EVOLVING CONTROLLABLY DIFFICULT DATASETS FOR CLUSTERING

GECCO 2019

Cameron Shand¹, Richard Allmendinger², Julia Handl², Andrew Webb¹, & John Keane¹

¹School of Computer Science, University of Manchester

²Alliance Manchester Business School, University of Manchester

Generating Problems for Algorithm Selection

• Predict which algorithm in a portfolio will perform best¹

¹Rice, J. R. (1976). The algorithm selection problem. In Advances in computers (Vol. 15, pp. 65-118). Elsevier.

- Predict which algorithm in a portfolio will perform best¹
- Requires a range of features that represent the problems/instances²

¹Rice, J. R. (1976). The algorithm selection problem. In Advances in computers (Vol. 15, pp. 65-118). Elsevier.

²Smith-Miles, K., & Lopes, L. (2012). Measuring instance difficulty for combinatorial optimization problems. Computers & Operations Research, 39(5), 875-889.

- Predict which algorithm in a portfolio will perform best¹
- Requires a range of features that represent the problems/instances²
- Learn mapping between problem features and algorithmic performance

¹Rice, J. R. (1976). The algorithm selection problem. In Advances in computers (Vol. 15, pp. 65-118). Elsevier.

²Smith-Miles, K., & Lopes, L. (2012). Measuring instance difficulty for combinatorial optimization problems. Computers & Operations Research, 39(5), 875-889.

- Predict which algorithm in a portfolio will perform best¹
- Requires a range of features that represent the problems/instances²
- Learn mapping between problem features and algorithmic performance
- Need problems with diverse features to learn mapping

¹Rice, J. R. (1976). The algorithm selection problem. In Advances in computers (Vol. 15, pp. 65-118). Elsevier.

²Smith-Miles, K., & Lopes, L. (2012). Measuring instance difficulty for combinatorial optimization problems. Computers & Operations Research, 39(5), 875-889.

Instance space

Visualization of problem instances to identify algorithmic differential performance

Source: Smith-Miles, K, Baatar, D., Wreford, B., & Lewis, R. (2014). Towards objective measures of algorithm performance across instance space. Computers & Operations Research, 45, 12-24.

 $\boldsymbol{\cdot}$ Create datasets with properties not currently exhibited

- Create datasets with properties not currently exhibited
- Datasets across a gradient of difficulty

- Create datasets with properties not currently exhibited
- Datasets across a gradient of difficulty
- · Requires a flexible generating mechanism

- Create datasets with properties not currently exhibited
- Datasets across a gradient of difficulty
- Requires a flexible generating mechanism
- May require optimization to generate specific properties

Generating Synthetic Clusters

Cluster properties & challenges

Inspiration from: Handl, J., & Knowles, J. (2006). Multi-objective clustering and cluster validation. In Multi-Objective Machine Learning (pp. 21-47). Springer, Berlin, Heidelberg.

Cluster properties & challenges

Inspiration from: Handl, J., & Knowles, J. (2006). Multi-objective clustering and cluster validation. In Multi-Objective Machine Learning (pp. 21-47). Springer, Berlin, Heidelberg.

Existing cluster generators

Scikit-learn 'circles'

Scikit-learn 'blobs'¹

¹Pedregosa, F., ..., & Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12(Oct), 2825-2830.

Existing cluster generators

¹Pedregosa, F., ..., & Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12(Oct), 2825-2830.

² Handl, J., & Knowles, J. (2005). Improvements to the scalability of multiobjective clustering. In 2005 IEEE Congress on Evolutionary Computation (vol. 3, pp. 237-2379). IEEE.

Existing cluster generators

¹Pedregosa, F., ..., & Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12(Oct), 2825-2830.

²Handl, J., & Knowles, J. (2005). Improvements to the scalability of multiobjective clustering. In 2005 IEEE Congress on Evolutionary Computation (Vol. 3, pp. 2372-2379). IEEE.

³ Oiu, W., & Joe, H. (2006), Generation of random clusters with specified degree of separation, Journal of Classification, 23(2), 315-334.

Handl Allmendinger Webb Keane Shand

HAWKS KASH Generator

· Aim: optimize to a pre-defined value of "difficulty"

¹Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J. M., & Perona, I. (2013). An extensive comparative study of cluster validity indices. Pattern Recognition, 46(1), 243-256.

- · Aim: optimize to a pre-defined value of "difficulty"
- · Maximizing e.g. separation would be too simple...

¹Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J. M., & Perona, I. (2013). An extensive comparative study of cluster validity indices. Pattern Recognition, 46(1), 243-256.

- · Aim: optimize to a pre-defined value of "difficulty"
- · Maximizing e.g. separation would be too simple...
- · Minimizing e.g. separation would be meaningless...

¹Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J. M., & Perona, I. (2013). An extensive comparative study of cluster validity indices. Pattern Recognition, 46(1), 243-256.

