6.842 Randomness and Computation

February 23, 2022

Homework 1

Yuchong Pan MIT ID: 911346847

1. Collaborators and sources: none.

Proof. We construct an approximation scheme \mathcal{B} for f as follows: On input (x, ε, δ) , run $\mathcal{A}(x, \varepsilon)$ independently for $k := \lceil 12 \log(1/\delta) \rceil$ times with outputs y_1, \ldots, y_k , and output a median of y_1, \ldots, y_k .

Let $t_{\mathcal{A}}(x,\varepsilon)$ be the running time of \mathcal{A} on input (x,ε) . Then \mathcal{B} runs in $O(kt_{\mathcal{A}}(x,\varepsilon)) = O(\log(1/\delta)t_{\mathcal{A}}(x,\varepsilon))$. Since \mathcal{A} runs in time polynomial in $1/\varepsilon$ and |x|, then \mathcal{B} runs in time polynomial in $1/\varepsilon$, |x| and $\log(1/\delta)$.

By the definition of medians, if more than half of y_1, \ldots, y_k fall in $[f(x)/(1+\varepsilon), f(x)(1+\varepsilon)]$, then $\mathcal{B}(x,\varepsilon,\delta) \in [f(x)/(1+\varepsilon), f(x)(1+\varepsilon)]$. Let $X_1, \ldots, X_k \in \{0,1\}$ be random variables so that $X_i = 1$ with probability $p := \mathbb{P}[\mathcal{A}(x,\varepsilon) \notin [f(x)/(1+\varepsilon), f(x)(1+\varepsilon)]] \le 1 - 3/4 = 1/4$. Then $\sum_{i=1}^k \mathbb{E}[X_i] = kp \le k/4$. Therefore,

$$\mathbb{P}\left[\mathcal{B}(x,\varepsilon,\delta) \not\in \left[\frac{f(x)}{1+\varepsilon}, f(x)(1+\varepsilon)\right]\right] \\
\leq \mathbb{P}\left[\text{at least half of } y_1, \dots, y_k \text{ do not fall in } \left[\frac{f(x)}{1+\varepsilon}, f(x)(1+\varepsilon)\right]\right] \\
= \mathbb{P}\left[\sum_{i=1}^k X_i \ge \frac{k}{2}\right] \\
= \mathbb{P}\left[\sum_{i=1}^k X_i \ge (1+1) \cdot \frac{k}{4}\right] \\
\leq e^{-\frac{k/4}{3}} \qquad (Chernoff bound) \\
= e^{-\frac{\left[12\log\frac{1}{\delta}\right]}{12}} < e^{-\frac{12\log\frac{1}{\delta}}{12}} = \delta.$$

Therefore,

$$\mathbb{P}\left[\mathcal{B}(x,\varepsilon,\delta)\in\left[\frac{f(x)}{1+\varepsilon},f(x)(1+\varepsilon)\right]\right]=1-\mathbb{P}\left[\mathcal{B}(x,\varepsilon,\delta)\not\in\left[\frac{f(x)}{1+\varepsilon},f(x)(1+\varepsilon)\right]\right]\geq1-\delta.$$

This completes the proof.

2. Collaborators and sources: none.

Proof. Suppose $\binom{m}{t}2^{1-\binom{t}{2}} < 1$. To prove R(t) > m, it suffices to show that there exists a 2-edge-coloring of K_m such that for all $S \subset V(K_m)$ of size t, $E(K_m[S])$ is not monochromatic. We randomly color the edges of K_m red or blue, independently and equiprobably. For each $S \subset V(K_m)$ of size t, there are exactly $2^{\binom{t}{2}}$ two-colorings of $E(K_m[S])$, amongst which two are monochromatic colorings (all red and all blue), so

$$\mathbb{P}\left[E\left(K_m[S]\right) \text{ is monochromatic}\right] = \frac{2}{2^{\binom{t}{2}}} = 2^{1-\binom{t}{2}}.$$

By the union bound,

$$\mathbb{P}\left[\exists S \subset V\left(K_{m}\right), |S| = t, E\left(K_{m}[S]\right) \text{ is monochromatic}\right]$$

$$\leq \sum_{\substack{S \subset V\left(K_{m}\right) \\ |S| = t}} \mathbb{P}\left[E\left(K_{m}[S]\right) \text{ is monochromatic}\right]$$

$$= \binom{m}{t} 2^{1 - \binom{t}{2}}$$

$$< 1.$$

Therefore,

$$\mathbb{P}\left[\forall S \subset V\left(K_{m}\right) \text{ of size } t, E\left(K_{m}[S]\right) \text{ is not monochromatic}\right]$$

= $1 - \mathbb{P}\left[\exists S \subset V\left(K_{m}\right), |S| = t, E\left(K_{m}[S]\right) \text{ is monochromatic}\right]$
> $1 - 1 = 0$.

