Real Variables: Problem Set IX

Youngduck Choi

Courant Institute of Mathematical Sciences New York University yc1104@nyu.edu

Abstract

This work contains solutions to the problem set IX of Real Variables 2015 at NYU.

1 Solutions

Question 1. Royden 12-5.

5. Suppose that a topological space X has the property that every continuous, bounded real-valued function on a closed subset has a continuous extension to all of X. Show that if X is Tychonoff, then it is normal.

Solution. Assume that X is Tychonoff, and let A and B be non-empty disjoint closed subsets of X. Let $g:A\cup B\to\mathbb{R}$ such that such that g(A)=a and g(B)=b. Observe that g is a real-valued function, that is continuous, bounded, on a closed subset of X. Therefore, by the given, there exists a continuous extension to all of X, which we denote as $g':X\to\mathbb{R}$. Observe that as $(a-\frac{a+b}{2},\frac{a+b}{2})$ is open in \mathbb{R} , by the continuity of g' we have $g'^{-1}((a-\frac{a+b}{2},\frac{a+b}{2}))$ is open in X, which contains A. Likewise, $g'^{-1}((\frac{a+b}{2},b+\frac{a+b}{2}))$ is open in X, which contains B. Notice that as g' is a function those two open sets are disjoint. Therefore, we have shown that A and B have neighborhoods that are disjoint. Since X is Tychonoff as well, X is normal.

Question 2. Royden 12-6.

6. Let (X, \mathcal{T}) be a normal topological space and \mathcal{F} the collection of continuous real-valued functions on X. Show that \mathcal{T} is the weak topology induced by \mathcal{F} .

Solution. Let $x \in X$. Consider a neighborhood $U_x \in \mathcal{T}$. It follows that $X \setminus U_x$ is closed in \mathcal{T} . As normal topological spaces are Tychnoff, and single points are closed in Tychnoff spaces, we have $\{x\}$ is closed in \mathcal{T} . Then, by the Urysohn's lemma, we have a continuous real-valued function $f: X \to [a,b]$ such that $f(\{x\}) = a$ and $f(X \setminus U_x) = b$. Note that $f \in \mathcal{F}$. Then, for a fixed ϵ such that $b-a>\epsilon>0$, as $(a-\epsilon,a+\epsilon)$ is an open set in \mathbb{R} , we have $f^{-1}((a-\epsilon,a+\epsilon))$ is a basic open set of the weak-topology, as f is continuous and it's a finite intersection of the inverse image of an open set. Observe that as $f(X \setminus U_x) = b$, we have $f^{-1}((a-\epsilon,a+\epsilon)) \cap X \setminus U_x = \emptyset$. Hence $f^{-1}((a-\epsilon,a+\epsilon)) \subseteq U_x$. Therefore, we have found a basic open set of x in the weak topology contained in U_x . Hence, we have that the basis of weak-topology is a collection of open sets in \mathcal{T} , such that for each x and each neighborhood of x, U_x , there is an element of the basis of

weak-topology, that is contained in U_x . Therefore, the basis of weak-topology, induced by \mathscr{F} is a also basis of the strong topology. Hence, in this case, the strong topology \mathscr{T} is the weak-topology induced by \mathscr{F} .

Question 3. Royden 12-27.

27. For $f, g \in C[a, b]$, show that f = g if and only if $\int_a^b x^n f(x) dx = \int_a^b x^n g(x) dx$ for all n.

Solution. Assume that f = g. Fix n. As $f, g \in C[a, b]$, $x^n \in C[a, b]$. and multiplication of continuous function is continuous, we have that $x^n f$ and $x^n g$ are continuous. As continuous functions on compact domain is integrable, by the linearity of integration, we have

$$\int_a^b x^n f(x) dx - \int_a^b x^n g(x) dx = \int_a^b x^n (f - g)(x) dx$$

As f = g, f - g(x) = 0 for all $x \in [a, b]$. It follows that

$$\int_a^b x^n f(x) dx - \int_a^b x^n g(x) dx = 0,$$

from which we obtain

$$\int_a^b x^n f(x) dx = \int_a^b x^n g(x) dx.$$

Since n was arbitrary, we have that the above equality holds for all n. Conversely, assume that $\int_a^b x^n f(x) dx = \int_a^b x^n g(x) dx$ for all n. By appealing to the linearity of integration, we see that

$$\int_{a}^{b} p(f-g)(x)dx = 0,$$

for any polynomial p defined on [a, b]. We claim that

$$\int_{a}^{b} (f-g)^{2}(x)dx = 0,$$

which will imply that f=g almost everywhere immediately. By Weiestrass Approximation theorem, we can choose a sequence of polynomials p_n such that

