CONVOLUTIONAL NEURAL NETWORKS: MOTIVATION & CONVOLUTION OPERATION

MOTIVATION

Fully connected neural network

- Example
 - 1000x1000 image
 - 1M hidden units
 - → $10^{12} (= 10^6 \times 10^6)$ parameters!

- Observation
 - Spatial correlation is local

Locally connected neural net

- Example
 - 1000x1000 image
 - 1M hidden units
 - Filter size: 10x10
 - \rightarrow 10⁸ (= 10⁶ × 10 × 10) parameters!

- Observation
 - Statistics is similar at different locations

Convolution network

- Share the same parameters across different locations
 - Convolution with learned kernels

- Learn multiple filters
 - 1000x1000 image
 - 100 Filters
 - Filter size: 10x10

10,000 parameters

Convolution neural networks

- We can design neural networks that are specifically adapted for these problems
 - Must deal with very high-dimensional inputs
 - 1000x1000 pixels
 - Can exploit the 2D topology of pixels
 - Can build in invariance to certain variations we can expect
 - Translations, etc
- Ideas
 - Local connectivity
 - Parameter sharing

CONVOLUTION (IMAGE PROCESSING)

Convolution

from: https://developer.apple.com/library/ios/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html

Linear filter

Linear filter (Gaussian)

CONVOLUTION (DEEP LEARNING)

ALEXNET

THE IMAGENET LARGE SCALE VISUAL RECOGNITION CHALLENGE (ILSVRC)

Backpack

Flute

Matchstick

Sea lion

Strawberry

Backpack

Traffic light

Bathing cap

Racket

Large Scale Visual Recognition Challenge (ILSVRC) 2010–2012

1000 object classes

1,431,167 images

http://image-net.org/challenges/LSVRC/{2010,2011,2012}

Variety of object classes in ILSVR

PASCAL

bird

bottle

car

ILSVRC

cock

ruffed grouse

quail

partridge

pill bottle

beer bottle wine bottle water bottle pop bottle

race car

wagon

minivan

jeep

cab

cars

birds

bottles

ILSVRC Task 1: Classification

Steel drum

ILSVRC Task 1: Classification

Steel drum

Output:

Scale
T-shirt
Steel drum
Drumstick
Mud turtle

Output:

Scale
T-shirt
Giant panda
Drumstick
Mud turtle

ILSVRC Task 1: Classification

Steel drum

Output:

Scale
T-shirt
Steel drum
Drumstick
Mud turtle

Output:

Scale
T-shirt
Giant panda
Drumstick
Mud turtle

Accuracy =
$$\frac{1}{N}$$
 \sum_{N} 1[correct on image i]

images

Steel drum

Steel drum

Steel drum

Output (bad localization)

Output

Output (bad classification)

Steel drum

Accuracy =
$$\frac{1}{N}$$
 1[correct on image i]

N-images

Classification: Comparison

Submission	Method	Error rate
SuperVision	Deep CNN	0.16422
ISI	FV: SIFT, LBP, GIST, CSIFT	0.26172
XRCE/INRIA	FV: SIFT and color 1M-dim features	0.27058
OXFORD_VGG	FV: SIFT and color 270K-dim features	0.27302

Classification + Localization

Team name	Filename	Error (5 guesses)	Description
SuperVision	test-rect-preds-144-cloc-141- 146.2009-131-137-145-	0.335463	Using extra training data for classification from ImageNet Fall 2011 release
SuperVision	test-rect-preds-144-cloc-131- 137-145-135-145f.txt	0.341905	Using only supplied training data
OXFORD_VGG	test_adhocmix_detection.txt	0.500342	Re-ranked DPM detection over Mixed selection from High-Level SVM scores and Baseline Scores, decision is performed by looking at the validation performance
OXFORD_VGG	test_finecls_detection_bestbbo x.txt	0.50139	Re-ranked DPM detection over High-Level SVM Scores
OXFORD_VGG	test_finecls_detection_firstbbox .txt	0.522189	Re-ranked DPM detection over High-Level SVM Scores - First bbox

SuperVision (SV)

Image classification: Deep convolutional neural networks

- 7 hidden "weight" layers, 650K neurons, 60M parameters, 630M conn ections
- Rectified Linear Units, max pooling, dropout trick
- Randomly extracted 224x224 patches for more data
- Trained with SGD on two GPUs for a week, fully supervised

Localization: Regression on (x,y,w,h)

SuperVision

Won the 2012 ImageNet LSVRC. 60 Million parameters, 832M MAC ops

4M	FULL CONNECT
16M	FULL 4096/ReLU
37M	FULL 4096/ReLU
	MAX POOLING
442K	CONV 3x3/ReLU 256fm
1.3M	CONV 3x3ReLU 384fm
884K	CONV 3x3/ReLU 384fm
	MAX POOLING 2x2sub
	LOCAL CONTRAST NORM
307K	CONV 11x11/ReLU 256fm
	MAX POOL 2x2sub
	LOCAL CONTRAST NORM
35K	CONV 11x11/ReLU 96fm

Object Recognition

ALEXNET

AlexNet

- AlexNet: won the 2012 ImageNet competition by making 40% 1 ess error than the next best competitor
 - It is composed of 5 convolutional layers
 - The input is a color RGB image
 - Computation is divided over 2 GPU architectures
 - Learning uses artificial data augmentation and connection drop-out to avoi d over-fitting

- The first layer applies 96 kernels of size 3x11x11
 - 34,848 parameters
 - Each kernel is applied with a stride of 4 pixels
 - (11x11x3)x(55x55x(48+48)) = 105,415,200 MACs

- The second layer applies 256 kernels of size 48x5x5
 - After applying a 3x3 max pooling with a stride of 2 pixels
 - 307,200 parameters
 - 256x(48x5x5)x(27x27)=223,948,800 MACs

- The third layer applies 384 kernels of size 256x3x3
 - After applying a 3x3 max pooling with a stride of 2 pixels
 - 884,736 parameters
 - 384x((128+128)x3x3)x(13x13)=149,520,384 MACs

- The fourth layer applies 384 kernels of size 192x3x3
 - Without pooling
 - 663,552 parameters
 - 384x(192x3x3)x(13x13)=112,140,288 MACs

- The fifth layer applies 256 kernels of size 192x3x3
 - Without pooling
 - 442,368 parameters
 - 256x(192x3x3)x(13x13)=74,760,192 MACs

- The output of the fifth layer (after a 3x3 max pooling with a stride of 2 pixels) is connected to a fully connected 3-layer perceptron
 - 1st layer
 - (2x6x6x128)x4096 = 37,748,736connections
 - 2nd layer
 - 4096x4096= 16,777,216 connections
 - 3rd layer
 - 4096x1000= 4,096,000 connections

• 60 Million parameters, 832M MAC ops

