

BEUTH HOCHSCHULE FÜR TECHNIK BERLIN University of Applied Sciences

Stromversorgung elektronischer Geräte

Prof. Dr.-Ing. Sven Tschirley

Version

Prof. Dr.-Ing. Sven Tschirley

SEG4 1/49

Teil I

Regelung von DC/DC-Wandlern

lotizen			
lotizen			
lotizen			
otizen			
otizen			
lotizen			
lotizen			
lotizen			
otizen			
lotizen			
lotizen			
lotizen			

Einfaches Schaltnetzteil Stabilität

Dynamik eines Tiefsetzstellers

Modellierung des Tiefsetzstellers Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers Steuerung mit konstantem Einschleifige Spannungsregelung Spannungsregelung mit Spannungsregelung mit Vorsteuerung

Regler als P-Regler

Regelung von DC/DC-Wandlern

Prof. Dr.-Ing. Sven Tschirley

SEG4 Teil 6: Regelung von DC/DC-Wandlern 3/49

Einfaches Schaltnetzteil

Einfaches

Stabilität

Dynamik eines Tiefsetzstellers

Modellierung des Tiefsetzstellers Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers Steuerung mit konstantem Tastverhältnis Einschleifige Spannungsregelung Spannungsregelung mit Vorsteuerung Spannungsregelung mit Vorsteuerung Regler als P-Regler

PWM Erzeugung

Notizen

Einfaches Schaltnetzteil Stabilität

Dynamik eines Tiefsetzstellers

Modellierung des Tiefsetzstellers Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers Steuerung mit konstantem Tastverhältnis Einschleifige Spannungsregelung mit Vorsteuerung Spannungsregelung mit Vorsteuerung Spannungsregelung mit Vorsteuerung tiefsetzen des Spannungsregelung mit Vorsteuerung Spannungsregelung mit Vorsteuerung mit Vorsteuerung Spannungsregelung mit Vorsteuerung Mit Vorsteuerung Spannungsregelung mit Vorsteuerung Mit Vorsteuerung

Regler als P-Regler

Prof. Dr.-Ing. Sven Tschirley

SEG4 Teil 6: Regelung von DC/DC-Wandlern 6/49

Sägezahnspannung

Einfaches Schaltnetztei Stabilität

Dynamik eines Tiefsetzstellers

Modellierung des Tiefsetzstellers Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers Steuerung mit konstantem Tastverhältnis Einschleifige Spannungsregelung mit Vorsteuerung Spannungsregelung mit Vorsteuerung Regler als P-Regler

	_
Notizen	
	_
	_

Prinzip einer einfachen geregelten PWM-Erzeugung

Notizen

Stabilität

Dynamik eines

Modellierung des Tiefsetzstellers Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers Steuerung mit konstantem Einschleifige Spannungsregelung Spannungsregelung mit Spannungsregelung mit

Regler als P-Regler

- Regelverstärker kann analog oder digital realisiert werden
- PI-Regler ist üblich

- Für Reglerdimensionierung macht Kenntnis der Strecke notwendig
- Schaltung ist nur stabil, wenn Regler **und** Strecke zusammen stabil sind
- Strecke ist komplex, z. B. durch Nicht-Linearitäten wegen Lück-Betrieb

Prof. Dr.-Ing. Sven Tschirley

SEG4 Teil 6: Regelung von DC/DC-Wandlern 8/49

Analoger PI-Regler

Stabilität Dynamik eines

Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers

Spannungsregelung mit Spannungsregelung mit Regler als P-Regler

Reglergleichung

$$y_{\rm PI}(t) = K_{\rm P} \cdot e(t) + K_{\rm I} \int_0^t e(\tau) d\tau \tag{1}$$

Sprungantwort

Prof. Dr.-Ing. Sven Tschirley

Notizen

Analoger PI-Regler

$$H_{\mathrm{PI}}(j\omega) = -\left(\frac{R_2}{R_1} + \frac{1}{j\omega R_1 C}\right)$$
 (2)

t

Notizen

Einfaches Schaltnetzteil Stabilität

Dynamik eines

Modellierung des Tiefsetzstellers Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers Steuerung mit konstantem

Einschleifige Spannungsregelung Spannungsregelung mit Vorsteuerung

Vorsteuerung
Spannungsregelung mit
Vorsteuerung
Regler als P-Regler

Prof. Dr.-Ing. Sven Tschirley

SEG4 Teil 6: Regelung von DC/DC-Wandlern 10/49

Digitaler PI-Regler

Handout

Einfachster Ansatz:

