Introduction to Machine Learning - CS725 Instructor: Prof. Ganesh Ramakrishnan Lecture 6 - Support Vector Regression and Optimization Basics

From Bayesian Estimates to (Pure) Bayesian Prediction

	Point?	p(x D)
MLE	$\hat{ heta}_{ extit{MLE}} = \operatorname{argmax}_{ heta} extit{LL}(D heta)$	$p(x \theta_{MLE})$
Bayes Estimator	$\hat{ heta}_B = extstyle E_{ ho(heta D)} E[heta]$	$p(x \theta_B)$
MAP	$\hat{ heta}_{MAP} = \operatorname{argmax}_{ heta} p(heta D)$	$p(x \theta_{MAP})$
Pure Bayesian		$p(\theta D) = \frac{p(D \theta)p(\theta)}{\int_{m} p(D \theta)p(\theta)d\theta}$
		$p(D \theta) = \prod_{i=1} p(x_i \theta)$
		$p(x D) = \int_{\theta}^{\infty} p(x \theta)p(\theta D)d\theta$

where θ is the parameter

Predictive distribution for linear Regression

- $\hat{\mathbf{w}}_{MAP}$ helps avoid overfitting as it takes regularization into account
- ullet But we miss the modeling of uncertainty when we consider only $\hat{oldsymbol{w}}_{MAP}$
- **Eg:** While predicting diagnostic results on a new patient x, along with the value y, we would also like to know the uncertainty of the prediction $\Pr(y \mid x, D)$. Recall that $y = \mathbf{w}^T \phi(x) + \varepsilon$ and $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

$$Pr(y \mid \mathbf{x}, \mathcal{D}) = Pr(y \mid \mathbf{x}, <\mathbf{x}_1, y_1 > ... <\mathbf{x}_m, y_m >)$$

Pure Bayesian Regression Summarized

- By definition, regression is about finding $(y \mid \mathbf{x}, <\mathbf{x}_1, y_1 > ... <\mathbf{x}_m, y_m >)$
- By Bayes Rule

$$\Pr(y \mid \mathbf{x}, \mathcal{D}) = \Pr(y \mid \mathbf{x}, <\mathbf{x}_1, y_1 > ... <\mathbf{x}_m, y_m >)$$

$$= \int_{\mathbf{w}} \Pr(y \mid \mathbf{w}; \mathbf{x}) \Pr(\mathbf{w} \mid \mathcal{D}) d\mathbf{w}$$

$$\sim \mathcal{N} \left(\mu_m^T \phi(\mathbf{x}), \sigma^2 + \phi^T(\mathbf{x}) \Sigma_m \phi(\mathbf{x}) \right)$$
where
$$y = \mathbf{w}^T \phi(\mathbf{x}) + \varepsilon \text{ and } \varepsilon \sim \mathcal{N}(0, \sigma^2)$$

$$\mathbf{w} \sim \mathcal{N}(0, \alpha I) \text{ and } \mathbf{w} \mid \mathcal{D} \sim \mathcal{N}(\mu_m, \Sigma_m)$$

$$\mu_m = (\lambda \sigma^2 I + \Phi^T \Phi)^{-1} \Phi^T \mathbf{y} \text{ and } \Sigma_m^{-1} = \lambda I + \Phi^T \Phi / \sigma^2$$
Finally $\mathbf{y} \sim \mathcal{N}(\mu_m^T \phi(\mathbf{x}), \phi^T(\mathbf{x}) \Sigma_m \phi(\mathbf{x}))$

MAP (and Bayes) Inference

$$\begin{aligned} \mathbf{w}_{MAP} &= \underset{\mathbf{w}}{\operatorname{argmax}} \ \operatorname{Pr}\left(\mathbf{w} \mid \mathcal{D}\right) = \underset{\mathbf{w}}{\operatorname{argmax}} \ \log \operatorname{Pr}\left(\mathbf{w} \mid \mathcal{D}\right), \ \text{where,} \\ &- \log \operatorname{Pr}\left(\mathbf{w} \mid \mathcal{D}\right) = \frac{n}{2} \log \left(2\pi\right) + \frac{1}{2} \log \left|\Sigma_{m}\right| + \frac{1}{2} (\mathbf{w} - \mu_{m})^{T} \Sigma_{m}^{-1} (\mathbf{w} - \mu_{m}) \\ &\mathbf{w}_{MAP} = \underset{\mathbf{w}}{\operatorname{argmax}} - \log \operatorname{Pr}\left(\mathbf{w}\right) = \underset{\mathbf{w}}{\operatorname{argmax}} \frac{1}{2} \mathbf{w}^{T} \Sigma_{m}^{-1} \mathbf{w} - \mathbf{w}^{T} \Sigma_{m}^{-1} \mu_{m} \end{aligned}$$

