

Differentiation Ex 11.5 Q18(iv)

Let
$$y = (x \cos x)^{x} + (x \sin x)^{\frac{1}{x}}$$

Also, let $u = (x \cos x)^x$ and $v = (x \sin x)^{\frac{1}{x}}$

$$\therefore y = u + v$$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \qquad ...(1)$$

$$u = (x \cos x)^x$$

$$\Rightarrow \log u = \log(x \cos x)^x$$

$$\Rightarrow \log u = x \log(x \cos x)$$

$$\Rightarrow \log u = x [\log x + \log \cos x]$$

$$\Rightarrow \log u = x \log x + x \log \cos x$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{u}\frac{du}{dx} = \frac{d}{dx}(x\log x) + \frac{d}{dx}(x\log\cos x)$$

$$\Rightarrow \frac{du}{dx} = u\left[\left\{\log x \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(\log x)\right\} + \left\{\log\cos x \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(\log\cos x)\right\}\right]$$

$$\Rightarrow \frac{du}{dx} = (x\cos x)^x \left[\left(\log x \cdot 1 + x \cdot \frac{1}{x}\right) + \left\{\log\cos x \cdot 1 + x \cdot \frac{1}{\cos x} \cdot \frac{d}{dx}(\cos x)\right\}\right]$$

$$\Rightarrow \frac{du}{dx} = (x\cos x)^x \left[\left(\log x + 1\right) + \left\{\log\cos x + \frac{x}{\cos x} \cdot \left(-\sin x\right)\right\}\right]$$

$$\Rightarrow \frac{du}{dx} = (x\cos x)^x \left[\left(1 + \log x\right) + \left(\log\cos x - x\tan x\right)\right]$$

$$\Rightarrow \frac{du}{dx} = (x\cos x)^x \left[1 - x\tan x + \left(\log x + \log\cos x\right)\right]$$

$$\Rightarrow \frac{du}{dx} = (x\cos x)^x \left[1 - x\tan x + \log(x\cos x)\right] \qquad ...(2)$$

$$v = (x \sin x)^{\frac{1}{x}}$$

$$\Rightarrow \log v = \log(x \sin x)^{\frac{1}{x}}$$

$$\Rightarrow \log v = \frac{1}{x} \log(x \sin x)$$

$$\Rightarrow \log v = \frac{1}{x} (\log x + \log \sin x)$$

$$\Rightarrow \log v = \frac{1}{x} \log x + \frac{1}{x} \log \sin x$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{v}\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{x}\log x\right) + \frac{d}{dx}\left[\frac{1}{x}\log(\sin x)\right]$$

$$\Rightarrow \frac{1}{v}\frac{dv}{dx} = \left[\log x \cdot \frac{d}{dx}\left(\frac{1}{x}\right) + \frac{1}{x} \cdot \frac{d}{dx}(\log x)\right] + \left[\log(\sin x) \cdot \frac{d}{dx}\left(\frac{1}{x}\right) + \frac{1}{x} \cdot \frac{d}{dx}\{\log(\sin x)\}\right]$$

$$\Rightarrow \frac{1}{v}\frac{dv}{dx} = \left[\log x \cdot \left(-\frac{1}{x^2}\right) + \frac{1}{x} \cdot \frac{1}{x}\right] + \left[\log(\sin x) \cdot \left(-\frac{1}{x^2}\right) + \frac{1}{x} \cdot \frac{1}{\sin x} \cdot \frac{d}{dx}(\sin x)\right]$$

$$\Rightarrow \frac{1}{v}\frac{dv}{dx} = \frac{1}{x^2}(1 - \log x) + \left[-\frac{\log(\sin x)}{x^2} + \frac{1}{x\sin x} \cdot \cos x\right]$$

$$\Rightarrow \frac{dv}{dx} = (x\sin x)^{\frac{1}{x}} \left[\frac{1 - \log x}{x^2} + \frac{-\log(\sin x) + x\cot x}{x^2}\right]$$

$$\Rightarrow \frac{dv}{dx} = (x\sin x)^{\frac{1}{x}} \left[\frac{1 - \log x - \log(\sin x) + x\cot x}{x^2}\right]$$

$$\Rightarrow \frac{dv}{dx} = (x\sin x)^{\frac{1}{x}} \left[\frac{1 - \log(x\sin x) + x\cot x}{x^2}\right]$$
...(3)

