

Washer method:

Totale a resion about

X-axis,

i) Integrate wit L

ii) radius by y-wordinates

contin fx)

Shell method:

Totale a resion about

x-axis

i) Integrate wit y

ii) heights by x-coordinates

(function of y)

1. (2 points) Library/Wiley/setAnton_Section_6.3/anton_6_3_Q8.pg

Use cylindrical shells to find the volume of the solid generated when the region enclosed by the given curves is revolved about the *y*-axis.

$$y = \cos(x^2)$$
, $x = 0$, $x = \frac{\sqrt{\pi}}{2}$, $y = 0$
Volume = _____

$$V = \int_0^{\sqrt{7}} 2\pi \chi \cdot GB(\chi^2) dx$$

2. (2 points) Library/WHFreeman/Rogawski_Calculus_Early_Transcendentals_Second_Edition/6_Applications_of_the_Integral/6.4_The_Method_of_Cylindrical_Shells/6.4.26.pg

Use the Shell Method to calculate the volume of rotation, V, about the x-axis for the region underneath the graph of $y = (x-1)^{\frac{1}{3}} - 2$ where $9 \le x \le 65$.

Solution: (Instructor solution preview: show the student solution after due date.)

$$= \int_{0}^{2} 2\pi y \left[64 - (y+2)^{3} \right] dy$$

 (4 points) Library/WHFreeman/Rogawski_Calculus_Early_Transcendentals_Second_Edition/6_Applications_ of_the_Integral/6.4_The_Method_of_Cylindrical_Shells/6.4.27.pg

Use both the Shell and Disk Methods to calculate the volume of the solid obtained by rotating the region under the graph of $f(x) = 3 - x^3$ for $0 \le x \le 3^{\frac{1}{3}}$ about the x-axis and the y-axis.

Using the disk method, the volume D_x of the solid obtained by rotating the region about the x-axis is

$$\int_{0}^{a} g(x)dx \text{ (this is the initial integral when you setup the problem), where } a = \frac{3}{3}$$

$$V = \int_{0}^{3} \frac{1}{3} \left(3 - x^{3} \right)^{2} dx$$

shell method:

$$2x + y = 3 - x^3$$
 $3x + 3 = 3 - y$
 $3x + 3 = 3$

Using the shell method, the volume S_x of the solid obtained by rotating the region about the x-axis is $\int_0^b h(y)dy$ (this is the initial integral when you setup the problem), where

$$h(y) = \underbrace{\qquad \qquad }_{S_{v} = \underbrace{\qquad }_{S_{v} = \underbrace{\qquad \qquad }_{S_{v} = \underbrace{\qquad }_{S_{v} = \underbrace{\qquad \qquad }_{S_{v} = \underbrace{\qquad }_{S_{v} = \underbrace{\qquad \qquad }_{S_{v} = \underbrace{\qquad \qquad }_{S_{v} = \underbrace{\qquad \qquad }_{S_{v} = \underbrace{\qquad$$

Using the disk method, the volume D_y of the solid obtained by rotating the region about the y-axis is $\int_0^A G(y)dy$ (this is the initial integral when you setup the problem), where

$$D_{v} = \underline{\qquad}$$

$$V = \int_{0}^{3} \pi \cdot ((3-y)^{\frac{1}{3}})^{2} dy$$

shell method

$$V = \int_{0}^{3\frac{1}{3}} 2\pi x \cdot height \cdot dx$$

$$= \int_{0}^{3\frac{1}{3}} 2\pi x \cdot (3-x^{3}) dx$$

Calculate the length of the astroid of $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 3$.

$$s =$$

$$(x^{\frac{1}{3}})^{2} + (y^{\frac{1}{2}})^{2} = 3$$

$$y^{\frac{2}{3}} = 3 - x^{\frac{2}{3}}$$

$$y^{\frac{2}{3}} = 3 - x^{\frac{2}{3}}$$
 = $y = (3 - x^{\frac{2}{3}})^{\frac{3}{2}}$

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx.$$

$$a = 0$$
, $b = 3^{\frac{3}{2}}$

when
$$y = 0$$
,
 $3 - x^{\frac{2}{3}} = 0$
 $3 = x^{\frac{2}{3}}$
 $3 = x^{\frac{2}{3}}$
 $3 = x^{\frac{2}{3}}$

$$y' = \frac{3}{2}(3 - x^{\frac{2}{3}})^{\frac{1}{2}} \cdot (0 - \frac{3}{3}x^{-\frac{1}{3}})$$

$$= -(3 - x^{\frac{2}{3}})^{\frac{1}{2}} \cdot x^{-\frac{1}{3}}$$

$$= 3(y')^{2} = (3-x^{\frac{2}{3}}) \cdot x^{-\frac{2}{3}}$$

$$= 3x^{-\frac{2}{3}} - 1$$

$$= 1+ (y')^{2} = 3x^{-\frac{2}{3}}$$

$$= 1+ (y')^{2} = 3x^{-\frac{$$

5. (2 points) Library/UCSB/Stewart5_8_1/Stewart5_8_1_4.pg

Find the exact length of the curve

$$y = \frac{x^3}{6} + \frac{1}{2x}, \quad \frac{1}{2} \le x \le 1.$$

Arc length = _____

Alterengen =
$$y' = \frac{3x^2}{6} + 2(-1)x^{-2}$$

$$= \frac{x^2}{2} - \frac{1}{2x^2}$$

$$= \sum_{i=1}^{n} \frac{1}{i} \int_{-1}^{1} \frac$$

$$= \int_{\frac{1}{2}}^{1} \int_{\frac{1}{2}}^{1} \left(\frac{x^{2}}{z}\right)^{2} + \left(\frac{1}{2x^{2}}\right)^{2} - \frac{z}{4} dx$$

$$= \int_{\frac{1}{2}}^{1} \int_{\frac{1}{2}}^{1} \left(\frac{x^{2}}{z}\right)^{2} + \left(\frac{1}{2x^{2}}\right)^{2} + \frac{1}{z} dx$$

$$= \int_{\frac{1}{2}}^{1} \left(\frac{x^{2}}{z} + \frac{1}{2x^{2}}\right)^{2} dx$$

$$= \int_{\frac{1}{2}}^{1} \left(\frac{x^{2}}{z} + \frac{1}{2x^{2}}\right) dx$$