УНИВЕРСИТЕТСКИЙ КОЛЛЕДЖ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Симплекс-метод.

Базисные и свободные переменные. Простой симплекс — метод.

Алгоритм симплекс-метода

```
|a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1;
     \begin{vmatrix} a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2; \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m; \end{vmatrix}
Z_{\min} = c_0 + c_1 x_1 + c_2 x_2 + \dots + c_n x_n;
                       x_i \geq 0, i = \overline{1, n}.
                                                                     Введем условные обозначения:
                                                                    x_1, x_2, ..., x_r — базисные переменные;
                                                                    x_{r+1}, x_{r+2}, ..., x_n — свободные переменные.
                        \begin{cases} x_1 = \beta_1 - (\alpha_{1r+1}x_{r+1} + \alpha_{1r+2}x_{r+2} + \dots + \alpha_{1n}x_n); \\ x_2 = \beta_2 - (\alpha_{2r+1}x_{r+1} + \alpha_{2r+2}x_{r+2} + \dots + \alpha_{2n}x_n); \\ \vdots \\ x_r = \beta_r - (\alpha_{rr+1}x_{r+1} + \alpha_{rr+2}x_{r+2} + \dots + \alpha_{rn}x_n); \end{cases}
                          Z_{\min} = \gamma_0 - (\gamma_{r+1} x_{r+1} + \gamma_{r+2} x_{r+2} + \dots + \gamma_n x_n).
```

$$\begin{cases} x_1 = \beta_1 - (\alpha_{1r+1}x_{r+1} + \alpha_{1r+2}x_{r+2} + \dots + \alpha_{1n}x_n); \\ x_2 = \beta_2 - (\alpha_{2r+1}x_{r+1} + \alpha_{2r+2}x_{r+2} + \dots + \alpha_{2n}x_n); \\ \vdots \\ x_r = \beta_r - (\alpha_{rr+1}x_{r+1} + \alpha_{rr+2}x_{r+2} + \dots + \alpha_{rn}x_n); \\ Z_{\min} = \gamma_0 - (\gamma_{r+1}x_{r+1} + \gamma_{r+2}x_{r+2} + \dots + \gamma_{rn}x_n). \end{cases}$$

По последней системе ограничений и целевой функции Z построим таблицу. Данная таблица называется симплекс-таблицей. Все дальнейшие преобразования связаны с изменением содержания этой таблицы

				Ta6 1	
Свободные неиз- вест- ные Ба- зисные неиз- вестные	Свободный член	x_{r+1}	<i>x</i> _{r+2}	•••	x_n
x_1 x_2 x_r Z_{\min}	β ₁ β ₂ β _r γ ₀	$egin{array}{c} lpha_{1r+1} & & & \\ lpha_{2r+1} & & & \\ & & & \\ lpha_{rr+1} & & \\ \gamma_{r+1} & & & \end{array}$	α_{1r+2} α_{2r+2} α_{rr+1} γ_{r+2}	 	α_{1n} α_{2n} \dots α_{rn} γ_n

- 1. В последней строке симплекс-таблицы находят наименьший положительный элемент, не считая свободного члена. Столбец, соответствующий этому элементу, считается разрешающим.
- 2. Вычисляют отношение свободных членов к положительным элементам разрешающего столбца (симплекс-отношение). Находят наименьшее из этих симплекс-отношений, оно соответствует разрешающей строке.
- 3. На пересечении разрешающей строки и разрешающего столбца находится разрешающий элемент.
- 4. Если имеется несколько одинаковых по величине симплекс-отношений, то выбирают любое из них. То же самое относится к положительным элементам последней строки симлекс-таблицы.
- 5. После нахождения разрешающего элемента переходят к следующей таблице. Неизвестные переменные, соответствующие разрешающей строке и столбцу, меняют местами. При этом базисная переменная становится свободной переменной, и наоборот. Симплекс-таблица преобразована следующим образом

Свобод- ные не- извест- ные Ба- зисные неиз- вестные	Свободный член	x_{r+1}	x_1		X _n
<i>X_r</i> +2	$\frac{\beta_1}{\alpha_{1r+2}}$	$\frac{\alpha_{1r+1}}{\alpha_{1r+2}}$	$\frac{1}{\alpha_{1r+2}}$	•••	$\frac{\alpha_{1n}}{\alpha_{1r+2}}$
x_2		·	$-\frac{\alpha_{2r+2}}{\alpha_{1r+2}}$		
•••		•••		•••	
X _r			$-\frac{\alpha_{rr+2}}{\alpha_{1r+2}}$		
Z_{\min}			$-\frac{\gamma_{r+2}}{\alpha_{1r+2}}$	•••	

