

Linear Regression

Linear Regression

- In statistics, linear regression is an approach for modeling the relationship between a scalar dependent variable y and one or more explanatory variables (or independent variables) denoted X.
 - The case of one explanatory variable is called simple linear regression.
 - For more than one explanatory variable, the process is called **multiple linear regression**.

https://en.Wikipedia.org/wiki/Linear regression

Linear Regression... e.g.

Ohm's Law:

 In physics, it is observed that the relationship between Voltage (V), Current (I) and Resistance (R) is a linear relationship expressed as

$$V = I * R$$

 $I = V / R$

 In a circuit board for a given Resistance R, as you increase the Voltage V, the current I increases proportionately

https://www.electronics-tutorials.ws/dccircuits/dcp_1.html

Sample Monthly Income-Expense Data of a Household

Monthly Income (in Rs.)	Monthly Expense (in Rs.)
5,000	8,000
6,000	7,000
10,000	4,500
10,000	2,000
12,500	12,000
14,000	8,000
15,000	16,000
18,000	20,000
19,000	9,000
20,000	9,000
20,000	18,000
22,000	25,000
23,400	5,000
24,000	10,500
24,000	10,000

We have to find the relationship between Income and Expenses of a household

Line of Best fit

Line of Best fit...

Importing Required Packages

Import Packages

```
## Import Packages
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
```

Import Datafile

```
## Set the working directory and import data
os.chdir("D:/K2Analytics/datafile")
inc_exp = pd.read_csv("Inc_Exp_Data.csv")
inc_exp.head()
```

Index	Mthly_HH_Income	Mthly_HH_Expense	No_of_Fly_Members	Emi_or_Rent_Amt	Annual_HH_Income	Highest_Qualified_Member	No_of_Earning_Members
0	5000	8000	3	2000	64200	Under-Graduate	1
1	6000	7000	2	3000	79920	Illiterate	1
2	10000	4500	2	0	112800	Under-Graduate	1
3	10000	2000	1	Ø	97200	Illiterate	1
4	12500	12000	2	3000	147000	Graduate	1
5	14000	8000	2	0	196560	Graduate	1

Scatter Plot

Simple Linear Regression

```
## Simple Linear Regression Model
import statsmodels.formula.api as sm
linear_mod = sm.ols(formula ="Mthly_HH_Expense ~ Mthly_HH_Income" ,
                        data = inc exp).fit()
                                                                 OLS Regression Results
#Get the model summary
                                     Dep. Variable:
                                                          Mthly HH Expense
                                                                             R-squared:
                                                                                                             0.421
linear mod.summary()
                                     Model:
                                                                       OLS
                                                                            Adj. R-squared:
                                                                                                             0.409
                                     Method:
                                                             Least Squares
                                                                            F-statistic:
                                                                                                             34.97
                                                          Sun, 25 Nov 2018
                                     Date:
                                                                            Prob (F-statistic):
                                                                                                          3.40e-07
                                     Time:
                                                                            Log-Likelihood:
                                                                  21:58:20
                                                                                                           -526.77
                                     No. Observations:
                                                                                                             1058.
                                                                            AIC:
                                     Df Residuals:
                                                                            BIC:
                                                                                                             1061.
                                                                        48
                                     Df Model:
                                     Covariance Type:
                                                                   std err
                                                                                          P>|t|
                                                                                                     [95.0% Conf. Int.]
                                                           coef
                                     Intercept
                                                      6319.1018
                                                                  2488.733
                                                                               2.539
                                                                                          0.014
                                                                                                     1315.168 1.13e+04
                                     Mthly HH Income
                                                                     0.051
                                                                                5.914
                                                                                          0.000
                                                                                                        0.198
                                                                                                                  0.403
                                                         0.3008
                                     Omnibus:
                                                                            Durbin-Watson:
                                                                     6.455
                                                                                                             2.417
                                                                            Jarque-Bera (JB):
                                     Prob(Omnibus):
                                                                     0.040
                                                                                                             5.471
                                     Skew:
                                                                     0.774
                                                                            Prob(JB):
                                                                                                            0.0649
                                     Kurtosis:
                                                                     3.479
                                                                            Cond. No.
                                                                                                          9.27e + 04
```

