

Method and Device for Intravascular Plasma Fluid Removal

Cross-Reference to Related Applications

This is a non-provisional application based on and claiming the benefit of the filing date of provisional application ser. no. 60/247,238; filed November 13, 2000.

Statement Regarding Federally Sponsored Research or Development

"Not Applicable"

Reference to a Microfiche Appendix

"Not Applicable"

Background of the Invention:

1. Field of the Invention

This invention relates to methods for the removal of plasma fluid from a patient in need thereof, including those in what may be called a disease state, for example, congestive heart failure or moderate renal insufficiency, both of which are typically characterized by fluid overload. The invention also relates to intravascular devices for effecting the plasma fluid removal.

15

2. Description of the Related Art including information disclosed under 37 CFR 1.97 and 1.98

There are a number of techniques described in the art for removing plasma fluid from a patient. Many patients treated using some of the more conservative of these techniques, such as high dose diuretics or cardiac inotropes fail to adequately respond. In such cases, the use of more invasive, risky, expensive, and/or labor-intensive therapies, such as intermittent hemodialysis or continuous veno-venous hemodialysis or hemofiltration are indicated. While these extracorporeal techniques are traditionally utilized to treat kidney failure, in the presence of fluid overload they can instead result in the removal of bulk fluids by the use of hydraulically, or pump-driven ultrafiltration across a dialyzer (i.e. "an artificial kidney"). It is the extracorporeal processing of blood in these prior art techniques that makes them less than optimal for the desired purposes.

The U.S. patent literature includes a number of prior patents, which, for the sake of easy understanding have been divided into four categories. The first category 10 is one dealing with so-called "probes." These patents; Nos. 5,706,806, 5,607,390, 5,735,832 and 5,106,365, generally disclose devices having sealed ends and which allow fluid to flow to the end of the probe and then back. These devices are made for insertion into body tissues or fluids and are used for diagnostic, not treatment purposes. When 15 using these devices, the analyte of interest diffuses into the probe and then out to an instrument, typically, a measuring instrument. These devices allow monitoring of a patient's pH, oxygen, sodium, potassium, etc. levels in the tissue of interest (blood, muscle, gut, brain, etc.).

The second category includes so-called intravascular devices for plasmapheresis. There are a number of these patents by Gorsuch and Co-workers. These patents disclose the diffusion of plasma across semi-rigid membranes in highly complex shapes, but do so in order to remove deleterious plasma proteins. They do not specifically address the removal of fluid/water, even though a "byproduct" of the described techniques is removal of the fluid in which the deleterious proteins reside. In fact, in traditional plasmapheresis, there is no desire or intent to remove fluid per se, so that usually, the water volume is intentionally restored by re-infusing sterile fluids. In addition, some complex devices have been designed to remove targeted proteins from the extracorporeal plasma, and then return the rest of the plasma to the patient (as disclosed in Gorsuch 4,950,224 and 5,224,926). Additionally, Gorsuch 5,735,809 states "... the separated plasma may be treated for removing antibodies, antigens, pathogens, toxins and other undesirable materials." In Gorsuch, there is no teaching of merely removing fluid in the treatment of volume-overload states. Gorsuch, in patent 5,980,478, specifically indicates a desire to be able to remove the plasma fluid in its entirety and replace fluids separately as deemed necessary. This is in essence, a "poor man's dialysis," and much is made of the fact that it would preclude the need for purchasing dialysis equipment.

Gorsuch refers to this technique as "PUT," as in Plasma Ultrafiltration Therapy. This device still removes plasma with all its constituent proteins (both good and bad), because Gorsuch specifically makes note of a sieving coefficient cutoff of between 2×10^4 and 4×10^6 Daltons. The reason for this is that this method utilizes the older Gorsuch

plasmapheresis technology. This presents a problem because the method is not safe for patients since the high volumes of ultrafiltrate will contain many important and beneficial proteins, and the patient may be seriously jeopardized if the fluid is continuously discarded.

