

Dr. A. Alldridge:

Mathematik für Physiker C (WS 2008/9), Blatt 6

Aufgabe 1 (Ein Kompaktheitsargument — 5 Punkte)

Sei K ein kompakter metrischer Raum, $x \in K$ und $(x_k)_{k \in \mathbb{N}}$ eine Folge in K, so dass jede konvergente Teilfolge gegen x konvergiere. Zeigen Sie, dass (x_k) gegen x konvergiert. **Hinweis:** Beweisen Sie per Widerspruch und konstruieren Sie unter der Widerspruchsannahme eine Teilfolge von (x_k) , die keine gegen x konvergente Teilfolge besitzt.

Aufgabe 2 (Periodische DGL — 5 Punkte)

Sei $T \in \mathbb{R}$ und $I \subset \mathbb{R}$ ein offenes Intervall. Die stetige Funktion $F : \mathbb{R} \times I \to \mathbb{R}$ sei T-periodisch, d.h. es gelte F(t+T,x) = F(t,x) für alle $t \in \mathbb{R}$, $x \in I$.

- (a) Zeigen Sie: Ist ϕ eine Lösung der DGL $\dot{x}(t) = F(t, x(t))$, so ist für alle $k \in \mathbb{Z}$ die Funktion $\psi_k(t) = \phi(t + kT)$ ebenfalls eine Lösung.
- (b) Sei F nun eine C^1 -Funktion und die maximale Lösung $\phi(t;0,x_0)$ der Anfangswertaufgabe $\dot{x}=F(t,x)$, $x(0)=x_0$ sei für jedes $x_0\in I$ auf ganz $\mathbb R$ definiert. Sei $p(\xi)=\phi(T;0,\xi)$. Zeigen Sie, dass p stetig differenzierbar ist und

$$p'(\xi) = \exp \int_0^T \frac{\partial F}{\partial x}(t; 0, \xi) dt.$$

Benutzen Sie die Variationsgleichung zur Variation des Anfangswerts.

(c) Zeigen Sie, dass unter den Annahmen von (b) gilt $\phi(t+T;0,\xi) = \phi(t;0,p(\xi))$.

Aufgabe 3 (Eine Untermannigfaltigkeit — 5 Punkte)

Seien $f, g : \mathbb{R}^3 \to \mathbb{R}$ definiert durch

$$f(x,y,z) = x^2 + xy - y - z$$
 und $g(x,y,z) = 2x^2 + 3xy - 2y - 3z$.

Zeigen Sie, dass $C=\{(x,y,z)\in\mathbb{R}^3\mid f(x,y,z)=g(x,y,z)=0\}$ eine eindimensionale Untermannigfaltigkeit ist, sowie, dass durch $\varphi:\mathbb{R}\to\mathbb{R}^3$, $\varphi(t)=(t,t^2,t^3)$ eine globale Parameterdarstellung von C gegeben ist.

Aufgabe 4 (Untermannigfaltigkeiten — mündlich) Zeigen Sie:

- (a) Die n-dimensionalen Untermannigfaltigkeiten von \mathbb{R}^n sind genau die offenen Teilmengen.
- (b) Die 0-dimensionalen Untermannigfaltigkeiten von \mathbb{R}^n sind genau die Teilmengen, die aus isolierten Punkten bestehen. (Solche Teilmengen heißen *diskret*.)

Hinweis: Benutzen Sie etwa Theorem 21.4.

Bitte geben Sie die Übungsaufgaben am *Montag*, 24.11.2008, vor der Vorlesung ab. Bereiten Sie die mündliche Aufgabe zur Übung am *Mittwoch*, 3.12.2008, vor.

¹Zur Erinnerung: Ein Punkt $x \in A \subset \mathbb{R}^n$ heißt isoliert, falls es eine Umgebung $U_{\varepsilon}(a)$ mit $\varepsilon > 0$ gibt, so dass $U_{\varepsilon}(a)$ außer x keinen Punkt von A enthält (d.h. $U_{\varepsilon}(x) \cap A = \{x\}$).