TEST REPORT

Reference No	WTS19S05030243W
FCC ID:	2AHRE-KS-602F
Applicant	SHEN ZHEN HIDIN TECHNOLOGY CO., LTD
Address	6th floor ,No. 1301-59, Yinxing Industrial Park, Guanlan, Longhua District, Shenzhen ,Guangdong China.
Manufacturer	SHEN ZHEN HIDIN TECHNOLOGY CO., LTD
Address	6th floor ,No. 1301-59, Yinxing Industrial Park, Guanlan, Longhua District, Shenzhen ,Guangdong China.
Product	3-Way Smart Light Switch
Model(s)	KS-602F
Standards:	FCC CFR47 Part 15 C Section 15.247:2018
Date of Receipt sample :	2019-05-16
Date of Test :	2019-05-16 to 2019-07-22
Date of Issue	2019-07-22
Test Result	Pass
reproduced, except in full, without	report refer only to the sample(s) tested, this test report cannot be prior written permission of the company. Dut specific stamp of test institute and the signatures of compiler and
	Prepared By:
	Valtek Services (Shenzhen) Co., Ltd. ing, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China Tel:+86-755-83551033 Fax:+86-755-83552400
Compiled by:	Approved by:

Jack Wen / Test Engineer

Philo Zhong / Manager

1. Laboratories Introduction

Waltek Services (Shenzhen) Co., Ltd is a professional third-party testing and certification laboratory with multi-year product testing and certification experience, established strictly in accordance with ISO/IEC 17025 requirements, and accredited by ILAC (International Laboratory Accreditation Cooperation) member. A2LA (American Association for Laboratory Accreditation, the certification number is 4243.01) of USA, CNAS (China National Accreditation Service for Conformity Assessment, the registration number is L3110) of China.Meanwhile, Waltek has got recognition as registration and accreditation laboratory from EMSD (Electrical and Mechanical Services Department), and American Energy star, FCC(The Federal Communications Commission), CEC(California energy efficiency), ISED (Innovation, Science and Economic Development Canada). It's the strategic partner and data recognition laboratory of international authoritative organizations, such as Intertek(ETL-SEMKO), TÜV Rheinland, TÜV SÜD, etc.

Waltek Services (Shenzhen) Co., Ltd is one of the largest and the most comprehensive third party testing laboratory in China. Our test capability covered four large fields: safety test. ElectroMagnetic Compatibility(EMC), and energy performance, wireless radio. As a professional, comprehensive, justice international test organization, we still keep the scientific and rigorous work attitude to help each client satisfy the international standards and assist their product enter into globe market smoothly.

1.1 Test Facility

A. Accreditations for Conformity Assessment (International)

Country/Region	Scope Covered By	Scope	Note
USA		FCC ID \ DOC \ VOC	1
Canada		IC ID \ VOC	2
Japan		MIC-T \ MIC-R	-
Europe		EMCD \ RED	-
Taiwan	100/150 47005	NCC	-
Hong Kong	ISO/IEC 17025	OFCA	-
Australia		RCM	-
India		WPC	-
Thailand		NTC	-
Singapore		IDA	-

Note:

- 1. FCC Designation No.: CN1201. Test Firm Registration No.: 523476.
- 2. ISED CAB identifier: CN0013.

B.TCBs and Notify Bodies Recognized Testing Laboratory.

Recognized Testing Laboratory of	Notify body number
TUV Rheinland	
Intertek	0.11
TUV SUD	Optional.
SGS	
Phoenix Testlab GmbH	0700
Element Materials Technology Warwick Ltd.	0891
Timco Engineering, Inc.	1177
Eurofins Product Service GmbH	0681

