Teoria dos Circuitos e Fundamentos de Electrónica

Análise de Circuitos com Transístores Bipolares

Teresa Mendes de Almeida

TeresaMAlmeida@ist.utl.pt

DEEC Área Científica de Electrónica

Maio de 2008

Matéria

2

- Transístores de junção bipolares
 - NPN e PNP
 - zonas de funcionamento
 - corte, zona activa, saturação
- Circuitos amplificadores
 - o transístor como amplificador
 - modelo incremental
 - circuito de polarização
 - circuitos seguidor de emissor e amplificador de tensão (emissor comum)
- Efeito da temperatura
 - polarização estabilizada
- Fontes de corrente
- Par diferencial com carga resistiva
- Exemplos de aplicação

- TJB transístor de junção bipolar
 - fabricado com material semicondutor (silício)
 - dispositivo com 3 terminais
 - C colector
 - B − base
 - E emissor
 - baseia-se em 2 junções PN
 - base-colector (BC)
 - base-emissor (BE)
 - 2 tipos de transístores
 - NPN e PNP
 - símbolo
 - seta marca o terminal do emissor marca sentido da corrente
 - indica sentido da junção pn entre base e emissor
 - dispositivo não-linear → usar modelo linear para analisar circuito com TJB

NPN

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos com Transístores Bipolares

Maio de 2008

Transístor de junção bipolar

Transistor NPN

Metal Metal contact n-type p-type n-type p

- constituídos por 3 regiões de material semicondutor
 - dispostas em camadas
 - base tem espessura reduzida
 - colector e emissor são diferentes
 - dimensões e constituição são diferentes
- funcionamento do TJB é mais complexo do que considerar apenas 2 junções (como se fossem apenas 2 díodos isolados) porque a base é muito estreita
- 2 junções interagem ente si não são independentes

Transistor PNP

Transístor de junção bipolar

- Aplicação das leis de Kirchhoff
 - KVL tensões entre terminais (circular entre terminais)
 - KCL correntes a entrar/sair dos terminais (TJB visto como um nó)

 $i_B + i_C = i_E$

- Sentidos/polaridades convencionais das correntes/tensões
 - valores positivos quando transístor está em condução

NPN

$$v_{BC} + v_{CE} - v_{BE} = 0$$

$$v_{EB} - v_{CB} - v_{EC} = 0$$

PNP – mesmas equações que PNP – sentidos / polaridades trocados

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos com Transístores Bipolares

Maio de 2008

Regiões de funcionamento do TJB

- 6
- modos de funcionamento do TJB de acordo com polarização das junções pn
 - polarização directa "díodo ON" $v_D = V_{ON}$
 - polarização inversa "díodo OFF" v_D < V_{ON}

Região de funcionamento	Junção BE	Junção BC	Aplicação típica
CORTE	Polarizada inversamente	Polarizada inversamente	Circuitos lógicos
Zona ACTIVA	Polarizada directamente	Polarizada inversamente	AMPLIFICADOR
SATURAÇÃO	Polarizada directamente	Polarizada directamente	Circuitos lógicos

TJB cortado (não conduz)

- 2 junções inversamente polarizadas
 - NPN

$$v_{BE} < 0$$

$$v_{CE} > 0$$

- PNP
- $v_{EB} < 0$

$$v_{EC} > 0$$

- transístor não é percorrido por corrente
 - comporta-se como "interruptor aberto"

$$i_{\scriptscriptstyle R} = i_{\scriptscriptstyle C} = i_{\scriptscriptstyle F} = 0$$

NPN

Modelo equivalente

- circuito aberto entre todos os terminais
- transístor não intervém no circuito onde está inserido

PNP

• Na prática considera-se o TJB cortado

$$v_{BE} < V_{BE_{ON}} \quad (\approx 0,5V-0,7V)$$

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos com Transístores Bipolares

Maio de 2008

Zona Activa

8

• TJB conduz ($i_C > 0$ e $i_B > 0$)

- junção BE directamente polarizada
- $v_{BE} = V_{BE_{ON}} \quad (\approx 0, 5V 0, 7V)$ $v_{CE} > 2V$ (tipicamente) • junção BC inversamente polarizada
- corrente de colector é directamente proporcional à corrente de base

$$i_{C} \approx I_{S}e^{\frac{i_{B}}{V_{T}}}$$

$$i_{C} \approx I_{S}e^{\frac{i_{B}}{V_{T}}}$$

$$i_{C} = \beta i_{B}$$

$$i_{E} = i_{B} + i_{C} = (1 + \beta)i_{B}$$

$$i_{E} = \frac{1 + \beta}{\beta}i_{C}$$

Modelo equivalente

gerador comandado

Ganho de corrente β (h_{FF})

NPN: $\beta \approx 100 - 200$

PNP: $\beta \approx 20 - 50$

β elevado – cálculo aproximado

(aproximação) $i_{\rm B} << i_{\rm C} \implies i_{\rm E} \approx i_{\rm C}$

Saturação

- TJB conduz $(i_C > 0 e i_B > 0)$
 - 2 junções directamente polarizadas
 - as tensões entre os terminais são impostas pelo transístor

$$v_{BE} = V_{BE_{ON}} \quad (\approx 0, 5V - 0, 7V)$$
 $v_{CE} = V_{CE_{SAT}} \quad (\approx 0, 1V - 0, 2V)$

- as correntes são determinadas pelo circuito exterior
 - é o circuito exterior que determina se TJB está na saturação ou na zona activa
 - i_C calculada por análise do circuito $i_C < \beta i_B$ $i_E = i_B + i_C$
- Modelo equivalente

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos com Transístores Bipolares

Maio de 2008

Equações TJB

10

- Equações escritas para NPN
- Para PNP trocar sentidos correntes / polaridades tensões

CORTE	ZONA ACTIVA	SATURAÇÃO
Junções inversamente polarizadas	Junção BE directamente polarizada	Junções directamente polarizadas
$i_B = i_C = i_E = 0$ $v_{BE} < V_{BE_{ON}} (\approx 0, 5V - 0, 7V)$	Junção BC inversamente polarizada $i_{C} \approx I_{S}e^{\frac{v_{BE}}{V_{T}}}$ $i_{C} = \beta i_{B}$ $i_{E} = i_{B} + i_{C} = (1 + \beta)i_{B}$ $v_{BE} = V_{BE_{ON}} (\approx 0, 5V - 0, 7V)$	$i_{E} = i_{B} + i_{C}$ $i_{C} < \beta i_{B}$ $v_{CE} = V_{CE_{SAT}} (\approx 0, 1V - 0, 2V)$ $v_{BE} = V_{BE_{ON}} (\approx 0, 5V - 0, 7V)$

