Solutions to Exercise Set 4.

- 7.3. (a) $(X \lambda)/\sqrt{\lambda} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$ is the same as $\sqrt{\lambda}((X/\lambda) 1) \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$. The proof of Cramér's Theorem with $g(x) = \log(x)$, g'(x) = 1/x, implies that $\sqrt{\lambda}(\log(X/\lambda) \log(1)) \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$, or equivalently, $\sqrt{\lambda}(\log(X) \log(\lambda)) \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$. This is the same as $\log(X) \sim \mathcal{N}(\log(\lambda), 1/\lambda)$.
- (b) Similarly, using $g(x) = x^2$, g'(x) = 2x, we have $\sqrt{\lambda}((X/\lambda)^2 1) \xrightarrow{\mathcal{L}} \mathcal{N}(0,4)$, or $(X^2 \lambda^2)/\lambda^{3/2} \xrightarrow{\mathcal{L}} \mathcal{N}(0,4)$. This is the same as $X^2 \sim \mathcal{N}(\lambda^2, 4\lambda^3)$.
- (c) The above method doesn't work for $g(x) = e^x$. In fact, there is no function, $\sigma^2(\lambda)$, for which we can say $e^X \sim \mathcal{N}(e^\lambda, \sigma^2(\lambda))$. If there were, we would have $P(e^X e^\lambda < x\sigma(\lambda)) \to \Phi(x)$ for all x as $\lambda \to \infty$. But

$$P(e^{X} - e^{\lambda} < x\sigma(\lambda)) = P(X < \log(e^{\lambda} + x\sigma(\lambda)))$$
$$= P((X - \lambda)/\sqrt{\lambda} < \log(1 + xe^{-\lambda}\sigma(\lambda))/\sqrt{\lambda}).$$

If this converges, the limit must be independent of x, because $e^{-\lambda}\sigma(\lambda)$ would then have to tend to infinity and so the "1" in the log may be dropped, and $\log(x)/\sqrt{\lambda} \to 0$. Thus we cannot get convergence to $\Phi(x)$ for all x.

7.8. To find the asymptotic distribution of $\hat{\sigma}^2 = m_2 - (m_1 m_3/m_2)$, we need the asymptotic joint distribution of (m_1, m_2, m_3) . From the central limit theorem with $EX = \mu_1 = 0$, we have

$$\sqrt{n} \left(\begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix} - \begin{pmatrix} 0 \\ \mu_2 \\ \mu_3 \end{pmatrix} \right) \xrightarrow{\mathcal{L}} \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \mathfrak{P} \right)$$

where

$$\mathfrak{P} = \begin{pmatrix} \operatorname{Var}(X) & \operatorname{Cov}(X, X^2) & \operatorname{Cov}(X, X^3) \\ \operatorname{Cov}(X, X^2) & \operatorname{Var}(X^2) & \operatorname{Cov}(X^2, X^3) \\ \operatorname{Cov}(X, X^3) & \operatorname{Cov}(X^2, X^3) & \operatorname{Var}(X^3) \end{pmatrix}$$

Now apply Cramér's Theorem with $g(m_1, m_2, m_3) = m_2 - (m_1 m_3/m_2) = \hat{\sigma}^2$. We find $\dot{g}(m_1, m_2, m_3) = (-m_2/m_3, 1 + (m_1 m_3/m_2^2), -m_1/m_2)$ and $\dot{g}(0, \mu_2, \mu_3) = (-\mu_3/\mu_2, 1, 0)$. Using $Var(X) = \mu_2$, $Cov(X, X^2) = \mu_3$ and $Var(X^2) = \mu_4 - \mu_2^2$, we find $\dot{g} \Sigma \dot{g}^{-1} = \mu_4 - \mu_2^2 - (\mu_3^2/\mu_2)$. Therefore, $\sqrt{n}(\hat{\sigma}^2 - \mu_2) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \tau^2)$, where $\tau^2 = \mu_4 - \mu_2^2 - (\mu_3^2/\mu_2)$. This is less than or equal to $\mu_4 - \mu_2^2$ with equality if and only if $\mu_3 = 0$.

All two-point distributions with means zero are equivalent, up to change of scale, to one of the distributions, P(X = -1) = a/(a+1), P(X = a) = 1/(a+1), for some a > 0. We find

$$EX^{2} = \frac{a^{2}}{a+1} + \frac{a}{a+1} = a$$

$$EX^{3} = \frac{a^{3}}{a+1} - \frac{a}{a+1} = a(a-1)$$

$$EX^{4} = \frac{a^{4}}{a+1} + \frac{a}{a+1} = a(a^{2} - a + 1)$$

So
$$\tau^2 = \mu_4 - \mu_2^2 - (\mu_3^2/\mu_2) = a(a^2 - a + 1) - a^2 - a(a - 1)^2 = 0.$$

9.1. (a) The Pearson $\chi^2=9.2$. (b) The Neyman $\chi^2_N=10.668$. The Hellinger $\chi^2_H=9.789$. The 5% cut-off point from the χ^2 distribution with 5 degrees of freedom is 11.09.