Predictive Modeling of risk factors in slaughterhouses using Low-cost inertial sensors

Thesis Defense

Adolfo Villalobos

Magister en Ciencias de la Ingenieria Departmento de Ingenieria Industrial Pontificia Universidad Catolica de Chile

15 November 2020

Outline

- 1 Work-Related Muscukuloskeletal Disorders in Slaughterhouses
- 2 Thesis Hypothesis and Objectives
- 3 Methodology, Prototype & Experiments
- 4 Predictive Modeling & Decision Making
- 5 Conclusions
- 6 Energy, Infrastructure, City
- 7 Sustainable model use
- 8 Mathematical modelling, optimisation, case study

Section 1

Work-Related Muscukuloskeletal Disorders in Slaughterhouses

State of the Slaughterhouse Industry

(BMUB 2015/16)

- 1. Labour is a high pertcentage of the costs.
- 2. Fatigue and bad practices lead to injuries, absenteesim and costs.

Literature Review

State of the Slaughterhouse Industry

(BMUB 2015/16)

- 1. Labour is a high pertcentage of the costs.
- 2. Fatigue and bad practices lead to injuries, absenteesim and costs.

Section 2

Thesis Hypothesis and Objectives

Section 3 Methodology, Prototype & Experiments

Section 4 **Predictive Modeling & Decision Making**

Section 5 Conclusions

Section 6 **Energy, Infrastructure, City**

Questions about Germany's Climate Action Plan 2050

(BMUB 2015/16)

 How can the almost complete transition from fossil fuels to renewable energy sources for electricity generation be accomplished by 2050?

Questions about Germany's Climate Action Plan 2050

(BMUB 2015/16)

- How can the almost complete transition from fossil fuels to renewable energy sources for electricity generation be accomplished by 2050?
- 2. How can we build acceptance for a timely grid expansion?

Questions about Germany's Climate Action Plan 2050

(BMUB 2015/16)

- How can the almost complete transition from fossil fuels to renewable energy sources for electricity generation be accomplished by 2050?
- 2. How can we build acceptance for a timely grid expansion?
- 3. What proportion of fossil fuel burning power stations do we need for a transitional period, and for how long?

Questions about Germany's Climate Action Plan 2050

(BMUB 2015/16)

- How can the almost complete transition from fossil fuels to renewable energy sources for electricity generation be accomplished by 2050?
- 2. How can we build acceptance for a timely grid expansion?
- 3. What proportion of fossil fuel burning power stations do we need for a transitional period, and for how long?
- 4. Which role do decentralised energy supply concepts play?

Questions about Germany's Climate Action Plan 2050

(BMUB 2015/16)

- How can the almost complete transition from fossil fuels to renewable energy sources for electricity generation be accomplished by 2050?
- 2. How can we build acceptance for a timely grid expansion?
- 3. What proportion of fossil fuel burning power stations do we need for a transitional period, and for how long?
- 4. Which role do decentralised energy supply concepts play?
- 5. How can the electricity and heating/cooling markets be more closely integrated [...]?

Perspective

Disciplines for investigating energy topics

Physics

Theoretical feasibility (Natural laws)

Engineering

Technical feasibility (Technologies)

Economy

Economic feasibility (Funding)

Society

Social feasibility (Decision space)

Perspective

Disciplines for investigating energy topics

Physics

Theoretical feasibility (Natural laws)

Engineering

Technical feasibility (Technologies)

Economy

Economic feasibility (Funding)

Society

Social feasibility (Decision space)

Techno-economic modelling

How much energy? For how much?

Section 7 Sustainable model use

Research question

Research question Modelling assumptions

Conclusion

Section 8

Mathematical modelling, optimisation, case study

Model overview

https://github.com/tum-ens/urbs

https://github.com/tum-ens/rivus

Sets
$$t \in T, p \in P, s \in S, ...$$

Parameters d_t

Sets
$$t \in T$$
, $p \in P$, $s \in S$, ...
Parameters d_t , k_p^{fix} , $k_s^{fix,c}$, $k_s^{fix,p}$

Sets
$$t \in T$$
, $p \in P$, $s \in S$, ...
Parameters d_t , k_p^{fix} , $k_s^{\text{fix,c}}$, $k_s^{\text{fix,p}}$, k_p^{var} , k_s^{var} , ...

```
\begin{array}{ll} \text{Sets} & t \in \mathcal{T}, \ p \in P, \ s \in \mathcal{S}, \ \dots \\ \\ \text{Parameters} & d_t, \ k_p^{\text{fix}}, \ k_s^{\text{fix,c}}, \ k_s^{\text{fix,p}}, \ k_p^{\text{var}}, \ k_s^{\text{var}}, \ \dots \\ \\ \text{Variables} & \kappa_p, \ \kappa_s^c, \ \kappa_s^p \end{array}
```

$$\begin{array}{ll} \text{Sets} & t \in \mathcal{T}, \ p \in P, \ s \in \mathcal{S}, \ \dots \\ \\ \text{Parameters} & d_t, \ k_p^{\text{fix}}, \ k_s^{\text{fix,c}}, \ k_s^{\text{fix,p}}, \ k_p^{\text{var}}, \ k_s^{\text{var}}, \ \dots \\ \\ \text{Variables} & \kappa_p, \ \kappa_s^{\text{c}}, \ \kappa_s^{\text{p}}, \ \epsilon_{pt}, \ \epsilon_{st}^{\text{in}}, \ \epsilon_{st}^{\text{out}}, \ \epsilon_{st}^{\text{con}}, \ \dots \end{array}$$

