MCS1

Assignment-1

PAGE III

Probability Basics

1.1	Social	Gracups
4 4	DOCION	Sanora

Problem can be simply converted to counting humber of labelled graph with 5 vertices that contains triangles.

	Edges (x)	Total graph possible with x edges	Graphs Containing	
	0	usith x edges	O) Can neises O Contain	
		10C = 10	triangle	
	2 =	10c2 = 45	0)	
	3	10 _{C3} = 120	70	
	4	10cy = 210 10cs = 252	180	
	5	$10_{\text{Cs}} = 252$ $10_{\text{Cs}} = 210$	200	
	7	10 = 120	120 Always	
	8	100 = 45	45 Gontain triangle	
	9	10G = 10	10 3000	
2,12	10	CIO	070	
): I	Total	1024	636 y = 636/1024	
		· Pobabilit	0 = 000 1029	

Explanation ->

3 edges containing a triangle = ${}^{5}C_{3} = 10$ Selecting 3 vertices from 5

to form a triangle

4 edges containing a triangle ->

5 C3 × 7 = 10 × 7 = 70

Selecting 3 3 edges forming a triangle and from remaining 7

Form a triangle from remaining 7 edges we can choose anyone as 4th edge

of 4 vertices

7 edges onwards always contain a triangle

The control was to the stage deposits of the control was the state of the control was to the control was the c	DATE: 1
1.2	Counting Cords ->
(a)	Total outcomes = 20! (arranging 20 cards)
	No. of Favourable outcomes = 15C10 × 10! × 10! (All red coords are marked less than or equal to 15)
	Choosing 10 from Avanging 15 numbers for hed cards red cards Seed cards blue cards
= 101	Probability = 15C10 * 101
	201
sk j	3003 = 21 184756 mm 1292
(b)	Total outcomes = 20! (arranging 20 coads)
	Exactly 8 cards are assigned numbers less than or equal to 15 > 15c * 5c * 10! * 10! Selecting 8 Selecting 2 from Arranging numbers from 5 numbers for red balls 15 numbers for femaining 2 balls Arranging
	Probability = 15C8 × 5C2 × 10! × 10! 20!
	= 64350 = 225 $184756 646$
	184756 646

(C) Total outcomes = 20! (arranging 20 cards) Arranging red Favourable outcomes -> and blue cards $(8C_{5} * {}^{3}C_{3}) * ({}^{6}C_{4} * {}^{2}C_{2}) * ({}^{6}C_{3} * {}^{3}C_{3}) * (10! * 10!)$ Choosing 5 red Choosing 4 blue From remaining Cards from 8 cards from 6 6 numbers (7 to12) humbers (exactly we need to choose numbers (exactly 3 red and 3 blue 6 numbers on <7) 8 numbers are >12) balls remaining and remaining 2 of and remaining 3 are of 3 are 2 are chosen red Chosen blue * (20*1) * 10! * 10! $= (56 \times 1) \times (15 \times 1)$ Probability = 56 x 15 x 20 x 10! x 10! = 16800 = 420046189 184756 184756

3-(a) Back to origin in 6 steps ->
There are 4 possible directions say left (L), right (B), Up (U), Down (D)
To return back to oxigin the following 2 conditions must hold true -> (i) Number of Left = Number of Right (ii) Number of Up = Number of Down
Case(a): 3 Down and 3 Up (DDDUUU)
$\begin{pmatrix} 6C_3 \times 3! \\ \hline 3! \end{pmatrix} \times \begin{pmatrix} 3C_3 \times 3! \\ \hline 3! \end{pmatrix} = 20$
Choose 3 of Arrangement Choose 3 of Arrangement 6 places for of down ramaining 3 of Up down places for of Up
(ase (b): 3 Left and 3 Right (LLLRRR) $ \begin{pmatrix} G_{C_3} \times \frac{3!}{3!} \end{pmatrix} \times \begin{pmatrix} 3C_3 \times 3! \\ 3! \end{pmatrix} = 20 $ Reason: Same as above
Case (c): 2 Down, 2 Up, 1 Left and 1 Right (DDUULR) $\begin{pmatrix} 6C_4 \times 011 \\ 2!2! \end{pmatrix} * \begin{pmatrix} 2C_2 \times 2! \end{pmatrix} = 100$
Choose 4 places Choose 2 of Arrangement out of 6 for Arrangement remaining 2 for left down-up down Left and right

Case (d): 2 Left, 2 Right, 1 Up, 1 Down (LLRRUD)

 $\left(\frac{6C_{4} \times 4!}{2!2!}\right) \times \left(\frac{2C_{2} \times 2!}{2C_{2}}\right) = 180$

Reason: same as previous

Total cases in which particle reach back to oxigin in 6 steps = 20+20+180+180

Total possible paths = 46 = 4096

Probability = 400 = 25

(b) Back to origin in 8 steps by remaining in first quadrant ->

To reach origin ->

(i) Number of left = Number of right

(ii) Number of UP = Number of down

Always in first quadrant ->

(i) $ln(R) \geqslant n(L)$

(ii) $n(U) \ge n(D)$;
for every prefix of string of path

All 4 must conditions hold true.

This problem is very similar to the problem of counting balanced parenthesis.

To count balanced parenthesis, Catalan numbers are used. K-th Catalan number is represented by > $K_n = \frac{2n}{(n+1)}$ h = 0,1,2,...(ase (I): 4L and 4D 4R

Ky = 8C4 = 14 Case (II): 4D and 40 $K_{y} = {8 \choose {y}} = 14$ Case (II): (3U-3D) and (11-1R) Choose & places To make sure Choose 2 of out of 8 places they are hundring 2 for (3V-3D) balanced places for (11-1R) . To make sure they are balanced $= (28 \times \frac{6C_3}{4}) \times (1 \times \frac{2C_4}{2})$ $= (28 \times 5) \times (1 \times 1) = 140$ Case (IV): (3L-3R) and (1U-1D) (1) (86 * K3) * $(22*K_1) = 140$ Reason: same as above.