- 6. Элемент, соответствующий разрешающему элементу табл. 1, равен обратной величине разрешающего элемента.
- 7. Элементы строки табл. 2, соответствующие элементам разрешающей строки табл. 1, получаются путем деления соответствующих элементов табл. 1 на разрешающий элемент.
- 8. Элементы столбца табл. 2, соответствующие элементам разрешающего столбца табл. 1, получаются путем деления соответствующих элементов табл. 1 на разрешающий элемент и берутся с противоположным знаком.

9. Остальные клетки новой симплекс-таблицы заполняются по правилу прямоугольника

$$H9 = C_T9 - (A*B)/P9$$

НЭ – новый элемент; СтЭ – старый элемент; РЭ – разрешающий элемент; А и В - элементы старой симплекс – таблицы, образующие прямоугольник с элементами СтЭ и РЭ.

- 10. Как только получится таблица, в которой в последней строке все элементы отрицательны, считается, что минимум найден. Минимальное значение функции равно свободному члену в строке целевой функции, а оптимальное решение определяется свободными членами при базисных переменных. Все свободные переменные в этом случае равны нулю.
- 11. Если в разрешающем столбце все элементы отрицательны, то задача не имеет решений (минимум не достигается).

Замечания

- 1. если решается задача минимизации целевой функции, то признаком оптимального плана является неположительность значений всех элементов z строки.
- 2. Если на некотором шаге алгоритма оказалось, что в ведущем столбце все элементы не положительны, то целевая функция не ограничена не множестве допустимых планов и задача не имеет решения.

Метод искусственного базиса

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1; \\ \vdots \\ a_{r1}x_1 + a_{r2}x_2 + \dots + a_{rn}x_n = b_r. \end{cases}$$

$$\begin{cases} y_1 = b_1 - (a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n); \\ \vdots \\ y_r = b_r - (a_{r1}x_1 + a_{r2}x_2 + \dots + a_{rn}x_n). \end{cases}$$

$$F_{\min} = y_1 + y_2 + E + y_r,$$

Анализ вариантов решений

- 1. Если $F_{\min} \neq 0$, а все y_i переведены в свободные переменные, то задача не имеет положительного решения.
- 2. Если $F_{\min} = 0$, а часть y_i осталась в базисе, то для перевода их в свободные переменные необходимо применять специальные приемы.

Симплекс - метод

пример

Общая постановка задачи и каноническая форма

$$z_{\text{max}} = 6x_1 - 7x_2 + 3 \qquad z^*_{\text{min}} = -z_{\text{max}} = -3 - 6x_1 + 7x_2$$

$$\begin{cases}
-x_1 + x_2 + x_3 = 1 \\
x_1 - x_2 + x_4 = 1 \\
x_1 + x_2 + x_5 = 2
\end{cases}$$

$$\begin{cases}
x_3 = 1 - (-x_1 + x_2) \\
x_4 = 1 - (x_1 - x_2) \\
x_5 = 2 - (x_1 + x_2)
\end{cases}$$

$$z^*_{\text{min}} = -3 - (6x_1 - 7x_2)$$

$$x_i \ge 0, i = \overline{1,5}$$

СП
$$X_1$$
 X_2 X_2 X_3 X_4 X_5 X_5 X_6 X_7 X_8 X_8 X_8 X_8 X_8 X_8 X_8 X_8 X_9 X_9

*

	СП			Св.
БІ		X_4	X_2	член
	БП			Ы
	X_3	1	0	2
	X_1	1	-1	1
	X_5	-1	2	1
Z	\mathbf{Z}_{\min}	-6	-1	-9