Reference No.: WTS19S05030243W

2. Contents

	00/57 7405	Page			
	COVER PAGE				
	LABORATORIES INTRODUCTION				
	1.1 TEST FACILITY				
	CONTENTS				
	REVISION HISTORY				
	GENERAL INFORMATION				
	4.1 GENERAL DESCRIPTION OF E.U.T				
	4.2 DETAILS OF E.U.T				
	4.4 Test Mode				
	EQUIPMENT USED DURING TEST	9			
	5.1 EQUIPMENTS LIST				
	5.2 MEASUREMENT UNCERTAINTY	10			
	5.3 TEST EQUIPMENT CALIBRATION				
	TEST SUMMARY	11			
	CONDUCTED EMISSION				
	7.1 E.U.T. OPERATION				
	7.2 EUT SETUP				
	7.3 MEASUREMENT DESCRIPTION				
	RADIATED EMISSIONS				
	8.1 EUT OPERATION				
	8.2 TEST SETUP				
	8.3 SPECTRUM ANALYZER SETUP	17			
	8.4 TEST PROCEDURE				
	8.5 CORRECTED AMPLITUDE & MARGIN CALCULATION				
	BAND EDGE MEASUREMENT				
	9.1 Test Produce				
	9.2 TEST RESULT				
).	BANDWIDTH MEASUREMENT	32			
	10.1 Test Procedure:				
	10.2 TEST RESULT:				
l .	MAXIMUM PEAK OUTPUT POWER	37			
	11.1 TEST PROCEDURE:	37			
	11.2 TEST RESULT:	37			
•	POWER SPECTRAL DENSITY	38			
	12.1 TEST PROCEDURE:	-			
	12.2 TEST RESULT:				
•	ANTENNA REQUIREMENT	44			
•	RF EXPOSURE	45			
	14.1 REQUIREMENTS	-			
	14.2 THE PROCEDURES / LIMIT				
	14.3 MPE CALCULATION METHOD				
٥.	PHOTOGRAPHS – TEST SETUP PHOTOS	47			

Reference No.: WTS19S05030243W Page 5 of 56

	15.1	RADIATED EMISSION	47
	15.2	CONDUCTED EMISSION	48
16.	PHOT	OGRAPHS - CONSTRUCTIONAL DETAILS	49
	16.1	EUT – External View	49
	16.2	FUT - INTERNAL VIEW	52

Reference No.: WTS19S05030243W Page 6 of 56

3. Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS19S05030243W	2019-05-16	2019-05-16 to 2019-07-22	2019-07-22	original	-	Valid

Reference No.: WTS19S05030243W Page 7 of 56

4. General Information

4.1 General Description of E.U.T

Product Name: 3-Way Smart Light Switch

Model No.: KS-602F

Operation Frequency: 802.11b/g/n HT20: 2412MHz ~ 2462MHz

RF output power: 9.37dBm

Antenna installation: PCB Printed Antenna

Type of modulation: IEEE 802.11b (CCK/QPSK/BPSK,11Mbps max.)

IEEE 802.11g (BPSK/QPSK/16QAM/64QAM,54Mbps max.)
IEEE 802.11n (BPSK/QPSK/16QAM/64QAM,HT20:72Mbps max.)

4.2 Details of E.U.T

Ratings: Input: AC 110-125V 50/60Hz

Output: 400W INC 150W CFL&LED

4.3 Channel List

WIFI

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
No.	(MHz)	No.	(MHz)	No.	(MHz)	No.	(MHz)
1	2412	2	2417	3	2422	4	2427
5	2432	6	2437	7	2442	8	2447
9	2452	10	2457	11	2462	12	-

4.4 Test Mode

Table 1 Tests Carried Out Under FCC part 15.247

Test Items	Mode	Data Rate	Channel	TX/RX
	802.11b	11 Mbps	1/6/11	TX
Maximum Peak Output Power	802.11g	54 Mbps	1/6/11	TX
	802.11n HT20	108 Mbps	1/6/11	TX
	802.11b	11 Mbps	1/6/11	TX
Power Spectral Density	802.11g	54 Mbps	1/6/11	TX
	802.11n HT20	108 Mbps	1/6/11	TX
	802.11b	11 Mbps	1/11	TX
Frequency Range	802.11g	54 Mbps	1/11	TX
	802.11n HT20	108 Mbps	1/11	TX
	802.11b	11 Mbps	1/6/11	TX
Transmitter Spurious Emissions	802.11g	54 Mbps	1/6/11	TX
	802.11n HT20	108 Mbps	1/6/11	TX

Reference No.: WTS19S05030243W Page 8 of 56

Note :Parameters set by test software during channel & power tests, the software provided by the customer was used to set the operating channels as well as the output power level. The RF output power set is the power expected by the manufacturer and is going to be fixed on the firmware of the final product.