■ Die Gleichung des Reglers wird zu diskreten Zeitpunkten ausgewertet, genau zu diesen Zeitpunkten wird ein Fehlerwert $e(kT_{\rm A})$ aus gemessenen Soll- und Istwerten bestimmt und der Ausgangswert $y(kT_{\rm A})$ bestimmt:

$$y_{\rm PI}(kT_{\rm A}) = K_{\rm P} \cdot e(kT_{\rm A}) + K_{\rm I} \int_{0}^{kT_{\rm A}} e(\tau)d\tau \tag{3}$$

Stabilität

Dynamik eines Tiefsetzstellers

Einfaches

Modellierung des Tiefsetzstellers Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers Steuerung mit konstantem Tastverhältnis Einschleifige

Spannungsregelung Spannungsregelung mit Vorsteuerung Spannungsregelung mit Vorsteuerung Regler als P-Regler

Notizen				
Notizen				
	Notizen			

Strukturen mit digitalem Regeler

Motizon

Einfaches Schaltnetzteil Stabilität

Dynamik eines Tiefsetzstellers

Modellierung des Tiefsetzstellers Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers Steuerung mit konstantem Tastverhältnis Einschleftige Spannungsregelung

Spannungsregelung mit Vorsteuerung

Regler als P-Regler

Prof. Dr.-Ing. Sven Tschirley

Prof. Dr.-Ing. Sven Tschirley

SEG4 Teil 6: Regelung von DC/DC-Wandlern 12/49

SEG4 Teil 6: Regelung von DC/DC-Wandlern 13/49

Strukturen mit digitalem Regeler und PWM Erzeugung

Einfaches Schaltnetzteil

Dynamik eines Tiefsetzstellers

Stabilität

Modellierung des Tiefsetzsellers Dynamik des Tiefsetzsellers Regelung des Tiefsetzsellers Steuerung mit konstantem Tastverhältnis Einschleifige Spannungsregelung mit Vorsteuerung Spannungsregelung mit Vorsteuerung Regler als P-Regier

VOLIZEIT			
lotizen			

Ein paar Worte zur Stabilität

Notizen

Einfaches

Stabilität

Modellierung des Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers Steuerung mit konstantem Einschleifige Spannungsregelung Spannungsregelung mit

Spannungsregelung mit Regler als P-Regler

Bild: [Tieste]

$$F_W(s) = \frac{F_R(s) F_S(s)}{1 + F_R(s) F_S(s)} \tag{4}$$

- Regelkreise werden problematisch, wenn aus Gegenkopplung eine Mitkopplung wird
- In stabilen Systemen haben alle Polstellen von $F_W(s)$ einen negativen Realteil, das ist im Einzelfall zu prüfen

Prof. Dr.-Ing. Sven Tschirley

SEG4 Teil 6: Regelung von DC/DC-Wandlern 14/49

Ziele der Bemühungen

Handout

Einfaches Schaltnetzteil

Dynamik eines

Stabilität

Modellierung des Tiefsetzstellers

Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers Steuerung mit konstanten Einschleifige Spannungsregelung Spannungsregelung mit Spannungsregelung mit Vorsteuerung

Regler als P-Regler

Ziele

- Um die Regelung zu realisieren muss die Übertragungsfunktion der Regelstrecke bestimmt werden.
- Diese Strecke ist z. B. ein Tiefsetzsteller, die Störgrößen sind
 - Sprünge der Last durch Widerstandsänderungen
 - Sprünge der Zwischenkreisspannung

Was wir brauchen, ist ein mathematisches Modell der Regelstrecke. ⇒Wir machen also mathematische Modellbildung.

Notizen		
Notizen		
	Notizen	

Tiefsetzsteller - die Schaltung und Modellierung

Notizen

Dynamik eines Tiefsetzstellers

Modellierung des Tiefsetzstellers

Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers Steuerung mit konstantem Einschleifige Spannungsregelung

Spannungsregelung mit Spannungsregelung mit Vorsteuerung Regler als P-Regler

Prof. Dr.-Ing. Sven Tschirley

SEG4 Teil 6: Regelung von DC/DC-Wandlern 17/49

Prinzip des dynamischen Mittelwerts

- Pulsende Anteile sind Teil der schaltenden leistungselektronischen Schaltungen
- Ein Ansatz für einen Regelungsentwurf ist der Verzicht auf die Betrachtung der Pulse:
 - Pulse sind störend bzw. unerheblich
 - Regelung soll Pulse nicht ausregeln

 $i_2(t)$: Momentanwertmodell

 $\overline{i_2}(t)$: Mittelwertmodell

Innitrolucibud
Handout

Einfaches

Schaltnetzteil Stabilität

Dynamik eines

Modellierung des Tiefsetzstellers Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers Steuerung mit konstantem Einschleifige Spannungsregelung Spannungsregelung mit Spannungsregelung mit Vorsteuerung Regler als P-Regler

