응집물질물리실험 예비보고서

실험주제 : Crystal Growth & X-ray diffraction, Structure transition of BaTiO3

HuiJae-Lee^{1,*}

¹Physics Department, Inha University (Dated: September 22, 2022)

이번 실험은 X-ray diffraction을 이용하여 CaTiO₃, SrTiO₃, BaTiO₃를 관측하고 BaTiO₃ 의 상전이를 관측하는 것을 목적으로 한다. 각 시료들은 고상소결법을 통해 제작한다.

I. INTRODUCTION

II. EXPERIMENT

A. Theory

1. $CaTiO_3$, $SrTiO_3$, $BaTiO_3$

CaTiO₃, SrTiO₃, BaTiO₃는 페로브스카이트 구조를 가지는 정육면체 결정의 모서리에 Ba, 면 중심에 O, 부피중심에 각각 Ca,Sr, Ti가 위치 한 형태이다. 이들은 강유전성 물질이며 고유의 퀴리온도가 존재한다. 한가지 예시로, BaTiO₃의 퀴리온도는 408 K이다. 즉, 135 °C 이상의 온도 로 BaTiO₃를 가열하면 편극이 깨진다.

FIG. 1. BaTiO₃의 결정구조

이번 실험에서 CaTiO₃, SrTiO₃, BaTiO₃는

각각 다음의 과정을 거쳐 합성을 진행한다.

$$CaCO_3 + TiO_2 \longrightarrow CaTiO_3 + CO_2$$
 (1)

$$SrCO_3 + TiO_2 \longrightarrow SrTiO_3 + CO_2$$
 (2)

$$BaCO_3 + TiO_2 \longrightarrow BaTiO_3 + CO_2$$
 (3)

각 물질의 몰질량은 TABLE I에 적어놓았다.

Compound	molar mass (g/mol)
BaCO_3	197.34
${ m BaTiO_3}$	233.19
$CaCO_3$	100.09
$CaTiO_3$	135.94
$SrCO_3$	147.63
SrTiO_3	183.49
${ m TiO_2}$	79.866
CO_2	44.009

TABLE I. 실험에 관련된 물질들의 몰질량

2. 고상소결법

소결은 금속 또는 세라믹 분말에 열을 가하여 밀도가 조절된 물질 또는 성분을 생산하는 공정 기술이다. 소결은 재료과학 및 공학의 기본요소 중 합성, 가공요소로 분류되고 있다. 기본적으로 소결은 고상소결과 액상소결로 나눌 수 있다. 이

^{*} hilee6674@inha.edu

번 실험에서 이용할 고상소결은 소결 온도에 도 선의 파장 λ 사이 관계를 보여준다. 달했을 때 전체적으로 고체 상태에서 치밀화되는 과정이다.

3. X-ray diffraction

X-ray diffraction는 결정 구조를 해석하는 방 법 중 하나로, 브래그 법칙을 이론적인 토대로 이 용한다. 결정에 X선을 입사시키면 X선의 일부는 투과하고 일부는 산란되는데 산란되는 X선은 결 정 구조의 규칙성에 관한 정보를 포함한다. 규칙 적으로 배열된 결정에 입사각 $\frac{\pi}{2} - \theta$ 로 입사하는 X선을 고려해보자(FIG 2). 브래그 법칙은 입사 선과 평면 사이 각도 θ , 결정면 사이 간격 d, X

$$2d\sin\theta = n\lambda\tag{4}$$

n은 정수이다.

FIG. 2. 결정에 입사하는 X선에 대한 브래그 법칙

Experimental Methods

- [1] C. Kittel, P. McEuen, and P. McEuen, Introduction to solid state physics, Vol. 8 (wiley New York, 1996).
- [2] R. Brook, Sintering: An overview, in Concise Encyclopedia of Advanced Ceramic Materials, edited by R. BROOK (Pergamon, Oxford,

1991) pp. 438-440.

[3] S.-J. L. Kang, Preface, in *Sintering*, edited by S.-J. L. Kang (Butterworth-Heinemann, Oxford, 2005) pp. xi-xii.