Setting I: Gaussian Scores with $\tau = 0$, $\phi = 0$, and $\beta_{jk}^* = \delta(-1)^{k+1} k^{\frac{2}{5}} I_{\{1 \le k \le 3, j \in T^*\}}$

Value	T^*	FPR (%)	FNR	MCR (%)	Macro_Precision	Macro_Recall	Macro_F1
of δ	$= \{1, \dots, r_n\}$		(%)		(%)	(%)	(%)
$\delta = 1$	$r_n = 1$	9.95(1.70)	0	19.64(2.93)	79.58(3.02)	80.03(3.02)	79.80(2.99)
	$r_n = 3$	2.33(0.88)	0	3.07(1.29)	96.68(1.39)	96.94(1.34)	96.81(1.34)
	$r_n = 5$	0.56(0.28)	0	0.63(0.57)	99.33(0.61)	99.36(0.59)	99.35(0.59)
$\delta = 2$	$r_n = 1$	0.40(0.17)	0	4.43(1.47)	95.26(1.60)	95.54(1.54)	95.40(1.54)
	$r_n = 3$	0.25(0.02)	0	0.01(0.05)	99.99(0.05)	99.99(0.05)	99.99(0.05)
	$r_n = 5$	0.25(0.02)	0	0	1	1	1

Setting II: Gaussian Scores with $\tau = 0$, $\phi = 0$, and $\beta_{jk}^* = \delta(-1)^{k+1} k^{\frac{2}{5}} I_{\{4 \le k \le 6, j \in T^*\}}$

Value	T^*	FPR (%)	FNR	MCR (%)	Macro_Precision	Macro_Recall	Macro_F1
of δ	$= \{1, \dots, r_n\}$		(%)		(%)	(%)	(%)
$\delta = 1$	$r_n = 1$	0.35(0.28)	0	21.84(5.14)	80.96(4.26)	74.27(6.56)	77.40(5.19)
	$r_n = 3$	0.40(0.22)	0	0.26(0.40)	99.75(0.38)	99.71(0.44)	99.73(0.40)
	$r_n = 5$	0.31(0.19)	0	0.01(0.07)	99.99(0.07)	99.99(0.09)	99.99(0.07)
$\delta = 2$	$r_n = 1$	0.45(0.22)	0	0.67(0.71)	99.36(0.68)	99.25(0.79)	99.31(0.73)
	$r_n = 3$	0.26(0.05)	0	0	1	1	1
	$r_n = 5$	0.25(0.00)	0	0	1	1	1

Setting III: Gaussian Scores with $\tau = 0, \phi = 0.1$, and $\beta_{jk}^* = \delta(-1)^{k+1} k^{\frac{2}{5}} I_{\{4 \le k \le 6, j \in T^*\}}$

Value of	T^*	FPR (%)	FNR	MCR (%)	Macro_Precision	Macro_Recall	Macro_F1
δ	$= \{1, \dots, r_n\}$		(%)		(%)	(%)	(%)
$\delta = 1$	$r_n = 1$	0.44(0.31)	0	22.65(4.88)	80.40(4.09)	73.42(6.23)	76.65(4.72)
	$r_n = 3$	0.47(0.27)	0	0.28(0.41)	99.72(0.41)	99.71(0.45)	99.71(0.43)
	$r_n = 5$	0.30(0.19)	0	0.01(0.06)	99.99(0.05)	99.99(0.07)	99.99(0.06)
$\delta = 2$	$r_n = 1$	0.52(0.26)	0	0.57(0.60)	99.46(0.56)	99.36(0.69)	99.41(0.61)
	$r_n = 3$	0.26(0.05)	0	0	1	1	1
	$r_n = 5$	0.25(0.02)	0	0	1	1	1

Setting IV: Gaussian Scores with $\tau = 0$, $\phi = 0.2$, and $\beta_{jk}^* = \delta(-1)^{k+1} k^{\frac{2}{5}} I_{\{4 \le k \le 6, j \in T^*\}}$

Value of	T^*	FPR (%)	FNR	MCR (%)	Macro_Precision	Macro_Recall	Macro_F1
δ	$=\{1,\ldots,r_n\}$		(%)		(%)	(%)	(%)
$\delta = 1$	$r_n = 1$	1.17(0.54)	0	33.37(6.26)	76.76(9.19)	63.12(10.20)	68.56(7.76)
	$r_n = 3$	0.82(0.37)	0	0.31(0.41)	99.70(4.03)	99.65(4.74)	99.68(4.27)
	$r_n = 5$	0.49(0.27)	0	0	1	1	1
$\delta = 2$	$r_n = 1$	9.85(4.28)	0	0.96(0.75)	99.07(0.72)	98.93(0.90)	99.00(0.78)
	$r_n = 3$	0.27(0.06)	0	0	1	1	1
	$r_n = 5$	0.25(0.02)	0	0	1	1	1

Setting V: Gaussian Scores with $\tau = 0.2$, $\phi = 0$, and $\beta_{jk}^* = \delta(-1)^{k+1} k^{\frac{2}{5}} I_{\{4 \le k \le 6, j \in T^*\}}$

