Introduzione

Sistemi Operativi

Antonino Staiano
Email: antonino.staiano@uniparthenope.it

Sistemi Operativi a.a. 2018/19

- Due prove intercorso (IC) (Maggio)
- Ammessi solo gli studenti che:
 - 1. Seguono le lezioni (raccolta presenze a campione)
 - 2. Non abbiano sostenuto le prove IC negli anni precedenti
- · Prima prova
 - 3 domande SO teoria e 2 domande LAB SO
- · Seconda prova
 - 2 domande SO teoria e 2 esercizi al PC di LAB SO
- Necessario superare la prima prova per sostenere la seconda
- Chi supera le prove IC è esonerato dal sostenere la prova scritta negli appelli di Giugno e Luglio e Settembre (al più).
- Solo chi supera la prova con votazione da 18 al 23, può scegliere di convalidare il voto (opportunamente scalato), evitando di sostenere l'orale (max entro Luglio).

Sistemi Operativi a.a. 2018/19

- AULA 2 (I piano)
 - Martedì 14:00 16:00
 - Giovedì 14:00 16:00
 - Tutor: Dott. Gianmaria Perillo
 - Libro di testo

Introduzione

- Viste astratte di un Sistema Operativo
- Obiettivi di un SO
- Funzionalità di un SO

- Visoni astratte
 - Per uno studente: SW che consente l'accesso ad Internet
 - Per un Programmatore: SW che rende possibile sviluppare programmi su un computer
 - Per un utente di pacchetti applicativi: SW che rende possibile di usare il pacchetto
 - Per un tecnico di un impianto chimico: componente nascosta di un computer che controlla l'impianto
- Una visione astratta si focalizza solo su caratteristiche essenziali
 - Include alcuni elementi reali ma ne esclude molti altri

Viste Astratte di un SO (cont.)

• Anche un progettista ha una visione astratta del SO

• Un SO è un insieme di routine che semplificano l'esecuzione di programmi e l'uso di risorse

Esempio di Vista Astratta e Reale

• Vista logica e fisica dell'esecuzione di un programma

Viste Astratte

- Utilizziamo le visioni astratte per presentare la progettazione delle componenti di un SO
 - Benefici
 - Gestione della complessità
 - Una visione astratta contiene solo le caratteristiche selezionate di un sistema
 - Presentazione di una vista generica
 - · Ad esempio, un'interfaccia utente ha molte varianti in pratica
 - Interfaccia a riga di comando
 - Interfaccia utente grafica (GUI)
 - Il kernel è progettato in modo che presenti un'astrazione alle routine non kernel
 - Caratteristiche e diversità dello HW (CPU diverse, disco ecc) nascoste alla routine non kernel

- Uso efficiente delle risorse di un computer
- Convenienza per l'utente
- Non interferenza nelle attività dell'utente
- Quando questi obiettivi confliggono, il progettista ricorre ad un compromesso per
 - Uso efficiente
 - Convenienza per l'utente
- Nozione di utilizzo efficace
 - Ogni SO fornisce diversi tipi di efficacia
 - Utente-centriche SO per fornire risposte veloci a comandi e applicazioni di controllo
 - elaborazione interattiva e applicazioni con vincoli temporali critici
 - Sistema-centriche SO che usano in modo efficiente le risorse (strategie di allocazione risorse) per fornire elaborazioni a basso costo
 - · elaborazioni dati non-interattive

Convenienza per l'utente

Facet	Examples
Fulfillment of necessity	Ability to execute programs, use the file system
Good Service	Speedy response to computational requests
User friendly interfaces	Easy-to-use commands, graphical user interface (GUI)
New programming model	Concurrent programming
Web-oriented features	Means to set up Web-enabled servers
Evolution	Add new features, use new computer technologies

Uso Efficiente

- Un SO assicura un uso efficiente di memoria, CPU, e dispositivi di I/O
 - Si può avere poca efficienza se un programma non usa una risorsa che gli è stata allocata
- Il SO stesso consuma risorse di CPU e memoria, che costituiscono overhead
 - Riduce le risorse per i programmi utente
- Il SO può monitorare l'uso di risorse per assicurare l'efficienza
 - · Incrementa l'overhead
- Il SO utilizza politiche che assicurano l'efficienza
 - strategie sub ottime semplici e facili da applicare
 - focalizzate sull'efficienza di poche importanti risorse come CPU e memoria

Non Interferenza

- L'utente può subire interferenze durante le attività computazionali
 - L'esecuzione dei programmi o le funzioni del SO possono essere corrotte dalle azioni di altre persone
 - Il SO previene l'interferenza allocando le risorse per un uso esclusivo di programmi e servizi del SO e prevenendo l'accesso illegale alle risorse
 - Accesso illegale ai file
 - Il SO conosce da chi possono essere acceduti i file utente
 - · Attraverso l'autorizzazione

Funzioni di un SO

- Principali funzioni di un SO
 - Gestione dei programmi
 - Gestione delle risorse
 - Sicurezza e protezione

Gestione dei programmi

- Il SO può intrecciare l'esecuzione dei programmi su CPU veloci
 - Lo Scheduling decide a quale programma assegnare la CPU in un dato momento
 - La politica ne determina l'efficienza dell'uso di CPU e dei servizi utente
 - Prelazione: togliere la CPU ad un programma

Funzioni di un SO

Task	When performed	
Construct a list of resources	During booting	
Maintain information for security	While registering new users	
Verify identity of a user	At login time	
Initiate execution of programs	At user commands	
Maintain authorization information	When a user specifies which collaborators can acces what programs or data	
Perform resource allocation	When requested by users or programs	
Maintain current status of resources	During resource allocation/deallocation	
Maintain current status of programs and perform scheduling	Continually during OS operation	

Gestione delle Risorse

- L'allocazione e la de-allocazione delle risorse possono essere realizzate con una tabella delle risorse
 - Entrata: nome, indirizzo e stato di un'unità di risorsa
 - Costruita dalla procedura di boot, mantenuta durante il funzionamento

Resource name	Class	Address	Allocation status
printer1	Printer	101	Allocated to P ₁
printer2	Printer	102	Free
printer3	Printer	103	Free
disk1	Disk	201	Allocated to P ₁
disk2	Disk	202	Allocated to P2
cdw1	CD writer	301	Free

Gestione delle risorse (cont.)