This proves that there exists a 2-edge-coloring of K_m such that for all $S \subset V(K_m)$ of size t, $E(K_m[S])$ is not monochromatic. The proof is complete.

- 3. Proof. Suppose that a Boolean function f can be computed by a randomized polynomial-sized circuit family $\mathcal{C} = \{C_n\}_{n \in \mathbb{N}}$. Let $n \in \mathbb{N}$. Let $m \in \mathbb{N}$ be the number of random input bits. Define a $2^n \times 2^m$ matrix M such that
 - each row represents a possible combination of inputs $x_1, \ldots, x_n \in \{0, 1\}$;
 - each column represents a possible combination of random input bits $r_1, \ldots, r_m \in \{0, 1\}$;
 - the entry at the row representing x_1, \ldots, x_n and at the column representing r_1, \ldots, r_m equals the value of C_n on inputs x_1, \ldots, x_n with random input bits r_1, \ldots, r_m .

By the definition of polynomial-sized circuit families, each row has at least half of the entries equal to 1, so the total number of 1-entries is at least $2^n \cdot 2^m/2 = 2^{n+m-1}$. Therefore, there exists a column, representing r_1^*, \ldots, r_m^* , with at least half of the entries equal to 1; otherwise every column has fewer than half of the entries equal to 1, so the total number of 1-entries is less than $2^m \cdot 2^n/2 = 2^{n+m-1}$, a contradiction.

Construct a deterministic circuit $D_n^{(1)}$ by hard-wiring random input bits $r_1 = r_1^*, \ldots, r_m = r_m^*$. Remove the column representing r_1^*, \ldots, r_m^* and each row representing x_1, \ldots, x_n such that the corresponding entry equals 1, resulting in a new matrix M'. Note that this removes at least half of the rows. We claim that each row of M' has at least half of the entries equal to 1; to see this, we note that the number of columns is decreased by 1, and that the number of 1-entries in each remaining row remains the same. Therefore, we apply the same argument and recurse, until every remaining row is all-zero, obtaining circuits $D_n^{(1)}, \ldots, D_n^{(k)}$. Finally, construct a deterministic circuit D_n by taking the "or" of $D_n^{(1)}, \ldots, D_n^{(k)}$.

Since we remove at least half of the rows in each iteration, then there are at most $O(\log 2^n) = O(n)$ iterations, i.e., k = O(n). Since C_n is polynomial-sized, then the size of C_n is upper bounded by p(n). For each $i \in [k]$, since $D_n^{(i)}$ is obtained by hard-wiring random input bits in C_n , then the size of $D_n^{(i)}$ is upper bounded by p(n). Finally, since D_n is obtained by taking the "or" of $D_n^{(1)}, \ldots, D_n^{(k)}$, then the size of D is upper bounded by kp(n) + k = O(np(n)), so D_n is polynomial-sized.

Let $\mathcal{D} = \{D_n\}_{n \in \mathbb{N}}$. We show that \mathcal{D} computes f. Let $x_1, \ldots, x_n \in \{0, 1\}$. If $f(x_1, \ldots, x_n) = 0$, then the row of the original matrix M representing x_1, \ldots, x_n is all-zero and hence never removed, so none of $D_n^{(1)}, D_n^{(2)}, \ldots$ outputs 0 on inputs x_1, \ldots, x_n , which implies that D_n outputs 0. If $f(x_1, \ldots, x_n) = 1$, then the row of the original matrix M representing x_1, \ldots, x_n has at least half of the entries equal to 1, and is hence removed in some iteration, say the ith iteration, so $D_n^{(i)}$ outputs 1 on inputs x_1, \ldots, x_n , which implies that D_n outputs 1. This shows that D_n outputs $f(x_1, \ldots, x_n)$ for all combinations of inputs $x_1, \ldots, x_n \in \{0, 1\}$. Therefore, \mathcal{D} is a deterministic polynomial-sized circuit family which computes f, completing the proof. \square