Exemplo de aplicação NPN

- Calcular tensões e correntes
 - hipótese: considerar TJB na zona activa →

$$\begin{cases} v_{BE} = V_{BE_{ON}} \\ i_{C} = \beta i_{B} \\ i_{E} = i_{B} + i_{C} = (1 + \beta) i_{B} \end{cases}$$

$$\beta = 50$$

$$V_{BE_{ON}} = 0.7V + 10 \text{ V}$$

$$V_{CE_{SAT}} = 0.2V$$

$$5 \text{ k}\Omega$$

$$| I_{B} \rangle$$

$$| I_{C} \rangle$$

$$| I_{D} \rangle$$

$$|$$

$$V_{BE} = V_{BE_{ON}} = 0,7V$$

$$V_{E} = 0 - V_{BE_{ON}} = -0,7V$$

$$I_{E} = \frac{V_{E} - (-10)}{R_{E}} = \frac{V_{E} - (-10)}{10k} = 0,93mA$$

$$I_{B} = \frac{I_{E}}{1 + \beta} = 18,2\mu A$$

$$I_{C} = \beta I_{B} = 0,91mA$$

$$V_{C} = 10 - R_{C}I_{C} = 10 - 5 \times 0,91 = 5,45V$$

$$V_{C} > V_{B} \quad BC \quad inversamente \quad polarizada$$

$$V_{CE} = V_{C} - V_{E} = 5,45 - (-0,7) = 6,15V$$

$$I_C = \beta I_B = 0.91 \text{mA}$$

$$V_C = 10 - R_C I_C = 10 - 5 \times 0.91 = 5.45 V$$

$$V_C > V_B \quad BC \text{ inversamente polarizada}$$

$$V_{CE} = V_C - V_E = 5.45 - (-0.7) = 6.15 V \quad >> \quad V_{CE_{CM}}$$

confirmada a hipótese de zona activa

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos com Transístores Bipolares

Maio de 2008

12

Exemplo de aplicação PNP

- Calcular V_C sabendo que V_B=1V e V_E=1,7V
- Qual o ganho de corrente β?
 - PNP sentidos das correntes são invertidos relativamente a NPN
 - V_{EB}=V_{EBon}=0,7V considerar hipótese de zona activa

$$V_{EB} = V_{EB_{ON}} = 0,7V$$

$$I_{E} = \frac{10 - V_{E}}{R_{E}} = \frac{10 - 1,7}{5k} = 1,66mA$$

$$I_{B} = \frac{V_{B} - 0}{R_{B}} = \frac{1}{100k} = 10\mu A$$

$$I_{E} = (1 + \beta)I_{B} \rightarrow \beta = \frac{I_{E}}{I_{B}} - 1 = 165$$

$$I_{C} = I_{E} - I_{B} = 1,65mA$$

$$V_{C} = R_{C}I_{C} + (-10) = -1,75V$$

$$V_{B} > V_{C} \quad CB \text{ inversamente polarizada}$$

 $V_{EC} = V_E - V_C = 1,7 - (-1,75) = 3,45V >> V_{EC_{SAT}}$

Exemplo de aplicação

- Calcular correntes e tensões para diferentes sinais de entrada
 - $V_{IN} = V_B = \{0V, +4V, +6V\}$
 - $\beta = 100$ $V_{BEon} = 0.7V$ $V_{CEsat} = 0.2V$
- $V_{IN} = V_B = +4V$
 - hipótese: zona activa

$$V_{E} = V_{B} - V_{BEon} = 4 - 0, 7 = 3, 3V$$

$$I_{E} = \frac{V_{E} - 0}{R_{E}} = \frac{3, 3}{3, 3k} = 1mA$$

$$I_{C} = \frac{\beta}{1 + \beta} I_{E} = 0,99mA$$

$$V_{C} = 10 - R_{C}I_{C} = 10 - 4,7 \times 0,99 = 5,3V$$

$$V_{C} > V_{B} \quad BC \quad inversamente \quad polarizada$$

 $I_B = I_E - I_C = 0,01 \text{mA} = 10 \mu \text{A}$

 $V_{CE} = V_C - V_E = 5, 3 - 3, 3 = 2V$ >> $V_{CE_{SAT}}$

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos com Transístores Bipolares

Maio de 2008

Exemplo de aplicação (cont.)

- 14
- Calcular correntes e tensões para diferentes sinais de entrada
- $V_{IN} = V_B = +6V$
 - hipótese: zona activa

- TJB não pode estar na zona activa
- considerar hipótese de saturação e voltar a fazer os cálculos

Exemplo de aplicação (cont.)

- Calcular correntes e tensões para diferentes sinais de entrada
- $V_{IN} = V_B = +6V$
 - hipótese: zona de saturação

$$i_C < \beta i_B$$
 $i_E = i_B + i_C$
$$v_{CE} = V_{CE_{SAT}} \quad (\approx 0, 1V - 0, 2V)$$

$$v_{BE} = V_{BE_{ON}} \quad (\approx 0, 5V - 0, 7V)$$

© T.M.Almeida IST-DEEC-ACElectrónica

 $V_{CFsat} = 0.2V$

 $\beta = 100$

TCFE Análise de Circuitos com Transístores Bipolares

Maio de 2008

Exemplo de aplicação (cont.)

 $I_C < \beta I_B \rightarrow \text{confirma-se hipótese de saturação}$

16

- Calcular correntes e tensões para diferentes sinais de entrada
- $V_{IN} = V_B = 0V$
 - hipótese: corte
 - correntes são nulas
 - junções BE e BC inversamente polarizadas

Circuito inversor lógico / amplificador

- TJB corte / saturação
- V_I nível baixo / alto

Circuito amplificador

- TJB a funcionar na zona activa
- $v_{I} = V_{I} + v_{i}$ (DC + AC)
 - V_I circuito de polarização
 - v_i sinal a amplificar
- TJB não pode sair da zona activa (v_i pequeno)

 $\mathbf{v}_{\mathrm{O}} = \mathbf{V}_{\mathrm{O}} + \mathbf{v}_{\mathrm{o}} = \mathbf{V}_{\mathrm{O}} + \Delta \mathbf{v}_{\mathrm{O}}$

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos com Transístores Bipolares

