Computer Vision

4. Filtering

I-Chen Lin

College of Computer Science, National Yang Ming Chiao Tung University

Outline

- ► Impulse response and convolution.
- Linear filter and image pyramid.

Textbook:

• David A. Forsyth and Jean Ponce, Computer Vision: A Modern Approach, Prentice Hall, New Jersey, 2003 or 2012.

Some contents are from the reference lecture notes:

- Prof. D. Lowe, Computer Vision, UBC, CA.
- Prof. D.A. Forsyth, Computer Vision, UIUC.
- Prof. J. Rehg, Computer Vision, Georgia Inst. of Tech.
- Prof. T. Darrell, Computer Vision and Applications, MIT.

What's linear filtering?

- Construct a new image whose pixels are a weighted sum of the original pixel values.
 - Using the same set of weights at each point.
 - Mainly based on neighborhood of the target pixels.
- For example,

6	5	3
4	6	3
1	2	7

5/4	

Linear filtering

- ► The simplest and most useful case:
 - Replace each pixel with a linear combination of its neighbors.

The prescription for the linear combination is called the kernel.

6	5	3
4	6	3
1	2	7

0	0	0
-1/4	1/2	-1/4
0	0	0

5/4	

Correlation

Slides from Prof. D. Lowe, Computer Vision, UBC, CA. Credit: Christopher Rasmussen 5

Normalized correlation

Zero mean image, -1:1 scale

Zero mean image, -max:max scale

Normalized correlation

Zero mean image, -1:1 scale

Zero mean image, -max:max scale

Finding hands

Figure from "Computer Vision for Interactive Computer Graphics," W.Freeman et al, IEEE Computer Graphics and Applications, 1998.

Convolution

- ▶ The same as correlation with reversed kernels.
- ▶ Represent the linear weights as an image, F, called the kernel.
- Convolution operation:
 - Center origin of the kernel F at each pixel location
 - Multiply weights by corresponding pixels
 - Set resulting value for each pixel
- ► Image, *R*, resulting from convolution of *F* with image *H*, where *u*,*v* range over kernel pixels:

$$R_{ij} = \sum_{uv} H_{i-u,j-v} F_{uv}$$

Warning: the textbook mixes up H and F

Correlation compared to convolution

Correlation

$$O(x, y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(x+i, y+j)$$

Convolution

$$O(x, y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(x-i, y-j)$$

$$= \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(-i, -j) I(x+i, y+j)$$

If F(i, j) == F(-i, -j), then convolution is equivalent to correlation.

Convolution and impulse response

Convolution can be viewed as a sequence of impulse responses.

Examples

Original

Original

Filtered (no change)

Shifted right By 1 pixel

Examples (cont.)

Original

Original

			-			
0	0	0	_ [1	1	1
0	2	0	- <u>-</u>	1	1	1
0	0	0	9	1	1	1

Blur (with a box filter)

Sharpening filter

Sharpening

- Sharpening filter
 - Accentuates differences with local average

Examples: Smoothing with a box filter

Smoothing with a Gaussian

- Averaging does not model defocussed lens well
- Impulse response should be fuzzy blob, but a box filter would give a little square.
- Gaussian gives a better model of a fuzzy blob.

Gaussian kernel

Weight contributions of neighboring pixels by nearness.

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

- ► For efficiency, usually use integers as weights, e.g.: 0.125 *
 - Don't forget normalizing the weight sum to 1.

4	1
1	

0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003

Smoothing with a Gaussian

Additive Gaussian noise

Noise and smoothing

- Smoothing reduces pixel noise:
 - Each row shows smoothing with Gaussians of different width
 - Each column shows different amounts of Gaussian noise.

Noise and smoothing

- Filtered noise is sometimes useful
 - ► E.g. in textures synthesis.

Efficient implementation

- Both the box filter and the Gaussian filter are separable into two 1D convolutions:
 - First convolve each row with a 1D filter
 - ▶ Then convolve each column with a 1D filter.

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$
$$= \left(\frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{y^2}{2\sigma^2}}\right)$$

A 2D Gaussian can be expressed as the product of Gaussian of X and Y.