Value	T^*	FPR (%)	FNR	MCR (%)	Macro_Precision	Macro_Recall	Macro_F1
of δ	$= \{1, \dots, r_n\}$		(%)		(%)	(%)	(%)
$\delta = 1$	$r_n = 1$	0.47(0.35)	0	17.08(4.61)	86.58(3.08)	79.28(5.70)	82.70(4.23)
	$r_n = 3$	0.48(0.26)	0	0.34(0.45)	99.67(0.45)	99.63(0.52)	99.65(0.47)
	$r_n = 5$	0.32(0.23)	0	0.01(0.07)	99.99(0.08)	99.99(0.08)	99.99(0.08)
$\delta = 2$	$r_n = 1$	0.58(0.31)	0	0.63(0.57)	99.38(0.57)	99.30(0.66)	99.34(0.60)
	$r_n = 3$	0.27(0.08)	0	0	1	1	1
	$r_n = 5$	0.26(0.03)	0	0	1	1	1

Setting VI: Gaussian Scores with $\tau = 0.5, \phi = 0$, and $\beta_{jk}^* = \delta(-1)^{k+1} k^{\frac{2}{5}} I_{\{4 \le k \le 6, j \in T^*\}}$

Value	T^*	FPR (%)	FNR	MCR (%)	Macro_Precision	Macro_Recall	Macro_F1
of δ	$= \{1, \dots, r_n\}$		(%)		(%)	(%)	(%)
$\delta = 1$	$r_n = 1$	1.17(0.57)	0	3.38(2.13)	97.36(1.56)	95.74(2.71)	96.54(2.13)
	$r_n = 3$	0.87(0.47)	0	0.20(0.35)	99.79(0.36)	99.78(0.39)	99.79(0.38)
	$r_n = 5$	0.57(0.34)	0	0.01(0.06)	99.99(0.08)	99.99(0.05)	99.99(0.06)
$\delta = 2$	$r_n = 1$	1.04(0.50)	0	0.31(0.41)	99.68(0.43)	99.67(0.46)	99.67(0.43)
	$r_n = 3$	0.31(0.12)	0	0	1	1	1
	$r_n = 5$	0.26(0.03)	0	0	1	1	1

Setting VII: non-Gaussian Scores with $df = 9, \tau = 0, \phi = 0$, and $\beta_{jk}^* = \delta(-1)^{k+1} k^{\frac{2}{5}} I_{\{4 \le k \le 6, j \in T^*\}}$

Value	T^*	FPR (%)	FNR	MCR (%)	Macro_Precision	Macro_Recall	Macro_F1
of δ	$= \{1, \dots, r_n\}$		(%)		(%)	(%)	(%)
$\delta = 1$	$r_n = 1$	23.99(17.16)	0	44.18(7.85)	43.09(15.50)	52.27(3.74)	46.14(10.30)
	$r_n = 3$	18.30(12.95)	0	24.77(10.49)	81.93(10.92)	70.80(15.14)	75.19(12.25)
	$r_n = 5$	15.99(11.81)	0	9.99(5.53)	92.42(3.03)	88.13(7.25)	90.15(5.19)
$\delta = 2$	$r_n = 1$	20.86(15.92)	0	27.80(11.38)	73.35(20.44)	67.38(16.33)	68.94(17.36)
	$r_n = 3$	5.53(5.23)	0	0.61(0.53)	99.40(0.54)	99.33(0.60)	99.36(0.55)
	$r_n = 5$	0.97(1.17)	0	0.04(0.15)	99.96(0.15)	99.96(0.16)	99.96(0.15)

Setting VIII: non-Gaussian Scores with df = 3, $\tau = 0$, $\phi = 0$, and $\beta_{jk}^* = \delta(-1)^{k+1}k^{\frac{2}{5}}I_{\{4 \le k \le 6, j \in T^*\}}$

Value	T^*	FPR (%)	FNR	MCR (%)	Macro_Precision	Macro_Recall	Macro_F1
of δ	$= \{1, \dots, r_n\}$		(%)		(%)	(%)	(%)
$\delta = 1$	$r_n = 1$	33.21(21.12)	0	42.65(7.76)	44.88(17.40)	53.88(5.98)	47.84(12.33)
	$r_n = 3$	25.10(16.45)	0	16.98(9.49)	87.90(5.72)	79.84(12.79)	83.33(9.35)
	$r_n = 5$	18.51(14.66)	0	4.89(3.19)	95.92(2.15)	94.27(4.00)	95.07(3.06)
$\delta = 2$	$r_n = 1$	30.34(20.26)	0	23.35(11.87)	81.30(14.93)	71.85(16.46)	75.44(14.93)
	$r_n = 3$	4.45(4.92)	0	0.63(0.57)	99.37(0.57)	99.33(0.64)	99.35(0.59)
	$r_n = 5$	0.51(0.77)	0	0.09(0.23)	99.90(0.25)	99.91(0.24)	99.90(0.24)

Real data

Average k-fold cross-validated misclassification rates (%)

		` '		-
	Leave-one-out	5-fold	10-fold	20-fold
MCR (%)	21.75(41.31)	20.85(8.00)	20.10(10.71)	20.25(15.60)
Macro_Precision (%)	NA	79.18(9.30)	79.91(13.26)	76.81(21.20)
Macro_Recall (%)	NA	75.89(9.23)	76.26(12.57)	75.86(19.38)
Macro_F1 (%)	NA	77.41(8.85)	77.81(12.26)	75.99(20.08)