5 The third category includes patents directed to intravascular hemodialysis devices, such as 4,235,231; 5,968,004; and 5,980,478. Patent 5,902,336 is directed not to an intravascular device, but rather to a device surgically connected to a blood vessel and drains directly into the patient's own bladder for fluid removal.

10 The fourth category includes patent numbers 4,563,170; 5,360,397; 6,030,358; 6,238,366; and 6,234,991. The '170 and '397 patents are not relevant since they are extracorporeal in nature and are variations on traditional blood purification devices such as hemodialysis. The '358 patent is not relevant since it discloses a microcatheter to deliver a therapeutic agent into a tissue. The '366 patent is not relevant since it is an extracorporeal fluid management device to help nursing staff keep track of input/output so as to balance fluid administration. Finally, the '991 patent is not relevant because it describes a method of enhancing peritoneal dialysis clearances.

15

Brief Summary of the Invention:

20 The invention provides, in one aspect thereof, an intravascular device for removing plasma from a patient's whole blood. The device is a sealed dual lumen catheter, i.e., a catheter comprising at least two channels, preferably in coaxial

10054462
10
11
12
13
14

5

configuration, and allowing fluid entry into one channel and fluid egress, or exit via a direct connection to the other channel. The device is placed within a patient's blood vessel, and plasma from the patient's blood is driven through the catheter wall into the device by osmotic forces created by a hyperosmotic fluid which is continuously supplied through said lumens. The device is so constructed as to enable whole blood to come into contact with a semipermeable, hydrophilic membrane such as preferably, a hydrophilic polyamide, a modified polytetrafluoroethylene, i.e., one similar to Teflon® or a polyether sulfone forming the outer surface of the body of the catheter, whereby the plasma fluid portion thereof passes through the membrane due to the osmotic pressure exerted by a hyperosmotic fluid, preferably dextrose, but also including larger sugars such as disaccharides, oligosaccharides, starches, and low molecular weight dextrans flowing along its inner surface within a lumen of said device. Fresh hyperosmotic fluid is continuously supplied by the second lumen of the dual lumen device. Thus, the plasma fluid is removed from whole blood, *in vivo*. The invention also provides a method of removing plasma fluid from whole blood by utilizing the device, which is inserted into a patient's blood vessel.

15

20

The invention also overcomes some of the shortcomings of known extracorporeal methods by separating plasma fluid from the particulate blood components (i.e. red blood cells, white blood cells, platelets) intracorporeally, by using the device within a blood vessel. Thus osmotic pressure is utilized instead of the negative hydraulic pressure induced by pumped methods as described in the prior art.

Brief Description of the Several Views of the Drawings

Figure 1 is an external plan view of the device;

Figure 2 is a longitudinal cross sectional view of the device;

Figure 3 is a transverse cross-sectional view of the device along line a - a' of Figure 2;

5
and

Figure 4 is a further view of the device of Figure 2 showing additional elements of the
device;

Figure 5 is an external plan view of a different embodiment of the device; and

Figure 6 is a transverse cross-sectional view of the device along the line b - b' of Figure
5.

Detailed Description of the Invention:

The primary therapeutic goal of the method of the invention performed
using the device is removal of fluid volume, rather than the small amounts of solutes or
toxins that are cleared by the convection of bulk liquid. The osmotic gradient or pressure
required to induce the necessary rate of fluid removal will depend on the permeability of
the device's wall (i.e. ultrafiltration coefficient) and its surface area. Increasing the
porosity of the semipermeable barrier not only increases fluid loss, but also reduces its
effective sieving and thereby allows convective losses of larger solutes or toxins. Intra-
device collapse and flow irregularities are avoided in the present invention by using
osmotic gradients, which distend the internal lumens. This is an important conceptual
20

difference between the effects of prior art pump-driven hydraulic pressure gradients and osmotic gradients. Although the ultrafiltration coefficient of the semipermeable membrane suggests that there would be equal fluid losses for comparable pressure gradients, the device would not perform as well nor be as long-lived if it were vacuum-driven.

