Unit Schedule: Modules

Module	Week	Content	Ross
1.	1	Introduction to modelling for data sci-	1,2
		ence and to R	
2.	2	Probabilities and bias	3
	3	Expectations	4
	4	Distributions	5
3.	5	Statistical inference	6&7
	6	Hypothesis testing	7&8
4.	7	Dependence and linear regression	9
	8	classification and clustering	
5.	9	Comparing means	10
	10	Random number generation and sim-	
		ulation	
6.	11	Validation and complexity	15
	12	Modelling	

FIT5197 Statistical Data Modelling Module 2 Expectations and Other Measures

2020 Lecture 3

Monash University

Revision at https://flux.ga/43FMK4

Concept Map for This Unit

Expected Values (ePub sections 2.2, 2.5, Ross 4.4-4.7, 4.9)

Outline

Measuring Things in Average

Expected Values

Entropy and Coding

Dependence

Chebyshev's Inequality

Weak Law of Large Numbers

Measuring Things in Average

Cancer Decisions

Suppose your GP runs a cheap test on you which returns positive for bowel cancer. She recommends you visit a specialist for a 2nd diagnosis and possible surgery to remove the section of bowel. The second diagnosis consists of the specialist doing a biopsy followed by running a test on the sample. The biopsy has a considerable cost and is not fully reliable. The surgery has a greater cost (both expense and the loss of body part), and a chance of failure (cancer still exists).

- what properties would you like of the GP's test to improve your situation?
- what properties would you like of the specialist's test to improve your situation?
- suppose the specialist's test is positive, and you agree to surgery, what properties would you like of surgery outcomes?

Evaluating Binary Predictions

see precision and recall on Wikipedia

Cancer Decisions, cont.

- what properties would you like of the GP's test to improve your situation?
 - high recall (mostly)
 - good precision (probably not possible)
- what properties would you like of the specialist's test to improve your situation?
 - high accuracy
 - not too expensive
- suppose the specialist's test is positive, and you agree to surgery, what properties would you like of surgery outcomes?
 - low chance of failure
 - lower expense and life cost

FICO Scores

Fair Isaac Corporation produces *credit scores*.

579 or less

Lenders view you as a very risky borrower

580-669

Some lenders will approve loans with this score

670-739

Most lenders consider this a good score

740-799

as a very dependable borrower

800+

Lenders view you as an exceptional borrower

- 800 or higher The FICO® Score is in the top 20% of U.S. consumers
- 740 799 The FICO® Score is in the top 40% of U.S. consumers
- 670 739 The FICO® Score is near the average score of U.S. consumers
- 580 669 The FICO® Score is below the average score of U.S. consumers
- 579 or less The FICO® Score is in the lowest 20% of U.S. consumers

Computing FICO Scores

example: Partial Model			
Category	Characteristic	Attributes	Points
Payment History	Number of months since the most recent derogatory public record	No public record 0 - 5 6 - 11 12 - 23 24+	75 10 15 25 55
Outstanding Debt	Average balance on revolving trades	No revolving trades 0 1 - 99 100 - 499 500 - 749 750 - 999 1000 or more	30 55 65 50 40 25 15
Credit History Length	Number of months in file	Below 12 12 – 23 24 – 47 48 or more	12 35 60 75
Pursuit of New Credit	Number of inquiries in last 6 mos.	0 1 2 3 4+	70 60 45 25 20
Credit Mix	Number of bankcard trade lines	0 1 2 3 4+	15 25 50 60 50

FICO Scores and Probabilities

- we expect the FICO score is <u>calibrated</u> with probability of not defaulting
 - the lower the score for a consumer, the higher the probability of defaulting on a loan
 - this is probability as frequency: for a given score at a given time, there is a true but unknown probability of default
 - it is also affected by the kind of loan

FICO Scores and Probabilities

- we expect the FICO score is <u>calibrated</u> with probability of not defaulting
 - the lower the score for a consumer, the higher the probability of defaulting on a loan
 - this is probability as frequency: for a given score at a given time, there is a true but unknown probability of default
 - it is also affected by the kind of loan
- bank managers adjust the "acceptance" FICO score to suit their financial targets
 - more loans? decrease acceptance score!

