# Sequential M-MED

Kristyn Pantoja

10/04/2019

Beating quadratic D-Optimal design

Bn

MSE(Bn)

Posterior Probabilities of Hypotheses

Other Designs for Model Selection (T, Ds-Optimal, step-wise F-test)

Adjusting Sequential M-MED (unsuccessfully)

Larger alpha

some notes

# Beating quadratic D-Optimal design

# How, it seems, to beat quadratic D-Optimal Design

We want to come up with examples where the sequential M-MED gives higher prior probability of  $H_1$  than the quadratic D-Optimal design does.

- ▶ It seems to me that when sigmasq > sigmasq01 (but not too big (??)), sequential M-MED typically does better than quadratic D-Optimal design in this sense.
- ▶ Is this sensible, though? To have a small value of sigmasq01 when the priors are wrong, anyway?
  - ▶ Is there a way to not allow the prior means to affect the calculation for posterior probabilities in nested models? non-informative / improper priors? Or is this not an issue when the prior means are 0 vectors - because then the marginal variance only matters in model evidence computation? (Otherwise, it seems it would be an issue because of how much it affects model evidence)
  - What does the ratio have to be?

# Revisiting the Example

betaT = c(-0.2, 0, 0.5) # like ex2.1



### M-MED Without Data

I generate 50 design points from M-MED with no data, one with  $\alpha=2\textbf{\textit{p}}.$ 





### M-MED With Data

I work with a sequence of 5 steps, generating 10 points in each step, and resulting in 50 points, too.

M-MED, with data





х

# Bn

# Seeing How Bn Changes

seems also sensitive when sigmasq01 is large (when sigmasq01 was 1, the quadratic term's coefficient was nearly 0, - and some other bad things happen I'm sure)



# MSE(Bn)

# MSE(Bn) (quadratic model)



## MSE Bar Plots



# Posterior Probabilities of Hypotheses

# Hypothesis Testing



|          | E[P(H0 Y) D] | E[P(H1 Y) D] | E[BF01 Y,D] |
|----------|--------------|--------------|-------------|
| dopt1    | 0.38542      | 0.61458      | 0.64115     |
| dopt2    | 0.01114      | 0.98886      | 0.01206     |
| space    | 0.17955      | 0.82045      | 0.27095     |
| MMED     | 0.35631      | 0.64369      | 0.61184     |
| MMEDdata | 0.00492      | 0.99508      | 0.00495     |

# Other Designs for Model Selection (T, Ds-Optimal, step-wise F-test)

## T-Optimal Design

- Atkinson & Fedorov 1975 Biometrika "The Designs of Experiments for Discriminating between Two Rival Models"
- ▶ To compare models  $\eta_1(x, \theta_1)$  and  $\eta_2(x, \theta_2)$  (not necessarily linear in the parameters),
  - 1. suppose that one model,  $\eta_1(\cdot, \theta_1)$  for example is true
  - 2. choose design points x to maximize the sum of squares for lack of fit of the second model
- may be sensitive to choice of the fixed model and, depending on that, the choice of its parameters
  - if they are nested and the smaller model is true, then the design does not depend on any values of unknown parameters
  - otherwise, it does, because we must fix some parameter values for those parameters that are not included in the smaller model
- ▶ the focus is on model discrimination, not parameter estimation
- questions:
  - why are the design points, called support points, fixed (3 for quadratic models?)? is this always the case?
- ➤ a problem: "Analytical methods of construction are possible only in a few special cases"

## **Ds-Optimal Design**

- Stigler 1971 JASA "Optimal Experimental Design for Polynomial Regression"
- Used to discriminate between two nested polynomial models  $y(x) = \sum_{i=1}^{m_0} \beta_i x^i$  and  $y(x) = \sum_{i=1}^{m_1} \beta_i x^i$ ,  $m_0 < m_1$
- "the model is thought to be of degree r, but possibly the coefficients of the  $s=m_1-m_0$  higher powers are not zero" (Studden, "Some Robust-Type D-Optimal Designs in Polynomial Regression")
- Let

$$M = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix}$$

where  $M_{11}$  is a dimension  $m_0$  matrix, and  $M_22$  is a dimension s matrix.

- The problem is to find the design  $\xi$  that maximizes  $|M_11(\xi)|$  subject to  $|\Sigma_s(\xi)| \ge c$ .
- the focus seems to be on parameter estimation, with some protection/robustness

## Step-wise F-test

- Biswas & Chaudhuri 2002 Biometrika, "An efficient design for model discrimination and parameter estimation in linear models"
- ► A step-wise F-test to select the number of monomials that should be included.
- 3 objectives in this method:
  - selection of the correct (polynomial) model
  - efficient estimation of all parameters in that model
  - generation of design points so as to converge to optimal design for that model (optimal in what sense?)

# Adjusting Sequential M-MED (unsuccessfully)

# Why?

The  $D_s$ -Optimal design does not compare sharp hypotheses, like the current version of sequential M-MED. It compares nested polynomials without specifying priors on the coefficients. To make the comparison more fair (and, I hope, also to make sequential M-MED more robust and better-performing), we can adjust our current implementation to dynamically update the priors, too. I think this makes sense, since, as more data is gathered, we learn more about the true shape of the data.

# Generating Sequential M-MED with data

#### Consider a sequence of T steps:

- 1. Choose  $N_1$  initial points using M-MED (without data), with  $\alpha=0$ ; call it  $D_1$ . This amounts to initializing with a space-filling design.
- 2. Collect data on  $D_1$ ; call it  $y_1$ .
- 3. Choose  $N_2$  additional points using M-MED (with data), with  $\alpha = \frac{2p}{T}t$ , t = 1:T; call these design points  $D_2$ .
- 4. Collect data,  $y_2$ , on  $D_2$ .
- 5. Repeat steps 3-4 for t = 2 : T.

The part that would change is step 3 (and its iterations). Instead of using the posterior predictive distribution with the original hypothesized prior means  $\mu^{(i)}$  for  $i = \{0,1\}$ , we can let  $\mu^{(i)} = \beta_n^{(i)}$  at each new iteration.

#### Issues

- ► This adaptive-prior version doesn't actually do better than the sequential M-MED, much less quadratic D-Optimal design :(
- However, in general, our method has the advantage of being easier to implement than other designs, since there is no need to maximize any determinants, which may require exchange algorithms

## Bn estimates for Beta



# Bn for reconstructing f



25 / 31

Note that the following pictures for posterior probabilities of H1 are misleading because they assume different priors, or changing priors. In general, though, how can we correct this for non-sharp hypotheses for nested models? Bayesian methods already account for this, in fact. Maybe larger prior variance would make more sense, though.

# Posterior Probabilities (original priors)



# changing prior for adaptive sequential M-MED



# Larger alpha

## alpha = 100

## very similar to quadratic D-Optimal design

#### M-MED, with data





## some notes