Linear Angular		Linear Angular	
F = ma	$M = I\alpha = \vec{r} \times \vec{F}$	$LKE = \frac{1}{2}mv^2$	$RKE = \frac{1}{2}I\omega^2$
v = u + at	$\omega = \omega_0 + \alpha t$	$W = \int F ds = \Delta L K E$	$W = \int M d\theta = \Delta R K E$
$v^2 - u^2 = 2as$	$\omega^2 - \omega_0^2 = 2\alpha\theta$	P = Fv	$P = M\omega$
$s = \frac{1}{2}at^2 + ut$	$\theta = \frac{1}{2}\alpha t^2 + \omega_0 t$	p = mv	$L = I\omega$
$s = \frac{1}{2}(u+v)t$	$\theta = \frac{1}{2}(\omega_0 + \omega)t$	$J = \Delta p = \int F dt$	$\Delta L = \int M dt$

Standard force and motion stuff

GPE = mgh	$f_{max} = \mu N$	$a_n = \frac{v^2}{r} = r\omega^2$	$a_t = r\alpha$
$I = \sum mr^2 = m\rho^2$	$I = I_C + mh^2$	$v = r\omega$	☺

Deformation stuff		
NormalShearStress $\sigma = \frac{F}{A}$ $\tau = \frac{F}{A}$ Strain $\varepsilon = \frac{\Delta l}{l}$ $\gamma \approx \tan \gamma = \frac{d}{l}$ Modulus $E = \frac{\sigma}{\varepsilon}$ $G = \frac{\tau}{\gamma}$	$\ell = \begin{bmatrix} B & \xrightarrow{d} B' & \xrightarrow{F} C & C' \\ \gamma' & & \gamma' & \gamma' \\ A & \xrightarrow{F} D & D \end{bmatrix}$	
$\tau_{xy} = \tau_{yx}; \ \tau_{yz} = \tau_{zy}; \ \tau_{zx} = \tau_{xz}$	Stiffness: $k = \frac{F}{\Delta L}$	
Strength: Stress before failure	Yield point: 0.002 strain	
Ductility: Deformation before rupture	Toughness: Energy absorbed before rupture	
Viscous (Time-dependent): $\sigma = \eta \frac{d\varepsilon}{dt}$	Elastic (Instantaneous): $\sigma = E\varepsilon$	
Increasing $\hat{\iota}$ $\mu \vdash \hat{x}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Maxwell Body: Spring + Dashpot in series $\sigma(t) = \sigma_0 e^{-\frac{t}{\tau}}$	$\sigma_0 = E \varepsilon_0$ $\sigma(t)$ $\dot{\varepsilon} = 0$ \dot{t}_0 \dot{t}_0 \dot{t}_0 \dot{t}_0 \dot{t}_0 \dot{t}_0 \dot{t}_0 \dot{t}_0	
Voigt Body: Spring + Dashpot in parallel $\varepsilon(t) = \frac{\sigma_0}{E} \left(1 - e^{-\frac{Et}{\sigma}} \right)$	σ t	
Standard linear solid: Spring + Voigt in series $\sigma(t) = \varepsilon_0 \left(E_1 + E_2 e^{-\frac{t}{\tau}} \right)$ $\varepsilon(t) = \sigma_0 \left[\frac{1}{E_1} e^{-\frac{E_2 t}{\eta}} + \frac{E_1 + E_2}{E_1 E_2} \left(1 - e^{-\frac{E_2 \tau}{\eta}} \right) \right]$ $\varepsilon = \frac{\sigma_0 t}{\eta}$ $\tau = \frac{\eta}{E}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Poisson's Ratio (Force along x): $v = -\frac{\varepsilon_y}{\varepsilon_x} = -\frac{\varepsilon_z}{\varepsilon_x}$	
Hooke's Law: $\varepsilon_x = \frac{1}{E} [\sigma_x - v(\sigma_y + \sigma_z)];$	E = G(2 + 2v) = K(3 - 6v)	

Mohr's circle stuff

Moni s circic stan			
$\bar{\sigma} = \frac{1}{2} (\sigma_x + \sigma_y)$	$R = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$	$\sigma_{min/max} = \bar{\sigma} \pm R$	$\tan 2\theta_p = \frac{2\tau_{xy}}{\sigma_x - \sigma_y}$
$(\sigma_{x'} - \bar{\sigma})^2 + \tau_{x'y'}^2 = R^2$		$\tau_{x'y'} = -\frac{\sigma_x - \sigma_y}{2} \sin 2\theta + \tau_{xy} \sin 2\theta$	
$\sigma_{x'} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta = \sigma_x \frac{1 + \cos 2\theta}{2} + \sigma_y \frac{1 - \cos 2\theta}{2} + \tau_{xy} \sin 2\theta$			
$\sigma_{y'} = \frac{\sigma_x + \sigma_y}{2} - \frac{\sigma_x - \sigma_y}{2} \cos 2\theta - \tau_{xy} \sin 2\theta = \sigma_x \frac{1 - \cos 2\theta}{2} + \sigma_y \frac{1 + \cos 2\theta}{2} - \tau_{xy} \sin 2\theta$			

Bending stuff

Longitudinal displacement: $\delta = -y\theta$

Longitudinal strain: $\varepsilon_{x} = \frac{\delta}{L} = -\frac{y}{\rho}$

Maximum strain: $\varepsilon_{max} = \frac{c}{\rho}$

Flexure stress: $\sigma_{\chi} = \frac{-My}{I}$ Curvature: $\frac{1}{\rho} = \frac{\varepsilon_{max}}{c} = \frac{M}{EI}$ Flexure rigidity: EI

Area (A); Area moment of inertia (J); First moment of area (Q)

$$A = bh$$

$$J = \frac{1}{12}bh^{3}$$

$$Q = \frac{1}{8}bh^{2}$$

$$\sigma_{max} = \frac{Mh}{2J}$$

$$\tau_{max} = \frac{3V}{2A}$$

$$A = \pi r_o^2$$

$$J = \frac{1}{4}\pi r_o^4$$

$$Q = \frac{2}{3}r_o^3$$

$$\sigma_{max} = \frac{Mr_o}{J}$$

$$\tau_{max} = \frac{4V}{3A}$$

$$A = \pi (r_0^2 - r_i^2)$$

$$J = \frac{1}{4}\pi (r_0^4 - r_i^4)$$

$$Q = \frac{2}{3}(r_0^3 - r_i^3)$$

$$\sigma_{max} = \frac{Mr_0}{J}$$

$$\tau_{max} = \frac{4V}{3A} \left(\frac{r_0^2 + r_0 r_i + r_i^2}{r_0^2 + r_i^2}\right)$$

Torsion stuff

Angle of twist: $\theta = \frac{ML}{GJ}$	Torsional rigidity: GJ		
$\gamma_{max} = \frac{c\theta}{L}$	$\gamma = \frac{\rho}{c} \gamma_{max}$	$ \tau_{max} = \frac{Mc}{J} $	$\tau = \frac{\rho}{c}\tau_{max} = \frac{M\rho}{J}$

Miscellaneous information

Low strain:	Elastin dominates	High strain:	Collagen dominates
Warm-up:	Decreases viscosity of synovial fluid; Increases flexibility (Thixotropy)		
Wolff's law:	Tissues would remodel themselves to meet the functional demands		
Stress shielding:	Tissues would resorb if they are shielded from normal physiological stress		