Maio de 2008

17

Polarização

- Tensões e correntes DC para TJB ficar na ZONA ACTIVA
 - junção base-emissor directamente polarizada ($V_{BEon} \approx 0.7V$)
 - tensão V_{CE} apropriada
 - maximizar a amplitude do sinal de saída (meio da característica)
 - obter corrente I_C pretendida
- Circuito de polarização
 - um bom circuito de polarização deve ser insensível a variações dos parâmetros:
 - valores reais das resistências (são diferentes dos valores nominais)
 - ganho de corrente, β , do TJB
 - temperatura (I_C varia com T)
- Exemplo de circuito de polarização
 - circuito resistivo
 - fonte de alimentação e resistências
 - impõe o ponto de funcionamento em repouso (PFR)

- TJB a funcionar como amplificador
 - TJB tem de ser polarizado para funcionar na ZONA ACTIVA
- Polarização
 - estabelecer uma corrente constante (DC) no emissor (ou no colector)
 - corrente I_E (ou I_C) deve ser insensível a variações de temperatura e do β
- Análise do circuito
 - DC polarização
 - calcular o ponto de funcionamento em repouso (PFR)
 - componente AC eliminada

$$I_{C} = I_{S}e^{\frac{V_{BE}}{V_{T}}}$$

$$I_{B} = \frac{I_{C}}{\beta} \quad I_{E} = \frac{1+\beta}{\beta}I_{C}$$

$$V_{C} = V_{CC} - R_{C}I_{C}$$

- AC amplificador
 - fontes DC eliminadas

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos com Transístores Bipolares

Maio de 2008

20

O Transístor como amplificador

• Transcondutância – g_m

 $v_{BE} = V_{BE} + v_{be} i_{C} = I_{S}e^{\frac{v_{BE}}{V_{T}}} = I_{S}e^{\frac{v_{BE}}{V_{T}}}e^{\frac{v_{be}}{V_{T}}} = I_{C}e^{\frac{v_{be}}{V_{T}}} I_{C} = I_{S}e^{\frac{v_{BE}}{V_{T}}}$ $i_C \approx I_C \left(1 + \frac{v_{be}}{V_T} \right) \qquad \leftarrow \qquad \begin{cases} v_{be} << V_T \\ e^x \approx 1 + x \end{cases}$ PFR $i_C = I_C + \frac{I_C}{V_{-}} v_{be} = I_C + i_c \qquad i_c = \frac{I_C}{V_T} v_{be}$

• $i_c = g_m v_{be} \rightarrow fonte de corrente$

controlada por tensão

tipicamente $I_C = 1mA$ $V_T = 25mV$ $g_m = 40mS$

declive da curva i_{C} - v_{BE} $g_{m} = \frac{\partial i_{C}}{\partial v_{RE}} \approx \frac{\Delta i_{C}}{\Delta v_{BE}}$ no PFR

$$g_m = \frac{\partial i_C}{\partial v_{BE}} \approx \frac{\Delta i_C}{\Delta v_{BE}}$$

O Transístor como amplificador

• Resistência entre a Base e o Emissor (olhando da base)

$$i_{B} = \frac{i_{C}}{\beta} = \frac{I_{C}}{\beta} + \frac{1}{\beta} \frac{I_{C}}{V_{T}} v_{be} = \frac{I_{C}}{\beta} + \frac{g_{m}}{\beta} v_{be} \qquad i_{B} = I_{B} + i_{b}$$

$$r_{\pi} = \frac{v_{be}}{i_{b}} \approx \frac{\Delta v_{BE}}{\Delta i_{B}} = \frac{\beta}{g_{m}}$$

$$r_{\pi} = \frac{\beta}{g_{m}}$$

$$r_{\pi} = \frac{\beta}{g_{m}}$$

• Resistência entre o Emissor e a Base (olhando do emissor)

$$i_{E} = \frac{\beta + 1}{\beta} i_{C} = \frac{\beta + 1}{\beta} (I_{C} + g_{m} v_{be}) \qquad i_{E} = I_{E} + i_{e}$$

$$i_{e} = \frac{\beta + 1}{\beta} g_{m} v_{be} \approx g_{m} v_{be}$$

$$r_{e} = \frac{v_{be}}{i_{e}} = \frac{\Delta v_{BE}}{\Delta i_{E}} \approx \frac{1}{g_{m}}$$

$$r_{e} = \frac{v_{be}}{i_{e}} = \frac{\Delta v_{BE}}{\Delta i_{E}} \approx \frac{1}{g_{m}}$$

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos com Transístores Bipolares

Maio de 2008

Modelo para sinais fracos (incremental)

22

- Circuito equivalente do TJB
 - modelo linear que caracteriza o funcionamento do TJB na zona activa
 - válido para sinais fracos (pequenas variações das grandezas em torno do ponto de funcionamento em repouso)
- Modelo incremental com fonte de corrente controlada por

Modelo mais utilizado

• Circuito Seguidor de Emissor

- obter no emissor uma réplica do sinal de entrada
- ganho unitário
- impedância de entrada elevada
- impedância de saída baixa
- aplicação isolar o gerador da carga

• Circuito de Emissor-comum (Amplificador de Tensão)

- obter no colector uma réplica (invertida) amplificada do sinal de entrada
- ganho maior do que 1 (em módulo)
- inverte o sinal de entrada
- impedância de entrada elevada
- aplicação amplificar o sinal de entrada

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos com Transístores Bipolares

Maio de 2008

24

Seguidor de Emissor

• Ganho de tensão unitário

$$\begin{aligned} v_I &= V_I + v_i \\ v_O &= v_I - V_{BEon} \end{aligned} \quad \begin{cases} V_O &= V_I - V_{BEon} \\ v_o &= v_i \end{cases}$$

$$A_{v} = \frac{v_{o}}{v_{i}} = \frac{\Delta v_{O}}{\Delta v_{I}} = \frac{\Delta v_{E}}{\Delta v_{B}} = 1$$

• Impedância de entrada

$$R_I = \frac{\Delta v_I}{\Delta i_I}$$

$$\Delta v_{I} = \Delta v_{E} = R_{E} \Delta i_{E} = R_{E} (\beta + 1) \Delta i_{B} = R_{E} (\beta + 1) \Delta i_{I}$$

$$R_I = (\beta + 1) R_E$$

• impedância de entrada é elevada

Seguidor de Emissor

Impedância de saída

- eliminada entrada v_I
- R_B resistência devida à polarização

$$R_O = \frac{\Delta v_O}{\Delta i_O} \qquad \Delta i_O = -\Delta i_E$$

$$\Delta t_O$$

$$\Delta v_O = \Delta v_E = \Delta v_R = -R_B \Delta i_R$$

$$\Delta i_B = \frac{\Delta i_E}{\beta + 1}$$

$$R_O = \frac{R_B}{\beta + 1}$$

 $A_{v} = 1$

• Aplicação – isolador (buffer)

