Proofs: Multiple Riemann integral

Viet Duc Nguyen Technical University of Berlin Analysis III

December 23, 2018

Contents

1	One dimensional integral	1
2	Multiple integral on compact cuboids	2
3	Linear, monotonic and translation-invariant functionals	2
4	Integration by substitution	3

1 One dimensional integral

• One may differentiate under the integral sign and the derivative is continuous.

Proof. First, we will show the following theorem: Let $f:[a,b] \times [c,d] \to \mathbb{R}$ be continuous and continuously partially differentiable in [c,d]. Consider a sequence $(y_k) \subset [c,d]$ with $y_k \to y$ and $y_k \neq y$. Then

$$x \mapsto \frac{f(x, y_k) - f(x, y)}{y_k - y}$$
 uniformly converges to $x \mapsto \frac{\partial}{\partial y} f(x, y)$.

It holds

$$\lim_{k \to \infty} \frac{\int_a^b f(x, u_k) dx - \int_a^b f(x, u) dx}{u_k - u} = \int_a^b \lim_{k \to \infty} \frac{f(x, u_k) - f(x, u)}{u_k - u} dx = \int_a^b \frac{\partial}{\partial u} f(x, u) dx.$$

After (1), the integral is continuous, since $\frac{\partial}{\partial u}f(x,u)$ is continuous.

2 Multiple integral on compact cuboids

• If $f:[a,b]\times U\to\mathbb{R}$ is continuous, then

$$(u_1, ..., u_n) \mapsto \int_h^a f(x, u_1, ..., u_n) dx$$
 is continuous (1)

Proof. First, we need a theorem that states: Let $f:[a,b]\times U\to\mathbb{R}$ be continuous. Consider a sequence $(u_k)\subset U$ with $u_k\to u$. It holds:

$$x \mapsto f(x, u_k)$$
 uniformly converges for $k \to \infty$ to $x \mapsto f(x, u)$. (2)

To show that $F(u_1, ..., u_n) = \int_b^a f(x, u_1, ..., u_n) dx$ is continuous, we will prove for any sequence $(u_k) \subset U$ with $u_k \to u$ that $\lim_{k \to \infty} F(u_k) = F(u)$. It holds

$$\lim_{k \to \infty} F(u_k) = \lim_{k \to \infty} \int_b^a f(x, u_k) dx \stackrel{(*)}{=} \int_b^a \lim_{k \to \infty} f(x, u_k) dx = \int_b^a f(x, u) dx = F(u).$$

In the step (*), we used that $f(x, u_k)$ uniformly converges to f(x, u) due to (2). Therefore, we can exchange limit and integral.

• Theorem of Fubini: For any continuous function $f:[a,b]\times[c,d]\to\mathbb{R}$, it holds:

$$\int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dx \right) dy.$$

Proof. Consider the derivative of $y \mapsto \int_a^b \left(\int_c^y f(x,u) du \right) dx$. It is

$$\int_{a}^{b} \left(\frac{d}{dy} \int_{c}^{y} f(x, y) dy \right) dx = \int_{a}^{b} f(x, y) dx.$$

Now, we will immediately see the result

$$\int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy = \int_{c}^{d} \frac{d}{dy} \left(\int_{a}^{b} \left(\int_{c}^{y} f(x, y) dy \right) dx \right) dy = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx$$

Theorems we used to show the proofs: $\int f$ is continuous \implies the double integral is well defined and one may differentiate under the integral sign.

Proof. Alternatively, the permutation is given by an orthogonal matrix A. Then $\int f(Ax)dx = \int f(x)dx$.

3 Linear, monotonic and translation-invariant functionals

• Let $f_k \to f$ uniformly and $f_k, f \in \mathcal{C}_c(\mathbb{R}^d)$. The support of all f_k is contained in a compact cuboid Q. Then $J(f_k) \to J(f)$.

Proof. There is continuous $\Phi: \mathbb{R}^d \to [0,1]$ with $\Phi|_Q = 1$ and compact support Q. Then $-\|f_k - f\|\Phi \le f_k - f \le \|f_k - f\|\Phi$ due to $\operatorname{supp}(f_k - f) \subset Q$. Applying the functional yields due to monotocity of J

$$J(-\|f_k - f\|\Phi) \le J(f_k - f) \le J(\|f_k - f\|\Phi).$$

Here we need that there exists such a Φ that is continuous and compact. We need it here otherwise we cannot apply the functional on the term $||f_k - f||$ since it is not compact. We use linearity:

$$-\|f_k - f\|J(\Phi) \le J(f_k) - J(f) \le \|f_k - f\|J(\Phi) \iff |J(f_k) - J(f)| \le \|f_k - f\|J(\Phi).$$
Thus $J(f_k) \to J$ since $\|f_k - f\| \to 0$.

• Every functional on $\mathcal{C}_c(\mathbb{R}^d)$ that is linear, monotonic and translation-invariant is unique up to a constant.

Proof. Let $c := J(\Psi)$, It holds $J(\Psi_{2^{-n}}) = cI(\Psi_{2^{-n}})$. We approximate f by $f_n = \sum f(k2^{-n})\theta_{k2^{-n}}\Psi_{2^{-n}}$. Since it is translation-invariant and linear, it follows $J(f_n) = cI(f_n)$. All f_n , f are contained in a compact cuboid Q. Additionally, $f_n \to f$ uniformly. Thus, J(f) = cI(f).

4 Integration by substitution

• $\int_{\mathbb{R}^d} f(Ax) dx = \int_{\mathbb{R}^d} f(x) dx$ if A is orthogonal.

Proof. There exists c such that $\int f(Ax)dx = c \int f(x)dx$ because $\int \circ A$ is a linear, monotonic and translation-invariant functional. Then $f_0(x) = (1 - ||x||)_+$ implies c = 1 because A is orthogonal.

5 Volumes

• dd