- Strategia per l'allocazione delle risorse più comuni
 - · Partizionamento delle risorse
 - Il SO decide a priori quali risorse allocare ad ogni programma utente; divide le risorse di sistema in partizioni
 - Una partizione è una collezione di risorse
 - La tabella delle risorse contiene le entrate per le partizioni
 - Semplice da implementare, ma priva di flessibilità
 - Basata su gruppo (pool-based)
 - Il SO alloca le risorse da un insieme di risorse
 - Consulta la tabella ed alloca la risorsa se è libera
 Minore overhead nell' allocare e de-allocare le risorse
 - Consente usi più efficienti delle risorse

Sicurezza e Protezione

- La sicurezza contrasta minacce di interferenza o di uso illegale da persone/programmi fuori il controllo del SO
 - Autenticazione: solo utenti registrati possono usare un computer
- La protezione contrasta minacce di utenti di un SO
 - La protezione della memoria è una caratteristica HW usata dal SO per sventare la corruzione di programmi e servizi del SO
 - L' autorizzazione sventa l'interferenza con i file

Gestione delle risorse (cont.)

- Una *risorsa virtuale* è una risorsa fittizia
 - Visione astratta di una risorsa presa da un programma
 - Supportata dal SO attraverso l'uso di una risorsa reale
 - La stessa risorsa reale può supportare più risorse virtuali
 - Cominciata con l'uso dei dispositivi virtuali
 - Esempio, il server di stampa
 - E' come se si avessero più risorse
 - Molti SO forniscono la memoria virtuale
 - Possono eseguire un programma più grande della dimensione della RAM disponibile
 - Alcuni SO creano delle macchine virtuali
 - Ogni macchina virtuale può essere allocata ad un utente

Sicurezza e Protezione (cont.)

Sicurezza e Protezione (cont.)

- Gli intrusi sono estranei che possono causare interferenza
 - Possono usare o creare programmi maliziosi
 - · Cavalli di Troia
 - Virus
 - Worm
 - Metodi per affrontare minacce alla sicurezza
 - Tecniche di autenticazione
 - Tappare i buchi di sicurezza
 - Firewall

Introduzione ai SO

- Parte I (Capitoli 1-4)
 - Come il SO interagisce con il computer ed i programmi utente attraverso eventi e interruzioni (Capitolo 2)
 - Utilizzo efficace di un Computer (Capitolo 3)
 - Tecniche usate per assicurare un utilizzo efficace
 - Portabilità ed estensibilità dei SO (Capitolo 4)
 - La strutturazione di un SO consente di raggiungere tali obiettivi

Programma

- Parte I: Introduzione ai SO
- Parte II: Gestione delle elaborazioni utente
- Parte III: Gestione della memoria
- Parte IV: gestione di file e dispositivi di I/O
- Le parti I-IV discutono gli ambienti computazionali convenzionali
 - Un singolo computer che ha una singola CPU

Introduzione ai SO (cont.)

Gestione Flaborazioni Utente

- Parte 2 (Capitoli 5-10) copre la gestione dei programmi
 - Processi e Thread (Capitolo 5)
 - Come sono eseguiti i programmi
 - Sincronizzazione dei processi (Capitolo 6)
 - Scheduling (Capitolo 7)
 - Come perseguire un uso efficace
 - Deadlock (Capitolo 8)
 - Scambio di Messaggi (Capitolo 9)

Gestione Elaborazioni Utente (cont.)

- Un processo deve aspettare se una risorsa che ha richiesto non è disponibile
- I deadlock si verificano quando i processi aspettano l'uno le risorse dell'altro

Gestione Elaborazioni Utente (cont.)

- I Processi Credito e Debito devono accedere al bilancio senza interferenza (a)
- Il Processo Genera produce dei dati; Analizza li usa (b)

Gestione della Memoria

- Parte 3 (Capitoli 11-12): copre la gestione della memoria
 - Tecniche di riuso della memoria e allocazione di memoria non contigua (Capitolo 11) e memoria virtuale (12)

Gestione di file e dispositivi di I/O

• Parte 4 (Capitoli 13-15): discute la gestione di file e dispositivi di I/O

Ricapitolando

- Un SO esegue i programmi simultaneamente allocando alcune delle risorse ad ogni programma e intrecciando la loro esecuzione sulla CPU
 - Requisiti per assicurare l'efficacia dell'elaborazione
 - Uso efficiente
 - · Convenienza dell'utente
 - Non interferenza
 - Funzioni principali
 - · Gestione dei programmi
 - · Gestione delle risorse
 - Sicurezza e protezione

CdL in Informatica – Sistemi Operativi - A.A. 2018/2019 - Prof. Antonino Staiano

Gestione di File e dispositivi di I/O

- Parte 4 (Capitoli 13-15) (cont.)
 - File system (Capitolo 13)
 - Permette agli utenti di creare, usare e condividere file
 - Implementazione delle operazioni sui file (Capitolo 14)
 - IOCS implementa le operazioni sui file trasferendo i dati tra la memoria e i dispositivi di I/O
 - Sicurezza e Protezione (Capitolo 15)
 - Tecniche per sventare minacce di sicurezza e protezione