

Secure Software Development

Year 2 (2022/23), Semester 3

SCHOOL OF INFOCOMM TECHNOLOGY

Diploma in Cybersecurity & Digital Forensics

Assignment Secure Web Application

Duration: Weeks 11 - 15

Weightage: 40%

Individual/Team/Both: Both

Deadline: 31 July 2022, 11:59pm (Sunday)

Group Name	Team SAMPLE
Student IDs	Student 1xxxxxxx, Student 2xxxxxxx, Student 3xxxxxxx,
Student Names	StudentA, StudentB, StudentC
Module Group	P0x

Table of Contents

1	Project	t Title	2
2	Project	t Vision	2
3	Project	t Description	2
4	Project	t Features	2
5	Membe	ers & Features Worked On	2
6	3-Tier	Application Architecture	3
7	Featur	e 1 (Login/Registration/Authentication):	3
-	7.1 Se	cure Software Requirements	3
	7.1.1	Use Case and Misuse Case Modeling	
	7.1.2		
-	7.2 Se	cure Software Design	4
	7.2.1	Threat Modeling Error! Bookmark not defi	
	7.2.2		4
-	7.3 Se	cure Software Coding	
	7.3.1	Feature related Defensive Coding Practices	
	7.3.2		
-	7.4 Se	cure Software Testing	
	7.4.1	Test Strategy	
	7.4.3		
-	7.5 Se	curity Conclusion of the Feature	
8		e 2 (Authorization)	
8		cure Software Requirements	
		Brainstorming	
9		clusion	
10		rences	
11		endix A	
	• •	DEAD	

1 Project Title

The team was engaged in developing a secure web application for XXXX, an organization that aims to help people learn new skills with online courses. Hence, the theme of the application for this project is XXXX XXXXX.

2 Project Vision

The project vision is to properly secure the web application using the knowledge we had gain during the Secure Software Development Course and apply these skills throughout the Secure Software Development Life Cycle (SSDLC). The target of the development team is to design, plan, implement, and test the web application to ensure that malicious attempts to

3 Project Description

The objective of this web application is to offer

4 Project Features

Based on the business requirements, the web application consists of mainly four features to implement which are authentication, authorization, auditing, and a CRUD Database.

Firstly, for authentication, this feature is the

5 Members & Features Worked On

Member	Features				
StudentA	Signing up, Logging in, Authenticating users				
StudentB	Authorization				
StudentC	CRUD Database				
	Auditing				

6 3-Tier Application Architecture

In this phase, an overview of the application architecture is carried out by diagramming the application and identifying the attributes of the application.

Figure 1 – XXXXX 3-tier application architecture

The software will be logically designed as.....

.

7 Feature 1 (Login/Registration/Authentication):

Authentication is crucial for security as it enables organizations to keep their networks secure by allowing only authenticated

7.1 Secure Software Requirements

In authentication, Forms authentication is most commonly seen in online applications,

Figure 7.1 – Forms Authentication (Yadav, 2013)

7.1.1 Use Case and Misuse Case Modelling

The method of use case modelling helps in determining software functionality and security requirements. A use case describes

Figure 7.1.1 – Authentication: Use and Misuse Case for XXXX

7.1.2 Data Labelling & Classification

Data and information might be regarded as the most

Name	Information
User Information	Full name, Date of Birth, Email Address
User Credentials	Username and Password
Privileged Account	Full name, Date of Birth, Email Address
Information	
Privileged Credentials	Username and Password with Admin Access to Application

Figure 7.1.2 Data involved in Authentication

Data		Impact of loss of					
		Confidentiality	Integrity	Availability			
User Information		Public	Low	Support			
User Credentials		Restricted	High	Critical			
Privileged	Account	Confidential	Low	Support			
Information							
Privileged	Account	Restricted	High	Critical			
Credentials							

Figure 7.1.3 – Authentication: Data Classification and Labelling

7.2 Secure Software Design

Prevention of unauthorized disclosure of protected information can be achieved through cryptographic and masking techniques which was discussed in secure

7.2.1 Threat Modeling

Software faces several threats. Authentication bypass, impersonation, and session hijacking are just a few of the dangers. This section of threat modeling will address the threats identified from the previous sections and implement control measures based on its severity.

7.2.1.1 STRIDE List

Based on the Use Case and Misuse Case, along with the identified attack surface areas addressed in the previous section, a STRIDE category threat list is used for categorizing the potential threats identified as depicted in Figure 2.3.1.

STRIDE List	Identified Threats
Spoofing	Impersonate Identity
Tampering	Alter Account Information
	Alter Users Access
	Execute Malicious Scripts
Repudiation	
Information Disclosure	Tap Communication
	Steal Sensitive Information
Denial of Service	Flood System
Elevation of Privilege	Brute Force Password
	SQL Injection

Figure 2.3.1 – Authentication: STRIDE List

7.2.1.2 Attack Tree

Expanding on the STRIDE List earlier, an attack tree model allows for brainstorming of potential threats from the attacker's perspective. This further strengthens the security of the software by identifying the attack path an attacker my take and implement countermeasures to mitigate or prevent these attacks.

Authentication Attack Tree: Impersonate Identity

Authentication Attack Tree: Execute Malicious Scripts & Alter Account Information

Authentication Attack Tree: Steal Sensitive Information & Tap Communication

7.2.1.3 Average Ranking

Following the identified threats, calculating the average of numeric values assigned to risk ranking categories is another approach for rating the threat's danger shown in Figure 2.3.2. DREAD is one such risk ranking classification methodology as depicted in <u>Appendix A: DREAD</u>.

