5.0 Acoustic Modeling

References: 1. 2.2, 3.4.1, 4.5, $9.1 \sim 9.4$ of Huang

2. "Predicting Unseen Triphones with Senones",

IEEE Trans. on Speech & Audio Processing, Nov 1996

Unit Selection Principles

• Primary Considerations

- accuracy: accurately representing the acoustic realizations
- trainability: feasible to obtain enough data to estimate the model parameters
- generalizability: any new word can be derived from a predefined unit inventory

• Examples

- words: accurate if enough data available, trainable for small vocabulary. NOT generalizable
- phoneme : trainable, generalizable
 - difficult to be accurate due to context dependency
- syllable: 50 in Japanese, 1300 in Mandarin Chinese, over 30000 in English

Triphone

- a phoneme model taking into consideration both left and right neighboring phonemes
 - $(60)^3 \rightarrow 216.000$
- very good generalizability, balance between accuracy/ trainability by parameter-sharing techniques

Unit Selection for HMMs

Possible Candidates

- phrases, words, syllables, phonemes.....

• Phoneme

- the minimum units of speech sound in a language which can serve to distinguish one word from the other e.g. bat / pat , bad / bed
- phone : a phoneme's acoustic realization the same phoneme may have many different realizations

e.g. sat / meter

• Coarticulation and Context Dependency

- context: right/left neighboring units

- character/syllable mapping relation

- coarticulation: sound production changed because of the neighboring
- right-context-dependent (RCD)/left-context-dependent (LCD)/ both
- intraword/interword context dependency

• For Mandarin Chinese

tea two

at

- syllable: Initial (聲母) / Final (韻母) / tone (聲調) target

Sharing of Parameters and Training Data for Triphones

Sharing at Model Level

Generalized Triphone

• Sharing at State Level

Shared Distribution Model (SDM)

- clustering similar triphones and merging them together
- those states with quite different distributions do not have to be merged

Some Fundamentals in Information Theory

Quantity of Information Carried by an Event (or a Random Variable)

- Assume an information source: output a random variable m; at time j

– Define $I(x_i)$ = quantity of information carried by the event m_j = x_i Desired properties:

2.
$$\lim_{i \to 0} I(x_i) = 0$$

3.
$$I(x_i) > I(x_i)$$
, if $P(x_i) < P(x_i)$

4.Information quantities are additive

$$\begin{array}{c|c}
I(x_i) \\
0 \\
1.0
\end{array}$$

$$-I(x_i) = \log \left[\frac{1}{p(x_i)} \right] = -\log \left[P(x_i) \right] = -\log_2 \left[P(x_i) \right]$$
 bits (of information)

 H(S) = entropy of the source = average quantity of information out of the source each time

$$= \sum_{i=1}^{M} P(x_i) I(x_i) = -\sum_{i=1}^{M} P(x_i) \left\{ \log \left[P(x_i) \right] \right\} = E \left[I(x_i) \right]$$

= the average quantity of information carried by each random variable

Some Fundamentals in Information Theory

• Examples

- M = 2,
$$\{x_1, x_2\} = \{0,1\}$$
, $P(0) = P(1) = \frac{1}{2}$
 $I(0) = I(1) = 1$ bit (of information), $H(S) = 1$ bit (of information)
 $U = 0 \ 1 \ \frac{1}{1} \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \dots \dots$

This binary digit carries exactly 1 bit of information

This symbol (represented by two \underline{binary} digits) carries exactly 2 \underline{bits} of information

This symbol (represented by two binary digits) carries exactly 2 by
$$-M = 2$$
, $\{x_1, x_2\} = \{0,1\}$, $P(0) = \frac{1}{4}$, $P(1) = \frac{3}{4}$ I(0)= 2 bits (of information), I(1)= 0.42 bits (of information) $H(S) = 0.81$ bits (of information) $U = 1$ 1 $\frac{1}{1}$ 0 1 1 1 1 1 0 0 1 1 1 1 1 $\frac{1}{1}$ 1 1 1 $\frac{1}{1}$ 2 $\frac{1}{1}$ 1 $\frac{1}{1}$ 1 $\frac{1}{1}$ 2 $\frac{1}{1}$ 1 $\frac{1}{1}$ 2 bits of information

Fundamentals in Information Theory

$$M = 2$$
, $\{x_1, x_2\} = \{0, 1\}$

$$S \rightarrow U = 110100101011001...$$

$$P(0) = P(1) = \frac{1}{2}$$

$$U = 1111111111...$$

$$P(1) = 1, P(0) = 0$$

$$U = 101111111111011111111...$$

$$P(1) \approx 1, P(0) \approx 0$$

$$M=4$$
, $\{x_1, x_2, x_3, x_4\} = \{00, 01, 10, 11\}$

Fundamentals in Information Theory

$$M=2$$
, { x_1 , x_2 } = { 0, 1 }, $P(1)=p$, $P(0)=1-p$

$$H(S) = -[p log p + (1-p) log (1-p)]$$

 $U = 00000000 \cdots$

Binary Entropy Function

8

Fundamentals in Information Theory

M=3,
$$\{x_1, x_2, x_3\} = \{0, 1, 2\}$$

P(0) = p, P(1) = q, P(2) = 1-p-q
[p, q, 1-p-q]