The semipermeable membrane used in the invention is formed, preferably of a highly biocompatible and hydrophilic material, having a high ultrafiltration coefficient and a molecular weight cut-off below that of the osmotic agent, i.e., 180 Daltons in the case of dextrose. There are a number of permutations and variations in the types of membranes that may be devised to achieve the desired goal. In a preferred embodiment, the membrane is a polymeric flexible membrane. Among these are a) hydrophilic polyamides; b) hydrophobic fluorocarbons, such as the hydrophobic polytetrafluororethylene (PTFE) [Dupont's Teflon®] modified to make them more hydrophilic (such as with charged molecules as in Dupont's Nafion®; c) polyether sulfone; d) siloxanes or polysiloxanes; or e) polysulfones. Another approach to the problem is to impose size selectivity of the membrane with a thin layer of a tight polymeric membrane, (such as a polysulfone) and to maintain the structural integrity of the membrane with a separate and highly porous skeleton layer (such as a polysulfone or a polyurethane). Such dual layered membranes are typically made by a process of co-extrusion of the polymers; or a process in which one of the polymers is sprayed as a layer on top of the underlying polymer, which is the support structure.

The feasibility of applying the concept for human use is demonstrated by calculating predicted osmotic losses. Typical patient applications medically necessitate removing 2-3 ml of plasma fluid/minute, for a total of up to about 3- 4 liters/day.

Polymer or silicone-based membranes can be formed by extruding them in the shape of catheters or flat sheets that are turned into tubes by means of a seam, and can easily have ultrafiltration coefficients ranging from single digit amounts to as much as 50 ml/hour/m² membrane/mm Hg transmembrane pressure. As a practical example, one can utilize a membrane with an ultrafiltration coefficient of 10 ml/hour/m²/mm Hg gradient in order to remove 3 ml/min (180 ml/hour). An intravenous catheter, such as those placed in the inferior vena cava by way of the femoral vein, can have surface areas in the range of 20 cm². One can then calculate the necessary pressure gradient to produce this goal of 180 ml/hour using a 0.002 m² device with a coefficient of 10 ml/hour/m²/mm Hg pressure. This yields a value of 9000 mm Hg. One can convert that pressure gradient from mm Hg to the equivalent milliosmole gradient by dividing by the 19.33 conversion factor, yielding 466 milliosmoles/kg water. Since human whole blood has an osmolality of approximately 300 milliosmoles/kg and since non-ideal conditions are often considered to have only about 93% efficiency, the device's lumen would need to have an osmolality of approximately 824 milliosmoles/kg. That osmolality could easily be provided by fluids currently commercially available and typically in use for other applications in a hospital setting, such as sterile 20% dextrose solutions. The gradient is maintained by optimizing the flow rate for supplying fresh solution.

CONFIDENTIAL

As pointed out above, fluid removal is most effective when it is osmotically driven across the device's external surface comprising a semipermeable membrane or barrier, and into a lumen of the catheter. In a simple embodiment of this concept, the device is a dual lumen catheter of coaxial configuration, and the two lumina (the inner and the outer lumina) are connected at the distal end of the catheter. (In another embodiment, the device is a dual lumen catheter of side-by-side configuration.) A high osmolality fluid (such as a sterile dextrose solution) flows into the inner lumen to the distal end of the catheter, reverses direction and thus flows back out of the catheter through the outer lumen. The high osmolality fluid is therefore flowing past the inner surface of the semipermeable membrane of the outer catheter wall. In a simple application of this example, the sterile catheter is inserted percutaneously using a sheath or guide wire into a blood vessel, ideally a large vein such as the internal jugular or femoral vein. The use of a sheath has the additional advantage of protecting the potentially fragile outer surface of the catheter during its insertion. The catheter is then anchored in place using skin sutures into a retaining attachment (i.e. plastic wings). The port leading to the inner lumen is then attached to a conventional mechanized pump (not shown), which delivers the sterile hyperosmolar fluid. The fluid flows to the distal tip within the inner lumen and then flows back in the outer lumen to the exit port. In other, less preferred embodiments the device is constructed alternative configurations for supplying fresh hyperosmotic fluid to the inner surface of the semipermeable catheter wall. These include various dual lumen catheters with side-by-side or eccentric channels

rather than the preferred coaxial configuration.