Искусственный базис

$$z_{\min} = x_1 + 2x_2$$

$$\begin{cases} 3x_1 - 5x_2 + x_3 + 2x_4 = 1\\ -2x_1 + 2x_2 - x_4 + x_5 = 4\\ -x_1 + 3x_2 - 2x_4 + x_5 = 5 \end{cases}$$

$$x_i \ge 0, i = \overline{1,5}$$

$$x_{3} = 1 - (3x_{1} - 5x_{2} + 2x_{4})$$

$$y_{1} = 4 - (-2x_{1} + 2x_{2} - x_{4} + x_{5})$$

$$y_{2} = 5 - (-x_{1} + 3x_{2} - 2x_{4} + x_{5})$$

$$z_{\min} = 0 - (-x_{1} - 2x_{2})$$

$$F_{\min} = y_{1} + y_{2} =$$

$$= 9 - (-3x_{1} + 5x_{2} - 3x_{4} + 2x_{5})$$

$$x_{i} \ge 0, i = \overline{1,5}$$

$$x_{3} = 1 - (3x_{1} - 5x_{2} + 2x_{4})$$

$$y_{1} = 4 - (-2x_{1} + 2x_{2} - x_{4} + x_{5})$$

$$y_{2} = 5 - (-x_{1} + 3x_{2} - 2x_{4} + x_{5})$$

$$z_{\min} = 0 - (-x_{1} - 2x_{2})$$

$$F_{\min} = y_{1} + y_{2} =$$

$$= 9 - (-3x_{1} + 5x_{2} - 3x_{4} + 2x_{5})$$

$$x_{i} \ge 0, i = \overline{1,5}$$

СП	Св.ч	x1	x2	x4	x 5
БП				7.	
X3	1	3	-5	2	0
У1	4	-2	2	-1	1
У2	5	-1	3	-2	1
Zmin	0	-1	-2	0	0
Fmin	9	-3	5	-3	2

СП	Св.ч	x1	x2	х4	х5
БП					
X3	1	3	-5	2	0
У1	4	-2	2	-1	1
У2	5	-1	3	-2	1
Zmin	0	-1	-2	0	0
Fmin	9	-3	5	-3	2

Св.ч	x1	x2	х4	y1
1	3	-5	2	0
4	-2	2	-1	1
1	1	1	-1	-1
0	-1	-2	0	0
1	1	1	-1	-2
	1 4 1 0	1 3 4 -2 1 1 0 -1	1 3 -5 4 -2 2 1 1 1 0 -1 -2	1 3 -5 2 4 -2 2 -1 1 1 1 -1 0 -1 -2 0

СП	Св.ч	x1	x2	x4	y1					
БП										
X3	1	3	-5	2	0					
x5	4	-2	2	-1	1					
У2	1	1	1	-1	-1					
Zmin	0	-1	-2	0	0					
Fmin	1	1	1	-1	-2					
			1			СП				
						БП	Св.ч	x1	х4	
						Х3	6	8	-3	
						x5	2	-4	1	
						x2	1	1	-1	
						Zmin	2	1	-2	
									,	

Задачи для самостоятельного решения

1. Привести к каноническому виду и решить симплекс - методом

$$F = 2x_1 - 5x_2 - 3x_3 \rightarrow \min,$$

$$\begin{cases}
-x_1 + x_2 + x_3 \geqslant 4, \\
2x_1 - x_2 + x_3 \leqslant 16, \\
3x_1 + x_2 + x_3 \geqslant 18, \\
x_1, x_2, x_3 \geqslant 0.
\end{cases}$$

Литература

Основные источники

- Половников Виктор Антонович Экономико-математические методы и модели: компьютерное моделирование: Учебное пособие / И.В. Орлова, В.А. Половников. 3-е изд., перераб. и доп. М.: Вузовский учебник: НИЦ ИНФРА-М, 2019. 389 с.: 60х90 1/16. (п) ISBN 978-5-9558-0208-4 http://znanium.com/catalog/product/424033
- Бережная Е.В., Бережной В.И. Математические методы моделирования экономических систем: Учеб. пособие. 2-е изд., перераб. и доп. М.: Финансы и статистика, 2018. 432 с: ил.

Дополнительные источники

- Математическое и имитационное моделирование: учеб. пособие / А.И. Безруков, О.Н. Алексенцева. М.: ИНФРА-М, 2017. 227 с. + Доп. материалы, http://znanium.com/catalog/product/811122
- Моделирование систем управления с применением Matlab: Учебное пособие / Тимохин А.Н., Румянцев Ю.Д; Под ред. А.Н.Тимохина М.: НИЦ ИНФРА-М, 2016. 256 с.: 60х90 1/16. (Высшее образование: Бакалавриат) (Переплёт) ISBN 978-5-16-010185-9 http://znanium.com/catalog/product/590240
- Интернет-ресурсы
- http://window.edu.ru
- http:// edu.ru
- http://Fcior.edu.ru