(11) 5-144740 (A) (43) 11.6.1993 (19) JP

(21) Appl. No. 3-306224 (22) 21.11.1991

(71) TOKYO ELECTRON LTD (72) HIROAKI SAEKI

(51) Int. Cls. H01L21/205, C23C14/56, C23C16/44, C23C16/50, H01L21/203, H01L21/265

PURPOSE: To prevent that dust particles which are flown up in an evacuation operation from a load-lock chamber and in a gas introduction operation into the load-lock chamber adhere to an object to be treated and to enhance the throughput and the yield of the title apparatus without executing a slow evacua-

tion operation, a slow venting operation or the like.

CONSTITUTION: A circular recessed part 7 is formed in a ceiling part inside a load-lock chamber 1 in such a way that a small space which can be airtightly blocked can be formed. The recessed part 7 is set to a size which is slightly larger than that of a semiconductor wafer 4. An O-ring 8 is installed around the recessed part 7. When a conveyance arm 5 is raised, the conveyance arm 5 supporting the semiconductor wafer 4 is made to abut on the O-ring 8 and the part between them is airtightly blocked up. The semiconductor wafer 4 is separated in a state that it has been housed inside the recessed part 7 and is airtight. An evacuation piping 9 for small-space and a gas introduction piping 10 for small-space are connected to the recessed part 7.

(54) FORMATION OF AMORPHOUS SILICON FILM

(11) 5-144741 (A) (43) 11.6.1993 (19) JP -

(21) Appl. No. 3-306340 (22) 21.11.1991

(71) SHOWA DENKO K.K. (72) YUTAKA KITSUNO(2)

(51) Int. Cl⁵. H01L21/205,H01L31/04

PURPOSE: To form a high-quality a-Si film on a substrate efficiently and in a large area by a method wherein the substrate is coated with high-order silane and, after that, it is irradiated with light at a wavelength of 400nm or lower

in an inert gas.

CONSTITUTION: The inside of a reaction chamber 101 is irradiated with light through a light irradiaiton window 103 from a low-pressure mercury lamp 102. A circular substrate stand 105 is installed inside the reaction chamber 101; a substrate 104 is held on it. The substrate stand 105 can be turned by using a motor 106. High-order silane is dropped onto the substrate 104 by means of a high-order silane liquidometer 107. An inert gas is introduced into the reaction chamber 101 by means of an inert-gas flowmeter 108. In the reaction chamber 101, the high-order silane is decomposed when it is irradiated with light at a wavelength of 400nm or lower; an a-Si film is deposited on the substrate 104. Since no charged particles exist and only a reaction by means of light energy is used, the film is not damaged by the above method, and it is possible to obtain the a-Si film whose characteristic is excellent. The problem of the irradiation window of light is eliminated, and the a-Si film can be formed efficiently even on a large-area substrate.

(54) THIN-FILM FORMATION

(11) 5-144742 (A) (43) 11.6.1993 (19) JP

(21) Appl. No. 3-308681 (22) 25.11.1991

(71) TOSHIBA CORP (72) TOSHISUKE SETO(2)

(51) Int. Cl⁵. H01L21/205,H01L21/31

PURPOSE: To provide a thin-film formation method wherein it restrains the thermal damage to a substratum substrate, it can form a high-quality thin film at high throughput and it is suitable for forming a polycrystalline silicon

film on an insulating substrate.

