

(TERM PROJECT)

Anjali Jha (16IM10032) Shubham Mawa (16IM10033) Bhargav D (16IM10034) Prerit Jain (16IM10035)

PROBLEM STATEMENT

AUTOMATIC EXTRACTION OF EVENTS FROM NEWS DOCUMENTS.

II New Yorks: It has not been

(Events depicts the occurrence of any Disaster i.e natural or man-made)

PROBLEM STATEMENT

TASK 1

- Classification of Documents into predefined event types.
- The objective is to find whether the event has been discussed in the document.

TASK 2

- Detecting event trigger for each word vector
- The objective is to find whether an event is being associated with the word.

DENSE DOCUMENT EMBEDDINGS

DATA EXTRACTION

 Parsing the XML Document and converting it into txt format.

DATA TRANSFORMATION

- Creation of Dense Document embeddings using fastText.
- o Dimension Reduction.

MACHINE LEARNING MODELS

- Training multiple classifiers for different classes after splitting the dataset into Train and Test Sets.
- Selection of appropriate classifier for the classification task.

MODEL SELECTION & VALIDATION:

- Based on the different model adequacy parameters, the best model is selected.
- Hyper Parameter tuning.

NEURAL NETWORK ARCHITECTURE

DATA EXTRACTION:

- Parsing the XML Document and converting it into sentences.
- Creation of Vocabulary.

PREPROCESSING STEPS:

- Creation of Dense Word Embedding Matrix using fastText library for vocabulary.
- o Removing Punctuations in sentences.

CREATION OF DATASET

- Transformation of sentences into words with context. (Using appropriate window size).
- Words are indexed by their position in the embedding matrix.
- Corresponding event triggers for words are stored parallely.
- The Event Triggers are numerically encoded.

CNN + Bi-LSTM ARCHITECTURE FOR EVENT TRIGGER CLASSIFICATION

NEURAL NETWORK ARCHITECTURE

- The two dimensional representation of each word is fed to a convolution layer followed by max-pooling layer.
- Parallel Bi-directional Long Short Term
 Memory(Bi-LSTM) for the same input
- The output of CNN and Bi-LSTM is concatenated.
- The representation vector is fed to a fully connected layer.
- Followed by a Softmax layer to get the proper event type of the current word.
- The gradients are calculated using back-propagation.
- Regularization is implemented by dropout.

DENSE DOCUMENT EMBEDDINGS

NEURAL NETWORK ARCHITECTURE

MODEL	Training Set Accuracy	Testing Set Accuracy 95.01%	
SVMs	95.31%		
Logistic Regression	95.16%	95.46%	
Decision Tree	95.11%	95.61%	

WORD	True Positive	False Positive	False Negative
Event Trigger	203	855	2348
NONE	103921	2285	792

- Lack of Annotated Data in Hindi.
- Data Transformation was complex due to the structure of Data given. (XML Tree)
- Huge number of Parameters in the Neural Network
- Limited Vocabulary
- Multiclass Classification with insufficient examples for each class