- · Aim: optimize to a pre-defined value of "difficulty"
- · Maximizing e.g. separation would be too simple...
- · Minimizing e.g. separation would be meaningless...
- Using multiple cluster quality measures could get tricky...¹

¹Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J. M., & Perona, I. (2013). An extensive comparative study of cluster validity indices. Pattern Recognition, 46(1), 243-256.

Silhouette width issues

- Silhouette width (sw) gives ratio of compactness and separation
- · Calculated for each data point, in range [–1, 1]

Silhouette width issues

- Silhouette width (sw) gives ratio of compactness and separation
- · Calculated for each data point, in range [-1, 1]
- Average over data can lead to minima both examples below have sw = 0.9

Example 1

Example 2

- Use pre-defined silhouette width as the target (s_t)
- · Gives rough indication of "clusterability"
- \cdot Minimize difference between individual's sw and s_t

$$\min f(\mu_1, \Sigma_1, \dots, \mu_K, \Sigma_K) = |s_t - sw|$$

overlap =
$$1 - \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{C^{i}}(i_{nn})$$

$$\mathbb{1}_{C^i}(i_{nn}) := \begin{cases} 1, & i_{nn} \in C^i \\ 0, & i_{nn} \notin C^i \end{cases}$$

$$i's \text{ nearest }$$

$$neighbour$$

$$i's \text{ cluster}$$

Augmenting difficulty - eccentricity

Ratio of largest to smallest principal axis

Augmenting difficulty - eccentricity

Ratio of largest to smallest principal axis

$$\lambda^{ratio} = \max_{\forall k \in \{1, \dots, K\}} \frac{\max \forall i \in \{1, \dots, D\} \sum_{ii}^{k}}{\min \forall i \in \{1, \dots, D\} \sum_{ii}^{k}}$$

Cluster representation

- K Gaussians are specified
- Encoded as the means (μ) and covariances (Σ)
- Each μ represents D variables
- Each Σ represents
 D × D variables

How do you randomly perturb a cluster?

Deal with μ and Σ separately

How do you randomly perturb a cluster?

Deal with μ and Σ separately

Mean

Sample new mean from standard Gaussian around current mean

How do you randomly perturb a cluster?

Deal with μ and Σ separately

Mean

Sample new mean from standard Gaussian around current mean

Covariance

Randomly rotate covariance

How do you randomly perturb a cluster?

Deal with μ and Σ separately

Mean

Sample new mean from standard Gaussian around current mean

Covariance

Randomly rotate covariance

Combined

Either, neither, or both can occur

Fitness vs constraints

Stochastic ranking (simplified)

```
for i in num_sweeps:
     for j in pop_size:
          I_1 = pop[j]
          I_2 = pop[j+1]
          u = random(0,1)
          if (I_1^{feasible}) and I_2^{feasible} or u < P_{fitness}:
                if I_1^{\text{fitness}} > I_2^{\text{fitness}}:
                     swap(I_1,I_2)
          else if I_1^{penalty} > I_2^{penalty}:
               swap(I_1,I_2)
     if no swaps:
          break
```

Runarsson, T. P., & Yao, X. (2000). Stochastic ranking for constrained evolutionary optimization. IEEE Transactions on evolutionary computation, 4(3), 284-294.

Silhouette width & dimensionality — setup

Start with overlapping

Gradually separate in 1

Until well-separated

Silhouette width & dimensionality — results

 Gradual increase in silhouette width alongside overlap decrease in 2D

Silhouette width & dimensionality — results

- Gradual increase in silhouette width alongside overlap decrease in 2D
- Little initial change in silhouette width with overlap decrease in 20D

Balancing fitness and constraints — setup

- \cdot Aim: Vary $P_{fitness}$ with conflicting silhouette width and overlap
- How is the search affected?
- Does it result in different algorithmic performance?

Balancing fitness and constraints — setup

- \cdot Aim: Vary $P_{fitness}$ with conflicting silhouette width and overlap
- · How is the search affected?
- Does it result in different algorithmic performance?

Parameter	Value(s)
P _{fitness}	{0.1, 0.5, 0.9}
St	0.2 (20D)
	0.6 (2D)
Overlap	≤ 0
Eccentricity	Unconstrained

Balancing fitness and constraints — results

 P_{fitness} did clearly affect which solutions were favoured (20D shown)

Balancing fitness and constraints — results

 P_{fitness} did clearly affect which solutions were favoured (20D shown)

- Performance was best with low overlap
- GMM was most robust to increasing overlap

Generator comparison — setup

- · Aim: Generate a set of diverse datasets
- \cdot Does changing s_t actually affect algorithmic performance?
- How does the difference compare to other generators?

Generator comparison — setup

- · Aim: Generate a set of diverse datasets
- \cdot Does changing s_t actually affect algorithmic performance?
- How does the difference compare to other generators?

