Санкт-Петербургский Политехнический Университет им. Петра Великого

Институт прикладной математики и механики Кафедра прикладной математики

Отчёт по лабораторной работе №4 по дисциплине "Математическая статистика"

Эмпирические функции и ядерные оценки

Выполнил студент:

Мишутин Д. В.

Группа:

3630102/70301

Проверил:

К.ф.-м.н., доцент

Баженов Александр Николаевич

Санкт-Петербург

2020 г.

Оглавление

1 Постановка задачи	
2 Теория	∠
3 Реализация	
4 Результаты	
4.1 Эмпирические функции распределения (ЭФР)	
4.2 Ядерные функции плотности (ЯФП)	8
4.3 Таблицы. Средние модулей ошибок	15
5 Выводы	16
6 Литература	17
7 Приложения	17
Список иллюстраций и таблиц	
ЭФР. Стандартное нормальное распределение	
ЭФР. Стандартное распределение Коши	
ЭФР. Распределение Лапласа	
ЭФР. Равномерное распределение	7
ЭФР. Распределение Пуассона	
ЯФП. Стандартное нормальное распределение при n=20	8
ЯФП. Стандартное нормальное распределение при n=60	
ЯФП. Стандартное нормальное распределение при n=100	9
ЯФП. Стандартное распределение Коши при n=20	10
ЯФП. Стандартное распределение Коши при n=60	10
ЯФП. Стандартное распределение Коши при n=100	1
ЯФП. Распределение Лапласа при n=20	12
ЯФП. Распределение Лапласа при n=60	12
ЯФП. Распределение Лапласа при n=100	12
ЯФП. Равномерное распределение при n=20	13
ЯФП. Равномерное распределение при n=60	13
ЯФП. Равномерное распределение при n=100	14
ЯФП. Распределение Пуассона при n=20	14
ЯФП. Распределение Пуассона при n=60	15
ЯФП. Распределение Пуассона при n=100	15
Таблица. Стандартное нормальное распределение	15
Таблица. Стандартное распределение Коши	10
Таблица. Распределение Лапласа	16

Таблица. Равномерное распределение	16
Таблица. Распределение Пуассона	16

1 Постановка задачи

Сгенерировать выборки размером 20, 60 и 100 элементов. Построить на них эмпирические функции распределения и ядерные оценки плотности распределения на отрезке [-4;4] для непрерывных распределений и на отрезке [6;14] для распределения Пуассона.

Распределения:

• Стандартное нормальное распределение:

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}$$
(1.1)

• Стандартное распределение Коши:

$$C(x,0,1) = \frac{1}{\pi(1+x^2)}$$
 (1.2)

• Распределение Лапласа:

$$L\left(x,0,\frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}}e^{-\sqrt{2}|x|} \tag{1.3}$$

• Распределение Пуассона:

$$P(k,10) = \frac{10^k}{k!} e^{-10} \tag{1.4}$$

• Равномерное распределение:

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}}, npu|x| \le \sqrt{3} \\ 0, npu|x| > \sqrt{3} \end{cases}$$
 (1.5)

2 Теория

Эмпирической функцией распределения (ЭФР) \dot{F}_n называется относительная частота события X < x, полученная по данной выборке суммированием частот n_i , для которых элементы z_i статистического ряда меньше x:

$$\dot{F}_n(x) = \dot{F}(X < x) = \frac{1}{n} \sum_{z < x} n_i$$

ЭФР является оценкой, то есть приближённым значением, генеральной функции распределения.

$$\dot{F}_n(x) \approx F_x(x)$$

Оценкой плотности вероятности f(x) называется функция $\hat{f}(x)$, построенная на основе выборки, приближённо равная f(x):

$$\hat{f}(x) \approx f(x)$$

Представим оценку в виде суммы с числом слагаемых, равным объёму выборки:

$$\widehat{f}_n(x) = \frac{1}{n h_n} \sum_{i=1}^n K\left(\frac{x - x_i}{h_n}\right)$$

Здесь K(u) называется ядерной функцией плотности (ЯФП), непрерывна и является плотностью вероятности, $[h_n]$ – любая последовательность положительных чисел, обладающая свойствами:

$$1. \lim_{n\to\infty} h_n = 0$$

$$2. \lim_{n\to\infty}\frac{h_n}{n^{-1}}=\infty$$

Гауссово ядро:

$$K(u) = \frac{1}{\sqrt{2\pi}} e^{\frac{-u^2}{2}}$$

Правило Сильвермана:

$$h_n = 1.06 \,\hat{\sigma} \, n^{\frac{-1}{5}}$$
,

где $\hat{\sigma}$ — выборочное стандартное отклонение.

