

Background of Study

 Social interaction can be analyzed based on Interpersonal Neural Synchronization (INS) level by using <u>functional neuroimaging</u> and <u>hyperscanning</u>.

EEG

fMRI

fNIRS

Problem Statements

Table 1: Student Responses to Utilizing Social Interaction in Future Classrooms

	Rating	Undergraduate content reading class (n=15)	Graduate content reading class (n=17)	Graduate practicum- based class (n=13)	
		% of responses	% of responses	% of responses	
	10	33	47	76	
	9.5	-	41	8	
Students	9	26	-	8	
extremel	8	20	12	8	3
interactic	7.5	7	-	-	
teachers	7	7	-	-	١
	6	-	-	-	
talking 90 class bas	5	7	-	-	/

1000 classroom research. (Smith, 1998 & Frey, Fisher Learning. Reading Horizons. 52 (4).

Objectives

- 1. To design a protocol to measure oxygenation level of multiple brains in classroom learning.
- To measure Interpersonal Neural Synchronization (INS) level of multiple brains among teachers and/or students.
- 3. To perform statistical analysis on Functional Near-Infrared Spectroscopy (fNIRS) data with a comparison with behavioral assessment to identify the most effective approach in classroom learning.

Scope of Study

Functional Near-Infrared Spectroscopy

- The feasibility of hyperscanning?
- Experiment Tasks of Hyperscanning

MATLAB Data Processing

Hyperscanning

Studies	Findings						
Comparison on Hyperscanning Neuroimaging Technique using EEG, fMRI	EEG is good at inter-brains interaction effect recording but difficult to						
and fNIRS	localize the epicenter of inter-brain effect.						
Koike, T., Tanabe, H. C. & Sadato, N. (2014).	2. fNIRS is better in temporal resolution and portability than fMRI. It also						
	creates natural environment for hemodynamic level measuring.						
Study on NIRS-Based Hyperscanning to measure INS level during	The highest INS level was measured in right middle, superior frontal gyrus and						

cooperation in Jenga Game

prefrontal cortex cooperation stage in Jenga Game.

dependent on cooperation level but competition and individual tasks did not

The Wavelet Transform Coherence (WTC) level of individual is highly

Liu, N. et al. (2016). Study on fNIRS-based Hyperscanning to Measure Interpersonal Coherence Level in Superior Frontal Cortex Based on Competition, Cooperation and

Single Tasks show significant increase in coherence level. Cui, X. et al. (2011). Study of fNIRS in prefrontal cortex activation during memory learning tasks 1.

There was large change of hemoglobin level during memory task (encoding stage).

There was no significant change of hemoglobin level during task

Matsui, M., Tanaka, K., Yonezawa, M. & Kurachi, M. (2007). 2.

repetition (retrieval stage). Larger Wavelet Transform Coherence (WTC) level was found during

Study of fNIRS on Brain Connectivity During Imitation by Performing Paced 1. Finger-Tapping Task (PFT) Between Instructor and Imitators

imitation (IM) condition as compared to control (CO) condition. 2. Greater extent of G-Causality existed in imitation of stimulus paced

finger tapping compared to self-paced finger tapping.

High Density fNIRS provides more accurate brain activity and resting state mapping over different cortical regions.

Experiments on fNIRS to Enable Routine Functional Brain Imaging: Implementation of High Density and wearable fNIRS and advanced signal

Holper, L., Scholkmann, F. & Wolf, M. (2012).

2.

1.

Wearable fNIRS provides natural environment and more efficient brain monitoring system.

processing techniques to enhance fNIRS performance. Yücel, M. A. et al. (2017).

Why fNIRS?