5. Equipment Used during Test

5.1 Equipments List

Cond	Conducted Emissions							
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1	EMI Test Receiver	R&S	ESCI	100947	2018.09.15	2019.09.14		
2	LISN	R&S	ENV216	100115	2018.09.15	2019.09.14		
3	Cable	Тор	TYPE16(3.5M)	-	2018.09.15	2019.09.14		
3m S	emi-anechoic Chamb	er for Radiation Em	nissions					
1	Spectrum Analyzer	R&S	FSP30	100091	2019.04.28	2020.04.27		
2	Broad-band Horn Antenna(1-18GHz)	SCHWARZBECK	BBHA 9120 D	667	2019.04.28	2020.04.27		
3	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	2019.04.28	2020.04.27		
4	Coaxial Cable (above 1GHz)	Тор	1GHz-18GHz	EW02014-7		2020.04.27		
5	Spectrum Analyzer	R&S	FSP40	100501	2018.10.24	2019.10.23		
6	Broad-band Horn Antenna(18-40GHz)	SCHWARZBECK	BBHA 9170	BBHA917065 1	2018.10.24	2019.10.23		
7	Microwave Broadband Preamplifier (18-40GHz)	SCHWARZBECK	BBV 9721	100472	2018.10.24	2019.10.23		
8	Cable	Тор	18-40GHz	-	2018.10.24	2019.10.23		
3m S	emi-anechoic Chamb	er for Radiation Em	nissions					
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date		
1	Test Receiver	R&S	ESCI	101296	2019.04.19	2020.04.18		
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	2019.04.18	2020.04.17		
3	Amplifier	ANRITSU	MH648A	M43381	2019.04.19	2020.04.18		
4	Cable	HUBER+SUHNER	CBL2	525178	2019.04.19	2020.04.18		
5	Active Loop Antenna	Com-Power Corp.	AL-130R	10160007	2019.04.16	2020.04.15		
RF C	onducted Testing							
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	2018-09-13	2019-09-12		
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	2018-09-11	2019-09-10		
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	2018-09-11	2019-09-10		

Reference No.: WTS19S05030243W Page 10 of 56

5.2 Measurement Uncertainty

Parameter	Uncertainty	
Radio Frequency	± 1 x 10 ⁻⁶	
RF Power	± 1.0 dB	
RF Power Density	± 2.2 dB	
	± 5.03 dB (30M~1000MHz)	
Radiated Spurious Emissions test	± 5.47 dB (1000M~25000MHz)	
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)	

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by GUANG ZHOU GRG METROLOGY & TES T CO., LTD. address is No.163, Pingyun Rd. West of Huangpu Ave, Tianhe District, Guangzhou, Guangdong, China.

Reference No.: WTS19S05030243W Page 11 of 56

6. Test Summary

Test Items	Test Requirement	Result
	15.247	
Radiated Emissions	15.205(a)	Pass
	15.209(a)	
Conducted Emissions	15.207(a)	Pass
Bandwidth	15.247(a)(2)	Pass
Maximum Peak Output Power	15.247(b)(3),(4)	Pass
Power Spectral Density	15.247(e)	Pass
Band Edge	15.247(d)	Pass
Antenna Requirement	15.203	Pass
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	Pass
Note: Page-Compliance: NC-Net Complian	naci NIT-Nat Taatadi NI/A	

Note: Pass=Compliance; NC=Not Compliance; NT=Not Tested; N/A=Not Applicable.

Reference No.: WTS19S05030243W Page 12 of 56

7. Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

 $56~dB\mu V$ between 0.5MHz & 5MHz $60~dB\mu V$ between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

7.1 E.U.T. Operation

Operating Environment:

Temperature: 21.5 °C
Humidity: 51.9 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in Transmitting mode, the test data were shown in the report.

7.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10.

7.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

7.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Only the worst case (WIFI transmitting mode) test data were record in the report.

