de ADN preiau o probă biologică și produc un fișier text ce conține secvența de ADN detectată. Se cunoaște faptul că o secvență de ADN este reprezentată printr-un lung șir de caractere A, T, C și G, reprezentând nucleotidele Adenină, Timină, Guanină și Citozină. De asemenea, se cunoaște faptul că ADN-ul este format din două secvențe în oglindă, precum se vede în imaginea de mai jos, unde o nucleotidă A se leagă întotdeauna cu o nucleotidă T, iar o nucleotidă C cu una G, și invers. În plus, a doua secvență este citită întotdeauna de echipamentul de secvențiere în sens invers decât prima (de la sfârșit la început).

Cerință

Dându-se un şir de ADN primit de la un echipament de secvențiere ce reprezintă concatenarea ambelor secvențe **în ordinea săgeții din imagine**, să se determine dacă citirea e corectă (dacă aparține unei perechi de secvențe de ADN valide).

Date de intrare

Se va citi de la tastatură (fluxul *stdin*), de pe prima linie, un șir S de majuscule format exclusiv din caracterele A, T, C și G, reprezentând șirul dat de aparat – concatenarea celor două secvențe. Linia este finalizată cu caracterul *newline* (tasta *Enter*).

Date de ieșire

Programul va afișa pe ecran (*stream*-ul standard de ieșire) un singur număr natural care va fi 0 dacă șirul este valid, sau primul index din prima secvență care nu se potrivește cu cea de-a doua secvență.

ATENȚIE la respectarea cerinței problemei: afișarea rezultatelor trebuie făcută EXACT în modul în care a fost indicat! Cu alte cuvinte, pe stream-ul standard de ieșire nu se va afișa nimic în plus față de cerința problemei; ca urmare a evaluării automate, orice caracter suplimentar afișat, sau o afișare diferită de cea indicată, duc la un rezultat eronat și prin urmare la obținerea calificativului "Respins".

Restricții și precizări

- 1. 1024 >= Lungime(S) >= 2,
- 2. Lungime(S) este un număr par.
- 3. Numărătoarea indecșilor începe de la 1 (poziția primului caracter din secvență este 1).
- 4. **Atenție**: În funcție de limbajul de programare ales, fișierul ce conține codul trebuie să aibă una din extensiile .c, .cpp, .java, sau .m. Editorul web **nu va adăuga automat** aceste extensii și lipsa lor duce la imposibilitatea de compilare a programului!
- 5. **Atenție**: Fișierul sursă trebuie numit de candidat sub forma: <nume>.<ext> unde nume este numele de familie al candidatului și extensia este cea aleasă conform punctului anterior. Atenție la restricțiile impuse de limbajul Java legate de numele clasei și numele fișierului!

Exemplu

Intrare	Ieşire
ATCATCGTAACGTACGATGAT	0

Explicație

La jumătatea șirului, acesta se "îndoaie" și a doua jumătate se așează sub prima:

ATCATCGTAACGT

TAGTAGCATTGCA

Pentru că toate nucleotidele se potrivesc (A - T, C - G), șirul este valid și deci se afișează 0.

Intrare	Ieșire
ATCATCGTAACGTACGTACGAAGAT	4

Explicație

La jumătatea șirului, acesta se "îndoaie" și a doua jumătate se așează sub prima:

ATCATCGTAACGT

TAG**A**AGCATTGCA

Se observă că există o neconcordanță pe poziția 4 din prima secvență, deci se va afișa 4.

Timp de lucru: 120 de minute