

Computer Architecture

Lab 4: Gaussian filter

Fernando.Rincón@uclm.es Serafin.Benito@uclm.es

Contents

- Gaussian blur
- Gaussian.cpp
- Separability
- Task: part 1
- Task: part 2

Gaussian Blur

- Filter that
 - removes noise from the image
 - Also blurs it
- Some advantages when compared to other filters

Gaussian Blur

 Obtained from the convolution product of the gaussian bidimensional function:

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} e^{\frac{-x^2-y^2}{2\sigma^2}}$$

with image

Discrete approximation

- Images are discrete sets of pixels
- Discrete approximation of the gaussian function:
 - Using a matrix
 - Convolution product of the matrix with the pixels in the image (just as in Sobel)
 - The size and coefficients of the matrix depend on standard deviation, σ
 - With higher σ:
 - Bigger size of the matrix
 - Bigger blur effect

Discrete approximation

In this lab we'll use this matrix:

Note how weight of the neighbor pixels decrease with distance

- In this program:
 - The kernel is also applied to pixels in the borders
 - In these points we can't apply the full kernel
 - We'll apply only parts overlapping the image

```
double naive_matrix(QImage* image, QImage* result) {
  double start_time = omp_get_wtime();
  for (int y = 0; y < height; y++)
    for (int x = 0; x < width; x++)
      convolution(image, result, x, y);
  return omp_get_wtime() - start_time;
}</pre>
```


• Ex.: consider pixel in row 0 column 1 of the image and its neighbors

I(0,0)	I(0,1)	I(0,2)	I(0,3)	
I(1,0)	I(1,1)	I(1,2)	I(1,3)	
I(2,0)	I(2,1)	I(2,2)	I(2,3)	

 We'll apply the following part of the kernel (the 36 in the center must match the pixel considered)

$$\frac{1}{256} \times \begin{pmatrix} 24 & 36 & 24 & 6 \\ 16 & 24 & 16 & 4 \\ 4 & 6 & 4 & 1 \end{pmatrix}$$


```
inline void convolution(QImage* image, QImage* result, int x, int y) {
 int i, j;
 int red, green, blue;
  int i min, i max, j min, j max;
  QRqb aux;
  red = green = blue = 0;
                                               The limits are required for dealing
  i min = max(-M, -x);
                                               with the borders
  i max = min(M, width - x - 1);
  j min = max(-M, -y);
  j max = min(M, height - y - 1);
   for (j = j min; j <= j max ; j++)
     for (i = i min; i <= i max; i++) {
                                                        The loops perform the typical
     int coef = getGaussCoefficient(i, j);
     aux = image -> pixel(x + i, y + j);
                                                        convolution product
     red += coef * qRed(aux);
     green += coef * qGreen(aux);
     blue += coef * qBlue(aux);
   };
  red /= 256; green /= 256; blue /= 256;
  result->setPixel(x, y, QColor(red, green, blue).rgba());
```


Why those limits?

Can you find the rule?

$$X=0 \rightarrow 0 <= i$$

$$X=1 \rightarrow -1 <= i$$
 $X>=2 \rightarrow -2 <= i$

$$X>=2 \rightarrow -2 <= i$$

A similar reasoning can be applied to both the x superior limit and for the y's

Separability

The following property

$$\frac{1}{256} \cdot \begin{pmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{pmatrix} = \frac{1}{256} \cdot \begin{pmatrix} 1 \\ 4 \\ 6 \\ 4 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 4 & 6 & 4 & 1 \end{pmatrix}$$

- Allows getting a faster version of the algorithm
 - Apply the vertical vector to each pixel in the image
 - Then apply the horizontal one to the result of the previous step

Task: part 1

- Add to Gaussian.cpp the following subprograms
 - convolution_1d_v. To apply the vertical convolution vector to one pixel
 - convolution_1d_h. To apply the horizontal one and divide by 256
 - gaussian_vectors. To call the previous one for each pixel and measure the resulting time
- ¡Be careful! The output from $convolution_1d_v$ can't be of type Qimage
 - Use a matrix per each color
 - Needs mallocs

Task: part 2

 Parallelize the vectorial convolution and compare the new alternative of the filter computation with the previous ones.