• isolar gerador de sinal (v_G,R_G) da carga R_L

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos com Transístores Bipolares

Maio de 2008

26

 R_i elevada

Seguidor de Emissor

• Circuito de polarização

- uma possível sequência de passos para dimensionar o circuito de polarização pode ser:
- 1) escolher valor da corrente I_C (ou então I_E)
- 2) escolher valor de V_{CE} (para se ficar a meio da característica de transferência)
- 3) escolher R_C e R_E (admitindo $I_E=I_C$)

$$V_{CC} = V_{CE} + (R_C + R_E) I_E$$

- 4) calcular V_B para garantir $V_{BE} \approx 0.7 V (V_{BEon})$
- 5) considerar que I_{R1} , I_{R2} >> I_B , ou seja, I_{R1} = I_{R2}
- 6) obtém-se a equação de um divisor de tensão

$$V_B = \frac{R_2}{R_1 + R_2} V_{CC}$$
 $I_{R1} = I_{R2} = \frac{V_{CC}}{R_1 + R_2}$

7) escolher os valores de R_1 e R_2 para que $I_{R1}=I_{R2} > 10 I_B$

Este circuito não é único. Podem ser usados outros circuitos diferentes deste!

Amplificador de Tensão (Emissor-comum)

27

• Amplifica (e inverte) o sinal de entrada

- entrada na base
- saída no colector
- emissor comum à entrada e à saída

Ganho de Tensão

$$A_{v} = \frac{v_{o}}{v_{i}} = \frac{\Delta v_{O}}{\Delta v_{I}} \longrightarrow A_{v} = \frac{\Delta v_{C}}{\Delta v_{B}}$$

$$\Delta v_E = \Delta v_B \qquad \Delta i_E = \frac{\Delta v_E}{R_E} \approx \Delta i_C \qquad \Delta v_C = -R_C \Delta i_C \qquad \rightarrow \qquad \Delta v_C = -R_C \frac{\Delta v_B}{R_E}$$

$$A_v = -\frac{R_C}{R_E} \qquad \rightarrow \text{ ganho de tensão controlado por } R_C \in R_E$$

$$\Delta v_C = -R_C \Delta i_C \qquad -2$$

$$\Delta v_C = -R_C \frac{\Delta v_B}{R_E}$$

$$A_{v} = -\frac{R_{C}}{R_{E}}$$

- se R_E=0 o ganho seria infinito... Na prática o ganho é sempre finito!
- TJB tem resistência de emissor intrínseca, r_e , finita!

$$r_e = \frac{1}{g_m}$$

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos com Transístores Bipolares

28

Amplificador de Tensão (Emissor-comum)

• Impedância de entrada

- usar o modelo incremental do TJB para calcular R_{in}
- fontes DC eliminadas

$$R_{in} = \frac{v_{in}}{i_{in}} = \frac{\Delta v_{IN}}{\Delta i_{IN}}$$

$$v_{in} = r_{\pi}i_{b} + R_{E}i_{e} \qquad \begin{cases} i_{b} = i_{in} \\ i_{e} = i_{b} + \beta i_{b} \end{cases} \rightarrow v_{in} = \left[r_{\pi} + (\beta + 1)R_{E}\right]i_{in} \qquad R_{in} = r_{\pi} + (\beta + 1)R_{E}$$

$$v_{in} = \left[r_{\pi} + (\beta + 1) R_{E} \right] i_{i}$$

$$R_{in} = r_{\pi} + (\beta + 1)R_{E}$$

$$(\beta+1)R_E >> r_{\pi} \qquad \rightarrow \qquad R_{in} \approx (\beta+1)R_E$$

$$R_{in} = (\beta + 1) R_{in}$$

Impedância de saída

- usar o modelo incremental do TJB para calcular R_{out}
- fontes DC eliminadas
- gerador de entrada eliminado

$$R_{out} = \frac{v_{out}}{i} = \frac{\Delta v_{OUT}}{\Delta i_{OUT}}$$

$$R_{out} = \frac{v_{out}}{i_{out}} = \frac{\Delta v_{OUT}}{\Delta i_{OUT}}$$

$$KVL \rightarrow r_{\pi}i_b + R_E(i_b + \beta i_b) = 0 \rightarrow i_b = 0$$

$$v_{out} = R_C I_{RC} = R_C i_{out} \rightarrow \frac{v_{out}}{i_{out}} = R_C$$

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos com Transístores Bipolares

Maio de 2008

Amplificador de Tensão (Emissor-comum)

Circuito de polarização

- uma possível sequência de passos para dimensionar o circuito de polarização pode ser:
- 1) escolher valor da corrente I_C (ou então $I_E \approx I_C$)
- 2) escolher valor de V_C geralmente $V_C = V_{CC} / 2$ (para se ficar a meio da característica de transferência)
- 3) calcular R_C : $V_{CC} = V_C R_C I_C$
- calcular R_E , usando o valor do ganho de tensão $A_v = -R_C / R_E$
- calcular V_B para garantir $V_{BE} \approx 0.7 V (V_{BEon})$: $V_B = V_{BE} + R_E I_E$
- considerar que I_{R1} , I_{R2} >> I_{R} , ou seja, I_{R1} = I_{R2}
- obtém-se a equação de um divisor de tensão

$$V_B = \frac{R_2}{R_1 + R_2} V_{CC}$$
 $I_{R1} = I_{R2} = \frac{V_{CC}}{R_1 + R_2}$

escolher os valores de R_1 e R_2 para que $I_{R1}=I_{R2}>10$ I_{R}

 V_{CC}

Acoplamento entre amplificadores

Acoplamento AC

- para não alterar a polarização dos vários andares amplificadores
- usam-se condensadores de acoplamento entre os amplificadores
- condensadores bloqueiam componente DC
 - em DC o condensador é um circuito-aberto
- deixam passar a componente variável (AC) do sinal a amplificar
- escolhem-se as capacidades dos condensadores para que nas frequências de interesse os condensadores correspondam a curto-circuitos (válido em frequências médias)

$$\begin{split} \left|Z_{C}\right| &= \frac{1}{\omega C} \\ \left\{f = 10kHz \\ C &= 150\mu F \\ \left|Z_{C}\right| &= 0,106\Omega \approx 0\Omega \end{split}$$