Devices	fNIRS	EEG	fMRI
Technique	Hemodynamic	Electro-Magnetic	Hemodynamic
Portability	High	High	Low
Spatial Resolution	Medium (< 1 cm)	Low (1–2 cm)	High (2–3 mm)
Temporal Resolution	Medium (10 sample/s)	High (500 sample/s)	Low (1 sample in 2s)
Deep Brain Structure	Not Measurable	Not Measurable	Measureable
Social Interaction Environment	Measureable	Measureable	Not Measurable
Price	Lower	Lower	Higher

Koike, T., Tanabe, H. C. & Sadato, N. (2014). Hyperscanning neuroimaging technique to reveal the "two-in-one" system in social interactions. *Neuroscience Research*. 90, 25–32.

Wearable Optical Topography (WOT)

- Model used: Hitachi HOT-1000
- Wearable design fNIRS with high sensitivity of APDs (avalanche photodiodes).
- Functional imaging technique with the WOT system is applicable to OT and brain activation measurement while walking in a natural environment.
- The features of HOT-1000 enable simultaneous brain data capturing in natural environment.

Wearable Optical Topography (WOT)

- Measures the changes in concentration of hemoglobin (Hb) by radiating near-infrared light into the scalp and detecting the transmitted light from another position.
- Two kinds of Hb change, oxygenated (oxy-) and deoxygenated (deoxy-), are obtained by using two different absorption data according to the modified Beer–Lambert law (MBLL).

Biological noise is reduced using the received signals from points A and B

A multi-distance measurement mode is offered by positioning additional receivers.

based on their brain coherence level

Study on EEG-Based Cognitive Load of 34 participants at multilearning state

Moona, M, M., Azrina, A., Aamir, S. M. & Hafeez, U. A. (2017).

Science of Learning

Alpha wave is the best to measure the cognitive-load in learning.

The accuracy of classification increases as the learning state is

Findings					
Students from all three courses agree that social interaction is important					
to enhance not only their learning but also problem solving skills.					
Teacher and student relationship is important in emotional and					
behavioral student engagement.					
Neural coupling and synchronization appear in successful					
communication and absent when communication is blocked.					
2. fNIRS can be a useful tool for neural coupling investigation after					
comparing with fMRI.					
1. 67%-90% increase in performance is induced by learning rule.					
2. The accuracy is determined by the frequency change in EEG and					
the response time.					
Highest INS level exists in prefrontal region during cooperation					
communication.					

2.

repeated thrice.

Learning Synchronization

Wearable Optical
 Topography is applicable
 on assessment of
 Prefrontal Cortex

- Change of oxy-hemoglobin concentration is identified as the activation channel when synchronization take place.
- Change of deoxy-hemoglobin concentration shows no significant change.

Tools

Tools	Descriptions
Hitachi HOT-1000	Used to measure the Interpersonal Neural
fNIRS	Synchronization level of multiple brains.
MATLAB	Software used to process the data received by
	fNIRS.
Classroom Setup	Classroom setup is used to demonstrate the
	experiment for multiple brains hyperscanning.
	Further detail is discussed in the section of
	Research Methodology

System Block Diagram

Wearable Optical Topography (WOT)

Methodology

Learning a Language

	Requirements	Descriptions					
10	1 tutor	Act as instructor.					
Participants	3 experts	Students who are able to					
	(Group A)	understand, write and speak					
		the language well.					
	3 learners with basic	Students who are only able to					
	knowledge	write and pronounce the simple					
	(Group B)	words of the language.					
	3 new learners	Students who do not know					
	(Group C)	anything about the language.					

Methodology

Methods	Tasks	Description
Task 1 (Learning)	Classroom Learning	Learning state will be conducted by the tutors to the 9 participants involved in the classroom.
Task 2 (Answering Question)	Quiz	 Students are required to with answer question paper provided based on different difficulty level To measure the level of understanding of students based on the response of answering question with different difficulty
Task 3 (Individual Task)	Pronunciation	 Pronounce the words given as much as possible in 1 minute. To measure students' INS level without any interaction.
Task 4 (Group Task)	Conversation	 Each learner from Group A, B and C communicates with each other by giving script and scenario. To measure students' INS level during interaction and corporation.
Rest State	Stop activity	 Learners are required to close their eyes and rest for 1 minute. Aims to help learners to recover their mental state back to normal after each task.

