Algebraic Statistics

Benjamin C. W. Brown B.Brown@ed.ac.uk

 \sim

26th October 2020

1. Contents 2/8

Contents I

1. INDEPENDENT MODELS

2. SUMMARY

Statistical Models

planetmath.org

A *statistical model* is usually parameterised by a function, called a *parametrisation*

$$\Theta \to \mathcal{P}, \quad \text{given by} \quad \theta \mapsto P_{\theta}, \quad \text{so that} \quad \mathcal{P} = \{P_{\theta}: \theta \in \Theta\},$$

where Θ is the *parameter space*. Θ is usually a subset of \mathbb{R}^n .

McCullagh, 2002

This should be defined using category theory.

Two-by-Two Contingency Tables

A contingency table contains counts obtained by cross-classifying observed cases according to two or more discrete criteria.

Example

TODO: Figure (Florida death sentences)

We ask whether the sentences were made independently of the defendant's race.

Two-by-Two Contingency Tables

- ► Classify using two criteria with *r* and *c* levels, yields two random variables *X* and *Y*.
- ▶ Code outcomes as $[r] := \{1, ..., r\}$, and $[c] := \{1, ..., c\}$.

All information about *X* and *Y* is contained in the *joint probabilities*

$$p_{ij} = P(X = i; Y = j), \quad i \in [r], j \in [c].$$

▶ These in turn determine the *marginal probabilities*:

$$p_{i+} := \sum_{j=1}^{c} p_{ij} = P(X = i), \quad i \in [r],$$

 $p_{+j} := \sum_{i=1}^{r} p_{ij} = P(Y = j), \quad j \in [c].$

2. Independent Models

Definition

Two random variables X and Y are *independent* if the joint probabilities factor as $p_{ij} = p_{i+} \cdot p_{+j}$, for all $i \in [r]$ and $j \in [c]$. Denote independence of X and Y by $X \perp \!\!\! \perp Y$.

Proposition

Two random variables X and Y are independent if and only if the $(r \times c)$ -matrix $p = (p_{ij})$ has rank one.

Summary

Questions?