В этой главе читатель познакомился с обработкой статических и динамических матриц в C++, а также с использованием функций для решения задач обработки динамических матриц.

6.5 Задачи для самостоятельного решения

6.5.1 Основные операции при работе с матрицами

Разработать программу на языке С++ для решения следующей задачи.

- 1. В двумерном массиве A, состоящем из $n \times n$ целых чисел, вычислить:
 - наименьший элемент;
 - сумму положительных элементов;
 - количество простых чисел, расположенных на диагоналях матрицы.

Для заданной матрицы $A(n \times n)$ и матрицы того же типа и размерности $C(n \times n)$ найти значение выражения $B = 2 \cdot A + B^T$.

- 2. В двумерном массиве C, состоящем из $n \times n$ целых чисел, вычислить:
 - сумму элементов;
 - количество нечётных элементов;
 - минимальное простое число среди элементов, расположенных на главной диагонали.

Для заданной матрицы $C(n \times n)$ и матрицы того же типа и размерности $B(n \times n)$ найти значение выражения $A = (B-C) \cdot C^T$

- 3. В двумерном массиве B, состоящем из $m \times m$ целых чисел, вычислить:
 - индексы наибольшего элемента;
 - количество отрицательных элементов;
 - среднее геометрическое среди простых чисел, расположенных на побочной диагонали.

Для заданной матрицы размерности $B(n \times n)$ найти значение выражения $A = 3 \cdot B + B^T$

- 4. В двумерном массиве A, состоящем из $n \times m$ вещественных чисел, вычислить:
 - сумму элементов;
 - произведение ненулевых элементов;
 - два наибольших значения матрицы.

Для заданной матрицы $A(n\times m)$ и матрицы того же типа и размерности $C(n\times m)$ найти значение выражения $B=2\cdot A+\frac{1}{3}\cdot C$

- 5. В двумерном массиве B, состоящем из $n \times m$ вещественных чисел, вычислить:
 - произведение элементов;
 - сумму положительных элементов;
 - два наименьших значения среди элементов расположенных по периметру матрицы.

Для заданной матрицы $B(n \times m)$ и матрицы того же типа, но другой размерности $C(m \times n)$ найти значение выражения $A = 3 \cdot B \cdot C$.

- 6. В двумерном массиве A, состоящем из $n \times n$ целых чисел, вычислить:
 - наименьший элемент;
 - количество чётных чисел;
 - сумму положительных элементов, которые представляют собой возрастающую последовательность цифр.

Для заданной матрицы $A(n\times n)$ и матрицы того же типа и размерности $C(n\times n)$ найти значение выражения $B=A^2-C^T$

- 7. В двумерном массиве C, состоящем из $n \times n$ целых чисел, вычислить:
 - индексы наименьшего элемента;
 - сумму квадратов отрицательных элементов;
 - минимальное простое число среди элементов, расположенных в заштрихованной части матрицы (рис. 6.17).

Для заданной матрицы $C(n \times n)$ и матрицы того же типа и размерности $B(n \times n)$ найти значение выражения $A = (B^T + C)^2$

Рис. 6.17:

Рис. 6.18:

- 8. В двумерном массиве B, состоящем из $n \times n$ целых чисел, вычислить:
 - среднее арифметическое элементов;
 - наименьший чётный элемент:
 - количество чисел-палиндромов, расположенных в заштрихованной части матрицы (рис. 6.18).

Для заданной матрицы $B(n\times n)$ и матрицы того же типа и размерности $C(n\times n)$ найти значение выражения $A=\frac{1}{2}\cdot B+C^2$

- 9. В двумерном массиве C, состоящем из $n \times n$ целых чисел, вычислить:
 - среднее геометрическое элементов;
 - наибольший нечётный элемент;
 - количество составных чисел среди элементов, расположенных в заштрихованной части матрицы (рис. 6.19).

Для заданной матрицы $C(n \times n)$ найти значение выражения $A = C + C^T$.

- 10. В двумерном массиве A, состоящем из $n \times n$ целых чисел, вычислить:
 - индексы наименьшего элемента;
 - среднее арифметическое нечётных чисел;

Рис. 6.19:

Рис. 6.20:

Рис. 6.21:

Рис. 6.22:

• количество положительных элементов, которые представляют собой убывающую последовательность цифр.