Netice		
Notizen		

Dynamische Mittelwertbildung: Modellierung der Strecke

- Dynamische Mittelwertbildung bedeutet Abstraktion von Schaltvorgang
- Ziel: Beschreibung des zeitlichen Verhaltens ohne Schwankungen durch die Pulsung von Strom und Spannung
- Man berechnet einen Mittelwert einer Größe in einer k-ten Schaltperiode der Dauer $T_{\rm S}$:

$$\bar{x}(k) = \frac{1}{T_{\rm S}} \int_{kT_{\rm S}}^{(k+1)T_{\rm S}} x(t) dt$$
 (5)

 $i_2(t)$: Momentanwertmodell

 $\overline{i_2}(t)$: Mittelwertmodell

Prof. Dr.-Ing. Sven Tschirley

SEG4 Teil 6: Regelung von DC/DC-Wandlern 19/49

Mittelwertmodell Widerstand

Aus dem Zusammenhang

$$u(t) = R i(t) ag{6}$$

folgt sofort

$$\overline{u}(k) = R \,\overline{i}(k) \tag{7}$$

Handout Einfaches Schaltnetzteil

Stabilität

Dynamik eines

Tiefsetzstellers Modellierung des Tiefsetzstellers

Dynamik des

Einschleifige

Spannungsregelung

Regler als P-Regler

Spannungsregelung mit Spannungsregelung mit

Tiefsetzstellers Regelung des Tiefsetzstellers

Steuerung mit konstantem

Einfaches Schaltnetzteil Stabilität

Dynamik eines

Modellierung des Tiefsetzstellers Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers Steuerung mit konstantem Einschleifige Spannungsregelung mit Spannungsregelung mit

Regler als P-Regler

			_
			 _
			_

Notizen			

Mittelwertmodell Spule

Notizen

Notizen

Grundgleichung für Momentanwerte

$$u(t) = \frac{di(t)}{dt} \tag{8}$$

Mittelwertbildung liefert

$$\int\limits_{kT_{\mathrm{S}}}^{(k+1)T_{\mathrm{S}}}L\frac{d}{dt}\,i_{\mathrm{L}}(\tau)d\tau=\int\limits_{kT_{\mathrm{S}}}^{(k+1)T_{\mathrm{S}}}u_{\mathrm{L}}(\tau)d\tau$$

umgeschrieben wird daraus

$$\frac{d}{dt} \int_{kT_{S}}^{(k+1)T_{S}} i_{L}(\tau)d\tau = \overline{u_{L}}(t)$$
(9)

$$\bar{u}(t) = \frac{d\bar{i}(t)}{dt} \tag{10}$$

Handout

Einfaches Schaltnetzteil Stabilität

Dynamik eines

Modellierung des Tiefsetzstellers

Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers Steuerung mit konstanter Einschleifige Spannungsregelung Spannungsregelung mit Spannungsregelung mit

Regler als P-Regler

Prof. Dr.-Ing. Sven Tschirley

SEG4 Teil 6: Regelung von DC/DC-Wandlern 21/49

Mittelwertmodell linearer zeitinvarinater Differenzialgleichungen

■ Das Verfahren der Mittelwertbildung ist auf alle Arten

zeitinvarianter DGLn übertragen. Aus:

Einfaches Schaltnetzteil

Dynamik eines

Stabilität

Spann

Regler

Modelli Tiefset

Dynan Regelu Tiefsel Steuer Tastve Einsch

wird im Mittelwertmodell

$$\dot{\overline{x}}(t) = A\,\overline{x}(t) + B\,\overline{u}(t)$$

 $\dot{x}(t) = A x(t) + B u(t)$ y(t) = Cx(t) + Du(t)

$$\overline{y}(t) = C\overline{x}(t) + D\overline{u}(t)$$

ierung des zstellers
ik des
zstellers
ing des zstellers
ung mit konstantem rhältnis
leifige ungsregelung
ungsregelung mit uerung
ungsregelung mit
uerung als P-Regler
als r-neyier

Mittelwertmodell Schalter

Handout

Notizen

Einfaches Schaltnetzteil Stabilität

Dynamik eines Tiefsetzstellers Modellierung des Tiefsetzstellers

Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers

Steuerung mit konstantem Einschleifige

Spannungsregelung Spannungsregelung mit Spannungsregelung mit Vorsteuerung

Regler als P-Regler

Schalter bedürfen besonderer Betrachtung. Momentanwerte für den Vierpol-Schalter

$$u_2(t) = s(t) u_1(t)$$
 (11)

$$i_1(t) = s(t) i_2(t)$$
 (12)

