

Laboratório de Física Experimental Avançada I Trabalho de Laboratório Espectroscopia da Radiação Gama e atenuação na matéria

V0.9

1. Introdução e Objectivos

O objectivo deste trabalho é o estudo da interacção da radiação com a matéria, através dos processos fotoeléctrico, de Compton e de produção de pares, bem como das propriedades dos detectores de cintilação.

Usa-se um espectrómetro simples, formado por uma fonte emissora de raios y e um detector de iodeto de sódio activado por tálio, NaI(TI), com fotomultiplicador acoplado, ao qual se segue a cadeia electrónica composta por gerador de alta tensão (regulado de acordo com o PMT), préamplificador e amplificador de tensão, e analisador multicanal (este inserido em PC com software de aquisição de dados).

2. Estudo de espectros de fontes conhecidas e calibração

Estudo das componentes físicas dos espectros de energia de duas fontes conhecidas: ¹³⁷Cs, ⁶⁰Co. Calibração em energia com o auxílio das fontes de ¹³⁷Cs e ⁶⁰Co. Devem usar-se, além dos valores dos seus picos de absorção total, o da radiação X.

¹³⁷ Cs – Raio X	¹³⁷ Cs - γ	60 Co - γ_1	⁶⁰ Co - γ ₂
32 keV	662 keV	1173 keV	1333 keV

Aplicação da calibração à determinação das energias dos picos de retrodifusão e dos "joelhos" de Compton dos espectros de energia das fontes de ¹³⁷Cs e ⁶⁰Co, e comparação com os valores calculados e/ou tabelados.

3. Identificação de fonte desconhecida

Estudo do espectro de uma fonte desconhecida emissora de γs : obtenção das energias dos seus picos de absorção total. Identificação em tabelas do nuclídeo em causa.

4. Identificação de fontes de radioactividade ambiente

Estudo rápido da radioactividade natural ambiente. Faça uma aquisição de pelo menos 20 minutos para identificar as estruturas presentes

5. Atenuação da radiação gama na matéria

Atenuação de partículas gamma: meça e compare com a estimativa a atenuação das partículas gamma numa espessura de chumbo intermédia e numa espessura grande de chumbo (utilize um bloco de chumbo).

6. Estudo das características do detector

Estudo da resolução em energia com os picos disponíveis.

Estudo da dependência da resolução com a energia

Estudo dos desvios sistemáticos

Extensão caso se trate de um trabalho final

- Estudo da radioactividade natural ambiente. Deverá ser feita uma aquisição muito longa.
 Sugere-se que seja gravado o espectro para análise.
- Estudo da lei de atenuação de um feixe de γs em placas de chumbo de espessuras diversas e determinação do seu coeficiente de absorção (faça várias combinações das espessuras fornecidas).
 - o Poderá fazer este estudo com radiação gama de diferentes energias.
 - No laboratório existem absorvedores de Polietileno, Alumínio e chumbo

Notas	

Incertezas

Nos diversos trabalhos pretendem-se efectuar medidas de alta precisão. Pode tomar como referência 0.1% de incerteza relativa. Poderá considerar incertezas estatísticas mais baixas (resultado mais precisos) mas tenha em atenção que as incertezas sistemáticas poderão dominar a medição). Deverá sempre ser tido em consideração a possibilidade de existência de incertezas sistemáticas. Sempre que possível estime a incerteza sistemática.

Calibração

Alguns detectores (por exemplo os espectrómetros com detectores de Silício) poderão indicar valores em unidade de energia (MeV). Como por exemplo o valor da escala do "pulser/Marker" ou os valores das regiões de energia. Atenção que os detectores <u>não estão calibrados</u> e estes valores <u>não são válidos</u>. É sempre necessário efectuar uma calibração. Pode-se assumir a linearidade do "pulser" mas não o seu valor absoluto.

Estatística e tempos de aquisição

É necessário ter em atenção a estatística pretendida e o tempo de aquisição necessário. É aconselhável fazer uma aquisição muito rápida com baixa estatística para perceber de uma forma grosseira a localização dos picos e a actividade da fonte para, com essa informação, planear as aquisições mais longas.