Q1

9 / 10

Give a binary floating point representation with a 4 bit mantissa $(b_1.\,b_2b_3b_4\times 2^\epsilon)$ of the following numbers (use rounding to truncate). Calculate the relative rounding error in each case.

- (a) 3.9
- (b) 0.19
- (c) 3.375
- (d) 8.5

Q2

5/5

Perform the multiplication $42.00 \times 1.2344 \times 1600$ in two different orders, using 4 digits and rounding, **base 10**. In both cases, compute the relative error of the result.

- a) $(42.00 \times 1.2344) \times 1600$
- b) 42.00 imes (1.2344 imes 1600)

0/5

(textbook, section 0.4, exercise 4) Evaluate the quantity $x\sqrt{x^2+17}-x^2$ where $x=9^{10}$, correct to at least 3 decimal places.

Q5

9 / 10

Consider a hypothetical 8 bit floating point machine representation with a sign bit, a 3 bit exponent, and a 4 bit mantissa ($se_1e_2e_3b_1b_2b_3b_4$), where the exponent bias is 3 (add 3 to exponent of number to form machine representation). Recall that actual mantissa has 5 bits, since the leading 1 is not stored on the machine.

- (a) What is the number $e \approx 2.718$ in this 8-bit format?
- (b) What is the number that $(10100111)_2$ represents in this 8-bit format?
- (c) What is the upper bound of the relative error when representing a real number in this 8-bit format?

Q6

6/6

(textbook, section 0.5, exercise 2) Find c satisfying the Mean Value Theorem for f(x) on the interval [0,1]. (a) $f(x)=e^x$ (b) $f(x)=x^2$ (c) f(x)=1/(x+1)

0	6) [0,1]
	$\omega f(\omega = e^{x} \Rightarrow f(\omega) = e^{x}$
	f'(c) = (f(m-f(a))
	= e ¹ - e ⁰ = e ¹ - = e ¹ - = e -
	f'(x) = e ^x
	Solve e = e-1 = In (e = In (e-1)
	$C = \ln(e - 1) = 0.5 + 13$
	b) $f(x) = x^2 \implies f'(x) = 2x$
	F'(c) = (F(b)-F(b) = 1-0=1
	F'(x) = 2x
	Solve 26 =

Q7

7 / 8

Determine the second-degree Taylor polynomial and associated remainder term for the function $f(x)=e^{-x^2}$, expanding about 0, and use it to estimate $e^{-0.1^2}$. Compare the upper bound of the remainder to the exact absolute error.