Die Schaltfunktion s(t) ist

- unabhängig von Strom und Spannung anzusehen
- aber nicht zeitinvariant

Prof. Dr.-Ing. Sven Tschirley

SEG4 Teil 6: Regelung von DC/DC-Wandlern 23/49

Mittelwertmodell Schalter

Handout

Einfaches Schaltnetzteil Stabilität

Dynamik eines

Modellierung des Tiefsetzstellers Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers Steuerung mit konstantem Einschleifige Spannungsregelung Spannungsregelung mit Spannungsregelung mit Vorsteuerung

Regler als P-Regler

Momentanwerte

Mittelwerte

Notizen		
Notizen		

Schalter

Handout

Einfaches

Schaltnetzteil Stabilität

Modellierung des

Steuerung mit konstantem Einschleifige

Spannungsregelung

Spannungsregelung mit

Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers

Momentanwerte für den

$$u_2(t) = s(t) u_1(t)$$
 (13)

$$i_1(t) = s(t) i_2(t)$$
 (14)

Mittelwert über eine Periode

$$\overline{u_2}(k) = \frac{1}{T_S} \int_{kT_S}^{(k+1)T_S} s(t) u_1(t)$$
 (15)

Für kleine Schwankungen von $u_1(t)$ und $i_2(t)$ kann angenommen werden:

$$\overline{u_2}(k) \approx \overline{s}(k) \, \overline{u_1}(k)$$
 (16)

$$\overline{i_1}(k) \approx \overline{s}(k) \, \overline{i_2}(k)$$
 (17)

oder nach Übergang kontinuierlich

$$\overline{u_2}(t) \approx \overline{s}(t) \, \overline{u_1}(t)$$
 (18)

$$\overline{i_1}(t) \approx \overline{s}(t) \, \overline{i_2}(t)$$
 (19)

Momentanwerte

Mittelwerte

Notizen

Prof. Dr.-Ing. Sven Tschirley

SEG4 Teil 6: Regelung von DC/DC-Wandlern 25/49

Dynamisches Mittelwertmodell des Tiefsetzstellers

Handout

Einfaches Schaltnetzteil Stabilität

Dynamik eines

Modellierung des

Dynamik des Tiefsetzstellers

Regelung des Tiefsetzstellers Steuerung mit konstantem

Einschleifige Spannungsregelung mit Spannungsregelung mit

Regler als P-Regler

Tiefsetzsteller mit ohmscher Last

dynamisches Modell Tiefsetzsteller mit ohmscher Last

Im nicht-lückenden Betrieb beschreibt man das dynamische Verhalten des Tiefsetzstellers durch die DGL:

$$L\frac{d}{dt}\bar{i}_{2}(t) = d(t)\bar{u}_{1}(t) - \bar{u}_{2}(t)$$
 (20)

oder kurz

$$L\dot{\bar{i}}_2(t) = d(t)\,\bar{u}_1(t) - \bar{u}_2(t)$$
 (21)

Hierin ist $d(t) = \bar{s}(t)$ das nunmehr zeitabhängige Tastverhältnis.

Lückender und nicht lückender Betrieb

Im nichtlückenden Fall gilt die Differenzialgleichung

$$\dot{\bar{i}}_2(t) = \frac{1}{L} (d(t) \, \bar{u}_1(t) - \bar{u}_2(t))$$
 (22)

Im Lückbetrieb gilt allerdings die algebraische Gleichung

$$\bar{i}_2(t) = \frac{d^2(t)}{2L} \left(\frac{\overline{u}_1^2(t)}{\overline{u}_2(t)} - \overline{u}_1(t) \right)$$
 (23)

Die Lückgrenze ist erreicht bei

Ausgleichsvorgang des Tiefsetzstellers bei d = const.

$$\bar{i}_2(t) = \frac{1}{2} \Delta i_{2,\text{max}}(d, \bar{u}_1) = \frac{d(t) (1 - d(t)) T_S \bar{u}_1(t)}{2L}$$
 (24)

Stabilität 1004AAAAAAAAAAAAAAAAAAAAA Modellierung des Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers Steuerung mit konstanten Einschleifige Spannungsregelung Spannungsregelung mit Spannungsregelung mit

Prof. Dr.-Ing. Sven Tschirley

SEG4 Teil 6: Regelung von DC/DC-Wandlern 27/49

Zustandsgraph des Tiefsetzstellers

Hybrider Zustandsgraph als dynamisches Mittelwertmodell des Tiefsetzstellers mit Umschaltung zwischen lückendem und nicht-lückendem Betrieb