In use, it is intended that the device be placed in the lumen of a blood vessel. Veins are preferable to arteries in order to minimize bleeding at the entry site. Although the device can be inserted into the blood vessel, which is under direct observation during an open minor surgical procedure (referred to as a "cut-down"), the preferred and less complicated method is to place it percutaneously. The technique is currently considered a standard practice, and is summarized as follows: Typically, the vein is identified by physical exam or by ultrasonic guidance. The skin covering the vein is prepped by cleaning it with a sterilizing solution. The sterilized field is protected by surrounding it with sterile surgical drapes. Local anesthesia is effected by subcutaneously injecting an anesthetizing medication. A small needle is used to enter the vein, allowing the threading of a guide wire into the vessel. The needle is removed by sliding it off the guide wire, leaving just the wire in place. A flexible, dilating breakaway sheath is slid over the wire and gently pushed into the vein using a twisting motion, thereby using its conical tip to enlarge the hole in the vessel. The guide wire is then removed, leaving the sheath in place. With the stiff wire within the central channel, the ultrafiltration device is slid through the sheath into the blood vessel. The sheath is gently pulled out of the vessel, and discarded by pulling apart its breakaway sides. The ultrafiltration device is then secured to the skin using sutures and, optionally, a wing-like anchor. The stiff wire is then removed. The inlet and outlet tubing ports are then connected to the apparatus supplying and draining the osmotic ultrafiltration fluid. In this configuration, blood

