Unit 5.1 The Greedy Method

Algorithms

EE3980

Apr. 21, 2020

Algorithms (EE3980)

Unit 5.1 The Greedy Method

Apr. 21, 2020

1 / 18

Knapsack Problem

- Knapsack problem
 - Given n objects, each object i, $1 \le i \le n$, has
 - Weight w_i ,
 - Profit $p_i \cdot x_i$, if x_i fraction is placed into the bag $(0 \le x_i \le 1)$.
 - A bag with capacity m.
 - The objective is to maximize the profit.

subject to
$$\sum_{i=1}^{n} w_i x_i \le m, \tag{5.1.2}$$

and
$$0 \le x_i \le 1, \quad 1 \le i \le n.$$
 (5.1.3)

- A feasible solution is any set $\{x_1, \dots, x_n\}$ that satisfies Eqs. (5.1.2) and (5.1.3).
- An optimal solution is a feasible solution for which Eq. (5.1.1) is maximized.

Algorithms (EE3980)

Unit 5.1 The Greedy Method

Knapsack Problem – Example

- An example of knapsack problem
 - n=3, m=20, $\{p_1,p_2,p_3\}=\{25,24,15\}$, and $\{w_1,w_2,w_3\}=\{18,15,10\}$.
 - Four feasible solutions

Solution	$=\{x_1,x_2,x_3\}$	$\sum w_i x_i$	$\sum p_i x_i$
15 8	$\{1/2, 1/3, 1/4\}$	16.5	24.25
2>	$\{1, 2/15, 0\}$	20	28.2
3 2	$\{0, 2/3, 1\}$	20	31
4 4	$\{0, 1, 1/2\}$	20	31.5
7	TOTUA UNI	7	7

- Note that $\sum w_i x_i \leq m$ for all 4 feasible solutions.
- Solution 4 yields the maximum profit among these 4 feasible solutions.

Algorithms (EE3980)

Unit 5.1 The Greedy Method

Apr. 21, 2020

3/18

Knapsack Problem - Algorithm 1

• A general greedy algorithm for knapsack program is shown below.

Algorithm 5.1.1. Knapsack by Profit

```
// Solve knapsack problem using max profit greedy method.
   // Input: n, w[1:n], p[1:n], m
   // Output: x[1:n], 0 \le x[i] \le 1.
 1 Algorithm Knapsack_P(m, n, w, p, x)
 2 {
         A[1:n] := Objects sorted by decreasing p[1:n]; // p[A[i]] \ge p[A[j]] if i < j.
 3
         for i := 1 to n do x[i] := 0; // Initialize solution vector.
 4
 5
         i := 1;
         while (i \le n \text{ and } w[A[i]] \le m) do \{ // \text{ Selecting max profit object. } \}
 6
 7
              x[A[i]] := 1;
              m := m - w[A[i]];
 8
              i := i + 1;
 9
10
         if (i \le n) then x[A[i]] := m/w[A[i]]; // Partial selection.
11
12 }
```

- ullet Note that line 3 sort A into decreasing order by p
- Applying this algorithm we get solution 2 for the example.

Algorithms (EE3980)

Unit 5.1 The Greedy Method

Knapsack Problem – Algorithm 2

• The greedy algorithm can be modified as below.

Algorithm 5.1.2. Knapsack by Weight

```
// Solve knapsack problem using min weight greedy method.
   // Input: n, w[1:n], p[1:n], m
   // Output: x[1:n], 0 \le x[i] \le 1.
 1 Algorithm Knapsack_W(m, n, w, p, x)
 2 {
         A[1:n] := Objects sorted by increasing w[1:n]; // w[A[i]] \le w[A[j]] if i < j.
 3
         for i := 1 to n do x[i] := 0; // Initialize solution vector.
 4
         i := 1;
 5
         while (i \le n \text{ and } w[A[i]] \le m) do \{ // \text{ Selecting min weight object. } \}
 6
              x[A[i]] := 1;
 7
 8
              m := m - w[A[i]];
              i := i + 1;
 9
10
         if (i \leq n) then x[A[i]] := m/w[A[i]]; // Partial selection.
11
12 }
```

- ullet Note that line 3 sort A into increasing order by w
- Applying this algorithm we get solution 3 for the example.