$$|p_n - (f - g)| < \frac{1}{n}.$$

It follows that $\{p_n(f-g)\}$ converges to $(f-g)^2$ pointwise everywhere on [a,b]. As $|p_n-(f-g)|<1$ for all n on [a,b]. As f-g is a continuous function defined on a compact subset of $\mathbb R$, by the extreme value theorem, there exists M>0 such that |f-g|< M on [a,b]. It follows that g(x)=M(M+1) on [a,b] is integrable and dominates $\{p_n(f-g)\}$. Hence, by the Dominated Convergence theorem, we have

$$\int_{a}^{b} (f-g)^{2}(x)dx = \lim_{n \to \infty} \int_{a}^{b} p_{n}(f-g)(x)dx.$$

Since $\int_a^b p_n(f-g)(x)dx=0$ for all n, it follows that

$$\int_a^b (f-g)^2(x)dx = 0.$$

Hence, we conclude that f=g almost everywhere. As $f,g\in C[0,1]$, and f=g almost everywhere, it follows that f=g everywhere.

Question 4. Royden 12-35.

35. Let \mathcal{A} be an algebra of continuous real-valued functions on a compact Hausdorff space X that separates points. Show that either $\overline{\mathcal{A}} = C(X)$ or there is a point $x_0 \in X$ for which $\overline{\mathcal{A}} = \{f \in C(X) \mid f(x_0) = 0\}$. (Hint: If $1 \in \overline{\mathcal{A}}$, we are done. Moreover, if for each $x \in X$ there is an $f \in \mathcal{A}$ with $f(x) \neq 0$, then there is a $g \in \mathcal{A}$ that is positive on X and this implies that $1 \in \overline{\mathcal{A}}$.)

Solution. Firstly, we show that if there exists $x_0 \in X$ such that $f(x_0) = 0$ for all $f \in A$, then $\bar{A} = \{f \in C(X) \mid f(x) = 0\}$. Let $f \in \bar{A}$. Then, there exists $\{f_n\}$ be a sequence of functions, chosen from A, such that it converges uniformly to f. Note that uniform convergence of functions preserve continuity. Therefore, $f \in C(x)$. As $f_n(x_0) = 0$ for all n, it follows that $f(x_0) = 0$. Hence, $\bar{A} \subseteq \{f \in C(x) \mid f(x) = 0\}$. Now, let $f \in C(X)$ such that $f(x_0) = 0$. We show that there exists a sequence $\{f_n\}$ from A, such that $f_n \to f$ uniformly.

Now, assume that for all $x \in X$, there exists $f \in A$, such that $f(x) \neq 0$. Consider a family of functions $\{f_x\}_{x \in X}$ such that each f_x satisfies $f_x(x) \neq 0$. Observe that as f_x are continuous, there exists $B(x,\delta_x)$ such that $f_x(B(x,\delta_x))$ is nonzero. Observe that $\{B(x,\delta_x)\}_{x \in X}$ is an open cover of X. As X is compact, there exists a finite sub-cover that covers X, we label that sub-cover as $\{B(x_n),\delta_{x_n}\}_{n=1}^N$. Consider a function g defined on X such that

$$g = \sum_{n=1}^{N} f_n^2.$$

Observe that g is stritly positive and in A, as it is a finite sum of squares of functions from A. By the extreme value theorem, there exists M such that g < M on X. Let $l = \frac{1}{M}g$, which is still in A. Then, we have that 0 < l < 1 on A. Consider a sequence of functions h_n on X defined by

$$h_n = \sum_{i=1}^n (-l^n)^i,$$

Observe that h_n converges uniformly to $\frac{1}{1+l^n}$. Furthermore, l^n converges uniformly to 0 as 0 < l < 1. Hence, we have that h_n converges uniformly to 1 and $1 \in \bar{A}$. Therefore, \bar{A} is an algebra of continuous real-valued functions on X that separates points in X and contains the constant functions. Therefore, by Stone-Weierstrauss, \bar{A} is dense in C(X). Hence $\bar{A} = C(X)$.

Question 5. Royden 13-8.