Threat	D	R	Ε	Α	DI	Average Rank
						(D+R+E+A+DI)/5
Open-Source Intelligence	2	3	3	2	3	2.6 (High)
Verbose Errors	2	1	2	3	1	1.8 (Medium)
Session Hijacking	2	2	2	1	3	2 (Medium)
CSRF	3	1	1	1	1	1.4 (Medium)
Dumpster Diving	2	3	3	2	2	2.4 (High)
Phishing	2	3	3	2	3	2.6 (High)
Shoulder Surfing	2	3	3	2	3	2.6 (High)
XSS	3	3	3	3	3	3 (High)
Spyware	2	2	2	3	2	2.2 (Medium)
Keylogger	2	2	2	2	2	2 (Medium)
Eavesdropping	2	1	2	3	2	2 (Medium)
Packet Sniffing	2	2	2	2	2	2 (Medium)
Automated Scripts	3	2	2	1	3	2.2 (Medium)
Brute Forcing	2	1	1	3	2	1.8 (Medium)
SQL Injection	3	3	2	3	2	2.6 (High)
Logic Flaws	1	1	1	2	1	1.2 (Low)
High: 2.1 – 3.0; Medium: 1.1 – 2	.0; Lo	w: 0.	0 – 1.	.0		

Figure 2.3.2 – Authentication: Average Ranking

7.2.1.4 Control Measures

Following the threat modeling process,

7.3 Secure Software Coding

In the previous section, secure software requirements and secure software designs for the authentication feature was addressed,

7.3.1 Feature related Defensive Coding Practices

Since the entry points and exit points are identified, safeguarding the attack surface area of authentication must be of priority. According to Microsoft ASP.NET Core documentation on preventing cross-site scripting (XSS), the best practice is to always validate untrusted input while also encoding output displayed at the front-end HTML before it is presented to the end-user (Anderson, 2018). More about defensive coding practices in the software will be discussed in this section.

7.3.1.1 Input validation

Validation is a powerful technique for preventing XSS attacks. As stated previously, all input must be validated. This means that input that are not whitelisted as allowable values are immediately rejected. Input validation can be performed in the software by using a......

Figure 2.4.1 – Input Validation on Register and Login Page

7.4 Security Conclusion of the Feature

Throughout the Secure Software Development Cycle (SSDLC), the login, registration, and authentication feature had been thoroughly analysed and all identified attack surfaces (entry points and exit points)

This	Authoriza	ation	feature	is a	basic (& ne	cessary	implen	nentation	in	any	applic	ation
inclu	ding the v	web a	application	on in	this as	ssigr	ment						

8.1 Secure Software Requirements

There are multiple Access Control Models that can achieve the Authorization
requirement that includes Discretionary Access Control (DAC), Non-Discretionary
Access Control (NDAC), Mandatory Access Control (MAC), Resource-Based Access
Control and Role-Based Access Control (RBAC).

.....

8.1.1 Brainstorming

Brainstorming is a quick but vague method to determine possible security requirements to extend of the individual's knowledge. Hence, it is a foundational step to

9	_	1	_	ion
	1 · ^	\mathbf{n}		100
ч				

Overall,

10 References

- Anderson, R. (2018, February 10). *Prevent Cross-Site Scripting (XSS) in ASP.NET Core.* Retrieved from Microsoft: https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting?view=aspnetcore-3.1
- Digicert. (n.d.). *Behind the Scenes of SSL Cryptography*. Retrieved from Digicert: https://www.digicert.com/faq/ssl-cryptography.htm
- Hasan, F., Anderson, R., & Smith, S. (2019, May 12). *Prevent Cross-Site Request Forgery (XSRF/CSRF) attacks in ASP.NET Core*. Retrieved from Mircosoft: https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery?view=aspnetcore-3.1
- Yadav, A. (2013, May 8). Form Authentication: ASP.NET Security Part 3. Retrieved from Infosec: https://resources.infosecinstitute.com/topic/form-authentication-asp-net-security-part-3/

11 Appendix A

11.1 DREAD

Damage Potential (Ranks the damage that will be caused when a threat is materialized, or vulnerability exploited)

- 1. Nothing
- 2. Individual user data is compromised or affected
- 3. Complete system of data destruction

Reproducibility (Ranks the ease of being able to recreate the threat and the frequency of the threat exploiting the underlying vulnerability successfully)

- 1. Very hard or impossible, even for administrators of the application
- 2. One or two steps required; may need to be an authorized user
- 3. Just the address bar in a web browser is sufficient, without authentication

Exploitability (Ranks the effort that is necessary for the threat to be manifested and the precautions, if any, that are needed to materialize the threat)

- Advance programming and networking knowledge, with custom or advance attack tools
- 2. Malware exists on the Internet, or an exploit is easily performed using available attack tools
- 3. Just a web browser

Affected Users (Ranks the number of users or installed instances of the software that will be impacted if the threat materializes)

- 1. None
- 2. Some users or systems, but not all
- 3. All users

Discoverability (Ranks how easy it is for external research and attackers to discover the threat, if left unaddressed)

- 1. Very hard-to-impossible; requires source code or administrative access
- 2. Can figure it out by guessing or by monitoring network traces