Algorithms (EE3980)

Unit 5.1 The Greedy Method

Apr. 21, 2020

5/18

Knapsack Problem - Algorithm 3

• Another version of greedy algorithm is shown below.

Algorithm 5.1.3. Knapsack

```
// Solve knapsack problem using max profit/weight ratio greedy method.
   // Input: n, w[1:n], p[1:n], m
   // Output: x[1:n], 0 \le x[i] \le 1.
 1 Algorithm Knapsack(m, n, w, p, x)
 2 {
         A[1:n] := Objects sorted by decreasing p[i]/w[i];
 3
                                            // p[A[i]]/w[A[i]] \ge p[A[j]]/w[A[j]] if i < j.
 4
         for i := 1 to n do x[i] := 0;
 5
         i := 1;
 6
 7
         while (i \leq n \text{ and } w[A[i]] \leq m) \text{ do } \{
              x[A[i]] := 1;
 8
              m := m - w[A[i]];
 9
              i := i + 1;
10
11
         if (i \leq n) then x[A[i]] := m/w[A[i]];
12
13 }
```

• Note that line 3 sort A into decreasing order by p[i]/w[i]

Algorithms (EE3980)

Unit 5.1 The Greedy Method

Knapsack Problem – Complexity and Optimality

- Applying Algorithm (5.1.3) we get solution 4 for the example.
 - This is the optimal solution since p/w is the real objective.
- Knapsack Algorithm (5.1.3) has the time complexity of $\mathcal{O}(n \lg n)$.
 - Dominated by the Sort function on line 3
 - The while loop (lines 7-11) and for (line 5) loop are both $\mathcal{O}(n)$.

Lemma 5.1.4.

In case the sum of all the weights is less than or equal to m, i.e., $\sum_{i=1}^{n} w_i \leq m$, then $x_i = 1, 1 \leq i \leq n$, is an optimal solution.

Lemma 5.1.5.

In case $\sum_{i=1}^{n} w_i \geq m$, then all optimal solutions will fill the knapsack exactly, i.e.,

$$\sum_{i=1}^{n} w_i x_i = m.$$

Algorithms (EE3980)

Unit 5.1 The Greedy Method

Apr. 21, 2020

7 / 18

Knapsack Problem – Solution Optimality

Lemma 5.1.6.

In case that the capacity is smaller than the weight of any object, $m < w_i$, $\forall i$, then the optimal solution is $x_i = m/w_i$, where p_i is the maximum, and $x_j = 0$, $j \neq i$.

Theorem 5.1.7.

If A is sorted by $\{p_i/w_i\}$ in non-increasing order, then the Knapsack algorithm (Algorithm 5.1.3) generates an optimal solution to the instance of the knapsack problem.

Proof. Let the objects be ordered by p_i/w_i .

If $m = w_1$, then $x_1 = 1$, $x_i = 0$, 1 < i < n, is the optimal solution.

Once object 1 is selected, the capacity is reduced to $m-w_1$ and the process repeated until $m < w_j$ with $x_j = 0$. In that case, from the last lemma the object with the smallest j should be selected and $x_j = m/w_j$.

• Proof can also be found in textbook [Horowitz], pp. 221-222.

Algorithms (EE3980)

Unit 5.1 The Greedy Method

Container Loading

- Container loading problems
 - Input: n containers with $w_i > 0$, $1 \le i \le n$, weight each.
 - A ship with cargo capacity of c.
 - Load the maximum number of containers to the ship without exceeding the cargo capacity.
- Let $x_i \in \{0,1\}$ such that $x_i = 1$ if container i is loaded onto the ship.

Constraint:
$$\sum_{i=1}^{n} x_i \cdot w_i \leq c,$$
Objective: $\max\left(\sum_{i=1}^{n} x_i\right).$ (5.1.4)

- Example: Suppose there are 8 containers with weights $[w_1, w_2, \dots w_8] = [100, 200, 50, 90, 150, 50, 20, 80]$ and ship capacity c = 400.
 - Then the solution is $[x_1, x_2, \cdots, x_8] = [1, 0, 1, 1, 0, 1, 1, 1]$.
 - $\sum_{i=1}^{\circ} w_i x_i = 390$ that satisfies the constraint.
 - $\sum_{i=1}^{n} x_i = 6$ is the maximum number of containers loaded.