8. A nonnegative real-valued function $\|\cdot\|$ defined on a vector space X is called a **pseudonorm** if $\|x+y\| \le \|x\| + \|y\|$ and $\|\alpha x\| = |\alpha| \|x\|$. Define $x \cong y$, provided $\|x-y\| = 0$. Show that this is an equivalence relation. Define $X/_{\cong}$ to be the set of equivalence classes of X under \cong and for $x \in X$ define [x] to be the equivalence class of x. Show that $X/_{\cong}$ is a normed vector space if we define $\alpha[x] + \beta[y]$ to be the equivalence class of $\alpha x + \beta y$ and define $\|[x]\| = \|x\|$. Illustrate this procedure with $X = L^p[a, b]$, $1 \le p < \infty$.

Solution. We show that the pseudo-norm relation is reflexive, symmetric, and transitive.

Let $x \in X$. It follows that

$$||x - x|| = ||\theta||,$$

where θ is the identity element of the linear space X. By definition of linear space, we have $\alpha \cdot \theta = \theta$ for all α . Hence, for some $\alpha > 1$, we have

$$\|\theta\| = \|\alpha \cdot \theta\|$$
$$= |\alpha| \|\theta\|.$$

As |a| > 0, we have $|\theta| = 0$. Consequently, ||x - x|| = 0. It follows that for all $x \in X$, $x \equiv x$. The relation is reflexive.

Let $x, y \in X$ and $x \equiv y$. Observe that

$$\begin{array}{rcl} \|x-y\| & = & \|-1\cdot(y-x)\| \\ & = & |-1|\|y-x\| \\ & = & \|y-x\|. \end{array}$$

As $x \equiv y$, which gives ||x - y|| = 0, it follows that ||y - x|| = 0 and $y \equiv x$. Hence, the relation is symmetric.

Let $x, y, z \in X$ and $x \equiv y$ and $y \equiv z$. By triangle inequality, it follows that

$$||y - z|| = ||(x - y) + (y - z)||$$

 $\leq ||x - y|| + ||y - z|| = 0 + 0 = 0.$

Hence, ||y - z|| = 0, and it follows that $x \equiv z$. Hence, the relation is symmetric. It follows that the pseudo-norm relation is an equivalence relation on the linear space X.

We show that X_{\equiv} is a normed vector space. The fact that given space is a vector space arises from the fact that X is a vector space and we define addition and scalar multiplication in terms of the corresponding operations on X. This can be trivially checked. We show that the defined relation is indeed a norm. Firstly, we check that the defined norm is well defined. Let $x, y \in X$, such that $x \equiv y$. It follows that ||x - y|| = ||y - x|| = 0. By triangle inequality, it follows that

$$||x|| = ||y + (x - y)||$$

$$\leq ||y|| + ||x - y||$$

$$= ||y||,$$

$$||y|| = ||x + (y - x)||$$

$$\leq ||x|| + ||y - x||$$

$$= ||x||,$$

Hence, $\|x\| = \|y\|$, and it follows that $\|[x]\| = \|[y]\|$. The norm is well-defined. Now, observe that the non-negativity is satisfied, as the pseudo-norm is non-negative. By definition, it follows that $\|\alpha[x]\| = \|[\alpha x]\| = \|\alpha x\| = |\alpha| \|x\| = |\alpha| \|[x]\|$. Hence, homogeneity is satisfied. Again, by definition and the triangle inequality from the pseudo-norm, we have

$$\begin{aligned} \|[x] + [y]\| &= \|[x + y]\| \\ &= \|x + y\| \\ &\leq \|x\| + \|y\| \\ &= \|[x]\| + \|[y]\|. \end{aligned}$$

Hence, the triangle inequality is satisfied. We also have $\|[\theta]\| = \|\theta\| = 0$. Assume that $\|[x]\| = 0$. Suppose for sake of contradiction that $[x] = \neq [\theta]$. It follows that $0 \neq \|x - \theta\| = \|[x - \theta]\| = \|[x]\|$, which is a contradiction to $\|[x]\| = 0$. Therefore, X_{\equiv} is a normed vector space.

Question 6. Royden 13-34.

34. Let T be a linear operator from a normed linear space X to a finite-dimensional normed linear space Y. Show that T is continuous if and only if ker T is a closed subspace of X.

Solution. Assume that T is continuous. Observe that $\{\theta\}$, where θ is the identity element of the normed linear space Y, is closed, as a single point in a metric space is closed. Since T is continuous, we have $T^{-1}(\{\theta\}) = \ker T$ is closed. We now show that $\ker T$ is a subspace of X. Let $x, y \in \ker T$. By linearity it follows that

$$T(x+y) = T(x) + T(y) = 0 + 0 = 0$$

 $T(\alpha x) = \alpha T(x) = \alpha 0 = 0.$

Hence, we have shown that $\ker T$ is a closed subspace of X.