Для заданной матрицы $A(n \times n)$ найти значение выражения $B = \frac{1}{5} \cdot A^2$. 11. В двумерном массиве B, состоящем из $n \times n$ вещественных чисел, вычис-

- среднее арифметическое элементов;
- элемент наиболее отличающийся от среднего арифметического. Отразить заданную матрицу относительно побочной диагонали.

Для матрицы $B(n \times n)$ и матрицы того же типа и размерности $C(n \times n)$ найти значение выражения $A=2\cdot B-C^T.$

- 12. В двумерном массиве C, состоящем из $n \times n$ целых чисел, вычислить:
 - среднее геометрическое элементов;
 - элемент наименее отличающийся от среднего геометрического;
 - количество положительных элементов с чётной суммой цифр, расположенных в заштрихованной части матрицы (рис. 6.20)

Для матрицы $C(n \times n)$ и матрицы того же типа и размерности $B(n \times n)$ найти значение выражения $A = (B - C) \cdot (B + C)$.

- 13. В двумерном массиве A, состоящем из $n \times n$ целых чисел, вычислить:
 - наименьший элемент и его индексы;
 - среднее арифметическое положительных чётных элементов;
 - произведение простых чисел-палиндромов, расположенных в заштрихованной части матрицы (рис. 6.21).

Для заданной матрицы $A(n\times n)$ и матрицы того же типа и размерности $C(n\times n)$ найти значение выражения $B=A^2-C^2.$

- 14. В двумерном массиве C, состоящем из $n \times n$ целых чисел, вычислить:
 - наибольший элемент и его индексы;
 - среднее арифметическое элементов, расположенных на диагоналях матрицы.

Сформировать новую матрицу $A(n \times n)$, каждый элемент которой будет равен сумме цифр элемента матрицы $C(n \times n)$. Для матриц $A(n \times n)$ и $C(n \times n)$ найти значение выражения $B = (A + C)^2$.

- 15. В двумерном массиве B, состоящем из $m \times m$ целых чисел, вычислить:
 - произведение элементов;
 - индексы наибольшего чётного элемента;
 - сумму чисел-палиндромов, расположенных вне диагоналей матрицы.

Для заданной матрицы размерности $B(n \times n)$ и матрицы того же типа и размерности $C(n \times n)$ найти значение выражения $A = C \cdot B - B^T$.

- 16. В двумерном массиве A, состоящем из $n \times n$ целых чисел, вычислить:
 - среднее арифметическое элементов;
 - наименьший нечётный элемент, расположенный в заштрихованной части матрицы (рис. 6.22).

Сформировать новую матрицу $B(n \times n)$, каждый элемент которой равен значению матрицы $A(n \times n)$, цифры которого записаны в обратном порядке. Для матриц $A(n \times n)$ и $B(n \times n)$ найти значение выражения $B = A + C^2$.

- 17. В двумерном массиве A, состоящем из $n \times m$ целых чисел, вычислить:
 - сумму элементов;
 - количество ненулевых элементов, расположенных по периметру матрицы;
 - среднее геометрическое чисел, в представлении которых все цифры различные.

Для заданной матрицы $A(n\times m)$ и матрицы того же типа и размерности $C(n\times m)$ найти значение выражения $B=2\cdot A-3\cdot C.$

- 18. В двумерном массиве B, состоящем из $n \times m$ целых чисел, вычислить:
 - произведение элементов;
 - сумму элементов, расположенных вне периметра матрицы;
 - наименьшее число, состоящее из одинаковых цифр.

Для заданной матрицы $B(n \times m)$ и матрицы того же типа, но другой размерности $C(m \times k)$ найти значение выражения $A = B \cdot C$.

- 19. В двумерном массиве A, состоящем из $n \times n$ целых чисел, вычислить:
 - среднее геометрическое элементов;
 - индексы наибольшего чётного элемента, расположенного в заштрихованной части матрицы (рис. 6.23).

Сформировать новую матрицу $B(n \times n)$, каждый элемент которой равен значению матрицы $A(n \times n)$ в восьмеричной системе счисления. Найти значение выражения $C=3\cdot A^2$.

- 20. В двумерном массиве B, состоящем из $n \times n$ целых чисел, вычислить:
 - сумму квадратов элементов;
 - количество совершённых чисел, расположенного в заштрихованной части матрицы (рис. 6.24).