$$\begin{array}{lll} \text{Sets} & t \in \mathcal{T}, \ \rho \in P, \ s \in \mathcal{S}, \ \dots \\ \\ \text{Parameters} & d_t, \ k_p^{\text{fix}}, \ k_s^{\text{fix,c}}, \ k_s^{\text{fix,p}}, \ k_p^{\text{var}}, \ k_s^{\text{var}}, \ \dots \\ \\ \text{Variables} & \kappa_p, \ \kappa_s^{\text{c}}, \ \kappa_s^{\text{p}}, \ \epsilon_{pt}, \ \epsilon_{st}^{\text{in}}, \ \epsilon_{st}^{\text{out}}, \ \epsilon_{st}^{\text{con}}, \ \dots \\ \\ \text{Objective} & \min \sum_{p \in P} \left(k_p^{\text{fix}} \kappa_p + \sum_{t \in \mathcal{T}} k^{\text{var}} \epsilon_{pt} \right) + \\ & \sum_{s \in \mathcal{S}} \left(k_s^{\text{fix,c}} \kappa_s^{\text{c}} + k_s^{\text{fix,p}} \kappa_s^{\text{p}} + \sum_{t \in \mathcal{T}} k_s^{\text{var}} \left(\epsilon_{st}^{\text{in}} + \epsilon_{st}^{\text{out}} \right) \right) \end{array}$$

Sets
$$t \in \mathcal{T}, \ p \in P, \ s \in S, \ldots$$

Parameters $d_t, \ k_p^{\text{fix}}, \ k_s^{\text{fix,c}}, \ k_s^{\text{fix,p}}, \ k_p^{\text{var}}, \ k_s^{\text{var}}, \ldots$

Variables $\kappa_p, \ \kappa_s^c, \ \kappa_s^p, \ \epsilon_{pt}, \ \epsilon_{st}^{\text{in}}, \ \epsilon_{st}^{\text{out}}, \ \epsilon_{st}^{\text{con}}, \ldots$

Objective $\min \sum_{p \in P} \left(k_p^{\text{fix}} \kappa_p + \sum_{t \in \mathcal{T}} k^{\text{var}} \epsilon_{pt} \right) + \sum_{s \in S} \left(k_s^{\text{fix,c}} \kappa_s^c + k_s^{\text{fix,p}} \kappa_s^p + \sum_{t \in \mathcal{T}} k_s^{\text{var}} \left(\epsilon_{st}^{\text{in}} + \epsilon_{st}^{\text{out}} \right) \right)$

Constraints s.t. $\forall t \in \mathcal{T}$: $\sum_{p \in P} \epsilon_{pt} + \sum_{s \in S} \left(\epsilon_{st}^{\text{out}} - \epsilon_{st}^{\text{in}} \right) = d_t$

Standard form of linear optimisation problems (LP)

Generic form

$$\min_{\boldsymbol{x}} z = \boldsymbol{c}^\mathsf{T} \boldsymbol{x}$$

s.t.
$${\it Ax} \le {\it b}$$

with
$$\mathbf{x} \in \mathbb{R}^n$$
, $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{c} \in \mathbb{R}^n$.

$$LP \quad z = k_i^{\text{var}} x_i \\
x_i \le M$$

LP
$$z = k_i^{\text{var}} x_i$$

 $x_i \leq M$

LP
$$\frac{z}{x_i} = k_i^{\text{var}} \equiv \text{const}$$

$$LP \quad z = k_i^{\text{var}} x_i \\
x_i \le M$$

LP
$$\frac{z}{x_i} = k_i^{\text{var}} \equiv \text{const}$$

MILP $\frac{z}{x_i} = k_i^{\text{var}} + \frac{k_i^{\text{fix}}}{x_i}$

MILP
$$\frac{z}{x_i} = k_i^{\text{var}} + \frac{k_i^{\text{TI}}}{x_i}$$

LP $z = k_i^{\text{var}} x_i$ $\chi_i < M$

MILP $z = k_i^{fix} y_i + k_i^{var} x_i$ $y_i \in \{0, 1\}$ $m y_i < x_i < M y_i$

LP
$$\frac{z}{x_i} = k_i^{\text{var}} \equiv \text{const}$$

MILP $\frac{z}{x_i} = k_i^{\text{var}} + \frac{k_i^{\text{fix}}}{x_i}$

$$MILP \quad \frac{2}{x_i} = k_i^{\text{var}} + \frac{\kappa_i}{x_i}$$

rivus

rivus

Input data rivus

Light industry (Schletter) biggest single consumer

https://github.com/tum-ens/rivus/data/haag15

Result **rivus** – Capacities in scenario base

Full networks for electricity and gas, several local heating networks

https://github.com/tum-ens/rivus/runhg15.py:scenario_no_electric_heating()

Result **rivus** – Capacities in scenario future

Strong electricity grid, no gas network, only heat pumps

https://github.com/tum-ens/rivus/runhg15.py:scenario_renovation()

Result **urbs** – 1 week electricity in scenarios base

https://github.com/ojdo/urbs/tree/haag15/rivhg15.py:scenario_base()

Result **urbs** – 1 week electricity in scenario cheap battery

https://github.com/ojdo/urbs/tree/haag15/rivhg15.py:scenario_cheap_battery()