Unit 5.1 The Greedy Method

Container Loading – Algorithm

Algorithm 5.1.8. Container Loading

```
// Load maximum containers (weights w[1:n]) with capacity c.
   // Input: c, n, w[1:n]
   // Output: solution vector x[1:n], x[i]=0 or 1.
 1 Algorithm ContainerLoading(c, n, w, x)
 2 {
         A[1:n] := Containers sorted by non-decreasing w[1:n];
 3
             // w[A[i]] \le w[A[j]] \text{ if } i < j.
         for i := 1 to n do x[i] := 0;
         i := 1;
         while (i \leq n \text{ and } w[A[i]] \leq c) do {
              x[A[i]] := 1;
              c := c - w[A[i]];
 9
             i := i + 1;
10
11
12 }
```

- Note that w[A[i]] is sorted into increasing order.
 - Using the last example, $w[1:8] = \{100, 200, 50, 90, 150, 50, 20, 80\}$, then $A[1:8] = \{7,3,6,8,4,1,5,2\}$ such that w[A[i]] is in non-decreasing order.

Algorithms (EE3980) Unit 5.1 The Greedy Method

Container Loading – Complexity and Optimality

- The time complexity of the ContainerLoading algorithm is dominated by the Sort function (line 3), which is $O(n \lg n)$.
- The while loop (lines 7-11) is $\mathcal{O}(n)$.
- Overall complexity $\mathcal{O}(n\lg n)$.

Theorem 5.1.9.

The Container Loading Algorithm (Algorithm 5.1.8) generates optimal loading.

Proof. Let $A = \{x_i\}$ be the set found by the algorithm, and |A| = k. It can be shown that $\sum_{i=1}^k w(x_i)$ is the minimum for any subset with k containers.

Suppose the optimal solution is $B = \{y_j\}$, |B| = h. One can prove that h = k.

If h > k, since $\sum_{i=1}^k w(x_i) \le \sum_{i=1}^k w(y_i)$. Thus, for any object $y_j \in B$ and $y_j \notin A$, $1 \le j \le k$,

there is an x_i , $1 \le i \le k$ such that $w(x_i) \le w(y_j)$. Replacing y_j by x_i in set B to form a B', then B' is an optimal solution. Repeating this process, we found that $A \cup \{y_j | k < j \le h\}$ is an optimal solution. But, the algorithm states that no such y_j exists, hence $h \le k$.

• An alternative proof can also be found in textbook [Horowitz], pp. 215-217.

Algorithms (EE3980)

Unit 5.1 The Greedy Method

Apr. 21, 202

11 / 1

Subset Optimization Problems

- ullet A special class of problems that has n inputs,
 - Arrange the inputs to satisfy some constraints feasible solutions
 - Find feasible solution that minimize or maximize an objective function optimal solution
- The greedy method is a algorithm that takes one input at a time
 - If a particular input results in infeasible solution, then it is rejected; otherwise it is included.
 - The input is selected according to some measure
 - The selection measure can be the objective functions or other functions that approximate the optimality
 - However, this method usually generates a suboptimal solution.

Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 21, 2020

Greedy Method

• The following is an abstraction of the greedy method in subset paradigm

Algorithm 5.1.10. Greedy Method

```
// Given n-element set A, find a subset that is an optimal solution.
   // Input: A[1:n], int n
   // Output: solution \subset A.
 1 Algorithm Greedy(A, n)
 2 {
 3
         solution := \emptyset;
         for i := 1 to n do {
 4
               x := Select(A);
               A := A - \{x\};
 7
               if Feasible(solution \cup x) then solution := solution \cup x;
9
         return solution;
10 }
```

- In this subset paradigm the Select function selects an input from A and removes it.
- The Feasible function determines if it can be included into the solution vector.
- A variation of the greedy method is the ordering paradigm.
 - The inputs are ordered first and thus the Select function is not needed.