CONSTITUTION: In a thin-film formation method, a raw gas is supplied into a reaction container 10 in which a synthetic qartz substrate 11 has been housed, the raw gas is pyrolyzed and a thin film is formed on the substrate 11. In the thin-film formation method, the substrate 11 is heated to 600°C as its heat-resistance temperature or lower by using a preliminary heating heater 14, an Si hydride as the raw gas is pyrolyzed, and an extremely thin film of silicon is formed on the substrate 11. After that, the extremely thin film is irradiated with infrared rays from an infrared lamp 15; the extremely thin film is heated rapidly to a high temperature of about 100°C; the Si hydride is pyrolyzed; a polycrystalline silicon thin film is formed on the extremely thin film.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-144741

(43)公開日 平成5年(1993)6月11日

(51)Int.Cl.⁵

識別記号

庁内整理番号

FΙ

技術表示箇所

H 0 1 L 21/205

31/04

7454-4M

7376—4M

H 0 1 L 31/04

V

審査請求 未請求 請求項の数1(全 6 頁)

(21)出願番号

特願平3-306340

(71)出願人 000002004

昭和電工株式会社

東京都港区芝大門1丁目13番9号

(22)出願日

平成3年(1991)11月21日

(72)発明者 橘野 裕

神奈川県川崎市川崎区扇町5番1号 昭和

電工株式会社化学品研究所内

(72)発明者 矢野 幸太郎

神奈川県川崎市川崎区扇町5番1号 昭和

電工株式会社化学品研究所内

(72)発明者 田沢 昇一

神奈川県川崎市川崎区扇町5番1号 昭和

電工株式会社化学品研究所内

(74)代理人 弁理士 寺田 實

(54)【発明の名称】 アモルフアスシリコン膜の形成方法

(57) 【要約】

【目的】 液体原料への光照射による堆積方法により高 品質なa-Si膜を形成させる。

【構成】 液状の高次シランを基板上に塗布した後、不活性ガス雰囲気中で波長400m以下の光を照射する。

20

30

40

【特許請求の範囲】

【請求項1】 一般式 Si_0H_{2n2} (但し、 $ntn \ge 2$ の整数)であらわされる高次シランを用いて光分解により基板上にアモルファスシリコン膜を形成する方法において、液状の高次シランを基板上に塗布した後、不活性ガス雰囲気中で波長400nm以下の光を照射することにより分解して、該基板上にアモルファスシリコン膜を堆積させることを特徴とするアモルファスシリコン膜の形成方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、光電変換装置、薄膜トランジスタ、感光体、及びLSI用途でのポリシリコン形成用等に用いられるアモルファスシリコン(以下「a-Si」という)に関する。

[0002]

【従来の技術】従来、a-Si膜の形成方法としては、反応性スパッタリング法、プラズマCVD(Chemical Vapor Deposition)法、光CVD法、熱CVD法等が試みられており、一般的にはプラズマCVD法が広く用いられ企業化されている。しかるに、プラズマCVD法においては、プラズマの制御性に困難があるため、荷電粒子の衝突による膜質の劣化、デバイスにおける界面状態の劣化等のa-Si膜の物性上の問題点が生じる。さらに、粉の発生が多いため、装置の汚染及び洗浄、デバイスの歩留り等の問題点も生じる。光CVD法によるa-Si膜の形成では、荷電粒子が存在せず光エネルギーによるラジカル反応のみであるため、膜の損傷が起きず高品質な膜が得られる。また装置も高周波発生装置等複雑で高価な装置を必要とせず、制御が容易であり、大面積化も容易である等の大きな利点を有する。

[0003]

【発明が解決しようとする課題】しかるに従来の光CV D法では、光源としては例えば低圧水銀ランプを用いる 方法 (特開昭59-89407号公報参照) や、レーザ ーを用いた方法 (Zarnani. Hら: J. Appl ied Physics, 60巻 (1986年) 第25 23頁参照) や、マイクロ波放電を用いた方法(特開昭 60-74426号参照) 等が知られている。これらの 場合一般には反応室を減圧にするため、反応室への光透 過窓に大気圧との差圧が加わり、透過窓の面積を大きく することが困難であり、大きくする場合は透過窓の厚み を増加させなければならず、光透過率が悪くなる。また これらの場合一般には、光源からの光を透過窓を通して 導入するように構成されているため、光分解によって生 じたケイ素の一部が透過窓の内側に付着して照射光を吸 収し、反応ガスへの照射光強度が著しく低下するという 欠点があった。以上の問題点により、従来の光CVD法 は膜表面に損傷を与えないという利点を有しながらもプ ロセスとして実用化されるに至っていない。本発明はか かる点に鑑みてなされたもので、気体原料を用いず液体 原料への光照射による堆積方法により高品質なa - S i 膜を大面積に効率良く提供することを目的としている。 【0004】