Handout Einfaches Schaltnetzteil

Regler als P-Regler

Motizon

lotizen				
lotizen				
lotizen				
otizen				
lotizen				
lotizen				
lotizen				

The Name of the Game

Notizen

Handout

Einfaches Schaltnetzteil Stabilität

Dynamik eines

Modellierung des Dynamik des Tiefsetzstellers

Regelung des Tiefsetzstellers

Steuerung mit konstantem

Einschleifige Spannungsregelung Spannungsregelung mit

Spannungsregelung mit Vorsteuerung Regler als P-Regler

Prof. Dr.-Ing. Sven Tschirley

Quelle

SEG4 Teil 6: Regelung von DC/DC-Wandlern 29/49

Last

Steuerung bei konstantem Tastverhältnis

■ Einfache Anforderung: Ansteuerung mit konstantem Tastverhältnis

$$D = s^* = \frac{u_2^*}{U_1}$$

- keine Kompensation einer sich ändernden Eingangsspannung (line regulation)
- keine Kompensation von Spannungsfehlern durch Kommutierungsvorgänge
- keine Beeinflussung des dynamischen Verhaltens im Betrieb

Handout

Einfaches Schaltnetzteil Stabilität

Dynamik eines

Modellierung des Tiefsetzstellers Dynamik des Tiefsetzstellers

Regelung des Tiefsetzstellers Steuerung mit konstantem

Einschleifige Spannungsregelung Spannungsregelung mit Spannungsregelung mit Vorsteuerung Regler als P-Regler

Notizen			
Notizen		 	
Notizen			
	Notizen		

Gleichungen

Handout

Notizen

Einfaches Schaltnetzteil Stabilität

Dynamik eines

Modellierung des Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers

Steuerung mit konstantem

Einschleifige Spannungsregelung Spannungsregelung mit Spannungsregelung mit Vorsteuerung Regler als P-Regler

Mittelwertgleichungen für Drossel und Kondensator im Laplace-Bereich

$$sL\bar{i}_{L}(s) = \bar{u}_{S}(s) - \bar{u}_{2}(s)$$
 (25)

$$sC\,\overline{u}_{C}(s) = \overline{i}_{L}(s) - \overline{i}_{2}(s) \tag{26}$$

Prof. Dr.-Ing. Sven Tschirley

SEG4 Teil 6: Regelung von DC/DC-Wandlern 31/49

Gleichungen

Das Verhalten des Schalters kann nicht einfach in den Laplace-Bereich überführt werden (Multiplikation → Faltung)

$$\overline{u}_{S}(t) = \overline{s}(t)\overline{u}_{1}(t) \tag{27}$$

Von der PWM wird angenommen, dass s(t) den Sollwert genau einstellt

$$\overline{s}(t) = s^*(t) \tag{28}$$

Handout

Einfaches Schaltnetzteil Stabilität

Dynamik eines

Modellierung des Tiefsetzstellers Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers

Steuerung mit konstantem

Einschleifige Spannungsregelung Spannungsregelung mit Spannungsregelung mit Vorsteuerung Regler als P-Regler

Notizen

Gleichungen

Einfaches Schaltnetzteil

Stabilität

Dynamik eines
Tiefsetzstellers

Modellierung des Tiefsetzstellers Dynamik des Tiefsetzstellers

Tiefsetzstellers
Regelung des
Tiefsetzstellers

Steuerung mit konstantem Tastverhältnis Einschleifige

Spannungsregelung Spannungsregelung mit Vorsteuerung Spannungsregelung mit Vorsteuerung Regler als P-Regler

Von der PWM wird im Mittelwertmodell abstrahiert, es wird als *Vorsteuerung* das stationäre Tastverhältnis verwendet:

$$G_f'(s) = \frac{1}{U_1} {29}$$

Prof. Dr.-Ing. Sven Tschirley

SEG4 Teil 6: Regelung von DC/DC-Wandlern 33/49

Strukturbild

Einfaches Schaltnetzteil

Dynamik eines Tiefsetzstellers

Stabilität

Modellierung des Tiefsetzstellers Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers

Steuerung mit konstantem Tastverhältnis

Einschleifige Spannungsregelung Spannungsregelung mit Vorsteuerung Spannungsregelung mit Vorsteuerung Regler als P-Regler

$u_2^* \longrightarrow G_f'(s)$ s^* :	$= \overline{s}$ \times $\frac{1}{sL}$ $\frac{\overline{i}_{2}}{\overline{i}_{C}}$ $\frac{1}{sC}$ \overline{i}_{C} \overline{i}_{C} \overline{i}_{C} \overline{i}_{C} \overline{i}_{C} \overline{i}_{C}
Steuerung	Regelstrecke