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos com Transístores Bipolares

Maio de 2008

32

Dependência da temperatura

• Ganho de corrente β

- depende da corrente I_C
- aumenta com a temperatura

• Tensão v_{re}

• diminui com a temperatura

$$v_{BE} \approx V_T \ln \frac{i_C}{I_S}$$

$$V_T = \frac{kT}{q} \qquad I_S(T)$$

 $\frac{\Delta v_{BE}}{\Delta T} \approx -2mV / ^{\circ} C$

 $h_{FE}(\beta)$

Circuitos de polarização estabilizada

- compensar efeitos da variação da temperatura
 - $\bullet \ R_E-$ circuito de polarização inclui resistência ligada ao emissor
- circuito integrado usar fontes de corrente (feitas com TJBs e resistências)

- Resistência R_E
 - estabiliza a corrente I_E quando há variação da temperatura
- Quando a temperatura aumenta
 - v_{BE} diminui $\frac{\Delta v_{BE}}{\Delta T} \approx -2mV / ^{\circ} C$
 - i_C diminui $i_C \approx I_S e^{v_{BE}/V_T}$
 - $i_E \approx i_C$ diminui $\rightarrow v_E = R_E i_E$ diminui
 - V_B não se altera $I_{R1}, I_{R2} >> i_B \rightarrow V_B \approx \frac{R_2}{R_1 + R_2} V_{CC}$
 - $v_{BE} = V_B v_E$ aumenta, contrariando o aumento inicial devido à temperatura
 - $i_E \approx i_C$ fica estabilizada, apesar da variação da temperatura

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos com Transístores Bipolares

Maio de 2008

Efeito de Early

- Modelo aproximado (Modelo Ebers-Moll)
 - i_C só depende de v_{BE}

$$i_C \approx I_S e^{v_{BE}/V_T}$$

- TJB real
 - i_C depende de v_{BE} e de v_{CE}
 - V_A tensão de Early (tipicamente 50 100 V)
 - extrapolando as curvas, encontram-se no ponto $v_{CE} = -V_A$
- Efeito de Early

- resistência vista do colector
 - não é infinita

$$r_o^{-1} = \frac{\Delta i_C}{\Delta v_{CE}}\Big|_{V_{BE}} \approx \frac{I_C}{V_A}$$

 r_o acrescentada no modelo incremental

 $i_C = I_S e^{\frac{v_{BE}}{V_T}} \left(1 + \frac{v_{CE}}{V_T} \right)$

34

Fonte de Corrente

Usando uma fonte de corrente ligada ao emissor

- I_E fica imposta pela fonte de corrente
- deixa de haver dependência da temperatura

Fontes de corrente

- usadas nos circuitos de polarização em circuito integrado
- estabelecer corrente I_C≈I_E estável
- construídas com transístores e resistências

Exemplo

- fonte de corrente simples
- transístores são iguais
 - \bullet Q₁=Q₂
- $V_{BE1} = V_{BE2}$
- $I \approx I_{REF}$

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos com Transístores Bipolares

Maio de 2008

Espelho de corrente

• Fonte de corrente simples – espelho de corrente

- obter uma fonte de corrente a partir da tensão de alimentação do CI
- circuito que reproduz uma corrente (consegue "espelhar" uma corrente)

Conversor V-I

- fonte V_{CC} e resistência R em série
- equivalente a fonte de corrente com resistência em paralelo
- permite obter I_{REF}

Conversor I-V

$$I_{C1} = I_{S1} e^{\frac{V_{BE1}}{V_T}}$$

está sempre na zona activa

• está ligado como um díodo (junção BC curto-circuito)

$$I_{C2} = I_{S2} e^{\frac{V_{BE}}{V_T}}$$

• Transistor Q_2

• tem de estar na zona activa (tensão V tem de garantir V_{CE2} zona activa)

• Fonte de corrente – espelho de corrente

$$I_{C1} = I_{S1}e^{\frac{V_{BE1}}{V_T}} \qquad I_{C2} = I_{S2}e^{\frac{V_{BE2}}{V_T}}$$

$$\begin{cases} V_{BE1} = V_{BE2} \\ I_{S1} = I_{S2} & \longleftrightarrow & Q_1 = Q_2 \end{cases} \Rightarrow I_{C1} = I_{C2}$$

• desprezando as correntes de base $(\beta \rightarrow \infty)$

$$I_{B1} + I_{B2} << I_{C1} \qquad I_{REF} \approx I_{C1}$$

$$V_{CC} - (-V_{EE}) = RI_{REF} + V_{BE1} \quad \rightarrow \quad I_{REF} = \frac{V_{CC} + V_{EE} - V_{BE1}}{R}$$

• escolher R para se ter a I_{REF} desejada para a fonte de corrente

• Cálculo exacto (análise real)

• β é finito (não desprezar $I_{B1}+I_{B2}$)

$$I_{REF} = I_{C1} + I_{B1} + I_{B2} = I_{C1} + \frac{I_{C1}}{\beta} + \frac{I_{C2}}{\beta}$$

$$I = \frac{1}{1 + \frac{2}{\beta}} I_{REF}$$

$$\beta = 100$$

$$I = 0.98I_{REF}$$

$$\frac{I - I_{REF}}{I_{REF}} \times 100\% = -2\%$$

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos com Transístores Bipolares

38

Espelho de corrente

- Resistência de saída (incremental)
 - substituir TJBs por modelo incremental

- fontes DC (V_{CC} e - V_{EE})
 - do ponto de vista incremental ficam ligadas à massa
 - porque não têm componente variável (AC)

 $i_{h1} = i_{h2} = 0$

Espelho de corrente múltiplo

Fonte de corrente múltipla

 $I_C = I_S e^{\frac{V_{BE}}{V_T}}$

- corrente de referência espelhada várias vezes
- todos TJBs têm as bases ligadas \rightarrow $V_{BEref} = V_{BE1} = V_{BE2} = ... = V_{BEN}$
- TJBs são iguais $Q_{REF} = Q_1 = Q_2 = \dots = Q_N \quad \rightarrow \quad I_{Sref} = I_{S1} = I_{S2} = \dots = I_{SN}$
- então $I_{Cref} = I_{C1} = I_{C2} = \dots = I_{CN} \rightarrow I_{Bref} = I_{B1} = I_{B2} = \dots = I_{BN} \quad (I_C = \beta I_B)$

$$I_{REF} = I_{Cref} + I_{Bref} + I_{B1} + I_{B2} + ... + I_{BN}$$

$$I_{REF} = I_{Cref} + (1+N)\frac{I_{Cref}}{\beta}$$

$$I_{REF} = I_{Cref} + I_{Bref} + I_{B1} + I_{B2} + \dots + I_{BN}$$

$$I_{REF} = I_{Cref} + (1+N)\frac{I_{Cref}}{\beta}$$

$$I_{1} = I_{2} = \dots = I_{N} = \frac{1}{1+\frac{N+1}{\beta}}I_{REF}$$

quanto maior o número de TJBs, pior vai ser a relação \boldsymbol{I}_{K} / \boldsymbol{I}_{REF}

