La proposizione scritta in questo riquadro è falsa.

4. Lezione Corso di Logica 2020/2021

9 ottobre 2020

Maria Emilia Maietti

email: maietti@math.unipd.it

alla ricerca della verità

la Logica si occupa di studiare la verità
di un'argomentazione o proposizione
SOLTANTO in base alla sua forma logica

per definire quando una proposizione formale è vera

ci serviamo delle tabelle di verità

introdotte nei lavori di:

Tabella di verità di una proposizione

Ad ogni proposizione $\equiv ext{conn}(V_1,\ldots,V_n)$ costruita dalle proposizione atomiche $V_1,\ldots V_n$ si può associare una funzione

$$\mathsf{Tab}_{\mathsf{conn}(V_1,\ldots,V_n)}: \{0,1\}^n \longrightarrow \{0,1\}$$

rappresentata dalla tabella di verità

V_1	V_2	 V_n	$\mathtt{conn}(V_1,\ldots,V_n)$
0	1	 	c_1
0	0	 	c_2
1	1	 	c_3
1	0	 	

che associa a $\text{conn}(V_1,\dots,V_n)$ un valore IN USCITA c_i che può solo essere 1 (per vero) oppure 0 (per falso) al variare delle combinazioni di valori 0 e 1 associate alle proposizioni atomiche V_i per $i=1,\dots,n$

Come costruire le tabella di verità?

La tabella di ogni proposizione formale si costruisce componendo (come funzioni) le tabelle dei connettivi

$$\neg, \vee, \&, \rightarrow$$

che compongono la proposizioni che sono definite a priori come segue.

Tabella di verità di ¬

si ottiene considerando che

 $\neg A$ è vero

sse

A è falso

ed è la funzione unaria

A	$\neg A$
0	1
1	0

Tabella di verità di &

si ottiene considerando che

A&B è vero sse A è vero e B è vero

ed è la funzione binaria

A	B	A&B
0	1	0
0	0	0
1	1	1
1	0	0

Tabella di verità di ∨

si ottiene considerando che

 $A \lor B$ è vero sse

A è vero o B è vero

o sono veri entrambi

ed è la funzione binaria

A	B	$A \lor B$
0	1	1
0	0	0
1	1	1
1	0	1

Tabella di verità di →

si ottiene considerando che

 $A \rightarrow B$ è vero

sse

 $\neg A \lor B$ è vero

ed è la funzione binaria

A	B	$A{\rightarrow}B$
0	1	1
0	0	1
1	1	1
1	0	0

VERITÀ in logica CLASSICA di una proposizione

la proposizione **pr** si dice **vera** in **logica classica**e nel gergo logico **pr** si dice **TAUTOLOGIA**sse

la tabella di verità di $\operatorname{\mathtt{pr}}$ dà sempre 1 in uscita

Esempio di uso tabelle di verità

 $(A \rightarrow B) \& A$ è una tautologia?

Esempio di uso tabelle di verità

Se facciamo la tabella di verità per $(A \rightarrow B) \& A$

A	B	$A{\rightarrow}B$	$(A \rightarrow B) \& A$
0	1	1	0
0	0	1	0
1	1	1	1
1	0	0	0

concludiamo che $(A \rightarrow B) \& A$ NON è una tautologia perchè la sua tabella NON ha TUTTI 1 in uscita!!

un esempio di tautologia ??

La formalizzazione (letterale) dell'enunciato

"Se voi passerete l'esame di logica allora avete una zia con i calli oppure se avete una zia con i calli allora passerete l'esame di logica"

usando:

A="Voi passerete l'esame di logica"

B="Avete una zia con i calli"

è una tautologia?

Esempio controintuitivo di tautologia

La formalizzazione (letterale) dell'enunciato

"Se voi passerete l'esame di logica allora avete una zia con i calli oppure se avete una zia con i calli allora passerete l'esame di logica"

usando:

A="Voi passerete l'esame di logica"

B="Avete una zia con i calli"

è la seguente proposizione:

$$(A \rightarrow B) \lor (B \rightarrow A)$$

e se si construisce la sua tabella di verità si scopre che

 $(\mathbf{A} {
ightarrow} \mathbf{B}) \lor (\mathbf{B} {
ightarrow} \mathbf{A})$ è una **tautologia** in quanto la sua tabella ha TUTTI $\mathbf{1}$ in uscita!!!