Predicting Real Values

- SAS prediction with error bars
- don't just want prediction, may also want confidence bands or upper/lower limits

Making Decisions

- should understand costs of various outcomes
- need to estimate recall, precision, or other measures of quality for categorical/binary decisions
- or may use a calibrated score for cruder control
- need to estimate means and ranges for real valued predictions

Making Decisions

- should understand costs of various outcomes
- need to estimate recall, precision, or other measures of quality for categorical/binary decisions
- or may use a calibrated score for cruder control
- need to estimate means and ranges for real valued predictions

theoretical tool for estimation is the expected value

Example: Central Tendency

- in a skewed distribution, the mode, median and mean do not line up!
- long tail on right and hump on left means skewed to the right

Characterising Distributions

central tendency: where abouts is the distribution mainly located? what is its centre?

deviation: how much does it vary? what is the rough spread of the distribution?

skew: is it anti-symmetric? does it have a long tail in

some direction?

NB. suppose you don't have modern graphics devices, just some tables of numbers and want to measure the above!

Characterising Distributions

central tendency: where abouts is the distribution mainly located? what is its centre?

deviation: how much does it vary? what is the rough spread of the distribution?

skew: is it anti-symmetric? does it have a long tail in

some direction?

NB. suppose you don't have modern graphics devices, just some tables of numbers and want to measure the above!

theoretical tool for characterisation is the expected value

The Most Important Formula

The fundamental result for understanding modern algorithms.

$$\textit{MSE}(\mathcal{H}) = \overline{\textit{bias}}(\mathcal{H})^2 + \frac{1}{|\mathcal{H}|} \overline{\textit{variance}}(\mathcal{H}) + \left(1 - \frac{1}{|\mathcal{H}|}\right) \overline{\textit{covariance}}(\mathcal{H})$$

This is developed by Uedo and Nakano 1996. **NB.** bias, variance and covariance are all defined as expected values

You need to understand this to understand modern machine learning algorithms.

ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ . ㅌ . 쒸٩♡.

Outline

Measuring Things in Average

Expected Values

Entropy and Coding

Dependence

Chebyshev's Inequality

Weak Law of Large Numbers

Expected Values

Expected Values

 Given a distribution, we can define the expected value of the RV:

$$\mathbb{E}\left[X\right] = \sum_{x \in \mathcal{X}} x \, p(x)$$

recalling that $p(x) \equiv p(X = x)$.

- The expected value is the average value over \mathcal{X} , weighted by the probability of each particular $x \in \mathcal{X}$ appearing.
- For continuous RVs, replace the sum with an integral:

$$\mathbb{E}\left[X\right] = \int x \, p(x) dx$$

Expected Values

 Given a distribution, we can define the expected value of the RV:

$$\mathbb{E}\left[X\right] = \sum_{x \in \mathcal{X}} x \, p(x)$$

recalling that $p(x) \equiv p(X = x)$.

- The expected value is the average value over \mathcal{X} , weighted by the probability of each particular $x \in \mathcal{X}$ appearing.
- For continuous RVs, replace the sum with an integral:

$$\mathbb{E}\left[X\right] = \int x \, p(x) dx$$

• Example:

$$p(X = 1) = 0.5$$
, $p(X = 2) = 0.4$, $p(X = 3) = 0.1$:

$$\mathbb{E}[X] = 1 \cdot 0.5 + 2 \cdot 0.4 + 3 \cdot 0.1 = 1.6$$

Distributional Properties

Expected Values, cont.

More generally:

$$\mathbb{E}\left[f(X)\right] = \sum_{x \in \mathcal{X}} f(x) p(x)$$

where f(x) is any function of x.