Methodology

MATLAB Data Processing

Software: Platform for Optical Topography Analysis Tools (POTATo)

MATLAB Data Processing

Wavelet Transform Connectivity (WTC)

Time-Domain Data

Data is less clear

Wavelet Analysis Data

Two-Time Series
 Coherence Analysis

Wavelet Analysis

Fourier Transform	Wavelet Transform						
When transforming to the frequency domain, time information is lost.	Provides Two-Time Series Data Analysis						
Stationary signal	Stationary and non-stationary signal						
Not determine local behavior of signal	Perform local analysis						
/ Sine Wave	Wavelet (db10)						
Infinite sinewave	Shifted and Scaled (mother) wavelet						

Misiti, M., Misiti, Y., Oppenheim, G. & Poggi, J. M. (n.d.). Wavelet Toolbox User Guide.

Wavelet Analysis

Time Domain Data

Fourier Transform

Wavelet Transform

Final Year Project Course Milestones

FYP 1 Week	Key Milestone	FYP 2 Week	Key Milestone
1	Final Year Project Title Selection/Proposal	1	Project Continuation
2	Project Detail by FYP Supervisor	7	Submission of Progress Report
5	Project Extended Proposal First Draft	10	Pre-SEDEX
6	Submission of FYP Extended Proposal	11	Submission of Draft Final Report
9	Proposal Defense and Progress Evaluation	12	Submission of Dissertation (soft bound)
12	Interim Report First Draft	12	Submission of Technical Paper
13	Interim Report Draft	13	Viva
14	Project Interim Report Submission	14	Submission of Project Dissertation (Hard Bound)

Project Tasks Milestones

FYP 1 Week	Key Milestone	Objectives	FYP 2 Week	Key Milestone	Objectives
1-4	Literature Review and Feasibility Study	To study and research on project related journal and article.To study on project literature review.	1-4	Data Processing	- To analyze the data obtained by using MATLAB
		- To understand about the project setup and prove its feasibility.	5	Data Validation	 To validate the result by comparing with the predicted result made in the hypothesis
5-7	Completion of Protocol Design	 To plan for project methodology and classroom learning layout. 	6-7	Debugging & Progress Report Completion	- To figure out the reason of difference between the predicted and experimental
8-9	Completion of Ethics Approval Application	 To present project standard requirement and human right involved to UTP ethics approval panels. 		report completion	result - Complete Progress Report
10-11	Completion of Experiment Layout and Materials Setup	 To prepare all materials required for classroom learning setup To prepare for project in both software and hardware. 	8	Data Compilation & Final Report Completion	To finalize and compile all analyzed data to be presentableStart on Final Report
12	Completion of Experiments	- To conduct experiments to obtain desired data by using fNIRS.	9-10	Pre-Sedex Preparation & Final Review	 Prepare for Pre-Sedex Evaluation Final Review of the project before the completion of Final Report
13	Post-Experiment Review	- To review all data obtained from experiments.			completion of Final Report
14	FYP2 Preparation	- To prepare for FYP2 for data processing.	12	Viva Preparation	- Prepare for FYP 2 Viva Presentation

Gantt Chart

Tasks/Weeks	1	2	3	4	5	9	7	89	9	10	11	12	13	14
D 17770.1														
Pre-FYP 1														
Project Title Selection														
Meeting with FYP														
Supervisor														
FYP 1 Study														
Literature Review Study														
Extended Proposal First														
Draft														
Extended Proposal														
Submission														
Feasibility Study														
FYP 1 & Evaluation														
Proposal Defense and														
Project Evaluation														
Completion of Ethics														
Approval Application														
Completion of Experiment														
Setup														
Conduct of Experiment														
Post-FYP 1														
Submission of Interim														
Report Draft														
Post-Experiment Review														
Submission of Interim														
Report														
FYP2 Preparation														

