1.11 Effective Mass (m*)

- It is presumed that mass of free electron is same as that of electrons of combining atoms which form a solid.
- But, experimentally it is observed that, mass of electron in some solids is less and in some solid, it is larger than the mass of free electron.
- The experimentally determined electron mass in solid is called as effective mass and is represented by m*.)
- Change in the mass of electron in solids is due to interaction between atoms in solids and drifting of electrons.

1.12 Semiconductors

- The materials having electrical conduction greater than insulator and less than conductors are called as semiconductors.
- These materials have a valence band almost filled and conduction band almost empty. The conduction band and valence band are separated by a small energy gap.of Eg ≈ 2eV.

is

- Semiconductors are of Two Types :
 - Intrinsic Semiconductors
 - Extrinsic Semiconductors.

Intrinsic or Pure Semiconductors:

The materials in their pure form exhibiting properties of semiconductors are known as Intrinsic or Pure Semiconductors. e.g. Si and Ge.

- The pure semiconductor atoms are tetravalent in nature i.e. capable forming 4 covalent bonds with other atoms, as outermost shell of semiconductor atoms consist of four electrons.
- Semiconductor atom forms 4 covalent bonds with the neighbour atoms by sharing 4 electrons to achieve a stable structure as shown below.

Fig. 1.6: Tetravalent nature of Semiconductor atom

1.12.1 Conduction Process in Semiconductors

- At room temperature, the bonds between few semiconductor atoms break due to available thermal energy.
- When bonds are broken, electrons in the valence band acquire additional energy and jump to the higher level conduction band region.
- Electrons in the conduction band region act as free electrons and are available for electrical conduction process.
- When electron jumps from valence band to the conduction band, an empty space is left behind in the valence band.
- As this empty space is created due to removal of one -ve charge, it is treated as a +ve charge and is known as 'hole'.
 - · The vacancy gets filled when electron from another bond occupy it.
 - As a result vacancy is created at another place as shown in Fig. (1.7).
 - In this way, position of vacancy changes within the crystal.
 - In other words, 'hole' moves from one position to the other within crystal.
 - The 'hole' being +vely charged particle, its movement causes an electrical current.

Fig. 1.7: Conduction process in Intrinsic SC

- . So, current in the semiconductor is due to
 - (i) mobility of electrons in the conduction band and
 - (ii) mobility of holes in the valence band.
- It is important to note that current obtained in conductors is mainly due to movement
 of electrons but in case of semiconductors, the 'holes' and 'electrons' contribute
 equally for the current.

1,13 Energy band diagram of Intrinsic Semiconductor

(1) At $T = 0^0 K$

- At absolute zero temperature, the bonds between semiconductor atoms are intact.
- Therefore, valence band is almost filled.
- Conduction band is totally empty.
- No charge carriers in CB.

(2) At $T > 0^0 K$

- Thermal energy available breaks bonds between few semiconductor atoms releasing electron-hole pairs.
- Free electron gains energy and jumps to conduction band. Conduction band is therefore, partially filled.
- Transfer to of electron to conduction band leaves vacancy in the valence band.