100544970
100544971
100544972
100544973
100544974
100544975
100544976
100544977
100544978
100544979
100544980
100544981
100544982
100544983
100544984
100544985
100544986
100544987
100544988
100544989
100544990
100544991
100544992
100544993
100544994
100544995
100544996
100544997
100544998
100544999
100545000
100545001
100545002
100545003
100545004
100545005
100545006
100545007
100545008
100545009
100545010
100545011
100545012
100545013
100545014
100545015
100545016
100545017
100545018
100545019
100545020
100545021
100545022
100545023
100545024
100545025
100545026
100545027
100545028
100545029
100545030
100545031
100545032
100545033
100545034
100545035
100545036
100545037
100545038
100545039
100545040
100545041
100545042
100545043
100545044
100545045
100545046
100545047
100545048
100545049
100545050
100545051
100545052
100545053
100545054
100545055
100545056
100545057
100545058
100545059
100545060
100545061
100545062
100545063
100545064
100545065
100545066
100545067
100545068
100545069
100545070
100545071
100545072
100545073
100545074
100545075
100545076
100545077
100545078
100545079
100545080
100545081
100545082
100545083
100545084
100545085
100545086
100545087
100545088
100545089
100545090
100545091
100545092
100545093
100545094
100545095
100545096
100545097
100545098
100545099
100545100
100545101
100545102
100545103
100545104
100545105
100545106
100545107
100545108
100545109
100545110
100545111
100545112
100545113
100545114
100545115
100545116
100545117
100545118
100545119
100545120
100545121
100545122
100545123
100545124
100545125
100545126
100545127
100545128
100545129
100545130
100545131
100545132
100545133
100545134
100545135
100545136
100545137
100545138
100545139
100545140
100545141
100545142
100545143
100545144
100545145
100545146
100545147
100545148
100545149
100545150
100545151
100545152
100545153
100545154
100545155
100545156
100545157
100545158
100545159
100545160
100545161
100545162
100545163
100545164
100545165
100545166
100545167
100545168
100545169
100545170
100545171
100545172
100545173
100545174
100545175
100545176
100545177
100545178
100545179
100545180
100545181
100545182
100545183
100545184
100545185
100545186
100545187
100545188
100545189
100545190
100545191
100545192
100545193
100545194
100545195
100545196
100545197
100545198
100545199
100545200
100545201
100545202
100545203
100545204
100545205
100545206
100545207
100545208
100545209
100545210
100545211
100545212
100545213
100545214
100545215
100545216
100545217
100545218
100545219
100545220
100545221
100545222
100545223
100545224
100545225
100545226
100545227
100545228
100545229
100545230
100545231
100545232
100545233
100545234
100545235
100545236
100545237
100545238
100545239
100545240
100545241
100545242
100545243
100545244
100545245
100545246
100545247
100545248
100545249
100545250
100545251
100545252
100545253
100545254
100545255
100545256
100545257
100545258
100545259
100545260
100545261
100545262
100545263
100545264
100545265
100545266
100545267
100545268
100545269
100545270
100545271
100545272
100545273
100545274
100545275
100545276
100545277
100545278
100545279
100545280
100545281
100545282
100545283
100545284
100545285
100545286
100545287
100545288
100545289
100545290
100545291
100545292
100545293
100545294
100545295
100545296
100545297
100545298
100545299
100545300
100545301
100545302
100545303
100545304
100545305
100545306
100545307
100545308
100545309
100545310
100545311
100545312
100545313
100545314
100545315
100545316
100545317
100545318
100545319
100545320
100545321
100545322
100545323
100545324
100545325
100545326
100545327
100545328
100545329
100545330
100545331
100545332
100545333
100545334
100545335
100545336
100545337
100545338
100545339
100545340
100545341
100545342
100545343
100545344
100545345
100545346
100545347
100545348
100545349
100545350
100545351
100545352
100545353
100545354
100545355
100545356
100545357
100545358
100545359
100545360
100545361
100545362
100545363
100545364
100545365
100545366
100545367
100545368
100545369
100545370
100545371
100545372
100545373
100545374
100545375
100545376
100545377
100545378
100545379
100545380
100545381
100545382
100545383
100545384
100545385
100545386
100545387
100545388
100545389
100545390
100545391
100545392
100545393
100545394
100545395
100545396
100545397
100545398
100545399
100545400
100545401
100545402
100545403
100545404
100545405
100545406
100545407
100545408
100545409
100545410
100545411
100545412
100545413
100545414
100545415
100545416
100545417
100545418
100545419
100545420
100545421
100545422
100545423
100545424
100545425
100545426
100545427
100545428
100545429
100545430
100545431
100545432
100545433
100545434
100545435
100545436
100545437
100545438
100545439
100545440
100545441
100545442
100545443
100545444
100545445
100545446
100545447
100545448
100545449
100545450
100545451
100545452
100545453
100545454
100545455
100545456
100545457
100545458
100545459
100545460
100545461
100545462
100545463
100545464
100545465