Notizen		
Notizen		

Nebenrechnung: Übertragungsverhalten

Notizen

Einfaches Schaltnetzteil Stabilität

Modellierung des Dynamik des

Spannungsregelung mit

$$\overline{u}_2(s) = \frac{1}{sC} \left[\overline{i}_L - \overline{i}_s \right] \tag{30}$$

$$\overline{u}_2(s) = \frac{1}{sC} \left[\frac{1}{sL} (\overline{u}_S - \overline{u}_2(s)) - \overline{i}_2(s) \right]$$
 (31)

$$\overline{u}_2(s)\left[1+\frac{1}{s^2LC}\right] = \frac{1}{s^2LC}\overline{u}_S(s) - \frac{1}{sC}\overline{i}_2(s)$$
(32)

$$\overline{u}_2(s)\left[s^2LC+1\right] = \overline{u}_S(s) - sL\overline{t}_2(s) \tag{33}$$

$$\overline{u}_2(s) = \frac{1}{s^2 LC + 1} \overline{u}_2(s) - \frac{sL}{s^2 LC + 1} \overline{i}_2$$
 (34)

Prof. Dr.-Ing. Sven Tschirley

SEG4 Teil 6: Regelung von DC/DC-Wa

Strukturbild und Übertragungsverhalten

Für die Strecke gilt also:

$$\overline{u}_2(s) = \frac{1}{s^2 L C + 1} \overline{u}_2(s) - \frac{sL}{s^2 L C + 1} \overline{i}_2$$
 (35)

Man erkennt Polstellen bei $\pm j\omega_0$, die Strecke ist schwingungsfähig

$$\omega_0 = \frac{1}{\sqrt{LC}} \tag{36}$$

andlern 35/49
Innicolaritad
Handout
nfaches
haltnetzteil
abilität
namik eines
efsetzstellers
odellierung des efsetzstellers
ynamik des
efsetzstellers
egelung des efsetzstellers
euerung mit konstantem istverhältnis
nschleifige oannungsregelung
pannungsregelung mit
orsteuerung
pannungsregelung mit prsteuerung
egler als P-Regler

Notizen			
Notizen			

Einschwingverhalten eines gesteuerten Tiefsetzstellers

Notizen

Einfaches Schaltnetzteil Stabilität

Stabilität

Dynamik eines
Tiefsetzstellers

Modellierung des Tiefsetzstellers

Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers

Steuerung mit konstantem Tastverhältnis Einschleifige Spannungsregelung Spannungsregelung mit Vorsteuerung

Spannungsregelung mit Vorsteuerung Regler als P-Regler

Prof. Dr.-Ing. Sven Tschirley

SEG4 Teil 6: Regelung von DC/DC-Wandlern 37/49

Subsection 5

Einschleifige Spannungsregelung

Innimiani
Handout
Einfaches Schaltnetzteil Stabilität
Dynamik eines Tiefsetzstellers
Modellierung des Tiefsetzstellers
Dynamik des Tiefsetzstellers
Regelung des Tiefsetzstellers
Steuerung mit konstantem Tastverhältnis
Einschleifige Spannungsregelung
Spannungsregelung mit Vorsteuerung
Spannungsregelung mit Vorsteuerung
Regler als P-Regler

	_
	_
Notizen	
	_

Tiefsetzsteller mit Vorsteuerung und Spannungsreglung

Notizen

Einfaches Schaltnetzteil Stabilität

Dynamik eines

Modellierung des Tiefsetzstellers Dynamik des

Tiefsetzstellers
Regelung des
Tiefsetzstellers
Steuerung mit konstantem

Einschleifige Spannungsregelung Spannungsregelung mit

Spannungsregelung mit Vorsteuerung Regler als P-Regler

Prof. Dr.-Ing. Sven Tschirley

SEG4 Teil 6: Regelung von DC/DC-Wandlern 39/49

Tiefsetzsteller mit Vorsteuerung und Spannungsreglung

- Ist u_1 nicht konstant, so wird der Regelkreis nichtlinear.
- Messung von u₁ ist aber machbar und ermöglicht eine exakte Linearisierung
- → Achtung, das ist eine Annährung
 - Nichtideale Kommutierungen
 - Abtastung von *u*₁ in digitalen Regelsystemen
 - Fehler wird mit \overline{u}_d modelliert

hadradand
Handout

Einfaches Schaltnetzteil

ynamik eines

Stabilität

Modellierung des Tiefsetzstellers Dynamik des Tiefsetzstellers

Regelung des Tiefsetzstellers Steuerung mit konstantem Tastverhältnis

Einschleifige Spannungsregelung Spannungsregelung mit Vorsteuerung

Spannungsregelung mit Vorsteuerung

Vorsteuerung Regler als P-Regler

Jotizon		
Notizen		
Votizen		
lotizen		
lotizen		
lotizen		
Votizen		
Jotizen		
lotizen		
Votizen		
lotizen		
lotizen		
Jotizen		
lotizen		
Notizen		
Jotizen		
Notizen		
Jotizen		
Votizen		
lotizen		
Hotizen		
Jotizen		
lotizen		
Notizen		
Jotizen		
Notizen		
Votizen		
Notizen		
Votizen		
Notizen		
Votizen		
Notizen		
Votizen		
Notizen		

