

T-TEST

HYPOTHESIS TESTING

prepared by:

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

1-Sample t-Test

F-Test

2-Sample t-Test

A <u>one-sample t-test</u> evaluates whether a <u>sample</u> <u>mean</u> significantly differs from hypothesized population mean.

<u>Assumptions</u>

- Continuous data
- Normally distributed

One-sample t-test function

```
t_stat, p_value =
stats.ttest_1samp(sample_data,
pop_mean)
```

Null Hypothesis

$$H_o$$
: $\mu_1 = \mu_o$

Alternative Hypothesis

$$H_a$$
: $\mu_1 \neq \mu_o$ (p-value $\leq \alpha$)

EXERCISE

The dataset contains the electricity production in MWh by the following production types:

Туре	μ	σ
Nuclear	1282.48	241.19
Wind	771.73	666.53
Hydroelectric	1792.64	679.98
Oil and Gas	1166.84	433.92
Coal	1138.50	329.93
Solar	171.81	257.26
Biomass	54.94	13.76

Perform a <u>1-sample t-test</u> to determine whether the mean electricity production (in MWh) for each production type in the given dataset differs significantly from known population parameters.

dataset

"<u>electricity-sample-1-dataset.csv</u>"

F-TEST_

An <u>F-test</u> is a statistical test used to compare the <u>variances</u> of two populations and determine if they are significantly different.

<u>Formula</u>

$$F = s_1^2/s_2^2$$

where:

F = F-statistic

 $s_1^2 =$ larger sample variance

 s_2^2 = smaller sample variance

Cumulative Probability of F-Distribution

Null Hypothesis

$$H_o$$
: $\sigma_1^2 = \sigma_2^2$

Alternative Hypothesis

$$H_a$$
: $\sigma_1^2 \neq \sigma_2^2$ (p-value $\leq \alpha$)

A <u>two-sample t-test</u> evaluates whether the mean of <u>two samples</u> are significantly different from each other.

<u>Assumptions</u>

- Continuous data
- Normally distributed

Independent Samples

```
t_stat, p_value =
stats.ttest_ind(sample_1, sample_2)
```

Dependent Samples

Null Hypothesis

$$H_o: \mu_1 = \mu_1$$

Alternative Hypothesis

$$H_a$$
: $\mu_1 \neq \mu_2$ (p-value $\leq \alpha$)

EXERCISE

The dataset contains the electricity production in MWh by the following production types:

Туре	μ	σ
Nuclear	1282.48	241.19
Wind	771.73	666.53
Hydroelectric	1792.64	679.98
Oil and Gas	1166.84	433.92
Coal	1138.50	329.93
Solar	171.81	257.26
Biomass	54.94	13.76

Perform an <u>independent two-sample t-test</u> to compare the means of electricity production (in MWh) between two distinct groups in the dataset.

dataset

"<u>electricity-sample-1-dataset.csv</u>"

LABORATORY