100545466
100545467
100545468
100545469
100545470
100545471
100545472
100545473
100545474
100545475
100545476
100545477
100545478
100545479
100545480
100545481
100545482
100545483
100545484
100545485
100545486
100545487
100545488
100545489
100545490
100545491
100545492
100545493
100545494
100545495
100545496
100545497
100545498
100545499
100545500
100545501
100545502
100545503
100545504
100545505
100545506
100545507
100545508
100545509
100545510
100545511
100545512
100545513
100545514
100545515
100545516
100545517
100545518
100545519
100545520
100545521
100545522
100545523
100545524
100545525
100545526
100545527
100545528
100545529
100545530
100545531
100545532
100545533
100545534
100545535
100545536
100545537
100545538
100545539
100545540
100545541
100545542
100545543
100545544
100545545
100545546
100545547
100545548
100545549
100545550
100545551
100545552
100545553
100545554
100545555
100545556
100545557
100545558
100545559
100545560
100545561
100545562
100545563
100545564
100545565
100545566
100545567
100545568
100545569
100545570
100545571
100545572
100545573
100545574
100545575
100545576
100545577
100545578
100545579
100545580
100545581
100545582
100545583
100545584
100545585
100545586
100545587
100545588
100545589
100545590
100545591
100545592
100545593
100545594
100545595
100545596
100545597
100545598
100545599
100545600
100545601
100545602
100545603
100545604
100545605
100545606
100545607
100545608
100545609
100545610
100545611
100545612
100545613
100545614
100545615
100545616
100545617
100545618
100545619
100545620
100545621
100545622
100545623
100545624
100545625
100545626
100545627
100545628
100545629
100545630
100545631
100545632
100545633
100545634
100545635
100545636
100545637
100545638
100545639
100545640
100545641
100545642
100545643
100545644
100545645
100545646
100545647
100545648
100545649
100545650
100545651
100545652
100545653
100545654
100545655
100545656
100545657
100545658
100545659
100545660
100545661
100545662
100545663
100545664
100545665
100545666
100545667
100545668
100545669
100545670
100545671
100545672
100545673
100545674
100545675
100545676
100545677
100545678
100545679
100545680
100545681
100545682
100545683
100545684
100545685
100545686
100545687
100545688
100545689
100545690
100545691
100545692
100545693
100545694
100545695
100545696
100545697
100545698
100545699
100545700
100545701
100545702
100545703
100545704
100545705
100545706
100545707
100545708
100545709
100545710
100545711
100545712
100545713
100545714
100545715
100545716
100545717
100545718
100545719
100545720
100545721
100545722
100545723
100545724
100545725
100545726
100545727
100545728
100545729
100545730
100545731
100545732
100545733
100545734
100545735
100545736
100545737
100545738
100545739
100545740
100545741
100545742
100545743
100545744
100545745
100545746
100545747
100545748
100545749
100545750
100545751
100545752
100545753
100545754
100545755
100545756
100545757
100545758
100545759
100545760
100545761
100545762
100545763
100545764
100545765
100545766
100545767
100545768
100545769
100545770
100545771
100545772
100545773
100545774
100545775
100545776
100545777
100545778
100545779
100545780
100545781
100545782
100545783
100545784
100545785
100545786
100545787
100545788
100545789
100545790
100545791
100545792
100545793
100545794
100545795
100545796
100545797
100545798
100545799
100545800
100545801
100545802
100545803
100545804
100545805
100545806
100545807
100545808
100545809
100545810
100545811
100545812
100545813
100545814
100545815
100545816
100545817
100545818
100545819
100545820
100545821
100545822
100545823
100545824
100545825
100545826
100545827
100545828
100545829
100545830
100545831
100545832
100545833
100545834
100545835
100545836
100545837
100545838
100545839
100545840
100545841
100545842
100545843
100545844
100545845
100545846
100545847
100545848
100545849
100545850
100545851
100545852
100545853
100545854
100545855
100545856
100545857
100545858
100545859
100545860
100545861
100545862
100545863
100545864
100545865
100545866
100545867
100545868
100545869
100545870
100545871
100545872
100545873
100545874
100545875
100545876
100545877
100545878
100545879
100545880
100545881
100545882
100545883
100545884
100545885
100545886
100545887
100545888
100545889
100545890
100545891
100545892
100545893
100545894
100545895
100545896
100545897
100545898
100545899
100545900
100545901
100545902
100545903
100545904
100545905
100545906
100545907
100545908
100545909
100545910
100545911
100545912
100545913
100545914
100545915
100545916
100545917
100545918
100545919
100545920
100545921
100545922
100545923
100545924
100545925
100545926
100545927
100545928
100545929
100545930
100545931
100545932
100545933
100545934
100545935
100545936
100545937
100545938
100545939
100545940
100545941
100545942
100545943
100545944
100545945
100545946
100545947
100545948
100545949
100545950
100545951
100545952
100545953
100545954
100545955
100545956
100545957
100545958
100545959
100545960
100545961
100545