- Also for n a non-negative integer.
 - $ightharpoonup \mathbb{E}[X^n]$ is called the *n*-th moment
 - ▶ $\mathbb{E}[(X \mathbb{E}[X])^n]$ is called the *n*-th central moment
 - see also skewness and kurtosis
- Example:

$$p(X = 1) = 0.5, p(X = 2) = 0.4, p(X = 3) = 0.1$$
:
 $\mathbb{E}[\ln X] = 0.5 \cdot \ln 1 + 0.4 \cdot \ln 2 + 0.1 \cdot \ln 3 = 0.3871$
 $\mathbb{E}[\ln(1/p(X))] = 0.5 \cdot \ln 1/0.5 + 0.4 \cdot \ln 1/0.4 + 0.1 \cdot \ln 1/0.1$

 $= 0.5 \cdot 0.693 + 0.4 \cdot 0.916 + 0.1 \cdot 2.303 = 0.943$

where $\ln x$ is the natural logarithm.

Expected Values, e.g.

Example: consider the simple triangular distribution p(x) = 1 - |x| for $x \in [-1, 1]$:

$$\mathbb{E}[x] = \int_{-1}^{0} x (1+x) dx + \int_{0}^{1} x (1-x) dx$$

$$= \int_{1}^{0} x' (1-x') dx' + \int_{0}^{1} x (1-x) dx = 0$$

$$\mathbb{E}[x^{2}] = \int_{-1}^{0} x^{2} (1+x) dx + \int_{0}^{1} x^{2} (1-x) dx$$

$$= -\int_{1}^{0} x'^{2} (1-x') dx' + \int_{0}^{1} x^{2} (1-x) dx$$

$$= 2 \int_{0}^{1} x^{2} (1-x) dx = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$$

Similarly, $\mathbb{E}\left[x^{2n+1}\right] = 0$ and $\mathbb{E}\left[x^{2n}\right] = \frac{2}{(2n+1)(2n+2)}$.

Expected Values, Gaussian

normal (Gaussian) distribution has PDF

$$p(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$$

expected values not simple to do!

Statistical Dispersion

 Expected values let us define important properties such as the variance:

$$V[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2\right]$$
$$= \sum_{x \in \mathcal{X}} (x - \mathbb{E}[X])^2 p(x)$$

- the expected squared deviation around the mean
- The larger $\mathbb{V}[X]$ the more variation around the mean
- The standard deviation is equal to $\sqrt{\mathbb{V}[X]}$.
- Alternatively the mean absolute deviation, $\mathbb{E}\left[|X \mathbb{E}\left[X\right]|\right]$, is less often used because it is harder to determine analytically.
 - the expected absolute deviation around the mean

Variance Examples

• Example:

$$p(X = 1) = 0.5$$
, $p(X = 2) = 0.4$, $p(X = 3) = 0.1$; recall that in this case, $\mathbb{E}[X] = 1.6$, so:

$$V[X] = (1-1.6)^2 \cdot 0.5 + (2-1.6)^2 \cdot 0.4 + (3-1.6)^2 \cdot 0.1 = 0.44$$

Example: Gaussian

Variance, cont.

A useful alternative expression for variance is:

$$V[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2\right]$$

$$= \mathbb{E}\left[X^2 - 2X\mathbb{E}[X] + \mathbb{E}[X]^2\right]$$

$$= \mathbb{E}\left[X^2\right] - 2\mathbb{E}[X]\mathbb{E}[X] + \mathbb{E}[X]^2$$

$$= \mathbb{E}\left[X^2\right] - \mathbb{E}[X]^2$$

where the third step follows from properties of sums/integrals

Variance is sum of expected squared value of X, minus square of expected value of X
 Use this to find variance for our example on previous slide

Expectations and Independent RVs in general, expectation of a function of two RVs is

 $\mathbb{E}\left[f(X,Y)\right] = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{V}} f(x,y) p(x,y)$

• Fact 1: Due to linearity of expectation, we have

$$\mathbb{E}\left[f(X)+g(Y)\right]=\mathbb{E}\left[f(X)\right]+\mathbb{E}\left[g(Y)\right]$$

for all RVs X and Y, and

Expectations and Independent RVs in general, expectation of a function of two RVs is