© T.M.Almeida

ligadas

 $-V_{EE}$

TCFE Análise de Circuitos com Transístores Bipolares

Maio de 2008

Espelho de corrente melhorado

40

- Compensar o erro introduzido pelas correntes de base
 - acrescentado um transístor (Q_3) fornece as correntes de base

$$\begin{cases} V_{BE1} = V_{BE2} \\ I_{S1} = I_{S2} \end{cases} \Rightarrow I_{C1} = I_{C2}$$

$$I_{E3} = I_{B1} + I_{B2} I_{E3} = (\beta + 1)I_{B3}$$

$$I_{B3} = \frac{I_{B1} + I_{B2}}{\beta + 1}$$

$$I_{REF} = I_{C1} + I_{B3} = I_{C1} + \frac{1}{\beta} \frac{I_{C1} + I_{C2}}{\beta + 1}$$

$$I = \frac{1}{1 + \frac{2}{\beta(\beta + 1)}} I_{REF}$$

$$I \approx \frac{1}{1 + \frac{2}{\beta^2}} I_{REF}$$

Comparando com a fonte simples

- foi possível reduzir o erro devido às correntes de base
- $2/\beta^2 \ll 2/\beta$ (para $\beta=100$ o erro é agora -0.02%)

Amplificador Diferencial

- Circuito amplificador com 2 entradas
 - tem por objectivo amplificar a diferença entre os sinais de entrada

- Sinais de entrada
 - geralmente $v_1 \neq v_2$
 - v₁ e v₂ podem decompor-se em 2 parcelas
 - componente de modo comum (componente simétrica)
 - o que é comum às 2 entradas
 - é a média dos 2 sinais
- $v_C = \frac{v_1 + v_2}{2}$
- componente diferencial (componente anti-simétrica)
 - é a diferença entre os 2 sinais

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos com Transístores Bipolares

42

Amplificador Diferencial

- Sinal de saída (combinação linear das entradas)
 - pode ser descrito como a soma de 2 parcelas (teorema da sobreposição)
 - saída em função de v₁ e v₂
- $v_{0} = v_{01} + v_{02}$
- saída em função de v_C e v_D
- $v_O = v_{OC} + v_{OD}$
- Ganho de tensão
 - G_C ganho de tensão de modo comum

$$v_O = G_C v_C + G_D v_D$$

• calcula-se fazendo $v_1 = v_2$

$$v_1 = v_2 \rightarrow v_D = 0 \rightarrow v_O = G_C v_C \rightarrow G_C = \frac{v_O}{v_C}$$

- G_D ganho de tensão de modo diferencial
 - calcula-se fazendo $v_1 = -v_2$

$$v_1 = -v_2 \rightarrow v_C = 0 \rightarrow v_O = G_D v_D \rightarrow G_D = \frac{v_O}{v}$$

• CMRR – relação de rejeição do modo comum

$$CMRR = \left| \frac{G_D}{G_C} \right|$$

- caso ideal \rightarrow $G_C = 0 \rightarrow CMRR = +\infty$
- na prática \rightarrow G_C é baixo mas $G_C \neq 0$ \rightarrow CMRR $\neq +\infty$

$$CMRR_{dB} = \left| \frac{G_D}{G_C} \right|_{dB}$$

Par diferencial

Circuito fundamental em microelectrónica

- pode ser realizado com TJBs (*bipolar junction transistor*) ou com outro tipo de transístores
 - JFET junction field-effect transistor
 - MOSFET metal-oxide-semiconductor field-effect transistor
- pode ter carga resistiva ou activa
 - resistiva Rs ligadas aos colectores
 - activa são usadas fontes de corrente

Aplicações principais

- amplificação de sinais diferenciais
- conversão de sinais diferenciais em sinais não-diferenciais
- amplificadores operacionais
 - andar de entrada 1° andar amplificador
- circuitos lógicos (família lógica ECL)

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos com Transístores Bipolares

Maio de 2008

44

Par Diferencial com carga resistiva

• Amplificador diferencial com BJT

- TJBs directamente acoplados pelo emissor
- transístores iguais (Q₁=Q₂)
 - Q₁ e Q₂ no mesmo circuito integrado
- ullet 2 fontes de alimentação (+ V_{CC} e - V_{EE})
- fonte de corrente (I_{EE})
- 2 sinais de entrada (v₁ e v₂)
 - aplicados nas bases
- sinal de saída (3 possibilidades)
 - simples no colector de Q₁
 - $\bullet \ \ \mathbf{v}_{\mathrm{O1}} = \mathbf{v}_{\mathrm{C1}}$
 - simples no colector de Q₂
 - $v_{O2} = v_{C2}$
 - saída diferencial entre os colectores
 - $v_{O12} = v_{O1} v_{O2}$

$$\begin{aligned} v_{O1} &= v_{C1} = V_{CC} - R_{C1} i_{C1} \\ v_{O2} &= v_{C2} = V_{CC} - R_{C2} i_{C2} \\ v_{O12} &= v_{O1} - v_{O2} \\ v_{O12} &= -R_{C1} i_{C1} + R_{C2} i_{C2} \end{aligned}$$