10005488310
10005488310
10005488310

remains on the outside of the catheter's semipermeable wall, and the high osmolality fluid traverses its inner surface. Plasma fluid is thereby osmotically driven across the catheter wall into the fluid compartment and exits via the exit port.

Referring now to the drawings, Figures 1-4 illustrate an embodiment of the device wherein the two lumina are coaxially configured. Specifically, Figure 1 shows in plan view, the catheter of the invention, having outer surface 6 of the main body of the device and which corresponds to the circumferential (outer) lumen of the device, inlet port 1 and outlet port 4, each having attached to the end thereof, luer locking devices 2 and 5 respectively, for connecting inlet port 1 to an external (not shown) source or supply depot for fresh hyperosmotic fluid, and for connecting outlet port 4 to an apparatus (not shown) for draining and collecting used hyperosmotic fluid. Luer lock connector 5 may optionally be fitted with the hub 3 of the stiff wire 12 (described below) used to enhance the stiffness or rigidity of the device during placement thereof. Figure 2 is a more detailed view in longitudinal cross-section of the device illustrated in Figure 1. As shown in this drawing figure, central, or inner lumen 7, having wall 8 of nonpermeable polymer is coaxially disposed within the circumferential or outer lumen. Arrows 9 and 10 show the direction of flow of hyperosmotic fluid into and out of the device respectively. More particularly, fluid entering the inlet port 1 flows, as shown by arrow 9 along the length of the inner lumen until it reaches the open, distal end thereof and reverses direction as shown by arrow 10 and ultimately exits the device through outlet port 4 after having removed blood plasma from whole blood during its traverse of the device. Figure 3, a

cross-sectional view along line a-a' of Figure 2 is provided to illustrate the septum 11 provided between the two lumens to maintain the structural integrity of the device and the integrity of the coaxial geometry of the lumens. Figure 4 illustrates the stiff wire 12 connected to hub 3 (mentioned above) which may be placed within the central or inner lumen to enhance and maintain the stiffness of the device during its placement in a blood vessel. Additionally as shown in Figure 4, there is optionally provided an anchor 13 for holding the device securely in place on the surface of a patient's skin while it is in use. Anchor 13, if provided, is provided with holes 14 to enable the anchor to be sutured or otherwise affixed to the patient's skin.

Figures 5 and 6 illustrate an alternative embodiment of the catheter device wherein the 2 lumens are disposed in a side-by-side configuration, rather than the coaxial configuration shown in Figures 1 through 4.

Figure 5 is an external view of the dual lumen catheter arranged in a side-by-side configuration. Like numbering is used to identify elements common to both configurations. Thus, as seen in Figure 5, the device is provided with an external surface 8 formed of a semipermeable membrane. The device is provided with inlet port 1 leading to inflow channel 7, corresponding to inner lumen 7, and outlet port 4 connected to outflow channel 11. Luer locks 2 and 5, the latter being optionally provided with hub 3 of stiff wire 12. Wings 13 provided with holes 14 to secure the device to the patient's skin are also provided; and finally, as shown in Figure 6, which is a transverse cross-sectional view of the embodiment of Figure 5 illustrates septum 11 provided between the

TOP SECRET - SECURITY INFORMATION

side-by-side lumens to separate them and maintain the structural integrity of the device.

Distal end 15 of the catheter is where the inflow 7 and outflow 11 channels or lumens connect.

Coating, caking or clotting on the outside of the catheter is minimized by using a biocompatible material, a small diameter and a pump system which avoids negative hydraulic pressure across and thereby collapsing the wall. The catheter specifications (i.e. length, diameter) and the pump speed are determined by the osmolality of the solution (i.e. 10, 20, or 50% dextrose solutions), the permeability of the outer wall, and are interrelated to achieve the desired ultrafiltration rates.

