

Period windowing (1)

- We have a periodic signal f(t'), taken from our observed system output (here, neuron spikes)
- We wish to split it into windows $f_1(t), f_2(t), ..., t \in [0, 1]$, such that $f_i(1) = f_{i+1}(0)$ (periodicity)
- k Then $f_i(t)$ is a function representing the i'th period of the signal
 - ▶ Eg. if $f(t') = \sin(\frac{t'}{2\pi})$ with $t \in [0, \infty)$, then $f_1(t) = \sin(\frac{t}{2\pi})$, $f_2(t) = \sin(\frac{t}{2\pi} + 2\pi)$, $f_3(t) = \sin(\frac{t}{2\pi} + 4\pi)$, . . ., with $t \in [0, 1]$
 - ightharpoonup By periodicity we have $f_i(t) = f_i(t)$, and $f_i(1) = f_{i+1}(0)$
- Fitting a model $t \to f_i(t)$ to these function observations gives us the periodic orbit model $f^*(t)$ at the current parameter value
- It's hard to split data up into these periods!

bristol.ac.uk