- Modo Comum: $v_1 = v_2 = v_C$ $v_D = 0$
 - há simetria no circuito
 - I_{EE} divide-se igualmente por Q_1 e Q_2
 - transístores estão na zona activa

$$i_{E1} = i_{E2} = \frac{I_{EE}}{2}$$
 $\alpha = \frac{\beta}{\beta + 1}$ \rightarrow $i_C = \alpha i_E$

$$i_{C1} = i_{C2} = \frac{\beta}{\beta + 1} \frac{I_{EE}}{2} = \alpha \frac{I_{EE}}{2} \approx \frac{I_{EE}}{2}$$

$$\beta >> 1 \rightarrow \alpha \approx 1$$

- correntes são independentes do sinal de entrada
- circuito não responde à componente de modo comum das entradas

$$R_{C1} = R_{C2} = R_C$$

 $v_{O1} = v_{O2} = V_{CC} - \alpha R_C \frac{I_{EE}}{2}$

$$v_{O1} = v_{O2} \approx V_{CC} - R_C \frac{I_{EE}}{2}$$

$$v_{O12} = 0$$

 $v_{O12} = v_{O1} - v_{O2} = 0$

TCFE Análise de Circuitos com Transístores Bipolares

Maio de 2008

© T.M.Almeida IST-DEEC-ACElectrónica

Funcionamento em Modo Diferencial

- Modo Diferencial: $v_1 = -v_2 = v_D/2$ $v_C = 0$
 - há anti-simetria no circuito
 - $v_x = 0$ (teorema da sobreposição)
- $v_1 = +1,5V e v_2 = -1,5V$
 - Q₁está na zona activa
 - Q₂ está cortado
 - toda a corrente passa em Q₁

$$\begin{split} i_{E1} &= I_{EE} & i_{C1} = \alpha I_{EE} \approx I_{EE} \\ v_{O1} &= V_{CC} - \alpha R_C I_{EE} \approx V_{CC} - R_C I_{EE} \\ v_{O12} &= -\alpha R_C I_{EE} \approx - R_C I_{EE} \end{split} \quad , \quad v_{O2} = V_{CC} \end{split}$$

- Q₁ está cortado, Q₂ está na zona activa, toda corrente passa em Q₂
- Corrente passa em Q₁ ou Q₂ consoante polaridade de v_D
- Modo puramente diferencial (v_C=0): obtém-se saída diferencial

46

Característica de Transferência

47

• Funcionamento em modo diferencial $(v_1 = -v_2 = v_D/2 \quad v_C = 0)$

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos com Transístores Bipolares

48

Característica de Transferência

• Característica de transferência: v_{O12}(v_D)

$$i_{C1} = \frac{\alpha I_{EE}}{1 + e^{\frac{v_D}{V_T}}} \qquad i_{C2} = \frac{\alpha I_{EE}}{1 + e^{\frac{v_D}{V_T}}}$$

$$v_{O1} = V_{CC} - R_{C1}i_{C1} \qquad v_{O2} = V_{CC} - R_{C2}i_{C2}$$

$$v_{O1} = V_{CC} - R_{C1}\frac{\alpha I_{EE}}{1 + e^{\frac{v_D}{V_T}}}$$

$$1 + e^{\frac{v_D}{V_T}}$$

$$1 + e^{\frac{v_D}{V_T}}$$

$$1 + e^{\frac{v_D}{V_T}}$$

 $|v_D| < 2V_T \approx 50mV$

- Na prática a zona linear considera-se para |v_D| < 10mV
 - zona linear é muito estreita
 - apenas permite a amplificação de sinais v_D muito pequenos

• Característica de transferência aproximada

• do ponto de vista incremental é preciso considerar r_e (resistência intrínseca vista do emissor)

$$r_e = \frac{1}{g_m} = \frac{V_T}{I_C} = \frac{V_T}{I_{EE}/2} = \frac{2V_T}{I_{EE}}$$

obter-se $i_{C1} = \frac{I_{EE}}{2} + \frac{v_D}{2r_e}$ $i_{C2} = \frac{I_{EE}}{2} - \frac{v_D}{2r_e}$

$$i_{C2} = \frac{I_{EE}}{2} - \frac{v_D}{2r_e}$$

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos com Transístores Bipolares

Maio de 2008

50

Característica de Transferência

Característica de transferência aproximada

$$v_{O1} = V_{CC} - R_C \left(\frac{I_{EE}}{2} + \frac{v_D}{2r_e} \right)$$

$$v_{O1} = V_{CC} - R_C \left(\frac{I_{EE}}{2} + \frac{v_D}{2r_e} \right) \qquad v_{O2} = V_{CC} - R_C \left(\frac{I_{EE}}{2} - \frac{v_D}{2r_e} \right) \qquad v_{O12} = -\frac{R_C}{r_e} v_D$$

$$v_{O12} = -\frac{R_C}{r_e} v_D$$

- Limites de validade da aproximação considerada
 - quando o par diferencial está desequilibrado
 - Q₁ condução, Q₂ cortado $i_{C1} = I_{EE}$, $i_{C2} = 0$ \rightarrow $v_D = r_e I_{EE} = 2V_T$
 - Q₂ condução, Q₁ cortado $i_{C2} = I_{EE}$, $i_{C1} = 0$ \rightarrow $v_D = -r_e I_{EE} = -2V_T$

- acrescentar resistência em série com o emissor
- como consequência o ganho do circuito diminui

• Acrescentadas resistências em série com os emissores

- considerando as equações anteriores
- basta substituir r_e por r_e+R_X

• Alterações introduzidas por R_X

- zona linear aumenta
 - podem ser amplificados sinais v_D de amplitude mais elevada
 - distorção no sinal de saída diminui
- ganho diferencial diminui (declive diminui)
- impedância de entrada aumenta
- R_X mais elevada
 - zona linear estende-se mais

Exemplo

$$R_X = 40 \frac{V_T}{I_{EE}} \rightarrow |v_D| < 20 V_T = 0,5 V$$

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos com Transístores Bipolares

Maio de 2008

52

Amplificador Operacional com BJT

• Exemplo: AmpOp com 4 andares de amplificação

- Q1-Q2
 - par diferencial
 - saída diferencial
- Q4-Q5
 - par diferencial
 - saída simples
- Q7
 - amplificador tensão
 - emissor comum
- O8
 - seguidor emissor
- Q9,Q3,Q6
 - fonte de corrente múltipla

- Sinais fortes (large signal model)
 - característica de transferência v_{0.12}(v_D)

• Sinais fracos (small signal model)

$$v_d = \Delta v_D$$
 $v_c = \Delta v_C$ $v_{o1} = \Delta v_{O1}$ $v_{o2} = \Delta v_{O2}$ $v_{o12} = \Delta v_{O12}$

- modelo incremental (válido para pequenas variações do sinal de entrada)
- análise do circuito (funcionamento dinâmico linear)
 - TJB substituído pelo seu modelo incremental
 - \bullet Fontes de tensão V_{CC} e V_{EE}
 - substituídas por curto-circuito (à massa)
 - Fonte de corrente I_{EE}

- fonte ideal substituída por circuito aberto $(R_{EE}=+\infty)$
- fonte real substituída pela sua resistência interna $(R_{EE} \neq +\infty)$

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos com Transístores Bipolares