Live line:

Reference No.: WTS19S05030243W Page 14 of 56

Neutral line:

Reference No.: WTS19S05030243W Page 15 of 56

8. Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

I imit

LIIIII.						
_	Field Strength		Field Strength Limit at 3m Measurement Dist			
Frequency (MHz)	uV/m	uV/m Distance (m)		dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

8.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

8.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Anechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m

Turn Table From 0° to 360°

Turn Table

Absorbers

PC
System
Analyzer

AMP
Combining
Network

The test setup for emission measurement above 1 GHz.

8.3 Spectrum Analyzer Setup

	-	
Below 30MH	łz	
	Sweep Speed	Auto
	IF Bandwidth	10kHz
	Video Bandwidth	10kHz
	Resolution Bandwidth	10kHz
30MHz ~ 1G	GHz	
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	100kHz
	Video Bandwidth	300kHz
Above 1GHz	<u>z</u>	
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	1MHz
	Video Bandwidth	3MHz
	Detector	Ave.
	Resolution Bandwidth	1MHz
	Video Bandwidth	10Hz

Reference No.: WTS19S05030243W Page 18 of 56

8.4 Test Procedure

1. The EUT is placed on a turntable. For below 1GHz, the EUT is 0.8m above ground plane; For above1GHz, the EUT is 1.5m above ground plane.

- The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in X axis.so the worst data were shown as follow.
- 8. A 2.4GHz high –pass filter is used druing radiated emissions above 1GHz measurement.

8.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

8.6 Summary of Test Results

Test Frequency : 9kHz ~ 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

F	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
	11b: Low Channel 2412MHz									
486.31	12.81	PK	235	1.2	Н	21.09	33.90	45.00	-11.10	
486.31	12.22	PK	52	1.1	V	21.09	33.31	45.00	-11.69	
4824.00	50.49	PK	116	1.9	V	-1.05	49.44	74.00	-24.56	
4824.00	42.74	Ave	116	1.9	V	-1.05	41.69	54.00	-12.31	
7236.00	46.19	PK	151	1.3	Н	1.34	47.53	74.00	-26.47	
7236.00	41.24	Ave	151	1.3	Н	1.34	42.58	54.00	-11.42	
2349.58	45.68	PK	262	1.8	V	-13.19	32.49	74.00	-41.51	
2349.58	38.05	Ave	262	1.8	V	-13.19	24.86	54.00	-29.14	
2351.72	44.60	PK	217	1.7	Н	-13.15	31.45	74.00	-42.55	
2351.72	37.17	Ave	217	1.7	Н	-13.15	24.02	54.00	-29.98	
2490.30	43.26	PK	43	1.3	V	-13.08	30.18	74.00	-43.82	
2490.30	38.71	Ave	43	1.3	V	-13.08	25.63	54.00	-28.37	

	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC F 15.247/20	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
11b: Middle Channel 2437MHz									
486.31	13.15	PK	337	1.3	Н	21.09	34.24	45.00	-10.76
486.31	12.49	PK	178	1.3	V	21.09	33.58	45.00	-11.42
4874.00	49.46	PK	22	1.5	V	-0.63	48.83	74.00	-25.17
4874.00	44.24	Ave	22	1.5	V	-0.63	43.61	54.00	-10.39
7311.00	45.24	PK	236	1.4	Н	2.21	47.45	74.00	-26.55
7311.00	42.79	Ave	236	1.4	Н	2.21	45.00	54.00	-9.00
2337.06	45.08	PK	188	1.5	V	-13.19	31.89	74.00	-42.11
2337.06	39.78	Ave	188	1.5	V	-13.19	26.59	54.00	-27.41
2367.69	44.71	PK	148	1.3	Н	-13.14	31.57	74.00	-42.43
2367.69	36.54	Ave	148	1.3	Н	-13.14	23.40	54.00	-30.60
2498.29	44.23	PK	130	1.6	V	-13.09	31.14	74.00	-42.86
2498.29	38.23	Ave	130	1.6	V	-13.09	25.14	54.00	-28.86

