МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

ІКНІ Кафедра **ПЗ**

3BIT

До лабораторної роботи №2 на тему: "Ознайомлення та керування процесами в операційних системах для персонального комп'ютера. Linux та macOS"

з дисципліни: "Операційні системи"

Лектор:

старший викладач кафедри ПЗ Грицай О.Д.

Виконав:

студент групи ПЗ-24 Губик А. С.

Прийняв:

доцент кафедри ПЗ Горечко О. М.

Тема роботи: Ознайомлення та керування процесами в операційних системах для персонального комп'ютера. Linux та macOS.

Мета роботи: Ознайомитися з процесами та потоками в операційних системах Linux, MacOS. Навчитися працювати із системними утилітами, що дають можливість отримувати інформацію про процеси, потоки, використовувану ними пам'ять, та іншу необхідну інформацію.

Теоретичні відомості

Операційна система - це сукупність програм, які призначені для керування ресурсами комп'ютера й обчислювальними процесами, а також для організації взаємодії користувача з апаратурою. З іншої сторони, Операційна система - це програма, яка постійно працює на комп'ютері і, зазвичай, називається ядром. Функції операційних систем можна взагальному описати, як: Керування та розподіл ресурсів Керування обчислювальними процесами. Забезпечення взаємодії користувача з апаратурою Класифікація операційних систем здійснюється відносно різних характеристик: а будовою ядра: монолітні, мікроядерні, наноядерні; за кількістю розрядів даних, що обробляються одночасно: 8-, 16-, 32-, 64-розрядні; за кількістю програм, що виконуються одночасно: однозадачні, багатозадачні; за цільовим пристроєм: для мейнфреймів, для ПК, для мобільних пристроїв; за типом інтерфейсу: з текстовим інтерфейсом, з графічним інтерфейсом; за кількістю користувачів: однокористувацькі, багатокористувацькі; за типом використання ресурсів: локальні, мережеві; за призначенням: для пакетної обробки, інтерактивні, підтримка реального часу; за типом ліцензії: комерційна, вільна; за сімейством: Microsoft Windows, Unix-подібні ОС, Мас ОЅ X та інші.

Хід роботи

- 1. Встановити операційні системи Linux та MacOS Я встановив Linux поряд з Windows(dual boot).
- 2. За допомого консольних засобів OC Linux отримати повну інформацію про процеси.

Рис. 1: htop

3. а допомогою утиліт top, htop, qps, System Monitor отримати повну інформацію про процеси в ОС Linux та MacOS.

Рис. 2: top

Рис. 3: qps

Рис. 4: GNOME System Monitor

4. Використовуючи консольні засоби ОС Linux та утиліти змінити пріоритет виконання процесу.

Рис. 5: Виставляємо пріорітет в System Monitor

5. Використовуючи консольні засоби ОС Linux та сторонні утиліти змінити стан виконання процесу, завершити виконання заданого процесу.

Рис. 6: Відновлюємо роботу Edge

6. Скомпілювати файл main.cpp представлений у лабораторній роботі No 1 (на MacOS і Linux можна командою: g++ main.cpp -pthread) і запустити виконуваний файл на різній кількості активних процесорів (ядер). Знайти для даної програми величини , , при різних вхідних значеннях величини . A S p n Порівняти результати для різних операційних систем.

```
    artem@laptop:~/Progs++/OSlabs/Lab2$ ./main
        Set process affinity (cores count) and press <Enter>1
        Duration: 918ms
    artem@laptop:~/Progs++/OSlabs/Lab2$ ./main
        Set process affinity (cores count) and press <Enter>1
        Duration: 929ms
    artem@laptop:~/Progs++/OSlabs/Lab2$ ./main
        Set process affinity (cores count) and press <Enter>1
        Duration: 929ms
    artem@laptop:~/Progs++/OSlabs/Lab2$
```

Рис. 7:

В сеедньому виходить 925 ms на одному ядрі, назвемо це число T_1

- artem@laptop:~/Progs++/OSlabs/Lab2\$./main
 Set process affinity (cores count) and press <Enter>6
 Duration: 293ms
- artem@laptop:~/Progs++/OSlabs/Lab2\$./main
 Set process affinity (cores count) and press <Enter>6
 Duration: 275ms
- artem@laptop:~/Progs++/OSlabs/Lab2\$./main
 Set process affinity (cores count) and press <Enter>6
 Duration: 278ms
- oartem@laptop:~/Progs++/OSlabs/Lab2\$

Рис. 8:

В сеедньому виходить 282 ms на шести ядрах, назвемо це число T_6 . Визначимо реальне прискорення A для цього випадку, за формулою

$$A = \frac{T_1}{T_6}$$

Результатом буде 3.28

- artem@laptop:~/Progs++/OSlabs/Lab2\$./main
 Set process affinity (cores count) and press <Enter>12
 Duration: 202ms
- artem@laptop:~/Progs++/OSlabs/Lab2\$./main
 Set process affinity (cores count) and press <Enter>12
 Duration: 198ms
- artem@laptop:~/Progs++/OSlabs/Lab2\$./main
 Set process affinity (cores count) and press <Enter>12
 Duration: 243ms
- artem@laptop:~/Progs++/OSlabs/Lab2\$

Рис. 9:

В середньому виходить 214 ms на дванадцяти ядрах, назвемо це число T_{12} Визначимо реальне прискорення A для цього випадку, за формулою

$$A = rac{T_1}{T_{12}}$$

Результатом буде 4.32

Далі ми визначимо p:

$$A = \frac{1}{p + \frac{1-p}{n}}$$

$$\frac{1}{A} = p + \frac{1-p}{n}$$

$$\frac{n}{A} = np + 1 - p$$

$$\frac{n}{A} = p(n-1) + 1$$

$$p = \frac{n}{A(n-1)} - 1$$

Для шести ядер: p=0.63Для дванадцяти ядер: p=0.75

Тоді S для шести ядер: S=1.44

Тоді S для дванадцяти ядер: S=1.29

7. Результати лабораторної роботи оформити у звіт, у висновку надати порівняння моніторингу процесів у різних системах різними утилітами, відповідно до індивідуального варіанту.

Варіант 3: копіювання файлів за допомогою ср

14431 artem	39	19 1045M	117M 86416 S	0.0 1.6	0:00.00	+ /usr/bin/konsole
14434 artem	20	0 9888	5 624 3 784 S	0.0 0.1	0:00.04	└ /bin/bash
14482 artem		0 6448	1000 010 .	0.0 0.0	0.00.01	ep i bomicodaby i cecareby
14635 artem	20	0 12464	8756 3360 R	5.8 0.1	0:01.43	L+ htop
14514 artem	20	0 955M	101M 83376 S	0.0 1.4	0:00.11	/usr/lib/x86_64-linux-gnu/libexec/baloorunner
14516 artem	20	0 955M	101M 83376 S	0.0 1.4	0:00.00	<pre>- /usr/lib/x86_64-linux-gnu/libexec/baloorunner</pre>

Рис. 10:

konsole	artem	0.00	14421	34.9 MB	13.6 MB	45.1 kB	N/A	N/A Normal
b ash	artem	0.00	14434	1.9 MB	4.7 GB	4.7 GB	N/A	N/A Normal
I I ср					225.4 MB			<i>N/A</i> Normal
 baloorunner	artem	0.00	14514	20.8 MB	31.5 MB	N/A	N/A	N/A Normal
🖭 gnome-system-monitor	artem	0.23	14529	23.0 MB	34.3 MB	N/A	N/A	N/A Normal

Рис. 11:

Висновок: Я навчився змінювати параметри процесів та керувати ними в ОС Linux. Щодо завдання 6, можемо бачити що лінукс працює швидше на меншій кількості ядер, він працює на 6 ядрах так як віндовс на 12, але при збільшенні ядер до 12 прискорення майже не відбувається. Можна сказати що лінукс розпаралелює програми більш ефективно.