 $\mathbb{E}\left[f(X,Y)\right] = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{V}} f(x,y) p(x,y)$

• Fact 1: Due to linearity of expectation, we have

$$\mathbb{E}\left[f(X)+g(Y)\right]=\mathbb{E}\left[f(X)\right]+\mathbb{E}\left[g(Y)\right]$$

for all RVs X and Y, and

• Fact 2: For independent RVs, we have

$$\mathbb{E}\left[f(X)g(Y)\right] = \mathbb{E}\left[f(X)\right]\mathbb{E}\left[g(Y)\right]$$

implying that

$$\mathbb{V}\left[X+Y\right]=\mathbb{V}\left[X\right]+\mathbb{V}\left[Y\right]$$

for X and Y independent.

Existence of Expected Values

- Expected values do not always exist
- If \mathcal{X} is *finite*, then $\mathbb{E}[X]$ always exists
- However, in general, \mathcal{X} will not be finite
- $\mathcal X$ is usually the set of integers $\mathbb Z$ or real numbers $\mathbb R$ for these, expectations are not guaranteed to exist
- In contrast, the quantiles (such as median) always exist

Outline

Measuring Things in Average

Expected Values

Entropy and Coding

Dependence

Chebyshev's Inequality

Weak Law of Large Numbers

Entropy and Coding

Variance for Discretes

- what would be a measure of variance for discretes?
- there is no value ordering, so variance measures are meaningless
 - i,e,, rather then figure (A), we have (B)
- would like (C) to have low "variance"
- would like (B) to have higher "variance"

Variance for Discretes, cont.

- want a notion of "effective number of values"
- call it size for now
- illustrated for the plots above
 e.g. (C) almost uniform, so just less than 10
- am using size= $2^{H(\vec{p})}$
 - H() is the entropy function computed to base 2
 - \vec{p} is the probability vector

Entropy for Probability Vectors

Definition: Entropy is a function $H(\vec{p})$ on prob. vectors, \vec{p}

$$H(\vec{p}) = \sum_{i=1}^{K} p_i \log_2 \left(\frac{1}{p_i}\right)$$

where K is the dimension of \vec{p} .

- using log to base 2 so that entropy of Bernoulli(0.5) distribution is 1
- $\lim_{p \to 0} p \log_2 \left(\frac{1}{p} \right) = 0$, so well defined when $p_i = 0$
- measured in units of bits
- uniform distribution, for $\vec{p} = (1/K, ..., 1/K)$, $H(\vec{p}) = \log_2 K$
- if $H(\vec{p}) = 0$ then $p_i = 1$ for some i

Statistical Data Modelling, © Dowe, Nazari, Schmidt, Buntine, Gao, Kuhlmann, Mount 2016–2020

Entropy for Discretes

Alternatively, if X is a discrete variable without loss of generality having outcomes $\mathcal{X} = \{1, 2, ..., K\}$, and $p(X=i) = p_i$ for i = 1, ..., K, then H(X) is defined as $H(\vec{p})$.

entropy defined as an expected value

$$H(X) = \mathbb{E}\left[\log_2 1/p(X)\right]$$

- suppose further we use p(X|Y=y), then the entropy is denoted H(X|Y=y)
- suppose Y has outcomes in \mathcal{Y} , then define conditional entropy H(X|Y) as

$$H(X|Y) = \sum_{y \in \mathcal{Y}} p(Y=y)H(X|Y=y)$$

• X and Y are independent if and only if H(X|Y) = H(X)

Simple Communication Model

- a message is to be encoded into a binary signal (string of 0/1's) and sent across a channel to be decoded and so received
- e.g. noise-free communication

message: "hello"

encoding: "00101110111010100001001111101010 ..."

transmitter: written on a block of disk

receiving: read Boolean string off the disk, without noise

decoding: convert Boolean string back to "hello"

 e.g. noisy communication, on reading the Boolean string might be corrupted!