Parameter	Value(s)
K	{5,30}
D	{2,20}
$P_{fitness}$	0.5
St	$\{0.2, 0.5, 0.8\}$
Overlap	≤ 0
Eccentricity	Unconstrained

Generator comparison — setup

- · Aim: Generate a set of diverse datasets
- \cdot Does changing s_t actually affect algorithmic performance?
- How does the difference compare to other generators?

Parameter	Value(s)
K	{5,30}
D	{2,20}
$P_{fitness}$	0.5
St	$\{0.2, 0.5, 0.8\}$
Overlap	≤ 0
Eccentricity	Unconstrained

Generator	# Datasets
HAWKS	240
QJ	243
HK	160

Generator comparison — results

- · Spread of results across the generators
- QJ more favoured to compactness-based algorithms
- HK somewhat better at linkage-based
- · HAWKS has reasonable performance range

Generator comparison — instance space?

- Simple instance space from 3 features
- Similarly covered space from QJ & HAWKS

Generator comparison — instance space?

- Simple instance space from 3 features
- Similarly covered space from QJ & HAWKS

- Some areas show preference
- Mostly dominated by GMM/Average-linkage

Summary & Future Work

Summary

Synthetic data is needed in clustering for insightful empirical comparison

Summary

- Synthetic data is needed in clustering for insightful empirical comparison
- Our tool, HAWKS, allows for the generation of datasets of various complexity

Summary

- Synthetic data is needed in clustering for insightful empirical comparison
- Our tool, HAWKS, allows for the generation of datasets of various complexity
- Further work is needed to expand the complexities that can be introduced to the data

Non-convex clusters

- Non-convex clusters
- Multiple objectives

- · Non-convex clusters
- Multiple objectives
- Inclusion other cluster properties/challenges

- Non-convex clusters
- · Multiple objectives
- Inclusion other cluster properties/challenges
- · Benchmark suite construction

Questions?

Code available via:

github.com/sea-shunned/hawks or pip install hawks

Crossover

Freely exchange μ and Σ separately

Exchange μ and Σ together

Generator Datasets Silhouette & Overlap

$$s(i) = \frac{-a(i)}{\max\{a(i),}$$

$$s(i) = \frac{b(i) - a(i)}{max\{a(i), b(i)\}}$$

$$s(i) = \frac{b(i) - a(i)}{max\{a(i), b(i)\}}$$

$$s_{all} = \frac{1}{N} \sum_{i=1}^{N} s(i)$$

 Real-world data allows us to directly test algorithmic applicability¹

¹Von Luxburg, U., Williamson, R. C., & Guyon, I. (2012, June). Clustering: Science or art?. In Proceedings of ICML Workshop on Unsupervised and Transfer Learning (pp. 65-79).

² Hooker, J. N. (1995). Testing heuristics: We have it all wrong. Journal of heuristics, 1(1), 33-42.

³ Macià, N., & Bernadó-Mansilla, E. (2014). Towards UCI+: a mindful repository design. Information Sciences, 261, 237-262.

- Real-world data allows us to directly test algorithmic applicability¹
- Difficult to make sufficiently complex synthetic data

¹Von Luxburg, U., Williamson, R. C., & Guyon, I. (2012, June). Clustering: Science or art?. In Proceedings of ICML Workshop on Unsupervised and Transfer Learning (pp. 65-79).

²Hooker, J. N. (1995). Testing heuristics: We have it all wrong. Journal of heuristics, 1(1), 33-42.

³ Macià, N., & Bernadó-Mansilla, E. (2014). Towards UCI+: a mindful repository design. Information Sciences, 261, 237-262.

- Real-world data allows us to directly test algorithmic applicability¹
- Difficult to make sufficiently complex synthetic data
- Synthetic data has corresponding generating model

¹Von Luxburg, U., Williamson, R. C., & Guyon, I. (2012, June). Clustering: Science or art?. In Proceedings of ICML Workshop on Unsupervised and Transfer Learning (pp. 65-79).

²Hooker, J. N. (1995). Testing heuristics: We have it all wrong. Journal of heuristics, 1(1), 33-42.

³Macià, N., & Bernadó-Mansilla, E. (2014). Towards UCI+: a mindful repository design. Information Sciences, 261, 237-262.

- Real-world data allows us to directly test algorithmic applicability¹
- · Difficult to make sufficiently complex synthetic data
- Synthetic data has corresponding generating model
- Benchmarks allow for community-wide comparisons, with a range of data properties^{2,3}

¹Von Luxburg, U., Williamson, R. C., & Guyon, I. (2012, June). Clustering: Science or art?. In Proceedings of ICML Workshop on Unsupervised and Transfer Learning (pp. 65-79).

²Hooker, J. N. (1995). Testing heuristics: We have it all wrong. Journal of heuristics, 1(1), 33-42.

³Macià, N., & Bernadó-Mansilla, E. (2014). Towards UCI+: a mindful repository design. Information Sciences, 261, 237-262.