Coefficient of Determination

- In statistics, the coefficient of determination, denoted R2 or r2 and pronounced "R squared", is a number that indicates the proportion of the variance in the dependent variable that is predictable from the independent variable(s).
 - The total sum of squares (proportional to the variance of the data):

$$SS_{
m tot} = \sum_i (y_i - ar{y})^2,$$

• The regression sum of squares, also called the explained sum of squares:

$$SS_{ ext{reg}} = \sum_i (f_i - ar{y})^2,$$

The sum of squares of residuals, also called the residual sum of squares:

$$SS_{ ext{res}} = \sum_i (y_i - f_i)^2 = \sum_i e_i^2$$

The most general definition of the coefficient of determination is

$$R^2 \equiv 1 - rac{SS_{
m res}}{SS_{
m tot}}.$$

https://en.wikipedia.org/wiki/Coefficient_of_determination

ANOVA – F test for Linear Regression

Analysis of Variance (ANOVA) consists of calculations that provide information about levels of variability within a regression model and form a basis for tests of significance. The basic regression line concept, DATA = FIT + RESIDUAL, is rewritten as follows:

$$(y_i - \overline{y}) = (\hat{y}_i - \overline{y}) + (y_i - \hat{y}_i).$$

The first term is the total variation in the response y, the second term is the variation in mean response, and the third term is the residual value. Squaring each of these terms and adding over all of the n observations gives the equation

$$\sum (y_i - \overline{y})^2 = \sum (\hat{y}_i - \overline{y})^2 + \sum (y_i - \hat{y}_i)^2.$$

This equation may also be written as **SST = SSM + SSE**, where SS is notation for *sum of squares* and T, M, and E are notation for *total*, *model*, and *error*, respectively.

The square of the sample <u>correlation</u> is equal to the ratio of the model sum of squares to the total sum of squares: $r^2 = SSM/SST$.

This formalizes the interpretation of r^2 as explaining the fraction of variability in the data explained by the regression model.

The sample variance s_y^2 is equal to $\sum (y_i - \overline{y})^2/(n-1) = SST/DFT$, the total sum of squares divided by the total degrees of freedom (DFT).

For simple linear regression, the MSM (mean square model) = $\sum (\hat{y}_i - \overline{y})^2 / (I) = SSM/DFM$, since the simple linear regression model has one explanatory variable x.

The corresponding MSE (mean square error) = $\sum (y_i - \hat{y}_i)^2/(n-2) = SSE/DFE$, the estimate of the variance about the population regression line (σ ²).

...contd

ANOVA calculations are displayed in an *analysis of variance table*, which has the following format for simple linear regression:

Source	Degrees of Freedom	Sum of squares	Mean Square	<u>F</u>
Model	1	$\sum_{i} (\hat{y}_{i} - \overline{y})^{2}$	SSM/DFM	MSM/MSE
Error	n - 2	$\sum_{i}^{(y_i-\hat{y}_i)^2}$	SSE/DFE	
Total	n - 1	$\sum (y_i - \overline{y})^2$	SST/DFT	

The "F" column provides a statistic for testing the hypothesis that $eta_1
eq 0$

against the null hypothesis that eta_1 = 0.

The test statistic is the ratio MSM/MSE, the mean square model term divided by the mean square error term. When the MSM term is large relative to the MSE term, then the ratio is large and there is evidence against the null hypothesis.

For simple linear regression, the statistic MSM/MSE has an F distribution with degrees of freedom (DFM, DFE) = (1, n-2).

Multiple Linear Regression

- Multiple linear regression is the most common form of linear regression analysis.
- Multiple linear regression is used to explain the relationship between one continuous depended variable with two or more independent variables.
- The independent variables can be continuous or categorical (dummy coded as appropriate)
- Independent variables should not be multi-collinear

Correlation Check

```
## Correlation check
inc_exp.corr()
```

	Mthly_HH_Income	Mthly_HH_Expense	No_of_Fly_Members	Emi_or_Rent_Amt	Annual_HH_Income	No_of_Earning_M
Mthly_HH_Income	1.000000	0.649215	0.448317	0.036976	0.970315	0.347883
Mthly_HH_Expense	0.649215	1.000000	0.639702	0.405280	0.591222	0.311915
No_of_Fly_Members	0.448317	0.639702	1.000000	0.085808	0.430868	0.597482
Emi_or_Rent_Amt	0.036976	0.405280	0.085808	1.000000	0.002716	-0.097431
Annual_HH_Income	0.970315	0.591222	0.430868	0.002716	1.000000	0.296679
No_of_Earning_Members	0.347883	0.311915	0.597482	-0.097431	0.296679	1.000000

Multiple Linear Regression

Note: The Beta of Mthly_HH_Income is **Positive** and Beta of Annual_HH_Income is **Negative**.

Both are Collinear with each other and is leading to Multi-Collinearity Problem

		:======			.=======	==
Dep. Variable:	Mthly_HH	Expense	R-squared:		0.7	09
Model:		OLS	Adj. R-squar	red:	0.6	83
Method:	Least	Squares	F-statistic	:	27.	40
Date:	Tue, 27 N	lov 2018	Prob (F-stat	tistic):	1.48e-	11
Time:	1	.3:22:56	Log-Likelih	ood:	-509.	59
No. Observations:		50	AIC:		102	9.
Df Residuals:		45	BIC:		103	9.
Df Model:		4				
Covariance Type:	no	nrobust				
						=======
	coef	std err	t	P> t	[95.0% Co	nf. Int.]
Intercept	-5124.8763	2818.362	-1.818	0.076	-1.08e+04	551.597
Mthly_HH_Income		0.157	2.608	0.012	0.093	0.725
No_of_Fly_Members	3224.4195	719.071	4.484	0.000	1776.136	4672.703
Emi_or_Rent_Amt	0.6569	0.158	4.162	0.000	0.339	0.975
Annual_HH_Income	-0.0167	0.013	-1.314	0.196	-0.042	0.009
Omn-i b		0 142	======= Durbin-Watso	=========		==
Omnibus:		0.142			2.3	
Prob(Omnibus): Skew:		0.932	•	(36):	0.0	
Kurtosis:			Prob(JB): Cond. No.		0.9	
Val. (0212)		2.963	NO.		1.75e+	
						==

Multiple Linear Regression...