Encoding and Decoding

- assuming a noise-free channel, how do you convert your message into a Boolean string so it can be read back OK?
- the encoding and decoding must be prearranged so they match up
- what properties would you like of your codes:
 - short messages?
 - unambiguous decoding?

NB. the encoder-decoder framework is a dominant paradigm in unsupervised neural networks and natural language translation

40.40.45.45. 5 .000

Encoding Binary Codes

the tree defines a binary code for letters

ʻa'	ʻb'	ʻc'	ʻd'	'e'	'f'
'01'	'1011'	'00'	'1010'	'11'	'100'

encode "fab" --->

- reading path through tree to leaves gives "100", "01", "1011":
- but there are no spaces in our binary strings, so must mash together "100011011"

Decoding Binary Codes

the tree defines a binary code for letters

"	a'	ʻb'	'c'	ʻd'	'e'	'f'
,C	11'	'1011'	'00'	'1010'	'11'	'100'

decode "011011001010" →

- trace through the tree, match prefix "01": "a1011001010"
- next, match prefix "1011": "ab001010"
- next, match prefix "00": "abc1010"
- get "abcd"

Binary Codes

suppose a new symbol "g" is given code '10' in this tree

- when the receiver/decoder sees '10' in their message they have to decide
 - is it a "g" or is it the prefix of "f", "d" or "b"
- this causes ambiguity about the symbol being received
- symbols can only be at the leaves of a tree to avoid ambiguity
- so no symbol's code can be the prefix of any other symbol's code

Binary Prefix Codes

- a binary <u>prefix code</u> for the symbols assigns a binary string to every symbol such that no code is the prefix of another
- a prefix code guarantees we can recognise the end of the code when receiving a symbol
- every binary prefix code has a corresponding binary tree form with symbols at the leaves
- if some leaves are empty the code is inefficient and the code could be rearranged to eliminate the unused leaves

Code Lengths

tree also gives code lengths for letters

	•		•		
ʻa'	ʻb'	'c'	ʻd'	'e'	'f'
'01'	'1011'	'00'	'1010'	'11'	'100'
2	4	2	4	2	3

reordering tree has same code lengths

•			· ·			
	ʻa'	ʻb'	'c'	ʻd'	'e'	'f'
	'0 <mark>0</mark> '	'101 <mark>0</mark> '	'0 <mark>1</mark> '	'101 <mark>1</mark> '	'11'	'100'
	2	4	2	4	2	3

i.e., main properties of the tree are defined by the code lengths

Code Lengths

tree also gives code lengths for letters

ʻa'	ʻb'	'c'	ʻd'	'e'	'f'
'01'	'1011'	'00'	'1010'	'11'	'100'
2	4	2	4	2	3

- can ask the question, "what is the average code length for a 100 letter message?"
 - but need a distribution over letters
- can ask the alternative question, "what code yields minimum average code length for a given distribution?"
 - we want to save on transmission costs!

Kraft Inequality

• each symbol has a code length $l_1, ..., l_K$ in a binary tree

Theorem: Kraft Inequality for Prefix Codes:

Given code lengths $l_1,...,l_K$, then $\sum_{k=1}^K 2^{-l_k} \le 1$ if and only if there is a corresponding binary prefix code.

• so we can check if a code is a prefix code merely by evaluating $\sum_{k=1}^{K} 2^{-l_k}$ on the code lengths!

Expected Code Length

• have K symbols occurring with probability $p_1, ..., p_K$

Definition: the expected code length is defined as

$$\mathbb{E}\left[I_k\right] = \sum_{k=1}^{N} p_k I_k$$

- one interpretation of a "good" code is that it minimises expected code length for the probabilities of the symbols
- we want to do this to reduce transmission costs
 - e.g., find an encoding-decoding algorithm for typical blobs in a SQL database which is 1% more efficient, then Oracle saves \$100M

Codelengths and Probabilities

- given code lengths \vec{l} , the probabilities that minimise the expected code length is $p_k = 2^{-l_k}$
 - wrong direction! we want to find the codes given the probabilities

Lemma: Given probabilities, there is a binary prefix code with expected code length $\leq 1 + \sum_{k=1}^{K} p_k \log_2 1/p_k$.