..... (expanding & canceling out redundant terms & completing squares: Tutorial 3)

MAP (and Bayes) Inference

$$\mathbf{w}_{MAP} = \underset{\mathbf{w}}{\operatorname{argmax}} \ \operatorname{Pr}\left(\mathbf{w} \mid \mathcal{D}\right) = \underset{\mathbf{w}}{\operatorname{argmax}} \ \operatorname{log} \operatorname{Pr}\left(\mathbf{w} \mid \mathcal{D}\right), \ \operatorname{where,}$$

$$-\log \Pr\left(\mathbf{w}\mid \mathcal{D}\right) = \frac{n}{2}\log\left(2\pi\right) + \frac{1}{2}\log\left|\Sigma_{m}\right| + \frac{1}{2}(\mathbf{w} - \mu_{m})^{T}\Sigma_{m}^{-1}(\mathbf{w} - \mu_{m})$$

$$\mathbf{w}_{MAP} = \underset{\mathbf{w}}{\operatorname{argmax}} - \log \Pr\left(\mathbf{w}\right) = \underset{\mathbf{w}}{\operatorname{argmax}} \frac{1}{2} \mathbf{w}^T \Sigma_m^{-1} \mathbf{w} - \mathbf{w}^T \Sigma_m^{-1} \mu_m$$

..... (expanding & canceling out redundant terms & completing squares: Tutorial 3)

$$\mathbf{w}_{MAP} = \underset{\mathbf{w}}{\operatorname{argmax}} \frac{1}{2\sigma^2} \mathbf{w}^T \left(\phi^T \phi \mathbf{w} - 2\phi^T \mathbf{y} \right) + \lambda \mathbf{w}^T \mathbf{w} = \underset{\mathbf{w}}{\operatorname{argmax}} \frac{1}{2} ||\phi \mathbf{w} - \mathbf{y}||^2 + \sigma^2 \lambda ||\mathbf{w}||^2 = \mathbf{w}_{Ridge}$$

is the same as that of Regularized Regression.

$$\mathbf{w}_{Ridge} = \underset{\mathbf{w}}{\operatorname{argmin}} ||\phi \mathbf{w} - \mathbf{y}||_2^2 + \lambda \sigma^2 ||\mathbf{w}||_2^2$$

Penalized Regularized Least Squares Regression

 The Bayes and MAP estimates for Linear Regression coincide with Regularized Ridge Regression

$$\mathbf{w}_{\textit{Ridge}} = \mathop{\arg\min}_{\mathbf{w}} \ ||\Phi\mathbf{w} - \mathbf{y}||_2^2 + \lambda ||\mathbf{w}||_2^2$$

- **Intuition:** To discourage redundancy and/or stop coefficients of **w** from becoming too large in magnitude, add a penalty to the error term used to estimate parameters of the model.
- The general Penalized Regularized L.S Problem:

$$\mathbf{w}_{Reg} = \underset{\mathbf{w}}{\operatorname{arg min}} ||\Phi \mathbf{w} - \mathbf{y}||_{2}^{2} + \lambda \Omega(\mathbf{w})$$

- $\Omega(\mathbf{w}) = ||\mathbf{w}||_2^2 \Rightarrow \text{Ridge Regression}$
- $\Omega(\mathbf{w}) = ||\mathbf{w}||_1 \Rightarrow \mathsf{Lasso}$
- $\Omega(\mathbf{w}) = ||\mathbf{w}||_0 \Rightarrow$ Support-based penalty
- Some $\Omega(\mathbf{w})$ correspond to priors that can be expressed in close form. Some give good working solutions. Some norms are mathematically easier to handle