Variance Inflation Factor - VIF

- Multi-collinearity is typically checked using VIF
- Varaince inflation factors (VIF) measure how much the variance of the estimated regression coefficients are inflated as compared to when the predictor variables are not linearly related.
- VIF = $1/(1-R^2)$
- $(1 R^2)$ for each independent Variable is computed by Regressing that Variable w.r.t all other Independent Variable. For e.g.

```
Mthly_HH_Income = f (No_of_Fly_Members, Emi_or_Rent_Amt, Annual_HH_Income)
No_of_Fly_Members = f (Mthly_HH_Income, Emi_or_Rent_Amt, Annual_HH_Income)
Annual_HH_Income = f (Mthly_HH_Income, Emi_or_Rent_Amt, No_of_Fly_Members)
Emi_or_Rent_Amt = f (Mthly_HH_Income, No_of_Fly_Members, Annual_HH_Income)
```

• By regressing each variable with other we trying to find how much of variance of a variable can be explained by all other variables taken together

VIF check in Python

```
In [63]: def VIF(formula,data):
             import pip #To install packages
          #pip.main(["install","dmatrices"])
    . . . . . .
          #pip.main(["install", "statsmodels"])
          from patsy import dmatrices
            from statsmodels.stats.outliers influence import variance inflation factor
            y , X = dmatrices(formula,data = data,return type="dataframe")
           vif = pd.DataFrame()
            vif["VIF Factor"] = [variance inflation factor(X.values, i) \
    . . . . .
                for i in range(X.shape[1])]
           vif["features"] = X.columns
    . . . . .
            return(vif.round(1))
    . . . . .
In [64]: VIF=VIF("Mthly HH Expense ~ Mthly HH Income+\
                 No of Fly Members+ Emi or Rent Amt+\
                 Annual HH Income" ,data = inc exp)
    . . . . .
In [65]: VIF
Out[65]:
   VIF Factor
                        features
          8.6
                       Intercept
                 Mthly HH Income
         17.7
          1.3 No of Fly Members
          1.0
                 Emi or Rent Amt
                Annual HH Income
         17.4
```

VIF	Status of predictors
VIF = 1	Not correlated
1 < VIF < 5	Moderately correlated
VIF > 5 to 10	Highly correlated

Multiple Linear Regression

Multiple linear Regression Model

Summary of Multiple Linear Regression Model

```
In [73]: m linear mod.summary()
Out[73]:
<class 'statsmodels.iolib.summary.Summary'>
                        OLS Regression Results
                  Mthly_HH_Expense
Dep. Variable:
                                   R-squared:
                                                                0.698
Model:
                                   Adj. R-squared:
                                                                0.678
                     Least Squares F-statistic:
Method:
                                                                35.40
                  Tue, 08 Aug 2017 Prob (F-statistic):
Date:
                                                              5.17e-12
Time:
                         11:55:12 Log-Likelihood:
                                                               -510.53
No. Observations:
                                  ATC:
                                                                1029.
Df Residuals:
                                   BIC:
                                                                1037.
Df Model:
Covariance Type:
                        nonrobust
                     coef
                                                                      0.975]
                -5148.0704
Intercept
                                                                     569.503
Mthly HH Income
                   0.2104
                                       5.009
                                                 0.000
                                                            0.126
                                                                       0.295
No of Fly Members 3232.5739
                          724.699
                                       4.461
                                                 0.000
                                                         1773.830
                                                                    4691.318
                   0.6851
                              0.158
                                       4.347
                                                 0.000
                                                            0.368
                                                                       1.002
Emi or Rent Amt
______
Omnibus:
                            0.916 Durbin-Watson:
                                                                2.326
Prob(Omnibus):
                            0.633 Jarque-Bera (JB):
                                                                0.560
Skew:
                            0.258
                                   Prob(JB):
                                                                0.756
Kurtosis:
                            3.041
                                   Cond. No.
______
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.46e+05. This might indicate that there are
strong multicollinearity or other numerical problems.
```

Homoscedasticity Vs Heteroscedasticity

Homoscedasticity simply stated means variance of the error term across observations is same (homogeneous)

Heterocedasticity occurs when the variance of the error term differs across observations

Thank you

Contact us: ar.jakhotia@k2analytics.co.in

Earning is in Learning
- Rajesh Jakhotia