Proof: plug $I_k = \lceil \log_2 1/p_k \rceil$ into Kraft inequality

- this gives us a heuristic way to build a code:
 - 1. make the code length for symbol k be $l_k = \lceil \log_2 1/p_k \rceil$
 - 2. build a tree using this (assigning shortest symbols first)
 - 3. try to reduce inefficiencies
- lower average codelengths can be obtained by chunking symbols into groups before trying to build a code

Coding and Entropy: Summary

- we wish to encode an item from a dictionary chosen with probability vector \vec{p}
- binary prefix codes are a way to encode without redundancy or confusion
- entropy $H(\vec{p})$ in bits is a lower bound on the average binary code length for any such codes
- a prefix code with average code length less than $1 + H(\vec{p})$ can always be built matching a probability \vec{p}
- the value $2^{H(\vec{p})}$ is a good measure for discrete (unordered) variables comparable to variance

Outline

Measuring Things in Average

Expected Values

Entropy and Coding

Dependence

Chebyshev's Inequality

Weak Law of Large Numbers

Dependence

Covariance/Correlation

For two variables *X* and *Y* we can define the covariance:

$$cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$
$$= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

and from this, we can define the correlation:

$$\operatorname{corr}\left(X,Y\right) = \frac{\operatorname{cov}\left(X,Y\right)}{\sqrt{\mathbb{V}\left[X\right]\,\mathbb{V}\left[Y\right]}}$$

Compare to the sample correlation formula in Lecture 1.

Also, let
$$Z_X = \frac{X - \mathbb{E}[X]}{\sqrt{\mathbb{V}[X]}}$$
 and similarly for Z_Y , then $\operatorname{corr}(X, Y) = \operatorname{cov}(Z_Y, Z_Y)$

◆ロ > ◆母 > ◆草 > ◆草 > ・草 * からで

Correlation, Examples

- strength of linearity
- positive or negative
- affected by outliers
- slope not relevant (due to standardising)

Covariance/Correlation, cont.

- Positive covariance/correlation: \implies if $X > \mathbb{E}[X]$ then likely Y is *greater* than $\mathbb{E}[Y]$
- Negative covariance/correlation: \implies if $X > \mathbb{E}[X]$ then likely Y is *less* than $\mathbb{E}[Y]$

Covariance/Correlation, cont.

- Positive covariance/correlation:
 - \implies if $X > \mathbb{E}[X]$ then likely Y is greater than $\mathbb{E}[Y]$
- Negative covariance/correlation:
 - \Longrightarrow if $X > \mathbb{E}[X]$ then likely Y is *less* than $\mathbb{E}[Y]$
- Covariance between $(-\infty, \infty)$,
 - Depends on scale (unit of measurement) of variables X and Y
- Correlation between [−1, 1],
 - Independent of scale of variables
- If X, Y independent, cov(X, Y) = corr(X, Y) = 0Converse is **not** true!

Why is |corr(X, Y)| < 1?

(optional)

- consider the centered vectors of data $\vec{u} = (x_1 \overline{x}, ..., x_N \overline{x})$ and $\vec{v} = (y_1 \overline{y}, ..., y_N \overline{y})$
- geometric reasoning says

$$|\vec{u}^T \vec{v}| = |\vec{u}||\vec{v}||\cos\theta| \le |\vec{u}||\vec{v}|$$

where θ is the angle between \vec{u} and \vec{v}

rearranging, we get

$$1 \ge \left(\frac{\vec{u}^T \vec{v}}{N}\right)^2 \frac{N}{\vec{u}^T \vec{u}} \frac{N}{\vec{v}^T \vec{v}}$$

• now let $N \to \infty$

$$1 \ge \operatorname{cov}(X, Y)^2 \frac{1}{\mathbb{V}[X]} \frac{1}{\mathbb{V}[Y]} = \operatorname{corr}(X, Y)^2$$