From (1), (2), and (3), we obtain

$$\frac{dy}{dx} = \left(x\cos x\right)^x \left[1 - x\tan x + \log\left(x\cos x\right)\right] + \left(x\sin x\right)^{\frac{1}{x}} \left[\frac{x\cot x + 1 - \log\left(x\sin x\right)}{x^2}\right]$$

Differentiation Ex 11.5 Q18(v)

Let
$$y = \left(x + \frac{1}{x}\right)^x + x^{\left(1 + \frac{1}{x}\right)}$$

Also, let $u = \left(x + \frac{1}{x}\right)^x$ and $v = x^{\left(1 + \frac{1}{x}\right)}$
 $\therefore y = u + v$
 $\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$...(1)
Then, $u = \left(x + \frac{1}{x}\right)^x$
 $\Rightarrow \log u = \log\left(x + \frac{1}{x}\right)$
 $\Rightarrow \log u = x \log\left(x + \frac{1}{x}\right)$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{u} \cdot \frac{du}{dx} = \frac{d}{dx}(x) \times \log\left(x + \frac{1}{x}\right) + x \times \frac{d}{dx} \left[\log\left(x + \frac{1}{x}\right)\right]$$

$$\Rightarrow \frac{1}{u} \frac{du}{dx} = 1 \times \log\left(x + \frac{1}{x}\right) + x \times \frac{1}{\left(x + \frac{1}{x}\right)} \cdot \frac{d}{dx}\left(x + \frac{1}{x}\right)$$

$$\Rightarrow \frac{du}{dx} = u \left[\log\left(x + \frac{1}{x}\right) + \frac{x}{\left(x + \frac{1}{x}\right)} \times \left(1 - \frac{1}{x^2}\right)\right]$$

$$\Rightarrow \frac{du}{dx} = \left(x + \frac{1}{x}\right)^x \left[\log\left(x + \frac{1}{x}\right) + \frac{\left(x - \frac{1}{x}\right)}{\left(x + \frac{1}{x}\right)}\right]$$

$$\Rightarrow \frac{du}{dx} = \left(x + \frac{1}{x}\right)^x \left[\log\left(x + \frac{1}{x}\right) + \frac{x^2 - 1}{x^2 + 1}\right]$$

$$\Rightarrow \frac{du}{dx} = \left(x + \frac{1}{x}\right)^x \left[\frac{x^2 - 1}{x^2 + 1} + \log\left(x + \frac{1}{x}\right)\right]$$

$$v = x^{\left(1 + \frac{1}{x}\right)}$$

$$\Rightarrow \log v = \log \left[x^{\left(1 + \frac{1}{x}\right)} \right]$$

$$\Rightarrow \log v = \left(1 + \frac{1}{x}\right) \log x$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{v} \cdot \frac{dv}{dx} = \left[\frac{d}{dx} \left(1 + \frac{1}{x} \right) \right] \times \log x + \left(1 + \frac{1}{x} \right) \cdot \frac{d}{dx} \log x$$

$$\Rightarrow \frac{1}{v} \frac{dv}{dx} = \left(-\frac{1}{x^2} \right) \log x + \left(1 + \frac{1}{x} \right) \cdot \frac{1}{x}$$

$$\Rightarrow \frac{1}{v} \frac{dv}{dx} = -\frac{\log x}{x^2} + \frac{1}{x} + \frac{1}{x^2}$$

$$\Rightarrow \frac{dv}{dx} = v \left[\frac{-\log x + x + 1}{x^2} \right]$$

$$\Rightarrow \frac{dv}{dx} = x^{\left(1 + \frac{1}{x} \right)} \left(\frac{x + 1 - \log x}{x^2} \right) \qquad \dots(3)$$

Therefore, from (1), (2), and (3), we obtain

$$\frac{dy}{dx} = \left(x + \frac{1}{x}\right)^{x} \left[\frac{x^{2} - 1}{x^{2} + 1} + \log\left(x + \frac{1}{x}\right)\right] + x^{\left(1 + \frac{1}{x}\right)} \left(\frac{x + 1 - \log x}{x^{2}}\right)$$

Differentiation Ex 11.5 Q18(vi)

Let
$$y = e^{\sin x} + (\tan x)^x$$

 $y = e^{\sin x} + e^{\log(\tan x)^x}$
 $y = e^{\sin x} + e^{x\log(\tan x)}$ [Since, $\log a^b = b \log a, e^{\log a} = a$]

Differentiating it with respect to x using chain rule and product rule,