Considerar um sistema cujos dados em pu são dados nas tabelas a seguir.

Linha	Resistência (pu)	Reatância (pu)	Susceptância total (pu)
1-2	0,05	0,10	0,02
1-3	0,10	0,20	0,01
2-3	0,03	0,05	0,01

Barra	Tipo	V	θ	P_{G}	Q_G	P_{C}	Q_{C}
1	PQ	-	-	-	-	0,8	0,4
2	Vθ	1,00	0	-	-	-	-
3	PV	1,03	-	0,3	-	-	-

Montar a matriz admitância Y = G + jB (1 ponto)

Obter as tensões (módulos e ângulos) e as injeções de potência (ativa e reativa) em todas as barras do sistema resolvendo o problema de fluxo de carga pelo método de Newton. Use tolerância de 0,01. (4 pontos)

Obter o fluxo de potência ativa no ramo 1-2 (1 ponto)

Obter as perdas de potência ativa no ramo 1-2 (1 ponto)

$$Y = \begin{bmatrix} y_{12} + y_{13} + j\frac{b_{12}^{sh}}{2} + j\frac{b_{13}^{sh}}{2} & -y_{12} & -y_{13} \\ -y_{12} & y_{12} + y_{23} + j\frac{b_{12}^{sh}}{2} + j\frac{b_{23}^{sh}}{2} & -y_{23} \\ -y_{13} & -y_{23} & y_{13} + y_{23} + j\frac{b_{13}^{sh}}{2} + j\frac{b_{23}^{sh}}{2} \end{bmatrix}$$

	1	2	3
1	6.0000 - 11.9850i	-4.0000 + 8.0000i	-2.0000 + 4.0000i
2	-4.0000 + 8.0000i	12.8235 - 22.6909i	-8.8235 + 14.7059i
3	-2.0000 + 4.0000i	-8.8235 + 14.7059i	10.8235 - 18.6959i

Processo Iterativo (Tolerância (ε) = 0.001):

1) Escolher os valores iniciais das tensões (magnitudes para as barras PQ e ângulos de fase para as barras PQ e PV) V = 1.0 pu e $\theta = 0$ rad

$$Iteração \\ v = 0$$

$$\begin{bmatrix} \theta_1 \\ \theta_3 \\ V_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} \Delta P_1 \\ \Delta P_3 \\ \Delta Q_1 \end{bmatrix}^{\nu=0} = \begin{bmatrix} -0.7400 \\ -0.0344 \\ -0.2650 \end{bmatrix}$$
Chute inicial = flat start

Iteração v = 1

$$J = \begin{bmatrix} 12.12 & -4.12 & 5.94 \\ -4.12 & 19.27 & -2.06 \\ -6.06 & 2.06 & 11.85 \end{bmatrix}$$

$$\begin{bmatrix} \theta_1 \\ \theta_3 \\ V_1 \end{bmatrix}^{\nu=1} = \begin{bmatrix} \theta_1 \\ \theta_3 \\ V_1 \end{bmatrix}^{\nu=0} + J^{-1} \times \begin{bmatrix} \Delta P_1 \\ \Delta P_3 \\ \Delta Q_1 \end{bmatrix}^{\nu=0} = \begin{bmatrix} -0.0455 \\ -0.0161 \\ 0.9572 \end{bmatrix}$$

$$\begin{bmatrix} \Delta P_1 \\ \Delta P_3 \\ \Delta Q_1 \end{bmatrix}^{\nu=1} = \begin{bmatrix} -0.0373 \\ 0.0033 \\ -0.0215 \end{bmatrix}$$

$$||\Delta|| > 0.01$$

Iteração v = 2

$$J = \begin{bmatrix} 11.36 & -3.88 & 4.95 \\ -4.00 & 19.00 & -1.94 \\ -6.26 & 2.09 & 11.08 \end{bmatrix}$$

$$\begin{bmatrix} \theta_1 \\ \theta_3 \\ V_1 \end{bmatrix}^{\nu=2} = \begin{bmatrix} \theta_1 \\ \theta_3 \\ V_1 \end{bmatrix}^{\nu=1} + J^{-1} \times \begin{bmatrix} \Delta P_1 \\ \Delta P_3 \\ \Delta Q_1 \end{bmatrix}^{\nu=1} = \begin{bmatrix} -0.0477 \\ -0.0167 \\ 0.9541 \end{bmatrix}$$

$$\begin{bmatrix} \Delta P_1 \\ \Delta P_3 \\ \Delta Q_1 \end{bmatrix}^{\nu=1} = \begin{bmatrix} 5.0e - 4 \\ -1.1e - 4 \\ 2.0e - 4 \end{bmatrix}$$

$$|\Delta| < 0.01$$

(c) Obter o fluxo de potência da linha 1-2

Podemos calcular Skm calculando primeiramente Ikm. Para o modelo pi da linha temos pela lei de Ohm:

$$Ikm = ykm \times (Ek - Em) + (j_{bkm}^{sh}/2) \times Ek$$

Sendo: Ek, Em e Ikm fasores.