Statistical Data Modelling, @Dowe, Nazari, Schmidt, Buntine, Gao, Kuhlmann, Mount 2016–2020

Covar./Correl. Example

• Example: Probability distribution of *X*, *Y*:

$$Y = 1$$
 $X = 1$ $X = 2$ $X = 3$
 $Y = 1$ 0.05 0.15 0.1
 $Y = 2$ 0.25 0.15 0.3

 To find covariance, we need expected values (using sum rule):

$$\mathbb{E}[X] = p(X=1) \cdot 1 + p(X=2) \cdot 2 + p(X=3) \cdot 3$$

$$= (0.05 + 0.25) \cdot 1 + (0.15 + 0.15) \cdot 2 + (0.1 + 0.3) \cdot 3$$

$$= 2.1$$

$$\mathbb{E}[Y] = p(Y=1) \cdot 1 + p(Y=2) \cdot 2$$

$$= (0.05 + 0.15 + 0.1) \cdot 1 + (0.25 + 0.15 + 0.3) \cdot 2$$

$$= 1.7$$

Covar./Correl. Example cont.

• Example: Probability distribution of X, Y:

$$Y = 1$$
 $X = 1$ $X = 2$ $X = 3$
 $Y = 1$ 0.05 0.15 0.1
 $Y = 2$ 0.25 0.15 0.3

• Then cov(X, Y) is

$$(1-1.7)(0.05(1-2.1)+0.15(2-2.1)+0.1(3-2.1))$$

+ $(2-1.7)(0.25(1-2.1)+0.15(2-2.1)+0.3(3-2.1))$
= -0.0862

• Challenge: see if you can calculate corr(X, Y).

Statistical Data Modelling, © Dowe, Nazari, Schmidt, Buntine, Gao, Kuhlmann, Mount 2016–2020

Outline

Measuring Things in Average

Expected Values

Entropy and Coding

Dependence

Chebyshev's Inequality

Weak Law of Large Numbers

Chebyshev's Inequality

Chebyshev's Inequality

Theorem: Chebyshev's Inequality:

If X is a RV with mean μ and variance σ^2 , then for any k > 0

$$\rho\left(\frac{|X-\mu|}{\sigma} \ge k\right) \le \frac{1}{k^2}$$

- At least $(1 \frac{1}{k^2}) \times 100\%$ of the data lies within k standard devations of the mean.
- Named after P. Chebyshev (1821-1894)
- This inequality allows us to compute (bounds on) probabilities even when only the mean and variance are known

Chebyshev's Inequality, cont.

- Chebyshev's bound if only $\mathbb{E}[X] = 0$, $\mathbb{V}[X] = 1$ is known:
 - \triangleright p(|X| > 1) < 1;
 - ▶ $p(|X| \ge 2) \le 0.25$;
 - $p(|X| \ge 3) \le 0.1112;$
- Compare to the situation for a standard normal distribution, that we know $X \sim N(0, 1)$:
 - $p(|X| \ge 1) = 0.3173;$
 - $p(|X| \ge 2) = 0.0455;$
 - $p(|X| \ge 3) = 0.0027.$

Chebyshev's bounds very general but not always accurate.

Chebyshev's Inequality, Worst Case

What distribution is worst case for k: $p\left(\frac{|X-\mu|}{\sigma} \ge k\right) = \frac{1}{k^2}$?

- all the probability is at 3 discrete points, *i.e.* $x_i = \mu$ or $x_i = \mu \pm k\sigma$
- shown below worst case for $\mu = 0$, $\sigma = 1$

Chebyshev's Inequality Proof

(optional)

If X is a RV with mean μ and variance σ^2 . Then

$$\sigma^{2} = \int (x - \mu)^{2} p(x) dx$$

$$\geq \int_{|x - \mu| \geq k\sigma} (x - \mu)^{2} p(x) dx$$

$$\geq \int_{|x - \mu| \geq k\sigma} (k\sigma)^{2} p(x) dx$$

$$= (k\sigma)^{2} p\left(\frac{|X - \mu|}{\sigma} \geq k\right)$$

Note, from the steps we can also argue that the worst case distribution given previously is unique.