	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
11b: High Channel 2462MHz									
486.31	14.00	PK	359	1.2	Н	21.09	35.09	45.00	-9.91
486.31	12.54	PK	53	1.8	V	21.09	33.63	45.00	-11.37
4924.00	50.34	PK	356	1.2	V	-0.25	50.09	74.00	-23.91
4924.00	44.75	Ave	356	1.2	V	-0.25	44.50	54.00	-9.50
7386.00	48.22	PK	185	1.2	Н	2.85	51.07	74.00	-22.93
7386.00	41.31	Ave	185	1.2	Н	2.85	44.16	54.00	-9.84
2349.83	46.28	PK	162	1.8	V	-13.19	33.09	74.00	-40.91
2349.83	37.02	Ave	162	1.8	V	-13.19	23.83	54.00	-30.17
2368.48	44.76	PK	210	1.0	Н	-13.14	31.62	74.00	-42.38
2368.48	37.18	Ave	210	1.0	Н	-13.14	24.04	54.00	-29.96
2488.07	42.52	PK	55	1.8	V	-13.09	29.43	74.00	-44.57
2488.07	37.15	Ave	55	1.8	V	-13.09	24.06	54.00	-29.94

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	Compated	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
11g: Low Channel 2412MHz									
486.31	14.28	PK	190	1.1	Н	21.09	35.37	45.00	-9.63
486.31	12.45	PK	117	1.7	V	21.09	33.54	45.00	-11.46
4824.00	51.66	PK	238	1.4	V	-1.06	50.60	74.00	-23.40
4824.00	48.37	Ave	238	1.4	V	-1.06	47.31	54.00	-6.69
7236.00	47.10	PK	183	1.2	Н	1.35	48.45	74.00	-25.55
7236.00	46.46	Ave	183	1.2	Н	1.35	47.81	54.00	-6.19
2331.25	45.63	PK	27	1.9	V	-13.19	32.44	74.00	-41.56
2331.25	38.50	Ave	27	1.9	V	-13.19	25.31	54.00	-28.69
2380.96	44.24	PK	150	1.2	Н	-13.14	31.10	74.00	-42.90
2380.96	37.28	Ave	150	1.2	Н	-13.14	24.14	54.00	-29.86
2485.53	42.62	PK	176	1.5	V	-13.08	29.54	74.00	-44.46
2485.53	36.90	Ave	176	1.5	٧	-13.08	23.82	54.00	-30.18

	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
11g: Middle Channel 2437MHz									
486.31	14.42	PK	265	1.1	Н	21.09	35.51	45.00	-9.49
486.31	12.53	PK	342	1.0	V	21.09	33.62	45.00	-11.38
4874.00	49.64	PK	157	1.4	V	-0.62	49.02	74.00	-24.98
4874.00	48.79	Ave	157	1.4	V	-0.62	48.17	54.00	-5.83
7311.00	47.47	PK	45	1.1	Н	2.20	49.67	74.00	-24.33
7311.00	46.28	Ave	45	1.1	Н	2.20	48.48	54.00	-5.52
2332.43	46.25	PK	189	1.0	V	-13.19	33.06	74.00	-40.94
2332.43	39.53	Ave	189	1.0	V	-13.19	26.34	54.00	-27.66
2356.72	43.67	PK	286	1.3	Н	-13.15	30.52	74.00	-43.48
2356.72	38.06	Ave	286	1.3	Н	-13.15	24.91	54.00	-29.09
2490.60	43.65	PK	354	1.8	V	-13.09	30.56	74.00	-43.44
2490.60	38.35	Ave	354	1.8	V	-13.09	25.26	54.00	-28.74

	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
11g: High Channel 2462MHz									
486.31	13.14	PK	35	1.4	Н	21.09	34.23	45.00	-10.77
486.31	13.15	PK	111	1.4	V	21.09	34.24	45.00	-10.76
4924.00	50.76	PK	113	1.1	V	-0.25	50.51	74.00	-23.49
4924.00	46.47	Ave	113	1.1	V	-0.25	46.22	54.00	-7.78
7386.00	47.69	PK	247	1.0	Н	2.86	50.55	74.00	-23.45
7386.00	42.41	Ave	247	1.0	Н	2.86	45.27	54.00	-8.73
2347.87	45.20	PK	209	1.9	V	-13.19	32.01	74.00	-41.99
2347.87	38.24	Ave	209	1.9	V	-13.19	25.05	54.00	-28.95
2357.61	44.91	PK	223	2.0	Н	-13.14	31.77	74.00	-42.23
2357.61	37.22	Ave	223	2.0	Н	-13.14	24.08	54.00	-29.92
2491.89	44.87	PK	319	1.2	V	-13.08	31.79	74.00	-42.21
2491.89	37.32	Ave	319	1.2	V	-13.08	24.24	54.00	-29.76

