Exercise 1.2

(a) Show that in the regression model $\log(y_i) = \alpha + \beta \log(x_i) + \epsilon_i$, the elasticity of y with respect to x is equal to β (that is, does not depend on the values of x_i and y_i).

Answer:

$$\log(y_i) = \alpha + \beta \log(x_i) + \epsilon_i$$

$$y_i = e^{\alpha + \beta \log(x_i) + \epsilon_i}$$

$$\frac{y_i}{x_i} = \frac{\beta}{x_i} e^{\alpha + \beta \log(x_i) + \epsilon_i}$$

Elasticity =
$$\frac{dy}{dx} \times \frac{x}{y} = \left(\frac{\beta}{x_i} e^{\alpha + \beta \log(x_i) + \epsilon_i}\right) \times \frac{x_i}{y_i}$$

= $\left(\frac{\beta}{x_i} y_i\right) \times \frac{x_i}{y_i} = \beta$

(b) Determine the elasticity of y with respect to x in the model $y_i = \alpha + \beta \log(x_i) + \epsilon_i$

Answer:

Elasticity =
$$\frac{dy}{dx} \times \frac{x}{y}$$

= $\frac{1}{x_i} \beta \frac{x_i}{y_i}$
= $\frac{\beta}{y_i}$

(c) Determine the elasticity of y with respect to x in the model $\log(y_i) = \alpha + \beta x_i + \epsilon_i$

Answer:

$$\log(y_i) = \alpha + \beta x_i + \epsilon_i$$
$$y_i = e^{\alpha + \beta x_i + \epsilon_i}$$

Elasticity =
$$\frac{dy}{dx} \times \frac{x}{y}$$

= $\beta e^{\alpha + \beta x_i + \epsilon_i} \frac{x_i}{y_i}$
= $\beta y_i \frac{x_i}{y_i}$
= βx_i