Maio de 2008

54

Modo Diferencial

Ganho de Modo Diferencial

definido relativamente a cada uma das saídas

$$G_{d1} = \frac{\Delta v_{O1}}{\Delta v_D} = \frac{v_{o1}}{v_d} \quad G_{d2} = \frac{\Delta v_{O2}}{\Delta v_D} = \frac{v_{o2}}{v_d} \qquad G_{d} = \frac{\Delta v_{O1} - \Delta v_{O2}}{\Delta v_D} = \frac{\Delta v_{O12}}{\Delta v_D} = \frac{v_{o12}}{v_d}$$

$$G_{d} = \frac{\Delta v_{O1} - \Delta v_{O2}}{\Delta v_{D}} = \frac{\Delta v_{O12}}{\Delta v_{D}} = \frac{v_{o12}}{v_{d}}$$

• entrada diferencial $v_1 = \frac{v_d}{2}$ $v_2 = -\frac{v_d}{2}$ $v_1 - v_2 = v_d$ $\frac{v_1 + v_2}{2} = 0 = v_c$

$$v_1 - v_2 = v_d$$
 $\frac{v_1 + v_2}{2} = 0 = v_d$

Modo Diferencial

Ganho de Modo Diferencial

basta fazer a análise de um circuito de emissor comum para obter o ganho

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos com Transístores Bipolares

Maio de 2008

Modo Diferencial

56

Ganho de Modo Diferencial

- Quando não há degeneração de emissor (R_x=0)
 - considera-se a resistência intrínseca vista do emissor (r_e)
 - substituir R_X por r_e nas equações do ganho

$$G_d = -\frac{R_C}{r_e}$$

$$G_{d1} = -G_{d2} = -\frac{R_C}{2r_e}$$

$$\boxed{G_{d} = -\frac{R_{C}}{r_{e}}} \qquad \boxed{G_{d1} = -G_{d2} = -\frac{R_{C}}{2r_{e}}} \qquad \qquad r_{e} \approx \frac{V_{T}}{I_{C}} = \frac{V_{T}}{I_{EE}/2} = \frac{2V_{T}}{I_{EE}} \qquad \qquad G_{d} = -R_{C} \frac{I_{EE}}{2V_{T}}$$

$$G_d = -R_C \frac{I_{EE}}{2V_T}$$

Impedância de entrada

impedância vista pelo gerador de tensão v_d ligado entre as 2 entradas

$$R_{id} = 2 \left[r_{\pi} + (\beta + 1) R_{X} \right]$$

$$R_{id} = 2r_{\pi} \quad (R_X = 0)$$

Impedância de saída

- impedância vista da saída simples
 - saída num dos colectores
- impedância vista da saída diferencial

$$R_{os} = R_C$$

$$R_{od} = 2R_{c}$$

Modo Comum

Ganho de Modo Comum

definido relativamente a cada uma das saídas

$$G_{c1} = \frac{\Delta v_{O1}}{\Delta v_C} = \frac{v_{o1}}{v_c} \qquad G_{c2} = \frac{\Delta v_{O2}}{\Delta v_C} = \frac{v_{o2}}{v_c} \qquad G_{c} = \frac{\Delta v_{O1} - \Delta v_{O2}}{\Delta v_C} = \frac{\Delta v_{O12}}{\Delta v_C} = \frac{v_{o12}}{v_c}$$

entrada comum

$$v_1 = v_2 = v_c$$
 $v_1 - v_2 = 0 = v_d$

$$v_1 - v_2 = 0 = v_d$$

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos com Transístores Bipolares

Maio de 2008

Modo Comum

58

Ganho de Modo Comum

basta fazer a análise de um circuito de emissor comum para obter o ganho

$$R_{C1} = R_{C2} = R_C$$
$$R_{FF} >> R_{Y}$$

$$G_{c1} = G_{c2} = -\frac{R_C}{2R_{EE}}$$

$$G_c = 0$$

ligado às 2 entradas

 $G_{c1} = G_{c2} \approx -\frac{R_C}{2R_{FF}}$ $G_c = \frac{v_{o12}}{v_d} = 0$

Impedância de entrada
• vista pelo gerador de tensão
$$v_c$$

ligado às 2 entradas
$$R_{ic} = \frac{1}{2} \left[r_{\pi} + (\beta + 1)(R_X + 2R_{EE}) \right]$$

$$R_{ic} \approx (\beta + 1)R_{EE}$$

$$R_{ic} \approx (\beta + 1) R_{EE}$$

Relação de Rejeição de Modo Comum

- CMRR saída diferencial
 - se par diferencial for perfeitamente simétrico

$$G_c = 0 \qquad G_d = -R_C \frac{I_{EE}}{2V_T}$$

$$CMRR = \left| \frac{G_d}{G_c} \right| = +\infty$$

- na prática existem sempre assimetrias CMRR é finita mas muito elevada
- CMRR saída num dos colectores

$$G_{c1} = G_{c2} \approx -\frac{R_C}{2R_{EE}} \qquad G_{d1} = -G_{d2} = -\frac{R_C}{2r_e} \qquad CMRR = \frac{R_{EE}I_{EE}}{2V_T}$$

$$CMRR = \left| \frac{G_{d1}}{G_{c1}} \right| = \left| \frac{G_{d2}}{G_{c2}} \right| = \frac{R_C/2r_e}{R_C/2R_{EE}} = \frac{R_{EE}}{r_e} = \frac{R_{EE}}{2V_T/I_{EE}} = \frac{R_{EE}I_{EE}}{2V_T}$$

- projecto para CMRR elevada
 - garantir simetria no par diferencial
 - fonte de corrente com resistência interna elevada (espelho de corrente)
 - resistência R_x baixa (quando há degeneração do emissor)

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos com Transístores Bipolares

Maio de 2008

Par Diferencial com Espelho de Corrente

60

Fonte de corrente

- realizada com espelho de corrente
- resistência de saída da fonte de corrente é elevada ($R_{EE} = r_o$)

$$CMRR = \frac{R_{EE}I_{EE}}{2V_{T}}$$

$$R_{EE} = r_{o} = \frac{V_{A}}{I_{C}}$$

$$I_{EE} = I_{C} = I_{REF} = \frac{V_{CC} + V_{EE} - V_{BEon}}{R_{REF}}$$

$$CMRR = \frac{V_{A}}{2V_{T}}$$

$$\begin{cases} V_{A} = 100V \\ V_{T} = 25mV \end{cases}$$

$$CMRR = 2000 \qquad CMRR_{dB} = 66dB$$

