Просторові групи

Андрій Жугаєвич (zhugayevych@iop.kiev.ua)
19 вересня 2011 р.

1	Кри	сталографічні групи
	1.1	Елементи симетрії кристалографічних груп
	1.2	Гратка Браве
	1.3	Обернена гратка
	1.4	Класифікація кристалографічних груп
	1.5	Структура кристалографічних груп
2	Інші	дискретні групи просторових симетрій
		менти математичної теорії симетрії кристалів
4	Табт	nuni i cyemu

§1. Кристалографічні групи

1.1. Елементи симетрії кристалографічних груп

Просторові елементи симетрії (тобто елементи групи IO(n)) тривимірного простору являють собою комбінацію точкового перетворення і трансляції: $r \to \mathbf{R}r + t$. До базових неточкових елементів просторової симетрії належать трансляція, гвинтова вісь (screw axis) і площина ковзання (glide plane).

Елементи кристалографічної групи можна подати у вигляді

$$r \to \mathbf{R}r + v(\mathbf{R}) + t,$$
 (1.1)

де ${\bf R}$ — так звана лінійна частина перетворення (елемент точкової симетрії), ${\bf t}$ — власна (цілочислова) трансляція (тобто трансляція на цілочислові лінійні комбінації постійних гратки), ${\bf v}({\bf R})$ — залежна від ${\bf R}$ невласна (дробова) трансляція. Позначення елементів симетрії див. на рис. 1, невласні елементи симетрії позначаються таким чином:

- \bullet гвинтова вісь $\{n_k\}$ поворот на кут $2\pi/n$ разом зі зсувом уздовж осі на k/n;
- площина ковзання $\{a,b,c,n,d\}$ $\{a,b,c\}$ означає зсув на 1/2 вздовж осі a, b чи c разом із відбиттям в площині, що проходить через цю вісь, $\{n\}$ означає зсув на 1/2 по a і по c, $\{d\}$ означає зсув на 1/4 по a і по c (див. приклад на рис. 3).

Поворотні і інверсійні осі можуть мати лише порядок 1, 2, 3, 4, 6 (відбиття включаються). В базисі примітивної комірки матриця \mathbf{R} і вектор t цілочислові, а компоненти вектора $v(\mathbf{R})$ є правильними дробами з можливими значеннями знаменника 2, 3, 4, 6.

	Axes	Planes
	n -n n ₁ n ₂ n ₃ n ₄ n ₅	
1	0	m ———
2	• •	a,b
3	A A A A	С
4	♦ ♦ ♦ ♦	n
6		d→

Рис. 1: Графічні позначення елементів симетрії