INGENIEURSGRAFIKA EN -ONTWERP

Jan Dalhuysen

Contents

Ontwerpopdrag
Spesifikasies
Beperkings
Bestuursplan
Katrolwiel Materiale
SKF 16100 Afmetings
Katrolwiel Ontwerpe
Bibliografie
Parel Vallei StudyHub
Katrolwiel Materiale
SKF 16100

Ontwerpopdrag

Jy is by 'n meganiese ontwerpfirma aangestel wat spesialiseer in vertikale hysingsisteme. tans werk die firma aan ontwerpoplossings om 'n katrolklamp aan 'n oorhoofse 38×114 mm reghoekige staalpyp te heg.

Dit moet maklik aangesit en afgehaal kan word en hulp verleen om laste tot en met 120kg te lig. hierdie klamp sal deel vorm van 'n stelsel wat aan 'n vaste punt geheg is en 'n beweegbare katrol wat aan die las gekoppel is.

Dit is jou werk om die katrolklampsamestelling te ontwerp wat aan die oorhoofse pyp geheg kan word. Die katrol moet op 2x skf 16100 diep groef koeëllaers rol om so min as moontlik rolweerstand in die stelsel te bied.

Die spesiaal vervaardigde katrol moet 'n buite diameter van 70mm hê, 'n groef groot genoeg vir 'n ø10mm tou en 'n skoon skagbout om die katrol aan die klamp te heg.

Spesifikasies

- Dit moet sterk wees.
- Dit moet veilig wees.
- Dit moet vinnig aan en af gehaal kan word.
- Dit moet 120 kg kan dra.
- Daar moet so min as moontlik rol weerstand wees.

Beperkings

Bestuursplan

Katrolwiel Materiale

Katrolle kan van 'n verskeidenheid materiale gemaak word, insluitend 'n uitgebreide reeks plastiek, hout en metale. Staal en aluminiumlegerings word gereeld in industriële katrolvervaardiging gebruik; baie katrolontwerpe bevat veelvuldige materiale om sterkte met behoorlike weerstandseienskappe te verbind.

SKF 16100 Afmetings

Diep Groef Laer

Enkelry diepgroefkogellaers is besonder veelsydig, het lae wrywing en is geoptimaliseer vir lae geraas en lae vibrasie, wat hoë rotasiespoed moontlik maak. Hulle akkommodeer radiale en aksiale ladings in beide rigtings, is maklik om te monteer en vereis minder onderhoud as baie ander tipes laers.

Eienskappe:

- Eenvoudige, veelsydige en robuuste ontwerp
- Lae wrywing
- Hoëspoed vermoë
- Akkommodeer radiale en aksiale ladings in beide rigtings
- Vereis min onderhoud

Verdere Spesifikasies:

Dimensions	
Bore diameter	10 mm
Outside diameter	28 mm
Width	8 mm

Performance	
Basic dynamic load rating	5.07 kN
Basic static load rating	$2.36~\mathrm{kN}$
Limiting speed	38~000~r/min
Reference speed	$60~000~\mathrm{r/min}$

Properties	
Bore type	Cylindrical
Cage	Sheet metal
Coating	Without
Filling slots	Without
Locating feature, bearing outer ring	None
Lubricant	None
Matched arrangement	No
Material, bearing	Bearing steel
Number of rows	1
Radial internal clearance	CN
Relubrication feature	Without
Sealing	Without

Figure 1: Laer1

Dimensions		
d	10 mm	Bore diameter
D	$28~\mathrm{mm}$	Outside diameter
В	$8~\mathrm{mm}$	Width
d1	$17~\mathrm{mm}$	Shoulder diameter
D2	$24~\mathrm{mm}$	Recess diameter
r1	$0.3~\mathrm{mm}$	Chamfer dimension
r2	$0.3~\mathrm{mm}$	Chamfer dimension

Figure 2: Laer2

Abutment dimensions		
da Da	min.14.2 mm max.23.8	Diameter of shaft abutment Diameter of housing abutment
	mm	8
ra	$\max.0.3 \text{ mm}$	Radius of shaft or housing fillet

Katrolwiel Ontwerpe

aaaaaaaaa

Bibliografie

Parel Vallei StudyHub

https://pvalleiems.co.za/upload/SubjectContent/PAT%2011%202022%20Afr.pdf

Katrolwiel Materiale

https://www.thomasnet.com/articles/materials-handling/about-pulleys

SKF 16100

https://www.skf.com/africa/en/products/rolling-bearings/ball-bearings/deep-groove-ball-bearings/productid-16100