Рис. 6.23:

Рис. 6.24:

Рис. 6.25:

Рис. 6.26:

Сформировать новую матрицу $A(n \times n)$, каждый элемент которой равен количеству делителей соответствующего значения матрицы $B(n \times n)$. Для матриц $A(n \times n)$ и $B(n \times n)$ найти значение выражения $C = B^T - A^2$.

- 21. В двумерном массиве A, состоящем из $n \times n$ целых чисел, вычислить:
 - наименьшее абсолютное значение элементов;
 - произведение ненулевых элементов, расположенного в заштрихованной части матрицы (рис. 6.25).

Сформировать новую матрицу $B(n \times n)$, каждый элемент которой равен количеству цифр в соответствующем элементе матрицы $A(n \times n)$. Найти значение выражения $C = B^T \cdot A$.

- 22. В двумерном массиве B, состоящем из $n \times n$ целых чисел, вычислить:
 - произведение ненулевых элементов;
 - наибольшее абсолютное значение элементов, расположенного в заштрихованной части матрицы (рис. 6.26).

Сформировать новую матрицу $C(n \times n)$, каждый элемент которой равен значению матрицы $B(n \times n)$ в пятеричной системе счисления. Найти значение выражения $A = B \cdot B^T$.

- 23. В двумерном массиве C, состоящем из $n \times m$ вещественных чисел, вычислить:
 - сумму модулей элементов;
 - количество нулевых элементов, расположенных вне периметра матри-
 - два наибольших положительных значения.

Для заданной матрицы $C(n \times m)$ и матрицы того же типа, но другой размерности $B(m \times k)$ найти значение выражения $A = C \cdot B$.

- 24. В двумерном массиве B, состоящем из $n \times n$ вещественных чисел, вычислить:
 - сумму квадратов элемента;
 - индексы первого нулевого элемента матрицы;
 - два наибольших значения, расположенных вне периметра матрицы;

Для заданной матрицы $B(n \times n)$ найти значения выражений $A = B \cdot B^T$ и $C = B^T \cdot B$.

- 25. В двумерном массиве A, состоящем из $n \times n$ вещественных чисел вычислить:
 - произведение квадратов элемента;
 - индекс последнего нулевого элемента матрицы;
 - два наименьших значения, расположенных вне диагоналей матрицы.

Из элементов заданной матрицы $A(n \times n)$ сформировать верхнетреугольную матрицу V и нижнетреугольную матрицу U. Проверить равенство $A = V \cdot U$.

6.5.2 Работа со строками и столбцами матрицы

Разработать программу на языке С++ для решения следующей задачи.

- 1. Задана матрица целых чисел $A(n \times m)$. Сформировать массив B(m), в который записать среднее арифметическое элементов каждого столбца заданной матрицы. Вывести номера строк матрицы, в которых находится более двух *простых чисел*.
- 2. Задана матрица вещественных чисел $B(n \times m)$. Сформировать массив A(n), в который записать среднее геометрическое положительных элементов каждой строки заданной матрицы. Определить количество столбцов, упорядоченных по возрастанию.
- 3. Задана матрица целых чисел $A(n \times n)$. Все простые числа, расположенные на побочной диагонали, заменить суммой цифр максимального элемента соответствующей строки матрицы. Сформировать массив B(k), в который записать произведения элементов нечётных строк заданной матрицы.
- 4. В матрице целых чисел $X(n \times n)$ поменять местами диагональные элементы, упорядоченных по убыванию строк. Сформировать массив Y(k), в который записать суммы элементов чётных столбцов заданной матрицы.
- 5. Задана матрица целых чисел $A(n \times n)$. Максимальный элемент каждого столбца заменить суммой иифp максимального элемента матрицы. Сформировать массив B(n), в который записать количество чётных элементов в каждой строке заданной матрицы.
- 6. Задана матрица целых чисел $B(n \times m)$. Максимальный элемент каждого столбца заменить суммой иифр модуля минимального элемента матрицы. Сформировать массив A(n), в который записать количество нечётных элементов в каждой строке заданной матрицы.
- 7. Задана матрица целых чисел $A(n \times n)$. Сформировать массив B(n) из максимальных элементов столбцов заданной матрицы. Вывести индексы чисел-палиндромов, которые находятся на диагоналях матрицы.
- 8. Задана матрица вещественных чисел $P(n \times m)$. Сформировать массив R(k) из номеров столбцов матрицы, в которых есть хотя бы один ноль. Найти строку с максимальной суммой элементов и поменять её с первой строкой.