Então temos:

Skm = Ek Ikm*

$$S_{12} = P_{12} + Q_{12} = -0.5343 - j0.1686 pu$$

(d) Obter as perdas de potência ativa no ramo 1-2 (1 ponto)

$$S_{21} = P_{21} + Q_{21} = 0.5514 + j0.1837 pu$$

$$P_{12}^{\text{perdas}} = P_{12} + P_{21} = 0.0171 pu$$

2) Considerar um sistema cujos dados das linhas em pu estão tabelados a seguir. Montar a matriz admitância. (1,5 pontos)

Linha	Resistência (pu)	Reatância (pu)	Susceptância total (pu)
1-2	0,01	0,05	0,20
1-3	0,02	0,10	0,40
2-3	0,01	0,05	0,20
2-4	0,02	0,07	0,00
3-4	0,03	0,06	0,50
3-1	0,01	0,09	0,30

$$Y = \begin{bmatrix} y_{12} + y_{13} + y_{31} + j \frac{b_{12}^{sh}}{2} + j \frac{b_{13}^{sh}}{2} + j \frac{b_{31}^{sh}}{2} & -y_{12} & -y_{13} - y_{31} & 0 \\ -y_{12} & y_{12} + y_{23} + y_{24} + j \frac{b_{12}^{sh}}{2} + j \frac{b_{23}^{sh}}{2} + j \frac{b_{24}^{sh}}{2} & -y_{23} & -y_{24} \\ -y_{13} - y_{31} & -y_{23} & y_{13} + y_{23} + y_{34} + y_{31} + j \frac{b_{13}^{sh}}{2} + j \frac{b_{23}^{sh}}{2} + j \frac{b_{31}^{sh}}{2} & -y_{34} \\ 0 & -y_{24} & -y_{34} & y_{34} + y_{24} + j \frac{b_{34}^{sh}}{2} + j \frac{b_{24}^{sh}}{2} \end{bmatrix}$$

	H Ybus <4x4 double>					
	1	2	3	4		
1	6.9887 - 39.3718i	-3.8462 + 19.2308i	-3.1426 + 20.5910i	0.0000 + 0.0000i		
2	-3.8462 + 19.2308i	11.4659 - 51.4691i	-3.8462 + 19.2308i	-3.7736 + 13.2075i		
3	-3.1426 + 20.5910i	-3.8462 + 19.2308i	13.6554 - 52.4551i	-6.6667 + 13.3333i		
4	0.0000 + 0.0000i	-3.7736 + 13.2075i	-6.6667 + 13.3333i	10.4403 - 26.2909i		

- 3) Explique o principio de funcionamento de uma turbina a gás indicando os principais componentes. (1,5 pontos)
- As turbinas a gás são máquinas de combustão interna compostas por compressor, câmara de combustão, turbina de expansão, exaustor e gerador.
- Visto ser uma máquina de combustão interna, há restrições quanto aos tipos de combustíveis que podem ser empregados (deve apresentar combustão quase perfeita sem emissão de resíduos sólidos)
- Usualmente emprega-se gás natural, mas é possível empregar diesel e outros óleos.
- 1. Ar em temperatura ambiente (30°C) é aspirado pelo compressor da turbina. O compressor eleva a temperatura (390°C) e a pressão do ar.
- 2. O ar em alta temperatura e pressão é misturado com o combustível (gasoso ou líquido) na câmara de combustão (1085°C).
- 3. Os gases em alta temperatura e pressão são expandidos na turbina de expansão, produzindo movimento mecânico que acionará o compressor (40~60%) e o gerador elétrico (30~40%).
- 4. Os gases quentes são eliminados pelo exaustor (530°C).

Componentes:

- 1. Compressor
- 2. Câmara de Combustão
- 3. Turbina de expansão
- 4. Exaustor