In a typical application the catheter would be in continuous use and provide slow ultrafiltration for many days. For example, dextrose concentration and pump speed would be set to achieve ultrafiltration of 1 - 3 ml/min and thereby total about 2 - 4 liters of fluid removal/day. In embodiments designed for the purpose of effecting highly regulated and controlled fluid removal, the basal pump rate of the hyperosmolar fluid as well as the ultrafiltration rate are achieved using mechanical pumps. In one example, the basal rate of fresh fluid is delivered by a precise inflow pump, and the desired ultrafiltration rate is added to that basal rate to determine the rate of the independent pump on the outflow circuit (i.e. 100 ml/min of 20% dextrose pumped inflow and 102 ml/min pumped outflow to achieve ultrafiltration of 2 ml/min). The parameters of such user-defined pump speeds must be restricted so as to prevent setting an ultrafiltration rate in excess of that produced by the osmotic fluid losses; otherwise there will result a

hydraulic convective fluid component to the fluid removal. As indicated above, this vacuum-induced negative hydraulic pressures may cause the catheter to collapse and induce regions of erratically high and low flows across the membrane, thereby causing the system to fail prematurely, as a result of caking of protein or other particulate matter (i.e. fibrin, platelets, or red blood cells).

A number of pumping systems can be used to accomplish this so-called highly regulated fluid removal. As described above, separate inflow and outflow pumps can be utilized. In another embodiment, pumps (i.e. rotating peristaltic or occlusion pumps) or balancing chambers can be utilized to equalize the inflow and outflow rates. Fluid removal can then be accomplished by a separate, highly calibrated pump on the outflow portion of the circuit, placed between the catheter and the equalizing pumps. An alternative pumping system would result in certain advantages such as potential miniaturization, and cost-containment by utilizing a recirculating reservoir of high osmolality solution. For example, if a 10% dextrose solution is otherwise effective, one could instead use a 50% dextrose supplied in an underfilled bag serving as the reservoir for the recirculating luminal fluid. Continuous weighing of the reservoir bag would enable one to monitor the fluid removal and serve as a fail safe mechanism in addition to setting the pump rates as mentioned above. In still another embodiment, there could be a single pump from the reservoir into the catheter's inner lumen and the rate of that pump would be regulated by a feedback mechanism based on the rate of fluid accumulating in

5

10005483-2
10
W
TODAY'S DATE

15

20

TOP SECRET//NOFORN

the weighed reservoir. Since these reservoir embodiments would be self-contained systems lasting many hours, they would also have advantages from a cost and nursing labor point of view. Overall, and regardless of the exact pumping configuration, the device and pumps would have a very high safety profile because of the long history of successful design and use of dual lumen catheters, and because the flow paths are connected to sealed sterile systems. In the event that a leak occurs, it would still be extremely safe because of the use of sterile solutions, i.e. sugar solutions. Safety can be further improved by placing a blood leak detector on the outflow track (e.g. tubing placed on an external optical sensor set to the proper wavelength to detect the presence of hemoglobin). Catheter longevity can be optimized by the choice of the biocompatible material, such as a synthetic polymer or silicone derivative. Longevity may be further enhanced by intermittently providing positive internal pressure and causing momentary hydraulic outflow from the lumen across the wall and into the blood vessel. The transient reversal of the flow direction would serve to debride or clean the catheter surface. This could be accomplished by many mechanical means, including momentary restriction of the outflow track or altering the relative pump speeds.

20

Notably, the composition of the semipermeable catheter membrane is selected depending on the sieving characteristics desired to produce the ultrafiltrate. For example, in the simplest embodiment designed to treat congestive heart failure (fluid overload), the wall characteristics are those which are calculated to remove just plasma

water with limited removal of small sized electrolytes (such as sodium, potassium, chloride, bicarbonate or small toxins) but lacking pores large enough to remove plasma proteins (i.e. albumin, immunoglobulins). In still another embodiment, the pores can be selected to be much larger and thereby allow removal of larger substances, such as proteins, similar to plasmapheresis. However, as indicated above the flow rates would typically be so low as to limit the total daily mass clearance of these larger moieties.

1005442-211301