Esempio controintuitivo di tautologia

La proposizione $(\mathbf{A} \rightarrow \mathbf{B}) \lor (\mathbf{B} \rightarrow \mathbf{A})$

è quindi (sorprendentemente!) una TAUTOLOGIA

ovvero sempre vera per ogni proposizione sostituita al posto di A e di B

secondo la logica classica di Aristotele

L'implicazione classica è una DISGIUNZIONE!!!

Guardando alla tabella di verità del connettivo d'implicazione classica si nota che l'implicazione classica

$$pr_1 \rightarrow pr_2$$

significa in realtà
$$\neg(pr_1) \lor (pr_2)$$

secondo la logica classica di Aristotele

Chiarimento della verità logica di

"Se voi passerete l'esame di logica allora avete una zia con i calli oppure se avete una zia con i calli allora passerete l'esame di logica"

La forma logica ($\mathbf{A} \rightarrow \mathbf{B}$) \vee ($\mathbf{B} \rightarrow \mathbf{A}$) dell'enunciato

"Se voi passerete l'esame di logica allora avete una zia con i calli oppure se avete una zia con i calli allora passerete l'esame di logica"

usando:

A="Voi passerete l'esame di logica"

B="Avete una zia con i calli"

secondo la logica classica ha la stessa tabella di verità di :

$$(\neg A \lor B) \lor (\neg B \lor A)$$

ovvero di "O voi non passerete l'esame di logica oppure avete una zia con i calli, oppure non avete una zia con i calli oppure passerete l'esame di logica"

che è chiaramente vera sempre!!!

stessa tabella per proposizioni diverse??

Se due proposizioni formali pr₁ e pr₂

hanno la STESSA tabella di verità

allora pr₁ e pr₂ sono la STESSA PROPOSIZIONE ??

NOOO !!

esempio di proposizioni diverse con stessa tabella

la tabella di $\neg A$

A	$\neg A$
0	1
1	0

è anche la tabella di verità per $\neg A \& \neg A$

e anche per
$$(\neg A \& \neg A)\& \neg A$$

e per
$$((\neg A \& \neg A)\& \neg A)\& \neg A$$

che sono però proposizioni sintatticamente diverse!!!

equivalenza di proposizioni formali

Diciamo che

"pr1 è equivalente a "pr2"

se e solo se

pr₁ e pr₂ hanno la stessa tabella di verità

Connettivo equivalenza

Indichiamo con il segno

 \leftrightarrow

il connettivo equivalenza come ABBREVIAZIONE di:

date proposizioni formali pr1 e pr2

$$pr_1 \leftrightarrow pr_2 \equiv (pr_1 \rightarrow pr_2) \& (pr_2 \rightarrow pr_1)$$

che si legge "pr₁ è equivalente a "pr₂"

Tabella di verità di equivalenza

$$A \leftrightarrow B \equiv (A \rightarrow B) \& (B \rightarrow A)$$

ha la seguente tabella di verità

A	B	$A \leftrightarrow B$
0	1	0
0	0	1
1	1	1
1	0	0

Dalla tabella di \leftrightarrow segue che:

```
pr_1 \leftrightarrow pr_2 è tautologia
(ovvero la sua tabella ha tutti 1 in uscita)
se e solo se
pr_1 e pr_2 hanno la stessa tabella di verità
ovvero pr_1 e pr_2 sono equivalenti
```


perchè la tabella di $pr_1 \leftrightarrow pr_2$ è ottenuta da quelle di pr_1 e pr_2 componendo con la tabella di \leftrightarrow e quindi la tabella di $pr_1 \leftrightarrow pr_2$ su una stessa riga d'entrata dà 1 in uscita se e solo se le tabelle di pr_1 e pr_2 sulla stessa entrata danno tutti e due 1 oppure tutti e due 0 ovvero le loro tabelle concordano in uscita su una stessa entrata e sono quindi uguali!

classificazione in logica classica delle proposizioni formali

Per ogni proposizione formale pr definiamo

pr TAUTOLOGIA	pr OPINIONE	pr PARADOSSO
TUTTE le uscite 1	ALMENO un'uscita 1	TUTTE le uscite 0
nella tabella di pr	+ ALMENO un'uscita <mark>()</mark> nella tabella di pr	nella tabella di pr

Esempi

TAUTOLOGIA	OPINIONE	PARADOSSO
${f A} ightarrow{f A}$	Α	$\mathbf{A} \ \& \ \neg \mathbf{A}$