Constrained Regularized Least Squares Regression

- **Intuition:** To discourage redundancy and/or stop coefficients of **w** from becoming too large in magnitude, constrain the error minimizing estimate using a penalty
- The general **Constrained Regularized L.S. Problem**:

$$\mathbf{w}_{Reg} = \mathop{\mathsf{arg\,min}}_{\mathbf{w}} \ ||\Phi \mathbf{w} - \mathbf{y}||_2^2$$
 such that $\Omega(\mathbf{w}) \leq heta$

- Claim: For any Penalized formulation with a particular λ , there exists a corresponding Constrained formulation with a corresponding θ
 - $\Omega(\mathbf{w}) = ||\mathbf{w}||_2^2 \Rightarrow \text{Ridge Regression}$
 - $\Omega(\mathbf{w}) = ||\mathbf{w}||_1 \Rightarrow \mathsf{Lasso}$
 - $\Omega(\mathbf{w}) = ||\mathbf{w}||_0 \Rightarrow$ Support-based penalty
- Proof of Equivalence: Requires tools of Optimization/duality

Polynomial regression

- Consider a degree 3 polynomial regression model as shown in the figure
- Each bend in the curve corresponds to increase in $\|w\|$
- Eigen values of $(\Phi^{\top}\Phi + \lambda I)$ are indicative of curvature. Increasing λ reduces the curvature

Do Closed-form solutions Always Exist?

- Linear regression and Ridge regression both have closed-form solutions
 - For linear regression,

$$w^* = (\Phi^\top \Phi)^{-1} \Phi^\top y$$

• For ridge regression,

$$w^* = (\Phi^\top \Phi + \lambda I)^{-1} \Phi^\top y$$

(for linear regression, $\lambda=0$)

What about optimizing the formulations (constrained/penalized) of Lasso (L₁ norm)? And support-based penalty (L₀ norm)?: Also requires tools of Optimization/duality

Lasso Regularized Least Squares Regression

• The general Penalized Regularized L.S Problem:

$$\mathbf{w}_{Reg} = \underset{\mathbf{w}}{\operatorname{arg \, min}} \ ||\Phi \mathbf{w} - \mathbf{y}||_2^2 + \lambda \Omega(\mathbf{w})$$

- $\Omega(\mathbf{w}) = ||\mathbf{w}||_2^2 \Rightarrow \mathsf{Ridge} \; \mathsf{Regression}$
- $\Omega(\mathbf{w}) = ||\mathbf{w}||_1 \Rightarrow \mathsf{Lasso}$
- $\Omega(\mathbf{w}) = ||\mathbf{w}||_0 \Rightarrow$ Support-based penalty
- Lasso Regression

$$\mathbf{w}_{lasso} = \underset{\mathbf{w}}{\operatorname{arg min}} ||\Phi \mathbf{w} - \mathbf{y}||_2^2 + \lambda ||\mathbf{w}||_1^2$$

• Lasso is the MAP estimate of Linear Regression subject to Laplace Prior on $\mathbf{w} \sim Laplace(0, \theta)$

$$Laplace(w_i \mid \mu, b) = \frac{1}{2b} \exp\left(-\frac{|x - \mu|}{b}\right)$$

Gaussian Hare vs. Laplacian Tortoise

Gaussian easier to estimate

• Laplacian yields more sparsity

Support Vector Regression

One more formulation before we look at Tools of Optimization/duality

Building on questions on Least Squares Linear Regression

- Is there a probabilistic interpretation?
 - Gaussian Error, Maximum Likelihood Estimate
- Addressing overfitting
 - Bayesian and Maximum Aposteriori Estimates, Regularization, Support Vector Regression
- 4 How to minimize the resultant and more complex error functions?
 - Level Curves and Surfaces, Gradient Vector, Directional Derivative, Gradient Descent Algorithm, Convexity, Necessary and Sufficient Conditions for Optimality

Support Vector Regression (SVR)

- Any point in the band (of ϵ) is not penalized. Thus the loss function is known as ϵ -insensitive loss
- Any point outside the band is penalized, and has slackness ξ_i or ξ_i^*
- The SVR model curve may not pass through any training point