Other noise and smoothing

Could be salt-and-pepper noise.

Differentiation

 \triangleright Recall, for 2D function, f(x, y):

$$\frac{\partial f}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x + \varepsilon, y)}{\varepsilon} - \frac{f(x, y)}{\varepsilon} \right)$$

- ▶ This is linear and shift invariant, so must be the result of a convolution.
- ▶ We could approximate this as symmetric finite difference:

$$\frac{\partial h}{\partial x} \approx \frac{h_{i+1,j} - h_{i-1,j}}{2} \qquad H = \frac{1}{2} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

- Issue: noise
 - Smooth before differentiation
 - ▶ Two convolutions to smooth, then differentiate?

Differentiation

Because differentiation is convolution, and convolution is associative.

$$((f^{**}g)^{**}h)=(f^{**}(g^{**}h))$$

We can use a derivative of Gaussian filter.

Scale affects derivatives

1 pixel

7 pixel

Aliasing

- Can't shrink an image by taking every second pixel
- ▶ If we do so, characteristic errors appear
 - Typically, small phenomena look bigger; fast phenomena can look slower
 - Common phenomenon
 - Wagon wheels rolling the wrong way in movies
 - Checkerboards misrepresented in ray tracing
 - Striped shirts look funny on color television

Re-sampling

Resample the checkerboard by taking one sample at each circle.

Simple sampling, but ...

Smoothing as low-pass filtering

- High frequencies lead to trouble with sampling.
- Suppress high frequencies before sampling!

Truncate high frequencies in FT or convolve with a low-

pass filter.

Forsyth & Ponce Figures 7.12–7.14 (top rows)

30

The Gaussian pyramid

- Create each level from previous one:
 - smooth and sample
- Smooth with Gaussians, in part because
 - a Gaussian*Gaussian = another Gaussian
 - $ightharpoonup G(x) * G(y) = G(sqrt(x^2 + y^2))$
- Gaussians are low pass filters, so the representation is redundant once smoothing has been performed

The Gaussian pyramid

1D Fourier Transform

- Represent functions on a new basis .
- Think of functions as vectors, with many components.

2D Fourier Transform

- Represent function on a new basis .
 - ▶ Think of functions as vectors, with many components.
- We now apply a linear transformation to transform the basis dot product with each basis element
- Basis elements have the form

$$\left[e^{-i\theta} = \cos\theta + i\sin\theta\right] \qquad e^{-i2\pi(ux+vy)}$$

$$F(f(x,y))(u,v) = \iint_{\mathbb{R}^2} f(x,y)e^{-i2\pi(ux+vy)}dxdy$$

Discrete Fourier Transform

discrete domain

Forward transform

$$F[m,n] = \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} f[k,l] e^{-2\pi i \left(\frac{km}{M} + \frac{\ln n}{N}\right)}$$

Inverse transform

$$f[k,l] = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} F[m,n] e^{2\pi i \cdot \left(\frac{km}{M} + \frac{\ln}{N}\right)}$$

Real part of basis element

- The magnitude of the vector (u, v) gives a frequency
- Its direction gives an orientation

- f(x,y) is the image and is REAL
- F(u,v) (abbreviate as F) is in general, COMPLEX.
- Fourier transform is complex and difficult for visualization.
- Instead, think of phase and magnitude
 - Magnitude = magnitude of complex transform = $sqrt(REAL(F)^2+IMAGINARY(F)^2)$
 - Phase = phase of the complex transform = atan (IMAGINARY(F)/REAL(F))

Figure from Lee and Chen, A New Method for Coarse Classification of Textures and Class Weight Estimation for Texture Retrieval, Pattern Recognition and Image Analysis, Vol. 12, No. 4, 2002, pp. 400–410.

▶ Reconstruct with one's phase, and magnitude of the other.

Reconstruct with zebra phase, cheetah magnitude

Reconstruct with cheetah phase, zebra magnitude

The process and application of FFT

Source: www.mediacy.com/apps/fft.htm, Image Pro Plus FFT Example. Slides from Earl F. Glynn, "Fourier Analysis and Image Processing"