F	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
n20: Low Channel 2412MHz									
486.31	14.63	PK	18	2.0	Н	21.09	35.72	45.00	-9.28
486.31	13.54	PK	297	1.3	V	21.09	34.63	45.00	-10.37
4824.00	50.58	PK	100	1.8	V	-1.06	49.52	74.00	-24.48
4824.00	48.90	Ave	100	1.8	V	-1.06	47.84	54.00	-6.16
7236.00	47.07	PK	175	1.5	Н	1.34	48.41	74.00	-25.59
7236.00	45.54	Ave	175	1.5	Н	1.34	46.88	54.00	-7.12
2339.34	46.81	PK	177	1.2	V	-13.19	33.62	74.00	-40.38
2339.34	38.44	Ave	177	1.2	V	-13.19	25.25	54.00	-28.75
2385.93	42.55	PK	340	1.8	Н	-13.14	29.41	74.00	-44.59
2385.93	37.89	Ave	340	1.8	Н	-13.14	24.75	54.00	-29.25
2496.56	42.51	PK	167	1.7	V	-13.08	29.43	74.00	-44.57
2496.56	36.92	Ave	167	1.7	V	-13.08	23.84	54.00	-30.16

F	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC F 15.247/20	
Frequency	Reading	Detector	table Angle	Height	Polar	Lactor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
n20: Middle Channel 2437MHz									
486.31	14.22	PK	171	1.3	Н	21.09	35.31	45.00	-9.69
486.31	13.33	PK	258	1.7	V	21.09	34.42	45.00	-10.58
4874.00	50.37	PK	19	1.3	V	-0.61	49.76	74.00	-24.24
4874.00	48.41	Ave	19	1.3	V	-0.61	47.80	54.00	-6.20
7311.00	47.65	PK	98	1.5	Н	2.21	49.86	74.00	-24.14
7311.00	45.35	Ave	98	1.5	Н	2.21	47.56	54.00	-6.44
2345.11	45.90	PK	289	1.0	V	-13.19	32.71	74.00	-41.29
2345.11	38.88	Ave	289	1.0	V	-13.19	25.69	54.00	-28.31
2384.77	44.02	PK	305	2.0	Н	-13.14	30.88	74.00	-43.12
2384.77	37.06	Ave	305	2.0	Н	-13.14	23.92	54.00	-30.08
2495.54	42.41	PK	22	1.7	V	-13.09	29.32	74.00	-44.68
2495.54	37.09	Ave	22	1.7	V	-13.09	24.00	54.00	-30.00

F	Receiver	5.4.4	Turn	RX An	tenna	Corrected		FCC F 15.247/20	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
n20: High Channel 2462MHz									
486.31	13.34	PK	31	1.1	Н	21.09	34.43	45.00	-10.57
486.31	13.73	PK	45	1.3	V	21.09	34.82	45.00	-10.18
4924.00	50.65	PK	319	1.3	V	-0.24	50.41	74.00	-23.59
4924.00	48.86	Ave	319	1.3	V	-0.24	48.62	54.00	-5.38
7386.00	47.37	PK	147	1.7	Н	2.83	50.20	74.00	-23.80
7386.00	45.05	Ave	147	1.7	Н	2.83	47.88	54.00	-6.12
2341.82	45.46	PK	163	1.8	V	-13.19	32.27	74.00	-41.73
2341.82	38.43	Ave	163	1.8	V	-13.19	25.24	54.00	-28.76
2376.25	42.01	PK	247	1.6	Н	-13.14	28.87	74.00	-45.13
2376.25	36.93	Ave	247	1.6	Н	-13.14	23.79	54.00	-30.21
2494.05	44.68	PK	356	1.2	V	-13.08	31.60	74.00	-42.40
2494.05	36.55	Ave	356	1.2	V	-13.08	23.47	54.00	-30.53