- ullet The tolerance ϵ is fixed
- It is desirable that $\forall i$:

- \bullet The tolerance ϵ is fixed
- It is desirable that $\forall i$:
 - $y_i \mathbf{w}^{\top} \phi(\mathbf{x}_i) b \leq \epsilon + \xi_i$
 - $b + \mathbf{w}^{\top} \phi(\mathbf{x}_i) y_i \leq \epsilon + \xi_i^*$

SVR objective

• 1-norm Error, and L₂ regularized:

SVR objective

• 1-norm Error, and L_2 regularized:

$$\begin{aligned} & \min_{\mathbf{w},b,\xi_{i},\xi_{i}^{*}} \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{i} (\xi_{i} + \xi_{i}^{*}) \\ & \text{s.t.} \quad \forall i, \\ & y_{i} - \mathbf{w}^{\top} \phi(\mathbf{x}_{i}) - b \leq \epsilon + \xi_{i}, \\ & b + \mathbf{w}^{\top} \phi(\mathbf{x}_{i}) - y_{i} \leq \epsilon + \xi_{i}^{*}, \\ & \xi_{i}, \xi_{i}^{*} \geq 0 \end{aligned}$$

• 2-norm Error, and L_2 regularized:

SVR objective

• 1-norm Error, and L_2 regularized:

•
$$\min_{\mathbf{w},b,\xi_i,\xi_i^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i (\xi_i + \xi_i^*)$$

s.t. $\forall i$,
 $y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b \le \epsilon + \xi_i$,
 $b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i \le \epsilon + \xi_i^*$,
 $\xi_i, \xi_i^* \ge 0$

• 2-norm Error, and L_2 regularized:

•
$$\min_{\mathbf{w},b,\xi_{i},\xi_{i}^{*}} \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{i} (\xi_{i}^{2} + \xi_{i}^{*2})$$

s.t. $\forall i$,
 $y_{i} - \mathbf{w}^{\top} \phi(\mathbf{x}_{i}) - b \leq \epsilon + \xi_{i}$,
 $b + \mathbf{w}^{\top} \phi(\mathbf{x}_{i}) - y_{i} \leq \epsilon + \xi_{i}^{*}$

• Here, the constraints $\xi_i, \xi_i^* \geq 0$ are not necessary

Need for Optimization so far

Unconstrained (Penalized) Optimization:

$$\mathbf{w}_{Reg} = \underset{\mathbf{w}}{\operatorname{arg min}} ||\Phi \mathbf{w} - \mathbf{y}||_2^2 + \Omega(\mathbf{w})$$

Constrained Optimization 1:

$$\mathbf{w}_{Reg} = \mathop{
m arg\ min}_{\mathbf{w}} \ ||\Phi \mathbf{w} - \mathbf{y}||_2^2$$
 such that $\Omega(\mathbf{w}) \leq heta$

• Constrained Optimization 2 (t = 1 or 2):

$$\underset{\mathbf{w},b,\xi_{i},\xi_{i}^{*}}{\arg\min} \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{i} (\xi_{i}^{t} + \xi_{i}^{*t})$$

s.t.
$$\forall i, y_i - \mathbf{w}^{\top} \phi(\mathbf{x}_i) - b \leq \epsilon + \xi_i; b + \mathbf{w}^{\top} \phi(\mathbf{x}_i) - y_i \leq \epsilon + \xi_i^*$$

- Equivalence: λ (Penalized) $\equiv \theta$ (Constrained)
- **Duality**: Dual of Support Vector Regression

Solving Unconstrained Minimization Problem

- Intuitively: Minimize by setting derivative (gradient) to 0 and hoping to find closed form solution.
- When is such a solution a global minimum?
- For most optimization problems, finding closed form solutions is difficult. Even for linear regression (for which closed form solution exists), are there alternative methods?
 - Eg: Consider, $\mathbf{y} = \Phi \mathbf{w}$,where Φ is a matrix with full column rank, the least squares solution, $\mathbf{w}^* = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{y}$. Now, imagine that Φ is a very large matrix. with say, 100,000 columns and 1,000,000 rows. Computation of closed form solution might be challenging.
- How about iterative methods?