Proposition 30.5. If A is an integral domain, for any $a, b \in A$ with $a, b \neq 0$, we have (a) = (b) iff there exists some invertible $d \in A$ such that b = ad.

An invertible element $u \in A$ is also called a *unit*.

Given two ideals \Im and \Im , their sum

$$\mathfrak{I} + \mathfrak{J} = \{ a + b \mid a \in \mathfrak{I}, b \in \mathfrak{J} \}$$

is clearly an ideal. Given any nonempty subset J of A, the set

$$\{a_1x_1 + \dots + a_nx_n \mid x_1, \dots, x_n \in A, a_1, \dots, a_n \in J, n \ge 1\}$$

is easily seen to be an ideal, and in fact, it is the smallest ideal containing J. It is usually denoted by (J).

Ideals play a very important role in the study of rings. They tend to show up everywhere. For example, they arise naturally from homomorphisms.

Proposition 30.6. Given any ring homomorphism $h: A \to B$, the kernel $\operatorname{Ker} h = \{a \in A \mid h(a) = 0\}$ of h is an ideal.

Proof. Given $a, b \in A$, we have $a, b \in \text{Ker } h$ iff h(a) = h(b) = 0, and since h is a homomorphism, we get

$$h(b-a) = h(b) - h(a) = 0,$$

and

$$h(ax) = h(a)h(x) = 0$$

for all $x \in A$, which shows that Ker h is an ideal.

There is a sort of converse property. Given a ring A and an ideal $\mathfrak{I} \subseteq A$, we can define the quotient ring A/\mathfrak{I} , and there is a surjective homomorphism $\pi \colon A \to A/\mathfrak{I}$ whose kernel is precisely \mathfrak{I} .

Proposition 30.7. Given any ring A and any ideal $\mathfrak{I} \subseteq A$, the equivalence relation $\equiv_{\mathfrak{I}}$ defined by $a \equiv_{\mathfrak{I}} b$ iff $b - a \in \mathfrak{I}$ is a congruence, which means that if $a_1 \equiv_{\mathfrak{I}} b_1$ and $a_2 \equiv_{\mathfrak{I}} b_2$, then

- 1. $a_1 + a_2 \equiv_{\mathfrak{I}} b_1 + b_2$, and
- 2. $a_1a_2 \equiv_{\mathfrak{I}} b_1b_2$.

Then, the set A/\mathfrak{I} of equivalence classes modulo \mathfrak{I} is a ring under the operations

$$[a] + [b] = [a+b]$$

 $[a][b] = [ab].$

The map $\pi: A \to A/\mathfrak{I}$ such that $\pi(a) = [a]$ is a surjective homomorphism whose kernel is precisely \mathfrak{I} .