Spannungsregelung mit Vorsteuerung – Vereinfacht

Stabilität

Modellierung des Tiefsetzstellers Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers Steuerung mit konstantem Tastverhältnis Einschleifige Spannungsregelung Spannungsregelung mit Vorsteuerung Spannungsregelung mit Vorsteuerung

Prof. Dr.-Ing. Sven Tschirley

SEG4 Teil 6: Regelung von DC/DC-Wandlern 41/49

Subsection 8

Regler als P-Regler

hadrohami
Handout
Einfaches Schaltnetzteil Stabilität
Dynamik eines Tiefsetzstellers Modellierung des Tiefsetzstellers
Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers
Steuerung mit konstantem Tastverhältnis Einschleifige Spannungsregelung
Spannungsregelung mit Vorsteuerung Spannungsregelung mit Vorsteuerung
Regler als P-Regler

Notizen		
Notizen		

Tiefsetzsteller mit P-Regler

Handout

Notizen

Der Spannungsregler wird als P-Regler ausgeführt, die Last ist ein ohmscher Widerstand

$$G_C(s) = K (37)$$

$$G_{Last}(s) = \frac{1}{R} \tag{38}$$

Man errechnet $\overline{u}_{S}(s)$ zu

$$\overline{u}_{S}(s) = G_{C}(s) (u_{2}^{*}(s) - \overline{u}_{2}(s)) + G_{F}(s)u_{2}^{*}(s) + \overline{u}_{d}(s)$$
 (39)

$$= K (u_2^*(s) - \overline{u}_2(s)) + u_2^*(s) + \overline{u}_d(s)$$
 (40)

Einfaches

Schaltnetzteil Stabilität

Modellierung des

Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers

Steuerung mit konstantem

Einschleifige Spannungsregelung Spannungsregelung mit Spannungsregelung mit

Regler als P-Regler

Prof. Dr.-Ing. Sven Tschirley

SEG4 Teil 6: Regelung von DC/DC-Wandlern 43/49

Tiefsetzsteller mit P-Regler

Einfaches Schaltnetzteil

Stabilität

Modellierung des Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers

Steuerung mit konstantem Einschleifige

Spannungsregelung mit Spannungsregelung mit

Regler als P-Regler

 $\overline{u}_2(s) \left[\frac{1}{\omega_0} s^2 + \frac{2\delta}{\omega_0} s + 1 + K \right] = (K+1) u_2^*(s) + \overline{u}_d(s)$

 $= \frac{1}{\frac{1}{\omega_0}s^2 + \frac{2\delta}{\omega_0}s + 1} \left[K\left(u_2^*(s) - \overline{u}_2(s) \right) + u_2^*(s) + \overline{u}_d(s) \right]$ (42)

Notizen			

Das Übertragungsverhalten ist demnach

 $\overline{u}_2(s) = \frac{1}{\frac{1}{(2\pi)}s^2 + \frac{2\delta}{(2\pi)}s + 1}\overline{u}_S(s)$

Tiefsetzsteller mit P-Regler

Imitmimi

Die Form ist

$$\overline{u}_2(s) = T(s)u_2^*(s) + T_{\mathrm{d}}(s)\overline{u}_{\mathrm{d}}(s) \tag{44}$$

Mit der Führungsübertragungsfunktion

$$T(s) = \frac{K+1}{\omega_0} s^2 + \frac{2\delta}{\omega_0} s + 1 + K \tag{45}$$

$$T(s) = \frac{1}{\frac{1}{\omega_{0c}^2} s^2 + \frac{2\delta_c}{\omega_{0c}} s + 1}$$
 (46)

und der Störübertragungsfunktion

$$T_{\rm d} = \frac{1}{K+1} \frac{1}{\frac{1}{\omega_{\rm 0c}^2} s^2 + \frac{2\delta_{\rm c}}{\omega_{\rm 0c}} s + 1}$$
 (47)

Handout

Einfaches Schaltnetzteil Stabilität

Dynamik eines

Modellierung des Tiefsetzstellers Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers Steuerung mit konstantem

Einschleifige Spannungsregelung Spannungsregelung mit

Vorsteuerung Spannungsregelung mit

Regler als P-Regler

Prof. Dr.-Ing. Sven Tschirley

Prof. Dr.-Ing. Sven Tschirley

SEG4 Teil 6: Regelung von DC/DC-Wandlern 45/49

(48)

(49)

(50)

