Structured Training for Neural Network Transition-Based Parsing

渡辺有祐 SONY

論文 概要

transition-based dependency parsingをNeural
 Netを用いて行った

PennTreebankデータセットで最高性能を達成

- UAS: 94.26%

- LAS: 92.41%

性能比較 (PTB, UAS)

http://nodalida2011.lumii.lv/slides/nivre.pdf

関連研究

• 先行研究

 – [Chen and Manning EMNLP2014] A fast and accurate dependency parser using neural networks

関連研究

- [Dyer et al. ACL2015] Transition-Based Dependency
 Parsing with Stack Long Short-Term Memory
- [Alberti et al. EMNLP2015] Improved Transition-Based
 Parsing and Tagging with Neural Networks

dependency parsing

- 文から dependency parsing を計算する手法は主に **Graph-based** と **Transition-based** がある。
- この論文では Transition-basedなアプローチを採用する。

Arc-standard

能地さんスライド

People write Java with tears

Stack			

Buffer (Input)

People write Java with tears

SH

Ctool

Actions

SH Shift: Bufferの先頭をStackに移動

L LeftReduce: スタックの先頭2つをくっつける(右がhead)

Arc-standard

People write Java with tears

Stack

Buffer (Input)

People

write Java with tears

SH SH

Actions

SH Shift: Bufferの先頭をStackに移動

L LeftReduce: スタックの先頭2つをくっつける(右がhead)

Arc-standard

People write Java with tears

Stack

Buffer (Input)

People write

Java with tears

SH SH L

Actions

SH Shift: Bufferの先頭をStackに移動

L LeftReduce: スタックの先頭2つをくっつける(右がhead)

People write Java with tears

Actions

SH Shift: Bufferの先頭をStackに移動

L LeftReduce: スタックの先頭2つをくっつける(右がhead)

People write Java with tears

Actions

SH Shift: Bufferの先頭をStackに移動

L LeftReduce: スタックの先頭2つをくっつける(右がhead)

Arc-standard

People write Java with tears

Actions

SH Shift: Bufferの先頭をStackに移動

L LeftReduce: スタックの先頭 2 つをくっつける(右がhead)

Arc-standard

People write Java with tears

Actions

SH Shift: Bufferの先頭をStackに移動

L LeftReduce: スタックの先頭2つをくっつける(右がhead)

Arc-standard

People write Java with tears

Actions

SH Shift: Bufferの先頭をStackに移動

L LeftReduce: スタックの先頭 2 つをくっつける(右がhead)

Transitionの学習

- ある"状態"で、{Shift, Left, Right} のどのtransitionを行うのかの判別器を学習する
 - "状態"を表現する特徴ベクトルを入力する
 - 判別器=NN

$$L(\Theta) = -\sum_{j} \log P(y_j \mid c_j, \Theta) + \lambda \sum_{i} ||\mathbf{W}_i||_2^2,$$

Neural Network Model (入力部)

- 入力は0,1ベクトル
 - スタック内の単語、POSタグ、ラベルなどのフラグ
- これが、denseなベクトルになる

Neural Network Model

Structured Perceptron (1/2)

- 系列全体を見て、Transitionを決めたほうが良さ そう ⇒ モデルの最後段に Structured Perceptron を付け加えよう!
 - これにより、0.6%程度性能向上

Structured Perceptron (2/2)

$$\underset{y \in \text{GEN}(x)}{\operatorname{argmax}} \sum_{j=1}^{m} \mathbf{v}(y_j) \cdot \phi(x, y_1 \dots y_{j-1})$$

$$[\mathbf{h}_1 \ \mathbf{h}_2 \ P(y)]$$

この特徴量に、先ほどのNNの出力と中間層の発火を用いる。

- 係数v(y)を学習する
- 学習方法
 - ビームサイズをBとする
 - 各訓練サンプル文に対し、beam searchを実行していき、正解の系列がB個の中に入らなくなった時点jで止める
 - B個の中でスコアが最高のものをnegative sampleとして学習

実験結果 (PTB)

Method	UAS	LAS	Beam
Graph-based			
Bohnet (2010)	92.88	90.71	n/a
Martins et al. (2013)	92.89	90.55	n/a
Zhang and McDonald (2014)	93.22	91.02	n/a
Transition-based			
*Zhang and Nivre (2011)	93.00	90.95	32
Bohnet and Kuhn (2012)	93.27	91.19	40
Chen and Manning (2014)	91.80	89.60	1
S-LSTM (Dyer et al., 2015)	93.20	90.90	1
Our Greedy	93.19	91.18	1
Our Perceptron	93.99	92.05	8
Tri-training			
*Zhang and Nivre (2011)	92.92	90.88	32
Our Greedy	93.46	91.49	1
Our Perceptron	94.26	92.41	8

まとめ

- NNを使って、高性能なdependency parserを作ることが出来た。
- 手法は、[Chen and Manning 2014]を改良したもの
 - NNの構成を改良
 - 最後にStructured Perceptronを付け加えた
 - "Tri-training"
- 感想
 - 本気でチューニングすればもう少し性能が上がりそう