DIGITAL IMAGE PROCESSING

Monsoon 2018 - CSE 478/ ECE 478

Tutorial - 18/08/2018

Agenda

- 1. Histogram Equalization
- 2. Histogram Matching
- 3. Spatial Correlation and Convolution
- 4. Spatial Filters
- 5. Contrast Stretching
- 6. High Dynamic Ranging
- 7. Quantization
- 8. Linearity Principle of Superposition
- 9. Linear Algebra Vector Space, Null-Space, Linear Independence, Basis

Histogram Equalization

Histogram equalization is a technique for adjusting image intensities to enhance contrast.

Histogram Matching

Histogram Matching

Spatial Correlation and Convolution

$$F \circ I(x) = \sum_{i=-N}^{N} F(i)I(x+i)$$

1-D Correlation

$$F * I(x) = \sum_{i=-N}^{N} F(i)I(x-i)$$

1-D Convolution

$$F \circ I(x, y) = \sum_{j=-N}^{N} \sum_{i=-N}^{N} F(i, j) I(x+i, y+j)$$

$$F * I(x, y) = \sum_{j=-N}^{N} \sum_{i=-N}^{N} F(i, j) I(x-i, y-j)$$

2-D Convolution

2-D Correlation

Quantization

Quantization

Linearity

A system is linear if it obeys the principle of Superposition.

2 conditions for a system to be linear -

- 1. Homogeneity
- 2. Additivity

Note - System linearity is independent of time scaling.

Vector Space, Null-Space, Linear Independence, Basis

L - is a linear map

- f(x+y) = f(x) + f(y)
- $f(a^*x) = a^*f(x)$

Linear independence if V is a V.S. over a Field F, such that a1,a2,...,an E F and v1,v2,v3,...,vn E V, then a1.v1 + a2.v2 + ... + an.vn = 0 => a1=a2=...=an=0

Kernel or Null space of V -> L(v) -> W

$$Ker(L) = \{ v \in V \mid L(v) = 0 \}$$

Vector Space, Null-Space, Linear Independence, Basis

Kernel or Null space of V -> L(v) -> W

• $Ker(L) = \{ v \in V \mid L(v) = 0 \}$

Rank Nullity Theorem -

dim(Ker(L)) + dim(im(L)) = dim(V)

Vector Space, Null-Space, Linear Independence, Basis

- Basis Set of vectors in a V.S. V is called a basis if vectors are Linearly Independent and every vector in the V.S. is a linear combination of this set
- For a set to be a Basis it should -
 - Be linearly Independent
 - Span the vector space
- Linear Independence
 - Linear independence if V is a V.S. over a Field F, such that a1,a2,...,an E F and v1,v2,v3,...,vn E V, then a1.v1 + a2.v2 + ... + an.vn = 0 => a1=a2=...=an=0
- Spanning
 - \circ For all x & V, x = a1.v1 + a2.v2 + ... + an.vn

Spatial Filtering

Spatial Filtering

$$g(x.y) = w(-1,-1)f(x-1,y-1) + w(-1,0)f(x-1,y)... + w(0,0)f(x,y) + ... + w(1,1)f(x+1,y+1)$$

Smoothing Linear Filters

	1	1	1
$\frac{1}{2}$	1	1	1
9	1	1	1

Square averaging filter mask size: 3,5,9,15,35

Smoothing Gaussian Filters

Smoothing Gaussian Filters

5×5 Gaussian filter, σ=3

Smoothing Linear Filters

Application for Noise removal using 15×15 mask

Sharpening with Laplacian Filters

Sharpening with laplacian Filters

Laplacian Filters

Unsharp Masking (and Highboost Filtering)

Unsharp Masking and Highboost Filtering

Unsharp Masking and Highboost Filtering

Other Spatial Filters (first order derivative)

				-1
+1	0	0	+1	-2
0	-1	-1	0	-1

-1	0	+1	+1	+2	+1
-2	0	+2	0	0	0
-1	0	+1	-1	-2	-1

Robert Cross Gradient Operator

Sobel Gradient Operator

Other Spatial Filters (first order derivative)

Other Spatial Filters (non linear) - Pepper Noise

Other Spatial Filters (non linear) - Pepper Noise

max filter

Other Spatial Fllters (non linear) - Salt Noise

Other Spatial Filters (non linear) - Pepper Noise

min filter

Other Spatial Filters (non linear) - Salt and Pepper Noise (Median Filter)

max, min, median → also known as order statistic filters

Bilateral Filtering

Original image taken from cs.cityu.edu.hk

Bilateral Filtering

Original image from mfullywoodco.hol.e

- For a scene, dynamic range refers to ratio between the brightest and darkest parts of the scene.
- The Dynamic Range of real-world scenes can be quite high ratios of 100,000:1 are common in the natural world.
- Dynamic range of JPEG format image won't exceed 255:1, so it is considered as LDR (Low Dynamic Range).
- HDR imaging generating images with a greater range of luminance levels than which can be achieved by taking only a single photograph with a fixed exposure.

- It attempts to improve the contrast in an image by `stretching' the range of intensity values it contains to span a desired range of value.
- It differs from the more sophisticated histogram equalization in that it can only apply a *linear* scaling function to the image pixel values. As a result the `enhancement' is less harsh.

$$P_{out} = (P_{in} - c) \left(\frac{b - a}{d - c} \right) + a$$

References

- 1. https://www.math.uci.edu/icamp/courses/math77c/demos/hist_eq.pdf
- 2. http://www.cs.umd.edu/~djacobs/CMSC426/Convolution.pdf
- 3. Digital Image Processing 3rd ed. R. Gonzalez, R. Woods
- 4. Recovering High Dynamic Range Radiance Maps from Photographs Paul E. Debevec & Jitendra Malik, SIGGRAPH'97
- 5. Photographic Tone Reproduction for Digital Images Erik Reinhard, SIGGRAPH'02
- 6. Gradient Domain High Dynamic Range Compression, Raanan Fattal