Some Fundamentals in Information Theory

• Jensen's Inequality

$$-\sum_{i=1}^{M} p(x_i) \log \left[p(x_i) \right] \le -\sum_{i=1}^{M} p(x_i) \log \left[q(x_i) \right]$$

$$q(x_i): \text{ another probability distribution, } q(x_i) \ge 0, \sum_{i=1}^{M} q(x_i) = 1$$
equality when $p(x_i) = q(x_i)$, all i

- proof: $\log x \le x-1$, equality when x=1

$$\sum_{i} p(x_i) \log \left[\frac{q(x_i)}{p(x_i)} \right] \leq \sum_{i} p(x_i) \left[\frac{q(x_i)}{p(x_i)} - 1 \right] = 0$$

replacing p(x_i) by q(x_i), the entropy is increased
using an incorrectly estimated distribution giving higher degree of
uncertainty

• Kullback-Leibler(KL) Distance (KL Divergence)

$$D[p(x)||q(x)] = \sum_{i} p(x_i) \log \left[\frac{p(x_i)}{q(x_i)} \right] \ge 0$$

- difference in quantity of information (or extra degree of uncertainty) when p(x) replaced by q(x), a measure of distance between two probability distributions, asymmetric
- Cross-Entropy (Relative Entropy)

• Continuous Distribution Versions

Fundamentals in Information Theory

Classification and Regression Trees (CART)

- An Efficient Approach of Representing/Predicting the Structure of A Set of Data trained by a set of training data
- A Simple Example

11

 dividing a group of people into 5 height classes without knowing the heights:

Tall(T), Medium-tall(t), Medium(M), Medium-short(s), Short(S)

- several observable data available for each person: age, gender, occupation....(but not the height)
- based on a set of questions about the available data

- question: how to design the tree to make it most efficient?

Training Triphone Models with Decision Trees

- Construct a tree for each state of each base phoneme (including all possible context dependency)
 - e.g. 50 phonemes, 5 states each HMM 5*50=250 trees
- Develop a set of questions from phonetic knowledge
- Grow the tree starting from the root node with all available training data
- Some stop criteria determine the final structure of the trees
 - e.g. minimum entropy reduction, minimum number of samples in each leaf node
- For any unseen triphone, traversal across the tree by answering the questions leading to the most appropriate state distribution
- The Gaussian mixture distribution for each state of a phoneme model for contexts with similar linguistic properties are "tied" together, sharing the same training data and parameters
- The classification is both data-driven and linguistic-knowledge-driven
- Further approaches such as tree pruning and composite questions (e.g. $q_1 \overline{q}_1 + q_2$)

15

Splitting Criteria for the Decision Tree

• Assume a Node n is to be split into nodes a and b

weighted entropy

$$\overline{H}_n = \left(-\sum p(c_n|n)\log [p(c_n|n)]\right)p(n)$$

p(c|n): percentage of data samples for class i at node n

p(n): prior probability of n, percentage of samples at node n out of total

number of samples

– entropy reduction for the split for a question q

$$\Delta \overline{H}_{n}(q) = \overline{H}_{n} - [\overline{H}_{a} + \overline{H}_{b}]$$

- choosing the best question for the split at each node

$$q^* = \underset{q}{\operatorname{arg max}} \left[\Delta \overline{H}_n(q) \right]$$

• It can be shown

$$\Delta \overline{H}_n = \overline{H}_n - (\overline{H}_a + \overline{H}_b)$$

= D[a(x)||n(x)||p(a) + D[b(x)||n(x)||p(b)]

a(x): distribution in node a, b(x) distribution in node b

n(x): distribution in node n , $D[\bullet||\bullet|]$: KL divergence

 weighting by number of samples also taking into considerations the reliability of the statistics

Entropy of the Tree T

$$\overline{H}(T) = \sum_{\text{torningl n}} \overline{H}_n$$

- the tree-growing (splitting) process repeatedly reduces $\overline{H}(T)$

Training Tri-phone Models with Decision Trees

• An Example: "(_ -) b (+)"

Syllables (1,345)				
Base-syllables (408)				
INITIAL's (21)	FINAL's (37)			
	Medials (3)	Nucleus (9)	Ending (2)	Tones (4+1)
Consonants (21)	Vowels plus Nasals (12)			
Phonemes (31)				

Subsyllabic Units Considering Mandarin Syllable Structures

• Considering Phonetic Structure of Mandarin Syllables

- INITIAL / FINAL's
- Phone(me)-like-units / phonemes

• Different Degrees of Context Dependency

- intra-syllable only
- intra-syllable plus inter-syllable
- right context dependent only
- both right and left context dependent

• Examples :

- 113 right-context-dependent (RCD) INITIAL's extended from 22 INITIAL's plus 37 context independent FINAL's: 150 intrasyllable RCD INITIAL/FINAL's
- 33 phone(me)-like-units extended to 145 intra-syllable right-context-dependent phone(me)-like-units, or 481 with both intra/inter-syllable context dependency
- At least 4,600 triphones with intra/inter-syllable context dependency

Phonetic Structure of Mandarin Syllables

Comparison of Acoustic Models Based on Different Sets of Units

• Typical Example Results

17

- INITIAL/FIANL (IF) better than phone for small training set
- Context Dependent (CD) better than Context Independent (CI)
- Right CD (RCD) better than Left CD (LCD)
- Inter-syllable Modeling is Better
- Triphone is better
- Approaches in Training Triphone Models are Important
- Quinphone (2 context units on both sides considered) are even better