3 Реализация

Был использован язык *Python 3.8.2*: модуль *питру* для генерации выборок с различными распределениями и вычисления описательных статистик, модуль *scipy* для функций и плотностей распределений, модуль *matplotlib* для построения и отображения графиков и гистограмм, модуль *math* для математических расчётов, модуль *pandas* для оптимального хранения статистических данных и функция *display* из модуля *IPython.display* для их корректного отображения в таблицах.

4 Результаты

4.1 Эмпирические функции распределения (ЭФР)

Рис. 1 ЭФР для Стандартного нормального распределения

Рис. 2 ЭФР для Стандартного распределения Коши

Рис. 4 ЭФР для Равномерного распределения

Рис. 5 ЭФР для распределения Пуассона

4.2 Ядерные функции плотности (ЯФП)

Рис. 6 ЯФП для Стандартного нормального распределения при n=20

Рис. 8 ЯФП для Стандартного нормального распределения при n=100

Рис. 9 ЯФП для Стандартного распределения Коши при n=20 KDE standard_cauchy n=20

Рис. 10 ЯФП для Стандартного распределения Коши при n=60

Рис. 11 ЯФП для Стандартного распределения Коши при n=100

Рис. 12 ЯФП для распределения Лапласа при n=20

Рис. 14 ЯФП для распределения Лапласа при n=100

Рис. 15 ЯФП для Равномерного распределения при n=20 KDE uniform n=20

Рис. 16 ЯФП для Равномерного распределения при n=60

Рис. 17 ЯФП для Равномерного распределения при n=100

Рис. 18 ЯФП для распределения Пуассона при n=20

Рис. 20 ЯФП для распределения Пуассона при n=100

4.3 Таблицы. Средние модулей ошибок

Строки – мощности выборок, столбцы – коэффициенты при h_n , маркером помечены минимальные значения.

Таблица 1 Стандартное нормальное распределение

E(z)	0.5	1.0	2.0
n=20	0.061887	<mark>0.051959</mark>	0.052813

n=60	0.028175	<mark>0.026624</mark>	0.039276
n=100	0.035016	<mark>0.028130</mark>	0.037715

Таблица 2 Стандартное распределение Коши

E(z)	0.5	1.0	2.0
n=20	<mark>0.036591</mark>	0.037148	0.052669
n=60	0.022031	<mark>0.021232</mark>	0.039087
n=100	0.046387	0.042639	0.048923

Таблица 3 Распределение Лапласа

E(z)	0.5	1.0	2.0
n=20	<mark>0.035431</mark>	0.040874	0.067724
n=60	0.032295	<mark>0.030991</mark>	0.052448
n=100	0.024103	0.023139	0.034833

Таблица 4 Равномерное распределение

E(z)	0.5	1.0	2.0
n=20	0.041468	0.039627	0.052521
n=60	<mark>0.030078</mark>	0.033001	0.051592
n=100	0.025169	0.030812	0.054162

Таблица 5 Распределение Пуассона

E(z)	0.5	1.0	2.0
n=20	0.036118	0.020863	<mark>0.002852</mark>
n=60	0.022694	0.013810	<mark>0.011530</mark>
n=100	0.025138	0.017411	0.006402

5 Выводы

Чем больше выборка, тем лучше ЭФР приближает эталонную функцию распределения.

Исходя из данных в таблицах, для распределений

- 1. Стандартного нормального: лучшие оценки при $h = h_n$
- 2. Стандартного Коши: для малых выборок лучшая оценка будет при $h = \frac{1}{2}h_n$, при больших $h = h_n$
- 3. Лапласа: для малых будет $h = \frac{1}{2}h_n$, для больших $h = h_n$
- 4. Равномерного: для малых $h = h_n$, для больших $h = \frac{1}{2}h_n$
- 5. Пуассона: лучшие оценки при $h=2h_n$

6 Литература

Основы работы с питру (отдельная глава курса)

<u>Документация по *scipy*</u>

Pandas обзор

7 Приложения

Код лабораторной