Molecule Design Using Variational Autoencoders

Yassaman Ommi (9613005)

Supervisor: Dr. Amin Gheibi

OUTLINE

- **Problem Formulation & Applications**
- **Related Works**

Proposed Method

Experiments & Results

PROBLEM FORMULATION & APPLICATIONS (1/2)

- A rich **history**
- A set of observed graphs G with underlying distribution P(G)

ullet Train a model to **estimate** P(G) *OR* learn to **sample** from it p(G)

PROBLEM FORMULATION & APPLICATIONS (2/2)

- Molecular graph generation (drug design / material discovery ...)
- Computational social sciences
- Network science (food webs / epidemics ...)
- Semantic parsing

RELATED WORKS

ALAJVAE (1/3)

- VAE-based generative model
- Input: **Padded** graph's **adjacency** matrix (k nodes) and feature matrix (n features)
- Output: **Probabilistic** adjacency matrix (edge and node existence)

ALAJVAE (2/3)

- No specific **node ordering** causes trouble
- Use graph matching to align and compare output with ground truth
- Find correspondence between a reference and a test scene
- **Applications** in shape matching, object recognition, and ...

Sum-pooled support from node j to a match (i, a)

Max-pooled support from node j to a match (i, a)

All max-pooled supports to a match (i, a)

ALAJVAE (3/3)

- Max-pool matching iterative power method [Cho. 2014]
- Proposed **similarity** function

$$S:(i,j)\times(a,b)\to\mathbb{R}^+ \text{ for } i,j\in V \text{ and } a,b\in V'$$

$$S((i,j),(a,b)) =$$

$$= \frac{1}{|F_i - \tilde{F}_a| + 1} \cdot \tilde{A}_{a,a}[i = j \land a = b] \qquad \longleftarrow \text{ node similarity}$$

$$+ A_{i,j} \cdot \tilde{A}_{a,b} \cdot \tilde{A}_{a,a} \cdot \tilde{A}_{b,b}[i \neq j \land a \neq b]$$

edge similarity

EXPERIMENTS AND RESULTS (1/2)

General Metrics

The absolute difference between the generated samples and the dataset is measured

- 1. *Graph-based statistics*: Node Degree Distribution, Clustering Coefficient, Largest Connected Component, ...
- 2. Graph-generation metrics: Uniqueness, Novelty, Validity, ...

Application-based Metrics

1. Chemistry-based: Quantitative Estimate of Drug-likeness (QED), Synthetic Accessibility (SA), Molecular Weight (MW), ...

EXPERIMENTS AND RESULTS (2/2)

Dataset

Name	Domain	Size		E	V	E
ENZYMES	Protein	575	[2, 125]	[2, 149]	3	-

Results

Dataset	Properties	LCC	Clustering Coef.	Mean Deg.	Gini Coef.	Novelty@100	Uniq@100	Training Time	epochs
	AlajVAE	0.32	0.206	0.405	0.0063	99%	98%	30h	30
ENZYMES	GraphGen	-	0.198	0.243	-	98%	99%	3h	4000
	GraphRNN	-	0.151	0.090	-	99%	97%	15h	20900

CONCLUSION & FUTURE DIRECTION

- Proposed **probablistic** method suitable for **small** graphs
- Growth of **GPU** memory requirements
- High complexity of the matching algorithm
- Adding atom and bond types to nodes and edges respectively
- Reconstructing **features** too