【課題を解決するための手段】本発明者らは、上記の目的を達成するために鋭意努力した結果、一般式Si_aH 2_{an2} (但し、nはn≥2の整数)であらわされる高次シランを用いて光分解により基板上にa-Si膜を形成する方法において、液状の高次シランを基板上に塗布した後、不活性ガス雰囲気中で波長400m以下の光を照射することにより分解して、基板上にa-Si膜を堆積させることにより高品質なa-Si膜を大面積に効率良く形成できることを発見した。

【0005】以下、本発明の方法を説明する。基板上に塗布する液体原料として本発明で使用する高次シランは、一般式Si。 $H_{2n/2}$ (但し、n は $n \ge 2$ の整数)であらわされ、ジシラン(Si。 H_6)、トリシラン(Si。 H_8)、テトラシラン(Si。 H_{10})、あるいはペンタシラン(Si。 H_{12})以上のものである。高次シランは、1種用いても2種以上の混合液を用いてもよい。【0006】高次シランを液状にて塗布する際、一般にはスピナーのような回転板上に基板を保持して液の滴下にて行なう方法、あるいは高次シランの液中に基板を浸漬後引き上げる方法などがあるが、反応室中で行なっても、反応室外で不活性ガス雰囲気中で行なって反応室に搬送する形式いずれでもかまわない。回転板を用いる場合の回転数は、一般には100~10000RPM、好ましくは500~2000RPMが用いられる。

【0007】光の照射は、ヘリウム、ネオン、アルゴン、窒素、水素等の高次シランとは不活性なガス雰囲気中にて、光透過窓を通して行なう。圧力はいかなる圧力をも用いることができるが、常圧±0.1気圧程度の近常圧が装置設計上、及び操作上好ましい。

【0008】 照射する光の光源としては高次シランが吸 収して分解するために、波長400m以下の光の光源が 用いられる。これには例えば、低圧水銀ランプ光、H2 や重水素、あるいはAr、Kr、Xe等の希ガスの放電 光、エキシマレーザー光などが用いられる。低圧水銀ラ ンプ光は、184.9nmと253.7nmにピークを持 ち、一般には10~5000Wの出力のものが用いられ るが、通常は100~1000Wで十分である。基板上 の照度も1~100mW/cm²で十分である。低圧水 銀ランプ光を用いる場合、一般に窓材には石英ガラスが 使用される。H₂や重水素、あるいはAr、Kr、Xe 等の希ガスの放電光は、一般には重水素ランプ光が良く 用いられる。重水素ランプ光は、115mm~400mmに 発光スペクトルがあり、160.8nmに最大のピークを 持つ。一般には30~200Wの出力のものが用いられ る。窓材は150m以下の短波長を利用するために一般 にはLiF、MgF2などが使用される。エキシマレー

50

ザー光には、Xel、XeBr、KrBr、XeCl、KrCl、ArCl、XeF、KrF、ArF、NeF、Ar₂、Kr₂、Xe₂レーザー等があるが、一般には波長193nmの光の光源であるArFレーザーがよく使われる。

【0009】基板温度は、操作圧力下で高次シランが液体状態を保つ温度であればいかなる温度でもよいが、近常圧下であれば一般には使用する高次シランの融点以上の温度が好ましい。光照射して形成したa-Si 膜は、基板温度が150 $^{\circ}$ $^{\circ}$ 以下と低いときには、膜中に水素を多量に含みそのままでは特性が十分ではない場合があるが、この場合加熱処理により特性の改善を行なうことができる。加熱温度は、好ましくは150 $^{\circ}$ $^{\circ}$

[0010]