Tiefsetzsteller mit P-Regler – Folgerungen

Einfaches Schaltnetzteil

Dynamik eines

Modellierung des Tiefsetzstellers Dynamik des Tiefsetzstellers

Regelung des Tiefsetzstellers Steuerung mit konstantem

Tastverhältnis Einschleifige Spannungsregelung

Spannungsregelung mit Vorsteuerung Spannungsregelung mit Vorsteuerung Regler als P-Regler

- $\delta_{\rm c} = \frac{1}{\sqrt{K+1}}$
- Abklingzeitkonstante τ = 1/ω_{0c} δ_c verändert sich nicht
 Die Dynamik des Regelkreises verbessert sich nicht:

 $T_{\rm d} = \frac{1}{K+1} \frac{1}{\frac{1}{\omega_{\rm o}^2} s^2 + \frac{2\delta_{\rm c}}{\omega_{\rm o}} s + 1}$

■ Die absolute Dämpfung wird nicht verändert

 $\omega_{0c} = \omega_0 \sqrt{K+1}$

■ Die Schwindungsfrequenz wird nicht erhöht

Notiz	en

Notizen

Vertiefung: PI-Regler

Notizen

Vertiefung (Pflicht)

- Wie verändert sich das Verhalten des geregelten Tiefsetzstellers, wenn ein PI-Regler eingesetzt wird?
- Was bedeutet der Einsatz eines PID-Reglers? Welche Performance ist zu erwarten?
- Wie verändert sich das Systemverhalten, wenn der Regler digital ausgeführt wird und bei einer Abtastfrequenz von $f=500\,\mathrm{kHz}$ arbeitet.

Vertiefung (Pflicht)

Wenden Sie diese Regelung für Hochsteller und Inverswandler an. Einfaches Schaltnetzteil Stabilität

Dynamik eines Tiefsetzstellers

Modellierung des Tiefsetzstellers Dynamik des Tiefsetzstellers Regelung des Tiefsetzstellers Steuerung mit konstantem Tastverhältnis Einschleifige Spannungsregelung mit Vorsteuerung Spannungsregelung mit Vorsteuerung Regler als P-Regler

Prof. Dr.-Ing. Sven Tschirley

SEG4 Teil 6: Regelung von DC/DC-Wandlern 47/49

Literatur – Stromversorgungen, Leistungselektronik

Teil VII

Literatur

Notizen	
Notizen	

Literatur

[Schlienz]	Ullich Schlienz Schaltnetzteile und ihre Peripherie Vieweg Verlag 2007, ISBN 978-3-8348-239-2	[Specovius]	Joachim Specovius ➡ Bibliothek Grundkurs Leistungselektronik Vieweg + Teubner , 2010, ISBN 978-3-8348-1307-7	Literatur – Stromversorgungen, Leistungselektronik
[Wüstehube]	Joachim Wüstehube Schaltnetzteile expert Verlag 1982, ISBN 3-88508-793-6	[Anke]	Dieter Anke Leistungselektronik Oldenbourg Verlag München, 2000, ISBN 3-486-22634-7	
[Pressman]	Abraham I. Pressman Switching Power Supply Design McGraw Hill 2009, ISBN 978-0-07-159432-5	[Baliga]	B. Jayant Baliga <i>Modern Power Devices</i> John Wiley & Sons, 1987, ISBN 0-471-63781-5	
[Brown]	Marty Brown Power Supply Cookbook Newnes 2001, ISBN 978-0-7506-7329-7	[Dmitrijev]	Sima Dimitijev Understanding Semiconductor Devices Oxford University Press, 2000, ISBN	
[Baliga]	B. Jayant Baliga Silicon Carbide Power Devices World Scientific, ISBN 978-981-256-605-8	[Lutz]	0-19-513186-X Josef Lutz Halbleiter Leistungsbauelemente Springer Verlag 2006, , ISBN	
[Tieste]	KD. Tieste, O. Romberg Keine Panik vor Regelungstechnik Vieweg+Teubner, ISBN 978-3-8348-0850-9	[Schröder]	978-3-540-34206-9 Dierk Schröeder Leistungselektroniksche Bauelemente	
[Erickson]	R. W. Erickson and D. Maksimović Fundamentals of Power Electronics		2. Auflage, Springer Verlag 2005, , ISBN 3-540-28728-0	
	Chapman and Hall, 1997	[LDO Book]	Bob Wolbert Designing With Low-Dropout Voltage Regulators Revised Edition, December 1998, Micrel Semiconductors, www.micrel.com	
		[TI SLYT 187]	Bang S. Lee Understanding the stable range of equivalent series resitance of an LDO	
	Prof. DrIng. Sven Tschirley		regulator SEG4 Te	eil 7: Literatur 49/49

regulator SEG4
November 1999, Texas Instuments,
Doc.No SLYT187, www.micrel.com

Notizen	
Notizen	