SUMMER 2025 READING GROUP ON ERGODIC THEORY

EXERCISE SHEET 9 (ZHAOSHEN ZHAI): WEAK MIXING AND ALMOST-PERIODIC FUNCTIONS

The purpose of this exercise sheet is to give another proof of the following theorem.

Theorem A. If a measure-preserving dynamical system is not weak-mixing, then there exists an almost periodic function that is not constant a.e.

First, a technical lemma needed for Exercise 2.

Exercise 1. Let $x_0, x_1, \ldots \in \mathbb{R}$. If C-lim $x_n = x$ and C-lim $x_n^2 = x^2$ for some $x \in \mathbb{R}$, then D-lim $x_n = x$. HINT: Show that C-lim $|x_n - x|^2 = 0$. Why does this imply that D-lim $x_n = x$?

The product of systems (X, \mathcal{B}, μ, T) and (Y, \mathcal{C}, ν, S) is the system $(X \times Y, \mathcal{B} \otimes \mathcal{C}, \mu \times \nu, T \times S)$, where $\mathcal{B} \otimes \mathcal{C}$ is the σ -algebra generated by $B \times C$ for $B \in \mathcal{B}$ and $C \in \mathcal{C}$, and $\mu \times \nu$ is the (unique) measure on $\mathcal{B} \otimes \mathcal{C}$ such that $(\mu \times \nu)(B \times C) = \mu(B)\nu(C)$ for all $B \in \mathcal{B}$ and $C \in \mathcal{C}$. You can use the following facts.

Fact. For $f \in L^2(X)$ and $g \in L^2(Y)$, let $f \otimes g : X \times Y \to \mathbb{R}$ by defined by $(f \otimes g)(x,y) := f(x)g(y)$. Then $\{f \otimes g : f \in L^2(X), g \in L^2(Y)\}$

linearly span a dense subset of $L^2(X \times Y)$.

Fact (Fubini-Tonelli). For $f \in L^2(X)$ and $g \in L^2(Y)$, we have $\int_{X \times Y} f \otimes g \, d(\mu \times \nu) = \int_X f \, d\mu \int_Y g \, d\nu$.

Exercise 2. The following are equivalent for a measure-preserving dynamical system X.

- 1. X is weak mixing.
- 2. $X \times X$ is weak mixing
- 3. $X \times X$ is ergodic.

HINT: Compute $\langle (T \times T)^n (f_1 \otimes f_2), g_1 \otimes g_2 \rangle$ and use $\mathbb{E}(f_1 \otimes f_2) = \mathbb{E}(f_1)\mathbb{E}(f_2)$.

Exercise 3. Follow the steps below to prove Theorem A: if a measure-preserving dynamical system X is not weak-mixing, then there exists an almost periodic function that is not constant a.e.

- 1. Note that we can assume that X is ergodic (no need for ergodic decomposition).
- 2. Show that there is a non-constant $(T \times T)$ -invariant function $K \in L^2(X \times X)$. Assume that $\mathbb{E}(K) = 0$.
- 3. Show that the Hilbert-Schmidt operator Φ_K on $L^2(X)$ given by $\Phi_K f(y) \coloneqq \int_X K(x,y) f(x) \, \mathrm{d}\mu(x)$ (we say that Φ_K has $kernel\ K$) commutes with T. Thus $\Phi_K f \in \mathcal{AP}(X)$ for every $f \in L^2(X)$, so it suffices to find one such that $\Phi_K f \neq 0$ (since $\mathbb{E}(\Phi_K f) = 0$).
- 4. Suppose that there is no $f \in L^2(X)$ such that $\Phi_K f \neq 0$. Show that K is orthogonal to $f \otimes g$ for all $f, g \in L^2(X)$, hence K = 0, a contradiction. HINT: The map $x \mapsto \int_X K(x, y) d\mu(y)$ is T-invariant.

Date: June 30, 2025.