【作用】一般式式 $Si_nH_{2n/2}$ (但し、nは $n \ge 2$ の整数)であらわされる高次シランを用いて光分解により基板上にa-Si膜を形成する方法において、液状の高次シランを基板上に塗布した後、不活性ガス雰囲気中で波長400m以下の光を照射することにより分解して、該基板上にa-Si膜を堆積させることにより光電気伝導度等の物性が優れた高品質なa-Si膜が形成できる。他のa-Si膜を形成する方法と比べて本発明では複雑で高価な装置を必要とせず、さらに従来の光CVD法では困難であった大面積基板にも効率良く高品質なa-Si膜が形成できる。

[0011]

【実施例】以下、本発明の実施例について図を参考にして説明する。本発明に用いる装置の一例を示せば図1あるいは図2のようになる。図1は光源として低圧水銀ランプ光を使用した例、図2は光源として重水素ランプ光を使用した例である。

【0012】図1の装置において、反応室101内へは 低圧水銀ランプ102から石英ガラス製の光照射窓10 3を通して光を照射する。反応室101内にはヒーター 及び冷媒等によって加熱及び冷却可能な100φの円形 の基板台105が設けられ、その上に基板104がホル ダー等によって保持される。 基板台105はモーター1 06によって回転できるようになっている。低圧水銀ラ ンプ102は、(株) オーク製作所製の300W、30 0mm×459mm、U字タイプのものを設置した。基板1 04上の光の照度は約80mW/cm²であり、18 4. 9 nmの光が全体の約30%、253. 7 nmの光が全 体の約70%である。高次シランは高次シラン液量計1 07によって基板104上に滴下される。不活性ガスは 不活性ガス流量計108によって反応室101に導入さ れる。反応室101において高次シランは光の照射によ り分解し基板104上にa-Si膜を堆積させる。反応 に用いられた高次シランは膜堆積後、排気系109を通 って排出される。

【0013】図2の設置において、反応室201内へは 重水素ランプ202からMgF2製の光照射窓203を 通して光を照射する。反応室201内にはヒーター及び 冷媒等によって加熱及び冷却可能な100φの円形の基 板台205が設けられ、その上に基板204がホルダー 等によって保持される。基板台205はモーター206 によって回転できるようになっている。 重水素ランプ2 02は、浜松ホトニクス (株) 製の150W、25¢の ものを設置した。光のスペクトルは115nm~400nm に分布し、160.8mに最大のピークを持っている。 高次シランは高次シラン液量計207によって基板20 4上に滴下される。不活性ガスは不活性ガス流量計20 8によって反応室201に導入される。反応室201に おいて高次シランは光の照射により分解し基板204上 にa-Si膜を堆積させる。反応に用いられた高次シラ ンは膜堆積後、排気系209を通って排出される。

【0014】以下実施例、比較例において、次の物性について測定を行ない結果を表1に示した。

光電気伝導度・・・・AM-1.5、100mW/cm²の 光照射下で行ない、電気伝導度はA1蒸着により、コプレーナー型のセルを形成して測定した。

光学ギャップ・・・・光吸収係数αより、

[0015]

【数1】

30

 $\sqrt{ah\nu} - h\nu$

プロットの切辺として求めた。

【0016】実施例1

実験装置として図1に示した装置を使用した。まず不活性ガスとしてヘリウムを常圧まで導入する。基板台105を30℃と設定した後、高次シランとしてトリシランを高次シラン液量計107より基板104上に20μ1導入しモーター106によって600RPMの回転速度で3秒間回転させ均一に塗布した後、低圧水銀ランプ102より光を20分間照射してトリシランを分解して、基板104上にa-Si膜を堆積せしめた。基板104として30mm角のコーニング社の7059ガラスを用いた。反応に用いられたトリシランは膜堆積後、排気系109を通って排出した。その後基板台105を250℃に昇温しヘリウムを不活性ガス流量計108より500m1/minで導入しながら加熱処理を20分間行なった。