4□ > 4□ > 4 □ > 4

Chebyshev's for Samples

Replace our distribution by the induced sample distribution (i.e., each point in the sample is equally likely).

Theorem:

For a sample $S = \{x_1, ..., x_N\}$ of variable X with mean \overline{x} and sample standard deviation s_x , then for any k > 0

$$\left|\left\{x_i: \frac{|x_i-\overline{x}|}{s_x} \geq k\right\}\right| \leq \frac{N}{k^2}$$

That is, the number of data points at least $k s_x$ from the mean is no more than $\frac{N}{k^2}$.

 Allows us to compute (bounds on) properties of the sample with only knowledge of the sample mean and standard deviation.

40.49.41.41.1.00

Outline

Measuring Things in Average

Expected Values

Entropy and Coding

Dependence

Chebyshev's Inequality

Weak Law of Large Numbers

Weak Law of Large Numbers

Weak Law of Large Numbers

An important application of Chebyshev's inequality is to prove the weak law of large numbers.

Theorem: Weak law of large numbers:

Let X_1, \ldots, X_n be RVs with $\mathbb{E}[X_i] = \mu$; then for any $\varepsilon > 0$

$$p\left(\left|\frac{X_1+\cdots+X_n}{n}-\mu\right|>arepsilon
ight) o 0 ext{ as } n o \infty.$$

 Informally, you can think of this result as saying that the mean of a sample of random variables converges to the expected value as the sample size grows larger.

ロト (個) (意) (意) (意) (意) の久()

Law of Large Numbers, e.g.

average dice value against number of rolls

Summary

Revision of Probability

- p(X = x, Y = y) is joint probability of X = x and Y = y.
 - Sum-rule (marginal probability):

$$p(X=x)=\sum_{y}p(X=x,Y=y)$$

Conditional probability

$$p(X = x \mid Y = y) = \frac{p(X = x, Y = y)}{p(Y = y)}$$

• Cumulative distribution function (for ordered *x*):

$$p(X \le x) = \sum_{x \le x} p(X = x)$$

• Also: p(X > x) = 1 - p(X < x).

Revision of Expected Value

• Let $p(X = x) \equiv p(x)$; expectation and variance of f(X):

$$\mathbb{E}[f(X)] = \sum_{x} p(x)f(x)$$

$$\mathbb{V}[f(X)] = \mathbb{E}[(X - \mathbb{E}[f(X)])^{2}]$$

with integral replacing sum for continuous RVs.

- Some useful rules:
 - \triangleright $\mathbb{E}\left[f(X)+g(Y)\right]=\mathbb{E}\left[f(X)\right]+\mathbb{E}\left[g(Y)\right]$
 - $ightharpoonup \mathbb{E}\left[cf(X)\right] = c\mathbb{E}\left[f(X)\right]$
 - $\triangleright \mathbb{V}[cf(X)] = c^2 \mathbb{V}[f(X)]$
- If X, Y are independent RVs
 - $ightharpoonup \mathbb{E}\left[f(X)g(Y)\right] = \mathbb{E}\left[f(X)\right]\mathbb{E}\left[g(Y)\right]$
 - $\mathbb{V}\left[f(X)+g(Y)\right]=\mathbb{V}\left[f(X)\right]+\mathbb{V}\left[g(Y)\right]$

Revision of Entropy

define

$$H(X) = \mathbb{E}\left[\log_2 1/p(X)\right]$$

- if X has domain \mathcal{X} of dimension K, then $0 \le H(X) \le K$
- if H(X) = 0 then p(X=x) = 1 for some $x \in \mathcal{X}$
- entropy can be justified as the lower bound in bits of a binary prefix code to encode a realisation of X
- for X, Y

$$H(X, Y) = H(X) + H(Y|X) = H(Y) + H(X|Y)$$

if X, Y are independent RVs

$$H(X, Y) = H(X) + H(Y)$$

End of Week 3