Tasks/Weeks	1	2	3	4	5	6	7	8	9	10	11	12	13	14
FYP2														
Data Processing														
Data Validation														
Data Debugging														
Data Compilation														
Progress Report Completion														
Submission of Progress Report														
Data Compilation														
Final Report Completion														П
Submission of Draft Final Report														П
Submission of Draft Dissertation (soft bound)														
Submission of Technical Paper														П
FYP 2 Evaluation														
Pre-Sedex														П
Project Viva														П
Post-FYP 2														
Submission of Dissertation (hard														
bound)														

Conclusion

- Students' interaction in the classroom affected their academic performance.
- Optical Topography (OT) System by using fNIRS (HOT-1000) is a potential solution to measure multiple brains interaction to improve learning.
- Hitachi HOT-1000 Portable fNIRS gives advantages in data capturing in a natural environment.
- The results captured will be useful for the research of scientist/engineer to enhance science of learning.

Future Works

Implementation in other learning field such as Engineering, Mathematical and Psychological Learning.

Learning development on new birth.

References

- Attaheri, A. et al. (2015). EEG potentials associated with artificial grammar learning in the primate brain. *Brain & Language*. 148, 74–80.
- Benavides-Varela, S. & Gervain, J. (2017). Learning word order at birth: A NIRS study. *Developmental Cognitive Neuroscience*. 25, 198–208.
- Cui, X. et al. (2011). NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation. *NeuroImage*. 59, 2430–2437.
- Hiroyasu, T., Yoshida, T. & Yamamoto, U. (2015). Investigation of regions of interest (ROI) through the selection of optimized channels in fNIRS data. 2015 IEEE Congress on Evolutionary Computation (CEC).
- Holper, L., Scholkmann, F. & Wolf, M. (2012). Between-brain connectivity during imitation measured by fNIRS. *Neurolmage*. 63, 212–222.
- Hurst, B., Wallace, R. & Nixon, S. B. (2013). The Impact of Social Interaction on Student Learning. *Reading Horizons*. 52 (4).
- Koike, T., Tanabe, H. C. & Sadato, N. (2014). Hyperscanning neuroimaging technique to reveal the "two-in-one" system in social interactions. *Neuroscience Research*. 90, 25–32.
- Liu, F. & Yuan, Z. (2015). Cortical changes of hemodynamic signals during motor skill learning: a functional NIRS study. TENCON 2015 - 2015 IEEE Region 10 Conference.

References

- Liu, N. et al. (2016). NIRS-Based Hyperscanning Reveals Inter-brain Neural Synchronization during Cooperative Jenga Game with Face-to-Face Communication. *Frontier in Human Neuroscience*. 10 (82).
- Li, Y., et al. (2017). Measuring speaker–listener neural coupling with functional near infrared spectroscopy. *Scientific Report.*
- Matsui, M., Tanaka, K., Yonezawa, M. & Kurachi, M. (2007). Activation of the prefrontal cortex during memory learning:

 Near-infrared spectroscopy study. *Psychiatry and Clinical Neurosciences*, 61, 31–38
- Moona, M, M., Azrina, A., Aamir, S. M. & Hafeez, U. A. (2017). An EEG-Based Cognitive Load Assessment in Multimedia Learning Using Feature Extraction and Partial Directed Coherence. *Digital Object Identifier*. 10,1109
- Nozawa, T. et al. (2016). Interpersonal frontopolar neural synchronization in group communication: An exploration toward fNIRS hyperscanning of natural interactions. *NeuroImage*. 133, 484–497.
- Stockero, S. L., Rupnow, R. L. & Pascoe, A. E. (2017). Learning to notice important student mathematical thinking in complex classroom interactions. *Teaching and Teacher Education*. 63, 384-395.
- Yücel, M. A. et al. (2017). Functional Near Infrared Spectroscopy: Enabling Routine Functional Brain Imaging. *Current Opinion in Biomedical Engineering.*