Algorithms (EE3980)

Unit 5.1 The Greedy Method

Apr. 21, 202

13 / 1

Machine Scheduling Problem

- Machine schedule problem
 - ullet Input: n tasks and infinite number of machines
 - Each task has a start time s[1:n] and finish time, f[1:n], s[i] < f[i].
 - Two tasks i and j overlap if and only if their processing intervals overlap at a point other than the interval start or end times.
 - A feasible task-to-machine assignment is that no machine is assigned with overlapping tasks.
 - An optimal assignment is a feasible assignment that utilizes the fewest number of machines.
- Example

Task	a	b	c	d	e	f	\overline{g}
Start time	0	3	4	9	7	1	6
Finish time	2	7	7	11	10	5	8

Algorithms (EE3980)

Unit 5.1 The Greedy Method

Machine Scheduling Problem – Algorithm

Algorithm 5.1.11. Machine Scheduling

```
// Schedule n tasks with minimum number of machines, m.
   // Input: n, start s[1:n], finish f[1:n]
   // Output: m, assignment: M[1:n].
 1 Algorithm MachineSchedule(n, s, t, m, M)
 2 {
        A[1:n] := sorted by increasing s[1:n]; // s[A[i]] \le s[A[j]], if i < j.
 3
        m := 1; M[A[1]] := m; MF[m] := f[A[1]]; //MF[] is machine finish time.
 4
        for i := 2 to n do {
 5
             j := \{j | MF[j] = \min_{i \in J} MF[k]\}; // Min finish time of all machines.
 6
             if (MF[j] \le s[A[i]]) then \{// \text{ Machine } j \text{ can process } A[i]\}
 7
                  M[A[i]] := j; // Assign task A[i] to machine j
 8
 9
                  MF[j] := f[A[i]]; // update machine finish time.
10
             else { // Need more machines, assign and update machine finish time
11
                  m := m + 1; M[A[i]] := m; MF[m] := f[A[i]];
12
13
14
         }
15 }
```

Algorithms (EE3980)

Unit 5.1 The Greedy Method

Apr. 21, 2020

15/18

Machine Scheduling Problem - Algorithm Execution

Example

Task	a	b	c	d	e	f	\overline{g}
Start time	0	3	4	9	7	1	6
Finish time	2	7	7	11	10	5	8

After executing line 3, we have

```
g,
                         b, c,
                                        e,
  A[1:n] = \{
                a,
                     f
                                                d
                    <u>1</u>,
s[A[1:n]] = \{
                 0,
                                    6,
                          7, 7,
f[A[1:n]] = \{
                 2,
                    5,
                                    8, 10,
```

• And at line 4: m=1, M[A[1]]=1, MF[1]=2. and the iteration is shown below.

```
MF[1]=2
                      s[A[2]]=1 m=2 M[A[2]]=2
i=2
      j=1
                                                      MF[1]=2 MF[2]=5
i=3
      j=1
            MF[1]=2
                       s[A[3]]=3
                                          M[A[3]]=1
                                                      MF[1]=7 MF[2]=5
            MF[2]=5
                       s[A[4]]=4
                                   m=3
                                          M[A[4]]=3
                                                      MF[1]=7 MF[2]=5 MF[3]=7
      j=2
i=4
            MF[2]=5
                                                      MF[1]=7 MF[2]=8 MF[3]=7
                       s[A[5]] = 6
                                          M[A[5]]=2
i=5
      i=2
            MF[1]=7
                       s[A[6]]=7
                                          M[A[6]]=1
                                                      MF[1]=10 MF[2]=8 MF[3]=7
i=6
      j=1
            MF[3]=7
                       s[A[7]]=9
                                          M[A[7]]=3
                                                      MF[1]=10 MF[2]=8 MF[3]=11
i=7
      i=3
```

Algorithms (EE3980)

Unit 5.1 The Greedy Method

Machine Scheduling Problem – Complexity

- In Algorithm (5.1.11), the time complexity is dominated by
 - Sort function on line 3: $\mathcal{O}(n \lg n)$
 - Min function on line 6: $\mathcal{O}(\lg n)$
 - *MF* can be kept as a min-heap.
 - In a for loop and thus $\mathcal{O}(n \lg n)$
 - Total complexity: $\mathcal{O}(n \lg n)$.

Theorem 5.1.12.

The Machine Scheduling Algorithm (Algorithm 5.1.11) generates an optimal assignment.

Algorithms (EE3980)

Unit 5.1 The Greedy Method

Apr. 21, 2020

17 / 19

Summary

- Knapsack problem
- Container loading problem
- Greedy method
- Machine scheduling problem

Algorithms (EE3980)

Unit 5.1 The Greedy Method