56. You are given the following information about a group of policies:

Claim Payment	Policy Limit
5	50
15	50
60	100
100	100
500	500
500	1000

Determine the likelihood function.

- (A) f(50)f(50)f(100)f(100)f(500)f(1000)
- (B) f(50)f(50)f(100)f(100)f(500)f(1000)/[1-F(1000)]
- (C) f(5)f(15)f(60)f(100)f(500)f(500)
- (D) f(5)f(15)f(60)f(100)f(500)f(1000)/[1-F(1000)]
- (E) f(5)f(15)f(60)[1-F(100)][1-F(500)]f(500)

35. You are given the following information about a credibility model:

First Observation	Unconditional Probability	Bayesian Estimate of Second Observation
1	1/3	1.50
2	1/3	1.50
3	1/3	3.00

Calculate the Bühlmann credibility estimate of the second observation, given that the first observation is 1.

- (A) 0.75
- (B) 1.00
- (C) 1.25
- (D) 1.50
- (E) 1.75

36. DELETED

37. A random sample of three claims from a dental insurance plan is given below:

Claims are assumed to follow a Pareto distribution with parameters $\,\theta$ = 150 and $\,\alpha$.

Calculate the maximum likelihood estimate of α .

- (A) Less than 0.6
- (B) At least 0.6, but less than 0.7
- (C) At least 0.7, but less than 0.8
- (D) At least 0.8, but less than 0.9
- (E) At least 0.9