

Speaker Recognition

Maik Riestock & Jonas Marquardt

Speaker Recognition

Identify person by the speech

Our task was:

- Closed set speaker authentication on the Hyke speech database
- Compare the results achieved (in terms of authentication performance) to results presented in [Reda2011]
- A projection of the samples in your data set to the characters of 'Doddingtons Zoo' [Doddington1998]

Hyke Projekt [Reda2011]

- Von wem?
- Wo?
- Ziel
- Was wurde dafür getan?
- Was hat das mit uns zu tun?

Processing chain

Data Acquisition

· Preprocessing

· Feature Extraction

· Postprocessing

· Classification & Comparison

Database from Hyke Projekt[Reda2011]

Speaker 83:

- Male: 48

- Female: 35

- Recordings:
 - mostly 5 recordings of each speaker
 - total recordings: 415
 - length between 5 and 35 seconds
 - overall Size 100mb
 - recorded with normal telephones
 - natural environment

Source: http://www.azreda.org/audio.html

Preprocessing

1. Step:

Male/Female

Overall

2. Step:

Train Set

- For training of the classifiers
- 4 recordings each speaker

Test Set

- For evaluation of the classifiers
- 1 recording of 10 seconds each speaker

Feature Extraktion

- Used the AMSL Audio Feature Extractor
 - Divide recordings in small samples
 - Delivers 593 Features each sample

Result:

All 415 recordings delivered around 18.000 samples

Post processing

- Using Weka
 - Deleted unhelpful Features e.g. same value in all samples
 - Deleted samples without speech under usage of Amplitude

Approximately 50% of the Database was filtered (Because it contains no speech)

Classification

- Using Weka
 - Used all relevant classifier
 - Used train set for training of the classifier
 - Used test set for evaluation of the classifier

Best classifiers (correct classified):

	IBK	RandomForest
Male	58,5%	41,8%
Female	54,9%	39,1%
mixed	53,2%	33,9%

Result of classification

- Unterschied samples recordings
- Speaker is correct classified, if the majority of samples of one recording is correct classified
- Tabelle vergleich Hyke vs. unser Ergebnis

Speaker is correct classified, if the majority of samples of one recording is correct classified

Covarianzmatrix

0 0 2 0 0 1 1 0 2 0 16 0 0 0 0 3 0 1 0 0 0 0 0 0 0 1 1 0 2 0 0 0 | m = female_13
0 4 0 0 0 0 0 0 0 0 1 0 0 11 0 0 2 0 0 2 1 1 0 0 4 1 4 0 1 0 1 0 5 0 | o = female_15 0 0 0 0 0 1 0 2 0 0 0 2 0 18 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 p = female_16
0 0 3 0 1 0 1 0 0 0 0 0 2 0 14 5 0 0 0 2 0 3 0 0 0 0 1 0 2 1 8 0 | q = female_17 0 0 2 0 0 0 0 0 1 0 1 0 1 0 0 23 0 1 2 0 0 0 0 1 0 0 1 0 0 0 2 0 | r = female 18

Doddington Zoo

- Sheeps: easily accepted by the system
- Goats: exceptionally unsuccessful at being accepted
- Lambs: exceptionally vulnerable to impersonation
- Wolves: exceptionally successful at impersonation

character	percentage
Sheep	90%
Goat	5%
Lamp	2,5%
Wolfs	2,5%

Conclusion

With:

- Non optimal database
- Good feature extraction tool
- Good classification tool
- Minimal post-processing

We accomplish:

• 97,5% authentication rate

Sources

[Reda2011] Azarias Reda, Saurabh Panjwani and Edward Cutrell: Hyke: A Low-cost Remote Attendance Tracking System for Developing Regions. The 5th ACM Workshop on Networked Systems for Developing Regions (NSDR), 2011

[Doddington1998] George Doddington, Walter Liggett, Alvin Martin, Mark Przybocki and Douglas Reynolds: Sheep, Goats, Lambs and Wolves - A Statistical Analysis of Speaker Performance. In NIST 1998 Speaker Recognition Evaluation, Int. Conference on Spoken Language Processing, NIST, 1998.

[Vielhauer2006] Claus Vielhauer: Biometric User Authentication for IT Security: From Fundamentals to Handwriting. Springer, Advances in Information Security, 2006.

http://www.cs.waikato.ac.nz/ml/weka/

http://www.azreda.org/audio.html

Thank you for your attention!

www.ovgu.de