NFA

Dhruva Sambrani

February 12, 2020

Formal Defn of an NFA

$$M=(~Q,\,\Sigma,\,\delta,\,q0,\,F~)$$

$$\delta: Q \times (\Sigma \cup {\epsilon}) \to \mathcal{P}(Q)$$

An NFA N accepts a string s=w1w2w3...wn iff \exists a sequence of $r0r1...rn \in Q$ such that $rn \in F$ and $ri+1 \in \delta(ri,wi)$

Equivalence of NFA and DFA

Theorem: L is regular iff it can be recognized by an NFA.

Proof:

If L is recognisable by a NFA (let) $N = (Q, \Sigma, \delta, q0, F)$

Consider the DFA, $D = (Q', \Sigma, \delta', q0', F')$ where -

- $Q' = \mathcal{P}(Q)$
- δ' : $Q' \to Q'$ and
 - $\delta'(A, c) \rightarrow \bigcup E(\delta(a,c))$, where
 - * a \in A
 - * E(A) =the set of states connected to some $q \in A$ by ϵ . Trivially, some qs map to themselves via a ϵ .
- q0' = E(q0)
- $F' = \{A' \in Q' \mid A \cap F \neq \emptyset\}$

If S is accepted by N iff \exists r0...rn \in Q r0=q0 and ri+1 \in δ (ri, wi)

 \implies ri+1 \in Ri = E(δ (ri, wi)) and rn \in Rn \in F.