【0017】実施例2

高次シランとしてジシランを用い、光を照射する際の基板台105の温度を-30℃とした他は、実施例1と同じにしてa-Si 膜を形成せしめた。

【0018】 実施例3

高次シランとしてジシラン、トリシラン、テトラシラン、ペンタシランの重量比約5:2:1:0.5の混合液を用いた他は、実施例1と同じにしてa-Si 膜を形

成せしめた。

【0019】実施例4

基板 104として 100 nmの熱酸化膜を形成したシリコン単結晶基板を 30 nm角に切断したものを用い、実施例 1 と同じにして a-S i 膜を形成せしめた。基板 104 を取り出した後、A1 蒸着によりソース及びドレイン電極を形成し、チャンネル長 100 μ m、チャンネル幅 200 μ m の薄膜トランジスタを作成した。得られたトランジスタの特性を測定したところ、電界効果移動度は、電子移動度が 2.2 c m² V s 、ホール移動度が 0.2 c m² V s であった。オン電流とオフ電流の比は、1 のチャンネル側で 10 であった。

【0020】実施例5

実験装置として図2に示した装置を使用した。まず不活性ガスとしてヘリウムを常圧まで導入する。基板台205を30℃と設定した後、高次シランとしてトリシランを高次シラン液量計207より基板204上に20μ1*

* 導入しモーター206によって600RPMの回転速度で3秒間回転させ均一に塗布した後、重水素ランプ202より光を15分間照射してトリシランを分解して、基板204上にa-Si膜を堆積せしめた。基板204として30mm角のコーニング社の7059ガラスを用いた。反応に用いられたトリシランは膜堆積後、排気系209を通って排出した。その後基板台205を250℃に昇温しヘリウムを不活性ガス流量計208より500

10 た。 【0021】比較例

市販のプラズマCVD装置を用い、反応ガスとしてモノシランを用い、0.1Torrの圧力下、13.56MHzの高周波出力20Wにて15分間プラズマCVD法を行ないa-Si膜を堆積せしめた。実施例 $1\sim5$ 及び比較例の膜堆積条件及び膜特性を表1に示す。

ml/minで導入しながら加熱処理を20分間行なっ

[0022]