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTS19S05030243W Page 28 of 56

9. Band Edge Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 15.247 Meas Guidance v05r02

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

9.1 Test Produce

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

9.2 Test Result

Test result plots shown as follows:

TX 11b: Band edge-right side

Reference No.: WTS19S05030243W Page 32 of 56

10. Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 15.247 Meas Guidance v05r02

10.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

10.2 Test Result:

Operation mode	6dB	Bandwidth (N	ЛHz)	99% Bandwidth (MHz)			
	Channel 1	Channel 6	Channel 11	Channel 1	Channel 6	Channel 11	
TX 11b	10.060	10.571	10.539	13.733	14.052	14.020	
	Channel 1	Channel 6	Channel 11	Channel 1	Channel 6	Channel 11	
TX 11g	15.719	15.868	15.818	16.467	16.617	16.617	
	Channel 1	Channel 6	Channel 11	Channel 1	Channel 6	Channel 11	
TX 11n HT20	16.383	16.383	16.383	17.569	17.677	17.677	

Wifi: Test result plot as follows:

Reference No.: WTS19S05030243W Page 37 of 56

11. Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 15.247 Meas Guidance v05r02

11.1 Test Procedure:

558074 D01 DTS Meas Guidance V04

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 1 MHz. VBW = 3 MHz. Sweep = auto; Detector Function = Peak, Set the span to fully encompass the DTS bandwidth.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

11.2 Test Result:

Test mode :TX 11b					
Maximum Peak Output Power (dBm)					
2412MHz 2437MHz 2462MHz					
9.36 9.18 9.24					
Limit: 1W/30dBm					

Test mode :TX 11g					
Maximum Peak Output Power (dBm)					
2412MHz 2437MHz 2462MHz					
9.24 9.25 9.18					
Limit: 1W/30dBm					

Test mode :TX 11n HT20					
Maximum Peak Output Power (dBm)					
2412MHz 2437MHz 2462MHz					
9.37 9.11 9.17					
Limit: 1W/30dBm					

Reference No.: WTS19S05030243W Page 38 of 56

12. Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 15.247 Meas Guidance v05r02

12.1 Test Procedure:

558074 D01 DTS Meas Guidance V04

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

12.2 Test Result:

Test mode :TX 11b					
Power Spectral (dBm per 3kHz)					
2412MHz 2437MHz 2462MHz					
-17.51 -17.43 -17.20					
Limit: 8dBm per 3kHz					

Test mode :TX 11g					
Power Spectral (dBm per 3kHz)					
2412MHz 2437MHz 2462MHz					
-22.09 -22.62 -21.84					
Limit: 8dBm per 3kHz					

Test mode :TX 11n HT20						
Power Spectral (dBm per 3kHz)						
2412MHz	2412MHz 2437MHz 2462MHz					
-21.44 -22.44 -21.31						
Limit: 8dBm per 3kHz						

13. Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Result:

The EUT has a PCB Printed Antenna, meets the requirements of FCC 15.203.

Reference No.: WTS19S05030243W Page 45 of 56

14. RF Exposure

Test Requirement: FCC Part 1.1307 Evaluation Method: FCC Part 2.1091

14.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

14.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ², H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTS19S05030243W Page 46 of 56

14.3 MPE Calculation Method

P = Peak RF output power (W)

 ${f G}={\sf EUT}$ Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

 $Pd = P_{out}*G/(4*Pi*R^2)$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (mW/cm2)	Limit of Power Density (mW/cm2)
0.00	1.00	9.37	8.65	0.0017	1

Compliance.

15. Photographs – Test Setup Photos

15.1 Radiated Emission

Test frequency Below 30MHz

Test frequency from 30MHz to 1GHz

Test frequency above 1GHz

15.2 Conducted Emission

16. Photographs - Constructional Details

16.1 EUT - External View

Reference No.: WTS19S05030243W Page 50 of 56

Reference No.: WTS19S05030243W Page 51 of 56

16.2 EUT - Internal View

Antenna

=====End of Report=====