【表1】

- 6

λ	

 原 科 光 都 基板台設度 積 厚 光電気伝導度 電電気伝導度 1 トリシラン 仮圧水配ランプ 30 2000 6×10⁻⁵ 3×10⁻¹⁰ (ロ⁻¹m⁻¹) (ロ⁻¹m⁻¹) (ロ⁻¹m⁻¹) 2 ジンラン、トリシラン			野野	条件				福	323	
1 トリシラン (で) (A) (ロ ⁻¹ α ⁻¹) (Ω ⁻¹ α ⁻¹) (Ω ⁻¹ α ⁻¹) (Ω ⁻¹ α ⁻¹) (元 ⁻¹ α ⁻¹) (Ω ⁻¹ α ⁻¹) (元 ⁻¹ α ⁻¹) (Ω ⁻¹ α ⁻¹) (元 ⁻¹ α ⁻¹) (元 ⁻¹ α ⁻¹) 2.0×10 ⁻⁵ 2 ランラン、トリシラン n -30 1200 5×10 ⁻⁵ 4×10 ⁻¹⁰ 1.3×10 ⁻⁵ 3 インタンラン、トリシラン、 n 30 3400 6×10 ⁻⁵ 2×10 ⁻¹⁰ 3.0×10 ⁻⁵ 5 トリシラン ach 30 2300 7×10 ⁻⁵ 5×10 ⁻¹⁰ 1.4×10 ⁻⁵ 5 トリシラン ach - 3000 3×10 ⁻⁵ 1×10 ⁻⁶ 3.0×10 ⁴			1	光	基板台温度			昭戰與公司	光	米
1 トリシラン ボ -30 2000 6×10 ⁻⁵ 3×10 ⁻¹⁰ 2.0×10 ⁵ 2 ジシラン、トリシラン、 アラン・トリシラン、 ボ ボ -30 1200 5×10 ⁻⁵ 4×10 ⁻¹⁰ 1.3×10 ⁵ 3 インタシラン、 トリシラン、 ボ ボ 30 3400 6×10 ⁻⁵ 2×10 ⁻¹⁰ 3.0×10 ⁵ 5 トリシラン ボ 30 2300 7×10 ⁻⁵ 5×10 ⁻¹⁰ 1.4×10 ⁵ 5 トリシラン 塩水素ランプ 30 2300 7×10 ⁻⁵ 5×10 ⁻¹⁰ 1.4×10 ⁵ 数研 (プラズマCV D法) 250 - 3000 3×10 ⁻⁵ 1×10 ⁻³ 3.0×10 ⁴			·		(2)	(Y)		(\O^-1\m^-1) .	(光驾気伝導度/暗電気伝導度)	(e V)
2 ジンラン、トリシラン、 トリシラン、		-	トリシラン	低圧水銀ランプ		2000	6×10 ⁻⁵	3×10 ⁻¹⁰		1.66
3 インタシラン、トリシラン、	BK	2	ダンラン	ll .		1200		4×10-18		1.67
トリシラン <u>電水乗ランプ 30 2300 7×10⁻⁵ 5×10⁻¹⁰ 1.4×10⁵ モノシラン (プラズマCVD社) 250 - 3000 3×10⁻⁵ 1×10⁻⁹ 3.0×10⁴</u>	拖 熨	m	ジシラン、トリシラン、 テトラシラン、 ペンタシラン 種合液	u u		3400		2×10-10		1. 63
モノシラン (プラズマCVD法) 250 - 3000 3×10 ⁻⁵ 1×10 ⁻⁹ 3.0×10 ⁴		ស	トリシラン	置水器ランプ		2300		5×10-10		1.70
		123 123	モノシラン (プラズマCVD法)	250	t	3000		1×10 ⁻⁹	3. 0×10 ⁴	1.75

【0023】表1から明らかなように、本発明により堆積したa-Si膜は、プラズマCVD法により得られた膜と比較して、光感度において1桁近くの向上がみられた。またトランジスタ特性も優れたものであった。また堆積速度は、一般的な光CVD法と比較して十分に速いものとなっていた。

[0024]

【発明の効果】以上述べたように本発明によれば、液状の高次シランを基板上に塗布した後、不活性ガス雰囲気中で波長400m以下の光を照射することにより分解して、基板上にa-Si膜を堆積させることができる。

【0025】本発明の方法では液状の原料を用いるため、プラスマCVD法と異なり装置が容易で粉末の発生

が防げる。また荷電粒子が存在せず光エネルギーによる 反応のみであるため膜の損傷が起きず、物性上の特性と して光電気特性及びトランジスタ特性の優れたa‐Si 膜が得られる。また、光の照射窓の問題が無くなり装置 が容易となり従来の光CVD法では困難であった大面積 基板にも効率良く高品質なa‐Si膜が形成できる。ま た以上述べたように、複雑で高価な反応装置を必要とし ないため、半導体材料装置における設備費を極めて小さ くできる等の長所を有する。

【0026】以上のことより本発明は、a-Si応用デバイスとしての光電変換装置、薄膜トランジスタ、感光体等の製造方法あるいはポリシリコン形成用のa-Si形成方法として広く利用でき、a-Si膜の利用分野の

飛躍的な拡大が期待できる。

【図面の簡単な説明】

【図1】本発明の方法を実施する装置の一例を示す図で ある

【図2】本発明の方法を実施する別の装置を示す図である。

【符号の説明】

101、201 反応室

102 低圧水銀ランプ.

* 103、203 光透過窓

104、204 基板

105、205 基板台

106、206 モーター

107、207 髙次シラン液量計

108、208 不活性ガス流量計

109、209 排気系

202 重水素ランプ

т

10

【図2】

10

【図1】

